

US012384809B2

(12) United States Patent Shih et al.

(10) Patent No.: US 12,384,809 B2

(45) **Date of Patent:** *Aug. 12, 2025

(54) ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

(71) Applicant: Universal Display Corporation,

Ewing, NJ (US)

(72) Inventors: Wei-Chun Shih, Lawrenceville, NJ

(US); **Zhiqiang Ji**, Chalfont, PA (US); **Pierre-Luc T. Boudreault**, Pennington, NJ (US); **Hsiao-Fan Chen**, Lawrence Township, NJ (US); **Tongxiang Lu**,

Lawrenceville, NJ (US)

(73) Assignee: UNIVERSAL DISPLAY

CORPORATION, Ewing, NJ (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 18/483,721

(22) Filed: Oct. 10, 2023

(65) Prior Publication Data

US 2024/0076307 A1 Mar. 7, 2024

Related U.S. Application Data

- (63) Continuation of application No. 16/986,953, filed on Aug. 6, 2020, now Pat. No. 11,820,783.
- (60) Provisional application No. 62/896,857, filed on Sep. 6, 2019.
- (51) Int. Cl.

C07F 15/00 (2006.01) C09K 11/06 (2006.01) H10K 85/30 (2023.01)

(52) U.S. Cl.

CPC *C07F 15/0033* (2013.01); *C09K 11/06* (2013.01); *H10K 85/342* (2023.02); *C09K 2211/1074* (2013.01); *C09K 2211/185* (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,769,292	A	9/1988	Tang et al.
5,061,569	A	10/1991	VanSlyke et al.
5,247,190	A	9/1993	Friend et al.
5,703,436	A	12/1997	Forrest et al.
5,707,745	A	1/1998	Forrest et al.
5,834,893	A	11/1998	Bulovic et al.
5,844,363	A	12/1998	Gu et al.
6,013,982	A	1/2000	Thompson et al.
6,087,196	A	7/2000	Sturm et al.
6,091,195	A	7/2000	Forrest et al.
6,097,147	A	8/2000	Baldo et al.
6,294,398	B1	9/2001	Kim et al.

6,303,238 B1	10/2001	Thompson et al.
6,337,102 B1	1/2002	Forrest et al.
6,468,819 B1	10/2002	Kim et al.
6,528,187 B1	3/2003	Okada
6,687,266 B1	2/2004	Ma et al.
6,835,469 B2	12/2004	Kwong et al.
6,921,915 B2	7/2005	Takiguchi et al.
7,087,321 B2	8/2006	Kwong et al.
7,090,928 B2	8/2006	Thompson et al.
7,154,114 B2	12/2006	Brooks et al.
7,250,226 B2	7/2007	Tokito et al.
7,279,704 B2	10/2007	Walters et al.
	(Con	tinued)

FOREIGN PATENT DOCUMENTS

CN 106397340 2/2017 CN 106397489 2/2017 (Continued)

OTHER PUBLICATIONS

Adachi, Chihaya et al., "Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer," Appl. Phys. Lett., 55(15): 1489-1491 (1989).

Adachi, Chihaya et al., "Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device," J. Appl. Phys., 90(10): 5048-5051 (2001).

Adachi, Chihaya et al., "High-Efficiency Red Electrophosphorescence Devices," Appl. Phys. Lett., 78(11)1622-1624 (2001).

Aonuma, Masaki et al., "Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes," Appl. Phys. Lett., 90, Apr. 30, 2007, 183503-1-183503-3.

(Continued)

Primary Examiner — Christopher M Rodd (74) Attorney, Agent, or Firm — DUANE MORRIS LLP

(57) ABSTRACT

Provided are compounds of Formula ${\rm Ir}({\rm L}_A)_x({\rm L}_C)_y$ wherein: ligand ${\rm L}_A$ has Formula I'

$$X^{6} = X^{5}$$

$$X^{7}$$

$$X^{8}$$

$$X^{1} = X^{2}$$

$$X^{3}$$

$$X^{1} = X^{2}$$

and ligand L_C has Formula II'

20 Claims, 2 Drawing Sheets

(56)		Referen	ces Cited		CN	108484680	9/2018	
	U.S.	PATENT	DOCUMENTS		EP EP	0650955 1725079	5/1995 11/2006	
					EP	2034538	3/2009	
7,332,232			Ma et al.		JP JP	200511610 2007123392	1/2005 5/2007	
7,338,722 7,393,599			Thompson et al. Thompson et al.		JР	2007254297	10/2007	
7,396,598			Takeuchi et al.		JP	2008074939	4/2008	
7,431,968	8 B1		Shtein et al.		WO	01/39234	5/2001	
7,445,855			Mackenzie et al.		WO	02/02714	1/2002	
7,534,505			Lin et al.	G0017 11/06	WO WO	02015654 03040257	2/2002 5/2003	
8,883,322	2 B 2 *	11/2014	Wu	428/917	WO	03060956	7/2003	
10,003,033	3 B2	6/2018	Boudreault et al.	420/91/	WO	2004093207	10/2004	
2002/0034650			Thompson et al.		WO	2004107822	12/2004	
2002/0134984			Igarashi		WO WO	2005014551 2005019373	2/2005 3/2005	
2002/0158242			Son et al. Kamatani		WO	2005030900	4/2005	
2003/0068526 2003/0138653			Li et al.		WO	2005089025	9/2005	
2003/0152802			Tsuboyama et al.		WO	2005123873	12/2005	
2003/0162053			Marks et al.		WO WO	2006009024 2006056418	1/2006 6/2006	
2003/0175553			Thompson et al.		WO	2006072002	7/2006	
2003/0230980 2004/003607		2/2003	Forrest et al.		WO	2006082742	8/2006	
2004/0137263			Igarashi et al.		WO	2006098120	9/2006	
2004/0137268	3 A1	7/2004	Igarashi et al.		WO	2006100298	9/2006	
2004/0174116			Lu et al.		WO WO	2006103874 2006114966	10/2006 11/2006	
2005/0025993 2005/0112403			Thompson et al. Ogasawara et al.		wo	2006132173	12/2006	
2005/011240			Mishima et al.		WO	2007002683	1/2007	
2005/0238919			Ogasawara		WO	2007004380	1/2007	
2005/0244673		11/2005	Satoh et al.		WO WO	2007063754 2007063796	6/2007 6/2007	
2005/0260443			Thompson et al.		WO	2007003790	5/2008	
2005/0260449 2006/0008670			Walters et al. Lin et al.		WO	2008101842	8/2008	
2006/0202194			Jeong et al.		WO	2008132085	11/2008	
2006/0240279		10/2006	Adamovich et al.		WO	2009000673	12/2008	
2006/0251923			Lin et al.		WO WO	2009003898 2009008311	1/2009 1/2009	
2006/0263635 2006/0280965		11/2006	Kwong et al.		WO	2009018009	2/2009	
2007/0190359			Knowles et al.		WO	2009021126	2/2009	
2007/0278938			Yabunouchi et al.		WO	2009050290	4/2009	
2008/001535		1/2008	Schafer et al.		WO WO	2009062578 2009063833	5/2009 5/2009	
2008/0018222 2008/0106190			Egen et al. Yabunouchi et al.		wo	2009066778	5/2009	
2008/0100190			Mizuki et al.		WO	2009066779	5/2009	
2008/0220265			Xia et al.		WO	2009086028	7/2009	
2008/0297033			Knowles et al.		WO	2009100991	8/2009	
2009/0008603			Kawamura et al. Nishimura et al.			OFFILED DI		
2009/0009065 2009/0017330			Iwakuma et al.			OTHER PU	BLICATIONS	
2009/0030202			Iwakuma et al.		Baldo et a	d., Highly Efficient Pho	sphorescent Emiss	ion from Organic
2009/0039776	5 A1	2/2009	Yamada et al.			minescent Devices, Na		-
2009/0045730			Nishimura et al.			al., Very high-efficie		
2009/0045731 2009/0101870			Nishimura et al. Prakash et al.			ased on electrophospho	rescence, Appl. Ph	ys. Lett., vol. 75,
2009/0101873			Kwong et al.		No. 1, 4-		D1 E141	F
2009/0115316			Zheng et al.			qiang et al., "Bright- stituted ter-(phenylene		
2009/0165846			Johannes et al.			6): 865-867 (1999).	vinyiene) derivati	ve, rippi. riiys.
2009/0167162			Lin et al.		Guo, Tzu	ing-Fang et al., "High		
2009/0179554			Kuma et al.	111012 05/242		Light-Emitting Device	es," Organic Elect	ronics, 1: 15-20
2013/029979:	AIT	11/2013	Xia	546/4	(2000).	NZ-11 -4 -1 -6111-1 T		Electual continue
2015/0236277	7 A1*	8/2015	Boudreault		cent Dev	Yuji et al., "High Lum ices with Bis(10-hydr itter," Chem. Lett., 90	oxybenzo[h]quinol	
2019/006760	l Al	2/2019	Ji	2377 10		R.J. et al., "Blue Orga	· /	orescence Using
2019/0218240		7/2019			Exothern	nic Host-Guest Energ 22-2424 (2003).		
FO	OREIG	N PATE	NT DOCUMENTS	S	Based on 1	Xing et al., "Novel H Indolo[3,2-b]carbazoles	for Organic Light-E	sport Molecules mitting Devices,"
CN	106397		2/2017			Metals, 111-112:421- insong et al., "Highly		nission Polymon
CN CN	106393 106588		2/2017 4/2017			escent Light-Emitting		
CN	108358		8/2018			quinolinato-C2,N)iridi		
CN	108383	3879	8/2018		19:739-74	43 (2007).	, ,	
CN	108409		8/2018			Wei-Sheng et al.,		
CN CN	108484 108484		9/2018 9/2018			alated Iridium Compl gands," Chem. Mater.,		
	100404	1017	3/2010		Dased Ll	ganus, Chem Mater.,	10(12):2400-2488	(ZUU4).

(56) References Cited

OTHER PUBLICATIONS

Hung, L.S. et al., "Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3," Appl. Phys. Lett., 78(5):673-675 (2001).

Ikai, Masamichi et al., "Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer," Appl. Phys. Lett., 79(2):156-158 (2001).

Ikeda, Hisao et al., "P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide," SID Symposium Digest, 37:923-926 (2006).

Inada, Hiroshi and Shirota, Yasuhiko, "1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials," J. Mater. Chem., 3(3):319-320 (1993).

Kanno, Hiroshi et al., "Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material," Appl. Phys. Lett., 90:123509-1-123509-3 (2007).

Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, Jpn. J. Appl. Phys., 32:I.917-I.920 (1993).

Kuwabara, Yoshiyuki et al., "Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4',4"-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4',4"-Tris(3-methylphenyl-amino) triphenylamine (m-MTDATA), as Hole-Transport Materials," Adv. Mater., 6(9):677-679 (1994).

Kwong, Raymond C. et al., "High Operational Stability of Electrophosphorescent Devices," Appl. Phys. Lett., 81(1) 162-164 (2002).

Lamansky, Sergey et al., "Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes," Inorg. Chem., 40(7):1704-1711 (2001).

Lee, Chang-Lyoul et al., "Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter," Appl. Phys. Lett., 77(15):2280-2282 (2000).

Lo, Shih-Chun et al., "Blue Phosphorescence from Iridium(III) Complexes at Room Temperature," Chem. Mater., 18 (21)5119-5129 (2006).

Ma, Yuguang et al., "Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage," Appl. Phys. Lett., 74(10):1361-1363 (1999).

Mi, Bao-Xiu et al., "Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative," Chem. Mater., 15(16):3148-3151 (2003).

Nishida, Jun-ichi et al., "Preparation, Characterization, and Electroluminescence Characteristics of α -Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands," Chem. Lett., 34(4): 592-593 (2005).

Niu, Yu-Hua et al., "Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex," Chem. Mater., 17(13):3532-3536 (2005).

Noda, Tetsuya and Shirota, Yasuhiko, "5,5'-Bis(dimesitylboryl)-2,2'-bithiophene and 5,5"-Bis (dimesitylboryl)-2,2'5',2"-terthiophene as

a Novel Family of Electron-Transporting Amorphous Molecular Materials," J. Am. Chem. Soc., 120 (37):9714-9715 (1998).

Okumoto, Kenji et al., "Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%," Appl. Phys. Lett., 89:063504-1-063504-3 (2006).

Palilis, Leonidas C., "High Efficiency Molecular Organic Light-Emitting Diodes Based On Silole Derivatives And Their Exciplexes," Organic Electronics, 4:113-121 (2003).

Paulose, Betty Marie Jennifer S. et al., "First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes," Adv. Mater., 16(22):2003-2007 (2004).

Ranjan, Sudhir et al., "Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes," Inorg. Chem., 42(4):1248-1255 (2003).

Sakamoto, Youichi et al., "Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers," J. Am. Chem. Soc., 122(8):1832-1833 (2000).

Salbeck, J. et al., "Low Molecular Organic Glasses for Blue Electroluminescence," Synthetic Metals, 91: 209-215 (1997).

Shirota, Yasuhiko et al., "Starburst Molecules Based on pi-Electron Systems as Materials for Organic Electroluminescent Devices," Journal of Luminescence, 72-74:985-991 (1997).

Sotoyama, Wataru et al., "Efficient Organic Light-Emitting Diodes with Phosphorescent Platinum Complexes Containing N/C/N-Coordinating Tridentate Ligand," Appl. Phys. Lett., 86:153505-1-153505-3 (2005).

Sun, Yiru and Forrest, Stephen R., "High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers," Appl. Phys. Lett., 91:263503-1-263503-3 (2007).

T. Östergård et al., "Langmuir-Blodgett Light-Emitting Diodes Of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure," Synthetic Metals, 88:171-177 (1997).

Takizawa, Shin-ya et al., "Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices," Inorg. Chem., 46(10):4308-4319 (2007).

Tang, C.W. and VanSlyke, S.A., "Organic Electroluminescent Diodes," Appl. Phys. Lett., 51(12):913-915 (1987).

Tung, Yung-Liang et al., "Organic Light-Emitting Diodes Based on Charge-Neutral Ru II PHosphorescent Emitters," Adv. Mater., 17(8)1059-1064 (2005).

Van Slyke, S. A. et al., "Organic Electroluminescent Devices with Improved Stability," Appl. Phys. Lett., 69 (15):2160-2162 (1996). Wang, Y. et al., "Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds," Appl. Phys. Lett., 79(4):449-451 (2001).

Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, Chem. Commun., 2906-2908 (2005).

Wong, Wai-Yeung, "Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors," Angew. Chem. Int. Ed., 45:7800-7803 (2006).

* cited by examiner

FIG. 1

FIG. 2

60

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of copending U.S. patent application Ser. No. 16/986,953, filed Aug. 6, 2020, which claims priority under 35 U.S.C. 10 § 119(e) to U.S. Provisional Application No. 62/896,857, filed on Sep. 6, 2019, the entire contents of which are incorporated herein by reference.

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices.

BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic photodetectors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.

OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.

One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as "saturated" colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional 50 liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be 55 measured using CIE coordinates, which are well known to the art.

SUMMARY

The present invention discloses transition metal compounds comprising new polyaza-substituted ligands as emissive dopants for improving device performance of OLED devices.

In one aspect, the present disclosure provides a compound of Formula $\operatorname{Ir}(L_{\mathcal{A}})_x(L_{\mathcal{C}})_v$, wherein: ligand $L_{\mathcal{A}}$ has Formula I'

2

$$X^{6} = X^{5}$$
 X^{7}
 $X^{8} = X^{4}$
 $X^{1} = X^{2}$
 $X^{1} = X^{2}$

and ligand L_C has Formula II

$$R^1$$
 R^2 ;

wherein: x is 1, 2, or 3; y is 0, 1, or 2; x+y=3; $X^{1}-X^{8}$ are each independently C, N, or CR, and at least four of X^1-X^8 are N; the X^1-X^4 that connects to ring A is C, and the X^1-X^4 that coordinates to Ir is N; ring A is an unsaturated 5-membered or 6-membered carbocyclic or heterocyclic ring; R^A represents zero, mono, or up to the maximum number of allowed substitutions to its associated ring; each R, R^1 - R^3 , and R^A is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfanyl, sulfonyl, phosphino, and combinations thereof; and two substituents can be joined or fused together to form a ring, wherein the ligand L_A coordinates to Ir to form a 5-membered chelate ring as indicated by the two dashed lines of the Formula I', with the proviso that the compound of Formula $Ir(L_A)_x(L_C)_y$ is not

3

In another aspect, the present disclosure provides a formulation of the compound of the present disclosure.

In yet another aspect, the present disclosure provides an OLED having an organic layer comprising the compound of the present disclosure.

In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising the compound of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an organic light emitting device.

FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.

DETAILED DESCRIPTION

A. Terminology

Unless otherwise specified, the below terms used herein 20 are defined as follows:

As used herein, the term "organic" includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not 25 a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated 30 into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phos- 35 wherein each R_s can be same or different. phorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.

As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. 40 Where a first layer is described as "disposed over" a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in contact with" the second layer. For example, a cathode may be described 45 as "disposed over" an anode, even though there are various organic layers in between.

As used herein, "solution processable" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension 50

A ligand may be referred to as "photoactive" when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as "ancillary" when it is believed that the ligand 55 does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand

As used herein, and as would be generally understood by one skilled in the art, a first "Highest Occupied Molecular 60 Orbital" (HOMO) or "Lowest Unoccupied Molecular Orbital" (LUMO) energy level is "greater than" or "higher than" a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP

that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A "higher" HOMO or LUMO energy level appears closer to the top of such a diagram than a "lower" HOMO or LUMO energy

As used herein, and as would be generally understood by one skilled in the art, a first work function is "greater than" or "higher than" a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a "higher" work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a "higher" work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.

The terms "halo," "halogen," and "halide" are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.

The term "acyl" refers to a substituted carbonyl radical $(C(O)-R_s)$.

The term "ester" refers to a substituted oxycarbonyl $-O-C(O)-R_s$ or $-C(O)-O-R_s$) radical.

The term "ether" refers to an —OR, radical.

The terms "sulfanyl" or "thio-ether" are used interchangeably and refer to a —SR, radical.

The term "sulfinyl" refers to a —S(O)—R_s radical.

The term "sulfonyl" refers to a $--SO_2--R_s$ radical.

The term "phosphino" refers to a -P(R_s)₃ radical,

The term "silyl" refers to a $-Si(R_s)_3$ radical, wherein each R_s can be same or different.

The term "boryl" refers to a $-B(R_s)_2$ radical or its Lewis adduct— $B(R_s)_3$ radical, wherein R_s can be same or different.

In each of the above, R_s can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred R_s is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.

The term "alkyl" refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.

The term "cycloalkyl" refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo [3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.

The terms "heteroalkyl" or "heterocycloalkyl" refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.

The term "alkenyl" refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain Cycloalkenyl groups are essentially cycloalkyl groups that include at least one 5 carbon-carbon double bond in the cycloalkyl ring. The term "heteroalkenyl" as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, 10 cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.

The term "alkynyl" refers to and includes both straight 15 and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carboncarbon triple bond in the alkyl chain Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.

The terms "aralkyl" or "arylalkyl" are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.

The term "heterocyclic group" refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, 35 tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.

The term "aryl" refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings 40 in which two carbons are common to two adjoining rings (the rings are "fused") wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to 45 thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, 50 anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.

The term "heteroaryl" refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single 60 rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are "fused") wherein at least one of the rings is a heteroaryl, e.g., the other rings can be 65 cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can

6

have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and azaanalogs thereof. Additionally, the heteroaryl group may be optionally substituted.

Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.

The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.

In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, boryl, and combinations thereof.

In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, boryl, and combinations thereof.

In some instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, boryl, aryl, heteroaryl, sulfanyl, and combinations thereof.

In yet other instances, the most preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.

The terms "substituted" and "substitution" refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R¹ represents mono-substitution, then one R¹ must be other than H (i.e., a substitution). Similarly, when R¹ represents di-substitution, then two of R¹ must be other than H. Similarly, when R¹ represents zero or no substitution, R¹, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The

maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.

As used herein, "combinations thereof" indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and $_{10}$ alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, $_{20}$ or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deute- 25

The "aza" designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.

As used herein, "deuterium" refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. 45 Further reference is made to Ming Yan, et al., *Tetrahedron* 2015, 71, 1425-30 and Atzrodt et al., *Angew. Chem. Int. Ed.* (*Reviews*) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.

It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to 55 another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.

In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the

portion of the ring formed by the pair of substituents is unsaturated. As used herein, "adjacent" means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2,2' positions in a biphenyl, or 1,8 position in a naphthalene, as long as they can form a stable fused ring system.

B. The Compounds of the Present Disclosure

In one aspect, the present disclosure provides a compound of Formula $Ir(L_A)_x(L_C)_y$, wherein: ligand L_A has Formula I'

$$X^6 = X^5$$
 X^7
 $X^8 = X^4$
 X^3
 $X^{12} = X^2$
 X^2

and ligand L_C has Formula II' R^2

$$R^1$$
 R^3 ;

wherein: x is 1, 2, or 3; y is 0, 1, or 2; x+y=3; X^1 - X^8 are each independently C, N, or CR, and at least four of X^1 - X^8 are N; the X^1 - X^4 that connects to ring A is C, and the X^1 - X^4 that coordinates to Ir is N; ring A is an unsaturated 5-membered or 6-membered carbocyclic or heterocyclic ring; R^A represents zero, mono, or up to the maximum number of allowed substitutions to its associated ring; each R, R^1 - R^3 , and R^A is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and two substituents can be joined or fused together to form a ring, wherein the ligand L_A coordinates to Ir to form a 5-membered chelate ring as indicated by the two dashed lines of the Formula I', with the proviso that the compound of Formula Ir(L_A)_x(L_C)_y is not

15

20

In some embodiments, each R, 1V-R³, and R^A each can independently be a hydrogen or a substituent selected from the group consisting of the preferred general substituents defined herein.

In some embodiments, four of X1-X8 are N.

In some embodiments, five or more of X^1-X^8 are N. In some embodiments, the maximum number of N atoms that are bonded to one another within a ring is two.

In some embodiments, X^2 and X^4 are N, and X' and X^3 are 25 C.

In some embodiments, X^2 and X^4 are C, and X' and X^3 are

In some embodiments, X^2 and X^3 are N, and X^4 are 30 C.

In some embodiments, X^2 and X^3 are C, and X' and X^4 are N.

In some embodiments, X^2 , X^4 , X^5 , and X^8 are N, and X^{1-35} and X^3 are C.

In some embodiments, X^6 and X^7 are CR wherein the two R substituents are joined to form a fused ring.

In some embodiments, two of the X⁵-X⁸ are CR and 40 adjacent to each other with the two R substituents joined to form a fused 6-membered aromatic ring.

In some embodiments, X^6 and X^7 are CR with at least one R substituent being F.

In some embodiments, X^6 and X^7 are CR with at least one R substituent being deuterium.

In some embodiments, ring A is a 6-membered aromatic ring.

In some embodiments, ring A is a 5-membered heteroaryl ring.

In some embodiments, two adjacent R^A substituents are joined to form a 6-membered aromatic ring fused to ring A.

In some embodiments, R^1 and R^2 are independently an alkyl, cycloalkyl, partially or fully deuterated variants thereof, partially or fully fluorinated variants thereof, and combinations thereof. In some embodiments, R^1 comprises at least two carbon atoms. In some embodiments, R^1 comprises at least three carbon atoms. In some embodiments, R^1 and R^2 both comprise at least three carbon atoms at least three carbon atoms.

In some embodiments, R³ is H.

In some embodiments, the compound has Formula $Ir(L_A)_2$

In some embodiments, the ligand $\mathcal{L}_{\mathcal{A}}$ is selected from the group consisting of:

$$X^{6}$$
 X^{7}
 X^{8}
 X^{7}
 X^{8}
 X^{7}
 X^{8}
 X^{7}
 X^{8}
 X^{8

$$X^7$$
 X^6 X^5 X^8 X^8

$$\mathbb{R}^{E}$$
 \mathbb{R}^{A}
 \mathbb{R}^{A}
 \mathbb{R}^{A}
 \mathbb{R}^{A}
 \mathbb{R}^{A}
 \mathbb{R}^{A}
 \mathbb{R}^{A}

$$Z^{2}$$
 Z^{1}
 Z^{3}
 Z^{4}
 Z^{4

$$Z^3$$
 Z^2
 Z^1
 Z^4
 Z^4

15

20

25

30

35

40

45

50

wherein: Z^1 — Z^6 are each independently N or CR^F ; Y is O or S; each of R^E and R^F is independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations

In some embodiments, the ligand L_A is L_{Ai-m} , wherein i is an integer from 1 to 200 and m is an integer from 1 to 20, 65 wherein the ligand L_A is selected from the group consisting of L_{A1-1} through $L_{A200-20}$, wherein the structure of each of L_{Ai-1} through L_{Ai-20} is defined below:

55

65

 A_{i-1} is based on formula 1

 A_{i-2} is based on formula 2

 A_{i-3} is based on formula 3

$$\mathbb{R}^{E}$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

A_{i-4} is based on formula 4

$$R^{E} \longrightarrow N \longrightarrow N \longrightarrow M$$

$$N \longrightarrow N \longrightarrow M$$

$$N \longrightarrow M \longrightarrow$$

 A_{i-5} is based on formula 5

 A_{i-6} is based on formula 6

 A_{i-7} is based on formula 7

 A_{i-8} is based on formula 8

$$\mathbb{R}^{E}$$
 \mathbb{N}
 \mathbb{N}

 A_{i-9} is based on formula 9

$$R^E$$
 N
 N
 F_3C

 $\mathbf{A}_{i\text{-}10}$ is based on formula 10

$$\mathbb{R}^{E}$$
 \mathbb{R}^{E}
 \mathbb{R}^{K}

 $\mathbf{A}_{i\text{-}11}$ is based on formula 11

 A_{i-12} is based on formula 12

10

15

20

25

30

35

$$F_3C$$
 N
 N
 R^E ,

$$A_{i-14}$$
 is based on formula 14

 A_{i-13} is based on formula 13

$$\mathbb{R}^E$$
 \mathbb{N}
 \mathbb{N}
 $\mathbb{C}\mathbb{D}_3$,

 A_{i-15} is based on formula 15

$$\mathbb{R}^E$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

 A_{i-16} is based on formula 16

$$\bigcap_{N} \bigcap_{N \in \mathbb{N}} \mathbb{R}^{\mathcal{E}},$$

 A_{i-17} is based on formula 17

 A_{i-18} is based on formula 18

 A_{i-19} is based on formula 19

$$\mathbb{R}^{E}$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

 $\mathbf{A}_{i\text{-}20}$ is based on formula 20

wherein for each L_{Ai} in L_{Ai-1} to L_{Ai-20} , R^E and G in formulas 1 to formula 20 are defined as follows:

	\mathcal{L}_{Ai}	R^E	G	
	\mathbb{L}_{A1}	$R_{r_2}^{E_1}$	G_{\cdot}^{1}	
45	L_{A2}	R^{E2}	G^1	
43	L_{A3}	R_{EA}^{E3}	G^1	
	L_{A4}	$R_{E_{\epsilon}}^{E_{4}}$	G^1	
	L_{A5}	R^{E5}	G^1	
	L_{A6}	R^{E6}	G^1	
	L_{A7}	R^{E7}	G^1	
	L_{A8}	R^{E8}	G^1	
50	L_{A9}	R^{E9}	G^1	
	L_{A10}	R^{E10}	G^1	
	L_{A11}	\mathbb{R}^{E11}	G^1	
	L_{A12}	\mathbf{p}^{E12}	G^1	
	L_{A13}	R^{E13}	G^1	
	L_{A14}	R^{E14}	G^1	
55	L _{A15}	R^{E15}	G^1	
33	L_{A16}	$_{\mathbf{D}}E16$	G^1	
	L_{A17}	\mathbb{R}^{E17}	G^1	
	L_{A18}	R^{E18}	G^1	
	L_{A19}	\mathbf{p}^{E19}	G^1	
	L ₄₂₀	\mathbb{R}^{E20}	G^1	
	L_{A21}	\mathbb{R}^{E1}	G^2	
60	L_{A22}	R^{E2}	G^2	
	L ₄₂₃	R^{E3}	G^2	
	L_{A24}	R^{E4}	G^2	
	I	R^{E5}	G^2	
	\mathcal{L}_{A25}	R^{E6}	G^2	
	L ₄₂₆	R_{-}^{E7}	G^2	
65	\mathcal{L}_{A27}	R^{E8}_{-}	G^2	
	L_{A28}	R^{E9}	G ² G ² G ²	
	\mathcal{L}_{A29}	K	ď	

	-continued				-continued	
\mathbb{L}_{Ai}	R^E	G		\mathbb{L}_{Ai}	R^E	G
L ₄₃₀	R^{E10}	G^2		L_{A107}	R^{E7}	G^6
\mathcal{L}_{A31}	\mathbb{R}^{E11}	G^2	5	L_{A108}	$_{\mathrm{D}}E8$	G^6
$\stackrel{-A31}{\mathrm{L}}_{A32}$	$\mathbf{p}E12$	G^2		L_{A109}	\mathbf{p}^{E9}	G^6
$\stackrel{-A32}{ ext{L}_{A33}}$	DE13	G^2		L_{A110}	\mathbf{p}^{E10}	G^6
$\stackrel{-A33}{\operatorname{L}}_{A34}$	R^{E14}	G^2		L_{A111}	$_{\mathbf{D}}E11$	G^6
\mathbb{L}_{A35}	DE15	G^2		L_{A112}	$_{\mathbf{D}}E12$	G^6
L_{A36}	D^{E16}	G^2		L_{A113}	R^{E13}	G^6
\mathcal{L}_{A37}	\mathbf{p}^{E17}	G^2	10	L_{A114}	\mathbf{p}^{E14}	G^6
\mathbb{L}_{A38}	DE18	G^2		L_{A115}	n E15	G^6
L ₄₃₉	DE19	G^2		L_{A116}	R^{E16}	G^6
L_{A40}	R^{E20}	G^2		L_{A117}	$\mathbf{p}E17$	G^6
$\stackrel{-A40}{\mathrm{L}_{A41}}$	\mathbf{p}^{E1}	G^3		L_{A118}	n E18	G^6
L_{A42}	R^{E2}	G^3		L_{A119}^{-A118}	$_{\mathbf{D}}E19$	G^6
L_{A43}^{A42}	DE3	G^3	15	L_{A120}	DE20	G^6
L_{A44}	D^{E4}	G^3	10	L_{A121}	R^{E1}	G^7
L_{A45}	\mathbf{R}^{E5}	G^3		L_{A122}	\mathbb{R}^{E2}	G^7
L_{A46}	\mathbf{p}^{E6}	G^3		L _{A123}	\mathbf{p}^{E3}	G^7
L_{A47}	R^{E7}	G^3		L _{A124}	R^{E4}	G^7
L_{A48}	\mathbf{p}^{E8}	G^3		L_{A125}	\mathbf{R}^{E5}	G^7
L_{A49}	R^{E9}	G^3	20	L_{A126}	R^{E6}	G^7
L_{A50}	DE10	G^3	20	L_{A127}	R^{E7}	G^7
L_{A51}	R^{E11}	G^3		L_{A128}	R^{E8}	G^7
L_{A52}	R^{E12}	G^3		L_{A129}	R^{E9}	G^7
L_{A53}	R^{E13}	G^3		L_{A130}	$\mathbf{p}E10$	G^7
L_{A54}	R^{E14}	G^3		L_{A131}	R^{E11}	G^7
L_{A55}	R^{E15}	G^3	2.5	L_{A132}	R^{E12}	G^7
L_{A56}	R^{E16}	G^3	25	L_{A133}	R^{E13}	G^7
L_{A57}	R^{E17}	G^3		L_{A134}	R^{E14}	G_{-}^{7}
L_{A58}	R^{E15}	G^3		L_{A135}	R^{E15}	G_{-}^{7}
L_{A59}	R^{E19}	G^3		L_{A136}	R^{E16}	$\overline{\mathbf{G}}^7$
L_{A60}	R^{E20}	G^3		L_{A137}	R^{E17}	G_{-}^{7}
L_{A61}	R_{-}^{E1}	G^4		L_{A138}	R^{E18}	\mathbf{G}_{-}^{7}
L_{462}	R^{E2}	G^4	30	L_{A139}	R^{E19}	G_{-}^{7}
L_{A63}	R^{E3}	G^4		L_{A140}	R_{E20}^{E20}	G^7
L_{A64}	R^{E4}	G^4		L_{A141}	R^{E_1}	G_{α}^{8}
L_{A65}	R^{E5}	G^4		L_{A142}	R^{E2}	G^8
L_{A66}	R_{E3}^{E6}	G^4		L_{A143}	R^{E3}	$G_{\mathfrak{g}}^{8}$
\mathbb{L}_{A67}	R^{E7}	G^4		L_{A144}	R^{E4}	G^8
\mathbb{L}_{A68}	R ^{E8}	G ⁴	35	L_{A145}	R ^{E5}	G ⁸
\mathbb{L}_{A69}	R ^{E9}	G^4		L_{A146}	R^{E6}	G^8
L_{A70}	R_{E11}^{E10}	G^4		L_{A147}	R_{F8}^{E7}	G^8
L_{A71}	R^{E11} R^{E12}	G^4		L_{A148}	R^{E8}	G^8
\mathcal{L}_{A72}	R ²¹² R ¹¹³	G^4		L_{A149}	${f R}^{E9} \ {f R}^{E10}$	$ m G^8$
\mathcal{L}_{A73}	R^{E14}	G^4 G^4		L_{A150}	R^{E11}	G_8
\mathcal{L}_{A74}	R^{E15}	G^4	40	\mathcal{L}_{A151}	R ^{E32}	G^8
\mathcal{L}_{A75}	R^{E16}	G ⁴		L_{A152}	\mathbb{R}^{E13}	G_8
\mathcal{L}_{A76}	R^{E17}	G^4		L_{A153}	R^{E14}	G_8
\mathcal{L}_{A77}	R^{E18}	G^4		L_{A154}	R^{E15}	G^8
\mathcal{L}_{A78}	R^{E19}	G⁴		L _{A155}	R^{E16}	G_8
\mathcal{L}_{A79}	R^{E20}	G⁴		L_{A156}	DE17	G_8
L_{A80}	$\mathbf{p}E1$	G ⁵	45	\mathcal{L}_{A157}	n.E15	G_8
L ₄₈₁	R^{E2}	G^5		L_{A158}	$R^{E19}_{}$	G^8
L_{A82} L_{A83}	R^{E3}	G^5		$\mathcal{L}_{A159} \ \mathcal{L}_{A160}$	R^{E20}	G^8
L_{A84}	R^{E4}	G ⁵		L_{A161}	R^{E_1}	G ⁹
$\stackrel{-A84}{\mathrm{L}_{A85}}$	R^{E5}	G ⁵		L_{A162}	R^{E2}	G^9
L ₄₈₆	R^{E6}	G^5		L_{A163}	DE3	G^9
L_{A87}	R^{E7}	G^5	50	L_{A164}	DE4	G^9
L_{488}^{70}	\mathbf{p}^{E8}	G^5		L _{A165}	R^{E5}	G^9
L ₄₈₉	\mathbb{R}^{E9}	G^5		L _{A166}	R^{E6}	G^9
L_{A90}	R^{E10}	G^5		L _{A167}	$\mathbf{p}E7$	G^9
L_{A91}	R^{E11}	G^5		L_{A168}	R^{E8}_{-}	G^9
L_{A92}	R^{E12}	G^5		L_{A169}	\mathbf{p}^{E9}	G^9
L_{A93}	R^{E13}	G^5	55	L_{A170}	R^{E10}	G_{δ}
L_{A94}	DE14	G^5		L_{A171}	\mathbb{R}^{E11}	G^9
L_{A95}	R^{E15}	G^5		L_{A172}	$R^{E_{12}}$	G^9
L_{A96}	R^{E16}	G^5		L_{A173}^{A172}	\mathbb{R}^{E13}	G_{δ}
L_{A97}	\mathbf{p}^{E17}	G^5		L_{A174}	\mathbf{p}^{E14}	G^9
\mathcal{L}_{A98}	R^{E18}	G^5		L_{A175}	DE15	G^9
L_{A99}	R^{E19}	G^5	60	L_{A176}	\mathbf{p}^{E16}	G^9
L_{A100}	R^{E20}	G⁵	•	L_{A176} L_{A177}	R^{E17}	G ⁹
L_{A101}	\mathbb{R}^{E_1}	G^6		\mathcal{L}_{A178}	R^{E18}	G ⁹
L_{A101} L_{A102}	R^{E2}	G_{ϱ}		L_{A178} L_{A179}	R^{E19}	G ⁹
⊥ _A 102 ĭ	\mathbb{R}^{E3}	G_e		<i></i> ⊿179 I	R^{E20}	G ⁹
\mathcal{L}_{A103}	R^{E4}	G^6		\mathcal{L}_{A180}	\mathbb{R}^{E_1}	G_{10}
\mathcal{L}_{A104}	R^{E5}	G^6	65	\mathcal{L}_{A181}	R^{E_2}	G^{10}
L_{A105}	R^{E6}	G_{e}	0.5	L_{A182}	R^{E3}	G_{10}
L_{A106}	K	U		L_{A183}	K	U

25

 \mathbf{R}^{E7}

 \mathbf{R}^{E9} 50

65

\mathbb{L}_{Ai}	R^E	G	
L _{A184}	R^{E4}	G ¹⁰	
L ₄₁₈₅	R^{E5}	G^{10}	5
\mathcal{L}_{A186}	R^{E6}	G^{10}	
\mathcal{L}_{A187}	R^{E7}	G^{10}	
L_{A188}	R^{E8}	G^{10}	
L_{A189}	R^{E9}	G^{10}	
L_{A190}	R^{E10}	G^{10}	10
L_{A191}	R^{E11}	G^{10}	10
L_{A192}	R^{E12}	G^{10}	
L_{A193}	R^{E13}	G^{10}	
	R^{E14}	G^{10}	
\mathcal{L}_{A194}	R^{E15}	G^{10}	
\mathcal{L}_{A195}	R^{E16}	G_{10}	
\mathcal{L}_{A196}	R^{E17}	G^{10}	15
\mathcal{L}_{A197}	R^{E18}	G^{10}	
L_{A198}	R^{E19}	G_{10}	
L_{A199}			
L_{A200}	R^{E20}	G_{10}	

wherein R^1 to R^{20} have the following structures:

$$R^{E1}$$

$$R^{E2}$$

$$\sim$$
 , R^{E3}

, and and wherein
$$G^1$$
 to G^{10} have the following structures:

$$R^{E9}$$
 , R^{E10}

$$R^{E12}$$
... D , R^{E13}

$$\mathbb{R}^{E14}$$

$$\mathbb{R}^{E15}$$

$$\mathbb{R}^{E16}$$

 R^{E17}

$$\mathbb{R}^{E18}$$

$$D_3C$$
 CD_3 ,

20

G⁵ 15

 G^4

-continued

-continued

In some embodiments, the ligand $\mathcal{L}_{\!\scriptscriptstyle A}$ is selected from the group consisting of:

$$G^7$$

40

 G^8

$$\begin{array}{c} L_{428-3} \\ \\ F \end{array}$$

$${
m L}_{A21 ext{-}4}$$

$$\begin{array}{c} \text{CD}_3 \\ \text{N} \\ \text{N} \end{array}$$

$$\begin{array}{c} L_{A28-5} \\ \end{array}$$

$$L_{A29-6}$$
 F_3C
 N
 N
 K_{A29-6}
 K_{A29-6}

$$L_{A33-11}$$
 D_3C

-continued

 L_{A21-13}

$$L_{433-19}$$
 CD_3
 CD_3 ,
 D_3C

$$\begin{array}{c} \text{L}_{A33\text{-}16} \\ \text{CD}_3 \\ \text{N} \\ \text{CF}_3, \end{array}$$

$$L_{A33-20}$$

$$L_{A82-2}$$

35

-continued

$$\begin{array}{c} L_{A81\cdot 4} \\ \\ \\ \\ \\ \\ \\ \end{array}$$

$$\begin{array}{c} \text{CF}_3 \\ \text{N} \\ \text{N} \\ \text{N} \\ \end{array},$$

L_{A93-11}

50

$$L_{A82-20}$$
 H_3C

$$L_{A122-1}$$

$$\begin{array}{c} L_{A122\cdot 2} \\ \\ N \\ \\ \end{array}$$

$$\begin{array}{c|c} & & & L_{A121-4} & 55 \\ \hline \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$\begin{array}{c} \text{CD}_3 \\ \text{N} \\ \text{N} \\ \text{N} \end{array}$$

$$\begin{array}{c} L_{A128-5} \\ \\ F \\ \\ N \\ \\ \\ \end{array}$$

$$\begin{array}{c} L_{4129\text{-}6} \\ F_3C \\ \hline \\ F_3C \\ \hline \\ \end{array}$$

-continued

$$L_{A133-8}$$

CF₃

35

50

$$CF_3$$
 CD_3 ,
 CD_3

 $\mathcal{L}_{A139\text{-}18}$ 5 10 15 -continued

In some embodiments of the compound, \mathcal{L}_C is selected from the group consisting of: $\mathcal{L}_{Cj\text{--}1}$ based on a structure of

25

$$L_{A133-19}$$
 30 CD_3 , and D_3C

and \mathcal{L}_{Cj-11} based on a structure of

wherein j is an integer from 1 to 768; wherein for each L_C ; in $L_{Cj\text{-}I}$ and $L_{Cj\text{-}ID}$, R^1 and R^2 are as defined below:

\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2	$\mathcal{L}_{Cj}\mathbf{d}$	\mathbb{R}^1	\mathbb{R}^2	\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2	L_{Cj}	\mathbb{R}^1	R ²
L _{C1} L _{C2} L _{C3} L _{C4} L _{C5} L _{C6} L _{C7} L _{C8} L _{C9} L _{C10} L _{C11} L _{C12} L _{C12} L _{C13} L _{C14} L _{C15}	R ^{D1} R ^{D2} R ^{D3} R ^{D4} R ^{D6} R ^{D6} R ^{D7} R ^{D8} R ^{D10} R ^{D11} R ^{D12} R ^{D13} R ^{D14} R ^{D15} R ^{D16}	R ^{D1} R ^{D2} R ^{D3} R ^{D4} R ^{D5} R ^{D6} R ^{D7} R ^{D8} R ^{D9} R ^{D10} R ^{D11} R ^{D12} R ^{D13} R ^{D14} R ^{D15} R ^{D16}	L _{C193} L _{C194} L _{C195} L _{C196} L _{C197} L _{C198} L _{C190} L _{C201} L _{C202} L _{C203} L _{C204} L _{C206} L _{C206} L _{C207}	R ^D 1	R ² R ^{D3} R ^{D4} R ^{D5} R ^{D9} R ^{D107} R ^{D18} R ^{D20} R ^{D20} R ^{D21} R ^{D41} R ^{D42} R ^{D42} R ^{D44} R ^{D448} R ^{D49}	L _{C385} L _{C386} L _{C387} L _{C388} L _{C389} L _{C390} L _{C391} L _{C393} L _{C394} L _{C395} L _{C395} L _{C396} L _{C397} L _{C398} L _{C398}	R ¹ R ^{D17}	R ² R ^{D40} R ^{D41} R ^{D42} R ^{D43} R ^{D48} R ^{D50} R ^{D54} R ^{D55} R ^{D58} R ^{D58} R ^{D78} R ^{D79} R ^{D78} R ^{D79} R ^{D87} R ^{D87} R ^{D88}	L _{C577} L _{C578} L _{C579} L _{C580} L _{C581} L _{C582} L _{C582} L _{C584} L _{C585} L _{C586} L _{C587} L _{C588} L _{C588} L _{C588} L _{C589}	R ¹ R ⁰¹⁴³ R ⁰¹⁴⁴	R ² R ^{D120} R ^{D133} R ^{D134} R ^{D135} R ^{D136} R ^{D144} R ^{D145} R ^{D146} R ^{D147} R ^{D149} R ^{D151} R ^{D154} R ^{D154} R ^{D155} R ^{D161} R ^{D175} R ^{D175} R ^{D175}
L_{C16} L_{C17} L_{C18} L_{C19} L_{C20} L_{C21}	R^{D17} R^{D18} R^{D19} R^{D20} R^{D21} R^{D22}	R^{D17} R^{D18} R^{D19} R^{D20} R^{D21} R^{D22}	L_{C208} L_{C209} L_{C210} L_{C211} L_{C212} L_{C213} L_{C214}	R^{D1} R^{D1} R^{D1} R^{D1} R^{D1} R^{D1} R^{D1}	R^{D50} R^{D54} R^{D55} R^{D58} R^{D59} R^{D78}	L_{C400} L_{C401} L_{C402} L_{C403} L_{C404} L_{C405} L_{C406}	R^{D17} R^{D17} R^{D17} R^{D17} R^{D17} R^{D17} R^{D17}	R^{D89} R^{D93} R^{D116} R^{D117} R^{D118}	$\begin{array}{c} L_{C592} \\ L_{C593} \\ L_{C594} \\ L_{C595} \\ L_{C596} \\ L_{C597} \\ L_{C598} \end{array}$	R^{D144} R^{D144} R^{D144} R^{D144} R^{D144} R^{D144} R^{D144}	R^{D5} R^{D17} R^{D18} R^{D20} R^{D22} R^{D37}

	-continued										
\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2	$\mathbf{L}_{Cj}\mathbf{d}$	\mathbb{R}^1	\mathbb{R}^2	\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2	\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2
L_{C23}	R^{D23}	R^{D23}	L _{C215}	R^{D1}	R^{D79}	L _{C407}	R^{D17}	R^{D120}	L _{C599}	R^{D144}	R^{D40}
L _{C24}	D^{D24}	p^{D24}	L _{C216}	\mathbb{R}^{D1}	DD81	L_{C408}	DD17	D^{D133}	L_{C600}	R^{D144}	p^{D41}
L_{C25}	pD25	R^{D25}	L _{C217}	R^{D1}	D^{D87}	L_{C409}	R^{D17}	R^{D134}	L_{C601}	DD144	R^{D42}
L_{C26}	R ^{D26}	R ^{D26}	L _{C218}	R^{D1}	R ^{D88}	L_{C410}	R^{D17}	R ^{D135}	L_{C602}	R ^{D144}	R ^{D43}
L _{C27}	${f R}^{D27} \ {f R}^{D28}$	R^{D27} R^{D28}	L _{C219}	R^{D1} R^{D1}	$R^{D89} \\ R^{D93}$	L _{C411}	R^{D17} R^{D17}	R^{D136} R^{D143}	L_{C603}	R^{D144} R^{D144}	R^{D48} R^{D49}
L _{C28}	R^{D29}	R^{D29}	L _{C220}	R^{D1}	R^{D116}	L _{C412}	DD17	R^{D143} R^{D144}	L _{C604}	R^{D144}	R^{D54} R^{D54}
L _{C29} L _{C30}	\mathbb{R}^{D30}	R^{D30}	L _{C221}	R^{D1}	R^{D117}	L_{C413} L_{C414}	\mathbf{p}^{D17}	R^{D145}	L _{C605} L _{C606}	R^{D144}	R^{D58}
L _{C30}	DD31	DD31	L _{C222} L _{C223}	R^{D1}	D^{D118}	L _{C414} L _{C415}	DD17	DD146	L _{C607}	DD144	D^{D59}
L _{C32}	DD32	DD32	L _{C224}	\mathbf{p}^{D1}	DD119	L _{C416}	DD17	DD147	L _{C608}	DD144	DD78
L_{C33}	\mathbb{R}^{D33}	\mathbb{R}^{D33}	L _{C225}	R^{D1}	R^{D120}	L_{C417}	R^{D17}	R^{D149}	L_{C609}	R^{D144}	R^{D79}
L_{C34}	R^{D34}	R^{D34}	L _{C226}	R^{D1}	R^{D133}	L_{C418}	R^{D17}	R ^{D151}	L_{C610}	R ^{D144}	R ^{D81}
L_{C35}	R^{D35} R^{D36}	R^{D35} R^{D36}	L _{C227}	R^{D1} R^{D1}	$R^{D134} R^{D135}$	L_{C419}	R^{D17} R^{D17}	R^{D154} R^{D155}	L _{C611}	R^{D144} R^{D144}	R^{D87} R^{D88}
L _{C36}	R^{D30} R^{D37}	R^{D30} R^{D37}	L _{C228}	R^{D1} R^{D1}	R^{D136} R^{D136}	L _{C420}	R^{D17} R^{D17}	R^{D133} R^{D161}	L_{C612}	R^{D144} R^{D144}	R^{D89}
L _{C37} L _{C38}	DD38	\mathbf{p}^{D38}	L _{C229}	\mathbf{p}^{D1}	DD143	L_{C421} L_{C422}	DD17	R^{D175}	L _{C613}	DD144	pD93
L _{C39}	pD39	pD39	L _{C230} L _{C231}	\mathbf{p}^{D1}	R^{D144}	L_{C423}	DD50	\mathbf{p}^{D3}	L_{C614} L_{C615}	pD144	pD116
L _{C40}	P^{D40}	R^{D40}	L _{C232}	\mathbb{R}^{D1}	R^{D145}	L_{C424}	D^{D50}	R^{D5}	L _{C616}	R^{D144}	R^{D117}
L_{C41}	pD41	pD41	L _{C233}	\mathbf{p}^{D1}	R^{D146}	L_{C425}	DD50	DD18	L_{C617}	DD144	R^{D118}
L_{C42}	R^{D42}	R^{D42}	L _{C234}	R^{D1}	R^{D147}	L_{C426}	\mathbf{p}^{D50}	R^{D20}	L_{C618}	R ^{D144}	R^{D119}
L_{C43}	R^{D43} R^{D44}	R^{D43} R^{D44}	L _{C235}	R^{D1}	$R^{D149} R^{D151}$	L_{C427}	R^{D50} R^{D50}	$\begin{array}{c} R^{D22} \\ R^{D37} \end{array}$	L _{C619}	R ^{D144}	R^{D120} R^{D133}
L_{C44}	R^{D45}	R^{D45}	L _{C236}	R^{D1} R^{D1}	R^{D154}	L_{C428}	R^{D50} R^{D50}	R^{D37} R^{D40}	L _{C620}	R^{D144} R^{D144}	R^{D133} R^{D134}
L_{C45}	pD46	DD46	L _{C237}	R^{D1}	DD155	L _{C429}	DD50	DD41	L _{C621}	pD144	R^{D135}
L_{C46} L_{C47}	DD47	D^{D47}	L _{C238} L _{C239}	\mathbf{p}^{D1}	nD161	$\begin{array}{c} \mathbf{L}_{C430} \\ \mathbf{L}_{C431} \end{array}$	DD50	n.D42	L _{C622} L _{C623}	DD144	DD136
L_{C48}	p^{D48}	R^{D48}	L _{C240}	\mathbb{R}^{D1}	R^{D175}	L_{C432}	D^{D50}	\mathbb{R}^{D43}	L _{C624}	R^{D144}	P^{D145}
L_{C49}	R^{D49}	R^{D49}	L _{C241}	R^{D4}	\mathbb{R}^{D3}	L_{C433}	DD50	DD48	L_{C625}	R^{D144}	pD146
L_{C50}	R^{D50}	R^{D50}	L_{C242}	R^{D4}	R^{D5}	L_{C434}	DD50	R^{D49}	L _{C626}	R^{D144}	R^{D147}
L_{C51}	R ^{D51}	$\begin{array}{c} R^{D51} \\ R^{D52} \end{array}$	L _{C243}	R^{D4}	R^{D9} R^{D10}	L_{C435}	R ^{D50}	R ^{D54}	L_{C627}	R ^{D144}	R ^{D149}
L_{C52}	$\begin{array}{c} {\rm R}^{D52} \\ {\rm R}^{D53} \end{array}$	R^{D32} R^{D53}	L _{C244}	R^{D4} R^{D4}	R^{D10} R^{D17}	L_{C436}	R^{D50} R^{D50}	R^{D55} R^{D58}	L_{C628}	R^{D144} R^{D144}	R^{D151} R^{D154}
L_{C53}	DD54	pD54	L _{C245}	pD4	pD18	L_{C437}	DD50	p.D59	L _{C629}	DD144	pD155
L_{C54} L_{C55}	DD55	DD55	L _{C246} L _{C247}	D^{D4}	D^{D20}	$\begin{array}{c} \mathbf{L}_{C438} \\ \mathbf{L}_{C439} \end{array}$	DD50	DD78	L_{C630} L_{C631}	p^{D144}	D^{D161}
L_{C56}	DD56	pD56	L _{C248}	R^{D4}	\mathbb{R}^{D22}	L_{C440}	DD50	D^{D79}	L _{C632}	p^{D144}	R^{D175}
L_{C57}	pD57	pD57	L _{C249}	pD4	DD37	L_{C441}	DD50	DD81	L _{C633}	pD145	pD3
L_{C58}	pD58	R^{D58}	L _{C250}	pD4	D^{D40}	L_{C442}	DD50	p.D87	L _{C634}	R^{D145}	R^{D5}
L_{C59}	R ^{D59}	R^{D59}	L_{C251}	R^{D4}	R ^{D41}	L_{C443}	R ^{D50}	R ^{D88}	L_{C635}	R ^{D145}	R^{D17}
L_{C60}	R^{D60} R^{D61}	R^{D60} R^{D61}	L_{C252}	R^{D4} R^{D4}	$R^{D42} \\ R^{D43}$	L_{C444}	R^{D50} R^{D50}	R^{D89} R^{D93}	L _{C636}	R^{D145} R^{D145}	R^{D18} R^{D20}
L_{C61}	pD62	R^{D62}	L _{C253}	R^{D4}	DD48	L _{C445}	pD50	DD116	L _{C637}	p D145	\mathbf{p}^{D22}
L _{C62} L _{C63}	pD63	pD63	L _{C254} L _{C255}	\mathbf{p}^{D4}	D^{D49}	$L_{C446} \\ L_{C447}$	DD50	D^{D117}	L_{C638} L_{C639}	D^{D145}	DD37
L _{C64}	R^{D64}	R^{D64}	L _{C256}	pD4	R^{D50}	L _{C448}	pD50	p.D118	L _{C640}	R^{D145}	R^{D40}
L _{C65}	\mathbb{R}^{D65}	R^{D65}	L _{C257}	R^{D4}	p.D54	L_{C449}	\mathbb{R}^{D50}	R^{D119}	L_{C641}	R^{D145}	\mathbb{R}^{D41}
L_{C66}	R^{D66}	R^{D66}	L _{C258}	D^{D4}	R^{D55}	L_{C450}	DD50	R^{D120}	L_{C642}	R^{D145}	R^{D42}
L_{C67}	R^{D67} R^{D68}	R^{D67} R^{D68}	L _{C259}	R^{D4}	R^{D58} R^{D59}	L_{C451}	R^{D50} R^{D50}	R^{D133} R^{D134}	L_{C643}	R^{D145} R^{D145}	R^{D43} R^{D48}
L _{C68}	R^{D69}	R^{D69}	L _{C260}	R^{D4} R^{D4}	R^{D39} R^{D78}	L _{C452}	R^{D50} R^{D50}	R^{D134} R^{D135}	L _{C644}	R^{D145} R^{D145}	R^{D49}
L _{C69}	\mathbf{p}^{D70}	\mathbf{p}^{D70}	L _{C261}	D^{D4}	D^{D79}	L_{C453}	DD50	p.D136	L _{C645}	pD145	DD54
L_{C70} L_{C71}	R^{D71}	R^{D71}	L_{C262} L_{C263}	R^{D4}	DD D81	$L_{C454} \\ L_{C455}$	pD50	R^{D143}	L _{C646} L _{C647}	R^{D145}	R^{D58}
L _{C72}	\mathbf{R}^{D72}	\mathbf{R}^{D72}	L _{C264}	\mathbb{R}^{D4}	P^{D87}	L _{C456}	DD50	pD144	L _{C648}	R^{D145}	D^{D59}
L_{C73}	\mathbf{R}^{D73}	\mathbf{p}^{D73}	L _{C265}	\mathbb{R}^{D4}	D^{D88}	L_{C457}	DD50	p.D145	L_{C649}	DD145	DD78
L _{C74}	R^{D74}	R^{D74}	L _{C266}	R^{D4}	R^{D89}_{D02}	L_{C458}	R^{D50}	R^{D146}	L _{C650}	R ^{D145}	R^{D79}
L _{C75}	R^{D75} R^{D76}	R^{D75} R^{D76}	L _{C267}	R^{D4} R^{D4}	R^{D93} R^{D116}	L_{C459}	R^{D50} R^{D50}	R^{D147} R^{D149}	L_{C651}	R^{D145} R^{D145}	R^{D81} R^{D87}
LC76	DD77	DD77	L _{C268}	R^{D4}	DD117	L_{C460}	DD50	DD151	L _{C652}	DD145	DD_{0}
L _{C77} L _{C78}	DD78	R^{D78}	L _{C269} L _{C270}	DD4	R^{D118}	\mathcal{L}_{C461} \mathcal{L}_{C462}	R^{D50}	DD154	L_{C653} L_{C654}	DD145	DD
L _{C79}	\mathbf{R}^{D79}	\mathbf{p}^{D79}	L _{C271}	D^{D4}	D^{D119}	L_{C463}	D^{D50}	R^{D155}	L _{C655}	R^{D145}	D^{D93}
L_{C80}	pD80	R^{D80}	L _{C272}	R^{D4}	\mathbf{p}^{D120}	L_{C464}	DD50	DD161	L _{C656}	pD145	pD116
L _{C81}	R^{D81}	R^{D81}	L_{C273}	pD4	DD133	L_{C465}	R^{D50}	R^{D175}	L_{C657}	DD145	R^{D117}
L_{C82}	R^{D82} R^{D83}	$\begin{array}{c} {\rm R}^{D82} \\ {\rm R}^{D83} \end{array}$	L_{C274}	R^{D4}	R^{D134} R^{D135}	L_{C466}	R^{D55}	R^{D3}	L_{C658}	R^{D145} R^{D145}	$R^{D118} R^{D119}$
L _{C83}	R^{D83} R^{D84}	R^{D83} R^{D84}	L _{C275}	R^{D4} R^{D4}	R^{D136} R^{D136}	L_{C467}	R^{D55} R^{D55}	R^{D5} R^{D18}	L_{C659}	R^{D145} R^{D145}	R^{D119} R^{D120}
L_{C84}	R^{D85}	R^{D85}	L _{C276}	R^{D4}	R^{D143}	L_{C468}	R^{D55}	R^{D20}	L _{C660}	R^{D145}	R^{D133}
L _{C85}	p^{D86}	R^{D86}	L _{C277}	R^{D4}	R^{D144}	L _{C469}	p^{D55}	\mathbf{p}^{D22}	L _{C661}	D^{D145}	R^{D134}
L _{C86} L _{C87}	R^{D87}	R^{D87}	L _{C278} L _{C279}	R^{D4}	R^{D145}	$\rm L_{C470} \\ L_{C471}$	\mathbb{R}^{D55}	R^{D37}	L _{C662} L _{C663}	R^{D145}	R^{D135}
L _{C88}	pD88	pD88	L _{C280}	\mathbf{p}^{D4}	p.D146	L _{C472}	pD55	R^{D40}	L _{C664}	pD145	pD136
L _{C89}	R^{D89}	R^{D89}	L _{C281}	\mathbb{R}^{D4}	R^{D147}	L_{C473}	\mathbb{R}^{D55}	R^{D41}	L _{C665}	R^{D145}	p^{D146}
L _{C90}	R^{D90}	R^{D90}	L _{C282}	R^{D4}	R^{D149}	L _{C474}	R^{D55}	R^{D42}	L _{C666}	R^{D145}	R^{D147}
L_{C91}	pD91	\mathbb{R}^{D91}	L _{C283}	\mathbf{R}^{D4}	p.D151	L_{C475}	\mathbf{p}^{D55}	p^{D43}	L _{C667}	pD145	R^{D149}
L _{C92}	\mathbb{R}^{D92}	R^{D92}	L _{C284}	\mathbb{R}^{D4}	DD154	L_{C476}	\mathbb{R}^{D55}	P^{D48}	L_{C668}	R^{D145}	DD151
L_{C93}	R^{D93}	R^{D93}	L _{C285}	R^{D4}	R^{D155}	L_{C477}	R^{D55}	D^{D49}	L_{C669}	R^{D145}	pD154
L_{C94}	\mathbb{R}^{D94}	R^{D94}	L _{C286}	\mathbb{R}^{D4}	R^{D161}	L_{C478}	\mathbb{R}^{D55}	R^{D54}	L _{C670}	R ^{D145}	R^{D155}
L _{C95}	R^{D95}	R^{D95}	L _{C287}	R^{D4}	R^{D175}	L_{C479}	R^{D55}	R^{D58}	L_{C671}	R ^{D145}	R ^{D161}
L _{C96}	R ^{D96}	R ^{D96}	L _{C288}	R^{D9}	R^{D3}	L_{C480}	R ^{D55}	R ^{D59}	L_{C672}	R ^{D145}	R ^{D175}
L _{C97}	$R^{D97} \\ R^{D98}$	$R^{D97} R^{D98}$	L _{C289}	${f R}^{D9} \ {f R}^{D9}$	R^{D5} R^{D10}	L_{C481}	R^{D55} R^{D55}	R^{D78} R^{D79}	L_{C673}	R^{D146} R^{D146}	R^{D3} R^{D5}
L _{C98}	R^{D99} R^{D99}	R^{D99} R^{D99}	L _{C290}	R^{D9} R^{D9}	R^{D10} R^{D17}	L_{C482}	R^{D55} R^{D55}	$R^{D/9}$ R^{D81}	L_{C674}	R^{D146} R^{D146}	R^{D3} R^{D17}
\mathcal{L}_{C99}	K	K	L_{C291}	K.	K	L_{C483}	K	K	\mathcal{L}_{C675}	K_1.0	K

	-continued										
\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2	$\mathrm{L}_{\mathit{Cj}}\mathrm{d}$	\mathbb{R}^1	\mathbb{R}^2	\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2	\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2
L_{C100}	R^{D100}	R^{D100}	L _{C292}	R^{D9}	R^{D18}	L_{C484}	R^{D55}	R^{D87}	L _{C676}	R^{D146}	R^{D18}
L_{C101}	R^{D101}	R^{D101}	L_{C293}	R^{D9}	R^{D20}	L_{C485}	R^{D55}	DD88	L_{C677}	R ^{D146}	R^{D20}
L_{C102}	R^{D102} R^{D103}	R^{D102} R^{D103}	L_{C294}	R^{D9} R^{D9}	R^{D22} R^{D37}	L_{C486}	R^{D55} R^{D55}	R^{D89} R^{D93}	L_{C678}	R^{D146} R^{D146}	R^{D22} R^{D37}
L_{C103}	R^{D103} R^{D104}	R^{D103} R^{D104}	L _{C295}	R^{D9} R^{D9}	R^{D37} R^{D40}	L _{C487}	DD55	R^{D33} R^{D116}	L _{C679}	R^{D146} R^{D146}	R^{D37} R^{D40}
L_{C104} L_{C105}	DD105	p^{D105}	L _{C296} L _{C297}	D^{D9}	D^{D41}	$L_{C488} \\ L_{C489}$	DD55	DD117	L _{C680} L _{C681}	R^{D146}	DD41
L _{C106}	DD106	DD106	L _{C298}	\mathbf{p}^{D9}	D^{D42}	L_{C490}	DD55	D^{D118}	L _{C682}	D^{D146}	D^{D42}
L_{C107}	DD107	R^{D107}	L _{C299}	\mathbb{R}^{D9}	\mathbb{R}^{D43}	L_{C491}	D^{D55}	\mathbb{R}^{D119}	L _{C683}	R^{D146}	\mathbb{R}^{D43}
L_{C108}	DD108	DD108	L _{C300}	R^{D9}	D^{D48}	L_{C492}	DD55	D^{D120}	L _{C684}	R^{D146}	D^{D48}
L_{C109}	R^{D109} R^{D110}	R^{D109} R^{D110}	L _{C301}	R^{D9} R^{D9}	$R^{D49} \\ R^{D50}$	L_{C493}	R^{D55} R^{D55}	R^{D133} R^{D134}	L _{C685}	${ m R}^{D146} \ { m R}^{D146}$	R^{D49} R^{D54}
L_{C110}	R^{D111}	R^{D110} R^{D111}	L _{C302}	R^{D9}	R^{D50} R^{D54}	L_{C494}	R^{D55} R^{D55}	R^{D134} R^{D135}	L _{C686}	R^{D146}	R^{D54} R^{D58}
L_{C111} L_{C112}	DD112	DD112	L_{C303} L_{C304}	\mathbf{p}^{D9}	D D 55	L_{C495} L_{C496}	DD55	pD136	L _{C687} L _{C688}	DD146	DD59
L _{C113}	DD113	D^{D113}	L _{C305}	\mathbf{p}^{D9}	D^{D58}	L _{C497}	DD55	D^{D143}	L _{C689}	R^{D146}	D^{D78}
L_{C114}	\mathbf{R}^{D114}	\mathbf{p}^{D114}	L _{C306}	R^{D9}	DD59	L_{C498}	D^{D55}	D^{D144}	L _{C690}	R^{D146}	\mathbf{R}^{D79}
L_{C115}	R ^{D115}	R^{D115}	L_{C307}	\mathbf{p}^{D9}	R^{D78}	L_{C499}	DD55	R^{D145}	L _{C691}	R ^{D146}	R ^{D81}
L _{C116}	$R^{D116} R^{D117}$	R^{D116} R^{D177}	L _{C308}	R^{D9} R^{D9}	R^{D79} R^{D81}	L_{C500}	R^{D55} R^{D55}	R^{D146} R^{D147}	L _{C692}	$R^{D146} R^{D146}$	R^{D87} R^{D88}
L _{C117}	DD118	DD118	L _{C309}	R^{D9}	DD87	L_{C501}	DD55	DD149	L _{C693}	DD146	DD89
$\mathcal{L}_{C118} \\ \mathcal{L}_{C119}$	pD119	R^{D119}	L _{C310} L _{C311}	\mathbf{p}^{D9}	pD88	$L_{C502} \\ L_{C503}$	\mathbf{p}^{D55}	R^{D151}	L_{C694} L_{C695}	R^{D146}	pD93
L _{C120}	DD120	DD120	L _{C312}	pD9	DD^{D89}	L _{C504}	DD55	pD154	L _{C696}	R^{D146}	pD117
L_{C121}	R^{D121}	R^{D121}	L_{C313}	\mathbb{R}^{D9}	R^{D93}	L_{C505}	DD55	R^{D155}	L _{C697}	R^{D146}	R^{D118}
L_{C122}	$\begin{array}{c} R^{D122} \\ R^{D123} \end{array}$	R^{D122} R^{D123}	L_{C314}	R^{D9}	R^{D116} R^{D117}	L_{C506}	R^{D55} R^{D55}	R^{D161} R^{D175}	L_{C698}	$R^{D146} R^{D146}$	R^{D119} R^{D120}
L_{C123}	R^{D123} R^{D124}	nD124	L_{C315}	R^{D9} R^{D9}	R^{D117} R^{D118}	L_{C507}	nD116	$R^{D1/3}$ R^{D3}	L _{C699}	R^{D146} R^{D146}	R^{D120} R^{D133}
L_{C124} L_{C125}	p^{D125}	R^{D125}	L _{C316} L _{C317}	\mathbf{p}^{D9}	R^{D119}	L_{C508} L_{C509}	p^{D116}	\mathbb{R}^{D5}	$L_{C700} \\ L_{C701}$	R^{D146}	P^{D134}
L_{C126}	pD126	pD126	L _{C318}	pD9	pD120	L_{C510}	pD116	\mathbf{p}^{D17}	L _{C702}	R^{D146}	pD135
L_{C127}	DD127	DD127	L_{C319}	R^{D9}	DD133	L_{C511}	DD116	DD18	L_{C703}	DD146	DD136
L_{C128}	R^{D128}	R^{D128}	L_{C320}	DD9	R^{D134}	LC512	R^{D116}	R^{D20}	L_{C704}	R ^{D146}	R ^{D146}
L_{C129}	R^{D129} R^{D130}	R^{D129} R^{D130}	L _{C321}	R^{D9} R^{D9}	R^{D135} R^{D136}	L_{C513}	$R^{D116} R^{D116}$	$\begin{array}{c} {\rm R}^{D22} \\ {\rm R}^{D37} \end{array}$	L_{C705}	R^{D146} R^{D146}	$R^{D147} R^{D149}$
L_{C130}	DD131	R^{D130} R^{D131}	L_{C322}	R^{D9}	DD143	L_{C514}	R^{D116}	R^{D37} R^{D40}	L_{C706}	R^{D146} R^{D146}	R^{D151}
$L_{C131} \\ L_{C132}$	DD132	D^{D132}	$L_{C323} \\ L_{C324}$	D^{D9}	D^{D144}	$\begin{array}{c} \mathbf{L}_{C515} \\ \mathbf{L}_{C516} \end{array}$	DD116	DD41	$L_{C707} \\ L_{C708}$	R^{D146}	p^{D154}
L_{C133}	DD133	D^{D133}	L_{C325}	R^{D9}	DD145	L_{C517}	DD116	D^{D42}	L _{C709}	p^{D146}	p^{D155}
L_{C134}	pD134	pD134	L_{C326}	\mathbf{p}^{D9}	DD146	L_{C518}	pD116	p.D43	L_{C710}	R^{D146}	pD161
LC135	R^{D135} R^{D136}	R^{D135} R^{D136}	L_{C327}	R^{D9}	$R^{D147} R^{D149}$	L_{C519}	R^{D116} R^{D116}	R^{D48} R^{D49}	L_{C711}	R^{D146} R^{D133}	R ^{D175}
L_{C136}	R^{D130} R^{D137}	R^{D130} R^{D137}	L_{C328}	R^{D9} R^{D9}	R^{D149} R^{D151}	L_{C520}	R^{D116} R^{D116}	R^{D49} R^{D54}	L_{C712}	R^{D133} R^{D133}	R^{D3} R^{D5}
L_{C137} L_{C138}	pD138	DD138	L _{C329} L _{C330}	\mathbf{p}^{D9}	pD154	L_{C521} L_{C522}	pD116	p.D58	$L_{C713} \\ L_{C714}$	R^{D133}	pD3
L _{C139}	DD139	DD139	L _{C330}	R^{D9}	DD155	L_{C523}	pD116	p D59	L _{C715}	DD133	pD18
L_{C140}	pD140	p^{D140}	L_{C332}	\mathbf{p}^{D9}	DD161	L_{C524}	p^{D116}	p^{D78}	L _{C716}	D^{D133}	DD^{20}
L_{C141}	R ^{D141}	R^{D141} R^{D142}	L _{C333}	R^{D9}	R^{D175}	L_{C525}	R ^{D116}	R^{D79}	L _{C717}	R^{D133}	R^{D22}
L_{C142}	R^{D142} R^{D143}	R^{D142} R^{D143}	L _{C334}	R^{D10} R^{D10}	R^{D3} R^{D5}	L_{C526}	R^{D116} R^{D116}	R^{D81} R^{D87}	L_{C718}	R^{D133} R^{D133}	R^{D37} R^{D40}
L_{C143}	D^{D144}	p^{D144}	L_{C335}	\mathbf{p}^{D10}	D^{D17}	L_{C527}	pD116	D^{D88}	L _{C719}	R^{D133}	R^{D41}
L_{C144} L_{C145}	pD145	pD145	L _{C336} L _{C337}	$\mathbf{p}D10$	\mathbb{R}^{D18}	L_{C528} L_{C529}	R^{D116}	R^{D89}	L _{C720} L _{C721}	\mathbb{R}^{D133}	\mathbf{p}^{D42}
L_{C146}	DD146	DD146	L_{C338}	$\mathbf{p}D10$	D^{D20}	L_{C530}	DD116	D^{D93}	L _{C722}	DD133	DD43
L_{C147}	R ^{D147}	R^{D147}	L_{C339}	R^{D10}	R^{D22}	L_{C531}	R^{D116}	R^{D117}	LC723	R ^{D133}	R^{D48}
L_{C148}	R^{D148} R^{D149}	R^{D148} R^{D149}	L _{C340}	R^{D10} R^{D10}	$R^{D37} R^{D40}$	L_{C532}	R^{D116} R^{D116}	R^{D118} R^{D119}	L _{C724}	R^{D133} R^{D133}	R^{D49} R^{D54}
L_{C149}	pD150	pD150	L _{C341}	DD10	D^{D41}	L_{C533}	DD116	D^{D120}	L _{C725}	pD133	DD58
L_{C150} L_{C151}	DD151	DD151	L _{C342} L _{C343}	DD10	DD42	L_{C534} L_{C535}	DD116	n D133	L _{C726} L _{C727}	DD133	DD59
L_{C152}	R^{D152}	R^{D152}	L_{C344}	\mathbf{R}^{D10}	R^{D43}	L_{C536}	R^{D116}	R^{D134}	L _{C728}	\mathbb{R}^{D133}	\mathbf{R}^{D78}
LC153	DD153	DD153	L _{C345}	DD10	D.D48	L_{C537}	D^{D116}	DD135	[⊥] C729	DD133	$\mathbf{p}D/9$
L_{C154}	R^{D154} R^{D155}	R^{D154} R^{D155}	L _{C346}	R^{D10} R^{D10}	R^{D49} R^{D50}	L_{C538}	$R^{D116} R^{D116}$	R^{D136} R^{D143}	L_{C730}	R^{D133} R^{D133}	R^{D81} R^{D87}
L_{C155}	R^{D156}	R^{D156}	L _{C347}	DD10	DD54	L_{C539}	R^{D116}	R^{D144}	L_{C731}	R^{D133}	D^{D88}
L_{C156} L_{C157}	pD157	pD157	$L_{C348} \\ L_{C349}$	DD10	pD55	$L_{C540} \\ L_{C541}$	\mathbf{p}^{D116}	pD145	$L_{C732} \\ L_{C733}$	R^{D133}	DD89
L _{C158}	DD158	R^{D158}	L _{C350}	R^{D10}	n D58	L _{C542}	DD116	DD146	L _{C734}	DD133	DD93
L_{C159}	nD159	nD159	L_{C351}	DD10	n D59	L_{C543}	R^{D116}	nD147	LC735	DD133	DD117
L_{C160}	R ^{D160}	R ^{D160}	L _{C352}	R^{D10}	R ^{D78}	L_{C544}	R ^{D116}	R^{D149} R^{D151}	L_{C736}	R ^{D133}	R ^{D118}
L_{C161}	R^{D161} R^{D162}	R^{D161} R^{D162}	L _{C353}	R^{D10} R^{D10}	R^{D79} R^{D81}	L_{C545}	$R^{D116} R^{D116}$	R^{D151} R^{D154}	L_{C737}	R^{D133} R^{D133}	R^{D119} R^{D120}
L_{C162}	R^{D163}	R^{D163}	L _{C354}	R^{D10}	R^{D87}	L_{C546}	R^{D116}	R^{D155}	L_{C738}	R^{D133}	R^{D133}
$L_{C163} \\ L_{C164}$	R^{D164}	R^{D164}	L_{C355} L_{C356}	R^{D10}	P_{D88}	$L_{C547} \\ L_{C548}$	R^{D116}	P_{D161}	$L_{C739} \\ L_{C740}$	R^{D133}	R^{D134}
L _{C165}	pD165	pD165	L _{C357}	pD10	pD89	L _{C549}	pD116	R^{D175}	L _{C741}	R^{D133}	pD135
L_{C166}	p^{D166}	R^{D166}	L _{C358}	\mathbb{R}^{D10}	R^{D93}	L_{C550}	R^{D143}	\mathbb{R}^{D3}	L _{C742}	R^{D133}	R^{D136}
L _{C167}	R^{D167}	R^{D167}	L _{C359}	\mathbb{R}^{D10}	R^{D116}	L_{C551}	R^{D143}	R^{D5}	L_{C743}	DD133	R^{D146}
L_{C168}	P^{D168}	pD168	L _{C360}	pD10	R^{D117}	L_{C552}	R^{D143}	R^{D17}	L_{C744}	\mathbf{p}^{D133}	\mathbf{p}^{D147}
L_{C169}	R ^{D169}	R^{D169}	L _{C361}	R^{D10}	R ^{D118}	L_{C553}	R^{D143}	R^{D18}	L_{C745}	R ^{D133}	R^{D149}
L_{C170}	R^{D170} R^{D171}	R^{D170} R^{D171}	L _{C362}	R^{D10}	R^{D119} R^{D120}	L_{C554}	R ^{D143}	R^{D20}	L_{C746}	R^{D133}	R^{D151} R^{D154}
L_{C171}	R^{D171} R^{D172}	R^{D171} R^{D172}	L _{C363}	R^{D10} R^{D10}	R^{D120} R^{D133}	L_{C555}	R^{D143} R^{D143}	\mathbf{R}^{D22} \mathbf{R}^{D37}	L_{C747}	R^{D133} R^{D133}	R^{D154} R^{D155}
L_{C172}	pD173	pD173	L _{C364}	R^{D10} R^{D10}	R^{D133} R^{D134}	L_{C556}	R^{D143} R^{D143}	R^{D37} R^{D40}	L _{C748}	DD133	R^{D155} R^{D161}
\mathcal{L}_{C173} \mathcal{L}_{C174}	R^{D174}	\mathbf{p}^{D174}	L _{C365}	\mathbb{R}^{D10}	R^{D135}	$\mathcal{L}_{C557} \\ \mathcal{L}_{C558}$	R^{D143}	R^{D41}	L_{C749} L_{C750}	R^{D133}	R^{D175}
L_{C174} L_{C175}	R^{D175}	R^{D175}	L _{C366} L _{C367}	\mathbb{R}^{D10}	R^{D136}	L_{C559}	R^{D143}	R^{D42}	L_{C750} L_{C751}	R^{D175}	R^{D3}
L_{C176}	R^{D176}	R^{D176}	L _{C368}	R^{D10}	R^{D143}	L_{C560}	R^{D143}	R^{D43}	L_{C752}	R^{D175}	R^{D5}
21.0			2330			0.500			0.02		

 R^{D13}

 R^{D14}

 R^{D15}

 R^{D16}

 ${\rm R}^{D17}$

 ${\rm R}^{D18}$

 \mathbb{R}^{D19}

 R^{D20}

 R^{D21}

 R^{D22}

-continued

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} \mathbf{L}_{C753} & \mathbf{R}^{D175} & \mathbf{R}^{D18} \\ \mathbf{L}_{C754} & \mathbf{R}^{D175} & \mathbf{R}^{D20} \end{array}$	
C189	LC754 RD175 RD22 LC755 RD175 RD37 LC756 RD175 RD40 LC757 RD175 RD40 LC758 RD175 RD41 LC759 RD175 RD42 LC760 RD175 RD43 LC761 RD175 RD48 LC762 RD175 RD49 LC763 RD175 RD54 LC764 RD175 RD54 LC765 RD175 RD54 LC766 RD175 RD54 LC766 RD175 RD59 LC766 RD175 RD59 LC766 RD175 RD78 LC767 RD175 RD78 LC768 RD175 RD79 LC768 RD175 RD78	

wherein \mathbf{R}^{D1} to \mathbf{R}^{D192} have the following structures: -continued R^{D1} .СН3, R^{D2} $\mathrm{CD}_3,$ \mathbf{R}^{D3} R^{D4} R^{D5} 35 R^{D6} ${\bf R}^{D7}$ R^{D8} R^{D9} 50 R^{D10} 55

 \mathbf{R}^{D12}

65

 R^{D23}

-continued

 R^{D37}

$$R^{D24}$$

$$R^{D25}$$
 10

$$\mathbb{R}^{D39}$$

$$R^{D27}$$
 20

$$\mathbb{R}^{D41}$$

$$\mathbb{R}^{D28}$$
 25

$$\mathbb{R}^{D42}$$

$$\mathbb{R}^{D29}$$

$$\mathbb{R}^{D43}$$

$$\mathbb{R}^{D44}$$

$$R^{D31}$$
 40 R^{D32} 45

$$\mathbb{R}^{D45}$$

$$\mathbb{R}^{D48}$$

$$\mathbb{R}^{D35}$$

$$\mathbb{R}^{D50}$$

$$\mathbb{R}^{D36}$$

$$\mathbb{R}^{D51}$$

$$R^{D53}$$
, R^{D54}

$$\mathbb{R}^{D56}$$

$$R^{D57}$$
35
 R^{D58}

$$\mathbb{R}^{D63}$$

$$R^{D64}$$

$$\mathbb{R}^{D67}$$

$$\mathbb{R}^{D68}$$

$$\mathbb{R}^{D69}$$

$$\mathbb{R}^{D70}$$

$$\mathbb{R}^{D71}$$

$$\mathbb{R}^{D74}$$

 ${\rm R}^{D76}$

 R^{D77}

 ${\rm R}^{D78}$

15

20

10

 \mathbf{R}^{D79}

 ${\rm R}^{D88}$

 ${\rm R}^{D89}$

 ${\rm R}^{D95}$

 ${\rm R}^{D80}$ 25

$$\mathbb{R}^{D94}$$

$$R^{D83}$$
 40

$$\mathbb{R}^{D86}$$
, \mathbb{R}^{D87}

$$R^{D100}$$

$$R^{D102}$$
 15

$$\mathbb{R}^{D103}_{}$$

$$R^{D106}$$

R^{D105} 30

$$R^{D108}$$
 50

$$\mathbb{R}^{D111}$$

$$\mathbb{R}^{D112}$$

$$\mathbb{R}^{D114}$$

$$\mathbb{R}^{D115}$$

$$\mathbb{R}^{D116}$$

$$\mathbb{R}^{D119}$$

 \mathbb{R}^{D121}

 $\mathbb{R}^{D122-10}$,

 \mathbb{R}^{D123}

R^{D124} 25

 \mathbb{R}^{D125} 30

 \mathbb{R}^{D126} 40

 \mathbb{R}^{D127} 50

 R^{D128} 55 R^{D129} , R^{D129}

, 65

-continued

 \mathbb{R}^{D130}

, Rem

R^{D132}

R^{D133}

 \mathbb{R}^{D134}

R^{D135}

 \mathbb{R}^{D136}

 D_3 C R^{D_138}

 \mathbb{R}^{D138} \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C}

 \mathbb{R}^{D139}

 $\stackrel{\mathrm{D}}{\longrightarrow} \stackrel{\mathrm{D}}{\longrightarrow} \stackrel{\mathrm{D}}{\longrightarrow} ,$

 \mathbb{R}^{D141} , \mathbb{R}^{D142}

D
$$10$$
 R^{D143}

$$\mathbb{R}^{D144}$$
 $\mathbb{C}F_3$
 $\mathbb{C}F_3$, 20
 \mathbb{R}^{D145}

$$R^{D150}$$
 CF_3 , 40
 R^{D151}

$$CF_3$$
 CF_3 , 45

$$CF_3$$
, R^{D155}
 CF_3
 R^{D156}

$$\begin{array}{c}
CF_3 \\
CF_3
\end{array}$$
 CF_3
 CF_3
 CF_3

$$_{\mathrm{CF}_3}$$
,

$$CF_3$$
 R^{D160}

$$\mathbb{R}^{D161}$$
 \mathbb{CF}_3
 \mathbb{CF}_3

$$ho^{D162}$$
 ho^{D163}

$$CF_3$$
, R^{D164}

$$\mathbb{R}^{D168}$$

$$\mathbb{C}^{\mathrm{F}_3}$$
 $\mathbb{C}^{\mathrm{F}_3}$
 $\mathbb{C}^{\mathrm{F}_3}$

$$\mathbb{C}^{F_3}$$
, \mathbb{C}^{F_3}

-continued

$$\mathbb{R}^{D171}$$

$$\mathbb{C}F_3$$
 \mathbb{R}^{D172}

$$\mathbb{C}F_3$$
, \mathbb{R}^{D173}

$$\stackrel{R^{D178}}{\longleftarrow},$$

$$\mathbb{CF}_3$$
,

$$R^{D180}$$
 50 R^{D180} 55 R^{D181}

$$^{\mathrm{CF}_{3}},$$

$$\mathbb{R}^{D183}$$

$$\mathbb{C}\mathbb{F}_3$$
 ,

$$m CF_3$$
 $m R^{D186}$ $m R^{D187}$

$$CF_3$$
 R^{D188}

$$\mathbb{R}^{D190}$$
 $\mathbb{C}\mathbb{F}_{3}$

$$\mathbb{R}^{D191}$$
 CF₃, and

 $\begin{array}{c} ^{60} \\ \text{R}^{D182} \end{array} \text{ In some embodiments of the compound, L_C is selected} \\ \text{from the group consisting of $L_{Cj\text{-}I}$ and $L_{Cj\text{-}II}$ as defined herein} \\ \text{when the corresponding R^1 and R^2 are selected from the} \\ \text{following structures: R^{D1}, R^{D3}, R^{D4}, R^{D5}, R^{D9}, R^{D10}, R^{D17},} \\ \text{65} \ \ R^{D18}$, R^{D20}, R^{D22}, R^{D37}, R^{D40}, R^{D41}, R^{D42}, R^{D43}, R^{D48}, R^{D49}, R^{D49}, R^{D55}, R^{D58}, R^{D59}, R^{D78}, R^{D79}, R^{D81}, R^{D89}, R^{D93}, R^{D116}, R^{D117}, R^{D118}, R^{D119}, R^{D120},} \\ R^{D87}$, R^{D88}, R^{D89}, R^{D93}, R^{D116}, R^{D117}, R^{D118}, R^{D119}, R^{D120},} \\ \end{array}$

 $\mathcal{L}_{C9\text{-}I}$

In some embodiments of the compound, L_C is selected from the group consisting of those L_{Cj-1} and L_{Cj-II} whose corresponding R^1 and R^2 are defined to be one of the following structures:

 $\begin{array}{c} \mathbf{R}^{D1}, \mathbf{R}^{D3}, \mathbf{R}^{D4}, \mathbf{R}^{D5}, \mathbf{R}^{D9}, \mathbf{R}^{D17}, \mathbf{R}^{D22}, \mathbf{R}^{D43}, \mathbf{R}^{D50}, \mathbf{R}^{D78}, \\ \mathbf{R}^{D116}, \ \mathbf{R}^{D118}, \ \mathbf{R}^{D133}, \ \mathbf{R}^{D134}, \ \mathbf{R}^{D135}, \ \mathbf{R}^{D136}, \ \mathbf{R}^{D143}, \ 10 \\ \mathbf{R}^{D144}, \ \mathbf{R}^{D116}, \ \mathbf{R}^{D146}, \ \mathbf{R}^{D149}, \ \mathbf{R}^{D151}, \ \mathbf{R}^{D154}, \ \mathbf{R}^{D155} \ \text{and} \\ \mathbf{R}^{D190}. \end{array}$

In some embodiments of the compound, \mathcal{L}_{C} is selected from the group consisting of:

$$\begin{array}{c} L_{C1:I} \\ \\ \end{array}$$

$$L_{C4I}$$
 25

$$L_{CSO,I}$$

$$F$$
 F
 F

$$CF_3$$
 CF_3
 CF_3

$$L_{C145J}$$
 CF_3 ,

$$L_{C143-I}$$
 CF_3
 CF_3

$$L_{C232J}$$

$$L_{C279J}$$
 CF_3

$$CF_3$$

$$CF_3$$

 $\mathcal{L}_{C277\text{-}I}$

-continued

In some embodiments the compound is selected from the $_{\rm L_{C457\text{-}I}}$ group consisting of:

$$L_{C412-I}$$
 CF_3
 CF_3

$$L_{C231-I}$$
 35 CF_3 40

$$L_{C278-I}$$

$$CF_3$$
and
$$CF_3$$

$$50$$

In some embodiments, the compound can have formula of $\operatorname{Ir}(\mathbb{L}_{Ai\text{-}m})_3$, or formula of $\operatorname{Ir}(\mathbb{L}_{Ai\text{-}m})_2(\mathbb{L}_{Cj\text{-}n})$, wherein i is an integer from 1 to 200, m is a roman numeral from 1 to 20, j is an integer from 1 to 768, and n is an integer from I to II, and the compound is selected from the group consisting of $\operatorname{Ir}(\mathbb{L}_{A1\text{-}1})_3$ through $\operatorname{Ir}(\mathbb{L}_{A200\text{-}20})_3$, and $\operatorname{Ir}(\mathbb{L}_{A1\text{-}1})_2(\mathbb{L}_{C1\text{-}1})$ through $\operatorname{Ir}(\mathbb{L}_{A200\text{-}20})_2(\mathbb{L}_{C768\text{-}H})$.

$$\begin{bmatrix} N & N & \\ N & N & \\ Ir & O & \\ [L_{A81-1}]_2 Ir[L_{C17-l}] & \\ \end{bmatrix},$$

 $[L_{A88-3}]_2 Ir[L_{C17-I}]$

$$\begin{bmatrix} F_3C & N & N & D \\ F_3C & N & N & D \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

-continued
$$F_3C$$
 N N N Ir O Ir O

$[{\rm L}_{A81\text{-}4}]_2{\rm Ir}[{\rm L}_{C17\text{-}I}]$

$$[L_{A82-5}]_2 Ir[L_{C17-I}]$$

$$\begin{bmatrix} CD_3 \\ N \\ N \\ \end{bmatrix}$$

$$[L_{A93.7}]_2 Ir[L_{C17.4}]$$

 $[L_{A89-7}]_2 Ir[L_{C17-I}]$

$$[L_{A88-5}]_2 Ir[L_{C17-I}]$$

 $[{\rm L}_{A93\text{-}8I}]_2{\rm Ir}[{\rm L}_{C17\text{-}I}]$

$$[L_{A93-17l}]_2 \text{Ir}[L_{C17-l}]$$

50
$$CF_3$$
 CF_3 CF_3

-continued
$$\begin{bmatrix} F & N & N & F \\ F & N & N & F \\ S & & & Ir & O \end{bmatrix}$$

$$\begin{bmatrix} L_{A128-3}]_2 \text{Ir}[L_{C17-I}]$$

 $[\mathbb{L}_{A93\text{-}19}]_2 \mathrm{Ir}[\mathbb{L}_{C17\text{-}I}]$

 $[\mathbb{L}_{A82\text{-}20}]_2 \text{Ir} [\mathbb{L}_{C17\text{-}I}]$

$$\begin{bmatrix} N & N & N & \\ N & N & \\ N & N & \\ \end{bmatrix}_{L} Ir O$$

$$\begin{bmatrix} L_{A121} 4]_2 Ir[L_{C17-I}] & \\ \end{bmatrix}$$

$$\begin{bmatrix} L_{A122-1}]_2 \text{Ir}[L_{C17-l}] \\ F_3 C \\ N \\ \end{bmatrix}$$

$$\begin{bmatrix} F_3 C \\ N \\ \end{bmatrix}$$

$$\begin{bmatrix} I_{A129-2}]_2 \text{Ir}[L_{C17-l}] \\ \end{bmatrix}$$

$$\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

 $[{\rm L}_{A128-6}]_2{\rm Ir}[{\rm L}_{C17-I}]$

 $[{\rm L}_{A128-5}]_2{\rm Ir}[{\rm L}_{C17-I}]$

 $[\mathbb{L}_{A129\text{-}6}]_2 \text{Ir}[\mathbb{L}_{C17\text{-}I}]$

$$\begin{bmatrix} CF_3 \\ N \\ N \\ N \\ N \\ II \\ O \\ 60 \\ (L_{A129-7}]_2 Ir[L_{C17-l}] \\ 65 \\ \end{bmatrix}$$

20

25

30

35

40

45

50

55

-continued
$$\begin{bmatrix} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

$$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

$$\begin{bmatrix} L_{A133-19}]_2 \text{Ir}[L_{C17-J}] \\ \\ D_3 C \\ \\ \end{bmatrix}$$

 $[\mathbb{L}_{A133\text{-}20}]_2 \mathrm{Ir}[\mathbb{L}_{C17\text{-}I}]$

C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising a first organic layer that contains a compound as disclosed in the above compounds section of 60 the present disclosure.

In some embodiments, the OLED comprises an anode, a cathode, and a first organic layer disposed between the anode and the cathode. The first organic layer can comprise a organic light emitting device (OLED) comprising: an 65 anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound of Formula $Ir(L_A)_x(L_C)_y$, wherein:

$$X^{6} = X^{5}$$

$$X^{8} = X^{2}$$

$$X^{1} = X^{2}$$

$$X^{1} = X^{2}$$

$$X^{1} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{3} = X^{2}$$

$$X^{4} = X^{2}$$

$$X^{5} = X^{5}$$

$$X^{7} = X^{2}$$

$$X^{7} = X^{2}$$

$$X^{8} = X^{2}$$

$$X^{1} = X^{2}$$

$$X^{1} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{3} = X^{2}$$

$$X^{4} = X^{2}$$

$$X^{5} = X^{5}$$

$$X^{7} = X^{2}$$

$$X^{7} = X^{2$$

and ligand L_C has Formula II'

wherein:

x is 1, 2, or 3; y is 0, 1, or 2; x+y=3; X^1-X^8 are each independently C, N, or CR, and at least four of X1-X8 are N; the X1-X4 that connects to ring A is C, and the X¹-X⁴ that coordinates to Ir is N; the maximum number of N atoms that are bonded to one another within a ring is two; ring A is an unsaturated 5-membered or 6-mem- 40 bered carbocyclic or heterocyclic ring; R^A represents zero, mono, or up to the maximum number of allowed substitutions to its associated ring; each R, R1-R3, and R^A is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and two substituents can be joined or fused together to form a ring, wherein the ligand L4 coordinates to Ir to form a 5-membered chelate ring as indicated by the two dashed lines of the Formula I', with the proviso that the compound of Formula $Ir(L_A)_x(L_C)_y$ is not

In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.

In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of C_n

15 H_{2n+1}, OC_nH₂₊₁, OAr₁, N(C_nH₂₊₁)₂, N(Ar₁)(Ar₂), CH=CH−C_nH₂₊₁, C≡CC_nH₂₊₁, Ar₁, Ar₁—Ar₂, C_nH₂—Ar₁, or no substitution, wherein n is from 1 to 10; and wherein Ar₁ and Ar₂ are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.

In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho [3,2,1-de]anthracene).

In some embodiments, the host may be selected from the HOST Group consisting of:

15

35

40

45

50

55

60

65

and combinations thereof.

In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal com-20 plex.

In some embodiments, the compound as described herein may be a sensitizer; wherein the device may further comprise an acceptor; and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.

In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the 30 present disclosure.

In some embodiments, the emissive region can comprise a compound of Formula $Ir(L_A)_x(L_C)_y$, wherein:

ligand L_A has Formula I'

$$X^6 = X^5$$
 X^7
 X^8
 $X^1 = X^2$
 X^3
 X^3
 X^4
 X^5

and ligand L_C has Formula II'

$$R^1$$
 R^3
 R^2

x is 1, 2, or 3; y is 0, 1, or 2; x+y=3; X^1-X^8 are each independently C, N, or CR, and at least four of X1-X8 are N; the X¹-X⁴ that connects to ring A is C, and the X¹-X⁴ that coordinates to Ir is N; the maximum number of N atoms that are bonded to one another within a ring is two; ring A is an unsaturated 5-membered or 6-membered carbocyclic or heterocyclic ring; RA represents zero, mono, or up to the maximum number of allowed substitutions to its associated ring; each R, R¹-R³, and R⁴ is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and two substituents can be joined or fused together to form a ring, wherein the ligand L_4 coordinates to Ir to form a 5-membered chelate ring as indicated by the two dashed lines of the Formula I', with the proviso that the compound of Formula $Ir(L_4)_x(L_C)_y$ is not

In some embodiments of the emissive region, the compound can be an emissive dopant or a non-emissive dopant. 45

In some embodiments, the emissive region further comprises a host, wherein the host contains at least one group selected from the group consisting of metal complex, triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, aza-triphenylene, aza-carbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzosel enophene. In some embodiments, the emissive region further comprises a host, wherein the host is selected from the Host Group defined above

In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.

In some embodiments, the consumer product comprises an OLED having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the $_{65}$ organic layer can comprise a compound of Formula $Ir(L_A)_X$ $(L_C)_v$, wherein:

ligand L_A has Formula I'

$$X^{6} = X^{5}$$
 X^{7}
 X^{8}
 $X^{1} = X^{2}$
 $X^{1} = X^{2}$
 $X^{1} = X^{2}$

and ligand L_C has Formula II'

$$R^1$$
 R^3 ;

wherein:

25

x is 1, 2, or 3; y is 0, 1, or 2; x+y=3; X^1 - X^8 are each independently C, N, or CR, and at least four of X^1 - X^8 are N; the X^1 - X^4 that connects to ring A is C, and the X^1 - X^4 that coordinates to Ir is N; the maximum number of N atoms that are bonded to one another within a ring is two; ring A is an unsaturated 5-membered or 6-membered carbocyclic or heterocyclic ring; R^A represents zero, mono, or up to the maximum number of allowed substitutions to its associated ring; each R, R^1 - R^3 , and R^4 is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and two substituents can be joined or fused together to form a ring, wherein the ligand L_A coordinates to Ir to form a 5-membered chelate ring as indicated by the two dashed lines of the Formula I', with the proviso that the compound of Formula Ir(L_A)_x(L_C)_y is not

In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a 5 laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a 10 vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device,

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and 15 a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an "exciton," which is a 20 localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but 25 are generally considered undesirable.

Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.

The initial OLEDs used emissive molecules that emitted 30 light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.

More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998; ("Baldo-I") and Baldo et 40 al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II"), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 45 5-6, which are incorporated by reference.

FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 50 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 55 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.

More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with 65 F_4 -TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incor-

porated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electricallyconductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.

82

FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.

The simple layered structure illustrated in FIGS. 1 and 2 35 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.

Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247, 190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The

OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.

Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its 15 entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably 20 carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by refer- 25 ence in their entireties, and patterning associated with some of the deposition methods such as ink jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For 30 example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a 35 preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize Dendrimer substituents may be used to enhance the ability of small molecules to undergo 40 solution processing.

Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to 45 harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier 50 layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may 55 incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/ US2007/023098 and PCT/US2009/042829, which are 60 herein incorporated by reference in their entireties. To be considered a "mixture", the aforesaid polymeric and nonpolymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric 65 material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created

84

from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.

Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, headsup displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from -40 degree C. to +80°

More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.

The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.

In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.

In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the

OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.

In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application 10 Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can 15 be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least 20 one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, 25 pentadentate, or hexadentate ligands Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.

In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as 35 one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. 40 The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all 45 of the sensitizer, acceptor, and final emitter

According to another aspect, a formulation comprising the compound described herein is also disclosed.

The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component 50 module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.

In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an 60 electron transport material, disclosed herein.

The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the

86

group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a "monovalent variant of a compound" refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a "polyvalent variant of a compound" refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.

D. Combination of the Compounds of the Present Disclosure with Other Materials

The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.

a) Conductivity Dopants:

A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.

Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials:

EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.

55 b) HIL/HTL:

A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of 60 the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly mono-65 mer derived from compounds such as phosphoric acid and silane derivatives; a metal oxide derivative, such as MoO_x; a p-type semiconducting organic compound, such as 1,4,5,

15

20

8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.

Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:

$$Ar^{2}$$
 Ar^{3}
 Ar^{3}
 Ar^{3}
 Ar^{3}
 Ar^{4}
 Ar^{5}
 Ar^{4}
 Ar^{5}
 Ar^{5}
 Ar^{6}
 Ar^{7}
 Ar^{8}
 Ar^{8}
 Ar^{9}
 Ar^{9}

Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, cathazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, thazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, 45 triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, 50 benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon 55 cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be 60 substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, 65 sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

In one aspect, Ar¹ to Ar⁹ is independently selected from the group consisting of:

wherein k is an integer from 1 to 20; X^{101} to X^{108} is C (including CH) or N; Z^{101} is NAr^1 , O, or S; Ar^1 has the same group defined above.

Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:

$$\begin{bmatrix} \begin{pmatrix} Y^{101} \\ Y^{102} \end{pmatrix}_{k'} \text{Met} - (L^{101})k'' \end{bmatrix}$$

wherein Met is a metal, which can have an atomic weight greater than 40; (Y¹⁰¹-Y¹⁰²) is a bidentate ligand, Y¹⁰¹ and Y¹⁰² are independently selected from C, N, O, P, and S; Y¹⁰¹ is an ancillary ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k'+k" is the maximum number of ligands that may be attached to the metal.

may be attached to the metal. In one aspect, $(Y^{101}-Y^{102})$ is a 2-phenylpyridine derivative. In another aspect, $(Y^{101}-Y^{102})$ is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc $^+$ /Fc couple less than about 0.6 V.

Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials:

CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964. EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2008021687, JP2007091719, JP2014-009196, KR20110088898, KR20130077473, TW201139402, No. 06/517,957, US20020158242, Ser. US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, 5 U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759,

WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.

$$\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}_2$$

c) EBL:

An electron blocking layer (EBL) may be used to reduce 25 the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL 35 material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same 40 functional groups used as one of the hosts described below. d) Hosts:

The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than 50 that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.

Examples of metal complexes used as host are preferred to have the following general formula:

$$\begin{bmatrix} \begin{pmatrix} Y^{103} \\ Y^{104} \end{pmatrix}_{k'} \text{Met} \longrightarrow (L^{101})k''$$

wherein Met is a metal; $(Y^{103}-Y^{104})$ is a bidentate ligand, Y^{103} and Y^{104} are independently selected from C, N, O, P, and S; L^{101} is an another ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached 65 to the metal; and k'+k" is the maximum number of ligands that may be attached to the metal.

In one aspect, the metal complexes are:

$$\left[\left(\begin{matrix} O \\ N \end{matrix} \right)_{\ell'} A l - (L^{101})_{3.\ell'} \quad \left[\left(\begin{matrix} O \\ N \end{matrix} \right)_{\ell'} Z n - (L^{101})_{2.\ell'} \right. \right.$$

wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.

In another aspect, Met is selected from Ir and Pt. In a further aspect, $(Y^{103}-Y^{104})$ is a carbene ligand

In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbox-

15

20

25

30

ylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfanyl, sulfonyl, phosphino, and combinations thereof.

In one aspect, the host compound contains at least one of the following groups in the molecule:

-continued
$$X^{106}$$
 X^{107} X^{108} , X^{103} X^{104} X^{108} , X^{103} X^{104}

$$X^{102}$$
 X^{103}
 X^{104}
 X^{105}
 X^{106}
 X^{107} , and

$$X^{101}$$
 X^{102}
 X^{103}
 X^{104}
 X^{108}
 X^{108}
 X^{108}
 X^{107}

wherein R¹⁰¹ is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X¹⁰¹ to X¹⁰⁸ are independently selected from C (including CH) or N. Z¹⁰¹ and Z¹⁰² are independently selected from NR¹⁰¹, O, or S.

Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed 45 herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733. KR20130115564, TW201329200, US20030175553, US20050238919, 50 US20060280965, US20090017330, US20090030202, US20090167162. US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207. WO2005014551, WO2005089025, WO2006072002. WO2006114966, WO2007063754, WO2008056746. WO2009003898, WO2009021126, WO2009063833. WO2009066778, WO2009066779, WO2009086028 WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298 WO2012133644, WO2012133649, WO2013024872 WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803

e) Additional Emitters:

One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed 50 fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.

Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed 55 US20110204333, herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, 60 JP4478555, KR1020090133652, JP2013110263, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. 06/916,554, No. US20010019782, US20020034656, US20030068526. US20030072964, US20030138657, US20050123788, 65 US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696,

US20060134459, US20060251923, US20070103060, US20070231600, US2007104980,

US2007278936, US20080261076, US2008161567, US20090108737, US2009085476, US20100148663, US2010102716, US2010270916,

US2007138437, US20080020237, US20080297033, US2008210930, US20090115322, US2009104472,

US20100090591, US20100244004, US20100295032, US2010105902, US2010244004, US20110057559, US20110108822, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,675,228, 7,728,137, 7,740,957, 7,378,162, 7,534,505, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842,

US20060134462,

US20070034863,

US20070111026,

US2007034863,

US20060202194,

US20070087321,

US20070190359,

US2007104979,

US2007224450,

US20080233410,

US20090039776,

US20090179555,

US200805851,

		US 12,3	84
WO2009000673, WO2010028151, WO2010118029, WO2011107491, WO2013094620, WO2014007565, WO2014024131, WO2014112450.	147 WO2009050281, WO2010054731, WO2011044988, WO2012020327, WO2013107487, WO2014008982, WO2014031977,	WO2009100991, WO2010086089, WO2011051404, WO2012163471, WO2013174471, WO2014023377, WO2014038456,	5
	Et		10
Et ——	I	_Et	15
)=\(\vert_{\pi} \) \(\vert_{\pi} \)	Et,	20
Et	Et	, Lit	25
			20
N F	de(CO) ₄ ,		30
		/ >	40
(45
		,	
	N O- Ir O=		50
	· /		55
	г	$\int_{\mathbb{T}}$	
	/ [

$$\begin{array}{c|c} D & D \\ \hline \end{array}$$

-continued

$$\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}_2 \end{bmatrix}_{lr} \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}_0 O,$$

20

25

30

35

$$\begin{bmatrix} D & D & D \\ D & N & D \\ D & D & 3 \end{bmatrix}_3$$
 Ir,
$$\begin{bmatrix} D & N & N \\ N & N & 10 \\ D & N &$$

f) HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.

In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.

In another aspect, compound used in HBL contains at least one of the following groups in the molecule:

55

60

wherein k is an integer from 1 to 20; L^{101} is another ligand, k' is an integer from 1 to 3. g) ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.

In one aspect, compound used in ETL contains at least one of the following groups in the molecule:

wherein R¹⁰¹ is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, het-

erocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar¹ to Ar³ has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X¹⁰ to X¹⁰⁸ is selected from C (including CH) or N.

In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:

$$\left[\left(\begin{array}{c} O \\ N \end{array} \right)_{k'} Al - (L^{101})_{3-k'} \left[\left(\begin{array}{c} O \\ N \end{array} \right)_{k'} Be - (L^{101})_{2-k'} \right] \right]$$

$$\left[\begin{array}{c} O \\ N \end{array} \right]_{V} Zn - (L^{101})_{2-k'} \left[\begin{array}{c} N \\ N \end{array} \right]_{V} Zn - (L^{101})_{2-k'}$$

wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L¹⁰¹ is another ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached to the metal.

Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed

herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007. JP2004-022334, JP2005149918. JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612. US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,

h) Charge generation layer (CGL)

In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from 40 the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the 45 transport layers.

In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.

It is understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that 65 various theories as to why the invention works are not intended to be limiting.

E. Experimental Data

Synthesis of Materials

Synthesis of L_{4122-1}

6-Chloropyrimidine-4,5-diamine (2.00 g, 13.83 mmol), benzo[b]thiophen-2-ylboronic acid (2.96 g, 16.60 mmol), tetrakis(triphenylphosphine)palladium(O) (0.799 g, 0.692 35 mmol), and potassium carbonate (3.82 g, 27.7 mmol) were charged into an oven dried two-necked round bottom flask fitted with a reflux condenser. The mixture was degassed by vacuum/nitrogen cycle three times, then anhydrous 1,4dioxane (50 ml) and biacetyl (2.428 ml, 27.7 mmol) were added. The reaction mixture was stirred at 80° C. for 16 hours. After cooling down to room temperature, the reaction mixture was filtered off through a Celite cartridge and the volatiles were removed under vacuum. The resulting crude mixture was purified by triehtylamine-treated silica gel column chromatography using a mixture of dichloromethane (50-70%), heptane, and triethylamine (1%) as eluent, affording a yellow solid (1.24 g, 4.22 mmol, 31%).

Synthesis of $[L_{A122-1}]_2$ Ir $[L_{C17-1}]$

N N
$$(1)$$
 S
 S
 Ir ,

 Ir ,

45

50

-continued

$$\begin{bmatrix} N & N & N & \\ N & N & \\ N & N & \\ \end{bmatrix}$$

$$\begin{bmatrix} I_{A122 \cdot 1} \end{bmatrix}_2 Ir[L_{C17 \cdot I}]$$

$$\begin{bmatrix} I_{A122 \cdot 1} \end{bmatrix}_2 Ir[L_{C17 \cdot I}]$$

$$15$$

Iridium precursor (0.893 g, 2.078 mmol) and L_{4122-1} (0.81 g, 2.77 mmol) were dissolved in 1,2-dichlorobenzene (28 ml) in a schlenk tube. The solution was purged with nitrogen for 10 minutes, then 2,2,2-trifluoroacetic acid (0.477 ml, 6.23 mmol) was added. The reaction mixture was stirred at 130° C. for 16 hours and monitored by NMR analysis, which indicated the ligand was almost consumed. To the mixture $_{25}$ was added K₂CO₃ (0.766 g, 5.54 mmol), 3,7-diethylnonane-4,6-dione (1.293 ml, 5.54 mmol), and 1,4-Dioxane (28 ml). The reaction mixture was purged with nitrogen for 10 minutes, then stirred at 60° C. for 3 days. After cooling down to room temperature, the reaction mixture was filtered off 30 through a Celite cartridge and the volatiles were removed under vacuum. The resulting crude mixture was purified by silica gel column chromatography using a mixture of ethyl acetate (5%) and dichloromethane as eluent, affording a dark green solid (0.16 g, 0.16 mmol, 12%).

TABLE 1

Example	HOMO (eV)	LUMO (eV)	Gap (eV)	T ₁ (nm)
Inventive example 1	-5.577	-2.981	2.596	785
Comparative example 1	-5.415	-2.538	2.877	708
Inventive example 2	-5.369	-3.160	2.209	905
Comparative example 2	-5.330	-2.643	2.687	723
Inventive example 3	-5.374	-3.428	1.946	1074
Comparative example 3	-5.221	-2.801	2.420	818
Inventive example 4	-5.285	-3.338	1.947	1112
Comparative example 4	-5.123	-2.810	2.313	904
Inventive example 5	-5.582	-3.825	1.757	1198
Comparative example 5	-5.315	-3.140	2.175	878

 $[L_{A122-1}]_2 Ir[L_{C17-I}]$ Inventive example 1

TABLE 1-continued

LUMO

 T_1

Gap

НОМО

Example	(eV)	(eV)	(eV)	(nm)
	, o-			
	2			

 $[L_{A81-1}]_2 Ir[L_{C17-I}]$ Inventive example 2

 $[L_{A81-4}]_2 Ir[L_{C17-I}]$ Inventive example 3

 $[L_{A82-20}]_2 Ir[L_{C17-I}]$ Inventive example 4

Example

НОМО

TABLE 1-continued

LUMO

Gap

184 TABLE 1-continued

LUMO

(eV)

Gap (eV)

 T_1

(nm)

НОМО

Example	(eV)	(eV)	(eV)	(nm)
_	_	/		
		_		
	Ir			
s	0-	~\		
	$ _ $ $ _ $	\		

(1111)	5	Γ
	10	
	15	

 T_1

Comparative example 5

Comparative example 1

Comparative example 2

Comparative example 3

Comparative example 4

20 Table 1 above provides the results of the DFT calculations performed to determine the HOMO/LUMO level, HOMO-LUMO gap, and the energy of the lowest triplet (T_1) excited state of various compounds. The data was gathered using the program Gaussian16. Geometries were optimized using 25 B3LYP functional and CEP-31G basis set. Excited state energies were computed by TDDFT at the optimized ground state geometries. THE solvent was simulated using a selfconsistent reaction field to further improve agreement with experiment. The T₁ energies of the inventive examples 1~5 30 were calculated to be 785, 905, 1074, 1112, and 1198 nm. In comparison, the T_1 energies of the comparative examples 1~5 were calculated to be 708, 723, 818, 904, and 878 nm, which are unexpectedly higher by 70-300 nm than the corresponding inventive examples. The emission maximum 35 peak of the inventive example 1 $[L_{A122-1}]_2 Ir[L_{C17-1}]$ measured in 2-methylTHF solution at room temperature is 767 nm, which is in agreement with DFT calculation data. Without being bound by any theories, this is probably due to the polyaza group in the inventive examples to effectively 40 lower the LUMO level and T₁ of the metal complexes, resulting in phosphorescence in near-infrared (NIR) region. These inventive compounds are demonstrated here to be applicable as near-infrared emitter used in the OLED device.

The calculations obtained with the above-identified DFT 45 functional set and basis set are theoretical. Computational composite protocols, such as the Gaussian with B3LYP and CEP-31G protocol used herein, rely on the assumption that electronic effects are additive and, therefore, larger basis sets can be used to extrapolate to the complete basis set (CBS) 50 limit. However, when the goal of a study is to understand variations in HOMO, LUMO, Si, Ti, bond dissociation energies, etc. over a series of structurally-related compounds, the additive effects are expected to be similar. Accordingly, while absolute errors from using the B3LYP 55 may be significant compared to other computational methods, the relative differences between the HOMO, LUMO, S_1, T_1 , and bond dissociation energy values calculated with B3LYP protocol are expected to reproduce experiment quite well. See, e.g., Hong et al., Chem. Mater. 2016, 28, 5791-98, 60 5792-93 and Supplemental Information (discussing the reliability of DFT calculations in the context of OLED materials). Moreover, with respect to iridium or platinum complexes that are useful in the OLED art, the data obtained from DFT calculations correlates very well to actual experi-65 mental data. See Tavasli et al., J. Mater. Chem. 2012, 22, 6419-29, 6422 (Table 3) (showing DFT calculations closely correlating with actual data for a variety of emissive complexes); Morello, G. R., *J. Mol. Model.* 2017, 23:174 (studying of a variety of DFT functional sets and basis sets and concluding the combination of B3LYP and CEP-31G is particularly accurate for emissive complexes).

What is claimed is:

1. A compound of Formula ${\rm Ir}({\rm L}_{A})_{x}({\rm L}_{C})_{y}$, wherein: ligand ${\rm L}_{A}$ has Formula I'

$$X^{6}=X^{5}$$
 X^{7}
 X^{8}
 $X^{1}=X^{2}$
 X^{3}
 $X^{1}=X^{2}$

and ligand L_C has Formula II'

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{3}$$

wherein:

x is 1, 2, or 3;

y is 0, 1, or 2;

x+y=3;

X¹-X⁸ are each independently C, N, or CR, and at least four of X¹-X⁸ are N;

the X^1 - X^4 that connects to ring A is C, and the X^1 - X^4 that coordinates to Ir is N;

ring A is an unsaturated 5-membered or 6-membered 40 carbocyclic or heterocyclic ring;

R^A represents zero, mono, or up to the maximum number of allowed substitutions to its associated ring;

each R, R¹-R³, and R⁴ is independently a hydrogen or 45 a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, 50 ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;

R¹ comprises at least two carbon atoms;

two substituents can be joined or fused together to form a ring,

wherein the ligand L_A coordinates to Ir to form a 5-membered chelate ring as indicated by the two dashed lines of the Formula I';

wherein at least one pair of substituents are joined or fused together to form a ring; and

with a proviso that if ring A is a 6-membered ring and two R^A are joined or fused to form a naphthalene that includes ring A, then said naphthalene is substituted.

2. The compound of claim **1**, wherein each R, R^1 - R^3 , and R^4 is independently a hydrogen or a substituent selected 65 from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl,

186

alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.

3. The compound of claim 1, wherein four of X^1 - X^8 are N.

4. The compound of claim **1**, wherein X^2 , X^4 , X^5 , and X^8 are N, and X^1 and X^3 are C.

5. The compound of claim **1**, wherein X⁶ and X⁷ are CR wherein the two R substituents are joined to form a fused ring.

6. The compound of claim **1**, wherein two of the X⁵-X⁸ are CR and adjacent to each other with the two R substituents joined to form a fused 6-membered aromatic ring.

5 7. The compound of claim 1, wherein ring A is a 6-membered aromatic ring.

8. The compound of claim **1**, wherein ring A is a 5-membered heteroaryl ring.

9. The compound of claim 1, wherein two adjacent R^A substituents are joined to form a 6-membered aromatic ring fused to ring A.

10. The compound of claim 1, wherein R¹ and R² are independently an alkyl, cycloalkyl, partially or fully deuterated variants thereof, partially or fully fluorinated variants thereof, and combinations thereof.

11. The compound of claim 1, wherein the ligand L_A is each independently selected from the group consisting of:

30

$$X^{8}$$
 X^{6}
 X^{5}
 X^{5}
 X^{5}
 X^{5}
 X^{5}
 X^{2}
 X^{5}
 X^{5

continued

$$Z_{5}^{6}$$
 X_{7}^{6}
 X_{8}^{4}
 X_{8}

-continued

$$R^{E}$$
, R^{E} , R

wherein:

 Z^1 - Z^6 are each independently N or CR^F ;

Y is O or S:

each of R^E and R^F is independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.

 $\begin{array}{l} \textbf{12}. \text{ The compound of claim 1, wherein the ligand L_A is $$L_{Ai-m}$, wherein i is an integer from 61 to 200 and m is an integer from 1 to 20, wherein the ligand L_A is selected from the group consisting of L_{A61-1} through L_{A200-1}, L_{A61-2} through L_{A200-2}, L_{61-3} through L_{A200-3}, L_{A1-4} through L_{A200-4}, L_{A61-5} through L_{A200-5}, L_{A61-6} through L_{A200-6}, L_{A1-7} through L_{A200-7}, L_{A61-8} through L_{A200-8}, L_{A61-9} through $L_{A200-10}$, L_{A61-11} through $L_{A200-11}$, L_{A61-12} through $L_{A200-12}$, L_{A1-13} through $L_{A200-13}$, L_{A61-14} through $L_{A200-14}$, L_{A61-15} through $L_{A200-15}$, L_{A61-16} through $L_{A200-16}$, L_{A1-7} through $L_{A200-17}$, L_{A61-18} through $L_{A200-18}$, L_{A61-19} through $L_{A200-19}$, and L_{A1-20} through $L_{A200-20}$, 65 wherein the structure of each of L_{Ai-1} through L_{Ai-20} is defined below: } \label{eq:Label_composition}$

$$\mathbb{R}^{E} \longrightarrow \mathbb{N}$$

$$\mathbb{R}^{E} \longrightarrow \mathbb{N}$$

$$\mathbb{R}^{E} \longrightarrow \mathbb{N}$$

 A_{i-1} is based on formula 1

 A_{i-2} is based on formula 2

$$\mathbb{R}^{E} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N}$$

$$\mathbb{R}^{E} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N}$$

$$\mathbb{R}^{E} \longrightarrow \mathbb{N}$$

 A_{i-3} is based on formula 3

$$\mathbb{R}^{E}$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

 A_{i-4} is based on formula 4

$$\mathbb{R}^{E} \longrightarrow \mathbb{N}$$

$$\mathbb{R}^{E} \longrightarrow \mathbb{N}$$

$$\mathbb{N}$$

$$\mathbb{N}$$

 A_{i-5} is based on formula 5

 A_{i-6} is based on formula 6

$$\mathbb{R}^{E}$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

A_{i-7} is based on formula 7

$$\mathbf{A}_{i\text{--}8}$$
 is based on formula 8

 A_{i-9} is based on formula 9

$$\mathbb{R}^{E}$$
 \mathbb{N}
 $\mathbb{N$

$$A_{i-10}$$
 is based on formula 10

$$\begin{array}{c|c}
 & & & & 45 \\
\hline
 & & & & \\
\hline
 & &$$

 A_{i-11} is based on formula 11

 A_{i-12} is based on formula 12

-continued
$$\mathbb{R}^E$$
 \mathbb{R}^E
 \mathbb{R}^K
 \mathbb{R}^K
 \mathbb{R}^K
 \mathbb{R}^K

 A_{i-13} is based on formula 13

$$F_3C$$
 N
 N
 R^E ,

 A_{i-14} is based on formula 14

$$\mathbb{R}^{E}$$
 \mathbb{N}
 $\mathbb{C}D_{3}$

 $\mathbf{A}_{i\text{-}15}$ is based on formula 15

$$\mathbb{R}^{E}$$
 \mathbb{N}
 \mathbb{C}
 \mathbb{F}_{3}

 A_{i-16} is based on formula 16

$$\mathbb{R}^{K}$$

 A_{i-17} is based on formula 17

193				194			
-continued				-continued			
	CF ₃	OE.		\mathbb{L}_{Ai}	R^E	G	
	N	.CF ₃ ,		L _{A30}	R^{E10}	G^2	
			5	L_{A30} L_{A31}	R^{E11}	G^2	
	N			L_{A32}	R^{E12}	G^2	
	ii 1			L_{A33}	\mathbb{R}^{E13} \mathbb{R}^{E14}	G^2 G^2	
	, N.			$\mathcal{L}_{A34} \ \mathcal{L}_{A35}$	R^{E15}	G^2	
R^{I}				L_{A36} L_{A36}	R^{E16}	G^2	
	 		10	L _{A37}	$R_{}^{E17}$	G^2	
	G			\mathcal{L}_{A38}	R^{E18} R^{E19}	G^2	
A	k_{i-18} is based on formul	a 18		\mathcal{L}_{A39}	R^{E20}	G^2 G^2	
	\mathbb{R}^E			$egin{array}{c} { m L}_{A40} \ { m L}_{A41} \end{array}$	R^{E_1}	G^3	
		r		L_{A42}	R^{E2}	G^3	
	,,/\	\nearrow R^{E} ,	15	L _{A43}	${f R}^{E3} \ {f R}^{E4}$	G^3	
	N' Y			\mathcal{L}_{A44}	R^{E_7} R^{E_5}	G^3	
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			$\mathcal{L}_{A45} \ \mathcal{L}_{A46}$	R^{E6}	G^3	
	Й.			L_{A47}	R^{E7}	G^3	
				L_{A48}	R_{E0}^{E8}	G_3^3	
D-	o N.		20	\mathcal{L}_{A49}	$rac{\mathrm{R}^{E9}}{\mathrm{R}^{E10}}$	G^3	
D_3				$\mathcal{L}_{A50} \ \mathcal{L}_{A51}$	R^{E11}	G^3	
	Ġ			L_{A52}	R^{E12}	G^3	
A	i-19 is based on formul	a 19		L_{A53}	R^{E13}	G^3	
	,-			L_{A54}	$rac{\mathrm{R}^{E14}}{\mathrm{R}^{E15}}$	G^3	
		``	25	\mathcal{L}_{A55}	R^{E16}	G_3	
				$\mathcal{L}_{A56} \ \mathcal{L}_{A57}$	R^{E17}	G^3	
	, , , ,	少,		L_{A58}	p.E15	G^3	
	N, X			L_{A59}	R ^{E19}	G^3	
	Ţ ""			\mathcal{L}_{A60}	$rac{\mathrm{R}^{E20}}{\mathrm{R}^{E1}}$	G^3 G^4	
	Й		30	${\color{red}\mathrm{L}_{A61}} \atop {\color{blue}\mathrm{L}_{A62}}$	R^{E2}	G^4	
	<u> </u>			L_{A63}	R^{E3}	G^4	
Т	\mathbb{R}^{E} \mathbb{N}			L_{A64}	R^{E4}_{rs}	G^4	
P				L_{A65}	${f R}^{E5} \ {f R}^{E6}$	G^4	
	Ġ			\mathcal{L}_{A66} \mathcal{L}_{A67}	R^{E7}	G^4 G^4	
Δ	is based on formul	a 20	35	L_{A68}	R^{E8}	G^4	
21	1-20 is based on format	a 20		L_{A69}	R^{E9}	G^4	
				L_{A70}	R^{E10} R^{E11}	G^4	
wherein for each	n I in I to	L_{Ai-20} , R^E and G in	1	$egin{array}{c} oldsymbol{\mathrm{L}_{A71}} \ oldsymbol{\mathrm{L}_{A72}} \end{array}$	R^{E12}	G^4 G^4	
formulae 1 to 1	formula 20 are de	E_{Ai-20} , K and G in	.1	L_{A73}	R ¹¹³	G^4	
ioiniuias i to i	iorinula 20 are de	filled as follows.	40	L_{A74}	R^{E14}	G^4	
				L_{A75}	R^{E15}	G^4	
\mathbb{L}_{Ai}	R^E	G	-	$\mathcal{L}_{A76} \ \mathcal{L}_{A77}$	$rac{\mathrm{R}^{E16}}{\mathrm{R}^{E17}}$	$ m G^4$ $ m G^4$	
			-	L_{A78}	R^{E18}	G^4	
\mathbb{L}_{A1}	R_{F2}^{E1}	G^1		L_{A79}	R^{E19}	G^4	
\mathcal{L}_{A2}	$egin{array}{c} \mathbf{R}^{E2} \ \mathbf{R}^{E3} \end{array}$	G^1	45	L_{A80}	\mathbb{R}^{E20} \mathbb{R}^{E1}	$rac{G^4}{G^5}$	
$egin{array}{c} { m L}_{A3} \ { m L}_{A4} \end{array}$	R^{E4}	G^1		\mathcal{L}_{A81} \mathcal{L}_{A82}	R^{E2}	G^5	
L_{A5}^{-A4}	\mathbf{p}^{E5}	G^1		L_{A82} L_{A83}	R^{E3}	G^5	
L_{A6}	R^{E6}	G^1		L_{A84}	R^{E4}	G_{ε}^{5}	
\mathcal{L}_{A7}	$egin{array}{c} \mathbf{R}^{E7} \ \mathbf{R}^{E8} \end{array}$	G^1 G^1		L_{A85}	$\begin{array}{c} \mathbf{R}^{E5} \\ \mathbf{R}^{E6} \end{array}$	G^5	
$egin{array}{c} \mathbb{L}_{A8} \ \mathbb{L}_{A9} \end{array}$	\mathbb{R}^{E9}	G^1	50	\mathcal{L}_{A86} \mathcal{L}_{A87}	R^{E7}	G⁵	
L ₄₁₀	R^{E10}	G^1		\mathcal{L}_{A88}	R^{E8}	G^5	
L_{A11}	R^{E11}	G^1		\mathcal{L}_{A89}	R^{E9}	G^5	
$egin{array}{c} \mathbb{L}_{A12} \ \mathbb{L}_{A13} \end{array}$	$\begin{array}{c} \mathbf{R}^{E12} \\ \mathbf{R}^{E13} \end{array}$	G^1		L_{A90}	$\begin{array}{c} \mathbf{R}^{E10} \\ \mathbf{R}^{E11} \end{array}$	G^5	
L_{A13} L_{A14}	R^{E14}	G_1		$egin{array}{c} \mathbb{L}_{A91} \ \mathbb{L}_{A92} \end{array}$	R^{E12}	G⁵	
L_{A15}^{A14}	\mathbb{R}^{E15}	G^1	55	L_{A93}	\mathbb{R}^{E13}	G^5	
L_{A16}	R^{E16}	G^1		L _{A94}	R^{E14}	G^5	
L_{A17}	\mathbb{R}^{E17} \mathbb{R}^{E18}	$G^{\scriptscriptstyle 1}$		L_{A95}	R^{E15}	G ⁵	
$L_{A18} \ L_{A19}$	R^{E19}	G^1		\mathcal{L}_{A96}	${f R}^{E16} \ {f R}^{E17}$	G^5 G^5	
L_{A20}	R^{E20}	G^1		${\color{Myan} ext{L}_{A97}} \ {\color{Myan} ext{L}_{A98}}$	\mathbb{R}^{E18}	G ₂	
L_{A21}	\mathbb{R}^{E1}	G^2	60	L_{A98} L_{A99}	RE19	G ⁵	
L _{A22}	$egin{array}{c} \mathbf{R}^{E2} \ \mathbf{R}^{E3} \end{array}$	$ m G^2$ $ m G^2$		L_{A100}	R^{E20}	G^5	
$egin{array}{c} { m L}_{A23} \ { m L}_{A24} \end{array}$	R^{E4}	G^2		\mathcal{L}_{A101}	\mathbb{R}^{E1}	G^6	
L_{A25}	R^{E5}	G^2		L_{A102}	R^{E2}	G ⁶	
L_{A26}	$egin{array}{c} \mathbf{R}^{E6} \ \mathbf{R}^{E7} \end{array}$	G^2		\mathcal{L}_{A103}	${f R}^{E3} \ {f R}^{E4}$	G^6	
$egin{array}{c} { m L}_{A27} \ { m L}_{A28} \end{array}$	R^{E8}	G^2 G^2	65	$L_{A104} \\ L_{A105}$	R^{E5}	G^6	
L_{A28} L_{A29}	R^{E9}	G^2		L_{A106}	R^{E6}	G^6	

-continued			-continued					
L_{A}	i	R^E	G	_	\mathbb{L}_{Ai}	R^E	G	
L_A	107	R^{E7}	G ⁶		L_{A184}	R^{E4}	G^{10}	
L_A	108	R_{E0}^{E8}	G^6	5	L _{A185}	R^{E5}	G^{10}	
L_A		R^{E9} R^{E10}	G ⁶		L ₄₁₈₆	R^{E6}	G^{10}	
L_A		R^{E10} R^{E11}	G ⁶		L_{A187}	R^{E7}	G^{10}	
\mathcal{L}_{A}		R^{E12}	G ⁶		L_{A188}	R^{E8}	G^{10}	
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$		\mathbb{R}^{E13}	G^6		L_{A189}	R^{E9}	G_{10}	
L_A L_A		R^{E14}	G^6	10	L_{A190}	R_{-}^{E10}	G^{10}	
L_A		R^{E15}	G^6		\mathcal{L}_{A191}	R^{E11}	G^{10}	
L_A	116	R^{E16}	G^6		L_{A192}	R^{E12}	G^{10}	
$\stackrel{\cap}{\mathbb{L}_{A}}$		R^{E17}	G^6		L_{A193}	R^{E13}	G ¹⁰	
L_A	118	R^{E18}	G^6		\mathcal{L}_{A194}	R^{E14}	G_{10}^{10}	
L_A	119	R^{E19}	G^6		L_{A195}	R^{E15}	G ¹⁰	
L_A		R_{E1}^{E20}	$G_{\overline{z}}^{6}$	15	L_{A196}	R ^{E16}	G ¹⁰	
\mathbb{L}_{A}		\mathbf{R}^{E1} \mathbf{R}^{E2}	G^7		L_{A197}	R ^{E17}	G ¹⁰	
\mathcal{L}_{A}		R^{E2} R^{E3}	G^7 G^7		L_{A198}	R ^{E18}	G ¹⁰	
$\mathcal{L}_{\mathcal{A}}$	123	R^{E4}	G^7		L_{A199}	R^{E19}	G ¹⁰	
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$		\mathbf{p}^{E5}	G^7		L_{A200}	R^{E20}	G^{10}	
\mathcal{L}_A \mathcal{L}_A	126	R^{E6}	G^7					
$\stackrel{A}{\operatorname{L}}_A$		R^{E7}	G^7	20				
L_A	128	R^{E8}	G^7		wherein R^1 to R^2	o have the followin	g structures:	
L_A		R^{E9}	G^7				-	
L_A	130	R^{E10}	G_{2}^{7}					
L_A		R_{E12}^{E11}	G_{7}^{7}					R^{E1}
\mathcal{L}_{A}		R^{E12} R^{E13}	G^7	25		μ. Η,		K
\mathcal{L}_{A}	100	R^{E14}	G^7 G^7	20		ara a a a a		
\mathcal{L}_{A}		DE15	G^7					R^{E2}
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$		pE16	G^7			$_{ m CH_3}$,		
L_A		pE17	G^7					
$\overset{A}{\operatorname{L}}_{\!\scriptscriptstyle A}$		DE18	G^7			_		R^{E3}
$\stackrel{\scriptstyle a}{\rm L}_{\!\scriptscriptstyle A}$		\mathbf{p}^{E19}	G^7	30				
L_A	140	R^{E20}	G^7					R^{E4}
L_A	141	R^{E1}	G^8			1		
\mathbb{L}_{A}		R^{E2}	G ⁸					
L_A		\mathbf{R}^{E3} \mathbf{R}^{E4}	G ⁸					
L_A		R^{E5}	G^8					R^{E5}
L_A		R^{E6}	G ⁸	35		~ /		K
L_A		R^{E7}	G ⁸			Y		
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$		R^{E8}	G^8					
L_A	1.40	R^{E9}	G^8					p.F6
$\stackrel{ ag{L}_A}{}$	150	R^{E10}	G^8			~ /		R^{E6}
L_A	151	R^{E11}	G^8	40				
L_A	152	R^{E32}	G^8	-10				
L_A	100	R^{E13}_{-E14}	G ⁸			I		
\mathbb{L}_{A}	154	$\begin{array}{c} \mathbf{R}^{E14} \\ \mathbf{R}^{E15} \end{array}$	G ⁸					R^{E7}
L_A	100	R^{E16} R^{E16}	G^8					
\mathbb{L}_{A}		DE17	G_8					
L_A		R^{E15}	G ⁸	45				
L_A L_A	158	R^{E19}	G^8			I		
$\stackrel{A}{\operatorname{L}_A}$		R^{E20}	G_8			T.		R^{E8}
L_A	161	\mathbb{R}^{E1}	G^9			F,		
L_A	162	R^{E2}	G^9			•		R^{E9}
L_A	163	\mathbf{R}^{E3} \mathbf{R}^{E4}	G ⁹	50		CF_3 ,		IX
\mathcal{L}_{A}		R^{E5}	G ⁹	50				
L_A	100	DE6	G ⁹					R^{E10}
\mathcal{L}_{A}		R^{E7}	G ⁹			F_2		
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$		R^{E8}	G ⁹			···C		
$\overset{A}{\operatorname{L}}_{\!\scriptscriptstyle A}$		R^{E9}	G^9			CF_3 ,		
L_A^A	170	R^{E10}	G^9	55				R^{E11}
L_A		R^{E11}	G^9			./^_/		
\mathbb{L}_{A}	172	R^{E12}	G^9			\sim CF ₃ ,		
L_A		R^{E13}	G^9			013,		
L_A	174	R^{E14}	G ⁹					\mathbb{R}^{E12}
L_A	175	R^{E15}	G ⁹			D,		
L_A	176	R^{E16}	G ⁹	60				E10
L_A	177	R^{E17}	G ⁹			OD		R^{E13}
L_A	170	R_{E10}^{E18}	G ⁹			CD_3 ,		
L_A	179	R ^{E19}	G ⁹					R^{E14}
L_A		R ^{E20}	G ⁹					
L_A	101	\mathbb{R}^{E1}	G_{10}	65) ,		
\mathbb{L}_{A}		R^{E2} R^{E3}	G_{10}	0.5		· · · /		
L_A	183	K	U			•		

-continued

 R^{E15}

-continued

 G^4

 G^5

 G^9

5

$$\mathbb{R}^{E16}$$

 ${\rm R}^{E18}$

 R^{E17}

R^{E20} 30

and

wherein G^1 to G^{10} have the following structures:

G⁷

50

-continued

G¹⁰
5

13. The compound of claim 1, wherein the ligand L_A is selected from the group consisting of:

L₄₂₁₋₄ 20
L₄₂₁₋₄

 L_{A29-7} 30 CF_3

N 35

 $\begin{array}{c|c} & L_{A33-7} \\ & & \\ &$

L_{A33-11}
55
N
N
N
O
D₃C
N
60

65

L_{A21-13}

 $L_{\mathcal{A}33-20}$

 L_{A81-1}

-continued

22.2

$$\begin{array}{c|c} L_{A81-4} \\ \hline \\ N \\ \hline \\ \end{array}$$

-continued
$$L_{A88-5}$$
 F N N N N

$$\begin{array}{c} L_{488-6} \\ \\ F \\ \\ N \\ \\ N \\ \\ N \\ \\ \end{array}$$

-continued

 $\begin{array}{c} \text{CD}_3 \\ \text{N} \\ \text{N} \\ \text{N} \end{array}$

 $\begin{array}{c} L_{A93-8} \\ \\ F_3C \\ \hline \\ N \\ \end{array}$

D₃C 25

 $\begin{array}{c|c} L_{A93\text{-}11} & 35 \\ \hline \\ N \\ N \\ \end{array}$

45

L_{A81-12}

55

60

-continued

L_{A81-13}

 F_3C N CD_3 ,

CF₃, CF₃,

 $\mathcal{L}_{A128\text{-}3}$

-continued

-continued

$$L_{A93-19}$$
 CD_3
 CD_3
 CD_3
 CD_3
 CD_3
 CD_3
 CD_3
 CD_3
 CD_3

$$\begin{array}{c} 40 \\ L_{A122-1} \end{array}$$

-continued

-continued

$$\begin{array}{c} CF_3 \\ F \\ N \\ N \\ N \\ \end{array}$$

$$\begin{array}{c} CF_3 \\ \\ N \\ N \\ \\ N \\$$

$$\begin{array}{c} \text{CD}_3 \\ \text{N} \\ \text{N} \\ \text{N} \end{array}$$

$$L_{A121-13}$$

-continued

210 -continued

 $L_{A133-14}$ 10

 $L_{A133-20}$

$$D_3C$$

15

 $\mathcal{L}_{A133-17}$

 $\mathcal{L}_{A139\text{-}18}$

L_{A133-19}

14. The compound of claim 12, wherein the compound has the formula of $Ir(L_{Ai-m})_3$, or the formula of $Ir(L_{Ai-m})_2$ (L_{Ci-n}) , wherein i is an integer from 61 to 200, m is an integer from 1 to 20, j is an integer from 1 to 768, and n is a roman numeral from I to II, and the compound is selected

from the group consisting of $Ir(L_{A61-1})_3$ through $Ir(L_{A200-1})_3$, $\operatorname{Ir}(\mathbb{L}_{A1\text{--}7})_3 \quad \operatorname{through} \quad \operatorname{Ir}(\mathbb{L}_{A200\text{--}7})_3, \quad \operatorname{Ir}(\mathbb{L}_{A61\text{--}8})_3 \quad \operatorname{through}$

30 $\operatorname{Ir}(L_{A200-8})_3$, $\operatorname{Ir}(L_{A61-9})_3$ through $\operatorname{Ir}(L_{A200-9})_3$, $\operatorname{Ir}(L_{A61-10})_3$ through $Ir(L_{A200-10})_3$, $Ir(L_{A1-11})_3$ through $Ir(L_{A200-11})_3$, $Ir(L_{A61-12})_3$ through $Ir(L_{A200-12})_3$, $Ir(L_{A1-13})_3$ through $Ir(L_{A200-13})_3$, $Ir(L_{A61-14})_3$ through $Ir(L_{A200-14})_3$, $Ir(L_{A61-15})_3$ through $Ir(L_{A200-15})_3$, $Ir(L_{A61-16})_3$ through $Ir(L_{A200-16})_3$,

35 $Ir(L_{A1-17})_3$ through $Ir(L_{A200-17})_3$, $Ir(L_{A61-18})_3$ through $Ir(L_{A200-18})_3$, $Ir(L_{A61-19})_3$ through $Ir(L_{A200-19})_3$, $Ir(L_{A1-20})_3$ (L_{C1-1}) through $Ir(L_{A200-20})_3$, $Ir(L_{A61-1})_2$ through $\mathrm{Ir}(\mathrm{L}_{A61\text{-}2})_2$ $Ir(L_{A200-1})_2$ (L_{C768-1}), through (L_{C1-I}) $Ir(L_{A200-2})_2(L_{C768-1}), Ir(L_{A61-3})_2$ $(\mathbf{L}_{C1\text{-}1})$

 $Ir(L_{A200-3})_2 (L_{C768-1}), Ir(L_{A1-4})_2 (L_{C1-1})$ through $Ir(L_{A200-4})_2$ (L_{C768-1}) , $Ir(L_{A61-5})_2$ (L_{C1-1}) through $Ir(L_{A200-5})_2$ (L_{C768-1}) , $Ir(L_{A61-6})_2 (L_{C1-1})$ through $Ir(L_{A200-6})_2 (L_{C768-1})$, $Ir(L_{A1-7})_2$ (L_{C1-1}) through $Ir(L_{A200-7})_2$ (L_{C768-1}) , $Ir(L_{A61-8})_2$ (L_{C1-1}) through $Ir(L_{A200-8})_2$ (L_{C768-1}), $Ir(L_{A61-9})_2$ (L_{C1-1}) through

45 $Ir(L_{A200-9})_2$ $(L_{C768-1}),$ $Ir(L_{A61-10})_2$ (L_{C1-1}) through through $Ir(L_{A200-10})_2$ $(L_{C768-1}),$ $\operatorname{Ir}(\mathbf{L}_{A1\text{-}11})_2$ (L_{C1-1}) $Ir(L_{A200-11})_2$ $\mathrm{Ir}(\mathbb{L}_{A61\text{-}12})_2$ $(L_{C768-1}),$ (L_{C1-1}) through $\mathrm{Ir}(\mathbb{L}_{A1\text{-}13})_2$ $\mathrm{Ir}(\mathbf{L}_{A200\text{-}12})_2$ through $(L_{C768-1}),$ (L_{C1-1}) $\mathrm{Ir}(\mathbf{L}_{A61\text{-}14})_2$ $Ir(L_{A200-13})_2$ $(L_{C768-1}),$ (L_{C1-1}) through 50 $Ir(L_{A200-14})_2$ $Ir(L_{A61-15})_2$ through $(L_{C768-1}),$ (L_{C1-1})

 $Ir(L_{A61-16})_2$ (L_{C1-1}) through $Ir(L_{A200-15})_2$ $(L_{C768-1}),$ $(L_{C768-1}),$ ${\rm Ir}({\rm L}_{A1\text{-}17})_2({\rm L}_{C1\text{-}1})$ through $Ir(L_{A200-16})_2$ ${\rm Ir}({\rm L}_{A200\text{-}17})_2({\rm L}_{C768\text{-}1}),$ $Ir(L_{A61-18})_2(L_{C1-1})$ through through $Ir(L_{A200-18})_2(L_{C768-1}),$ $Ir(L_{A61-19})_2(L_{C1-1})$ ${\rm Ir}({\rm L}_{A1\text{-}20})_2({\rm L}_{C1\text{-}1})$ through 55 $Ir(L_{A200-19})_2(L_{C768-1}),$

 ${\rm Ir}({\rm L}_{A200\text{-}20})_2({\rm L}_{C768\text{-}1}),$ $\operatorname{Ir}(\mathbf{L}_{A61\text{--}1})_2(\mathbf{L}_{C1\text{--}II})$ through through $Ir(L_{A200-1})_2(L_{C768-II}),$ $Ir(L_{A61-2})_2(L_{C1-II})$ through $Ir(L_{A200-2})_2(L_{C768-II}),$ $Ir(L_{A61-3})_2(L_{C1-II})$ $Ir(L_{A200-3})_2(L_{C768-II})$, $Ir(L_{A1-4})_2(L_{C1-II})$ through $Ir(L_{A200-4})_2$

60 ($L_{C768-II}$), $Ir(L_{A61-5})_2(L_{C1-II})$ through $Ir(L_{A200-5})_2(L_{C768-II})$, $Ir(L_{A61-6})_2 (L_{C1-II})$ through $Ir(L_{A200-6})_2 (L_{C768-II})$, $Ir(L_{A1-7})_2$ (L_{C1-II}) through $Ir(L_{A200-7})_2(L_{C768-II})$, $Ir(L_{A61-8})_2(L_{C1-II})$ through $Ir(L_{A200-8})_2(L_{C768-II})$, $Ir(L_{A61-9})_2(L_{C1-II})$ through $Ir(L_{A61-10})_2(L_{C1-II})$ through $Ir(L_{A200-9})_2(L_{C768-II}),$

 $\operatorname{Ir}(\mathbb{L}_{A1\text{-}11})_2(\mathbb{L}_{C1\text{-}II})$ 65 $Ir(L_{A200-10})_2(L_{C768-II})$, through ${\rm Ir}({\rm L}_{A200\text{-}11})_2({\rm L}_{C768\text{-}II}),$ $Ir(L_{A61-12})_2(L_{C1-II})$ through ${\rm Ir}({\rm L}_{A200\text{-}12})_2({\rm L}_{C768\text{-}II}),$ $Ir(L_{A1-13})_2(L_{C1-II})$ through

 CD_3

CD₃, and

10

15

$Ir(L_{A200-13})_2(L_{C768-H}),$	$Ir(L_{A61-14})_2(L_{C1-II})$	through
$Ir(L_{A200-14})_2(L_{C768-II}),$	$Ir(L_{A61-15})_2(L_{C1-II})$	through
$Ir(L_{A200-15})_2(L_{C768-II}),$	$Ir(L_{A61-16})_2(L_{C1-II})$	through
$Ir(L_{A200-16})_2(L_{C768-11}),$	$Ir(L_{A1-17})_2(L_{C1-II})$	through
$Ir(L_{A200-17})_2(L_{C768-II}),$	$Ir(L_{A61-18})_2(L_{C1-II})$	through
$Ir(L_{A200-18})_2(L_{C768-II}),$	$Ir(L_{A61-19})_2(L_{C1-II})$	through
$Ir(L_{A200-19})_2(L_{C768-II}),$	and $Ir(L_{A1-20})_2(L_{C1-II})$	through
$Ir(L_{A200-20})_2(L_{C768-II}),$	wherein L_{ci-I} is based on a	structure
of	,	

wherein for each L_{Cj} in $L_{Cj\text{-}II}$ and $L_{Cj\text{-}II}$, R^1 and R_2 are as defined below:

\mathcal{L}_{Cj}	R^1	\mathbb{R}^2	$\mathrm{L}_{C\!j}\mathrm{d}$	\mathbb{R}^1	R^2	\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2	\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2
L_{C1}	R^{D1}	R^{D1}	\mathcal{L}_{C193}	\mathbb{R}^{D1}	\mathbb{R}^{D3}	L_{C385}	R^{D17}	R^{D40}	L _{C577}	R^{D143}	R^{D120}
Lo	R^{D2}	R^{D2}	L_{C194}	R^{D1}	R^{D4}	L_{C386}	R^{D17}	DD41	L_{C578}	DD143	DD133
L_{C3}	DD3	R^{D3}	L_{C195}	$\mathbf{p}D1$	DD5	L_{C387}	DD17	DD42	L_{C579}	nD143	R^{D134}
L_{C4}	D^{D4}	D^{D4}	L_{C196}	\mathbf{p}^{D1}	R^{D9}	L_{C388}	DD17	DD43	L _{C580}	D^{D143}	p^{D135}
L_{C5}	DD5	pD5	L_{C197}	\mathbf{p}^{D1}	$\mathbf{p}D10$	L_{C389}	DD17	DD48	L_{C581}	R^{D143}	R^{D136}
L_{C6}	DD6	DD6	L_{C198}	$\mathbf{p}D1$	R^{D17}	L_{C390}	DD17	DD49	L_{C582}	nD143	R^{D144}
L_{C7}	$\mathbf{n}D7$	R^{D7}	L_{C199}	DD1	DD18	L_{C391}	DD17	R^{D50}	L _{C583}	R^{D143}	R^{D145}
L_{C8}	D^{D8}	DD_8	L _{C200}	\mathbf{p}^{D1}	R^{D20}	L_{C392}	R^{D17}	R^{D54}	LC584	R^{D143}	R^{D146}
L _{C9}	DD9	pD9	L_{C201}	\mathbb{R}^{D1}	DD22	L_{C393}	R^{D17}	R^{D55}	L_{C585}	R^{D143}	R^{D147}
L_{C10}	DD10	R^{D10}	L_{C202}	DD1	R^{D37}	L_{C394}	DD17	R^{D58}	L _{C586}	R^{D143}	R^{D149}
L_{C11}	nD11	R^{D11}	L_{C203}	DD1	n D40	L_{C395}	nD17	n D59	L_{C587}	R^{D143}	R^{D151}
L_{C12}	R^{D12}	R^{D12}	L_{C204}	\mathbf{D}^{D1}	R^{D41}	L _{C396}	DD17	R^{D78}	L_{C588}	R^{D143}	R^{D154}
L_{C13}	R^{D13}	R^{D13}	L _{C205}	$\mathbf{p}D1$	DD42	L_{C397}	R^{D17}	pD79	L_{C589}	R^{D143}	R^{D155}
L_{C14}	n D14	R^{D14}	L_{C206}	DD1	ъ <i>D</i> 43	L_{C398}	R^{D17}	n D81	L_{C590}	R^{D143}	R^{D161}
L_{C15}	R^{D15}	R^{D15}	L _{C207}	DD1	n D48	L_{C399}	DD17	R^{D87}	L_{C591}	R^{D143}	R^{D175}
L _{C16}	DD16	R^{D16}	L_{C208}	\mathbf{D}^{D1}	D^{D49}	L_{C400}	R^{D17}	DD88	L_{C592}	R^{D144}	R^{D3}
L_{C17}	R^{D17}	R^{D17}	L _{C209}	\mathbf{p}^{D1}	DD50	L_{C401}	R^{D17}	R^{D89}	L_{C593}	R^{D144}	DD5
L_{C18}	DD18	R^{D18}	L_{C210}	$\mathbf{p}D1$	ъ <i>D</i> 54	L_{C402}	DD17	ъ <i>D</i> 93	L _{C594}	ъ <i>D</i> 144	R^{D17}
L_{C19}	R^{D19}	R^{D19}	L _{C211}	DD1	n.D55	L_{C403}	R^{D17}	R^{D116}	L_{C595}	R^{D144}	R^{D18}
LC20	DD_{20}	R^{D20}	LC212	\mathbf{D}^{D1}	D D58	L_{C404}	DD17	D^{D117}	L _{C596}	DD144	DD^{20}
L_{C21}	R^{D21}	R^{D21}	L_{C213}	\mathbf{p}^{D1}	DD59	L_{C405}	DD17	R^{D118}	L_{C597}	R^{D144}	R^{D22}
LC22	n D22	R^{D22}	L_{C214}	$\mathbf{p}D1$	n.D78	L_{C406}	DD17	R^{D119}	L_{C598}	ъ <i>D</i> 144	R^{D37}
L _{C23}	D^{D23}	R^{D23}	L _{C215}	\mathbf{p}^{D1}	D^{D79}	L_{C407}	DD17	R^{D120}	L_{C599}	R^{D144}	DD40
LC24	ъ <i>D</i> 24	R^{D24}	L_{C216}	\mathbf{p}^{D1}	ъ <i>D</i> 81	L_{C408}	DD17	DD133	L_{C600}	DD144	DD41
L _{C25}	R^{D25}	D^{D25}	L _{C217}	R^{D1}	DD87	L_{C409}	DD17	pD134	L _{C601}	D^{D144}	D^{D42}
L _{C26}	n D26	R^{D26}	L_{C218}	$\mathbf{p}D1$	ъ <i>D</i> 88	L_{C410}	DD17	R^{D135}	L _{C602}	DD144	DD43
LC27	R^{D27}	R^{D27}	L _{C219}	R^{D1}	DD_{0}	L_{C411}	DD17	R^{D136}	L_{C603}	R^{D144}	DD48
LC28	ъ <i>D</i> 28	R^{D28}	L _{C220}	\mathbf{p}^{D1}	DD93	L_{C412}	DD17	R^{D143}	L _{C604}	R^{D144}	DD49
L _{C29}	R^{D29}	R^{D29}	L_{C221}	R^{D1}	DD116	L_{C413}	R^{D17}	R^{D144}	L _{C605}	R^{D144}	DD54
L_{C30}	D D30	R^{D30}	L _{C222}	$\mathbf{p}D1$	R^{D117}	L_{C414}	R^{D17}	R^{D145}	L _{C606}	R^{D144}	R^{D58}
L_{C31}	R^{D31}	R^{D31}	L _{C223}	R^{D1}	R^{D118}	L_{C415}	R^{D17}	R^{D146}	L _{C607}	R^{D144}	R^{D59}
L_{C32}	D D32	R^{D32}	L_{C224}	R^{D1}	R^{D119}	L_{C416}	DD17	R^{D147}	L_{C608}	DD144	DD78
L_{C33}	R^{D33}	R^{D33}	L_{C225}	R^{D1}	R^{D120}	L_{C417}	R^{D17}	R^{D149}	L _{C609}	R^{D144}	R^{D79}
L_{C34}	ъ <i>D</i> 34	R^{D34}	L _{C226}	R^{D1}	R^{D133}	L_{C418}	nD17	R^{D151}	LC610	R^{D144}	DD281
L_{C35}	DD35	R^{D35}	L _{C227}	R^{D1}	R^{D134}	L_{C419}	DD17	R^{D154}	L _{C611}	R^{D144}	R^{D87}
L_{C36}	pD36	R^{D36}	L_{C228}	R^{D1}	\mathbf{p}^{D135}	L_{C420}	\mathbf{p}^{D17}	R^{D155}	L _{C612}	pD144	pD88
L_{C37}	R^{D37}	R^{D37}	L _{C229}	R^{D1}	R^{D136}	L_{C421}	R^{D17}	R^{D161}	L_{C613}	R^{D144}	R^{D89}
L_{C38}	DD38	R^{D38}	L _{C230}	\mathbf{p}^{D1}	DD143	L_{C422}	pD17	R^{D175}	L _{C614}	DD144	D^{D93}
L_{C39}	R^{D39}	\mathbf{p}^{D39}	L _{C231}	R^{D1}	\mathbf{p}^{D144}	L_{C423}	R^{D50}	D^{D3}	L _{C615}	\mathbf{p}^{D144}	\mathbf{R}^{D116}
L_{C40}	n D40	DD40	L _{C232}	\mathbb{R}^{D1}	DD145	L _{C424}	pD50	DD5	L _{C616}	DD144	DD117
L _{C41}	D^{D41}	p^{D41}	L_{C233}	\mathbf{p}^{D1}	DD146	L_{C425}	DD50	D^{D18}	L _{C617}	DD144	p^{D118}
L _{C42}	D D42	\mathbf{R}^{D42}	L _{C234}	\mathbb{R}^{D1}	DD147	I	pD50	D^{D20}	L _{C618}	DD144	\mathbb{R}^{D119}
<i>L</i> -C42 T	ъ <i>D</i> 43	DD43	LC234	R^{D1}	DD149	L _{C426}	DD50	D.D22	±-C618	DD144	DD120
L_{C43}	R^{D44}	R^{D44}	L _{C235}	R^{D1}	R^{D151}	L _{C427}	R^{D50}	DD37	L _{C619}	R^{D144}	R^{D133}
L_{C44}	R^{D45}	R^{D45}	L_{C236}	R^{D1}	R^{D154}	L_{C428}	R^{D50}	R^{D40}	L_{C620}	R^{D144}	R^{D134}
L_{C45}	R^{D46}	R D46	L_{C237}	R ^{D1}	R^{D155}	L_{C429}	R^{D50}	R^{D41}	L _{C621}	R^{D144}	R^{D135}
L_{C46}	RD40	R ^{D46}	L _{C238}	R^{D1}	R^{D153} R^{D161}	L_{C430}	RD50	RD41	L _{C622}	R^{D144} R^{D144}	R^{D136}
L_{C47}	R^{D47}	R ^{D47}	L _{C239}	R^{D1}	R ^{D101}	L_{C431}	R ^{D50}	R ^{D42}	L _{C623}	R ^{D144}	R ^{D136}
L_{C48}	R^{D48}	R^{D48}	L_{C240}	R^{D1}	R ^{D175}	L_{C432}	R^{D50}	R^{D43}	L_{C624}	R ^{D144}	R ^{D145}
L_{C49}	R^{D49}	R^{D49}	L_{C241}	R^{D4}	R^{D3}	L_{C433}	R^{D50}	R^{D48}	L _{C625}	R^{D144}	R ^{D146}
L _{C50}	R^{D50}	D^{D50}	L_{C242}	R^{D4}	R^{D5}	L_{C434}	D^{D50}	D^{D49}	L _{C626}	D^{D144}	R^{D147}
L_{C51}	D D51	DD51	L_{C243}	\mathbb{R}^{D4}	DD9	L_{C435}	DD50	DD54	L_{C627}	R^{D144}	R^{D149}
L _{C52}	p.D52	R^{D52}	L _{C244}	$\mathbf{p}D4$	$\mathbf{p}D10$	L _{C436}	pD50	p.D55	L _{C628}	pD144	\mathbb{R}^{D151}
L _{C53}	D^{D53}	\mathbb{R}^{D53}	L _{C245}	R^{D4}	D^{D17}	L _{C437}	R^{D50}	D^{D58}	L _{C629}	R^{D144}	R^{D154}
L _{C54}	pD54	R^{D54}	L _{C246}	R^{D4}	R^{D18}	L_{C438}	pD50	R^{D59}	L_{C630}	R^{D144}	R^{D155}
L_{C55}	R^{D55}	R^{D55}	L _{C247}	R^{D4}	R^{D20}	L _{C439}	R^{D50}	R^{D78}	L _{C631}	R^{D144}	R^{D161}

-continued											
L_{Cj}	\mathbb{R}^1	\mathbb{R}^2	$\mathbf{L}_{Cj}\mathbf{d}$	\mathbb{R}^1	\mathbb{R}^2	\mathcal{L}_{Cj}	\mathbb{R}^1	\mathbb{R}^2	\mathcal{L}_{Cj}	\mathbb{R}^1	R ²
L_{C56}	R^{D56}	R^{D56}	L _{C248}	R^{D4}	R^{D22}	L _{C440}	R^{D50}	R^{D79}	L _{C632}	R^{D144}	R^{D175}
L_{C57}	DD57	pD57	L_{C249}	R^{D4}	R ^{D37}	L_{C441}	DD50	DD_{0}	L_{C633}	R ^{D145}	R^{D3}
L_{C58}	R^{D58} R^{D59}	R^{D58} R^{D59}	L _{C250}	R^{D4} R^{D4}	R^{D40} R^{D41}	L_{C442}	R^{D50} R^{D50}	R^{D87} R^{D88}	L_{C634}	R^{D145} R^{D145}	R^{D5} R^{D17}
L_{C59} L_{C60}	pD60	R^{D60}	L_{C251} L_{C252}	\mathbb{R}^{D4}	R^{D42}	L_{C443} L_{C444}	pD50	p.D89	L_{C635} L_{C636}	R^{D145}	\mathbb{R}^{D18}
L _{C61}	DD61	DD61	L_{C252} L_{C253}	DD4	DD43	L_{C445}	DD50	D^{D93}	L _{C637}	R^{D145}	DD^{20}
L _{C62}	pD62	pD62	L _{C254}	R^{D4}	D^{D48}	L_{C446}	DD50	D^{D116}	L_{C638}	D^{D145}	DD22
L_{C63}	R^{D63} R^{D64}	R ^{D63}	L _{C255}	${f R}^{D4} \ {f R}^{D4}$	R^{D49} R^{D50}	L_{C447}	R^{D50} R^{D50}	R^{D117} R^{D118}	L_{C639}	R^{D145} R^{D145}	R^{D37} R^{D40}
L_{C64}	DD65	R^{D64} R^{D65}	L _{C256}	DD4	DD54	L _{C448}	DD50	DD119	L _{C640}	DD145	DD41
L _{C65} L _{C66}	R^{D66}	R^{D66}	L _{C257} L _{C258}	\mathbb{R}^{D4}	\mathbb{R}^{D55}	L_{C449} L_{C450}	D^{D50}	\mathbf{R}^{D120}	L_{C641} L_{C642}	R^{D145}	\mathbf{R}^{D42}
L_{C67}	\mathbf{p}^{D67}	\mathbf{R}^{D67}	L _{C259}	R^{D4}	p^{D58}	L_{C451}	DD50	DD133	L_{C643}	R^{D145}	R^{D43}
L_{C68}	R ^{D68}	R^{D68}	L _{C260}	\mathbf{p}^{D4}	R ^{D59}	L_{C452}	DD50	R ^{D134}	L_{C644}	R ^{D145}	R^{D48}
L_{C69}	R^{D69} R^{D70}	R^{D69} R^{D70}	L_{C261}	R^{D4} R^{D4}	R^{D78} R^{D79}	L_{C453}	R^{D50} R^{D50}	R^{D135} R^{D136}	L_{C645}	R^{D145} R^{D145}	R^{D49} R^{D54}
L_{C70} L_{C71}	D^{D71}	R^{D71}	L _{C262} L _{C263}	\mathbf{p}^{D4}	DD81	L_{C454} L_{C455}	DD50	DD143	L_{C646} L_{C647}	DD145	DD58
L_{C72}	\mathbf{p}^{D72}	\mathbf{p}^{D72}	L _{C264}	pD4	pD87	L_{C456}	DD50	pD144	L_{C648}	R^{D145}	pD59
L_{C73}	\mathbf{p}^{D73}	R^{D73}	L _{C265}	R^{D4}	\mathbf{p}^{D88}	L_{C457}	\mathbf{p}^{D50}	\mathbf{p}^{D145}	L_{C649}	R^{D145}	R^{D78}
L_{C74}	R^{D74} R^{D75}	$R^{D74} R^{D75}$	L_{C266}	R^{D4} R^{D4}	R^{D89} R^{D93}	L_{C458}	R^{D50} R^{D50}	R^{D146} R^{D147}	L _{C650}	${ m R}^{D145} \ { m R}^{D145}$	R^{D79} R^{D81}
L _{C75}	DD76	\mathbb{R}^{D76}	L _{C267}	R^{D4}	pD116	L _{C459}	DD50	DD149	L _{C651}	R^{D145}	DD87
\mathcal{L}_{C76} \mathcal{L}_{C77}	\mathbf{p}^{D77}	\mathbf{p}^{D77}	L _{C268} L _{C269}	D^{D4}	DD117	\mathcal{L}_{C460} \mathcal{L}_{C461}	DD50	DD151	L_{C652} L_{C653}	DD145	D^{D88}
L_{C78}	\mathbf{p}^{D78}	\mathbb{R}^{D78}	L _{C270}	pD4	R^{D118}	L_{C462}	DD50	pD154	LC654	R^{D145}	pD89
L_{C79}	R^{D79} R^{D80}	R^{D79} R^{D80}	L _{C271}	R^{D4}	$R^{D119} R^{D120}$	L_{C463}	R^{D50} R^{D50}	R^{D155} R^{D161}	L _{C655}	R^{D145} R^{D145}	R^{D93} R^{D116}
L _{C80}	R^{D80} R^{D81}	R^{D80} R^{D81}	L _{C272}	R^{D4} R^{D4}	R^{D120} R^{D133}	L_{C464}	R^{D50} R^{D50}	R^{D101} R^{D175}	L_{C656}	R^{D145} R^{D145}	R^{D110} R^{D117}
L_{C81} L_{C82}	pD82	pD82	L_{C273} L_{C274}	R^{D4}	R^{D134}	L_{C465} L_{C466}	DD55	DD3	$\begin{array}{c} \mathbf{L}_{C657} \\ \mathbf{L}_{C658} \end{array}$	R^{D145}	pD118
L _{C83}	DD83	pD83	L_{C275}	R^{D4}	DD135	L_{C467}	DD55	DD5	L_{C659}	DD145	DD119
L_{C84}	R ^{D84}	R ^{D84}	L_{C276}	D^{D4}	R ^{D136}	L_{C468}	DD55	D^{D18}	L _{C660}	R ^{D145}	R^{D120}
L_{C85}	R^{D85} R^{D86}	R^{D85} R^{D86}	L _{C277}	R^{D4} R^{D4}	$\begin{array}{c} R^{D143} \\ R^{D144} \end{array}$	L_{C469}	R^{D55} R^{D55}	R^{D20} R^{D22}	L_{C661}	R^{D145} R^{D145}	R^{D133} R^{D134}
L_{C86} L_{C87}	DD87	pD87	L_{C278} L_{C279}	DD4	p D145	$L_{C470} \\ L_{C471}$	DD55	DD37	$\begin{array}{c} \mathbf{L}_{C662} \\ \mathbf{L}_{C663} \end{array}$	pD145	DD135
L _{C88}	D^{D88}	D^{D88}	L _{C280}	DD4	D^{D146}	L_{C472}	nD55	DD40	L _{C664}	DD145	p^{D136}
L _{C89}	p^{D89}	R^{D89}	L _{C281}	R^{D4}	D^{D147}	L_{C473}	DD55	D^{D41}	L_{C665}	p^{D145}	DD146
L_{C90}	R^{D90} R^{D91}	R^{D90} R^{D91}	L _{C282}	R^{D4} R^{D4}	R^{D149} R^{D151}	L_{C474}	R^{D55} R^{D55}	R^{D42} R^{D43}	L _{C666}	R^{D145} R^{D145}	$R^{D147} R^{D149}$
L _{C91} L _{C92}	D^{D92}	D^{D92}	L_{C283} L_{C284}	R^{D4}	D^{D154}	$L_{C475} \\ L_{C476}$	DD55	DD48	$\rm L_{C667} \\ L_{C668}$	DD145	DD151
L _{C93}	D^{D93}	D^{D93}	L _{C285}	D^{D4}	R^{D155}	L _{C477}	\mathbf{D}^{D} 55	D^{D49}	L _{C669}	D^{D145}	p^{D154}
L_C94	pD94	R^{D94}	L _{C286}	$\mathbf{p}D4$	p.D161	L_{C478}	pD55	p.D54	L_{C670}	R^{D145}	R^{D155}
L _{C95}	R^{D95} R^{D96}	R^{D95} R^{D96}	L _{C287}	R^{D4} R^{D9}	R^{D175} R^{D3}	L_{C479}	R^{D55} R^{D55}	R^{D58} R^{D59}	L_{C671}	R^{D145} R^{D145}	R^{D161} R^{D175}
L _{C96} L _{C97}	pD97	DD97	L _{C288}	\mathbf{p}^{D9}	R^{D5}	L _{C480}	pD55	DD78	L_{C672} L_{C673}	R^{D146}	R^{D3}
L _{C98}	pD98	R^{D98}	L _{C289} L _{C290}	R^{D9}	$\mathbf{p}D10$	L_{C481} L_{C482}	\mathbb{R}^{D55}	D^{D79}	L _{C674}	R^{D146}	\mathbb{R}^{D5}
L _{C99}	D^{D99}	D^{D99}	L _{C291}	D^{D9}	D^{D17}	L_{C483}	DD55	p.D81	LC675	pD146	D^{D17}
L_{C100}	R^{D100} R^{D101}	R^{D100} R^{D101}	L _{C292}	R^{D9} R^{D9}	R^{D18} R^{D20}	L_{C484}	R^{D55} R^{D55}	R^{D87} R^{D88}	L _{C676}	R^{D146} R^{D146}	R^{D18} R^{D20}
L_{C101}	D^{D102}	p^{D102}	L _{C293}	D^{D9}	D^{D22}	L _{C485}	DD55	DD89	L _{C677}	R^{D146}	\mathbf{R}^{D22}
L_{C102} L_{C103}	DD103	R^{D103}	L _{C294} L _{C295}	D^{D9}	D_{D37}	L_{C486} L_{C487}	DD55	D^{D93}	$L_{C678} \\ L_{C679}$	pD146	DD37
L_{C104}	D^{D104}	D^{D104}	L _{C296}	R^{D9}	D^{D40}	L_{C488}	pD55	D^{D116}	L _{C680}	R^{D146}	R^{D40}
L_{C105}	R ^{D105}	R^{D105} R^{D106}	L_{C297}	R^{D9}	R^{D41} R^{D42}	L_{C489}	$\begin{array}{c} R^{D55} \\ R^{D55} \end{array}$	$R^{D117} R^{D118}$	L _{C681}	R^{D146} R^{D146}	R^{D41} R^{D42}
L_{C106}	R^{D106} R^{D107}	nD107	L_{C298}	R^{D9} R^{D9}	DD43	L _{C490}	DD55	nD119	L _{C682}	ъ <i>D</i> 146	DD43
L_{C107} L_{C108}	R^{D108}	R^{D108}	L _{C299} L _{C300}	R^{D9}	R^{D48}	L_{C491} L_{C492}	\mathbb{R}^{D55}	R^{D120}	L _{C683} L _{C684}	R^{D146}	R^{D48}
LC109	R^{D109}	DD109	L _C 301	\mathbf{p}^{D9}	D D49	$^{\perp}C493$	\mathbf{p}_{D} 55	DD133	LC685	DD146	DD49
L_{C110}	R^{D110} R^{D111}	R^{D110} R^{D111}	L _{C302}	R^{D9}	R^{D50} R^{D54}	L_{C494}	R^{D55} R^{D55}	R^{D134} R^{D135}	L _{C686}	$R^{D146} R^{D146}$	R^{D54} R^{D58}
L_{C111}	R^{D111} R^{D112}	D^{D112}	L_{C303}	R^{D9} R^{D9}	D^{D55}	L_{C495}	D^{D55}	D^{D136}	L _{C687}	R^{D146} R^{D146}	D^{D59}
L_{C112} L_{C113}	pD113	\mathbf{p}^{D113}	$L_{C304} \\ L_{C305}$	\mathbb{R}^{D9}	DD58	L_{C496} L_{C497}	DD55	p.D143	L_{C688} L_{C689}	R^{D146}	DD^{78}
L_{C114}	DD114	R^{D114}	L _{C306}	\mathbf{p}^{D9}	DD59	L_{C498}	DD55	DD144	L_{C690}	DD146	DD79
LC115	R ^{D115}	R^{D115}	L _{C307}	DD9	DD^{78}	L_{C499}	nD55	R ^{D145}	L _{C691}	R ^{D146}	R ^{D81}
L_{C116}	$R^{D116} R^{D117}$	R^{D116} R^{D177}	L _{C308}	R^{D9} R^{D9}	R^{D79} R^{D81}	L_{C500}	R^{D55} R^{D55}	R^{D146} R^{D147}	L_{C692}	$R^{D146} R^{D146}$	R^{D87} R^{D88}
\mathcal{L}_{C117} \mathcal{L}_{C118}	R^{D118}	pD118	L_{C309} L_{C310}	R^{D9}	R^{D87}	$\mathcal{L}_{C501} \\ \mathcal{L}_{C502}$	pD55	R^{D149}	$L_{C693} \\ L_{C694}$	R^{D146}	pD89
L_{C119}	pD119	p^{D119}	L _{C311}	R^{D9}	R^{D88}	L_{C503}	p^{D55}	D^{D151}	L _{C695}	R^{D146}	p^{D93}
L _{C120}	\mathbb{R}^{D120}	\mathbf{p}^{D120}	L _{C312}	R^{D9}	R^{D89}	L _{C504}	\mathbb{R}^{D55}	R^{D154}	L _{C696}	R^{D146}	R^{D117}
L_{C121}	R^{D121}	R^{D121}	L _{C313}	pD9	R^{D93}	L_{C505}	DD55	R^{D155}	L_{C697}	R^{D146}	R^{D118}
L_{C122}	R ^{D122}	R ^{D122}	L _{C314}	R^{D9}	R ^{D116}	L_{C506}	R ^{D55}	R ^{D161}	L_{C698}	R ^{D146}	R ^{D119}
L_{C123}	R^{D123} R^{D124}	R^{D123} R^{D124}	L _{C315}	R^{D9} R^{D9}	$R^{D117} R^{D118}$	L_{C507}	R^{D55} R^{D116}	R^{D175} R^{D3}	L _{C699}	R^{D146} R^{D146}	R^{D120} R^{D133}
L _{C124}	\mathbf{R}^{D125}	\mathbf{p}^{D125}	L _{C316}	\mathbb{R}^{D9}	DD119	L _{C508}	\mathbf{p}^{D116}	\mathbb{R}^{D5}	L _{C700}	R^{D146}	P^{D134}
L_{C125} L_{C126}	pD126	pD126	L_{C317} L_{C318}	R^{D9}	R^{D120}	$\mathcal{L}_{C509}\\ \mathcal{L}_{C510}$	R^{D116}	pD17	L_{C701} L_{C702}	R^{D146}	pD135
L_{C127}	\mathbf{R}^{D127}	R^{D127}	L_{C319}	R^{D9}	\mathbf{p}^{D133}	L_{C511}	P^{D116}	R^{D18}	L_{C703}	p^{D146}	R^{D136}
L_{C128}	R^{D128}	D^{D128}	L _{C320}	\mathbb{R}^{D9}	D^{D134}	L_{C512}	\mathbf{p}^{D116}	\mathbf{R}^{D20}	L _{C704}	R^{D146}	pD146
L_{C129}	R ^{D129}	R ^{D129}	L _{C321}	R^{D9}	R ^{D135}	L_{C513}	R ^{D116}	R^{D22}	L_{C705}	R ^{D146}	R ^{D147}
L_{C130}	R^{D130} R^{D131}	R^{D130} R^{D131}	L _{C322}	R^{D9} R^{D9}	R^{D136} R^{D143}	L_{C514}	R^{D116} R^{D116}	$R^{D37} R^{D40}$	L _{C706}	R^{D146} R^{D146}	R^{D149} R^{D151}
L_{C131}	R^{D131} R^{D132}	R^{D131} R^{D132}	L_{C323}	R^{D_9} R^{D_9}	R^{D143} R^{D144}	L _{C515}	R^{D116} R^{D116}	R^{D40} R^{D41}	L _{C707}	R^{D146} R^{D146}	R^{D154} R^{D154}
\mathcal{L}_{C132}	IX	K	\mathcal{L}_{C324}	K	K	L_{C516}	K	K	\mathcal{L}_{C708}	K	K

-continued

\mathcal{L}_{Cj}	R ¹	R ²	$L_{Cj}d$	\mathbb{R}^1	R ²	L_{Cj}	R ¹	R ²	L_{Cj}	R ¹	R ²
L_{C133}	R^{D133}	R^{D133}	L _{C325}	R^{D9}	R^{D145}	L _{C517}	R^{D116}	R^{D42}	L _{C709}	R^{D146}	R^{D155}
L_{C134}	nD134	DD134	L_{C326}	R^{D9}	n D146	L_{C518}	nD116	n D43	L _{C710}	n D146	DD161
L_{C135}	R^{D135}	R^{D135}	L_{C327}	R^{D9}	R^{D147}	L_{C519}	R^{D116}	R^{D48}	L _{C711}	R^{D146}	R^{D175}
L_{C136}	pD136	\mathbb{R}^{D136}	L_{C328}	\mathbf{p}^{D9}	R^{D149}	L_{C520}	R^{D116}	R^{D49}	L_{C712}	R^{D133}	\mathbb{R}^{D3}
L_{C137}	R^{D137}	R^{D137}	L_{C329}	DD9	R^{D151}	L_{C521}	R^{D116}	R^{D54}	L_{C713}	R^{D133}	D^{D5}
L_{C138}	R^{D138}	R^{D138}	L _{C330}	DD9	R^{D154}	L_{C522}	R^{D116}	R^{D58}	L_{C714}	R^{D133}	R^{D3}
L_{C139}	R^{D139}	R^{D139}	L _{C331}	\mathbf{D}^{D9}	R^{D155}	L_{C523}	R^{D116}	P 7739	L_{C715}	R^{D133}	\mathbb{R}^{D18}
L_{C140}	R^{D140}	R^{D140}	L _{C332}	DD9	R ^{D161}	L_{C524}	R^{D116}	R^{D78}	L _{C716}	R^{D133}	R^{D20}
L_{C141}	R^{D141}	R^{D141}	L _{C333}	R^{D9}	R^{D175}	L_{C525}	R^{D116}	R^{D79}	L_{C717}	R^{D133}	R^{D22}
L_{C142}	R^{D142}	R^{D142}	L _{C334}	R^{D10}	R^{D3}	L_{C526}	R ^{D116}	R ^{D81}	L _{C718}	R^{D133}	R ^{D37}
L_{C143}	R^{D143} R^{D144}	R^{D143} R^{D144}	L_{C335}	R^{D10} R^{D10}	R^{D5} R^{D17}	L_{C527}	R ^{D116}	R^{D87} R^{D88}	L _{C719}	R ^{D133}	R^{D40}
L_{C144}	R^{D144} R^{D145}	R^{D144} R^{D145}	L _{C336}	R^{D10} R^{D10}	R^{D17} R^{D18}	L_{C528}	R^{D116} R^{D116}	R^{D89}	L_{C720}	R^{D133} R^{D133}	R^{D41} R^{D42}
L_{C145}	R^{D146}	R^{D145} R^{D146}	L_{C337}	R^{D10}	R^{D10} R^{D20}	L_{C529}	R^{D116} R^{D116}	R^{D09} R^{D93}	L_{C721}	R^{D133} R^{D133}	R^{D42} R^{D43}
L_{C146}	R^{D140} R^{D147}	R^{D140} R^{D147}	L _{C338}	R^{D10}	R^{D20} R^{D22}	L_{C530}	R^{D116}	R^{D117}	L _{C722}	R^{D133}	R^{D48} R^{D48}
L_{C147}	R^{D148}	R^{D148}	L _{C339}	R^{D10}	R^{D37}	L_{C531}	R^{D116}	R^{D118}	L_{C723}	R^{D133}	R^{D49}
L_{C148}	R^{D149}	R^{D149}	L_{C340}	R^{D10}	R^{D40}	L_{C532}	R^{D116}	R^{D119}	L _{C724}	R^{D133}	R^{D54}
L_{C149}	nD150	R^{D150}	L _{C341}	DD10	ъ <i>D</i> 41	L_{C533}	R^{D116}	R^{D120}	L _{C725}	R^{D133}	R^{D58}
L_{C150}	R^{D151}	R^{D151}	L _{C342}	R^{D10}	R^{D42}	L_{C534}	R^{D116}	R^{D133}	L _{C726}	R^{D133}	R^{D59}
L _{C151}	pD152	pD152	L _{C343}	R^{D10}	pD43	L _{C535}	R^{D116}	pD134	L _{C727}	pD133	pD^{78}
L_{C152}	n D153	n D153	L _{C344}	nD10	n D48	L_{C536}	DD116	pD135	L _{C728}	n D133	DD79
L _{C153}	P^{D154}	R^{D154}	L _{C345}	\mathbf{p}^{D10}	R^{D49}	L _{C537}	R^{D116}	R^{D136}	L _{C729}	R^{D133}	\mathbb{R}^{D81}
$L_{C154} \\ L_{C155}$	R^{D155}	R^{D155}	L _{C346} L _{C347}	\mathbf{R}^{D10}	R^{D50}	L_{C538} L_{C539}	R^{D116}	R^{D143}	$L_{C730} \\ L_{C731}$	R^{D133}	R^{D87}
L _{C156}	n D156	nD156	L _{C348}	nD10	n D54	L_{C540}	nD116	n D144	L_{C732}	n D133	n/288
L _{C157}	n D157	DD157	L _{C349}	D^{D10}	n.D55	L _{C541}	R^{D116}	nD145	L_{C733}	n D133	R^{D89}
L _{C158}	p^{D158}	R^{D158}	L _{C350}	R^{D10}	R^{D58}	L _{C542}	R^{D116}	R^{D146}	L _{C734}	R^{D133}	\mathbb{R}^{D93}
L_{C159}	nD159	nD159	L_{C351}	nD10	DD59	L_{C543}	R^{D116}	pD147	L_{C735}	DD133	R^{D117}
L _{C160}	DD160	DD160	L _{C352}	DD10	DD78	L _{C544}	DD116	DD149	L _{C736}	DD133	R^{D118}
L _{C161}	R^{D161}	R^{D161}	L_{C353}	\mathbf{p}^{D10}	R^{D79}	L_{C545}	R^{D116}	R^{D151}	L _{C737}	D133	R^{D119}
L_{C162}	nD162	DD162	L_{C354}	DD10	D D81	L_{C546}	DD116	DD154	L_{C738}	DD133	R^{D120}
L_{C163}	R^{D163}	R^{D163}	L_{C355}	DD10	R^{D87}	L_{C547}	R^{D116}	R^{D155}	L_{C739}	R^{D133}	R^{D133}
L_{C164}	DD164	pD164	L_{C356}	\mathbb{R}^{D10}	D^{D88}	L_{C548}	R^{D116}	pD161	L _{C740}	pD133	R^{D134}
L_{C165}	R ^{D165}	R^{D165}	L_{C357}	R^{D10}	R^{D89}	L_{C549}	R^{D116}	R^{D175}	L_{C741}	R^{D133}	R^{D135}
L _{C166}	R ^{D166}	R^{D166}	L _{C358}	R^{D10}	R^{D93}	L_{C550}	R^{D143}	R^{D3}	L_{C742}	R ^{D133}	R ^{D136}
L_{C167}	R^{D167}	R^{D167}	L _{C359}	R^{D10}	R ^{D116}	L_{C551}	R^{D143}	R^{D5}	L _{C743}	R^{D133}	R ^{D146}
L _{C168}	R^{D168} R^{D169}	R^{D168} R^{D169}	L _{C360}	R^{D10}	R^{D117} R^{D118}	L_{C552}	R^{D143} R^{D143}	R^{D17}	L_{C744}	R^{D133} R^{D133}	R^{D147} R^{D149}
L_{C169}	R^{D189} R^{D170}	R^{D169} R^{D170}	L _{C361}	R^{D10} R^{D10}	R^{D118} R^{D119}	L_{C553}	R^{D143} R^{D143}	$\begin{array}{c} {\rm R}^{D18} \\ {\rm R}^{D20} \end{array}$	L_{C745}	R^{D133} R^{D133}	R ^{D149}
L_{C170}	R^{D170} R^{D171}	R^{D170} R^{D171}	L _{C362}	R^{D10} R^{D10}	R^{D119} R^{D120}	L_{C554}	R^{D143} R^{D143}	R^{D20} R^{D22}	L_{C746}	R^{D133} R^{D133}	R^{D151} R^{D154}
L_{C171}	R^{D171} R^{D172}	R^{D171} R^{D172}	L_{C363}	R^{D10}	R^{D120} R^{D133}	L_{C555}	R^{D143} R^{D143}	R^{D22} R^{D37}	L_{C747}	R^{D133} R^{D133}	R^{D154} R^{D155}
L_{C172}	R^{D172}	R^{D172}	L _{C364}	R^{D10}	R^{D134}	L_{C556}	R^{D143}	R^{D40}	L_{C748}	R^{D133}	R^{D161}
L_{C173}	R^{D174}	R^{D173} R^{D174}	L_{C365}	R^{D10}	R^{D135} R^{D135}	L_{C557}	R^{D143} R^{D143}	R^{D41}	L_{C749}	R^{D133}	R^{D175}
L_{C174}	n D175	nD175	L _{C366}	R^{D10}	R^{D136}	L_{C558}	R^{D143}	ъ <i>D</i> 42	L_{C750}	n D175	R^{D3}
L _{C175}	DD176	DD176	L _{C367}	R^{D10}	R^{D143}	L_{C559}	R^{D143}	R^{D43}	L _{C751}	p.D175	R^{D5}
L _{C176}	R^{D177}	R^{D177}	L _{C368}	R^{D10}	R^{D144}	L _{C560}	R^{D143}	R^{D48}	L _{C752}	R^{D175}	R^{D18}
L _{C177}	DD178	DD178	L _{C369}	DD10	DD145	L _{C561}	DD143	DD49	L _{C753}	DD175	DD_{20}
L _{C178}	DD179	\mathbf{p}^{D179}	L _{C370}	DD10	pD146	L _{C562}	\mathbb{R}^{D143}	\mathbb{R}^{D54}	L _{C754}	p.D175	\mathbf{p}^{D22}
L_{C179} L_{C180}	DD180	DD180	L _{C371} L _{C372}	DD10	\mathbf{p}^{D147}	L _{C563}	R^{D143}	DD58	L_{C755} L_{C756}	\mathbf{p}^{D175}	pD37
L _{C181}	DD181	DD181	L _{C373}	\mathbb{R}^{D10}	DD149	L _{C564} L _{C565}	R^{D143}	DD59	L _{C757}	DD175	R^{D40}
L _{C182}	D^{D182}	D^{D182}	L _{C374}	DD10	DD151	L _{C566}	R^{D143}	DD78	L _{C758}	p.D175	R^{D41}
L _{C183}	\mathbf{p}^{D183}	R^{D183}	L _{C375}	R^{D10}	p D154	L _{C567}	R^{D143}	\mathbb{R}^{D79}	L _{C759}	R^{D175}	R^{D42}
L _{C184}	D^{D184}	D^{D184}	L _{C376}	DD10	R^{D155}	L _{C568}	D^{D143}	ъ <i>D</i> 81	L _{C760}	R^{D175}	D^{D43}
L _{C185}	D^{D185}	D^{D185}	L _{C377}	\mathbf{p}^{D10}	nD161	L _{C569}	D^{D143}	D^{D87}	L _{C761}	D^{D175}	DD48
L _{C186}	pD186	pD186	L _{C378}	\mathbf{p}^{D10}	R^{D175}	L_{C570}	R^{D143}	pD88	L _{C762}	pD175	R^{D49}
L _{C187}	pD187	pD187	L _{C379}	\mathbf{p}^{D17}	\mathbb{R}^{D3}	L _{C571}	pD143	p^{D89}	L _{C763}	pD175	pD54
L _{C188}	DD188	nD188	L _{C380}	nD17	n D5	L_{C572}	nD143	n.D93	L _{C764}	n D175	R^{D58}
L _{C189}	R^{D189}	R^{D189}	L _{C381}	D^{D17}	\mathbb{R}^{D18}	L_{C573}	\mathbf{p}^{D143}	R^{D116}	L _{C765}	R^{D175}	R^{D59}
L _{C190}	R^{D190}	R^{D190}	L _{C382}	DD17	R^{D20}	L_{C574}	R^{D143}	R^{D117}	L _{C766}	R^{D175}	\mathbb{R}^{D78}
L_{C191}	DD191	DD191	L _{C383}	nD17	n D22	L_{C575}	DD143	R^{D118}	L _{C767}	DD175	R^{D79}
L _{C192}	R^{D192}	R^{D192}	L _{C384}	R^{D17}	R ^{D37}	L_{C576}	R^{D143}	R^{D119}	L _{C768}	R^{D175}	R^{D81}

wherein R^{D1} to R^{D192} have the following structures: 55 -continued R^{D4} R^{D4} R^{D4} R^{D5} R^{D5} R^{D6} R^{D6}

-continued

 R^{D7}

 R^{D8}

-continued

218

/--[/],

 R^{D22}

 R^{D23}

 R^{D26}

 \mathbb{R}^{D9} 10

$$R^{D11}$$
 20

$$R^{D16}$$

$$40$$

$$R^{D17}$$

$$\mathbb{R}^{D32}$$

$$\mathbb{R}^{D34}$$

$$\mathbb{R}^{D20}$$

$$R^{D21}$$

 $\begin{array}{c} 10 \\ \mathrm{R}^{D38} \end{array}$

-continued

$$\mathbb{R}^{D36}$$

$$R^{D40}$$
 20

$$\mathbb{R}^{D41}$$
 25 \mathbb{R}^{D42}

$$R^{D48}$$

$$60$$

$$R^{D49}$$

$$\mathbb{R}^{D50}$$

$$\mathbb{R}^{D54}$$

$$\mathbb{R}^{D58}$$

15

20

60

-continued

R^{D61}

-continued

$$\mathbb{R}^{D75}$$

 R^{D74}

$$\mathbb{R}^{D63}$$

$$\mathbb{R}^{D77}$$
 , \mathbb{R}^{D78}

$$\mathbb{R}^{D79}$$

$$R^{D66}$$
 30

$$\mathbb{R}^{D81}$$

,
$$R^{D69}$$
 45

$$\mathbb{R}^{D82}$$

$$\mathbb{R}^{D70}$$
 50

$$R^{D71}$$
 55

$$\mathbb{R}^{D84}$$

$$\mathbb{R}^{D73}$$

$$\mathbb{R}^{D85}$$

 R^{D86}

 R^{D88}

-continued

$$\uparrow \uparrow \uparrow$$

 R^{D87}

 ${\rm R}^{D98}$

 \mathbf{R}^{D103}

 R^{D105}

$$\mathbb{R}^{D100}$$

$$\mathbb{R}^{D89}$$

$$\mathbb{R}^{D102}$$

$$\mathbb{R}^{D92}$$
 35

$$\mathbb{R}^{D93}$$
 40 \mathbb{R}^{D93} 45

$$\mathbb{R}^{D9}$$

R^{D109}

R^{D110} 10

 \mathbb{R}^{D111}

25 RD112

 R^{D113} 30 R^{D114} 35

 $\begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

 $\begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

50

R^{D117}
55

R^{D118} 60

 \mathbb{R}^{D119}

 \mathbb{R}^{D120}

R^{D121}

 \mathbb{R}^{D122}

R^{D123}

 \mathbb{R}^{D124}

 \mathbb{R}^{D125}

 \mathbb{R}^{D126}

R^{D127}

 \mathbb{R}^{D128}

 \mathbb{R}^{D129}

 R^{D130} 15

25

R^{D132}

 R^{D133} 35

 ${\rm R}^{D134}$

50

R^{D135}

 $R^{D136} = 60$

-continued

 D_3C D_3C CD_2

 ${\rm R}^{D137}$

 $\stackrel{\mathrm{D}}{\longrightarrow} \stackrel{\mathrm{D}}{\longrightarrow} ,$

 \mathbb{R}^{D140}

 \mathbb{R}^{D142}

CF₃

 R^{D144} CF_3 CF_3 , R^{D145}

 ho_{CF_3} , $ho_{\mathrm{P}_{147}}$

 \mathbb{R}^{D148} $\mathbb{C}F_3$, \mathbb{R}^{D149}

 CF_3 , R^{D150}

 CF_3 , R^{D151} CF_3 , R^{D152} CF_3

$$R^{D153}$$
 CF_3 ,

$$^{\mathrm{CF}_{3}}$$
,

$$\begin{array}{c}
CF_3 \\
CF_3
\end{array}$$
 CF_3
 CF_3

$$\mathbb{R}^{D159}$$
 $\mathbb{C}F_3$

$$\mathbb{R}^{D160}$$
 $\mathbb{C}\mathbb{F}_3$ $\mathbb{C}\mathbb{F}_3$ 35

$$\mathbb{C} F_3$$
 $\mathbb{C} F_3$
 $\mathbb{C} F_3$
 $\mathbb{C} F_3$

$$R^{D162}$$
 CF_3 , 45

$$\mathbb{R}^{D169}$$
 $\mathbb{C}F_3$

$$\mathbb{R}^{D170}$$
 \mathbb{CF}_3
 \mathbb{R}^{D171}

$$\mathbb{R}^{D171}$$

$$\mathbb{C}F_3$$
 \mathbb{R}^{D172}

$$\mathbb{C}F_3$$
,

$$\mathbb{C}\mathrm{F}_3$$

$$^{\mathrm{CF}_3}$$

$$\mathbb{CF}_3$$
,

-continued

$$R^{D192}$$

$$\mathbb{R}^{D182}$$
 \mathbb{CF}_3

15. The compound of claim 14, wherein the compound is selected from the group consisting of:

 R^{D183}

15

 R^{D186}

$$[{\rm L}_{A81\text{--}1}]_2{\rm Ir}[{\rm L}_{C17\text{--}1}]$$

$$R^{D187}$$

 $[\mathbb{L}_{A88-3}]_2 \mathrm{Ir}[\mathbb{L}_{C17-1}]$

45

65

$$[L_{A89-2}]_2 Ir[L_{C17-1}]$$

15

20

25

30

35

45

50

55

60

65

-continued

 $[{\rm L}_{A89\text{-}1}]_2{\rm Ir}[{\rm L}_{C17\text{-}1}]$

 $[{\rm L}_{A88-6}]_2{\rm Ir}[{\rm L}_{C17-1}]$

 $[{\mathbb L}_{A81\text{--}4}]_2 {\rm Ir}[{\mathbb L}_{C17\text{--}1}]$

 $[{\rm L}_{A89\text{-}6}]_2{\rm Ir}[{\rm L}_{C17\text{-}1}]$

 $[{\rm L}_{A82-5}]_2{\rm Ir}[{\rm L}_{C17-1}]$

 $[{\rm L}_{A89\text{-}7}]_2{\rm Ir}[{\rm L}_{C17\text{-}1}]$

 $[{\rm L}_{A88-5}]_2{\rm Ir}[{\rm L}_{C17-1}]$

 $[{\rm L}_{A93-7}]_2{\rm Ir}[{\rm L}_{C17-1}]$

 $[\mathbb{L}_{A93-81}]_2 \text{Ir}[\mathbb{L}_{C17-1}]$

 $[\mathbb{L}_{A81\text{-}13}]_2 \text{Ir}[\mathbb{L}_{C17\text{-}1}]$

 $[{\rm L}_{A93-11}]_2{\rm Ir}[{\rm L}_{C17-1}]$

$$[L_{A93.14}]_2 Ir[L_{C17.1}]$$

 $[{\mathbb L}_{A81\text{-}12}]_2 {\rm Ir}[{\mathbb L}_{C17\text{-}1}]$

$$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \end{bmatrix}$$

 $[\mathbb{L}_{A93\text{-}171}]_2\mathrm{Ir}[\mathbb{L}_{C17\text{-}1}]$

-continued

CF₃

N

N

N

N

10

$$[{\rm L}_{A99\text{-}18}]_2{\rm Ir}[{\rm L}_{C17\text{-}1}]$$

 $[\mathbb{L}_{A93\text{-}19}]_2 \text{Ir} [\mathbb{L}_{C17\text{-}1}]$

 $[{\rm L}_{A82\text{-}20}]_2{\rm Ir}[{\rm L}_{C17\text{-}1}]$

 $[{\rm L}_{A129-2}]_2{\rm Ir}[{\rm L}_{C17-1}]$

 $[\mathbb{L}_{A128\text{-}3}]_2\mathrm{Ir}[\mathbb{L}_{C17\text{-}1}]$

 $[\mathbb{L}_{A129\text{-}1}]_2\mathrm{Ir}[\mathbb{L}_{C17\text{-}1}]$

20

25

30

35

40

45

50

65

-continued

 $[{\rm L}_{A121\text{--}4}]_2{\rm Ir}[{\rm L}_{C17\text{--}1}]$

 $[\mathbb{L}_{A129-6}]_2 \mathrm{Ir} [\mathbb{L}_{C17-1}]$

 $[{\mathbb L}_{A122-5}]_2{\rm Ir}[{\mathbb L}_{C17-1}]$

 $[{\rm L}_{A129\text{-}7}]_2{\rm Ir}[{\rm L}_{C17\text{-}1}]$

 $[{\rm L}_{A128-5}]_2{\rm Ir}[{\rm L}_{C17-1}]$

 $[{\rm L}_{A133-7}]_2{\rm Ir}[{\rm L}_{C17-1}]$

 $[{\mathbb L}_{A128\text{-}6}]_2 {\rm Ir}[{\mathbb L}_{C17\text{-}1}]$

 $[\mathbb{L}_{A133-8}]_2 \mathrm{Ir}[\mathbb{L}_{C17-1}]$

 $[\mathbb{L}_{A133-11}]_2 \mathrm{Ir}[\mathbb{L}_{C17-1}]$

20

 $[\mathbb{L}_{A133-17}]_2\mathrm{Ir}[\mathbb{L}_{C17-1}]$

 $[{\mathbb L}_{A122-12}]_2{\rm Ir}[{\mathbb L}_{C17-1}]$

45

 $[{\mathbb L}_{A121\text{-}13}]_2 {\rm Ir}[{\mathbb L}_{C17\text{-}1}]$

 $[\mathbb{L}_{A139\text{-}18}]_2\mathrm{Ir}[\mathbb{L}_{C17\text{-}1}]$

$$[\mathbb{L}_{A133-19}]_2\mathrm{Ir}[\mathbb{L}_{C17-1}]$$

16. An organic light emitting device (OLED) comprising: an anode;

 $[L_{A133-20}]_2 Ir[L_{C17-1}]$

a cathode; and

an organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound of Formula ${\rm Ir}({\rm L}_A)_x({\rm L}_C)_v$, wherein:

ligand $\mathcal{L}_{\!\scriptscriptstyle A}$ has Formula I

$$X^6 = X^5$$
 X^7
 $X^8 = X^3$
 $X^{1:} = X^2$

$$R^1$$
 R^3
 R^2

10 wherein:

x is 1, 2, or 3;

y is 0, 1, or 2;

x+y=3;

20

25

30

35

40

55

60

65

 X^1 - X^8 are each independently C, N, or CR, and at least four of X^1 - X^8 are N;

the X¹-X⁴ that connects to ring A is C, and the X¹-X⁴ that coordinates to Ir is N;

the maximum number of N atoms that are bonded to one another within a ring is two;

ring A is an unsaturated 5-membered or 6-membered carbocyclic or heterocyclic ring;

R^A represents zero, mono, or up to the maximum number of allowed substitutions to its associated ring;

each R, R¹-R³, and R⁴ is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;

R¹ comprises at least two carbon atoms;

two substituents can be joined or fused together to form a ring, wherein the ligand $L_{\mathcal{A}}$ coordinates to Ir to form a 5-membered chelate ring as indicated by the two dashed lines of the Formula I';

wherein at least one pair of substituents are joined or fused together to form a ring; and

with a proviso that if ring A is a 6-membered ring and two R^A are joined or fused to form a naphthalene that includes ring A, then said naphthalene is substituted.

17. The OLED of claim 16, wherein the organic layer further comprises a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azartiphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.

18. The OLED of claim **17**, wherein the host is selected from the group consisting of:

15

20

25

30

35

40

45

50

55

and combinations thereof.

19. A consumer product comprising an organic lightemitting device (OLED) comprising:

an anode;

a cathode; and

an organic layer disposed between the anode and the 65 cathode, wherein the organic layer comprises a compound of Formula $Ir(L_A)_x(L_C)_y$, wherein:

10

15

20

25

$$X^6 = X^5$$
 X^7
 X^4

$$X^8$$
 X^{1}
 X^{2}
 X^{3}
 X^{4}
 X^{5}

and ligand L_C has Formula II

$$\bigcap_{R^2} \mathbb{R}^1$$

wherein:

x is 1, 2, or 3;

y is 0, 1, or 2;

x+y=3;

 X^{1} - X^{8} are each independently C, N, or CR, and at least 30 claim 1. four of X^{1} - X^{8} are N;

252

the X^1 - X^4 that connects to ring A is C, and the X^1 - X^4 that coordinates to Ir is N;

the maximum number of N atoms that are bonded to one another within a ring is two;

ring A is an unsaturated 5-membered or 6-membered carbocyclic or heterocyclic ring;

R⁴ represents zero, mono, or up to the maximum number of allowed substitutions to its associated ring;

each R, R¹-R³, and R⁴ is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;

R¹ comprises at least two carbon atoms;

two substituents can be joined or fused together to form a ring.

wherein the ligand L_A coordinates to Ir to form a 5-membered chelate ring as indicated by the two dashed lines of the Formula I';

wherein at least one pair of substituents are joined or fused together to form a ring; and

with a proviso that if ring A is a 6-membered ring and two R^A are joined or fused to form a naphthalene that includes ring A, then said naphthalene is substituted.

20. A formulation comprising a compound according to laim 1

* * * * *