福建师范大学(公共课) 数信 学院

<u>2019</u> — <u>2020</u> 学年第<u>二</u>学期 <u>C</u>卷

专 业: 全校各专业 年 级: 2018 级等 课程名称: 线性代数 任课教师: 李德梅等 试卷类别: 开卷()闭卷(√) 考试用时: ____120 考试时间: 2020 年 点. 题号 四 六 三 Ŧī. 七 总分 狐 得分 1. 答案一律写在答题纸上, 否则无效. 2. 答题要写清题号, 不必抄原题. 须知 Œΰ 3. 考试结束, 试卷与答题纸一并提交. 一. 单项选择题(1~12 小题, 每小题 3 分, 共 36 分) 1. 设 A, B 为 n 阶方阵,且满足等式 AB = E ,则**必有**() 1111 A. A = E或B = E; B. BA = E; C. |A| = 1或|B| = 1; D. R(A) < n. 生专业 2. 设 $A \rightarrow m \times n$ 矩阵,若非齐次线性方程组 Ax = b 有解, 则必有 (江 A. R(A)=n; B. R(A) < R(A, b); C.R(A)=R(A,b);D. R(A) < n. 参系 3. 设 A, B 为 n 阶方阵,若 R(A)=3 且齐次线性方程组 Bx=0 只有零解,则 R(AB) = () A. 3; C. n-1; D. 0. B. *n*; **4.** 若向量 $b = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ 不能由向量组 $a_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, a_2 = \begin{pmatrix} 2 \\ 3 \\ a \end{pmatrix}, a_3 = \begin{pmatrix} 1 \\ a+2 \\ -2 \end{pmatrix}$ 线性表示,则 a = (A. -1: B.3: C.-1或3: D. 0.

A. $\alpha_1, \alpha_2, 2\alpha_1 - 3\alpha_2$; B. $\alpha_1 - 2\alpha_2, 2\alpha_2 - 3\alpha_3, 3\alpha_3 - \alpha_1$; C. $0, \alpha_1, \alpha_2$; D. $\alpha_1, \alpha_2, \alpha_1 - 3\alpha_2 + \alpha_3$. **6.** 已知四元非齐次线性方程组的系数矩阵的秩为**3**,若 η_1,η_2 是它的两个不同的解向量,则该 方程组的通解为(B. $k\eta_1 + (\eta_1 - \eta_2)$, k为任意数; A. $k_1\eta_1 + k_2\eta_2$, k_1,k_2 为任意数; C. $\eta_1 + k(\eta_2 - \eta_1)$, k为任意数; D. $2\eta_1 + k(\eta_2 - \eta_1)$, k为任意数 7. 设 $p = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 是矩阵 $A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & a & 1 \\ 3 & b & -1 \end{pmatrix}$ 的一个特征向量,则 a + b = () 8. 下列矩阵为正定矩阵的是(A. $\begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$; B. $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}$; C. $\begin{pmatrix} -1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$; D. $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. 9. 设 3 阶实对称矩阵 A 的全部特征值为 0, 2, 2, 则齐次线性方程组(A-2E)x=0 的基础解系 所含解向量的个数为(**10.** 设矩阵 $A = \begin{pmatrix} 3 & 2 & -1 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}$ 可对角化,则 a = () A. 0; B. 1; C. 2; D. 3. **11.** 设向量 $\alpha = (0,1,1)^T$, $\beta = (-2,\sqrt{2},\sqrt{2})^T$, 则向量 α 与向量 β 的夹角为(A. 0; B. $\frac{\pi}{4}$; C. $\frac{\pi}{2}$; D. $\frac{\pi}{2}$. **12.** 设 3 阶实对称矩阵 A 的全部特征值为-1,1,2,则实二次型 $f(x) = x^T Ax$ 的规范形可以是 () A. $y_1^2 + y_2^2 - y_3^2$; B. $y_1^2 - y_2^2 + 2y_3^2$; C. $y_1^2 - y_2^2 - y_3^2$; D. $-y_1^2 + y_2^2 + 2y_3^2$.

5. 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 是 R^3 的一个基,则下面向量组也是 R^3 的一个基的是(

- 二. 判断题 (1~12 小题,每小题 2 分,共 24 分)
- 1. 三阶行列式|E(2(-2))| = -2. ()
- 2. 设n阶方阵A和B都是不可逆矩阵,则矩阵A+B也一定是不可逆矩阵. ()
- 3. 设A为3阶方阵且|A|=2,则 $|-2A^{-1}|=-4$. ()
- 4. 非零向量组的最大无关组一定是唯一的.()

5. 三元二次型
$$f(x) = x^T \begin{pmatrix} 1 & -2 & 3 \\ 4 & -5 & 6 \\ -7 & 8 & 9 \end{pmatrix} x$$
 的矩阵是 $\begin{pmatrix} 1 & -2 & 3 \\ 4 & -5 & 6 \\ -7 & 8 & 9 \end{pmatrix}$. ()

- 6. 设n阶方阵A和B等价,则|A|=|B|. ()
- 7. 设矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\beta_1, \beta_2, \beta_3, \beta_4)$, 若 R(A) = R(B), 则向量组 $\alpha_1, \alpha_2, \alpha_3$ 与向量组 $\beta_1, \beta_2, \beta_3, \beta_4$ 等价. ()
- 8. 设矩阵 $A_{4\times 3}$ 的列向量组线性相关,则 R(A)=2. ()
- 9. 设向量组 $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (1,1,0)^T$, $\alpha_3 = (1,1,1)^T$, $\beta = (3,2,1)^T$, 则向量 β 可由向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,且表示式唯一. ()
- 10. 设n阶方阵A的列向量组是一个正交向量组,则矩阵A为正交矩阵.(
- 11. 设p为n阶方阵A对应于特征值 λ 的特征向量,则-2p为方阵A对应于特征值 -2λ 的特征向量.(
- 12. 设n阶方阵A和B相似,则方阵A和B相似于同一个对角矩阵. ()

以下题答题均要求写出证明过程或演算步骤.

三. (12 分) 问 a 取何值时,非齐次线性方程组 $\begin{cases} x_1 + 2x_2 & + x_3 = 1 \\ 2x_1 + 3x_2 + (a+2)x_3 = 3 有唯一解、无解或有 x_1 + ax_2 & -2x_3 = 0 \end{cases}$

无穷多解? 在有无穷多解时求出通解(**要求用其特解及对应的齐次线性方程组的基础解系表 示**). 四.(12 分) 设向量组 $\alpha_1 = (0,0,1)^T$, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (1,1,1)^T$ 和 $\beta_1 = (-1,2,2)^T$, $\beta_2 = (2,2,-1)^T$, $\beta_3 = (-2,1,-2)^T$ 是 3 维向量空间 R^3 的两个基.

- (1) 求基 β_1 , β_2 , β_3 到基 α_1 , α_2 , α_3 的过渡矩阵;
- (2) 设向量 γ 在基 α_1 , α_2 , α_3 中的坐标为 1,1,1,求向量 γ 在基 β_1 , β_2 , β_3 中的坐标.
- 五. (16 分) 设三元二次型 $f(x) = x_1^2 + x_2^2 + x_3^2 2x_1x_2 2x_1x_3 2x_2x_3$
 - (1) 写出二次型 f 的矩阵 A 并求矩阵 A 的全部特征值和特征向量;
 - (2) 求一个正交变换x = Py把二次型f(x)化为标准形,并写出相应的标准形;
 - (3) 证明: 实矩阵 A+2E 为正定矩阵.