Yelp Photo Classification

Group 4: Selvyn Perez, Ritika Agarwal, Tanaya Pole

Project Goal

- Yelp needs help identifying what labels images belong to
- Learn to use Convolutional Neural Networks
- Compare frameworks: PyTorch, Tensorflow, Keras

Dataset

- Yelp Open ended challenge
- 280,000 images
- JSON file with photo id and labels
- CSV file with photo id and 99 columns of data

- 1. Food
- 2. Drink
- 3. Inside
- 4. Outside
- 5. Menu

Data Preprocessing

- Downloaded yelp images and json data file
 - Mapped picture_ids to labels
- Resized images
 - o 32x32x3
- One hot encoded labels
- Split data using Scikit-Learn

Pytorch Library

- Open-source machine learning library for Python
- Based on Torch,
- Used for applications such as CNN and natural language processing.

PyTorch Implementation

- Stochastic Gradient Descent
 - SGD Optimizer
- Linear Transformation Layer
 - o nn.Linear
- Softmax Activation
 - o nn.Softmax

PyTorch

Accuracy: 0.76

Loss: 0.7141

Time: 424.4s

- Optimizer: sgd
- Learning rate: 0.0001
- Batch size: 100
- Epochs: 100
- No dropout layer

PyTorch

Accuracy: 0.81

Loss: 0.5483

Time: 639.1s

- Optimizer: sgd
- Learning rate: 0.0001
- Batch size: 10
- Epochs: 100
- No dropout layer

PyTorch

Accuracy: 0.65

Loss: 1.1605

Time: 529.4325

- Optimizer: sgd
- Learning rate: 0.0001
- Hidden layers: 2
- Batch size: 20
- Epochs: 100

Tensorflow

PARAMETERS ADJUSTED:

BATCH SIZE

LEARNING RATE

OPTIMIZER

NUMBER OF NEURONS

ADDED A LAYER

DROPOUT

WITH DROPOUT

ACCURACY: 0.86

LOSS: 0.103

WITHOUT DROPOUT:

ACCURACY:0.91

LOSS:0.048

TENSORBOARD

accuracy_summary

loss_summary

Keras

- open source neural network library that runs on top of Tensorflow
- Fastest and simplest

Keras Parameters

Accuracy: 0.8923

Loss: 0.3177

Time: 71.4s

- Optimizer: rmsprop
- Learning rate: 0.001
- Batch size: 100
- Epochs: 5
- No dropout layer

Keras - Tensorboard

acc

loss

Conclusion

- Keras and Tensorflow gave highest accuracy
- Keras has best computational efficiency
- Improvement
 - Can use more images to train
 - Test for more specific labels such as "hot dog or not"