ECON0057 Lecture 9 BHA meets DMP

Alan Olivi

UCL

2022

1/25

Standard Incomplete Markets Model vs DMP

- Bewley-Huggett-Aiyagari (BHA) model: consumers face idiosyncratic earnings risks, are risk-averse and can only insure partially-through saving-against these risks
- Risk plays a central role, as does the idea that poorer consumers are less well insured and thus more vulnerable to adverse outcomes
- In a typical BHA model, heterogeneity is driven by exogenous employment shocks
- DMP focuses on the determinants of aggregate and individual unemployment
- Challenge: DMP models generally rely on risk-neutral consumers
- Households face significant risks, but they do not suffer from these risks
 - \rightarrow asset positions do not influence how they are affected by/deal with these risks.

Alan Olivi (UCL) ECON0057 Lecture 9 2022 2/2

Why does it matter?

- Optimal level of government-provided unemployment insurance (UI)
- Trade-off between insurance and job creation
 - → high unemployment benefits provide better insurance for the unemployed
 - ightarrow hurts chances for reemployment since there is less job creation.
- BHA risk is exogenous optimal level of insurance is full insurance.
- In DMP, a higher UI raises wages lowers incentives for firms to open new vacancies
 - \rightarrow rise in unemployment
 - ightarrow Steady-state output in the DMP model is maximized when there is no UI at all.

Alan Olivi (UCL) ECON0057 Lecture 9 2022 3 /

Model Population, preferences and technology

- Time is discrete and infinite, mass 1 of households either employed or unemployed
- ullet Households are risk averse (concave utility u), discount factor eta and do not value leisure
- Each worker produces zF(k) with F() increasing, concave production function
 - \rightarrow z aggregate productivity, k capital stock used by the worker
- One firm for each "job", firm are symmetric and act competitively.
 - \rightarrow Because of symmetry, in equilibrium the same amount of k is used at each filled job.
- Vacant jobs and unemployed randomly matched each period according to matching function:

- Prob to fill vacancy: $\lambda_f = M(u, v)/v = M(1/\theta, 1) = q(\theta)$
- Prob to find job: $\lambda_w = M(u, v)/u = (v/u)M(u/v, 1) = \theta q(\theta)$
- ullet U-rate transition: $u'=(1-\lambda_w)u+s(1-u)$

◆□ > ◆□ > ◆ = > ◆ = → への

Alan Olivi (UCL) ECON0057 Lecture 9 2022 4/3

Asset structure

- No insurance markets for unemployment risk
- HHs can hold only two kinds of asset
 - \rightarrow capital k, used as an input for production
 - \rightarrow equity x, claim to the firm's profit, total amount of equity normalized to one
- No arbitrage between capital/equity gives:

$$p = \frac{d+p}{1+r_k-\delta}$$

d dividends, p price of equity, r_k return to capital, δ depreciation

- Capital and Equity are equivalent for households
 - ightarrow we do not have to keep track of the portfolio composition
- ullet As if households save in a single asset a with price $q=1/(1+r_k-\delta)$

Households

Value function of employed:

$$\tilde{W}(w,a) = \max_{a'} u(c) + \beta [sU(a') + (1-s)W(a')]$$

s.t.: $c + qa' = a + w$, with $a' \ge \underline{a}$

with $W(a) = \tilde{W}(\omega(a),a)$ and $w = \omega(a)$ resulting from Nash bargaining

Policy function:

$$a' = \tilde{\Psi}_e(w, a) = \tilde{\Psi}_e(\omega(a), a) = \Psi_e(a)$$

Value function of unemployed:

$$U(a) = \max_{a'} u(c) + \beta [(1 - \lambda_w)U(a') + \lambda_w W(a')]$$
 s.t.: $c + qa' = a + h$, with $a' \ge \underline{a}$

Policy function:

$$a'=\Psi_u(a)$$

Alan Olivi (UCL)

Firms

- Firms create jobs, rent capital from consumers, and produce
- \bullet To create a job, a firm first posts a vacancy. Cost of posting a vacancy denoted by ξ

Value of posting a vacancy, V:

$$V = -\xi + q \left[\ (1 - \lambda_f) V + \lambda_f \int J(\Psi_u(a)) rac{f_u(a)}{u} da
ight]$$

In equilibrium, firms post new vacancies until V=0

Value of a filled job, given wage w

$$ilde{J}(w,a) = extit{max}_k extit{z} F(k) - extit{r}_k k - w + q \left[extit{s}V + (1-s) ilde{J}(ilde{\Psi}_e(w,a))
ight]$$

- With prob. 1-s, firm still matched with worker, whose next period asset level depends on a $\to J$ depends on a, $J(a):=\tilde{J}(\omega(a),a)$
- First-order condition implies that $r_k = zF'(k)$

(ロ) (型) (型) (型) (型) (型) (の)

Alan Olivi (UCL) ECON0057 Lecture 9 2022 7/25

Wage determination

- Wages are set period by period
- (Generalized) Nash bargaining (with $\gamma \in (0,1)$ the bargaining power of the worker):

$$\max_{w} (\tilde{W}(w,a) - U(a))^{\gamma} (\tilde{J}(w,a) - V)^{1-\gamma}$$

- Denote the solution $w = \omega(a)$
- ullet Future wages are at their equilibrium level $\omega(a)$ during bargaining for the current wage
- ullet Dependence of w on a stems from $ilde{W}(w,a)-U(a)$ depending on a

Computation

- Functional fixed-point problem instead of one-dimensional fixed-point problem in the interest rate in Aiyagari
- ullet HHs need to know the entire wage function $\omega(a)$
- Fixed point problem in $\omega(a), r_k, \theta$

Algorithm

- **①** Guess on $\omega(a)$, along with r and θ
- ② Use M(u, v) and θ to compute λ_w
- Solve HH problem given prices and transition prob.
- Monte-carlo simulation of HHs to obtain distribution
- Do VFI on firm value functions
- Given all value functions, perform Nash bargaining
- ullet This gives you update of $\omega(a)$ (from 6), capital stock (from 4), and θ (from 5)
- Iterate on 1-6 until convergence in $\omega(\mathbf{a}), r, \theta$

Calibration

- Period: 6 weeks
- $\alpha=0.3$, $\delta=0.01$ and $\beta=0.995$ to match: capital share of 0.3, investment-output ratio of 0.2, annual return on capital of 0.04
- $\underline{a} = 0$
- u(c) = log(c)
- DMP: Either Shimer (2005) or Hagedorn & Manovskii (2008) calibration
 - Shimer (2005): household production parameter h is 40% of the wage, $\gamma=0.72$
 - ullet Hagedorn& Manovskii (2008) household production parameter h is 96% of the wage, $\gamma=0.052$

Equilibrium Wage Function

12 / 25

Welfare effects of UI

- Assume that UI is financed using taxes that are proportional to wages
- No home production here so all the income for the unemployed comes from the UI
- Budget constraints become:

$$c + qa' = a + (1 - \tau)w$$
 and $c + qa' = a + (1 - \tau)h$

• For a given h, the government sets τ to balance its period-by-period budget constraint:

$$au\int\omega(\mathsf{a})f_{\mathsf{e}}(\mathsf{a})\mathsf{d}\mathsf{a}=(1- au)\mathsf{u}\mathsf{h}$$

Wages, capital/labour ratio, the unemployment rate as a function of h

Effects on quantities

- A higher h increases relative value of the outside option workers and increases the wage
- This reduces the firm's incentive to post vacancies, and hence unemployment rises
- Improvement in insurance also reduces the capital-labour ratio
- Steady-state output is the highest with zero (or even negative) UI

Welfare

- Compare steady states with different levels of UI
- high UI levels are associated with low long-run levels of capital
 - ightarrow average utility across steady states will not do justice to UI
- Imagine moving each of the HHs in the benchmark economy, along with her employment status and asset holdings, into each of the other SS and then comparing utilities
- Consider an unemployed consumer moves to a high UI economy
 - ightarrow she will benefit in the short run from higher income
 - ightarrow but she will also suffer in the future from having a lower wage when employed
- Welfare measure (consumption equivalents):

$$E_0[\sum_{t=0}^{\infty} \beta^t \log((1+\lambda(a,w))c_t)] = E_0[\sum_{t=0}^{\infty} \beta^t \log(\tilde{c}_t)]$$

 c_t is consumption under the benchmark case and $ilde{c}_t$ is consumption under a different h

 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 2
 2 ○ ○

 Alan Olivi (UCL)
 ECON0057 Lecture 9
 2022
 16/25

Average values of $\lambda(a, w)$

Average values of λ , compared with the benchmark of h=0.99

h from 0.99 to	Total (%)	Unemployed (%)	Employed (%)	% gaining	Poorest unemployed (%)	Poorest employed (%)
0.01	0.11	-0.09	0.13	92.10	-4.0	-1.0
0.25	0.12	-0.02	0.14	92.29	-1.2	-0.3
0.50	0.11	0.01	0.12	99.22	-0.54	-0.09
0.75	0.07	0.02	0.07	99.96	-0.2	0.00
1	0	0	0	0	0	0
1.25	-0.14	-0.09	-0.15	0.00	0.06	-0.1
1.50	-0.38	-0.27	-0.39	0.00	-0.04	-0.32

Alan Olivi (UCL) ECON0057 Lecture 9 2022 17 / 25

 $\lambda(a, w)$ for $\{e, ue\} \times \{a = 0, a > 0\}$

18 / 25

Welfare

- Almost everyone gains from lowering h to 0.75
 except the poorest unemployed workers who are constrained
- h that maximizes the average gain is about 0.30
- Lower h has three effects:
 - $1 \ \ \text{profitability of a match increases, induces more vacancy posting and reduces unemployment}$
 - 2 (before-tax) wage rate declines because of Nash bargaining
 - 3 less insurance for unemployed workers

Welfare counterfactuals - BHA economy

- Assume that the employment process is exogenously given job-finding rate at fixed 0.6, separation rate at 0.05
- Unemployment rate is fixed at 7.69% regardless of the value of h
- Welfare is monotonically increasing in h for the unemployed in that economy
- The employed experience very small welfare changes
- Perfect insurance (w = h) achieves a Pareto efficient outcome
- Because the employment process is given exogenously, UI and taxes are non- distortionary

Productivity and labour-market outcomes

- How large are fluctuations in θ in response to z shocks?
- Does adding precautionary motivs change the results of Shimer (2005)?
- Interaction of curvature in the wage function/distribution of HHs might affect vacancy creation
- Consider a 2% deviation in aggregate productivity (permanent)

Productivity with Shimer calibration

	u (%)	ν	θ	\overline{k}	p	d	w
z = 0.98 $z = 1.02$	7.79 7.60	-3.6 +3.6	$-4.8 \\ +4.9$	-3.0 +3.0	$-3.9 \\ +3.4$	-3.9 +3.4	-2.8 +2.9

Alan Olivi (UCL) ECON0057 Lecture 9 2022 22 / 25

Productivity with HM calibration

	и (%)	ν	θ	\overline{k}	p	d	w
z = 0.98 $z = 1.02$	16.09 6.23	$-21.3 \\ +21.6$	-61.8 +52.4	-11.6 +4.6	-21.4 +21.5	-21.4 +21.5	-2.2 + 1.9

- \bullet Firm profits change more with z, leading to a larger change in θ and v, resulting in a large response in u
- ullet When u changes substantially, the marginal product of capital changes and, as a result, k also changes

Alan Olivi (UCL) ECON0057 Lecture 9 2022 23 /

Productivity with Shimer vs HM vs Linear Model

		у	u (%)	v	θ	\overline{k}
Shimer calibration	z = 0.98-linear z = 0.98-incomplete	-2.94 -2.94	7.79 7.79	-3.6 -3.6	-4.8 -4.8	-3.0 -3.0
	z = 0.98-incomplete z = 1.02-linear z = 1.02-incomplete	+2.97 +2.97	7.60 7.60	+3.6 +3.6	+4.9 +4.9	+3.0 +3.0
HM calibration	z = 0.98-linear z = 0.98-incomplete z = 1.02-linear z = 1.02-incomplete	-11.2 -11.2 +4.0 +4.0	16.10 16.10 6.23 6.23	-21.4 -21.3 $+21.5$ $+21.6$	-62.0 -61.8 $+52.4$ $+52.4$	-11.6 -11.6 $+4.6$ $+4.6$

Productivity and labour-market outcomes

- Linear model is very similar to the incomplete-markets model with log utility
- Robust to more curvature in utility and higher wealth inequality
- Intuition:
 - ullet With Nash bargaining, the wage function moves with z in a parallel manner
 - ullet Thus the impact of z on a firm's profit is uniform across different matches