Unsupervised Learning: Model Selection and Evaluation

CS-534

Selecting k: A Model Selection Problem

- Each choice of k corresponds to a different statistical model for the data
- Model selection searches for a model (a choice of k) that gives us the best fit of the training data
 - Penalty method
 - Cross-validation method
 - Model selection methods can also be used to make other model decisions such as choosing among different ways of constraining $\boldsymbol{\Sigma}$

Selecting k: heuristic approaches

- For kmeans, plot the sum of squared error for different k values
 - SSE will monotonically decrease as we increase k
 - The knee points on the curve suggest good candidates for k

Selecting k: heuristic approaches

- For kmeans, plot the sum of squared error for different k values
 - SSE will monotonically decrease as we increase k
 - The knee points on the curve suggest good candidates for k
- Spectral clustering
 - Find the k that maximizes the eigen-gap

Penalty Method: Bayesian Information Criterion

- Based on Bayesian Model Selection
 - Determine the range of k values to consider $1 \le k \le K_{max}$
 - Apply EM to learn a maximum likelihood fitting of the Gaussian mixture model for each possible value of k
 - Choose k that maximizes BIC # of data points $2l_{\mathcal{M}}(x,\hat{\theta}) m_{\mathcal{M}}\log(n) \equiv \text{BIC}$ Loglikelihood of the resulting Gaussian Mixture Model # of parameters to be estimated in M
 - Given two estimated models, the model with higher BIC is preferred
 - Larger k increases the likelihood, but will also cause the second term to increase
 - Often observed to be biased toward less complex model
 - Similar method: ${\rm AIC}=2l_m-2m_M$, which penalize complex model less severely

Cross-validation Likelihood

(Smyth 1998)

- The likelihood of the training data will always increase as we increase k – more flexibility leads to better fitting of the data
- So we cannot use training data likelihood to perform model selection
- How about the likelihood on unseen data?
 - For each possible choice of k
 - Randomly split the data into training and test set
 - Learn the GMM model using the training data and compute the loglikelihood on test data
 - Repeat this multiple times to get a stable estimate of the test loglikelihood
 - Select k that maximizes the test log-likelihood

Stability based method

- Stability: repeatedly produce similar clusterings on data originating from the same source.
- High level of agreement among a set of clusterings ⇒
 the clustering model (k) is appropriate for the data
- Evaluate multiple models, and select the model resulting in the highest level of stability.

Assessing Stability

- Based on resampling (Levine & Domany, 2001)
- For each k
 - 1. Generate clusterings on random samplings of the original data
 - 2. Compute pairwise similarity between each pair of clusterings
 - 3. Stability(k) = mean pairwise similarity.
- Select k that maximize stability
- Based on prediction accuracy (Tibshirani et al., 2001)
- For each k
 - 1. Randomly split data into training and testing
 - 2. For each split
 - cluster the training data using k
 - Predict assignment for test set and compare it to the clustering result on test set
 - Stability(k) = mean Prediction strength
- Select k that maximize stability

How to Evaluate Clustering?

- By user interpretation
 - does a document cluster seem to correspond to a specific topic?
- Internal criterion a good clustering will produce high quality clusters:
 - high intra-cluster similarity
 - low inter-cluster similarity

 The measured quality of a clustering depends on both the object representation and the similarity measure used

External indexes

If true class labels (*ground truth*) are known, the validity of a clustering can be verified by comparing the class labels and clustering labels.

 n_{ij} = number of objects in class i and cluster j

Rand Index and Normalized Rand Index

- Given partition (*P*) and ground truth (*G*), measure the number of vector pairs that are:
 - a: in the same class both in P and G.
 - b: in the same class in P, but different classes in G.
 - c: in different classes in P, but in the same class in G.
 - d: in different classes both in P and G.

$$R = \frac{a+d}{a+b+c+d}$$

- Adjusted rand index: corrected-for-chance version of rand index
 - Compare to the expectation of the index assuming a random partition of the same cluster sizes

$$ARI = \frac{Index - ExpectedR}{MaxIndex - ExpectedR} = \frac{\sum_{i,j} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{n_{i}}{2} \sum_{j} \binom{n_{j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{n_{i}}{2} + \sum_{j} \binom{n_{j}}{2}\right] - \left[\sum_{i} \binom{n_{i}}{2} \sum_{j} \binom{n_{j}}{2}\right] / \binom{n}{2}}$$

Purity and Normalized Mutual Information

Purity

▶ Figure 16.1 Purity as an external evaluation criterion for cluster quality. Majority class and number of members of the majority class for the three clusters are: x, 5 (cluster 1); o, 4 (cluster 2); and \diamond , 3 (cluster 3). Purity is $(1/17) \times (5+4+3) \approx 0.71$.

Normalized Mutual Information

Mutual info: cla1 cla2 cla3
$$I(Class, Clust) = H(Class) - H(Class|Clust)$$

$$50 \quad 50 \quad 50$$

$$40 \quad 8 \quad 10 \quad 6 \quad 30 \quad 15$$

$$4 \quad 12 \quad 25$$

$$Cluster 1 \quad Cluster 2 \quad Cluster 3$$

$$I(Class, Clust) = H(Class) - H(Class|Clust)$$

$$NMI = \frac{2I(Class, Clust)}{H(Clust) + H(Class)}$$