Lezione 15

Alessandro Ardizzoni

Identità di Bézout

C'è una formula che lega due numeri al loro massimo comun divisore.

Teorema (Identità di Bézout)

Siamo $a, b \in \mathbb{Z}$. Allora esistono $m, n \in \mathbb{Z}$ tali che

$$MCD(a, b) = m \cdot a + n \cdot b.$$

DIMOSTRAZIONE. Se b = 0, allora

$$MCD(a, b) = MCD(a, 0) = |a| = \pm 1 \cdot a + 0 \cdot b.$$

Se $b \neq 0$, guardiamo ai vari passi dell'algoritmo a ritroso e ricaviamo ogni resto in funzione dei resti che lo precedono eliminando dopo ogni passo i resti con pedice maggiore.

Esplicitamente, se i passi dell'algoritmo sono

Passo	divisione
0)	$a = q_0 b + r_0$
1)	$b = q_1 r_0 + r_1$
2)	$r_0=q_2r_1+r_2$
• • •	
n)	$r_{n-2} = q_n r_{n-1} + \boxed{r_n}$
n+1)	$r_{n-1}=q_{n+1}r_n+\overline{0}$

partendo dall'ultimo resto non nullo, che è proprio MCD(a, b), scriveremo

$$MCD(a,b) = r_{n} \stackrel{n}{=} r_{n-2} - q_{n}r_{n-1} \stackrel{n-1}{=} r_{n-2} - q_{n}(r_{n-3} - q_{n-1}r_{n-2})$$

$$= r_{n-2} - q_{n}r_{n-3} + q_{n}q_{n-1}r_{n-2} = -q_{n}r_{n-3} + (1 + q_{n}q_{n-1})r_{n-2}$$

$$\stackrel{n-2}{=} (\cdots)r_{n-4} + (\cdots)r_{n-3} = \cdots = (\cdots)a + (\cdots)b.$$

Alla fine scompaiono tutti i resti e compaiono a e b.

Osservazione

I numeri m e n coinvolti nell'identità di Bézout non sono necessariamente unici. Ad esempio: $1 \cdot \underline{3} + (-1) \cdot \underline{2} = \text{MCD}(3,2) = (-1) \cdot \underline{3} + 2 \cdot \underline{2}$.

Vediamo il procedimento concretamente in un esercizio.

Esercizio

Determinare l'identità di Bézout per i numeri 98 e 77.

SOLUZIONE. Prima applichiamo l'algoritmo Euclideo:

- 0) 98 = 1.77 + 21
- 1) $77 = 3 \cdot 21 + 14$
- $2) \quad \underline{21} = 1 \cdot \underline{14} + \underline{7}$
- 3) $14 = 2 \cdot 7 + 0$.

dove abbiamo sottolineato dividendo, divisore e resto.

Sappiamo che il massimo comun divisore è l'ultimo resto non nullo trovato, cioé MCD(98,77) = 7.

Ora ricaviamo a ritroso l'identità di Bézout:

$$MCD(98,77) = 7 \stackrel{2)}{=} \underline{21} - 1 \cdot \underline{14} \stackrel{1)}{=} \underline{21} - 1 \cdot (\underline{77} - 3 \cdot \underline{21}) = \underline{21} - \underline{77} + 3 \cdot \underline{21}$$

$$= 4 \cdot 21 - 77 \stackrel{0)}{=} 4 \cdot (98 - 1 \cdot 77) - 77 = 4 \cdot 98 - 4 \cdot 77 - 77 = 4 \cdot 98 - 5 \cdot 77.$$

Pertanto l'identità di Bézout è $MCD(98,77) = 4 \cdot 98 - 5 \cdot 77$.

Determinare l'identità di Bézout per i numeri -98 e 77.

<u>SOLUZIONE</u>. Sappiamo che MCD(-98,77) = MCD(98,77). Ora, nell'esercizio precedente, abbiamo ottenuto che MCD(98,77) = $4 \cdot \underline{98} - 5 \cdot \underline{77}$. Volendo un'espressione del tipo MCD(-98,77) = $m \cdot (-\underline{98}) + n \cdot \underline{77}$, ci basta allora scegliere m=-4 ed n=-5.

Questo ci dice che possiamo ricavare l'identità di Bézout a partire da quella degli stessi due numeri presi in valore assoluto.

Lemma (di Euclide)

 $\forall a, b, c \in \mathbb{Z}$, se MCD(a, b) = 1 allora $a \mid bc \Rightarrow a \mid c$.

<u>DIMOSTRAZIONE</u>. Per l'identità di Bézout esistono m, n tali che 1 = ma + nb. Moltiplicando per c otteniamo c = mac + nbc. Visto che i due addendi sono divisibili per a, lo è anche la loro somma, cioé c.

Funzione di Eulero

Due numeri naturali a, b si dicono coprimi se MCD(a, b) = 1.

Definizione

Definiamo la funzione di Eulero

$$\varphi: \mathbb{N} \setminus \{0\} \to \mathbb{N}$$

ponendo

$$\varphi(n) = \emptyset \{ k \in \mathbb{Z} \mid 1 \le k \le n \land MCD(k, n) = 1 \} \emptyset.$$

Osservazione

Notiamo che, se $n \neq 1$, nella definizione di $\varphi(n)$ potevamo mettere equivalentemente $1 \leq k \leq n-1$ oppure $0 \leq k \leq n$ perché $\mathrm{MCD}(n,n) = n \neq 1$ e $\mathrm{MCD}(0,n) = n \neq 1$.

o cardinalità 4

Esempio

Vediamo ad esempio per $1 \le n \le 6$ quali sono i k con $1 \le k \le n$ per cui MCD(k, n) = 1. Li evidenziamo con un riquadro.

n	$k \text{ con } 1 \leq k \leq n$	$\varphi(n)$
1	1	1
2	1 2	1
3	1 2 3	2
4	1 2 3 4	2
5	1 2 3 4 5	4
6	1 2 3 4 5 6	2

Osservazione

Se p è primo allora MCD(k,p) = 1 per ogni k con $1 \le k \le p-1$ e dunque $\varphi(p) = p-1$.

Indichiamo con \mathbb{Z}_n^{\times} l'insieme degli elementi invertibili nel monoide (\mathbb{Z}_n,\cdot) .

Proposizione

Sia $n \in \mathbb{N} \setminus \{0\}$. Si ha che $\mathbb{Z}_n^{\times} = \{\overline{k} \in \mathbb{Z}_n \mid \mathrm{MCD}(k,n) = 1\}$.

Corollario

$$|\mathbb{Z}_n^{\times}| = \varphi(n).$$

DIMOSTRAZIONE. Abbiamo che

$$\begin{split} |\mathbb{Z}_n^{\times}| &= |\{\overline{k} \in \mathbb{Z}_n \mid \mathrm{MCD}(k, n) = 1\}| \\ &= |\{\overline{k} \in \{\overline{1}, \overline{2}, \dots, \overline{n}\} \mid \mathrm{MCD}(k, n) = 1\}| \\ &= |\{k \in \mathbb{Z} \mid 1 \le k \le n \land \mathrm{MCD}(k, n) = 1\}| = \varphi(n). \end{split}$$

A. Ardizzoni

Esempio

 $\mathbb{Z}_6^\times = \{\overline{k} \in \mathbb{Z}_6 \mid MCD(k,6) = 1\} = \{ \overline{\emptyset}, \ \overline{1}, \ \overline{2}, \ \overline{3}, \ \overline{4}, \ \overline{5} \} = \{\overline{1}, \overline{5}\}.$ In effetti $\overline{1} \cdot \overline{1} = \overline{1}$ e $\overline{5} \cdot \overline{5} = \overline{1}$ e dunque $\overline{1}$ e $\overline{5}$ sono inversi di sé stessi.

Esercizio

Stabilire se $\overline{2}$ è invertibile in \mathbb{Z}_{15} e, nel caso, calcolarne l'inverso.

Soluzione

 $\mathrm{MCD}(2,15)=1$. Quindi $\overline{2}$ è invertibile. Per individuare l'inverso scriviamo l'identità di Bézout. In questo caso si vede ad occhio che $2\cdot(8)+15\cdot(-1)=1$. Modulo 15 questa uguaglianza diventa $\overline{2}\cdot\overline{8}=\overline{1}$ e quindi $(\overline{2})^{-1}=\overline{8}$. Possiamo fare una piccola verifica per controllare l'esattezza del risultato ottenuto: $\overline{2}\cdot\overline{8}=\overline{16}=\overline{1+15}=\overline{1}$.

A. Ardizzoni Algebra 1 9 / 18

Equazione diofantea lineare

Un'equazione diofantea è un'equazione in una o più incognite con coefficienti interi di cui si ricercano le soluzioni intere. Consideriamo il seguente caso particolare. Una soluzione in $\mathbb Z$ dell'equazione

$$ax + by = c,$$
 $a, b, c \in \mathbb{Z}$

è una coppia $(m,n) \in \mathbb{Z} \times \mathbb{Z}$ tale che am + bn = c. Risolvere l'equazione in \mathbb{Z} significa trovare tutte le sue soluzioni in \mathbb{Z} .

Lemma (Criterio di risolubilità)

L'equazione diofantea ax + by = c ha soluzione $\Leftrightarrow MCD(a, b) \mid c$.

<u>DIMOSTRAZIONE</u>. (\Rightarrow). Se $\exists (m,n) \in \mathbb{Z} \times \mathbb{Z}$ tale che am + bn = c, allora $MCD(a,b) \mid am + bn = c$.

 (\Leftarrow) . Poniamo d := MCD(a, b). Se $d \mid c$ allora d divide a, b, c.

Se d=0, allora a=b=c=0 e (0,0) è una soluzione banale.

Vediamo cosa succede se $d \neq 0$.

Se $d \neq 0$, possiamo dividere per d ottenendo un'equazione equivalente (che ha cioé le stesse soluzioni):

$$ax + by = c \Leftrightarrow \underbrace{\frac{a}{d}}_{a'} x + \underbrace{\frac{b}{d}}_{b'} y = \underbrace{\frac{c}{d}}_{c'}.$$

Notiamo che

$$MCD(a',b') = MCD\left(\frac{a}{d},\frac{b}{d}\right) = \frac{MCD(a,b)}{d} = \frac{d}{d} = 1.$$

Per l'identità di Bézout, esistono $m,n\in\mathbb{Z}$ tali che

$$a'm + b'n = MCD(a', b') = 1.$$

Moltiplicando per c' otteniamo a'mc' + b'nc' = c'. Quindi $(mc', nc') \in \mathbb{Z} \times \mathbb{Z}$ è una soluzione dell'equazione a'x + b'y = c' e dunque anche di ax + by = c che è ad essa equivalente.

A partire da una singola soluzione possiamo ricavare tutte le altre:

Teorema

Consideriamo l'equazione diofantea ax + by = c con $a, b, c \in \mathbb{Z}$. Se MCD(a,b) = 1, le sue soluzioni sono le coppie $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ della forma

$$x = x_0 + kb,$$
 $y = y_0 - ka,$ $k \in \mathbb{Z}.$ (1)

dove $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ è una soluzione particolare derivante dall'identità di Bézout.

<u>DIMOSTRAZIONE</u>. Dal lemma precedente, sappiamo che ax + by = c ha soluzioni perché $\mathrm{MCD}(a,b) = 1 \mid c$. Tramite l'identità di Bézout possiamo quindi ricavare una soluzione particolare (x_0,y_0) .

Sostituendo, si vede subito che (1) è una soluzione:

$$a(x_0 + kb) + b(y_0 - ka) = ax_0 + kab + by_0 - kab = ax_0 + by_0 = c.$$

Vediamo che sono tutte fatte così.

Se $(x_1, y_1) \in \mathbb{Z} \times \mathbb{Z}$ è una soluzione, allora $ax_1 + by_1 = c = ax_0 + by_0$. Pertanto

$$a(x_1 - x_0) = b(y_0 - y_1). (2)$$

Siccome MCD(a, b) = 1, allora $a \in b$ non sono entrambi nulli (perché MCD(0,0) = 0): possiamo assumere $a \neq 0$ (se $b \neq 0$ si procede analogamente).

Poiché $a \mid b(y_0 - y_1)$ e MCD(a, b) = 1, dal Lemma di Euclide deduciamo $a \mid (y_0 - y_1)$. Quindi esiste $k \in \mathbb{Z}$ tale che $y_0 - y_1 = ka$ cioé

$$y_1 = y_0 - ka$$
.

Sostituendo in (2), otteniamo $a(x_1 - x_0) = bka$. Siccome $a \neq 0$, possiamo semplificare arrivando a $x_1 - x_0 = bk$. In definitiva

$$x_1 = x_0 + kb$$

A. Ardizzoni Algebra 1 13/18

Risolvere in \mathbb{Z} , se possibile, l'equazione 12x + 39y = 15.

<u>SOLUZIONE</u>. Notiamo prima di tutto che $MCD(12,39)=3\mid 15$. Quindi l'equazione si può risolvere. Dividiamo l'equazione per 3 ottenendo l'equazione equivalente

$$4x + 13y = 5$$

Visto che MCD(4,13) = 1 questa equazione si può risolvere per il teorema precedente. Troviamo una soluzione particolare attraverso l'identità di Bézout $1=m\cdot 4+n\cdot 13$ che possiamo ricavare con il metodo che abbiamo visto oppure ad occhio notando che m=-3 e n=1 funzionano. Se moltiplichiamo entrambi i lati per 5 otteniamo $5=(5m)\cdot 4+(5n)\cdot 13$ cioé

$$(-15) \cdot 4 + (5) \cdot 13 = 5.$$

Quindi una soluzione particolare di 4x + 13y = 5 è $(x_0, y_0) = (-15, 5)$. Il teorema ci dice che tutte le soluzioni sono (dove a = 4 e b = 13):

$$x = x_0 + kb = -15 + k13, \qquad y = y_0 - ka = 5 - k4, \qquad k \in \mathbb{Z}.$$
 cioé $x = -15 + 13k$ e $y = 5 - 4k$ al variare di $k \in \mathbb{Z}.$

A. Ardizzoni Algebra 1 14/18

Esercizio (Indovinello delle taniche e dei galloni di Die Hard)

Abbiamo una tanica da 5 galloni, una da 3 galloni ed una fontana. E' possibile riempire la prima tanica con esattamente 4 galloni? NB: 1 gallone americano = 3,785411784 litri.

Soluzione

Indichiamo con

- x il numero di volte in cui riempiamo la tanica da 5 galloni (da vuota),
- y il numero di volte in cui riempiamo la tanica da 3 galloni (da vuota).

Si tratta allora di risolvere l'equazione 5x+3y=4. Visto che MCD(5,3)=1, l'equazione si può risolvere. Dobbiamo ricavare l'identità di Bézout $1=m\cdot 5+n\cdot 3$. Ad occhio si vede che m=-1, n=2 funziona. Moltiplicando per 4 otteniamo $4=4m\cdot 5+4n\cdot 3$ e quindi una soluzione particolare è $(x_0,y_0)=(4m,4n)=(-4,8)$. Il teorema ci dice che le soluzioni possibili sono $x=x_0+kb, y=y_0-ka, k\in \mathbb{Z}$ cioè

$$x = -4 + 3k$$
, $y = 8 - 5k$, $k \in \mathbb{Z}$.

A. Ardizzoni Algebra 1 15 / 18

Un contadino vuole comprare degli animali per un totale di \in 50. Se gli animali sono conigli e galline per un costo rispettivo di \in 20 e \in 6, quanti di ogni tipo potrà acquistarne?

<u>SOLUZIONE</u>. Sia x il numero di conigli e y il numero di galline. Dobbiamo allora risolvere l'equazione 20x+6y=50. Dato che $MCD(20,6)=2\mid 50$, questa ha soluzioni in $\mathbb{Z}\times\mathbb{Z}$. Semplificando otteniamo 10x+3y=25. Scriviamo l'identità di Bézout 10m+3n=1. Ad occhio m=1, n=-3 funzionano. Moltiplicando per 25 otteniamo 10(25m)+3(25n)=25 e quindi una soluzione particolare è $(x_0,y_0)=(25m,25n)=(25,-75)$. Le altre soluzioni sono $x=x_0+kb,y=y_0-ka,\ k\in\mathbb{Z}$ cioè

$$x = 25 + 3k$$
, $y = -75 - 10k$, $k \in \mathbb{Z}$.

Notiamo però che x ed y sono numeri di animali e quindi si dovrà avere $x \ge 0 \ \land \ y \ge 0$ cioé $25 + 3k \ge 0 \ \land \ -75 - 10k \ge 0$ cioé $\frac{-25}{3} \le k \le \frac{-75}{10}$. Dato che $\frac{-25}{3} \approx -8,3$, $\frac{-75}{10} = -7,5$ e $k \in \mathbb{Z}$, l'unico possibile valore di k è -8. Pertanto otteniamo $x = 25 + 3 \cdot (-8) = \boxed{1}$ e $y = -75 - 10 \cdot (-8) = \boxed{5}$.

A. Ardizzoni Algebra 1 16 / 18

In quanti modi un cassiere potrà dare \in 300 ad un cliente utilizzando solo banconote da 20 e 50 \in ? Quale sarà il numero minimo di banconote che potrà utilizzare?

<u>SOLUZIONE</u>. Indichiamo con x il numero di banconote da €20 e con y il numero di banconote da €50. Dobbiamo risolvere l'equazione 20x+50y=300. Dato che $MCD(20,50)=10 \mid 300$, questa ha soluzioni in $\mathbb{Z} \times \mathbb{Z}$. Semplificando otteniamo 2x+5y=30. L'identità di Bézout si vede ad occhio: $2 \cdot (-2) + 5 \cdot 1 = 1$. Moltiplicando per 30 otteniamo $2 \cdot (-60) + 5 \cdot 30 = 30$ e da cui la soluzione particolare $(x_0, y_0) = (-60, 30)$. Le soluzioni possibili sono dunque $x = x_0 + kb, y = y_0 - ka, k \in \mathbb{Z}$ cioè

$$x = -60 + 5k$$
, $y = 30 - 2k$, $k \in \mathbb{Z}$.

Essendo x ed y dei numeri di banconote, si avrà $x \ge 0 \land y \ge 0$ cioé $-60+5k \ge 0 \land 30-2k \ge 0$ cioé $\frac{60}{5} \le k \le \frac{30}{2}$ vale a dire $12 \le k \le 15$. Dato che $k \in \mathbb{Z}$, i possibili valori di k sono 12,13,14,15. Le corrispondenti soluzioni sono: (x,y)=(0,6),(5,4),(10,2),(15,0). Pertanto il cassiere potrà consegnare le banconote in 4 modi.

A. Ardizzoni Algebra 1 17 / 18

Il numero totale di banconote utilizzate è

$$x + y = (-60 + 5k) + (30 - 2k) = -30 + 3k$$

che assume valore minimo quando k ha il minimo valore consentito, cioé per k = 12, nel qual caso x + y = 6.

Esercizio (per casa)

Risolvere in \mathbb{Z} , se possibile, le equazioni

- 15x + 20y = 35.
- 215x + 21y = 35.

Esercizio (per casa)

In quanti modi è possibile ottenere un sacchetto del peso di 117 grammi, usando biglie da 27 e 21 grammi?

Qual'è il minimo ed il massimo numero di biglie utilizzabili?