Electromagnetismo 1: Tarea 4 Tomas Basile Alvarez Se tiere un campo déctrico définido como É = Kr3 à l'esféricas) al Encuentra la densidad de carga p b) (alcular la caga total en una estera de cadin R, centrador en el origen. En coordenadas esféricas, la divergencia de una función $\vec{E} = \vec{E}_r \hat{r} + \vec{E}_\theta \hat{\theta}^{\dagger} + \vec{E}_{\varphi} \hat{\phi}^{\dagger}$ es: $\vec{\nabla}_r \vec{E} = \frac{1}{r^2} \frac{\partial (r^2 \vec{E}_r)}{\partial r} + \frac{1}{r \sec \theta} \frac{\partial (\vec{E}_{\theta} \sec \theta)}{\partial \theta} + \frac{1}{r \sec \theta} \frac{\partial \vec{E}_{\theta}}{\partial \phi}$ Por la ley de Gauss en forme diferencial: V. Em= P(F) En este caso: $E_r = Kr^3$, $E_\theta = 0$, $E_\phi = 0$ $\neg \nabla \cdot E = \frac{1}{L^2} \frac{\partial (L_s(K_s))}{\partial L} = \frac{1}{L^2} \frac{\partial (K_{L_s})}{\partial L} = \frac{1}{L^2} \left(2K_{L_s} \right) = \frac{2K_{L_s}}{L^2}$ Por la ley de Gauss diferential -> pri) = 5 KEO r2

6) Para calcular la carga total en la estera de radio R hay que smor todos los differenciales de carga da = pdV

2, Cavidados estéricas hueras de radios a y b en una estera condutora huera de radio R En el centro se hallan cargos fa y 96

e) Proponemos de superficie Gaussiana una estara contrada en que pero un poro más grande que la cavidad.

El flujo por esta esta esta es o ya que su superficie

 $\not\in$ encuertra dentro del conductor (don de $\vec{E} = \vec{o}$)

is por leg de Gauss: $\frac{4in}{6} = \int_{0}^{\infty} E \cdot dA = 0$ -9 = 0

Pero qin = qa + q (con q la corga en la superficie de la cavidad del conductor) -> q = - qa

 $\int_{A} = \frac{q}{4\pi a^{2}} = \frac{q}{4\pi a^{2}}$

Para f_b el catoramiento es exactamente i gual $G_b = -\frac{q}{2}$

Una corga - que no la superficie de la cavidad a y - que en la superficie de b. Esto implica que tier que haber una corga que que corga total = 0) y ésta no le queda de stra que acomodarse en la superficie del conductor.

 $\sigma_{R} = \frac{q_{R}}{4\pi R^{2}} = \frac{q_{a} + q_{b}}{4\pi R^{2}}$

b) à campo eléctrico fuero del conductor? La carga que en la superficie del conductor se arregla uniformemente. Esto debido a que en lo que concierne a estas cargas, las cargas en las cavidades no tienen ningún efecto ya que para tenerho, sus lineas de campo tendrian que "llegar" nasta la superficie de la esfera, pero esto no sucede ya que las líneas de compo se "cortan" en el interior del unductor (donde == 0). Y como no hay cargos ahura para afectar a la distribución de 7A -> Entonces su campo es como el de un cascaron estérico de Radin R y corga que = qu+ que distribuida.

El cual conocens: .. $E(F) = K \frac{(4a+4b)}{r^2} \hat{r}$

Como la corga qui está en el centro de la carridad y las cargos del condictor en la superficie de la cavided in sierten influencia externa (por estar rodeadas de conductor, donde E=0) entonces, por la simetría, las cargas en la cavidad se van a distribuir uniformemente.

Toronos un punto a distancia rza mote que El campo eléctrios en este punto es la Suma del campo por gar + el compo por las cargas lon lla superficie de la cavidid. Pero por ladicho arriba, las cargas de la cavidad se distribuyen uniformemente y sólo queda el campo cascarón de esfera (y sobremos que el campo adentro de éste es 0). $E_{a}(\tilde{r}) = \frac{4a}{G^{2}} \tilde{r}_{a}$ on \tilde{r}_{a} el vector radial centrado en q_{a} gore ab por que es:

Eb(10) = 40 6 Por el mismo argumento:

Les con To el vector radial contrado en 76.

l'élual es la tuerza sobre que y qu!

N. Por lodicho en la pregunta anterior, las corgas del conductor en la cavidad se distribuyen uniformemente, por lo que action como on cascarón uniformemente cargado y como herms xisto en clase, el compo dentro del cascarón es ō. :. 9A 7 90 no sienten Fuerzas por esta relentro de cascarmes uniformes. Además, no sienten Fuerzas de otras cargas porque al estar rodeados por conductors, donde el campo es Ó -> las lireas de campo de otros lados no Vegan a la cavided.

3 a) Demestra que si \$(1x,4,2) Satistare la ecvoción de Laplace => El promedio de de en la superficie de cualquier esfera es el valor de d'endicatro.

Consideramos una superficie esféricu de radio R. Y consideramos una carga q frea de la esfera,

Saternos que esta carga q genera un potencial dex, y, z) en toob el especio que satisface la ecuación

de la place. Atora probaremos que el provedio sobre la esfera de este potencial de generado por q

es igual al valor de de en al centro de la esfera. es igual al valor de de en el certio de la estera.

Proposerros un sistema de gies coordinados con centro en el centro de la estera y con q en la posición (0,0,2) Para el promedio de Ø, smamos & sobre la esfora y dividimos ortre el circa de la esfora:

Vprom = 1/A & dA = integral de superficie

Ahora bien, $\phi(x',y',z') = \frac{Kq}{|\bar{r}-\bar{r}'|} \cdot (con \, \bar{r}=(0,0,\bar{z})) = \frac{Kq}{(x^2+y^2+(\bar{z}-\bar{z}')^2)^{1/2}}$

y podemos parametrizar la estera con coordenados esféricas como: $\sigma(\theta, \varphi) = (R sen \theta \cos \varphi, R sen \theta \sin \varphi, R \cos \theta)$ can $\theta \in [0, \pi]$ $\varphi \in [0, \pi]$ 4 la esfera tiene un diferencial de drea: dA= R sono do du Entones la integral de superficie queda:

 $V_{prom} = \frac{1}{A} \iint \phi dA = \frac{1}{A} \iint \phi (\sigma(\theta, \phi)) dA = \frac{1}{A} \iint \phi (Romo \cos \phi, Romo \sin \phi, Roso) R^2 \cos \theta d\phi$ $= \frac{1}{4\pi R^2} \int_0^{2\pi} \frac{K q}{(1RSON6\omega\varphi)^2 + (RSON6\omega\varphi)^2 + (ROSO-Z)^2)^{1/2}} = \frac{KqR^2}{4\pi R^2} \int_0^{2\pi} \frac{SON6}{(R^2 + Z^2 - 2R Z \omega SO)^{1/2}} dOd\varphi$ $= \frac{Kq}{2} \frac{1}{2Rz} \int \frac{dv}{v^{1/2}} = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} + 2^{2} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} + 2^{2} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} + 2^{2} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} + 2^{2} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} + 2Rz + 2^{2}} - \frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz} \left[\frac{1}{1Rz^{1} - 2Rz \cos \theta} \right] = \frac{Kq}{2Rz^{1} - 2Rz \cos \theta} = \frac{Kq}{2R$ Pero esto es el potencial debida a q en el centro de la esfera (el priger).

Pero esto es el potencial debido a q en el centro de la estera Lel priger).

Pero esto es el potencial debido a q en el centro de la estera Lel priger).

Esto demestra el teorrena para el potencial de una carga, pero para una distriburió de Esto demestra el teorrena para el potencial promedio en la corgar, por el principio de superposición, se sigue valiado.

Estera es igual al potencial en el centro.

b) Esimposible construir un campo eléctrico que montega una partituda corgada en equilibrio

Buscardo una contradicción, supongamos que taramos un campo eléctrico en el cual hay un panto P an el cual una Carga positiva se acentraria en equilibria. Es decir, para rualquier pequeño desplazamiento del punto P, el campo eléctrico debe de empujar a la corga de melta a P.

Es decir, el campo se debe de veralgo así:

Pero ahora bien, si proponemos una superficie gaussiona una esfera pequeña al redodor de P el fluio por esta superficie es clavamente negativo (entran líneas de P, el flujo por esta superficie es clavamente negativo (entran lineas de compo a la superficie). Pero por la ley de Gauss, El flujo es igual a fin lo cual controdice el herbo de que no había congas adentro de la superficie Gaussiana (la corga de prebu no conta)

Esta contradición indica que debe de haber líneas de campo apartando hacia atuera de P para que el flujo total por la superficie Gaussiana sea O. Peno la carga de proeba q padria "escapar" por esa línea de compo al displazarla lamente, por lo que no se encentra en equilibrio estable.

Usa la exposición encontrado para el potenial del dipolo y obtés:

a) Las esvaciones de las superficies equipotenciales.

Como vinos en clase, el potencial del dipolo en coordenados estéricas es $\phi(r,\theta) = k \frac{9 l \cos \theta}{r^2}$ En 9 con 0 medido desde el eje vertical y l la distancia entre las cargas.

Una superficie equipotencial comple $\phi(r,\theta) = \phi_0 = cte$.

 $\Rightarrow \frac{r^2}{r^2} = \phi_0 \Rightarrow r^2 = \frac{\kappa_{ql}}{\phi_0} \sin \theta \Rightarrow r = \frac{\kappa_{ql}}{|\phi_0|} \sqrt{|\phi_0|}$

 $= \int_{-\infty}^{\infty} \int_{-\infty}^$

Esta es la ecuación de las superfício equipotencial a do equipotenciales se construyen al Verenos la gráfica de las líneas, equipotenciales, las superfícies equipotenciales de poblema) giror estas líneas un respecto al eje vertical (debido a la simetría azimutal del problema)

Para un 6 positivo cualquiero; la revoción $r = r_0 \cos \theta$ $\rightarrow r^2 = r_0^2 \cos^2 \theta$ en coordonados rectoryulores se ve como $x^2 + z^2 = r_0^2 \left(\frac{z^2}{x^2 + z^2}\right) \rightarrow \left(x^2 + z^2\right)^2 = r_0^2 z^2 \rightarrow x^2 + z^2 = r_0 z^2$ $\rightarrow x^2 + z^2 - r_0 z = 0 \rightarrow x^2 + z^2 - r_0 z + r_0^2 - r_0^2 = 0 \rightarrow x^2 + \left(z - \frac{r_0}{2}\right)^2 = \left(\frac{r_0}{2}\right)^2$ Enfonces $r = r_0 \cos \theta$ describe circunferencias un centro en $(0,0,\frac{r_0}{2})$ y radio $\frac{r_0}{2}$ (es derir, circunferencias que toran el origen y tienen centro en puntos sobre el eje z.)

Extonces, la ecración que nos encierne: r=ro v[enso]

debe de verse como las circunferencias morcionadas

pero un poro deformados o aplastadas desido a

la raíz cuadrada.

Las superficies equipoténciales se consiguer como superficies de revolución con respecto al eje Z.

b) Las econciones de las líneas de compo. hint: respelhe $\frac{1}{r}$ $\frac{E}{t} = \frac{E_0}{E_0}$ Primero colindoros Er y E_0 a partir del potacial. Usando $\hat{E} = -\nabla \varphi$ con el gradiente en estéricas: $\hat{E} = -\nabla \varphi = -\frac{2\varphi}{\delta r} \hat{r} + \frac{3\varphi}{\delta \theta} \hat{r} + \frac{1}{2\theta} \frac{3\varphi}{\delta r} \hat{r} + \frac{3\varphi}{\delta \theta} \hat{r} + \frac{1}{r^2\theta} \frac{3\varphi}{\delta r} \hat{r} + \frac{3\varphi}{\delta \theta} \hat{r} + \frac{1}{r^2\theta} \frac{3\varphi}{\delta r} \hat{r} + \frac{3\varphi}{\delta \theta} \hat{r} + \frac{1}{r^2\theta} \frac{3\varphi}{\delta r} \hat{r} + \frac{3\varphi}{\delta \theta} \hat{r} + \frac{3\varphi$

5. Extra. Un cátado caliale con un portacial nulo y el ánodo tide una diferencia de polecial vo. Electrones son acelerados del cátado al aínodo una distancia d. El campo en el cátado es 0 y fluje una
Electrones son acelerations del Catodo al anodo una distancia d. El campo en el cátodo es 0 y Acienna
corright I has places son mens mas largues que la separación. V, p, v son funciones de la posición
a) Excelle la gración de Aison para la región entre la planos
Escribe la evación de Bism para la región entre la planos, como el plano es lo suficientemente grande, como Virnos en la tarea pasado, genera V=0 Por la ec. de Poisson: $\nabla^2 V = -\frac{P}{E_0}$ $\Rightarrow \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial y^2} = -\frac{P}{E_0}$ $\Rightarrow \frac{\partial^2 V}{\partial x^2} = \frac{\partial^2 V}{\partial x^2$
But la ec. de Poisson: $\nabla^2 V = -\frac{\rho}{\epsilon_0}$ -> $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\epsilon_0}$ -> $\frac{\partial^2 V}{\partial x^2} = -\frac{\rho}{\epsilon_0}$
b) si los electrores parten del reposo en el catolo, écuales su velocidad a x, donde el potacial es las
Calcularos el trabajo para mover la carga e desde el cátado hosta la posició X.
$dW = edV \rightarrow W = \int edV = e\int_0^\infty dV = e\left(V_{(X)} - V_{(0)}\right)$ definiting come 0.
La carga parte del reposo (enegía cinética 0) -> for el teorema de Trabajo - Energía:
$K_{f} = W$ $\rightarrow \frac{1}{2} m_{e} v^{2} = e^{i} V(x) \rightarrow \frac{\sum e^{i} V(x)}{m_{e}}$
c) En el estado restacionario, I es independiente de x circlación entre p y v?
the margine blogge de la misma area que el catoris que el catoris que
la corrierte a travers de la regione por unidad de tiempos. carga que atraviesa al bloque por unidad de tiempos.
carga que atraviesa al bloque por unidad de tiempos. Pero la contidad de cargas en el bloque es: pdV = pAdx (con A el area del catodo y el bloque) Entonces la carga: por unidad de tiempo es: pAdx = pAv
$\neg I = A \rho(x) v(x)$
A A A A A A A A A A A A A A A A A A A
84

d) Objet la ecratión diferencial de V(x) Regres ando a la ecuación de Poisson: $\frac{d^2 V_{(x)}}{dx^2} = \frac{p_{(x)}}{\epsilon_0} - \dots (1)$ Pero por el resultado c): A(x) = I que por el resoltado 6): $p(x) = \frac{I}{A} \int_{-\infty}^{\infty} \frac{Me}{A} \sqrt{\frac{xe}{xe}v(x)}$ Recomplation do en (1): $\frac{d^2V}{dx^2} = \frac{1}{A \epsilon_0} \frac{T}{ze V(x)}$ e) Resulte la ecración de V en tunción de X, Vn, d. Encontra P(X) y V(X) Rees Cribinos la ecuación diferencial como: $V''^2 V'' = B'$ con $B = \frac{I}{AE_0} \sqrt{\frac{m_e}{Ze}} = cte$ multiplicans por V' > V'h V' V" = BV' -> V'V" = B V' -> V'dV' = B dV -> Jv'dv'= B J dV -> ½ V'= 28 V'/2 + & pero como V'(o)= 0 (porque el compo eléctrio en el catado es 0) -> &= 0 -> = 28 V/2 -> V'= 258 V'4 -> = 258 V'4 $\Rightarrow \frac{dV}{V''4} = 2\sqrt{8} \, dX \Rightarrow \frac{4}{3}V^{3/4} = 2\sqrt{8} \times + C \qquad (\text{pero cono } V(0) = 0 \text{ porque el portorial en el catoob es o})$ $\Rightarrow \frac{4}{3}V^{3/4} = 2\sqrt{8} \times A \Rightarrow V(x) = (\frac{3}{2}) \cdot \frac{8}{8} \times A \Rightarrow V(x$ Pero para deshacernos de la B, que no es un parametro que nos den, usamos que V(d) = Vo el potencial en el anodo $\frac{3}{413}$ $\frac{1}{8}$ $\frac{3}{413}$ $\frac{1}{8}$ $\frac{3}{8}$ $\frac{1}{413}$ $\frac{3}{8}$ $\frac{1}{8}$ $\frac{3}{8}$ $\frac{3$ Entones reemplozemes on z) $\rightarrow V(x) = \frac{V_0}{V_0} \times \frac{V_0}{V_0} = \frac{V_0}{V_0} \times \frac{V_$ (1) Brod resilions b): $V(x) = \sqrt{\frac{2e}{m_e}} \sqrt{V(x)} = \sqrt{\frac{2e}{m_e}} \sqrt{o} \left(\frac{x}{\delta}\right)^{4/3} = V(x)$

f) Moestra que $T = K V_0^{3h}$ concentra K.

Also $S^{1/2} = V_0 V_0 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}^{2} B^{2/3} X^{4/3}$, que al evaluer en A Y con $V(A) = V_0$ $V(A) = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}^{4h} B^{2/3} J^{4/2} \qquad \Rightarrow B^{2/3} = V_0 \begin{pmatrix} \frac{2}{2} \\ \frac{1}{2} \end{pmatrix}^{4h} \Rightarrow B = V_0^{3h} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}^{2}$ For por come detenions B: $T = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}^{2} A & E_0 \begin{pmatrix} \frac{1}{2} e \\ \frac{1}{2} \end{pmatrix}^{4h} V_0$ $T = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}^{2} A & E_0 \begin{pmatrix} \frac{1}{2} e \\ \frac{1}{2} \end{pmatrix}^{4h} V_0$ $K = \frac{1}{2} K V_0$