Uniaxial Force Plate

Brandon Segal, Bryanna Wands, Lubaina Shakir, Mayank Parmar

Spinal Cord Injury

Annual incidence - 54 cases/million

Approximately 300,000 persons currently

Less than 1 percent experience complete recovery

Current Research

Electrical Stimulation

Magnetogenetics

Chemogenetics - DREADDs

Proposed Solution – Force Plate

- Tool for kinetic analysis of rodent gait
- Appropriate for rodent model
- Cost-efficient
- Avoids inaccuracies due to loose skin

Design Requirements of force plate

Objective

- Have a linear response in the range of forces
- Reasonable operable procedure

Numerical

- Have a natural frequency> 100Hz
- Sensitive to weights as low as 0.1 N
- Carry loads up to 5 N

Technical

- Have a response independent of where the force is exerted
- Have a sufficient coefficient of safety to protect the specimen

Animal Care

Mayank Parmar

Training Inputs

Handling

 Must allow Rats to acclimate to human interaction

Environment

 Rats must acclimate to treadmill environment

Responsiveness

 Rats must be trained to respond to food reward system

Acquired Outputs

Cooperation

- •Rats acclimated to protocol procedures requiring gentle handling.
- •Rats have become actively comfortable in the hands of the caretaker and handler.

Performance

- •Rats adjusted to being placed in the treadmill enclosure.
- •At various speeds, the rats were able to maintain their speed and avoid major collisions with the enclosure.

Response to Reward System

- •Rats were trained to receive food rewards after runs in order to give them incentive to perform the action.
- •Food reward system proved to display the calmness of the rats on the treadmill between speed intervals

Example Training Schedule

Training Speed(cm/sec)	Run Time (sec)	Rest Time Between Intervals(sec)
16	30-60	90-120
20	30-60	90-120
24	30-60	90-120
28	30-60	90-120
32	30-60	90-120

WEEK 1

Day 1

Example Training Schedule (continued)

Training Speed(cm/sec)	Run Time (sec)	Rest Time Between Intervals(sec)
16	60-120	60-90
20	60-120	60-90
24	60-120	60-90
28	60-120	60-90
32	60-120	60-90

WEEK 1

Day 2/3

Example Training Schedule (continued)

Training Speed(cm/sec)	Run Time (sec)	Rest Time Between Intervals(sec)
16	300	60
20	300	60
24	300	60
28	300	60-
32	300	60

WEEK 2-6

Day 1-3

Questionable Aspects of Training Protocol

- Why training occurs?
- Why these specific speeds are chosen?
- Why these specific time intervals?

Mechanical Requirements for the force plate

Sensors

Bryanna Wands

Design Inputs

Sensitivity

Must sense forces 0-5N(Zumwalt)

Linearity

 Data must show linear force versus strain relationship

Stability

 Must be stable over time and changing conditions

Design Outputs

Strain Gauges

- Simple circuitry
- Half-bridge configuration
 - Increases sensitivity
 - Negates effects of temperature change

Force

- Piezoelectric: Voltage proportional to applied force using piezoelectric effect
- Loadcells: Manufactured sensor packages measuring compression forces

Displacement

- Hall Effect Sensors: Assembly of springs and magnets measuring the change in magnetic field due to the magnet's deflection
- Optical Sensors: Use Phototransistors to measure change in lumens due to the deflection of a LED or Laser

Strain

 Strain Gauges: Measure strain using the deformation of metal elements in a sensor

Sensors	Pros	Cons
Piezoelectric 1	Directly Measures ForceSimple Circuitry	 Can Only measure force in Z direction Can only measure dynamic forces
Load Cell	Directly Measures Force	Prohibitively expensiveOnly measures force in Z direction
HES	Displacement is linear to forceNo need for opamp	Difficult to manufactureDifficult to avoid crosstalk
Phototransistors 2	Not Temperature DependentHad Existing Drivers Available	Difficult to AlignImpossible to implement elsewhere
Strain Gauges 3	Proven DesignAble to Implement elsewhere	Temperature DependentStrain Gauges may detach.

Tonia Hseih Phototransistor Driver:

Inputs(V): CH1INA, CH1INB

Outputs(V): CH1OUTA, CH1OUTB, CH1OUTB

Components:

- 2 Low Pass filters amplifiers
- 15 V in
- LED Power
- BNC outputs to DAQ

- Strain Gauge Circuit
- Half-Bridge Configuration
- Measure the Voltage over R_a

Geometry & Materials

Brandon Segal

Geometry Design Inputs

- SolidWorks
- Rat Sizes
- Heglund Cantilever Model
- Hseih Box Model

Evolution of Geometry

Platform

 This was theorized when developing ideas on how to incorporate piezoelectric sensors

Cantilever

- Adaption to the Heglund model created in 1981
- Allows for multiple dimensions of force

Evolution of Geometry

The box acts as two spring blades

A fusion of Tonia Hsieh's and Heglund's Designs.

Measure strain or displacement.

Geometry Design Outputs

Allows for sensor readings

Proven Model

Testable Dimensions

Key Values can be found using basic equations

Allows Future
Work

Material Design Inputs

Strain Values **Displacement Natural Frequency Stress Values**

- Agreed upon Force plate Geometry
- Equations to calculate key values
- Deflection.jl Code
- SolidWorks Model

Evolution of Material Choice

Copper

• Pliable and machinable metal used in highly sensitive force plates (Hsieh 2006)

ABS Plastic

Acrylonitrile butadiene styrene- Durable plastic available for 3D printing at Temple

PLC Plastic

Polycaprolactone – Fragile plastic used by most 3D printers

Evolution of Material Choice

Youngs Modulus for ABS Plastic: 2.00 GPa

Average Strain Values at Box edge (tension side): 37.5 μ

Calculated Strain Values: 36. 75 µ

Material Design Outputs

Spring Blade Dimensions

- Able to finalize Solidworks dimensions
- Output results to CSV file
- Analyzed Results to pick the final dimensions

SolidWorks Simulation

- Used to validate hand calculations
- Average Values correlated within 5% of expected values
- Dimensions could hold chosen sensors

Testing of the Equipment

Follow A Similar procedure as Zumwalt

Force Plate Operation

Lubaina Shakir

Experimental Protocol

Normal Baseline

Healthy rats

SCI Baseline

• Forces are captured after hemisection of spinal cord

DREADDs + CNO

- •Rats transfected with DREADDs constructed as per protocol
- CNO given just prior to data collection

Model for Overground Course

Data Collection Output (Theoretical)

Ensuring Performance of the Equipment

- Calibrate sensors before testing
- Zero out all 4 channels before Testing

Calibration

Sensors

- Keep Sensors out of high Temps
- Determine Linearity through Dynamic and Static Testing

 Ensure that the structure is put upright as to not damage the solder

Structure

Ensuring Animal Safety

Animal Training

 Make sure all personnel are trained to handle animals

Equipment Readiness

 Ensure that Surfaces are flush with the course

Structural Integrity

 Implement a Factor of safety when choosing force plate geometries

Sustainability and Future Use

- Extra Strain Gauges will be donated to the Spence Lab
- Life of Strain Gauge exceeds 10,000,000 cycles at small loads
- The structure will remain in the Spence Lab for future teams to use as a reference
- Designs and documents will be uploaded to Github
- Make the design open source solution for small labs

Questions?