Sissejuhatus psühhofüsioloogia rakendustesse

Elektroentsefalograafia

Richard Naar

Kursuse arendamist toetas Haridus- ja noorteameti IT-akadeemia

OpenBCI näidisprojektid

EMG Chrome Dino Game

In this tutorial we will show you how to play the Google Chrome Dinosaur Game without touching your laptop. To do that, we will read EMG data from your arm muscles and find the peaks which correspond to flexing, using them to trigger a jump of the dinosaur.

Check out an example video of this tutorial being put into action!

Main Site Shop Forum Documentation Github

(Cohen, & van Gaal, 2014)

Kui sekkuvat muutujat pole võimalik kontrollida, siis on mõistlik see vabaks lasta ehk muuta katsemanipulatsioonist sõltumatuks (st sekkuv muutuja ei tohiks olla süstemaatiliselt seotud katsetingimustega)

(Raidvee, Lember, & Allik, 2017)

Üle paljude esituste keskmistatud EEG signaal on kordades **väiksema** amplituudiga kui mürarikkal üksikseerial

Figure 9.1

EEG sündmuspotentsiaal (*event* related potential - ERP) – sündmuse poolt esile kutsutud aju elektriliste potentsiaalide muutus

(Luck, 2011, lk 7)

Milleks EEG?

(Kouider, Andrillon, Barbosa, Goupil, & Bekinschtein, 2014)

Milleks EEG?

(Kouider, Andrillon, Barbosa, Goupil, & Bekinschtein, 2014)

Mõned sündmuspotentsiaalide kasutusvaldkonnad

Uurida kognitiivsete ja tajuliste protsesside ajalist dünaamikat

Uurida katseisikuid, kes ei saa või ei suuda eksplitsiidseid vastuseid anda (nt imikuid, magavaid katseisikuid, kooma patsiente)

Uurida töötlust, mille puhul vastuse andmine võiks töötlust oluliselt muuta (nt stiimulite tähelepanuvälise töötluse puhul)

Uurida töötlust, mis ei pruugi käitumises väljenduda (nt maskeeritud stiimulite töötlemine).

EEG sündmuspotentsiaalid

Professor Steven Luck
(Kalifornia Ülikool, Davis)
Kaasprofessor Emily Kappenman
(San Diego Osariiklik Ülikool)

Clinical Neurophysiology

Volume 112, Issue 3, March 2001, Pages 536-544

Takistus

Scalp electrode impedance, infection risk, and EEG data quality

Thomas C Ferree ^{a, b} $\stackrel{\boxtimes}{\sim}$ Phan Luu ^{a, c}, Gerald S Russell ^{a, d}, Don M Tucker ^{a, c}

Results: There was no significant change in amplitude of any EEG frequency as scalp-electrode impedance increased from less than 5 k Ω (abraded skin) to 40 k Ω (intact skin). As expected, 60 Hz noise increased linearly as a function of the absolute impedance and impedance mismatch between the measurement and reference electrodes.

Conclusion: With modern high input-impedance amplifiers and accurate digital filters for power line noise, high-quality EEG can be recorded without skin lesions.

Lihasmüra (EMG, ECG)

Silmaliigutused

Pilgutused

(Farnsworth, 2019)

(Schembri, Anthony, & Pelc, 2017)

Elektroodide liikumine ja ühenduse probleemid

(Farnsworth, 2019)

(Schembri, Anthony, & Pelc, 2017)

Katseisiku pea liikumine

Vahelduvvooluga seotud müra

Pilgutused

Eeltöötlus

- O. Kontrollin, kas kõik on nii nagu peab (sh stiimulite ja vastamisklahvide ajastus, randomiseerimine, sündmussignaalid ja nende ajastus)
- 1. Andmete importimine, referentsi valimine ja rakendamine, filtreerimine (nt 0,1/0,5 Hz kõrgpääsu filter, ribatõkke filter 48-52 Hz / 30 Hz madalpääsu filter), ajaakende defineerimine (nt -1 s ja +3 s) ja leidmine, baastaseme lahutamine (nt -0,2 s), mürarikaste seeriate väljajätmine (manuaalne/automaatne), mürarikaste kanalite interpoleerimine, sõltumatute komponentide analüüs (*independent component analysis*; ICA)

Eeltöötlus

- 2. Põhiliselt silmaliigutustega seotud ICA komponentide eemaldamine
- 3. Ajaakende ja tingimuste keskmise leidmine, sagedusanalüüs jne
- 4. Andmete visualiseerimine ja tabelisse salvestamine, statistika jne

Ülevaade EEG signaali eeltöötlusest

This video was made possible by NIH grant R25MH080794 and is shared under the terms of a Creative Commons license (CC BY-SA 4.0)

How to Evaluate an ERP Study
Analysis Problems

Professor Mike X Cohen (Radboudi Ülikool ja Dondersi instituut)

Professor Steven Luck (Kalifornia Ülikool, Davis)

Kaasprofessor Emily Kappenman (San Diego Osariiklik Ülikool)

The Mismatch Negativity (MMN)

Risto Näätänen and Kairi Kreegipuu

The Oxford Handbook of Event-Related Potential Components

Edited by Emily S. Kappenman and Steven J. Luck

Print Publication Date: Dec 2011 Subject: Psychology, Cognitive Psychology, Cognitive Neuroscience

Online Publication Date: Sep 2012 DOI: 10.1093/oxfordhb/9780195374148.013.0081

Go to page:

GO

The auditory mismatch negativity (MMN) is a change-specific component of the auditory event-related brain potential (ERP) that is elicited even in the absence of attention and can be used as an objective index of sound-discrimination accuracy and auditory sensory memory. The MMN enables one to reach a new level of understanding of the brain processes forming the biological substrate of central auditory perception and the different forms of auditory memory. A review of MMN studies indicates that the central auditory system performs complex cognitive operations, such as generalization leading to simple concept formation (e.g., a rising pair irrespective of the specific frequency values), rule extraction, and the anticipation of the next stimulus at the preattentive level. These findings demonstrate the presence of a cognitive change-detection mechanism in the auditory cortex.

Keywords: mismatch negativity (MMN), auditory event-related potential, sound discrimination, auditory sensory memory

P300 demo OpenVibe'is

Selle demo jooksutamiseks läheb tarvis:

- OpenVibe'i tarkvara (versioon 2.2.0)
- Cytoni trükiplaati ja akut (aku on juba trükiplaadi külge ühendatud)
- Cytoni donglit
- Kõrva külge kinnitatavaid musti klõpsuga elektroode
- OpenBCI kolme elektroodiga peapaela
- Desinfitseerivaid vahendeid kõrvaelektroodide aluse naha puhastamiseks

Elektroodide paigutamine

Kasutatud kirjandus (esinemise järjekorras)

Cohen, M. X., & van Gaal, S. (2014). Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors. *Neuroimage*, 86, 503-513.

Raidvee, A., Lember, J., & Allik, J. (2017). Discrimination of numerical proportions: A comparison of binomial and Gaussian models. *Attention, Perception, & Psychophysics, 79*(1), 267-282.

Luck, S. J., & Kappenman, E. S. (Eds.). (2011). *The Oxford handbook of event-related potential components*. Oxford university press.

Cohen, M. X. (2014). *Analyzing neural time series data: theory and practice*. MIT press.

Luck, S. J. (2005). An introduction to event related potentials and their neural origins. *An introduction to the event related potential technique*, 11.

Kouider, S., Andrillon, T., Barbosa, L. S., Goupil, L., & Bekinschtein, T. A. (2014). Inducing Task-Relevant Responses to Speech in the Sleeping Brain. *Current Biology*, 24(18), 2208–2214.

Ferree, T. C., Luu, P., Russell, G. S., & Tucker, D. M. (2001). Scalp electrode impedance, infection risk, and EEG data quality. *Clinical neurophysiology*, 112(3), 536-544.

Schembri, P., Anthony, R., & Pelc, M. (2017). Detection of Electroencephalography Artefacts using Low Fidelity Equipment. In *PhyCS* (pp. 65-75).

Farnsworth, B. (2019). EEG (Electroencephalography): The Complete Pocket Guide. Retrieved from https://imotions.com/blog/eeg/

