Introdução aos Processos Estocásticos

Luiz Renato Fontes

Distribuições invariantes

Seja ${\bf X}$ uma CM em ${\cal S}$ com MT ${\bf P}$. Uma medida μ em ${\cal S}$ será dita invariante (ou de equilíbrio, ou estacionária) para ${\bf X}$ (ou ${\bf P}$) se

$$\mu \mathbf{P} = \mu$$
 (ie, $\mu_y = \sum_{x \in \mathcal{S}} \mu_x P_{xy}, y \in \mathcal{S}$). (0)

Se μ for uma probabilidade, diremos que μ é uma distribuição invariante (ou de equilíbrio ou etc).

Obs. 1)
$$\mu$$
 inv $\Rightarrow \mu \mathbf{P}^n = \mu$, $n \ge 0$. (1)

2) Se μ distr inv e $X_0 \sim \mu$, então $X_n \sim \mu$, $n \geq 1$.

Def. Diremos que um processo estocástico $(X_n)_{n\geq 0}$ é *estacionário* se $(X_{n+\ell})_{n\geq 0}\sim (X_n)_{n\geq 0},\ \ell\geq 0.$

Teorema 1

Se μ distr inv para uma CM ${\bf X}$ e $X_0 \sim \mu$, então ${\bf X}$ é estacionária.

Dem. Basta mostrar que para $n, \ell \geq 1$, $x_1, \ldots, x_n \in \mathcal{S}$ arbitrários

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_{1+\ell} = x_1, \dots, X_n = x_{n+\ell}). \tag{2}$$

O lado dir de (2) vale

$$\sum_{x \in \mathcal{S}} \mathbb{P}(X_{\ell} = x) P_{xx_1} \cdots P_{x_{n-1}x_n} \stackrel{\text{inv}}{=} \sum_{x \in \mathcal{S}} \mu_x P_{xx_1} \cdots P_{x_{n-1}x_n},$$
 que é o lado esq de (2).

Teorema 2

Suponha que $\mathcal S$ seja finito e que para algum $x\in\mathcal S$ haja um vetor π em $\mathcal S$ tq $P_{xy}^{(n)}\to\pi_y \text{ qdo } n\to\infty \ \forall y\in\mathcal S$

Então, π é uma distribuição invariante.

Dem.
$$\pi_y = \lim_{n \to \infty} P_{xy}^{(n)} \stackrel{\mathsf{CK}}{=} \lim_{n \to \infty} \sum_{z \in \mathcal{S}} P_{xz}^{(n-1)} P_{zy}$$

$$\stackrel{|\mathcal{S}| < \infty}{=} \sum_{z \in \mathcal{S}} \lim_{n \to \infty} P_{xz}^{(n-1)} P_{zy} = \sum_{z \in \mathcal{S}} \pi_z P_{zy},$$

e como $\pi_y \geq 0 \ \forall y, \ \pi$ é uma medida inv. Agora,

$$\sum_{y \in \mathcal{S}} \pi_y = \sum_{y \in \mathcal{S}} \lim_{n \to \infty} P_{xy}^{(n)} \stackrel{|\mathcal{S}| < \infty}{=} \lim_{n \to \infty} \sum_{y \in \mathcal{S}} P_{xy}^{(n)} = 1,$$

e π é uma prob.

4□ > 4□ > 4 = > 4 = > = 900

Obs.

No passeio aleatório discutido acima, temos

$$P_{xy}^{(n)} \to 0$$
 qdo $n \to \infty \ \forall x, y \in \mathbb{Z}^d$.

 $(\pi \equiv 0$ não deixa de ser uma medida inv, mas não é uma prob.)

Exemplos

1)
$$\mathbf{P} = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

Descontados casos triviais ($\alpha+\beta=0$ ou 2), temos (do que vimos antes): qdo $n\to\infty$

$$\mathbf{P}^n \to \begin{pmatrix} \frac{\beta}{\alpha + \beta} & \frac{\alpha}{\alpha + \beta} \\ \frac{\beta}{\alpha + \beta} & \frac{\alpha}{\alpha + \beta} \end{pmatrix}$$

e logo $\left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)$ é distr inv para **P**.

Exemplos (cont)

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$

Podemos voltar ao que fizemos antes e (tentar) calcular o limite de ${\bf P}^n$ para obter uma prob inv. Em vez disto, notemos que a cond (0) para que π seja inv produz um sistema linear de eqs para μ . Vamos montá-lo e tentar resolvê-lo neste caso. π deve satisfazer:

$$\pi_1 = \frac{\pi_3}{2}$$
; $\pi_2 = \pi_1 + \frac{\pi_2}{2}$; $\pi_3 = \frac{\pi_2}{2} + \frac{\pi_3}{2} \Rightarrow \pi = \pi_1(1, 2, 2)$

Como queremos que π seja prob, $\mathcal{P}_1 = \frac{1}{5}$, e $\pi = (\frac{1}{5}, \frac{2}{5}, \frac{2}{5})$.

Note que só temos uma prob inv neste caso, e, logo, se o cálculo do limite sugerido acima vingar (de fato, vinga; verifique), então deve produzir π como acima.

Medidas invariantes (cont)

Def. P/ $z \in \mathcal{S}$ fixo arb e $x \in \mathcal{S}$ seja $\gamma_x^z = \mathbb{E}_z \left\{ \sum_{n=0}^{T_z-1} \mathbb{1}_{\{X_n = x\}} \right\}$, o # esperado de visitas a x por **X** entre duas visitas a z.

Obs. Sob
$$\mathbb{P}_z$$
, se $T_z < \infty$, então $\sum_{n=0}^{T_z-1} \mathbb{1}_{\{X_n = x\}} = \sum_{n=1}^{T_z} \mathbb{1}_{\{X_n = x\}}$ (3)

Teorema 1. Suponha que P seja irredutível e recorrente. Então

$$\text{(i) } \gamma_{z}^{z}=1; \text{ (ii) } \gamma^{z}=\left(\gamma_{x}^{z},\, x\in\mathcal{S}\right) \text{ \'e inv p/P; (iii) } 0<\gamma_{x}^{z}<\infty,\, x\in\mathcal{S}.$$

Dem. (i) é óbvio. (ii) P/ $n \ge 1$, $\{T_z \ge n\} = \{T_z \le n-1\}^c$ depende apenas de X_0, \ldots, X_{n-1} :

$$\mathbb{P}_{z}(X_{n-1} = x, X_{n} = y, T_{z} \ge n) \stackrel{\text{PM}}{=} \mathbb{P}_{z}(X_{n-1} = x, T_{z} \ge n) P_{xy}$$
 (4)

 ${f P}$ recorrente: sob ${\Bbb P}_z$, $T_z<\infty$ c.p. 1. Logo

Dem. Teo 1 (cont)

$$\gamma_{y}^{z} \stackrel{(3)}{=} \mathbb{E}_{z} \left\{ \sum_{n=1}^{T_{z}} \mathbb{1}_{\{X_{n}=y\}} \right\} = \mathbb{E}_{z} \left\{ \sum_{n=1}^{\infty} \mathbb{1}_{\{X_{n}=y, n \leq T_{z}\}} \right\}$$

$$= \sum_{n=1}^{\infty} \mathbb{P}_{z} (X_{n} = y, n \leq T_{z}) = \sum_{x \in \mathcal{S}} \sum_{n=1}^{\infty} \mathbb{P}_{z} (X_{n-1} = x, X_{n} = y, n \leq T_{z})$$

$$\stackrel{(4)}{=} \sum_{x \in \mathcal{S}} P_{xy} \sum_{n=1}^{\infty} \mathbb{P}_{z} (X_{n-1} = x, n \leq T_{z}) = \sum_{x \in \mathcal{S}} \mathbb{E}_{z} \left\{ \sum_{n=0}^{T_{z}-1} \mathbb{1}_{\{X_{n}=x\}} \right\} P_{xy}$$

Obs. De (ii) e (1):
$$\forall n \geq 0, \ w, y \in \mathcal{S}, \ \gamma_y^z = \sum \gamma_x^z P_{xy}^{(n)} \geq \gamma_w^z P_{wy}^{(n)}$$
 (5)

(iii) **P** irredutível: $\exists k, \ell \geq 0 \text{ tq } P_{xz}^{(k)}, P_{zx}^{(\ell)} > 0.$

 $\mathbb{E}_{z}\left\{\sum_{n=1}^{T_{z}}\mathbb{1}_{\left\{X_{n-1}=x\right\}}\right\}$

De (i) e (5):
$$\gamma_x^z \ge \gamma_z^z P_{zx}^{(\ell)} > 0$$
; $\gamma_x^z P_{xz}^{(k)} \le \gamma_z^z = 1$.: $\gamma_x^z \le \frac{1}{P_x^{(k)}} < \infty$

 $\sqcup_{(ii)}$

Teorema 2

Suponha que ${\bf P}$ seja irredutível e que λ seja uma medida invariante para ${\bf P}$ tal que $\lambda_z=1$. Então $\lambda \geq \gamma^z$. Se além disto, ${\bf P}$ for recorrente, então $\lambda=\gamma^z$.

Dem.

Para todo $y \in \mathcal{S}, y \neq z, n \geq 1$, como λ inv:

$$\lambda_{y} = \sum_{x_{0} \in \mathcal{S}} \lambda_{x_{0}} P_{x_{0}y} = \sum_{x_{0} \neq z} \lambda_{x_{0}} P_{x_{0}y} + P_{zy}$$

$$= \sum_{x_{0}, x_{1} \neq z} \lambda_{x_{1}} P_{x_{1}x_{0}} P_{x_{0}y} + \sum_{x_{0} \neq z} P_{zx_{0}} P_{x_{0}y} + P_{zy}$$

$$\vdots$$

$$= \sum_{x_{0}, \dots, x_{n} \neq z} \lambda_{x_{n}} P_{x_{n}x_{n-1}} \cdots P_{x_{0}y}$$

$$+ P_{zy} + \sum_{x_{0} \neq z} P_{zx_{0}} P_{x_{0}y} + \cdots + \sum_{x_{0}, \dots, x_{n-1} \neq z} P_{zx_{n-1}} \cdots P_{x_{1}x_{0}} P_{x_{0}y}$$

$$\mathbb{P}_{z}(X_{1} = y, T_{z} \geq 1) + \mathbb{P}_{z}(X_{2} = y, T_{z} \geq 2) + \cdots + \mathbb{P}_{z}(X_{n} = y, T_{z} \geq n) = \mathbb{E}_{z} \sum_{i=1}^{n} \mathbb{I}\{X_{i} = y, T_{z} \geq i\}$$

$$\geq \mathbb{E}_{z} \sum_{i=1}^{n} \mathbb{I}\{X_{i} = y, T_{z} \geq i\} \xrightarrow[n \to \infty]{} \mathbb{E}_{z} \sum_{i=1}^{\infty} \mathbb{I}\{X_{i} = y, T_{z} \geq i\}$$

$$= \mathbb{E}_{z} \sum_{i=1}^{T_{z}} \mathbb{I}\{X_{i} = y\} = \gamma_{y}^{z} \qquad \therefore \quad \lambda \geq \gamma^{z}$$

Dem. Teo 2 (cont)

Se **P** for recorrente, então γ^z é invariante, pelo Teo 1.

Logo $\mu := \lambda - \gamma^z \ge 0$ tb é invariante.

Como **P** é irredutível, dado $x \in S$, existe $n \ge 0$ tq $P_{xz}^{(n)} > 0$.

Logo
$$0 = \mu_z \ge \mu_x P_{xz}^{(n)}$$
, e $\mu_x = 0$.

Def. Se $x \in \mathcal{S}$ for tq $m_x := \mathbb{E}_x(T_x) < \infty$, então dizemos que x é *recorrente positivo*. Se x for recorrente, mas não recorrente positivo, então será dito *recorrente nulo*.

Teorema 3

Seja P irredutível. Então são equivalentes as seguintes afirmações.

- (i) Todos os estados são recorrentes positivos;
- (ii) Existe um estado recorrente positivo;
- (iii) P admite uma distr invariante.

Além disto, sob (iii), sendo π a distr inv, temos: $\pi_{x} = \frac{1}{m_{x}}, x \in \mathcal{S}$.

Obs. 1) **P** irred e rec pos $\Rightarrow \pi$ é única;

2) Recorrência positiva, resp nula, é propriedade de classe (pois cadeia restrita a classe recorrente é irredutível).

Dem. Teo 3

(i \Rightarrow ii): óbvio.

(ii \Rightarrow iii): Se $z \in \mathcal{S}$ for recorrente positivo, então é recorrente, e, pela irredutibili//, \mathbf{P} é recorrente. Teo 1: γ^z é invariante. Agora

$$\sum_{x \in \mathcal{S}} \gamma_x^z = \sum_{x \in \mathcal{S}} \mathbb{E}_z \sum_{i=1}^{T_z} \mathbb{1}\{X_i = x\} = \mathbb{E}_z T_z = m_z < \infty,$$

logo $\pi_x = \gamma_x^z/m_z$, $x \in \mathcal{S}$, é uma prob inv.

(iii \Rightarrow i): Seja $z \in \mathcal{S}$; como π é uma prob, $\exists x : \pi_x > 0$; como \mathbf{P} é irred, $\exists n \geq 0 : P_{xz}^{(n)} > 0$; como π é inv, $\pi_z \geq \pi_x P_{xz}^{(n)} > 0$.

Seja agora $\lambda_x = \pi_x/\pi_z$, $x \in \mathcal{S}$; Teo 2: $\lambda \geq \gamma^z$. Logo

$$m_z = \sum_{x \in \mathcal{S}} \gamma_x^z \le \sum_{x \in \mathcal{S}} \lambda_x = \sum_{x \in \mathcal{S}} \frac{\pi_x}{\pi_z} = \frac{1}{\pi_z} < \infty.$$
 (6)

 \therefore z é rec pos \therefore z é recorr \therefore **P** é recorr; Teo 2: $\lambda = \gamma^z$,

e a \leq em (6) é uma =.

Obs.

- 1) Se \mathcal{S} irred, então
 - a) S rec pos $\Leftrightarrow \exists$ distr inv;
 - b) S recorr $\Rightarrow \exists !$ medida inv, a menos de const mult;
 - c) S recorr nulo $\Rightarrow \nexists$ distr inv;
 - d) \mathcal{S} recorr nulo $\Leftarrow \exists$ med inv infinita $+ \mathcal{S}$ recorr
- 2) Se $\mathcal S$ finito e irredutível, então $\mathcal S$ é recorrente; Teo 2: $\gamma_x^z < \infty$, $x \in \mathcal S$, $m_z = \sum_{x \in \mathcal S} \gamma_x^z < \infty$, e z é rec pos; Teo 3: $\mathcal S$ é rec pos.

Exemplos

1) PASS em \mathbb{Z} (irredutível, recorrente)

Seja $\mu_x\equiv 1$. Então $\mu_x=\frac{1}{2}\mu_{x-1}+\frac{1}{2}\mu_{x=1}$, $x\in\mathbb{Z}$, e logo μ é inv. Sendo μ infinita, a Obs 1d acima diz que a cadeia é rec nula.

- 2) O argumento acima funciona igualmente em \mathbb{Z}^2 ; $\mu \equiv 1$ é inv tb para o PASS em \mathbb{Z}^d , $d \geq 3$, mas neste caso, a cadeia não é recorrente*.
- 3) PAS assimétrico em \mathbb{Z} : $P_{xx-1} = q , <math>p + q = 1$.

$$\mu = \mathbf{P}\mu \Leftrightarrow \mu_{\mathsf{x}} = \mu_{\mathsf{x}-1}p + \mu_{\mathsf{x}+1}q, \ \mathsf{x} \in \mathbb{Z}$$

Esta eq de diferenças tem a seguinte sol geral: $\mu_x = A + B \left(\frac{p}{q}\right)^x$, logo, temos uma família a 2 parâmetros, $A, B \ge 0$, de medidas invs: não há unici// a menos de cte mult (cadeia transitória); não há distr inv.

^{*}Este caso é contra-ex para recíproca da Obs 1b: Teo de Liouville discreto.

Exs (cont)

4) Castelo de cartas

$$S = \mathbb{Z}^+ = \{0, 1, 2 \dots\}; \ P_{x \, x+1} = p_x \in (0, 1), \ x \ge 0.$$

$$\mu \mathbf{P} = \mu \Leftrightarrow \mu_0 = \sum_{x=0}^{\infty} \mu_x q_x, \quad \mu_x = \mu_{x-1} p_{x-1}, \ x \ge 1.$$

Iterando:
$$\mu_x = \left(\prod_{y=0}^{x-1} p_y\right) \mu_0 =: \mathcal{P}_{x-1} \mu_0$$
. Logo

$$\bar{\mu} = (1, \mathcal{P}_0, \mathcal{P}_1, \ldots)$$
 e múltiplos positivos são meds invariantes.

Se
$$\mathcal{M}:=\sum_{x\geq 0}\mathcal{P}_x<\infty$$
, então $\pi=\frac{\bar{\mu}}{1+\mathcal{M}}$ é a distr inv.

Neste caso, como \mathbf{P} é irredutível, temos que \mathbf{P} é rec pos.

Exercício: Verifique que **P** é a) transitória sse $\lim_{x\to\infty} \mathcal{P}_x = \prod_{v=0}^{\infty} p_x > 0$;

b) rec nula sse
$$\prod_{y=1}^{\infty} p_x = 0$$
 e $\sum_{x>0} \mathcal{P}_x = \infty$.

Convergência ao equilíbrio

Def. $x \in \mathcal{S}$ é dito aperiódico se $P_{xx}^{(n)} > 0 \ \forall \ n$ bastante gde

Obs. Pode-se verificar que x é aperiódico sse o *máximo divisor comum* de $\{n \ge 1: P_{xx}^{(n)} > 0\}$ é 1.

Lema 1. Se **P** for irredutível e admitir um estado aperiódico, então para todo $x, y \in \mathcal{S}$, temos que $P_{xy}^{(n)} > 0 \ \forall \ n$ bastante gde. Em particular, todo estado é aperiódico.

Dem. Sejam $z \in \mathcal{S}$ aper e $x, y \in \mathcal{S}$. Irred: $\exists r, s$: $P_{xz}^{(r)}$, $P_{zy}^{(s)} > 0$.

Dado n_0 tq $P_{zz}^{(n)} > 0 \ \forall \ n \ge n_0$, se $n \ge n_0' := n_0 + r + s$:

$$P_{xy}^{(n)} \ge P_{xz}^{(r)} P_{zz}^{(n-r-s)} P_{zy}^{(s)} > 0$$
, já que $n-r-s \ge n_0$.

Obs. Aperiodicidade é propriedade de classe.

Teorema 4 (Convergência ao equilíbrio)

Suponha que ${\bf P}$ seja irredutível, aperiódica, e que tenha distrinvariante π . Dada uma distrinicial μ qualquer, temos

$$\mathbb{P}(X_n = y) \underset{n \to \infty}{\longrightarrow} \pi_y, \, \forall y \in \mathcal{S}. \tag{7}$$

Em particular,

$$\mathbb{P}_{x}(X_{n}=y) \underset{n \to \infty}{\longrightarrow} \pi_{y}, \, \forall x, y \in \mathcal{S}. \tag{8}$$

Obs. 1) O limite não depende de μ ou x (perda de memória).

- 2) Do Teo 3: podemos subst a frase "que tenha distr inv π " por "recorrente positiva"; neste caso, adicionamos depois de (7): "onde π é a distr inv estipulada pelo Teo 3".
- 3) Cadeias irredutíveis e recorrentes positivas são ditas *ergódicas*. Cadeias irredutíveis finitas são ergódicas (vide Obs 2 no slide 13).

Dem. Teo 4

(Acoplamento de Doeblin)

Seja $\mathbf{Y} \sim \mathsf{CM}(\pi, \mathbf{P})$ indep de \mathbf{X} . Dado $v \in \mathcal{S}$, seja $\mathcal{T} = \inf\{n \geq 1 : X_n = Y_n = v\}$.

1) Vamos mostrar que $\mathbb{P}(T < \infty) = 1$.

 $\mathbf{W} := (X_n, Y_n)$ é uma CM em $\mathcal{S} \times \mathcal{S}$ com MT $\tilde{P}_{(x,y),(w,z)} = P_{xw}P_{yz}$ e dist inicial $\lambda_{(x,w)} = \mu_x \pi_w$.

Como **P** é aperiódica, $\forall x, y, w, z \in \mathcal{S}$, $\tilde{P}_{(x,y),(w,z)}^{(n)} = P_{xw}^{(n)} P_{yz}^{(n)} > 0$

 \forall n grande o bastante; logo \tilde{P} é irredutível.

Além disto, \tilde{P} tem dist inv $\tilde{\pi}_{(x,w)} = \pi_x \pi_w$; Teo 3: \tilde{P} rec pos.

Como $T=T_{(v,v)}$, o tempo de 1^a passagem de \mathbf{W} por (z,z), segue do Teo A que $\mathbb{P}(T<\infty)=1$.

Dem. Teo 4 (cont)

2) Seja
$$Z_n = \begin{cases} X_n, & \text{se } n < T; \\ Y_n, & \text{se } n \geq T. \end{cases}$$

Vamos mostrar que $\mathbf{Z} \sim \mathsf{CM}(\mu, \mathbf{P})$.

Como T é um TP p/ \mathbf{W} , e a PFM vale p/ \mathbf{W} , temos que $(X_{T+n}, Y_{T+n}) \sim (W_n)$ com dist inicial concentrada em (v, v) indep de $\{(X_\ell, Y_\ell); 0 \le \ell \le T\}$, e temos por simetria

$$(X_{T+n}, Y_{T+n}) \sim (Y_{T+n}, X_{T+n}).$$

Logo, $(Z_n) \sim (X_n)$.

Dem. Teo 4 (cont)

3) Da constr acima:

$$\mathbb{P}(X_n = x) = \mathbb{P}(Z_n = x) = \mathbb{P}(X_n = x, T > n) + \underbrace{\mathbb{P}(Y_n = x, T \le n)}_{\mathbb{P}(Y_n = x, T > n)} = \pi_x + \varepsilon_{n,x},$$

onde $|\varepsilon_{n,x}| \leq \mathbb{P}(T > n) \to 0$ qdo $n \to \infty$.

 \neg

Convergência ao equilíbrio — Caso irredutível geral

Para tratar do caso irredutível geral (ñ necessaria/e aperiódico, ñ necessaria/e rec pos), começamos com um res preliminar.

Teorema 5 Seja **P** irredutível. Então \exists um inteiro $d \ge 1$ e uma partição $S = C_0 \cup \ldots \cup C_{d-1}$ tq, fazendo $C_{nd+r} = C_r$, $0 \le r < d$,

- (i) $P_{xy}^{(n)} > 0$ só se $y \in \mathcal{C}_{r+n}$, onde r é tq $x \in \mathcal{C}_r$;
- (ii) Dados r e $x, y \in C_r$, temos que $P_{xy}^{(nd)} > 0 \ \forall \ n$ grande.

Dem. Fixemos $z \in \mathcal{S}$ e seja $\mathcal{N} = \{n \geq 0 : P_{zz}^{(n)} > 0\}$; escolhamos $n_1, n_2 \in \mathcal{N}$ tq $0 \leq n_1 < n_2$ e $d = n_2 - n_1$ seja o menor possível. Para $r = 0, \ldots, d-1$, seja

$$C_r = \{x \in \mathcal{S} : P_{zx}^{(nd+r)} > 0 \text{ para algum } n \ge 0\}.$$

Pela irredutibilidade: $\mathcal{S} = \mathcal{C}_0 \cup \ldots \cup \mathcal{C}_{d-1}$

Dem. Teo 5 (cont)

Além disto, se
$$P_{zx}^{(nd+r)}$$
, $P_{zx}^{(n'd+s)} > 0$ para $n' \ge n \ge 0$, $r,s \in \{0,\ldots,d-1\}$, então, fazendo $\delta = n'-n$, temos: $P_{zz}^{(\delta n_1)}$, $P_{zz}^{(\delta n_2)} > 0$.

Seja $\ell \geq 0$ tq $P_{xz}^{(\ell)} > 0$. Então

$$P_{zz}^{(\delta n_2+nd+r+\ell)} \geq P_{zz}^{(\delta n_2)} P_{zx}^{(nd+r)} P_{xz}^{(\ell)} > 0;$$

similarmente, $P_{zz}^{(\delta n_1 + n'd + s + \ell)} > 0$.

Como $\delta n_2 + nd = \delta n_1 + n'd$, segue da minimali// de d que r = s, e C_0, \ldots, C_{d-1} é uma partição de S.

(i) Suponha que $P_{xy}^{(n)}>0$ e $x\in\mathcal{C}_r$. Escolhendo ℓ tq $P_{zx}^{(\ell d+r)}>0$,

Temos que
$$P_{zy}^{(\ell d+r+n)} > 0$$
, e $y \in \mathcal{C}_{r+n}$.

Note que fazendo x=y=z no argumento acima, podemos concluir que d divide cada elemento de \mathcal{N} , em particular $d|n_1$.

Dem. Teo 5 (cont)

Vamos a seguir mostrar que $nd \in \mathcal{N}$ para todo n bastante grande.

Se
$$n_1 = 0$$
, então $d = n_2$ e $P_{zz}^{(nd)} \ge (P_{zz}^{(n_2)})^n > 0$. (9)

Se *n* for tq $nd \ge n_1^2$, então escrevamos

$$nd = qn_1 + s, (10)$$

com q, s inteiros tq $q \ge n_1$ e $0 \le s \le n_1 - 1$.

Como $d|n_1$, temos de (10) que d|s: $s = \ell d$ para algum $0 \le \ell < n_1$.

$$\therefore nd = (q - \ell)n_1 + \ell n_2 \ \Rightarrow \ P_{zz}^{(nd)} \ge \left(P_{zz}^{(n_1)}\right)^{q - \ell} \left(P_{zz}^{(n_2)}\right)^{\ell} > 0 \quad (11)$$

De (9) e (11): $nd \in \mathcal{N}$ para todo $n \geq n_1^2/d$.

Dem. Teo 5 (cont)

(ii) Suponha que $x, y \in \mathcal{C}_r$. Escolhendo ℓ_1, ℓ_2 tq $P_{xz}^{(\ell_1)}, P_{zy}^{(\ell_2)} > 0$:

$$P_{xy}^{(\ell_1+nd+\ell_2)} \ge P_{xz}^{(\ell_1)} P_{zz}^{(nd)} P_{zy}^{(\ell_2)} > 0$$
 sempre que $nd \ge n_1^2$,

$$e(i) \Rightarrow d|\ell_1 + \ell_2$$
.

Obs. $d=\operatorname{mdc}\mathcal{N}$, e indep de z, é dito o período da CM. (O caso aperiódico corresponde a d=1.)

Teorema 6 (Teo geral de conv p/ cadeias irredutíveis)

Suponha que ${\bf P}$ seja irredutível e tenha período d, e seja ${\cal C}_0,\ldots,{\cal C}_{d-1}$ a partição estabelecida no Teo 5. Seja μ uma prob em ${\cal S}$ concentrada em ${\cal C}_0$, e ${\bf X}\sim {\sf CM}(\mu,{\bf P})$. Então, p/ $r=0,\ldots,d-1$ e $y\in{\cal C}_r$, temos que

$$\mathbb{P}(X_{nd+r} = y) \underset{n \to \infty}{\longrightarrow} \frac{d}{m_y}, \tag{12}$$

onde $m_y = \mathbb{E}_y(T_y)^{\dagger}$. Em particular, p/ $x \in \mathcal{C}_r$,

$$P_{xy}^{(nd+r)} \xrightarrow[n \to \infty]{} \frac{d}{m_y}.$$
 (13)

Obs. Os casos transitório e recorrente nulo estão incluídos; em ambos o limite se anula identicamente.

 $[\]frac{d}{d} = 0$

Dem. Teo 6

a) Façamos $\nu=\mu\mathbf{P}^r$; então, pelo Teo 5, $\sum_{\mathbf{x}\in\mathcal{C}_r} \nu_{\mathbf{x}}=1$.

Sendo $Y_n = X_{nd+r}$, $n \ge 0$, temos que $\mathbf{Y} \sim \mathsf{CM}(\nu, \mathbf{P}^d)$ em \mathcal{C}_r .

Teo 5: \mathbf{P}^d é irredutível e aperiódica em \mathcal{C}_r .

Para $y \in \mathcal{C}_r$, o tempo médio de retorno de \mathbf{Y} a y vale $\frac{m_y}{d}$.

Logo, supondo o Teo 6 válido para o caso aperiódico, temos que

$$\mathbb{P}(X_{nd+r}=y)=\mathbb{P}(Y_n=y)\underset{n\to\infty}{\longrightarrow}\frac{d}{m_y},$$

e o Teo 6 vale em geral.

Podemos então, para as demais partes, supor que ${f P}$ é aperiódica.

Temos então, do Teo 4, a validade do Teo 6 no caso rec pos.

Vamos a seguir examinar os casos restantes, a saber, o transitório e o recorrente nulo.

Dem. Teo 6 (cont)

b) Se **P** for transitória, então, sendo V_x o número de visitas a $x \in \mathcal{S}$, vimos que $V_x \sim \text{Geo}(p_x)$, com $p_x = \mathbb{P}_x(T_x = \infty) > 0$.

Logo
$$\mathbb{P}_x(V_x<\infty)=1$$
, e $\mathbb{P}_x(L_x<\infty)=1$, onde $L_x=\inf\{n\geq 0:\, X_n=x\}.$

Logo,

$$\mathbb{P}(X_{n} = x) \leq \sum_{i=0}^{n} \mathbb{P}(H^{x} = i) \mathbb{P}_{x}(X_{n-i} = x)$$

$$\leq \mathbb{P}(\frac{n}{2} \leq H^{x} \leq n) + \sum_{i=0}^{n/2} \mathbb{P}(H^{x} = i) \underbrace{\mathbb{P}_{x}(L_{x} \geq \frac{n}{2})}_{n \to \infty}$$

$$\leq \mathbb{P}(\frac{n}{2} \leq H^{x} < \infty) + \mathbb{P}_{x}(L_{x} \geq \frac{n}{2}) \xrightarrow{n \to \infty} 0.$$

Dem. Teo 6 (cont)

c) Se P for rec nula, então,

$$m_y = \sum_{i \geq 0} \mathbb{P}_y(T_y > i) = \mathbb{E}_y(T_y) = \infty.$$

Dado $\varepsilon > 0$, escolhamos K tq $\sum_{i=0}^{K-1} \mathbb{P}_y(T_y > i) \geq \frac{2}{\varepsilon}$.

Então, para
$$n \ge K - 1$$
 eventos disjuntos

$$1 \geq \sum_{i=n-K+1}^{n} \mathbb{P}(X_i = y, X_{\ell} \neq y, \ell = i+1, \dots, n)$$

$$= \sum_{i=n-K+1}^{n} \mathbb{P}(X_i = y) \mathbb{P}_y(T_y > n-i)$$

$$= \sum_{i=0}^{K-1} \mathbb{P}(X_{n-i} = y) \mathbb{P}_y(T_y > i)$$

Logo, existe
$$i \in \{0, \dots, K-1\}$$
 tq $\mathbb{P}(X_{n-i} = y)) \leq \frac{\varepsilon}{2}$. (14)

Para preencher as lacunas vamos a seguir novamente recorrer ao acoplamento de Doeblin.

Seja $\mathbf{Y} \sim \mathsf{CM}(\lambda, \mathbf{P})$, λ a ser escolhida, e $\mathbf{W} = (X_n, Y_n)$.

Como antes, aperiodicidade garante irredutibilidade.

Dem. Teo 6 (cont)

Se **W** for transitória, então, fazendo $\lambda = \mu$, temos que $\mathbb{P}(X_n = y)^2 = \mathbb{P}(W_n = (y, y)) \xrightarrow[n \to \infty]{a} 0$, e o resultado segue.

Vamos supor que **W** é recorrente. Usando a not do Teo 4:

$$\mathbb{P}(T<\infty)=1$$
,

e, de novo,

$$|\mathbb{P}(X_n = y) - \mathbb{P}(Y_n = y)| \underset{n \to \infty}{\longrightarrow} 0.$$

Para $j\in\{0,\ldots,K-1\}$ fixo, tomando $\lambda=\mu\mathbf{P}^j$, temos que $\mathbb{P}(Y_n=y)=\mathbb{P}(X_{n+j}=y).$

$$\therefore \exists N \geq 0 \text{ tq } |\mathbb{P}(X_n = y) - \mathbb{P}(X_{n+j} = y)| \leq \frac{\varepsilon}{2} \ \forall n \geq N, j = 0, \dots, K-1$$

$$\therefore \exists \ \tilde{N} \geq K \ \mathsf{tq} \ |\mathbb{P}(X_n = y) - \mathbb{P}(X_{n-i} = y)| \leq \frac{\varepsilon}{2} \ \forall n \geq \tilde{N}, \ i = 0, \dots, K-1.$$

Tomando i como em (14), e usando o resultado acima: $\mathbb{P}(X_n = y) \leq \varepsilon$.

Sem irredutibilidade

Sejam $\mathcal{F}_1, \mathcal{F}_2, \ldots$ as classes rec pos de \mathcal{S} .

1) Se $\mathcal{F}_1, \mathcal{F}_2, \ldots$ forem todas aperiódicas, e π^i for a distr invariante associada a \mathcal{F}_i (correspondendo àquela da cadeia com distr inicial concentrada em \mathcal{F}_i).

Dado $x \in \mathcal{S}$, seja $h_x^i = \mathbb{P}_x(\mathbf{X} \text{ atinge } \mathcal{F}_i)$. Então $\mathbb{P}_x(X_n = y) \underset{n \to \infty}{\longrightarrow} h_x^i \pi_y^i, \text{ se } y \in \mathcal{F}_i \text{ para algum } i;$ $\underset{n \to \infty}{\longrightarrow} 0, \text{ se } y \notin \cup_{i \ge 1} \mathcal{F}_i.$

2) Se houver alguma \mathcal{F}_i com período $d_i \geq 2$, a análise se complica, entrando em questão

$$h_x^{i,r}(\ell) = \mathbb{P}_x(H^{\mathcal{F}_i} = \ell, X_\ell \in \mathcal{C}_r^i), \ \ell \geq 0, \ r = 0, \ldots, d_i - 1,$$

onde $\mathcal{C}_1^i,\dots,\mathcal{C}_{d_i-1}^i$ é a partição de \mathcal{F}_i dada pelo Teo 5. Estas ques podem não ser muito fáceis de achar.

