Functions

Paolo Bettelini

Contents

1	Surjectivity	2
2	Injectivity	2
3	Bijectivity	2
4	Continuity	2
5	Periodic functions	2
6	Odd functions	2
7	Even functions	2
8	Intermediate value Theorem	2
9	Bolzano's Theorem	3
10	Weierstrass Theorem	3

1 Surjectivity

A function $f: D_f \to I_f$ is said to be **surjective** if

$$\forall y \in I_f, \exists x \in D_f | f(x) = y$$

2 Injectivity

A function $f: D_f \to I_f$ is said to be **injective** if

$$\forall x_1, x_2 \in D_f, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

3 Bijectivity

A function is said to be **bijective** iff it's both injective and surjective.

4 Continuity

A function f is continuous at a point c iff

$$\lim_{c_0 \to c^+} f(c_0) = \lim_{c_0 \to c^-} f(c_0) = f(c)$$

A function f is continuous on an interval [a; b] iff it is continuous at each point $c \in [a; b]$

$$\forall c \in [a; b], \lim_{c_0 \to c^+} f(c_0) = \lim_{c_0 \to c^-} f(c_0) = f(c)$$

5 Periodic functions

A function f is periodic with a period T iff

$$f(x) = f(x + kT), \quad k \in \mathbb{Z}$$

6 Odd functions

A function f is odd iff

$$f(-x) = -f(x)$$

7 Even functions

A function f is even iff

$$f(-x) = f(x)$$

8 Intermediate value Theorem

A function f continuous on an interval [a; b] will take every value in the interval [f(a); f(b)].

9 Bolzano's Theorem

If f(x) is continuous on [a;b] and $f(a) \cdot f(b) < 0$ then there is a root.

$$f(a) \cdot f(b) < 0 \implies \exists c \in [a; b] \mid f(c) = 0$$

10 Weierstrass Theorem

If f(x) is continuous in [a;b] then the function will a maxima and a minima.