



# 1. Introduction

Practical Data Science (PDS)





## Your teachers

Lecture: Prof. Dr. Gunther

Gust



- Inhaber des Lehrstuhls für Wirtschaftsinformatik und Künstliche Intelligenz im Unternehmen (seit 2022)
- Forschung und Lehre über die Anwendung von KI in Unternehmen und Gesellschaft
  - Smart Grids
  - Smart Mobility
  - Smart Cities & Urban Analytics
- Ausbildung: KIT, ITESM Monterrey, Uni Freiburg, Lawrence Berkeley National Laboratory
- Stipendiat Stusti & Heinrich Böll Stiftung

Exercise: Viet Nguyen



- Computer Science and Engineering (Bachelor) at the Frankfurt University of Applied Sciences and the Vietnamese-German University
- Data Engineering and Analytics (Master) at the Technical University of Munich (graduated with distinction)
- Data Science Intern: Knorex, Ho Chi Minh, Vietnam
- Software Engineer: mesoneer, Ho Chi Minh, Vietnam





# **D3 Group**







# This course introduces data science tools, as well as advanced methodologies in an applied manner

**SPOTLIGHT** ON BIG DATA

Spotlight

ARTWORK Tamar Cohen, Andrew J Buboltz 2011, silk screen on a page from a high school yearbook, 8.5" x 12"

# Data Scientist: The Sexiest Job of the 21st Century

Meet the people who can coax treasure out of messy, unstructured data. by Thomas H. Davenport and D.J. Patil







# It prepares you for promising positions in practice





# Learning objectives for this course

- The foundations, frameworks and applications of the emerging field of data science
- Design, implement, and evaluate the core algorithms underlying an end-to-end data science workflow, including data import, analysis, and presentation of information
- Leverage the Python application programming interface (API) ecosystem and data infrastructure that supports data acquisition, storage, retrieval and analysis
- The application of a data-based analytical approach to identify and solve problems
- Implementation and execution skills for data-driven business analytics





# **Course Schedule**

|           | 1. Introduction, Jupyter Notebooks, Version Control (today)           |  |  |  |
|-----------|-----------------------------------------------------------------------|--|--|--|
|           | 2. Descriptive Analytics                                              |  |  |  |
|           | 3. Machine Learning Introduction                                      |  |  |  |
|           | 4. Feature Engineering                                                |  |  |  |
| Oct – Dec | 5. Deep Learning on Tabular Data                                      |  |  |  |
|           | 6. Deep Learning for Computer Vision                                  |  |  |  |
|           | 7. Deep Learning for Image Segmentation, Geocoding & Capstone Project |  |  |  |
|           | 8. Data to Production                                                 |  |  |  |
|           | 9. Deep Learning for Natural Language Processing                      |  |  |  |
|           | 10.NLP with Huggingface                                               |  |  |  |
|           | 11.Guest lecture                                                      |  |  |  |
| Jan & Feb | 12.Group Work on Capstone Project                                     |  |  |  |
|           | 13.Final presentations (End of semester)                              |  |  |  |





# Why Python?

| Oct 2021 | Oct 2020 | Change | Programming Language  | Ratings | Change |
|----------|----------|--------|-----------------------|---------|--------|
| 1        | 3        | ^      | Python                | 11.27%  | -0.00% |
| 2        | 1        | •      | <b>G</b> c            | 11.16%  | -5.79% |
| 3        | 2        | ~      | 💃, Java               | 10.46%  | -2.11% |
| 4        | 4        |        | C++                   | 7.50%   | +0.57% |
| 5        | 5        |        | <b>C</b> #            | 5.26%   | +1.10% |
| 6        | 6        |        | VB Visual Basic       | 5.24%   | +1.27% |
| 7        | 7        |        | <b>JS</b> JavaScript  | 2.19%   | +0.05% |
| 8        | 10       | ^      | SQL SQL               | 2.17%   | +0.61% |
| 9        | 8        | •      | php PHP               | 2.10%   | +0.01% |
| 10       | 17       | *      | Asm Assembly language | 2.06%   | +0.99% |





Spreadsheet

Modelling

**Programming** 

& System

Design

Digital

**Business** 

Enterprise Information

System

Logistics

# The course relates to several other courses of the D3 teaching program

**Tools** 

**Applications** 

# Theory & methods

**Data Analytics** 

Optimization

Planen und Entscheiden

Datenmanagement und -analyse

Simulation for Decision Making

Introduction to **Data Science** 

Intelligence Advanced Web Engineering

E-Business

Managerial

Problem Solving

Programmieren für

WiWis

Vorstände berich-

ten aus der Praxis

**Smart Cities&Geo**spatial Analytics

Business

Data Driven Decisions in Practice

**Enterprise Al** 

**Practical Data Science** 

Mobile & Ubiquitous **Business** 

E-Business Strategies

**IT-Management** 

Strategic Mgmt of **Glob Supply Chains**  Adv. Operations & **Logistics Mgmt** 

Global Logistics & Supply Chain Mgmt

Managerial Analytics & **Decision Making** 

> Analytical Information Systems

**Decision Support Systems** 

Data Science in Economics and **Business** 

Master

### **Bachelor**



# Die Forschung des Lehrstuhls für WI und KI im Unternehmen

# 3. Domänen

1. Theoretische **Einbettung** 

> Wirtschaftsinformatik Design of IS



**Data Analytics** Optimierung Machine Learning

2. Forschungsmethoden

# Digitale Transformation

### **Smart Cities and Industries**

Energie Mobilität

Industrie 4.0 Internet of Things

Infrastrukturplanung &

betrieb

### **Aktuelle Projekte und Themen (Auswahl)**

- Computer vision-based planning of electricity networks
- Dynamic electricity pricing & load flexibility
- Earthquake monitoring based on spatial sensor data and graph-convolutional neural networks
- Mixed autonomous urban mobility systems
- Multi-modal urban analytics







(b) Corresponding guidance map created by



(c) Output: Predicted feeder (blue) and actual feeder (red).







# Our research: Deep Learning to Segment Photovoltaic Arrays

# **Deep Solar**

- Objectives
  - Detect solar PV systems based on areal images
  - Geocode the PV systems and estimate their size

#### Results

- First exhaustive data set containing the geolocation of PV systems for large regions of Germany
- The data set serves as the basis for further analyses about the adoption of PV systems
- In a follow-up project we plan to combine the PV data set with 3D city models













# What can we learn from aerial images about residential electricity consumtion?







Zip Code |x

Image-based model

ROSENFELDER M, WUSSOW M, GUST G, CREMADES R, NEUMANN D (2021): Predicting Residential Electricity Consumption Using Aerial and Street View Images. Applied Energy.





# Using generative AI to create artificial training images for autonomous driving



**Figure 7:** *Generative Image Augmentations with InfEdit* 





# Ways to work with us

- Hiwi jobs (Bachelor's and Master's level)
  - Women are particularly encouraged to apply (see also Women@WIWI program)
- Seminar thesis
  - Bachelor seminar
  - Master seminar
  - Project seminar
- Bachelor's thesis
- Master's thesis
  - Scholarships available
- Doctorate
  - Applications are accepted on an on-going basis





# **Course Organization**

#### Lecture

- Mondays 14:15 15:45 (approx.)
- Theoretical foundations
- Implementation examples using Python

#### Exercise

- Directly after lecture
- Weekly assignments to be solved on your own
  - Published after lecture
  - Due 1.5 weeks later
  - Complete 4 out of 5 assignments to be eligible for final project
  - Meaningful participation in the WueCampus forum (or Discord Server) before Nov 30 counts as 1 assignment
- Bonus (0,3 bonus for the exam)
  - Complete 5 out of 5 assignments

### Final project

- Work on a real-world problem set
- Groups of 3 students

