Abstrações de Memória: Projeto e Implementação de Paginação

Prof. Dr. Márcio Castro marcio.castro@ufsc.br

Questões relativas ao projeto de paginação

- Política de alocação e de substituição
- Controle de carga
- Tamanho de páginas
- Compartilhamento de páginas

Política de alocação e de substituição

Política de alocação

Política de alocação global

- Molduras de página são alocadas aos processos de forma dinâmica
- O número de molduras de página associadas a cada processo varia com o tempo

Política de alocação local

- Molduras de página são alocadas aos processos de forma estática
- O número de molduras de página associadas a cada processo é fixo

Política de alocação global

Algoritmo Page Fault Frequency (PFF)

- Gerenciamento dinâmico de alocação de páginas
- Determina quando aumentar/diminuir o número de molduras de página
- $PFR = \frac{PF_{lsec} + PFR}{2}$, onde PFR é a taxa de faltas de página e PF_{lsec} é o número de faltas de página no último segundo

5

Política de substituição de páginas

- Política de substituição global
 - Permite substituir molduras de página alocadas por qualquer processo
- Política de substituição local
 - Somente pode substituir molduras de página alocadas pelo próprio processo

Política de substituição de páginas: exemplo com LRU

Após processo A requisitar acesso à página A6

ii accs	o a pagi	114 / 10	
Substituição global			
	A0		
	A1		
	A2		
	А3		
	A4		
	A5		
	В0		
	B1		

C2

B2

Política de substituição de páginas

- Podem funcionar com políticas local e global
 - FIFO, Clock, NRU, LRU, NFU e Aging
- Somente com política local
 - WSClock
 - Não existe um working set global do sistema

Controle de carga

Controle de carga

O que acontece se os working sets de todos os processos em execução excederem o limite da memória RAM?

- Processos vão causar faltas de página a todo momento thrashing
- PFF: indicará que vários processos precisam de mais memória, porém nenhum processo precisará de menos memória
- Nesse caso, não há como alocar mais memória para um processo sem prejudicar os outros!

Controle de carga

Solução:

- 1. Swap-out de alguns processos para o disco para liberar molduras de página
- 2. Alocar as molduras de página aos processos que precisam de mais memória
- 3. Repetir os passos 1 e 2 até que o problema de thrashing seja resolvido

- Escolhas devem ser baseadas nos perfis de processos
 - CPU-bound vs. I/O-bound
 - Fazer swap-out de muitos processos CPU-bound pode deixar a CPU ociosa

Tamanho de páginas

Tamanho de páginas

- O tamanho das páginas é um parâmetro que pode ser escolhido pelo SO
 - Por exemplo, se o hardware foi desenvolvido para trabalhar com páginas de 4
 KB, o SO pode considerar pares de páginas como sendo páginas de 8 KB
 - Para isso, o SO deverá sempre alocar duas molduras de página consecutivas na memória
- O tamanho das páginas tem um impacto importante em todo o sistema
 - Não há um tamanho ideal único para todos os tipos de sistema

Tamanho de páginas

Páginas grandes	Páginas pequenas	
Menos faltas de página	Mais faltas de página	
Mais fragmentação interna	Menos fragmentação interna	
Tabelas de páginas com menos entradas	Tabelas de páginas com mais entradas	
Programas ocupam mais memória, mesmo tendo um working set pequeno	Maior ocupação de entradas na TLB	

Compartilhamento

Compartilhamento de páginas

Em SOs multiprogramados é comum termos:

- Um usuário executando diversos programas que usam uma mesma biblioteca
- Múltiplos usuários executando o mesmo programa ao mesmo tempo
- Processos multithreaded ou que criam processos filhos via fork()

Compartilhamento

- Evita a necessidade de cópias de páginas na memória
- Melhora o aproveitamento do espaço de armazenamento

Compartilhamento de páginas

- Páginas com permissão de somente leitura (e.g., segmento de texto de processos) podem ser facilmente compartilhadas
- Páginas contendo dados dos processos também podem ser compartilhadas, apesar de ser necessário um tratamento especial nesses casos
- Substituição de páginas compartilhadas em um processo poderá gerar page faults em outros processos

Compartilhamento de páginas

Estratégia de copy on write utilizada no fork()

- Os processos pai e filho compartilham as molduras de página contendo os segmentos de texto e dados
- Cada processo possui a sua própria tabela de páginas, mas as entradas de ambas as tabelas apontam para as mesmas molduras de página
- As molduras de página são marcadas como somente leitura
- Na ocorrência de uma escrita no segmento de dados:
 - Uma violação de proteção de somente leitura gera uma sinalização ao SO
 - O SO realiza a cópia da moldura de página, atualiza a tabela de páginas e marca a moldura como leitura/escrita

Obrigado pela atenção!

Dúvidas? Entre em contato:

- marcio.castro@ufsc.br
- www.marciocastro.com

