Esercizio 6

Determinare la tensione e la corrente del resistore R₃.

Svolgimento

Stabiliamo i versi delle tensioni e delle correnti (orientiamo il circuito).

Osserviamo che nello schema sono presenti due generatori e che dobbiamo determinare la tensione e la corrente di un solo resistore. Conviene utilizzare la sovrapposizione degli effetti. I resistori R_3 ed R_4 sono percorsi dalla stessa corrente I_{34} quindi sono in serie.

Effetto di E_1 :

Ridisegniamo il circuito dopo aver disattivato il generatore E₂. (Si ricorda che disattivare un generatore di tensione significa sostituirlo con un cortocircuito).

È molto importante mantenere sempre l'orientamento del circuito scelto inizialmente.

Determiniamo la resistenza della serie R₃-R₄:

$$R_{34} = R_3 + R_4 = 27 + 10 = 37\Omega$$

Osserviamo che i resistori R_2 e R_{34} sono in parallelo. Calcoliamo la resistenza R_{234} e ridisegniamo il circuito.

$$R_{234} = \frac{R_2 R_{34}}{R_2 + R_{34}} = \frac{56 \cdot 37}{56 + 37} = 22.3\Omega$$

Abbiamo una sola maglia percorsa dalla corrente I_1 . Le resistenze R_1 e R_{234} sono percorse dalla stessa corrente e, quindi, sono in serie. Possiamo determinare la corrente I_1 che attraversa il resistore R_1 :

$$I_1 = \frac{E_1}{R_1 + R_{234}} = \frac{10}{47 + 22.3} = 0.14A = 140mA$$

I resistori R_2 e R_{34} sono in parallelo e, quindi, ai loro capi è presente la stessa tensione (uguale anche alla tensione sul parallelo). Quindi:

$$V_{R_2} = V_{R_{34}} = V_{R_{234}} = R_{234}I_1 = 22.3 \cdot 0.14 = 3.12V$$

Dobbiamo determinare la corrente e la tensione del resistore R_3 . Dato che R_3 e R_4 sono in serie possiamo scrivere:

$$I_3 = I_4 = I_{34} = \frac{V_{R_{34}}}{R_{34}} = \frac{3.12}{37} = 0.08A = 80mA$$

La corrente che scorre nel resistore R₃ dovuta al generatore E₁ vale:

$$I_{R_3}' = 80mA$$

Effetto di E₂:

Ridisegniamo il circuito dopo aver disattivato il generatore E₁.

Osserviamo che i resistori R_1 e la serie R_{34} sono in parallelo (infatti tutti e due hanno un capo collegato al nodo B e l'altro collegato al nodo C). Calcoliamo la resistenza R_{134} e ridisegniamo il circuito.

$$R_{134} = \frac{R_1 R_{34}}{R_1 + R_{34}} = \frac{47 \cdot 37}{47 + 37} = 20.7\Omega$$

Abbiamo una sola maglia percorsa dalla corrente I_2 . Le resistenze R_2 e R_{134} sono percorse dalla stessa corrente e, quindi, sono in serie. Possiamo determinare la corrente I_2 che attraversa il resistore R_{134} :

$$I_2 = \frac{E_2}{R_2 + R_{134}} = \frac{15}{56 + 20.7} = 0.19A = 190mA$$

Determiniamo la tensione ai capi del resistore R₁₃₄ usando la legge di Ohm:

$$V_{R_{134}} = R_{134}I_2 = 20.7 \cdot 0.19 = 3.93V$$

Dato che il resistore R_1 e la serie $R_3\text{-}R_4$ sono in parallelo possiamo scrivere:

$$V_{R_{134}} = V_{R_1} = V_{R_{34}} = 3.93V$$

A questo punto possiamo calcolare la corrente che scorre nel resistore R₃ dovuta al generatore E₂:

$$I_{R_{34}} = I_{R_3} = I_{R_4} = \frac{V_{R_{34}}}{R_{34}} = \frac{3.93}{37} = 0.11A = 110mA$$

Complessivamente nel resistore R₃ scorre la corrente:

$$I_{R_3} = I'_{R_3} + I''_{R_3} = 0.08 + 0.11 = 0.19A = 190mA$$

Determiniamo la tensione:

$$V_{R_3} = R_3 I_{R_3} = 27 \cdot 0.19 = 5.13V$$

Questo file può essere scaricato gratuitamente. Se pubblicato citare la fonte.

Matilde Consales