

Name:

Question 1 {Perms and Combs} - a group of 20 people are seated around a table. If a family of 5 have to sit next to each other, how many ways are there for this group to be seated?

Question 2 {Inequalities} solve $x^2-4x-12 \geq 0$

Question 3 (inverse functions) - given the graph of f(x) below, sketch the graph of $f^{-1}(x)$

Question 4 {related rates of change}

A cone-shaped candle whose height is 3 times its radius is melting at the constant rate of $1.4 \text{ cm}^3 \text{ s}^{-1}$. If the proportion of radius to height is preserved, find the rate at which the radius will be decreasing when it is 3.7 cm.

Question 5 (further logs and exponents)

2 a Show that $N = 45 + Ae^{0.14t}$ is a solution of $\frac{dN}{dt} = 0.14(N - 45)$.

b Given N = 82 when t = 2, find A to 2 decimal places.

c What is *N* when t = 5?

d Find t when N = 120.

e Sketch the graph of this function for values of *t* from 0 to 25.

Question 6 {vectors} for what value of a is the vector $\binom{a}{4}$ perpendicular to $\binom{-3}{-2}$?

Question 7 {differentiation of inverse trig}

3 What is the derivative of $\tan^{-1} \frac{x}{2}$?

$$A. \qquad \frac{1}{2(4+x^2)}$$

$$B. \qquad \frac{1}{4+x^2}$$

$$C. \qquad \frac{2}{4+x^2}$$

$$D. \quad \frac{4}{4+x^2}$$

Question 8 {mathematical induction}

(a) Prove by mathematical induction that, for all integers $n \ge 1$,

$$1(1!) + 2(2!) + 3(3!) + \dots + n(n!) = (n+1)! - 1.$$

3

Question 9 {trig equations}

The diagram shows the two curves $y = \sin x$ and $y = \sin(x - \alpha) + k$, where $0 < \alpha < \pi$ and k > 0. The two curves have a common tangent at x_0 where $0 < x_0 < \frac{\pi}{2}$.

- (i) Explain why $\cos x_0 = \cos(x_0 \alpha)$.
- (ii) Show that $\sin x_0 = -\sin(x_0 \alpha)$.

1

(iii) Hence, or otherwise, find k in terms of α .