Algoritmi & Strutture Dati

Andrea Comar

October 2024

Contents

Ι	Concetti Matematici	4		
1	Notazione asintotica 1.1 Notazione O-grande (e o-piccolo)	4 4 5 5 6 6		
2	Cenni utili sui limiti	8		
3	Stime di Somme			
II	${f Algoritmi}$	9		
4	Tabella riassuntiva costi temporali	9		
5	Cenni introduttivi da SISTEMARE	10		
6	Algoritmi di ordinamento e costruzione 6.1 Insertion sort 6.2 Merge sort 6.3 Merge 6.4 Build-Heap (array) 6.5 Heapify (array) 6.6 Extract-Max-Heap 6.7 Heap Sort 6.8 Quick Sort 6.9 Partition 6.10 Selection 6.11 Select	10 10 11 12 13 13 14 14 14 15 15		
7	Algoritmi di ordinamento non basati su scambi e confronti 7.1 Breve intro 7.2 Counting Sort 7.3 Radix Sort 7.4 Bucket Sort	16 16 16 17 17		
Π	I Strutture Dati	18		

8	strutture dati lineari					
	8.1	Array	18			
	8.2	Lista	18			
	8.3	Pila	18			
	8.4	Code di priorità	18			
	8.5	Albero Binario	19			
	8.6	Max-Heap	19			
	8.7	Tabelle di Hash	20			
	8.8	Tabelle di Hash con Chaining	21			
	8.9	funzioni di Hash	22			
	8.10	Tabelle di Hash con Open Addressing	23			
	8.11	Tipologie di scansione	23			
т т	, T		00			
ΙV	E	Sercizi e sfide	23			
9	eser	cizi scrittura di algoritmi	24			
10	equa	azioni ricorsive	24			
11	eser	cizi di induzione e correttezza	24			
12	$\mathbf{sfid}\mathbf{e}$		24			
		Possibility Majority Candidate	24			
	12.2	Liste Circolari	24			
	12.3	Matrice	24			

Part I

Concetti Matematici

1 Notazione asintotica

Strumento per confrontare quale funzioni divergono all'infinito più velocemente. Metodo di confronto tra funzioni di costo degli algoritmi. Caratteristiche:

- $f: \mathbb{N} \to \mathbb{R}^+$
- funzioni monotone crescenti
- $\lim_{n\to\infty} f(n) = \infty$ (divergenti)

In breve la notazione asintotica si basa su tre simboli:

- O (O-grande): rappresenta il caso peggiore, ovvero il **limite asintotico** superiore. "cresce al più come"
- Ω (Omega): rappresenta il caso migliore, ovvero il limite asintotico inferiore "cresce al meno come"
- Θ (theta): rappresenta il caso medio, ovvero il limite asintotico stretto "stesso ordine di grande"

La notazione asintotica si fonda sul concetto di limite, in particolare sul **limite** del rapporto. Di base possiamo riscri

1.1 Notazione O-grande (e o-piccolo)

Notazione O-grande O Abbiamo due definizioni equivalenti:

- $O(g(n)) = \{f(n) | \exists c > 0 \exists \bar{n} \ \forall n \geq \bar{n} \ f(n) \leq c \cdot g(N) \}$
- Date $f, g : \mathbb{N} \to \mathbb{R}^+$ monotone crescenti, diciamo che $f(n) \in O(g(n))$ se $\exists c > 0$ $e \exists \bar{n} : \forall n \geq \bar{n}$ $f(n) \leq c \cdot g(n)$

Di base entrambe fanno riferimento al concetto di limite del rapporto

•
$$\limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty \Leftrightarrow f(n) = O(g(n))$$

Diciamo che g(n) domina f(n), ovvero f(n) ha un ordine di grandezza minore o uguale a g(n).

notazione o-piccolo o Se nelle definizioni invece di $\exists c$ vale per $\forall c$ si parla di notazione o-piccolo. Quindi vale il seguente limite:

$$\bullet \ \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Leftrightarrow f(n) = o(g(n))$$

Di conseguenza $f(n) = o(g(n)) \Rightarrow f(n) = O(g(n))$, NON il contrario.

1.2 Notazione Omega-grande (e omega-piccolo)

Notazione Omega-grande Ω Abbiamo due definizioni equivalenti:

- $\Omega(g(n)) = \{f(n) | \exists c > 0 \ \exists \bar{n} \in \mathbb{N} \ \forall n \geq \bar{n} \ f(n) \geq c \cdot g(N) \}$
- Date $f,g:\mathbb{N}\to\mathbb{R}^+$ monotone crescenti, diciamo che $f(n)\in\Omega(g(n))$ se $\exists c>0$ e $\exists \bar{n}:\forall n\geq \bar{n}$ $f(n)\geq c\cdot g(n)$

Di base entrambe fanno riferimento al concetto di limite del rapporto

•
$$\liminf_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| > 0 \Leftrightarrow f(n) = \Omega(g(n))$$

notazione omega-piccolo ω Se nelle definizioni invece di $\exists c$ vale per $\forall c$ si parla di notazione omega-piccolo. Quindi vale il seguente limite:

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Leftrightarrow f(n) = \omega(g(n))$$

Di conseguenza $f(n) = \omega(g(n)) \Rightarrow f(n) = \Omega(g(n))$, NON il contrario.

1.3 Notazione Theta

Notazione Theta Θ Abbiamo due definizioni equivalenti:

- $\Theta(g(n)) = \{ f(n) | \exists c_1, c_2 > 0 \ \exists \bar{n} \in \mathbb{N} \ \forall n \ge \bar{n} \ c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$
- Date $f, g : \mathbb{N} \to \mathbb{R}^+$ monotone crescenti, diciamo che $f(n) \in \Theta(g(n))$ se $\exists c_1, c_2 > 0$ $e \exists \bar{n} : \forall n \geq \bar{n} \ c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$

Di base entrambe fanno riferimento al concetto di limite del rapporto

$$\bullet \ \ 0 < \liminf_{n \to \infty} |\frac{f(n)}{g(n)}| \leq \limsup_{n \to \infty} |\frac{f(n)}{g(n)}| \leq \infty$$

notazione \sim Se le due funzioni sono sia o che Θ allora si può scrivere $f(n) \sim g(n)$ e vale che:

•
$$\lim_{n \to \inf} \frac{f(n)}{g(n)} = c, c \neq 0 \in \mathbb{R} \Leftrightarrow f(n) \sim g(n)$$

Di conseguenza $f(n) \sim g(n) \Rightarrow f(n) = \Theta(g(n))$, NON il contrario.

NOTA: per parlare di equivalenza asintotica c dovrebbe essere esattamente uguale a 1.

1.4 Proprietà di base

Se f(n) è O di g(n) allora g(n) è Ω di f(n). Significa che g(n) cresce di più asintoticamente.

•
$$f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$$

Se f(n) cresce allo stesso modo di g(n), g(n) rappresenta sia il limite superiore che inferiore.

•
$$f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n)) \land f(n) \in \Omega(g(n))$$

Analogamente per la notazione o-piccolo e omega-piccolo:

•
$$f(n) \in o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))$$

Infine due funzioni piuttosto basilari, ovvero:

- f = O(f)
- $f = o(f) \Rightarrow f \equiv 0$

1.5 Comportamento rispetto alle operazioni

Le seguenti regole valgono indistimamente per $O,\ \Omega$ e $\Theta,$ si ereditano dalle proprietà dei limiti.

Abuso di notazione

• f(x) = O(g(x)) non è corretto in quanto non sono effettivamente uguali, tuttavia si usa per comodità al posto di $f(x) \in O(g(x))$

Transitività

- $f \in O(g) \land g \in O(h) \Rightarrow f \in O(h)$
- $\bullet \ f \in \Omega(g) \ \land \ g \in \Omega(h) \ \Rightarrow \ f \in \Omega(h)$
- $f \in \Theta(g) \land g \in \Theta(h) \Rightarrow f \in \Theta(h)$
- $f \in o(g) \land g \in o(h) \Rightarrow f \in o(h)$
- $f \in \omega(g) \land g \in \omega(h) \Rightarrow f \in \omega(h)$

Additività

- $f \in O(h) \land g \in O(h) \Rightarrow f + g \in O(h)$
- $f \in \Omega(h) \land g \in \Omega(h) \Rightarrow f + g \in \Omega(h)$
- $f \in \Theta(h) \land g \in \Theta(h) \Rightarrow f + g \in \Theta(h)$

Riflessività

- $f \in O(f)$, con abuso di notazione f(n) = O(f(n))
- $f \in \Omega(f)$, con abuso di notazione $f(n) = \Omega(f(n))$
- $f \in \Theta(f)$, con abuso di notazione $f(n) = \Theta(f(n))$

Simmetria

•
$$f = \Theta(g) \Rightarrow g = \Theta(f)$$

Simmetria trasposta

- $f = O(g) \Rightarrow g = \Omega(f)$
- $f = o(g) \Rightarrow g = \omega(f)$

Somma di due funzioni :

- $f_1 \in O(g_1) \land f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(g_1 + g_2)$
- $f_1 \in \Omega(g_1) \land f_2 \in \Omega(g_2) \Rightarrow f_1 + f_2 \in \Omega(g_1 + g_2)$
- $f_1 \in \Theta(g_1) \land f_2 \in \Theta(g_2) \Rightarrow f_1 + f_2 \in \Theta(g_1 + g_2)$

Prodotto di due funzioni

- $f_1 \in O(g_1) \land f_2 \in O(g_2) \Rightarrow f_1 \cdot f_2 \in O(g_1 \cdot g_2)$
- $f_1 \in \Omega(g_1) \land f_2 \in \Omega(g_2) \Rightarrow f_1 \cdot f_2 \in \Omega(g_1 \cdot g_2)$
- $f_1 \in \Theta(g_1) \land f_2 \in \Theta(g_2) \Rightarrow f_1 \cdot f_2 \in \Theta(g_1 \cdot g_2)$

Le precedenti regole NON valgono per operazioni di sottrazione e divisione.

Costante moltiplicatica

- $O(c \cdot f) = O(f), \forall c \in \mathbb{R}_0$
- $\Omega(c \cdot f) = \Omega(f), \forall c \in \mathbb{R}_0$
- $\Theta(c \cdot f) = \Theta(f), \forall c \in \mathbb{R}_0$

Semplicemente possiamo dire che la costante moltiplicativa non influisce sul comportamento asintotico.

Trascurare termini additivi di ordine inferiore

•
$$g = O(f) \Rightarrow f + g = \Theta(f)$$

Ovver possiamo considerare unicamente il termine di ordine maggiore.

Trascurare le costanti moltiplicative

•
$$\forall a > 0 \Rightarrow a \cdot f = \Theta(f)$$

- 2 Cenni utili sui limiti
- 3 Stime di Somme

Part II Algoritmi

4 Tabella riassuntiva costi temporali

Algoritmo	peggiore	migliore medio	stabile	Inplace
Insertion Sort	$\Theta(n^2)$	$\Theta(n)$	stabile	inplace
Merge	$\Theta(n)$	$\Theta(n)$	stabile	non inplace
Merge Sort	$\Theta(n \log n)$	$\Theta(n \log n)$		non inplace
Heapify	$O(\log n)$			
Build Max Heap	$\Theta(n)$			inplace
Heap Sort	$\Theta(n \log n)$	$\Theta(n)$ ripetizioni	non stabile	inplace
Quick Sort	$\Theta(n^2)$	$\Theta(n \log n)$	non stabile	non inplace
Selection Sort	$\Theta(n^2)$			
Counting Sort	$\Theta(n^2)$	$\Theta(n+k), k \in O(n)$	stabile	non inplace
Radix Sort		$d \cdot \Theta(n)$	stabile	inplace
Bucket Sort	$\Theta(n^2)$	$\Theta(n)$	dipende	non inplace

5 Cenni introduttivi da SISTEMARE

valutazione complessità :

Ogni istruzione di base (assegnamenti, confronti, operazioni algoritmiche) ha un costo costante c_h . Per semplicità, la funzione di complessità è così strutturata:

• $Time : \mathbb{N} \to \mathbb{R}^+$

L'algoritmo ovviamente reagisce in modo diverso a seconda dell'input, pertanto parleremo di tempo assoluto nel:

- caso migliore: $T_p: \mathbb{N} \leftarrow \mathbb{R}^+$, ovvero tempo impiegato al massimo
- caso peggiore: input che massimizza il tempo di esecuzione
- caso medio: input che si presenta con probabilità uniforme

6 Algoritmi di ordinamento e costruzione

PROBLEMA Problema data una sequenza a1, a2, ..., an di numeri, trovare una permutazione tale che $a1 \le a2 \le ... \le an$. Soluzioni:

6.1 Insertion sort

Complessità Spaziale : $\Theta(1)$ in richiede unicamente 3 interi (i, j, A.length) per memorizzare i valori. Questi lo rende un algoritmo inplace.

Complessità Temporale

- nel caso migliore: $\Theta(n)$, input: vettore già ordinato
- nel caso peggiore: $\Theta(n^2)$, input: vettore ordinato al contrario

Nel **caso medio** l'algoritmo ha complessità $\Theta(n^2)$.

Correttezza:

6.2 Merge sort

Problema: devo riordinare un generico array A di n elementi. Immagino di voler riordinare una sottosezione di A, ovvero A[p..q]. Trovo r pari a $\lfloor \frac{(p+q)}{2} \rfloor$ e ordino ricorsivamente le due sottosezioni A[p..r] e A[r+1..q]. Infine unisco le due sottosezioni mediante la procedura Merge

Complessità Spaziale : $\Theta(n)$ in quanto richiede un vettore di appoggio di dimensione n.

Complessità Temporale : $\Theta(n \log n)$ in quanto il vettore viene diviso in due parti e ogni parte viene ordinata in $\log n$ passi.

Equazione ricorsiva di complessità:
$$\begin{cases} \Theta(1) \ n \leq 1 \\ 2T(\frac{n}{2}) + \Theta(n) \ n > 1 \end{cases}$$

6.3 Merge

La procedura prende in input o due vettori oppure un vettore con due sottosezioni già ordinate e le unisce in un unico vettore ordinato. Si basa sul confronto tra i valori più piccoli delle due sottosezioni, operazione poco costosa in quanto sono ordinate.

```
Algorithm 3: Merge
  Input: Array A, indices p, r, q
  Output: Merged array A[p..q]
  begin
      i \leftarrow p;
      j \leftarrow r + 1;
      B \leftarrow \text{new array of size } q - p + 1;
      k \leftarrow 1;
      while i < r + 1 and j < q + 1 do
           if A[i] \leq A[j] then
                B[k] \leftarrow A[i];
               i \leftarrow i + 1;
           else
                B[k] \leftarrow A[j];
            j \leftarrow j+1;
           k \leftarrow k + 1;
      if i > r then
           for l \leftarrow j to q do
                B[k] \leftarrow A[l];
               k \leftarrow k + 1;
      else
           for l \leftarrow i to r do
                B[k] \leftarrow A[l];
                k \leftarrow k + 1;
```

procedura: La procedura Merge si basa sul **confrontare** i primi due valori delle rispettive sottosezioni (ovvero i **valori più piccoli**), inserirendo il minore in un vettore di appoggio B. L'elemento maggiore dei due viene confrontato con l'elemento successivo dell'altra sottosezione, e così via. Se una delle due sottosezioni si esaurisce, allora si copiano tutti gli elementi rimanenti dell'altra sottosezione. Il procedimento viene effettuato tramite due indici $i \in j$.

complessità temporale: $\Theta(n)$ in quanto ogni elemento viene confrontato una sola volta, proprietà che deriva dal fatto che sono ordinate.

6.4 Build-Heap (array)

Date n chiavi memorizzate in un array, voglio trasformare l'array in una maxheap.

```
Algorithm 4: Build-Max-Heap

Input: Array H
Output: Max-heap H
begin

\begin{bmatrix}
H.heapsize \leftarrow H.length; \\
\text{for } i \leftarrow \lfloor \frac{H.length}{2} \rfloor \ downto \ 1 \ do
\end{bmatrix}

\lfloor \text{Heapify}(H,i);
```

6.5 Heapify (array)

Procedura che serve a trasformare una heap in una max-heap. **pre-condizioni:** H[left(i)] e H[right(i)] sono max-heap.

Complessità Spaziale :

Complessità Temporale : generalmente la complessità è O(n), nel caso peggiore $\Theta(n)$

$$T(h) = \begin{cases} \Theta(1) \text{ se } h = 0\\ T(h-1) + \Theta(1) \text{ se } h > 0 \end{cases}$$

Correttezza:

6.6 Extract-Max-Heap

```
Algorithm 6: Extract-Max-Heap

Input: Heap H
Output: Max-heap H
begin

| scambia(H,1,H.heapsize);
| H.heapsize \leftarrow H.heapsize - 1;
| if H.heapsize \geq 1 then
| Heapify(H,1);
| return H[H.heapsize + 1];
```

6.7 Heap Sort

Algoritmo per ordinare n chiavi in ordine crescente usando una max heap. L'idea è di costruire una max heap estraendo il massimo e ripetendo il procedimento.

```
Algorithm 7: HeapSort

Input: Array A
Output: Sorted array A
begin

Build-Max-Heap(A);
for i \leftarrow A.length \ downto \ 2 do

scambia(A,1,i);
A.heapsize \leftarrow A.heapsize - 1;
Heapify(A,1);
```

Notiamo come l'algoritmo sia una sorta di fusione tra BuildHeap e Extract Max Heap.

Complessità temporale : $O(n \log n)$, con caso peggiore $\Theta(n \log n)$ e caso migliore $\Theta(n)$ quando sono presenti molte ripetizioni.

6.8 Quick Sort

Ho un vettore da ordinare, scelgo un elemento che fa da perno e divido il vettore in due parti, uno contenente elementi minori del perno e uno con elementi maggiori. Partition serve a trovare il perno e a dividere il vettore in due parti.

```
 \begin{aligned} \textbf{Complessit\^{a} temporale} & : \text{ caso peggiore } \Theta(n^2), \text{ caso medio } \Theta(n \log n) \\ T(n) & \begin{cases} \Theta(1) \text{ } se \text{ } n \leq 1 \\ T(m) + T(m-n-1) + \Theta(n) \text{ } se \text{ } n > 1 \end{cases} \end{aligned}
```

complessità spaziale: l'algoritmo NON è inplace e NON è stabile.

6.9 Partition

idea: prendo ultimo elemento come perno.

```
Algorithm 9: Partition

Input: Array A, indice p, indice q

Output: Pivot index i

begin

\begin{vmatrix}
x \leftarrow A[q]; \\
i \leftarrow p - 1; \\
for j \leftarrow p \ to \ q \ do \\
if \ A[j] \le x \ then \\
i \leftarrow i + 1; \\
scambia \ (A,i,j);

return i;
```

Complessità temporale : $\Theta(n)$ in quanto si tratta di un ciclo for per n elementi.

6.10 Selection

Utilizzo del perno ottimale per partition, in questo modo l'ordinamento è sempre efficiente

6.11 Select

Dato un vettire A di lunghezza n e dato $i \in [1,...,n]$, determinare l'elemento che finirebbe in posizione i-esima se ordinassi A.

```
Algorithm 10: SelectInput: Array A, indice p, indice q, indice iOutput: Elemento xbeginif p = q then| return A[p];else| r \leftarrow Partition(A, p, q, );| if i = r then| return A[r];| else | if i < r then| return Select(A,p,r-1,i);| else| return Select(A,r+1,q,i-k);
```

idea: Bisogna trovare un buon perno.

7 Algoritmi di ordinamento non basati su scambi e confronti

7.1 Breve intro

Ogni algoritmo di ordinamento **basato su scambi e confronti** nel **caso peggiore** ha complessità pari a $\Omega(n \log n)$. È possibile ridurre la complessità introducendo delle ipotesi dull'input che permettano l'utilizzo di algoritmi di ordinamento non basati su confronti.

7.2 Counting Sort

Richiede delle **ipotesi sulle chiavi**(i valori assunti), ovvero che siano intere e comprese tra 0 e k, con $k \in O(n)$. Una nota importante è che k non è necessariamente una costante. Anche valori come $k = \frac{n}{2}$, $k = 10 \cdot n$, $k = \log n$ sono validi.

```
Algorithm 11: CountingSortInput: Array A, Array B, kOutput: Sorted array AbeginC \leftarrow new array of size k+1;for j \leftarrow 0 to k doC[j] \leftarrow 0;for i \leftarrow 1 to A.length doC[A[i]] \leftarrow C[A[i]] + 1;for j \leftarrow 1 to k doC[j] \leftarrow C[j] + C[j-1];for i \leftarrow A.length down to 1 doC[A[i]] \leftarrow A[i];C[A[i]] \leftarrow C[A[i]] - 1;
```

Complessità temporale : $\Theta(n+k)$ se ho per ipotesi che k=O(n). Allora per possiamo ignorare i termini di ordine inferiore e otteniamo $\Theta(n)$.

Complessità spaziale :

7.3 Radix Sort

Utilizzato per ordinare n numeri di d cifre. Procede a partire dalla cifra meno significativa fino a quella più significativa. A ogni iterazione applico un algoritmo di ordinamento stabile su una sola cifra. (es. counting sort).

7.4 Bucket Sort

Part III Strutture Dati

8 strutture dati lineari

8.1 Array

struttura dati **statica** (= suo spazio di memoria non varia) di n elementi. Sono a **indirizzamento diretto** e l'accesso ha un costo fisso di $\Theta(1)$

operazioni e costo :

• accesso e modifica: A[i], costo $\Theta(1)$

8.2 Lista

Le liste sono strutture dati **dinamiche** (= il loro spazio di memoria può variare). Possono occupare spazi di memoria non contigui. Tra le operazioni che vogliamo fare con le liste ci sono:

- inserimento di un elemento in una posizione arbitraria
- cancellazione di un elemento in una posizione arbitraria
- ricerca di un elemento in una posizione arbitraria

liste concatenate : ogni elemento della lista contiene un campo che punta all'elemento successivo. Nel caso di liste concatenate **psuh** e **pull** hanno complessità $\Theta(1)$ in quanto conta soltanto la cella individuata dall'indice e **max** ha complessità $\Theta(n)$.

8.3 Pila

La pila è una struttura dati dinamica che permette di inserire (push) e cancellare (pull) elementi con politica LIFO (Last In First Out).

8.4 Code di priorità

Sono strutture dati **sequenziali** e **dinamiche** i cui elementi sono gestiti con politica **HPFO** (Highest Priority First Out). Ogni elemento è dotato di una key ma anche di una priorità.

- ullet vettori sovradimensionati
- liste concatenate
- vettori sovradimensionati ordinato per priorità

Il tipo di implementazione influisce sulla complessità delle operazioni.

- implementazione tramite lista concatenata:
 - **inserimento** chiave k in posizione h: costo O(n), caso peggiore $\Theta(n)$
 - inserimento (**push**) e cancellazione(**pop**) di k in testa: costo $\Theta(1)$
 - ricerca dell'h-esimo elemento: costo O(n), caso peggiore $\Theta(n)$
- implementazione tramite vettore sovradimensionato:
 - **normale:** inserimento costo O(n), peggiore $\Theta(n)$
 - ordinato per priorità: cancellazione $\Theta(1)$, inserimento $\Theta(n)$
 - **heap** cancellazione e inserimento con $O(\log n)$

8.5 Albero Binario

Struttura dati dinamica costituita da nodi aventi i seguenti campi:

- chiave: x.key
- puntatore genitore: x.parent
- puntatore figlio sinistro: x.left
- puntatore figlio destro: x.right

Nota: ovviamente se x.left punta a y, allora y.parent punta a x.

albero binario completo: Ogni nodo che non è una foglia ha esattamente due figli e tutti i nodi sono al livello h o h-1.

albero binario quasi completo: è un albero binario completo fino al penultimo livello, l'ultimo è riempito da sinistra a destra.

altezza di un nodo: lunghezza del cammino più lungo che va dal nodo a una foglia. Due convenzioni, in base alla scelta dell'altezza delle foglie, che può essere 0 o 1. Nel nostro caso sarà 0. Un albero può avere altezza massima n-1.

8.6 Max-Heap

Heap: Ci permettono di implementare code con priorità costo di inserimento e cancellazione pari a $O(\log n)$.

Max-Heap: è un albero binario completo in cui ogni elemento ha una chiave minore o uguale di quella del proprio genitore.

costruzione (rivedere): posso costruire una max heap tramite diversi metodi:

- da H inserisco una per una le chiavi in K con insert-mex-heap
- tramite Merge-Sort ordino al contrario, in questo modo ottengo una maxheap $(\Theta(n \log n))$
- sfrutto Heapify per trasformare un array in una max-heap $O(n \log n)$

proprietà Data una max-heap di n nodi:

- altezza: $\Theta(\log n)$
- chiave massima si trova nella radice
- ogni percorso radice-foglia ha le chiavi ordinate in modo decrescente
- la chiave minima si trova su una foglia
- le foglie sono all'incirca $\frac{n}{2}$

operazioni: voglio gestire le code di priorità, pertanto:

- inserimento nuovo nodo
- cancellazione elemento con priorità massima
- ricerca del nodo con priorità massima
- modifica della priorità di un nodo

implementazione: per implementare una max-heap posso usare:

- albero: struttura dati dinamica
- vettore sovradimensionato: struttura dati statica

procedure di base:

8.7 Tabelle di Hash

problema: dato un insieme U di elementi identificati da chavi, voglio memorizzare un sottoinsieme $k\subseteq U$ che **varia dinamicamente** nel tempo.

implementazione: Notiamo che $|\mathbf{U}| = \mathbf{M}$ è un numero molto grande rispetto $\mathbf{K} = \mathbf{n}$. L'utilizzo di un vettore renderebbe le operazioni efficienti, ma comporterebbe un grosso quantitativo di spazio $\Theta(M)$. Il vettore dovrebbe contenere tutti gli elementi di U, in quanto K varia. L'utilizzo di una lista concatenata degli elementi di k ridurrebbe lo spazio $(\Theta(n))$, ma comporterebbe un costo per le operazioni di ricerca e cancellazione O(n). Quello che vogliamo noi è:

operazioni:

- inserimento di un elemento con costo medio $\Theta(1)$
- cancellazione di un elemento con costo medio $\Theta(1)$
- ricerca di un elemento con costo medio $\Theta(1)$

Il tutto con costo spaziale $\Theta(n)$.

implementazione: due possibili implementazioni delle tabelle di Hash:

- chaining, ovvero uso di vettore e liste concatenate
- open addressing, ovvero uso di un vettore

8.8 Tabelle di Hash con Chaining

idea: uso di un vettore T di dimensione m, in cui ogni cella contiene una lista concatenata di elementi.

funzione di Hash:

• $h: \{0, 1, ..., |U| - 1\} \rightarrow \{0, 1, ..., m - 1\}$

L'elemento x viene inserito nella lista in T[h(x.key)]. Calcolare h(k) costa $\Theta(1)$.

collisioni Quando si verifica la seguente condizione:

• $x \neq y \in U$ con h(x.key) = h(y.key)

Entrambe gli elementi vengono inseriti nella stessa lista concatenata, indirizzata dalla rispettiva cella in T. Ovviamente ogni nuovo elemento viene inserito in testa alla lista. Questo garantisce $\Theta(1)$ per l'inserimento ma O(m) per ricerca e rimozione.

implementazione efficiente: affinché le operazioni rispettino le ipotesi di costo $\Theta(1)$ nel caso medio, è necessario che le liste abbiano mediamente la stessa lunghezza, ovvero dati $|T|=m,\ |k|=n,$ allora la lunghezza media di ogni lista dovrebbe essere:

•
$$\alpha = \frac{n}{m}$$
, detto fattore di carico

teorema: Se T è una tabella di Hash con chaining e vale l'ipotesi di hashing uniforme sempliceme, allora le operazioni di ricerca e cancellazione hanno costo $\Theta(1+\alpha)$ nel caso medio.

ipotesi di hashing uniforme semplice: ogni elemento di U ha la stessa probabilità di essere mappato in una qualsiasi delle m celle di T, se non conosco x.key, ovvero

• $\forall \in [0, m-1]$ probabilità di $(h(x.key) = i) = \frac{1}{m}$ dim(..)

8.9 funzioni di Hash

• $h: \{0, 1, ..., |U| - 1\} \rightarrow \{0, 1, ..., m - 1\}$

caratteristiche:

- non iniettività: in quanto due chiavi possono collidere
- suriettività: in T non devono esserci celle non mappate
- uniformità: ogni cella di T deve avere la stessa probabilità di essere mappata
- controllo del dominio e del codominio

metodo della divisione:

• $h(key) = key \mod m$

suggerimenti: meglio che m sia un numero primo e lontano da una potenza di 2 (per migliore distribuzione)

metodo bucketsort: A[i] elementi vettore $\in [0,...1)$ distribuiti in modo uniforme. $|A[i] \cdot n| \in \{0,...,m-1\}$ B vettore di liste, con funzione:

• $h(k) = |k \cdot n|$

metodo universale: generalizza il caso precedente per qualsiasi m
, consideriamo 0 < A < 1.

• $h(k) = |m \cdot (k \cdot A - |k \cdot A|)|$

Notiamo che $k\cdot A-\lfloor k\cdot A\rfloor$ è la parte decimale di $k\cdot A$, in quanto $\lfloor k\cdot A\rfloor$ è unicamente la parte intera.

8.10 Tabelle di Hash con Open Addressing

Tutti gli elementi vengono memorizzati in un vettore T di dimensione m. Le collisioni vengono risolte tramite sequenze di scansione.

funzione di Hash:

• $h: \{0, 1, ..., |U| - 1\} \times \{0, 1, ..., m - 1\} \rightarrow \{0, 1, ..., m - 1\}$

il secondo argomento della funzione rappresenta il tentativo di inserimento.

proprietà: $\forall h(x.key, 0), h(x.key, 1), ..., h(x.key, m-1)$

- iniettiva: ogni chiave viene mappata in una sola cella
- suriettiva: ogni cella di T è mappata

In questo modo la funzione è **biettiva**, e rappresenta una **permutazione** di $\{0, 1, ..., m-1\}$. Per favorire la ricerca e la cancellazione, utilizzo due costanti per identificare le celle vuote:

- NIL: cella mai usata
- **DEL**: cella usata e svuotata, vale come occupata per ricerca/cancellazione

costi delle operazioni (inserimento, ricerca, cancellazione):

- caso medio: $\Theta(1)$ se vale ipotesi di hashing uniforme
- caso peggiore: $\Theta(m)$

ipotesi di hashing uniforme: tutte le possibili permutazioni di $\{0, 1, ..., m-1\}$ sono ugualmente probabili, ovvero $\frac{1}{m!}$, in quanto dati m elementi, le possibili permutazioni sono m!

8.11 Tipologie di scansione

scansione lineare:

• $h(k,i) = (h(k)+i) \mod m$

Se una cella è occupata, si passa alla successiva. Non rispetta l'ipotesi di hashing uniforme, genera soltanto m possibili scansioni sulle m!

Part IV

Esercizi e sfide

esercizi scrittura di algoritmi 9

equazioni ricorsive 10

esercizi di equazioni ricorsive:

$$T(n) = \begin{cases} \Theta(1) \ se \ n \leq 1 \\ 2T(\frac{n}{2}) + \Theta(1) \ se \ n > 1 \end{cases}$$
 Posso riscrivere l'equazione sostituendo $\Theta(1)$ con delle costanti, ottenendo:

$$T(n) = \begin{cases} a \text{ se } n \leq 1 \\ 2T(\frac{n}{2}) + b \text{ se } n > 1 \end{cases}$$
 Tabella dei costi per livello:

numero nodi	dimensione nodo	costo unitario nodo	costo livello
1	n	b	b
2	$\frac{n}{2}$	b	$2 \cdot b$ $2^2 \cdot b$
2^{2}	$\frac{\frac{n}{2}}{\frac{n}{2^2}}$	b	$2^2 \cdot b$
		•••	
2^i	$\frac{n}{2^i}$	b	$2^i \cdot b$
•••	****	•••	
2^x	$\frac{n}{2^x} = 1$	a	$2^x \cdot a$

costo: somma del costo dei livelli

T(n) =
$$b + 2 \cdot b + ... 2^i \cdot b + ... + 2^x \cdot a$$

$$\frac{n}{2^x} = 1 \Rightarrow x = \log_2 n$$

$$T(n) = \sum_{i=0}^{\log_2 n - 1} 2^i \cdot b + 2^{\log_2 n} \cdot a$$
ora opero sull'equazione
$$T(n) = b()$$

esercizi di induzione e correttezza 11

12 sfide

- Possibility Majority Candidate 12.1
- 12.2 Liste Circolari
- 12.3 Matrice