EE 503 HW #3 (Due: Nov. 17, 2009)

Part 1. Problems: 3.4, 3.6, 3.8, 3.9 of Hayes.

Part 2. Matlab Assignment:

During the lectures, we have discussed the conditions for which x(t) given below

$$x(t) = \underset{\sim}{a}\cos(\omega t) + \underset{\sim}{b}\sin(\omega t)$$

is WSS.

- 1. We did not discuss the conditions for strict sense stationarity (SSS) of x(t). Read Papoulis Example 10-13 (p.300 of 3^{rd} edition) to learn the conditions for SSS. After reading the related section:
 - a. Show that SSS condition (the circularly symmetric distribution for the joint pdf of a and b) implies conditions for WSS.
 - b. Using part 1a), find the joint pdf $x(t_1)$ and $x(t_2)$ and show that the pdf is a function of $\tau = t_1 t_2$. (Hint: You may make use of conditioning, $x(t_2)$ given $x(t_1)$, as we did in the lectures.)
- 2. Let a and b be independent random variables. Let $a = \{+1,-1\}$ with equal probability and $b = \{+1,-1\}$ with equal probability.
 - a. How many different realizations for x(t) do we have?
 - b. Write x(t) in the form $x(t) = A_x \cos(wt \theta_x)$ where A_x and A_y are random variables. Find the joint pdf of A_x and A_y and A_y and A_y independent?
 - c. Take $\omega = 2\pi$ and $T_s = \frac{1}{10}$ and form a discrete time signal $x[n] = x(nT_s)$. Show different realizations of x[n] (in time span of [0,10] seconds) in the same figure.
 - d. Find the *marginal* pdf of x(11/10) (which is x[11]) and x(2) (which is x[20]). Do we have SSS and/or WSS in the first order?
 - e. Generate 100 realizations of x[n] and estimate the marginal pdf of x(11/10) and x(2) using histograms. Compare your estimate with part 2d.

- f. Generate 200 realizations of x[n] and estimate the *joint* pdf of x(11/10) and x(2).
- 3. h(t) is the impulse of a LTI filter which is defined as follows:

$$h(t) = \begin{cases} 2 & 0 < t < 1/2 \\ 0 & other \end{cases}$$

Let y(t) = x(t) * h(t) and let y[n] and h[n] be the sampled version y(t) as discussed previously and assume that y[n] = x[n] * h[n]. (This is only approximately true since h(t) is not band-limited. But H(f) has little energy beyond Fs/2, which is 5 Hz, so aliasing is negligible.)

- a. How many different realizations for y(t) do we have?
- b. Write y(t) in the form $y(t) = A_y \cos(wt \theta_y)$ where A_y and θ_y are random variables. Express A_y and θ_y in terms of A_x and θ_x and also find the joint pdf of A_y and θ_y .
- c. Analytically calculate $r_{xy}(\tau)$ and $r_y(\tau)$. Note that the correlations are periodic with the period $\frac{\omega}{2\pi}$.
- d. Analytically show that $r_y[k] = r_y(kT_s)$ and $r_{xy}[k] = r_{xy}(kT_s)$. Numerically approximate $r_{xy}[k]$ and $r_y[k]$ with

$$\hat{r}_{xy}[k] = \frac{1}{N-k} \sum_{n=k}^{N-1} x[n] y[n-k]$$

and

$$\hat{r}_{y}[k] = \frac{1}{N-k} \sum_{n=k}^{N-1} y[n] y[n-k]$$

where x[n] and y[n] are defined for $n=\{0,1,...,N-1\}$. Try different values of N, i.e. $N_1,N_2,...,N_k$. Present the true $r_{xy}[k]$ and $r_y[k]$ and their estimates found for different values of N. (A proper display format can be a table with 10 rows and (|Nset|+1) number of columns. Nset= $\{N_1,N_2,...,N_k\}$ and |Nset| is the number of elements of the set Nset.)