Доклад

Топология сети. Топологии типа «звезда», «кольцо», «шина».

Беличева Д. М.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Беличева Дарья Михайловна
- студентка
- Российский университет дружбы народов
- · 1032216453@pfur.ru
- https://dmbelicheva.github.io/ru/

Вводная часть

Вводная часть

Цель работы

Исследовать понятие топологии сети, а также рассмотреть конкретные топологии: "звезда", "кольцо", "шина".

Задание

- Изучить понятие топологии сети;
- Рассмотреть топологии "звезда", "кольцо", "шина";
- Реализовать рассмотренные топологии в Cisco Packet Tracer.

Сетевая топология— это конфигурация графа, вершинам которого соответствуют конечные узлы сети, а рёбрам— физические или информационные связи между вершинами.

Сетевая топология может быть представлена следующими видами:

- Физическая топология;
- Логическая топология;
- Информационная топология;
- Топология управления обменом.

Различают следующие топологии компьютерных сетей:

- полносвязную;
- ячеистую;
- кольцевую;
- · звездообразную («звезда»);
- древовидную;
- общую шину;
- смешанную.

Топология "звезда"

Топология "звезда"

Рис. 1: Звездообразная топология

Достоинства:

- Выход из строя одной рабочей станции не останавливает сеть;
- Лёгкий поиск неисправностей в сети;
- Высокая производительность сети;

Недостатки:

- Выход из строя центрального концентратора обернётся неработоспособностью сети;
- Ограниченное число рабочих станций;
- Дороговизна.

Топология "кольцо"

Топология "кольцо"

Рис. 2: Кольцевая топология

Топология "кольцо"

Достоинства:

- Простота установки;
- Фактически полное отсутствие дополнительного оборудования.
- По протяженности сигнал не затухает;
- Почти невозможные коллизии (=>фиксированная задержка передачи данных).

Недостатки:

- Выход из строя любого узла или повреждение кабеля останавливает сеть;
- Ограниченность по количеству узлов;
- Сложный поиск неисправностей.

Топология "шина"

Топология "шина"

Рис. 3: Топология общая шина

Топология "шина"

Преимущества:

- Сравнительно простая настройка;
- Небольшая стоимость;
- Неисправность любого узла не влияет на работоспособность всей сети.

Недостатками:

- Неисправности в самой шине ведут к полному отказу сети;
- Достаточно сложный процесс поиска неисправностей.
- Низкий уровень производительности;
- Наличие плохой масштабируемости.

Практическая реализация

топологий

Рис. 4: Топология сети "кольцо"

Таблица 1: Таблица ір-адресов

Nº	Устройство	IPv4-адрес	Маска подсети
1.	PC-donskaya-dmbelicheva-1	192.168.0.1	255.255.255.0
2.	PC-donskaya-dmbelicheva-2	192.168.0.2	255.255.255.0
3.	PC-donskaya-dmbelicheva-3	192.168.0.3	255.255.255.0
4.	PC-donskaya-dmbelicheva-4	192.168.0.4	255.255.255.0

Рис. 5: Пример задания ір-адреса через терминал

Рис. 6: Пример задания ір-адреса с помощью интерфейса Cisco

```
C:\>ping 192.168.0.2
Pinging 192.168.0.2 with 32 bytes of data:
Reply from 192.168.0.2: bytes=32 time=1ms TTL=128
Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.0.2:
    Packets: Sent = 4. Received = 4. Lost = 0 (0% loss).
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

Рис. 7: Проверка работоспособности подключения

Рис. 8: Симуляция передачи одного пакета

Рис. 9: Симуляция передачи двух пакетов

Рис. 10: Топология сети "шина"

```
C:\>ping 156.62.2.2
Pinging 156.62.2.2 with 32 bytes of data:
Reply from 156.62.2.2: bytes=32 time<1ms TTL=128
Reply from 156.62.2.2: bytes=32 time<1ms TTL=128
Reply from 156.62.2.2: bytes=32 time<1ms TTL=128
Reply from 156.62.2.2: bytes=32 time=14ms TTL=128
Ping statistics for 156.62.2.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 14ms, Average = 3ms
C:\>
```

Рис. 11: Проверка работоспособности подключения

Рис. 12: Симуляция передачи одного пакета

Рис. 13: Симуляция передачи двух пакетов

Реализация топологии "шина"

Рис. 14: Топология сети "шина" с хабами

Реализация топологии "шина"

vent L	ist			
Vis.	Time(sec)	Last Device	At Device	Туре
	0.000	_	PC-chertanovo-dmbelicheva-4	ICMP
	0.008	-	PC-chertanovo-dmbelicheva-4	ICMP
	0.009	PC-chertanovo-dmbelicheva-4	msk-chertanovo-dmbelicheva-hub-2	ICMP
	0.010	msk-chertanovo-dmbelicheva-hub-2	msk-chertanovo-dmbelicheva-hub-1	ICMP
	0.010	msk-chertanovo-dmbelicheva-hub-2	msk-chertanovo-dmbelicheva-hub-3	ICMP
	0.011	msk-chertanovo-dmbelicheva-hub-3	msk-chertanovo-dmbelicheva-hub-4	ICMP
	0.011	msk-chertanovo-dmbelicheva-hub-3	PC-chertanovo-dmbelicheva-5	ICMP
	0.012	msk-chertanovo-dmbelicheva-hub-4	msk-chertanovo-dmbelicheva-hub-5	ICMP
	0.012	msk-chertanovo-dmbelicheva-hub-4	PC-chertanovo-dmbelicheva-6	ICMP
	0.013	PC-chertanovo-dmbelicheva-6	msk-chertanovo-dmbelicheva-hub-4	ICMP
	0.014	msk-chertanovo-dmbelicheva-hub-4	msk-chertanovo-dmbelicheva-hub-3	ICMP
	0.014	msk-chertanovo-dmbelicheva-hub-4	msk-chertanovo-dmbelicheva-hub-5	ICMP
	0.015	msk-chertanovo-dmbelicheva-hub-3	msk-chertanovo-dmbelicheva-hub-2	ICMP
	0.015	msk-chertanovo-dmbelicheva-hub-3	PC-chertanovo-dmbelicheva-5	ICMP
	0.016	msk-chertanovo-dmbelicheva-hub-2	msk-chertanovo-dmbelicheva-hub-1	ICMP
	0.016	msk-chertanovo-dmbelicheva-hub-2	PC-chertanovo-dmbelicheva-4	ICMP

Рис. 15: Симуляция передачи двух пакетов

Реализация топологии "звезда"

Рис. 16: Топология сети "звезда"

```
C:\>ping 155.178.1.2
Pinging 155.178.1.2 with 32 bytes of data:
Reply from 155.178.1.2: bytes=32 time<1ms TTL=128
Reply from 155.178.1.2: bytes=32 time<1ms TTL=128
Reply from 155.178.1.2: bytes=32 time<1ms TTL=128
Reply from 155.178.1.2: bytes=32 time=1ms TTL=128
Ping statistics for 155.178.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C.15
```

Рис. 17: Проверка работоспособности подключения

Реализация топологии "звезда"

Рис. 18: Симуляция передачи двух пакетов

Реализация топологии "звезда"

Рис. 19: Топология сети "иерархическая звезда"

Выводы

В результате выполнения работы я исследовала понятие топологии сети, а также рассмотрела конкретные топологии: "звезда", "кольцо", "шина".

Список литературы

- 1. Сетевая топология [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Сетевая_топология.
- 2. Богуцкая О. Топологии сетей: шина, звезда, кольцо [Электронный ресурс]. URL: https://spravochnick.ru/informatika/topologii_setey_shina_zvezda_kolco/.
- 3. Стригунов В.В. Введение в компьютерные сети. Хабаровск, 2016. 103 с.