DÉRIVATION

Dans tout ce chapitre et sauf mention contraire, I est un intervalle réel et $f: I \to \mathbb{R}$ est une fonction définie sur I.

I. Fonction dérivée et propriétés

1. Nombre dérivé

Définition 13.1

Soit $a \in I$. Pour tout $x \in I \setminus \{a\}$, on appelle **taux d'accroissement de** f **entre** a **et** x le réel t(x) défini par :

$$t_a(x) = \frac{f(x) - f(a)}{x - a}$$

On dit que f **est dérivable en** a si $t_a(x)$ admet une limite lorsque x tend vers a.

On appelle cette limite le **nombre dérivé de** f **en** a, et on note ce nombre $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

Remarque

$$\frac{f(x) - f(a)}{x - a}$$
 admet une limite lorsque x tend vers a avec $x \neq a$.

$$\frac{f(a+h)-f(a)}{h}$$
 admet une limite lorsque h tend vers 0 avec $h \neq 0$

Remarque

Le taux d'accroissement de f entre a et x est le coefficient directeur de la droite qui relie les points de la courbe de f d'abscisses a et x.

Remarque

Le nombre dérivée de f en a peut aussi se noter $\frac{df}{dx}(a)$. Cette notation vient du fait que la dérivée de f en a exprime le rapport entre une "petite variation" de f(x), notée df, et une "petite variation" de x, notée dx.

Remarque

Le taux d'accroissement de f entre deux réels représente la vitesse moyenne globale de variation de f entre ces réels, tandis que le nombre dérivé de f représente en quelque sorte la vitesse "instantanée" en un réel. En physique, la vitesse d'un objet est la dérivée de sa position.

2. Fonction dérivée

Définition 13.2

On dit que f est **dérivable sur** I si f est dérivable en a pour tout $a \in I$. On note alors f' la fonction qui à tout réel x associe f'(a), le nombre dérivé de f en a.

$$\begin{array}{cccc} f \colon & I & \to & \mathbb{R} \\ & x & \longmapsto & f'(x) \end{array}$$

Définition 13.3

Soit $a \in I$. On dit que f est dérivable à droite en a (resp. à gauche) si $\frac{f(x) - f(a)}{x - a}$ admet une limite à droite en a (resp. une limite à gauche. On note alors $f'_d(a)$ (resp. $f'_g(a)$) cette limite.

Propriété 13.1 -

f est dérivable en $a \in I$ si et seulement si f est dérivable à gauche et à droite en a et que $f'_d(a) = f'_g(a)$ et on a dans ce cas : $f'(a) = f'_d(a) = f'_g(a)$.

- → Exercice de cours nº 2.
- → Exercice de cours nº 3.
- → Exercice de cours nº 4.

Proposition 13.2

Si f est dérivable sur I, alors f est continue sur I.

Remarque

La réciproque est fausse en général : exemple de la fonction $x \mapsto |x|$ continue sur \mathbb{R} mais pas dérivable en 0.

3. Opérations

Propriété 13.3

Soient u et v deux fonctions. Si u et v sont dérivables sur I, alors :

- u + v est dérivable sur I et sa dérivée est u' + v'
- uv est dérivable sur I et sa dérivée est u'v + uv'
- Pour tout $k \in \mathbb{R}$, ku est dérivable sur I et sa dérivée est ku'.
- Si ν ne s'annule pas sur I, alors $\frac{1}{\nu}$ est dérivable sur I et sa dérivée est $\frac{-\nu'}{\nu^2}$
- Si v ne s'annule pas sur I, alors $\frac{u}{v}$ est dérivable sur I et sa dérivée est $\frac{u'v-uv'}{v^2}$.

Remarque

L'opération de dérivation est linéaire.

En effet d'après la propriété précédente, pour tout $\lambda, \mu \in \mathbb{R}$ et pour toutes fonctions f et g dérivables sur I, on a $(\lambda f + \mu g)' = \lambda f' + \mu g'$ sur I.

Propriété 13.4

Si $n \in \mathbb{Z}$, alors $f: x \mapsto x^n$ est dérivable et sa dérivée est $f'(x) = nx^{n-1}$

Propriété 13.5

Soit v une fonction définie et dérivable sur un intervalle J et u une fonction définie et dérivable sur I telle que pour tout $x \in I$, $u(x) \in J$.

Alors $v \circ u$ est dérivable sur I et $(v \circ u)'(x) = u'(x) \times (v' \circ u)(x)$

On en déduit la propriété suivante :

Propriété 13.6

Soit f une fonction définie et dérivable sur I, strictement monotone sur I, et telle que f' ne s'annule pas sur I D'après le théorème de la bijection, J = f(I) est un intervalle et f admet une fonction réciproque $f^{-1}: J \to I$. Alors f^{-1} est dérivable et

$$\forall x \in J, \quad (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

4. Quelques dérivées de fonctions usuelles

Proposition 13.7

Soit n un entier naturel fixé. La fonction $f: x \mapsto x^n$ est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $f'(x) = nx^{n-1}$.

Proposition 13.8

Soit n un entier relatif strictement négatif fixé. La fonction $f: x \mapsto x^n$ est dérivable sur \mathbb{R}^* et $\forall x \in \mathbb{R}^*$, $f'(x) = nx^{n-1}$.

Proposition 13.9

Soit α un réel fixé. La fonction $f: x \mapsto x^{\alpha}$ est dérivable sur \mathbb{R}^{*+} et $\forall x \in \mathbb{R}^{*+}$, $f'(x) = \alpha x^{\alpha-1}$.

Proposition 13.10

La fonction $f: x \mapsto \ln(x)$ est dérivable sur \mathbb{R}^{*+} et $\forall x \in \mathbb{R}^{*+}$, $f'(x) = \frac{1}{x}$.

5. Développement limités

Définition 13.4

Soit $x_0 \in I$. On dit que f admet un développement limité d'ordre 1 au voisinage de x_0 s'il existe deux réels a_0 et a_1 tels que :

$$f(x) = a_0 + a_1(x - x_0) + o(x - x_0)$$

c'est à dire s'il existe une fonction $\varepsilon:I\to\mathbb{R}$ telle que $\lim_{x\to x_0}\varepsilon(x)=0$ et telle que

$$\forall x \in I, \ f(x) = a_0 + a_1(x - x_0) + (x - x_0)\varepsilon(x)$$

Proposition 13.11

Si f admet un développement limité d'ordre 1 au voisinage de 0, alors ce développement limité est unique.

Propriété 13.12

Soit $x_0 \in I$. f admet un développement limité d'ordre 1 au voisinage de x_0 si et seulement si f est dérivable en x_0 , et on a dans ce cas :

$$f(x) = \int_{x \to x_0} f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

c'est à dire

$$\forall x \in I, \quad f(x) = f(x_0) + f'(x_0)(x - x_0) + (x - x_0)\varepsilon(x)$$

avec $\varepsilon:I\to\mathbb{R}$ une fonction telle que $\lim_{x\to x_0}\varepsilon(x)=0$ lorsque x tend vers a.

Une autre façon de formuler cette propriété est la suivante :

Propriété 13.13

Soit $x_0 \in I$ tel que f est dérivable en x_0 , alors :

$$f(x_0 + h) = f(x_0) + f'(x_0) \times h + o(h)$$

c'est à dire

$$\forall x \in I, \quad f(x_0 + h) = f(x_0) + f'(x_0) \times h + h\varepsilon(h)$$

avec $\varepsilon: I \to \mathbb{R}$ une fonction telle que $\lim_{h \to 0} \varepsilon(h) = 0$.

Propriété 13.14

Développement limités usuels à connaître par coeur. Lorsque *x* tend vers 0, on a

•
$$e^x = 1 + x + o(x)$$

•
$$cos(x) = 1 + o(x)$$

$$\bullet \quad \frac{1}{1-x} = 1 + x + o(x)$$

$$\bullet \ \ln(1+x) = x + o(x)$$

•
$$tan(x) = x + o(x)$$

•
$$\sin(x) = x + o(x)$$

•
$$\sqrt{1+x} = 1 + \frac{x}{2} + o(x)$$

• $(1+x)^{\alpha} = 1 + \alpha x + o(x)$ lorsque $\alpha \in \mathbb{R}$ est fixé.

- → Exercice de cours nº 5.
- → Exercice de cours nº 6.

Remarque

Si f et g admettent un développement limité au voisinage de x_0 :

$$f(x) = a_0 + a_1(x - x_0) + (x - x_0)\varepsilon_1(x)$$
 et $g(x) = b_0 + b_1(x - x_0) + (x - x_0)\varepsilon_2(x)$

avec $\lim_{x \to x_0} \varepsilon_1(x) = \lim_{x \to x_0} \varepsilon_2(x) = 0$ et $(a_0, a_1, b_0, b_1) \in \mathbb{R}^4$.

Alors

$$(f+g)(x) = a_0 + b_0 + (a_1 + b_1)(x - x_0) + (x - x_0)(\varepsilon_1(x) + \varepsilon_2(x))$$

avec $\lim_{x \to x_0} (\varepsilon_1(x) + \varepsilon_2(x)) = 0$ donc f + g admet un développement limité au voisinage de x_0 donné par l'expression cidessus.

De même,

$$(fg)(x) = a_0b_0 + (a_0b_1 + a_1b_0)(x - x_0) + (x - x_0)\underbrace{[a_1b_1(x - x_0) + (x - x_0)(b_1\varepsilon_1(x) + a_1\varepsilon_2(x) + (x - x_0)\varepsilon_1(x)\varepsilon_2(x)]}_{\xrightarrow{x - x_0} 0}$$

donc fg admet un développement limité au voisinage de 0 donné par l'expression ci-dessus.

Définition 13.5

Soit $x_0 \in I$. On dit que f admet un développement limité d'ordre n (un DL(n)) au voisinage de x_0 s'il existe une fonction polynôme $P: x \mapsto \sum_{k=0}^n a_k x^k$ telle que

$$f(x) = P(x - x_0) + o((x - x_0)^n)$$

c'est à dire s'il existe $\varepsilon:I\to\mathbb{R}$ tel que $\lim_{x\to x_0}\varepsilon(x)=0$ et telle que :

$$\forall x \in I$$
, $f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + (x - x_0)^n \varepsilon(x)$

Remarque

Les DL d'ordre n seront vus en Khâgne.

6. Tangente

Définition 13.6

Soit C_f la courbe représentative de f dans un repère orthonormé et soit $x_0 \in I$. Si f est dérivable en x_0 , alors on appelle **tangente à la courbe représentative de** f **au point d'abscisse** x_0 la droite d'équation :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Remarque

Parmi les droites passant par le point $(x_0, f(x_0))$, la tangente est celle qui approxime le mieux la courbe représentative de f dans le sens suivant :

On sait qu'il existe $\varepsilon: I \to \mathbb{R}$ telle que $\lim_{x \to x_0} \varepsilon(x) = 0$ et :

$$\forall x \in I$$
, $f(x) = f(x_0) + f'(x_0)(x - x_0) + (x - x_0)\varepsilon(x)$

Soit $h: x \mapsto f'(x_0)(x-x_0) + f(x_0)$ la fonction représentée graphiquement par la tangente

Soit $g: x \mapsto a(x-x_0) + f(x_0)$ une fonction affine quelconque qui coïncide avec f en x_0 et avec $a \neq f'(x_0)$.

Pour tout $x \in I$, posons $\Delta_1(x) = f(x) - h(x)$ et $\Delta_2(x) = f(x) - g(x)$ les différences respectives entre f et h et entre f et g. On a :

$$\forall x \in I, \quad \Delta_1(x) = (x - x_0)\varepsilon(x)$$
$$\Delta_2(x) = (x - x_0)(f'(x_0) - a + \varepsilon(x))$$

$$\operatorname{donc} \lim_{x \to x_0} \frac{\Delta_1(x)}{\Delta_2(x)} = \lim_{x \to x_0} \frac{\varepsilon(x)}{f'(x_0) - a + \varepsilon(x)} = 0 \operatorname{car} \lim_{x \to x_0} f'(x_0) - a + \varepsilon(x) = f'(x_0) - a \neq 0,$$
 ainsi $\Delta_1(x) = o(\Delta_2(x))$.

7. Dérivée d'ordre supérieur

Définition 13.7

On dit que f est de classe \mathcal{C}^1 sur I, et on note $\mathcal{C}^1(I,\mathbb{R})$ l'ensemble de ces fonctions, si f est dérivable sur I et que sa dérivée f' est continue sur I

Remarque

Toutes les fonctions de référence citées plus haut sont \mathcal{C}^1 sur tout intervalle où elles sont dérivables.

→ Exercice de cours nº 7.

Définition 13.8

Si f est dérivable sur I et que f' est à nouveau une fonction dérivable, on note f'' la dérivée de f'. On définit de même par récurrence la dérivée n-ième de f, notée $f^{(n)}$, comme étant la dérivée de $f^{(n-1)}$ quand elle existe, avec comme convention $f^{(0)} = f$.

Définition 13.9

Soit $k \in \mathbb{N}$. On dit que f est de classe C^k sur I si f est dérivable k fois et que $f^{(k)}$ est continue sur I. On note $C^k(I,\mathbb{R})$ l'ensemble des fonctions de classe C^k définies sur I.

- $f \in C^0(I, \mathbb{R}) \iff f$ est continue sur I.
- $f \in C^1(I,\mathbb{R}) \iff f$ est dérivable sur I et f' est continue sur I
- $f \in C^2(I,\mathbb{R}) \iff$, f est dérivable 2 fois sur I et f'' est continue sur I

On note $C^{\infty}(I,\mathbb{R})$ l'ensemble des fonctions qui sont C^k pour tout $k \in \mathbb{N}$.

Remarque

Puisque f dérivable implique f continue, toute fonction de classe C^k est de classe $C^{k'}$ pour tout $k' \le k$.

Remarque

Si on note $\mathcal{D}^k(I,\mathbb{R})$ l'ensemble des fonctions dérivables k fois sur I, alors

onctions dérivables

$$\mathcal{C}^{k}(I,R) \subset \mathcal{D}^{k}(I,R) \subset \mathcal{C}^{k-1}(I,R) \subset \mathcal{D}^{k-1}(I,R) \subset \cdots \subset \mathcal{C}^{1}(I,R) \subset \mathcal{D}^{1}(I,R) \subset \mathcal{C}^{0}(I,R)$$

fonctions continues

Remarque

Toutes les fonctions de références citées plus haut sont \mathcal{C}^{∞} sur tout intervalle où elles sont dérivables.

→ Exercice de cours nº 8.

Proposition 13.15

La somme, la différence, le produit, le quotient, et la composée de deux fonctions de classe \mathcal{C}^k est de classe \mathcal{C}^k sur tout intervalle où elle est définie.

II. Applications

1. Extremums

Définition 13.10 -

Soit $x_0 \in I$, alors

- $f(x_0)$ est un **minimum global** de f sur I si $\forall x \in I$, $f(x) \ge f(x_0)$.
- $f(x_0)$ est un **maximum global** de f sur I si $\forall x \in I$, $f(x) \le f(x_0)$.

Définition 13.11 -

Soit $x_0 \in I$, alors

- $f(x_0)$ est un **minimum local** de f s'il existe un réel $\delta > 0$ tel que $\forall x \in]x_0 \delta, x_0 + \delta[$, $f(x) \ge f(x_0)$.
- $f(x_0)$ est un **maximum local** de f s'il existe un réel $\delta > 0 \ \forall x \in]x_0 \delta, x_0 + \delta[, f(x) \le f(x_0).$

Remarque

Tout extremum global est aussi un extremum local de même nature.

Propriété 13.16

Soit f une fonction dérivable sur I et soit $x_0 \in I$. Si f atteint un extremum local en x_0 alors $f'(x_0) = 0$

Remarque

La réciproque est fausse, exemple avec $f(x) = x^3$, f'(0) = 0 mais f(0) n'est pas un extremum local car pour tout réel t > 0, f(t) > 0 et f(-t) < 0.

2. Théorème de Rolle

Théorème 13.17 (de Rolle)

Soit f une fonction continue sur [a, b] et dérivable sur [a, b] telle que f(a) = f(b). Alors il existe $c \in [a, b]$ tel que f'(c) = 0.

3. Théorème des accroissements finis

Théorème 13.18 (des accroissements finis) —

Soit f une fonction continue sur un intervalle [a,b] et dérivable sur [a,b]. Alors il existe $c \in [a,b]$ tel que

$$f(b) - f(a) = f'(c)(b - a)$$

Théorème 13.19 (Inégalité des accroissements finis)

• Soit f une fonction continue sur un intervalle [a,b] et dérivable sur]a,b[. Supposons qu'il existe deux réel M et m tels que $\forall x \in]a,b[$, $m \le f'(x) \le M$, alors

$$m(b-a) \le f(b) - f(a) \le M(b-a)$$

• Soit f une fonction continue sur un intervalle [a,b] et dérivable sur]a,b[. Supposons qu'il existe un réel k tel que $\forall x \in]a,b[$, $|f'(x)| \leq k$. Alors

$$|f(b) - f(a)| \le k \times |b - a|$$

→ Exercice de cours nº 9.

4. Variations

Propriété 13.20

Soit f une fonction dérivable sur un intervalle I.

- f est croissante sur I si et seulement si $\forall x \in I, f'(x) \ge 0$.
- f est décroissante sur I si et seulement si $\forall x \in I, f'(x) \le 0$.
- f est constante sur I si et seulement si $\forall x \in I$, f'(x) = 0.

Propriété 13.21

Supposons que f est dérivable sur I.

- Si $\forall x \in I$, f'(x) > 0, alors f est strictement croissante sur I
- Si $\forall x \in I$, f'(x) < 0, alors f est strictement décroissante sur I.

Les réciproques sont fausses en général.

Remarque

Il est possible d'avoir f strictement croissante avec f'(x) = 0 pour certaines valeurs de x. Par exemple $f(x) = x^3$ est strictement croissante sur \mathbb{R} mais f'(0) = 0.

Propriété 13.22

Supposons que f est dérivables sur I.

- Si f'(x) > 0 sauf éventuellement en un nombre fini de valeurs, alors f est strictement croissante.
- Si f'(x) < 0 sauf éventuellement en un nombre fini de valeurs, alors f est strictement décroissante.

5. Régression linéaire

On considère un échantillon de données de taille n se présentant comme des couples de variables (x_i, y_i) , $1 \le i \le n$ (exemple : on sélectionne un groupe de personne et on note pour chaque personne sa taille x et son poids y, on peut représenter l'ensemble de données par un nuage de points avec x en abscisse et y en ordonnée)

On note \overline{x} et \overline{y} les moyennes respectives des familles $(x_i)_{1 \le i \le n}$ et $(y_i)_{1 \le i \le n}$.

On cherche un coefficient a tel que $\overline{y} + a(x - \overline{x})$ soit une bonne approximation de la famille y.

Pour cela, on décide de minimiser les carrés des écarts de y à la valeur moyenne \overline{y} (écarts quadratiques). Autrement dit, on cherche la valeur de a qui minimise la valeur de $\sum_{i=1}^{n} (y_i + a(x_i - \overline{x}) - \overline{y})^2$.

Posons $\varphi(a) = \sum_{i=1}^{n} (y_i - \overline{y} - a(x_i - \overline{x}))^2$.

Alors φ est dérivable sur $\mathbb R$ comme fonction polynôme, et pour tout $a \in \mathbb R$ on a $\varphi'(a) = \sum_{i=1}^n -2(x_i - \overline{x})(y_i - \overline{y} - a(x_i - \overline{x}))$ Si a est une valeur qui minimise $\varphi(a)$, alors $\varphi'(a) = 0$. On cherche donc une solution à l'équation $\sum_{i=1}^n -2(x_i - \overline{x})(y_i - \overline{y} - a(x_i - \overline{x})) = 0$

$$\sum_{i=1}^{n} -2(x_i - \overline{x})(y_i - \overline{y} - a(x_i - \overline{x})) = 0 \iff a \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} (y_i - \overline{y})$$
$$\iff a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

Exercices de cours

Exercice 1 -

Montre à l'aide de la définition que la fonction f définie sur \mathbb{R} par $f(x) = x^2$ est dérivable en tout réel a et que $\forall a \in \mathbb{R}$, f'(a) = 2a.

Exercice 2 -

Montrer que la fonction f définie par

$$\begin{array}{cccc} f \colon & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \left\{ \begin{array}{ccc} 0 & \sin x \leq 0 \\ & \mathrm{e}^{-1/x^2} & \sin x > 0 \end{array} \right. \end{array}$$

est dérivable sur R.

— Exercice 3 —

Montrer que la fonction $f: x \mapsto |x|$ définie sur \mathbb{R} n'est pas dérivable en 0.

Exercice 4

Montrer que $f: x \longrightarrow \sqrt{x}$, définie sur $[0, +\infty[$, n'est pas dérivable en 0:

Exercice 5 -

Déterminer la limite de $\frac{e^x - \cos(x)}{x}$ lorsque x tend vers 0.

Exercice 6 -

Étudier la limite de $\left(1+\frac{1}{n}\right)^n$ lorsque n tend vers $+\infty$.

— Exercice 7 —

On considère la fonction f définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$.

Montrer que f est dérivable sur \mathbb{R} mais que f n'est pas de classe \mathcal{C}^1 .

Exercice 8

On considère la fonction f définie par $f(x) = \begin{cases} x^2 & \text{si } x \ge 0 \\ -x^2 & \text{si } x < 0 \end{cases}$ Montrer que f est \mathcal{C}^1 mais pas \mathcal{C}^2 .

— Exercice 9

On considère la suite u_n définie par $u_0 = 0$, $u_{n+1} = \frac{1}{2}\cos(u_n)$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n \in [0, \frac{\pi}{2}]$
- 2. Montrer qu'il existe un unique réel $\ell \in [0, \frac{\pi}{2}]$ tel que $\ell = \frac{1}{2}\cos(\ell)$
- 3. Montrer que pour tout $n \in \mathbb{N}$, $|u_{n+1} \ell| \le \frac{1}{2}|u_n \ell|$
- 4. En déduire qu'il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, $|u_n \ell| \le M \times \left(\frac{1}{2}\right)^n$.
- 5. En déduire que u_n converge vers ℓ .

