概率论与数理统计

第十五研览条章

- (X, Y) 作为整体有联合分布 F(x, y).
- 问题 X, Y 作为单个的随机变量, 其分布与联合分布有什么关系?
- 1. 边缘分布函数

$$(X,Y) \sim F(x,y) = P\{X \leq x,Y \leq y\}$$

若令 y → +∞,则 { Y 取一切值 }是必然事件.于是

$$\lim_{y \to +\infty} F(x, y) = P\{X \le x\} \stackrel{\triangle}{=} F_X(x)$$

正是 X 的分布函数, 称为X 的<mark>边缘</mark>(marginal)分布函数. 同理, $\lim_{x \to \infty} F(x, y) = F_{x}(y)$ 是 Y 的边缘分布函数.

2. 分布律

设(X,Y)为离散型二维随机变量,其分布律为

$$p_{ij} = P \{ X = x_i, Y = y_j \}, i, j = 1, 2, \dots$$

对于固定的x_i, 考虑和式

$$\sum_{j=1}^{+\infty} p_{ij} = \sum_{j=1}^{+\infty} P\{X = x_i, Y = y_j\} = P \bigcup_{j=1}^{+\infty} \{X = x_i, Y = y_j\}$$

$$= P[\{X = x_i\} \cap \bigcup_{j=1}^{+\infty} \{Y = y_j\}] = P\{X = x_i\} = p_i.$$
这是 X的分布律.

同理
$$\sum_{i=1}^{+\infty} p_{ij} = P\{Y = y_j\} = p_{\bullet j}$$
 $j = 1, 2, \cdots$ 是 Y 的分布律.

将 X, Y 的联合分布律写成列表形式:

$Y \setminus X$	x_1	x_2	$\cdots x_i$	• • •	
\mathcal{Y}_1	p_{11}	p_{21}	$\cdots p_{i1}$	• • •	$p_{.1}$
\mathcal{Y}_2	p_{21}	p_{22}	$p_2 \cdots p_2$	2n · · ·	$p_{.2}$
	•	:	:		
${\cal Y}_j$	p_{1j}	p_{2j}	$\cdots p_{ij}$	• • •	$p_{.j}$
		:	÷		•
	$p_{1.}$	$p_{2.}$ ·	$p_{i.}$	• • •	1

 $p_{i.}$, $p_{.j}$ 分别称为是 X, Y 的边缘分布律.

"边缘"由此得名.

例(掷双骰子)

$Y \setminus X$	2	3	4	5	6	7	8	9	10	11	12	
0	$\frac{1}{36}$	0	$\frac{1}{36}$	0	$\frac{1}{36}$	0	1 36	0	1 36	0	$\frac{1}{36}$	$\frac{6}{36}$
1	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{10}{36}$
2	0	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0	$\frac{8}{36}$
3	0	0	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0	0	$\frac{6}{36}$
4	0	0	0	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0	0	0	$\frac{4}{36}$
5	0	0	0	0	0	$\frac{2}{36}$	0	0	0	0	0	$\frac{2}{36}$
	$\frac{1}{36}$	2 36	$\frac{3}{36}$	$\frac{4}{36}$	5 36	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	² / ₃₆	$\frac{1}{36}$	

有时联合分布律是以乘法公式来定义的.

例(电游竞赛)

$$P_{ij} = P\{X = i, Y = j\} = P\{Y = j \mid X = i\} \cdot P\{X = i\}$$

则 P_i . = $P\{X = x_i\}$, 并由全概率公式

$$P_{\bullet j} = \sum_{i} P\{Y = j \mid X = i\} \cdot P\{X = i\}$$

即所有 $P{Y = y_j \mid X = x_i}$ 关于 i 的加权平均.

- 例(昆虫产卵)设某种昆虫产卵数 $X\sim P(\lambda)$,设卵的孵化率为 p,孵化数记为 Y,求
 - a) X, Y的联合分布律;
 - b) X, Y 的边缘分布律.
- 分析: a) 由题意知, 当产卵数 x 固定时, $Y \sim B(x, p)$, 故

$$p_{ij} = P\{X = i, Y = j\} = P\{Y = j \mid X = i\} \cdot P\{X = i\}$$

$$= \binom{i}{j} p^{j} (1-p)^{i-j} \cdot e^{-\lambda} \frac{\lambda^{i}}{i!}, \quad i \geq j, \quad i = 0, 1, \dots$$

b)
$$p_{i\bullet} = e^{-\lambda} \frac{\lambda^{i}}{i!}, \quad i = 0,1,... \quad p_{\bullet j} = e^{-\lambda p} \frac{(\lambda p)^{j}}{j!}, \quad j = 0,1,...$$

今后我们知道泊松分布中参数 λ , 即 "平均个数" 的意思, 问 λp 的意义?

3. 边缘密度函数

若X, Y 有联合函数 f(x, y), X, Y 的密度函数如何? 从分布函数开始:

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

$$F_X(x) = \lim_{y \to \infty} F(x,y) = \int_{-\infty}^{x} (\int_{-\infty}^{+\infty} f(u,v) dv) du$$

对 x 求导, 即得 X 的边缘密度函数.

$$f_X(x) = F_X'(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

同理, 可得 Y 的边缘密度函数为:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

★ 联合密度函数往往是分片定义的,在计算边缘密度函数积分时,需要仔细确定积分限.

例 设D为xoy平面上由x=0, x=1, x=y, x=y-1围成的区域, 定义随机变量 X, Y 联合密度函数如下

$$f(x,y) = \begin{cases} c, & (x,y) \in D \\ 0, & 其他 \end{cases}$$

- a) 确定常数c;
- b) 求 X, Y 的边缘密度函数 $f_X(x)$, $f_Y(y)$.

解: 我们有

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \iint_{D} c dx dy$$

$$= c$$

$$x = 0$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{x}^{x+1} dy = 1, \quad (0 \le x \le 1)$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{y}^{y} dx = y, & 0 \le y \le 1\\ \int_{y-1}^{1} dx = 2 - y, & 1 < y \le 2\\ 0, & E \end{cases}$$

再看一个例子.

例 设 X, Y 的联合密度函数为

$$f(x,y) = \begin{cases} \frac{21}{4}x^2y, & x^2 \le y \le 1\\ 0, & \text{其他} \end{cases}$$

求 X, Y 的边缘密度函数 $f_X(x), f_Y(y)$.

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{x^2}^{1} \frac{21}{4} x^2 y dy$$

$$= \frac{21}{8} x^2 (1 - x^4), \quad -1 \le x \le 1$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{21}{4} x^2 y dx = \frac{7}{2} y^{\frac{5}{2}}, \quad 0 \le y \le 1$$

4. 推广

二维联合分布的边缘分布的概念可以推广到 n维.

设 $X_1, X_2, ..., X_n$ 的联合分布函数为 $F(x_1, x_2, ..., x_n)$,

则对于任意的 $n_1, n_2, ..., n_k, 1 \le k < n$,可类似定义k维

边缘分布函数 $F_{n_1,\dots,n_k}(x_{n_1},\dots,x_{n_k})$.

可见这样的边缘分布函数(相应的分布律,密度函

数)共有
$$\sum_{k=1}^{n-1} \binom{n}{k} = 2^n - 2$$
 个