Alimentatore stabilizzato con tensione di uscita variabile

Ivancich Stefano

Classe 4°EA a.s. 2013/2014

Docenti: E. Minosso – R. Bardelle

Tecnologia e Progettazione di Sistemi Elettronici ed Elettrotecnici

IT C. ZUCCANTE MESTRE

14 Marzo 2014

Sommario

Di seguito si illustra il progetto di un alimentatore stabilizzato.

che serve a trasformare una tensione alternata di 18V in una tensione continua variabile da 3V a 12V con 1A di corrente massima.

La tensione è regolata tramite un potenziometro ed un regolatore LM317K.

Il circuito contiene due led uno verde ed uno rosso, che segnalano rispettivamente la presenza di tensione e il raggiungimento della corrente massima fornibile.

Indice

Int	rod	luzione	.2
1.	S	Schema elettrico	.4
2.	R	Raddrizzatore e filtro	.4
3.	S	Segnalazione presenza di tensione (PowerOn)	.5
4.	S	Segnalazione corrente max (Overload)	.5
5.	R	Regolatore di tensione e dissipatore	.5
6.	D	Dimensionamento dei componenti	.6
(5.1 .	. Componenti elettrici	.6
(5.2.	. Analisi termica	.7
7.	Li	ista componenti	.8
8.	C	Caratteristica di uscita	.8
8	3.1.	. Vmin	.8
8	3.2.	. Vm	.9
8	3.3.	. Vmax	.9
9.	c	Conclusioni	10

Tavole Disegni tecnici

Disegni tecnici	pag. 12
2014-1.1 schema elettrico foglio 1 di 3	
2014-1.1 serigrafia foglio 2 di 3	
2014-1.1 master foglio 3 di 3	
2014-1.2 pannello foglio 1 di 2	
2014-1.2 pannello foglio 2 di 2	
Datasheets	pag. 24
KBL005-KBL10 bridge rectifiers	
2N2905-2N2905A pnp switching transistors	
LM117/LM217/LM317 1.2 V to 37 V adjustable voltage regulator	'S
1N4001 thru 1N4007 amp silicon rectifiers	
Parametri dei led	
Tabelle	
Lista componenti	pag. 8
Caratteristica di uscita	
Vmin	pag. 9
Vm	pag. 9
Vmax	pag. 10

Introduzione

Lo scopo del progetto è di realizzare un circuito in grado di acquisire una tensione di 18V alternati e di fornire in uscita una tensione continua e aventi le seguenti specifiche:

Tensione continua variabile da 3V a 12V.

Corrente massima 1A

- Fattore di ripple massimo 5%
- Un led rosso che segnala che si è raggiunta la corrente massima
- Un led verde che segnala la presenza di tensione

Viene utilizzato un trasformatore esterno al circuito che trasforma la tensione di rete di 230V AC in 18V AC che verranno utilizzati dal circuito.

Un ponte di diodi KBL05 utilizzato come raddrizzatore trasforma le semionde negative in positive per ottenere la tensione continua.

Un condensatore da 4.7uF viene utilizzato come filtro che stabilizza il segnale.

Il led rosso segnala che si sta richiedendo la corrente massima.

Il Regolatore LM317K regola e stabilizza meglio la tensione da 3V a 12V al variare del valore del potenziometro.

Il led verde segnala la presenza di tensione.

1. Schema elettrico

Di seguito si mostra lo schema a blocchi del circuito:

Figura 1

Nel circuito vero e proprio non sarà presente il trasformatore.

2. Raddrizzatore e filtro

Il ponte di diodi non fa altro che prendere in ingresso un segnale sinusoidale alternato e dare in uscita un segnale con le semionde negative trasformate in positive.

Infatti sia nella fase della semionda positiva che

in quella negativa la corrente sul carico scorre nello stesso verso.

Grazie al condensatore si ottiene una forma d'onda simile al dente di sega semplificando i calcoli.

Figure 2

3. Segnalazione presenza di tensione (PowerOn)

Per segnalare la presenza di tensione è stato posto un led, con opportuna resistenza, ai capi del condensatore. La caduta di tensione sul led verde è di 2.1V quindi il led si accenderà a circa questa tensione.

4. Segnalazione corrente max (Overload)

Se la corrente in entrata raggiunge il valore di quella massima il transistor entra in conduzione facendo accendere il led rosso. Quindi per alte correnti come quella richiesta(1 A) si dovrà utilizzare una resistenza (R2) da 5W.

5. Regolatore di tensione e dissipatore

Il regolatore fornisce in uscita una tensione di forma d'onda idealmente lineare, regolabile tramite la variazione della resistenza del potenziometro. E stata usata la configurazione proposta dal datasheet, al posto di una resistenza normale tra ADJ e GND è stato usato un potenziometro, appunto per far regolare all'utilizzatore la tensione di uscita.

6. Dimensionamento dei componenti

Componenti elettrici 6.1.

Condensatore:

Condensators:
$$C \ge \frac{I_O*T}{4*\sqrt{3}*r_{MAX}*V_O} \ge \frac{1*0.02}{4*\sqrt{3}*0.05*16.7} = 3.46uF$$
Pero si deve tenere conto dell'errore del 20% presente nella serie E6:

$$C_N \ge \frac{C}{1-e} \ge \frac{C3.46}{1-0.2} = 4.32uF$$
 (6.1.2)

E' stato scelto un condensatore da 4.7uF.

Ponte di diodi:

La corrente media sui diodi:

$$I_{DM} = \frac{I_O}{2} = \frac{1}{2} = 0.5A \tag{6.1.3}$$

La tensione inversa:

$$V_{RRM} > V_O + V_F + \frac{I_O * T}{4 * C} > 16.7 + 0.7 + \frac{1 * 0.02}{4 * 4.7 uF} = 18.86V$$
 (6.1.4)

E' stato scelto un ponte KBL005.

Segnalazione presenza di tensione:

$$R_{LEDV} = \frac{V_O - V_{LEDV}}{10mA} = \frac{16.7 - 2.1}{10mA} = 1460\Omega$$

E stata scelta una resistenza da 1.5kΩ.

Segnalazione Overload:

Led Rosso:

$$R_{LEDR} = \frac{V_O - V_{EC} - V_{LEDR}}{10mA} = \frac{16.7 - 0.2 - 1.7}{10mA} = 1480\Omega$$
 (6.1.5)

E stata scelta una resistenza da 1.5kΩ.

Resistenze Overload

$$I_{RBOUT} = \frac{I_{IN}}{1+\alpha} = \frac{1}{1+500} = 1.99mA$$
 (6.1.6)

$$I_{RBOUT} = \frac{I_{IN}}{1+\alpha} = \frac{1}{1+500} = 1.99mA$$

$$R_{BOUT} = \frac{V_{RPOTMAX} - V_{EB}}{I_{RBOUT}} = \frac{1-0.6}{1.99mA} = 200.4\Omega$$
(6.1.6)

E' stata scelta 270Ω.

$$I_B > \frac{10mA}{H_{FE}} > \frac{10mA}{100} = 0.1mA \tag{6.1.8}$$

E' stata scelta 0.2mA.

$$I_{REB} = I_{RBOUT} + I_B = 1.99mA + 0.2mA = 2.19mA$$
 (6.1.9)

$$I_{REB} = I_{RBOUT} + I_{B} = 1.99mA + 0.2mA = 2.19mA$$

$$R_{EB} = \frac{V_{EB}}{I_{REB}} = \frac{0.6}{2.19mA} = 273.22\Omega$$
(6.1.9)

E' stata scelta 500Ω

Trasformatore:

$$V_{SO} > \frac{V_{OM} + 2V_F}{\sqrt{2}} > \frac{16.7 + 1.4}{\sqrt{2}} = 14.11V$$
 (6.1.11)

$$S = V_{SO} * 1.8I_O = 18 * 1.8 = 32.4VA (6.1.12)$$

E' stata scelto un trasformatore da 18V 50VA.

Stabilizzatore:

Partendo dalla formula fornita dal datasheet:

$$V_O = V_{REF} * \left(1 + \frac{R_2}{R_*}\right) + (R_2 * I_{ADJ}) \tag{6.1.13}$$

$$V_O = V_{REF} * \left(1 + \frac{R_2}{R_1}\right) + (R_2 * I_{ADJ})$$

$$R_1 = \frac{V_{REF}}{I_{OUTMIN}} = \frac{1.25}{10mA} = 125\Omega$$
(6.1.14)

E' stata scelta una resistenza da 120Ω .

$$R_2 = \frac{V_O - V_{REF}}{\frac{V_{REF}}{R_1} + I_{ADJ}} = \frac{12 - 1.25}{\frac{1.25}{120} + 100uA} = 1022\Omega$$
 (6.1.15)

Però non è possibile trovare un potenziometro da 1022Ω.

Quindi è stata messa una resistenza in serie ed una in parallelo al potenziometro:

$$R_S \le R_{MIN} = 150\Omega \tag{6.1.16}$$

$$R > R_2 - R_S = 872\Omega \tag{6.1.17}$$

$$R > R_2 - R_S = 872\Omega$$
 (6.1.17)
 $R_P \ge \frac{(R_2 - R_S) * R}{R - (R_2 - R_S)} \operatorname{con} R_P > R = 6823\Omega$ (6.1.18)

E' stata scelta una resistenza in parallelo di $15k\Omega$.

6.2. **Analisi termica**

Dissipatore:

$$P_{LM317} = (V_I - V_O) * I_O = (18.6 - 2.8) * 1 = 15.8W$$
(6.2.1)

$$P_{LM317} = (V_I - V_O) * I_O = (18.6 - 2.8) * 1 = 15.8W$$

$$\varphi_{SA} < \frac{T_{JMAX} - T_A}{P_{LM317}} - \varphi_{JC} - \varphi_{CS} < \frac{125 - 40}{15.8} - 2.3 - 0.6 = 2.4C^{\circ}/W$$
(6.2.1)

7. Lista componenti

Lista dei componenti utilizzati per realizzare il progetto:

Materiale	sigla	Q/tà
Condensatore ceramico	100nF	1
Condensatore elettrolitico	1uF 25V	1
Condensatore elettrolitico	10uF 25v	1
Condensatore elettrolitico	4700uF 50V	1
Ponte a diodi	KL004	1
Diodo	1N4007	2
Led rosso	5mm	1
Led verde	5mm	1
Boccola gialla		2
Dissipatore TO-3	$\theta_{sa} \leq 2.4 \ C^{\circ}/W$	1
Regolatore di tensione	LM317K	1
Resistenza	1Ω 5W	1
Trimmer cermet multigiri	500Ω	1
Transistor pnp	2N2905	1
Morsettiera a due vie		1
Tulipano da 2		3
Porta led		2
Boccola rossa		1
Boccola nera		1
Potenziometro	1ΚΩ	1
Kit di isolamento		1

8. Caratteristica di uscita

Finito il progetto sono state effettuare delle misure di tensione al variare della richiesta di corrente per ricavare le caratteristiche di uscita e la resistenza del circuito.

8.1. Vmin

La prima serie di misure è stata effettuata impostando come tensione di uscita quella minima, ovvero 3V. Come si può vedere dalla tabella e dal grafico la tensione in uscita è abbastanza stabile, infatti si ha una caduta di soli 29mV chiedendo 1A.

8.2. Vm

La seconda serie di misure è stata effettuata impostando come tensione di uscita una tensione intermedia, pari a 7,5V. In questo caso la caduta di tensione è di 22mV.

I(A)	7,5(V)
0,0	7,551
0,1	7,550
0,2	7,548
0,3	7,547
0,4	7,545
0,5	7,542
0,6	7,540
0,7	7,538
0,8	7,536
0,9	7,532
1,0	7,529

8.3. Vmax

L'ultima serie di misure è stata effettuata impostando la tensione di uscita alla tensione massima, pari a 12V. La caduta di tensione in questo caso è di 33mV.

9. Conclusioni

Come si vede dai grafici il coefficiente angolare indica la resistenza del circuito, che è molto bassa, il valore oscilla tra i $21.9m\Omega$ e $32.9m\Omega$.

Quindi nonostante molte scelte siano state condizionate dai componenti in possesso dal magazzino scolastico, l'alimentatore rispetta le specifiche di progetto.

Disegni tecnici

Bibliografia

E.Cuniberti, L. De Lucchi, E&E Elettronica e Elettrotecnica, volume 2B, Novara: De Agostini Scuola Spa – Petrini, 2012, unita 5, 5.4 Circuiti raddrizzatori pagina 164.

E.Cuniberti, L. De Lucchi, E&E Elettronica e Elettrotecnica, volume 1B, Novara: De Agostini Scuola Spa – Petrini, 2012, unita 1, 1.4 Diodo pagina 15.

E.Cuniberti, L. De Lucchi, E&E Elettronica e Elettrotecnica, volume 2A, Novara: De Agostini Scuola Spa – Petrini, 2012, unita 6, 6.3 Trasformatore pagina 138.

E.Cuniberti, L. De Lucchi, E&E Elettronica e Elettrotecnica, volume 1B, Novara: De Agostini Scuola Spa – Petrini, 2012, unita 5, 5.1 Condensatore pagina 160.

E.Cuniberti, L. De Lucchi, E&E Elettronica e Elettrotecnica, volume 1B, Novara: De Agostini Scuola Spa – Petrini, 2012, unita 1, 1.5 BJT pagina 18.

Datasheets

KBL005 - KBL10

Features

- · Ideal for printed circuit board .
- · Reliable low cost construction.
- · High surge current capability.
- UL certified, UL #E96005.

Bridge Rectifiers

Absolute Maximum Ratings* T_A = 25°C unless otherwise noted

Symbol	Parameter	Value						Units	
•		005	01	02	04	06	80	10	
V_{RRM}	Maximum Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V
V _{RMS}	Maximum RMS Bridge Input Voltage	35	70	140	280	420	560	700	V
V_R	DC Reverse Voltage (Rated V _R)	50	100	200	400	600	800	1000	V
I _{F(AV)}	Average Rectified Forward Current, @ T _A = 50°C	4.0		Α					
FSM	Non-repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine-Wave	200		Α					
T _{stg}	Storage Temperature Range		-55 to +150					°C	
TJ	Operating Junction Temperature			-5	5 to +1	150			°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

Symbol	Parameter	Value	Units
P _D	Power Dissipation	6.58	W
R _{elA}	Thermal Resistance, Junction to Ambient,* per leg	19	°C/W
R _{eJL}	Thermal Resistance, Junction to Lead,* per leg	2.4	°C/W

^{*}Device mounted on PCB with 0.375" (9.5 mm) lead length and 0.5 x 0.5" (13 x 13 mm) copper pads.

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Device	Units
V _F	Forward Voltage, per bridge @ 4.0 A	1.1	V
I _R	Reverse Current, total bridge @ rated V_R $T_A = 25 ^{\circ}C$ $T_A = 100 ^{\circ}C$	5.0 500	μΑ μΑ

DISCRETE SEMICONDUCTORS

DATA SHEET

2N2905; 2N2905A PNP switching transistors

Product specification Supersedes data of September 1994 File under Discrete Semiconductors, SC04 1997 May 28

PNP switching transistors

2N2905; 2N2905A

FEATURES

- · High current (max. 600 mA)
- Low voltage (max. 60 V).

APPLICATIONS

- · High-speed switching
- · Driver applications for industrial service.

DESCRIPTION

PNP switching transistor in a TO-39 metal package. NPN complements: 2N2219 and 2N2219A.

PINNING

PIN	DESCRIPTION	
1	emitter	
2	base	
3	collector, connected to case	

Fig.1 Simplified outline (TO-39) and symbol.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	-60	٧
V _{CEO}	collector-emitter voltage	open base			
	2N2905		_	-4 0	V
	2N2905A		_	-6 0	V
Ic	collector current (DC)		_	-600	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	-	600	mW
h _{FE}	DC current gain	$I_C = -150 \text{ mA}; V_{CE} = -10 \text{ V}$	100	300	
f _T	transition frequency	$I_C = -50 \text{ mA}$; $V_{CE} = -20 \text{ V}$; $f = 100 \text{ MHz}$	200	_	MHz
t _{off}	turn-off time	I _{Con} = -150 mA; I _{Bon} = -15 mA; I _{Boff} = 15 mA	_	300	ns

Philips Semiconductors Product specification

PNP switching transistors

2N2905; 2N2905A

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	-	-60	٧
V _{CEO}	collector-emitter voltage	open base			
	2N2905		_	-40	V
	2N2905A		_	-60	V
V _{EBO}	emitter-base voltage	open collector	_	-5	٧
Ic	collector current (DC)		_	-600	mA
I _{CM}	peak collector current		_	-800	mA
I _{BM}	peak base current		_	-200	mA
Ptot	total power dissipation	T _{amb} ≤ 25 °C	_	600	mW
		T _{case} ≤ 25 °C	_	3	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	200	°C
T _{amb}	operating ambient temperature		-65	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	in free air	292	K/W
R _{th j-c}	thermal resistance from junction to case		58	K/W

Philips Semiconductors Product specification

PNP switching transistors

2N2905; 2N2905A

CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{CBO}	collector cut-off current				
	2N2905	$I_E = 0$; $V_{CB} = -50 \text{ V}$	-	-20	nA
		I _E = 0; V _{CB} = -50 V; T _{amb} = 150 °C	-	-20	μΑ
I _{CBO}	collector cut-off current				
	2N2905A	$I_E = 0$; $V_{CB} = -50 \text{ V}$	-	-10	nΑ
		I _E = 0; V _{CB} = -50 V; T _{amb} = 150 °C	-	-10	μА
I _{EBO}	emitter cut-off current	$I_C = 0; V_{EB} = -5 V$	-	50	nA
h _{FE}	DC current gain	V _{CE} = -10 V			
	2N2905	$I_{\rm C} = -0.1 {\rm mA}$	35	_	
		$I_C = -1 \text{ mA}$	50	_	
		$I_C = -10 \text{ mA}$	75	-	
		I _C = -150 mA; note 1	100	300	
		$I_C = -500 \text{ mA}$; note 1	30	-	
h _{FE}	DC current gain	V _{CE} = -10 V			
	2N2905A	$I_{\rm C} = -0.1 \text{mA}$	75	_	
		$I_C = -1 \text{ mA}$	100	-	
		$I_{\rm C} = -10 \text{ mA}$	100	-	
		I _C = -150 mA; note 1	100	300	
		I _C = -500 mA; note 1	50	-	
V _{CEsat}	collector-emitter saturation voltage	$I_C = -150 \text{ mA}$; $I_B = -15 \text{ mA}$; note 1	-	-4 00	mV
		$I_C = -500 \text{ mA}$; $I_B = -50 \text{ mA}$; note 1	_	-1.6	٧
V _{BEsat}	base-emitter saturation voltage	$I_C = -150 \text{ mA}$; $I_B = -15 \text{ mA}$; note 1	-	-1.3	V
		$I_C = -500 \text{ mA}$; $I_B = -50 \text{ mA}$; note 1	-	-2.6	٧
C _c	collector capacitance	$I_E = I_e = 0$; $V_{CB} = -10 \text{ V}$; $f = 1 \text{ MHz}$	-	8	pF
C _e	emitter capacitance	$I_C = I_C = 0$; $V_{EB} = -2$ V; $f = 1$ MHz	-	30	pF
f _T	transition frequency	$I_C = -50 \text{ mA}$; $V_{CE} = -20 \text{ V}$; $f = 100 \text{ MHz}$; note 1	200	-	MHz
Switching	times (between 10% and 90% leve	els); see Fig.2			
t _{on}	turn-on time	I _{Con} = -150 mA; I _{Bon} = -15 mA; I _{Boff} = 15 mA	-	45	ns
t _d	delay time		_	15	ns
t _r	rise time		_	35	ns
t _{off}	turn-off time		_	300	ns
ts	storage time		-	250	ns
t _f	fall time		_	50	ns

Note

1. Pulse test: $t_p \le 300~\mu s;~\delta \le 0.02.$

LM117/LM217/LM317

1.2 V to 37 V adjustable voltage regulators

Features

- Output voltage range: 1.2 to 37 V
- Output current in excess of 1.5 A
- 0.1% Line and load regulation
- Floating operation for high voltages
- Complete series of protections: current limiting, thermal shutdown and SOA control

Description

The LM117/LM217/LM317 are monolithic integrated circuit in TO-220, TO-220FP, TO-3 and D²PAK packages intended for use as positive adjustable voltage regulators.

They are designed to supply more than 1.5 A of load current with an output voltage adjustable over a 1.2 to 37 V range.

The nominal output voltage is selected by means of only a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators.

Table 1. Device summary

Order codes							
TO-220	TO-220 D ² PAK (tape and reel) TO-220FP TO-3						
			LM117K				
LM217T	LM217D2T-TR		LM217K				
LM317T	LM317D2T-TR	LM317P	LM317K				

February 2008 Rev 14 1/25

LM117/LM217/LM317 Pin configuration

1 Pin configuration

Figure 1. Pin connections (top view)

Maximum ratings LM117/LM217/LM317

2 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter		Value	Unit
V _I -V _O	Input-reference differential voltage		40	v
Io	Dutput current		Internally limited	v
		LM117	-55 to 150	
T _{OP}	Operating junction temperature for:	LM217	-25 to 150	°C
		LM317	0 to 125	
P _D	Power dissipation		Internally limited	
T _{STG}	Storage temperature		-65 to 150	°C

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	D ² PAK	TO-220	TO-220FP	TO-3	Unit
R _{thJC}	Thermal resistance junction-case	3	3	5	4	°CW
R _{thJA}	Thermal resistance junction-ambient	62.5	50	60	35	°CW

4 Electrical characteristics

Table 4. Electrical characteristics for LM117/LM217 (V_1 - V_0 = 5 V, I_0 = 500 mA, I_{MAX} = 1.5 A and P_{MAX} = 20 W, T_J = -55 to 150°C for LM117, T_J = -25 to 150 °C for LM217, unless otherwise specified)

Symbol	Parameter	Test condition	าร	Min.	Тур.	Max.	Unit
4)/-	Line regulation	V V - 2 to 40 V	T _J = 25°C		0.01	0.02	%/V
ΔV _O	Line regulation	$V_1 - V_0 = 3 \text{ to } 40 \text{ V}$			0.02	0.05	76/ V
		V _O ≴ V	T _J = 25°C		5	15	mV
41/	Load regulation	$I_O = 10 \text{ mA to } I_{MAX}$			20	50	IIIV
ΔV _O	Load regulation	V _O ≥5 V,	T _J = 25°C		0.1	0.3	%
		$I_O = 10 \text{ mA to } I_{MAX}$			0.3	1	70
I _{ADJ}	Adjustment pin current				50	100	μА
ΔI_{ADJ}	Adjustment pin current	$V_1 - V_0 = 2.5 \text{ to } 40V I_0 = 10 \text{ mA to } I_{MAX}$			0.2	5	μА
V _{REF}	Reference voltage (between pin 3 and pin 1)	V_1 - V_0 = 2.5 to 40V I_0 = 10 mA to I_{MAX} $P_D \le P_{MAX}$		1.2	1.25	1.3	٧
$\Delta V_{O} N_{O}$	Output voltage temperature stability				1		%
I _{O(min)}	Minimum load current	$V_1 - V_0 = 40 \text{ V}$			3.5	5	mA
In .	Maximum load current	$V_I - V_O \le 15 V$, $P_D < P_{MAX}$		1.5	2.2		A
(max)	waximum load current	$V_{I} - V_{O} = 40 \text{ V}, P_{D} < P_{MAX},$	T _J = 25°C		0.4		A
eN	Output noise voltage (percentage of V _O)	B = 10Hz to 100kHz, T _J = 25°C			0.003		%
SVR	Supply voltage rejection (1)	T _{.J} = 25°C, f = 120Hz	C _{ADJ} =0		65		dB
SVH	Supply wilage rejection V	TJ = 25 C, T = 120H2	C _{ADJ} =10μF	66	80		ub

^{1.} C_{ADJ} is connected between pin 1 and ground.

Table 5. Electrical characteristics for LM317 (V_I - V_O = 5 V, I_O = 500 mA, I_{MAX} = 1.5 A and P_{MAX} = 20 W, T_J = 0 to 125°C, unless otherwise specified)

Symbol	Parameter	Test condition	s	Min.	Тур.	Max.	Unit
4)/-	Line regulation	V - V 3 to 40 V	$T_J = 25$ °C		0.01	0.04	%/V
ΔV_{O}	Line regulation	$V_1 - V_0 = 3 \text{ to } 40 \text{ V}$			0.02	0.07	76/ V
		V _O ≤5 V	$T_J = 25$ °C		5	25	mV
۸۷-	Load regulation	$I_O = 10 \text{ mA to } I_{MAX}$			20	70	IIIV
ΔV_{O}	Load regulation	V _O ≥5 V,	$T_J = 25$ °C		0.1	0.5	%
		$I_O = 10 \text{ mA to } I_{MAX}$			0.3	1.5	70
I _{ADJ}	Adjustment pin current			50	100	μA	
ΔI_{ADJ}	Adjustment pin current	$V_I - V_O = 2.5 \text{ to } 40V,$ $I_O = 10 \text{ mA to } 500 \text{mA}$		0.2	5	μА	
V _{REF}	Reference voltage (between pin 3 and pin 1)	$V_I - V_O = 2.5 \text{ to } 40 \text{V } I_O = 10$ $P_D \leq P_{MAX}$	$V_I - V_O = 2.5 \text{ to } 40 \text{V I}_O = 10 \text{ mA to } 500 \text{mA}$ $P_D \leq P_{MAX}$			1.3	V
$\Delta V_{O} N_{O}$	Output voltage temperature stability				1		%
I _{O(min)}	Minimum load current	V ₁ - V _O = 40 V			3.5	10	mA
1	Maximum load current	$V_1 - V_0 \le 15 V, P_0 < P_{MAX}$		1.5	2.2		Α
I _{O(max)}	Waximum load current	$V_1 - V_0 = 40 \text{ V}, P_D < P_{MAX}$	Γ _J = 25°C		0.4		^
eN	Output noise voltage (percentage of V _O)	B = 10Hz to 100kHz, T _J = 25°C			0.003		%
SVR	Supply voltage rejection (1)	there rejection (1) T 0500 6 10011-			65		dB
SVH	Supply voltage rejection **	$T_J = 25^{\circ}C$, $f = 120Hz$	C _{ADJ} =10µF	66	80		uв

^{1.} C_{ADJ} is connected between pin 1 and ground.

6 Application information

The LM117/217/317 provides an internal reference voltage of 1.25 V between the output and adjustments terminals. This is used to set a constant current flow across an external resistor divider (see *Figure 3*), giving an output voltage V_O of:

$$V_O = V_{REF} (1 + R_2/R_1) + I_{ADJ} R_2$$

The device was designed to minimize the term I_{ADJ} (100 μA max) and to maintain it very constant with line and load changes. Usually, the error term $I_{ADJ} \times R_2$ can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise. Since the LM117/217317 is a floating regulator and "sees" only the input-to-output differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulator are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator. In order to optimize the load regulation, the current set resistor R_1 (see *Figure 3*) should be tied as close as possible to the regulator, while the ground terminal of R_2 should be near the ground of the load to provide remote ground sensing. Performance may be improved with added capacitance as follow:

An input bypass capacitor of 0.1 µF

An adjustment terminal to ground 10 μ F capacitor to improve the ripple rejection of about 15 dB (CADJ).

An 1 μ F tantalum (or 25 μ F Aluminium electrolytic) capacitor on the output to improve transient response. In additional to external capacitors, it is good practice to add protection diodes, as shown in *Figure 4* D1 protect the device against input short circuit, while D2 protect against output short circuit for capacitance discharging.

Figure 7. Voltage regulator with protection diodes

Note: D1 protect the device against input short circuit, while D2 protects against output short circuit for capacitors discharging.

577

9/25

1N4001 THRU 1N4007

1.0 AMP SILICON RECTIFIERS

FEATURES

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-0
- Low cost construction utilizing void-free molded plastic technique
- Diffused junction
- Low reverse leakage
- High current capability
- Easily cleaned with Freon, Alcohol, Chlorothen, and similar solvents
- High temperature soldering guaranteed: 265°C/10 seconds/.375"(9.5mm)lead lengths at 5 lbs(2.3kg)

MECHANICAL DATA

- * Case: Molded plastic
- Polarity: Color band denotes cathode end
- * Lead: Plated axial lead, solderable per
- MIL-STD-202E method 208C Mounting position: Any
- * Weight: 0.012 ounce, 0.3 gram

VOLTAGE RANGE 50 to 1000 Volts CURRENT 1.0 Ampere DO-41

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60 Hz, resistive or inductive load.

For capacitive load derate current by 20%. SYMBOLS 1N4001 1N4002 1N4004 1N4005 1N4006 1N4007 UNITS										
		SYMBOL:	1 1 1 1 1 1 1	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	
Maximum DC Blocking Voltage Maximum Average Forward Rectified Current .375" 9.5mm)lead length at TA=75°C Peak Forward Surge Current 8.3 ms single half sine		Vrrm	50	100	200	400	600	800	1000	٧
Maximum RMS Voltage		Vrms	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage		Vdc	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current .375"		I(AV)				1,0				A
Peak Forward Surge Current 8.3 ms single half sine wave superimposed on rated load (JEDEC method)		Ifsm	30							A
Maximum instantaneous Forward Voltage	at 1.0A DC	VF	1.1							V
Maximun Reverse Current at Rated DC	@TA≖25°C	IR	5.0						uА	
Blocking Voltage per element	@TA=100°C	HTIR				50				uA
Maximum DC Reverse Current Average, Full cycle .375"(9.5mm) lead length at TL=75°C		HTIR			·	30				uA
Typical Junction Capacitance (Note1)		CJ	30						pf	
Typical Thermal Resistance (Note2)		RTHja	50					°C/V		
Operating and Storage Temperature Ran	ge	Tj,Tstg	-65 TO +175					°C		

- 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
- 2. Thermal Resistance from Junction to Ambient at .375"(9.5mm)lead length, P.C.board mounted.

SURGE COMPONENTS, INC. 1016 GRAND BLVD., DEER PARK, NY 11729 PHONE (631) 595-1818 FAX (631) 595-1283 www.surgecomponents.com

OkSolar.com

Help

View Our Catalogue •

Get A Quote

Order Online

- -Request Pricing
- -View Our Cite
- How was Work
- How to Get a Quotation
- -Contact Us
- -View My Invoice

News & Blog | Our App

Browse our product catalog, submit requests for quotation and stay up to date environmental news. Our Catalog on Your IPhone - IPad

- -Export Information
- -iHablamos Español!
- -Buy Online

- -Accessories
- -Approach Lighting Systems
- -Airport Runway Lights
- -L-861 LED Elevated Taxiway
- -LED Lights
- -Solar Obstruction Lights
- -Power Backup for Airfield -Remote Controlled Lights
- -Solar Obstruction Lights
- -Solar Perimeter Lighting
- -Solar Powered Runway lights -Solar RunWay Lights Edge
- -Solar Powered Tower Lights

- -Wireless Lighting Controls
- -Wind Canes -Solar Powered Wind Cones

- -Data Acquisition
- -SCADA

Catalog

- Communications
- -Wireless Airfield Light Control
- -Windess Control
- Wireless Lighting Control

Components

- -Endosures

Computers

- -Commertial Building Automation -Computer Solar Chargers

Electronics

- -Electrical Veides
- Electrical Veide Charging

Energy Solutions

- -Battery Backup Storage
- -Ruel Cells
- -Hospital Fuel Cells UPS
- -Landfills Green Energy Generator
- -Security and Surveillance
- -Oil and Gas
- -Traffic Management

Forward Current vs Forward Voltage Red 5, Utra Red 4, HE Red 6, Orange 7, Bright Red 3, HE Green 9, Ydlow 8

Forward Current vs Ambient Air Temperature Red 5, Ultra Red 4, HE Red 6, Orange 7, HE Green 9, Ultra Blue D, Yellow 8, Bright Red 3

Relative Luminous Intensity vs Forward Current Ultra Red 4, HE Red 6, Orange 7, Yellow 8, HE Green 9 Red 5, Bright Red 3, Pure Blue C

