

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

5129/22

Paper 2

May/June 2015

2 hours 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 Fig. 1.1 shows representations of elements, compounds and mixtures.

Fig. 1.1

Choose the letter on the diagram which represents

/a\	on alamont in Croup VII a	of the Dariadia Table	
(a)	an element in Group VII	Ji the Periodic Table.	

(b) a metallic element,

(c) brass,

(d) a diatomic compound,

(e) a mixture of two gases.

[5]

2 Use words from the list to complete the sentences below.

Each word may be used once, more than once or not at all.

absorbed	amylase	excretion	extended				
extra-cellular	fibrinogen	glycogen	kidneys				
	liver	protein					
In the alimentary canal, the enzyme digests starch.							
This type of digestion is							
Maltose is produced which i	s converted to gluce	ose in the cells of the	small intestine.				
The glucose is into the blood.							
If there is too much glucose in the blood, it is converted into							
and stored in the	nd stored in the [5]						

3 Fig. 3.1 shows a block of iron with dimensions of $5.0 \, \text{cm} \times 2.0 \, \text{cm} \times 4.0 \, \text{cm}$.

The block is not drawn to scale.

Fig. 3.1

The block has a mass of 316g.

- (a) Calculate
 - (i) the volume of the block,

(ii) the density of iron.

(b) State why iron, rather than steel, is used for the core of electromagnets.

F41

Pentane decomposes when it is heated in the presence of a catalyst to produce ethene and

4

another hydrocarbon Y.

The	equ	ation for the reaction is
		$C_5H_{12} \longrightarrow C_2H_4 + Y$
(a)	(i)	State the formula of the hydrocarbon Y.
		[1]
	(ii)	State the name of the homologous series to which Y belongs.
		[1]
(b)	Cor	mplete the following sentences about ethene.
	Eth	ene is known as an hydrocarbon because it contains a
	carl	oon to carbon double bond.
	Wh	en bromine water is added to ethene, it changes colour from brown to
	Eth	ene undergoes polymerisation to form poly(ethene).

[4]

In this process, ethene is known as a

5 Fig. 5.1 shows a section through a leaf of a dicotyledonous plant.

Fig. 5.1

(a)	Sta	State the letter in Fig. 5.1 which identifies				
	(i)	an epidermal cell,				
	(ii)	a palisade mesophyll cell,				
	(iii)	a stoma.		[3]		
(b)	Cor	mplete the word equation for pl	notosynthesis.			
		carbon dioxide + water →	+	[1]		
(c)	Sta	te and explain the role of chlore	ophyll in photosynthesis.			
				[2]		

	7
(d)	State where carbon dioxide and where water enters a plant.
	carbon dioxide
	water
	[2]
	[-]
A si	mple a.c. generator consists of a magnet rotating inside a coil of wire.
- :	

6

Fig. 6.1 shows how the voltage output of the generator varies with time.

Fig. 6.1

(a)) Use	Fig.	6.1	to c	determ	ine
-----	-------	------	-----	------	--------	-----

(i) the time for one complete rotation of the magnet,

s [1]
s [ˈ

(ii) the maximum voltage output.

(b) State one way in which Fig. 6.1 changes when the magnet is rotated more quickly.

7	7 A resistor in a circuit produces 20 J of heat when 40 C of charge passes through it in 16 s.				
	Cald	eulate			
	(a)	the current in the resistor,			
		current = A [2]			
	(b)	the potential difference (p.d.) across the resistor.			
		p.d. = V [2]			
		ρ.u. – v [2]			

8

The ox elemen	ide of an element, $\rm X_2O_3$, reacts with magnesium to produce magnesium oxide and t X.
The equ	uation for the reaction is
	$X_2O_3 + 3MgO + 2X$
The rela	ative molecular mass of X ₂ O ₃ is 152.
(a) (i)	Calculate the relative atomic mass of element X.
	[A _r : O, 16; Mg, 24]
	relative atomic mass =[1]
(ii)	Use the Periodic Table to identify element X.
	[1]
(b) (i)	Calculate the mass of magnesium that reacts with 152g of X ₂ O ₃ .
	mass = g [1]
(ii)	Use the answer to (b)(i) to calculate the mass of the oxide that reacts with 3.6g of magnesium.
	mass = g [1]
(c) Ex	plain why the oxide is said to be <i>reduced</i> during the reaction.
	[1]

9 Fig. 9.1 shows a pendulum in two different positions.

Fig. 9.1

At position ${\bf A}$, the pendulum changes the direction in which it is moving. The pendulum then accelerates as it moves from position ${\bf A}$ to position ${\bf B}$.

(a)	State what is meant by acceleration.
	[2]
(b)	The pendulum takes 0.4s to move from position A to position B .
	Calculate the time for the pendulum to return to position A .
	time = s [1]

(c) Fig. 9.2 shows the pendulum in position A.

Fig. 9.2

On Fig. 9.2, draw an arrow to show the direction in which the weight of the pendulum bob is acting. [1]

10	oxide is a common pollutant of the atmosphere.			
	(a)	Exp	plain how the sulfur dioxide in the atmosphere is produced.	
				[2]
	(b)	Sulf	fur dioxide dissolves in water to produce sulfuric acid.	
		(i)	Name the ion that causes sulfuric acid to be acidic.	
				[1]
		(ii)	Sulfuric acid reacts with sodium hydroxide to produce sodium sulfate and water.	
			Balance the equation for this reaction.	
			H ₂ SO ₄ + NaOH → Na ₂ SO ₄ + H ₂ O	[1]
	((iii)	Name two other substances that react with sulfuric acid to produce sodium sulfate.	
			and	[2]

11 (a) Compare the composition of expired air to inspired air.

Write your answers in Table 11.1.

Table 11.1

substance	difference in composition of expired air compared to inspired air
carbon dioxide	
oxygen	
nitrogen	

[3]

(b) The volume of air inspired by a student was measured before and after a long-distance race.

The results are shown in Table 11.2.

Table 11.2

	volume of air inspired in one minute/dm ³
before the race	5.8
after the race	20.5

(i)	Calculate the difference in the volume of air inspired in one minute by the student before the race and after the race.
	volume = dm ³ [1]
(ii)	State two other ways in which the student's breathing changes from before the race to after the race.
	1
	2
	[2]
(iii)	Explain why an increased volume of air is needed during the race.

12 A metre rule is balanced horizontally on a pivot.

An empty measuring cylinder is placed 20 cm from the pivot.

In order to restore balance, a mass of 16g is placed 30 cm from the pivot, as shown in Fig. 12.1.

Fig. 12.1

(a) Calculate the mass of the measuring cylinder.

m a a a	~	വ
mass =	 u	121

(b) The measuring cylinder is removed and some liquid is placed in it, as shown in Fig. 12.2.

Fig. 12.2

State the volume of liquid in the measuring cylinder.

volume =	cm ³ l	11	1
VOILITIE =	 CHILL		1

(c) The measuring cylinder containing the liquid is placed on the metre rule. The 16 g mass remains in its original position.

Explain why the r	measuring cylinde	r has to be plac	ed nearer the pive	ot in order to b	alance the
metre rule.					

.....[2

Fig. 13.1 shows the arrangement of the electrons in the atoms of six different elements U – Z.The letters are not the chemical symbols of the elements.

atom	U	V	W	Х	Y	Z
electron arrangement	2,1	2,5	2,8	2,8,1	2,8,3	2,8,7

	Fig. 13.1		
Use	e the letters in Fig. 13.1 to answer the following questions.		
Eac	ch letter may be used once, more than once or not at all.		
(a)	Which element has a proton number 17?		[1]
(b)	Which element combines with three hydrogen atoms to form a covalent	compound?	
			[1]
(c)	Which two elements are in the same group of the Periodic Table?		
	and	J	[1]
(d)	Which element does not form an oxide?		[1]
(e)	Deduce the formula of the compound formed by elements Y and Z .		
			[1]
An	object falls through a vertical distance of 2.5 m.		
(a)	State the type of energy lost by the object as it falls.		
			[1]
(b)	The work done on the object by the force of gravity is 15 J.		
	Calculate the weight of the object.		
	weight =		N [2]

© UCLES 2015 5129/22/M/J/15

14

15 Use words from the list to complete the sentences below.

amplitudes	tudes frequencies		nplitudes frequencies reflection		reflection	refraction
	speed	vibrations	wavelengths			
Each word may be	Each word may be used once, more than once or not at all.					
Electromagnetic waves all have the same in a vacuum.						
Gamma-rays alway	s have smaller		than ra	adiowaves.		
The change in the o	direction of a light	ray when inciden	t on a plane mirror is	called		
				[3]		

16 Complete Table 16.1 by naming the biological structures responsible for the described processes.

Table 16.1

biological structure	process
	breaks down alcohol
	controls the passage of substances in and out of cells
	controls the size of the pupil in the eye
	excretes urea
	causes blood to clot
	stores bile

г	\sim
ı	nı
	v

17	In th	ne reactivity series for metals, aluminium is above iron but aluminium is resistant to corrosi	ion.
	(a)	Explain why aluminium is resistant to corrosion.	
			[2
	(b)	State one use of aluminium.	

18 Fig. 18.1 shows light entering and passing through a parallel-sided glass block.

Fig. 18.1

On Fig. 18.1,

(a) draw the normal where the ray is incident on the block,
(b) label the angle of incidence where the ray is incident on the block,
(c) draw the ray after it emerges from the block.

19 Fig. 19.1 shows how the thickness of the lining of a woman's uterus changes during her menstrual cycle.

thickness of uterus lining / arbitrary units

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 days

Fig. 19.1

(a)	(i)	On Fig. 19.1, draw a circle round a day to show when menstruation begins.	[1]
	(ii)	Use the information in Fig. 19.1 to suggest a day when sexual intercourse could result the formation of a zygote.	lt in
		day	[1]
(b)	One	e method of birth control is to avoid sexual intercourse during a woman's fertile days.	
	Stat	te two other methods of birth control.	
	1		
	2		
(0)	Sun	hilio io a diaggae aproad during acyual intercourse	[2]
(6)	Зур	hilis is a disease spread during sexual intercourse.	
	(i)	Describe one sign of syphilis.	
	(ii)	State the treatment for syphilis.	
			[2]

20 Fig. 20.1 names gases, some tests for gases, and the results of these tests.

On Fig. 20.1, draw lines to link each gas to the test for the gas and the result for the test if the gas is present.

The lines for one gas have been completed for you.

21 An isotope of plutonium is plutonium-238 (²³⁸₉₄Pu).

- (a) State the number of neutrons in a ²³⁸₉₄Pu nucleus. [1]
- **(b)** A nucleus of $^{238}_{94}$ Pu decays by emitting an alpha-particle.

State the number of protons and the number of neutrons in an alpha-particle.

number of protons

[4]

number of neutrons[1]

(c) The half-life of plutonium-238 is 88 years.

A sample of plutonium-238 emitted 3200 alpha-particles per second, 352 years ago.

Calculate the number of alpha-particles per second that the sample now emits.

number per second =[2]

21

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

		. a ^E	. 0 ×	. . .	ton to	- ⊕	8 C 8	
	0	4 He	20 N 01	40 Ar Argon	36	131 Xe Xenon 54	222 Rn Radon 86	
	=		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	210 At Astatine 85	
	>		16 Oxygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	209 Po Polonium 84	
	>		14 N Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83	
	≥		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn ™	207 Pb Lead 82	
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium	
2					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury	
					64 Copper 29	108 Ag Silver 47	Au Gold 79	
Group					59 Ni Nickel	106 Pd Palladium 46	195 Pt Platinum 78	
Gre					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Ir Iridium	
Group		T Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 OS Osmium 76	
=			,		Manganese	Tc Technetium 43	186 Re Rhenium 75	
					Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
					51 V Vanadium 23	93 Nobium 41	181 Ta Tantalum	
					48 Ti Titanium	2r Zroonium 40	178 Hf Hafnium 72	
					45 Sc Scandium 21	89 Y	139 La Lanthanum 57	AC Actinium +
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88
	_		7 Li Lithium	23 Na Sodium	39 K Potassium	Rb Rubidium 37	133 CS Caesium 55	223 Fr Francium 87

140 141 144 145 150 152 157 159 162 165 165 165 167 169 173 175
Pr Nd Pm Sm Lucypium Gadoinium Terbium Dysprosium Hofmium Ethium Fight Thulium Paseodymium Neodymium Promethium Samartum Europium Gadoinium Terbium Dysprosium Hofmium Ethium Ethium Thulium 59 231 238 237 244 243 247 247 251 252 257 258 Pa Uranium Neptunium Purparcium Americum Curium Berkelium Gallomium Einsteinium Femium Mandelevium 91 92 93 94 95 96 97 97 98 10 101
Pr Nd Pm Sm Lucyplum Gadolinum Fromethium Europium Gadolinum Terbum Dysprosium Hombum Erbium Erbium Erbium Fermium Fermium
Pr Nd Pm Sm Europium Gd Tb Dy Ho Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Homium 59 60 61 244 243 247 247 247 252 Pa Uranium Np Pu Am Am Cm Berkelium Gallfornium Einsteinium 91 22 33 34 34 35 34 36 37 36
Pr Nd Pm Sm Eu Gd Tb Tb Dy Praseodymium Neodymium Promethium Samarium Europium Gadoinium Tehbum Dysprostium 59 61 231 238 237 244 243 247 247 251 Pa Uranium Np Putonium Putonium Putonium Americium Curium Berkelium Californium 91 92 93 94 95 97 98 97 98
Pr Nd Pm Sm Eu Gd Tb Praseodymium Neodymium Promethium Samarium Europium Gadolinium Tarbium 59 61 231 238 237 244 243 247 247 Pa Uranium Np Putonium Putonium Putonium Putonium Berkelium 91 32 34 35 34 35 34 36
Pr Nd Pm Sm Eu Gd Praseodymium Neodymium Promethium Samarium Europium Gadolinium Cm Cm Gadolinium Cm Cm Cm Gadolinium Cm Cm Cm Cm Gm
Pr Nd Pm Sm Eu Praseodymium Neodymium Promethium Samarium Europium 59 60 61 237 244 243 Pa U Np Pu Am Protactinium Uranium Neptunium Putonium Am 91 92 93 94 96 96
Pr Nd Pm Sm Praseodymium Kaodymium Fromethium Samarium 59 60 61 62 231 238 237 244 Pa Uanium Neptunium Putonium Protectinium Uanium Neptunium Putonium
Pr Nd Pm Praseodymium Neodymium Promethium 59 60 61 231 238 237 Pa Uranium Neptunium 91 92 93
141 144 Nd Praseodymium 59 60 60 60 60 60 60 60 6
Praseodymium P 59 89 89 89 89 89 89 89 89 89 89 89 89 89
7 0 0
140 Ce Cerium 58 232 Th Thorium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = atomic (proton) number

a = relative atomic massX = atomic symbol

в **X**

Key

* 58–71 Lanthanoid series † 90–103 Actinoid series