Ввод примера программы

4

Данное руководство описывает версию 2.0 программного обеспечения STEP 7–Micro/WIN. Предыдущие версии этого программного обеспечения функционируют несколько иначе.

Данная глава объясняет, как с помощью программного обеспечения STEP 7–Micro/WIN выполнить следующие задачи:

- Ввод примера программы для резервуара для смешивания с двумя питающими насосами.
- Создание таблицы символов, таблицы состояний/принудительного задания и блока данных.
- Контроль программы.

STEP 7-Micro/WIN предоставляет Вам обширную Online-помощь. Для того, чтобы получить помощь по текущим вопросам, выберите один из пунктов меню **Hilfe [Помощь]** или нажмите **F1**.

Обзор главы

Раздел	Описание	Страница	
4.1	Создание программы для прикладного примера	4–2	
4.2	Создание проекта	4–6	
4.3	Создание таблицы символов	4–8	
4.4	Ввод программы в форме контактного плана	4–10	
4.5	Создание таблицы состояний/принудительного задания	4–14	
4.6	Загрузка и контроль примера программы	4–15	

4.1 Создание программы для прикладного примера

Предпосылки к выполнению примера программы

Если Вы полностью создадите и загрузите в СРU пример программы из этой главы, то Вы можете обрабатывать эту программу с помощью Вашего S7–200. На рис. 4–1 показаны компоненты, которые требуются для выполнения и контроля примера программы:

- кабель PC/PPI или плата MPI и кабель RS-485 для подключения Вашего компьютера к CPU S7-200
- CPU S7–200
- Имитатор входных сигналов или тумблеры либо нажимные переключатели □8).
- Сетевой кабель и источник питающего напряжения.
- STEP 7-Micro/WIN версии 2.0

Рис. 4-1. Предпосылки для выполнения примера программы

Прикладной пример "Резервуар для смешивания"

На рис. 4—2 показана схема резервуара для смешивания. Резервуар для смешивания может применяться в различных приложениях, например, для смешивания красок. В данном приложении две питающие трубы, подводящие разные вещества, производят подачу сверху внутрь резервуара. Через отдельную трубу в нижней части резервуара вытекает готовая смесь красок. С помощью примера программы можно управлять процессом наполнения, контролировать уровень наполнения и управлять циклами нагревания и смешивания. Процесс описывается следующим образом:

Шаг 1: Наполнить резервуар с краской 1 Шаг 2: Наполнить резервуар с краской 2

Шаг 3: Закончить подачу, если замкнут переключатель "Резервуар полный"

Шаг 4: Оставить насос включенным, если пусковой переключатель открыт

Шаг 5: Начать цикл нагревания и смешивания

Шаг 6: Включить двигатель смесителя и вентиль пара

Шаг 7: Выпустить краску из резервуара

Шаг 8: Подсчитывать циклы

Рис. 4-2. Пример программирования: Резервуар для смешивания

Пример программы в виде AWL и KOP

Пример программы можно вводить как в виде списка команд □AWL), так и в виде контактного плана □KOP). В табл. 4–1 показан пример программы в виде списка команд, а на рис. 4–3 этот пример показан в виде контактного плана. Разделы

4.2-4.4 проведут Вас шаг за шагом через необходимые задачи к вводу программы.

Таблица 4-1. Пример программы в виде списка команд

AWL	Описание
NETWORK LD "Start_1" O "Pumpe_1" U "Stopp_1" UN "Behälter voll" = "Pumpe_1"	//Наполнить резервуар с краской 1.
NETWORK LD "Start_2" O "Pumpe 2" U "Stopp 2" UN "Behälter_voll" = "Pumpe_2"	//Наполнить резервуар с краской 2.
NETWORK LD "Behälter_voll" S "Max_Füllstand", 1	//Установить меркер, если достигнут //максимальный уровень наполнения.
NETWORK LD "Max_Füllstand" TON "Mischzeit", +100	//Запустить таймер, если достигнут //максимальный уровень наполнения.
NETWORK LDN "Mischzeit" U "Max Füllstand" = "Rührmotor" = "Dampfventil"	//Включить двигатель смесителя. //Дать стечь смеси красок.
NETWORK LD "Mischzeit" UN "Behälter_leer" = "Abflußventil" = "Abflußpumpe"	//Подсчитывать каждый цикл.
NETWORK LD "Behälter leer" U "Mischzeit" LD "Rücksetzen" ZV "Zykluszähler", +12	//Сбросить меркер, если достигнут минимальный уровень наполнения или истекло время.
NETWORK LD "Behälter_leer" U "Mischzeit" R "Max_Füllstand", 1	//Закончить главную программу.
NETWORK MEND	ловкоп пп в главную программу.

Пояснения к символическим переменным, использованным в программе:

Max_Füllstand - максимальный уровень наполнения; Mischzeit - время смешивания; Rücksetzen - сброс; Zykluszähler - счетчик циклов; смысл остальных переменных описан на рис. 4-2.

Рис. 4-3. Пример программы в виде контактного плана

4.2 Создание проекта

Создание нового проекта

При создании или открытии проекта STEP 7–Micro/WIN вызывает следующие редакторы: редактор AWL или KOP (OB1) в зависимости от предварительной установки, редактор блоков данных (DB1), редактор таблицы состояний/ принудительного задания и редактор таблиц символов.

Для создания нового проекта выберите команду меню **Projekt** → **Neu [Проект** → **Hoвый]** (см. рис. 4—4) либо щелкните мышью на следующей кнопке на панели инструментов:

В ответ на это открывается диалоговое окно, в котором Вы можете выбрать свой СРU из раскрывающегося спискового блока.

Рис. 4-4. Создание нового проекта и выбор CPU

Пояснения к меню Projekt на рис. 4-4: Neu - Новый; Öffnen - Открыть; Schließen - Закрыть; Speichern - Сохранить; Speichern unter - Сохранить как; Importieren - Импортировать; Exportieren - Экспортировать; Laden in PG - Загрузить в PG; Laden aus PG - Загрузить из PG; Drucken - Печатать; Drucker einrichten - Настройка принтера; Beenden - Конец.

Присвоение имени примеру программы

Вы можете дать имя Вашему проекту в любой момент времени. В данном примере для того, чтобы сохранить проект под определенным именем, действуйте следующим образом □см. рис. 4–5):

- 1. Выберите команду меню Projekt → Speichern unter [Проект → Сохранить как].
- 2. В поле "Dateiname" ["Имя файла"] введите следующее имя: projekt1.prj
- 3. Щелкните мышью по "ОК".

Рис. 4-5. Присвоение имени примеру проекта

4.3 Создание таблицы символов

Вызов редактора таблиц символов

Если Вы хотите поставить в соответствие абсолютным адресам в примере программы символические имена, откройте редактор таблиц символов. Для этого дважды щелкните мышью на пиктограмме редактора или на кнопке "Восстановить/ максимизировать" на этой пиктограмме (в Windows 95). Вы также можете выбрать команду меню Ansicht → Symboltabelle... [Вид → Таблица символов].

Ввод символических имен

На рис. 4—6 показан список абсолютных адресов и соответствующих им символических имен для примера программы. Для ввода символических имен действуйте следующим образом:

- 1. Выделите первое поле в столбце "Symbolischer Name" ["Символическое имя"] и введите Start_1.
- 2. Нажмите клавишу ввода, чтобы выделить первое поле в столбце "Adresse" ["Adpec"]. Введите адрес **E0.0** и нажмите клавишу ввода. В ответ на это выделяется первое поле в столбце "Kommentar" ["Комментарий"]. (Комментарии являются необязательными, однако они могут быть очень полезными для того, чтобы документировать отдельные элементы программы.)
- 3. Нажмите клавишу ввода, чтобы начать ввод в следующей строке. Повторяйте приведенные выше шаги до тех пор, пока Вы не введете все остальные адреса и символические имена.
- 4. Сохраните таблицу символов с помощью команды меню Projekt → Speichern [Проект → Сохранить].

Symbolischer Name	Adresse _[Àäðåñ]	Kommentar [Комментарий]	
Start 1	Е0.0	Т óñêî âàÿ êí î ï êà äëÿ êðàñêè 1	
Start_2	E0.1	Пусковая кнопка для краски 2	
Stopp_1	E0.2	Кнопка СТОП для краски 1	
Stopp_2	E0.3	Кнопка СТОП для краски 2	
Behälter_voll	E0.4	Выключатель-ограничитель максим. уровня	
Behälter_leer	E0.5	Выключатель-ограничитель миним. уровня	
Rücksetzen	E0.7	Управление сбросом счетчика	
Pumpe_1	A0.0	Насос для краски 1	
Pumpe_2	A0.1	Насос для краски 2	
Rührmotor	A0.2	Двигатель смесителя	
Dampfventil	A0.3	Пар для нагрева смеси красок в резервуаре	
Abflußventil	A0.4	Вентиль для слива смеси красок	
Abflußpumpe	A0.5	Насос для откачки смеси красок	
Max_Füllstand	M0.1	Меркер	
Mischzeit	Т37	Таймер для управл. процес. смеш. и нагрева	
Zykluszähler	Z30	Считает кол-во циклов смешив. и нагрева	

Рис. 4-6. Таблица символов для примера программы

Программирование с применением символических адресов

Прежде чем вводить программу, установите символическую адресацию. Для этого выберите команду меню **Ansicht** → **Symbolische Adressierung [Вид** → **Символическая адресация]**. Если слева от пункта меню находится галочка, то символическая адресация активизирована.

Указание

Символические имена чувствительны к регистру символов. Имя, которое Вы вводите, должно по используемым большим и малым буквам в точности соответствовать имени в таблице символов. В случае расхождений курсор остается на элементе, а у нижнего края панели управления в статусной строке отображается сообщение "Ungültiger Parameter" ["Недействительный параметр"].

Ввод п	ример	ра проа	раммы
--------	-------	---------	-------

4.4 Ввод программы в форме контактного плана

Вызов редактора КОР

Для вызова редактора КОР дважды щелкните мышью на его пиктограмме у нижнего края панели управления. На рис. 4–7 показаны некоторые из важных инструментов, которые Вы будете использовать в редакторе КОР.

Рис. 4-7. Основные инструменты в редакторе КОР

Ввод первого элемента сегмента

Для того, чтобы ввести первый сегмент примера программы, действуйте следующим образом:

- 1. Дважды щелкните мышью на пронумерованном ключевом слове Network [Сегмент] или рядом с ним, чтобы выделить поле комментария. Введите представленный на рисунке 4—8 комментарий.
- 2. Нажмите клавишу ввода или клавишу ↓. В ответ на это курсор КОР в следующей строке перемещается на первое поле слева.
- 3. Выберите замыкающий контакт, нажав функциональную клавишу **F4** или выбрав сначала семейство "Kontakte" ["Контакты"], а затем "Schließerkontakt" ["Замыкающий контакт"] в списковом блоке операций.
- 4. Нажмите клавишу ввода или переместите указатель мыши внутри курсора КОР и дважды щелкните мышью. В результате на экране отображается замыкающий контакт с символическим именем "Start_1" сверху. (Каждый раз, когда Вы вводите контакт, программное обеспечение указывает Е0.0 в качестве предварительно установленного адреса. В данном примере Е0.0 соответствует символическому имени "Start_1".)
- "Start_1" является первым элементом сегмента 1. Подтвердите ввод этого первого элемента и символического имени, нажав клавишу ввода. При этом курсор КОР переходит во второе поле этой строки.

Рис. 4-8. Ввод комментария к сегменту и первого элемента в КОР

При вводе следующих контактов первого сегмента действуйте следующим образом:

- 1. Нажмите клавишу ввода, чтобы ввести второй элемент. В результате отображается замыкающий контакт с предварительно установленным символическим именем "Start_1".
- 2. Введите Stopp_1 и нажмите клавишу ввода. При этом курсор перейдет в следующее поле.
- Щелкните мышью на кнопке "Размыкающий контакт" (F5) на панели инструментов и нажмите клавишу ввода. На экране отображается размыкающий контакт. Выше контакта появляется символическое имя "Start 1".
- 4. Введите Behälter_voll и нажмите клавишу ввода.

Введенный Вами сегмент КОР должен выглядеть так, как показано на рисунке 4-9.

Рис. 4-9. Ввод следующих элементов КОР

Теперь курсор КОР находится справа от размыкающего контакта "Behälter_voll" ["Резервуар_полный"]. Для дополнения сегмента действуйте следующим образом (см. рисунок):

- 1. Щелкните мышью на кнопке "Катушка" (**F6**) и нажмите клавишу ввода или переместите указатель мыши внутрь курсора КОР и дважды щелкните мышью. В ответ на это отображается катушка с именем "Pumpe_1" ["Hacoc_1"]. (Каждый раз, когда Вы вводите катушку, в качестве предварительной установки отображается адрес A0.0. В данном примере программы A0.0 соответствует символическому имени "Pumpe_1".)
- 2. Подтвердите катушку и символическое имя, нажав клавишу ввода.
- Переместите курсор опять на первый элемент данного сегмента, используйте для этого мышь или клавишу ←.
- Щелкните мышью на кнопке "Вертикальная соединительная линия" (F7) и нажмите клавишу ввода. В результате между первым и вторым контактом протягивается вертикальная соединительная линия.

- 5. Щелкните мышью на кнопке "Замыкающий контакт" (**F4**) на панели инструментов и затем нажмите клавишу ввода. В ответ на это отображается контакт с именем "Start_1".
- 6. Введите **Pumpe_1** и нажмите клавишу ввода.

Теперь первый сегмент введен полностью.

Рис. 4-10. Дополнение первой сети

Ввод второго сегмента

Для ввода второго сегмента примера программы действуйте следующим образом:

- 1. Переместите курсор на второй сегмент, используя для этого мышь или клавишу \downarrow .
- Введите комментарий, показанный на рисунке 4–11, в поле комментария сегмента. □Так как комментарий для сегмента 2 подобен комментарию сегмента 1, то Вы также можете выделить этот текст в сегменте 1, скопировать и вставить в поле комментария сегмента 2. Затем Вы должны лишь заменить номер краски с 1 на 2.)
- 3. Повторите шаги, которые Вы выполняли при вводе сегмента 1. Используйте при этом символические имена, представленные на рисунке 4–11.
- 4. После ввода сегмента 2 переместите курсор на сегмент 3.

Рис. 4-11. Ввод второго сегмента

Ввод остальных сегментов

При вводе остальных сегментов действуйте точно так же, как было описано для предыдущих сегментов. Остальные сегменты представлены на рисунке 4–3.

Компиляция программы

После ввода программы проверьте синтаксис, выбрав команду меню **CPU** → Übersetzen ["CPU → **Компиляция"**] или щелкнув мышью на следующей кнопке для компиляции .

Если Вы ввели сегменты правильно, то отображается сообщение "Übersetzung erfolgreich" ["Компиляция успешна"]. Это сообщение показывает, кроме того, количество сегментов и занимаемый программой объем памяти. Если Вами при вводе допущена ошибка, то сообщение показывает, в каком сегменте содержится ошибка.

Сохранение примера программы

Сохраните Ваш проект с помощью команды меню **Projekt** → **Speichern [Проект** → **Сохранить]** или щелкните мышью на следующей кнопке для сохранения: Все компоненты проекта Вашего примера сохраняются.

4.5 Создание таблицы состояний/принудительного задания

Создание таблицы состояний/принудительного задания

Для контроля состояния определенных элементов в Вашем примере программы Вы должны создать таблицу состояний/принудительного задания, в которой содержатся элементы, которые Вы хотели бы наблюдать во время обработки программы. Для открытия редактора таблицы дважды щелкните мышью на его пиктограмме у нижнего края панели управления. Для того, чтобы ввести элементы из примера программы, действуйте следующим образом:

- 1. Выделите первое поле в столбце "Adresse" ["Адрес"] и введите **Start_1**.
- 2. Подтвердите Ваш ввод с помощью клавиши ввода. Этот элемент может отображаться только в двоичном формате ("1" или "0"), поэтому Вы не можете изменить формат.
- Выделите следующую строку. Повторите описанные выше шаги для остальных элементов (см. рис. 4– 12).

Совет: Если Вы выбрали адресное поле и строка под этим полем пустая, то Вы можете путем нажатия клавиши ввода автоматически увеличивать адрес на 1 в каждой последующей строке. Подробную информацию о работе с таблицей состояний/принудительного задания можно получить через Online—помощь.

С помощью команды меню **Bearbeiten** → **Reihe einfügen [Редактирование** → **Bставка строки]** (или с помощью клавиши INSERT) Вы вставляете новую строку, а именно, каждый раз над строкой, в которой находится курсор.

4. Таймер ТЗ7 и счетчик Z30 могут по мере надобности отображаться в других форматах. Если Вы выделили поле в столбце "Format", то Вы можете с помощью клавиши пробела вызывать друг за другом все форматы, которые действительны для соответствующего элемента. В данном примере выберите для таймера и счетчика формат "Mit Vorzeichen" ["Со знаком"].

Сохраните Вашу таблицу состояний/принудительного задания с помощью команды меню **Projekt** →

Statustabelle/Tabelle z	um Forcen [Таблица состо	яний/Таблица принудителы	ного заданияј
Adresse	Format	Aktueller Wert	Wert ändern in
"Start_1"	Binär	2#0	
"Start_2"	Binär	2#0	
"Stopp_1"	Binär	2#0	
"Stopp_2"	Binär	2#0	
"Behälter_voll"	Binär	2#0	
"Behälter_leer"	Binär	2#0	
"Rücksetzen"	Binär	2#0	
"Pumpe_1"	Binär	2#0	
"Pumpe_2"	Binär	2#0	
"Rührmotor"	Binär	2#0	
"Dampfventil"	Binär	2#0	
"Abflußventil"	Binär	2#0	
"Abflußpumpe"	Binär	2#0	
"Max_Füllstand"	Binär	2#0	
"Mischzeit"	Mit Vorzeichen	+0	
"Zykluszähler"	Mit Vorzeichen	+0	

Рис. 4-12. Таблица состояний/принудительного задания для примера программы

Пояснения к таблице на рис. 4-12.

Наименования столбцов: Adresse - Адрес; Format - Формат; Aktueller Wert - Текущее значение; Wert ändern in - Изменить значение на.

Форматы: Binär - двоичный; Mit Vorzeichen - со знаком.

4.6 Загрузка и контроль примера программы

На следующем шаге Вы должны загрузить Вашу программу в CPU и затем перевести CPU в режим RUN. Тогда Вы сможете тестировать Вашу программу и наблюдать ее обработку.

Загрузка проекта в СРИ

Для того, чтобы Вы могли загрузить программу в CPU, последний должен находиться в состоянии STOP. Чтобы перевести CPU в режим STOP и загрузить программу, действуйте следующим образом:

- 1. Поставьте переключатель режимов работы CPU в положение TERM или STOP.
- 2. Выберите команду меню **CPU** → **Stop** или щелкните мышью на кнопке STOP в главном окне
- 3. Подтвердите этот процесс посредством "Ja" ["Да"].
- 4. Выберите команду меню **CPU** → **Laden aus PG...** [**CPU** → **Загрузить из PG...**] или щелкните мышью на кнопке для загрузки из PG в главном окне:
- 5. В диалоговом окне "Laden aus PG" ["Загрузка из PG"] Вы можете указать, какие компоненты Вы хотите загрузить в CPU. Затем нажмите клавишу ввода или щелкните мышью на кнопке "ОК".

Сообщение уведомит Вас о том, был ли процесс загрузки успешным.

Указание

Указание

STEP 7-Micro/WIN не проверяет, являются ли операнды и адреса входов и выходов в Вашей программе допустимыми для соответствующего CPU. Если Вы загружаете в CPU программу, операнды и адреса которой находятся вне области, допустимой для CPU, или операции которой не поддерживаются CPU, то эта программа не может загрузиться в CPU. Вам отображается сообщение об ошибке.

Обращайте внимание на то, чтобы операнды и адреса входов и выходов, а также операции в Вашей программе были допустимыми для CPU, с которым Вы работаете.

Перевод CPU в режим работы RUN

Если программа была загружена в CPU успешно, то после этого Вы можете перевести CPU в режим RUN.

- Выберите команду меню CPU → RUN или щелкните мышью на кнопке для режима работы RUN главном окне.
- 2. Подтвердите этот процесс посредством "Ja" ["Да"].

Наблюдение статуса КОР

Если Вы включили статус КОР, то отображается текущее состояние событий в Вашей программе. Откройте окно редактора КОР и выберите команду меню **Testen** → **KOP–Status ein [Тестирование** → **Статус КОР включен]**.

Если Вы подключили к входным клеммам Вашего СРU имитатор входных сигналов, то Вы можете включать разные переключатели и следить за потоком сигнала, а также за обработкой программы. Например, если Вы включаете входы **E0.0** и **E0.2**, а переключатель входа **E0.4** ("Behälter_voll" [Резервуар полон]) выключен, то поток сигнала первого сегмента будет полным. Тогда сегмент становится таким, как показано на рисунке 4–13.

Рис. 4-13. Контроль состояния первого сегмента

Пояснения к рис. 4-13.

Меню Testen [Тестирование]: Zyklen ausführen - Выполнение циклов; KOP-Status ein - Статус KOP включен.

Отображение текущего состояния элементов программы

С помощью таблицы состояний/принудительного задания Вы можете наблюдать и изменять текущие значения произвольных входов и выходов, а также адресов памяти. Откройте окно для таблиц состояний/принудительного задания и выберите команду меню **Testen** → **Tabellenstatus ein [Тестирование** → **Статус таблиц включен]** (см. рис. 4–14). Если СРU находится в режиме RUN, а входы включаются и выключаются, то таблица состояний/принудительного задания показывает текущее состояние отдельных элементов.

- Если Вы хотите запустить отображение текущего состояния элементов в Вашей программе, то щелкните мышью в таблице состояний/принудительного задания на кнопке для однократного считывания или на кнопке для постоянного чтения.
- Если Вы хотите закончить актуализацию статуса, то щелкните мышью в таблице состояний/принудительного задания на кнопке STOP

Рис. 4-14. Контроль состояний в примере программы с помощью таблицы состояний / принудительного задания

Пояснения к рис. 4-14. Меню Testen: Zyklen ausführen - Выполнение циклов; Einfaches Lesen - Простое чтение; Schreiben - Запись; Tabellenstatus ein - Статус таблицы включен; Force zeigen - Показать установки; Force nicht zeigen - Не показывать установки; Wert forcen - Установить значение; Wert entforcen - отменить установку значения; Alle geforcten Werte lesen - Прочитать все принудительно установленные значения; Alle entforcen - Отменить все принудительные установки.

Ввод примера программы