Risoluzione del compito n. 3 (Gennaio 2020/2)

PROBLEMA 1

Trovate le soluzioni (z,w), con $z,w\in\mathbb{C}$, del sistema

$$\begin{cases} 2z^2 + 2\bar{w} + 1 = i\sqrt{3} \\ w = 2\bar{z} \end{cases}.$$

Ricaviamo subito w dalla seconda equazione e sostituiamolo nella prima, che diventa

$$2z^2 + 4z + 1 - i\sqrt{3} = 0 \iff z^2 + 2z + \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 0$$
:

la soluzione dell'equazione di secondo grado dà

$$z = -1 \pm \sqrt{1 - \left(\frac{1}{2} - \mathrm{i}\frac{\sqrt{3}}{2}\right)} = -1 \pm \sqrt{\frac{1}{2} + \mathrm{i}\frac{\sqrt{3}}{2}} \; ,$$

ma il numero sotto radice ha modulo 1 e argomento $\pi/3$, quindi una sua radice (dell'altra si occupa il \pm) ha modulo 1 e argomento $\pi/6$, dunque

$$z = -1 \pm \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = \begin{cases} -1 + \frac{\sqrt{3}}{2} + \frac{i}{2} \Rightarrow w = -2 + \sqrt{3} - i \\ -1 - \frac{\sqrt{3}}{2} - \frac{i}{2} \Rightarrow w = -2 - \sqrt{3} + i \end{cases}.$$

Le soluzioni sono dunque

$$z = \frac{-2 + \sqrt{3}}{2} + \frac{i}{2}$$
 $w = -2 + \sqrt{3} - i$ e $z = \frac{-2 - \sqrt{3}}{2} - \frac{i}{2}$ $w = -2 - \sqrt{3} + i$.

PROBLEMA 2

Considerate la funzione $f(x) = \arctan(x+1) - \log \left| \frac{x+4}{4} \right| - \frac{\pi}{4}$.

- a) Calcolatene i limiti agli estremi del dominio.
- b) Determinate gli intervalli di monotonia di f e i punti di massimo e/o minimo locale.
- c) Disegnate il grafico di f.
- d) Determinate quanti sono gli zeri della funzione f.
 - e) Trovate al variare di $k \in \mathbb{R}$ il numero di soluzioni dell'equazione f(x) = k .

La funzione f è definita per $x+4\neq 0$, e abbiamo facilmente

$$\lim_{x \to \pm \infty} f(x) = -\infty , \qquad \lim_{x \to -4} f(x) = +\infty .$$

Dato che

$$f'(x) = \frac{1}{1 + (x+1)^2} - \frac{1}{x+4} = -\frac{x^2 + x - 2}{(x+4)(1 + (x+1)^2)} = -\frac{(x-1)(x+2)}{(x+4)(1 + (x+1)^2)},$$

la derivata si annulla per x=-2 e x=1, è positiva per x<-4 e in]-2,1[e negativa altrove, quindi f è strettamente crescente in $]-\infty,-4[$ e in [-2,1], strettamente decrescente in]-4,-2[e in $[1,+\infty[$ ed ha un minimo locale per x=-2 e un massimo locale per x=1. Notiamo che

$$f(-2) = \arctan(-1) - \log \frac{1}{2} - \frac{\pi}{4} = \log 2 - \frac{\pi}{2} < 1 - \frac{\pi}{2} < 0$$
$$f(1) = \arctan 2 - \log \frac{3}{4} - \frac{\pi}{4} = \arctan 2 + \log \frac{4}{3} - \arctan 1 > 0.$$

La funzione f, per la stretta monotonia, si annulla esattamente una volta prima di x=-4, esattamente una fra -4 e -2, esattamente una (in x=0) fra -2 e 1 ed

```
esattamente una dopo \, 1 \, , in totale quattro volte. Più in generale l'equazione \, f(x) = k \, ha:
```

due soluzioni per k < f(2) tre soluzioni per k = f(2) quattro soluzioni per f(2) < k < f(1) tre soluzioni per k = f(1) due soluzioni per k > f(1).

PROBLEMA 3

Siano $f(x) = \log(1 + 2x)$, $g(x) = \log(1 + \sin(2x))$.

- a) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in $x_0 = 0$ di f(x).
- b) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in $x_0 = 0$ di g(x).
- c) Trovate l'ordine e la parte principale di infinitesimo, per $x \to 0$, della funzione f(x) g(x).
- d) Calcolare al variare di $\, lpha \in \mathbb{R} \,$ il limite $\displaystyle \lim_{x o 0^+} \dfrac{x^{lpha}}{f(x) g(x)} \, .$

Da $\log(1+t)=t-t^2/2+t^3/3-t^4/4+o(t^4)$ e osservando che sen $t=t-t^3/6+o(t^4)$ otteniamo

$$sen(2x) = 2x - \frac{4x^3}{3} + o(x^4)$$

$$f(x) = \log(1+2x) = 2x - 2x^2 + \frac{8x^3}{3} - 4x^4 + o(x^4)$$

$$g(x) = \log(1+\sin(2x)) = 2x - \frac{4x^3}{3} + o(x^4) - \frac{1}{2}\left(4x^2 - \frac{16x^4}{3}\right) + \frac{1}{3}8x^3 - \frac{1}{4}16x^4$$

$$= 2x - 2x^2 + \frac{4x^3}{3} - \frac{4x^4}{3} + o(x^4)$$

$$f(x) - g(x) = \frac{4x^3}{3} - \frac{8x^4}{3} + o(x^4)$$

quindi f-g è un infinitesimo di ordine 3 con parte principale $4x^3/3$. In particolare

$$\lim_{x \to 0^+} \frac{x^{\alpha}}{f(x) - g(x)} = \lim_{x \to 0^+} \frac{x^{\alpha}}{\frac{f(x) - g(x)}{4x^3/3} \frac{4x^3}{3}} = \frac{3}{4} \lim_{x \to 0^+} \frac{x^{\alpha}}{x^3} = \begin{cases} +\infty & \text{se } \alpha < 3 \\ 3/4 & \text{se } \alpha = 3 \\ 0 & \text{se } \alpha > 3. \end{cases}$$

PROBLEMA 4

Considerate la funzione $g(x) = \arctan \sqrt{x}$.

- a) Determinate la primitiva G(x) di g(x) tale che G(1)=0. b) Calcolate $\int_0^1 g(x) \, dx$.

Abbiamo

$$\int \arctan \sqrt{x} \, dx = \int_{\sqrt{x}=t}^{\uparrow} \int 2t \arctan t \, dt = t^2 \arctan t - \int \frac{t^2}{1+t^2} \, dt$$

e scrivendo $t^2 = (t^2 + 1) - 1$

$$\cdots = t^2 \arctan t - t + \arctan t + c = (x+1) \arctan \sqrt{x} - \sqrt{x} + c$$
.

Dobbiamo determinare c in modo che posto

$$G(x) = (x+1) \arctan \sqrt{x} - \sqrt{x} + c$$

si abbia G(1) = 0, ma $G(1) = 2\arctan 1 - 1 + c = (\pi/2) - 1 + c$, dunque deve essere $c = 1 - \pi/2$ e

$$G(x) = (x+1) \arctan \sqrt{x} - \sqrt{x} + 1 - \frac{\pi}{2}$$
.

A questo punto

$$\int_0^1 g(x) dx = G(1) - G(0) = -G(0) = \frac{\pi}{2} - 1.$$

Esercizio 1. Sia $S = \{x \in \mathbb{R} : \log(4x^2 - 4x + 1) \le 0\}$. Allora:

(A)
$$]1/2, 1[\subset S]$$
.

(C)
$$0 \notin S$$

(B)
$$S = \{x \in \mathbb{R} : |x - 1/2| \le 1\}$$
.

(C) $0 \notin S$. (D) S è un intervallo chiuso.

Occorre che sia $4x^2 - 4x + 1 > 0$ per l'esistenza del logaritmo, e $4x^2 - 4x + 1 \le 1 = e^0$ per la disuguaglianza, quindi

$$\left\{ \begin{aligned} (2x-1)^2 > 0 \\ x^2 - x \leq 0 \end{aligned} \right. \iff \left\{ \begin{aligned} x \neq 1/2 \\ 0 \leq x \leq 1 \end{aligned} \right. \Rightarrow S = [0, 1/2[\cup]1/2, 1] \; .$$

Esercizio 2. La successione $\frac{\sqrt{n^3+5n}-n^{3/2}}{\operatorname{sen}(7/\sqrt{n})}$ ha limite

(A)
$$5/14$$
.

(B)
$$5/7$$
.

(D)
$$+\infty$$

Scriviamo

$$\frac{\sqrt{n^3 + 5n} - n^{3/2}}{\operatorname{sen}(7/\sqrt{n})} = \frac{\left(\sqrt{n^3 + 5n} - n^{3/2}\right)\left(\sqrt{n^3 + 5n} + n^{3/2}\right)}{\left(\sqrt{n^3 + 5n} + n^{3/2}\right)\operatorname{sen}(7/\sqrt{n})}$$
$$= \frac{5n}{n\sqrt{n}(\sqrt{1 + 5/n^2} + 1)} \frac{7/\sqrt{n}}{\operatorname{sen}(7/\sqrt{n})} \frac{1}{7/\sqrt{n}} \to \frac{5}{2 \cdot 7} .$$

Esercizio 3. Il limite per $x \to 0^+$ della funzione $\frac{e^{2x} - 2^x}{\sin(3x)}$ è uguale a:

(A)
$$(2 - \log 2)/3$$
.

(C)
$$\frac{2}{3} \log 2$$
.
(D) $+\infty$.

(B)
$$2/3$$
.

(D)
$$+\infty$$

Scriviamo

$$\frac{e^{2x} - 2^x}{\operatorname{sen}(3x)} = \frac{e^{2x} - e^{x \log 2}}{3x} \frac{3x}{\operatorname{sen}(3x)} = \frac{1}{3} \frac{3x}{\operatorname{sen}(3x)} e^{x \log 2} \frac{e^{(2 - \log 2)x} - 1}{x}$$

che tende a $(2 - \log 2)/3$.

Esercizio 4. Se z=2-i e $w=\frac{\bar{z}(iz-\bar{z}-1)}{z(i\bar{z}+z)}$ allora

(A)
$$\Re w = -3/2$$
.

(C)
$$\Re w = 1/2$$
.

(B)
$$\Im w = -1/2$$
.

(D)
$$\Im w = 3/2$$
.

Abbiamo

$$\bar{z}(iz - \bar{z} - 1) = (2+i)(2i + 1 - (2+i) - 1) = (2+i)(-2+i) = i^2 - 4 = -5$$

$$z(i\bar{z}+z) = (2-i)(2i-1+2-i) = (2-i)(1+i) = 3+i$$

quindi

$$w = \frac{-5}{3+i} = \frac{-5(3-i)}{3^2+1^2} = -\frac{3}{2} + \frac{1}{2}i.$$

Esercizio 5. Domenico ha preso un foglio di carta e ha tracciato alcune righe, dividendolo in 10 zone. Emilio ne colora 3 di rosso e 2 di blu, lasciando bianche le altre. In quanti modi diversi può risultare colorato il foglio?

(A)
$$\binom{10}{3}\binom{7}{2}$$
.
(B) $10 \cdot 3 \cdot 2$.
(C) $\binom{10}{3 \cdot 2}$.
(D) $\binom{10}{5}\binom{5}{3}\binom{5}{2}$

Emilio può scegliere le tre zone da colorare in rosso in $\binom{10}{3}$ modi diversi. Per ciascuno di questi modi, può scegliere fra le 7 zone restanti le due da colorare in blu in $\binom{7}{2}$ modi, poi non ha altro da fare. I modi sono quindi $\binom{10}{3}\binom{7}{2}$.

Esercizio 6. Se $f^{(4)}(0) = 6$ allora il coefficiente di x^4 nello sviluppo di Taylor di f centrato in $x_0 = 0$ è

Il coefficiente di x^4 è $f^{(4)}(0)/4! = 6/24 = 1/4$.

Esercizio 7. Sia A l'insieme degli $\alpha \in \mathbb{R}$ tali che la serie geometrica $\sum_{n} \left(\frac{\alpha^2 + 1}{3\alpha + 1}\right)^n$ risulta convergente. Allora:

(A)
$$[1,2] \subset A$$
.
 (B) $[-2,-1] \subset A$.
 (C) A non è limitato superiormente.
 (D) $A=]0,3[$.

Occorre che la ragione della serie geometrica esista (quindi $3\alpha + 1 \neq 0$) e sia minore di 1 in valore assoluto. Tenendo a mente la condizione di esistenza, calcoliamo

$$1 > \left| \frac{\alpha^2 + 1}{3\alpha + 1} \right| = \frac{\alpha^2 + 1}{|3\alpha + 1|} \iff |3\alpha + 1| > \alpha^2 + 1,$$

che si traduce in

$$\left([3\alpha + 1 > \alpha^2 + 1] \ \mathbf{o} \ [3\alpha + 1 < -\alpha^2 - 1] \right) \iff \left([\alpha^2 - 3\alpha < 0] \ \mathbf{o} \ [\alpha^2 + 3\alpha + 2 < 0] \right).$$

La prima disequazione ha soluzione $0<\alpha<3$, la seconda $-2<\alpha<-1$, dunque (osservando che comunque risulta $\alpha\neq -1/3$) abbiamo $A=]-2,-1[\cup]0,3[$.