Partiel CIR3-CSI3 Durée : 3 heures Sans documents Avec calculatrice

PHYSIQUE DU SOLIDE ET NANOSCIENCES

Toutes les réponses doivent être justifiées : une réponse sans justification ne donne pas de points. Une présentation soignée des réponses est demandée.

Exercice 1. Questions de cours

- 1. Qu'est-ce qu'un phonon?
- 2. Donner l'expression des conditions aux limites de Born Von Karman dans le cas unidimensionnel.

Exercice 2. Dopage du diamant

Cet exercice porte sur l'étude des propriétés optiques et électriques du diamant, avec et sans dopage. <u>Un formulaire est donné en fin d'exercice.</u>

Diamant pur

La structure de bandes calculée pour le diamant pur est reproduite ci-dessous, où l'énergie nulle correspond au haut de la bande de valence.

- 1. Combien y a-t-il de bandes de valence ?
- 2. Quelle est la largeur de la bande interdite ? Indiquer si le gap est direct ou indirect.
- 3. Le diamant est-il un bon conducteur électrique ?

La bande interdite peut aussi être déterminée expérimentalement en mesurant l'absorption optique. La courbe 1 du graphe suivant présente le coefficient d'absorption d'un diamant à très faible taux d'impuretés.

- 4. Donner la valeur de la bande interdite, en électronvolts, déterminée à partir de l'absorbance.
- 5. Comparer ce résultat à l'énergie des photons dans la gamme du visible ci-dessus. Que peut-on en déduire concernant l'aspect du diamant pur ?
- 6. Quelle est la position approximative du niveau de Fermi dans le diamant pur à température ambiante, sans calcul ?

Diamant dopé

Le diamant est dopé par des atomes d'azote N, donneurs d'électrons.

- 7. Quel est l'effet de l'introduction de donneurs sur la structure de bandes ? (Niveaux d'énergie, position, ..)
- 8. Comment évolue la position du niveau de Fermi par rapport au cas du diamant pur ?
- 9. La mesure du coefficient d'absorption d'un diamant dopé N est représentée courbe 2 du graphe ci-dessus. Quelle est l'énergie du pic des dopants ?
- 10. En déduire la couleur principalement absorbée. Sachant que la couleur apparente est la couleur complémentaire de celle des photons absorbés, de quelle couleur sont les diamants dopés à l'azote ? Les couples de couleurs complémentaires principales sont : vert/rouge, jaune/violet, orange/bleu.

Conductivité électrique en fonction de la température et du dopage

On cherche d'abord l'expression générale de la conductivité électrique d'un semi-conducteur pur en fonction de la température et de sa bande interdite. On note n la densité d'électrons libres en bande de conduction et p la densité de trous libres en bande de valence.

- 11. Donner l'équation d'électro neutralité.
- 12. Déduire une relation entre la densité intrinsèque n_i en fonction de la largeur de la bande interdite E_g , N_c , N_v et kT.
- 13. En déduire l'expression de la conductivité en fonction du gap et de la température.
- 14. Tracer l'évolution qualitative de la conductivité en fonction de la température. On négligera la dépendance de N_c et N_v et des mobilités de porteurs en fonction de la température.

On cherche ensuite l'évolution de la conductivité électrique avec le dopage. Soit N_D la concentration de dopants donneurs.

- 15. Déterminer la densité d'électrons et de trous.
- 16. En déduire l'expression de la conductivité électrique en fonction de N_D.
- 17. Comment évolue la conductivité électrique avec le dopage ?

Le graphe suivant présente l'évolution de la conductivité en fonction de la température de deux diamants différents.

18. Quelle est la courbe qui correspond au diamant le plus dopé ?

Formulaire

Dans un semi-conducteur les **concentrations** d'électrons dans la bande de conduction n et de trous dans la bande de valence p sont données par :

$$n = N_c exp\left(-\frac{E_c - E_F}{kT}\right)$$
 et $p = N_v exp\left(\frac{E_v - E_F}{kT}\right)$

$$N_C = 2 \left(\frac{2\pi m_e^* kT}{h^2}\right)^{3/2}$$
 et $N_V = 2 \left(\frac{2\pi m_h^* kT}{h^2}\right)^{3/2}$

où m*e et m*h sont les masses effectives des électrons et trous respectivement.

L'expression de la **conductivité** d'un semi-conducteur est $\sigma = ne\mu_e + pe\mu_h$ où μ_e et μ_h désignent la mobilité des électrons et des trous respectivement et e la valeur absolue de la charge de l'électron.

Constantes

$$h = 6,62.10^{-34} \text{ J.s}$$

 $c = 3.10^8 \text{ m.s}^{-1}$
 $e = 1,602.10^{-19} \text{ C}$

Exercice 3. Cristallographie

On considère une feuille de nitrure de bore (BN), cristal à deux dimensions, dont la structure cristalline est représentée sur la figure ci-dessous.

- 1. Quels sont les vecteurs de base?
- 2. Quel est le motif?
- 3. B et N apportent respectivement 3 et 5 électrons de valence. Quel est le nombre d'électrons de valence par maille ?