Dynamic Programming (Introduction)

UCF Programming Team

Fall 2021

Algorithm Design Techniques

1. Divide and Conquer

Examples: Binary search, Merge sort

2. Greedy

Examples: Huffman coding, Minimum spanning tree,
Optimal merge patterns

3. Dynamic Programming (DP)

Dynamic Programming

- Applies to optimization problems.
- Think in terms of a brute force solution but avoid redoing work you have already done.
- Store answers to subproblems you have already solved (usually using tables).
- Usually have the option of Iterative DP or Recursive DP.
- Principle of Optimality
- Recurrence Relation
- Memoization (Memo"ize")

Principle of Optimality

Subsequence of the sequence of decisions leading to the optimal solution must also be optimal on the corresponding subproblems.

Example: shortest path from A to B

Prepared by the UCF Programming Team Coaches for the Developmental Teams.

Example 1: Longest Decreasing Sequence (LDS)

Index	1	2	3	4	5	6	7	8
Values	5	40	20	30	25	80	10	35
LDS	1	1	2	2	3	1	4	2

Finding the sequence: find the largest value in LDS, then go backward from there.

Another example for LDS:

Index	1	2	3	4	5	6	7	8
Values	389	207	155	300	299	170	158	65
LDS	1							6

Finding the sequence: find the largest value in LDS, then go backward from there.

LDS	1							6
Values	389	207	155	300	299	170	158	65

Example 2: Longest (Greatest) Common Subsequence

Common Subsequence: sequence of characters contained in both strings and in the same order

Longest Common Subsequence: longest such string

String₁: E \mathbf{P} F \mathbf{L} \mathbf{A} G \mathbf{Y}

String2: P L H A I Y J

	null	E	P	F	L	A	G	Y
null	0	0	0	0	0	0	0	0
P	0	0	1	1	1	1	1	1
L	0	0	1	1	2	2	2	2
Н	0	0	1	1	2	2	2	2
A	0	0	1	1	2	3	3	3
I	0	0	1	1	2	3	3	3
Y	0	0	1	1	2	3	3	4
J	0	0	1	1	2	3	3	4

To find LCS:

- Move up or left through the matrix until you must change numbers, then move diagonally.
- Each diagonal jump indicates character in the subsequence.
- Once the matrix entry is a zero, stop.

Another example for LCS:

String₁: A B C A B B A

String2: C B A B A C

	null	А	В	С	А	В	В	А
null	0	0	0	0	0	0	0	0
С	0							
В	0							
А	0							
В	0							
А	0							
С	0							4

Two answers: C A B A and B A B A

Example 3: Matrix Multiplications

$$(M_1 \ M_2) \ M_3$$
 $(5 * 10 * 15) + 5 * 15 * 1 = 825$ multiplications $M_1 \ (M_2 \ M_3)$ $5 * 10 * 1 + (10 * 15 * 1) = 200$ multiplications

Optimization Problem:

- Given n matrices M_1 , M_2 , ..., M_n
- Determine the number of multiplications needed in the optimal case to compute $M_1\ M_2\ ...\ M_n$

Assume that the dimensions of M_i are $p_i \times q_i$ for $1 \le i \le n$

Let cost[i][j] denote the number of multiplications needed to compute M_i M_{i+1} ... M_{j-1} M_j optimally.

Then,

$$cost[1][n] = min$$
 { $cost[1][k] + cost[k+1][n] + p_1 * q_k * q_n$ }
 $1 \le k < n$

This recurrence corresponds to generating n-1 feasible solutions and then taking the one of minimum cost:

Finding the best way to multiply $M_2\ M_3\ M_4\ ...\ M_n$

cost[i][j]	1	2	3	4
1	0	1 st	4 th	6 th
2		0	2 nd	5 th
3			0	3 rd
4				0