- 1. Care ar fi cea mai apropiata scriere in lambda calcul pentru A, unde $f(x) = x^2 + 1$ si A = f(2)?
 - 5
 - $(x^2 + 1)(2)$
 - $2^2 + 1$
 - $(\lambda x. x^2 + 1)(2)$
- 2. Care din conceptele de mai jos nu este un model de calculabilitate?
 - masinile Turing
 - punctele fixe
 - functiile recursive
 - lambda calcul
- 3. In lambda calcul fara tipuri
 - trebuie sa specificam mereu tipul oricarei expresii
 - sunt eliminate expresiile de forma f(f)
 - nu specificam domeniul/codomeniul functiilor
 - putem avea efecte laterale

- 1. Care din lambda termenii de mai jos nu este închis?
 - λxyz.xxy
 - λxy.xxy
 - λx.xxy
 - λx.xx
- 2. Care sunt variabilele libere din termenul λx.xxy?
 - termenul nu are variabile libere
 - X
 - y
 - x și y

- 3. Care din următoarele afirmații este adevărată?
 - un combinator este orice lambda termen
 - un combinator este un lambda termen fără variabile libere (închis)
 - un combinator este un lambda termen cu variabile libere
 - un combinator este un lambda termen care are și variabile libere, și variabile legate

- 1. Ce este un β -redex?
 - un λ -termen de forma M[N/x]
 - un λ-termen de forma (λx.M)N
 - un λ -termen de forma ($\lambda x.M$)
 - un λ -termen de forma x
- 2. Ce este o formă normală pentru un λ -termen?
 - un λ-redex
 - cea mai mică β-reducție
 - o α-echivalență
 - un λ-termen fără redex-uri
- 3. În ce constă strategia normală de evaluare pentru λ-termeni?
 - alegerea redex-ului cel mai din stânga și apoi cel mai din exterior
 - alegerea redex-ului cel mai din stânga și apoi cel mai din interior
 - aplicarea unei reduceri în corpul unei abstractizări
 - nu este definită

- 1. O codare în lambda calcul pentru constanta booleana true este:
 - λxy.x
 - λxy.xy
 - $\bullet \quad \lambda x.x$
 - nu se poate coda în lambda calcul

- 2. Codarea numerelor naturale în lambda calcul se mai numește și
 - mașina Turing universală
 - numerele naturale nu se pot coda în lambda calcul
 - numeralii Church
 - Redex
- 3. Un lambda termen M este punct fix al unui lambda termen F dacă
 - $F =_{\beta} M$
 - $\mathbf{F} \mathbf{M} =_{\beta} \mathbf{M}$
 - $M F =_{\beta} M$
 - $FM =_{\beta} F$

- 1. Ce înseamnă că un termen M este typable?
 - există un tip σ astfel încât M să aibă tipul σ
 - există o derivare a lui M
 - M are o formă normală
 - M este o abstractizare
- 2. Care din următorii termeni este typable?
 - XX
 - xxy
 - **x**(**xy**)
 - niciunul din termenii de mai sus
- 3. Ce este o judecată în calculul $\lambda \rightarrow$?
 - o expresie de forma M:σ
 - o expresie de forma $x:\sigma$
 - o expresie de forma Γ ⊢ M:σ
 - o abstractizare

- 1. Ce înseamnă type checking?
 - pentru un termen dat, constă în găsirea unui tip pentru un termen
 - pentru un termen dat, constă în găsirea unui context pentru un termen
 - pentru un context, termen și tip date, constă în verificarea faptului că termenul poate avea tipul în contextul dat
 - pentru un context și un tip date, constă în găsirea unui tip pentru termen în contextul dat
- 2. Care din problemele de mai jos nu este decidabilă pentru lambda calcul cu tipuri simple?
 - inhabitation
 - typability
 - type checking
 - toate de mai sus sunt probleme decidabile
- 3. Care din afirmațiile de mai jos este adevărată pentru tipul Void?
 - are un inhabitant numit void
 - nu poate exista un astfel de tip
 - nu are niciun inhabitant
 - orice termen poate avea tipul Void