May 2018

1 Abstract

Общая постановка задачи SCS: дан набор строк S и требуется найти самую короткую строку, которая содержит каждую строку из S. Задача r-SCS— любая строка из S имеет длину r. Здесь мы покажем , как получить решение данной задачи за время $O^*(2^{n(1-\frac{1}{2r^2+1})})$. Перечислим основные определения и результаты данной работы.

Определение 1 Иерархический граф $HG_S = (V, A)$ множества строк S представляет собой взвешенный ориентированный граф определяющийся следующим образом:

- Набор вершин V состоит из всех префиксов и суффиксов (включая пустую строку ϵ) строк из S.
- Для двух таких строк $u, v \in V$, $(u, v) \in A$ когда (i)u-префикс v длины |v|-1 (ii)v- суффикс u длины |u|-1.

Теорема 1 Пусть G = (V, A) - взвешенный направленный мультиграф, $R \subseteq A$ - подмножество дуг, l = poly(|V|), тогда существует рандомизированный алгоритм с ложными отрицаниями, проверяющий, является ли длина кратчайшего замкнутого пути, проходящего через все дуги из R не более l за время $O(2^k)$, где k - число слабосвязных компонент в подграфе G, индуцированном подмножеством R.

Лемма 1 В графе HG_S существует множество дуг ER такое что, длина оптимальной надстроки множества строк S равна длине замкнутого пути китайского почтальона HG_S , где необходимыми дугами являются дуги из ER

Теорема 2 Количество слабосвязных компонент в ER не превосходит $(1-\frac{1}{2r^2+1})n$.

Из всех этих результатов следует заявленная оценка.