3.3 Type Inference

In the first section of this chapter we defined a type system, in the second section we introduced a syntax for our language. Now we want to define rules how to obtain the type of a given program written in our language.

3.3.1 Typing Judgments

To state that a program e is of type T (and therefor well-formed) we write

We call such a statement a judgment. Judgments are generally written in metalanguage, thus we also need to provide a system of inference rules how to infer such a judgment. These *inference rules* have the following form

$$\frac{P_1 \dots P_n}{C}$$

where P_1 up to P_n are premises and C is a conclusion.

We can read it in two ways:

- "if all premises hold then the conclusion holds as well" or
- "to prove the conclusion we need to prove all premises"

The premises as well as the conclusion are meta-language statements in the following form

$$A_1,\ldots,A_n\vdash B.$$

Such a sequent would be generally read as "If we know A_1, \ldots, A_n then we can prove B".

We will now provide a judgment for every production rule defined in the last section.

TYPE SIGNITURE JUDGMENTS

For type signiture judgments, let Γ be a type context, $T \in \mathcal{T}$ and $a_i \in \mathcal{V}, T_i \in \mathcal{T}$ for $i \in \mathbb{N}_1^n$ and $n \in \mathbb{N}$.

For $l \in \text{<list-lower-var>}$ the judgment is

$$l:(a_1,\ldots,a_n).$$

For $l \in \text{list-type-fields}$ the judgment is

$$\Gamma \vdash l : \{a_1 : T_1, \dots, a_n : T_n\}.$$

For $l \in \text{<list-type>}$ the judgment is

$$\Gamma \vdash l : (T_1, \ldots, T_n)$$

For $t \in \text{<txpe>}$ the judgment is

$$\Gamma \vdash t : T$$

PATTERN JUDGMENTS

We will now introduce another context, this time for variables instead of types:

Definition 3.1: Variable Context

 $\Delta \in \mathcal{V} \nrightarrow \mathcal{T}$ is called the *variable context*.

For pattern judgments, let Γ be a type context and Δ , Θ be variable contexts. Let $T \in \mathcal{T}$ and $T_i \in \mathcal{T}, a_i \in \mathcal{V}$ for $i \in \mathbb{N}_0^n$ and $n \in \mathbb{N}$.

For $l \in \text{<list-pattern-list>}$ the judgment is

$$\Gamma, \Delta \vdash: \mathsf{match}_{\Theta}((T_1, \ldots, T_n), l).$$

This can be read as "given Γ and Δ , we can match (T_1, \ldots, T_n) with the pattern l by using the variable context Θ ".

For $l \in \text{<list-pattern-sort>}$ the judgment is

$$\Gamma, \Delta \vdash \mathsf{match}_{\Theta}((T_1, \ldots, T_n), l)$$

For $l \in \text{<list-pattern-vars>}$ the judgment is

$$l:(a_1,\ldots,a_n)$$

For $p \in \text{<pattern>}$ the judgment is

$$\Gamma, \Delta \vdash \mathsf{match}_{\Theta}(T, p)$$

EXPRESSION JUDGMENTS

For expression judgments, let Γ be a type context, Δ be a variable context, $T \in \mathcal{T}$, $a \in \mathcal{V}$ and $T_i \in \mathcal{T}$, $a_i \in \mathcal{V}$ for $i \in \mathbb{N}_0^n$, $n \in \mathbb{N}$.

For $l \in \text{<list-exp-field>}$ the judgment is

$$\Gamma, \Delta \vdash l : \{a_1 : T_1, \ldots, a_n : T_n\}$$

For $m \in \texttt{<maybe-exp-sign>}$ the judgment is

$$m: T_1 \vdash a: T_2$$

It can be read as "given that m has the type T_1 , a has the type T_2 ".

For $l \in \text{list-case>}$ the judgment is

$$\Gamma, \Delta \vdash l : T$$

For $e \in \text{`bool'}$ the judgment is

e:T

For $e \in$ the judgment is

e:T

For $l \in \text{ist-exp>}$ the judgment is

$$\Gamma, \Delta \vdash l : (T_1, \ldots, T_n)$$

For $e \in \langle \exp \rangle$ the judgment is

$$\Gamma, \Delta \vdash e : T$$

If the type T is known then we talk about *type checking* else we call the process of finding the judgment *type inferring*. For inferring a type (for the judgment $\Gamma, \Delta \vdash e : T$), the result is not necessary unique. Therefore, we want to find the most general type, meaning a type T_1 such that

- T_1 is an inferred type: for all $T_2 \in \mathcal{T} \wedge T_1 \sqsubseteq T_2$ the judgment $\Gamma, \Delta \vdash e : T_2$ holds.
- T_1 is sharp: for all $T_2 \in \mathcal{T} \wedge T_2 \sqsubseteq T_1$ we can find $T_3 \in \mathcal{T} \wedge T_2 \sqsubseteq T_3$ such that the judgment $\Gamma, \Delta \vdash e : T_3$ does not hold.

STATEMENT JUDGMENTS

For statement judgments, let Γ , Γ_1 , Γ_2 be type contexts, Δ , Δ_1 , Δ_2 be a variable contexts, T, $T_1, T_2 \in \mathcal{T}$, $a \in \mathcal{V}$ and $T_i \in \mathcal{T}$, $a_i \in \mathcal{V}$ for $i \in \mathbb{N}_0^n$ and $T_{i,j} \in \mathcal{T}$ for $i \in \mathbb{N}_0^n$, $n \in \mathbb{N}$, $j \in \mathbb{N}_0^{k_i}$ and $k_i \in \mathbb{N}$.

For $l \in \text{<list-sort>}$ the judgment is

$$l:(a_1:(T_{1,1},\ldots,T_{1,k_1}),\ldots,a_n:(T_{n,1},\ldots,T_{n,k_1}))$$

For $l \in \texttt{<maybe-statement-sign>}$ the judgment is

$$m: T_1 \vdash a: T_2$$

For $l \in \text{<list-statement>}$ the judgment is

$$\Gamma_1, \Delta_2, l \vdash \Gamma_2, \Delta_2$$

For $e \in \text{`statement'}$ the judgment is

$$\Gamma_1, \Delta_2, e \vdash \Gamma_2, \Delta_2$$

It can be read as "the statement e maps Γ_1 to Γ_2 and Δ_1 to Δ_2 ".

For $m \in \texttt{<maybe-main-sign>}$ the judgment is

$$m: T_1 \vdash \mathsf{main}: T_2$$

For $e \in \operatorname{program}$ the judgment is

e:T

3.3.2 Auxiliary Definitions

We will use $(e,T) \in \Gamma$ and $(e,T) \in \Delta$ to denote that a tuple (e,T) exists in Γ or Δ . We will also sometimes use a wildcard _ instead of a T if we are only interested in e.

We will use $T_1 \sqsubseteq T_2$ for given types T_1, T_2 to denote that T_1 is more general than T_2 .

We will use "T is a mono type", T is a type variable and type equivalence $T_1 = T_2$ for two given types T_1 and T_2 .

We will use $a_1, \ldots, a_n = \text{free}(T)$ to get all free variables of T.

3.3.3 Inference Rules for type signitures

LIST-LOWER-VAR

Judgment: $l:(a_1,\ldots,a_n)$

For an empty list we return the empty tuple.

$$\frac{l:(a_1,\ldots,a_n) \quad (a_0,a_1,\ldots,a_n) = T}{a_0 \ l:T}$$

For a nonempty list, we append the head a to the type T of the tail l.

LIST-TYPE-FIELDS

Judgment: $\Gamma \vdash l : \{a_1 : T_1, ..., a_n : T_n\}$

$$\Gamma \vdash "": \{\}$$

$$\frac{\Gamma \vdash t : T_0 \quad \Gamma \vdash l : \{a_1 : T_1, \dots, a_n : T_n\} \quad \{a_0 : T_0, a_1 : T_1, \dots, a_n : T_n\} = T}{\Gamma \vdash a_0 \text{ ": " } t \text{ ", " } l : T}$$

The type context Γ is used in the judgment $\Gamma \vdash t : T_0$ that turns the type signature t into a type T_0 .

LIST-TYPE

Judgment: $\Gamma \vdash l : (T_1, \dots, T_n)$

$$\Gamma \vdash "":()$$

$$\frac{\Gamma \vdash t : T_0 \quad \Gamma \vdash l : (T_1, \dots, T_n) \quad (T_0, T_1, \dots, T_n) = T}{\Gamma \vdash t \ l : T}$$

TYPE

Judgment: $\Gamma \vdash t : T$

$$\Gamma \vdash \texttt{"Bool"} : Bool$$

$$\Gamma \vdash \texttt{"Int"} : Int$$

$$\frac{\Gamma \vdash t : T}{\Gamma \vdash \text{"List" } \text{$\mathsf{t}: (\forall a.\mu C. [\] | $Cons\ a\ C)$ T}}$$

The resulting type is a type application $List\ T$ for the type $List = \forall a.\mu C.[\]\ |Cons\ a\ C.$

$$\begin{split} \frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash \text{"(" } t_1 \text{ "," } t_2 \text{ ")" } : (T_1, T_2)} \\ \\ \frac{\Gamma \vdash l : T}{\Gamma \vdash \text{"\{"}l"\}\text{"} : T} \\ \\ \frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 \to t_2 : T_1 \to T_2} \\ \\ \frac{(c, f) \in \Gamma \quad \Gamma \vdash l : (T_1, \dots, T_n) \quad f \ T_1 \dots T_n = T}{\Gamma \vdash c \ l : T} \end{split}$$

Note that Γ maps variables to application constructors.

$$\frac{(a,(T)) \in \Gamma \quad T \text{ is a type variable}}{\Gamma \vdash a : T}$$

For a given type T we write the application constructor as (T).