Problem 1

Does $P = (p_1, \dots, p_n)$ form a simple Polygon?

Problem 2 (Polygon Intersection)

Do two simple polygons intersect?

Problem 3 (Segment Intersection Test)

Are n line segments pairwise / ? ?

Problem 4 (Segment Intersection)

Given $\mathfrak n$ line segments, construct all intersections.

Problem 5 (Segment Arrangement)

Given n line segments, construct their Arrangement.

Problem 6 (Map Overlay)

Given sets S and T of pair-wise disjoint line segments, construct the Arrangement of $S \cup T$.

Segment Intersection

Trivial Algorithm. Test all pairs. $O(n^2)$ time and linear space.

Worst-case optimal for Problem 4...

In case of few intersections, we would like to have sub-quadratic time.

Lower bound $\Omega(n \log n)$ from Element Uniqueness.

Problem 7 Given a set I of n intervals $[\ell_i, r_i] \subset \mathbb{R}$, $1 \le i \le n$, compute all intersecting pairs.

Theorem 1

Problem 7 can be solved in $O(n \log n + k)$ time and O(n) space, where k is the number of intersecting pairs.

Line Sweep

Idea. Move a line ℓ (sweep line) from left to right, such that at any time all intersections to the left of ℓ are known.

We do not make any general position assumption here, that is, several segments can start, end, and/or intersect at the same point. Imagine the sweep line infinitesimally twisted.

Sweep line status (SLS). Sequence L of segments that intersect the current sweep line, sorted by y-coordinate.

Event point (EP). Point where SLS changes when moving ℓ (discretization).

Event point schedule (EPS). Sequence E of event points to be processed (not all known in advance), sorted lexicographically.

With every EP p we store

- a list end(p) of segments ending at p;
- a list begin(p) of segments that begin at p;
- a list int(p) of segments that intersect a neighboring (in SLS) segment at p.

With every segment we store pointers to the (≤ 2) entries in $int(\cdot)$ lists and a pointer to its appearance in L.

Invariants.

- i) L is the sequence of segments from S which intersect ℓ , sorted by y-coordinate (\leq) ;
- ii) E contains all event points (endpoints from segments in S and all points of intersection from segments adjacent in L) that are to the right of ℓ ;
- iii) All intersections between segments from S that are to the left of ℓ have been reported.

Event point handling. Consider an EP p.

- 1) If $end(p) \cup int(p) = \emptyset$, localize p in L.
- 2) Report all pairs of segments from end(p) \cup begin(p) \cup int(p) as intersecting.
- 3) Remove all segments in end(p) from L.
- 4) Reverse the subsequence in L that is formed by the segments from int(p).
- 5) Insert segments from begin(p) into L, sorted by slope.
- 6) Test the topmost and bottommost segment in SLS from begin(p) ∪ int(p) for intersection with its successor and predecessor, respectively, and update EP if necessary.

Update of EPS. Insert an EP p for intersection of segments s and t.

- 1) If p does not yet appear in E, insert it.
- 2) If s or t are contained in some $int(\cdot)$ list of some other EP q, remove them there and possibly remove q from E (if $end(q) \cup begin(q) \cup int(q) = \emptyset$).
- 3) Insert s and t into int(p).

Sweep.

- 1) Insert all segment endpoints into begin(\cdot) and end(\cdot) lists of a corresponding EP in E.
- 2) As long as $E \neq \emptyset$, handle the first EP and then remove it from E.

Runtime Analysis

Initialization: $O(n \log n)$.

Handling of an EP p:

O(#intersecting pairs +
$$|end(p)| log n + |int(p)| + |begin(p)| log n + log n$$
).

Altogether:

$$O(k + n \log n + k \log n) = O((n + k) \log n).$$

Space. Clearly $|S| \le n$. At begin $|E| \le 2n$ and |S| = 0. Never more than 2|S| intersection EPs, therefore linear space overall.

Theorem 2 Problem 4 and Problem 5 can be solved in $O((n + k) \log n)$ time and O(n) space.

Theorem 3 Problem 1, Problem 2 and Problem 3 can be solved in $O(n \log n)$ time and O(n) space.

Improvements

The presented algorithm is due to Jon Bentley and Thomas Ottmann (1979).

 $O(n \log n + k)$ time and O(n+k) space [Bernard Chazelle and Herbert Edelsbrunner (1988)]

expected $O(n \log n + k)$ time using O(n + k) space [Ketan Mulmuley (1988)]

expected $O(n \log n + k)$ time using O(n) space [Kenneth Clarkson and Peter Shor (1989)]

 $O(n \log n + k)$ time and linear space [Ivan Balaban (1995)]