Damaged Cars Detector

Talal Alnujaiman Abdulelah Almajed Fahad Alnafisa

Table of Contents

01 INTRODUCTION

Problem statement

In our project we are trying to analyze and detect the damages in the car body using images, hoping to build a model to assist certain entity in damaged cars capturing using deep learning methods

Tools

Pandas

Sklearn

Matplotlib

TensorFlow

NumPy

Seaborn

Methodology

In our project, we decided to check for car damages in three separate ways, where we first determine whether or not the car is damaged, then we move forward to locate the place of the damage(front, side, or rear) and finally we try to evaluate the severity of that damage(minor, moderate, and severe)

- Damage check
- Damage location check
- Damage severity check

02

PREPROCESS

Preprocess

Reshaping 180x180 Normalization 1./255 Augmentation

03 RESULTS

Damage Check

Damage Check Data

2540

Not Damaged

2540

Damaged

Baseline Models: Properties

Simple NN

Hidden layer: 1

• Dense: 40

Activation: ReLU

Optimizer: sgd

NN

Hidden layer: 2

• Dense: 1000

Activation: ReLU

Optimizer: Adam

Simple CNN

• Conv2D: 2

• Filters: 16 - 32

Hidden layer: 1

• Dense: 500

Activation: ReLU

Optimizer: Adam

Baseline Models: Scores

Simple NN

- Train Accuracy: 49.98%
- Validation Accuracy: 50.00%

MM

- Train Accuracy: 70.45%
- Validation Accuracy: 69.09%

Simple CNN

- Train Accuracy: 97.56%
- Validation Accuracy: 74.21%

Main Models

Acc/Models	СИИ	VGG16	VGG19	INCEPTION V3	MOBILENET V2
training	89.25%	95.97%	96.63%	62.50%	90.21%
Validation	85.43%	93.31%	91.73%	65.67%	85.83%
test	-	94.29%	-		-

BEST MODEL Transfer Learning: VGG16

Accuracy:

Train: 95.97%Test: 94.29%

Properties:

• Dense: 100 - 50

- MaxPooling2D
- Dropout: 0.3
- Activation: ReLU
- Optimizer: Adam
- Early stopping at epoch 12
- Epochs = 20

Try Our Model on Damage Check


```
In [61]: damage('https://www.motoringresearch.com/wp-content/uploads/2021/01/Damaged-car-sml.jpg', model)

Validating that damage exists....
Validation complete - the car is damaged, proceed to location and severity determination
```

Damage Location Check

Damage Location Check Data

498 Front **320** Side

345 Rear

Baseline Models: Properties

Simple NN

Hidden layer: 1

• Dense: 40

Activation: ReLU

Optimizer: sgd

HH

Hidden layer: 2

• Dense: 1000

Activation: ReLU

Optimizer: Adam

Simple CNN

• Conv2D: 2

Filters: 16 - 32

Hidden layer: 1

• Dense: 500

Activation: ReLU

Optimizer: Adam

Baseline Models: Scores

Simple NN

- Train Accuracy: 40.96%
- Validation Accuracy: 54.67%

NN

- Train Accuracy: 34.83%
- Validation Accuracy: 54.67%

Simple CNN

- Train Accuracy: 53.36%
- Validation Accuracy: 51.61%

Main Models

BEST

BEST MODEL Transfer Learning: VGG19

Accuracy:

Train: 70.95%Test: 76.34%

Properties:

- Dense: 100 50
- MaxPooling2D
- Dropout: 0.5
- Activation: ReLU
- Loss: Categorical Cross Entropy
- Optimizer: Nadam
- Early stopping at epoch 18
- Epochs = 20

Try Our Model on Damage Check

location("https://st3.depositphotos.com/1252160/15177/i/1600/depositphotos_151777096-stock-photo-damaged-car-by-accident.jpg", model)

Validating location of damage....Result: Front

Damage Severity Check

Damage Severity Check Data

327 Minor

371 Moderate 455

Severe

Baseline Models: Properties

Simple NN

Hidden layer: 1

• Dense: 40

Activation: ReLU

Optimizer: Adam

NN

Hidden layer: 1

• Dense: 1500

Activation: ReLU

Optimizer: Adam

Simple CNN

• Conv2D: 2

Filters: 16 - 32

Hidden layer: 1

• Dense: 500

Activation: ReLU

Optimizer: Adam

Baseline Models: Scores

Simple NN

- Train Accuracy: 43.91%
- Validation Accuracy: 33.91%

NN

- Train Accuracy: 73.70%
- Validation Accuracy: 43.48%

Simple CNN

- Train Accuracy: 96.09%
- Validation Accuracy: 33.91%

Main Models

Acc/Models	СИИ	VGG16	VGG19	INCEPTION V3	MOBILENET V2
training	53.36%	41.94%	78.06%	42.34%	33.03%
Validation	51.61	34.95%	85.87%	41.40%	53.33%
test	-	-	73.78%	-	-

BEST MODEL Transfer Learning: VGG19

Accuracy:

Train: 78.06%Test: 73.78%

Properties:

- Dense: 100 50
- MaxPooling2D
- Dropout: 0.5
- Activation: ReLU
- Loss: Categorical Cross Entropy
- Optimizer: Adam
- Early stopping at epoch 17
- Epochs = 20

Try Our Model on Severity Check

In [217]: severity('https://image.shutterstock.com/image-photo/zaporozhye-ukraine-november-12-2019-600w-1912770286.jpg',

Validating severity of damage....Result: moderate Severity assessment complete.

04

CONCLUSION

Obstacles

Overfitting Time Collecting Data

Future work Applying Mask RCNN to detect **Web Application** Improve our model **Damaged Parts**

finish the location check using the same workflow in D Cuda Nvidia?? Wark on RCNN Project - [pastponed until weekend] try different methods: Talal Alnujaiman: Work on pipe 3: Location with (@Fnhadd) Work on Pipe 4: Severity Abdulelah Maj : Read & understand student's projects Logistic Regression as a baseline model. · they didn't do a grid search simple nn model not too much epochs Augmentation? trying with cnn then do transfer learning with such m Collect more images for damaged and not damaged work on pipe 1: Damage or not M Logistic Regression as a baseline Simple NN model CNN without augmentaition (we have an overfit) M Data Augmentation CNN after data augmentation Transfer learning: VGG16 VGG19 M InceptionV2 MobileNetV2

test the best model

THANKS

Do you have any questions?

