Дисциплина « ОСНОВЫ ПРОЕКТИРОВАНИЯ БАЗ ДАННЫХ» Практическое задание

Занятие 2

Специальные операции реляционной алгебры

Горизонтальный выбор, или операция фильтрации, или операция ограничения отношений (унарная операция)

Задание 1.7. В отношение R12 выбрать из R10 товары с артикулом «05».

Операция проецирования (унарная операция)

Задание 1.8. Выбрать все склады, которые хранят товар «Колонки SVEN». Построить отношение R14.

Задания 1.9 – 1.11. Даны отношения RD1-RD4

RD1 Задания				
№	Текст	Пользо ватель	Сроч ное	
1	Задание 1	00011076	1	
2	Задание 2	00011075	0	
3	Задание 3	00011073	0	
4	Задание 4	00013062	1	
5	Задание 5	00011003	1	
6	Задание 6	00013062	1	
7	Задание 7	00011075	0	

RD2 Пользователи				
Номер	ФИО	Подраз деление		
00011073	Качалов В.И.	1		
00011075	Дуров Ю.В.	1		
00011076	Папанов А.Д.	2		
00011004	Ермолаев Г.О.	1		
00013062	Янковский К.О.	3		
00011003	Нечаев А.С.	4		
00011005	Бортников Ю.И.	2		

RD3 Подразделения				
№	Название	Город		
1	Главный офис	Москва		
2	Московский филиал	Москва		
3	Филиал на Неве	Санкт-		
		Петербург		
4	Филиал в Германии	Берлин		
5	Филиал в США	Даллас		
6	Восточный филиал	Хабаровск		

RD4 Часовые пояса			
Город	Часовой пояс (UTC+X)		
Москва	4		
Санкт-Петербург	4		
Берлин	0		
Даллас	-6		
Хабаровск	11		

Задание 1.9. Найти подразделения, находящиеся западнее Москвы.

Задание 1.10. Найти пользователей из Москвы, имеющих задания.

Задание 1.11. Найти пользователей, имеющих срочные задания, у которых в данный момент столько же времени, что и у вас.

Операция условного соединения (бинарная операция)

Задание 1.12. Пусть отношение R_{15} содержит перечень товаров с указанием упаковки. Получить **перечень товара**, которые находятся на складе 1 в упаковке «ОЕМ» отношение R_{10} .

R15		
Артикул	Товар	Упаковка
01	Монитор Samsung	OEM
02	Монитор NEC	ODM
03	Монитор Sony	OEM
04	Колонки SVEN	Full
05	Колонки Logitech	Full
06	Телефон Apple	OEM
07	Телефон Nokia	OEM
08	Монитор Philips	ODM
09	Колонки Pioneer	Full
10	Телефон Siemens	OEM

Операция деления

Задание 1.13. Используя отношения \mathbf{R}_{7} , и \mathbf{R}_{10} определить перечень складов (отношение \mathbf{R}_{17}), в которых хранится вся номенклатура товаров.

Задание 1.14. Выполнить тот же запрос с использованием других операций. Для этого определим последовательность промежуточных запросов, которая приведет нас к конечному результату:

- 1. Построить отношение, которое моделирует ситуацию, когда на каждом складе хранится вся номенклатура, это уже построенное нами ранее расширенное декартово произведение отношений R_7 и R_8 . Это отношение R_9 :
- 2. Теперь надо найти перечень того, что из обязательной номенклатуры не хранится на некоторых складах
- 3. Далее надо найти те склады, в которых не все товары хранятся, для этого нам надо отношение R_{11} спроецировать на столбец «склад»:
- 4. А теперь из перечня всех складов вычтем те, где хранятся не все детали, и получим ответ на запрос, и это будет тот же результат, что и в отношении R_{17} .

Задание 1.15. Посмотрим, как работают операции реляционной алгебры для другого примера. Возьмем набор отношений, которые моделируют сдачу сессии студентами некоторого учебного заведения.

 $R_1 = (\Phi HO, Дисциплина, Оценка);$

 $R_2 = (\Phi HO, \Gamma pyппa);$

 $\mathbf{R}_3 = (\Gamma \mathbf{p} \mathbf{y} \mathbf{n} \mathbf{n} \mathbf{b}, \mathbf{J} \mathbf{u} \mathbf{c} \mathbf{u} \mathbf{n} \mathbf{n} \mathbf{u} \mathbf{h} \mathbf{a})$

где R_1 — информация о попытках (как успешных, так и неуспешных) сдачи экзаменов студентами; R_2 — состав групп; R_3 — список дисциплин, которые надо сдавать каждой группе. S — отношение, содержащее требуемую информацию.

 \Box Список S студентов, которые сдали экзамен по БД на «отлично». Результат может быть получен применением операции фильтрации по сложному условию к отношению R_1 и последующим проектированием на атрибут «ФИО» (нам ведь требуется только список фамилий).

□ Список R4 тех, кто должен был сдавать экзамен по БД, но пока еще не
сдавал. Сначала найдем всех, кто должен был сдавать экзамен по БД. В отношении R ₃
находится список всех дисциплин, по которым каждая группа должна была сдавать
экзамены, ограничим перечень дисциплин только «БД». "Для того чтобы получить список
студентов, нам надо соединить отношение R_3 с отношением R_2 , в котором определен
список студентов каждой группы.
□ Теперь получим список R5 всех, кто сдавал экзамен по «БД» (нас пока не
интересует результат сдачи, а интересует сам факт попытки сдачи, то есть присутствие в
отношении R_1):
и, наконец, результат S – все, кто есть в первом множестве, но не во втором:
□ Список S несчастных, имеющих несколько двоек:
Этот пример весьма интересен: для поиска строк, удовлетворяющих в совокупности
условию больше одного, применяется операция соединения отношения с самим собой.
Поэтому мы как бы взяли копию отношения R ₁ и назвали ее R' ₁ .

□ Список R4 круглых отличников. Строим список всех пар <студент—дисциплина>, которые в принципе должны быть сданы:

Строим список R5 пар <студент—дисциплина>, где получена оценка «отлично»:

Строим список R6 студентов, что-либо не сдавших на «отлично»:

Наконец, исключив последнее отношение из общего списка студентов, получаем результат S:

Подсказка: для получения множества студентов, что-либо не сдавших на «отлично» (R_6) , следует осуществить «инверсию» множества всех отлично сданных пар <студент — дисциплина> (R_5) путем вычитания его из предварительного построенного универсального множества (R_4) .