Small-Signal Model Parameters

• *Transconductance* (g_m):

$$g_{m} \triangleq \frac{\partial I_{D}}{\partial V_{GS}} \bigg|_{V_{DS} \text{ and } V_{SB} \text{ constant}}$$

$$=k_{\mathrm{N}}V_{\mathrm{GT}}\left(1+\lambda V_{\mathrm{DS}}\right)=\sqrt{2k_{\mathrm{N}}I_{\mathrm{D}}\left(1+\lambda V_{\mathrm{DS}}\right)}$$

$$\triangleright$$
 If $\lambda V_{DS} < 0.1$:

$$g_{\rm m} \simeq k_{\rm N} V_{\rm GT} \simeq \sqrt{2k_{\rm N} I_{\rm D}}$$

- ➤ An important *Figure of Merit* is *transconductance to current ratio*
 - For MOSFETs: $g_m/I_D = 2/V_{GT}$
 - For **BJTs**: $g_m/I_C = 1/V_T$
 - Thus, BJTs produce more g_m per unit current
- As we will see later, a high value of g_m is highly desirable, since it dictates the gain
- $> g_m/I_D$ can be changed by changing the bias current and/or aspect ratio
- $\triangleright g_m/I_C$ is a function only of temperature

• *Body Transconductance* (g_{mb}):

$$g_{mb} \triangleq \frac{\partial I_{D}}{\partial V_{BS}} \bigg|_{V_{GS} \text{ and } V_{DS} \text{ constant}} = \chi g_{m}$$

$$\chi = \frac{\gamma}{2\sqrt{2\phi_{\rm F} + V_{\rm SB}}} = Body \ factor \quad (\sim 0.1-0.3)$$

- > Note: As V_{SB} 7, V_{TN} 7 $\Rightarrow I_D$ \checkmark
- $\triangleright \partial I_D/\partial V_{SB}$ would have yielded negative g_{mb}
- > If both B and S are tied to fixed DC potentials (including ground), g_{mb} won't matter!

• Output Conductance (g₀)/

Output Resistance (r₀):

$$g_0 = r_0^{-1} \triangleq \frac{\partial I_D}{\partial V_{DS}} \bigg|_{V_{GS} \text{ and } V_{SB} \text{ constant}} = \frac{\lambda I_D}{1 + \lambda V_{DS}}$$

$$>$$
 If $\lambda V_{DS} < 0.1$:

$$g_0 = 1/r_0 \approx \lambda I_D$$

- \triangleright λ has a very wide range ~ 0.01 -0.5 V⁻¹
- **>** When λ → 0, g_0 → 0, and r_0 → ∞
 - Device starts to behave like a constant current source