HANDS-ON ALL

Logistic Regression as a Door Opener to Deep Learning

Sohvi Luukkonen
Institute for Machine Learning

Copyright Statement

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Content of Unit 4

- Short recap
- Linear regression
- Logistic regression
 - Loss functions
 - Optimization and Gradient Descent
- PyTorch as your first Deep Learning framework

From Logistic Regression to Deep Learning

- This lecture comprises an introduction to logistic regression and PyTorch, which is the deep learning tool you will use from now on.
- In the next lecture/exercise, you will see how coding up logistic regression in PyTorch looks like.
- And from there it is easy to expand the code towards neural networks.
- For those you are especially curious, the logistic regression PyTorch model is hidden in the function minimize_ce in the 04_utils.py file.

Recap: Basic Data Analysis Workflow

Recap: Scoring Our Models: Loss Function

- Assume we have a model g, parameterized by w.
- $\mathbf{g}(\mathbf{x}; \mathbf{w})$ maps an input vector \mathbf{x} to an output value \hat{y} .
- We want \hat{y} to be as close as possible to the true target value y.
- We can use a loss function

$$L(y, g(\boldsymbol{x}; \boldsymbol{w})) = L(y, \hat{y})$$

to measure how close our prediction is to the true target for a given sample with (x, y).

■ The smaller the loss/cost, the better our prediction.

Recap: Training and Test Data Sets

- Assume our data samples are independently and identically distributed (i.i.d.)¹
- We can split our data set of n samples into two non-overlapping subsets:
 - □ Training set: a subset with l samples we perform ERM on (i.e., optimize parameters on)
 - ☐ Test set: a subset with m samples we use to estimate the risk (test data = approximation of future, unseen data)
- Our estimate R_E on the test set will show if we overfit to noise in the training set.

¹i.i.d.: Each sample has the same probability distribution as the others, and all samples are mutually independent.

Recap: Underfitting and Overfitting

Linear Regression

- Linear Regression is one of the simplest machine learning algorithms.
- Linear Regression ⇒ Logistic Regression ⇒ Neural Networks ⇒ Deep Learning

Formulas

- Given labeled data $(\boldsymbol{X}, \boldsymbol{y}) = ((\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n))$
 - $\square \ x_i$: feature vector
 - \square y_i : corresponding label
 - ☐ n: number of samples (data set size)
- Find model g(x; w) such that $\forall i : g(x_i; w) \approx y_i$.
- Regression $\Leftrightarrow y_i \in \mathbb{R}$
- Classification $\Leftrightarrow y_i \in \{1, ..., K\}$

Example

Linear Model

Simplest approach: use something linear:

$$g(\boldsymbol{x}_i; \boldsymbol{w}) = g(\boldsymbol{x}_i; a, b) = a + b \cdot \boldsymbol{x}_i$$

- \blacksquare a and b are our model parameters.
- We must find some fitting *a* and *b* that properly model the data.

Linear Model: a = 0.5, b = 0.1

Linear Model: a = 0.2, b = 0.4

Finding Good Parameters

Our linear model:

$$g(\boldsymbol{x}_i; \boldsymbol{w}) = g(\boldsymbol{x}_i; a, b) = a + b \cdot \boldsymbol{x}_i$$

- Linear regression: Fit this linear model to minimize some error/loss.
- Idea: Minimize mean-squared error loss:

$$L = \frac{1}{n} \sum_{i=1}^{n} (y_i - g(\boldsymbol{x}_i; \boldsymbol{w}))^2$$

With linear regression, finding the minimum loss can be done analytically, i.e., it essentially can be computed directly from the data set.

Linear Regression

Polynomials Are Linear Models

Instead of using something linear:

$$g(\boldsymbol{x}_i; \boldsymbol{w}) = a + b \cdot \boldsymbol{x}_i$$

we can also use any polynomial (linear in the coefficients):

$$g(\mathbf{x}_i; \mathbf{w}) = a + b \cdot \mathbf{x}_i + c \cdot \mathbf{x}_i^2 + d \cdot \mathbf{x}_i^3 + \dots$$

Main idea to find best parameters is the same: minimize mean-squared error loss:

$$L = \frac{1}{n} \sum_{i=1}^{n} (y_i - g(\boldsymbol{x}_i; \boldsymbol{w}))^2$$

Polynomials Are Linear Models

Problems With Linear Regression

- Given: n datapoints x_i with labels $y_i \in \{0,1\}$
- Task: find g(x; w) such that $g(x_i; w) = y_i$ ⇒ Classification task
- First (bad) idea: fit a linear regression line
- Then, get classes based on some threshold:

$$y_i = \begin{cases} 0 & g_{\mathsf{LinReg}}(\boldsymbol{x}_i; \boldsymbol{w}) < 0.5 \\ 1 & g_{\mathsf{LinReg}}(\boldsymbol{x}_i; \boldsymbol{w}) \ge 0.5 \end{cases}$$

Problems With Linear Regression

Logistic Regression

- Problem: The relationship between features x_i and labels y_i is **not linear**.
- Idea: Use something non-linear instead, e.g., apply the logistic function (also known as sigmoid function):

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

where z is a linear function of features (in our case, this will be the "raw"/linear model output).

Exemplary logistic model ("wrapped" linear model):

$$g(\mathbf{x}_i; \mathbf{w}) = \sigma(a + b \cdot \mathbf{x}_i)$$
$$\mathbf{w} = \{a, b\}$$

Logistic/Sigmoid Function

- \blacksquare Values are squashed to the range [0,1].
- Can be interpreted as probabilities.

Logistic Regression

- Given: n datapoints x_i with labels $y_i \in \{0,1\}$
- Task: find g(x; w) such that $g(x_i; w) = y_i$ ⇒ Classification task
- New (better) idea: apply logistic regression
- Then, get classes based on some threshold:

$$y_i = \begin{cases} 0 & g_{\mathsf{LogReg}}(\boldsymbol{x}_i; \boldsymbol{w}) < 0.5 \\ 1 & g_{\mathsf{LogReg}}(\boldsymbol{x}_i; \boldsymbol{w}) \ge 0.5 \end{cases}$$

Logistic Regression

Logistic Regression or Logistic Classification?

- Logistic regression is emphatically not a classification algorithm on its own.
- It is only a classification algorithm in combination with a decision rule (e.g., based on some threshold) that makes the predicted probabilities of the outcome.
- Logistic regression is a **regression model** because it estimates the **probability of class membership** (output y is a real numeric value, i.e., $y \in [0, 1] \in \mathbb{R}$).

Logistic Regression Is a Convex Problem

- A convex function has only one minimum (local minimum = global minimum).
- Logistic regression is a convex problem.

Logistic Regression Has No Closed Form Solution

- Despite being a convex problem, logistic regression has no closed-form solution.
- No closed-form solution: minimum of the loss cannot be calculated directly (no analytical solution).
- Iterative methods have to be used for minimizing the loss.
- One prominent example is gradient descent.

Gradient Descent

- \blacksquare Given: a function f(x)
- **Task:** find x that maximizes (or minimizes) f(x)
- Idea: start at some value x_0 , and take a small step η in the direction in which the function decreases strongest

Gradient Descent in Logistic Regression

The minimization of the loss function $L(.;\theta)$ can be done by gradient descent:

$$\theta_{n+1} = \theta_n - \eta \frac{\partial L}{\partial \theta}$$

where η is the learning rate and θ is the parameter or set of parameters to be optimized.

In the case

$$g(\boldsymbol{x}_i; \boldsymbol{w}) = \sigma(a + b \cdot \boldsymbol{x}_i)$$

the set of parameters is $\theta = w = \{a, b\}$.

Softmax

- Generalization of the sigmoid function.
- Suitable for multi-class classification.
- For K classes with $y \in \{1, ..., K\}$ the probability of \boldsymbol{x} belonging to class i is:

$$p(y = i \mid \boldsymbol{x}) = \sigma(\boldsymbol{z})_i = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$

where $z = (z_1, \dots, z_K)$ is the vector of "raw" model outputs, i.e., there is an output for each class (see example later).

■ While not necessary, as a regular sigmoid function would suffice, this also works for binary classification, i.e., K = 2.

Softmax

■ Same example as earlier with K = 2 classes:

Here, $y_0 = p(y = 0 \mid \boldsymbol{x})$ and $y_1 = p(y = 1 \mid \boldsymbol{x})$, and the final model output would be (y_0, y_1) .

Softmax

- Another example:
 - \square Image you have a data set with K=10 classes.
 - □ For $p(y = 0 \mid x)$, your model should ideally output (1, 0, 0, 0, 0, 0, 0, 0, 0, 0).
 - □ For $p(y = 1 \mid x)$, your model should ideally output (0, 1, 0, 0, 0, 0, 0, 0, 0, 0).
 - □ But also the output (0.01, 0.7, 0.02, 0.02, 0.05, 0.1, 0.01, 0.02, 0.04, 0.03) is already pretty good.
- To achieve outputs like that, we use the so-called cross-entropy loss for classification (with special case binary cross-entropy for binary classification).

Summary

- Classification: target value is class label
- Regression: target value is numerical value
- Linear Regression ⇒ Logistic Regression ⇒ Neural Networks ⇒ Deep Learning
- Mean-squared error as loss for regression.
- Cross-entropy error as loss for classification.

Summary

- We introduced linear regression as one of the simplest machine learning algorithms.
- We broke linear regression with a simple classification task.
- We introduced logistic regression to fix our model.
 - □ *k*NN and Random Forest approaches would also have been able to solve such simple problems.
- We extended the model to multiple class outputs.
- We can now solve a huge variety of tasks.
- Next time, we will extend further and build our first neural network.

Introduction

An open source deep learning platform for Python that is very well suited for experimental approach and prototyping as well as production:

- Easy to build big computational graphs.
- Automatic computation of gradients for learning.
- Smoothly switch between CPU and GPU.
- High execution efficiency, written in C and CUDA.

Computational Graphs

- A computational graph is a way to represent a math function in the language of graph theory.
- **Graph theory**: nodes are connected by edges, and everything in the graph is either a node or an edge.
- Nodes are either input values or functions for combining values.
- Edges receive their weights as the data flows through the graph.
- Consider the relatively simple expression:

$$f(x, y, z) = (x + y) \cdot z$$

Tensors, Modules

PyTorch can be thought of as consisting of three levels of abstraction:

- Tensors represent tensors of any order (e.g., a scalar is a 0th order tensor), technically equivalent to numpy arrays, with some additional features like the ability to put it on the GPU.
- Computational graphs: A PyTorch tensor represents a node in a computational graph. If x is a tensor that has x.requires_grad=True, then x.grad is another tensor holding the gradient of x with respect to some scalar value.
- Modules: e.g., modules for neural networks (layers); allow for composition (a module can be composed of other modules).

Autograd

- In computational graphs, the provenance of tensors is tracked, i.e., they know how they are constructed.
- The computation of the gradient comes therefore for free: automatic computation of the gradient is called "autograd".
- No need to compute gradients ourselves!