MAXIMUM LIKELIHOOD ESTIMATION

SIMON FARRELL & GORDON DA BROWN

Slack channel #MLE

SIMPLE: fit to free recall data from a single participant

What does the predicted probability of 0.5 for serial position 16 mean?

What does predicted probability of 0.5 actually mean

- Does this mean a person is predicted to get exactly 5/10 items correct?
- Would you trust someone in a gambling game whose coin always gave exactly 5 heads for every 10 throws?
- Although the probability in both cases (data and model) is a single value, we will get different results for every set of 10 coin tosses
- Why?
 - **—** ????

- SIMPLE is a deterministic model: each time we run it we get exactly the same predictions (when same parameter values are fed in)
- But people are variable in their responding!

Sampling variability

- In experiments, if we test different samples from a population (or even the same person at different time points) we will get different results
- Why? Sampling variability

Variability from deterministic models

- Just like coin tossing, a predicted probability correct of 0.5 from SIMPLE is a long-run probability
- For a particular set of 10 trials, the person may get 3, 5, or even 10 items correct

Exercise: simulate this process

- Monte Carlo simulation of flipping of a weighted coin
 - Probability of heads = 0.7
 - 1000 games
 - For each game, simulate 8 coin tosses and record the observed number of heads
 - A vector of length 1000, each element is the number of heads for a single game
 - Plot a histogram of the number of heads
 - (each score entering the histogram is the number of heads from a single game)

Hint

- Two possibilities
 - runif()<p_heads</pre>
 - rbinom

A distribution

- A distribution assigns probabilities to different possible events
- We can describe the distribution we just simulated mathematically
- Rather than simulate, we can work out exactly how many heads we expect given p_heads and n tosses
- Binomial distribution

Probability of heads on a single coin toss= 0.7

Each bar: probability of seeing exactly N heads from 8 coin tosses $p(k \mid p_heads, N)$ where k is number of heads

The binomial distribution: flippin' coins

$$p(k|p_{heads},N) = \binom{N}{k} p_{heads}{}^k (1-p_{heads})^{N-k}$$
 "From N choose k" choose in R

- Probability of k outcomes actually happening (e.g., getting 5 heads)
 - given N total observations (e.g., 8 coin flips)
 - and p_{heads} probability of the event happening on each observation (throwing a head)
- Each k has a probability between 0 and 1 (inclusive)

Probability mass function

- The binomial is a probability mass function (also called "probability distribution")
- Binomial is probability of various discrete events given
 - Probability of occurrence on each observation
 - e.g., Getting a head, correctly recalling an item from the study list
 - Number of observations
 - Fixed by the experimenter

Exercise

- Plot predicted probability distribution: number of heads (0-10) from a coin with p_{heads} =0.5, and with 10 coin tosses in total
- Use the dbinom function in R
 - x: the values on the x axis (different possible number of heads)
 - size: total number of tosses
 - prob: the probability of a head
 - Use type="h" when plotting
- Advanced: simulate for p_{heads} =0.7 (N tosses = 8), and plot against the numerical simulation results from earlier

Binomial distribution as a data model

- We can use the binomial is a "data model"
- Allows us to connect model predictions (e.g., predicted probability correct) to empirical observations (number of events, such as number of correct responses)
- Predictions about number of 2-alternative events
 - Number of children passing Sally Ann task (out of, e.g., 10)
 - Number of correct responses at serial position 3 in a free recall experiment for one person (8 trials in total)
 - Number of votes for one of two candidates in an election

How does this all work for SIMPLE (using coin tossing equation)?

Number of trials: fixed by the experimenter

The predicted probability obtained from SIMPLE (e.g., 0.7 if we were looking at serial position 17)

Number of items correct

Using SIMPLE with binomial

Predicted probability of getting N items correct (for various N correct) from SIMPLE with binomial model

One such distribution for each serial position \(\cupsilon\)

Main point so far

- Model prediction is a distribution across possible events (possible data)
- Some models don't do this, so we need a "data model" to incorporate sampling variability

CONNECTING MODEL TO DATA

- When we run an experiment we only have a single set of data, and a single number correct
 - (for each participant at each serial position)
- How do we connect this to the range of outcomes now predicted by SIMPLE?

Predicted probability correct from SIMPLE = 0.7 (8 trials in total)
Actual data: 5 correct

p(data | p_correct): Probability of the data given the model
(binomial) and the predicted probability correct

(again, this is for one serial position)

Exercise (5 mins)

- Use dbinom function to calculate p(data | pcorrect) for the SIMPLE example
 - Data: 5 items correct
 - pcorrect: 0.7
 - N trials = 8
 - "p(getting 5 items correct given the predicted probability of getting an item correct is 0.7, and given that there are 8 trials in total)"

LIKELIHOODS

A subtle problem...

- The binomial distribution gives us the probability of various N correct given the predicted probability
- The predicted probability is determined by the model parameters (e.g., c in SIMPLE)
- But...The data are fixed, and we want to estimate the parameters
- We want to find those parameters that maximize the probability of the data given the model

Some geekiness ensues

- Probability function: p(data | parameters)
 - Probability function (e.g. Probability mass function)
- Likelihood function: p(data | parameters)
 - It's the same!
 - But where parameters rather than data change
 - L(parameters | data)
 - Give it a different name to reflect the fact that data are fixed, parameters change

- This is not p(parameters | data)
 - Covered in Bayesian modelling

Strips are likelihood functions (continuous)

Dark line is probability mass function (discrete)

Remember, *pcorrect* is a predicted probability (not model parameters)

Model parameters will map systematically into *pcorrect*

A likelihood surface

Likelihood function across *c* in SIMPLE *c* varies, the data are fixed

MAXIMUM LIKELIHOOD ESTIMATION

How do we estimate parameters?

- We want to maximize the likelihood
 - Find the peak of the likelihood surface
 - (These can have 2 or more dimensions)
- Or minimize the negative likelihood
 - Remember, optim() does function minimization
- Can do this using methods from earlier today (SIMPLEX)
- But first...

A detour through log space

Convention is to work with loglikelihoods

- log(x)
- Compression
- SIMPLE: temporal compression
- Orders of magnitude on linear scale
 - Log10 scale:
 - 1-10-100-1000 on x1-2-3-4 on y

Natural log 🌳

- Natural logarithm (In): inverse of exponential
 - $-\exp(x) = e^x (e = 2.7183)$
 - $-e^{x}$: 1 2 3 on x maps on to e^{1} e^{2} e^{3} on y
 - $-\log_e$ scale: $e^1 e^2 e^3$ on x maps on to 1 2 3 on y

Log-likelihood

- Work with log-likelihood function (ln L) rather than likelihood function
 - Natural logs
- Makes the job easier: numbers are smaller and less likely to go out of range of computer
- Log likelihoods add up

Log-likelihood is a principled measure of fit

- -2 In L: deviance
- Related to chi-square that Steve talked about earlier (briefly)
- Statistical measure of discrepancy between model and data (or "reality")
- As we'll see later in the school, deviance can be used to compare fit of different models

Maximum likelihood estimation

- Find parameters that maximize the likelihood
- Find those parameters that maximize the probability of the data given the parameters
- In practice: minimize negative log-likelihood
 - Allows us to use SIMPLEX etc.
 - Double the minimized negative log-likelihood to get deviance

Likelihood function across c in SIMPLE

OVER TO GORDON

- Number correct/passed/choice from two alternatives: binomial
- More than two categories: multinomial
 - Serial recall
 - Correct
 - Order error (list item recalled in wrong position)
 - Item error (non-list item recalled)
- What about average proportion correct, or variables like RT?

Continuous distributions

- We don't have discrete outcomes for a continuous distribution
 - Effectively infinite number of possibilities
- Each possibility effectively has 0 probability
- Instead, talk about probability density

LIKELIHOODS FOR CONTINUOUS DISTRUBITIONS

Continuous distributions defined by probability density

- Can't assign probabilities to discrete categories—there aren't any!
- Instead, refer to density of curve

Cake space

Cake space

Cake space

We've used some probability density functions already on previous days

• 555

Example: the shifted Weibull

$$f(x) = \left(\frac{\beta}{\theta}\right) \left(\frac{t - \psi}{\theta}\right)^{\beta - 1} \exp\left[-\left(\frac{t - \psi}{\theta}\right)^{\beta}\right]$$

- Used to model response times
 - E.g., Cousineau et al. (2004); Rouder et al. (2004)
 - $-\psi(psi)$: shift
 - $-\theta$ (theta): scale
 - $-\beta$ (beta): shape

Exercises

- 1. Plot probability density function from the Weibull for scale = 200, shape = 2
 - -dweibull
 - (We will assume shift=0 for the moment)
 - Across the range 0-1000 ms
- 2. What is p(data|parameters) for data = 200 ms and the given parameters?

Exercises 2

- Read in the 200 RTs from rt.txt
- Fit the Weibull to the data using maximum likelihood estimation

Maximum likelihood estimation with the weibull

- Things you will need to be doing
 - Calculate log likelihood for a single data point under Weibull
 - Extend this to calculation for multiple data points
 - Convert to lnL and sum
 - Wrap in a function that takes two arguments:
 theta (vector of parameters) and data vector
 - Fit to data using optim()

Summary: likelihoods

- Predictions are distributions across data space
- Fundamentally grounded in statistical theory
- Recognize variability/uncertainty in behaviour
- A key ingredient in Bayesian modelling
- Allow quantitative comparison of model fits (AIC/BIC, later in the school)

END