13 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2073 Magh

Exam.	。New Sad Sea (
Level	BE	Full Marks	80	
Programme	BEL, BEX, BCT. B. Agri, BGE	Pass Marks	32	
Year / Part	П/Ц .	Time	3 hrs.	

Subject: - Numerical Method (SH553)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- √ Attempt All questions.
- ✓ The figures in the margin indicate <u>Full Marks</u>.
- √ Assume suitable data if necessary.

8

[8]

[8]

[8]

- 1. Discuss the importance of Numerical Methods in Science and Engineering
- 2. Find a real root of $\cos x + e^x 5 = 0$ accurate to 4 decimal places using the Secant Method. [6]
- 3. Write pseudo-code to find a real root of a non-linear equation using the Bisection Method. [6]
- 4. Compute the inverse of following matrix using the Gauss-Jordan Method.

- 5. Write algorithm for computing the dominant Eigen value and corresponding vector of a square matrix using the Power method.
- 6. Fit the following set of data to a curve of the form $y = ab^x$.

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	8.2	5.2	3.1	2.5	1.7	1.6	1.4

7. Estimate y(4.5) from the following data using Natural Cubic Spline Interpolation technique.

				· · ·			
. 1	T	T	3	0	7	5	F
	y	10	12	11	13-	9	-

- 8. Derive the formula to evaluate y'(x) and y''(x) from Newton's Forward Interpolation formula.
- 9. Evaluate $\int_{0}^{1.4} (\sin x^3 + \cos x^2) dx$ using Gaussian 3-point formula.

[4]

- Solve $y' = \sin x + \cos y$ subject to initial condition y(0) = 2 in the range 0(0.5)2 using the Runge-Kutta second order method. [6]
- Write a program in C/C++/FORTRAN to solve a second order ordinary differential equation [6] (initial value problem) using the Runge-Kutta fourth order method.
- 12. Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the square mesh with boundary values as shown in the figure below. [10]

