

Autonomous Vehicles Simulation

Today's Agenda

- 1. Introduction
- 2. Current State
- 3. MC Simulation Explained
- 4. Hypothesis Results
- 5. Conclusion

Sensors - The Eyes and Ears of Autonomous Vehicles

DRIVE PILOT in the S-Class: Sensor Technology and Redundancy

What are we trying to do??

Hypothesis 1: A multi-sensor configuration will maintain higher detection rates in adverse weather conditions compared to a camera-only system.

Hypothesis 2: A hybrid configuration can achieve detection rates within 2% of the best-performing system while using fewer sensors.

Which approach is safer in adverse weather?
Can we optimize for cost-effectiveness without sacrificing safety?

Variables at Play

What We Fixed & What We Randomized?

Fixed Variables:

- Sensor positions and orientations
- Field of view angles
- Detection ranges
- Number of objects (20 per simulation)

Random Variables:

- Object positions → Uniform distribution
- Object types → Weighted distribution
- Sensor noise → Gaussian
- Sensor dropout → Bernoulli

Our Monte Carlo Engine

Object Simulation:

- Random placement of 20 objects per iteration
- Probabilistic object type assignment
- 5,000 iterations per configuration

Detection Modeling:

- FOV and range checks
- Distance-based probability decay
- Sensor-specific attenuation in fog
- Beer-Lambert law for fog effects

Sensor Fusion:

- Independent detection by each sensor
- Aggregate detection across all sensors

Assumptions & Simplifications

- Point-Based Objects
- No Occlusion
- Static Scenario
- Binary Detection in case of Camera
- No Material Properties
- Independent Sensors
- Homogeneous Fog and Single Weather Variable
- No Classification Errors
- Simple OR Fusion

Validating Our Virtual World

Clear Weather Performance:

All configurations converge to high detection rates

• Camera Only: 97.8%

Sensor Fusion: 99.6%

Convergence Analysis:

- Stable results after ~1,000 iterations
- Consistent performance across multiple runs
- Validates simulation reliability

Hypothesis 1 Results

Fog Impact by Configuration:

- Fusion: 99.98% → 97.35% (2.63% reduction)
- Camera Only: 97.81% → 87.85% (10.16% reduction)

Sensor Performance in Fog:

- Cameras: Severely affected (exp(-β·d) attenuation)
- Lidar: Moderately affected (70% of visual extinction)
- Radar: Minimally affected (5% of visual extinction)

Conclusion:

- Hypothesis confirmed: Multi-sensor configuration maintains significantly higher detection rates in fog.
- Camera-only systems experience substantial degradation in adverse weather.

Hypothesis 2 Results

Hybrid Configuration Testing:

- 5 different hybrid configurations tested
- Best hybrid: 7 cameras, 3 radars, 1 lidar

Performance Comparison:

- Fusion: 99.08% average detection rate (13 sensors)
- Best Hybrid: 98.15% average detection rate (11 sensors)
- Camera: 94.49% average detection rate (8 sensors)

Key Finding:

- Hypothesis confirmed: Hybrid configuration achieved 99.06% of Mercedes performance with 15% fewer sensors
- Optimal balance between sensor types provides resilience with reduced complexity

Current Limitations:

- Objects modeled as points (no dimensions or occlusion)
- Limited to fog simulation only
- Static vehicle and objects
- Simplified detection probability models

Future Enhancements:

- Include object dimensions and occlusion effects
- Add rain and snow weather models
- Validate against real-world datasets (Waymo, nuScenes)
- Test dynamic scenarios with moving vehicle
- Cost-benefit analysis

REFERENCES

- Hasirlioglu, S., & Riener, A. (2020). "Introduction to Rain and Fog Attenuation on Automotive Surround Sensors." IEEE Intelligent Transportation Systems Magazine, 12(4), 6-22.
- Bijelic, M., Gruber, T., & Ritter, W. (2018). "Benchmarking Image Processing Algorithms for Adverse Weather Conditions." IEEE Transactions on Intelligent Transportation Systems, 19(12), 3867-3881.
- Brooker, G. (2007). "Understanding Millimetre Wave FMCW Radars." International Conference on Sensing Technology.
- Gultepe, I., et al. (2007). "Fog Research: A Review of Past Achievements and Future Perspectives." Pure and Applied Geophysics, 164(6-7), 1121-1159.

Thank you!! Questions?