Relatório do Segundo Projeto de IA

80832 Margarida Ferreira

81805 Duarte David

Dezembro de 2017

Resumo

Testam-se vários métodos de aprendizagem sobre diferentes conjuntos de dados. São realizadas uma classificação sobre um conjunto de palavras, duas regressões sobre conjuntos de pontos 2D e uma aprendizagem por reforço sobre um conjunto de trajetórias sobre um grafo com uma topologia 1D. Os resultados obtidos revelaram-se todos abaixo dos limiares máximos permitidos.

1 Introdução

O objetivo do presente trabalho é realizar diversos tipos de aprendizagem automática sobre diversos conjuntos de pontos, de forma a perceber, a um nível introdutório, que técnicas aplicar para diferentes tipos de dados.

2 P1 - Métodos de Classificação

2.1 O Dataset

O conjunto de dados consiste num conjunto de palavras, cada uma classificada como *True* ou *False*.

2.2 Seleção das Features

Seja Σ o alfabeto onde as palavras estão definidas, e o espaço das features \mathbb{R}^5 (existem 5 features e cada feature pertence a \mathbb{R} , a extração das features é definida por uma função $f: \Sigma^* \setminus \{\epsilon\} \to \mathbb{R}^5$, tal que $f(w) = (x_1, x_2, x_3, x_4, x_5)$, onde:

- x_1 é o comprimento de w.
- x_2 é a codificação numérica da primeira letra de w.
- x_3 é a codificação numérica da segunda letra de w.
- x_4 é a codificação numérica da penúltima letra w.
- x_5 é a codificação numérica da última letra de w.

A escolha das features necessita de satisfazer o requisito de que palavras similares se encontram próximas (por uma dada norma) no espaço das features. A similaridade das palavras pode ser morfológica ou semântica. Apenas se faz uma pequena tentativa de respeitar o primeiro caso, uma vez que sequer começar a pensar no segundo se tornaria demasiado complexo. Para tentar respeitar a similaridade morfológica, olhamos para as primeiras e últimas letras de cada palavra (palavras semelhantes podem ter o mesmo radical - "agir" e "agente", ou podem acabar da mesma maneira ("inteligente" e "agente"), indicando semelhança gramatical). É também considerado o tamanho das palavras.

Foram consideradas outras características das palavras, como por exemplo o número de vogais, ou a primeira/última letra ser vogal, mas não produziram resultados melhores nem cumpriam os critérios mencionados acima.

2.3 Método de Classificação

Utilizando um classificador **k-vizinhos**, com 3 vizinhos, com as *features* descritas acima, consegue obter-se um **erro de 0.0**. Também foi testado um classificador de **árvore de decisão**, mas os resultados ficaram aquém do **k-vizinhos**, obtendo um erro de ≈ 0.017 .

3 P2 - Métodos de Regressão

O objeto de estudo desta parte é a aplicação de métodos de regressão à aprendizagem de funções cujo conjunto de partida e de chegada é \mathbb{R} . As funções em causa assemelham-se a funções trigonométricas (ou funções trigonométricas inversas) com ruído.

3.1 Escolha e Avaliação dos Modelos

Tentou aprender-se a função por 3 modelos diferentes de regressão: Regressão Linear, Regressão de Cume com Núcleo e Regressão de Árvore de Decisão.

Os modelos foram avaliados através de validação cruzada para determinar aquele que se ajusta melhor aos dados. Destes três, apenas se observou resultados aceitáveis com a Regressão de Cume com Núcleo.

Ajustaram-se dois parâmetros do modelo, α e γ , correspondentes à largura da penalização e à largura da função de núcleo (uma função de base radial), respetivamente, até se obterem os parâmetros que melhoram a pontuação obtida pela validação cruzada.

Para $\alpha=0.001$ e $\gamma=0.1$, observou-se uma pontuação de 0.1028 para a primeira regressão e 547.94, sendo este o modelo treinado no ficheiro submetido. Também se averiguou que, na segunda regressão, um α arbitrariamente pequeno é aquele que melhora os resultados (uma vez que o dataset em questão é muito bem comportado - tem pouco ruído -, não é necessário incluir uma forte penalização pelo sobre-ajustamento). Contudo, valores de α muito pequenos causam o sobre-ajustamento. Os resultados obtidos com estes valores podem ser visualizados na figura 1. As tabelas 1 e 2 mostram as variações das pontuações em função da alteração dos parâmetros.

$\gamma \setminus \alpha$	1e-4	1e-3	1e-2	0.1	0.2
0.01	4.3339	3.9898	2.1040	1.4561	1.2814
0.05	0.3865	0.1441	0.3435	0.6705	0.7781
0.1	0.3739	0.1028	0.1033	0.2328	0.3480
0.12	1.7618	0.0952	0.1200	0.2473	0.3517
0.15	3.5789	0.2316	0.1496	0.2990	0.4021
0.2	6.3575	0.6559	0.2381	0.4000	0.5161
0.3	9.814	1.3326	0.4587	0.6206	0.7636

Tabela 1: Resultados de validação cruzada para o primeiro conjunto de valores. Estão assinalados a sombreado os valores que se encontram dentro dos limites considerados aceitáveis.

- \ a.	1e-5	1e-4	1e-3	1e-2	0.1
$\gamma \setminus \alpha$					
0.001	2428.91	2988.85	1621.04	979.01	1303.74
0.005	25.39	371.58	2190.31	2194.96	1273.56
0.01	75.43	75.79	582.05	2232.32	1769.60
0.05	139.11	154.92	428.43	706.73	1235.22
0.1	152.89	308.07	547.94	811.08	1264.74
0.12	184.63	329.00	622.17	852.97	1320.19
0.15	200.70	434.72	655.13	971.63	1367.03
0.2	436.47	532.45	799.09	1103.58	1445.04
0.3	1009.01	910.89	1043.59	1305.52	1601.89

Tabela 2: Resultados de validação cruzada para o segundo conjunto de dados. Estão assinalados a sombreado os valores que se encontram dentro dos limites considerados aceitáveis.

4 P3 - Aprendizagem Por Reforço

O objetivo desta parte é utilizar aprendizagem por reforço para aprender o movimento de um agente num ambiente com 7 estados.

Figura 1: Visualização dos dados obtidos para cada uma das regressões, para o primeiro dataset (a) e para o segundo (b). KR1 é a Regressão de Cume com Núcleo com $\alpha=0.00001$ e $\gamma=0.005$. KR2 é a Regressão de Cume com Núcleo com $\alpha=0.001$ e $\gamma=0.1$

4.1 Política Escolhida

Uma política é uma função $\pi: S \times A \to [0,1]$ tal que $\pi(s,a) = P(a_t = a | s_t = s)$, ou seja, é a probabilidade de um agente escolher uma acção com base no estado atual. A política que escolhemos utiliza o valor da função Q para calcular a probabilidade: é a exponencial de $Q \cdot \eta$ (normalizada tal que $\sum_{i=1}^n \pi(s_j, a_i) = 1$, para todo o estado s_j), onde η é um parâmetro que tem como efeito a separação das probabilidades de cada estado.

4.2 O Ambiente do Agente

Por inspeção das transições de estados possíveis no primeiro ambiente, obtemos o diagrama de transições que se mostra na figura 2 para o primeiro ambiente.

Figura 2: Grafo de transições do agente

Cada estado tem no máximo dois estados vizinhos, pelo que se pode pensar num ambiente uni-dimensional para o agente (como por exemplo um braço robótico que apenas rode em um eixo, com travões que o impeçam de dar a volta). Note-se também que a ação 1 aplicada ao estado 5 pode levar ao estado 6 ou a permanecer no estado 5. Conclui-se que o ambiente é estocástico (imagine-se um obstáculo que por vezes impede o braço robótico de rodar).

Na figura 3 mostra-se o diagrama das transições no segundo ambiente, obtido da mesma forma que para o primeiro.

Agora, quando é efetuada a ação 0 no estado 6, o estado seguinte é o estado 1. Pode continuar a representar um braço robótico, desta vez sem um dos travões: quando roda mais um

Figura 3: Grafo de transições do agente

pouco (ação 0) após estar orientado para cima (estado 6), "cai" para trás e apenas para de rodar ao atingir o estado 1.

4.3 Recompensa

Em ambos os ambientes, existe uma recompensa de 1 para os estados 0 e 6 (estados objetivo).

Esta recompensa será propagada para a função Q ao longo das iterações sucessivas de modo a que o agente aprenda a escolher transições que o levem a estes estados o mais depressa possível. Isto reflete-se na função da política, cuja probabilidade de escolher uma ação cresce exponencialmente com o valor Q associado a essa transição.

4.4 Resultado

Foi aplicado o algoritmo Q-learning para diferentes valores de α e γ . Com valores de α elevados, o algoritmo consegue convergir rapidamente, pelo que se conclui que os ambientes são pouco estocásticos. Para valores α menores, o algoritmo obtém valores com erro inferior, a custo de mais iterações. Para contornar este problema, decrementa-se o valor de α a cada iteração do algoritmo.

Assim, foram escolhidos os valores $\alpha_{inicial}=0.5$ e $\gamma=0.9$ e usado para cada iteração i o valor $\alpha=\frac{5}{5+i}\cdot\alpha_{inicial}$, por apresentarem os erros mais baixos (≈ 0.09 para ambos os ambientes).

Com estes valores, ao ser colocado no estado 5 do primeiro ambiente, o agente exerce a ação 0, apesar do elemento estocástico da mesma, com o intuito de se colocar no estado 6, no qual permanece (recebendo uma recompensa de 1 em cada time step. No segundo ambiente, como não é possível permanecer no estado 6, o agente desloca-se com a intenção de alcançar o estado 0, através dos estados 6 e 1

Por outro lado, ao ser colocado no estado 3, o agente opta por se deslocar para o estado 0, em ambos os ambientes, e manter-se lá. Esta preferência pelo estado 0 em detrimento do estado 6 (ambos à mesma distância do 3) resulta da tendência do agente a evitar movimentos incertos, como aquele com que se depararia ao tentar deslocar-se do estado 5 para o 6.

5 Conclusão

Foram realizados com sucesso diversos tipos de aprendizagem automática. Observou-se as implicações que os parâmetros de cada um dos métodos têm e cumpriu-se o objetivo de perceber como analisar os dados, tomando especial cuidado para evitar que os métodos se sobre-ajustem aos dados.