Valores singulares

Ejercicio 7. Considerar la matriz:

$$A = \left(\begin{array}{cc} 4 & 0 \\ 3 & 5 \end{array}\right)$$

- (a) Calcular una descomposición en valores singulares de \boldsymbol{A} .
- (b) Dibujar el círculo unitario en \mathbb{R}^2 y la elipse $\{Ax : x \in \mathbb{R}^2, \|x\|_2 = 1\}$, señalando los valores singulares y los vectores singulares a izquierda y a derecha.
- (c) Calcular $||A||_2$ y cond₂(A).
- (d) Calcular A^{-1} usando la descomposición hallada.

$$\begin{array}{ccc} \alpha) & A^{t}A = \begin{bmatrix} 4 & 3 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 16+9 & 15 \\ 15 & 25 \end{bmatrix} \\ & = \begin{bmatrix} 25 & 15 \\ 15 & 25 \end{bmatrix} \end{array}$$

$$\chi_{A^{t}A}(\lambda) = \begin{vmatrix} \lambda - 25 & -15 \\ -15 & \lambda - 25 \end{vmatrix} = (\lambda - 25)^{2} - 15^{2} = 0$$

Entoncer quiero
$$(\lambda - 25)^2 = 15^2$$

$$\lambda_{1} = 40 \implies \sigma_{1} = Z\sqrt{10}$$

$$\lambda_{2} = 10 \implies \sigma_{2} = \sqrt{10}$$

Avecs

$$N_0$$
 $\begin{bmatrix} 15 & -15 \\ -15 & 15 \end{bmatrix}$ \Rightarrow $E_{40} = \langle (1,1) \rangle$

$$N_{0}$$
 $\begin{bmatrix} -15 & -15 \\ -15 & -15 \end{bmatrix}$ \Rightarrow $E_{10} = \langle (-1, 1) \rangle$

C Tengo [

$$\sum = \begin{bmatrix} 2510 & 0 \\ 0 & \sqrt{10} \end{bmatrix} \qquad \bigvee = \begin{bmatrix} 1/\sqrt{z} & -1/\sqrt{z} \\ 1/\sqrt{z} & 1/\sqrt{z} \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 4 & 0 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2\sqrt{10}, M,$$

$$\frac{1}{2\sqrt{10}\sqrt{2}} \begin{bmatrix} 4 \\ 8 \end{bmatrix} = \mathcal{U}_1 \implies \mathcal{U}_1 = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} \quad \text{con } \|\mathcal{U}_1\| = \sqrt{\frac{1}{5}} + \frac{4}{5}$$

$$= 1$$

$$\cos \| \| \| = \sqrt{\frac{1}{5} + \frac{4}{5}}$$

$$= 1$$

$$\frac{1}{\sqrt{z}} \begin{bmatrix} 4 & 0 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \sqrt{10}, M_2$$

$$\frac{1}{\sqrt{10}\sqrt{2}}\begin{bmatrix} -4\\2 \end{bmatrix} = M_2 \implies M_2 = \begin{bmatrix} -2/\sqrt{5}\\1/\sqrt{5} \end{bmatrix} \quad \text{con} \quad \|M_2\| = \sqrt{\frac{4}{5}} + \frac{1}{5}$$

$$= 1 \sqrt{\frac{4}{5}}$$

$$V = \begin{bmatrix} 1/\sqrt{z} & -1/\sqrt{z} \\ 1/\sqrt{z} & 1/\sqrt{z} \end{bmatrix}$$

$$A = \begin{bmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2\sqrt{5} & 0 \\ 0 & \sqrt{10} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

singular value decomposition
$$\begin{pmatrix} 4 & 0 \\ 3 & 5 \end{pmatrix}$$

$$Result$$

$$M = U.\Sigma.V^{\dagger}$$
where
$$M = \begin{pmatrix} 4 & 0 \\ 3 & 5 \end{pmatrix}$$

$$U = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 2\sqrt{10} & 0 \\ 0 & \sqrt{10} \end{pmatrix}$$

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

(b) Dibujar el círculo unitario en \mathbb{R}^2 y la elipse $\{Ax: x \in \mathbb{R}^2, \|x\|_2 = 1\}$, señalando los valores singulares y los vectores singulares a izquierda y a derecha.

(c) Calcular $||A||_2$ y cond₂(A).

$$\|A\|_{2} = \sqrt{\rho(A^{t}A)} = \sqrt{40} = 2\sqrt{10}$$

$$\|A^{-1}\|_{2} = \sqrt{\frac{1}{\min \text{ and } A^{t}A}} = \frac{1}{\sqrt{10}}$$

$$= 3 \text{ Cond}_2 A = 2 \sqrt{10} \cdot \frac{1}{\sqrt{10}} = 2$$

(d) Calcular \boldsymbol{A}^{-1} usando la descomposición hallada.

Como
$$A = U \sum V^*$$

$$A = \begin{bmatrix} -2/\sqrt{3} & 1/\sqrt{5} \\ 1/\sqrt{3} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2\sqrt{10} & 0 \\ 0 & \sqrt{10} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$\sum_{i=1}^{n-1} = \begin{bmatrix} 2\sqrt{10} & 0 \\ 0 & \sqrt{10} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2\sqrt{10}} & 0 \\ 0 & \sqrt{10} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2/\sqrt{3} & 1/\sqrt{5} \\ 1/\sqrt{3} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{5} & 0 \\ 0 & 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} & 1/\sqrt{5} \\ 1/\sqrt{5} & 1/\sqrt{5} \end{bmatrix}$$

Ejercicio 8. Determinar una descomposición en valores singulares de las siguientes matrices:

$$(a) \begin{pmatrix} 1 & -2 & 2 \\ -1 & 2 & -2 \end{pmatrix} \quad (b) \begin{pmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{pmatrix}$$

Lo mismo que ej1 pero ahora Sigma queda con una columna de ceros en a) y una fila de ceros en b)

Recuerdo: Sigma tiene la misma dimensionalidad que la matriz a descomponer

Los vectores U y V se completan con vectores ortonormales a los otros dos ya obtenidos.

Pues el rango de las matrices del ejercicio es 2, pero necesitamos 3 vectores

- para V* en a) pues Sigma será de 2x3 y V* de 3x3 (con U de 2x2)
- para U en b) pues Sigma será de 3x2 y U de 3x3 (con V* de 2x2)

$$\mathbf{A} = \begin{pmatrix} 2 & 14 \\ 8 & -19 \\ 20 & -10 \end{pmatrix}$$

Probar que para todo $\mathbf{v} \in \mathbb{R}^2$ se tiene $\|\mathbf{A}\mathbf{v}\|_2 \ge 15\|\mathbf{v}\|_2$.

Veo AtA

$$M = U.\Sigma.V^{\dagger}$$
where
$$M = \begin{pmatrix} 2 & 14 \\ 8 & -19 \\ 20 & -10 \end{pmatrix}$$

$$U = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 30 & 0 \\ 0 & 15 \\ 0 & 0 \end{pmatrix}$$

$$V = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \\$$

Sé que

$$\|A\|_2 = \max_{\tau} \frac{\|A\tau\|_2}{\|\tau\|_2} = \max_{\tau} \text{velor singular de } A$$

$$\Rightarrow \frac{\|Av\|_z}{\|v\|_z} \leqslant 30$$

$$\Rightarrow \frac{\|Ar\|_{z}}{\|r\|_{z}} \Rightarrow 15$$

Si
$$\lambda = 0$$
 or Aval de A

$$\Rightarrow \chi_A = \chi_i'(algo) \quad \text{con } i > 1$$

$$A^{t}A = 0$$

$$A^{t}A = 0.5$$

(AtA) vi = 0. vi : o er volving. de A.

$$(=) \lambda_{3} = 0$$

$$\Rightarrow A \cdot b_{0} = \lambda_{0} \cdot b_{0}$$

$$A \cdot b_{0} = 0 \cdot b_{0}$$

Ejercicio 11. Sea que $\mathbf{A} \in \mathbb{C}^{m \times n}$, demostrar que los valores singulares de la matriz $\begin{pmatrix} \mathbf{I}_n \\ \mathbf{A} \end{pmatrix}$ son $\sqrt{1 + \sigma_i^2}$ donde \mathbf{I}_n es la matriz identidad de $\mathbb{C}^{n \times n}$ y σ_i es el *i*-ésimo valor singular de \mathbf{A} .

Bloquer
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = In In + A^{t}A$$

$$= In + A^{t}A$$

$$A^{t}A = \left(\bigcup \sum \bigvee^{*}\right)^{*} \bigcup \sum \bigvee^{*}$$

$$= \bigvee \sum^{2} \bigvee^{*}$$

$$= \bigvee \sum^{2} \bigvee^{*}$$

$$T_{0} + A^{t}A = T_{0} + V \sum^{2} V^{*}$$

$$= V \left(T_{0} + \sum^{2} V^{*} \right)$$

$$\begin{bmatrix} 1+\theta^{2} & 0 & --- & 0 \\ 0 & 1+\theta^{2} & 0 \\ 0 & 0 & 1+\theta^{2} \end{bmatrix}$$

Ejercicio 12. Sea $A \in \mathbb{C}^{n \times n}$ y $\sigma > 0$. Demostrar que σ es valor singular de A si y solo si la matriz $\begin{pmatrix} A^* & -\sigma I_n \\ -\sigma I_n & A \end{pmatrix}$ es singular, donde I_n es la matriz identidad de $\mathbb{C}^{n \times n}$.

 $(-\sigma I) / (-\sigma I) / ($

Los autovalores de AtA y de AAt son los mismos, pues ambos algoritmos son válidos para obtener los valores singulares de A.

Por lo tanto A y At tienen los mismos valores singulares.

$$\overline{A^tA} = \overline{A^tA} \leftarrow los avas son todar en \mathbb{R}

 $\Rightarrow \overline{A^tA}$ tiene lar mismar avas$$

$$A^{t}A = \left(U \sum V^{*}\right)^{t} \left(U \sum V^{*}\right)$$

$$= V \sum U^{t} U \sum V^{*}$$

$$= V \sum^{2} V^{*}$$

$$\frac{A^{t}A}{A} = \overline{V} \sum^{2} V^{*} = V \sum^{2} V^{t}$$

$$= \overline{A}^{t}\overline{A}$$

$$(A^{t}A)^{*} = A^{*}(A^{t})^{*} = A^{*}.\overline{A} = \overline{A}^{t}\overline{A}$$

Ejercicio 14. Sea $A \in \mathbb{R}^{m \times n}$, de rango r, con valores singulares no nulos: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$

- (a) Probar que \boldsymbol{A} puede escribirse como una suma de r matrices de rango 1.
- (b) Probar que dado s < r se pueden sumar s matrices de rango 1 matrices adecuadamente elegidas de manera de obtener una matriz A_s que satisface:

$$\|\boldsymbol{A} - \boldsymbol{A}_s\|_2 = \sigma_{s+1}$$

Nota: A_s resulta ser la mejor aproximación a A (en norma 2), entre todas las matrices de rango s.

o) Uso escritura de SVD vista en clase como:

b) Hedro or dere.

La norma 2 de eso será el valor singular más grande, que en este caso es único, que es el sigma_s+1

Nota de Nota:

Que As resulte ser la mejor aproximación de A en norma 2, me da a entender que los valores singulares de mayor a menor se corresponden con la información contenida en la matriz original de mayor a menor.

En otras palabras, el primer valor singular con sus respectivos vectores la mayor cantidad de información de A.

<u>Le sigue el segundo valor singular, y así hasta alcanzar el último</u>

valor singular, que es la parte de la descomposición que contiene la información menos significativa de A.

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 0 \\ -4 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

- (a) Hallar la matriz de rango 2 que mejor aproxima a \boldsymbol{A} en norma 2.
- (b) Hallar la matriz de rango 1 que mejor aproxima a \boldsymbol{A} en norma 2.

$$A^{+}A = \begin{pmatrix} Result \\ 17 & 8 & 0 \\ 8 & 17 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Eigenvalues

$$\lambda_1 = 25$$
 $\lambda_2 = 9$
 $\lambda_3 = 4$

Eigenvectors

 $\nu_1 = (1, 1, 0)$
 $\nu_2 = (-1, 1, 0)$
 $\nu_3 = (0, 0, 1)$

$$\frac{1}{5} \begin{bmatrix} 1 & 4 & 0 \\ -4 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \mathcal{U}_{1} = \frac{1}{552} \begin{bmatrix} 5 \\ -5 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$\frac{1}{3} \begin{bmatrix} 1 & 4 & 0 \\ -4 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{1} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \mathcal{U}_{2} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\tilde{A}_{2} = 5 \cdot \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 \end{bmatrix} + 3 \cdot \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 \end{bmatrix} \\
= 5 \begin{bmatrix} 1 & 1 & 0 \\ -1 & -1 & 0 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix} \\
= \frac{5}{2} \begin{bmatrix} 1 & 1 & 0 \\ -1 & -1 & 0 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix}$$

$$= \frac{5}{2} \begin{bmatrix} 1 & 1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 5 & 5 & 0 \\ -5 & -5 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -3 & 3 & 0 \\ -3 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\hat{A}_{2} = \frac{1}{2} \begin{bmatrix} 2 & 8 & 0 \\ -8 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\tilde{A}_{1} = 5 \cdot \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 \end{bmatrix} = \frac{5}{2} \begin{bmatrix} 1 & 1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\delta_{1} \quad \lambda_{1} \quad \delta_{2}^{*}$$

$$\tilde{A}_{4} = \begin{bmatrix} 5/2 & 5/2 & 0 \\ -5/2 & -5/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Ejercicio 16. Dada una matriz $A \in \mathbb{R}^{m \times n}$, $m \ge n$, cuya descomposición en valores singulares reducida es $A = \hat{U}\hat{\Sigma}\hat{V}^t$. Se define la pseudo-inversa de A como $A^{\dagger} = \hat{V}\hat{\Sigma}^{-1}\hat{U}^t$.

(a) Verificar que A^{\dagger} satisface las siguientes propiedades:

i.
$$AA^{\dagger}A=A$$

iii.
$$(\mathbf{A}\mathbf{A}^{\dagger})^t = \mathbf{A}\mathbf{A}^{\dagger}$$

ii.
$$A^{\dagger}AA^{\dagger}=A^{\dagger}$$

iv.
$$(\mathbf{A}^{\dagger}\mathbf{A})^t = \mathbf{A}^{\dagger}\mathbf{A}$$

- (b) Probar que si dos matrices B_1 y B_2 satisfacen las 4 propiedades del ítem anterior, entonces verifican $AB_1 = AB_2$ y $B_1A = B_2A$.
- (c) Probar que la pseudo inversa de A es única.

a) i)
$$A A^{\dagger} A = \hat{U} \hat{\Sigma} \hat{V}^{\dagger} \hat{V} \hat{\Sigma}^{\dagger} \hat{U}^{\dagger} \hat{U} \hat{\Sigma} \hat{V}^{\dagger}$$

$$= \hat{U} \hat{\Sigma} \hat{V}^{\dagger} \hat{V} \hat{\Sigma}^{\dagger} \hat{U}^{\dagger} \hat{U} \hat{\Sigma} \hat{V}^{\dagger}$$

$$= \hat{U} \hat{\Sigma} \hat{\Sigma}^{\dagger} \hat{\Sigma}^{\dagger} \hat{\Sigma}^{\dagger} \hat{V}^{\dagger}$$

$$= \hat{U} \hat{\Sigma} \hat{V}^{\dagger} = A$$

$$(AA^{+})^{t} = (A^{+})^{t} A^{t}$$

$$A = \hat{U} \hat{\Sigma} \hat{V}^{t}$$

$$A^{\dagger} = \hat{V} \hat{S}^{-1} \hat{I}^{t}$$

$$= \left(\hat{V}\hat{\Sigma}^{-1}\hat{V}^{t}\right)^{t} \left(\hat{U}\hat{\Sigma}\hat{V}^{t}\right)^{t}$$

$$= \hat{U}\hat{\Sigma}^{-1}\hat{V}^{t}\hat{V}\hat{\Sigma}\hat{U}^{t}$$

$$= \hat{D}_{i}^{2}g$$

Ejercicio 17. Caracterizar geométricamente y graficar la imagen de la esfera unitaria

$$S_2 = \{ \boldsymbol{x} \in \mathbb{R}^3 : \| \boldsymbol{x} \|_2 = 1 \}$$

por la transformación T(x) = Ax, con

$$\mathbf{A} = \begin{pmatrix} 1 & \frac{-2}{\sqrt{5}} \\ 2 & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & -2 & -1 \\ 1 & 2 & -2 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & -\frac{2}{\sqrt{5}} \\ 2 & \frac{1}{\sqrt{5}} \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 2 \\ 2 & -2 & -1 \\ 1 & 2 & -2 \end{pmatrix}$$

Exact result

$$\frac{1}{5} \begin{pmatrix} -4 \left(\sqrt{5} - 5 \right) & 2 \left(5 + 2 \sqrt{5} \right) & 2 \left(10 + \sqrt{5} \right) \\ 2 \left(20 + \sqrt{5} \right) & -2 \left(\sqrt{5} - 10 \right) & 40 - \sqrt{5} \end{pmatrix}$$

singular value decomposition

$$\begin{pmatrix} 4 - \frac{4}{\sqrt{5}} & 2 + \frac{4}{\sqrt{5}} & 4 + \frac{2}{\sqrt{5}} \\ 8 + \frac{2}{\sqrt{5}} & 4 - \frac{2}{\sqrt{5}} & 8 - \frac{1}{\sqrt{5}} \end{pmatrix}$$

Result

$$M = U.\Sigma.V^{\dagger}$$

where

$$M = \begin{pmatrix} 2.21115 & 3.78885 & 4.89443 \\ 8.89443 & 3.10557 & 7.55279 \end{pmatrix}$$

$$U = \begin{pmatrix} 0.447214 & -0.894427 \\ 0.894427 & 0.447214 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 13.4164 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$

$$V = \begin{pmatrix} 0.666667 & 0.666667 & -0.333333 \\ 0.333333 & -0.666667 & -0.666667 \\ 0.6666667 & -0.333333 & 0.666667 \end{pmatrix}$$

Será que la interpretación geométrica puedo pensarla de la misma forma que con SVD? donde tengo los vectores vi en R3 que definen mi espacio de entrada a los ui en R2 que definen mi espacio de llegada, multiplicados por un factor de escalamiento definido por los elementos de la diagonal de la matriz del centro dada.

Ejercicio 18. Hallar, si existe, una matriz A con coeficientes reales y del tamaño adecuado para que los valores singulares no nulos de A sean $\left\{\frac{3}{2},3\right\}$,

$$A \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y \quad (2 \quad 2 \quad 1) A = \begin{pmatrix} 0 \quad 0 \quad 0 \end{pmatrix}.$$

?x?
$$3x1 = 3x1$$
 $1x3$?x? = $1x3$

AE $\mathbb{R}^{3\times3}$

$$A = U \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$3 \times 3 \text{ pues } A \in \mathbb{R}^{3 \times 3}$$

elipo
$$V = \begin{bmatrix} x & x & x \\ x & x & x \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \left(\mathcal{O}_{1} \cdot \mathcal{U}_{1} \cdot \mathcal{V}_{1}^{*} + \mathcal{O}_{2} \cdot \mathcal{U}_{2} \cdot \mathcal{V}_{2}^{*} \right) \cdot \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \left(3 \begin{bmatrix} * \\ * \end{bmatrix} \begin{bmatrix} * & * & * \end{bmatrix} + \frac{3}{2} \begin{bmatrix} * \\ * \end{bmatrix} \begin{bmatrix} * & * & * \end{bmatrix} \right) \cdot \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

elijo elijo
$$V_{z}^{*} = [\frac{1}{\sqrt{2}}]_{2}^{0}$$
 $V_{z}^{*} = [\frac{1}{\sqrt{2}}]_{2}^{0}$

$$= \left(3 \begin{bmatrix} * \\ * \\ * \end{bmatrix} \begin{bmatrix} \frac{1}{2} \frac{1}{2} & 0 \\ * \end{bmatrix} + \frac{3}{2} \cdot \begin{bmatrix} * \\ * \\ * \end{bmatrix} \begin{bmatrix} \frac{1}{2} \frac{1}{2} & 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$3\begin{bmatrix} * \\ * \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\ * \end{bmatrix} + \frac{3}{2} \cdot \begin{bmatrix} * \\ * \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ * \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-\frac{1}{2}$$

$$-\frac{3}{\sqrt{2}}\begin{pmatrix} * \\ * \\ * \end{pmatrix} + \frac{9}{2\sqrt{2}}\begin{pmatrix} * \\ * \\ * \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-\frac{3}{\sqrt{2}}\begin{bmatrix} a \\ b \\ c \end{bmatrix} + \frac{9}{2\sqrt{2}}\begin{bmatrix} x \\ y \\ \overline{z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases}
-\frac{3}{12} & 0 + \frac{9}{2\sqrt{2}} \times = 0 \\
-\frac{3}{12} & 0 + \frac{9}{2\sqrt{2}} & 0 = 0 \\
-\frac{3}{12} & 0 + \frac{9}{2\sqrt{2}} & 0 = 0
\end{cases}$$

$$-\frac{3}{12}a = -\frac{9}{252} \times \frac{9}{252}$$

$$a = \frac{9}{252} \times \frac{9}{252} \times \frac{9}{252}$$

$$a = \frac{9}{6} \times \frac{9}{252} \times \frac{9}{252$$

Uh, me tenian que quedar ortogonales...

Creo que debería haber agregado solo esa condición para los v1 y v2 en vez de elegir dos particulares, y lo mismo con u1 y u2.

Lo otro que también queda es usar el segundo dato, que puede plantearse de manera parecida, y recien al final despejar las variables que quedaron.

Posiblemente haya una forma menos cuentosa de hacer ésto, debo consultar en clase.