Тестирование Task Manager

1. Цель тестирования

Цель тестирования – проверить корректную интеграцию DLL с GUI, правильное обновление информации, стабильность работы фонового потока сбора данных и корректное освобождение ресурсов при завершении работы приложения.

2. Область применения тестирования

Тестированию подлежат следующие компоненты:

- **Статическая информация**: получение и отображение информации о CPU, памяти и дисках.
- **Динамическая информация**: запуск фонового потока, сбор и обновление данных о процессах в таблице (Treeview).
- Управление памятью: корректное освобождение памяти после получения данных.
- **Завершение работы**: остановка фонового потока и корректное закрытие окна приложения.

3. Тестовое окружение

- Операционная система: macOS или Windows (с корректно собранной DLL/ библиотекой)
- **Версия Python**: 3.7 и выше
- Библиотеки:
 - Tkinter (стандартная поставка Python)
 - ctypes (стандартная поставка Python)
- Путь к библиотеке: Убедиться, что путь к файлу библиотеки корректен (/Users/sip/Yandex.Disk.localized/Learning/Тестирование программных модулей/ Менеджер задач/sys_info_fn/target/release/libsys_info_fn.dylib)
- Исходные данные о системы:
 - Процессор: Intel core i5-5350U 1,8 ГГц 4 ядра
 - Оперативная память: DDR3 8 ГБ
 - Диск: APPLE SSD: Всего 84 ГБ, Свободно 48 ГБ

4. Тестируемые функции DLL

1. get_cpu_static_info

Oписание: Возвращает указатель на структуру CpuStaticInfo с информацией о процессоре.

Ожидаемые данные:

- **brand:** "Intel Core i5-5350U" (или строка, содержащая модель)
- **usage:** Значение загрузки CPU (может варьироваться)
- **frequency:** 1,8 ГГц (после деления на 1000)
- core_count: 4

2. free cpu static info

Описание: Освобождает память, выделенную для структуры CpuStaticInfo. *Тестирование:* Вызывается после получения данных, чтобы убедиться, что не происходит утечек памяти.

3. get_memory_static_info

Описание: Возвращает структуру MemoryStaticInfo с информацией о памяти.

Ожидаемые данные:

- total: 8 (ГБ)
- used: Значение, зависящее от текущего состояния
- available: Значение, зависящее от текущего состояния

4. get_disk_static_info_array

Описание: Возвращает массив структур DiskStaticInfo, содержащих информацию о дисках.

Ожидаемые данные:

- Для APPLE SSD:
 - total_space: 84 (ГБ)
 - available space: 48 (ГБ)

5. free_disk_static_info_array

Описание: Освобождает память, выделенную для массива дисковой информации.

6. start process collector

Описание: Запускает фоновый поток для сбора информации о процессах.

Ожидаемый результат: При первом вызове возвращает true (если поток не был запущен ранее).

7. get_process_info_array

Oписание: Возвращает массив структур ProcessInfo с информацией о запущенных процессах.

Тестирование: Количество процессов должно быть больше 0 (при нормальной работе системы).

8. free_process_info_array

Описание: Освобождает память, выделенную для массива информации о процессах.

9. stop_process_collector

Описание: Останавливает фоновый поток сбора информации о процессах. Ожидаемый результат: При корректном завершении возвращает true.

10. free_string

Описание: Освобождает память, выделенную для С-строки.

Тестирование: При передаче нулевого указателя (NULL) функция не должна вызывать ошибок.

11. kill_process

Описание: Завершает процесс с указанным идентификатором (PID).

Ожидаемый результат:

- При попытке завершить несуществующий процесс (например, PID 999999)
 функция должна вернуть −1 .
- Если процесс найден и успешно завершён, функция возвращает 0.

4. Тестирование функций

Тестирование функции

● ● ■ Task Manager GUI Test							
Номер процесса: Убить							
CPU: Intel(R) Core(TM) i5-5350U CPU @ 1.80GHz, Загрузка: 75.0%, Частота: 1.80 ГГц, Ядер: 4							
Память: Всего 8 ГБ, Используется 5 ГБ, Доступно 1 ГБ							
APPLE SSD: Всего 84 ГБ, Доступно 48 ГБ APPLE SSD: Всего 84 ГБ, Доступно 48 ГБ							
PID	Имя	CPU %	Память (МБ)	Чтение (КБ)	Запись (КБ)		
2425	Python	18.2	47.30	12.0	8.0		
2430	screencapture	8.5	13.20	140.0	0.0		
2431	screencaptureu	1.1	14.21	40.0	0.0		
1290	Code Helper	0.4	50.50	792.0	0.0		
1283	Code Helper (P	0.2	468.71	76548.0	4.0		
599	Yandex	0.2	193.57	542992.0	204060.0		
1269	Code Helper (R	0.1	306.23	48208.0	0.0		
1285	Code Helper	0.1	34.30	812.0	0.0		
1260	Electron	0.1	132.49	150952.0	13960.0		
1261	Obsidian	0.1	87.04	103312.0	320.0		

Сценарий 4.1.

Тестирование get_cpu_static_info и free_cpu_static_info

Шаги:

- 1. Вызвать функцию get_cpu_static_info из DLL.
- 2. Извлечь данные из полученной структуры.
- 3. Проверить, что:
 - Строка brand содержит подстроку "Intel Core i5-5350U"
 - Значение frequency примерно равно 1,8.
 - Значение core count равно 4.
- 4. Вызвать free cpu static info для освобождения памяти.

Ожидаемые результаты:

- Данные соответствуют исходным:
 - Бренд процессора: "Intel Core i5-5350U"
 - Частота: 1,8 ГГц
 - Количество ядер: 4

Сценарий 4.2. Тестирование get_memory_static_info

Шаги:

- 1. Вызвать функцию get_memory_static_info.
- 2. Извлечь значения полей: total, used, available.
- 3. Проверить, что total равно 8 (с учетом перевода в ГБ).

Ожидаемые результаты:

- total = 8 (ΓБ).
- Значения used и available находятся в диапазоне [0, 8] и соответствуют реальному состоянию системы.

Сценарий 4.3.

Тестирование get_disk_static_info_array и free_disk_static_info_array

Шаги:

- 1. Вызвать функцию get_disk_static_info_array.
- 2. Проверить, что возвращаемый массив содержит хотя бы одну запись.
- 3. Для каждого диска проверить, что:
 - Имя диска соответствует "APPLE SSD" (или содержит эту подстроку).
 - total_space примерно равно 84.
 - available_space примерно равно 48.

4. Вызвать free_disk_static_info_array для освобождения памяти.

Ожидаемые результаты:

• Диск APPLE SSD отображается с данными:

• Общий объём: 84 ГБ

• Свободное место: 48 ГБ

Сценарий 4.4. Тестирование функций, связанных с процессами

4.4.1 Запуск сборщика: start_process_collector

Шаги:

- 1. Вызвать start_process_collector.
- 2. Проверить, что функция возвращает true.

Ожидаемый результат:

• Функция возвращает true при первом запуске.

4.4.2 Получение информации о процессах: `get_process_info_array

Шаги:

- 1. После запуска сборщика вызвать get_process_info_array.
- 2. Проверить, что:
 - Количество процессов (поле len) больше 0.
 - Для каждого процесса поля pid и name не равны NULL..

PID	имя	CPU %	Память (МБ)	Чтение (КБ)	Запись (КБ)
2450	Python	17.6	47.52	20.0	8.0
1269	Code Helper (R	0.7	311.29	48512.0	0.0
1290	Code Helper	0.4	55.76	792.0	0.0
1283	Code Helper (P	0.2	468.91	76556.0	4.0
599	Yandex	0.1	195.63	543060.0	204672.0
1260	Electron	0.1	136.71	151672.0	14732.0
1398	cpptools	0.0	53.00	95876.0	0.0
1965	Yandex Helper	0.0	77.50	84.0	0.0
740	Yandex Helper	0.0	7.87	9752.0	0.0
533	AMPLibraryAge	0.0	1.08	26448.0	0.0

Ожидаемый результат:

• Список процессов заполнен данными

Сценарий 4.5. Тестирование kill_process

Шаги:

- 1. Вызвать kill_process с PID, который не существует (например, 999999).
- 2. Проверить, что функция возвращает -1.
- 3. (Опционально) Для тестирования успешного завершения процесса можно запустить тестовый процесс, получить его PID, затем вызвать kill_process и проверить, что возвращается 0.

Ожидаемый результат:

- При передаче несуществующего PID функция возвращает –1.
- В случае успешного завершения процесса возвращается 0.

PID Telegram = 2458

Номер процесса: 2548 Убить

• Процесс Успешно завершён

PID	РМИ	CPU %	Память (МБ)	Чтение (КБ)	Запись (КБ)
2634	screencapture	9.5	13.25	0.0	0.0
2602	Python	5.7	58.81	1060.0	8.0
2635	screencaptureu	1.3	14.25	0.0	0.0
1290	Code Helper	0.4	56.67	808.0	0.0
599	Yandex	0.3	180.83	548236.0	212052.0
1283	Code Helper (P	0.2	455.02	76576.0	4.0
1266	Obsidian Helpe	0.1	44.96	15932.0	0.0
1260	Electron	0.1	135.18	153068.0	15720.0
1285	Code Helper	0.1	34.63	812.0	0.0
1268	Obsidian Helpe	0.0	261.43	60300.0	1856.0

Баг-репорты

Кейс #0

Машина тестирования: Windows x64

Сценарий использования: Запуск программы. Ожидание загрузки раздела "Процессы" загрузки процессов. Переход в раздел "Производительность". Переход в раздел "Службы".

Проблема: Программа потребляет слишком много ресурсов. Ограничение 5%, наша программа скачет от 0 до 11 и более процентов:

> Python	10,1%	24,6 MB
> Python	8,5%	46,4 MB
> Python	7,6%	26,4 MB
> 🗾 Python	0,1%	26,3 ME

Примечание: переписать функцию "_update_perfomance", на использование функций из DLL

Кейс #1

Машина тестирования: Windows x64

Сценарий использования: Запуск программы. Ожидание загрузки раздела "Процессы" загрузки процессов. Переход в раздел "Производительность" и видим сбившийся график:

Примечание_1: Позже график начинает выглядеть как нужно

Примечание_2: Сценарий использования: Запуск программы. Не ожиданем загрузки раздела "Процессы".

Переход в раздел "Производительность" и видим нормальный график:

Кейс #2

Машина тестирования: Windows x64

Не реализованная функция: Под графиком расположен информационный раздел, который должен изменяться при переходе от вкладки к вкладке. В нынешней версии программы смены информации об производительных модулей не происходит:

Кейс #3

Машина тестирования: Windows x64

Не реализованная функция: Не все блоки модуля "Информация производительных

модулей" обновляется: "Скорость", "Время работы."

Использование	Скорость	Процессы	Потоки	Дескрипторы	Время работы
15.7%	0.00	209	1991	0	0:00:00

Примечания: Удалить "Дескрипторы",

Примечания: Добавить эти параметры для процессора(Которая есть в DLL)

Использование Скор		оость	Базовая скорость:	3,30 ГГц	
29%	9% 3,57 ГГц		7 [[]	Сокетов:	1
2370		3,31114		Ядра:	4
Процессы	Пото	КИ	Дескрипторы	Логических процессоров:	4
205	197	9	79663	Виртуализация:	Включено
18 868				Кэш L1;	256 KB
Время работы				Кэш L2:	1,0 MB
0:01:51:11				Кэш L3:	6,0 MB

Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz

Добавить эти параметры для Памяти (Которая есть в DLL)

 Используется (сжатая)
 Доступно
 Скорость:
 1600 МГц

 4,6 ГБ (419 МБ)
 3,3 ГБ
 Использовано гнезд:
 2 из 4

 Форм-фактор:
 DIMM

 3арезервировано аппаратно:
 93,6 МБ

 6,3/9,2 ГБ
 3,0 ГБ

Выгружаемый пул Невыгружаемый пул

420 Mb 198 Mb

Добавить эти параметры для Диска (Которая есть в DLL)

Активное время	Среднее время ответа	Емкость:	477 ГБ
0%	0 мс	Формат:	477 ГБ
070	O IVIC	Системный диск:	Да
Скорость чтения	Скорость записи	Файл подкачки:	Да
0 КБ/с	0 КБ/с	Тип:	SSD

Диск 0 (C:) Netac SSD 512GB

Добавить эти параметры для Ethernet (В DLL пока не реализована, но добавьте заглушки)

Отправка Адаптер: Ethernet 8

2,0 Мбит/с Тип подключения: Ethernet

192.168.9.104

Получение IPv6-адрес:
72,0 кбит/с

Ethernet

Intel(R) Ethernet Connection I217-LM

Кейс #4

Машина тестирования: Windows x64

Не реализованная функционал: Добавить раздел с GPU

