SILA Rapid Integration

Pick & place labware transportation with benchtop and mobile robots Lab robot use cases and how to address them – Technical session

4th bioSASH (BioLAGO – SiLA 2/AnIML Serial Hackathon), Konstanz, Germany

29.SEP.2022

Ádám Wolf

PhD Student, Takeda Working Group Lead, SiLA Robotics

The SiLA Robotics Working Group

The SiLA Robotics Working Group

Organization

- Domain-specific working group
- Reports back to the core WG
- Open group
- Bi-weekly meetings

Mission

- Combine existing established technologies in a comprehensive framework
- SiLA as the central element of the tech stack
- Unify, scale-up and extend functionality
- Incorporate new concepts
- Facilitate exchange in the lab robotics community

<u>Vision</u>

- Foster the SiLA-based plug & play integration of lab robots
- · Unify the communication standard
- Provide vendor-independent solutions

Milestones

- SiLA-ROS interface
 - Hackathons
- Unify feature definitions
 - Structure to incorporate present and future lab robot capabilities
 - Identify candidates as standard definitions for specific capabilities
- Reference implementations
 - TIAGo □ Panna
 - MIR + UR
 - 4th BioSASH Hackathon
- Incorporate new concepts (LAPP)
 - Digital twin
 - Robotic action templates
 - Labware library
 - Advanced robotic technologies: Perception, manipulation, Human-machine collaboration

Bi-weekly meetings on-going

- Discussions: workflow representations, labware ontologies, etc.
- Contact adam.wolf@sila-standard.org to join

Preparation

Pre-read material

- Intro to SiLA (Presentation <u>recording</u>)
- SiLA Part (C), Chapter <u>Robots</u> (integration guide, draft)
- <u>Feature definition</u> and corresponding <u>documentation</u>
- Robot interface documentations
 - o <u>PreciseFlex</u>
 - Universal Robots, <u>RTDE</u>

The scope of BioSASH #4

The "What?"

Goals of the Robotics hackathon working group

- Reference implementation of the labware transfer feature for different benchtop robot arms
 - Based on the <u>LabwareTransferController</u> feature definition
- Implement an exemplary labware transfer action, where the robot picks a plate from one device and places it in another device
 - Passive dummy devices with fixed site (aka nest) positions

Technical consideretions

The "How?"

Position representation for stationary robots with the LAPP DT

Legend

Live, robot-level, not exposed towards SiLA

- Positions defined in robot coordinate system
- Defined by on-line programming (manual teaching)

Hierarchical levels of workflow representation and control architecture SiLA Rapid Integration

Process		Protocols and languages		Control architecture	
Level nr	Level name	Liquid handling	Robotics	Liquid handling	Robotics
7	Service	Service protocol		Lab management (LIMS, LES)	
6	Procedure (Experiment / assay)	Experiment design language Laboratory process language		Automation Scheduler (E.g. GBG, niceLabs, PharmaMV)	
5	Task	High-level liquid handling script Low-level liquid handling script	Modular robot program	EVO PC	Robot controller PC
4	Subtask				
3	Motion sequence		Low-level robot program		
2	Motion primitive	Device firmware		Embedded controller	Robot controller
1	Actuator primitive		Joint trajectories, IO control		

System architecture

Recap – SiLA ROS bridge

The program sequence (presented in detail by Stefan Koch)

The sequence (primary focus set in **bold**)

Device1: PrepareForOutput

Robot: PrepareForInput

Robot: GetLabware

Device1: LabwareRemoved

Device2: PrepareForInput

Robot: PrepareForOutput

o Robot: PutLabware

Device2: LabwareDelivered

The motion sequence

- The robot starts in its home position (h)
- Performs a MoveJ-type movement to "untangle" itself and arrive to the standby conguration at the position u)
- Moves linearly (MoveL) to a device-approach position (s1d)
- MoveL to a site-approach position (s1s)
- MoveL to the nal site hand-over position (s1)
- Grips the plate
- MoveL back to s1s
- MoveL back to s1d
- MoveL to s2d (not displayed)
- MoveL to s2s (not displayed)
- MoveL to s2 (not displayed)
- Releases the plate
- MoveL back to s2s
- MoveL back to s2d
- MoveL to u and returns to standby/ready state

Time plan – Day one

29.09. – Get acquainted with the framework together

- 1h Introduction
 - 15 min Challenge (Ádám Wolf)
 - 30 min –The feature definition, the sequence and the logic (Stefan Koch)
 - 15 min –Development environment (Johannes Waidner, Ádám Wolf)
- 10 min Personal introductions
- 1 h Setup of personal environments and/or SSH access
- 1 h SiLA Hello world
- 1 h Get familiar with the robots and their API
- Open till 11pm Proceed with next steps (listed on next slide)

Time plan – Day two

30.09. – Break down to smaller groups of 4-5 people to work on a specific robot

- Teach and store robot positions for the (dummy) devices and sites
 - SiLA positions
 - Named site positions: HandoverPosition
 - Intermediary robot positions
 - Site
 - Site-approach
 - Device-approach
- Generate the skeleton based on the feature definition, using the sila python code generator or a similar tool (e.g. for C#)
- Implement the SiLA driver on the robot-dedicated PC
 - SiLA server communication based on the generated skeleton
 - Communication with the robot via specific API
- Implement SiLA commands
 - GetLabware
 - PutLabware
- Test the labware transfer action
- Optional: store the positions in a sharable format/database
 preparation for <u>LAPP</u> PoC

An outlook:

positions stored in the digital twin

SIA Rapid Integration

Position representation for mobile robots with the LAPP DT

