MACHINE LEARNING FOR COMPUTATIONAL FINANCE ASSIGNMENT 1

KARTHIK IYER

Problem 1: Linear Regression

Consider a quadratic function,

$$f(x) = \frac{1}{2}||\mathbf{F}x - \mathbf{r}||^2.$$

(1) What is the gradient ∇f and Hessian $\nabla^2 f$ of this function? Is ∇f Lipschitz continuous? If it is, what is the Lipschitz constant?

Solution: Let $\langle .,. \rangle$ denote the usual inner product in the Euclidean space. Before we proceed, let us state two facts.

- (i) For any symmetric $n \times n$ matrix A, if $g(x) : \mathbb{R}^n \to \mathbb{R}$ is defined as $g(x) = \langle Ax, x \rangle$, then $\nabla g(x) = 2Ax$. We can see why this is true by expanding the inner product and doing some algebra.
- (ii) For any $m \times n$ matrix A, if $h(x) : \mathbb{R}^n \to \mathbb{R}$ is defined as $h(x) = \langle Ax, b \rangle$ for some $b \in \mathbb{R}^m$, then $\nabla h(x) = A^T b$. We can why this is true by expanding the inner product and doing some algebra.

Now, since $f(x): \mathbb{R}^n \to \mathbb{R}$ is defined as $f(x) = \frac{1}{2} ||\mathbf{F}x - \mathbf{r}||^2$, we can re-write f(x) as $f(x) = \frac{1}{2} (\langle \mathbf{F}x, \mathbf{F}x \rangle - 2\langle \mathbf{F}x, b \rangle + ||r||^2) = \frac{1}{2} (\langle \mathbf{F}^T \mathbf{F}x, x \rangle - 2\langle \mathbf{F}x, b \rangle + ||r||^2)$.

We can now invoke the two facts proved above to conclude that $\nabla f(x) = \mathbf{F}^T(\mathbf{F}x - b)$. (Here \mathbf{F} is a $m \times n$ matrix, $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$).

And hence, the Hessian $\nabla^2 f = \mathbf{F}^T \mathbf{F}$. It is also easy to see that ∇f is Lipschitz since

$$\|\nabla f(x) - \nabla f(y)\|_2 = \|\mathbf{F}^T \mathbf{F}(x - y)\|_2$$
 for any $x, y \in \mathbb{R}^n$
 $\leq \|\mathbf{F}^T \mathbf{F}\|_2 \|x - y\|_2$ (By definition of matrix 2-norm)

Thus, ∇f is Lipschitz continuous with Lipschitz constant $||\mathbf{F}^T\mathbf{F}||_2 = ||\mathbf{F}||_2^2$.

(Note to self: Recall that the singular values of a $m \times n$ matrix X are the square roots of the eigenvalues of the $n \times n$ matrix X^*X (where * stands for the transpose-conjugate matrix if it has complex coefficients, or the transpose if it has real coefficients). Thus, if X is $n \times n$ real symmetric matrix with non-negative eigenvalues, then eigenvalues and singular values coincide, but it is not generally the case).

(2) If we add a quadratic penalty to the function, $f(x) = \frac{1}{2} ||\mathbf{F}x - \mathbf{r}||^2 + \frac{\lambda}{2} ||x||^2$. Answer the same set of questions in part (1) for this f.

Solution: We proceed as in part (1) to get $\nabla f(x) = \mathbf{F}^T(\mathbf{F}x - b) + \lambda x$ and $\nabla^2 f(x) = \mathbf{F}^T \mathbf{F} + \lambda I_{n \times n}$. In this case too, $\nabla f(x)$ is Lipschitz with Lipschitz constant $||\mathbf{F}||_2^2 + \lambda$.

KARTHIK IYER

(3) Implement gradient descent algorithm in Jupyter Notebook to solve the problem,

$$\min_{x} \frac{1}{2} ||\mathbf{F}x - \mathbf{r}||^2 + \frac{\lambda}{2} ||x||^2.$$

Problem 2: LASSO

2

Consider LASSO objective,

$$\min_{x} f(x) := \frac{1}{2} ||\mathbf{F}x - \mathbf{r}||^{2} + \lambda ||x||_{1}.$$

(1) Is f a β -smooth function? If it is, what is β ? If not explain the reasons.

Solution: f is not a β - smooth function for any $\beta > 0$. Had it been so, then since $\frac{1}{2}||\mathbf{F}x - \mathbf{r}||^2$ is β smooth for $\beta = \sigma_1^2$, $||x||_1$ will also be β' smooth for some β' . But $||x||_1$ is not C^1 .

(2) Consider a simpler version of the problem,

$$\min_{x} \frac{1}{2\eta} ||x - y||^2 + \lambda ||x||_1$$

what is the solution (in closed form)?

Solution: We wish to minimize $\frac{1}{2n}||x-y||_2^2 + \lambda ||x||_1$. Note that

$$min_{x} \frac{1}{2\eta} ||y - x||_{2}^{2} + \lambda ||x||_{1}$$

$$= min_{x} \frac{1}{2\eta} [||y||^{2} + ||x||^{2} - 2\langle x, y \rangle] + \lambda ||x||_{1}$$

$$= min_{x} \frac{1}{2\eta} [||x||^{2} - 2\langle x, y \rangle] + \lambda ||x||_{1} \text{ as y is independent of x}$$

$$= min_{x} \frac{1}{2\eta} [\sum_{i} x_{i}^{2} - 2x_{i}y_{i}] + \lambda \sum_{i} |x_{i}|$$

$$= min_{x} \frac{1}{\eta} \left[\sum_{i} \left(\frac{x_{i}^{2}}{2} - x_{i}y_{i} + \lambda \eta |x_{i}| \right) \right]. \tag{0.1}$$

Note that we can minimize each term inside the sum separately as the terms are essentially independent from each other. Consider the problem of minimizing $L_i(x_i) = \left(\frac{x_i^2}{2} - x_i y_i + \lambda \eta |x_i|\right)$.

Note that if $y_i > 0$, then $x_i \ge 0$ (for if $x_i < 0$; then $L_i \ge 0 = L_i(0)$. Similarly, if $y_i < 0$, then $x_i \le 0$.

If $y_i > 0$; then since $x_i \ge 0$, $L_i = \frac{x_i^2}{2} - x_i y_i + \lambda \eta x_i$. Minimizing this quantity (by setting the first derivative to 0) gives us $x_i = y_i - \lambda \eta$. Since this is feasible only when $x_i \ge 0$ and $y_i > 0$, we get $x_i = sgn(y_i)(|y_i| - \lambda \eta)^+$.

If If $y_i \le 0$; then since $x_i \le 0$, $L_i = \frac{x_i^2}{2} - x_i y_i - \lambda \eta x_i$. Minimizing this quantity (by setting the first derivative to 0) gives us $x_i = y_i + \lambda \eta$. Since this is feasible only when $x_i \le 0$ and $y_i < 0$, we get $x_i = sgn(y_i)(|y_i| - \lambda \eta)^+$.

Thus in both cases we obtain $x_i = sgn(y_i)(|y_i| - \lambda \eta)^+$. Hence the desired minimizer is $x = (x_1, ..., x_n)$ where $x_i = sgn(y_i)(|y_i| - \lambda \eta)^+$.

(3) Implement proximal gradient descent algorithm in **Jupyter Notebook**.

See the accompanying Jupyter notebook for an implementation of the proximal gradient descent algorithm.

Problem 3: Robust Regression

Consider Huber objective,

$$\min_{x} f(x) := \rho_{\kappa}(\mathbf{F}x - \mathbf{r}) + \lambda ||x||_{1}$$

where ρ_{κ} is Huber function,

$$\rho_{\kappa}(a) = \sum_{i=1}^{m} \begin{cases} \kappa |a_i| - \kappa^2/2, & |a_i| > \kappa \\ a_i^2/2, & |a_i| \leq \kappa \end{cases}$$

(1) For scalar case $a \in \mathbb{R}$, show that $\rho_{\kappa}(a) = \min_{x \neq 1} \frac{1}{2}(x-a)^2 + \kappa |x|$. (Same derivation with Problem 2 (2)).

Proof. Let $p_{\kappa}(a) = \min_{x} \frac{1}{2}(x-a)^2 + \kappa |x|$. By Problem 2 part (2) we obtain $p_{\kappa}(a) = \frac{1}{2}([sgn(a)(|a|-\kappa)^+ - a]^2 + \kappa(||a|-\kappa|)^+$. For $|a| \ge \kappa$; we get

$$p_{\kappa}(a) = \frac{1}{2}\kappa^2 + \kappa|a - \operatorname{sg} n(a)\kappa| = \frac{1}{2}\kappa^2 + \kappa||a| - \kappa| = \kappa|a| - \frac{1}{2}\kappa^2.$$

For $|a| < \kappa$, we get $p_{\kappa}(a) = \frac{a^2}{2}$. This agrees with the definition of $\rho_{\kappa}(a)$.

(2) Is ρ_{κ} a β -smooth function? If it is what is β ?

Solution: Yes. It is easy to see that ρ_{κ} is C^1 . (As |.| is smooth away from 0 and since

$$\frac{\partial \rho_{\kappa}}{\partial a_{i}}(a) = \begin{cases} \kappa \operatorname{sg} n(a_{i}), & |a_{i}| > \kappa \\ a_{i}, & |a_{i}| \leq \kappa \end{cases}$$

is continuous).

We claim that
$$\left|\frac{\partial \rho_{\kappa}}{\partial a_i}(y) - \frac{\partial \rho_{\kappa}}{\partial a_i}(x)\right| \leq |y_i - x_i|$$
.

To prove this, we assume without loss of generality that $y_i > x_i$ and consider the following 6 mutually exhaustive cases:

Case 1:
$$y_i \ge \kappa > x_i > -\kappa$$
. In this case, $\left| \frac{\partial \rho_{\kappa}}{\partial a_i}(y) - \frac{\partial \rho_{\kappa}}{\partial a_i}(x) \right| = |\kappa - x_i| = \kappa - x_i \le y_i - x_i = |y_i - x_i|$.

Case 2:
$$y_i \ge \kappa > -\kappa \ge x_i$$
. In this case, $\left| \frac{\partial \rho_{\kappa}}{\partial a_i}(y) - \frac{\partial \rho_{\kappa}}{\partial a_i}(x) \right| = \kappa + \kappa \le y_i - x_i = |y_i - x_i|$.

Case 3:
$$y_i > x \ge \kappa$$
. In this case, $\left| \frac{\partial \rho_{\kappa}}{\partial a_i}(y) - \frac{\partial \rho_{\kappa}}{\partial a_i}(x) \right| = 0 \le y_i - x_i = |y_i - x_i|$.

Case 4:
$$\kappa \ge y_i > x_i \ge -\kappa$$
. In this case, $\left| \frac{\partial \rho_{\kappa}}{\partial a_i}(y) - \frac{\partial \rho_{\kappa}}{\partial a_i}(x) \right| = y_i - x_i \le |y_i - x_i|$.

KARTHIK IYER

4

Case 5: $\kappa \ge y_i > -\kappa \ge x_i$. In this case, $\left| \frac{\partial \rho_{\kappa}}{\partial a_i}(y) - \frac{\partial \rho_{\kappa}}{\partial a_i}(x) \right| = y_i + \kappa \le y_i - x_i = |y_i - x_i|$.

Case 6:
$$-\kappa \ge y_i > x_i$$
. In this case, $\left| \frac{\partial \rho_{\kappa}}{\partial a_i}(y) - \frac{\partial \rho_{\kappa}}{\partial a_i}(x) \right| = 0 \le |y_i - x_i|$.

Our claim is hence justified. This claim in particular proves that ρ_{κ} is β smooth with $\beta = 1$.

(3) Is $\rho_{\kappa}(\mathbf{F}x - \mathbf{r})$ a β -smooth function with respect to x? If it is what is β ?

Proof. Yes. Firstly, the composition of two C^1 functions is C^1 . Moreover, by chain rule and the fact that $\rho_{\kappa}(a)$ is 1 smooth, we see that by chain rule, that for $h(x) = \rho_{\kappa}(\mathbf{F}x - \mathbf{r})$, $\nabla h(x) = \mathbf{F}^T \nabla \rho_{\kappa}(\mathbf{F}x - \mathbf{r})$. Hence

$$\|\nabla h(x) - \nabla h(y)\|_2 \le \|\mathbf{F}^T\|_2 \|\mathbf{F}\|_2 \|x - y\|_2.$$

Thus
$$\rho_{\kappa}(\mathbf{F}x - \mathbf{r})$$
 is $||\mathbf{F}||_2^2$ smooth.

(4) Implement proximal gradient descent method in Jupyter Notebook.

Problem 4: Logistic Regression

Assume we only care about distinguishing assets that will go up or go down, consider logistic regression objective,

$$\min_{x} f(x) := \sum_{i=1}^{m} \{ \log(1 + \exp(\langle f^{i}, x \rangle)) - s^{i} \langle f^{i}, x \rangle \} + \frac{\lambda}{2} ||x||^{2}$$

where $s^i \in \{-1, 1\}$, is the indicator of if the asset will go up or go down. Let's also denote $\mathbf{F} = [f^1, \dots, f^m]^T$ as we do in the note.

(1) Calculate the gradient of f, namely ∇f . Is f a β -smooth function? If it is, what is the β ?

Solution: We note that
$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^m \left(\frac{f_j^i exp\langle f^i, x \rangle}{1 + exp\langle f^i, x \rangle} - s^i f_j^i \right) + \lambda x_j$$
 for $j = 1, 2, ..., n$.

Let r = Fx. Note that $F \in \mathcal{M}_{m \times n}$ and $x \in \mathbb{R}^n$. Let $r = (r_1, r_2, ..., r_m)$. Define $exp(r) = (exp(r_1), exp(r_2), ..., exp(r_m))$.

$$\nabla f(x) = \mathbf{F}^T \left(\frac{1}{1 + exp(-r)} - s \right) + \lambda x, \tag{0.2}$$

where $\frac{1}{1+exp(r)}$ is gotten by componentwise operations.

After some algebraic manipulations, we can bound $\|\nabla^2 \mathbf{f}\| \le \|\mathbf{F}\|_2^2 + \lambda$. Thus, f is β smooth with $\beta = \|\mathbf{F}\|_2^2 + \lambda$. (Note that this is the same β as we had for OLS regression. I am not sure if this is the optimal β though.)

(2) Implement gradient descent method in **Jupyter Notebook** over training data. Do cross validation to the best λ , and report the test error.

Solution: See the accompanying Jupyter notebook. The test error turns out to be 47.2 %.