**Exercise**: Examine the 300 MHz spectrum of glucose pentaacetate reproduced below. Assume you don't know the stereochemistry and use the spectrum to assign it at each of the carbons.



**Exercise**: Examine the 300 MHz spectrum of glucose pentaacetate reproduced below. Assume you don't know the stereochemistry and use the spectrum to assign it at each of the carbons.



- 1. Stereochemical determinations like this usually start with the identification of one or more protons that can be assigned from considerations of  $\delta$  or J values. In this case G can be assigned to  $H^1$ , the anomeric proton, since it the most downfield one (two  $\alpha$ -O substituents) and it is the only one coupled to just one other proton.
- 2. Multiplet B can be assigned to H<sup>5</sup>, both from its chemical shift (it has an  $\alpha$ -ether, rather than an  $\alpha$ -acetoxy substituent, which has a much larger  $\Delta\delta$  effect) and from the coupling, it is a ddd (J = 10.2, 4.4, 2.4 Hz), the only proton in the molecule coupled to 3 others.
- 3. Multiplets A and C can be assigned to the diastereotopic protons  $H^6$ , again using a chemical shift argument (secondary protons are upfield of tertiary ones), as well as the observation that these are both coupled to  $H^5$  (B) from a consideration of both the size of J and the leaning.
- 4. Starting with H<sup>1</sup> (G): the small 3.4 Hz coupling must be either an eq-eq coupling (part structure 1, requires an axial substituent at C<sup>2</sup>) or an eq-ax one (part structures 2 and 3).



- 5. We can assign  $H^2$  to multiplet D, a dd with J = 12.2, 3.6 Hz, since it the only signal that shows the 3.6 Hz coupling to  $H^1$  (G). Since the second coupling to  $H^2$  is an ax-ax one, this *requires* that *both*  $H^2$  and its neighbor  $H^3$  be axial. Thus part structure **3** is correct, and we know the details shown in structure **4**.
- 6. This leaves only two multiplets unassigned, E and F. Both are triplets with J = 9.9 Hz, thus both *must* be axial, and the *neighbors on both sides* ( $H^2$  and  $H^5$ ) *must also be axial*, so we know the full spereochemistry (5).
- 7. The assignment of  $H^3$  and  $H^4$  can be done as follows: we know that multiplets D and E canot be coupled to each other with J = 9.9, because there is not nearly enough leaning. So E cannot be  $H^3$ , so must be  $H^4$ , and F is then  $H^3$ .