Predicting Drug Abuse Susceptibility

Rishab Ghose

Introduction

Let's look at the facts: Among Americans....

- → 700K Drug Overdose Deaths
 Since 2000
- → 95K Deaths from Alcohol Every Year
- 20M individuals ages 12 and older

Are affected by substance abuse disorders

358K adolescents
Had SUD and MDE within last year

Early Awareness, Education & Prevention is KEY!

Goal: Build a model to Predict Drug Abuse

Substances of Interest:

Alcohol, Cocaine, Benzodiazepines

Will be using Drug
Use Dataset from
UCI Machine
Learning Repository

The Data

Collected from Anonymous Survey Data

Reputable Psychology Questionnaires

1885 respondents32 Features

Data Wrangling

- Semeron: Fictitious Drug
 Used to rule out untruthful respondents
- → 7 Personality Features

 Values replaced with actual scores rather than standardized values

Substance Use Distributions

Alcohol vs. Cocaine & Benzos

CL1 = Used over a Decade Ago

CL2 = Used in Last Decade

CL3 = Used in Last Year

CL4 = Used in Last Month

CL5 = Used in Last Week

CL6 = Used in Last Day

700

600 500 400

300 200 100

CL0

CL1

Alcohol Use Distribution

CL2

CL3

CL4

CL5

CL6

Principal Components Analysis

Feature Importance: Alcohol

Feature Importance: Cocaine

Feature Importance: Benzodiazepines

_

Modeling

Target Variables: Multi-Class to Binary

Done **separately** for each substance

75/25 Train - Test Split

3 Classifiers Used: Logistic Regression, Random Forest, K-Nearest Neighbors

Procedure

Pick best model using ROCAUC Score

Utilize GridSearchCV to tune hyperparameters

Find optimal Threshold using F beta score

REMEMBER!

We would rather have false positives than false negatives - want to prioritize recall over precision

Alcohol

Log. Regression performs best

0.55

0.68

0.53

0.62

751

751

0.61

0.64

macro avg weighted avg

Benzodiazepine

Log. Regression performs best

Precision-Recall vs. Threshold

	- T-	recall	fl-score	support
0 1	0.92 0.35	0.78 0.64	0.84 0.45	632 119
accuracy macro avg weighted avg	0.64 0.83	0.71 0.76	0.76 0.65 0.78	751 751 751

Drawbacks

- → Lack of Features

 Could help alcohol prediction model
- Past Drug Use
 Data only shows last use, not frequency

Further Goals

- → Try More Classifiers
 SVM, Naive Bayes, Ensembles, etc.
- → Redefine User vs. Non-User

 Could be more or less strict in definition
- → Build Models for more Substances!

The best time to take action was yesterday. The second best time is now.

References

https://drugabusestatistics.org/

https://archive.ics.uci.edu/ml/machine-learning-databases/00373/drug consumption.data