IPF y Método de Bisección

1. Se tiene la siguiente función continua y diferenciable en \mathbb{R} :

$$f(x) = x^3 + 4x^2 - 10$$

- a) Suponga que existe una raíz de f(x) en [1,2]. Indique cuántas iteraciones requiere el método de la bisección para aproximar la raíz con 10 decimales correctos.
 - Para aproximar la raíz con 10 decimales correctos, el error del resultado final debe ser menor a $\frac{10^{-10}}{2}$.
 - Si, en la n-ésima iteración, el método de la bisección termina en el intervalo $[a_n, b_n]$ y retorna el valor $\frac{a_n + b_n}{2}$ como aproximación, entonces el error es $\frac{b_n a_n}{2}$ para esta iteración, donde $b_n a_n$ es el tamaño del intervalo $[a_n, b_n]$, Dado que, en cada iteración, el tamaño del intervalo se reduce a la mitad, después de n iteraciones, el tamaño resultante es $b_n a_n = \frac{b-a}{2^n}$, donde b-a es el tamaño del intervalo inicial

[a,b] para la bisección. Es decir, el error es $\frac{b_n-a_n}{2}=\frac{\frac{b-a}{2^n}}{2}=\frac{b-a}{2^{n+1}}$. Como [a,b]=[1,2], el error es $\frac{1}{2^{n+1}}$. Juntando ambas definiciones, la cantidad n de iteraciones para aproximar la raíz con 10 decimales correctos se obtiene de la siguiente inecuación:

$$\frac{1}{2^{n+1}} < \frac{10^{-10}}{2}$$

Multiplicando ambos lados por 2^{n+1} y por 10^{10} :

$$10^{10} < 2^n$$

Dado que $2^{10}=1024\approx 10^3$, se puede decir que $2^{30}\approx 10^9$, de donde se puede estimar que el primer entero n que cumple la inecuación es n=34, pues $2^{34}=2^4\times 2^{30}=16\times 2^{30}\approx 16\times 10^9>10^{10}$. Siendo más precisos, de la inecuación

$$2^n > 10^{10}$$

se obtiene $n > \log_2(10^{10}) = 10 \log_2(10) \approx 10 \times 3.322 = 33.22$. El primer entero mayor a 33.22 es n = 34.

b) Aplique computacionalmente el método de la bisección en [1,2] para verificar su respuesta anterior.

```
def n_pasos_biseccion(f, a, b, tol):
      # tol seria 10^(-5) / 2
       # Tambien puedes usar
       # while abs(b - a) > tol:
      # \sin \text{ divisiones por 2 y usar simplemente tol = } 10^{-5}
      while abs(b - a) / 2 > tol:
9
           n += 1
           c = (a + b) / 2
if f(c) == 0:
               return c, n
12
           if f(c) * f(a) < 0:
               b = c
16
           else:
17
      return (a + b) / 2, n
_{1} >>> f = lambda x: x*x*x + 4*x*x - 10
_3 >>> b = 2
```

```
4 >>> tol = 1e-5 / 2  # 1e-5 representa 1 * 10^(-5)
5 >>>
6 >>> resultado, n = n_pasos_biseccion(f, a, b, tol)
7 >>> n
8 34
```

2. Sean f(t) y g(t) dos funciones reales continuas definidas para todo t > 0. Construya un algoritmo que determine α tal que $g(\alpha) + f\left(\frac{1}{\alpha}\right) = A$, donde 0 < A < 1. Considere que g(1) + f(1) = 0 y $g(10^4) + f(10^{-4}) = 1$. El algoritmo debe recibir A y n como parámetros y retornar α con n decimales de precisión.

Explique claramente todos los supuestos que considera.

La búsqueda de α tal que $g(\alpha) + f\left(\frac{1}{\alpha}\right) = A$ es un **problema de búsqueda de raíces**. En este problema, se debe **definir la función** h a la cual queremos buscarle una raíz, es decir, un valor α tal que $h(\alpha) = 0$.

La ecuación $g(\alpha) + f(\frac{1}{\alpha}) = A$ puede reescribirse, restando A a ambos lados, como

$$g(\alpha) + f\left(\frac{1}{\alpha}\right) - A = 0$$

y, desde ahí, se puede definir una función h tal que

$$h(t) = g(t) + f\left(\frac{1}{t}\right) - A.$$

Si α es la solución de la ecuación original, entonces se puede verificar que $h(\alpha) = g(\alpha) + f\left(\frac{1}{\alpha}\right) - A = 0$, es decir, α es una raíz de h.

La información adicional del contexto nos permite decidir qué método de búsqueda de raíces deberíamos aplicar. En este caso, hay cuatro piezas importantes de información contextual:

<u>a</u>) $g(10^4) + f(10^{-4}) = 1$.

El valor 10^{-4} equivale a $\frac{1}{10^4}$, volviendo lo anterior en $g(10^4) + f(\frac{1}{10^4}) = 1$, algo muy similar a la forma $g(t) + f(\frac{1}{t})$ de la ecuación original y la función h definida. Esto nos da la idea de evaluar $h(10^4)$:

$$h(10^4) = g(10^4) + f\left(\frac{1}{10^4}\right) - A$$
$$= 1 - A$$

 $\underline{\mathbf{b}}$) g(1) + f(1) = 0.

De nuevo, como $1 = \frac{1}{1}$, se puede hacer algo similar a lo anterior y evaluar h(1):

$$h(1) = g(1) + f\left(\frac{1}{1}\right) - A$$
$$= 0 - A$$
$$= -A$$

c) 0 < A < 1.

Debido a que A es positivo, h(1) = -A es negativo.

Debido a que A es menor a 1, $h(10^4) = 1 - A$ es positivo.

d) f y g son funciones continuas.

Por álgebra de continuidad, esto vuelve a h una función continua.

El hecho de que h sea continua implica que, si h(1) es negativo y $h(10^4)$ es positivo, entonces, en algún punto t entre 1 y 10^4 , h(t) debe valer 0 debido al teorema de Bolzano. En otras palabras, sabemos que existe algún valor $\alpha \in [1, 10^4]$ tal que $h(\alpha) = 0$.

Todo lo anterior nos indica que podemos usar el **método de la bisección** sobre la función $h(t) = g(t) + f\left(\frac{1}{t}\right) - A$, partiendo repetidamente por la mitad el intervalo $[a,b] = [1,10^4]$ hasta tener n decimales de precisión, es decir, hasta la iteración k donde $\frac{b_k - a_k}{2} < \frac{10^{-n}}{2}$ o, equivalentemente, $b_k - a_k < 10^{-n}$.