Universitat Autònoma de Barcelona

y Universidad de Málaga

Categorías 2024

Ejercicios Resueltos

1. Sesión 1¹

Ejercicio 1.0.1. Ejercicio 1.1.i

(i) Consideramos un morfismo $f: x \to y$. Demuestra que si existe un par de morfismos $g, h: \Rightarrow x$ tal que $gf = 1_x$ y $fh = 1_y$, consecuentemente g = h y f es un isomorfismo.

$$f: x \to y, g: y \to x, h: y \to x; gf = 1_x, fh = 1_y.$$

$$gfh = g(fh) = g\mathbf{1}_y = (gf)h = \mathbf{1}_x h \Rightarrow g = h$$

Por tanto $fh = 1_y$ y $hf = 1_x$ de esta forma f es isomorfismo.

(ii) Demuestra que un morfismo como máximo puede tener un único morfismo inverso.

Dado $f: x \to y$, un par de isomorfismos que invierten f son dos morfismos $g_1, g_2: y \to x$ tal que $g_1 f = g_2 f = 1_x$ y existan $h_1, h_2: x \to y$ tal que $g_1 h_1 = g_2 h_2 = 1_x$ y $h_1 g_1 = h_2 g_2 = 1_y$.

Por tanto, aplicando (i) obtenemos $h_1 = f = h_2$ y como $g_1 f = 1_x$, $fg_2 = 1_y$ tenemos que $g_1 = g_2$.

¹Soluciones proporcionadas por Alejandro García