

Pengantar Data Mining #6: Clustering

Isnan Mulia, S.Komp, M.Kom

Apa Itu Clustering | Cluster Analysis?

- Proses mengelompokkan kumpulan objek data ke dalam beberapa kelompok/cluster sedemikian sehingga objek-objek di dalam masing-masing cluster saling mirip satu dengan yang lain, serta saling tidak mirip dengan objek-objek di cluster lain
- Proses untuk meminimalkan jarak intra cluster & memaksimalkan jarak antar cluster
- Penentuan kemiripan/ketidakmiripan berdasarkan atribut yang dimiliki data
 & melibatkan ukuran jarak
- Menggunakan data yang tidak memiliki label kelas
 - → Disebut *unsupervised learning* & *learning by observation*

Clustering vs Klasifikasi

Sumber: https://techdifferences.com/wp-content/uploads/2018/01/Untitled.jpg

Klasifikasi:

- Menggunakan data yang memiliki label kelas
- Membuat bidang pemisah antara data pada label kelas yang satu dengan label kelas yang lain

Clustering.

- Menggunakan data yang tidak memiliki label kelas
- Mengelompokkan data yang memiliki karakteristik yang mirip

Clustering vs Klasifikasi

Classification

Sumber: https://editor.analyticsvidhya.com/uploads/ 74251clustering.PNG

> Sumber: https://i1.wp.com/dataaspirant.com/wpcontent/uploads/2020/12/5-Clustering-Vs-Classification-Example.png

Manfaat Clustering

- Mengelompokkan data berdasarkan kemiripan karakteristik
- Mendapatkan informasi mengenai distribusi data
- Dapat digunakan dalam langkah praproses data untuk mengkarakterisasi data
- Mendeteksi data pencilan, yang memiliki karakteristik berbeda dari objek data yang lain

Kebutuhan Clustering

- Kemampuan untuk melakukan *clustering* pada data berdimensi besar
- Kemampuan untuk menghadapi berbagai jenis atribut data
- Penemuan *cluster* dengan bentuk tertentu
- Kemampuan untuk menghadapi data berderau
- Clustering tambahan, jika ada tambahan data input
- Hasil *clustering* dapat diinterpretasikan dengan mudah

Metode Clustering

- Metode partisi \rightarrow membagi data menjadi k kelompok
 - → k-means, k-medoid
- Metode hirarki → membuat dekomposisi hirarkis dari data yang diberikan
 - → Agglomerative (bottom-up), divisive (top-down)
- Metode density-based → membangun cluster selama kepadatan/jumlah objek dalam cluster melewati nilai batas tertentu
 - → DBSCAN, OPTICS
- Metode grid-based → mengkuantisasi ruang objek menjadi sejumlah sel yang membentuk struktur grid
 - → STING, CLIQUE

K-Means

- Teknik berbasis *centroid* (titik tengah *cluster*)
- Centroid digunakan untuk merepresentasikan sebuah cluster
- Penentuan titik centroid baru berdasarkan nilai rata-rata jarak antara objek di dalam cluster dengan posisi terakhir titik centroid
- Meminimalkan varian di dalam *cluster*
- Mengukur kualitas cluster.

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} dist(p, c_i)$$

K-Means – Algoritma

Algorithm: *k*-means. The *k*-means algorithm for partitioning, where each cluster's center is represented by the mean value of the objects in the cluster.

Input:

- k: the number of clusters.
- D: a data set containing n objects.

Output: A set of k clusters.

Method:

- arbitrarily choose k objects from D as the initial cluster centers;
- (2) repeat
- (3) (re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster;
- update the cluster means, that is, calculate the mean value of the objects for each cluster;
- (5) until no change;

K-Means - Contoh

K-Means - Contoh

Data: klik <u>di sini</u>
Atribut yang digunakan: sepal_length & sepal_width
Analisis *cluster*: klik <u>di sini</u>
Jumlah *cluster* = 3
Proses selesai di iterasi ke-6

K-Means - Contoh

Contoh visual: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-Means – Beberapa Catatan

- *K-means* tidak menjamin konvergen pada *global optimum*, & terkadang prosesnya selesai di optimum lokal
- Hasil *clustering* bergantung pada pemilihan *centroid* di awal
- Hanya dapat diterapkan jika rata-rata objek dapat didefinisikan
- Sensitif terhadap derau & titik data pencilan, karena nilai derau & pencilan dapat mempengaruhi nilai rata-rata
- Varian lainnya:
 - *K-modes* → menggunakan nilai modus dari data

Metode Clustering Hirarki

- Mengelompokkan data menjadi hirarki/"pohon" *cluster*
- Dapat berupa:
 - Agglomerative: strategi bottom-up
 - → Dimulai dari membuat setiap objek menjadi *cluster* sendiri, kemudian secara bertahap menggabungkan beberapa *cluster* menjadi satu *cluster* yang berukuran lebih besar.
 - → Proses selesai ketika semua objek tergabung menjadi sebuah *cluster*
 - *Divisive*: strategi *top-down*
 - → Dimulai dari menempatkan semua objek dalam sebuah *cluster*, kemudian secara bertahap memecah *cluster* besar menjadi *cluster* yang lebih kecil
 - → Proses selesai ketika sudah terbentuk *cluster* yang paling kecil, yaitu setiap objek menjadi *cluster* sendiri

Metode *Clustering* Hirarki

- AGNES: AGglomerative NESting
- DIANA: DIvisive ANAlysis
- Dendrogram: struktur pohon yang umum digunakan untuk menggambarkan proses clustering hirarki

Metode *Clustering* Hirarki

Ukuran jarak antar *cluster*.

- Jarak minimum: $dist_{min}(C_i, C_j) = \min_{\boldsymbol{p} \in C_i, \boldsymbol{p'} \in C_j} \{|\boldsymbol{p} \boldsymbol{p'}|\}$
 - → Algoritma yang menggunakan jarak minimum = algoritma *single-linkage*
- Jarak maksimum: $dist_{max}(C_i, C_j) = \max_{\boldsymbol{p} \in C_i, \boldsymbol{p'} \in C_j} \{|\boldsymbol{p} \boldsymbol{p'}|\}$
 - → Algoritma yang menggunakan jarak maksimum = algoritma *complete-linkage*

Metode *Clustering* Hirarki – Contoh

Algoritma single-linkage

- Hitung jarak antar objek*l cluster*.
- Selama masih terdapat > 1 *cluster*.
 - Periksa tabel jarak, pilih pasangan objek yang jaraknya paling dekat, kemudian gabungkan objek-objek tersebut menjadi 1 *cluster*
 - Buat tabel jarak baru, perbarui dengan nilai jarak antar objek <u>terdekat</u>

Metode *Clustering* Hirarki – Contoh

Algoritma complete-linkage

- Hitung jarak antar objek/ cluster.
- Selama masih terdapat > 1 *cluster*.
 - Periksa tabel jarak, pilih pasangan objek yang jaraknya paling dekat, kemudian gabungkan objek-objek tersebut menjadi 1 cluster
 - Buat tabel jarak baru, perbarui dengan nilai jarak antar objek terjauh

Metode *Clustering* Hirarki – Contoh

Dendrogram:

Complete-linkage

Permasalahan: "Berapa jumlah *cluster* yang terbentuk dari *clustering* hirarki?"

- → Tidak ada cara yang objektif untuk menyatakan jumlah *cluster* yang terbentuk
- → Penentuan jumlah *cluster* dilakukan secara subjektif

Soal Latihan

Diberikan sebuah *worksheet*, berisi 15 buah objek yang memiliki 2 atribut. Akan diterapkan *clustering k-means* dengan jumlah *cluster* 2 buah pada objekobjek tersebut.

Tugas:

- 1. Tentukan titik awal *centroid* 1 & 2, sebelum melakukan iterasi pertama *k-means*
- 2. Lakukan proses algoritma *k-means* sebanyak 5 iterasi di *file worksheet* tersebut
- 3. Gambarkan *scatter plot* dari hasil *k-means* iterasi ke-5

Worksheet dapat diakses di sini

Recap

- Definisi clustering
- Clustering vs Klasifikasi
- Varian metode clustering
- K-Means
- Clustering hirarki

Next: apakah ada materi yang ingin dibahas kembali?

