שיעור 3 שיעור 3 כפל מטריצות וייצוג מערכת באמצעות

3.1 מושג של מטריצה

מטריצה זאת טבלה של מספרים. הצורה הכללית של מטריצה:

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix}$$

.(עמודות ו- n מטריצה מסדר $m \times n$ מטריצה מסדר A

. עמודות ו- n שורות ו- m שורות בעלת השדה \mathbb{R} מטריצה מטרים ממשיים אומרים כי A מטריצה מטרים מספרים מספרים ממשיים אומרים כי $A\in\mathbb{R}^{m\times n}$

האיבר בשורה j מסומן

 A_{ij}

האינדקס העני "j" מסמן את משורה, והאינדקס השני "i" מסמן את העמודה. מפתח לזכור האינדקסים:

 $A_{\mathsf{w}\,\mathsf{v}}$

כאשר ה- "ש" מסמן את השורה וה-"ע" מסממן את העמודה.

דוגמה 3.1

$$A = \begin{pmatrix} 1 & 5 & 23 & 45 & 2 \\ 12 & 34 & 67 & 87 & 55 \\ 22 & 33 & 66 & 89 & 19 \end{pmatrix} \in \mathbb{R}^{3 \times 5} .$$

האיבר בשורה 3 בעמודה 4 הוא 9. נסמן

$$A_{34} = 89$$

האיבר בשורה 1 בעמודה 5 הוא 2. נסמן

$$A_{15} = 2$$

האיבר בשורה 2 בעמודה 3 הוא 67. נסמן

$$A_{23} = 67$$

אם m=n למטריצה קוראים מטריצה ריבועית.

3.2 מטריצות ריבועיות מיוחדות

$$\begin{pmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{pmatrix}$$

מטריצה אלכסונית:

$$egin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ 0 & A_{22} & A_{23} & \cdots & A_{2n} \\ 0 & 0 & A_{33} & \cdots & A_{3n} \\ dots & dots & dots & \ddots & dots \\ 0 & 0 & 0 & \cdots & A_{nn} \end{pmatrix}$$
 מטריצה משולשית עליונה

$$egin{pmatrix} A_{11} & 0 & 0 & \cdots & 0 \\ A_{21} & A_{22} & 0 & \cdots & 0 \\ A_{31} & A_{32} & A_{33} & \cdots & 0 \\ dots & dots & dots & \ddots & dots \\ A_{n1} & A_{n2} & A_{n3} & \cdots & A_{nn} \end{pmatrix}$$
 מטריצה משולשית תחתונה

$$\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

מטריצת האפס

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

מטריצה היחידה

דוגמה 3.2

. מטריצה אלכסונית
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 (1

. מטריצה אלכסונית
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 (2

מטריצה אלכסונית.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \ \ \textbf{(3)}$$

לא מטריצה אלכסונית.
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (4

3.3 חיבור מטריצות וכפל מטריצות בסקלר

הגדרה 3.1 חיבור מטריצות

A+B מטריצות מוגדרת מסדר M imes n מסדר מסריצות לכל

$$A + B = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} + \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{m1} & B_{m2} & \cdots & B_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1n} + B_{1n} \\ A_{21} + B_{21} & A_{22} + B_{22} & \cdots & A_{2n} + B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} + B_{m1} & A_{m2} + B_{m2} & \cdots & A_{mn} + A_{mn} \end{pmatrix}$$

ניתן ע"י A+B במילים אחרות, האיבר הij של המטריצה

$$(A+B)_{ij} = A_{ij} + B_{ij} .$$

אפשר לחבר מטריצות של אותו גודל בלבד!

לא מוגדר!
$$\begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 לא מוגדר!

הגדרה 3.2 כפל מטריצה בסקלר

m imes n מסדר A לכל

$$\alpha \cdot A = \alpha \cdot \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} = \begin{pmatrix} \alpha A_{11} & \alpha A_{12} & \cdots & \alpha A_{1n} \\ \alpha A_{21} & \alpha A_{22} & \cdots & \alpha A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha A_{m1} & \alpha A_{m2} & \cdots & \alpha A_{mn} \end{pmatrix}$$

ניתן ע"י $lpha \cdot A$ ניתן ע"י $lpha \cdot A$ ניתן ע"י

$$(\alpha \cdot A)_{ij} = \alpha \cdot A_{ij}$$
.

דוגמה 3.3 חיבור מטריצות

$$\begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 0 \end{pmatrix} + \begin{pmatrix} 6 & 8 & 9 \\ 11 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 1+6 & 2+8 & 5+9 \\ 3+11 & 4+5 & 0+4 \end{pmatrix} = \begin{pmatrix} 7 & 10 & 14 \\ 14 & 9 & 4 \end{pmatrix}$$

דוגמה 3.4 כפל מטריצה בסקלר

$$7 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 7 \cdot 1 & 7 \cdot 2 \\ 7 \cdot 3 & 7 \cdot 4 \end{pmatrix} = \begin{pmatrix} 7 & 14 \\ 21 & 28 \end{pmatrix}$$

משפט 3.1 תכונות של חיבור מטריצות וכפל מטריצות

יהיו $lpha,eta\in\mathbb{R}$ ו- $A,B,C\in\mathbb{F}^{m imes n}$ אזי:

בור מטריצות: (1

$$A + B = B + A$$
.

2) חוק הקיבוץ של חיבור מטריצות:

$$(A + B) + C = A + (B + C)$$
.

$$A+0=A$$
.

$$\alpha(A+B) = \alpha A + \alpha B .$$

$$(\alpha + \beta)A = \alpha A + \beta A .$$

(6

$$\alpha \cdot (\beta \cdot A) = (\alpha \cdot \beta) \cdot A .$$

הוכחה מיידית מההגדרות.

3.4 מטריצה משוחלפת

הגדרה 3.3 מטריצה משוחלפת

:(מטריצה ו- ח שורות אורות מטריצה (מטריצה $A \in \mathbb{F}^{m \times n}$ עמודות) בהינתן

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix}$$

המטריצה המשוחלפת של A מסומנת ב- A^t והיא מטריצה בעלת n שורות ו- m עמודות המתקבלת מהמטריצה A ע"י להחליף שורות עם עמודות:

$$A^{t} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{m1} \\ A_{12} & A_{22} & \cdots & A_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{mn} \end{pmatrix}$$

ניתן ע"י A ניתן של המטריצה המשוחלפת לי, i,j האיבר ה-

$$A_{ij}^t = A_{ji}$$
.

דוגמה 3.5 מטריצה משוחלפת

 A^t מצאו שלה, המשוחלפת את מצאו $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ נתונה

פתרון:

$$A^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

משפט 3.2 תכונות של מטריצה משוחלפת

מתקיים: $\alpha \in \mathbb{R}$ מטריצה כך שהסכומים והמכפלות מוגדרים ויהי A,B

$$\left(A^t\right)^t = A$$

$$(A+B)^t = A^t + B^t$$

.1

$$(\alpha A)^t = \alpha A^t$$

.4

$$(A \cdot B)^t = B^t \cdot A^t$$

שימו לב, הסדר השתנה.

הוכחה: תרגיל בית.

3.5 כפל מטריצה בווקטור

הגדרה 3.4 מכפלה של מטריצה בוקטור

ווקטור
$$X=egin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}\in\mathbb{F}^n$$
 ווקטור $m imes n$ מטריצה מסדר $A=egin{pmatrix} A_{11}&A_{12}&\cdots&A_{1n}\\A_{21}&A_{22}&\cdots&A_{2n}\\\vdots&\vdots&\ddots&\vdots\\A_{m1}&A_{m2}&\cdots&A_{mn} \end{pmatrix}\in\mathbb{F}^{m imes n}$ ווקטור

מסדר n. המכפלה של המטריצה A עם הווקטור X, שמסומנת $A\cdot X$, נותנת ווקטור מסדר m שמוגדר

$$A \cdot X = \begin{pmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n A_{1j}x_j \\ \sum_{j=1}^n A_{2j}x_j \\ \vdots \\ \sum_{j=1}^n A_{mj}x_j \end{pmatrix}.$$

ניתן ע"י $A\cdot X$ ניתן ע"י במילים אחרות, האיבר ה-

$$(A \cdot X)_i = \sum_{j=1}^n A_{ij} x_j .$$

כללים של כפל מטריצה בווקטור:

- . \mathbb{F}^m -ב מחזירה ווקטור א מטטריצה $X\in\mathbb{F}^n$ עם ווקטור א $A\in\mathbb{F}^{m imes n}$ כפל של מטטריצה
- 2) אפשר להכפיל מטריצה עם ווקטור רק אם מספר העמודות של המטריצה שווה למספר השורות של הווקטור.

דוגמה 3.6 כפל מטריצה בווקטור

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} 7 \cdot 1 + 8 \cdot 2 + 9 \cdot 3 \\ 7 \cdot 4 + 8 \cdot 5 + 9 \cdot 3 \end{pmatrix} = \begin{pmatrix} 50 \\ 122 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \\ 10 & 11 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \cdot 3 + 2 \cdot 6 \\ 1 \cdot 3 + 2 \cdot 6 \\ 4 \cdot 3 + 5 \cdot 6 \\ 7 \cdot 3 + 8 \cdot 6 \\ 10 \cdot 3 + 11 \cdot 6 \end{pmatrix} = \begin{pmatrix} 15 \\ 42 \\ 79 \\ 96 \end{pmatrix}$$

3.6 כפל מטריצות

הגדרה 3.5 מכפלה של שתי מטריצות

$$B = egin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ dots & dots & \ddots & dots \\ B_{k1} & B_{k2} & \cdots & B_{kn} \end{pmatrix} \in \mathbf{1} \ m imes k$$
 מטריצה מסדר $A = egin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{21} & A_{22} & \cdots & A_{2k} \\ dots & dots & \ddots & dots \\ A_{m1} & A_{m2} & \cdots & A_{mk} \end{pmatrix} \in \mathbb{F}^{m imes k}$

מטריצה מסדר $A\cdot B$ מטריצה של השתי של השתי המכפלה של המכפלה k imes n מטריצה $\mathbb{F}^{k imes n}$

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{21} & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mk} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{k1} & B_{k2} & \cdots & B_{kn} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11}B_{11} + \dots + A_{1k}B_{k1} & A_{11}B_{12} + \dots + A_{1k}B_{k2} & \dots & A_{11}B_{1n} + \dots + A_{1k}B_{kn} \\ A_{21}B_{11} + \dots + A_{2k}B_{k1} & A_{21}B_{12} + \dots + A_{2k}B_{k2} & \dots & A_{21}B_{1n} + \dots + A_{2k}B_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1}B_{11} + \dots + A_{mk}B_{k1} & A_{m1}B_{12} + \dots + A_{mk}B_{k2} & \dots & A_{m1}B_{1n} + \dots + A_{mk}B_{kn} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{p=1}^{k} A_{1p} B_{p1} & \sum_{p=1}^{k} A_{1p} B_{p2} & \cdots & \sum_{p=1}^{k} A_{1p} B_{pn} \\ \sum_{p=1}^{k} A_{2p} B_{p1} & \sum_{p=1}^{k} A_{2p} B_{p2} & \cdots & \sum_{p=1}^{k} A_{2p} B_{pn} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{p=1}^{k} A_{mp} B_{p1} & \sum_{p=1}^{k} A_{mp} B_{p2} & \cdots & \sum_{p=1}^{k} A_{mp} B_{pn} \end{pmatrix}$$

במילים אחרות, האיבר ה- ij של המכפלה $A\cdot B$ ניתנת ע"י הנוסחה:

$$(A \cdot B)_{ij} = \sum_{p=1}^{k} A_{ip} B_{pj} .$$

כללים של כפל מטריצות:

- ניתן להכפיל מטריצה A במטריצה B רק כאשר A מטריצה מסדר m imes k ניתן להכפיל מטריצה A במטריצה של A שווה למספר השורות של A.
 - m imes n ו- m imes k מסדר $A \cdot B$ אז k imes n מסדר ו- m imes k מסדר מסדר (2

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 8 \cdot 4 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

דוגמה 3.9

$$\begin{pmatrix} 2 & 3 & 1 \\ -1 & 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 5 \\ 8 & 7 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 \cdot 2 + 3 \cdot 8 + 1 \cdot 1 & 2 \cdot 5 + 3 \cdot 7 + 1 \cdot 1 \\ -1 \cdot 2 + 0 \cdot 8 + 4 \cdot 1 & -1 \cdot 5 + 0 \cdot 7 + 4 \cdot 1 \end{pmatrix} = \begin{pmatrix} 29 & 32 \\ 2 & -1 \end{pmatrix}$$

דוגמה 3.10

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 7 & 8 \end{array}\right) \cdot \left(\begin{array}{cccc} 11 & 12 & 13 & 14 \\ 5 & 6 & 7 & 8 \\ 21 & 22 & 23 & 24 \end{array}\right)$$

$$= \left(\begin{array}{ccccc} 1 \cdot 11 + 2 \cdot 5 + 3 \cdot 21 & 1 \cdot 12 + 2 \cdot 6 + 3 \cdot 22 & 1 \cdot 13 + 2 \cdot 7 + 3 \cdot 23 & 1 \cdot 14 + 2 \cdot 8 + 3 \cdot 24 \\ 0 \cdot 11 + 7 \cdot 5 + 8 \cdot 21 & 0 \cdot 12 + 7 \cdot 6 + 8 \cdot 22 & 0 \cdot 13 + 7 \cdot 7 + 8 \cdot 23 & 0 \cdot 14 + 7 \cdot 8 + 8 \cdot 24 \end{array}\right)$$

$$= \left(\begin{array}{cccc} 84 & 90 & 96 & 102 \\ 203 & 218 & 233 & 248 \end{array}\right)$$

הגדרה 3.6 מטריצה היחידה

 $n \times n$ למטריצה ריבועית מסדר

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

קוראים מטריצת היחידה.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $: I \in \mathbb{R}^{3 imes 3}$ המטריצה

 $:I \in \mathbb{R}^{2 imes 2}$ המטריצה

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $:I\in\mathbb{R}^{4 imes 4}$ המטריצה

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

משפט 3.3 כפל מטריצה במטריצה היחידה

עז $I \in \mathbb{F}^{n imes n}$ ר- $A \in \mathbb{F}^{m imes n}$ אז (1

 $A \cdot I = A$.

אז $I \in \mathbb{F}^{m imes m}$ רהי $A \in \mathbb{F}^{m imes n}$ אז (2

 $I \cdot A = A$.

הוכחה: תרגיל בית!

דוגמה 3.12

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 & 1 \cdot 2 + 0 \cdot 7 & 1 \cdot 3 + 0 \cdot 8 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot 2 + 1 \cdot 7 & 0 \cdot 3 + 1 \cdot 8 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}$$

דוגמה 3.13

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 & 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 0 & 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 1 \\ 0 \cdot 1 + 7 \cdot 0 + 8 \cdot 0 & 0 \cdot 0 + 7 \cdot 1 + 8 \cdot 0 & 0 \cdot 0 + 7 \cdot 0 + 8 \cdot 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}$$

משפט 3.4 תכונות של כפל מטריצות

תהיינה A,B,C מטריצות כך שהסכומים והמכפלות מוגדרים ויהי

א) חוק הקיבוץ:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

ב) חוק הפילוג:

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

ג) חוק הפילוג:

$$(B+C)\cdot A = B\cdot A + C\cdot A$$

$$\alpha(A \cdot B) = (\alpha \cdot A) \cdot B = A \cdot (\alpha \cdot B)$$
 (7

אז m imes m מטריצת היחידה מסדר וו- n imes n אס מטריצת מטריצת מטריצת מטריצת מסדר וו- $A \in \mathbb{R}^{n imes n}$

$$I_{m \times m} \cdot A = A = A \cdot I_{n \times n}$$
.

הוכחה: תרגיל בית!

כלל 3.1 כפל מטריצות לא קומוטטיבית

נתונות $B \cdot A \cdot B$ כלומר הכרח שווה ל- $B \in \mathbb{F}^{k \times n}$ כלומר הכרח שווה ל- $A \in \mathbb{F}^{m \times k}$

$$A\cdot B \neq B\cdot A$$

באופן כללי.

דוגמה 3.14

אם $A \cdot A$ מטריצה מסדר $B \cdot A$ אז $A \cdot B$ מטריצה מסדר $B \cdot A$ לא מוגדר, אבל $A \cdot B$ אם $A \cdot B$

דוגמה 3.15

$$B = \begin{pmatrix} -1 & 4 \\ -2 & 3 \end{pmatrix}$$
 $A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}$

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} -1 & 4 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} -4 & 11 \\ -13 & 27 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} -1 & 4 \\ -2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 10 & 19 \\ 5 & 13 \end{pmatrix}$$

 $A \cdot B \neq B \cdot A$ א"ז

דוגמה 3.16 כפל מטריצה אינה קומוטטיבית

(קומוטטיביות) ו-
$$A$$
 מתחלפות B ו- A ו- $A \cdot B$ חשבו $B - A$ ו- $A = \begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix}$ ו- $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

פתרון:

$$A \cdot B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 11 \\ 11 & 27 \end{pmatrix}$$

אבל

$$B \cdot A = \begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 16 & 22 \\ 11 & 16 \end{pmatrix}$$

. לכן $A \cdot B \neq B \cdot A$ לכן $A \cdot B \neq B \cdot A$

כלל 3.2 מטריצות דומות

 $A \neq 0$ ו- A,B,C נתונות מטריצות

אט $B \neq C$ אז $B \neq C$ אז אי לא בהכרח שווה ל- $B \neq B$ אז או אם $B \neq A$

דוגמה 3.17

A
eq C אבל $A \neq 0$ ו- AB = AC כך ש- $A, B, C \in \mathbb{R}^{2 imes 2}$ תנו דוגמה של

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$A \cdot C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

 $A \neq C$ אבל $A \neq 0$ ו- AB = AC הרי

כלל 3.3 מכפלה מטריצות המתאפסת

A,B נתונות מטריצות

.אם A אז אז א לא בהכרח מטריצה האפס ו- B לא בהכרח מטריצה האפס

 $A\cdot B=0$ כך ש- B
eq 0 ו- A
eq 0 כך ש-

 $A\cdot B=0$ אבל A,B
eq 0 כך ש- $A,B\in\mathbb{R}^{2 imes2}$ תנו דוגמה של

פתרון:

$$.B=\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight)$$
 , $A=\left(egin{array}{cc} 0 & 1 \ 0 & 0 \end{array}
ight)$ (1) דוגמה

$$A \cdot B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) \ .$$

,
$$A=\left(egin{array}{cc} 0 & a \\ 0 & 0 \end{array}
ight), a\in\mathbb{R}
eq0$$
 (2 דוגמה

$$.B = \left(\begin{array}{cc} b & 0\\ 0 & 0 \end{array}\right) b \in \mathbb{R} \neq 0$$

$$A \cdot B = \left(\begin{array}{cc} 0 & a \\ 0 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} b & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) \ .$$

הגדרה 3.7 העלאה מטריצה בחזקה

תהי $k\in\mathbb{N}$ ויהי $A\in\mathbb{R}^{n imes n}$ נגדיר

$$A^k = \overbrace{A \cdot A \cdot \cdots \cdot A}^{k}$$

אם $A \neq 0$ ונגדיר

$$A^0 = I_{n \times n} .$$

3.7 מטריצה הפוכה

הגדרה 3.8 מטריצה הפוכה

A נניח ש- n imes n מטריצה ריבועית מסדר n imes n מטריצה החופכית של n imes n מטריצה ההפוכה של n imes n אם מתקיים (המטריצה ההפוכה של אם מתקיים

$$A \cdot B = B \cdot A = I$$
.

סימון: במקום B רושמים הימון: סימון

$$A \cdot A^{-1} = A^{-1} \cdot A = I .$$

דוגמה 3.19

$$A = \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix} , \quad A^{-1} = \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix}$$

$$A \cdot A^{-1} = \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix} \cdot \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A^{-1} \cdot A = \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

3.8 שיטה למציאת מטריצה הופכית

נתונה מטריצה ריבועית כדי למצוא כדי כדי . $A \in \mathbb{F}^{n \times n}$ רושמים נתונה מטריצה (A|I)

כאשר בצד המטריצה היחידה מסדר עד ונדרג עד ונדרג מסדר מסדר המטריצה היחידה בצד שמאול: ונדרג עד אמטריצה היחידה בצד המטריצה היחידה מסדר

$$(A|I) \xrightarrow{\operatorname{evilin}} \operatorname{htdes}(I|A^{-1})$$
 .

דוגמה 3.20

 $A = \in \mathbb{R}^{2 imes 2}$ נתונה המטריצה

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} .$$

 A^{-1} מצאו את

פתרון:

$$\left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{array}\right) \xrightarrow{R_2 \to R_2 - 3R_1} \left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{array}\right)$$

$$\xrightarrow{R_1 \to R_1 + R_2} \left(\begin{array}{cc|c} 1 & 0 & -2 & 1 \\ 0 & -2 & -3 & 1 \end{array} \right)$$

$$\xrightarrow{R_2 \to -\frac{1}{2}R_2} \left(\begin{array}{cc|c} 1 & 0 & -2 & 1 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \end{array} \right)$$

לפיכד

$$A^{-1} = \begin{pmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} .$$

דוגמה 3.21

 $:A\in\mathbb{R}^{3 imes 3}$ נתונה

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 2 & -2 & 4 \\ 1 & 1 & 5 \end{pmatrix} .$$

 A^{-1} מצאו את

פתרון:

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & -2 & 4 & 0 & 1 & 0 \\ 1 & 1 & 5 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1}$$

$$\xrightarrow{R_3 \to R_3 - R_1}$$

$$\xrightarrow{R_3 \to R_2}$$

$$\xrightarrow{R_2 \to -R_2}$$

$$\xrightarrow{R_3 \to R_3 + 6R_2}$$

$$\xrightarrow{R_3 \to -\frac{1}{14}R_3}$$

$$\xrightarrow{R_2 \to R_2 + 2R_3}$$

$$\xrightarrow{R_1 \to R_1 - 3R_3}$$

$$\xrightarrow{R_1 \to R_1 - 2R_2}$$

$$\begin{pmatrix} 1 & \frac{1}{2} & -1 \\ \frac{3}{7} & -\frac{1}{7} & -\frac{1}{7} \\ -\frac{2}{7} & -\frac{1}{14} & \frac{3}{7} \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 1 & \frac{1}{2} & -1 \\ \frac{3}{7} & -\frac{1}{7} & -\frac{1}{7} \\ -\frac{2}{7} & -\frac{1}{14} & \frac{3}{7} \end{pmatrix}$$

משפט 3.5 ההופכית של מטריצה יחידה

. תהי איז היא ההופכית מטירצה ההופכית אל היא יחידה. $A \in \mathbb{F}^{n \times n}$

הוכחה:

נניח שB
eq C ו- A ו- B
eq C ו- A אז B
eq C ו- A אז

$$C = CI = C(AB) = (CA)B = IB = B ,$$

 $B \neq C$ -בסתירה לכך

משפט 3.6 לא כל מטריצה הפיכה

 a^{-1} במספרים, אם מספר a
eq 0 ו- a
eq 0 אז קיים

 $A^{-1} \in \mathbb{F}^{n imes n}$ הופכית מטריצה הופכית אל לכל מטריצה ריבועית $A \in \mathbb{F}^{n imes n}$ קיימת מטריצה הופכית

אם למטריצה ריבועית $A\in\mathbb{F}^{n\times n}$ קיימת $A\in\mathbb{F}^{n\times n}$ אומרים כי A **הפיכה**. אם לא קיימת מטריצה הופכית אז אומרים כי A **לא הפיכה**.

$$:A \in \mathbb{R}^{2 imes 2}$$
 נתונה

$$A = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} .$$

 A^{-1} מצאו את

פתרון:

$$\begin{pmatrix} 2 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2 \cdot R_1}$$

אי אפשר לקבל מטריצה היחידה בצד שמאול ולכן המטריצה לא הפיכה.

דוגמה 3.23

מצאו מטריצה X המקיימת את מטריצה

$$XA = B$$
 (x

$$AX = B$$
 (2

$$.B = \begin{pmatrix} 2 & 1 & -2 \\ -1 & 0 & 1 \\ -2 & -1 & 2 \end{pmatrix}$$
 , $A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & -2 \\ -5 & -1 & -3 \end{pmatrix}$ כאשר

פתרון:

(N

$$XA = B \quad \Rightarrow \quad XAA^{-1} = BA^{-1} \quad \Rightarrow \quad X = BA^{-1}$$

$$\begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 3 & 1 & -2 & 0 & 1 & 0 \\ -5 & -1 & -3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3R_1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -8 & -3 & 1 & 0 \\ 0 & -1 & 7 & 5 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 + R_2} \left(\begin{array}{ccc|c} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -8 & -3 & 1 & 0 \\ 0 & 0 & -1 & 2 & 1 & 1 \end{array} \right)$$

$$A^{-1} = \begin{pmatrix} 5 & 2 & 2 \\ -19 & -7 & -8 \\ -2 & -1 & -1 \end{pmatrix}$$
 לפיכך

$$X = B \cdot A^{-1} = \begin{pmatrix} 2 & 1 & -2 \\ -1 & 0 & 1 \\ -2 & -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 5 & 2 & 2 \\ -19 & -7 & -8 \\ -2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} -5 & -1 & -2 \\ -7 & -3 & -3 \\ 5 & 1 & 2 \end{pmatrix}$$

 $A \cdot X = B \implies A^{-1} \cdot A \cdot X = A^{-1} \cdot B \implies X = A^{-1} \cdot B$

לפיכד

(1

$$X = \begin{pmatrix} 5 & 2 & 2 \\ -19 & -7 & -8 \\ -2 & -1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & -2 \\ -1 & 0 & 1 \\ -2 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 3 & -4 \\ -15 & -11 & 15 \\ -1 & -1 & 1 \end{pmatrix} .$$

דוגמה 3.24

מצאו מטריצה X המקיימת

$$A \cdot X = B$$
,

$$A = \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix}$$
 , $A = \begin{pmatrix} 3 & 2 \\ 6 & 4 \end{pmatrix}$ כאשר

פתרון:

$$A \cdot X = B \quad \Rightarrow \quad A^{-1} \cdot A \cdot X = A^{-1} \cdot B \quad \Rightarrow \quad X = A^{-1} \cdot B \ .$$

 $:A^{-1}$ נחפש את

$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 6 & 4 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 3 & 2 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{pmatrix} .$$

לא נוכל להגיע ל- I בצד שמאול, לכן A^{-1} לא קיימת. לכן נפתור בדרך אחרת: נסמן $X=\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ אז

$$A \cdot X = \begin{pmatrix} 3 & 2 \\ 6 & 4 \end{pmatrix} \cdot \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 3x + 2z & 3y + 2w \\ 6x + 4z & 6y + 4w \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix}$$

לכן

$$\begin{cases} 3x + 2z &= 1\\ 3y + 2w &= -2\\ 6x + 4z &= 2\\ 6y + 4w &= -4 \end{cases}$$

נרשום את המטריצה המורחבת של המערכת:

$$\begin{pmatrix}
3 & 0 & 2 & 0 & | & 1 \\
0 & 3 & 0 & 2 & | & -2 \\
6 & 0 & 4 & 0 & | & 2 \\
0 & 6 & 0 & 4 & | & -4
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - 2R_1}
\begin{pmatrix}
3 & 0 & 2 & 0 & | & 1 \\
0 & 3 & 0 & 2 & | & -2 \\
0 & 0 & 0 & 0 & | & 0 \\
0 & 6 & 0 & 4 & | & -4
\end{pmatrix}
\xrightarrow{R_4 \to R_4 - 2R_2}
\begin{pmatrix}
3 & 0 & 2 & 0 & | & 1 \\
0 & 3 & 0 & 2 & | & -2 \\
0 & 0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}$$

פתרון:

$$x = -\frac{2}{3}z + \frac{1}{3}$$
, $y = -\frac{2}{3}w - \frac{2}{3}$, $z, w \in \mathbb{R}$.

לכן

$$X = \begin{pmatrix} -\frac{2}{3}z + \frac{1}{3} & -\frac{2}{3}w - \frac{2}{3} \\ z & w \end{pmatrix} ,$$

 $z,w\in\mathbb{R}$ לכל

משפט 3.7 תכונות של מטריצה הפוכה

$$(A^{-1})^{-1} = A$$
 (x

$$(A^t)^{-1} = (A^{-1})^t$$
 (2

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$
 (2)

הוכחה: תרגיל בית.

3.9 הצגת מערכת משוואות באמצעות כפל מטריצות

נתונה מערכת משוואות ליניאריות:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

 $a:X\in\mathbb{F}^n$ נגדיר את המטריצה של את המטריצה את הווקטור את את הווקטור את את את את מקדמים את המטריצה את גדיר את המטריצה את את הווקטור את החוקטור את המטריצה את המטריצה את החוקטור החוקטור את החוקטור את החוקטור את החוקטור החוקטור

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} , \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} .$$

אז ניתן לרשום את המערכת בתורה

$$A \cdot X = b$$

כלומר

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} .$$

דוגמה 3.25

כאשר AX=b אם נתונה המערכת $\begin{cases} 5x+y-z &= 3 \\ x+2y+z &= 1 \end{cases}$ כאשר

$$A = \begin{pmatrix} 5 & 1 & -1 \\ 1 & 2 & 1 \end{pmatrix} , \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} , \quad b = \begin{pmatrix} 3 \\ 1 \end{pmatrix} .$$

דוגמה 3.26

כאשר AX=b אם נתונה המערכת לרשום ניתן לרשום $\begin{cases} 7x-y = 1 \\ 2x+3y = 5 \end{cases}$

$$A = \begin{pmatrix} 7 & -1 \\ 2 & 3 \end{pmatrix}$$
 , $X = \begin{pmatrix} x \\ y \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.

דוגמה 3.27

פתרו את המערכת של מטריצה המטריצה המטריצה ע"י מציאת מציאת ע"י מציאת ע"י ע"י איי מציאת את המערכת פתרו את המערכת $\begin{cases} 7x-y &= 1 \\ 2x+3y &= 5 \end{cases}$

פתרוו:

נרשום את המערכת בצורה AX=b כאשר

$$A = \begin{pmatrix} 7 & -1 \\ 2 & 3 \end{pmatrix} , \quad X = \begin{pmatrix} x \\ y \end{pmatrix} , \quad b = \begin{pmatrix} 1 \\ 5 \end{pmatrix} .$$

$$AX = b \quad \Rightarrow \quad A^{-1} \cdot A \cdot X = A^{-1} \cdot b \quad \Rightarrow \quad X = A^{-1} \cdot b$$

 $:A^{-1}$ נחפש את

$$\begin{pmatrix} 7 & -1 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{7}R_1} \begin{pmatrix} 1 & -\frac{1}{7} & \frac{1}{7} & 0 \\ 2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & -\frac{1}{7} & \frac{1}{7} & 0 \\ 0 & \frac{23}{7} & -\frac{2}{7} & 1 \end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{7}{23}R_2} \begin{pmatrix} 1 & -\frac{1}{7} & \frac{1}{7} & 0 \\ 0 & 1 & -\frac{2}{23} & \frac{7}{23} \end{pmatrix} \xrightarrow{R_1 \to R_1 + \frac{1}{7}R_2} \begin{pmatrix} 1 & 0 & \frac{3}{23} & \frac{1}{23} \\ 0 & 1 & -\frac{2}{23} & \frac{7}{23} \end{pmatrix}$$

לכן

$$A^{-1} = \begin{pmatrix} \frac{3}{23} & \frac{1}{23} \\ -\frac{2}{23} & \frac{7}{23} \end{pmatrix} = \frac{1}{23} \cdot \begin{pmatrix} 3 & 1 \\ -2 & 7 \end{pmatrix}$$

$$X = A^{-1} \cdot b = \frac{1}{23} \cdot \begin{pmatrix} 3 & 1 \\ -2 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 5 \end{pmatrix} = \frac{1}{23} \cdot \begin{pmatrix} 8 \\ 33 \end{pmatrix}$$

$$(x, y) = \begin{pmatrix} \frac{8}{23}, \frac{33}{23} \end{pmatrix} .$$

$$(x, y) = \begin{pmatrix} \frac{8}{23}, \frac{33}{23} \end{pmatrix} .$$

דוגמה 3.28

פתרו את המערכת $\begin{cases} x+2y = 2 \\ 3x+4y = 4 \end{cases}$ ע"י מציאת המטריצה ההופכית של מטריצת המקדמים של המערכת.

פתרון:

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3R_1} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{pmatrix} \xrightarrow{R_2 \to -\frac{1}{2}R_2} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - 2R_2} \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

$$X = A^{-1} \cdot b = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$(x, y) = (0, 1) .$$

דוגמה 3.29

$$x+2y+3z=1$$
 $2x-2y+4z=2$ $x+y+5z=3$ $AX=b \Rightarrow X=A^{-1}b$ $A=\begin{pmatrix} 2 & 2 & 3 \ 2 & -2 & 4 \ 1 & 1 & 5 \end{pmatrix}$, $X=\begin{pmatrix} x \ y \ z \end{pmatrix}$, $b=\begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}$

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & -2 & 4 & 0 & 1 & 0 \\ 1 & 1 & 5 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1}$$

$$\xrightarrow{R_3 \to R_3 - R_1}$$

$$\xrightarrow{R_3 \to R_2}$$

$$\xrightarrow{R_3 \to R_2}$$

$$\xrightarrow{R_3 \to R_3 + 6R_2}$$

$$\xrightarrow{R_3 \to -\frac{1}{14}R_3}$$

$$\xrightarrow{R_1 \to R_1 - 3R_3}$$

$$\xrightarrow{R_1 \to R_1 - 2R_2} \begin{pmatrix} 1 & \frac{1}{2} & -1 \\ \frac{3}{7} & -\frac{1}{7} & -\frac{1}{7} \\ -\frac{2}{7} & -\frac{1}{14} & \frac{3}{7} \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 1 & \frac{1}{2} & -1 \\ \frac{3}{7} & -\frac{1}{7} & -\frac{1}{7} \\ -\frac{7}{7} & -\frac{1}{14} & \frac{3}{7} \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} & -1 \\ \frac{3}{7} & -\frac{1}{7} & -\frac{1}{7} \\ -\frac{1}{7} & -\frac{1}{14} & \frac{3}{7} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ -\frac{2}{7} \\ \frac{6}{7} \end{pmatrix}$$

משפט 3.8 קיום ומספר פתרונות של מערכת משוואות

נתונה מערכת משוואות

$$A\cdot X=b$$
 $b
eq 0\in\mathbb{F}^n$ -ם מטריצה ריבועית של המקדמים, אוקטור $A\in\mathbb{F}^{n\times n}$ הווקטור של הצד ימין של המערכת.

א) אם A הפיכה אז למערכת קיים פתרון אחד והוא יחיד.

. במקרה ש- A לא הפיכה, אז למערכת יש אינסוף פתרונות או לא קיים פתרון במקרה ב

. אז למערכת יהיו אינסוף פתרונות rank $(A)=\mathrm{rank}(A|b)< n$ ב

. אז למערכת לא קיים פתרון rank $(A) \neq \mathrm{rank}(A|b)$ אז למערכת לא

הוכחה:

- 1. תרגיל בית.
- 2. נלמד את ההוכחה בהמשך הקורס.

3. נלמד את ההוכחה בהמשך הקורס.