

Index

Reactor Fuel Processing

Volume 9

Note: The page range for each of the four issues of Vol. 9 is as follows: No. 1, pages 1 to 64; No. 2, pages 65 to 135; No. 3, pages 137 to 183; and No. 4, pages 185 to 242.

A

- Actinides**
recovery from nuclear detonations in salt, 151-52
- AEC**
reeexamination of fuel-processing technology, 185
- AIROX process**, 103
economics, 36
processing of UO_2 by, 36
- Alamine 336-LiCl extraction process**
transplutonic element recovery by, 150-51
- ALKEM**
(see Alpha-Chemie und Metallurgie G.m.b.H)
- Allied Chemical Corp.**
production of UF_6 , 65
- Alpha-Chemie und Metallurgie G.m.b.H**
 PuO_2 fabrication for Euratom, 1
- Alumina (calcined)**
heat dissipation from, 115
heat generation in, 119
leaching of fission products from, 114-15
- Aluminum alloys (Al-U)**
chloride-volatility processing, 24-25
fluoride-volatility processing, 202-3
molten-salt fluoride-volatility processing, 93-95
- Aluminum-powder metallurgy**
(see SAP (sintered aluminum products))
- Americium**
production and separation, 19-21
- Americium-241**
recovery by the Alamine 336-LiCl extraction process, 150-51
value in spent power-reactor fuels, 3
- Americium-243**
recovery by the Alamine 336-LiCl extraction process, 150-51
value in spent power-reactor fuels, 3
- Amines**
use in solvent extraction, 73-74
use in solvent extraction, radiation effects, 197
- Anion-exchange resins**
exothermic reactions in HNO_3 systems, 131-34
- Aqueous processing**, 16-22, 69-82, 147-55, 194-200

- Argonne National Laboratory**
LMFBR program office established, 187
spinoff program, 187
- Arsenic fluorides (AsF_5)**
enthalpy of formation, 93
- Asphalt**
incorporation of nuclear wastes in, 111-12, 170-71, 227

B

- Beryllium fluorides ($\text{BeF}_2\text{-LiF}$)**
chemistry of molten, 97
- Booklets**
review of nuclear industry, 2
- USAEC—What It Is, What It Does**, 2

C

- Calcination**
waste-disposal applications, 42-44, 112-15, 119, 171-73, 227-34
- California Nuclear Inc., Lafayette, Ind.**
burial of waste at Hanford, licensing proposal, 2
operation of low-level-waste burial site in III., 65
- CARBOX process**
economics, 38
processing of UC by, 36-37
- Cerium**
recovery from waste solutions by solvent extraction, 117-18, 173-74
- Cerium-144**
price decrease, 65
production by FPCE, 65
value in spent power-reactor fuels, 3
- Cerium fluorides (CeF_4)**
preparation of pure anhydrous, 92-93
- Cesium**
recovery from Darenx wastes by solvent extraction, 118
recovery from TBP-25 process wastes by solvent extraction, 118
recovery from wastes by ion exchange, 234
recovery from wastes by solvent extraction, 117
removal from wastes by ion exchange, 170, 225-26
- Cesium-137**
encapsulation plant, plans for, 186
- price decrease, 65**
production by FPCE, 65
recovery from Purex wastes by precipitation, 48-49
recovery from Purex wastes by solvent extraction, 48
recovery from Redox wastes by ion exchange, 47-48
removal from fuel-storage-basin water by ion exchange, 40-41
value in spent power-reactor fuels, 3
- Chloride-volatility processes**, 24-25, 86
- Chlorine fluorides (ClF_3)**
reaction with H_2O , 161
- Chlorine fluorides (ClF_5)**
preparation and properties, 161
- Chromatography**
separation of Th and U from fission products by, 198
- Cobalt**
removal from wastes by ion exchange, 225-26
- Columns (pulse)**
flooding equations, 199-200
- Commercial aspects of fuel processing**, 1-15, 65-68, 137-45, 185-93
- Commercial facilities**
close-coupled, design, 9-10
close-coupled, economic evaluation, 7-10
- Dounreay Plant**, 1
- Eurochemic processing plant**, 1, 137
153-55
- Nuclear Fuels Services**, startup, 185
- French**, startup of new, 185
- proposal by Allied Chemical**, 65
- proposal by General Electric**, 65
- Computers**
use in inventory and control of stored wastes at Savannah River, 118
- Conferences and symposia**
commercial Pu fuel, 138-39, 189-91
- solidification and long-term storage of nuclear wastes**, 171-73
- spent-fuel shipping**, 13
- Continental Mining and Milling Company**
sale of U_3O_8 to AEC, 138
- Copper**
reaction with F_2 , 32
- Copper oxide (CuO)**
reaction with F_2 , 31-32
- Copper oxide (Cu_2O)**
reaction with F_2 , 31-32
- Crystallization**
waste treatment by, 118-19

REACTOR FUEL PROCESSING

Curium-242

recovery by the Alamine 336-LiCl extraction process, 150-51
value in spent power-reactor fuels, 3

Curium-244

production and separation, 19-21
recovery by the Alamine 336-LiCl extraction process, 150-51
use as heat sources, 3
value in spent power-reactor fuels, 3

D

Darex wastes

recovery of Cs and Sr from, 117-18

Decladding

(see also Fuel elements)
chemical means, 25-27, 70, 75-78, 195-96, 206-7

Dissolution

(see also specific materials dissolved)
of APPN fuel by ICPP electrolytic, 22
of HTRE fuel by ICPP electrolytic, 22

Dissolver solution

boiling-point determination, device for continuous, 82

Dissolvers

ICPP electrolytic, design and operation, 21-22, 75-78, 147-49

Dounreay Plant

processing of spent fuel from French reactors, 1

E

EBR-II Fuel Cycle Facility

operation, 32-33, 219-20
remote systems in, 106

EBR-II skull-reclamation process, 33-34, 103-4, 166, 220-21

Economics

AIROX process, 36
CARBOX process, 38
close-coupled fuel processing, 7-10
converter-reactor fuels, 3-4
enrichment of U, 188-89
evaluation of PuO₂-UO₂ fuels, 67
fission-product recovery from spent power-reactor fuels, 2-3

fuel cycles, 66-68, 187-93
fuel cycles, comparison of aqueous, volatility and pyrochemical processing methods, 140-43

fuel cycles, effects of burnup, 67
heavy-element recovery from spent power-reactor fuels, 2-3

plutonium fuel cycle, 143-45, 187, 189-91
perpetual high-level-waste storage, 44-46

spent-fuel shipping, 10-13
waste storage, 44-46, 143

Electrodetonation

waste-disposal applications, 170-71, 226-27

Electrodialysis

waste-disposal applications, 170-71, 226-27

Electrolytic dissolvers

(see Dissolvers)

Electrolytic processes

production of high-purity Pu, 57, 167
reduction of UO₂ to U metal, 55-56

Equipment

contactor for conversion of PuO₂ to PuF₄, 241

corrosion testing in the salt-transport process, 219-22
design for fluoride-volatility processes, 211

design of primary reactor for fluoride-volatility pilot plant, 89-90

hydrolyzer for PuF₆, 30

ICPP electrolytic dissolver, design and operation, 75-78

mixer-settler operation in dilute Thorax process, 198-99
pulse columns, flooding equations, 199-200

sampling system for Eurochemic, 153-55

Euratom

plutonium purchase from AEC, 1

Eurochemic processing plant

design and operation, 137

fuel processing for the BR-3, EDF-1,

EL-1, EL-2, and EL-3 reactors, 1
remote sampling system for process streams, 153-54

Evaporation

application to waste processing and disposal, 118, 234

Evaporators

design of solar for nuclear wastes, 234

F

Federal Electric Corp., Paramus, N. J.
support services for Hanford, 2

Feed materials processing, review, 68

Filtration

of hydrolyzed PuF₆, factors affecting, 29-30

Fires

hazards of anion-exchange resins in nitric acid systems, 131-34

Fission Product Conversion and Encapsulation Plant

operation by Isochem, Inc., 1-2, 65, 186

Fission products

(see also specific fission products)
encapsulation plant, plans for, 65, 186
leaching from calcined alumina, 114-15
recovery from spent power-reactor fuels, 2-3
economics of, 2-3

recovery from nuclear wastes, 1-2, 46-

49, 117-18, 173-74, 234

values in spent power-reactor fuels, 2-3

Fissionable material

accountability, amendments to regulations on, 186-87

value in spent power-reactor fuels, 3

Flow sheets

curium-244 production by Pu irradiation, 20
dissolution and first-cycle solvent extraction of U-Zr alloys in ICPP process, 148

fluoride-volatility processing of Molten-Salt Thermal Breeder Reactor fuel, 162

fuel cycle for HTGR, 195

ICPP electrolytic dissolution process, 76

incorporation of wastes in asphalt, 112

ion-exchange purification of ¹⁴⁷Pm at PNL, 47

ion-exchange treatment of Harwell-plant intermediate wastes, 42

mixed carbide fuel-cycle alternates, 60
molten-salt fluoride-volatility process, 94

MSBR fuel processing by fluoride-volatility and salt-distillation techniques, 214

ORNL pot processes for waste fixation, 228

plutonium separation from fuel solutions by amine system, 19

recovery of actinides produced by nuclear explosions in crude salt, 152

recovery of ²³⁷Np at ICPP, 150

sol-gel process, 123

uranium hexafluoride conversion to U₃O₈, 53

uranium hexafluoride conversion to UO₂, 53

uranium hexafluoride decontamination, 91

waste disposal in fluoride-volatility processing of Zircaloy-2-clad UO₂, 212
water-recycle process, 110-11

Fluoride-volatility processes, 24-32, 84-

97, 157-64, 202-16

(see also specific materials processed by)
evaluation by AEC, 185

remote systems in, 106

waste disposal, 211-12

Fluorine

reaction with Cu, 32

reaction with Cu₂O and CuO, 31-32

reaction with graphite, 31

Food

irradiation plant, proposal by Vitro Engineering Co., 65

FPCE

(see Fission Product Conversion and Encapsulation Plant)

France

spent-fuel processing by Dounreay Plant, 1

spent-fuel processing by Eurochemic, 1
spent-fuel processing by SRP, 1

startup of new fuel-processing plant, 185

Freeze-drying process

waste-disposal applications, 42

Fuel cycles

economic comparison of aqueous, volatility, and pyrochemical processing methods, 140-43

economics, 66-68, 187-93

economics, effects of fabrication methods, 67-68

economics, effects of fuel burnup, 67

economics of Pu, 143-45, 187, 189-91

economics of PuO₂-UO₂, 67

economics of (U, Pu)C, 59-60

Fuel elements (graphite-U-impregnated) dissolution methods, 16-17

Fuel elements (irradiated)

shipping, economics, 10-13

shipping, symposium, 13

Fuel elements (stainless-steel clad)

decladding by electrolytic dissolution, 75-78

Fuel elements (PuC)

dissolution methods, 16-17

Fuel elements (PuO₂-UO₂)(stainless-steel clad)

decladding with H₂SO₄, 70

Fuel elements (ThC)

dissolution methods, 16-17

Fuel elements (U-Al alloy)

dissolution by the Nitrofluor process, 202

processing by molten-salt fluoride-volatility processes, 93-97

Fuel elements (UC)

dissolution methods, 16-17

Fuel elements (UO₂)

Pu recovery from irradiated by fluid-bed

fluoride volatility, 27-28

Fuel elements (UO_2)(stainless-steel clad)
decladding by HF-O_2 in fluid bed of
 Al_2O_3 particles, 25-27, 206-7
dissolution by the Nitrofluor process, 202
Fuel elements (UO_2)(Zircaloy clad)
decladding with NH_4F -citric acid, 195-96
decladding by HF-O_2 in fluid bed of
 Al_2O_3 particles, 206-7
Fuel elements (UO_2)(Zircaloy-2 clad)
decladding by HF-O_2 in fluid bed of
 Al_2O_3 particles, 25-27, 206-7
decladding by oxidation of UO_2 to U_3O_8
powder, 25-26
Fuel elements (UO_2)(zirconium clad)
decladding with NH_4F -citric acid, 195-96
Fuel elements (U_3O_8)(Al clad)
dissolution in Hg catalyzed H_2SO_4 , 16
Fuel elements (U-Zr)(Zircaloy clad)
dissolution in HF in the ICPP dissolver,
147-49
Fuels
(see also specific materials used as
fuels)
fabrication, review, 68
processing of graphite-matrix, 69-70
processing technology, reexamination
by AEC, 185
shipping of spent, economics, 10-13
Fused-salt electrolysis process, 104

G

Gallium alloys (Ga-Pu)
electrorefining for high-purity Pu prepara-
tion, 57
Gas-centrifuge experiments
license issued to General Electric Co.,
65
General Electric Co.
gas-centrifuge experiments, license is-
sued for, 65
Germany
nuclear power development, 191-92
Glasses
incorporation of nuclear wastes in, 43-44.
73, 113-15, 172-73, 175, 228-33
Graphite
reaction with F_2 , 31
recovery of Pu from molds, 128
Graphite systems (UC-graphite)
processing by burning, leaching, and sol-
vent extraction, 196
Ground
disposal of wastes in, 175

H

Hanford Works
availability of support facilities to indus-
try for in-place use, 186
solid-waste burial, 2
support services, contract negotiation, 2
Harwell-plant waste
ion-exchange treatment of intermediate,
41-42
Heat sources
fission products, value in spent power-
reactor fuels, 2-3
Hydraulic fracturing
waste disposal into shale by, 116-17

I

Idaho Chemical Processing Plant
electrolytic dissolver, design and opera-
tion, 21-22, 75-78, 147-49

ion-exchange treatment of fuel-storage-
basin water, 40-41

Idaho Nuclear Corporation
selected as operator of NRTS, 186

Incinerator
design for solid wastes, 234-35

Indemnification
nuclear power plant operators, amend-
ments to, 139

Industry
availability of Hanford support facili-
ties for in-place use, 186

availability of Weldon Spring Plant to,
186
review of nuclear, 2, 68

spinoff program at ANL, 187

Information centers

establishment of liquid metals at Canoga
Park, California, 187
establishment of rare-earth at Ames Lab-
oratory, 139-40

Instruments

for continuous measurement of dissolver-
solution boiling point, 82

Insurance
(see Indemnification)

International Atomic Energy Agency
review of Pu use in power reactors, 187

Ion-exchange processes, 74-75, 153

(see also specific element separated
by)
waste-disposal applications, 40-42, 47-
48, 110-11, 170, 225-26, 234

Ion-exchange resins

disposal of spent radioactive at Shipping-
port, 118
exothermic reactions in HNO_3 systems,
131-34

Iron alloys (Fe-Pu)
electrorefining for high-purity-Pu prepara-
tion, 57

Isochem, Inc.
operation of FPCE, 65, 186

K

Krypton-85
value in spent power-reactor fuels, 3

L

Leaching
fission products from calcined alumina,
114-15
plutonium from graphite molds, 128
uranium from ores, 51-52

Licensing
commercial burial of solid waste at Han-
ford, 2
FPCE, 1-2

Liquid Metals Information Center
establishment at Canoga Park, California,
187

Lithium fluorides (BeF_2 -LiF)
chemistry of molten, 97

M

Magnesium
use of cut-crown for reducing UF_4 to U,
55

Metals
solubility in liquid Zn, 222
Mixer-settlers
operation for dilute Thorax process, 198-
99

Molten-salt fluoride-volatility processes,
93-97

Molybdenum alloys (Mo-U)
decomposition in alkaline melts, 196
Molybdenum fluorides (MoF_6)
thermodynamic properties, 213

N

National Reactor Testing Station
Idaho Nuclear Corporation selected as
operator, 186

Neptunium-237
recovery by solvent extraction, 149
value in spent power-reactor fuels, 3

Neptunium fluorides (NpF_6)
formation of complexes with CsF and
 RbF , 213

Niobium fluorides (NbF_5)
preparation, 93

Niobium fluorides (NbF_6)
preparation and properties, 93

Nitrofluor process, 202

Nonaqueous processing, 24-49, 84-107,
157-75, 202-22

Nuclear Fuels Services, Inc.

startup, 185

Nuclear industry
attitude of public toward power installa-
tions, 192-93

review, 2, 68

P

Palladium
value in spent power-reactor fuels, 3

Patents
AEC-owned made available for licensing,
14

announcement in press releases, 145

availability, 193

German, combining aqueous solvent ex-
traction and fluoride-volatility steps,
13-14

pyrochemical processes, 38

Plutonium

commercial fuel aspects, conference on,
138-39, 189-91

economics, 143-45

electrowinning from PuCl_4 , 105

fabricating facilities, 189-91

formation of fluoride complexes, 160-61

measurement, evaluation of methods, 139

preparation, 179-80, 240-41

preparation by PuO_2 electroreduction
in fluoride melts, 239-40

preparation by PuO_2 reduction with Al in

CaCl_2 - CaF_2 flux, 104-5

preparation by PuO_2 reduction with Ca, 57

preparation by PuO_2 reduction with liq-
uid Mg-Zn alloy in alkali fluxes, 127

preparation from PuCl_3 - BaCl_2 - KCl melts
by electroreduction, 127-28

preparation of high-purity by electrore-
fining, 57, 167

preparation of high-purity by zone melt-

ing and electrodeposition, 104

purchase by Euratom, 1

recovery from graphite molds by acid

leaching, 128

recovery from nitrate solutions by ion

exchange, 74-75

recovery from nitrate solutions by pre-

cipitation as PuF_3 , 179

REACTOR FUEL PROCESSING

recovery from UO_2 fuel by fluid-bed fluoride-volatility, 27-28 reduction of $\text{Pu}(\text{VI})$ to $\text{Pu}(\text{IV})$ by $\text{U}(\text{IV})$, 17-18, 179 sale to Euratom by AEC, 1 separation from fuel solutions by solvent extraction, 18-19 separation from U by fluoride-volatility, 28-29 use in power reactors, conference on, 189-91 use in power reactors, review by IAEA, 187 Plutonium-238 use as heat sources, 3 value in spent power-reactor fuels, 3 Plutonium-239 value in spent power-reactor fuels, 3 Plutonium-240 value in spent power-reactor fuels, 3 Plutonium-241 value in spent power-reactor fuels, 3 Plutonium-242 value in spent power-reactor fuels, 3 Plutonium alloys (Ga-Pu) electrorefining for preparation of high-purity Pu, 57 Plutonium alloys (Fe-Pu) electrorefining for preparation of high-purity Pu, 57 Plutonium carbides (PuC) preparation by molten-salt process, 58 Plutonium carbides [$(\text{U}, \text{Pu})\text{C}$] fuel cycle economics, 59-60 preparation and properties, 57-60, 180-82 Plutonium chlorides (PuCl_3) electrowinning of Pu from, 105 production from PuO_2 , 179-80 production from Pu_2O_5 , 240-41 Plutonium fluorides decomposition by alpha and gamma radiation, 31 Plutonium fluorides (PuF_3) conversion to oxides in fused-salt media, 165-66 production from PuO_2 , 241 Plutonium fluorides (PuF_5) conversion to oxides in fused-salt media, 165-66 filtration of hydrolyzed, factors affecting, 29-30 hydrolysis apparatus, 30 recovery from molten salts, 96-97 separation from UF₆, use of SO_2 and Freons for, 88-89 Plutonium nitrides (PuN) preparation and properties, 60-61, 130 Plutonium oxides ($\text{Pu}_{2-x}\text{UO}_3$) Plutonium oxides (PuO_y-UO_z) economics, 67 Plutonium oxides [$(\text{Pu}, \text{U})\text{O}_2$] preparation and properties, 126-27, 182-83 Plutonium oxides [$(\text{U}, \text{Pu})(\text{O}, \text{C})$] preparation and properties, 182-83 Plutonium oxides [$(\text{U}, \text{Pu})(\text{O}, \text{C}, \text{N})$] preparation and properties, 182-83 Plutonium oxides [$(\text{U}, \text{Pu})(\text{O}, \text{N})$] preparation and properties, 182-83 Plutonium oxides (PuO_2) conversion to Pu metal, 179-80 fabrication for Euratom, 1 preparation by calcining plutonium oxalate, nitrate, hydroxide, and peroxide, late, nitrate, hydroxide and peroxide, density and sinterability of, 56 preparation and properties, 126-27

preparation from PuF_4 and PuF_6 , 165-66 preparation of spheres by the sol-gel process, 127 Plutonium phosphide (PuP) preparation and properties, 62 Plutonium sulfide (PuS) preparation and properties, 61 Power reactors
(see Reactors (power)) Precipitation cesium-137 recovery from Purex wastes by, 48-49 separation of Th and U from HNO_3 solutions by, 198 strontium-90 recovery from Purex wastes by, 46-47 Press releases patent announcement in, 145 Promethium recovery from waste solutions by solvent extraction, 117-18 Promethium-147 encapsulation plant, plans for, 186 price decrease, 65 production by FPCE, 65 recovery from waste solutions by ion exchange, 47 removal from nuclear wastes, 173 value in spent power-reactor fuels, 3 Protactinium formation of fluoride complexes, 161 Protactinium-233 separation from irradiated Th by coprecipitation with MnO_2 , 71 Public attitude towards nuclear power installations, 192-93 Purex process flow sheet, modification using $\text{U}(\text{IV})$ for Pu reduction, 17-18 Purex wastes cesium recovery by precipitation, 48-49 cesium-137 recovery by solvent extraction, 48 conversion to glasses, 43-44, 114 filtration, 41 incorporation in glasses, 114 ion-exchange treatment, 41 ruthenium recovery by solvent extraction, 118 steam stripping for removal of ammonium ion and organic matter, 41 strontium recovery by solvent extraction and precipitation, 46-47 Pyrochemical processes, 32-38, 97-105, 164-68, 216-22

R

Radioactive waste
(see Waste processing and disposal)

Rare-Earth Information Center establishment at Ames Laboratory, 139-40

Rare earths information center established at Ames Laboratory, 139-40 recovery from Darex wastes by solvent extraction, 118 removal from wastes by ion exchange, 225-26

Reactors (APPR) fuel dissolution, ICPP electrolytic, 22

Reactors (BR-3) fuel processing by Eurochemic, 1

Reactors (converters) fuel-processing costs for advanced type, 3-7

Reactors (Dresden Power) purchase of core for reloading, 185

Reactors (EDF) fuel-processing-plant startup, 185

Reactors (EDF-1) fuel processing by Eurochemic, 1

Reactors (EL-1) fuel processing by Eurochemic, 1

Reactors (EL-2) fuel processing by Eurochemic, 1

Reactors (EL-3) fuel processing by Eurochemic, 1

Reactors (fast) fuel processing by salt-transport process, 164-65

Reactors (HTGR) fuel dissolution, 194-95

Reactors (HTRE) fuel dissolution, ICPP electrolytic, 22

Reactors (KRB) fueling arrangements, 138

Reactors (LMFBR) program office established at ANL, 187

Reactors (MSBR) fuel processing by fluoride-volatility and salt-distillation techniques, 161-64, 213-16 fuel processing by pyrochemical techniques, 221-22

Reactors (NOK) fueling arrangements, 138

Reactors (NUCLENOR) fueling arrangements, 138

Reactors (PM-3A) fuel dissolution, ICPP electrolytic, 22

Reactors (Peach Bottom Power) fuel processing by fluoride-volatility processes, 84-85, 203-5 fuel processing by pressurized aqueous combustion, 69-70

Reactors (power) community attitude towards, 192-93 foreign development, 191-92 fuel processing by fluoride-volatility processes, 84 indemnity regulations, amendments to, 139 orders for 1965, 139 use of Pu fuel, conference on, 189-91 use of Pu fuel, review by IAEA, 187 values of fission products and heavy elements in spent fuel, 3

Reactors (Rover) fuel processing by fluoride-volatility method, 203-5

Reactors (VEW) fueling arrangements, 138

Reactors (ZORITA) fueling arrangements, 138

Redox wastes cesium-137 recovery from by ion exchange, 47-48

Regulations amendments to fissionable-material accountability, 186-87 state authority over radioactive materials, 187

Remote-systems technology, 105-7 conference on, 105-7

Reviews nuclear industry, 2, 68

Rhodium value in spent power-reactor fuels, 3

Ruthenium decontamination in solvent-extraction processes, 72-73 recovery from Purex wastes by solvent extraction, 118

removal from wastes by electrodialysis and electrodeionization, 170-71
value in spent power-reactor fuels, 3
Ruthenium fluorides (RuF₆)
enthalpy of formation, 93

S**Safety**

thermal behavior of anion-exchange resins in nitric acid systems, 131-34

Salt

production and recovery of transplutonic elements from nuclear explosions in, 151

Salt-cycle process, 36, 101**Salt-metal process**, 34-35

corrosion of construction materials, 34

Salt mines

storage of calcined wastes in, 233-34

Salt-transport process, 97-100, 164-65, 217-19

corrosion of materials in, 100, 219-21

Sampling

remote system for process streams at Eurochemic, 153-54

SAP (sintered aluminum products)
dissolution in mercury-catalyzed H₂SO₄, 16**Savannah River Plant**

processing of spent fuel from French reactors, 1

waste management, 174

waste storage, computer program for inventory and control, 118
waste-storage-tank leaks, 174

Selenium fluorides (SeF₆)

thermodynamic properties, 213

Shale

injection of wastes into by hydraulic fracturing, 116-17

Shear-leach process

for UO₂ and UO₂-ThO₂, stainless-steel-clad fuels, 78-81

Shipping

spent fuel, economics, 10-13
spent fuel, symposium, 13

Shipping casks

design, 11

Sol-gel process, 122-26, 177**Solvent-extraction processes**, 17-21, 72-74, 149-51, 196-97

(see also specific materials recovered by)

flooding equations for pulse columns, 199-200

waste-processing applications, 46-49, 117-18, 173-74

Spain

barter proposal, natural U for enriched U, AEC approval, 138

Spinoff

program at ANL, 187

SRP

(see Savannah River Plant)

Stainless steel

dissolution, 25-27, 70, 202, 206-7

States

regulatory authority over the use of radioactive material, 187

Storage tanks

economics for perpetual storage of high-level wastes, 44-46

leaks at SRP, 174

Srontium

recovery from Darez wastes by solvent extraction, 118

recovery from TBP-25 process wastes by solvent extraction, 118
removal from wastes by ion exchange, 170, 225-26

Strontium-90

encapsulation plant, plans for, 186
price decrease, 65
production by FPCE, 65

recovery from Purex wastes by precipitation, 46-47

recovery from Purex wastes by solvent extraction, 46

removal from fuel-storage-basin water by ion exchange, 40-41

value in spent power-reactor fuels, 3

Sulfur fluorides (SF₆)

thermodynamic properties, 213

Sulfuric acid

dissolution of SAP by mercury catalyzed, 16

dissolution of stainless steel, 70

uranium-ore leaching, 51-52

Switzerland

barter proposal, natural U for enriched U, AEC approval, 138

Symposia

(see Conferences and symposia)

T**TBP-25 process wastes**

recovery of Cs and Sr from, 118

Technetium-99

value in spent power-reactor fuels, 3

Tellurium fluorides (TeF₆)

thermodynamic properties, 213

Thallium fluoride (TlF)

enthalpy of formation, 93

vapor pressure from 420-820°C, 93

Thorex process

mixer-settler operation, 198-99

Thorium

separation from fission products by chromatography, 198

separation from HNO₃ by precipitation, 198

separation from U by ion exchange, 153

Thorium carbides (ThC)

preparation by the sol-gel process, 122-25

Thorium carbides (ThC₂)

phase diagrams, 126

Thorium carbides [(Th,U)C]

preparation by the sol-gel process, 122-25

Thorium carbides [(Th,U)C₂]

coating of particles with C films, 126

preparation by the sol-gel process, 125-26

Thorium nitrates [Th(NO₃)₄-UO₂(NO₃)₂]

processing by freezing, 198

Thorium oxides (ThO₂)

production by precipitation and calcination of Th(C₂O₄)₂, 242

production of spherical particles by a d-c arc plasma generator, 242

production of spheres by the sol-gel process, 122-25, 241-42

Thorium oxides [(Th,U)O₂]

preparation by the sol-gel process, 122-25

Thorium oxides (ThO₂-UO₂)

preparation by the sol-gel process, 122-25

Thorium oxides (ThO₂-UO₂)

dissolution in HNO₃, 194-95

Thorium-Uranium Recycle Facility design and operation, 78, 82

Transplutonic elements

production and recovery from nuclear detonations in salt, 150-51

TURF

(see Thorium-Uranium Recycle Facility)

U**United Kingdom**

nuclear power development, 191-92

Uranium

commercial orders for enriched, 188

enrichment, review, 68

enrichment services and costs, 188-89

market forecast, 187-88

measurement, evaluation of methods, 139

precipitation from HNO₃, 198

preparation from UF₄ by reduction with cut-crown Mg, 55

preparation from UO₂ by electrolytic reduction in chloride and fluoride melts, 55-56

preparation of high-purity by electrorefining, 167

recovery from ores, 51-52, 237-38

separation from fission products by chromatography, 198

separation from Pu by fluoride-volatility, 28-29

separation from Th by ion exchange, 153

separation from Y by ion exchange, 151-53

Uranium-236

value in spent power-reactor fuels, 3

Uranium-238

value in spent power-reactor fuels, 3

Uranium alloys (Al-U)

chloride-volatility processing, 24-25

fluoride-volatility processing, 202-3
molten-salt fluoride-volatility processing, 93-95

Uranium alloys (Mo-U)

decomposition in alkaline melts, 196

Uranium alloys (U-Zr)

chloride-volatility processing, 24-25

dissolution, 70-71

dissolution in ICPP electrolytic process, 147-49

fluoride-volatility processing, 157, 202-3

processing by Nitrofluor process, 202

Uranium carbides (UC)

preparation by carbothermic reduction of UO₂ and U₃O₈, 57-58

preparation by fluid-bed process, 58

preparation by liquid-metal process, 58

preparation by molten-salt process, 58

processing by CARBOX process, 36-37

processing by fluoride-volatility methods, 157

processing by fused-salt electrolysis, 37

processing by nitride-carbide cycle, 37

Uranium carbides (UC-graphite)

processing by burning, leaching and solvent extraction, 196

processing by fluoride-volatility methods, 84-86, 203-5

Uranium carbides (UC_x)

preparation by carbothermic reduction of UO₂, 57-58

Uranium carbides [Pu,U]C

fuel-cycle economics, 59-60

preparation and properties, 57-60, 180-82

preparation by liquid-metal process, 58

REACTOR FUEL PROCESSING

Uranium carbides [(Th,U)C]
preparation by the sol-gel process, 122-25
Uranium carbides [(Th,U)C₂]
coating of particles with C films, 126
preparation by the sol-gel process, 125-26
Uranium carbides (ThC₂-UC₂)
phase diagrams, 126
Uranium concentrates
(see also Uranium oxides (U₃O₈))
preparation, 237
preparation from ores by H₂SO₄ leaching, 51-52
purchase contract, 138
Uranium fluorides (UF₄)
formation of complexes with KF, RbF, and CsF, 213
Uranium fluorides (UF₆)
conversion to UO₂ in fused-salt media, 165-66
reduction to U by cut-crown Mg, 55
Uranium fluorides (UF₆)
conversion to UO₂, 122, 165-66
conversion to U₃O₈, 52-54
decontamination by absorption-desorption cycle in bed of NaF pellets, 91-92, 160, 212-13
market potential, 65
prices, 65
production by Allied Chemical Corp., 65
recovery from molten salts, 96-97
separation from PuF₆, use of SO₂ and Freons for, 88-89
specifications, 66
Uranium nitrides (UN)
preparation and properties, 59-60
preparation from UO₂, 128-30
Uranium ores
processing, 237-38
uranium extraction by H₂SO₄ leaching, 51-52
Uranium oxides (UO₂)
coating of particles with Ni, 177-78
conversion to U₃O₈ for fluoride-volatility processing, 208
fluorination with BrF₅, 210-11
fluorination with ClF₃, 209-10
oxidation, kinetics of, 178
preparation and properties, 177-78
preparation from UF₄, 165-66
preparation from UF₆, 122, 165-66
preparation from UO₃ and U₃O₈ by C reduction, kinetics of, 121
preparation from UO₃ and U₃O₈ by Co reduction, kinetics of, 54
preparation by UO₃ reduction with carbon, 121
preparation of spherical particles by the sol-gel process, 177
preparation of spherical particles from UF₆, 52-53
processing by AIROX process, 36
processing by chloride-volatility processes, 86
processing by fluoride-volatility processes, 27-28, 86-90, 157-60, 206
processing by pyrochemical techniques, 222
processing by solvent extraction and fluoride-volatility methods, 25
sinterability, 178-79
volatility, 178

Uranium oxides (UO₂)(stainless-steel clad)
processing by shear-leach process, 78-81
Uranium oxides (UO₂)(Zircaloy-2 clad)
waste management for fluoride-volatility processing, 211-12
Uranium oxides (UO₃)
production from uranyl nitrate, 52
Uranium oxides (U₃O₈)
fluorination with BrF₅, 90-91
preparation by dissociation of gamma UO₃ in vacuum, 121
preparation from UF₆, 52-54
purchase by AEC, 138
Uranium oxides [(Pu,U)O₂]
preparation and properties, 126-27
Uranium oxides [(Pu,U)(O,C)]
preparation and properties, 182-83
Uranium oxides [(Pu,U)(O,C,N)]
preparation and properties, 182-83
Uranium oxides [(Pu,U)(O,N)]
preparation and properties, 182-83
Uranium oxides (PuO₂-UO₂)
economics, 67
fluoride-volatility processing, 208-9
Uranium oxides [(Th,U)O₂]
preparation by the sol-gel process, 122-25
Uranium oxides (ThO₂-UO₂)(stainless-steel clad)
dissolution in HNO₃, 194-95
processing by shear-leach process, 78-81
Uranium oxides (ThO₂-U₃O₈)
fluoride-volatility processing, 84-85
Uranium oxides (UO₂-UO₃)
phase diagrams, 121-22
Uranium phosphide (UP)
preparation and properties, 62
Uranium powder
production from UO₂ by reduction with Ca or CaH₂, 54-55
Uranium sulfide (US)
preparation and properties, 61-62
Uranyl nitrate
conversion to UO₂, 52
electrolytic reduction, 179
Uranyl nitrates [Th(NO₃)₄-UO₂(NO₃)₂]
processing by freezing, 198

V

Volatility processes, 24-32, 84-96, 157-64.
202-16

W

Waste Processing and Disposal
burial site for low-level in Ill., 65
burial site proposed at Hanford, 2
calcination, 42-44, 112-15, 119, 171-73, 227-34
crystallization process, 118-19
electrodeionization applications, 170-71, 226-27
electrodialysis applications, 170-71, 226-27
evaporation, 118
evaporation using solar energy, 234
fission-product recovery, 1-2, 46-49, 117-18, 173-74, 234

fission-product recovery and encapsulation, plant for, 1-2, 65, 186
for fluoride-volatility processes, 211-12
freeze-drying process, 42
hydraulic fracturing into shale, 116-17
incorporation in asphalt, 111-12, 170-71, 227
incineration of solid wastes, 234-35
incorporation in glasses, 43-44, 73, 113-15, 172-73, 175, 228-33
in-tank solidification, 115-16, 233
ion-exchange applications, 40-42, 47-48, 110-11, 170, 225-26, 234
management at Savannah River, 174
management, reviews, 118
review, 68, 234
scavenging-precipitation foam separation treatment at ORNL, 119
scavenging-precipitation ion-exchange treatment at ORNL, 119
storage, economics of, 44-46, 143
storage of high-level, perpetual, 44-46
storage at Savannah River, computer program for inventory and control, 118
storage of calcined solids in salt mines, 233-34
storage-tank leaks at Savannah River, 174
Water
decontamination by ion exchange, 40-41, 110-11
reaction with ClF₃, 161
Weldon Spring Plant
availability to industry, 186
West Germany
barter proposal, natural U for enriched U, AEC approval, 138

X

Xenon
value in spent power-reactor fuels, 3

Y

Yttrium
removal from wastes by ion exchange, 225-26
separation from U by ion exchange, 151-53
Yttrium fluorides (YF₃)
enthalpy of formation, 93

Z

Zinc
solubilities of various metals in liquid, 222
Zircaloy
dissolution in NH₄F-citric acid, 195-96
Zirconium alloys (U-Zr)
chloride-volatility processing, 24-25
fluoride-volatility processing, 157, 202-3
processing by Nitrofluor process, 202
Zirconium fluorides (ZrF₄)
purification by sublimation techniques, 93

