NotesClassical Electrodynamics

Yi Huang

University of Minnesota

Contents

Ι	Caprice	1
1	Spring 2019	1
	1.1 The angular integral in (4.16')	1
	1.2 One tricky point on partial derivative below (5.108)	1
	1.3 Derivation of (6.27) and (6.28)	2

Caprice

PART

Τ

1 Spring 2019

1.1 The angular integral in (4.16')

Section ??. spring 2019

Show the following equation is true

$$\int d\Omega \,\mathbf{n}\cos\gamma = \frac{4\pi\mathbf{n}'}{3},\tag{1.1}$$

where $\mathbf{n} = \mathbf{i} \sin \theta \cos \phi + \mathbf{j} \sin \theta \sin \phi + \mathbf{k} \cos \theta$, and $\cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\phi - \phi')$.

Proof. First look at the x component of the integral:

$$\int d\Omega \sin \theta \cos \phi \cos \gamma = \int d\cos \theta \, d\phi \sin \theta \cos \phi [\cos \theta \cos \theta' + \sin \theta \sin \theta' \cos (\phi - \phi')]$$
(integrate over ϕ) = $\pi \int d\cos \theta \sin^2 \theta \sin \theta' \cos \phi'$

$$(u = \cos \theta) = \pi \sin \theta' \cos \phi' \int_{-1}^{1} du (1 - u^2)$$

$$= \frac{4\pi}{3} \sin \theta' \cos \phi'.$$

Similarly we can complete the proof.

1.2 One tricky point on partial derivative below (5.108)

Just below (5.108), it claims $\partial r/\partial z = \cos \theta$, this partial derivative treats x and y as constant. What is $\partial z/\partial r$? If we use expression $z = r\cos \theta$, then it is easy to go to result $\partial z/\partial r = \cos \theta$. But we have $\partial r/\partial z = \cos \theta$ already, how could $\partial z/\partial r = \partial r/\partial z$? To resolve this "paradox", we should notice that when we do the partial derivative, we always need to specify what variables we keep as constant. In the first calculation $\partial r/\partial z = \cos \theta$, we keep x,y as constant. However, in $\partial z/\partial r = \cos \theta$ we treat θ,ϕ as constant. That's the reason why we have such inconsistent results.

1.3 Derivation of (6.27) and (6.28)

$$\begin{split} &\mathbf{J_{l}} = \int \mathrm{d}^{3}x'\delta(\mathbf{x} - \mathbf{x}')\mathbf{J_{l}} \\ &= -\frac{1}{4\pi} \int \mathrm{d}^{3}x'\nabla'^{2} \bigg(\frac{1}{|\mathbf{x} - \mathbf{x}'|}\bigg)\mathbf{J_{l}} \\ &= -\frac{1}{4\pi} \int \mathrm{d}^{3}x'\nabla' \cdot \bigg[\nabla'\bigg(\frac{1}{|\mathbf{x} - \mathbf{x}'|}\bigg)\mathbf{J_{l}}\bigg] + \frac{1}{4\pi} \int \mathrm{d}^{3}x'\nabla'\bigg(\frac{1}{|\mathbf{x} - \mathbf{x}'|}\bigg)(\nabla' \cdot \mathbf{J_{l}}) \\ &= -\frac{1}{4\pi} \int \mathrm{d}^{3}x'\nabla\bigg(\frac{1}{|\mathbf{x} - \mathbf{x}'|}\bigg)(\nabla' \cdot \mathbf{J_{l}}) \\ &= -\frac{1}{4\pi} \nabla \int \mathrm{d}^{3}x'\frac{\nabla' \cdot \mathbf{J_{l}}}{|\mathbf{x} - \mathbf{x}'|} \\ &= -\frac{1}{4\pi} \nabla \int \mathrm{d}^{3}x'\frac{\nabla' \cdot (\mathbf{J_{l}} + \mathbf{J_{t}})}{|\mathbf{x} - \mathbf{x}'|} \\ &= -\frac{1}{4\pi} \nabla \int \mathrm{d}^{3}x'\frac{\nabla' \cdot \mathbf{J_{l}} + \mathbf{J_{t}}}{|\mathbf{x} - \mathbf{x}'|} \\ &= -\frac{1}{4\pi} \nabla \int \mathrm{d}^{3}x'\frac{\nabla' \cdot \mathbf{J_{l}} + \mathbf{J_{t}}}{|\mathbf{x} - \mathbf{x}'|}. \end{split}$$

$$\begin{split} \mathbf{J_t} &= \int \mathrm{d}^3 x' \delta(\mathbf{x} - \mathbf{x}') \mathbf{J_t} \\ &= -\frac{1}{4\pi} \int \mathrm{d}^3 x' \nabla^2 \left(\frac{1}{|\mathbf{x} - \mathbf{x}'|} \right) \mathbf{J_t} \\ &= -\frac{1}{4\pi} \int \mathrm{d}^3 x' \left[-\nabla \left(\nabla \cdot \left(\frac{\mathbf{J_t}}{|\mathbf{x} - \mathbf{x}'|} \right) \right) + \nabla^2 \left(\frac{\mathbf{J_t}}{|\mathbf{x} - \mathbf{x}'|} \right) \right] \\ &= \frac{1}{4\pi} \int \mathrm{d}^3 x' \nabla \times \nabla \times \left(\frac{\mathbf{J_t}}{|\mathbf{x} - \mathbf{x}'|} \right) \\ &= \frac{1}{4\pi} \nabla \times \nabla \times \int \mathrm{d}^3 x' \frac{\mathbf{J}}{|\mathbf{x} - \mathbf{x}'|} \end{split}$$