1

rg .	<pre></pre>	<pre>>> \gg ≪ \11 = \models</pre>	<pre>⋈ \bowtie</pre>
	⊢ \vdash	\neq \ne	\sim \sim
	⊥ \perp	\neq \neq	\simeq \simeq
	\mid	otin	
	∥ \parallel	\in \in	\smile \smile
	≐ \doteq	→ \ni	
	≡ \equiv	→ \owns	\subseteq \subseteq
	≥ \ge	≺ \prec	⊃ \supset
	≥ \geq	\preceq \preceq	\supseteq \supseteq
	<pre>≤ \le</pre>	≻ \succ	\sqsubseteq \sqsubseteq
	\leq \setminus leq		\supseteq \sqsupseteq

These commands produce the symbols for various relations. Relations are one of T_EX's classes of math symbols. T_EX puts different amounts of space around different classes of math symbols. When T_EX needs to break a line of text within a math formula, it will consider placing the break after a relation—but only if the relation is at the outermost level of the formula, i.e., not enclosed in a group.

In addition to the commands listed here, TEX treats '=' and the "arrow" commands (p. 'arrows') as relations.

Certain relations have more than one command that you can use to produce them:

- \geq (\ge and \geq).
- ' \leq ' (\le and \leq).
- ' \neq ' (\ne, \neq, and \not=).
- '∋' (\ni and \owns).

You can produce negated relations by prefixing them with \not , as follows:

```
\not\simeq \not\simeq
          \neq
\not\prec

≠ \not\equiv
           \not\subseteq
\neq \not=
           \not\succ
                    \not\ge
           \not\succeq
                    \not\geq
           \not\approx
                    \not\sim
```

Example:

```
We can show that $AB \perp AC$, and that $\triangle ABF \not\sim \triangle ACF$.
```

We can show that $AB \perp AC$, and that $\triangle ABF \nsim \triangle ACF$.