Supporting Information:

Atomistic insights into the effects of doping and vacancy clustering on Li-ion conduction in the Li₃OCl anti-perovskite solid electrolyte

Matt J. Clarke,† James A. Dawson,‡,¶ Timothy J. Mays,§ and M. Saiful Islam*,†

 $\dagger Department\ of\ Chemistry,\ University\ of\ Bath,\ BA2\ 7AY$ $\ddagger Chemistry\ -\ School\ of\ Natural\ and\ Environmental\ Science,\ Newcastle\ University,\ NE1$ 7RU

¶Centre for Energy, Newcastle University, Newcastle upon Tyne, NE1 7RU §Department of Chemical Engineering, University of Bath, Bath, BA2 7AY

E-mail: M.S.Islam@bath.ac.uk

Table S1: Buckingham potentials parameters used to model doped Li₃OCl

$$\Phi_{ij}(r) = A \cdot \exp\left(\frac{-r_{ij}}{\rho}\right) - \frac{C}{r_{ij}^6}$$

	Li	OCl par	ameters			
Interaction	,	-	$C (eV Å^{-6})$	Ref		
Li ⁺ -Li ⁺	360.53	0.161	0.0	S1		
Li^+ $-\mathrm{O}^{2-}$	292.30	0.347	0.0	S1		
$\mathrm{Li}^+\mathrm{-Cl}^-$	421.04	0.334	0.0	S1		
$O^{2-} - O^{2-}$	22764.3	0.149	13.19	S1		
$\mathrm{O}^{2-}\mathrm{-Cl}^-$	8286.91	0.259	62.20	S1		
$\mathrm{Cl}^-\mathrm{-Cl}^-$	1227.20	0.321	14.53	S1		
Dopant parameters						
Interaction	A (eV)	ρ (Å)	$C (eV Å^{-6})$	Ref		
$O^{2-}-Mg^{2+}$	1428.5	0.2945	0.0	S2		
$O^{2-}-Ca^{2+}$	1090.4	0.3437	0.0	S2		
${ m O}^{2-}{ m -Sr}^{2+}$	959.1	0.3721	0.0	S2		
$O^{2-} - Ba^{2+}$	905.7	0.3976	0.0	S2		
$O^{2-} - Al^{3+}$	1725.0	0.2897	0.0	S3		
$\mathrm{Cl}^-\mathrm{-Mg}^{2+}$	4914.54	0.257	0.0	S4		
$\mathrm{Cl}^-\mathrm{-Ca}^{2+}$	2302.0	0.3402	0.0	S4		
$\mathrm{Cl}^-\mathrm{-Sr}^{2+}$	2191.09	0.3457	0.0	This work, S5		
$\mathrm{Cl}^-\mathrm{-Ba}^{2+}$	2704.55	0.3528	0.0	This work, S6		
$\mathrm{Cl}^-\mathrm{Al}^{3+}$	1736.12	0.2927	0.0	This work, S7		
$\mathrm{Li}^+\mathrm{-F}^-$	600.0	0.25	0.0	S8		
$\mathrm{O}^{2-}\mathrm{-F}^-$	198.3	0.1110	73.8	S4		
$\mathrm{Cl}^-\mathrm{-F}^-$	556.83	0.3707	48.8	S4		
$\mathrm{F}^-\mathrm{-F}^-$	2008.6	0.1937	67.5	S4		

Dopant–Cl potentials derived in this work were fit to the lattice parameters and formation energies of dopant chloride salts ($SrCl_2$, $BaCl_2$, $AlCl_3$) using GULP. S9 Lattice parameters were taken from the Materials Project, S5–S7 whilst lattice energies were taken from the CRC Handbook of Chemistry and Physics. S10

Table S2: Core-shell model parameters

$\Phi_i(r)$	= k	•	r_i
-------------	-----	---	-------

Li ₃ OCl parameters						
Species	Y (e)	$k \text{ (eV Å}^{-2})$	Ref			
Li ⁺	1.00	_	S1			
O^{2-}	-2.183	593.716	S1			
Cl^-	-2.485	29.38	S1			
Dopant parameters						
- ·		- 1				
Species	Y (e)	$k (eV Å^{-2})$	Ref			
$\frac{\text{Species}}{\text{Mg}^{2+}}$	Y (e) 1.585	k (eV Å ⁻²) 361.6	Ref S2			
$\frac{\mathrm{Mg}^{2+}}{\mathrm{Ca}^{2+}}$ Sr^{2+}	1.585	361.6	S2			
$\frac{\mathrm{Mg^{2+}}}{\mathrm{Ca^{2+}}}$	1.585 3.135	361.6 110.2	S2 S2			
$\frac{\mathrm{Mg}^{2+}}{\mathrm{Ca}^{2+}}$ Sr^{2+}	1.585 3.135 3.251	361.6 110.2 71.7	S2 S2 S2			

Figure S1: Solution energies for M^{2+}/F^- doping charge compensated by a Li⁺ vacancy using oxides as a reference for M^{2+} doping.

Figure S2: Mean squared displacement (MSD) of each species in Li_3OCl at 800 K with 0.27% Li vacancies. (a) Undoped (LiCl Schottky). (b) Mg doping. (c) F doping.

References

- (S1) Dawson, J. A.; Chen, H.; Islam, M. S. Composition Screening of Lithium- and Sodium-Rich Anti-Perovskites for Fast-Conducting Solid Electrolytes. *Journal of Physical Chemistry C* 2018, 122, 23978–23984.
- (S2) D'Arco, S.; Islam, M. S. Defect and dopant properties of the oxyfluoride superconductor Sr2CuO2F2+δ. *Physical Review B* **1997**, *55*, 3141–3145.
- (S3) De Souza, R. A.; Maier, J. A computational study of cation defects in LaGaO3.

 Physical Chemistry Chemical Physics 2003, 5, 740–748.
- (S4) Islam, M. S. Point defects and ion migration in PbFCl. *Journal of Solid State Chemistry* **1990**, *85*, 251–261.
- (S5) Persson, K. Materials Data on SrCl2 (SG:225) by Materials Project. 2014; https://materialsproject.org/materials/mp-23209/.
- (S6) Persson, K. Materials Data on BaCl2 (SG:225) by Materials Project. 2014; https://materialsproject.org/materials/mp-568662/.
- (S7) Persson, K. Materials Data on AlCl3 (SG:12) by Materials Project. 2014; https://materialsproject.org/materials/mp-25469/.
- (S8) Gonzalo, E.; Kuhn, A.; García-Alvarado, F.; Islam, M. S. Defect and dopant properties of the α- And β-polymorphs of the Li3FeF6lithium battery material. Journal of Materials Chemistry A 2013, 1, 6588–6592.
- (S9) Gale, J. D.; Rohl, A. L. The General Utility Lattice Program (GULP). *Molecular Simulation* **2003**, *29*, 291–341.
- (S10) Rumble, J. R., Ed. *CRC Handbook of Chemistry and Physics*, 100th ed.; Taylor & Francis, 2019.