Adaptive Systems - Evolutionary Robotics Pla 3 forms of adaptahan in this topic Recap: - not au changes are adapatrais - sucess orgs are adapted to envs - evolution (over generations) - learning (Dury Butine) - genetic mutation one random - useful hiderance is what wins reproduction - Best mulated gens wir surine rundti - Selected For, Selected again 86 Main ingredients for evolutions. Reproduction · genes copied through generalis Mutation · to trigger variation · MOST mutations are worse Selection · how to determin good mutution (Servival)
· otherwise = ouse gene origin

Mutation à Selection
· Based on fitness stochastically
 o Retter = none likely but not permete
worse = still above to reproduce
· this increase imesiz
o herwis result : nomagenous
Artifical neural Networks
Gen 1 = · McCallough & Pits ANN · threshold neurons
threshold neurons
Gen 2 = * Activation recevous
onc runs
o MOR ROBOTHS RESOUR
Spething Meural networks (SNNS) o More bio plansable
· Mone blo plansabl
Continuous-time recurrent renal net (ctrum)
· Dynamical System oupproximators
· (The Feed for paserd but for Dynamic Systems

1

Evokobotics Case Studies Part 2 Urzelai et al - Evolving learning rules Rhepra Robot - 6cm planeter Robots tasa = 2 parts - Onie to sone, switch light - park by light Camera , Sensors Wheels network topoy: RND, au nods connected · no output neurons · All neuran = Single input · encyet 2 motor neurons · Discrete time KND, no time constant · input to neuron is an input from every other neuron neurons that fine togethers were together dynapse update rules: - Bhebb rule: (1 - w.;) n; y; Min seltation fine et al. Adapting to your bodles - Simulation, no real model - Robert Repert to as model - 1, k motor, sigger light senson - 4 newors, ctrivil - NI = Sensor inpt - input Sole = Loh morbro - Output 2 = nidder neurn, no derthale nhleracher - coupre to enu via 1,3,4 - experiment = now pensor from front to back or adjust - 1, 3,4 neuros change Buidy - Lensor & evolve to drive towards light - once trained/evolved charge the problem (change location of the sensor - CTRIM weight are FIXED - looks like an ultrastable adaptie system - unlike homeostat - it does change its params how? CTRNN are dynamical sys approx in principale, A CTRNN W/ fixed weights can approx ANN w/ weign tout do chape the States of the CTHIN becare the weights of the ANN weigh Case study: Homeoplashic Plasnis- Well on - No robot - CT NNN, Fully connected - Signoid of o, I Saturets neuron = bid no viso conju in optimal Zone - use gain to change slope of the activation funct - bias used to snot curve