CODE: 18BST101

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B. Tech I Semester Supplementary Examinations, January-2019

Linear Algebra and Calculus (Common to CE, EEE, ME. ECE, CSE, IT Branches)

Time: 3 Hours Max Marks: 60

> Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1. a) Find the value of k it the Rank of Matrix A is 2, where 6M

 $A = \begin{vmatrix} 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \end{vmatrix}.$

b) Solve completely the system of equations: x + 3y - 2z = 0; 2x - y + 4z = 0; x - 11y + 14z = 0.

(OR)
2. a) Diagonal the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ and find $A^{\frac{1}{4}}$ using modal 12M matrix?

UNIT-II

- 3. a) Discuss the applicability of Rolle's theorem for 6M $f(x) = \ln\left(\frac{x^2 + ab}{x(a+b)}\right)$ in [a, b], where a > 0, b > 0.
 - b) Find $\frac{du}{dt}$, if u = xy + yz + zx where $x = \frac{1}{t}$, $y = e^{t}$, $z = e^{-t}$. 6M

- 4. a) Expand $f(x, y) = e^{y} \ln(1+x)$ in powers of x and y using 6M Maclaurin's series.
 - b) Find the minimum value of $x^2 + y^2 + z^2$ given x + y + z = 3a. 6M

UNIT-III

- 5. a) Find the length of the arc $y \ln\left(\frac{e^x 1}{e^x + 1}\right)$ from x = 1, x = 2.
 - b) Find the surface area generated by the revolution of an arc of 6M the catnary $y = c \cosh \frac{x}{c}$ about x axis.

(OR)

- 6. a) Find the surface area of the solid generated by the revolution 6M of the parabola $y^2 = 4\alpha x$ about its axis, by the arc from the vertex to one end of the latus-rectun.
 - b) Find the volume of the solid generated by revolving the lemniscates $r^2 = a^2 \cos 2\theta$ about the line $\theta = \frac{\pi}{2}$.

UNIT-IV

- 7. a) Evaluate $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$. 6M
 - b) Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{a \sin \theta} \int_0^{\frac{a^n r^n}{2}} r \, dz \, dr \, d\theta$ 6M

(OR)

- 8. a) Change the order of integration and evaluate $\int_0^{4a} \int_{\frac{\pi^2}{2}}^{2\sqrt{ax}} dx dy$ 6M
 - b) Evaluate $\int_0^1 \int_0^{1-z} \int_0^{1-y-z} xyz \, dz \, dy \, dx$. 6M

UNIT-V

9. Verify Stoke's theorem for $\bar{F} - (2x - y)\bar{\imath} - yz^2\bar{\jmath} - y^2z\bar{k}$ over 12M the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ bounded by the projection of the xy - plane

(OR)

- 10. a) Find the directional derivative of $f(x,y,z) = xy^2 + yz^3$ at the point (2,-1,1) in the direction of the vector t+2j+3k.
 - b) If $\overline{F} = (5xy 6x^2)\overline{i} + (2y 4x)\overline{j}$, evaluate $\int_C F \cdot d\overline{r}$ along the curve C in the xy-plane $y = x^3$ from (1,1) to (2,8).