1 Решение задачи 1

Пусть \mathcal{L} — язык сентенциальных форм, порождаемых грамматикой

I
$$S \to aSSbS$$
,

II
$$S \to bSb$$
,

III
$$S \to a$$
,

и содержащих одинаковое число встречающихся в них термов. Рассмотрим слово $w_0=a^3b(aS^2b)^2bSb$. Заметим, что $w_0\in\mathcal{L}$. Действительно, $|w_0|_a=|w_0|_b=|w_0|_S=5$, а само w_0 получается применением к стартовому нетерминалу S трёх правил грамматики I, двух правил II и одного правила III.

Если применить к w_0 четыре правила I, два правила II и одно правило III, получим слово $w_1=(a^3b)^2(aS^2b)^5b^2Sb^2\in\mathcal{L}, \ |w_1|_a=|w_1|_b=|w_1|_S=11,$ причём w_1 — наименьшее слово языка, получаемое из w_0 .

Аналогично, применение четырёх правил I, двух правил II и одного правила III к w_1 порождает $w_2 = (a^3b)^3(aS^2b)^8b^3Sb^3 \in \mathcal{L}$, $|w_2|_a = |w_2|_b = |w_2|_S = 17$, и w_2 — наименьшее слово языка, получаемое из w_1 .

В общем случае получаем $w_i = (a^3b)^{i+1}(aS^2b)^{3i+2}b^{i+1}Sb^{i+1}$, где $|w_i|_a = |w_i|_b = |w_i|_S = 6i+5$. Покажем, что язык $\mathcal{L} \notin \mathsf{CFG}$, применяя лемму о накачке для CFL к слову w_i . Будем предполагать выполненным пересечение с регулярной аппроксимацией $(a^3b)^+(aS^2b)^+b^+Sb^+$.

Пусть n — длина накачки, и пусть $w=(a^3b)^{n+1}(aS^2b)^{3n+2}b^{n+1}Sb^{n+1}$. Рассмотрим всевозможные разбиения $w=w_0w_1w_2w_3w_4$ и покажем, что w не накачивается.

. . .

2 Решение задачи 2

Пусть $\mathcal{L} = \{c^i a^n b^k a^j \mid (k > n) \lor (i = j \& n > 2)\}$. Язык $\mathcal{L} \in CFL$, поскольку $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$, где

$$\mathcal{L}_1=\{c^ia^nb^ka^j\,|\,k>n\}\in \mathtt{CFL},$$

$$\mathcal{L}_2=\{c^ia^nb^ka^j\,|\,i=j\,\&\,n>2\}\in \mathtt{CFL}.$$

Язык \mathcal{L} недетерминирован, так как $\mathcal{L}_2 \notin \mathsf{DCFL}$. Докажем это с помощью леммы о накачке для DCFL. Пусть n — длина накачки. Рассмотрим слова

$$w_1 = c^n a^{n+2} \in \mathcal{L}_2,$$

$$w_2 = c^n a^{n+2} b a^n \in \mathcal{L}_2.$$

У них общий префикс $x = c^n a^{n+1}$, |x| > n, и различные суффиксы y = a и $z = aba^n$ соответственно, причём y[0] = z[0]. Будем предполагать выполненным пересечение с регулярной аппроксимацией $c^*a^2a^*b^2a^*$.

Пусть накачивается только префикс x, т.е. существует разбиение $x=x_0x_1x_2x_3x_4, |x_1x_3|>0, |x_1x_2x_3|\leq n$, такое, что $(\forall i\in\mathbb{N})\ x_0x_1^ix_2x_3^ix_4y\in\mathcal{L}_2$ и $x_0x_1^ix_2x_3^ix_4z\in\mathcal{L}_2$. Рассмотрим разбиения префикса x.

- $x_1x_3 = c^i$ для некоторого i. Отрицательная накачка рассинхронизирует число букв c и a в слове w_1 ;
- $x_1 = c^i$, $x_3 = a^j$ для некоторых i, j. При отрицательной накачке наблюдаем рассинхронизацию числа букв c и a уже в слове w_2 ;
- $x_1x_3 = a^i$ для некоторого i. Вновь отрицательная накачка рассинхронизирует число букв c и a в слове w_1 .

Пусть теперь префикс x и суффиксы y, z накачиваются синхронно, т.е. существуют разбиения $x=x_0x_1x_2, \ y=y_0y_1y_2, \ z=z_0z_1z_2, \ \text{где}\ |x_1x_2|\le n, \ |x_1|>0, \ \text{такие, что}\ (\forall i\in\mathbb{N})\ x_0x_1^ix_2y_0y_1^iy_2\in\mathcal{L}_2$ и $x_0x_1^ix_2z_0z_1^iz_2\in\mathcal{L}_2$. Заметим, что $x_1=a^i$ для некоторого і. Какое бы мы ни выбрали разбиение $y\ (y_1=a$ или $y_1=\varepsilon)$, при отрицательной накачке слово w_1 выходит из языка из-за рассинхронизации числа букв a и c.

Таким образом, $\mathcal{L}_2 \notin DCFL$, и $\mathcal{L} \notin DCFL$.