

Künstliche Intelligenz

Christoph Benzmüller und Christoph Schommer

Freie Universität Berlin

Sommer 2019

(Propositional) Hornlogic

Erfüllbarkeit/Gültigkeit

- entscheidbar
- bisher kein "effektiver" Algorithmus bekannt (NP-vollständig)

Erfüllbarkeit/Gültigkeit

- entscheidbar
- "effektiver" Algorithmus (P)

Erfüllbarkeit/Gültigkeit

- entscheidbar
- "effektiver" Algorithmus (P)

$$P \stackrel{?}{=} NP$$

(one million dollar question)

Erfüllbarkeit/Gültigkeit

- unentscheidbar (semi-entscheidbar)
- ineffektiveSuchalgorithmen

Erfüllbarkeit/Gültigkeit

- unentscheidbar (semi-entscheidbar)
- effektiveSuchalgorithmen(Prolog)

AUSSAGENLOGIK: Syntax und Semantik

Syntax der Aussagenlogik (AL)

$$s, t ::= P \mid \neg s \mid s \lor t \mid s \land t \mid s \Rightarrow t \mid \bot \mid \top$$

Semantik

► Interpretationsfunktion

$$I:AL\longrightarrow \{T,F\}$$

- atomare Aussagen P:

wähle
$$I(P) \in \{T, F\}$$

- $I(\neg s)$, $I(s \lor t)$, $I(s \land t)$, $I(s \Rightarrow t)$, $I(\bot)$, $I(\top)$ festgelegt wie folgt

5	t	$\neg s$	$s \lor t$	$s \wedge t$	$s \Rightarrow t$	上	Т
T	T	F	T	T	T	F	T
T	F	F	T	F	F	F	T
F	T	T	T	F	T	F	T
F	F	T	F	F	T	F	T

AUSSAGENLOGIK: Syntax und Semantik

Syntax der Aussagenlogik (AL)

$$s, t ::= P \mid \neg s \mid s \lor t \mid s \land t \mid s \Rightarrow t \mid \bot \mid \top$$

Semantik

Interpretationsfunktion

$$I:AL\longrightarrow \{T,F\}$$

- atomare Aussagen P:

wähle
$$I(P) \in \{T, F\}$$

- $I(\neg s), I(s \lor t), I(s \land t), I(s \Rightarrow t), I(\bot), I(\top)$ festgelegt wie folgt

S	t	$\neg s$	$s \lor t$	$s \wedge t$	$s \Rightarrow t$	H	Т
T	Т	F	T	T	T	A	T
T	F	F	T	F	F	F	T
F	Т	T	T	F	T	F	T
F	F	T	F	F	T	F	T
				•	$\neg s \lor t$		

definiert als

AUSSAGENLOGIK: Syntax und Semantik

Syntax der Aussagenlogik (AL)

$$s,t ::= P \mid \neg s \mid s \lor t \mid s \land t \mid s \Rightarrow t \mid \bot \mid \top$$

Semantik

► Interpretationsfunktion

$$I:AL\longrightarrow \{T,F\}$$

- atomare Aussagen P:

wähle
$$I(P) \in \{T, F\}$$

- $I(\neg s)$, $I(s \lor t)$, $I(s \land t)$, $I(s \Rightarrow t)$, $I(\bot)$, $I(\top)$ festgelegt wie folgt

S	t	$\neg s$	$s \lor t$	$s \wedge t$	$s \Rightarrow t$	\perp	Т
T	T	F	T	T	T	F	T
T	F	F	T	F	F	F	T
F	T	T	T	F	T	F	T
F	F	T	F	F	T	F	T

Definition Hornklausel:

(alternative Sichtweise)

$$P \lor \neg Q_1 \lor \ldots \lor \neg Q_n$$

$$P \Leftarrow Q_1 \wedge \ldots \wedge Q_n$$

Definition Hornklausel:

(alternative Sichtweise)

Definition Hornklausel:

(alternative Sichtweise)

Es gibt drei Typen von Hornklauseln (Beispiele)

Definition Hornklausel:

(alternative Sichtweise)

Es gibt drei Typen von Hornklauseln (Beispiele)

$$C \qquad \qquad Fakt: 'C \ gilt' \qquad \qquad C \Leftarrow \top$$

$$A \lor \neg B \lor \neg D \qquad Regel: 'A \ gilt \ falls \ B \ und \ D \ gelten' \qquad A \Leftarrow B \land D$$

$$\neg B \lor \neg D \qquad Ziel: 'Gelten \ B \ und \ D?' \qquad \bot \Leftarrow B \land D$$

$$A \lor C \lor \neg B \lor \neg D \qquad A \lor C \Leftarrow B \land D$$

Definition Hornklausel:

(alternative Sichtweise)

Es gibt drei Typen von Hornklauseln (Beispiele)

Es gibt drei Typen von Hornklauseln (Beispiele)

$$C \qquad Fakt: 'C \ gilt' \qquad C \Leftarrow \top$$

$$A \lor \neg B \lor \neg D \qquad Regel: 'A \ gilt \ falls \ B \ und \ D \ gelten' \qquad A \Leftarrow B \land D$$

$$\neg B \lor \neg D \qquad Ziel: 'Gelten \ B \ und \ D?' \qquad \bot \Leftarrow B \land D$$

$$A \lor D \lor A \lor D \lor A \lor D \not \Leftrightarrow B \lor C$$

Definition Hornformel:

 $Hornformel = Konjunktionen\ von\ Hornklauseln$

HORNLOGIK: (als Mengen)

Definition Hornformel:

 $Hornformel = Konjunktionen\ von\ Hornklauseln$

Beispiel
$$(C)$$
 $\land (D)$
 $\land (B \lor \neg C)$
 $\land (A \lor \neg B \lor \neg D)$
 $\land (\neg A \lor \neg D)$

Definition Hornformel:

 $Hornformel = Konjunktionen\ von\ Hornklauseln$

Definition Hornformel:

 $Hornformel = Konjunktionen\ von\ Hornklauseln$

Beispiel

$$\left\{
 \begin{cases}
 \{D\} \\
 \{B, \neg C\} \\
 \{A, \neg B, \neg D\} \\
 \{\neg A, \neg D\}
 \end{cases}
\right\}$$

Definition Hornformel:

 $Hornformel = Konjunktionen\ von\ Hornklauseln$

Programm: $\begin{cases}
C \\
\{D\}
\end{cases}$ Fakten $\{B, \neg C\}$ $\{A, \neg B, \neg D\}$ $\{\neg A, \neg D\}$ ein Ziel/Anfrage
'Gelten A und D'

Definition Resolution:

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{P + M_1 + M_1 + M_2 + M$$

Definition Resolution:

$$\frac{\{\neg P, N_1, \dots, N_n\}}{\{P, M_1, \dots, M_m\}}$$
komplementär

Definition Resolution:

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Ziel Regel Ziel Fakt

'Gelten A und D?'
$$\uparrow$$
 'A gilt falls B und D gelten'

$$\frac{\{\neg A, \neg D\} \qquad \{A, \neg B, \neg D\}}{\{\neg D, \neg B\}}$$
'Gelten D und B?' \uparrow

Ziel

$$\frac{\{\neg P, N_1, \dots, N_n\} \quad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Regel Regel
$$\{A, \neg B, \neg D\}$$
 $\{B, \neg C\}$

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Regel Regel
$$\frac{\{A, \neg B, \neg D\} \qquad \{B, \neg C\}}{\{A, \neg D, \neg C\}}$$
Regel

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Regel Regel Regel Fakt
$$\frac{\{A, \neg B, \neg D\} \quad \{B, \neg C\}}{\{A, \neg D, \neg C\}}$$
Regel Fakt
$$\frac{\{A, \neg B, \neg D\} \quad \{D\}}{\{A, \neg B, \neg D\}}$$
Regel Fakt

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Regel Regel Regel Fakt
$$\frac{\{A, \neg B, \neg D\} \quad \{B, \neg C\}}{\{A, \neg D, \neg C\}} \qquad \frac{\{A, \neg B, \neg D\} \quad \{D\}}{\{A, \neg B\}}$$
Regel Regel Regel (oder Fakt)


```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)

done

return 'Yes';
```

- S Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal → in jedem Schritt beteiligt

$$\{\neg A, \neg D\}$$


```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)

done

return 'Yes';
```

- S Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal → in jedem Schritt beteiligt

$$\{\neg A, \neg D\}$$


```
while Ziel ≠ ∅ do

- wähle Literal L und komplementäre

Regel/Fakt K

- if kein K then backtrack/'No'

- else Ziel := resolviere(Ziel,K)

done

return 'Yes';
```

- S Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal → in jedem Schritt beteiligt

```
Programm:  \{C\} 
 \{D\} 
 \{B, \neg C\} 
 \{A, \neg B, \neg D\} 
 \{\neg A, \neg D\}
```

$$\{\neg A, \neg D\}$$
 $\{A, \neg B, \neg D\}$


```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- S Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal → in jedem Schritt beteiligt

$$\begin{cases} \neg A, \neg D \rbrace \\ \{\neg D, \neg B \} \end{cases}$$


```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)

done
return 'Yes';
```

- S Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal → in jedem Schritt beteiligt


```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)

done

return 'Yes';
```

- S Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal

 → in iedem Schritt beteiligt


```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- S Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal → in jedem Schritt beteiligt


```
while Ziel ≠ ∅ do

- wähle Literal L und komplementäre
Regel/Fakt K

- if kein K then backtrack/'No'

- else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- **S** Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal → in jedem Schritt beteiligt


```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- **S** Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal→ in jedem Schritt beteiligt


```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- **S** Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal → in iedem Schritt beteiligt)

```
\begin{cases}
\neg A, \neg B
\end{cases}
\begin{cases}
A, \neg B, \neg D
\end{cases}

\begin{cases}
\neg D, \neg B
\end{cases}
\begin{cases}
B, \neg C
\end{cases}
```



```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- **S** Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
- (haben genau ein pos. Literal → in iedem Schritt beteiligt)


```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- S Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
- (haben genau ein pos. Literal→ in jedem Schritt beteiligt)


```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)

done

return 'Yes';
```

- S Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal→ in jedem Schritt beteiligt)

```
Programm:  \{C\}   \{D\}   \{B, \neg C\}   \{A, \neg B, \neg D\}   \{\neg A, \neg D\}
```



```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)

done

return 'Yes';
```

- **S** Selektion (& Backtracking)
- L Linear
- D Definite Klauseln
 - (haben genau ein pos. Literal→ in jedem Schritt beteiligt)

- while Ziel ≠ ∅ do

 wähle Literal L und komplementäre

 Regel/Fakt K

 if kein K then backtrack/'No'

 else Ziel := resolviere(Ziel,K)

 done
 return 'Yes';
 - S Selektion (& Backtracking)
 - L Linear
 - D Definite Klauseln (haben genau ein pos. Literal → in jedem Schritt beteiligt)

```
{¬A,¬B} {A,¬B,¬D} 
{¬B} {D} 
{B,¬C} 
{¬C} {C} 
{C} 
return 'Yes'
```


Algorithmus: SLD-Resolution

Programm: while Ziel $\neq \emptyset$ do wähle Literal L und komplementäre $\{B, \neg C\}$ Regel/Fakt K $\{A, \neg B, \neg D\}$ — if kein K then backtrack/'No' $\{\neg A, \neg D\}$ — else Ziel := resolviere(Ziel,K) return 'Yes': $\{A, \neg B, \neg D\}$ S Selektion (& Backtracking Linear return 'Yes'

HORNLOGIK: Es gibt noch viel zu sagen!

- ► Hornlogik-Fragment der Prädikatenlogik
 - ▶ andere Algorithmen: Markierungsalgorithmus, Gentzenkalkül,
 - ▶ Vollständigkeit & Korrektheit der Verfahren
 - Komplexität der Verfahren
- ► Hornlogik-Fragment der Prädikatenlogik erster Stufe

 - PROLOG
 - ...
- Hornlogik-Fragment der Logik höherer Stufe
 - **...**
 - λ-PROLOG
 - ...