NLP Lab: Week 6

Collocation Extraction

Extracting Collocations from ngram

張俊盛 Jason S. Chang

National Tsing Hua University

10720ISA 562100 自然語言處理實作 Natural Language Processing Lab

2018-0403 資電323

What is Collocation Extraction?

- def = Identifying collocations automatically from a corpus using a computer
- Collocation = a pair / sequence of words cooccurring more often than chance, e.g.,
 - -middle management (*intermediate management)
 - –nuclear family
 - -six sigma (6σ)
 - -plastic surgery
 - -riding boots (*horse boots)
 - -motor cyclist

Entire contents Conveying more meaning than the surface words

- Why is collocation so important?
 - These prefabricated chunks are a key to fluency
 - Collocation as a key to meaning
- Methods and resources
 - Collocation tools
 - TANGO, WordSketch, Just-the-Word
 - Collocations Dictionaries
 - Oxford Collocations Dictionary
 - Macmillan Collocations Dictionary

http://www.macmillandictionaries.com/features/how-dictionaries-are-

傳統紙版詞典與電子詞典

role noun 2 position and importance

ADJ.

central, crucial, decisive, dominant, essential, fundamental, important, key, leading, major, pivotal, primary, prominent, significant, vital

Every member of staff must have a clear role.

VERB + ROLE occupy, perform, play, serve

Regional managers occupy a crucial role in developing a strategic framework.

PREP.

~ in

Pressure groups played a major role in bringing about the reforms.

- 適合翻譯、寫作
- 搭配數量受限
- 例句數量受限 自動產生搭配
- 可產生更多的搭配、例句
- 可產生特定的搭配
 - 學術英文
 - 商業英文三青華大學

Academic Collocation List - Pearson

	Pre-collocate	AW		AW	Post-collocate
adj	considerable	research	n	research	efforts
adj	initial		n		effort
adj	earlier		n		purposes
adj	past		n		methodology
adj	original		n		evidence
adj	primary		vpp/adj		published
adj	extensive		vpp/adj		undertaken
adj	little		vpp/adj		conducted
adj	major				
adj	basic				
adj	current				
adj	empirical				
adj	previous				
adj	future				
adj	scientific				
adj	further				
adj	recent				
p/adj	existing				
p/adj	published				
n	field				
v	undertake				
V	conducting				

Source: http://baleap.qmlanguagecentre.on-rev.com/pdf/Ackermann_slides.pdf

Properties of Collocations

- 1. Syntactic (government) relations
 - Lexical collocations
 - N-Adj
 - SV, VO
 - V-Adv
 - V+V

- Grammatical collocations
 - V-Part
 - N-Prep
 - Adj+to+DO
 - Adj-Prep-n

type	example
N-Adj	"heavy/light [] trading/smoker/traffic"
N-Adj	"high/low [] fertility/pressure/bounce"
N-Adj	"large/small [] crowd/retailer/client"
SV	"index [] rose
SV	"stock [] [rose, fell, jumped, continued, declined, crashed,]"
SV	"advancers [] [outnumbered, outpaced, overwhelmed, outstripped]"
V-Adv	"trade ⇔ actively," "mix ⇔ narrowly,"
V-Adv	"use ⇔ widely," "watch ⇔ closely"
vo	"posted [] gain
VO	"momentum [] [pick up, build, carry over, gather, loose, gain]"
V-Part	"take [] from," "raise [] by," "mix [] with"
VV	"offer to [acquire, buy"]
VV	"agree to [acquire, buy"]

Properties of Collocations

2. Statistical associativity

- Mutual information, log likelihood ratio (LLR)
- t-test, chi-square test
- Reference range (see en.wikipedia.org/wiki/Reference_range or en.wikipedia.org/wiki/Six_Sigma)
- 3. Syntactic relation by distanced ngram analysis (Smadja 1993)
 - Calculate count for two words (e.g., play and role) at distance d
 - play_role (in Google Web 1T 5gram)
 - -4(81230) -3(161358) -2(920270) -1(255149)
 - 4(325548) 3(3452577) 2(1428845) 1(27584)
 - Counts peak at distance of 3, indicating V. + Det. + Adj. + N. relation

Word pairs, bigram freq, avg f, deviation

- Collocations = word + collocate
- Collocations are relatively high frequency
- Collocations has skew distance distribution
- Peaks at some distance imply grammatical construction: AN, VN, VN (passive)

Bigram examples (relatively high-freq)

													• /
τυ	w_i	Freq	p_{-5}	p_{-4}	p_{-3}	p_{-2}	p_{-1}	p_1	p_2	p_3	p_4	p_5	_
takeover	possible	178	0	13	4	23	138	0	0	0	0	0	Good AN collocation
takeover	corporate	93	2	2	2	1	63	3	2	9	4	5	Good AN collocation
takeover	unsolicited	83	5	30	5	0	42	0	0	1	0	0	
takeover	several	81	2	6	6	6	45	0	0	12	0	4	
takeover	recent	76	5	4	6	5	17	0	0	36	2	1	
takeover	new	75	4	3	6	28	27	0	1	4	2	0	
takeover	unwanted	53	5	0	0	2	46	0	0	0	0	0	
takeover	expensive	52	1	0	0	0	2	0	23	23	3	0	
takeover	potential	50	1	0	1	3	42	0	0	0	2	1	
takeover	big	47	0	0	0	4	15	0	0	5	2 1	2	
takeover		41	0	3	3	1	25	0	0	2	3	4	Good AN collocation
takeover	unsuccessful	40	0	1	5	6	27	0	0	0	0	1	
takeover	biggest	35	1	2	1	4	20	0	0	0	5	2	
takeover	largest	32	0	1	3	20	3	0	0	0	0	5	
takeover	old	28	0	8	6	0	1 4	0	0	0	0	0	
takeover	unfriendly	26	0	0	0	0	18	0	0	0	0	8	
takeover		26	0	1	3	0	3	0	8	5	5	1	Not good
takeover		26	5	10	2	0	0	0	0	9	0	0	Not good
takeover	initial	25	0	6	0	0	13	0	0	4	0	2	
takeover	unwelcome	24	4	0	0	0	20	0	0	0	0	0	
takeover		24	0	2	0	4	18	0	0	0	0	0	7
takeover		22	4	2	2	0	0	0	2	2	8	2	Not good
takeover		22	0	0	0	7	14	0	0	0	1	0	
takeover		19	0	4	3	5	4	0	0	1	0	2	
takeover		16	0	6	0	0	10	0	0	0	0	0	Good AN collocation
takeover		16	1	0	5	3	7	0	0	0	0	0	
takeover	unfair	13	0	0	0	0_	13	0	0	0	_0	0	

Smadja's Algorithm

Compute w, c, d (word, collocate, distance)

- Three conditions
 - (C1) Count(w, c) > f (average) + 1* σ (standard deviation)
 - w = "takeover,"
 - C1 selects 167 collocates out of 3385
 - 95% rejected (84.2% if normal distribution).
 - (C2) Count(w, c, d) spread out non-uniformly (has 1-2 peaks)
 - (C3) Some distances where Count(word, collocate, d) peaks

Three Conditions

(C)
$$\begin{cases} strength = \frac{freq - \bar{f}}{\sigma} \ge k_0 & (C_1) \\ spread \ge U_0 & (C_2) \\ p_j^i \ge \bar{p}_i + (k_1 \times \sqrt{U_i}) & (C_3) \end{cases}$$

$$U_i = \frac{\sum_{j=1}^{10} (p_i^j - \bar{p}_i)^2}{10} \qquad (k_0, k_1, U_0) = (1, 1, 10)$$

where

strength = normalized frequency spread(u_i) of wi = mean squared difference of freq from avg for ppeak = more frequent than avg by k_1 x standard deviation

Examples word, collocate, d, strength, spread

w_i	w_i	distance	strength	spread
hostile	takeovers	1	13	97
hostile	takeover	1	13	90
corporate	takeovers	1	8	90
possible	takeover	1	6	73
ĥostile	takeovers	2	2	70
corporate	takeover	1	3	63
			Strength > 1: Good	Spread > 10: Good
takeover	big	4	1	47
takeovers	other	2	1	43
big	takeover	1	1	46
takeovers	major	4	1	46
biggest	takéover	1	.93	53
largest	takeover	2	.82	60

Datasets

- 1. Citeseer x
 - lab3.iteseerx100000.tag.txt
 - 100,000 sentences, 2,270,631 words
 - As/IN such/JJ the/DT paper/NN aim/VBZ to/TO establish/VB a/DT steppingstone/NN from/IN which/ WDT to/TO launch/VB actual/JJ digital/JJ design/NNS ./.
- 2. Words in Academic Collocation List
 - lab3.acl.words.txt
 - 1307 words
 - ability abstract ... year younger

Steps

- 1. Generate ngrams for a given corpus (n = 2, 6)
 - e.g. play a role 122 play an important role 173 ...
- 2. Generate skip bigrams from ngrams (-5 <= d <= 5) per 100 m. words

- <bgram> <f> <avg over d> <root mean square> <d(cnt)>*10
- 3. Generate average frequency and standard deviation of a word (e.g., play) with all its collocate (e.g., role, game)

 E.g. play 169 200
- 4. Discard weak collocates
 E.g., for play_role: strength = (669-169)/200 = 2.5 > 1 (C1)
- 5. Generate collocations (spread not evenly + peak at distance d) keep play_role (good pair) because 102.4 > 10 (C2) keep play_role 3 (peak d) because 345 > 67+1x(102.4)^{0.5} (C3) keep play_role 2 (second peak) because 142 > 67+1x(102.4)^{0.5}

1. Generate skip bigrams

- Use dictionary to count ngram and skip bigram with d
- CASE 1 from sentences
 - (w1, w_n count)
 input = w1, w2, ..., wn,
 input = <w1 w2, 1>; <w1 w3, 2>, ..., <w1 wk+1, k> (k = 5) <w2 w3, 1>; ..., <w2 wk+2, k>
 ...
 <wk+1 w1, -k>; <wk w1, -k+1>, ..., <w2 w1, -1> <wk+2 w2, -k>; <wk+1 w2, -k+1>, ..., <w3 w2, -1>
- CASE2 from gram
 - input = (w1, ,,, ,wn count) (for n = 2, 5)
 - output = <w1 wn, n-1, count> and <wn, w1, -n+1, count>
- See Hint #2 on page 23

1. Generate distance counts

- Generate a dictionary that store skip bigram and <stance, count> pairs
 - E.g. play_role -5(4) -4(8) -3(16) -2(92) -1(25) 1(2) 2(142) 3(345) 4(32) 5(3)
- See Hint #3 on page 24
 - Use defaultdict to store word, collocate, distance, count
 - · from collections import defaultdict;
 - dic = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0)))
- dic1 = defaultdict(0) #a dictionary mapping distance to count
 - store dic1[3] += 1
 - (e.g., dic1 = {-4:11, -3:23, -2:23, -1:38, 1:35, 2:125, 3:524, 4:101}
- dic2 = defaultdict(defaultdict(0)) # dictionary mapping word to <distance, count>
 - store dic2['role'][3] += 1 #(or count)
- dic = defaultdict(lambda: defaultdict(lambda: 0))) # a dictionary mapping word to a dictionary of word and <distance, count>
 - store dic['play']['role'][3] += 1 #(count)
 (e.g., dic = {'play': {'role': {-4:11, -3:23, -2:23, -1:38, 1:35, 2:125, 3:524, 4:101}}}

Step 3 Compute statistics: strength, std

- Input = bigram file: w_wi <d, count>, ... <d, count>
- Compute
 - Total, avg, mean-sq-offset
 - Strength
- Example: play_role 669 67 102.4

Step 4 Check C1

- For each key group of w
 - For each bigram
 - Calculate strength and discard weak bigram (C1)
 E.g., play_role 669 67 102.4 -5(4) -4(8) ...
 strength = (669-169)/200 = 2.5 > 1
- Generate bigrams <w, c> for good c candidates (e.g., <play, role>)

Step 5 Check C2, C3

- input = good bigrams
- For each bigram
 - Check spread and peak conditions

E.g., play_role is ok because spread
$$102.4 > 10$$
 (C2) play_role 3 is ok because $345 > 67+1x(102.4)^{0.5}$ (C3)

Generate collocation <play, role, 3>

Lab Work

- Corpus: Citeseer X
- Step 1 has been done
- Start with Citeseer ngrams
- Generate collocation for for 930 words in Academic Keyword List (AKL)
- AKL is available at www.uclouvain.be/en-372126.html

BONUS

- Group collocations by grammar patterns (e.g., role-n: v det adj N)
 - filter collocations in each group using Condition #1
 - -filter examples for each collocation group using Condition #1