In [100]:

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
```

In [101]:

```
datal = pd.read_csv("./china_district.csv", encoding='gb18030', header=None)
data2 = pd.read_excel("./国内每个城市每天疫情数据1月22日-2月.xlsx")
```

In [102]:

```
1 data1
```

Out[102]:

	0	1
0	台湾省	台北市
1	台湾省	基隆市
2	台湾省	新北市
3	台湾省	桃园市
4	台湾省	台中市
320	西藏自治区	拉萨市
321	西藏自治区	山南市
322	西藏自治区	昌都市
323	西藏自治区	日喀则市
324	西藏自治区	林芝市

325 rows × 2 columns

In [103]:

```
1 data1.columns=['省份','市区']
```

In [104]:

1 data1

Out[104]:

	省份	市区
0	台湾省	台北市
1	台湾省	基隆市
2	台湾省	新北市
3	台湾省	桃园市
4	台湾省	台中市
320	西藏自治区	拉萨市
321	西藏自治区	山南市
322	西藏自治区	昌都市
323	西藏自治区	日喀则市
324	西藏自治区	林芝市

325 rows × 2 columns

In [105]:

1 data2

Out[105]:

	名称	确诊	疑似	治愈	死亡	现存确诊	日期
0	武汉	618	0	40	45	NaN	01 - 26
1	黄冈	122	0	2	2	NaN	01-26
2	孝感	55	0	0	0	NaN	01-26
3	咸宁	43	0	0	0	NaN	01-26
4	荆门	38	0	0	1	NaN	01-26
9865	张掖	2	0	2	0	0.0	02-19
9866	金昌	1	0	1	0	0.0	02 - 19
9867	西宁	15	0	14	0	1.0	02-19
9868	海北	3	0	2	0	1.0	02-19
9869	拉萨	1	0	1	0	0.0	02-19

9870 rows × 7 columns

In [106]:

```
data3 = data1.join(data2, how='cross')
```

In [107]:

```
1 data3['名称']+='市'
```

In [108]:

1 data3

Out[108]:

	省份	市区	名称	确诊	疑似	治愈	死亡	现存确诊	日期
0	台湾省	台北市	武汉市	618	0	40	45	NaN	01-26
1	台湾省	台北市	黄冈市	122	0	2	2	NaN	01-26
2	台湾省	台北市	孝感市	55	0	0	0	NaN	01-26
3	台湾省	台北市	咸宁市	43	0	0	0	NaN	01-26
4	台湾省	台北市	荆门市	38	0	0	1	NaN	01-26
3207745	西藏自治区	林芝市	张掖市	2	0	2	0	0.0	02-19
3207746	西藏自治区	林芝市	金昌市	1	0	1	0	0.0	02-19
3207747	西藏自治区	林芝市	西宁市	15	0	14	0	1.0	02-19
3207748	西藏自治区	林芝市	海北市	3	0	2	0	1.0	02-19
3207749	西藏自治区	林芝市	拉萨市	1	0	1	0	0.0	02-19

3207750 rows × 9 columns

In [109]:

```
1 data3=data3.loc[data3['市区']==data3['名称']]
```

In [110]:

1 data3

Out[110]:

	省份	市区	名称	确诊	疑似	治愈	死亡	现存确诊	日期
78990	浙江省	杭州市	杭州市	27	0	0	0	NaN	01-26
79254	浙江省	杭州市	杭州市	27	0	0	0	NaN	01-27
79564	浙江省	杭州市	杭州市	32	0	0	0	NaN	01-28
79876	浙江省	杭州市	杭州市	51	0	0	0	NaN	01-29
80223	浙江省	杭州市	杭州市	69	0	0	0	NaN	01-30
3166571	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-15
3166995	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-16
3167421	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-17
3167846	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-18
3168269	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-19

6173 rows × 9 columns

In [111]:

data3.reset_index(drop=True)

Out[111]:

	省份	市区	名称	确诊	疑似	治愈	死亡	现存确诊	日期
0	浙江省	杭州市	杭州市	27	0	0	0	NaN	01-26
1	浙江省	杭州市	杭州市	27	0	0	0	NaN	01 - 27
2	浙江省	杭州市	杭州市	32	0	0	0	NaN	01-28
3	浙江省	杭州市	杭州市	51	0	0	0	NaN	01-29
4	浙江省	杭州市	杭州市	69	0	0	0	NaN	01-30
6168	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-15
6169	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-16
6170	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-17
6171	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-18
6172	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02 - 19

6173 rows × 9 columns

```
In [149]:
```

1 data3. groupby(['省份','日期']). sum()

Out[149]:

		确诊	疑似	治愈	死亡	现存确诊
省份	日期					
	01-26	11	0	0	0	0.0
	01-27	19	0	0	0	0.0
云南省	01-28	31	0	0	0	0.0
	01-29	38	0	0	0	0.0
	01-30	50	0	0	0	0.0
	02-15	129	0	17	5	107.0
	02-16	131	0	20	5	106.0
黑龙江省	02-17	132	0	22	5	105.0

In [150]:

- 1 data4=data3.groupby(['省份','日期']).sum()
- 2 data4

Out[150]:

		确诊	疑似	治愈	死亡	现存确诊
省份	日期					
	01-26	11	0	0	0	0.0
	01-27	19	0	0	0	0.0
云南省	01-28	31	0	0	0	0.0
	01-29	38	0	0	0	0.0
	01-30	50	0	0	0	0.0
	02-15	129	0	17	5	107.0
	02-16	131	0	20	5	106.0
黑龙江省	02-17	132	0	22	5	105.0
	00 40	100	^	27	E	100 0

In [246]:

```
1 prov=data3['省份'].unique()
2 prov
```

Out[246]:

array(['浙江省','内蒙古自治区','山西省','河北省','辽宁省','吉林省','黑龙江省', '江苏省','安徽省',

'山东省','江西省','福建省','湖南省','湖北省','河南省','广东省','广西壮族自治区','贵州省',

'海南省','四川省','云南省','陕西省','甘肃省','宁夏回族自治区','青海省', '西藏自治区'],

dtype=object)

In [155]:

```
1 data3['日期']
```

Out[155]:

```
78990
             01 - 26
79254
             01 - 27
             01 - 28
79564
79876
             01 - 29
80223
             01 - 30
             . . .
3166571
             02 - 15
             02 - 16
3166995
3167421
             02 - 17
             02 - 18
3167846
3168269
            02 - 19
Name: 日期, Length: 6173, dtype: object
```

In [156]:

```
1 data4['确诊']
```

Out[156]:

```
省份
       日期
云南省 01-26
                 11
     01 - 27
               19
     01 - 28
               31
     01-29
               38
     01 - 30
               50
黑龙江省 02-15 129
     02 - 16
              131
     02 - 17
              132
     02-18
              132
     02 - 19
              136
Name: 确诊, Length: 641, dtype: int64
```

In [189]:

```
1  x = data3['日期'].unique()
2  y1 = data3.groupby(['日期'])['确诊'].sum()
3  y2 = data3.groupby(['日期'])['疑似'].sum()
4  y3 = data3.groupby(['日期'])['治愈'].sum()
5  y4 = data3.groupby(['日期'])['死亡'].sum()
6  x, y1, x. shape, y1. shape
```

Out[189]:

```
(array(['01-26', '01-27', '01-28', '01-29', '01-30', '01-31', '02-01', '02-02', '02-03', '02-04', '02-05', '02-06', '02-07', '02-08', '02-09', '02-10', '02-11', '02-12', '02-13', '02-14', '02-15', '02-16', '02-17', '02-18', '02-19'], dtype=object),
  日期
 01-26
                 1807
 01 - 27
                 2490
 01 - 28
                 4190
 01 - 29
                 5547
 01-30
                 7177
 01-31
                 9021
 02-01
                10929
 02-02
                13404
 02-03
                16120
 02 - 04
                19155
 02 - 05
                22906
 02 - 06
                26467
 02 - 07
                29466
 02-08
                32789
 02-09
                35320
 02 - 10
                38186
 02 - 11
                40564
 02 - 12
                42508
 02 - 13
                57574
 02 - 14
                61556
 02 - 15
                64147
 02 - 16
                66106
 02 - 17
                68116
 02 - 18
                69973
 02-19
                71704
 Name: 确诊, dtype: int64,
  (25,),
  (25,))
```

In [190]:

```
# 在一个图纸上画 多个图
 2
 3
   # 生成一个图纸,长宽分别为12和8 inch
 4
   plt. figure (figsize=(20, 8), dpi=100)
 5
 6
 7
   # 将图纸分割为2行2列共四部分,这里再第1个图上画图
   plt. subplot (2, 2, 1)
 8
 9
   plt.plot(x, y1, label='确诊')
   plt.ylabel('人数')
10
   plt. xlabel('时间')
11
12
   plt. xticks (x, rotation='vertical', size=8)
13
   plt.legend()
14 # # 在第 2个图上画图
15 plt. subplot (2, 2, 2)
   plt.plot(x, y2, label='疑似')
   plt.ylabel('人数')
17
18 plt. xlabel('时间')
19
   plt. xticks (x, rotation='vertical', size=8)
20
   plt.legend()
   ##在第3个图上画图
21
22 plt. subplot (2, 2, 3)
   plt.plot(x, y3, label='治愈')
23
   plt.ylabel('人数')
24
25
   |plt.xlabel('时间')
26 | plt. xticks(x, rotation='vertical', size=8)
27
   plt.legend()
28 # # 在第 4个图上画图
29 plt. subplot (2, 2, 4)
   plt.plot(x, y4, label='死亡')
30
31
   plt.ylabel('人数')
   plt. xlabel('时间')
32
33 plt. xticks (x, rotation='vertical', size=8)
34
   plt.legend()
   # 给整个图纸 命名标题
35
36
   plt. suptitle('疫情分析图')
37
38
   plt. show()
```


In [242]:

```
1 x1 = data3['日期'].unique() x1
```

Out[242]:

```
array(['01-26', '01-27', '01-28', '01-29', '01-30', '01-31', '02-01', '02-02', '02-03', '02-04', '02-05', '02-06', '02-07', '02-08', '02-09', '02-10', '02-11', '02-12', '02-13', '02-14', '02-15', '02-16', '02-17', '02-18', '02-19'], dtype=object)
```

In [244]:

```
1 data3[data3['省份']==prov[x]]
```

Out[244]:

	省份	市区	名称	确诊	疑似	治愈	死亡	现存确诊	日期
3161958	西藏自治区	拉萨市	拉萨市	1	0	0	0	NaN	02-04
3162365	西藏自治区	拉萨市	拉萨市	1	0	0	0	NaN	02-05
3162779	西藏自治区	拉萨市	拉萨市	1	0	0	0	NaN	02-06
3163193	西藏自治区	拉萨市	拉萨市	1	0	0	0	NaN	02-07
3163616	西藏自治区	拉萨市	拉萨市	1	0	0	0	NaN	02-08
3164034	西藏自治区	拉萨市	拉萨市	1	0	0	0	NaN	02-09
3164456	西藏自治区	拉萨市	拉萨市	1	0	0	0	NaN	02-10
3164881	西藏自治区	拉萨市	拉萨市	1	0	0	0	NaN	02-11
3165302	西藏自治区	拉萨市	拉萨市	1	0	1	0	NaN	02-12
3165725	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-13
3166149	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-14
3166571	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-15
3166995	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-16
3167421	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-17
3167846	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02 - 18
3168269	西藏自治区	拉萨市	拉萨市	1	0	1	0	0.0	02-19

In [251]:

```
# 在一个图纸上画 多个图
 1
 2
   # 生成一个图纸, 长宽分别为12和8 inch
 3
 4
   plt. figure (figsize= (20, 30), dpi=300)
 5
 6
   # 将图纸分割为2行2列共四部分,这里再第1个图上画图
 7
   plt. subplot (2, 2, 1)
 8
 9
   for x in range (25):
       plt.plot(x1, data3[data3['省份']==prov[x]].groupby('日期')['确诊'].sum(),label=prov[x])
10
11
   plt.ylabel('人数')
   plt. xlabel('时间')
12
   plt. xticks (x1, rotation='vertical', size=8)
13
14 plt. legend()
15 # # 在第 2个图上画图
16 plt. subplot (2, 2, 2)
   for x in range (25):
17
       plt.plot(x1, data3[data3['省份']==prov[x]].groupby('日期')['疑似'].sum(),label=prov[x])
18
   plt.ylabel('人数')
19
   plt. xlabel('时间')
20
21
   plt. xticks(x1, rotation='vertical', size=8)
22
   plt.legend()
   ##在第3个图上画图
23
   plt. subplot (2, 2, 3)
24
25
   for x in range (25):
26
       plt.plot(x1, data3[data3['省份']==prov[x]].groupby('日期')['治愈'].sum(),label=prov[x])
27
   plt.ylabel('人数')
28
   plt. xlabel('时间')
   plt. xticks (x1, rotation='vertical', size=8)
29
30
   plt.legend()
   ##在第4个图上画图
31
32
   plt.subplot(2, 2, 4)
   for x in range (25):
33
       plt.plot(x1, data3[data3['省份']==prov[x]].groupby('日期')['死亡'].sum(),label=prov[x])
34
   plt.ylabel('人数')
35
36
   plt. xlabel('时间')
   plt. xticks (x1, rotation='vertical', size=8)
37
38
   plt.legend()
   # 给整个图纸 命名标题
39
   plt. suptitle('疫情分析图')
40
41
42
   plt.show()
```

