Transferring Learned Models of Morphological Analogy ATA@ICCBR22

Esteban Marquer¹, Pierre-Alexandre Murena², Miguel Couceiro¹

¹Université de Lorraine, CNRS, LORIA, F-54000, France ²HIIT, Aalto University, Helsinki, Finland

Sept. 2022

Outline

- 1 Introduction
- 2 Different axioms
- 3 Different datasets
- 4 Different languages

Introduction •0000000

Introduction

```
Analogical proportion (AP):
   A:B::C:D, read "A is to B as C is to D"
Analogy detection:
   Given A, B, C, and D, is A:B::C:D a valid analogy?
Morphological transformation:
   change in the form of word, following morphological rules
Morphology in practice:
   suffixes, prefixes, infixes, ...
English
   dog: dogs:: cat: cats
   singular \rightarrow plural, add suffix -s
   pull: pulled :: achieve : achieved
   infinitive \rightarrow past participle, add suffix -ed
```

Motivation

Morphological Analogy:

- benchmark to develop and study models of analogy:
 - textual data: sequential data;
 - interpretable by humans;
 - many languages: similar domains;
 - etc.

Learned models of analogy

ANNc^a

Analogy Neural Network for classification

In: 4 words A.B.C.D. Out: valid (+)/ invalid (-)

Relies on data augmentation for permutations P^+ and P^-

Relies on axioms for analogy

^aS. Alsaidi, A. Decker, P. Lav. E. Marguer, P.-A. Murena, and M. Couceiro (2021). "A Neural Approach for Detecting Morphological Analogies". In: IEEE 8th DSAA, pp. 1-10

Transferring learned models of analogy

We have a model $M_{\mathcal{D}_{\text{source}}}$ trained on data sampled from a domain $\mathcal{D}_{\text{source}}$

We want to use it on a different domain $\mathcal{D}_{\mathsf{target}}$

- lacksquare Reduce or eliminate training on $\mathcal{D}_{\mathsf{target}}$
- \blacksquare Improve performance on $\mathcal{D}_{\mathsf{target}}$ using general-purpose model
- Study $M_{\mathcal{D}_{\mathsf{source}}}$, ex: training VS test sets \leftarrow **Ours**

Use $M_{\mathcal{D}_{\text{source}}}$ without change, performance on $\mathcal{D}_{\text{target}}$ depends on (mainly):

- lacksquare performance on $\mathcal{D}_{\mathsf{source}}$
- lacktriangle how similar $\mathcal{D}_{\mathsf{target}}$ is to $\mathcal{D}_{\mathsf{source}}$ & how well $M_{\mathcal{D}_{\mathsf{source}}}$ generalizes

Transfer to:

- study how data augmentation impacts ANNc;
- check if ANNc generalizes to a different dataset;
- study how ANNc behaves when applied on different languages.

Dataset

Siganalogies¹ dataset:

- more than 80 languages in total;
- \blacksquare more than $50\,000$ unique analogies for the ones we use;
- Sigmorphon2016² subset: all 10 lang.;
- Sigmorphon2019³ subset: 42 lang.;
- Japanese Bigger Analogy Test Set⁴ subset: Japanese.

¹E. Marquer, M. Couceiro, S. Alsaidi, and A. Decker (2022). Siganalogies - morphological analogies from Sigmorphon 2016 and 2019. Version V1

²R. Cotterell, C. Kirov, J. Sylak-Glassman, D. Yarowsky, J. Eisner, and M. Hulden (2016). "The SIGMORPHON 2016 Shared Task-Morphological Reinflection". In: *SIGMORPHON 2016*. ACL, pp. 10–22

³A. D. McCarthy et al. (2019). "The SIGMORPHON 2019 Shared Task: Morphological Analysis in Context and Cross-Lingual Transfer for Inflection". In: *16th CRPPM workshops.* ACL, pp. 229–244

⁴M. Karpinska, B. Li, A. Rogers, and A. Drozd (2018). "Subcharacter Information in Japanese embeddings: when is it worth it?" In: RLSNA4NLP. ACL, pp. 28–37

Word pairs linked by inflexional morphology transformations: revérifier V;SBJV;PST;1;SG revérifiasse tormenter V;SBJV;PST;1;SG tormentasse → revérifier: revérifiasse:: tormenter: tormentasse

Different axioms

Axioms for APs

In previous work⁵, we considered the following axioms⁶:

- symmetry (if A : B :: C : D, then C : D :: A : B);
- central permutation (if A : B :: C : D, then A : C :: B : D);
- strong reflexivity (if A : A :: C : D, then C = D);
- strong inner reflexivity (if A : B :: A : D, then B = D).

Applying them multiple times gives us 8 equivalent forms. We can also derive "forbidden" forms (like A:A:C:D with $C \neq D$).

⁵S. Alsaidi, A. Decker, P. Lay, E. Marquer, P.-A. Murena, and M. Couceiro (2021). "A Neural Approach for Detecting Morphological Analogies". In: *IEEE 8th DSAA*, pp. 1–10

⁶Y. Lepage (2003). "De l'analogie rendant compte de la commutation en linguistique". FR. Habilitation à diriger des recherches. Université Joseph-Fourier -Grenoble I

3 Axiomatic settings, discussing central permutation (CP)

CP subject to discussion.

Example⁷: different domains in the same analogy.

2:4:: ab: abab

Replace CP by inside pair reversing (if A : B :: C : D, then B:A::D:C).

⁷Christian Antić (2022). "Analogical Proportions". In: Annals of Mathematics and Artificial Intelligence 90.6, pp. 595-644. ISSN: 1573-7470. DOI: 10.1007/s10472-022-09798-y

Setting	СР	$\neg CP$	<u>CP</u>
CP results in analogies	valid	omitted	invalid
Valid P ⁺	A:B::C:D C:D::A:B B:A::D:C D:C::B:A A:C::B:D C:A::D:B B:D::A:C D:B::C:A	A:B::C:D C:D::A:B B:A::D:C D:C::B:A	A:B::C:D C:D::A:B B:A::D:C D:C::B:A
Invalid <i>P</i> ⁻ A', B', C', D' in <i>P</i> ⁺	A':A'::C':D' B':A'::C':D' C':B'::A':D'	A':A'::C':D' B':A'::C':D'	A':A'::C':D' B':A'::C':D' C':B'::A':D' A':C'::B':D'

Experiment

Hypothesis: if the model learns the axioms, the performance can be predicted using deductions on the axioms.

Train on a setting and test on another one:

✓:
$$P^+_{\neg CP} \subseteq P^+_{CP}$$
 and $P^-_{\neg CP} \subseteq P^-_{CP}$ $P^+_{\neg CP} \subseteq P^+_{\overline{CP}}$ and $P^-_{\neg CP} \subseteq P^-_{\overline{CP}}$

x:
$$P^-\overline{CP} \cap P^+CP \neq \emptyset$$

?: $\neg CP$ on unseen permutations.

Balanced accuracy:
$$\frac{A_{P^+} + A_{P^-}}{2}$$

Experimental results

Conclusions

Observed results support the hypothesis:

"Z" ✓ goes in the direction that model "learns" axioms based on augmentation

Limitation:

$$\overline{\textit{CP}} \rightarrow \textit{CP} < \textit{CP} \rightarrow \overline{\textit{CP}}$$

reason unknown

Different datasets

Different datasets

Languages shared in Sigmorphon2016 and Sigmorphon2019. Transformations involved can be different, language is the same.

Different datasets

Character coverage:

Conclusion

Model appears to generalize as long as it knows the characters.

Different languages

42 "high ressource" languages in Sigmorphon2019.

Character coverage prerequisite for non-zero performance.

 $|C_{source} \cap C_{targets}|$ Cluster using Jaccard index: $|C_{source} \cup C_{targets}|$

Coverage not a major factor anymore: Pearson correlation of performance coverage r = 0.0379 for Roman cluster.

27 languages in the Roman cluster

Patterns in performance: **model performance** or **similarities between languages**?

Hypothesis: similarities between languages morphology (vertical bars in matrix).

Experimental results

Hypothesis: similarities between languages morphology.

Compare with "language families" ("hierarchical clustering" of languages, "genealogy").

Experimental results

Model transfers well between closely related languages:

- language families to decide of a source language;
- analogy to study morphology.

Thank you for your attention!

Wikipedia language families

Wikipedia language families

English			
Pronunciation	/ˈɪŋglɪʃ/[¹]		
Ethnicity	English people Anglo-Saxons (historically)		
Native speakers	360–400 million (2006) ^[2] L2 speakers: 750 million; as a foreign language: 600–700 million ^[2]		
Language family	Indo-European		
	Germanic		
	 West Germanic 		
	 North Sea Germanic 		
	Anglo-Frisian		
	Anglic		
	 English 		
Early forms	Old English		
	Middle English		
	 Early Modern English 		
Writing system	Latin (English alphabet) Anglo Saxon runes (historically) English Braille, Unified English Braille		
Signed forms	Manually coded English (multiple systems)		

Bibliography I

- Alsaidi, S. et al. (2021). "A Neural Approach for Detecting Morphological Analogies". In: *IEEE 8th DSAA*, pp. 1–10.
- Antić, Christian (2022). "Analogical Proportions". In: Annals of Mathematics and Artificial Intelligence 90.6, pp. 595–644. ISSN: 1573-7470. DOI: 10.1007/s10472-022-09798-y.
- Cotterell, R. et al. (2016). "The SIGMORPHON 2016 Shared Task–Morphological Reinflection". In: SIGMORPHON 2016. ACL, pp. 10–22.
- Karpinska, M. et al. (2018). "Subcharacter Information in Japanese embeddings: when is it worth it?" In: *RLSNA4NLP*. ACL, pp. 28–37.
- Lepage, Y. (2003). "De l'analogie rendant compte de la commutation en linguistique". FR. Habilitation à diriger des recherches. Université Joseph-Fourier Grenoble I.

Bibliography II

- Marquer, E. et al. (2022). Siganalogies morphological analogies from Sigmorphon 2016 and 2019. Version V1.
- McCarthy, A. D. et al. (2019). "The SIGMORPHON 2019 Shared Task: Morphological Analysis in Context and Cross-Lingual Transfer for Inflection". In: 16th CRPPM workshops. ACL, pp. 229–244.