KHADIR MOHIDEEN COLLEGE

PG & RESEARCH DEPARTMENT OF MATHEMATICS

B.Sc. MATHEMATICS

RECORD NOTE

SEMESTER - V

NUMERICAL METHODS WITH MATLAB PROGRAMMING (P)

Name :		
Pog No ·	Poll No ·	Ratch

LINEAR INTERPOLATION

Question:

Find the value of y when x = 27 using linear interpolation using MATLAB from the following table:

х	20	30
у	6.68422	7.18192

Aim:

To write a MATLAB program for linear interpolation.

Input and Output Description:

1. Input

x	20	30
у	6.68422	7.18192

2. Output

Procedure:

Linear interpolation formula is

$$comp_y = y(1) + \frac{(given_x - x(1))(y(2) - y(1))}{x(2) - x(1)}$$

Given data are,

$$x(1) = 20, x(2) = 30$$

 $y(1) = 6.68422, y(2) = 7.18192$
 $x = 27$

Program:

```
%Linear Interpolation
clc,clear;
%Linear interpolation
x=input('Enter a row vector x:');
y=input('Enter a row vector y:');
given_x=input('Enter the value of x to be interpolated:');
comp_y=y(1)+((given_x-x(1))/(x(2)-x(1))*(y(2)-y(1)));
fprintf('\n The value of y when x=%f is %f\n',given_x,comp_y);
%plotting the line
plot(x,y,'-or',given_x,comp_y,'ok')
```

Output:

```
Enter a row vector x:[20,30]
Enter a row vector y:[6.68422, 7.18192]
Enter the value of x to be interpolated:27
```

The value of y when x=27.000000 is 7.032610

LINEAR REGRESSION

Question:

Write a MATLAB program to form a straight line of y on x using linear regression from the following data:

			_	_			70	
у	67	68	65	68	72	72	69	71

Aim:

To write a MATLAB program for implementing linear regression and to find the equation of the required regression line of y on x.

Input and Output Description:

1. Input

х	65	66	67	67	68	69	70	72
у	67	68	65	68	72	72	69	71

2. Output

The equation of regression line of y on x

Procedure:

The equation of regression line of y on x is given by

$$y - \bar{y} = r \left(\frac{\sigma_y}{\sigma_x} \right) (x - \bar{x})$$

where,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

$$\sigma_{x} = std(x) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}},$$

$$\sigma_{y} = std(y) = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}},$$

$$r = \frac{cov(x, y)}{\sigma_x \sigma_y}$$
, where $cov(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$

```
Program:
```

```
%Linear Regression
%Deriving Regression line of y on x
clc, clear;
x=input('Enter a row vector x:');
y=input('Enter a row vector y:');
xbar=mean(x);
ybar=mean(y);
n=length(x);
sigma x=std(x);
sigma y=std(y);
cov=0;
for i=1:n
     cov=cov+(x(i)-xbar)*(y(i)-ybar);
end
cov=cov/(n-1);
r=cov/(sigma x*sigma y);
coef=r*(sigma y/sigma x);
a=coef;
b=ybar-(coef*xbar);
fprintf('\n The linear regression line of y on x is \n')
fprintf('\n y=%fx+%f\n',a,b)
Output:
Enter a row vector x: [65 66 67 67 68 69 70 72]
Enter a row vector y: [67 68 65 68 72 72 69 71]
 The linear regression line of y on x is
 y=0.666667x + 23.666667
```

STRAIGHT LINE FITTING

Question:

Write a MATLAB program to fit a straight line from the following data and hence find y(25):

x	0	5	10	15	20
y	7	11	16	20	26

Aim:

To write a MATLAB program for fitting a straight line.

Input and Output Description:

1. Input

х	0	5	10	15	20
у	7	11	16	20	26

2. Output

Procedure:

When (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) be the set of given data.

The normal equations for fitting a straight line y = ax + b are,

$$a\Sigma x \; + \; nb \; = \Sigma y$$

$$a\Sigma x^2 + b\Sigma x = \Sigma xy$$

Solving these equations for a and b we get the straight line.

By putting x = 25 in y = ax + b we can find y(25).

```
Program:
```

```
%Curve Fitting - Straight line fitting of the form y=ax+b
clc, clear;
x=input('Enter a row vector x:');
y=input('Enter a row vector y:');
n=length(x);
sigma x=sum(x);
sigma y=sum(y);
sigma xy=sum(x.*y);
sigma x square=sum(x.*x);
A=[sigma xn;sigma x squaresigma x];
B=[sigma_y;sigma_xy];
X=A\setminus B;
a=X(1);
b=X(2);
fprintf('\n The straight line equation is y=%fx+%f\n\n',a,b)
x0=input('Enter a value of x to find y(x):');
y0=a*x0+b;
fprintf('\n The value of y at %fis f^x, x^0, y^0)
Output:
Enter a row vector x:[0:5:20]
Enter a row vector y: [7 11 16 20 26]
The straight line equation is y=0.940000x + 6.600000
Enter a value of x to find y(x):25
 The value of y at 25.000000 is 30.100000
```

TRAPEZOIDAL RULE

Question:

Write a MATLAB program to calculate $\int_0^1 f(x)dx$ using the following table by applying trapezoidal rule:

x	0.000	0.250	0.500	0.750	1.000
у	0.79788	0.77339	0.70413	0.60227	0.48394

Aim:

To write a MATLAB program for trapezoidal rule and evaluating the given integral.

Input and Output Description:

1. Input

x	0.000	0.250	0.500	0.750	1.000
y	0.79788	0.77339	0.70413	0.60227	0.48394

2. Output

$$\int_0^1 f(x) dx$$

Procedure:

Trapezoidal rule formula is

$$\int_{a}^{b} f(x)dx = \frac{h}{2}(A+2B)$$

where,

A = sum of first and last ordinates

B = sum of remaining ordinates

Given data:

$$h = 0.25$$
,

$$a=0$$
,

$$b = 1$$
,

$$n = 4$$
.

Program:

```
%Trapezoidal Rule
clc, clear;
format long
x=input('Enter a row vector x:');
y=input('Enter a row vector y:');
n=length(x);
h=(x(n)-x(1))/(n-1);
A=y(1)+y(n);
B = 0;
for i=2:n-1
    B=B+y(i);
end
integral=(h/2)*(A+2*B);
fprintf('\n The integral value using trapezoidal rule is \n')
disp(integral)
Output:
Enter a row vector x:[0:0.25:1]
Enter a row vector y:[0.79788 0.77339 0.70413 0.60227 0.48394]
 The integral value using trapezoidal rule is
   0.680175000000000
```

SIMPSON'S 1/3 RULE

Question:

By dividing the range into 10 equal parts, find the approximate value of $\int_0^{\pi} \sin x \, dx$ using Simpson's 1/3 – rule in MATLAB.

Aim:

To write a MATLAB program for Simpson's 1/3 rule and evaluating the given integral.

Input and Output Description:

1. Input

$$h = \frac{\pi}{10}$$
, $a = 0$, $b = \pi$, $f(x) = \sin(x)$

2. Output

$$\int_0^{\pi} \sin x \, dx$$

Procedure:

Simpson's 1/3 rule formula is

$$\int_{a}^{b} f(x)dx = \frac{h}{3}(A + 4B + 2C)$$

where,

A = sum of first and last ordinates, B = sum of even ordinates & C = sum of remaining ordinates

Given data:

$$h = \frac{\pi}{10}$$
, $a = 0$, $b = \pi$,

In the range $(0, \pi)$ the (x, sinx) values are tabulated below

x	0	$\frac{\pi}{10}$	$\frac{2\pi}{10}$	$\frac{3\pi}{10}$	$\frac{4\pi}{10}$	$\frac{5\pi}{10}$	$\frac{6\pi}{10}$	$\frac{7\pi}{10}$	$\frac{8\pi}{10}$	$\frac{9\pi}{10}$	π
sinx	0	0.3090	0.5878	0.8090	0.9511	1	0.9511	0.8090	0.5878	0.3090	0

```
Program:
```

```
%Simpson's one third Rule
clc, clear;
format long
x=input('Enter a row vector x:');
y=sin(x);
n=length(x);
h=(x(n)-x(1))/(n-1);
A=y(1)+y(n);
B = 0;
for i=3:2:n-1
    B=B+y(i);
end
C=0;
for i=2:2:n-1
    C=C+y(i);
end
integral=(h/3)*(A+4*B+2*C);
fprintf('\n The integral value using Simpsons 1/3 rule is \n')
disp(integral)
Output:
Enter a row vector x:[0:pi/10:pi]
 The integral value using Simpson's 1/3 rule is
   1.966937557703905
```

NEWTON RAPHSON METHOD

Question:

Write a MATLAB program to implement Newton Raphson method and to find a positive root of the equation $f(x) = 3x - \cos x - 1$ correct to four decimal places.

Aim:

To write a MATLAB program for implementing Newton Raphson method.

Input and Output Description:

1. Input

$$f(x) = 3x - \cos x - 1$$

2. Output

A positive root of the equation f(x)

Procedure:

Let f(x) be the given function. i.e., f(x) = 3x - cosx - 1.

$$f(0) = -2 (-ve)$$

$$f(1) = 1.459 (+ve)$$

Let $x_0 = 0.5$ be the first approximation of the root of the successive approximation of the root is obtained from the formula

$$x_{n+1} = x_n - \left(\frac{f(x_n)}{f'(x_n)}\right), for \ n = 0,1,2,...$$

Here f'(x) = 3 + sinx.

We write three programs one for f(x), one for f'(x) and other for the main program (Newton Raphson Method).

```
Program:
```

f.m

```
function value=f(x)
value=3*x-cos(x)-1;
fdash.m
function value=fdash(x)
value=3+sin(x);
nrmethod.m
%Newton Raphson Method
clc,clear;
x0=0.5;
error=1;
n=0;
fprintf('\n n \t \t x \t \t \t \t (x) \n');
fprintf(' %d \t %10.7f \t %10.7f \n', n, x0, f(x0));
while(error>0.00001)
    x1=x0-f(x0)/fdash(x0);
fprintf(' %d \t %10.7f \t %10.7f \n', n+1, x1, f(x1));
    error=abs(x0-x1);
    x0=x1;
    n=n+1;
end
```

Output:

n	X	f(x)
0	0.5000000	-0.3775826
1	0.6085186	0.0050602
2	0.6071019	0.000008
3	0.6071016	0.000000

GAUSS ELIMINATION METHOD

Question:

Write a MATLAB program for solving the following system of simultaneous equations using Gauss elimination method:

$$2x + y + 4z = 12$$
; $8x - 3y + 2z = 20$; $4x + 11y - z = 33$

Aim:

To write a MATLAB program for solving a system of simultaneous equation by using Gauss Elimination method.

Input and Output Description:

1. Input

$$Ax = B$$

$$\begin{pmatrix} 2 & 1 & 4 \\ 8 & -3 & 2 \\ 4 & 11 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 12 \\ 20 \\ 33 \end{pmatrix}$$

2. Output

$$x$$
, y and z

Procedure:

Gauss Elimination method consists of the following two steps:

Step1: Upper Triangularization

Making elements below the main diagonal of the augmented matrix to be zero.

Step2: Backward Substitution

Obtaining values of the variables in the order $x_n, x_{n-1}, x_{n-2}, ..., x_1$.

Given data:

$$AX = B$$

$$\begin{pmatrix} 2 & 1 & 4 \\ 8 & -3 & 2 \\ 4 & 11 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 12 \\ 20 \\ 33 \end{pmatrix}$$

Augmented Matrix is

$$\begin{pmatrix} 2 & 1 & 4 & 12 \\ 8 & -3 & 2 & 20 \\ 4 & 11 & -133 \end{pmatrix}$$

Program:

```
%Gauss Elimination Method
clc,clear
A=input('Enter the coefficient matrix: ');
if det(A) == 0
fprintf('\n Determinant cannot be zero\n');
end
if det(A) \sim = 0
    B=input('Enter the constant matrix:');
    A(:,4) = B;
    [m,n]=size(A);
     for i=1:m-1
          for j=2:m
                if A(i,i) == 0
                     temp=A(i,:);
                     A(i,:) = A(j,:);
                     A(j,:) = temp;
                end
           end
     end
     for j=1:m-1
          for i=j+1:m
                A(i,:)=A(i,:)-(A(i,j)/A(j,j))*A(j,:);
          end
     end
     X=zeros(m,1);
     for k=m:-1:1
          c = 0;
           for 1=2:m
                c=c+A(k,1)*X(1);
          end
          X(k) = (A(k, n) - c) / A(k, k);
```

GAUSS SEIDEL ITERATIVE METHOD

Question:

Write a MATLAB program to implement Gauss-Seidel iterative method for solving n equations in n variables.

Sample data:
$$27x + 6y - z = 85$$
; $6x + 15y + 2z = 72$; $x + y + 54z = 110$.

Aim:

To write a MATLAB program for implement Gauss Seidel iterative method.

Input and Output Description:

1. Input

$$Ax = B$$

$$\begin{pmatrix} 27 & 6 & -1 \\ 6 & 15 & 2 \\ 1 & 2 & 54 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 85 \\ 72 \\ 110 \end{pmatrix}$$

2. Output

$$x$$
, y and z

Procedure:

Let the given system of equations be

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

First, we rearrange the equation for pivoting. Then we compute x, y, z values respectively from the first, second, third equation as given below. Let the initial values are

$$x^{(0)} = 0, y^{(0)} = 0, z^{(0)} = 0$$

Then

$$x^{(1)} = \frac{1}{a_1} (d_1 - b_1 y^{(0)} - c_1 z^{(0)})$$

$$y^{(1)} = \frac{1}{b_2} (d_2 - a_2 x^{(1)} - c_2 z^{(0)})$$

$$z^{(1)} = \frac{1}{c_3} (d_3 - a_3 x^{(1)} - b_3 y^{(1)})$$

The successive values are calculated similarly.

```
Program:
```

```
%Gauss Seidal Iterative Method
clc,clear;
format long;
A=input('Enter the Matrix A:');
B=input('Enter the Matrix B:');
n=input('Enter the number of iteration:');
A(:,4) = B;
fprintf('\n The Augmented Matrix is: \n');
disp(A);
x(1) = 0;
y(1) = 0;
z(1) = 0;
for i=1:n
     x(i+1) = (A(1,4)-A(1,2)*y(i)-A(1,3)*z(i))/A(1,1);
     y(i+1) = (A(2,4)-A(2,1)*x(i+1)-A(2,3)*z(i))/A(2,2);
     z(i+1) = (A(3,4)-A(3,1)*x(i+1)-A(3,2)*y(i+1))/A(3,3);
end
for k=1:n
     fprintf('\n Iteration: %d \n x= %f, \n y= %f and \n z= %f
     n', k, x (k+1), y (k+1), z (k+1))
end
Input:
Enter the Matrix A: [27 6 -1; 6 15 2; 1 1 54]
Enter the Matrix B:[85; 72; 110]
Enter the number of iteration:6
Output:
 The Augmented Matrix is:
    2.7
           6
                 -1
                       8.5
     6
          15
                  2
                       72
           1
                 54
                      110
     1
```

```
Iteration: 1
```

x = 3.148148,

y = 3.540741 and

z = 1.913169

Iteration: 2

x = 2.432175

y = 3.572041 and

z = 1.925848

Iteration: 3

x = 2.425689

y = 3.572945 and

z = 1.925951

Iteration: 4

x = 2.425492,

y = 3.573010 and

z = 1.925954

Iteration: 5

x = 2.425478,

y = 3.573015 and

z = 1.925954

Iteration: 6

x = 2.425476,

y = 3.573016 and

z = 1.925954

RUNGE KUTTA FOURTH ORDER METHOD

Question:

Write a MATLAB program to implement 4th order Runge-Kutta method and find an approximate value of y when x = 0.2 given that y' = x + y; y(0) = 1.

Aim:

To write a MATLAB program for implementing Runge-Kutta fourth order method.

Input and Output Description:

1. Input

$$y' = f(x, y) = x + y;$$

 $y(0) = 1$, i.e., $x_0 = -0$, $y_0 = 1$
 $x_n = 0.2$
 $h = 0.1$

2. Output

Procedure:

Given a differential equation of the form

$$y' = f(x, y), y(x_0) = y_0$$

The RungeKutta fourth order formula for finding a solution is given below,

$$k_{1} = hf(x_{0}, y_{0})$$

$$k_{2} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}\right)$$

$$k_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}\right)$$

$$k_{4} = hf(x_{0} + h, y_{0} + k_{3})$$

$$\Delta y = \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

$$x_{1} = x_{0} + h, y_{1} = y(x) = y_{0} + \Delta y$$

We write two programs, one for f(x, y) and the other for finding y(0.2) using Runge-Kutta fourth order method.

```
Program:
```

```
f.m
```

```
function value=f(x,y)
value=x+y;
rkmethod.m
%RungeKutta fourth order method
clc, clear;
x0=input('Enter the value of x0: ');
y0=input('Enter the value of y0: ');
xn=input('Enter the value of xn: ');
h=input(Enter the value of step size: ');
fprintf('\n It.No \t\t X \t\t Y \n');
n=1;
while (x0 < xn)
     k1=h*f(x0,y0);
     k2=h*f(x0+h/2,y0+k1/2);
     k3=h*f(x0+h/2,y0+k2/2);
     k4=h*f(x0+h,y0+k3);
     delta y=(k1+2*k2+2*k3+k4)/6;
     x0=x0+h;
     y0=y0+delta y;
     fprintf('\n%d \t %f \t %f\n',n,x0,y0);
     n=n+1;
end
Input:
Enter the value of x0:0
Enter the value of y0: 1
Enter the value of step size: 0.1
Enter the value of xn: 0.2
Output:
                 Υ
  0.100000 1.110342
  0.200000 1.242805
```

LAGRANGE'S INTERPOLATION METHOD

Question:

Write a MATLAB program to implement Lagrange's interpolation formula and compute f(27) from the following table:

х	14	17	31	35
y	68.7	64.0	44.0	39.1

Aim:

To write a MATLAB program for implementing Lagrange's interpolation method.

Input and Output Description:

1. Input

х	14	17	31	35
y	68.7	64.0	44.0	39.1

2. Output

Procedure:

Given a set of n+1 tabulated values $(x_0, y_0), (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$. The Lagrange's interpolation formula to find y = f(x) at a given x is given below,

$$y = f(x) = \frac{(x - x_1)(x - x_2) \dots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)} y_0 + \frac{(x - x_0)(x - x_2) \dots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)} y_1 + \dots + \frac{(x - x_0)(x - x_1) \dots (x - x_{n-1})}{(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1})} y_n$$

```
Program:
```

```
%Lagrange Interpolation
clc,clear;
format long
X=input('Enter the array of x: ');
Y=input('Enter the array of y: ');
given x=input('Enter the value of x to be interpolated: ');
n=length(X);
sum=0;
for i=1:n
     factor(i)=1;
     for j=1:n;
          if j~=i
                factor(i) = factor(i) * (given x-X(j)) / (X(i)-X(j));
          end
     end
     factor(i) = factor(i) *Y(i);
     sum=sum+factor(i);
end
fprintf('\n The value of y when x=%f is %f\n', given x, sum);
Input:
Enter the array of x: [14 17 31 35]
Enter the array of y=f(x): [68.7 64 44 39.1]
Enter the value of x to be interpolated: 27
```

Output:

```
The value of f(27) is 49.310457516339852
```