Ícaro Lima Magalhães

Ciência da Computação - 11328386

Professor Leonardo Vidal Batista

Introdução ao Processamento Digital de Imagens

30 de abril de 2018

Trabalho II, Relatório

INTRODUÇÃO

Este trabalho é focado na análise do resultado de operações de convolução e aplicação de máscaras em imagens RGB convertidas para níveis de cinza. Parte da atividade é executada com parâmetros pré definidos e alguns exercícios abrem espaço para experimentação.

MATERIAIS E MÉTODOS USADOS

Assim como na atividade I, optei por não utilizar OpenCV. A linguagem escolhida foi Python 3.6. Toda a implementação manipula a matriz pixel a pixel e a biblioteca Pillow - Python Imaging Library - para executar operações básicas como obter as dimensões, aplicar bordas, abrir e salvar as imagens, seguindo a interface sugerida na descrição da atividade.

DETALHES DE IMPLEMENTAÇÃO

Na atividade II foram feitas algumas melhorias na classe DetailedImage que tem como finalidade detalhar e expor parâmetros e operar sobre a imagem de entrada. O método de convolução e aplicação de máscaras foi revisto e melhorado. O dataset usado nos testes será

apresentado em sessões futuras. Assim como no trabalho I, a nível de demonstração usarei a imagem lena.jpg manipulada originalmente com dimensão 512x512.

Imagem original

Imagem em níveis de cinza

lena.jpg com variações ao longo dos testes

2A - Filtros de aguçamento - Sharpness

As operações implementadas são definidas a partir das máscaras especificadas com os parâmetros c e d variáveis, sendo definidos originalmente como c = d = 1.

A legenda das imagens de teste segue o formato mask_cValue_dValue.

E.g. a1 c1 d2, onde a máscara é a1, c = 1 e d = 2.

a2_c1_d1

Como podemos notar, no teste original com c = d = 1, o filtro a2 apresentou mais definição porém adicionou bastante granularidade à imagem como um todo. No geral, as bordas ficam mais definidas com o filtro a2, independente das variações de c e d, porém a imagem aparentemente perde um pouco de qualidade devido à adição de granularidade. Seguindo o que sugerido na atividade, foram feitos testes para as máscaras dinâmicas a1 e a2 com diversas variações dos parâmetros c e d. Os resultados são apresentados a seguir:

a1_c4_d2

 $a2_c4_d2$

2B - Filtros de detecção de bordas

Os filtros são computados a partir das matrizes especificadas:

b1	b2	b3	b4
[-1/8, 1, -1/8] [-1/8, -1/8, -1/8]	$[\ 0, \ 0, \ 0] \ [\ 1, \ 1, \ 1]$	[-1, 0, 1] $[-1, 0, 1]$	[-1, 0, 1] $[0, 1, 1]$
[-1/8, -1/8, -1/8]	[-1, -1, -1]	[-1, 0, 1]	[-1, -1, 0]

Esta máscara apresenta uma variação do filtro com contornos muito bem definidos em todos os eixos.

A máscara usada foi:

[-1/8, -1/8, -1/8] [-1/8, 1, -1/8] [-1/8, -1/8, -1/8]

b1

Esta variação traz contornos mais grossos que b1, porém os contornos mais superiores são mais acentuados.

A máscara usada foi:

b2

Esta variação traz contornos mais grossos, de modo que contornos mais à esquerda aparecem com mais definição.

A máscara usada foi:

b3

Esta variação é apresentada como um meio termo entre b2 e b3.

A máscara usada foi:

b4

2C - Filtro de Relevo - Emboss

Os filtros são computados a partir das matrizes especificadas:

[0, 0, 0]	[0, 0, -1]	[0, 0, 2]
[0, 1, 0]	[0, 1, 0]	[0, -1, 0]
[0, 0, -1]	[0, 0, 0]	[-1, 0, 0]
c1	62	c3

Similar ao filtro b1 de detecção de bordas, o relevo é apresentado focando somente nos pontos mais acentuados da imagem.

A máscara usada foi:

Esta variação apresenta relevos com mais qualidade porém perde a definição de algumas bordas. Um exemplo é a região superior direita do chapéu que apesar de apresentar relevos com qualidade não tem sua borda bem definida.

A máscara usada foi:

c2

Esta máscara destaca relevos onde não há bordas, isso pode ser notado na face de lena. Nenhum dos filtros de relevo anteriores destaca a região da face tão bem.

A máscara usada foi:

[0, 0, 2] [0, -1, 0] [-1, 0, 0]

с3

3 - Implementação e teste das operações de expansão e equalização de histograma

Imagem original, banda Y saturada.

Após Equalização

Para este teste foi usada uma imagem com saturação alterada para só assim notarmos o real

efeito das operações de expansão e equalização sobre os níveis de contraste da imagem. Os níveis de contraste na equalização

Expansão

Equalização

Equalização

Expansão

pelo que podemos notar nas imagens, ao aplicar {Expansão ☐ Equalização}, os níveis de branco ficam mais estourados, a imagem perde mais informação do que na variação {Equalização ☐ Expansão}.

DATASET USADO

O dataset da atividade foi composto por duas das quatro imagens da atividade I, introduzindo duas novas imagens nas resoluções 512x512, 256x256 e 128x128 pixels:

DIFICULDADES ENCONTRADAS E OBSERVAÇÕES

Apesar de pesada, sendo de ordem O(N³) caso o kernel seja do tamanho da imagem original, o custo computacional da operação foi reduzido em relação ao trabalho I, pois a aplicação das operações só será efetuada sobre a banda Y da imagem. A convolução foi melhorada em relação ao trabalho anterior.

Durante os testes dos métodos de equalização e expansão, algumas imagens com níveis de cinza equilibrados não mostraram resultados que permitissem fazer observações mais pontuais, para isso foi usada uma imagem com saturação alterada, permitindo assim uma melhor análise.

CONCLUSÃO

A atividade, focada na implementação e análise de operações de convolução abre espaço para experimentação e introduz conceitos que só podem ser observados ao variar parâmetros das matrizes / kernels aplicados em cada operação. Conhecer estes conceitos nos torna mais independentes e críticos em relação à importância do processamento digital de imagens em diversos campos da ciência, assim como em atividades cotidianas como, por exemplo, a aplicação de um filtro em uma foto e o impacto disso na performance de uma aplicação.