Math 475

Text: Brualdi, Introductory Combinatorics 5th Ed.

Prof: Paul Terwilliger

Selected solutions for Chapter 7

We list some Fibonacci numbers together with their prime factorization.

n	f_n	factorization
0	0	0
1	1	1
2	1	1
3	2	2
4	3	3
5	5	5
6	8	2^{3}
7	13	13
8	21	3×7
9	34	2×17
10	55	5×11
11	89	89
12	144	$2^4 \times 3^2$
13	233	233
14	377	13×29
15	610	$2 \times 5 \times 61$
16	987	$3 \times 7 \times 47$
17	1597	1597
18	2584	$2^3 \times 17 \times 19$
19	4181	37×113
20	6765	$3 \times 5 \times 11 \times 41$
21	10946	$2 \times 13 \times 421$
22	17711	89×199
23	28657	28657
24	46368	$2^5 \times 3^2 \times 7 \times 23$

1. We have

n	$\sum_{k=1}^{n} f_{2k-1}$	$\sum_{k=0}^{n} f_{2k}$	$\sum_{k=0}^{n}(-1)^{k}f_{k}$	$\sum_{k=0}^{n} f_k^2$
0	0	0	0	0
1	1	1	-1	1
2	3	4	0	2
3	8	12	-2	$6 = 2 \times 3$
4	21	33	1	$15 = 3 \times 5$
5	55	88	-4	$40 = 5 \times 8$
6	144	232	4	$104 = 8 \times 13$
7	377	609	- 9	$273 = 13 \times 21$
n	f_{2n}	$f_{2n+1}-1$	$-1 + (-1)^n f_{n-1}$	$f_n f_{n+1}$

2. We have

$$f_n = \frac{B^n - L^n}{\sqrt{5}},$$

where

$$B = \frac{1 + \sqrt{5}}{2}, \qquad L = \frac{1 - \sqrt{5}}{2}.$$

To show that f_n is the integer closest to $B^n/\sqrt{5}$, it suffices to show that

$$-\frac{1}{2} < \frac{L^n}{\sqrt{5}} < \frac{1}{2}.$$

Using $2 < \sqrt{5} < 3$ we have -1 < L < -1/2 so $-1 \le L \le 1$. Therefore $-1 \le L^n \le 1$. Also $1/\sqrt{5} < 1/2$. The result follows.

3. For m = 2, 3, 4 consider the Fibonacci sequence f_0, f_1, \ldots modulo m.

n	f_n	$f_n \mod 2$	$f_n \mod 3$	$f_n \mod 4$
0	0	0	0	0
1	1	1	1	1
2	1	1	1	1
3	2	0	2	2
4	3	1	0	3
5	5	1	2	1
6	8	0	2	0
7	13	1	1	1
8	21	1	0	1
9	34	0	1	2
		•	•	•
		•	•	•

The sequence repeats with period 3 (resp. 8) (resp. 6) if m = 2 (resp. m = 3) (resp. m = 4). The result follows.

4. For an integer $n \geq 5$ we have

$$f_n = f_{n-1} + f_{n-2}$$

$$f_{n-1} = f_{n-2} + f_{n-3}$$

$$f_{n-2} = f_{n-3} + f_{n-4}$$

$$f_{n-3} = f_{n-4} + f_{n-5}.$$

In the first equation eliminate f_{n-1} using the second equation and simplify; in the resulting equation eliminate f_{n-2} using the third equation and simplify; in the resulting equation eliminate f_{n-3} using the fourth equation and simplify. The result is

$$f_n = 5f_{n-4} + 3f_{n-5}.$$

Therefore $f_n = 3f_{n-5} \pmod{5}$. Consequently $f_n = 0 \pmod{5}$ if and only if $f_{n-5} = 0 \pmod{5}$. This together with the initial conditions $f_0 = 0$, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, $f_4 = 3$ shows that $f_n = 0 \pmod{5}$ if and only if n is divisible by 5.

5. Consider the Fibonacci sequence f_0, f_1, \ldots modulo 7.

n	$\int f_n$	$f_n \mod 7$
0	0	0
1	1	1
2	1	1
1 2 3 4	$\frac{2}{3}$	2
	3	3
5	5	-2
5 6 7 8 9	8	1
7	13	-1
8	21	0
9	34	-1
•		•
•		•

The table shows that modulo 7 the Fibonacci sequence will repeat with period 16. The pattern of zero/nonzero entries shows that f_n is divisible by 7 if and only if n is divisible by 8.

6, 7. Claim I: f_n, f_{n+1} are relatively prime for $n \geq 1$.

Proof of Claim I: By induction on n. The claim holds for n = 1 since $f_1 = 1$ and $f_2 = 1$. Next assume $n \ge 2$. Let x denote a positive integer such that $x|f_n$ and $x|f_{n+1}$. We show x = 1. Note that $x|f_{n-1}$ since $f_{n+1} = f_n + f_{n-1}$. By induction f_n and f_{n-1} are relatively prime, so x = 1.

Claim II: For $r, s \ge 0$ the expression $f_r f_s + f_{r+1} f_{s+1}$ depends only on r + s.

Proof of Claim II: Define $F(r,s) = f_r f_s + f_{r+1} f_{s+1}$. It suffices to show that F(r,s) = F(r-1,s+1) provided $r \ge 1$. Note that

$$F(r-1, s+1) = f_{r-1}f_{s+1} + f_rf_{s+2}$$

$$= f_{r-1}f_{s+1} + f_r(f_s + f_{s+1})$$

$$= f_rf_s + (f_{r-1} + f_r)f_{s+1}$$

$$= f_rf_s + f_{r+1}f_{s+1}$$

$$= F(r, s).$$

Claim III: For $r, s \ge 0$ we have

$$f_r f_s + f_{r+1} f_{s+1} = f_{r+s+1}.$$

Proof of Claim III: By Claim II

$$f_r f_s + f_{r+1} f_{s+1} = f_{r+s} f_0 + f_{r+s+1} f_1$$

= f_{r+s+1}

since $f_0 = 0$ and $f_1 = 1$. Claim IV: For $r, s \ge 1$,

$$f_{r+s} = f_r f_{s-1} + f_s f_{r+1}$$

= $f_s f_{r-1} + f_r f_{s+1}$.

Proof of Claim IV: This is a reformulation of Claim IV.

Claim V: For $r, s \ge 1$ consider

$$f_r, f_s, f_{r+s}$$
.

If a positive integer x divides at least two of these, then x divides all three.

Proof of Claim V: Assume that $x|f_r$ and $x|f_s$. Then $x|f_{r+s}$ by Claim IV. Next assume that $x|f_r$ and $x|f_{r+s}$. By Claim IV, $x|f_sf_{r+1}$. But x, f_{r+1} are relatively prime, since $x|f_r$ and f_r, f_{r+1} are relatively prime. Therefore $x|f_s$.

Claim VI: Given integers $m, n \ge 1$ such that n|m. Then $f_n|f_m$.

Proof of Claim VI: We use induction on k = m/n. For k = 1 the claim holds. Next assume $k \geq 2$, and consider f_n, f_{m-n}, f_m . By induction $f_n|f_{m-n}$. Applying Claim V with r = n, s = m - n, $x = f_n$ we find $f_n|f_m$.

Claim VII: Given integers $m, n \ge 1$ with greatest common divisor d. Then f_d is the greatest common divisor of f_m, f_n .

Proof of Claim VII: We use induction on $\min(m, n)$. The claim holds for $\min(m, n) = 1$. Next assume $\min(m, n) \geq 2$. Without loss we may assume m > n. We may also assume that n does not divide m; otherwise d = n and we are done since $f_n|f_m$. Divide m by n and consider the remainder:

$$m = qn + r 1 \le r \le n - 1.$$

Observe that

$$GCD(n,r) = GCD(m,n) = d.$$

By induction and since $r \leq n-1$,

$$f_d = GCD(n, r).$$

Since d|m and d|n we have $f_d|f_m$ and $f_d|f_n$. Conversely, let x denote a positive integer such that $x|f_m$ and $x|f_n$. We show $x|f_d$. Consider f_m, f_{qn}, f_r . By assumption $x|f_m$. Also $x|f_n$ so $x|f_{qn}$ by Claim VI. Now $x|f_r$ by Claim V. We have $x|f_n$ and $x|f_r$. Therefore $x|f_d$ since $f_d = GCD(f_n, f_r)$. We have shown $f_d = GCD(f_m, f_n)$.

8. By construction $h_0 = 1$ and $h_1 = 2$. We now find h_n for $n \ge 2$. Consider a coloring of the $1 \times n$ chessboard. The first square is colored red or blue. If it is blue, then there are h_{n-1} ways to color the remaining n-1 squares. If it is red, then the second square is blue, and there are h_{n-2} ways to color the remaining n-2 squares. Therefore $h_n = h_{n-1} + h_{n-2}$. Comparing the above data with the Fibonacci sequence we find $h_n = f_{n+2}$.

9. By construction $h_0 = 1$ and $h_1 = 3$. We now find h_n for $n \ge 2$. Consider a coloring of the $1 \times n$ chessboard. The first square is colored red or white or blue. If it is white or blue, then there are h_{n-1} ways to color the remaining n-1 squares. If it is red, then the second square is white or blue, and there are h_{n-2} ways to color the remaining n-2 squares. Therefore $h_n = 2h_{n-1} + 2h_{n-2}$. To find h_n in closed form, consider the quadratic equation $x^2 = 2x + 2$. By the quadratic formula $x = 1 \pm \sqrt{3}$. We hunt for real numbers a, b such that

$$h_n = a(1+\sqrt{3})^n + b(1-\sqrt{3})^n$$
 $n = 0, 1, 2, ...$

Setting n = 0, 1 we find

$$1 = a + b,
3 = a(1 + \sqrt{3}) + b(1 - \sqrt{3}).$$

Solving these equations for a, b we find

$$a = \frac{\sqrt{3} + 2}{2\sqrt{3}}, \qquad b = \frac{\sqrt{3} - 2}{2\sqrt{3}}.$$

Therefore

$$h_n = \frac{\sqrt{3} + 2}{2\sqrt{3}} (1 + \sqrt{3})^n + \frac{\sqrt{3} - 2}{2\sqrt{3}} (1 - \sqrt{3})^n \qquad n = 0, 1, 2, \dots$$

- 10. After n months there will be $2f_{n+1}$ pairs of rabbits.
- 11. (a) Define $Z_n = f_{n-1} + f_{n+1} l_n$ for $n \ge 1$. One checks $Z_1 = 0$ and $Z_2 = 0$. Also $Z_n = Z_{n-1} + Z_{n-2}$ for $n \ge 3$. Therefore $Z_n = 0$ for $n \ge 1$. The result follows.
- (b) Use induction on n. First assume n = 0. Then each side equals 4. Next assume $n \ge 1$. By induction

$$l_0^2 + l_1^2 + \dots + l_n^2 = l_{n-1}l_n + 2 + l_n^2$$

$$= l_n(l_{n-1} + l_n) + 2$$

$$= l_n l_{n+1} + 2.$$

12. We have

$$(n-1)^3 = n^3 - 3n^2 + 3n - 1$$

so

$$n^3 = (n-1)^3 + 3n^2 - 3n + 1.$$

13. (a)
$$(1-cx)^{-1}$$
; (b) $(1+x)^{-1}$; (c) $(1-x)^{\alpha}$; (d) e^x ; (e) e^{-x} .

14. (a)

$$(x + x^3 + x^5 + \cdots)^4 = x^4 (1 + x^2 + x^4 + \cdots)^4$$

= $x^4 (1 - x^2)^{-4}$.

(b)

$$(1+x^3+x^6+\cdots)^4 = (1-x^3)^{-4}$$

(c)

$$(1+x)(1+x+x^2+\cdots)^2 = (1+x)(1-x)^{-2}$$
.

(d)

$$(x+x^3+x^{11})(x^2+x^4+x^5)(1+x+x^2+\cdots)^2 = x^3(1+x^2+x^{10})(1+x^2+x^3)(1-x)^{-2}.$$

(e)

$$(x^{10} + x^{11} + x^{12} + \cdots)^4 = x^{40}(1 + x + x^2 + \cdots)^4$$

= $x^{40}(1 - x)^{-4}$.

15. We evaluate $\sum_{n=0}^{\infty} n^3 x^n$. For $n \ge 0$,

$$n^3 = 6\binom{n}{3} + 6\binom{n}{2} + \binom{n}{1}.$$

Recall

$$\sum_{n=0}^{\infty} \binom{n}{3} x^n = \sum_{n=3}^{\infty} \binom{n}{3} x^n$$

$$= x^3 \sum_{n=3}^{\infty} \binom{n}{3} x^{n-3}$$

$$= x^3 \sum_{n=0}^{\infty} \binom{n+3}{3} x^n$$

$$= x^3 (1-x)^{-4}.$$

Similarly,

$$\sum_{n=0}^{\infty} \binom{n}{2} x^n = x^2 (1-x)^{-3}, \qquad \sum_{n=0}^{\infty} \binom{n}{1} x^n = x (1-x)^{-2}.$$

Therefore

$$\sum_{n=0}^{\infty} n^3 x^n = 6x^3 (1-x)^{-4} + 6x^2 (1-x)^{-3} + x(1-x)^{-2}$$
$$= x(x^2 + 4x + 1)(1-x)^{-4}.$$

16. This is the generating function for the sequence $\{h_n\}_{n=0}^{\infty}$ where h_n is the number of n-combinations of the multiset

$$\{\infty \cdot e_1, \infty \cdot e_2, \infty \cdot e_3, \infty \cdot e_4\}$$

such that (i) e_1 appears at most twice; (ii) e_2 is even and at most 6; (iii) e_3 is even; (iv) e_4 is nonzero.

17. The generating function is

$$\sum_{n=0}^{\infty} h_n x^n = (1 + x^2 + x^4 + \dots)(1 + x + x^2)(1 + x^3 + x^6 + \dots)(1 + x).$$

Evaluating this using

$$1 + x^2 + x^4 + \dots = (1 - x^2)^{-1},$$
 $1 + x^3 + x^6 + \dots = (1 - x^3)^{-1}$

and simplifying, we obtain

$$\sum_{n=0}^{\infty} h_n x^n = (1-x)^{-2}$$
$$= \sum_{n=0}^{\infty} (n+1)x^n.$$

Therefore $h_n = n + 1$ for $n \ge 0$.

18. Define

$$E_1 = 2e_1, \qquad E_2 = 5e_2, \qquad E_3 = e_3, \qquad E_4 = 7e_4.$$

The scalar h_n is the number of nonnegative integral solutions to

$$E_1 + E_2 + E_3 + E_4 = n,$$

such that (i) E_1 is even; (ii) E_2 is divisible by 5; (iii) E_4 is divisible by 7. The generating function for $\{h_n\}_{n=0}^{\infty}$ is

$$(1+x^2+x^4+\cdots)(1+x^5+x^{10}+\cdots)(1+x+x^2+\cdots)(1+x^7+x^{14}+\cdots).$$

This simplifies to

$$\frac{1}{1-x^2} \frac{1}{1-x^5} \frac{1}{1-x} \frac{1}{1-x^7}.$$

19. We have

$$\sum_{n=0}^{\infty} \binom{n}{2} x^n = \sum_{n=2}^{\infty} \binom{n}{2} x^n$$

$$= x^2 \sum_{n=2}^{\infty} \binom{n}{2} x^{n-2}$$

$$= x^2 \sum_{n=0}^{\infty} \binom{n+2}{2} x^n$$

$$= x^2 (1-x)^{-3}.$$

20. We have

$$\sum_{n=0}^{\infty} \binom{n}{3} x^n = \sum_{n=3}^{\infty} \binom{n}{3} x^n$$

$$= x^3 \sum_{n=3}^{\infty} \binom{n}{3} x^{n-3}$$

$$= x^3 \sum_{n=0}^{\infty} \binom{n+3}{3} x^n$$

$$= x^3 (1-x)^{-4}.$$

21. Define $g(x) = \sum_{n=0}^{\infty} h_n x^n$. We have

$$\sum_{n=1}^{\infty} h_{n-1}x^n = xg(x),$$

$$\sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2},$$

$$\sum_{n=0}^{\infty} \binom{n+1}{3} x^n = \frac{x^2}{(1-x)^4}.$$

From the given recurrence we find

$$g(x) - xg(x) = \frac{x^2}{(1-x)^4} + \frac{x}{(1-x)^2}.$$

Therefore

$$g(x) = \frac{x^2}{(1-x)^5} + \frac{x}{(1-x)^3}$$
$$= \sum_{n=0}^{\infty} {n+2 \choose 4} x^n + \sum_{n=0}^{\infty} {n+1 \choose 2} x^n.$$

Consequently

$$h_n = \binom{n+2}{4} + \binom{n+1}{2}$$
 $n = 1, 2, 3, \dots$

22. The exponential generating function is

$$g^{e}(x) = \sum_{n=0}^{\infty} n! \frac{x^{n}}{n!} = \sum_{n=0}^{\infty} x^{n} = \frac{1}{1-x}.$$

23. The exponential generating function is

$$g^{e}(x) = \sum_{n=0}^{\infty} \alpha(\alpha - 1) \cdots (\alpha - n + 1) \frac{x^{n}}{n!} = \sum_{n=0}^{\infty} {\alpha \choose n} x^{n} = (1 + x)^{\alpha}.$$

24. (a) We have $g^e(x) = G(x)^k$ where

$$G(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \frac{e^x - e^{-x}}{2}.$$

(b) We have $g^e(x) = G(x)^k$ where

$$G(x) = \frac{x^4}{4!} + \frac{x^5}{5!} + \dots = e^x - 1 - x - \frac{x^2}{2!} - \frac{x^3}{3!}.$$

(c) We have $g^e(x) = G_1(x)G_2(x)\cdots G_k(x)$ where for $1 \le r \le k$,

$$G_r(x) = \frac{x^r}{r!} + \frac{x^{r+1}}{(r+1)!} + \dots = e^x - 1 - x - \frac{x^2}{2!} - \dots - \frac{x^{r-1}}{(r-1)!}.$$

(d) We have $g^e(x) = G_1(x)G_2(x)\cdots G_k(x)$ where

$$G_r(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^r}{r!}$$
 $(1 \le r \le k).$

25. For an integer $n \geq 0$, h_n is equal to the number of n-permutations of the multiset

$$\{\infty \cdot R, \infty \cdot W, \infty \cdot B, \infty \cdot G\}$$

such that both (i) R appears an even number of times; (ii) W appears an odd number of times. The exponential generating function is $g^e(x) = G_1(x)G_2(x)G_3(x)G_4(x)$, where

$$G_1(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots = \frac{e^x + e^{-x}}{2},$$

$$G_2(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \frac{e^x - e^{-x}}{2},$$

$$G_3(x) = G_4(x) = 1 + x + \frac{x^2}{2!} + \dots = e^x.$$

Using this we obtain

$$g^{e}(x) = \frac{e^{4x} - 1}{4} = x + \frac{4x^{2}}{2!} + \frac{4^{2}x^{3}}{3!} + \cdots$$

Therefore $h_n = 4^{n-1}$ if $n \ge 1$ and $h_0 = 0$.

26. For an integer $n \geq 0$, h_n is equal to the number of n-permutations of the multiset

$$\{\infty \cdot R, \infty \cdot B, \infty \cdot G, \infty \cdot O\}$$

such that both R and G appears an even number of times. The exponential generating function is $g^e(x) = G_1(x)G_2(x)G_3(x)G_4(x)$, where

$$G_1(x) = G_3(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots = \frac{e^x + e^{-x}}{2},$$

 $G_2(x) = G_4(x) = 1 + x + \frac{x^2}{2!} + \dots = e^x.$

Using this we obtain

$$g^{e}(x) = \frac{(e^{2x} + 1)^{2}}{4} = \frac{e^{4x} + 2e^{2x} + 1}{4}.$$

Therefore $h_n = 4^{n-1} + 2^{n-1}$ if $n \ge 1$ and $h_0 = 1$.

27. Call the number h_n . Then h_n is equal to the number of n-permutations of the multiset

$$\{\infty \cdot 1, \infty \cdot 3, \infty \cdot 5, \infty \cdot 7, \infty \cdot 9\}$$

such that 1 and 3 occur a nonzero even number of times. The exponential generating function is $g^e(x) = G_1(x)G_3(x)G_5(x)G_7(x)G_9(x)$ where

$$G_1(x) = G_3(x) = \frac{x^2}{2!} + \frac{x^4}{4!} + \dots = \frac{e^x + e^{-x}}{2} - 1,$$

 $G_5(x) = G_7(x) = G_9(x) = e^x.$

Using this we obtain

$$g^{e}(x) = \frac{e^{x}(e^{x} - 1)^{4}}{4} = \frac{e^{5x} - 4e^{4x} + 6e^{3x} - 4e^{2x} + e^{x}}{4}.$$

Therefore

$$h_n = \frac{5^n - 4 \times 4^n + 6 \times 3^n - 4 \times 2^n + 1}{4}.$$

28. The exponential generating function is $g^e(x) = \prod_{r=4}^9 G_r(x)$ where

$$G_4(x) = G_6(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots = \frac{e^x + e^{-x}}{2},$$

$$G_5(x) = G_7(x) = x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = e^x - 1,$$

$$G_8(x) = G_9(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = e^x.$$

Using this we obtain

$$g^{e}(x) = \frac{(e^{x} - 1)^{2}(e^{2x} + 1)^{2}}{4} = \frac{e^{6x} - 2e^{5x} + 3e^{4x} - 4e^{3x} + 3e^{2x} - 2e^{x} + 1}{4}.$$

$$h_n = \frac{6^n - 2 \times 5^n + 3 \times 4^n - 4 \times 3^n + 3 \times 2^n - 2 \times 1}{4}$$

if $n \ge 1$ and $h_0 = 0$.

29. Let h_n , r_n , s_n , t_n denote the number of n-digit numbers that have each digit odd, and the multiplicity of 1 and 3 as shown below:

variable	mult. of 1	mult. of 3
h_n	even	even
r_n	even	odd
s_n	odd	even
t_n	odd	odd

For $n \geq 1$, consider what happens if we remove the first digit of an n-digit number. We find

$$h_n = r_{n-1} + s_{n-1} + 3h_{n-1},$$

$$r_n = t_{n-1} + h_{n-1} + 3r_{n-1},$$

$$s_n = t_{n-1} + h_{n-1} + 3s_{n-1},$$

$$t_n = r_{n-1} + s_{n-1} + 3t_{n-1}.$$

The initial conditions are

$$h_0 = 1,$$
 $r_0 = 0,$ $s_0 = 0,$ $t_0 = 0.$

Using the above data one checks using induction on n that

$$h_n = \frac{5^n + 2 \times 3^n + 1}{4},$$

$$r_n = s_n = \frac{5^n - 1}{4},$$

$$t_n = \frac{5^n - 2 \times 3^n + 1}{4}$$

for $n \geq 0$. The result follows.

30. Let R_n (resp. r_n) denote the number of ways to color the $1 \times n$ chessboard with colors red, white, and blue, such that red appears with even multiplicity and there is no restriction on blue (resp. blue does not appear). So $h_n = R_n - r_n$. We have $R_0 = 1$, $r_0 = 1$, $h_0 = 0$. Now suppose $n \ge 1$. We show $r_n = 2^{n-1}$. To see this, consider the number of ways to color the $1 \times n$ chessboard with red and white, such that red appears with even multiplicity. We could color squares $2, 3, \ldots, n$ arbitrarily red or white, and then color square 1 red or white in order to make the multiplicity of red even. This shows $r_n = 2^{n-1}$. Now consider what happens if we remove square 1 of the chessboard. We find

$$R_n = 3^{n-1} + R_{n-1}.$$

$$R_n = R_0 + 1 + 3 + 3^2 + \dots + 3^{n-1} = 1 + \frac{3^n - 1}{3 - 1} = \frac{3^n + 1}{2}.$$

Therefore

$$h_n = R_n - r_n = \frac{3^n - 2^n + 1}{2}$$

for $n \geq 1$.

- 31. One checks by induction on n that $h_n = 0$ if n is even and $h_n = 2^{n-1}$ if n is odd.
- 32. One checks by induction on n that $h_n = (n+2)!$ for $n \ge 0$.
- 33. Observe

$$x^{3} - x^{2} - 9x + 9 = (x - 3)(x + 3)(x - 1).$$

Therefore the general solution is

$$h_n = a3^n + b(-3)^n + c$$
 $n = 0, 1, 2, ...$

Using $h_0 = 0$, $h_1 = 1$, $h_2 = 2$ we obtain

$$0 = a + b + c,$$

$$1 = 3a - 3b + c,$$

$$2 = 9a + 9b + c.$$

Solving this system we find

$$a = 1/3,$$
 $b = -1/12,$ $c = -1/4.$

Therefore

$$h_n = \frac{4 \times 3^n - (-3)^n - 3}{12} \qquad n = 0, 1, 2, \dots$$

34. Observe

$$x^2 - 8x + 16 = (x - 4)^2$$
.

Therefore the general solution is

$$h_n = (a+bn)4^n$$
 $n = 0, 1, 2, \dots$

Using $h_0 = -1$, $h_1 = 0$ we obtain

$$a = -1, b = 1.$$

$$h_n = (n-1)4^n$$
 $n = 0, 1, 2, \dots$

35. Observe

$$x^3 - 3x + 2 = (x+2)(x-1)^2$$
.

Therefore the general solution is

$$h_n = a(-2)^n + bn + c$$
 $n = 0, 1, 2, \dots$

Using $h_0 = 1$, $h_1 = 0$, $h_2 = 0$ we obtain

$$1 = a + c,
0 = -2a + b + c,
0 = 4a + 2b + c.$$

This yields

$$a = 1/9,$$
 $b = -2/3,$ $c = 8/9.$

Therefore

$$h_n = \frac{(-2)^n - 6n + 8}{9} \qquad n = 0, 1, 2, \dots$$

36. Observe

$$x^4 - 5x^3 + 6x^2 + 4x - 8 = (x - 2)^3(x + 1).$$

Therefore the general solution is

$$h_n = (an^2 + bn + c)2^n + d(-1)^n$$
 $n = 0, 1, 2, ...$

Using $h_0 = 0$, $h_1 = 1$, $h_2 = 1$, $h_3 = 2$ we obtain

$$\begin{array}{rcl} 0 & = & c+d, \\ 1 & = & 2a+2b+2c-d, \\ 1 & = & 16a+8b+4c+d, \\ 2 & = & 72a+24b+8c-d. \end{array}$$

This yields

$$a = -1/24,$$
 $b = 7/72,$ $c = 8/27,$ $d = -8/27.$

$$h_n = \frac{(-9n^2 + 21n + 64)2^n - 64(-1)^n}{216} \qquad n = 0, 1, 2, \dots$$

37. First note that $a_0 = 1$ and $a_1 = 3$. Now assume that $n \geq 2$. We show that $a_n = 2a_{n-1} + a_{n-2}$. Let T_n denote the set of ternary strings of length n that are counted by a_n . For each ternary string s in T_{n-2} the string 22s is contained in T_n . Given a ternary string r in T_{n-1} we obtain two ternary strings in T_n as follows: (i) if r begins with 0, then each of 1r, 2r is contained in T_n ; (ii) if r begins with 1, then each of 0r, 2r is contained in T_n ; (iii) if r begins with 2, then each of 0r, 1r is contained in T_n . Each ternary string in T_n is obtained in exactly one way by the above procedure. Therefore $a_n = 2a_{n-1} + a_{n-2}$. The roots of $x^2 - 2x - 1$ are $1 \pm \sqrt{2}$. Therefore the general solution for a_n is

$$a_n = a(1+\sqrt{2})^n + b(1-\sqrt{2})^n$$
 $n = 0, 1, 2, ...$

Using $a_0 = 1$ and $a_1 = 3$ we routinely find

$$a = \frac{1+\sqrt{2}}{2},$$
 $b = \frac{1-\sqrt{2}}{2}.$

Therefore

$$a_n = \frac{(1+\sqrt{2})^{n+1} + (1-\sqrt{2})^{n+1}}{2}$$
 $n = 0, 1, 2, \dots$

38. (a) $h_n = 3^n$; (b) $h_n = (4 + 5n - n^2)/2$; (c) $h_n = 0$ if n is even and $h_n = 1$ if n is odd; (d) $h_n = 1$; (e) $h_n = 2^{n+1} - 1$.

39. Note that $h_0 = 1$, $h_1 = 1$, $h_2 = 2$. Now assume that $n \ge 3$. We show $h_n = h_{n-1} + h_{n-3}$. Let T_n denote the set of perfect covers of the $1 \times n$ chessboard counted by h_n . For each element of T_{n-1} we can attach a monomino at the left to get an element of T_n that begins with a monomino. For each element of T_{n-3} we can attach a domino followed by a monomino, to get an element of T_n that begins with a domino. Each element of T_n is obtained exactly once by the above procedure. Therefore $h_n = h_{n-1} + h_{n-3}$.

40. One checks $a_0 = 1$ and $a_1 = 3$. Now assume that $n \ge 2$. We show that $a_n = a_{n-1} + 2a_{n-2}$. Let A_n denote the set of ternary strings of length n counted by a_n . Given a ternary string s in A_{n-1} the string 2s is contained in A_n . Given a ternary string t in A_{n-2} , each of the strings 02t, 12t are contained in A_n . Each element of A_n is obtained exactly once by the above procedure. Therefore $a_n = a_{n-1} + 2a_{n-2}$. We have $x^2 - x - 2 = (x - 2)(x + 1)$. Therefore the general solution for a_n is

$$a_n = a2^n + b(-1)^n$$
 $n = 0, 1, 2, \dots$

Using $a_0 = 1$ and $a_1 = 3$ we find

$$a = 4/3,$$
 $b = -1/3.$

$$a_n = \frac{2^{n+2} + (-1)^{n+1}}{3}$$
 $n = 0, 1, 2, \dots$

41. We have $h_0 = 1$. Now assume that $n \ge 1$. Label the points $1, 2, \ldots, 2n$ clockwise around the circle. Let $M = M_n$ denote the set of matchings of the 2n points counted by h_n . For a matching in M let t denote the point matched to point 1. Note that t is even. For $1 \le s \le n$ let M(s) denote the set of matchings in M such that point 1 is matched with point 2s. The sets $\{M(s)\}_{s=1}^n$ partition M, so $|M| = \sum_{s=1}^n |M(s)|$. For $1 \le s \le n$ we compute |M(s)|. To construct a matching in M(s), there are h_{s-1} ways to match points $2, 3, \ldots, 2s-1$ and there are h_{n-s} ways to match points $2s+1, 2s+2, \ldots, 2n$. Therefore $|M(s)| = h_{s-1}h_{n-s}$. By these comments $h_n = \sum_{s=1}^n h_{s-1}h_{n-s}$. We now show

$$h_n = \frac{1}{n+1} \binom{2n}{n}$$
 $n = 0, 1, 2, \dots$

Consider the generating function

$$g(x) = \sum_{n=0}^{\infty} h_n x^n.$$

Using the recursion we obtain

$$xg(x)^2 = g(x) - 1.$$

Using the quadratic formula

$$g(x) = \frac{1 \pm (1 - 4x)^{1/2}}{2x}.$$

In other words

$$xg(x) = \frac{1 \pm (1 - 4x)^{1/2}}{2}.$$

Using Newton's binomial theorem this becomes

$$xg(x) = \frac{1 \pm \sum_{n=0}^{\infty} {\binom{1/2}{n}} (-4)^n x^n}{2}.$$

For this equation at x=0 the left-hand side is zero so the right-hand side is zero. Therefore

$$xg(x) = \frac{1 - \sum_{n=0}^{\infty} {\binom{1/2}{n}} (-4)^n x^n}{2},$$
$$= -\frac{\sum_{n=1}^{\infty} {\binom{1/2}{n}} (-4)^n x^n}{2}.$$

So

$$g(x) = -\frac{\sum_{n=1}^{\infty} {\binom{1/2}{n}} (-4)^n x^{n-1}}{2}$$
$$= -\frac{\sum_{n=0}^{\infty} {\binom{1/2}{n+1}} (-4)^{n+1} x^n}{2}.$$

Consequently for $n \geq 0$,

$$h_n = -\binom{1/2}{n+1} \frac{(-4)^{n+1}}{2}$$
$$= \frac{1}{n+1} \binom{2n}{n}.$$

We note

$$h_n = \binom{2n}{n} - \binom{2n}{n-1} \qquad n = 1, 2, 3, \dots$$

42. We have $h_0 = 3$ and $h_1 = 16$. For $n \ge 2$,

$$h_n - 8h_{n-1} + 16h_{n-2} = 4h_{n-1} + 4^n - 8h_{n-1} + 16h_{n-2}$$

$$= 4^n - 4h_{n-1} + 16h_{n-2}$$

$$= 4^n - 4(4h_{n-2} + 4^{n-1}) + 16h_{n-2}$$

$$= 0.$$

The characteristic polynomial is $x^2 - 8x + 16 = (x - 4)^2$. Therefore the general solution is

$$h_n = (an + b)4^n$$
 $n = 0, 1, 2, \dots$

Using $h_0 = 3$ and $h_1 = 16$ we find a = 1 and b = 3. Therefore

$$h_n = (n+3)4^n$$
 $n = 0, 1, 2, \dots$

43. We have $h_0 = 1$ and $h_1 = 10$. Now suppose $n \ge 2$. Using the recursion twice we obtain

$$h_n - 6h_{n-1} + 8h_{n-2} = 0.$$

The characteristic polynomial is $x^2 - 6x + 8 = (x - 4)(x - 2)$. Therefore the general solution is

$$h_n = a4^n + b2^n$$
 $n = 0, 1, 2, \dots$

Using $h_0 = 1$ and $h_1 = 10$ we find a = 4 and b = -3. Therefore

$$h_n = 4^{n+1} - 3 \times 2^n \qquad n = 0, 1, 2, \dots$$

- 44. Examining the first few values, it appears that $h_n = 1$ for n = 0, 1, 2... This is verified by induction.
- 45. We hunt for solutions of the form

$$h_n = a2^n + bn + c$$
 $n = 0, 1, 2, \dots$

Using $h_0 = 1$, $h_1 = 3$, $h_2 = 8$ we find that

$$a = 3,$$
 $b = -1,$ $c = -2.$

We now verify that

$$h_n = 3 \times 2^n - n - 2$$
 $n = 0, 1, 2, \dots$

For $n \geq 0$ define $H_n = 3 \times 2^n - n - 2$. One checks that $H_0 = 1$ and

$$H_n = 2H_{n-1} + n$$
 $n = 1, 2, 3, \dots$

Therefore $h_n = H_n$ for $n \ge 0$.

46. Noting that $x^2 - 6x + 9 = (x - 3)^2$ we hunt for solutions of the form

$$h_n = (an + b)3^n + cn + d$$
 $n = 0, 1, 2, ...$

Using $h_0 = 1$, $h_1 = 0$, $h_2 = -5$, $h_3 = -24$ we find

$$a = -1/6,$$
 $b = -1/2,$ $c = 1/2,$ $d = 3/2.$

Using these values we conjecture

$$h_n = \frac{(3-3^n)(3+n)}{6} \qquad n = 0, 1, 2, \dots$$

For $n \ge 0$ let H_n denote the expression on the right-hand side in the above line. One checks $H_0 = 1$, $H_1 = 0$ and

$$H_n = 6H_{n-1} - 9H_{n-2} + 2n$$
 $n = 2, 3, \dots$

Therefore $h_n = H_n$ for $n = 0, 1, 2, \ldots$

47. Noting that $x^2 - 4x + 4 = (x - 2)^2$ we hunt for solutions of the form

$$h_n = (an + b)2^n + cn + d$$
 $n = 0, 1, 2, ...$

Using $h_0 = 1$, $h_1 = 2$, $h_2 = 11$, $h_3 = 46$ we find

$$a = 5,$$
 $b = -12,$ $c = 3,$ $d = 13.$

Using these values we conjecture

$$h_n = (5n - 12)2^n + 3n + 13$$
 $n = 0, 1, 2, ...$

For $n \geq 0$ let H_n denote the expression on the right-hand side in the above line. One checks $H_0 = 1, H_1 = 2$ and

$$H_n = 4H_{n-1} - 4H_{n-2} + 3n + 1$$
 $n = 2, 3, \dots$

Therefore $h_n = H_n$ for $n = 0, 1, 2, \ldots$

48. Define $g(x) = \sum_{n=0}^{\infty} h_n x^n$. Note that $x^r g(x) = \sum_{n=r}^{\infty} h_{n-r} x^n$ for $r \ge 0$. (a) Using the given information on h_n we find

$$g(x) = x + 4x^2 g(x).$$

Therefore

$$g(x) = \frac{x}{1 - 4x^2}$$

$$= \frac{1}{4(1 - 2x)} - \frac{1}{4(1 + 2x)}$$

$$= \sum_{n=0}^{\infty} \frac{2^n - (-2)^n}{4} x^n.$$

Therefore

$$h_n = \frac{2^n - (-2)^n}{4} \qquad n = 0, 1, 2, \dots$$

(b) Abbreviate

$$r = \frac{1+\sqrt{5}}{2},$$
 $s = \frac{1-\sqrt{5}}{2}.$

Using the given information on h_n we find

$$g(x)(1 - x - x^2) = 1 + 2x.$$

Therefore

$$g(x) = \frac{1+2x}{1-x-x^2}$$

$$= \frac{r}{1-rx} + \frac{s}{1-sx}$$

$$= \sum_{n=0}^{\infty} (r^{n+1} + s^{n+1})x^n.$$

Therefore

$$h_n = r^{n+1} + s^{n+1}$$
 $n = 0, 1, 2, \dots$

(c) Using the given information on h_n we find

$$g(x)(1 - x - 9x^2 + 9x^3) = x + x^2.$$

Consequently

$$g(x) = \frac{x + x^2}{1 - x - 9x^2 + 9x^3}$$

$$= \frac{1}{3(1 - 3x)} - \frac{1}{12(1 + 3x)} - \frac{1}{4(1 - x)}$$

$$= \sum_{n=0}^{\infty} \frac{4 \times 3^n - (-3)^n - 3}{12} x^n.$$

Therefore

$$h_n = \frac{4 \times 3^n - (-3)^n - 3}{12} \qquad n = 0, 1, 2, \dots$$

(d) Using the given information on h_n we find

$$g(x)(1 - 8x + 16x^2) = 8x - 1.$$

Consequently

$$g(x) = \frac{8x - 1}{1 - 8x + 16x^2}$$

$$= \frac{8x - 1}{(1 - 4x)^2}$$

$$= (8x - 1) \sum_{n=0}^{\infty} (n+1)4^n x^n$$

$$= \sum_{n=0}^{\infty} (n-1)4^n x^n.$$

Therefore

$$h_n = (n-1)4^n$$
 $n = 0, 1, 2, \dots$

49. For $n \ge 0$ define

$$h_n = \sum_{k=0}^n \binom{n}{k}_q x^{n-k} y^k.$$

We show

$$h_n = (x+y)(x+qy)(x+q^2y)\cdots(x+q^{n-1}y).$$

Since $h_0 = 1$ it suffices to show

$$h_n = (x + q^{n-1}y)h_{n-1}$$
 $n = 1, 2, 3, \dots$

This is obtained using the identity

$$\binom{n}{k}_{q} = \binom{n-1}{k-1}_{q} + q^{n-1} \binom{n-1}{k}_{q} \qquad 1 \le k \le n-1.$$

The above identity is routinely verified.

50. Let E denote the set of extraordinary subsets of $\{1, 2, ..., n\}$. For $1 \le k \le n$ let E_k denote the set of elements in E that have cardinality k. The sets $\{E_k\}_{k=1}^n$ partition E so $|E| = \sum_{k=1}^n |E_k|$. For $1 \le k \le n$ we compute $|E_k|$. Consider an element $S \in E_k$. The minimal element of S is k. Therefore S consists of k and a (k-1)-subset of $\{k+1, k+2, ..., n\}$. There are $\binom{n-k}{k-1}$ ways to choose this (k-1)-subset, so $|E_k| = \binom{n-k}{k-1}$. Therefore

$$|E| = \sum_{k=1}^{n} \binom{n-k}{k-1}.$$

Comparing this formula with Theorem 7.1.2 we find $|E| = f_n$.

51. Define $g(x) = \sum_{n=0}^{\infty} h_n x^n$. Observe

$$\sum_{n=1}^{\infty} h_{n-1}x^n = \sum_{n=0}^{\infty} h_n x^{n+1} = xg(x).$$

Recall

$$\sum_{n=0}^{\infty} nx^n = \sum_{n=1}^{\infty} nx^n = x \sum_{n=1}^{\infty} nx^{n-1} = x \sum_{n=0}^{\infty} (n+1)x^n = \frac{x}{(1-x)^2}.$$

Observe

$$g(x) - 3xg(x) + \frac{4x}{(1-x)^2} = h_0 = 2.$$

Thus

$$g(x)(1-3x) = 2 - \frac{4x}{(1-x)^2},$$

So

$$g(x) = \frac{2}{1 - 3x} - \frac{4x}{(1 - 3x)(1 - x)^2}$$

$$= \frac{-1}{1 - 3x} + \frac{3 - x}{(1 - x)^2}$$

$$= -\sum_{n=0}^{\infty} 3^n x^n + 3\sum_{n=0}^{\infty} (n+1)x^n - \sum_{n=0}^{\infty} nx^n$$

$$= \sum_{n=0}^{\infty} (2n + 3 - 3^n)x^n.$$

$$h_n = 2n + 3 - 3^n$$
 $n = 0, 1, 2, \dots$

52. (a) Note that $h_1 = 11$. We have

$$5^n = h_n - 2h_{n-1} \qquad n \ge 1.$$

Replacing n by n-1,

$$5^{n-1} = h_{n-1} - 2h_{n-2} \qquad n \ge 2.$$

Combining the above equations we obtain

$$0 = h_n - 2h_{n-1} - 5(h_{n-1} - 2h_{n-2})$$

= $h_n - 7h_{n-1} + 10h_{n-2}$ $n \ge 2$.

For the above homogeneous recurrence the characteristic polynomial is $x^2 - 7x + 10 = (x-5)(x-2)$, so it has general solution

$$h_n = a5^n + b2^n$$
 $n = 0, 1, 2, \dots$

Using $h_0 = 3$ and $h_1 = 11$ we find

$$a = 5/3,$$
 $b = 4/3.$

Therefore

$$h_n = \frac{5^{n+1} + 2^{n+2}}{3} \qquad n = 0, 1, 2, \dots$$

(b) Note that $h_1 = 20$. We have

$$5^n = h_n - 5h_{n-1} \qquad n > 1.$$

Replacing n by n-1,

$$5^{n-1} = h_{n-1} - 5h_{n-2} \qquad n \ge 2.$$

Combining the above equations we obtain

$$0 = h_n - 5h_{n-1} - 5(h_{n-1} - 5h_{n-2})$$

= $h_n - 10h_{n-1} + 25h_{n-2}$ $n > 2$.

For the above homogeneous recurrence the characteristic polynomial is $x^2 - 10x + 25 = (x - 5)^2$, so it has general solution

$$h_n = (an + b)5^n$$
 $n = 0, 1, 2, \dots$

Using $h_0 = 3$ and $h_1 = 20$ we find

$$a=1,$$
 $b=3.$

Therefore

$$h_n = (n+3)5^n$$
 $n = 0, 1, 2, \dots$

53. For $n \ge 0$ we have

$$h_n = 500(1.06)^n + \sum_{k=0}^{n-1} 100(1.06)^k$$
$$= 500(1.06)^n + 100 \frac{(1.06)^n - 1}{.06}.$$

The generating function $g(x) = \sum_{n=0}^{\infty} h_n x^n$ satisfies

$$g(x) = \left(500 + \frac{100}{.06}\right) \frac{1}{1 - 1.06x} - \frac{100}{.06(1 - x)}.$$