Assignment 2 Algorithms for Big Data

Lavinia Pulcinella Student ID: i6233926

February 2020

1 Graded Exercise 2.5

Here we want to answer the question: is it possible to chordalize G by adding at most k new edges? We summarize this question as "(G,k)?".

1. Let C_t be a chordless cycle on t vertices, $t \ge 4$. (So C_3 is a triangle, C_4 is a square, C_5 is a pentagon and so on).

There is a natural lower bound on the number of new edges required to chordalize C_t . What is it? You do not need to give a formal proof for all t, but you should argue convincingly why the bound holds for C_6 .

Starting from vertex A, in order to chordalize the cycle we need to add enough new edges s.t. there are only cycles of 3 i.e. only chordal cycles.

Drawing the fist new edge between vertex A and its first non adjacent one C we end up having a C_3 chordal cycle and a C_5 chordeless one. Now, we draw another line between A and the next non-adjacent vertex D. Now we have two C_3 chordal cycles and a C_4 chordeless one. Finally, connecting A and F we have completely chordalized the C_6 cycle.

In general, the minimum number of k new edges required to chordalize a chordeless cycle C_t should be

$$min(k) = t - 3 \tag{1}$$

i.e. the total number of non-adjacent vertices.

2. The answer to (1) suggests that, if G contains a certain structure, the answer to (G,k) will definitely be NO. What is it?

If graph G contains more than k+3 vertices then (G,k) is NO since we would need to add more than k edges.

if n > k+3 then , return NO

3. How many different edges can be drawn between non-adjacent vertices in C_t ?

The maximum number of different edges that can be drawn is equal to the count of all possible diagonals that can be drawn within a cycle:

$$max(k) = \frac{t(t-3)}{2} \tag{2}$$

4. Describe an FPT branching algorithm to answer the question (G,k) with running time at most $O((k+3)^{2k} * poly(n))$ where n is the number of vertices in G.

In order to answer (G,k) we can employ the use of recursive branching algorithms.

Having a graph G = (V, E) we look for chordeless cycles C_t with $t \ge 4$. If no such cycle is found, then the answer to (G, k) would definitely be YES as there is nothing to chordalize.

Once the chordeless cycle C_t is found if it has more than k+3 vertices then (G,k) is no as stated in point (2). Now, we can loop though all edges of the form e = (u,v) then we call the problem for the graph G with the additional edge and we decrease k by one. Then if (G+e,k-1) is YES then we return YES, otherwise we return NO.

By branching off all the possibilities the treedepth is k (i.e. the number of new added edges) as it allows for the algorithm to stop when k is null. The branching factor, on the other hand, is captured by the maximum possible number of edges to be added in a chordeless cycle computed in point 3 which in terms of k can be written as $\frac{k(k+3)}{2}$.

Algorithm 1 BRANCHING $_{-}$ CHORDALIZATION(G, k)

Look for a chordeless cycle C_t in G = (V, E)If no C_t is found then return YES If t > k + 3 then return NO **for** all new edges i.e. $e = \{u, v\}$ **do** | If (G + e, k - 1) is YES then return YES

Otherwise return NO

end

Thus with a treedepth of k and a branching factor of $\frac{k(k+3)}{2}$ the time complexity of the algorithm is $\approx O((k+3)^{2k}*poly(n))$