Modeling the population of Galactic BNSs

Cecilia Sgalletta Padova, 18.10.2023

Supervisors:

Mario Spera Michela Mapelli Andrea Lapi

Pulsars in the Milky Way

Mostly isolated pulsars

- young pulsars
- high magnetic field

Mostly pulsars in binaries

- old/recycled pulsars
- low magnetic fields

Pol et al. 2019, data from the ATNF catalog, Manchester et al. 2005

Pulsars in the Milky Way

- What are the birth magnetic fields and spin periods?
- How do they evolve?

Pol et al. 2019, data from the ATNF catalog, Manchester et al. 2005

Gravitational Waves

BNS formation

BNS formation

What are the major uncertainties?

Supernova kicks

Common Envelope

Credit: Sebastian Ohlmann / HITS

Credits: Janka, Hans-Thomas, MPA

 What can we say about the common envelope?

 What are the birth magnetic fields and spin periods?

 Does the magnetic field evolve with time?

3 main ingredients ...

Milky-Way model

Stellar evolution

Neutron Star evolution

Milky Way model

1.
$$SFR(z = 0) \sim 1.65 M_{\odot} yr^{-1}$$

2.
$$M_* \sim 5 \times 10^{10} M_{\odot}$$

EAGLE Schaye et al. 2015 IllustrisTNG Nelson et al. 2019

Stellar EVolution N-body

Population synthesis code written in C++

https://gitlab.com/sevncodes/sevn

STELLAR EVOLUTION

Interpolation of precomputed stellar tracks

BINARY PROCESSES

Analytical and semi-analytical models

Spera and Mapelli 2017, Spera et al. 2015, Spera et al. 2019, Iorio et al. 2023

Spin-up

Radio Selection Effects

PSRPOPPY Lorimer et al. 2011

Spin-down

Spin-up

$$\dot{J} = V_{diff} R_A^2 \dot{M}_{NS}$$
 $V_{diff} = \Omega_K - \Omega_{NS}$ $B \propto e^{-\Delta M_{NS}/\Delta M_d}$

Radio selection effects

PSRPOPPY Lorimer et al. 2011 Death lines

Observational selection biases

Binarity effects

BNSs population

Radio selection effects

Conclusions

- Our model matches the merger rates, the orbital and the pulsar properties of the observed sample
- The CE parameter α has a large impact
- The distribution of magnetic field and spin period at pulsar formation play a critical role

Sgalletta et al. 2023: 10.1093/mnras/stad2768

Backup

Spin-down

$$\dot{\Omega}=rac{8\pi B^2R^6\sin^2(lpha)\Omega^3}{3\mu_0c^3I}$$
 $B=(B_0-B_{min})\mathrm{e}^{-\Delta t/ au}+B_{min}$

Spin-up

$$\dot{J} = V_{diff}R_A^2\dot{M}_{NS}$$
 $V_{diff} = \Omega_K - \Omega_{NS}$
 $B = (B_0 - B_{min})e^{-\Delta M_{NS}/\Delta M_d} + B_{min}$
 $A_{Alfven} = \left(\frac{2\pi^2}{G\mu_0^2}\right)^{1/7} \left(\frac{R^6}{\dot{M}_{NS}M_{NS}^{1/2}}\right)^{1/7} B^{4/7}$