Lie algebra \mathfrak{sl}_3 and representation

eigenspaces and representation decomposition for \mathfrak{sl}_3

Yuxuan Sun

Haverford College

Apr 25, 2022

Lie algebra

Example 1.1: $\mathfrak{sl}_3(\mathbb{R})$

 \mathfrak{sl}_3 is a vector space of 3×3 matrices with trace 0,in other words:

$$\mathfrak{sl}_3 = \left\{ \begin{bmatrix} a & c & d \\ e & -a+b & f \\ g & h & -b \end{bmatrix} \mid a,b,c,d,e,f,g,h \in \mathbb{R} \right\}$$

equppied with [A, B] = AB - BA

Lie algebra

Example 1.1: $\mathfrak{sl}_3(\mathbb{R})$

 \mathfrak{sl}_3 is a set of 3×3 matrices with trace 0, in other words:

$$\mathfrak{sl}_3(\mathbb{R}) = \left\{ egin{bmatrix} a & c & d \ e & -a+b & f \ g & h & -b \end{bmatrix} \mid a,b,c,d,e,f,g,h \in \mathbb{R}
ight\}$$

the basis is:

$$\mathcal{B}_{\mathfrak{sl}_3} = \left\{ H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, H_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \right\} \bigcup \left\{ E_{i,j} \mid i \neq j \right\}.$$

 $E_{i,j}$ is a matrix where $E_{i,j,j} = 1$ and other places are 0.

representation and action

Definition 1.2: adjoint representation of $\mathfrak{sl}_3(\mathbb{R})$

Give $X \in \mathfrak{sl}_3(\mathbb{R})$, define a linear map $ad_X : \mathfrak{sl}_3(\mathbb{R}) \to \mathfrak{sl}_3(\mathbb{R})$ as:

$$ad_X(Y) = [X, Y] = XY - YX$$

the map $X \mapsto ad_X$ is called an adjoint representation of $\mathfrak{sl}_3(\mathbb{R})$.

Definition 1.3: subspace $\mathfrak{h} \subseteq \mathfrak{sl}_3(\mathbb{R})$

Let \mathfrak{h} be the two-dimensional subspace of all diagonal matrices, namely:

$$\mathfrak{h} = \text{span} \left\{ H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, H_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \right\}$$

Definition 1.3: subspace $\mathfrak{h} \subseteq \mathfrak{sl}_3(\mathbb{R})$

Let $\mathfrak h$ be the two-dimensional subspace of all diagonal matrices, namely:

$$\mathfrak{h} = \text{span} \left\{ H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, H_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \right\}$$

What does it mean to be an eigenspace for \mathfrak{h} ?

For all $H \in \mathfrak{h}$, an eigenspace \mathfrak{g}_{λ} has all $M \in \mathfrak{sl}_3(\mathbb{R})$ s.t. $ad_H(M) = [H, M] = HM - MH = \lambda M$?

Let's pick an arbitrary $H \in \mathfrak{h}$ and $M \in \mathfrak{sl}_3(\mathbb{R})$, namely:

$$H = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{bmatrix}, M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

Let's pick an arbitrary $H \in \mathfrak{h}$ and $M \in \mathfrak{sl}_3(\mathbb{R})$, namely:

$$H = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{bmatrix}, M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

Let's see the result under adjoint action, i.e.

$$ad_H(M) = [H, M] = HM - MH = ?$$

$$[H, M] = \begin{bmatrix} (a_1 - a_1)m_{11} & (a_1 - a_2)m_{12} & (a_1 - a_3)m_{13} \\ (a_2 - a_1)m_{21} & (a_2 - a_2)m_{22} & (a_2 - a_3)m_{23} \\ (a_3 - a_1)m_{31} & (a_3 - a_2)m_{32} & (a_3 - a_3)m_{33} \end{bmatrix}$$
$$= \begin{bmatrix} 0 \cdot m_{11} & (a_1 - a_2)m_{12} & (a_1 - a_3)m_{13} \\ (a_2 - a_1)m_{21} & 0 \cdot m_{22} & (a_2 - a_3)m_{23} \\ (a_3 - a_1)m_{31} & (a_3 - a_2)m_{32} & 0 \cdot m_{33} \end{bmatrix}$$

$$[H, M] = \begin{bmatrix} 0 & (a_1 - a_2)m_{12} & (a_1 - a_3)m_{13} \\ (a_2 - a_1)m_{21} & 0 & (a_2 - a_3)m_{23} \\ (a_3 - a_1)m_{31} & (a_3 - a_2)m_{32} & 0 \end{bmatrix}$$

observation: recall our only constrain on H: $a_1 + a_2 + a_3 = 0$, for M to be an eigenvector under bracket H, i.e. $[H, M] = \lambda M$ for some λ , M must be all 0 on the diagonal and only one place not equal to 0.

$$[H, M] = \begin{bmatrix} 0 & (a_1 - a_2)m_{12} & (a_1 - a_3)m_{13} \\ (a_2 - a_1)m_{21} & 0 & (a_2 - a_3)m_{23} \\ (a_3 - a_1)m_{31} & (a_3 - a_2)m_{32} & 0 \end{bmatrix}$$

observation: recall our only constrain on H: $a_1 + a_2 + a_3 = 0$, for M to be an eigenvector under bracket H, i.e. $[H, M] = \lambda M$ for some λ , M must be all 0 on the diagonal and only one place not equal to 0.

the eigenspace is generated by the other basis element $E_{i,j}$ where $i \neq j$ and $E_{i,j}$ has all but one entry ij zero, for example:

$$E_{1,3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

linear functional

$$[H, M] = \begin{bmatrix} 0 & (a_1 - a_2)m_{12} & (a_1 - a_3)m_{13} \\ (a_2 - a_1)m_{21} & 0 & (a_2 - a_3)m_{23} \\ (a_3 - a_1)m_{31} & (a_3 - a_2)m_{32} & 0 \end{bmatrix}$$

one could see we have potentially 6 eigenvalues for each $H \in \mathfrak{h}$: $a_1 - a_2, a_1 - a_3, a_2 - a_3, a_2 - a_1, a_3 - a_1, a_3 - a_2$.

linear functional

Since we are asking for eigenspaces of \mathfrak{h} , we need a way to get $a_i - a_j$ from any $H \in \mathfrak{h}$ for us, thus we could define a linear functional:

Definition 1.4: L_i

 L_i is a linear functional s.t.

$$L_i \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{bmatrix} = a_i$$

it satisfies the requirement of a linear functional:

$$L_i(A+B) = L_i(A) + L_i(B), L_i(aA) = aL_i(A).$$

eigenvalues and eigenspaces

Denote \mathfrak{h}^* as the set of all eigenvalues (linear functionals) of \mathfrak{h} such that given the adjoint representation of $\mathfrak{sl}_3(\mathbb{R})$, the eigenspace, denoted \mathfrak{g}_{α} , associated to the eigenvalue $\alpha \in \mathfrak{h}^*$ is the subspace of all $M \in \mathfrak{sl}_3(\mathbb{R})$ s.t. for all $H \in \mathfrak{h}$

$$H(M) = ad_H(M) = [H, M] = \alpha(H) \cdot M$$

why?

Notice that for the adjoint representation of $\mathfrak{sl}_3(\mathbb{R})$, we have the following decomposition:

$$\mathfrak{sl}_3(\mathbb{R})=\mathfrak{h}\oplus (\oplus \mathfrak{g}_{\alpha})$$

where α ranges over \mathfrak{h}^* and \mathfrak{g}_{α} is the eigenspace w.r.t α .

why?

Notice that for the adjoint representation of $\mathfrak{sl}_3(\mathbb{R})$, we have the following decomposition:

$$\mathfrak{sl}_3(\mathbb{R})=\mathfrak{h}\oplus (\oplus \mathfrak{g}_lpha)$$

where α ranges over \mathfrak{h}^* and \mathfrak{g}_{α} is the eigenspace w.r.t α this is a special case of a general statement:

Theorem 2.1

For any semisimple Lie algebra $\mathfrak g$ (it is a direct sum of simple Lie algebras (non-abelian Lie algebras without any non-zero proper ideals), we could find an abelian subalgebra(closed under bracket) $\mathfrak h \subset \mathfrak g$ s.t. the action of $\mathfrak h$ on any representation V could be written as a direct sum decomposition of V into eigenspaces V_α for $\mathfrak h$.

graph of eigenspaces

jumping around ...

Given any $X \in \mathfrak{g}_{\alpha}$ and $Y \in \mathfrak{g}_{\beta}$, where would ad_X sends Y to? i.e. $ad_X(Y) = [X, Y] = ?$

h could help us, namely:

$$[H,[X,Y]] = ((\alpha + \beta)(H)) \cdot [X,Y]$$

in other words, $ad_X(Y)$ is an eigenvector for \mathfrak{h} with eigenvalue $\alpha + \beta$.

$$\mathsf{ad}_{\mathfrak{g}_{\alpha}}:\mathfrak{g}_{\beta} o\mathfrak{g}_{\alpha+\beta}$$

jumping around

The action of $\mathfrak{g}_{L_1-L_3}$ is:

Bibliography

- J. Matthew Douglass and Gerhard Roehrle. The Steinberg Variety and Representations of Reductive Groups. arXiv:0802.0764 [math], October 2008. URL http://arxiv.org/abs/0802.0764. arXiv: 0802.0764.
- William Fulton and Joe Harris. *Representation Theory*, volume 129 of *Graduate Texts in Mathematics*. Springer New York, New York, NY, 2004. ISBN 978-3-540-00539-1 978-1-4612-0979-9. doi: 10.1007/978-1-4612-0979-9. URL http://link.springer.com/10.1007/978-1-4612-0979-9.
- James E. Humphreys. *Introduction to Lie algebras and representation theory*. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972.
- Miranda Seitz-Mcleese. CLASSIFYING THE REPRESENTATIONS OF sl2(C). page 19.