Summary of A tutorial or the free-energy framework for modelling perception and learning

Marco Casari

Introduction

Single variable model

Multiple variable model

Canalusia

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz

Marco Casari

University of Turin

Complex system in neuroscience, 12 December 2023

for modelling perception and learning by Rafal Bogacz

Summary of A tutorial on the free-energy framework

Summary of A tutorial on the free-ener framework for modelling perception ar learning by Rafal Bogacz

> Marco Casari University of Turin

Complex system in neuroscience, 12 December 2023

•

2023-12-09

Introduction

-Introduction

Marco Casari

Introduction

• Predictive coding model of Rao and Ballard.

1. Prior predictions are compared to stimuli and the model parameters are updated considering prediction errors, features corresponding to receptive fields in the the primary sensory cortex are learned.

Summary of A tutorial on the free-energy framework

Introduction

Introduction

Summary of A tutorial on the free-energy framework 2023-12-09 for modelling perception and learning by Rafal Bogacz Introduction

-Introduction

1. Prior predictions are compared to stimuli and the model parameters are updated considering prediction errors, features corresponding to receptive fields in the the primary sensory cortex are learned.

. Predictive coding model of Rao and Ballard

2. Weight stimuli by their noise, learn features using their covariance, implement attentional modulation changing the variance of attended features.

Predictive coding model of Rao and Ballard.

• Free-energy model of Friston.

Introduction

Introduction

- Predictive coding model of Rao and Ballard.
- Free-energy model of Friston.
- Hebbian learning.

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz 2023-12-Introduction

-Introduction

1. Prior predictions are compared to stimuli and the model parameters are updated considering prediction errors, features corresponding to receptive fields in the the primary sensory cortex are learned.

. Predictive coding model of Rao and Ballard

Hebbian learning

- 2. Weight stimuli by their noise, learn features using their covariance, implement attentional modulation changing the variance of attended features.
- 3. Synaptic strenght is changed proportionally to activities of pre-synaptic and post-synaptic neurons.

Introduction

Marco Casari

Introduction

Predictive coding model of Rao and Ballard.

- Free-energy model of Friston.
- Hebbian learning.
- Free energy minimization.

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz

Introduction

2023-1

-Introduction

. Predictive coding model of Rao and Ballard

- 1. Prior predictions are compared to stimuli and the model parameters are updated considering prediction errors, features corresponding to receptive fields in the the primary sensory cortex are learned.
- 2. Weight stimuli by their noise, learn features using their covariance, implement attentional modulation changing the variance of attended features.
- 3. Synaptic strenght is changed proportionally to activities of pre-synaptic and post-synaptic neurons.
- 4. Minimization of free energy can be seen as the base of many theories of perception.

Introduction

Working hypotheses

Local computation.

1. The state of a neuron is determined only by the synaptic weight and the state of its input neurons.

Working hypotheses

Introduction

Local computation.

Local plasticity.

Working hypotheses

2023-12-09

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz -Introduction

· Local plasticity.

Working hypotheses

-Working hypotheses

- 1. The state of a neuron is determined only by the synaptic weight and the state of its input neurons.
- 2. Synaptic plasticity depends only on the activities of pre-synaptic and post-synaptic neurons.

Introduction

Working hypotheses

Local computation.

- Local plasticity.
- Basic neuronal computation.

2023-12-

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz -Introduction

Local elasticity

Working hypotheses

-Working hypotheses

- 1. The state of a neuron is determined only by the synaptic weight and the state of its input neurons.
- 2. Synaptic plasticity depends only on the activities of pre-synaptic and post-synaptic neurons.
- 3. The state of a neuron is the result of the application of a monotonic function to the linear combination of states and synaptic weights of input neurons.

Single variable model

free-energy framework for modelling perception and learning by Rafal

Marco Casari

Introduction

Single variable model

> Multiple variables model

~ . .

- Feature is a scalar variable $v \in \Omega_v$.
- Stimulus is a scalar variable $u \in \Omega_u$.

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz
Single variable model
Single variable model

1. The model describes the inference of a single variable from a single sensory input.

Single variable model

ummary of

the
free-energy
framework
for modellin
perception
and learning

Marco Casari

Introductio

Single variable model

Multiple variables model

C l

Single variable model

- Feature is a scalar variable $v \in \Omega_v$.
- Stimulus is a scalar variable $u \in \Omega_u$.
- Relation between feature and stimulus is a differentiable function $g: \Omega_V \to \Omega_U$.

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz —Single variable model

-Single variable model

sensory input.

Feature is a scalar variable v ∈ Ω_v.
 Stimulus is a scalar variable u ∈ Ω_u.
 Relation between feature and stimulus is a differentiable function g : Ω_v → Ω_u.

Single variable model

- 1. The model describes the inference of a single variable from a single
- 2. In general inferred variable and sensory input are related by some smooth function.

ummary of

Single variable model

free-energy framework for modellin perception and learnin by Rafal

Marco Casari

Introductio

Single variable model

Multiple variables model

Conclusion

- Feature is a scalar variable $v \in \Omega_v$.
- Stimulus is a scalar variable $u \in \Omega_u$.
- Relation between feature and stimulus is a differentiable function $g: \Omega_V \to \Omega_U$.
- Sensory input p(u|v) is affected by gaussian noise and it has mean g(v) and variance Σ_u .

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz

Single variable model

- Stimulus is a scalar variable u ∈ Ω_u.
 Relation between feature and stimulus is a differentiable function g : Ω_v → Ω_u.
- Sensory input p(u|v) is affected by gaussian noise and it has mean x(v) and variance Σ

 igspace Single variable model

- 1. The model describes the inference of a single variable from a single sensory input.
- 2. In general inferred variable and sensory input are related by some smooth function.
- 3. Sensory input and stimulus are drafted from the same space.

immary of

free-energy framework for modelling perceptions and learning by Rafal

Marco Casari

Introductio

Single variable model

Multiple variables model

Conclusio

Single variable model

- Feature is a scalar variable $v \in \Omega_v$.
- Stimulus is a scalar variable $u \in \Omega_u$.
- Relation between feature and stimulus is a differentiable function $g: \Omega_V \to \Omega_u$.
- Sensory input p(u|v) is affected by gaussian noise and it has mean g(v) and variance Σ_u .
- Prior knowledge of the feature p(v) follows a gaussian distribution with mean v_p and variance Σ_p .

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz

Single variable model

Stimulus is a scalar variable ir = 0.

- 1. The model describes the inference of a single variable from a single sensory input.
- 2. In general inferred variable and sensory input are related by some smooth function.
- 3. Sensory input and stimulus are drafted from the same space.
- 4. Information gained and constantly updated from previous experience.

Single variable model

-Exact solution of the inference problem

Exact solution of the inference problem

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz —Single variable model

2023-12-09

Approximated solution of the inference problem

Approximated solution of the inference problem

Marco Casari

Introductio

. .

Single variable model

Multiple variables model

Neural implementation

2023-12-09

Summary of *A tutorial on the free-energy framework*for modelling perception and learning by Rafal Bogacz

—Single variable model

Neural implementation

☐ Neural implementation

Marco Casari

Introduction

Single variable model

Multiple variables model

Learning model parameters

2023-12-09

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz —Single variable model

Learning model parameters

—Sing

Learning model parameters

Marco Casari

Introduction

Single variable model

Multiple variables model

Learning relation between variable and stimulus

Summary of *A tutorial on the free-energy framework*for modelling perception and learning by Rafal Bogacz

Single variable model

Learning relation between variable and stimulus

Learning relation between variable and stimulus

Marco Casari

Introductio

Single variable model

Multiple variables

Free energy framework

2023-12-09

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz —Single variable model

Free energy framework

Free energy framework

Marco Casari

Introductio

Single variable model

Multiple variables model

Multiple variables model

2023-12-09

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz

Multiple variables model

Multiple variables model

ı

└─Multiple variables model

Marco Casari

Introduction

Single variable model

Multiple variables model

Learning parameters

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz

Learning parameters

-Multiple variables model

2023-12-09

Learning parameters

Marco Casari

Introduction

Single variable model

Multiple variables model

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz

Hierarchical structure implementation

-Multiple variables model

2023-12-09

 \sqsubseteq Hierarchical structure implementation

Marco Casari

Introduction

oingie variable model

Multiple variables model

2023-12-09

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz -Multiple variables model

Recover local plasticity

Marco Casari

Multiple variables model

Conclusion

Conclusion

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz Conclusion

-Conclusion

2023-12-09

└─ Conclusion