Applied differential equations

TW244 - Lecture 16

4.4: Non-homogeneous linear DEs

Prof Nick Hale - 2020

4.4: Non-homogeneous linear DEs

4.4: Non-homogeneous linear DEs

Consider the DE

$$ay'' + by' + cy = g(x)$$

with $g(x) \not\equiv 0$ and a, b, c constant.

Recall (from Lecture 14), we may write the solution as

$$y(x) = y_{c}(x) + y_{p}(x)$$

where

- $v_c(x)$ is the general solution of the corresponding homogeneous DE ay'' + by' + cy = 0.
- $\mathbf{y}_{p}(x)$ is any particular solution of ay'' + by' + cy = g(x).

Last time we saw how to find $y_c(x)$ (try $y = e^{mx}$, auxiliary equation, etc), but how do we find $y_c(x)$?

4.4: Non-homogeneous linear DEs The method of undetermined coefficients

The method of undetermined coefficients:

Partieulor 2011

We make an "educated guess" for the form of y_p by looking at g!

Constants, polynomials, exponentials, sines, and/or cosines all have the remarkable property that derivatives of their sums and products are again sums and products of constants, polynomials, exponentials, sines, and/or cosines.

Since the linear combination of derivatives ay'' + by' + cy must be equal to g(x), it is reasonable to assume that y_p is similar in form to g(x).

4.4: Non-homogeneous linear DEs The method of undetermined coefficients (cont.)

TABLE 4.4.1 Trial Particula	ar Solutions ay" + by + cy = gca
g(x)	Form of y_p
$\begin{array}{c} $	Ax + B
$3. \ 3x^2 - 2$	$Ax^2 + Bx + C$
4. $x^3 - x + 1$ 5. $\sin 4x$	$Ax^3 + Bx^2 + Cx + E$ $A\cos 4x + B\sin 4x - B\cos 4x + B\sin 4x - B\cos 4x + B\cos 4x$
$\bullet 6. \ \cos 4x$	$\frac{A\cos 4x + B\sin 4x}{A\cos 4x + B\sin 4x}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ae^{5x}
9. x^2e^{5x}	$\frac{(Ax+B)e^{5x}}{(Ax^2+Bx+C)}e^{5x}$
10. $e^{3x} \sin 4x$	$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$
11. $5x^2 \sin 4x$ 12. $xe^{3x} \cos 4x$	$\frac{(Ax^2 + Bx + C)\cos 4x + (Ex^2 + Fx + G)\sin 4x}{(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x}$

4.4: Non-homogeneous linear DEs Example 1

Find the general solution of $y'' + 6y' + 5y = e^{2x}$.

(y_c):
$$y'' + 6y' + 5y = 0$$
.
Try $y = e^{mx} \implies m^2 + 6m + 5 = 0 \implies (m+1)(m+5) = 0 \implies y_c = c_1 e^{-x} + c_2 e^{-5x}$

(y_p):
$$g(x) = e^{2x}$$
.

Try $y_p = Ae^{2x} \implies y_p' = 2Ae^{2x}, y_p'' = 4Ae^{2x}$ and substituting this to the DE gives:

$$4Ae^{2x} + 12Ae^{2x} + 5Ae^{2x} = e^{2x} \implies 21A = 1 \implies y_p = \frac{1}{21}e^{2x}$$

$$y(x) = c_1 e^{-x} + c_2 e^{-5x} + \frac{1}{21} e^{2x}$$

4.4: Non-homogeneous linear DEs Example 2

Find the general solution of $y'' + 6y' + 5y = e^{-x}$.

(y_c):
$$y'' + 6y' + 5y = 0 \implies y_c = c_1 e^{-x} + c_2 e^{-5x}$$
 (same as previous!)

(y_p):
$$g(x) = e^{-x}$$
.

Try $y_p = Ae^{-x} \implies y_p' = -Ae^{-x}$, $y_p'' = Ae^{-x}$ and substituting this to the DE gives:

$$Ae^{-x} - 6Ae^{-x} + 5Ae^{-x} = e^{-x} \implies 0 = 1 \implies \text{contradiction!}$$

We should obviously get zero here because c_1e^{-x} is a solution of the homogeneous DE!

Instead, we try
$$y_p = Axe^{-x} \implies y_p' = Ae^{-x}(1-x), y_p'' = Ae^{-x}(x-2).$$

4.4: Non-homogeneous linear DEs Example 2 (cont.)

Instead, we try
$$y_p = Axe^{-x} \implies y_p' = Ae^{-x}(1-x), y_p'' = Ae^{-x}(x-2).$$

Substituting this to the DE we find

$$\frac{Ae^{-x}(x-2) + 6Ae^{-x}(1-x) + 5Axe^{-x}}{-A(x-2) + 6A(1-x) + 5Ax} = \frac{e^{-x}}{1}$$

$$Ax - 2A + 6A - 6Ax + 5Ax = 1$$

$$4A = 1 \implies A = \frac{1}{4}.$$

Therefore

and

$$y(x) = c_1 e^{-x} + c_2 e^{-5x} + \frac{1}{4} x e^{-x}$$
.

 $y_p = \frac{1}{4}xe^{-x}$

4.4: Non-homogeneous linear DEs Example 3

Find the general solution of $y'' - 9y' + 14y = 3x^2 - 5\sin(2x)$.

Try
$$y = e^{mx} \implies m^2 - 9m + 14 = 0 \implies (m - 7)(m - 2) = 0 \implies M$$

$$\implies y_c = c_1 e^{7x} + c_2 e^{2x}$$

$$(y_p): g(x) = 3x^2 - 5\sin(2x).$$

$$y_p'' = 2A - 4D\cos(2x) - 4E\sin(2x)$$

Substitute to the DE to find (exercise)

$$A = \frac{3}{14}, B = \frac{27}{98}, C = \frac{201}{1372}, D = -\frac{45}{212}, E = -\frac{25}{212} \text{ and hence}$$

$$y(x) = C_1 e^{7x} + C_2 e^{2x} + \frac{3}{14} x^2 + \frac{27}{08} x + \frac{201}{1372} - \frac{45}{212} \cos(2x) - \frac{25}{212} \sin(2x).$$

 $y_p = Ax^2 + Bx + C + D\cos(2x) + E\sin(2x)$ $y'_{D} = 2Ax + B - 2D\sin(2x) + 2E\cos(2x)$

TW244: Lecture 16 - 4.4: Non-homogeneous linear DEs

$$y = Ax^{2} + bx + C + Dcosla + Esin2x$$
 $y' = 2Ax + B - 2D snlx + 2E cosla$
 $y'' = 2A - 4D cosla - BE sin2x$
 $2A - 4D cosla - BE co$

4.4: Non-homogeneous linear DEs Example 4

Solve y'' + 4y = -2 subject to initial conditions $y(\pi/8) = 1/2$, $y'(\pi/8) = 2$.

(
$$y_c$$
): From Lecture 15 (final slide) we have $y_c = c_1 \sin(2x) + c_2 \cos(2x)$ (y_p): We try $y_p = A$ so that $y_p^n = 0$ and $y_p'' + 4y_p = 4A = -2 \implies A = -\frac{1}{2}$.

Hence we have the general solution
$$v(x) = c_1 \sin(2x) + c_2 \cos(2x) - \frac{1}{2}$$
.

We now use the initial conditions to solve for c_1 and c_2 :*

$$\frac{y(\frac{\pi}{8})}{y'(\frac{\pi}{8})} = c_1 \frac{\sqrt{2}}{2} + c_2 \frac{\sqrt{2}}{2} - \frac{1}{2} = \frac{1}{2} \implies c_1 + c_2 = \frac{2}{\sqrt{2}} \\
y'(\frac{\pi}{8}) = 2c_1 \frac{\sqrt{2}}{2} - 2c_2 \frac{\sqrt{2}}{2} = 2 \implies c_1 - c_2 = \frac{2}{\sqrt{2}}$$

$$\Rightarrow c_1 = \sqrt{2}, c_2 = 0.$$

Therefore, the solution to the IVP is given by

$$y(x) = \sqrt{2}\sin(2x) - \frac{1}{2}.$$

TW244: Lecture 16 - 4.4: Non-homogeneous linear DEs

^{*}Note that we apply the boundary conditions to the general solution, y(x), and <u>not</u> just the complimentary solution, y_c . This is a common mistake!

4.4: Non-homogeneous linear DEs More examples...

There are **lots** of examples in the textbook. I suggest you try some!

Exercise, solve the following:

$$y'' + 2y' + y = e^{-x},$$
 $y(0) = 1,$ $y'(0) = 0.$
 $5y'' + y' = -6x,$ $y(0) = 0,$ $y'(0) = -10.$