复分析第六次习题课

黄天一

2023年5月28日

1 作业讲解

2.5.15. 求一个单叶全纯映射, 把除去线段 [0,1+i] 的第一象限映为上半平面.

解答. 下图给出了待求的一个单叶全纯映射.

复合可得 $w = \sqrt{z^4 + 4}$.

2.5.16. 求一个单叶全纯映射, 把半条形域

$$\left\{z\in\mathbb{C}:-\frac{\pi}{2}<\operatorname{Re}z<\frac{\pi}{2},\operatorname{Im}z>0\right\}$$

映为上半平面, 并且将 $\frac{\pi}{2}$, $-\frac{\pi}{2}$, 0 分别映为 1, -1, 0.

解答. 回忆 2.4 节作业中的儒可夫斯基函数 $\varphi(z) = \frac{1}{2}(z + \frac{1}{z})$, 它将下半圆盘单叶地映为上半平面, 将上半圆盘单叶地映为下半平面. 借助该函数, 我们可以如下构造待求的单叶全纯函数: 复合可得待求的一个单叶全纯映射为

$$w = \frac{1}{2} \left(e^{iz - \frac{\pi}{2}i} + e^{\frac{\pi}{2}i - iz} \right) = \frac{e^{iz} - e^{-iz}}{2i} = \sin z.$$

2.5.17. 求一个单叶全纯映射, 把除去线段 [a, a + hi] 的条形域 $\{z : 0 < \text{Im } z < 1\}$ 映为条形域 $\{w : 0 < \text{Im } w < 1\}$, 其中 $a \in \mathbb{R}$ 且 0 < h < 1.

解答. 我们可以按上图所示构造单叶全纯映射. 其中

$$\mathrm{i}x_0 = \frac{\mathrm{e}^{\pi h\mathrm{i}} - \mathrm{i}}{\mathrm{e}^{\pi h\mathrm{i}} + \mathrm{i}}.$$

复合可得

$$w = \frac{1}{\pi} \log \sqrt{\left(\frac{1+x_0}{1-x_0}\right)^2 + \left(\frac{e^{\pi(z-a)}-1}{e^{\pi(z-a)}+1}\right)^2}.$$

2.5.18. 求一个单叶全纯映射, 把如图所示的月牙形域映为 B(0,1).

解答. 处理这种由两个圆弧围成的区域, 常用的方法是先分别将两个交点映为 0 和 ∞ . 所以第一步变换为 $z_1=\lambda\frac{z+1}{1-z}$, 根据单叶全纯映射的保角性, 我们希望能选取合适的 $\lambda\in\mathbb{C}$ 将 i 映为辐角为 $\frac{\pi}{3}$ 的复数, 则该分式线性变换将月牙域映为区域 $\{z\in\mathbb{C}:0<\arg z<\frac{\pi}{3}\}$. 计算可得 z=i 时 $z_1=i\lambda$, 所以取 $\lambda=-i\mathrm{e}^{i\frac{\pi}{3}}=\mathrm{e}^{-i\frac{\pi}{6}}$.

然后再作变换 $z_2=z_1^3$, 则将扇形域 $\{0<\arg z<\frac{\pi}{3}\}$ 单叶地映成了上半平面. 最后作变换 $z_3=\frac{z_2-\mathrm{i}}{z_2+\mathrm{i}}$, 则将上半平面单叶地映成了 B(0,1). 综上所述, 待求的一个单叶全纯映射为

$$f(z) = \frac{-i\frac{(z+1)^3}{(z-1)^3} - i}{i - i\frac{(z+1)^3}{(z-1)^3}} = \frac{1+3z^2}{z^3 + 3z}.$$

2.5.19. 求一个单叶全纯映射, 把除去线段 [1,2] 的单位圆盘外部映为单位圆盘.

解答. 下图给出了一个符合要求的单叶全纯映射. 复合可得

$$w = \frac{\sqrt{9(z-1)^2 - (z+1)^2} - i}{\sqrt{9(z-1)^2 - (z+1)^2} + i}.$$

- **4.5.10.** 设 $f \in H(B(0,R)), f(B(0,R)) \subset B(0,M), f(0) = 0.$ 证明: (1) $|f(z)| \leq \frac{M}{R}|z|, |f'(0)| \leq \frac{M}{R}, \forall z \in B(0,R).$
- (2) 等号成立当且仅当 $f(z) = \frac{M}{R} e^{i\theta} z$.

证明. 考虑函数 $g:B(0,1)\to B(0,1),$ 定义为 $g(w)=\frac{1}{M}f(Rw),$ 从而 g(0)=0. 由 Schwarz 引理可得 $|g(w)| \leq |w|, |g'(0)| \leq 1.$ 因此

$$|f(z)| = \left| Mg\left(\frac{z}{R}\right) \right| \leqslant \frac{M}{R}|z|.$$
$$|f'(0)| = \left| \frac{M}{R}g'(0) \right| \leqslant \frac{M}{R}.$$

由 Schwarz 引理的取等条件可得, 等号成立当且仅当 $g(z) = e^{i\theta} z(\theta \in \mathbb{R})$, 所以 $f(z) = \frac{M}{R} e^{i\theta} z$.

4.5.12. (Carathéodory 不等式) 设 $f \in H(B(0,R)) \cap C(\overline{B(0,R)}), M(r) = \max_{|z|=r} |f(z)|, A(r) =$ $\max \operatorname{Re} f(z) (0 \leqslant r \leqslant R)$, 证明:

$$M(r) \leqslant \frac{2r}{R-r}A(R) + \frac{R+r}{R-r}|f(0)|, \forall r \in [0, R).$$

证明. 先证明教材习题 4.5.11: 设 $f\in H(B(0,1)),\ f(0)=0,$ 并且存在 A>0, 使得 $\mathrm{Re}\, f(z)\leqslant A,$ $\forall z\in B(0,1),$ 则 $|f(z)|\leqslant \frac{2A|z|}{1-|z|},$ $\forall z\in B(0,1).$

先找到一个从 $\{w\in : \mathrm{Re}\,w < A\}$ 到单位圆盘 $\{z\in \mathbb{C}: |z|<1\}$ 的一个分式线性变换, 并且为了 保证应用 Schwarz 引理, 该变换应将 0 映成 0. 符合要求的一个分式线性变换为 $z=\frac{w}{w-2A}$. 考虑 B(0,1) 上的全纯函数 $g(z)=\dfrac{f(z)}{f(z)-2A},$ 则 g(0)=0 且 $g(z)\leqslant 1, \forall z\in B(0,1).$ 由 Schwarz 引理可得

$$|g(z)| \leqslant |z| \Rightarrow |f(z)| = \left| \frac{2Ag(z)}{g(z) - 1} \right| \leqslant \frac{2A|z|}{1 - |z|}.$$

现在回到原题的证明. 考虑函数 g(z)=f(Rz)-f(0), 定义 $\tilde{A}(r)=\max_{|z|=r}\operatorname{Re}g(z)$, 首先证明: $\max_{|z|\leqslant 1}\operatorname{Re}g(z)=0$ $\tilde{A}(1)$. 考虑函数 $h(z) = e^{g(z)}$, 则 $h \in H(B(0,1)) \cap C(\overline{B(0,1)})$. 由最大模原理可得

$$\max_{|z|\leqslant 1}|h(z)|=\max_{|z|=1}|h(z)|\Rightarrow\max_{|z|\leqslant 1}\mathrm{e}^{\mathrm{Re}\,g(z)}=\max_{|z|=1}\mathrm{e}^{\mathrm{Re}\,g(z)}\Rightarrow\max_{|z|\leqslant 1}\mathrm{Re}\,g(z)=\tilde{A}(1).$$

由习题 4.5.11 的结论可得

$$|g(z)| \le \frac{2\tilde{A}(1)|z|}{1-|z|}, \ \forall z \in B(0,1).$$

由定义可得 $\tilde{A}(1) \leq A(R) + |f(0)|$, 所以

$$|f(z)| \le |f(0)| + \left|g\left(\frac{z}{R}\right)\right| \le |f(0)| + \frac{2(A(R) + |f(0)|)|z|}{R - |z|} = \frac{2|z|}{R - |z|}A(R) + \frac{R + |z|}{R - |z|}|f(0)|.$$

由此即可得

$$M(r) \leqslant \frac{2r}{R-r}A(R) + \frac{R+r}{R-r}|f(0)|.$$

4.5.13. 设 $f \in H(B(0,1)), f(0) = 1$, 并且 $\text{Re } f(z) \geqslant 0, \forall z \in B(0,1)$. 利用 Schwarz 引理证明:

- (1) $\frac{1-|z|}{1+|z|} \le \operatorname{Re} f(z) \le |f(z)| \le \frac{1+|z|}{1-|z|}, \forall z \in B(0,1).$
- (2) 上式最后一个等号在 z 异于零时成立, 当且仅当

$$f(z) = \frac{1 + e^{i\theta}z}{1 - e^{i\theta}z} (\theta \in \mathbb{R}).$$

证明. 为了应用 Schwarz 引理, 我们需要找到一个分式线性变换, 把右半平面映成单位圆, 并且将 1 映成 0. 不难求得复合要求的一个分式线性变换为 $w\mapsto \frac{1-w}{1+w}$. 考虑函数

$$g(z) = \frac{f(z) - 1}{1 + f(z)},$$

则 $|g(z)| \le 1, \forall z \in B(0,1)$ 且 g(0) = 0,由 Schwarz 引理可得 $|g(z)| \le |z|$. 所以

$$|f(z)| = \left| \frac{1 + g(z)}{1 - g(z)} \right| \le \frac{1 + |g(z)|}{1 - |g(z)|} \le \frac{1 + |z|}{1 - |z|}.$$

由 Schwarz 引理可得等号成立当且仅当 $g(z) = e^{i\theta}z$,此时 $f(z) = \frac{1 + g(z)}{1 - g(z)} = \frac{1 + e^{i\theta}z}{1 - e^{i\theta}z}$.

然后我们来证明左边的不等式,这里给出两个证法.

(1) 由 Re $f(z) \ge 0$ 及糖水不等式可得

$$|z|^2 \ge |g(z)|^2 = \frac{(\operatorname{Re} f(z) - 1)^2 + \operatorname{Im}(f(z))^2}{(\operatorname{Re} f(z) + 1)^2 + \operatorname{Im}(f(z))^2} \ge \frac{(\operatorname{Re} f(z) - 1)^2}{(\operatorname{Re} f(z) + 1)^2}.$$

由此可得

$$\frac{1 - \operatorname{Re} f(z)}{\operatorname{Re} f(z) + 1} \leqslant |z| \Rightarrow \operatorname{Re} f(z) \geqslant \frac{1 - |z|}{1 + |z|}.$$

(2) 直接计算可得

$$\operatorname{Re} f(z) = \frac{1}{2} \left(\frac{1 + g(z)}{1 - g(z)} + \frac{1 + \overline{g(z)}}{1 - \overline{g(z)}} \right) = \frac{1 - |g(z)|^2}{1 - 2\operatorname{Re} g(z) + |g(z)|^2} \geqslant \frac{1 - |z|^2}{1 + 2|z| + |z|^2} = \frac{1 - |z|}{1 + |z|}.$$

4.5.14. 设 $f \in H(B(0,1))$, 证明: 存在 $z_0 \in \partial B(0,1)$ 和收敛于 z_0 的点列 $z_n \in B(0,1)$, 使得 $f(z_n)$ 收敛.

证明. 反证, 假设结论不成立. 我们先证明: 对任意 $z_0 \in \partial B(0,1)$, 以及任一收敛于 z_0 的点列 $z_n \in B(0,1)$, 都有 $\lim_{n\to\infty} f(z_n) = \infty$. 事实上, 如果该断言不成立, 则存在 $z_0 \in \partial B(0,1)$, 以及收敛于 z_0 的点列 $z_n \in B(0,1)$, 使得 $f(z_n)$ 为有界序列. 从而 $f(z_n)$ 存在收敛子列 $f(z_{n_k})$, 而 $z_{n_k} \in B(0,1)$ 收敛于 z_0 , 这与假设矛盾.

现在分两种情况讨论. 如果 f 存在无穷多个零点, 设 $z_n \in B(0,1)$ 为 f 的一个零点列, 则 z_n 存在聚点 z_0 . 若 $z_0 \in B(0,1)$, 由唯一性定理可得 f 恒为零, 此时原结论显然成立. 如果 $z_0 \in \partial B(0,1)$, 则 z_n 存在子列 z_{n_k} 收敛于 z_0 并且 $f(z_{n_k}) = 0$, 原结论成立.

如果 f 仅有有限个互异零点 z_1, \dots, z_k , 重数分别为 n_1, \dots, n_k , 考虑函数

$$g(z) = \frac{f(z)}{(z-z_1)^{n_1} \cdots (z-z_k)^{n_k}}.$$

则 $g \in H(B(0,1))$ 且不存在零点. 由断言可得对任意 $z_0 \in \partial B(0,1)$,有 $\lim_{B(0,1)\ni z \to z_0} f(z) = \infty$,因 此 $\lim_{B(0,1)\ni z \to z_0} \frac{1}{g(z)} = 0$. 由此可得 B(0,1) 上的全纯函数 $\frac{1}{g(z)}$ 可以连续地延拓到 $\overline{B(0,1)}$ 上,并且在 $\partial B(0,1)$ 上取值恒为零. 由最大模原理可得 $\frac{1}{g(z)}$ 恒为零,但这显然矛盾.

4.5.15. 求出所有满足 $|f(z)| = 1, \forall |z| = 1$ 的整函数 f.

证明. 设 f 在 B(0,1) 内的零点为 z_1, \dots, z_n , 重数分别为 k_1, \dots, k_n , 考虑函数

$$g(z) = f(z) \prod_{i=1}^{n} \left(\frac{1 - \overline{z}_j z}{z - z_j} \right)^{k_j}.$$

则 $g \in H(\overline{B(0,1)})$,在 B(0,1) 内无零点,并且 $|g(z)|=1, \forall |z|=1$. 由最大模原理可得 $|g(z)| \leq 1, \forall |z| \leq 1$. 另一方面,对 $\frac{1}{g}$ 再次应用最大模原理可得 $\frac{1}{|g(z)|} \leq 1, \ \forall |z| \leq 1$. 因此 $|g(z)|=1, \ \forall |z| \leq 1$,故 g 恒为常数 $e^{i\theta}$,从而

$$f(z) = e^{i\theta} \prod_{j=1}^{n} \left(\frac{z - z_j}{1 - \bar{z}_j z} \right)^{n_j}.$$

另一方面, 由于 f 是整函数, 所以必须有 $z_j=0$. 因此所有可能的 f 为 $f(z)=\mathrm{e}^{\mathrm{i}\theta}z^n(\theta\in\mathbb{R},n\in\mathbb{N})$. \square

4.5.16. 设 $P_n(z)$ 为 n 次多项式, $P_n^*(z) = z^n \overline{P_n\left(\frac{1}{z}\right)}$. 证明: 若 $P_n(z)$ 的所有零点都在 $B(\infty,1)$ 内, 则 $P_n(z) + e^{i\theta} P_n^*(z) (\theta \in \mathbb{R})$ 的零点都在 $\partial B(0,1)$ 上.

证明. 我们先证明: $f(z) = P_n(z) + e^{i\theta} P_n^*(z)$ 的零点都在 $\{z \in \mathbb{C} : |z| \ge 1\}$ 内. 设 $P_n(z) = \lambda(z - z_1) \cdots (z - z_n)$, 其中 $\lambda \in \mathbb{C} \setminus \{0\}$, $z_1, \cdots, z_n \in B(\infty, 1)$, 则由定义可得

$$P_n^*(z) = \bar{\lambda}(1 - \bar{z}_1 z) \cdots (1 - \bar{z}_n z).$$

所以对任意 $z \in B(0,1)$, 有

$$\frac{P_n^*(z)}{P_n(z)} = \frac{\bar{\lambda}}{\lambda} \frac{z_1 \cdots z_n}{\bar{z}_1 \cdots \bar{z}_n} \prod_{k=1}^n \frac{z - \frac{1}{\bar{z}_k}}{1 - \frac{z}{z_k}} \Rightarrow \left| \frac{P_n^*(z)}{P_n(z)} \right| = \prod_{k=1}^n \left| \frac{z - \frac{1}{\bar{z}_k}}{1 - (\frac{1}{\bar{z}_k})z} \right| < 1.$$

此时必然有 $f(z) \neq 0$, 否则 $\frac{P_n^*(z)}{P_n(z)} = -e^{i\theta}$, 模长为 1, 矛盾.

另一方面, 由定义可得

$$f^*(z) = P_n^*(z) + e^{-i\theta} P_n^{**}(z) = P_n^*(z) + e^{-i\theta} P_n(z) = e^{-i\theta} f(z).$$

由此首先可得 z=0 不是 f(z) 的零点, 并且若 z_0 是 f(z) 的零点, 则 $\frac{1}{z_0}$ 是 $f^*(z)$ 的零点, 从而是 f(z) 的零点. 如果 $|z_0|>1$,则 $|\frac{1}{z_0}|<1$,这与前面的讨论矛盾. 所以 f(z) 的零点都在 $\partial B(0,1)$ 上.

4.5.17. 设 $f \in H(B(0,1))$, $f(B(0,1)) \subset B(0,1)$. 证明: 若 z_1, \dots, z_n 是 f 在 B(0,1) 中所有彼此不同的零点, 其阶数分别为 k_1, \dots, k_n , 则

$$|f(z)| \leqslant \prod_{j=1}^{n} \left| \frac{z_j - z}{1 - \bar{z}_j z} \right|^{k_j}, \forall z \in B(0, 1),$$

特别地,有

$$|f(0)| \leqslant \prod_{j=1}^{n} |z_j|^{k_j}.$$

证明. 考虑函数

$$g(z) = f(z) \prod_{j=1}^{n} \left(\frac{1 - \bar{z}_j z}{z - z_j} \right)^{k_j},$$

则 $g \in H(B(0,1))$ 且 g 在 B(0,1) 内无零点. 由于在边界 |z|=1 上恒成立 $|\frac{1-\bar{z}_jz}{z-z_j}|=1$, 所以任取 $\varepsilon>0$, 存在充分小的 $\delta>0$, 对任意 $1-\delta<|z|<1$, 成立 $\prod_{j=1}^n |\frac{1-\bar{z}_jz}{z-z_j}|^{k_j} \leqslant 1+\varepsilon$. 结合 |f(z)|<1, 应用最大模原理可得, $|g(z)|<1+\varepsilon$, $\forall z\in B(0,1)$ (总可以找到半径介于 $1-\delta$ 和 1 之间的圆周 $|\zeta|=r$, 使得 |z|< r). 由 ε 的任意性可得 $|g(z)|\leqslant 1$, 即有

$$|f(z)| \leqslant \prod_{j=1}^{n} \left| \frac{z_j - z}{1 - \overline{z}_j z} \right|^{k_j}, \forall z \in B(0, 1).$$

注 1.1. 不少同学构造完辅助函数以后就直接用最大模原理立得结论了, 这是不合适的, 因为 f 在 |z|=1 上根本没有定义. 尽管稍显繁琐, 还是应该按照上述证明写清楚应用最大模原理的过程.

4.5.20. 设 $f \in H(B(0,1))$, f(0) = 0, $f(B(0,1)) \subset B(0,1)$. 证明: 若存在 $z_1, z_2 \in B(0,1)$, 使得 $z_1 \neq z_2$, $|z_1| = |z_2|$, $f(z_1) = f(z_2)$, 则

$$|f(z_1)| = |f(z_2)| \le |z_1|^2 = |z_2|^2.$$

证明. 考虑函数

$$g(z) = \frac{f(z) - f(z_1)}{1 - \overline{f(z_1)}} \frac{1 - \overline{z_1}z}{z - z_1} \frac{1 - \overline{z_2}z}{z - z_2}.$$

那么 $g \in H(B(0,1))$. 任取 $\varepsilon > 0$, 存在 $\delta > 0$, 使得 $|\frac{1-\bar{z}_jz}{z-z_j}| < 1+\varepsilon$, j=1,2, $\forall 1-\delta < |z| < 1$. 由此可得

$$|g(z)| \leqslant \left| \frac{1 - \bar{z}_1 z}{z - z_1} \right| \cdot \left| \frac{1 - \bar{z}_2 z}{z - z_2} \right| \leqslant (1 + \varepsilon)^2, \ \forall 1 - \delta < |z| < 1.$$

应用最大模原理可得 $|g(0)| < (1+\varepsilon)^2$, 由 ε 的任意性可得 $|g(0)| \leqslant 1$, 即

$$|f(z_1)| = |f(z_2)| \le |z_1|^2 = |z_2|^2$$
.

4.5.30. 设
$$f \in H(B(0,1)), f(0) = 0$$
, 并且 $|\operatorname{Re} f(z)| < 1$, $\forall z \in B(0,1)$. 证明: (1) $|\operatorname{Re} f(z)| \leq \frac{4}{\pi} \arctan |z|, \forall z \in B(0,1)$. (2) $|\operatorname{Im} f(z)| \leq \frac{2}{\pi} \log \frac{1+|z|}{1-|z|}, \forall z \in B(0,1)$.

证明. 先将区域 $\{z\in\mathbb{C}:|\operatorname{Re} f(z)|<1\}$ 变换为 B(0,1), 并且把 0 映成 0. 下图给出了一个符合要求 的双全纯变换:

复合起来就是 $f(z) = \frac{e^{\frac{\pi i}{2}z}-1}{e^{\frac{\pi i}{2}z}+1}$. 考虑函数

$$g(z) = \frac{e^{\frac{\pi i}{2}f(z)} - 1}{e^{\frac{\pi i}{2}f(z)} + 1}.$$

则 $g: B(0,1) \to B(0,1)$ 为全纯函数且 g(0) = 0, 应用 Schwarz 引理可得 $|g(z)| \leq |z|$. 另一方面, 由此 反解可得

$$f(z) = \frac{2}{\pi i} \log \frac{1 + g(z)}{1 - g(z)}.$$

则首先有 ${\rm Im}\, f(z) = -\frac{2}{\pi} \log \left| \frac{1+g(z)}{1-g(z)} \right|$. 而由 $|g(z)| \leqslant |z|$ 可得

$$\log \frac{1 - |z|}{1 + |z|} \le \log \left| \frac{1 + g(z)}{1 - g(z)} \right| \le \log \frac{1 + |z|}{1 - |z|},$$

所以 $|\operatorname{Im} f(z)| \leq \frac{2}{\pi} \log \frac{1+|z|}{1-|z|}$. 然后我们来估计实部 $\operatorname{Re} f(z) = \frac{2}{\pi} \operatorname{arg} \frac{1+g(z)}{1-g(z)}$. 由 $|\operatorname{Re} f(z)| \leq 1$ 可得 $|\arg\frac{1+g(z)}{1-q(z)}|<\frac{\pi}{2}$,计算可得

$$\frac{1+g(z)}{1-g(z)} = \frac{(1+g(z))(1-\overline{g(z)})}{|1-g(z)|^2} = \frac{1-|g(z)|^2+2\mathrm{i}\operatorname{Im} g(z)}{|1-g(z)|^2}.$$

所以

$$\left|\arg\frac{1+g(z)}{1-g(z)}\right| = \left|\arctan\frac{2\operatorname{Im}g(z)}{1-|g(z)|^2}\right| \leqslant \arctan\frac{2|z|}{1-|z|^2} \leqslant 2\arctan|z|.$$

最后一步由 tan 的二倍角公式得到. 因此 $|\operatorname{Re} f(z)| \leq \frac{4}{\pi} \arctan |z|$.

5.1.2. 将下列初等函数在指定的区域 D 上展开为 Laurent 级数.

(1)
$$\frac{1}{z^2(z-1)}$$
, $D = B(1,1) \setminus \{1\}$.

(2)
$$\frac{1}{(z-1)(z-2)}$$
, $D = B(0,2) \setminus \overline{B(0,1)}$.

(3)
$$\operatorname{Log} \frac{z-1}{z-2}$$
, $D = B(\infty, 2)$.

(4)
$$\sqrt{(z-1)(z-2)}$$
, $D = B(\infty, 2)$

$$(z-1)(z-2)$$
(3) $\log \frac{z-1}{z-2}$, $D = B(\infty, 2)$.
(4) $\sqrt{(z-1)(z-2)}$, $D = B(\infty, 2)$.
(5) $\frac{1}{(z-5)^n}$, $n \in \mathbb{N}$, $D = B(\infty, 5)$.

解答. (1) 首先计算全纯函数 $\frac{1}{(1+w)^2}$ 在 $w \in B(0,1)$ 上的 Taylor 展开. 由 Weierstrass 定理可得

$$\frac{1}{(1+w)^2} = -\frac{\mathrm{d}}{\mathrm{d}w} \frac{1}{1+w} = -\left(\sum_{n=0}^{\infty} (-1)^n w^n\right)' = \sum_{n=0}^{\infty} (-1)^n (n+1) w^n.$$

由此可得在 B(1,1) \ 1 上有

$$\frac{1}{z^2(z-1)} = \frac{1}{z-1} \frac{1}{(1+z-1)^2} = \frac{1}{z-1} + \sum_{n=0}^{\infty} (-1)^{n+1} (n+2)(z-1)^n.$$

(2) 在 $B(0,2) \setminus \overline{B(0,1)}$ 上, 成立 $|\frac{1}{z}| < 1, |\frac{z}{2}| < 1$, 所以

$$\frac{1}{(z-1)(z-2)} = \frac{1}{2(\frac{z}{2}-1)} - \frac{1}{z(1-\frac{1}{z})} = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} - \sum_{n=0}^{\infty} \frac{1}{z^{n+1}}.$$

(3) 计算可得 $\frac{z-1}{z-2}$ 将 $B(\infty,2)$ 单叶地映成区域 $\{w \in \mathbb{C} : \text{Re}\, w > \frac{3}{4}\}$, 这说明 $\text{Log}\frac{z-1}{z-2}$ 在 $B(\infty,2)$ 上可 以取出全纯的单值分支, 我们来考虑主支 $\log \frac{z-1}{z-2}$. 由于在 $B(\infty,2)$ 上成立 $|\frac{1}{z}| < 1, |\frac{2}{z}| < 1$, 所以

$$\log \frac{z-1}{z-2} = \log \left(1 - \frac{1}{z}\right) - \log \left(1 - \frac{2}{z}\right) = -\sum_{n=1}^{\infty} \frac{1}{nz^n} + \sum_{n=1}^{\infty} \frac{2^n}{nz^n} = \sum_{n=1}^{\infty} \frac{2^n-1}{nz^n}.$$

因此

$$\operatorname{Log} \frac{z-1}{z-2} = \sum_{n=1}^{\infty} \frac{2^n - 1}{nz^n} + 2k\pi i, \ k \in \mathbb{Z}.$$

(4) 我们考虑满足 $\sqrt{-1}=\mathrm{i}$ 的单值分支, 另一个单值分支相差一个负号. 在 $B(\infty,2)$ 上有 $|\frac{1}{z}|<1,$ $|\frac{2}{z}| < 1$,从而计算可得

$$\sqrt{(z-1)(z-2)} = z\sqrt{\left(1-\frac{1}{z}\right)\left(1-\frac{2}{z}\right)}$$

$$= z\left(\sum_{m=0}^{\infty} {\frac{\frac{1}{2}}{m}} \frac{(-1)^m}{z^m}\right)\left(\sum_{n=0}^{\infty} {\frac{\frac{1}{2}}{n}} \frac{(-2)^n}{z^n}\right)$$

$$= \sum_{k=0}^{\infty} \left(\sum_{\substack{m,n\geqslant 0\\m+n=k}} {\frac{\frac{1}{2}}{m}} {\frac{1}{2}} (-1)^k 2^n\right) \frac{1}{z^{k-1}}.$$

(5) 在 $B(\infty, 5)$ 上有 $|\frac{5}{z}| < 1$, 从而计算可得

$$\frac{1}{(z-5)^n} = \frac{1}{z^n} \frac{1}{(1-\frac{5}{z})^n} = \frac{1}{z^n} \sum_{k=0}^{\infty} {\binom{-n}{k}} \left(-\frac{5}{z}\right)^k = \sum_{k=0}^{\infty} {\binom{-n}{k}} (-5)^k \frac{1}{z^{n+k}}.$$

5.1.4. 设 $0 < r < R < \infty$, $D = B(0,R) \setminus \overline{B(0,r)}$. 证明: 若 $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ 双全纯地把 D 映成域 G, 则 G 的面积为

$$\pi \sum_{n=-\infty}^{\infty} n|a_n|^2 (R^{2n} - r^{2n}).$$

证明. 直接计算可得

$$\begin{aligned} \operatorname{Area}(D) &= \iint_D |f'(z)|^2 \mathrm{d}A \\ &= \int_r^R \rho \mathrm{d}\rho \int_0^{2\pi} |f'(\rho \mathrm{e}^{\mathrm{i}\theta})|^2 \mathrm{d}\theta \\ &= \sum_{m,n=-\infty}^\infty \int_r^R \rho \mathrm{d}\rho \int_0^{2\pi} m a_m \rho^{m-1} \mathrm{e}^{\mathrm{i}(m-1)\theta} n \bar{a}_n \rho^{n-1} \mathrm{e}^{\mathrm{i}(1-n)\theta} \mathrm{d}\theta \\ &= \sum_{m,n=-\infty}^\infty \int_r^R \rho \mathrm{d}\rho m n a_m \bar{a}_n \rho^{m+n-2} \int_0^{2\pi} \mathrm{e}^{\mathrm{i}(m-n)\theta} \mathrm{d}\theta \\ &= \sum_{n=-\infty}^\infty \int_r^R 2\pi n^2 |a_n|^2 \rho^{2n-1} \mathrm{d}\rho \\ &= \sum_{n=-\infty}^\infty 2\pi n^2 |a_n|^2 \cdot \frac{\rho^{2n}}{2n} \Big|_r^R \\ &= \pi \sum_{n=-\infty}^\infty |a_n|^2 (R^{2n} - r^{2n}). \end{aligned}$$

5.2.2. 下列初等全纯函数有哪些奇点, 并指出其类别.

- $(1)\sin\frac{1}{1-z}.$
- $(2)\,\sin\frac{1}{\cos\frac{1}{z}}.$
- (3) $e^{\tan z}$.

解答. (1) 可能的奇点集合为 $z=1,\infty,$ 由于 $\lim_{z\to 1}\sin\frac{1}{1-z}$ 不存在, 所以 z=1 是 $f(z)=\sin\frac{1}{1-z}$ 的本性奇点. 又因为 $f(\frac{1}{z})=\sin\frac{z}{z-1},$ 所以 z=0 是 $f(\frac{1}{z})$ 的可去奇点, 进而 ∞ 是 f 的可去奇点.

- (2) 可能的奇点集合为 $z=0, \frac{2}{(2k+1)\pi}(k\in\mathbb{Z}), \infty.$ 当 $z\to\frac{2}{(2k+1)\pi}$ 时, $\cos\frac{1}{z}\to 0$, 所以此时 $\sin\frac{1}{\cos\frac{1}{z}}$ 的极限不存在, $\frac{2}{(2k+1)\pi}$ 为 $f(z)=\sin\frac{1}{\cos\frac{1}{z}}$ 的本性奇点. 同时由此可得 z=0 是 f 的非孤立奇点. 最后,由于 $f(\frac{1}{z})=\sin\frac{1}{\cos z}$, 所以 z=0 是 $f(\frac{1}{z})$ 的可去奇点, 进而 $z=\infty$ 是 f(z) 的可去奇点.
- (3) 可能的奇点集合为 $z=k\pi+\frac{\pi}{2}(k\in\mathbb{Z}),\infty$. 由于 $z\to k\pi+\frac{\pi}{2}$ 时 $\tan z\to\infty$, 所以此时 $f(z)=\mathrm{e}^{\tan z}$ 的极限不存在, $z=k\pi+\frac{\pi}{2}$ 是 f(z) 的本性奇点. 由此可得 ∞ 是 f 的非孤立奇点.

5.2.3. 证明: 若 z_0 是全纯函数 $f: B(z_0,r)\setminus\{z_0\}\to\mathbb{C}\setminus\{0\}$ 的本性奇点,则 z_0 也是 $\frac{1}{f(z)}$ 的本性奇点.

证明. 由于 f 非零, 故 z_0 首先是 $\frac{1}{f(z)}$ 的孤立奇点. 任取非零复数 $a \neq b$, 由于 z_0 是 f 的本性奇点, 故存在 $z_n \to z_0$, $w_n \to z_0$, 使得 $f(z_n) \to a$, $f(w_n) \to b$, 由此可得 $\frac{1}{f(z_n)} \to \frac{1}{a}$, $\frac{1}{f(w_n)} \to \frac{1}{b}$, 所以 $\frac{1}{f}$ 在 z_0 处的极限不存在, z_0 为 $\frac{1}{f}$ 的本性奇点.

5.2.6. 设 $f \in B(z_0, R) \setminus \{z_0\}$ 上非常数的全纯函数. 证明: 若 $z_0 \in f$ 的零点集的极限点, 则 $z_0 \in f$ 的本性奇点.

证明. 假设 $\lim_{z\to z_0} f(z) = a$ 存在,设 $\{z_n\}$ 为 f 的零点序列,并且收敛于 z_0 ,则由 $f(z_n) = 0$ 可得 a = 0,故 z_0 是 f 的可去奇点,从而补充定义 $f(z_0) = 0$ 可得 $f \in H(B(z_0,R))$,由唯一性定理可得 f 恒为零,这与 f 非常数矛盾. 因此 $\lim_{z\to z_0} f(z)$ 不存在, z_0 是 f 的本性奇点.

5.3.1. 求出 \mathbb{C} 上的亚纯函数 f, 使得 |f(z)| = 1, $\forall z \in \partial B(0,1)$.

证明. 根据亚纯函数的唯一性定理, f 在 B(0,1) 内的零点和极点个数均有限, 分别设为 z_1, \cdots, z_n 和 $w_1, \cdots, w_m(z_j, z_k)$ 可以相同, 极点类似). 考虑函数

$$g(z) = f(z) \prod_{j=1}^{n} \frac{1 - \bar{z}_{j}z}{z - z_{j}} \prod_{k=1}^{m} \frac{z - w_{k}}{1 - \bar{w}_{k}z}.$$

那么 g 也是 \mathbb{C} 上的亚纯函数,并且: (i) $g \in H(\overline{B(0,1)})$, (ii) |g(z)| = 1, $\forall |z| = 1$, (iii) g 在 B(0,1) 内无零点. 类似习题 4.5.15 的证明可得 $g(z) = e^{i\theta}(\theta \in \mathbb{R})$ 恒成立,因此所有满足条件的亚纯函数为

$$f(z) = e^{i\theta} \prod_{j=1}^{n} \frac{1 - \bar{z}_{j}z}{z - z_{j}} \prod_{k=1}^{m} \frac{z - w_{k}}{1 - \bar{w}_{k}z}, \ \theta \in \mathbb{R}, \ n, m = 0, 1, \dots, \ z_{j}, w_{k} \in B(0, 1).$$

5.3.3. 设 $P_n(z)$ 是 n 次多项式, $n \in \mathbb{N}$. 证明: $e^z - P_n(z)$ 有无数个零点.

证明. 这里给出两种证法.

- (1) 考虑函数 $f(z) = P_n(z)e^{-z}$, 则 ∞ 是 f 的本性奇点. 由于 f 只有有限个零点, 根据 Picard 大定理, 在 ∞ 的某个邻域内 f 可以无穷次地取到任一非零值. 由此可得 f(z) = 1 有无穷多个解, 即 $e^z P_n(z)$ 有无数个零点.
- (2) 下面给出一个不用 Picard 大定理的证法. 设 $e^{z} P_{n}(z)$ 只有有限个零点, 设为 z_{1}, \dots, z_{n} , 重数分别为 k_{1}, \dots, k_{n} . 考虑多项式 $Q(z) = (z z_{1})^{k_{1}} \dots (z z_{n})^{k_{n}}$, 则 $\frac{e^{z} P_{n}(z)}{Q(z)}$ 在 \mathbb{C} 上只有可去奇点, 从而是整函数, 并且在复平面上无零点. 由此可得存在整函数 f(z), 满足

$$\frac{e^z - P_n(z)}{Q(z)} = e^{f(z)}$$

(习题 5.3.2, 实际上第三次习题课就证过这个结论). 由此可得存在常数 C > 0, 当 |z| 充分大时, 成立

$$e^{\operatorname{Re} f(z)} = \left| \frac{e^z - P_n(z)}{Q(z)} \right| \leqslant C e^{|z|}.$$

所以存在常数,当 |z| 充分大时,Re $f(z) \leq A|z|$. 现在,我们需要一个引理,即史济怀习题 4.3.6. 设 $f(z) = \sum\limits_{n=1}^{\infty} a_n z^n$ 为整函数, $A(r) = \max\limits_{|z|=r} \operatorname{Re} f(z)$,则

$$|a_n|r^n \le 2A(r) - 2\operatorname{Re} f(0), \ n = 1, 2, \cdots$$

回忆课上证明过 $a_n r^n = \frac{1}{\pi} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) e^{-in\theta} d\theta$. 考虑函数 g(z) = A(r) - f(z), 则 $\operatorname{Re} g(z) \geq 0$, 并且 $g(z) = A(r) - a_0 - a_1 z - \cdots$, 因此

$$|a_n|r^n \leqslant \frac{1}{\pi} \int_0^{2\pi} \operatorname{Re} g(re^{i\theta}) d\theta = 2A(r) - \frac{1}{\pi} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) d\theta = 2A(r) - \operatorname{Re} f(0).$$

应用这个引理, 可得对充分大的 r 和 $n=1,2,\cdots$, 成立

$$|a_n| \le 2Ar^{1-n} - r^{-n} \operatorname{Re} f(0).$$

当 $n \ge 2$ 时, 令 $r \to +\infty$, 即可得 $a_n = 0$. 这说明 f(z) = az + b, 即

$$e^z = Q(z)e^{az+b} + P_n(z).$$

两边求有限次导可得, 存在多项式 R(z), 使得 $e^z=R(z)e^{az}$, 即 $e^{(1-a)z}=R(z)$. 比较零点个数可得指数函数不可能为多项式, 所以 a=1, 因此

$$e^z = Q(z)e^{z+b} + P_n(z) \Rightarrow P_n(z) = e^z(bQ(z) - 1).$$

但是左边的多项式零点有限, 而右边的函数零点无限, 矛盾!

2 补充习题

1. (2011 期末) 求一个单叶全纯映射, 把区域 D 映为上半平面, 其中 $D = \Omega \setminus [0, i]$, $\Omega = B(\sqrt{3}, 2) \cap B(-\sqrt{3}, 2)$, 这里 [0, i] 表示连接 0 和 i 的线段.

解答. 两段圆弧有两个不同交点, 我们先求分式线性变换把 i 映成 0, 把 -i 映成 ∞ , 则

$$f_1(z) = \lambda \frac{\mathrm{i} - z}{z + \mathrm{i}}.$$

代入 $z = \sqrt{3} - 2$ 可得 $f_1(\sqrt{3} - 2) = \lambda(\frac{\sqrt{3}}{2} - \frac{i}{2})$, 选取 $\lambda = 1$, 则 $f_1(2 - \sqrt{3}) = \frac{\sqrt{3}}{2} + \frac{i}{2}$, $f_1(0) = 1$. 由此可得第一步变换的结果:

即区域 $\{z \in \mathbb{C} : -\frac{\pi}{6} < \arg z < \frac{\pi}{6}\}$, 去掉一条割线 [0,1]. 然后把这个角状域逆时针旋转 30°, 即 然后考虑六次幂, 然后向右平移 1 所得区域为全平面去掉割线 $[0,\infty)$.

最后作变换 $z_4 = \sqrt{z_3}$ (选取满足 $\sqrt{-1} = i$ 的单值分支), 即可得上半平面. 综上所述, 所求的一个单叶全纯映射为

$$f(z) = \sqrt{1 - \left(\frac{\mathbf{i} - z}{\mathbf{i} + z}\right)^6}.$$

2. (史济怀习题 2.5.21, 略改动) 证明存在常数 $\rho > 0$, 使得存在单叶全纯映射将区域 $\{z \in \mathbb{C} : \operatorname{Re} z > 0, |z - a| > r\}$ 映为同心圆环 $\{w \in \mathbb{C} : \rho < |w| < 1\}$, 其中 0 < r < a. 并求出一个满足要求的单叶全纯映射.

证明. 处理这种二连通域, 我们可以仿照教材例题的方法, 确定边界两个圆周的一对公共对称点. 原区域的边界是圆周 $\partial B(a,r)$ 和虚轴, 所以待求的一对对称点必然落在实轴上, 设其为 $x_1,x_2\in\mathbb{R}$, $x_1< x_2$. 联立方程可得

$$x_1 = -x_2$$
, $(x_1 - a)(x_2 - a) = r^2$.

求解可得 $x_1 = -\sqrt{a^2 - r^2}, x_2 = \sqrt{a^2 - r^2}$. 现在我们找一个分式线性变换, 把 x_1, x_2 分别映成 ∞ 和 0, 即形如

$$f(z) = \lambda \frac{z - \sqrt{a^2 - r^2}}{z + \sqrt{a^2 - r^2}}, \ \lambda \in \mathbb{C}.$$

我们让虚轴映为圆周 |w|=1, 让圆周 $\partial B(a,r)$ 映为圆周 |w|=
ho, 则

$$|f(0)| = |\lambda| = 1, |f(a-r)| = |\lambda| \frac{a - \sqrt{a^2 - r^2}}{r} = \rho.$$

所以此时需要有 $\rho = \frac{a-\sqrt{a^2-r^2}}{r}$, 并且一个可能的变换为

$$f(z) = \frac{z - \sqrt{a^2 - r^2}}{z + \sqrt{a^2 - r^2}}.$$

不难验证此时该变换确实将原区域双全纯地映成圆环 $\{z \in \mathbb{C} : \rho < |z| < 1\}$.

3. (2018 期中) 设全纯函数 $f: B(0,1) \to B(0,1)$ 有两个不同的不动点, 证明 f 为恒等映射.

证明. 设 $a,b \in B(0,1)$ 为 f 的两个不同的不动点,设 $\varphi_a(z) = \frac{z-a}{1-\bar{a}z}$ 为 Möbius 函数,考虑全纯函数 $g = \varphi_a \circ f \circ \varphi_a^{-1} : B(0,1) \to B(0,1)$,则

$$g(0) = \varphi_a(f(a)) = \varphi_a(a) = 0, \ g(\varphi_a(b)) = \varphi_a(f(b)) = \varphi_a(b).$$

由 Schwarz 引理及其取等条件可得 $g(z)=z, \forall z\in B(0,1)$, 因此 $f=\varphi_a^{-1}\circ g\circ\varphi_a=\mathrm{id}_{B(0,1)}$.

4. (2021 华班期中) 设 \square 为上半平面, f 在 \square 上全纯有界, 且在 \square 上连续. 若 $\sup_{z \in \partial \square} |f(z)| \leqslant 1$, 利用有界区域上全纯函数的最大模原理证明:

$$\sup_{z \in \mathbb{H}} |f(z)| \leqslant 1.$$

证明. 任取 $n \in \mathbb{N}$, 在区域 $\overline{\mathbb{H}}$ 上我们选定多值函数 $(z+\mathrm{i})^{-\frac{1}{n}}$ 的一个单值全纯分支, 并且考虑函数 $g(z) = (z+\mathrm{i})^{-\frac{1}{n}}f(z)$. 在边界 $\partial \mathbb{H}$ 上,成立 $|g(z)| \leqslant |f(z)| \leqslant 1$. 另一方面,由于 f 有界,所以 $z \to \infty$ 时 $g(z) \to 0$. 由此可得对于充分大的 R > 0, 在半圆周 $\partial B(0,R) \cap \mathbb{H}$ 上总成立 |g(z)| < 1. 此时在区域 $B(0,R) \cap \mathbb{H}$ 上对 g 应用最大模原理可得 $|g(z)| \leqslant 1$, $\forall z \in B(0,R) \cap \mathbb{H}$. 由于 R 可以任意大,所以在 \mathbb{H} 上恒成立 $|g(z)| \leqslant 1$. 假设存在 $z_0 \in \mathbb{H}$ 使得 $|f(z_0)| > 1$, 选取充分大的 n 使得 $0 < \frac{1}{n} < \frac{\log |f(z_0)|}{\log(1+|z_0|)}$,则

$$|(z_0 + i)^{-\frac{1}{n}}| \ge (|z_0| + 1)^{-\frac{1}{n}} > |f(z_0)| \Rightarrow |g(z_0)| > 1,$$

矛盾!

5. (Stein Exercise 3.15(b)) 用最大模定理证明: 若 f 在 $\mathbb D$ 上有界且全纯, 并且当 $\theta < \arg z < \varphi$ 时, 函数值随 $|z| \to 1$ 一致收敛于零, 则 f 恒为零.

证明. 设 $\alpha = \frac{\varphi - \theta}{2}$, 考虑函数

$$g(z) = f(z)f(ze^{i\alpha})\cdots f(ze^{in\alpha}),$$

其中 $n = \lceil \frac{2\pi}{\alpha} \rceil$. 对任意 $z \in B(0,1)$, 必然存在 $k = 0,1,\cdots,n$, 使得 $\theta < \arg(z\mathrm{e}^{\mathrm{i}k\alpha}) < \varphi$. 设 $|f(z)| \leq M, \forall z \in \mathbb{D}$, 任取 $\varepsilon > 0$, 存在 $\delta = \delta(\varepsilon) > 0$, 对任意 $z \in \mathbb{D}$ 满足 $1 - \delta < |z| < 1$ 且 $\theta < \arg z < \varphi$, 有 $|f(z)| < \varepsilon$. 所以只要 $1 - \delta < |z| < 1$, 则成立

$$|g(z)| \leqslant M^{n-1}\varepsilon.$$

由最大模原理可得 $|g(z)| \leq M^{n-1}\varepsilon$ 对任意 $z \in \mathbb{D}$ 成立, 由 ε 的任意性可得 g 恒为零. 由此可得对任意 $n \in \mathbb{N}$, 存在 z_n 满足 $|z_n| = \frac{1}{n+1}$ 且 $f(z_n) = 0$, 而 $\{z_n\}$ 以 0 为聚点, 由唯一性定理可得 f 恒为零.

6. (2019 期末) 设 $f: \mathbb{D} \to \mathbb{C}$ 是单叶全纯函数, 并且满足 f(0) = 0, f'(0) = 1, 证明:

$$\inf\{|w|: w \notin f(\mathbb{D})\} \leqslant 1.$$

并且等号成立当且仅当 $f(z) = z, \forall z \in \mathbb{D}$.

证明. 如果 $\inf\{|w|: w \notin f(\mathbb{D})\} \ge 1$, 则有 $\mathbb{D} \subset f(\mathbb{D})$. 设 $g = f^{-1}|_{\mathbb{D}}: \mathbb{D} \to \mathbb{D}$, 则 g 为 \mathbb{D} 上的全纯函数, 并且

$$g(0) = 0, \ g'(0) = \frac{1}{f'(0)} = 1.$$

由 Schwarz 引理的取等条件可得 g(z)=z, 因此 $f^{-1}|_{\mathbb{D}}=\mathrm{id}_{\mathbb{D}}$. 结合 f 是 \mathbb{D} 上的单叶函数即可得 $f=\mathrm{id}_{\mathbb{D}}$, 此时只能有 $\inf\{|w|:w\notin f(\mathbb{D})\}=1$, 即证.

7. (2016 期末) 设 $\Omega = \{z \in \mathbb{C} : 0 < |z| < 1\}, f \in H(\Omega)$ 且满足

$$\iint_{\Omega} |f(z)|^2 \mathrm{d}x \mathrm{d}y < +\infty.$$

证明: z = 0 是 f(z) 的可去奇点.

证明. 设 f 在 Ω 上的 Laurent 展开式为 $f(z)=\sum_{n=-\infty}^{\infty}a_nz^n$, 任取 $0<\varepsilon<\frac{1}{2}$, 考虑区域 $\Omega_{\varepsilon}=\{z\in\mathbb{C}:\varepsilon<|z|<\frac{1}{2}\}$, 则

$$\iint_{\Omega_{\varepsilon}} |f(z)|^{2} dx dy = \sum_{n,m=-\infty}^{\infty} a_{n} \bar{a}_{m} \iint_{\Omega_{\varepsilon}} z^{n} \bar{z}^{m} dx dy$$

$$= \sum_{n,m} a_{n} \bar{a}_{m} \int_{0}^{2\pi} e^{i(n-m)\theta} d\theta \int_{\varepsilon}^{\frac{1}{2}} r^{n+m+1} dr$$

$$= \sum_{n=-\infty}^{\infty} \frac{2\pi |a_{n}|^{2}}{2n+1} \left(\frac{1}{2^{2n+1}} - \varepsilon^{2n+1}\right).$$

由 $\iint_{\Omega} |f(z)|^2 dx dy < +\infty$ 可得, 当 $\varepsilon \downarrow 0$ 时上述正项级数收敛于有限常数, 从而每一项在 $\varepsilon \downarrow 0$ 时都是有界的, 所以 $n \leqslant -1$ 时必有 $a_n = 0$, 因此 f 的 Laurent 展开式的主要部分恒为零, 即 z = 0 是 f(z) 的可去奇点.

8. (史济怀习题 5.2.11) 设 f 在 $\mathbb{C} \setminus \{0\}$ 上全纯, 并且 0 和 ∞ 都是 f 的本性奇点. 证明: 若令 $A(r) = \max_{|z|=r} \operatorname{Re} f(z), \, 0 < r < \infty, \, 则$

$$\lim_{r\to\infty}\frac{\log A(r)}{\log r}=\infty,\ \lim_{r\to0}\frac{\log A(r)}{\log\frac{1}{r}}=\infty.$$

证明. 我们只需证明第一个极限, 对于第二个极限, 考虑函数 $g(z)=f(\frac{1}{z})$, 则 ∞ 是 g 的本性奇点, 并且 $\tilde{A}(r)=A(\frac{1}{r})$, 其中 $\tilde{A}(r)=\max_{|z|=r} \mathrm{Re}\,g(z)$, 因此

$$\lim_{r\to 0}\frac{\log A(r)}{\log\frac{1}{}}=\lim_{r\to \infty}\frac{\log A(\frac{1}{r})}{\log r}=\lim_{r\to \infty}\frac{\log \tilde{A}(r)}{\log r}=\infty.$$

考虑反证, 假设极限式不成立, 则存在 $N \in \mathbb{N}$ 和 $r_k \to \infty$, 满足 $A(r_k) \leqslant r_k^N$, $k = 1, 2, \cdots$. 设 f 在 $\mathbb{C} \setminus \{0\}$ 上的 Laurent 展开为 $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$, 我们先证明一个引理:

$$\frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) e^{-in\theta} d\theta = \frac{a_n r^n + \overline{a_{-n}} r^{-n}}{2}.$$

事实上, 我们有

$$\operatorname{Re} f(re^{i\theta}) = \sum_{n=-\infty}^{\infty} \frac{a_n r^n e^{in\theta} + \bar{a}_n r^n e^{-in\theta}}{2} = \sum_{n=-\infty}^{\infty} \frac{a_n r^n + \overline{a_{-n}} r^{-n}}{2} e^{in\theta}.$$

由此立证. 因此当 n 不为零时, 有

$$\left| \frac{a_n r_k^n + \overline{a_{-n}} r_k^{-n}}{2} \right| = \frac{1}{2\pi} \left| \int_0^{2\pi} (r_k^N - \operatorname{Re} f(r_k e^{i\theta})) e^{-in\theta} d\theta \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} (r_k^N - \operatorname{Re} f(r_k e^{i\theta})) d\theta$$

$$= r_k^N - \operatorname{Re} a_0.$$

由此可得

$$\left| \frac{a_n + \overline{a_{-n}} r_k^{-2n}}{2} \right| \leqslant r_k^{N-n} - r_k^{-n} \operatorname{Re} a_0.$$

对任意 n > N, 令 $k \to \infty$, 结合 $r_k \to \infty$ 即可得 $a_n = 0$, 这与 ∞ 是 f 的本性奇点矛盾.

- **9.** (史济怀习题 5.3.5) 设 f(z) 是整函数, 证明:
- (1) 若 $f(\mathbb{R}) \subset \mathbb{R}$, $f(i\mathbb{R}) \subset i\mathbb{R}$, 则 f(z) 是奇函数.
- (2) 若 $f(\mathbb{R}) \subset \mathbb{R}$, $f(i\mathbb{R}) \subset \mathbb{R}$, 则 f(z) 是偶函数.

证明. (1) 考虑函数

$$g(z) = \frac{f(z) + f(-z)}{2} = a_0 + a_2 z^2 + a_4 z^4 + \cdots$$

由题设可得 $g(0) \in \mathbb{R} \cap i\mathbb{R}$, 所以 $a_0 = 0$. 然后考虑函数 $g_1(z) = \frac{g(z)}{z^2}$, 则 $g_1 = a_2 + a_4 z^2 + \cdots$ 为整函数. 由 g 的定义可得 $g(\mathbb{R}) \subset \mathbb{R}$, $g(i\mathbb{R}) \subset i\mathbb{R}$, 所以类似地有 $g_1(0) = 0$, 即 $a_2 = 0$. 反复归纳即可得 $a_{2n} = 0$, $n = 0, 1, 2, \cdots$, 所以 g 恒为零, 即 f 是奇函数.

(2) 考虑函数 g(z)=zf(z), 则 g 为整函数, 并且 $g(\mathbb{R})\subset\mathbb{R}, g(i\mathbb{R})\subset i\mathbb{R}$. 由 (1) 可得 g 是奇函数, 所以 $f(z)=\frac{g(z)}{z}$ 为偶函数.

3 补充内容: 单叶函数

本节我们的参考书是李忠的《复分析导引》, 主要涵盖教材 5.1 节的习题 5, 6, 7.

这一节我们来研究单位圆 D 上单叶全纯函数的性质. 不过单叶函数这个范畴总显得有些大, 我们干脆再补充一些规范化要求, 来研究更特殊的一类函数:

定义 3.1. 我们称单位圆 \mathbb{D} 上满足: (i) f(0) = 0; (ii) f'(0) = 1 的单叶全纯函数为 S 类函数¹. 由定

$$g(z) = z + \sum_{n=0}^{\infty} b_n z^{-n}$$

的函数. 换言之, Σ 类单叶函数满足规范条件: (i) $g(\infty)=\infty$; (ii) $\lim_{z\to\infty}\frac{g(z)}{z}=1$. 从定义可以得出, 若 f 为 S 类函数, 则 $f(\frac{1}{z})^{-1}$ 是 Σ 类函数.

 $^{^{1}}$ 除此以外, 还有一类单叶函数, 称为 Σ 类函数, 定义为单位圆外部上具有 Laurent 展开式

义不难看出, S 类函数具有如下的 Taylor 展开式:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ z \in \mathbb{D}.$$

只要研究清楚 S 类函数,单位圆上的单叶全纯函数的性质就迎刃而解了,因为对任意 $\mathbb D$ 上的单叶全纯函数,我们总可以复合上 $\mathrm{Aut}(\mathbb D)$ 内的一个元素,再作合适的伸缩,从而得到一个 S 类函数. 首先,我们列出 S 类函数的一些简单不变性质.

命题 3.2. 若 f 为 S 类函数, 则下列函数均为 S 类函数.

- 1. 共轭: $q(z) = \overline{f(\bar{z})}$.
- 2. 旋转: $g(z) = e^{-i\theta} f(e^{i\theta}z)$.
- 3. 伸缩: $g(z) = \lambda^{-1} f(\lambda z), \lambda > 0$.
- 4. Möbius 变换: $g(z) = \frac{f(\frac{z-a}{1-\bar{a}z}) f(a)}{(1+|a|^2)f'(a)}, a \in \mathbb{D}.$

5.
$$g(z) = \frac{wf(z)}{w - f(z)}, w \in \mathbb{C} \setminus f(\mathbb{D}).$$

6.
$$g(z) = z\sqrt{\frac{f(z^2)}{z^2}}$$
, 其中 $\sqrt{$ 取定了单值分支.

这些性质的验证是十分简单的, 我们留给同学自行练习.

下面我们开始讨论 S 类函数的一些重要性质. 首先要证明一个引理, 这也是教材习题 5.1.5 给出的面积原理, 由 Gronwall 在 1914 年首先证明.

引理 3.3 (面积原理). 若 $f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$ 是 $B(0,1) \setminus \{0\}$ 上的单叶全纯映射,则

$$\sum_{n=0}^{\infty} n|a_n|^2 \leqslant 1.$$

注 3.4. 事实上, 把 f 换成 Σ 类函数, 结论依旧成立.

证明. 考虑函数 $g(z)=f(\frac{1}{z}),$ 则 $g(z)=z+\sum\limits_{n=0}^{\infty}a_nz^{-n}$ 为 $B(\infty,1)$ 上的单叶全纯映射 (并且属于 Σ 类). 设 g 将圆周 |z|=r(r>1) 映为 Jordan 曲线 Γ_r , 设 Γ_r 的内部为区域 Ω_r , 则

$$\operatorname{Area}(\Omega_r) = \frac{1}{2i} \int_{\Gamma_r} \bar{\zeta} d\zeta = \frac{1}{2i} \int_{|z|=r} g'(z) \overline{g(z)} dz
= \frac{1}{2i} \int_0^{2\pi} \left(1 - \sum_{n=0}^{\infty} n a_n r^{-n-1} e^{-i(n+1)\theta} \right) \left(r e^{-i\theta} + \sum_{m=0}^{\infty} \bar{a}_m r^{-m} e^{im\theta} \right) \cdot i r e^{i\theta} d\theta
= \pi r^2 - \pi \sum_{n=0}^{\infty} n |a_n|^2 r^{-2n}.$$

这样,我们就得到了

$$\sum_{n=0}^{\infty} n|a_n|^2 r^{-2n} \le r^2, \ \forall r > 1.$$

对任意正整数 N,自然有 $\sum\limits_{n=0}^{N}n|a_n|^2r^{-2n}\leqslant r^2$,此时两边令 $r\downarrow 1$ 即可得 $\sum\limits_{n=0}^{N}n|a_n|^2\leqslant 1$. 由 N 的任意性可得 $\sum\limits_{n=0}^{\infty}n|a_n|^2\leqslant 1$.

根据上述引理, 我们可以直接得到 $|a_1| \le 1$ 对任意 Σ 类函数成立. 并且当 $|a_1| = 1$ 时, 必须有 $a_2 = a_3 = \cdots = 0$, 此时对应的 Σ 类函数为

$$g(z) = z + a_0 + \frac{e^{i\theta}}{z}.$$

有了上述引理, 我们就可以证明 Bieberbach 在 1916 年证明的结果了.

定理 3.5 (Bieberbach). 设 $f(z) = z + a_2 z^2 + \cdots$ 为 S 类函数, 则 $|a_2| \leq 2$. 并且该估计已是最优的.

证明. 考虑函数

$$g(z) = \frac{f(z^2)}{z^2} = 1 + a_2 z^2 + a_3 z^4 + \cdots$$

由 f 的单叶性可得 g 在 $\mathbb D$ 中非零, 选取 $\sqrt{g(z)}$ 的一个单值全纯分支, 使得 $\sqrt{g(0)}=1$. 然后考虑函数 h(z)=zg(z), 下面我们先证明 h 是 S 类函数. h 的单叶性可由 f 的单叶性推得, 其 Taylor 展开式为

$$h(z) = z\sqrt{1 + a_2z^2 + a_3z^4 + \dots} = z + \frac{a_2}{2}z^3 + \dots$$

满足 S 类函数的规范条件, 即证. 由此可得

$$\frac{1}{h(z)} = \frac{1}{z} \frac{1}{1 + \frac{a_2}{2}z^2 + \dots} = \frac{1}{z} \left(1 - \frac{a_2}{2}z^2 + \dots \right) = \frac{1}{z} - \frac{a_2}{2}z + \dots$$

在 $B(0,1)\setminus\{0\}$ 内单叶全纯, 由面积原理即可得 $\frac{|a_2|^2}{4}\leqslant 1\Rightarrow |a_2|\leqslant 2$.

下面我们来看看为什么这个估计最优, 实际只需找到一个 S 类函数, 满足 $|a_2|=2$. 考虑 Koebe 函数

$$K(z) = \frac{z}{(1-z)^2} = z + 2z^2 + 3z^3 + \cdots,$$

单叶性容易验证, 并且它是 S 类函数, 满足 $a_n=n(n=2,3,\cdots)$. 该函数还单叶地将 B(0,1) 映成 $\mathbb{C}\setminus (-\infty,-\frac{1}{4}]$.

注 3.6. 我们还可以来看看所有使得 Bieberbach 定理取等的函数. 根据证明过程, 若 $|a_2| = 2$, 则有 $a_3 = a_4 = \cdots = 0$, 因此

$$h(z) = z\sqrt{1 + 2e^{i\theta}z^2} = z + 2e^{i\theta}z^3 + 3e^{2i\theta}z^5 + \cdots$$

结合 $f(z^2) = zh(z)$ 计算可得

$$f(z) = z + 2e^{i\theta}z^2 + 3e^{2i\theta}z^3 + \dots = e^{-i\theta}K(e^{i\theta}z).$$

这说明 f 必定是 Koebe 函数的旋转.

在这个定理的基础上, Bieberbach 提出了进一步的猜想: 若 $f(z)=z+a_2z^2+a_3z^3+\cdots$ 为 S 类函数, 则 $|a_n| \leq n, n=2,3,\cdots$. 该猜想于 1984 年被 Louis de Branges 完全证明.

Bieberbach 定理有着许多的应用, 这里我们给出两个实例.

推论 3.7 (Koebe $\frac{1}{4}$ 掩盖定理). 设 f 为 S 类函数, 则 $f(\mathbb{D}) \supset B(0, \frac{1}{4})$, 并且 $\frac{1}{4}$ 已是最优的半径.

证明. 任取 $w \notin f(\mathbb{D})$, 我们只需证明 $|w| \geqslant \frac{1}{4}$. 考虑函数 $g(z) = \frac{wf(z)}{w-f(z)}$, 由 f 单叶可得 g 单叶,并且 g 的 Taylor 展开为

$$g(z) = \left(z + \sum_{n=2}^{\infty} a_n z^n\right) \left(1 + \frac{1}{w} \left(z + \sum_{n=2}^{\infty} a_n z^n\right) + \cdots\right) = z + \left(a_2 + \frac{1}{w}\right) z^2 + \cdots$$

所以 q 是 S 类函数. 由此可得

$$\frac{1}{|w|} \leqslant \left| a_2 + \frac{1}{w} \right| + |a_2| \leqslant 4 \Rightarrow |w| \geqslant \frac{1}{4}.$$

注 3.8. 这里我们给两个相关的注记.

- 1. 如果 S 类函数 f 还是奇函数, 那么上述定理可以改进为 $f(\mathbb{D}) \supset B(0, \frac{1}{2})$.
- 2. 如果我们不再要求 f 是单射, 仅仅要求 $f \in H(\mathbb{D})$ 且 f(0) = 0, f'(0) = 1, 那么成立如下的 Bloch 定理: 存在圆盘 $S \subset \mathbb{D}$, 使得 f 在 S 内单叶且 f(S) 包含半径为 $\frac{1}{72}$ 的圆盘. Bloch 定理可以用于证明 Picard 小定理, 可以参考 GTM11 Conway 的单复变函数相关章节.

推论 3.9 (偏差定理). 设 f 为 S 类函数,则成立估计式

$$\frac{|z|}{(1+|z|)^2} \leqslant |f(z)| \leqslant \frac{|z|}{(1-|z|)^2}, \forall z \in \mathbb{D}.$$

这个定理的证明极具观赏性.

证明. 固定一点 $z \in \mathbb{D}$, 考虑函数

$$g(w) = \frac{f(\frac{w+z}{1+\bar{z}w}) - f(z)}{(1-|z|^2)f'(z)}.$$

容易看到 g 是单叶的, 并且 g(0) = 0, g'(0) = 1, 所以 g 是 S 类函数. 计算可得

$$g''(0) = (1 - |z|^2) \frac{f''(z)}{f'(z)} - 2\bar{z}.$$

应用 Bieberbach 定理可得 $|g''(0)| \leq 4$, 由此可得

$$\left| \frac{zf''(z)}{f'(z)} - \frac{2|z|^2}{1 - |z|^2} \right| \leqslant \frac{4|z|}{1 - |z|^2}.$$

下面我们设 |z|=r, 则

$$\frac{zf''(z)}{f'(z)} = re^{i\theta} \frac{f''(z)}{f'(z)} = r\frac{\partial z}{\partial r} \frac{\partial}{\partial z} \log f'(z) = r\frac{\partial}{\partial r} \log f'(z).$$

由此可得 Re $\frac{zf''(z)}{f'(z)} = r \frac{\partial}{\partial r} \log |f'(z)|$, 所以有

$$\frac{2r^2 - 4r}{1 - r^2} \leqslant r \frac{\partial}{\partial r} \log |f'(r)| \leqslant \frac{2r^2 + 4r}{1 - r^2}.$$

利用 f'(0) = 1, 积分可得估计式

$$\frac{1-|z|}{(1+|z|)^3} \leqslant |f'(z)| \leqslant \frac{1+|z|}{(1-|z|)^3}.$$

结合 f(0) = 0 可得

$$|f(z)| = \left| \int_0^z f'(\zeta) d\zeta \right| \le \int_0^{|z|} \frac{1+r}{(1-r)^3} dr = \frac{|z|}{(1-|z|)^2}.$$

$$|f(z)| = \left| \int_0^z f'(\zeta) d\zeta \right| \ge \int_0^{|z|} \frac{1-r}{(1+r)^3} dr = \frac{|z|}{(1+|z|)^2}.$$