4.2, 4.3 Area and Reimann Sums Day 2

Let's Approximate Areas!

$$\int_0^9 \sqrt{x} \ dx \qquad n=3 \quad \# \ \text{of rectangles}.$$

 $\frac{9-0}{3} = 3$

Left or Lower

Midpoint

Right or Upper

Trapezoid

$$\int_0^1 \sqrt{1 - x^2} dx \quad n = 5$$

Right or Lower

Midpoint

Left or Upper

Trapezoid

Examples – Approximating from tables

Consumer demand for a certain product is changing over time, and the rate of change of this demand f'(t), in units/week, is given, in week t in the following table. Approximate the total products demanded using the description.

Find a right side approximation for the total products demanded over the 13 weeks.

t	0.,	1,	4	5	8	9	10	12	13
f'(t)	12	10	4	-2	-3	-1	3	7	11

$$(1)(10) + (2)(4) + (1)(-2) + (2)(-3) + (1)(-1) + (1)(3) + (2)(7) + (1)(11)$$

Find a lower approximation for the total products demanded over the 13 weeks.

t	0	1	4	5	8	9	10	12	13
f'(t)	12	10.	4.	-2	-3	-1	3	7	11

$$(1)(10) + (3)(4) + (1)(-2) + (3)(-3) + (1)(-3) + (1)(-1) + (2)(3) + (1)(7)$$

= 20 units

Find a midpoint approximation for the total products demanded over the 8 week period. Using $\frac{1}{5}$ Equal $\frac{1}{5}$ $\frac{1}{5$

$$(2)(10) + (2)(-2) + (2)(-1) + (2)(7) = 28 \text{ units}$$

Approximate the total products demanded using 4 equal subintervals.

		ann de le California de Ca	71	and the second s	There					
t	0	1	2	3	4	5	6	7	8	
f'(t)	12	10	4	-2	-3	-1	3	7	11	

$$(\frac{1}{2})(2)[12+2(4)+2(-3)+2(2)+11]=31$$
 units

A Trapezoid Approximation Us. Trapezoid Rule

Examples – Approximating Integrals

Approximate the following integral using (A) a right Reimann sum and (B) a midpoint sum

Approximate the following integral using (A) a left Reimann sum and (B) a trapezoid sum

$$\int_{1}^{2} \frac{1}{x} dx \qquad n = 5$$

$$\frac{2-1}{5} = \frac{1}{5}$$