

4. Supervised Learning: Polynomial Regression

Polynomial Regression

Simple Linear Regression

Polynomial Regression

Price (£) 15.000 12.000 9.000 6.000 3.000 80,000 100,000 120,000 140,000 Mileage (Km)

First-order model: $y = \theta_0 + \theta_1 x$

Second order model: $y = \theta_0 + \theta_1 x + \theta_2 x^2$

Polynomial Regression

Simple Linear Regression

Price (£) 15.000 9.000 6.000 3.000 Mileage (Km)

Polynomial Regression

First-order model: $y = \theta_0 + \theta_1 x$

Third order model:

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Polynomial Regression

Simple Linear Regression

Polynomial Regression

First-order model: $y = \theta_0 + \theta_1 x$

Squared-root model: $y = \theta_0 + \theta_1 \forall x$

Polynomial Regression: How to Apply?

Example: Second-order Polynomial Regression

Model

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$\uparrow \qquad \uparrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Apply Simple Linear Regression

Feature 1 [x ₁]	Feature 2 [x ₂]	Output Variable [y]
(Mileage)	(Mileage²)	(Cost, £)
25,000	25,000 ²	16,000
105,000	105,000 ²	11,500
120,000	120,000 ²	6,000
140,000	140,000 ²	3,000
45,000	45,000 ²	13,500

Features will have quite some different scales! We will see later the importance in scaling them!

The Problem of Overfitting

Does a higher-order model produce better results compared to a lower-order one?

Third-Order Model
$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

Under-fitting model

Good fitting model

The Problem of Overfitting

The use of a small hypothesis space – such as one consisting of linear models – can lead to *underfitting* to the training data. It is also known as *high-bias* setting because we are "biasing" the learning algorithm – due to possible preconceptions about the data – to choose a very constrained model.

Conversely, the use a a large hypothesis space – such as one consisting of high-order polynomials – can lead to *overfitting* to the training data. It is typically known as a *high-variance* setting.

Both a high-bias and a high-variance setting can lead to poor prediction performance in the presence of new data.

There is typically a **bias-variance tradeoff** in the sense that one cannot achieve both low-bias and low-variance simultaneously.

How to Deal with Overfitting?

Feature Selection

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

- This can involve manual selection of relevant features
- It can be problematic because such feature selection procedure can also lead to loss of valuable information for prediction purposes

- This involves automatic reduction of the magnitude of some of the model parameters
- It can work well in problems involving various features with each one contributing a bit to the prediction