Sprawozdanie z zadania 4 - Metody Probabilistyki i Statystyki

1. Celem pierwszego podpunktu pracy jest porównanie "ogonów" otrzymanych przy użyciu nierówności Markowa i Czebyszewa z dokładną wartością prawdopodobieństwa, obliczoną poprzez wykorzystanie pakietów matematycznych. Rozważmy następującą zmienną losową X:

$$X \sim Bin(n, \frac{1}{2}).$$

Dla trzech wartości N:

$$N \in \{100, 1000, 10000\}$$

I następujących ogonów:

$$P(X \ge \frac{6}{5}E(X))_{(1)}$$

$$P(|X - E(X)| \ge \frac{1}{10} E(X))_{(2)}$$

Na początku zostaną przeprowadzone obliczenia teoretyczne dla pierwszego z prawdopodobieństw z użyciem nierówności Markowa:

$$P(X \ge a) \le \frac{E(X)}{a}$$

Podstawiając otrzymujemy:

$$P(X \ge \frac{6}{5}E(X)) \le \frac{E(X)}{\frac{6}{5}E(X)}$$

Skracamy:

$$P(X \ge \frac{6}{5}E(X)) \le \frac{5}{6}$$

Otrzymany wynik w przyszłości porównamy z dokładną wartością.

Następnie ograniczenie drugiego z "ogonów" zostanie policzone nierównością Czebyszewa. Skorzystamy z przedstawionego na wykładach wzoru:

$$P(|X - E(X)| \ge k) \le \frac{varX}{k^2}$$

Co więcej znając rodzaj rozkładu zmiennej losowej łatwo wyprowadzić wzór na wariancje:

$$var(X) = np(1 - p) \Rightarrow var(X) = \frac{n}{4}$$

Po podstawieniu wartości i wykonaniu odpowiednich skróceń dostajemy:

$$P(|X - E(X)| \ge \frac{1}{10} E(X)) \le \frac{100}{n}$$
.

Dokładne wartości prawdopodobieństwa obliczone zostały z wykorzystaniem załączonej klasy First. Używa ona odpowednich pakietów matematycznych języka C++. Działanie programu opiera się na prawie wielkich liczb - brana jest losowa liczba z rozkładu $Bin(n, \frac{1}{2})$ (dla danego n). Każdy wynik, większy od k * E(X) (gdzie k to wybrany współczyynik) jest odnotowywany. Następnie otrzymany "counter" dzielony jest przez liczbę prób. W poniższej tabeli przedstawione zostały wyniki tego eksperymentu.

	Ograniczenie	Dokładna wartość N = 100	Dokładna wartość N = 1000	Dokładna wartość N = 10000
podpunkt A	5⁄6	0,02844	0	0
podpunkt B	100/n	0,27128	0,00173	0

Tabela 1. Wyniki dla Zadania 1.

Na podstawie tego zadania można wyciągnąć następujące wnioski:

- 1. Ograniczenie Markowa nie jest efektywne w tym przypadku mogło by się okazać przydatne tylko dla N << 100.
- W przeciwieństwie do ograniczenia Markowa, nierówność Czebyszewa działa najlepiej dla dużych liczb - widać, że im większa wartość N tym ograniczenie zbliża się do dokładnej wartości.

Podsumowując nierówność Markowa daje lepsze oszacowanie dla małych N, podczas gdy nierówność Czebyszewa sprawdza się dla dużych wartości.

2. Błądzenie losowe na liczbach całkowitych.

W drugim podpunkcie celem było przeanalizowanie błądzenia losowego na liczbach całkowitych i porównanie wyników z odpowiadającym danemu przykładowi rozkładem normalnym. Mamy:

$$S_n = \sum_{n=1}^{N} X_n$$
 gdzie, X_n niezależne i każda z nich przyjmuje wartości -1 lub 1.

Najpierw obliczone zostaną wartość oczekiwana i odchylenie standardowe rozkładu normalnego przybliżającego S_n. Z niezależności:

$$var(S_n) = \sum_{n=1}^{N} var(X_n)$$

$$var(X_n) = E(X_n^2) - E(X_n)^2$$

$$E(X_n) = \frac{1}{2} * (-1) + \frac{1}{2} * 1 = 0$$

$$X_n^2 = 1 \text{ bo } X_n = \pm 1. \text{ Wiec:}$$

$$var(X_n) = 1$$

$$var(S_n) = \sum_{n=1}^{N} var(X_n) = \sum_{n=1}^{N} 1 = N$$

$$\sigma = \sqrt{N}$$

Następnie przygotowany został kod, który oblicza S_n . Wyniki tych numerycznych eksperymentów zostały przeniesione do Matlaba i obrobione - ostatecznie otrzymano 7 dystrybuant.

Z powyższych wykresów wyciągnąć można następujący wniosek:

Ponieważ podobna część wykresu S_n znajduje się zarówno nad jak i pod funkcją rozkładu normalnego (sytuacja ta przypomina w pewnym sensie aproksymacje całką Riemanna), S_n jest dobrze przybliżana przez odpowiedni rozkład normalny:

$$normaldistribution(0, \sqrt{N})$$

Szczególnie ten wniosek jest prawdziwy dla dużych N - widać na wykresach, że wraz z wrostem wartości N, schodki zbliżają się do funkcji.

3. Błądzenie losowe na liczbach całkowitych - rozkład czasu spędzonego nad osią OX

Trzeci podpunkt wymagał lekkiej modyfikacji napisanego już kodu do poprzedniego podpunktu, tak by rejestrował on czas gdy:

$$S_n > 0 \lor S_{n-1} > 0$$

Zebrane eksperementalnie stosunki - czasu spędzonego nad osią OX z łącznym czasem - zostały następnie wprowadzone do Matlaba, gdzie z użyciem funkcji histogram zostały znormalizowane, tak by prezentowały wartość pdf.

W celu zbadania zachowania zmiennej losowej w zależności od parametru N, wykonano trzy eksperymenty dla:

$$N \in \{100, 1000, 10000\}$$

Poniżej przedstawione zostanały wykresy:

Na wykresach widać, że mają one powtarzalny trend i wartości. Jednakże, dla większych N odczyt się stabilizuje, szczególnie w centrum wykresu. Przypomina on wykres gęstości arcusa sinusa.

Porównując poniższy wykres z wynikami eksperymentu widzimy, że tak jak w przypadku podpunktu drugiego im większe n tym lepsza aproksymacja. Ewidentnie wraz z wzrostem n wartości układają sie w łuk odwzorowujący funkcję arcus sinus..

1

Kajetan Plewa

-

^{1 &}lt;u>http://en.wikipedia.org/wiki/Arcsine_distribution#/media/File:Arcsin_density.svg</u> [Accessed: 29.01.2025]