

计算机网络

第八章 多媒体网络

计算机学院 2016年12月

教学内容及要求

- ◆ 掌握多媒体应用的分类和特点
- ◆了解多媒体应用对于QoS的需求
- ◆ 了解多媒体的编码标准
- ◆ 了解多媒体应用的通信过程
- ◆ 掌握多媒体应用相关通信协议的要点
- ◆ 了解多媒体网络的安全隐患

主要内容

- ◆ 8.1 多媒体应用
- ◆ 8.2 多媒体应用相关的通信协议
- ◆ 8.3 多媒体网络的安全隐患

什么是多媒体应用?

- ◆ 包含音频、视频的网络应用
- ◆ 多媒体应用的主要类型
 - ▶ 下载类或点播类 (Streaming) 应用: 边下载边播放, 单播, 如VoD
 - ▶ 直播类 (Push) 应用:多播或广播,如IPTV
 - > 交互式应用:实时音频/视频通信,如IP电话、视频会议

多媒体应用	时延	时延抖动	包丢失率
下载类应用	≤4-5秒 10秒内可接受	没有严格要求	€5%
直播类应用	≤200毫秒	[-50,50] 毫秒	视频: 1×10-6-7×10-6, 音频: 容忍传输差错
交互式应用	≤150毫秒	[-30, 30] 毫秒	视频≤1% 音频≤3%

多媒体的等时性

- **♦** Isochronous
- ◆ 不同IP包内的数据有时间相关性
- ◆ 时延抖动要求高
- ◆ 因特网却不支持等时性

时延抖动 (Jitter) 补偿, 恢复等时性

- ◆ 采用回放缓存 (Playback buffer)
- ◆ 缓存非等时到达的IP包,按照固定速率播放

- ◆ 增加了播放时延
- ◆ 缓存大, 播放时延大
- ◆ 缓存小, 时延补偿效果不足

时延抖动和补偿示例

音频和视频数据的压缩标准(1)

◆ 音频和视频数据量大, 需要进行压缩编码

压缩标准	传输速率要求	音质
G.711	64kbps	话音、调幅(AM) 广播
G.722	64kbps	话音、AM广播
G.722.1	24或32kbps	话音、调频(FM) 广播
G.721	32kbps	话音
G.728	16kbps	话音、AM广播
G.729	8kbps	话音
G.723.1	5.3或6.4kbps	话音
MPEG-1 MPEG-2	96kbps、128kbps或 160kbps等	MP3、CD音质音频

音频数据常用的压缩标准

音频和视频数据的压缩标准(2)

MPEG系列压缩标准

标准号	标准名称	首次发布 时间	应用
MPEG-1	1.5Mbps速率以下的数字 存储媒体的运动图像和 伴音的编码	1993年	VCD、低质量DVD、 MP3
MPEG-2	运动图像和伴音信息的 通用编码	1995年	数字卫星电视、 DVD、MP3
MPEG-4	音频、视频对象的编码	1998年	交互式多媒体应用、 高清DVD、蓝光盘
MPEG-7	多媒体内容描述接口	2002年	音频/视频媒体的检 索和编辑
MPEG-21	多媒体框架	2001年	数字产权管理和保护

流媒体应用

- ♦ Streaming Media
- ◆ 实时流传输协议 RTSP
 - 实现用户和媒体源 之间的交互
 - ▶ 播放/暂停/停止
 - ▶ 快进/后退
 - **>**

VoIP应用

- ◆ Voice over IP, IP电话
- ◆ 网关:地址转换、话音压缩/编码、呼叫信令
- ◆ 网守:接入权限控制、呼叫记录、计费

VoIP与传统电话通信

主要内容

- ◆ 8.1 多媒体应用
- ◆ 8.2 多媒体应用相关的通信协议
- ◆ 8.3 多媒体网络的安全隐患

多媒体应用涉及的通信协议

多媒体应用的特殊需求

- ◆ 时延补偿
- ◆ 多播(组播)支持
- ◆ 编码转换
- ◆ 媒体流合并
- ◆ 呼叫信令支持

主要内容

- ◆ 8.1 多媒体应用
- ◆ 8.2 多媒体应用相关的通信协议
 - ➤ 媒体数据传输: RTP和RTCP
 - ▶ 信令协议: SIP和H.323
- ◆ 8.3 多媒体网络的安全隐患

RTP (实时传输协议)

- ◆ 用于传输多媒体数据
- ◆ 在传输层使用UDP
- ◆ 增强了
 - > 序号: 检测丢失、重复和乱序的数据报
 - ▶ 时间戳:用于实现时延抖动补偿
 - > 媒体源标识
- ◆ 不保证
 - > 媒体数据的可靠传输

RTCP

- ◆ RTP控制协议
- ◆ RTP的配套协议
- ◆ 实现媒体源主机和目的主机之间的参数协商、 QoS监测
- ◆ 提供有关传输质量的报告,以帮助实现流量控制和拥塞控制
- ◆ RTCP端ロ号= RTP端ロ号 +1

主要内容

- ◆ 8.1 多媒体应用
- ◆ 8.2 多媒体应用相关的通信协议
 - ▶ 媒体数据传输: RTP和RTCP
 - ► <u>信令协议: SIP和H.323</u>
- ◆ 8.3 多媒体网络的安全隐患

SIP

- ◆ 会话初始协议 (Session Initiation Protocol)
- ◆ 应用层协议,由IETF制订标准
- ◆ 定义因特网上的音频和视频通信会话的呼叫 信令
 - 如何建立和释放呼叫,以及如何协商和更改媒体 类型和编码机制等
- ◆ 支持多种应用
 - ▶ VoIP、视频会议、流媒体
 - > 即时消息、联机游戏
 - ▶ 主机移动性....

SIP系统的结构

◆ SIP服务器

> 代理服务器: 转发呼叫请求

> 注册服务器:提供用户注册功能

▶ 位置服务器:提供用户位置

▶ 重定向服务器: 在用户地址改变时, 提供更新的地址

- ◆ 用户代理
 - > SIP终端

SIP地址与SIP消息

- ♦ SIP URL
 - > sip: 用户名@主机名
 - > 示例
 - □ sip: alice@bupt.edu.cn
 - □ sip: bob@192.168.10.1
 - □ sip: 14083831088@example.com
- ◆ SIP消息
 - > 类似HTTP消息
 - ▶ 基于ASCII的请求/响应

SIP通话示例

H.323

◆ 由ITU-T发布

◆ 定义了基于分组网络提供多媒体应用的一系列

标准

H.323系统的结构

- ◆ MCU: 多点控制单元, 用于实现两个以上终端通信所 需的多方通话功能, 如视频会议
- ◆ H.323终端: 用户端系统设备
- ◆ 网关: 网络互联和协议翻译

H.323的呼叫过程示例

SIP与H.323的比较

特性H.323SIP提出的机构ITU-TIETF是否与电话网兼容是否是否与因特网兼容否是
是否与电话网兼容
是否与因特网兼容 是
体系结构 整体性的 模块化
协议完整性 有完整的协议栈 只考虑呼叫建立和释放部分
复杂度 复杂、全面 较简单、灵活、易扩展
是否可协商参数 是 是
是否有状态 有状态,服务器要保持呼叫状态 无状态
呼叫信令 Q.931 SIP
信令传输协议 TCP或UDP
消息格式 二进制 ASCII
媒体传输协议 RTP RTP
是否支持多方通话
地址 主机或电话号码 SIP URL
呼叫终止方式 用户终止或TCP释放连接 用户终止或采用超时终止
多媒体会议应用 一直支持 逐渐开始支持
即时消息应用 不支持
加密 支持 支持
部署情况 广泛应用 逐渐增长

主要内容

- ◆ 8.1 多媒体应用
- ◆ 8.2 多媒体应用相关的通信协议
- ◆ 8.3 多媒体网络的安全隐患

VoIP的安全隐患

- ◆ 对H.323节点或SIP服务器的DoS攻击
- ◆ 通过截获SIP消息来窃取用户身份和密码
- ◆ 假冒受信任网站而钓鱼(VoIP Phishing, Vishing)
- ◆ 通过监听信令流而进行会话劫持、中间人攻击或 跟踪电话
- ◆ 监视或窃听媒体流内容
- ◆ 对服务器的操作系统进行攻击

SIP安全隐患

- ◆ 注册攻击:修改From字段,进行恶意注册
- ◆ 假冒SIP服务器
- ◆ 篡改SIP消息体
- ◆ 通过发送BYE终止会话
- ◆对SIP代理服务器进行DoS攻击

本章小结

- ◆ 多媒体应用的特点和分类
- ◆ 多媒体应用的QoS需求
- ◆ 等时性和时延抖动补偿
- ◆ RTSP的功能
- ◆ RTP、RTCP的功能
- ◆ SIP系统的结构、SIP地址
- ◆ H.323系统的结构
- ◆ SIP与H.323的比较

版权说明

- ◆ 本讲义中有部分图片来源于下列教材所附讲义:
 - 》 谢希仁, 计算机网络, 第五版, 电子工业出版社, 2008年1月,引用时标记为[谢];
 - ➤ Behrouz A. Forouzan, Data Communications and Networking, Fourth Edition, McGraw-Hill Higher Education, 2007年1月, 引用时标记为[Forouzan]
 - ▶ James F. Kurose, Keith W. Ross著, 陈鸣译, 计算机网络: 自顶向下方法, 机械工业出版社, 2009, 引用时标记为[Kurose]