Geometria e Algebra

LISI

Prof. Marini Stefano

Secondo parziale, 17/12/2020, A.A. 2020/2021

Esercizio 1. Siano z=4-4i e $w=4e^{i\frac{\pi}{2}}$ numeri complessi :

- 1. Calcolare Re(z), Imm(z), \overline{z} , $z\overline{z}$, |z| e la sua forma esponenziale;
- 2. Calcolare $\frac{z}{w}$;
- 3. Calcolare z^4 ;

Esercizio 2. Consideriamo lo spazio vettoriale \mathbb{R}^3 . Sia $\left\{ \begin{pmatrix} t \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ t \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}$ l'insieme di vettori dipendenti dal paramentro $t \in \mathbb{R}$:

- 1. Stabilire per quali $t \in \mathbb{R}$ costituiscano una base di V;
- 2. Stabilire se per t=1 si tratta du una base per \mathbb{R}^3 , in caso affermativo estrarre una base ortonormale con il metodo di Gram-Schmidt.

Esercizio 3. Siano $V = W = \mathbb{R}^3$ con le rispettive basi canoniche di \mathbb{R}^3 . Data l'applicazione lineare $L_A: V \to W$ definita da $L_A((x,y,z)) = (y-x,z,x+y)$,

- Calcolare $KerL_A$, una sua base e dim $KerL_A$;
- Calcolare $ImmL_A$, una sua base e dim $ImmL_A$;
- ullet Stabilere se L_A e iniettiva, suriettiva o un isomorfismo;
- $Sia \mathcal{B} = \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix} \begin{pmatrix} 1\\0\\1 \end{pmatrix} \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\} \ una \ base \ per \ V \ e \ W, \ determinare \ M_{\mathcal{BB}}(L_A).$

Esercizio 4. Sia $L_A : \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare associata alla matrice

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

- 1. Trovare gli autovalori di A.;
- 2. Trovare gli autovettori di A rispettivi agli autovalori.
- 3. Stabilire se L_A é diagonalizzabile, in caso affermativo esibire la sua forma diagonale D e una base rispetto alla quale ammette tale forma.

Esercizio 5. Giustificando, stabilire se la seguente affermazione é vera o falsa: "Siano W_1 e W_2 sottospazi vettoriali di uno spazio vettoriale V, con le rispettive dimensioni dim W_1 = dim W_2 = n e dim V = 2n - 1. Allora dim $W_1 \cap W_2 \ge 1$ "