Assignment 3

Hongyu He (2632195) & Bruno Hoevelaken (2645065)

Group CS 6

& Theoratical exercises

Exercise 3.1 (Section 8.4, E16)

Based on the setting of this problem, the two samples are two dependent samples (Matched Pairs). Therefore, their population deviations σ_1 and σ_2 are considered to be the same.

1) The hypotheses in terms of the population parameter of interest:

- H_0 : $\mu_d = 0$; (original claim)
- H_a : $\mu_d \neq 0$;

2) The significance level:

• $\alpha = 5\%$

3) The test statistic and its distribution under the null hypothesis:

According to the problem, the standard deviation of the population is unknown. Therefore, in this test, we replace it by the estimator S_d . The test statistics has t-distribution with (n-1 = 11) degrees of freedom.

4) The observed value of the test statistic (the observed score);

The observed value of test statistics is:

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - 0}{S_d / \sqrt{n}} = -0.984$$

5) The P-value or the critical values;

Since we assume technology is not available now, so we only calculated the critical values $-t_{11,0.025} = -2.201$ and $t_{11,0.025} = 2.201$

6) Whether or not the null hypothesis is rejected and why.

Since $t > -t_{11,0.025}$, the test statistics, therefore, is not in the critical region.

Thus.

- we fail to reject the null hypothesis;
- there is not enough evidence warrant the rejection of the claim that males aged 12-16 correctly report their heights.

Exercise 3.2 (Section 6.2, E32)

According to the problem, we know that - E = 0.03 - Confidence level = 99% - $\hat{p}=15\%$ Therefore,

- $\hat{q} = 1$ 15% = 85%

and so

• $Z_{\alpha}/2 = 0.5199$

Thus, the sample size is

$$n = \frac{\left[z_{\alpha/2}\right]^2 \hat{p}\hat{q}}{E^2} = \frac{[0.5199]^2 (0.15)(0.85)}{0.03^2}$$
$$= 38.291 = 39$$

& R-exercises

Exercise 3.3

a)

```
t.test(Alice, Bob, mu = 0, alternative = "two.sided", paired=TRUE, conf.level = 0.95)
```

```
##
## Paired t-test
##
## data: Alice and Bob
## t = 3.4938, df = 49, p-value = 0.00102
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1142398 0.4235934
## sample estimates:
## mean of the differences
## 0.2689166
```

According to the above results:

- An estimate for the difference of mean working time per evening of Alice and Bob: 0.2689
- A 95% confidence interval for the difference of mean working time per evening of Alice and Bob: $[0.1142398,\,0.4235934]$

b)

```
t.test(Alice, Bob, mu = 0, alternative = "two.sided", paired = TRUE, conf.level = 0.90)
```

```
##
## Paired t-test
##
## data: Alice and Bob
## t = 3.4938, df = 49, p-value = 0.00102
## alternative hypothesis: true difference in means is not equal to 0
## 90 percent confidence interval:
## 0.1398727 0.3979606
## sample estimates:
## mean of the differences
## 0.2689166
```

According to the results of above the t-test command, we know that the p-value is 0.001. Since the p-value= $0.001 < \alpha = 0.01$, our conclusions are as follows:

- reject the null-hypothesis;
- there is sufficient evidence to warrant rejection of the claim that on average Alice and Bob both work the same amount of time.

c)

```
t.test(Alice, Bob, mu = 0, alternative = "greater", paired = TRUE, conf.level = 0.90)
```

According to the results of the above t-test command, we know that the p-value is 0.0005. Since the p-value=0.0005 $< \alpha$ =0.01, our conclusions are as follows:

- reject the null-hypothesis;
- there is sufficient evidence to support the claim that Alice works, on average, much more than Bob.

d)

(1) Changes

Yes, because this time the data contained in Assign3.RData is no longer a dependent (matched pairs) sample in the sense that the data of Alice and Bob correspond to different workdays. Consequently, as mentioned in the problem, the σ_1 of sample vector Alice and the σ_2 of sample vector Bob is different.

(2) Rre-test

```
##
## Welch Two Sample t-test
##
## data: Alice and Bob
## t = 3.3647, df = 68.832, p-value = 0.001256
## alternative hypothesis: true difference in means is not equal to 0
## 90 percent confidence interval:
## 0.1356601 0.4021731
## sample estimates:
## mean of x mean of y
## 4.235244 3.966327
```

According to the results of the above t-test command with a new setting, we know that the p-value is 0.001. Since the p-value= $0.001 < \alpha = 0.01$, our conclusions are the same as a):

t.test(Alice, Bob, mu = 0, alternative = "two.sided", paired = FALSE, var.equal = FALSE, conf.level = 0

- reject the null-hypothesis;
- there is sufficient evidence to warrant rejection of the claim that on average Alice and Bob both work the same amount of time.

Exercise 3.4

a)

A **point estimate** that we obtained for the difference in the proportion of evenings that Alice and Bob have worked more than 4 hours is **0.36**.

b)

```
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: c(length(Alice[Alice > 4]), length(Bob[Bob > 4])) out of c(50, 50)
## X-squared = 12.267, df = 1, p-value = 0.0002306
## alternative hypothesis: greater
## 95 percent confidence interval:
## 0.1917075 1.0000000
## sample estimates:
## prop 1 prop 2
## 0.80 0.44
```

The results of the above two proportions test results in a p-value of 0.0002 which is smaller than the significance level $\alpha = 0.05$.

Therefore, our conclusions are as follows: - We reject the null hypothesis; - There is sufficient evidence to support the claim that the proportion of evenings on which she worked more than 4 hours is larger than the proportion of evenings on which Bob worked more than 4 hours.

Appendix

E3.3
load("Assign3.RData")