

4.1 Funções Deriváveis

1. Em cada caso, encontre a derivada da função y = f(x), usando a definição.

(a)
$$y = x^2 + 1$$
 (b) $y = 2x^3$ (c) $y = x^2 - 5$ (d) $y = 2x^2 - 3x$ (e) $y = \frac{1}{x+1}$.

- 2. Seja f a função definida em \mathbb{R} por
: f(x)=-x, para $x\leq 0$, e f(x)=2, para x>0.
 - (a) Calcule f'(-1) (b) Existem as derivadas $f'_{+}(0)$ e $f'_{-}(0)$? (c) f é derivavel em x = 0?
- 3. Seja $f: \mathbb{R} \to \mathbb{R}$ a função dada por f(x) = |x| + x.
 - (a) Existe f'(0)? (b) Existe f'(x) para $x \neq 0$? (c) Como se define a função f'?
- 4. Investigue a derivabilidade da função dada no ponto indicado.

(a)
$$x = 0$$
; $f(x) = \begin{cases} x^2, \text{ se } x \le 0 \\ x, \text{ se } x > 0 \end{cases}$ (b) $x = 1$; $f(x) = \begin{cases} \sqrt{x}, \text{ se } 0 < x < 1 \\ 2x - 1, \text{ se } 1 \le x < 2 \end{cases}$

(c)
$$x = 1$$
; $f(x) = \begin{cases} \sqrt{x}, \text{ se } 0 < x < 1 \\ \frac{1}{2}(x+1), \text{ se } 1 \le x < 2 \end{cases}$ (d) $x = 0$; $f(x) = |x|$

- 5. Existe algum ponto no qual a função $y = |x^2 4x|$ não é derivável? Por quê?
- 6. Seja f uma função derivável em x = 1 tal que $\lim_{h \to 0} \frac{f(1+h)}{h} = 5$. Calcule f(1) e f'(1).
- 7. Suponha que f seja uma função derivável em \mathbb{R} , satisfazendo f(a+b) = f(a) + f(b) + 5ab, $\forall a, b \in \mathbb{R}$. Se $\lim_{h \to 0} \frac{f(h)}{h} = 3$, determine f(0) e f'(x).
- 8. Calcule a e b, de modo que a função $f(x) = \begin{cases} 3x^2, \text{ se } x \leq 1 \\ ax + b, \text{ se } x > 1 \end{cases}$ seja derivável em x = 1.
- 9. Em cada caso, determine as equações das retas tangente e normal ao gráfico de f, no ponto cuja abscissa é fornecida.

(a)
$$f(x) = x^{2/3}$$
, $x = 8$ (b) $f(x) = x^{-3/4}$, $x = 16$ (c) $f(x) = \sqrt{x}$, $x = 3$.

- 10. Determine a equação da reta tangente à parábola $y=x^2$, com inclinação m=-8. Faça um gráfico ilustrando a situação.
- 11. Determine a equação da reta normal à curva $y = -x^3/6$, com inclinação m = 8/9.
- 12. Se y = f(x) é a função definida por $y = \begin{cases} \sqrt{x-2}, \text{ se } x \geq 2\\ -\sqrt{2-x}, \text{ se } x \leq 2 \end{cases}$, encontre as equações das retas tangente e normal ao gráfico de f, no ponto de abscissa x = 2.
- 13. Determine a equação da reta que tangencia o gráfico da função $y = x^2$ e é paralela à reta y = 4x + 2.
- 14. Verifique que a reta tangente ao gráfico da função f(x) = 1/x, no ponto de abscissa x = a, intercepta o eixo x no ponto A(2a, 0).
- 15. Determine as retas horizontais que são tangentes ao gráfico da função $g\left(x\right)=\frac{x^3}{3}+\frac{x^2}{2}-2x-1$.
- 16. Considere a função f definida por $f\left(x\right)=\left\{ \begin{array}{l} x^{2},\,\text{se }x\leq1\\ 2,\,\text{se }x>1 \end{array} \right.$
 - (a) Esboce o gráfico de f (b) f é contínua em x = 1? (c) f é derivável em x = 1?
 - (b) Repita o exercício precedente, considerando agora $f(x) = \begin{cases} x^2, \text{ se } x \leq 1 \\ 1, \text{ se } x > 1 \end{cases}$.
- 17. Seja f a função definida em \mathbb{R} por f(x) = x|x|.
 - (a) Determine f'(x), para $x \neq 0$. (b) Existe f'(0)? (c) Esboce os gráficos de f e de f'.

4.2 Regras Básicas de Derivação

- 1. Se $f(x) = 3x^4 + x^3 2x$, calcule as derivadas f'(0), f''(0) e $f^{(30)}(0)$.
- 2. Se $y = \frac{x+1}{x-1}$, verifique que $(1-x)\frac{d^2y}{dx^2} = 2\frac{dy}{dx}$.
- 3. Calcule a derivada de primeira ordem de cada uma das funções abaixo.

(a)
$$y = \frac{\pi}{x} + \ln 2$$
 (b) $y = \frac{1}{4} - \frac{1}{3}x + x^2 - 0.5x^4$ (c) $y = \frac{\pi}{x} + \ln 2$

(d)
$$y = \frac{1 + \sqrt{x}}{1 - \sqrt{x}}$$
 (e) $y = \frac{(x^2 + 1) \arctan x - x}{2}$ (f) $y = x \arcsin x$

(g)
$$y = e^x \cos x$$

(h)
$$y = \frac{1}{x} + 2 \ln x - \frac{\ln x}{x}$$

(i)
$$y = (3 - 2 \sin x)^5$$

$$(j) y = 2x + 5\cos^3 x$$

(j)
$$y = 2x + 5\cos^3 x$$
 (k) $y = \sqrt{\frac{3\sin x - 2\cos x}{5}}$

(1)
$$y = \sqrt{xe^x + x}$$

(m)
$$y = \arccos(e^x)$$

(m)
$$y = \arccos(e^x)$$
 (n) $y = \sin(3x) + \cos(x/5) + \tan(\sqrt{x})$ (o) $y = \frac{1 + \cos(2x)}{1 - \cos(2x)}$

(o)
$$y = \frac{1 + \cos(2x)}{1 - \cos(2x)}$$

(p)
$$y = \arctan\left(\frac{1+x}{1-x}\right)$$
 (q) $y = \ln(\sin x)$

(q)
$$y = \ln(\sin x)$$

(r)
$$y = (\ln x)^2 + \ln(\ln x)$$

- 4. Verifique que a função $y = xe^{-x}$ é solução da equação xy' = (1-x)y.
- 5. Verifique que a função $y = \frac{1}{1 + x + \ln x}$ é solução da equação $xy' = (y \ln x 1) y$.
- 6. Se a e b são constantes quaisquer, verifique que a função $y=ae^{-x}+be^{-2x}$ é solução da equação y'' + 3y' + 2y = 0.
- 7. Os gráficos da coluna da esquerda são das derivadas das funções cujos gráficos estão na coluna da direita. Faça a correspondência, numerando, convenientemente, a coluna da direita.

4.3 Regra da Cadeia e Derivação Implícita

- 1. Se $y = x^2 \sqrt{1 + u^2}$ e $u = \frac{x+1}{x-1}$, calcule $\frac{dy}{dx}$.
- 2. Cada uma das equações abaixo define, implicitamente, y como função de x. Encontre $\frac{dy}{dx}$.

(a)
$$y^3 = x + y$$

(b)
$$y^3 + 2xy = \sqrt{x}$$

(a)
$$y^3 = x + y$$
 (b) $y^3 + 2xy = \sqrt{x}$ (c) $\sqrt{x + y} = \sqrt{y + 1}$ (d) $4\cos x \sec y = 1$ (e) $xy = \cot y (xy)$ (f) $\sqrt{xy} = 1 + x^2y$

(d)
$$4\cos x \sin y = 1$$

(e)
$$xy = \cot(xy)$$

$$(f) \sqrt{xy} = 1 + x^2 y$$

3. Suponha que x = x(t) seja uma função derivável em \mathbb{R} . Se $y = \frac{1}{x^2 + 1}$, verifique que

$$\frac{dy}{dt} = -2xy^2 \frac{dx}{dt}, \quad \forall t \in \mathbb{R}.$$

4. Suponha que $x=x\left(t\right)$ seja uma função derivável até a segunda ordem. Se $y=x^{3}$, verifique que

$$\frac{d^2y}{dt^2} = 6x \left(\frac{dx}{dt}\right)^2 + 3x^2 \frac{d^2x}{dt^2}.$$

5. Sejam f e g funções deriváveis, tais que $g\left(-1\right)=2,\ f\left(2\right)=-3,\ g'\left(-1\right)=-1/3$ e $f'\left(2\right)=6.$ Encontre as retas tangente e normal à curva $y=f\left(g\left(x\right)\right)$, no ponto de abscissa x=-1.

- 6. Se $h(x) = [f(x)]^3 + f(x^3)$, calcule h'(2), sabendo que f(2) = 1, f'(2) = 7 e que f'(8) = -3.
- 7. Suponha que a equação

$$\frac{y}{x-y} - \frac{x}{y} + \sqrt{x} = 0 \tag{4.1}$$

defina y como função de x em torno do ponto x = 1. Calcule y'(1).

- 8. Se n é um número natural, qual é a derivada de ordem n da função $y = (ax + b)^n$?
- 9. Determine as retas tangente e normal à circunferência $x^2 + y^2 = 25$, no ponto $P_0 = (3,4)$.
- 10. Mesma questão precedente, considerando agora a hipérbole $\frac{x^2}{16} \frac{y^2}{9} = 1$ e $P_0 = (-5, 9/4)$.
- 11. Suponha que f seja uma função derivável em seu domínio D e que, para todo x em D, satisfaça $xf(x) + \operatorname{sen}[f(x)] = 4$. Se $x + \cos[f(x)] \neq 0$, mostre que $f'(x) = \frac{-f(x)}{x + \cos[f(x)]}$
- 12. Para cada uma das funções f definidas abaixo, comprove a existência da inversa g, determine o domínio desta última e uma expressão que a defina explicitamente. Esboce os gráficos de f e g.

(a)
$$f(x) = x^2 - 4$$
, $x \ge 0$ (b) $f(x) = x^2 - 4$, $x \le 0$ c) $f(x) = -\sqrt{1 - x}$, $x \le 1$

(b)
$$f(x) = x^2 - 4$$
, $x \le 0$

c)
$$f(x) = -\sqrt{1-x}, \ x \le 1$$

(d)
$$f(x) = \frac{x}{x+1}, \ x > -1$$

(d)
$$f(x) = \frac{x}{x+1}$$
, $x > -1$ (e) $f(x) = \frac{x^2}{x^2+1}$, $x \ge 0$ (f) $f(x) = \frac{x^2}{x^2+1}$, $x \le 0$

(f)
$$f(x) = \frac{x^2}{x^2 + 1}, \ x \le 0$$

13. Por meio de restrições adequadas, faça com que cada uma das funções dadas abaixo gere duas funções invertíveis f_1 e f_2 , determinando, em seguida, as respectivas inversas g_1 e g_2 . Calcule as derivadas dessas inversas e esboce os gráficos das funções f_1 , f_2 , g_1 e g_2 , em cada caso.

(a)
$$y = x^2 - 2x - 3$$
 (b) $y = -x^2 + x + 2$ (c) $y = \sqrt{1 - x^2}$ (d) $y = -\sqrt{4 - x^2}$

(b)
$$y = -x^2 + x + 3$$

(c)
$$y = \sqrt{1 - x^2}$$

(d)
$$y = -\sqrt{4 - x}$$

- 14. Verifique que a função $y = f(x) = \frac{x}{\sqrt{1+x^2}}$, definida em \mathbb{R} , tem como inversa a função $x = \frac{x}{\sqrt{1+x^2}}$ $g(y) = \frac{y}{\sqrt{1-y^2}}$, definida para |y| < 1.
- 15. Determine a inversa de função $f(x) = \frac{x}{x+1}, \ x \neq 1$, especificando o domínio e a imagem da inversa. Comprove diretamente a fórmula

$$g'(y) = \frac{1}{f'(x)}.$$

- 16. Considere a função $y=f\left(x\right)=x^{2}-x-2,$ definida para $x\geq1/2,$ e seja $x=g\left(y\right)$ sua inversa.
 - (a) Qual o domínio e qual a imagem de g? (b) Sabendo-se que g(-2) = 1, calcule g'(-2)
- 17. Use a Regra da Cadeia para mostrar que a derivada de uma função par é uma função ímpar e que a derivada de uma função impar é uma função par.

4.4 Mais Funções Elementares

- 1. Considere as funções $f(x) = \arctan x + \arctan (1/x)$ e $g(x) = \arcsin x + \arccos x$, definidas, respectivamente, para x > 0 e para $x \in [-1, 1]$.
 - (a) Mostre que f'(x) = 0, $\forall x > 0$, e que g'(x) = 0, $\forall x \in (-1, 1)$.
 - (b) Lembrando que as funções constantes são as que possuem derivada nula, deduza que f(x) = $\pi/2, \forall x > 0, \text{ e que } g(x) = \pi/2, \ \forall x \in [-1, 1].$
- 2. Se f é uma função derivável, tal que f(2) = 1 e f'(2) = 1/2, determine a equação da reta tangente à curva $y = \arctan[f(x)]$, no ponto de abscissa x = 2.
- 3. Sabendo-se que no ponto A(0,1) o gráfico da função $f(x) = \exp(x^2 + 2x)$ possui a mesma reta tangente que o de uma certa função g, determine g'(0).
- 4. Se f é uma função derivável, tal que f'(x)=2xf(x), mostre que a função $g\left(x\right)=f\left(x\right)e^{-x^{2}}$ é constante.
- 5. Para cada uma das funções definidas abaixo, determine o domínio e calcule a derivada de primeira ordem.
 - (a) $f(x) = \ln(\sqrt{5 x^2})$ (b) $f(x) = \ln(\sin x)$
- (c) $f(x) = x \ln x x$

- (d) $f(x) = \ln |x|$
- (e) $f(x) = 1/\ln x$
- $(f) f(x) = \ln(\ln x)$

(g)
$$f(x) = \ln(\sqrt{\frac{2-x}{3-x}})$$
 (h) $f(x) = \ln(\cos(3x+5))$ (i) $f(x) = \sin(\ln(2x+3))$

- 6. Considere a função $f(x) = \ln(x^2 + 1)$.
 - (a) Qual o domínio de f?
 - (b) Qual é a equação da reta tangente ao gráfico de f, no ponto de abscissa x = -1? E no ponto de abscissa x = 0?
- 7. O logaritmo de um número positivo N, em uma base $b, 0 < b \neq 1$, é definido por meio da equivalência

$$\log_b N = a \iff b^a = N.$$

- (a) Prove a propriedade de Mudança de Base: $\log_b N = \frac{\ln N}{\ln h}$.
- (b) Se f é definida por $f(x) = \log_b x$, para x > 0, mostre que $f'(x) = \frac{1}{x \ln b}$.

- 8. Calcule a derivada de primeira ordem de cada uma das funções abaixo.
- (a) $f(x) = e^{\sin x}$ (b) $f(x) = e^{x^2}$ (c) $f(x) = (e^x)^2$

- (d) $f(x) = 3^{-x}$ (e) $f(x) = x^x$ (f) $f(x) = x^{(x^x)}$
- (g) $f(x) = x^2 3^{x \sin x}$ (h) $f(x) = (x^x)^x$ (i) $f(x) = 2^{x^x}$
- 9. As funções trigonométricas hiperbólicas seno hiperbólico, cosseno hiperbólico, tangente hiperbólica e cotangente hiperbólica - denotadas, respectivamente, por senh, cosh, tgh e cotgh, são definidas pelas expressões:

$$\mathrm{senh}\, x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2}, \qquad \mathrm{tgh}\, x = \frac{e^x - e^{-x}}{e^x + e^x}, \qquad \cot \mathrm{gh}\, x = \frac{e^x + e^{-x}}{e^x - e^x}$$

- Com base nessas definições, mostre que:

- (a) $\cosh^2 x \sinh^2 x = 1$ (b) $\lim_{x \to 0} \frac{\sinh x}{x} = 1$ (c) $\frac{d}{dx} (\sinh x) = \cosh x$

- (d) $\frac{d}{dx}(\cosh x) = \sinh x$ (e) $\frac{d}{dx}(\tanh x) = (\cosh x)^{-2}$ (f) $\frac{d}{dx}(\coth x) = -(\sinh x)^{-2}$
- (A identidade (a) e as derivadas são comprovadas usando as definições das funções hiperbólicas e as regras de derivação. Para provar (b), use o fato: $\lim_{h\to 0} \frac{e^h-1}{h} = \lim_{h\to 0} \frac{e^{0+h}-e^0}{h} = \frac{d}{dx}(e^x)\big|_{x=0} = 1.$
- 10. Para cada uma das funções dadas abaixo, calcule o limite quando $x \to 0$.
 - (a) $f(x) = \frac{\sin 2x}{x}$ (b) $f(x) = \frac{\sin x}{3x}$ (c) $f(x) = \frac{\operatorname{tg} x}{\sin x}$
- (d) $f(x) = \frac{\cos 2x}{1 + \sin x}$ (e) $f(x) = \frac{\sin(x^2)}{x}$ (f) $f(x) = \frac{\sin(2x^2)}{3x}$

- (g) $f(x) = \frac{\sin(x^3)}{x^3}$ (h) $f(x) = \frac{x \sin x}{\sin(2x^2)}$ (i) $f(x) = \frac{\sin x \sin 2x}{x \sin 3x}$
- 11. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável e suponha que exista uma constante k tal que f'(x) =kf(x), $\forall x$. Derive o quociente f/e^{kx} e deduza que existe uma constante C tal que $f(x) = Ce^{kx}$.
- 12. No exercício precedente, suponha que f satisfaça f'(x) = -2xf(x). Mostre que existe uma constante C tal que $f(x) = Ce^{-x^2}$.
- 13. Se f satisfaz f'(x) = g'(x) f(x), $\forall x \in \mathbb{R}$, mostre que existe C tal que $f(x) = C \exp[g(x)]$.
- 14. Esboce o gráfico da função $y = \ln(1+x)$ e determine a reta normal ao gráfico, que é paralela à reta x + 2y = 5.
- 15. Considere a função $f(x) = |x+2|^3$.
 - (a) Verifique que f é derivável em qualquer x e ache uma expressão para a derivada.
 - (b) Encontre o ponto P_0 onde a tangente ao gráfico de f é horizontal.

- (c) Encontre o ponto P_0 onde o ângulo da tangente ao gráfico de f com o eixo $x \in 60^\circ$.
- 16. Determine as retas tangentes à curva $y = x^2$ que passam no ponto (0, -1).

4.5 Problemas de Taxa de Variação

1. Uma partícula se move de modo que, no instante t, a distância percorrida é dada por

$$s(t) = \frac{1}{3}t^3 - t^2 - 3t.$$

- (a) Encontre as expressões que fornecem a velocidade e a aceleração da partícula.
- (b) Em que instante a velocidade é zero?
- (c) Em que instante a aceleração é zero?
- 2. Uma partícula move-se sobre a parábola $y = x^2$. Sabendo-se que suas coordenadas x(t) e y(t) são funções deriváveis, em que ponto da parábola elas deslocam-se à mesma taxa?
- 3. Um ponto move-se ao longo da curva $y = \frac{1}{1+x^2}$, de tal modo que sua abscissa x varia a uma velocidade constante de 3 cm/s. Qual será a velocidade da ordenada y, quando $x = 2 \ cm$?
- 4. Um ponto move-se sobre a parábola $y = 3x^2 2x$. Supondo-se que suas coordenadas x(t) e y(t) são funções deriváveis e que $x'(t) \neq 0$, em que ponto da parábola a velocidade da ordenada y será o triplo da velocidade da abscissa x?
- 5. Um cubo se expande de modo que sua aresta varia à razão de $12,5 \ cm/s$. Encontre a taxa de variação de seu volume, no instante em que a aresta atinge $10 \ cm$ de comprimento.
- 6. Uma esfera aumenta de modo que seu raio cresce à razão de 2,5cm/s. Quão rapidamente varia seu volume no instante em que o raio mede 7,5cm? (o volume da esfera de raio $r \notin V(r) = \frac{4}{3}\pi r^3$).
- 7. Sejam x e y os catetos de um triângulo retângulo e θ o ângulo oposto a y. Supondo-se que x = 12 e que θ decresce à razão de 1/30 rad /s, calcule y'(t), quando $\theta = \pi/3$ rad.
- 8. Uma escada de 8 m está encostada em uma parede vertical. Se a extremidade inferior da escada for afastada do pé da parede a uma velocidade constante de 2 m/s, com que velocidade a extremidade superior estará descendo no instante em que a inferior estiver a 3 m da parede?
- 9. Uma viga medindo 30 m de comprimento está apoiada em uma parede e o seu topo está se deslocando a uma velocidade de 0,5 m/s. Qual a taxa de variação de medida do ângulo formado pela viga e pelo chão, quando a topo da viga estiver a uma altura de 18 m?

- 11. Expresse a taxa de crescimento do volume V de uma esfera, relativamente à superfície S, em função do raio r da esfera. Faça o mesmo para o raio, relativamente ao volume.
- 12. Num reservatório contendo um orifício, a vazão pelo orifício é de $110\sqrt{h} \ cm^3/s$, onde h é a altura, em centímetros, do nível da água no reservatório, acima do orifício. O reservatório é alimentado à taxa de 88 l/\min . Calcule a altura h do nível a que o reservatório se estabiliza.
- 13. Um balão sobe verticalmente com uma velocidade v e um observador, a certa distância d, vê o balão sob um ângulo de levação θ . Ache uma expressão para a taxa $\frac{d\theta}{dt}$ de variação de θ em termos de v, θ e d. A que velocidade sobe o balão se d=500 m e $\frac{d\theta}{dt}=0,02$ rad /s, quando $\theta=\pi/4$ rad.
- 14. Uma bola de neve derrete a uma taxa volumétrica dV/dt proporcional à sua área. Mostre que o seu raio r decresce a uma taxa dr/dt constante.
- 15. Um reservatório cônico, com vértice para baixo, contém água de volume V até uma altura h. Supondo que a evaporação da água se processa a uma taxa dV/dt proporcional à sua superfície, mostre que h decresce a uma taxa dh/dt constante
- 16. Uma piscina está sendo esvaziada de tal forma que $V(t) = 300 (20 t)^2$ representa o número de litros de água na piscina t horas após o início da operação. Calcule a velocidade (instatânea) de escoamento da água ao cabo de 8 horas e a velocidade média desse escoamento no mesmo tempo.
- 17. Uma estátua de altura h está sendo instalada sobre um pedestal de altura l acima do plano horizontal que passa pelo olho de um observador. Com o observador a uma distância x, calcule a taxa de variação, em relação a x, do ângulo θ sob o qual o observador vê a estátua, em termos de h, l e x. Qual o valor dessa taxa se h = 20, l = 5 e x = 50?

- 18. A figura ao lado mostra um reservatório cônico de 10m de altura e 4m de raio contendo água, que escoa a uma vazão de $5m^3/hora$.
 - (a) Qual a relação entre as variáveis R e H?
 - (b) A que taxa o nível da água diminui, quando H = 6m?

RESPOSTAS & SUGESTÕES

EXERCÍCIOS COMPLEMENTARES 4.1

- 1. (a) 2x (b) 6x (c) 2x (d) 4x-3 (e) $-1/(x+1)^2$.
- 2. (a) -1 (b) $f'_{-}(0) = -1$ e $f'_{+}(0)$ não existe (c) não.
- 3. (a) não (b) sim (c) f'(x) = 2, se x > 0 e f'(x) = 0, se x < 0.
- 4. (a) Não existe f'(0) (b) Não existe f'(1) (c) f'(1) = 1/2.
- 5. 0 e 4.
- 6. f(1) = 0 e f'(1) = 5.
- 7. f(0) = 0 e f'(x) = 5x + 3.
- 8. a = 6 e b = -3
 - (a) $y = \frac{1}{3}x + \frac{4}{3}$ e y = -3x + 28.
 - (b) $y = \frac{1}{8} \frac{3}{29}(x 16)$ e $y = \frac{1}{8} \frac{29}{3}(x 16)$.
 - (c) $y = \sqrt{3} + \frac{1}{2\sqrt{3}}(x-3)$ e $y = \sqrt{3} 2\sqrt{3}(x-3)$.
- 9. y = -8x 16.
- 10. $y \pm \frac{9}{16} = \frac{8}{9}(x \mp \frac{3}{2}).$
- 11. x = 2 e y = 0.
- 12. A reta tangente é x = 2 e a reta normal é y = 0 (o eixo x).
- 13. y = 4x 4.

- 14. y = -13/6 e y = 7/3.
- 15. (b) não (c) não.
- 16. (a) sim (b) não.
- 17. (a) f'(x) = -2x, se x < 0 e f'(x) = 2x, se x > 0 (b) f'(0) = 0.

EXERCÍCIOS COMPLEMENTARES 4.2

- 1. f'(0) = -2, f''(0) = 0 e $f^{(30)}(0) = 0$.
- 2. Calcule as derivadas y' e y'' e comprove a relação.
- 3. Antes de iniciar, veja as regras de derivação e as derivadas das funções elementares.
 - (a) $-\pi/x^2$.
 - (b) $-1/3 + 2x 2x^3$.
 - (c) $4/3x^2\sqrt[3]{x} 2/3x^3\sqrt{x^2}$.
 - (d) $1/\sqrt{x} (1-\sqrt{x})^2$.
 - (e) $\arcsin x + \frac{x}{\sqrt{1-x^2}}$.
 - (f) $x \operatorname{arctg} x$.
 - (g) $e^x (\cos x \sin x)$.
 - (h) $\frac{2}{x} + \frac{\ln x}{x^2} \frac{2}{x^2}$.
 - (i) $-10(3-2\sin x)^4\cos x$.
 - (j) $2 15\cos^2 x \sin x$.
 - (k) $\frac{3\cos x + 2\sin x}{2\sqrt{15\sin x 10\cos x}}.$
 - (1) $\frac{e^x(x+1)+1}{2\sqrt{x(e^x+1)}}$.
 - (m) $\frac{-e^x}{\sqrt{1-e^{2x}}}$.
 - (n) $3\cos 3x \frac{1}{5}\sin(x/5) + \frac{1}{2\sqrt{x}\cos^2(\sqrt{x})}$.
 - (o) Usando as relações $1 + \cos(2x) = \cos^2 x$ e $1 \cos(2x) = \sin^2 x$, obtemos $y = \cot^2 x$ e dái $y' = -2\cot x \csc^2 x$.
 - (p) $\frac{1}{1+x^2}$.

(q)
$$\cot x$$
.

(r)
$$\frac{2\ln x}{x} + \frac{1}{x\ln x}.$$

- 4. Fazer.
- 5. Fazer.
- 6. Fazer.
- 7. De cima para baixo, a correpondência segue a seqüência 2, 4, 1 e 3.

EXERCÍCIOS COMPLEMENTARES 4.3

1.
$$\frac{dy}{dx} = 2x + \frac{2u}{(x-1)^2 \sqrt{1+u^2}}$$
.

2. Derivação Implícita.

(a)
$$y' = \frac{1}{3y^2 - 1}$$
.

(b)
$$y' = \frac{1 - 4\sqrt{x}y}{2\sqrt{x}(3y^2 + 2x)}$$
.

(c)
$$y' = \frac{\sqrt{1+y}}{\sqrt{x+y} - \sqrt{1+y}}$$
.

(d)
$$y' = \operatorname{tg} x \operatorname{tg} y$$
.

(e)
$$y' = \frac{-y}{x}$$
.

(f)
$$y' = \frac{4xy\sqrt{xy} - y}{x - 2x^2\sqrt{xy}}.$$

3. Da Regra da Cadeia, temos

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{-2x}{(x^2 + 1)^2} \cdot \frac{dx}{dt} = -2xy^2 \cdot \frac{dx}{dt}.$$

4. Temos da Regra da Cadeia que

$$\frac{dy}{dt} = 3x^2 \cdot \frac{dx}{dt} \Rightarrow \frac{d^2y}{dt^2} = \frac{d}{dt} (3x^2) \cdot \frac{dx}{dt} + 3x^2 \cdot \frac{d^2x}{dt^2}$$
$$\Rightarrow \frac{d^2y}{dt^2} = 6x \cdot \left(\frac{dx}{dt}\right)^2 + 3x^2 \cdot \frac{d^2x}{dt^2}$$

5.
$$2x + y + 5 = 0$$
 e $x - 2y - 5 = 0$.

6. Usando a Regra da Cadeia, deduza que

$$h'(x) = 3 [f(x)]^2 f'(x) + 3x^2 f'(x^3)$$

e por substituição direta de x por 2, obtenha h'(2) = -15.

7. Considerando em (4.1) x=1, encontramos y=1/2 e por derivação implícita, chegamos a:

$$\frac{y'(x-y) - y(1-y')}{(x-y)^2} - \frac{y - xy'}{y^2} + \frac{1}{2\sqrt{x}} = 0.$$
 (4.2)

Em (4.2) fazemos x = 1 e y = 1/2 e encontramos y'(1) = 7/16.

- 8. $n!a^n$.
- 9. 3x + 4y = 25 e 4x 3y = 0
- 10. $y = \frac{-5}{4}x 4$ e $y = \frac{4}{5}x + \frac{25}{4}$

11. Derivando a igualdade xf(x) + sen[f(x)] = 4 em relação a x, encontramos

$$f(x) + xf'(x) + \cos[f(x)] \cdot f'(x) = 0$$

e daí segue o resultado.

12. Função Inversa.

(a)
$$g(y) = \sqrt{y+4}, \quad -4 \le y.$$

(b)
$$g(y) = -\sqrt{y+4}$$
, $-4 \le y$.

(c)
$$g(y) = 1 - y^2$$
, $y \le 0$.

(d)
$$g(y) = \frac{y}{1-y}, y < 1.$$

(e)
$$g(y) = \sqrt{\frac{y}{1-y}}, \quad 0 \le y < 1.$$

(f)
$$g(y) = -\sqrt{\frac{y}{1-y}}, \quad 0 \le y < 1.$$

13. Mais Função Inversa.

(a)
$$\begin{cases} y = x^2 - 2x - 3, & x \le 1 \\ x = 1 - \sqrt{y + 4}, & y \ge -4 \end{cases}$$
 e
$$\begin{cases} y = x^2 - 2x - 3, & x \ge 1 \\ x = 1 + \sqrt{y + 4}, & y \ge -4 \end{cases}$$
.

(b)
$$\begin{cases} y = -x^2 + x + 2, & x \le 1/2 \\ x = \frac{1}{2} - \sqrt{\frac{9}{4} - y}, & y \le \frac{9}{4} \end{cases}$$
 e
$$\begin{cases} y = -x^2 + x + 2, & x \le 1/2 \\ x = \frac{1}{2} + \sqrt{\frac{9}{4} - y}, & y \le \frac{9}{4} \end{cases}$$
.

(c)
$$\begin{cases} y = \sqrt{1 - x^2}, & -1 \le x \le 0 \\ x = -\sqrt{1 - y^2}, & 0 \le y \le 1 \end{cases}$$
 e
$$\begin{cases} y = \sqrt{1 - x^2}, & -1 \le x \le 0 \\ x = \sqrt{1 - y^2}, & 0 \le y \le 1 \end{cases}$$
.

(d)
$$\begin{cases} y = \sqrt{4 - x^2}, -2 \le x \le 0 \\ x = -\sqrt{4 - y^2}, -2 \le y \le 0 \end{cases}$$
 e
$$\begin{cases} y = -\sqrt{4 - x^2}, 0 \le x \le 2 \\ x = \sqrt{4 - y^2}, -2 \le y \le 0 \end{cases}$$
.

- 14. Verifique diretamente que f(g(y)) = y e g(f(x)) = x, válidas para |y| < 1 e pata todo x.
- 15. Se g(y) representa a inversa de f(x), então $Dom(g) = \{y \in \mathbb{R} : y \neq 1\}$ e $g(y) = \frac{y}{1-y}$. Para comprovar a fórmula

$$g'(y) = \frac{1}{f'(x)}$$

calcule diretamente as derivadas g'(y) e f'(x).

- (a) $D(g) = [\frac{-9}{4}, +\infty)$ e $Im(g) = [\frac{1}{2}, +\infty)$.
- (b) g'(-2) = 1.
- 16. Se f é par, então f(x) = f(-x) e usando a Regra da Cadeia, obtemos:

$$f'(x) = -f'(-x)$$

e daí resulta que f' é uma função impar.

EXERCÍCIOS COMPLEMENTARES 4.4

- 1. Fazer.
- 2. $y = \frac{\pi}{4} + \frac{1}{4}(x-2)$.
- 3. g'(0) = 2.
- 4. É suficiente mostrar que g'(x) = 0. Temos

$$g'(x) = f'(x) e^{-x^2} - 2xf(x) e^{-x^2} = 0$$

- e, portanto, g(x) é constante.
- 5. Calculando derivadas.
 - (a) Dom $(f) = (-\sqrt{5}, \sqrt{5})$ e $f'(x) = -\frac{x}{5 x^2}$.
 - (b) $Dom(f) = (2k\pi, (2k+1)\pi)$ e $f'(x) = \cot x$.

- (c) Dom $(f) = (0, +\infty)$ e $f'(x) = \ln x$.
- (d) $Dom(f) = \mathbb{R} \{0\} e^{-f'(x)} = 1/x$.
- (e) $\text{Dom}(f) = \mathbb{R} \{1\} \text{ e } f'(x) = -\frac{1}{x(\ln x)^2}.$
- (f) $Dom(f) = (1, +\infty)$ e $f'(x) = -\frac{1}{x \ln x}$.
- (g) $\text{Dom}(f) = (-\infty, 2) \cup (3, +\infty)$ e $f'(x) = -\frac{1}{2(2-x)(3-x)}$.
- (h) $\operatorname{Dom}(f) = \left(-\frac{1}{3}(2k\pi + \frac{\pi}{2} + 5), \frac{1}{3}(2k\pi + \frac{\pi}{2} 5)\right)$ e $f'(x) = -3\operatorname{tg}(3x + 5)$.
- (i) $Dom(f) = (-\frac{3}{2}, +\infty)$ e $f'(x) = \frac{2}{2x+3}\cos[\ln(2x+3)]$.
- 6. Reta Tangente.
 - (a) Dom $(f) = \mathbb{R}$.
 - (b) No ponto $A(-1, \ln 2)$ a reta tangente é $y = -x + \ln 2 + 1$ e no ponto B(0, 0) a reta tangente é y = 0 (o eixo x).
- 7. Derivando $\log_b x$
 - (a) Basta notar que $N = b^a \Rightarrow \ln N = a \ln b$ e, portanto, $\log_b N = a = \frac{\ln N}{\ln b}$.
 - (b) Por (a), temos:

$$f(x) = \log_b x = \frac{\ln x}{\ln b} \Rightarrow f'(x) = \frac{1}{x \ln b}.$$

- 8. Derivando exponenciais.
 - (a) $\frac{d}{dx} (e^{\sin x}) = e^{\sin x} \frac{d}{dx} (\sin x) = \cos x \exp (\sin x)$.
 - (b) $2x \exp(x^2)$.
 - (c) $2\exp(2x)$.
 - (d) $-3^{-x} \ln 3$ (e) $x^x (1 + \ln x)$.
 - (e) $\frac{d}{dx}(x^x) = \frac{d}{dx}(e^{\ln x^x}) = \frac{d}{dx}(e^{x \ln x}) = e^{x \ln x} \frac{d}{dx}(x \ln x) = x^x (1 + \ln x).$
 - (f) $x^{(x^x)}[x^x \ln x (1 + \ln x) + x^{x-1}].$
 - (g) $3^{x \operatorname{sen} x} [2x + x^2 \ln 3 (\operatorname{sen} x + x \cos x)].$
 - (h) $(x^x)^x[x + 2x \ln x]$.
 - (i) $2^{x^x} [x^x (1 + \ln x)] \ln 2$.

45

9. Como ilustração, veja a derivada do seno hiperbólico:

$$\frac{d}{dx}\left(\operatorname{senh} x\right) = \frac{1}{2}\frac{d}{dx}\left(e^x - e^{-x}\right) = \frac{1}{2}\left(e^x + e^x\right) = \cosh x.$$

- 10. Usando limites fundamentais.
 - (a) $\lim_{x\to 0} \frac{\sin{(2x)}}{x} = \lim_{x\to 0} \frac{2\sin{(2x)}}{2x} = (\text{faça } 2x = t) = 2\lim_{t\to 0} \frac{\sin{t}}{t} = 2.$
 - (b) $\lim_{x\to 0} \frac{\sin x}{3x} = \frac{1}{3} \lim_{x\to 0} \frac{\sin x}{x} = 1/3.$
 - (c) $\lim_{x\to 0} \frac{\tan x}{\sin x} = \lim_{x\to 0} \frac{1}{\cos x} = 1.$
 - (d) 1.
 - (e) 0.
 - (f) 0.
 - (g) 1.
 - (h) 1/2.
 - (i) 2/3.
- 11. Note que $\frac{d}{dx}\left[\frac{f\left(x\right)}{e^{kx}}\right]=0$ e deduza que $\frac{f\left(x\right)}{e^{kx}}=C.$
- 12. Mesmo raciocínio anterior. Agora, derive o quociente $\frac{f\left(x\right)}{e^{-x^{2}}}$.
- 13. Ao derivar o quociente $\frac{f(x)}{\exp[g(x)]}$, encontramos

$$\frac{d}{dx} \left(\frac{f(x)}{\exp[g(x)]} \right) = \frac{f'(x) e^{g(x)} - f(x) g'(x) e^{g(x)}}{\left[e^{g(x)}\right]^2} = 0.$$

14. O gráfico da função $y = \ln(1+x)$, x > -1, corresponde ao deslocamento de uma unidade para a esquerda do gráfico de $y = \ln x$. A declividade da reta normal é $m_N = -1/2$ e a reta tangente tem declividade

$$m_T = 2 = f'(a) \Rightarrow a = -1/2.$$

O ponto de tangência é $A\left(-\frac{1}{2}, -\ln 2\right)$ e a equação da normal é

$$r_N: x + 2y + \ln 4 + 1/2 = 0.$$

- 15. Dado que $f(x) = |x + 2|^3$, temos:
 - (a) f'(x) = 3|x+2|(x+2) (b) (-2,0) (c) $(-2 \pm 1/3^{3/4}, \pm 1/81\sqrt{3})$.

16.
$$y = \pm 2x - 1$$
.

EXERCÍCIOS COMPLEMENTARES 4.5

1. Equação do movimento.

(a)
$$v(t) = t^2 - 2t - 3$$
; $a(t) = 2t - 2$ (b) $t = 3$ (c) $t = 1$.

2. O ponto P(1/2, 1/4).

3.
$$-\frac{12}{25}cm/s$$
.

4. No ponto de abscissa $x = \frac{5}{6}$.

5. $3750cm^3/s$.

6. $562, 5\pi cm^3/s$.

7.
$$-\frac{8}{5}$$
 unid/s.

8.
$$-\frac{6}{\sqrt{55}}m/s$$
.

9.
$$-\frac{1}{48} \operatorname{rad} / s$$
.

10.
$$-1200N/m^2$$
.

11.
$$\frac{dV}{dS} = \frac{r}{3}$$
 e $\frac{dr}{dV} = \frac{1}{4\pi r^2}$.

12.
$$h = \frac{1600}{9}cm$$
.

13.
$$\frac{d\theta}{dt} = \frac{v\cos^2\theta}{d}$$
 e $v = 20m/s$.

14. Temos que $V=\frac{4}{3}\pi r^3$ e por derivação em relação a t, chegamos a

$$\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}.$$

Considerando que $\frac{dV}{dt} = k (4\pi r^2)$, obtemos:

$$k\left(4\pi r^2\right) = 4\pi r^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = k.$$

$$\frac{dV}{dt} = \pi C^2 h^2 \frac{dh}{dt}.$$

Use
$$\frac{dV}{dt} = k\pi r^2$$
, $k = cte < 0$, para chegar a $\frac{dh}{dt} = k$.

16.
$$\frac{dV}{dt} = -7200 \ l/h$$
 e $\frac{\Delta V}{\Delta t} = \frac{V(8) - V(0)}{8 - 0} = -76808 \ l/h$.

17.
$$\frac{d\theta}{dx} = \frac{l}{x^2 + l^2} - \frac{h+l}{x^2 + (h+l)^2}$$
 e $\frac{d\theta}{dx} \simeq -\frac{1}{166}$.

- 18. Vazão em um resevatório cônico.
 - (a) Usando semelhança de triângulos, temos

$$\frac{4}{R} = \frac{10}{H}$$
, isto é, $R = \frac{2H}{5}$.

(b) Desejamos encontrar $\frac{dH}{dt}$, nos instante em que H=6 e a vazão é $\frac{dV}{dt}=5m^3/h$. O volume do cone de raio R e altura H é

$$V = \frac{1}{3}\pi R^2 H = \frac{4\pi H^3}{75}. (4.3)$$

Derivando (4.3) em relação ao tempo t, encontramos

$$\frac{dV}{dt} = \frac{4\pi H^2}{25} \frac{dH}{dt}$$

e com os dados chegamos a $\frac{dH}{dt} = \frac{125}{144\pi} \ m/h$.