Chapter 2 Section 3

Andrew Taylor

April 11 2022

Problem 1. Calculate the matrix product

$$\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$$

Solution.

$$\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 6*1+7*3 & 6*2+7*5 \\ 8*1+9*3 & 8*2+9*5 \end{bmatrix}$$
$$= \begin{bmatrix} 27 & 47 \\ 35 & 61 \end{bmatrix}$$

Problem 2. Compute the products BA and AB for

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Interpret your answers geometrically, as composites of linear transformation.

Solution.

$$BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

The product BA is a rotation matrix that rotates a vector ninety degrees counterclockwise.

$$AB = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

The product AB is a rotation matrix that rotates a vector ninety degrees clockwise.