

Retinal OCT Image Classification

Presented by Garima, Ritika, Sumedha

Introduction

Problem Statement

Retinal diseases such as Diabetic Macular Edema (DME), Choroidal Neovascularization (CNV), and Drusen are among the primary causes of vision impairment and blindness globally.

Current Diagnostic Challenges

Optical Coherence Tomography (OCT), a non-invasive imaging technique, is widely used for diagnosing these diseases.

However, manual interpretation of OCT scans come with its own challenges.

Objective

This project aims to harness the power of Artificial Intelligence (AI) to develop an automated classification system for retinal disease detection using OCT images.

Applications of the Project

Addressing
Resource Shortages

Improved Patient
Outcomes

Support for Ophthalmologists

Al ensures critical cases are flagged and urgent patients prioritized in high-volume settings.

In underserved areas,
Al aids initial eye
screenings where
specialists are scarce.

Faster diagnosis
enables timely
treatment, reducing
disease progression
and vision loss.

Source: Kaggle

Structure: Folders

- Divided into three main folders: train, test, and validation (val).
- Folders contain subdirectories for the four categories.

Images:

- 84,495 high-resolution OCT images in JPEG format are available.
- The images are labeled in the format: (disease)-(randomized patient ID)-(image number by this patient).

Dataset Overview

Classes Identification

Western Science

Classes Identification

Western Science

Data Preprocessing

Class Imbalance

Class	Weight	
Normal	0.9923	
CNV	0.9923	
DME	1.0348	
DRUSEN	0.9822	

- The dataset is well-balanced overall.
- There is minimal risk of bias or poor performance for any class.

Data Augmentation

Rescaling

Normalized pixel values to [0, 1]

Shifting

Width and height shifts up to 20%

Flipping

Horizontal flips for added variation

Rotation

Random rotations up to 10°

Zooming

Random zoom-in and zoom-out (20%)

Baseline Model: ResNet50

Metric	Value	
Accuracy	65%	
Loss	1.1209	
Test Loss	1.3656	
Test Accuracy	50%	

CNN Model Architecture

Activation Functions

Relu: Used in all convolutional and dense layers (except the output layer) to introduce non-linearity.

Optimizer: Adam optimizer was used for efficient training.

Accuracy: 91%

Loss: **0.2703**

val_accuracy: 97%

val_loss: **0.0477**

Input Layer

Classification Report

_	Precision	Recall	F1-Score
CNV	0.96	0.99	0.98
DME	0.99	0.93	0.96
DRUSEN	1.00	0.98	0.99
NORMAL	0.94	1.00	0.97
Accuracy	_	_	0.97
Macro Avg	0.97	0.97	0.97
Wght Avg	0.97	0.97	0.97

Results

The model shows high training accuracy with minimal overfitting, but validation loss fluctuations indicate potential noise or data imbalance.

Results

The model demonstrates excellent classification accuracy with minimal misclassifications across all classes.

Future Scope

Fine-Tuning
Pre-Trained Layers for
ResNet Model

Improved Data Augmentation

Learning Rate
Optimization

Thank you!

Any Questions?

