Responsable TD: Felipe FIGUEREDO ROCHA (felipe.figueredo-rocha@u-pec.fr)
NOM: ______ Prénom: ______ Numéro: _____

______ Prénom: ______ Numéro: _____ Licence: ______ Groupe: L1 MATH GP2 Note: _____

Rappels (regarder le tableau aussi)

- Calculettes et téléphones interdits.
- N'oubliez vos noms en toutes les feuilles, les unités, des flèches au-dessus des vecteurs, etc.
- Norme produit vectoriel: $|\vec{a} \wedge \vec{b}| = ||a|| ||b|| |\sin \theta(\vec{a}, \vec{b})|$.
- Si (\$\vec{u}_x\$, \$\vec{u}_y\$, \$\vec{u}_z\$) est dite une base orthonormé direct, on
 a: \$\vec{u}_x \leftrightarrow \vec{u}_y = \vec{u}_z\$, \$\vec{u}_y \leftrightarrow \vec{u}_z = \vec{u}_x\$, \$\vec{u}_z \leftrightarrow \vec{u}_x = \vec{u}_y\$.

- Repère de Frénet : $\dot{s}=\|\vec{v}\|,\; \vec{v}=\dot{s}\vec{T}$ et $\vec{a}=\ddot{s}\vec{T}+\frac{\dot{s}^2}{R_c}\vec{N}$
- Moment d'une force par rapport à $O: \vec{M}_0(\vec{f}) = \vec{OM} \wedge \vec{f}$

Q1 Produit vectoriel (7pts)

Les forces «bizarretiques» appliqués par les champs vectoriels $\vec{C} = C\vec{u}_x$ et $\vec{D} = -D\vec{u}_x$ à une particule M de vitesse $\vec{v} = v\vec{u}_y$, sont donnés par $\vec{f}_1 = (\vec{C} \wedge \vec{v}) \wedge \vec{D}$ et $\vec{f}_2 = (\vec{C} \cdot \vec{D})\vec{v} \wedge \vec{D}$. On va considérer C, D et v nombres réels **positifs**.

- a) (1,0pt) Placer le troisième vecteur de la base cartésienne à l'origine des plans Oxy et Oxz (rappel: utilisez la notation \otimes ou \odot , respectivement des vecteurs rentrant ou sortant du plan.). Vous pouvez répondre sur le sujet ou recopier ces figures dans votre feuille de réponse.
- b) (1,5pts) Dessiner les vecteurs \vec{v} , \vec{C} et \vec{D} (obs: dans les deux plans, la taille des flèches n'est pas important).
- c) (1,5pts) Dessiner les vecteurs $\vec{f_1}$ et $\vec{f_2}$ (même observations que b)).
- d) (1,5pts) Calculer l'expression de $\vec{f}_T = \vec{f}_1 + \vec{f}_2$ en fonction de C,D et v.
- e) (1,5pts) Calculer le moment de \vec{f}_T par rapport a O quand la particule se trouve dans une position générique $\vec{OM} = a\vec{u}_x + b\vec{u}_y + c\vec{u}_z$.

Q2: le skieur (13pts)

Un skieur de masse m rentre dans un col et puis remonte de l'autre côté du col. Les équations paramétriques x(t)=ct, $y(t)=at^2+bt$ permettent de décrire son mouvement quand il est dans le col, avec les constantes a>0, b<0, c>0. Les forces importantes sont \vec{R}_N , la réaction normale, \vec{P} , le poids, et \vec{f} , une force de propulsion ou de freinage appliquée par le skieur, toujours tangentielle au mouvement. La norme de l'accélération de la pesanteur est notée g, tel que $\vec{g}=-g\vec{u}_y$ pointe vers le bas. L'objectif de cet exercice est d'étudier le mouvement en repère de Frenet.

- a) (1,0pt) Déterminer l'équation de la trajectoire y=y(x). Quel est le nom de cette courbe?
- b) (1,5pt) Dessiner la trajectoire a partir de t = 0s et jusqu'au l'instant t_f lorsqu'il arrive à la fin du col, c'est-à-dire, quand il revient à y = 0. Déterminez t_f et la position (x, y) du point plus bas du col.
- c) (1,25pt) Dessiner les vecteurs \vec{T} et \vec{N} de la base de Frenet en trois instants: i) quand il descend, ii) sur le point plus bas du col et iii) quand il remonte.
- d) (1,75pt) Déterminer $\vec{v}(t)$ et \vec{T} en coordonées cartesiennes.
- e) (1,25pt) Déterminer $\vec{a}(t)$ en coordonées cartesiennes.
- f) (1,75pt) Calculer $\dot{s}(t)$ et $\ddot{s}(t)$.
- g) (1,75pt) Déterminer le rayon de courbure R_c tout au long de trajectoire. Où est-il minimale?
- h) (1,5pt) Appliquer le PFD en répère de Frenet pour ce mouvement (vous pouvez supposer que le rayon de courbature R_c est connu, si vous n'avez pas réussi à faire l'item précedent).
- i) (1,5pt) Déterminer l'expression de la réaction normale au point plus bas du col. Sera-t-elle toujours positive? justifiez.