

Bounds on Seshadri constants on surfaces with Picard number 1.

Tomasz Szemberg

January 19, 2013

Abstract

In this note we improve a result of Steffens [Ste] on the lower bound for Seshadri constants in very general points of a surface with 1-dimensional Néron-Severi space. We also show a multi-point counterpart of such a lower bound.

1 Introduction

Seshadri constants are interesting invariants of big and nef line bundles on algebraic varieties. They capture the so-called local positivity of a given line bundle. Seshadri constants were introduced by Demailly in [Dem]. As a nice introduction to this circle of ideas serves [PAG], an overview of recent result is given in [PSC]. Here we merely recall the basic definition.

Definition 1.1 *Let X be a smooth projective variety, L a big and nef line bundle on X and $x \in X$ a point on X . The number*

$$\varepsilon(L; x) := \inf_{C \ni x} \frac{L \cdot C}{\text{mult}_x C}$$

is the Seshadri constant of L at x .

By $\varepsilon(L; 1)$ we denote the maximum

$$\varepsilon(L; 1) := \max_{x \in X} \varepsilon(L; x) \tag{1}$$

of Seshadri constants of L over all points $x \in X$. It is well known (see [PSC, Statement 2.2.8]) that the maximum is attained for very general points $x \in X$, i.e. away of a countable union of proper Zariski closed subsets of X . It is also well known (see [PSC, Proposition 2.1.1]) that there is an upper bound

$$\varepsilon(L; 1) \leq \sqrt[n]{L^n}, \tag{2}$$

where n is the dimension of X .

As for lower bounds, Steffens in [Ste, Proposition 1] gave an interesting estimate on $\varepsilon(L; 1)$ in case that X is a surface with Picard number 1.

Proposition 1.2 (Steffens) *Let X be a smooth projective surface with Picard number 1 and let L be the ample generator of the Néron-Severi group of X . Then*

$$\varepsilon(L; 1) \geq \left\lfloor \sqrt{L^2} \right\rfloor. \tag{3}$$

It is clear that if L^2 is a square, then there is actually an equality

$$\varepsilon(L; 1) = \sqrt{L^2} \quad \text{if } \sqrt{L^2} \in \mathbb{Z}.$$

Our first observation is that only under these circumstances (i.e. $\sqrt{L^2} \in \mathbb{Z}$) is the bound (3) sharp.

For the rest of the paper we write $N := L^2$ and $s := \lfloor \sqrt{L^2} \rfloor$.

Let as before X be a smooth projective surface with Picard number $\rho(X) = 1$ and let L be the ample generator of the Néron-Severi group.

Lemma 1.3 *If L^2 is not a square, then it is always*

$$\varepsilon(L; 1) > s.$$

Proof. We have by assumption that $s < \sqrt{N}$, so that

$$s^2 + 1 \leq L^2. \tag{4}$$

Assume to the contrary that $\varepsilon(L; 1) = s$. Then for a general point $x \in X$ there exists a curve $C \in |pL|$, for some integer p , such that

$$pL^2 = sm, \tag{5}$$

where m denotes as usually the multiplicity of C at x .

The curve C cannot be smooth at x because then $pL^2 = s$ could never be satisfied (by our assumption $L^2 > 1$). Hence $m \geq 2$ and we have by [KSS, Theorem A]

$$m(m - 1) + 1 \leq C^2. \tag{6}$$

Combining (5) and (4) we get

$$ps^2 < ps^2 + p \leq pL^2 = sm,$$

which after dividing by s and using the fact that s and p are integers yields

$$ps \leq m - 1. \tag{7}$$

Now, combining (7) with (6) we get

$$m(m - 1) + 1 \leq C^2 = p^2L^2 = psm \leq (m - 1)m$$

a contradiction. \square

With this fact established, it is natural to ask if there is a lower bound better than $\lfloor \sqrt{L^2} \rfloor$ if L^2 is not a square. It is not obvious that such a bound exists because there could be a sequence of polarized surfaces (X_n, L_n) with Picard number 1, such that $L_n^2 = N$ for all n and $\lim_{n \rightarrow \infty} \varepsilon(L_n; 1) = \lfloor \sqrt{N} \rfloor$. We show that this cannot happen and that there exists a lower bound on $\varepsilon(L; 1)$ improving that of Steffens in case L^2 is not a square.

2 A new lower bound

We introduce some more notation. We assume that \sqrt{N} is irrational and denote its fractional part by β , thus $\beta := \sqrt{N} - s > 0$. We define p_0 as the least integer k such that $k \cdot \beta > \frac{1}{2}$, i.e.

$$p_0 := \left\lceil \frac{1}{2\beta} \right\rceil. \quad (8)$$

Further we set the number m_0 to be equal

$$m_0 := \left\lceil p_0 \cdot \sqrt{N} \right\rceil = p_0 s + \lceil p_0 \beta \rceil = p_0 s + 1. \quad (9)$$

The following theorem is the main result of this note.

Theorem 2.1 *Let X be a smooth projective surface with Picard number 1 and let L be the ample generator of the Néron-Severi space such that $N = L^2$ is not a square. Then*

$$\varepsilon(L; 1) \geq \frac{p_0}{m_0} N.$$

Proof. Note that $s < \frac{p_0}{m_0} N < \sqrt{N}$. Indeed, as $N = (s + \beta)^2$, we have

$$\frac{p_0}{m_0} N > \frac{p_0}{p_0 s + 1} \cdot (s + 2\beta) \cdot s \geq s.$$

On the other hand

$$\frac{p_0}{m_0} N = \frac{p_0 \sqrt{N}}{\lceil p_0 \sqrt{N} \rceil} \cdot \sqrt{N} < \sqrt{N}.$$

Now, we assume to the contrary that $\varepsilon(L; 1) < \frac{p_0}{m_0} N$. Then there exists an integer m such that for every point $x \in X$, there exists a curve C_x vanishing at x to order $\geq m$ (i.e. $\text{mult}_x C_x \geq m$) and

$$\varepsilon(L; x) \leq \frac{L \cdot C}{m} < \frac{p_0}{m_0} N. \quad (10)$$

Such curves $\{C_x\}$ can be chosen to form an algebraic family and for its arbitrary member C we have

$$m(m-1) + 1 \leq C^2 \quad (11)$$

by Theorem A in [KSS].

On the other hand there must exist an integer p such that $C \in |pL|$. The condition (10) then translates into

$$\frac{p}{m} < \frac{p_0}{m_0},$$

whereas the inequality (11) requires

$$m(m-1) + 1 \leq p^2 \cdot N. \quad (12)$$

This contradicts Lemma 2.2, which we prove below. \square

We have the following numerical lemma.

Lemma 2.2 Let N be a positive integer which is not a square. Let

$$\Omega := \{(p, m) \in \mathbb{Z}_{>0}^2 : m(m-1)+1 \leq Np^2\}$$

and let $\varepsilon_0 := \min_{(p, m) \in \Omega} \frac{p}{m}$. Then

$$\varepsilon_0 = \frac{p_0}{m_0}$$

with p_0 and m_0 defined for N as in (8) and (9).

Proof. For the fixed p , the quotient in question is minimized by the maximal integer m satisfying the inequality (12). This is

$$m_p := \left\lfloor \frac{1}{2} + \sqrt{Np^2 - \frac{3}{4}} \right\rfloor.$$

We need to show that

$$\frac{p_0}{m_0} \leq \frac{p}{m_p} \quad \text{for all } p.$$

We have certainly

$$\left\lfloor \frac{1}{2} + p\sqrt{N} \right\rfloor \geq \left\lfloor \frac{1}{2} + \sqrt{Np^2 - \frac{3}{4}} \right\rfloor = m_p,$$

so that it is enough to show

$$\frac{p_0}{m_0} \leq \frac{p}{\left\lfloor \frac{1}{2} + p\sqrt{N} \right\rfloor} \quad \text{for all } p. \quad (13)$$

Since

$$p_0 ps + p_0 \left\lfloor \frac{1}{2} + p\beta \right\rfloor = p_0 \left\lfloor \frac{1}{2} + p\sqrt{N} \right\rfloor \quad \text{and} \quad p_0 m_0 = p_0 ps + p$$

inequality (13) would follow from

$$p \geq p_0 \left\lfloor \frac{1}{2} + p\beta \right\rfloor. \quad (14)$$

For $p < p_0$ the right hand side of (14) is zero, since then $p\beta < \frac{1}{2}$. For $p \geq p_0$ we write $p = qp_0 + r$ with $q \geq 1$ and $0 \leq r \leq p_0 - 1$. In particular $r\beta < \frac{1}{2}$, so that

$$p_0 \left\lfloor \frac{1}{2} + p\beta \right\rfloor = p_0 \left\lfloor \frac{1}{2} + r\beta + qp_0\beta \right\rfloor \leq p_0 \lfloor qp_0\beta + 1 \rfloor \leq p_0 q \leq p.$$

The last but one inequality holds because $p_0\beta < 1$ and $q \geq 1$. This verifies (14) and the proof is finished. \square

The next example shows that in some situations our bound is optimal.

Example 2.3 Let $N = 2d$ be an even integer such that $N+1 = \ell^2$ is a square. A general abelian surface X with polarization L of type $(1, d)$ has Picard number equal 1, see e.g. [CAV, Section 9.9]. For such surfaces we know by [Bau, Theorem 6.1] that

$$\varepsilon(L; 1) = \frac{2d}{\ell} = \frac{1}{\sqrt{N+1}} N.$$

On the other hand we have $p_0 = 1$ and $m_0 = \left\lfloor \sqrt{N} \right\rfloor + 1 = \ell$, so that

$$\varepsilon(L; 1) = \frac{p_0}{m_0} N$$

in that case.

In general we expect however that $\varepsilon(L; 1)$ on surfaces with Picard number 1 is subject to a much stronger numerical restriction.

Conjecture 2.4 *Let X be a smooth projective surface with Picard number 1 and let L be the ample generator of the Néron-Severi space with $N = L^2$. Then*

$$\varepsilon(L; 1) \geq \begin{cases} \sqrt{N} & \text{if } N \text{ is a square} \\ \frac{Nk_0}{\ell_0} & \text{if } N \text{ is not a square} \end{cases}$$

and (ℓ_0, k_0) is the primitive solution of Pell's equation

$$\ell^2 - Nk^2 = 1.$$

The inequality in Theorem 2.1 can be viewed as the next step (after Steffens) towards approximating \sqrt{N} by continued fractions.

3 Multi-point Seshadri constants

In the last paragraph we show that a lower bound of Steffens type can be given also for multi-point Seshadri constants. This is a variant of Definition 1.1 due to Xu, see [X94].

Definition 3.1 *Let X be a smooth projective variety, L a big and nef line bundle on X , $r \geq 1$ an integer and x_1, \dots, x_r distinct points on X . The real number*

$$\varepsilon(L; x_1, \dots, x_r) := \inf_{C \cap \{x_1, \dots, x_r\} \neq \emptyset} \frac{L \cdot C}{\text{mult}_{x_1} C + \dots + \text{mult}_{x_r} C}$$

is the multi-point Seshadri constant of L at points x_1, \dots, x_r .

The interest in these numbers comes from the fact that, at least conjecturally, their behavior is more predictable than that of their one-point cousins. We refer again to [PSC, Sections 2 and 6] for introduction to that circle of ideas.

Similarly to (1) we set

$$\varepsilon(L; r) := \max_{\{x_1, \dots, x_r\} \subset X} \varepsilon(L; x_1, \dots, x_r).$$

The following result parallels Proposition 1.2.

Theorem 3.2 *Let X be a smooth projective surface with Picard number 1 and let L be the ample generator of the Néron-Severi group of X . Then*

$$\varepsilon(L; r) \geq \left\lfloor \sqrt{\frac{L^2}{r}} \right\rfloor.$$

Proof. We denote $s := \left\lfloor \sqrt{\frac{L^2}{r}} \right\rfloor$ and assume to the contrary that $\varepsilon(L; r) < s$. Then for arbitrary x_1, \dots, x_r there are irreducible curves C_{x_1, \dots, x_r} such that

$$\frac{L \cdot C_{x_1, \dots, x_r}}{\sum_{i=1}^r \text{mult}_{x_i} C_{x_1, \dots, x_r}} < s. \quad (15)$$

One can choose these curves to move in an algebraic family. As the Picard number of X is 1, there is in fact an integer p such that this family is a subset of the linear series pL . If m_1, \dots, m_r are positive integers such that

$$\text{mult}_{x_i} C_{x_1, \dots, x_r} \geq m_i \quad \text{for all } i = 1, \dots, r,$$

then for any member C of the family we have by [X94, Lemma 1]

$$C^2 \geq m_1^2 + \dots + m_{r-1}^2 + m_r(m_r - 1). \quad (16)$$

We can renumber the points so that $m_r \leq m_i$ for all $i = 1, \dots, r$. The inequality (15) implies that

$$rps^2 \leq pL^2 < s \cdot \sum_{i=1}^r m_i.$$

Dividing by s and taking into account that all involved numbers are integers we obtain

$$rps \leq \sum_{i=1}^r m_i - 1. \quad (17)$$

On the other hand from (16), (15) and (17) we have

$$\sum_{i=1}^r m_i^2 - m_r \leq pL \cdot C < ps \sum_{i=1}^r m_i \leq \frac{1}{r} \sum_{i=1}^r m_i \left(\sum_{i=1}^r m_i - 1 \right) \leq \sum_{i=1}^r m_i^2 - m_r$$

which gives the desired contradiction. \square

We have the following straightforward corollary.

Corollary 3.3 *Let X and L be as in Theorem 3.2. Assume that the degree of L is of the form $L^2 = rd^2$ for some positive integer d . Then we have the equality*

$$\varepsilon(L; r) = d.$$

Remark 3.4 The same statement was proved in [PSC, Theorem 6.1.10] for surfaces with arbitrary Picard number under the additional assumption that L is very ample. It is expected that the equality

$$\varepsilon(L; r) = \sqrt{\frac{L^2}{r}}$$

holds on arbitrary surfaces, provided r is sufficiently large. This is a natural generalization of Nagata Conjecture as explained in detail in [Sze].

Acknowledgement. This work was partially supported by a MNiSW grant N N201 388834. I would like to thank the Max Planck Institute für Mathematik in Bonn, where this work has began, for warm hospitality and Thomas Bauer for interesting discussions. I would like also to thank the referee for helpful remarks.

References

- [PSC] Bauer, Th., at all: A primer on Seshadri constants. Contemporary Mathematics 496 (2009), 33–70
- [Bau] Bauer, Th.: Seshadri constants on algebraic surfaces. Math. Ann. 313 (1999), 547–583
- [CAV] Birkenhake, Ch., Lange, H.: Complex Abelian Varieties. Springer-Verlag, 2004.
- [Dem] Demailly, J.-P.: Singular Hermitian metrics on positive line bundles. Complex algebraic varieties (Bayreuth, 1990), Lect. Notes Math. 1507, Springer-Verlag, 1992, pp. 87–104
- [KSS] Knutsen, A., Syzdek, W., Szemberg, T.: Moving curves and Seshadri constants, Math. Res. Lett. 16 (2009), 711–719
- [PAG] Lazarsfeld, R.: Positivity in Algebraic Geometry I. Springer-Verlag, 2004.
- [Ste] Steffens, A.: Remarks on Seshadri constants. Math. Z. 227 (1998), 505–510
- [Sze] Szemberg, T.: Global and local positivity of line bundles, Habilitationsschrift Essen 2001.
- [X94] Xu, G.: Curves in \mathbb{P}^2 and symplectic packings. Math. Ann. 299 (1994), 609–613

Tomasz Szemberg, Instytut Matematyki UP, Podchorążych 2, PL-30-084 Kraków, Poland

E-mail address: szemberg@ap.krakow.pl

Current address: Tomasz Szemberg, Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstraße 1, D-79104 Freiburg, Germany.