Heat Power Due to Laser Excitation:

FDTD theory of surface plasmon resonance:

$$\sigma_{scat} = P_{scat}(\omega)/I_{int}(\omega)$$

$$\sigma_{abs} = P_{abs}(\omega)/I_{int}(\omega)$$

$$P_{abs}(\omega) = \sigma_{abs} * I_{int}(\omega)$$
____(1)

Absorbtion Cross-Section as per Mie scattering Theory:

$$\sigma_{abs} = 4\pi k r^3 ((\epsilon_{np} - \epsilon_{mat})/(\epsilon_{np} + 2\epsilon_{mat}))^2$$
 __(2)

$$k = 2\pi \sqrt{\epsilon_{np}}$$

sub (2) in (1).

$$P_{abs}(\omega) = 4\pi k r^3 ((\epsilon_{np} - \epsilon_{mat})/(\epsilon_{np} + 2\epsilon_{mat}))^2 * I_{int}(\omega)$$
 (3)

Temperature Change:

Power = Energy/time

$$Energy = m * Cp * \Delta T$$

$$Energy = m * Cp * (T_n - T_o)$$

$$Power = m * Cp * (T_n - T_o)/time$$

$$T_n - T_o = Power/(time * m * Cp)$$

$$T_n = T_o + Power/(time * m * Cp)$$

Mass of Nanoparticle:

$$mass = N * N_A * A$$

Fourier law of temperature change

$$\nabla^2 T = (1/\alpha)(\delta T/\delta t)$$

$$\delta T = \alpha * \delta t [\nabla^2 T]$$

$$T_n = T_o + \alpha * \delta t [\nabla^2 T]$$

$$\alpha = k/Cp * \rho$$

Abbreviations

σ_{scat} Scattering cross section.
σ_{abs} Absorbance cross section.
$I_{int}(\omega)$ Intensity of Incident radiation.
$P_{abs}(\omega)$ Power of absorbed radiation.
rRadius of Nanoparticle.
λ Wavelenght of incident light.
ϵ_{np} Permittivity of nanoparticle.
ϵ_{mat} Permittivity of medium.
T_n _New Calculated temperature
T_o _Old or Initial Temperature
timeSimulation time.
mMass of Material.
CpSpecific Heat Capacity.
hoDensity of material.
kThermal Conductivity of material.
δt Time step.
$\nabla^2 T$ Rot value of temperature change.
NNumber of atoms in Nanoparticle.
AAtomic mass number.