Time-optimised Route Planning for Electric **Vehicles**

Andreas B. Eriksen Mikkel A. Madsen Simon B. Jensen Mathias M. Andersen Aalborg University

Introduction

Introduction

Greedy Heuristic Algorithm

Optimal solution to a path

MOTIVATION

► Why is route planning for EVs an interesting problem?

MOTIVATION

► Why is route planning for EVs an interesting problem?

APPROXIMATION APPROACH

Idea:

- Drive using local optimal speed
- ► Use time as weight
- ► Solve as a CSPP using Dijkstra

The assumption here is that the shortest path, according to $\frac{distance}{speed}$, is the fastest in most cases

How to find the local optimal speed in any given situation? Compute the time spent doing the following:

- 1. Drive
- 2. Drive and charge

Then, pick the fastest We will now consider how to compute the two

DRIVING

The optimal speed when passing edge e = (u, v) can be found by solving this equation for v:

$$B_{cur} - D(e) \times R_{CO}(v) = 0$$

Resulting in v_{opt1} , the time spent passing this edge is then: $\frac{D(e)}{v_{opt1}}$ Might not be possible!

DRIVING AND CHARGING

Charging is more complicated.. Instead one wants to:

- 1. Charge using the previously best charging station, which was not fully charged at
- 2. Compute the time to pass edge *e*
- 3. Repeat step 1-2 while it results in a faster passing of *e*

Thus we are able to utilise previously passed charging stations, to charge even more

Remember that we only charge exactly enough to pass every edge!

Consequences of this approach:

- Charging stations are not prioritized
- ► Choices might get the vehicle "stuck"
- ▶ ..

How do we fix this?

- ► Prioritize nodes with charging stations and lowest time
- ► Thus we are able to solve more graphs
- ► Not ideal solution

Edge weights:

- ► distance (km)
- speed limit(km/hr)

Node weights:

charging speed (kW)

Paths:

 $\langle s, 1, 5, t \rangle$: 285km, 3.5hr $\langle s, 3, 4, t \rangle$: 265km, 2.7hr $\langle s, 3, 5, t \rangle$: 280km, 3.2hr $\langle s, 2, 4, t \rangle$: 220km, 2.7hr

	π	time	bat
S		0	50
1			
2			
3			
4			
5			
t			

Driving: 90km/hr: 0.94 hr Drive and charge: Same

	π	time	bat
S		0	50
1	s	0.9	27.1
2			
3			
4			
5			
t			

Driving: 80km/hr: 1hr Drive and charge: Same

	π	time	bat
S		0	50
1	s	0.9	27.1
2	s	1	30.4
3			
4			
5			
t			

Driving: 120km/hr: 0.92hr Drive and charge: Same

	π	time	bat
S		0	50
1	s	0.9	27.1
2	s	1	30.4
3	s	0.9	9.8
4			
5			
t			

	π	time	bat
S		0	50
1	s	0.9	27.1
2	s	1	30.4
3	s	0.9	9.8
4			
5			
t			

Driving: 71.1km/hr: 1.7 hr Drive and charge: 88.1km/hr: 1.6 hr

	π	time	bat
S		0	50
1	s	0.9	27.1
2	s	1	30.4
3	s	0.9	9.8
4			
5	1	2.5	0
t			

	π	time	bat
S		0	50
1	s	0.9	27.1
2	s	1	30.4
3	s	0.9	9.8
4			
5	1	2.5	0
t			

Driving: Not possible! Drive and charge: Not possible!

	π	time	bat
S		0	50
1	s	0.9	27.1
2	s	1	30.4
3	s	0.9	9.8
4			
5	1	2.5	0
t			

Driving: Not possible Drive and charge: Not possible!

	π	time	bat
S		0	50
1	s	0.9	27.1
2	s	1	30.4
3	s	0.9	9.8
4			
5	1	2.5	0
t			

	π	time	bat
S		0	50
1	s	0.9	27.1
2	s	1	30.4
3	S	0.9	9.8
4			
5	1	2.5	0
t			

Driving: 90km/hr: 0.8hr Drive and charge: Same

	π	time	bat
s		0	50
1	s	0.9	27.1
2	s	1	30.4
3	s	0.9	9.8
4	2	1.8	11.6
5	1	2.5	0
t			

	π	time	bat
s		0	50
1	s	0.9	27.1
2	s	1	30.4
3	S	0.9	9.8
4	2	1.8	11.6
5	1	2.5	0
t			

Driving: Not possible Drive and charge: 58.6km/hr:

1.7hr

	π	time	bat
S		0	50
1	S	0.9	27.1
2	s	1	30.4
3	s	0.9	9.8
4	2	1.8	11.6
5	1	2.5	0
t	4	3.5	0

	π	time	bat
s		0	50
1	s	0.9	27.1
2	s	1	30.4
3	S	0.9	9.8
4	2	1.8	11.6
5	1	2.5	0
t	4	3.5	0

Driving: Not possible Drive and charge: 120km/hr: 1.2hr

	π	time	bat
S		0	50
1	S	0.9	27.1
2	s	1	30.4
3	s	0.9	9.8
4	2	1.8	11.6
5	1	2.5	0
t	4	3.5	0

Shortest path was fastest!

	π	time	bat
s		0	50
1	s	0.9	27.1
2	S	1	30.4
3	S	0.9	9.8
4	2	1.8	11.6
5	1	2.5	0
t	4	3.5	0

PHYSICAL SYSTEM

Modeling the physical system, of an EV and a path.

- ► Path
 - + Charging stations, with charging rate ($R_{CH}(u_i)$)
 - + Road segments, with speed limit $(v_{min}(e_i), v_{max}(e_i))$ and distance $(D(e_i))$
- ► EV
 - + Driving consumes energy accordingly to the speed of the EV, defined by: $(R_{CO}(e_i))$
 - + Further two constants from the EV are important to model, namely, battery capacity (B_{max}) and initial battery (B_{cur})

OPTIMISATION PROBLEM

Formulating a optimization problem, which when solved will yield a optimal solution.

- ▶ Objective: Move from u_1 to u_n using minimum time .
 - + Time can be used driving or charging.

- min:
$$\sum_{i=1}^{n-1} \left(\frac{D(e_i)}{v_{e_i}} + CT_{u_i} \right)$$

- ► Physical constraints:
 - + Each edge must be driven at a speed within the speed limit:

-
$$\forall_{i \in 1...n-1}$$
: $v_{min}(e_i) \leq v_{e_i} \leq v_{max}(e_i)$

- + Time can only be positive.
 - $\forall_{i \in 1}$ $n: 0 < CT_{u_i}$
- + The energy is the battery must alway be between 0 and B_{max}

BATTERY CONSTRAINT

The battery constraint of the optimization problem can be split into two parts

- No road segment can be passed without having the required energy
- No overcharging at any charging station.

Energy can be..

- ▶ Spend: $\forall_{i \in 1...n-1}$: $ES(e_i) = D(e_i) \times R_{CO}(v_{e_i})$
- ► Acuried: $\forall_{i \in 1...n}$: $EA(u_i) = R_{CH}(u_i) \times CT_{u_i}$
- ▶ Already in the battery: B_{cur}

BATTERY CONSTRAINT

No road segment can be passed without having the required energy

▶
$$\forall_{i \in 1...n-1} : 0 \le B_{cur} + \sum_{j=1}^{i} EA(u_j) - \sum_{j=1}^{i} ES(e_j) \le B_{max}$$

BATTERY CONSTRAINT

No overcharging at any charging station.

▶
$$\forall_{i \in 1...n-1} : 0 \le B_{cur} + \sum_{j=1}^{i+1} EA(u_j) - \sum_{j=1}^{i} ES(e_j) \le B_{max}$$

LINEAR PROGRAMMING

NP-complete problem.

Linearization and linear programming for approximate solution.

Two functions of the optimization problem are non linear functions.

- ► Consumption rate $(R_{CO}(v_{e_i}))$
- ▶ Driving time $(\frac{D(e_i)}{v_e})$

LINEARIZATION EXAMPLE

Function for energy consumption before linearization.

$$R_{CO}(v) = 0.019 * x^2 - 0.770 * x + 184.4$$

LINEARIZATION EXAMPLE

Function for energy consumption after linearization.

$$R_{CO}(v) = 0.019 * x^2 - 0.770 * x + 184.4$$

LINEARIZATION EXAMPLE

- ► For all linear function their slope and the y-intercept is precomputed.
- ► For every edge in the path exactly one line segment needs to be chosen. Thus a binary matrix i introduced of size $n \times m$, where n = edges in the path and m = linear pieces of each line.

EXPERIMENTS

- ► Why experiments?
- ► Map data (Open Street Maps)
- ► Conversion to road network

EXPERIMENTS: THE SETUP

- ► Battery capacity: 50 kWh
- ► Consumption rate: $0,019v^2 0,77v + 184,4 \text{ wH/km}$
- ► Driving distance: 300 km
- ► Charge rates: 10-100 kW

EXPERIMENTS: THE NAIVE ALGORITHM

EXPERIMENTS: THE NAIVE ALGORITHM

EXPERIMENTS: THE NAIVE ALGORITHM

EXPERIMENTS: CHARGE STATION DENSITY

EXPERIMENTS: CHARGE STATION DENSITY

Figure : 5 km between Charge Stations

Figure : 30 km between Charge Stations

EXPERIMENTS: CHARGE STATION DENSITY

Figure: 50 km between Charge Stations

EXPERIMENTS: QUALITY ASSESSMENT

- ► Standard setup
- ► Average from 8 experiments

Results:

```
| Naive 7,461 | Greedy 5,238 | LP 5,684 | LP 5,228 |
```

CONCLUSION

- ▶ 0,1% worse than LP
- Not influenced much by CS density
- ► Too slow in practice
- ► Increasingly important
 - ► Charging time significant
 - ► Increasing EV sales

FUTURE WORK

► Variable Charge rates

Model S Charge Rate

Credit: Tesla Motors, inc.

Optimal solution to a path

FUTURE WORK

- ► Variable Charge rates
- ► Better heuristic choices
- ► Speed-up techniques
- ► Branch & Bound or some other pruning method

Q & A TIME