1 Автоморфизмы графов

Пусть имеется два графа X и Y. Назовём отображение $f: X \to Y$, действующее из множества вершин одного графа в множество вершин другого графа гомоморфизмом графов, если f уважает структуру графа, то есть переводит смежные вершины в смежные. Биекция графа на себя, являющаяся гомоморфизмом, называется автоморфизмом графа. Очевидно, автоморфизмы графа X образуют группу $Aut\ X$. Она показывает, насколько граф X симметричный.

Задача 1. Опишите группы автоморфизмов следующих графов:

- 1. Гафа без рёбер;
- 2. Полного графа (проведены все рёбра);
- 3. Линейного графа (вершины последовательно соединены);
- 4. Циклического графа (граф-многоугольник);

Задача 2. Граф \overline{X} называется *дополнительным* к данному графу X, если в нём присутствуют те же самые вершины, что и у X, но рёбрами является дополнение до рёбер графа X до полного графа. Докажите, что Aut $X = \operatorname{Aut} \overline{X}$.

Задача 3. Назовём *расстоянием* dist (u, v) между вершинами u и v в графе X наименьшую длину пути от u до v.

- 1. Докажите, что dist (u, v) = dist (gu, gv) для любого $g \in \text{Aut } X$.
- **2.** Докажите, что произвольный гомоморфизм графа не может развести вершины на большее расстояние. Иными словами, покажите, что для любого гомоморфизма $f: X \to Y$ графов X и Y

$$\operatorname{dist}(x,y) \geqslant \operatorname{dist}(f(x),f(y)).$$

Задача 4. Pёберным графом к графу G называют такой граф L(G), что его вершины соответствуют рёбрам графа G, и две его вершины инцидентны тогда и только тогда, когда соответствующие им рёбра в графе G имеют общую вершину. Докажите, что если граф G имеет вершины степени не меньше 4, то $\mathrm{Aut}\ G = \mathrm{Aut}\ L(G)$.

Приведите примеры, показывающие, что условие на степени нельзя отбросить.

2 Граф Кэли группы

Пусть $g_1,...,g_n$ — такие элементы группы G, что для любого $g \in G$ существуют такие целые a_i , что

$$g = g_{i_1}^{a_{i_1}}...g_{i_s}^{a_{i_s}}, \ g_{i_k} \neq g_{i_{k+1}}, \ g_{i_k} \neq g_{i_{k-1}},$$

т. е. любой элемент этой группы можно реализовать некоторым словом над алфавитом $\{g_1, ..., g_n\}$, причём никакое подслово данного слова не равно единице e. Элементы алфавита $\{g_1, ..., g_n\}$ называются образующими, а все слова, представляющие единицу (кроме тривиальных), называются соотношениями. Ясно, что любую группу можно задать образующими и соотношениями. Особый интерес представляют задания с минимальным числом образующих.

Пример 1. Группа из двух элементов (такая одна) задаётся образующей g и соотношением $g^2 = e$.

Пример 2. Группа кватернионных единиц задаётся образующими i, j, k и соотношениями $i^2 = j^2 = k^2 = ijk = -1$.

Пример 3. Свободная группа F_2 на двух образующих a и b не имеет соотношений. Её элементами служат всевозможные слова, составленные из двух букв и обратных к ним. Аналогично определяется свободная группа F_n на n элементах.

Зададим группу G образующими $\{g_i\}$ и соотношениями. Вершинам графа будут соответствовать элементы группы G. Вершины u и v соединены ребром, если найдётся элемент g_i , такой, что $v=g_iu$ или $u=g_iv$. Если группа бесконечна, то и граф будет таковым. Построенный граф называется $\mathit{графом}\ \mathit{Кэли}\ \mathit{группы}\ G$. Легко понять, что циклы, возникающие в графе Кэли, соответствуют некоторым соотношениям. Для данной группы могут существовать несколько неизоморфных графов Кэли — всё зависит от выбора образующих.

Задача 5. Нарисуйте графы Кэли для групп из примеров выше.

Задача 6. Чему равна группа автоморфизмов графа Кэли конечной группы G?

Графу Кэли X сопоставим ориентированный граф X': заменим каждое неориентированное ребро X между элементами g_i и g_j на два ориентированных в разные стороны рёбра, и на одном напишем $g_i^{-1}g_j$, а на другом — $g_j^{-1}g_i$. Назовём *цветом* ребра графа X' элемент, на который умножается данная вершина при переходе по данному ребру. Если в группе n образующих, то рёбра графа раскрашены в n цветов.

Оказывается, для любой конечной группы G существует граф X_G , такой, что Aut $X_G = G$ (теорема Роберта Фрухта). Для доказательства этого факта строится граф Кэли данной группы, а затем все рёбра цвета k заменяются на графы A_k , подключающиеся вершинами 1 и 4 (см. рис. ниже), и в результате получается граф U.

Задача 7. Завершите доказательство теоремы Р. Фрухта, показав, что Aut U = G.