

TRABAJO PRACTICO N° 4

<u>Cuestionario Integrador – Unidad I</u>

Materia: Arquitectura y Sistemas Operativos

Profesor: BENÍTEZ, Teresa

Grupo:

- ALIENDE, Héctor
- AGÜERO, Rosa
- BERTOZZI, Fernando
- SIERRA, Enzo
- STEVENS, Danilo

Comisión: 1.2

AÑO 2024

GP 4: Cuestionario Integrador Unidad I

El siguiente cuestionario sirve como guía de la Unidad I, con el objetivo de ayudar a repasar y asegurarse de que se han comprendido los conceptos clave relacionados con la arquitectura y sistemas operativos de computadoras. Es importante que cada estudiante desarrolle sus respuestas de manera detallada, utilizando ejemplos cuando sea posible para demostrar su comprensión de los conceptos.

Organización y Arquitectura de Computadoras

- 1. Defina el concepto de computadora elemental.
- 2. Explique qué es la arquitectura de Von Neumann y describa sus principales componentes.
- 3. Arquitectura Harvard, diferencias con VonNeumann
- 4. Arquitecturas RISC y CISC. Conceptos y diferencias.

CPU

- 5. Defina qué es una CPU y explique su importancia en una computadora.
- 6. Describa qué son la Unidad de Control (UC) y la Unidad Aritmético Lógica (UAL) y la función de cada una dentro de la CPU.
- 7. Explique el concepto de programas e instrucciones desde la perspectiva del funcionamiento de la CPU.
- 8. ¿Cómo procesa la CPU los datos para realizar operaciones?

Memoria

- 9. Diferencie entre memoria principal y memorias secundarias, proporcionando ejemplos de cada tipo.
- 10. Explique qué es la RAM y su rol dentro de la computadora.
- 11. Describa el propósito y funcionamiento de los dispositivos de almacenamiento fuera de línea y los dispositivos extraíbles.

Entrada y Salida de Datos

- 12. Defina el concepto de periféricos y clasifíquelos en categorías según su función.
- 13. Explique los mecanismos básicos de procesamiento de entrada/salida (E/S).
- 14. ¿Cómo gestiona un sistema operativo los dispositivos de E/S y qué problemas puede solucionar al hacerlo?

Software de Base

- 15. Introduzca el concepto de sistemas operativos y explique su importancia en la gestión de recursos informáticos. Ejemplos
- 16. Defina qué es un kernel y describa los tipos de kernels que existen.
- 17. Explique cómo el diseño y la implementación de un kernel afectan al rendimiento y seguridad de un sistema operativo.

DESARROLLO

- 1. Una computadora elemental es un dispositivo diseñado para realizar cálculos y procesar datos mediante un conjunto básico de instrucciones. Está formada por componentes esenciales como una unidad de procesamiento (CPU), memoria y dispositivos de entrada/salida. Su funcionamiento se basa en la ejecución de instrucciones que transforman datos de entrada en resultados de salida.
- 2. La **arquitectura de Von Neumann** es un modelo de diseño de computadoras propuesto por John von Neumann en 1945. Es la base de la mayoría de las computadoras modernas y se caracteriza porque el programa y los datos se almacenan en la misma memoria.

Principales componentes:

- 1. Unidad Central de Procesamiento (CPU):
 - o Unidad de Control (CU): Coordina y controla la ejecución de instrucciones.
 - o Unidad Aritmético-Lógica (ALU): Realiza cálculos matemáticos y operaciones lógicas.
- 2. **Memoria Principal:** Almacena datos e instrucciones que la CPU necesita para operar.
- 3. **Dispositivos de Entrada/Salida (I/O):** Permiten la interacción entre la computadora y el usuario o el mundo exterior.
- 4. **Bus de Comunicación:** Sistema de transmisión que conecta todos los componentes de la computadora.
- 3. La **arquitectura Harvard** es un modelo de diseño en el que la memoria de datos y la memoria de instrucciones están separadas. Esto permite que los datos y las instrucciones se procesen simultáneamente, aumentando la eficiencia en ciertos contextos.

Diferencias principales:

Característica	Arquitectura Von Neumann	Arquitectura Harvard
Memoria	Una única memoria para datos e	Memorias separadas para datos e
	instrucciones.	instrucciones.
Velocidad	Procesa instrucciones y datos de	Procesa instrucciones y datos en
	forma secuencial.	paralelo.
Complejidad de	Más sencilla.	Más compleja y costosa de
diseño		implementar.
Uso común	Computadoras personales,	Sistemas embebidos y
	servidores.	microcontroladores.

4.

- 1. RISC (Reduced Instruction Set Computer):
 - Diseñada con un conjunto reducido y optimizado de instrucciones.
 - o Cada instrucción tiene un tamaño fijo y se ejecuta en un solo ciclo de reloj.
 - o Ejemplo: ARM, MIPS.
- 2. CISC (Complex Instruction Set Computer):
 - o Utiliza un conjunto amplio y complejo de instrucciones.

- Cada instrucción puede realizar múltiples operaciones, pero toma varios ciclos de reloj.
- Ejemplo: x86 (Intel, AMD).

Diferencias principales:

Característica	RISC	CISC
Conjunto de	Reducido y simple.	Amplio y complejo.
instrucciones		
Ejecución	Instrucciones rápidas y sencillas.	Instrucciones más lentas y
		complejas.
Consumo de energía	Bajo (ideal para dispositivos móviles).	Mayor (más adecuado para
		PCs).
Tamaño del código	Mayor, requiere más instrucciones para	Menor, al usar instrucciones
	tareas complejas.	complejas.

5. La CPU (Unidad Central de Procesamiento) es el componente principal de una computadora encargado de interpretar y ejecutar las instrucciones de los programas. Es conocida como el "cerebro" de la computadora, ya que realiza cálculos, toma decisiones y gestiona el flujo de datos entre los distintos componentes del sistema. Su importancia radica en que determina la velocidad y capacidad de procesamiento del dispositivo.

6.

- Unidad de Control (UC): Coordina las operaciones de la computadora. Interpreta las instrucciones de los programas y dirige el flujo de datos entre la CPU, la memoria y los dispositivos periféricos.
- Unidad Aritmético-Lógica (UAL): Realiza operaciones matemáticas (suma, resta, etc.) y lógicas (AND, OR, NOT). Es esencial para realizar cálculos y evaluaciones de condiciones.

Ambas trabajan juntas para garantizar que las instrucciones se ejecuten correctamente y de manera eficiente.

- 7. Los **programas** son conjuntos de instrucciones diseñadas para realizar tareas específicas. Desde la perspectiva de la CPU, una **instrucción** es un comando que indica una operación específica, como un cálculo, el movimiento de datos o una decisión lógica. La CPU ejecuta estas instrucciones de manera secuencial, descomponiéndolas en operaciones más simples según su arquitectura
- 8. La CPU procesa los datos siguiendo estas etapas principales:
 - 1. Fetch (Obtención): Recupera las instrucciones desde la memoria.
 - 2. **Decode (Decodificación):** Interpreta la instrucción para determinar qué operación realizar.
 - 3. Execute (Ejecución): Realiza la operación utilizando la UAL si es necesario.
 - 4. **Write-back (Escritura):** Guarda los resultados en la memoria o registros para su uso posterior.

Este ciclo, conocido como **ciclo de instrucción**, se repite constantemente mientras la CPU esté en funcionamiento.

9.

• Memoria principal:

Es la memoria que la CPU utiliza directamente para almacenar datos e instrucciones temporalmente mientras los procesa. Es rápida y volátil, lo que significa que pierde su contenido al apagarse el dispositivo.

Ejemplos: RAM, ROM, caché.

• Memorias secundarias:

Almacenan datos de manera permanente o a largo plazo. Son más lentas que la memoria principal pero tienen mayor capacidad.

Ejemplos: Discos duros (HDD), unidades de estado sólido (SSD), y unidades ópticas (CD/DVD).

10. La RAM (Memoria de Acceso Aleatorio) es un tipo de memoria principal volátil utilizada para almacenar temporalmente los datos e instrucciones de los programas que la CPU necesita durante su operación. Su rol es crucial porque permite acceder rápidamente a la información, lo que acelera el procesamiento de tareas en comparación con el acceso a la memoria secundaria.

11.

• Dispositivos de almacenamiento fuera de línea:

Permiten almacenar datos de forma independiente del sistema principal y suelen usarse para respaldo o transporte de información.

Ejemplos: Discos duros externos, cintas magnéticas.

• Dispositivos extraíbles:

Son medios de almacenamiento portátiles diseñados para conectarse y desconectarse fácilmente de la computadora. Se utilizan para transferir datos entre dispositivos o como almacenamiento temporal.

Ejemplos: Memorias USB, tarjetas SD.

Ambos son importantes para el manejo de grandes volúmenes de datos y garantizar la portabilidad y seguridad de la información.

- 12. Los **periféricos** son dispositivos externos que se conectan a una computadora para permitir la interacción con el usuario o con otros sistemas. Según su función, se clasifican en:
 - Periféricos de entrada: Permiten introducir datos en la computadora.

Ejemplos: Teclado, mouse, escáner.

- **Periféricos de salida:** Muestran o transmiten la información procesada por la computadora. **Ejemplos:** Monitor, impresora, altavoces.
- Periféricos de entrada/salida (E/S): Realizan ambas funciones, tanto de entrada como de salida.

Ejemplos: Pantallas táctiles, discos externos, memorias USB.

- 13. Los mecanismos básicos de procesamiento de entrada/salida (E/S) son:
 - 1. **E/S Programada:** La CPU controla directamente los dispositivos de E/S, esperando que cada operación termine antes de continuar. Es simple pero ineficiente.
 - 2. **E/S por Interrupciones:** El dispositivo notifica a la CPU mediante interrupciones cuando necesita atención, liberando a la CPU para realizar otras tareas mientras tanto.
 - 3. **Acceso Directo a Memoria (DMA):** Un controlador especializado transfiere datos entre la memoria y los dispositivos de E/S sin intervención de la CPU, aumentando la eficiencia.
- 14. El sistema operativo gestiona los dispositivos de E/S mediante:
 - **Controladores (drivers):** Traducen las instrucciones del sistema operativo a comandos específicos del hardware.
 - **Planificación de E/S:** Coordina el acceso a los dispositivos para evitar conflictos entre múltiples procesos.
 - **Buffering y Caching:** Almacena temporalmente datos en memoria para optimizar el rendimiento y reducir los tiempos de espera.

Problemas que puede solucionar:

- 1. **Conflictos de recursos:** Asegura que múltiples procesos puedan compartir dispositivos de forma ordenada.
- 2. **Dispositivos lentos:** Utiliza técnicas como el almacenamiento en búfer para minimizar el impacto de dispositivos más lentos.
- 3. **Errores en dispositivos:** Detecta y gestiona fallos en el hardware para evitar que afecten el sistema completo.
- 15. Los **sistemas operativos (SO)** son software de base que actúan como intermediarios entre el hardware de una computadora y los programas que el usuario utiliza. Son esenciales para gestionar recursos como la CPU, memoria, almacenamiento y dispositivos de entrada/salida, asegurando un funcionamiento eficiente y coordinado.

Importancia:

- Permiten la ejecución de múltiples aplicaciones simultáneamente.
- Proveen una interfaz de usuario (gráfica o de comandos).
- Gestionan la seguridad y estabilidad del sistema.

Ejemplos:

Windows, macOS, Linux, Android, iOS.

16. El **kernel** es el núcleo del sistema operativo, encargado de gestionar los recursos del sistema y de mediar entre el hardware y el software. Controla procesos, memoria, dispositivos de E/S y la seguridad del sistema.

Tipos de kernels:

1. **Monolíticos:** Todo el código del kernel se ejecuta en un único espacio de memoria, lo que los hace rápidos pero difíciles de depurar.

Ejemplo: Linux.

2. **Microkernels:** Dividen las funciones del kernel en pequeños módulos, minimizando el código que se ejecuta en el núcleo para mejorar la seguridad y estabilidad.

Ejemplo: Minix.

3. **Híbridos:** Combinan características de monolíticos y microkernels para un equilibrio entre rendimiento y modularidad.

Ejemplo: Windows NT.

4. **Exokernels:** Permiten que las aplicaciones gestionen directamente los recursos, brindando gran flexibilidad.

Ejemplo: Aegis.

17. El diseño y la implementación del kernel afectan el rendimiento y la seguridad de un sistema operativo de las siguientes maneras:

Rendimiento:

- Kernels monolíticos tienden a ser más rápidos porque evitan la sobrecarga de comunicación entre módulos.
- Microkernels pueden ser más lentos debido a la mayor cantidad de interacciones entre componentes.

Seguridad:

- Microkernels ofrecen mayor seguridad porque separan funcionalidades, limitando el impacto de fallos o vulnerabilidades.
- Los kernels monolíticos son más vulnerables a fallos porque cualquier error en un módulo puede afectar todo el sistema.

Un diseño balanceado es clave para un sistema operativo que sea eficiente y seguro, adaptándose a las necesidades específicas del usuario o entorno.