

CLAIMS

1. A compound of the formula

- Sub
al
5
- 10 wherein n is 0, 1, or 2; X is hydrogen, chlorine, bromine, or iodine; R₁ is hydrogen; R₂ is selected from hydrogen, halogen, cyano, -OR₄, -(CH₂)_m-(C=O)NR₅R₆, -(CH₂)_m-SO₂NR₅R₆, -(CH₂)_m-NR₇(C=O)R₈, -(CH₂)_m-NR₇SO₂R₈, -(CH₂)_m-S(O)_xR₈, -(CH₂)_m-NR₇(C=O)NR₅R₆, -(CH₂)_m-NR₇(C=O)OR₉, and -CH=CH(CH₂)_yR₁₀; R₃ is selected from hydrogen and C₁ to C₆ linear or branched alkyl; R₄ is selected from hydrogen, C₁ to C₆ alkyl, and aryl; R₅ and R₆ are independently selected from hydrogen, C₁ to C₆ alkyl, aryl, and C₁ to C₃ alkyl-aryl or R₅ and R₆ taken together to form a 4, 5, or 20 6 membered ring; R₇ and R₈ are independently selected from hydrogen, C₁ to C₆ alkyl, aryl, and C₁ to C₃ alkyl-aryl; R₉ is selected from hydrogen, C₁ to C₆ alkyl, aryl, and C₁ to C₃ alkyl-aryl; R₁₀ is selected from -(C=O)NR₅R₆ and -SO₂NR₅R₆, wherein R₅ and R₆ are defined as above, and 25 -NR₇(C=O)R₈, -NR₇SO₂R₈, -NR₇(C=O)NR₅R₆, -S(O)_xR₈ and -NR₇(C=O)OR₉, wherein R₇, R₈, and R₉ are as defined above; y is 0, 1, or 2; x is 1 or 2; m is 0, 1, 2, or 3; and the above aryl groups and the aryl moieties of the above alkylaryl groups are independently selected from phenyl 30 and substituted phenyl, wherein said substituted phenyl may be substituted with one to three groups selected from C₁ to C₄ alkyl, halogen, hydroxy, cyano, carboxamido, nitro, and C₁ to C₄ alkoxy, with the proviso that when R₂ is hydrogen or -OR₄ and R₄ is hydrogen, n is 0 or 1, and 35 the pharmaceutically acceptable salts thereof.

EXPRESS MAIL NO. B26818538X

✓ 2. The R enantiomer of a compound according to claim 1.

✓ 3. A compound according to claim 1 wherein R₁ is hydrogen; R₂ is -(CH₂)_mSO₂NHR₅, -(CH₂)_m-NHSO₂R₈, -(CH₂)_m-SO₂R₈, -(CH₂)_m-(C=O)NHR₅, or -(CH₂)_m-NH(C=O)R₈; R₃ is hydrogen or methyl; and m, R₅ and R₈ are as defined in claim 1.

✓ 4. A compound according to claim 1, said compound being selected from:

10 (R)-5-methoxy-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

(R)-5-bromo-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

15 (R)-5-(2-ethylsulfonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

(R)-5-(2-methylaminosulfonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

(R)-5-(methylaminosulfonylmethyl)-3-(pyrrolidin-2-ylmethyl)-1H-indole;

20 (R)-5-(methylaminosulfonylmethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

(R)-5-carboxamido-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

25 (R)-5-(2-methylsulfonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

(R)-5-(2-methylsulfonamidoethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

(R)-5-(2-aminosulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

30 (R)-5-(2-aminosulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

(R)-5-(2-N,N-dimethylaminosulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

35 (R)-5-(2-phenylsulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole hemisuccinate;

(R)-5-(2-ethylsulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole hemisuccinate;

(R)-5-(2-phenylsulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

5 (R)-5-(3-benzenecarbonylaminoprop-1-enyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

(R)-5-(2-(4-methylphenylsulphonyl)ethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

10 (R)-5-(3-methylsulphonylaminoprop-1-enyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;

(R)-5-(2-ethylsulphonylethyl)-3-(N-2-propylpyrrolidin-2-ylmethyl)-1H-indole;

(R)-5-(2-ethylsulphonylethyl)-3-(pyrrolidin-2-ylmethyl)-1H-indole; and

15 (R)-7-Bromo-5-(methylaminosulfonylmethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole.

5. A pharmaceutical composition for treating a condition selected from hypertension, depression, anxiety, eating disorders, obesity, drug abuse, cluster headache, migraine, pain, and chronic paroxysmal hemicrania and headache associated with vascular disorders comprising an amount of a compound according to claim 1 effective in treating such condition and a pharmaceutically acceptable carrier.

25 6. A pharmaceutical composition for treating disorders arising from deficient serotonergic neurotransmission comprising an amount of a compound according to claim 1 effective in treating such a disorder and a pharmaceutically acceptable carrier.

30 7. A method for treating a condition selected from hypertension, depression, anxiety, eating disorders, obesity, drug abuse, cluster headache, migraine, pain and chronic paroxysmal hemicrania and headache associated with vascular disorders comprising administering to a mammal requiring such treatment an amount of a compound

according to claim 1 effective in treating such condition.

8. A method for treating disorders arising from deficient serotonergic neurotransmission comprising
5 administering to a mammal requiring such treatment an amount of a compound according to claim 1 effective in treating such a disorder.

9. The compound 5-(2-phenylsulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole or a
10 pharmaceutically acceptable salt thereof.

10. A compound according to claim 9, wherein the compound is (R)-5-(2-phenylsulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole.

11. The compound 5-(methylaminosulfonylmethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole or a
15 pharmaceutically acceptable salt thereof.

12. A compound according to claim 11, wherein the compound is (R)-5-(methylaminosulfonylmethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole.

20 *Sub A*
13. A pharmaceutical composition for treating a condition selected from hypertension, depression, anxiety, eating disorders, obesity, drug abuse, cluster headache, migraine, pain, and chronic paroxysmal hemicrania and headache associated with vascular
25 disorders comprising an amount of a compound according to claim 12 ranging from 0.1 μ g to 200mg effective in treating such condition and a pharmaceutically acceptable carrier.

30 14. A pharmaceutical composition for treating disorders arising from deficient serotonergic neurotransmission comprising an amount of a compound according to claim 12 ranging from 0.1 μ g to 200mg effective in treating such a disorder and a pharmaceutically acceptable carrier.

35 15. A method for treating a condition selected from hypertension, depression, anxiety, eating disorders,

obesity, drug abuse, cluster headache, migraine, pain and chronic paroxysmal hemicrania and headache associated with vascular disorders comprising administering to a mammal requiring such treatment an amount of a compound
5 according to claim 12 ranging from 0.1 μ g to 200mg effective in treating such condition.

16. A method for treating disorders arising from deficient serotonergic neurotransmission comprising administering to a mammal requiring such treatment an amount of a compound according to claim 12 ranging from 0.1 μ g to 200mg effective in treating such a disorder.
10

17. The compound 5-(methylaminosulfonylmethyl)-3-(pyrrolidin-2-ylmethyl)-1H-indole or a pharmaceutically acceptable salt thereof.

15 18. A compound according to claim 17, wherein the compound is (R)-5-(methylaminosulfonylmethyl)-3-(pyrrolidin-2-ylmethyl)-1H-indole.

19. A pharmaceutical composition for treating a condition selected from hypertension, depression,
20 anxiety, eating disorders, obesity, drug abuse, cluster headache, migraine, pain, and chronic paroxysmal hemicrania and headache associated with vascular disorders comprising an amount of a compound according to claim 18 ranging from 0.01 μ g to 200mg effective in treating such condition and a pharmaceutically acceptable carrier.
25

20. A pharmaceutical composition for treating disorders arising from deficient serotonergic neurotransmission comprising an amount of a compound according to claim 18 ranging from 0.01 μ g to 200mg effective in treating such a disorder and a pharmaceutically acceptable carrier.
30

21. A method for treating a condition selected from hypertension, depression, anxiety, eating disorders,
35 obesity, drug abuse, cluster headache, migraine, pain and chronic paroxysmal hemicrania and headache associated

with vascular disorders comprising administering to a mammal requiring such treatment an amount of a compound according to claim 18 ranging from 0.01 μ g to 200mg effective in treating such condition.

5 22. A method for treating disorders arising from deficient serotonergic neurotransmission comprising administering to a mammal requiring such treatment an amount of a compound according to claim 18 ranging from 0.01 μ g to 200mg effective in treating such a disorder.

10 23. A process for preparing a compound of the formula

15

20

wherein X is chlorine, bromine, or iodine; R₁₁ is a first suitable nitrogen protecting group; R₁₅ is hydrogen, halogen, cyano, -OR₁₆, -(CH₂)_m-(C=O)NR₁₇R₁₈, -(CH₂)_m-SO₂NR₁₇R₁₈, 25 -(CH₂)_m-NR₁₉(C=O)R₂₀, -(CH₂)_m-NR₁₉SO₂R₂₀, -(CH₂)_m-S(O)_xR₂₀, -(CH₂)_m-NR₁₉(C=O)NR₁₇R₁₈, -(CH₂)_m-NR₁₉(C=O)OR₂₁, -CH=CH(CH₂)_yR₂₂, -(CH₂)_m-T, and a substituent of the formula

30

B represents a direct bond, C₁-C₄ alkyl, or C₁-C₄ alkenyl; D, E, G, and J are each independently oxygen, sulfur, nitrogen or carbon, provided that at least one of D, E, G, and J is nitrogen; R₂₈, R₂₉, R₃₀, and R₃₁ are each independently hydrogen, C₁-C₆ alkyl, aryl, C₁-C₃ alkylaryl, C₁-C₃ alkylheteroaryl, halogen, cyano, trifluoromethyl, nitro, -OR₃₂, -NR₃₂R₃₃, -(CH₂)_mOR₃₂, -SR₃₂, -SO₂NR₃₂R₃₃, -NR₃₂SO₂R₃₃, -NR₃₂CO₂R₃₃, -CONR₃₂R₃₃, or -CO₂R₃₂; one of R₂₈ and R₂₉, R₂₉ and R₃₀, or R₃₀ and R₃₁ may be taken together to form a five- to seven-membered alkyl ring, a six-membered aryl ring, a five- to seven-membered heteroalkyl ring having 1 heteroatom of N, O, or S, or a five- to six-membered heteroaryl ring having 1 or 2 heteroatoms of N, O, or S; R₃₂ and R₃₃ are each independently hydrogen, C₁ to C₆ alkyl, -(CH₂)_qR₃₄, C₁ to C₃ alkylaryl, or aryl; R₃₂ and R₃₃ may be taken together to form a C₄-C₇ alkyl ring; R₃₄ is cyano, trifluoromethyl, or C₁-C₄ alkoxy; R₁₆ is selected from hydrogen, C₁ to C₆ alkyl, and aryl; T is

35 M and Q are each independently oxygen or sulfur; Z is -O-, -S-, -NH, or -CH₂; R₃₅ and R₃₆ are each independently

hydrogen, C₁ to C₆ alkyl, aryl, C₁ to C₃ alkylaryl, or C₁ to C₃ alkylheteroaryl; R₂₂ is selected from -(C=O)NR₂₃R₂₄, -SO₂NR₂₃R₂₄, -NR₂₅(C=O)R₂₆, -NR₂₅SO₂R₂₆, -NR₂₅(C=O)NR₂₃R₂₄, -S(O)_xR₂₆ and -NR₇(C=O)OR₂₇; R₁₇, R₁₈, R₂₃, and R₂₄ are independently selected from hydrogen, C₁ to C₆ alkyl, aryl, and C₁ to C₃ alkyl-aryl, or R₁₇ and R₁₈ or R₂₃ and R₂₄ maybe taken together to form a 4, 5, or 6 membered ring; R₁₉, R₂₀, R₂₁, R₂₅, R₂₆, and R₂₇ are independently selected from hydrogen, C₁ to C₆ alkyl, aryl, and C₁ to C₃ alkyl-aryl; y is 0, 1, or 2; x is 1 or 2; m is 0, 1, 2, or 3; n is 0, 1 or 2; q is 1, 2, or 3; a first chiral carbon designated by *; a second chiral carbon designated by #; and the above aryl groups and the aryl moieties of the above alkylaryl groups are independently selected from phenyl and substituted phenyl, wherein said substituted phenyl may be substituted with one to three groups selected from C₁ to C₄ alkyl, halogen, hydroxy, cyano, carboxamido, nitro, and C₁ to C₄ alkoxy,
comprising, performing a transition metal catalyzed cyclization on a compound of the formula

wherein R₁₁ and R₁₅ are as defined above and V is a second suitable nitrogen protecting group.

24. The process of claim 23, wherein X is bromine.
25. The process of claim 23, wherein A is benzyloxycarbonyl.

26. The process of claim 23, wherein V is trifluoroacetyl.

27. A compound of the formula

5

10

wherein X is hydrogen, bromine, chlorine, or iodine; W is -CO₂R₁₁ or R₃; Q is CH₂ or C=O; n is 0, 1 or 2; R₁ is hydrogen; R₂ is selected from halogen, cyano, -OR₄, -(CH₂)_m-(C=O)NR₅R₆, -(CH₂)_m-SO₂NR₅R₆, -(CH₂)_m-NR₇(C=O)R₈, -(CH₂)_m-NR₇SO₂R₈, -(CH₂)_m-S(O)_xR₈, -(CH₂)_m-NR₇(C=O)NR₅R₆, -(CH₂)_m-NR₇(C=O)OR₉, and -CH=CH(CH₂)_yR₁₀; x is 1 or 2; m is 0, 1, 2, or 3; R₃ is selected from hydrogen and C₁ to C₆ linear or branched alkyl; R₄ is selected from hydrogen, C₁ to C₆ alkyl, and aryl, R₅ and R₆ are independently selected from hydrogen, C₁ to C₆ alkyl, aryl, and C₁ to C₃ alkyl-aryl or R₅ and R₆ taken together to form a 4, 5, or 6 membered ring; R₇ and R₈ are independently selected from hydrogen, C₁ to C₆ alkyl, aryl, and C₁ to C₃ alkyl-aryl; R₉ is selected from hydrogen, C₁ to C₆ alkyl, aryl, and C₁ to C₃ alkyl-aryl; R₁₀ is selected from -(C=O)NR₅R₆ and -SO₂NR₅R₆, wherein R₅ and R₆ are defined as above, and -NR₇(C=O)R₈, -NR₇SO₂R₈, -NR₇(C=O)NR₅R₆, -S(O)_xR₈ and -NR₇(C=O)OR₉, wherein R₇, R₈, R₉ and x are defined as above; y is 0, 1, or 2; R₁₁ is selected from C₁ to C₆ alkyl, benzyl and aryl; and the above aryl groups and the aryl moieties of the above alkyl-aryl groups are independently selected from phenyl and substituted phenyl, wherein said substituted phenyl may be substituted with one to three groups selected from C₁ to C₄ alkyl, halogen, hydroxy, cyano, carboxamido, nitro, and the like.

and C₁ to C₄ alkoxy, with the proviso that when W is R₃, Q is C=O, and with the proviso that when X is bromine, chlorine, or iodine, W is -CO₂R₁₁ and Q is CH₂.

28. The R enantiomer of a compound according to
5 claim 27.

29. A compound according to claim 27, said compound
being a compound of the formula

10

II

15 wherein n, R₁, R₂ and R₁₁ are as defined in claim 29.

30. The R enantiomer of a compound according to
claim 29.

31. A compound according to claim 29 wherein R₁ is
hydrogen; R₂ is -(CH₂)_m-SO₂NHR₅, -(CH₂)_m-NHSO₂R₈,
20 -(CH₂)_m-SO₂R₈, -(CH₂)_m-(C=O)NHR₅ or -(CH₂)_m-NH(C=O)R₈; m is
0, 1, 2, or 3; R₅ is hydrogen, C₁ to C₆ alkyl, aryl, or C₁
to C₃ alkyl-aryl; R₁₁ is selected from C₁ to C₆ alkyl,
benzyl and aryl; and the above aryl groups and the aryl
moieties of the above alkylaryl groups are independently
25 selected from phenyl and substituted phenyl, wherein said
substituted phenyl may be substituted with one to three
groups selected from C₁ to C₄ alkyl, halogen, hydroxy,
cyano, carboxamido, nitro, and C₁ to C₄ alkoxy.

30 *Rule 32/31*. A compound according to claim 27, said compound
being a compound of the formula

III

5

wherein n, R₁, R₃ and R₁₀ are as defined in claim 27.
10 Rule 33 32. The R enantiomer of a compound according to
claim 31.

34 33. A compound according to claim 31 wherein R₁ is hydrogen; R₃ is hydrogen or methyl; and R₁₀ is -SO₂NHR₅, NHSO₂R₈, -SO₂R₈, -(C=O)NHR₅ or -NH(C=O)R₈, wherein R₅ and R₈ are as defined in claim 27.

Add 1
Add 4