Session 7: Spatial Analysis

Randy Bucciarelli randobucci@gmail.com

Outline: Spatial Analysis

- Introduction
- Buffers
- Single Layer Geoprocessing
- Vector Overlay Analysis
- Demonstration

Class Schedule

Monday	Tuesday	Wednesday	Thursday	Friday
08/05/19	08/06/19	08/07/19	08/08/19	08/09/19
Introduction to Geographical Information Systems 10:45 am-12:15 am	Cartography and Spatial Data Display 8:30am – 11:00pm	Querying Data for Spatial & Attribute Selections 8:30am – 11:00pm	Data Formats for GIS 8:30am – 11:00pm	Map Projections and Coordinate Systems 8:30am – 11:00pm
08/12/19	08/13/19	08/14/19	08/15/19	08/16/19
Editing and Storing Spatial and Attribute Data 8:30am – 11:00pm	Spatial Data Analysis Tools 8:30am – 9:30 am	Analysis Tools/Online Map Creation 8:30am – 11:00pm	Map Creation/ Geocoding 8:30am – 11:00pm	Geocoding/ Wrap up 8:30am – 11:30am
	Scripps Institute of Oceanography 10:30am – 1:30pm			Closing Ceremony and Certificates 12:00pm – 2:00pm

Class Schedule

Monday	Tuesday	Wednesday	Thursday	Friday
08/05/19	08/06/19	08/07/19	08/08/19	08/09/19
Introduction to Geographical Information Systems 10:45 am-12:15 am	Cartography and Spatial Data Display 8:30am – 11:00pm	Querying Data for Spatial & Attribute Selections 8:30am – 11:00pm	Data Formats and Open-Source GIS 8:30am – 11:00pm	Map Projections and Coordinate Systems 8:30am – 11:00pm
08/12/19 Spatial Analysis Tools 8:30am – 11:00pm	08/13/19 Raster and Terrain Analysis 8:30 am – 10:00 am Scripps Institution of Oceanography 1:00pm – 4:00pm	08/14/19 Image Analysis 8:30am – 11:00pm	08/15/19 Editing Spatial Data and Geocoding 8:30am – 11:00pm	08/16/19 Web Mapping/ Wrap up 8:30am – 11:30am

Outline: Spatial Analysis

- Introduction
- Buffers
- Single Layer Analysis
- Vector Overlay Analysis
- Demonstration

Outline: Spatial Analysis

- Introduction
- Buffers
- Single Layer Analysis
- Vector Overlay Analysis
- Demonstration

Buffers

Buffer Analysis

- Buffer is a region less than or equal to some distance from another feature.
- Vector or Raster Buffers
- Typically identify areas that are "outside" or "inside" some threshold distance

Vector Buffers

Distance Formula:

Source: GIS Fundamentals by Bolstad, 2015.

Buffers

Additional Buffer Options around Red Features:

- (a) Variable Width Buffers,
- (b) Multiple Ring Buffers,
- (c) Doughnut Buffer,
- (d) Setback Buffer,
- (e) Nondissolved Buffer,
- (f) Dissolved Buffer

Source: Essentials of GIS (Campbell, 2011)

Outline: Spatial Analysis

- Introduction
- Buffers
- Single Layer Analysis
 - Dissolve
 - Merge
 - Append
- Vector Overlay Analysis
- Demonstration

Dissolve

- Spatially combine similar features
- Reduces dataset

Source: ArcGIS Documentation

Dissolve Example

Example: Select states west of Mississippi River and dissolve their boundaries.

** Reduces the set from 48 polygons to two polygons.

The Dissolve Tool in Action

Input - Parcels attributed with Zoning Classification
Dissolve Field - Zoning

Results - New layer with individual polygons for each zoning class

Source: Learning ArcGIS Pro (Corbin, 2015)

Dissolve: Multipart Features

DISSOLVE INPUT

Five input features will be dissolved by geometry

OUTPUT: Multipart Checked

The output is one mulitpart feature

OUTPUT: Multipart Not Checked

The output is three single-part features

Source: Understanding GIS

Outline: Spatial Analysis

- Introduction
- Buffers
- Single Layer Analysis
 - Dissolve
 - Merge
 - Append
- Vector Overlay Analysis
- Demonstration

Spatial Overlay

- Overlay: The vertical stacking and merger of spatial data layers
- Combines both:
 - Spatial coordinates
 - Attribute information
- Requires data layers use a common coordinate system

Overlay Operations

Vector Overlay

Feature numbers increase in overlay

Source: GIS Fundamentals by Bolstad, 2015.

Examples of Vector

Types of vector overlayPoint & Polygon

- Line & Polygon
- Polygon & Polygon

Output takes on the lowest dimension of the input: Point < Line < Polygon

Example: Points + Polygon = Poin

Input layer 1	Input layer 2	Output layer
point .2	polygon	point .2-?
line 10 11 12	polygon	line 10-S 11-R 10-B 11-S 12-S
polygon 100 200	polygon	polygon 7-R 200-B 100-S 100-S 200-S

Source: GIS Fundamentals by Boistad,

Source: GIS Fundamentals by Bolstad,

Vector Overlay Methods

Overlay Operations

- Three Main Overlay Operations:
 - Clip
 - Intersection
 - Union
- Differ in geographic extent and how attribute information are combined

Overlay: Clip

- Extracts input features that overlay the clip features.
- Found in Analysis toolbox ArcGIS Pro

Source: ArcGIS Documentation

The Clip Tool in Action

Input - Streams & Creeks covering entire county
Clipping Layer - City Limits

Results - New Streams & Creeks Layer that only contains portions with are inside City Limits

Source: Learning ArcGIS Pro (Corbin, 2015)

Overlay: Intersection

 Features which overlap in all layers will be written to the output feature class.

Source: ArcGIS Documentation

Intersect Tool in Action

Source: Learning ArcGIS Pro (Corbin, 2015)

Overlay: Union

 All features and their attributes will be written to the output feature class

Source: ArcGIS Documentation

Union Tool in Action

Source: Learning ArcGIS Pro (Corbin, 2015)

Overlay: Erase

 Only those portions of the input features falling outside the erase features outside boundaries are created

Source: ArcGIS Documentation

Overlay Toolset

Tool name	Licensing level	Short description
Erase	Advanced	Clips out areas of overlap from input features
Identify	Advanced	Calculates areas of overlap and no overlap
Intersect	Basic	Returns area of overlap only
Union	Basic	Combines total area of input polygons
Update	Advanced	Replaces area of overlap with new features
Spatial Join	Basic	Joins attributes from one feature to another based on spatial relationship
Symmetrical Difference	Advanced	Identifies areas where features do not overlap

Overlay Errors

Vector Overlay: Problems

- TIME CONSUMING
 - Computationally expensive
 - Large # of line intersections
- Polygon Slivers
 - Take up space and are of no interest
 - Increase processing time
 - O Solution: snap
 © Randy Bucciarelli 2019 GIS II: Spatial Ariallysis
 tolerance

