DADOS CATEGORIAIS

TABELA DE UMA ENTRADA

1	2	3		k
f_1	f_2	f_3	•••	f_k

EXEMPLO 1

 Em 2003, o número de AVCs masculinos no concelho de Braga foram os reportados na tabela, de acordo com a estação do ano.

Primavera	64
Verão	81
Outono	39
Inverno	28

Hipóteses

$$H_0: p_1 = p_{1,0}; p_2 = p_{2,0}; \dots; p_k = p_{k,0}$$

$$H_1: p_i \neq p_{i,0}$$

Estatística

$$Q = \sum_{i=1}^{k} \frac{\left(f_i - e_i\right)^2}{e_i}$$

Região de Rejeição

$$Q > \chi_{\alpha}^2$$

SOLUÇÃO 1

Região crítica

$$\chi^2 \ge \chi^2_{0.05,3} = 7.81$$

Estatística

$$Q = \sum_{i=1}^{k} \frac{\left(f_i - e_i\right)^2}{e_i} =$$

$$\frac{\left(64-53\right)^{2}}{53} + \frac{\left(81-53\right)^{2}}{53} + \frac{\left(39-53\right)^{2}}{53} + \frac{\left(28-53\right)^{2}}{53} = 32.57$$

estação

	Observed N	Expected N	Residual
Primavera	64	53,0	11,0
Verao	81	53,0	28,0
Outono	39	53,0	-14,0
Inverno	28	53,0	-25,0
Total	212		

Test Statistics

	estação
Chi-Square a	32,566
df	3
Asymp, Sig.	,000

- a. 0 cells (,0%) have expected frequencies less than
- 5. The minimum expected cell frequency is 53,0.

	A ₁	A ₂	 A _c
B ₁	f ₁₁	f ₁₂	 f _{1c}
B ₂	f ₂₁	f ₂₂	 f _{2c}
		•••	
B _I	f _{I1}	f _{l2}	 f _{Ic}

1. Teste da Independência

 H_0 : $p_{ij} = p_{i.} * p_{j.}$ (as variáveis são independentes) i = 1, 2, ..., r e j = 1, 2, ..., c

R.R: Q > c com c =
$$\chi^2_{(r-1)(c-1),\alpha}$$

Condições: Apenas o n é fixo.

2. Teste da Homogeneidade

$$H_0$$
: $w_{1j}=w_{2j}=...=w_{rj}$ (as subpopulações B, são equivalentes) $i=1,\,2,\,...,\,r$ e $j=1,\,2,\,...,\,c$

R.R: Q > c com c =
$$\chi^2_{(r-1)(c-1),\alpha}$$

<u>Condições:</u> Uma das margens é fixa, existem sub populações.

 Em 2003, o número de AVCs totais no concelho de Braga foram os reportados na tabela, de acordo com a estação do ano.

Estação	Н	M
Primavera	64	70
Verão	81	66
Outono	39	41
Inverno	28	63

Estatística

$$Q = \sum_{i=1}^{l} \sum_{j=1}^{c} \frac{\left(f_{ij} - e_{ij}\right)^{2}}{e_{ii}}$$

$$Q = 13.63$$

Tabela de frequências esperadas

	Primavera	Verão	Outono	Inverno
Н	62.850	68.947	37.522	42.681
M	71.150	78.053	42.478	48.319

Crosstabs

[DataSet5] C:\Documents and Settings\ana cris\Desktop\CESPU_06\cespu2005_06\ACB\avcs.sav

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
estação * sexo	452	100,0%	0	,0%	452	100,0%

			sexo		
			Masculino	Feminino	Total
estação	Primavera	Count	64	70	134
		% within estação	47,8%	52,2%	100,0%
		% within sexo	30,2%	29,2%	29,6%
	Verao	Count	81	66	147
		% within estação	55,1%	44,9%	100,0%
		% within sexo	38,2%	27,5%	32,5%
	Outono	Count	39	41	80
		% within estação	48,8%	51,3%	100,0%
		% within sexo	18,4%	17,1%	17,7%
	Inverno	Count	28	63	91
		% within estação	30,8%	69,2%	100,0%
		% within sexo	13,2%	26,3%	20,1%
Total		Count	212	240	452
		% within estação	46,9%	53,1%	100,0%
		% within sexo	100,0%	100,0%	100,0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13,629ª	3	,003
Likelihood Ratio	13,931	3	,003
Linear-by-Linear Association	6,235	1	,013
N of Valid Cases	452		

a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 37,52.

