EE2302 Foundations of Information Engineering

Assignment 6 (Solution)

1.

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

- a) No, because in the row corresponding to "3", there is no "1" in all entries. (By number theory, this is so because gcd $(3,6) \neq 1$.)
- b) Yes. The multiplicative inverse of 5 is 5, since $5 \times 5 \equiv 1 \pmod{6}$ as can be observed from the table.

2.

a)

121	105		
1	0	121	а
0	1	105	$\mid b \mid$
1	-1	16	c = a - b
-6	7	9	d = b - 6c = -6a + 7b
7	-8	7	e = c - d = 7a - 8b
-13	15	2	f = d - e = -13a + 15b
46	-53	1	g = e - 3f = 46 a - 53b

Hence, gcd(105,121) = 1 = 105 x + 121 y where x = -53 and y = 46.

$$x = \left(-53 + \frac{121}{1}t\right) = -53 + 121t.$$

$$y = \left(46 - \frac{105}{1}t\right) = 46 - 105 t.$$

b)

67890	12345		
1	0	67890	а
0	1	12345	b
1	-5	6165	c = a - 5b
-2	11	15	d = b - 2c = -2a + 11b

Hence, gcd(67890,12345) = 15 = 12345 x + 67890 y where x = 11 and y = -2. $x = 11 + \frac{67890}{15} t = 11 + 4526 t$. $y = -2 - \frac{12345}{15} t = -2 - 823 t$.

3. Note that $15^{34} = 15^{16} \times 15^{16} \times 15^{2}$

 $15 \mod 40 = 15$

 $15^2 \mod 40 = 25$

 $15^4 \mod 40 = 25$

 $15^8 \mod 40 = 25$

 $15^{16} \mod 40 = 25$

Hence, $15^{16} \times 15^{16} \times 15^2 \mod 40 = 25 \times 25 \times 25 \mod 40 = 25$

4.

a) Note that 73 is prime and 73 does not divide 9.

Then, by Fermat's Little Theorem $9^{73-1} \equiv 1 \mod 73$.

Since 794=72*11+2, we have $9^{794} \equiv (9^{72})^{11} 9^2 \mod 73$.

Hence, $9^{794} \equiv 9^2 \mod 73$

 \equiv 8 mod 73.

b) Since $x^{86} \equiv 6 \mod 29$, x is not divisible by 29, for otherwise $x^{86} \equiv 0 \mod 29$.

That means, we can apply Fermat's Little Theorem.

Since $86 = 3 \times 28 + 2$, we have $x^2 \equiv 6 \mod 29$.

We need to try all possible values between 0 and 28 for x.

The solutions are x = 8 or 21.

Remark 1: You may use the following code in SageMath to try all values. Note that the syntax is essentially the same as that of Python. In Python, range(29) generates integers from 0 up to, but not including, 29.

Remark 2: Under mod p, where p is a prime number, a quadratic equation has at most two roots.