Diff Geo II: Problem Set III

Youngduck Choi *

Abstract

This work contains solutions for the problem set III.

Question 1-1.

- 1. Suppose that $a: (M,g) \to (N,h)$ is an isometry.
 - \bullet Show that a takes geodesics to geodesics.
 - Suppose that M is connected. Show that if $b \colon (M,g) \to (N,h)$ is an isometry and $x \in M$ is such that a(x) = b(x) and $a_*(v) = b_*(v)$ for all $v \in T_xM$, then a = b.

Solution.

Let γ be a geodesic in M. Then,

$$D_{t(\gamma)}\dot{\gamma} = 0.$$

As a is an isometry, and a_* is linear,

$$D_{t(a \circ \gamma)} a \circ \gamma = a_*(D_{t(\gamma)} \dot{\gamma}) = 0,$$

because local isometries preserve metric tensor components, and Chirstoffel symbols in coordinates. Hence, $a \circ \gamma$ is a geodesic.

Let $U = \{q \in M : da = db\}$. Note that U is closed, and $p \in U$. But, A is open, since for any $q \in U$, any normal neighborhood of q, N, must be contained in U, as for any $s \in N$, there exists $v \in TqM$, such that $\gamma_V(1) = r$, so

$$a(r) = \gamma_{da(v)}(1) = \gamma_{db(v)}(1) = b(r).$$

Hence U is clopen, and U = M.

^{*}Department of Mathematics, Courant Institute of Mathematical Sciences, yc1104@nyu.edu; If you find an error and want to share with me, you can reach me via email.

Question 1-2.

2. Suppose that M and N are connected Riemannian manifolds and that $a\colon M\to N$ is a map that preserves the distance function (i.e., $d_M(x,y)=d_N(a(x),a(y))$ for all $x,y\in M$). Show that a preserves the Riemannian metric (i.e., $\langle v,w\rangle_M=\langle a_*(v),a_*(w)\rangle_N$ for all $x\in M$ and $v,w\in T_xM$). (First show that a is smooth; this can be done using the smoothness of the exponential map.)

Solution.

Suppose for the moment that a is smooth. Let $v \in TM$, and set $\gamma(t) = exp_p(tv)$. For t small enough, we know that γ has a constant speed. Therefore,

$$|v||t-s| = d_M(\gamma(t), \gamma(s)) = d_N(F \circ \gamma(t), F \circ \gamma(s))$$

for any t, s small enough. Hence,

$$|Da(v)| = |\frac{d(F \circ \gamma)}{dt}|_{t=0} = \lim_{t \downarrow 0} \frac{d_M(\gamma(t), \gamma(0))}{|t|} = |\dot{\gamma}(0)| = |v|.$$

Therefore, a is a Riemannian isometry, if we show that a is smooth. For now, assume that a is in fact bijective, which is necessary. Let $p \in M$. and q = a(p). Then, at q choose a radial coordinate from a normal neighborhood $(r_{q_1}, ..., r_{q_n})$, and choose $a(p_i) = q_i$ for all i. Then,

$$r_{q_i} \circ a(x) = d(a(x), q_i) = d(x, p_i)$$

for all x. By distance preserving property, we can choose p_i and q_i such that $r_{p_i}(x) = d(x, p_i)$ is smooth at p for all i. Hence, $r \circ a$ is smooth at p, so a is smooth.

Question 1-3.

- 3. Suppose that M is a compact Riemannian manifold.
 - (a) Prove that there is an $\epsilon>0$ such that every closed curve of length $<\epsilon$ is null-homotopic.
 - (b) Suppose that $\gamma: S^1 \to M$ is a closed curve. Prove that there is a piecewise-smooth curve γ' that is homotopic to γ and such that $\ell(\gamma') \le \ell(\gamma)$.
 - (c) If γ : S¹ → M is a closed curve, the free homotopy class of γ is the set of curves that are homotopic to γ. Show that this set has a minimal-length element and that this element is a geodesic.

Solution.

(a) Consider the cover of M obtained by for each point $p \in M$, choose a uniformly normal neighborhood of p. Then, via compactness, we can extract a finite subcover from the cover, which we denote by $\{N_i\}_{i\leq n}$. Now, set $\epsilon=\frac{1}{2}\min_i\epsilon(N_i)$, where $\epsilon(N_i)$ s are chosen such that for each i, and each point in N_i is contained in a geodesic ball of radius $\epsilon(N_i)$. Then, by corollary 6.11 from John M lee, we know that the Riemmanian distance and the radial distance are the same, so any closed curve of length ϵ must lie inside a geodesic ball. Therefore, for any closed curve γ of length less than ϵ , we can find \exp_p such that $\exp_p^{-1}(\gamma)$ maps into $B(0,\epsilon)$ in T_pM and $\gamma(0)=p$. With the homotopy map

$$H(s,t) = sexp_n^{-1}\gamma(t)$$

for $s, t \in [0, 1] \times [0, 1]$, we see that $\exp_p^{-1}(\gamma)$ is nulhomotopic. Since \exp_p is a diffeomorphism, so it is a homeomorphism, and we see that γ is nulhomotopic as well.

- (b) We cover the gamma with finitely many uniformly normal neighborhoods. On the lifted paths, we can do a straight line homotopy with the straight line from the origin to $\exp_p(\gamma(1))$. Then, the inverse image of the homotopic path pieced together will form a piecewise smooth curve, that is still homotopic to γ . Since the Riemmanian distance is same as the radial function, in normal neighborhods, and we have chosen to do a straight line homotopy with the striaght line from the origin to $\exp_p(\gamma(1))$, $L(\gamma') \leq L(\gamma)$.
- (c) We denote the free homotopy class of γ as \mathfrak{H} , and set $L = \inf_{\gamma' \in \mathfrak{H}} L(\gamma')$. From (b), we can choose a minimizing sequence $\{\gamma_n\} \subset \mathfrak{H}$ such that γ_n is piecewise smooth, and unit speed. Then,

$$d(\gamma_n(t_1), \gamma_n(t_2)) \leq L(\gamma_n|_{[t_1, t_2]}) \tag{1}$$

$$\leq |t_1 - t_2| \tag{2}$$

for each n and $t_1, t_2 \in S^1$, where (1) holds by definition of Riemmanian distance, and (2) holds by the choice of unit speed parametrization, Therefore, $\{\gamma_n\}$ are 1-Lipschitz family. Furthermore, for any metric ball in S^1 , denoted by B,

$$\gamma_n(B) \subset M$$

for each n trivially, so by Arzela-Ascoli, we can extract a subsequence, which we still denote as $\{\gamma_n\}$, converges uniformly to some γ^* . We now claim that the γ^* is homotopic to γ , $L(\gamma^*) = L$, and geodesic. Using the uniformly normal covering as in a, and via compactness, we can have some small $\delta > 0$, such that for each $p \in M$, there exists a geodesic ball of radius δ . Now, choose γ_{n_0} from $\{\gamma_n\}$ such that γ_{n_0} is uniformly $\frac{\delta}{2}$ away from γ^* . Then, we see that we can form a piecewise homotopy between γ_{n_0} and γ^* with finite number of geodesic balls, using straight line homotopy available at the tangent spaces. This shows that the uniform convergence preserves the property of being homotopic to γ , so γ^* is homotopic to γ . Now, to prove that γ^* is indeed a minimal length element, since $L(\gamma_n) \to L$, it suffices to show that $L(\gamma_n) \to L(\gamma)$, which is equivalent to

$$\int_{S_1} |\dot{\gamma_n}(t)| dt \ \to \ \int_{S_1} |\dot{\gamma^*}(t)| dt.$$

Since each γ_n is piecewise smooth, and γ_n converges uniformly γ , we formally expect that

$$|\dot{\gamma_n}(\cdot)| \rightarrow |\dot{\gamma^*}(\cdot)|$$
 almost everywhere.

and $\dot{\gamma}_n(\cdot)$ are L^1 . Then, by DCT, we would have the desired conclusion. The limit object should be locally minimizing curve, which implies that it is a geodesic.