Отчёта по лабораторной работе №8

Программирование цикла. Обработка аргументов командной строки.

Семенов Сергей Алексеевич

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
	3.1 Реализация циклов в NASM	6
	3.2 Обработка аргументов командной строки	10
	3.3 Задание для самостоятельной работы	15
4	Выводы	18

Список иллюстраций

3.1	Создаем каталог с помощью команды mkdir и фаил с помощью
	команды touch
3.2	Заполняем файл
3.3	Запускаем файл и проверяем его работу
3.4	Изменяем файл
3.5	Запускаем файл и смотрим на его работу
3.6	Редактируем файл
3.7	Проверяем, сошелся ли наш вывод с данным в условии выводом . 1
3.8	Создаем файл командой touch
3.9	Заполняем файл
3.10	Смотрим на работу программ
3.11	Создаем файл командой touch
3.12	Заполняем файл
	Смотрим на работу программы
3.14	Изменяем файл
	Проверяем работу файла(работает правильно)
3.16	Создаем файл командой touch
3.17	Пишем программу
	Смотрим на рабботу программы при $x1=5$ $x2=3$ $x1=4$ (всё верно) 1
3.19	Смотрим на рабботу программы при $x1=1$ $x2=3$ $x1=7$ (всё верно) 1

1 Цель работы

Изучить работу циклов и обработкой аргументов командной строки.

2 Задание

Написать программы с использованием циклов и обработкой аргументов командной строки.

3 Выполнение лабораторной работы

3.1 Реализация циклов в NASM

Создаем каталог для программ ЛБ8, и в нем создаем файл

```
/work/arch-pc/lab08

rk/
b8-

sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08

parsasemenov@sasemenov-VirtualBox: ~$ mkdir ~/work/arch-pc/lab08

parsasemenov@sasemenov-VirtualBox: ~$ cd ~/work/arch-pc/lab08

presasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$ touch lab8-1.asm

sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$

ir 8
```

Рис. 3.1: Создаем каталог с помощью команды mkdir и файл с помощью команды touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 8.1

```
*tab8-1.asm
-/work/arch-pc/lab08

1 %include 'in_out.asm'
2 SECTION .data
3 msg1 db 'Bведите N: ',0h
4 SECTION .bss
5 N: resb 10
6 SECTION text
7 global_start
8_start:
9; ----- Вывод сообщения 'Введите N: '
10 mov eax,msg1
11 call sprint
12; ---- Ввод 'N'
13 mov ecx, N
14 mov edx, 10
15 call sread
16; ---- Преобразование 'N' из символа в число
17 mov eax,N
18 call atoti
19 mov [N],eax
20; ----- Организация цикла
21 mov ecx,[M]; Счетчик цикла, 'ecx=N'
22 label:
23 mov [N],ecx
24 mov eax,[N]
25 call iprintlF; Вывод значения 'N'
26 loop label; 'ecx=ecx-1' и если 'ecx' не '0'
27; переход на 'label'
28 call quit
```

Рис. 3.2: Заполняем файл

Создаем исполняемый файл и запускаем его

```
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/labox$ nasm -f elf -l laba-1.lst l
aba-1.asm
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/labox$ ld -m elf_i386 -o laba-1 la
ba-1.o
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/labox$ ./laba-1
laba-1.o
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/labox$ ./laba-1
laba-1.o
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/labox$ ./laba-1
laba-1.sasemenov@sasemenov-VirtualBox:~/work/arch-pc/labox$ ./laba-1
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/labox$
```

Рис. 3.3: Запускаем файл и проверяем его работу

Снова открываем файл для редактирования и изменяем его, добавив изменение значения регистра в цикле

```
22 label:
23 sub ecx,1; 'ecx=ecx-1'
24 mov [N],ecx
25 mov eax,[N]
26 call iprintLF
27 loop label
28 call quit
```

Рис. 3.4: Изменяем файл

Создаем исполняемый файл и запускаем его

Рис. 3.5: Запускаем файл и смотрим на его работу

Регистр есх принимает значения 9,7,5,3,1(на вход подается число 10, в цикле label данный регистр уменьшается на 2 командой sub и loop).

Число проходов цикла не соответсвует числу N, так как уменьшается на 2.

Снова открываем файл для редактирования и изменяем его, чтобы все корректно работало

```
22 label:
23 push ecx; добавление значения ecx в стек
24 sub ecx,1
25 mov [N],ecx
26 mov eax,[N]
27 call iprintLF
28 pop ecx; извлечение значения ecx из стека
29 loop label
30 call quit
```

Рис. 3.6: Редактируем файл

```
sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08 Q = - D ×
sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$ nasm -f elf -l lab8-1.lst l
ab8-1.asm
sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 la
b8-1.o
sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$ ./lab8-1
BBedute N: 10
9
8
7
6
5
4
8
2
1
0
sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$
```

Рис. 3.7: Проверяем, сошелся ли наш вывод с данным в условии выводом

В данном случае число проходов цикла равна числу N.

3.2 Обработка аргументов командной строки.

Создаем новый файл

Рис. 3.8: Создаем файл командой touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 8.2

Рис. 3.9: Заполняем файл

Создаем исполняемый файл и проверяем его работу, указав аргументы

```
sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08 Q = - □ ×

sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$ nasm -f elf -l lab8-2.lst l
ab8-2.asm
sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-2 la
b8-2.o
sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$ ./lab8-2 1 2 '3'

1
2
3
sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$
```

Рис. 3.10: Смотрим на работу программ

Програмой было обработано 3 аргумента.

Создаем новый файл lab8-3.asm

Рис. 3.11: Создаем файл командой touch

Открываем файл и заполняем его в соответствии с листингом 8.3

```
lab8-3.asm
     Открыть У
                                                                                                                                                                                                                                                  □ □ x
                                                                                                                                                                                                                          Сохранить
  1%include 'in_out.asm'
2 SECTION .data
3 msg db "Результат: ",0
                                                                                                                                                                                                                                                                                                     ற
                                                                                                                                                                                                                                                                                                       <u>a</u>
  S msg db Pesynbial: ,0
4 SECTION.text
5 global _start
6_start:
7 pop есх; Извлекаем из стека в `есх` количество
 8 ; аргументов (первое значение в стеке)
9 рор edx ; Извлекаем из стека в `edx` имя программы
10 ; (второе значение в стеке)
11 sub ecx,1 ; Уменьшаем `ecx` на 1 (количество
12; аргументов без названия программы)
13 mov esi, ⊖; Используем `esi` для хранения
14; промежуточных сумм
15 next:
15 next:

16 стр есх,0h; проверяем, есть ли еще аргументы
17 јг _еnd; если аргументов нет выходим из цикла
18; (переход на метку `_end`)
19 рор еах; иначе извлекаем следующий аргумент из стека
20 call atoi; преобразуем символ в число
21 add esi,eax; добавляем к промежуточной сумме
22; след. аргумент `esi=esi+eax`
23 loop next; переход к обработке следующего аргумента
24 end:
24_end:
25 mov eax, msg ; вывод сообщения "Результат: "
25 mov eax, msg ; вывод сообщения Результат:
26 call sprint
27 mov eax, esi ; записываем сумму в регистр `eax`
28 call iprintLF ; печать результата
29 call quit ; завершение программы
  Сохранение файла «/home/sasemenov/work/arch-pc/lab08/lab8-3.asm»...
                                                                                                                                                             Matlab У Ширина табуляции: 8 У
                                                                                                                                                                                                                                         Стр 29, Стлб 33 ∨ ВСТ
```

Рис. 3.12: Заполняем файл

Создаём исполняемый файл и запускаем его, указав аргументы

```
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$ nasm -f elf -l lab8-3.lst lab8-3.asm sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$ ./lab8-3 12 13 7 10 5 Результат: 47 sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$
```

Рис. 3.13: Смотрим на работу программы

Снова открываем файл для редактирования и изменяем его, чтобы вычислялось произведение вводимых значений

```
15 next:
16 cmp ecx,0h
17 jz _end
18 pop eax
19 call atoi
20 mul esi
21 mov esi,eax
22 loop next
```

Рис. 3.14: Изменяем файл

Создаём исполняемый файл и запускаем его, указав аргументы

```
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$ nasm -f elf -l lab8-3.lst lab8-3.asm
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$ ./lab8-3 5 3 4
Результат: 60
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$
```

Рис. 3.15: Проверяем работу файла(работает правильно)

3.3 Задание для самостоятельной работы

ВАРИАНТ-3

Напишите программу, которая находит сумму значений функции ⋈(⋈) для ⋈ = ⋈1, ⋈2,..., ⋈⋈, т.е. программа должна выводить значение ⋈(⋈1) + ⋈(⋈2) + ... + ⋈(⋈⋈). Значения ⋈ передаются как аргументы. Вид функции ⋈(⋈) выбрать из таблицы 8.1 вариантов заданий в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу на нескольких наборах ⋈ = ⋈1, ⋈2,..., ⋈⋈.

Создаем новый файл

Рис. 3.16: Создаем файл командой touch

Открываем его и пишем программу, которая выведет сумму значений, получившихся после решения выражения 10x-5

Рис. 3.17: Пишем программу

Транслируем файл и смотрим на работу программы

```
sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08 Q = — — × sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$ nasm -f elf -l lab8-4.lst lab8-4.asm sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$ ./lab8-4 5 3 4 Результат: 105 sasemenov@sasemenov-VirtualBox: ~/work/arch-pc/lab08$
```

Рис. 3.18: Смотрим на рабботу программы при x1=5 x2=3 x1=4(всё верно)

Транслируем файл и смотрим на работу программы

```
sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$ nasm -f elf -l lab8-4.lst lab8-4.asm sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$ ./lab8-4 1 3 7 Результат: 95 sasemenov@sasemenov-VirtualBox:~/work/arch-pc/lab08$
```

Рис. 3.19: Смотрим на рабботу программы при x1=1 x2=3 x1=7(всё верно)

4 Выводы

Мы научились решать программы с использованием циклов и обработкой аргументов командной строки.