

Prof. Mee Lan Han (aeternus1203@gmail.com)

인공지능사이버보안학과

CONTENTS

1. Classification

- √KNN (K-nearest neighbors)
- **✓**SVM
- ✓One-class Classification
- **✓** Decision Tree
- ✓ Random Forest
- **✓** XGBoost

Machine Learning

Review

■ KNN (K-nearest neighbors)

- □ 특정공간 내 새로 들어온 입력값이 어떤 그룹의 데이터와 가장 가까운가 분류
- □ K의 역할은 몇 번째로 가까운 데이터까지 살펴볼 것인가를 설정하는 수치
 - 장점
 - 높은 정확도
 - 단순하며 효율적 (모델 생성을 미리 하지 않음)
 - 단점
 - 데이터가 많을 수록 처리 시간이 증가
 - 모델 생성이 미리 되지 않아 새로운 데이터에 대한 학습 시간보다 분류/예측 시간이 더 걸림

Review

■ SVM(Support Vector Machine)

- □ 주어진 데이터가 어느 카테고리에 속할지 판단하는 이진 선형 분류 모델
- □ 결정 경계 (Decision Boundary), 즉 분류를 위한 기준선을 정의하는 모델
- □ Support Vectors: 결정 경계와 가까이 분포된 데이터를 의미
 - n개의 Feature (속성)을 가진 데이터에는 최소 n+1개의 서포트 벡터가 존재
- □ Margin: 결정 경계와 서포트 벡터 사이의 거리를 의미
- □ 커널 (Kernel)
 - 선형으로 분류할 수 없는 데이터 특성을 갖고 있는 경우, 원래 가지고 있는 데이터를 더 높은 차원의 데이터로 변환하는 역할

□장점

- SVM은 결정 경계를 정의하는 서포트 벡터만 잘 골라내면 됨
- 모든 데이터를 확인할 필요가 없어 속도가 매우 빠름

Review

■ One-class Classification

- □ 정상 샘플만을 이용해 모델을 학습
- □ 정상 샘플과 거리가 먼 샘플을 이상치로 탐지하는 준지도(Semi-supervised) 학습 방법
- □ One-class SVM
 - One-class SVM은 SVM과는 달리 비지도 학습 (unsupervised learning)
- □ Isolation Forest
 - 기본적으로 데이터셋을 의사결정나무 (Decision Tree) 형태로 표현
 - 랜덤으로 데이터를 split하여 모든 관측치를 고립 (분리) 시키며 구현
 - 데이터의 Depth를 기준으로 정상값과 이상값을 분리
 - 정상 데이터: tree의 terminal node와 근접하며, 경로길이 (Depth)가 큼
 - 이상치: tree의 root node와 근접하며, 경로길이 (Depth)가 작음

■의사결정나무 (Decision Tree)

□ 의사결정규칙 (Decision Rule)을 나무구조로 도표화하여 분류와 예측을 수행하는 분석 방법

■의사결정나무 (Decision Tree)

□ 의사결정규칙 (Decision Rule)을 나무구조로 도표화하여 분류와 예측을 수행하는 분석 방법

• 전체 A 데이터

• 전체 A 데이터 가 B와 C 데이터로 분할

• B 데이터가 D와 E 데이터로 분할

■의사결정나무 (Decision Tree)

□ 의사결정규칙 (Decision Rule)을 나무구조로 도표화하여 분류와 예측을 수행하는 분석 방법

■장점

- □ 학습된 결과에 대한 **해석 가능**
- □ 데이터를 분석하고 표현하는데 있어 매우 직관적인 방식
- □ 범주형 자료와 수치형 자료 모두 수행 가능
- □ 정규화 또는 더미 변수 생성 없이 처리 가능

■단점

- □ 데이터의 특성이 특정 변수에 <u>수직/수평적으로 구분되지 못할 때 분류율이 떨어짐</u>
- □ 연속형 변수를 비연속적 값으로 취급
 - -> 분리 경계점에서 예측 오류가 발생할 가능성 존재
 - -> 분할해야 하는 곳이 많아 분할할 최적 값을 검색하는데 많은 시간이 소요
- □ Training data가 적으면 overfitting, over-classified 발생

■분류변수와 분류 기준값

□ 목표변수의 형태에 따라 상위노드에서 가지분할을 수행할 시 분류 (기준) 변수와 분류 기준값의 선택

■분류변수와 분류 기준값

□ 목표변수의 형태에 따라 상위노드에서 가지분할을 수행할 시 분류 (기준) 변수와 분류 기준값의 선택

■의사결정 트리의 분할 속성

- □ 분할된 데이터의 불순도 제거 정도에 따라 <u>속성(트리)과 속성값(기준값)</u> 결정
 - 순수도 : 특정 범주의 개체들이 포함되어 있는 정도
 - 불순도 (불확실성): 다양한 범주들의 개체들이 포함되어 있는 정도

높은 이질성 -> 낮은 순수도

낮은 이질성 => 높은 순수도

□ 의사결정 트리의 분할 속성 선택

- 부모노드의 순수도 대비 자식노드들의 순수도가 증가하도록 노드를 형성
- 순수도 증가, 불순도가 최대치로 감소하는 방향으로 학습을 진행

■분할 기준 (순도 측정) 방법

(1) 지니 지수 (Gini index)

- 불순도를 측정하는 하나의 지수
- 0 (하나의 클래스로만 구성된 상태)에서 1/m(가장 혼합도가 높은 상태의 값)의 범위를 갖음
- 두 개의 범주 개체가 50대 50으로 구성될 때, 최대치의 불순도 값 측정

$$G(A) = 1 - \sum_{i=1}^{m} P_i^2$$
 P_i 는 데이터 A에서 i class 에 속하는 관측 비율 $(0 \le G \le 1/2)$

자식 노드 생성을 위한 기준 Ex. 포유류인가 아닌가?

■분할 기준 (순도 측정) 방법

(1) 지니 지수 (Gini index)

- 불순도를 측정하는 하나의 지수
- 0 (하나의 클래스로만 구성된 상태)에서 1/m(가장 혼합도가 높은 상태의 값)의 범위를 갖음
- 두 개의 범주 개체가 50대 50으로 구성될 때, 최대치의 불순도 값 측정

$$G(A) = 1 - \sum_{i=1}^{m} P_i^2$$
 P_i 는 데이터 A에서 i class 에 속하는 관측 비율 $(0 \le G \le 1/2)$

[Class 37H]

2 turtles 3 dogs 5 cats

자식 노드 생성을 위한 기준 Ex. 포유류인가 아닌가?

$$G(A) = 1 - \sum_{i}^{m} P_i^2 = 1 - \left[\left(\frac{8}{10} \right)^2 + \left(\frac{2}{10} \right)^2 \right] = 1 - (0.64 + 0.04) = 0.32$$

■분할 기준 (순도 측정) 방법

(1) 지니 지수 (Gini index)

- 불순도를 측정하는 하나의 지수
- 0 (하나의 클래스로만 구성된 상태)에서 1/m(가장 혼합도가 높은 상태의 값)의 범위를 갖음
- 두 개의 범주 개체가 50대 50으로 구성될 때, 최대치의 불순도 값 측정

$$G(A) = 1 - \sum_{i=1}^{m} P_i^2$$
 P_i 는 데이터 A에서 i class 에 속하는 관측 비율 $(0 \le G \le 1/2)$

■분할 기준 (순도 측정) 방법

(2) 정보 획득량 (Information gain)

- 지니지수를 구할 수 있다면 정보 획득량도 계산이 가능
- Information Gain = 0.5 (0 + 0.375 + 0) = 0.125
- 이전 단계 (level) 불순도 값에서 다음 단계 (level) 불순도 값의 합을 뺀 수치

■분할 기준 (순도 측정) 방법

(2) 정보 획득량 (Information gain)

• 하위 데이터 셋들의 불순도만으로 정보 획득량을 설명하기 부족한 측면이 존재 -> 가중치 (weight) 적용

- 두 개의 데이터 셋 모두 불순도 0
- 왼쪽 데이터셋의 분류가 더 의미가 있어 보임
- 불순도 값 뿐만 아니라 데이터셋 크기도 중요
- 데이터셋의 크기에 따라 가중치 적용하여 Weighted Information Gain 을 측정해 볼 수 있음

■분할 기준 (순도 측정) 방법

(2) 정보 획득량 (Information gain)

Information Gain = 0.5 - ((2/10)*0.5 + (5/10)*0.48 + (3/10)*0.44) = 0.026

■분할 기준 (순도 측정) 방법

(3) 엔트로피 지수 (Entropy index)

- 열역학에서 나온 개념으로써 무질서도 (분산도) 의미
- 지니 지수와 비슷하지만, log를 취함으로써 정규화 과정을 거치게 됨
- 의사 결정 트리는 분기 뒤 각 영역의 순수도가 증가 / 불확실성(엔트로피)가 최대한 감소하도록 하는 방향으로 학습을 진행

$$Entropy(A) = -\sum_{i=1}^{m} P_i \log_2(P_i)$$
 P_i 는 데이터 A에서 i class 에 속하는 관측 비율 ($\mathbf{0} \le \mathbf{E} \le \mathbf{1}$)

[Class 3개]

2 turtles

3 dogs

5 cats

자식 노드 생성을 위한 기준? 포유류인가 아닌가?

■분할 기준 (순도 측정) 방법

(3) 엔트로피 지수 (Entropy index)

- 열역학에서 나온 개념으로써 무질서도 (분산도) 의미
- 지니 지수와 비슷하지만, log를 취함으로써 정규화 과정을 거치게 됨
- 의사 결정 트리는 분기 뒤 각 영역의 **순수도가 증가 / 불확실성(엔트로피)가 최대한 감소**하도록 하는 방향으로 학습을 진행

$$Entropy(A) = -\sum_{i=1}^{m} P_i \log_2(P_i)$$
 P_i 는 데이터 A에서 i class 에 속하는 관측 비율 ($\mathbf{0} \leq \mathbf{E} \leq \mathbf{1}$)

$$Entropy(A) = -\sum_{i=1}^{m} P_i \log_2(P_i) = [-0.8 * \log_2(0.8)] + [-0.2 * \log_2(0.2)] = 0.721928095$$

Gini index 최고값이 나오는 상태와 유사하게 데이터 셋 구성 (5:5)에 가까울수록, Entropy 값은 높아짐

■분할 기준 (순도 측정) 방법

(3) 엔트로피 지수 (Entropy index)

- 열역학에서 나온 개념으로써 무질서도 (분산도) 의미
- 지니 지수와 비슷하지만, log를 취함으로써 정규화 과정을 거치게 됨
- 의사 결정 트리는 분기 뒤 각 영역의 순수도가 증가 / 불확실성(엔트로피)가 최대한 감소하도록 하는 방향으로 학습을 진행

Normal Traffic & Attack Traffic ??

■의사결정나무 (Decision Tree) 의 속성

- □ 재귀적 분기 (Recursive partitioning)
 - 입력 변수 영역을 두 개로 구분하는 속성
- □ 가지치기 (Pruning)
 - 자세하게 분류된 최종 노드의 영역을 다시 통합하는 속성

■재귀적 분기 (Recursive partitioning)

- □ 의사결정 트리에서는 정보 획득량 (Information Gain)이 큰 순서대로 질문을 배치
- □ 질문 속성에 대해 어떤 기준으로 나누는 게 좋을지 반복적으로 적용 -> **최적의 트리 검색**

(1)	
-----	--

23

Income Lot size Ownership 14.0 | Non-owner 51.0 Non-owner 59.4 16.0 Non-owner 47.4 16.4 Non-owner 85.5 16.8 Owner 64.8 17.2 Non-owner 108.0 17.6 Owner 84.0 17.6 Non-owner 49.2 17.6 Non-owner 60.0 18.4 Owner 66.0 18.4 Non-owner 33.0 18.8 Non-owner 110.1 19.2 Owner 75.0 19.6 Non-owner 69.0 20.0 Owner 81.0 20.0 Owner 43.2 20.4 Non-owner 20.8 61.5 Owner 93.0 20.8 Owner 52.8 20.8 Non-owner 64.8 21.6 Owner 51.0 22.0 Owner 82.8 22.4 Owner 23.6

(2)

	1ncome	Lot size	Ownership
2	- 51.0	14.0	Non-owner
	. 63.0	14.8	Non-owner
2	• 59.4	16.0	Non-owner
۲.	. 47.4	16.4	Non-owner
- 1	85.5	16.8	Owner
ı	64.8	17.2	Non-owner
ı	- 108.0	17.6	Owner
ı	84.0	17.6	Non-owner
	· 49.2	17.6	Non-owner
	. 60.0	18.4	Owner
	66.0	18.4	Non-owner
	33.0	18.8	Non-owner
ı	. 110.1	19.2	Owner
ı	75.0	19.6	Non-owner
- 1	· 69.0	20.0	Owner
ı	. 81.0	20.0	Owner
ı	43.2	20.4	Non-owner
	· 61.5	20.8	Owner
	. 93.0	20.8	Owner
	52.8	20.8	Non-owner
	· 64.8	21.6	Owner
1	. 51.0	22.0	Owner
1	82.8	22.4	Owner
L	· 87.0	23.6	Owner

Input 값을 2분할 한 모든 조합에 대해 엔트로피/지니지수를 재귀적으로 측정

→ 트리를 만들기 위한 과정

- Lot size (대지 면적) 기준으로 정렬
- 데이터 2등분 (노랑:빨강)
- 각 분기의 엔트로피 계산
- 2) 와 같이 shifting 하여 데이터 2등분
- 각 분기의 엔트로피 계산
- 마지막 23)과 같이 shifting 하여 데이터 2등분
- 각 분기의 엔트로피 계산

(23)

1ncome	Lot size	Ownership
- 51.0	14.0	Non-owner
63.0	14.8	Non-owner
• 59.4	16.0	Non-owner
. 47.4	16.4	Non-owner
85.5	16.8	Owner
64.8	17.2	Non-owner
. 108.0	17.6	Owner
84.0	17.6	Non-owner
· 49.2	17.6	Non-owner
. 60.0	18.4	Owner
66.0	18.4	Non-owner
. 33.0	18.8	Non-owner
. 110.1	19.2	Owner
75.0	19.6	Non-owner
· 69.0	20.0	Owner
. 81.0	20.0	Owner
43.2	20.4	Non-owner
· 61.5	20.8	Owner
. 93.0	20.8	Owner
52.8	20.8	Non-owner
· 64.8	21.6	Owner
. 51.0	22.0	Owner
82.8	22.4	Owner
· 87.0	23.6	Owner

23

■재귀적 분기 (Recursive partitioning)

- □ 의사결정 트리에서는 정보 획득량 (Information Gain)이 큰 순서대로 질문을 배치
- □ 질문 속성에 대해 어떤 기준으로 나누는 게 좋을지 반복적으로 적용 -> **최적의 트리 검색**

총행	좌측 행	우측행	자측 Non-owner.	좌측 Owner	우측 Öwner	우측 Non-owner	엔트로피
24	1	· 23	.1	0	· 12	· 11	0.96
24	2	. 22	.2	0	. 12	10	
24	3	· 21	.3	0	: 12	· 9	
24	4	. 20	.4	0	. 12	. 8	
24	5	i 19	.4	1	11		0.84
24	6	· 18		1	· 11	· 7	0.79
24	7	. 17	.5	2	. 10	. 7	0.83
24	8	. 16	.6	2	. 10	. 6	
24	9	· 15	· 7	2	· 10	· 5	0.71
24	10	. 14	.7	3	. 9	. 5	0.76
24	11	. 13		3			0.69
24	12	· 12	.9	3	· 9	· 3	0.61
24	12	11		4			A 67
24	14	∴ 10	10	4	. 8	. 2	0.58
24		. 9	10	5	. /	. 2	0.65
24		. 8	10	6		. 2	0.72
24	17	7		6			0:62
24			11	7	. 5	· 1	0.70
24	_	. 5	11	8		. 1	0.77
24		: 4	12	8	: 4	: 0	
24		· 3	12	9	· 3	· 0	
24		. 2	12	10	. 2	. 0	
24	23	1 1		11	1		

- 엔트로피 값이 가장 낮음
 - → 즉, 순수도가 가장 높음
- 14/10 등분일 때 이 지점을 기준으로 데이터를 split 하여 새로운 노드를 생성함
- 분기된 노드들은 다시 재귀적 분기를 반복하면서 최종 트리 구조를 생성함

- ■가지치기 (Pruning)
 - □ 재귀적 분귀를 통해 모든 노드를 분리한 후 분기를 적절히 합치는 과정
 - □ 분기가 많아질 경우 학습데이터에 과대적합 (Overfitting)이 발생할 우려 존재
 - □ 분기수가 증가할 때 초기에는 오분류표 (confusion matrix: TP, TN, FP, FN) 증가
 - <u>Accuracy, Precision, Recall 값이 증가</u>
 - □ 이후 분기수가 증가할 때마다 오분류표 (confusion matrix: TP, TN, FP, FN) 증가
 - <u>Accuracy, Precision, Recall 값이 감소</u>
 - ⇒ 적절한 가지치기 수행이 요구됨 (Reduced error pruning, Rule post pruning)

■가지치기 (Pruning)

□ Reduced error pruning

- 노드 가지치기 전의 error와 노드의 아래 부분을 자르거나 결합한 뒤 error를 비교
- 오류가 더 이상 감소하지 않을 때까지 반복하는 방법

□ Rule post pruning

- Rule: 뿌리 노드부터 최종 노드까지의 경로
- 트리를 Rule 형태로 변환한 뒤 각 Rule 의 Accuracy 를 구하고 낮은 순으로 제거하는 방법

적절한 가지치기를 한 뒤 Tree

Ensemble 알고리즘 (RF & XGBoost)

■Ensemble 알고리즘

- □ 여러 가지 우수한 학습 모델을 조합해 분류&예측 결과를 향상시키는 모델
- □ 배깅 (Bagging), 부스팅 (Boosting)

Random Forest

■Random Forest (랜덤포레스트)

- □ 분류, 회귀 분석 등에 사용되는 앙상블 학습 방법의 일종
- □ 훈련 과정에서 구성한 다수의 결정 트리로부터 분류 또는 평균 예측치 (회귀 분석)를 출력함으로써 동작
- □ 다수의 결정 트리들을 학습하는 앙상블 방법

■Random Forest 핵심!!!

- □ <u>Diversity</u> (다양성)
 - 여러 개의 Training Data를 생성해 각 데이터마다 개별 Decision Tree를 구축
- □ Random Subspace
 - Decision Tree 구축 시 변수를 무작위로 선택

Random Forest

- ■배깅 (Bagging = Bootstrap + Aggregating)
 - □ Bootstrap: 통계적 재표본추출(resampling) 방법
 - □ Original sample 데이터로부터 다수의 Bootstrap 자료를 생성하고 모델링한 후 결합하여 예측 모델을 산출
 - □ Bootstrap 자료
 - 랜덤 샘플링을 통해 원시자료 (Raw data)로부터 크기가 동일한 여러 표본 자료를 의미함

Random Forest

■배깅 (Bagging = Bootstrap + Aggregating)

특징

- 여러 개의 결정트리 (Decision Tree)를 활용한 배깅 방식의 대표적인 알고리즘
- 각 트리 마다 랜덤하게 데이터를 샘플링

장점/단점

- 결정 트리의 쉽고 직관적인 장점을 그대로 가지고 있음
- 앙상블 알고리즘 중 비교적 빠른 수행 속도를 가지고 있음
- 다양한 분야에서 좋은 성능을 나타냄
- 각각의 개별 트리는 과적합 (Overfitting)될 수 있음
- 하이퍼 파라미터가 많아 튜닝을 위한 시간이 많이 소요됨

Boosting

■부스팅 (Boosting)

- □ 순차적으로 약한 학습자 (잘못 분류된 개체들)를 추가 결합하여 모델을 만드는 방법
- □ "무작위로 선택" 의미보다는 **약한 것들을 여러 개 결합시켜 강한 모델을 생성**

[Reference] https://en.wikipedia.org/wiki/Boosting_(machine_learning)#/media/File:Ensemble_Boosting.svg

Boosting

■부스팅 (Boosting)

- □ 순차적으로 **약한 학습자 (잘못 분류된 개체들)**를 추가 결합하여 모델을 만드는 방법
- □ "무작위로 선택" 의미보다는 **약한 것들을 여러 개 결합시켜 강한 모델을 생성**

$$Y=M(x) + \underbrace{error(1)}_{error(1)}$$

$$error(1) = G(x) + \underbrace{error(2)}_{error(2)}$$

$$error(2) = H(x) + \underbrace{error(3)}_{Models}$$

$$Y=M(x) + G(x) + H(x) + \underbrace{error(3)}_{Models}$$

- ① Raw data 의 개체에는 동일한 가중치로 시작
- ② 모델링을 통한 예측변수에 의해 잘못 분류된 개체들에는 높은 가중치 부여
- ③ 제대로 분류된 개체들에는 낮은 가중치 부여
- ④ 잘못 분류된 개체들을 더욱 잘 분류되도록 하는 방법

Boosting

■부스팅 (Boosting)

- □ 순차적으로 **약한 학습자 (잘못 분류된 개체들)**를 추가 결합하여 모델을 만드는 방법
- □ "무작위로 선택" 의미보다는 **약한 것들을 여러 개 결합시켜 강한 모델을 생성**

```
Y=M(x) + \underbrace{error(1)}_{error(1)}
error(1) = G(x) + \underbrace{error(2)}_{error(2)}
error(2) = H(x) + \underbrace{error(3)}_{Models}
Y=M(x) + G(x) + H(x) + \underbrace{error(3)}_{Models}
```

- 학습 모델 M, G, H 각각의 성능이 다를 수 있지 않을까?
- 각 학습 모델에 Weights 를 두어 최적의 학습 모델을 도출
- 학습 모델 M만을 단독 사용하는 것 보다는 최종 모델 (M+G+H)이 정확도 높음

$$Y=\alpha^*M(x) + \beta^*G(x) + \gamma^*H(x) + error(3)$$

XGBoost & LightGBM

XGBoost: Level-wise tree growth

LightGBM: Leaf-wise tree growth

■ Hyperparameter tuning

- ☐ General parameter
 - General parameters determine whether to use a tree or a linear model when performing boosting.
- □ Boost parameter
 - It is parameters related to tree optimization, boosting, regularization, etc.
- □ Parameter for Learning
 - It determine the learning scenario.

■ Hyperparameter tuning

- □ General parameter
 - booster [Default = gbtree]
 - 의사결정기반모형 (gbtree)
 - 선형모형 (gblinear)
 - n_jobs
 - Number of parallel threads used to run XGBoost
 - verbosity [Default = 1]
 - Valid values: 0 (silent), 1 (warning), 2 (information), 3 (debug)

■ Hyperparameter tuning

□ Boost parameter (for gbtree Booster)

파라미터 명 (파이썬 래퍼)	파라미터명 (사이킷런 래퍼)	설명
eta (0.3)	learning rate (0.1)	- GBM의 learning rate와 같은 파라미터 - 범위: 0 ~ 1
num_boost_around (10)	n_estimators (100)	- 생성할 weak learner의 수
min_child_weight (1)	min_child_weight (1)	- GBM의 min_samples_leaf와 유사 - 관측치에 대한 가중치 합의 최소를 말하 지만 GBM에서는 관측치 수에 대한 최소를 의미 - 과적합 조절 용도 - 범위: 0 ~ ∞
gamma (0)	min_split_loss (0)	- 리프노드의 추가분할을 결정할 최소순실 감소값 - 해당값보다 손실이 크게 감소할 때 분리 - 값이 클수록 과적합 감소효과 - 범위: 0 ~ ∞
max_depth (6)	max_depth (3)	- 트리 기반 알고리즘의 max_depth와 동일 - 0을 지정하면 깊이의 제한이 없음 - 너무 크면 과적합(통상 3~10정도 적용) - 범위: 0 ~ ∞
sub_sample (1)	subsample (1)	- GBM의 subsample과 동일 - 데이터 샘플링 비율 지정(과적합 제어) - 일반적으로 0.5~1 사이의 값을 사용 - 범위: 0 ~ 1
colsample_bytree (1)	colsample_bytree (1)	- GBM의 max_features와 유사 - 트리 생성에 필요한 피처의 샘플링에 사 용 - 피처가 많을 때 과적합 조절에 사용 - 범위: 0 ~ 1
lambda (1)	reg_lambda (1)	- L2 Regularization 적용 값 - 피처 개수가 많을 때 적용을 검토 - 클수록 과적합 감소 효과
alpha (0)	reg_alpha (0)	- L1 Regularization 적용 값 - 피처 개수가 많을 때 적용을 검토 - 클수록 과적합 감소 효과
scale_pos_weight (1)	scale_pos_weight (1)	- 불균형 데이터셋의 균형을 유지

■ Hyperparameter tuning

□ Parameter for Learning

학습 태스크 파라미터

: 학습 수행 시의 객체함수, 평가를 위한 지표 등을 설정하는 파라미터

파라미터 명	설명
objective	- 'reg:linear' : 회귀 - binary:logistic : 이진분류 - multi:softmax : 다중분류, 클래스 반환 - multi:softprob : 다중분류, 확륣반환
	- 검증에 사용되는 함수정의 - 회귀 분석인 경우 'rmse'를, 클래스 분류 문제인 경우 'error'
eval_metric	- rmse: Root Mean Squared Error - mae: mean absolute error - logloss: Negative log-likelihood - error: binary classification error rate - merror: multiclass classification error rate - mlogloss: Multiclass logloss - auc: Area Under Curve

Thank you

