學號:R05943138 系級:電子所碩二姓名:賴又誠

請實做以下兩種不同 feature 的模型,回答第(1)~(3)題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

feature	RMSE(training)	RMSE(public)	RMSE(private)
(1)9小時	5.6795	7.46275	5.53423
(2)9小時	6.1230	7.44013	5.62719

使用 model(1)在 training 時 RMSE 只有 5.6795,但在 model(2)卻在 training 時 RMSE 有 6.1230,而在 RMSE(public)時 model(2)卻又較好,可能是 model(1)產生 overfitting 造成 的結果。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

feature	RMSE(training)	RMSE(public)	RMSE(private)
(1)9小時	5.6795	7.46275	5.53423
(1)5小時	5.8051	7.65098	5.44101
(2)9小時	6.1230	7.44013	5.62719
(2)5小時	6.2070	7.57904	5.79187

使用 5 小時的 feature 時,不管在(1) or (2)都造成 RMSE(training)、RMSE(public)比使用 9 小時的差,雖然 training data 會變多,可是 feature 數量下降,然而影響較大的 feature 可能在那 4 小時的時間內,所以 train 9 個小時得到的結果不管在哪個 model,都會是比較好的。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

feature	RMSE(training)	RMSE(public)	RMSE(private)
(1) $\lambda = 0.1$	5.68865536	7.46711	5.37077
(1) $\lambda = 0.01$	5.68864692	7.46710	5.37083
(1) $\lambda = 0.001$	5.68864607	7.46710	5.37084
(1) $\lambda = 0.0001$	5.68864599	7.46710	5.37084
(2) $\lambda = 0.1$	6.1230215223407134	7.44012	5.62720
(2) $\lambda = 0.01$	6.1230215220907871	7.44013	5.62719
(2) λ =0.001	6.1230215220882878	7.44013	5.62719
(2) $\lambda = 0.0001$	6.1230215220882620	7.44013	5.62719

因為使用了 adagrad 在更新 weight 上較有效率,而且 learning rate 會隨著離目標越近而越慢,而第一份作業是一個 convex 的情況,故在於使用不同的 lambda 下造成的影響不大,或者是因為都使用一次項,還未發生 overfitting 的情況,使得 regularization 不管在 model(1) or (2)對於 Kaggle 上的 public 和 private 分數都沒有太大的影響,也有可能是發生 overfitting 但是 lambda 給不夠大,造成 regularization 效果不好。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (y^n-x^n\cdot w)^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X}=[\mathbf{x}^1\ \mathbf{x}^2\ ...\ \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y}=[\mathbf{y}^1\ \mathbf{y}^2\ ...\ \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^TX)^{-2}X^Ty$

Ans:

找w最小值,對loss function微分得:

$$2(y^n - x^n \cdot w)(-x^n \cdot w) = 0 \tag{1}$$

$$y^n - x^n \cdot w = 0 \tag{2}$$

$$y^n = x^n \cdot w \tag{3}$$

$$y = X \cdot w \tag{4}$$

$$X^{T} \cdot y = (X^{T} \cdot X) \cdot w \tag{5}$$

$$(X^{T} \cdot X)^{-1} \cdot X^{T} \cdot y = w \tag{6}$$

故選(c)