C.E.D.T- LE G15

CHAPITRE 7: LES CORRECTEURS

M. Oumar DIOR ; CEDT-LE G15
Ingénieur Electromécanicien

Chapitre 7:

ÉTUDE DES CORRECTEURS

7.1) Généralités

7.1.1) **<u>Définition</u>**

Un correcteur est un circuit électrique ou électronique approprié à l'asservissement. Il est placé dans la chaine directe avant l'organe à asservir. Il corrige les erreurs occasionnées par les perturbations en agissant soit sur les gains ou soit sur les arguments ou soit sur les deux.

7.1.2) Les différents montages

Il existe deux types de montage :

- <u>Le montage série</u>:

Le correcteur est placé dans la chaine directe avant l'organe à asservir. Il est représenté dans le schéma bloc par sa transmittance.

Exemple:

Figure 7.1 : schéma bloc d'un système asservi, montage en série du correcteur

$$C(P) = \frac{S_2(P)}{S_1(P)}$$

- <u>Le montage parallèle</u>:

Le correcteur est constitué de deux éléments dont l'un à un caractère proportionnel et monté en série dans la chaine directe avec les éléments du système à asservir et l'autre est monté en parallèle avec l'élément de caractère proportionnel.

Ce dernier a un caractère différentiel, intégral ou intégral-différentiel.

Exemple:

Figure 7.2: schéma bloc d'un système asservi avec montage en parallèle du correcteur

$$C(P) = \frac{S_3(P)}{\varepsilon(P)}$$
 avec $S_3(P) = S_1(P) + S_2(P)$

Or
$$H_1(P) = \frac{S_1(P)}{\varepsilon(P)} \implies S_1(P) = H_1(P). \ \varepsilon(P) \text{ et que } B(P) = \frac{S_2(P)}{\varepsilon(P)} \implies S_2(P) = B(P). \ \varepsilon(P)$$

Alors
$$S_3(P) = H_1(P) \cdot \varepsilon(P) + B(P) \cdot \varepsilon(P) = [H_1(P) + B(P)] \cdot \varepsilon(P)$$

Alors nous avons
$$C(P) = \frac{[H_1(P) + B(P)].\varepsilon(P)}{\varepsilon(P)} = H_1(P) + B(P)$$

Les différents types de correcteurs existant sont :

- ✓ Le correcteur proportionnel (CP)
- ✓ Le correcteur proportionnel-intégral (CPI)
- ✓ Le correcteur proportionnel -différentiel (CPD)
- ✓ Le correcteur proportionnel-intégral-différentiel (CPID)

7.2) Les correcteurs proportionnels (CP)

7.2.1) **Définition**

Son signal d'entrée est corrigé en un signal proportionnel à son signal d'entrée.

$$C(P) = K$$

$$C(P) = \frac{S(P)}{E(P)} \implies S(P) = C(P).E(P) \implies S(P) = K.E(P)$$

L'original
$$\Rightarrow S(t) = K.e(t)$$

7.2.2) L'influence du correcteur sur le système

$$G = 20.\log|C(j\omega)|$$

Or
$$C(j\omega) = K$$
 alors $G = 20. log K$

$$\checkmark$$
 Si $K = 0 \implies G \rightarrow -\infty$ alors pas de correction,

✓ Si
$$0 < K < 1$$
 \Rightarrow $G < 0$ alors le correcteur diminue l'amplitude (gain) du système,

✓ Si
$$K > 1 \implies G > 0$$
 alors le correcteur augmente l'amplitude (gain) du système,

✓ Si
$$K = 1 \implies G = 0$$
 alors le correcteur transfert son signal d'entrée à sa sortie.

$$\varphi = arg[C(j\omega)] \implies \varphi = argK = 0$$
 avec K étant un réel positif $\implies \varphi = 0$

7.3) Les correcteurs proportionnels-différentiels (CPD)

7.3.1) Définition

Le correcteur a comme transmittance $C(P) = K + \tau P$

$$C(P) = \frac{S(P)}{E(P)} \qquad \Rightarrow \qquad S(P) = C(P).E(P) \qquad \Rightarrow \qquad S(P) = K.E(P) + \tau.P.E(P)$$

L'original
$$\Rightarrow S(t) = K.e(t) + \tau.\frac{d}{dt}e(t)$$

Le correcteur corrige son signal d'entrée en un signal qui est égal à la somme d'un signal proportionnel à son signal d'entrée et d'un signal qui est égal à la dérivée de son signal d'entrée.

7.3.2) Les influences d'un correcteur sur le système

$$G = 20.\log|C(j\omega)| = 20.\log|K + j\tau\omega| = 20.\log|K + j\frac{\omega}{\omega_0}|$$
 avec $\tau = \frac{1}{\omega_0}$

$$\underline{\mathbf{1}^{\mathrm{er}} \mathbf{cas}} : \omega \ll \omega_0 \qquad \Longrightarrow \quad : \omega \to 0$$

$$K + j \frac{\omega}{\omega_0} \simeq K$$
 alors $G = 20. log K$ et que $\varphi = arg K = 0$

$$\underline{2^{\mathrm{ème}} \ \mathrm{cas}} : \omega \gg \omega_0 \qquad \Longrightarrow \quad : \omega \to +\infty$$

$$K + j \frac{\omega}{\omega_0} \simeq j \frac{\omega}{\omega_0}$$
 alors $G = 20. log \left| j \frac{\omega}{\omega_0} \right| \Longrightarrow G \to +\infty$

Donc il existe une asymptote oblique passant par $A\begin{pmatrix} \omega = \omega_0 \\ G = G_A \end{pmatrix}$ et par $B\begin{pmatrix} \omega = 2\omega_0 \\ G = G_B \end{pmatrix}$

$$\checkmark$$
 $C(j\omega) = j \frac{\omega}{\omega_0} = j \frac{\omega_0}{\omega_0} = j$ donc $G_A = 20.\log|j| = 20.\log(1) = 0 dB$

✓
$$C(j\omega) = j \frac{\omega}{\omega_0} = j \frac{2\omega_0}{\omega_0} = 2j$$
 donc $G_B = 20.\log|2j| = 20.\log(2) = 6 dB$

$$\varphi = arg[C(j\omega)] = arg\left[j\frac{\omega}{\omega_0}\right] = arg\left[j\frac{\omega}{\omega_0}\right] = arg(j) = \frac{\pi}{2}$$

Calculons G_0 et φ_0

$$G_0 = 20.\log|C(j\omega)| = 20.\log\left|K + j\frac{\omega_0}{\omega_0}\right| = 20.\log|K + j| = \frac{20}{2}.\log(K^2 + 1)$$

$$\varphi_0 = arg[C(j\omega_0)] = arg(K+j) = arctg(\frac{1}{K})$$

Pour tracer les courbes de Bode, on choisit K = 1

Figure 7.3: les courbes de Bode du correcteur PD

<u>**NB**</u>: Plus K > 1 plus le point se déplace vers le haut et le gain statique est supérieur à zéro.

Conclusion:

En basse fréquence c'est-à-dire $0 < \omega < \omega_0$, le correcteur agit sur le gain statique des systèmes et n'a aucune influence sur les arguments.

En haute fréquence c'est-à-dire $\omega > \omega_0$, le correcteur agit linéairement sur le gain dynamique et relève les argument des systèmes jusqu'à $\frac{\pi}{2}$.

Le correcteur proportionnel différentiel (CPD) peut également avoir comme transmittance

$$C(P) = K.\frac{1+\tau_1 P)}{1+\tau_2 P}$$
 avec la condition que $\tau_1 > \tau_2$

- Montage série CPD

Figure 7.4: schéma bloc d'un système asservi avec montage en série du correcteur PD

$$C(P) = K + \tau \cdot P \quad \text{or} \qquad C(P) = \frac{S_2(P)}{S_1(P)} \quad \Longrightarrow S_2(P) = C(P) \cdot S_1(P)$$

$$\Longrightarrow S_2(P) = K \cdot S_1(P) + \tau \cdot P \cdot S_1(P) = K \cdot S_1(P) + \tau \cdot \frac{d}{dt} \left(S_1(P) \right)$$

Le correcteur transforme son signal d'entrée en un signal égal à la somme d'un signal proportionnel à son signal d'entrée et un signal dérivée de son signal d'entrée.

- Montage parallèle CPD

Figure 7.5: schéma bloc d'un système asservi avec montage en parallèle du correcteur PD

$$D(P) = \frac{S_2(P)}{\varepsilon(P)} \qquad \Rightarrow S_2(P) = D(P).\varepsilon(P)$$

$$H_1(P) = \frac{S_1(P)}{\varepsilon(P)} \qquad \Rightarrow S_1(P) = H_1(P).\varepsilon(P)$$

$$C(P) = \frac{S_3(P)}{\varepsilon(P)} \qquad \Rightarrow S_3(P) = S_1(P) + S_2(P)$$

$$Alors \ S_3(P) = D(P).\varepsilon(P) + H_1(P).\varepsilon(P) = [D(P) + H_1(P)].\varepsilon(P)$$

$$H_1(P) = K \qquad \text{et} \qquad D(P) = \tau.P$$

$$C(P) = \frac{[D(P) + H_1(P)].\varepsilon(P)}{\varepsilon(P)} = D(P) + H_1(P) = K + \tau.P$$

Remarque: on a le même rôle que le montage série.

7.4) Les correcteurs proportionnels intégral (CPI)

7.4.1) **Définition**

Le correcteur a comme transmittance $C(P) = K + \frac{1}{\tau P}$

✓ Montage série CPI

Figure 7.6: schéma bloc d'un système asservi avec montage en série du correcteur PI

$$C(P) = \frac{S_2(P)}{S_1(P)} \implies S_2(P) = C(P).S_1(P)$$

$$S_2(P) = K.S_1(P) + \frac{S_1(P)}{\tau.P}$$

$$S_2(t) = K.S_1(t) + \frac{1}{\tau} \int S_1(t).dt$$

Le correcteur transforme son signal d'entrée en un signal égal à la somme d'un signal proportionnel au signal d'entrée et d'un signal intégral au signal d'entrée.

- Montage parallèle CPI

Figure 7.7: schéma bloc d'un système asservi avec montage en série du correcteur PI

$$C(P) = \frac{S_3(P)}{\varepsilon(P)} \implies S_3(P) = C(P). \, \varepsilon(P) = S_1(P) + S_2(P)$$

Alors
$$S_3(P) = [I(P) + H_1(P)] \cdot \varepsilon(P) = I(P) + H_1(P)$$

$$H_1(P) = K$$
 et que $I(P) = \frac{1}{\tau \cdot P}$ alors $C(P) = K + \frac{1}{\tau \cdot P}$

NB : le correcteur PI peut également avoir comme transmittance

$$C(P) = K. \frac{1+\tau_1 P}{1+\tau_2 P}$$
 à condition que $\tau_2 > \tau_1$

7.4.2) Les influences d'un correcteur sur les systèmes

$$C(P) = K + \frac{1}{\tau \cdot P} = K - j \frac{\omega_0}{\omega}$$

$$\underline{\mathbf{1}^{\mathrm{er}} \operatorname{\mathbf{cas}}} : \omega \ll \omega_0 \qquad \Longrightarrow \quad : \omega \to 0$$

Alors
$$K - j \frac{\omega_0}{\omega} \simeq -j \frac{\omega_0}{\omega}$$

$$G = 20. \log \left| -j \frac{\omega_0}{\omega} \right| \implies G \rightarrow +\infty$$
 (Asymptote verticale)

$$\varphi = arg\left[-j\frac{\omega_0}{\omega}\right] = -\frac{\pi}{2}$$

$$\underline{2^{\text{ème}} \text{ cas}} : \omega \gg \omega_0 \qquad \Rightarrow \quad : \omega \to +\infty$$

$$K - j \frac{\omega_0}{\omega} \simeq K$$
 alors $G = 20. log K$ et que $\varphi = arg K = 0$

Calculons G_0 et φ_0

$$G_0 = 20.\log|C(j\omega_0)| = 20.\log|K - j\frac{\omega_0}{\omega_0}| = \frac{20}{2}.\log(K^2 + 1)$$

$$\varphi_0 = arg[C(j\omega_0)] = arg(K - j) = arctg\left(-\frac{1}{K}\right)$$

Figure 7.8 : les courbes de Bode du correcteur PI

<u>NB</u>:

- \checkmark Pour K > 1, l'asymptote est horizontale .Alors G = 20. log K est relevé de même que G_0 et $φ_0$.
- ✓ Pour 0 < K < 1, l'asymptote est horizontale .Alors G = 20. log K < 0 est rabaissé de même que G_0 et ϕ_0 .
- ✓ Pour une basse fréquence le correcteur fait tendre le gain dynamique des systèmes à l'infini et diminue leur argument de $-\frac{\pi}{2}$.
- ✓ Pour une haute fréquence le correcteur agit sur le gain statique des systèmes en l'augmentant ou en le diminuant.

Il n'a aucune influence sur les arguments des systèmes.

7.5) Le correcteur proportionnel intégral-Différentiel (CPID)

7.5.1) **<u>Définition</u>**

Le CPID a comme transmittance $C(P) = K + \tau . P + \frac{1}{\tau . P}$

Il transforme son signal d'entrée en un signal qui est la somme de trois signaux qui sont :

- ✓ Un signal proportionnel à son signal d'entrée,
- ✓ Un signal égal à la dérivée de son signal d'entrée,
- ✓ Un signal égal à l'intégrale de son signal d'entrée.

- Montage série CPID

Figure 7.9: schéma bloc d'un système asservi avec montage en série du correcteur PID

$$C(P) = \frac{S_2(P)}{S_1(P)} \implies S_2(P) = C(P).S_1(P) \qquad \text{Alors } S_2(P) = K.S_1(P) + \tau.P.S_1(P) + \frac{S_1(P)}{\tau.P}$$

$$S_2(t) = K.S_1(t) + \tau.\frac{d}{dt} \left(S_1(t) \right) + \frac{1}{\tau} \int S_1(t) . dt$$

- Montage parallèle CPID

Figure 7.10: schéma bloc d'un système asservi avec montage en parallèle du correcteur PID

$$H_1(P) = K$$
 ; $F(P) = \tau . P + \frac{1}{\tau . P}$

$$C(P) = \frac{S_3(P)}{\varepsilon(P)}$$
 or $S_3(P) = S_1(P) + S_2(P)$

avec
$$S_1(P) = H_1(P) \cdot \varepsilon(P)$$
 et que $S_2(P) = F(P) \cdot \varepsilon(P)$

Alors
$$S_3(P) = H_1(P) \cdot \varepsilon(P) + F(P) \cdot \varepsilon(P) = [H_1(P) + F(P)] \cdot \varepsilon(P)$$

Alors nous avons
$$C(P) = \frac{[H_1(P) + F(P)].\varepsilon(P)}{\varepsilon(P)} = H_1(P) + B(P) = K + \tau \cdot P + \frac{1}{\tau \cdot P}$$

7.5.2) Influence du correcteur sur les systèmes

Cherchons à tracer les courbes de Bode de C(P)

$$C(j\omega) = K + j\tau\omega + \frac{1}{j\tau\omega} = K + j\frac{\omega}{\omega_0} - j\frac{\omega_0}{\omega}$$

$$0 \qquad \qquad +\infty$$

$$1 \text{ er } \cos : \omega \ll \omega_0 \qquad \Rightarrow \qquad : \omega \to 0$$

$$1 \frac{\omega}{\omega_0} \to 0 \text{ et } j\frac{\omega_0}{\omega} \to +\infty$$

$$G = 20.\log|C(j\omega)| = 20.\log\left|-j\frac{\omega_0}{\omega}\right| = +\infty$$

 $\omega \to 0$ et G $\to +\infty$ donc il existe une asymptote verticale

$$\varphi = arg[C(j\omega)] = arg\left[-j\frac{\omega_0}{\omega}\right] = -\frac{\pi}{2}$$

En basse fréquence, le correcteur diminue l'argument des systèmes de $-\frac{\pi}{2}$ et augmente le gain en le faisant tendre vers l'infini

$$\underline{2^{\text{ème}} \text{ cas}} : \omega \gg \omega_0 \qquad \Rightarrow \qquad : \omega \to +\infty$$

$$j \frac{\omega}{\omega_0} \to +\infty \text{ et } j \frac{\omega_0}{\omega} \to 0$$

$$C(j\omega) = j \frac{\omega}{\omega_0} F(P)$$

 $G_0 = 20. \log |C(j\omega)| = 20. \log \left(j \frac{\omega}{\omega_0}\right) = +\infty$ d'où l'existence d'une asymptote oblique.

$$A\begin{pmatrix} \omega = \omega_0 \\ G = G_A \end{pmatrix} \quad \text{et} \quad B\begin{pmatrix} \omega = 2\omega_0 \\ G = G_B \end{pmatrix}$$

$$G_A = 20.\log\left(j\frac{\omega_0}{\omega_0}\right) = 0$$

$$G_B = 20.\log\left(j\frac{2\omega_0}{\omega_0}\right) = 6.02 dB$$

$$\varphi = arg[C(j\omega)] = arg\left[j\frac{\omega}{\omega_0}\right] = \frac{\pi}{2}$$

En haute fréquence le correcteur augmente l'argument des systèmes de $\frac{\pi}{2}$ et augmente le gain des systèmes en le faisant tendre vers l'infini.

Calculons G_0 et φ_0 pour $\omega = \omega_0$

$$C(j\omega_0) = K + j\tau\omega_0 + \frac{1}{j\tau\omega_0} = K + j\frac{\omega_0}{\omega_0} - j\frac{\omega_0}{\omega_0} = K + j - j = K$$

$$G_0 = 20.\log K \text{ avec } 0 \le K \le 1$$

$$\varphi_0 = argK = 0$$

Si l'on prend $K \simeq 1$ pour faire le tracé des courbes de Bode $G_0 = 20.\log K = 20.\log 1 = 0$, alors le correcteur n'a aucune influence sur le gain et l'argument.

Figure 7.11: les courbes de Bode du correcteur PID

<u>NB</u>:

- ✓ Pour K R(P) > 1, le point A est relevé.
- ✓ Pour 0 < K < 1, le point A est rabaissé.

Le correcteur PID corrige les insuffisances des correcteurs PD et PI c'est le plus parfait des correcteurs.