### **Credit Card Churn Model**

### **Data dictionary**

- CLIENTNUM ID of the customer holding the credit card.
- Customer\_Age Age of the customer.
- · Gender Sex of the customer.
- Dependent\_count Number of dependents of the customer.
- Education Level Educational qualification of the customer.
- · Marital Status Civil status of the customer.
- Income\_Category Annual income range of the customer.
- Card\_Category Type of card owned by the customer.
- Months\_on\_book Number of months elapsed since the account opening.
- Total\_Relationship\_Count Total number of products held by the customer.
- Months\_Inactive\_12\_mon Number of months with no transactions in the last year.
- Contacts Count 12 mon Number of contacts with the bank in the last year.
- Credit Limit Credit limit on the credit card.
- Total\_Revolving\_Bal Total revolving balance on the credit card.
- Avg\_Open\_To\_Buy Average card "Open To Buy" (=credit limit account balance) in the last year.
- Total\_Amt\_Chng\_Q4\_Q1 Change in transaction amount over the last year (Q4 over Q1).
- Total Trans Amt Total amount of transactions made in the last year.
- Total\_Trans\_Ct Number of transactions made in the last year.
- Total Ct Chng Q4 Q1 Change in transaction number over the last year (Q4 over Q1).
- Avg\_Utilization\_Ratio Average card "Utilization ratio" (=account balance / credit limit) in the last year.
- Attrition\_Flag Target variable. "Attrited Customer" if the customer closed their account, otherwise "Existing Customer".

### Import library

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

%matplotlib inline
```

### Read data

```
In [2]: ds = pd.read_csv('BankChurners.csv')
ds.head()
```

#### Out[2]:

|   | CLIENTNUM | Attrition_Flag       | Customer_Age | Gender | Dependent_count | Education_Level | Marital_Status | Income_Category   | Card_Category | Months_ |
|---|-----------|----------------------|--------------|--------|-----------------|-----------------|----------------|-------------------|---------------|---------|
| 0 | 768805383 | Existing<br>Customer | 45           | М      | 3               | High School     | Married        | 60 <i>K</i> -80K  | Blue          |         |
| 1 | 818770008 | Existing<br>Customer | 49           | F      | 5               | Graduate        | Single         | Less than \$40K   | Blue          |         |
| 2 | 713982108 | Existing<br>Customer | 51           | М      | 3               | Graduate        | Married        | 80 <i>K</i> -120K | Blue          |         |
| 3 | 769911858 | Existing<br>Customer | 40           | F      | 4               | High School     | Unknown        | Less than \$40K   | Blue          |         |
| 4 | 709106358 | Existing<br>Customer | 40           | M      | 3               | Uneducated      | Married        | 60 <i>K</i> -80K  | Blue          |         |

5 rows × 23 columns

**Data cleaning** 

In [3]: ds = ds.iloc[:,1:-2]
ds

Out[3]:

|                         | Attrition_Flag       | Customer_Age | Gender | Dependent_count | Education_Level | Marital_Status | Income_Category   | Card_Category | Months_on_book |
|-------------------------|----------------------|--------------|--------|-----------------|-----------------|----------------|-------------------|---------------|----------------|
| 0                       | Existing<br>Customer | 45           | М      | 3               | High School     | Married        | 60 <i>K</i> -80K  | Blue          | 39             |
| 1                       | Existing<br>Customer | 49           | F      | 5               | Graduate        | Single         | Less than \$40K   | Blue          | 44             |
| 2                       | Existing<br>Customer | 51           | М      | 3               | Graduate        | Married        | 80 <i>K</i> -120K | Blue          | 36             |
| 3                       | Existing<br>Customer | 40           | F      | 4               | High School     | Unknown        | Less than \$40K   | Blue          | 34             |
| 4                       | Existing<br>Customer | 40           | М      | 3               | Uneducated      | Married        | 60 <i>K</i> -80K  | Blue          | 21             |
|                         | •••                  |              |        |                 |                 |                |                   |               |                |
| 10122                   | Existing<br>Customer | 50           | М      | 2               | Graduate        | Single         | 40 <i>K</i> -60K  | Blue          | 40             |
| 10123                   | Attrited<br>Customer | 41           | М      | 2               | Unknown         | Divorced       | 40 <i>K</i> -60K  | Blue          | 25             |
| 10124                   | Attrited<br>Customer | 44           | F      | 1               | High School     | Married        | Less than \$40K   | Blue          | 36             |
| 10125                   | Attrited<br>Customer | 30           | М      | 2               | Graduate        | Unknown        | 40 <i>K</i> -60K  | Blue          | 36             |
| 10126                   | Attrited<br>Customer | 43           | F      | 2               | Graduate        | Married        | Less than \$40K   | Silver        | 25             |
| 10127 rows × 20 columns |                      |              |        |                 |                 |                |                   |               |                |
| 10121                   | 20 30101             |              |        |                 |                 |                |                   |               |                |

```
In [4]: ds.isnull().sum()
Out[4]: Attrition Flag
                                    0
        Customer Age
                                    0
        Gender
        Dependent count
        Education Level
        Marital Status
        Income Category
        Card Category
        Months on book
        Total Relationship Count
        Months Inactive 12 mon
                                    0
        Contacts Count 12 mon
        Credit Limit
        Total Revolving Bal
                                    0
        Avg Open To Buy
        Total Amt Chng Q4 Q1
        Total Trans Amt
        Total Trans Ct
        Total Ct Chng 04 01
        Avg Utilization Ratio
        dtype: int64
```

#### **EDA**

### Seperate numerical and categorical data

```
In [6]: ds cat.nunique()
Out[6]: Attrition_Flag
                           2
                           2
        Gender
        Education Level
                           7
        Marital Status
                           4
        Income Category
                           6
        Card Category
                           4
        dtype: int64
In [7]: for i in ds cat.columns:
            print(f'{i}: {pd.unique(ds_cat[i])}') #unique values for categorical data
        Attrition Flag: ['Existing Customer' 'Attrited Customer']
        Gender: ['M' 'F']
        Education_Level: ['High School' 'Graduate' 'Uneducated' 'Unknown' 'College' 'Post-Graduate'
         'Doctorate'l
        Marital Status: ['Married' 'Single' 'Unknown' 'Divorced']
        Income Category: ['$60K - $80K' 'Less than $40K' '$80K - $120K' '$40K - $60K' '$120K +'
         'Unknown']
        Card_Category: ['Blue' 'Gold' 'Silver' 'Platinum']
```

### Visualize numerical data

```
In [68]: for i in ds_num.columns:
    plt.subplots(figsize = (10,5))
    plt.hist(ds_num[i], color = 'salmon', bins = 15)
    plt.title(i)
    plt.grid()
    plt.ylabel('No of Customer')
    plt.show()
```



























```
In [79]: print('Oldest Customer: ', ds.Customer_Age.max())
    print('Youngest Customer: ', ds.Customer_Age.min())
    print('Lowest Months On Book: ', ds.Months_on_book.min())
    print('Longest Months On Book: ', ds.Months_on_book.max())

Oldest Customer: 73
    Youngest Customer: 26
    Lowest Months On Book: 13
    Longest Months On Book: 56
```

- The customer age histogram is symmetrical and unimodal. The peak of the histogram lies at 50 years which means most of the customer age is around 50 years old. The youngest customer age is 26 years old while the oldest customer age is 73 years old.
- The months on book histogram issymmetrical and unimodal. The peak of the histogram lies at 36 months which means most of the customer in on book for 36 months. The shortest months customer on book is 13 months while the longest months customer on book is 56 months.

### Visualize categorical data

```
In [80]: for i in ds_cat.columns:
    plt.subplots(figsize = (10,5))
    sns.barplot(ds_cat[i].value_counts().index, ds_cat[i].value_counts()).set_title (i)
    plt.grid()
    plt.show()
```











• Most of the credit card customer is a graduated education level.

• Most of the credit card customer has income less than 40k usd

# Visualizing numerical data with output





\_

## ${\bf Customer\ Churn\ According\ To\ Months\_on\_book}$



Customer Churn According To Total\_Relationship\_Count













0.5

0.0

Existing Customer

Attrited Customer

Attrition\_Flag





• We notice a major difference when analyzing the revolving balance of the customers credit lines. More than half of the churned customers have paid off all their debt. It is unclear whether this measure for the revolving balance is conducted before or after the termination of the credit line

- and whether customers who cancel their credit cards are asked to pay off all their standing debt.
- Most of credit card customer that has total amount of transactions made in the last year higher than 2500 usd and the number of transactions made in the last year higher than 50 transactions has lower probability to churn. Churned customers used their credit card less often and spent significantly less money.

## Visualizing categorical data with output

```
In [11]: for i in ds_cat.columns[1:]:
     sns.catplot(x = i, data = ds, kind = 'count', hue = 'Attrition_Flag', aspect = 2, height = 6)
     plt.title(f'{i} Categorize By Customer Churn')
```











# Preparing data for machine learning

```
In [13]: X = ds.iloc[:,1:].values
y = ds.iloc[:,0].values
```

```
In [14]: from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
y = le.fit_transform(y)
X[:,1] = le.fit_transform(X[:,1])

In [15]: from sklearn.compose import ColumnTransformer
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [3, 4, 5, 6])], remainder = 'passthrough')
X = ct.fit_transform(X)

In [16]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

In [17]: from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)
```

### **Machine learning**

### **Naive Bayes**

The accurancy score is 87.41362290227048

### **Logistic regression**

The accurancy score is 90.37512339585389

## **K Nearest Neighbours**

In [27]: cmSVC = confusion\_matrix(y\_test,y\_pred)

print(cmSVC)

[[ 185 124] [ 67 1650]]

```
In [23]: from sklearn.neighbors import KNeighborsClassifier
         classifierKNN = KNeighborsClassifier(n neighbors=5, metric='minkowski',p=2)
         classifierKNN.fit(X train,y train)
         y pred=classifierKNN.predict(X test)
In [24]: cmKNN = confusion matrix(y test,y pred)
         print(cmKNN)
         [[ 93 216]
          [ 38 1679]]
In [25]: ACC KNN = accuracy_score(y_test, y_pred)*100
         print('The accurancy score is ', ACC KNN)
         model acc['K Nearest Neighbour'] = ACC KNN
         The accurancy score is 87.4629812438302
         Support Vector Machine
In [26]: from sklearn.svm import SVC
         classifierSVC = SVC(kernel='linear', random state=0) #kernel can be changed to increase accurancy
         classifierSVC.fit(X train,y train)
         y pred = classifierSVC.predict(X test)
```

```
In [28]: ACC_SVC = accuracy_score(y_test, y_pred)*100
print('The accuracy score is ', ACC_SVC)
model_acc['Support Vector Machine'] = ACC_SVC
```

The accuracy score is 90.57255676209279

The accurancy score is 93.97828232971372

#### **Desicion Tree**

#### **Random Forest**

The accurancy score is 95.06416584402764

#### **XGBoost**

The accurancy score is 97.38400789733464

#### **Artificial Neural Network**

```
In [60]: import tensorflow as tf
    ann = tf.keras.models.Sequential()
    ann.add(tf.keras.layers.Dense(units=5, activation='relu')) #input layer and first hidden layer
    ann.add(tf.keras.layers.Dense(units=5, activation='relu')) #second hidden Layer
    ann.add(tf.keras.layers.Dense(units=5, activation='relu')) #third hidden Layer
    ann.add(tf.keras.layers.Dense(units=5, activation='relu')) #fourth hidden Layer
    ann.add(tf.keras.layers.Dense(units=1, activation='sigmoid')) #output layer
In [61]: | ann.compile(optimizer = 'adam', loss = 'binary crossentropy', metrics = ['accuracy'])
    ann.fit(X train, v train, batch size = 32, epochs = 100)
    LDOCH // TOO
    Epoch 8/100
    Epoch 9/100
    Epoch 10/100
    Epoch 11/100
    Epoch 12/100
    Epoch 13/100
    Epoch 14/100
    Epoch 15/100
    Epoch 16/100
```

254/254 5

```
In [62]: y_pred = ann.predict(X_test)
         y_pred = (y_pred > 0.5)
         np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1)
Out[62]: array([[1, 1],
                [0, 0],
                [1, 1],
                . . . ,
                [1, 0],
                [1, 1],
                [1, 1]])
In [63]: cmAnn = confusion matrix(y test, y pred)
         print(cmAnn)
         [[ 239 70]
          [ 66 1651]]
In [64]: ACC Ann = accuracy score(y test, y pred)*100
         print('The accurancy score is ', ACC Ann)
         model acc['Artificial Neural Network'] = ACC Ann
```

The accurancy score is 93.2872655478776

# Accurancy summary of all model

```
In [65]: model_ds = pd.DataFrame.from_dict(model_acc,orient = 'index',columns = ['Accuracy Score'])
    model_ds = model_ds.sort_values(by ='Accuracy Score',ascending = False)
    model_ds
```

#### Out[65]:

|                                  | Accuracy Score |
|----------------------------------|----------------|
| XGBoost                          | 97.384008      |
| Random Forest Classification     | 95.064166      |
| Decision Tree                    | 93.978282      |
| <b>Artificial Neural Network</b> | 93.287266      |
| <b>Support Vector Machine</b>    | 90.572557      |
| Logistic Regression              | 90.375123      |
| K Nearest Neighbour              | 87.462981      |
| Naive Bayes                      | 87.413623      |

```
In [66]: gig,ax = plt.subplots(figsize = (12,6))
sns.barplot(x="Accuracy Score", y=model_ds.index, data=model_ds,color = 'salmon')
plt.title('Credit Card Churn Model Accuracy Score', fontsize=15, color="blue")
```

Out[66]: Text(0.5, 1.0, 'Credit Card Churn Model Accuracy Score')

#### Credit Card Churn Model Accuracy Score



For conclusion, XGBoost model have the highest accuracy than other model which is 97.384%. Other model approach does not perform as good as XGB which is the second highest accuracy is Random Forest with 95%. But from the confusion matrix score, the data have high bias towards existing customer. We need more data from customer that has churn to get the complexity of the model.

| In [ ]: | : |  |
|---------|---|--|
|         |   |  |