Einführung in die Mathematik für Informatiker Lineare Algebra

Prof. Dr. Ulrike Baumann www.math.tu-dresden.de/~baumann

12.11.2017

6. Vorlesung

- Spannraum Span(T), Linearkombinationen von Vektoren
- Lineare Unabhängigkeit von Vektoren
- Lineare Abhängigkeit von Vektoren
- Basis und Dimension eines Vektorraums
- Koordinatenvektoren

BSP. aus der Informatik

(1) UVR der Splinefunktion Linearcode

(2) $V = GF(2)^n$ Matrix $H \in GF(2)^{m \times n}$ L= 2566F(2) $V = GF(2)^n$ 11/12 Von 6/2)

6. Vorlesung

Lineare Algebra

- Spannraum Span(T), Linearkombinationen von Vektoren
- Lineare Unabhängigkeit von Vektoren
- Lineare Abhängigkeit von Vektoren
- Basis und Dimension eines Vektorraums
- Koordinatenvektoren

Untervektorräume eines Vektorraums werden auch Lineare Teilräume genannt.

Rückblick: Untervektorraum

Sei $(V; +, (k \mid k \in K))$ ein K-Vektorraum.

Eine Teilmenge U von V bildet einen Untervektorraum von V, wenn gilt:

- **1** 0_V ∈ U
- ② U ist abgeschlossen bezüglich der Addition, die auf V erklärt ist:

$$v_1, v_2 \in U \Rightarrow v_1 + v_2 \in U$$

 ${\it 0}$ ${\it U}$ ist abgeschlossen bezüglich der Skalarmultiplikation des Vektorraums ${\it V}$:

$$k \in K \text{ und } v \in U \implies kv \in U$$

2.B H= (100)

$$C = \{\{0\}, \{1\}\}\}$$
 ist ein uur

Non $Gf(2)^3$, dem.

(1) $\{0\} = 0_{GF(2)^3} \in C$

(2) $\{0\} + \{0\}, \{0\} + \{1\}, \{1\} + \{0\}, \{1\} + \{1\}\} \in C$

(3) $D(0)^3$, $D(0)^3$,

Spannraum Span(T)

- Der Durchschnitt von Untervektorräumen des Vektorraums V ist ein Untervektorraum von V.
- Zu jeder Teilmenge T ⊆ V gibt es einen <u>kleinsten</u>
 <u>Untervektorraum</u>, <u>der alle Elemente</u> von <u>T enthält</u>.
 Insbesondere ist der Nullraum der kleinste Untervektorraum, der die leere Menge enthält.
- Sei V ein K-Vektorraum und T

 V.
 Man nennt den kleinsten Untervektorraum von V,
 der alle Elemente von T enthält, den Spannraum von T.

Dieser Untervektorraum von V wird mit Span(T) bezeichnet.

$$Span(v) = V$$

$$Span(\beta) = \{0, ($$

Linearkombinationen

• Sind v_1, v_2, \ldots, v_n Vektoren aus einem K-Vektorraum V und k_1, k_2, \ldots, k_n Elemente von K, dann nennt man

$$k_1v_1+k_2v_2+\cdots+k_nv_n\in V$$

eine Linearkombination der Vektoren v_1, v_2, \ldots, v_n .

• Sei V ein K-Vektorraum. Für jede Teilmenge $\underline{T} = \{t_1, t_2, \ldots, t_n\}$ erhält man den Spannraum Span(T) als Menge aller Linearkombinationen von Vektoren aus T:

$$Span(T) = \{k_1t_1 + k_2t_2 + \dots + k_nt_n \mid k_1, k_2, \dots, k_n \in K\}$$

Lineare Unabhängigkeit, Lineare Abhängigkeit

• Eine Folge (v_1, v_2, \dots, v_n) von Vektoren aus einem K-Vektorraum V heißt <u>linear unabhängig</u>, wenn aus

$$k_1v_1+k_2v_2+\cdots+k_nv_n=0$$

mit $k_1, k_2, \ldots, k_n \in K$ stets

$$k_1 = k_2 = \cdots = k_n = 0$$

folgt. Andernfalls heißt die Folge linear abhängig.

 Man spricht auch von linear unabhängigen bzw. linear abhängigen Mengen von Vektoren (oder kurz von linear unabhängigen bzw. linear abhängigen Vektoren).

Die leere Menge \emptyset ist linear unabhängig.

Basis eines Vektorraums

Eine <u>Teilmenge B eines K-Vektorraums V heißt Basis von V</u>, wenn gilt:

- $V = \operatorname{Span}(B)$
- <u>B</u> ist linear unabhängig.

Bemerkung:

Gilt $V = \text{Span}(\{v_1, v_2, \dots, v_n\})$, dann nennt man (v_1, v_2, \dots, v_n) ein <u>Erzeugendensystem von V.</u>

Basen eines Vektorraums sind linear unabhängige

Erzeugendensysteme.

$$\begin{array}{c} \mathbb{RP}(0) = 0 \\ \mathbb{RP}(0) = 0 \end{array}$$
 Standard Basis von R standard Basis von R , $\mathbb{RP}(0) = 0$ mit $\mathbb{RP}(0) = 0$ so $\mathbb{R$

1 ist Pine Basis für ist eine Basis für C ist eine Basis von Dixt (4) Der Willraum ED, hat als Basis of

Basisdarstellung

• Ist $B=(b_1,b_2,\ldots,b_n)$ eine (angeordnete) Basis des K-Vektorraums V, so lässt sich jeder Vektor $v\in V$ eindeutig als Linearkombination

$$v=k_1b_1+k_2b_2+\cdots+k_nb_n$$
 mit $k_1,k_2,\ldots,k_n\in K$ und $b_1,b_2,\ldots,b_n\in B$ darstellen.

- Diese eindeutig bestimmten Skalare $k_1, k_2, ..., k_n \in K$ nennt man die Koordinaten des Vektors v bezüglich der Basis $(b_1, b_2, ..., b_n)$;
- Koordinatenvektor v_B von v bezüglich der Basis B:

$$v_B = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}$$

Ulrike Baumann

Lineare Algebra

Sätze über Basen von Vektorräumen

- Jeder Vektorraum V besitzt eine Basis.
- Jedes Erzeugendensystem von V enthält eine Basis von V:
 Eine Basis ist ein minimales Erzeugendensystem des Vektorraums.
- Jede linear unabhängige Teilmenge von V kann durch Hinzunahme weiterer Vektoren zu einer Basis von V ergänzt werden:
 - <u>Eine Basis ist eine maximale linear unabhängige</u> <u>Teilmenge des Vektorraums.</u>
- Je zwei Basen eines Vektorraums haben die gleiche Anzahl von Elementen. V Cin K-VR. B. Basen

Diese Aussage folgt aus dem Austauschsatz von Steinitz:

$$v \in \operatorname{Span}(T \cup \{w\}) \text{ und } v \notin \operatorname{Span}(T) \Rightarrow w \in \operatorname{Span}(T \cup \{v\})$$

Dimension eines Vektorraums

Die Dimension $\dim(V)$ eines Vektorraums V ist die Mächtigkeit einer Basis von V.

Ist B eine Basis des Vektorraums V mit $|B| = n \in \mathbb{N}$, dann gilt:

$$\dim(V) = n$$

Beispiele:

- eispiele: din(V) := |B| din(V) := |B| din(V) = |B|

Ulrike Baumann

Lineare Algebra

. Se', V. ein K-Eine angeordnete Rasig un V. Och Dann nennt man die eindentig Lestimmle Mit Ky, trobut ... trobus den Koordinaten releas von V

Folgerungen

Es sei V ein K-Vektorraum mit dim(V) = n.

- Je *n* linear unabhängige Vektoren bilden eine Basis.
- Jedes Erzeugendensystem mit *n* Elementen bildet eine Basis.
- Mehr als n Vektoren sind stets linear abhängig.
- Für jeden Untervektorraum U von V mit $U \neq V$ gilt $\dim(U) < \dim(V)$.

Linear abhängige Vektoren

- Enthält eine Folge von Vektoren den Nullvektor, dann ist sie linear abhängig.
- Es sei V ein K-Vektorraum und v_1, v_2, \ldots, v_n seien Vektoren aus V. Dann sind die folgenden Aussagen äquivalent:
 - ① Die Folge (v_1, v_2, \ldots, v_n) ist linear abhängig.
 - **2** Es gibt ein $i \in \{1, 2, ..., n\}$ mit

$$v_i \in \mathsf{Span}(\{v_1, v_2, \ldots, v_n\} \setminus \{v_i\}).$$

3 Es gibt ein $i \in \{1, 2, ..., n\}$ mit

$$\mathsf{Span}(\{v_1,v_2,\ldots,v_n\}) = \mathsf{Span}(\{v_1,v_2,\ldots,v_n\} \setminus \{v_i\}).$$

Linear unabhängige Vektoren

Es sei V ein K-Vektorraum und v_1, v_2, \ldots, v_n seien Vektoren aus V. Die folgenden Aussagen sind äquivalent:

- ① Die Folge (v_1, v_2, \ldots, v_n) ist linear unabhängig.
- 2 Jeder Vektor $v \in \text{Span}(\{v_1, v_2, \dots, v_n\})$ ist eindeutig als Linearkombination

$$v = k_1 v_1 + k_2 v_2 + \cdots + k_n v_n$$

mit $k_1, k_2, \ldots, k_n \in K$ darstellbar.