

Kevin Sturm

modified version of LaTex script (2018) by

Prof. Dr. Winried Auzinger

Prof. Dr. Dirk Praetorius

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Institut für Analysis und Scientific Computing

TeX

- ► T_EX ist Programmiersprache für Textverarbeitung
 - entwickelt '77 '86 von Prof. Donald Knuth, Stanford University
 - Ziel: The Art of Computer Programming (Neuauflage, Band 2)
 - Befehlsumfang etwa 300 Befehle
- ► T_EX ist Freeware, aber eingetrag. Warenzeichen
 - entweder T_EX oder TeX schreiben!
 - Versionsnummer konvergiert gegen π , derzeit 3.14159265
 - * bei Knuths Tod wird Weiterentwicklung gestoppt & Versionsnummer auf π gesetzt.
- TEX gilt als fehlerfreie Software
 - jeder gefundene Fehler wird derzeit mit USD 327,68 (= 2¹⁵ Cent) belohnt
- ► T_EX erlaubt eigenes Schreiben von Makros
 - * Makro = Abkürzung für gewisse Befehlsfolge
 - Interpreter ersetzt beim Übersetzen
 Abkürzung durch vollständigen Code
 - * entspricht etwa inline-Funktion in C/C++

2

Was sind TeX und LaTeX?

- ► TEX & LATEX
- ▶ Vor- und Nachteile gegenüber Word

1

3

Makro-Pakete für TeX

- '82 veröffentlicht American Mathematical Society eine Makro-Sammlung amstex für T_EX
 - sollte verwendet werden für wissenschaftliche Veröffentlichungen in den Journalen der AMS
- ▶ '85 veröffentlicht Leslie Lamport die Makro-Sammlung L^AT_EX
 - heute de facto Standard in der Mathematik
 - '89 '03 Entwicklung von LATEX3 (unvollendet!)
 - aktuelle Version ist $^{LAT}EX 2_{\varepsilon}(2003)$
 - * LATEX3-Projekt für abgeschlossen erklärt
- ► T_EX erlaubt Makros von Makros zu bilden
 - zahlreiche Erweiterungen von LATEX

Vorteile von LaTeX

- ▶ LATEX ist Freeware
 - für alle gängigen System vorhanden
- produziert professionelles Layout
 - Layout-Vorlagen für Artikel/Bücher/Folien
- math. Formeln können gut umgesetzt werden
- ▶ Dokumente lassen sich problemlos erweitern
 - Layout wird automatisch angepasst
 - Referenzen (Numerierungen etc.) werden automatisch angepasst
 - automatisches Inhaltsverzeichnis und Stichwortregister
- direkte Schnittstelle zu ps/pdf

Nachteile von LaTeX

- Einarbeitungszeit (Programmiersprache!)
- nicht-klickbar
- idR. nicht "What you see, is what you get"
 - es gibt aber WYSIWYG-Editoren, z.B. LyX

4

6

 eigene Layout-Vorlagen sind vergleichsweise kompliziert zu schreiben

Literatur and more

- Overleaf online documentation
 - https://de.overleaf.com/learn.
- Tobias Oetiker, Hubert Partl, Irene Hyna et al.: The Not So Short Introduction to LATEX 2ε Version 6.3 (März 2018)
 - http://www.asc.tuwien.ac.at/compmath
- Klaus Braune, Joachim + Marion Lammarsch: LaTeX - Basissystem, Layout, Formelsatz Springer 2006.

Web-Literatur

- ▶ Übersicht über (mathematische) Symbole
 - http://de.wikipedia.org/wiki/Wikipedia:TeX
- gemaltes Symbol nach LaTeX übersetzen
 - http://detexify.kirelabs.org/
- android apps:
 - detexify
 - mathpix

Das erste LaTeX-File

- tex-File, log-File, dvi-File
- Konvertierung in ps-/pdf-Format
- Hello World
- Standard-Layouts article, report, book
- deutsche Sonderzeichen
- ► \documentclass
- ► \usepackage
- \begin{document} ... \end{document}
- \usepackage[latin1]{inputenc}
- \usepackage[ngerman]{babel}

Wie erstellt man ein LaTeX-File?

5

- Starte Editor vim (oder neovim) aus einer Shell mit vim &
 - Die wichtigsten Tastenkombinationen:
 - * i = insert mode
 - * v = visual mode
 - * <ESC> = normal mode
 - * :wq = write file and quit
- ▶ Öffne eine (ggf. neue) Datei name.tex
 - Endung .tex ist Kennung eines TEX/LATEX-Files
- ▶ Die ersten beiden Punkte kann man auch simultan erledigen mittels vim name.tex \&
- Schreibe Source-Code
- > Speichern: :w
- ► Kompilieren mit latex name.tex
- Falls Code fehlerfrei, erhält man
 - name.dvi : DeVice Independent File
 - * = visualisierbarer Output
 - name.aux : interne Hilfsdatei (AUXiliary file)
 - * Wichtig für Referenzen (später!)
 - name.log : Log-File
 - * = Shell-Output beim Übersetzen des Codes
- ► Alternativ Kompilieren mit pdflatex name.tex
 - liefert name.pdf Statt name.dvi

Post-Processing

- Visualisierung mittels DVI-Viewer
 - z.B. xdvi name.dvi
- Konvertieren ins Postscript-Format
 - dvips name.dvi -o name.ps -Ppdf erzeugt name.ps
 - * Option -o name.ps kann bisweilen entfallen
 - Option -Ppdf um pixel-freies PDF erzeugen zu können
- Konvertieren ins PDF-Format
 - ps2pdf name.ps erzeugt name.pdf
 - dvi2pdf name.dvi erzeugt name.pdf
 - * ist nicht auf allen Systemen unterstützt

Viewer unter Unix

- dvi: xdvi
- ps: evince, gv
- pdf: zathura, okular, evince, Foxitreader

Das erste LaTeX-Programm

```
% helloworld.tex
documentclass[a4paper,11pt]{article}

usepackage{fullpage}

begin{document}
Hello World! Hello w\"orld.
kend{document}
```

- Zeilennummern gehören nicht zum Code (sind lediglich Referenzen auf Folien)
- ▶ Jedes L^ATEX-Programm besitzt die Zeilen 2, 6, 8.
- ▶ Übersetzung stets sequentiell von oben nach unten
- ► Zeilen vor \begin{document} bilden LATEX-Kopf
 - legt Layout des Dokuments fest : Zeile 2
 - bindet Makro-Pakete ein : Zeile 4
 - Definition von eigenen Makros
- ➤ Zeilen \begin{document} ... \end{document} schließen eigentliches Dokument
 - Hier: nur Zeile 7, eine einzige Zeile
- ▶ Zeile 1 ist Kommentarzeile, eingeleitet durch %
- ► LATEX-Befehle beginnen immer mit \
 - \documentclass, \usepackage, \begin, \end
 - Optionale Parameter immer in [...]
 - Obligatorische Parameter immer in { ... }

9

Dokument-Klassen

8

- \documentclass[options]{dokumenttyp}
- ▶ default-Dokumenttypen in LAT_EX:
 - article = wiss. Publikationen
 - report = kurze Bücher, Dipl.arbeiten
 - book = Bücher
 - slides = Folien, Präsentationen

Optionale Parameter für article

- ▶ 10pt, 11pt, 12pt = Schriftgröße für Standardtext
- ► a4paper (Papiergröße)
 - default letterpaper = US-Maße
- ▶ fleqn = Formeln linksbündig statt zentriert
- leqno = Formelnumerierung links statt rechts
- titlepage = neue Seite nach Titel/Autor etc.
 - default ist notitlepage
- twocolumn = zweispaltig statt einspaltig
 - default ist onecolumn
- twoside = zweiseitiges Dokument statt einseitig
 - default ist oneside
- landscape = Querformat statt Hochformat

Optionale Parameter für report und book

Wie bei article, Ausnahmen:

- notitlepage = keine neue Seite nach Titelseite
 - Standard ist titlepage
- oneside = einseitiges Dokument
 - Standard ist twoside
- ▶ openany = Neue Kapitel beginnen auf neuer Seite
 - Standard ist openright = Neue Kapitel beginnen stets auf der nächsten rechten Seite

Einbinden von Packages

- \usepackage[options]{packagename}
 - bindet packagename ein
 - optionale Parameter options

```
% helloworld.tex
\documentclass[a4paper,11pt]{article}
\usepackage{fullpage}
\usepackage[utf8]{inputenc}
\usepackage[ngerman]{babel}
\begin{document}
Hello W\"orld!
\end{document}
```

- ▶ fullpage = minimiert Randbereiche
- inputenc = Erlaubt direkte Verwendung von Sonderzeichen
 - Option latin1 f
 ür dt. Sonderzeichen (Windows)
 - Option utf8 für dt. Sonderzeichen (i.d.R. UNIX)
 - * z.B. ä, ü, ö, ß
 - Vergessen ⇒ Sonderzeichen werden ausgelassen
 - * d.h. Hello Wrld! statt Hello Wörld! im DVI
 - latin1 oder utf idR. im Editor einstellen/wählen
- ▶ babel = Wahl der Sprache des Dokuments
 - * ngerman = neue dt. Rechtschreibung
 - beeinflusst automatische Silbentrennung
 - "Kapitel" statt "Chapter" etc.

Elementarer Text

- Leerzeichen
- Silbentrennung
- Absätze, Ausrichtung
- Schriftgröße, Hervorhebungen
- ▶ \\, \newline, \newpage, \clearpage,
- Umgebungen center, flushleft, flushright
- ▶ \rm, \bf, \it, \em, \sf, \tt, \sc, \underline
- \tiny, \scriptsize, \footnotesize, \small
- ► \normalsize
- ▶ \large, \Large, \LARGE, \huge, \Huge
- ► \hspace, \,, \quad, \qquad, \hfill
- \vspace, \smallskip, \medskip, \bigskip, \vfill

12

13

Elementare Text-Regeln

16

- ► LATEX interpretiert Folgendes als ein Leerzeichen:
 - ein oder mehrere Leerzeichen
 - ein oder mehrere Tabulator-Einrückungen
 - ein Zeilenumbruch im Dokument
- ► Manuelles Leerzeichen mittels Tilde ~ oder \
 - z.B. Hello~~World! Oder Hello\ \ World!
 - * Tilde verhindert Zeilenumbruch
- ▶ L^AT_EX interpretiert Folgendes als Absatzende:
 - eine Leerzeile, falls Zeile davor nicht auf % endet
 - mehrere Leerzeilen
- ► Leerzeichen am Zeilenanfang wird übergangen

Leerzeichen nach Befehlen

- ► Leerzeichen nach parameterlosen Befehl werden übergangen (nur als Befehlsende gedeutet)
 - \LaTeX ist super = LATEXist super
 - \LaTeX{} ist super = LATEX ist super
 - \LaTeX\ ist super = LATEX ist super
 - \LaTeX^ist super = LATEX ist super

Sonderzeichen

- ▶ Standard-ASCII wird 1:1 zeichenweise ausgegeben
 - Ausnahmen: #, \$, %, ^, &, _, {, }, ~, \
 - * Diese haben spezielle Funktionen in LATEX
 - * Stattdessen: \#, \\$, \%, \^{}, \&, _, \{, \},
 \^{{}}, \$\backslash\$
- Anführungszeichen " vermeiden
 - stattdessen " und " verwenden (dt.)
 - * z.B. "Et tu, Brute?"
 - oder wund werwenden (engl.)
 - * z.B. "Et tu, Brute?"
- ▶ Deutsche Sonderzeichen einbinden!
 - \usepackage[latin1]{inputenc}
 - * bzw. \usepackage[utf8]{inputenc}
 - Dann einfach ä, ß etc. schreiben!
 - Alternative: "a, \"a erzeugt ä etc. \ss{} erzeugt ß

Ausrichtung von Text

```
% ausrichtung.tex
\documentclass[a4paper,11pt]{article}
\usepackage{fullpage}
\begin{document}

\begin{center}
Zentrierter Text
\end{center}
\beginf[lushleft]
Linksb\"undig
\end{flushleft}
\begin[flushright]
Rechtsb\"undig
\end{flushright}
\kend{flushright}
\kend{flushright}
\end{flushright}
\end{fdushright}
\end{document}
\end{document}
```

12

- ► Standardmäßig verwendet LATEX sog. Blocksatz für Absätze (= links-rechts-bündig)
- center-Umgebung zentriert Text
- ► flushleft-Umgebung = linksbündig
- flushright-Umgebung = rechtsbündig

Zeilenumbruch

- manuell mittels \\ oder \newline oder \linebreak
 - Zeile links-bündig für \\ oder \newline
 - * \\ ist schlecher Stil (später wichtig für Math.)
 - Zeile im Blocksatz \linebreak
 - * falls T_EX-Warnung Overfull hbox
- ▶ Neue Absätze werden durch Leerzeilen eingeleitet:
 - letzte Zeile des alten Absatz linksbündig
 - erste Zeile des neuen Absatz eingerückt
- manche TEX-Interpreter liefern Fehlermeldung, wenn auf manuellen Zeilenumbruch Leerzeile folgt!

16

Seitenumbruch

- manuell mittels \newpage, \clearpage, \pagebreak
 - \newpage, \clearpage für Abschnitt-Ende
 - * \clearpage ist rigoroser (später genauer!)
 - \pagebreak füllt Seite auf

Silbentrennung

- Silbentrennung erfolgt idR. automatisch
 - \usepackage[ngerman]{babel}
- Manchmal manuelle Silbentrennung nötig, weil
 - LATEX falsch trennt
 - LATEX nicht weiß, wie es trennen soll
 - ⇒ Text über Rand hinaus
 - * im LOG-File: Overfull hbox
 - \- gibt LATEX optionale Trennung an
 - * Z.B. $Sil\-ben\-tren\-nung$
 - Wort kann nur noch an angegebenen Stellen getrennt werden
 - http://de.wikibooks.org/wiki/

 ${\tt LaTeX-W\"{o}rterbuch:_Silbentrennung}$

- Overfull hbox stets eliminieren
 - mittels optionaler Silbentrennung \-
 - mittels manuellem Zeilenumbruch \linebreak

```
// schriftart.tex
ddocumentclass[a4paper,12pt]{article}

usepackage{fullpage}

begin{document}

wir starten mit normaler Schrift.

begin{center}

huge

Nun gro\ss, {\bf fett} und zentriert!

end{center}

Und nun wieder normal.

end{document}

end{document}

end{document}
```

Schriftgrößen

- stets relativ zur Schriftgröße des Dokuments
- Schriftgrößen der Größe nach geordnet:
 - \tiny, \scriptsize, \footnotesize, \small
 - \normalsize gemäß \documentclass
 - \large, \Large, \LARGE, \huge, \Huge

Blöcke

- Es gibt zwei Arten von Blöcken:
 - innerhalb geschwungener Klammern {...}
 - innerhalb von Umgebungen \begin{X}...\end{X}
- Alle Definitionen innerhalb eines Blocks werden bei Blockende aufgehoben
 - insb. gilt außerhalb aller Blöcke Standardschrift

Hervorhebungen 1/2

```
% hervorhebungen.tex
\documentclass[a4paper,12pt]{article}
\usepackage{fullpage}
\begin{document}
{\rm Dies ist }\textrm{Standardschrift.}
{\bf Dies ist }\textbf{fett.}
{\textrack Dies ist }\textif{kursiv.}
{\em Dies ist }\textif{kursiv.}
{\sm Dies ist }\textsf{sans serif.}
{\tt Dies ist }\texttf{typewriter.}
{\st Dies ist }\textsf{sans serif.}
{\tt Dies ist }\textsf{sans leif.}
{\underline{Dies ist unterstrichen.}
\underline{Dies ist unterstrichen.}
\u
```

normal : \texts{text} oder {\rm text}

fett : \textsf{text} oder {\bf text}

kursiv : \textit{text} oder {\\text}

hervorgehoben : \textsf{text} oder {\\text}

sans-serif : \textsf{text} oder {\\text}

typewriter : \texttf{text} oder {\\text}

Kapitälchen : \textsf{text} oder {\\text}

unterstrichen : \underline{text}

Hervorhebungen 2/2

- ▶ Unterschied von {\rm ...} vs. \textrm{...}:
 - {\rm ...} ist exklusiv
 \textrm{...} ist additiv
- Es ist nicht alles kombinierbar:
 - z.B. Kapitälchen ist stets exklusiv

20 21

Absatzlayout

- \setlength{\parindent}{0pt}
 - Einrückung der ersten Absatzzeile auf Opt
 - Alternativ \noindent vor Absatz schreiben
- \setlength{\baselineskip}{1.5\baselineskip}
 - Zeilenabstand auf 1 1/2 setzen
- \setlength{\parskip}{2pt}
 - Abstand zwischen zwei Absätzen festlegen

Manuelle Einrückungen

- horizontal:
 - \hspace{5mm} = 5mm horizontaler Abstand
 - zum letzten Zeichen der Zeile (ggf. kein!)
 - * oder: \hspace*{5mm} = 5mm horiz. Abstand
 - horizontale Abstände relativ zur Schriftgröße
 - * \,, \quad, \qquad
 - \hfill = Zeile auffüllen
- vertikal:
 - \vspace{5mm} = 5mm vertikaler Abstand
 - * zur letzten Zeile (ggf. kein!)
 - \vspace*{5mm} = 5mm vertikaler Abstand
 - vertikale Abstände relativ zur Schriftgröße:
 - * \smallskip
 - * \medskip
 - * \bigskip
 - \vfill = Seite auffüllen

Strukturieren von Dokumenten

- Überschriften
- automatisches Inhaltsverzeichnis
- ▶ TOC-File
- ▶ \chapter, \section, \subsection etc.
- ► \chapter*, \section*, \subsection* etc.
- ▶ \tableofcontents

Abschnitte/Überschriften

- ▶ In report & book gibt es standardmäßig folgende Abschnitte (inkl. Numerierung und Überschriften):
 - \chapter{titel}
 - \section{titel}
 - \subsection{titel}
 - \subsubsection{titel}
 - \paragraph{titel}
 - \subparagraph{titel}
- ▶ Bei article entfällt \chapter
- ▶ Will man nur Überschrift ohne Nummer, verwende
 - \chapter*{titel} etc.

Inhaltsverzeichnis

```
// inhalt.tex
// documentclass[a4paper,12pt]{report}

// usepackage{fullpage}

begin{document}
/ tableofcontents

chapter{Dies ist das erste Kapitel}

in wenig Text...

section{Dies ist Abschnitt 1}

Und noch mehr...

subsection{Ein Unterabschnitt}

siehe da, noch mehr Text...

results
// section{Dies ist Abschnitt 2}

und noch mehr...

section{Dies ist Abschnitt 2}

Und noch mehr...

// section{Dies ist Abschnitt 2}

und document}
// report
// rep
```

- Mittels \tableofcontents wird automatisch Inhaltsverzeichnis erstellt
 - Erzeugt zusätzliche TOC-Datei
 - * Table of Contents
 - Wird beim nächsten Lagen Vergebunden
 - benötigt 2x LATEX-Durchlauf, um aktuell zu sein
- reine Überschriften werden nicht eingetragen
 - \chapter*{titel} etc.

24 25

Mathematische Formeln

- Formelumgebungen
- Klammern
- Exponenten & Indizes
- math. Symbole & Funktionen
- Matrizen & Vektoren
- ► Formel im Text \$...\$
- ▶ Umgebungen mit Nummer equation, align
- ▶ Umgebungen ohne Nummer equation*, align*
- Umgebung array
- \usepackage{latexsym}
- \usepackage{amssymb}

Formeln

- ▶ inline Text mit \(\formel\\) or \(\(\formel\\)\
- ► Einzeilige, abgesetzte Formel
 - \[\] -Umgebung ohne Nummer
 - equation-Umgebung mit Nummer
- Mehrzeilige, abgesetzte Formel
 - align*-Umgebung ohne Nummer
 - equation* + split-Umgebung ohne Nummer
 - align-Umgebung mit einer Nummer pro Zeile
 - align + split-Umgebung eine Nummer

Klammern

- ► Etliche Varianten, z.B.
 - runde Klammern (...) mittels ()
 - eckige Klammern [...] mittels []
 - geschwungene Klammern {...} mittels \{ \}
 - Absolutbetrag | · | mittels |
 - Norm || · || mittels \| \|
- prößere Größe der Klammern händisch wählbar
 - Präfix \big, \Big, \bigg, \Bigg vor Klammer
 - * Z.B. $\langle (x+1)(x-1) \rangle^2 = (x^2-1)^2$
 - * $((x+1)(x-1))^2 = (x^2-1)^2$
- ▶ oder Größe automatisch von LATEX wählbar
 - Präfix \left and \right vor Klammer
 - * jedes \left braucht ein \right
 - * ggf. \right. falls nur links Klammer sein soll

Mathematische Sonderzeichen

- ▶ De facto alles vorhanden (Packages einbinden!)
 - \usepackage{latexsym}, \usepackage{amssymb}
- ▶ Im Folgenden: ausgewählte (unvollst.) Übersicht
 - Mehr in Abschnitt 3.8 (Seite 65-70) in
 - * The Not So Short Introduction to LaTeX
- brauchbarer Link: http://detexify.kirelabs.org/

Exponenten und Indizes

- > \a^x+y \neq a^{x+y}\s
 - $a^x + y \neq a^{x+y}$
- \$x_{\ell+1}:=x_\ell+x_{\ell-1}\$
 - $x_{\ell+1} := x_{\ell} + x_{\ell-1}$

Brüche und Wurzeln

- \$\frac{1}{n}-\frac{1}{n+1} = \frac{1}{n(n+1)}\$
 - $\frac{1}{n} \frac{1}{n+1} = \frac{1}{n(n+1)}$
- \$\frac{\partial f}{\partial x_j}\$
 - $\frac{\partial f}{\partial x_i}$
- $\$ \$(\sqrt{x})^{1/3} = x^{1/6} = \sqrt[6]{x}\$
 - $(\sqrt{x})^{1/3} = x^{1/6} = \sqrt[6]{x}$

Mengen

- \$y\in\{f(x) \,:\, x>0\}\$
 - $y \in \{f(x) : x > 0\}$
- ightharpoonup \in ightharpoonup, \ni ightharpoonup, \cap ightharpoonup, \bigcap ightharpoonup,
- ► \backslash \
- \subset ⊂, \subseteq ⊆, \subsetneqq ⊆,
- \supset ⊃, \supseteq ⊇, \supsetneqq ≥,

Gleichheit und Ungleichheit

 \rightarrow =, <, > \neq \neq, \le \le , \lneqq \le , \ge \ge , \gneqq \geq

28

Mathematische Funktionen

- \exp, \log, \ln, \arg
- ► Trigonometrische Fkt., z.B. \sin, \arccos, \sinh
- \sup, \max, \inf, \min
- ▶ \lim, \limsup, \liminf
 - \$\\lim_{x\\to0}\\frac{\\sin x}{x}=1\$
 - * $\lim_{x\to 0} \frac{\sin x}{x} = 1$
 - \$\lim\limits_{x\to0}\frac{\sin x}{x}=1\$
 - * $\lim_{x \to a} \frac{\sin x}{x} = 1$
 - \$\displaystyle\lim_{x\to0}\frac{\sin x}{x}=1\$
 - $* \lim_{x \to 0} \frac{\sin x}{x} = 1$
- ▶ \dim, \ker, \det

Summe, Produkt, Integral

- \sum_{j=1}^n j = \frac{n(n+1)}{2}
 - $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ bzw. $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$
- - $\prod_{j=1}^{\infty} j = 1 \cdot 2 \cdot 3 \cdots$ bzw. $\prod_{j=1}^{\infty} j = 1 \cdot 2 \cdot 3 \cdots$
- \int_0^{\pi/2}\cos(x)\,dx = 1
 - $\int_0^{\pi/2} \cos(x) dx = 1$ bzw. $\int_0^{\pi/2} \cos(x) dx = 1$

Kalligraphische Großbuchstaben

- - A, B, C

Griechische Symbole

- ▶ \alpha, \beta, \gamma, \delta, \epsilon, \xi etc.
 - $\alpha, \beta, \gamma, \delta, \epsilon, \xi$
- ► \Gamma, \Delta, sofern versch. vom lat. Alphabet
 - Γ, Δ

Logische Quantoren

- ► \forall x>0:\quad x^2>0
 - $\forall x > 0$: $x^2 > 0$
- ► \forall T\textrm{ Topf }\exists D\textrm{ Deckel}
 - $\forall T \text{ Topf } \exists D \text{ Deckel}$

Weitere Zeichensätze

- \usepackage{amssymb} erforderlich!
- $\begin{tabular}{ll} \hline & \mathbf{N}, \mathbf{Z}, \mathbf{R}, \mathbf{R}, \mathbf{C} \etc. \\ \hline \end{tabular}$
 - N, Z, R, C
- \mathfrak{A}, \mathfrak{a}, \mathfrak{B}, etc.
 - A, a, B, b,...,3, 3

Vektoren & Matrizen

```
1  X = \left(
2  \begin{array}{ccc}
3  x_{11} & x_{12} & \ldots \\
4  x_{21} & x_{22} & \ldots \\
5  \vdots & \vdots & \ddots \\
6  \end{array}
7  \right)
```

Code-Fragment erzeugt

$$X = \left(\begin{array}{ccc} x_{11} & x_{12} & \dots \\ x_{21} & x_{22} & \dots \\ \vdots & \vdots & \ddots \end{array}\right)$$

- array-Umgebung für Matrizen und Vektoren
 - beliebig viele Zeilen
 - Zeilenumbruch jeweils mit \\
 - Anzahl Spalten + Ausrichtung muss angegeben werden, hier: 3 Spalten, Einträge mittig: {ccc}
 - * Ausrichtung: mittig (c), links (ℓ), rechts (r)
- array-Umgebung ist Teil einer math. Formel!
 - z.B. \$...\$, equation-Umgebung
- Vektoren = Matrix mit einer Spalte
- array-Umgebung auch für Fallunterscheidungen
 - Verwende \left\{ mit \right.

$$\chi_{\mathbb{Q}}(x) = \left\{ \begin{array}{ll} 1, & \text{falls } x \in \mathbb{Q}, \\ 0, & \text{falls } x \in \mathbb{R} \backslash \mathbb{Q}. \end{array} \right.$$

Text in Formel z.B. mit \mbox{falls } x\in\Q

Referenzen

- ▶ Dokument-interne Verweise auf Formeln etc.
- ▶ \label
- ▶ \ref, \eqref, \pageref
- \usepackage{amsmath}
- \usepackage{showkeys}

32 33

Referenzen

- in math. Aufsätzen gibt es häufig Referenzen
 - auf Formeln, z.B. siehe Formel (2.7)
 - auf Seiten, z.B. in Formel (2.7) auf Seite 10
 - auf Bilder, z.B. siehe Abbildung 2.3
 - auf Tabellen, z.B. siehe Tabelle 2.6
 - auf Abschnitte, z.B. siehe Kapitel 2
 - auf Sätze, z.B. siehe Satz 2.3
- ► Referenzen werden in LATEX nicht hart kodiert!
- bei Ziel einer Referenz setzt man Label
 - durch \label{name}
 - LATEX verknüpft intern das Label name mit zuletzt vorausgegangen Zähler-Auswertung
- im Text Referenz einfügen durch
 - \ref{name} : nur Zählerausgabe
 - \eqref{name} : Zählerausgabe für Gleichung
 - * benötigt \usepackage{amsmath}
 - \pageref{name} : Ausgabe der Seitenzahl
- \usepackage{showkeys} zeigt Referenzen & Label an
 - zum Schreiben des Dokuments sinnvoll
- ▶ In der Regel ~ vor \ref{...} etc.
 - Lehrzeichen ohne Zeilenumbruch vor Referenz!

LaTeX-Warnungen

- ► LATEX speichert Labels in AUX-Datei
- ► LATEX erkennt, falls Referenzen neu
 - LOG-File endet in diesem Fall mit LaTeX Warning: Label(s) may have changed.
 Rerun to get cross-references right.
 - Dann: LATEX-File noch einmal kompilieren
- ▶ LATEX erkennt, falls Label doppelt benutzt
 - LaTeX Warning: Label 'X' multiply defined.
 - LOG-File endet in diesem Fall mit LaTeX Warnung: There were multiply-defined labels.
- ► LATEX gibt Warnung, falls Label unbekannt
 - LaTeX Warning: Reference 'X' on page XX undefined on input line XXX.
 - LOG-File endet in diesem Fall mit
 LaTeX Warning: There were undefined references.

Beispiel zu Referenzen

```
% referenz.tex
\documentclass[a4paper,12pt]{report}
     \usepackage{fullpage}
\usepackage{amsmath}
      %\usepackage{showkevs}
      \begin{document} \Large
     \chapter{Einleitung}
\label{chapter:einleitung}
13
14
15
     \section{Die \Gamma-Funktion}
     \label{section:gammafkt}
     Eine m\"ogliche Definition der \Gamma-Funktion ist
18
     \begin{equation}\label{eq:gammafkt}
\Gamma(x) := \lim_{n \to \infty}
\frac{n! n^x}{x(x+1) \cdots (x+n)},
21
     \end{equation} wobei man dieser Darstellung nicht ansieht, dass es sich bei der \Gamma-Funktion um eine
25
     Verallgemeinerung der Faktoriellen handelt.
      \section{Referenzen!}
     \label{section:referenzen}
    In Abschnitt~\ref{section:gammafkt} haben wir die \Gamma-Funktion $\Gamma(x)\$ eingef\"uhrt. Eine m\"ogliche Definition der \Gamma-Funktion gibt Gleichung~\eqref{eq:gammafkt} auf Seite~\pageref{eq:gammafkt}. \end{document}
```

Makros

- ▶ Definition eigener LATEX-Befehle
- obligatorische und optionale Parameter
- ► Schreiben von übersichtlichem LATEX-Code
- ▶ \newcommand
- \renewcommand

36

Definieren von Makros

- Definition eines neuen Makros mittels
 - newcommand{name}[anz]{definition}
- Obligatorisch sind
 - Name des Makros name
 - Befehlsfolge des Makros definition
- Optional ist Anzahl anz der obligatorischen Parameter des Makros
 - Fehlt anz, so ist \name parameterlos
 - max. 9 Parameter, intern: #1,...,#9
- Beispiele:
 - \newcommand{\R}{\mathbb{R}}}
 - * Aufruf mittels \R
 - * erzeugt : ℝ
 - newcommand{\norm}[1]{\left\|#1\right\|}
 - * Aufruf mittels \norm{f}
 - * erzeugt : ||f||
 - newcommand{\set}[2]{\big\{#1\,\big|\,#2\big\}}
 - * Aufruf mittels \set{x\in\R}{f(x)=0}
 - * erzeugt : $\{x \in \mathbb{R} \mid f(x) = 0\}$
- ► LATEX passt auf, ob Makroname vergeben
 - ! LaTeX Error: Command \XXX already defined.
 - Altes überschreiben mittels \renewcommand
 - * Parameter/Verwendung wie \newcommand

Warum Makros?

Vorteile:

- Lesbarkeit des Codes, insb. math. Formeln
 - \big\{x\in\mathbb{R}\,\big|\,f(x)=0\big\}
 VS
 - \set{x\in\R}{f(x)=0}
- ► Code wird etwas kürzer & übersichtlicher
- einfache Anpassung von math. Notation
 - Umstellung der Notation im gesamten Dokument durch Änderung einer Zeile

Nachteile:

eigene Makros müssen bei Kollaboration von anderen gelernt werden

Was sollte man beachten?

- sprechende Namen für Makros wählen
 - Z.B. \set, \norm, \scalarproduct
- kurze Namen nur für reine Zeichen, z.B.
 - * \N, \Z, \R etc. für mathbb-Symbole \mathbb{N} , \mathbb{Z} , \mathbb{R}
 - * \AA, \BB, \CC etc. für mathcal-Symbole $\mathcal A$, $\mathcal B$, $\mathcal C$
 - * \x, \y, \z etc. für Vektoren x, y, z bzw. \vec{x} , \vec{y} , \vec{z}
- ▶ Keine Makros zur puren Abkürzung von Tipparbeit, z.B. \nti anstatt $n \to \infty$
 - Solchen Code kann man später nicht mehr lesen!

Makros mit optionalem Parameter

- Makros mit ersten optionalen Parameter: \newcommand{\name} [ans] [default1] {definition}
 - name, anz, definition wie bisher
 - Parameter #1 ist optional
 - * Übergabe in eckigen Klammern [parameter1]
 - * Wert default1, falls nicht gegeben
 - Parameter #2,...,#anz sind obligatorisch
 - * Übergabe in Klammern {parameter}
- Beispiel:
 - newcommand{\norm}[2][]{\left\|#2\right\|_{#1}}
 - * Aufruf \norm[L^2(\Omega)]{f} erzeugt $\|f\|_{L^2(\Omega)}$
 - * Aufruf \norm{f} erzeugt ||f||
 - newcommand{\set}[3][\big]{#1\{#2\,#1|\,#3#1\}}
 - * Aufruf mittels $\ensuremath{\mbox{set}\{x\in\mathbb{R}\}\{f(x)=0\}}$
 - $erzeugt: \{x \in \mathbb{R} \mid f(x) = 0\}$
 - * Aufruf mittels $\left[\left(x\right)_{x\in\mathbb{R}}(x)=0\right]$

erzeugt :
$$\left\{ x \in \mathbb{R} \middle| f(x) = 0 \right\}$$

Zähler

- vordefinierte Zähler
- eigene Zähler definieren
- Zähler auslesen
- ▶ \arabic
- ▶ \roman, \Roman
- ▶ \alph, \Alph
- \newcounter
- ▶ \setcounter, \refstepcounter
- ▶ \theXXX
- ▶ \numberwithin

40 41

Vordefinierte Zähler

- Abhängig von Dokumentklasse gibt es Zähler für Gliederung
 - z.B. chapter, section, subsection etc.
- ▶ Weitere Zähler sind
 - Z.B. page, equation, figure, table
- Auswertung eines Zählers
 - \arabic{counter} = 1, 2, 3, 4 etc.
 - \roman{counter} = i, ii, iii, iv etc.
 - \Roman{counter} = I, II, III, IV etc.
 - $\arrowvert \arrowvert \arrowv$
 - $Alph{counter} = A, B, C, D etc.(counter \le 26)$
- Zu jedem Zähler counter gehört Ausgabebefehl \text{\thecounter}, der u.a. von \ref aufgerufen wird
- Beispiel:
 - Numerierung der Gleichungen mit Kapitel + Abschnitt + Formel

 $\verb|\command{\the equation}{\command{\c$

\arabic{section}.\arabic{equation}}

- Kommentar % am Zeilenende verhindert, dass Zeilenumbruch als Leerzeichen gilt
- Wertzuweisung eines Zählers
 - \setcounter{counter}{zahl}
- Zähler um 1 erhöhen & referenzierbar machen
 - \refstepcounter{counter}

Eigene Zähler definieren

- Definition eines neuen Zählers
 - \newcounter{newcounter}[oldcounter]
 - Falls optionaler Parameter oldcounter angegeben, wird newcounter automatisch durch \refstepcounter{oldcounter} auf 0 gesetzt
 - Beispiel: Sätze kapitelweise numeriert:
 - * Satz 1.1, Satz 1.2, ..., Satz 2.1, etc.
- Ausgabe des Zählers festlegen:
 - \renewcommand{\thenewcounter}{...}
- ▶ Beispiel: Selbst-numerierende Konstanten

```
// zaehler.tex
/documentclass[a4paper,12pt]{report}

// usepackage{fullpage}
// newcounter{const}
// renewcommand{\theconst}{\arabic{const}}

// newcommand{\newconst}[1]{%
// refstepcounter{const}}
// C_{\theconst}\label{const:#1}%
// newcommand{\const}[1]{C_{\ref{const:#1}}}

// begin{document} \Large
// Eine weitere Konstante $\newconst{sinnlos} > 0$.

Seien $\newconst{2}, \newconst{1} > 0$,
und es gelte $\const{2} \ \le \const{1}}$.

// bend{document}
// const{1} $\frac{1}{3}$.
// bend{document}
// const{1} $\frac{1}{3}$.
// bend{document}
// const{1} $\frac{1}{3}$.
// con
```

Vordefinierte Zähler bearbeiten

- Standardmäßig zählt equation bei Dokumentklasse article global
- Standardmäßig zählt equation bei Dokumentklasse report oder book kapitelweise
- Neu-Definition der Zählerabhängigkeit zum Zurücksetzen auf Null mittels \numberwithin[format]{counter}{refcounter}
 - format = \arabic, \roman, \alpha etc.
 - Standard ist \arabic
 - Z.B. \numberwithin{equation}{section}
 - * Numerierung = \thesection.\arabic{equation}
 - Erste Formel in neuer Section hat nun stets Nummer 1
 - benötigt \usepackage{amsmath}

Umgebungen

- einige vordefinierte Umgebungen
- ▶ Definition eigener Umgebungen
- obligatorische und optionale Parameter
- ▶ Strukturierung von LATEX-Code
- ▶ If-Then-Else in LATEX
- ► Verteilen von LATEX-Code in mehrere Files
- ▶ \newenvironment, \renewenvironment
- ▶ \ifthenelse
- ▶ \value
- ▶ \isodd
- ▶ \equa
- ► Kommentarzeichen % am Zeilenende
- ▶ \input
- \usepackage{ifthen}

44 45

Weitere Text-Umgebungen

- Kennen bereits center, flushleft, flushright
 - Z.B. \begin{center} ... \end{center}
- ▶ für Zitate : quote-Umgebung

Dies ist Text in einer quote-Umgebung

▶ als ob Schreibmaschine : verbatim-Umgebung

Dies ist Text in einer verbatim-Umgebung

- ▶ für Aufzählungen: itemize-Umgebung
 - jeder Punkt mit \item eingeleitet
 - optional \item[zeichen] für anderes Symbol
- ▶ für numerierte Aufzählungen : enumerate-Umgeb.
 - jeder Punkt mit \item eingeleitet
 - Art der Aufzählung über Zähler manipulierbar
 - * enumi
 - * enumii, enumiii, enumiv bei geschachtelten enumerate-Umgeb.
 - \usepackage{enumerate} hat mehr Funktionalität
 - Erweiterung der enumerate-Umgebung um optionale Layout-Parameter

```
% itemize.tex
\documentclass[a4paper,12pt]{article}
\usepackage{amssymb}
\begin{document} \Large
\noindent Dies ist Text au{\ss}erhalb jeder Umgebung.
 \begin{quote}
Dies ist Text in einer quote-Umgebung \end{quote}
Und jetzt bin ich wieder au{\ss}erhalb.
    egin(verbatim)
In einer verbatim-Umgebung wird alles
zeichenweise ausgegeben, z.B. auch {\bf Hallo}
\end{verbatim}
Aufz\"ahlungen realisiert man \"uber \texttt{itemize} \begin{itemize}
 \text{\item ein erster Punkt}
\item ein zweiter Punkt
\item[s\blacktriangleright\] ein dritter Punkt
\end{itemize}
Oder mittels \texttt{enumerate}
\begin{enumerate}
\item ein erster Punkt
\item ein zweiter Punkt
\end{enumerate}
Die Art der Aufz\"ahlung kann man \"andern:
\renewcommand{\theenumi}{(\ronan{enumi})}
 \begin{enumerate}
\item ein erster Punkt
\item ein zweiter Punkt
\end{enumerate}
\end{document}
```

Warum Umgebungen?

- Viele Objekte in mathematischen Texten sollen dasselbe Layout haben
 - z.B. Sätze, Lemmata, Beweise etc.
- ▶ Umgebungen trennen Inhalt und Layout
 - Code wird lesbarer
 - Layout wird leichter veränderbar

Definition einer Umgebung

- ▶ Definition einer neuen Umgebung mittels
 - newenvironment{name}[anz]{defbegin}{defend}
 - name, anz wie bei \newcommand
 - defbegin = Was löst \begin{name} aus?
 - defend = Was löst \end{name} aus?
- \renewenvironment analog zu \renewcommand
- Beispiel
 - newenvironment{proof}{\textbf{Beweis.}}%
 {\hfill\textbf{qed}}

Optionaler Parameter

- ➤ Ziel: Beweis-Umgebung mit Start

 Beweis. bzw. Beweis von ...
- \newenvironment{name}[anz][default]{begin}{end}
 - analog zu optionalem Param. bei \newcommand

If-Then-Else in LaTeX

- Steuerkonstrukte aus \usepackage{ifthen}
 - \ifthenelse{condition}{do}{else}
 - \value{string} : String als Zahl auswerten
 - \isodd{zahl} : Zahl ist ungerade?
 - \equal{str1}{str2} : Gleichheit von Strings?
 - Logische Operatoren \and, \or, \not
 - Klammerung \(und \)
- Beispiel:

Kommentarzeichen % am Zeilenende 3 verhindert, dass Zeilenumbruch als Leerzeichen gilt

49

48

Sympy and latex

sympy offers the command sympy.latex which transforms sympy expressions into latex code

Listing_1: sympy_to_latex.py

```
import sympy as sy

sy.var('x y')

f = sy.expand((x-y)**5)
   int_f = sy.integrate(f,x)

print(sy.latex(f))

with open('sympy_latex.txt', 'w') as file:
   file.write(sy.latex(sy.expand(f)))
```

The output will be

```
>>> import sympy as sy

>>> sy.var('x y')
(x, y)
>>> f = sy.expand((x-y)**4)
>>> int_f = sy.integrate(f,x)

>>> print(sy.latex(f))
x^{4} - 4 x^{3} y + 6 x^{2} y^{2} - 4 x y^{3} + y^{4}
>>> print(sy.latex(int_f))
\frac{x^{5}}{5} - x^{4} y + 2 x^{3} y^{2} - 2 x^{2} y^{3} + x y^{4}
```

Komplieren mit latexmk

- Änderung von labels erfordert zweichfaches Komplieren mit pdflatex oder latex
- latexmk kompiliert im Hintergrund so oft wie notwendig
- starte latexmk mit latexmk filename.tex
- Empfehlung:

```
$pdflatex = "pdflatex -synctex=1 -halt-on-error %0 %S";
in config file .latexmkrc hinzügen
```

alternativ direkt im Terminal

```
\label{latexmk} \begin{array}{ll} \texttt{latexmk} & -\texttt{halt-on-error} & -\texttt{pvc} & \texttt{filename.tex} \\ \\ \texttt{starten} & \end{array}
```

Mehr zu LaTeX und Mathematik

- einfachere Definition von Matrizen
- Numerierung von Formeln
- ▶ einfache Definition von Theorem-Umgebungen
- ▶ Umgebungen matrix, pmatrix, cases
- Umgebungen align, split
- ▶ \text, \intertext
- ▶ \substack, \stackrel
- ▶ \boldsymbol, \pmb
- ▶ \tag, \notag
- ▶ \newtheorem
- ▶ \numberwithin
- \usepackage{amsmath}

Wichtige math. Pakete

- amsmath = Umgebungen, Befehle
 - z.B. Braune-Lammarsch², Kap. 12 (S.366-426)
 - kleine Ausschnitte werden behandelt
 - im Folgenden \usepackage{amsmath} nötig!
- amsthm = Theorem-Umgebungen etc.
- ▶ amsfonts, amssymb = Schriftarten + Symbole
 - z.B. Braune-Lammarsch², Kap. 13 (S.427-495)

Praktische Umgebungen

- matrix-Umgebung für Vektoren + Matrizen
 - bequemer als array-Umgebung, weil man Anzahl Spalten nicht angeben muss
 - ansonsten gleiche Syntax:
 - * zeilenweise Angabe
 - * & für neue Spalte
 - * \\ für neue Zeile
- pmatrix-Umgebung
 - | = \left(\begin{matrix}...\end{matrix}\right)
- cases-Umgebung
 - = $\left(\frac{\begin{array}{\ell\ell}...\end{array}\right)}{\ell\ell}$...

53

Die align-Umgebung

52

- mit (align) und ohne (align*) Formelnummer
- Erlaubt mehrzeilige Formeln, Zeilenumbruch ist \\
- Ordnet tabellarisch an
 - neue Spalte mit &
 - Spalten abwechselnd rechts/links ausgerichtet
 - Spaltenpaar rechts/links bildet jeweils Gruppe ohne Abstand
- \tag{text} ersetzt Formelnummer durch Text
 - kann eine Formel (A) oder (*) nennen
- \notag unterdrückt Ausgabe der Formelnummer
 - falls nur manche Zeilen einer mehrzeiligen Formel Nummer haben sollen
- In Verbindung mit split-Umgebung kann man Formelnummern mehrzeiliger Formeln vertikal zentrieren
 - split-Umgebung erlaubt nur 2-spaltiges align,
 d.h. 1x & pro Zeile, sonst Syntax-Fehler
 - ggf. array-Umgebung verwenden

Ein Beispiel zu align

Praktische Befehle

- \text{blabla} für kurzen Text in Formeln
 - M := \{ x\in\mathbb{N} \,|\, x\text{ gerade} \}
 - $M := \{x \in \mathbb{N} \mid x \text{ gerade}\}$
- \intertext{blabla} f\u00fcr langen Text (eigene Zeile) in mehrzeiligen Formeln
- \substack{index} für mehrzeilige Indizes
 - \sum_{\substack{j=1\\j\text{ odd}}}^\infty

$$\sum_{\substack{j=1\\j \text{ odd}}}^{\infty} \frac{x^j}{j!} = \sinh(x)$$

- \stackrel{oben}{unten}
 - (\sqrt2)^2 \stackrel{!}{=} 2
 - $(\sqrt{2})^2 \stackrel{!}{=} 2$.
- ▶ \boldsymbol{formel} für fette Formeln

$$\sum_{j=1}^{n} j \neq \sum_{j=1}^{n} j$$

- wirkt nur auf Buchstaben + Zahlen
- Achtung: Summensymbol ändert sich nicht!

56

58

\pmb{formel} für fette Formeln

$$\sum_{j=1}^n j \neq \sum_{j=1}^n j$$

nicht ganz so hübsch wie \boldsymbol

```
% amsmath.tex
     \documentclass[a4paper,12pt]{report}
     \usepackage{amsmath,amssymb}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
     10
11
12
13
     \end{align}
     \begin{align}
A = \begin{pmatrix}
    a_{11} & a_{12} \\
    a_{21} & a_{22} \\
    end{pmatrix},
16
18
19
20
      \quad
      x = \begin{pmatrix}
    x_{1} \ x_{2}
    \end{pmatrix}
22
24
25
26
27
     \end{align}
      \begin{align}
      \boldsymbol{ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\
28
29
30
31
32
                                \end{pmatrix}, \quad
\begin{pmatrix}
  x_{1} \\ x_{2}
33
                                \end{pmatrix}
     \end{align}
      \end{document}
```

57

```
% intertext.tex
\documentclass[a4paper,12pt]{report}
\usepackage{fullpage}
\usepackage{amsmath,amssymb}
                               \begin{document} \large
Manchmal will man, dass eine Formel durch einen l\"angeren
Text unterbrochen wird: Die binomische Formel
\begin{align} \label{eq:binom}
(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}
\end{align}
                         New the man beispiels weise mittels vollst "andiger Induktion nach %n\in\Ns. Der Induktionsanfang %n=0% ist klar. Im Induktionsschritt d\"urfen wir also annehmen, dass "\eqref{eq:binom} f\"ur alle %\ell\le n% gilt und m\"ussen die Behauptung f\"ur %n+1% beweisen. Dazu betrachten wir
                               \begin{align*}
(x+y)^{n+1}
&= (x+y)(x+y)^{n}.\\
 19
 20
21
                                \begin{array}{lll} &\&= (x+y) (x+y) ^n .\\ &&& \\ &&& (x+y) \times \\ &&= (x+y) \times \\ &&= (x+y) \times \\ &&& (x+y) \times \\ &&= (x+y) \times \\ &&= (x+y) \times \\ &&& \\ &&= (x+y) \times \\ 
26
27
 29
30
 33
                                   &= x^{n+1} + y^{n+1}
+ \sum_{k=1}^{n} \left[ \binom{n}{k-1} + \binom{n}{k} \right] x^{k} y^{n+1-k},
 34
35
                             x \{x\} y \{n+1-k\}, 
\intertext{sodass elementare Rechenregeln}
&= \sum_{k=0}^{n+1} \otimes_{n+1}_{k} x^{k} y^{n+1-k} \end{align*}
ergeben. Dies schlie{\ss}t den Induktionsbeweis ab.
 38
 39
                               \end{document}
```

Mathematische Sätze

- ▶ Umgebungen für math. Sätze etc. können leicht(!) erstellt werden, d.h. \newenvironment hier unnötig
- \newtheorem{name}[counter]{text}[supercounter]
 - Obligatorisch:
 - * Name name der neuen Umgebung
 - * Überschrift text, z.B. Satz, Lemma etc.
 - Optional:
 - * counter, falls kein neuer Zähler angelegt werden soll, sondern vorhandener "mitbenutzt" wird
 - * supercounter spezifiziert übergeordneten Zähler, z.B. section: Wenn Section erhöht, wird counter auf 0 gesetzt
 - * gleiche Funktion wie \numberwithin
- Beispiel:
 - newtheorem{satz}{Satz}[section]
 - * Satz-Umgebung
 - * Zähler zählt in jeder Section neu
 - newtheorem{lemma}[satz]{Lemma}
 - * Satz & Lemma werden gemeinsam numeriert
 - \newtheorem{bemerkung}{Bemerkung}[section]
 - * Bemerkungen werden unabhängig numeriert
 - * Zähler zählt in jeder Section neu
- Benutzung der Umgebungen wie oben (selbst def.)
 - Optionaler Satz-Name möglich

Ein Beispiel zu newtheorem

```
% newtheorem.tex
documentclass[a4paper,11pt]{article}

documentclass[a4paper,11pt]{article}

lusepackage{amsmath}

newtheorem{satz}{Satz}
newtheorem{folgerung}[satz]{Folgerung}

begin{document} \large
section{Max und Moritz}

begin{satz} [Wilhelm Busch]
Max und Moritz, gar nicht tr\"age,
S\"agen heimlich mit der S\"age,
Ritzeratze! voller T\"ucke,
In die Br\"ucke eine L\"ucke.

begin{folgerung}
begin{folgerung}
Ach, was mu\ss man oft von b\"osen
Kindern h\"oren oder lesen!

bedin{folgerung}
section{Wahre Wort}

begin{satz} [Eugen Roth]
Ein Mensch erblickt das Licht der Welt,
doch oft hat sich herausgestellt
nach manchem tr\"ub verbrachten Jahr,
dass dies der einzige Lichtblick war.

bend{folgerunt}

lusepackage{amsmath}

lusepackage{amsmath}

lusepackage;
satz} [Eugen Roth]
Ein Mensch erblickt das Licht der Welt,
doch oft hat sich herausgestellt
nach manchem tr\"ub verbrachten Jahr,
dass dies der einzige Lichtblick war.

bend{satz}
bend{document}
```

60

Ein Beispiel zu numberwithin

```
% numberwithin.tex
\documentclass[a4paper,11pt]{article}
        \usepackage{amsmath}
       \newtheorem{satz}{Satz}
\newtheorem{folgerung}[satz]{Folgerung}
%\numberwithin{satz}{section} %*** NEUE ZEILE ***
  6
7
        \begin{document} \large \section{Max und Moritz}
12
      \begin{satz}[Wilhelm Busch]
Max und Moritz, gar nicht tr\"age,
S\"agen heimlich mit der S\"age,
Ritzeratze! voller T\"uc\-ke,
In die Br\"ucke eine L\"ucke.
\end{satz}
18
19
20
        \begin{folgerung}
      Ach, was mu\ss man oft von b\"osen
Kindern h\"oren oder lesen!
\end{folgerung}
21
24
        \section{Wahre Wort}
      \begin{satz} [Eugen Roth]
Ein Mensch erblickt das Licht der Welt,
doch oft hat sich herausgestellt
nach manchem tr\"ub verbrachten Jahr,
27
28
29
       dass dies der einzige Lichtblick war.
\end{satz}
\end{document}
```

61

Minipage

- minipage-Umgebung
- ▶ \boxed
- ▶ \vrule

Minipage 1/2

- begin{minipage}[tbc]{Breite}...\end{minipage}
 - Anordnung mit Bezug auf aktuelle Textzeile
 - * t = oberste Zeile der minipage auf Textzeile
 - * b = unterste Zeile der minipage auf Textzeile
 - * c = minipage zentriert (Standard)
- ▶ \boxed{...} im amsmath-Package
 - macht Box um Text und Formeln

Minipage 2/2

```
documen.tex
documentclass[a4paper,12pt]{article}

usepackage{fullpage}
usepackage[utf8]{inputenc}
usepackage[ngerman]{babel}

begin{document}
begin{document}
begin{document}
begin{minipage}[t]{.48\textwidth}
max und Moritz, gar nicht tr\"age,
s\"agen heimlich mit der S\"age,
In die Br\"ucke eine L\"ucke.
In die Br\"ucke.
In die Br\"ucke eine L\"ucke.
In die Br\"ucke.
In die Br\"uc
```

- ▶ Typische Verwendung von minipage:
 - lokal mehrspaltiger Inhalt im Dokument, z.B.
 - * zwei Tabellen nebeneinander
 - zwei Abbildungen nebeneinander
 - * Abbildung + Beschreibung nebeneinander

Tabellen

- ► Tabellen erstellen in LATEX
- ▶ lot-File
- ▶ tabbing-Umgebung
- ▶ tabular-Umgebung
- ▶ table-Umgebung
- ****=, \>
- ▶ \kill
- ► \caption
- ▶ \hline
- ▶ \cline
- ▶ \multicolumn
- ▶ \listoftables

65

64

Die tabbing-Umgebung

- Zur spaltenweisen Ausrichtung von Text
- \= Markierung setzen
- \kill Zeile nicht ausgeben
 - für Definitionszeile
- > \> Textposition auf nächste Markierung setzen

Die tabular-Umgebung

- Benutzung wie array-Umgebung
 - Anzahl Spalten angeben & Ausrichtung
 - * mittig (c), links (ℓ), rechts (r)
 - * Blocksatz mit fester Spaltenbreite p{Breite}
 - vertikale Trennlinien mit Pipe (1) angeben
 - * oder eigenes Trennzeichen mit @{Zeichen}
 - Zeilenumbruch mit \\
 - horizontale Trennlinie mit \hline
- kann Trennlinien auch in array-Umgebung nutzen

Mehr zu tabular

```
% multicolumn.tex
\documentclass[a4paper,12pt]{article}
    \usepackage{fullpage}
    \begin{document} \Large
    \begin{center}
    \begin{tabular}{|c|c|c|}
   \hline
Ene & \multicolumn{2}{|c|}{Mene}\\
12
    \hline
   Muh & \& & Raus\\
\cline{2-3}
14
                    & Du!\\
& Du!\\
15
16
17
        & Bist
        & Bist
18
19
        \multicolumn{3}{|c|}{Bist Du!}\\
    \hline
\end{tabular}
20
    \end{center}
    \end{document}
```

- Verwende \cline{von-bis}, falls horizontale Linie nur Spalten von bis bis betrifft
- Verwende \multicolumn{anz}{style}{text} für Eintrag text über mehrere Spalten
 - anz = Anzahl der betroffenene Spalten
 - style = analog zu tabular-Style, z.B. {|c|}

Die table-Umgebung

```
% table.tex
    \documentclass[a4paper,12pt]{article}
    \usepackage{fullpage}
 4
5
6
7
8
9
    \begin{document} \Large
    \begin{table}
    \hline
links & mittig & mittig & rechts\\
    \hline\hline
   1 & 2 & 3 & 4\\
5 & 6 & 7 & 8\\
hline \end{tabular}
    \caption[Beispiel]{Dies ist unser erstes Beispiel.}
18
   \label{tab:bsp}
\end{center}
\end{table}
19
21
    \section{Ein Abschnitt}
   Ein erstes Beispiel f\"ur die \texttt{table}-Umgebung sehen Sie in Tabelle~\ref{tab:bsp}.
    \listoftables
    \end{document}
30
```

- idR soll Tabelle nicht Teil von Text sein, sondern herausgehoben mit Unterschrift und Nummer
 - verwende table-Umgebung
 - table-Umg. auch ohne tabular-Umg. möglich
- ▶ \caption gibt der Tabelle eine Unterschrift

68

Mehr zu table

- table-Umgebung erzeugt ein sog. float object
 - wird von LATEX automatisch platziert
 - wird intern in Liste eingetragen und sobald als möglich gesetzt
 - * First-In-First-Out Prinzip
 - * \clearpage arbeitet Float-Liste ab, danach Seitenumbruch (\newpage = nur neue Seite)
- Präferenz für Platzierung kann optional als Liste angegeben werden

```
Z.B. \begin{table}[!thpb]
```

- * ! = force it
- * t = top
- * h = here
- * p = page = Extraseite nur mit floats
- * b = bottom
- wird in angegebener Reihenfolge von LATEX in Erwägung gezogen
- ► \listoftables erzeugt Tabellen-Verzeichnis
 - Einträge werden aus \caption{...} übernommen
 - * erstes latex name.tex erzeugt name.lot
 - * zweites latex name.tex bindet Verzeichnis ein
 - Falls Unterschrift zu lang ist, Kurztitel festlegen
 - * \caption[kurztitel]{unterschrift}

Bilder

- ► EPS-Bilder in LATEX einbinden
- ▶ lof-File
- figure-Umgebung
- ▶ \includegraphics
- ▶ \listoffigures
- \usepackage{graphicx}

Bilder einbinden

- Einbinden \usepackage{graphicx}
- Bild einbinden mittels

\end{document}

\includegraphics[options]{filename}

- Optionale Parameter sind
 - * width=num : Breite festlegen (& ggf. skalieren)
 - * height=num : Höhe festlegen (& ggf. skalieren)
 - * scale=num : Bild skalieren
 - * angle=num : Bild drehen (math. pos. Grad)

72

Bildformate

- ▶ latex kann nur Bilder im EPS- und PS-Format
 - siehe z.B. Braune-Lammarsch-Lammarsch
 - * unter graphicx-Paket bzw. color-Paket
- ightharpoonup pdflatex kann nur Formate PDF / JPG / PNG
 - * pdflatex name.tex
- Entweder EPS direkt erzeugen (z.B. aus Matlab) oder konvertieren
 - z.B. convert file.jpg file.eps in UNIX
- \includegraphics[options]{filename} verwendet
 - Erweiterung .eps bei latex
 - Erweiterung .jpg bei pdflatex

falls keine Erweiterung gegeben.

* \includegraphics{tu} lädt passendes tu.*

Die figure-Umgebung

```
% figure.tex
\documentclass[a4paper,12pt]{article}
     \usepackage{fullpage}
\usepackage{graphicx}
     \begin{document} \Large
     \listoffigures
     \clearpage
     \begin{figure}[t]
     \begin{center}
     \includegraphics[width=.5\textwidth,angle=45]{tu}\caption[Es geht bergauf mit der TU]%
{Wenn es aufw\"arts geht, dann soll man das auch
     festhalten.}
\label{fig:bsp}
18
19
     \end{center
     \end{figure}
     \section{Ein Abschnitt}
    Ein erstes Beispiel f\"ur die \texttt{figure}-Umgebung sehen Sie in Abbildung~\ref{fig:bsp}.
     \end{document}
```

- Verwendung von figure analog zu table
- ► \listoffigures erzeugt Abbildungsverzeichnis
 - erzeugt Datei name.lof

Stichwortverzeichnis

- ► Index (Stichwortverzeichnis) anlegen
- idx-File, ind-File, ilg-File
- \makeindex, \printindex
- ▶ \index

22

\end{document}

- \usepackage{makeidx}
- \usepackage{showidx}

Index anlegen

- \usepackage{makeidx} einbinden
 - \makeindex im Kopf des LATEX-Codes
 - \printindex im Rumpf, wo Index erscheinen soll
- ▶ Vorgehen: latex file, makeindex file, latex file
 - erstes latex + \makeindex erzeugt
 - * file.idx = unsortierte Index-Einträge
 - makeindex file erzeugt
 - * file.ind = sortierter Index
 - * file.ilg = Index-Log-File
 - zweites latex + \printindex bindet Index ein
- \usepackage{showidx} zeigt Index-Einträge an
- ▶ Index-Eintrag mit
 - \index{eintrag}
 - \index{eintrag!untereintrag}
 - \index{virtuell@eintrag}
- Virtuelle Einträge sind nötig, um Sonderzeichen oder mathematische Symbole in Index einzuordnen
 - \index{wunschenswert @wünschenswert }
 - * Regel: ä,ü,ö unter a,u,o sowie ß unter ss

77

- \index{R @\$\R\$}
- ▶ in der Regel \index{...}%
 - damit Zeilenumbruch kein Leerzeichen

Beispiel zu Index

76

```
\documentclass[a4paper,12pt]{report}
\usepackage{fullpage}
\usepackage{amsmath,amssymb,amsthm}
\usepackage{makeidx}
\usepackage{showidx}
\newtheorem{satz}{Satz}
\newcommand{\C}{\mathbb C}
\newcommand{\K}{\mathbb K}
\newcommand{\Mathbb K}
\newcommand{\K}{\mathbb K}
\newcommand{\Mathbb K}
\newcommand{\Mathbbb K}
\newcommand{\Mathbb K}
\newcommand{\Mathbbb K}
```

Literaturverzeichnis

- wissenschaftlich korrektes Zitieren
- Literaturverzeichnis anlegen
- ▶ thebibliography-Umgebung
- ▶ \bibitem, \cite

Literatursuche

- http://catalogplus.tuwien.ac.at/
 - Bibliothekskatalog der TU Wien (Bücher und Zeitschriften der UB)
- http://rzblx1.uni-regensburg.de/ezeit
 - elektronische Zeitschriftenbibliothek mit Links zu Online-Journals (inkl. Ampel-Darstellung)
- http://books.google.at
 - Volltextsuche in Büchern
- http://www.zentralblatt-math.org/zmath/de
 - bibliographische Daten math. Veröffentl.
 - freier Zugang innerhalb TU Wien
- http://www.ams.org/mathscinet
 - bibliographische Daten math. Veröffentl.
 - Abkürzungsverzeichnis für Zeitschriften
 - freier Zugang innerhalb TU Wien

Wissenschaftliches Arbeiten

- ▶ In offiziellen mathematischen Dokumenten muss Autor Quellen angeben
 - im Literaturverzeichnis am Ende
 - * vollständige Liste aller verwendeten Hilfen
 - im Fliesstext genaue Angabe
 - * woher Ergebnisse, Ideen oder Beweise übernommen wurden
 - * ob Teile wörtlich übernommen wurden
- Zitate ersichtlich machen
 - genaue Angabe der Quelle (inkl. Angabe von Seite bzw. Abschnitt)
 - direkte Zitate (gleicher Wortlaut) hervorheben
 - auch indirekte Zitate (Paraphrasen) deutlich machen
- ► Eigenleistung des Autors muss klar werden
 - z.B. einheitliche Darstellung eines Stoffs aus mehreren Quellen
 - * genaue Angabe: Was stammt woher?
 - z.B. zusammenfassende Darstellung eines Stoffs
 - z.B. eigene Beweisidee, aber bekanntes Resultat
 - z.B. eigenes Resultat & eigener Beweis
- ▶ Im Extremfall: Vorwurf des Plagiats
 - Aberkennung akademischer Titel
 - ggf. juristisches Nachspiel

81

Literaturverzeichnis anlegen

- thebibliography-Umgebung :
 - startet mit \begin{thebibliography}{string}
 - * string gibt nur max. Länge von Markern an

80

- Einträge mittels \bibitem[marker]{label}
 - * label definiert Label zum Zitieren
 - optionales marker gibt Kennung für Eintrag
 - * falls marker fehlt ⇒ Nummer zugewiesen
- Zitieren im Text mittels
 - \cite[string]{referenz}
 - * referenz ist gerade label von \bibitem
 - optionaler string wird zusätzlich ausgegeben,
 z.B. expliziter Verweis auf einen Satz
 - * \cite{ref} erzeugt Referenz [15] im Text
 - * \cite[Satz~3.4]{ref} liefert [15, Satz 3.4]
 - Listen \cite{ref1,ref2,...} sind erlaubt
 - führt auf [15,16–18,20]

```
% bibliography.tex
       \documentclass[a4paper,12pt]{report}
       \usepackage{fullpage}
       \usepackage{amssy
       \newcommand{\K}{\mathbb K}
       \begin{document} \Large
       In den Einf\"uhrungsveranstaltungen zur Analysis wird
     In den Einf\"uhrungsveranstaltungen zur Analysis wird \"ublicher\-weise nur die eine Implikation des Satzes von Bolzano-Weiterstrass bewiesen, n\"amlich dass in jedem endlichdimensionalen normierten Raum $\K^n\$ jede beschr\"unkte Folge eine konvergente Teilfolge besitzt. In der g\"angigen Lehrbuchliteratur"\cite{heuser,koenigsberger} findet sich der Beweis beispielsweise in \cite[Abschnitt"5.5] {koenigsberger} bzw. \cite[Abschnitt"22] {heuser}. Die allgemeine Formulierung, dass diese Eigenschaft bereits die endlichdimensionalen R\"aume charakterisiert wird in \cite[Satz"1.2.7] {werner} bewiesen.
16
19
20
21
22
       \begin{thebibliography}{99}
       \bibitem[H]{heuser}
25
       \textsc{Harro Heuser}:
\emph{Lehrbuch der Analysis, Teil 1},
Teubner-Verlag, Stuttgart $^{10}$1993.
27
       \bibitem[K]{koenigsberger}
\textsc{Konrad K\"onigsberger}:
31
       \emph{Analysis 1},
Springer-Verlag, Berlin u.a.\ 1990.
33
       \bibitem[W]{werner} \textsc{Dirk Werner}:
       \emph{Funktionalanalysis},
Springer-Verlag, Berlin u.a.\ \$^3\$2000.
37
40
        \end{thebibliography}
       \end{document}
```


Grundsätzliches

- ▶ Einträge im Literaturverzeichnis einheitlich!
 - alle Vornamen abkürzen oder ausschreiben
 - gleiches Layout für alle Einträge
 - insb. einheitliche Groß-Kleinschreibung
 - am Ende jedes Eintrags Punkt oder nicht!
- gewisse Sortierung
 - alphabetisch nach Erstautor
 - chronologisch nach Veröffentlichungsjahr
 - chronologisch nach Reihenfolge des Zitierens
- korrekte Abkürzung bei Zeitschriften
 - laut http://www.ams.org/mathscinet

Welche Informationen mindestens?

- Artikel in Fachzeitschriften
 - Autoren, Titel, Zeitschrift, Ausgabe, Jahr, Seitennummern
- Bücher
 - Autoren, Titel, Verlag, Ort, (Auflage,) Jahr
- Akademische Abschlussarbeiten
 - Autor, Titel, Art der Arbeit, Universität, Ort, Jahr

85

Dateien

- Übersicht über LAT⊨X-Hilfsdateien
- make

LATEX-Dateien

- ► Shell-Befehl latex name.tex erzeugt
 - name.aux = Referenzen
 - * wird automatisch eingebunden
 - name.log = Log-File
 - name.dvi = "eigentliches" Dokument
- ► Verwendung \usepackage{makeidx} & \makeindex
 - name.idx = unsortierte Index-Einträge
- ► Shell-Befehl makeindex name erzeugt
 - name.ilg = Index-Log-File
 - name.ind = sortierte Index-Einträge
 - * wird durch \printindex eingebunden
- ▶ \tableofcontents erzeugt und bindet ein
 - name.toc = Table of Contents
 - * wird automatisch eingebunden
- ► \listoftables erzeugt und bindet ein
 - name.lot = List of Tables
 - * wird automatisch eingebunden
- ► \listoffigures erzeugt und bindet ein
 - name.lof = List of Figures
 - * wird automatisch eingebunden

Make

```
FILE = datei

all:
    latex $(FILE).tex
    makeindex $(FILE)
    latex $(FILE).tex
    latex $(FILE).tex
    latex $(FILE).tex
    latex $(FILE).tex
    dvips $(FILE).dvi -o $(FILE).ps -Ppdf
    ps2pdf $(FILE).ps

clean:
    rm -rf *.dvi *.ps *.pdf
    rm -rf *.bak
    rm -rf *.log *.aux *.toc
    rm -rf *.lig *.idx *.ind
    rm -rf *.lof *.lof
    rm -rf *.blg *.bbl
    rm -rf *.nav *.out *.snm
```

- Aufruf z.B. mittels make, make all, make clean
 - Zu Syntax siehe WWW oder Schmaranz-Buch
- Leistungsfähigeres im WWW
 - z.B. http://xpt.sourceforge.net/tools/latexmake

Packages

- Übersicht über behandelte Packages
- \usepackage{color}
- \usepackage{geometry}
- \usepackage{listings}

88 89

Bisher behandelte Packages

- \usepackage{fullpage}
 - minimiert Ränder auf 2.5cm
- \usepackage[option]{inputenc}
 - (deutsche) Sonderzeichen im LATEX-Code OK
 - [utf8] auf UNIX, [latin1] auf WIN
- \usepackage[ngerman]{babel}
 - Spracheinstellung ngerman = neue dt. Rechts.
 - Silbentrennung, Überschriften etc.
- \usepackage{amsmath}
 - Umgebungen & Makros für Mathematik
- \usepackage{amssymb}
 - Sammlung mathematischer Sonderzeichen
- \usepackage{amsfonts}
 - div. Schriftarten (Kalligraphisch, Fraktur etc.)
- \usepackage{ifthen}
 - Steuerkonstrukte: if-then-else, Schleifen etc.
- \usepackage{graphicx}
 - Einbinden von Graphiken: eps/ps vs. jpg/pdf
- \usepackage{makeidx}
 - Stichwortverzeichnis
- \usepackage{showkeys}, \usepackage{showidx}
 - Anzeige Labels, Refs bzw. Indexeinträge

color Package

- \usepackage{color}
- wenige vordefinierte Farben:
 - black, white, red, blue, green, yellow, cyan magenta
- Farbe farbe selber definieren durch
 - \definecolor{farbe}{rgb}{rot,grün,blau}
 - * rot, grün, blau Werte in [0,1]
 - \definecolor{farbe}{gray}{stärke}
 - * stärke ist Wert in [0,1] mit 0 = schwarz
- \color{farbe} ändert Schriftfarbe
- \textcolor{farbe}{text} gibt text in farbe aus
- ► \colorbox{farbe}{text} wählt Hintergrund für text
- ► \pagecolor{farbe} ändert Seitenhintergrund
- ▶ Viele DVI-Viewer können keine Farben
 - trotzdem Vorhanden
 - Dokument als ps oder pdf anschauen

geometry Package

- \usepackage[options]{geometry}
 - Google latex geometry package gibt Manual
- erlaubt einfache Einrichtung der Seitenränder
- options durch Beistrich getrennt, z.B.
 - top=2.5cm
 - bottom=2.5cm
 - left=2.5cm
 - right=2.5cm
 - twoside
- erlaubt Vergrößerung der ganzen Seite
 - mag=1414 Vergrößerung um 1.414 $\approx \sqrt{2}$
 - * aus DIN A4 wird DIN A3
- erlaubt Vergrößerung der Schriftart
 - mag=2000 Vergrößerung um Faktor 2

listings Package

- \usepackage{listings}
 - Google latex listings package gibt Manual
- > zum Einbinden von Quellcode in Dokumente
- zahlreiche Optionen, z.B.
 - \lstset{language=C}
 - \ast Sprache, z.B. C, C++, Matlab, Pyhton, LaTex.
 - \lstset{numbers=left}
 - * Zeilennumerierung links, sonst aus
 - \lstset{keywordstyle=\bfseries}
 - * Schlüsselworte fett
 - \lstset{commentstyle=\color{green}\textit
 - * Kommentare grün & kursiv
 - \lstset{stringstyle=\texttt}
 - * Strings als Strings ausgeben
 - \lstset{showstringspaces=false}
 - * Leerzeichen in Strings nicht markieren
 - \lstset{emph={x1,x2,...},emphystlye=\bfseries}
 - * Schlüsselworte x1, x2 def. & hervorheben
- Finhinden durch
 - \lstinline im Text, Verwendung wie \lstinline
 - * Z.B. \lstinline\printf("Hello World!\n");\strace{\pi}
 - begin{lstlisting} ... \end{lstlisting}
 - \lstinputlisting{filename}

93

Beispiel zu listings

92

```
// listings.tex
/documentclass[a4paper,12pt]{article}
// usepackage{fullpage}
// usepackage{cloir}
// usepackage{listings}[language=python]
// usepackage{moreverb}
// begin{document}
// listinginput{1}{helloworld.py}
// hrule
// listset{language=python}
// listset{numbers=left}
// lstset{emph=fprintf,main},emphstyle=\bfseries}
// listinputlisting{helloworld.py}
// hrule
// listset{commentstyle=\color{green}\emph}
// lstset{commentstyle=\color{green}\emph}
// lstset{stringstyle=\texttt,showstringspaces=false}
// begin{lstlisting}
// function helloWorld
// Ausgabe von Text
// disp(Hello World!');
end
// end{lstlisting}
// end{lstlisting}
// end{lstlisting}
// end{lstlisting}
// end{lstlisting}
// end{lstlisting}
// wed{lstlisting}
// end{lstlisting}
// documentcless
// language=python
// lateset{language=python}
// lateset{lan
```

► Für VO-Folien verwende ich \listinginput aus \usepackage{moreverb}

\end{document}

nicht ganz so hübsch, aber besser für Projektor

BibTeX

- Automatisches Formatieren und Sortieren des Literaturverzeichnis
- bibtex
- \bibliography
- \bibliographystyle
 - plain, unsrt, alpha, abbrv
- \cite, \nocite, \nocite{*}
- \usepackage{natbib}
 - plainnat, unsrtnat, abbrvnat
- latex makebst

Literaturverzeichnis

- ► Fehlerquellen bei thebibliography-Umgebung:
 - einheitliche Formatierung der Einträge
 - falsche Sortierung der Einträge
 - falsch abgetippte bibliographische Daten
 - Literatur zitiert, die nie verwendet wird
- Änderung der Formatierung ist schwierig, aber
 - nötig auf Wunsch des Betreuers
 - nötig gemäß Vorgaben einer Zeitschrift
- ► Abhilfe: BibT_EX
 - Trennung von Inhalt und Layout
 - * Einträge werden einheitlich formatiert
 - Einträge werden automatisch sortiert
 - nur Einträge, die auch zitiert werden
 - bibliographische Daten i.a. fehlerfrei in WWW

96

- * http://www.zentralblattmath.org/zmath/de
 - http://www.ams.org/mathscinet

BibTeX

- ▶ ersetze thebibliography-Umgebung in LATEX durch
 - \bibliographystyle{style}
 - bibliography{datei1,datei2,...}
- ▶ BibT_EX style = Art der Formatierung der Einträge
 - Standardvorlagen:
 - * plain = alphabetisch nach Autor, numeriert
 - * unsrt = sortiert nach Zitierung, numeriert
 - * alpha = wie plain, aber generische Marker
 - * abbrv = wie plain, Autorennamen abgekürzt
- bibliographische Daten in Dateien datei.bib
 - Einträge kann man wörtlich aus WWW kopieren (e.g., Bücher)
- ▶ Verwendung von \cite{...} wie bisher
- ► Kompilieren (latex, bibtex, 2× latex)
 - latex name.tex : erzeugt name.aux
 - Information über undefined references
 - bibtex name : erzeugt name.bbl, name.blg
 - * .bbl enthält thebibliography-Umgebung
 - .blg enthält BibT_EX Log-File
 - latex name.tex bindet name.bbl ein
 - latex name.tex löst \cite-Referenzen auf

97

Eine erste bib-Datei

```
% mathscinet.bib
  @article {cars07a,
     JOURNAL =
10
11
12
13
14
  }
15
16
  @article {auzi05a.
     17
18
19
20
21
22
23
24
25
26
  28
29
30
31
     magnetic models},

JOURNAL = {Z. Anal. Anwendu
32
                 Anal. Anwendungen}
     JOURNAL = {Z. Anal. A
VOLUME = {23},
YEAR = {2004},
NUMBER = {3},
PAGES = {589--605},
33
34
35
36
```

► Einträge (in gekürzter Form) aus WWW kopiert

https://de.overleaf.com/learn/latex/Natbib_bibliography_styles

http://www.ams.org/mathscinet

more natbib styles

Ein erstes Beispiel

```
% mathscinet.tex
\documentclass[a4paper,12pt]{article}
      \usepackage{fullpage}
 5
6
7
8
      \begin{document}\large
      \begin{itemize}
     \item Die Arbeit^\cite{prae04a} besch\"aftigt sich mit der Berechnung des magnetischen Potentials in Abh\"angigkeit von der Magnetisierung. Das zentrale Ergebnis ist \cite[Theorem 5.2]{prae04a}.
10
    \item In~\cite{auzi05a} betrachten wir Strategien zur a~posteriori Fehlersch\"atzung bei gew\"ohnlichen Differentialgleichungen.
15
16
      \item In der Arbeit~\cite{cars07a} wird eine
19
     Netzverfeinerungsstategie f\"ur Integralgleichungen vorgeschlagen und analysiert.
22
      \end{itemize}
      % vordefiniert: plain, unsrt, alpha, abbrv
\bibliographystyle{abbrv}
\bibliography{mathscinet}
25
      \end{document}
```

Aufbau einer bib-Datei

► Textdatei mit Einträgen der Gestalt

```
@art {marker,
    feldname = {text},
    ;
    feldname = {text},
}
```

- ► Einrückung nur zur Übersicht
- ▶ Jedes marker darf nur 1x vorkommen
 - Zitieren mittels \cite{marker}
- Latin1-Kodierung verboten!
 - Sonderzeichen in Klammern { } als LATEX-Code
 - Pr{\"a}torius Statt Pr ätorius
- ► Großschreibung (z.B. im Titel) ggf. erzwingen
 - solution of {S}ymm's integral equation
 - {\Delta^{-1}{\rm div}}}

Literaturverzeichnis

- ▶ Damit Eintrag marker im Literaturverzeichnis
 - entweder zitieren \cite{marker}
 - oder explizit fordern \nocite{marker}
 - oder alles anzeigen \nocite{*}

100

Style-Files style.bst

- ► BibT_EX Style-Files style.bst
 - einbinden durch \bibliographystyle{style}
- ▶ als Download im WWW bei Zeitschriften
- ▶ DIN 1505 (deutsche Zitiernorm)
 - Download aus WWW (\rightarrow Google-Suche)
 - * alphadin.bst
 - * plaindin.bst
 - * unsrtdin.bst
 - * abbrvdin.bst
- eigenes Layout erstellen durch latex makebst
 - oder vorhandene Style-Files modifizieren
- ▶ Bernd Raichle (2002)
 - ullet "Einführung in die Bib T_E X-Programmierung"

Vordefinierte bib-Standards

```
@art {marker,
     feldname = {text},
     :
     feldname = {text},
```

- ► Einträge haben obligatorische und optionale Felder
 - wird durch BibT_EX-Style definiert
 - unbekannte Feldnamen werden ignoriert
 - * nur weitere Information
 - * oder eigenen BibT_EX-Style programmieren
- ▶ Einige Standardeinträge

art	obligatorisch	optional
article	author, title,	volume, number,
	journal, year	pages, month,
		note
book	author/editor,	volume/number,
	title,	series, address,
	publisher,	edition, month,
	year	note
masterthesis	author, title,	type, address,
	school, year	month, note
phdthesis	author, title,	type, address,
	school, year	month, note

- ▶ mehr unter http://de.wikipedia.org/wiki/Bibtex
- Autoren in der Form
 - Vorname Nachname Oder Nachname, Vorname
 - ggf. Klammern setzen Ludwig {van Beethoven}
 - mehrere Autoren durch and verbinden