Short definition summary for the first part of chapter 2^1

31 January 2008

Probability

Consider X and Y, two random variables with X taking values in \mathcal{X} and Y in \mathcal{Y} . The joint probability is

$$p_{X,Y}(x,y) = \text{probability that X=x and Y=y}$$
 (1)

From the joint probability we can define the marginal distributions

$$p_X(x)$$
 = probability that $X = x$ irrespective of what Y is $p_Y(y)$ = probability that $Y = y$ irrespective of what X is (2)

and, it follows that

$$p_X(x) = \sum_{y \in \mathcal{Y}} p_{X,Y}(x,y)$$

$$p_Y(y) = \sum_{x \in \mathcal{X}} p_{X,Y}(x,y)$$
(3)

We can also define the conditional probabilities

$$p_{X|Y}(x|y) = \text{probability that } X = x \text{ if } Y = y$$

 $p_{Y|X}(y|x) = \text{probability that } Y = y \text{ if } X = x$ (4)

These are calculated using Bayes rule, basically this says that the probability of X = x and Y = y is the probability of X = x multiplied by the probability of Y = y given that X = x:

$$p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x)$$
 (5)

and, similarily

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
 (6)

and, of course, this means

$$p_{Y|X}(y|x) = \frac{p_{X,Y}(x,y)}{p_X(x)} p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$
 (7)

¹Conor Houghton, houghton@maths.tcd.ie please send me any corrections.

Entropy, information and divergence

The entropy of a random variable X with probability distribution $p_x(x)$ is

$$H(X) = -\sum_{x \in \mathcal{X}} p_X(x) \log p_X(x)$$
 (8)

Now, this can be applied to a joint distribution, after all, a join distribution is just a distribution for $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ so

$$H(X,Y) = -\sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p_{X,Y}(x,y) \log p_{X,Y}(x,y)$$
(9)

The KL divergence sometimes called the relative entropy of two distributions $p_X(x)$ and $q_X(x)$ for the same random variable X is

$$D(p_X(x)||q_X(x)) = \sum_{x \in \mathcal{X}} p_X(x) \log \frac{p_X(x)}{q_X x}$$

$$\tag{10}$$

It can be thought of as measuring the difference between two putative probability distribution. Note that it is not symmetric in $p_X(x)$ and $q_X(x)$.

The mutual information of a pair of random variables is

$$I(X,Y) = \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p_{X,Y}(x,y) \log \frac{p_{X,Y}(x,y)}{p_X(x)p_Y(y)}$$
(11)

Hence

$$I(X,Y) = D(p_{X,Y}(x,y)||p_X(x)p_Y(y))$$
(12)

and the mutual information measures the KL-divergence between the joint probability and the multiple of the marginal probabilities.

Conditional entropy and information

If we have a joint distribution $p_{X,Y}(x,y)$ then for given value of Y, Y = y the conditional distribution can be used to give an entropy. The *conditional entropy* is the average of this entropy over all values of Y:

$$H(X|Y) = \sum_{y \in \mathcal{V}} p_Y(y) \sum_{x \in \mathcal{X}} p_{X|Y}(x|y) \log p_{X|Y}(x|y)$$

$$\tag{13}$$

and, by Bayes,

$$H(X|Y) = \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p_{X,Y}(x,y) \log p_{X|Y}(x|y)$$
(14)

There is an important result which can be derived straight from the definitions:

$$H(X,Y) = H(X) + H(Y|X) \tag{15}$$

and

$$I(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$
(16)