Management and analysis of physics datasets, Part. 1

Sixth Laboratory

Antonio Bergnoli bergnoli@pd.infn.it - Filippo Marini filippo.marini@pd.infn.it 09/12/2020

Laboratory Introduction

Goals

- Discover The Arty7 FPGA Board
- build a UART transmit Unit

GHDL super short tutorial

a smart way to build larger simulation projects

```
student@MAPD-machine : ~$ ghdl -i heartbeat.vhd # include source file in the project
student@MAPD-machine : ~ $ ghdl -i heartbeat_top.vhd # include source file in the project
student@MAPD-machine : ~ $ ghdl -d # check the working directory
# Library work
# Directory :
entity heartbeat
architecture behaviour of heartbeat
entity heartbeat top
architecture str of heartbeat top
student@MAPD-machine: ~$ ghdl -m heartbeat top # make the selected entity (usuallly the top)
analyze heartbeat top.vhd
analyze heartbeat. vhd
elaborate heartbeat top
student@MAPD-machine : ~ $ ghdl -r heartbeat_top --wave=wave.ghw --stop-time=1us # run the simulation
./heartbeat_top : info : simulation stopped by --stop-time @1us
student@MAPD-machine : ~$ gtkwave wave.ghw #inspect the result (waveform)
```

Arty 7 FPGA Board

A closer look to the Board

Figure 1: Arty 7 Board

Arty7: Useful interfaces

Figure 2: Arty 7 interfaces

Arty7 connected to a PC

Figure 3: Arty 7 connect to a PC

Motivation

- Since we need to connect our FPGA Board to a PC, we need to enable a reasonable useful interface .
- Some interfaces are available, but we need to manage them:

Interface	Speed	tipical usage	Ease of use			
Ethernet	100 Mbit/s	General purpose	very high			
JTAG	< 10 Mbit/s	Config/Debug	moderately high			
UART	< < 1 Mbit/s	text messages	Easy			

Universal Asynchronous Receiver Transmitter: The device

RS-232: the standard protocol

Introducing the RS-232 standard

The RS-232 Data frame: an example

- · Byte oriented frame
- · Mostly used to exchange character stream (ASCII code, see next slide) but also binary stream
- · optional parity bit at the end of the trasmitted byte
- start and stop frame delimiter length = 1 bit (stop-bit could be 2 in some cases)

Transmit Character 'a' (ASCII CODE hexadecimal: 61, binary: 01100001) at 115200 Bit/second, no parity bit

Tbit=1/115200 s = 8,68 us

The ASCII standard

The hexadecimal set:

00	nul	01	soh	02	stx	03	etx	04	eot	05	enq	06	ack	07	bel
80	bs	09	ht	0a	nl	0b	vt	0c	np	0d	cr	0e	so	Of	si
10	dle	11	dc1	12	dc2	13	dc3	14	dc4	15	nak	16	syn	17	etb
18	can	19	em	1a	sub	1b	esc	1c	fs	1d	gs	1e	rs	1f	us
20	sp	21	!	22	"	23	#	24	\$	25	%	26	&	27	
28	(29)	2a	*	2b	+	2c	,	2d	-	2e		2f	/
30	0	31	1	32	2	33	3	34	4	35	5	36	6	37	7
38	8	39	9	3a	:	Зb	;	3с	<	3d	=	Зе	>	3f	?
40	0	41	Α	42	В	43	C	44	D	45	E	46	F	47	G
48	H	49	I	4a	J	4b	K	4c	L	4d	M	4e	N	4f	0
50	P	51	Q	52	R	53	S	54	T	55	U	56	V	57	W
58	X	59	Y	5a	Z	5b	[5c	\	5d]	5e	^	5f	_
60	-	61	a	62	b	63	С	64	d	65	е	66	f	67	g
68	h	69	i	6a	j	6b	k	6с	1	6d	m	6e	n	6f	0
70	p	71	q	72	r	73	s	74	t	75	u	76	v	77	W
78	x	79	У	7a	z	7b	{	7с		7d	}	7e	~	7f	del

The Universal Asynchronous

Receiver-Transmitter

Communication with UART

UART communication is made on a **point-to-point** connection

Figure 5: UART typical interconnection

Figure 6: Arty7 Uart schematic

Build a UART transmitter

The Baudrate generator

- · it is basically a counter
- · it has only one output
- output is equal to '1' for exactly one clock cycle every bit time (Tbit)

Motivation

We need a periodic signal (another clock) at the rate of the transmission. Baudrate: speed in symbol/s (1 symbol carries 1 bit)

Figure 7: The Baudrate generator

First exercise

Write a Baudrate generator in VHDL, in the case of:

- Clock frequency= 100 Mhz
- Baudrate = 115200

The Uart Transmitter

Figure 8: The Uart Transmitter

Figure 9: tx State machine idea

The BAUDRATE out signal make possible to switch from a state to another

Transmitter waveform

Figure 10: UART transmitter waveform

Homework

• Build a complete Uart transmitter working at data rate of 115200 baud