Inference for quantitation parameters in q-PCR via branching processes with random effects

Authors: Bret Hanlon and Anand Vidyashankar

Wesley Brooks

UW-Madison

April 25, 2012

Outline

- Overview
 - Overview of the model
 - Overview of a qPCR experiment
- Methodological details
 - Sources of randomness
 - Branching process details
 - Estimating gene copies from qPCR
 - Variance of the estimator
- 3 Analysis of experimental data
 - Luteinizing hormone
 - S. vulgaris

Goal

• Compare expression of some gene between treatment conditions

Table of Contents

- Overview
 - Overview of the model
 - Overview of a qPCR experiment
- 2 Methodological details
 - Sources of randomness
 - Branching process details
 - Estimating gene copies from qPCR
 - Variance of the estimator
- Analysis of experimental data
 - Luteinizing hormone
 - S. vulgaris

What is qPCR?

- qPCR stands for quantitative polymerase chain reaction
- PCR is the chemical reaction by which DNA replicates
 - e.g. during cell division
- The technology is designed so that PCR replicates only a target gene
- "Quantitative" because we want to count the number of gene copies in a sample
 - ▶ Absolute quantitation: count the gene copies from the original sample
 - Relative quantitation: find the ratio of copies of one gene, compared to another
 - ▶ The paper covers both; we'll only consider absolute quantitation here

qPCR as a branching process

- PCR is controlled so that each replication cycle k is discrete
- Each particle either doubles or does not during each trial
 - ▶ Probability of replication is typically high (0.9 < p)
- This defines a supercritical branching process that leads to exponential growth
- During early cycles (k < 15, say), the count is obscured by noise
- \bullet Availability of reaction chemicals attenuates the reaction after ~ 30 cycles
- The cycles between 15 and 30 are called the exponential phase.

The experimental setup

A typical experimental setup is to have:

- Two treatment groups (T=treatment, C=control)
- Two genes under study
- Three replicates for each gene-treatment combination
- So an experiment typically involves twelve reactions

The experimental procedure

Do the following for each reaction:

```
for (cycle in 1:40):
    count the gene copies
    use PCR to produce a new generation
```

Sample experimental data

Table of Contents

- Overview
 - Overview of the model
 - Overview of a qPCR experiment
- Methodological details
 - Sources of randomness
 - Branching process details
 - Estimating gene copies from qPCR
 - Variance of the estimator
- Analysis of experimental data
 - Luteinizing hormone
 - S. vulgaris

Sources of randomness

- \bullet N_0 , the initial number of gene copies, is random
 - $ightharpoonup E[N_0] = m_a$
 - $ightharpoonup var(N_0) = \sigma_a^2$
- At each cycle of the reaction, each gene copy replicates randomly
 - $N_{n+1} = N_n + Bin(N_n, p)$

qPCR as a branching process

Note:

$$E[N_n] = E[E(N_n|N_{n-1})] = E[(1+p)N_{n-1}]$$

= \cdots = (1+p)^n \times E(N_0)

- So $W_n = \frac{N_n}{(1+p)^n}$ is a positive martingale
- ullet Thus, $W_n o W$ almost surely for some W
- $E[W] = m_a$

qPCR as a branching process

Consider an idealized reaction experiment:

- If we knew p and could let the number of reaction cycles $n \to \infty$:
 - $W_i = \lim_{n \to \infty} \frac{N_{i,n}}{(1+n)^n}$
 - $V_1, W_2, \ldots, W_r \stackrel{\text{iid}}{\sim} W$
- But p is unknown and we can only observe ≈ 15 reaction cycles, so we need some other estimator.

13 / 24

Estimating p

• Since p is unknown, we estimate it with \hat{p} via weighted least squares:

$$\begin{pmatrix} N_n \\ N_{n-1} \\ \vdots \\ N_1 \end{pmatrix} - \begin{pmatrix} N_{n-1} \\ N_{n-2} \\ \vdots \\ N_0 \end{pmatrix} = p \times \begin{pmatrix} N_{n-1} \\ N_{n-2} \\ \vdots \\ N_0 \end{pmatrix} + \epsilon$$

- Where $\epsilon_j \stackrel{\mathsf{approx.}}{\sim} \mathsf{Normal}(0, p(1-p) N_{j-1})$
- With weights $W_j = (N_{j-1})^{-1}$ the resulting estimator is:

$$\hat{p} = \frac{\sum_{i=1}^{n} (N_i - N_{i-1})}{\sum_{i=1}^{n} N_i}$$

Making the most of a finite sample

Reminder: our idealized estimator was $W(n) = \frac{N_n}{(1+p)^n}$

- W uses only the final observation (N_n)
- ullet More efficient: use the sum $Y_n = \sum_{i=1}^n N_i$
- By the Toeplitz Lemma, $\frac{Y_n}{(1+p)^n} \stackrel{\text{a.s.}}{\to} \frac{1+p}{p} W \Rightarrow \frac{pY_n}{(1+p)^{n+1}} \stackrel{\text{a.s.}}{\to} W$
- Plug in \hat{p} and the limit still holds.

Strategy for quantitation

- Collect data on r independent reactions
- For reaction i $(i=1,2,\ldots,r)$, compute the statistic $M_i=\frac{\hat{p}_i\,Y_{n_i}}{(1+\hat{p}_i)^{n_i+1}}$
- Average M_1, M_2, \ldots, M_r to get \bar{M}
- $\sqrt{r}(\bar{M}-m_a) \stackrel{d}{\to} \text{Normal}(0,\sigma_L^2)$
- Where $\sigma_L^2 = \sigma_a^2 + m_a E\left[\frac{1-p}{1+p}\right]$

Variance of the estimator

$$\sigma_L^2 = \text{var}\left[\frac{N_n}{(1+p)^n}\right] = E(\text{var}\left[\frac{N_n}{(1+p)^n}|p]\right) + \text{var}\left(E\left[\frac{N_n}{(1+p)^n}|p]\right)$$

$$= E(\text{var}\left[\frac{N_n}{(1+p)^n}|p]\right) + \text{var}(m_a)$$

$$= E(\text{var}\left[\frac{N_n}{(1+p)^n}|p]\right)$$

Variance of the estimator

$$\operatorname{var}\left[\frac{N_{n}}{(1+p)^{n}}|p\right] = \frac{1}{(1+p)^{2n}}\operatorname{var}\left[N_{n}|p\right] \\
= \frac{1}{(1+p)^{2n}}\left(E\left(\operatorname{var}\left[N_{n}|N_{n-1},p\right]|p\right) + \operatorname{var}\left(E\left[N_{n}|N_{n-1},p\right]|p\right)\right) \\
= \frac{1}{(1+p)^{2n}}\left(E\left[N_{n-1}p(1-p)|p\right] + \operatorname{var}\left((1+p)N_{n-1}|p\right)\right) \\
= \frac{1}{(1+p)^{2n}}\left(m_{a}(1+p)^{n-1}p(1-p) + (1+p)^{2}\operatorname{var}\left[N_{n-1}|p\right]\right) \\
= \frac{m_{a}p(1-p)}{(1+p)^{n+1}} + \frac{\operatorname{var}\left[N_{n-1}|p\right]}{(1+p)^{2n-2}} \\
= \dots \\
= \frac{m_{a}p(1-p)}{(1+p)^{n+1}} + \frac{m_{a}p(1-p)}{(1+p)^{n}} + \dots + \frac{m_{a}p(1-p)}{(1+p)^{2}} \\
+ \frac{\operatorname{var}\left[N_{0}|p\right]}{(1+p)^{2n-2n}}$$

Variance of the estimator

$$ext{var}[rac{N_n}{(1+p)^n}|p] = rac{m_a p (1-p)}{(1+p)^2} \Sigma_{k=0}^{n-1} rac{1}{(1+p)^k} + \sigma_a^2 \
ightarrow m_a rac{1-p}{1+p} + \sigma_a^2$$

So:

$$\operatorname{var}\left[\frac{N_{j}}{(1+p)^{n}}\right] = E\left(\operatorname{var}\left[\frac{N_{n}}{(1+p)^{n}}|p\right]\right)$$

$$\to E\left(m_{a}\frac{1-p}{1+p} + \sigma_{a}^{2}\right)$$

$$= m_{a}E\left(\frac{1-p}{1+p}\right) + \sigma_{a}^{2} = \sigma_{L}^{2}$$

Table of Contents

- Overview
 - Overview of the model
 - Overview of a qPCR experiment
- 2 Methodological details
 - Sources of randomness
 - Branching process details
 - Estimating gene copies from qPCR
 - Variance of the estimator
- 3 Analysis of experimental data
 - Luteinizing hormone
 - S. vulgaris

Experimental data - luteinizing hormone

- The goal with the experimental data was relative quantitation
 - Estimate ratio of gene expression between conditions C and T
- The sample was divided into two parts
- One part was diluted to one-third the original concentration
- Sixteen reactions were run under each condition (diluted, normal)

Experimental data - luteinizing hormone

$Lute inizing\ Hormone$

	BP	C_T method	Std. Curve	Adj C_T
\hat{R}	2.8221	3.3108	3.5558	3.9567
GCI	[1.8624, 3.7817]			
tCI	[1.7719, 3.8722]			
BCI	[1.6870, 3.6013]	[2.7935, 3.7477]	[2.8646, 4.1355]	[2.9024, 5.4157]

Experimental data - Strongylus vulgaris

- Again, the goal of the was relative quantitation
- One part diluted to one-tenth the original concentration
- Ten reactions run under each condition (diluted, normal)

Experimental data - Strongylus vulgaris

S.vulgar is

	BP	C_T method	$\operatorname{Adj} C_T$
\hat{R}	10.1793	6.3622	303.1662
GCI	[2.8686, 17.4900]		
tCI	[1.7414, 18.6172]		
BCI	[1.0446, 15.7493]	[5.2733, 7.3176]	[29.7583, 892.6178]