Probabilistic Graphical Models

Lecture 5: Conditional Random Fields

Matthew Walter

TTI-Chicago

April 21, 2020

Problem Set 1 and Slack

- See Canvas for updates on Problem Set 1
- Don't forget to join the Slack channel #help-ps1
- See Slack channel for discussion and hints

Factor Graphs (Revisited)

- ullet The Markov network H does not make explicit the structure of the distribution, i.e., maximum cliques vs. complete graph subsets
- A factor graph is a bipartite undirected graph with variable nodes (oval) and factor nodes (square). Edges exist only between variable nodes and factor nodes
- Each factor node is associated with a single potential, the scope of which is the variables that are the factor's neighbors

Distribution is the same as an MRF, just a different data structure

Boltzmann Distribution (Revisited)

ullet We can rewrite a factor $\phi(oldsymbol{D}): \mathsf{Val}(oldsymbol{D}) o \mathbb{R}^+$ as

$$\phi(\mathbf{D}) = \exp(-\psi(\mathbf{D}))$$

where $\psi(D) = -\log \phi(D)$ is the **energy function** (not surprisingly, derived from statistical physics)

Boltzmann Distribution (Revisited)

ullet We can rewrite a factor $\phi(oldsymbol{D}): \mathsf{Val}(oldsymbol{D}) o \mathbb{R}^+$ as

$$\phi(\mathbf{D}) = \exp(-\psi(\mathbf{D}))$$

where $\psi(D) = -\log \phi(D)$ is the **energy function** (not surprisingly, derived from statistical physics)

The factorized distribution then becomes (Boltzmann distribution)

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{k=1}^K \exp\left(-\psi_k(\mathbf{D}_k)\right) = \frac{1}{Z} \exp\left(-\sum_{k=1}^K \psi_k(\mathbf{D}_k)\right)$$

• $\sum_{k=1}^K \psi_k(oldsymbol{D}_k)$ is referred to as the "free energy"

Boltzmann Distribution (Revisited)

ullet We can rewrite a factor $\phi(oldsymbol{D}): \mathsf{Val}(oldsymbol{D}) o \mathbb{R}^+$ as

$$\phi(\boldsymbol{D}) = \exp(-\psi(\boldsymbol{D}))$$

where $\psi(D) = -\log \phi(D)$ is the **energy function** (not surprisingly, derived from statistical physics)

The factorized distribution then becomes (Boltzmann distribution)

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{k=1}^K \exp\left(-\psi_k(\mathbf{D}_k)\right) = \frac{1}{Z} \exp\left(-\sum_{k=1}^K \psi_k(\mathbf{D}_k)\right)$$

- ullet $\sum_{k=1}^K \psi_k(oldsymbol{D}_k)$ is referred to as the "free energy"
- Gives rise to interpretation as energy minimization

$$\arg \max P(X_1, \dots, X_n) = \arg \min \sum_{k=1}^K \psi_k(\boldsymbol{D}_k)$$

Log-Linear Markov Networks with Features (Revisited)

- A **feature** is a function $f: \mathsf{Val}(\boldsymbol{D}_i) \to \mathbb{R}$
- ullet A distribution P is a **log-linear model** over a Markov network H if it is associated with
 - A set of features ${m F}=\{f_1({m D}_1),\ldots,f_K({m D}_M)\}$ where ${m D}_i$ is a complete subgraph in H
 - A set of weights $\{w_1, \ldots, w_M\}$

such that

$$P(X_1,\ldots,X_n) \propto \exp\left(-\sum_{i=1}^M w_i f_i(\boldsymbol{D}_i)\right)$$

Log-Linear Markov Networks with Features (Revisited)

- A **feature** is a function $f: Val(\mathbf{D}_i) \to \mathbb{R}$
- ullet A distribution P is a **log-linear model** over a Markov network H if it is associated with
 - A set of features ${m F}=\{f_1({m D}_1),\ldots,f_K({m D}_M)\}$ where ${m D}_i$ is a complete subgraph in H
 - A set of weights $\{w_1,\ldots,w_M\}$

such that

$$P(X_1,\ldots,X_n) \propto \exp\left(-\sum_{i=1}^M w_i f_i(\boldsymbol{D}_i)\right)$$

- Multiple features can be defined over the same variables
- Log-linear model can represent tabular potentials, but is more general
- Features and weights can be reused for different factors
- Historically, features designed by hand and weights learned from data

Left Image

Right Image

Disparity Image

• Dense stereo reconstruction: For every pixel (i_l,j_l) in left image, we are interested in the image-space distance (**disparity**) y_{i_l,j_l} to the corresponding pixel (i_r,j_r) in the right image

• We could model this as a Markov random field

- We could model this as a Markov random field
- ullet Joint distribution $P(oldsymbol{Y},oldsymbol{X})$ over disparity $oldsymbol{Y}$ and pixel intensities $oldsymbol{X}$:

- We could model this as a Markov random field
- ullet Joint distribution $P(oldsymbol{Y},oldsymbol{X})$ over disparity $oldsymbol{Y}$ and pixel intensities $oldsymbol{X}$:
 - $\bullet \ P(\boldsymbol{Y} \,|\, \boldsymbol{X}) P(\boldsymbol{X}) \text{ or } P(\boldsymbol{X} \,|\, \boldsymbol{Y}) P(\boldsymbol{Y})$

- We could model this as a Markov random field
- ullet Joint distribution $P(oldsymbol{Y},oldsymbol{X})$ over disparity $oldsymbol{Y}$ and pixel intensities $oldsymbol{X}$:
 - $\bullet \ P(\boldsymbol{Y} \,|\, \boldsymbol{X}) P(\boldsymbol{X}) \text{ or } P(\boldsymbol{X} \,|\, \boldsymbol{Y}) P(\boldsymbol{Y})$
 - Both involve a (conditional) distribution over natural images!!!

- We could model this as a Markov random field
- ullet Joint distribution $P(oldsymbol{Y},oldsymbol{X})$ over disparity $oldsymbol{Y}$ and pixel intensities $oldsymbol{X}$:
 - $\bullet \ P(\boldsymbol{Y} \,|\, \boldsymbol{X}) P(\boldsymbol{X}) \text{ or } P(\boldsymbol{X} \,|\, \boldsymbol{Y}) P(\boldsymbol{Y})$
 - Both involve a (conditional) distribution over natural images!!!
- Requires that we choose a parametric form over the pixel values

- We could model this as a Markov random field
- ullet Joint distribution $P(oldsymbol{Y},oldsymbol{X})$ over disparity $oldsymbol{Y}$ and pixel intensities $oldsymbol{X}$:
 - $\bullet \ P(\boldsymbol{Y} \,|\, \boldsymbol{X}) P(\boldsymbol{X}) \text{ or } P(\boldsymbol{X} \,|\, \boldsymbol{Y}) P(\boldsymbol{Y})$
 - Both involve a (conditional) distribution over natural images!!!
- Requires that we choose a parametric form over the pixel values
- Non-local features (e.g., image gradients) are useful, but difficult to capture with a joint distribution

- ullet Let X denote the input/observation (e.g., an image) and Y be the output (e.g., disparity, label, etc.)
- Flexibility in the structure and parametrization of the model

- ullet Let X denote the input/observation (e.g., an image) and Y be the output (e.g., disparity, label, etc.)
- Flexibility in the structure and parametrization of the model

Discriminative

Generative

• Discriminative models are concerned with modeling P(Y | X = x), where X = x is treated as a parameter

- ullet Let X denote the input/observation (e.g., an image) and Y be the output (e.g., disparity, label, etc.)
- Flexibility in the structure and parametrization of the model

Discriminative

Generative

- Discriminative models are concerned with modeling P(Y | X = x), where X = x is treated as a parameter
- Generative models are interested in the joint distribution $P(\boldsymbol{X},\boldsymbol{Y}) = P(\boldsymbol{X}\,|\,\boldsymbol{Y})P(\boldsymbol{Y})$
 - P(X | Y): Given the target label, generate the input

Generative vs. Discriminative Classifiers: Naive Bayes

- Classify e-mails as being spam (Y = 1) or not spam (Y = 0)
 - Let $i \in \{1, \dots, n\}$ index English words
 - $X_i = 1$ if word i appears in the e-mail
 - ullet E-mails are drawn from the joint distribution $P(Y,X_1,\ldots,X_n)$
- ullet Words are conditionally independent (d-separated) given Y

• Prediction follows via Bayes' Rule as

$$P(Y=1 \mid x_1, \dots, x_n) = \frac{P(Y=1) \prod_{i=1}^n P(x_i \mid Y=1)}{\sum_{y=\{0,1\}} P(Y=y) \prod_{i=1}^n P(x_i \mid Y=1)}$$

ullet These are **equivalent** models of P(Y, X)

ullet These are **equivalent** models of P(Y, X)

ullet But, suppose that we are only interested in $P(oldsymbol{Y}\,|\,oldsymbol{X})$ for prediction

ullet These are **equivalent** models of $P({m Y},{m X})$

Discriminative

Generative

- ullet But, suppose that we are only interested in $P(oldsymbol{Y}\,|\,oldsymbol{X})$ for prediction
- \bullet A generative model requires representing both $P(\boldsymbol{Y})$ and $P(\boldsymbol{X}\,|\,\boldsymbol{Y})$
 - ullet Generative, since we can $\mathit{generate}\ X$ given Y
 - ullet $P(oldsymbol{Y}\,|\,oldsymbol{X})$ is determined via Bayes' Rule

ullet These are **equivalent** models of $P({m Y},{m X})$

Discriminative

Generative

- ullet But, suppose that we are only interested in $P(oldsymbol{Y}\,|\,oldsymbol{X})$ for prediction
- \bullet A generative model requires representing both $P(\boldsymbol{Y})$ and $P(\boldsymbol{X}\,|\,\boldsymbol{Y})$
 - ullet Generative, since we can $\mathit{generate}\ X$ given Y
 - ullet $P(Y \mid X)$ is determined via Bayes' Rule
- A discriminative model only requires a representation of the conditional distribution $P(\boldsymbol{Y} \mid \boldsymbol{X})$
 - ullet Discriminative, since we can $\emph{discriminate}$ between different Y
 - ullet We never need to estimate $P(oldsymbol{X})$ (which can be hard)

"one should solve the (classification) problem directly and never solve a more general problem as an intermediate step" (Vapnik, 1998)

- Modeling requires the following decisions:
 - Generative model: How do we parametrize $P(X_i | \mathsf{Pa}_{X_i}^G, \boldsymbol{Y})$?

- Modeling requires the following decisions:
 - Generative model: How do we parametrize $P(X_i | \mathsf{Pa}_{X_i}^G, \boldsymbol{Y})$? Can be hard (e.g., distribution over $(3 \times 255)^{640 \times 480}$ pixel intensities)

- Modeling requires the following decisions:
 - Generative model: How do we parametrize $P(X_i | \mathsf{Pa}_{X_i}^G, \boldsymbol{Y})$? Can be hard (e.g., distribution over $(3 \times 255)^{640 \times 480}$ pixel intensities)
 - ullet Discriminative model: How do we parametrize $P(oldsymbol{Y} \,|\, oldsymbol{X})$?

- Modeling requires the following decisions:
 - Generative model: How do we parametrize $P(X_i \,|\, \mathsf{Pa}_{X_i}^G, \boldsymbol{Y})$? Can be hard (e.g., distribution over $(3 \times 255)^{640 \times 480}$ pixel intensities)
 - Discriminative model: How do we parametrize P(Y | X)? Allows us to ignore encoding distribution over X

- Modeling requires the following decisions:
 - Generative model: How do we parametrize $P(X_i | \mathsf{Pa}_{X_i}, Y)$?
 - Discriminative model: How do we parametrize P(Y | X)?

- Modeling requires the following decisions:
 - Generative model: How do we parametrize $P(X_i | \mathsf{Pa}_{X_i}, Y)$?
 - Discriminative model: How do we parametrize P(Y | X)?

- Modeling requires the following decisions:
 - Generative model: How do we parametrize $P(X_i | Pa_{X_i}, Y)$?
 - Discriminative model: How do we parametrize P(Y | X)?

• For the generative model, ignore the dependencies: assume that $X_i \perp X_{-i} \mid Y$ (naive Bayes)

• For the generative model, ignore the dependencies: assume that $X_i \perp \boldsymbol{X}_{-i} \mid \boldsymbol{Y}$ (naive Bayes)

• For the discriminative model, assume that

$$\begin{split} P(Y=1\,|\,\pmb{x};w) &= \frac{e^{w_0 + \sum_{i=1}^n w_i x_i}}{1 + e^{w_0 + \sum_{i=1}^n w_i x_i}} = \frac{1}{1 + e^{-w_0 - \sum_{i=1}^n w_i x_i}} \\ &= \frac{1}{1 + e^{-z}} \quad \text{logistic function} \end{split}$$

Generative (naive Bayes)

Discriminative (logistic regression)

- lacktriangle For the generative model, ignore the dependencies: assume that $X_i \perp m{X}_{-i} \mid m{Y}$ (naive Bayes)
- 2 For the discriminative model, assume that

$$P(Y = 1 \mid \boldsymbol{x}; w) = \frac{e^{w_0 + \sum_{i=1}^{n} w_i x_i}}{1 + e^{w_0 + \sum_{i=1}^{n} w_i x_i}} = \frac{1}{1 + e^{-w_0 - \sum_{i=1}^{n} w_i x_i}}$$

- We can show (problem set) that the first assumption implies the latter
- Every conditional distribution that can be represented via naive Bayes can also be represented using the logistic model

Generative vs. Discriminative Models

Generative (naive Bayes)

Discriminative (logistic regression)

- ullet Unlike naive Bayes, logistic models don't assume $X_i \perp oldsymbol{X}_{-i} \mid oldsymbol{Y}$
- Ignoring dependencies results in double-counting evidence, e.g.,
 - Suppose that $X_i=1$ ("transaction" in e-mail) and $X_j=1$ ("account" in e-mail)
 - \bullet Irrespective of being spam, these always occur together, i.e., $X_i = X_j$
 - Learning with naive Bayes $(P(X_i \mid \boldsymbol{Y}) = P(X_j \mid \boldsymbol{Y}))$ double-counts evidence
 - Learning with logistic regression sets $w_i=0$ for one of the words, thereby ignoring it

Generative vs. Discriminative Models

- ullet Discriminative model requires that $oldsymbol{X}$ be fully observed
 - ullet Generative models allow you to marginalize over unseen variables to compute $P(\boldsymbol{Y}\,|\,\boldsymbol{X}_o)$
- Maximum likelihood estimation of generative models is more efficient than training discriminative models [Ng and Jordan, 2002]¹
 - Consider number of samples necessary to get close to infinite data case
 - ullet Logistic regression requires $\mathcal{O}(n)$ samples
 - Naive Bayes requires $\mathcal{O}(\log n)$ samples
 - Naive Bayes converges with fewer samples, but not necessarily to better estimates

¹Ng and Jordan, "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes," NeurIPS 2002

Generative vs. Discriminative Models

 Ng and Jordan (2002) show that discriminative logistic regression has lower asymptotic error than a generative naive Bayes classifier, but that naive Bayes converges faster

Figure: Error rate vs. number of samples for 15 datasets from the UCI Machine Learning repository. Courtesy: Ng and Jordan, 2002.

ullet Undirected graph with nodes for Y (target variables) and X (observed variables) (alt., partially directed, with X the parent of Y)

- ullet Undirected graph with nodes for Y (target variables) and X (observed variables) (alt., partially directed, with X the parent of Y)
- ullet Parametrized by a set of factors $\phi_1(m{D}_1), \phi_2(m{D}_2), \dots, \phi_m(m{D}_m)$

- ullet Undirected graph with nodes for Y (target variables) and X (observed variables) (alt., partially directed, with X the parent of Y)
- ullet Parametrized by a set of factors $\phi_1(m{D}_1),\phi_2(m{D}_2),\dots,\phi_m(m{D}_m)$
- Represent conditional distribution $P(\boldsymbol{Y}\,|\,\boldsymbol{X})$ rather than joint distribution $P(\boldsymbol{Y},\boldsymbol{X})$

- ullet Undirected graph with nodes for Y (target variables) and X (observed variables) (alt., partially directed, with X the parent of Y)
- ullet Parametrized by a set of factors $\phi_1(m{D}_1),\phi_2(m{D}_2),\dots,\phi_m(m{D}_m)$
- Represent conditional distribution $P(\boldsymbol{Y}\,|\,\boldsymbol{X})$ rather than joint distribution $P(\boldsymbol{Y},\boldsymbol{X})$
- ullet Avoid representing dist. over $X\Rightarrow$ no potentials involving only X

• A conditional random field (CRF) is an undirected graph H over X and Y defined in terms of a set of factors $\phi_1(D_1), \ldots, \phi_m(D_m)$, where $D_i \not\subseteq X$, that encodes the conditional distribution

$$P(Y \mid X) = \frac{1}{Z(X)} \prod_{i=1}^{m} \phi_i(D_i)$$
$$Z(X) = \sum_{Y} \prod_{i=1}^{m} \phi_i(D_i)$$

$$P(Y \mid X) = \frac{1}{Z(X)} \prod_{i=1}^{m} \phi_i(D_i)$$
$$Z(X) = \sum_{y} \prod_{i=1}^{m} \phi_i(D_i)$$

- Two variables are connected by an undirected edge if they appear in the scope of the same factor
- ullet Just like a Markov network, except the partition function depends on (i.e., changes with) the observed variables (input) $oldsymbol{X}$
- Trained to maximize conditional (not joint) probability of the output given the input

Linear-Chain CRFs

- The linear-chain CRF can be represented as an undirected (left) or partially directed graph (right)
- The conditional distribution factorizes as

$$P(\mathbf{Y} \mid \mathbf{X}) = \frac{1}{Z(\mathbf{X})} \prod_{i=1}^{k-1} \phi(Y_i, Y_{i+1}) \prod_{i=1}^{k} \phi(Y_i, X_i)$$
$$Z(\mathbf{X}) = \sum_{\mathbf{Y}} \prod_{i=1}^{k-1} \phi(Y_i, Y_{i+1}) \prod_{i=1}^{k} \phi(Y_i, X_i)$$

- ullet By not modeling the distribution over $oldsymbol{X}$, we can consider representations of the data with complex, non-parametric interactions
- We can employ a rich set of features without concern over their joint distribution (e.g., image gradients)

- Let $X = \{X_1.X_2, \dots, X_k\}$ and Y be binary random variables
- ullet Assume $oldsymbol{X}$ (observed) and Y are related by the following factors

$$\phi_0(Y) = \exp\{w_0 \mathbb{1}[Y = 1]\}$$

$$\phi_i(X_i, Y) = \exp\{w_i \mathbb{1}[X_i = 1, Y = 1]\}$$

- Let $X = \{X_1.X_2, ..., X_k\}$ and Y be binary random variables
- ullet Assume $oldsymbol{X}$ (observed) and Y are related by the following factors

$$\phi_0(Y) = \exp\{w_0 \mathbb{1}[Y = 1]\}$$

$$\phi_i(X_i, Y) = \exp\{w_i \mathbb{1}[X_i = 1, Y = 1]\}$$

The conditional distribution becomes

$$\tilde{P}(Y = 1 \mid x_1, \dots, x_k) = \exp\left\{w_0 + \sum_{i=1}^k w_i x_i\right\}$$

 $\tilde{P}(Y = 0 \mid x_1, \dots, x_k) = 1$

- Let $X = \{X_1.X_2, ..., X_k\}$ and Y be binary random variables
- ullet Assume $oldsymbol{X}$ (observed) and Y are related by the following factors

$$\phi_0(Y) = \exp\{w_0 \mathbb{1}[Y = 1]\}$$

$$\phi_i(X_i, Y) = \exp\{w_i \mathbb{1}[X_i = 1, Y = 1]\}$$

The conditional distribution becomes

$$P(Y=1\,|\,x_1,\ldots,x_k) = \frac{\exp\left\{w_0 + \sum_{i=1}^k w_i x_i\right\}}{1 + \exp\left\{w_0 + \sum_{i=1}^k w_i x_i\right\}} = \operatorname{sigmoid}\left(w_0 + \sum_{i=1}^k w_i x_i\right)$$

- Let $X = \{X_1.X_2, \dots, X_k\}$ and Y be binary random variables
- ullet Assume $oldsymbol{X}$ (observed) and Y are related by the following factors

$$\phi_0(Y) = \exp\{w_0 \mathbb{1}[Y = 1]\}$$

$$\phi_i(X_i, Y) = \exp\{w_i \mathbb{1}[X_i = 1, Y = 1]\}$$

The conditional distribution becomes

$$P(Y=1\,|\,x_1,\ldots,x_k) = \frac{\exp\left\{w_0 + \sum_{i=1}^k w_i x_i\right\}}{1 + \exp\left\{w_0 + \sum_{i=1}^k w_i x_i\right\}} = \operatorname{sigmoid}\left(w_0 + \sum_{i=1}^k w_i x_i\right)$$

Recall earlier discriminative (logistic regression) discussion

CRF Parametrization

- Factors may depend on a large number of variables
- Typically, parametrize factors using log-linear representation

$$\phi_c(\boldsymbol{X}_c, \boldsymbol{Y}_c) = \exp\left(\boldsymbol{w}_c^{\top} \boldsymbol{f}_c(\boldsymbol{X}_c, \boldsymbol{Y}_c)\right)$$

where

- $f_c(X_c, Y_c)$ is a feature vector (e.g., local image gradients)
- $oldsymbol{w}_c$ is a weight vector that is learned from data

- Objective: Given a sentence, segment phrases into different locations, people, organizations, etc.
 - "Mrs. Green spoke today in New York Green chairs the finance committee"
- Entries often span multiple words and label isn't obvious without considering context
- Define a random variable Y_i for each word X_i that expresses its entity type ("BIO notation")
 - B-PER/B-LOC: Beginning of a person/location
 - I-PER/I-LOC: Inside or end of named entity phrase for person/location
 - OTH: Word is not part of an entity

Interested in $P(\boldsymbol{Y} \,|\, \boldsymbol{X}) \Rightarrow \mathsf{Model}$ as a CRF w/ three types of factors

Interested in $P(Y | X) \Rightarrow \mathsf{Model}$ as a CRF $\mathsf{w}/$ three types of factors

• $\phi^1(Y_t,Y_{t+1})$: Expresses dependency between neighboring entities (similar to transition distribution in HMMs)

Interested in $P(Y | X) \Rightarrow Model$ as a CRF w/ three types of factors

- $\phi^1(Y_t,Y_{t+1})$: Expresses dependency between neighboring entities (similar to transition distribution in HMMs)
- $\phi^2(Y_t, X_1, \dots, X_T)$: Expresses dependency between an entity and the entire word sequence (context), encoded via log-linear model
 - \bullet O(1000) features over current word X_t (e.g., capitalized), neighboring words, and entire sequence (e.g., number of sports-related words)

Interested in $P(Y | X) \Rightarrow \mathsf{Model}$ as a CRF $\mathsf{w}/$ three types of factors

- $\phi^1(Y_t,Y_{t+1})$: Expresses dependency between neighboring entities (similar to transition distribution in HMMs)
- $\phi^2(Y_t, X_1, \dots, X_T)$: Expresses dependency between an entity and the entire word sequence (context), encoded via log-linear model
 - O(1000) features over current word X_t (e.g., capitalized), neighboring words, and entire sequence (e.g., number of sports-related words)
- $\phi^3(Y_t,Y_{t'})$: For all pairs t,t' s.t. $X_t=X_{t'}$, since words that appear twice should be the same entity (skip-chain CRF)

Interested in $P(Y | X) \Rightarrow \mathsf{Model}$ as a CRF w/ three types of factors

- $\phi^1(Y_t,Y_{t+1})$: Expresses dependency between neighboring entities (similar to transition distribution in HMMs)
- $\phi^2(Y_t, X_1, \dots, X_T)$: Expresses dependency between an entity and the entire word sequence (context), encoded via log-linear model
 - O(1000) features over current word X_t (e.g., capitalized), neighboring words, and entire sequence (e.g., number of sports-related words)
- $\phi^3(Y_t, Y_{t'})$: For all pairs t, t' s.t. $X_t = X_{t'}$, since words that appear twice should be the same entity (skip-chain CRF)

Graph structure changes depending on sentence

• Given two images X_l and X_r , estimate the disparity $y_{i_l,j_l} \in Y$ between a pixel at (i_l,j_l) in the left image and the corresponding pixel $(i_r,j_r)=(i_l+y_{i_l,j_l},j_l)$ in the right image (assume 1D)

Define local node potential as

$$\phi_{i_l,j_l}(y_{i_l,j_l}, \boldsymbol{X}) \propto \exp\left(-\frac{1}{2\sigma^2} \left(x_l(i_l, j_l) - x_r(i_l + y_{i_l,j_l}, j_l)\right)^2\right)$$

Define local node potential as

$$\phi_{i_l,j_l}(y_{i_l,j_l}, \boldsymbol{X}) \propto \exp\left(-\frac{1}{2\sigma^2} \left(x_l(i_l, j_l) - x_r(i_l + y_{i_l,j_l}, j_l)\right)^2\right)$$

ullet Define smoothness potential over neighboring pixels s and t

$$\phi_{s,t}(y_s, y_t) \propto \left(-\frac{1}{2\gamma^2}(y_s - y_t)^2\right)$$

Can be defined only for pairs s and t that don't cross boundaries

Define local node potential as

$$\phi_{i_l,j_l}(y_{i_l,j_l}, \boldsymbol{X}) \propto \exp\left(-\frac{1}{2\sigma^2} \left(x_l(i_l, j_l) - x_r(i_l + y_{i_l,j_l}, j_l)\right)^2\right)$$

ullet Define smoothness potential over neighboring pixels s and t

$$\phi_{s,t}(y_s, y_t) \propto \left(-\frac{1}{2\gamma^2}(y_s - y_t)^2\right)$$

Can be defined only for pairs s and t that don't cross boundaries **Graph structure changes depending on the image**

There are advantages and disadvantages to MRF and CRF formulations (just as with discriminative and generative classifiers):

+ CRFs don't "waste resources" modeling things that are observed (data) when we only care about distribution over labels given data

- + CRFs don't "waste resources" modeling things that are observed (data) when we only care about distribution over labels given data
- + CRFs easily accommodate data-dependent potentials (factors)
 - In image segmentation, we can disable smoothing between labels separated by an edge
 - In named entity recognition, we can tie repeated words together

- + CRFs don't "waste resources" modeling things that are observed (data) when we only care about distribution over labels given data
- + CRFs easily accommodate data-dependent potentials (factors)
 - In image segmentation, we can disable smoothing between labels separated by an edge
 - In named entity recognition, we can tie repeated words together
- + CRFs easily accommodate labels that depend on global properties of data (difficult to do with MRFs)

- + CRFs don't "waste resources" modeling things that are observed (data) when we only care about distribution over labels given data
- + CRFs easily accommodate data-dependent potentials (factors)
 - In image segmentation, we can disable smoothing between labels separated by an edge
 - In named entity recognition, we can tie repeated words together
- + CRFs easily accommodate labels that depend on global properties of data (difficult to do with MRFs)
- CRFs require labeled training data and are slower to train