15 A nucleus of polonium-210 decays to lead-206 by emitting an alpha particle. The masses of the particles are shown in the table.

	Mass/kg
Polonium-210	3.48572×10^{-25}
Lead-206	3.41918×10^{-25}
Alpha particle	6.64437×10^{-27}

(a)	(i)	Show that	the energy	released	in the	decay	is	about	9	×	10^{-1}	13
-----	-----	-----------	------------	----------	--------	-------	----	-------	---	---	-----------	----

(3)

(ii) 98% of the energy from the decay is released as kinetic energy of the alpha particle.

Calculate the velocity of the alpha particle immediately after the decay.

(2)

Velocity of alpha particle =

(b) Explain why not all of the energy from the decay is released as kinetic energy of the alpha particle.						
агрна рагнете.			(2)			