英語風 Sunaba 早見

1 メモリ変更行

memory[番号を計算する計算式や数] -> 計算式や数 名前付きメモリの名前 -> 計算式や数

「->」の左に何番のメモリに覚えさせるかを指定し、右には、覚えさせる数を計算する計算式や、数を書く。メモリの番号指定をする代わりに、後述の名前付きメモリを使っても良い。例えば、

memory[3] -> 5

で、3番のメモリが5を覚える。

2 計算

計算式は、数、名前付きメモリ (後述)、メモリなどを計算記号 (演算子) でつないだものだ。例えば、2+3、a*memory[4] のように書ける。記号は以下の 10 個である。

記号	+	-	*	/	<	>	<=	>=	=	!=
作用	加算	減算	乗算	除算	左<右で1	左>右で1	左≦右で1	左≧右で1	左=右で1	左≠右で1
-7 と 5	-2	-12	35	-1	1	0	1	0	0	1

後ろ6つの記号は1でない時は0になる。例えば4>6は4が6より大きくないので0になる。

計算は全て左から順に行う。4+5*6 は 4+5 を先にやるので 54 になる。乗算や除算を先にやることはなく、優先順位は括弧で示す。4+(5*6) と書けば 34 になる。

3 繰り返しと条件実行

プログラムは基本的には、1行づつ上から下へと実行されるが、その流れを変える方法もある。それが以下の二つだ。

while 計算式や数

中身 if 計算式や数

おり 日身 中身

while は、計算式の計算結果や数が0でない間、そこに続く「中身」、つまり先頭に空白が空いた行(複数行あってもいい)をを繰り返し実行する。複数行ある場合先頭の空白は同じ数である必要がある。また、if は、最大繰り返し回数が1の while である。

そしてこれらは多重にもできる。例えば、

while 計算式や数

if 計算式や数 ifの中身

whileの中身

4 名前付きメモリ

名前付きメモリはとある番号のメモリの別名である。

a -> 5

と書くと、どこかの番号のメモリに a という名前がつき、それに 5 を覚えさせることができる。番号は気にしなくていい。作った名前付きメモリは計算に使える。

memory[4] -> a + 5

5 部分プログラム

部分プログラムはプログラムの一部に名前をつける仕組みである。

余りを出す(a, b) とは 出力 -> (a - ((a / b) * b))

と書くと「余りを出す」という名前の部分プログラムができる。a と b は「入力」という特別な名前付きメモリであり、「出力」もまた特別な名前付きメモリである。作った部分プログラムを使うには例えば以下のようにする。

答え -> 余りを出す(16,5)

「出力」に覚えさせた数が「余りを出す(16,5)」を置き換え、名前付きメモリ「答え」は1を覚える。部分プログラムは使わた時に初めて実行される。

「出力」に何も覚えさせない部分プログラムも作ることができ、その場合は、

点を描く(16,5)

のように「->」なしで使う。

また、部分プログラムの中では外の名前付きメモリを使えない。部分プログラムの外では中の名前付きメモリは使えない。

6 メモリの番号

番号の範囲	説明
0-39999	自由領域 + プログラム
50000-50001	マウスカーソル座標 (順に X,Y)。
50002-50003	マウスボタン (順に左、右。on が 1、off が 0)
50004-50009	キーボード (順に上、下、左、右、スペース、エンター。全て on が 1、off が 0)
55000	同期スイッチ (画面反映)。何かを書き込むと画面にメモリを反映させる。
55001	自動同期無効化。1 で無効、0 で有効
60000-69999	画素の色を格納。

6.1 画面 (60000 番台) について

幅が 100、高さが 100 で、左上から右へ、端まで行ったら下へ1 段ずれる、という順番。

0	1	2		97	98	99		
100	101	102		197	198	199		
9900	9901	9902		9997	9998	9999		
ラのまに coooo ま to * ま 取 日ま 仕 *								

この表に60000を加えた番号を使う。

色は0から999999まで。6桁の数値の、上2桁が赤、次の2桁が緑、下の2桁が青。光の三原色で表す。例えば、

黒	白	赤	緑	青	黄	空色	紫
000000(=0)	999999	990000	009900(=9900)	000099(=99)	999900	009999(=9999)	990099