Cryptology Lecture 3 DES: Data Encryption Standard

Joseph Phillips Copyright (c) 2020 Last modified 2020 April 13

Topics

- History
- Design Motivation
- Details
- Decryption
- Attacks
- Alternatives

 Reading: "Chapter 3: The Data Encryption Standard (DES) and Alternatives" of Christof Paar and Jan Pelzl "Understanding Cryptolography: A Textbook for Students and Practitioners"

History: Early 1970s US industry wants crypto

We have legitimate needs for encryption, like banking.
Would you help us?

(As much as I want to monopolize crypto research, they are right)

History: Reluctantly, US Govt agrees But does not want to give away the good stuff! (NIST then called NBS)

History: So NBS asks industry what they have

So industry, what do you have?

Crypto? We've been working on that! Check out Lucifer!

History: NBS asks NSA about it

what do you think of IBM's Lucifer?

Let's make it stronger against analytical attack, but weaker against brute-force

Crypto is your specialty

History: Stronger S-boxes but smaller key (128 bits => 56)

That analytical attack that we talked about, keep it secret, okay?

Analytical attack? What attack?;)

History: 1977 D.E.S. (Data Encryption Standard) introduced

You want crypto? Here it is! **D.E.S. Data Encryption Standard!**

History: A Skeptical Public

"Input from the super-secret United States <u>NSA</u>? There must be a <u>trick!</u>"

History: Skeptical Public, cont'd

"A <u>trap-door</u> allowing them to easily decode!"

History: Skeptical Public, cont'd

"Only 56 bits: they can <u>brute-force</u> attack it easier than original 128 bits"

History: Analysis of D.E.S.

- And so people have looked for weaknesses
 - 1970s: birth of academic cryptology
- No serious analytical flaw published since, thus
 - 1. Truly as secure as they could make it, or
 - 2.US Gov't "disappeared" anyone who cracked it!
- (Nowadays everyone knows 56 bits can be brute-force attacked)

I <u>am</u> licensed to kill.

- Desired criteria
 - On average, changing one plaintext bit changes ½ ciphertext bits
 - Difficult to statistically attack

IQ IFCC VQQR FB RDQ VFLLCQ $Q = E \quad C = L \quad H = A$ R = T D = H I = WF = I B = N N = OV = M L = D A = FW = R J = B Z = SS = G E = SWE WILL MEET IN THE MIDDLE

Confusion

- Obscure relationship between key and ciphertext
- E.g. substutition
- E.g. Shift and Affine ciphers
- Attack thru statistics!

- Diffusion
 - Move bits around between plaintext and ciphertext
 - Still attack thru statistics!

Claude Shannon

- American mathematician, electrical engineer, cryptographer
- Father of information theory
- "Dude, don't do one or the other. Do them both!"
- Product ciphers:
 - do more than one type of encryption

Modern Product Ciphers

- Several rounds of
 - Diffuse
 - Confuse
 - Diffuse
 - Confuse
 - etc.

Horst Feistel

- German-American cryptographer
 - Fled Nazi Germany for USA in 1934
 - During WWII, under house arrest until 1944
 - Worked on Identification-Friend-or-Foe (IFF)
 - MIT → MITRE → IBM
- Worked on Lucifer at IBM

DES

- Initial permutation
- For i = 1 to 16:
 - Feistel Round
- Final permutation

Initial and final permutations

Initial and final permutations

- IP
 - Initial bit rewiring
- IP-1
 - Final bit unrewiring
- Speed
 - Fast in hardware
 - Slow in software
- Author:
 - "Does not add security"
 - "Done to increase speed on 8-bit busses?"
- Joe
 - There might be a hardware reason
 - All even bits first
 - All odd bits last
 - Some regular patterns

IP (lowest bit = 1)											
58	50	42	34	26	18	10	2				
60	52	44	36	28	20	12	4				
62	54	46	38	30	22	14	6				
64	56	48	40	32	24	16	8				
57	49	41	33	25	17	9	1				
59	51	43	35	27	19	11	3				
61	53	45	37	29	21	13	5				
63	55	47	39	31	23	15	7				

DES: Feistel Round

DES: Feistel Round

- Blocks are 64 bits long
 - Left = 32 bits,
 - Right = 32 bits
- Feistel Operation:
 - $-L_i=R_{i-1}$
 - $R_i = L_{i-1} XOR f(R_{i-1}, k_i)$

DES: f-function

THIS IS THE MOST IMPORTANT PART!

THIS HAS THE SECURITY!

f-function: Expansion ("E") Boxes and Substitution ("S") Boxes

- 1. Expand R_{i-1} with E-box
 - 32 bits to 48
- 2. XOR with key_i
- 3. Substitute with S-box
 - 6 bits to 4
- 4. XOR with L_{i-1} to make R_i

1. Expand with E-box

- 4 bit blocks to 6 bit blocks
- ½ bits appear twice
 - Each bit only once in6 bit blocks

E											
32	1	2	3	4	5						
4	5	6	7	8	9						
8	9	10	11	12	13						
12	13	14	15	16	17						
16	17	18	19	20	21						
20	21	22	23	24	25						
24	25	26	27	28	29						
28	29	30	31	32	1						

2. XOR with Key

- "Hey, where did that k_i come from?"
 - Permutation of original key
- PC-1
 - "Permuted choice one"
- Split into 2 halves
 - C₀ and D₀, both 28 bits
- Rounds:
 - 1,2, 9 and 16: Rotate left 1 bit
 - All others: Rotate left 2 bits
 - -4*1 + 12*2 = 28,
 - So: $C_0 = C_{16}$ and $D_0 = D_{16}$
- HOLD THAT THOUGHT!
 - $C_0 = C_{16}$ and $D_0 = D_{16}$

2. XOR with key

- PC-1
 - "Permuted choice one"
- DES says "64 bit key"
- Every 8th bit is a parity bit
 - Effectively 56 bit key

PC-1											
57	49	41	33	33 25		9	1				
58	50	42	34	26	18	10	2				
59	51	43	35	27	19	11	3				
60	52	44	36	63	55	47	39				
31	23	15	7	62	54	46	38				
30	22	14	6	61	53	45	37				
29	21	13	5	28	20	12	4				

2. XOR with key, cont'd

- C₁ and D₁, both 28
 bits
 - Together 56 bits
- Send into PC-2
 - It ignores 8 bits
- Remaining 48 bits used as f for XOR

PC-2												
14	17	11	24	1	5	3	28					
15	6	21	10	23	19	12	4					
26	8	16	7	27	20	13	2					
41	52	31	37	47	55	30	40					
51	45	33	48	44	49	39	56					
34	53	46	42	50	36	29	32					

3. Substitute with S-box

- This is where the strength comes from!
 - Designed to be *non-linear*
 - Provide confusion
- 8 boxes: S₁ to S₈ (S₁ given below)
- Read in funky fashion:
 - Input b= $(100101)_2$ Output (row 11_2 =3, column 0010_2 = 2) = 08

S ₁	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	01	10	06	12	11	09	05	03	80
2	04	01	14	80	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	80	02	04	09	01	07	05	11	03	14	10	00	06	13

3. S-box criteria (revealed in 1990)

- 1. Each has 6 input and 4 output bits
- 2. No single output bit should be too close to linear combo of input bits
- 3. If the lowest and highest bits are fixed, and middle varied, each possible 4 bit output appears exactly once
- 4. If two inputs differ in exactly one bit, outputs must differ in 2 bits

3. S-box criteria, cont'd (revealed in 1990)

- 5. If two inputs to an S-box differ in the middle two bits, their outputs differ in at least two bits
- 6. If two inputs to an S-box differ in their first two bits and are identical in their last two bits, then the two outputs must be different
- 7. For any non-zero 6-bit difference between inputs, no more than 8 of the 32 pairs of inputs exhibiting that difference may result in the same difference.
- 8. A collision (zero output difference) at the 32-bit output of the 8 S-boxes is only possible for three adjacent S-boxes.

Differential Attack: Attack against block-cipher S-boxes

- 1. Get pairs of plain text related by constant difference
 - (e.g. XOR difference)
- 2. Get corresponding ciphertext
- 3. Compute differences in ciphertext
 - Look for statistical patterns in their distribution

Differential Attack: Attack against block-cipher S-boxes

- Published by Eli Biham (top) and Adi Shamir (bottom) in 1980s
 - Israeli cryptographers
 - Found that DES is resistant to that attack
- Known by IBM and NSA (independent of each other) in 1970s
- DES S-boxes designed to be non-linear
 - $S(a) \oplus S(b) \neq S(a \oplus b)$

Decryption

- Did you remember?
 - $C_0 = C_{16}$ and $D_0 = D_{16}$
- We rotated the key halves left to make k_i to encode

Decryption, cont'd

- To decode the only change is rotate key halves right
- $k_{16} =$ = PC-2(C_{16} , D_{16}) = PC-2(C_{16} , D_{16})
- $k_{15} =$ = PC-2(C_{15} , D_{15}) = PC-2($RS_2(C_{16})$, $RS_2(D_{16})$)
- Etc.
- Round:
 - 1: no rotation
 - 2, 9, 16: right 1 bit
 - All others: right 2 bits

Decryption: Feistel Network encrypts & decrypts

- Decrypt round 1 reverses encrypt round 16
- Decrypt round 2 reverses encrypt round 15
- Etc.
- Undo final permutation
 - Superscript d means "decryption"

•
$$(L_0^d, R_0^d) =$$

= $IP(Y)$
= $IP(IP^{-1}(R_{16}, L_{16}))$
= (R_{16}, L_{16})

Decryption: Feistel Network encrypts & decrypts

- 1. Now consider it backwards, initially
 - $L_0^d = R_{16}$
 - $R_0^d = L_{16} = R_{15}$

2. Recursively:

```
• R_1^d =
= L_0^d \oplus f(R_0^d, k_{16})
= R_{16} \oplus f(L_{16}, k_{16})
= [L_{15} \oplus f(R_{15}, k_{16})] \oplus f(R_{15}, k_{16})
= L_{15} \oplus [f(R_{15}, k_{16}) \oplus f(R_{15}, k_{16})]
= L_{15}
```

Analytical Attacks

- 1980s: Biham and Shamir
 - Try differential cryptanalysis
 - It was resistant
- Mitsuru Matsui
 - Try linear cryptanalysis
 - Also resistant
- Attacker needs
 - 2⁴⁷ (plaintext,ciphertext) *chosen* pairs
 - 2⁵⁵ (plaintext,ciphertext) <u>random</u> pairs
 - Of course, neither are realistic
- RSA Security sponsors an attack challenge

Brute-Force Attacks

- 1970s: Whitfield Diffie and Martin Hellman:
 - Estimate US\$20,000,000 for dedicated cracker
- 1998: Electronic Frontier Foundation "Deep Crack"
 - US\$250,000 of custom hardware
 - Average time = 15 days
 - Shown on right ===>
- 2006: COPACOBANA
 - US\$10,000
 - Average time < 7 days

Modern Alternatives to DES

- 3DES: 3*56 = 168 bit key
 - Encrypt with 56 bits
 - Decrypt with 56 bits
 - Encrypt again with 56 bits
- A.E.S: Advanced Encryption Standard
 - Stay tuned!

- And other block ciphers:
 - Mars (royalty free)
 - RC6
 - Serpent (royalty free)
 - Twofish (royalty free)

References:

- "Chapter 3: The Data Encryption Standard (DES) and Alternatives" of Christof Paar and Jan Pelzl "Understanding Cryptolography: A Textbook for Students and Practitioners"
- "EFF DES Cracker Machine Brings Honesty to Crypto Debate" https://web.archive.org/web/20130517060659/http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_descracker_pressrel.html (Downloaded 2020 April 11)
- Biham, Eli; Shamir, Adi "Differential Cryptanalysis of the Data Encryption Standard" Springer Verlag, 1993.
- Coppersmith, Don (May 1994) "The Data Encryption Standard (DES) and its strength against attacks" *IBM Journal of Research and Development*, 38 (3): 243.
- Konheim, Alan G. "Horst Feistel: the inventor of LUCIFER, the cryptographic algorithm that changed cryptology" in "Journal of Cryptographic Engineering", Vol 9, pg 85-100 (2019)