

人工智能原理

第22章 - 强化学习

彭振辉 中山大学人工智能学院 2024年春季学期

Reinforcement Learning

Reinforcement Learning

强化学习大纲

- 被动强化学习
 - Model-based
 - 自适应动态规划
 - Model-free
 - 直接效用估计
 - 时序差分学习
- 主动强化学习
 - Exploration 和 Exploitation
 - Q-learning
 - Approximate Q-learning

• 22.5 - 22.7为课外阅读

神秘难懂的强化学习?原理很简单!

回顾:马尔科夫决策过程

- An MDP is defined by:
 - A set of states 状态 *s* ∈ *S*
 - A set of actions 行动 a ∈ A
 - A transition model 转移模型 T(s, a, s')
 - Probability that α from s leads to s', i.e., $P(s' \mid s, \alpha)$
 - A reward function 回报/奖励函数 R(s, a, s') for each transition
 - A start state 初始状态
 - Possibly a terminal state 终止状态 (or absorbing state)
 - Utility function which is additive (discounted) rewards

MDPs are fully observable but probabilistic search problems

课程回顾: Value Iteration 价值迭代

- 从 $U_0(s) = 0$ 和一些终止参数 ε 开始
- 重复迭代直到收敛(即,直到所有更新小于ε)
 - 对每个状态做一个**贝尔曼更新**(本质上是一个 expectimax 层)

$$U_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s' \mid a,s) \left[R(s,a,s') + \gamma U_{k}(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- 定理:将收敛到唯一的最优值 $Q_k(s,a)$
- 每次迭代的运行时间?
 - 每次迭代的复杂度: O(S²A)

价值迭代计算案例

8	a	s'	T(s,a,s')	R(s,a,s')
\boldsymbol{A}	0	A	0.50	2.0
A	0	\boldsymbol{B}	0.50	-1.0
\boldsymbol{A}	1	\boldsymbol{A}	0.50	1.0
A	1	\boldsymbol{B}	0.50	2.0
\boldsymbol{B}	0	A	0.0	-2.0
\boldsymbol{B}	0	\boldsymbol{B}	1.0	-1.0
\boldsymbol{B}	1	A	0.10	-3.0
B	1	B	0.90	-1.0

初始 V_0 =0; 折扣因子 γ =1 试着求左图各个值,比如 $V_1(A)$ $V_1(B)$

价值迭代计算案例

强化学习

- 仍然假设一个马尔可夫决策过程(MDP):
 - A set of states 状态 s ∈ S
 - A set of actions 行动 (per state) A
 - A model T(s,a,s') 转移模型
 - A reward function R(s,a,s') 回报函数
- 仍然想要求解一个策略 policy $\pi(s)$

- 新的情况: 不知道 T 或 R
 - I.e. 我们不知道哪些状态是好的或行动的后果是什么
 - 必须实际尝试行动和状态去学习
 - · Note: 不知道的事物,并不代表它们不存在,去学习!

Reinforcement Learning

Basic ideas:

- Exploration 探索: 你必须 尝试未知的行动 才能获取信息
- Exploitation 利用 (信息): 最终,你必须使用你所知道的信息
- Sampling 采样: 你可能需要重复多次才能获得良好的估计
- Generalization 泛化: 你在一个状态学到的东西也可能适用于其它状态

Reinforcement Learning

• Basic idea:

- 以回报(rewards)的形式接收反馈
- Agent 的效用由回报函数定义
- 必须(学会)采取行动以最大化期望回报(maximize expected rewards)
- 所有的学习都是基于观察到的结果样本!

The Real Crawler!

Source: https://www.instructables.com/Q-Learning-machine-Learning-Crawler/

The Crawler!

Learning to Walk

Initial

[Kohl and Stone, ICRA 2004]

Learning to Walk

Finished

[Kohl and Stone, ICRA 2004]

Offline (MDPs) vs. Online (RL)

Offline Solution

Agent拥有环境的完整模型,并且知道回报函数

Online Learning Agent没有关于两者的先验知识

Passive Reinforcement Learning 被动强化学习

Passive Reinforcement Learning

- 简化的任务:策略评估 policy evaluation
 - 输入: 固定的策略 π(s)
 - 你不知道转移模型 T(s,a,s')
 - 你不知道回报 R(s,a,s')
 - 目标:学习状态值
- 在这种情况下:
 - 学习者"随心所欲"
 - 无法选择采取什么行动
 - 只需执行策略并吸取经验
 - 这不是离线规划! 你实际上在世界上采取了行动

Model-Based Learning

Model-Based Learning 基于模型的学习

- Model-Based Idea:
 - 根据经历学习近似的模型
 - 求解学习到的 MDP
- 第 1 步:根据经历学习MDP 模型
 - 计算每个 s, a 的结果 s'
 - 归一化以估计 $\hat{T}(s,a,s')$
 - 当我们经历 (s, a, s') 时发现每一个 $\hat{R}(s, a, s')$
- 第 2 步:求解学习到的 MDP
 - 例如,像以前一样使用 value iteration

Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s,a,s')$$

T(B, east, C) = T(C, east, D) = T(C, east, A) =

• •

$$\hat{R}(s, a, s')$$

R(B, east, C) = R(C, east, D) = R(D, exit, x) =

• • •

Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s, a, s')$$

T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25

..

$$\hat{R}(s, a, s')$$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

• • •

Pros and cons

- Pro:
 - 有效地利用了经历
- Con:
 - 可能无法扩展到大型状态空间
 - 一次学习一个状态-动作对模型
 - 无法解决 |S| 非常大的 MDP

类比例子: 期望年龄

目标:计算人工智能原理课学生的期望年龄

已知P(A)的情况

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

未知P(A) 时, 收集样本[a₁, a₂, ... a_N]

未知 P(A): "Model Based"

为什么这行得通? 因为最终你会学 习到正确的模型。

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

未知 P(A): "Model Free"

$$E[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

为什么这行得通? 因为样本以正确 的频率出现。

Model-Free Learning

Direct Evaluation 直接(效用)估计

- 目标: 计算π下每个状态的(效用)值
- idea:平均化观察到的样本值
 - 按π行动
 - 每次访问一个状态时,写下折扣回报的总和是多少
 - 取这些样本的折扣回报平均值

• 这称为直接(效用)估计

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

	-10	
	A	
+8	+4	+10
В	C	D
	-2	
	E	

Quiz: Direct Evaluation

Input Policy π

What if $\gamma = 0.5$?

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

直接效用估计的好处和问题

• 好处

- 很容易理解
- 它不需要任何关于 T、R 的知识
- 它使用样本中体现的转换关系,最终(大样本下)能计算正确的平均效用值

• 问题

- 得等到一次经历(episode)完成才能学习
- 浪费了有关状态与状态之间的信息
- 每个状态都必须分开学习
- 所以学起来需要很长时间
- 思考: 所以为什么学习起来需要很长时间? 怎么办呢?

Output Values

If B and E both go to C under this policy, how can their values be different?

忽略了C->D, C->A的转移概率,上上页的例子中,恰好是从E出发的那次经历最后到达了A,得到-10。

E.g., B=at home, study hard E=at library, study hard C=know material, go to exam

Temporal difference (TD) learning 时序差分学习

策略迭代?

- 简化的 Bellman 更新计算**固定策略**的 V:
 - 每一轮,用 V 上的一步前瞻(one-step-look-ahead)层替换 V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- 这种方法充分利用了状态之间的联系
- 不幸的是, 我们需要 T 和 R 来做到这一点!

- 关键问题:我们如何在不知道 T 和 R 的情况下对 V 进行更新?
 - 在model-free的思想下,我们如何在不知道权重的情况下取加权平均值?

TD as approximate Bellman update

• 我们想通过计算一些平均值来改进我们对 V 的估计:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

• Idea 1: 对结果 s' 进行采样(通过执行行动!)并取平均值

$$sample_1 = R(s, \pi(s), s_1') + \gamma V_k^{\pi}(s_1')$$

$$sample_2 = R(s, \pi(s), s_2') + \gamma V_k^{\pi}(s_2')$$

. . .

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Almost! But we can't rewind time to get sample after sample from state s. 我们在尝试时,不能重复回到状态s去尝试

TD as approximate Bellman update

- Idea 2: Update value of s after each transition s,a,s',r:
 - Update V^{π} ([3,1]) based on R([3,1], up,[3,2]) and $\gamma V^{\pi}([3,2])$
 - Update V^{π} ([3,2]) based on R([3,2],up,[3,3]) and γV^{π} ([3,3])
 - Update V^{π} ([3,3]) based on R([3,3],right,[4,3]) and $\gamma V^{\pi}([4,3])$
- Idea 3: Update values by maintaining a running average

Running Averages

- How do you compute the average of 1, 4, 7?
- Method 1: add them up and divide by N
 - 1+4+7 = 12
 - average = 12/N = 12/3 = 4
- Method 2: keep a running average μ_n and a running count n

```
• n=0 \mu_0=0
```

• n=1
$$\mu_1 = (0 \cdot \mu_0 + x_1)/1 = (0 \cdot 0 + 1)/1 = 1$$

• n=2
$$\mu_2 = (1 \cdot \mu_1 + x_2)/2 = (1 \cdot 1 + 4)/2 = 2.5$$

• n=3
$$\mu_3 = (2 \cdot \mu_2 + x_3)/3 = (2 \cdot 2.5 + 7)/3 = 4$$

• General formula: $\mu_n = ((n-1) \cdot \mu_{n-1} + x_n)/n$

= $[(n-1)/n] \mu_{n-1} + [1/n] x_n$ (weighted average of old mean, new sample)

两个权重值有什么联系?

它们都随n的变化而变化,每次都要新算一个值,有没有简化方法?

Running Averages

- What if we use a weighted average with a fixed weight?
 - $\mu_n = (1-\alpha) \mu_{n-1} + \alpha x_n$ • n=1 $\mu_1 = x_1$ • n=2 $\mu_2 = (1-\alpha) \cdot \mu_1 + \alpha x_2 = (1-\alpha) \cdot x_1 + \alpha x_2$ • n=3 $\mu_3 = (1-\alpha) \cdot \mu_2 + \alpha x_3 = (1-\alpha)^2 \cdot x_1 + \alpha (1-\alpha) x_2 + \alpha x_3$ • n=4 $\mu_4 = (1-\alpha) \cdot \mu_3 + \alpha x_4 = (1-\alpha)^3 \cdot x_1 + \alpha (1-\alpha)^2 x_2 + \alpha (1-\alpha) x_3 + \alpha x_4$
- 早期的x值在当前时间点,会发生什么变化?
- I.e., exponential forgetting of old values
- 拓展:
 - μ_n is a convex combination^[1] of sample values (weights sum to 1)
 - $E[\mu_n]$ is a convex combination of $E[X_i]$ values, hence unbiased

TD as approximate Bellman update

- Idea 3: Update values by maintaining a running average
- sample = $R(s,\pi(s),s') + \gamma V^{\pi}(s')$
- $V^{\pi}(s) \leftarrow (1-\alpha) \cdot V^{\pi}(s) + \alpha \cdot sample$
- $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \cdot [sample V^{\pi}(s)]$
- This is the *temporal difference learning rule* 时序差分
- [sample $V^{\pi}(s)$] is the "TD error"
- α is the *learning rate 学习率*
- I.e., observe a sample, move $V^{\pi}(s)$ a little bit to make it more consistent with its neighbor $V^{\pi}(s')$

Temporal Difference Learning 时序差分学习

Note: 人也一样!

- Big idea: 从每一次状态转移中学习!
 - 我们每经历一次状态转移 (s, a, s', r), 更新一次 V(s)
 - 越可能的转移结果s'将越频繁地参与到更新中
- 状态值的时序差分学习
 - 状态还是固定的,同样也是做状态评估!
 - 将效用估计朝着理想均衡的方向调整
 - α 作为学习速度参数,随某个状态被访问次数的增加而递减, 状态值函数能收敛

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Temporal Difference Learning 时序差分学习


```
function Passive-TD-Learner(percept) returns 一个动作
inputs: percept, 指示当前状态s'与奖励信号r的某个感知
 persistent: π, 一个确定性策略
          s, 之前的状态, 初始为空
          U, 关于状态效用的表, 初始化为空
          N_{.},关于状态出现频率的表,初始为零
if s'是一个新的状态 then U[s'] ← 0
 if s非空 then
   增加N<sub>s</sub>[s]
   U[s] \leftarrow U[s] + \alpha(N_s[s]) \times (r + \gamma U[s'] - U[s])
s \leftarrow s'
return \pi[s']
```

图22-4 一种使用时序差分方法学习效用估计的被动强化学习智能体。我们选择 适当的步长函数 α(n)以确保收敛

例子: 时序差分学习

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

C, east, D, -2

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (sample - V^{\pi}(s))$$

Problems with TD Value Learning

- TD 价值学习是一种无模型(model-free)的策略评估方法,通过运行样本获得的状态值的平均值模拟贝尔曼更新
- 但是,如果我们想将价值转变为(新的)策略,我们就会遇到问题:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V(s') \right]$$

- 我们不知道 T 和 R!
- 应对方法: 学习 Q-values (Q值), 而不是 values (效用值)
- 让行动选择也变得无模型

