Bank Service Problem

The bank manager is trying to improve customer satisfaction by offering better service. Management wants the average customer to wait less than 2 minutes for service. The bank estimates it serves about 150 customers per day. The existing arrival and service times are given in the tables below.

Time between arrival (min.)	Probability
0	0.10
1	0.15
2	0.10
3	0.35
4	0.25
5	0.05

Service Time	Probability		
(min.)			
1	0.25		
2	0.20		
3	0.40		
4	0.15		

- 1. Simulate one day's service.
- 2. Determine if the current customer service is satisfactory according to the manager guidelines.
- 3. Edit your program to simulate 1000 days of service and calculate the average wait time.
- 4. Determine the minimal changes required to accomplish the manager's goal. These suggestions might involve implementing bank changes that affect arrival or service time probability distributions or adding more tellers.
- 5. Write a 1-2 page non-technical paper to the bank manager explaining your methodology and suggestions. Include this in the submission of your code.
- 6. Totally non-required extension if you finish early: There is a graphics package called Turtle Graphics. Can you use it to make a visual representation of the customers in line and being helped? Google "python turtle graphics examples" to learn more. The first examples by Michael0x2a are a good place to start.

Hint #1:

Suppose your first eight customers had the following time between arrival and service time values. Study carefully how the arrival, help start, help end, and wait times are calculated below:

Customer	Random	Arrival	Help	Random	Help End	Wait
	time	time	Start	Service	Time	time
	between		time	Time		
	arrivals					
1	0	0	0	2	2	0
2	3	3	3	1	4	0
3	5	8	8	2	10	0
4	0	8	10	3	13	2
5	1	9	13	4	17	4
6	2	11	17	1	18	6
7	5	16	18	1	19	2
8	4	20	20	3	23	0

Hint #2:

- 1. Create empty lists for each of the 150 customers' time between arrivals, arrival, service, help start, help end, and wait times.
- 2. Assign the first customer their values.
- 3. Give all of the other customers their time between arrival, arrival, and service times based on the probability distributions in the tables above.
- 4. Update each customer's help start, help end, and wait times. You will need to update differently depending on whether the customer arrived before or after the last persons' service finished.
- 5. Calculate the average wait time.