Week 7 Video 5

Factor Analysis

Factor Analysis

- □ You have a whole lot of variables
- □ Can you group them into "factors"?

Factor Analysis and Clustering

- Not the same
 - Clustering finds how data points group together
 - Factor analysis finds how data features/variables/items group together

- In many cases, one problem can be transformed into the other
- But conceptually still not the same thing

Goal 1 of Factor Analysis

- You have a lot of quantitative* variables
 - And since you have a lot of variables you have high dimensionality

 You want to reduce the dimensionality into a smaller number of factors

Goal 1 of Factor Analysis

* -- there is also a variant for categorical and binary data, Latent Class Factor Analysis (LCFA -- Magidson & Vermunt, 2001; Vermunt & Magidson, 2004), as well as a variant for mixed data types, Exponential Family Principal Component Analysis (EPCA – Collins et al., 2001)

Goal 2 of Factor Analysis

- You have a lot of quantitative* variables
 - And since you have a lot of variables you have high dimensionality

 You want to understand the structure that unifies these variables

Classic Example

- □ You have a questionnaire with 100 items
- Do the 100 items group into a smaller number of factors?
 - E.g. Do the 100 items actually tap only 6 deeper constructs?
 - Can the 100 items be divided into 6 scales?
 - Which items fit poorly in their scales?
- Common in attempting to design questionnaire with scales and sub-scales

Another Example

□ You have a set of 600 features of student behavior

 You want to reduce the data space before running a classification algorithm

- Do the 600 features group into a smaller number of factors?
 - E.g. Do the 600 features actually tap only 15 deeper constructs?

Another Example

- You have a taxonomy of 120 design features that an elearning lesson could possess
- You want to reduce the data space before studying the relationship between these features and student learning
- Do the 120 design features group into 8 factors?
 - E.g. Do the 120 features actually group into a set of 8 dimensions of tutor design?

Two types of Factor Analysis

- Experimental
 - Determine variable groupings in bottom-up fashion
 - More common in EDM

- Confirmatory
 - Take existing structure, verify its goodness
 - More common in Psychometrics

Mathematical Assumption in most Factor Analysis

- Each variable loads onto every factor, but with different strengths
 - Some strengths are infinitesimally small

Example

	F1	F2	F3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

Computing a Factor Score Can you write an equation for F1?

	F1	F2	F 3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

Can you write an equation for F1?

(It's just a straight-up linear equation, like in linear regression! Cazart!)

	F1	F2	F 3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

0.01V1-0.62V2+0.003V3+0.04V4+0.05V5-0.66V6 +0.04V7+0.02V8+0.32V9+0.01V10-0.03V11+0.55V12

	F1	F2	F 3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

Popup quiz Can you write an equation for F2?

	F1	F2	F 3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

Can we do a fill-in-the-blank?

If so, the answer is

-0.7V1+0.1V2-0.14V3+0.03V4 +0.73V5+0.02V6-0.03V7-0.01V8 -0.34V9-0.02V10-0.02V11-0.32V12

Which variables load strongly on F1?

	F1	F2	F3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

Wait... what's a "strong" loading?

- \square One common guideline: > 0.4 or < -0.4
- □ Comrey & Lee (1992)
 - 0.70 excellent (or -0.70)
 - 0.63 very good
 - □ 0.55 good
 - □ 0.45 fair
 - 0.32 poor
- One of those arbitrary things that people seem to take exceedingly seriously
 - Another approach is to look for a gap in the loadings in your actual data

Which variables load strongly on F1?

	F1	F2	F 3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

Which variables load strongly on F2?

	F1	F2	F3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

Which variables load strongly on F2?

	F1	F2	F 3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

Quiz:

Which variables load strongly on F3?

	F1	F2	F3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

- A) V3, V7, V8, V11
- B) V3, V7, V11
- C) V8
- D) V1, V2, V4, V5, V6, V9, V10, V12

Which variables don't fit this scheme? (e.g. don't load strongly on any factor)

	F1	F2	F 3
V1	0.01	-0.7	-0.03
V2	-0.62	0.1	-0.05
V3	0.003	-0.14	0.82
V4	0.04	0.03	-0.02
V5	0.05	0.73	-0.11
V6	-0.66	0.02	0.07
V7	0.04	-0.03	0.59
V8	0.02	-0.01	-0.56
V9	0.32	-0.34	0.02
V10	0.01	-0.02	-0.07
V11	-0.03	-0.02	0.64
V12	0.55	-0.32	0.02

Which variables don't fit this scheme? (e.g. don't load strongly on any factor)

		F1	F2	F 3
	V1	0.01	-0.7	-0.03
	V2	-0.62	0.1	-0.05
	V3	0.003	-0.14	0.82
	V4	0.04	0.03	-0.02
	V5	0.05	0.73	-0.11
	V6	-0.66	0.02	0.07
But note that if	V7	0.04	-0.03	0.59
the magic	V8	0.02	-0.01	-0.56
number was lower, V9 would be fine	V9	0.32	-0.34	0.02
	V10	0.01	-0.02	-0.07
	V11	-0.03	-0.02	0.64
	V12	0.55	-0.32	0.02

Assigning items to factors to create scales

- After loading is created, you can create one-factorper-variable models ("scales") by iteratively
 - assigning each item to one factor
 - dropping the one item that loads most poorly in its factor, if it has no strong loading
 - re-fitting factors

Item Selection

 Some researchers recommend conducting item selection based on face validity – e.g. if it doesn't look like it should fit, don't include it

- Depends on how theory-driven you want to be
 - And how much of a theory you actually have!

How does it work mathematically?

- □ Two algorithms (Ferguson, 1971)
 - Principal axis factoring (PAF)
 - Fits to shared variance between variables
 - Principal components analysis (PCA)
 - Fits to all variance between variables, including variance unique to specific variables
- PCA is more common these days
- Similar, especially as number of variables increases

How does it work mathematically?

- First factor tries to find a combination of variableweightings that gets the best fit to the data
- Second factor tries to find a combination of variable-weightings that best fits the remaining unexplained variance
- Third factor tries to find a combination of variableweightings that best fits the remaining unexplained variance...

How does it work mathematically?

- Factors are then made orthogonal (e.g. uncorrelated to each other)
 - Uses statistical process called factor rotation, which takes a set of factors and re-fits to maintain equal fit while minimizing factor correlation
 - Essentially, there is a large equivalence class of possible solutions; factor rotation tries to find the solution that minimizes between-factor correlation

Looking at this another way...

 This approach tries to find lines, planes, and hyperplanes in the K-dimensional space (K variables)

Which best fit the data

This may remind you of support vector machines...

Goodness

What proportion of the variance in the original variables is explained by the factoring?
 (e.g. r² – called in Factor Analysis land the estimate of the communality)

- □ Better to use cross-validated r²
 - Still not standard

How many factors?

□ Best approach: decide using cross-validated r²

 Alternate approach: drop any factor with fewer than 3 strong loadings

- Alternate approach: add factors until you get an incomprehensible factor
 - But one person's incomprehensible factor is another person's research finding!

Desired Amount of Data

- At least 5 data points per variable (Gorsuch, 1983)
- At least 3-6 data points per variable (Cattell, 1978)
- At least 100 total data points (Gorsuch, 1983)
- Comrey and Lee (1992) guidelines for total sample size
 - □ 100= poor
 - □ 200 = fair
 - □ 300 = good
 - 500 = very good
 - 1,000 or more = excellent
- My opinion: use cross-validation and see empirically

OK you've done a factor analysis, and you've got scales

One more thing to do before you publish

Check internal reliability of scales

 \square Cronbach's α

Cronbach's a

$$\alpha = \frac{N \cdot \bar{c}}{\bar{v} + (N - 1) \cdot \bar{c}}$$

- \square N = number of items
- C = average inter-item covariance (averaged at subject level)
- V = average variance (averaged at subject level)

Cronbach's α: magic numbers (George & Mallory, 2003)

- □ > 0.9 Excellent
- □ 0.8-0.9 Good
- □ 0.7-0.8 Acceptable
- □ 0.6-0.7 Questionable
- □ 0.5-0.6 Poor
- < 0.5 Unacceptable</p>

Factor Analysis

 A powerful tool for discovering unknown structure in data

Conceptually similar to clustering

Finds an orthogonal type of structure

Next week

Discovery with Models and Other Topics