

Multidimensional Scaling and token-based semantic maps

Natalia Levshina ©2017
Corpus Linguistics Summer School
Birmingham, July 2017

Outline

1. Semantic maps in linguistic research

2. Multidimensional Scaling

3. Case study: analytic causatives in European languages

Semantic maps

- Represent a convenient tool for comparison of semantic and pragmatic functions across languages
- Are based on different kinds of data: grammars and typological databases, parallel corpora and experimental data

Main types of semantic maps

	Connectivity (links between objects)	Proximity (distances between objects)
Type-based (pre-determined functions; frequencies do NOT count)	Manual/Automatic	Automatic
Token-based (corpus exemplars; frequencies COUNT)	?	Automatic

Types of semantic maps

	Connectivity (links between objects)	Proximity (distances between objects)
Type-based (pre-determined functions, frequencies do NOT count)	Manual/Automatic	Automatic
Token-based (corpus exemplars, frequencies COUNT)	ý	Automatic

Traditional maps

- non-directional
- directional

Haspelmath 2003: Datives

the English Dative preposition to

Haspelmath 2003: Datives

the French Dative preposition à

Main principles

- Nodes: A function is put on a map when there's at least one pair of languages which differ wrt. this function (Haspelmath 2003)
- Links: the principle of connectivity (adjacency/contiguity):
 - if a construction has more than one function, they should be connected (see van der Auwera 2013)

Wrong: the connectivity principle is not observed!

A fix

Traditional maps

- non-directional
- directional

Narrog 2010: Goal-Recipient Domain

Types of semantic maps

	Connectivity (links between objects)	Proximity (distances between objects)
Type-based (pre-determined functions, frequencies do NOT count)	Manual/Automatic	Automatic
Token-based (corpus exemplars, frequencies COUNT)	Ş	Automatic

CLICS (List et al. 2014): HAND

Types of semantic maps

	Connectivity Proximity (links between objects) (distances between objects)	
Type-based (pre-determined functions, frequencies do NOT count)	Manual/Automatic	Automatic
Token-based (corpus exemplars, frequencies COUNT)	Ş	Automatic

Majid et al. 2008: cutting and breaking

Types of semantic maps

	Connectivity (links between objects)	Proximity (distances between objects)
Type-based (pre-determined functions, frequencies do NOT count)	Manual/Automatic	Automatic
Token-based (corpus exemplars, frequencies COUNT)	Ş	Automatic

Wälchli & Cysouw (2012): motion verbs

English (King James)

Outline

1. Semantic maps in linguistic research

2. Multidimensional Scaling

3. Case study: analytic causatives in European languages

1. Collect the data (fictitious example)

	Lang1	Lang2	Lang3	Lang4	Lang5
Sit1	bla	qu	da	nina	haha
Sit2	bla	qu	da	nana	hihi
Sit3	bla	qa	ta	nina	hehe

1. Collect the data (fictitious example)

	Lang1	Lang2	Lang3	Lang4	Lang5
Sit1	bla	qu	da	nina	haha
Sit2	bla	qu	da	nana	hihi
Sit3	bla	qa	ta	nina	hehe

Comparative concepts (cf. Haspelmath 2010)

2. Compute the distances between the situations (rows) = the proportion of dissimilar values.

	Lang1	Lang2	Lang3	Lang4	Lang5
Sit1	bla	qu	da	nina	haha
Sit2	bla	qu	da	nana	hihi
Sit3	bla	qa	ta	nina	hehe

$$D(1,2) = 2/5 = 0.4$$

$$D(1,3) = 3/5 = 0.6$$

$$D(2,3) = 4/5 = 0.8$$

3. Perform MDS

Configuration Plot

Intepretation

- The closer two points on the map, the more overlapping constructions they share across the languages.
- Following the isomorphism principle (same function => same form), the corresponding functions/meanings/situations are more semantically similar if more authors of the doculects chose identical constructions to represent these functions/meaning/situations.

Outline

1. Semantic maps in linguistic research

2. Multidimensional Scaling

3. Case study: analytic causatives in European languages

Languages

- Indo-European
 - Germanic
 - Dutch, English, German, Norwegian, Swedish
 - Romance
 - French, Italian, Portuguese, Romanian, Spanish
 - Slavic
 - Bulgarian, Czech, Polish, Russian, Slovene
- Uralic
 - Finnic
 - Estonian, Finnish
 - Ugric
 - Hungarian

Analytic Causatives: Examples

- English:
 - make + Vinf, let + Vinf, have + Vinf, cause + to-Vinf
- German:
 - lassen + Vinf
- Dutch:
 - *laten* + Vinf, *doen* + Vinf
- Russian: zastavljať "force" + Vinf, davať "give" + Vinf
- French:
 - faire + Vinf, laisser + Vinf
- Romanian:
 - face + să + Vsubj, lasă + să + Vsubj

ParTy corpus

- a Parallel corpus for Typology
- subtitles of films and TED talks
- mostly European languages, but also other major languages (Chinese, Turkish, Indonesian, etc.)
- all languages aligned with English
- downloadable files at <u>www.natalialevshina.com/corpus.html</u>

Why subtitles?

Cluster Dendrogram

Films for case study

An example of .srt format

...

646

00:51:27,880 --> 00:51:32,920

<i>For always evil will look to

find a foothold in this world.</i>

647

00:51:39,440 --> 00:51:42,603

Not good. Not good at all.

648

00:51:50,040 --> 00:51:51,326

Eww.

649

00:52:06,760 --> 00:52:09,081

Oh, no. Sebastian.

650

00:52:12,800 --> 00:52:13,847

Good gracious.

651

00:52:34,720 --> 00:52:35,767

Come on.

• • •

Data set

- Alignment: Jörg Tiedemann's software subalign
- All contexts with of ACs in 18 languages
- Dataset: 72 contexts, in which at least 6 languages have an AC

Examples

• Situation (row) A

ENG: And we make them do it... ...or we kill them. make

ITA: E glielo facciamo fare ... o lo uccidiamo. fare

CZE: Donutíme je to udělat, nebo je zabijeme. donutit

Situation (row) B

ENG: Pick up someone my height and build and make them believe it is me. Make

ITA: Individua una della mia corporatura e fa credere loro che sia io. Fare

CZE: Vyber někoho, kdo je mi podobný a přesvědč je, že jsem to já. NA

Data frame causatives

```
> str(causatives)
'data.frame': 72 obs. of 20 variables:
$ Film: Factor w/ 8 levels "Amelie", "Avatar",..:
1 1 1 1 1 1 1 1 1 1 . . .
 $ Text: Factor w/ 72 levels "...and won't let the
tree thrive.",..: 20 47 48 50 62 25 5 6 54 7 ...
 $ FRA : Factor w/ 6 levels
"autoriser", "faire", ...: 2 2 4 NA 2 4 4 4 2 ...
 $ ENG : Factor w/ 6 levels "allow", "force", ...: 4
NA 5 6 4 5 5 5 NA 6 ...
 $ GER : Factor w/ 3 levels
"bringen", "erlauben", ...: 3 3 3 3 3 3 3 NA 3 3 ...
[output omitted]
```

Data frame causatives

> head(causatives[,3:10])

```
FRA
          ENG
                  GER
                        SPA
                              DUT
                                   SWE
                                            ITA
                                                   POR
                                           fare
1
    faire have lassen <NA> <NA> <NA>
                                                  <NA>
2
    faire <NA> lassen hacer <NA> <NA>
                                           fare
                                                  <NA>
3 laisser let lassen dejar laten lata
                                           fare
                                                  <NA>
     <NA> make lassen <NA> doen
                                    fa
4
                                           <NA>
                                                  <NA>
5
    faire have lassen <NA> laten <NA>
                                           <NA>
                                                  <NA>
6 laisser let lassen dejar laten lata lasciare deixar
```

Gower distances

```
> library(cluster)
> causatives.dist <- daisy(causatives[, 3:20])</pre>
> summary(causatives.dist)
2556 dissimilarities, summarized:
  Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 0.0000 0.1429 0.6000 0.5415 0.9091 1.0000
Metric: mixed; Types = N, N, N, N, N, N, N, N, N,
N, N, N, N, N, N, N
Number of objects: 72
```

Understanding Gower distances

```
> causatives.dist[1:3]
[1] 0.0 0.6 0.5
> causatives[1:2, 3:20]
 FRA ENG
            GER
                  SPA DUT
                            SWE
                                 ITA POR ROM
                                                POL
1 faire have lassen <NA> <NA> <NA> fare <NA> <NA> <NA>
2 faire <NA> lassen hacer <NA> <NA> fare <NA> face <NA>
 SLO CZE RUS BUL
                     EST
                             FIN
                                  HUN
                                       NOR
1 dati dat <NA> <NA> <NA> <NA> <NA> <NA> <NA>
2 <NA> <NA> <NA> <NA> panema <NA> <NA> la
```

D(1, 2) = 0/3 = 0

Task

• Compute the Gower distance between observations 71 and 72.

Solution

```
> causatives[71:72, 3:20]
    FRA ENG GER
                    SPA
                         DUT
                              SWE
                                   ITA
                                           POR ROM
71 faire get <NA> hacer laten <NA> fare fazer face
72 faire <NA> <NA> hacer <NA> <NA> fare obrigar face
       SLO
               CZE
   POL
                         RUS
                                  BUL
                                         EST
                                               FIN
71 <NA> <NA> nechat zastavljat nakarvam panema saada
72 <NA> <NA>
              <NA>
                         <NA> <NA> panema
                                              <NA>
   HUN
        NOR
71 <NA> <NA>
72 <NA> <NA>
```

 $D(71, 72) = 1/6 \approx 0.167$

Fitting MDS

> library(smacof)

Fitting a two-dimensional metric MDS (default):

> causatives.mds <- mds(causatives.dist)</pre>

How good is the 2D solution?

```
> causatives.mds$stress
[1] 0.166 #relatively OK
> d1 <- mds(causatives.dist, ndim = 1)$stress</pre>
> d2 <- mds(causatives.dist, ndim = 2)$stress</pre>
> d3 <- mds(causatives.dist, ndim = 3)$stress</pre>
> d4 <- mds(causatives.dist, ndim = 4)$stress</pre>
> d5 <- mds(causatives.dist, ndim = 5)$stress</pre>
Make a scree plot:
> plot(1:5, c(d1, d2, d3, d4, d5), type = "b",
xlab = "n of dimensions", ylab = "Stress")
```

Watch the 'elbow'

Stress and individual distances

```
> plot(causatives.mds,
"Shepard")
```

Shepard Diagram

Interpreting the solution

```
> plot(causatives.mds,
"conf")
```

Configuration Plot

Exploring the contexts: bubbles

```
> library(googleVis)
> text.df <- data.frame(Text = causatives$Text,</pre>
Dim1 = causatives.mds$conf[, 1], Dim2 =
causatives.mds$conf[, 2], ENG = causatives$ENG)
> bubbles <- gvisBubbleChart(text.df, idvar =</pre>
"Text", xvar = "Dim1", yvar = "Dim2", colorvar =
"ENG", options = list(sizeAxis = '{maxSize:
10}', vAxis = '{minValue:-0.8, maxValue:0.8}',
height = 500, width = 500,
bubble="{textStyle:{color: 'none'}}"))
> plot(bubbles)
```

Bubble chart

Exploring form-meaning mapping

```
> plot(causatives.mds$conf,
type = "n")
> text(causatives.mds$conf,
labels = causatives$ENG)
```


"Make" in Romance

- Let us compare the semantics of cognate causal auxiliaries in Romance:
 - FRA faire
 - ITA fare
 - POR fazer
 - ROM (a) face
 - SPA hacer
- Are there semantic differences?
- For theoretical background, see Levshina (2015).

ITA fare vs. ROM (a) face

```
> plot(causatives.mds$conf, type = "n", main =
"fare vs. face")
```

Add some jitter to avoid overplotting:

```
> points(jitter(causatives.mds$conf[causatives$ROM
== "face",], amount = 0.1), col = "blue", pch =
16)
> points(jitter(causatives.mds$conf[causatives$ITA
== "fare",], amount = 0.1), col = "red", pch = 16)
> legend("bottomright", legend = c("fare",
"face"), col = c("red", "blue"), pch = 16, bty =
"n")
```

fare vs. face

Transparent colours

```
> library(grDevices)
> plot(causatives.mds$conf, type = "n", main =
"fare vs. face")
> points(causatives.mds$conf[causatives$ROM ==
"face",], col = adjustcolor("blue", alpha.f =
0.5), pch = 16, cex = 1.5)
> points(causatives.mds$conf[causatives$ITA ==
"fare",], col = adjustcolor("red", alpha.f = 0.5),
pch = 16, cex = 1.5
> legend("bottomright", legend = c("fare",
"face"), col = c("red", "blue"), pch = 16, bty =
"n")
```

fare vs. face

Kriging: preparation

```
> y.ita <- ifelse(causatives$ITA == "fare", 1, 0)
> y.fra <- ifelse(causatives$FRA == "faire", 1, 0)
> y.spa <- ifelse(causatives$SPA == "hacer", 1, 0)
> y.por <- ifelse(causatives$POR == "fazer", 1, 0)
> y.rom <- ifelse(causatives$ROM == "face", 1, 0)</pre>
```

Kriging

```
> Krig.rom <- Krig(causatives.mds$conf,</pre>
y.rom, lambda = 0.05) #try different
lambda values
> Krig.ita <- Krig(causatives.mds$conf,
y.ita, lambda = 0.05)
> Krig.fra <- Krig(causatives.mds$conf,</pre>
y.fra, lambda = 0.05)
> Krig.spa <- Krig(causatives.mds$conf,</pre>
y.spa, lambda = 0.05)
> Krig.por <- Krig(causatives.mds$conf,</pre>
y.por, lambda = 0.05)
```

Fitted surface plots

```
> surface(Krig.ita, main = "ITA")
> surface(Krig.fra, main = "FRA")
> surface(Krig.spa, main = "SPA")
> surface(Krig.por, main = "POR")
> surface(Krig.rom, main = "ROM")
```


Perspective plot

```
> surface(Krig.ita,
main = "ITA", type =
"p", theta = 40, phi
= 40)
```


Romance causatives: conclusion

- The Italian causative verb fare is the most semantically bleached with regard to the distinction between letting and marking, and the Romanian face is the least bleached.
- The other languages are in-between.
- A scale of grammaticalization:
 - ITA > FRA > SPA > POR > ROM
- This is reflected in the different levels of syntactic integration of the auxiliary and the second predicate:
 - The Italian *fare* and French *faire* are normally followed immediately by an infinitive (VV)
 - Portuguese fazer and Spanish hacer are often used in the pattern V + NP + V
 - Romanian *a face* is followed by the complementizer *să* and a subjunctive clause (finite).

Exercise

- Perform similar analyses for the Germanic verbs of letting
 - DUT laten
 - ENG let
 - GER lassen
 - SWE låta (represented as lata)
 - NOR la
- Are there differences in grammaticalization and semantic bleaching?

References

- Haspelmath, M. (2003) The geometry of grammatical meaning: Semantic maps and cross-linguistic comparison. In Tomasello, Michael (ed.), *The new psychology of language*, vol. 2. Mahwah, NJ: Lawrence Erlbaum, 211-242.
- Haspelmath, M. (2010) Comparative concepts and descriptive categories in cross-linguistic studies. Language 86(3). 663-687
- Levshina, N. (2015) European analytic causatives as a comparative concept. Evidence from a parallel corpus of film subtitles. Folia Linguistica 49(2). 487-520.
- Majid, A., Boster, J. S., & Bowerman, M. (2008). The cross-linguistic categorization of everyday events: A study of cutting and breaking. *Cognition* 109(2). 235-250.
- Narrog, H. (2010) A diachronic dimension in maps of case functions. Linguistic Discovery 8(1).
- van der Auwera, J. (2013) Semantic maps, for synchronic and diachronic typology. In A. Giacalone Ramat, C. Mauri & P. Molinelli (eds.), Synchrony and diachrony: a dynamic interface. Amsterdam: Benjamins, 153-176.