2 Big-O Notation

Material for this section is drawn from [6, Chapter 14.2].

2.1 Remark (Common Sets)

$$\mathbb{N} = \{0, 1, 2, \dots\}$$

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

 \mathbb{R} : the real numbers

2.2 Definition (Big-O Notation)

Let $f, g: \mathbb{N} \to \mathbb{N}$.

We say: f is of order g, if there is a constant c > 0 and $n_0 \in \mathbb{N}$ s.t. $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

 $O(g) := \{f \mid f \text{ is of order } g\} \text{ ("big oh of } g").$

If $f \in O(q)$ we can say that q provides an asymptotic upper bound on f.

If $f \in O(g)$ and $g \in O(g)$, then they have the same rate of growth, and g is an asymptotically tight bound on f (and vice versa).

2.3 Remark (Common Abuse of Notation)

f = O(g) instead of $f \in O(g)$.

$$f(n) = n^2 + O(n)$$
 instead of " $f(n) = n^2 + g(n)$ for some $g \in O(n)$ ".

2.4 Example

Let
$$f(n) = n^2$$
; $g(n) = n^3$.

Show $f \in O(q)$.

[For
$$c = 1$$
 and $n > 1$, $n^2 \le c \cdot n^3$.]

2.5 Example

Let
$$f(n) = n^2$$
; $g(n) = n^3$.

Show $q \notin O(f)$.

[Assume $n^3 \in O(n^2)$. Then ex. c, n_0 s.t. $n^3 \le c \cdot n^2$ for all $n \ge n_0$. Choose $n_1 = 1 + \max\{c, n_0\}$. Then $n_1^3 = n_1 \cdot n_1^2 > c \cdot n_1^2$ and $n_1 > n_0$.

2.6 Example

$$f(n) = n^2 + 2n + 5; g(n) = n^2$$

$$g \in O(f)$$
 [For $c = 1$ and $n > 0$, $n^2 \le c \cdot (n^2 + 2n + 5)$.]

 $f \in O(q)$

[For n > 1 we have $f(n) = n^2 + 2n + 5 \le n^2 + 2n^2 + 5n^2 = 8n^2 = 8 \cdot g(n)$. Hence, for c = 8 and n > 1, $f(n) \le c \cdot g(n)$.]

2.7 Definition

$$\Theta(g) := \{ f \mid f \in O(g) \text{ and } g \in O(f) \}$$

2.8 Example (Big-Theta Notation)

For f, g from Example 2.6, $f \in \Theta(g)$.

2.9 Remark

A polynomial (with integer coefficients) of degree $r \in \mathbb{N}$ is a function of the form

$$f: \mathbb{N} \to \mathbb{Z}: n \mapsto c_r \cdot n^r + c_{r-1} \cdot n^{r-1} + \dots + c_1 \cdot n + c_0,$$

with $0 < r \in \mathbb{N}$, coefficients $c_i \in \mathbb{Z}$ $(i = 1, ..., r), c_r \neq 0$.

For $f, g : \mathbb{N} \to \mathbb{Z}$, we say $f \in O(g)$ if $|f| \in O(|g|)$, where $|f| : \mathbb{N} \to \mathbb{N} : n \mapsto |f(n)|$.

2.10 Example

$$f(n) = n^2 + 2n + 5; g(n) = -n^2$$

 $g \in O(f)$

[We have $|g|: n \mapsto n^2$ and $|f| \equiv f$. Thus, from Example 2.6 we know that $|g| \in O(|f|)$.] $f \in O(g)$ [As before, from Example 2.6.]

2.11 Remark

For $f, g : \mathbb{N} \to \mathbb{R}$, we say $f \in O(g)$ if $\lfloor f \rfloor \in O(\lfloor g \rfloor)$.

2.12 Remark

 $\log_a(n) \in O(\log_b(n))$ for all $1 < a, b \in \mathbb{N}$. $[\log_a(n) = \log_a(b) \cdot \log_b(n)$ for all $n \in \mathbb{N}$.

2.13 Theorem

The following hold.

- 1. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, then $f \in O(g)$ and $g \notin O(f)$.
- 2. If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ with $0 < c < \infty$, then $f \in \Theta(g)$ and $g \in \Theta(f)$.
- 3. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, then $f \notin O(g)$ and $g \in O(f)$.

Proof: We show part 1.

Assume $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$, i.e., for each $\varepsilon>0$ there exists $n_{\varepsilon}\in\mathbb{N}$ such that for all $n\geq n_{\varepsilon}$ we have

 $\frac{f(n)}{g(n)} < \varepsilon$, and hence $f(n) < \varepsilon g(n)$. Now select $c = \varepsilon = 1$ and $n_0 = n_{\varepsilon}$. Then $f(n) \le c \cdot g(n)$ for all $n \ge n_0$, which shows $f \in O(g)$.

Now if we also assume $g \in O(f)$, then there must exist d > 0 and $m_0 \in \mathbb{N}$ s.t. $g(n) \leq d \cdot f(n)$ for all $n \geq m_0$, i.e., $\frac{1}{d} \leq \frac{f(n)}{g(n)}$ for all $n \geq m_0$. But then $\lim_{n \to \infty} \frac{f(n)}{g(n)} \geq \frac{1}{d} > 0$.

2.14 Remark

The l'Hospital's Rule often comes in handy:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

2.15 Example

 $n \log_a(n) \in O(n^2)$ and $n^2 \notin O(n \log_a(n))$

$$\left[\lim_{n\to\infty}\frac{n\log_a(n)}{n^2} = \lim_{n\to\infty}\frac{\log_a(n) + n(\log_a(e)/n)}{2n} = \lim_{n\to\infty}\frac{\log_a(n)}{2n} + \lim_{n\to\infty}\frac{\log_a(e)}{2n} = 0 + 0 = 0\right]$$

2.16 Theorem

Let f be a polynomial of degree r. Then

- (1) $f \in \Theta(n^r)$
- (2) $f \in O(n^k)$ for all k > r
- (3) $f \notin O(n^k)$ for all k < r

2.17 Theorem

The following hold.

- (1) $\log_a(n) \in O(n)$ and $n \notin O(\log_a(n))$
- (2) $n^r \in O(b^n)$ and $b^n \notin O(n^r)$
- (3) $b^n \in O(n!)$ and $n! \notin O(b^n)$

2.18 Remark (The Big-O Hierarchy)

The following is the hierarchy of complexities, according to their Big-O Notation, as well as the natural language terms frequently used to describe them.

O(1)	constant	"sublinear"	"subpolynomial"
$O(\log_a(n))$	logarithmic	"sublinear"	"subpolynomial"
O(n)	linear		"subpolynomial"
$O(n\log_a(n))$	$n \log n$		"subpolynomial"
$O(n^2)$	quadratic		"polynomial"
$O(n^3)$	cubic		"polynomial"
$O(n^r)$	polynomial $(r \ge 0)$		
$O(b^n)$	exponential $(b > 1)$		"exponential"
O(n!)	factorial		"exponential"