Nulladrendű logika

1. Ítéletkalkulus, igazságtábla, ekvivalens formulák

1. Feladat: Igazoljuk, hogy $(A \lor B) \land \neg (A \land B) \equiv (A \land \neg B) \lor (B \land \neg A)$.

M1: interpretációkra bontva (igazságtáblával)

A	В	$A \vee B$	$A \wedge B$	$\neg(A \land B)$	$(A \lor B) \land \neg (a \land B)$		$A \wedge \neg B$	V	$B \wedge \neg A$
i	i	i	i	h	h	=	h	h	h
i	h	i	h	i	i	=	i	i	h
h	i	i	h	i	i	Ш	h	i	i
h	h	h	h	i	h	=	h	h	h

M2: alkalmazva a disztributív és a De Morgan szabályokat

Disztributív szabály:
$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee B) \wedge (B \vee C)$$
$$\neg (A \wedge B) = \neg A \vee \neg B$$

De Morgan:
$$\neg (A \land B) = \neg A \lor \neg B$$
$$\neg (A \lor B) = \neg A \land \neg B$$

$$A \lor B \land \neg (A \land B) \equiv (A \lor B) \land (\neg A \lor \neg B) \equiv [A \land (\neg A \lor \neg B)] \lor [B \land (\neg A \lor \neg B)] \equiv \dots$$

... $\equiv \emptyset \lor (A \land \neg B) \lor (B \land \neg A) \lor \emptyset$ mivel $(A \land \neg A) \acute{e}s (B \land \neg B)$ azonosan hamisak, elhagyhatóak.

Elnyelés:
$$A \lor (A \land B) \equiv A$$
 illetve $A \land (A \lor B) \equiv A$

2. Feladat. Az implikáció nem asszociatív művelet. $(A \rightarrow B) \rightarrow C \neq A \rightarrow (B \rightarrow C)$.

A	В	C	$A \rightarrow B$	$(A \to B) \to C$	$B \rightarrow C$	$A \to (B \to C)$
i	i	i	i	i	i	i
i	i	h	i	h	h	h
i	h	i	h	i	i	i
i	h	h	h	i	i	i
h	i	i	i	i	i	i
h	i	h	i	<u>h</u>	h	<u>i</u>
h	h	i	i	i	i	i
h	h	h	i	<u>h</u>	i	<u>i</u>

3. Feladat. Igazoljuk, hogy $\neg (B \Rightarrow \neg A) \equiv A \land B$.

Α	В	¬Α	A ^ B	В→¬А	¬ (B→¬A)
1	1	0	1	0	1
1	0	0	0	1	0
0	1	1	0	1	0
0	0	1	0	1	0

4. Feladat. Bizonyítsuk be, hogy az $(A \rightarrow B) \lor (A \land \neg B)$ formula tautológia.

A	B	$A \rightarrow B$	A∧¬B	$(A \rightarrow B) \lor (A \land \neg B)$
I	I	I	H	I
I	H	H	I	I
H	I	I	H	I
H	H	I	Н	I

Tétel: ha α tautológia, akkor az ítéletváltozók helyébe formulákat írva tautológiát kapunk

5. Feladat: Tekintsük az előző feladatban szereplő formulát úgy, mint: $(\alpha \to \beta) \lor (\alpha \land \neg \beta)$, és α helyre írjunk $C \Box D$ -t, β helyére $\Box D$ -t

C	D	$\neg D$	$C \vee D$	$(C \lor D) \to \neg D$	$(C \lor D) \land D$	$[(C \lor D) \to \neg D] \lor [(C \lor D) \land D]$
i	i	h	i	h	i	i
i	h	i	i	i	h	i
h	i	h	i	i	i	i
h	h	i	h	i	h	i

Valóban tautológia!

6. Feladat.(ZH) Bizonyítsa be igazságtáblával: $(A \wedge B) \rightarrow (\neg C \wedge (A \vee B)) \equiv \neg A \vee \neg B \vee \neg C$

7. Feladat. (ZH)
$$\neg (A \to C) \lor \neg (B \to C) \equiv \neg ((A \lor B) \to C)$$
$$((\neg A \lor B) \to C) \land \neg (B \to A) \equiv \neg A \land B \land C$$

8.Feladat. Bizbe, hogy tautológia: $(B \rightarrow \neg A) v (A \land B)$

9.Feladat.
$$\neg (((A \rightarrow B) \rightarrow \neg (C \land \neg B)) \equiv \neg (B \lor \neg C) \land (\neg A \lor B)$$
$$(A \lor B) \rightarrow (\neg C \land D) \equiv (\neg A \lor \neg C) \land (\neg A \lor D) \land (\neg B \lor \neg C) \land (\neg B \lor D)$$

2. Formalizálás

1.Feladat. Formalizáljuk az alábbi mondatokat! (Forrás: Pólos L. – Ruzsa I. A logika elemei)

- 1. Józsi szőke, mindazonáltal nekem nem tetszik, annak ellenére, hogy a szőkéket kedvelem.
- 2. Tivadar hazament, de nem maradt otthon, bár mindenki ezt várta tőle.
- 3. Esik az eső, de nincsen hideg, és a szél sem fúj.
- 4. Ha hazajössz, és be is vásárolsz, nekem nem kell lemennem és megfőzhetem az ebédet.
- 5. Ha okos vagyok vagy nagyon szorgalmas, akkor kapok megajánlott jegyet és nem kell vizsgáznom.

M:

- $1.(J\acute{o}zsisz \Ho\acute{o}z) \land \neg (Nekemtetszik J\acute{o}zsi) \land (Asz\Hosz\Ho\acute{o}k\acute{e}kedvelem)$
- 2. $(Tivadarhazament) \land \neg (Tivadarotthonmaradt) \land (mindenkieztvártatővá)$
- 3. $(esikazeső) \land \neg (hidegvan) \land \neg (fújaszél)$
- $4.[(hazaj\ddot{o}ssz) \land (bev\acute{a}s\acute{a}rolsz)] \rightarrow [\neg (le kell mennem) \land (megf\"{o}egf\"{o}zmazeb\acute{e}det)]$
- $5.[(Okosvagyok) \lor (nagyonszorgalmas)] \rightarrow [(kapokmegajánlottjegyet) \land \neg (vizsgáznomkell)]$

2. Feladat. Formalizáljuk a következő mondatokat!

- a) Rizikó nélkül nincs kockázat.
- b) Vadászik, vagy, ha nem esik, és meleg van, kertészkedik.

M:

- a) $(kockázat) \rightarrow (rizikó)$
- b) (vadászik) v (((¬esik) ^ (meleg van))→(kertészkedik))

3. Feladat.

- 1) Nem jövök, ha nem hívnak. (ZH)
- 2) Ha sikerül a zéhá, és jó idő lesz este, akkor sétálok, vagy zenét hallgatok. (ZH)
- 3) Anna akkor és csak akkor iszik, ha Barna eladja a házat és Cili összeveszik a férjével
- 4) Ha Anna iszik Daniella boldogtalan lesz.
- 5) Nem igaz, hogy ha Barna eladja a házat, akkor Daniella boldogtalan lesz.
- 6) A tavasz közeledtével a virágok kinyílnak, a fiókák kirepülnek és a természet nem alszik tovább.
- 7) Ha a felhők közeledtével nem viszek esernyőt, akkor valószínűleg nem csak meggondolatlan vagyok, hanem el is fogok ázni.
- 8) Elmegyek itthonról, sőt találkozom a barátaimmal, amint sikeresen megírtam a logika zht.
- 9) Nem tanulom meg a logikát, amíg egy házi feladatot se oldottam meg önállóan.
- 10) Ha abból, hogy megállunk a talajon két lábbal, nem következik a gravitáció megléte, akkor vagy ragasztóba léptünk vagy mágnesen sétálunk, de acélbetétes bakancsban.

3. Szemantikai következményfogalom, helyes következtetési sémák

(A logikai következmény jelölése ebben a jegyzetben a lusta pí helyett: \prod_0) 1.Feladat. Bizonyítsa a definíció alapján hogy helyes az indirekt következtetési séma.

$$\{\neg \alpha \rightarrow \neg \beta, \beta\} \prod_0 \alpha$$

$\neg \alpha$	$\neg \beta$	β	$\neg \alpha \rightarrow \neg \beta$
i	i	h	i
i	h	i	h
h	i	h	i
h	h	i	i

Ahol β és $\alpha \square \beta$ igazak legalább ott igaz α is!

- **2. Feladat. (ZH)** Bizonyítsa be a definíció alapján, hogy helyes a Modus ponens következtetési séma! Modus ponens: $(\alpha, \alpha \to \beta) \prod_0 \beta$
- **3.Feladat.** Bizonyítsa a hipotetikus szillogizmust az alapján, hogy $\alpha \prod_0^{\beta}$ akkor és csak akkor, ha $\alpha \to \beta$ tautológia! Hipotetikus szillogizmus: $\{\alpha \to \beta, \beta \to \gamma\} \prod_0^{\gamma}$
- **4. Feladat.** Bizonyítsa a Modus tollendo ponenst az alapján, hogy $\alpha \prod_0^{\beta}$ akkor és csak akkor, ha $\alpha \land \neg \beta$ azonosan hamis! Modus tollendo ponens: $\{\alpha \lor \beta, \neg \beta\} \prod_0^{\beta} \alpha$
- **5. Feladat. (ZH)** Adja meg az alábbi kifejezés igazságértékét minden interpretációban: $(((\alpha \land \beta) \rightarrow \gamma) \land (\alpha \land \neg \beta)) \rightarrow \neg \beta$

A kapott eredmény alapján fogalmazzon meg egy helyes következtetési sémát! (Tautológia)

6. Feladat. (ZH) Az $\alpha \land \beta \land \gamma \land \neg \varphi$ formuláról tudjuk, hogy kontradikció. Ennek alapján adjon meg minél több helyes következtetési sémát!

$$(\text{Mo:}\{\alpha,\beta,\gamma\} \textstyle \bigcap_0 \varphi \text{ vagy } \{\alpha,\beta,\neg\varphi\} \textstyle \bigcap_0 \neg\gamma \text{ vagy } \{\beta,\gamma,\neg\varphi\} \textstyle \bigcap_0 \neg\alpha \text{ vagy } \{\alpha,\gamma,\neg\varphi\} \textstyle \bigcap_0 \neg\beta$$

7.Feladat. Bizonyítsa igazságtáblával, hogy helyes az alábbi következtetési séma:

$$A \to (B \land C)$$

$$-B \lor \neg C$$

$$\neg A$$

Konjunktív normálforma és társai

Konjunktív normál forma: diszjunkciók konjunkciója

1.Feladat. Hozzuk KNF-re: $(A \lor B) \to (\neg C \land D)$

$$\underline{M:}(A \lor B) \to (\neg C \land D) \equiv \neg (A \lor b) \lor (\neg C \land D) \equiv (\neg A \land \neg B) \lor (\neg C \land D) \equiv \dots$$

$$\dots \equiv [\neg A \lor (\neg C \land D)] \land [\neg B \lor (\neg C \land D)] \equiv [(\neg A \lor \neg C) \land (\neg A \lor D)] \land [(\neg B \lor \neg C) \land (\neg B \lor D)]$$

2.Feladat. Hozzuk KNF-re : $\neg((A \rightarrow B) \rightarrow [(C \lor A) \rightarrow (C \lor B)])$

$$\underline{M.:} \neg ((A \to B) \to [(C \lor A) \to (C \lor B)]) \equiv \neg [\neg (\neg A \lor B) \lor [\neg (C \lor A) \lor (C \lor B)]] \equiv \dots$$
$$\dots \equiv (\neg A \lor B) \land (C \lor A) \land \neg (C \lor B) \equiv (\neg A \lor B) \land (C \lor A) \land \neg C \land \neg B$$

3.Feladat. Hozzuk KNF.-re, illetve DNF.-re a következő formulákat:

a)
$$(\neg A \rightarrow C) \rightarrow \neg B$$

b)
$$[(A \to B) \land (B \to C)] \to (A \to C)$$

c)
$$((\neg A \lor B) \to C) \land \neg (B \to A)$$

d)
$$\neg((A \rightarrow B) \rightarrow \neg(C \land \neg B))$$

e)
$$(A \lor B) \to (\neg C \land D)$$

4. Rezolúció nulladrendben

1.Feladat. Mutassuk meg, hogy $[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$ tautológia.

<u>M:</u> Azt bizonyítjuk, hogy a negáltja kontradikció. Első lépésben hozzuk a negáltját KNF-re: $\neg([(A \to B) \land (B \to C)] \to (A \to C)) \equiv [(\neg A \lor B) \land (\neg B \lor C)] \land (A \land \neg C)$

Másdoik lépés rezolúció:

2.Feladat. Bizonyítsuk, hogy $[\neg B \land \neg C \land (A \rightarrow (B \lor C))] \rightarrow \neg A$ tautológia

M: Azt bizonyítjuk, hogy a negáltja kontradikció. Első lépésben hozzuk a negáltját KNF-re:

$$\neg B \land \neg C \land [\neg A \lor (B \lor C)] \land A$$

3.Feladat: Bizonyítsuk, hogy helyes az alábbi következtetési séma:

$$A \rightarrow B$$

$$B \to C$$

$$\neg(C \land D)$$

$$A \rightarrow \neg D$$

$$\underline{M:} ((A \to B) \land (B \to C) \land \neg (C \land D)) \land A \land D \equiv (\neg A \lor B) \land (\neg B \lor C) \land (\neg C \lor \neg D) \land A \land D$$

4.Feladat. Bizonyítsd, hogy helyes a következő következtetési séma:

$$A \rightarrow \neg C$$

$$\neg B \rightarrow C$$

$$\mathbf{A} \to \mathbf{B}$$

M:
$$(A \rightarrow \neg C) \land (\neg B \rightarrow C) \land \neg (A \rightarrow B) \equiv (\neg A \lor \neg C) \land (B \lor C) \land A \land \neg B$$

$$\neg A \lor \neg C \longrightarrow \neg C$$

$$B \lor C \lor C \lor$$

$$A \longrightarrow C$$

5.Feladat. Bizonyítsd be, hogy helyes a következő következtetési séma:

$$\neg A \rightarrow (B \land C)$$

$$(C \land A) \rightarrow D$$

$$\neg D \to A$$

M: konjunktív normálforma: $(\neg A \rightarrow (B \land C)) \land ((C \land A) \rightarrow D) \land \neg B \land \neg (\neg D \rightarrow A) \equiv (A \lor (B \land C)) \land ((C \land A) \rightarrow D) \land \neg B \land \neg (\neg D \rightarrow A) \equiv (A \lor (B \land C)) \land ((C \land A) \rightarrow D) \land \neg B \land \neg (\neg D \rightarrow A) \equiv (A \lor (B \land C)) \land ((C \land A) \rightarrow D) \land \neg B \land \neg (\neg D \rightarrow A) \equiv (A \lor (B \land C)) \land ((C \land A) \rightarrow D) \land \neg B \land \neg (\neg D \rightarrow A) \equiv (A \lor (B \land C)) \land ((C \land A) \rightarrow D) \land \neg B \land \neg (\neg D \rightarrow A) \equiv (A \lor (B \land C)) \land ((C \land A) \rightarrow D) \land \neg B \land \neg (\neg D \rightarrow A) \equiv (A \lor (B \land C)) \land ((C \land A) \rightarrow D) \land \neg B \land \neg (\neg D \rightarrow A) \equiv (A \lor C) \land ((C \land A) \rightarrow D) \land ((C \land A) \rightarrow D) \land \neg B \land \neg (\neg D \rightarrow A) \equiv (A \lor C) \land ((C \land A) \rightarrow D) \land ((C \land A$

C))
$$\land$$
 (\neg (C \land A) v D) \land \neg B \land \neg (D v A) \equiv (A v B) \land (A v C) \land (\neg C v \neg A v D) \land \neg B \land \neg D \land \neg A

> null

$$\neg C \lor \neg A \lor D >$$

$$A \to (B \land C)$$

$$\neg B \lor \neg C$$

$$\neg A$$

$$\underline{M:} ((\neg A \lor (B \land C)) \land (\neg B \lor \neg C)) \land A \equiv (\neg A \lor B) \land (\neg A \lor C) \land (\neg B \land \neg C) \land A$$

$$\neg A \Box B$$

$$\neg A \Box C$$

$$\neg B \Box \neg C$$

$$A$$

$$nil$$

7.Feladat.(ZH) Bizonyítsa rezolúcióval, hogy helyes az alábbi következtetési séma!

$$\neg((A \to B) \to D)$$
$$\underbrace{(A \to B) \to (C \land \neg B)}_{C \lor D}$$

- **8.Feladat.(ZH)** Bizonyítsd be rezolúcióval, hogy az $(A \to \neg B) \lor (C \to (A \land B))$ mondat tautológia!
- **9.Feladat.(ZH)** Bizonyítsa be rezolúció segítségével, hogy az első három állítás nulladrendű logikai következménye a negyedik állítás:
 - Ha nem tanulok nem sikerül jól a zh-m.
 - Nem tudok egyszerre tanulni és bulizni is.
 - Elmehetek rakodómunkásnak ha nem sikerül a zh-m.
 - Vagy nem bulizok, vagy rakodómunkásnak állok.
- **10.Feladat.(ZH)** Nulladrendű logikai rezolúció segítségével igazolja, hogy az első négy állítás következménye az ötödik.
 - a. Ha a virágok korán nyílnak, nem lesz probléma az idei mézterméssel.
 - b. Ha a méhek nem porozzák be a virágokat, akkor probléma lesz az idei mézterméssel.
 - c. Egyszerre nem tudják a méhek beporozni a virágokat és elrepülni délre.
 - d. A virágok korán nyílnak
 - e. A méhek nem repülnek délre.
- **11.Feladat.(ZH)** Formalizáljuk a mondatokat (nulladrend), majd bizonyítsd be, hogy az első három mondan következménye a negyedik.

Nem igaz, hogy esik és jó idő van. Ha dörög az ég, akkor villámlik. Ha villámlik, akkor esik. Ha dörög az ég, akkor nincs jó idő!

12.Feladat. Majmos nulladrendű rezolúció

Egy tudós a majmok társadalmában a következő megfigyeléseket tette.

- A) Minden majom, amelyik szereti a banánt, egészséges.
- B) Amelyik majom sokat alszik, az is egészséges.
- C) Amelyik majomnak rémálmai vannak, az keveset alszik.
- D) Mindegyik majom szereti a banánt vagy sokat alszik.

Ezekből a megfigyelésekből a tudós azt a következtetést vonta le, hogy a nem egészséges majmoknak rémálmaik vannak. Helyesen okoskodott-e?

M:

- 1. formalizáció: SZB = "szereti a banánt", SA = "sokat alszik", R = "rémálmai vannak", E = "egészséges"
- 2. Mondatok átírása:
- A) SZB -> $E = \sim SZB v E$
- B) $SA \rightarrow E = \sim SA v E$
- C) R \rightarrow \sim SA = \sim R v \sim SA
- D) SZB v SA
- E) \sim E -> R = E v R

