

DATABASE SYSTEMS

Dr. Noha Nagy

Conversion to Relational Model

- ABC Company wants to create an information system for HR system, The COMPANY database keeps track of a company's employees, departments, and projects. The requirements gathered are:
- The company is organized into departments. Each department has a unique name, a unique number, and a particular employee who manages the department. We keep track of the start date when that employee began managing the department. A department may have several locations.
- A department controls a number of projects, each of which has a unique name, a unique number, and a single location.
- We store each employee's name, Social Security number, address, salary, sex (gender), and birth date. An employee is assigned to one department, but may work on several projects, which are not necessarily controlled by the same department. We keep track of the current number of hours per week that an employee works on each project. We also keep track of the direct supervisor of each employee (who is another employee).

Example Attribute of a Relationship Type:

Hours of WORKS_ON and Start Date of MANAGES

Database Design Process

1. Requirements Analysis

2. Conceptual Design

3. Logical, Physical, Security, etc.

1. Requirements analysis

■ What is going to be stored?

Technical and nontechnical people are involved

- How is it going to be used?
- What are we going to do with the data?
- Who should access the data?

Database Design Process

1. Requirements Analysis

2. Conceptual Design

3. Logical, Physical, Security, etc.

2. Conceptual Design

- A <u>high-level description</u> of the database
- Sufficiently <u>precise</u> that technical people can understand it
- But, not so precise that non-technical people can't participate

This is where E/R fits in.

1. Requirements Analysis

2. Conceptual Design

3. Logical, Physical, Security, etc.

3. More:

- Logical Database Design
- Physical Database Design
- Security Design

CONVERTING ERD INTO RELATIONAL MODEL

ER- to- Relational Mapping

- □ Step 1: Mapping of regular entity types
- □ Step 2: Mapping of weak entity types
- □ Step 3: Mapping of binary 1:1 relationship types
- □ Step 4: Mapping of binary 1:N relationship types
- □ Step 5: Mapping of binary M:N relationship types

ER Diagrams into Relations

Mapping Regular Entities to Relations

- Simple attributes: E-R attributes map directly into the relation
- Composite attributes: Use only their simple, component attributes
- 3. Multi-valued Attribute Becomes a separate relation with a foreign key taken from the superior entity

Mapping a regular entity

Mapping a composite attribute

CUSTOMER					
Customer_ID	Customer_Name	Street	City	State	Zip

Mapping a Multivalued attribute

Multivalued attribute becomes a separate relation with foreign key

Mapping Weak Entities

- Weak Entity becomes a separate relation with a foreign key taken from the superior entity
- Primary key composed of:
 - Partial identifier of weak entity
 - Primary key of identifying relation (strong entity)

Mapping a weak entity

Relations resulting from weak entity

Mapping Relations

Mapping Binary Relationships

□ One-to-One Relationship

- •The primary key of one entity type comes the foreign key in the other.
- •It does not matter which way around it is done but you should not have a foreign key in each entity.

Staff(<u>emp_no</u>, name, <u>contract_no</u>)
Contract(<u>cont_no</u>, start, end, position, salary)
or
Staff(<u>emp_no</u>, name)
Contract(<u>cont_no</u>, start, end, position, salary, <u>emp_no</u>)

Mapping Binary Relationships

- □ One-to-One Relationship
 - one side is mandatory

Primary key on the mandatory side becomes a foreign key on the optional side

Staff(<u>emp_no</u>, name)
Contract(<u>cont_no</u>, start, end, position, salary, <u>emp_no</u>)

We should put FK in optional side to avoid nulls

Foreign key in Staff:

Contract Table:

Cont_no	Start	End	Position	Salary
11	1 st Jan 2001	10 th Jan 2001	Lecturer	£2.00

However, Foreign key in Contract:

Contract Table:

Cor	nt_no	Sta	rt		End			Position	Salary	Empno
11		1 st	Jan	2001	10 th	Jan	2001	Lecturer	£2.00	10

Staff Table:

Empno	Name
10	Gordon
11	Andrew

Mapping a binary 1:1 relationship

Mapping a binary 1:1 relationship

Mapping a 1:M relationship

Mapping a 1:M relationship

Mapping Binary Relationships

One-to-Many Relationship

Primary key on the one side becomes a foreign

key on the many side

OrderID	orderdate
102	22/5/2020
100	22/2/2020
101	25/9/2020

<u>Cid</u>	name	address	order
111	Ahmed Ali	Giza	100
111	Ahmed Ali	Giza	101
111	Ahmed Ali	Giza	102

<u>Cid</u>	name	address
111	Ahmed Ali	Giza
128	Ali	Giza
189	Mahmoud	Giza

OrderID	orderdate	CID
100	22/2/2020	100
101	25/9/2020	100

Mapping an M:N relationship

The Supplies relationship will need to become a separate relation

Mapping an M:N relationship

Mapping Binary Relationships

■ Many-to-Many Relationship

Create a **new relation** with the primary keys of the two entities as its primary key

Mapping Associative Entities

Identifier Not Assigned

- Default primary key for the association relation is composed of the primary keys of the two entities (as in M:N relationship)
- Identifier Assigned
 - It is natural and familiar to end-users
 - ■Default identifier may not be unique

Mapping an associative entity

Mapping an associative entity

Mapping Unary Relationships

One-to-Many - Recursive foreign key in the same relation

- Many-to-Many Two relations:
 - One for the entity type
 - One for an associative relation in which the primary key has two attributes, both taken from the primary key of the entity

Mapping a unary 1:N relationship

Mapping a unary M:N relationship

Bill-of-materials relationships (M:N)

Mapping n-ary Relationships

- One relation for each entity and one for the associative entity
- Associative entity has foreign keys to each entity in the relationship

Mapping a ternary relationship

Mapping a ternary relationship

Lecture Exercise

- □ Write the relational schema for this ER diagram
- □ Customer(CustomerID, Name, Address, Phone).
- Order (OrderNum, OrderDate, SalesPerson, CustomerID(fk)).
- ORDERITEMS (OrderNumber(fk), <u>ItemNumber</u>, PartNumber, Quantity, Price).

- Primary key on the mandatory side becomes a foreign key on the optional side
- □ Professor(<u>PID</u>,Name,DOB)
- Faculty(<u>Fname</u>,Loctaion,Ftype,DID(fk))

- Student(<u>SSN</u>,Name,Age,City,Major)
- Course(<u>CrsCode</u>,Name)
- Course_Student(<u>SSN (fk), CrsCode(fk)</u>)

- Hobbies is a multivalued attributes
- Contact(ContactID,FirstName,LastName,Address,Phonenumber,ZipCode(fk))
- □ ZipLocation(<u>ZipCode</u>,State,City)
- Hobbies(<u>ContactID(fk),Hobby</u>)

Write the relational schema

- □ Part(Number,Name,Description).
- □ Project(<u>ProjectNumber</u>,Name,Budget)
- Supplier(<u>SupplierID</u>, Name, Address)
- Provide(<u>ProjectNumber,Number,SupplierID</u>,Quantity,Price)

