Lecture #6: RF Inductors
RF Circuits = Analog Circuits + Inductors
Std. De process does not include inductors.
Digital ICs > NMOS, PMOS, MOS capaintons + resistors (rough)
Trevistors (rough)
Analog Ils -> (above) + capacitors (MOM or MIM)
Parsive industrs are indispensible (Tx)
passive inductors are indispensible Mixers (Tx) active inductors = higher noise, higher distortion, higher power
higher distortion,
Mynex power
Take a step back - Skin Effect

Take a step back - Skin Effect

DC - entire conductor usu-section is used for current flow.

AC - Faraday's Law: AC current flow establishes
a magnetic field that induces an electric
field whose associated currents (eddy
currents) oppose the original current

* This effect is strongest at the center of the conductor $(r=0) \Rightarrow$ when the tends to flow in the outer portion of the conductor.

Hence the name Skin Effect

DC:

Roc =
$$\frac{\beta l}{A}$$
 or $\frac{1}{\sigma A}$

Very little

very little

conversation of where $\frac{1}{RDc} \approx \frac{1}{28}$ r= radius of conductor

Slin depth $S = \frac{2}{WM\sigma} = \frac{1}{28}$ depth at which amplitude of fidds decay by $\frac{1}{2}$ of conductor (vad/s)

 $M = \frac{1}{2}$ absolute parabolity of conductor (usually = $\frac{1}{40}$)

Skin depths in stree materials at $\frac{1}{26}$ Hz

 $S = \frac{2}{WM\sigma} = \frac{2}{2\pi \cdot f \cdot Mo} \cdot \frac{1}{\sigma}$
 $= \frac{1}{126} \times 10^{2} \cdot \frac{1}{\sigma}$

Al : $S = \frac{1}{126} \times 10^{2} \cdot \frac{1}{3.816} \times 10^{7} = \frac{1.82 \, \text{Mm}}{5.815 \times 10^{7}} = \frac{1.82 \, \text{Mm}}{5.815 \times 10^{7}} = \frac{1.48 \, \text{Mm$

An: $S = 1.126 \times 10^{2} \sqrt{\frac{1}{4.098 \times 10^{7}}} = 1.76 \, \mu \text{m}$

Reg } _ Ceg to Reg, Ceg meads hide

* Compart, simple & quite physical in nature * Usually chosen to be symmetric (esp.
if the inductor is symmetric)
* accurate over the frequency range of interest; for a good broadband fit, Rs may need to be a function of frequency (due to skin effect etc.)