Machine Learning 1

Homework 10: Decision Tree

Student: Nguyễn Thị Minh Ngọc - ID: 11219280

1 Problem 1

Given the training dataset.

Tid	Attrib1	Attrib2	Class		
1	Yes	Large	No		
2	No	Medium	No		Ti
3	No	Small	No		
4	Yes	Medium	No		11 12
5	No	Large	Yes	\longrightarrow Test set	13
6	No	Medium	No		14
7	Yes	Large	No		15
8	No	Small	Yes		10
9	No	Medium	No		
10	No	Small	Yes		

	Tid	Attrib1	Attrib2	Class
	11	No	Small	?
t	12	Yes	Medium	?
U	13	Yes	Large	?
	14	No	Small	?
	15	No	Large	?

Requirements

- 1. Using Gini Impurity to construct the decision tree, then using this decision tree to make predictions for the test set.
- 2. Do the same but using Information Gain (Entropy)

Solution.

1. Gini Impurity

$$\begin{split} &gini(X) = 1 - \left(\frac{3}{10}\right)^2 - \left(\frac{7}{10}\right)^2 = 0.42 \\ &gini(X_{Attrib1=Yes}) = 1 - \left(\frac{0}{3}\right)^2 - \left(\frac{3}{3}\right)^2 = 0 \\ &gini(X_{Attrib1=No}) = 1 - \left(\frac{3}{7}\right)^2 - \left(\frac{4}{7}\right)^2 = \frac{24}{49} \approx 0.49 \\ &\rightarrow \Delta gini(X, Attrib1) = 0.42 - \frac{3}{10} \cdot 0 - \frac{7}{10} \cdot 0.49 = 0.077 \end{split}$$

$$gini(X_{Attrib2=Large}) = 1 - \left(\frac{1}{3}\right)^2 - \left(\frac{2}{3}\right)^2 = \frac{4}{9} \approx 0.44$$

$$gini(X_{Attrib2=Medium}) = 1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0$$

$$gini(X_{Attrib2=Small}) = 1 - \left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 = \frac{4}{9} \approx 0.44$$

$$\rightarrow \Delta gini(X, Attrib2) = 0.42 - \frac{3}{10} \cdot 0.44 - \frac{4}{10} \cdot 0 - \frac{3}{10} \cdot 0.44 = 0.156$$

Because $\Delta gini(X, Attrib1) < \Delta gini(X, Attrib2)$, we will choose Attrib2 to be the first attribute for splitting the training set. Constructing the decision tree:

⇒ Making predictions:

Ti	d	Attrib1	Attrib2	Class
1:	1	No	Small	Yes
1:	2	Yes	Medium	No
13	3	Yes	Large	No
14	4	No	Small	Yes
15	5	No	Large	Yes

2. Information Gain (Entropy)

$$\begin{split} entropy(X) &= -p_{yes}log_2p_{yes} - p_{no}log_2p_{no} = -\frac{3}{10}log_2\frac{3}{10} - \frac{7}{10}log_2\frac{7}{10} \approx 0.88 \\ entropy(X_{Attrib1=Yes}) &= -\frac{0}{3}log_2\frac{0}{3} - \frac{3}{3}log_2\frac{3}{3} = 0 \\ entropy(X_{Attrib1=No}) &= -\frac{3}{7}log_2\frac{3}{7} - \frac{4}{7}log_2\frac{4}{7} \approx 0.985 \\ &\rightarrow gain(X, Attrib1) = 0.88 - \frac{3}{10} \cdot 0 - \frac{7}{10} \cdot 0.985 = 0.1905 \\ entropy(X_{Attrib2=Large}) &= -\frac{1}{3}log_2\frac{1}{3} - \frac{2}{3}log_2\frac{2}{3} \approx 0.918 \\ entropy(X_{Attrib2=Medium}) &= -\frac{0}{4}log_2\frac{0}{4} - \frac{4}{4}log_2\frac{4}{4} = 0 \\ entropy(X_{Attrib2=Medium}) &= -\frac{2}{3}log_2\frac{2}{3} - \frac{1}{3}log_2\frac{1}{3} \approx 0.918 \\ &\rightarrow gain(X, Attrib2) = 0.88 - \frac{3}{10} \cdot 0.918 - \frac{4}{10} \cdot 0 - \frac{3}{10} \cdot 0.918 = 0.3292 \end{split}$$

Because gain(X, Attrib1) < gain(X, Attrib2), we will choose Attrib2 to be the first attribute for splitting the training set. Constructing the decision tree:

\Longrightarrow Making predictions:

Ti	d	Attrib1	Attrib2	Class
11	l	No	Small	Yes
12	2	Yes	Medium	No
13	3	Yes	Large	No
14	1	No	Small	Yes
15	5	No	Large	Yes

2 Problem 2

Handling numerical attributes.

Outlook	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	90	Weak	No
Sunny	Hot	87	Strong	No
Overcast	Hot	93	Weak	Yes
Rainy	Mild	89	Weak	Yes
Rainy	Cool	79	Weak	Yes
Rainy	Cool	59	Strong	No
Overcast	Cool	77	Strong	Yes
Sunny	Mild	91	Weak	No
Sunny	Cool	68	Weak	Yes
Rainy	Mild	80	Weak	Yes
Sunny	Mild	72	Strong	Yes
Overcast	Mild	96	Strong	Yes
Overcast	Hot	74	Weak	Yes
Rainy	Mild	97	Strong	No

Solution.

We need to convert the numerical attribute into categorical attribute by finding the best splitting value. To do this, we need to sort the value of the Humidity column first, then calculate the mean of each consecutive pair.

Humidity	Play Tennis?		Humidity	Play Tennis?		Candidate		Candidate	
90	No		59	No					
87	No		68	No		(59+68)/2		63.5	
93	Yes		72	Yes		(68+72)/2		70	
89	Yes		74	Yes		$ \begin{array}{ c c c c c } \hline (72+74)/2 \\ (74+77)/2 \end{array} $		73	
79	Yes		77	Yes				75.5	
59	No		79	No	$ \frac{\text{mean}}{(80 + 87)/2} $	(77+79)/2		78	
77	Yes	$\xrightarrow{\text{sort}}$	80	Yes		\rightarrow $\left \begin{array}{c} (80+87)/2 \end{array}\right $	\longrightarrow	79.5	
91	No		87	No				83.5	
68	Yes		89	Yes		(87 + 89)/2		88	
80	Yes		90	Yes		(89+90)/2		89.5	
72	Yes		91	Yes		90 + 91)/2		90.5	
, –						(91+93)/2		92	
96	Yes		93	Yes		93 + 96)/2		94.5	
74	Yes		96	Yes		(96+97)/2		97.5	
97	No		97	No		` ''			

Then we will calculate the information gain of each splitting value to find the best one based on the following formula:

$$gain(X, a, t) = entropy(X) - \frac{|X_{a \leqslant t}|}{|X|} entropy(X_{a \leqslant t}) - \frac{|X_{a > t}|}{|X|} entropy(X_{a > t})$$

where t is the splitting value and a is the value of Humidity attribute. Taking gain(X, humidity, 75.5) as an example:

$$\begin{split} entropy(X) &= -\frac{5}{14}log_2\frac{5}{14} - \frac{9}{14}log_2\frac{9}{14} \approx 0.94 \\ entropy(X_{a\leqslant 75.5}) &= -\frac{3}{4}log_2\frac{3}{4} - \frac{1}{4}log_2\frac{1}{4} \approx 0.811 \\ entropy(X_{a\geqslant 75.5}) &= -\frac{6}{10}log_2\frac{6}{10} - \frac{4}{10}log_2\frac{4}{10} \approx 0.97 \\ &\Longrightarrow gain(X, humidity, 75.5) = 0.94 - \frac{4}{14} \cdot 0.811 - \frac{10}{14} \cdot 0.97 = 0.015 \end{split}$$

Do the same with other values, we get the information gain of each splitting value:

Candidate	Information Gain
63.5	0.113
70	0.01
73	0.0002
75.5	0.015
78	0.045
79.5	0.09
83.5	0.152
88	0.048
89.5	0.101
90.5	0.025
92	0.0002
94.5	0.01
97.5	0.113

Because gain(X, humidity, 83.5) is the highest, 83.5 is the best splitting value. Now we can treat Humidity attribute as a categorical attribute with two possible value: ≤ 83.5 and > 83.5.

3 Problem 3

Using Gini to build the decision tree for data in Problem 2.

Solution

After converting Humidity into categorical attribute, the data become:

Outlook	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	> 83.5	Weak	No
Sunny	Hot	> 83.5	Strong	No
Overcast	Hot	> 83.5	Weak	Yes
Rainy	Mild	> 83.5	Weak	Yes
Rainy	Cool	≤ 83.5	Weak	Yes
Rainy	Cool	≤ 83.5	Strong	No
Overcast	Cool	≤ 83.5	Strong	Yes
Sunny	Mild	> 83.5	Weak	No
Sunny	Cool	≤ 83.5	Weak	Yes
Rainy	Mild	≤ 83.5	Weak	Yes
Sunny	Mild	≤ 83.5	Strong	Yes
Overcast	Mild	> 83.5	Strong	Yes
Overcast	Hot	≤ 83.5	Weak	Yes
Rainy	Mild	> 83.5	Strong	No

$$\begin{aligned} &gini(X) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = \frac{45}{98} \approx 0.459 \\ &gini(X_{\text{Outlook}=\text{Sunny}}) = 1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{12}{25} = 0.48 \\ &gini(X_{Outlook}=\text{Overcast}) = 1 - \left(\frac{4}{4}\right)^2 - \left(\frac{0}{4}\right)^2 = 0 \\ &gini(X_{Outlook}=\text{Rainy}) = 1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = \frac{12}{25} = 0.48 \\ &\to \Delta gini(X, Outlook) = 0.459 - \frac{5}{14} \cdot 0.48 - \frac{4}{14} \cdot 0 - \frac{5}{14} \cdot 0.48 = 0.116 \end{aligned}$$

Do the same thing with other attributes, we could obtain the following result:

Attributes	$\Delta gini(X, \text{attribute})$
Outlook	0.116
Temperature	0.0185
Humidity	0.092
Wind	0.03

We will choose Outlook attribute as the first splitting attribute as it could bring highest impurity decrease.

- gini(Sunny) = 0.48
 - * $\Delta gini(Sunny, Temperature) = 0.28$
 - * $\Delta gini(Sunny, Humidity) = 0.48$
 - * $\Delta gini(Sunny, Wind) = 0.013$
- gini(Rainy) = 0.48
 - * $\Delta gini(Rainy, Temperature) = 0.013$
 - * $\Delta gini(Rainy, Humidity) = 0.013$
 - * $\Delta gini(Rainy, Wind) = 0.48$
- qini(Overcast) = 0

Hence:

- $\Sigma \Delta gini(Outlook, Temperature) = 0.293$
- $\Sigma \Delta gini(Outlook, Humidity) = 0.493$
- $\Sigma \Delta gini(Outlook, Wind) = 0.493$

Option 1: Choosing Humidity:

- $gini(Sunny, \leq 83.5) = 0$
- gini(Sunny, > 83.5) = 0
- $gini(Rainy, \leq 83.5) = 0.444$
 - * $\Delta gini(Rainy, \leq 83.5, Temperature) = 0.11$
 - * $\Delta gini(Rainy, \leq 83.5, Wind) = 0.444$
- gini(Rainy, > 83.5) = 0.5
 - * $\Delta qini(Rainy, > 83.5, Temperature) = 0$
 - * $\Delta gini(Rainy, > 83.5, Wind) = 0.5$

Then:

- $\Sigma \Delta gini(Outlook, Humidity, Temperature) = 0.11$
- $\Sigma \Delta gini(Outlook, Humidity, Wind) = 0.944$

Sample: (Sunny, mild, 85, weak) \longrightarrow No

Option 2: Choosing Wind:

- gini(Rainy, Weak) = 0
- gini(Rainy, Strong) = 0
- gini(Sunny, Weak) = 0.444
 - * $\Delta gini(Sunny, Weak, Temperature) = 0.444$
 - * $\Delta gini(Sunny, Weak, Humidity) = 0.444$
- gini(Sunny, > Strong) = 0.5
 - * $\Delta gini(Sunny, Strong, Temperature) = 0.5$
 - * $\Delta gini(Sunny, Strong, Wind) = 0.5$

Then:

- $\Sigma \Delta gini(Outlook, Humidity, Temperature) = 0.944$
- $\bullet \ \Sigma \Delta gini(Outlook, Humidity, Wind) = 0.944$

We can choose either Temperature or Humidity.

* Temperature

Sample: (Sunny, mild, 85, weak) \longrightarrow No

^{*} Humidity

Sample: (Sunny, mild, 85, weak) \longrightarrow No