

TRASFIETTITORE: converte il segnale elettrico milli in un nuovo segnale elettrico adatto per la trasmissione attraverso il canale di comunicazione d disposizione. Effettua sostanzialmente le seguenti operazioni: .) traslazione in frequenza (modulazione): fa sí che la occupazione di banda del segnale sia a cavallo di una opportuna frequenza centrole. .) sagomatura: garantisce che la occupazione di banda sia quella ottimale e che non disturbi eventuali altre comunicazioni presenti nello stesso canale di comunicazione. nello stesso canale di comunicazione.

CANALE DI COMUNICAZIONE: permette il trasferimento del segnale s(+) dal nodo sorgente a quello de destinazione. Il canale di comunicazione prevede! comunicazione prevede! .) un trasduttore di ingresso: converte il segnale elettrico s(+) in un segnale con supporto físico compatibile con il mezzo trasmissivo les. onde e.m. per la trasmissione in avia, luce per la trasmission su fibra ottica, ecc.) modulator elettro-ottico segnale elettrico antenna s(t) South South South South South ·) un mezzo trasmissivo: rappresenta il mezzo fisico sul quale si propaga il segnale trasmesso (es. and o vuoto per le orde e.m.) o la fibra ettica per segnali luminosi) il mezzo trasmissivo in ... il mezzo trasmissivo in un segnale elettrico v(t). Sall) sutt) Salt) v(l)

Caralteristiate princip	och d un canale	radi'o
.) E sempre un can		
.) E tipicamente un		
		NTENNE, e queste devuno
overe delle dimens	ions non inferiori	d d. Questo comporta
dei limiti inferior	alle frequenze utili	22abili per la trasmissione
radio.		
	1 - 1	
	1	
LF (Low Frequency)	30-300 NHZ	Radiolocalizzazione manttina
	(1-10 km)	e devonautica
MF (Medium Freguency)	300 - 3000 KHZ	Radionavigatione e
	(100-1000 m)	radio di fisione
HF (High Frequency)	3 - 30 MHz	Collegament a lunga distanza
	(10 - 100 m)	(viflessione ionosferica)
VHF (Very High Frey.)	30 - 300 MHz	Radio diffusione
, , , , , , , , , , , , , , , , , , , ,	(1-10 m)	
UHF (Ultra High Frey.)	300 - 3000 MHz	Serviza TV, telefonia mobile
	(0.1-1 m)	
SHF (Super High Frey.)	3-30 642	TV satelliture, ponti radio
	(1-10 cm)	
DISTURBI INTRODUTTI DA		
		ousroni sul segnale trasmesso
		ni deterministiche. In primi
approssimatione fall di	storsioni si possoro	assumere lineari e stazionario.

SISTEMI	DI COMU	INICAZIONE	ANALOGICI	
Un sistem	ia di cor	municazione s	i dice analogici	o quando sid m(t) che
a		indlogici.		
	che:			
			(+) sono segno	ali andlogici, in quan
				per un cambio del
				por our cerus ground
'	fisico.			
				in quanto il primo
				immesso nel mezzo
trasmis	sivo ed	il secondo si	· office per t	trasduzione di un
scynalc	fisico			
C. c. S. D. I				
		NCAZIONE		
				umerica e tale quand
				s [n] e ms[n]) e
		segnally nun		
W.B. sCF) e v(+)	continuaro a	ed esserc segn	al' dudlogici
	ms	[n] p(+)	m (+)	
	Tç			
Ts = per	riodo di	segnalazione	della sorgente	
ms[n] =	sequenza	generate d	alla sorgente c	ion periodo di segnalazi
		9	l'mstn) appo	
		o predefinito		
	ms [n]	$\in A_{s}$, A	5 = 3 0/2, 0/2,	., dn }, M>2
/,	100		eve vish come	1 1000114-1-
(vealizza	ziore) d	el campional	rento di un p	processo dealorio.

M(t) Ts M[nTs] = M[n] M(t) = processo dealorio
Ms[n] = V.d. estralla dal processo Si definisce la sequenza aleatoria di sorgente come $\left\{ M_{S} \left[n \right] \in A_{S} \right\} \quad n = 0, \pm 1, \pm 2, \dots \right\}$ N.B. Ms[n] e und realizzazione di MIn] Alla destinazione si definisa in maniera analoga la seguenza di destinazione Il segnale m(t) è ottenuto dalla sequenza d'entoria di sorgente tramile una operazione di modulazione che è del tuto equivalente alla operazione di interpolazione $m(t) = \sum_{n=-\infty}^{+\infty} m_s c_n p(t-nT_s)$ dove plt) è l'impulso in trasmissione Ad esempio p(t) = vect(t)TASSO DI ENOCAZIONE DELLA SONCENTE Rs 1/7s e il rate con cui escoro i simboli appartenenti
all'alfabeto As Se è presente una coclifica binavia, per rappresentare un simbolo dell'alfabeto As occorroro log M simboli binavi

	ur esseve visto come l'insiène del
demodulatore e de trasduttore	d destinazione. Esso produce
la sequenza ms [n] dal se	
Un canale numerico ideale	
$\hat{m}_s [n] = m_s [n]$	
In casi pratici un calnale v	numerico non e mai ideale, por
cui ha senso definire il suo sue prestazioni.	comportanento e guirdi le
PROBABILITÀ DI TRANSIZIONE	
P{i j} = P{ ms [n] = a,	$M_{\varsigma}[n] = \alpha$;
Un canale numerico e statis	
sono note le P{i ;}	
	on da "n" alloval il canale
numerico si dice STAZIOA	VANIO.
l'insierre delle P{ilj} e p	
cardinalità dell'alfabeto As	
Per un cande ideale quine	
{P{i j}} = 1 se i=	
(P{i j}=0 se c=	j
	dore solo deu disturbi introdutti
	ezione, ma anche dalla modulazione della prestazioni
de tetto il sistema numen	

MISURA DELLE PRESTAZIOM DI UN SISTEMA DI COM. NUMERICO

Le prestazioni d' un sistema di comunicazione numeraco

sovo associabili alla Probabilità di Errore di simbolo M-ano $P_{E}(M) \triangleq P\{\hat{m}_{s}[n] \neq m_{s}[n]\}$

Se la PE(M) non diponde da "n", allora il sislema di' comunicazione è stazionamio.

QUALITY of SERVICE (QOS)

La qualité d'el servizio per un sistema di comunicazione numerico

è associabile alla probabilital di eurore PE(17). E ragionerale, quindi,

pensare de si debba fissare una PE(17) massima, al di la della

quale la QoS non e accettabile.

PE (n) & Prix

Es. per i servizi voce Praz = 10 mentre per i servizi dati questa scende a Praz = 10

DUALISTO BANDA E POTENZA

Aunentando la potenza del segnale, a trasmissione si può
fare in modo che la componente utile del segnale prevalse
sulla componente di vunore austo intuitivamente tende de
mislionare le prestazioni del sistema. La potenza però costa
e comunque estistoro dei limiti fisici o imposti de la limitano.
Lo stesso si può dire per la banda, si può dimostrare de
all'aumentare della banda del segnale trasmesso si mistorare

le prestazioni del sistema. Anche la banda pero e una visorsa

EFFICIENZA DI POTENZA E EFFICIENZA SPEITRACE Una modulation si dice: .) efficiente in potenza: quando la potenza trasmessa e bassa a Sefficiente spettralmente: quando la banda ch. lizzatel e piccola al fronte d'un certo livelle di prestazioni Sfortunat amente sistemi efficient spethalment non sono anche efficient in potenza. VAUITAGLI DI UN SISTEMA DI COM. NUMERICO MISPETTO AD UNO ANAC. 1) Basso cosD 2) Sicure 22a nella trasmissione di un messaggio 3) Trasferimento assuegato d' messaggi d' natura diversa (multiplazione, audio, vide, data) audio, vide, duh) 4) Possibilité de un lizeure modulazioni e codifiche che rendono il sistema efficiente un potenza e/o spettualmente. 1) Generalmente la banda occupata da un sepale numerico è maggiore del corrispondente analogico 2) Complessili, suprette to per la sincronizzazione.