IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2015**

EEE/EIE PART II: MEng, BEng and ACGI

COMMUNICATION SYSTEMS

Corrected Copy

Tuesday, 26 May 2:00 pm

Time allowed: 2:00 hours

There are THREE questions on this paper.

Answer ALL questions. Q1 carries 40% of the marks. Questions 2 and 3 carry equal marks (30% each).

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

D. Gunduz

Second Marker(s): J.A. Barria

EXAM QUESTIONS

Information for Students

Fourier Transform Pairs

Pair Number	x(t)	· X(f)
1.	$\Pi\left(\frac{t}{\tau}\right)$	$ au ext{sinc } au ag{5}$
2.	2W sinc 2Wt	$\Pi\left(\frac{f}{2W}\right)$
3.	$\Lambda\left(\frac{t}{\tau}\right)$	$ au\sin^2 au$
4.	$\exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{\alpha + j2\pi f}$
5.	$t \exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{(\alpha+j2\pi f)^2}$
6.	$\exp(-\alpha t), \alpha > 0$	$\frac{2\alpha}{\alpha^2 + (2\pi f)^2}$
7.	$e^{-\pi(t/\tau)^2}$	α + (211)) τεπ(f/τ) ²
8.	$\delta(t)$	1. 33
9.	1	δ(f)
10.	$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$
11.	$\exp(j2\pi f_0 t)$	$\delta(f-f_0)$
12.	$\cos 2\pi f_0 t$	$\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0)$
13.	$\sin 2\pi f_0 t$	$\frac{\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)}{\frac{1}{2j}\delta(f - f_0) - \frac{1}{2j}\delta(f + f_0)}$
14.	u(t)	$(j2\pi f)^{-1} + \frac{1}{2}\delta(f)$
15.	sgn t	(j如) ⁻¹
16.	$\frac{1}{m}$	− <i>j</i> sgn(<i>f</i>)
17.	$\hat{x}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\lambda)}{t - \lambda} d\lambda$	$-j \operatorname{sgn}(f)X(f)$
18.	$\sum_{m=-\infty}^{\infty} \delta(t-mT_{\varepsilon})$	$f_s \sum_{m=-\infty}^{\infty} \delta(f - mf_s),$
		$f_t = T_t^{-1}$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

$$\tan(\frac{\pi}{2} - x) = \cot x$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x} = \frac{2 \cot x}{\cot^2 x - 1} = \frac{2}{\cot x - \tan x}$$

$$\tan \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x}$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\cos x \sin y = \frac{1}{2} [\sin(x+y) - \sin(x-y)]$$

$$\sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$$

$$\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$$

$$\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$$

$$\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$$

Fourier Transform Theorems^a

Name of Theorem

1. Superposition (a_1 and a_2 arbitrary constants)	$a_1x_1(t)+a_2x_2(t)$	$a_1X_1(f) + a_2X_2(f)$	
2. Time delay	$x(t-t_0)$	$X(f)e^{-f^2\pi j t}$	
3a, Scale change	x(at)	$ a ^{-1}X\left(\frac{f}{a}\right)$	
b. Time reversal	x(-t)	X(-f) = X * (f)	
4. Duality	X(t)	x(-f)	
5a. Frequency translation	$x(t)e^{i\omega_t t}$		
b. Modulation	$x(t) \cos \omega_0 t$	$X(f - f_0)$ $\frac{1}{2}X(f - f_0) + \frac{1}{2}X(f + f_0)$	
6. Differentiation	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^n X(f)$	
7. Integration	$\int_{-\infty}^{t} x(t') dt'$	$(j2\pi f)^{-1}X(f) + \frac{1}{2}X(0)\delta(f)$	
8. Convolution	$\int_{-\infty}^{\infty} x_1(t-t')x_2(t') dt'$		
	C*	$X_1(f)X_2(f)$	
	$= \int_{-\pi}^{\pi} x_1(t') x_2(t-t') \ dt'$		
9. Multiplication	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(f - f') X_2(f') df'$	
		$= \int_{-\infty}^{\infty} X_1(f') X_2(f-f') df$	

Differentiation Rule of Leibnitz

Let
$$F(z) = \int_{a(z)}^{b(z)} f(x, z) dx$$
. Then we have

$$\frac{dF(z)}{dz} = \frac{db(z)}{dz} f(b(z), z) - \frac{da(z)}{dz} f(a(z), z) + \int_{a(z)}^{b(z)} \frac{\partial f(x, z)}{\partial z} dx$$

Figure 0.1 The graph of the Q-function, where $Q(x)=\frac{1}{\sqrt{2\pi}}\int_x^\infty e^{-t^2/2}dt$. For large x, we have $Q(x)\approx\frac{1}{\sqrt{2\pi}x}e^{-x^2/2}$

1. a) i) Explain the differences between a coherent and a noncoherent receiver.

[2]

ii) Consider a narrow-band signal n(t) centred around frequency f_c . Write down the canonical representation of n(t) in terms of its in-phase component $n_I(t)$ and quadrature component $n_Q(t)$. Draw a diagram that shows how you can obtain $n_I(t)$ and $n_Q(t)$ from n(t).

[3]

iii) Compare the signal-to-noise ratio (SNR) performance of the double sideband-suppressed carrier (DSB-SC) modulation scheme with that of baseband transmission.

[2]

iv) Compare frequency modulation (FM) with DSB-SC modulation in terms of its SNR performance and the bandwidth of the transmitted signal.

[3]

b) For each of the following functions below, state if it can represent the autocorrelation function of a real wide sense stationary random process. If your answer is no, explain why not. 13

i) $R_X(t_1,t_2) = \cos(\alpha t_1) - \sin(\beta t_1), \text{ for } \alpha,\beta \in \mathbb{R}^+.$

[3]

ii)

$$R_X(t_1, t_2) = \begin{cases} Ae^{-2(t_1 - t_2)}, & \text{if } t_1 \ge t_2, \\ Ae^{-3(t_2 - t_1)}, & \text{if } t_1 < t_2 \end{cases}$$

[3]

iii)

$$R_X(t_1,t_2) = |t_1-t_2|\cos(|t_1-t_2|\pi).$$

[4]

c) The amplitude of a bandlimited analog signal is quantized with a uniform scalar quantizer. The bandwidth of the signal is 4 KHz. The quantization error should not exceed the 0.4% of the peak-to-peak amplitude of the analog signal.

i) What is the minimum required sampling rate?

[2]

ii) What is the minimum number of bits per sample?

[3]

iii) What is the corresponding bit rate?

[2]

iv) If these bits are to be transmitted using 16-ary pulse amplitude modulation (PAM), what is the required symbol duration?

[3]

d) Consider a real-valued signal m(t) whose Fourier transform is denoted by M(f). The magnitude spectrum |M(f)| is given below.

The signal m(t) is passed through the following system, where $f_1 = 20$ KHz and $f_2 = 24$ KHz:

The frequency response of the two filters are given below.

$$H_1(f) = \begin{cases} 2, & \text{if 20 KHz} \le |f| \le 24 \text{ KHz}, \\ 0, & \text{otherwise.} \end{cases} \qquad H_2(f) = \begin{cases} 2, & \text{if } |f| \le 4 \text{ KHz}, \\ 0, & \text{otherwise.} \end{cases}$$

- i) Sketch the magnitude spectrum of the signals x(t), y(t), z(t) and u(t). [5]
- ii) Assume that the output signal u(t) is passed through the same system again to obtain a signal w(t) at the output. Find the magnitude spectrum of w(t).
- iii) Express w(t) in terms of m(t)? [2]

[3]

- 2. a) A discrete source produces symbols from the alphabet $\{a,b,c,d,e,f,g\}$. Each symbol is generated independently from the others, and the probabilities of different symbols are given as follows: P(a) = 1/16, P(b) = 5/16, P(c) = 3/32, P(d) = 1/16, P(e) = 3/16, P(f) = 1/4, P(g) = 1/32.
 - i) Use the Huffman coding procedure to generate the codewords for the symbols.

[8]

ii) What is the average codeword length for the Huffman code obtained above?

[2]

iii) What is the entropy of this source?

[4]

iv) Discuss whether the Huffman code obtained above is optimal or not (i.e., does it meet the Shannon bound)?

[2]

[4]

b) Consider the random process

$$X(t) = N_1 \cos(2\pi f_c t) - N_2 \sin(2\pi f_c t),$$

where $f_c > 0$ is a given fixed frequency, and N_1 and N_2 are independent zeromean Gaussian random variables with variance σ^2 .

- i) Find the mean and autocorrelation function of X(t). [5]
- ii) Is X(t) a wide sense stationary (WSS) process? [2]
- iii) Find and plot the power spectral density (PSD) of X(t). [3]
- iv) Let $Y(t) = X^{(n)}(t)$ denote the *n*-th derivative of X(t). Find the PSD of Y(t).

- 3. a) A binary message source generates bit "0" with probability p_0 and "1" with probability p_1 . These bits are transmitted over a binary digital communication system. Bit "0" is transmitted with a pulse of amplitude -1, and bit "1" is transmitted with a pulse of amplitude 1. The noise in the channel is zero-mean additive white Gaussian with variance 0.5. The receiver uses a matched filter followed by threshold detection.
 - i) Determine the optimum detection threshold if $p_1 = 0.5$.
 - ii) Determine the optimum detection threshold if $p_1 = 0.2$. What is the corresponding probability of error?
 - iii) Assume that the receiver sets the optimum threshold as derived in question ii). However; the message source generates bits with $p_1 = 0.7$. What is the probability of error? How does this compare with the probability of error you found above?
 - b) The Hilbert transform of a signal m(t) is given by:

$$\hat{m}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{m(\tau)}{t - \tau} d\tau.$$

Let M(f) denote the spectrum of the finite energy real message signal m(t). The real and imaginary components of M(f) are shown below.

- i) Write $\hat{m}(t)$ in the form of a convolution of m(t) with another signal.
- ii) Let $\hat{M}(f)$ denote the Fourier transform of $\hat{m}(t)$. Write down $\hat{M}(f)$ in terms of M(f). Plot the real and imaginary components of $\hat{M}(f)$. [4]
- iii) Consider the single-sideband (SSB) modulated signal given below:

$$s(t) = m(t)\cos(2\pi f_c t) - \hat{m}(t)\sin(2\pi f_c t).$$

Write down the spectrum of s(t) in terms of M(f) and $\hat{M}(f)$, and plot its real and imaginary components.

iv) Assume that s(t) is transmitted over an additive white Gaussian noise channel. Draw a diagram illustrating a coherent receiver for this modulation scheme. Write down the demodulated signal in the time domain.

v) Compare the signal-to-noise ratio (SNR) performance of the SSB modulation scheme with that of the DSB-SC modulation scheme. What is the advantage of using SSB modulation? [2]

[2]

[6]

[6]

[2]

[4]

[4]

