NUMERICAL OPTIMIZATION

Sheet 8: Conjugate gradient method

EXERCISE ONE

Execute the conjugate gradient method to solve the system Ax = b for

$$A = \begin{pmatrix} 7 & -3 & 1 & -1 \\ -3 & 7 & -1 & 1 \\ 1 & -1 & 7 & -3 \\ -1 & 1 & -3 & 7 \end{pmatrix}$$

and b = (4, 0, 8, 4), starting from the initial point $x_0 = (0, 0, 0, 0)$.

List all the residuals r_i and directions p_i that you see along the way.

Note: If you wish to review the algorithm, it is listed as Algorithm 5.2 (CG) in Nocedal-Wright. I have checked this exercise and all the numbers on the way including the optimal solution are quite well-behaved.

EXERCISE TWO Leftovers from the lecture:

- 1. In the proof of the first theorem (Theorem 5.1 from Nocedal-Wright) we needed the following equality: $A(x^* x_k) = b Ax_k = -r_k$. Prove that this equality indeed holds.
- 2. Prove the useful recurrence for the upcoming residual direction as a combination of the previous residual direction and Ap_k :

$$r_{k+1} = r_k + \alpha_k A p_k.$$

EXERCISE THREE Review the proof of Theorem 5.3 from Nocedal-Wright that we have investigated at the lecture. In particular, we have not proven point (1), which is called (5.16) in Nocedal-Wright:

$$\forall i \in \{0, 1, \dots, k - 1\} \colon r_k^T r_i = 0. \tag{5.16}$$

Explain the proof of this fact and check that your residuals from exercise one satisfy it.

Exercise four

Part 1. Recall the Spectral theorem from linear algebra and use it to prove the following:

Let A be a positive definite matrix and x any vector. Prove that $x = \sum_{i=1}^{l} y_i$ where each y_i is an eigenvector of A corresponding to eigenvalue λ_i , and l is a number of distinct eigenvalues.

Note: Observe that y_i have no coefficients in front of themselves, and that we are not talking about a basis – each x can have its own set y_i . Think about what the statement says about the identity matrix, which is positive definite.

Part 2. Suppose we are back to our conjugate gradient method solving Ax = b for A positive definite, which we already know is equivalent to $\min \frac{1}{2}x^TAx - b^Tx$, starting from the point x_0 .

Using Part 1, we can write $x^* - x_0 = \sum_{i=1}^l y_i$. Let $W = \text{span}\{y_1, y_2, \dots, y_l\}$ be the linear subspace generated by y_i . Prove, by induction over k, that the conjugate gradient method never leaves the affine subspace $x_0 + W$.

Note: As with many other exercises of Numerical optimization, this sounds tougher than it really is. We already know the expressions for computing r_{k+1} , p_{k+1} and x_{k+1} , so we just need to check that we start and stay in the subspace $x_0 + W$.

EXERCISE FIVE

Solve the problem Ax = b for

$$A = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & -2 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 3 & -2 \end{pmatrix}$$

and b = (6, 3, -2, 0) using Gaussian elimination.

Also check for A whether A and all its leading principal minors have positive determinant.

EXERCISE SIX Try to solve the problem Ax = b using the conjugate gradient method. How many iterations did it take for you and why?

Note: For this exercise, you are allowed and advised to implement the conjugate gradient method and run the code to get the answer. Again, I have checked and it is quite easy using Numpy and numpy.dot for scalar product and matrix/vector multiplication.