Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Телематика (при ЦНИИ РТК)»

Отчет по лабораторным работам № 5, 6

По дисциплине «Теория вероятностей и Математическая статистика»

Выполнил

Студент гр. 3630201/80101 _____ Печеный Н. А.

Руководитель

к.ф.-м.н., доцент _____ Баженов А. Н.

«___»_____2021г.

Содержание

1	Пос	тановка задачи	5
2	Teo	рия	6
	2.1	Двумерное нормальное распределение	6
	2.2	Корреляционный момент (ковариация) и коэффициент корреляции	6
	2.3	Выборочные коэффициенты корреляции	6
		2.3.1 Выборочный коэффициент корреляции Пирсона	6
		2.3.2 Выборочный квадрантный коэффициент корреляции	6
		2.3.3 Выборочный коэффициент ранговой корреляции Спирмена	7
	2.4	Эллипсы рассеивания	7
	2.5	Простая линейная регрессия	7
		2.5.1 Модель простой линейной регрессии	7
		2.5.2 Метод наименьших квадратов	7
		2.5.3 Расчётные формулы для МНК-оценок	7
	2.6	Робастные оценки коэффициентов линейной регрессии	8
3	Pea	лизация	9
4	Pes	ультаты	10
	4.1	Выборочные коэффициенты корреляции	10
	4.2	Эллипсы рассеивания	11
	4.3	Оценки коэффициентов линейной регрессии	13
		4.3.1 Выборка без возмущений	13
		4.3.2 Выборка с возмущениями	13
3 a	ключ	чение	15
Сг	іисок	х Литературы	16
П	эило	кение А. Репозиторий с исходным кодом	17

Список иллюстраций

1	Эллипсы рассеивания для выборок нормального распределения, $ ho=0$	11
2	Эллипсы рассеивания для выборок нормального распределения, $ ho=0.5$	12
3	Эллипсы рассеивания для выборок нормального распределения, $ ho=0.9$	12
4	Выборка без возмущений	13
5	Выборка с возмущениями	14

Список таблиц

1	Выборочные коэффициенты корреляции для двумерного нормального рас-	
	пределения, $\rho=0$	10
2	Выборочные коэффициенты корреляции для двумерного нормального рас-	
	пределения, $\rho=0.5$	10
3	Выборочные коэффициенты корреляции для двумерного нормального рас-	
	пределения, $\rho=0.9$	10
4	Выборочные коэффициенты корреляции для смеси двумерных нормальных	
	распределений	11

1 Постановка задачи

1. Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения $N(x,y,0,0,1,1,\rho)$ Коэффициент корреляции ρ взять равным 0, 0.5, 0.9. Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции. Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,0.9).$$
(1)

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

2. Найти оценки коэффициентов линейной регрессии $y_i = a + bx_i + e_i$, используя 20 точек на отрезке [-1.8; 2] с равномерным шагом равным 0.2. Ошибку e_i считать нормально распределённой с параметрами (0, 1). В качестве эталонной зависимости взять $y_i = 2 + 2x_i + e_i$. При построении оценок коэффициентов использовать два критерия: критерий наименьших квадратов и критерий наименьших модулей. Проделать то же самое для выборки, у которой в значения y_1 и y_{20} вносятся возмущения 10 и -10.

2 Теория

2.1 Двумерное нормальное распределение

Двумерная случайная величина (X,Y) называется распределённой нормально (или просто нормальной), если её плотность вероятности определена формулой

$$N(x, y, \overline{x}, \overline{y}, \sigma_x, \sigma_y, \rho) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \left\{ -\frac{1}{2(1-\rho^2)} \left[\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x\sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} \right] \right\}$$
(2)

Компоненты X,Y двумерной нормальной случайной величины также распределены нормально с математическими ожиданиями $\overline{x},\overline{y}$ и средними квадратическими отклонениями σ_x,σ_y соответственно [1]. Параметр ρ называется коэффициентом корреляции.

2.2 Корреляционный момент (ковариация) и коэффициент корреляции

Корреляционный момент, иначе ковариация, двух случайных величин X и Y:

$$K = cov(X, Y) = M \left[(X - \overline{x})(Y - \overline{y}) \right] \tag{3}$$

Коэффициент корреляции ρ двух случайных величин X и Y:

$$\rho = \frac{K}{\sigma_x \sigma_y} \tag{4}$$

2.3 Выборочные коэффициенты корреляции

2.3.1 Выборочный коэффициент корреляции Пирсона

Выборочный коэффициент корреляции Пирсона [1]:

$$r = \frac{\frac{1}{n}\sum(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n}\sum(x_i - \overline{x})^2\frac{1}{n}\sum(y_i - \overline{y})^2}} = \frac{K}{s_X s_Y},\tag{5}$$

где K, s_X^2, s_Y^2 – выборочные ковариация и дисперсии с.в. X и Y.

2.3.2 Выборочный квадрантный коэффициент корреляции

Выборочный квадрантный коэффициент корреляции [1]:

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n},\tag{6}$$

где n_1, n_2, n_3, n_4 – количества точек с координатами (x_i, y_i) , попавшими соответственно в I, II, III и IV квадранты декартовой системы с осями $x' = x - med \ x, y' = y - med \ y$ и с центром в точке с координатами $(med \ x, med \ y)$.

2.3.3 Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соответствующие значениям переменной X, через u, а ранги, соответствующие значениям переменной Y, — через v.

Выборочный коэффициент ранговой корреляции Спирмена [1]:

$$r_S = \frac{\frac{1}{n} \sum (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\frac{1}{n} \sum (u_i - \overline{u})^2 \frac{1}{n} \sum (v_i - \overline{v})^2}},$$
(7)

где $\overline{u}=\overline{v}=\frac{1+2+\ldots+n}{n}=\frac{n+1}{2}$ – среднее значение рангов.

2.4 Эллипсы рассеивания

Уравнение проекции эллипса рассеивания на плоскость xOy:

$$\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x \sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} = const.$$
 (8)

Центр эллипса (8) находится в точке с координатами $(\overline{x}, \overline{y})$; оси симметрии эллипса составляют с осью Ox углы, определяемые уравнением

$$tg2\alpha = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2}. (9)$$

2.5 Простая линейная регрессия

2.5.1 Модель простой линейной регрессии

Регрессионную модель описания данных называют простой линейной регрессией, если

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \dots, n, \tag{10}$$

где x_1,\ldots,x_n — заданные числа (значения фактора); y_1,\ldots,y_n — наблюдаемые значения отклика; $\varepsilon_1,\ldots,\varepsilon_n$ — независимые, нормально распределённые $N(0,\sigma)$ с нулевым математическим ожиданием и одинаковой (неизвестной) дисперсией случайные величины (ненаблюдаемые); β_0,β_1 — неизвестные параметры, подлежащие оцениванию.

2.5.2 Метод наименьших квадратов

Метод наименьших квадратов (МНК) [1]:

$$Q(\beta_0, \beta_1) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}.$$
 (11)

2.5.3 Расчётные формулы для МНК-оценок

МНК-оценки параметров β_0 и β_1 [1]:

$$\hat{\beta}_1 = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2} \tag{12}$$

$$\hat{\beta}_0 = \overline{y} - \overline{x}\hat{\beta}_1 \tag{13}$$

2.6 Робастные оценки коэффициентов линейной регрессии

Метод наименьших модулей [1]:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1}.$$
 (14)

$$\hat{\beta}_{1R} = r_Q \frac{q_y^*}{q_x^*},\tag{15}$$

$$\hat{\beta}_{0R} = med \ y - \hat{\beta}_{1R} med \ x, \tag{16}$$

$$r_Q = \frac{1}{n} \sum_{i=1}^n sgn(x_i - med\ x) sgn(y_i - med\ y), \tag{17}$$

$$q_y^* = \frac{y_j - y_l}{k_q(n)}, \qquad q_x^* = \frac{x_j - x_l}{k_q(n)}$$
 (18)

$$l = egin{cases} [n/4] + 1 & \text{при } n/4 & \text{дробном,} \\ n/4 & \text{при } n/4 & \text{целом.} \end{cases}$$

$$j = n - l + 1.$$

$$sgn\ z = \left\{ egin{array}{ll} 1 \ \mbox{при}\ z > 0, \\ 0 \ \mbox{при}\ z = 0, \\ -1 \ \mbox{при}\ z < 0. \end{array}
ight.$$

Уравнение регрессии здесь имеет вид

$$y = \hat{\beta}_{0R} + \hat{\beta}_{1R}x. \tag{19}$$

3 Реализация

Расчёты проводились в среде аналитических вычислений Maxima. Для генерации выборок и создания и отрисовки графиков были использованы библиотечные функции среды разработки. Код скрипта представлен в репозитории на GitHub, ссылка на репозиторий находится в **Приложении A**.

4 Результаты

4.1 Выборочные коэффициенты корреляции

Ниже, в таблицах 1 - 3 представлены выборочные коэффициенты корреляции Пирсона, Спирмена и квадрантный коэффициент корреляции для выборок размером 20, 60 и 100 элементов двумерного нормального распределения $N(x,y,0,0,1,1,\rho)$ с коэффициентами корреляции $\rho=0,0.5,0.9$.

Таблица 1: Выборочные коэффициенты корреляции для двумерного нормального распределения, $\rho=0$

$\rho = 0$	r (5)			r_Q (6)			r_S (7)		
$\rho = 0$	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)
N=20	0.005	0.053	0.053	0.006	0.053	0.053	0.007	0.052	0.052
N = 60	0.001	0.018	0.018	0.004	0.017	0.017	0.004	0.018	0.017
N = 100	0.003	0.011	0.011	0.001	0.01	0.01	0.004	0.011	0.011

Таблица 2: Выборочные коэффициенты корреляции для двумерного нормального распределения, $\rho=0.5$

$\rho = 0.5$	r			r_Q			r_S		
$\rho = 0.5$	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)
N=20	0.5	0.3	0.03	0.324	0.155	0.05	0.46	0.24	0.035
N = 60	0.5	0.26	0.01	0.32	0.12	0.016	0.5	0.24	0.01
N = 100	0.5	0.26	0.005	0.33	0.12	0.009	0.5	0.24	0.006

Таблица 3: Выборочные коэффициенты корреляции для двумерного нормального распределения, $\rho=0.9$

	$\rho = 0.9$	r			r_Q			r_S		
	$\rho = 0.9$	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)
	N = 20	0.9	0.8	0.003	0.6916	0.5064	0.03	0.9	0.75	0.005
Ĭ	N = 60	0.89	0.8	0.0007	0.7	0.5	0.009	0.89	0.78	0.001
Ĭ	N = 100	0.9	0.8	0.0004	0.7042	0.5	0.005	0.9	0.8	0.0006

Ниже в таблице 4 представлены выборочные коэффициенты корреляции Пирсона, Спирмена и квадрантный коэффициент корреляции для выборок смеси двумерных нормальных распределений (1) размером 20, 60 и 100 элементов.

Таблица 4: Выборочные коэффициенты корреляции для смеси двумерных нормальных распределений

	r			r_Q			r_S		
	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)
N=20	-0.35	0.57	0.45	0.5332	0.32	0.036	0.47	0.3	0.08
N = 60	-0.65	0.5	0.08	0.56	0.32	0.01	0.5	0.25	0.026
N = 100	-0.7	0.52	0.03	0.56	0.32	0.007	0.47	0.23	0.02

4.2 Эллипсы рассеивания

Ниже на рисунках 1 - 3 представлены эллипсы рассеивания для выборок двумерного нормального распределения размером 20, 60 и 100 элементов, синим цветом обозначены элементы выборок, эллипсы построены согласно формуле (8), в этой формуле за константу из правой части взято значение $(2.5)^2 = (2.5\sigma_x)^2 = (2.5\sigma_y)^2$.

Рис. 1: Эллипсы рассеивания для выборок нормального распределения, ho = 0

Рис. 2: Эллипсы рассеивания для выборок нормального распределения, $\rho=0.5$

Рис. 3: Эллипсы рассеивания для выборок нормального распределения, $\rho=0.9$

4.3 Оценки коэффициентов линейной регрессии

4.3.1 Выборка без возмущений

• Критерий наименьших квадратов (12 - 13):

$$\hat{\beta}_0 \approx 1.903, \quad \hat{\beta}_1 \approx 2.037$$

• Критерий наименьших модулей (15 - 16):

$$\hat{\beta}_{0R} \approx 2.239, \quad \hat{\beta}_{1R} \approx 1.612$$

На рисунке 4 представлена выборка без возмущений, график теоретической модели, а также графики, соответствующие линейным регрессиям с коэффициентами, вычисленными согласно методам наименьших квадратов и наименьших модулей.

Рис. 4: Выборка без возмущений

4.3.2 Выборка с возмущениями

• Критерий наименьших квадратов (12 - 13):

$$\hat{\beta}_0 \approx 2.046, \quad \hat{\beta}_1 \approx 0.608$$

• Критерий наименьших модулей (15 - 16):

$$\hat{\beta}_{0R} \approx 2.279, \quad \hat{\beta}_{1R} \approx 1.209$$

На рисунке 5 представлена выборка с возмущениями, график теоретической модели, а также графики, соответствующие линейным регрессиям с коэффициентами, вычисленными согласно методам наименьших квадратов и наименьших модулей.

Рис. 5: Выборка с возмущениями

Заключение

В ходе выполнения лабораторной работы были построены выборки двумерного нормального распределения с коэффициентами корреляции $\rho=0,0.5,0.9$ и выборки смеси нормальных распределений. Исходя из оценок выборочных коэффициентов корреляции можно сделать вывод, что квадрантный выборочный коэффициент имеет наибольшее отклонение от теоретического значения коэффициента корреляции, но с увеличением мощности выборки все выборочные коэффициенты корреляции стремятся к своим теоретическим значениям.

Из графиков двумерных нормальных распределений видно, что чем больше коэффициент корреляции, тем больше сужается эллипс рассеивания, в пределе вырождаясь в прямую, при модуле коэффициента корреляции равном единице.

Также в ходе выполнения работы были построены линейные регрессии для нормально распределенной выборки. Коэффициенты регрессии вычислялись с помощью методов наименьших квадратов и наименьших модулей.

Исходя из полученных результатов можно сделать вывод о том, что метод наименьших квадратов позволяет более точно определить коэффициенты регрессии, однако этот метод не устойчив к возмущениям в выборке. С другой стороны метод наименьших модулей даёт менее точную оценку, однако, являясь робастным, он гораздо устойчивее к возмущениям и хорошо подходит для работы с выборками, имеющими сильные отклонения в отдельных точках.

Список литературы

[1] Теоретическое приложение к лабораторным работам №5-8 по дисциплине «Математическая статистика». – СПб.: СПбПУ, 2020. – 22 с

Приложение А. Репозиторий с исходным кодом

Ссылка на репозиторий GitHub с исходным кодом: https://github.com/pchn/TeorVer