2. Gauss-Jordan Elimination

In this module we develop a algorithm for solving a general linear system of equations $\mathbf{ax} = \mathbf{B}$ consisting of n equations and n unknowns where it is assumed that the system has a unique solution. The method is attributed Johann Carl Friedrich Gauss (1777-1855) and Wilhelm Jordan (1842 to 1899). The following theorem states the sufficient conditions for the existence and uniqueness of solutions of a linear system $\mathbf{ax} = \mathbf{B}$.

Theorem (Unique Solutions) Assume that $\mathbf{1}$ is an $\mathbf{n} \times \mathbf{n}$ matrix. The following statements are equivalent.

- (i) Given any $n \times 1$ matrix **B**, the linear system $\mathbf{A} \mathbf{X} = \mathbf{B}$ has a unique solution.
- (ii) The matrix \mathbf{A} is nonsingular (i.e., \mathbf{A}^{-1} exists).
- (iii) The system of equations $\mathbf{A}\mathbf{x} = \mathbf{0}$ has the unique solution $\mathbf{x} = \mathbf{0}$.
- (iv) The determinant of \mathbf{A} is nonzero, i.e. $\det(\mathbf{A}) \neq 0$.

It is convenient to store all the coefficients of the linear system $\mathbf{A}\mathbf{x} = \mathbf{B}$ in one array of dimension $\mathbf{n} \times \mathbf{n} + 1$. The coefficients of \mathbf{B} are stored in column $\mathbf{n} + 1$ of the array (i.e. $\mathbf{a}_{\mathbf{i}, \mathbf{n} + 1} = \mathbf{b}_{\mathbf{i}}$). Row \mathbf{k} contains all the coefficients necessary to represent the $\mathbf{i}^{\mathbf{t}\mathbf{h}}$ equation in the linear system. The augmented matrix is denoted $\mathbf{M} = [\mathbf{A} \mid \mathbf{B}]$ and the linear system is represented as follows:

$$\mathbf{M} = \begin{pmatrix} \mathbf{a_{1,1}} & \mathbf{a_{1,2}} & \mathbf{a_{1,3}} & \dots & \mathbf{a_{1,n}} & \mathbf{b_{1}} \\ \mathbf{a_{2,1}} & \mathbf{a_{2,2}} & \mathbf{a_{2,3}} & \dots & \mathbf{a_{2,n}} & \mathbf{b_{2}} \\ \mathbf{a_{3,1}} & \mathbf{a_{3,2}} & \mathbf{a_{3,3}} & \dots & \mathbf{a_{3,n}} & \mathbf{b_{3}} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ \mathbf{a_{n,1}} & \mathbf{a_{n,2}} & \mathbf{a_{n,3}} & \dots & \mathbf{a_{n,n}} & \mathbf{b_{n}} \end{pmatrix}$$

The system $\mathbf{A}\mathbf{X} = \mathbf{B}$, with augmented matrix \mathbf{M} , can be solved by performing row operations on \mathbf{M} . The variables are placeholders for the coefficients and cam be omitted until the end of the computation.

Theorem (Elementary Row Operations). The following operations applied to the augmented matrix **M** yield an equivalent linear system.

- (i) Interchanges: The order of two rows can be interchanged.
- (ii) Scaling: Multiplying a row by a nonzero constant.

(iii) Replacement: Row r can be replaced by the sum of that row and a nonzero multiple of any other row;

that is:
$$row_r = row_r - c row_p$$
.

It is common practice to implement (iii) by replacing a row with the difference of that row and a multiple of another row.

Definition (Pivot Element). The number $a_{p,p}$ in the coefficient matrix **1** that is used to eliminate $a_{i,p}$ where i = p + 1, p + 2, ..., n, is called the p^{th} pivot element, and the p^{th} row is called the pivot row.

Theorem (Gaussian Elimination with Back Substitution). Assume that \mathbf{l} is an $\mathbf{n} \times \mathbf{n}$ nonsingular matrix. There exists a unique system $\mathbf{u}\mathbf{x} = \mathbf{Y}$ that is equivalent to the given system $\mathbf{l}\mathbf{x} = \mathbf{B}$, where \mathbf{l} is an upper-triangular matrix with $\mathbf{u}_{\mathbf{i},\mathbf{i}} \neq \mathbf{0}$ for $\mathbf{i} = 1, 2, \ldots, \mathbf{n}$. After \mathbf{l} and \mathbf{l} are constructed, back substitution can be used to solve $\mathbf{u}\mathbf{x} = \mathbf{l}$ for \mathbf{x} .

Example 1. Use the Gauss-Jordan elimination method to solve the linear system

$$\begin{pmatrix} 1 & 2 & 3 \\ -3 & 1 & 5 \\ 2 & 4 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}.$$
Solution 1.

Example 2.Use the Gauss-Jordan subroutine to solve $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & -1 \\ -3 & 1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}.$ Solution 2.

Example 1. Use the Gauss-Jordan elimination method to solve the linear system

$$\begin{pmatrix} 1 & 2 & 3 \\ -3 & 1 & 5 \\ 2 & 4 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}.$$

Solution 1. First form the augmented matrix $\mathbf{M} = [\mathbf{A}, \mathbf{B}]$.

$$\begin{pmatrix}
1 & 2 & 3 & 3 \\
-3 & 1 & 5 & -2 \\
2 & 4 & -1 & -1
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 3 \\ 0 & 7 & 14 & 7 \\ 0 & 0 & -7 & -7 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & -7 & -7
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{pmatrix}$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

Example 2. Use the Gauss-Jordan subroutine to solve $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & -1 \\ -3 & 1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}.$ Solution 2.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & -1 \\ -3 & 1 & 5 \end{pmatrix}$$

$$B = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 1 & 2 & 3 & 3 \\ 2 & 4 & -1 & -1 \\ -3 & 1 & 5 & -2 \end{pmatrix}$$

Then try to perform Gauss-Jordan elimination.

$$\begin{pmatrix}
1 & 2 & 3 & 3 \\
2 & 4 & -1 & -1 \\
-3 & 1 & 5 & -2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 3 \\
0 & 0 & -7 & -7 \\
0 & 7 & 14 & 7
\end{pmatrix}$$

.....Indeterminate expression 0 encountered.

Gauss-Jordan elimination does not work without row interchanges.