Colles - Semaine 3

Planche 1

Exercice

Pour tout entier $n \geqslant 1$, on définit la fonction polynomiale P_n sur $\mathbb R$ par :

$$P_n(x) = (x-1)(2-x) + \frac{x^3}{n}$$

- 1. Montrer que pour n suffisamment grand, P_n admet deux extrema locaux, aux points $r_{1,n} \leqslant r_{2,n}$ avec $r_{1,n} \underset{n \to +\infty}{\longrightarrow} \ell$ et $r_{2,n} \underset{n \to +\infty}{\sim} \gamma n$ pour deux réels ℓ et γ à préciser.
- 2. Montrer que pour n suffisamment grand, P_n admet trois racines distinctes notées $a_n < b_n < c_n$.
- 3. Montrer que la suite (a_n) ainsi définie est croissante, de limite α à préciser.
- 4. En déduire le développement limité :

$$a_n = \alpha + \frac{\beta}{n} + o_{n \to +\infty} \left(\frac{1}{n}\right)$$

pour un réel β à préciser.

Planche 2

Exercice

Soit f la fonction définie sur $[0, +\infty[$ par :

$$f: x \mapsto \begin{cases} x^{1+\frac{1}{x}} = e^{(1+\frac{1}{x})\ln(x)} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

On désigne par \mathcal{C} la courbe représentative de f dans le plan muni d'un repère orthonormé.

- 1. a) Montrer que f est continue en 0.
 - b) Étudier la dérivabilité de f en 0.
- 2. a) Montrer que, pour tout réel x strictement positif : $\ln(x) \leq x + 1$.
 - b) Calculer f'(x) pour x > 0 et déterminer son signe. Préciser le sens de variation de f.
- 3. a) Déterminer la limite de f en $+\infty$.
 - b) Déterminer un équivalent de f(x) x en $+\infty$. En déduire la nature de la branche infinie de \mathcal{C} en $+\infty$.
- 4. On définit la suite (u_n) par :

$$\begin{cases} u_0 > 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

- a) Montrer que la suite (u_n) est bien définie et : $\forall n \in \mathbb{N}, u_n > 0$.
- **b)** Que dire de la suite (u_n) si $u_0 = 0$?
- c) On se place maintenant dans le cas : $u_0 = \frac{1}{2}$.
 - (i) Déterminer la monotonie de (u_n) .
 - (ii) Montrer que la suite (u_n) converge et déterminer sa limite.

Planche 3

Exercice

Soient a>0 et $\beta>1$. On considère une fonction continue $f:[0,1]\to [0,1]$ qui peut s'écrire comme suit au voisinage de 0:

$$f(x) = x - a x^{\beta} + \underset{x \to 0}{o} (x^{\beta})$$

On fixe $u_0 \in [0,1]$, et on considère la suite $(u_n)_{n \geqslant 0}$ définie par : $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

- 1. Que vaut f(0)? Montrer qu'il existe $\eta > 0$ tel que f(x) < x sur $]0, \eta]$. En déduire que si u_0 est suffisamment petit, (u_n) converge vers 0. Dans la suite, on suppose que $u_n \xrightarrow[n \to +\infty]{} 0$.
- 2. Soit $\gamma \in \mathbb{R}$. Donner un équivalent de $(f(x))^{\gamma} x^{\gamma}$ lorsque x tend vers 0. En déduire une valeur de γ pour laquelle la suite $u_{n+1}^{\gamma} u_n^{\gamma}$ converge vers un réel strictement positif.
- 3. Soit $(v_n)_{n\geqslant 1}$ une suite de nombres réels tels que $v_{n+1}-v_n \underset{n\to +\infty}{\longrightarrow} \ell$, où $\ell\in\mathbb{R}$. Montrer que $\frac{v_n}{n}\underset{n\to +\infty}{\longrightarrow} \ell$.
- 4. En déduire un équivalente de (u_n) .