Izolované singulárne body

Oľga Stašová

Ústav informatiky a matematiky Fakulta elektrotechniky a informatiky Slovenská technická univerzita

letný semester 2023/2024

Diferencovateľnosť a analytickosť v bode

- a) Funkcia f je **diferencovateľná** v bode $a \in A$, ak v tomto bode existuje derivácia, t.j. f'(a).
- b) Funkcia f je **analytická** v bode $a \in A$, ak existuje okolie $O(a) \subset A$ také, že v každom bode $z \in O(a)$ existuje f'(z).

- Analytickosť funkcie v bode je silnejšia vlastnosť ako diferencovateľnosť funkcie v bode.
 Napr. funkcia môže byť diferencovateľná len v jedinom bode a, ale analytická v ňom nie je, pretože jej derivácia neexistuje v žiadnom inom bode ľubovoľne malého okolia O(a).
- Funkcia nie je analytická v bodoch jednorozmernej množiny (keď že okolie v C je dvojrozmerný kruh.)
 Napr. funkcia môže byť diferencovateľná v izolovaných bodoch alebo na úsečke, priamke, ale na týchto množinách nie je analytická.

Regulárne a singulárne body funkcie

Analytické (holomorfné) funkcie

- Diferencovateľnosť a analytickosť funkcie v oblasti sú zhodné pojmy.
- Funkcia je analytická (a aj diferencovateľná) v oblasti M, ak f'(z) existuje v každom bode $z \in M$,

Definícia

- Body komplexnej roviny C, v ktorých funkcia je analytická nazývame regulárne body funkcie.
- Body komplexnej roviny C, v ktorých funkcia nie je analytická nazývame singulárne body (alebo singularity) funkcie.
 - Singulárne body sú aj body, v ktorých funkcia nie je definovaná (keďže v nich neexistuje derivácia funkcie).

Izolovaný singulárny bod

prstencové okolie:
$$O_r^{\circ}(a) = \{z \in \mathbf{C}, 0 < |z - a| < r\}$$

Nech f je analytická funkcia definovaná v prstencovom okolí bodu $a\in \overline{C}$, (a nepatrí D(f)). Bod a nazývame izolovaný singulárny bod funkcie f.

Funkciu f(z) môžme rozvinúť v bode z=a na $O_r^{\circ}(a)$ do Laurentovho radu:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n.$$

Typy izolovaných singulárnych bodov

Nech $z = a \in \mathbf{C}$ je izolovaný singulárny bod funkcie $f: O_r^{\circ}(a) \longrightarrow \mathbf{C}$.

- Ak $\lim_{z\longrightarrow a}f(z)=A$, kde A je konečné číslo, potom bod z=a nazývame odstrániteľný singulárny bod.
- Ak $\lim_{z \longrightarrow a} f(z) = \infty$, potom bod z = a nazývame pól.
- Ak $\lim_{z \longrightarrow a} f(z)$ neexistuje, potom bod z=a nazývame podstatne singulárny bod.

Odstrániteľný singulárny bod

Nech $z = a \in \mathbf{C}$ je izolovaný singulárny bod funkcie $f: O_r^{\circ}(a) \longrightarrow \mathbf{C}$.

• Ak $\lim_{z \longrightarrow a} f(z) = A$, kde A je konečné číslo, potom bod z = a nazývame odstrániteľný singulárny bod.

Príklad

Funkcia
$$f: \mathbf{C} \setminus \{0\} \longrightarrow \mathbf{C}, \ f(z) = \frac{\sin z}{z}$$
 má odstrániteľný singulárny bod v bode $z=0$, pretože
$$\sin z$$

$$\lim_{z \to 0} \frac{\sin z}{z} = 1.$$

Pól

Nech $z=a\in \mathbf{C}$ je izolovaný singulárny bod funkcie $f:O_r^\circ(a)\longrightarrow \mathbf{C}.$

• Ak $\lim_{z \longrightarrow a} f(z) = \infty$, potom bod z = a nazývame pól.

Príklad

Funkcia
$$f: \mathbf{C} \setminus \{5i\} \longrightarrow \mathbf{C}, f(z) = \frac{1}{z - 5i}$$
 má pól v bode $z = 5i$, pretože

$$\lim_{z \longrightarrow 5i} \frac{1}{z - 5i} = \infty.$$

Podstatne singulárny bod

Nech $z = a \in \mathbf{C}$ je izolovaný singulárny bod funkcie $f: O_r^{\circ}(a) \longrightarrow \mathbf{C}$.

• Ak $\lim_{z \longrightarrow a} f(z)$ neexistuje, potom bod z=a nazývame podstatne singulárny bod.

Príklad $\frac{1}{\text{Funkcia } f: \mathbf{C} \setminus \{0\} \longrightarrow \mathbf{C}, \ f(z) = e^{\frac{1}{z}} \text{ má podstatne singulárny bod v bode } z = 0, \ \text{pretože ak } z \in \mathbf{R} \text{ platí}$

$$\lim_{z\longrightarrow 0^+} e^{\dfrac{1}{z}} = e^{\infty} = \infty, \qquad \lim_{z\longrightarrow 0^-} e^{\dfrac{1}{z}} = e^{-\infty} = \dfrac{1}{e^{\infty}} = 0$$

a kedže limita zľava a limita sprava sú rôzne, tak

 $\lim_{z \to 0} e^{\frac{1}{z}} \frac{1}{neexistuje}.$

Hlavná a analytická časť Laurentovho radu

Definícia

Nech ..., $c_{-n},...,c_{-2},c_{-1},c_0,c_1,c_2,...,c_n,...,a$ sú komplexné čísla (niektoré z nich môžu byť aj nulové). Potom rad

$$\sum_{n=-\infty}^{\infty} c_n (z-a)^n = \sum_{n=-\infty}^{-1} c_n (z-a)^n + \sum_{n=0}^{\infty} c_n (z-a)^n$$

nazývame Laurentov rad v bode a.

$$Rad \sum_{n=-\infty}^{-1} c_n (z-a)^n$$

sa nazýva hlavná časť Laurentovho radu.

$$Rad \sum_{n=0}^{\infty} c_n (z-a)^n$$

sa nazýva analytická (regulárna) časť Laurentovho radu.

Laurentov rad a odstrániteľný singulárny bod

Veta

Nech f(z) je analytická v prstencovom okolí $O_r^\circ(a)$ bodu z=a. Bod z=a je odstrániteľný singulárny bod funkcie f vtedy a len vtedy ak jej Laurentov rad na $O_r^\circ(a)$ má tvar

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n.$$

To znamená, že bod z=a je odstrániteľný singulárny bod funkcie f vtedy a len vtedy ak hlavná časť Laurentovho radu na $O_r^{\circ}(a)$ má 0 členov.

Pozn: Ak funkciu f(z), ktorá má v bode z=a odstrániteľný singulárny bod dodefinujeme v tomto bode hodnotou $f(a)=c_0$ potom táto funkcia bude analytická na $O_r(a)$.

Odstrániteľný singulárny bod

Príklad

Funkcia $f: \mathbf{C} \setminus \{0\} \longrightarrow \mathbf{C}, \ f(z) = \frac{\sin z}{z}$ má odstrániteľný singulárny bod v bode z=0.

Ak ju v tomto bode dodefinujeme pomocou $f(a)=c_0$ dostaneme analytickú funkciu

$$f: \mathbf{C} \longrightarrow \mathbf{C}, \ f(z) = \left\{ egin{array}{ll} rac{\sin z}{z} & pre & z
eq 0 \\ 1 & pre & z = 0. \end{array}
ight.$$

Tento typ singulárneho bodu sa nazýva odstrániteľný, pretože dodefinovaním funkcie ho vieme odstrániť - funkcia po dodefinovaní bude analytická na celej množine **C**.

Taylorove rady

TAYLOROV RAD

$$f(a) + \frac{f'(a)}{1!}(z-a) + \dots + \frac{f^{(n)}(a)}{n!}(z-a)^n + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^n$$

alebo

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \quad \forall z \in \mathbf{C},$$

$$\frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!}$$

 c_0 je koeficient pri z^0 .

 z^0 dostaneme pre n=0

keďže
$$c_n = \frac{(-1)^n}{(2n+1)!} \Rightarrow c_0 = \frac{(-1)^0}{(2\cdot 0+1)!} = 1.$$

Hlavná a analytická časť Laurentovho radu

Definícia

Nech ..., $c_{-n},...,c_{-2},c_{-1},c_0,c_1,c_2,...,c_n,...,a$ sú komplexné čísla (niektoré z nich môžu byť aj nulové). Potom rad

$$\sum_{n=-\infty}^{\infty} c_n (z-a)^n = \sum_{n=-\infty}^{-1} c_n (z-a)^n + \sum_{n=0}^{\infty} c_n (z-a)^n$$

nazývame Laurentov rad v bode a.

$$Rad \sum_{n=-\infty}^{-1} c_n (z-a)^n$$

sa nazýva hlavná časť Laurentovho radu.

$$Rad \sum_{n=0}^{\infty} c_n (z-a)^n$$

sa nazýva analytická (regulárna) časť Laurentovho radu.

Laurentov rad a typy izolovaných singulárnych bodov

Veta

Nech f(z) je analytická v prstencovom okolí $O_r^{\circ}(a)$ bodu z=a.

- Bod z=a je odstrániteľný singulárny bod funkcie f vtedy a len vtedy ak hlavná časť Laurentovho radu na $O_r^{\circ}(a)$ má 0 členov.
- Bod z=a je pól funkcie f vtedy a len vtedy ak hlavná časť Laurentovho radu na $O_r^{\circ}(a)$ má konečný počet členov.
- Bod z=a je podstatne singulárny bod funkcie f vtedy a len vtedy ak hlavná časť Laurentovho radu na $O_r^{\circ}(a)$ má nekonečne veľa členov.

Pól m-tého rádu

Veta

Nech f(z) je analytická v prstencovom okolí $O_r^{\circ}(a)$ bodu z=a. Bod z=a je pól m-tého rádu funkcie f vtedy a len vtedy ak

$$\lim_{z \to a} (z - a)^m f(z) \neq 0.$$

To znamená, že ak máme funkciu f(z) analytickú v prstencovom okolí $O_r^{\circ}(a)$ bodu z=a v tvare

$$f(z) = \frac{h(z)}{(z-a)^m}, \quad h(a) \neq 0,$$

$$tak \quad \lim_{z \to a} (z - a)^m f(z) = \lim_{z \to a} (z - a)^m \frac{h(z)}{(z - a)^m} = \lim_{z \to a} h(z) = h(a).$$

Takže bod z=a je pól m-tého rádu takýchto funkcií f(z).

Nulový bod m-tého rádu - príklad

Definícia

Nech f(z) je analytická funkcia v oblasti D ($f(z) \neq 0$).

Nech pre bod $a \in D$ platí

$$f(a) = f'(a) = f''(a) = \dots = f^{(m-1)}(a) = 0$$
 a $f^{(m)}(a) \neq 0$.

Potom hovoríme, že bod z=a je nulový bod m-tého rádu funkcie f(z). Ak m=1 hovoríme, že bod z=a je jednoduchý nulový bod funkcie f(z).

Príklad

Nájdite nulové body funkcie $f(z) = \cos z$ a určte ich druh.

Nulový bod m-tého rádu - príklad

Definícia

Nech f(z) je analytická funkcia v oblasti D $(f(z) \neq 0)$.

Nech pre bod $a \in D$ platí

$$f(a) = f'(a) = f''(a) = \dots = f^{(m-1)}(a) = 0$$
 a $f^{(m)}(a) \neq 0$.

Potom hovoríme, že bod z=a je nulový bod m-tého rádu funkcie f(z). Ak m=1 hovoríme, že bod z=a je jednoduchý nulový bod funkcie f(z).

Príklad

Nájdite nulové body funkcie $f(z) = \cos z$ a určte ich druh.

Riešenie:

$$z_k = (2k+1)\frac{\pi}{2}, \quad k = 0, \pm 1, \pm 2, \dots$$

$$\cos' z|_{z_k} = -\sin\left((2k+1)\frac{\pi}{2}\right) = (-1)^{k+1} \neq 0$$

a teda každý nulový bod z_k je jednoduchý t.j. 1-rádu.

Nulový bod m-tého rádu

Definícia

Nech f(z) je analytická funkcia v oblasti D ($f(z) \neq 0$).

Nech pre bod $a \in D$ platí

$$f(a) = f'(a) = f''(a) = \dots = f^{(m-1)}(a) = 0$$
 a $f^{(m)}(a) \neq 0$.

Potom hovoríme, že bod z=a je nulový bod m-tého rádu funkcie f(z). Ak m=1 hovoríme, že bod z=a je jednoduchý nulový bod funkcie f(z).

Nech bod z=a je nulový bod m-tého rádu analytickej funkcie f(z). Potom platí

$$c_0 = f(a) = 0, c_1 = f'(a) = 0, ..., c_{m-1} = \frac{f^{(m-1)}(a)}{(m-1)!} = 0, c_m = \frac{f^{(m)}(a)}{m!} \neq 0$$

a Taylorov rozvoj funkcie f(z) v bode z=a má ťvar

$$f(z) = c_m (z - a)^m + c_{m+1} (z - a)^{m+1} + \cdots$$

$$= (z - a)^m [c_m + c_{m+1} (z - a) + \cdots] - (z - a)^m + \cdots$$

 $= (z - a)^m [c_m + c_{m+1}(z - a) + \cdots] = (z - a)^m \Phi(z), \, kde \, \Phi(a) \neq 0.$

Dostali sme iný **Taylorov rozvoj** a inú **analytick**ú funkciu $\Phi(z)$

Pól m-tého rádu

Veta

Nech bod z=a je nulový bod m-tého rádu funkcie g(z) (t.j. $g(z)=(z-a)^m\Phi(z), \ \Phi(a)\neq 0$ a Φ je analytická funkcia definovaná na nejakom okoli $O_r(a)$ bodu z=a). Potom bod z=a je pól m-tého rádu funkcie $f=\frac{h}{g}$, kde h je analytická funkcia definovaná na $O_r(a)$ a $h(a)\neq 0$.

Pozn. V príkladoch sa často vyskytuje $\Phi(z) = 1$.

Pozn. 2 Ak m=1 hovoríme, že bod z=a je jednoduchý pól.

Pól m-tého rádu - príklad

Veta

Nech bod
$$z=a$$
 je nulový bod m-tého rádu funkcie $g(z)$ (t.j. $g(z)=(z-a)^m\Phi(z), \Phi(a)\neq 0$

a Φ je analytická funkcia definovaná na nejakom okoli $O_r(a)$ bodu z=a).

Potom bod z=a je pól m-tého rádu funkcie $f=\frac{h}{g}$, kde h je analytická funkcia definovaná na $O_r(a)$ a $h(a)\neq 0$.

Príklad

$$f: \mathbf{C} \setminus \{-1, 2i\} \longrightarrow \mathbf{C}, f(z) = \frac{1}{(z-2i)^2(z+1)}$$

Nájdite singulárne body a určte ich typ.

Riešenie: Pretože funkcia $g(z) = (z - 2i)^2(z - (-1))$ má

- ullet v bode z=2i nulový bod 2-rádu, tak bod z=2i je pól 2-rádu,
- v bode z=-1 jednoduchý nulový bod, tak bod z=-1 je jednoduchý pól.

Podstatne singulárny bod - príklad

Veta

Nech f(z) je analytická v prstencovom okolí $O_r^{\circ}(a)$ bodu z=a.

• Bod z=a je podstatne singulárny bod funkcie f vtedy a len vtedy ak hlavná časť Laurentovho radu na $O_r^{\circ}(a)$ má nekonečne veľa členov.

Príklad

$$f: \mathbf{C} \setminus \{0\} \longrightarrow \mathbf{C}, f(z) = e^{\frac{1}{z}}$$

Určte typ singulárneho bodu $z = 0$.

Riešenie:

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad \forall z \in \mathbf{C} \qquad Pozn. \left(z^{-1}\right)^n = z^{-1 \cdot n} = z^{-n}$$

$$f(z) = e^{\frac{1}{z}} = e^{z^{-1}} = \sum_{n=0}^{\infty} \frac{z^{-n}}{n!}, \quad \forall z \in \mathbf{C} \setminus \{0\} = P(0, 0, \infty), \ (|z| > 0),$$

teda hlavná časť Laurentovho radu má nekonečne veľa členov a to implikuje fakt, že bod z=0 je podstatne singulárny bod,

Vzorce

$$(z^{-1})^n = z^{-1 \cdot n} = z^{-n}$$

$$(z^a)^b = z^{a \cdot b} = z^{b \cdot a} = (z^b)^a$$
$$z^{a+b} = z^a z^b$$

Ďakujem za pozornosť.