TD 23: Fonctions à plusieurs variables

Connaître son cours:

- Dessinez le domaine de définition de $f := (x, y) \mapsto x \ln(x + y) y\sqrt{y x}$..
- Soit $f: \mathbb{R}^2 \to \mathbb{R}$, donner la signification de : f admet des dérivées partielles en un point $(x_0, y_0) \in \mathbb{R}^2$. Donner les dérivées partielles de la fonction $f := (x, y) \mapsto xy + y^2 + \cos(xy)$.
- Calculez le gradient de $f := (x, y) \mapsto xe^y 3yx^2$ en (1, 1).
- Soit f une fonction à deux variables sur U un ouvert de \mathbb{R}^2 , admettant des dérivées partielles en tout point de U. Rappeler la définition d'un point critique pour la fonction f.

Donner les points critiques de la fonction $f := (x, y) \mapsto x^3 - 3x + y^2$.

Continuité et dérivées partielles :

Exercice 1. (*)

Étudier les limites en (0,0) des fonctions suivantes :

1.
$$f(x,y) = \frac{x^3}{y}$$

3.
$$f(x,y) = \frac{1-\cos(xy)}{xy^2}$$

2.
$$f(x,y) = \frac{x+2y}{x^2-y^2}$$

1.
$$f(x,y) = \frac{x^3}{y}$$
 3. $f(x,y) = \frac{1-\cos(xy)}{xy^2}$
2. $f(x,y) = \frac{x+2y}{x^2-y^2}$ 4. $f(x,y) = \frac{\sin xy}{\sqrt{x^2+y^2}}$

Exercice 2. (*)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et $F: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par

$$F(x,y) = \frac{f(x^2 + y^2) - f(0)}{x^2 + y^2}$$

 $\lim_{(x,y)\to(0,0)} F(x,y).$ Déterminer

Exercice 3. (*)

Soit A une partie convexe non vide de \mathbb{R}^2 et $f: A \to \mathbb{R}$ une fonction continue.

Soit a et b deux points de A et y un réel tels que

$$f(a) \le y \le f(b)$$
.

Montrer qu'il existe $x \in A$ tel que f(x) = y.

Exercice 4. (*)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{1}{2}x^2 + y^2 - 1 & \text{si } x^2 + y^2 > 1\\ -\frac{1}{2}x^2 & \text{sinon} \end{cases}$$

Montrer que f est continue.

Exercice 5. (**)

Pour $(x,y) \in \mathbb{R}^2$ avec $(x,y) \neq (0,0)$ on pose

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$

- 1. Par quelle valeur peut-on prolonger f par continuité en (0,0)?
 - On note encore f cette fonction définie par prolongement.
- 2. Calculer les dérivées partielles de f en $(x,y) \neq (0,0).$
- 3. Calculer les dérivées partielles de f en (0,0).
- 4. Montrer que la fonction f est de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Groupe IPESUP Année 2022-2023

Exercice 6. (*)

Justifier l'existence des dérivées partielles des fonctions suivantes et les calculer. En déduire respectivement un développement limité à l'ordre 1 en $(0; \frac{\pi}{3})$, (0,0) et $(\sqrt{3}, \sqrt{2})$.

- 1. $f(x,y) = e^x \cos y$.
- 2. $f(x,y) = (x^2 + y^2)\cos(xy)$.
- 3. $f(x,y) = \sqrt{1 + x^2y^2}$.

Exercice 7. (**)

(Continue sans une des dérivées partielles)

On définit $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ par

$$f(x,y) = \frac{x^2}{(x^2 + y^2)^{3/4}}.$$

Justifier que l'on peut prolonger f en une fonction continue sur \mathbb{R}^2 . Étudier l'existence de dérivées partielles en (0,0) pour ce prolongement.

Exercice 8. (**)

(Des dérivées partielles sans la continuité)

Pour les fonctions suivantes, démontrer qu'elles admettent une dérivée suivant tout vecteur en (0,0) sans pour autant y être continue.

1.
$$f(x,y) = \begin{cases} y^2 \ln|x| & \text{si } x \neq 0 \\ 0 & \text{sinon.} \end{cases}$$

2.
$$g(x,y) = \begin{cases} \frac{x^2y}{x^4+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

Exercice 9. (**)

Les fonctions suivantes, définies sur \mathbb{R}^2 , sont-elles de classe C^1 ?

1.
$$f(x,y) = \frac{x^2y^3}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$
et $f(0,0) = 0$;

2.
$$f(x,y) = x^2 y^2 \ln(x^2 + y^2)$$

si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

3.
$$f(x,y) = x \frac{x^2 - y^2}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$;

4.
$$f(x,y) = e^{-\frac{1}{x^2 + y^2}}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

Exercice 10. (***)

Soit \mathbb{R}^2 munit de la base canonique ainsi que du produit scalaire usuel $\langle \cdot, \cdot \rangle$. Soit u un endomorphisme symétrique de \mathbb{R}^2 .

- 1. Montrer que l'application $f: x \mapsto \langle u(x), x \rangle$ est de classe C^1 sur \mathbb{R}^2 . Donner un développement limiter à l'ordre 1 en $a \in \mathbb{R}^2$.
- 2. Soit $a \neq (0,0)$ donner $\nabla F(a)$ pour la fonction $F: x \in \mathbb{R}^2 \setminus (0,0) \mapsto \frac{\langle u(x), x \rangle}{\langle x, x \rangle}$.
- 3. Montrer que $\nabla F(a) = 0$ si et seulement si il existe $\lambda \in \mathbb{R}$ telle que $u(a) = \lambda a$.

Formule de la chaîne

Exercice 11. (*)

Soit f une application de classe C^1 sur \mathbb{R}^2 à valeur da \mathbb{R} . Calculer les dérivées (éventuellement partielles) des fonctions suivantes :

- 1. g(x,y) = f(y,x).
- 2. g(x) = f(x, x).
- 3. g(x,y) = f(y, f(x,x))
- 4. q(x) = f(x, f(x, x)).

Exercice 12. (**)

Soit f une application de classe C^2 sur \mathbb{R}^2 à valeur da \mathbb{R} et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par $g(u, v) = f(uv, u^2 + v^2)$

- 1. Exprimer les dérivées partielles de g en fonction de celles de f.
- 2. Exprimer les dérivées partielles d'ordre 2 de g en fonction de celles de f.

Exercice 13. (**)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par $g(r,\theta) = f(r\cos(\theta), r\sin(\theta))$.

Soit $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ et $(r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$ tels que $x = r \cos(\theta)$ et $y = r \sin(\theta)$.

Exprimer

$$\frac{\partial f}{\partial x}(x,y)$$
 et $\frac{\partial f}{\partial y}(x,y)$ avec $\frac{\partial g}{\partial r}(r,\theta)$ et $\frac{\partial g}{\partial \theta}(r,\theta)$.

Extrema:

Exercice 14. (*)

On pose

$$f(x,y) = x^2 + y^2 + xy + 1$$

et

$$g(x,y) = x^2 + y^2 + 4xy - 2$$

- 1. Déterminer les points critiques de f, de g.
- 2. En reconnaissant le début du développement d'un carré, étudier les extrema locaux de f.
- 3. En étudiant les valeurs de g sur deux droites vectorielles bien choisies, étudier les extrema locaux de g.

Exercice 15. (**)

Déterminer les extrema locaux des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ suivantes :

1.
$$f(x,y) = x^2 + 2y^2 - 2xy - 2y + 1$$

2.
$$f(x,y) = x^3 + y^3$$

3.
$$f(x,y) = (x-y)^2 + (x+y)^3$$

Exercice 16. (**)

Calculer

$$\inf_{x,y>0} \left(\frac{1}{x} + \frac{1}{y} + xy \right).$$

Équations de dérivées partielles :

Exercice 17. (*)

Déterminer toutes les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 solutions des systèmes suivants :

$$\mathbf{1}. \left\{ \begin{array}{lll} \frac{\partial f}{\partial x} &=& xy^2 \\ \frac{\partial f}{\partial y} &=& yx^2. \end{array} \right. \quad \mathbf{2}. \left\{ \begin{array}{lll} \frac{\partial f}{\partial x} &=& e^x y \\ \frac{\partial f}{\partial y} &=& e^x + 2y. \end{array} \right.$$

Exercice 19. (**) (Équation des ondes)

Soit $c \neq 0$. Chercher les solutions de classe C^2 de l'équation aux dérivées partielles suivantes

(E):
$$c^2 \frac{\partial^2 f}{\partial x^2}(x,t) = \frac{\partial^2 f}{\partial t^2}(x,t),$$

à l'aide d'un changement de variables de la forme $u=x+at,\,v=x+bt.$

Exercice 18. (**)

Déterminer les fonctions $f:\mathbb{R}^2 \to \mathbb{R}$ de classe C^1 vérifiant l'équation aux dérivées partielles

$$(E)$$
: $\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = f(x,y).$

On opérera le changement de variables de la forme

$$\begin{cases} u = x + y \\ v = x - y \end{cases}$$

Exercice 20. (***)

Chercher toutes les fonctions f de classe C^1 sur \mathbb{R}^2 vérifiant

$$\frac{\partial f}{\partial x}(x,y) - 3\frac{\partial f}{\partial y}(x,y) = 0.$$

(penser à un changement de variables linéaire à l'aide d'une matrice inversible)