Aufgabenzettel 05

Gruppe 01

02.06.2020

Aufgabe 12 Die große Variogrammmodellierung

12 a)

Laden Sie das Paket gstat und plotten Sie die Variogrammwolke für die austauschbaren Ca-Ionen. Beschreiben Sie in ein, zwei Sätzen die Grundstruktur des Plots und erklären Sie ebenso präzise das Zustandekommen vereinzelter vertikaler Streifen, z.B. bei 300, 600 oder 750m.

```
#install.packages("gstat")
#install.packages("sp")
library(sp)
library(gstat)
# # Methode 1
# SPDF1 <- ljz
# coordinate <- SpatialPoints(SPDF1[c("EAST", "NORTH")])</pre>
# coordRefSys <- CRS("+init=epsq:32650")</pre>
# SPDF1 <- SpatialPointsDataFrame(coords = coordinate,
                                   data = ljz,
                                   proj4string = coordRefSys # funktioniert nicht? Warum?
#
# proj4string(SPDF1) <- CRS("+init=epsg:32650")</pre>
# spplot(obj = SPDF1, zcol= 7, cex = sqrt(SPDF1$Ca_exch)/10)
#Methode 2
SPDF2 <- ljz
coordinates(SPDF2) <- ~ EAST+NORTH</pre>
proj4string(SPDF2) <- CRS("+init=epsg:32650")</pre>
spplot(obj = SPDF2, zcol= 5, cex = sqrt(SPDF2$Ca_exch)/10)
```


[1.235,3.315]
(3.315,5.395]
(5.395,7.475]
(7.475,9.555]
(9.555,11.63]

Die Häufung von Werten gleicher Abstände (150m)lässt sich durch die Beprobung in einem Raster erklären. Dadurch ergeben sich für die Abstände der Punktpaare Häufungen für Distanzen im Variogramm auf der x-Achse.

12 b)

Erstellen Sie nun ein omnidirektionales empirisches Variogramm für die austauschbaren Ca-Ionen. Ändern Sie dabei die Default-Einstellungen der Argumente cutoff und width, um ein aussagekräftiges Ergebnis zu erzielen. Beziehen Sie sich auf gültige 'Daumenregeln' und begründen Sie knapp ihre Parameterwahl. Plotten Sie ihr Variogramm; verwenden Sie Kreuze anstelle von Punkten.

starting httpd help server ... done

```
plot(var1,
    main= "Omnidirektionales empirisches Variogramm",
    pch=4,
    col="black"
    ,omnidirectional=TRUE
    )
```

Omnidirektionales empirisches Variogramm

Als Cutoff wurde 2202 Meter gewählt. Das entspricht ca. 50% der maximalen Distanz der Punktpaare (4404.327 m, vgl. Aufg. 11 a). Die Klassenweite wurde so gesetzt, dass 15 Klassen entstehen. Das entspricht den Default-Einstellungen.

12 c)

Schauen Sie sich das Objekt, welches durch die Methode variogram erzeugt wird, etwas genauer an. Welchen Klassen gehört es an? Wofür stehen die ersten drei Variablen des erzeugten Objekts?

str(var1)

```
## Classes 'gstatVariogram' and 'data.frame':
                                                15 obs. of 6 variables:
             : num
                    941 1605 2023 2120 2478 ...
##
   $ dist
                    82.6 208.2 358.8 507.4 650.4 ...
##
                    45 111 113 113 112 ...
   $ gamma : num
                    0 0 0 0 0 0 0 0 0 0 ...
   $ dir.hor: num
##
   $ dir.ver: num
                    0 0 0 0 0 0 0 0 0 0 ...
##
             : Factor w/ 1 level "var1": 1 1 1 1 1 1 1 1 1 1 ...
##
   - attr(*, "direct")='data.frame':
                                        1 obs. of 2 variables:
##
                  : Factor w/ 1 level "var1": 1
##
     ..$ is.direct: logi TRUE
   - attr(*, "boundaries")= num 0 147 294 440 587 ...
   - attr(*, "pseudo")= num 0
   - attr(*, "what") = chr "semivariance"
#?variogram()
```

Klassen: gstatVariogram' and 'data.frame'

Mitfilfe der ABfrage ?variogram():

np: die Anzahl der Punktpaare für die Schätzung. Im Fall von cloud=TRUE die (ID)Nummern des Punktepaares, das zu einer Variogrammwolkenschätzung beigetragen hat.

dist: durchschnittliche Entfernung aller Punktepaare die in die Schätzung der Klasse eingegangen sind. gamma: Wert der Varianz für die Stichprobenvariogramm-Schätzung.

12 d)

Fügen Sie ihrem empirischen Variogramm-Plot aus 12 b) ein passendes Modell hinzu. Erläutern Sie kurz, wie Sie vorgegangen sind. Hinweis: Mit dem Befehl show.vgms listen Sie die in gstat verfügbaren, autorisierten Modelle auf.

```
# ?vqm()
?fit.variogram()
#?vqm()
m1 \leftarrow vgm(psill = 110,
           model = "Sph",
            #model = c("Nug", "Exp", "Log", "Gau"),
           #range = ,
           \#kappa = 2,
           nugget = 30,
           cutoff= 2202)
v_fit <- fit.variogram(object = var1,</pre>
                    model = m1,
                     #fit.sills = TRUE,
                     #fit.ranges = TRUE,
                     fit.method = 0, #vgl. Gstat user's manual, p 42, tab. 4.2, <a href="http://www.gstat.org/gsta">http://www.gstat.org/gsta</a>
                     #fit.kappa = TRUE
                     )
v_fit
      model psill
                       range
## 1
        Nug
                30
                      0.0000
        Sph
               110 709.1216
plot(var1,
      v_fit,
      cutoff = 2202,
     ylim=c(0,175))
```



```
# # Verschiedene Anpassungen:
# # ?show.vgms
# # show.vgms()
# show.vgms(models = c("Exp", "Mat", "Gau"), nugget = 0.1)
# # show a set of Matern models with different smoothness:
# show.vgms(kappa.range = c(.1, .2, .5, 1, 2, 5, 10), max = 10)
# # show a set of Exponential class models with different shape parameter:
# show.vgms(kappa.range = c(.05, .1, .2, .5, 1, 1.5, 1.8, 1.9, 2), models = "Exc", max = 10)
# # show a set of models with different shape parameter of M. Stein's representation of the Matern:
# show.vgms(kappa.range = c(.01, .02, .05, .1, .2, .5, 1, 2, 5, 1000), models = "Ste", max = 2)
```

12 e)

Betrachten Sie noch einmal ihre Variogramme aus b) bzw. d) und interpretieren Sie diese. Argumentieren Sie auf Basis der Variogrammcharakteristik und des Nugget-To-Sill-Ratio nach Cambardella et al. (1994) (vgl. S.1508f.). Wie bewerten Sie das autokorrelative Verhalten der Zielvariablen im Raum?

plot(var_aniso)

Aus Cambardella et al. (1994): "If the linear model has a slope that is close to zero, then the total variance is equal to the nugget variance and the variables are described as spatially independent and completely random. [...] The nugget semivariance expressed as a percentage of the total semivariance enables comparison of the relative size of the nugget effect among soil properties [...]. We used this ratio to define distinct classes of spatial dependence for the soil variables as follows:

if the ratio was <25%, the variable was considered strongly spatially dependent; if the ratio was between 25 and 75 %, the variable was considered moderately spatially dependent; and if the ratio was >75%, the variable was considered weakly spatially dependent."

Bereits aus der Punktwolke lässt sich erkennen, dass die Gemessenen Werte unabhängig von ihrer räumlichen Lage sind, bzw. ähnliche Werte auch nah beieinander liegen.

semivarianz nugget: 30, semivarianz sill: 140

30/140

[1] 0.2142857

0.2142857 < 0.25

Das Verhältnis von Nugget zu Sill weißt auf eine starke räumliche Abhängigkeit hin. Punkte die weiter als ca. 600m von einander entfernt sind haben keine Ähnlichkeit zueinander, da hier der Sill-Wert erreicht wird. Somit haben in der Gridkartierung bis zum 4. benachbarten Punkt einen ähnlichen Wert der Austauschbaren Ca-Ionen. Eine Anisotropie, also ein Richtungstrend ist nicht erkennbar.

Literatur

Cambardella, C. A., T. B. Moorman, J. M. Novak, T. B. Parkin, D. L. Karlen, R. F. Turco, and A. E. Konopka. 1994. "Field-Scale Variability of Soil Properties in Central Iowa Soils." *Soil Science Society of America Journal* 58 (5): 1501–11. https://doi.org/10.2136/sssaj1994.03615995005800050033x.