The Consequences of Financial Center Conditions for Emerging Market Sovereigns

Samuele Centorrino

Lei Li

Gabriel Mihalache

 IMF^1

Stony Brook U

Ohio State

Spring 2024 Midwest Macro Meeting

 $^{^{1}}$ The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Financial Center Conditions

- Consequences of *tight financial conditions* in the US for EM sovereigns?
 - In the data: recessionary, increased yield spreads
 - Focus on the sovereign borrowing and default risk *channel*
- Less known about *predictable* changes in future conditions
 - E.g. the start of a US monetary tightening cycle

Financial Center Conditions

- Consequences of *tight financial conditions* in the US for EM sovereigns?
 - In the data: recessionary, increased yield spreads
 - Focus on the sovereign borrowing and default risk *channel*
- Less known about *predictable* changes in future conditions
 - E.g. the start of a US monetary tightening cycle
- What we do...
 - Isolate incentives for borrowing and default in a tractable model
 - Ambiguity in the response of spreads
 - 2 Statistical model of US yield curve and inflation with predictable dynamics
 - 3 Sovereign default model to confront the evidence
 - Domestic financial frictions

Impact of US Short-term Real Rates on EMs

Panel IV local projection of annualized quarterly GDP growth and EMBI+ Spread using 'naive' 3mo real Tbill yield, instrumented with Bauer Swanson (2013) identified monetary policy shocks, controlling for 4 lags of shock and outcome variables.

2013 "Taper Tantrum" Episode

2022– Tightening Cycle

Roadmap

- Intuition on borrowing and spreads in the simplest default model
- 2 A statistical model of the US yield curve
- 3 A quantitative sovereign default model with domestic financial frictions

Simple Analytics of Risk-free Rate Movements in a Tractable Default Model

A Tractable Default Model

$$V\left(b|r,r'\right) = \max_{b'} \left\{ \overline{y} - b + q(b'|r,r')b' + \beta \mathbf{E}_{\nu} \max \left\{ V\left(b'|r',r'\right), V^d - \nu \right\} \right\}$$
$$q(b'|r,r') = \frac{1}{1+r} \Pr \left[\nu \leq V^d - V(b'|r',r') \right]$$

- Linear utility
- One period debt
- Constant endowment \bar{y}
- Default value shock ν , with pdf ϕ and cdf Φ
- \blacksquare Risk-free rate r this period, r' in all future periods

Default Behavior

$$\nu^*(b'|r') \equiv V^d - V(b'|r',r')$$

(Default Threshold)

$$V(b|r,r') = \overline{y} - b + \max_{b'} \left\{ q(b'|r,r')b' + \beta \left[\int_{-\infty}^{v^*(\cdot)} \left(V^d - \nu \right) d\Phi + \int_{v^*(\cdot)}^{\infty} V(b'|r',r')d\Phi \right] \right\}$$

$$q(b'|r,r') = \frac{1 - \Phi \left[v^*(b'|r') \right]}{1 + r}$$

Borrowing Behavior

$$h\left(v^*(b'|\mathbf{r}')\right)b' = \underbrace{1 - \beta\left(1 + \mathbf{r}\right)}_{>0}$$

(Optimal Borrowing)

$$h(\nu) \equiv \frac{\phi(\nu)}{[1 - \Phi(\nu)]}$$

(Hazard)

A One Time Increase in *r*

Start at $r = r' = \bar{r}$ and consider a one time increase in today's r:

$$h\left(\nu^*(b'|\mathbf{r}')\right)b' = \underbrace{1 - \beta\left(1 + \mathbf{r}\right)}_{\downarrow}$$

(Optimal Borrowing)

A One Time Increase in *r*

Start at $r = r' = \bar{r}$ and consider a one time increase in today's r:

$$h\left(\nu^*(b'|\mathbf{r}')\right)b' = \underbrace{1 - \beta\left(1 + \mathbf{r}\right)}_{\downarrow}$$

(Optimal Borrowing)

- LHS \downarrow , must have RHS \downarrow , and therefore $b' \downarrow$
- r' unchanged, so $\nu^*(b'|r') \downarrow$
- Lower default probability and spread

Future Interest Rates

Start at $r = r' = \overline{r}$ and consider an increase in all future rates r':

$$h\left(\nu^*(b'|\mathbf{r'})\right)b' = \underbrace{1-\beta\left(1+\mathbf{r}\right)}_{\text{no change}}$$

$$\nu^*(b'|\mathbf{r'}) \equiv V^d - V(b'|\mathbf{r'},\mathbf{r'})$$

(Default Threshold)

Future Interest Rates

Start at $r = r' = \overline{r}$ and consider an increase in all future rates r':

$$h\left(\nu^*(b'|\mathbf{r'})\right)b' = \underbrace{1-\beta\left(1+r\right)}_{\text{no change}}$$

(Optimal Borrowing)

$$\nu^*(b'|\mathbf{r'}) \equiv V^d - V(b'|\mathbf{r'},\mathbf{r'})$$

(Default Threshold)

$$\frac{\partial}{\partial r'}V(b'|r',r') \stackrel{?}{<} 0$$

(Value of Market Access)

$$r' \uparrow \Rightarrow V(b'|r',r') \downarrow \Rightarrow v^*(b'|r') \uparrow \Rightarrow b' \downarrow$$

Spread and Borrowing Response to Risk-free Rate Shocks

- One Time: $r > \bar{r}$, $r' = \bar{r} = 2\%$
- Expected: $r = \bar{r}, r' > \bar{r}$
- Permanent: $r = r' > \bar{r}$

A Pricing Kernel with Predictable Dynamics

A One-Factor SDF

$$q_t^{\$,n} = \mathbf{E}_t \left\{ \frac{m_{t+1}}{\prod_{t+1}} q_{t+1}^{\$,n-1} \right\}, \qquad q_t^{\$,0} = 1$$
 (ZC Bond Prices)

A One-Factor SDF

$$q_t^{\$,n} = \mathbf{E}_t \left\{ \frac{m_{t+1}}{\Pi_{t+1}} q_{t+1}^{\$,n-1} \right\}, \qquad q_t^{\$,0} = 1$$
 (ZC Bond Prices)
$$-\log m_{t+1} = x_t + \frac{\lambda_m^2}{2} + \lambda_m \varepsilon_{t+1}$$
 (Real SDF)
$$x_{t+1} = (1 - \rho)\nu_t + \rho_x x_t + \sigma_x \varepsilon_{t+1}$$
 (Factor)
$$\nu_{t+1} = \begin{cases} \nu_t, & \text{w.p. } p \\ \text{iid } N(\mu_\nu, \sigma_\nu^2), & \text{otherwise} \end{cases}$$
 (Trend)

A One-Factor SDF

$$q_t^{\$,n} = \mathbf{E}_t \left\{ \frac{m_{t+1}}{\Pi_{t+1}} q_{t+1}^{\$,n-1} \right\}, \qquad q_t^{\$,0} = 1 \qquad \text{(ZC Bond Prices)}$$

$$-\log m_{t+1} = x_t + \frac{\lambda_m^2}{2} + \lambda_m \varepsilon_{t+1} \qquad \text{(Real SDF)}$$

$$x_{t+1} = (1 - \rho) \nu_t + \rho_x x_t + \sigma_x \varepsilon_{t+1} \qquad \text{(Factor)}$$

$$\nu_{t+1} = \begin{cases} \nu_t, & \text{w.p. } p \\ \text{iid } N(\mu_\nu, \sigma_\nu^2), & \text{otherwise} \end{cases} \qquad \text{(Trend)}$$

 $-\log \Pi_{t+1} = u_{\pi} + \iota_{\nu} v_{t} + \iota_{\nu} x_{t} + A_{4}(L) \eta_{t+1}$

(Inflation)

x_t and v_t Estimates

A Quantitative Sovereign Default Model

Model Outline

- Domestic private sector
 - Households
 - Financial Intermediaries
 - Producers
- The sovereign
 - Operates in international financial markets
 - Long-term defaultable bond
 - Transfers (or taxes) lump sum proceeds to household
- International lenders
 - Price and hold the sovereign's bond
 - One factor SDF with x_t and v_t
- Equilibrium default (Markov Perfect Equilibrium)

The Household and the Domestic Interest Rate

$$\max_{\{\ell_t, b_{t+1}^h\}} \mathbf{E}_0 \sum_{t=0}^{\infty} \beta^t u\left(c_t, \ell_t\right) \quad \text{ s.t. } \quad c_t = w_t \ell_t + \Pi_t + \Pi_t^f + T_t - b_t^h + \frac{1}{1+i_t} b_{t+1}^h$$

$$-u_{\ell}(c_t, \ell_t) = u_c(c_t, \ell_t) w_t$$
 (FOC ℓ_t)

$$u_c(c_t, \ell_t) = \beta(1 + i_t) \mathbf{E}_t u_c(c_{t+1}, \ell_{t+1})$$
 (FOC b_{t+1}^h)

$$b_t^h = b_{t+1}^h = 0 (Zero Net Supply)$$

Producers and the Working Capital Constraint

$$\Pi_{t} = \max_{\ell_{t}} \left\{ A_{t} \ell_{t}^{\alpha} - \left[\left(1 - \theta \right) w_{t} \ell_{t} + \theta \left(1 + i_{t} \right) w_{t} \ell_{t} \right] \right\}$$

$$\ell_t = \left(rac{lpha}{1+ heta i_t}\cdotrac{A_t}{w_t}
ight)^{1/(1-lpha)}$$

$$\log A_{t+1} = \rho_A \log A_t + \sigma_A \varepsilon_{t+1}$$

(Productivity)

(FOC ℓ_t)

In default, $A_t \rightarrow h(A_t) \leq A_t$

Domestic Financial Intermediaries

$$\Pi_t^f = -a_t + (1+i_t) a_t = i_t a_t$$

$$a_t = \theta w_t \ell_t$$

$$i_{t} = \frac{u_{c}\left(c_{t}, \ell_{t}\right)}{\beta \mathbf{E}_{t} u_{c}\left(c_{t+1}, \ell_{t+1}\right)} - 1$$

(Market Clearing)

(Domestic Rate)

The Sovereign

$$T_t = q_t \left[B_{t+1} - (1 - \delta) B_t \right] - \kappa B_t - \overline{G}$$

Transfers to household

- proceeds from sale of new issuance $B_{t+1} (1 \delta)B_t$ at market price q_t ,
- minus debt service payment κB_t ,
- minus government spending

In default, $T_t = -\overline{G}$

International Lenders

$$q_{t} = \mathbf{E}_{t} \left\{ m_{t+1} \left(1 - d_{t+1} \right) \left[\kappa + (1 - \delta) q_{t+1} \right] \right\}$$

$$q_t^{\mathrm{rf}} = \mathbf{E}_t \left\{ m_{t+1} \qquad \left[\kappa + (1 - \delta) q_{t+1}^{\mathrm{rf}} \right] \right\}$$

(Risk-free Bond Price)

- m_t driven by x_t factor and trend v_t (real SDF)
- Same duration for sovereigns' and risk-free bonds
- Yield-to-maturity spread

$$sp_t = \left(\frac{1}{q_t} - \frac{1}{q_t^{\text{rf}}}\right)\kappa$$

Domestic versus Sovereign Yields

Why is the domestic rate i_t not the yield on the sovereign's bond?

$$u_c(c_t, \ell_t) = \beta(1+i_t)\mathbf{E}_t u_c(c_{t+1}, \ell_{t+1})$$
 (Household FOC)
$$u_c(c_t, \ell_t) = \beta \frac{\kappa}{q_t + \frac{\partial q_t}{\partial B_{t+1}} B_{t+1}} \mathbf{E}_t (1 - d_{t+1}) u_c(c_{t+1}, \ell_{t+1}) + \dots$$
 (Sovereign FOC)

- Sovereign as monopolist in own bonds: internalize slope of demand
- Marginal cost of borrowing only in repayment (default option)
- Difference in maturity: one period vs long-term with δ
- Use B' to alter domestic allocation

Functional Forms

■ Utility function. Greenwood, Hercowitz, and Huffman (1988)

$$u(c,\ell) = rac{\left(c - \psi rac{\ell^{1+\mu}}{1+\mu}
ight)^{1-\sigma} - 1}{1-\sigma}$$

■ Default productivity penalty, as in Chatterjee and Eyigungor (2012)

$$h(A_t) = A_t - \max\left\{0, \lambda_0 A_t + \lambda_1 A_t^2\right\}$$

Work-in-Progress: Calibration

	Value	Comment
σ	2.0	CRRA
β	0.98	Discounting
ψ	0.7	Normalization, mean ℓ
μ	1.0/0.7	Inverse of Frisch elasticity (GHH)
ά	0.67	Returns to scale
θ	1.5	Working capital constraint
\overline{G}	0.15	Public spending
δ	0.05	5 year debt Macaulay duration
κ	$\delta + \mu_{\nu}$	Normalization
λ_0	-0.24	Penalty, linear
λ_1	+0.27	Penalty, quadratic
χ	1/8	Market return probability
ρ_{x}	0.74	Autocorrelation of pricing kernel factor
σ_{x}	0.0036	Volatility of factor
μ_{ν}	$-8.3e^{-4}$	Average factor level
σ_{ν}	0.011	Volatility of factor trend shocks
p	0.9672	Probability of renewal
λ_m	-0.236	Market price of risk
ρ_A	0.9	Autocorrelation of productivity
σ_A	0.005	Volatility of productivity shock
η_D	$1e^{-6}$	Default taste shock
η_B	$1e^{-5}$	Borrowing taste shock

	Model
Mean	
Spread	1.96
Debt to GDP	12.3
Standard Deviations	
Spread	1.37
GDP	3.91
Consumption	4.87
Domestic Rate	3.51
Correlations	
Spread and GDP	-24.1
Trade Balance/GDP and GDP	-67.4

IRF: Productivity A_t

IRF: SDF Factor x_t

IRF: SDF Trend ν_t

$\overline{\text{IRF: SDF Trend } \nu_t}$, Short-Term Debt (4q)

Summing Up

■ Theory highlights spreads ambiguity: shock persistence and predictability

- Preliminary evidence on anticipated movements for US yield curve
- Quantitative model
 - Financial frictions key for output response
 - Domestic interest rate volatility is a costly side-effect of sovereign borrowing
 - A "puzzle:" spreads fall, except if maturity is low (too willing to drop B'?)

Panel VAR, Uribe Yue 2006

Impulse responses to a 1% increase in the financial center rate (Uribe Yue, 2006)

- *Depressed output* and investment
- Current Account reversal
- Higher yields *and spreads*

SDF Parameter Estimates

Estimate	95% CI				
First Stage					
0.7395	[0.6123, 0.8183]				
0.0036	[0.0000, 0.0048]				
0.0045	[0.0000, 0.0524]				
9					
0.9672					
$-8.2e^{-4}$					
0.0109					
Second Stage					
-0.7425					
-0.4676					
-0.1445					
0.0369					
-0.0578					
-0.2359					
	0.7395 0.0036 0.0045 9 0.9672 -8.2e ⁻⁴ 0.0109 I Stage -0.7425 -0.4676 -0.1445 0.0369 -0.0578				

Two stage procedure...

- I Use 3mo yield and inflation to estimate and filter x_t and v_t (including breaks/jumps)
- 2 Use higher maturities to estimate Π_{t+1} equation and market price of risk λ_m

Adding Up

Consolidate sovereign, household, and domestic firms...

$$w_t \ell_t + \Pi_t + \Pi_t^f = A_t \ell_t^\alpha = c_t + \overline{G} + tb_t$$
 (GDP)

$$tb_t = \kappa B_t - q_t [B_{t+1} - (1 - \delta)B_t]$$
 (BoP)

Equilibrium

$$\ell_t(A_t, B_t, B_{t+1}) \Leftrightarrow i_t(A_t, B_t, B_{t+1})$$

Outcomes in Default

■ Productivity penalty

$$A_t \to h(A_t) \le A_t$$

- Market exclusion of random length (stops w.p. χ)
- Return to market without outstanding debt (full repudiation)

Recursive Formulation

- State variables: $s = \langle A, x, \nu \rangle$ and B
- Private domestic outcomes for arbitrary $\langle s, B, B' \rangle$
 - $c(s, B, B'), \ell(s, B, B'), i(s, B, B'), \dots$
- Sovereign policies d(s, B) and B'(s, B) Taking as given private outcomes and future policies
- Forward-looking functions (Markov):
 - Bond price schedule q(s, B')
 - Expected marginal utility H(s, B'), $H^d(s)$

$$H(s,B') = \mathbb{E}_{s'|s} \left\{ (1 - d(s',B')) u_c(s',B',B'') + d(s',B') u_c^d(s') \right\}$$
$$u_c(s,B,B') = \beta [1 + i(s,B,B')] H(s,B')$$

Stochastic IRFs

- Default model ⇒ no steady state, but ergodic distribution
- Where to shock for IRFs?

- Idea, based on Koop, Pesaran, and Potter (1996), ...
 - Simulate long and wide panel of model economies (independent)
 - Eventually, cross section \Rightarrow ergodic distribution
 - Then, shock all panel units by the same amount
 - Trace out average responses

Equivalent to shocking everywhere and weighting by ergodic distribution