Supervised Learning

Principal component regression and partial least squares

July 6th, 2021

Principal component regression (PCR)

Example data: NFL teams summary

A tibble: 480 × 49

Created dataset using nflfastR summarizing NFL team performances from 1999 to 2020

```
library(tidyverse)
nfl_teams_data <- read_csv("http://www.stat.cmu.edu/cmsac/sure/2021/materials/data/regression_pro
nfl_model_data <- nfl_teams_data %>%
    mutate(score_diff = points_scored - points_allowed) %>%
    # Only use rows with air yards
    filter(season >= 2006) %>%
    dplyr::select(-wins, -losses, -ties, -points_scored, -points_allowed, -season, -team)
nfl_model_data
```

```
offense_com...¹ offen...² offen...⁴ offen...⁵ offen...⁵ offen...⁵ offen...⁵
##
##
              <dbl>
                      <dbl>
                               <dbl>
                                       <dbl>
                                               <dbl>
                                                        <dbl>
                                                                <dbl>
                                                                        <dbl>
                                                                                 <dbl>
## 1
              0.561
                       3662
                                1350
                                        6.40
                                                3.28
                                                         4284
                                                                 8.01
                                                                         1582
                                                                                  4.94
## 2
              0.480
                       2371
                                        5.10
                                                5.56
                                                                11.3
                                                                                  4.22
                                2946
                                                         4698
                                                                          942
                                                3.74
## 3
              0.612
                       3435
                                1667
                                        6.41
                                                         4082
                                                                 7.88
                                                                         1391
                                                                                  4.24
              0.564
                                        5.70
                                                                                  4.62
##
                       2718
                                1555
                                                3.73
                                                         3833
                                                                 8.91
                                                                         1243
## 5
              0.569
                       3264
                                1674
                                        5.72
                                                4.10
                                                         4348
                                                                 8.07
                                                                         1553
                                                                                  4.79
## 6
              0.525
                       3286
                                1940
                                        6.12
                                                4.02
                                                         4564
                                                                 8.90
                                                                         1374
                                                                                  4.89
## 7
              0.588
                       3827
                                1648
                                        6.88
                                                3.91
                                                         5064
                                                                 9.76
                                                                         1466
                                                                                  4.48
##
   8
              0.565
                       2893
                                1347
                                        5.16
                                                3.69
                                                         3766
                                                                 7.43
                                                                         1533
                                                                                  4.84
##
              0.569
                        3838
                                1954
                                        7.04
                                                 4.23
                                                         4681
                                                                 9.38
                                                                         1427
                                                                                  4.63
```

Implement PCR with pls package

Similar syntax to lm formula but specify the number of PCs (ncomp)

Tuning PCR with caret

To perform PCR we need to tune the number of principal components

- Tune # components in PCR with caret
- train with 10-fold CV using pcr from pls

```
set.seed(2013)
library(caret)
cv_model_pcr <- train(
   score_diff ~ .,
   data = nfl_model_data,
   method = "pcr",
   trControl = trainControl(method = "cv", num
   preProcess = c("center", "scale"),
   tuneLength = ncol(nfl_model_data) - 1)
ggplot(cv_model_pcr) + theme_bw()</pre>
```


Tuning PCR with caret

summary(cv_model_pcr\$finalModel)

By default returns model with minimum CV error as finalModel

```
X dimension: 480 48
## Data:
##
       Y dimension: 480 1
## Fit method: svdpc
## Number of components considered: 43
## TRAINING: % variance explained
##
             1 comps 2 comps 3 comps 4 comps
                                                 5 comps
                                                           6 comps
                                                                    7 comps
## X
               21.49
                        41.62
                                          61.70
                                                             70.79
                                                                       74.5
                                 53.04
                                                   66.63
## .outcome
               84.01
                        87.49
                                 87.75
                                          89.69
                                                   89.69
                                                             90.06
                                                                       90.2
##
             8 comps 9 comps
                                                                       14 comps
                               10 comps
                                         11 comps 12 comps 13 comps
## X
               77.81
                        80.56
                                  83.10
                                            85.27
                                                       87.18
                                                                 88.99
                                                                           90.43
                        90.32
                                  90.66
                                            90.82
                                                       91.03
                                                                           91.12
## .outcome
               90.31
                                                                 91.05
##
             15 comps
                       16 comps
                                 17 comps
                                           18 comps 19 comps
                                                                20 comps
                                                                          21 comps
## X
                91.85
                          93.10
                                    94.00
                                              94.76
                                                        95.49
                                                                   96.18
                                                                             96.79
## .outcome
                91.15
                          91.28
                                    91.28
                                              91.28
                                                         91.28
                                                                   91.34
                                                                             91.71
##
                       23 comps
                                 24 comps
                                           25 comps
                                                     26 comps
                                                                          28 comps
             22 comps
                                                               27 comps
## X
                97.30
                          97.77
                                    98.21
                                              98.57
                                                         98.84
                                                                   99.07
                                                                             99.29
## .outcome
                91.73
                          91.80
                                    91.95
                                              91.96
                                                         92.64
                                                                   92.72
                                                                             92.79
##
                       30 comps
                                           32 comps 33 comps
             29 comps
                                 31 comps
                                                               34 comps
                                                                          35 comps
```

Tuning PCR with caret

Modify selectionFunction in train to be the oneSE rule

```
summary(cv_model_pcr_onese$finalModel)
```

Data:

X dimension: 480 48

```
Y dimension: 480 1
## Fit method: svdpc
## Number of components considered: 32
## TRAINING: % variance explained
##
             1 comps 2 comps 3 comps 4 comps
                                                 5 co
## X
               21.49
                                          61.70
                        41.62
                                 53.04
                                                   66
## .outcome
              84.01
                       87.49
                                 87.75
                                          89.69
                                                   89
##
             8 comps
                     9 comps
                              10 comps
                                         11 comps
                                                   12
## X
              77.81
                       80.56
                                  83.10
                                            85.27
                        90.32
                                  90.66
                                            90.82
## .outcome
               90.31
##
                       16 comps
            15 comps
                                 17 comps
                                           18 comps
## X
               91.85
                          93.10
                                    94.00
                                              94.76
                          91.28
                                    91.28
## .outcome
               91.15
                                              91.28
##
             22 comps
                       23 comps 24 comps
                                          25 comps
## X
               97.30
                          97.77
                                    98.21
                                              98.57
                                              97/98
                91.73
                                    91.95
## .outcome
                          91.80
             20 compc 20 compc 21 compc 22 compc
```

Partial least squares (PLS)

PCR is agnostic of response variable

(a) Principal Components Regression

(b) Partial Least Squares Regression

PLS as supervised dimension reduction

First principal component in PCA:

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \cdots + \phi_{p1}X_p$$

In PLS we set ϕ_{j1} to the coefficient from **simple linear regression** of Y on each X_j

- ullet Remember this slope is proportional to the correlation! $\widehat{eta}=r_{X,Y}\cdotrac{s_Y}{s_X}$
- ullet Thus Z_1 in PLS places most weight on variables strongly related to response Y

To compute Z_2 for PLS:

- ullet Regress each X_j on Z_1 , residuals capture signal not explained by Z_1
- Set ϕ_{j2} to the coefficient from **simple linear regression** of Y on these residuals for each variable

Repeat process until all Z_1, Z_2, \ldots, Z_p are computed (**PLS components**)

Then regress Y on Z_1, Z_2, \dots, Z_p^* , where $p^* < p$ is a tuning parameter

Tuning PLS with caret

Sharp contrast with PCR results!

Fewer PLS components because they are guided by the response variable

But how do we summarize variable relationships without a single coefficient?

Variable importance with \lor i p package

Variable importance attempts to quantify how influential variables are in the model

 \bullet e.g., absolute value of t-statistic in regression

For PLS: weighted sums of the absolute regression coefficients across components

• Weights are function of reduction of RSS across the number of PLS components

```
# Check out `cv_model_pls$finalModel$coeffici
library(vip)
vip(cv_model_pls, num_features = 10,
    method = "model") +
theme_bw()
```


Partial dependence plots (PDP) with pdp package

PDPs display the change in the average predicted response as the predictor varies over their marginal distribution

• More useful for non-linear models later on!

```
library(pdp)
partial(cv_model_pls, "offense_total_epa_pass", plot = TRUE)
```

