课程编号: 100051240

北京理工大学 2020 - 2021 学年 第 二 学期

## 

| 开课学院: 信息与电子学院  |        | _    | 任课教师:               |
|----------------|--------|------|---------------------|
| 试卷用途:□期中       | ☑期末    | □补考  |                     |
| 考试形式: □开卷      | □半开卷   | ☑闭卷  |                     |
| 考试日期:2021年6月6日 |        |      | 所需时间: <u>120</u> 分钟 |
| 考试允许带:         | 文具、计算  | 器    | _入场                 |
| 班级: 学号:        |        | 姓名:  |                     |
| 考生承诺:          | "我确认难? | 火考试是 | 完全通过自己的努力完成的。"      |
|                |        |      | 考生签名:               |

注意: 1. 考试允许用计算器; 2. 试卷不允许拆开,可撕下最后一张作为演算纸; 3. 答案全部写在各个试题相应空白位置处; 4. 计算题要写清过程,数值保留 2 位小数。

# 一、填空题(本题共27分,每空3分)

1、题图 1.1 电路中,欲使  $u_1 = \frac{1}{3}u$  ,则  $R_1$  和  $R_2$  的关系应为  $\frac{R_1}{2} = \frac{1}{2}R_2$  。





题图 1.2

- 2、题图 1.2 电路中,欲使 $i_1 = 0.25i_s$ ,则 $R_1$ 和 $R_2$ 的关系应为 $R_1 = 3R_2$ 。
- 3、 $10 \mu$  F 的电容,两端电压  $u(t) = 20 \sin 5000t$  V。若电流与电压参考方向一致,则在 t = 0 时,电流为 1A 。
- 4、电感 L 两端电压为 $u(t) = 5\sin 0.2t \text{ mV}$ ,电流为 $i(t) = -0.1\cos 0.2t \text{ A}$ ,则电感量 L 为 250mH 。
- 5、某一阶电路中有响应  $i(t) = (4-3e^{-2.5t})$  A。若将初始状态量增加为二倍,此响应成为  $i'(t) = (4-2e^{-2.5t})$  A。则原响应 i(t) 中的零输入响应分量和零状态响应分量各为\_\_\_\_\_,  $i_{zi} = e^{-2.5t} \ , \ i_{zs} = 4-4e^{-2.5t} \ .$
- 6. 题图 1.6 所示 RLC 并联电路,已知各电流有效值分别为 I=10A,  $I_R=6$ A,  $I_L=2$ A,则  $I_C$ 应为\_\_\_\_。



题图 1.6

- 7、若 RL 串联电路对基波的阻抗为 $(1+j4)\Omega$ ,则对二次谐波的阻抗为 $(1+j8)\Omega$ 。
- 8、某二端网络,端口电压、电流分别为 $u(t) = (10 + 20\cos\omega t + 10\cos2\omega t)V$ ,
- $i(t) = (2+10\cos\omega t + 5\cos4\omega t)$ A,电压、电流为关联参考方向。端口平均功率 P 为\_\_\_\_\_\_\_。

## 二、电路化简。(本题共10分,每题5分)

将题图 2 中的各电路简化为最简电路。



解:





(b) 与 5V 电压源并联的电流源为冗余元件,去掉。(1 分) 2s int 的电流源并联 2 欧姆电阻可等效为 4s int 的电压源(上正下负)串联 2 欧姆电阻。(2 分) 电压源合并,则图(b)可化简为 $u(t)=5+4\sin t$  V 的电压源(上正下负)与 $R_{eq}=2\Omega$ 的电阻串联。(2 分)



#### 三、简单计算题(本题共10分,每题5分)

1、电路如题图 3.1 所示,要使电流 I 增加为 2I,则  $18\Omega$  电阻应替换为何值?



解:除  $18\Omega$  电阻支路外剩余电路可等效为一个电压源  $U_{OC}$  串联一个值为  $R_0$  的电阻的戴维南等效电路。其中

$$R_0 = 20 \| 5 + 6 \| 3 = 6\Omega$$
,  $\emptyset$  (2  $\%$ )

$$I = \frac{U_{OC}}{R_0 + 18}, \ 2I = \frac{U_{OC}}{R_0 + R} \implies 2 = \frac{R_0 + 18}{R_0 + R} = \frac{24}{6 + R} \implies R = 6\Omega$$
 (3  $\frac{4}{5}$ )

2、正弦信号电路如题图 3.2,已知  $\omega$  = 10 rad/s, $\frac{1}{\omega C}$  = 100  $\Omega$ 。若开关断开和闭合时,电流表读数不变,求 L 的值。



题图 3.2

开关开: 
$$\dot{I} = \frac{\dot{U}_s}{j\omega L}$$
,  $I_1 = \frac{U_s}{\omega L}$  (2分)

开关闭: 
$$\dot{I}' = \dot{U}_S(j\omega C + \frac{1}{i\omega L}) \Rightarrow I_2 = U_S(\omega C - \frac{1}{\omega L})$$
 (2分)

由题意, 
$$I_1 = I_2$$
  $\Rightarrow$   $\frac{1}{\omega L} = \omega C - \frac{1}{\omega L}$   $\Rightarrow$   $L = 20$ H (1分)

#### 四、计算题(本题共53分)

1、(1)题图 4.1(a)电路中,试以图示网孔顺序和绕行方向列写网孔方程; (2)以题图 4.1(b)所示节点编号列写电路的节点方程。(本题 8 分)



 $\begin{cases} 12i_{M1} + 4i_{M2} + 4i_{M3} = 20 \\ 4i_{M1} + 8i_{M2} - 2i_{M3} = 20 \\ 4i_{M1} - 2i_{M2} + 8i_{M3} = -40 \end{cases}$  (4 %)

题图 4.1 (a)



$$\begin{cases} (\frac{1}{4} + \frac{1}{4})u_1 - \frac{1}{4}u_2 = 2 + 0.5i_2 \\ -\frac{1}{4}u_1 + (\frac{1}{4} + \frac{1}{4} + \frac{1}{2})u_2 = -0.5i_2 + \frac{4i_1}{4} \\ i_1 = \frac{u_1 - u_2}{4} \\ i_2 = \frac{u_2}{2} \end{cases}$$

$$(4 \frac{1}{2})$$

题图 4.1 (b)

2、电路如题图 4.2 所示,当t=0时开关闭合,闭合前电路已达稳态。试求i(t), $t \ge 0$ 。 (本题 8 分)



题图 4.2

解: 闭合前: 
$$i_{L1}(0^-) = i_{L2}(0^-) = \frac{50}{1+4} = 10A$$
 (1分)



闭合后: 分为左右两个一阶电路, 三要素法



左侧: 
$$i_{L_1}(0^+) = i_{L_1}(0^-) = 10A$$
,  $i_{L_1}(\infty) = \frac{50 - 20}{1} = 30A$ ,  $\tau_1 = \frac{L_1}{R_1} = \frac{3}{1} = 3s$  (2分)

$$i_{L1}(t) = i_{L1}(\infty) + [i_{L1}(0^+) - i_{L1}(\infty)]e^{-t/\tau_1} = 30 + (10 - 30)e^{-t/3}A = 30 - 20e^{-t/3}A$$

右侧: 
$$i_{L2}(0^+) = i_{L2}(0^-) = 10A$$
,  $i_{L2}(\infty) = \frac{20}{4} = 5A$ ,  $\tau_2 = \frac{L_2}{R_2} = \frac{2}{4} = 0.5$ s (2分)

$$i_{L2}(t) = i_{L2}(\infty) + [i_{L2}(0^+) - i_{L2}(\infty)]e^{-t/\tau_1} = 5 + (10 - 5)e^{-t/0.5}A = 5 + 5e^{-2t}A$$
 (1  $\%$ )

故 
$$i(t) = i_{L1}(t) - i_{L2}(t) = 25 - 5e^{-2t} - 20e^{-t/3}$$
A (1分)

3、题图 4.3 所示电路中,正弦电压源  $u_s(t)=4\sqrt{2}\cos t$  V, 直流电流源  $I_s=6$ A, 求电流  $i_1(t)$  、  $i_2(t)$  、  $i_3(t)$  。 (本题 8 分)



解:

直流电流源单独作用:

$$I_1(t) = 6A \tag{1 \%}$$

$$I_2(t) = 6A \tag{1 \%}$$

$$I_3(t) = 0A \tag{1 \%}$$

交流电压源单独作用时

阻抗为: 
$$Z=1+j=\sqrt{2}\angle 45^{\circ}\Omega$$
 (1分)

$$i_{11}(t) = 0 \tag{1 \%}$$

$$i_{21}(t) = 4\cos(t - 45^{\circ})A$$
 (1  $\%$ )

$$i_{31}(t) = -4\cos(t - 45^\circ) = 4\cos(t + 135^\circ)A$$
 (1  $\%$ )

使用叠加原理(总共1分,错一个不给分)

$$i_1(t) = 6A$$
,

$$i_{2}(t) = 6 + 4\cos(t - 45^{\circ})A$$
,

$$i_3(t) = -4\cos(t - 45^\circ)A = 4\cos(t + 135^\circ)A$$

4、题图 4.4 所示电路,已知电压源 $u_s(t) = 10 + 14.1\cos(10^3t + 30^\circ) + 8\cos(2\times10^3t + 45^\circ)V$ , 电流源  $i_s(t) = 1A$ ,  $i(t) = 1.41\cos(10^3 t + 30^\circ)A$ , 电阻  $R_1$ 流过电流  $i_{R1}$  的直流分量为 0.5A, 方向向左,求电阻 $R_1$ 、电阻 $R_2$ ,以及 $R_2$ 两端压降u(t)。(本题 9 分)



题图 4.4

解:电阻 $R_1$ 流过电流 $i_{R_1}$ 的直流分量为0.5A,即直流电压源和直流电流源作用时,则

$$0.5 = 1 \times \frac{R_2}{R_1 + R_2} - \frac{10}{R_1 + R_2} = \frac{R_2 - 10}{R_1 + R_2} \Rightarrow R_2 - R_1 = 20$$
 (2  $\frac{1}{1}$ )

$$u' = 10 + 0.5 \times R_1$$
 (1  $\%$ )

当正弦电压源 $14.1\cos(10^3t+30^\circ)$ V单独作用时, $i(t)=1.41\cos(10^3t+30^\circ)$ A与电压源 同相位,则L、 $C_1$ 和 $C_2$ 等效于短路,因此

$$R_1 = \frac{14.1 \angle 30^\circ}{1.41 \angle 30^\circ} = 10\Omega$$
 (2  $\%$ )

$$\Rightarrow R_2 = R_1 + 20 = 30\Omega$$
,  $u' = 10 + 0.5 \times 10 = 15V$ 

$$u'' = 0$$
  $(1 \%)$ 

当正弦电压源 $8\cos(2\times10^3t+45^\circ)$ V单独作用时,i(t)=0,则

$$u''' = 8\cos(2 \times 10^3 t + 45^\circ) \times \frac{R_2}{R_1 + R_2} = 6\cos(2 \times 10^3 t + 45^\circ)V$$
 (2  $\%$ )

∴ 
$$u(t) = u' + u'' + u''' = 15 + 6\cos(2 \times 10^3 t + 45^\circ) \text{V}$$
 (1  $\frac{4}{2}$ )

5、电路如题图 4.5 所示,开关闭合前电路已达稳态。求电路在开关 K 闭合后电容两端的电压  $u_c(t)$ ,并定性画出其波形图。(本题 10 分)



解:由换路前的稳态电路和换路定律得

$$u_c(0^+) = u_c(0^-) = 1$$
V ,  $i_L(0^+) = i_L(0^-) = \frac{1}{3}$ A (2  $\frac{4}{3}$ )

为求电路的特征根,将换路后电路中的独立源置零,得到图 4.5(a)

$$R = 2 / /3 / /6 = 1\Omega$$



列 KCL 方程 
$$\frac{6}{5}\int u_c dt + u_c + \frac{1}{5}\frac{du_c}{dt} = 0$$
 ,  $\frac{d^2u_c}{dt^2} + 5\frac{du_c}{dt} + 6u_c = 0$ 

特征方程为 
$$s^2 + 5s + 6 = 0$$
 , 特征根为  $s_1 = -2$ ,  $s_2 = -3$  (4分)

电容电压的稳态值为  $u_c(+\infty) = 1V$ 

t>0 时, 电容电压表达式为 
$$u_c(t) = k_1 e^{-2t} + k_2 e^{-3t} + 1$$
 (1分)

电容电压和电流的初始值分别为  $u_c(0^+)=1$ V ,  $i_c(0^+)=-\frac{3+1}{6}=-\frac{2}{3}$ A

电容电压一阶导数的初始值为  $\frac{du_c}{dt}|_{t=0^+} = \frac{1}{C}i_c(0^+) = -\frac{10}{3}$  A/F (1分)

将两个初值代入 uc(t) 表达式中,得

$$\begin{cases} k_1 + k_2 = 0 \\ -2k_1 - 3k_2 = -\frac{10}{3} \end{cases}$$
解得  $k_1 = -\frac{10}{3}$  ,  $k_2 = \frac{10}{3}$   
所以  $u_c(t) = 1 - \frac{10}{3}e^{-2t} + \frac{10}{3}e^{-3t}$  V  $(t \ge 0)$ 



- 6、稳态电路如题图 4.6 所示。u<sub>S</sub>(t) = cos t V, i<sub>S</sub>(t) = cos t A。 (本题 10 分)
  - (1)  $Z_L = ?$  时获得最大功率? ( $Z_L$ 实部、虚部均可变), 并求  $P_{Lmax}$ ;
  - (2) 若  $Z_L = R_L$  (纯电阻) 时,应如何实现功率匹配?再求  $P'_{Lmax}$ 。



题图 4.6

解:

(1)  $j\omega L = j1 \times 1 = j\Omega$ ,  $1/j\omega C = -j0.5\Omega$ 将负载  $Z_L$  开路,求开路电压(节点法)、短路电流

$$\begin{cases} \frac{\dot{U}_{ocm} - \dot{U}_{sm}}{\dot{j}} - \dot{I}_{S} + \frac{\dot{U}_{ocm}}{1} + \frac{\dot{U}_{ocm}}{1} = 0\\ \dot{U}_{sm} = 1 \text{ V} \end{cases}$$

整理可得开路电压最大值为  $\dot{U}_{ocm} = -j$  V

(4分)

或 
$$\dot{U}_{OCm} = \frac{\dot{U}_S / j + \dot{I}_S}{-j + 1 + j2} = \frac{-j + 1}{1 + j} = -j V$$

短路电流最大值为  $\dot{I}_{SCm} = \dot{I}_S + \dot{U}_S / j = 1 - j A = \sqrt{2} \angle - 45^{\circ} A$ 

等效内阻抗 
$$Z_0 = \frac{\dot{U}_{\text{OCm}}}{\dot{I}_{\text{SCm}}} = \frac{-j}{\sqrt{2}\angle - 45^\circ} = \frac{\sqrt{2}}{2}\angle - 45^\circ = 0.5 - j0.5\Omega$$
 (2分)

当 ZL 实部、虚部均可变时,采用共轭匹配,

即 
$$Z_L = Z_0^* = 0.5 + j \, 0.5 \, \Omega$$
 时获得最大功率  $P_{L \, \text{max}} = \frac{U_{\, \text{OC}}^2}{4R_0} = \frac{(1/\sqrt{2})^2}{4 \times 0.5} = 0.25 \, \text{W}$  (2分)

(2) 当负载为纯电阻时,采用模匹配,即

$$R_{\rm L} = |Z_0| = 0.5\sqrt{2} \Omega = 0.707 \Omega$$
 时获得最大功率

电路中电流有效值相量 
$$\dot{I} = \frac{\dot{U}_{OC}}{R_{L} + Z_{0}} = \frac{-\mathrm{j}0.707}{0.707 + 0.5 - \mathrm{j}0.5} = 0.541 \angle -67.5^{\circ} \,\mathrm{A}$$

$$P'_{\text{Lmax}} = I^2 R_{\text{L}} = 0.541^2 \times 0.707 = 0.207 \text{ W}$$
 (2  $\frac{1}{2}$ )