

Low-Rank Autoencoders: From Deterministic to Generative Shift

Alokendu Mazumder, Tirthajit Baruah*, Bhartendu Kumar*, Rishab Sharma, Vishwajeet Pattanaik, Punit Rathore

Can a simple deterministic AE with low-rank latent space outperform a GAN in image generation?

Abstract & Motivation

- Autoencoders overlooks the fact that complex data (images) typically resides in a lower-dimensional latent space, which is essential for efficient representation.
- Our model uses a low-rank regularizer to learn an even low-dimensional latent space, while maintaining the autoencoder's fundamental goal.
- It is a simple autoencoder extension that learns low-rank latent space.

Architecture Overview

Fig 1: Low-Rank Autoencoder

- $E: \mathbb{R}^{m \times n \times c} \to \mathbb{R}^k$ is encoder, $D: \mathbb{R}^k \to \mathbb{R}^{m \times n \times c}$ is decoder and **M** is a linear layer sandwiched between encoder and decoder.
- The linear layer (M) serves as a projection head into a subspace with reduced rank.
- Loss Function: $\mathcal{L}(E, D, \mathbf{M}) = \| x D(\mathbf{M}(E(x))) \|_{2}^{2} + \lambda \| \mathbf{M} \|_{*}$

Challenging Objectives Achieved

- Learns a better latent space with generative capability of simple AE.
- Generated images show superior FID scores compared to VAE, GAN, and other SOTA AEs.
- Outperforms baselines in downstream classification task.
- Proved the convergence of the learning algorithm under ADAM updates.
- Immune to curse of dimensionality effecting the latent space.

Experiments & Results

Interpolation & Dimensionality Reduction

Fig 2: (a) Employing linear interpolation among data points on the MNIST dataset, (b) Singular value plot of the empirical covariance matrix of the latent space.

Image Generation

3 3 3 5

1 4 7 4 4

ΑE

33888

52582

VAE

Fig 3: Images generated by AE, VAE, IRMAE and Our model on CelebA and MNIST

	MNIST		CelebA	
	\mathcal{N}	GMM	\mathcal{N}	GMM
AE	103.08	68.97	68.13	59.43
VAE	21.01	18.86	61.87	53.63
IRMAE	26.58	22.31	58.98	48.56
WAE	21.04	11.32	57.60	45.91
RAE	22.12	11.54	50.31	46.05
LoRAE	19.50	11.09	56.29	45.43

Our model achieves the **best FID score** among most of the **SOTA** models.

Our model generates high-quality

images as compared to other models.

GAN LS-GAN NS-GAN VAE + Flow Lorae Its success is due to low-rank latent space from trace norm regularization.

Downstream Classification

Size of					
training set	10	100	1000	10,000	60,000
AE	41.0	68.16	89.8	96.5	98.1
VAE	41.5	77.47	94.0	98.5	98.9
LoRAE	46.6	89.02	95.4	97.9	98.6
Cunamicad	27.0	72.50	04.2	00.2	00.2

Our model beats AE and VAE in classification accuracy in low-data scenarios.

Table 1: Classification accuracy obtained from an AE, VAE and LoRAE on MNIST

Theoretical Analysis

Convergence of Learning Algorithm

Theorem 1: Let the loss function $\mathcal{L}(E, D, \mathbf{M})$ be K-Lipchitz and let $\parallel \mathcal{L} \parallel_2 \leq \gamma < \infty$. Then the following holds for deterministic ADAM

For any $\sigma > 0$, let $\alpha = \sqrt{2(\mathcal{L}(E_0, D_0, \mathbf{M}_0) - \mathcal{L}(E^*, D^*, \mathbf{M}^*))/K\delta^2 T}$, then there exists a natural number $T(\sigma, \delta)$ such that $\|\mathcal{L}\|_2 \leq \sigma$ for some $t \ge T(\sigma, \delta)$ where $\delta^2 = \frac{\gamma^2}{\epsilon^2}$

- When $T \geq \frac{2K\delta^2}{\sigma^4} \left(\mathcal{L}(E_0, D_0, \mathbf{M}_0) \mathcal{L}(E^*, D^*, \mathbf{M}^*) \right) = T(\sigma, \delta)$, we have $\min_{0 \leq t \leq T-1} \| \mathcal{L}(E_t, D_t, \mathbf{M}_t) \|_2 \leq \sigma$.
- From above analysis, the rate of convergence is $\sigma^{\left(T^{-\frac{1}{4}}\right)}$

Lower Bound on Min-Max Distance Ratio

Theorem 2: Given any set of iid $x, x_1, x_2, ..., x_N \in \mathbb{R}^l$, we denote $d_{\max}^{E^*,\mathbf{M}^*} = \max_{0 \le i \le N} d^{E^*,\mathbf{M}^*}(x,x_j) \text{ and } d_{\min}^{E^*,\mathbf{M}^*} = \min_{0 \le i \le N} d^{E^*,\mathbf{M}^*}(x,x_j),$ then we always have the conditional probability: $P\left(\frac{d_{\max}^{E^*,\mathbf{M}^*} - d_{\min}^{E^*,\mathbf{M}^*}}{d_{\min}^{E^*,\mathbf{M}^*}} \ge \Theta(\partial,\lambda) \mid \lambda > 0\right) = 1$

$$P\left(\frac{\max_{d_{\min}^{E^*,M^*}} \min_{k} \geq \Theta(\partial,\lambda) \mid \lambda > 0\right) = 1$$
 where $d^{E^*,M^*}(x,x_j) = \frac{M^*(E^*(x))-M^*(E^*(x_j))\|_2}{rank(M^*)}$, ∂ denotes the training dataset and $\Theta(\partial,\lambda)$ depends on training set and penalty λ .

- The nuclear norm regularization ensures a minimum bound for the min-max distance ratio.
- The lower bound on the min-max distance ratio enables consistent data point discrimination. Hence, model immune to the curse of dimensionality.

Rank of Latent Space

Proposition 1: The rank of latent space follows $\sigma(\lambda^{-1})$.

Stronger regularization implies smaller rank of latent space.

* denotes equal contribution