many document have associated metadate in the form of classes or labels (categorical variables)

approximate a function that can map documents features onto class information preferably, our model should be the best performing classifier in the set of possible classifiers

given labeled data (supervised learning), a classification algorithm will output a solution that categorizes new examples  $\rightarrow$  associate labels with subsets of the data

while clustering (unsupervised learning) searches for groups within the corpus, classification learns to map a collection of documents onto a categorical class values or labels  $\rightarrow$  find mapping function

data (features) with class values ( $\sim$  labeled data), excellent opportunity to make use of metadata

vast majority of models are black box models

workflow: separate data set in training and test subsets (training, test, and validation)  $\rightarrow$  train model  $\rightarrow$  test model  $\rightarrow$  apply model to new data



# classification in the humanities



## binary and multiclass classification problems 1

naive bayes probabilistic classifier that is fast and popular for in text categorization, but assumes independence between features (naive)

**neural network** broad framework for machine learning, which is very extremely flexible. Training can be very slow, but classification fast. Prone to overfitting

**decision tree** versatile and creates sets of rules (binary decisions) that are simple and can be understood (leaves are classes and branches features)  $\rightarrow$  white box method

**support vector machines** works on small datasets (typically binary) with high dimensional data (features > objects) and very memory efficient (only uses the support vectors). Bad performance on noisy data (overlapping classes)

<sup>&</sup>lt;sup>1</sup>Can be advantageous to reformulate multiclass problems as binary



### labeled data the correct class information is available

- ▶ metadata is readily available, e.g. author, genre, year of publication
- ▶ labels from an external source/databases, e.g. reviews, ratings, reads
- ► annotate data (expert or raters)

evaluate performance (error rate) of a classifier and compare to other classifiers most metrics are developed for binary classification problems confusion matrix: table for describing performance of classifier on training and/or testing data

|           |          | true     |          |
|-----------|----------|----------|----------|
|           |          | positive | negative |
| predicted | positive | TP       | FP       |
|           | negative | FN       | TN       |

True Positive correctly assigns positive class membership True Negative correctly rejects class membership False Positive fail to rejects class membership False Negative reject class membership incorrectly we train a naive bayes classifier on 1500 verses of the kjv bible labeled with collection data (nt: new testament ot: old testament)

Confusion matrix for binary classification problem:

|    | nt         | ot  |                                         |
|----|------------|-----|-----------------------------------------|
| nt | 644        | 89  | , verses: $644 + 106 + 89 + 661 = 1500$ |
| ot | 644<br>106 | 661 |                                         |

accuracy measures in how many cases the predicted class conformed with the correct  $\ensuremath{\mathit{TP}} + \ensuremath{\mathit{NP}}$ 

class: 
$$\frac{TP + NP}{TP + TN + FP + FN}$$

**precision** measures the number of selected verses that are relevant, i.e., how certain are we that a classified verse is correctly classified ( $\sim$  how many time did the model positively predict a class):  $\frac{TP}{TP+FP}$ 

for each class label: How many of the items that got the label should have gotten it? How many should have gotten other labels?

**recall** measures the number of relevant verses that are selected, i.e., how good is the classifier at detecting verses within a given class:  $\frac{TP}{TP + FN}$ 

For each class label: How many items that should have gotten the label did get it? How many were missed?

F-score composite (general) measure of a classifier's accuracy

$$F_{1} = 2 \times \frac{percision \times recall}{precision + recall}$$
 
$$F_{1} : 2 \times \frac{.88 \times .86}{.88 + .86} = 0.87$$

F is the harmonic mean of precision and recall.

if a model is sufficiently complex and gets enough data, it can basically memorize the data set (overfitting)  $\rightarrow$  need to test the model on held-out data

validation when building a predictive model, we need a way to evaluate the capability of the model on unseen data

- ► data Split (conventional validation)
- ▶ cross validation
- ▶ bootstrap

#### classification with scikit-learn

```
datapath = '/home/kln/corpora/kiv books'
 1
    docs = vanilla folder(datapath)
 3
 4 import pandas as pd
   import numpy as np
  metadata = pd.read csv('/home/kln/corpora/kiv metadata.csv')
    class id = metadata['class'].tolist()
    class u. class int = np.unique(class id. return inverse = True)
10 from sklearn.feature extraction.text import CountVectorizer
11 | countyect = CountVectorizer()
12 | vectspc = countvect.fit transform(docs)
13 vectspc.shape
14
15 # index value of a word in the vocabulary
16 countvect.vocabulary .get(u'god')
17 | countvect.vocabulary .get(u'woman')
18
19 # build vector space model
20 from sklearn.feature extraction.text import TfidfTransformer
21 tfidf transformer = TfidfTransformer()
22 | vectspc tfidf = tfidf transformer.fit transform(vectspc)
23 vectspc tfidf.shape
24
25 # train naive bayes classfier
26 from sklearn.naive bayes import MultinomialNB
27 | nb class = MultinomialNB().fit(vectspc tfidf, class id)
28
  # classifier training performance
29
  predicted = nb class.predict(vectspc tfidf)
  np.mean(predicted == class id)
30
31
32 # svm for comparison
33
  from sklearn.linear model import SGDClassifier
34 svm_class = SGDClassifier(loss='hinge', penalty='12',alpha=1e-3, n_iter=5,
35
            random state=42).fit(vectspc tfidf, class id)
36
    predicted = svm class.predict(vectspc tfidf)
37 np.mean(predicted == class id)
```

#### classification with RTextTools

```
library(RTextTools)
   ## separate training and testing set and create a container
  # random sample for testing data from data set
   trainidx.v <- 1:nrow(text.dtm)
 5 testidx.v <- sort(sample(trainidx.v, nrow(text.dtm)*.1, replace = FALSE, prob = NULL))
    trainidx.v <- sort(trainidx.v[! trainidx.v%in%testidx.v])
   # change object type, create analytics() only handles numeric
    classnum.v <- as.numeric(as.factor(class.v))
10
      # to transform back to original
11
     factor(classnum.v, labels = unique(class.v))
12 # create container
13 | container <- create_container(text.dtm, classnum.v, trainSize=trainidx.v,
14
                                  testSize=testidx.v. virgin=FALSE)
15 # training models
16 | mdll.l <- train models(container, algorithms='SVM')
17 mdl2.1 <- train models(container, algorithms = c('SVM','NNET','TREE'))
18
19 # Classifying data
20 res.df <- classify_models(container, md12.1)
21 head(res.df)
22 | confusion.mat <- as.matrix(table(res.df$SVM_LABEL, container@testing_codes))
23 rownames (confusion.mat) <- colnames (confusion.mat) <- unique (class.v)
24 print (confusion.mat)
25 | accuracy <- sum(diag(confusion.mat))/sum(confusion.mat)
26
27 # performance metrics
28 analytics <- create analytics(container, res.df)
29
    class(analytics)
30 summary (analytics)
```