International Rectifier

IRF520NPbF

HEXFET® Power MOSFET

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	9.7		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	6.8	A	
I _{DM}	Pulsed Drain Current ①	38	1	
P _D @T _C = 25°C	Power Dissipation	48	W	
	Linear Derating Factor	0.32	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy [®]	91	mJ	
I _{AR}	Avalanche Current①	5.7	Α	
E _{AR}	Repetitive Avalanche Energy®	4.8	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		3.1	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.20	Ω	V _{GS} = 10V, I _D = 5.7A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
9fs	Forward Transconductance	2.7			S	V _{DS} = 50V, I _D = 5.7A
I	Drain-to-Source Leakage Current			25	μA	V _{DS} = 100V, V _{GS} = 0V
I _{DSS}	Brain to Godice Leakage Guiterit			250	μΛ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
Lana	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	''^	V _{GS} = -20V
Qg	Total Gate Charge			25		I _D = 5.7A
Q _{gs}	Gate-to-Source Charge			4.8	nC	$V_{DS} = 80V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			11		V _{GS} = 10V, See Fig. 6 and 13 ⊕
t _{d(on)}	Turn-On Delay Time		4.5			$V_{DD} = 50V$
t _r	Rise Time		23		no	$I_D = 5.7A$
t _{d(off)}	Turn-Off Delay Time		32		ns	$R_G = 22\Omega$
t _f	Fall Time		23			$R_D = 8.6\Omega$, See Fig. 10 \oplus
1 -	Internal Drain Inductance		4.5			Between lead,
L _D	internal Dialit inductance		4.5		nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5		''''	from package
						and center of die contact
C _{iss}	Input Capacitance		330			V _{GS} = 0V
Coss	Output Capacitance		92		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		54			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current			9.7		MOSFET symbol			
	(Body Diode)	9	9.7	Α	showing the				
I _{SM}	Pulsed Source Current	38		-00	-00	20	20		integral reverse
	(Body Diode) ①		38		p-n junction diode.				
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 5.7A$, $V_{GS} = 0V$ ④			
t _{rr}	Reverse Recovery Time		99	150	ns	$T_J = 25^{\circ}C, I_F = 5.7A$			
Q _{rr}	Reverse RecoveryCharge		390	580	nC	di/dt = 100A/µs ⊕			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \mathbb{O} $V_{DD}=25V, starting $T_J=25^\circ$C, $L=4.7mH$ \\ $R_G=25\Omega, I_{AS}=5.7A.$ (See Figure 12) \\ \end{tabular}$
- $\label{eq:loss} \begin{array}{l} \text{ } \\ \text{ }$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

100

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRF520NPbF

 $V_{DS} \longrightarrow V_{DS}$ $V_{GS} \longrightarrow D.U.T.$ $V_{DS} \longrightarrow D$

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION: INCH
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRE1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.11/03

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/