Hausdorff metric inherits completeness

Theorem 1. If (X,d) is a complete metric space, then the <u>Hausdorff metric</u> induced by d is also <u>complete</u>.

Proof. Suppose (An) is a <u>Cauchy sequence</u> with respect to the Hausdorff metric. By selecting a <u>subsequence</u> if necessary, we may assume that An and An+1 are within 2-n of each other, that is, that $An \subset K(An+1,2-n)$ and $An+1 \subset K(An,2-n)$. Now for any <u>natural number</u> N, there is a <u>sequence</u> $(xn)n \geq N$ in X such that $xn \in An$ and $d(xn,xn+1) \leq 2-n$. Any such sequence is Cauchy with respect to d and thus <u>converges</u> to some $x \in X$. By applying the <u>triangle inequality</u>, we see that for any $n \geq N$, $d(xn,x) \leq 2-n+1$.

Define A to be the set of all x such that x is the limit of a sequence $(xn)n\geq 0$ with $xn\in An$ and d(xn,xn+1)<2-n. Then A is nonempty. Furthermore, for any n, if $x\in A$, then there is some $xn\in An$ such that d(xn,x)<2-n+1, and so $A\subset K(An,2-n+1)$. Consequently, the set A is nonempty, closed and bounded.

Suppose $\epsilon > 0$. Thus $\epsilon > 2$ -N>0 for some N. Let $n \ge N+1$. Then by applying the claim in the first paragraph, we have that for any $xn \in An$, there is some $x \in X$ with d(xn,x) < 2-n+1. Hence $An \subseteq K(A^-,2-n+1)$. Hence the sequence (An) converges to A in the Hausdorff metric.

This proof is based on a sketch given in an exercise in [1]. An exercise for the reader: is the set A constructed above closed?

References

1 J. Munkres, <u>Topology</u> (2nd edition), Prentice Hall, 1999.

Title	Hausdorff metric inherits completeness
Canonical name	HausdorffMetricInheritsCompleteness
Date of creation	2013-03-22 14:08:51
Last modified on	2013-03-22 14:08:51
Owner	mps (409)
Last modified by	mps (409)
Numerical id	8
Author	mps (409)
Entry type	<u>Theorem</u>
Classification	msc 54E35
Related topic	Complete

Generated on Sat Feb 10 11:27:11 2018 by LATEXML