Name: _	
	Section:
	Homework 12
	Due Thurs. $3/7$

 ${\bf 39.6}$ Prove Lemma 39.3 by induction (or Well-Ordering Principle) using Lemma 39.2.

Lemma 39.3 Suppose $p,q_1,q_2,...,q_t$ are prime numbers. If $p|(q_1q_2...q_t)$ then $p=q_i$ for some $1\leq i\leq t$.

Lemma 39.2 Suppose $a,b,p\in\mathbb{Z}$ and p is a prime. If p|ab, then p|a or p|b.

- **39.17** Euler's totient, continued Suppose that p and q are unequal primes. Prove the following:

- **a.** $\varphi(p) = p 1$. **b.** $\varphi(p^2) = p^2 p$. **c.** $\varphi(p^n) = p^n p^{n-1}$ where n is a positive integer.
- **d.** $\varphi(pq) = pq q p 1 = (p-1)(q-1).$

39.19 Again with Euler's totient. Now suppose n is any positive integer. Factor n into primes as $n = p_1^{a_1} p_2^{a_2} ... p_t^{a_t}$ where the p_i s are distinct primes and the exponents a_i are all positive integers. Prove that the formulas from the previous problem are valid for this general n.

Formula from the previous problem: If n is a positive integer which can be represented as the product of distinct primes, $p_1p_2...p_t$, then $\varphi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_t})$.

 ${\bf 39.20}$ Rewrite the second proof of Proposition 39.6 to show the following:

Let n be an integer. If \sqrt{n} is not an integer, then there is no rational number x such that $x^2 = n$.