REAL ANALYSIS

SECTION-A

are infinitely many rational numbers.

(a)

Prove that between two different real numbers there

10

1. S. 1. 1. T. 1. S. 1.	(0)	closed set. Prove that interior of a set (ii) open set (iii) set. 2+2+2+4	
2	(a)	Prove that every convergent sequence is bounded. Is the converse true? Give suitable example. 6+2+2	
	(b)	Define a Cauchy's sequence. Prove that <(-1) ⁿ > is not a Cauchy's sequence. 2+8	
3.	(a)	State and prove Gauss test for convergence of series. 2+8	
	(b)	Show that $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$ is convergent. 10	
4.	(a)	State only: Cauchy's General princip[le of convergence for sequences. 4	
- ()	(b)	Prove that every real number is a limit point of Q, the set of rational numbers.	
	(c)	Discuss the convergence of series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^{\frac{1}{n}}$. 8	

SECTION-II

- 5. (a) Find Cauchy product of series $\sum_{n=0}^{\infty} bn = 2 + 2 + 2^{2} + 2^{3} + \dots \text{ and } \sum_{n=0}^{\infty} bn = -1 + 1 + 1 + \dots$
 - (b) Prove: If the product $\prod_{n=1}^{x} (1+an)$ is convergent then $a_n = 0$.
 - 6. (a) Show that the function: $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ -1 & \text{if } x \text{ is irrational} \end{cases}$

is discountionuous for every real number.

- (b) Define uniform continuity of a function. 2
- (c) Prove that every continuous function definded on a closed interval attains its bounds.9
- 7. (a) State and prove Lagrange's Mean value theorem. 2+8
 - (b) Using Taylor's Theorem expand cos x as infinite series in x. 10

SECTION - III

8. (a) Prove that the function f given by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

is not integrable in [a, b].

10

9

- (b) Prove that every monotonic function defined on closed interval [a, b] is integrable.
- 9. (a) If p and q are positive show that

(i)
$$\beta(p,q+1) = \frac{q}{p}\beta(p+1,q)$$

(ii)
$$\beta(p,q) = \beta(q,p)$$
.

(b) Prove
$$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

10. (a) Test the convergence of imp[roper integral

$$\int_{1}^{\infty} \frac{dx}{x^{1/2} (5+x)^{1/3}}$$
 10

(b) Using $\int_{a}^{b} \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$ prove that

$$\int_{0}^{\infty} \frac{dx}{\left(x^2 + a^2\right)^2} = \frac{1}{2a^3} \tan^{-1} \frac{x}{a} + \frac{x}{2a^2 \left(x^2 + a^2\right)}$$
 10

3