Power Series

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference your lecture notes and the relevant chapters in a textbook/online resource.

EXPECTED SKILLS:

- Use sigma notation to write the Maclaurin series for a function f(x).
- Use sigma notation to write the Taylor series for a function f(x) about a specified $x = x_0$.
- Find the interval of convergence and the radius of convergence of a power series.
- Find the domain of a function that is expressed as a power series.

PRACTICE PROBLEMS:

For problems 1 & 2, use sigma notation to write the Macluarin series for the given function.

1.
$$f(x) = \ln(1+x)$$

$$2. \ f(x) = x \cos x$$

For problems 3 & 4, use sigma notation to write the Taylor series for the given function about $x = x_0$.

3.
$$f(x) = e^{2x}$$
; $x_0 = \ln 3$

4.
$$f(x) = \sin x$$
; $x_0 = \frac{\pi}{2}$

For problems 5-13, find the interval of convergence and the radius of convergence R for the power series.

1

5.
$$x + x^2 + x^3 + x^4 + \dots$$

6.
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$$

$$7. \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

8.
$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$$

9.
$$\sum_{k=0}^{\infty} \frac{(-5)^k x^k}{\sqrt{k+10}}$$

10.
$$\sum_{k=0}^{\infty} [(2k)! (2x+1)^k]$$

11.
$$\sum_{k=0}^{\infty} \left[\left(\frac{2}{7} \right)^k (x+4)^{k+1} \right]$$

12.
$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

13.
$$\sum_{k=2}^{\infty} \frac{(x-3)^k}{k \ln k}$$

For problems 14 - 16, a function is represented as a power series. Find the domain of the function.

14.
$$f(x) = \sum_{k=0}^{\infty} \left[(-1)^{k+1} (x-2)^k \right]$$

15.
$$f(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

16.
$$f(x) = \sum_{k=0}^{\infty} \frac{e^{(k^2)} x^k}{k!}$$