CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 5

Samson Zhou

Present and Future

Today: Discuss potential project groups

• Friday: Email me the members/group name

• Future: Set up meetings to discuss proposed projects

Recall: Concentration Inequalities

 Concentration inequalities bound the probability that a random variable is "far away" from its expectation

• Often used in understanding the performance of statistical tests, the behavior of data sampled from various distributions, and for our purposes, the guarantees of randomized algorithms

Last Time: Moments

• For p > 0, the p-th moment of a random variable X over Ω is:

$$E[X^p] = \sum_{x \in \Omega} \Pr[X = x] \cdot x^p$$

Last Time: Variance

• The variance of a random variable X over Ω is:

$$Var[X] = E[X^2] - (E[X])^2$$

• Can rewrite $Var[X] = E[(X - E[X])^2]$ since E[E[X]] = E[X]

"How far numbers are from the average"

Last Time: Chebyshev's Inequality

• Let X be a random variable with expected value $\mu \coloneqq E[X]$ and variance $\sigma^2 \coloneqq Var[X]$

•
$$\Pr[|X - E[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$
 becomes $\Pr[|X - E[X]| \ge t] \le \frac{\sigma^2}{t^2}$

$$\Pr[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$$

• "Bounding the deviation of a random variable in terms of its variance"

Last Time: Law of Large Numbers

- Let $X_1, ..., X_n$ be random variables that are independent identically distributed (i.i.d.) with mean μ and variance σ^2
- Consider the sample average $X = \frac{1}{n} \sum_{i} X_{i}$. How does it compare to μ ?

•
$$Var[X] = \frac{1}{n^2} \sum_i Var[X_i] = \frac{\sigma^2}{n}$$

• Law of Large Numbers: The sample average will always concentrate to the mean, given enough samples

Use Case

• Suppose we design a randomized algorithm A to estimate a hidden statistic Z of a dataset and we know $0 < Z \le 1000$

• Suppose each time we use the algorithm A, it outputs a number X such that E[X] = Z and $Var[X] = 100Z^2$

What can we say about A?

•
$$\Pr[|X - Z| \ge 30Z] \le \frac{1}{9}$$
 and $Z \le 1000$ so $\Pr[|X - Z| < 30,000] > \frac{8}{9}$

Accuracy Boosting

• How can we use A to get additive error ε ?

Accuracy Boosting

• How can we use A to get additive error ε ?

• Repeat A a total of $\frac{10^{12}}{\epsilon^2}$ times and take the average

• The variance of the average is $\frac{\varepsilon^2}{10^{10}}Z$ and $\Pr[|X-\mu| \geq k] \leq \frac{\sigma^2}{k^2}$

• $\Pr[|X - Z| \ge \varepsilon] \le \frac{Z}{10^{10}}$ and $Z \le 1000$ so $\Pr[|X - Z| < \varepsilon] > 0.999$

Accuracy Boosting

Algorithmic consequence of Law of Large Numbers

 To improve the accuracy of your algorithm, run it many times independently and take the average

Limitations

- Suppose we flip a fair coin n = 100 times and let H be the total number of heads
- E[H] = 50 and Var[H] = 25

- Markov's inequality: $Pr[H \ge 60] \le 0.833$
- Chebyshev's inequality: $Pr[H \ge 60] \le 0.25$
- Truth: $Pr[H \ge 60] \approx 0.0284$

Intuition for Previous Inequalities

 Recall: We proved Markov's inequality by looking at the first moment of the random variable X

$$\Pr[X \ge t \cdot \mathrm{E}[X]] \le \frac{1}{t}$$

• Recall: We proved Chebyshev's inequality by applying Markov to the second moment of the random variable X - E[X]

$$\Pr[|X - E[X]| \ge t] = \Pr[|X - E[X]|^2 \ge t^2] \le \frac{\text{Var}[X]}{t^2}$$

Generalizations

• Suppose we flip a fair coin n = 100 times and let H be the total number of heads

- What if we consider higher moments?
- Looking at the 4th moment: $Pr[H \ge 60] \le 0.186$
- Markov's inequality: $Pr[H \ge 60] \le 0.833$
- Chebyshev's inequality: $Pr[H \ge 60] \le 0.25$
- Truth: $Pr[H \ge 60] \approx 0.0284$

Concentration Inequalities

• Looking at the $k^{\rm th}$ moment for sufficiently high k gives a number of very strong (and useful!) concentration inequalities with exponential tail bounds

• Chernoff bounds, Bernstein's inequality, Hoeffding's inequality, etc.

• Berstein's inequality: Let $X_1, ..., X_n \in [-M, M]$ be independent random variables and let $X = X_1 + \cdots + X_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|X - \mu| \ge t] \le 2e^{-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Berstein's inequality: Let $X_1, ..., X_n \in [-M, M]$ be independent random variables and let $X = X_1 + \cdots + X_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|X - \mu| \ge t] \le 2e^{-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Example: Suppose M=1 and let $t=k\sigma$. Then $\Pr[|X-\mu| \ge k\sigma] \le 2\exp\left(-\frac{k^2}{4}\right)$

• Suppose M=1 and let $t=k\sigma$. Then

$$\Pr[|X - \mu| \ge k\sigma] \le 2\exp\left(-\frac{k^2}{4}\right)$$

Compare to Chebyshev's inequality:

$$\Pr[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$$

• Exponential improvement!

• Suppose we flip a fair coin n = 100 times and let H be the total number of heads

- Markov's inequality: $Pr[H \ge 60] \le 0.833$
- Chebyshev's inequality: $Pr[H \ge 60] \le 0.25$
- 4th moment: $Pr[H \ge 60] \le 0.186$
- Bernstein's inequality: $Pr[H \ge 60] \le 0.15$
- Truth: $Pr[H \ge 60] \approx 0.0284$

• Suppose M=1 and let $t=k\sigma$. Then

$$\Pr[|X - \mu| \ge k\sigma] \le 2\exp\left(-\frac{k^2}{4}\right)$$

 Plot across values of k looks like normal random variable

• PDF of Gaussian $N(0, \sigma^2)$ is

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}$$

Central Limit Theorem

• Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity

 Why is the Gaussian distribution is so important in statistics, data science, ML, etc.?

 Many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.