MEMOIRE DE MASTER

FILIÈRE: MATHÉMATIQUES FONDAMENTALES

<u>Thème</u>

SCHÉMAS MONOTONES DISCRÉTISÉS EN TEMPS POUR L'ÉQUATION DE SCHRÖDINGER

Présenté par :

Kenneth ASSOGBA kennethassogba@gmail.com

Sous la direction de :

Prof. Julien SALOMON Université Paris-Dauphine

 \mathbf{s}

Année Universitaire: 2018-2019

Résumé & Abstract

Résumé

Les problèmes de contrôle optimal dans les systèmes quantiques suscitent un vif intérêt, aussi bien pour les questions fondamentales que pour les applications existantes et futures. Un problème important est le développement de méthodes de construction de contrôles pour les systèmes quantiques. Une des méthodes couramment utilisée est la méthode de Krotov initialement proposée dans un cadre plus général dans les articles de V.F. Krotov et I.N. Feldman (1978 [1], 1983 [2]). Cette méthode a été utilisée pour développer une nouvelle approche permettant de determiner des contrôles optimaux pour les systèmes quantiques dans [3] et dans de nombreux autres travaux de recherche : [4], [5] et [6] notamment. Leur mise en œuvre numérique repose sur des discrétisations liées à des développement limités. Cette approche entraîne cependant parfois des instabilités numériques. Nous presentons ici plusieurs méthodes de discrétisation temporelle qui permettent de résoudre ce problème en conservant au niveau discret la monotonie des schémas.

Mots-clés

contrôle optimal, schémas monotones convergents, methode de Krotov

Abstract

Mathematical problems of optimal control in quantum systems attract high interest in connection with fundamental questions and existing and prospective applications. An important problem is the development of methods for constructing controls for quantum systems. One of the commonly used methods is the Krotov method initially proposed beyond quantum control in the articles by V.F. Krotov and I.N. Feldman (1978 [1], 1983 [2]). The method was used to develop a novel approach for finding optimal controls for quantum systems in [3], and in many works of various scientists: [4], [5] et [6] especially. However, the properties of the discrete version of these procedures have not been yet tackled with. We present here a stable time and space discretization which preserves the monotonic properties of the monotonic algorithms.

Key words

quantum control, monotonically convergent algorithms, Krotov method,

Notations

Ω	Domaine de \mathbb{R}^d , $d = 1, 2$.
T	Maillage
$(T_i)_{i\in I}$	Famille de maillage
$L^1(\Omega)$	L'espace des fonctions intégrables sur Ω
$L^2(\Omega)$	L'espace des fonctions de carré intégrable sur Ω
$H^n(\Omega)$	L'espace des fonctions de $L^2(\Omega)$ dont les dérivées partielles jusqu'à l'ordre n appartiennent à $L^2(\Omega)$
.	Valeur absolue
$. _{l,T}$	Semi-norme H^l sur l'ensemble T
.	Norme
$\ .\ _a$	Norme dans l'espace a
u_h	Valeur approchée de la fonction <i>u</i>
$H_u(z)$	Matrice hessienne de la fonction u au point z
$\mathcal{H}_u(z)$	Valeur approchée de la matrice hessienne de la fonction u au point z
\mathfrak{M}	Métrique
<.,.>	Produit scalaire de \mathbb{R}^d
∇u	Gradient de la fonction <i>u</i>
A^T	Transposée de la matrice A

Table des matières

R	Résumé & Abstract	i
N	Notations	
In	ntroduction	1
1	Mécanique quantique et contrôle optimal1.1 La mécanique quantique en trois postulats	4 4 4
Bi	ibliographie	

Introduction

Origines de la mécanique quantique

A la fin du XIXe siècle, les diverses branches de la physique s'intégraient dans un édifice cohérent, basé sur l'étude de deux types d'objets distincts, la matière et le rayonnement :

- La matière est faite de corpuscules parfaitement localisables dont le mouvement peut être décrit par la mécanique de Newton. Les grandeurs physiques associées à ces corpuscules s'expriment en fonction des composantes de la position et de l'impulsion qui sont les variables dynamiques fondamentales.
- Le rayonnement est gouverné par les lois de l'électromagnétisme de Maxwell.
 Ses variables dynamiques sont les composantes en chaque point de l'espace des champs électrique et magnétique.

Le succès de la physique était à cette époque impressionnant et tous les phénomènes connus trouvaient leur explication dans le cadre de ce programme classique.

A l'aube du XXe siècle et avec l'essor des progrès technologiques, les physiciens se trouvèrent tout a coup confrontés à des phénomènes nouveaux pour lesquels les prévisions de la théorie classique sont en désaccord flagrant avec l'expérience. Il fallait donc jeter les bases d'une nouvelle théorie susceptible de pallier les insuffisances de la conception classique. (une transition serait appreciable)

Contrôle optimal et optimisation numérique

L'objet de notre étude est un système quantique, modelisé entre deux mesures par l'équation de Schrödinger (cite postulat 2) :

$$i\frac{\partial}{\partial t}\psi(x,t) = H(x)\psi(x,t) \tag{1}$$

En vue de modéliser les intéractions onde-matière a l'échelle atomique, nous introduisons un contrôle, généré par un dipole électrostatique de moment dipolaire $\mu(x)$, émetant un champs (électrique) laser, d'amplitude $\varepsilon(t)$ dépendant du temps. La dynamique du systeme est désormais donnée par :

$$\begin{cases} i\frac{\partial}{\partial t}\psi(x,t) &= H(x)\psi(x,t) - \mu(x)\varepsilon(t)\psi(x,t) \\ \psi(x,t=0) &= \psi_0(x) \end{cases} \tag{2}$$

Nous travaillons en unités atomiques ($\hbar = 1$) avec (a detailler ou a mieux definir par la suite) :

— Hamiltonien interne $H = H_0 + V$

— Operateur energie cinétique $H_0 = -\frac{1}{2} \sum_{n=1}^{p} \frac{1}{m_n} \Delta$

En posant:

$$A(\psi(t), \varepsilon(t)) = -i(H(x) - \mu(x)\varepsilon(t))\psi(x, t)$$
(3)

On se ramène au problème de Cauchy

$$\begin{cases} \dot{\psi}(t) &= A(\psi(t), \varepsilon(t)) \\ \psi(t=0) &= \psi_0 \end{cases} \tag{4}$$

Nous nous posons maintenant deux questions.

Contrôlabilité

Un système est dit contrôlable si on peut le ramener à tout état prédéfini au moyen d'un contrôle. Plus précisément on pose la définition suivante (revoir les ensembles)

Définition 1. On dit que le système (4) est contrôlable (ou commandable) si pour tous les états ψ_0 , ψ_{cible} , il existe un temps fini T et un contrôle admissible $\varepsilon(.)$ tel que $\psi_{cible} = \psi(T, \psi_0, \varepsilon(.))$.

Contrôle optimal

Existe t-il un contrôle pour atteindre un etat cible (upgrade). Nous voulons construire un controle d'amplitude "raisonnable" afin d'ammener le système d'un etat initial ψ_0 a un etat cible $O\psi(T)$. O etant l'observable decrivant l'état cible.

On considere ainsi une fonctionnelle *J*

$$J(\varepsilon) = \langle \psi(T) | O | \psi(T) \rangle - \alpha \int_0^T \varepsilon^2(t) dt \quad \alpha \in \mathbb{R}_+$$
 (5)

et on se pose le probleme : Trouver ε tel que ε resouds

$$\max_{\varepsilon \in L^2(0,T)} J(\varepsilon)$$

Au maximum de la fonctionnelle $J(\varepsilon)$, les équations de Euler-Lagrange sont satisfaites. Le Lagrangien du système est donné par :

$$\mathcal{L}(\psi, \varepsilon, \chi) = J(\varepsilon) - 2\Re \left\{ \int_0^T \langle \chi(t) | \partial_t + i(H_0 + V - \mu(x)\varepsilon(t)) | \psi(t) \rangle dt \right\}$$
 (6)

Schémas monotones

Une strategie efficace de résolution de ces équations est donnée par une classe d'algorithmes relevant du contrôle quantique, les schémas monotones. Ils ont etes introduits en 1992 par David Tannor, Vladimir Kazakov et V. Orlov, [3], sur la base des travaux de Krotov(precision). Une amelioration a ensuite ete proposee par Wusheng Zhu et

Herschel Rabitz [4] en 1998. Une généralisation est donnée par Y. Maday et G. Turinici en 2003 [5]

Question : Comment construire une discrétisation temporelle puis spaciale de ces algorithmes qui préserve la propriété de monotonie?

(say it better)Dans ce travail, nous construisons et implémentons une telle discretisation. Dans le premier chapitre nous introduisons la mécanique quantique en trois postulats. Dans le chapitre trois, nous presentons le resultats de nos simulations.

MÉCANIQUE QUANTIQUE ET CONTRÔLE OPTIMAL

1.1 La mécanique quantique en trois postulats

1.1.1 Premier postulat de la mécanique quantique

Fonction d'onde

Au mouvement de toute particule, on associe une fonction $\psi(x,t)$ appelée fonction d'onde. $\psi(x,t)$ nous donne toutes les informations sur l'état quantique de la particule a l'instant t.

Cas d'une particule dans l'espace a une dimension

(a mettre en subsssection) A-Cas d'une particule dans l'espace a une dimension La probabilité pour que la particule soit dans l'intervalle [a,b] est donnée par l'aire de la courbe située entre x=a et x=b (figure si possible)

$$\int_{a}^{b} dP(x) = \int_{a}^{b} |\psi(x,t)|^{2} dx \tag{1.1}$$

Il est impossible de connaître avec précision la position de la particule a un instant t. On ne peut que connaître la probabilité dP(x) pour qu'elle soit entre x et x + dx, soit :

$$dP(x) = |\psi(x,t)|^2 dx = \psi(x,t) \overline{\psi(x,t)} dx \tag{1.2}$$

La particule doit être quelque part sur l'axe X'OX, par conséquent :

$$\int_{-\infty}^{+\infty} |\psi(x,t)|^2 dx = 1 \tag{1.3}$$

pour tout t. ψ est donc de carre sommable. La densite de probabilite est donnee par

$$\frac{dP(x,t)}{dx} = |\psi(x,t)|^2 = \rho(x,t)$$
 (1.4)

B-Cas d'une particule dans l'espace à trois dimensions On a

$$\int dP(\vec{r},t) = \iiint_{espace} |\psi(x,t)|^2 d^3r = 1$$
 (1.5)

Ou d^3r représente l'élément de volume donnée par :

$$d^3r = dxdydz = r^2 sin\theta dr d\theta d\varphi$$

C-Cas de N particules

L'espace le mieux adapté à la description des systèmes en physique quantique est un espace Ω , nommé espace des configurations qui représente l'ensemble de toutes les configurations possibles du système. Par exemple, dans le cas d'un système à N particules isolées et sans contraintes, l'espace des configurations est $\Omega = \mathbb{R}^{3N}$ et $\psi(x,t) \in L^2(\Omega,\mathbb{C})$.

Postulat 1. A tout système quantique correspond un espace de Hilbert complexe H, tel que l'ensemble des états accessibles au système soit en bijection avec la sphère unité de H.

Dans la suite $\|\cdot\|$ et $\langle\cdot,\cdot\rangle$ désignent la norme et le produit hermitien associés à \mathcal{H} .

Observables et deuxième postulat

(talk about) Superposition des etats

(A beaucoup mieux traiter) (voir doc upmc)

En mécanique quantique, une grandeur ne prend une valeur déterminée que lors d'une mesure :

Postulat 2. A toute grandeur physique (scalaire) A correspond un opérateur A auto-adjoint sur H, vérifiant la propriété suivante : le résultat de la mesure d'une grandeur physique A ne peut être qu'un élément du spectre de A.

La moyenne des mesures de A est quant à elle égale à $\langle \psi | A | \psi \rangle$ où la notation $\langle \cdot | A | \cdot \rangle$ est définie par :

$$\langle \psi | A | \chi \rangle = \int_{\Omega} \bar{\psi} A \chi \tag{1.6}$$

ou ψ et χ sont des fonctions de $L^2(\Omega,\mathbb{C})$ et A un opérateur arbitraire défini de $L^2(\Omega,\mathbb{C})$ dans lui-même. (tableau observables)

Equation de Schrödinger et troisième postulat

L'équation de Schrodinger, conçue par le physicien autrichien Erwin Schrodinger en 1952, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique.

Postulat 3. Entre deux mesures, l'évolution de l'état est régie par l'équation de Schrödinger

$$i\frac{\partial}{\partial t}\psi(x,t) = H(x)\psi(x,t) \tag{1.7}$$

Bibliographie

- [1] Krotov, V.F., Feldman, I.N. *Iterative methods for solving extreme problems*. In the book: Modeling of technical and economic processes, Moscow, Moscow Economic and Statistical Institute (MESI) Publ. (1978), 54–65. (en russe)
- [2] Krotov, V.F., Feldman, I.N. *An iterative method for solving problems of optimal control*. Engineering Cybernetics, 21:2 (1983), 123–130.
- [3] Tannor, D., Kazakov, V., Orlov, V. Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds. Time Dependent Quantum Molecular Dynamics, edited by Broeckhove J. and Lathouwers L. Plenum, 347–360 (1992)
- [4] Zhu, W., Rabitz, H. A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J. Chem. Phys. 109, 385–391 (1998)
- [5] Maday, Y., Turinici, G. New formulations of monotonically convergent quantum control algorithms. J. Chem. Phys. 118, 8191–8196 (2003)
- [6] Maday, Y., Salomon, J. and Turinici, G.. *Monotonic time-discretized schemes in quantum control*. Num. Math., 2005.
- [7] Salomon, J. Contrôle en chimie quantique : conception et analyse de schémas d'optimisation. 2005.
- [8] Strang, G. *Accurate partial difference methods I : Linear Cauchy problems.*. Arch. Rat. Mech. and An. 12, 392–402 (1963)
- [9] Trélat, E. Contrôle optimal : théorie et applications. avril 2016.
- [10] Dossa, A. Cours de Physique Quantique. 2015-2016.