

deeplearning.ai

Transformers vs RNNs

Outline

- Issues with RNNs
- Comparison with Transformers

Neural Machine Translation

Seq2Seq Architectures

RNNs vs Transformer: Encoder-Decoder

deeplearning.ai

Transformers Overview

The Transformer Model

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

https://arxiv.org/abs/1706.03762

Scaled Dot-Product Attention

(Vaswani et al., 2017)

softmax
$$\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$$

Multi-Head Attention

The Encoder

The Decoder

RNNs vs Transformer: Positional Encoding

Summary

- In RNNs parallel computing is difficult to implement
- For long sequences in RNNs there is loss of information
- In RNNs there is the problem of vanishing gradient
- Transformers help with all of the above

Transformer Applications

Outline

- Transformers applications in NLP
- Some Transformers
- Introduction to T5

Transformer NLP applications

Text summarization

Auto-Complete

Named entity recognition (NER)

Question answering (Q&A)

Translation

Chat-bots

Other NLP tasks

Sentiment Analysis
Market Intelligence
Text Classification
Character Recognition
Spell Checking

State of the Art Transformers

Radford, A., et al. (2018) Open Al

Devlin, J., et al. (2018) Google Al Language

Colin, R., et al. (2019) Google **GPT-2**: Generative Pre-training for Transformer

BERT:Bidirectional Encoder Representations from Transformers

T5: Text-to-text transfer transformer

T5: Text-To-Text Transfer Transformer

Translate English into French: "I am happy" "Je suis content" **Translation** Unacceptable **Cola sentence: "**He bought fruits and." Classification **T5** *Cola stands for "Corpus of Linguistic Acceptability" Acceptable Cola sentence: "He bought fruits and vegetables." Q&A Question: Which volcano in Tanzania is the **Answer:** Mount highest mountain in Africa? Kilimanjaro

T5: Text-To-Text Transfer Transformer

Stsb sentence1: "Cats and dogs are mammals." **Sentence2:** "There are four known forces in nature – gravity, electromagnetic, weak and strong."

Stsb sentence1: "Cats and dogs are mammals." **Sentence2:** "Cats, dogs, and cows are domesticated."

Summarize: "State authorities dispatched emergency crews Tuesday to survey the damage after an onslaught of severe weather in mississippi..."

T5: Demo

Summary

- Transformers are suitable for a wide range of NLP applications
- Some transformers include GPT, BERT and T5
- T5 is a powerful multi-task transformer

deeplearning.ai

Scaled Dot-Product Attention

Outline

- Revisit scaled dot product attention
- Mathematics behind Attention

Scaled dot-product attention

(Vaswani et al., 2017)

Weighted sum of values V

Just two matrix multiplications and a Softmax!

Queries, Keys and Values Size of the embedding suis heureux Je **Embedding** Stack Je suis heureux happy am **Embedding** Stack I am happy Same Generally the number of same rows Stack

Attention Math

Summary

- Scaled Dot-product Attention is essential for Transformer
- The input to Attention are queries, keys, and values
- GPUs and TPUs

deeplearning.ai

Masked Self-Attention

Outline

- Ways of Attention
- Overview of masked Self-Attention

Encoder-Decoder Attention

Queries from one sentence, keys and values from another

Self-Attention

Queries, keys and values come from the same sentence

Masked Self-Attention

Queries, keys and values come from the same sentence. Queries don't attend to future positions.

Masked self-attention math

Summary

- There are three main ways of Attention: Encoder/Decoder, self-attention and masked self-attention.
- In self-attention, queries and keys come from the same sentence
- In masked self-attention queries cannot attend to the future

deeplearning.ai

Multi-head Attention

Outline

- Intuition Multi-Head Attention
- Math of Multi-Head Attention

Multi-Head Attention - Overview

Multi-Head Attention - Overview

Multi-Head Attention

Head 1

Summary

- Multi-Headed models attend to information from different representations
- Parallel computations
- Similar computational cost to single-head attention

deeplearning.ai

Transformer decoder

Outline

Overview of Transformer decoder

Implementation (decoder and feed-forward block)

Transformer decoder

Overview

- input: sentence or paragraph
 - we predict the next word
- sentence gets embedded, add positional encoding
 - \circ (vectors representing $\{0, 1, 2, \dots, K\}$)
- multi-head attention looks at previous words
- feed-forward layer with ReLU
 - o that's where most parameters are!
- residual connection with layer normalization
- repeat N times
- dense layer and softmax for output

Transformer decoder

The Transformer decoder

The Transformer decoder

Feed forward layer

The Transformer decoder

Feed forward layer

Summary

- Transformer decoder mainly consists of three layers
- Decoder and feed-forward blocks are the core of this model code
- It also includes a module to calculate the cross-entropy loss

deeplearning.ai

Transformer summarizer

Outline

- Overview of Transformer summarizer
- Technical details for data processing
- Inference with a Language Model

Transformer for summarization

Technical details for data processing

Model Input:

ARTICLE TEXT <EOS> SUMMARY <EOS> <pad> ...

Tokenized version:

[2,3,5,2,1,3,4,7,8,2,5,1,2,3,6,2,1,0,0]

Loss weights: Os until the first <EOS> and then 1 on the start of the summary.

Cost function

Cross entropy loss

$$J = -rac{1}{m}\sum_{j}^{m}\sum_{i}^{K}y_{j}^{i}\log\hat{y}_{j}^{i}$$

j: over summary

i: bach elements

Inference with a Language Model

Model input:

```
[Article] <EOS> [Summary] <EOS>
```

Inference:

- Provide: [Article] < EOS>
- Generate summary word-by-word
 - o until the final <EOS>
- Pick the next word by random sampling
 - each time you get a different summary!

Summary

- For summarization, a weighted loss function is optimized
- Transformer Decoder summarizes predicting the next word using
- The transformer uses tokenized versions of the input

