6-2. 다변수 함수의 그래프와 점선 및 접면

다변수 함수에서의 그래프, 접선, 그리고 접면은 기본적인 개념부터 확장된 내용까지 순차적으러 설명이 필요합니다. 이를 이해하기 위해선 함수의 그래프뿐만 아니라 미분의 개념을 확장해 접선과 접면을 구하는 방법을 알아야 합니다.

1. 다변수 함수의 그래프

다변수 함수는 여러 입력값에 대해 하나의 출력값을 반환하는 함수입니다. 예를 들어, 이 차원의 다변수 함수는 다음과 같이 표현될 수 있습니다.

$$z = f(x, y)$$

이는 x와 y라는 두 입력값에 대해 z라는 출력값을 반환하는 함수입니다. 이를 3D 그래 프로 표현할 수 있으며, z값이 함수의 높이에 해당하게 됩니다.

2. 접선과 접면 (Tangent Line and Tangent Plane)

다변수 함수에서 접선과 접면은 다변수 함수의 특정 지점에서 곡선 또는 곡면에 대해 얼마나 기울어져 있는지를 나타냅니다. 접선은 일변수 함수에서 구할 수 있고, 접면은 다변수 함수에서 특정 점에서의 기울기를 반영하는 평면입니다.

접선 (Tangent Line)

접선은 일변수 함수에서 기울기를 구하여 정의됩니다. 기울기는 미분으로 계산하며, 이는 다변수 함수의 한 변수에 대한 변화율을 나타냅니다.

접면 (Tangent Plane)

접면은 다변수 함수의 특정 점에서 곡면에 접하는 평면입니다. 예를 들어, f(x,y)함수에서 접면은 다음과 같이 표현됩니다.

$$z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$$

• (x_0, y_0, z_0) 는 접면을 계산하는 점

- f_x 와 f_y 는 각각 x와 y에 대한 편미분
- 접면은 다변수 함수의 변화율을 나타내는 편미분을 사용해 구성됩니다.

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 윈도우 사용자는 아래 주석 해제
plt.rc('font', family='Malgun Gothic')
# 마이너스 폰트 깨지는 문제에 대한 대처
plt.rcParams['axes.unicode minus'] = False
# 다변수 함수 정의 (예시 함수: z = x^2 + y^2)
def f(x, y):
    return x^{**}2 + y^{**}2
# 편미분 계산 (f x와 f y 구하기)
def f_x(x, y):
    return 2*x
def f_y(x, y):
    return 2*v
# 특정 점에서 접면을 구하는 함수
def tangent_plane(x0, y0):
   z0 = f(x0, y0)
   fx0 = f_x(x0, y0)
   fy0 = f_y(x0, y0)
   # 접면 방정식: z = fx0 * (x - x0) + fy0 * (y - y0) + z0
    return lambda x, y: fx0 * (x - x0) + fy0 * (y - y0) +
# 그래프를 그릴 x, y 좌표 생성
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
```

```
# 3D 그래프 그리기
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 원래 함수의 그래프
ax.plot_surface(X, Y, Z, cmap='viridis', alpha=0.6, edgeco.
# 접면 그리기 (예시: 점 (1, 1)에서 접면)
x0, y0 = 1, 1
tangent = tangent_plane(x0, y0)
Z_{tangent} = tangent(X, Y)
# 접면을 그래프에 추가
ax.plot_surface(X, Y, Z_tangent, color='red', alpha=0.5, e
# 그래프 설정
ax.set_title("다변수 함수의 그래프와 접면")
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
plt.show()
```

다변수 함수의 그래프와 접면

- f(x,y): 다변수 함수 z=f(x,y)로, 여기서는 예시로 $z=x^2+y^2$ 를 사용
- $f_x(x,y), f_y(x,y)$: 각각 ${\sf x}$ 와 ${\sf y}$ 에 대한 편미분입니다. $z=x^2+y^2$ 함수의 경우, $f_x=2x$ 이고 $f_y=2y$ 입니다.
- tangent_plane(x0, y0): 특정 점 (x_0, y_0) 에서의 접면을 계산하는 함수입니다. 접면 방정식에 따라 x, y좌표에 대응하는 z값을 반환합니다.
- 그래프는 원래 함수의 3D 그래프와 특정 점에서의 접면을 함께 보여줍니다.

4. 접면 방정식의 구체적 의미

접면 방정식은 다변수 함수의 특정 점에서의 기울기를 반영한 평면을 나타냅니다. 함수의 변화율이 클수록 접면의 기울기도 커집니다. 예시에서 $f(x,y)=x^2+y^2$ 는 원형 대칭의 곡면을 이루며, 특정 점에서의 접면은 그 점을 중심으로 함수의 기울기를 나타냅니다.