UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS Y SISTEMAS LENGUAJES FORMALES Y DE PROGRAMACIÓN PRIMER SEMESTRE 2025

Proyecto 1 AFDGraph

Sección	Catedrático	Tutor Académico
A+	Ing. Otto Amílcar Rodríguez Acosta	Danny Hugo Bryan Tejaxún Pichiyá
A-	Inga. Vivian Damaris Campos González	Luisa María Ortíz Romero
B+	Ing. David Estuardo Morales Ajcot	Herberth Abisai Avila Ruiz
B-	Inga. Zulma Karina Aguirre Ordoñez	Jonatan Leonel Garcia Arana

OBJETIVOS

General

 Desarrollar habilidades en Java para aplicación e implementación de conocimientos adquiridos sobre el análisis.

Específicos:

- Comprender el manejo de archivos en Java.
- Implementar un programa en Java que permita aplicar conocimientos sobre analizadores léxicos.
- Desarrollar habilidades y conocimientos en lógica de programación.
- Aplicar conocimientos sobre programación orientada a objetos en Java.
- Aplicar conocimientos sobre conceptos generales como alfabeto, símbolos y cadenas.

ENUNCIADO

En la universidad, los catedráticos del área de Ciencias de la Computación necesitan una herramienta para visualizar **Autómatas Finitos Deterministas** (**AFD**) a partir de una descripción textual. Actualmente, los estudiantes deben dibujar los autómatas manualmente basándose en tablas de transición, lo que puede llevar a errores y dificultar la comprensión de los conceptos.

Para solucionar esto, se desarrollará un **programa en Java** que lea archivos de entrada con la definición de un AFD y genere una imagen visual del autómata.

PROPUESTA DE INTERFAZ

FUNCIONES DEL SISTEMA

1. Analizar Archivo

a. Muestra una ventana emergente que permite al usuario seleccionar un archivo ".lfp" que contiene información de los jugadores

- b. Esta función permitirá guardar en memoria (en un HashMap) los datos de los autómatas y construir la estructura del autómata usando POO.
- c. Los autómatas tienen un nombre propio, por lo que si vienen dos o más autómatas con el mismo nombre en un mismo archivo se tomará en cuenta el último.

2. Graficar Autómata

- a. Es posible recorrer la estructura en la que se almacenaron los autómatas y seleccionar un autómata en específico para graficar.
- b. Los autómatas deben de mostrarse en un selectbox y luego dar click en el botón de "Graficar".

3. Generar Reportes

Hay 3 reportes principales que se podrán generar.

a. Reporte de Tokens.

Token	Lexema	Línea	Columna
Llave Izquierda	{	1	2
Identificador	AFD1	2	9
Dos Puntos	:	2	10
Llave Izquierda	{	2	12
Reservada	descripcion	3	20
Dos Puntos	:	3	21
Cadena	"Este autómata reconoce cadenas numéricas."	3	65
Coma	,	3	66
Reservada	estados	4	16

b. Reporte de Errores Léxicos.

Caracter	Línea	Columna
@	1	1
\$	1	2
~	2	6
+	2	8

SCRIPT DE AUTÓMATAS

Ejemplo de Archivo de Autómatas

```
AFD1: {
              descripcion: "Este autómata reconoce cadenas numéricas.",
              estados: [S0, S1, S2, S3, S4, S5, S6, S7, S8],
             alfabeto: ["1", "2", "3"],
             inicial: S0,
             finales: [S0, S1, S2, S3, S5, S6, S7, S8],
              transiciones: {
                  S0 = ("1" -> S1, "2" -> S2, "3" -> S3),
                  S1 = ("2" \rightarrow S1),
                 52 = ("2" -> 51, "3" -> 54),

53 = ("1" -> 55, "2" -> 56, "3" -> 57),

54 = ("1" -> 58, "3" -> 54),
                 S5 = ("1" -> S5),
                 S6 = ("2" -> S6),
                  S7 = ("1" -> S8, "2" -> S6, "3" -> S7)
         AFD2: {
             descripcion: "Este autómata reconoce cadenas numéricas con o sin punto decimal.",
             estados: [S0, S1, S2, S3, S4, S5, S6, S7, S8],
              alfabeto: ["a", "b", "c", "x", "y", "z", "0", "1"],
              inicial: S0,
             finales: [S3, S6, S7],
             transiciones: {
                  S0 = ("a" \rightarrow S1, "x" \rightarrow S2, "0" \rightarrow S3, "1" \rightarrow S3),
                  S1 = ("b" -> S4, "x" -> S2),
                 S2 = ("y" -> S5),
                 S3 = ("0" -> S3, "1" -> S3),
                 S4 = ("c" -> S6),
S5 = ("z" -> S7),
                  S6 = ("a" -> S8),
                  S8 = ("b" -> S4)
             descripcion: "Este autómata reconoce cadenas numéricas con o sin punto decimal.",
             estados: [S0, S1, S2, S3],
             alfabeto: ["digit", "."],
             inicial: S0,
              finales: [S1, S3],
              transiciones: {
                 S0 = ("digit" -> S1),
                 S1 = ("digit" -> S1, "." -> S2),
                 S2 = ("digit" -> S3),
                  S3 = ("digit" -> S3)
```

GRAFO DEL AUTÓMATA

```
{
    AFD1: {
          descripcion: "Este autómata reconoce cadenas numéricas.",
          estados: [S0, S1, S2, S3, S4, S5, S6, S7, S8],
          alfabeto: ["1", "2", "3"],
          inicial: S0,
         finales: [S0, S1, S2, S3, S5, S6, S7, S8],
          transiciones: {
              S0 = ("1" -> S1, "2" -> S2, "3" -> S3),
              S1 = ("2" -> S1),

S2 = ("2" -> S1, "3" -> S4),

S3 = ("1" -> S5, "2" -> S6, "3" -> S7),

S4 = ("1" -> S8, "3" -> S4),
              S5 = ("1" -> S5),
              S6 = ("2" -> S6),
              S7 = ("1" -> S8, "2" -> S6, "3" -> S7)
          }
     }
}
```

Grafo para el autómata del archivo de ejemplo. El grafo se generará a partir de las transiciones especificadas en el archivo de entrada.

ENTREGABLES

- Manual de Usuario
- Manual Técnico
- Código fuente

CONSIDERACIONES

- Se debe desarrollar de forma individual.
- El proyecto será anulado si el estudiante utiliza herramientas externas para el analizador léxico o el escáner.
- No se permite el uso de herramientas como ANTLR, JFlex, Lex, Yacc o cualquier generador automático de analizadores léxicos.
- El análisis léxico debe realizarse mediante un autómata finito determinista (AFD), con una implementación que procese carácter por carácter y maneje los estados del analizador manualmente.
- En el repositorio privado en Github con el nombre [LFP]<carnet> creado anteriormente debe crear una carpeta llamada Proyecto1 que contenga los entregables requeridos.
- Para la interfaz gráfica, es obligatorio utilizar Java Swing.
- No se permitirá el uso de JavaFX u otros frameworks gráficos externos.
- Agregar al auxiliar a su repositorio de GitHub: LuisaMariaO.
- La entrega se realizará en la plataforma UEDI. Únicamente deberán subir el enlace de su repositorio de GitHub en la plataforma.
- No se aceptan entregas vía correo electrónico u otro medio.
- La calificación será presencial.
- La calificación del proyecto será presencial y durará como máximo 15 minutos, en un horario que posteriormente será establecido.
- El estudiante es responsable del horario que elija para calificarse, en caso de no poder presentarse deberá notificar al auxiliar con suficiente anticipación (2 días antes) para ceder su lugar a otro estudiante, en caso contrario el estudiante solo obtendrá el 80% de su nota obtenida.
- No se dará prórroga para la entrega de la práctica.
- COPIA PARCIAL O TOTAL DEL PROYECTO TENDRÁ UNA NOTA DE 0 PUNTOS, Y SE NOTIFICARÁ A LA ESCUELA DE SISTEMAS PARA QUE SE APLIQUEN LAS SANCIONES CORRESPONDIENTES.
- En el caso de no cumplir con alguna de las indicaciones antes mencionadas, NO se calificará la práctica; por lo cual, se tendrá una nota de cero puntos.

Fecha de entrega: 26 de marzo de 2025 antes de las 23:59, no se recibirá después de la fecha y hora establecida.