Lyapunov Exponents

Jiaheng Chen, Ran Tang, Thomas Wang, Tommenix Yu

STAT

December 17, 2022

Outline

Backgrounds: Chaotic system

Lyapunov Spectrum

Lyapunov exponents: Properties

Computing Lyapunov exponents

References

Chaotic system

▶ It may happen that slight differences in the initial conditions produce very great differences in the final phenomena; a slight error in the former would make an enormous error in the latter. Prediction becomes impossible and we have the fortuitous phenomena. (Henri Poincaré 1914).

Description of chaotic systems

"Nearby trajectories eventually separate."

Definition

A flow ϕ exhibits sensitive dependence on an invariant set X if there is a fixed r such that for each $x \in X$ and $\forall \epsilon > 0$, there is a nearby $y \in B_{\epsilon}(x) \cap X$ such that $|\phi_t(x) - \phi_t(y)| > r$ for some $t \geq 0$.

But is it enough?

Example

(Example 7.2 in book) In polar coordinate the system on \mathbb{R}^2

$$\begin{cases} \dot{\theta} = r \\ \dot{r} = 0 \end{cases}$$

In this example the system is just concentric orbits rotating with speed proportional to its distance to the origin:

But since the orbits farther away runs much faster, sensitive dependence will occur for any annulus.

General characterization of Chaotic system

- Sensitive dependence: "Nearby trajectories eventually separate."
- ► Transitive: "Wanders everywhere."

Definition

A flow ϕ is topologically transitive on an invariant set X if for every pair of nonempty, open sets $U, V \subset X$ there is a t > 0 such that $\phi_t(U) \cap V \neq \emptyset$.

Theorem

A flow ϕ is transitive $\iff \phi$ has a dense orbit in X.

- Always exists close enough point on the same orbit with time far away.
- Helps Wolf's and Kantz's method.

Lyapunov Exponents

Modification of sensitive dependence.

- Sensitive dependence : yes/no check;
- **Lyapunov Exponents**: quantitative measure.

The distance grows exponentially locally.

$$\frac{|\phi_{t_0+t}(x) - \phi_{t_0+t}(x+\delta)|}{|\phi_{t_0}(x) - \phi_{t_0}(x+\delta)|} \sim ce^{\lambda t}$$

- ightharpoonup Care about λ ;
- Look at locally because of attractors (Rosseler).

Caveats

- Infinitesimally close orbits separate exponentially.
- Caveat: simply linearize the system is not good enough.
- We cannot simply borrow the tools such as the Jacobian matrix and the Floquet theory for studying a aperiodic orbit.
- We will focus on a particular orbit, $\phi_t(x_0)$, the *fiducial* trajectory, of a flow ϕ on an n-dimensional phase space M.

Tangent Bundle

Given a manifold M, for each point x ∈ M, let T_xM denote the set of tangent vectors at x,i.e., the tangent space at x. Since there is a tangent space attached to every x, we can define make the following definition.

Definition

the tangent bundle of M is

$$TM = \{(x, v) : x \in M, v \in T_xM\}.$$

Fundamental Matrix

▶ For a trajectory $\phi_t(x_0 + \epsilon_0)$ starting near x_0 , and get that the initial deviation vector v_0 evolves into

$$v(t) = D_{\mathsf{x}} \phi_t(\mathsf{x}_0) \mathsf{v}_0. \tag{1}$$

▶ Putting 1 in the ODE for ϕ gives

$$\dot{v} = Df(\varphi_t(x_0)) v \equiv A(t)v. \tag{2}$$

Therefore, since (1) and (2) holds for any initial vector v_0 , the fundamental matrix solution of (2) is

$$\Phi\left(t;x_{0}\right)=D_{x}\varphi_{t}\left(x_{0}\right)$$

satisfying

$$\dot{\Phi} = A(t)\Phi, \quad \Phi(0; x_0) = I. \tag{3}$$

Fundamental Matrix Continued

▶ for any vector v the solution to 2 is $\Phi(t; x_0)v$. The fundamental matrix is a linear operator

$$\Phi\left(t;x_{0}\right):\,T_{x_{0}}M\rightarrow\,T_{\varphi_{t}\left(x_{0}\right)}M.$$

Takeaway: if $\phi_t(x_0)$ is *periodic*, then $\phi_T(x_0) = x_0$, so the monodromy matrix maps $T_{x_0}M$ back to itself. Therefore, we could calculate the Floquet multipliers. On the other hand, for an *aperiodic* trajectory, we cannot assume that $T_{x_0}M = T_{\varphi_t(x_0)}M$, so an equation of the form $\lambda v = \Phi v$ does not make sense.

Lyapunov exponents: Definition

Definition

The **Lyapunov spectrum** of the dynamical satisfying 3 is the set of limit points of

$$\mathit{Sp}(x,v) = \left\{ \lambda = \lim_{j o \infty} rac{1}{t_j} \log |\Phi\left(t_j;x
ight)v| \ \ \text{for some sequence} \ \ t_j \underset{j o \infty}{ o} \infty
ight\}.$$

This definition makes sense because $\log \frac{|\Phi v|}{t}$ is bounded from both above and below in positive time by the following lemma.

Lemma

Suppose $\Phi(t;x)$ is the fundamental matrix solution of 3 and $\|A(t)\| \leq K$ for all $t \geq 0$. Then for any ν there are positive constants c and c' such that

$$c'e^{-Kt} \le |\Phi(t;x)v| \le ce^{Kt}$$

for all $t \geq 0$.

Lyapunov Exponents: Remarks

- ► Remark: the Lyapunov spectrum is dependent upon both the fiducial trajectory and the initial deviation vector.
- Two special limits: infimum limit and supremum limit:

$$\limsup_{t\to\infty} s(t) \equiv \lim_{T\to\infty} \left(\sup_{t>T} s(t)\right), \quad \liminf_{t\to\infty} s(t) \equiv \lim_{T\to\infty} \left(\inf_{t>T} s(t)\right).$$

- since any limit point of a bounded sequence are bounded by liminf and limsup and we are considering a continuous system, the Lyapunov spectrum is a closed interval between liminf and limsup.
- ► A Lyapunov spectrum degenerates to a point when they coincide, in this case, we say it is *regular*.

Lyapunov Exponents

► The special case is the largest growth rate, which is exactly the lim sup.

Definition

The Lyapunov exponent is the supremum limit

$$\mu(x, v) := \limsup_{t \to \infty} \frac{1}{t} \log |\Phi(t; x)v| = \sup Sp(x, v).$$

We can introduce a more general notation.

Definition

The **characteristic exponent** for a function f(t) is

$$\chi(f) \equiv \limsup_{t \to \infty} \frac{1}{t} \log |f(t)|.$$

In this notation, $\mu(x, v) = \chi(\Phi(t; x)v)$.

A Simple Example

Consider the linear one-dimensional ODE

$$\dot{v} = (\cos(\log|t|) + \sin(\log|t|))v,$$

which has general solution of the form

$$f(t) = \exp(t \sin(\log|t|))v_0.$$

In this case, the one-dimensional fundamental matrix is just the scalar $\exp(t\sin(\log|t|))$, so the Lyapunov spectrum is

$$\left\{\lim_{j\to\infty}\frac{1}{t_j}t_j\sin\left(\log|t_j|\right)\right\}=[-1,1],$$

and the Lyapunov exponent is

$$\limsup_{t\to\infty} \sin(\log|t|) = 1.$$

Three basic properties

Property 1:

$$\chi(cf) = \chi(f)$$

Property 2:

$$\chi(f+g) \leq \max(\chi(f),\chi(g))$$

► Property 3:

$$\chi(fg) \leq \chi(f) + \chi(g).$$

Lemma 1

(Lemma 7.10 in textbook)

The Lyapunov exponent is independent of the choice of norm on \mathbb{R}^n .

Proof Outline:

There exist constants s and S > 0 such that for every vector v,

$$s|v|_1 \leq |v|_2 \leq S|v|_1.$$

Therefore,

$$\chi(s|\Phi(t;x)v|_1) \leq \chi(|\Phi(t;x)v|_2),$$

Then by Property 1, we have $\mu_1 \leq \mu_2$.

Lemma 2

(Lemma 7.11 in textbook)

If $\varphi_t(x)$ is a bounded trajectory of a C^2 flow φ on an n-dimensional manifold, then it has at most n distinct Lyapunov exponents.

Proof Outline:

Suppose there are two different exponents $\mu_1 > \mu_2$ for linearly independent vectors v_1 and v_2 .

Since the equation $\dot{v}=A(t)v$ is linear, the length of any linear combination $v=\alpha v_1+\beta v_2$ grows asymptotically at the rate μ_1 , provided only that $\alpha\neq 0$.

Lemma 3 (Lyapunov basis)

It is conventional to order the exponents so that

$$\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$$
.

Any set of independent vectors $\{v_1, v_2, \dots, v_n\}$ so that

$$\sum_{i=1}^{n} \mu_i \left(x, v_i \right)$$

is as small as possible is called a **Lyapunov basis**.

Lemma

(Lemma 7.12 in textbook)

If $\Phi = [v_1, v_2, \dots, v_n]$ is any fundamental matrix solution of equation $\dot{v} = A(t)v$ obeying $\mu_1 \ge \mu_2 \ge \dots \ge \mu_n$, then there is a unit upper triangular matrix U such that ΦU is a Lyapunov basis.

Lemma 4

(Lemma 7.13 in textbook) If $\varphi_t(x_o)$ is a bounded orbit of the flow φ that is not forward asymptotic to an equilibrium, then it has a zero Lyapunov exponent.

Proof Outline: Consider $v(t) = f(\varphi_t(x_o))$,

$$\frac{d}{dt}v(t) = \frac{d}{dt}f\left(\varphi_t\left(x_o\right)\right) = Df\left(\varphi_t(x)\right)\frac{d}{dt}\varphi_t\left(x_o\right) = Df\left(\varphi_t\left(x_o\right)\right)v(t).$$

Thus v(t) is a solution of $\dot{v} = A(t)v$ with initial condition $v_0 = f(x_0)$.

Theorem (Lyapunov)

(Theorem 7.15 in textbook)

Suppose $\varphi_t(x)$ is a bounded orbit of a flow φ and $[v_1, v_2, \ldots, v_n]$ is an independent set of vectors with Lyapunov exponents $\mu_i = \mu(x, v_i)$. If the limit

$$\delta = \limsup_{t o \infty} rac{1}{t} \int_0^t \operatorname{tr} Df\left(arphi_s(x)
ight) ds$$

exists, then

$$\delta \leq \sum_{i=1}^{n} \mu_i.$$

Proof Outline:

$$\det(\Phi(t;x)) = \exp \int_0^t \operatorname{tr} Df\left(\varphi_s(x)\right) ds \text{ (Abel's theorem)}$$

$$P(t) = \Phi(t;x)P(0) \implies \delta = \chi(\det\Phi(t;x)) = \chi(\det P(t)).$$

$$\implies \chi(\det P) \leq \sum_{j=1}^n \max_{1 \leq i \leq n} \chi\left(P_{ij}\right) = \sum_{j=1}^n \chi\left(v_i\right)$$

How to compute $\mu(x_0, v_0) \equiv \limsup_{t \to \infty} \frac{1}{t} \ln |v(t)|$?

How to compute $\mu(x_0, v_0) \equiv \limsup_{t \to \infty} \frac{1}{t} \ln |v(t)|$? Need to integrate both

- ► The original system : $\dot{\phi}_t(x_0) = f(\phi_t(x_0)), \ \phi_t(x_0)|_{t=0} = x_0;$
- ► The linearized system:

$$\dot{v} = Df(\phi_t(x_0)) v, \ v|_{t=0} = v_0, \ |v_0| = 1.$$

How to compute $\mu(x_0, v_0) \equiv \limsup_{t \to \infty} \frac{1}{t} \ln |v(t)|$? Need to integrate both

- ► The original system : $\dot{\phi}_t(x_0) = f(\phi_t(x_0)), \ \phi_t(x_0)|_{t=0} = x_0;$
- ► The linearized system:

$$\dot{v} = Df(\phi_t(x_0))v, \ v|_{t=0} = v_0, \ |v_0| = 1.$$

Almost any initial vector v_0 will have some component along the direction of the maximal Lyapunov direction.

How to compute $\mu(x_0, v_0) \equiv \limsup_{t \to \infty} \frac{1}{t} \ln |v(t)|$? Need to integrate both

- ► The original system : $\dot{\phi}_t(x_0) = f(\phi_t(x_0)), \ \phi_t(x_0)|_{t=0} = x_0;$
- ► The linearized system:

$$\dot{v} = Df(\phi_t(x_0))v, \ v|_{t=0} = v_0, \ |v_0| = 1.$$

- Almost any initial vector v_0 will have some component along the direction of the maximal Lyapunov direction.
- ► Estimate: integrate for some "long" time T

$$\mu_{ ext{max}}(\mathcal{T}) pprox rac{1}{\mathcal{T}} \ln |v(\mathcal{T})|$$

How to compute $\mu(x_0, v_0) \equiv \limsup_{t \to \infty} \frac{1}{t} \ln |v(t)|$? Need to integrate both

- ► The original system : $\dot{\phi}_t(x_0) = f(\phi_t(x_0)), \ \phi_t(x_0)|_{t=0} = x_0;$
- The linearized system:

$$\dot{v} = Df(\phi_t(x_0)) v, \ v|_{t=0} = v_0, \ |v_0| = 1.$$

- Almost any initial vector v_0 will have some component along the direction of the maximal Lyapunov direction.
- Estimate: integrate for some "long" time T

$$\mu_{\max}(T) pprox rac{1}{T} \ln |v(T)|$$

Expect: this quantity will rapidly converge to the maximal exponent

(Example 7.18 in book) Lorenz system

► The original system:

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = rx - y - xz$$

$$\dot{z} = xy - bz$$

(Example 7.18 in book) Lorenz system

► The original system:

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = rx - y - xz$$

$$\dot{z} = xy - bz$$

▶ The linearized equations for a vector $v \in T_x \mathbb{R}^3$:

$$\dot{\mathbf{v}} = \left(\begin{array}{ccc} -\sigma & \sigma & 0 \\ r - z & -1 & -x \\ y & x & -b \end{array} \right) \mathbf{v}$$

(Example 7.18 in book) Lorenz system

► The original system:

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = rx - y - xz$$

$$\dot{z} = xy - bz$$

▶ The linearized equations for a vector $v \in T_x \mathbb{R}^3$:

$$\dot{\mathbf{v}} = \left(\begin{array}{ccc} -\sigma & \sigma & 0 \\ r - z & -1 & -x \\ y & x & -b \end{array} \right) \mathbf{v}$$

▶ Integrate Lorenz system and linearized system simultaneously

Numerical results (reproduce Figure 7.5 in book):

Figure 1: Maximal Lyapunov exponent for the Lorenz system.

Numerical results (reproduce Figure 7.5 in book):

Figure 1: Maximal Lyapunov exponent for the Lorenz system.

For r=23, $\mu_{\rm max}\approx -0.05$; for r=28, $\mu_{\rm max}\approx 0.9$

Numerical results (reproduce Figure 7.5 in book):

Figure 1: Maximal Lyapunov exponent for the Lorenz system.

- For r=23, $\mu_{\rm max}\approx -0.05$; for r=28, $\mu_{\rm max}\approx 0.9$
- Remark: at every step, we normalize the vector v and add the accumulated scaling factor back to obtain $\frac{1}{T} \ln |v(T)|$

Numerical results (reproduce Figure 7.5 in book):

Figure 1: Maximal Lyapunov exponent for the Lorenz system.

- For r=23, $\mu_{\rm max}\approx -0.05$; for r=28, $\mu_{\rm max}\approx 0.9$
- Remark: at every step, we normalize the vector v and add the accumulated scaling factor back to obtain $\frac{1}{T} \ln |v(T)|$
- Question: How to compute all of the Lyapunov exponents?

Compute all of the Lyapunov exponents

A sketch:

▶ The linear system: $\dot{v} = Df(\phi_t(x_0))v =: \mathbf{A(t)}v$

Compute all of the Lyapunov exponents

A sketch:

- ► The linear system: $\dot{v} = Df(\phi_t(x_0))v =: \mathbf{A(t)}v$
- ► Change the basis: v = P(t)w

Compute all of the Lyapunov exponents

A sketch:

- ► The linear system: $\dot{v} = Df(\phi_t(x_0))v =: \mathbf{A(t)}v$
- ► Change the basis: v = P(t)w
- ► The transformed system: $\dot{w} = (P^{-1}AP P^{-1}\dot{P})w =: \mathbf{B(t)}w$

A sketch:

- ► The linear system: $\dot{v} = Df(\phi_t(x_0))v =: \mathbf{A(t)}v$
- ► Change the basis: v = P(t)w
- ► The transformed system: $\dot{w} = (P^{-1}AP P^{-1}\dot{P})w =: \mathbf{B(t)}w$
- ► Find an appropriate transformation *P* such that the new system has a simple form

A sketch:

- ► The linear system: $\dot{v} = Df(\phi_t(x_0))v =: \mathbf{A(t)}v$
- ► Change the basis: v = P(t)w
- ► The transformed system: $\dot{w} = (P^{-1}AP P^{-1}\dot{P})w =: \mathbf{B(t)}w$
- ► Find an appropriate transformation *P* such that the new system has a simple form

Lemma (Lyapunov transformation)

 P,P^{-1},\dot{P} are bounded, $P\in C^1\Longrightarrow$ Lyapunov exponents keep the same under this transformation.

Theorem (Perron triangulation)

There is an orthogonal transformation such that B is **upper triangular**. Moreover, if A(t) is bounded, then the characteristic exponents for B are the same as those of A.

A sketch:

- ► The linear system: $\dot{v} = Df(\phi_t(x_0))v =: \mathbf{A(t)}v$
- ▶ Change the basis: v = P(t)w
- ► The transformed system: $\dot{w} = (P^{-1}AP P^{-1}\dot{P})w =: \mathbf{B(t)}w$
- ► Find an appropriate transformation *P* such that the new system has a simple form

Lemma (Lyapunov transformation)

 P,P^{-1},\dot{P} are bounded, $P\in C^1\Longrightarrow$ Lyapunov exponents keep the same under this transformation.

Theorem (Perron triangulation)

There is an orthogonal transformation such that B is **upper triangular**. Moreover, if A(t) is bounded, then the characteristic exponents for B are the same as those of A.

Main idea: $\Phi(t) = Q(t)R(t)$, let v(t) = Q(t)w define a new basis

▶ The transformed system: $\dot{w} = B(t)w$

Theorem

If B(t) is a uniformly bounded, upper triangular matrix, and the limits

$$\mu_i = \lim_{t \to \infty} \frac{1}{t} \int_0^t b_{ii}(s) ds$$

exist, then $\dot{x} = B(t)x$ has a regular Lyapunov spectrum with exponents μ_i .

▶ The transformed system: $\dot{w} = B(t)w$

Theorem

If B(t) is a uniformly bounded, upper triangular matrix, and the limits

$$\mu_i = \lim_{t \to \infty} \frac{1}{t} \int_0^t b_{ii}(s) ds$$

exist, then $\dot{x} = B(t)x$ has a regular Lyapunov spectrum with exponents μ_i .

Remark: QR procedure can be turned into an effective computational strategy.

Largest Lyapunov exponent

$$\mu_{ ext{max}}(T) pprox rac{1}{T} \ln |v(T)|$$

Why do we get the largest Lyapunov exponent in practice?

$$\delta(0) = \sum_{i=1}^{n} \alpha_{i} \delta_{i}(0) \quad \Rightarrow \quad \delta(t) = \sum_{i=1}^{n} \alpha_{i} \delta_{i}(0) e^{\lambda_{i} t} \sim c e^{\lambda_{1} t}$$

which is why we need to find the Lyapunov basis to find all exponents.

Largest Lyapunov exponent: Wolf's method

Instead of evaluating at just 1 point, we evaluate the average of many starting points.

Can do in practice: use same trajectory since it is dense (remember transitive of flow).

Largest Lyapunov exponent: Wolf's method

$$\lambda_1 = \frac{1}{N\Delta t} \sum_{i=1}^{M-1} \log_2 \frac{L_i'}{L_i}$$

where M is how many time you do it, and $N\Delta t = t_n - t_0 = T$, the total time.

Largest Lyapunov exponent: Kantz's method

Instead of evaluating at just 1 point for each start time, we look at many points near each starting point.

Largest Lyapunov exponent: plottings and results

The plot from Kantz's paper is like this (after taking log), where the slope is λ_1 :

Back to Chaos: Predicting weather

Having a positive Lyapunov exponent is neither sufficient or necessary for the system being chaotic. But it is a signiture.

Suppose we have two really close initial condition x_0 and $x_0 + \delta_0$, and tolerance a. Then we can predict the behavior up to t_n .

Back to Chaos: Predicting weather

Now, iphone tells me about 10 days' weather in the future.

If we compute the t_n from last slide we will get the Lyapunov time:

$$T = \frac{1}{\lambda} \log \left(\frac{a}{\delta_0} \right)$$

If we want to extend that to 100 days, then we need a multiple of 10 on both sides. But the weather system is fixed so is λ , and we need new initial difference

$$\delta = \frac{1}{e^{10}}\delta_0$$

so not very reliable.

References I

D. Meiss, J. (2017).

Differential dynamical systems, revised edition.

Kantz, H. (1994).

A robust method to estimate the maximal lyapunov exponent of a time series. Physics letters A, 185(1):77–87.

[Kantz, 1994] [D. Meiss, 2017]

Other resources include:

https://www.youtube.com/watch?v=92-ilwuwMTM&t=1s (Wolf):

https://www.youtube.com/watch?v=22VVVn1zPdM (Kantz):

https://www.youtube.com/watch?v=_R-edBK71dc&t=208s And other sources are included in materials.