Operating Systems

16. Storage: File system interface

Hyunchan, Park

http://oslab.chonbuk.ac.kr

Division of Computer Science and Engineering

Chonbuk National University

Contents

- Disk and File system
- File
 - Concept
 - Operations
 - Access Methods
- Directory
 - Disk Structure (cont'd)
 - Directory Structure
- Others
 - File-System Mounting
 - File Sharing
 - Protection

Disk Structure

- Disk can be subdivided into partitions
 - Disks or partitions can be RAID protected against failure
- Disk or partition can be used raw without a file system, or formatted with a file system
- Entity containing file system known as a volume
 - Logical concept: 1 or more partitions can be a single volume
- Each volume containing file system also tracks that file system's info in device directory or volume table of contents
- As well as general-purpose file systems there are many specialpurpose file systems, frequently all within the same operating system or computer

A Typical File-system Organization

Types of File Systems

- We mostly talk of general-purpose file systems
- But systems frequently have may file systems, some generaland some special- purpose
- Consider Solaris has
 - tmpfs memory-based volatile FS for fast, temporary I/O
 - objfs interface into kernel memory to get kernel symbols for debugging
 - ctfs contract file system for managing daemons
 - lofs loopback file system allows one FS to be accessed in place of another
 - procfs kernel interface to process structures
 - ufs, zfs general purpose file systems

File Concept

- Contiguous logical address space on storage device
 - Other definitions:
 - Named collection of bytes (or linear array of bytes)
 - Collection of data with some properties; name, size, owner, and etc.
- Types:
 - Data
 - numeric
 - character
 - binary
 - Program
- Contents defined by file's creator
 - Many types
 - Consider text file, source file, executable file

File-System vs. Virtual Memory

[file system]

File Attributes

- Name only information kept in human-readable form
- Identifier unique tag (number) identifies file within file system
- Type needed for systems that support different types
- Location pointer to file location on device
- Size current file size
- Protection controls who can do reading, writing, executing
- Time, date, and user identification data for protection, security, and usage monitoring
- Information about files are kept in the directory structure, which is maintained on the disk
- Many variations, including extended file attributes such as file checksum
- Information kept in the directory structure

File info on Windows and Mac OS X

File Operations

- Create
- Write at write pointer location
- Read at read pointer location
- Reposition within file seek
- Delete
- Truncate
- Open(Fi) search the directory structure on disk for entry Fi,
 and move the content of entry to memory
- Close (Fi) move the content of entry Fi in memory to directory structure on disk

Open Files

- Several pieces of data are needed to manage open files:
 - Open-file table: tracks open files
 - File pointer: pointer to last read/write location, per process that has the file open
 - File-open count: counter of number of times a file is open to allow removal of data from open-file table when last processes closes it
 - Disk location of the file: cache of data access information
 - Access rights: per-process access mode information

Open File Locking

- Provided by some operating systems and file systems
 - Similar to reader-writer locks
 - Shared lock similar to reader lock several processes can acquire concurrently
 - Exclusive lock similar to writer lock
- Mediates access to a file
- Mandatory or advisory:
 - Mandatory access is denied depending on locks held and requested
 - Advisory processes can find status of locks and decide what to do

File Types – Name, Extension

file type	usual extension	function	
executable	exe, com, bin or none	ready-to-run machine- language program	
object	obj, o	compiled, machine language, not linked	
source code	c, cc, java, pas, asm, a	source code in various languages	
batch	bat, sh	commands to the command interpreter	
text	txt, doc	textual data, documents	
word processor	wp, tex, rtf, doc	various word-processor formats	
library	lib, a, so, dll	libraries of routines for programmers	
print or view	ps, pdf, jpg	ASCII or binary file in a format for printing or viewing	
archive	arc, zip, tar	related files grouped into one file, sometimes com- pressed, for archiving or storage	
multimedia	mpeg, mov, rm, mp3, avi	binary file containing audio or A/V information	

File Structure

- None sequence of words, bytes
- Simple record structure
 - Lines
 - Fixed length
 - Variable length
- Complex Structures
 - Formatted document
 - Relocatable load file
- Can simulate last two with first method by inserting appropriate control characters
- Who decides:
 - Operating system
 - Program

Sequential-access File

Access Methods

Sequential Access

read next

write next

reset

no read after last write

(rewrite)

Access Methods

Direct Access – file is fixed length logical records

read n

write n

position to n

read next

write next

rewrite n

n = relative block number

 Relative block numbers allow OS to decide where file should be placed

Other Access Methods

- Can be built on top of base methods
- General involve creation of an index for the file
- Keep index in memory for fast determination of location of data to be operated on (consider UPC code plus record of data about that item)
- If too large, index (in memory) of the index (on disk)
- IBM indexed sequential-access method (ISAM)
 - Small master index, points to disk blocks of secondary index
 - File kept sorted on a defined key
 - All done by the OS
- VMS operating system provides index and relative files as another example (see next slide)

Example of Index and Relative Files

Directory Structure

A collection of nodes containing information about all files

Both the directory structure and the files reside on disk

Operations Performed on Directory

• Search for a file

Create a file

• Delete a file

- List a directory
- Rename a file

• Traverse the file system

Directory Organization

- The directory is organized logically to obtain
 - Efficiency locating a file quickly
 - Naming convenient to users
 - Two users can have same name for different files
 - The same file can have several different names
 - Grouping logical grouping of files by properties, (e.g., all Java programs, all games, ...)

Single-Level Directory

A single directory for all users

- Naming problem
- Grouping problem

Two-Level Directory

Separate directory for each user

- Path name
- Can have the same file name for different user
- Efficient searching
- No grouping capability

Tree-Structured Directories

Tree-Structured Directories (Cont.)

Efficient searching

Grouping Capability

- Current directory (working directory)
 - cd /spell/mail/prog
 - type list

Tree-Structured Directories (Cont)

- Absolute or relative path name
- Creating a new file is done in current directory
- Delete a file
- rm <file-name>
- Creating a new subdirectory is done in current directory
 - mkdir <dir-name>
 - Example: if in current directory /mail
 - mkdir count

Deleting "mail" ⇒ deleting the entire subtree rooted by "mail"

Acyclic-Graph Directories

Have shared subdirectories and files

Acyclic-Graph Directories (Cont.)

- New directory entry type
 - Link another name (pointer) to an existing file
 - Resolve the link follow pointer to locate the file
- Enables two different names (aliasing)
- If dict deletes $count \Rightarrow$ dangling pointer problem
 - Dangling pointer: a pointer without allocated disk blocks
 - Entry-hold-count solution
 - Counting the references for the file
 - When it changed to 0, actually delete the file

General Graph Directory

General Graph Directory (Cont.)

- Searching with General Graph Directory
 - Book and avi, book and avi, and the book......

- How do we guarantee no cycles? (for acyclic graph directory)
 - Allow only links to file not subdirectories
 - Garbage collection
 - For a disk? Very expensive operation
 - Every time a new link is added use a cycle detection algorithm to determine whether it is OK

File System Mounting

- A file system must be mounted before it can be accessed
- A unmounted file system is mounted at a mount point

File Sharing

- Sharing of files on multi-user systems is desirable
- Sharing may be done through a protection scheme
- On distributed systems, files may be shared across a network
- Network File System (NFS) is a common distributed file-sharing method
- If multi-user system
 - User IDs identify users, allowing permissions and protections to be peruser
 - Group IDs allow users to be in groups, permitting group access rights
 - Owner of a file / directory
 - Group of a file / directory

File Sharing – Remote File Systems

- Uses networking to allow file system access between systems
 - Manually via programs like FTP
 - Automatically, seamlessly using distributed file systems
 - Semi automatically via the world wide web
- Client-server model allows clients to mount remote file systems from servers
 - Server can serve multiple clients
 - Client and user-on-client identification is insecure or complicated
 - NFS is standard UNIX client-server file sharing protocol
 - CIFS is standard Windows protocol
 - Standard operating system file calls are translated into remote calls
- Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active Directory implement unified access to information needed for remote computing

File Sharing – Failure Modes

- All file systems have failure modes
 - For example corruption of directory structures or other non-user data,
 called metadata
- Remote file systems add new failure modes, due to network failure, server failure
- Recovery from failure can involve state information about status of each remote request
- Stateless protocols such as NFS v3 include all information in each request, allowing easy recovery but less security

File Sharing – Consistency Semantics

- Specify how multiple users are to access a shared file simultaneously
 - Similar to Ch 5 process synchronization algorithms
 - Tend to be less complex due to disk I/O and network latency (for remote file systems
 - Andrew File System (AFS) implemented complex remote file sharing semantics
 - Unix file system (UFS) implements:
 - Writes to an open file visible immediately to other users of the same open file
 - Sharing file pointer to allow multiple users to read and write concurrently
 - AFS has session semantics
 - Writes only visible to sessions starting after the file is closed

Protection

- File owner/creator should be able to control:
 - what can be done
 - by whom
- Types of access
 - Read
 - Write
 - Execute
 - Append
 - Delete
 - List

Access Lists and Groups

- Mode of access: read, write, execute
- Three classes of users on Unix / Linux

			RWX
a) owner access	7	\Rightarrow	111
			RWX
b) group access	6	\Rightarrow	110
			RWX
c) public access	1	\Rightarrow	001

- Ask manager to create a group (unique name), say G, and add some users to the group.
- For a particular file (say game) or subdirectory, define an appropriate access.
 owner group public

chmod 761 game

Attach a group to a file

chgrp G game

Windows 7 Access-Control List Management

A Sample UNIX Directory Listing

-rw-rw-r	1 pbg	staff	31200	Sep 3 08:30	intro.ps
drwx	5 pbg	staff	512	Jul 8 09.33	private/
drwxrwxr-x	2 pbg	staff	512	Jul 8 09:35	doc/
drwxrwx	2 pbg	student	512	Aug 3 14:13	student-proj/
-rw-rr	1 pbg	staff	9423	Feb 24 2003	program.c
-rwxr-xr-x	1 pbg	staff	20471	Feb 24 2003	program
drwxxx	4 pbg	faculty	512	Jul 31 10:31	lib/
drwx	3 pbg	staff	1024	Aug 29 06:52	mail/
drwxrwxrwx	3 pbg	staff	512	Jul 8 09:35	test/

