TEAM CELL-U-LATER

End of Term Presentation Kevin Crean, Hudson Dye, Wyatt Hill, Davis Hobbs

College of Engineering and Computing

AGENDA

Team Overview

- Subsystem Progress
 - Wireless Communication
 - User Interface
 - Onboard Processing
 - Power Distribution and Management

PROJECT OVERVIEW

<u>Project Mission:</u> Create a data collection waystation that collects data from deployed sensor packages, computes structural health metrics, and sends the metrics through a commercial cellular network.

Project Description:

- Wireless communication between the waystation and the sensors.
- Onboard computing at waystation to calculate structural health metrics.
- Results passed on to a host PC via commercial cellular network

SYSTEM BLOCK DIAGRAM

DESIGN PHILOSOPHY

- Physical Limitations: Size and Weight
- Monetary Limitations: Pricing
- Ease of Implementation

ADD DIAGRAM

TEAM ORGANIZATION

- Project Sponsor: Austin Downey
- Team Lead: Kevin Crean

- Onboard Processing Subsystem: Kevin Crean
- Wireless Communication: Hudson Dye
- Power Distribution and Management: Davis Hobbs
- User Interface: Wyatt Hill

PROJECT STATUS: SCHEDULE

Acquired all necessary parts to prototype entire system

Completed subsystem demonstrations

Meeting consistently at least once a week

PROJECT STATUS: FINANCIALS

Component	Price
Botletics SIM700A-LTE-Shield (2)	\$65
Micro SIM card + IoT subscription	\$5
LP311P Differential Comparator (2)	\$3
OKR-T-3-W12-C Buck Converter (2)	\$16
SUNER BC-10 Solar Panel	\$56
Talent Cell 5V/12000mAh Lithium-ion Battery	\$40
SAE- Barrel Jack adapter	\$10
	\$195

HIGH LEVEL PROBLEMS

- Transferring pre-packaged data to generic data files
- Power Management for regulated battery voltage
- Understanding new concepts
 - RF Communication/Protocol

WIRELESS COMMUNICATION SUBSYSTEMS

Hudson Dye

BLOCK DIAGRAM — COMMUNICATION FOCUSED

BLOCK DIAGRAM — INFORMATION FLOW

WIRELESS SUBSYSTEMS

Cellular Communication

- Cellular chip + microSIM
- IoT connection to user

Chip-to-Chip RF

- NRF chip
- Previously implemented RF connection

CELLULAR COMMUNICATION FUNCTIONS

- Read chip & source information
 - battery voltage, ID, etc.
- Read wireless environment information
 - registration status, RSSI, network time, etc.
- Send/Receive SMS
- post chip information to dweet.io

Goal: Send files to user via IoT

CELLULAR CHARACTERIZATION

 This slide may include evidence of functioning cellular IoT capabilities

LEARNING PROCESS

- Custom PCB necessary to use any microcontroller except Arduino
 - Use Arduino Uno for prototyping
- Spent ~25 hours testing faulty chip
 - Provided with free replacement extensive troubleshooting with CEO
 - Will need to play catch up during Christmas for RF portion
- This delayed RF communication implementation

USER INTERFACE (UI) SUBSYSTEM

Wyatt Hill

UI SUBSYSTEM OVERVIEW

UI SUBSYSTEM FUNCTIONS

- Read Function
 - Ability to read and display data from data storage
 - Ability to select specific points and periods of data and read and display it from data storage.
- Write Function
 - Ability to write to data storage for use of the read function
 - Ability to write processed data real time when requisition is given

UI READ FUNCTION EXPERIMENT

- The Data sheet is loaded with mock data
 - First Name
 - Last Name
 - Country
- The read function is called from UI as in normal operation
- The debug window of the UI will be populated with mock data if the read function is successful

UI EXPERIMENTAL RESULTS

2 trials with different names and countries were successful

UI SUBSYSTEM NEXT STEPS

- Work with Communication subsystem to achieve completion of write function.
- Implement user input window for read function of UI subsystem
- Integrate functions to successfully interface with local storage

ONBOARD PROCESSING SUBSYSTEM

Kevin Crean

ONBOARD PROCESSING SUBSYSTEM OBJECTIVE

- Microcontroller receives and saves raw data to SD card.
- Code will perform the structural health metrics that are requested.
- Once metrics are calculated, processed data will be sent wirelessly to the user interface.

ONBOARD PROCESSING EXPERIMENT: READ AND WRITE SD CARD

- Read and Write to test file contained on SD Card
- Print out Results on Serial Monitor
- Serial Peripheral Interface (SPI) Protocol.


```
Output Serial Monitor ×
```

Message (Enter to send message to 'Ard

```
Successful Opening the File
Closing the file
test.txt:
testing 1, 2, 3.
```


ONBOARD PROCESSING EXPERIMENT: MEAN FUNCTION

- Stores Data in an Array
- Finds the Average Value
- Running Average Function

ONBOARD PROCESSING PROBLEMS AND CONCERNS

- Learning Arduino Programming Language
 - Some parts taking longer than expected
- Fast Fourier Transform Function
 - Low Resolution that Arduino Mega 2560 R3 will be able to compute
- Switching to a Raspberry Pi
 - Potentially Delay Gantt Chart Schedule

ONBOARD PROCESSING NEXT STEPS

 Combine and Adjust Mean Function Calculation Code with Read/Write SD Card Code

Write Fast-Fourier Transform Function

Microcontroller communication with nRF module

Using a Raspberry Pi instead of the Arduino Mega 2560 R3

POWER DISTRIBUTION AND MANAGEMENT (PDM) SUBSYSTEM

Davis Hobbs

PDM SUBSYSTEM OVERVIEW

PDM SUBSYSTEM OBJECTIVES

- Power Supply
 - Establish a ~5 V power source to supply the microcontroller
 - High capacity with solar recharge capabilities
- Power Distribution
 - Establish a ~3.3V power source to supply the comms hardware
 - Capable of enduring rapid changes in load
- Power Management
 - Signal the microcontroller when the battery is at low capacity

SUBSYSTEM HARDWARE: POWER SUPPLY

- A 5V Talent Cell Battery was selected
 - Internal 5V regulator to reduce voltage ripple
 - Internal battery management system allows for solar panel integration
 - Sufficient capacity for 4 days of operation using data sheet values
- The battery is supported by a 12 W Suner Solar Panel
 - Interfaces with battery via an SAE connector
 - Designed for Li Battery charging

SUBSYSTEM HARDWARE: POWER DISTRIBUTION

- OKR buck converter supplies power to comms hardware.
 - Reduces ~5V battery voltage to ~3.3V
 - Up to 93% efficient power conversion
 - Highly effective at responding to pulsed loads
- Converter has been experimentally validated to supply loads mimicking the comms hardware

DISTRIBUTION SYSTEM EXPERIMENT

Buck Converter

Battery: 5 V

 The distribution system was given a load meant to mimic comms hardware power draw.

- This load was turned on and off at 15 Hz.
- The effect of dynamic loading on distribution output voltage was monitored.

High current load

Mosfet Gate Signal

EXPERIMENTAL RESULTS

- The buck converter can successfully reduce battery supply voltage
- The distribution subsystem provided a max load voltage range of 3.35 – 3.14 V
 - This range falls well within the 3.0 3.6 V range acceptable by the comms hardware.

SUBSYSTEM HARDWARE: POWER MANAGEMENT

- The LP311P comparator was selected
 - Tracks battery voltage fade
 - Alerts microcontroller of low battery voltage
 - Microcontroller provides signal voltage to avoid overvoltage
- This subsystem was experimentally validated

POWER MANAGEMENT EXPERIMENT

Buck Converter

 The power management hardware was supplied with a 3.3 V reference signal

- A power supply was used to mimic battery voltage fade
- The output signal of the comparator was monitored

Comparator

POWER MANAGEMENT EXPERIMENTAL RESULTS

- Demonstrated to Professor Smoak
- A digital signal does change from 0 V to 5.15 V when the input falls below the reference
- This validates the signal is accurate under static load conditions

PDM SUBSYSTEM: NEXT STEPS

- The original design of the power management system did not anticipate regulated battery voltage
 - Necessitates a redesign of the power management system
- The solar panel's ability to charge the battery will be tested
- Distribution hardware should be integrated with the comms hardware to test functionality

