

Fig. 2A

Fig. 2B

Fig. 3A

Fig. 3B

Fig. 4A

Fig. 4B

Fig. 5

Fig. 6

Fig. 8

process step No.	process step 1a	process step 1b
upper limit	2 μ m²(0.YY)	12.6 μ m ² (0.VV)
lower limit	1.5 μ m² (0.XX)	0.7 μ m² (0.ZZ)
flat area start position	4	5
flat area end position	80	40

Fig. 10

production line number	design rule
line 1	0.1-0.13 μ m
line 2	0.13-0.15 μ m
line 3	0.15-0.18 µ m
line 4	0.18-0.25 μ m
line 5	0.25-0.35 μ m
line 6	0.5 μ mor more

Fig. 11

- 1 fast delivery priority
- 2 delivery number priority
- 3 total cost priority
- 4 quality priority

Fig. 12

		orde	order form		ud .	process step 1a		pr	process step 1b	þ
user	user product	lot	production line name d	line name	prearranged date of date	date of estimated completion yield	estimated yield	estimated prearrange date of yield date completion		estimated yield
CCC1	1	× ×	fast delivery priority	Line 1	10/8	10/9	(%)06	10/10	10/10 10/10 80(%)	80(%)

Fig. 13

200/11/20

user ID=10000 product name = alpha

11/20 11/22	wiring	12/24 12/24	50 80	2,000,000 yen 1,380,000 yen	100,000,000 yen 110,000,000 yen	100% re-working 100% re-working selected
11/10	thin film (2a, 2b)	12/24 1	06	1,100,000 yen 2,00	100,000,000 yen 100,0	100% re-
10/20	Contact (1a, 1b)	12/24	06	1,100,000 yen	100,000,000 yen	
10/10	input date	12/24	100	1,000,000 yen	100,000,000 yen	
date of calculation	current process step	prearranged date of completion	predicted delivery number of products	unit cost of chip	total cost	remarks

Fig. 14

production method (lot number)	mixing ratio(%)
production method 1 (XXA)	60
production method 2 (XXB)	20
production method 3 (XXC)	20
predicte	varding date = December 24 d number of normal products=70 ted cost of chip=1,000,000 yen

wafer input portfolio

Fig. 15

Fig. 16

semiconductor production center C

user (D	YAMANE
password	***

Fig. 19

new lot input
production management

Fig. 20

course 1 no division course 2 divide by two course 3 conditional branching

Fig. 21

- 1 100% continuation
- 2 50% continuation
- 3 stoppage

Fig. 22