THAM KHẢO THI CUỐI KỲ ĐẠI SỐ ĐẠI CƯƠNG NĂM HỌC 2016/2017

Câu 1. Cho G là tập các số thực dương khác 1. Với $x,y\in G$, đặt

$$x * y = x^{2 \ln y}.$$

- a) Chứng minh (G,*) là một nhóm giao hoán.
- b) Tìm tất cả các phần tử có cấp 2 của G.
- c) Chứng minh rằng trong G không tồn tại phần tử nào có cấp hữu hạn n > 2.

Câu 2. Cho G là một nhóm và H là một nhóm con cyclic của G. Chứng minh rằng nếu H chuẩn tắc trong G thì mọi nhóm con của H cũng chuẩn tắc trong G.

Câu 3. Cho ánh xạ $f: \mathbb{Z} \to \mathbb{Z}_{12}$ định bởi $f(a) = 4\overline{a}$.

- a) Chứng minh f là một đồng cấu vành.
- b) Xác định Ker f.
- c) f có là một toàn cấu vành không? Tại sao?

Câu 4. Cho đa thức với hệ số nguyên:

$$f(x) = x^4 + x^3 + x^2 + 6x + 1.$$

- a) Viết khai triển Taylor của f(x) tại $x_0 = 1$.
- b) f(x) có bất khả quy trên \mathbb{Q} không? Tại sao?

ĐẠI SỐ ĐẠI CƯƠNG NĂM HỌC 2017/2018

Câu 1. Cho G là tập các số thực dương khác 1. Với $x,y\in G$, đặt

$$x * y = 2^{\ln x \ln y}.$$

- a) Chứng minh (G,*) là một nhóm giao hoán.
- b) Tìm tất cả các phần tử có cấp 2 của G.
- c) Chứng minh rằng trong G không tồn tại phần tử nào có cấp hữu hạn n > 2.

Câu 2. Cho G là một nhóm giao hoán. Chứng minh rằng tập tất cả các phần tử có cấp hữu hạn của G là một nhóm con của G. Kết quả trên còn đúng khi G không giao hoán hay không? Tại sao?

Câu 3. Trong vành $M(2,\mathbb{R})$ các ma trận vuông cấp 2 với hệ số thực, cho

$$I = \left\{ egin{pmatrix} a & b \ 0 & 0 \end{pmatrix} \middle| a, b \in \mathbb{R}
ight\}.$$

- a) Chứng minh I là vành con của $M(2,\mathbb{R})$.
- b) I có là ideal trái của $\mathrm{M}(2,\mathbb{R})$ không?
- c) I có là ideal phải của $\mathrm{M}(2,\mathbb{R})$ không?
- d) I có là ideal của $M(2,\mathbb{R})$ không?

 $\mathbf{C\hat{a}u}$ 4. Trong $\mathbb{C}[x]$ cho đa thức f(x) định bới

$$f(x) = x^{2n} + x^{n+1} + x - 1 \ (n \in \mathbb{N}).$$

- a) Chứng minh rằng $g(x) = x^2 x + 1$ chỉ có nghiệm đơn trong \mathbb{C} .
- b) Xác định $n \in \mathbb{N}$ để f(x) chia hết cho đa thức $g(x) = x^2 x + 1$ trong $\mathbb{C}[x]$.

ĐẠI SỐ ĐẠI CƯƠNG NĂM HỌC 2018/2019

Câu 1. Cho $G = \mathbb{R} \setminus \{1\}$ là tập các số thực khác 1. Với $x, y \in G$, đặt

$$x * y = \sqrt[3]{(x^3 - 1)(y^3 - 1) + 1}.$$

- a) Chứng minh (G,*) là một nhóm aben.
- b) Cho $x \in G$ và $n \in \mathbb{N}$. Tính $\underbrace{x * x * \dots * x}_{n}$.
- c) Mô tả các phần tử của nhóm con xyclic $\langle x \rangle$ sinh bởi phần tử $x \in G$ cho trước.

Câu 2. Cho G là một nhóm aben hữu hạn. Ký hiệu o(x) để chỉ cấp của phần tử $x \in G$.

- a) Chứng minh rằng nếu $x, y \in G$ có các cấp lần lượt là o(x) = r, o(y) = s với r, s nguyên tố cùng nhau thì phần tử z = xy có cấp là o(z) = rs.
- b) Đặt $n = \max\{k \in \mathbb{N} \mid \exists x \in G, o(x) = k\}$. Chứng minh rằng mọi phần tử trong G có cấp là ước số của n.

Câu 3. a) Tìm phần tử nghịch đảo của $\overline{7}$ trong vành \mathbb{Z}_{100} .

- b) Giải phương trình: $7\overline{x} \overline{20} = \overline{3}$ trong vành \mathbb{Z}_{100} .
- c) Giải phương trình: $21\overline{x} \overline{60} = \overline{9}$ trong vành \mathbb{Z}_{300} .

Câu 4. Cho đa thức

$$f(x) = x^5 + 5x^4 + 10x^3 + 40x^2 + 135x + 112 \in \mathbb{Q}[x].$$

- a) Viết khai triển Taylor của f(x) tại $x_0 = -2$.
- b) Khảo sát tính bất khả quy của f(x) trong $\mathbb{Q}[x]$.

ĐẠI SỐ ĐẠI CƯƠNG NĂM HỌC 2019/2020

Câu 1. Cho
$$G = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a \in \mathbb{R}^*, b \in \mathbb{R} \right\}.$$

- a) Chứng minh rằng G với phép nhân ma trận là một nhóm giao hoán.
- b) Tìm tất cả các phần tử có cấp 1, cấp 2 của G.
- c) Cho $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \in G$ và $n \in \mathbb{N}$. Tính A^n .
- d) Chứng minh rằng trong G không có phần tử có cấp hữu hạn n > 2.

Câu 2. Cho $G = \langle a \rangle$ là một nhóm cyclic hữu hạn cấp n và k là một ước số nguyên dương của n. Chứng minh:

- a) Phần tử $a^{\frac{n}{k}}$ có cấp k.
- b) Trong G tồn tại duy nhất một nhóm con cấp k.

Câu 3. Xét vành \mathbb{Z}_{10} các số nguyên đồng dư modulo 10.

- a) Chứng minh rằng ánh xạ $f: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ định bởi $f(\overline{x}) = 6\overline{x}$ là một đồng cấu vành.
- b) Xác định tất cả các số nguyên a sao cho ánh xạ $g: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ định bởi $g(\overline{x}) = 2a\overline{x}$ là một đồng cấu vành.

Câu 4. Cho đa thức hệ số nguyên

$$f(x) = x^6 + x^5 + 35x^3 + 115x^2 + 126x + 46.$$

- a) Viết khai triển Taylor của f(x) tại $x_0 = -1$.
- b) Chứng minh f(x) không bất khả quy trong $\mathbb{Q}[x]$.
- c) Phân tích f(x) thành tích các đa thức bất khả quy trong $\mathbb{Q}[x]$.

ĐẠI SỐ ĐẠI CƯƠNG NĂM HỌC 2020/2021

Câu 1. Cho $G = \{x \in \mathbb{R} \mid x > 0\}$ là tập các số thực dương và phép toán * trên G định bởi

$$\forall x, y \in G, \ x * y = e^{\sqrt[3]{(\ln x)^3 + (\ln y)^3}}.$$

- a) Chứng minh (G,*) là một nhóm aben.
- b) Đặt $H = \left\{ e^{\sqrt[3]{n}} \mid n \in \mathbb{Z} \right\}$. Chứng minh (H, *) là một nhóm con của (G, *).

Câu 2. Cho G là một nhóm hữu hạn, $n \in \mathbb{N}$ và H là một nhóm con của G có cấp n.

- a) Chứng minh rằng nếu H là nhóm con duy nhất của G có cấp n thì $H \triangleleft G$.
- b) Giả sử $H \triangleleft G$ và [G:H] nguyên tố cùng nhau với n. Chứng minh H là nhóm con duy nhất của G có cấp n.

Câu 3. Trong vành $M(2,\mathbb{R})$ các ma trận vuông cấp 2 với hệ số thực, cho

$$I = egin{cases} a & b \ 0 & a \end{pmatrix} \colon a,b \in \mathbb{R} iggr\}.$$

- a) Chứng minh I là một vành con của $\mathrm{M}(2,\mathbb{R})$.
- b) I có là một ideal của $\mathbf{M}(2,\mathbb{R})$ không? Tại sao?

Câu 4. Cho đa thức hệ số nguyên

$$f(x) = x^5 - 7x^4 + 22x^3 - 35x^2 + 38x - 38.$$

- a) Viết khai triển Taylor của f(x) tại $x_0 = 2$.
- b) f(x) có bất khả quy trên \mathbb{R} không? Tại sao?
- c) f(x) có bất khả quy trên \mathbb{Q} không? Tại sao?
