Group Assignment

of MAT-111

Submitted By:

Name	ID
UDITA SARKAR CHANDRABINDU	2102006
MEHEDI HASAN	2102007
ABDUL JOBAYER	2102008
MD. MAHIBULLAH HOWLADAR	2102009
NUSRAT JAHAN MIM	2102010

Submitted To:

Muhammad Masudur Rahman.

Associate professor of Mathematics Department

Faculty of Computer Science and Engineering

Date:01.04.2023

Derivative: Derivative is the rate of change of a function with respect to one of its variables.

If
$$y=f(x)$$
;

then

$$\frac{dy}{dx} = \frac{d}{dx}f(x)$$

1)
$$y = \sin(\log x)^2$$

$$= \cos \frac{\pi}{\log x} (\log x)^{2} \cdot 2\log x \cdot \frac{d\pi}{dx} (\log x)$$

$$= \cos \frac{\pi}{\log x} (\log x)^{2} \cdot 2\log x \cdot \frac{1}{x}$$

2)y=tan(sinx.cosx)
$$sec^{2}$$
(sinx. cosx). ____

$$\frac{d}{dx}y = \frac{d(sinx.cosx)}{dx}$$

$$= sec^{2}(sinx. cosx). \{(sinx. - sinx) + (cosx. cosx)\}$$

$$= sec^{2}(sinx. cosx). (cos^{2}x - sin^{2}x)$$

$$= sec^{2}(sinx. cosx). cos2x$$

3)y=sin(cos⁻¹x)

$$\therefore \frac{d}{dx}y = cos(cos^{-1}x) \cdot \frac{d}{dx}(cos^{-1}x)$$

$$= x \cdot \frac{-1}{\sqrt{1-x^2}} \underbrace{|v_0||v_0||v_0||v_0||v_0||v_0|}_{=\frac{-x}{\sqrt{1-x^2}}}$$

4)
$$y = \cos x \cdot e^{\log x}$$

$$dy = \underline{d} (\cos x) \cdot e \log x$$

$$dx \cdot dx$$

5)
$$y=\tan^2 2x$$
 $dy=2$ $\tan 2x . \sec^2 x dx$

d x

6)y=sin⁻¹x²

$$= \frac{1}{\sqrt{1-(x^2)^2}} dy_{\underline{}}$$
.2x dx

$$dydx = \sqrt{ }$$

$$12 - xx_4$$

$$7)y = log(cosx)$$

$$Y1 = \frac{1}{\cos x} \frac{d}{dx}.(\cos x)$$

$$-\sin x$$

$$= \frac{\cos x}{\cos x}$$

$$8$$
) $y=sin(ax+b)$

$$Y1=\cos(ax+b)$$
.__(ax+b)

$$=a.cos(ax+b)$$

$$9)y=cos(ax+b)$$

$$Y1 = -\sin(ax+b) \cdot \underline{\underline{a}}(ax+b)$$

$$=-a.sin(ax+b)$$

10.
$$y = e^{\sin x}$$

$$- dy \sin x \cos x$$

$$x = e dx$$

$$11. y = x^2 \tan x$$

$$- \int_{\mathbb{Z}^2} dy^2 s e^{2} x + 2x \tan x$$

$$x = x dx$$

$$12. y = \sin x^2$$

$$dy = 2x \cos x dx$$

$$13.\overline{M}Y = X^2 + 2X$$

$$\underline{} = 2X + 2 \, dx$$

$$14.Y = X \ln X$$

$$\frac{dy}{dx} = \frac{X}{x} + \ln X$$

$$= 1 + \ln X$$

$$15.Y = \tan(\sin^{-1}X) \, dy$$

$$\sec(\sin^{-1}X)^2$$

$$= \frac{\frac{1}{\sqrt{1-x^2}}}{dx}$$

$$=\sec{(\sin^{-1}x)^2}\times\sqrt{1-x^2}$$

THE END