# Lógica Computacional

Álgebra de Conjuntos

Prof<sup>a</sup>. Ms. Adriane Ap. Loper

- Unidade de Ensino: 2
- Competência da Unidade: Conhecer a teoria de conjuntos, simbologia associada, negação de sentenças, operações entre conjuntos, propriedades, produto cartesiano.
- Resumo :Conhecer a teoria de conjuntos, simbologia associada, negação de sentenças, operações entre conjuntos, propriedades, produto cartesiano
- Palavras-chave :Conjuntos; Operações entre conjuntos; Conjuntos numéricos; Produto cartesiano;
- Título da Teleaula: Álgebra de Conjuntos
- Teleaula nº: 2

2

1

#### Contextualização

Trabalhamos com conjuntos em nosso dia a dia e será que esses conjuntos constituem a lógica? Como se estabelecem as relações? Vamos aprender?



Conjuntos

4

6

Álgebra de

3

#### **Teoria de Conjuntos**

Conjunto: podemos entender intuitivamente como sendo uma coleção, um agrupamento, uma reunião ou um grupo de elementos que possui alguma característica em comum.

Pode-se ter:

Conjunto finito: conjunto dos estados do Brasil;
Conjunto infinito: conjunto dos números ímpares.
Geralmente usa-se letras maiúsculas para denotar conjuntos e letras minúsculas para denotar elementos de conjuntos.

Teoria de Conjuntos

<u>Conjunto</u>: coleção qualquer de objetos, números, formas ou outros elementos com características semelhantes e que pode receber o nome que se

 $A = \{1, 2, 3, 4\}$   $B = \{ \bigcirc, \triangle, \bigcirc \}$ 

5

#### **Teoria de Conjuntos**

Há duas maneiras de especificar um conjunto particular:

- Listar seus elementos:  $A = \{1, 3, 5, 7, 9\}$
- Enunciar as propriedades que caracterizam os elementos do conjunto:

 $A = \{x \mid x \text{ \'e um n\'umero \'impar positivo menor que } 10\}.$ 

 $A = \{x \in N | x \text{ \'e impar, } x < 10\}.$ 

#### Tipos especiais de conjuntos

Conjunto unitário: contém um único elemento Exemplo:  $A = \{4\}$ 

Conjunto vazio:  $\emptyset$  – não possui elementos Exemplo:  $A = \{x \in \mathbb{R} | x^2 < 0\}$ 

Conjunto universo:  $\operatorname{\mathcal{U}}$  – conjunto ao qual pertence

todos os elementos que pretendemos utilizar

Exemplo:  $\mathcal{U}=\mathbb{Z}$  e

 $A = \{x \in \mathcal{U} | -2 \le x \le 2\}$ 

7

8

#### Princípio da extensão

Igualdade de conjuntos :

Dois conjuntos, A e B, são iguais se possuem os mesmos elementos (LIPSCHUTZ; LIPSON, 2008).

Exemplo:

Conjunto  $\it A$  dos números naturais menores que 4;

 $B = \{0, 1, 2, 3\}$ 

A 📰 B

**SUBCONJUNTOS** 

A é subconjunto de B se, e somente se, todos os elementos de A pertencerem a B.

*A=B⇔A⊂B e B⊂A* 



9

10

#### Relação de Pertinência

Quando x pertence ao conjunto  $A\colon x\in A$  Quando x não pertence a  $A\colon x\not\in A$  Exemplos: se  $A=\{1,10,13,60\}\to 10\in A$  e  $2\not\in A$ 

Descrição dos elementos de um conjunto:

Listando seus elementos;

Propriedades de seus elementos:

 $A = \{x | x \text{ possui a propriedade } P\}$ 

Exemplo:  $N = \{x \in \mathbb{R} | x \ge 2\}$ 

Relação de Pertinência

Exemplo:





 $B = \{x \mid x \text{ \'e um n\'umero primo par}\}$ 

 $C = \{x \mid x \text{ \'e um n\'umero primo menor que } 10\}$ 

 $A = \{x \,|\, x \text{ \'e um n\'umero primo}\}$ 

11

12

#### Continência

Relação de <u>continência</u>: sejam dois conjuntos A e B  $B \subset A$ : todo elemento de B pertencer ao conjunto A Exemplo:  $B = \{1,2\}$  e  $A = \{1,2,3,4\}$  Assim,  $B \subset A$   $B \not\subset A$ : existe elemento de B que não pertence a A Exemplos:,  $A = \{1,4,5\}$ ,  $B = \{1,3\}$ ,  $C = \{7,9\}$   $B \not\subset A$   $A \subset A$ 

#### Tipos especiais de conjuntos

Conjunto das partes de A: conjunto composto por todos os subconjuntos de A Exemplos:  $A = \{2,4\} \text{ e } P(A) = \big\{\emptyset,\{2\},\{4\},\{2,4\}\big\}$   $B = \{1,2,3\} \text{ e } P(B) = \big\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\big\}$ 

13 14

# Conjuntos

1) Considere o conjunto  $A=\{1,\{2\},\{1,2\}\}.$  Julgue em verdadeiro (V) ou falso (F) as sentenças a seguir: ( )  $1\in A$  ( )  $2\in A$  ( )  $\emptyset \subset A$  ( )  $\{1,2\} \supset A$ 

15 16

# Operações com conjuntos

# Operações com conjuntos – União U

União de conjuntos : dados os conjuntos A e B, a união de A e B é o conjunto formado por todos os elementos que pertencem a A ou a B.

 $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$ 



#### Operações com conjuntos – Intersecção ∩

Intersecção de conjuntos : dados os conjuntos A e B, a interseção de A e B é o conjunto formado pelos elementos que pertencem a A e a B $A \cap B = \{x | x \in A \text{ e } x \in B\}$ 



#### Operações com conjuntos - Diferença

Diferença de conjuntos: dados os conjuntos A e B, a diferença de A e B é o conjunto formado pelos elementos que pertencem a A, mas não a B.



19 20

#### Operações com conjuntos - Complementar

Complementar : dados dois conjuntos A e B, tais que  $B \subset A$  chama-se complementar de B em relação a A ( $C_A^B$  ou  $\bar{B}$  ou  $(A^C)_B$ ) o conjunto formado pelos elementos que pertencem a A e não pertencem a  ${\it B}$  .

 $A^C = C_U^A = U - A$ 



Teoria de **Conjuntos** 

21 22

| Marca    | Nº de consumidores |
|----------|--------------------|
| Α        | 105                |
| В        | 200                |
| С        | 160                |
| A e B    | 25                 |
| A e C    | 25                 |
| BeC      | 40                 |
| A, B e C | 5                  |
| Nenhuma  | 120                |

(PUC – RJ) Uma população consome 3 marcas de sabão em pó: A, B e C. Feita uma pesquisa de mercado, colheram-se os resultados tabelados ao lado. Determine o número de pessoas consultadas.

| <ul> <li>Marcas A, B e C: 5</li> <li>Apenas A e B: 25 – 5 = 20</li> <li>Apenas A e C: 25 – 5 = 20</li> </ul> |                                     |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------|
| B                                                                                                            | Apenas A:<br>105 – 5 – 20 – 20 = 60 |

• Apenas B e C: 40 – 5 = 35

• Apenas B: 200 - 5 - 20 - 35 = 140

• Apenas C: 160 - 5 - 35 - 20 = 100





26

Entenderam como aliar a lógica e conjuntos para resolver problemas de nosso cotidiano?

Conjuntos enumeráveis

27

25

28

# Números Naturais Chama-se conjunto enumerável a todo conjunto equivalente a $\mathbb{N}$ . Conjunto dos números naturais: $\mathbb{N} = \{0,1,2,3,...\} \quad \mathbb{N}^* = \{1,2,3,...\}$ Operações: Adição Multiplicação Subtração Divisão Operações Divisão Operações Divisão Operações Divisão

Números inteiros:  $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$   $\mathbb{Z}_{+} = \{0, 1, 2, 3, 4, ...\} = \mathbb{N}$   $\mathbb{Z}_{-} = \{0, -1, -2, -3, ...\}$   $\mathbb{Z}^* = \{..., -2, -1, 1, 2, ...\}$   $\mathbb{Z}^*_{+} = \{1, 2, 3, 4, ...\}$ 

29 30

#### Módulo

Módulo ou valor absoluto de um número x: distância do número até à origem da reta numérica

$$|x| = \begin{cases} x, \operatorname{se} x > 0\\ 0, \operatorname{se} x = 0\\ -x, \operatorname{se} x < 0 \end{cases}$$

Exemplos:

$$|3| = 3; |-3| = 3$$
  
 $|3| + |-3| = 3 + 3 = 6$ 

Números racionais

Conjunto dos números racionais:

$$\mathbb{Q} = \left\{ \frac{p}{q}; p \in \mathbb{Z} \ e \ q \in \mathbb{Z}^* \right\}$$

 $\mathbb{Q}_+$  - racionais não negativos

 $\mathbb{Q}_{-}$  - racionais não positivos

 $\mathbb{Q}^*$  - racionais não nulos

 $\mathbb{Q}_+^*$  - racionais positivos

 $\mathbb{Q}_-^*$  - racionais negativos



31

32



**Intervalos Limitados** 

Dado  $a,b \in \mathbb{R}$ , com a < b, denotamos

Intervalos limitados:

$$[a,b] = \{x \in \mathbb{R}; a \le x \le b\}$$

$$(a,b] = \{x \in \mathbb{R}; a < x \le b\}$$

 $[a, b) = \{x \in \mathbb{R}; a \le x < b\}$  $[a, b[ = (a, b) = \{x \in \mathbb{R}; a < x < b\}$ 

 $\begin{bmatrix} \mathbf{a} & [a,b] & \mathbf{b} \\ & & \\ \mathbf{a} & (a,b) & \mathbf{b} \end{bmatrix}$ 

33

34

#### Intervalos ilimitados

$$(-\infty,b]=\{x\in\mathbb{R};\ x\leq b\}\quad \blacksquare$$

$$(-\infty, b) = \{ x \in \mathbb{R}; \ x < b \}$$

$$(a, +\infty) = \{x \in \mathbb{R}; x > a\}$$

$$[a,+\infty)=\{x\in\mathbb{R};x\geq a\}$$

ā

35

36

Conjuntos com números

1)Um dos conteúdos abordados são as operações de conjuntos. Dados os conjuntos A= {0, 1, 2, 3, 4}, o conjunto B= { 2, 5) e C= {2, 6}, a operação de união e intersecção entre os três conjuntos, são respectivamente:

- a)  $U = \{1, 2, 3\}; \cap = \{\emptyset \}$
- b)  $U = \{1, 2, 3, 4, 5, 6\}; \cap = \{0,2\}$
- c) U ={∅}; ∩ = {∅} d) U ={0, 1, 2, 3, 4, 5, 6}; ∩ = {2}
- e)  $U = \{1, 2, 5, 6\}; \cap = \{0, 2\}$

Os elementos dos conjuntos A e B e C que fazem união são: {0, 1, 2, 3, 4, 5, 6} reunindo todos os elementos de ambos conjuntos. Já a intersecção é dada pelo {2}, está presente tanto no conjunto A, como no B e no C.

37 38

# **Produto Cartesiano**

**Plano Cartesiano** É formado por uma região geométrica plana, cortada por duas retas perpendiculares entre si. Retas perpendiculares formam ângulos de 90º entre si!

39 40

#### **Abscissas e Ordenadas**

Reta horizontal: eixo das abscissas - representado por  $x, x \in \mathbb{R}$ .

Reta vertical: eixo das ordenadas – representado por  $y, y \in \mathbb{R}$ 

Ponto de encontro das retas x e y: origem – indicado pelo par ordenado (0,0), ou seja, x=0 e y=0. Par ordenado: par (x,y), no qual o primeiro elemento pertence ao domínio (ou ao 1º conjunto) e o segundo elemento pertence a imagem (ou ao 2º conjunto).

**Produto Cartesiano** O produto cartesiano ( $A \times B$ ) dos conjuntos  $A \in B$  $\acute{\text{e}}$  formado pelos pares ordenados (x,y) com  $x\in$ 



41 42

#### **Diagramas e Plano Cartesiano**

Representação em diagramas e no plano cartesiano:



 $A\times B=\{\,(1,2),\,\,(1,3),(2,2),(2,3),(3,2),(3,3)\}$ 

### **Produto Cartesiano**

43 44

Valores em reais direcionados ao saneamento básico, por pessoa, por ano:

Ano 2009 2010 2011 2012 2013 2014 2015 pesso 100 100 200 300 400 500 600

Relação:

R =  $\{(2009,100), (2010,100), (2011,200), (2012,300), (2013,400), (2014,500), (2015,600)\}$ 

Número de consultas registradas mensalmente nos postos de saúde com diagnóstico de doenças relacionadas ao saneamento básico:



#### Relação:

 $S = \{(2010,\!700), (2011,\!700),$ (2012,500), (2013,400), (2014,400), (2015,300), (2016,200)}

45 46

Os resultados na saúde sofrem impacto no ano seguinte ao que houve o investimento em

Exemplo: o valor gasto com saneamento do ano de 2009 com o numero de consultas registradas em 2010

O indicativo de uma população sadia é o menor número de consultas nos postos de saúde.

 $R = \{ (2009, 100), (2010, 100), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200), (2011, 200$ (2012,300), (2013,400), (2014,500), (2015,600)}

 $S = \{ (2010, 700), (2011, 700), (2012, 500),$ (2013,400), (2014,400), (2015,300), (2016,200)

Associação entre saneamento e consultas:

 $T = \{(100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700), (100, 700),$ (200,500), (300,400), (400,400), (500,300), (600,200)}

47 48

Representação gráfica da relação T
Tendência: queda nas consultas com o aumento
nos investimentos

800
600
500
400
200
100
0 100 200 300 400 500 600 700

49 50

| Ano  | Consultas | Percentual de redução | 100(x - w)                       |
|------|-----------|-----------------------|----------------------------------|
| 2010 | 700       | -                     | $y = \frac{100(x - w)}{w}$       |
| 2011 | 700       |                       |                                  |
| 2012 | 500       |                       | $y = \frac{100(700 - 700)}{700}$ |
| 2013 | 400       |                       |                                  |
| 2014 | 400       |                       | y = 0                            |
| 2015 | 300       |                       |                                  |
| 2016 | 200       |                       |                                  |

| 100(x-w)                        |
|---------------------------------|
| 2010 700 - $y = \frac{1}{w}$    |
| 2011 700 0                      |
| $y = \frac{100(500 - 70)}{700}$ |
| 2013 400                        |
| 2014 400 $y \approx -28,57$     |
| 2015 300                        |
| 2016 200                        |

51 52

| 2010 700 - $y = \frac{100(x-w)}{w}$<br>2011 700 0 $y = \frac{100(400 - 500)}{w}$<br>2012 500 -28,57 $y = \frac{100(400 - 500)}{500}$<br>2013 400 $y = -20$ | Ano  | Consultas | Percentual de<br>redução | 100(~)  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|--------------------------|---------|
|                                                                                                                                                            | 2010 | 700       | -                        | ν =     |
| $     \begin{array}{ccccccccccccccccccccccccccccccccc$                                                                                                     | 2011 | 700       | 0                        |         |
| $ \begin{array}{cccc} 2013 & 400 \\ 2014 & 400 \\ 2015 & 300 \end{array} \qquad y = -20 $                                                                  | 2012 | 500       | -28,57                   |         |
| 2015 300                                                                                                                                                   | 2013 | 400       |                          |         |
|                                                                                                                                                            | 2014 | 400       |                          | y = -20 |
|                                                                                                                                                            | 2015 | 300       |                          |         |
| 2016 200                                                                                                                                                   | 2016 | 200       |                          |         |

| Ano  | Consultas | Percentual de redução |
|------|-----------|-----------------------|
| 2010 | 700       | -                     |
| 2011 | 700       | 0                     |
| 2012 | 500       | -28,57                |
| 2013 | 400       | -20                   |
| 2014 | 400       | 0                     |
| 2015 | 300       | -25                   |
| 2016 | 200       | -33,33                |

Podemos aplicar esses conhecimentos em diversas áreas!

Recapitulando

55 56

Teoria dos Conjuntos;
Álgebra dos Conjuntos;
Aplicação da Teoria dos Conjuntos.

