Capítulo 7

Semana 8

Ejercicio 1. Sea $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ una función de clase C^2 tal que

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

Asumiendo que todos los puntos críticos de f son no degenerados, demuestre que f no tiene ni máximos ni mínimos locales.

Solución. Puesto que f es de clase C^2 , su hessiano $Hf: U \to \mathbb{R}^{2\times 2}$ es una matriz simétrica. Por hipótesis, el polinomio característico de Hf se reduce a

$$p(\lambda) = \lambda^2 - \lambda \cdot \operatorname{tr}(Hf) + \det(Hf) = \lambda^2 + \det(Hf)$$

Puesto que Hf es simétrica, por el teorema espectral, Hf es diagonalizable, así que $p(\lambda)$ tiene dos raíces reales, no necesariamente distintas. Esto impide que $\det(Hf) > 0$. Además, por hipótesis, los puntos críticos de f son no degenerados, así que, en ellos, $\det(Hf) \neq 0$. Por tanto, $\det(Hf) < 0$ en todo punto crítico, lo cual, en dimensión 2, implica que los puntos críticos son de silla.

Ejercicio 2. Halle todos los puntos extremos de la siguiente función:

$$f(x, y, z) = x^2 + y^2 + z^2 - xy + x - 2z$$

Solución. Reescribamos la función del enunciado como

$$f(p) = \frac{1}{2} p^t A p - b^t p$$

donde $A \in \mathbb{R}^{3 \times 3}$ y $b, p \in \mathbb{R}^3$ son las matrices auxiliares

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \qquad b = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}, \qquad p = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Observemos que $\det(A)=6$, así que $q=p-A^{-1}b$ está bien definido. Entonces,

$$f(p) = f(q + A^{-1}b) = \frac{1}{2} [q^t A q - b^t A^{-1}b]$$

Como $b^t A^{-1}b$ es constante, basta analizar la forma cuadrática $g(q) = q^t A q$. Tenemos

$$\det(A_1) = |2| = 2, \qquad \det(A_2) = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 3, \qquad \det(A_3) = \begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 6$$

Por el criterio de Sylvester, A es positiva definida. Entonces g tiene un único punto mínimo en el origen y no tiene puntos máximos. Por lo tanto, f tiene un único punto mínimo en

$$p = A^{-1}b = \frac{1}{6} \begin{bmatrix} 4 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix}$$

y no tiene puntos máximos.

Ejercicio 3. Sea $\phi: [a,b] \to \mathbb{R}$ una función diferenciable. Defina $f: [a,b] \times [a,b] \to \mathbb{R}$ por

$$f(x,y) = \int_{-\pi}^{y} \phi(t) dt$$

- a) Determine los puntos críticos de f.
- b) Caracterice los puntos críticos no degenerados de f.
- c) Caracterice los máximos locales, mínimos locales y puntos de silla de f.

Solución.

a) Por el teorema fundamental del cálculo, f es diferenciable y su diferencial es

$$df = \phi(y) \, dy - \phi(x) \, dx$$

Entonces las siguientes proposiciones son equivalentes:

- (x,y) es un punto crítico de f.
- \blacksquare df se anula en (x,y).
- \bullet ϕ se anula tanto en x como en y.
- b) Diferenciando una vez más, tenemos la matriz hessiana

$$Hf(x,y) = \begin{bmatrix} -\phi'(x) & 0\\ 0 & \phi'(y) \end{bmatrix}$$

Dado un punto crítico (x,y) de f, las siguientes proposiciones son equivalentes:

- (x,y) es un punto crítico no degenerado de f.
- Hf(x,y) es una matriz invertible.
- ϕ' no se anula ni en x ni en y.
- x, y son puntos regulares de ϕ .
- c) Los extremos locales y globales de f, si los hubiera, siempre se alcanzan en puntos críticos. Dado un punto crítico no degenerado (x, y), tenemos las siguientes posibilidades:
 - (x,y) es un mínimo local de f, si $\phi'(x) < 0 < \phi'(y)$.
 - (x,y) es un máximo local de f, si $\phi'(y) < 0 < \phi'(x)$.
 - (x,y) es un punto de silla de f, si $\phi'(x)$, $\phi'(y)$ tienen el mismo signo.

Sobre los puntos críticos degenerados no podemos decir nada en general.

Ejercicio 4. Sea $f: \mathbb{R} \to \mathbb{R}$ una función de clase C^k . Demuestre que $g(x) = f(x) + f(x)^5$ también es una función de clase C^k .

Solución. La función del enunciado se puede escribir como $g=h\circ f$, donde $h(y)=y+y^5$. Demostraremos por inducción en k que, si $f:\mathbb{R}\to\mathbb{R}^n$ es una función de clase C^k y $h:\mathbb{R}^n\to\mathbb{R}$ es una función polinomial, entonces la composición $g=h\circ f$ también es de clase C^k y su k-ésima derivada $g^{(k)}$ es un polinomio en todas las derivadas $f_i^{(j)}$ de orden $j\leq k$. El caso base k=0 se reduce a lo siguiente:

- Si f, h son funciones continuas, entonces $g = h \circ f$ también lo es, por topología general.
- Si h es una función polinomial, entonces tautológicamete g es un polinomio en f_1, \ldots, f_n .

Pasemos al caso inductivo. Si f de clase C^{k+1} , entonces f también es de clase C^k , así que g es de clase C^k y su k-ésima derivada $g^{(k)}$ es un polinomio en todas las derivadas $f_i^{(j)}$ de orden $j \leq k$. Si agrupamos estas derivadas en una única función $\tilde{f}: \mathbb{R} \to \mathbb{R}^m$, entonces

- Por construcción, \tilde{f} es de clase C^1 .
- Existe una función polinomial $\tilde{h}: \mathbb{R}^m \to \mathbb{R}$ tal que $g^{(k)} = \tilde{h} \circ \tilde{f}$.

Por la regla de la cadena, $g^{(k)}$ es diferenciable y su derivada es $g^{(k+1)} = (\nabla \tilde{h} \circ \tilde{f}) \cdot \tilde{f}'$. Entonces,

- Las entradas de $\nabla \tilde{h} \circ \tilde{f}$ son polinomios en $f_i^{(j)}$, donde $0 \leq j \leq k$.
- Las entradas de \tilde{f}' son polinomios en $f_i^{(j)}$, donde $1 \leq j \leq k+1$.

Por lo tanto, $g^{(k+1)}$ es un polinomio en $f_i^{(j)}$, donde $0 \le j \le k+1$. Esto implica que g es de clase C^{k+1} .