I

MISCELLANEOUS PAPER SL-81-14

EVALUATION OF CONDITION OF LAKE SUPERIOR REGULATORY STRUCTURE SAULT STE. MARIE, MICHIGAN

Ь

Henry T. Thornton, Jr., Carl E. Pace, Richard L. Stowe Barbara A. Pavlov, Roy L. Campbell, A. Michel Alexander

Structures Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

June 1981 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for U. S. Army Engineer District, Detroit Detroit, Michigan 48231

81 7 20 007

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
a b a c c c c c c c c c c	3. RECIPIENT'S CATALOG NUMBER
Miscellaneous Paper SL-81-14 HX-A/0/ 609	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERE
EVALUATION OF CONDITION OF LAKE SUPERIOR (9)	Final repert
REGULATORY STRUCTURE, SAULT STE. MARIE,	
MICHIGAN	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*)	8. CONTRACT OR GRANT NUMBER(4)
Henry T. Thornton, Jr. Barbara A. Pavlov	TUE E/MP/SU-S
Carl E./Pace Roy L./Campbell / /-	N. Charles
Richard L./Stowe A. Michel Alexander 9. PERFORMING ORGANIZATION NAME AND ADDRESS	10 DOGGAN SI ENENY ODGUEGT TASK
	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U. S. Army Engineer Waterways Experiment Station	}
Structures Laboratory	}
P. O. Box 631, Vicksburg, Miss. 39180 11. Controlling Office name and address	12. REPORT DATE
U. S. Army Engineer District, Detroit	Jun 81 /2
P. O. Box 1027	13. NUMBER OF PAGES
Detroit, Mich, 48231	376 = 57-
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15. DECLASSIFICATION/DOWNGRADING
	•
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	
Approved for public release; distribution unlimited	
Approved for public release; distribution unlimited	
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from the supplementary notes	om Report)
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES Available from National Technical Information Servi	om Report)
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from the supplementary notes	om Report)
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the supplementary notes Available from National Technical Information Service Road, Springfield, Va. 22151.	ice, 5285 Port Royal
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number,	ice, 5285 Port Royal
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Concrete tests Laboratory tests	ice, 5285 Port Royal
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Concrete tests Laboratory tests Foundation conditions Lake Superior	ice, 5285 Port Royal
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Concrete tests Laboratory tests	ice, 5285 Port Royal
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Concrete tests Foundation conditions Hydraulic structures	ice, 5285 Port Royal
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Concrete tests Laboratory tests Foundation conditions Hydraulic structures	ice, 5285 Port Royal
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Concrete tests Laboratory tests Foundation conditions Hydraulic structures 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) In May 1978 the U. S. Army Engineer District,	Detroit (NCE) requested the
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Concrete tests Laboratory tests Foundation conditions Hydraulic structures 10. ASSTRACT (Continue on reverse side if necessary and identify by block number) In May 1978 the U. S. Army Engineer District, U. S. Army Engineer Waterways Experiment Station (Wi	Detroit (NCE) requested the
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Concrete tests Foundation conditions Hydraulic structures 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) In May 1978 the U. S. Army Engineer District, J. 3. Army Engineer Waterways Experiment Station (Worganization and execution of a program to accomplish	Detroit (NCE) requested the ES) to participate in the sh detailed testing to deter
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Concrete tests Laboratory tests Foundation conditions Hydraulic structures 20. ABSTRACT (Continue on reverse state if necessary and identify by block number) X In May 1978 the U. S. Army Engineer District, U. S. Army Engineer Waterways Experiment Station (Worganization and execution of a program to accomplishmine the condition of the Lake Superior Regulatory Station and execution of the Lake Superior Regulatory Station.	Detroit (NCE) requested the ES) to participate in the sh detailed testing to deter Structure and its foundation
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES Available from National Technical Information Service Road, Springfield, Va. 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Concrete tests Laboratory tests Foundation conditions Hydraulic structures 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) In May 1978 the U. S. Army Engineer District, U. 3. Army Engineer Waterways Experiment Station (Worganization and execution of a program to accomplish	Detroit (NCE) requested the ES) to participate in the sh detailed testing to deter Structure and its foundation am that included nondestruc-

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

4/14

1.0

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

structural analysis of the substructure and superstructure, and preparation of written reports and recommendations.

Nondestructive tests performed on the gates and operating machinery, and the concrete piers indicate that there has been no appreciable loss in gate skin thickness, that the rivets are sound, and that the concrete in the piers is of generally good to excellent quality. Load tests performed on the gate lifting machinery showed that the loads present during normal operation of the gates are compatible with design loads. Some difference was noticed in loads between the sides of gates No. 9 and 10.

Laboratory tests of the concrete cores indicate some minor amounts of surface frost-damaged concrete in three of the piers, and some alkali-silica reaction damage in one of those three. The interior concrete of the aprons and piers is in good condition and should continue to give excellent service.

The foundation rock beneath the dam consists of continuous beds of sand-stone from 1 to 13 ft thick; the beds dip upstream about 2 deg. Soft clay and shale seams occur throughout the foundation profile and are considered the weakest zones within the foundation. Severe scouring, exposing the upstream and downstream apron base, and undercutting of the dam have left most of the dam sitting on a pedestal. Protective aprons are necessary to stop the scouring and undercutting.

The concrete piers were found to be adequate in their resistance to over-turning and base pressure, but inadequate to sliding. Remedial stability measures are recommended.

The gate lifting mechanisms are considered adequate for normal loading performance. Stresses in the gate ribs, rivets, and plates were found to be excessive for case loading of normal plus ice, but acceptable for normal operation. It is possible that the stress analysis for normal plus ice loading is overconservative.

Recommendations for future action are made where warranted in each area of evaluation in this investigation.

Unclassified

PREFACE

The work reported here was performed for the U. S. Army Engineer District, Detroit (NCE), by members of the staff of the U. S. Army Engineer Waterways Experiment Station (WES). The preliminary engineering studies and field testing program were accomplished in FY 79 and were authorized by DA Form 2544 No. NCE-IA-79-005 dated 24 October 1978, Change No. 1 dated 7 November 1978, and DA Form 2544 No. NCE-IA-79-043 dated 30 January 1979. The compilation and evaluation of all test data, the completion of the structural stability and stress analysis, and the preparation of the final report were accomplished in FY 80 and were authorized by DA Form 2544 No. NCE-IA-80-022-EN dated 19 October 1979.

The detailed testing program was accomplished under the direction of Mr. Bryant Mather, Chief of the Structures Laboratory (SL);
Mr. William Flathau, Assistant Chief, SL; Mr. John M. Scanlon, Chief,
Engineering Mechanics Division (EMD); and Mrs. Katharine Mather, formerly Chief, Engineering Sciences Division (ESD); all of WES. Soils tests and borehole camera work were performed by members of the staff of the Geotechnical Laboratory (GL), WES; Mr. Gene P. Hale (GL) supervised the direct shear testing, and Mr. Richard W. Hunt performed the borehole camera work. The core-drilling program was accomplished by Mobile District drill crews under the supervision of Mr. Clyde Gambrell. Mr. Joe Kubinski of the NCE was on site during the drilling program and served as logistics coordinator. Messrs. Robert K. Jones and Jim Smith of the NCE served as overall project managers. Mr. Jim Bray, Sault Area Engineer, and his staff provided assistance during the course of the investigation.

Members of the WES staff who performed the work are Ms. B. A. Pavlov, Dr. C. E. Pace, Messrs. R. L. Campbell, E. F. O'Neil, R. L. Stowe, H. T. Thornton, Jr., A. M. Alexander, D. Glass, D. E. Wilson, and G. S. Wong, all of SL, and Messrs, J. C. Oldham, R. C. Hosemann, and T. E. Stukes of GL. Mr. Thornton served as Project Leader for the WES effort. Dr. Pace was responsible for coordinating and completing the work pertaining to stress, stability, and microseismic analysis.

Mr. Stowe was responsible for coordinating and completing the work pertaining to geology, foundation exploration, and concrete and rock testing. Ms. Pavlov, Fr. Pace, and Messrs. Stowe, Campbell, and Alexander coauthored this report with Mr. Thornton.

The Commanders and Directors of WES during the conduct of the investigation and preparation and publication of the report were COL John L. Cannon, CE, and COL Nelson P. Conover, CE. Mr. F. R. Brown was Technical Director.

CONTENTS

		Page
PREFA CONVE	ACE	1
	ASUREMENT	5
PART	I: INTRODUCTION	6
	Location of Area	6 9
	Objective	12 12
PART		13
	Visual Inspections	13
	Review of Records and Drawings	13
	Survey and Soundings	13 13
	Ultrasonic Velocity Tests of Concrete	14 16
DADT	III: FIELD TESTING AND EXPLORATION	21
FANI	Gates and Operating Machinery	21
	Microseismic In-Place Stability and Deterioration	
	Evaluations	27 30
	Foundation Exploration	35
	Scouring	40 47
PART		53
110(1	Test Specimens and Test Procedures	53
	Core Test Results and Discussion	56
	Structural Stability Analysis	73 76
	Stability in Foundation Below Concrete-Foundation	,
	Interface	77 81
	Stress Analysis of Sluice Gates	83
	Automatic Operation of Sluice Gates	84
PART	V: SUMMARY AND RECOMMENDATIONS	87
	Summary	87 91
REFER	RENCES	93
TABLE	E 1	
APPEN	NDIX A: MATERIAL SUPPLEMENTARY TO PRELIMINARY ENGINEERING STUDY AND TESTING	A 1

APPENDIX B	NDT AND LOAD TEST RESULTS, GATES AND OPERATING MACHINERY	В
APPENDIX C	FOUNDATION EXPLORATION, REFERENCE MATERIAL AND BOREHOLE PHOTOGRAPHY	CI
APPENDIX D	BORING LOCATION PLAN AND GEOLOGIC CROSS SECTIONS	D
APPENDIX E	LABORATORY TEST RESULTS OF CONCRETE AND ROCK CORES	E
APPENDIX F	STRUCTURAL STABILITY ANALYSIS, FIGURES AND COMPUTATIONS	FI
APPENDIX G	STRESS ANALYSIS OF GATES AND OPERATING MACHINERY, FIGURES AND COMPUTATIONS	GI

A Comment of the Comm

CONVERSION FACTORS, INCH-POUND TO METRIC (SI) UNITS OF MEASUREMENT

Inch-pound units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By	To Obtain	
cubic feet	0.02831685	cubic metres	
degrees (angular)	0.1745329	radians	
feet	0.3048	metres	
feet per minute	0.00508	metres per second	
feet per second	0.3048	metres per second	
foot-kips (force)	1355.818	joules	
inches	0.0254	metres	
inches per pound	0.571015	centimetres per newton	
inch-pounds (force)	0.1129848	newton metres	
kips (force)	4448.222	newtons	
kips (force) per square foot	47.88026	kilopascals	
miles (U. S. statute)	1.609344	kilometres	
pounds (force)	4.448222	newtons	
pounds (force) per foot	14.59390	newtons per metre	
pounds (force) per square foot	47.88026	pascals	
pounds (force) per square inch	6.894757	kilopascals	
pounds (mass)	0.4535924	kilograms	
pounds (mass) per cubic foot	16.01846	kilograms per cubic metre	
square feet	0.09290304	square metres	
tons (force) per square foot	0.09576052	megapascals	
tons (2,000 lb, mass)	907.1847	kilograms	

- Million The State of the stat

and the second s

EVALUATION OF CONDITION OF LAKE SUPERIOR REGULATORY STRUCTURE, SAULT STE. MARIE, MICHIGAN

PART I: INTRODUCTION

Location of Area

1. The Lake Superior Regulatory Structure is located at the head of the St. Mary's Rapids between the twin cities of Sault Ste. Marie, Michigan, and Ontario. The St. Mary's River forms the only outlet from Lake Superior and links Lake Superior at its most easterly point with Lakes Michigan and Huron. Figure la shows vicinity and locality maps and a general plan view of the area. At this point the St. Mary's River flow is distributed among the following man-made structures, named from the Canadian to the United States side: the power canal of the Great Lakes Power Corporation, the Canadian Ship Canal, the Regulatory Structure, the power canal of the U. S. Government power plant, the two U. S. ship canals which serve four navigation locks, and the Edison Sault Electric Company's power canal. The Regulatory Structure consists of 16 gates, numbered 1 through 16 commencing on the Canadian side. Gates 1 through 8 are owned, operated, and maintained by the Great Lakes Power Corporation Limited, based in Sault Ste. Marie, Ontario. Gates 9 through 16 are owned, operated, and maintained by the U. S. Army Corps of Engineers. For the sake of water, that organization has entered into a contract with the local U. S. utility, the Edison Sault Electric Company, the terms of which permit the Corps of Engineers to use monies to repair the structure using the services of the Edison Company. An aerial photograph of the Regulatory Structure, with all gates in the full-open position, is shown on Figure 1b.

The state of the s

Vicinity, locality, and plan view maps of the Lake Superior Regulatory Structure Figure la.

The same of the sa

Figure 1b. Regulatory Structure, Sault Ste. Marie, aerial photographs

Background

2. The Lake Superior Regulatory Structure was constructed by private firms between 1913 and 1919. There are 16 gates, 8 in Canada and 8 in the United States, used to control the water level in Lake Superior. The Canadian portion of the structure (gates No. 1 through 8) is owned, maintained, and operated by the Great Lakes Power Corporation (privately held). The U. S. portion (gates 9 through 16) is owned by the U. S. Government, but is maintained and operated by Edison Sault Electric Company at the direction of and under the administration of the U. S. Army Corps of Engineers. In 1976 the Lake Superior Board of Control requested a testing program as a basis for future decisions on the structure, i.e., need for repairs, rehabilitation, modernization, replacement, etc. The U. S. portion of the structure is in the jurisdiction of the U. S. Army Engineer District, Detroit (NCE) who was given the responsibility for coordination of the U.S. testing program. In a letter dated 12 May 1978 to the Commander and Director of the U. S. Army Engineer Waterways Experiment Station (WES), subject: Detailed Testing of the Lake Superior Regulatory Structure, the Chief, NCE, requested WES to participate in the organization and execution of a program to accomplish the testing of the U.S. part of the structure jointly owned and operated by Canada and the U. S. An enclosure to the letter of 12 May 1978 was a copy of a letter dated 3 December 1976 from the Lake Superior Board of Control transmitting a proposed program for the "detailed testing" to the International Joint Commission for Regulation of the Great Lakes Water Levels. A part of the preface to the proposed program is quoted here to present the rationale supporting the need for such a program:

The time has come when the U. S. and Canada must take under consideration the future usefulness of the Compensating Works at Sault Ste. Marie to meet the expanding needs of the International Joint Commission for Regulation of the Great Lakes Water Levels and as the interest of each country may appear.

The existing works were constucted between 1901 and 1921 on the approval by the governments of the U. S.

and Canada of a proposal by the Michigan Northern Power Company and the Algoma Steel Corporation to construct the compensating works for power purposes.

They have provided fifty-five years of excellent service but their condition is now considered to be sufficiently questionable as to justify an extensive examination on both sides of the border to test their suitability for continued service with or without reconstruction for a reasonable number of additional years.

Recent discoveries of local failures suggesting deterioration of underlying strata is obvious evidence of advancing age and perhaps inadequate repairs which creates further uncertainties with respect to the capability of the structures to sustain the use which would be required of it by several of the proposed Great Lakes Regulation plans. Furthermore, these plans call for a more responsive operation than would be possible with the present hand operated gates.

A further situation in Canada which must be resolved before final plans can be drawn up is a proposal by the Great Lakes Power Company to construct a new hydro plant in the region of the rapids and phase out the old obsolete plant.

Obviously these opinions must be investigated. Typical but not all inclusive questions are:

Is the current compensating structure structurally sound?

If no, should it be repaired?

Should it be modernized?

Should a multi-purpose structure with hydro power be constructed, etc.?

The first step to all these questions is a detailed engineering investigation of the present structure and its foundation. The investigation must be of sufficient detail that firm engineering data will be available to allow all potential future uses to be analyzed.

3. After the request by NCE for WES participation in the testing program a meeting was held in Sault Ste. Marie, Michigan. Attendees included representatives from the U.S. Army Engineer District, Mobile, (SAM), who had been asked to handle the core drilling, WES, NCE, and the Sault Area Office. The capabilities of the organizations represented

were discussed, as well as how such a testing program might be accomplished, and problems that might be encountered. WES was asked to study the proposed program and make recommendations based on testing capabilities and previous experience with similar testing programs. Figure Al in Appendix A* outlines the detailed testing program prepared jointly by WES and NCE. This outline presents the items of work and the proposed test standards and specifications to be used or referred to in accomplishing each item. The outline covers all items of the original program proposed by the Lake Superior Board of Control except the item addressing the "Coordination of (Committee) Assignments" which provides for the formation of an International Ad Hoc Committee to coordinate testing and analysis standards recognized by the scientific and professional community. The Ad Hoc Committee will also review both U. S. and Canadian test reports to assure that the study was conducted in accordance with these standards and that the findings and tentative recommendations are technically sound. The Ad Hoc Committee will act in a purely advisory capacity to the Lake Superior Board. Appointments to the International Ad Hoc Committee were:

United States Section

- Mr. P. McCallister, Detroit District Chairman
- Mr. W. C. Otto, Detroit District
- Mr. R. E. Philleo, Office, Chief of Engineers
- Mr. Jose Ordonez, North Central Division
- Mr. J. Bray, Sault Area Engineer
- Mr. H. T. Thornton, Jr., WES

Canadian Section

- Mr. K. A. Rowsell, Canada Department of Public Works Chairman
- Mr. R. Seawright, Canada Department of Public Works Project Manager
- Mr. P. Siiman, Canada Department of Public Works Structural Engineer
- Mr. D. Cuthbert, Canada Department of Public Works Hydraulic Engineer
- Mr. E. Ashton, Canada Department of Public Works Area Representative
- Mr. J. Bouchard, St. Lawrence Seaway Authority, International Lake Superior Board of Control - On-Site Representative

^{*} Figures, tables, and plates placed in appendixes will be referred to in the text with alpha-numeric characters designating those appendices.

The Committee met 7 September 1978 in Sault Ste. Marie, Ontario, 19 October 1978 at WES, Vicksburg, Mississippi, and 16 August 1979 at Sault Ste. Marie, Michigan, U. S. A. The Committee approved the detailed testing program as presented in Appendix A. These of the Committee actions satisfy the requirements of the first group of work items, Coordination of (Committee) Assignments, until the Canadian section presents a program of proposed work. The Committee will review both U. S. and Canadian test reports and complete the testing program with one joint recommendation to the Lake Superior Board.

Objective

4. The objective of WES in this effort was to assist the NCE in the planning, implementation, and execution of a detailed testing program to determine the overall condition of the Regulatory Structure and its foundation.

Scope

- 5. The testing program included:
 - a. Preliminary engineering study and testing.
 - Visual inspections and collection and review of all available records and data.
 - (2) Survey, soundings, and underwater inspection.
 - (3) Ultrasonic velocity measurements in concrete.
 - (4) In-office stability analysis of substructure and superstructure.
 - b. Field testing and exploration.
 - (1) Core-drilling program.
 - (2) Nondestructive testing (NDT) and load tests of gates and operating machinery.
 - (3) Microseismic analysis of piers.
 - (4) Foundation exploration and geology.
 - c. Laboratory tests and analysis.
 - (1) Tests and analysis of concrete and rock cores.
 - (2) Structural stability analysis.
 - (3) Stress analysis of gates and operating machinery.

PART II: PRELIMINARY ENGINEERING STUDY AND TESTING

Visual Inspections

6. In May 1978 representatives from NCE, SAM, and WES made an inspection of the Regulatory Structure, and with the help of Sault Area Office representatives gathered information on the logistics problems that might be encountered in the overall planning and execution of the detailed testing program. The collection of data by visual means continued during the remainder of the testing program for use as direct input or as supplementary data in the overall assessment of the Structure.

Review of Records and Drawings

7. All available records and drawings of the Structure were collected and reviewed. The items available for review included construction drawings, maintenance records, prior underwater inspections, modification plans for winter operation, boring logs, and foundation reports. Specific references to these records and drawings are made in appropriate parts of this report.

Survey and Soundings

8. In January 1979 WES received a print of drawing No. DC-103-25, Compensating Works Condition Survey, showing elevations of the upstream and downstream aprons and adjacent river bottom. Pier elevations from results of prior surveys were obtained by telephone from members of the Sault lock staff. Information on water levels recorded upstream from the structure were also furnished. These data provided input for the office analysis of stability and later were used in developing the geologic cross section and assessing the condition of the foundation.

Underwater Video Inspection

9. The underwater video inspection was originally scheduled to be performed in the fall of 1978. Difficulties with underwater video equipment and inclement weather conditions caused a change in scheduling.

This work was accomplished during the summer of 1979. WES received videotapes which recorded the complete upstream and downstream underwater inspection of the aprons and gates of bays 9 through 16. The information obtained from viewing these tapes provided valuable input to the evaluation of the structural stability of the dam and made possible a more complete assessment of the condition of the foundation.

Ultrasonic Velocity Tests of Concrete

10. In November 1978 ultrasonic velocity measurements were made through the concrete piers in the U. S. part of the Regulatory Structure. This NDT method is used to establish the uniformity or continuity of concrete structures and to provide indications of the general quality of the concrete in the structure. The equipment used for these tests was similar to that described in the Corps of Engineers test method CRD-C 51-72 (ASTM 597-71) (U. S. Army Engineer Waterways Experiment Station 1949). Ultrasonic pulse waves are transmitted through the concrete and the time of travel from the transmitter to the receiver, through a measured section of concrete, is electronically measured. Knowing the time of travel and the path length, the velocities through the material can be computed by using the following formula:

Pulse velocity, it/sec = $\frac{\text{Path length, ft}}{\text{Effective time, sec}}$

This velocity provides an index of the condition or quality of concrete through which the readings are taken. Although mixture design and properties of materials used in various concrete mixtures affect velocities, the generally accepted correlation of velocity versus condition for mature concrete is given in the following tabulation (Leslie and Chessman 1949) of suggested concrete pulse velocity ratings:

Pulse Velocity, ft/sec	General Conditions
Above 15,000	excellent
12,000 to 15,000	good
10,000 to 12,000	questionable
7,000 to 10,000	poor
Below 7,000	very poor

11. To facilitate the velocity testing, members of the Sault Area Office designed and fabricated a rig with portable ladders and platforms to provide access to the sides of the concrete piers (see Figure 2). The aluminum ladders fit over the piers like a saddle. They are very light and easy to move from pier to pier.

Figure 2. Portable aluminum ladders with platforms provided access to sides of piers

12. A total of 68 velocity measurements were made through the concrete in piers 9 through 16. Data stations were located on the vertical faces of each pier to provide for the accurate placement of

the transmitting and receiving transducers. Figure 3 shows the layout of data stations for piers 10, 11, 12, 14, 15, and 16. These piers are 8 ft wide* and 34.6 ft long downstream from the gates. Figure 4 shows the layout of data stations on piers 9 and 13. These two piers are 9 ft wide and 40.6 ft long downstream from the gates.

- 13. Velocity data for piers 10, 11, 12, 14, 15, and 16 are given in Table A1. The high mean velocities indicate excellent quality concrete in these piers. The extraordinary roughness near the waterline on pier 12 probably caused the lower velocities obtained at stations 1b, 3b, and 4b. Velocities obtained from measurements on the larger piers, No. 9 and 13, are presented in Table A2. Again, the mean velocities indicate excellent quality concrete. The velocities obtained from pier 13 indicate a quality of concrete somewhat lower than that of the other piers. The fact that this pier has been patched in an area near the waterline indicates that the concrete in pier 13 is less resistant to the mechanism causing the waterline deterioration of the piers (see Figure 5). There is a vertical crack near data station 3a that may be the result of a change in the foundation near the downstream end of the pier.
- 14. These initial velocity measurements did not produce anomalies of alarming characteristics. The data indicate that the concrete is of generally good to excellent quality and that there are no areas which need to be regarded as deficient with respect to structural integrity. The ultrasonic velocity investigation of the concrete provided the desired input for stability analysis and overall assessment of condition of the structure.

In-Office Stability Calculations

15. At an early stage in the investigation of a concrete structure, the engineer is limited to what he can observe at the surface of

^{*} A table of factors for converting inch-pound units of measurements to metric (SI) units is presented on page 5.

Figure 3. Ultrasonic velocity tests, Lake Superior Regulatory Structure. Typical layout of data stations, piers no. 10, 11, 12, 14, 15, and 16

Ultrasonic velocity tests, Lake Superior Regulatory Structure. Typical layout of data stations, piers No. 9 and 13 Figure 4.

Figure 5. Pier No. 13, note patched area near waterline and slabbing near gate

the structure, and thus is limited in evaluating the whole structure. The interior condition of the concrete, such as deterioration and cracking, and the base condition of the structure are concerns which need to be investigated as an interrelated whole, but this is possible only after detailed field and office investigations. The preliminary analysis involved:

- <u>a</u>. Performing a preliminary conventional stability analysis to determine, in general, the adequacy of the piers to resist overturning, sliding, and base pressures.
- b. Preparation for a microseismic study to determine the inplace structural stability of the piers and to obtain an evaluation of the total structural system in relation to structural integrity.

The preliminary stability analysis used the following assumed properties:

Concrete weight = 150 lb/ft^3

Angle of internal friction between pier and foundation = 30 deg Cohesion between pier and foundation = 0

Strut resistance = 0

C. T. T. T. C. S.

The strut resistance was initially assumed as zero because:

THE PARTY OF

- $\underline{\mathtt{a}}$. Scour downstream of the dam was suspected but unknown.
- $\underline{b}\,.$ The condition and strength properties of the apron to act as a strut against the piers were unknown.
- 16. The results of the preliminary stability analysis indicated that the piers were adequate in their resistance to overturning and base pressures and were probably inadequate in their resistance to sliding.

PART III: FIELD TESTING AND EXPLORATION

Gates and Operating Machinery

Magnetic particle and ultrasonic inspection

- 17. In June 1979 Peabody Testing Service was requested to perform an on-site determination of the best methods for evaluation of the condition of the steel and cast iron gate lift machinery and to advise WES representatives on other tests to be performed, such as rivet sounding and gate skin measurements. Individuals certified at Level III in NDT according to the American Society for Nondestructive Testing, recommended practice SNT-TC-1A (areas of magnetic particle, liquid penetrant, ultrasonics, and radiography testing), made the inspection and furnished a letter report recommending the use of dry magnetic particle and ultrasonic tests.
- 18. During the period of 8 August 1979 to 12 September 1979, dry magnetic particle inspections were performed on the accessible portions of the gears and lifting chains of the eight pairs of lifting mechanisms of gates No. 9 through 16; ultrasonic inspections were performed on the shafts of the eight pairs of lifting mechanisms (see Figures 6 and 7); and ultrasonic plate gaging and length measurements were performed on the gate skins and rivets.
- 19. <u>Magnetic particle test results</u>. The following discontinuities were found:

Gate No. 9 East - a 5-in. crack in a weight secured to a lifting chain link.

Gate No. 9 West - a 2-in. crack in the bolt hole in a lifting chain link.

Gate No. 15 West - a 3-in. crack in a weight secured to a lifting chain link.

All the discontinuities were circled, numbered, and marked with a white paint marker. The discontinuities that were found are not considered to be of a nature that could cause failure in the lifting mechanisms. No other discontinuities were indicated in the lifting mechanisms inspected using the magnetic particle technique.

Figure 6. Shafts and lifting chain of operating mechanism

Figure 7. Gear mechanism in operation

20. Ultrasonic inspection (gate skins and shafts) results. The ultrasonic inspection of the shafts of the eight pairs of lifting mechanisms produced no indications of processing or fatigue defects. The results of the ultrasonic plate gaging performed on the gate skins are given in Plates B1 through B8. Most of the measurements were made in the lower portion of the gates where maximum hydraulic pressure is exerted. Each of the 20 sections of steel plate in the lower portion of each of the eight gates was scanned to determine the thickness of the plates. Scans were made in areas near the four corners and in the center of each section. Some sections of the steel plate in the upper portions of gates No. 12, 13, and 14 were scanned to check the uniformity of thickness between upper and lower sections. The number of scans taken per gate is as follows:

Gates No. 9, 10, 11, 15, and 16 - 100 Gates No. 12 and 13 - 120 Gate No. 14 - 130

The construction drawings specify that the gate skin plates contain sections of medium steel of 0.375-in. thickness. Evaluation of data given in Plates B1 through B8 shows that only 24 of the 870 areas scanned produced apparent thicknesses less than 0.375 in. The mean thickness measurements for the eight gate skin plates ranged between 0.39 in. and 0.41 in. The grand mean for the eight gates is 0.40 in. The apparent presence of 0.025 in. of steel thickness is not considered to be unusual since it is not uncommon for steel plate to be over-toleranced in order to assure compliance with specifications. It is difficult to ascertain what were standard practices on tolerance setting in the early 1900's when this steel was manufactured. The data obtained from the ultrasonic inspections do not indicate that there has been any appreciable loss in gate skin thickness.

21. <u>Ultrasonic inspection (rivets) results.</u> The rivets used to fabricate the sluice gates were of medium steel, 7/8-in. diam, and had round heads (see Figure 8). The round heads made it extremely difficult to check the rivets for continuity using ultrasonic inspection. After consulting with experts in the conduct of these types of tests,

Figure 8. View of downstream side of sluice gate

it was determined that there were no alternatives to ultrasonics that would simplify or substitute for this type of measurement. It was apparent from the outset that satisfactory contact between the ultrasonic transducer and the rivet could not be made without grinding the head of the rivet. This had to be done by hand and was very tedious since the surface had to be flat and normal to the rivet axis. The degree of difficulty, the time and access restrictions imposed by a stringent schedule of gate manipulation, and the fact that field personnel were needed to complete other work resulted in a limited effort in rivet inspection. Plates B9 and B10 show the locations and results of measurements made on gates No. 11 and 12. A total of 60 rivets were sounded. Only six measurements indicated possible flaws. These flaws, if they were present, were very near the end of the rivet in each case. The fact that these six indications of defective rivets could have been caused by a lack of normalcy between the plane of contact and the rivet axis allows one to speculate that maybe none of the rivets tested were defective. The results of these tests do not show cause for concern about the rivets with respect to the integrity of the gates.

Load tests of gate machinery

- 22. After a study of the drawings showing the gate lifting machinery, the sprocket chain, and the hookup to the sluice gates, it was determined that the best way to make measurements of the gate hoisting loads would be to insert load cells into the hoisting system. This method was chosen over that of strain gaging the eye bars to eliminate the need for laboratory calibration of load versus strain for this particular steel. Since the purpose of these tests was to determine the combined total of gate and friction loads of several gates, it was necessary only to calibrate in the laboratory load versus output in millivolts of the load cells to be used and then record the output continuously during the operation of the gates.
- 23. The sheets showing strains and loads were examined along with photographs. Nominal loads to be expected during the operation of the gates were computed to be 30,750 lb per side. Replacement eye bars were designed to accommodate two 50,000-lb capacity load cells (one on each side of the gate) and to be substituted for the eye bars connecting the lifting chains to the gate (see Figures 9 and 10). The replacement eye bars were fabricated in the Sault Ste. Marie Area Office machine shop. The load cells were transported to the site along with the measurement instrumentation (see Figure 11), and the measurements were made during the period of 15-18 August 1979.
- 24. Loads were monitored continuously on gates No. 9, 10, 15, and 16 during normal raising operations. The results of these measurements are tabulated in Tables B1 through B4 and plotted in Plates B11 through B14. The gates were raised a distance of 10 to 13 ft at a nominal rate of 1.2 ft/min. Single side loads ranged between 30,250 and 36,400 lb. Gates No. 9 and 10 showed noticeable differences in loads between sides. Gate No. 9 at one point showed a difference of 2450 lb, and gate No. 10 showed a 5550-lb difference at one point. It was observed that the counterweights on some gates may not have been symmetrically spaced. These differences could also be caused by friction loading.

Figure 9. Fifty thousand pound capacity load cell

Figure 10. Load cell and replacement eye bars

Figure 11. Load measurement instrumentation

Microseismic In-Place Stability and Deterioration Evaluations

Introduction

- 25. For many years, dynamic E calculations have been made and used to indicate the state of deterioration of freeze-and-thaw beams in standard laboratory tests. The deterioration need not be caused by freezing and thawing conditions. The dynamic E as obtained from a response after dynamically exciting a structure is a measure of the elastic qualities of the total structure and is a good indicator of its structural integrity.
- 26. In the past, the stability of a structure has been determined by conventional calculations. These calculations are based on certain assumptions, such as laboratory test results, to represent the behavior of foundation and structure materials, a flat base structure, assumptions concerning the properties of backfill materials, etc. In the past, it has been demonstrated that these methods, even though they are approximate, can produce a safe structural system. It is very probable that the structural designs are overconservative and if the actual stability of the in-place structure could be known, especially when older structures are being evaluated, large amounts of money could be saved by eliminating expensive remedial measures for inadequate stability, as reflected by conventional computations. The best way to determine the in-place stability of a structure is to push on it with increasing horizontal static forces and determine the static horizontal force and deflection relationship. This does not directly give the stability of the in-place structure because some criteria must be available to evaluate what this horizontal force-deflection relationship means in relation to sliding safety. The way to make this evaluation is not by developing new criteria which must be proven with time; but to relate the horizontal force-deflection relationship as determined in the field to conventional stability analysis in such a way as to determine the safety factor against sliding in relation to conventional sliding safety factor calculations. This relationship can be obtained by using the same laboratory test data as are used in performing the conventional

stability analysis computations in conjunction with in-place measurements. Laboratory tests are used to determine the angle of internal friction and cohesion of the weakest plane or combination of planes below a structure. Shear tests, which give this data, also give the load-deflection characteristics of these shear planes.

27. The safety factor as determined by the laboratory test data can be ratioed by $\frac{laboratory\ deflection/load}{field\ deflection/load}$ to obtain the in-place

factor of safey against sliding. This is saying, quite simply, if the structure is harder to displace in the field than laboratory test data indicate, it is safer in its resistance to sliding. The monoliths at the Regulatory Structure are very stable against overturning and base pressures; therefore, the in-place sliding resistance is all that is needed to evaluate the in-place stability of the Structure.

- 28. The only problem with the above analysis is that a reaction-block type system would be needed to push on the in-place structure, and sensitive deflection gages would be needed to measure the small deflections. This problem can be eliminated by using dynamic excitation and the equivalent static force-deflection relationship for the structure from load cell and accelerometer measurements. The deflection is obtained by Fast Fourier measurement and analysis instruments (FFT) (see Figure 12), which will give the deflection at zero frequency and the corresponding static load associated with the dynamic excitation. The FFT is used mainly for impedance measurements but will also give instant velocity and displacement feedback from the accelerometer measurement.
- 29. The FFT is excellent for obtaining data from structure response (after excitation by a dynamic energy input) which can be used to evaluate in-place structure stability and structure integrity.
- 30. Since the dynamic technique had never been used to determine in-place stability and structure integrity, it was necessary to perform some preliminary tests to get ideas, techniques, and equipment to best perform the field tests. Various size model structures were obtained

and shakers of various sizes were used to put sinusoidal or swept-sine

Preparatory studies

Figure 12. Real-time Fourier analyzer (FFT)

input into the structure. The output was measured with an accelerometer and the data reduced by an elaborate instrumentation system which has been used in the analysis of vibration data by the SL at the WES. This system was too expensive and was abandoned in favor of an impulse loading with the data being reduced by an FFT. This system was best, due to portability of equipment, less cost, speed of measurements, speed of data anlaysis, and increased capability. The investigation not only included studying the feasibility of the resonant technique for determining the integrity of a field structure but also determined the feasibilty of using the impulse technique to excite the structure rather than the more commonly used sinusoidal or swept-sine technique. The impact resonance method was used on the same structures as the sinusoidal method, and the same resonant frequencies were obtained. The impulse method was verified, and it could be used economically on the piers at the Regulatory Structure. The FFT made it possible to calculate functions such as spectrums, transfer relationships, coherence, and many other on-site

structural response characteristics. In addition to on-site analysis, the data were stored on magnetic tape and analyzed in the laboratory.

31. The impact tests were made on rectangular blocks, two of which are shown in Figures 13 and 14. Some model structure sizes, weights, resonant frequencies, and dynamic E's are presented below:

Structure	Resonant Structure Size Mass, 1b Frequency, H				Dynamic E, psi	
1	18 by	18 by 26 in.	765	2280	5.84 by 10 ⁶	
2	3 by	6 by 6 ft	16,800	564	3.54 by 10 ⁶	
3	3 by	6 by 10 ft	28,140	322	5.73 by 10 ⁶	

Results of Preparatory Studies

32. Structure 2 (16,800 lb) had a lower dynamic E as calculated by the fundamental frequency equations of Pickett (1945). This specimen had a number of large cracks which were visible before the structure surface was grouted and painted. This demonstrates that diminished structural integrity will be reflected by the dynamic modulus calculations. The determining of the resonant frequency allows one to know at what frequencies the structure will be more effected by loadings. During the laboratory tests it was found that it took a static load of 10,000 lb to fail the 28,140-lb structure in sliding. At its natural frequency, it failed at approximately 250 lb. This indicates a reduction by a factor of 40 in sliding resistance, which very drastically illustrates the undesirability of exciting the structure near its resonant frequency. This consideration has been of concern and interest in many situations of the past. For example, companies of soldiers must break step when crossing bridges due to the risk of creating large motions at resonant frequencies. The Tacoma Narrows Bridge in Washington State was destroyed by the wind exciting the structure at a resonant frequency. Tests on other laboratory structures were performed and similar results as those stated above were obtained.

Figure 14. Block Dimensions 3 by 6 by 10 ft

Figure 13. Block Dimensions 3 by 6 by 6 ft

Field tests

ţ,

- 33. Resonant frequency measurements were performed on all eight piers American controlled at the Regulatory Structure using the impact technique. Each of the piers was measured in the flexural mode. As the resonant frequency is directly related to the dynamic modulus of a specimen the test permits a dynamic evaluation of the mechanical integrity of the structure. A FFT was used to process the force and acceleration signals in real time.
- 34. A 550-lb weight was swung in a small arc using a tripod system (Figure 15). This weight struck a 200-lb reaction block that was

Figure 15. System to generate load pulse: A-frame, 550-lb impactor, reaction block, steel plate, concrete pier

bolted to a large 3/4-in.-thick steel plate anchored by bolts and epoxied to the concrete surface. A force pulse was generated that was typically 5000-lb peak, existing for about 15 msec. The pulse contained excitation energy from 0 to about 100 Hz. Previous mathematical calculations had

shown that the fundamental resonant frequency vibrating in flexure should be in that range. The mathematical equations used were derived for rectangular shaped specimens that are unrestrained. Tests made on a physical model in the laboratory showed that the resonant frequency was higher for the specimen when the ends were sawed to resemble the shape of the piers. Also, when the model was epoxied to a very rigid base to restrain movement, simulating the case in the field, the fundamental flexural frequency showed further increase. The frequency for the physical model increased 36 percent from a rectangular, unrestrained specimen to a sawed, restrained specimen. Calculations indicated expectations of about 50 Hz from one of the smaller piers at Soo if it was rectangular and unrestrained. Increasing that by 36 percent yields an expected value of near 68 Hz. The actual measurements were about 76 Hz for those particular piers. Although accurate calculations of the dynamic modulus from the resonant frequencies are impossible to obtain because of the shape and restraint affect, still it is possible to gain significant information from the resonant frequencies. The fact that all six of the smaller piers had resonant frequencies within less than 2 Hz of each other indicates that all six piers are in like condition with respect to mechanical integrity, and the fact that the frequencies tend toward the higher side of the range of frequencies produced by the mathematical calculations indicates that the piers are of good quality rather than poor. If we assume that all six piers are seeing the same restraint at the base, then because they all have the same geometry, the frequency deviation of almost 2 Hz is due to modulus alone. Mathematical calculations were made to determine the variation of modulus required to produce a difference in resonant frequency of 2 Hz. The computed variation was about half a million psi. Since these assumptions represent the worst case, it is likely that the deviation of the modulus between piers is not that high, since the bridgework supported by the piers as well as the slight differences in foundation could account for some variation. The test data are given in the following tabulation:

7

	Pier No.	Frequency, Hz	Deviation, Hz
Larger	9	62.500	
Piers	13	63.000	
	10	76.562	0.122
	11	78.125	1.685
Smaller	12	75.000	-1.44
Piers	14	76.172	-0.268
	15	77.000	0.56
	16	75.781	-0.659
Average	·	76 44	

,,,,,

Although pier 11 seems to be of better quality, the small variation of 1.7 Hz may not be significant if allowed for some measurement error. Since piers 9 and 13 are reading within 1/2 cycle of each other, indications are that both are of the same quality and, again, because of reading on the high side of the frequency range calculated from the mathematical model, the dynamic modulus appears to be high. No discontinuities are indicated in any of the piers, nor are any significant differences in the restraint offered by the foundation of any of the piers indicated.

Results

- 35. By exciting a structure with an impact force and analyzing the output, the integrity and the in-place stability of the structure can be predicted. The resonant technique is a measurement which gives characteristics of the total structure and foundation system.
- 36. From the above measurements, it was determined that the piers are all structurally sound.
- 37. The data for stability evaluations were limited because of gate opening schedules at the structure while the testing was in progress, which afforded too little time to make and evaluate a sufficient number of deflection measurements at the base of the piers.
- 38. The deflection obtained at the base of piers where measurements were made was in the range of 2.0 to 4.0×10^{-7} in./lb. The laboratory data give values of approximately 2.0×10^{-8} in./lb for the shaley sandstone and 6.0×10^{-9} for the very hard sandstone and concrete

interface. Since the shaley sandstone seam governed, there is an indication from field data that the piers are less stable than conventional calculations indicate. The indication is that the conventional safety

factor is reduced roughly
$$\frac{2 \text{ to } 4 \times 10^{-7}}{2 \times 10^{-8}} = 10 \text{ or } 20 \text{ times.}$$
 This seems

unreasonable and since time was limited such that detailed on-site evaluations could not be made, it is suggested that the conventional stability results in Part — be used and the piers be posttensioned to the foundation to assure their safety.

Foundation Exploration

39. A review of previous boring location maps, boring logs, a foundation report for the New Poe Lock, and other foundation data in the vicinity of the Regulatory Structure has been made; see Appendix C for a partial list of materials used. The review revealed that there was no major geologic structure in the area that might affect the dam's stability, that bedding was nearly horizontal with weak soft seams of varying thicknesses, and that competent foundation rock could be expected to be present beneath the dam. No information was found concerning settlement or misalignment of the dam structure, which if found, could indicate foundation problems.

Previous exploration

- 40. The first three locks built at Sault Ste. Marie, State, Weitzel, and Old Poe Locks, were built without foundation explorations.
- 41. In 1907 foundation explorations for Davis and Sabin Locks were made. Ten borings were drilled with a highest top elevation of 585.5 ft and a deepest bottom elevation of 504.0 ft.
- 42. In 1942 foundation explorations for MacArthur Lock (new first lock) were made. Eleven borings were drilled with a deepest elevation of 521.2 ft. In 1958 and 1959, 29 borings were made in exploration for design of the New Poe Lock (new second lock).
- 43. In 1962 additional foundation explorations were made at New Poe Lock during a re-evaluation of lock design and foundation

requirements. Fifty-two borings were made with a highest top elevation of 590.19 ft and a deepest bottom elevation of 509.39 ft.

- 44. From 1964 to 1967, 301 borings were made during the construction of New Poe Lock. Highest top elvation drilled was 594.2 ft and deepest bottom elevation was 497.1 ft.
- 45. In 1974 foundation explorations were made for New Sabin Lock. Five borings were drilled with a highest top elevation of 589.7 ft and a deepest bottom elevation of 452.0 ft.
- 46. In 1975 additional foundation explorations were conducted for New Sabin Lock. Two borings were drilled with a highest top elevation of 603.59 ft and a deepest bottom elevation of 487.19 ft.
- 47. In 1960, 44 borings were made in foundation excavations for the Sault Ste. Marie International Bridge by the Michigan State Highway Department. The bridge is about 400 ft downstream of the Regulatory Structure. The highest elevation for top of bedrock encountered in the borings is 605.5 ft and the deepest bottom of the borings is 563.5 ft. Bedrock at the bridge site is believed to be similar to that found in the most recent borings at the Regulatory Structure.

Drilling at Regulatory Structure

48. A total of 30 borings was drilled at the Regulatory Structure (see Plate D1). One was drilled through the spoil dike at the south end of the Regulatory Structure. Four were drilled approximately 80 ft upstream of the centerline of the Regulatory Structure. Eight were drilled approximately 6 ft upstream of the centerline of the Regulatory Structure. Thirteen were drilled through the downstream end of the piers and apron, and four were drilled approximately 62 ft downstream. Seven cores had 6-in. diam, and 23 cores had 4-in. diam. These borings were made from 14 June to 7 July 1979. Drilling was done by personnel of SAM. The field drilling logs for all borings are presented in Exhibit A, which is on file at the Soo Locks and the Detroit District Office. Figure 16 shows typical drill rig set-ups. Figure 16a shows the drill rig on a cantilevered work platform attached to Scow 15. This set-up was used to drill the upstream borings adjacent to the structure. Figure 16b

a. Setup for drilling upstream boring adjacent to the structure

b. Setup for drilling the piersFigure 16. Typical rig setups

illustrates how the drill rig was set up to drill the piers; note guardrail around top of pier.

- 49. Depths of holes ranged from 10 ft to 53.5 ft when concrete is included or from 7.1 ft to 30.7 ft when only rock is measured. Total footage was 730.5 ft. This includes 464.25 ft of rock, 26.5 ft of fill, 1.5 ft of overburden, and 238.25 ft of concrete.
- 50. Core recovery was good, usually above 97 percent. The boring CW-35 through the spoil dike had only 40 percent recovery due to grinding and washing away of the fill material. The lowest core recovery for the remaining 29 holes was 90.9 percent in CW-19.
- 51. Drilling was accomplished using two skid rigs: a Longyear 38 and a 43 SA Failing Holemaster. Core barrels used were 4- by 5-1/2-in. double tube and 6- by 7-3/4-in. double tube core barrels. A pressure pump was used to supply bypass water for drilling (with a 1-1/2-in. discharge hose).
- 52. Transportation to and from the jobsite, marine floating plant, and crane support were supplied by the Area Engineer Office at the Sault Locks. Drill rigs were set up on piers with a Manitowoc 140-ton crane mounted on the 40-ton Derrick boat HARVEY. Upstream holes were drilled from an 18- by 75-ft barge (Scow 15) with a 40-ft launch as tender ALCONA. Downstream holes were drilled from a 30- by 60-ft barge MMN-1-BAY CITY with a 16-ft skiff as tender. As core was removed from the core barrel, it was logged, marked, photographed, and preserved using one of two methods. The photographs of the cores are presented in Exhibit B on file at the Detroit District Office. In the first method, the core was wrapped in sheet plastic, then sealed inside heavy plastic tubing which was taped shut and fused at the ends. The second method involved wrapping the core in plastic food wrap, then in cheesecloth and coating the core and cheesecloth with a thick layer of wax. The preserved core was then placed in appropriately sized boxes lined with sawdust. The core boxes were stored at the jobsite until shipment to WES.

Borehole photography

53. Stagg and Zienkiewicz (1968) point out the necessity of

determining the strike, dip, continuity, joint spacing, and coating thickness when planning an excavation in rock or computing the resistance of a rock structure to loading. The shape and location of a potential failure surface will be strongly influenced by the orientation of the rock mass discontinuities and the shearing resistance along them. The rigidity of the rock mass is particularly sensitive to joint continuity and spacing.

- 54. To assist in determining the features listed above, a WES borehole camera was run in the nine borings through the U. S. piers. Continuous, 360-deg, oriented, color photographs were taken in borings to depths ranging from 1.5 to 51.5 ft. A detailed description of the borehole camera can be found in Trantina and Cluff (1963).
- 55. Strikes and dips of prominent discontinuities were measured from the borehole camera logs. Indications from surficial geology and core logs showed that many of the discontinuities shown on the camera film were, in fact, bedding features since they possessed westerly directed dips of less than 10 deg. Joint frequency diagrams by borings are given in Plates C1-C5. Symbols are used to represent joint dips greater and less than 10 deg, filled or partially open joints and open joints. Joint frequencies are shown for each 5-ft depth of boring beginning at the concrete bedrock interface. Joint strike rosettes showing all non-bedding joints (>10-deg dip) are presented in Plates C6 and C7.
- 56. A total of 51 prominent joints were observed on the photographs. Of these, 18 had dips ≥70 deg. The remaining 33 joints had dips between 10 and 35 deg. Plates C6 and C7 show two prominent joint sets that are perpendicular; one oriented north-south and the other oriented east-west. By aligning the joint strike rosette with the axis of the Regulatory Structure, the north-south joint set is oriented 15 deg northwest of the structure's axis. The other joint set is then oriented 15 deg north of a line running in an upstream-downstream direction.
- 57. Viewing joints from above water and on the underwater videotapes, the joints are generally continuous in plan view. When viewing the jointing in section, they appear to be of limited extent (rarely

exceeding 3 ft in height). The joints observed in the core logs and the underwater videotapes cut through one or two beds and terminate on a bedding plane. As described under Scouring, the jointing is classified as "moderately fractured" (fracture spacing 1 to 3 ft) to unfractured (fracture spacing >6 ft). The majority of joints have 1 to 3 ft spacing.

- 58. Sandstone along the joints is often leached white in contrast to the red sandstone. Some incipient joints, where no opening is visible along the joint, were easily detected by the white leached outline made by the joint. Of the 51 prominent joints, 75 percent were classified as tight, 22 percent were open joints (1/32 to 1/8 in.), and 2 were clay filled (1/16 to 1/4 in. thickness).
- 59. It is not known if leaching along joints occurred in the geologic past or is a continuing process. The relatively small number of open joints beneath the structure as observed in the photographs suggest that if it is a continuing process, then it is a slow process. Open joints are present adjacent to the structure in the bedrock. In order to ascertain if seepage is occurring along joints in the bedrock beneath the dam, a detailed study would have to be performed. A traceable material could be injected into a sealed borehole upstream and then monitored just downstream of the dam. The rather heavy silting observed in the videotapes towards the right abutment (gates 15 and 16) suggests that water was not flowing beneath the structure in this area.

Scouring

60. Soundings at the Regulatory Structure were taken most recently in 1978-79 by personnel at the Sault Locks. The results of the soundings are presented in plan view on drawing DC-103-25, dated January 1979, and titled "Compensating Works Condition Survey - 1978"; the drawing is on file at the Area Engineer Office, Sault Locks. Selected elevations along certain sections, concrete thicknesses from boring logs, and underwater videotape pictures were used to study undercutting and bedrock scouring in front of and behind the dam. See Figures 17 and 18 for profiles containing soundings and concrete thickness data.

L

Figure 17. Downstream profile of soundings and concrete thickness data

Figure 18. Upstream profile of soundings and concrete thickness data

- 61. Figure 17 contains three profiles; the solid line indicates top of apron and the dashed lines represent profiles taken at 0.5 and 7.0 ft downstream of the apron end. Figure 18 contains four profiles; the solid line at top of apron and the three dashed lines represent profiles taken 10, 15, and 20 ft upstream of the apron end.
- 62. Figure 17 indicates that at six locations on the 0.5-ft profile the scouring action of the water has removed rock to a depth below the base of the apron. Apron thickness on the downstream side of the dam varies from an assumed 18 in. (shown on working drawings) to 3.2 ft as revealed in boring CW-10. The 18-in. apron thickness was used for those gate bays where borings were not made. Top and bottom elevations of borings are shown with a dot. Figure 18 indicates only one area where the bedrock appears to have been removed to a depth below the base of the apron at pier 9. Upstream apron thickness was measured on concrete core recovered in each gate bay apron about 6.5 ft upstream from the gates; apron thickness varied from 1.4 to 3.9 ft. In general, the apron thickness was similar at the upstream and downstream ends of individual gate bays. The different apron thickness is probably due to removal of less desirable rock during construction.
- 63. The following general discussion describes the condition of the underwater concrete and bedrock adjacent to the downstream and upstream apron. The reason a general discussion is presented is that accurate measurements of concrete and bedrock removal were not taken during the underwater survey. A videotape camera was used during the survey.
- 64. The video from the underwater filming of the Regulatory Structure was of excellent quality. The filming was done in such a logical and orderly manner that the viewer had no trouble with orientation between the location being viewed and the construction drawings. However, the carpenter scale used in the film was too small to be read. The black tape that secured the scale to the support rod could have been uniformly spaced on 1-ft centers to make it readable. However, this was not the case and often on close-up viewing the tape covered the foot marker, making it impossible to read the scale accurately.

- 65. In general, the concrete in the piers and aprons, upstream and downstream of the gates, appears to be in good condition. Pier 9 has very severe scaling* of the concrete along a horizontal construction joint for a distance of about 6 ft. The scaling occurs on the downstream south edge of the pier. The concrete surfaces of the piers and aprons show evidences of light to medium scaling.* A crack in the upstream apron of gate 13 was noted. It traverses the apron from the gate to the upstream edge of the apron, as shown on working drawings. The crack width appeared to be about 0.24 in. A few much smaller cracks were noted in several other apron sections; these cracks are not structurally significant. Repair of the very severe scaled area on pier 9 and the apron crack in gate bay 13 should be made at the next opportunity.
- 66. Bed thickness of the foundation rock varies from thin beds (beds less than 4 in. thick) to thick beds (beds from 1 to 3 ft thick) (Office, Chief of Engineers 1975). The majority of observed beds were classified as thick. Shale and clay seams could be seen quite easily; however, they did not occur frequently in the 5 ft or so of rock exposed just below the top of the aprons. At several locations the softer seams were partially removed. Bedding surfaces were smooth and flat.
- 67. The degree of fracturing (jointing) varied from moderately fractured (fracture spacing 1 to 3 ft) to unfractured (fracture spacing >6 ft) (Office, Chief of Engineers 1975). The majority of observed fractures were classified as moderate. Fractures were vertical, linear, and had smooth surfaces. There were at least two joint sets intersecting at about 90 deg. The bedding thickness and frequency of jointing resulted in tabular (flat or bladed) shape rock blocks with dimensions from 1 to 3 ft. In viewing the videotapes, it was evident that the water action

^{*} Light scaling: Loss of surface mortar without exposure of coarse aggregate. Medium scaling: Loss of surface mortar up to 0.20 to 0.39 in. in depth and exposure of coarse aggregate. Very severe scaling: Loss of coarse aggregate particles as well as surface mortar and mortar surrounding aggregate, generally greater than 0.79 in. in depth (American Concrete Institute 1980).

could easily remove the tabular blocks and flip them about.

- 68. The working drawing showed that the apron and piers were to be founded in bedrock; the underwater pictures indicate that this was done. The apron face was formed as evidenced by its smooth appearance and vertical position. However, most all of the downstream apron face (about 18 in.) is now exposed. Bedrock just beyond the apron has been removed by scouring for a depth of from 2 to 3 ft below top of apron. Local areas appear to be deeper than 3 ft, maybe as deep as 5 ft. The extent of removal downstream is unknown because pictures were taken looking upstream from about 5 ft off the apron. The scouring (removal of tabular blocks) terminates on horizontal bedding surfaces that form a series of ledges (stair-step appearance). There appears to be a common ledge where most of the scouring has terminated at about 3 ft below top of apron. In a few of the sluiceways, portions of the apron face are covered by rock; however, the rock only extends a few feet downstream and then stairsteps downwards. It is conservative to assume that there is no strut resistance downstream of the apron for a depth of 5 ft below top of apron.
- 69. Two of the eight sluiceway aprons are undercut up to about 6 ft. In some cases, the rock just downstream of the apron and the apron were undercut. It was difficult to ascertain the true extent of undercutting. The conscious of the people viewing the underwater pictures was that the undercutting areas were severe and needed to be filled. One small area (maybe 3 by 3 ft) was sunken in about 1 ft; the area probably had been undercut and then collapsed.
- 70. The working drawings show the upstream apron terminating 6 ft upstream from its starting point near the gates. The underwater pictures show that at this terminating point, the apron face appears to have been formed; this is seen near pier 9. The pictures reveal that the concrete apron continues upstream for about 14 more ft, ending with a semiround feather-edging. The feather-edge has generally held up well.
- 71. The upstream vertical apron face is exposed at only one location. The apron face, adjacent to and where it abuts into the north side of pier 9, is exposed. From the point where the apron abuts into

pier 9 and upstream along the pier to the upstream edge of the pier, the base of the pier is exposed. Portions of this section of the pier are undercut to what appears to be several inches. Scouring action has removed the bedrock down to the base of the pier and below the base of the apron. If the apron near pier 9 extended the additional 14 ft, as it was in the other gate bays, then a 14-ft wide strip of concrete apron and bedrock has been removed in order to expose the apron face. Maintenance records show that in 1972 repair of the foundations of piers 6, 7, and 8 was carried out by anchoring steel forms to the foundation, filling the forms with aggregate, and grouting the aggregate in-place. This work was done by the Canadians (Lake Superior Board of Control 1979). The available records do not indicate whether the repairs were done upstream or downstream. The present bedrock conditions near the upstream portion of pier 9 are probably similar to those that existed near piers 6, 7, and 8 in 1972.

- 72. The apron is undercut at four other locations to at least 6 ft, i.e., the aprons of gates 10, 11, 12, and 13. Little bedrock has been removed upstream of the apron of gates 14, 15, and 16. From gate 14 to gate 9, the bedrock has been scoured to a depth of from several inches to about 3 ft; only a few areas go to depths of 3 ft. The scouring action upstream has formed a series of ledges in the bedrock just like scouring did downstream of the dam. Jointing in the upstream bedrock is similar to that described for the downstream bedrock. There did not appear to be any apron sections where undercutting at the downstream apron was connected to undercutting at the upstream apron or vis-a-vis.
- 73. In 55 years of scouring, 5 ft of rock has been removed from at least one area, which translates into a removal rate of I ft in 11 years. The rate of undercutting of the apron is slightly greater, 1 ft in every 9.2 years. It is recommended that a protective apron be placed upstream and downstream of the existing apron in order to eliminate undercutting of the dam and removal of rock adjacent to the dam. A protective apron of concrete or grouted in-place aggregate should be considered.

Geology

Geomorphology

74. The description of geomorphology of the work area is as follows: "The Regulatory Structure is located on the St. Mary's Rapids. The rapids are 1/4 mile wide, 3/4 mile long. From Lake Superior to Sugar Island, St. Mary's River Valley is bounded on the north by the escarpment of a dissected peneplane, the Gros Cap Batholith, with elevations 400 to 600 ft above the valley floor. The south boundary is defined by morainal highlands and terraces of glacial lake sediments. Valley width ranges between 3 miles near St. Mary's Rapids to 9 miles at Waiska Bay near the river head. St. Mary's River occupies most of the valley and has a maximum width of 5 miles at Point Iroquois Shoals - Waiska Bay. The river has a general appearance of several interconnected bays (U. S. Army Engineer District, Detroit 1974)."

Overburden

75. The overburden in the dike on the southern end of the Regulatory Structure is probably fill from excavations made at the Soo Locks and the Regulatory Structure. Boring CW-35 was drilled through this overburden consisting of boulder, cobble, gravel, and sand sized pieces of the Jacobsville sandstone. The fines were washed away in drilling so that any clay or shale present in the overburden was not detected. Compaction is poor since no water return occurred during drilling until bedrock was reached.

Effects of glaciation on bedrock

- 76. As a result of construction and the washing action of the St. Mary's River, all of the glacial overburden had been removed at the Regulatory Structure. No glacial overburden was detected in the borings put down during this investigation. Glacial drift can be found adjacent to the town of St. Sault Marie, Michigan.
- 77. Due to glacial activity, the loading and unloading of the bedrock probably caused jointing to form in the bedrock. This activity likely modified the stresses in the rock to be something other than due to superincumbent loading.

Stratigraphy

- 78. Bedrock at the Regulatory Structure belongs to the Jacobsville Formation of Cambrian Age. The Jacobsville extends from the Keeweenaw Peninsula eastward to Sault Ste. Marie and Sugar Island and from the south shore of Lake Superior south approximately 30 miles. It extends several miles northward beneath Lake Superior from the south shore. Northernmost boundary has not yet been established. The thickness of the Jacobsville is variable because it was deposited on an irregular pre-Cambrian rock surface.
- 79. The rock at the Regulatory Structure is an arkosic sandstone (containing up to 20 percent feldspar). The sandstone is fine- to medium-grained and cemented together by fine particles of quartz mixed with sericite, illite, and iron oxide. Shale and clay seams are found in the sandstone. The sandstone, clay, and shale are all predominantly red in color with variations ranging from white to purplish-red. Mottling occurs in many areas. Rock at the Regulatory Structure is located geologically slightly upsection from that examined at New Poe Lock (U. S. Army Engineer District, Detroit 1974).
- 80. Hamblin (1958) divides the Jacobsville into four facies based on grain size and bedding pattern. The rock found at Sault Locks and at the Regulatory Structure probably belong to the red siltstone facies and the lenticular sandstone facies. For classification purposes this report will not use the facies descriptions but instead will adopt a classification system based on engineering geology characteristics as first used by the U. S. Army Engineer District, Detroit (1974) at New Poe Lock. The rock is divided into shaly, hard, and very hard sandstone units.
- 81. The very hard sandstone unit is fine- to medium-grained; well-cemented; sometimes cross bedded; mottled or banded; colored purple, pink, or occasionally deep red; with varicolored reduction spots. Units range in the borings from <1 ft to 5 ft in thickness. Thin shale and clay seams are found in this unit and occur most predictably at the upper and lower contacts of all three rock units. The shale and clay are often thinly bedded.

- 82. The hard sandstone unit is fine- to medium-grained, plane bedded, well-compacted, and colored red with gray reduction spots. Thickness ranges from 3 ft to 13 ft in the three units found in the borings. The contacts of this unit grade almost imperceptibly horizontally and vertically into very hard sandstone or shally sandstone (U. S. Army Engineer District, Detroit 1974). Thin beds of very hard and shally sandstone are interbedding in the hard sandstone unit, making classification quite difficult. Thin shale and clay seams are present in the hard sandstone unit.
- 83. The shaly sandstone unit is fine-grained, colored light to dark red with gray reduction spots, and contains shaly bedding. The unit is then bedded with inner beds of hard sandstone. Thickness of the unit ranges from 2.75 ft to 4.5 ft in the two units exposed in the borings. Thin shale and clay seams occur in the shaly sandstone unit.
- 84. Ripple marks were observed on some of the shaly bedding. The shaly sandstone was observed at the project site as a fill material and as protection along the south dam abutment. Hand samples show the shaly seams are badly weathered, and the rock appears to have undergone rapid deterioration after exposure to freezing and thawing. Underwater videotape pictures taken at the Regulatory Structure reveal areas where the concrete apron is undercut due to scouring. It is probably the shaly sandstone that has been scoured.
- 85. The shaly sandstone would be the least desirable of the three rock units as a foundation material.
- 86. Classification of the sandstone into the three separate units was done primarily on the basis of hardness. Interbeds less than 1 ft in thickness were not distinguished in the cross sections, although strength tests were performed on several samples taken from these interbeds.
- 87. The samples of clay from borings CW-1, 6, 11, and 31 were analyzed by X-ray diffraction. Composition of the clay is: illite, chlorite, mixed-layer clay, K-spar, and quartz. The mixed-layer clay is composed in part of smectite, a swelling clay of the montmorillonite group. The amount of swelling in the clay should be tested in following

reports. No swelling clays were found in the clay examined at New Poe Lock (U. S. Army Engineer District, Detroit 1974).

Geologic cross sections

- 88. Seven cross sections were drawn from the 30 borings. Cross-section A-A' (Plate D1) was constructed from the borings drilled 6 ft upstream of the gate centerline. Section B-B' (Plate D2) was constructed from borings drilled 80 ft upstream from the gate centerline. Section C-C' (Plate D3) was constructed from borings drilled 62 ft downstream of the piers. Section D-D' (Plates D4) was constructed from borings drilled through concrete piers and apron near the downstream end of the piers. Sections E-E' (Plate D5), F-F' (Plate D6), and G-G' (Plate D7) were constructed perpendicular to the Regulatory Structure using borings found in the other cross sections. Plate D8 contains characterization and engineering design properties cross-referenced to the geologic cross sections.
- 89. The designation for clay is CL; shale is SH. SH/CL designates a shaly clay, clayey shale, or finely interlayered clay and shale seams. The clay and shale at times grade imperceptibly into one another. Shale stringers are noted in the cross sections. These are discontinuous lenses of shale which occur parallel to bedding in the sandstone. Structure
- 90. Dip of the beds beneath the Regulatory Structure is approximately 3 ft per 100 ft to the west. Minor variations exist due to the presence of cross bedding and fluvial troughs.
- 91. Bedding is continuous over the length of the Regulatory Structure. Individual shale and clay seams are believed continuous over the installation, although only a small number are actually shown connected on the cross sections. The U. S. Army Engineer District, Detroit (1974) was able to examine exposed rock face in the excavation of New Poe Lock in 1964-1967 for distances of about 2000 ft. They showed all clay and shale seams as small as 0.01 ft to be continuous over the excavation. Not all clay and shale seams may have been detected, especially those <0.01 ft which may exist only as a thin film on the bedding plane, making logging difficult.

- 92. High-angle fractures are considered to occur along cross bedding or current bedding (well-defined channel structure), especially in boring CW-19. Information from the core about jointing was included under Borehole Photography.
- 93. Shale breccia and conglomerates were found in three cores. Shear fractures of limited extent were present in five cores. All shear fractures were either horizontal or low angle. One was clay filled; two were shale filled. Three of the shear fractures occurred in the same unit—the topmost hard sandstone unit. The other two shear fractures occurred in the same position—at the contact between the second shaly sandstone unit and the second hard sandstone unit.
- 94. A 0.3- to 0.6-ft core loss occurred in the same sandstone unit in three more or less adjacent borings: CW-21, 22, 19 (see Plate D1, Sheets 2 and 3). Boring CW-31 exhibited the largest variety and concentration of weak zones of all cores taken. CW-31 was drilled 62 ft downstream from the downstream end of pier 14. It contained four sets of joints in various sandstone units, all clay-coated. It contained seven zones of highly fractured rock totaling 2.3 ft in length. It contained a proportionately larger number of clay and shale seams than the other cores.
- 95. Fractured rock was found in a number of cores in thin bands less than 0.2 ft. An exception is found in boring CW-17 which contains 1.35 ft of highly fractured rock at the base of the concrete in pier 9.
- 96. Possible weak zones in the foundation rock are the soft clay and shale seams within a few feet of the bottom of the apron and gate piers. These seams are continuous under the piers. Scouring has removed bedrock from behind the dam several feet deeper than the base elevation of the piers. The weak seams are thus exposed, which suggests major foundation problems in terms of sliding. With similar bedrock conditions existing upstream, the piers are considered to be resting on a pedestal that is underlaid with clay and shale. The apron and possibly the piers are undercut in a number of places up to a depth of 6 ft; the undercutting adds to the problem.
 - 97. Solution activity along joints has occurred and has probably

contributed to the bedrock scouring. The solution activity has discolored the rock adjacent to the joints; a white band on either side of the joint results. Where clay is present in the joints, the solution activity would remove the clay leaving a gap. Where these gaps exist, scouring can occur more readily. It is not known whether or not solution channels have thus been created and exist beneath the dam. There was no evidence of water passing through any of the joints during the underwater inspection with the video-type camera. At the present time solution activity is considered not to be a problem. If protection against scouring is carried out by placing material upstream and downstream of the dam, joints adjacent to the aprons could be pressure grouted as an added protection against further solution activity.

PART IV: LABORATORY TEST AND ANALYSIS

Test Specimens and Test Procedures

Cores received

98. Concrete and rock core from 30 borings were received at WES. Shipment of the core was by commercial motor freight. The cores were received in good condition. Pertinent information concerning the cores are presented in Table E1.

Selection of test specimens

- 99. A detailed visual examination of cores was made in the laboratory to supplement the field boring logs and to assist in the selection of representative test specimens. Concrete specimens were selected for testing based upon physical condition of the concrete and depth in order to obtain representative properties throughout the structure.
- 100. Concrete specimens were selected from five borings in the upstream apron, eight borings in the piers, and four borings in the downstream apron. Two specimens from borings in the aprons were tested where core length permitted. Test specimens from the deep borings in the piers were selected from the top, middle, and bottom of the core. Test specimen depths shown in the tables of test results represent the midsection of the test specimen; i.e., el 608.75 ft is the midpoint of a piece of core with top el being 609.08 ft and the bottom el being 608.42 ft. Four-inch-diameter by nominally eight-inch-long concrete and rock cores were used for testing, the exception being the specimens for direct shear testing. The direct shear specimens were 4 in. diam by nominal 4 in. long.
- 101. An attempt was made to select test specimens to be representative of the rock units (very hard, hard, and shaly sandstone) in close proximity to the base of the structure. Soft clay and shale seams were obtained for testing as seams within the host rock and as individual (intact) test specimens where they were large enough to be tested separately from the host rock. Specimens with natural joints were selected for testing after viewing the surface condition of the jointed surfaces.

The test assignment locations can be obtained from appropriate tables of test results. Locations of the core tested in direct shear are also presented in the geologic cross sections (Plates D1-D16) as series numbers adjacent to boring profiles.

102. Test specimens were selected for testing concurrent with the detailed logging of core; the logging began the day core arrived at the laboratory. The test specimens were rewrapped and stored in a moist curing room until time for testing; the moist room is maintained at $73.4 + 3^{\circ}F$ (23 + 1.7°C).

Laboratory testing program

- 103. Concrete cores. The laboratory testing program of the concrete cores consisted of the following tests on representative selected cores.
 - a. Density, γ.
 - $\underline{b}\,.$ Compression Wave Velocity, $\mbox{ V}_{\mbox{\scriptsize p}}$.
 - c. Compressive Strength.
 - \underline{d} . Tensile Splitting Strength, T_s .
 - e. Elastic Moduli, E.
 - f. Poisson's Ratio, v.
- 104. Rock cores. The laboratory testing of the bedrock cores consisted of the following tests on representative selected cores. The tests are grouped under either characterization tests or engineering design tests. Photographs of cores after they were tested were taken.
 - a. Characterization tests.
 - (1) Wet and Dry Unit Weight, $\,\gamma_m^{}\,$ and $\,\gamma_d^{}\,$.
 - (2) Water Content, w.
 - (3) Compressive Strength, q_{ii} .
 - (4) Direct Tensile Strength, $T_{\overline{D}}$.
 - b. Engineering design tests.
 - (1) Elastic Moduli, E.
 - (2) Poisson's Ratio, v.
 - (3) Triaxial Strength.
 - (4) Direct Shear Strength.
 - (a) Concrete to rock, bond strength (maximum).

- (b) Concrete on rock, precut (residual).
- (c) Intact (maximum and residual).
- (d) Precut (residual).
- (e) Clay and shale seams (maximum and residual).
- (f) Natural joint (maximum and residual).
- (g) Cross bed (maximum).
- 105. Testing of the granular dike material was to be done; however, no samples from the one boring in the dike were taken. The dike material consisted of boulder, cobble, gravel and sand-size pieces of sandstone.

Test procedures

106. The characterization properties tests and the engineering design properties tests were conducted in accordance with the appropriate test method tabulated below:

Property Test Method ization

Characterization

Wet Unit Weight (As Received), ym	RTM 109-77*
Dry Unit Weight, γ _d	RTM 109-77
Water Content, w	RTM 106-77
Compressional Wave Velocity, V	RTM 110-77 (ASTM D 2845)
Compressive Strength, q ₁₁	RTM 111-77 (ASTM D 2938)
Direct Tensile, T _D	RTM 112-77
Tensile Splitting Strength, T_s	CRD-C 77-72 (WES 1949)
Engineering Design	
Elastic Modulus, E	RTM 201-77 (ASTM D 2148)
Direct Shear Strength	RTM 203-77
Poisson's Ratio, V	RTM 201-77
Triaxial Strength	RTM 202-77

^{*} Proposed Rock Test Method, Corps of Engineers, in review prior to publication.

107. For the compression and triaxial compression tests, the specimens were cut with a diamond-blade saw and the cut surfaces were ground flat to 0.001 in.; specimens were checked for parallel ends and the perpendicularity of ends to the axis of the specimen. Electrical resistance

strain-gages were used for strain measurements. Two each were used in the axial and horizontal directions. The modulus of elasticity and Poisson's ratio were computed from the strain measurements. Axial specimen load was applied with a 440,000-lbf capacity universal testing machine. Confining pressure during the triaxial tests was applied using an electro-hydraulic pump.

108. The concrete-to-rock specimens (for bond strength) were fabricated using a general mass concrete mixture having an approximate compressive strength of 2000 psi at 28-days age. The concrete was wet sieved over a 1-in. sieve, and the portion passing was cast on top of rock cores contained in the bottom section of a 4-in.-diam mold. Rock surfaces onto which the concrete was cast were smooth and horizontal. Rock cores used for these tests were taken from within 2 ft of the base elevation of the dam.

Core Test Results and Discussion

General comments for concrete

109. The following general comments pertain to the condition of the concrete over the U. S. half of the Regulatory Structure. These comments are the result of examination of the cores recovered from the works (Table E1). Individual structural elements, aprons, and piers within the works will be discussed separately. The results of the concrete characterization and engineering design tests are presented in Table E2. Stress-strain relations for concrete cores are presented in Plates E1-E8. These data will be referred to as appropriate.

110. New concrete was recovered only in boring CW-9, which was drilled in pier 13; two areas of new concrete were seen. The newer concrete (0.5 ft thick) contained red sandstone river-run aggregate, which differs from the older concrete that contains igneous aggregates. Below the 0.5-ft thick newer concrete was a new appearing concrete that extended to 2.4 ft; it contained the igenous aggregates found in the old concrete. The post construction concrete (0 to 2.4 ft) is the result of resurfacing efforts. An inspection of the exterior of the pier

reveals that the top section of the pier has been resurfaced as well as a section from about 5 ft above the low pool to low pool. It appears that two repairs to the top of the pier have been made.

- 111. The older concrete was nonair-entrained. It varies in color from tan to gray with a predominantly tan matrix. It is hard, dense, has occasional tiny voids, and contains igneous and metamorphic, angular, coarse and fine aggregates. The coarse aggregate size ranges from 1/2 to 2 in. Basalt, granite, quartzite, syenite, rhyolite, diorite, and andesite are the common rocks found in the concrete. The concrete was well consolidated as evidenced by its dense nature and absence of honeycombing and other voids. It is structurally sound and should serve its intended purpose.
- 112. Minor frost damage, as evidenced by subparallel cracks, was detected in only three of the nine borings drilled into the piers. The damage is caused by freezing and thawing. The deteriorated concrete was found in the top portions of two of the three borings extending to a minimum depth of 0.8 ft. The third boring contained frost damage in a 5-ft zone beginning about 10 ft from the top of the pier. The concrete recovered in the apron borings, those started below water, were not damaged by freezing and thawing.
- 113. A total of 21 borings were drilled through concrete and into bedrock. In 57 percent of these borings the contact between concrete and rock was well bonded. The contact was loose in the remaining 43 percent of the borings. It is suspected that the majority of the loose contacts were caused as the core was removed from the core barrel. Upstream apron
- apron), was described as weathered, open, and with loose sand grains. A second contact, boring 20, was described as tight but had weathered vesicles in the concrete adjacent to the bedrock. Figure 18 does not indicate the apron as being undercut near these two borings. Water passing along vertical or near vertical joints in the bedrock could have caused the weathered condition; if so, this is the first observed occurrence of such weathering. Cracking in the upstream apron is

considered minor. The surface of apron shows evidences of light to medium scaling, which would be expected for concrete subjected to the abrasive action of running water for 50 some years. A large amount of concrete is suspected of having been removed from the apron adjacent to pier 9; see Scouring for explanation.

115. Average physical properties. The average physical properties of the concrete core from the upstream apron are listed below:

Test	Avg Value
Wet unit weight, pcf	158.8
Comp wave velocity, fps	15,290
Compressive strength, psi	7,250
Tensile strength, psi	490
Modulus of elasticity, × 10 ⁶ psi	5.89
Poisson's ratio	0.19

The physical properties are characteristic of good quality concrete. The standard deviations, s, for the unit weights (± 2.5) , velocity (± 719) , modulus (± 0.99) , and the Poisson's ratio (± 0.02) are considered small and therefore indicate uniformity. The compressive strengths for the four cores recovered from the upstream apron had a standard deviation of ± 2300 psi. The highest strength was 11,220 psi, while the lowest was 5440 psi. The lowest strength indicates sound strong concrete. Piers

the piers showed evidences of freezing and thawing action. Characteristic subparallel cracking of the concrete to the face surface was observed. The core from borings CW-1 (pier 17) and CW-3 (pier 16) has frost damage to depths of 0.1 and 0.2 ft, respectively. Core from boring CW-5 (pier 13) has damaged concrete in a small zone near the top of the pier, 0.5 to 0.8 ft, and in a zone from 10.5 to 15.8 ft. The damaged top zone is the result of freezing and thawing action. The damaged zone from 0.5 to 0.8 ft probably occurred prior to the second repair; all of the bad concrete was not removed, and a portion was covered up with the newer concrete. The 5.3-ft zone beginning and terminating at elevations 599.3 and 594.0 ft is described as weathered, containing horizontal and vertical hairline fractures and white reaction products.

- petrographic examination revealed that the white reaction product is the result of alkali-silica reaction. The reaction products appear to be local, as they were not detected in any of the other concrete cores. A weathered zone like this one was not seen in the other borings. It is likely that the concrete in pier 13 has been damaged slightly due to the effects of freezing and thawing. Water has found its way into the pier along cracks, like the vertical crack toward the downstream end of the pier, and upon freezing and thawing, has caused the hairline fractures and alkali-silica reaction. The ultrasonic velocities taken in pier 13 are about 9 percent lower than the velocities obtained from the remaining eight piers on the U. S. side of the Regulatory Structure. This fact further indicates the internal damage of the concrete due to freezing and thawing.
- 118. If the internal concrete continues to get free water, the zone of deterioration will grow. If the water is not allowed to enter the concrete, then the damage due to freezing and thawing and alkali-silica reaction will be significantly reduced. At the present time the pier is considered structurally sound, considering the available field and laboratory test results.
- 119. At a depth of 19 ft (el 590.7 ft) an open horizontal crack exists that is partially coated with red silt clay. The surfaces were described as being water worn on the field drilling log (see Exhibit A). A closer look in the laboratory at the crack revealed that a clay ball had been entrapped in the concrete during construction, and the boring happened to pass through it.
- 120. Average physical properties. The average physical properties of the concrete core from the piers are listed below. The properties from the concrete cores from pier 13 were averaged with the properties from the cores of the other piers.

Test	Near Surface Concrete	Middle of Core Concrete	Bottom of Core Concrete	Percentage Difference
Wet unit weight, pcf	158.3 (±2.6)*	159.0 (±3.1)	161.0 (±1.6)	-1.7
Comp wave velocity, fps	15,650 (±895)	15,693 (±738)	15,597 (±661)	0.6
Compressive strength, psi	7,140 (±1313)	7,490 (±920)	7,640 (±2043)	-6.5
Tensile strength, psi	490 (±79)			
Modulus of elasticity,	6.21	5.97	6.52	-8.4
× 10 ⁶ psi	(±0.95)	(±1.05)	(±1.76)	
Poisson's Ratio	0.21 (±0.04)	0.19 (±0.03)	0.21 (±0.03)	-10.0

^{*} Standard deviation given in parentheses.

The percentage difference was calculated using the bottom of core concrete value as the base number; the highest or lowest value of the near surface (closest to top of pier) and middle of core value was used to get the greatest percentage difference. The percentage difference indicates that there is no real significant difference between the near surface, middle, and bottom concretes. Concrete core test samples from the piers were taken about 10 ft apart.

121. The physical properties of the concrete from the piers are characteristic of good quality concrete; it is similar in quality to the concrete in the upstream apron. The standard deviations for the pier cores are considered small and indicative of uniform concrete. The lowest compressive strength from the pier cores is 5180 psi, which indicates sound concrete.

Downstream apron

122. <u>Concrete deterioration</u>. There was no evidence of damage in the concrete core recovered from the four borings put through the downstream apron.

123. Average physical properties. The average physical properties of the concrete recovered as cores from the downstream apron are listed below.

Test	Avg Value
Wet unit weight, pcf	158.3
Comp wave velocity, fps	15,230
Compressive strength, psi	8,620
Modulus of elasticity, × 10 ⁶ psi	6.35
Poisson's ratio	0.20

- apron are quite similar to the properties of the core from the downstream apron are quite similar to the properties of the core from the piers and the upstream apron. Again, the physical properties of the downstream apron concrete are indicative of good quality concrete. The concrete is uniform, as indicated by the small standard deviation for the unit weight (±3.1), velocity (±983), modulus (±1.90), and Poisson's ratio (±0.05). The standard deviation of the compressive strength is ±2750. The relatively large deviation indicates a wide scatter in the strength data. The lowest strength is 6,530 psi, while the highest strength is 12,650 psi.
- 125. In summary, the concrete core recovered from the Regulatory Structure shows that the concrete in the aprons and piers is structurally sound, hard, dense, and durable. It contains a minor quantity of frost damage that is localized in a few areas. The concrete should continue to give excellent service even in the severe winter environment in which it has survived for over 50 plus years. The fact that the concrete is nonair-entrained and has survived in severe weather is further testimony to its excellent quality.

Characterization properties of foundation rock

į.

The state of

126. The results of the characterization properties tests are presented in Tables E3, E4, and E5 for the very hard sandstone, the hard sandstone, and the shaly sandstone, respectively. Stress-strain curves for the three rocks are presented in Plates E9-E18. Photographs of cores after they were tested for compressive, tensile, and triaxial strength are presented in Plates E19-E22, E23-E24, and E25-E26, respectively.

127. The following tabulation is a summary of the average characterization properties for the three rocks:

Property	Very Hard Sandstone	Hard Sandstone	Shaly Sandstone
Wet unit weight, pcf	156.3	156.8	157.0
s*	1.9	2.5	1.7
n	38	33	24
Dry unit weight, pcf	152.9	151.6	151.9
S	2.1	2.8	3.8
n	37	28	24
Water content, pcf	2.5	3.4	3.4
S	0.7	0.8	0.9
n	37	28	24
Compressive strength, psi	14,730	8,830	7,580
s	3,170	770	1,030
n	8	7	10
Tensile strength, psi	50	65	32
s	21		27
n	2	1	3

^{*} Standard deviation (s), number of tests (n).

128. The average wet unit weights of the three rocks are very nearly the same. The relatively low standard deviation indicates consistency within the three types of rocks and denotes a small amount of dispersion in the wet unit weights. The dry unit weights were calculated using the wet unit weights and water contents. The water contents are consistent within each of the three rock units, as indicated by the standard deviation.

129. A large difference in compressive strength exists between the very hard sandstone and the hard and shaly sandstones. The very hard sandstone is 1.67 times and 1.94 times stronger than the hard and shaly sandstone, respectively. The hard sandstone is about 1.2 times as strong as the shaly. All the compressive strength data for the sandstone indicate that the foundation rock is not critical in terms of bearing capacity. The standard deviations of the hard and shaly sandstone indicate a small degree of disparity within the samples tested. The stress-strain curves (see Plates E9-E11) for the very hard sandstone are typical for a strong sandstone; i.e., the curve is initially plastic (in this case

slightly concave upwards) and followed by a definite linear portion. The hard and shaly sandstones have the same plastic-elastic behavior; however, as seen in Plates E12-E18, the curves have a pronounced concave upward portion. The three rocks do not yield significantly and were observed to have a brittle-type failure. Moduli and Poisson's ratios were calculated from the stress-strain curves; the modulus is a tangent value calculated at one-half the compressive strength.

- 130. A limited number of direct tensile strengths were obtained. The standard deviation shows a fair amount of scatter for the few specimens tested. The shaly sandstone had the lowest strengths, as was expected due to the inherent weak planes of shale. The difference in tensile strength for the very hard and hard sandstone is small. These strengths are lower than what were expected, considering the high compressive strengths. The general rule is that the tensile strengths of rocks are between 10 and 20 percent of the compressive strength. For all three rocks, the tensile strength is less than 1 percent of the compressive strength. The moisture content and the bedding planes of the sandstone contributed to the low tensile strengths.
- 131. The unit weights, water contents, and strengths of some of the rock cores reported in this report are similar to the test results reported in U. S. Army Engineer Division, Ohio River (1975, 1976). The rock identified in U. S. Army Engineer Division, Ohio River (1975) is just above the section of rock tested during this investigation. It all belongs to the Jacobsville Formation and was expected to have similar characterization properties.

Engineering design properties of foundation rock

132. The individual moduli and Poisson's ratio computed from the stress-strain curves obtained from the very hard, hard, and shaly sandstone are presented in Tables E3, E4, and E5. Presented in the following tabulation are the average values of moduli and Poisson's ratio for the three rocks.

Property	Very Hard Sandstone	Hard <u>Sandstone</u>	Shaly Sandstone
Modulus of elasticity,	5.31	2.33	1.70
\times 10 ⁶ psi			
s*	1.31	0.51	0.3
n	8	7	11
Poisson's ratio	0.20	0.32	0.37
s	0.03	0.05	0.08
n	8	7	11

^{*} Standard deviation (s), number of tests (n).

The difference in modulus and Poisson's ratio between the three sandstones is reasonable. The shaly sandstone was expected to undergo greater deformation under load than the other two rocks. The shaly sandstone was weaker and contained shale laminae that would be expected to consolidate somewhat under load.

Maximum and residual shear stress criteria

- 133. The following discussion of shear stress criteria is taken from Zeigler (1972) and is followed in this report.
- shear strength. The maximum shear stress points are identified as τ_{max} in Figure 19. The maximum shear stress usually corresponds to the peak of the shear stress versus displacement plot (curve a of Figure 19); however, some confusion may arise where strain-hardening is encountered. When strain-hardening occurs, an initial peak usually occurs at a relatively small displacement, followed by an increase in shear stress to a value greater than the initial peak. When this happens, the first peak is termed the maximum shear stress corresponding to initial failure and the latter is the ultimate shear stress.
- 135. If the residual shear strength is to be determined, then displacement is continued until the shear stress approaches the horizontal asymtotic value of residual shear stress τ_R (curve a of Figure 19). When the zone tested exhibits only a residual shear strength, curve b of Figure 19 may be obtained. In such cases, the maximum shear stress attained is the residual shear strength. By testing a number of

Figure 19. Maximum and residual shear stress, and displacement failure criteria (after Ziegler 1972)

specimens, each at a different normal load, the maximum and residual strength failure envelopes are developed by plotting maximum and residual shear stresses versus corresponding normal stresses.

Maximum and residual shear strengths

136. Two types of direct shear tests were conducted to ascertain maximum strength of intact specimens and stiding friction characteristics of discontinuous specimens. Maximum strengths were measured for intact sandstones, sandstones containing concrete to rock interfaces, soft clays and shales; residual strengths were obtained where available. Sliding friction properties were measured for specimens along either precut surfaces, clay and shale seams, or naturally occurring joints. The direct shear test results are presented on laboratory report sheets, Plates E27-E32, E33-E38, and E39-E43, for the very hard, hard, and shaly sandstones, respectively. The shear stress versus shear deformation and normal deformation versus shear deformation curves from the direct shear tests

are presented in Plates E44-E60, E61-E71, and E72-E84 for the very hard, hard, and shaly sandstone, respectively. Maximum and residual strength failure envelopes for the individual test series (intact, precut, etc.) are illustrated in Plates E85-E90, E91-E95, and E96-E100 for the very hard, hard, and shaly sandstone.

- 137. Typical photographs of specimens after having been tested in direct shear are presented in Plates E101-E103. It will be noted in these photographs that most of the sheared surfaces were along bedding planes that are relatively smooth. The bedding planes observed in the rock core were quite smooth. The photograph of the natural jointed core is likewise smooth, as were most all the other natural joints observed in the core.
- 138. The direct shear tests were performed in two shear devices. A single plane shear device, designated MRD, was used for the 4-in.-diameter cores; most tests were run in this device. A few clay seams, large enough to be removed from the host rock, were tested in the 1- by 3- by 3-in. soils direct shear device. Normal loads were selected to cover anticipated normal loads at the structure.
- 139. The majority of direct shear tests were conducted using three different specimens and three different normal loads, one normal load per specimen. Four tests were run differently to check on the residual strength of intact specimens, clay seams, and shale seams. Four to five specimens were used per test with each specimen having a different normal load applied. A specimen was consolidated with a normal load, sheared, and a peak load determined. The shear and normal loads were removed, the specimen repositioned, the same normal load reapplied and sheared again. This sequence was continued with the same specimen until a residual strength was obtained. Another specimen was likewise tested at a greater normal load, and so forth. The peak and residual shear stress values from the four or five specimens were used to construct maximum and residual strength failure envelopes; thus, maximum and residual phi angles were determined. The residual phi from the intact very hard sandstone, ϕ_r = 29.9°, compared quite well with a similar value from the precut very hard sandstone, $\phi_r = 32.9^{\circ}$. The lowest

residual value obtained during the testing program was obtained using this technique.

- 140. The plots for each direct shear test, intact, precut, etc., for the three rock types (see Plates E85-E100) show very little scatter of the shear stress values. Failure envelopes were fitted through the data points using a linear regression fit. For a few plots, the envelopes were shifted to have a zero cohesion.
- hard, hard, and shaly sandstone is presented in Figures 20, 21, and 22. The bedrock feature having the lowest residual strength is the shale seam (1 in. thick) found in the shaly sandstone; the residual shear strength is $\phi_r = 21^\circ$ and c = 0. The same shale seam has a maximum shear strength $\phi = 31.4^\circ$ and c = 1.4 tsf; see Figure 22. It will be noted in Figure 22 that the thicker shale seam (seams were removed from the host rock and tested as intact specimens) has higher shearing resistance than the thinner shale seams. An explanation may be that the thicker seam more fully developed its resistance to shearing by uniformly distributing the shear load throughout a homogenous material (all shale). In contrast, the thinner shale seam within the host rock developed an uneven stress distribution due to the two discontinuities adjacent to the seam. Uneven stress concentrations resulted, and the full shear strength of the shale was not reached.
- 142. A small number of core samples had slickensides along horizontal bedding, which is evidence of previous movement along the bedding planes. The residual shear strengths for the thin (1 in. thick) shale seams would be a conservative value to consider for sliding stability analysis.
- 143. The shear stress-shear deformation curves were generally characteristic of the two curves presented in Figure 19. It will be noted that on the majority of the shear stress-shear deformation plots, the curves look as if the specimens underwent strain hardening. Between 0.1- and 0.2-in. deformation, the curves turn sharply upwards. Some strain hardening probably has occurred for some of the specimens. However, it is believed that the rather sharp increase in shear stress is

Figure 20. Summary of plot of very hard sandstone failure envelopes

Figure 21. Summary of plot of hard sandstone failure envelopes

Figure 22. Summary plot of shaly sandstone failure envelopes

due to a combination of things. Some of the tests were set up with too small a gap between the shear blocks, causing the blocks to bind together during a test. And with some of the tests, the bonding agent holding the specimens in the shear blocks was set too high and came into contact during testing. The test data are not in question for those curves that do not rise sharply at about 0.2 in. of deformation and between zero and about 0.2 in. of deformation.

144. U. S. Army Engineer District, Detroit (1974) presents a range of coefficient of friction for the shaly seams in the bedrock at the New Poe Lock. The same rock formation with similar rock types is present at the New Poe Lock and the Regulatory Structure. The coefficient of friction from U. S. Army Engineer District, Detroit (1974) ranged from 0.40 to 1.75; in this report, the range for similar shaly seams is 0.38, lowest residual value, to 2.25, highest maximum value. The friction values compare well.

Triaxial shear strengths

145. The stress-strain relations for the cores tested under tri-axial loading conditions are presented in Plates E101-E104. Mohr stress circles are presented in Plates E105-E107 for the very hard, hard, and shaly sandstone. The maximum and minimum stress values obtained during the testing are presented in Table E6, along with other pertinent information.

146. A failure envelope for the very hard sandstone was not drawn. An envelope could not be easily fitted to the stress circles. The angle of shearing resistance (ϕ = 54°) correlates well with the angle of shearing resistance obtained on the intact hard sandstone specimens tested in direct shear (ϕ is 56.5°). The same comparison for the shaly sandstone is not as good, ϕ = 55° for triaxial and ϕ = 66° for direct shear. Cohesion for the hard and shaly sandstone is 1200 and 1440 psi, respectively.

Recommended design values

147. Design should consider rock types and the various bedrock structural features described herein. Guidance is presented in following tabulation as to proper choice of design parameters.

	Very Hard Sandstone	Hard Sandstone	Shaly Sandstone
Wet unit weight, pcf Dry unit weight, pcf Compressive strength, psi Tensile strength, psi Shear strength:	156.3 152.9 14,730 50	156.8 151.6 8,830 65	157.0 151.9 7,580 32
Concrete to rock	$\phi = 69.3^{\circ}$		
Concrete on rock, precut	c = 11.5 tsf $\phi = 32.10$ c = 0		
Intact	$\phi = 68^{\circ}$ $c = 44 \text{ tsf}$ $\phi_{r} = 29.9^{\circ}$	$\phi = 56.5^{\circ}$ $c = 12.3 \text{ tsf}$ $\phi_{r} = 48^{\circ}$	$\phi = 66^{\circ}$ $c = 24 \text{ tsf}$
Precut	$c = 5.8 \text{ tsf}$ $\phi_r = 32.9^{\circ}$	$c = 1.3 tsf$ $\phi_r = 26.5^{\circ}$	$\phi_r = 31.9^{\circ}$
Clay seam (CL)	$c = 0$ $\phi = 36.5^{\circ}$ $c = 0.05 \text{ tsf}$ $\phi_{r} = 26^{\circ}$	c = 0	c = 0 $\phi = 42^{\circ}$ c = 0 $\phi_{r} = 23.3^{\circ}$
Shale seam	c = 0		c = 0
l in. thick		$\phi = 34^{\circ}$ $c = 0.1 \text{ tsf}$ $\phi_{r} = 27.9^{\circ}$	$\phi = 31.4^{\circ}$ $c = 1.4 \text{ tsf}$ $\phi_{r} = 21^{\circ}$
>1 in. thick		c = 0 $\phi = 44.7^{\circ}$ c = 0.3 tsf $\phi_r = 43.2^{\circ}$	c = 0 $\phi = 43.3^{\circ}$ c = 0.1 tsf $\phi_r = 34.1^{\circ}$
Natural joint	$\phi = 47.3^{\circ}$ $c = 4.2 \text{ tsf}$ $\phi_r = 32^{\circ}$	c = 0 $\phi = 68^{\circ}$ c = 0 $\phi_{r} = 49.6^{\circ}$	c = 0
Cross bed	$c = 2.5 \text{ tsf}$ $\phi = 58^{\circ}$ $c = 1 \text{ tsf}$ $\phi_{r} = 51^{\circ}$	c = 0	
	c = 0	2.22	1 70
Modulus of elasticity, × 10 ⁶ psi	5.31	2.33	1.70
× 10 psi Poisson's ratio	0.20	0.32	0.37

Structural Stability Analysis

Introduction

148. Even though monoliths of the Lake Superior Regulatory Structure at Sault Ste. Marie, Michigan, have been in service since 1919, it is important that they be examined in view of present-day criteria and in relation to deterioration experienced to assure continued structural adequacy. If the design or the deterioration makes the structures fail to satisfy current criteria, thereby producing unsafe or doubtful conditions of safety, the structure must be modified to conform to good engineering practice.

149. One of the main considerations for structural adequacy of the dam is the stability of the various monoliths when subjected to possible loading conditions. The stability study involves analyzing the various monoliths, taking into account reasonable loadings, structure condition, and foundation conditions to determine if they have adequate resistance against overturning, sliding, and base pressures. Practicably the analysis could be generalized to consider the smaller piers (piers 10, 11, 12, 14, 15, and 16) and the larger piers (piers 9 and 13) as groups and only one pier from each group analyzed. The analysis and evaluation of one pier from each group are adequate for an evaluation of all monoliths. Figures and computations for the structural stability analysis are presented in Appendix F.

150. In general, the stability study was done in accordance with the applicable portions of the following Engineer Manuals and Engineer Technical Letters.

- a. EM 1110-2-2200, Gravity Dam Design, 1958.
- b. EM 1110-2-2607, Navigation Dam Masonry, 1958.
- c. ETL 1110-2-184, Gravity Dam Design Stability, 1974.
- d. ETL 1110-2-22, Design of Navigation Lock Gravity Walls, 1967.
- e. EM 1110-2-2602, Planning and Design of Navigation Lock Walls and Appurtenances, 1960.
- f. EM 1110-2-2502, Retaining Walls, 1961.

- 151. The adequacy of the structure to resist overturning can be judged by the location of the resultant with respect to the base of the section where stability is being considered, within the monolith, or at the base-foundation interface. In general, the gravity monoliths where stability against overturning is being considered are required to have the resultant of applied loads fall within the kern of the base of the section being analyzed when subjected to active earth pressures or for monoliths not subjected to earth pressures. For operating conditions with earthquake, the resultant only has to fall within the base, but the allowable foundation stresses should not be exceeded.
- 152. The percent effective base (percent of the base which is in compression) is a good way to present where the resultant falls in a rectangular base section. It is a good guide for representing overturning resistance for any shape base. For example, for a rectangular base:

Percent Effective Base	Resultant Location Within Base
100	Within middle 1/3 or in kern area
75	At 1/4 points of base
50	At 1/6 points of base

- 153. Sliding resistance of a monolith is calculated by choosing a trial failure plane or combination of planes and calculating the resistance along this path. The critical section for sliding must be determined. It may be within the monolith, at the base-foundation interface, or at a plane or combination of planes below the base.
- 154. The resistance may be composed of several types. The sliding resistance due to friction and cohesion for a horizontal surface between the monolith and its foundation is calculated by the formula given in ETL 1110-2-184. The safety factor is obtained by dividing the horizontal resistance by the horizontal driving force. These for a are indequate for evaluating structural sliding on inclined that For inclined planes, the safety factor is obtained by dividing the resistance along the plane by the driving force along the plane with any passive resistance taken into consideration. The sliding resistance due to all or any part of the failure plane extending through either the concrete monolith or the foundation is calculated from the shearing or diagonal

tensile strength of the material acting over the length in which the stress occurs. If other restraints, such as strut action, exist, they must also be considered in the evaluation. The factors of safety used for sliding evaluations are as follows:

- a. Residual and precut shear strength parameters:
 - (1) 1.0 for normal operation case loading with earthquakes;
 - (2) 1.5 for other case loadings.
- b. Maximum shear strength parameters:
 - (1) 1-1/3 for normal operation case loading with earthquakes;
 - (2) 2 for other case loadings.

The factors of safety for maximum shear strenth parameters have been reduced from accepted criteria because it is felt that the above values are adequate and will be acceptable for the stability evaluations of the Lake Superior Regulatory Structure.

- 155. The base pressures are the sum of the contact and uplift pressures on the concrete-foundation interface.
- 156. The dam monoliths were investigated for the following case loadings:
 - a. Normal operation.
 - b. Normal operation plus earthquake.
 - c. Normal operation plus ice.
 - d. High water condition.

Results

abutment monolith at the Regulatory Structure. The smaller piers (piers 10, 11, 12, 14, 15, and 16, Figure F5) and the larger piers (piers 9 and 13, Figure F20) have the same shape geometry and are embedded in an apron section. Consideration was given to analyzing the piers individually, but there is not enough available data to define the concrete-foundation interface plane for individual pier evaluation. The core locations provide only local determinations of in-place pier and apron depths and, in fact, may reflect local variations in foundation geometry. Also, by

viewing underwater videotapes, it was possible only to determine a general depth of 5 ft below the top of the apron to competent downstream strut resistance. With these considerations the best approach is to perform some overall, conservative evaluations. In this case, the stability analysis of one small and one large pier is sufficient.

and large piers considering overturning, sliding, and base pressures at the concrete-foundation interface (Figures F6 through F8, F10 through F13, F21, and F28). The second consideration will be the safety factor against sliding for the small and large piers considering the failure just below the pier-foundation interface (Figure F9). The third consideration will be the failure from center line to center line between piers (Figures F19 and F29). This consideration will be for sliding in the foundation material and can be viewed as a failure of one or a number of pier sections of the dam.

Stability of Concrete-Foundation Interface

- 159. The stability summaries and computations are presented in Figures F6 through F8 and Figure 21, respectively, for the small and large piers when the failure plane is at the concrete-foundation interface.
- 160. The small piers are considered adequate in their resistance to overturning even though for normal operation with ice the percent effective base is 93.6 percent (Figure F6). Posttensioning, which is recommended later for sliding deficiencies, will make the 93.6 percent effective base within the allowable. The safety factors against sliding at the concrete-foundation interface are adequate (Figure F7). The base pressures are within the allowable (Figure F8).

Allowable base pressure =
$$\frac{(7250 \text{ psi})}{4(1000 \text{ } \#/\text{K})} = \frac{144 \text{ in.}^2}{\text{ft}^2} = 261 \text{ KSF}$$
 concrete governs)

161. The larger piers are adequate in their resistance to overturning. These results are not presented because the larger piers are of the same height as the smaller piers but with greater base area; therefore, the presentation of results showing the adequacy in overturning is unnecessary. The safety factors for sliding at the base-foundation interface for the larger piers are adequate (Figure F21). The base pressures for the larger piers are within the allowable and the results are not presented. The base pressures are very low as can be seen from the results for the smaller piers.

Stability in Foundation Below Concrete-Foundation Interface

Introduction

- 162. Establishing the safety of the small and large piers against sliding below the concrete-foundation interface is the remaining concern for the stability of the dam at the Lake Superior Regulatory Structure. The first concern for the evaluation of sliding in the foundation is to determine whether or not the resisting forces increase faster than the driving forces as the depth of the sliding plane increases. This will allow a determination of whether the safety factor increases or decreases as the depth to the sliding plane increases. Because of analysis, which will be presented subsequently, the sliding plane will be considered horizontal. Figure F1 presents the variation of the safety factor against sliding versus the elevation of the sliding plane. The most critical seam (smaller ϕ and c) was used; therefore, the resisting forces increase faster in relation to the driving forces as the depth of the sliding plane increases.
- 163. The above-referenced computations and analysis establishes that a particular sliding plane will be more critical the closer it is located to the concrete-foundation interface. Figure F4 shows that the seams which were actually found by boring logs are at or very close to the concrete-foundation interface. The condition and erosion of the foundation influenced engineering judgments concerning taking conservative approaches in the analysis for sliding stability.
- 164. The foundation upstream and downstream of the Lake Superior Regulatory Structure has been removed by water action to a depth of 2 to

3 ft below the top of the apron. Local areas of scour appear to have removed rock from 3 to 5 ft below the top of the apron. The foundation is jointed and the clay and shale semas are predominately continuous. The following argument is in support of the concept that the shale and clay seams can possibly occur throughout the foundation profile. Figure F4 shows that the clay and shale seams that were actually found in the core are at or very close to the concrete foundation interface. The sandstone was classified into three separate units, although, interbeds less than 1 ft in thickness were not distinguished in the cross sections. Since clay and shale seams occur in each of the three rock units (very hard, hard, and shaly sandstone), it is possible that a seam such as 35a could be only a small distance away from the base of the structure. Previous cuts through the sandstone units at The New Poe Lock show that the clay and shale seams as thin as 0.01 ft occur and are continuous over the excavation. Not all clay and shale seams may have been detected; especially those less than 0.01 ft which may exist only as a thin film on the bedding plane making logging difficult. Considering the (1) interbeds of sandstone less than 1 ft in thickness were not distinguished in the cross sections, (2) clay and shale seams occur in each sandstone unit, (3) the clay and shale seams are predominately continuous, (4) due to drilling action and logging some seams may have not been detected, and (5) all seams were found at or near the concrete-foundation interface, it was assumed that the clay and shale seams can occur throughout the foundation profile. The assumptions were that:

- a. The most critical seam and failure geometry may occur just below the concrete-foundation interface. This makes evaluations using less critical shear strength parameters and geometries of no importance because they will not govern the sliding evaluations.
- b. Since the core holes are at isolated points with considerable distance between them (& to & between piers >60 ft), they do not define with certainty the three-dimensional base of the structure or foundation; therefore, the pier base-foundation interface was taken as that originally planned for the structures (el 585.75) even though the cores indicate an average pier depth of 1.2 ft below the planned pier depth. Some cores

- indicate that certain pier bases (15 and 17) were constructed at or close to the planned elevation.
- c. Even though the general dip of the bedding is 3 ft per 100 ft from downstream to upstream, the local dip under the Regulatory Structure as can be determined from available data (the geological cross sections) will not support downstream to upstream dip under the structure. In fact, in certain cases the dip appears to be from upstream to downstream. A presentation of the various clay and shale seams are presented in Figures F3 and F4, respectively, for the upstream and downstream section of core holes transverse to the dam (Plate D1).

Viewing the general location of the seams from upstream to downstream, it is seen that a sliding plane dip under the structure from downstream to upstream is not supported. The general locations of the seams close to a given elevation and in or on the boundary of a particular sandstone unit is considered without a detailed look at the matching of point locations of the material to particular bedding planes from borehole to borehole. Without extensive work with the original core logs, and possibly more drilling, this approach is considered to be within the accuracy of the data, and a more detailed development of sliding planes from the geological cross sections is conjecture. Much difficulty was encountered in the attempt to develop a more detailed connection of seams, and consequently, was eliminated from consideration. An example considering the general dip of the bedding planes can be seen in Figure F2. Seam 14 is at approximate el 586 in the upstream section of boreholes and at el 585 in the downstream section of boreholes (Figure F3). This indicates a possible upstream to downstream dip of the bedding plane.

Stability of piers just below concrete-foundation interface

165. The stability summary and computations for the piers just below the concrete-foundation interface are presented in Figures F9 and F22, respectively for the small and large piers. Some of the safety ractors for sliding are below available but do not control because the factors of safety for the pier and apron section are lower and govern.

Stability of pier and apron section just below concrete-foundation interface

- 166. The stability summary and computations for the pier and apron sections are presented in Figures F19 and F29, respectively, for the small and large piers. The critical seam for sliding is Seam 14 for maximum strength parameters (Figure 19) and Seam 35a for residual shear strength parameters (Figure F19). The sliding factors of safety for Seam 14 is 1.75 (small piers) and 1.94 (larger piers) and that for Seam 35a is 0.73 (small piers) and 0.83 (larger piers). Seam 35a governs and requires a total posttensioning force of 765 kips and 656 kips, respectively, for the small and large piers. Four posttensioning holes are suggested as shown in Figure F30 with a capacity of 191 and 164 kips per tendon, respectively, for the small and large piers. The stability at a plane of el 584.75 is also considered to give comparative values for safety factors at a deeper location of the critical sliding plane. Considering past experience it is felt that the required posttensioning forces will not overstress the concrete or foundation (Pace and Campbell 1978).
- 167. A 25-ft foundation embedment depth should be used for the rock anchors. A 25-ft embedment depth and a 20-ft anchor length is conservative for foundation or bond failure, but from a practical standpoint the foundation is layered with the presence of hydrostatic pressures; therefore, this embedment depth is considered adequate but not excessively conservative.
- anchor the tendons. The lower 20 ft of the tendon should be grouted and after sufficient grout strength, they should be posttensioned. The reason for only grouting the lower 20 ft of the tendon is to avoid producing tensile or shear stress concentrations in the foundation immediately below the concrete-foundation interface. The foundation material is characterized by predominant bedding planes. Scour from water action downstream of the dam shows that it can be completely removed and scour can produce undercutting in the softer layers of foundation

material. This suggests that it is best to avoid producing tensile or shear stress concentrations in the foundation immediately below the concrete-foundation interface and produce a desirable compressive stress field in the first 5 ft of foundation material immediately below the concrete-foundation interface to tighten the bedding planes in this region. The space around the tendons inside the concrete monolith and the unbonded 5 ft of tendon in the foundation should be filled with a noncorrosive grout to protect the tendons. This should be done only after there is negligible loss of posttensioning with time.

Stress Analysis of Gate Operating Machinery

- because of many factors, such as stress concentrations, residual stresses, load cycles, tooth hardness, polish of the root of the fillet, misalignments, tooth error, etc. For example, the stresses at the root of the gear tooth may have a concentration factor which varies from 1 to 2. In most cases, it is very hard to be sure that the load is properly shared by two or more teeth simultaneously, and the actual shape of the stress diagram across the root of the gear tooth is difficult to establish.
- 170. In the analysis of the gears at the Regulatory Structure, the stresses in the gears are estimated using conservative loading; and if the stresses are sufficiently low, they can be considered adequate. If they are not low, a more detailed analysis must be performed to give consideration to their adequacy.
- 171. In the gear analysis which follows, the load is considered to be carried by a single tooth and to be applied at the tooth tip. The gears at the Regulatory Structure were made at a time when the best gears were not manufactured very accurately, and the above assumptions are considered best for the present analysis.
- 172. A schematic diagram of the gears is presented in Figure Gl (sheet 1) for terminology purposes in the analysis and discussion of the gear stresses. A picture of the gears is presented in Figure 23.

Figure 23. Gate operating machinery, Lake Superior Regulatory Structure

Pertinent gear details are also presented in Figure G1 (sheet 2).

- 173. Gate load tests were performed (Part III) by placing a load cell in the gate lifting linkage just above and on each side of the gate. This was done for four typical gates to get an idea of how much force is required to raise the gates under normal operating conditions. The tests showed that a maximum force between 30,250 and 36,400 lb was required in the linkage at the end of the gates while they were being raised. The force transmitted to the gear teeth is reduced by the weight of the counterweight. This makes the balancing of the gates with the counterweight system very important. Considering the difference in the force required in raising the gates and the counterweight force, the torque and force on the gears can be determined. The forces on the gear teeth are computed and presented in Figure G1 (sheet 3). The stresses in the gears are then calculated. The calculations are also presented in Figure G1 (sheet 4). The maximum tensile and compressive stress in the teeth of the gears is about 6300 psi, which is low. Since the computed stress in the gear teeth is low, even though a conservative maximum stress of 20,000 psi was assumed for cast iron, the gears are considered to be adequate under normal loading conditions.
- 174. The shear stress in the shafts is presented in Figure Gl (sheet 5). The shafts are adequate, considering a computed stress of approximately 3000 psi being present under normal operating conditions.
- 175. The stress in the chain is presented in Figure G1 (sheet 6) and is not excessive.
- 176. The chain, shafts, and gears are adequate under normal operating conditions. As long as modifications, such as automatic gate operation, do not increase the stresses, the operating gate machinery is not overstressed.

Stress Analysis of Sluice Gates

177. The stress analysis of the sluice gates is presented in Figure G2. The stress in the ribs and plates of the gates is excessive for the case loading of normal operation plus ice (Figure G2, sheets 10, 13,

- 15) in relation to an allowable stress of 18,000 psi. The calculated stresses in the rib and plate of girder "C" is 61,800 psi and 43,500 psi, respectively. The rivets are also overstressed for the case of normal operation plus ice. The method of calculating the stresses is conservative in some respects. For example, the girders are considered to be simply supported at their ends. The ice loading on the gates is highly indeterminate, and the analysis could be overconservative in that it uses 2 ft of ice thickness at 5000 lb/ft².
- 178. The stresses in the ribs and plates for the normal operation case are below 20,000 psi and are considered acceptable.
- 179. Since the gates have not shown any signs of distress over a long period of service, it is recommended that they not be modified but observed each winter and if any signs of distress become apparent, corrective action can be undertaken at that time. It is believed that the ice loadings are not as severe as assumed, and the gates will continue to operate satisfactorily in the future.

Automatic Operation of Sluice Gates

- 180. An estimate was made in 1975 for modification of the Regulatory Structure sluice gates for automatic and winter operation. The estimate was made by the Sault Area Office based on H. G. Acres and Company's report of March 1972 entitled, "Lake Superior Regulatory Structure Feasibility Study for Improvements to Lake Superior Control Works." The estimate provides for housing all eight United States owned gates, the furnishing of electric power to the eight gates, electric drive to each gate, and heating arrangements for three gates for winter operation.
- 181. For electrifying the Regulatory Structure, motor driven gear reducers would be installed at each end of the gate. Vertical gate movement would be approximately 1 ft/min. Electric controllers with push buttons would be mounted to the west of and between the gates on the working deck so that a gate could be operated from either end. Push buttons would also be located at the downstream side of the gate at a location permitting observation of gate movement from downstream pier

- level. Controller enclosures would be NEMA 3*. Four electric controllers would be furnished with gate and gain heater magnetic contactors and associated circuit breakers.
- 182. A cofferdam fabricated beforehand of steel or wood would be sunk to cover the bulkhead gate slot areas and also for work of installing the gain heaters. Two such cofferdams would be fabricated so that work on both slots could be accomplished simultaneously. Cofferdam size would be such as to permit two men to work in the dry. For work on the gate gains, the Stoney roller gates would have to be raised completely out of their slots while necessary modification work is being accomplished. A monorail trolley supported by steel bents at each pier at locations above the bulkhead slot for the three regulatory gate openings would be provided. This trolley would permit raising the bulkhead for positioning into the pier slots, as well as to traverse north or south for transferring the bulkhead to the adjacent sluice.
- 183. An estimated capital cost and average annual costs for winter operation for electrifying eight gates and heating three gates on the United States side are presented in Table 1 as computed in 1975. Useful service life was considered to be 40 years and interest rate compounded annually at 7 percent.
- 184. The total capital cost as figured in 1975 was \$745,000 with an annual operating cost of \$58,938. Inflation since 1975 has caused construction costs to rise dramatically and would cause the above figures to increase significantly. In present-day economics a proposal of this magnitude would probably be cost-prohibitive. The necessity for consideration of such an extensive modification at this time is questionable, since the gate positions are adjusted only several times a year, and usually only a few gates are moved at any one time.
- 185. It is recommended that an automatic system be implemented by installing proper gear reducers on the gear system and that the gates be operated from each end using battery packs which can be carried to and from the site.

^{*} National Electric Manufacturers Association designation for outdoor electrical enclosures.

186. A representative of a manufacturer and installer of electromechanical operating devices for doors, gates, and turnstiles visited the Regulatory Structure and studied the automatic operation problem. It is concluded that the automatic operation of the gates by proper gear reducers and battery packs is feasible.

PART V: SUMMARY AND RECOMMENDATIONS

Summary

NDT of piers, gates and operating machinery

187. Subsequent to the preliminary engineering study, which included visual inspections, review of records and drawings, the accomplishment of a survey and soundings, and an underwater video inspection, NDT methods were employed to collect qualitative and quantitative data for assessment of the adequacy and condition of various structural materials contained in the Regulatory Structure. NDT methods and applications included (1) magnetic particle inspection of the accessible portions of the gears and lifting chains of the eight pairs of gate lifting mechanisms, (2) ultrasonic inspection of the concrete piers, the shafts of the eight pairs of lifting mechanisms, and the gate skins and rivets, and (3) microseismic in-place deterioration and stability evaluations of the structure. The magnetic particle tests revealed three discontinuities in the lifting mechanisms that are considered to be of a nature that could cause failure. The ultrasonic inspections did not produce anomalies that should cause concern. The concrete is indicated to be of generally good to excellent quality with no areas which are regarded as deficient with respect to structural integrity. Gate skin thicknesses averaged 0.40 in., which is 0.025 in. thicker than the design specifications. Also, ultrasonic test results indicate no cause for concern about the rivets with respect to the integrity of the gates. The results of the microseismic tests of the structure indicate the piers are all in similar condition with respect to mechanical integrity, are of good quality, and are structurally sound. Time was not available for a sufficient number of microseismic measurements to afford a good in-place evaluation of structural stability; therefore, the results of the conventional stability analysis are used in the assessment of the adequacy of the structure with respect to stability and in determining necessary remedial measures.

Load tests-operating machinery

188. Load cells were inserted into the gate hoisting systems of four gates in order to determine the combined total of gate and friction loads present during operation of the gates. The load cells were instrumented so that loading data could be continuously recorded for each side of the gates during the lifting operation. Nominal loads to be expected during hoisting were computed to be 30,750 lb per side. Single side loads ranged between 30,250 lb and 36,400 lb. Gates No. 9 and 10 showed noticeable differences in loads between sides (maximum 5550 lb). These differences could be caused by counterweight imbalance or friction, or both.

Concrete quality

- 189. A small quantity of new concrete applied as patches or overlays is in good condition. Old exterior concrete in the aprons and piers shows evidence of light to medium scaling. Severe scaling (>0.79 in.) was noted in several small areas. Minor amounts of frost-damaged concrete are present in three of the nine U. S. piers. Maximum detected depth of damage is 0.3 ft. The damaged concrete was caused by cycles of freezing and thawing. Scaled and frost-damaged areas could be repaired during regular maintenance periods.
- 190. A 5.3-ft zone of damaged concrete exists in pier 13. The cause of the damage is partially freezing and thawing and partially alkali-silica reaction. Fine parallel cracking and white reaction product were found in the damaged zone. Ultrasonic velocities obtained in the field from measurements made on the pier were about 9 percent lower than similar velocities obtained from the other eight piers. The pier is considered structurally sound.
- 191. The interior concrete of the aprons and piers is in good condition. It is structurally sound, hard, dense, and durable. The concrete should continue to give excellent service even in the severe winter environment in which it has survived for over 50 years. The concrete is of excellent quality.

Foundation condition

- 192. Bedrock stratigraphy. The overburden in the dike at the southern end of the Regulatory Structure is probably spoil from the excavations of the Regulatory Structure and the Soo Locks. It consists of boulders, cobbles, gravel, and sand from the Jacobsville sandstone. It was intended to take drive samples of the overburden for testing purposes. However, a drive barrel could not be advanced and a core barrel was used to finish the one boring in the overburden. No test samples were recovered.
- 193. Bedrock at the Regulatory Structure site is the Jacobsville Formation of Cambrian age. The rock penetrated by drilling during this investigation is an arkosic sandstone. It is fine to medium grained and cemented primarily with quartz. The sandstone is red in color, dense, hard, and quite sound. Thin clay and shale seams are found throughout the sandstone. The bedrock is divided into very hard, hard, and shaly sandstone units for ease of classification. The three units contain mottled or bonded areas and vari-colored reduction spots. Classification of the three units was done primarily on the bases of hardness.
- 194. <u>Geologic cross sections</u>. Seven cross sections were drawn to provide an overview of the bedrock material. They show the variations in bed thickness, bed sequence, the continuity and attitude of beds and the thin weak seams, and the location of the weak clay and shale seams in relation to the base of the structure.
- 195. Structure. The bedrock in the vicinity of the Regulatory Structure dips 3 ft per 100 ft to the west. Bed thickness is 1 to 13 ft and the beds are continuous beneath the Structure. Thin weak clay and shale seams (0.01 to 0.4 ft thick) are found throughout the bedrock and commonly occur between the three sandstone units. The clay and shale seams are considered to be the weakest zones within the bedrock.
- 196. Two prominent joint sets exist. They are orthogonal, with one set oriented 15 deg northwest of the Structure's axis, and the other 15 deg north of a line running in an upstream-downstream direction. The jointing is classified as moderately fractured (1- to 3-ft spacing) to unfractured (>6-ft spacing) with the prominent spacing in the moderate

range. The joints are continuous in plan view but of limited extent in section. Joints rarely exceed 3 ft in height and generally terminate on bedding planes. Joint dips can be placed into two groups, 0 to 35 deg and >70 deg.

197. It is not known if solution activity has occurred along the joints in the geologic past or is a continuing process. Information obtained from the borehole photography records and core logs suggest that if solutioning is occurring along joints, that it is a slow process. A more detailed study is required to ascertain if seepage along joints is occurring beneath the structure.

198. Deterioration of the underlying scrata has occurred. Scouring upstream and downstream of the structure has caused undercutting of the apron to depths of 6 ft. Scour depths upstream have reached 3 ft below top of the apron, while downstream the scouring has removed rock to depths 5 ft below the top of the apron. Apron thickness is 18 in. Due to the scouring action, the piers are left standing on rock pedestals. Continuous weak clay and shale seams exist in the bedrock and are within 1 ft of the base of the structure in several places. The weak seams are thus exposed, which suggests major foundation problems in terms of sliding. It is conservative to assume that there is no strut resistance downstream of the apron for a depth of 5 ft below top of apron. The undercut and scoured areas pose uncertainties with respect to the safety of the structure. However, if these two areas are repaired, it is anticipated that the foundation would be sound in terms of stability of the structure. Adequately repaired, the foundation should serve its original intended purpose.

Structural stability

199. The piers are adequate in their resistance to overturning and base pressures. The resistance of the piers to sliding is inadequate. By conventional design the safety factor against sliding is below 1.0 for the case loading of normal operation plus ice. The sliding factor of safety is well below allowables for the other case loadings; therefore, remedial stability measures should be performed.

Stress analysis

- 200. The stresses in the gears of the gate lifting mechanisms were calculated using conservative loading estimates. The calculated expected stresses were low; therefore, the gears are considered to be adequate for normal loading performance. The shafts and chains are also considered to be adequate since the computed stresses expected during their operation were below allowable.
- 201. The stress in the ribs, rivets, and plates was found to be excessive for the case loading of normal operation plus ice, but acceptable for normal operation. Since the gates have not shown any signs of distress over a long period of service, and since the actual ice loading on the gates in highly indeterminate (2-ft thickness at 5000 lb/ft² was used), it is possible that the stress analysis for this case loading is overconservative.

Automatic gate operation

202. In 1975 the Soo Area Office prepared a work-cost estimate for the modification of the sluice gates for automatic and winter operation based on a report by H. G. Acres and Company prepared in March 1972. In present-day economics, a proposal of this magnitude would probably be cost-prohibitive. The necessity for consideration of such an extensive modification at this time is questionable, since the gate positions are adjusted only several times a year, and usually only a few gates are moved at any one time.

Recommendations

- 203. It is recommended that an extensive repair and rehabilitation program for the Regulatory Structure be planned and executed in the very near future.
- 204. The areas of severely scaled, deteriorated, and frost-damaged concrete should be repaired during regular maintenance periods, or in conjunction with a major repair and rehabilitation program.
- 205. Pier No. 13 should be checked periodically for signs of further concrete deterioration. Visual inspections and other appropriate methods such as ultrasonic velocity tests should be employed.

- 206. It is recommended that a protective apron be placed upstream and downstream of the existing apron in order to eliminate further undercutting of the dam and removal of concrete or grouted in-place aggregate.
- 207. If protective aprons are installed at the structure, it is recommended that a study be initiated to monitor any seepage along joints. Such a study could be done where and if cofferdams are used for installing additional apron sections.
- 208. The remedial stability measures presented in Part IV should be implemented to ensure adequate sliding resistance of the piers. These measures will produce a compressive stress field in the 5 ft of foundation material immediately below the concrete-foundation interface, and will enhance the structural characteristics of the foundation. It is considered sufficient, cost-effective, and conducive to a better job to perform dewatering, foundation preparation, and concreting (scoured areas and placement of protective aprons) as a part of a total rehabilitation program if accomplished in the near future.
- 209. Modifications of the gates and operating machinery, such as for automatic operation, should not be accomplished without first considering the possibility of producing increased stresses in the gears, shafts, and chains, with the result of overstressing these elements.
- 210. The sluice gates should be observed closely during the winter for signs of overstressing due to ice loading.
- 211. If automatic operation of the gate machinery becomes desirable, it is recommended that a proper system of gear reducers be installed for operation by portable battery packs from each end of the gate.
- 212. It is further recommended that the technology developed in the field by CE districts, and through research efforts by WES, pertinent to repair and rehabilitation of old or damaged concrete structures, be considered in the planning of any extensive repair program.

REFERENCES

American Concrete Institute. 1980. "Guide for Making a Condition Survey of Concrete in Service," Manual of Concrete Practice, No. 65-67, Part 1, Detroit, Mich.

Hamblin, W. Kenneth. 1958. "The Cambrian Sandstone of Northern Michigan," Michigan State Geological Survey, Publication 51.

Lake Superior Board of Control. 1979. "Tabulated Record of Maintenance to Compensating Works," U. S. Army Engineer District, CE, Detroit, Detroit, Mich.

Leslie, J. R., and Cheesman, W. J. 1949 (Sep). "An Ultrasonic Method of Studying Deterioration and Cracking in Concrete Structures, Proceedings, ACI Journal, Vol 46, No. 1, pp 17-36.

Office, Chief of Engineers, Department of the Army. 1975 (Mar). "Geologic Mapping Procedures Open Excavations," Engineer Technical Letter No. 1110-2-203.

Pace, Carl E., and Campbell, Roy L. 1978 (Dec). "Stability and Stress Analysis of Brandon Road Dam, Illinois Waterway," Miscellaneous Paper C-78-18, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Pickett, Gerald. 1945 (Sep). "Equations for Computing Elastic Constants from Flexural and Torsional Resonant Frequencies of Vibration of Prisms and Cylinders," Bulletin 7, Research Laboratory of the Portland Cement Association, Chicago, Ill.

Stagg, K. G., and Zienkiewicz, O. C. 1978. Rock Mechanics in Engineering Practice, Wiley, London, p 49.

Trantina, John A., and Cluff, Lloyd. 1963. "NX Bore-Hole Camera," Symposium on Soils Exploration, Special Technical Publication No. 351, American Society for Testing and Materials, Philadelphia, Pa.

- U. S. Army Engineer District, Detroit, CE. 1974 (Dec). "Foundation Report, New Poe Lock, Sault Ste. Marie, Michigan," Office of the Area Engineer, Detroit, Mich.
- U. S. Army Engineer Division, Ohio River, CE. 1975 (Mar). "New Sabin Lock Project, Results of Laboratory Rock Core Tests," Cincinnati, Ohio.
- . 1976 (Apr). "Sault Ste. Marie, Results of Laboratory Rock Core Tests," Cincinnati, Ohio.
- U. S. Army Engineer Waterways Experiment Station, CE. 1949. <u>Handbook</u> for Concrete and Cement (with quarterly supplements), Vicksburg, Miss.

Zeigler, T. W. 1972 (Nov). "In Situ Tests for the Determination of Rock Mass Shear Strength," Technical Report No. S-72-12, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Table 1

1975 Estimated Capital Cost and Average Annual Costs
for Winter Operation of Sluice Gates at Compensating Works

	Initial	Annual
	Capital Costs	Costs
Capital Costs		
<pre>Installation of gain and gate heaters (3 gates), including struc- tural modifications to pier struc- tures and providing one bulkhead and monorail with trolley</pre>	\$407,400	\$28,518
Power supply from Northwest Pier feeder to controller at Regulatory Structure	104,000	7,800
Telephone line from Northwest Pier to Regulatory Structure (use locks telephone exchange switchboard)	1,000	75
Modifications to motorize 8 gates including controllers and connections	113,000	8,475
Metal-clad enclosures over 8 gates $(115,000 \times 0.8 \times 130\%) = 119,600 \times .07 = 8372$ $119,600 \times .005 = \frac{598}{8970}$	119,600	8,970
Total capital costs	\$745,000	
	Subtotal	\$53,838
Annual Maintenance		
Routine maintenance of heating equipment, motorized drives, con- trollers, lighting. Estimate two defective heaters per year requiring scuba diving personnel and dropping bulkhead in pier slots		\$ 2,500
Snow removal at site		300
Routine maintenance of power cable, terminal equipment, messenger cable, and poles.		500
Routine maintenance of telephone line		100
(Continued		

Table 1 (Concluded)

	Initial Capital Costs	Annual Costs
Repainting of cladding and frame, over service life.		500
	Subtotal	\$ 3,900
nnual Operations		
Annual operations for gate heating and lighting (assuming power is supplied by the U. S. Government Hydroelectric Plant at current cost of 4.6 mills under contract DA-20-064-ENG-632, Supplemental Agreement Modification No. 6 under the description as 'appurtenant work' to the St. Marys Falls Canal. Three months - 150 KW at 75% load factor)		\$ 500
Annual cost for gate operation including winter and summer (in past required six men on job - can be reduced to four) usual charges for operation approximately	,	
\$900		600
Annual cost of telephone operation (calls to outside through locks exchange)		100
	Subtotal	\$ 1,200
Tota	al Annual Costs -	\$58,938

APPENDIX A MATERIAL SUPPLEMENTARY TO PRELIMINARY ENGINEERING STUDY AND TESTING

Table Al
Ultrasonic Velocity Data

Pier	Nc. 10	Pier	No. 11	Pier	No. 12
G+ •	Velocity		Velocity		Velocity
Station	fps	Station	<u>fps</u>	Station	fps
la	17,620	la	16,950	la	17,780
b	17,465	b	16,160	ь	16,325
2a	17,780	2a	16,770	2a	17.740
ь	17,545	Ъ	16,425	Ъ	26,950
3a	17,355	3a	16,840	3a	17,580
ь	17,5%3	Ъ	16,065	b	16,325
4a	17,390	4a	17,770	4a	17,505
ь	16,840	ь	16,840	Ъ	16,325
	7,445 fps	mean = 16	6,465 fps	mean = 17	7.065 fpg
std dev =	= 280 fps	std dev =	= 420 fps	std dev =	
Station Station	No. 14 Velocity fps	Pier N Station	No. 15 Velocity fps	Pier N	Velocity fps
la	17,020	la	16,950	la	16,950
Ъ	15,840	Ъ	17,095	b	17,205
2a	16,565	2a	16,770	2a	16,840
Ъ	17,165	Ъ	16,915	b	16,840
3a	16,565	3a	16,840	3a	16,565
Ь	16,130	b	16,950	Ъ	16,325
4a	16,130	4a	16,840	4a	16,950
Ъ	16,805	Ъ	16,495	b	16,565
mean = 16 std dev =		mean = 16 std dev =		mean = 16 std dev =	,780 fps

Table A2
Ultrasonic Velocity Data

Pier	No. 9	Pier No. 13
	Velocity	Velocity
Station	fps	Station fps
la	17,145	la 15,490
ь	16,950	ь _* 16,070
		c 15,650
2a	17,145	2a 15,385
Ъ	17,440	ь 16,100
		c 15,790
3a	16,730	3a 15,100
Ъ	16,915	b 15,735
		c 15,845
4a	16,665	4a 15,760
Ъ	16,915	ъ 15,845
		c 15,790
mean = 1	6,700 fps	mean = 15,715 fps
std dev	= 250 fps	std dev = 280 fps

^{*} On pier No. 13 the "c" stations were placed 2 ft below the "b" stations on a patched area.

DETAILED TESTING PROGRAM UNITED STATES PORTION LAKE SUPERIOR REGULATORY STRUCTURE

Work Item	Standard
ive	
inspection Conduct Ultrasonic Velocity Tests of Concrete	CRD-C 51-72 (ASTM C 597-71), "Pulse Velocity Through Concrete."
Detailed Visual Inspection	
Office Analysis of Substructure & Superstructure Stability	EM 1110-2-2200, "Gravity Dam Design." EM 1110-2-2607, "Navigation Dam Masonry." ER 1110-2-1806, "Earthquake Design and Analysis for COE Dams." EM 1110-1-2101, "Working Stresses for Structural Design."
Interim Report Preparation	
Finalize Borehole Locations	
Mobilize Equipment at Soo Locks	
Transport Equipment to Jobsite	
Conduct Drilling of Core Holes	
Ultrasonic Plate Gaging, Rivet Sounding	ASTM A-388-77, "Ultrasonic Pulse-Echo Straight- Beam Testing by the Contact Method."
	מחותה שלברווורמרומית כל ביניים ליבי

5. 6. 7. 8. 9.

tion of Plates."
ASTM A 388-75, "Ultrasonic Examination of Heavy
Steel Forgings."
ASNT Recommended Practice: SNT-TC-1A

Figure Al. Detailed testing program prepared jointly by WES and DD (Shect 1 of 3)

1

1

The state of the s

Work Item

11.

12.

	ASTM E 109-63, "Dry Magnetic Particle." ASTM E 138-63, "Wet Magnetic Particle." ASTM A 275-74, "Magnetic Particle Inspection of Steel Forgings." ASTM E 165-75, "Liquid Penetrant Inspection Method."
Machinery Testing (Evaluate load capabilities, etc.)	Machinery Testing (Magnetic Particle & Liquid Penetrant, if necessary)

> Continuation of Ultrasonic Velocity Tests (borehole) 13.

Televiewer/borehole camera (maximum 10 holes) 14.

Rebound Hammer* 15.

CRD-C 22-76 (ASTM C 805-75T), "Rebound Number of Hardened Concrete."

WES Geophysical Manual in Draft

Laboratory Testing - Concrete/Masonry

CRD-C 14-73 (ASTM C 39-72) CRD-C 77-72 (ASTM C 496-71) CRD-C 20-77 (ASTM C 666-77) ORDL Wet-Dry Test Tensile Splitting Strength Freeze-Thaw Durability* Compressive Strength 16.

Wetting-Cooling, Dry-Heating* Dynamic Modulus "E" of Concrete Static Modulus "E" of Concrete Density of Concrete

CRD-C 19-75 (ASTM C 469-65) CRD-C 23-76 (ASTM C 642-75)

CRD-C 18-59

Laboratory Testing - Rock Specimens 17.

Weathering (Wet-Dry)∻ Compressive Strength а .

With Modulus of Elasticity "E" With Poisson's Ratio Alone

ASTM D 2938-71a ASTM D 3148-72 ASTM D 3148-72

WES does not recommend this test for this testing program.

Figure A1. (Sheet 2 of 3)

Work Item	Standard
Tensile Strength (1) Ring Method* (2) Direct	ASTM D 2936-71
Shear Strength	PTW 203-77
Difect, W/O Deloimation Readings	11 CO2 11 11 CO3 11 11 11 11 11 11 11 11 11 11 11 11 11
With Sliding Friction	RTH 203-77
Direct, w/Deformation Readings	RTH 203-77
Direct, W/Deformation Readings & Sliding Friction	RTH 203-77
Sliding Friction (Rock on Rock)	RTH 203-77
Shear (Bored) Strength	
n Rock	RTH 203-77
(2) Grout on Rock w/Sliding	RTH 203-77
Moisture Content	RTH 106-77
	RTH 109-77
Specific, Ga, Gm	RTH 107-77
Rock Core Triaxial (Q)	ASTM D 2664-67
Photographs of Sample	RTH 102-77
Laboratory Testing - Glanular Dike Materials	
Determination of Angle of Internal	EM 1110-2-1906
Friction of all Materials in Land Connection Dike	
Determine Permeability of Materials in Land Connection Dike	EM 1110-2-1906
Unit Weight of Land Connection Dike	EM 1110-2-1906
Moisture Content of Land Connection Dike Materials	EM 1110-2-1906

18.

Commence of the second

.

Complete Structural Stability Analysis & Prepare Final Report - FY 1980 19.

-<u></u>;c

Figure A1. (Sheet 3 of 3) WES does not recommend this test for this testing program.

APPENDIX B

NDT AND LOAD TEST RESULTS,

GATES AND OPERATING MACHINERY

Table Bl
Load Tests of Gate Machinery, Gate No. 9

Travel of		North Side	South Side
Gate, ft	Time, min	Load, 1b	Load, 1b
0	0	0	0
1	1.05	32,750	34,400
2	1.90	33,300	34,400
3	2.70	33,100	34,000
4	3.35	34,150	35,000
5	4.15	33,750	35,250
6	4.90	33,800	36,250
7	5.60	34,050	35,850
8	6.35	34,200	35,900
9	7.05	34,250	36,400
10	7.70	33,500	35,800
		_	

Table B2
Load Tests of Gate Machinery, Gate No. 10

Travel of Gate, ft	Time, min	North Side Load, 1b	South Side Load, 1b
0	0	0	0
ı	1.10	30,750	34,750
2	1.90	31,250	35,600
3	2.75	30,500	34,700
4	3.60	31,300	35,400
5	4.45	31,250	35,800
6	5.25	31,250	36,000
7	6.00	31,350	36,150
8	6.80	30,250	35,800
9	7.70	30,900	35,950
10	8.45	30,200	35,700

Table B3
Load Tests of Gate Machinery, Gate No. 15

		North	South
Travel of		Side	Side
Gate, ft	Time, min	Load, 1b	Load, 1b
0	0	0	0
1	1.20	30,400	32,100
2	1.70	29,800	30,600
3	2.40	30,500	31,100
4	3.30	30,900	31,400
5	4.15	31,300	31,600
6	5.05	31,950	32,050
7	5.90	32,200	33,200
8	6.85	31,500	32,300
9	7.85	32,400	31,850
10	8.65	31,350	31,350
11	9.60	31,300	31,300
12	10.40	31,250	31,250
13	11.20	31,250	31,250

Table B4
Load Tests of Gate Machinery, Gate No. 16

		North	South
Travel of		Side	Side
Gate, ft	Time, min	Load, 1b	Load, 1b
0	0	0	0
1	0.65	31,500	32,300
2	1.45	31,400	32,350
3	2.35	32,250	32,600
4	3.10	31,400	32,500
5	4.00	31,500	32,950
6	4.90	31,500	32,600
7	5.80	31,750	32,850
8	6.60	31,500	32,050
9	7.45	31,700	31,700
10	8.35	31,750	31,300
11	9.25	31,600	31,100
12	10.00	31,600	31,200

NOTE: THICKNESS OF GATE SKIN IN INCHES.

DETAILED TESTING
LAKE SUPERIOR REGULATORY STRUCTURE
UPSTREAM SIDE, GATE IO

NOTE: THICKNESS OF GATE SKIN IN INCHES

DETAILED TESTING
LAKE SUPERIOR REGULATORY STRUCTURE
UPSTREAM SIDE, GATE 11

NOTE: THICKNESS OF GATE SKIN IN INCHES.

DETAILED TESTING
LAKE SUPERIOR REGULATORY STRUCTURE
UPSTREAM SIDE, GATE 12

NOTE: THICKNESS OF GATE SKIN IN INCHES

DETAILED TESTING
LAKE SUPERIOR REGULATORY STRUCTURE
UPSTREAM SIDE, GATE 13

DETAILED TESTING LAKE SUPERIOR REGULATORY STRUCTURE UPSTREAM SIDE, GATE 14 NOTE: THICKNESS OF GATE SKIN IN INCHES.

PLATE B6

NOTE: THICKNESS OF GATE SKIN IN INCHES

DETAILED TESTING
LAKE SUPERIOR REGULATORY STRUCTURE
UPSTREAM SIDE, GATE 15

PLATE B7

PLATE B8

The state of the s

PLATE B10

14

The state of the s

The second second

PLATE B11

PLATE B12

PLATE B13

PLATE B14

APPENDIX C
FOUNDATION EXPLORATION,
REFERENCE MATERIAL AND BOREHOLE PHOTOGRAPHY
REGULATORY STRUCTURE
SAULT STE. MARIE, MICHIGAN

- 1. Joint frequency diagrams give the number of observed joints per 5-ft depth interval a boring. The legend on Plates C1-C7 shows different size rectangular boxes; some are clear while others are partially or fully blackened.
- 2. The boxes in the interval between the base of the concrete and the 25-ft depth represent a depth interval of less than 5 ft. This was done for the convenience of reading the depth scale on the left of the diagrams.
- 3. The different height boxes represent different joint dips. The taller boxes represent dips between the vertical and 10 deg either side of the vertical. The shorter boxes represent dips between the horizontal and 10 deg either side of the horizontal.
- 4. The filled joints are depicted with clear (or open) boxes, the partially opened joints are depicted with one-half blackened boxes, and the open joints are shown by fully blackened boxes.
- 5. The following reference material was supplied by the Detroit District to be reviewed for the foundation investigation and testing program, Regulatory Structure, Sault Ste. Marie, Michigan.
 - a. Location Map for "P" Holes (1958-1959).
 - b. 1958-1959 Boring Field Logs Holes 1P, 2P, 3P, 4P, 4P-1, 5P, 6P, 7P, 8P, 9P, 9PW, 10P, 10PW, 11P, 12P, 13P, 13P-1, 14P, 15P, 16P, 17P, 18P, 19P, 19P-1, 20P, 21P, 22P, 23P.
 - c. Location Map for 1907, 1945, 1974, and 1975 Borings.
 - d. 1974 Boring Logs S1-74, S2-74, S3-74, S4-74, S5-74.
 - e. 1945 Boring Logs Test Pit No. 1, Test Pit No. 2, Test Pit No. 3, Test Pit No. 4, Test Pit No. 5, Hole No. 6, Hole No. 7A, Hole No. 8, Hole No. 9, Hole No. 10, Hole No. 11, Hole No. 12A, Hole No. 13, Hole No. 20, Hole No. 21.
 - f. 1907 Boring Logs Hole Nos. 7, 8, 9, and 10.
 - g. 1975 Boring Logs S2-75, S3-75.
 - h. Drawn Boring Logs S1-74, S2-74, S3-74, S4-74, S5-74.
 - i. Piezometer Logs S2-74, S3-74, S4-74, S3-75.
 - j. Profile of Piezometer Installations S2-74, S3-74, S4-74.
 - <u>k</u>. Field Logs of 1974 Borings S1-74, S2-74, S3-74, S4-74, S5-74.

- \underline{l}_{\cdot} . Article on Cofferdam for New Locks at St. Mary's Falls Canal by Mr. W. J. Graves.
- m. Boring Hole Folders P Calyx-9, PNX-1, PNX-3, PNX-4, PNX-6, PNX-10, PNX-11, PL-1, PL-1A, PL-2, PL-3, & Calyx-3, PL-4, PL-5A, PL-6, PL-7, PL-8A & 8B, PL-9, PL-12, PL-13, PL-14, PL-16, PL-17, PL-18, PL-19, PL-20, PL-21, PL-22, PL-23, PL-24, PL-25.
- n. Profile of New Second Lock 1962.
- New Second Lock Rock Symbols and Descriptions for Core Logs.
- p. 1962 Office Log Borings PM-1, PL-1A, PL-2, PM-2, PM-3, PM-4, PM-5, PM-6, PM-7, PM-8, PM-9, PM-10, PM-11, PM-12, PM-13, PM-14, Calyx-1, Calyx-2, PL-3, PL-4 & 4A, PL-5A, PL-6, PL-8B, PL-9, PL-12, PL-13, PL-14, PL-16, PL-17, PL-18, PL-19, PL-20, PL-21, PL-22, PL-23, PL-24, PL-25.
- q. DF dated 30 August 1962, subject: Testing Rock Core Samples of Sandstone - New Second Lock, Sault Ste. Marie, Michigan.
- r. Boring Logs Sault Ste. Marie International Bridge 1960.
- Side," for Great Lakes Power Co., by the Canada Gunite Co., Ltd., August 16, 1976.

Joint Frequency Diagrams, 5 Foot Intervals

PLATE C6

APPENDIX D
GEOLOGY, BORING LOCATION AND
CROSS SECTIONS
REGULATORY STRUCTURE

Plate No.	Description of Plates		
D1	Boring Location Plan & Geologic Cross Section, Section A-A' in Foundation Exploration, Geologic Cross Section, Section A-A'		
D2	Geologic Cross Section, Section B-B'		
D3	Geologic Cross Section, Section C-C'		
D4	Geologic Cross Section, Section D-D'		
D5	Geologic Cross Section, Section E-E'		
D6	Geologic Cross Section, Section F-F'		
D7	Geologic Cross Section, Section G-G'		
D8	Characterization and Engineering Design Properties		

ELEVATION FT OP OF BOTTOM DRING OF CORE

576.9

CW-19-79 588 5 CW-20-79 589 9 CORE CORE

LEGEND

--- --- ROCK UNIT CONTACT

HARRIES HAR CONCRETE

SHALE CLAY OR CLAY SHALE SEAM

2 = 1 CORELOSSZONE

FRACTURE TOINT OR PARTING

OF OPENERACTURE JOINT OF PARTING

C+ CLOSED FRACTURE JOINT CHEAPTING

CL ... LAY SEAM

SH SHALE SEAM

CLISH CLAY SHALE SEAM

* BASE OF CONCRETE AS SHOWN ON ADRING DRAWINGS

LEGEND

ROCK UNIT CONTACT

CONCRETE

SHALE CLAY OFFICEAY SHALE SEAM

CORE LOVINZUNE

FRACTURE -CUNT OF PARTING

OPEN FRACTURE LOINT OR PARTING

CLOSED FRACTURE ICINT OF PARTING

CLAY SEAM

CLAY SHALE SEAM

OF CONCRETE AS SHOWN ON WORKING

COMPENSATING WORKS
SAULT STE MARIE MICHIGAN

GEOLOGIC CROSS SECTION

SECTION A-A'

PLATE D1

	ELEVATION, FT			
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE. IN	CORE RECOVERY. %
CW-21-79	589 2	579 35	4	94
CW-22-79	589 5	577 6	4	95 8
CW-23-79	589 7	577 4	4	100

CONDITION SURVEY
DECEMBER 1979
COMPENSATING WORKS
SAULT STE MARIE, MICHIGAN
GEOLOGIC CROSS SECTION

SECTION A-A'

SEE PLATE D1 (SHEET 2 OF 4) FOR LEGEND

SHEET 3 01 4

	ELEVATION, FT				
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE IN	CORE RECOVERY %	
CW-24-79	589 7	575 7	4	100	
CW-25-79	589 6	580 1	4	95	

CONDITION SURVEY
DECEMBER 1978
COMPENSATING WORKS
SAULT STE MARIE, MICHIGAN
GEOLOGIC CROSS SECTION

SECTION A-A'

SEE PLATE D1 (SHEET 2 OF 4) FOR LEGEND

SHEET 4 of 4

	ELEVA	TION, FT		
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE IN	CORE RECOVERY %
CW-30-79	586 7	560 6	4	100
CW-31-79	589 6	560 8	4	97.4
CW-32-79	588 6	573 4	4	100
CW-33-79	588 7	564 9	4	96.2

	ELEVA	TION, FT		_
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE, IN	CORE RECOVERY, %
CW-1-79	609 75	557 15	4	100
CW-2-79	590 5	557 8	4	94
CW-3-79	609 73	575 98	6	99
CW-5-79	609 71	575 71	6	97 4

	ELEVA	TION FT		r -
BORING NUMBER	L LOP OF BURING	BOTTOM OF CORE	CORE SIZE, IN	CORE RECOVERY %
GW 5-79	58 9	577.5	4	10C
CW 7-79	509 75	576.35	4	100
CW-9 79	609 83	556 73	6	100
CW 19-79	590.5	577 40	4	97

CONDITION SURVEY
DECEMBER 1919
COMPENSATING WORKS
SAULT STE MARIE, MICHIGAN
GEOLOGIC CROSS SECTION

SECTION D-D'

SEE PLATE D1 ISHEET 2 OF 41 FOR LEGEND

SHEET 2 of 4

PLATE D4

	ELEVA	TION FT		1
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE IN	CORE PECOVERY %
CW-11-79	609 73	576.73	4	100
CW-13-79	609 74	576 99	4	100
CW-14-79	588 65	576 15	4	100

CONDITION SURVEY
DECEMBER 1979
COMPENSATING WORKS
SAULT STE MARIE, MICHIGAN
GEOLOGIC CROSS SECTION

SECTION D-D'

SEE PLATE D1 (SHEET 2 OF 4) FOR LEGEND

SHEET 3 of 4

	ELEVA	TION, FT		CORE RECOVERY, %
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE. IN	
CW-15-79	609 76	577 46	4	100
CW-17-79	609 77	556 27	4	100

CONDITION SURVEY
DECEMBER 1979

COMPENSATING WORKS
SAULT STE. MARIE, MICHIGAN

GEOLOGIC CROSS SECTION

SECTION D-D'

SEE PLATE D1 (SHEET 2 OF 4) FOR LEGEND

SHEET 4 of 4

	ELEVA	TION, FT	1	ŀ
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE IN	CORE RECOVERY %
CW-26-79	588 9	579 0	6	98
CW-19-79	589 5	5799	4	90 9
CW-3-79	609 73	575 98	6	99

<u>__</u>

SCALE. FT 5 10 20 CONDITION SURVEY
DECEMBER 1979
COMPENSATING WORKS
SAULT STE MARIE, MICHIGAN
GEOLOGIC CROSS SECTION

SECTION E-E'

SEE PLATE D1 (SHEET 2 OF 4) FOR LEGEND

SHEET 1 of 2

	ELEVATION, FT			
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE IN	CORE RECOVERY %
CW-30-79	586 7	560 6	4	100

CONDITION SURVEY
DECEMBER 1979

COMPENSATING WORKS
SAULT STE MARIE, MICHIGAN

GEOLOGIC CROSS SECTION

SECTION E-E

SEE PLATE D1 (SHEET 2 OF 4) FOR LEGEND

SHEET 2 of 2

	ELEVA	TION, FT		
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE IN	CORE RECOVERY **
CW-28-79	589 4	565 0	4	98 4
CW-23 79	589 7	577.4	4	100
CW-11-79	609.73	576 73	4	.00

SCALE, FT

CONDITION SURVEY
DECEMBER 1979
COMPENSATING WORKS
SAULT STE MARIE, MICHIGAN
GEOLOGIC CROSS SECTION

SECTION F-F'

SEE PLATE D1 (SHEET 2 OF 4) FOR LEGEND

HEETTOLZ

ſ		ELEVATION FT				
İ	BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE IN	CORE RECOVERY	۹,
-	CW. 32-79	588.6	573.4			

CONDITION SLIRVEY
DECEMBER 1979
COMPENSATING WORKS
SAULT STE. MARIE, MICHIGAN
GEOLOGIC CROSS SECTION

SECTION F-F'

SEE PLATE D1 (SHEET 2 OF 4) FOR LEGEND

SHEET 2 of 2

PLATE D6

	ELEVATION, FT			
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE. IN	CORE RECOVERY %
CW-29-79	589 3	559 1	4	98 7
CW-25-79	589 6	580 1	4	95
CW-15-79	609 76	577 46	4	100

SCALE, FT 5 0 5 10 20 CONDITION SURVEY
DECEMBER 1979
COMPENSATING WORKS
SAULT STE MARIE. MICHIGAN
GEOLOGIC CROSS SECTION

SECTION G-G'

SEE PLATE D1 (SHEET 2 OF 4) FOR LEGEND

SHEET 1 of 2

	ELEVATION: FT			
BORING NUMBER	TOP OF BORING	BOTTOM OF CORE	CORE SIZE. IN	CORE RECOVERY %
CW-33-79	588 7	564 9	4	96 2

CONDITION SURVEY
DECEMBER 1979
COMPENSATING WORKS
SAULT STE MARIE. MICHIGAN
GEOLOGIC CROSS SECTION

SECTION G-G'

SEE PLATE D1 (SHEET 2 OF 4) FOR LEGEND

SHEET 2 of 2

10 VERY HARD SS 20 HARD SS 7_m = 156.8 lb ft* 156.3 lb ft od = 151.6 ib/ft° : 152 9 lb/ft 7_d w = 22% u - 34 % g : 14,730 psi ч_и : 8.830 рзі **AVERAGES** F - 5 31 x 106 psi F - 2 33 x 10^e psi r = 0.20 ı ≐ 0.32 1₁₎ = 50 psi 1 65 ps DIRECT SHEAR DIRECT SHEAR φ = 69 3° c = 11 5 tsf 20 Con to rk 10 Con to rk φ = 32 1° c = 0 11 Con on rk, precut 21 Con on rk, precut φ = 68° c = 44 tsf 22 Intact φ = 56 5° 12 Intact c = 12 3 tsf φ_f = 26.5° 13 Precut 23 Precut φ = 36.5° c = 0.05 tsf 24a Clay seam 14 Clay seam (CL) φ_r = 26° c = 0 24b Clay seam* 25 Shale seam a 1" thick 15 Shale seam φ : 34°
c : 0 1 tsf
φ : 27 9°
c : 0
φ : 44 7°
c : 0 3 tsf
φ : 43 2°
c : 0
φ : 68°
c : 48 66°
c : 49 6°
c : 0 b > 1" thick $\phi = 47.3^{\circ}$ c = 4.2 tsf $\phi_{r} = 32^{\circ}$ c = 2.5 tsf26 Natural joint 16 Natural joint φ = 58° c : 1 tsf φ_r : 51° c = 0 27 Cross bed 17 Cross bed

* Soils 3" x 3" x 1" direct shear

NOTE

The rock properties are arranged in columns by rock type Series numbers for each rock type appear next to the direct shear test results Like series numbers appear on the geologic cross sections adjacent to the borings and at the elevations from which test specimens were taken in some cases a series number, i.e., 35, which denotes a shale seam in shaly sandstone, will appear in either the very hard or hard sandstone rock unit. The reason for this occurring is that rock units less than 1 to thick have not been differentiated.

20 HARD SS 30 SHALY SS γ_m - 157 0 lb/ft* 156 8 lb ft 7_d = 151 9 lb/ft¹ 151 6 lb:ft 'd u = 34% ч_и = 7,580 рзі u 8.830 ps E ≥ 2.33 x 10⁴ psi ⊬ : 0 32 ν : 0 37 1₁₎ 65 psi 1 D = 32 psi DIRECT SHEAR DIRECT SHEAR 20 Con to rk 30 Con to rk 21 Con on rk, precut 31 Con on rk, precut φ = 56 5° 22 Intact φ_r = 48° c = 13tsf φ = 86° c = 24 tsf 32 Intact c = 12 3 tsf φ_f = 26.5° 23 Precut 33 Precut φ₁ : 31 9° c = 0 24a Clay seam φ = 42° c = 0 φ₁ = 23 3° c = 0 34 Clay seam 24b Clay seam* 25 Shale seam a 1" thick 35 Shale seam a 1" thick φ : 34°
c = 0.1 tsf
φ = 27.9°
c = 0
φ = 44.7°
c = 0.3 tsf
φ = 43.2°
c = 0
φ = 68°
c = -1.8 tsf
φ = 49.6°
c = 0 φ : 31 4° c : 1 4 tsi φ = 21 0° c = 0 φ = 43 3° c = 0 1 tsf φ₁ = 34 1° c = 0 b > 1" thick b -1" thick 26 Natural joint 27 Cross bed 37 Cross bed

* Soils 3" x 3" x 1" direct shear

CONDITION SURVEY
DECEMBER 1979
COMPENSATING WORKS
SAULT STE. MARIE, MICHIGAN
CHARACTERIZATION AND
ENGINEERING DESIGN
PROPERTIES

APPENDIX E

LABORATORY TEST RESULTS OF

CONCRETE AND ROCK CORES

TABLES

Table No.	Description of Tables
El	Cores Received at WES, Regulatory Structure, Sault Ste. Marie
E2	Concrete Core Test Results, Regulatory Structure, Sault Ste. Marie
E3	Characterization and Engineering Design Properties of Foundation Rock, Very Hard Sandstone
E4	Characterization and Engineering Design Properties of Foundation Rock, Hard Sandstone
E5	Characterization and Engineering Design Properties of Foundation Rock, Shaly Sandstone
E6	Triaxial Test Results

PLATES

Plate No.	Description of Plates
E1-E8	Compressive stress-strain curves, concrete cores
E9-E18	Compressive stress-strain curves, rock cores
E19-E22	Photographs, compressive strength
E23-E24	Photographs, tensile strength
E25-E26	Photographs, triaxial strength
E27-D32	Direct shear laboratory report sheets, very hard sandstone
E33-E38	Direct shear laboratory report sheets, hard sandstone
E39-E43	Direct shear laboratory report sheets, shaly sandstone
E44-E60	Shear stress-shear deformation curves, very hard sandstone
E61-E71	Shear stress-shear deformation curves, hard sandstone
E72-E84	Shear stress-shear deformation curves, shaly sandstone
E85~E90	Maximum and residual strength failure envelopes, very hard sandstone
E91-E95	Maximum and residual strength failure envelopes, hard sandstone

Plate No.	Description of Plates
E96-E100	Maximum and residual strength failure envelopes, shaly sandstone
E101-E103	Typical photographs of specimens tested in direct shear
E104-E107	Triaxial stress versus strain curves, three rock types
E108-E110	Mohr stress circles

Table El Cores Received at WES, Regulatory Structure, Sault Ste. Marie

Percentage				Core			Elevation,	ft	
## Puttl Hole No. Rec'ular In. No. Cit Diepth Intervals Of Hole ## Cut-179 7-31-79 4 1 of 13 0.0 - 4.5 609.75 609.75 ## Cut-179 7-31-79 4 1 of 13 4.2 - 13.2 605.25-960.25 ## Cut-179 7-31-79 4 1 of 13 13.5 - 181 596.25-991.65 ## Cut-2-79 7-31-79 4 1 of 13 22.2 - 231.5 586.25-591.65 ## Cut-2-79 7-31-79 4 1 of 13 22.2 - 231.5 586.25-578.15 ## Cut-3-79 7-31-79 4 1 of 13 24.5 - 4.2 571.15-67.15 ## Cut-3-79 7-31-79 4 1 of 13 26.2 - 22.2 596.55 ## Cut-3-79 7-31-79 4 1 of 3 4.8 - 4.8 596.5 ## Cut-3-79 7-31-79 4 1 of 3 6.0 - 2.2 6.0 0.7 ## Cut-3-79 7-31-79 6 1 of 3 6.0 0.7 ## Cut-3-79 7-31-79 6 1 of 3 6.0 0.7 ## Cut-3-79 7-31-79 6 1 of 4 6.5 6.5 ## Cut-3-79 7-31-79 6 1 of 8 6.7 ## Cut-4-79 7-31-79 6 1 of 8 6.7			Date	Diam	Box	Depth		Тор	
CW-1-79 7-31-79 4 1 10f 13 0.0 - 4.5 609.75-605.25 609.75 3 0.6 13 9.2 - 13.5 - 18.1 9.6 -5.591.65 5 9.0 6.0 5.5-591.65 5 9.0 6.0 5.5-591.65 5 9.0 6.0 5.5-591.65 5 9.0 6.0 5.5-591.65 5 9.0 6.0 13.5 - 18.1 9.0 6.2 5.5-591.65 5 9.0 6.0 5.5-591.65 5 9.0 6.0 5.5-591.65 5 9.0 6.0 5.5-591.65 5 9.0 6.0 5.5-591.65 9.0 6.0 5.5-591.65 9.0 6.0 5.5-591.65 9.0 6.0 5.5-591.65 9.0 6.0 5.5-591.65 9.0 6.0 5.5-591.65 9.0 6.0 5.5-591.65 9.0 6.0 5.5-591.65 9.0 6.0 6.0 73 9.0 6.0 9.0 9.0 13 31.5-35.1 3.6 6.9 5.5-571.15 9.0 6.0 9.0 13 31.5-35.1 3.6 6.0 5.5-511.15 9.0 6.0 9.0 13 31.5-35.1 3.6 6.0 5.5-511.15 9.0 6.0 9.0 13 31.5-35.1 3.6 6.0 9.0 9.0 13 31.5-35.1 3.6 9.0 9.0 13 9.0 9.0 13 9.0 9.0 13 9.0 9.0 13 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	ES Reference	Drill Hole No.	Rec'd	÷.	No.	ſt	Depth Intervals	of Hole	Remarks
2 of 13 4.5 - 9.2 (60.5.5-640.55) 9 of 13 13.2-18.1 596.25-596.25 4 of 13 13.2-18.1 596.25-596.25 6 of 13 12.2-2.2.2 586.95-586.25 6 of 13 11.5-18.1 596.25-596.55 8 of 13 3.1-3.8.6 57.15-567.15 10 of 13 38.6 - 42.6 571.15-567.15 10 of 13 38.6 - 42.6 571.15-567.15 11 of 13 3.1-3.8.6 57.15-567.15 12 of 13 42.6 - 46.1 57.15-567.15 13 of 13 30.1 - 23.6 57.15-567.15 13 of 13 0.0 - 4.8 590.5 - 587.1 2 of 3 0.1 - 52.6 57.15-567.15 3 of 3 0.1 - 52.6 57.15-567.15 10 of 13 3.1 - 38.6 57.15-567.15 11 of 13 42.6 - 46.1 57.15-567.15 12 of 13 42.6 - 46.1 57.15-567.15 13 of 13 0.0 - 4.8 590.5 - 587.1 2 of 3 0.1 - 52.6 57.15-567.15 2 of 9 0.10.3 - 10.5 590.7 - 579.0 2 of 9 0.10.3 - 10.5 590.7 - 579.0 3 of 9 10.3 - 14.6 590.7 - 579.0 4 of 9 10.3 - 14.6 590.7 - 579.0 5 of 9 0.1 - 4.5 590.7 - 579.0 5 of 9 14.6 - 18.4 599.1 - 586.8 6 of 9 18.4 - 22.8 5.8 6 588.8 - 88.8 7 of 9 2.6 - 30.0 587.1 - 599.7 - 599.1 8 of 9 0.0 - 4.5 60.7 1 - 60	DET-1 DC-21	CW-1-79	7-31-79	4	1 of 13	- 1	609.75-605.25	609.75	Concrete
4 of 13 12.2 -13.5 600, 55-586, 25 5 of 13 11.5 -18.1 506, 25-586, 25 5 of 13 18.1 -2.2.8 591, 65-586, 25 5 of 13 18.1 -2.2.8 591, 65-586, 25 5 of 13 18.1 -2.2.8 591, 65-586, 25 5 of 13 12.2 -31.5 86, 25-578, 25 5 of 13 11.5 -35.1 78, 25-574, 65 6 of 13 11.5 -35.1 78, 25-574, 65 11 of 13 36, -4.2.6 571, 15-561, 65 12 of 13 10.1 -5.0.3 56, 56-559, 43 13 of 13 50.3 -5.2.6 590, 73-607, 73 14.8 -11.5 893, 7-579 15 of 2 11.6 13.6 599, 43 16 of 2 11.5 13.5 893, 7-579 16 of 3 10.2 -1.2 609, 73-607, 73 17 of 18 0.0 -3.3 75 18 of 2 10.3 -14.6 599, 43 18 of 2 26, 50, 73-599, 43 18 of 3 10.2 -1.3 586, 88 18 of 9 26, 56-78 19 of 9 10.0 -3.3 75 19 of 9 10.0 -3.3 75 10 of 13 1-2.2 89 10 of 9 10.0 -4.5 89 10 of					_	ı	605.25-600.55		Concrete
6 of [1] 11.5 - 18.1							600.55-596.25		Concrete
6 of 13 18.1 - 22.8 89.5 695 6 of 13 27.2 - 31.5 89.6 - 586.95 7 of 13 27.2 - 31.5 89.5 - 578.25 8 of 13 31.5 - 35.1 78.2 578.25 10 of 13 38.6 - 42.6 571.15 10 of 13 38.6 - 42.6 571.15 11 of 13 36.7 - 42.6 571.15 12 of 13 38.6 - 42.6 571.15 13 of 13 50.3 - 52.6 59.3 56.5 59.5 58.7 58.7 59.0 5 13 of 13 50.3 - 52.6 59.1 56.7 56.5 59.1 56.0 59.2 58.7 59.0 5 2 of 3 11.5 - 13.5 579.0 - 577.0 2 of 3 11.5 - 13.5 579.0 - 577.0 2 of 9 10.3 - 14.6 599.4 - 599.13 5 of 9 10.3 - 14.6 599.4 - 599.13 5 of 9 14.6 - 18.4 599.13 5 of 9 14.6 - 18.4 599.13 6 of 9 22.8 5.2 6.8 599.1 - 599.13 7 of 9 22.8 5.2 6.8 599.1 - 599.13 8 of 9 2.6 6 - 30.0 592.1 - 599.13 9 of 9 10.0 - 4.7 600.7 1 - 596.4 1 2 of 8 13.3 - 17.2 599.1 1 5 of 8 10.2 - 2.5 599.1 - 599.1 1 5 of 8 10.2 - 2.5 599.1 - 599.1 1 6 of 8 13.3 - 17.2 599.1 - 599.1 - 599.1 1 7 of 9 20.0 - 4.7 600.7 1 - 596.1 1 8 of 8 10.2 - 2.2 5.9 58.7 - 599.1 1 9 of 8 10.2 - 2.2 5.9 58.7 - 599.1 1 1 of 8 8 2.0 - 2.2 5.9 58.7 - 599.1 1 1 of 8 4.2 - 8.1 58.7 - 599.1 1 1 of 8 10.3 - 4.2 58.7 58.7 1 1 of 8 10.3 - 4.2 58.7 58.7 1 1 of 8 10.3 - 4.2 58.7 58.7 1 1 of 8 10.3 - 4.2 58.7 58.7 58.7 1 1 of 8 10.3 - 4.2 58.7 58.7 1 1 of 8 2.5 - 2.9 58.7 58.7 599.1 1 1 of 8 2.5 - 2.9 58.7 58.7 599.1 1 1 of 8 2.5 - 2.9 58.7 5.5 58.7 599.1 1 1 of 8 4.5 - 8.1 58.7 599.1 1 1 of 8 4.5 - 8.1 58.7 599.1 588.5 599.1 589.1 599.1 1 1 of 8 4.5 - 8.1 58.7 599.1 588.5 599.1 589.1 599.1 589.1 599.1 589.1					of		596.25-591.65		Concrete
6 of [13 2.22 - 31.5					oŧ	18.1 -22.8	591.65-586.95		Concrete
7 of [13 27.2 - 31.5 582.55-578.25 8 of [13 35.1 - 38.6 5.574.65 9 of [13 35.1 - 38.6 5.571.15 11 of [13 46.1 - 50.3 5.1.65-557.15 12 of [13 46.1 - 50.3 5.6 5.557.15 12 of [13 46.1 - 50.3 5.6 5.557.15 13 of [13 6.1 - 30.3 5.6 5.557.15 2 of [13 6.1 - 30.3 5.6 5.557.15 3 of [13 6.1 - 30.3 5.6 5.5 5.7 7.0 4 of [13 6.1 - 30.3 5.6 5.6 5.7 7.0 5 of [13 6.1 - 30.3 5.6 5.2 5.7 7.0 5 of [13 6.1 - 30.3 5.6 5.2 5.7 7.0 5 of [13 6.1 - 30.3 5.6 5.2 5.7 7.0 5 of [13 6.1 - 30.3 5.6 5.2 5.7 7.0 5 of [13 6.1 - 30.3 5.2 5.2 5.7 7.0 5 of [13 6.1 - 30.3 5.2 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5.7 7.0 5 of [10 6.1 - 30.4 5.2 5 of [10 6.1 -					υĘ	22.8 -27.2	586.95-582.55		Concrete and sandstone
9 of [1] 31.5 -15.1 778.29-574.65 9 of [1] 38.6 -62.6 571.15-5671.15 10 of [1] 38.6 -62.6 571.15-5671.15 11 of [1] 42.6 -64.1 56.7 15-5671.15 11 of [1] 42.6 -64.1 56.7 15-5671.15 12 of [1] 42.6 -67.1 56.7 56.5 59.45 13 of [1] 42.6 -67.1 56.7 59.45 14 of [1] 40.1 59.0 57.0 577.0 15 of [1] 40.1 59.45 15 of [1] 40.1 59.0 577.0 16 of [1] 40.1 59.41 17.8 579.0 577.0 18 of [1] 6.1 59.41 18 of [1] 6.1 59.41 19 of [1] 6.1 59.51 19					υĘ	27.2 -31.5	582.55-578.25		Sandstone
9 of [1] 35.1 - 38.6 574.6-571.15 10 of [1] 36.4 - 42.6 571.15-567.15 11 of [1] 42.6 - 46.1 571.15-567.15 11 of [1] 42.6 - 46.1 571.15-567.15 11 of [1] 42.6 - 46.1 571.15-567.15 12 of [1] 46.1 - 50.3 56.4 559.45 13 of [1] 50.3 - 52.5 57.15 2 of [2] 4.8 - 11.5 58.7 - 579.0 2 of [3] 4.8 - 11.5 58.7 - 579.0 3 of [3] 10.5 - 13.5 579.0 - 577.0 2 of [3] 4.8 - 11.5 58.7 - 579.0 3 of [3] 10.5 - 14.6 58.7 - 579.0 3 of [3] 10.5 - 14.6 599.4 - 595.13 5 of [3] 10.5 - 16.7 599.4 - 595.13 5 of [3] 10.5 - 16.7 599.4 - 595.13 5 of [3] 10.5 - 16.7 599.4 - 595.13 5 of [3] 10.5 - 16.7 599.1 599.13 5 of [3] 10.5 - 16.7 599.4 - 595.13 5 of [3] 10.5 - 16.7 599.4 - 595.13 5 of [3] 10.5 - 16.7 599.1 599.13 5 of [3] 10.5 - 16.7 599.1 5					oę	31.5 -35.1	178.25-574.65		Sandstone
10 of 13 38.6 -42.6 571.15-567.15 11 of 13 42.6 -46.1 567.15-567.15 12 of 13 46.1 -50.3 567.55-559.45 12 of 13 46.1 -50.3 567.55-559.45 13 of 13 50.3 -22.6 559.45-557.15 2 of 3 4.8 -11.5 885.7 579.0 2 of 3 4.8 -11.5 890.5 -887.7 2 of 3 4.8 -11.5 890.5 -877.0 3 of 3 11.5 -13.5 879.0 -577.0 3 of 9 12.6 609.73-607.53 4 of 9 10.3 11.5 -13.5 897.3 -677.0 5 of 9 12.6 609.73-607.53 5 of 9 14.6 -18.4 599.43 5 of 9 14.6 -18.4 599.43 5 of 9 14.6 -18.4 599.13-599.43 5 of 9 14.6 -18.4 599.13-591.3 5 of 9 12.6 6.70 5 0.70 1.3 56.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8						35.1 -38.6	574.65-571.15		Sandstone
11 of 13						38.6 -42.6	571.15-567.15		Sandstone
12 of 13						42.6 -46.1	567.15-563.65		Sandstone
CW-2-79 7-31-79 4 1 of 13 50.3 -52.6 559.45-577.15 CW-3-79 7-31-79 4 1 of 3 0.0 -4.8 890.5 -587.7 590.5 2 of 3 4.8 -11.5 585.7 590.5 2 of 9 11.5 -13.5 579.0 -577.0 3 of 9 0.0 - 2.2 602.73-607.53 4 of 9 10.3 -14.6 599.45-595.13 5 of 9 10.3 -14.6 599.43-595.13 6 of 9 11.5 -18.4 599.43-597.13 6 of 9 11.5 -18.4 599.43-597.13 6 of 9 12.85-26.6 586.88 -587.13 7 of 9 22.85-26.6 586.88 -587.13 8 of 9 22.85-26.6 586.88 -587.13 9 of 9 30.0 -3.75 597.13-591.33 6 of 9 11.5 -11.7 596.41-597.13 7 of 9 22.85-26.6 586.88 -587.13 8 of 9 22.85-26.6 586.88 -587.13 8 of 9 22.85-26.6 586.88 -587.13 9 of 9 30.0 -3.75 597.13-591.33 6 of 8 13.3 -17.2 596.41-592.51 7 of 8 13.3 -17.2 596.41-592.51 8 of 8 20.0 -3.75 7 of 8 20.0 -3.75 8 of 9 3.11-570.88 7 of 8 13.3 -17.2 586.25 7 of 8 13.3 -17.2 586.25 7 of 8 13.3 -17.2 586.25 7 of 8 12.85-86.88 8 of 9 6.7 -600.87 7 of 8 12.85-86.88 7 of 9 10.3 -14.60.25 7 of 8 12.85-86.88 7 of 9 10.3 -14.60.25 7 of 8 13.3 -17.2 586.25 7 of 8 13.3 -17.2 586.25 7 of 8 12.85-86.88 7 of 8 12.85-86 7 of 8 12.85-86 7 of 8 12.85-86 7 of 8 12.85-86 7 of 8 1					of	46.1 -50.3	563.65-559.45		Sandstone
CW-2-79 7-31-79 4 1 of 3 0.0 - 4.8 590.5 -585.7 590.5 2 of 3 4.8 -11.5 585.7 -590.0 3 of 1 11.5 -11.5 579.0 2 of 2 0.0 - 2.2 609.73-607.53 2 of 9 0.0 - 2.2 607.53-603.53 4 of 9 0.0 - 2.2 607.53-603.53 4 of 9 10.3 -14.6 599.43-595.13 5 of 9 14.6 -18.4 599.43-595.13 5 of 9 14.6 -18.4 599.43-595.13 6 of 9 10.3 -14.6 599.43-595.13 7 of 9 22.85-26.6 586.88-581.13 8 of 9 14.6 -18.4 599.13-591.33 8 of 9 14.6 -18.4 599.13-591.33 8 of 9 26.6 -30.0 583.13-591.31 8 of 9 30.0 -3.75 579.73-575.98 7 of 9 30.0 -3.75 579.73-575.98 8 of 9 30.0 -3.75 579.73-575.98 9 of 9 30.0 -3.75 599.71-596.41 9 of 8 40.5 - 90.0 607.11-596.41 9 of 8 40.5 - 90.0 592.51-599.11 6 of 8 13.3 -17.2 596.41-592.51 7 of 8 25.2 -29.9 584.3 588.5 8 of 8 20.0 -5.5 589.71-584.51 7 of 8 25.2 -29.9 584.3 588.5 8 of 9 10.3 -4.5 600.75-600.85 9 of 9 10.3 -4.5 600.85-560.85 10 of 0.0 -6.5 600.75-600.85 10 of 0.0 8-5-79 600.75-600.85 10 of 0.0 8-5-79 600.85-560.85 10 of 0.0 8-5-79 600.85-560.85					of	50.3 -52.6	559.45-557.15		Sandstone
2 of 3 4.8 -11.5 55.7 -579.0 3 of 3 11.5 -13.5 579.0 -577.0 3 of 9 11.5 -13.5 579.0 -577.0 2 of 9 2.2 - 6.2 607.33-603.53 3 of 9 11.5 -13.5 579.0 -577.0 3 of 9 10.3 -14.6 599.43 5 of 9 10.3 -14.6 599.43-595.13 5 of 9 14.6 -18.4 599.13-586.88 7 of 9 12.8 -26.6 599.13-586.88 7 of 9 12.8 -22.85 591.33-586.88 7 of 9 26.6 -30.0 583.1 -579.73 8 of 9 30.0 -33.75 579.73 9 of 8 13.3 -17.2 596.41-592.51 5 of 8 17.2 -20.0 592.1-589.71 5 of 8 17.2 -20.0 592.1-589.71 5 of 8 17.2 -20.0 592.51-589.71 5 of 8 20.0 -4.5 500.71-575.98 7 of 8 20.0 -5.5 579.81 8 of 8 20.0 -4.5 500.75-579.81 8 of 8 20.0 -4.5 500.75-579.81 8 of 8 20.0 -4.5 500.75-579.81 9 of 9 30.0 -4.5 500.75-579.81 9 of 9 30.0 -4.5 500.75-579.81 9 of 8 13.3 -17.2 590.25 9 of 9 30.0 -4.5 500.75-575.61 9 of 9 30.0 -4.5 500.75-575.61 9 of 9 30.0 -4.5 500.75-575.98 9 of 9 30.0 -4.5 500.75-575.61 9 of 9 30.0 -4.5 500.75-575.61 9 of 9 30.0 -4.5 500.75-575.81 9	DET-1 DC-22	CW-2-79	7-31-79	4	of	8.4 - 0.0	590.5 -585.7	590.5	Concrete and sandstone
CW-3-79 7-31-79 6 1 of 9 0.0 - 2.2 609.73-607.53 609.73 60					of		585.7 -579.0		Sandstone
CW-3-79 7-31-79 6 1 of 9 0.0 - 2.2 609.73-607.53 609.73 2 of 9 2.2 - 6.2 607.53-607.53 609.73 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					of	11.5 -13.5	579.0 -577.0		Sandstone
2 of 9 2.2 - 6.2 607.53-603.53 3 of 9 6.2 -10.3 603.53-599.43 4 of 9 10.3 -14.6 18.4 599.43-599.13 5 of 9 14.6 -18.4 599.13-599.13 6 of 9 18.4 -22.85 591.33-586.88 7 of 9 22.85-26.6 586.88-581.13 8 of 9 22.85-26.6 586.88-581.13 9 of 9 30.0 -3.75 591.3-599.73 9 of 9 30.0 -4.5 609.71-605.21 6 of 8 0.0 -4.5 609.71-596.41 6 of 8 17.2 -20.0 592.51-589.71 5 of 8 17.2 -20.0 592.51-589.71 6 of 8 20.0 -25.2 589.71-584.51 7 of 8 25.2 -29.9 584.51-579.81 8 of 8 20.0 -25.2 589.71-584.51 7 of 8 25.2 -29.9 584.1 580.2 7-31-79 4 1 of 3 0.0 -4.2 580.2 580.2 7-31-79 4 1 of 3 0.0 -4.2 580.2 584.3 7 of 8 4.5 - 8.3 584.3 580.2 7-31-79 4 1 of 8 6.5 - 560.556.25 7-31-79 4 1 of 8 6.5 - 560.25 7-31-79 6 1 of 8 6.5 - 560.35 7-31-79 7-31-79 6 1 of 8 6.5 - 560.35 7-31-79 7-31-79 7-31-31.4 600.85-596.35 7-31-79 7-31-79 7-5 - 6.5 - 6	DET-1 DC-23	CM-3-79	7-31-79	œ		0.0 - 2.2	609.73-607.53	609.73	Concrete
3 of 9 6.2 -10.3 603.53-599.43 4 of 9 10.3 -14.6 599.43-595.13 5 of 9 14.6 -18.4 599.43-595.13 5 of 9 14.6 -18.4 599.43-595.13 5 of 9 18.4 -22.85 591.33-586.88 7 of 9 22.85-26.6 586.88-583.13 8 of 9 26.6 -30.0 583.13-579.73 9 of 9 30.0 -33.75 579.73-575.98 2 of 8 4.5 - 90.6 605.21-600.71 3 of 8 9.0 -13.3 600.71-596.41 5 of 8 17.2 -20.0 592.51-589.71 5 of 8 17.2 -20.0 592.51-589.71 5 of 8 25.2 -299 584.51-584.51 7 of 9 22.85-26.6 586.85-584.3 7 of 8 29.9 -34.1 579.81-575.61 8 of 8 29.9 -34.1 579.81-575.61 8 of 8 29.9 -34.1 579.81-575.61 2 of 3 4.2 - 8.3 584.3 - 580.2 2 of 3 4.2 - 8.3 584.5 - 580.2 3 of 3 8.3 -12.2 580.75-600.85 1 of 8 8.9 - 13.4 600.85-596.35 1 of 8 8.9 - 13.4 600.85-596.35					of	2.2 - 6.2	607.53-603.53		Concrete
CW-5-79 7-31-79 6 10.3 -14.6 599.43-595.13 CW-5-79 7-31-79 6 10.3 -14.6 599.43-595.13 CW-6-79 7-31-79 6 10.3 -14.6 599.43-595.13 CW-6-79 7-31-79 6 10.3 -14.6 586.88-581.13 CW-6-79 7-31-79 6 10.8 4.5 -8.9 CW-7-79 7-31-79 4 1 0 10.3 -14.6 CW-7-79 7-31-79 4 1 0 10.4 2.8 3 584.3 -580.2 2 0 1 3 4.2 -8.3 584.3 -580.2 2 0 1 3 4.5 -8.3 584.3 -580.2 3 0 1 3 8.3 -12.2 580.7 -560.3 5 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0						6.2 - 10.3	603.53-599.43		Concrete
5 of 9 14,6 -18,4 595,13-591,33 6 of 9 18,4 -22.85 591,33-586.88 7 of 9 22,85-26.6 586.88-581,13 8 of 9 20,85-26.6 586.88-581,13 8 of 9 20,0-3,75 58.88-581,13 8 of 9 30,0 -3,75 577,73 9 of 9 30,0 -3,75 577,73 9 of 9 30,0 -3,75 577,73 9 of 8 0,0 -4,5 609,71-605,21 2 of 8 4,5 - 9,0 605,71-506,71 5 of 8 13,3-17,2 596,41-596,41 5 of 8 13,3-17,2 596,41-596,41 5 of 8 20,0 -25,2 589,71-584,51 7 of 8 25,2-29,9 584,51-579,81 8 of 8 29,9-34,1 579,81-575,61 8 of 8 29,9-34,1 579,81-575,61 9 of 9 16 7 3 60,75-60,25 9 of 9 20,6-4,2 8,3 584,3 588,5 9 of 9 14,6 -18,6 9 16,6 -30,0 9 06,71-596,41 9 of 8 20,0 -4,2 586,7-576,3 9 of 9 10,6 8 6,5-8,9 9 of 9 20,8-12,4 9 of 9 20,8-12,					of	10.3 -14.6	599.43-595.13		Concrete
6 of 9 18.4 -22.85 591.33-586.88 7 of 9 22.85-26.6 586.88-581.13 8 of 9 26.6 -30.0 583.13-579.73 9 of 9 30.0 -34.75 579.73-575.98 2 of 8 4.5 - 9.0 605.21-600.71 2 of 8 4.5 - 9.0 605.21-600.71 3 of 8 17.2 -20.0 592.51-589.71 5 of 8 17.2 -20.0 592.51-589.71 5 of 8 17.2 -20.0 592.51-589.71 6 of 8 120.2 -22.9 584.51-579.81 8 of 8 25.2 -29.9 584.51-579.81 8 of 8 29.9 -34.1 579.81-575.61 7 of 8 29.9 -34.1 579.81-575.61 8 of 9 26.6 -22.89 9 cw-7-79 7-31-79 4 1 of 8 0.0 - 4.2 580.2 9 of 9 3 4.5 - 8.9 605.25-600.85 1 of 8 8 9.0 -13.4 600.85-596.35 1 of 8 8 9.13.4 600.85-596.35					οĘ	14.6 -18.4	595.13-591.33		Concrete
7 of 9 22.85-26.6 586.88-583.13 8 of 9 26.6 -30.0 583.13-579.73 8 of 9 26.6 -30.0 583.13-579.73 8 of 9 0.0 -33.75 579.73-575.98 6 0.0 -33.75 579.71-575.21 8 0.0 -33.75 579.71-575.21 9 of 8 0.0 -13.3 600.71-596.41 9 of 8 13.3 -17.2 596.41-592.51 9 of 8 17.2 -20.0 592.51-589.71 9 of 8 17.2 -20.0 592.51-579.81 9 of 8 25.2 -29.9 584.51-579.81 9 of 8 25.2 -29.9 584.3 584.3 588.5 1 of 3 8.3 -12.2 580.2 1 of 3 8.3 -12.2 580.2 1 of 8 8.9 -13.4 600.85-596.35 1 of 8 8.9 -13.4 600.85-596.35 1 of 8 8.9 -13.4 600.85-596.35					οĘ	18.4 -22.85	591.33-586.88		Concrete
8 of 9 26.6 -30.0 583.13-579.73 9 of 9 30.0 -33.75 574.73-575.98 CM-5-79 7-31-79 6 1 of 8 0.0 - 4.5 609.71-665.21 2 of 8 4.5 - 9.0 605.21-660.71 3 of 8 9.0 -13.3 600.71-596.41 5 of 8 13.3 -17.2 596.41-592.51 5 of 8 17.2 -20.0 592.51-589.71 6 of 8 25.0 -25.2 589.71-584.51 7 of 8 25.0 -25.9 584.51-579.81 8 of 8 25.2 -29.9 584.51-579.81 8 of 8 25.9 -34.1 579.81-575.61 7 of 8 29.9 -34.1 579.81-575.61 7 of 9 60.0 - 4.2 588.5 - 584.3 7 of 3 6.0 - 4.2 580.2 7 of 3 4.2 - 8.3 584.3 - 580.2 7 of 3 4.2 - 8.3 584.3 - 580.2 7 of 3 4.2 - 8.3 584.5 - 580.2 7 of 3 6.0 - 4.2 580.2 7 of 3 6.2 - 6.3 560.75-600.85 7 of 8 6.5 - 5.96.35					οĘ	22.85-26.6	586.88-583.13		Concrete and sandstone
CW-5-79 7-11-79 6 1 of 8 0.0 -4.5 609.71-605.21 609.71 2 of 8 4.5 609.71-605.21 609.71 3 of 8 4.0 -4.5 609.71-605.21 4 of 8 13.3 -17.2 596.41-596.41 5 of 8 13.3 -17.2 596.41-592.51 5 of 8 17.2 -20.0 592.51-589.71 6 of 8 20.0 -25.2 589.71-84.51 7 of 8 29.9 -34.1 579.81-575.61 8 of 8 29.9 -34.1 579.81-575.61 8 of 8 29.9 -34.1 579.81-575.61 2 of 3 4.2 - 8.3 584.3 580.2 2 of 3 4.2 - 8.3 584.3 580.2 3 of 3 8.3 -12.2 580.2 576.3 1 of 8 8.9 -13.4 600.85-596.35 1 of 8 8.9 -13.4 600.85-596.35					οĮ	26.6 -30.0	583.13-579.73		Sandstone
CM-5-79 7-31-79 6 1 of 8 0.0 - 4.5 609.71-605.21 609.71 2 of 8 4.5 - 9.0 605.21-600.71 3 of 8 9.0 -13.3 600.71-596.41 4 of 8 13.3 -17.2 596.41-592.51 5 of 8 17.2 -20.0 592.51-589.71 6 of 8 20.0 -25.2 589.71-584.51 7 of 8 25.2 -29.9 584.51-579.81 8 of 8 29.9 -36.1 579.81-575.61 8 of 8 29.9 -36.1 579.81-575.61 8 of 8 29.9 -36.1 579.81-575.61 9 of 9 8 25.2 -29.9 584.3 588.5 1 of 9 8 3.3 -12.2 580.2 2 of 3 4.2 - 8.3 584.3 - 580.2 3 of 3 8.3 -12.2 580.2 4 of 8 605.25-600.85 1 of 8 8.9 -13.4 600.85-596.35 (Cont.laucd.)					οĮ	30.0 ~33.75	579.73-575.98		Sandstone
2 of 8 4.5 - 9.0 605.21-600.71 3 of 8 9.0 -13.3 600.71-964.41 4 of 8 13.3 -17.2 596.41-592.51 5 of 8 17.3 -17.2 596.41-592.51 6 of 8 20.0 -25.2 589.71-584.51 7 of 8 25.2 -29.9 584.51-579.81 8 of 8 29.9 -34.1 579.81-575.61 8 of 8 29.9 -34.1 579.81-575.61 2 of 3 4.2 - 8.3 584.3 588.5 3 of 3 8 0.0 - 4.2 588.5 - 584.3 3 of 3 8 0.0 - 4.2 580.2 3 of 3 8 4.5 - 8.9 605.25-600.85 3 of 8 4.5 - 8.9 605.25-600.85 3 of 8 8.9 -13.4 600.85-596.35 4 (Continued)	DET-1 DC-24	CIV-5-79	1-11-19	ų	οĘ	0.0 - 4.5	609.71-605.21	609.71	Concrete
3 of 8 9.0 -13.3 600.71-596.41 4 of 8 13.3 -17.2 596.41-592.51 5 of 8 17.2 -20.0 592.51-589.71 6 of 8 20.2 -29.9 584.51-579.81 8 of 8 29.9 -34.1 579.81-575.61 8 of 8 29.9 -34.1 579.81-575.61 8 of 9 -2 of 3 4.2 -8.3 584.3 588.5 2 of 3 4.2 -8.3 584.3 588.5 3 of 3 8.3 -12.2 580.2 3 of 3 8.3 -12.2 580.2 5 of 3 4.5 -8.9 605.25-600.85 3 of 8 8.9 -13.4 600.85-596.35 (Continued)					Jο	4.5 - 9.0	605.21-600.71		Concrete
6 of 8 13.3 -17.2 596.41-92.51 5 of 8 17.2 -20.0 592.51-589.71 6 of 8 20.0 -25.2 589.71-584.51 7 of 8 25.2 -29.9 584.51-579.81 8 of 8 29.9 -34.1 579.81 8 of 8 29.9 -34.1 579.81 5 0.0 - 4.2 588.5 - 584.3 588.5 2 of 3 4.2 - 8.3 584.3 580.2 2 of 3 4.2 - 8.3 584.3 - 580.2 3 of 3 8.3 -12.2 580.2 - 576.3 3 of 3 8.3 -12.2 576.3 5 0.0 - 5.5 0					υĘ	9.0 -13.3	600.71-596.41		Concrete
5 of 8 17.2 -20.0 592.51-589.71 6 of 8 20.0 -25.2 589.71-84.51 7 of 8 20.0 -25.2 589.71-84.51 8 of 8 20.0 -25.2 589.71-84.51 8 of 8 20.0 -3.2 589.71-57.61 8 of 9 30.0 -4.2 588.5 - 584.3 588.5 2 of 3 4.2 - 8.3 584.3 580.2 2 of 3 4.2 - 8.3 584.3 580.2 3 of 3 8.3 -12.2 580.2 580.2 3 of 3 8.3 -12.2 580.2 576.3 1 of 8 0.0 - 4.5 609.75-600.85 1 of 8 8.9 -13.4 600.85-596.35 (Cont.Inued)					of	13.3 -17.2	596.41-592.51		Concrete
6 of 8 20.0 -25.2 589.71-584.51 7 of 8 25.2 -29.9 584.51-579.81 8 of 8 29.9 -34.1 579.81-575.61 8 of 9 29.9 -34.1 579.81-575.61 2 of 3 4.2 - 8.3 584.3 588.5 3 of 3 8.3 -12.2 580.2 3 of 3 8.3 -12.2 580.2 5 of 8 4.5 - 8.9 605.25-600.85 1 of 8 8.9 -13.4 600.85-596.35 (Continued)					υĘ	17.2 ~20.0	592.51-589.71		Concrete
7 of 8 25.2 -29.9 584.51-579.81 8 of 8 29.9 -34.1 579.81-575.61 8 of 8 29.9 -34.1 579.81-575.61 2 of 3 4.2 - 8.3 584.3 580.2 3 of 3 8.3 -12.2 580.2 3 of 3 8.3 -12.2 580.2 5 of 8 4.5 - 8.9 605.25-600.85 3 of 8 8.9 -13.4 600.85-596.35 6 of 8 6.5 - 8.9 605.25-600.85 6 of 8 6.5 - 8.9 605.25-600.85 6 of 8 6.5 - 8.9 605.25-600.85					υĘ	20.0 -25.2	589.71-584.51		Concrete and sandstone
8 of 8 29.9 -34.1 579.81-575.61 CM-6-79 7-31-79 4 1 of 3 0.0 - 4.2 588.5 - 584.3 588.5 2 of 3 4.2 - 8.3 584.3 588.5 3 of 3 8.3 - 12.2 580.2 3 of 8 0.9 - 4.5 580.75 580.2 4 1 of 8 0.9 - 4.5 609.75 609.75 1 of 8 8.9 -13.4 600.85-596.35 1 of 8 8.9 -13.4 600.85-596.35					υĘ	25.2 -29.9	584.51-579.81		Sandstone
CW-6-79 7-31-79 4 1 of 3 0.0 · 4.2 588.5 - 584.3 588.5 2 of 3 4.2 · 8.3 584.3 - 580.2 3 of 3 4.2 · 8.3 584.3 - 580.2 3 of 3 8.3 - 12.2 580.2 - 576.3 cW-7-79 4 1 of 8 0.0 · 4.5 609.75-605.25 609.75 1 of 8 8.9 - 13.4 600.85-596.35 1 of 8 8.9 - 13.4 600.85-596.35 (Continued)					οĘ	29.9 -34.1	579.81-575.61		Sandstone
2 of 3 4,2 - 8,3 584,3 - 580.2 Sandstone 3 of 3 8.3 - 12.2 580.2 - 576.3 Sandstone 1 of 8 0.9 - 4.5 60.75-605.25 609.75 Concrete 2 of 8 4,5 - 8,9 605.25-400.85 Concrete 3 of 8 8.9 - 13.4 600.85-596.35 Concrete (Cont.tnied)	DET-1 DC-25	CM-6-79	7-31-79	7		0.0 - 4.2	588.5 - 584.3	588.5	Concrete and sandston
3 of 3 8.3-12.2 580.2 - 576.3 Sandstone (W-7-79 7-31-79 4 1 of 8 0.9 - 4.5 609.75-605.25 609.75 Concrete 2 of 8 4.5 - 8.9 605.25-600.85 Concrete 3 of 8 8.9 -13.4 600.85-596.35 Concrete (Continied)					Ĵο		584.3 - 580.2		Sandstone
CW-7-79 7-31-79 4 1 of 8 0.9 - 4.5 609.75-605.25 609.75 Concrete 2 of 8 4.5 - 8.9 605.25-600.85 Concrete 1 of 8 8.9 -13.4 600.85-596.35 Concrete (Continied)							580.2 - 576.3		Sandstone
8 4.5 - 8.9 605.25-600.85 Concrete R 8.9 -13.4 600.85-596.35 Concrete (Continued)	DET-1 OC-26	CW-7-79	7-31-79	7		-1	609.75-605.25	609.75	Concrete
R 8.9 -13.4 600.85-596.35 Concrete (Continued)						4.5 - 8.9	605.25-600.85		Concrete
						8.9 -13.4	600.85-596.35		Concrete
						(Cont Inica)			(Page 1 of 4

Table El (Continued)

Box Depth Top 4 of 8 13.4 - 18.2 596.35-591.55 5 of Hole 5 of 8 18.2 - 22.4 591.55-587.35 6 of Hole 6 of 8 22.4 - 26.0 587.35-579.65 6 of Hole 7 of 8 22.4 - 26.0 587.35-579.65 6 of Hole 8 of 8 20 3.7 6 of 83.466.13 6 of 93.466.13 2 of 13 3.7 - 7.5 6 of 13.597.33 6 of 93.466.13 3 of 13 3.7 - 7.5 6 of 13.597.33 6 of 13.55.27 4 of 13 12.5 - 16.85 592.38 98-584.73 5 of 13 16.85-20.85 592.38-58 98 6 of 13 25.1 - 29.2 588.98-584.73 590.63 8 of 13 25.2 - 13.3 588.98-584.73 590.53 9 of 13 3.4.6 - 9.3 588.98-58.79 590.53 10 of 13 44.9 - 44.9 568 -564.93 11 11 of 13 44.9 - 48.7 568.75-576.33 609.5 11 of 13 44.9 - 48.7 568.75-576.33 609.5				Core	,		Elevat ton,	12	
Prill Hole No. Rec'd in. No. fft Deptil Intervals of Hole 4 of 8 11.4 - 18.2 596.17-591.55 5 of 8 11.4 - 18.2 596.17-591.55 5 of 8 18.2 - 2.2.4 591.57-591.55 6 of 8 22.4 - 26.0 791.57-591.55 5 of 13 10.7 13.4 50.0 13.3 60.9 15-6.13 6 of 8 20.0 13.4 597.13 6 of 8 20.0 13.4 597.13 7 of 13 10.7 15 60.11-60.13 7 of 13 10.7 15 60.11-60.13 7 of 13 10.7 15 60.11-597.13 7 of 13 12.5 1-2.9.2 592.98-584.98 9 of 13 12.5 1-2.9.2 592.98-584.98 10 of 13 10.8 5-41.0 592.98-584.98 10 of 13 10.8 5-41.0 592.98-584.98 10 of 13 10.8 5-41.0 592.59-584.5 10 of 10 10.8 50.0 5-585.7 10 of 10 10.8 50.0 5-59.7 1			Date	Diam	Вох	Depth		Top	
6 of 8 11.4 - 18.2 596. 75-591. 55 6 of 8 12.4 - 26.0 791. 57-591. 55 6 of 8 18.2 - 2.4 - 36.0 781. 31-583. 75 6 of 8 10.1 - 31.7 609. 89-66. 13 6 of 8 0.1 - 31.7 609. 89-66. 13 7 of 13 0.1 - 1.3 609. 13-592. 39 8 of 13 0.1 - 2.5 60. 13-592. 39 8 of 13 0.1 - 2.5 60. 13-592. 39 8 of 13 0.1 - 2.9 592. 98-584. 98 9 of 13 10.1 16.85-0.0 85 9 of 13 11.6.85-0.0 85 9 of 14 10.0 1 10.0 1 10.0 10.0 10.0 10.0 10	WES Reference		Rec'd	in.	No.	ft	Depth Intervals	of Hole	Remarks
6 of 8 12.4 -22.4					Jο	13.4 -18.2	596.35-591.55		Concrete
6 of 8 22.4 - 36.0 87.15-81.75 7 of 8 26.0 - 10.1 87.15-579.65 8 of 8 10.1 - 31.4 79.66-13 609.83 2 of 13 3.7 - 7.5 600.13-605.13 609.83 3 of 13 3.7 - 7.5 606.13-597.33 4 of 13 17.5 - 10.8 89 597.33-599.88 5 of 13 17.5 - 10.8 89 597.33-599.88 5 of 13 12.5 - 10.8 89 597.33-599.88 5 of 13 12.5 - 10.8 89 597.33-599.88 6 of 13 25.1 - 29.2 58.47.3-580.63 8 of 13 25.1 - 29.2 58.68 10 of 13 25.1 - 29.2 58.68 11 of 13 4.9 - 48.7 56.93-56.13 12 of 13 25.1 - 29.2 58.69 13 of 14 6.9 - 48.7 56.93-56.13 14 of 19 10.1 48.7 - 53.1 15 of 19 0.1 - 53.1 16 of 19 0.1 - 5.5 60.2 1.5 56.33 17 of 19 0.1 - 5.3 60.0 - 4.6 18 of 19 1.2 5.1 - 59.2 18 of 19 1.2 5.1 - 59.2 19 of 19 10.1 10.1 10.1 10.1 10.1 10.1 10.1 1						18.2 -22.4	591.55-587.35		Concrete
7 7 1 1 2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					οĮ	22.4 -26.0	587.35-583.75		Concrete and sandstone
CM-9-79 7-31-79 6 1 0 f 13 0.1 - 33.4 6 0.8 3-66.13 609.83 CM-9-79 7-31-79 6 1 0 f 13 0.1 - 37.5 606.13-606.13 609.83 4 of 13 12.5 - 16.8 5 602.33-592.38 4 of 13 12.5 - 16.8 5 602.33-592.38 5 of 13 12.5 - 16.8 5 602.33-592.38 5 of 13 12.5 - 16.8 5 602.33-592.38 6 of 13 12.5 - 16.8 5 602.33-592.38 7 of 13 20.3 - 29.2 84.73-580.43 9 of 13 13.3 - 36.8 5 572.98 10 of 13 13.3 - 36.8 5 572.98 11 of 13 14.0 - 44.9 56.8 13 12 of 13 14.0 - 44.9 56.9 56.83 13 of 14 0.0 - 6.7 5 602.75-603.3 14 of 6 10.1 - 57.1 590.63 15 of 6 22.2 - 33.1 580.5 - 585.3 16 of 6 11.2 - 19.1 590.63 17 of 6 11.5 - 15.7 590.63 18 of 6 11.5 - 15.7 590.63 19 of 6 11.5 - 15.7 590.63 10 of 6 11.5 - 15.7 590.63 10 of 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					jυ	26.0 - 30.1	583.75-579.65		Sandstone
CW-9-79 7-31-79 6 1 0 f 13 0.0 - 3.7 609, 83-666-13 609, 83 2 0 f 13 7.5 -16.8 6 602, 33-597, 33 3 0 f 13 7.5 -16.8 5 592, 98-588, 98 4 0 f 13 17.5 -16.8 5 592, 98-584, 98 6 0 f 13 20.8 5-25.1 584, 98-584, 73 8 0 f 13 20.2 -3.1 586, 98-584, 73 10 0 f 13 13 -36.8 5 592, 98-586, 83 11 0 f 13 0 f 13 -36.8 5 576, 57-586, 83 11 0 f 13 0 f 13 -36.8 5 576, 57-586, 83 12 0 f 13 0 f 13 -40.0 -4.6 590, 5-561, 13 13 0 f 13 0 f 13 -6.9 5.1 584, 75-561, 13 14 0 0 -4.6 590, 5-561, 13 15 0 f 10 f 10 0 -6.2 609, 73-690, 53 16 0 f 12 1-25.2 590, 6-384, 59 17 11-79 7-31-79 4 1 0 f 6 0.0 -6.2 609, 73-604, 40 18 0 f 12 1-25.2 590, 6-384, 59 19 0 f 13 10 f 10 1-25.2 590, 6-384, 59 19 0 f 10 f 10 f 10 1-25.2 590, 6-384, 59 20 f 6 29.2 -31.0 590, 5-387, 41 20 f 6 12.1 -25.2 590, 6-384, 59 20 f 6 29.2 -31.0 590, 5-387, 41 20 f 6 12.1 -25.2 590, 6-384, 59 20 f 7 1 -27.7 590, 59 20 f 7 1 -27.7 590, 59 20 f 8 4.5 -80, 50 20 f 8 4.5 -8					Jο	30.1 -33.4	579.65-576.35		Sandstone
2 of 13 3.7 - 7.5 (66.13-502.33) 2 of 13 16.45-20.85 592.98-588.98 5 of 13 16.45-20.85 592.98-584.73 6 of 13 16.45-20.85 592.38-588.98 6 of 13 25.1 - 29.2 584.73-580.63 8 of 13 25.1 - 29.2 584.73-580.63 10 of 13 25.1 - 29.2 584.73-580.63 11 of 13 13.3 - 36.63-572.89 12 of 13 13.3 - 36.63-572.89 13 of 13 13.3 - 36.63-572.89 14 of 14 10 - 44.9 - 48.7 56.493-561.13 15 of 13 44.9 - 48.7 564.93-561.13 16 of 13 44.9 - 48.7 564.93-561.13 17 of 13 6.1 - 24.9 568.83 18 of 14 0.0 - 6.2 585.9 19 of 16 12.3 - 19.1 561.13-556.73 2 of 6 6.7 - 12.2 592.9 2 of 6 6.7 - 12.3 581.2 - 581.2 2 of 6 6.7 - 12.3 581.2 - 581.2 2 of 6 6.7 - 12.3 581.3 - 580.5 5 of 6 22.2 - 29.2 584.53-580.53 5 of 6 12.3 - 19.1 597.44-590.63 5 of 6 12.3 - 19.1 597.44-590.63 5 of 6 22.7 - 12.7 586.74-580.74 5 of 6 22.7 - 12.7 586.74-580.75 5 of 6 22.7 - 12.7 586.75-58.74 5 of 6 16.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	DET-1 DC-27	CM-9-79	7-31-79	9		0.0 - 3.7	609.83-606.13	609.83	Concrete
3 of 13 7.5 - 12.5 602.13-592.38 5 of 13 16.85-20.85 5 of 13 16.85-20.85 5 of 13 16.85-20.85 5 of 13 10.85-25.1 5 86.06 5 586.47 5 of 13 25.1 - 293.2 5 86.07 - 296.56 5 of 13 25.1 - 298.584.73 5 of 13 3.1 - 36.85 5 of 13 10.6 13 3.1 - 36.85 5 of 13 3.1 - 36.85 5 of 13 1.1 - 26.2 5 of 13 4.1 - 24.9 5 of 13 4.1 - 25.1 5 of 13 5.1 - 29.9 5 of 14 5.1 - 25.1 5 of 13 5.1 - 29.9 5 of 15 5.1 - 20.9 5 of 15 5.2 - 20.9 5 of 16 5.2 -						3.7 - 7.5	606.13-602.33		Concrete
4 of [1] 12.5 - (f. 85) 597.3-592.98 5 of [1] 16.85-20.85 5 92.98-584.73 6 of [1] 20.85-25.1 8 of [1] 25.1 - 29.2 8 of [1] 26.40-35.7 9 of [1] 31.3 - 46.85 10 of [1] 44.9 - 48.7 12 of [1] 44.9 - 48.7 13 of [1] 44.9 - 48.7 14 of [1] 44.9 - 48.7 15 of [1] 44.9 - 48.7 16 of [1] 44.9 - 48.7 17 of [1] 44.9 - 48.7 18 of [1] 44.9 - 48.7 19 of [1] 44.9 - 48.7 19 of [1] 44.9 - 48.7 10 of [1] 44.9 - 88.7						7.5 -12.5	602.33-597.33		Concrete
5 of [1] 16.85-20.85 592.99-588.98 6 of [1] 20.85-25.1 588.98-584.73 7 of [1] 20.1-39.2 588.98-584.73 8 of [1] 20.1-39.2 588.63 10 of [1] 10.6 5.1-39.2 588.63 11 of [1] 41.0 -44.9 588.75-556.13 12 of [1] 44.0 -44.9 588.63-556.13 13 of [1] 44.0 -44.9 568.93-564.93 14 of [1] 44.9 -44.9 568.93-564.93 15 of [1] 44.9 -44.9 568.93-564.93 16 of [1] 44.9 -44.9 588.2 557.9 2 of [1] 46.9 -9.3 589.2 587.9 2 of [2] 4.0 -4.6 590.5 595.13 3 of [3] 9.1 -13.5 590.53-597.43 5 of [6] 12.3 -19.1 5 of [6] 12.3 -19.1 5 of [6] 12.3 -19.1 5 of [6] 20.2 -37.0 5 of [6] 20.2 -3					οę	12.5 -16.85	597.33-592.98		Concrete
6 of [1] 20.8–25.1 \$88.98–584,73 7 of [1] 25.1–29.2 \$84.73–580.63 8 of [1] 20.2 –33.3 \$80.64–578.53 10 of [1] 31.3 – 86.85 \$76.53–572.98 10 of [1] 31.3 – 86.85 \$76.53–572.98 11 of [1] 44.0 –44.9 \$68 – 564.93 11 of [1] 44.0 –44.9 \$68 – 564.93 11 of [1] 44.0 –44.9 \$68 – 564.93 12 of [1] 44.0 –44.9 \$68 – 564.93 13 of [1] 44.9 –48.7 \$64.93–561.13 13 of [1] 44.9 –48.7 \$64.93–561.13 13 of [1] 44.9 –48.7 \$64.93–561.13 14 of [1] 44.9 –48.7 \$64.93–561.13 15 of [1] 44.9 –48.7 \$64.93–561.13 16 of [1] 0. – 4.6 \$90.5 – 581.2 2 of [1] 4.0 – 4.6 \$90.5 – 581.2 2 of [1] 4.0 – 4.6 \$90.5 – 581.2 2 of [2] 4.0 – 5.2 \$90.51–581.2 3 of [2] 4.0 – 5.2 \$90.51–581.2 4 of [2] 10.1 –25.2 \$90.64–584.53 4 of [6] 10.1 –25.2 \$90.64–584.53 5 of [6] 20.2 –20.7 \$84.53–78.73 5 of [6] 10.1 –25.2 \$90.74–584.53 5 of [6] 10.1 –25.2 \$90.74–584.53 5 of [6] 10.1 –25.2 \$90.74–584.53 5 of [6] 10.1 –25.2 \$90.74–584.14 5 of [6] 10.1 –25.2 \$90.74–58.14 5 of [6] 10.1 –25.2 \$90.74–584.14 5 of [6] 10.1 –25.2 \$90.74–58.14 5 of [6] 10.1 –25.2 \$90.74–584.14 5 of [6] 10.1 –25.2 \$90.75–784.18 5 of [6] 10.1 –25.2 \$90.75–78 5 of [7] 10.1 –25.2 \$90.75 5 of [8] 10.1 –25.3 \$					oę	16.85-20.85	592.98-588.98		Concrete
CW-10-79 7-31-79 4 10 13 25.1 -29.2 584.73-580.63 8 of 13 313 -36.85 576.351-572.98 10 of 13 35.3 -580.63 580.63-576.53 11 of 13 36.85-41.0 572.9°-568.83 12 of 13 44.9 -48.7 564.93-561.13 13 of 13 48.7 -53.1 561.13-556.73 2 of 13 46.9 -48.7 564.93-561.13 2 of 13 46.9 -48.7 564.93-561.13 3 of 13 48.7 -53.1 561.13-556.73 2 of 13 46.9 -48.7 584.59-581.2 3 of 14 50.0 - 4.6 590.5 -581.2 3 of 15 40.0 - 4.6 590.5 -581.2 4 of 6 6.7 -12.3 581.2 -571.0 5 of 6 6.7 -12.3 581.2 -571.0 5 of 6 12.3 -19.1 597.43-590.53 5 of 6 12.3 -19.1 597.43-590.53 5 of 6 12.3 -19.1 597.43-590.53 5 of 6 12.3 -19.1 597.44-592.44 5 of 6 29.2 -31.0 880.53-576.73 5 of 6 17.5 -20.0 592.45.88.74 5 of 6 24.0 -22.7 580.05 5 of 7 of 6 17.5 -26.0 593.16 5 of 8 4.5 - 8.6 593.16 5 of 8 4.5 - 8.6 593.16 5 of 8 4.5 - 8.6 593.16 5 of 8 6 24.0 -22.7 580.05 5 of 8 6 24.0 -22.7 580.05 5 of 8 4.5 - 8.6 593.16 5 of 8 6.5 - 12.7 580.05 5 of 8 6.5 - 12.7 580.05 5 of 8 6.5 - 12.7 580.05 5 of 8 4.5 - 8.6 593.16 5 of 8 6.5 - 12.7 590.06					Ç	20.85-25.1	588.98-584.73		Concrete and sandstone
8 of 13 29.2 -33.3 \$80.65-576.53 9 of 13 33.3 -356.85 \$76.53-572.98 10 of 13 41.0 -44.9 \$58.95-56.13 11 of 13 44.0 -44.9 \$58564.93 12 of 13 44.9 -48.7 \$54.13-556.73 13 of 13 44.9 -48.7 \$54.93-56.13 14 of 13 44.0 -44.9 \$58.9 -581.2 15 of 13 44.9 -48.7 \$54.13-556.73 16 0.0 - 4.6 \$90.5 -587.0 17 of 13 44.9 -48.7 \$81.2 -577.0 18 of 13 44.9 -48.7 \$81.2 -577.0 19 of 14.0 -4.6 \$90.5 -587.0 19 of 15 10.0 - 6.2 \$90.5 -587.0 10 of 6 12.3 -19.1 \$97.45-590.53 10 of 6 12.3 -19.1 \$97.45-590.63 10 of 6 12.3 -19.1 \$97.45-590.63 10 of 6 12.3 -19.1 \$97.45-590.63 10 of 6 11.6 -17.5 \$98.14-592.24 10 of 6 24.0 -29.7 \$88.14-592.24 10 of 6 24.0 -29.7 \$88.75-589.74 10 of 6 24.0 -29.7 \$88.75-589.74 10 of 6 24.0 -29.7 \$88.75-589.74 10 of 8 10.5 -24.0 \$89.75-589.74 10 of 8 0.0 - 4.9 \$88.75-589.76 10 of 8 0.0 - 4.5 \$69.76-605.26 10 of 8 0.0 - 4.5 \$69.76-605.26 10 of 8 8.4 -12.5 \$97.06-599.16 10 of 8 12.7 -16.6 \$97.06-599.16 10 of 8 12.7 -16.6 \$97.06-599.16 10 of 9 0.0 - 4.5 \$97.06-500.19 10 of					_ _	25.1 -29.2	584.73-580.63		Sandstone
9 of [1] 31.3 -36.85 576.55-572.98 11 of [1] 41.0 -44.9 568 -564.93 11 of [1] 44.0 -44.9 568 -564.93 12 of [1] 44.0 -44.9 568 -564.93 13 of [1] 48.7 -53.1 564.93-561.13 13 of [1] 48.7 -53.1 564.93-561.13 14 of [1] 48.7 -53.1 564.93-561.13 15 of [1] 48.7 -53.1 564.93-561.13 16 of [1] 48.7 -53.1 564.93-561.13 17 of [1] 48.7 -53.1 564.93-561.13 18 of [1] 48.7 -53.1 564.93-567.9 19 of [1] 48.7 -53.1 564.93-567.9 10 of [1] 48.7 -53.1 564.93-567.9 10 of [1] 48.7 -53.1 567.9 10 of [1] 4.7 -16.6 597.06 10 of [1] 597.06-597.16 10 of [1] 597					o T	29.2 -33.3	580.63-576.53		Sandstone
11 of 13 41.0 44.9 568 -568.83 11 of 13 41.0 -44.9 568 -564.93 12 of 13 44.9 -48.7 564.93-561.13 13 of 13 42.0 -48.7 561.13-556.73 2 of 3 4.6 -9.3 585.9 581.2 3 of 6 6.7 -12.3 581.2 -577.0 2 of 1 0.6 6.0 - 6.2 609.73-603.53 4 of 6 12.1 -12.1 569.5-597.43 3 of 6 12.1 -12.1 597.43-597.43 4 of 6 12.1 -12.1 597.43-597.63 5 of 6 25.2 -29.2 584.53-597.63 5 of 6 25.2 -29.2 584.53-580.53 5 of 6 25.2 -29.2 584.53-580.53 5 of 6 24.0 - 5.3 609.74-590.64 5 of 6 29.2 -31.0 588.5-581.75 5 of 6 24.0 - 5.3 609.74-580.74 5 of 6 24.0 - 29.7 587.74-580.05 5 of 6 24.0 - 29.7 587.75-580.05 5 of 7 - 10 f 8 0.0 - 4.9 588.65-576.15 5 of 8 24.5 - 29.7 587.75-580.05 5 of 8 24.5 - 29.7 587.75-580.05 5 of 8 24.5 - 29.7 597.06 5 of 8 24.5 - 20.7 597.06 5 of 8 24.5 -					o.	33.3 -36.85	576.53-572.98		Sandstone
11 of 13 41.0 -44.9 568 -564.93 12 of 13 44.9 -48.7 56.49=556.13 13 of 13 48.7 56.49=556.73 13 of 13 48.7 56.49=556.73 14 of 3 0.0 -4.6 590.5 -585.9 2 of 3 4.6 -9.3 588.9 -581.2 3 of 4 1 of 6 0.0 -6.2 609.73=603.53 4 of 6 0.0 -6.2 609.73=603.53 5 of 6 0.0 -6.2 609.73=603.53 5 of 6 19.1 -25.2 590.63 5 of 6 19.1 -25.2 590.63 5 of 6 25.2 -29.2 586.53=580.53 5 of 6 25.2 -29.2 586.53=580.53 6 of 6 25.2 -29.2 586.53=580.53 5 of 6 25.2 -29.2 586.53=580.53 6 of 6 25.2 -29.2 586.53=580.53 6 of 6 29.7 -37.7 580.04=598.14 7 -31-79 4 1 of 6 0.0 -5.3 609.74=604.44 5 of 6 24.7 -29.7 580.04=598.14 5 of 6 24.7 -29.7 580.04=580.05 6 of 6 24.7 -29.7 580.04=580.05 7 -31-79 4 1 of 8 0.0 -4.9 580.65=580.05 3 of 8 4.5 -8.4 609.76=609.76 4 of 8 12.7 -12.7 5 of 3 84 -12.5 5 of 3 84 -12.7 6 of 10.16-59.16 6 of 8 24.7 -29.7 5 of 9 50.65=58.76 5 of 6 24.7 -29.7 5 of 7 0.0 -4.9 580.04=576.15 6 of 6 24.7 -29.7 5 of 8 4.5 -8.4 609.76=609.76 6 of 8 24.7 -29.7 5 of 9 84 -1.2 5 5 of 9 50.5 -580.06 6 of 6 29.7 -31.7 5 of 9 6 24.7 -31.7 5 of 9 6 24.7 -31.7 5 of 9 6 24.7 -32.7 5 o					<u>-</u>	36.85-41.0	572.9°-568.83		Sandstone
12 of 13 44,9 -48.7 564.93-561.13 13 of 13 44.9 -48.7 564.93-561.13 13 of 13 48.7 -531.1 561.13-556.73 2 of 3 4.6 - 9.3 585.9 -581.2 3 of 3 4.6 - 9.3 585.9 -581.2 3 of 4 1 of 6 0.0 - 6.2 609.73-603.53 4 of 6 12.3 -19.1 597.43 5 of 6 25.2 -29.2 586.53 5 of 6 25.2 -29.2 586.53 5 of 6 25.2 -29.2 586.53 6 of 6 29.2 -31.0 5 of 6 24.0 -29.7 5 sec. 0.4 -598.14 5 of 6 24.0 -29.7 5 sec. 0.4 -598.14 5 of 6 24.0 -29.7 5 sec. 0.5 -58.7 5 of 6 24.0 -29.7 5 sec. 0.5 -58.7 5 of 6 24.0 -29.7 5 sec. 0.5 -58.7 5 of 6 24.0 -29.7 5 sec. 0.5 -58.7 5 of 6 24.0 -29.7 5 sec. 0.5 -58.7 5 of 6 24.0 -29.7 5 sec. 0.5 -58.7 5 sec. 0.5 -59.7 5					j.	41.0 -44.9			Sandstone
CW-10-79 7-31-79 4 1 of 3 0.0 - 4.6 590.5 - 585.9 590.5 3 of 3 0.0 - 4.6 590.5 - 585.9 585.9 581.2 - 581.2 3 of 3 0.0 - 4.6 590.5 - 581.2 3 of 3 0.0 - 4.6 590.5 - 581.2 3 of 4 0.0 - 6.2 609.73-603.53 609.73 5 of 6 0.0 - 6.2 609.73-603.53 609.73 5 of 6 19.1 - 25.2 584.53 5 of 6 19.1 - 25.2 590.6 5 of 6 25.2 - 29.2 584.53 5 of 6 24.0 - 29.7 585.74 5 of 6 24.0 - 29.7 586.04 5 of 6 24.0 - 29.7 585.74 5 of 6 24.0 - 29.7 586.05 5 of 7 of 6 17.5 - 24.0 592.24 5 of 7 of 6 17.5 - 24.0 592.24 5 of 8 4.9 - 8.6 583.75 - 880.05 5 of 8 4.9 - 8.6 583.75 - 880.05 5 of 8 4.9 - 8.6 583.75 - 880.05 5 of 8 4.4 - 12.7 601.36 5 of 8 6.4 12.7 601.36					jo	44.9 -48.7	564.93-561.13		Sandstone
CW-10-79 7-31-79 4 1 of 3 0.0 - 4.6 590.5 -585.9 590.5 2 of 3 4.6 - 9.3 585.9 -581.2 3 of 3 9.3 - 15.2 581.2 - 577.0 CW-11-79 7-31-79 4 1 of 6 0.0 - 6.2 609.73-603.53 4 of 6 6.7 - 12.3 609.73-603.53 5 of 6 6.7 - 12.3 609.73-603.53 5 of 6 12.3 - 19.1 599.43-590.63 5 of 6 12.3 - 19.1 599.43-584.53 5 of 6 25.2 - 29.2 584.53-584.53 5 of 6 25.2 - 29.2 584.53-580.53 6 of 6 29.2 - 33.0 580.53-576.73 6 of 6 10.1 - 25.3 609.74-604.44 6 of 6 10.1 - 5.3 609.74-580.44 6 of 6 11.6 - 17.5 580.04 7 of 6 11.6 - 17.5 580.04 8 of 6 24.0 - 29.7 587.74-580.05 8 of 6 24.0 - 29.7 587.75-580.05 9 of 7 - 31-79 4 1 of 8 0.0 - 4.5 609.76-576.15 8 of 8 8.4 - 12.5 580.05-576.15 9 of 8 8.4 - 12.5 580.05-576.15 9 of 8 8.4 - 12.5 597.06-593.16 COM-15-79 7-31-79 4 of 8 12.7 - 16.6 597.06-593.16					of.	48.7 -53.1	561.13-556.73		Sandstone
2 of 3	DET-1 DC-28	CM-10-79	7-31-79	77		0.0 - 4.6	590.5 -585.9	590.5	Concrete and sandstone
GW-II-79 7-31-79 4 1 of 6 0.0 - 6.2 609.73-603.53 609.73 2 of 6 12.3 -19.1 597.43-590.63 3 of 6 12.3 -19.1 597.43-590.63 3 of 6 12.3 -19.1 597.43-590.63 5 of 6 12.3 -19.1 597.43-590.63 5 of 6 12.3 -19.1 597.43-590.63 5 of 6 25.2 -29.2 590.63-584.53 5 of 6 23.3 -11.6 604.44-599.14 5 of 6 24.0 - 5.3 11.6 506.44-599.14 5 of 6 24.0 - 5.3 500.76-593.74 5 of 6 24.0 - 5.3 500.76-593.75 5 of 6 24.0 - 6.9 590.76-593.16 5 of 6 20.7 -12.5 590.76-593.16 5 of 6 20.7 -12.5 590.76-593.16 5 of 6 20.7 -12.7 5 of 6 20.7 5 of 6 20.						4.6 - 9.3	585.9 -581.2		Sandstone
CW-II-79 7-31-79 4 1 of 6 0.0 - f.2 609.73-603.53 609.73 609.73 609.73 609.73 609.73 609.73 609.73 609.73 609.73 609.73 609.73 609.73 609.73 609.73 609.73 609.74 6					o į	9.3 -13.5	581.2 -577.0		Sandstone
2 of 6 6.7 -12.3 603.53-97.43 3 of 6 12.3 -19.1 597.43-590.63 4 of 6 12.3 -19.1 597.43-590.63 5 of 6 25.2 -29.2 584.53-580.53 6 of 6 29.2 -33.0 580.53-576.73 6 of 6 29.2 -33.0 580.53-576.73 6 of 6 29.2 -33.0 580.53-576.73 7 of 6 29.2 -33.0 580.53-576.73 7 of 6 29.2 -33.0 580.44-598.14 7 of 6 0.0 - 5.3 609.74-604.44 7 of 6 0.0 - 5.3 609.74-604.44 7 of 6 10.6 5.3 -11.6 604.44-598.14 7 of 6 24.0 -29.7 580.04-576.99 7 of 6 24.0 -29.7 580.04-576.99 7 of 6 24.0 -29.7 580.04-576.99 8 of 6 24.0 -4.9 588.65-583.75 8 of 7 32.75 580.05-576.15 8 of 7 -20.7 580.05-576.15 8 of 7 -20.7 609.76-609.76 8 of 7 -20.7 609.76-609.76 9 of 8 0.0 -4.5 609.76-609.76 9 of 8 0.0 -4.5 609.76-609.76 9 of 8 0.12.7 601.36-599.06 9 of 8 0.12.7 -16.6 597.06-593.16 9 of 8 12.7 -16.6 597.06-593.16	DET-1 DC-29	CW-11-79	7-31-79	4	_	0.0 - 6.2	609.73-603.53	609.73	Concrete
3 of 6 12.3 -19.1 597.43-590.63 3 of 6 19.1 -25.2 590.63-584.53 5 of 6 29.2 -29.2 590.53-594.53 5 of 6 29.2 -3.0 580.53-596.73 6 of 6 29.2 -3.0 580.53-576.73 5 of 6 29.2 -3.0 580.53-576.73 5 of 6 5.3 -11.6 604.44-598.14 5 of 6 5.3 -11.6 604.44-598.14 5 of 6 17.5 -24.0 592.24 5 of 6 21.5 598.14-992.24 5 of 6 29.7 -32.75 5 588.14-992.24 5 of 6 29.7 -32.75 5 580.04-576.99 5 of 6 29.7 -32.75 5 580.05-576.99 5 of 6 29.7 -32.75 5 580.05-576.99 5 of 7 -31-79 5 of 8 0.0 - 4.9 583.75-580.05 5 of 8 4.5 - 8.6 583.75-580.05 5 of 8 4.5 - 8.6 593.76-605.26 5 of 8 12.7 -16.6 597.06-593.16 5 of 8 12.7 -16.6 597.06-593.16 5 of 8 12.7 -16.6 597.06-593.16						6.2 -12.3	603.53-597.43		Concrete
4 of 6 19.1 -25.2 590.63-584.53 5 of 6 25.2 -29.2 584.53-580.53 6 of 6 25.2 -29.2 584.53-580.53 6 of 6 29.2 -33.0 580.53-576.73 7 of 6 0.0 -5.3 609.74-604.44 7 of 6 0.0 -5.3 609.74-604.44 7 of 6 11.6 -17.5 598.14-92.24 7 of 6 11.6 -17.5 598.14-92.24 7 of 6 11.6 -17.5 598.14-92.24 7 of 6 24.0 -29.7 582.74-588.74 7 of 6 24.0 -29.7 582.74-580.04 7 of 6 29.7 -32.75 580.04-576.99 7 of 6 29.7 -32.75 580.05-576.15 7 of 7 of 6 29.7 -32.75 580.05-576.15 7 of 8 0.0 -4.9 583.75-580.05 7 of 9 8 6 -12.5 580.05-576.15 7 of 8 8.4 -12.7 601.36-593.16 7 of 8 12.7 -16.6 597.06-593.16 7 continued)					_	12.3 -19.1	597.43-590.63		Concrete
5 of 6 25.2 -29.2 584.53-580.53 6 of 6 29.2 -33.0 580.53-576.73 CM-3-79 4 1 of 6 29.2 -33.0 580.53-576.73 2 of 6 5.3 -11.6 604.44-598.14 3 of 6 11.6 -17.5 598.14-592.24 4 of 6 11.6 -17.5 598.14-592.24 5 of 6 24.0 -29.7 582.24-585.74 5 of 6 24.0 -29.7 587.74-580.04 5 of 6 24.0 -29.7 588.65-583.75 CM-14-79 7-31-79 4 1 of 3 0.0 -4.9 588.65-583.75 2 of 3 4.9 - 8.6 583.75-580.05 3 of 8 4.5 - 8.4 605.76-601.36 4 of 8 12.7 -16.6 597.06-593.16 (Continued)						19.1 -25.2	590.63-584.53		Concrete and sandstone
CW- J-79 7-31-79 4 1 of 6 29.2 -33.0 580.53-576.73 CW- J-79 7-31-79 4 1 of 6 0.0 - 5.3 609.74-604.44 609.74 2 of 6 5.3 -11.6 604.44-598.14 3 of 6 11.5 -12.6 5 of 6 24.0 -29.7 581.74-580.04 5 of 6 24.0 -29.7 585.74-580.04 6 of 6 29.7 -32.75 580.04-576.99 6 of 6 29.7 -32.75 580.04-576.99 7-31-79 4 1 of 3 0.0 - 4.9 588.65-583.75 3 of 3 8.6 -12.5 580.05-576.15 2 of 3 4.9 - 8.6 580.75-576.15 3 of 8 4.5 - 8.4 605.26-601.36 4 of 8 12.7 -16.6 597.06-593.16 (Continued)					of	25.2 -29.2	584.53-580.53		Sandstone
CM- 3-19 7-31-79 4 1 of 6 0.0 - 5.3 609.74-604.44 609.74 2 of 6 5.3 -11.6 604.44-598.14 3 of 6 11.6 -17.5 580.14-592.24 4 of 6 17.5 -24.0 592.24-587.74 5 of 6 24.0 -29.7 585.74-580.04 6 of 6 29.7 -32.75 580.04-576.99 CM-14-79 7-31-79 4 1 of 3 0.0 - 4.9 588.65-583.75 3 of 3 4.9 - 8.6 583.75-580.05 3 of 3 8.4 -12.5 580.05-576.15 4 of 8 12.7 -16.6 597.06-593.16 Continued) (Continued)					υĘ	29.2 -33.0	580.53-576.73		Sandstone
2 of 6 5.3 - 11.6 604.44 - 598.14 3 of 6 11.6 - 17.5 598.14 - 592.24 4 of 6 11.6 - 17.5 598.14 - 592.24 5 of 6 24.0 - 29.7 580.14 - 580.04 6 of 6 29.7 - 32.75 580.04 - 576.99 6 of 6 29.7 - 32.75 580.04 - 576.99 7 - 31 - 79 4 1 of 3 0.0 - 4.9 588.65 588.65 7 of 3 4.9 - 8.6 583.75 - 580.05 3 of 3 8.6 - 12.5 580.05 580.05 3 of 4 1 of 8 0.0 - 4.5 609.76 609.76 4 of 8 12.7 - 16.6 597.06 - 593.16 6 of 6 24.0 - 4.5 601.36 - 593.16 7 of 8 12.7 - 16.6 597.06 - 593.16 7 continued)	DET-1 DC-30	CW- 3-79	7-31-79	*		0.0 - 5.3	609.74-604.44	609.74	Concrete
3 of 6 11.6 -17.5 598.14-592.24 4 of 6 17.5 -24.0 592.24-585.74 5 of 6 24.0 -29.7 585.74-586.04 6 of 6 24.0 -29.7 586.04-576.99 6 of 6 24.0 -29.7 580.04-576.99 2 of 3 4.9 - 8.6 583.75-580.05 3 of 3 8.6 -12.5 580.05-576.15 3 of 3 8.6 -12.5 580.05-576.15 2 of 8 4.5 - 8.4 605.26-601.36 3 of 8 8.4 -12.7 601.36-599.06 4 of 8 12.7 -16.6 597.06-593.16 (Continued)					o.	5.3 -11.6	604.44-598.14		Concrete
4 of 6 17.5 -24.0 592.24-585.74 5 of 6 24.0 -29.7 585.74-580.04 6 of 6 29.7 -29.7 585.74-580.04 6 of 6 29.7 -29.7 585.74-580.04 7-31-79 4 1 of 3 0.0 -4.9 588.65-583.75 3 of 3 4.9 -8.6 583.75-580.05 3 of 3 8.6 -12.5 580.05-26 609.76 2 of 8 4.5 -8.6 602.76-605.26 3 of 8 8.4 -12.7 601.36-593.16 4 of 8 12.7 -16.6 597.06-593.16 (Continued)					οţ	11.6 -17.5	598.14-592.24		Concrete
5 of 6 24.0 -29.7 585.74-580.04 6 of 6 29.7 -32.75 580.04-576.99 6 of 7-32.75 580.04-576.99 2 of 3 4.9 - 8.6 583.75-580.05 3 of 3 84.6 - 12.5 580.05-576.15 2 of 8 4.5 - 8.4 605.26-601.36 3 of 8 8.4 - 12.7 601.36-593.16 4 of 8 12.7 - 16.6 597.06-593.16 (Continued)					ĵ,	17.5 -24.0	592.24-585.74		Concrete and sandstone
CW-14-79 7-31-79 4 1 of 3 0.0 - 4.9 588.65.99 2 of 3 4.9 - 8.6 588.75-583.75 588.65 3 of 3 8.6 - 12.5 580.05-576.15 3 of 8 0.0 - 4.5 609.76-105.26 609.76 2 of 8 4.5 - 8.4 605.26-601.36 3 of 8 8.4 - 12.7 601.36-593.16 4 of 8 12.7 - 16.6 597.06-593.16 (Continued)					of	24.0 -29.7	585.74-580.04		Sandstone
CM-14-79 7-31-79 4 1 of 3 0.0 - 4.9 588.65-583.75 588.65 0 2 of 3 4.9 - 8.6 583.75-580.05 3 of 3 8.6 -12.5 580.05-576.15 3 of 3 8.6 -12.5 580.05-576.15 2 of 8 0.0 - 4.5 609.76-605.26 609.76 0 2 of 8 4.5 - 8.4 605.26-601.36 3 of 8 8.4 -12.7 601.36-593.16 4 of 8 12.7 -16.6 597.06-593.16 (Continued)					J.	29.7 -32.75	580.04-576.99		Sandstone
2 of 3 4.9 - 8.6 583.75-580.05 Sandstone 3 of 3 8.6 -12.5 580.05 Sandstone 3 of 3 8.6 -12.5 580.05 Sandstone 5 of 8 0.0 - 4.5 609.26 609.76 Concrete 2 of 8 8.4 - 12.7 601.36-597.06 Concrete 4 of 8 12.7 - 16.6 597.06-593.16 Concrete (Continued)	DET-1 DC-31	CM-14-79	7-31-79	7		6.4 - 0.0	588.65-583.75	588.65	Concrete and sandstone
3 of 3 8.6 -12.5 \$80.05-576.15 Sandstone CM-15-79 7-31-79 4 1 of 8 0.0 - 4.5 609.26 609.76 Concrete 2 of 8 4.5 - 8.4 605.26-601.36 Concrete 3 of 8 84.4 - 12.7 601.36-592.06 Concrete 4 of 8 12.7 - 16.6 \$97.06-593.16 Concrete (Continued)						4.9 - 8.6	583.75~580.05		Sandstone
CM-15-79 7-31-79 4 1 of 8 0.0 - 4.5 609.76-605.26 609.76 Concrete 2 of 8 4.5 - 8.4 605.26-601.36 Concrete 3 of 8 8.4 -12.7 601.36-597.06 Concrete 4 of 8 12.7 -16.6 597.06-593.16 Concrete (Continued)						8.6 -12.5	580.05-576.15		Sandstone
8 4.5 - 8.4 605.26-601.36 Concrete 8 8.4 -12.7 601.36-597.06 8 12.7 -16.6 597.06-593.16 Concrete (Continued)	DET-1 DC-32	CM-15-79	7-31-79	*		0.0 - 4.5	609.76~605.26	92.609	Concrete
8 8.4 -12.7 601.36-597.06 Concrete 8 12.7 -16.6 597.06-593.16 Concrete (Continued)						4.5 - 8.4	605.26-601.36		Concrete
8 12.7 -16.6 597.06-593.16 Concrete (Continued)						8.4 -12.7	601.36-597.06		Concrete
						12.7 -16.6	597.06-593.16		Concrete
						(Continued)			(Page 2 of 4)

Table El (Continued)

.

			Core			T lovat ton	1	
		Date	Diam	Box	Depth		Top	
WES Reference	Drill Hole No.	Rec'd	in.	No.	- L	Depth Intervals	of Hole	Remarks
				۶ د د	16 6 - 20 8	30 885-91 105		0 101000
					0.00	500.000 01.000		Concrete
						200-30-304-71		Condeter and Sandstone
						2001.11-300.40		Salidstone
						300.40-3/1.40	*	Sandstone
DET-1 DC-33	6/-/1-MD	1-31-19	7	1 of 9	0.0	609.77-603.17	609.11	Concrete
				-	9.9	603.17-596.37		Concrete
				3 of 9		596.37-588.97		Concrete
				4 of 9	20.8	588.97-582.57		Concrete and sandstone
				5 of 9	27.2 -33.0	582.57-576.77		Sandstone
				6 Jo V9		576.77-572.67		Sandstone
				6 Jo 89		572.67-568.72		Sandstone
				7 of 9		568.72-564.77		Sandstone
				-		564, 77-560, 12		Sandstone
				90 b	49.65-53.5	560.12~556.27		Sandstone
DET 1 OC 3/	CT.C. 1870	7-21-70	7		7 70 00	7 200 0 000	0 000	Constitution and constitutions
FC - 301 - 120	61-01. 40	61-16-1	>	7 30 6		207.0 - 207.1	0.00	Conditions and sends tolle
				h 10 7	7.0 = 1.4	0.102-1.001		Salids tone
				3 of 4	8.2 -11.0			Sandstone
				4 01 4	11.0 -14.0	5/8.8 -5/5.8		Sandstone
DET-1 DC-35	CW-19-79	7-31-79	7	1 of 2	ι		588.5	Concrete and sandstone
				2 of 2	ι	581.5 -578.6		Sandstone
DET-1 DC-36	CW-20-79	7-31-79	9	1 of 3	ı		589.9	Concrete and sandstone
				2 of 3				Sandstone
				3 of 3	8.4 -13.0	581.5 -576.9		Sandstone
DET-1 DC-37	CW-21-79	7-31-79	7	1 of 2			589.2	Concrete and sandstone
				2 of 2		582.2 -579.2		Sandstone
DET-1 DC-38	CW-22-79	7-31-79	7	1 of 2			589.5	Concrete and sandstone
				2 of 2				Sandstone
DET-1 DC-39	CW-23-79	7-31-79	4	1 of 2		589.7 -582.9	589.7	Concrete and sandstone
					6.8			Sandstone
DET-1 DC-40	CW-24-79	7-31-79	7		0.0	589.7 -583.0	589.7	Concrete and sandstone
				2 of 2	6.7	583.0 -575.7		Sandstone
DET-1 DC-41	CW-25-79	7-31-79	*	1 of 2	0.0	589.6 -586.9	589.6	Concrete and sandstone
				2 of 2	2.7 -10.0	586.9 -579.6		Sandstone
DET-1 DC-42	CW-26-79	7-31-79	9	1 of 3	0.0 - 4.0	588.9 -584.9	588.9	Sandstone
				2 of 3	4.0 - 8.1	584.9 -580.8		Sandstone
				3 of 3		580.8 -578.7		Sandstone
DET-1 DC-43	CW-28-79	1-31-79	4	1 of 4	0.0 - 6.1	589.4 -583.3	589.4	Sandstone
				2 of 4	6.1 -12.2	583.3 -577.2		Sandstone
				3 of 4	_	577.2 -570.3		Sandstone
				4 of 4	19.1 -25.0	570.3 -564.4		Sandstone
					(Continued)			(Page 3 of 6)

Table El (Concluded)

			Core				Elevation,	11	
WES Reference	Drill Hole No.	Date Rec'd	Diam.	Box No.	1	Depth ft	Depth Intervals	Top of Hole	Remarks
DET-1 DC-44	CW-29-79	7-31-79	7	l of	5 0.	0.0 - 7.3	589.3 -582.0	589.3	Sandstone
				2 of	5 7	.3 -13.1	582.0 -576.2		Sandstone
				3 of	5 13,	13.1 -19.6	576.2 -569.7		Sandstone
				Ju 7	5 19.	.6 -26.5	569.7 -562.8		Sandstone
				3 of	3 26.	76.5 -30.2	562.8 -559.1		Sandstone
DET-1 DC-45	CW-30-79	7-31-79	4	l of	0 9	0.0 - 4.7	586.7 -582.0	586.7	Sandstone
				2 of	., 4	4.7 - 8.6	582.0 -578.1		Sandstone
				} o {	6 8	8.6 -13.2	578.1 -573.5		Sandstone
				4 of	6 13	13.2 -17.0	573.5 -569.7		Sandstone
				5 of	6 17.	17.0 -21.3	569.7 -565.4		Sandstone
				9 of	6 21,	21.3 -26.1	565.4 -560.6		Sandstone
DET-1 DC-46	CW-31-79	7-31-79	7	l of	7 0	0.0 - 4.6	589.6 -585.0	589.6	Sandstone
				2 of	7 4	.6 - 8.7	585.0 -580.9		Sandstone
				3 of	7 8	8.7 -12.7	580.9 -576.9		Sandstone
				4 of	7 12	.7 -17.3	576.9 -572.3		Sandstone
				5 of	7 17	17.3 -21.7	572.3 -567.9		Sandstone
				go 9	7 21	21.7 -26.2	567.9 -563.4		Sandstone
				1 of	7 26.	26.2 -29.0	563.4 -560.6		Sandstone
DET-1 PC-47	CW-32-79	7-31-79	4	l of	0 7	0.0 - 5.0	588.6 -583.6	588.6	Sandstone
				2 of	4 5	5.0 - 9.1	583.6 -579.5		Sandstone
				3 of	6 7	.1 -13.0	579.5 -575.6		Sandstone
				Ju y	4 13	13.0 -15.2	575.6 -573.4		Sandstone
DET-1 DC-48	CW-33-79	7-31-79	•	Jo 1	0 7	0.0 - 7.3	588.7 -581.4	588.7	Sandstone
				2 of	4 7.	7.3 -13.5	581.4 -575.2		Sandstone
				3 of	4 13	13.5 -22.0	575.2 -566.7		Sandstone
				Ju 7	4 22	22.0 -24.0	566.7 -564.7		Sandstone
DET-1 DC-49	CW-34-79	1-31-79	*	1 of	5	9.9 - 0.	587.9 -581.3	587.9	Sandstone
				2 of	5 6.	6.6 -13.5	581.3 -574.4		Sandstone
				J of	5 13.	13.5 -20.0	574.4 - 567.9		Sandstone
				Jυ 7	5 20	20.0 -26.5	567.9 -561.4		Sandstone
				5 of	5 26	26.5 - 30.0	561.4 -557.9		Sandstone
DET-1 DC-50	CW-35-79	7-11-79	4	101	2 26	26.5 -30.5	591.25-587.25	617.75	Sandstone
				,	,	10 5 15 7	507 25, 502 35		300 400 000

Table P.2 Concrete Core Test Results, Regulatory Structure, Sault Ste. Marie

				Cha	racteriza	Characterization Tests				
			;	i	;	;	1	Tensile	Engineering	ingineering Design Tests
:	i	Depth	Wet	Dry :: /:	Water	Comp. Wave	Сощр.		Elastic	-
Dr.11.	Elev.	or core	Unit wt	Unit wt	Content	Velocity	Strength	••	SninboM	Polsson s
Hole No.	1		m, Ib/tt	Yd, 15/1t	γ, γ	Vp. 1ps	UC, PS1	Ts, ps1	E × 100	Katio
CW-1-79	608.75	1.0	157.9	152.6	3.5	16,260	8,530		7.25	0.26
CW-1-79	598.75	11.0	157.9	151.7	4.1	15,151	8,240		6.25	0.16
CW-1-79	587.45	22.3	160.4	154.8	3.6	15,340	5,850		5.33	0.21
CW-2-79	589.90	9.0	161.7	156.7	3.2	16,562	12,650		7.69	0.23
CW-3-79	608.13	1.6	160.4	156.0	2.8	14,322	4,930			
CW-3-79	606.93	2.8	159.2			15,555		260		
CW-5-79	609.21	0.5	161.1	155.4	3.7	14,553	5,900		5.80	0.17
CW-5-79	608.21	1.5	161.1			15,939		405		
CW-5-79	597.21	12.5	161.1	155.4	3.7	16,325	9,010			
CW-5-79	587.01	22.7	162.9	157.5	3.4	16,256	7,820			
CM-6-79	589.70	0.7	156.7	149.2	5.0	14,402	7,390			
CM-7-79	609.25	0.5	154.2	146.9	5.0	15,151	5,180			
CW-7-79	597.75	12.0	156.1	149.0	8.7	14,814	6,430		4.63	0.16
CM-7-79	586.65	23.1	159.8	153.8	3.9	15,873	6,900			
CM-9-79	606.73	3.1	156.7	150.2	4.3	14,925	6,640		5.10	0.18
CM-9-79	604.63	5.2	159.8			15,272		505		
CM-9-79	594.83	15.0	156.7	149.4	6.4	14,962	6,910		5.43	0.21
CM-9-79	586.73	23.1	158.6	151.3	4.8	14,767	5,560		5.44	0.20
CW-10-79	590.00	0.5	154.8	147.0	5.3	14,583	7,910		5.00	0.16
CW-13-79	608.54	1.2	158.6	153.1	3.6	15,674	7,810			
CW-13-79	597.04	12.7	156.1	148.0	5.5	15,674	6,740		90.9	0.18
CW-13-79	586.64	23.1	162.9	158.0	3.1	16,458	8,530			
CW-14-79	587.85	0.8	159.8	152.8	4.6	15,384	6,530			
CW-15-79	97.809	1.3	161.7	157.0	3.0	17,214	8,570			
CW-15-79	598.76	11.0	163.6	159.5	2.6	16,260	7,260			
CW-15-79	588.26	21.5	161.7	156.7	3.2	14,814	11,630		60.6	0.22
CM-17-79	608.57	1.2	157.9	153.0	3.2	15,773	8,000		6.67	0.22
CW-17-79	596.97	12.8	161.7	156.5	3.3	16,666	7,860		7.46	0.24
CW-17-79	587.47	22.3	160.4	154.7	3.7	15,674	7,160		6.25	0.22
CW-18-79	588.20	9.1	161.1	155.2	3.8	16,196	11,220		6.80	0.19
CW-18-79	587.30	2.5	159.2			15,456		067		
CW-20-79	589, 30	9.0	159.8	155.3	2.9	15,448	7,180		6.25	0.20
CW-22-79	589.00	0.5	154.2	146.6	5.2	14,007	5,440		4.49	0.18
CW-24-79	589.20	0.5	157.9			15,151	6,220			
CM-25-79	588.70	0.0	160.4	154.5	3.8	15,503	6,190		6.02	0.16
CW-18-79		2.5	159.2	•						

Very Hard Sandstone Test Results, Regulatory Structure, Sault Ste. Marie Table E3

				Character	Characterization Tests	ests			
							Direct	Engineering	Engineering Design Tests
		Depth	Wet	Dry	Water	Comp.	Tensile	Elastic	
Drill	Elev.	of Core	Unit Wt,	Unit Wt,	Content	Strength	Strength	Modulus	Poisson's
Hole No.	ft	ft	Ym, 1b/ft	Yd, 1b/ft	M, %	UC, psi	Td, psi	E x 106	Ratio
CW-1-79	559.8	49.95	157.3	153.2	2.7	14,300		4.38	0.25
CW-2-79	584.1	6.40	157.3	153.3	2.6	14,220		5.83	0.22
CW-28-79	583.0	6.40	153.6	150.6	2.0	16,580		5.00	0.21
CW-28-79	572.9	16.50	156.1	151.4	3.1	069,6		3.85	0.16
CW-31-79	587.2	2.40	152.3	149.9	1.6	15,890		7.27	0.19
CW - 31 - 79	562.3	27.30	156.1	153.6	1.6	20,680		7.14	0.19
CW-33-79	579.2	9.80	154.2	150.4	2.5	13,430		4.67	0.19
CW-9-79	574.0	35.83	157.3	151.8	3.6		35		
CW-9-79	570.2	39.63	158.6	154.7	2.5		65		
CW-26-79	581.8	7.10	156.7						
CW-14-79	581.4	7.25	151.7	147.0	3.2	13,050		4.33	0.20
		Avg	155.6	151.6	2.5	14,730	20	5.31	0.20
		້ຫ	2.2	2.2	0.7	3,170	21	1.31	0.03
		c	11	10	10	80	2	&	8
	Grand Ave	* 801	156.3	152.9	2.2				
	ı	s	1.9	2.1	0.7				
		u	38	37	37				

Grand Avg includes all available data from characterization and direct shear tests. s = standard deviation n = number of tests

Hard Sandstone Test Results, Regulatory Structure, Sault Ste. Marie Table E4

Drill Hole No.	Elev. ft	Depth of Core ft	Wet Unit Wt Ym, 1b/£t	Dry Water C Unit Wt ₃ Content Str	Water Content W, %	Comp. Strength UC, psi	Direct Tensile Strength Td, Psi	Engineering Elastic Modulus E x 106	Engineering Design Tests Elastic Modulus Poisson's E x 106 Ratio
9	563.2 582.6 581.4	46.55 7.90 8.10		153.5 150.4 153.6	3.3 2.5 2.4	8280 8680 7530		1.71 2.05 2.47	0.39 0.34 0.29
CW-29-79 CW-32-79 CW-33-79 CW-34-79 CW-18-79 CW-18-79	575.9 574.9 570.8 559.7 580.2 579.2	13.40 13.70 18.20 28.20 9.60	154.8 154.2 152.3 154.8 157.3 157.9	149.1 149.1 147.1 149.3 152.9	6.6.6.7 6.0.0.0 7.0.0	9490 8900 9830 9070	65	2.35 2.05 3.33 2.37	0.33 0.32 0.35
	Grand Avg	Avg s n Avg *	155.7 2.1 9 156.8 2.5	150.6 2.4 8 151.6 2.8 2.8	3.2 0.5 3.4 28 28	8830 770 7	65	2.33 0.51 7	0.32 0.05 7

Grand Avg includes all available data from characterization and direct shear tests.
s = standard deviation
n = number of tests

Table E5 Shaly Sandstone Test Results, Regulatory Structure, Sault Ste. Marie

				Characterization	ization T	Tests			
							Direct	Engineering Design	Design Tests
		Depth	Wet	Dry	Water	Comp.	Tensile	Elastic	
Drill	Elev.	of Core		Unit Wt ₃	Content	Strength	Strength	Modulus	Poisson's
Hole No.	ft	ft	Ym, 1b/ft	Yd, 1b/ft	W, %	UC, psi	Td, psi	E x 106	Ratio
CW-1-79	565.4	44.35	158.6	153.4	3.4	7670		1.52	0.46
CM-9-79	572.4	37.43	157.9	152.9	3.3	7010		1.75	0.38
CW-10-79	578.4	12.10	157.3	151.5	3.8	5690		1.14	0.47
CW-14-79	578.2	10.45	157.3	152.6	3.1	8890		2.00	0.24
CM-30-79	567.3	19.40	156.1	151.4	3.1	8200		1.71	0.37
CW-33-79	574.6	14.40	153.6	148.5	3.4	9050		2.25	0.29
CM-33-79	574.0	15.00	156.1	151.3	3.2	7030		1.76	0.32
CM - 34 - 79	572.2	15.70	156.7	152.3	2.9	7510		1.31	0.48
CM-34-79	568.6	19.30	156.1	151.0	3.4	8080		1.67	0.41
CW-17-79	580.4	29.37	154.8	149.6	3.5		09		
CW-25-79	582.7	06.9	157.9	152.6	3.5		5		
CW - 31 - 79	583.8	5.80	154.2	149.3	3.3		30		
CW-17-79	583.7	26.05	158.6	152.8	3.8	0799		1.65	0.38
CW-17-79	584.6	25.17	154.2	149.4	3.2	8080		1.90	0.27
		Avg	156.4	151.3	3.4	7580	32	1.70	0.37
		S	1.7	1.6	0.3	1030	27	0.3	0.08
		c	14	14	14	10	3	11	1.1
	Grand Avg	IVR	157.0	151.9	3.4				
		ß	1.7	3.8	6.0				
		E	24	54	24				

Table F6 Triaxial Test Results, Sault Ste. Marle

		:	Charac	terization	Tests		Engine	Engineering Design Tests	Tests	
		Depth	Effective	Dry	Water	Minor Prin	Major Prin	Prin Stress	Modulus	
Drill Hole No.	Elev.	of Care, ft	Unit Wt	Unit Wt 3	Content W. Z.	Stress 71. Psi	Stress "I, ps1	Difference	Elasticity E x 106	Poisson's Ratio
					Very Hard	d Sandstone				
01-17-10	5.7R 3	17 71	153.6	148.4	1.5	001	14,200	14,100	3.55	0.16
CW-17-70	577.5	12 21	157.9	152.3	3.7	300	17,550	17,250	6.77	0.18
CW-17-79	576.2	13.57	154.8	151.0	2.5	006	17,330	16,430	2.78	0.34
					Hard 5	Hard Sandstone				
CU-23-79	580.6	01.6	154.8	150.6	2.8	200	018,11	11,610	2.32	0.29
CU-26-70	582 5	7. 20	154.2	150.9	2.2	009	18,090	17,490	3.41	0.23
CU-24-79	581.8	7 90	11	152.9	2.5	1800	25,530	23,730	3.93	0.23
CW-28-79	584.5	06.4	153.0	8.721	3.5	1800	26,860	25,060	4.03	0.27
					Shaly	Sandstone				
73-78-70	S75 B	13.60	156.1	151.1	3.3	200	9,650	9,450	2.35	0.19
CW-28-79	575.1	14.30	155.5	151.0	3.0	009	12,800	12,200	2.35	0.29
CW-28-79	570.4	19.00	155.5	151.0	3.0	1800	26,010	24,210	4.80	0.26

PLATE E1

PLATE E2

PLATE E4

PLATE E5

PLATE E6

PLATE E7

PLATE E8

PLATE E9

PLATE E10

PLATE (I

PLATE E12

PLATE E14

PLATE E15

PLATE E16

PLATE E17

PLATE E18

, 4

Lor.

The state of the s

A TABLE OF THE PROPERTY AND THE PROPERTY OF TH

Photographs of core after compressive tests

Photographs of core after direct tensile tests

Photographs of core after direct tensile tests

Photographs of core after triaxial tests

Photographs of core after triaxial tests

SHEAR STRESS 7, TSF			SHEAR STRENGTH S. TSF											
NO THE DEFORM A TION OF THE DE	ATION, IN.	× 10 ⁻³			τ,	φ	EAR S MA =	XIMU	NGTH	ULTIM	AMÉT ATE			
TEST NO (Boring No.	& Deptl	ı,ft	CW-1 23.5		CW- 25.		CW-1 24.7							
WET DENSITY, PCF		γ_{d}	158	_	156		156.							
WATER CONTENT	2.2	%	3.1	%	3.1	76		7.		76	_	7.		
							<u> </u>				-			
			2.0		4.0		8.0						├-	
NORMAL STRESS, TSF	- TSE	σ	13.9	35	26.	30	31.2	, 5			-		\vdash	
TIME TO FAILURE, MIN		1,	160		204		179				-		\vdash	
ULTIMATE SHEAR STRE		τ,	4.21	<u> </u>	9.3	5	12.4	4			 			
INITIAL DIAMETER, IN.		Do	3.97	7	3.9	6	3.98	3						
INITIAL HEIGHT, IN.		но												
DESCRIPTION OF MATE	RIAL		Very (Bond	har I st	d sa	ndst th)	one;	Conc	ret	e to	rock			
REMARKS				PR	OJECT		Saul	t St	Ma	rie				
							Comp	ensa	tin	g Wor	ks			
				AR	EA									
				80	RING	10. S	ee te	st n	10.	SAMPL				
				DE EL	РТН	S	ee te	st r	10.	DATE	22 C	ct l	979	
					ום	REC	T SHE	AR	TES					

WES FORM 1490 EDITION OF JUN 65 IS OBSOLETE

PLATE E27

ننت ا										
			451					1		
ننند			1 H10	Ш	4+					
illi.			неи	Ш	111		#			
: <u>! ! !</u>			15 6	Ш		1:1		111		
			1431	Ш						
			15	Ш		***			##	:1:
Ш				Ш					::: 	
							2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
لننت								<u> </u>		
. 01	1				Ř	SHEAR STRENGTH PARAMETERS	NGTH PAI	MET	ERS	
::L						MAXIMUM		ULTINATE		
 "					-9	и	ļ			
ŭ										
							 		(4.5) (4.5)	
	SHEAR DEPORTATION, IN	, 00								
7EST NO.	(Boring No. 6	Depth, ft)	6.5 CH-6		CW-2 5.1	CW-2 3.6	CW-21 4.85	CW-2	2	
£1 0(E)	AMI DEKETY, POP	7,	156.3	-	154.6	155.3	157.1	154	9.	
ATER	MATER CONTENT	•	0.9	-	0.7 \$	1.3	2.3	٤.0	9	**
MORMAL	STRESS, 15F	ь	1.5		2.5	4.0	6.0	8.0		
MA XIMUM	M SHEAR STRESS, TSF	4-	46.	.76	48.72	51.37	99.09	63.60	99	
TIME TO	FAILURE, MINUTES	=	70	-	161	52	52	9		
TIBA	ULTIMATE SHEAR STRESS, TSF	۴.		-	7.15		9.62	10.22	22	
# TIAL	INITIAL CRAMETER, IN.	å	3.96	9	3.96	3.96	3.96	3.96	9	
WI TIAL	INITIAL HEIGHT, IN.	ů								
ESCAN	DESCRIPTION OF MATERIAL	Very	hard		sandstone;	Intact				
De ARKS			Γ	1	PROJECT	Sault	St Marie	,	Conpensating	ting
					Works					
				VILV						
				0	0 M O	see Test	No. SAMPL	L MO		
				DEP TH		see Test	No. DATE	77	Oct 1979	79
		}			DIREC	DIRECT SHEAR TEST REPORT (ROCK)	TEST RE	PORT	(ROCK	_

SHEAR STRENGTH PARAMETERS

Г. ОЕРОМИАТІОН Ін. ≈ 10°

MAXIMUM

TAN 6 = "

" •

NORMAL STRESS O. TSF

SHEAR STRESS T. TSP

1

139.4 3.90

133.2 CW-34 7.50

13.4

13.6 . 130.5 CW-29 3.15

74 .

WET DENSITY, PCF

WATER CONTENT

TEST NO. (Boring No. & Depth, ft) SMEAR DEFORMATION, IN. × 10 "

17.0

3.12

1.44 2.0

7 0.78

MAXIMUM BIEAR STRESS, TSF

NORMAL STRESS, TSF

TIME TO FAILURE, MINUTES

1.0

6

0.4

3.0

2.08

1.47

7 0.60

ULTIMATE SHEAR STRESS, TSP

INITIAL DIAMETER, IN.

INITIAL HEIGHT, IN.

å ŝ

DIRECT SHEAR TEST REPORT (ROCK) see Test No. DATE Sept 1979 DEPTH SEE TEST NO. SAMPLENO.

AMEA

DESCRIPTION OF MATERIAL SAILY CLAY SEAM taken from very hard sandstone;

Clay is classified as a lean clay (CL)

REMARKS

PROJECT Sault Ste Marie Compensating Works

EDITION OF JUN 68 IS DESCRETE WES "0" 1490 PLATE EZ86

SKEET NO

EDITION OF JUN 65 IS OBSOLETE

WES ... 1490

SHEAR STRESS 7, TSF			SHEAR STRENGTH S, TSF							
NORMAL DEFORMATION, IN. × 10 -3	SHEAR DEFORMATION, IN.	× 10 ⁻³				φ φ	EAR STRE		AMÈTERS <u>ATE</u> ——	
TEST	NO. (Boring No. & Dept)	h,ft	CW-1		CW-13 28.2		CW-13 28.4	CW-15 29.6	CW-15 25.5	
 -	ENSITY, PCF	γ_d	157.		158.0		158.5	159.9	152.2	
WATER	CONTENT	w	1.7	%	3.0	%	1.9 %	2.8 %	1.8 -	%
	L STRESS, TSF	σ	3.3		5.5	-	7.5	12.0	13.9	
	TO FAILURE, MINUTES	1,	5.59 35		94		19.66	21.06 85	21.54 183	
 -	ATE SHEAR STRESS, TSF	τ,	2.69)	3.52	_	10.00	10,60	17.13	
	rectangle, in.	Do				1	1.6x1.9	2.0x2.4		
INITIA	L HEIGHT, IN.	но				_				
DESCR	RIPTION OF MATERIAL	Ve	ry har	d s	sandsto	ne	; cross l	oed		
REMAR	₹KS			PR	OJECT		Sault S	Marie		
<u> </u>							Compensa	ating Wor	ks	
				AR	EA					
l ——				_		S	ee test 1	10. SAMPL	E NO.	
 				EL	:Ртн 	S	ee test t	DATE	5 Mar 198	30
					DIRE	EC	T SHEAR	TEST REF	ORT (ROC	K)

WES FORM 1490

EDITION OF JUN 65 IS OBSOLETE

PLATE E29 SHEET NO.

SHEAR STRESS 7, TSF			SHEAR STRENGTH S. TSF								
NORMAL DEFORMATION IN. x 10 3	SHEAR DEFORMATION, IN.	× 10 ⁻³			ϕ TAN ϕ	EAR 5	STRE	<u>M</u> <u>L</u>	PAR	AMÊTERS	
TEST	NO.(Boring No. & Depth	ı, ft	CW-:		CW-5 23.85	CW-1					
	ENSITY, PCF	$\gamma_{\rm d}$	156		158.1	158					
<u> </u>	R CONTENT	, a	3.0	%	2.1 %	1.8	%		%	76	%
NORMA	AL STRESS, TSF	0	2.0		4.0	8.0					
	UM SHEAR STRESS, TSF	$ au_{\mathfrak{f}}$	~		,						
TIME '	TO FAILURE, MINUTES	1,	72		63	103					
ULTIM	ATE SHEAR STRESS, TSF	τ,	1.2	7	2.61	5.0	5				
INITIA	L DIAMETER, IN.	D ₀	5.9	6	5.93	5.9	6				
INITIA	L HEIGHT, IN.	Нο									
DESCR	RIPTION OF MATERIAL	Ver	y har	d sa	andstone,	con	crete	e on	rock	c, precut	
REMAI	RKS			PR	OJECT	ault Compe				3	
 				AR	EA						
l				во	RING NO. S	ee t	est 1	no. s	AMPL	E NO.	
				DE EL	PTH S	ee t	est 1	no.	DATE	24 Aug 1	979
]						T SHE	EAR			ORT (RO	

WES FORM 1490 PLATE E30

EDITION OF JUN 65 IS OBSOLET

SHEAR STRESS 7, TSF								SHEAR STRENGTH S. TSF											
MATION,									E			NOR	MAL	STRESS	σ.	TSF			
NORMAL DEFORMATION										т		=	XIMUN		_TIM		TERS		
	SHEAR	DEFC	RMA	тіо	N. IN	. × 10	- 3	CW-1	_	CW-		=					. τSF -11	T CW-Z	_
TEST	NO.(Bo	ring	No.	&	Dep	th,f	٤þ			6.6		4.10	1	5.20			.70	3.20	
WET D	ENSITY	, PCF				γ_{d}		159.	0	156	.6	157.	5	157	.0	15	6.3	155.	6
WATER	CONT	ENT					1	1.5	%	2.3	%	1.9	- %	1.6	7.	2.	1 %	2.1	7,
ļ							1					 						 	_
NORMA	AL STRE	ESS. T				σ	-	2.0		4.0		8.0		2.0		4.	0	8.0	-
MAXIM	UM SHE	AR ST	RESS	5, T	SF	7,													
TIME	TO FAIL	URE,	MINU	ΙTΕ	s	٠,		81		89		89		72		73		99	
ULTIM	ATE SH	EARS	TRE	ss.	TSF	τ,		2.10)	5.5	5.57			4.02		9.	08	9.43	_
INITIA	L DIAM	ETER,	IN.			00	4	3.83	3	3.9	7	3.98		3.95	5	3.	95 —	3.96]
INITIA	L HEIGI	HT, IN				н						<u> </u>						1	_
DESCF	RIPTION	OF M	ATE	RIA		V	er	y har	:d_:	sands	tone	: Pre	cut.	rocl	c on	ro	ck		
REMAI	RKS								PF	OJEC	r Sá	ult S	t Ma	rie					
												mpens			rks				
									AF	REA									
									ВС	RING	NO. S	ee te	st r	10. SA	MPL	ENO)		
									DE EL	PTH		ee te	st r	10.	ATE	21	Jan 1	980]
										D	REC	T SHE	AR 1	rest	REP	ORT	Γ (RO	CK)]

WES APR 75 1490 EDITION OF JUN 65 IS OBSOLETE

PLATE E31

		::::) F					
ŀ			l. E					
u,		::::	15.			1::::		
TSF		• • •	1:					
7.			Ŧ 5	######				
3ES			lo Z					
ST		::::	STREN					
SHEAR STRESS			EAR S			 		
ž			SHE					
}			1" F		::::			
l		<u> </u>						
<u>.</u>			_					
NÔRMAL DEFORMATION, IN. x 10 3]		NORMAL	STRESS σ ,	TSF	
A SA			}					
E F3 51 ×		;;;;;		SH		NGTH PAR		
ے د خ	\ \	17:::	1		MAXIMU	M ULTIM	<u> </u>	
¥ ¥				φ	=			
O _Z	L		1	TAN ϕ	=			
ł	SHEAR DEFORMATION, IN.	× 10 - 5	ı	c	:		TSF	
TEST	NO.(Boring No. & Dept		CW-1	CW-23	CW-18	CW-35	CW-18	
	DENSITY, PCF	γ_d	155.3	3.7 158.6	7.0 157.7	30.3 157.4	4.75 157.2	
i	R CONTENT	<i>y</i>	3.3	1.8	1.8	1.9 %	1.9 %	70
		L_;;		<u></u>		<u>`</u>		
				 				
NORM	AL STRESS, TSF	σ	2.0	4.0	4.0	8.0	8.0	
MAXIM	NUM SHEAR STRESS, TSF	τ_{i}	9.70	6.60	5.56	11.40	16.06	
TIME	TO FAILURE, MINUTES	16	13	11	10 7		7	
ULTIM	MATE SHEAR STRESS, TSF	τ,	3.88	6.22	3.81	7.65	14.04	
INITIA	rectangle, in.	Do	3.7x3.9	3.9x3.9	3.6x4.8	3.9x3.6	4.6x3.9	
INITIA	AL HEIGHT, IN.	Нο						
DESCR	RIPTION OF MATERIAL	Ver	y hard s	sandstone.	natural	joint		
 								
REMAI	RKS			ROJECT	Sault St	Marie		·
 			}_		Compensat	ing Work	s	
l			t-	REA				
 				oring no.se	e Test No	SAMPL	E NO.	
				EPTH se	e Test No	DATE	21 Feb :	1980
			ŀ	DIREC	T SHEAR	TEST REF	ORT (ROC	CK)

WES FORM 1490 PLATE E3Z

EDITION OF JUN 65 IS OBSOLETE

SHEAR STRESS 7, TSF		SHEAR STRENGTH S, TSF								
NO PM AL DEFORM ATION IN. × 10 - 2 IN. × 1	× 10 ⁻³			TAN	SΗ φ • φ • •	EAR STREN	M ULTIM	AMÈTERS ATE		
TEST NO(Boring No. & Depth	ı,ft	CW-2		CW-2 9.7		CW-10	CW-1 30.3	CW-10 8.1	CW-17 26.6	
WET DENSITY, PCF	γ_d	157.	4	157.7	7	159.3	155.8	158.3	158.3	
WATER CONTENT		3.1	%	3.1	%	3.0 %	3.5 %	2.8 %	3.5	%
			-							_
NORMAL STRESS, TSF	σ	1.5		3.0		3.0	4.0	4.0	6.0	\dashv
MAXIMUM SHEAR STRESS, TSF	7,	13.3	5	18.26	·	8.91	27.70	18.20	20.96	┪
TIME TO FAILURE, MINUTES	1,	0.12		0.47		0.12	0.55	0.18	0.50	┪
ULTIMATE SHEAR STRESS, TSF	<u>τ</u> ,	2.35	-			3.12	·	8.30	6.85	ヿ
INITIAL DIAMETER, IN.	Do	3.95		3.93		3.93	3.96	3.95	3.96	ヿ
INITIAL HEIGHT, IN.	но						· · · · · · · · · · · · · · · · · · ·			7
DESCRIPTION OF MATERIAL	H2	rd sa	nds	tone,	ini	tact				
REMARKS			PR	OJECT	Sa	ult St M	arie			
					Co	mpensati	ng Works			_
			AR	EA						_
). S	e test n	O. SAMPL	E NO.		_
			DE EL	PTH	Se	e test n	O. DATE	10 Sept	1979	_
				DIR	EC	T SHEAR	TEST REP	ORT (RO	CK)	

WES APR 75 1490

EDITION OF JUN 65 IS OBSOLETE

PLATE E33

			1	H			<u> </u>	: 1 : : :		
•		· · · · ·	1				1::			
⊤SF			15				1::			
٦. ٦			i i							
		: : : :	F 0 2		+		1::		: : : : :	
STR			STRENGTH	+			↓ ∷			
SHEAR STRESS			SHEAR							
¥		::::	18 8		+ + + + + + + + + + + + + + + + + + + +		1::			
			1							
			1	-	<u>لىرىنا كناب</u>	 	٠	<u></u>		
NORMAL DEFORMATION,			1			NORMAL	STR	ESS σ .	TSF	
RMA 3										
) E FO					SH	HEAR STRE		H PAR		
A Z		:::::	1		d	=	_			
Š.]		,	=				
		3				=			T\$F	
	SHEAR DEFORMATION, IN.		OT 1 1	0	CW-17	CW-10	, —.			
TEST	NO. (Boring No. & Depth	,ft	9.55		26.80	9.85	_			
WET D	ENSITY, PCF	γ_{d}	160.	0	158.0	159.9				
WATER	CONTENT	1.7	%	3.8 %	2.5 %	_	•70	97,	۶, ۶,	
									·	
								·	·	ļ
NORMA	AL STRESS, TSF	σ	23.8	· E	8.0 18.93	8.0	_			
	UM SHEAR STRESS, TSF	<i>τ</i> _į	0.35		0.48	0.17				
	TO FAILURE, MINUTES	* 4				 	-			
	ATE SHEAR STRESS, TSF	<u>τ,</u>	9.72		9,20	10.22	-			
	L DIAMETER, IN.	Но	3.94	. 5	3.954	3.905	-			+
	HEIGHT, IN.	نـــــا	d san	dst	one, int	act	1		L	
DESCR	TON OF MATERIAL									
REMAR	RKS			PR	OJECT	Sault St	e M	larie		
						Compensa	tir	g Wor	ks	
				AR	EA					
 						ee Test N	ю.	SAMPL	E NO.	
				DE EL	PTH S	ee Test N	lo.	DATE	12 Jan	1980
İ					DIREC	T SHEAR	TES	T REP	ORT (RO	CK)

WES FORM 1490 PLATE E34

EDITION OF JUN 65 IS OBSOLETE

SHEAR STRESS 7, TSF			SHEAR STRENGTH 5. TSF						
NORMAL DEFORMATION	SHEAR DEFORMATION, IN.	10			φ tan φ	EAR STREI	M ULTIM	AMĒ TERS	
TEST	NO.(Boring No. & Depth	ı,ft	CW-2	22	CW-15 31.1	CW-11 26.8	CW-30 8.8		
WET DI	ENSITY, PCF	γ_{d}	155	. 1	152.8	153.0	157.5		
WATER	CONTENT	w	7.7	%	3.8 %	6.1 %	6.5 %	7.	7.
 -	L STRESS, TSF	σ	1.5	_	2.5	6.2	7.61		
	O FAILURE, MINUTES	1,	0.4		0.17	0.18	0.25		
}	ATE SHEAR STRESS, TSF	τ.	0.7		2.0	5.5	6.94		
<u> </u>	L DIAMETER, IN.	Do	3.90	5	3.92	3.79	3.96		
INITIA	L HEIGHT, IN.	но							
DESCR	PTION OF MATERIAL Has	rd s	andst	one	- red sh	ale seams	intact	(>1" thi	ck)
REMAR	Specimens thick	eno	ugh	PR	OJECT S	ault St N	larie		[
	to be taken from ho	ost	rock		Compens	ating Wor	ks		
 				AR	REA				
					PTH S	ee test r	O. DATE	14 Jan 1	
l				L	DIREC	T SHEAR	IESI REP	OKI (ROC	.^)

Films To Sa

SHEAR STRESS 7, TSF			SHEAR STRENGTH S. TSF									
NORMAL STRESS σ , TSF SHEAR STRENGTH PARAMÈTERS MAXIMUM ULTIMATE $\phi = $												
TEST	NO(Boring N . & Depth	ft'	CW-1:		CW-15 27.3	CW-23 1.8	CW-15 26.9					
	ENSITY, PCF	γ _α	158.6		154.8	151.3	158.7	_				
WATER	CONTENT	*	2.6	%	2.3 %	2.4 %	2.6 %	%	7,			
			2.0		4.0	6.0	8.0					
	AL STRESS, TSF	σ	1.0	\dashv	1.52	2.14	3.47	· · · ·				
	UM SHEAR STRESS, TSF	7,		\dashv								
ļ	ATE SHEAR STRESS, TSF	7	8	\dashv	7							
	L DIAMETER, IN.	T _r	3.96	\dashv	3.98	3.97	3.98					
	L HEIGHT, IN.	Ho			,,,,	3.77						
	RIPTION OF MATERIAL		d sand	ist	one, pre	cut						
REMAR	RKS	Sault Compen	St Marie									
 						See test	no SAMPL	E NO.				
				DEPTH See test no. DATE 13 May 1980								
1				DIRECT SHEAR TEST REPORT (ROCK)								

WES APR 75 1490 PLATE E36

, ! > 4

EDITION OF JUN 65 IS OBSOLETE

I. SHEAR STRESS 7, TSF			SHEAR STRENGTH S, TSF						
NORMAL DEFORMATION IN. x 10 ³	AMÊTERS								
TEST	No. (Boring No. & Depth	ı,ft	CW-1		CW-28 2.35	CW-32 6.60	CW-23 7.00		
WET D	ENSITY, PCF	γ_d	160.		155.0	159.0	155.0		
WATER	CONTENT	*	3.2	%	3.1 %	5.7 %	4.1 %	%	%
<u> </u>									
···-					2.5	4.0			
	L STRESS, TSF	σ	1.5		1.68	2.90	6.0 4.13		
	UM SHEAR STRESS, TSF	7;	4	•	1.00	17	11		
	O FAILURE, MINUTES ATE SHEAR STRESS, TSF	1 f τ,	0.6	7	0.93	1.45	3.05		
	L DIAMETER, IN.	Do	3.97		3.98	3.94	3.97		
	L HEIGHT, IN.	Но					 		
DESCR	HPTION OF MATERIAL	Har	d Sano	isto	one with	shale sea	ams (<1/1	l6" to 1"	thick)
REMAR	RKS			PR	OJECT	Sault St	Marie		
						Compensa	ating Wor	rks	
				AR	EA				
						ee test r	O. SAMPL	.E NO.	
l				DE EL	PTH S	ee test r	O. DATE	29 Jan	1980
					DIREC	T SHEAR	TEST REF	PORT (ROC	CK)

WES APR 75 1490

EDITION OF JUN 65 IS OBSOLETE

PLATE E37

TSF						TSF												
, f,						Ī	+						1:::					
ZESS			 	: : · : : : : :		RENGT					::::			- -		: : :		
SHEAR STRESS					::::	l S												
SHEA						SHEAR												
İ		1] ₀												
]						I H	H:::	:1:	Hi		1	끸
NORMAL DEFORMATION IN. × 10 -3]	NORMAL STRESS σ , TSF											
O RM .						-			SH	IEAR :	STREI	NGTH	PAR.	AM È	TERS	5		
N 0 5										M	A XIMU	<u>w</u> <u>u</u>	LTIM	ATE				
A															-			- }
o Z						_		TAN φ =										
SHEAR DEFORMATION, IN. × 10 ⁻³ CW-1 CW-13 TSF																		
TEST	NO.(Bo	ring	No. 8	Dept	h,ft	27.		27		26.			-		·—	\perp		
WETD	ENSITY	, PCF			γ_d	157	. 4	15	5.3	160		ļ				-		
WATER	CONT	ENT				3.1	%	3.	1 %	2.4	%		%			%		%
							 .	-		-					-	+		
NORM/	AL STR	ESS, TS	SF		σ	2.0		4.	0	8.0						\top		
MAXIM	UM SHE	AR ST	RESS,	TSF	τ_{i}	2.0	4	10	.03	17.	73							
TIME	TO FAIL	URE,	MINUT	Es	† _f	19		14		9.5	0					\downarrow		_
<u> </u>	ATE SH				τ,	1.9 3.6x3		7.	x4.0		o x3.9					+		\dashv
	L rec			n	Do Ho											+		
DESCRIPTION OF MATERIAL Hard sands							ton	e, n	atura	1 jo	int							
<u> </u>																		
REMA	RKS	PR	OJEC	т_			Mari											
										Comp	ensa	ting	work	ts				
								REA	NC :	See t	est	no.	AMPL	E N/				
 -	OE	PTH		See t	est	no.				19	980	\neg						
	 	DIRECT SHEAR TEST REPORT (ROCK)																

WES APR 75 1490 PLATE E38

EDITION OF JUN 65 IS OBSOLETE

R STRESS 7, TSF			STRENGTH S. TSF																
SHEAR			SHEAR																
DRMATION: 0 3				NORMAL STRESS σ, TSF															
NORMAL DEFORMATION					SHEAR STRENGTH PARAMÉTERS MAXIMUM ULTIMATE $\phi = $														
	SHEAR DEFORMATION.	IN. × 10 ⁻³	_			c	=				TSF								
TEST	No.(Boring No. & De	pth,ft	CW-1 7.4	LO	CW-1		CW-3	32											
WET D	ENSITY, PCF	γ_d	155	, 9	155		156	.0		\Box									
WATER	CONTENT		3.2	%	3.6	%	3.0	%		%		%	%						
<u> </u>										-	. <u>.</u>	-							
NORMA	AL STRESS, TSF	σ	2.0		4.0		8.0			+		+							
MAXIM	UM SHEAR STRESS, TSF	7,	2.6	. 6	37.	L	41.	5			-								
TIMET	TO FAILURE, MINUTES	16	33		37		35												
ULTIM	ATE SHEAR STRESS, TSF	τ,								_									
INITIA	L DIAMETER, IN.	Do	3.97	7	3.93	3	3.9	5				ļ							
INITIA	L HEIGHT, IN.	Но																	
DESCR	RIPTION OF MATERIAL	Shaly	sands	ton	e, ir	tac	t												
REMAR	RKS			PRO	OJECT	_			e Mar ting		s								
			ARI	EA															
			801	RINGN	o. s	ee Te	est N	O. SA	MPLE	NO.									
			DE!	РТН	s	ee Te	est N	0. DA	TE 1	3 May	1980								
			DI	REC	T SHE	EAR 1	EST	REPO	RT (RC	DIRECT SHEAR TEST REPORT (ROCK)									

WES APR 75 1490

EDITION OF JUN 65 IS OBSOLETE

PLATE E39 SHEET NO.

SHEAR STRESS 7, TSF			SHEAR STRENGTH S. TSF									
NORMAL STRESS σ , TSF NORMAL STRESS σ , TSF SHEAR STRENGTH PARAMÈTERS MAXIMUM ULTIMATE $\phi = $												
TEST	No.(Boring No. & Depth	ı,ft	CW-32 7.95		CW-33 14_6	CW-31						
WET D	ENSITY, PCF	γ_d	153.		142.5	24.35 157.7						
WATER	R CONTENT	*	3.7	%	4.6 ,	6.0 %	76	%	%			
ļ						ļ		ļ				
NORMA	AL STRESS, TSF	σ	2.0		4.0	8.0	ļ	 				
MAXID	UM SHEAR STRESS, TSF	7,	1.41		4.66	7.83	1	ļ				
TIMET	O FAILURE, MINUTES	16	11		18	7	 					
ULTIM	ATE SHEAR STRESS, TSF	7,	1.03		3.39	5.29	ļ	ļ				
INITIA	L DIAMETER, IN.	Do	3.96		4.11	3.93	ļ	ļ	ļ			
INITIA	L HEIGHT, IN.	но			L	<u> </u>						
DESCR	RIPTION OF MATERIAL					ed shale	with thir	clay se	ams			
				1"	thick)							
REMAR				PR	OJECT	ault Ste						
	to be taken from ho	st	rock	<u> </u>	C	ompensati	ng Works					
				AR	EA		·	· · · · · · · · · · · · · · · · · · ·				
				ВО	RING NO.	see Test	No. SAMPL	_E NO.				
				DEPTH see Test No. DATE 9 Jan 1980								
						CT SHEAR						

WES FORM 1490 PLATE E40

EDITION OF JUN 65 IS OBSOLETE

SHEAR STRESS 7, TSF			SHEAR STRENGTH 5. TSF								
NO GRAP L DEFORM A TION NO SHEAR DEFORM SHEAR DEFORM	MATION, IN.	× 10 - 5			TAN	φ ι φ	NORMAL EAR STRE MAXIMU	NGT	H PAR	AMÈTERS <u>ATE</u> 	
TEST NO. (Boring N	o. & Depti	ı,£t	CW-6		CW-6 7.95		CW-29 6.55				
WET DENSITY, PCF		γ_{d}	158		156.	5	159.5				
WATER CONTENT		*	2.7	%	2.8	%	2.3 %		%	%	7,
							<u> </u>	-			<u> </u>
			2.0				0.0	-			
NORMAL STRESS, TSF		σ	2.0	<u> </u>	3.20		5.49	-			-
MAXIMUM SHEAR STRE		τ _ι	12		6		13	-			
TIME TO FAILURE, MI		1,			ļ -			-			
ULTIMATE SHEAR STE		7,	3.94	<u>'</u>	3.96		3.96	-			
INITIAL DIAMETER, IN	·	Do Ho					<u> </u>	-		<u> </u>	
DESCRIPTION OF MAT	ERIAL		y sand	isto	one, p	rec	ut rock	on :	rock		
REMARKS			PR	OJECT		Sault S					
						Compens	ati	ng Wor	ks		
					EA						[
						e Test N		SAMPL			
				EL	PTH	se	e Test N	٥.	DATE	28 Jan	1980
			DIR	EC	T SHEAR	TES	T REP	ORT (RO	CK)		

WES APR 75 1490

EDITION OF JUN 65 IS OBSOLETE

PLATE E41

SHEAR STRESS 7, TSF		SHEAR STRENGTH S. TSF												
IA TION,				NORMAL STRESS σ, TSF										
NORMAL DEFORMATION, IN. × 10 3					φ	EAR STREE	M ULTIM	ATE						
ļ	SHEAR DEFORMATION, IN.	< 10 ⁻³		-	,									
TEST	NO. (Boring No. & Depth	,ft	CW-1 29.5		CW-23 10.25	CW-10 10.60	CW-15 28.90	CW-1 34.80						
WET D	ENSITY, PCF	γ_d	142.	. 5	144.2	143.9	147.4	142.5						
WATER	CONTENT	w	5.1	%	4.2 %	4.4 %	4.6 %	6.1 %	%					
														
-					2.5	4.0	6.0							
NORMA	AL STRESS, TSF	σ	1.5		8.0									
MAXIM	UM SHEAR STRESS, TSF	$ au_{\mathfrak{f}}$	0.58	3	5.18	3.70	11.72	11.42						
TIME	TO FAILURE, MINUTES	† _f	15		15	16	34	77						
ULTIM	ATE SHEAR STRESS, TSF	τ,	3.98		2.60	1.54	4.81	5.42						
INITIA	L DIAMETER, IN.	Do Ho	3.98	, 	3.91	3.97	3.96	4.04						
	L HEIGHT, IN.	L		<u> </u>			L							
DESCR	RIPTION OF MATERIAL	hal;	y sand	isto	ne, thin	clay sea	ms (<1/8	" thick)						
REMAR	RKS			PR	OJECT	Sault St	e Marie	ks						
[AR	EA									
				во	RING NO. S	ee Test N	O. SAMPL							
					PTH S	ee Test N	lo. DATE	30 Oct 1	979					
						T SHEAR								

WES FORM 1490 PLATE E42

EDITION OF JUN 65 IS OBSOLETE

. SHEAR STRESS 7, TSF			SHEAR STRENGTH S. TSF									
NORMAL DEFORMATION IN. x 10 3	SHEAR DEFORMATION, IN.	× 10 ⁻¹			φ	EAR STREE	M ULTIM	AMÈTERS				
TEST	NO (Boring No. & Depth	,ft	CW-2		CW-14 9.85	CW-32 6.20	CW-28 20.70					
	ENSITY, PCF	γ _d	158.		158.7	157.9	156.4					
WATER	CONTENT	w	3.2		2.3 %	4.9 %	3.8 %	%	7,			
NORMA	AL STRESS, TSF	σ	1.5		2.5	4.0	8.0					
MAXIM	UM SHEAR STRESS, TSF	7,	2.45	,	5.76	3.55	6.36					
TIME 1	O FAILURE, MINUTES	16	6		76	52	21					
UL, TIM	ATE SHEAR STRESS, TSF	τ,	2.05		3.55	1.60	3.00]			
INITIA	L DIAMETER, IN.	Do	3.94		3.97	3.93	3.89					
INITIA	L HEIGHT, IN.	но			L			L				
DESCR	RIPTION OF MATERIAL	Sha	ly san	dst	rae with	shale se	ams (1"	thick)				
REMAR	RKS		l	PR	OJECT	Sault St						
l				<u> </u>		Compensa	ting Wor	ks				
l ——				_	EA	M	. 1					
 				BORING NO. SEE TEST NO. SAMPLE NO.								
				EL		ee Test N	DATE	8 Feb 19				
l				l	DIREC	T SHEAR	TEST REF	ORT (ROC	K)			

WES APR 15 1490

EDITION OF JUN 65 IS OBSOLETE

PLATE E43

PLATE E44

PLATE E45

PLATE E46

PLATE E47

PLATE E48

4.1.

PLATE E49

PLATE E50

PLATE E51

PLATE E52

PLATE E53

PLATE E54

PLATE E55

PLATE E56

PLATE E57

PLATE E58

PLATE E59

PLATE E60

PLATE E61

PLATE E62

:1

The state of the s

1

14

124

The state of the s

PLATE E63

PLATE E64

PLATE E66

PLATE E67

PLATE E71

PLATE E72

PLATE E74

PLATE E75

PLATE E77

PLATE E78

PLATE E79

PLATE E82

PLATE E83

PLATE E86

PLATE E88

PLATE E91

PLATE E94

PLATE E95

PLATE E96

PLATE E98

Typical photographs of concrete to rock and intact

Typical photographs of precut and clay seam

PLATE E102

Typical photographs of shale seam and natural joint

PLATE E104

PLATE E105

PLATE E106

PLATE E108

APPENDIX F
STRUCTURAL STABILITY ANALYSIS,
FIGURES AND COMPUTATIONS

Figure F2. Location of clay and shale seams in upstream section (Section A-A', Plate D1) of core holes

E - 1

Figure F3. Location of clay and shale seams in downstream section (Section D-D', Plate D1) of core holes

Commence of the contract of th

Composite location of clay and shale seams in core holes of Section A-A' and Section D-D' (Plate D1) Figure F4.

Carlotte Transfer of the Manne

-

Figure F5. Typical geometry for dam piers 10, 11, 12, 14, 15, and 16, Soo Dam

DATE							
i i	PERCENT EFFECTIVE BASE	001 * 3V	*	100.0	93.6	100.0	0.001
JE BASE, COMPUTED BY	AREA OF PIER BASE IN COMPRESSION	A Y	FTL	3 19.7 6	+86.53 +	519.76	519.76
PERCENT EFFECTIVE BASE, CONCRETE-FOUNDATION INTERFACE	TOTAL AREA OF PIER BASE	Å	FT	519.76	91.76	519.76	91.915
12, 14, 15, AND 16 -	LOAD CASE			NORMAL CREEKTION	NORMAL OPERATION WITH ICE	HIGH- WATER CONDITION	NORMAL OFERATION WITH EARTHQUAKE
DAM PIERS 10,11, 12, 14,15, AND 16 - PERCENT EFFECTIVE BASE, CONCRETE-FOUNDATION INTERFACE							

The state of the s

-XX

* Iterative solution used to determine area of base in Compression

Figure F6. Percent of pier base in compression, concrete-foundation interface, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam

PAGE | OF |

SMELLET DAIN, PIERS 10, 11, 12, 14, 15, AND 16 - FACTOR OF SPRETY AGAILUST SUDING MUNIC COMPUTED BY	AND 16 - F	ACTOR OF SA	FETY AGAINS	T SUDING	LONG COMPUTED P	-		DATE		
	3	CONCRETE - FOUNDATION INTERFACE	UNDATION IN	NTERFACE	CHECKED BY		ļ	DATE		
	SUM OF VERTICAL FORCES	SUM OF HORIZOUML FORCES	FRICTION	CONESIVE	BASE	STRUT RESUTANCE	SHEAR	COHESIVE	TOT AL SLIDING RESISTANCE	FACTOR OF SAFETY NOMEST SLEMA
LOAD CASE	, v. (XI)	π <u>*</u> χ	4	ر (۸۶۶)	A (FT 2)	, K	R = F lan ¢	R=CA	R. R. + R. + R. F.S. = R.	R.S. T.
NORMAL OPERATION	h'582'l	264.9	32.1	0	519.76	0,717	806.3	0.0	1,523.3	5.75
DERMAL OPERATION WITH ICE	h.285.1	867.0	32.1	٥	£86.53	0 117	806.3	0,0	1,523 3	1.76
HIGH-LUATER CONDITION	1, 266.4	313.8	32.1	0	519.76	717.0	794.4	0.0	1,511.4	4.82
NORMAL OFERMON) LOTH EARTH QUAKE	1,285.4	366.9	32.1	0	519.76	0.717	804.3	0.0	1,523.3	4.15
et Cours Actuals es. 2534										PAGE OF 1

Figure F7. Factor of safety against pier sliding, concrete-foundation interface, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam

	TOTAL BASE PRESSURE	£=£.+£	KSF	2.5.2	3.84	1.00	6.07	14.2	4.00	2,21	4.20	PAGE 1 OF 1
	UPUFT PRESSURE	f=.045 h	KSF	8.1	74.0	8	Lħ'O	1.06	C4.0	1.00	O.47	
DATE DATE	טפרוצד אפשף	-c	FT	16.0	7.5	0.41	7.5	17.0	7.5	16.0	7.5	Comparestion
	THEREMANNE PREZVICE	}+}=}	KSF	1.52	3.42	0.00	5.60	1.35	3.53	1.2.1	3.73	غ
:	THERMIN DIMENTED OF BUILDING MANNEY	1 = E(D-e)C	KSF	- 0.45	0.45	49.2-	2.96	-1.09	1.04	- 1.26	92'1	100% of hase
COMPUTED BY	ANAL PRESSURE	7. = A.	KSF	74,5	2.47	2.64	2.64	2.44	2.44	2.47	2.47	s than 10
	- DISTANCE TO COTTER- BISTA NOST TREES OF SASE	U	FT	24.37	29.37	T-97-12	27.67	29.37	75.92	24.37	24.37	when less than
MAKIMUM BASE PRESSURES,	LOCATION			13 3H	Toe	WEBL.	70E	HEEL	Ę,	HEEL	toe	
SE PRESO	INERTIA OF BASE AREA IN COMPRESSION	I	ĦΨ		728,68		ki + (20)		126,322	- 1	7X	bace properties
MAKIMUM BASE	AREA OF PIER BASE 10 COMPRESSION	A	FT²		517.76	AE T 97:	481.30		517.76	į	SH./6	
	DISTINACE TO CENTROID OF MEETS IN COMPREZZIBLE	D	FŢ	10	75.13	1,1	, J		72.83		24.31	to determined
10,11,12,14,15, AND 16-	TUSMOM THATJUSƏR MAR	& . ₹ r ₅	FT		26.33	í	11.32		#8.8 7		2535	haste confiden
1, 12, 14, 1	SUM OF MANBUTS	Σ	FT-K	20 610	35,8/0	100	64,838);;	35, 756	32 6	185'26	1
	SUM OF VERTICAL FORCES	IT,	KIPS	h see i	3	300	1.502	•	h. 35 2 t1	1	1, 285.4	11.4
SUBLECT DAIN PIERS	JSVD CV8E			NORMAL	OPERATION	NORMAL *	OPERATION WITH ICE	- #9:#	WATER	NORMAL	ENETH QUARE	ots roller HD. (253A arctivities reserved

1 10 1 35Vd # Iterative solution used to determined base properties when less than 100% of base in compression

Maximum base pressure (pier section only), concrete-foundation interface, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam Figure F8.

DAM PIERS 10,11,12,14,15, AND 16 -		9 5 5 4	DATION SEAM		CHECKED BY:	ï		DATE		
LOAD CASE	Sum of VECTICAL FORLES	SUM OF HORIZONTAL FORCES	FRICTION	COMESIVE	BASE	STRUT RESISTANCE	STRUT SHEAR RESISTANCE RESISTANCE	CONESIVE RESISTINCE	TOTAL Submid Resistance	FACTOR OF SAFETY MGAINST SUBM
	12 S	n (Sark)	ф (beckes)	ر (۳3۴)	∀ (2,45)	, 78 (8)	R = Frank	(* CA	R-R+F+R (KIPS)	75 2) 8) 172
1			21.0	0.0	519.7b	0.717	4634	0.0	1,216.4	4.57
NORMAL OPERATION	1,285.4	264.9	36.5	- o	519.76	717.0	451.2	22.0	1,720.2	6.49
			21.0	0.0	486.53	717.0	413.4	0.0	4.01Z11	1.40
NORMAL OPERATION WITH KE	1,285.4	867.0	365	9.1	486.53	717.0	451,2	48.7	1,716.9	85.1
			21.0	0.0	519.76	0.717	1.334	0.0	1,203,1	3.83
HIGH - WATER CONDITION	1, 266.4	8 8 8	36.5	0.1	519.76	0717	437.1	22.0	1,706.1	5.44
1		L	21.0	0.0	519.76	717.0	443,4	0.0	1,210.4	3.30
NORMAL OPERATION WITH ENRTHQUAKE	1,285.4	366.9	34.5	0.1	519.76	0.117	451.2	52.0	1,126 2	4.69

Figure F9. Factor of safety against pier sliding, foundation seam, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam

MALTEY ANALYSIS - NORMAL OPERATION COMMITTO ANALYSIS - NORMAL OPERATION COMMITTO #	SLS - NORM	AL OPERATION CONTIED BY		DATE.		
	ITEM	FORCE COMPUTATIONS	п <mark>></mark> хі	F (K:PS)	ARM (FT)	Moment (FT-K)
<u></u> j	3,	SEE FIGURE FI4	1,488.0	10 mg	27.65	th, 143
H REGISTER WHERE	N Tours	SEE FIGURE F15	179.0		38.83	6,4 SI
H-43 5198 13 11 11 11 11 11 11 11 11 11 11 11 11	Wunter	SEE FIGURE F16	47.8		37.43	1, 189
Thurst	UPLIFT	SEE FIGURE F17	ի:Խշո —		32.44	- 13,430
	Prest	-(.aus) (k) [60.75-585.5] (8) (.aus) ('k) [593.25-585.75] (8)		- 64.0	5.33 2.50	- 34 35 - 306
	H.vanae. Garre	- (004S) (½)[60175-588175] (52.21) (004S) (½)[913.25-58813] (52.21)		- 235.0 20.0 - 215.0	8.00 71.9	-1,880
						•
	TOTAL		þ.282 ₁ 1	-264.9		33,870
es i chei va. Recense des (23.3A						PAGE 1 OF 1

Stability analysis summary for normal operation load case, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam Figure F10.

	MOMENT (FT-K)	33,870	-9,032			24,838	PAGE 1 OF 1
	ARM (FT)		15.00				-
DATE	(K.PS)	-26#.9	- 602.			-867.0	
	IT VE (ET IN)	1,285.4				1,285.4	
IL CHERRITION COMPUTED BY:	FORCE COMPUTATIONS	SEE FIGURE FID	(5)(2) (60.21)				
SIS - NORMAL OPE WITH ICE	TEM	Normal Operation Loads	H D			TOTAL	-
WALLY DAM PIERS 10,11,12,14, 15, AND 16, STABILITY ANALYSIS - NORMAL CREMENTON		S		USENITE EL SONTS IN WHICH IN W			est robus on (253A

Stability analysis summary for normal operation with ice load case, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam Figure F11.

	MOMENT (FT-K)	11, 143	6,951	506'1	-14,705	- 409 35 - 374	-2,297	, , ,	35,126 PAGE 1 OF 1
	ARM (FT)	59.75	38.83	37.45	32.62	5.67	8.33		
DATE DATE	F, (KIP3)		·			- 72.2	20.07	23.3	9
	K (K (PS)	0.88%	179.0	5.02	8.054-			77%	
HIGH - WATER COMPUTE BY	FORCE COMPUTATIONS	SEE PRURE FIN	SEE FIGURE FIS	SEE FIGURE FIG	SEE FIGURE FIT	(8) [25. 385 512](4)(4)(6.05)(4)(7)(8)			
YSIS - HIGH	ITEM	W Age	Minues	Wwanek	UPLIFT	Pier Pier	H wanter.	a a	
SHALL DAIN PIERS 10, 11, 12, 14, 15, AND 16, STABILITY ANALYSIS - HIGH - WATER. CONDITION		j	No. of the state o	Western Community Company Community Company Community Company	UNLEY				100 mm (23.3 A

Figure F12. Stability analysis summary for high-water condition, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam

MALYSIS - NORMAL OPERS 19,112, 14,15, AND 16, STABILLTY ANALYSIS - NORMAL CAERGTION WITH COMPUTED BY	NORMAL OR	ERPTION WITH COMPUTED BY:		DATE.		
	EARTHQUAKE	CMECKED BY:		BATE:		
	ITEM	FORCE COMPUTATIONS	F, (KIPS)	F _N (N.1978)	ARM	MOMENT (FT-K)
.]_	NORMAL OPERATION LOADS	SEE FIGURE FIO	1,285.4	-264.9		33,870
H. B. B. Co. 175. The state of the state of	EARTHQUALE Pe, Pe,	(205)(1488 + 179 + 47.8) (243)(51)(205)(16) ² (8)(1,7600) (73)(51)(205)(12) ² (52.21)(1,7600)		-85.7 - 3.5 -12.8	3.5. 3.8. 8.8.	- 124
	TOTAL		1,285.4	- 366.9	,	32,581
on the state of th]		- 1			PAGE OF

Stability analysis summary for normal operation with earthquake load case, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam Figure F13.

DAM PICKS 10,11,12,14,13, ATC 16 - WEIGHT OF PIEK	TOWNS AND AND AND AND AND AND AND AND AND AND
	CHECALD BY. DATE
GEOMETRY OF PIER NOSE	
	Et. 60.63
~/\ ~	GWEN: R= 13.91 ft A= 4,25 ft
	# 978 - 52.4 - 18.81 = X
EL 585.75 - 61 590.78	Y = \(\left(13.51)^2 - \left(9.40)^2 = 10.01 \frac{4}{7}
GV5N: R= 1466 A = 5.00-A	φ = ARclan 10.01 = 46.02
$X = \frac{14.6\mu - S}{(14.6\nu)^2} = \frac{9.55}{(9.6\nu)^2}$ = 11.034+	\$ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\phi = ARC^{1}A_{1} + \frac{11.03}{9.66} = 49.79$	GWEN: R= 14.16 ft A: 4.50 ft
EL 589.75 - 592.75 AND EL 205.75 - 607.75	14.16 = 04.50 = 9.66 ft
	4: \(\langle (14.1) \rangle - \langle (16.6) \rangle = 10.35 ft
GIVENIL R = 13.60 of A B HOOFF	\$ = ARCJEN 10.35 = 46.97
x = 13.66 = 4.02 = 9.66 ft	
Y = \((3.60) = 7667 = 9.60 A	
\$ - Arcton 9.66 = 45.01	
(B) (B) (B) (B) (B) (B) (B) (B) (B) (B)	
Colombia one (253A	

Figure F14. Weight of pier, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam (Sheet 1 of 6)

Figure F14. (Sheet 2 of 6)

MALIET DAM PIERS 10, 11, 12, 14, 15, AND 16 - LICEIGHT OF PIER COMPUTED BY CONCULTED BY	BATE
YOLUME OF PIER	
$\frac{AREh \ 1}{VoluMe} \ (el \ 600.42 - 600.75)$ $VoluMe = \frac{360}{360} \left[\frac{(e) (44.02) (\pi) (13.81)^2}{360} - \frac{8.66}{3.00} (10.01) + (4.55) [40.24 - (6) (10.01)] \right]$	0.337 (1.00) 0.337 (1.00) 0.337 (1.00)
etj p.711 =	AREA 1-HALF SECTION NOT TO SCALE
AREA 2 (EL 607.15 - 609.42)	
ا [(مارزم) (م- (عدم) (م- (م- (م- (م- (م- (م- (م- (م- (م- (م-	
= 636.7 #3	ABEA 2-MALE SECTION
AREA 3 (EL 605.75 - 607.75)	MOT TO SCALE
$Volume_3 = (2)(2) \left[\frac{(2)(45)(7)(344)^2}{360} - (9.66)(9.46) + (4) \left[47.74 - (2)(9.44) \right] \right]$	CONTER OF CONTER OF
st L.7.7 =	APA AREA 3-HALF SECTION NOT TO SCALE
Nichons et (25)A	PAGE 3 OF 6

Figure F14. (Sheet 3 of 6)

DATE AREA 4-HALF SECTION NOT TO SCALE AREA 5 AREA 6 NOT TO SCALE COMPUTED BY $Volume_{\psi} = (a)(q) \left[\frac{(as)(\pi)(13.64)}{3.60} - (12)(9.61)(9.66) \right]$ wares DAM PIERS 10,11,12,14,15, AND 16 - WEIGHT OF PIER VOLUME = (^{1}k) (9) (8) AREA 4 (EL 596.75 - 605.75) VOLUME, = (9) (8) (28.43) = 324.0 ft3 AREA 5. (EL 594.15-605.75) = 479.1 ft3 AREA & (EL S94.75 - 605.75) = 2047.0 AS VOLUME OF PIER (COUTINUED)

Ł

Figure F14. (Sheet 4 of 6)

PAGE 4 OF 6

Figure F14. (Sheet 5 of 6)

PAGE 5 OF 6

9471	2110	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	x 291				8,	AREA 10-HALF SECTION NOT TO SCALE		9 JO 9 35WE
14 GET-14463	CHECKED BY		(H) (H) (SS.1)+			VOLUME-MemeryT	25.951 25.951 25.951 25.951	5.4.53 5.4.60 5.4.30 6.3.4.45 5.4.45	35.8,310	
SF PIER			{(c:1)(n) + (88·1)(L>1) +			ARM (FT)	62:14 62:47 63:47	42.08 24.57 6.45 24.37 24.37 37.79	187.97 Kips	
10,11,12,14,15, AND 16 - WEIGHT OF	THUMED)	ŒSS)	(3) [4:33) [(1:33 + 0.25) (0.33) + (1.41) (1.83) + (1)(1.33) + (1:33) (14)	stj 4:282		Volume (FT ³)	1.7.9 6.36.7 6.66.7 474.1	2 282.0 2 47.0 28.08 2.030.8 2.582.2	$\overline{}$	
MELECT DAM PLERS 10, 11,12, 14	WILLING OF PIER (CONTINUED)	AREA 10 (GATE RECESS)	VOLUME = (\$)	82 11	WEIGHT OF PIER	AREA	~ N M →	5 ~ a ~ E v	$F_V = (0.1593 \text{ K/4}^3)$ RRM = $\frac{258,310 \text{ H}^4}{93467 \text{ H}^3}$	A6.
Marec De	<u> </u>				J#					ets foto et (253A

A Tamber of the attention

Figure F14. (Sheet 6 of 6)

A statement with the manual manual

*

Figure F15. Weight of tower on pier, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam

Note of C	- 1	AG TOWNINGS OF	PATE
	WEIGHT OF WATER ON PIERS	CHECKED BY	DATE
	WEIGHT OF WATER UPSTREAM		
	1,00		
	10 THE HIGH AT CLEVATION SOLITS	,,	
	4	A = TT (14.46) (2)(24.39)	
	•	3	
		ABBO = 91.49 ft	
	#:03 	AOBC = 1/2 (11.03) (9.66)	
	8		
		280	
_	(The state of the		
_	NOSE (Term Ages)	A = 91,49-53,27	
	tan 2 0 = 11.03		
-	a, c	Ansc = 38.22 ft	
	A = 24.39°) !	
			10.21
	X = 2 (14,66) [SIN (24.39)]	x = (41.44)(3.41) - (53.27)(3.68)	(3.68)
	ABO 3(24.39) (TT/180)	30.05	
		XARC = 4.23 ft	
		,	
	1 (11 03)	ARM ABC = 4.23 + 36.69 + 1603	m
	17 87 2	ARMARC = 51.95 FF	
	-	AMABC = (38.22) (51.95)	
	ΥV	AMABC = 1985.53 ft	
11.			PAGE OF B

Figure F16. Weight of water on pier, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam (Sheet 1 of 8)

COMPUTED BY BATE DATE THE CHICAGO BY BATE DATE	CONCRETE AREA AT EL 589.75	R = 13.44'	HALF SECTION OF UPSTRAM NOSE (CONCRETE 4009) tan 2 = 9.66 9.66 \text{a} = 22.5^{\text{c}}	$ \widetilde{X}_{860} = \frac{2(13.44)}{3(22.5^{\circ})} \left[\frac{1}{111} (12.5^{\circ}) \right] $ $ \widetilde{X}_{860} = \frac{2}{3.39} + 4 $	$X_{a \in B} = \frac{1}{3} (9.66)$ $X_{a \in B}' = 3.22 \text{ ft}$	\$ 10 7.35v4
WEIGHT OF WATER ON PIERS WEIGHT OF WATER ON PIERS	WEIGHT OF WATER UPSTREAM (CLUTINUED)	MARE SECTION OF UPSTREM RECTANGULAR PORTION OF PREL (TOTAL MER) ACDE = (5) (8,63)	ARD = 43,15 ft ARD = 58.74-10-6.41 -3.25+ 1/2 (8.63)	$ARM_{ACDE} = 43.40$ ft $AM_{ACDE} = (43.15) (43.40)$	Amacoe = 1872.71 A3	at lower as 2334

Figure F16. (Sheet 2 of 8)

COMPUTED BY DATE		<u>a</u>		HALF SECTION OF UPSTRAM RECTANGULAR PORTION OF PIER (CONCRETE AREA)	Acoe = 4.00 (9.00)	AACDE' = 36.00 Ft2	ARM, = 58.74 - 10.00-641 -3.25 +1/2 (9.00)	ACDE, = 43.58 (A	AM Acbe = (36.00) (43.58)	AMAcoe' = 1568.88 FH			
WEIGHT OF WATER ON PIERS WEIGHT OF WATER ON PIERS	WEIGHT OF WATER UPSTREAM (CENTINUED)	$A_{18.0} = \frac{\pi (i344)^{2}(2)(22.5)}{360}$ $A_{18.0} = 73.28$ ft	A ock = 1 (9.66) (9.66)	Asce = 46.66 As	A,8, = 73.28 -46,66	A.8c = 26.62 A	$\vec{X}_{ABC} = (7328) (339) - (46,66)(3.22)$	$\overline{X}_{A'3C} = 3.69$	ARM 1. = 3.69 + 58.74 -1.00 -9.66	ARM h3'C = 51.77 ft	AM, is (26.62) (51.77)	AMAB'C = 1378,12 ft3	

Figure F16. (Sheet 3 of 8)

att 10m 10 1253A

PAGE 3 OF 8

	Busiley DAM PIERS 10,	10, 11, 12, 14, 15, AND 16 -	COMPUTED BY	OATE
DESCRIT OF WARRY LOSTISMA (CONTINUED) LUMBER OF WARRY LOSTISMA (CONTINUED) A. = 2 [38.22 + 43.15 - 26.42 - 36.00] A. = 2 [38.22 + 43.15 - 26.42 - 36.00] A. = 2 [185.53 + 1872.71 - 1378.12 - 1568.68] ARM A = 1822.48 FH ³ ARM WARRA A = 1822.48 FH ³ ARM WARRA B = 1822.48 FH ³ WANTER B = 1822.48	٠. ١	TER ON MERS	CMECRED BY:	DATE
Am = 2 [38.22 + 43,15 - 26.62 - 36.00] A = 37.50 ft ² Am = 2 [1485.53 + 1872.71 - 1378.12 - 1568.68] Am = 1822.48 ft ³ ARMWITTER, = 1822.48 ft ³ ARMWITTER, = 16.0625) (401.75 - 581.75) Whater, = 28.13 K.ps (for NORMAL OPERATION) Whater, = (0.0625) (37.50) (602.75 - 581.75) Whater, = 28.13 K.ps (for HICH WATER COUDITION)	i ji	WATER UPSTERM (CONTINUED)		
$A_{u} = z [38.22 + 43.15 - 26.62 - 36.00]$ $A_{u} = 37.50 + 4^{3}$ $Am_{u} = z [1485.53 + 1872.71 - 1376.12 - 1568.68]$ $Am_{u} = 1822.48 + 4^{3}$ $ARM_{uMTEQ_{u}} = \frac{1822.48}{37.50}$ $ARM_{uMTEQ_{u}} = \frac{(822.48)}{37.50}$ $W_{uMTEQ_{u}} = (0.06.25)(37.50)(601.75 - 589.75)$ $W_{uMTEQ_{u}} = 28.13 + (40.00000000000000000000000000000000000$	THE STATE OF WHE	2 on upsteem hatten of Pier		
Am_ = 2[1885.53 + 1872.71 - 1378.12 - 1568.68] Am_ = 1822.48 ft ³ ARMwitter_ = 1822.48 ft ³ ARMwitter_ = 1822.48 ft ³ Winter_ = 1822.48 ft	ď	= 2[38.22 + 43,15 - 26.62 - 36.00]		
AM _u = 2 [1485.53 + 1872.71 - 1378.12 - 1568.68] AM _u = 1822.48 ft ³ ARM _{unteru} = 1822.48 ft 37.56 ARM _{unteru} = 48.60 ft Whateru = (6.0625) (37.50) (601.75 - 587.75) Whateru = 28.13 K.ps (for NORMAL OPECATION) Whateru = (6.0625) (37.50) (602.75 - 589.75) Whateru = 30.47 K.ps (for HIGH WATER CONDITION)	₹			
ARM WATER = 1822.48 ft ³ ARM WATER = 1822.48 ARM WATER = 48.60 ft WWATER = 28.13 K.ps (for NORMAL OPERATION) WWATER = 28.13 K.ps (for NORMAL OPERATION) WWATER = 30.47 K.ps (for HIGH WATER CONDITION)	Am	2 [1485.53	-1568.88]	
ARM WATER = 182248 ARM WATER = 46.60 A Whater = (0.0625) (37.50) (601.15 - 581.75) Whater = 28.13 K,ps (for NORMAL OPERATION) Whater = (0.0625) (37.50) (602.75 - 581.75) Whater = 30.47 K,ps (for HIGH WATER CONDITION)	Am.			
ARM WATER = 182248 ARM WATER = 48.60 A WHATER = 28.13 K.ps (for NORMAL OPERATION) WHATER = 20.0625 (37.50) (602.75 - 589.75) WHATER = 30.47 K.ps (for HIGH WATER CONDITION)				
MUMATERLY = 48.60 ft WINNTERLY = (0.0625) (37.50) (401.75 - 589.75) WINNTERLY = 28.13 K.ps (for NORMAL OPERATION) WINNTERLY = (0.0625) (37.50) (602.75 - 589.75) WHATERLY = 30.47 K.ps (for HIGH WATER CONDITION)	ARMWATER)I		
WWATERLY = (0.0625) (37.50) (601.75 - 589.75) WWATERLY = 28.13 Kips (for NORMAL OPERATION) WWATERLY = (0.0625) (37.50) (602.75 - 589.75) WWATERLY = 30.47 Kips (for HIGH WATER CONDITION)	ARMUNTERU	ħ		
WWATER_4 = 28.13 Kips (for NORMAL OPERATION) WWATER_4 = (0.0625) (37.50) (602.15 - 589.75) WWATER_4 = 30.47 Kips (for HIGH WATER CONDITION)	WWATERLY			
Whately = (0.0625) (37.50) (602.75 - 589.75) Whately = 30.47 Kips (For High Water Condition)	WWATER-4	μ	HOW)	
WHATER IS 30.47 RIPS (FOR HIGH WATER CONDITION)	WWATER	ţi		
	W water a	þ	(CONDITION)	
	Selbrus, 1253A			S to to be

Figure F16. (Sheet 4 of 8)

COMPUTED BY CHECKED BY:	$A_{MSO} = \frac{(\pi r) (141,46)^3 (g) (64,34)}{346}$ $A_{MSO} = 91.49 \text{ ft}^2$	Aooc = (4) (11.03) (9.66) Aooc = 53.27 ft	$A_{ABC} = 41.49 - 53.27$ $A_{ABC} = 38.22 + 4^{4}$ $X_{ABC} = (41.49)(5.41) - (53.27)(3.48)$	$\overline{X}_{MBc} = 4.23 \text{ th}$ $ARM_{ABc} = 11.03 - 4.23$ $ARM_{Mac} = 6.80 \text{ ft}$	$Am_{ABC} = (38.22)(6.80)$ $Am_{ABC} = 259.90 + 4^3$
MAJEST DAMY PIERS 10, 11, 12, 14, 15, AND 16. WEIGHT OF WATER ON PIERS	WEIGHT OF WATER DOWNSTREAM TOTAL AREA AT ELEVATION 589.75 A P. S. P. C. C. C. C. C. C. C. C. C. C. C. C. C.	HALE SECTION OF DOLUMSTREAM WASE (TOTAL ABER)	$4m 2w = \frac{11.03}{9.66}$ $0x = 24.39$ $7 = (1)(446)(510.2439)^2$	$X_{MB0} = 3.91 \ A_{MB0} = 3.91 \ A_{M$	$X_{agc} = 3.49 + 4$

Figure F16. (Sheet 5 of 8)

PAGE 5 OF 8

COMPUTED BY: CHECKED BY: DATE	CANCRETE AREA AT ELEVATION 589.75	N N N N N N N N N N N N N N N N N N N	Re1346 944	HALF SECTION OF DOWNSTREAMS NOSE (CONCRETE AREA)	tan 2 = 4.66	√ = 22.S	$ \widetilde{X}_{80} = (2)(13.4) (sin 215) $ $ \widetilde{A}_{80} = (3)(215) (\overline{\pi}/180) $	¥460 = 3.39 f+	$\widetilde{X}_{\sigma,\mathbf{dg}} = (^{1}g)(9,\mathbf{L})$	x x = 3.22 f+	
WEIGHT OF WATER ON PIERS	WEIGHT OF WATER DOWNSTREAM (CONTINUED)	28.05.		HAL SECTION OF DOLLYSTREPM RETTANGUAR PRÉTION OF PICE. (TOTAL AREA)	$A_{ACDE} = (9)(28.05)$	ABEDE = 140.25 ft2	ARM = 11.03 + 28.05	Abm _{Acoe} = 25.06 ft	AM Acoe = (40.25) (25.06)	AMACDE = 3514.67 ft ³	

Figure F16. (Sheet 6 of 8)

LURIGHT OF WATER ON PIERS	CMECKEO BY:	DATE:
WEIGHT OF WATER DRUNG TREAM (CONTINUED)	ء آ	
A 6's = (re) (13,44) ² (2)(23.5)		
A, 8'0 = 73.28 ft	9 7	z 6 .65˙
Aocs = (14) (9,46) (9,46)	·	
A _{0C8} , = 46.66 ft ²	MALE SETION OF DOWNSTROWN RECTRUGALIANS. ROATING OF PIRE (CONCRETE AGE)	RECTOUGHIAL ALTE ASEA)
u	A.coe = (4) (28.08)	
Asi, = 26.62 At	A, cbe' = 112.20 4+	
(1: \$\(7777) - \((6:5)\(1:\)	ARM, 3 11.03 + 28.05	8
1	ARMACDE' = 25.06 GF	.
ARMABC = 7.34 ft	AM, cos = (112.2) (25.06)	(70
AM A & c = (26.62)(7.34)	AM, coe' = 2811.73 ft	£ 13
AM. c = 195.39 ft 3	ARM OF WATER IN GATE RECESS	لد
	A	NRM = 58.74 -10-6.41 -7.33 + 4.08
	Appens = 5.43 ft ²	ALM DECESS = 37.04 F4
	$Am_{\text{locates}} = (5.43)(37.04) =$	201,13 ft 1

Figure F16. (Sheet 7 of 8)

WEIGHT OF WATER DOWNGTEENM (CONTINUED)		
WEIGHT OF WATER ON DOWNSTREAM PORTION OF PIER		
A = z [38.22 + 140.25 - 26.62 - 112.20 + 5.43]	AM = 2 [259.90 + 3514.67 -195.39 -2811.73 + 201.13]	13 + 201.13]
1, = 40.16 ft 2	AM = 1937.16 f+3	
ARM = (1937.16/90.14)	Winnerston (90,14) (593,25 -589,75)	
Almand = 21.49 ft	Winding = 19.72 Kits (For Normal Operation) AND High Water Conditions)	4 4 4 4 5 6 6 4 5 6 6 4 5 6 6 6 5 6 6 6 6
TOTAL WEIGHT OF WATER ON PIER		
NORMAL OFFICE OF	HIGH - WATER CONDITION	
W = 28.i3 + 19.72	Where = 30,47 + 19.72	
Wunter = 47.85 KIPS	Whener = 50.19 KIP3	
3 1	ARM - (20.47)(1826) +(4.72)(21.49)	
ARALMAR = 37.43 ft	Aem_ = 37.95 ft	

Figure F16. (Sheet 8 of 8)

MALEY DAM PIERS 10, 11, 12, 14, 15, AND 16 -	COMPUTED BY.	
UPLIFT FORCF. ON PIERS	CMECATO BY: DATE.	
UPLIET PRESSURES		
FIRM		-
6 6		
Hay BLS 88-85 Hog.		
4"		
Pressure Dygram		
NCRMAL OPERATION	HIGH-WATER COUNTION	<u> </u>
f. = (0.0625) (601.75 - 585.75)	(\$1.585- St.200) (5290.0) = }	
4, = 1.00 KSF	1, = lob KSF	
-f = (0.0625) (593,25 - 585.15)	f3 = (0.0025) (593,25 ~585.75)	
13 = 0.47 KSF	f3 = 0.47 KSF	
4 28.05 + 11.00 - 047 = 0,0136 KSF/FT	$\frac{\Delta f}{f+} = \frac{1.06 - 0.47}{28.05 + 1643} \approx 0.0151 \text{ KSF/FT}$	
+2 = 0.47 + (1123) (.0124)	Pz = 0.47 + (11.03)(0.0151)	
ų	+2 = 0.64 KSF	
Action of 1533.		PAGE FOR 4

Figure F17. Uplift force on pier, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam (Sheet 1 of 4)

COMPUTED BY: CHECKED BY:	H.G.H M.MTER	$\frac{5\text{ECTION}}{5\text{V}} = (2)(38.22)(1.04) = 81.03 \text{ kits}$	₹ €	$\frac{5EGT(0N)}{F_{V_L}} = \frac{2}{(2)(8)(8)(3)(0)} = 41.48 \text{ KiPs}$ $\frac{1}{100} = 58.74 - 11.03 - (8.12/2) = 43.40 \text{ FT}$ $\frac{1}{100} = \frac{1}{100} = \frac{1}{1$	$\frac{SECTION}{UMIPDEM LMD}$ $\frac{F_{N}}{S_{M}} = (2)(5)(20.05)(0.64) = 179.52 \text{ king}$ $\frac{F_{N}}{S_{M}} = \frac{20.05}{20.05} + 11.03 = 25.06 \text{ FT}$
WASKET DAM PREKS 10, 11,12,14,15, AND 16 - UPLIFT FORCE ON PIERS	UPUET FORCE	SECTION 1 F _V = (2) (38.22) (1.00) = 76.44 KPS	ARM, = 50.74-11.03+4.23 = 51.94 FT Moment = (76.44) (51.94) = 3970.29 FT-K	$F_{k} = (2)(5)(0.43)(1.00) = 86.30 \text{ kirs}$ $ARM_{L} = 58.74 - 11.03 - (8.43/1) = 43.40 \text{ FT}$ $Moreout_{L} = (86.30)(43.40) = 3745.42 \text{ FT-K}$	SECTION 3 UNIFORM LOAD $F_{g_{1}} = (2)(5)(28.05)(0.62) = 173.91 \text{ NIPS}$ $A60_{g_{1}} = 28.05 + 11.03 = 25.04 \text{ FT}$ Manna $F_{g_{1}} = (1.73.91)(2.2.2) = 1.13.91 \text{ NIPS}$

Figure F17. (Sheet 2 of 4)

915 'ONE 40. 1253A

PAGE Z OF 4

MALLE DAM PIERS 10, 11, 12, 14, 15, AND 16-	COMPUTED BY	
UPLIFT FORCE ON PIERS	CHECKEO BY: DATE.	
UPLIFF FORCE (CONTINUED)		
NORMAL CREATION	HIGH WATER CONDITION	
SECTION 3	SECTION 3	
UNIFORMLY VARYING LOAD.	UNIFORMLY YARYING LOADS	
$F_{k_0} = (Y_2) (2) (5) (28.05) (1.00 - 0.42) = 53.30 \text{ KiPS}$	FE = (4)(2)(5)(28.05) (1006-0.04) = 58.90 KIPS	: 58.90 KIRS
$AdM_{y} = (243)(28.05) + 11.03 = 29.73 FT$	ARM _{3,2} (25) (28,05) +14,03	= 24.73 FT
Marky = (53.30) (29.13) = 1584,61 FT-K		= 1751,10 FT-K
א הפיזיםs	SECTION 4	
UNIFORM LOAD	UNITERM LAND	
F. = (2) (38.12) (041) = 35.43 kips		= 35,13 KIPS
11.03 - 4.23 = 6.80 FT	ARM 11,03 -4.23 = 6.80 FT	F1 03.
Manes (1) (6.30) = 244.32 FT-K	_	- 244.32 FT-K
UNIFORMLY VARYING LOAD	UNIFORMLY VARYING COND	
F = 3.52 KIPS*	Fy = 3.14 KIPS#	
ARM 4 = 7.88 FT	ARMy = 7.88 FT	
Momenty = $(3.52)(7.88)$ = 27.74 FT -k	$M_{\rm e} M_{\rm e} = (3.94)(7.11) = 31.05 \ \rm FT-K$	
* Itherhive solution used to solve force for uniformly langing land acting on nose portion of prer base	formly varying lad acting on nose portion of pre-	ner base

Figure F17. (Sheet 3 of 4)

#15 70mm 12 1253A

PAGE 3 OF 4

UPLIET PAGE (CONTRACT)	part.
UPLIET FRICE (CONTRUED)	
	HIGH- WATER CONDITION
TOTAL UPLIFT	TETAL_UPLIFT
Fy = 76.44 + 84.30 + 173.9/+53.30+ 35.93 +3.52 Fy= 81.2	Fy= 81.03+91.48+179.52+58.90+35.93+3.94
Fy = 429.40 K1PS Fy = 45	Fy = 450.80 KIPS
M = 3970.29+3745.42+4358.18+1584.61+284.32+27.74 M = 428	M = 4206,7 +3870,23 +4498.77 + 1751.1 + 244.32 + 31.05
M = 13,920,56 FT-K	M = 14,704.17 FT-K
ARM= 13, 120.56 ARM= 429.40	11, bot, bi
ABM= 32.44 FT ARM= 32.62 FT	62 FT

-1

and the transfer of the state of the same

Figure F17. (Sheet 4 of 4)

The state of the s

Strut resistance of apron, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam Figure F18.

Mester DAM PIERS 10, 11, 12, 14, 15 AND 16 - SLIDING STABILITY ALONG SEAM	COMPUTED BY	DATE.		
AT ELEVATION 565.75	CHECKED BY:	by:		
SLIDING STABILITY-NORMAL OPERATION WHOWER	I TEM	FORCE COMPUTATIONS	7. (KP)	F. (kiPs)
	**	1	1,486.0	
Hunten El 584.75 Phonorum Angol 1.5 = Hyunten	N Three R	SEE FIGURE F15	174.0	_
	N. Prov.	(,1943)(1,5)(53,71)(6,0,21) -(,1873)(1,5)(43,15+140,251-38,22)(2)	772.7	
UPLIFT	30	Warmen (1.52) [5.82.5 - 585.75] (33.71) (60.21) - (1.563) (2.5.) (43.5+140.75 + 19.22)(2.)	1,243.6	
	3	WEMM OF WATER ON PRER (SEE FRUBERLY) [COLS] (ST. 75-58] IS) (S.11) (GO.21) [COLS] (ST. 75-58] IS) (S. 11-10) [COLS] (GO. 17-573. IS) (9) (GO.21) [COLS] (GO. 15-573. IS) (9) (GO.21)	47.8 - 97.0 - 97.0 - 47.6 - 47.8	
	URIFT	-(aucs)(k)ko175+54: 25-14/595 13)kisikas) -(outs)(ko1.75-58575)(38.12) (2)	-2,451.3	
59.74,	H	-(0.06.13 (1/2) (601.15 - 585.73) ² (60.11) (0.06.13) (4 ₁) (593.25 - 585.75) ² (60.11)	 :	- 481.7 105.8 - 375.9
53.71				
	TOTAL		1,871.2	- 375.9
ethinate de (253A				A 10 30 Vd

The state of the s

Sliding stability summary for pier and apron section along foundation seams, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam (Sheet 1 of 8) Figure F19.

NG ALONG SEAM	COMPUTED BY:	DATE
AT ELEVATION 585.75	CHECKED BY:	DATE:
!		
SUM OF FORCES		
NORMAL OPERATION		
F, = 1,871.2 KIPS		
F = 375.9 KIPS		
NORMAL OFERATION WITH ICE		
ر با ۱٬۵۲۱، منه		
FH = 375.9 + (2)(60.21) = 978.0 KIPS		
HIGH WATER, CONDITION		
Wwater. 898.3 + 50.2 - 47.8 + (0.0625) (9) (60.21-10)		SIN 6.826 E
UPLIET = (0,0425)[(1/2)(602.75 + 513.25 - (2)(585.15)) (53.71) (63.715 - 565.75) (1/2)(38.21)] = 7,557.1 KIPS	20.21) + (602.75 - 565.75) (2) (38.2	2)]= 2,557.1 KIPS
F. = Whee + Where + WAPPEN + WENDONTION + WLATER UPLIFT	ULMER - UPLIFT	
Fy = 1,488 + 179 + 666.8 + 1,090.4 +928.9 -2,557.1	- 2,557.1	1,796.0 KIPS
FH = (.04.25) (1/2) (60.21) [(602.75 - 545.75) - (593.25 - 545.75)] NORMAL OPERATION WITH EMETHQUAKE	(* . *) ²]	# +37.9 KIPS
F = 1,871.2 KIP3		
Fy = 375.9 + (.05) [13] (3 + 174 + 666.8 + 1,090.4] + (43)(51)(.05) (1,000) (10) 2 (8)	51)(.05)(1,000)(14)2(8)	= 550.6 KIPS

Figure F19. (Sheet 2 of 8)

of Claude and 1253A

PAGE 2 OF F

WOLET DAM PIERS 10,11,12,14, 15 AND	ILO - SLIDIN	SLIDING STABILITY ALONG SEAM AT ELEVATION SKS.75	TY ALONG SKS.75	SEAM	COMPUTED BY			DATE 0		
LOAD CASE	SUM OF VERTICAL FORCES	SUM OF HORIZUATAL FORCES	FRICTION ANGLE	Collesive STREAGTH	AREA OF SLIDING PLANE	S TRUT RESISTANCE	S HETAR	COHESIVE	To TAL SLIDNG RESUMME	FACTOR OF SAFETY MANUST SUDMIC
	F. (K.R.)	F, (K.193)	(000,000)	(KSF)	(er.)	(KiPS)	R=F, tan (KIPS)	R = CA (KIPS)	R=K+R+R (KIPS)	S II
NORMAL OPERATION	2'118'1	375.9	34.5	- 0	\$234	0	9.486'1	4.8.58	0.801,1	4.54
			300	0.0			9.216	0.0	4.2.4	2.43
i			34.0	7.0			1,262,1	8.729	1,408.9	5.08
			27.9	0.0			440.1	o.0	440.8	79.2
			31.4	8.2			1,142,2	1.250,8	4.141.4	27.13
			0.12	0.0			718.3	0.0	118.3	1.41
NORMAL OPERATION WITH ICE	1,871.2	9.8.0	36.5	0.1	3234	o	1,384.6	323.4	0.301,1	1.75
			0. 12	0.0			9.216	0.0	915.6	0.43
			34.0	٥. ٢			1,262.1	8.769	1,908.9	1.95
			27.9	0.0			940.8	0.0	940.8	1.01
			31.4	2.8			1,142.2	4,055.2	10, 197.4	10.43
			0'12	0.0			718.3	0.0	718.3	0.73
HIGH WATER GOLDITION	1,796.G	437.9	36.5	0.1	3234	0	1,329.0	323.4	1,652.4	3.77
			26.0	0.0			87 6 .0	0.0	876.0	2.00
			34.0	0.2	•		4.11.2,1	8.949	2.8581	4.24
			27.9	0.0			450.9	6.0	450.9	2.17

Figure F19. (Sheet 3 of 8)

PAGE 3 OF B

		FACTOR OF SMETY NGMNSTSLINK		23.18	1.57	3.10	1.66	3.47	1.80	18.52	1.30	
i I		TOTAL FACTOR OF SUBING SMETY KESS THICE MAINT SUBING	R=R4+R4+Rc (KIPS)	5'151 '01	ት . የ8 ፊ	1, 708.0	412,6	1,908.9	440.6	4.191.91	718.3	
DATE	DATE	CONESIVE RESIDENCE	R, = CA (K, PS)	7.3501P	0.0	323.4	0.0	646.8	0.0	9,055.2	0.0	
		SHEAR RESISTANCE	Ry = Fyton \$ (NIPS)	1,096.3	F.983	1,384.6	412.6	1.20211	9.00.8	1,142.2	7 18.3	
•		STRUT RESISTANCE	Rs (KIPS)	0		0						
COMPUTED BY	CHECKED BY:	AREA OF SLIDING PLANE	A (FT*)	3234		3234						
SENM		CONESIVE	C (KSF)	2.8	0.0	1.0	0.0	٦٠٠٥	0.0	8.2	0.0	
Y ALDING SEAM	585.75	FRICTION	(DEGREES)	31.4	0.12	34.5	24.0	34.0	27.4	31.4	21.0	
SLIDING STABILITY	ELEVATION	SUM OF HORIZONAL	FH (KIPS)	437.9		550.6						
		SUM OF VERTICAL FORCES	F. (RIPS)	1,796.0		1,871.2						
DAM PIERS 10,11,12,14,15 AND 16 -		LOAD CASE	١ .	HIGH WATER CONDITION		NORMAL OPERATION WITH EARTHUME						

Figure F19. (Sheet 4 of 8)

Q sof 354d

WALLET DAMY PIERS 10,11,12,14,15 AND 16 - SLIDING STABILITY ALONG SEAM	COMPUTED BY	DY.		
AT ELEUATION SB4.75	CHECKED BY:	VC: DATE:		
SLIDING STABILITY-NORMAL OPERATION WENNER	ITEM	FORCE COMPUTATIONS	F, (R.PS)	F (K. 13)
2 (£ 604.78	18	¥E FIGURE FI₩	1,488.0	
EL 58475 4 Humannahaman 45' 75 543.59	Wrower	SEE FIGURE F15	174.0	
LELEVATION 58+.15	No.	(,1543)(1,5)(43.05+140.25+38.22) (2)	772.7	
	No manual Manual	Wannerman (,1823)[588.15 -584.15](53.11)(62.1)	1,769.1	
	Wunter	WEIGHT OF WATER ON PRE (VEFFCUREFE) (COLS) (ST3.55-5817) (SJ3.1) (LOLS) (COLS) (ST3.55-581.75) (40.54 HOLSF \$1.2) (COLS) (COLS) (COLS - 543.55) (4) (GO.21) (COLS) (COLS - 543.55) (4) (IO)	47.8 707.4 -47.4 267.9 -47.8	
	UPLFT	イベル) (151) (421)	-2,517.0	
58.74	H. water	(1012)(1) (101.75 -584.75) (40.21) (1025)(1)(573.75 -584.75) (40.21)		- 543.8 135.9 - 407.9
	TOTAL		2,174.6	- 407.9
et som ta. 253A Richard des 253A				PAGE 5 OF R

Figure F19. (Sheet 5 of 8)

DAM PIERS 10,11,12,14,15 AND 16 - SLIDING STABIUTY ACONG SEAM AT ELEVATION 584,75 CHECKED BY CHICAGO BY CHICAG	NORMAL OPERATION F = 2,174.6 KIPS F = 401.9 KIPS	NORMAL OPERATION WITH ICE $F_{\nu} = 2,174.6 \text{ KiPS}$ $F_{\mu} = 407.9 + (2)(5)(60.2) = 1010.0 \text{ KiPS}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$F_{V} = W_{Dreft} + W_{Towner} + W_{AppleoN} + W_{PowNoATION} + W_{NMTER} - UPLIFT$ $F_{V} = \frac{1}{1488} + 179 + 6L_{6}.8 + \frac{1}{1575.9} + 928.9 - \frac{2}{7}.764.0 = 2,094.6 \text{ KiPS}$ $F_{H} = \frac{(.0625)}{(.0625)} \frac{(16)}{(16)} \left[\frac{(16)}{(16)} \frac{(16)}{(16)} - \frac{(16)}{(16)} \frac{(16)}{(16)} \right]^{2} - \frac{(16)}{(16)} \frac$	NOGMAL OPERATION WITH GARTHOVAKE $F_{V} = 2, 174.6 \text{ KiPs}$ $F_{H} = +01.9 + (.05) \left(\frac{145}{145} + 177 + 66.5 + 1575.9 \right) + (3) \left(\frac{5}{13} \right) \left(\frac{1}{105} \right) \left(\frac{1}{105} \right) \left(\frac{1}{105} \right) = 607.9 \text{ KiPs}$
DAM PIERS 10,111	SUM OF NORMAL	α <u>ι</u> μ. μ.	M H31H M	(2)	บพบอง

Figure F19. (Sheet 6 of 8)

PAGE & OF P

ets fone all 1253A occupate ets

	FACTOR OF SWETY AGAINST SLIBBLE	14 S. 14 OX Tr =	#7.4	2.60	5.18	78.7	25.45	2.04	-6.4	1.05	2.09	\$1.7	10.28	0.83	3.45	2.16	4.35	2.34	
	TOTAL SLOWG RESISTANCE	R=R+14+1R (NIPS)	1,932.5	1,040,1	2,113.6	1,151,4	10,382.4	8.48	1,532.5	1,000.6	2,413 6	1,151.4	10,382,6	834.8	1,813.3	1,021.6	2,959.6	1,09.0	
DATE.	CONFESIVE RESISTIMICE	R=CA	323.4	0.0	8.927	0.0	9,055,2	0.0	\$23.4	0.0	2.4.5	0.0	4,056.2	0.0	323.4	0.0	8.979	0.0	
	SHEAR RESISTANCE	R = F, tan 4 (KIPS)	1.4001	1,000,1	1, 466.8	h'151'1	p'128 1	834.8	1,609.1	1,000,1	8.98.4.	1,151.4	1,327.4	834.8	b. p42,1	1,021.6	8.2141	0.601.1	j j
3 <u>2</u>	STRUT RESIDENCE	R. (K,PS)	0						0						0				
SCAM COMPUTED BY	AREA OF SUDING PLANC	(PT')	3234						3234						3234				
FY ALONG S. SEY.75	CONES WE STALL TH	C (NSF)	1.0	0.0	٥. ك	0.0	2.8	٥.٥	0.1	0.0	7.0	0.0	2.4	0.0	0.1	0.0	2,0	0.0	
SLIDING STABILITY ALONG AT CLEUATION SEY.75	FRICTION	(DECREES)	36.5	26.0	34.0	27.9	31.4	21.0	36.5	7.92	34.0	27.9	31.4	21.0	36.5	26.0	34.0	27.9	
SLIDING AT CLEU	SUM OF HORIZOUTH.	F. (KIPS)	4-07.9						1010.0						+73.7				
- 91 QN	SOUTH OF MORTHUM	F, (k,PS)	2,174.6						2,174.6						9'+60'2				
MALET DAM PIERS 10, 11, 12, 14, 15 AND 16	LOAD CASE		NORMAL OFFRATION						MARMAL OPERATION WITH ICE						HIGH WATER CONDITION				

Figure F19. (Sheet 7 of 8)

PAGE ? OF !

	oF Tr	æ ļu.≖	82	5	90		8,	0	20	7	
	FACTON OF SAFETY MGHINST SURME	2.5	21.82	1.69	3.18	1.74	3.48	1.89	17.08	1.37	
	ToT h SLIDING RESISTANCE	R = R + Pg + R (KIPS)	10, 333.8	Bo4.0	1,932.5	वृंवज्या ।	2,113,4	1,151,4	10,382.6	834.8	
DATE DATE	COHESIVE	R. = CA (KIPS)	2,250,8	0.0	323.4	0.0	6-46.8	0.0	2.250,8	0.0	
	SHEAR	18 = 5 thus 4 (K.105)	1,278.6	804.0	1,604.1	9.09011	8.9971	1,151.4	1,327.4	8.34.8	
ā .	STRUT RESISTANCE	(K.173)	0		J						
CHECKED BY	A PLIA OF SUDING	(FT ²)	32.34		3234						
٤	CONESIVE	C (KSF)	2.5	0.0	- ò	. O	7'0	0.0	8.2	2,0	
ALONG SEAM SE4.75	FRICTION	(De GANES)	31.4	21.0	36.5	26.0	34.0	6.7.3	31.4	21.0	
46 STABLUTY ELEVATION	Sum of Horizanti- Fali C	F., (K.P.)	473.7		607.9						
AT EL	SUM OF LERRICAL FORCES	F, (kips)	2.094.6		2,174.6						
MANGE DANN PLERS 10, 11, 12, 14, 15, AND 16 - SLIDING	LCAD CASE		HIGH WATER CINDITION		NORMAL EPERATION WITH EARTHQUAKE						

Figure F19. (Sheet 8 of 8)

Figure F20. Typical geometry for dam piers 9 and 13, Soo Dam

MAJEST DAM PIERS 9 AND 13 - FA	- FACTOR OF SAFETY AGAINST SLIDING ALONG CONCRETE - FOUNDATION INTERFACE	FETY AGAII	NST SLIDIN	JE ALONG	COMPUTED BY			DATE		
LOAD CASE	SUM OF VERTICAL FORCES	SUM OF HORIZOUTH	FRKTION	CONESIVE	BASE AREA	STRUT	SHEAR	COMESIVE	TOTAL SLIDNG RESISTANCE	FACTOR OF SAFETY MANNST SLIBIN
	F. (NPS)	F. (KIP3)	ф (pedens)	C (KSF)	A (F7*)	R _s (KIPS)	R = E top R.CA	ł	R= R+R+R (KIPS)	전 8 8
NOEMAL. DPERMINA	1,573.3	2.69.1	32.1	٥	629.18	515.3	986.9	٥	1, 502.2	6.38
NORMAL OPEIATION WITH RE	1,573.3	876.2	32.1	0	81.929	515.3	p. 3 84.9	0	1,502.2	1.96
HIGH - WATER CONDITION	1,549.8	331.7	32.	0	629.18	515,3	472.2	0	1, 487.5	5.13
NORMAL OFFICATION WITH EARTHQUAKE	1,573.3	340.2	32.1	0	81.129	515.3	9.78	0	1,502.2	9 3 .
ets roms so. (253A.										PAGE 1 OF 1

Figure F21. Factor of safety against pier sliding, concrete-foundation interface, dam piers 9 and 13, Soo Dam

WALLO DAM PERS 9 AND 13 - FACTOR OF SAFETY AGAINST SUDING ALONG	OF SAFET	Y AGAINST	SUDING A	PNOT	COMPUTED BY			DATE		
FOUNI	FOUNDATION SEAM	-			CHECKEO BY			DATE		
LOAD CASE	SUM OF VERTICAL FORCES	SUM OF HORIZORINE FORCES	FRICTION	CONFINE	BASE AREA	STRUT RESISTANCE	SHEAR RESISTANCE	C.D.N.E.S.IV.E.	TOTAL SLIDING RESISTANCE	FACTOR OF SAFETY MANUST SLIDIN
	F (K.PS)	# (Kups)	ф (peomes)	C (KSF)	A (rr*)	R _s (KIPS)	REF And	R = CA (KPS)	R=R+R+R FS =	n: 2. 11 5. 11. ±
			21.0	0.0	629.18	515.3	663.1	0.0	1,119.2	4.16
NORMAL CHELLATION	1,5735	7,07	36.5	0.1	629.18	515.3	1,164.2	₽.2 9	4.246,1	F.4.9
Modern A control			21.0	0.0	6 24, 18	5153	h 609	0 0	1,119.7.	1.28
NORTHING COTTAINS COTTAINED	× 5.72.	876.2	36.5	0.1	81.1529	515.3	1,164.2	6.29	1,742.4	1.99
1			210	0.0	81.829	5:15.	P.4PS	0.0	1,116.2	3.35
חוומא בשחוו השוו וופא	2.84c.	7 . 0 0	36.5	ا٠٠	\$1:52 9	515.3	9.9411	4.79	1,7 25.0	5.20
Jecomos Afrendativs		6 086	0.12	0.0	81 629	5.23	b इत्त्रव	ن و	2.911,1	2.87
NOKUME OPERATION UST IN ENCHOUNCE.	1,513.5	7.0.0	36.5	0.1	81.118	515.3	1,164.2	b-23	1,742.4	4.47
41 - Cobe 45 - 25 3.8										PAGE 1 OF

Figure F22. Factor of safety against pier sliding, foundation seam, dam piers 9 and 13, Soo Dam

PAGE 1 OF 1

EL 609.17 OF PIER NOSE EL 609.12 GWEN; R= 15.61 ft	WALKET DANY FIEKS ! AND 13 - WEIGHT OF PIER	COMPUTED BY GATE		
NALE SECTION R R R R R R R R R	GEOMETRY OF PIER NOSE			
NALE SECTION PARE SECTION PARE SECTION PARE SECTION PARE SECTION PARE SECTION PARE SECTION PARE PA	\leftarrow	EL 609 43		
	<u>«/</u>	R= 15.61 f+	*	
HALE SECTION 6.36 ft		18.01 ∴ 21.4-14.75 × ×	‡,	
6.36 ft		$V = (15.61)^2 - (6.86)^4 = 11.$	H 12:	
وي الايون الله الايون الله الله الايون الله الايون اليون ال		φ = ARC+AN 11.21 = 45.	• -	
وي اد. يوم جنا اد. يوم جنا اد. باخه باخه جنا اد. باخه باخه باخه باخه باخه باخه باخه باخه	R= 16.36 ft			
18.42° 1.50 € 1.5 28° 1.5 38° 1.5 38°	$X = 16.36 - 5.50 = 10.95$ $Y = \sqrt{6.36} - 10.80 = 12.20 = 1$	EL 607.75 - 609.42 GIVEN: R= 15.86 f+ A= 5.0	÷ ÷	
#507+ F÷ 33: F÷ 34	7 = ARCHO 123 = 48.42	X= 15.86 - 5.00 - 10.8	# # # # # # # # # # # # # # # # # # #	. ——
4.50 4 4.56 4.4 4.4 4.4 50.6°	EL 589 75 - 596.75 AND EL 605.75 - 607.75	λ= (15.83) = 10.83	= 11.56 ft	
X = 15.34 - 4.50 = 10.56 + 7 $Y = \begin{cases} (15.34)^2 - (15)^2 = 10.56 + 4 \end{cases}$ $V = Ax(2+1) \cdot \frac{16.56}{2} = -45.40$		$\phi = Anchan \frac{11.56}{10.86} =$	46.79°	
$\chi = \int (15.3c)^2 - [0.8]^3 = 16.8b = 44$ $U = Anc(A_{11}, 16.8b = -45.0c)$	th 1981 of 1810 1916 1918 1918			
1 = AKC + 11 16.56 45.65	$+\frac{1}{2} - 43 \cdot 101 - \frac{1}{2} (3(2)) - \frac{1}{2} (3(2)) = \frac{1}{2} + \frac{1}{2} $			
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ = AKC+ 16.86 = 45.00°			

Figure F23. Weight of pier, dam piers 9 and 13, Soo Dam (Sheet 1 of 6)

944 FORM TO 1253A

PAGE 1 OF 6

Figure F23. (Sheet 2 of 6)

DATE DATE	64.34 4.75 4.75 4.75 4.75 A.75 A.75 A.75 A.75 A.75 A.75 A.75 A	167 1.56 5. 15.87. 167 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	27 (10.86) 27 (4.5) 22.74' AREA 3-HALF SECTION NOT TO SCALE
DAM PIERS 9 AND 13 - WEIGHT OF PIER CHECKED BY	YOLUME OF PIER AREA 1 (EL 609.42 - 609.75) VOLUME, = (2)(.33) \[\begin{pmatrix} (2)(45.9] \text{VI} \\ 360 \end{pmatrix} - (10.84)(11.22) + (4.75) \[54.24 - (2)(11.22) \] \] = 14\text{B}.14 \text{f}^3	MREA 2 (ει 607.15 - 609.42) VOLUME 2 = (2) (1,4) [(2)(44.18)(π)(158) - (108)(11.56) + (5)[54.74 - (2)(11.56)]] = 744.69 ft ³	$\frac{AKEA 3}{VOLUME_{3}} = (z)(z) \left[\frac{(z)(ws)(\pi)}{360} \frac{(\pi)(1s \cdot 36)^{2}}{360} - (10 \cdot 86)(10 \cdot 36) + (4 \cdot 5) \left[s3 \cdot 74 - (2)(10 \cdot 86) \right] \right]$ $= 845 \cdot 8 + \frac{1}{3}$

Figure F23. (Sheet 3 of 6)

PAGE 3 OF 6

PAGE 4 OF 6 AREA 4-HALF SECTION NOT TO SCALE DATE DATE AREA 6 NOT TO SCALE AREA S NOT TO SCALE COMPUTED BY VOLUME, = (2)(4) (45) (1)(5.36) - (0.04) (10.04) 9 AND 13 - WEIGHT OF PIER = 364,50 ft3 = 2592.81 H3 = 604.23 A3 AREA 4 (EL SIL.75 -605.75) $VOLUME_{S} = (1/2) (9)^{2} (9)$ YOLUME = (4)(4)(32.01) AREA 6 (EL S94.75 - 605.75) VOLUME OF MER (CONTINUED) AREA 5 (EL 594.75 -605.75) MALECT DAM PIERS

17

The state of the s

TA A

Figure F23. (Sheet 4 of 6)

Figure F23. (Sheet 5 of 6)

DATE:	7.		\		AREA 10-HALF SECTION NOT TO SCALE	PAGE 6 OF
COMPUTED BY		العنه)لابارات:	<u> </u>			
MALICY DAMY PIERS 9 AND 13 - WEIGHT OF PIERS	VOLUME OF PIER (CONTINUED)	AREA 10 (GATE RECESS) VOLUME = (2)(1,33)(1,33+0,42)(1,83) + (4)(1,33)(4)(4,03)		= 282.4 ft	AREA (FT ³) (FT ³) (FT ³) 148.14 794.64 846.50 44 6.6.23 5 2,512.81 7 2,512.81 7 2,512.81 1,66.23 1,16.4.98 ft ³) = 1857.03 KIPS	

Figure F23. (Sheet 6 of 6)

SWALET DAM DEPT GALLO 13		DATE	_
WEIGHT OF TOWER WITH CATE WEIGHT OF TOWER			
		0472	_
भाष्टे पाछे ।			
38.45 38.45			
70° 5			
00:11 00:11 00:11			
-			
TOWER WT = 11.00 + 24.88 + 47,63 + 5,60 + 6.40 + 41.63 + 24.88	47.63 + 24.88		
(DEAD LOND)			
= 179,02 K ₁ PS			
Archevis da 253A		PAGE OF	•

Figure F24. Weight of tower on pier, dam piers 9 and 13, Soo Dam

> 1

Figure F25. Weight of water on piers, dam piers 9 and 13, Soo Dam (Sheet 1 of 5)

Whates = (:04.15)[4.58+40.81 - 13.68 - 33.39][6.02.75 - 589.75][2] UPSTREAM RECTANGULAR PORTION OF PIER WEIGHT OF WATER - HIGH WATER CONDITION DATE $A_{i,cbe'} = (4.5)(7.42)$ Ancre = 33.39 ft" 7,42 HALF SECTION 33.02 KIPS COMPUTED BY Whate W_weeg_ = (26.25)[44.58+40.81-3368-33.39][601.75-599.75][1] DAM PIERS 9 AND 13 - WEIGHT OF WATER ON PIERS $A_{8c} = \frac{(\pi)(15.34)^2(45)}{360} - \frac{(10.94)[15.34-465]}{2}$ WEIGHT OF WATER - NORMAL OPERATION WEIGHT OF WATER UPSTREAM (CONTINUED) CONCRETE AREA AT ELEVATION 589.75 UPSTREAM NOSE OF PIER Ais, = 33.68 ft Aigc Aiso Aso HALF SECTION W wATER = 30.48 KIPS

Figure F25. (Sheet 2 of 5)

PAGE 2 OF S

COMPUTED BY DAYE			DOWNSTREAM RECTANGULAR PARTION OF PIER	32.84,	A A C C HALF SECTION	A = (5.5)(32.84)	Ance = 180.62 ft		PAGE 3 OF S
MAJECT DAM PIERS 9 AND 13 - WEIGHT OF WATER ON PIERS	WEIGHT OF WATER DOWNSTREAM	TOTAL AREA AT ELEVATION 589.75	DOWNSTREAM NOSE OF PIER	A A S S S S S S S S S S S S S S S S S S	B HALF SECTION	ABC = ABC - ABCO	$A_{RBC} = \frac{(\pi) (16.36.4)}{340} (12.24) [14.36-5.5]}$	ABC = 46.58 ft2	ALE FORM ID 12-3.5A

Figure F25. (Sheet 3 of 5)

PAGE 3 OF S

Figure F25. (Sheet 4 of 5)

oft bear of (2534

PAGE 4 OF S

DATE								NOLLIG	Wunter + Wunter	33.02 + 22.39	55.4 KIPS
COMPUTED BY				ER CONDITION	584.75]			MGH-WATER CONDITION	Watter = W	WWATER = 33	WWATEL = SE
DAM PIERS 9 AND 13 - WEIGHT OF WATER ON PIERS	WEIGHT OF WATER DOWN STREAM (CONTINUED) GATE RECESS AREA	$A_{\text{Booss}} = (4.08) (4.33)$	Agecous = S43 f42	WEIGHT OF WATER - NORMAL OPERATION AND HIGH WATER CONDITION	Whate = (0425) (4458 + 180,62 - 33.68 - 14718 + 5,43) [593,25 - 589.75]	WWATER = 22.39 KIPS	TOTAL WEIGHT OF WATER ON PIER	NORMAL OPERATION	WANTER TO WINNTER + WINNTERD	Winter = 30.48 + 22.39	Whate = 52.87 KIPS

Figure F25. (Sheet 5 of 5)

S 10 S 354

HALLEY DAM PIERS 9 AND 13 - UPLIFT FORCE ON PIERS	COMPUTED BY:	DATE
	CHECKED BY:	DATE:
UPLIFT PRESSURES		
FLOW		
9 9 9		
12.54 7.46 32.54 12.24 BASE ARCA		
PRESSURE DIMERAM		
NORMAL OFERATION	HIGH-WATER CONDITION	
(\$1.588 - \$1.104) (\$2.10.) = g	f = (.0625) (602.75-585.75)	
- t = 1.00 KSF	P = 1.06 KSF	
f = (.0625) (543.25 -585.75)	f ₃ = (.0425) (S93.25-585.75)	G
43 = 0.47 KSF	13 = 0.47 KSF	
4 = 1.00 - 0.47 = 0.0118 KSF/FT	4 = 1.06-0.47 = 0.0131 KSE/FT	KS-/FT
P = 0.47 + (12.24) (0.0118)	f = 0.47 + (12.24) (0.0131)	
to = 0.6 KSF	f2 = 0.63 KSF	
of course, 125.3A Requirement		PAGE 1 OF 2

The state of the s

Figure F26. Uplift force on piers, dam piers 9 and 13, Soo Dam (Continued)

WALLET PIERS 9 AND 13 - UPLIFT FORCE ON PIERS	COMPUTED BY
	CHICALD BY:
UPLIFT FORCE	
NORMAL OPERATION	HIGH-WATER CONDITION
SECTION 1	
Fy = (t) (46.58)(1.00) = 93.16 K1PS	F, = (2) (46.58)(1.06) = 98.75 KIPS
$\frac{\text{Section 2}}{\text{F}_{V}} = (2)(40.81)(1.00) = 81.62 \text{ kips}$	<u>Section 2</u> F _{V2} = (2) (40.81) (1.06) = 86.52 KIPS
$\frac{56.716\text{ M}}{\text{F}_{y}} = (2) (18042) (1.00 + 044) (1.1) = 240.80 \text{ KIPS}$	$\frac{52.7 \ln \lambda}{3} = (2) (180.42) [1.04+0.43] (1/2) = 305.25 1/4/2 $
$\frac{26c_{C10M}}{F_{V_{\phi}}} = (2\sqrt{(44.89)(0.47) + ^{9}4.13} = 52.04 \text{ KIPS}$	$\frac{5e_{CTIOM}}{F_{V_{4}}} = (2) [(9u.50)(0.47) + ^4u.6.2] = 53.03 \text{ KiPs}$
TOTAL UPLIFT FORCE Fy = 43.16 + 81.42 + 290.80 +52.04	TOTAL UPLIFT FOLLE Fy = 98.75 + 84.52 + 305.25 + 53.03
Fy = SIT.62 KIPS	Fy = 543.55 KIPS
# Iterative solution used to solve force for unformly varying load acting on nose Portion of Pier base	ging lond acting on nose Portion of pier base

The state of the s

Figure F26. (Concluded)

ets folle in 1253A

PAGE 2.05 2

NO COMPUTED BY:	CHECALO W: DATE		$A_{SMEMR} = \frac{(b) (1.5) (12.74)}{510 45}$	Assert = 51.93 A	AMENR = 7,478 in?	STOUT RESISTANCE = 11 F. BIRM SIN 45"	STRUT RESISTANCE = (1.1) $\sqrt{(7.950)(7,478)}$ (1/1000) Sin 45	STRUT RESISTANCE . 515.3 KIPS	FOUNDATION BENEVITA APROAL IS ASSUMED TO BE SCOURD. GADER THIS CONDITION THE SLIDAGE RESISTANCE OF SHENRED PORTION OF APRON IS CONSIDERED NEGLIGIBLE.
MALET DAM PIERS 9 AND 13 - STRUT RESISTANCE OF APRON		STRUT RESISTANCE OF APRON	FLOW	Committee and the control of the con		3	SHITME DIVINE		PIER 155 FORNORIEN BENCH TO BE SCOUND. THE SLIDING RE PORTINN OF A NEGLIGIBLE.

Figure F27. Strut resistance of apron, dam piers 9 and 13, Soo Dam

I tod	CHECALD OF						(.00.15) (.1 ([601.75-585.15] - (573.75-585.15)] (9) + [(601.75-581.15] - (573.75-581.15)] (51.70) } 2.69.1 KIPS			KIPS			DRIVING FORCE = 269.1 + (10455) [0.5 + 601.75 - 585.75] (10.77)	Resistance Falce (1,5466) tan 121 + 126.8 = 1,701 0 F. S. = \frac{1,546}{33.7} = 5.13		51) (505) (/Acco) [(16) (4) + (12 (51.7)]		
SLICING STABILITY AT CONCRETE - FOUNDATION	INTERFACE	<u>Snidrs</u>		DESCRIPTION Fy (NIMS)	SEE FIGURE F23 1, #951.0 SEE FIGURE F24 174.0 SEE FIGURE F24 -537.6 1,573.3	= Fy ten & + STRUT RESISTANCE OF APPROX = 1,573,3 ten 321 + 728.8 = 1,715.1	= (.04.15)(1/1) [PRISISTING FORCE 1,115.7 = 6.38	TH ICE	= 269.7 + (2)(5)(60.71) = 876.2 K	$= \frac{1_1 115.7}{876.2} = 1.96$		DESCRIPTION Fy (KIPS)	SEE FIGURE F23 1,859.0 179.0 1	ARTHRUMKE	261, + (0.05) [1,859 + 179 + 52.1] + (4/2) (51) (00) (1000) [(16) (4) + (14) [51.7)]	390.2 KIB	4.40
MALLY DAM PIERS 9 AND 13 - SLICI	INTE	FACTOR OF SAFETY AGAILIST	NORMAL OPERATION	1 TEM	Na pueza Na managa Se managa Na managa Se mana	RESISTING FORCE	DRIVING FORCE	r. Si	NORMAL OPERATION WITH ICE	DRIVING FORCE :	S.	HIGH - LIPTER CONDITION	ITEM.	Wings SEE Winner SEE Winner SEE Winner SEE	NIGOTAL OFF CATION WITH EARTHQUAKE	DRIVING FORCE =	11	u Li

Sliding stability summary for pier section, concrete-foundation interface, dam piers 9 and 13, Soo Dam Figure F28.

	COMPUTED BY	BAYE		
IAM MEKS 1 AND 13 STUDING STADING SEAM ALONG SEAM AT ELEVATION SES. 75	CHECHED BY:	T: OATC		
SLIDING STABILITY - NORMAL OPERATION WTOWAR	I TEM	FORCE COMPUTATIONS	(KiPS)	۳. (۶٬۶۶)
HWATER USSTATES WEEKS 13 / 12 15 15 15 15 15 15 15 15 15 15 15 15 15	W Phue R	SEE FIGURE F23 SEE FIGURC F24	1,854.0 174.0	
	WAPPECU	(1.5) (5.3) (1.5) (5.1) (1.6). (1.5) (2) (1.5) (1.5) (1.6).	779.2	
UPLIFT	Whomamen	(1) (\$3.3)(2.3)(\$1	1,214.1	
	Wwatek	WEIGHT OF WINTER ON PRE (SEE FRUIGETI) (COLIS) [593.25-587.75] (53.71) (CO.71) [OLIS) [601.75-587.75] (4031+180.42 +46.58] (2) (COLIS) (601.75-59.75] (4) (60.71-11)) 52.9 113-3 -117.3 22.3.7 872.6	
	UPUR	(1.04.5) (1.04.15+551.25 - (2) (516.31) (41.1) (2.13) (41.5) (41.5) (41.5) (41.5) (41.5)	42)-2,394.4 - 43.2 - 2,481.8	
1500 - 10	H. water	(.ou.5) (1) (601.75 - 585 .75) (40.71)		-485.7 106.7 -379.0
				-
12.23	TOTAL		2,138.6	- 379.0
es com to				PAGE OF P

The state of the s

Figure F29. Sliding stability summary for pier and apron section sliding along foundation seam, dam piers 9 and 13, Soo Dam (Sheet 1 of 8)

MALEY DANY PIERS 9 AND 13 - STIDING STABLLTY ALONG SEAM	COMPUTED BY	DA7£	
אן רורהש זומא איז זא	CHECKED BY:	DATE	
SUM OF FORCES			
NORMAL OFFIRM			
F = 2,138.16 KIPS			
FH = 379.0 KIPS			
NORMA OPERATION WITH ICE			
Fy = 2,138.6 N.PS			
$F_{\rm H} = 379.0 + (1)(5)(60.7i) = 986.1 \text{ KIPS}$			
HIGH LUNTER CONDITION			
WMMER = 812.6 + 55.4 -52.9 + (.06.15) (9) (60.11-11)		1/	403.1 hirs
= 14	+ (602.15-585.75) (2)(46.58)]	11	2,595.5 16185
FV = Whee + Withurs + While + While + Whater - UPLIFT	LANEA -UPLIFT		
F. = 1,859.0 + 179.0 + 651.1 + 1,064.7 + 91	03.1 - 2,595.5	11	2,061.4 KIPS
FH = (12) (.06.45) (60.17) [(602.15-585.75) - (593.25-585.75)] NORMAL OPERATION WITH EARTHQUAKE	[*(27.5	11	441.6 KiPS
FV = 2,138.6 KIPS			
$F_{H} = 319.0 + (0.05) \left[\frac{1}{1},859 + i F_{1} + 651.1 + 164.7 \right] + (\frac{4}{3}) \left(\frac{51}{1},05 \right) \left(\frac{1}{1},005 \right) \left($	51)(.05) (1/1cm) (14)2 (8)	11	570.2 KIPS

Figure F29. (Sheet 2 of 8)

PAGE 20FH

253A

		205.75			CHECKED BY:	٤		DATE		
LOAD	SUM OF VERTICAL FORCES	SUM OF HERIZOUTAL	FRICTION	CO HESIVE STRENGTN	AREA OF SLOING PLANE	STRUT RESIGNACE	SHEAR	COHESIVE RESISTANCE	TOTAL SLIDING RESISTMKE	FACTOR OF SAFCTY
	FV (KIPS)	F. (k. P.S.)	(Decrees)	C (KSF)	β. (Fτ ²)	8, 39 (8)	R=F MOB	Rc = CA (KIPS)	R=R +R +Rc (R.PS)	RS = 87
NORMAL COCRATION	2, 138.6	379.0	36.5	- 0	3261	0	1,582.5	326.1	1,908.1	5.04
			O'72	0.0			1,043.1	0.0	1,043,1	2.75
			34.0	2'0			1,442.5	652.2	2,094.7	5.53
			27.9	0.0			1,132.3	0.0	1, 132.3	2.99
			31.4	2.8			1,305.4	9,130.8	10,436.2	27.54
			21.0	0.0			Brozg	0.0	9.028	2.17
NOCIMAL CHEGATION WITH 1CE	2,138.6	1.986	36.5	O. I	3261	0	1,582.5	326.1	7.8051	1.94
			26.0	0.0			1,543,1	0.0	1,043.1	1.06
			34.0	0.2			1,442.5	652.2	1.440,2	2.12
			27.9	0.0			1,132.3	0.0	1,132.3	1.15
			314	2 · 8			1,305.4	9,130.8	10,436.2	10.58
		-	0.12	0.0			Becif	0.0	820.9	0.83
HIGH WATER CONDITION	2,061.4	9.144	36.5	ō.	3261	0	1,525.4	326.1	1,851.5	4.19
			26.0	٥,٥			١,٥٥٥٠٦	0.0	4.2001)	2.28
			34.0	٥.٢			1,390.4	7'257	2,042.6	4.63
;		ļ	27.9	0.0			1,091.5	0'0	1,091.5	2.47

Figure F29. (Sheet 3 of 8)

PAGE 3 OF F

	· · · · · · · · · · · · · · · · · · ·		_	τ	1	1	1	7	1	,	T
	FACTOR OF SAFETY ACAMST SLIDING	S 1.2 S 1.2 S 1.2	23.53	1.79	3.35	1.83	3.67	1.99	18.30	** '	
	TOTAL SLI DING RESISTANCE	R=R+4+6. (KiB)	10,386.1	741.3	1,508.6	1,043.1	2,094.7	1,132.3	10, 436.2	b.028	
DATE	COMESIVE	Rc = CA (KIPS)	4,130.8	0.0	326.1	0.0	1.55°	0.0	9,130.8	0.0	
	SHEAK Gesis tance	Ry = Fy tand	1,258.3	141.3	1,582.5	1,543.1	1,442.5	1,132.3	1,305.4	820.9	
ن د	S TRUT RESISTANCE	र ू (हा अ	0		0						
COMPUTED BY	AREA OF SLIDING PLANE	(Fr ^e)	3261		3261						
	CONESIVE	(KSF)	2.8	0.0	1.0	0.0	7:0	0,0	2.8	0.0	
AM	FRICTION	(DEGREES)	31.4	21.0	36.5	26.0	34.0	27.9	31.4	21.0	
ALGNG SE	SUM OF HORIZONIAL FORCES	(K1PS)	9.144		570.2						
SLIDING STABILITY ALONG SCAM AT ELEVATION 585.75	SUM OF VERTICAL FORCES	F, (K: PS.)	2,061.4		2, 138.6						
MAN PIERS 9 AND 13 - SLIDING S	LOAD CASE		HIGH WATER CONDITION		NORMAL OPERATIONS WITH EARTHQUAKE						

Figure F29. (Sheet 4 of 8)

WALET UNA PIERS 9 AND 13 - SLIDING STABILLY ALONG SEAM	COMPUTED BY		DATE		
AT ELEVATION 584.75	CHECAED BY:		DATE:		
SLIDING STABILITY-NORMAL OPERATION	ITEM	FORCE COMPUTATIONS		K, K)	F. (K.PS)
52.00 + 32 C	W.	SEE FIGURE F23	8.	1,859.0	
H 1013 762 A 1013 A 101	Wrower	SEE PIGURE F24		0.61	
GLEVATION SP4.75	Wapecul	Wapecus (1.543) (1.5)(63.11) (60.17)	'	779.2	
UPLIFT	Foundation	M FORMERTION (-1513)[588.25-564.75](62.71) (60-71) -(-150.3)(2.5)(1)(40.81+180.42+46.56)	_	1, 763.8	
	W WATER R	WEGHT OF WATER ON PIER (SEE FIGURE F2) (OUTS) [5/3.25 -58/15] [53.71] [40.71] (-OUTS) [5/3.55 -58/175] [40.717 180.62 +96.83/16] (-OUTS) [40.75 -58/3.75] (4) [40.71 -11]	'	52.4 713.3 -117.3 223.7	
	UPLIET	-(445)/(1/64) 8 453.55-(4/68/73)/(53/1)(6.1) -(44.4) (601.75 - 585.75) (2) (48.59)		- 2,548.4	
58 74	T WATER	4.06.55)(\$)(601.15-564.15) ² (40.11) (.04.05)(\$)(573.35-584.15) ² (40.11)		_'_1'	137.1
23.77					
	TeTAL		۲'2	2, 444.5	- #11.2
STORMER THE (253A					PAGE 5 OF P

Figure F29. (Sheet 5 of 8)

DATE DATE				= 403.1 KIP5 = 2,605.1 KIP5	= 2,361.5 KiB	= 627.9 KP3
SMALET DANN PIERS 9 AND 13 - SLIDING SMBILITY ALONG SCAM CHERS 9 AT ELEVATION SSH.75	SUM OF FORCES	FV = 2,444.5 KIPS FN = 411.2 KIPS	MORTHAL OFFRATION WITH ICE $F_V = 2_1444.5 \text{ Kips}$ $F_R = 411.2 + (3)(5)(60.71) = 1,018.3 \text{ Kips}$	HIGH WATER CONDITION WATER = 872.6 + 55.4 -52.9 + (.06.2) (9) (60.71 - 11) WATER = (.06.2) [(1) (60.75 + 593.25 - (2) (584.75)) (53.71) (60.71) + (602.75 - 564.75) (1) (46.56)]	$F_V = W_{Pleft} + W_{Tolorer} + W_{APRO13} + W_{FOUNDATION} + W_{LATER} - UPLIFT$ $F_V = 1,859 + 179 + 651.1 + 1,574.4 + 903.1 - 2,865.1$ $F_H = (12)(.0625)(L0.71) \Big[(602.15 - 584.75)^2 - (543.25 - 584.75)^2 \Big]$	Normal operation with earth enake $F_{y} = 2,444.5 \text{ KiPs}$ $F_{\mu} = +11.2 + (.05)(1859 + 179 + 651.1 + 1,574.4) + (73)(51)(.05)(1.05)(1.05)(1.05)$

Figure F29. (Sheet 6 of 8)

PAGE L OF P

ACC . 1253A

		FACTOR OF SAPETY AGANSÍ SUDIN	 ∞!π <u></u>	5.19	2.40	5.60	3.15	25.83	2.28	2.10	1:1	2.26	1.27	10.43	242	4.34	7.77	4.70	2.62	
		To TAL Suiding Resistance	R=R+19+R (K105)	6'184'2	1,192,3	2,301.6	1,294.3	10, 622.9	438.4	5,134.9	1, (92.3	2,301.0	1,294.3	6'229'01	1.8EP	5.5ro12	8-1514	1'5+1'2	t'0521	
DATE	DATE	CONESIVE	Rech (Kins)	326.1	0.0	2.230	0.0	9,130.8	0.0	326.1	0.0	1.189	0.0	9,130.8	0.0	326.1	0.0	1,287	0.0	
İ		S NEAR RESISTANCE	Rr = Fytant	1,808,8	1,192.3	1,648.8	1,2943	1,442.1	4.86.4	1, 801.8	1, 192.3	1,48.8	1,294.3	1. 264,1	438.4	4.747,1	8. 151 1	1,592.4	1,250.4	
1	٠.	S TRUT RESISTANCE	8. 8. 8.	0						0						0				
COMPUTED BY	CHECRED BY	AREA OF SUIDING PLANE	(FT ²)	3261						3261						3261				
		CCHESIVE	C (4SF)	0.1	ი.0	5.0	0.0	2.8	0.0	0.1	0.0	0.2	0.0	2.8	0.0	0.1	0.0	7.0	0.0	
SEAM		FRICTION	(0caees)	36.5	20.02	340	27.9	31.4	0.12	36.5	26.0	34.0	47.9	31.4	21.0	36.5	26.0	34.0	27.9	
ITY ALONG	S84-75	SUM OF HORITURIAL FORCES	F,, («نج)	411.2						1,018.3						477.6				
SLIDING STABILITY ALONG	ELEVATION	SUM OF VERTICAL FORCES	F, (KIPS)	S'mn'2						5,444,5						2,361.5				
MANEET DAM PIERS 9 AND 13 - SLIDII	AT E	LOAD CASE		NORMAL OPERATION						NORMAL OPERATION WITH ICE						HIGH WATER CONDITION				

Figure F29. (Sheet 7 of 8)

PAGE 7 OF B

	FACTOR OF SAPETY MORNIST SUDING	F. S. = . R.	22.14	1.90	3.40	1.90	3.66	2.06	16.92	1.49	
	TOTAL SLIDING RESISMINCE	R=R3+R+RC (K1.PS)	10,572.3	406.5	2,134.9	1, (92.3	2,301,0	1,294.3	10,62. i	438.4	
0 A7E	COMESIVÉ RESISTANCE	R = CA (K1P)	9,130.8	0.0	\$26.1	0.0	7759	0.0	8.081, 9	0.0	
	SHEAL	Ry = F, ten 6 (Kits)	S. 1441	406.5	8.808.1	1,192.5	1,648.8	1,244.3	1,492.1	438.4	
نے ڈ	STRUT	R, (K,P3)	0		0						
CHECKED BY.	AREA OF SLIDING PLANE	(F7')	3261		3261						
	COHESIVE STRANG TH	(KSF)	8.2	0,0	0.1	0.0	٥.٢	0.0	9.2	0.0	
NG SCAM	FRICTION	(Declares)	31.4	21.0	36.5	26.0	34.0	27.9	31.4	0.12	
BILLY ALON	SUM OF HORIZOUTAL	F. (K.P.S.)	477.6		627.9						
SLIDING STABILITY ALONG SCAM AT ELEVATION SE4.75	S LIM OF VERTICAL FORCES	F. (KIPS)	519812		5'444'2						
MANGE DAM PIERS 9 AND 13 - SLIT	LCAD CASE		HIGH WATER COUDITION		NORMAL OPERATION WITH EARTHQUAKE						

Figure F29. (Sheet 8 of 8)

PAGE S OF B

Figure F30. Layout of posttensioning required to meet sliding stability, Soo Dam (Continued)

493190		
	CMECAGO BY:	
REQUIRED PROTTENSIONING		
FSR = FACTOR OF SAFETY ACANOST SUDING REGUIRED TO FM = SUM OF HORIZONTAL FORCES (KIPS) F, = SUM OF VERTICAL FARCES (KIPS)	REGUIRED TO MEET STABILITY CRITICIA	
ANGLE OF SLIDING CONESNE STRENSTH DOFA OF SLIDING	(z)	
ANGLE PRITTENSIONING MAKES WITH PRISTONING FACE REQUIRED TO	HORIZ WITH. (DEEDGES) MEE'T SLIDING STABILITY (RIPS)	
FSR = RESISTING FORCE (Fy + P.C.; 8) ten 4 + P.S.n. 6 + CA		
P = FXP. Fy + hn 6 - CA Co. 6 thing + 5 178		
PERS 10,11,12,14,15, AND 16 - NORMAL OPERATION WITH 1CE	J.	
EQU. $FSR = 1.5$, $4 = 21.0$, AND. $C = 0.0$ $(.5)(911) - 6.871.3) + hm 21 - 6.0(8234)$ $P = \frac{(.5)(911) - 6.871.3 + hm 21 - 6.0(3234)}{\cos 45 \cdot 45 \cdot 15.0145} = 7$	765 KIPS ; P = 765 = 191 KIPS/HOLE	P3/HOLE
For FSR = 2.4. $d = 36.5$. And $C = 0.1$ $P = \frac{(a.)(178) - (1.871.2) \text{ km 36.5} (0.1)(31.23)}{\cos 4.5 \text{ km 36.5} + 30.145} = 2$	202 KIPS	
PIERS 9 AND 13 - NORMAL OFERMTON, WITH ICE		
For $F_{S,R} = 1.5$, $d = 21.0$, AND $C = 6.0$ $P = \frac{(1.5)(9g.1) - 413g. \text{fm 21} - (0)(3361)}{\text{cre-46 fan 21} + 5n 45} = 6$	פוז אינה י ף = לדא = ינם אינה/אינה	KIB/HOE
Foil FSR = 2.0 d = 36.5, AND C=0.1 P = (2.0)(486.1) - 2.138.6 tm 36.5 - (0.1)(5261) Cos 45 ton 36.5 + 510 45	62 KIPS	

Figure F30. (Concluded)

DATE	DATE	SUM OF MOMENTS APTER POSTTENSIONS M'=M+M'p	FT-KIPS		921,72	46,744	54,632	24,487		711,23	46,744	54,632	24,487			1	1	
		MOMENT BUE TO PESTENDAMING Mp = 46.5 P'	FT-KIB		21,906	21,906	21,906	206'12		21, 906	21,906	21,906	21,906			1	1	1
1		SUM OF Moneuts	FT-KIPS		33,870	24,838	32,726	32,581		33,870	24,838	32,726	32,581		*	*	*	*
COMPUTED BY	CHECKED BY:	SUM OF HORIZONTAL PROCES	KIPS		264.9	867.0	313.8	34.9		264.9	867.0	313,8	366.9		375.9	978.0	437.9	550.6
AFTER.		Sum OF VERTER PSTEAMONG PSTRAGOUNG	h.Ps		1,824.3	1,826.3	1,807.3	1,824.3		1,826.3	1,826.3	1,807.3	1,826.3		2,412.1	2,412.1	6.988.2	2,412.1
AND MOMENTS	90	VERTICAL COMPART OF PRITASSANING FORCE P = P SIN 45	KIPS		5.04.5	5.945	5.40.9	5.40.9		Stag	5.40.9	5.0h5	5.40.9		5.00.5	5.0hS	6.04.5	5.00.9
FORCES AND	POSTTENSIONING	SUM OF VERTICAL FORCES F	Kips		1,285.4	4.285.1	ا, يود .ط	p. 582'1		1, 285.4	4.282,1	1,266.4	1,285.4		1,871.2	1,871.2	1,796.0	1,871.2
waster DAM PIERS 10, 18,12,14,15, AND 16 - Fo		LOAD CASE		piek oury	NORMAL OFERMION	NORMAL DEBONDON WITH ICE	HIGH - WATER CLUDITION	NORMAL OPBRATION WITH BARTHAUMIC	PIBEL AND FOUNDATION	NORMAL OPERATIONS	NORMAL OPERATION WITH 1CE	HIGH - WATER CONDITION	NORMAL OPERATION WITH ENDINGLARE	PIER AND APPEN SECTION AT ELEV. SEC. 15	NORMAL OPERATION	NORMAL OFFICETION WITH ICE	HGH - WATER CONDITION	NORMAL OFERTION WITH EASTHQUANG 1,871.2
SUBJECT DRING PIE																	~	

PAGE 1 OF 2 Figure F31. Forces and moments after posttensioning, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam (Continued) * NOT COMPUTED BECAUSE SLIDING STABLITY WAS NOTE CRITICAL AND THEREPARE CONFINED IN THE ANALYSIS

DATE	DATE:	
COMPUTED BY:	CHECKED BY:	
WALKET DAM PLEAS 10, 11, 12, 14, 15, AND 16 - FORCES AND MANEUTS AFTER	POSTTENCIONING	

LOAD CASE	Sum of Vertical Pacces F	VEATICAL SOM OF COMPANENT OF WERTCAL PROTENSIONING PREES APPLE PROCE ASTREASOUNG POSC ASTREASOUNG PO	SUM OF UNETTOK FORCE APICE RETENSIONAL Fo, = Fo, + P	Sum of Hobitouthe FORCES	A Meerts	Money Sum of Due To Money S Due To Money S Postbooming Aprez, Aprez, Milling M	SUM OF MOMENTS APTER PRETERECIONING M'= M+M _e
PER AND IPPORT SECTION AT ELEV 58175							
NORMAL OFERSTIAN	2,174.5	5.40.4	2,716.5	4.7.9	*		
NORMAL OFFERTION WITH ICE	2,461,5	540.9	2,715.5 1,010.0	1,010,0	*		
HIGH - WATER CONDITION	7.45012	g-ob-2	2,635.5 473.7	473.7	*	1	
MEANUL OPERATION LITH EMETHQUAKE 2,174.6	2,174.6	546.9	2,715.5 607.9	6.1.9	*		1

PAGE 2052

Figure F31. (Concluded)

DATE	DATE:							
: **	į	PERCENT GFECTIVE BASE	A. # 100	×	0.001	180.0	100.0	0.001
POSTTEDISIONING, COMPUTED	CHECKED BY:	AREA OF PIER BASE IN Compression	Y	b T	<i>7L</i> -615	91.915	519.76	<i>7L</i> .815
EFFECTIVE BASE AFTER	CONCRETE - FOUNDATION INTERFACE	TOTAL ARES OF PIER BASE	Ÿ.	PTF	519.76	519.76	<i>91.</i> PI S	519.76
14,15, AND IL - PERCENT	CONCRETE	350 OVOT			NORMAL OFFRITON	NOGINAL OPERATION WITH ICE	HGH- WATER CONDTON	NORMAL OPERATION WITH EPRTHQUAKE
MANIET DAM PIERS 10, 11,12,14,15, AND IL - PERCENT EFFECTIVE BASE AFTER POSTTENSIONING, COMPUTED BY								

Percent of pier base in compression after posttensioning, concrete foundation interface, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam Figure F32.

MANIET DAM PIERS 10,11, 12, 14, 15, AUD 16-		FACTOR OF	SAFETY	SAFETY AGAINST SUDING	DIAJG COMPUTED BY			DATE		
		AFTER POST	POSITENSIONING	6	CHECKED BY	H:		DATE:		
LoAD CASE	SUM OF VERTICAL FORCES	SUM OF HORIZON ML. FORCES	FRICTION	Cortesue STREMETH	BASE	CTRUT RESISTANCE	S HEAR RESISTANCE	HORIZONTHL COMPOSENT DF POSTTENBOANG FORCE	TOTAL	PHCTDR OF SARETY AGNUST SUDING
	Å.	πz	*	U	<	æ	R=E'tm6+CA	S, q	R=R+8+R	1. S. I. I. I. I. I. I. I. I. I. I. I. I. I.
	(KiPS)	(KIPS)	(pecares)	(45F)	(FT.)	(KIPS)	(KIPS)	(K.PS)	(KIB)	ŗ
Pier only										
NORMAL OPERATION	1,826.3	5.4.3	32.1	0.0	925	0.71٢	1,145.6	P.ohs	2,4035	4.07
NORMAL OPERATION WITH ICE	1,826.3	867.0	32.1	0.0	250	0.71	1,145.6	5 ohs	2,403.5	2.77
HIGH - WATER CONDITION	1,807.3	313.8	32.1	0.0	25	717.6	1,133.7	5.04.5	2, 391.6	7.62
MORMAL OPERATION WITH EARTH EVAKE	1,826.3	346.9	32.1	0.0	925	717.0	1,145.6	5.00.5	2,463.5	6.55
PIER AND FULLIDATION										
WCRMAL OPERATION	1,824.3	5.4.5	21.0	0.0	925	0.717	101.0	6.045	1,458.9	7.39
NOG MAL OPERATION WITH ICE	£.458,1	0.738	21.0	0.0	520	0.717	761.0	8.0h.3	1,958.9	2.76
West - WATER, CONDITION	1,807.3	313.8	21.0	0.0	कड	0.717	643.8	५.०५८	1,951.7	6.22
HELME OPERATION WITH EASTHQUAKE	1,824.3	b. % €	21.0	0.0	220	717.0	701.0	5.ak.5	1,958.9	5.34
REC. AND APPLIED SCOTIN A BLEV 505 75										
NORMAL OPERATION	2,412.1	375.9	21.0	0.0	3234	0.0	9.23.9	5.042	1,466.8	3.90
NORMAL OPERATION, WIT	2,412.1	478.0	21.0	0.0	3234	0.0	425.4	6.042	1,466.8	1,50
HEM-WATER COUD	2,336.9	437.9	21.0	0.0	3234	0.0	847.0	5.045	1,437.9	3.28
NORMAL OPERATION WITH EARTHQUAKE	1.514.2	550.6	21.0	0.0	3234	0.0	925.9	540.9	8.974'1	2.66
es come co. 253A ectudes sea 253A										PAGE 1 OF Z.

Figure F33. Factor of safety against sliding after posttensioning, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam (Continued)

BPSE STRUT SHEAL GANKENT	BPSE STRUT SHEAR CARRIED TOTAL	BPSE STRUT SHEAR CARRIED TOTAL	BPSE STRUT SHEAR GARGATT TOTAL SHEAR GARGATT TOTAL	BPSE STRUT SHEAR GARRENT TOTAL SHEAR GARRENT TOTAL	BPSE STRUT SHEAR GARRENT TOTAL SHEAR GARRENT TOTAL	BPS STRUT SHEAR GARRENT TOTAL SHEAR GARRENT TOTAL	BPSE STRUT SHEAR GARGATT TOTAL SHEAR GARGATT TOTAL	BPS STRUT SHEAR GARGENT TOTAL SHEAR GARGENT TOTAL	BPSE STRUT SHEAR CARRIED TOTAL SHEAR OF SLIDING SLIDING	BPSE STRUT SHEAR CARRIED TOTAL SHEAR OF SLIDING SLIDING	BPSE STRUT SHEAR CARRIED TOTAL	BPSE STRUT SHEAR CAMBUCATOR TOTAL AUgh BEAUTHOUS SHOWS STRUCT TOTAL	BPSE STRUT SHEAR GANKWAT TOTAL	BPSE STRUT SHEAR CAMPRENT TOTAL	BPSE STRUT SHEAR GARRENT TOTAL SHEAR OF SLIDING STRUKE	BPSE STRUT SHEAR CARRIED TOTAL	BPSE STRUT SHEAR GANREATT TOTAL SHEAR OF SLINES	BPSE STRUT SHEAR GARGANT TOTAL SHEAR GARGANT TOTAL	BPSE STRUT SHEAR CARRIED TOTAL	BPSE STRUT SHEAR GAMPLENT TOTAL	BPSE STRUT SHEAR GARGENT TOTAL	BPSE STRUT SHEAR GAMPLENT TOTAL	BRE STRUT SHEAR CARRENT TOTAL SHEAR DESCRIPTION OF SLIDING S	BASE STRUT SHEAL CAMERINI TOTAL	AURA DECEMBER CARRIENT TOTAL	Suous Secretarios Descriptions	TOTAL DESCRIPTION OF THE PROPERTY OF THE PROPE	Mesis inde	KESISTANCE	Strict Strains			R. 10 -F thought CA R-17 + R + R FS =	+ 7 .		(Kirs) (Kirs)					6.092 4.240.1		0.00 to 1.040.4			6.0h5 1.10 11 0.0		540.9
8 8																													(KIPS) (KIPS) 1,583.3 1,582.6 1,582.6	R=G18 + Rp (K1P5) 1,583.3 1,582.6 1,582.6	(KIPS) (KIPS) 1,583.3 1,582.6 1,582.6	(KIPS) 11583.3 1.552.6 1.552.6 1.553.3	(KIPS) 1,583.3 1,582.6 1,582.6	(KIPS) 1,583.3 1,582.4 1,583.3	(KiPS) 1,583.3 1,582.4 1,582.4	1,583.3 1,582.6 1,582.6	1,583.3 1,582.4 1,582.4	1,583.3 1,582.4 1,583.3	1,583.3 1,582.4 1,582.4	1,583.3 1,582.6 1,583.3	1,582.6	1,583.3	1,583.3	1,583.3	1,583.3	1,583.3	1,583.3	
]					pours	6-04-2	6.042	6.042	6.042	9.042 6.042	pops pops syarg	sub-q	sub-s	5-40.9	6.945 5.48.9	540.9	540.9	548.9	
SHEAR RESISTANCE F. F. Engle CA (KIPS) (KIPS) 1,042-4 1,041-7 1,042-4	SHEAR RESISTANCE (KIPS) (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	SHEAR RESISTANCE (KIPS) (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	SHEAR RESISTANCE (KIPS) (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	SHEAR RESISTANCE (KIPS) (KIPS) (KIPS) 1,042.4 1,041.7 1,041.7	SHEAR RESISTANCE (KIPS) (KIPS) 1,042.4 1,041.7 1,041.7	SHEAR. RESISTANCE (KIPS) (KIPS) (1,042.4) (1,042.4) (1,042.4)	SHEAR RESISTANCE (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	SHEAR RESISTANCE (KIPS) (KIPS) (KIPS) 1,042.4 1,041.7 1,041.7	SHEAR RESISTANCE (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	SHEAR RESISTANCE (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	SHEAR RESISTANCE F. F. Empt.CA (KIPS) 1,042.4 1,042.4 1,042.4	SHEAR RESISTANCE F. F. Empt.CA (M.195) 1,042-4 1,042-4 1,042-4	SHEAR RESISTANCE B.F. Empt CA (KIPS) 1,042-4 1,042-4 1,042-4	SHEAR RESISTANCE (KIPS) (KIPS) 1,042-4 1,041-7 1,042-4	SHEAR RESISTANCE (KIPS) (KIPS) (LOUZ.4 1,042.4 1,042.4	SHEAR RESISTANCE (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	SHEAR RESISTANCE RESISTANCE (KIPS) (KIPS) 1,042-4 1,042-4 1,042-4	SHEAR RESISTANCE (KIPS) (KIPS) 1,042.4 1,041.7 1,042.4	SHEAR RESISTANCE (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	SHEAR RESISTANCE B.F. Empt CA (KIPS) 1,042-4 1,042-4 1,042-4	SHEAR RESISTANCE (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	SHEAR RESISTANCE F. F. Engl. CA (M.195) 1,042-4 1,042-4 1,042-4	SHEAR RESISTANCE (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	SHEAL RESISTANCE RESISTANCE (KIPS) (KIPS) 1,042.4 1,042.4	SHEAR RESISTANCE (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	RESISTANCE (KIPS) (KIPS) 1,042.4 1,041.7 1,042.4	RESISTANCE (KIPS) (KIPS) (KIPS) (LOUZ.4) (1,047.4) (1,047.4)	(KIPS) (KIPS) 1,042.4 1,042.4 1,042.4	g.f. budt CA (KIPS) (KIPS) 1,042.4 1,042.4 1,042.4 1,042.4	(K.105) (K.105) 1,042.4 1,042.4 1,042.4	g. f. budt CA (4.105) 1, 042.4 1, 042.4 1, 042.4 1, 042.4	(4.105) (4.105) (4.104) (4.04) (4.04) (4.04)	(«in») («in») (») (»)	(sain)	1,042.4 1,042.4 1,044.7 1,044.7	1,042.4	1,042.4 1,041.7 1,041.1	1,042.4	1,042.4 1,041.7 1,041.7	1,042.4 1,042.4 1,042.4	1,042.4 1,041.7	1,042.4 1,011.7 1,042.4	1,0424	1,041.7	1.0424	1,0424	1,0424	_
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	STRUT RESISTANCE R ₃ (KIP.) (KIP.)	STRUT RESISTANCE R ₃ (KIP.) (KIP.)	STRUT RESISTANCE R R S C(KIP.) (KIP.)	STRUT ESSTANCE R 3 (KIP.) 0.0 0.0	STRUT (Sistance (Rips) (Rips) (O.0	STRUT (ESSTANCE BESSTANCE B) (KIPS)	STRUT RESISTANCE R R S C(KIP.) (KIP.)	STRUT (SESSTANCE SESSTANCE S) (KIPS)	STRUT RESISTANCE R ₃ (KIP.) (KIP.)	STRUT RESISTANCE R ₃ (KIP.) (KIP.)	STRUT RESISTANCE R R (K.P.) O.C. O.O.	STRUT RESISTANCE R R R S (KIP.)	STRUT RESISTANCE R R R R R R R R R C C C C C C C C C C	STRUT RESISTANCE R R R R R R R R R R R R R R R R R R R	STRUT RESISTANCE R R R R G C C C C C C C C C C C C C C C	STRUT RESISTANCE R S S (KIP.) O.C O.C	STRUT RESISTANCE R R R R R R R R C C C C C C C C C C C	STRUT RESISTANCE R R R R G C C C C C C C C C C C C C C C	STRUT RESISTANCE R ₃ (KIP.) (KIP.)	STRUT RESISTANCE R R R S (KIP.) O.0	STRUT RESISTANCE R 3 (KIP.) 0.0 0.0	STRUT RESISTANCE R ₃ (Ki.P.) 0.0 0.0	STRUT RESISTANCE R S S O.C O.C O.C	RESISTANCE RESISTANCE R R R S (RiP.) O.0	STRUT RESISTANCE R ₃ (KIP.) (KIP.)	RESISTANCE R R S (KIP.) O.0 O.0	Resistance Rs 3 (KIP5) (KIP5)							(Kilps)	0.0	\$ 0 0 °	30 00	0.0	0.0	9.0	0.00	0.0	0.0	0.0	٥.٥			0.0
																								_				(FT*)	(FT ²) (FT ²) 3234 3234 3334	(FT*) (3234 3234 3234	(FT ²) (FT ²) 3234 3234 3234	(FT*)	3234	(FT*)	3234	3234	3234	3234	3234	3234	3234	3234	3234	3234	3234			3234
CONESINE STRENETH (KSF)	CCHESINE 718c N.S.T.1 (K.S.F.)	CCHESINE 718c N.S.T.1 (K.S.F.)	CONESINE TRENSTH (KSF)	CONESME TRENSTH (KSF)	COMESME THENSTH (KSF)	COMESINE TRENETH (KSF)	COMESME TRENSTH (KSF)	CONESINE TRENSTH (KSF)	CCHESINE TRENSFTH (KSF)	CCHESINE TRENSFTH (KSF)	CONESME TREASFTH (KSF) 0.0	CONESINE TREASETH (KSF)	CCHESINE 712 EN 6714 (KSF) 0.0	CCHESNE TRENETH C C C (KSF)	CONESINE TRENETH (KSF) (KSF)	CCHESINE TRENSFTH (KSF)	CCHESINE 712e N.F.TH CKSF) 0.0	COMESINE TRENETH (KSF) 0.0	CCHSME 712c N.5714 (KSF) 0.0	CCHESINE 712 EN 6.74 (K.S.F.)	CONESIME TRENSTH (KSF) 0.0	CCHESINE TRENSTH CKSF)	CCMESINE TRENSFTH (KSF)	CCHESNE 712 CN CKSF) (KSF) 0.0	CCH5.WE 7.26.N.6.714 (K.S.F.) 0.0 0.0	C (KSF) 0.0	(KSF) 0.0	C (KSF)	C (KSF)	C (K3F)	C (KSF)	0.0 0.0	(KSF)	(KSF)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			9.0
#PRICTION 6 ANGLE 5 21.0 21.0 21.0 21.0	1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\	\	1	1 	1	1	1	12	1	1988 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984	19	1	12	1	~ ~~					(begats) 21.0 21.0	(begges) 21.0 21.0 21.0	(begats) 21.0 21.0	(begges) 21.0 21.0 21.0	(begates) 21.0 21.0 21.0	(bearts) 21.0 21.0 21.0	(NGORES) 21.0 21.0 21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	210		j	21.0
SUM OF HABITALITY FACES F. F. (KIPS) HOT.9 1,010.0	Som of Habitasithe Faces F. F. (KIPS) HOTST	Som of Habitasithe Faces F. F. (KIPS) HOTST	SOM OF HORIZOUTH, FREES F. F. F. (KIPS) (KIPS) 1,010.0	SOM OF HABUTANTHE FREESS	SOM OF HORIZON THE PACES F. F. (KIPS) 1,010.0	SOM OF HABITAL THE FREES FE (KIPS) (K	SUM OF HORIZOSTAL FRACES F F F F (KIPS) L,010.0	SUM OF HABITAL THE FACES F. (KIPS) HOT.9 1,010.0	SUM OF HABITALITY FACES F. F. (KIPS) HOT.9 1,010.0	SUM OF HABITALITY FACES F. F. (KIPS) HOT.9 1,010.0	Sem of Habitalink Facts Fig. (KIPS) Lolo.o	Som OF HOLDSITH FREEES FR (KIPS) LOT 9 LOT 9 LOT 9 HTS7	Som OF Hobizarth. Fig. (KIPS) (KIPS) (KIPS) (HIS) (MTS)	SOM OF HABITAL THE FACES F. F. (KIPS) 1,010.0 473.7	Som of Hobitanink Fraces F. (KIPS) HOT.9 475.7	SCOM OF HOBUSASTAL FORCES F. F. (KIPS) HOT.9 I,010.0	Som OF Hobizarth. Fig. (KIPS) (KIPS) (KIPS) (KIPS) 475.7	Som of Habitarithe Fraces F. (KIPS) HOT.9 475.7	Som of Habitasithe Faces Fig. (KIPS) Hot.9 Loto.0 475.7	Som of Hebrauth Praces Fig. (KIRS) (KIRS) 1,010.0	Som of Habitan MA Fraces F. (KIPS) (KIPS) (HOT.9 475.7	SOM OF HORIZONTHL FROCES F. (KIRS) HOT.9 1,010.0	SUM OF HOBITASITAL FAREES F. F. (KIPS) HOT.9 I,010.0	SUM OF HOUSENTH. FREES [KIPS] HOT.9 1,010.0	HABLES THE PACES F. F. (KIPS) HOT.9 1,010.0	Heb Zes TAL PREES [KIPS] (KIPS] HOT 19 1, 010-0	F (KIPS)	F, (KIPS)	F (KIPS)	F, (KIPS) (KIPS) wor,9	(KIPS) HOT.9 1,010.0	(KIPS) (KIPS) 473.7	(KIPS) 401.9 1,010.0	(KiPS) 407.9 475.7	0.010,1	9.104 0.010,1 17.574	1, 101.9 0.010.0	9.104 0.010,1	1, 010.0	1, e10.0	1, 010.0	1,010.0	473.7	47.5.T	112.7			6.1.9
Sum of Vebrich. Fedes; F, (Kibs.) 2,718.5 2,718.5	Sum of Vertical Foldes: 5 (Kips) (Kips) 2,718.5 2,718.5	Sum of Vertical Foldes: 5 (Kips) (Kips) 2,718.5 2,718.5	Sum of Vertical Folder, 5 (Kirs) (Kirs) (Kirs) 2,715.5	Sum of VLETICAL FORCES, F. (K.18) (K.18) 2,715.5 2,715.5	Sum of Sum of Wedfich. Foldes, F, (Kib.) (Kib.) 2,715.5 2,715.5	Sum of Verical Forces. F. (Kib.) (Kib.) 2,115.5 2,145.5	Sum of Vertical Forte; (Kirs) (Kirs) 2,715.5	Sum of Verich. Folds. F, (K.18) 2,716.5 2,745.5	Sum of Vebrich. Fedes; F, (Kibs.) 2,718.5 2,718.5	Sum of Vebrich. Fedes; F, (Kibs.) 2,718.5 2,718.5	Sum of Vertical Folder, [F. [K.18]] (K.18] 2,715.5 2,715.5	Sum of Vertical Forters (Kips) (Kips) 2,716.5	Sum of VLETICAL FORCES. F, (KIPS) (KIPS) 2,718.5 2,718.5	Sum of VLETICAL FORCE, F, (K.P.) (K.P.) 2,715.5 2,715.5	Sum of Vertical Fortes, F. (Kib.) (Kib.) 2,115.5 2,145.5	Sum of Verich. Fedes; (Kib) (Kib) 2,118.5 2,145.5	Sum of VLETICAL FORCES, [KIPS] (KIPS) 2,718.5 2,716.5	Sum of Verich. Folds. F, (K.18) 2,115.5 2,145.5	Sum of Vebrich. Fedes; F, (Kib) 2,118.5 2,145.5	Sum of VLETICAL FORLES, F. (KIPS) (KIPS) 2,718.5 2,716.5	SAUM OF VERTICAL FORCES F, (K.185) (K.185) 2,716.5 2,716.5	Sum of Verical Folders, Fy (KiPS) (KiPS) 2,718.5 2,718.5	Sum of VLETICAL FORCES, F. (K.18) (K.18) 2,715.5 2,715.5	Sum of VLETICAL FORCE, F, (K.P.) (R.P.) 2,715.5 2,715.5	VS. LIM OF VS. LIM OF VS. LIM OF VS. LIM OF VS. LIM OF VS. LIM OF Z. 118.5	4.2116.5 F, (K.18) (K.18) 2,715.5 2,715.5	Folde, (K.P.) (K.P.) (K.P.) 2,115.5 2,715.5	(Kib) (Kib) (2,118.5	(Kib) (Kib) 2,118.5 2,118.5 2,135.5	(K.18) (2,115.5 2,115.5 2,245.5	(K.PS.) (K.PS.) 2,115.5 2,716.5 2,145.5	(K.P.) (K.P.) 2,115.5 2,145.5 2,435.5	(K.IR) 2,715.5 2,715.5 2,715.5	(K.PS) 2,115.5 2,715.5 2,715.5	2,115.5 2,115.5 2,145.5	2,115.5 2,1715.5 2,1435.5	2,115.5	2,715.5	2,715.5 2,715.5 2,635.5	2,115.5	2,715.5	2,715.5	2,635.5	2,635.5	2,635.5			2,715.5
MER AND APROX SECTION AT BLEY 584.15 NORMAL GREATION WITH ICE HIGH - WATER CONDITION	MER AND AREA SECTION AT ELEY 584.75 NORMAL GREATION WITH ICE HIGH - WATER CONDITION	MER AND APRILY SECTION AT ELEY 584.75 NURMAL CIPERATION NORMAL CIPERATION HIGH - WATER CONDITION	MER AND APER SECTION AT CLEY 584.15 NURMAL CIPEDATION NORMAL CIPEDATION WITH ICE HIGH - WATER CONDITION	MER AND APPROX. SECTION AT CLEY 584.15 NURMAL CHEATTON NORMAL CHEATTON HIGH - WATER CONDITION	MER PAU APRIL SECTION AT CLEY 584.75 NURMAL CIPERATION NORMAL CIPERATION HIGH - WATER CONDITION	PER AND APPRICE SECTION AT ELEY 584.15 NURMAL CHERTON NORMAL CHERTON NORMAL CHERTON NORMAL CHERTON HIGH - WATER CONDITION	MER AND ANDLES SECTION AT CLESS 584.75 NURMAL CIPERATION NORMAL CIPE	PER AND APPRIL SECTION AT ELEY 584.15 NURMAL CHERTICAL NORMAL CHERTICAL NORMAL CHERTICAL HIGH - WATER COUNTION	MER AND APROX SECTION AT CLEY 584.15 NURMAL CIPERATION NORMAL CIPERATION HIGH - WATER CONDITION	MER AND APROX SECTION AT CLEY 584.15 NURMAL CIPERATION NORMAL CIPERATION HIGH - WATER CONDITION	MER AND APROX SECTION AT ELEY 584.75 NORMAL C.PERTION NORMAL C.PERTION HIGH - WATER CONDITION	FER AND APROL SECTION AT CLEY 578.75 NORMAL C.PERPTON NORMAL C.PERTION HIGH - WATER CONDITION	MER AND APRON SECTION AT CLEY 584.75 NORMAL C. PERTTON NORMAL OF CATTON HIGH - WATER CONDITION	NORMAL OFERMIND WITH ICE HIGH - WATER CONDITION	NORMAL CREATION WITH ICE HIGH - WATER CONDITION	MER AND APROX SECTION AT BEEV 584.15 NORMAL C.PERATION NORMAL OFERATION WITH ICE HIGH - WATER CONDITION	FEE PAID APROL SECTION AT ELEY 584.75 NURMAL C. PERATION NORMAL OFERATION HIGH - WATER CONDITION	NER PRO APROX SECTION AT ELEY 584.15 NER MAL C.PERATION NORMAL OFERTION WITH ICE HIGH - WATER CONDITION	FRER PAND APPROX SECTION AT ELEN 594.75 NURMAL CIPERATION NORMAL CIPERATION NORMAL CIPERATION NORMAL CIPERATION NORMAL CIPERATION NORMAL CIPERATION	MER AND APPRIL SECTION AT ELEY 58.15 NORMAL C.PERPTION NORMAL C.PERPTION NORMAL OFERTION NORMAL OFFICENTION NORMAL OFFICENTION	NER AND AREA; SECTION AT ELEY 584.15 NERMAL C.PERATION NORMAL OFERATION HIGH - WATER CONDITION	MER AND APPRIL SECTION AT ELEY 584.75 NORMAL C.PERPTION NORMAL C.PER	NORMAL CREATION WITH ICE HIGH-LUATER CONDITION	NORMAL OFERMIND WITH ICE HIGH - WATER CONDITION	WER MICH APPROX SECTION AT BEEN 558-75 NICHMAL CIPEDATION WORMAL CIPEDATION WITH ICE HIGH-WATER CONDITION	NORMAL OFERMIND WITH ICE HIGH - WATER CONDITION	NER AND APROS SECTION AT CLEY 584.75 NORMAL CPERATION WITH ICE HIGH - WATER CONDITION	NCRMAL C. DE BYTTON WITH ICE HIGH - WATER CONDITION	NORMAL C. PERTINAL MIT BLEY 584.75 NORMAL C. PERTINAL NORMAL OFERTINAL WITH ICE HIGH - WATER COUDITION	NER MAD ARROW SECTION AT ELEV 584.15 NARMAL C. DE BATTON NORMAL OFFERTION WITH ICE HIGH - WATER CONDITION	NORMAL OPERATION WITH ICE HIGH - WATER CONDITION	NER AND APROX SECTION AT ELEV 584.15 NERMAL C.PE.BATTON NORMAL OFERATION WITH ICE HIGH - WATER CONDITION	NORMAL CPERTIEN WITH ICE HIGH - WATER CONDITION	NER AND APPEAL SECTION AT ELEN 584.75 NORMAL CREATION WITH ICE HIGH - WATER CONDITION	NER PAU APROL SECTION AT ELEY 584.75 NERMAL C. PERTION NORMAL OFERATION WITH ICE HIGH - WATER CONDITION	NER MO APROS SECTION AT REST 584.15 NORMAL C.PERPTION NORMAL OFERATION WITH ICE HIGH-WATER CONDITION	NER MAD APPROX. SECTION, AT CLEV 55475 NORMAL. C.DE-BATTON NORMAL. OFERATION WITH ICE HIGH-WATER. CONDITION	NORMAL CREATION NORMAL OFERTION WITH ICE HIGH-WATER CONDITION	NCRMAL CPERATION WITH ICE HIGH-WATCR CONDITION	NORMAL CREATION WITH ICE HIGH - WATER CONDITION	NORMAL OFFERTION WITH ICE HIGH-WATER CONDITION	HIGH - WATER CONDITION	HIGH - WATER CONDITION	HIGH - WATER CONDITION	HIGH - WATER COUNTION	Andread Africania and Property Control	The State of the s	NOWING CHESTING WATER CHILINGUAGE

Figure F33. (Concluded)

MALECT DAIN PIERS 10,11,12	Z, M, 15, AND 16-		Maumum Base Pressures Afree Posteusioning, Caucette-Pambanou interface	BASE PRESSURES NG, CONCRETE-PRINI	SSURES A	AFTER CONTOUT INTER	(FACE	COMPUTED BY			PATE DATE			
∌svo dvoπ	SUM OF NEETICAL	21 MONEUTS	МЯА ТИЭМОМ ТИАТ-1238 В	DISTRUCE TO CENTROND OF	A RUM COMPRESSION	INERTIA OF BASE AREA IN CENTRESSION	Location	RITHOL OT 32NATZIO 32RB RU 338II	איאור פעכייעב	PRESSURE PUE TO BENDING MAMEUT	IN TERLEANULING PRESSURE	UPLIET HEAD	UPLIFT PRESSURE	TOTAL BASE PRESSURE
	, Ta	`£	Σ L	۵	⋖			ن :		2 - 1 - 1 - 1 - 1 - 1 - 1	9+45=3	*	5 = 1245 h)= 5, + 5,
	X PS	FT-K	Ħ	FT	L L	* 12		F1	KSF	KSF	X FS	E	KSF	KSF.
Manager (Amanga)	5 7631	71.35	95 (V2	7. 96	7. 9.7		HEEL	24.37	3.51	0.52	£ 63	0. 9	00'-	5,03
					<u>.</u>	776 /27	છદ	29.37	3.51	-0.52	2.44	7.5	0.47	3.46
NORMAL OPERATION	6 6 6 6	1	£ 1	20	91		HEEL	24.37		٠ . وع	1.82	0.0	1.00	28.2
WITH ICE		<u> </u>	Ğ	15.5	9	275,02	Toe	29, 37	3.51	3.	5.20	7.5	0.47	5.47
	7 10 8	; 1		6	71 913	26.72	#E:	24.37	3.48	0.38	3.86	0.71	1.06	z6'h
70110000 Y			3		5	775/22	To⊡	29.37	3.48	-0.38	3.10	1.5	0.47	3.57
AL OFERMON	1817.3	Con to	79 63	75.37	<u> </u>		HEEL	24.37	3.51	12.0	3,72	16.0	l. 00	4.72
WITH EARTHQUAKE			3)	5	375,03	706	29.37	3.51	- 0.21	3 30	7.5	Lh.0 1	3.77
000 mag 9 mg 1253 A	F3/.	Mary milmit you	, c			7.643	often contractions (nice		, , , , ,	1		(PAGE 1 OF 1

· i

Figure F34. Maximum base pressures after posttensioning (pier section only), concrete-foundation interface, dam piers 10, 11, 12, 14, 15, and 16, Soo Dam

														, .		,	Γ	,
DATE	DATE	SUM OF HORIZONAL	n Ps		1.952	876. 2	331.7	370.2		2.69.1	876.2	331.7	370.2		379.0	986.1	441.6	570.2
		SUM OF VORTICAL. FARCES AFTER POSTTENSMANG E, = F, + P'	K.PS		2,049.2	2.049.2	1.220,5	2.049.2		2,049.2	2,049.2	2,025.7	2,049.2		2,614.5	2,614.5	2,5373	2,614.5
	1	VERTICAL COMPRESS OF PESTTENSHAME PESTTENSHAME PESTTENSHAME	KiPS	1	4.2F.4	475.9	b'515	475.9		475.9	475.9	475.9	475.4		475.9	475.9	475.9	475.9
COMPUTED BY	CHECKED BY:	SUM OF VEDTICAL FORCES	Kips		1,573.3	1,573.3	8. PYZ,1	1,573.3		1,5733	1,573.3	1,549.8	1,573.3		2,138.6	2,138.6	2,061.4	2,138.6
4 AND 13 - FORCES AFTER POSTTENSIONING		LOAD CASE		אייני סארא	NORMAL OPFEATION	NORMAL CPERATION WITH ICE	HIGH - WATER CONDITION	NORMAL OPERATION WITH EARTHQUAKE	PIER AND PUNDMIN	NORMAL OFERATION	NORMAL OFRAATION WITH ICE	HIGH -WATER CONDITION	NOCMAL CPEDATION WITH EARTHQUAKE	NER AND APRON SECTION AT ELEUTION SES.75	NORMAL OFERATION	NORMAL OPERATION WITH ICE	HIGH - WATER CONDITION	NORMAL OPERATION WITH EARTHQUAKE
MALECT DAM PIERS																		

Figure F35. Forces after posttensioning, dam piers 9 and 13, Soo Dam (Continued)

#15 "500 40 (253A

PAGE | OF 2

1														
-	OAM	Piens	σ	A	5 13	- FCRCE	S AFTE	ez ez	PIERS 9 AND 13 - FORCES AFTER POSTTENSIONING	18 03104800			.	
										CHECKED BY:	1		DATE.	
	' - 	!	i i	i										
							LOAD	LOAD CASE	3:5	SUM OF VERTICAL FORCES	Sum of Verica. Sum of Verical Combast of Verical Combast of Verical Process Africal Place Africal Participants Processing	Sum OF VERTICAL Sum OF VERTICAL COMBABIL OF VERTICAL FORCES POSTUBBING PROES AFTER ROBER PS PS PS PS PS PS PS PS PS PS PS PS PS P	SUM OF HORIZONTAL FORCES	
							İ			kips	kıps	Kips	K1P3	
				D II	ER A	NO APRON	SECTION	AT CL	PIER AND APRON SECTION AT CLEVATION SEN 75					
						NORMAL CHERATION	AERATION			2,444.5	475.9	2,920.4	411.2	
				Ĺ	2	NORMAL OPERATION WITH ICE	PERATION	3	TH ICE	2,444.5	P.2TH	4.028,5	1,018.3	
					1	HIGH - WATER CONDITION	R CONE	DITION		5,3615	2,3615 475.9	2.837.4	477.6	

477.6 6.27.9

475.7 2,920.4

2,444.5

NORMAL OPERATION WITH EARTHQUAKE

PAGE 2.05 2

Figure F35. (Concluded)

MAJERS 9 AND 13 - F	FACTOR OF	SAFETY	AGAINST	Stri Divid	COMPUTED BY			DATE		
	AFTER PO	POSTTENSIONING	20		CHECKED BY:			DATE		
Lomb CASE	SUM OF VERTICAL FORCES	SLYM OF HAGZONTAL FORCES	PRICTION	COMESIDE	CASE AllerA	STRUT	SHEAR	HORIZONTHL CUMPLAKENT OF PROTINGIOUNG FORCE	TUTAL SLIDING RESETANCE	FACTOR OF SAPETY AGAINST
	Ţrz	lı.±	0	IJ	4	Rs	R=F, tento ca	1	R=R +R+ Rp	FS = 27
	(K1.05)	(K,PS)	(DEGREES)	(KSF)	(F ₇ ²)	(KIPS)	(×, 3)	(K1PS)	(KIPS)	Ţ
Pick Oury										
NORMAL OPERATION	2,049.2	1.42	32.1	٥'٥	62.7	5.515	1,285,5	475,9	2,276.7	8,46
NORMAL OFFRATION WITH ICE	2.040.2	876.2	32.1	0.0	679	5.5.3	1, 285.5	475.9	2,2767	2.60
HIGH WATER CONDITION	1.025.7	331.7	32.1	0.0	629	5.6.3	1,270.7	475.9	2,241.9	6.82
HORMAL ORBATION WITH EARTHQUARE	2.649.2	340.2	32.1	0.0	629	515.3	1,285.5	475.9	2,276.7	5.83
PIER AND FOUNDAMEN										
WERMAL OPERATION	2.049.2	269.1	21.0	0.0	627	515.3	7.187	475.9	8.777,1	6.61
NORMAL OPERATOR WITH ICE	2,246.2	876.2	21.0	0.0	629	5.513	786.6	475.9	1,777.8	2,03
HIGH -WATER CAUDITION	2,025.7	331.7	6,13	0.0	b2 9	515.3	7.17.6	475.9	1,768.8	5.33
NORMAL OPERATION WITH BARTHOUAKE	2.940,2	340.2	21.0	0.0	629	515,3	186.6	475.9	1,711.8	4.56
PIER AND APPON SECTION AT ELL SHE'S										
NORMAL OPERATION	5.4.5	379.0	21.0	0,0	3,261	0'0	1,003.10	475.9	1,476.5	3.90
NORMAL OPERATION WITH ICE	2,614.5	78C. 1	21.0	ن.ن	3,261	0.0	1,003.6	bstp	5.724.1	1.50
HEAL- WATER CONDITION	1,537.3	2114	21.0	0.0	3,261	0.0	974.0	475.9	1, 449.9	3.28
NORMAL OPERATION WITH EARTHQUAKE	2,614,5	570.2	21.0	0.0	3,261	0.0	1,003.6	475.9	1,476.5	2.59

Figure F36. Factor of safety against sliding after posttensioning, dam piers 9 and 13, Soo Dam (Continued)

PAGE | OF T

		\$ > to 11	عارية		30		- oc		
		FACTCA OF SAFCTY AGAINS T	F.S.		3.88	ازد.ا	3.28	±5∵2	
		TETAL S. IDING RESISTANCE	R=R+R+RP (K1PS)		1,594.9	1,596.1	1,565.1	1,596.9	
BATE		HORIZONTAL CLIMPONENT OF PESTICADOMING FOLCE	A 4 (8/163)		475.4	4.21+	475.9	4.75.9	
		SHEAPL RESISTANCE	R=Fythnoted	i	1,121.0	1,121,0	1,089.2	0.121,1	
1	:	S TRUT RESISTANCE	R _s		0.0	0.0	0.0	0.0	
COMPUTED BY		BASE AREA	Α (Fτ²)		3,26	3, 261	3,261	3,261	
SLIDING		CORESIDE STRENG LH	C (KSF)		0.0	9.0	0.0	0.0	
PINST		FRICTION	φ (De CREES)		21.0	21.0	0.12	21.0	
SARETY		SUM OF HARIZONIAL PERCLES	F. (K.PS)		411.2	1,0183	477.6	6.7.3	
FACTUR OF AFTER POS		SUM OF VERTICAL FORCES	F. (K.18)		2,920.4	4.024.5	4.5837.4	4,910.4	
MALLET DAM PIERS 9 AND 13 - FA		LOND CASE		PRE AND APPRON SECTION AT ELEY SHITS	NORMAL OFERATION	WORMAL OPERATION WITH 1CE	HIGH - WATER CONDITION	WORMAL CHERMON WITH EARTHQUAKE	

Figure F36. (Concluded)

APPENDIX G
STRESS ANALYSIS OF GATES AND OPERATING MACHINERY,
FIGURES AND COMPUTATIONS

PLAN VIEW

PAGE / OF 6

Stress analysis of gate machinery, Soo Dam (Sheet 1 of 6) Figure 61.

ۍ
č
N
ق
đ

DA7E 0A7E										
									-	1
, By		SHAFT Dignigrer	6.75	51.7	S.	A Q Q	2.50	2.50	05'1	
COMPUTED BY		PITCH DIAMETER	48.00 00.00	59.52	13.13	58.57	4.55	48.14	5.47	
		INVOUTE (Decares)	l	S:	51	ડા	Şı	SI	اء	
		P) TCH	16.94	51.75	2.75	2.00	00.2	1.25	52'1	1
		NUMBER	Œ	89	Ñ	42	St	21	Si	'.
		TYPE MATERIAL	CAST STEEL	CAST STEEL	ONST STEEL	כאבד ותפאל	CAST IRON	CAST IRON	CAST IRM	
		GEAR	-«	<	60	J	۵	Ŋ	L L	
CHINERY	ן אוני									-
GATE MACHINERY	GEAR DETAILS									
SUBJECT		" 								

Figure G1. (Sheet 2 of 6)

ofcfully signs 1253A

	CHECKED BY	DATE
FORCES AND TORONES ON GEARS		
GGAR A (SPROCKET WHEEL)	= :	
$T_{i} = (1,000) (48) (y_{i}) = 182,400 b.in.$	sqi oogi', a	
GEAR A (SPUR WINEEL)		
$T_{h} = \frac{54.52}{51.52} = \frac{6}{124}$ lbs $T_{h} = T_{h} = 182,400$ lb·in.		
GEAR 8 (PINICH)		
T = F = 6,129 16s		
$T_{8} = (6,129)(13.13)(1/2) = 40,237 16-in.$		
GEAR C (SPUR WHEEL)		
$F_{c} = \frac{(b_{1} \cdot 24) \cdot (13.18)}{58.87} = 1,374$ lbs		
Tc = Tg = 40,237 16-in.		
GEAR D (PANISA)		
F = F = 1,374 lbs		
$T_{b} = (1,374)(4.55)(1/2) = 6,561 16-in.$		
GEAR & (SPUR WHEEL)	GEAR F (PINION)	
$F_{\rm c} = \frac{(i_1 a 7 d)(q.55)}{qg.16} = 273 lb_3$	F = F = 273 165	
Te = To = 6,561 16-in.	= (21)(5.41)(1/2) = 7	815 16-17.

Figure G1. (Sheet 3 of 6)

#15 FORW 40 1253A

PAGE 3 OF 6

PAGE 4 OF 6

TRANSMENT RADAL LENGTH WILDTH INVESTIGATE CONTINUENT CO	CHECKED BY		CENTRED TO MEMBYT INOMENT NEW CENTRE TO AKIAL OUTSE AND THE COAD WE COAD WE COAD WE	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	in in in-like Psi	Sh:I	0.80 1.56 0.85 7,887 166 3,139	0.63 1.44 0.72 7,383 210	1941 ST 5187 0.34 1,392 75 11.491	21413 66 1221 0E.0 Sa.1 2413	75 571 15.0 17.0 86.0	
TTANSMENT RABIAL LENGTH LOAD OF LOAD OF LOAD TOOTH LBS LGS LBS IN TLOO TLOO TLOO 1,29 5,920 1,586 6 6,129 5,920 1,586 6 1,374 1,327 356 4 255			INSETIA DE AREA AT SASE OF TOOTH	To Walt	int	4.50	9.5	1.00	75.0	72.0	0.0	
TTANEMENT CONTIN			LENGTH OF GENE TOOTH		Н			ļ ——-	+	+	2.5	
P			TANKENTIAL CONTANENT OF LOAD		Sgn	7,600			1,327	1,327	F772	
*RESSURF ANGLE 15 51 51 51 51 51 51 51		STRESS IN GENRS	w	_	DECRECS LBS							9

* ASGUMED MOST CRITICAL PLESSURE PINGLE

Figure G1. (Sheet 4 of 6)

ets rome to 1253A

DATE	DATE								
10									
COMPUTEU BY	CHECKED BY		SHEARING	구구	PSI	3,025	2,147	2,158	1,222
			DISTANCE FROM CENTAND TO OUTER-MAST FIRER	C = 0	Z	3.38	3.2 <u>5</u>	1.25	0.75
			POLAR MOMENT OF INERTIA	J= 32	7	203.8	£'0}	3.8	s'o
			DiAmena? OF SHRFT	7	z	6.75	4.50	2.50	1.50
			TORQUE	-	1.85	182,400	46, 237	6,561	818
!			SHAFT	١	1	-	2	٤	+
	H-NCK-	STRESS IN SHAFTS			•				
	GATE MACHINERY	STRES							

WALET GATE MACHINERY

Figure G1. (Sheet 5 of 6)

#15 FORM NO 1253A

STRESS IN EYE BAR (2.5" X 0.15" X C4")

7 24,400 a 9,681 ps

A = (2.5) (0.75) = 1.88 in."

Figure G1. (Sheet 6 of 6)

LOADS ON GROEPS

DISTRIBUTION FACTORS

FIRED END MOMENTS DUE TO ICE LOADING

$$M_{b} = \frac{10,000 (5.07) (1.40)^{3}}{(6.67)^{3}} = 2,917 \text{ is 4}$$

$$M_{c} = \frac{10,000 (5.07) (1.60)}{(6.67)^{3}} = 9,245 \text{ is 4}$$

FIXED END MOMENTS DUE TO WATER LOADINGS

$$M_{A} = \frac{(8)(6.2.5)(6.42)^{2}}{12} = 1,2.24 \quad 11-f+$$

$$M_{B} = -M_{A} = -1,2.24 \quad 16-f+$$

Figure G2. Stress analysis of sluice gates, Soo Dam (Sheet 1 of 18)

PAGE | OF 18

Swice GATE

EIB, = 0

$$\frac{\sqrt{A^2}}{2} - M_c I = \frac{\sqrt{A^3}}{2} \frac{q}{q}$$

$$\frac{\sqrt{(A_c L_c)}}{2} - M_c = \frac{(A_c L_c)}{2} \frac{(A_c A)^3}{2}$$

٤°

(Gagoer)

(6 120ER)

$$\frac{c_{1}}{c_{2}}$$
 - $r_{C} = \frac{24}{3.34}$ V - $r_{C} = 530.03$ (1)

$$V_{L} = V_{L} = -v_{L} = \frac{a}{z^{4}} = \frac{a}{z^{4}}$$

$$V_{L} = -v_{L} = \frac{a}{z^{4}} = \frac{a}{z^{4}}$$

$$V_{L} = -v_{L} = \frac{(c_{L}, c)}{(r_{L}, c)} \frac{(c_{L}, c)}{(c_{L}, c)} \frac{(c_$$

^ş|<u>.</u>

(2)

$$V_{c} = 337.09$$

$$V_{c} = 301.0 \text{ lbs}$$

$$N_{c} = 192.94 - (2.22) (301.0)$$

$$V_c = 301.0 \text{ (bs.}$$
 $N_c = 192.94 - (2.22) (301.0)$
 $N_c = -475.28 \text{ (b.ff}$
 $N_b = \frac{(61.5) (4.07)^3}{4.05.28 - (301)(4.27)}$

Figure 62. (Sheet 2 of 18)

MB = 797.28 16-64

PER FORM HE 1253A

					1		,
SLUICE GATE						DATE	
					CHECKED BY:	DATE	j
LOADS ON GIRDERS		(CONTINUED)					
UNIFORM	SOVOT V	UNIFORM LOADS ACTING ON GIRDERS	GIRDERS				
			Ĕ	ار دو. السائل			
-7				+ + -/			
				. <u> </u>			
	x.«	OK.	0C 80	se ^j			
DISTRIBUTION FACTORS	ı.	Sp the co	0.5517				
FIXED END MOMENTS	427'I	4221-	2,417+797=5714 -9.	Q13-=514-5+76-			
DISTRIBUTION	-1,224	2111-	ALE'1-	9,720			
UNBALANCED	- 558	-672	860	-687			
	558	-1, 104	2,344	189			
	- 452	27.2	343	- 1,172			
	452	- 279	- 343	1,172			
FINAL MONENTS	S	- 482r	758'7	٥			
OCCUMBEN 1964 1253A						PAGE 3 OF 18	8

Figure G2. (Sheet 3 of 18)

Figure G2. (Sheet 4 of 18)

STORMER SES 1253A

PAGE 4 OF 18

STREES IN GARDED B. SKUMPANTE 6.13 O 3260 2000 Ay No. 100 Ay 100 AY 100 AY 100 AY 100 AY 100 AY 100 AY 100 AY 100 AY 100 AY 100 AY 100 AY 100 AY 100 AY 100	SUBJECT	SHING CATE						COMPUTED BY	DATE	
AREA, A INETIO, I TODISTINGE AREA, A INETIO, I TODISTING LA.3 O 32.06 2.05.0 6,475 LI.7 42 21.55 349.2 10,425 LI.7 42 21.55 349.2 10,425 LI.7 45 21.55 349.2 10,425 LI.7 45 21.55 349.2 10,425 LI.7 45 21.55 349.2 10,425 LI.3 0 0.31 1.3 0 M = 253 (.375) L.14.2 0 0.31 1.3 0 M = 253 (.375) L.14.2 0 0.31 1.3 0 M = 253 (.375) L.14.2 0 0.31 1.3 0 M = 10.77 1.1, 10,444 L.14.2 0 0.31 1.3 0 M = 10.77 1.1, 10,444 L.14.2 0 0.31 1.3 0 M = 10.77 1.1, 10,444 L.14.2 0 0.31 1.3 0 M = 10.77 1.1, 10,444 L.14.2 0 0.31 1.3 0 M = 10.77 1.1, 10,444 L.14.2 0 0.31 1.3 0 M = 10.77 1.1, 10,444 L.14.2 0 0.31 1.3 0 L.14.2 0 0 0.31 1.3 0 L.14.2 0 0 0.31 1.3 0 L.14.2 0 0 0.31 1.3 0 L.14.2 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3 0 L.14.3 0 0 0 0.31 1.3		ארמוכר פעור							DATE	Т
AREA, A INESTIA, I TO DUSTANCE AREA, A INESTIA, I TO DUSTANCE La.3 La.3 La.3 La.4 La.4 La.4 Ay and a contact of a		STRESS IN GIRDER	l i							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	ITEM	AREA, A	INERTIA, I	DISTANCE From Combine TO DOMINITARY EDGE OF	\$	*57 K	776.1 #8.1	<u>, </u>	
$\frac{(6.3)}{11.7} \frac{(6.3)}{14.2} \frac{32.06}{20.0} \frac{202.0}{349.2} \frac{(6.415)}{10.425} = \frac{5}{3}$ $\frac{11.7}{14.2} \frac{42}{45.2} \frac{23.64}{11.3} \frac{7}{3},040$ $\frac{4.2}{4.2} 0 0.31 1.3 0$ $\frac{4.2}{46.1} \frac{1}{1},044 776.1 20,069$ $= \frac{253.(.375)}{\sqrt{352}} \frac{7}{15.0} \frac{7}{15.0} \frac{7}{15.0} \frac{7}{15.0} = \frac{5}{15.075} = \frac{5}{15.0$, Z	7	N.	w X	¥ Z	- 690°02 + 6401 = I	5 (10.14) (1.04) 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SKINPLATE	6.3	0	32.06	0.201	514,5	, , , , , , , , , , , , , , , , , , ,		
11.7 954 14.25 140.1 3,040 66 = 14.2 14.2 140.1 3,040	<u>'</u>	2-65 6 ** ** 505.	11.7	72	24.85	349.2	10,425	8,583	3!.8 	
4.2 48 2.36 33.5 79 Seg. = 4.2 0 0.31 1.3 0 M == 4.2 0 0.31 1.3 0 M == 25.3 (.375)	<u> </u>	WEB PLATE	11.7	454	16.25	1.90.1	3,040	त्र. इ.		
46.1 1,044 — 776.1 20,069 = 253 (.375) = 253 (.375) = (253 (.37	<u> </u>	Z-L'S C'KC'KE"	14.2	∞ ±	2.3	33.5	41	8,583 32.15-14.14	532.8 in.	
46.1 1,044 — 776.1 20,069 = 253 (.375) \[\frac{1}{32} \] \[\f	'	BACK PLATE (6.3." x 5/8")	4.2	0	0.31	1.3	0		طا-ربا صهر184,11ء (جاز	
= 253 (.375) = 253 (.375) Lington Fig. 17,682,000 5 17,682,000 5 17,682,000 5 17,682,000 5 17,682,000 5 17,682,000 5 17,682,000 5 17,682,000 5 17,682,000 5 18,7	·	Sum	48.1	p to o to	1	176.1	20,069			
16.77 in.	_			(§)			14.5 % mbn	file = 17,682,000 file = 17,682,000	33, 249	
		"		<u>:</u> چ		7				

Figure G2. (Sheet 5 of 18)

DATE DATE COMPUTED BY STRESS IN GIRDER SLUICE GATE

								
# 54 # 24	* <u>*</u>	L22'9	5,037	4,465	2,855	12	72	18,632
Ay	E.N.	148.0	172.4	150.9	182.8	4.0	£.51	4،32۲
DISTANCE FRAM CENTROD TO DOWNSTREAM EDGE OF GROER, H	Z	31.4d	24.22	24.59	17.51	3.00	1.13	1
INERTIA, I	‡NI	٥	<u>-1</u>	81	454	9-	拉	7201
AREA, A	NI .	6.3	5.4	5.1	Ŀn	3.0	7.1	39.)
ITEM	1	SKIN PLATE	"8'z " + x % 1	ר כ"אנ" א איי	WEB PLATE	6" X 1/2" PLATE	ר נאני'יא"	۶۳۰۸

In 1,026+18,632-81,1(1855)= 6,204 1,7 M = (7, 222, (52.49) (23) = 20, 663,000 in. 16 ist oog in L 314, X 52, WES PARE 43,500 ps. LUZENE JAN C'ELY" PARE EFFECTIVE SKIN PLATE WINTH & 154 (-176) = 16,77" Separe 3162-1855 = 474,7 in Sen = 6,204 = 334.4 m3 4 = 728.4 = 18.55 in, frate = 20,663,000 f. = 20,663,000

Figure G2. (Sheet 6 of 18)

PAGE 6 OF 18

SIS WITH GREDGE AS RIG - NORMAL OFFERTION	A LOAD ACTING ON GIRDERS	\$\frac{1}{2} \frac{1}{2} \frac	oc ²	DAS 1, CANB 0.5517 l.	1221- hzzi	-ا، تاجع الما 25 كاف المعلق الما 25 كاف المعلق الما 25 كاف المعلق الما 25 كاف المعلق ا	811 882 217- 96	-96 tes 206 - 118	Foi 65- 8h- pg	201- LS 84 Ha-	0 1441 141- 0	
STRESS ANALYSIS	UNITERM			DISTRIBUTION FACTORS	FIVED CHD MOMBUTS	Deraillemen	UNERTANCED	MOMENTS			FINAL MOMENTS	

Figure G2. (Sheet 7 of 18)

Figure G2. (Sheet 8 of 18)

PAGE & OF 18

	COMPUTED BY.
Sturde GAIR	
	מערינים איני
STREES IN GIRDER B	STRESS IN GIRDER C
S = 531.6 : 5	334.4 in.
= 532.B in ³	S.c. = 474.7 in. ³
$M = \frac{(2,65!)(53.49)^2(13)}{(12)} = 7,585,000 in, 16$	$M = \frac{(118)(53.49)^2(1)}{(12)} = 36.4,200 in-18$
F. 531.8 = 14,240 psi.	= 366, 200 = 1, 095 psi
f = 7,586,000 = 14,236 psi	= 366, 200 = 771 psi
411-190-00-123.A	PAGE 9 OF 1

Figure G2. (Sheet 9 of 18)

Figure G2. (Sheet 10 of 18)

RESS ANALYSIS WITH SKAIPARTE AS A BEAM - NORMAL OPERATION WITH ICE RETWEEN 1 BAR SUPPORTS IN AREA BETWEEN GROEES A AND B CLEAR SPAN = 32 -3.5 = 28.5 in. -LT = $\frac{(6.61)(60.175 - 593.78)}{(13)}(18.5)$ = 98.96 $19.7n$. M = $\frac{(6.40)(6.85)^2}{6.648}$ = 8,038 in16 S = $\frac{60.38}{6.648}$ = 12,033 psi f = $\frac{60.38}{6.648}$ = 12,033 psi The $\frac{(2.25)(6.47)^2}{6.648}$ = 130.92 $19.7n$. BETWEEN 1 BAR SUPPORTS IN AREA BETWEEN GROEES 8 AND C And = $\frac{(6.25)(6.47)}{(13)^2}$ = 130.92 $19.7n$. The $\frac{(2.25)(6.47)}{(13)^2}$ = 20.68 in16 The $\frac{(2.25)(6.47)}{(13)^2}$ = 130.92 $19.7n$. The $\frac{(2.25)(6.47)}{(13)^2}$ = 130.92 $19.7n$. The $\frac{(2.25)(6.47)}{(13)^2}$ = 20.83 psi	ETWEEN T. BAR SUPPORTS IN AREA BETWEEN GIRDEES A AND B CLEAR SPAN = 32 -3.5 = 28.5 in. CLEAR SPAN = 32 -3.5 = 28.5 in.	S WITH SKINPLARE AS A BEAM - NORMAL OPERATION WITH ICE 1. BAR. SUPPORTS IN AKEA BETWEEN GIRDERS A AND B 5. PAN = 32 -3.5 = 28.5 in. (3) = (4.3.5) (46.15 - 593.15) (28.5) = 98.96 lb/n. 1. BAR SUPPORTS IN AREA BETWEEN GIRDERS B AND C (13) (4.71) (28.5) = 12,033 psi (4.4.71) (28.5) = 330.92 lb/in. 1. BAR SUPPORTS IN AREA BETWEEN GIRDERS B AND C (13) (4.71) (28.5) = 330.92 lb/in. (13) (310.92) (28.5) = 24,877 in-1b (4.4.73) (28.5) = 24,877 in-1b (5.4.87) = (4.4.73) (28.5) = 40,238 psi	Subject SLUICE GATE	COMPUTED BY	DATE DATE	
SPAN = 32 -3.5 = 28.5 in. SPAN = 32 -3.5 = 28.5 in. $ \frac{(a2.5)(a0.15 - 573.15)(28.5)}{(13)^4} = 98.96 lb/n. $ $ A = \frac{(98.94a)(28.5)^2}{10} = 8_1038 in.lb $ $ A = \frac{90.38}{0.668} = 12,033 psi $ $ \frac{(a.15)(a.15)^2}{6.668} = 12,033 psi $ $ \frac{(a.15)(a.15)^2}{6.668} = 12,033 psi $ $ \frac{(a.15)(a.15)^2}{(a.15)^2} + (5,aoo)(3) = 1,672 lb/4. $ $ \frac{(a.15)(a.15)}{(a.15)} = 330.92 lb/in. $ $ \frac{(a.15)(a.15)}{(a.15)} = 24,879 in.lb $ $ \frac{(a.15)(a.15)}{(a.15)} = 24,879 in.lb $ $ \frac{(a.15)(a.15)}{(a.15)} = 24,879 in.lb $	T BAR SUPPORTS IN AREA BETWEEN GROEES A AND B SPAN = 32 -3.5 = 28.5 in. Lass (Lass) (Last 15 - 583.18) (28.5) = 98.96 lb/in. A = $\frac{(42.5)(Last 175 - 583.18)(28.5)}{(13)} = 8_1 0.38$ inlb T BAR SUPPORTS IN AREA BETWEEN GROEES B AND C Last (Last) (28.5) = 12,033 psi L BAR SUPPORTS IN AREA BETWEEN GROEES B AND C Last (Last) (28.5) = 130.92 lb/in. Where $\frac{(21.5)(Last)^2}{(13)^4} + (5.000)(1)$ = 1,072 lb/ft. M = $\frac{(4.012)(Last)^2}{(13)^4} + (5.000)(1)$ = 24,874 in-lb F = $\frac{24.879}{0.668} = 40,238$ psi	T. BAR. SUPPORTS IN AREA BETWEEN GROEES A AND B SPAN = 32 -3.5 = 28.5 in. (a.15) (401.15 - 573.76) (28.5) = 98.96 Ib/in. A = $\frac{(86.94a)}{10} (28.5)^2 = 8_1 \circ 38$ in1b T. = $\frac{80.94a}{10} (28.5)^3 = 0.668$ in. BAR SUPPORTS IN AREA BETWEEN GROEES B AND C (215) (4-72) (28.5) = 12,033 psi L. BAR SUPPORTS IN AREA BETWEEN GROEES B AND C (215) (4-72) (28.5) = 130.92 Ib/in. Where = $\frac{(2.15)(4.72)}{(13)} (28.5)^2 = 24,879$ in-1b F. = $\frac{20.879}{0.660} = 24,879$ in-1b	ANALYSIS WITH	RATION WITH ICE		
SPAN = 32 -3.5 = 28.5 in. $ L = \frac{(a.5)(b.0.175 - 573.75)(26.5)}{(13)^2} = 98.96 b/in. $ $ L = \frac{90.96}{0.668} (375)^2 = 0.668 in 16 $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{90.36}{0.668} = 12,033 psi $ $ L = \frac{10.71}{10} (1.66.5)^2 = 26,977 in 16 $ $ L = \frac{20.977}{0.668} = 40,238 psi $	SPAN = 32 -3.5 = 28.5 in. $ L = \frac{(a2.5)(aa.1.5 - 593.15)(28.5)}{(13)^4} = 98.96 lb/n, $ $ A = \frac{(98.94a)(28.5)^2}{10} = 8,038 in.lb $ $ = \frac{20.5}{6.66} (375)^2 = 0.668 in. $ $ = \frac{20.38}{0.66} = 12,033 psi $ $ = \frac{20.38}{0.66} = 12,033 psi $ $ = \frac{40.38}{0.66} = 12,033 psi $ $ = \frac{40.38}{0.66} = 12,033 psi $ $ = \frac{20.38}{0.66} = 12,033 psi $ $ = \frac{20.38}{0.66} = 12,033 psi $ $ = \frac{20.397}{0.66} = 20.288 psi $	SPAN = 32 -3.5 = 28.5 in. $ L_{(13)} = \frac{(a.5.)(a.5.75 - 593.15)(a.6.5)}{(13)} = 8.9.3 in1b $ $ L_{(13)} = \frac{80.9(a)(28.5)}{6.6.48} = 0.6.68 in.$ $ L_{(14)} = \frac{90.38}{6.6.48} = 12,033 psi $ $ L_{(14)} = \frac{90.38}{6.6.48} = 12,033 psi $ $ L_{(14)} = \frac{90.38}{6.6.47} = 12,033 psi $ $ L_{(14)} = \frac{(4.4.5)(a.4.7)^2}{(13)^4} + (5.000)(a) $ $ L_{(14)} = \frac{(4.4.5)(a.4.7)^2}{(13)^4} + (5.000)(a) $ $ L_{(14)} = \frac{(4.4.5)(a.4.7)^2}{(a.4.7)(a.4.8)^4} = 3.30.92 [b/in. $ $ L_{(14)} = \frac{2a.999}{6.6.69} = 4.0,238 pei $ $ L_{(14)} = \frac{2a.999}{6.6.69} = 4.0,238 pei $	۲۰	AND B		
$A = \frac{(a25) (\omega_0.75 - 593.75) (28.5)}{(13)^2} = 98.94 b/n.$ $A = \frac{(98.94a) (28.5)^2}{10} = 8_1 038 in. b$ $A = \frac{28.5 (375)^2}{6} = 0.468 in. $ $A = \frac{20.38}{6.668} = 12,033 psi$ $A = \frac{20.38}{6.668} = 12,033 psi$ $A = \frac{(4.672) (28.5)}{(13)^2} + (5.00) (1) = 1,472 b/4$ $A = \frac{(4.672) (28.5)^2}{(13)^2} = 230.92 b/in.$ $A = \frac{(4.672) (28.5)^2}{10} = 24,879 in. b$ $A = \frac{24,879}{10} = 40,238 psi$	$L = \frac{(a.55) (40.175 - 593.18) (20.5)}{(13)^2} = 98.94 \text{ lb/in.}$ $= \frac{(98.94a) (2.8.5)^2}{10} = 8_1 0.38 \text{ inlb}$ $= \frac{80.36}{6} (.375)^2 = 0.648 \text{ in.}^3$ $= \frac{80.36}{6.668} = 12,033 \text{ psi}$ $= \frac{80.36}{6.668} = 12,033 \text{ psi}$ $= \frac{(2.15) (4.47)^2}{(13)^2} + (5.000) (2) = 1,6.72 \text{ lb/fl}$ $= \frac{(1.475) (26.5)^2}{10} = 330.92 \text{ lb/in.}$ $= \frac{(1.475) (26.5)^2}{10} = 24,879 \text{ inlb}$ $= \frac{24,879}{0.648} = 40,238 \text{ pei}$	$\frac{(48.946)(28.5)}{(13)^4} = \frac{98.946}{(13)^4} = \frac{98.946}{(13)^4} = \frac{198.946}{(13)^4} = \frac{198.946}{(13)^4} = \frac{198.946}{(13)^4} = \frac{10.0468}{(13)^4} = \frac{10.0488}{(13)^4} = $	= 32 -3.5		35.	
$A_{1} = \frac{(9.846)(2.8.5)^{2}}{10} = 8_{1}038 \text{ in-lb}$ $= \frac{20.5}{6} (.375)^{2} = 0.668 \text{ in},$ $= \frac{9.038}{0.666} = 12,033 \text{ psi}$ $= \frac{9.038}{0.666} = 12,033 \text{ psi}$ $= \frac{(21.5)(4.2)}{6} (4.2.5)^{2} + (5,000)(4)$ $= \frac{(4,072)(2.6.5)^{2}}{(4.2.5)} = 330.92 \text{ lb/in.}$ $= \frac{(4,072)(26.5)^{2}}{(4.5.5)} = 26,879 \text{ in-lb}$ $\Rightarrow \frac{220,879}{0.666} = 40,238 \text{ psi}$	$A_{1} = \frac{(98.94)(28.5)^{2}}{10} = 8_{1}038 \text{ in-lb}$ $= \frac{80.5(375)^{2}}{6.668} = 0.668 \text{ in.}$ $= \frac{80.38}{6.668} = 12,033 \text{ psi}$ $= \frac{(21.5)(4.2)^{2}}{(13)^{2}} + (5,000)(1) = 1,672 \text{ lb/pl}$ $= \frac{(1,072)(28.5)}{(13)^{2}} = 330.92 \text{ lb/in.}$ $= \frac{(1,072)(28.5)}{(13)} = 26,871 \text{ in-lb}$ $\Rightarrow \frac{(330.92)(26.5)^{2}}{10} = 26,871 \text{ in-lb}$ $\neq = \frac{26,879}{0.668} = 40,238 \text{ psi}$	$A_{1} = \frac{(98.94)(28.5)^{2}}{10} = 8_{1}038 \text{ in-1b}$ $= \frac{8038}{0.668} = 12_{1}033 \text{ psi}$ $= \frac{9038}{0.668} = 12_{1}033 \text{ psi}$ $= \frac{(21.5)(0.47)^{2}}{(1.47)} + (5,000)(2) = 1,072 \text{ lb/ft}$ $= \frac{(1.472)(28.5)^{2}}{10} = 330.92 \text{ lb/in}$ $= \frac{(20.979)}{10} = 40_{2}238 \text{ psi}$	(2.85) (31.575 - 27.104) (25.4)	, • /	in loss	
	" " 8AA T		(48.94) (28.5)		(1 BAR 6 x3x x g	
" BAR 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	" 488 13 X 4-		±8.5 (·375) ²			
7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IJ			
# 11 n 11	# 11 n ₁₁		1 BAR	o divi		
= (1, C72) (26.5) (130, 92) (26.5) ² = (330, 92) (26.5) ² = (320, 879) = =	(1,472) (28.5) (13.42) (28.5) (330.42) (28.5) (330.42) (28.5) (34.879) = 24.879	$=\frac{(1, 472) (26.5)}{(13)}$ $=\frac{(330.92) (26.5)^2}{10}$ $=\frac{24.879}{0.666}$	•			
(330.92) = (310.92) =	(330,92) (26.5) ² io io io io io io io io io io	(330,92) (26.5) ² = 26,879 = 26,879 = 26,879	(1,472) (28.5)			
20,879	36,879	11 24,879 0.66.0	(330.92) (26.5)2			
			= 24,879			

d 2,775 in. lb

(34.16) (28.5)2

(1

٤

4 154 ps!

11

2,775

= (172.6) (28.5) = 34.16 lb/m.

ş

= 172.6

fave (c) (6.67)

(48.442) (28.5) = 8,038 in.-16

**

£

= (38.5) (0.375)² = 0.668 in.

8,038 = 12,033 Pai

(21.5) (201.75 - 543.75) (28.5)

ኔ

STREETS ANALYSIS WITH SKINPLATE AS A BEAM

STAICE GATE

DATE DATE

COMPUTED BY

Figure G2. (Sheet 11 of 18)

DAGE IS OF 18

PAGE 12 OF 18

SLUICE (GATE					COMPUTED BY	DATE DATE	
						CHECKED BY	ir.	
STRESS	ANALYSIS WITH	L BAR	AS	RIB - NORMA		OPERATION WITH KE	32 +	
	AREA BETWEEN GIR	GIRDERS A	A AND B					
	1 Tem	AREA, A	I HERTIN, I	DISTRINCE FROM CENTRON TO DOMNISTREM EDGE OF GIRDGR, Y	₹ *	*5°		
	1	in.	ž.	. <u>%</u>	in.3	*Ni		
	SKIN PLATE	6.24	0.01	11.7	38.4	10.145		
	ר מאק	4.51	4.55	3.00	13.8	41.31		
	SuM	10.88	4.62		22.7	28732		
	EFFECTIVE SKINP	SKINPLATE WIDTH	(70	$= \frac{\left[\frac{263}{\sqrt{32}}, \frac{(.715)}{\sqrt{32}}\right]^{\frac{4}{8}}}{\frac{52.7}{6}} = 4$	11 80	ب تا 77. عا رقا		
			် ရ	4.62 + 282.32 -(0.88) (4.84) =	2.32(10.1	88) (4·84) _{E=}	= 32.07 in.	
			Sprate =	32.07	= 20.82 in.	۴. ۱		
		•	S_1-84R	1.84 1.84	6.63 in.	n .		
eth roller no. 1253A	- The had section in the has cont	1.6.6, 1767	000 Delv					PAGE 12 OF 18

Figure G2. (Sheet 12 of 18)

The state of the s

Figure G2. (Sheet 13 of 18)

PAGE 130F 18

DATE DATE COMPUTED BY CHECKED BY: - NORMAL OPERATION 0.18 STACES FACTOR (14.051) - (14.051) (851) + (851) = (34.1040) = (34.1040) AREA BETWEEN GIADERS & AND C STRESS ANALYSIS WITH I BAR AS RIB Ann 20.82 = 851 ps. for = 12,273 = 2,673 ps, 851 ps AREA GETWEEN GIRDERS A AND B M= 17,724 in.-16 41- in, +27, F1 = M M = 1,477 ft-16 Al-++ 1477 ++-16 F = 121,71 = 10.82 SUBJECT SLUICE GATE

- Crising Carlo State Manual Manual

Figure G2. (Sheet 14 of 18)

COMBINED BIANAL $=\frac{(u_11S4)^2-(u_11S4)(tS1)+tbs1)^4}{(sits)(ts1)+tbs1}$

f. = 17,724 = 2,673 psi

PAGE 14 OF 18

SUBJECT SLACE GATE	4	DATE
CHECKED BY	,	DATE
SHEAR STRESS IN RIVETS CONJUECTING SKINPLATE AND I BAR - NORMA	- NORMAL OPERATION WITH ICE	
AREA BETWEEN GIRDERS A AND B		
م = 2,251 (عر) (المع) = 6,000 المع		
$Q = (16.77)(0.375) \left[\frac{6.38}{4.84} - 4.84 - (0.375)(0.5) \right] = 0.51 in.$		
$q = \frac{(4, \infty 3)(8.8)}{32.07} = 1,593 16/in.$		
$A_{\text{may}} = \frac{11}{14} \frac{(7a)^{2a}}{4} = 0.60 \text{ in}^{2}$		
$T_{max} = \frac{(1,573)(4)}{(0.60)} = 23,895$ PSi		
AREA GERLISELU GIRDERS B AND C		
$V = (7,222)(32)(1/2) = 19,259 16_3$		
$q = \frac{(19,257)(851)}{82.07} = 5,11116/6,$		
$T = \frac{(s,ii)(9)}{(0,io)} = 7c,665 ps.$		

A CONTRACTOR OF THE PROPERTY O

Figure G2. (Sheet 15 of 18)

Musick GATE		COMPUTED BY		DATE
		CHECKED BY:		DATE
SHEAR STRESS IN RIVETS CONNECTING SKINPLITE AND I BAR - NORMAL OPERATION	TE AND LEAR	- NORMAL OF	F.RATION	

1, 52, 1 1, 280, psi
4 - 280
() (e)
32.07
م ⁄- <u>*</u>

BETWEEN GIRDERS B AND C

$$V = (1,023) (32) (1/2) = 2,728 \text{ lbs}$$

$$q = \frac{(2,726)(8.51)}{32.07} = 724 \text{ lb/in}.$$

$$\gamma = \frac{(124)(4)}{6.60} = 10,860 \text{ ps}.$$

(Sheet 16 of 18) Figure G2.

PAGE 160F 18

SUBLECT	Suprice C. L. Comment of the Comment	COMPUTED BY	DATE
	שרות פיין ב	CHECKED BY:	DATE
	SHEAR STRESS IN RIVETS CONNECTING SKINPLATE AND GIRDERS	- NORMAL OPERATION WITH ICE	H ICE
	GIRDER B		
	(6) 482'S7) = (68'89) = 1		
	,		
	Q = (16.77) (0.375) [32.25 - 16.14 - (0.5)(0.375)] = 100.13 in.		
	g = (LS, 284) (ma.3) = 1,928 16/m.		
	$A = \frac{\Pi(7_6)}{4} = 0.40 \text{ in.}$		
	$T = \frac{(i,928)(2)}{(a.40)} = 6,427$ ps.		
	GIRDER C		
	V = (7,222)(53.49) = 193,152 163		
	$Q = (4.77)(6.378)[31.25 + (0.5)(6.375) - 18.55] = 81.05 in.^3$		
	$q = \frac{(193,192)(81.08)}{61204} = 2,523$ lb/in.		
	$\gamma = \frac{(z_1 z_2 z_3)(z_1)}{c_1 c_2} = \frac{c_1 + 10}{c_2}$		

Figure G2. (Sheet 17 of 18)

#CCUMP 10 1253A

SHEAR STRESS IN RIVETS CONNECTING SKINDLATE AND GIRDERS — NORMAL OPERATION GIRDER A $(Geometry of Girder A Same As that of Girder C)$ $V = (Ipgl) (53.45) = 28,438 \text{ lb}_3$				
V , "	0ATE 0ATE			
V , "	COMPUTED BY	- NORMAL OPERATION	رَي د	
5	Sunce GATE	SHEAR STRESS IN RIVETS COMMECTING SKINPLATE AND GIRDERS	94 0 4	= (1887) (23.43)

GIRDER B

 $q = \frac{(28,938)(81,65)}{6,204} = 378 lb/in.$

1,280 psi

IJ

7 = (378) (2)

$$V = \frac{(z_i, c_3)(53.4)}{z} = 70.901 \text{ lbs}$$

$$Q = \frac{(70, 101)(81.05)}{2} = 827$$

= 827

$$\gamma = \frac{(827)(2)}{0.40} = 2.757 \text{ ps.}$$

Figure G2. (Sheet 18 of 18)

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Evaluation of condition of Lake Superior regulatory structure, Sault Ste. Marie, Michigan: final report / by Henry T. Thornton ... [et al]. (Structures Laboratory, U.S. Army Engineer Waterways Experiment Station). -- Vicksburg, Miss.: The Station, [1981]. 228 p. in various pagings, 82 leaves of plates (some folded) in various pagings: ill.; 27 cm. -- (Miscellaneous paper / U.S. Army Engineer Waterways Experiment Station; SL-81-14)

Cover title.
"June 1981."
"Prepared for U.S. Army Engineer District, Detroit."

Bibliography: p. 93-94.

1. Concrete construction. 2. Concrete-testing.
3. Foundations. h. Hydraulic structures. 5. Lake
Cuperior. I. Thornton, Henry T. II. United States.
Army. Corps of Engineers. Detroit District. III. U.S.

Evaluation of condition of Lake Superior regulatory: ... 1981. (Card 2)

Army Engineer Waterways Experiment Station. Structures Laboratory. IV. Title V. Series: Miscellancous paper (U.S. Army Engineer Waterways Experiment Station); SL-81-14. TA7.W34m no.SL-81-14