#16 - Finding Similar Items (1)

Some motivations...

10 nearest neighbors from a collection of 20,000 images

10 nearest neighbors from a collection of 2 million images

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space

Examples:

- Pages with similar words
 - For duplicate detection, classification by topic
- Customers who purchased similar products
 - Products with similar customer sets
- Images with similar features
 - Users who visited similar websites
- Clients that bought similar books
- People that scored similar restaurants, movies... etc

Problem for Today's Lecture

- Given: High dimensional data points $x_1, x_2, ...$
 - For example: Image is a long vector of pixel colors

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- And some distance function $d(x_1, x_2)$
 - Which quantifies the "distance" between x_1 and x_2
- Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_i) \le s$
- Note: Naïve solution would take $O(N^2)$ \otimes where N is the number of data points
- **MAGIC:** This can be done in O(N)!! How?

Distance Measures

- Goal: Find near-neighbors in high-dim. space
 - We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means

Jaccard distance/similarity

The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:

$$sim(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

- Jaccard distance:
 - $d(C_1, C_2) = 1 |C_1 \cap C_2| / |C_1 \cup C_2|$

Example

3 in intersection7 in union

Jaccard similarity= 3/7 Jaccard distance = 4/7

Application example #1 (Matlab)

Detect similar texts

- Toy example
- Sets are the (unique) words found in the documents
 - No post-processing
- Direct application of Jaccard distance

Main tasks

Create Sets of Words for all documents

```
Sets{1}=getSetOfWordsFromFile('texto1.txt')
Sets{2}=getSetOfWordsFromFile('texto2.txt')
...
```

- Calculate Jaccard distance for each pair of documents distJ=calcDistancesJ(Sets);
- Determine pairs that have distances below a predifined threshold

Similar=findSimilar(distJ,threshold,ids);

4. Show results

demoJaccard.m

Application example #2

Determine similar sets of movies rated by

The subject practical guide PL06

MovieLens

- MovieLens (http://movielens.org) is a web site that helps people find movies to watch.
 - It has hundreds of thousands of registered users.

recommendations

MovieLens helps you find movies you will like. Rate movies to build a custom taste profile, then MovieLens recommends other movies for you to watch.

MovieLens Datasets

- GroupLens Research has collected and made available rating data sets from the MovieLens web site (http://movielens.org).
- The data sets were collected over various periods of time, depending on the size of the set.
 - Available from: http://grouplens.org/datasets/movielens/
- There are several:
 - MovieLens 100K Dataset
 - MovieLens 1M Dataset
 - •••

MovieLens 100K Dataset

- Stable benchmark dataset.
 - Released 4/1998.
- Aprox. 100 000 ratings
- from 943 users on 1682 movies.
- README

Permalink: http://grouplens.org/datasets/movielens/100k/

File u.data

196	242	3	881250949
186	302	3	891717742
22	377	1	878887116
244	51	2	880606923
166	346	1	886397596
298	474	4	884182806
115	265	2	881171488
253	465	5	891628467
305	451	3	886324817

- first column contains the user ID
- second column the ID of a movie
 - rated by the user in the first column
- rating is in the third column
- fourth column is a timestamp.

...

Sets of movies (reviewed by each user)

Demonstration

- First "solution"
 - Very slow

Direct use of Jaccard distance

Demonstration

Results (similar sets):

```
328 788 distance = 0.327
```

408 898 distance = 0.161

489 587 distance = 0.370

Handling Large and Huge sets

→ Next Class