7. gyakorlat

Differenciálszámítás (folytatás)

■ Feladatok

1. Legyen $f: \mathbb{R} \to \mathbb{R}$, $f \in D(\mathbb{R})$ és f' = f. Bizonyítsa be, hogy van olyan $c \in \mathbb{R}$ szám, hogy

$$f(x) = ce^x$$
 $(x \in \mathbb{R}).$

- 2. Mutassa meg, hogy az
 - (a) $f(x) := x^3 + x \ (x \in \mathbb{R})$ függvény invertálható, $f^{-1} \in D$, és számítsa ki $(f^{-1})'(2)$ -t.
 - (b) $f(x) := x + e^x$ $(x \in \mathbb{R})$ függvény invertálható, $f^{-1} \in D^2$, és számítsa ki $(f^{-1})''(1)$ -et.
- 3. Bizonyítsa be, hogy
 - (a) az $x^5 + 10x + 3 = 0$ egyenletnek egyetlen valós gyöke van;
 - (b) pontosan egy olyan $x \in \mathbb{R}$ szám létezik, amelyre $e^x = 1 + x$.
- 4. Igazolja az alábbi egyenlőtlenségeket:
 - (a) $1 + x < e^x \quad (x \in \mathbb{R} \setminus \{0\});$
 - (b) $x \frac{x^2}{2} < \ln(x+1) < x \ (x \in \mathbb{R}^+);$
 - (c) $\frac{x}{1+x} < \ln(x+1) < x \ (x \in \mathbb{R}^+);$
 - (d) $\sqrt{1+x} < 1 + \frac{x}{2} \quad (x \in \mathbb{R}^+);$
 - (e) $1 \frac{x^2}{2} < \cos x \quad (x \in \mathbb{R} \setminus \{0\}).$
- 5. Adja meg azokat a legbővebb intervallumokat, amelyeken az f függvény szigorúan monoton:
 - (a) $f(x) := x^2(x-3)$ $(x \in \mathbb{R});$ (b) $f(x) := xe^{-x^2}$ $(x \in \mathbb{R});$
 - (c) $f(x) := (x-3)\sqrt{x} \ (x>0);$ (d) $f(x) := xe^{-x} \ (x \in \mathbb{R});$
 - (e) $f(x) := 2e^{x^2 4x} \quad (x \in \mathbb{R});$ (f) $f(x) := x \ln x \quad (x \in \mathbb{R}^+);$
 - (g) $f(x) := \frac{x}{x^2 6x 16}$ $(x \in \mathbb{R} \setminus \{-2, 8\});$
 - (h) $f(x) := \frac{e^x}{x}$ $(x \in \mathbb{R} \setminus \{0\});$
 - (i) $f(x) := \ln \frac{x^2}{(1+x)^3}$ $(x > -1, x \neq 0);$
 - (j) $f(x) := \frac{2}{x} \frac{3}{1+x}$ $(x \in \mathbb{R}, x \neq 0, x \neq -1).$