الدوال الأسّية التمرين 2

مسألة:

الجزء الأول

نعتبر الدالة g المعرفة على g بما يلي : a بما يلي :

$$A(0,4) \in (C_g)$$
 *

المماس ل ($C_{_{g}}$) في النقطة ذات الأفصول المور الأفاصيل المماس ل

$$g'(0)$$
 و $g(0)$ عدد قيمة (1)

b a a a a a a a a

الجزء الثاني

 $f(x) = x + 3 + e^{-x}$: نعتبر الدالة f المعرفة على R بما يلي

 $\lim_{x\to +\infty} f(x)$ أ- حدد (1

 $+\infty$ بجوار (C_f) بجوار مائل للمنحنى (D): y=x+3 بجوار

 $\left(D
ight)$ و $\left(C_{f}
ight)$ و النسبي ل ج- أدرس الوضع النسبي ل

 $f(x) = e^{-x} (1 + xe^x + 3e^x)$: \mathbb{R} من x من (2

 $\lim_{x \to -\infty} f(x)$ ب- استنتج

 \mathbb{R} اً- أحسب f'(x) لكل f من f و أدرس إشارتها على f

 \mathbb{R} على على ب- ضع جدول تغيرات

 $\left(C_{f}^{}
ight)$ مثل مبيانيا (4

 \mathbb{R} على \mathbb{R} على \mathbb{R} على \mathbb{R} و حدد دالة أصلية للدالة f على X=3 و محور الأفاصيل و المستقيمين اللذين معادلتاهما X=3 و X=3 و محور الأفاصيل و المستقيمين اللذين معادلتاهما

مساحة هذا الحيز (6 مساحة $\mathcal A$

1/6 Math.ma – 3/2017

التصحيح:

الجزء الأول

(1

$$g(0)=4$$
: فإن $A(0,4)\in (C_s)$ فإن عما أن

• و بما أن المماس ل $\binom{C_{g}}{2}$ في النقطة ذات الأفصول $\binom{0}{2}$ موازي لمحور الأفاصيل (مماس أفقي في النقطة ذات الأفصول $\binom{0}{2}$ g'(0) = 0

$$g\left(x\right)=ax+b+e^{-x}$$
 : لدينا : الدالة g المعرفة على \mathbb{R} بما يلي : (2 $g'(x)=a-e^{-x}:\mathbb{R}$ من x و لكل x من x و الكل x من x م

الجزء الثاني:

$$f\left(x\right)\!=\!x+3\!+\!e^{-x}$$
: لدينا الدالة f المعرفة على R بما يلي

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x + 3 + e^{-x} = +\infty \qquad (1)$$

$$\vdots$$

$$\lim_{x \to +\infty} x + 3 = +\infty \quad \blacksquare$$

$$\lim_{x \to +\infty} x + 3 = +\infty \quad \blacksquare$$

$$\begin{pmatrix} t = -x \\ x \to +\infty \\ t \to -\infty \end{pmatrix} \quad \lim_{x \to +\infty} e^{-x} = \lim_{t \to -\infty} e^{t} = 0 \quad \blacksquare$$

$$(C_f)$$
 فين $(D): y = x + 3$ فإن $\lim_{x \to +\infty} f(x) - (x + 3) = \lim_{x \to +\infty} e^{-x} = 0$: بحوار $+\infty$

2/6 Math.ma - 3/2017

$$(D)$$
و (C_f) و لندرس الوضع النسبي ل $x\in\mathbb{R}$: $x\in\mathbb{R}$ ليكن $e^{-x}>0$ و نعلم أن $f(x)-(x+3)=e^{-x}$ الدينا : $f(x)-(x+3)>0$: \mathbb{R} من x من x و منه (C_f) يوجد فوق المستقيم (C_f) .

 $x \in \mathbb{R}$ اً. ليكن (2

$$f\left(x\right) = x + 3 + e^{-x} = e^{-x} \left(\frac{x}{e^{-x}} + \frac{3}{e^{-x}} + 1\right) = e^{-x} \left(xe^x + 3e^x + 1\right)$$
 : این لکل $f\left(x\right) = e^{-x} \left(1 + xe^x + 3e^x\right)$: \mathbb{R} بن لکل x من

$$\begin{pmatrix} t = -x \\ x \to -\infty \\ t \to +\infty \end{pmatrix} \lim_{x \to -\infty} e^{-x} = \lim_{t \to +\infty} e^{t} = +\infty \quad \blacksquare$$

$$\lim_{x \to -\infty} x e^x = 0 \quad \bullet$$

$$\lim_{x \to -\infty} e^x = 0 \quad \blacksquare$$

$$f'(x) = (x + 3 + e^{-x})' = 1 - e^{-x} : x \in \mathbb{R}$$
 أ. ليكن $f'(x) = 0 \Leftrightarrow 1 - e^{-x} = 0 \Leftrightarrow x = 0$

x	$-\infty$	0	$+\infty$
1e-x	_	þ	+

 $f'(x) \ge 0$: $[0,+\infty[$ على المجال

 $f'(x) \le 0$:]-∞,0] على المجال

3/6 Math.ma – 3/2017

f'(x) طريقة 2 لدراسة إشارة

$$x \ge 0$$
 الحالة 2: إذا كان $-x \ge 0$ لدينا $e^{-x} \ge 1$ إذن $-e^{-x} \le -1$ إذن $-e^{-x} \le 0$ و منه $e^{-x} \le 0$

 $x \ge 0$ الحالة 1:إذا كان $-x \le 0$ لدينا $e^{-x} \le 1$ إذن $-e^{-x} \ge -1$ إذن $-e^{-x} \ge 0$ و منه $-e^{-x} \ge 0$

R على R على R

x	$-\infty$	0	$+\infty$
f'(x)	_	þ	+
f(x)	+∞ <	\ 4/	+∞

$\left(C_{f}^{} ight)$ التمثيل المبياني ل (4

4/6 Math.ma – 3/2017

(5

 ${\mathbb R}$ على ان f متصلة على ${\mathbb R}$ فإن f تقبل دالة أصلية

 $x \in \mathbb{R}$ ليكن

$$F(x) = \frac{x^{1+1}}{1+1} + 3x + \frac{1}{-1}e^{-x}$$
: لدينا

$$F(x) = \frac{x^2}{2} + 3x - e^{-x}$$
: \mathbb{R} من x من

x=3 و محور الأفاصيل و المستقيمين اللذين معادلتاهما $\left(C_{f}\right)$ و محور الأفاصيل و المستقيمين اللذين معادلتاهما

ج. لنحسب ${\cal A}$ مساحة هذا الحيز:

$$\mathcal{A} = \int_{1}^{3} |f(x)| dx \quad (UA)$$
: لدينا

$$\mathcal{A} = \int_{1}^{3} f(x) dx$$
 (U.A) فإن $(\forall x \in \mathbb{R})$ $f(x) > 0$ و بما أن

$$\mathcal{A} = \left[F(x) \right]_{1}^{3} \quad (UA) :$$
اِذَن

$$\mathcal{A} = \left[\frac{x^2}{2} + 3x - e^{-x}\right]_1^3 \quad (UA)$$
: إذن

$$\mathcal{A} = \left(10 - \frac{1}{e^3} + \frac{1}{e}\right) \left(UA\right)$$
 : و منه