Решения на контролна работа № 1 Дискретна Математика Информатика, ФМИ, СУ

14.XII.2009

1 т. Задача 1: Дадени са множествата:

$$U = \{a, 1, b, 2, c, 3, d, 4\}$$

$$A = \{a, c, 1, d\}$$

$$B = \{2, b, c, 1\}$$

Да се намери броят на елементите, принадлежащи на всяко от множествата:

$$X = 2^{(\overline{A \cap B}^{U}) \setminus (\overline{A \cup B}^{U})}$$
$$Y = 2^{(\overline{A \cap B}^{U})} \times 2^{(\overline{A \cup B}^{U})}$$

Решение:

$$\begin{split} A \cap B &= \{1,c\} \\ A \cup B &= \{1,2,\alpha,b,c,d\} \\ \overline{A \cap B}^U &= \{2,3,4,\alpha,b,d\} \\ \overline{A \cup B}^U &= \{3,4\} \\ (\overline{A \cap B}^U) \setminus (\overline{A \cup B}^U) &= \{2,\alpha,b,d\} \\ |X| &= \left|2^{(\overline{A \cap B}^U) \setminus (\overline{A \cup B}^U)}\right| &= 2^4 = 16 \\ |Y| &= \left|2^{(\overline{A \cap B}^U)} \times 2^{(\overline{A \cup B}^U)}\right| &= \left|2^{(\overline{A \cap B}^U)}\right| \cdot \left|2^{(\overline{A \cup B}^U)}\right| &= 2^6.2^2 = 2^8 = 256 \end{split}$$

- 2 т. Задача 2: По колко начина може да се оцветят квадратчетата на правоъгълна мрежа $\mathbf{m} \times \mathbf{n}$ (\mathbf{m} реда и \mathbf{n} колони) в \mathbf{k} цвята
- 0.5 т. а) без ограничения;
- 0.75 т. б) с единственото ограничение, че във всеки ред няма съседни квадратчета с еднакъв цвят;
- 0.75 т. в) с единственото ограничение, че във всеки ред е използван всеки от цветовете.

Решение:

- а) k^{mn} , понеже има общо mn квадратчета, а всяко от тях може да бъде оцветено по k начина независимо от другите квадратчета.
- б) Оцветяването на произволен ред е независимо от оцветяванията на другите редове. Следователно, ако N е броят на начините да бъде оцветен произволен ред, отговорът $N^{\mathfrak{m}}$.
 - Да разгледаме оцветяването на ред i, където i е произволно число, такова че $1 \le i \le m$. Да разгледаме кое да е квадратче в ред i, примерно квадратче (i,1). За него имаме k възможности за оцветяване заради наличието на k възможни цвята. За съседното му квадратче (i,2) имаме k-1 възможности поради ограничението да не се използват еднакви цветове на съседни квадратчета. Аналогично, за квадратчета $(i,3), (i,4), \ldots, (i,n)$ имаме k-1 възможности. Като цяло, за ред i възможните различни оцветявания са $k(k-1)^{n-1}$. Следователно, $N=k(k-1)^{n-1}$ и отговорът е $k^m(k-1)^{m(n-1)}$.
- в) Оцветяването на произволен ред е независимо от оцветяванията на другите редове. Следователно, ако N(k,n) е броят на начините да бъде оцветен произволен ред, отговорът $N(k,n)^m$.
 - Да разгледаме оцветяването на ред i, където i е произволно число, такова че $1 \le i \le m$. Нека U е множеството на всички възможни оцветявания на ред i с k цвята без ограничения. $|U| = k^n$. Нека S_j е множеството от възможните оцветяванията на ред i, в които цвят j не се използва, за всички j, такива че $1 \le j \le k$. Нека S_{j_1,j_2} е множеството от възможните оцветяванията на ред i, в които цветове j_1 и j_2 не се използват, за всички j_1 и j_2 , такива че $1 \le j_1 < j_2 \le k$. Да направим следната дефиниция, която се явява обобщение на предните две дефиниции за произволен брой цветове.

Определение 1. За всички цели положителни j_1, j_2, \ldots, j_t , такива че $1 \le j_1 < j_2 < \ldots < j_t \le k$, множеството от възможните оцветявания на ред i, в които цветове j_1, j_2, \ldots, j_t не се използват, е S_{j_1,j_2,\ldots,j_t} .

По принципа на включването и изключването,

$$N(k,n) = |U|$$

$$- \sum_{1 \leq j_1 \leq k} |S_{j_1}|$$
поне един цвят не се използва
$$+ \sum_{1 \leq j_1 < j_2 \leq k} |S_{j_1} \cap S_{j_2}|$$
поне два цвята не се използват
$$- \sum_{1 \leq j_1 < j_2 < j_3 \leq k} |S_{j_1} \cap S_{j_2} \cap S_{j_3}|$$
поне три цвята не се използват
$$\cdots$$

$$+ (-1)^t \sum_{1 \leq j_1 < j_2 < \dots < j_t \leq k} |S_{j_1} \cap S_{j_2} \cap \dots \cap S_{j_t}|$$
поне t цвята не се използват
$$\cdots$$

$$+ (-1)^{k-1} \sum_{1 \leq j_1 < j_2 < \dots < j_{t-1} \leq k} |S_{j_1} \cap S_{j_2} \cap \dots \cap S_{j_{k-1}}|$$
поне $k-1$ цвята не се използват, тоест използва се само 1 цвят
$$+ (-1)^k \sum_{1 \leq j_1 < j_2 < \dots < j_{t-1} \leq k} |S_{j_1} \cap S_{j_2} \cap \dots \cap S_{j_k}|$$
к цвята не се използват, тоест няма оцветяване изобщо; това трябва да е 0.

Твърдим, че за всяко t, такова че $1 \le t \le k$,

$$|S_{j_1} \cap S_{j_2} \cap \ldots \cap S_{j_t}| = \binom{k}{t} (k-t)^n \tag{1}$$

Това е така, защото за да определим начините да се оцвети ред i, така че t цвята да не се ползват, е достатъчно да намерим броя на начините да се подберат t цвята от k—този брой е $\binom{k}{t}$ —и броят начини да се оцвети реда с останалите k-t цвята—този брой е $(k-t)^n$. Израз (1) следва веднага по принципа на умножението. Тогава

$$\begin{split} N(k,n) &= k^n - \sum_{t=1}^k (-1)^t \binom{k}{t} (k-t)^n = \sum_{t=0}^k (-1)^t \binom{k}{t} (k-t)^n \\ &= \sum_{t=0}^{k-1} (-1)^t \binom{k}{t} (k-t)^n, \text{ тъй като } (-1)^k \binom{k}{k} (k-k)^n = 0 \end{split}$$

1 т. Задача 3: Нека Γ е множеството от крайните неориентирани графи, чиито върхове са поне 3 и всеки от върховете е с четна степен. Да се докаже или опровергае, че всеки граф $G \in \Gamma$ има поне три върха с равни степени.

Решение: Твърдението е вярно. Ще използваме следната нотация.

Нотация 1. Нека G(V, E) е произволен неориентиран граф. За всеки връх $u \in V$, c "d(u)" означаваме степента на u в G. C "D(G)" означаваме множеството от всички степени на върхове в G:

$$D(G) = \{d(u) \mid u \in V\}$$

За всяко $k \in D(G)$, използваме " $\#_k(G)$ ", за да означим броя на върховете от степен k в G. И накрая,

$$\#_{max}(\mathsf{G}) = \max\{\#_{\mathsf{k}}(\mathsf{G}) \mid \mathsf{k} \in \mathsf{D}(\mathsf{G})\}$$

Очевидно е, че |D(G)| и $\#_{max}(G)$ налагат известно ограничение отгоре върху броя на върховете, а именно,

$$|V| \le |D(G)|.(\#_{\max}(G)) \tag{2}$$

Известно е, че за произволен неориентиран граф G(V, E),

$$D(G) \subseteq \{0, 1, 2, \dots, n-1\}$$
, където $n = |V|$.

Но за произволен $G(V,E) \in \Gamma$, ако n=|V|, то

$$D(G) \subseteq \{0, 2, 4, ..., n-2\}$$
 при n четно $D(G) \subseteq \{0, 2, 4, ..., n-1\}$ при n нечетно

$$D(G) \subseteq \{0, 2, 4, ..., n-1\}$$
 при n нечетно

Очевидно е, че $|\{0,\ 2,\ 4,\ \dots,\ n-2\}|=\frac{n}{2}$ и $|\{0,\ 2,\ 4,\ \dots,\ n-1\}|=\frac{n+1}{2}.$ Следователно,

$$|\mathsf{D}(\mathsf{G})| \leq rac{n}{2}$$
 при \mathfrak{n} четно $|\mathsf{D}(\mathsf{G})| \leq rac{n+1}{2}$ при \mathfrak{n} нечетно

Лема 1. За произволен граф $G(V, E) \in \Gamma$, ако G няма изолирани върхове, то G има поне три върха от една и съща степен.

Доказателство:

Нека n = |V|. Тъй като G няма изолирани върхове, то $0 \notin D(G)$, следователно:

$$|\mathsf{D}(\mathsf{G})| \leq rac{n}{2} - 1$$
 при $\mathfrak n$ четно $|\mathsf{D}(\mathsf{G})| \leq rac{n+1}{2} - 1$ при $\mathfrak n$ нечетно

Да допуснем, че $\#_{\max}(\mathsf{G}) \leq 2$. Тогава, съгласно (2),

$$|V| \leq 2\left(rac{n}{2}-1
ight) = n-2$$
 при n четно $|V| \leq 2\left(rac{n+1}{2}-1
ight) = n-1$ при n нечетно

И в двата случая—когато ${\mathfrak n}$ е четно и когато ${\mathfrak n}$ е нечетно—достигаме до противоречие.

За да довършим доказателството, остава да разгледаме случаите, в които графът от Г има изолирани върхове. Ако тези изолирани върхове са три или повече, доказателството е готово, в такъв случай графът има поне три върха от една и съща степен по построение. Остава да разгледаме случаите, в които графът има един или два изолирани върха.

Първо да разгледаме произволен граф $G(V,E) \in \Gamma$, който има точно един изолиран връх u. Разглеждаме графа $G'(V \setminus \{u\}, E)$. Ако допуснем, че $|V| \leq 3$, то G' има най-много два върха. Те трябва да имат степени поне 2 заради принадлежността на G към Γ . Това обаче е невъзможно, тъй като в обикновен граф (не мултиграф) с най-много два върха, максималната възможна степен на връх е 1. Следователно |V| > 3. Но това означава, че G' има поне три върха. Очевидно е, че G' има върхове само от четни степени, тъй като G има върхове само от четни степени по построение. Тогава $G' \in \Gamma$ и можем да приложим Лема 1 към G'. Съгласно Лема 1, G' има поне три върха от една и съща степен. Тогава и G има поне три върха от една и съща степен.

Накрая разглеждаме произволен граф $G(V, E) \in \Gamma$, който има точно два изолирани върха $\mathfrak u$ и $\mathfrak w$. Разглеждаме графа $G'(V \setminus \{\mathfrak u, \mathfrak w\}, E)$. Ако допуснем, че $|V| \le 4$, то G' има най-много два върха. Те трябва да имат степени поне 2 заради принадлежността на G към Γ . Това обаче е невъзможно, тъй като в обикновен граф (не мултиграф) с най-много два върха, максималната степен е 1. Следователно |V| > 4. Но това означава,

че G' има поне три върха. Очевидно е, че G' има върхове само от четни степени, тъй като G има върхове само от четни степени по построение. Тогава $G' \in \Gamma$ и можем да приложим Лема 1 към G'. Съгласно Лема 1, G' има поне три върха от една и съща степен. Тогава и G има поне три върха от една и съща степен.