МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Организация ЭВМ и Систем»

Тема: Трансляции, отладка и выполнение программ на Ассемблере.

Студентка гр. 0383	Рудкова Ю.В.
Преподаватель:	Ефремов М.А.

Санкт-Петербург, 2021

Цель работы.

Изучить механизм работы трансляции, отладки и выполнения программ на Ассемблере.

Задание.

Лабораторная работа 1 использует 2 готовых программы на ассемблере: hello1 — составлена с использованием сокращенного описания сегментов и hello2 — составлена с полным описанием сегментов и выводом строки, оформленным как процедура. Выполнение работы состоит из двух частей, по каждой из которых необходимо представить протокол с фиксацией всех выполняемых действий и полученных результатов, и подписать его у преподавателя.

Уточнение задания следует посмотреть в файле lr1_comp.txt каталога Задания.

Часть 1

1. Просмотреть программу hello1.asm, которая формирует и выводит на экран приветствие пользователя с помощью функции ОС MSDOS, вызываемой через прерывание с номером 21H (команда Int 21h).

Выполняемые функцией действия и задаваемые ей параметры - следующие:

- обеспечивается вывод на экран строки символов, заканчивающейся знаком "\$";
- требуется задание в регистре ah номера функции, равного 09h, а в регистре dx смещения адреса выводимой строки;
- используется регистр ах и не сохраняется его содержимое.
- 2. Разобраться в структуре и реализации каждого сегмента программы. Непонятные фрагменты прояснить у преподавателя. Строку-приветствие преобразовать в соответствии со своими личными данными.

- 3. Загрузить файл hello1.asm из каталога Задания в каталог Masm.
- 4. Протранслировать программу с помощью строки
- > masm hello1.asm
- с созданием объектного файла и файла диагностических сообщений (файла листинга). Объяснить и исправить синтаксические ошибки, если они будут обнаружены транслятором. Повторить трансляцию программы до получения объектного модуля.
- 5. Скомпоновать загрузочный модуль с помощью строки
- > link hello1.obj
- с созданием карты памяти и исполняемого файла hello1.exe.
- 6. Выполнить программу в автоматическом режиме путем набора строки
- > hello1.exe
- убедиться в корректности ее работы и зафиксировать результат выполнения в протоколе.
- 7. Запустить выполнение программы под управлением отладчика с помощью команды
- > afd hello1.exe

4

Записать начальное содержимое сегментных регистров CS, DS, ES и SS. Выполнить программу в пошаговом режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды. Обычные команды выполняются по F1 (Step), а вызовы обработчиков прерываний (Int) - по F2 (StepProc), чтобы не входить внутрь обработчика прерываний. Продвижение по сегментам экранной формы отладчика выполняется с помощью клавиш F7 – F10 (up, down, left, right). Перезапуск программы в отладчике выполняется клавишей F3 (Retrieve). Выход из отладчика - по команде Quit.

Результаты прогона программы под управлением отладчика должны быть представлены в виде, показанном на примере одной команды в табл.1, и подписаны преподавателем.

Табл.1

Адрес	Символический	16-ричный	Содержимое регист	ров и ячеек памяти
Команды	код команды	код команды	до выполнения.	После выполнения
0003	Mov DS, AX	8E D8	(AX) = 2D87	(AX) = 2D87
			(DS) = 2D75	(DS) = 2D87
			(IP) = 0003	(IP) = 0005

Часть 2

Выполнить пункты 1 - 7 части 1 настоящего задания применительно к программе hello2.asm, приведенной в каталоге Задания, которая выводит на экран приветствие пользователя с помощью процедуры WriteMsg, а также использует полное определение сегментов. Сравнить результаты прогона под управлением отладчика программ hello1 и hello2 и объяснить различия в размещении сегментов.

Отчет по работе должен содержать:

- 1) текст задания;
- 2) тексты исходных файлов программ hello1 и hello2;
- 3) тексты файлов диагностических сообщений hello1.lst и hello2.lst;
- 4) протокол работы на компьютере, включающий основные действия по пунктам 1 6 и протоколы пошагового исполнения каждой из программ под управлением отладчика в виде таблицы 1 (черновики протоколов должны быть подписаны преподавателем).
- 5) выводы по работе.

Выполнение работы.

Часть1. Работа с файлом hello1.asm.

Выполнила транслирование программы, скомпоновала, запустила программу в автоматическом режиме. Программа работает корректно.

Произвела запуск программы под управлением отладчика, фиксируя изменения используемых регистров.

Начальные значения системных регистров:

$$(CS)=1A05$$
, $(DS)=19F5$, $(ES)=19F5$, $(SS)=1A0A$.

Табл. 2:

Адрес Символическ команды ий код	16-ричный код команды	Содержание регистров и ячеек памяти		
	команды		до выполнения	после выполнения
0010	MOV, AX, 1A07	B8071A	(AX) = 0000 (DX)= 0000 (DS)= 19F5 (IP) = 0010	(AX)= 1A07 (DX)= 0000 (DS)= 19F5 (IP) = 0013
0013	MOV, DS, AX	8ED8	(AX) =1A07 (DX)= 0000 (DS)= 19F5 (IP) = 0013	(AX) =1A07 (DX)= 0000 (DS)= 1A07 (IP) = 0015
0015	MOV, DX, 0000	BA0000	(AX) =1A07 (DX)= 0000 (DS)= 1A07 (IP) = 0015	(AX) =1A07 (DX)= 0000 (DS)= 1A07 (IP) = 0018
0018	MOV, AH, 09	B409	(AX) =1A07 (DX)= 0000 (DS)= 1A07 (IP) = 0018	(AX) =0907 (DX)= 0000 (DS)= 1A07 (IP) = 001A

001A	INT, 21	CD21	(AX) =0907 (DX)= 0000 (DS)= 1A07 (IP) = 001A	(AX) =0907 (DX)= 0000 (DS)= 1A07 (IP) = 14A0
001C	MOV, AH,4C	B44C	(AX) =0907 (DX)= 0000 (DS)= 1A07 (IP) = 14A0	(AX) =4C07 (DX)= 0000 (DS)= 1A07 (IP) = 001E
001E	INT, 21	CD21	(AX) =4C07 (DX)= 0000 (DS)= 1A07 (IP) = 001E	(AX) =0000 (DX)= 0000 (DS)= 19F5 (IP) = 0010

Разработанный программный код см. в приложении А.

Часть 2. Работа с файлом hello2.asm

Выполнила транслирование программы, скомпоновала, запустила программу в автоматическом режиме. Программа работает корректно.

```
C:N>hello2.exe
Hello Worlds!
Student from 0383 - Rudakova Yulia
```

Произвела запуск программы под управлением отладчика, фиксируя изменения используемых регистров.

Начальные значения системных регистров:

$$(CS)=1A0B, (DS)=19F5, (ES)=19F5, (SS)=1A05.$$

Адрес команды	Символическ ий код	16-ричны й код	Содержание регипамяти	истров и ячеек
	команды	команды	до выполнения	после выполнения
0005	PUSH DS	1E	(AX) = 0000	(AX) = 0000

			(DX) = 0000 (DS) = 19F5 (CS) =1A0A (SP) = 0018 Stack +0 0000 (IP) = 0005	(DX) = 0000 (DS) = 19F5 (CS) =1A0A (SP) = 0016 Stack +0 19F5 (IP) = 0006
0006	SUB AX, AX	2BC0	(AX) = 0000 (DX) = 0000 (DS) = 19F5 (CS) =1A0A (SP) = 0016 Stack +0 19F5 (IP) = 0006	(AX) = 0000 (DX) = 0000 (DS) = 19F5 (CS) =1A0A (SP) = 0016 Stack +0 19F5 (IP) = 0008
0008	PUSH AX	50	(AX) = 0000 (DX) = 0000 (DS) = 19F5 (CS) =1A0A (SP) = 0016 Stack +0 19F5 (IP) = 0008	(AX) = 0000 (DX) = 0000 (DS) = 19F5 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 0009
0009	Mov AX, 1A07	B8071A	(AX) = 0000 (DX) = 0000 (DS) = 19F5 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 0009	(AX) = 1A07 (DX) = 0000 (DS) = 19F5 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 000C
000C	Mov DS, AX	8EDD8	(AX) = 1A07 (DX) = 0000 (DS) = 19F5 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 000C	(AX) = 1A07 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 000E
000E	Mov DX,	BA 0000	(AX) = 1A07	(AX) = 1A07

	0000		(DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 000E	(DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 0011
0011	CALL 0000	E8ECFF	(AX) = 1A07 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 0011	(AX) = 1A07 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 0014 Stack +2 0000 Stack +4 19F5 (IP) = 0000
0000	MOV AH, 09	B409	(AX) = 1A07 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 0014 Stack +2 0000 Stack +4 19F5 (IP) = 0000	(AX) = 0907 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 0014 Stack +2 0000 Stack +4 19F5 (IP) = 0002
0002	Int 21	CD21	(AX) = 0907 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 0014 Stack +2 0000 Stack +4 19F5 (IP) = 0002	(AX) = 0907 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 0014 Stack +2 0000 Stack +4 19F5 (IP) = 0004
0004	RET	С3	(AX) = 0907 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0012	(AX) = 0907 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0014

			Stack +0 0014 Stack +2 0000 Stack +4 19F5 (IP) = 0004	Stack +0 0000 Stack +2 19F5 (IP) = 0014
0014	Mov DX, 0010	BA1000	(AX) = 0907 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 0014	(AX) = 0907 (DX) = 0000 (DS) = 1A07 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 0017
0017	CALL 0000	E8E6FF	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 19F5 (IP) = 0017	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 001A Stack +2 0000 Stack +4 19F5 (IP) = 0000
0000	Mov AH, 09	B409	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 001A Stack +2 0000 Stack +4 19F5 (IP) = 0000	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 001A Stack +2 0000 Stack +4 19F5 (IP) = 0002
0002	INT 21	CD21	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 001A Stack +2 0000 Stack +4 19F5 (IP) = 0002	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 001A Stack +2 0000 Stack +4 19F5 (IP) = 0004

0004	RET	C3	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =1A0A (SP) = 0012 Stack +0 001A Stack +2 0000 Stack +4 19F5 (IP) = 0004	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 0000 (IP) = 001A
001A	RET FAR	СВ	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =1A0A (SP) = 0014 Stack +0 0000 Stack +2 0000 (IP) = 001A	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =19F5 (SP) = 0018 Stack +0 0000 (IP) = 0000
0000	Int 20	CD20	(AX) = 0907 (DX) = 0010 (DS) = 1A07 (CS) =19F5 (SP) = 0018 Stack +0 0000 (IP) = 0000	

Разработанный программный код см. в приложении А.

Результаты прогона программы под управлением отладчика hello1.asm:

- 1. ASSUME определяет через какой регистр сегмента происходит доступ к информации
- 2. Требуется обязательное задание модели памяти, в которой используется эта программа..МОDEL модель памяти. Она накладывает ограничения на комбинирования сегментов.
- 3. Greeting LABEL BYTE определение метки типа byte

- 4. CS: в регистр АХ помещается смещение сегмента, в котором хранятся данные
- 5. В регистр DX помещается значение смещение начала сообщения. Результаты прогона программы под управлением отладчика hello2.asm:
 - 1. для доступа к информации используется сегмент кода (CS) и сегмент стека (SS)
 - 2. (DS) директива описания данных HELLO и GREETING
 - 3. (CS) описание печати строк
 - 4. Загрузка сегментного регистра данных, как в hello1.asm
 - 5. Вызов сроки HELLO и GREETING
 - 6. Завершение программы

Выводы.

В ходе лабораторной работы я изучила механизм работы трансляции, отладки и выполнила программу на Ассемблере в иммитаторе DOSBOX.

Приложение А

Исходный код программы

```
; HELLO1.ASM - упрощенная версия учебной программы лаб.раб. N1
          по дисциплине "Архитектура компьютера"
 ******************
; Назначение: Программа формирует и выводит на экран приветствие
     пользователя с помощью функции ДОС "Вывод строки"
     (номер 09 прерывание 21h), которая:
          - обеспечивает вывод на экран строки символов,
          заканчивающейся знаком "$";
          - требует задания в регистре ah номера функции=09h,
          а в регистре dx - смещения адреса выводимой
          строки;
          - использует регистр ах и не сохраняет его
          содержимое.
*************************
 DOSSEG
                               ; Задание сегментов под ДОС
 .MODEL SMALL
                               ; Модель памяти-SMALL(Малая)
 .STACK 100h
                               ; Отвести под Стек 256 байт
 .DATA
                         ; Начало сегмента данных
Greeting LABEL BYTE
                                    ; Текст приветствия
 DB 'Вас приветствует ст.гр.0383 - Rudakova Yulia',13,10,'$'
 .CODE
                         ; Начало сегмента кода
 mov ax, @data
                         ; Загрузка в DS адреса начала
 mov ds, ax
                         ; сегмента данных
 mov dx, OFFSET Greeting
                               ; Загрузка в dx смещения
                    ; адреса текста приветствия
DisplayGreeting:
 mov ah, 9
                         ; # функции ДОС печати строки
 int 21h
                    ; вывод на экран приветствия
                         ; # функции ДОС завершения программы
 mov ah, 4ch
```

int 21h ; завершение программы и выход в ДОС

END

; HELLO2 - Учебная программа N2 лаб.раб.#1 по дисциплине "Архитектура компьютера"

; Программа использует процедуру для печати строки

,

; ТЕКСТ ПРОГРАММЫ

EOFLine EQU '\$' ; Определение символьной константы

; "Конец строки"

; Стек программы

ASSUME CS:CODE, SS:AStack

AStack SEGMENT STACK

DW 12 DUP(?) ; Отводится 12 слов памяти

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

HELLO DB 'Hello Worlds!', 0AH, 0DH,EOFLine GREETING DB 'Student from 0383 - Rudakova Yulia\$' DATA ENDS

; Код программы

CODE SEGMENT

; Процедура печати строки

WriteMsg PROC NEAR

```
mov AH,9
     int 21h; Вызов функции DOS по прерыванию
     ret
WriteMsg ENDP
; Головная процедура
Main
          PROC FAR
     push DS ;\ Сохранение адреса начала PSP в стеке
     sub AX,AX
                     ; > для последующего восстановления по
     push AX
               ;/ команде ret, завершающей процедуру.
     mov AX,DATA
                          ; Загрузка сегментного
     mov DS,AX
                          ; регистра данных.
     mov DX, OFFSET HELLO
                               ; Вывод на экран первой
                          ; строки приветствия.
     call WriteMsg
     mov DX, OFFSET GREETING; Вывод на экран второй
     call WriteMsg
                          ; строки приветствия.
                     ; Выход в DOS по команде,
     ret
                     ; находящейся в 1-ом слове PSP.
Main
          ENDP
CODE
          ENDS
     END Main
```