Vibrations and Controls Homework 5

February 16, 2022

Gabe Morris

```
[1]: import sympy as sp
import matplotlib.pyplot as plt
from IPython.display import display, Latex

plt.style.use('maroon.mplstyle')

s, t = sp.symbols('s t')

display_latex = lambda text: display(Latex(text))
```

Contents

	blem 9.5																			
1.1	Given .		 							 									 	
1.2	Find		 							 									 	
	Solution																			
1.4	Answer		 							 									 	
	$_{ m blem}$ 9.5																			
	Given .																			
	Find																			
2.3	Solution		 							 									 	
2.4	Answer	 _	 		 _	_	 			 		_			_	_	_	_		

1 Problem 9.5 Part A

1.1 Given

$$T(s) = \frac{Y(s)}{F(s)} = \frac{75}{14s+18}$$
$$f(t) = 10\sin(1.5t)$$

1.2 Find

The steady state response $y_{ss}(t)$

1.3 Solution

$$y_{ss}(t) = 10|T(j\omega)|\sin(1.5t + \angle T(j\omega))$$

[2]:
$$\frac{75}{14s+18}$$

[3]:
$$0.0980392156862745 (18 - 21.0i)$$

[4]:
$$\max_{mag} = sp.Abs(T_jw)$$

[4]: 2.7116307227332

[5]: -0.862170054667226

[6]:
$$y_t = 10*mag*sp.sin(1.5*t + angle)$$

y_t

[6]: $27.116307227332\sin(1.5t - 0.862170054667226)$

1.4 Answer

$$y_{ss}(t) = 27.1\sin(1.5t - 0.862)$$

2 Problem 9.5 Part C

2.1 Given

$$T(s) = \frac{Y(s)}{F(s)} = \frac{s+50}{s+150}$$
$$f(t) = 15\sin(100t)$$

2.2 Find

The steady state response $y_{ss}(t)$

2.3 Solution

Do the same procedure as above. No need for tables in the book. Python makes this very easy.

[7]:
$$T_s = (s + 50)/(s + 150)$$

 T_s

[7]:
$$\frac{s+50}{s+150}$$

[8]:
$$\frac{(50+100i)(150-100i)}{32500}$$

[9]: 0.620173672946042

[10]: 0.519146114246523

[11]: $9.30260509419063 \sin(100t + 0.519146114246523)$

2.4 Answer

$$y_{ss}(t) = 9.3\sin(100t + 0.519)$$