Brain Tumor Detection in MRI Brain Scans

Anna Stephan

Problem Statement

Diagnosing a brain tumor takes multiple steps:

1. Neurological 2. Imaging 3. Biopsy of Examination Tests Brain Tissue

Step 2 can be automated to save time and energy

GOAL: Correctly detect brain tumors in MRI scans with a classification rate of at least 80%

Data

Kaggle Dataset of **Upper-Axial MRI Brain Images**

Includes:

1500 Positive Samples

1500 Negative Samples

60 Unlabeled Samples*

*Not used in our model

Tumor: Yes

Tumor: No

Algorithm

Preprocess

- a. Crop images to the outer skull contours
- b. Resize images (from various dimensions) to uniform dimensions (224x224)

Non-cropped, Non-resized

Cropped, Non-resized

Cropped, Resized

Algorithm

CNN Model:

Adapted from Akshit Madan's model found on Kaggle

Similar to VGG16 but on a smaller scale

Input: 128 x 128 Image

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	128, 128, 32)	416
conv2d_1 (Conv2D)	(None,	128, 128, 32)	4128
batch_normalization (BatchNo	(None,	128, 128, 32)	128
max_pooling2d (MaxPooling2D)	(None,	64, 64, 32)	0
dropout (Dropout)	(None,	64, 64, 32)	0
conv2d_2 (Conv2D)	(None,	64, 64, 64)	8256
conv2d_3 (Conv2D)	(None,	64, 64, 64)	16448
batch_normalization_1 (Batch	(None,	64, 64, 64)	256
max_pooling2d_1 (MaxPooling2	(None,	32, 32, 64)	0
dropout_1 (Dropout)	(None,	32, 32, 64)	0
flatten (Flatten)	(None,	65536)	0
dense (Dense)	(None,	512)	33554944
dropout_2 (Dropout)	(None,	512)	0
dense 1 (Dense)	(None,	2)	1026

Total params: 33,585,602 Trainable params: 33,585,410 Non-trainable params: 192

Results and Discussions

Final Testing Classification Rate: 91.67%

Results and Discussions

Figure. Past head trauma in a 'No Tumor' sample

SUCCESS! Reached testing accuracy of 80% or higher

Future Improvements:

- Implement transfer learning
- Post-process data to separate samples containing scar tissue due to past head trauma

Appendix

Appendix - Cropping Images using OpenCV

Step 1. Get the original image

Step 2. Find the biggest contour

Step 4. Crop the image

Appendix - Resizing No Cropping vs Resizing w/ Cropping

Sample: No Tumor #115

Non-cropped, Non-resized

Non-Cropped, Resized

Cropped, Resized