CLAIMS

1. A digital amplifier for amplifying an input digital signal, comprising:

a volume a volume adjusting section for controlling the volume of the digital signal; and

a gain adjusting section for performing gain adjustment by applying compression characteristics to the volume-controlled digital signal.

- 2. The digital amplifier according to claim 1, wherein the gain adjusting section applies the compression characteristics to the input digital signal, which is converted to an output signal, through a calculation based on an expression $y=a\{1-1(1-[x])^n\}$, where x is the input digital signal, y is the output signal, [x] is the absolute value of x, n is an exponent representing the compression characteristics, and a is 1 for $x\ge 0$ or -1 for x<0.
- 3. The digital amplifier according to claim 2, wherein the compression characteristics are variable by changing the exponent n.
- 4. The digital amplifier according to claim 3, wherein the exponent n is variable according to an operation of a gain adjusting function.
- 5. The digital amplifier according to claim 1, further comprising:
 a memory for storing an input-output conversion table
 corresponding to the input-output relationship defined by an expression y=a{11(1-[x])ⁿ}, where x is the input digital signal, y is an output signal, [x] is the
 absolute value of x, n is an exponent representing the compression characteristics,
 and a is 1 for x≥0 or -1 for x<0, wherein the gain adjusting function performs gain
 adjustment by referring to the input-output conversion table.
- 6. The digital amplifier according to claim 1, wherein the gain adjusting section comprises a digital signal processor.

- 7. The digital amplifier according to claim 2, wherein the gain adjusting section comprises a digital signal processor.
- 8. The digital amplifier according to claim 5, wherein the gain adjusting section comprises a digital signal processor.
- 9. The digital amplifier according to claim 1, further comprising: an analog input section for receiving an analog signal; and an analog-to-digital converter for converting the analog signal to a digital signal and providing the digital signal to the volume adjusting section.
- 10. The digital amplifier according to claim 2, further comprising:
 an analog input section for receiving an analog signal; and
 an analog-to-digital converter for converting the analog signal to a
 digital signal and providing the digital signal to the volume adjusting section.
- 11. A method for adjusting the gain of a digital amplifier for amplifying an input digital signal, the method comprising:

controlling the volume of the digital signal; and performing gain adjustment by applying compression characteristics to the volume-controlled digital signal.

- 12. The method according to claim 11, wherein the compression characteristics are applied to the input signal, which is converted to an output signal, through a calculation based on an expression $y=a\{1-1(1-[x])^n\}$, where x is the input digital signal, y is the output signal, [x] is the absolute value of x, n is an exponent representing the compression characteristics, and a is 1 for $x\ge0$ or -1 for x<0.
- 13. The method according to claim 12, wherein the compression characteristics are variable by changing the exponent n.
- 14. The method according to claim 13, wherein the exponent n is variable according to an operation of a gain adjusting function.

15. The method according to claim 11, wherein the gain adjustment is performed by referring to a memory storing an input-output conversion table corresponding to the input-output relationship defined by an expression $y=a\{1-1(1-[x])^n\}$, where x is the input digital signal, y is an output signal, [x] is the absolute value of x, n is an exponent representing the compression characteristics, and a is 1 for $x\ge 0$ or -1 for x<0.