Semester: 1/2024 (Fall)

Course Title: Microprocessor, Assembly Language & Computer Interfacing Sessional

Course Code: CSE 326

### 1. BASIC INFORMATION

| Faculty              | Syed   | Syed Shakil Mahmud |                                                         |                           |           |                  |     |       |    |  |  |
|----------------------|--------|--------------------|---------------------------------------------------------|---------------------------|-----------|------------------|-----|-------|----|--|--|
| Office Hours         | Day    |                    | Time                                                    | Room No                   | Room No.  |                  |     |       |    |  |  |
|                      | Sunda  | ay                 | 11:35 AM - 02:30 PM                                     |                           |           | 408              | 408 |       |    |  |  |
| Counseling Hour      | Sunda  | ay                 | 02:35 PM - 04:00 PM                                     | 2:35 PM – 04:00 PM Office |           |                  |     |       |    |  |  |
| Contact Details      | Office | e:                 | CSE Faculty Room, 3 <sup>rd</sup> Floor, Academic Block |                           |           |                  |     |       |    |  |  |
|                      | Email  | :                  | shakil.cse@baiust.ac.bd                                 |                           |           |                  |     |       |    |  |  |
|                      | Mobil  | le:                | 01863784974                                             |                           |           |                  |     |       |    |  |  |
| Pre-requisites       | CSE-2  | 223                |                                                         |                           |           |                  |     |       |    |  |  |
| Offering Dept.       | CSE    |                    |                                                         |                           |           |                  |     |       |    |  |  |
| Course Title         | Micro  | processo           | or, Assembly Language                                   | & Compu                   | ter Inter | facing Sessional |     |       |    |  |  |
| Course Code          | CSE-3  | 326                | Credit 1.5 Contact Minutes 1680                         |                           |           |                  |     |       |    |  |  |
| Number of Lectures   | 10     | Quiz &             | Viva                                                    | 02                        | Lab T     | est (Mid &       | 2   | Total | 14 |  |  |
| + Practical Sessions |        |                    |                                                         |                           | Final)    |                  |     |       |    |  |  |

#### 2. RATIONALE

This course introduces basics of assembly language, microprocessor architecture, and discusses different interfaces and the design of systems based on microprocessors and microcontrollers.

#### 3. OBJECTIVE

- 1. To achieve knowledge on the low level language of microprocessor.
- 2. To provide an understanding of microprocessor-based systems and their use in instrumentation, control and communication systems.
- 3. To Investigate microprocessor-based systems, produce software for a microprocessor-based system, interface microprocessor-based systems and understand usage of programmable logic controllers.\

## 4. COURSE CONTENT

**Basic of Assembly Language** - Compilation, input, output, variables, basic instructions, memory model, data segment, stack segment, code segment, Input Output Instruction;

**Flow Control Instruction** - Conditional and unconditional jump instructions, If-then-else, case, for loop, while loop, repeat loop;

**Logic, Shift and Rotate Instructions -** AND, OR, XOR, complement, shift left, shift right, rotate left, rotate right, rotate carry left, rotate carry right, Binary, Hexa Input Output;

Stack and Procedure - Push, Pushf, Pop, Popf;

Multiplication 198 and Division - Mul, IMul, Div, IDiv;

Array and Addressing moods – 1D Array, DUP operator, Addressing mood, register indirect mood.

String Instructions - Moving string, load string, scan string, compare string;

File Operations – File errors, opening and closing a file, reading a file, writing a file.

Basic Idea of MDA 8086; LED, Seven Segment display, LCD, Keyboard, Motor, Dot matrix Interface with 8086; Basic idea of ATMEGA 16 microcontroller and simulation.

## 5. COURSE OUTCOMES (CO) & GENERIC SKILLS

| No.             | Course Outcome (Upon completion of the course, the students will be able to)                                                                                                        | Bloom's<br>Taxonomy | CP | CA  | KP               | Assessment Methods |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----|-----|------------------|--------------------|
| CO1             | Describe how the high level language is converted to<br>low level languages and how a processor executes a<br>program line by line and solve problems using low<br>level languages. | C1-C3               |    | 1   | 1,8              | E, L               |
| CO <sub>2</sub> | Work with basic microprocessors using assembly language and define where used.                                                                                                      | C3, C4, C6          |    | 2   | 1,5              | E, Q/V, L          |
| CO <sub>3</sub> | Work on Group Project based on basic microcontrollers with presentation.                                                                                                            | C3, C6              | 3  | 4   | <mark>5,6</mark> | PR, R              |
| CO <sub>4</sub> | Interpret how a basic microcomputer works with its associated components.                                                                                                           | C1, C2, C4          |    | 1   | 1,6              | E, L, Q/V          |
| CO5             | Experiment with a basic microprocessor using assembly language in a group project.                                                                                                  | C2-C4, C6,<br>A4    |    | 1,3 | 5                | PR, R              |

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, E – Evaluation; L – Lab Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; V - Viva; F – Final Exam; MT – Mid Term)

#### 6. SKILL MAPPING

| No.             | Course Learning Outcome                                                                                                                                                    |   |   | PROGRAM OUTCOMES (PO)<br>(H – High, M- Medium, L-low) |   |          |                |                |   |   |               |    |    |  | - |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-------------------------------------------------------|---|----------|----------------|----------------|---|---|---------------|----|----|--|---|
|                 |                                                                                                                                                                            | 1 | 2 | <mark>3</mark>                                        | 4 | <u>5</u> | <mark>6</mark> | <mark>7</mark> | 8 | 9 | <del>10</del> | 11 | 12 |  |   |
| CO <sub>1</sub> | Describe how the high level language is converted to low level languages and how a processor executes a program line by line and solve problems using low level languages. |   |   |                                                       | M |          |                |                |   |   |               |    |    |  |   |
|                 | Work with basic microprocessors using assembly language and define where used.                                                                                             |   | H | M                                                     |   |          |                |                |   |   |               |    |    |  |   |
|                 | Work on Group Project based on basic micro-controllers with presentation.                                                                                                  | M |   | H                                                     |   |          |                |                |   | H |               |    |    |  |   |
|                 | Interpret how a basic microcomputer works with its associated components.                                                                                                  | H |   |                                                       |   | M        |                |                |   |   |               |    |    |  |   |
| CO5             | Experiment with a basic microprocessor using assembly language in a group project.                                                                                         | M |   | H                                                     |   |          |                |                |   | H |               |    |    |  |   |



## বাংলাদেশ আর্মি ইন্টারন্যাশনাল ইউনিভার্সিটি অব সায়েন্স এন্ড টেকনোলজি, কুমিল্লা BANGLADESH ARMY INTERNATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY (BAIUST), CUMILLA

## 7. JUSTIFICATION FOR CO-PO MAPPING:

| Mapping   | Level  | Justifications                                                                                                                      |  |  |  |  |  |
|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1 – PO1 | Medium | Vill be able to gain depth of knowledge on how a low-level language is implement nd its execution line by line by a processor.      |  |  |  |  |  |
| CO1 – PO4 | Medium | Medium Will be able to investigate and experiment with low-level languages by writing programs.                                     |  |  |  |  |  |
| CO2 – PO2 | High   | Will be able to do complex analysis of assembly programs and define where used.                                                     |  |  |  |  |  |
| CO2 – PO3 | Medium | Will be able to design solutions to a variety of problems using assembly language.                                                  |  |  |  |  |  |
| CO4 – PO1 | Medium | Will develop breadth and depth of knowledge while experimenting with a bamicroprocessor using assembly language in a group project. |  |  |  |  |  |
| CO4 – PO3 | High   | Will be able to develop innovative solutions while working in a microprocessor-based group project.                                 |  |  |  |  |  |
| CO4 – PO9 | High   | Will gain experience of team work and collaboration while working in the group project.                                             |  |  |  |  |  |
| CO3 -PO1  | High   | High Will gain breadth and depth of knowledge in illustrating how a basic microcomputer works with its associate components.        |  |  |  |  |  |
| CO3 – PO5 | Medium | Will be able to gain a level of understanding of the appropriateness of microprocessors and associated devices.                     |  |  |  |  |  |

## 8. TEACHING LEARNING STRATEGY

| Teaching and Learning Activities | Engagement (hours) |
|----------------------------------|--------------------|
| Face-to-Face Learning            |                    |
| Lecture                          | 7                  |
| Practical / Tutorial / Studio    | 42                 |
| Student-Centered Learning        | -                  |
| Self-Directed Learning           |                    |
| Non-face-to-face                 | -                  |
| learning Revision                | -                  |
| Assessment Preparations          | 14                 |
| Formal Assessment                |                    |
| Quiz                             | 1                  |
| Viva                             | 1                  |
| Continuous Assessments           | 8                  |
| Midterm Lab Test                 | 1                  |
| Final term Lab Test              | 1                  |
| Total                            | 75                 |

## 6. LECTURE OUTLINE

| T CIASS T TODICS | /Assignment | COs | Reading<br>Reference |
|------------------|-------------|-----|----------------------|
|------------------|-------------|-----|----------------------|



# বাংলাদেশ আর্মি ইন্টারন্যাশনাল ইউনিভার্সিটি অব সায়েন্স এন্ড টেকনোলজি, কুমিল্লা BANGLADESH ARMY INTERNATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY (BAIUST), CUMILLA

| 1  | Basic of Assembly Language - Compilation, input, output, variables,          | 1 | 1 |
|----|------------------------------------------------------------------------------|---|---|
|    | basic instructions, memory model, data segment, stack segment, code          |   |   |
|    | segment, Input Output Instruction                                            |   |   |
| 2  | Flow Control Instruction - Conditional and unconditional jump                | 1 | 1 |
|    | instructions, If-then-else, case, for loop, while loop, repeat loop          |   |   |
| 3  | Logic, Shift and Rotate Instructions - AND, OR, XOR,                         | 1 | 1 |
|    | complement, shift left, shift right, rotate left, rotate right, rotate carry |   |   |
|    | left, rotate carry right, Binary, Hexa Input Output                          |   |   |
| 4  | Stack and Procedure - Push, Pushf, Pop, Popf Multiplication and              | 1 | 1 |
|    | <b>Division</b> – Mul, IMul, Div, IDiv                                       |   |   |
| 5  | <b>Array and Addressing moods</b> – 1D Array, DUP operator,                  |   | 1 |
|    | Addressing mood, register indirect mood                                      |   |   |
| 6  | String Instructions - Moving string, load string, scan string,               | 1 | 3 |
|    | compare string                                                               |   |   |
|    | <b>File Operations</b> – File errors, opening and closing a file, reading a  |   |   |
|    | file, writing a file                                                         |   |   |
| 7  | Lab Test-1                                                                   | 1 | 1 |
| 8  | Project Idea                                                                 | 1 | 1 |
| 9  | Basic Idea of MDA 8086                                                       |   | 2 |
|    | LED and Seven Segment display interface                                      |   |   |
| 10 | Operation of DOT matrix using 8086 kit LCD interface with 8086               |   | 2 |
| 11 | Keyboard interface with 8086 Motor interface with 8086                       |   | 1 |
| 12 | Project Update                                                               |   | 1 |
| 13 | Lab Test-2                                                                   |   | 1 |
| 14 | Final Project Submission Quiz                                                | 1 | 1 |
|    |                                                                              |   |   |

### 10. READING REFERENCE

- 1. Assembly Language Programming and Organization of the IBM PC--Ytha Yu, Charles Marut
- 2. The Intel Microprocessors Barry B Brey
- 3. Microprocessors and Interfacing Douglas V. Hall

### 11. ASSESSMENT STRATEGY

|                                                                                           |         | CO | Blooms Taxonomy |  |  |  |  |
|-------------------------------------------------------------------------------------------|---------|----|-----------------|--|--|--|--|
| Components                                                                                | Grading |    |                 |  |  |  |  |
| Quiz (Midterm & Final)                                                                    | 10%     |    | •               |  |  |  |  |
| Lab Test                                                                                  | 20%     |    |                 |  |  |  |  |
|                                                                                           |         |    |                 |  |  |  |  |
| Viva (Midterm + Final Exam)                                                               | 10%     |    |                 |  |  |  |  |
| Continuous Evaluation                                                                     | 30%     |    |                 |  |  |  |  |
| Midterm & Final Exam                                                                      | 30%     |    |                 |  |  |  |  |
| (CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain) |         |    |                 |  |  |  |  |