

## Lecture 5 Adversarial Search

Thanapon Noraset Faculty of ICT, Mahidol University

Adapted from AIMA by Stuart Russell and Peter Norvig, and UC Berkeley CS188 by Dan Klein and Pieter Abbeel (ai.berkeley.edu)

### Agenda



- Competitive Environments
  - Types of Games
  - Zero-sum games
  - Behavior (Policy)
- Adversarial Search
  - Formulation
  - Optimal Decision
  - Minimax algorithms
- Improving Efficiency
  - Alpha-Beta Pruning
  - Cutoff and Evaluation function



### Competitive Environments



### Tic-Tac-Toe



### What is the best next move?



Image from Google Search Engine

### **Multiagent Environments**



- An agent needs to consider the actions of other agents which can be unpredictable.

- This makes it hard to find an optimal sequence of actions.

- In this class, we are going to find a simple optimal move.

### **Competitive Environments**



- A type of multiagent environments where agents' goals are conflict.

- Adversarial games are a simple form of competitive environments
  - a few agents and a simple set of rules
- Game-playing problems are quite challenging.
  - Playground for Al researchers



### Aspects of adversarial games



- Deterministic or Stochastic?
  - Is the result of an action certainly known?
- Number of players?
  - 2, 3, or more? Are they in teams?
- Perfect information (fully observable)?
  - Can agent observe the full state?
- Zero-sum games?
  - Total payoff to all player is the same

### Zero-sum games of Perfect Information







#### General Games

- Independent "scores" on outcomes
- Cooperation, indifference,
   competitions

#### Zero-Sum Games

- Opposite "scores" on outcomes
- A single value where one maximizes and the other minimizes

### **Agent Behavior: Policy**



 A game-playing agent has to decide on what to do for the current state of them.

 A solution of a player is a policy function mapping: State → Action

- Searching from the best move:
  - Think ahead guessing [all] other agents' actions to the ends of the games
  - Return an [optimal] move that leads to a win



### **Adversarial Search**



### Formulation (Deterministic Games)



### Many formulations. Here is one:

- State: the current setup
- Player(s): which player has the move
- Actions(s): A set of legal moves in a state
- Result(s,a): A transition model (successor)
- Terminal-Test(s)
- Utility(s, p): A utility function defines value for a terminal state s for a player p.

This will form a game tree (search tree)

### Optimal Move: Single-Agent Trees



Which one maximize the value? Left or Right?



### Optimal Move: Value of a State





### **Optimal Move**



An optimal move is an action that leads to a maximum-value state.



### **Optimal Move: Adversarial Game Trees**



What is the value of non-terminal nodes?



### Minimax Values







### Adversarial Search: Minimax



### Minimax Search

- A search tree
- Players alternate turns
- Compute each node's minimax value:
  - Assume the worst case (optimal adversary)
  - Calculate the best achievable utility

### Minimax values: Computed recursively



Terminal values: come from the game

### The minimax algorithm



 $\begin{array}{l} \textbf{function} \ \mathsf{MINIMAX-DECISION}(state) \ \textbf{returns} \ an \ action \\ \textbf{return} \ \mathrm{arg} \ \mathrm{max}_{a \ \in \ \mathsf{ACTIONS}(s)} \ \mathsf{MIN-VALUE}(\mathsf{RESULT}(state, a)) \end{array}$ 

```
function Max-Value(state) returns a utility value if Terminal-Test(state) then return Utility(state) v \leftarrow -\infty for each a in Actions(state) do v \leftarrow \text{Max}(v, \text{Min-Value}(\text{Result}(s, a))) return v
```

function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow \infty$ for each a in ACTIONS(state) do  $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a)))$ return v

### Example





### **Minimax Properties**



- Optimal?Yes, against an optimal player
- What if the opponent is not an optimal player?





### **Minimax Properties**



Minimax does not include reasoning about the opponent behaviors other than optimal ones.

- Expectimax: values should be a weighted average of different outcomes
- More formally, Markov Decision Processes
- Not covered in this class

### Minimax Properties (Continued)



1 node

b nodes

b<sup>2</sup> nodes

bm nodes

### Minimax explores a tree in DFS order

- Time Complexity: O(b<sup>m</sup>)
- Space Complexity: O(bm)



### For example:

- In chess,  $b \approx 35$ ,  $m \approx 100$
- In Go, b  $\approx$  250, m  $\approx$  210



# Improving Efficiency: (1) Game Tree Pruning



### Minimax Example





Do we need to explore more after c<sub>1</sub>?

### Alpha-Beta Pruning (MIN)





General Idea (MIN):

Whenever *n falls below m*, the MAX agent will avoid it.

MIN can stop exploring that branch

### Alpha-Beta Pruning (MAX)



General Idea (MAX):

Whenever *n* exceeds *m*, the MIN agent will avoid it.

MAX can stop exploring that branch



### Alpha-Beta Search Algorithm



function ALPHA-BETA-SEARCH(state) returns an action  $v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)$  return the action in ACTIONS(state) with value v

```
function Max-Value(state, \alpha, \beta) returns a utility value if Terminal-Test(state) then return Utility(state) v \leftarrow -\infty for each a in Actions(state) do v \leftarrow \text{Max}(v, \text{Min-Value}(\text{Result}(s, a), \alpha, \beta)) if v \geq \beta then return v \alpha \leftarrow \text{Max}(\alpha, v) return v
```

```
function MIN-VALUE(state, \alpha, \beta) returns a utility value if Terminal-Test(state) then return Utility(state) v \leftarrow +\infty for each a in Actions(state) do v \leftarrow \text{Min}(v, \text{Max-Value}(\text{Result}(s, a), \alpha, \beta)) if v \leq \alpha then return v \in \beta \leftarrow \text{Min}(\beta, v) return v \in \beta
```

### Example





### Alpha-Beta Search Properties



 This pruning has no effect on minimax value for the root

 But the values of intermediate nodes might be wrong → Cannot use in action selection

Good children ordering improves
 Effectiveness of pruning

Impossible to get a perfect ordering





# Improving Efficiency: (2) Cutting off and Evaluation Functions



### Depth-limited search



max

min

- Search only a limited depth in the tree
  - Cut off the search a some depth
  - Similar to IDS
  - What is the values of non-terminal nodes?
- Use evaluation function!
  - Approximate the values without looking ahead
  - Not optimal anymore



#### **Evaluation Functions**



- Score non-terminal nodes
- Ideal function: actual minimax value
- In practice a weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$



Example: Othello

- $f_1(s) = #$ white legal moves
- $f_2(s) = #white #black$
- ...

### **Evaluation for Pacman**







- What is the minimax value of the root node?
- What are the actions (alphabet) that the agent explore?





What about this one?

