

Pontifícia Universidade Católica de Minas Gerais Bacharelado em Ciência da Computação Redes de Computadores I

Redes de Computadores I

Profa: Raquel Mini

raquelmini@pucminas.br

2º semestre de 2018

Ementa

Conceitos básicos de redes de computadores, protocolos e serviços de comunicação. Arquitetura de redes de computadores. Camadas inferiores dos modelos de referência OSI/ISO e TCP/IP: física, enlace, rede e transporte.

Bibliografia Recomendada

Andrew S. Tanenbaum. Redes de Computadores.
 Tradução da 5ª Edição. Pearson.

Método de Avaliação

2 Provas (30, 30)	60 pontos
 Avaliação de Desempenho Acadêmico 	05 pontos
 Apresentação de Seminários 	15 pontos
Trabalho Prático	20 pontos

Introdução

Progresso Tecnológico

- Século XVIII: grandes sistemas mecânicos que acompanharam a Revolução Industrial
- Século XIX: máquinas a vapor
- Século XX: aquisição, processamento e distribuição de informações
 - Instalação de redes de telefonia em escala mundial
 - Invenção do rádio e da televisão
 - Nascimento e crescimento da indústria da informática
 - Lançamento dos satélites de comunicação
 - COMPUTAÇÃO

Comunicação

- Redes especializadas em manipular um tipo específico de dados (voz, vídeo ou toques de teclas) e elas se conectam a um tipo específico de dispositivo (aparelho de TV, telefone, terminal):
 - Sistema de telefonia
 - Sistema de TV a cabo
 - Conjunto de linhas seriais usadas para conectar terminais burros a computadores de grande porte (mainframes)

Computação + Comunicação

- A fusão dos computadores e das comunicações teve uma profunda influência na forma como os sistemas computacionais eram organizados
 - Não existe mais o conceito de "centro de computação" como uma sala com um grande computador ao qual os usuários levam seu trabalho para processamento

Redes de Computadores

Computação + Comunicação

- Redes de Computadores:
 - Os trabalhos são realizados por um grande número de computadores separados, mas interconectados
 - São construídas para hardware programável de propósito geral
 - São capazes de transportar vários tipos diferentes de dados para uma grande variedade de aplicações

O que é uma Rede de Computadores?

- Conjunto de computadores autônomos interconectados entre si
 - Autônomos: não existe uma relação mestre-escravo entre computadores
 - Interconectados: capazes de trocar informações entre si através de algum meio – par trançado, cabo coaxial, fibra ótica, microondas, satélite

Redes de Computadores X Sistemas Distribuídos

- Sistemas distribuídos:
 - "Coleção de computadores independentes que se apresenta ao usuário como um sistema único e consistente" Andrew Stuart Tanenbaum
- Computação distribuída:
 - Consiste em adicionar o poder computacional de diversos computadores interligados por uma rede de computadores ou mais de um processador trabalhando em conjunto no mesmo computador, para processar colaborativamente determinada tarefa.

Por que as pessoas estão interessadas em redes de computadores?

Motivações para uso de Redes de Computadores em Organizações

- Compartilhamento de recursos: significa a disponibilidade para qualquer usuário de recursos como programas, dados, dispositivos físicos, independente de sua localização geográfica
 - Exemplo: um grupo de funcionários de um escritório que compartilham uma impressora comum

Motivações para uso de Redes de Computadores em Organizações

- Compartilhamento de informações:
 - Comunicação pessoal entre os funcionários
 - Produção de relatório por duas ou mais pessoas ao mesmo tempo
 - Videoconferência
 - Negócio eletrônico
 - Comércio eletrônico
 - Treinamento a distância

Motivações para uso de Redes de Computadores por Pessoas

- Rede social
- Acesso a informação remota
 - Instituições financeiras, home shopping, jornais e outros periódicos, bibliotecas, Web
 - Interação pessoa com banco de dados/servidor
- Comunicação entre pessoas
 - Email, chat, videoconferência, facebook, twitter
 - Educação à distância

Motivações para uso de Redes de Computadores por Pessoas

- Entretenimento interativo
 - Vídeo sob demanda, televisão interativa, jogos
- Comércio eletrônico
 - Fazer compras em casa
 - Leilões on-line

Motivações para uso de Redes de Computadores por Usuários Móveis

O que é Computação Móvel?

Computação Móvel

- Processamento + Mobilidade + Comunicação sem fio= Computação Móvel
- Computação Móvel define um novo paradigma computacional
 - Nova forma de utilizar recursos computacionais através de dispositivos portáteis

Computação Móvel

Acesso a informação a qualquer lugar, a qualquer momento

Acesso a Qualquer Lugar, a Qualquer Momento

Computação Móvel

- Dispositivos Computacionais:
 - Notebook
 - ◆ Tablets
 - Smartphones
 - Sensores

Computação Móvel

- Aplicações
 - Escritório portátil
 - Controle de estacionamento sem fio
 - Aplicações militares
 - Comunicação sem fio para as máquinas automáticas de venda
 - Leitura de medidores de consumo de serviços de utilidade pública
 - Detectores de fumaça sem fio
 - Comércio móvel (m-commerce)
 - Serviços baseados em localização

O que vem por aí?

- Telemedicina
- Espaços inteligentes
- Redes de Sensores Sem Fio
- **...**

Espaços Inteligentes

A tecnologia dará vida a nossos ambientes (mesas, paredes, veículos, relógios, cintos, entre outros) por meio de atuadores, sensores, lógica, processamento, armazenagem, câmeras, microfones, alto-falantes, painéis e comunicação

Espaços Inteligentes

Ceiva Digital Photo Receiver (http://www.ceiva.com)

Redes de Sensores Sem Fio

Redes de Sensores Sem Fio

Características:

- Comunicação sem fio
- Dispositivos computacionais de baixo custo com severas restrições de memória, processamento e energia
- A bateria dos dispositivos computacionais é finita e sua recarga nem sempre é possível

Aplicações:

 Monitoramento, rastreamento, coordenação e processamento de diversas aplicações

Algumas Frases

- "Quatro ou cinco computadores devem ser suficientes para o mundo inteiro até o ano 2000."
 - T. J. Watson, 1945 (presidente da IBM)
- "Não há nenhuma razão para qualquer indivíduo ter um computador em casa."
 - Ken Olsen, 1977 (presidente da Digital Equipment Corporation)

Algumas Frases

"A Internet e tudo o que ela habilita é uma vasta fronteira nova, cheia de desafios surpreendentes. Há espaço para grandes inovações. Não fiquem limitados à tecnologia existente hoje. Soltem sua imaginação e pensem no que poderia acontecer e transformem isto em realidade."

Leonard Kleinrock

Leonard Kleinrock é professor de Ciência da Computação da Universidade da Califórnia em Los Angeles. Em 1969, seu computador na UCLA se tornou o primeiro nó da Internet.

Exercício

No futuro, quando todo mundo tiver um terminal doméstico conectado a uma rede de computadores, será possível realizar plebiscitos instantâneos sobre questões importantes. É provável que a política atual seja eliminada, permitindo que as pessoas expressem seus desejos de uma maneira mais direta. Os aspectos positivos dessa democracia direta são óbvios, analise alguns dos aspectos negativos.

Hardware de Rede

Hardware de Rede

- Classificação das redes:
 - Não existe uma taxonomia na qual todas as redes se encaixam
- No entanto, existem dois pontos importantes:
 - Tecnologia de transmissão
 - ◆ Escala

Tecnologias de Transmissão

- Basicamente dois grandes grupos:
 - Redes difusão (broadcast) ou acesso múltiplo
 - Redes ponto-a-ponto (point-to-point)

Redes Difusão

- Canal de comunicação é compartilhado entre os computadores da rede
- Mensagens são enviadas por uma das máquinas e recebidas por todas as outras
- É necessário um algoritmo para controlar o acesso ao meio
- Toda mensagem possui um campo de endereço

Redes Difusão

- Algoritmo para recebimento de mensagens executado por cada máquina:
 - Computador verifica endereço de destino;

```
se endereço no quadro = meu endereço então
  processa o quadro
senão
  descarta o quadro
fimse
```

 É possível enviar mensagem para todos computadores da rede (broadcasting) ou para um subconjunto deles (multicasting)

Redes Difusão

- Formas de alocação do canal de comunicação:
 - Estática
 - Dinâmica (sob demanda)

Redes Difusão

- Alocação estática:
 - Tempo dividido em intervalos (slots)
 - É executado um algoritmo tipo "ciranda" (round robin) onde cada máquina transmite somente no seu slot
 - Desvantagem: canal fica vazio se uma estação não tem nada a transmitir

Redes Difusão

Alocação dinâmica:

- Centralizada:
 - Existe uma entidade que arbitra qual é a próxima estação a ter acesso ao meio (a entidade recebe requisições e faz uma escolha de acordo com um algoritmo)
- Descentralizada:
 - Cada máquina decide se transmite num determinado momento ou não

Redes Ponto-a-ponto

- Conexões são entre pares de computadores
- Pacotes são enviados na modalidade store-andforward
- Algoritmos de roteamento são muito importantes

Redes Difusão x Ponto-a-ponto

Em geral,

Difusão	Ponto-a-ponto
Redes menores	Redes maiores
Localizadas geograficamente	Espalhadas

Exercício

2. Explique a necessidade de um mecanismo de controle de acesso ao meio nas redes difusão.

Escala

- Classificação de processadores interconectados em função da distância entre eles, ou seja, em relação ao tamanho da rede
- O tamanho de uma rede normalmente possui implicações na tecnologia básica que pode ser utilizada
- O tamanho de uma rede nos fornece informações importantes como a quantidade de tempo gasta para os dados se propagarem de uma ponta à outra

Escala

Distância entre os processadores	Processadores localizados no(a) mesmo(a)	Exemplo
1 m	Metro quadrado	Rede pessoal
10 m	Sala	
100 m	Edifício	Rede local
1 km	Campus	
10 km	Cidade	Rede metropolitana
100 km	País	Rede geograficamente
1.000 km	Continente	distribuída
10.000 km	Planeta	A Internet

Algumas Redes Importantes

- Redes locais (LANs Local Area Networks)
- Redes metropolitanas (MANs Metropolitan Area Networks)
- Redes geograficamente distribuída (WANs Wide Area Networks)
- Redes sem fio (Wireless Networks)

Redes Locais (LANs)

- Redes privativas:
 - Conectam computadores pessoais em escritórios, instalações industriais, empresas, escolas, etc.
 - Compartilhamento de recursos e troca de informações
- Poucos erros de transmissão
- Velocidades:
 - Tradicionais: 10 a 100 Mbps
 - Modernas: 10 Gbps

Redes Locais (LANs)

- Tamanho
 - Alguns quilômetros
 - Baixa latência (μs ou ns)
 - O pior tempo de transmissão é limitado e conhecido com antecedência
- Tecnologia de transmissão:
 - geralmente um único cabo que liga todas as máquinas

Redes Locais (LANs)

- IEEE 802.3 ou Ethernet:
 - ◆ Rede difusão usa um barramento
 - Controle descentralizado
 - Velocidades de 10 Mbps a 10 Gbps
 - Os computadores podem transmitir sempre que desejam
 - Se dois ou mais pacotes colidirem, cada computador aguardará um tempo aleatório e fará uma nova tentativa mais tarde

Redes Metropolitanas (MANs)

- Cobre um grupo de prédios, organizações, ou uma cidade
- Pode ser pública ou privada
- Pode trafegar dados e voz
- Exemplos:
 - Rede de TV a cabo
 - Rede sem fio de banda larga 802.16

- Cobre uma área geográfica maior como um país ou continente
- Também chamadas de redes geograficamente distribuídas
- Projeto da rede é dividido em:
 - Um conjunto de máquinas (hospedeiro, sistema final ou host) cuja finalidade e executar os programas do usuário
 - Sub-rede de comunicação cuja finalidade é conectar os hospedeiros

- Sub-rede de comunicação:
 - Linhas de transmissão:
 - ▶ Transportam os bits entre as máquinas
 - Podem ser formadas por fios de cobre, fibra óptica ou enlaces de rádio
 - Elementos de comutação
 - Computadores especializados que conectam três ou mais linhas de transmissão (roteadores)
 - Mensagens chegam por linhas de entrada e são enviadas por linhas de saída de acordo com um algoritmo

 Tipicamente um hospedeiro é conectado a uma LAN com um roteador

 A maioria das WANs funcionam com comutação de pacotes (store-and-forward)

- Não é uma idéia nova:
 - Em 1901, o físico italiano Guglielmo Marconi demonstrou como funcionava um telégrafo sem fio
- As redes sem fio podem ser divididas em três categorias principais:
 - Interconexão de sistemas: Bluetooth
 - ◆ LANs sem fio: 802.11 (WiFi)
 - WANs sem fio: 802.16 (WiMax)

- Interconexão de sistemas (Bluetooth):
 - Interconectar os componentes de um computador usando rádio de alcance limitado
 - ▶ Conectar monitor, teclado, mouse, impressora à unidade principal
 - Conectar câmeras digitais, fones de ouvido, scanners e outros dispositivos a um computador
 - Utilizam o paradigma de mestre-escravo

Interconexão de sistemas (Bluetooth):

- LANs sem fio (802.11):
 - Todo computador tem um modem de rádio e uma antena por meio dos quais pode se comunicar com outros sistemas
 - Podem operar em velocidades de até 50 Mbps
- Fáceis de instalar
- Taxas de erro muito mais altas
- Dois tipos:
 - Redes sem fio com estação-base (infraestruturadas)
 - Redes Ad-hoc

LANs sem fio (802.11):

Rede sem fio com uma estação-base

Rede Ad hoc

- WANs sem fio (802.16):
 - Redes sem fio de banda larga
 - Usada em sistemas geograficamente distribuídos
 - Semelhante à rede de telefonia celular (sistema com baixa largura de banda)

"Os computadores móveis sem fio são como banheiros móveis sem tubulação – verdadeiros penicos portáteis. Eles serão comuns em veículos, construções e em shows de rock. Meu conselho é que as pessoas instalem a fiação em suas casas e fiquem lá".

Metcalfe, 1995 (inventor da Ethernet)

Software de Rede

Para Pensar....

O presidente da Specialty Paint Corp resolve trabalhar com uma cervejaria local com a finalidade de produzir uma lata de cerveja invisível (como uma medida higiênica). O presidente pede que o departamento jurídico analise a questão e este, por sua vez, entra em contato com o departamento de Engenharia. Como resultado, o engenheiro-chefe entra em contato com o funcionário de cargo equivalente na outra empresa para discutir os aspectos técnicos do projeto. Em seguida, os engenheiros enviam um relatório a seus respectivos departamentos jurídicos, que então discutem por telefone os aspectos legais. Por fim, os presidentes das duas empresas discutem as questões financeiras do negócio. Esse é um exemplo de protocolo em várias camadas no sentido utilizado pelas redes de computadores? Justifique.

Exemplo de Comunicação em Camadas

Comunicação em Camadas

- Para reduzir a complexidade do projeto, as redes são organizadas como uma pilha de camadas ou níveis, colocadas umas sobre as outras
- Número de camadas, nomes, conteúdo e funcionalidades de cada camada depende de cada rede
- Funcionalidade geral de cada camada:
 - Oferecer serviços para as camadas superiores
 - "Esconder" como os serviços são implementados

Pilha de Camadas

- A camada n:
 - Provê um conjunto de serviços para as camadas superiores
 - Esconde detalhes da implementação dos serviços
 - ◆ É implementada baseando-se nos serviços oferecidos pela camada n − 1
- A camada n de uma máquina se comunica com a camada n de outra máquina utilizando um protocolo

Protocolos de Comunicação

- Conjunto de regras e convenções para troca de informações entre duas ou mais entidades comunicantes
- Define o formato e a ordem das mensagens trocadas entre duas ou mais entidades comunicantes, bem como as ações realizadas na transmissão e/ou no recebimento de uma mensagem ou outro evento

Protocolos de Comunicação

Protocolo humano

Protocolo de rede de computadores

Interfaces

- Existe uma interface entre camadas adjacentes
- A interface define as operações e os serviços que a camada inferior tem a oferecer à camada que se encontra acima dela

Camadas, Protocolos e Interfaces

 Comunicação é feita entre entidades pares (peer) que estão na mesma camada usando o protocolo

Os pares podem ser processos, dispositivos de hardware ou mesmo seres humanos

Comunicação Virtual X Real

- Comunicação direta (horizontal) entre entidades pares é virtual e executada através do protocolo da camada n
- Comunicação real (vertical) é feita entre entidades na mesma hierarquia
- Comunicação entre máquinas ocorre efetivamente na camada mais baixa através de um meio físico

Arquitetura de Rede

- Definição: conjunto de camadas e seus protocolos
- Detalhes de implementação e especificação de interfaces não fazem parte da arquitetura
- Pilha de protocolos (protocol stack): protocolos usados em cada camada (um por camada) em um sistema

Comunicação em Camadas

Comunicação em Camadas

Tipos de Serviço

- As camadas podem oferecer tipos diferentes de serviços às camadas superiores
 - Orientado à conexão (connection oriented service) ou Sem conexão (connectionless service)
 - Confiável ou Não confiável
- Afetam fundamentalmente o projeto de protocolos

Serviço Orientado à Conexão X Sem Conexão

Serviço Orientado à Conexão

- Similar ao sistema telefônico
- Possui basicamente três fases:
 - Estabelecimento da conexão
 - Transferência de dados
 - Término da conexão
 - Assume-se que o protocolo só entra numa fase após ter passado pela anterior com sucesso

Serviço Orientado à Conexão

- Transmissor empurra objetos (bits) em uma extremidade e esses objetos são recebidos na outra extremidade
- Conexão preserva a ordem dos dados transmitidos

Serviço Sem Conexão

- Similar ao sistema postal
- Cada mensagem deve possuir o endereço do destinatário
- Controle de fluxo é mais complexo
- Cada mensagem é roteada independentemente das outras

Serviço Confiável X Não Confiável

Serviço Confiável

- Dados não são perdidos (do ponto de vista do receptor)
- Pode ser implementado através da confirmação de cada mensagem recebida
- Confirmações introduzem overhead e atrasos que podem ser tolerados ou não
- Voz digitalizada e vídeo são aplicações que não devem ter atrasos

Serviço Não Confiável

- Para algumas aplicações, os retardos introduzidos pelas confirmações são inaceitáveis
- Exemplo: tráfego de voz digital ou transmissão de uma conferência de vídeo

Exercícios

- 3. Dê um exemplo de um serviço orientado a conexão confiável. Justifique sua resposta.
- 4. Em alguns casos, quando uma conexão é estabelecida, o transmissor e o receptor conduzem uma "negociação" sobre os parâmetros a serem usados. Dê um exemplo do uso de negociação pelos protocolos de rede.
- 5. Como seria o tipo de serviço que um usuário de uma aplicação de tempo real precisaria? Justifique.

Exercícios

6. Quando um arquivo é transferido entre dois computadores, são possíveis duas estratégias de confirmação. Na primeira, o arquivo é dividido em pacotes, que são confirmados individualmente pelo receptor, mas a transferência do arquivo como um todo não é confirmada. Na segunda, os pacotes não são confirmados individualmente mas, ao chegar a seu destino, o arquivo inteiro é confirmado. Analise essas duas abordagens.

Modelos de Referência

Modelos de Referência

- São propostas concretas de arquiteturas de rede
- Duas arquiteturas de rede importantes:
 - Modelo OSI–Open Systems Interconnection da ISO
 - Não é uma arquitetura em si porque não especifica os protocolos em cada nível
 - ▶ Informa apenas o que cada camada deve fazer
 - ◆ TCP/IP

O Modelo de Referência OSI

- Trata da interconexão de sistemas abertos
- Aberto no sentido que qualquer sistema que seguir os padrões será capaz de se interconectar
- Possui sete camadas

7	Aplicação
6	Apresentação
5	Sessão
4	Transporte
3	Rede
2	Enlace de dados
1	Física

O Modelo de Referência OSI

OSI: Camada Física

- Responsável pela transmissão física de bits no canal de comunicação
- Questões:
 - ◆ Tensão para representar 1's e 0's
 - "Tempo de duração" de um bit
 - Regras para transferência de dados
 - Regras para estabelecer e terminar uma conexão
 - Padrões mecânicos, elétricos e procedimentais da parte física

OSI: Camada de Enlace

- Transformar um canal de transmissão bruto em uma linha que pareça livre de erros para a camada de rede
- O transmissor divide os dados de entrada em quadros (frames) com algumas centenas ou alguns milhares de bytes
- Redes tipo difusão devem implementar um mecanismo de controle de acesso ao meio (subcamada de controle de acesso ao meio)

OSI: Camada de Enlace

Tratamento de erros:

- Trata de quadros recebidos incorretamente, perdidos ou duplicados
- Usa quadros de confirmação (positiva e negativa) para indicar recebimento correto ou não de quadros de dados
- Alguns protocolos usam um mecanismo chamado de piggybacking para confirmação

Controle de fluxo:

 Regular o tráfego para informar ao transmissor quanto espaço o buffer do receptor tem no momento

OSI: Camada de Rede

- Responsável pela operação da sub-rede de comunicação
- Duas questões importantes desta camada:
 - Roteamento
 - Controle de congestionamento
- Outras funções:
 - Contabilidade
 - Interconexão entre redes diferentes

OSI: Camada de Transporte

- Responsável pelo transporte fim-a-fim dos dados entre origem e destino
 - Um programa da máquina de origem mantém uma conversação com um programa semelhante instalado na máquina de destino
- Oferece diferentes tipos de serviço para a camada de sessão:
 - Canal ponto-a-ponto livre de erros
 - Mensagens isoladas sem nenhuma garantia relativa à ordem de entrega
 - Difusão de mensagens para muitos destinos

OSI: Camada de Transporte

OSI: Camada de Sessão

- Permite que os usuários de diferentes máquinas estabeleçam sessões entre eles
- São um conjunto de ferramentas que fornecem uma interface às aplicações de rede
 - NETBios, TCP/IP Sockets
- Outras funções:
 - Controle de diálogo: controla quem deve transmitir em cada momento
 - Gerenciamento de tokens: impede que duas partes tentem executar a mesma operação crítica ao mesmo tempo
 - Sincronização: permite que transmissões longas continuem a partir do ponto em que estavam ao ocorrer uma falha

OSI: Camada de Apresentação

- Trata da sintaxe e semântica das informações transmitidas
 - Por exemplo, codificação dos dados
 - ▶ Uso de diferentes conjuntos de caracteres
 - Compressão
 - Criptografia
 - ▶ SSL (Secure Sockets Layer)

OSI: Camada de Aplicação

- Contém vários protocolos comumente usados por usuários
 - Por exemplo: FTP, TELNET, SMTP, POP3, IMAP, HTTP, DNS,
 ...

O Modelo de Referência TCP/IP

- Modelo de referência usado na "avó" de todas as redes de computadores geograficamente distribuídas, a ARPANET, e sua sucessora, a Internet mundial
- Surgiu como um conjunto de protocolos que deveriam ter certas características para uso militar
- Os protocolos propostos precisavam ser flexíveis para suportar diferentes aplicações
- O modelo surge "oficialmente" com o re-projeto dos protocolos TCP/IP no início da década de 80

O Modelo de Referência TCP/IP

O Departamento de Defesa dos EUA queria que as conexões permanecessem intactas enquanto as máquinas de origem e de destino estivessem funcionando, mesmo que algumas máquinas ou linhas de transmissão intermediárias deixassem de operar repentinamente

REDE DE COMUTAÇÃO DE PACOTES BASEADA EM UMA SUB-REDE DE COMUNICAÇÃO SEM CONEXÃO

O Modelo de Referência TCP/IP

TCP/IP: Camada Hospedeiro/rede

- Protocolo não definido pelo modelo TCP/IP
- Responsável por transmitir os pacotes IPs
- Protocolo varia em função do hospedeiro e rede

TCP/IP: Camada Inter-redes

- Normalmente chamada de "camada de rede"
- Baseada numa rede comutada por pacotes sem conexão
- Ponto fundamental de toda a arquitetura

TCP/IP: Camada Inter-redes

- Define o protocolo IP Internet Protocol
 - "Cola" da Internet
- Roteamento de pacotes e controle de congestionamento são as duas maiores questões
- Similar à camada de rede do modelo OSI

TCP/IP: Camada de Transporte

- Nome dado atualmente a camada acima do nível IP
- Mesmo objetivo do protocolo de transporte no modelo OSI: comunicação fim-a-fim
- Dois dos protocolos mais usados são:
 - ◆ TCP Transmission Control Protocol
 - ◆ UDP User Datagram Protocol

TCP/IP: Camada de Transporte

- Protocolo TCP
 - Protocolo orientado à conexão confiável
 - Usa byte stream
 - Normalmente fragmenta um byte stream já que o pacote
 IP tem um tamanho máximo
 - Hospedeiro destinatário faz o processo contrário
 - Faz controle de fluxo

TCP/IP: Camada de Transporte

- Protocolo UDP
 - Protocolo não orientado à conexão e não confiável
 - É usado normalmente em aplicações que somente interagem uma única vez com outra aplicação (one-shot)
 - Exemplo, request-reply no paradigma cliente-servidor

TCP/IP: Camada de Aplicação

Protocolos: http, smtp, telnet, ftp, email, etc.

Exercícios

- 7. Determine qual das camadas do modelo OSI trata de cada uma das tarefas a seguir:
 - Dividir o fluxo de bits transmitidos em quadros.
 - Definir a rota que será utilizada na sub-rede.
- 8. Um sistema tem uma hierarquia de protocolos com **n** camadas. As aplicações geram mensagens com **M** bytes de comprimento. Em cada uma das camadas, é acrescentado um cabeçalho com **h** bytes. Qual é a fração da largura de banda da rede é preenchida pelos cabeçalhos?

Comparação dos Modelos de Referência OSI e TCP/IP

- Características similares:
 - Baseados no conceito de uma pilha de protocolos
 - Semelhança na funcionalidade das camadas
 - Possuem um provedor de transporte:
 - ▶ Camadas até o nível de transporte responsáveis pelo serviço de transporte fim-a-fim independente da camada de rede
 - Camadas acima da camada de transporte são usuárias, orientadas a aplicações do serviço de transporte

OSI: Conceitos Fundamentais

- Conceitos de serviço, interface e protocolo bem definidos
- Serviços:
 - Especifica o que a camada faz, ou seja, define a semântica de cada camada
 - Não define como as entidades superiores acessam os serviços ou como a camada funciona

OSI: Conceitos Fundamentais

Interfaces:

- Especifica como as entidades superiores podem acessar os serviços, os parâmetros a serem passados e os resultados esperados
- Não define como a camada funciona

Protocolos:

- Especifica os procedimentos entre as entidades pares numa mesma camada
- O protocolo é responsável por executar o serviço de forma transparente

Modelo de Referência TCP/IP

- Não difere os conceitos de serviço, interface e protocolo
- Os protocolos TCP/IP foram propostos antes do modelo e revisados para adequar a novas situações

- OSI: Modelo foi proposto antes dos protocolos serem especificados
 - + Modelo não foi dirigido para um conjunto específico de protocolos
 - Difícil antecipar que funcionalidade cada camada devia ter
 - Exemplo: camada de enlace foi projetada somente para redes ponto-a-ponto. Mais tarde, o modelo teve que ser adaptado para redes difusão.

- TCP: Protocolos vieram antes e o modelo foi concebido para se adaptar a esses protocolos
 - + Os protocolos não tiveram problemas para se adaptar ao modelo
 - Modelo n\u00e3o se adapta a outras pilhas de protocolos
 - Não é útil para descrever redes não TCP/IP

- Número de camadas:
 - ◆ OSI (7) x TCP/IP (4)
- Camadas em comum:
 - Rede (interconexão)
 - Transporte
 - Aplicação

Serviços de rede x Serviços de transporte

Camada	OSI	TCP/IP
Rede	Sem Conexão Com Conexão	Sem Conexão
Transporte	Com Conexão	Sem Conexão Com Conexão

Crítica ao Modelo OSI e seus Protocolos

- Expectativa no final da década de 80:
 - Modelo OSI e seus protocolos iriam ser a arquitetura de rede predominante
- Expectativa não se concretizou por problemas de:
 - Momento da disponibilização dos padrões
 - Tecnologia
 - Implementações

Momento da Disponibilização dos Padrões

Teoria de padrões "Apocalipse dos Dois Elefantes" de David Clark, pesquisador do MIT:

Se o intervalo entre os dois elefantes for muito curto, a equipe de desenvolvimento dos padrões poderá se precipitar

Momento da Disponibilização dos Padrões

- O lançamento dos protocolos do padrão OSI não foi bem sucedido
 - Protocolos TCP/IP já eram muito utilizados pelo meio acadêmico quando os protocolos OSI apareceram
 - Antes da onda de investimentos de bilhões de dólares, o mercado acadêmico já era suficientemente grande

Problema da Tecnologia

- Modelo e protocolos têm falhas de projeto
- Por exemplo, problemas com as camadas:
 - Enlace e rede: possuem muitas funções o que levou a serem divididas em sub-camadas
 - Sessão: pouca utilidade na maior parte das aplicações
 - Apresentação: quase sem função
- Protocolos complexos e de difícil compreensão

Problema da Tecnologia

- Algumas funções como endereçamento, controle de fluxo e controle de erro reaparecem em várias camadas
- Não é claro onde certas funções devem se encaixar:
 - Terminal virtual: passou da camada de apresentação para aplicação
 - Segurança de dados, criptografia e gerência de rede: não houve acordo onde deveria entrar
- Ignorou serviços sem conexão apesar de algumas redes funcionarem dessa forma

Problema das Implementações

- Devido à enorme complexidade do modelo e dos protocolos, as primeiras implementações eram de qualidade ruim
- Primeiras implementações do TCP/IP eram de boa qualidade e grátis e faziam parte do UNIX de Berkeley

Crítica ao Modelo TCP/IP

- Modelo não é um guia para projetar novas redes usando novas tecnologias
- Modelo não é adequado para descrever outra pilha de protocolos

Crítica ao Modelo TCP/IP

- Camada hospedeiro-rede é na verdade uma interface entre as camadas de rede e de enlace
- Modelo não trata das camadas de enlace e física
- Alguns protocolos projetados sem nenhum princípio

Modelo de Referência Híbrido

5	Camada de Aplicação	
4	Camada de Transporte	
3	Camada de Rede	
2	Camada de Enlace	
1	Camada Física	

Exercícios

- Cite dois aspectos em que o modelo de referência
 OSI e o modelo de referência TCP/IP são iguais.
 Agora cite dois aspectos em que eles são diferentes.
- 10. Qual é a principal diferença entre o TCP e o UDP?

Internet

- O que é a Internet?
 - Não é uma rede, mas sim um vasto conjunto de redes diferentes que utilizam certos protocolos comuns e fornecem determinados serviços comuns
 - Não foi planejada
 - Não é controlada por ninguém
- Quando a Internet nasceu?

- Final da década de 1950:
 - Em 1957, a União Soviética suplantou os EUA na corrida espacial com o lançamento do Sputnik
 - Criação da ARPA (Advanced Research Projects Agency)
 como única organização de pesquisa de defesa
 - Não tinha cientistas e nem laboratórios
 - Realizava seu trabalho oferecendo concessões a universidades e empresas cujas idéias lhe pareciam promissoras

- Final da década de 1950:
 - No auge da Guerra Fria, o Departamento de Defesa (DoD) dos EUA queria uma rede de controle e comando capaz de sobreviver a uma guerra nuclear
 - Todas as comunicações militares passavam pela rede de telefonia pública, considerada vulnerável

Estrutura do sistema de telefonia

- Década 1960:
 - Paul Baran investigou o uso de comutação de pacotes para a segurança da transmissão de voz pelas redes militares
 - Baran apresentou ao DoD dos EUA um projeto altamente distribuído e tolerante a falhas
 - Propôs o uso da tecnologia digital de comutação de pacotes em todo os sistema

Sistema distribuído de comutação de pacotes proposto por Baran

- Idéias de Baran foram descartadas pela AT&T
- **1964**:
 - Donald Davies e Roger Scantlebury (National Physical Laboratory, Inglaterra) estudaram comutação por pacote
- **1967**:
 - Roberts, diretor da ARPA, apresentou um documento do que seria a ARPANET

- Sub-rede com minicomputadores chamados IMPs (processadores de mensagens de interface) conectados por linhas de transmissão de 56 Kbps
- Cada IMP seria conectado a pelo menos dois outros IMPs
- Se algumas linhas ou IMPs fossem destruídos, as mensagens seriam roteadas automaticamente para caminhos alternativos

- Cada IMP seria conectado a um host
- Um host poderia enviar mensagens de até 8.063 bits para seu IMP
- Cada IMP dividiria a mensagem em pacotes de no máximo 1.008 bits e os encaminha de forma independente ao destino

Primeira rede eletrônica de comutação de pacotes do tipo *store-and-forward*

Projeto Original da ARPANET

- Dezembro de 1968:
 - ARPA assinou um contrato para montar a sub-rede e desenvolver software para ela
- Dezembro de 1969:
 - Entrou no ar uma rede experimental com quatro nós instalados nas seguintes instituições: UCLA, Stanford Research Institute (SRI), UC Santa Barbara e University of Utah

Crescimento da ARPANET

Dezembro de 1969

Julho de 1970

Março de 1971

Crescimento da ARPANET

Setembro de 1972

- Início da década de 1970:
 - Os protocolos da ARPANET não eram adequados para a execução em redes múltiplas
- **1973**:
 - ◆ Tese de doutorado de Metcalfe propõe a rede Ethernet

- **1974**:
 - Cerf e Kahn propuseram uma arquitetura para interconexão de redes (TCP/IP)
 - Minimalismo, autonomia não se exigem mudanças internas para interconexão de redes
 - Modelo de serviço: melhor esforço
 - Roteadores sem estado
 - Controle descentralizado

Define a arquitetura da Internet de hoje

- TCP/IP é integrado ao sistema operacional UNIX de Berkeley
- Final da década de 1970:
 - ARPANET estava causando um enorme impacto nas pesquisas científicas
 - Para entrar na ARPANET, uma universidade precisava ter um contrato com o DoD dos EUA (nem todas tinham)

NSFNET

- Final da década de 1970:
 - NSF (National Science Foundation) desenvolveu a NSFNET que seria a sucessora da ARPANET aberta a todos os grupos de pesquisa universitários
 - Criou uma rede de backbone para conectar seus seis centros de supercomputadores localizados em San Diego, Boulder, Champaign, Pittsburgh, Ithaca e Princeton

Backbone da NSFNET em 1988

NSFNET

- Década de 1980:
 - NSF também financiou cerca de 20 redes regionais que foram conectadas ao backbone para os usuários de milhares de universidades, laboratórios de pesquisa, bibliotecas e museus
 - Novas redes, em particular as LANs, foram conectadas à ARPANET
 - ◆ 1982: SMTP (Correio eletrônico) é definido
 - ◆ 1983: NSFNET se conecta à ARPANET

NSFNET

- Década de 1980:
 - 1983: DNS definido para translação de nomes em endereços IP
 - ◆ 1985: FTP é definido
 - 1988: Controle de congestionamento do TCP
- **1990**:
 - Segundo backbone da NSFNET foi atualizado para 1.5
 Mbps

NSFNET

- Início da década de 1990:
 - NSFNET estava crescendo muito, o governo não podia mais continuar a financiar a rede para sempre
 - Organizações comerciais queriam participar da rede, mas eram proibidas pelo estatuto da NSF de utilizar redes mantidas com verbas da fundação

1991:

NSF retira restrições sobre o uso comercial da NSFNET

Internet

- Início dos anos 90:
 - www: hypertext, HTML, HTTP, Mosaic, Netscape
- Final dos anos 90:
 - Comercialização da www
 - Estimativa de 50 milhões de computadores na Internet e de 100 milhões de usuários
 - Enlaces de backbone operando a Gbps

Estrutura da Internet

O Que é Internet?

- Internet: "rede de redes"
- Milhões de elementos de computação interligados (hospedeiros ou sistemas finais) executando aplicações distribuídas
- Enlaces de comunicação: fibra, cobre, rádio, satélite
- Roteadores: enviam pacotes (blocos de dados)

O Que é Internet?

- Protocolos: controlam
 o envio e a recepção de
 mensagens (ex.: TCP,
 IP, HTTP, FTP, PPP)
- Internet standards:
 - RFC: Request for comments
 - IETF: Internet
 Engineering Task Force

Estrutura da Internet

- Borda da rede
 - aplicações
 - hospedeiros
- Núcleo da rede
 - roteadores
 - rede de redes
- Estrutura dos ISPs (Internet Service Providers)

Bordas da Rede

- Sistemas finais (hospedeiros)
 - Executam programas de aplicação (ex.: Web, e-mail)
 - Localizam-se nas extremidades da rede
- Modelo cliente/servidor
 - O cliente toma a iniciativa enviando pedidos que são respondidos por servidores
 - Ex.: Web client (browser)/ server; e-mail client/server
- Modelo peer-to-peer (P2P)
 - Mínimo (ou nenhum) uso de servidores dedicados
 - Ex.: Gnutella, KaZaA

Núcleo da Rede

- Malha de roteadores interconectados
- A questão fundamental: como os dados são transferidos através da rede?
 - Comutação de pacotes: dados são enviados em "blocos" discretos
 - Comutação de circuitos: usa um canal dedicado para cada conexão (ex.: rede telefônica)

- Cada fluxo de dados fim-a-fim é dividido em pacotes
 - Cada pacote tem um tamanho máximo restrito
 - Cada pacote usa toda a banda disponível ao ser transmitido
- Os recursos da rede são alocados sob demanda
 - Se adequam bem à manipulação de tráfego interativo
- Utiliza a técnica store-and-forward (armazena e reenvia)
 - Pacotes se movem um salto (hop) por vez
 - Um hospedeiro envia o pacote para o roteador mais próximo
 - O roteador recebe o pacote completo antes de encaminhá-lo
 - O roteador encaminha o pacote para o próximo roteador ao longo do caminho, até alcançar o hospedeiro destino

- Contenção de recursos:
 - A demanda agregada por recursos pode exceder a capacidade disponível
 - ◆ Congestão: filas de pacotes, espera para uso do enlace

Comutação de Circuitos

- Os recursos necessários ao longo do caminho para prover comunicação entre os sistemas finais são reservados pelo período da sessão de comunicação
 - ◆ É criado um caminho físico entre origem e destino ⇒
 CIRCUITO
 - Aloca previamente a utilização do enlace de transmissão independente da demanda
 - ◆ O remetente pode transferir dados ao destinatário a uma taxa constante garantida ⇒ não há compartilhamento

Comutação de Circuitos

- Pode gerar desperdício de tempo de enlace alocado desnecessariamente e não utilizado
- O tempo de transmissão é independente do número de enlaces

Exercício

11. Considere que um arquivo de 640.000 bits deve ser transferido do sistema final A ao sistema final B por uma rede de comutação de circuitos. Suponha que todos os enlaces da rede usem FDM de 24 compartimentos e tenham uma taxa total de 1,536 Mbps. Suponha também que um circuito leva 500 ms para ser ativado antes que A possa começar a transmitir o arquivo. Em quanto tempo o arquivo será enviado?

Exercícios

- 12. Suponha que usuários compartilhem um enlace de 1 Mbps e que cada usuário precise de 100 Kbps para transmitir, mas que transmita apenas durante 10 por cento do tempo.
 - a) Quando é utilizada comutação de circuitos, quantos usuários podem ter suporte?
 - b) Para o restante deste problema, suponha que seja utilizada a comutação de pacotes. Determine a probabilidade de um dado usuário estar transmitindo.
 - c) Suponha que haja 40 usuários. Determine a probabilidade de, a qualquer momento, n usuários transmitirem simultaneamente. (Dica: use a distribuição binomial)
 - d) Determine a probabilidade de haver 11 ou mais usuários transmitindo simultaneamente.

Distribuição Binomial:
$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- Existem duas grandes classes de redes de comutação de pacotes:
 - Redes de Datagramas: os roteadores usam endereços de destino para transmitir pacotes para seus destinos
 - Redes de Circuitos Virtuais: os roteadores usam números de circuitos virtuais para transmitir pacotes para seus destinos

Redes de Datagramas

- Os pacotes serão injetados individualmente na subrede e roteados de modo independente uns dos outros
- Serviços sem conexões

Redes de Datagramas

Redes de Circuitos Virtuais

- Será estabelecido um caminho desde o roteador de origem até o roteador de destino, antes de ser possível enviar quaisquer pacotes de dados
- Serviços orientados à conexão

Redes de Circuitos Virtuais

- Evitar a necessidade de escolher uma nova rota para cada pacote enviado
- Quando uma conexão é estabelecida, escolhe-se uma rota desde a máquina origem até a máquina de destino
- A rota é armazenada em tabelas internas dos roteadores
- A rota é usada por todo o tráfego que flui pela conexão

Redes de Circuitos Virtuais

Datagrama X Circuitos Virtuais

Questão	Rede de datagramas	Rede de circuitos virtuais
Configuração de circuitos virtuais	Desnecessária	Obrigatória
Endereçamento	Cada pacote contém os endereços de origem e de destino completos	Cada pacote contém um número de circuito virtual curto
Informações sobre o estado	Os roteadores não armazenam informações sobre o estado das conexões	Cada circuito virtual requer espaço em tabelas de roteadores por conexão
Roteamento	Cada pacote é roteado independentemente	A rota é escolhida quando o circuito virtual é estabelecido; todos os pacotes seguem essa rota

Datagrama X Circuitos Virtuais

Questão	Rede de datagramas	Rede de circuitos virtuais
Efeito de falhas no roteador	Nenhum, com exceção dos pacotes perdidos durante a falha	Todos os circuitos virtuais que tiverem passado pelo roteador que apresentou o defeito serão encerrados
Qualidade de serviço	Difícil	Fácil, se for possível alocar recursos suficientes com antecedência para cada circuito virtual
Controle de congestionamento	Difícil	Fácil, se for possível alocar recursos suficientes com antecedência para cada circuito virtual

Taxonomia da Rede

