PDF 7.050 Dot Product Component Method

In
$$R^2$$
, given that $\vec{a}=\overrightarrow{(a_1,a_2)}$ and that $\vec{b}=\overrightarrow{(b_1,b_2)}$, then $\vec{a}\cdot\vec{b}=a_1b_1+a_2b_2$

In
$$R^3$$
, given that $\vec{a}=\overline{(a_1,a_2,a_3)}$ and that $\vec{b}=\overline{(b_1,b_2,b_3)}$, then $\vec{a}\cdot\vec{b}=a_1b_1+a_2b_2+a_3b_3$

The above rule in \mathbb{R}^2 is proved in your powerpoint

Example 1

Determine the angle between the vectors $\vec{a} = \overline{(1, -3, 4)}$ and $\vec{b} = \overline{(-8, 5, 7)}$

Example 2

For what value(s) of k are the vectors (-1,3,4) and (3,k,-2) perpendicular?

Example 3

For what value(s) of m are the vectors (m, m, -3) and (m, -3, 6) perpendicular?

Example 4

For the vectors $\vec{p} = \overline{(4, m, -8)}$ and $\vec{q} = \overline{(-2, 16, n)}$, determine values of m and n that make the vectors either collinear or perpendicular.

Example 5

Determine the acute and obtuse angles between the diagonals of a box that measures 12 cm by 4 cm by 6 cm

Example 6

The vectors \vec{a} and \vec{b} are such that $\vec{a} = \overline{(-1,4,-8)}$ and $\vec{b} = \overline{(4,-3,m)}$ are such that $\theta = \cos^{-1}\left(\frac{-16}{45}\right)$ where θ is the angle between \vec{a} and \vec{b} . Solve for m.