Answer to Algebra Chapter 0 by Paolo Aluffi

Hoang Vo Ke July 31, 2023

Chapter I. Preliminaries: Set theory and categories

1.3. Categories

Exercise 1

Let C be a category. Consider a structure C^{op} with

- $Obj(C^{op}) := Obj(C);$
- for A, B objects of C^{op} (hence objects of C), $\operatorname{Hom}_{C^{op}}(A,B) := \operatorname{Hom}_{C}(B,A)$.

Show how to make this into a category (that is, define composition of morphisms in C^{op} and verify the properties listed in 3.1.

Proof. For any $f \in \text{Hom}_{C^{op}}(A, B)$ and $g \in \text{Hom}_{C^{op}}(B, C)$, we define the composition $g \circ f$ of C^{op} to be the composition fg of C. (We will denote the composition in C^{op} with " \circ " and nothing for the composition in C). With this definition, we have

$$h\circ (g\circ f)=h\circ fg=(fg)h=f(gh)=f(h\circ g)=(h\circ g)\circ f,$$

which says this composition law is associative.

For any object A of C, let the identity of $\operatorname{Hom}_{C^{op}}(A,A)$ equals the identity of $\operatorname{Hom}_C(A,A)$. So for any $f \in \operatorname{Hom}_{C^{op}}(A,B) = \operatorname{Hom}_C(B,A)$, we have $f \circ 1_A = 1_A f = f$. Similarly, we get $1_B \circ f = f1_B = f$. So C^{op} is a category.

Exercise 3

Formulate precisely what it means to say that 1_a is an identity with respect to composition in Example 3.3, and prove this assertion.

Proof. To show that 1_A is an identity, we must show that for $f \in \text{Hom}(a, b)$, we have $1_b f = f = f 1_a$. Indeed, we have $1_b f = (b, b)(a, b) = (a, b) = f$ and $f 1_a = (a, b)(a, a) = (a, b) = f$. So 1_a is an identity with respect to the composition in Example 3.3. \square

Exercise 4

Can we define a category in the style of Example 3.3 using the relation < on the set \mathbb{Z} ?

Proof. No we cannot define a category in style of Example 3.3 using the relation < because it is not reflexive. Therefore, there is no identity morphism.

Exercise 5

Explain in what sense Example 3.4 is an instance of the categories considered in Example 3.3

Proof. Because the \subseteq relation is transitive and reflexive, we can define a category out of P(S) similar to Example 3.3.

Exercise 7

Define carefully objects and morphisms in Example 3.7, and draw the diagram corresponding to composition.

Proof. Let C be a category, we will define C_A as follow

$$\mathrm{Obj}(C_A) = \{ f : f \in \mathrm{Hom}(A, B) \text{ for some } B \in \mathrm{Obj}(C) \}.$$

Let $f \in \operatorname{Hom}_{\mathbb{C}}(A, B)$, $g \in \operatorname{Hom}_{\mathbb{C}}(A, D)$, and $h \in \operatorname{Hom}_{\mathbb{C}}(A, E)$, then we will define the morphism $f \to g$ be the commutative diagram.

The identity of f would be this diagram.

Similar to Example 3.7, we can define the composition of two diagrams $f \to g$ and $g \to h$ as follow.

Because C is a Category, the previous diagram is the same as this.

And it is not hard to check that is definition satisfies all the properties of a Category. (Trust me, I have done it on paper.) \Box

4. Morphisms

Exercise 4.3

Let A, B be objects of a category C, and let $f \in \text{Hom}_{C}(A, B)$ be a morphism.

- Prove that if f has a right-inverse, then f is an epimorphism.
- Show that the converse does not hold, by giving an explicit example of a category and an epimorphism without a right-inverse.

Proof.

• Assume that $f \in \text{Hom}_C(A, B)$ has a right inverse, say f', then $f \circ f' = 1_A$. For any β and β' in C such that $\beta \circ f = \beta' \circ f$, then we would have

$$\beta = \beta \circ (f \circ f') = (\beta \circ f) \circ f' = (\beta' \circ f) \circ f' = \beta'.$$

So f is an epimorphism.

• The converse is not true however. Take the category \mathbb{Z} with the relation \leq as an example. Any morphism is an epimorphism but (3,5) doesn't have an inverse.

5. Universal properties

Exercise 5.1

Prove that a final object in a category C is initial in the opposite category C^{op} .

Proof. Let A be a final object of C, so for any $B \in C$, we have $\text{Hom}_{C^{op}}(A, B) = \text{Hom}_{C}(B, A)$ is a singleton. So A is an initial object in C^{op} .

Exercise 5.2

Prove that \varnothing is the unique initial object in Set.

Proof. Let $A \neq \emptyset$ be an initial object in Set. Let $\{x,y\} \in Set$ be an object of Set that has two elements. We can define two distinct functions in $Hom(A, \{x,y\})$, namely f(a) = x and f(a) = y for all $a \in A$. But this is impossible since A is an initial object, thus \emptyset is the unique initial object of Set.

Exercise 5.3

Prove that final objects are unique up to isomorphism.

Proof. Let A and B be two final objects of a category C. Notice that the unique element of Hom(A,A) is 1_A and the same for B. Let $f \in \text{Hom}(A,B)$ and $g \in \text{Hom}(B,A)$. Then $f \circ g \in \text{Hom}(B,B)$, which implies $f \circ g = 1_B$. Similarly we get $g \circ f = 1_A$. So A is isomorphic to B.

Exercise 5.6

Consider the category corresponding to endowing (as in Example 3.3) the set \mathbb{Z}^+ of positive integers with the divisibility relation. Thus there is exactly one morphism $d \to m$ in this category if and only if d divides m without remainder; there is no morphism between d and m otherwise. Show that this category has products and coproducts. What are their "conventional" names?

Exercise 5.8

Show that in every category C the products $A \times B$ and $B \times A$ are isomorphic if they exist.

Exercise 5.10

Push the envelope a little further still, and define products and coproducts for families (i.e., indexed sets) of objects of a category.

Do these exists in Set?

It is common to denote the product $A \times A \times \cdots \times A$ by A^n .