Dynamic Thermal Management in Modern Processors

Shervin Sharifi

PhD Candidate
CSE Department, UC San Diego

Computer Science and Engineering

Power Outlook

- V_{dd} scaling will slow down
- Power will increase constantly
- Feature sizes decrease
- Significant increase in Power densities

[B. Charlot & K. Torki, TIMA]

S. Borkar, "Thousand Core Chips: A Technology Perspective," DAC07

Temperature Induced Problems

Thermal hot spots

- Accelerates failure mechanisms
 - Exponentially dependent on temperature (Electromigration, etc.)
- Performance loss
- Higher leakage power
- Spatial variations
 - Performance mismatch, Clock skew
 - Mechanical stress
- Temporal variations
 - Thermal cycling

Meterelliyoz, et al, ITC 2005

Thermal Management

- Techniques to control the chip temperature
- Power management is not enough for thermal management
 - TM techniques are concerned with thermal hotspots and temperature variations
 - PM techniques usually concerned about the overall power consumption
- Off-chip: e.g. Cooling techniques
- On-chip : e.g. Temperature aware task scheduling
- Static : e.g. Temperature-aware floorplanning
- Dynamic : e.g. Thread migration

M. Santarini, EDN, Sep 2005

Dynamic Thermal Management

- Low-Power design techniques are not sufficient
- Goals of DTM
 - Address thermal hotspots
 - Some recent techniques also address spatial and temporal temperature variations
- Design for typical temperature instead of worst case temperature
- Achieve the highest performance under thermal constraints
- DTM techniques respond to thermal emergencies by
 - Reducing the heat generation
 - Distributing the heat generation
- DTM incurs overhead
 - Performance
 - Hardware overhead

[Coskun, et al. ASP-DAC 08]

Sequence of Events in DTM

D.Brooks, M. Martonosi, "Dynamic Thermal Management for High-Performance Microprocessors." HPCA01

Classification of DTM Techniques

- Software
 - Implemented only in software
 - Example: Temperature aware scheduling
- Hardware throttling
 - Global
 - Hardware support only for throttling the whole chip
 - Local
 - Hardware support for throttling parts of the chip
 - Examples: Clock gating
- Hybrid
 - Combinations of previous classes

Classification of DTM Techniques

- Software
- Hardware throttling
 - -Global
 - Local
- Hybrid

Temperature Aware Scheduling for a Single-threaded Processor

- OS-level scheduler for a single processor
 - Process-level control
 - Access to hardware statistics
- Reacts to the thermal emergencies detected by the temperature sensors
- Hot processes are identified based on their CPU activity and slowed down

Temperature Aware Scheduling for a Single-threaded Processor

Advantages

- No hardware overhead
- Only penalizes the hot processes, the rest run at full speed
- Fine granularity in adjusting the temperature

Disadvantages

- Limited cooling capability
- Reduces the performance for the most demanding jobs

Temperature Aware Scheduling for Simultaneously Multithreading Processors

- Assumption
 - Program's hotspot behavior is characterized
 by intensity of its accesses to int and fp register files
- Approach
 - Picks instruction from the thread that is likely to cool or less quickly heat the register files
- Hardware performance counters
 - To identify int (fp) intensive threads
 - To detect thermal danger
- To keep processor temperature below 85°C
 - 30% performance increase compared to fetch gating

J. Donald, et al., "Leveraging Simultaneous Multithreading for Adaptive Thermal Control", Workshop on Temperature-Aware Computing Systems, 2005.

Temperature Aware Scheduling for Simultaneously Multithreading Processors

Advantages

- No hardware overhead
- Doesn't slow down the whole processor

Disadvantages

- Limited cooling capability
- Works only for SMT processors
- Reduced thread fairness

J. Donald, et al., "Leveraging Simultaneous Multithreading for Adaptive Thermal Control", Workshop on Temperature-Aware Computing Systems, 2005.

ThermalHerd

- DTM for on-chip networks
- Dynamically steers network traffic to avoid hotspots
 - Distributed traffic throttling
 - Thermal correlation based traffic routing
- Distributed traffic throttling
 - Quota reduces exponentially as temperature rises

ThermalHerd

- Thermal correlation based routing
- Thermal correlation
 - The mutual thermal effect of two units
- Choose minimal path with thermal correlations to hotspot less than a threshold
- Reduced network peak temperature by 10°C
 - Throughput degradation of less than 1%
 - Latency overhead of less than 1.2%

ThermalHerd

- Advantages
 - No hardware overhead
 - Low performance degradation
- Disadvantages
 - Specific to the chips with on-chip networks
 - Computation and communication are treated independently, which is not optimal

Classification of DTM Techniques

- Response Mechanism
 - -Software
 - Hardware throttling
 - Global
 - Local
 - Hybrid

Global Clock Gating

 The clock signal to the bulk of the processor logic is stopped for a short time period

- Dynamic thermal management for Pentium4
 - Limited to a few microseconds

Jacobson et al. HPCA 2005

Global Clock Gating

- Advantages
 - High cooling capability
 - Disables the whole processor
 - Eliminates clock tree power
 - Low invocation time
- Disadvantages
 - Performance impact is high
 - Slows down all processes
 - Hardware overhead

Global Dynamic Voltage and Frequency Scaling

- DVFS for DTM
- For DTM, only two voltage steps is enough
 - Low voltage → Low frequency but less time to reduce temperature
- To keep temperature below 85°C
 - 20-30% slowdown

Global DVFS

- Advantages
 - Fast reduction of temperature
 - The processor can continue running
- Disadvantages
 - All processes are slowed down
 - Hardware overhead

Classification of DTM Techniques

- Response Mechanism
 - -Software
 - Hardware throttling
 - Global
 - Local
 - Hybrid

Fetch Gating

- Utilizes ILP to hide the performance impact
- The important decision
 - Duty cycle
- ILP helps only with mild duty cycles
- At more aggressive duty cycles, slowdown becomes proportional to duty cycle
- To keep temperature below 85°C
 - 10-20% slowdown

Fetch Gating

Advantages

- Processor is not disabled completely, available ILP compensates for the wasted cycles
- Low invocation time
- Hardware overhead is relatively low

Disadvantages

- Moderate cooling capability
- Choice of optimal duty cycle is not easy

Activity Migration

- Computations are migrated to spare units in cold areas of the chip
- Power density is reduced by distributing the heat generation
- Activity ping-ponging
 - One unit is disabled when the other one is active
- Register file
 - About 12°C Max. temperature reduction with about 2% IPC loss

Activity Ping-ponging

Heo, et al. "Reducing Power Density through Activity Migration " ISLPED 2003

A Thermal-Aware Superscalar Microprocessor

- A secondary pipeline
 - Architecturally simple
 - Ultra low power
- Response
 - Clock gates the primary pipeline
 - Secondary pipeline takes over
- To keep temperature below 85°C at least 11% improvement in energy-cpu time product compared to global DVFS

Activity Migration

- Advantages
 - Effective in reducing local hotspots
 - Processor is not disabled completely
- Disadvantages
 - Extra hardware for the redundant units
 - Longer interconnects lead to higher delays and higher power
 - Overhead of copying data to the new unit

Classification of DTM Techniques

- Response Mechanism
 - -Software
 - Hardware throttling
 - Global
 - Local
 - Hybrid

Hybrid Architectural DTM

K. Skadron, "Hybrid architectural dynamic thermal management", DATE 2004.

Hybrid Architectural DTM

- Combines
 - Local Hardware Throttling
 - Fetch gating
 - Global Hardware Throttling
 - Global DVFS
- To keep temperature below 85°C
 - 25% Reduction in DTM overhead compared to Global DVFS

Hybrid Architectural DTM

- Advantages
 - Low performance impact
 - Fast temperature reduction
 - Ability to adjust the response to the severity of thermal emergency
- Disadvantages
 - Design complexity
 - Hardware support for both fetch gating and DVFS

HybDTM

Combines

- Temperature-aware Scheduling
 - Mild thermal adjustments and preventing hotspots
- Global clock gating
 - Severe thermal emergencies
- Execution time overhead to keep temperature below 65°C
 - 10% compared to 20% in global clock gating

Kumar et al., "HybDTM: A Coordinated Hardware-Software Approach for Dynamic Thermal Management", DAC 2006.

HybDTM

- Advantages
 - Low performance impact
 - Fast temperature reduction
 - Finely adjusts the response to the severity of thermal emergency
- Disadvantages
 - Design complexity

Dynamic Temperature Aware Scheduling

- For multiple processors, there is no optimal dynamic scheduling algorithm for dynamically changing tasks [Liu'73]
 - Heuristics are required
- Temperature information is passed to scheduler at each interval
- Scheduler makes decisions based on temperature
 - Fast and simple implementation

Adaptive-Random Policy

 Goal: To balance workload, minimize & balance temperature with low scheduling complexity

- $P_{n} = 0$ Hot > 80°C
- Updates the probability of sending workload to a core based on its temperature history

- W: Evaluated periodically
 - Interval length: 1 sec
 - $-W = \beta / Av_{thr}$

$$P_{\rm n}=P_{\rm o}+W$$
 Cool < 75°C Av_{thr} : (Avg. T below T_{thr}) / T_{thr}

 $\begin{array}{ll} T_{thr} & : Threshold\ temperature \\ \beta & : Empirically\ set\ constant \end{array}$

(system dependent)

Adaptive Random

- OS level scheduler for MPSoCs
 - Takes floorplan into account
 - Addresses temperature variations
- Adaptive Random
- When scheduling is not enough, it is combined with thread migration or local DVFS
- Reduces the hotspots to ~1%
- >10X reduction in temporal variations
- Performance impact
 - With thread migration : ~3%
 - With DVFS : ~7%

Adaptive Random

- Advantages
 - Low overhead
 - Local control of temperature
 - Ability to reduce temperature variations
- Disadvantages
 - Design complexity
 - Large hardware overhead if local per-core DVFS is used

Hybrid Control-theoretic DTM for MPSoCs

- Combines
 - Thread migration
 - Balancing the heat and optimizing the performance
 - Local per-core DVFS
 - Fine-grained local adjustments
- To keep temperature below 85°C
 - 2.5X instruction throughput compared to distributed clock gating

Hybrid Control-theoretic DTM for MPSoCs

Advantages

- Low performance impact
- Distributed local control of temperature
- Formal control theory allows accurate design and provable guaranty for temperature control
- Disadvantages
 - Design complexity
 - High hardware overhead

Summary

		Performance Impact	Cooling Capability	Hardware Cost	Design Complexity		
Software		Low	Low	None	Low		
Hardware	Global Throttling	High	High	Low	Low		
	Local Throttling	Average	Average- High	Low-High	Average- High		
Hybrid		Low-Average	Average- High	Average- High	High		

Proactive Dynamic Thermal Management

Reactive vs. Proactive

- Reactive
 - Not activated until the thermal emergency
 - Typically have high performance impact
- Proactive
 - Prevent thermal emergencies
 - Part of the normal system operation

Reactive vs. Proactive Management

• Reactive 90 85 80 75 70 Time

Ayse K. Coskun

Reactive vs. Proactive Management

Reactive

Proactive

44

 e.g., DVFS, fetch-gating, workload migration,

. . .

Ayse K. Coskun

Reactive vs. Proactive Management

Reactive

 e.g., DVFS, fetch-gating, workload migration,

Proactive

- Reduce and balance temperature
 - Adjust workload,V/f setting, etc.

. . .

Ayse K. Coskun 45

Flow

Temperature Modeling and Sensing

Thermal model

- Based on the duality between heat flow and electrical phenomena
- Heat flow could be considered as a current passing through a thermal resistance, leading to a temperature difference analogous to voltage
- Thermal R and Cs are calculated based on the system characteristics

Duality between Thermal and Electrical Quantities						
Power	Current					
Temperature Difference	Voltage Difference					
(R_{th}) Thermal Resistance	(R) Electrical Resistance					
(C_{th}) Thermal Capacitance	(C) Electrical Capacitance					
$(R_{th} \times C_{th})$ Thermal RC Constant	$(R \times C)$ Electrical RC Constant					

Thermal Model

K. Skadron, et. al. ACM TACO 04, Vol. 1, No. 1

Challenges in using thermal sensors

- Limitations in sensor placement
 - Sensors may not be placed at locations of interest
 - Routing and I/O considerations
- Sensor overhead
 - Sensing circuitry
 - A/D converter
- Few sensors available
 - Silicon real estate
 - Low mean time to failure
- Sensor noise
 - Inaccuracies due to power variations, sensor degradation, etc.
- Dynamic change of hot spot locations
 - Static placement can not cover all locations

Maximum temperature differences

- Temperature differences were traditionally found by extensive simulations
- Long simulation times
- Workload dependent
- No guarantee on the maximum found temperature differences
- Under what situations does this maximum difference happen?

Contour map of temperature difference to a location of interest on die

[Sharifi, et al., TCAD'10]

Sensor placement

- Sensor overhead
- Sensor placement limitations
- Sensor placement error
 - Temperature difference between the hotspot and its corresponding sensor

Sensor placement technique

- Covering all locations of interest guaranteeing a maximum tolerable placement error
- Minimum number of sensors

Point of interest

Sensor Placement Comparison

Circular range
 [Lee. et. al. ICCD 05]
 Based on exponential dependence of temperature difference to the distance from a location of interest

	SOC1						SOC2							
Accuracy (°C)	1	2	3	4	5	6	7	1	2	3	4	5	6	7
Our technique	7	7	6	5	5	5	4	8	8	8	7	6	6	5
Circular range*	7	7	7	7	6	6	6	8	8	8	8	8	8	8

Indirect temperature sensing

- Runtime temperature information is needed
 - Few sensors available
 - Sensor noise
 - Dynamic change of hot spot locations
- Accurate temperature estimates are required at the points other than sensor locations
- Applications
 - Small number of deployed sensors due to overhead/ placement limitations
 - Operational systems with degraded/failed sensors
 - Changes in the locations of interest

Accurate Temperature Estimation

Accurate Temperature Estimation (Cont'd)

Questions?