Lecture 19: Topological Mapping

CS 344R/393R: Robotics Benjamin Kuipers

Exploration Defines Important Places and Paths

Abstract the Exploration Pattern to the Topological Map

The Topological Map

- The *topological map* is the set of places and edges linking them.
- A *place* is a decision point among edges.
 - It has a *local topology*: radial order among edges.
 - It has a *local geometry*: directions of edges.
- An edge links two places.
 - An edge has a control law for travel along it.

Scale of Space

- **Small-scale space** is within the agent's perceptual surround.
 - "visual space" or "perceptual space"
- Large-scale space has structure that must be integrated from the agent's observations gathered over time and travel.
 - the "cognitive map"

Two Approaches to Distinctive States and Places

- Hill-climb to a distinctive state
 - Makes very weak assumptions about sensors
 - Voronoi graph: points equidistant from nearby obstacles
- Localize in place neighborhood
 - Requires local metrical map of neighborhood
 - Use Voronoi graph to define local topology

What is a Place?

• In small-scale space:

- A place is a region.
- It's a neighborhood where the agent can reliably localize itself completely.
- It's bounded by *gateways*, which connect to path segments for travel to other places.

• In large-scale space:

- A place is a decision point.
- It's a graph node connected to other places, representing a 0-D location.

Topological Mapping Overview

- Build local perceptual maps of place neighborhoods, each a small-scale space.
- **Build local topology descriptions** of the complete qualitative structure of each place neighborhood.
- Build the global topological map abductively, using:
 - completeness of the local topology description,
 - pose in local topology to serve as a "view".

Local Place Neighborhood Map

- For each place neighborhood, build a small local metrical map, with its own frame of reference.
 - Use it for "virtual range sensing" when specular reflection makes sonar sensors unreliable.
- Put the origin at a central point, and store directions of outgoing edges.
 - Store the local map as an attribute of the place.

A Scrolling Metrical Map

- During travel, maintain a limited-range metrical map of immediate surroundings.
 - Keep robot pose (x,y) in the center cell.
 - Robot's orientation θ can vary in the map.
 - Robot pose is high resolution, not map cell.
- Scroll the *map* as the robot moves.
 - Shift in (x,y) only, not in orientation.
 - Shift only by integral numbers of cells, to prevent information loss.
- Cells that fall off the edge are lost.

Gateways

- A gateway is a transition between a *travel* action and a place neighborhood
 - i.e., between a trajectory-following control law and a local perceptual map.
 - Transitions can be *inbound* or *outbound*.
 - Detected from local properties of the environment and the conditions on the control law.

Local Topology Description

• The *small-scale star* is a circular order of path fragments, gateways, and control laws.

PF1+	(gw1,out) & (gw4,in)	Midline
PF2+	(gw2,out)	Midline
PF3+	(gw5,in)	DeadEnd
PF4+	(gw3,out)	Midline
PF1-	(gw4,out) & (gw1,in)	Midline
PF4-	(gw3,in)	DeadEnd
PF3-	(gw5,out)	Midline
PF2-	(gw2,in)	DeadEnd

Local Topology Description

• The *large-scale star* describes the place with distinctive states and directed paths.

ds1	Pa1,+	
ds2	Pa2, +	
ds3	Pa3,+	Endpoint
ds4	Pa4, +	
ds5	Pa1, -	
ds6	Pa2, -	Endpoint
ds7	Pa3, -	
ds8	Pa4, –	Endpoint

Turn Actions

• A Turn action may follow a trajectory through the local place neighborhood.

Places and Gateways

- The agent can localize reliably anywhere in a place neighborhood.
 - Gateways act as distinctive states
 - state = (place, gateway, orientation)
- Actions move the agent deterministically, from one state to another,.
 - Travel: from *outbound* gateway at one place neighborhood to *inbound* gateway at another
 - Turn: from *inbound* to *outbound* gateway at a place neighborhood
- Every $\langle q, Turn, q' \rangle$ at a place is known.

Does a place abstraction always exist?

- Not in truly pathological environments
 - open ocean
 - or with pathological sensors
 - video snow
- Conjecture: Yes, with sufficiently rich sensors in a sufficiently rich environment.
 - office environments
 - campus/urban indoor/outdoor environments

Build the Global Topological Map

- Define a tree of *all possible* topological maps consistent with exploration experience.
 - They are the leaves of this tree.
- For each new action+observation
 - If the map predicts the observation, OK.
 - If it contradicts the observation, prune it.
 - Otherwise, branch on maps with new edges:
 - All possible loop-closing hypotheses
 - One hypothesis of a brand-new place
 - Identify the current best map.

Building the Tree of Maps

Find the Current Best Map

- The tree is **guaranteed** to contain the true map
 - All consistent maps are created.
 - Only inconsistent ones are deleted.
- Rank the consistent maps by simplicity and likelihood.
 - Each map is a loop-closing hypothesis.
 - The true map is often simpler than the others.
- Use the current best map for planning.
 - Remember the tree.
 - The current best map could be refuted.

The Topological Map Links Local Place Maps

Bizarre Map Hypotheses Ruled Out By Topology, Planarity, & Probability

Result: Single correct topological map hypothesis

Next

- The Hybrid Spatial Semantic Hierarchy
- Building the global metrical map
 - Using the topological map as a skeleton