If you want to implement this AI into FAKS this is the code to be used. It's important that the text is formated in the same way as it was during training. That's why we have listed all the inputs the model has been trained on and in the correct order.

Inputs: A duration REF A mitr Vmax age AI grad AI PHT AI typ Andningsvariation Anomali A orta AO dimensioner Comments AO Dsc Rev Holodiast AO protes AO sinus vals AO sinus vals REF AO sinus vals BSA AO STJ AO STJ BSA AO Vmax AO Vmax Valsalva AO VTI AO VTI location A orta arcus Aorta arcus REF Aorta ascendens Aorta ascendens REF Aorta ascendens BSA Aort a_descendens Aorta_P_max Aorta_P_medel Aortaklaff_comments AV_plan_Anteriort AV_plan Infe riort AV plan Lateralt AV plan medel AV plan Septalt AVA con ekv AVA con ekv BSA Bildkval itet BMA BMA2 BMI BSA CI_Biplan CI_Biplan_kontrast CI_LVOT CO_Biplan CO_Biplan_kontrast C O_LVOT Diastoliskt_blodtryck_Doktor_1_Doktor_2 DT DT REF_E_A_E_A_REF_E_mitr_Vmax_EF_Sim ps_4CH EF_Simps_4CH__REF EF_Simps_biplan EF_Simps_biplan__REF EF_Simps_biplan_kontrast EF _teicholz exam_position examinationType Forkalkning_Aorta Forkalkning_Mitralis Forkalknin $\verb|g_Pulmonalis Forkalkning_Tricuspidalis Formak_comments Four CH_VKd fraga_transports att Fraction for the property of the p$ gestallning_1 Fragestallning_2 Fragestallning_3 Frekvens gender Height HFs_area HFs_area_ BSA HFs_area_BSA__REF HK_tryck_PAAT HK_visuellt HKd_RVOT1 HKd_RVOT1__REF Ho_kammare_comme nts HR LVOT Inledande comments IVC dim IVC dim immeasureable IVRT REF IVSd PLAX LA area 4CH LA area 4CH BSA LA volym LA volym BSA Levervener syst revers Lungven revers syst Lung vener status LV GLS LVEDd PLAX LVEDd PLAX BSA LVEDd PLAX BSA REF LVEDvol LVEDvol BSA LV EDvol BSA REF LVEF max LVEF min LVESvol LVESvol BSA LVESvol BSA REF LVM LVM REF LVMI L VMI REFBSA LVMI BSA REF LVOT dim s LVOT VMax LVOT VTI LVOT VTI AO VTI LVPWd PLAX MI gra d MI typ MI Vmax MI VTI Mitralis HR mitralis P medel Mitralisklaff comments MV PHT MV pro tes MVA PHT Ovriga fynd PA acc tid PA tryck min Perikardspatium Perikardspatium betydelse Perikardspatium bredd inferialt Perikardspatium bredd lateralt Perikardspatium bredd runt apex Perikardspatium bredd utanfor HF Perikardspatium bredd utanfor HK Perikardspatium c omments Perikardspatium LVOT Andningsvariation Perikardspatium LVOT Vmax Perikardspatium LVOT Vmin Perikardspatium Mitral E Andningsvariation Perikardspatium Mitral E Vmax Perika rdspatium_Mitral_E_Vmin Perikardspatium_subcost_utanfor_HK Perikardspatium_Tricus_E_Andni ngsvariation Perikardspatium_Tricus_E_Vmax Perikardspatium_Tricus_E_Vmin PI_grad PI_typ P $I_V_slutdiast \ PISA_ERO \ PISA_r \ PISA_v \ Pleuraspatium_vanster \ pulm_p_max \ pulm_vmax \ Pulmonalii$ sklaff_comments PVd_Vmax PVs_Vmax RAP_min Reg_Volym Rem_diagn_1 Rem_diagn_2 RIS_fragestal lning RIS_remiss_diagnos RV_4CH_RV_4CH_BSA_RV_4CH_BSA_REF_RV_EDarea RV_ESarea RV_FAC_RV_ sPrim RVOT2_Vmax RWT Rytm S_D seg antal ikryssade totalt Segmentering_1 Segmentering_10 S egmentering_11 Segmentering_12 Segmentering_13 Segmentering_14 Segmentering_15 Segmenteri ng 16 Segmentering 17 Segmentering 2 Segmentering 3 Segmentering 4 Segmentering 5 Segment ering 6 Segmentering 7 Segmentering 8 Segmentering 9 septum d mid septum d mid REF Steno s Aorta SV LVOT SV LVOT BSA swedac Systoliskt blodtryck TAPSE TDI e lat TDI Kvot E E TDI sept e TEE AI grad TEE Antikoagulantia type TEE comments TEE Flode fargdoppler TEE kompli kationer TEE Lungvener visualiserade TEE MI grad TEE PFO TEE Plack i aorta TEE spontan ko ntrast TEE Svarighetsgrad TEE TI grad TEE Va formaksora TEE Va formaksora hastighet kontr aktion TEE Va formaksora hastighet relaxtion TI grad TI P max TI P max REF TI PISA ERO T I PISA r TI PISA v TI Reg Volym TI typ TI vena contracta TI Vmax TI Vmax REF TI Vmax imm easurable TI VTI Tricuspidalisklaff comments TTE Flode fargdoppler TTE Sonovue UL Apparat Va kammare comments Vena contracta PLAX VFs VFs BSA Vikt VK volym 2D 2CH diast VK volym 2 D_2CH_diast_BSA_VK_volym_2D_2CH_diast_BSA__REF_VK_volym_2D_2CH_slagvolym_VK_volym_2D_2CH_syst_VK_volym_2D_2CH_syst_BSA_VK_volym_2D_2CH_syst_BSA__REF_VK_volym_2D_4CH_slagvolym_REF_VK_volym_2D_biplan_diast_VK_volym_2D_biplan_diast_BSA_VK_volym_DIA_VK_Volym_DIA_VK_Volym_DIA_VK_Volym_DIA_VK_Volym_DIA_VK_Volym_DIA_VK_Volym_DIA_VK_Volym_DIA_VK_Volym_DIA_VK_Volym_DIA_V m_2D_biplan_diast_BSA__REF VK_volym_2D_biplan_kontrast_diast VK_volym_2D_biplan_kontrast_ diast_BSA VK_volym_2D_biplan_kontrast_slagvolym VK_volym_2D_biplan_kontrast_syst VK_volym _2D_biplan_kontrast_syst_BSA VK_volym_2D_biplan_slagvolym VK_volym_2D_biplan_slagvolym__R EF VK_volym_2D_biplan_syst VK_volym_2D_biplan_syst_BSA VK_volym_2D_biplan_syst_BSA__REF V K_volym_3D_diast VK_volym_3D_diast_BSA VK_volym_3D_diast_BSA__REF VK_volym_3D_EF VK_volym _3D_EF__REF_VK_volym_3D_slagvolym_VK_volym_3D_slagvolym__REF_VK_volym_3D_syst_VK_volym_3D _syst_BSA VK_volym_3D_syst_BSA__REF VK_volym_tei_diast VK_volym_tei_syst VKs VKs_BSA Example: </endoftext/><s>User: Skriv en patientjornal efter en ultraljudsundersökning uti från dessa värden: ['100 - 176', 1.2, 76, 0.0, nan, nan, 'Nedsatt', 'Tricuspid', nan, nan, nan, 26.0, '27 - 39', 13.9, 24.0, 12.8, 1.8, nan, nan, nan, nan, '10,3 - 10,3', 35.0,

6 - 108\t109 - 121\t ≥ 122', nan, 0.9, nan, nan, 15.0, 0.0, nan, nan, nan, nan, nan, 'Ing a vegetationsmisstänkta förändringar.', nan, nan, nan, nan, nan, 69.0, 'ja', nan, 18.0, 1 5.0, nan, 12.0, nan, 'Ingen kompression av högersidiga hjärtrum.', nan, nan, nan, 16.0, 1 .0, 0.84, 16.0, nan, nan, nan, 1.5, nan, 3.2, nan, nan, nan, nan, 10.0, 1.6, 'Lätt ökad e kotäthet, men inga vegetationsmisstänkta förändringar.', nan, nan, 8.0, nan, nan, nan, 'V egetationer? Tecken på endokardit?', "Kvinna med tidigare myelom, stamcelltransplantation '00, amyloidos med njurpåverkan, och restriktiv kardiomyopati, LE 2007, PH. Har utvecklat staphylokock sepsis med ingångsport PICC-lines instickstället. Vid hjärt-auskultation sys t. blåsljud med PM I2 sin. Tacksam för TEE för att utesluta endokardit. Mvh Ioanna Kotort si, leg läkare Lung Allergi Klinik", 44.0, 23.52941176470588, 'Referens ej tillgänglig', nan, nan, nan, nan, nan, 0.9090909090909091, 'Regelbunden', nan, nan, nan, nan, nan, nan, nan, nan, 130.0, 15.0, nan, 16.0, 0.06, nan, nan, 'Lokal svalgbedövning med Xylocainspray . \nKommentar TEE\nEfter svalganestesin börjar pat må illa, kräks lite och harklar upp bl odstrimmigt slem. Mtp patientens allmäntillstånd, och eftersom den transthorakala undersö kningen inte ingav misstanke om någon klaffvegetation, avstås därför från transesofagal u ndersökning idag.', nan, nan, nan, nan, nan, nan, 'Ej genomförbart', nan, nan, nan, nan, 1.0, 61.0, '0 - 32,1', nan, nan, nan, nan, nan, nan, 3.9, '0 - 2,8', nan, nan, 'Inga vegetationsmisstänkta förändringar.', nan, nan, 'Systodiastolisk septumavplaning. Fu sionerad mitralis E- och A-våg.', nan, 37.0, 19.8, 72.0, nan, nan, '29 - 61', nan, nan, n an, '6 - 22', nan, 5075, nan, nan, '29 - 61', nan, nan, nan, nan, nan, nan, '50 - 75', na n, nan, '6 - 22', nan, nan, '26 - 58', nan, '52 - 72', nan, '50 - 75', nan, nan, '8 - 24' , 44.13315789473684, 18.12106382978724, 23.0, 12.0]<s>Bot:

In []:

```
#Libaries
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
```

In []:

```
#code to implement in FAKS
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from pretrained("saved place finetunedModel")
model = AutoModelForCausalLM.from pretrained("saved place finetunedModel")
model.eval()
model.to(device)
input text = f"<|endoftext|><s>User: Skriv en patientjornal efter en ultraljudsundersökni
ng utifrån dessa värden: {input_from_FAKS}<s>Bot:"
prompt = input text.strip()
token count = len(tokenizer.encode plus(prompt)["input ids"])
max token count = 2048 - 140
if token count > max token count:
   end index = len(prompt) - 7
   end_seq = prompt[end index:]
   tokens = tokenizer.encode_plus(prompt[:end_index])["input_ids"]
    tokens = tokens[:max token count]
    prompt = (tokenizer.decode(tokens) + (end seq)).strip()
generator = pipeline('text-generation', tokenizer=tokenizer, model=model, device=device)
generated = generator(prompt, max_new_tokens=140, do_sample=True, temperature=0.47, top p
=1, top k = 23, repetition penalty = 1.05)[0]["generated text"]
index_bot = generated.find("Bot")
new string = generated[index bot + 4:]
new text = new string.strip()
print(new text)
```