Programming & Data Structures Week 10 Assignment

Question 1)

Given the following sequence of numbers add to a hash table with 8 entries, and a hash function of h(x) = x % 8, show the contents of the hash using:

- a) Chaining
- b) Linear probing
- c) Quadratic probing (c1 = $\frac{1}{2}$, c2 = $\frac{1}{2}$)
- d) Double hashing (with h2(x) = 7 x % 7).

Sequence: 17, 23, 100, 50, 61, 9, 12, 15, 6, 4, 33, 27, 51

a) Chaining

17	50	27	100	61	6	23
9		51	12			15
33			4			

b) Linear Probing

15	17	50	9	100	61	12	23

c) Quadratic Probing $(c_1 = \frac{1}{2}, c_2 = \frac{1}{2})$

15	17	50	12	100	61	9	23

d) Double Hashing $(h_2(x) = 7 - (x \% 7))$.

12	17	50	15	100	61	9	23

Question 2)

Use the graph below to answer the following questions:

a) Depict the adjacency matrix for the graph above.

	Α	В	С	D	E	F	G	Н
Α	0	0	1	0	1	0	0	0
В	0	0	0	1	1	0	0	0
С	0	0	0	0	1	1	0	0
D	0	0	0	0	1	0	0	0
E	0	0	0	0	0	0	1	0
F	0	0	0	0	0	0	0	1
G	0	1	0	0	0	0	0	0
Н	0	0	0	0	0	1	0	0

b) Depict the adjacency list for the graph above.

 $\mathsf{A} \to \mathsf{E} \to \mathsf{C}$

 $\mathsf{B}\to\mathsf{E}\to\mathsf{D}$

 $\mathsf{C}\to\mathsf{E}\to\mathsf{F}$

 $\mathsf{D}\to\mathsf{E}$

 $\mathsf{E} \to \mathsf{G}$

 $\mathsf{F} \to \mathsf{H}$

 $\mathsf{G}\to\mathsf{B}$

 $\mathsf{H}\to\mathsf{F}$

c) How many connected components are there in the graph?

It does not make sense to talk about a directed graph being connected or not connected because there may be a path from node "i" to node "j" in a directed graph where there is no reciprocal path from node "j" to node "i".

- d) Run a DFS from B and state the sequence of nodes.
- B, D, E, G
- e) Run a BFS from E and state the sequence of nodes.
- E, G, B, D
- f) Are there cycles in the above graph? Identify all that you can find.

There are 3 cycles.

F, H E, G, B

E, G, B, D