

### APPLICAZIONI CRITTOGRAFICHE



- · Confidentidual
- · untegritor de dat
- entite à l'OENTIFICAZIONE origine de l'Odti (reortne e temps di crestrons dei dati)

informible rel

Chrowi simuetrick

A -> [M] KAB (

Victory Verifier

Boli è ricero di Alice (!) l'outentiana è autonoutra

na-Boli nu può purose a Victor de Alice he mudedo il menogipo infatto Auche Bole for KAB e foreble ever fergioto lui {M}KAB!

X pombule con Chravi an muetroche Chravi Publishe

| France Digetali                   | Terbo<br>Fitzur                     | 3                       |
|-----------------------------------|-------------------------------------|-------------------------|
| o værmenne + pro-<br>Feige-Frat-S | homir                               | la panword<br>nuo enere |
| Sero Kapowles<br>puro<br>seus     | olge Metho<br>dell'ide<br>e regress | rustila<br>re il        |
| Ke Stolulimen                     | to delle                            | e chum'                 |
| Condumbre                         | all Sequ                            | exo                     |

Protocolli'di navrecke Mnete Elettromay

enouimbel

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CASCATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHI                             | And the state of t | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A FLUSSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STREAM (mod?)  Lower STREAM (mod?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | motrici dxd esempno d=m=26 motrici (MXM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n maning m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nountisans                      | AFFINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SHIFT                                 | CLASSICI<br>Modern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| loz 1025,3246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2=221646.000.000<br>le n=31 2=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m² 2676 956<br>escumbo d=26=m 32 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mm=26 × 1036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 de                            | m(l(m)=312 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22 92=W                               | Keystace X >m=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NO SERVICE AND A PROPERTY OF THE PARTY OF TH | Frank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fred Commencer and the Commenc | ATTACCO<br>SULLE<br>PERSONA<br>BINGO<br>PERSONA<br>BINGO<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERSONA<br>PERS | TREQUENCE<br>FREQUENCE<br>BINGS | Futa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | torzeg<br>torzeg                      | The same of the sa |
| The state of the s | Coffin but<br>BINGO!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B/MGO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | catho catho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | arfre                           | 201/mc 201/pie Diespie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tidona Icophia                        | CIFHERTEXT PLANNEXT PLANNEXT CHOSEN CHOSEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| and part of the state of the st | En hit mut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dxd dyd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ethi.                           | Zwypie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ti E                                  | CHOSEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s | E Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAR<br>COMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 8<br>8 8                      | Clospia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H Colling                             | CHOSON)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Capanidomici plouwtext  $n=26 \quad a-2=\{0,1,2-...25\}=$ M=26 = A-Z n = 2x 13aphenext (pm)=1x12=12 SHIFT (mod 26) C= P+K (mod 36) C-K P= K={0,1.25} KEZ 26 4 aboachi Solo festo afrato esoustwo foros enter # tentotini = |x|=26 Aprile bettere se "L" è la pui frequente un C allre le curjetture e de compride a "e" L=11, e=4 K=11-4=7 è pui engre delle ricerce a ferrer brute.

### testo un chiaro noto borte une constille l'noto avi anytoude se anoto t=19 e D=3 allue K=3-19=-16=10 (mod 26). texo un chioro xello salyo P = Q = 0e c = 0 + K = K2°C=H=7 C=H=7=K texto aposto salso Solyo & = A = 0 P=C-K=-K

$$2e^{2}P=h=7 K=-7=19 \pmod{26}$$

 $\int C = \alpha P + b \pmod{26}$   $P = \bar{\alpha}'(C - b) \pmod{(\alpha, 26)} = 1$ of AFFINE a=9 b=21a = \$(26)=12 16 |b| = 26Solo testo afroto
esoursturo #chan'
= n q (n) = 26 x 12 = 312 e pui lugs! Teto u chiaco noto e due apentext basson bastono a genere serve (i wertie) P= if ; C= P9  $\begin{cases} 8a + b = 15 \pmod{26} \\ 5q + b = 16 \end{cases}$  $(8,5) \xrightarrow{\prime} (15,16)$ 70 Maerolo 39=-1=25 (mod 26) 3/26 30=25  $0=3\times25=9\times25=225=17$ dor au (mod 26) 3 = 3 mod 26 = 9 malti. 8x17+b=15 b=9 comi NO!

lua lettera dimusce la sporte della (3) B g⇔T 6a+b=19 (mod 26) V cerco rolo i  $\phi(n) =$ =12 valori fonduli Texto u chcoro scelsto  $P \equiv a u \equiv (0,1)$ not = (4,4) = b 0.a+b= F17 b=4 a+c1=c2>0=6-4 (mod 26) Terro afroito scelto C = AB = (0,1)  $P = (P_1, P_2)$ P9+6=0  $(p_2-p_1)=\bar{q}$ P2a+b=1  $Q(P_2-P_1)=1$ P= a'(1-b)= a'-a'b  $\frac{1}{ab} = \frac{a}{a-b2}$   $\frac{1}{b=1-ab2}$ b=-apg pz-a =-a b

required innoquing a 0,082 fregues di unoque sælge ma pometotura tra 26! one chave t a 0,082 a 0.015 0.028 a le cde f8 - .. WXYZ XNYAHPQ... MSTR 0.043 → e 0.127 # chron 26/= 4.186 + 0.022 0,020 esempno TRAPPE digroung Consitteri aphentert triguen 2.60 382 ni scopuno com monogrami e + H e digrammi 381! # delis linus

gunto la engrue dellach Known Hawtext VIEENERE chine aferdent P=000000 C=17 C=0000 P=-K aplentext only will frequence tora le phiane (5) , trova le chromp Keyword K=(K<sub>1</sub>,K<sub>2</sub>...k<sub>n</sub>) luga w de molice la shift du ran conorten di planitext pren a blocchi di n. Ad es K = (21,4,2,19,14,17) (u = 6) Plaintext & e +e i 5 how i two...

Rey 21 4 2 19 14 17 21 4 2 19 14 17 - 21...

Caphendext C I TXWJ C SYBHNJ... C=P+K < n > Forza Bouton
ff chioni 26h

Tal chiano noto max 2626-61036 Testo in chiano noto servous ablestoute caratterinoti per turore la chiave K = C - Pterto un chuso scelto per P= aaa--= 000--texto cyprobo seets P7 C=AAAAA. = 000--P=ード

Attacco
Solo terto cifrato
Vigenere
i polialfoletico la lettera
mus 6 e afformeren n lestere afrote e=4 oliverse. 4+21=25=2 4+4 = 8 = 1 4+2 =6 = G 4+19 = 23 = X 4+17=21 = V e 7 mis venire anche da v=21+4=E e allua le letter afratt tendour à experient au frequire expere distribute uniforment, au frequire 1/26. Trovoue la longhette delle chrave spirit it caplertext di k lettere a n'untra redi troffe e mole a redu le 11 Coivadeurell tabella displacement

Coincideme

1234 perticuto 14 14 16 14 24 12 Coivadue molso probabilité Key lenght n=5 Trovaire la chiave N=5 defermato XYZABCXFFCKMABAF 10 69 119 16 te so aposo cero le lettre la pui frequente e la "e" mi freyers es G > e 7°C allow to pui frequents S= E == 14

e cost va  $\{2, 14, 3, 4, 18\} = \{codes\}$ keyword

di Conorteri myoli Shif Bebstitution) Jefron a printario di blocchi di Caratteri Vigenere tull Differnous Jolo Hill Con funcio DIFFISIONE di texto a chiero Combiano molti caratteri cepati (la statistica pollle lettera, digrami etc, del plainitext si diffrude ne nolti caratteri del cyhertext) CONFUSIONE la chiave un à relazionata renflicents al first. avet apri carattère del apato defende da varie parti della chiare

# afrons di Hell la chieve et una materite nxn (mod m) ad es. m=26. $M = \begin{pmatrix} a & u \\ c & d \end{pmatrix} \pmod{m}$ det M = ad -lic dere encre (Z) = m cd (detM, m)=1 (1) det M = 0 (2) uplica for défault (1) uplotte med (0, m) = 11 + 1 per definiture

De Cij  $\in \mathbb{Z}_{26}$   $26 = 2 \times 12 \rightarrow 4(66) = 12$ deve ence  $\mod(\det M, 26) = 1$   $\boxed{\text{Ixm}[n \times m]} = [4, n]$   $\boxed{P \times M} = C$ 

ore Pè u vettre eigher a m aufoncton'

Except 
$$M = \begin{pmatrix} 1 & 23 \\ 4 & 56 \\ 11 & 98 \end{pmatrix}$$
 $P = (abc) = (D,1,2)$ 
 $(0,1,2) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $(abc) \begin{pmatrix} 123 \\ 456 \\ 1198 \end{pmatrix} = (0,23,22)$ 
 $($ 

wersa

M = detM

Cij) T = III (Ci) (Ci)

(Cij) T = III (Ci)

Cij

(Cij) T = III (Ci)

(Cij) T = III (Ci) cofe this ove Cij = (1) 1+j Mij minni cofodh. Mij = miruri zno i detornimoti dello northeide restour cacellaide ryrie colons;  $sllna \left( \begin{array}{ccc} 1 & 2 & 5 \\ 4 & 5 & 6 \end{array} \right) = M$   $\left( \begin{array}{ccc} 11 & 9 & 8 \end{array} \right)$  $C_{ij} = \begin{pmatrix} (5 \times 8 - 6 \times 9) & -(4 \times 8 - 6 \times 11) & +(4 \times 9 - 511) \\ -(2 \times 8 - 3 \times 9) & +(1 \times 8 - 3 \times 11) & -(1 \times 9 - 2 \times 11) \\ +(2 \times 6 - 3 \times 5) & -(1 \times 6 - 3 \times 4) & +(1 \times 5 - 2 \times 4) \end{pmatrix} =$ - ( - 14 11 -

$$Cij = \begin{pmatrix} -14 & 11 & -3 \\ 34 & -25 & 6 \\ -19 & 13 & -3 \end{pmatrix} = \begin{pmatrix} 4 \\ 17(-14) = -238 \\ 34 & -25 & 6 \\ -19 & 13 & -3 \end{pmatrix} = \begin{pmatrix} 17(-14) = -238 \\ 7 & = -4 = 22 \end{pmatrix}$$

$$= 17 \begin{pmatrix} -14 & 11 & -3 \\ 34 & -25 & 6 \\ -19 & 13 & -3 \end{pmatrix} = \begin{pmatrix} 22 & 51 \\ 6 & 17 & 24 \\ 15 & 131 \end{pmatrix}$$

$$M.M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 11 & 9 & 8 \end{pmatrix} \begin{pmatrix} 22 & 5 & 1 \\ 6 & 17 & 24 \\ 15 & 131 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= I$$

$$1 = \begin{pmatrix} 22 & 12 & 45 \\ 1822 + 12 \times 6 + 3 \times 15 \end{pmatrix} = 79 \mod 26 \qquad \text{mod 26}$$

$$1 = \begin{pmatrix} 12 & 3 \\ 1822 + 12 \times 6 + 3 \times 15 \end{pmatrix} = 79 \mod 26 \qquad \text{mod 26}$$

$$-8 = -26 + 18$$

$$-8 = -26 + 18$$

$$7 = -4 \mod 26 = 22$$

deapor 
$$(\equiv (0,23,22) \mod 26)$$
  
 $(0,23,22)$   $(0,23,22)$   $(0,12)$   
 $(0,23,22)$   $(0,12)$   
 $(0,13,24)$   $(0,12)$   
 $(0,13,1)$   $(0,12)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$   
 $(0,13)$ 

#### Cipari

Alline - Attachi

Ugener = attorch: Substitutu = autocchi

Blocchi - Hill attachi

$$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 mod 3

Det  $M = (1 \times 4 - 2 \times 3) \mod 3 = -2 \mod 3 = 1$ 

Solve enue  $\neq 0$  of 0 odere enue mcd(1, 3) = 1 qc

Per esembrio

$$M = \begin{pmatrix} 15 & 22 \\ 11 & 3 \end{pmatrix}$$
 mud 26

det M = (45-242)=-197=-15= 11 (mod 26)

mcd (11,26)=1 or

GE61=12

11=11=19 mod 26

11.19 =1 (mod 26)

Sufforiant di larborara mod 26 cm 26 lettere dell'alfahetto A-Z inglere runerate 0+25.

Allora ecco il Plaintext  $P = \frac{1 \text{ h div t}}{7,14,20,19}$  die lalvahi da 2

Suffração de il affectext na C = ZWP: L 25,22,15,11,

Allua sauro l'equature moitricale PM=C

$$(714)(ab)=(2522)$$
 (mod 26)

Si notiche le matrici P e C hour det 126 e ave  $\frac{1}{26}$  e ave  $\frac{1}{26}$  =  $\frac{1}{26}$  =  $\frac{1}{28}$  =  $\frac{1}{280}$  =  $-\frac{1}{47}$  mod  $\frac{2}{6}$  =  $-\frac{1}{7}$  mod  $\frac{2}{6}$  =  $-\frac{1}{7}$  mod  $\frac{2}{6}$  =  $\frac{1}{9}$ .

$$\det \begin{pmatrix} 7 & 14 \\ 20 & 19 \end{pmatrix} = 133 - 280 = -147 \mod 26$$
$$= -17 \mod 26 = 9$$

mcd(9, 26) = 1 or 9 = 3x3

$$\frac{\log qento}{ano} = 25 = 22 = 275 - 330 = -55 \mod 26 = 275 - 330 = -3 \mod 26 = 275 - 330 = -3 \mod 26 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 = 260 =$$

~ = mcd (23,26)=10K na éruano VC'  $= 23 \mod 26$ 

 $\det M = \det \begin{pmatrix} q & q \\ c & d \end{pmatrix} = (ad - lic)$   $\det even_{mcd} [(ad - lic), 26] = 1 \qquad (ad - lic) \neq 0$ 

allera muestrono P

$$a = 9 \pmod{26} = 3$$
  $3x9 = 27$ 

$$P' = \begin{pmatrix} 5 & 10 \\ 18 & 21 \end{pmatrix} \mod 26$$

allerou

$$M = P! C \pmod{26}$$

$$M = {5 \ 10 \choose 18 \ 21} {25 \ 22 \choose 15 \ 12} = {15 \ 12 \choose 11 \ 3}$$

Trovata,

Hell attorcco chosen plaintext Scelgo P e ottergo C Scelyo & an 9 = 010 --blocchi a a a - - - - a = 000 - - - . 1 lughi n befre PM=C  $\begin{pmatrix}
1 & 00 & -0 & 0 \\
0 & 10 & -0 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix} = \begin{pmatrix}
M
\end{pmatrix}$ mi anna drettout

## Chosen ciplentext



scelyo Ce ettenyo P

Salgo Came ho fotto par Pe focas

 $cM^{-1}=P$ 

$$C = I$$

I.M = P

mi ouroj dresteruto

course enve propagature (2 Vigenere & Inferne & Cufusiu Sulstitutur HULSi re ni couluir un conteteu di P nolti conorthi di C conlucus e Vicevieno la cheave k un l'relation de remplicents con il c appentent. opini consittère di C difende de nolte portromi delle chrave

testo un charo sclett 2x2 mod 76

qual'el M?

$$M = \begin{pmatrix} a & a \\ c & d \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} a & d \\ c & d \end{pmatrix} = \begin{pmatrix} a, h \end{pmatrix}$$

$$\begin{pmatrix} a & d \\ c & d \end{pmatrix} = \begin{pmatrix} a, h \end{pmatrix}$$

$$\begin{pmatrix} a & d \\ c & d \end{pmatrix}$$

$$\begin{pmatrix} a & d \\ c & d \end{pmatrix} = \begin{pmatrix} a & h \\ c & d \end{pmatrix}$$

$$\begin{pmatrix} a & d \\ c & d \end{pmatrix} = \begin{pmatrix} a & h \\ c & d \end{pmatrix}$$

$$f(1,-1)(7 2) = (7-c), (-2,-d) = (7+c), (-2,-d) = (7+c),$$

mod 26

afertext ELNI (M)thell ex2

plaintext dont

(a) two M.

An 
$$x \in E = ELN(t)$$

Come and  $x \in M$ ?

dont =  $(3,14)$  (13,19)

ELNI =  $(4,11)$  (13,19)

$$(3,14) M = (4,11) (13,19)$$

$$(13,19) M = (10,13,19)$$
(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

(13,19)

E Ser with (1 2) april 4 mod 76 de production 1 trusse due plantext lo steno apphetext=  $\frac{\text{det M mod } 26 = 24 + 1}{\text{mod}(24,26) = 2}$ P = (x, y) $C = (x+3y,2x+4y) \mod 26$ a rono nolti (x,y) che producuo lo. Heno testo ahoto truviuo i planitext che producio afertext Old Supo (0,\*) x=-3y mod 26 hanta trovore san duery tali che produceros la Acont Valire di -24  $2(-3y)+4y=-2y \pmod{26}$  $-2y = -8 \mod 76 = 18$ es y=4 ey=17 -2y = -34 ma 26 = 18 -8 mod 26 P1=(4,18), \$(17,18).





aparodi Hell M = nxn they rize? quant chan devere? m=76 20 2X2 # Chrow = 157,248 [M=2] m K=(a, lyc,d) mod 26  $k = (a_1 l u_1 c_1 a_1) mod cos$   $26^4 = 456.976$  100%Ma de il vincolo (a h) = (ad-bc)=1e mol ged (ord-bc), 26)=1 26 = 2×13 FACCIAMO UN ESEMPIO m=4(a 4) mod 4  $\mathbb{Z}_{1} = \{0,1,2,3\}$ quante chair? 4 = 256 # teorico = ma deve ence med (al-cd), 4 = 1 4 et pari i stoi comini sono 1 e 3 allra (alu-cd) deve ensue DISPARI (#0)

 $\mathbb{Z}_{4}\times\mathbb{Z}_{4}$ prevolutions

X = ad

y = bc  $\mathbb{Z}_4 \times \mathbb{Z}_4$ mascur x e y hour 16 coulement Rudoche (P=Pari) (D=dispri) PXP=P, PXD=DXP=P, DXD=Drelo il prodotto tra disprii e' disprii allera sulle 16 resultano (0) (8) 2 ERO 2x0 3x6 2x2=4=60 (mod4) (2) (4) PARI IXZ=Z; ZXI=Z; ZX3=6=23xZ=6=2 (mod4) (1,1,3,3) (4) DISPARI |x|=1; |x3=3; 3xl=3 3x3=9=1 (mod 4) Solo 4 su 16 suo disfasi. Convolero nov (1) X-Y=ad-lic=D.

disposi

(0103) Ri ardo che P±P=P, P±D=D±P=D; D±D=P mente étalhor à Zens oppuse paris

tusse le culturonne mo ro x e y di ai ai avenu la 4 disperi ette m 16 du pri avole zero du pri avole zero

Contingui =  $(4 \times 4) + (4 \times 12) + (12 \times 4) + (12 \times 12) = 256$ conflorai =  $(4 \times 4) + (4 \times 12) + (12 \times 4) + (12 \times 12) = 256$ di ani quelle despan's mor shori volube  $(4 \times 12) + (12 \times 4) = 96$ D-P P-D

Per ani 96 = 37,5% compressive Valiale = 256 allo sportino Aosali obelle church

Si onemi che m lumono  $\ell$   $\lfloor \log_2(96)\rfloor + 1 = 7 bit$ log\_ (256) = 8 bit

In ypene "livene" della chiave equalect ho aupreno di un luit

Ecco il numero di chiavi nel cifrario di Hill 2x2

|             | Modu | lo Numero chiavi                                                                               |
|-------------|------|------------------------------------------------------------------------------------------------|
|             | 1    | 0                                                                                              |
|             | 2    | 6                                                                                              |
|             | 3    | 48                                                                                             |
|             | 4    | 96 $480$ $288$ $2016$ $1536$ $3888$ $2880$ $13200$ $4608$ $26208$ $12096$ $23040$ $M=4$ $M=32$ |
| <del></del> | 5    | 30                                                                                             |
|             | 6    | 288                                                                                            |
|             | 7    | $2016 \qquad \qquad 201$                                                                       |
|             | 8    | 1536 /M - 0                                                                                    |
|             | 9    | 3888                                                                                           |
|             | 10   | 2880 $M = 16$ $2.1$                                                                            |
|             | 11   | 13200                                                                                          |
|             | 12   | 4608                                                                                           |
|             | 13   | 26208 $M = 32$                                                                                 |
|             | 14   | 12096                                                                                          |
|             | 15   | 23040                                                                                          |
|             | 16   | 24576                                                                                          |
|             | 17   | 78336                                                                                          |
|             | 18   | 23328                                                                                          |
|             | 19   | 123120                                                                                         |
|             | 20   | 46080                                                                                          |
|             | 21   | 96768                                                                                          |
|             | 22   | 79200                                                                                          |
|             | 23   | 267168                                                                                         |
|             | 24   | 73728                                                                                          |
|             | 25   | 300000                                                                                         |
|             | 26   | 157248                                                                                         |
|             | 27   | 314928                                                                                         |
|             | 28   | 193536                                                                                         |
|             | 29   | 682080                                                                                         |
|             | 30   | 138240                                                                                         |
|             | 31   | 892800                                                                                         |

ruche

nel cono n=2 m=26 (t)# Mori Valuele = 157.248 = 34.7% # chion fembli 456, 976  $|\log(456,976)| + 1 = 18$  but  $|\log(456,976)| = 19$  but  $|\log(456,976)| = 19$  $[2] = \frac{19}{2} = \frac{19}{2} = \frac{5,659}{2} = \frac{5,659}{2} = \frac{18,8}{2}$ Crupienue di un lut  $g_2 = \frac{\log_{10}(157.248)}{\log_{10} 2} = \frac{5,659}{0,301} = \frac{17,2}{2}$ vel cono m=26=2X13 mcd (ad-hc), 26]=1 quindi il det 11 deve ence diverso de 2010, dispari (non multiple obi 2), e diverso toba 13. In 2/26 cimo uno ZERO 13 DISPARI in 24 6 mo 12 dei 13 despri uitatti (9(26)=12 tutti tume il 13. ! !/3/5/7/9/11/5/17/19,2/33\*



Efficiendes les Almo procedements per transce ad-lic= DISPARI Si obtilue

pe x=ed e y=bc 26x26=676.

P. P=P P. D=DP=P D. D=D Sous ausjeni 507 le altre mo

aller x tutti i Volisponi finero volisli Jarelille

(169x 507)+ (507x 169)

= 2 x 85683= 171.366

dai 157, 268 deversi da 13.

1 mil 3 mis grindi 14.098 ni 171.366 en ce l'8,27% un lintono dalla dist ulio kune "unifue" 1 = 7,7% o auche mi mis un po'ali pui di 13.182.

 $\frac{\text{uno di full}}{\text{mxn}} = \frac{25}{32\times32} = \frac{1024}{200}$ apris di Hell coefficents delle montre M olet M=1 (mod m) Sælte di m=256=28 es. in 6F(28) gcd(detm, 28)=1log 10= 3,322 (detM = dispari) Quante chavi? # chuari puriluli =  $(256)^{1024}$   $= 2 |11 \times 10$   $= 2466 \times log_2 | 0$  = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |1024 = 2 |durana a B.197 bit = 2 8.192 # chiart volide det N = nunro desperi E = {0,-255} 32X32 177 desperin

127 dapain 256

se forse apperi det M conferente distribili allera le quari valude rarelilero  $\approx 2^{8/92} = 2^{8/191}$ Probabilité, mo infrante distribit a mo pui ZERI e portonie distori 8000 bit is sofe? (assacco del testo u chiaro noto!)

Corre n' cutrosto? (Vedrouro )!!) (Vedrous ) ! ] }  $n = 16 \times 16 = 256$ Echiave di 1000 bit? ? [det M=disfori]

| STREAM CIPHERS-OTP&LFSR                        |
|------------------------------------------------|
| One-Time Pad                                   |
| GILBERT VERNAM & JOSEPH MAUBORGNE 1918         |
| menogger M  M = b, b, t                        |
| Charle H  K =b, bit                            |
| $\sim$ $\sim$ $\sim$ $\sim$                    |
| C= M + K                                       |
| M= COK                                         |
| Metodo di afratura perfecta se<br>(1) b>>0 b>0 |
| (2) 10 salva in moon and                       |
| (3) e veue unoita une sola volta               |
| É inhattuble per attacchi ciphertext only.     |
| 1) Nel caro di chosen flatutere, o             |
| 10 il testo è pui coros ou o                   |
| 12 il +4100 K/ K-K'? troviano la chiava K!     |
| 1 b/cb b um reffuence                          |
| Me 10 sodo dollo chiare K fruo a b bit         |
| moltre re trovo la chiave, questa viene        |



In C'allerera antrone rand() che genere rumeri pseudocomoli te de 65,535.

Un generature l'orgrueuxiale lineare produce i numeri X,, Xz -.. one

 $X \equiv q \times m + b \pmod{m}$   $1 \leq m \leq \infty$  EME

XO e Il SEME

mentre a, le e m somo parametris
Von rondl), m=216=64.536 0 4×n664.535, e=X; le=X2
Que Ai flueration somo insicuri nel semo
che osenvando la requenza si può presedere
la requenza dei but successi n' cui alba
probealulità.

Due modi per creare int nou predicibuli.

Finnanni one-way "uniduezionali"

y = f(x) early to compute

x = f(y) infatbolille computationally computationally in fearible

enerdo f[f(\*)] = .

Prendramo un SEME s a caso j=0  $X_0 = f(3)$   $X_j' = f(3+j) / j = j_2, 3...$  0-PARIAbje'il but meno rifurfication di X; allra bo, b1, b2, .... è una sequeura pseudocasuall di lut. f = DES; SHA; BLUM-BLUM-SHUB (BBS) generation dis generative dei residui quadratici Si generous due primi grandi pe 9  $p \equiv 9 \equiv 3 \pmod{4}$ Si poue M=p.9 e n'explie un utero a cono  $X \perp n$  m(d(x,n)=1SEME  $x_0 = x^2 \pmod{n}$  $X_j \equiv X_{j-1}^2 \pmod{m}$ bj= è il lut meno riquifications

Lenear Feedback Shift Register. LFSR X1=0, X=1, X3=0, X4=0, X5=0 vetture { 0,1,0,0,0} (vettreuti della <u>viconenta lineare</u> di lunghesta ugliste a m (vitero>0) [n maice conente]  $X = \frac{6}{n} \times \frac{4}{m+1} \times \frac{4}{m+1} \times \frac{1}{m+m-1} \times \frac{1}{m+1} \times \frac{1}{m+1$  $e_5$  m=5 $\chi_{m+5} \equiv \chi_m + \chi_{m+2} \pmod{2}$   $\chi_{m+5} \equiv \chi_{m+2} + \chi_{m+2} \pmod{2}$   $\chi_{m+5} \equiv \chi_{m+2} + \chi_{m+2} \pmod{2}$   $\chi_{m+5} \equiv \chi_{m+2} + \chi_{m+2} +$ la reconerte è fenoble ce di fenodo di ove with  $2^{-1} = d = penodo 2^{5-1=31}$  penodo altro escepo ruerrevza.

althoeretho  $x = x + x + x \pmod{2}$  m = 31 m = 31



| Sufformans di conscue il reguento di 12 bet iniziale                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 011010111100                                                                                                                                                                      |
| della sequenca 011010 111/100 010 011 010 111/-                                                                                                                                   |
| di ferrodo 15 generata da una nanenta linearo.                                                                                                                                    |
| lone n' determinano i coefficienti?                                                                                                                                               |
| Nou consumo la lungherso m. Considereno au m=2                                                                                                                                    |
| (m=1 è una requeura contourte)                                                                                                                                                    |
| $X = C_0 X_m + C_1 X_{m+1} \qquad m=2$                                                                                                                                            |
| Con vertue $X_1 = 0$ ; $X_2 = 1$ ( $n=1$ ; $n=2$ )<br>morable $(X_1 = 0)$ ; $X_2 = 1$ ( $n=1$ ; $n=2$ )                                                                           |
| e unamo i volori noti $\begin{cases} X_3 = l_0 \times_1 + l_0 \times_2 = 1 \end{cases}$ (mod?)  **Worn plantest $\begin{cases} X_4 = l_0 \times_2 + l_0 \times_3 = 0 \end{cases}$ |
| otteniano le equarin                                                                                                                                                              |
| $= Co \cdot O + C_{1}$                                                                                                                                                            |
| $0 \equiv Co \cdot 0 + C_1 \cdot 1$ $0 \equiv Co \cdot 1 + C_1 \cdot 1$ (mod 2)                                                                                                   |
| $ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} $                                                     |
| 1 = 1 e C = 1 ( WC ) = 1)                                                                                                                                                         |
| 101 Cu X = X + X x 1 1 max 1000 Com                                                                                                                                               |
| $\times 6 = 0 \neq \times 4 + \times 5 = 0 + 1$                                                                                                                                   |
| Proviano pundi m=3.                                                                                                                                                               |

begranne notrade per m=3 elvertes  $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 1 \\ 6 \end{pmatrix} \pmod{2}$ il detM=0 mod ?. prendrama allera m=4  $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \zeta_{0} & \zeta_{1} & \zeta_{2} & \zeta_{2} \\ \zeta_{2} & \zeta_{3} & \zeta_{3} & \zeta_{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$  $C_0 = 1$ ;  $C_1 = 1$ che à usolvalule e usuelter G=01C3=0  $X_{M+4} \equiv X_{M} + X_{M+1} \pmod{2}$ che à la repressa anette. tra il ferrodo unella esathment 241=15=d u quanto il polinomio f(x)=x+x+1 in Z[x]

multer midualule e primetero m

Z[x](mod x4+x+1).



u genne  $X = G X_{n} + C_{1} X_{n+1} + C_{2} X_{n+1} + C_{3} X_{n+1} + C_{4} X_{n+1} + C_{4} X_{n+1} + C_{5} X_{n+1}$ (mod 2)  $C_i \in \mathbb{Z}_2$ 0 5 1 5 m-1 2-1=d lughing pelle richers Poliumo f(X)= X+ cm-1 x-1... +co e visidualité mod 2 vallar mutto: [d = 21/2]

remodo andermi de 1 2mm, e avé 2<sup>m</sup>, e multiple di d (2<sup>m</sup>)=kd Primidi moosenne R M, - b missione Mar de 2-1 = p privo 231 = 2 × 109 but

il fercodo de marmos d=2-1=dmax

Veduano!



$$T(x) = X + C X + C X + \cdots + C O$$

e midualule modulo 2

$$\mathbb{Z}_{2}[x]$$
 (mod  $\mathbb{Z}(x)$ ) e'il Compo  $\mathbb{GF}(2^{m})$ 

tutti a foliumi vous generaturi se 2-1 e mus un 6F(2m): X and escupo

d = 2<sup>m</sup>/e'il persodo della

$$\chi \equiv 1 \pmod{\mathcal{X}(x)}$$

In generale

Mugherede | 
$$X \cdot X = X^{m} = G + GX + GX^{2} + \cdots$$

$$\begin{bmatrix}
M_{\chi} = \\
10..00 \\
0.1..00
\end{bmatrix}$$

$$\begin{bmatrix}
M_{\chi} = \\
0 \\
0 \\
0 \\
0
\end{bmatrix}$$

$$M_{\chi} = I$$

(OR/S) Suffornianno de conosciono

 $\times_{m1} \times_{m+1} \times_{m+m-1}$ 

allno calcolioner

 $\left(X_{m}-X_{m+m-1}\right)M_{\chi}=\left(X_{m+1},X_{m+2},X_{m+2},X_{m-1,m+m-1}\right)$ 

= (×m+1, ×m+2) - , ×m+m)

per cui la moldiplicareure pres Mx for scourse gli mdeci di 1.

Se si mologlisse a dessen per MX si formano

server ger molici di j

Se  $M_X = I$  si torna al vettre involet: ("Xm)

Ma per Lagrange si he de  $M_X = I$  per

an sofframo che

 $X_1 \equiv X_{2m}$ ;  $X_2 = X_{2m}$ 

Loisequeura sinfett con ferrodo d= K ustero fontwo più piccolo fer cui  $x = 1 \pmod{\mathbb{Z}(X)}$  e  $K \mid 2^m \mid$ , eneudo x radice printatura di  $GF(2^m)$ 

per escupro m=B SE(28) (11) ruidealule  $f(x) = x^3 + x + 1$   $2^{3} = 7 = 7$ ruidealule  $f(x) = x^m + C_m +$ 231=7=1  $\begin{cases} C_{m-1}/C_{m-2}/\cdots C_{2}/C_{1}/C_{0} \end{cases}$   $f(x) = \begin{cases} 0, 1, 13 \end{cases}$  m-1=2Con numero e 6=1 9=1 X = Co X + C X + C X 1+ 2 X 1+2 4=0 il penodo della sepuesse d' d=23-1=7 bit  $\begin{array}{c} \times & = \times \\ \times & \times$ Mitz Mill-) M-> C VI={X/XX legum LFSR a 3 bit

a scurito - scrulle

$$2^{3}$$
 |  $2^{+1} = p$  ( $p$ )

$$2^{3/1} \Rightarrow 21147.483.647$$

mino nunero di Morsenne

$$\phi(2^{31}) = 2^{31}2 = 2.147.483.646$$

No unduallie minituri
$$\frac{\Phi(2^{3}-1)}{31} = \frac{2^{3}-2}{31} = 69,273,666$$

M=31

31 bit

$$f(x) = x^{3/4}x^{2/4} = \begin{cases} 000 & 601\\ 000 & 101\\ 3/6 & 101 \end{cases}$$

$$X = X + X$$
 $M+31$ 
 $M+2$ 



per craccone mo Scrowler m=31 bestomes 62=,2m Known Planetext

MP3 MP4

les signire: ma riconeisa lineare di. (3) drugheren serviro 2m bit Int: X1/X2 --- X2m se effectiv il calibro  $\begin{pmatrix} x_1 & x_2 & \dots & x_m \\ x_2 & x_3 & \dots & x_{m+1} \\ \vdots & \vdots & \vdots \\ x_m & x_{m+1} & \dots & x_{2m-1} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{m-1} \end{pmatrix} \begin{pmatrix} x_{m+1} \\ x_{2m} \end{pmatrix}$ la matrice à mod?) se un c'é aluna numeura di hughena ruferure a m ch à roddisfacta don  $X_1, X_2, X_2 \dots X_{2m-1}$ Teneny Sua X1/X2/X3-- la sequenza di but produtte da ma reconlusa li reassemod? per ogni n > 1, 20 Mm. Der Ner buybeste

Per ogni n > 1, 20 Mm. Der Ner buybeste

M (X1 × 2 ··· × m)

M (X2 × 3 ··· × m+1)

M (X2 × 3 ··· × m+1)

Allrer ( cot(MN) = 1 (mod 2 )

Allrer ( Mm) = 0 m> N

Suffernance di consure e primi 100 bet della chare generale da ma ramera Oneone di lughera magnita m. Per m=2,3,4... 2i cost rus con la montrule M=(mxni) e si calcoli il dotorni uniti, Se m consulti conscrition divolet M=0 (mal?)
trovo Walvi conscrition divolet Mm=0 (mal?)
stop. L'altrus m' che de det Mm#= 1 (mos) e probabliste la hugheste delle sequerte oron n'afflux e equature (1) an Mmix for colulor  $\begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{m+1} \end{pmatrix} = M_{m+1} \begin{pmatrix} x_{m+1} \\ x_{m+2} \\ \vdots \\ x_{m} \end{pmatrix}$ Colidati i collinanti si ventica se fenerous a prin 100 bet. Se um d' venfreato, avorne provone in valui pri elevori di ma

Escupio 
$$T(x) = x^3 + x + 1$$
 unidualul u  $Z(x)$   $m=3$   $2^2-1=7=0$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualul u  $Z(x)$   $T(x) = x^3 + x + 1$  unidualu

$$2(8) = x^{3} + (0)x^{2} + 1 \cdot x + 1$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 0$$

$$C_{1} = 1$$

$$C_{3} = 1$$

$$C_{4} = 1$$

$$C_{5} = 1$$

$$C_{7} = 1$$

$$C_{7} = 1$$

Sequences 
$$X_1 = 1$$
;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$   
 $X_1 = 1$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_3 = 0$ ;  $X_1 = 0$ ;  $X_2 = 0$ ;  $X_2 = 0$ ;  $X_3 = 0$ ;  $X_3 = 0$ ;

$$M_3 = \begin{pmatrix} x_1 x_2 x_3 \\ x_2 x_3 x_4 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} x_4 \\ x_5 \\ x_6 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 6 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

La repressa generale der una remense li mane di lunghena m=3 comincia un

001110

trovone i regueuti 4 elementi delle sequenta

Sawions Cequerture

$$\begin{array}{c|c}
\hline
\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2
\end{pmatrix}
=
\begin{pmatrix}
1 \\
6
\end{pmatrix}
\begin{pmatrix}
mod & 7
\end{pmatrix}$$

don cui  $c_0=1$ ;  $c_1=0$  e  $c_2=1$  pranila a consensa è  $k_{n+3}=k_n+k_{n+2}$  (mod 2)

1 successivi termini sono

1001

Si connoleri la sequenza un vettre muzuale (V)  $K_1 = 1$ ;  $K_2 = 0$ ;  $K_3 = 1$  defunda da (m=3)nombre emine:  $K_{m+3} = K_m + K_{m+1} + K_{m+2}$ . (mod

Queston republica pur enere feccusta da une di lugherra m=2. Qualle

Signewron (1) con vettue nuverable (V) &

10101010-

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} G_0 \\ G_1 \end{pmatrix} =$$

les ouvione all attorcto al LFSR

n' ponous cisare le ricineure

non linearie, del 41/20

M+3 m+2 m+ xm+,

Molto pui dettiali de attaccore.

Onewoodule Modo di fundamento

Cipper Feedback Mode CFB

2 mile a OTP e LFSR

V TEK P1 LK P2

VCI VCI Sm-1 Cm

u pratica la chiare K, la lungherra m e il vettre initiale IV contituisais la chiarre da uyare in XOR con il testo. Se m = 164 e 19; 1=64 bit e |IV|=64 bit. Un testo di 212 4096 bit e cifrato XOR con uno "chiare" bruga uguale prodotte da K wata da DES' operante mi bit di testo fino al 4032-enno bit e sul vettre IV.

CFB puis encre unato per rivelage euri ditronnume.



## block ahrens iterated-ciphers

SUBSTITUTION- PERMUTATION NETWORK SPN

P, C rettori livan di lughesta em lm-block length del ceprono a blocking

5-box substitution hox e la femidovaire

TTS: {0,13e} > {0,13e

P-box permitotion live

e la possessone TTP 1 (1, long > {1, --, long

degli & m lut all blocco

5- inteturie pouvole buricé es l=4

-> a, a 2 a 3 a 4 > b, b 2 b 3 b 4 <

a but myoro b-lut uscita P'-prouda i lut ingoli  $\ell = m = 4$ 

16 bit

P2Plaintext=X stringa leivarion lempa b-bet onsuniono de 6= m.l ove l = limphesse en lut de blocchi di sossti tutura b=l·m = lughersa u lut dei belocchi di permutatarre ploulutient × m=43678361121316156 XOR etruston luone eugo b=16 SBOX SBOX SBOX







Figure 1. Basic Substitution-Permutation Network (SPN) Cipher



- DES 1917 • SIMPUFIED DES
- CRITTOANALISI DIFFERENZIALE X 3 ROUND
- DES et a glance
- · MODES OF OPERATION ECB-CBC-CFB-OFB-CTR
- · MEET-IN-THE MIDDLE ATTACKS





relle deshotiver

DES: M=16

for deceptive la marchine el la stone alle apratura hasta wrone de chiarri oli vond in ordine unlesso. Si noti che il appertext el ma pomutazine oli (kn, Ln) e non (Ln, kn), In deafratura (kn, Ln) gueros (Ro, Lo) che alla fue meditil deferandoti dano il planetext provo (Lolo) la functione di Fertel f(Ri-1) ki) d la requett E(Ri-1) fbar +32 permotortu f(Ri-19 Ki colour night (0-15) (0+3) £6 bit 1213/14 15 \$ 4 BIT `(o÷15) doi 1/1100[1 ruput Colony 12 1/1000 111000 7 0111

EERCIES Mothere che se DES cafra cui la chiarle to il planiment P in C, allemen Con Fr si cafra F m C. Solutione I et la stringa di tutti "1". Noto che E(Ri-1)= E(Ri-1)= E(Ri-1) + I, Percui E(Ri) OF Ti = E(Ri) OF I OF KIOLE = E(Ri-1) Of ti con che l'argreno orgli S-box non combina e con come l'ascata nu combina. Ma  $L_{i-1} = L_{i-1} \oplus I$ per uni la fonte destror unesta Li-1 & f(R-1, tri) = R; DI=R; Mentre la mora parte sineste è la truga confluentes. L. Poiché d'vero arguni round el vero per DES. I - tutti" 1" 0 - tutti "0"

 $P \oplus I = \overline{P} \rightarrow P \oplus \overline{P} = I$   $P \oplus 0 = P \rightarrow P \oplus P = 0$ 

Allegation of the only





Ki i ottenta usondo 8 bit di Kinamaando K=9BIT un e'-cemio bet e = 0/00/1001 Ki) 1 0. 4= 01100101

re Ri-1 = 100110 K; = 01100101 E(100110) + 4= 10101010 + 01100101= f(RC1Ki) = 000100 es. Li-1 Ri-1 = 011100100110 Ki= 01100101 f(Ri-1,Ki)=000100 011100 Li-1 Ri = 011000 -> Li = Ri-1 Li Pi = 100110011000 DIFFERENTIAL CRYPTO ANALYSIS BIHAM-SHAMIK 1990 ATTACCO CHOSEN PLAINTEXT @ coloolo delle deferenza XOR our ciphertext for scelli plonintext partron de [L, R] = reduitert MERIPRESE 3 COUND per anure a 14 R4 = constratestant

l'offocco à mo excudre a n>320 mol le tecnicle di anolisi differentiale mo molso pui efficues di quelle de ferra enusa fue a un azro voline di n. Per le xalto di DES suffuse che n=15 nor la royla

connlemba contlemba otterchi
cuttruoleni fenza
dittereviole l' Bruto for DES riscelse 20 mfotti (6 zomel. L'affunio DES a me futuro bueva (= f(P) fulue busare e pur veloce delle ricira esoustifa CRITTOANAUSI LINEARE recharde 243 coppie PEXC per vderdure le chroine attacco Known Plaintext 2 cospie known P&C

Double DES (= Ex(Ex(2))  $P_1 = D_{K_1}(D_{K_2}(C))$ N.B. relealfine du apabule un concoba <= aP+b (modn) april alymora una elpotena un chiave c= Pe (mod n) Affine a=ayaz) b= ab+bs {aeb RSA: E= E1. E2 Sestmented equivolut In DES no ma la siculta e la Hena di quella di una solor a partira -Attacco Meet-in-The-Middle Basta ma coffia Known Plaintext > Conhectext di biror brutor ne ma sola chrave-& mule all'attacco del complemeno, il nunero de tentaduri esouvoteri è 22 se n è la lungheste un lut delle due chroni KI eKZ: un DES 1/2 but e moi 2° tentativi une vell'autacco a ma chance DES di S6 bet. Si fa ma doffue lista  $E(P_1)$   $E(C_1)$   $E(C_1)$  Ee n'autroller re es stono una o mi uguaghoutre per ciq For  $K_1 = K_1^*$  (1)  $E_{K_1^*}(P_1) = D_1(C_1)$  the modulation of the  $K_2 = K_2^*$  (1)  $E_{K_1^*}(P_1) = D_1(C_1)$  the modulation of the continuous (1)  $E_{K_1^*}(P_1) = D_1(C_1)$ 

l'attacco del confleams, ma è detornimentes Se de un solo match (1) ok lor coffra (4, 52) i la chave. Le a smo n coffre (4, 54) vella lusique ouver a disposition altri (n-1) Amoure Pourtext del ogo (Pi, Ci) per 2 Eizn, per ederdebrure da coffra di chiavi crietta. Severalmente an due known plouvitext not trova la coppea (KI, KZ). for memorior nohusta da una lista conflita è inca 256x (56+64) bit ( Kg èlugo 56 bit e Ex(P1) 64 ht) de chair de 56) servis au ca 256×256= 261 by = ~ 1018 by t de rappresente una quantité di un milione di Terabyte (1012 byte) o mille Petabyte (1015 byte) anolitomente morlistive nel 2007. (0 1 Exabyto (10/8/1/6) Si stime che mell'anno 2007 nomo touto prodotti sul pracedo terror circa 20 txaloyté (conta-film-dischi ottici - menure solude-menure mogresiste-ecc) moltre il tempo di anolini è commune molto elevato. Se si overne mon frequente di lettera di crasam entry delle liste in 11 ns (10%) e visidemolo 25 bentry e live lettera di ferra brutar con m macchine in para lette. 10kg # 96 day × 100 days × 107 secondi (088 < 198) # 70.000 machines Ins per sawarone entry due liste in famelles mpower # 70.000 m paralles

m paralles

m paralles

the following the tag

p27/2100 p

RSA CHALLENGE 1997 ||  $\frac{256}{4} = 2^{54} \Rightarrow \frac{254}{7} \approx 10^{16} \Rightarrow \frac{10^{16}}{10^{7}} = \frac{10^{9} \times 10^{16}}{10^{7}} \approx \frac{10^{9} \times 10^{16}}{10^{7}} \approx \frac{10^{9} \times 10^{16}}{10^{7}} \approx \frac{10^{9} \times 10^{16}}{10^{7}} \approx \frac{10^{16}}{10^{7}} \approx \frac{10^{9} \times 10^{16}}{10^{7}} \approx \frac{10^{16}}{10^{7}} \approx \frac{1$ 

P>E>E== (Ex(Ex(E))) TRUPLE DES 56+56=112-bet P-15/10->(=Ex(Dx(Ex(P))(\*)  $% x_3 = 168 - bet$ ocegei tre chan ti, te e k3 K3 D E (TI D P) e tai

128-192-256 but AUS

Electronic Code Boot - ECB



decrypt

$$P_i = D_k(C_i)$$
,  $i \leq i \leq n$ 

Cipher Block Chaining - CBC (2) encrypt P1 Cn Ci= Ex(Pi ⊕Ci-1), 1516 n co=1V decrypt Pi=Ci-1⊕ D(Ci), 1≤i≤n Co=1V

----



decrypt
$$C_{i} = E_{k} \left( \begin{array}{c} P_{i} \oplus P_{i} \\ P_{i} \oplus P_{i} \end{array} \right), \quad 1 \leq i \leq n$$

$$C_{i} = E_{k} \left( \begin{array}{c} P_{i} \oplus P_{i} \\ P_{i} \oplus P_{i} \end{array} \right), \quad 1 \leq i \leq n$$

$$C_{i} = E_{k} \left( \begin{array}{c} P_{i} \oplus P_{i} \\ P_{i} \oplus P_{i} \end{array} \right), \quad 1 \leq i \leq n$$

$$C_{i} = E_{k} \left( \begin{array}{c} P_{i} \oplus P_{i} \\ P_{i} \oplus P_{i} \end{array} \right), \quad 1 \leq i \leq n$$

$$C_{i} = E_{k} \left( \begin{array}{c} P_{i} \oplus P_{i} \\ P_{i} \oplus P_{i} \end{array} \right), \quad 1 \leq i \leq n$$

$$C_{i} = E_{k} \left( \begin{array}{c} P_{i} \oplus P_{i} \\ P_{i} \oplus P_{i} \end{array} \right), \quad 1 \leq i \leq n$$

$$C_{i} = E_{k} \left( \begin{array}{c} P_{i} \oplus P_{i} \\ P_{i} \oplus P_{i} \end{array} \right), \quad 1 \leq i \leq n$$

$$C_{i} = E_{k} \left( \begin{array}{c} P_{i} \oplus P_{i} \\ P_{i} \oplus P_{i} \end{array} \right), \quad 1 \leq i \leq n$$

$$C_{i} = E_{k} \left( \begin{array}{c} P_{i} \oplus P_{i} \\ P_{i} \oplus P_{i} \end{array} \right), \quad 1 \leq i \leq n$$

$$C_{i} = E_{k} \left( \begin{array}{c} P_{i} \oplus P_{i} \\ P_{i} \oplus P_{i} \end{array} \right), \quad 1 \leq i \leq n$$

## Counter mode - CTR

encrypt
$$P_{i}$$
 $P_{i}$ 
 $P_$ 

$$P_{i} = C_{i} \oplus E_{k}(IV^{(i)}), I \leq i \leq n$$
 $IV^{(i)} = IV^{(0)} + i - 1, I \leq i \leq n$ 



$$C_i = P_i \oplus E_k(C_{i-1}), 1 \le i \le n$$

$$C_0 = IV$$



Output Feed Back mode  $\Phi \neq i \qquad \begin{cases} C_i = P_i \oplus E_k^{(i)}(IV), & 1 \leq i \leq w \\ n & \end{cases}$ Pi=Ex(Zi-)&Ci Fi=Cittem (IV), Lien Ex(IV) ela cifrotura in conscata per i-volte del vertere IV.

