

Matrix Programming Linear Algebra

Copyright © Software Carpentry 2010
This work is licensed under the Creative Commons Attribution License
See http://software-carpentry.org/license.html for more information.

software carpentry

NumPy arrays make operations on rectangular data easy

But they are not quite mathematical matrices

>>> a = array([[1, 2], [3, 4]])

>>> a * a

array([[1, 4],

[9, 16]])

Operators act *elementwise*

Matrix Programming

So this does what you think

And NumPy is sensible about scalar values

Matrix Programming

Linear Algebra

software carpentry

Lots of useful utilities

10

Matrix Programming

Lots of useful utilities

10

>>> sum(a, 0)

array([4, 6])

>>> sum(a, 1)

array([3, 7])

$\begin{array}{c|cccc} & 1 & \rightarrow \\ 0 & 1 & 2 & 3 \\ \downarrow & 3 & 4 & 7 \end{array}$

What does sum(a, 2) do?

Matrix Programming

Linear Algebra

software carpentry

software carpentry

Example: disease statistics

- One row per patient
- Columns are hourly responsive T cell counts

>>> data[:, 0] $\ \ \text{\# t}_{\text{0}}$ count for all patients

array([1, 0, 0, 2, 1])

>>> data[0, :] # all samples for patient 0

array([1, 3, 3, 5, 12, 10, 9])

Matrix Programming

Example: disease statistics

- One row per patient
- Columns are hourly responsive T cell counts

```
>>> data[:, 0]  # t_0 count for all patients array([1, 0, 0, 2, 1])
```

>>> data[0, :] # all samples for patient 0 array([1, 3, 3, 5, 12, 10, 9])

Why are these 1D rather than 2D?

Matrix Programming

Linear Algebra

software carpentry

```
>>> mean(data)
```

6.8857

Intriguing, but not particularly meaningful

```
>>> mean(data, 0) # over time

array([ 0.8, 2.6, 4.4, 6.4, 10.8, 11., 12.2])
```

Matrix Programming

Select the data for people who started with a responsive T cell count of 0

Matrix Programming

Linear Algebra

software carpentry

Find the mean T cell count over time for people who started with a count of 0

>>>

data[:, 0]

Column 0

Matrix Programming

Find the mean T cell count over time for people who started with a count of 0

>>> mean(data[data[:, 0] == 0], 0)

Mean along axis 0 of rows where column 0 is 0

Matrix Programming

Linear Algebra

software carpentry

Find the mean T cell count over time for people who started with a count of 0

>>> mean(data[data[:, 0] == 0], 0)

array([0., 2.5, 6.5, 9.5, 14.5, 17.5, 22.5])

Matrix Programming

Find the mean T cell count over time for people who started with a count of 0

```
>>> mean(data[ data[:, 0] == 0 ], 0)

array([ 0., 2.5, 6.5, 9.5, 14.5, 17.5, 22.5])
```

Key to good array programming: no loops! Just as true for MATLAB or R as for NumPy

Matrix Programming

Linear Algebra

software carpentry

What about "real" matrix multiplication?

Matrix Programming

Dot product only works for sensible shapes

>>> dot(ones((2, 3)), ones((2, 3)))

ValueError: objects are not aligned

NumPy does not distinguish row/column vectors

>>>
$$v = array([1, 2])$$

Matrix Programming

Linear Algebra

software carpentry

Can also use the matrix subclass of array

>>> m

matrix([[1, 2],

>>> m*m

matrix([[7, 10],

Use matrix(a) or array(m) to convert

Matrix Programming

Which should you use?

If your problem is linear algebra, matrix will probably be more convenient

- Treats vectors as N×1 matrices
 Otherwise, use array
- Especially if you're representing grids, rather than mathematical matrices

Matrix Programming

Linear Algebra

software carpentry

Always look at

http://www.scipy.org/Numpy_Example_List_With_Doc before writing any functions of your own

```
conjugate histogram
convolve lstsq
correlate npv
diagonal roots
fft solve
gradient svd
```

Fast...

...and someone else has debugged them

Matrix Programming

created by

Richard T. Guy

November 2010

Copyright © Software Carpentry 2010
This work is licensed under the Creative Commons Attribution License
See http://software-carpentry.org/license.html for more information.