Financial Econometrics - Homework 1 - José Barretto, Daniel Deutsch, Stéphane Roblet

September 19, 2021

1 Empirical Application 1 Financial Econometrics

By Daniel Deutsch, José Lucas Barretto, and Stéphane Roblet

```
import itertools
import warnings

import matplotlib.pyplot as plt
import pandas as pd
import statsmodels.tsa.stattools as sm
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.regression.linear_model import OLS
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.seasonal import seasonal_decompose
```

2 Motivation

We have chosen these datasets for different reasons. First, we wanted to investigate the price evolution for financial assets when the issuers differ in nature. Thus, we chose to look at the evolution of the price of the New Stock Exchange and government bonds. In addition, we wanted to know if different trends could emerge depending on the nature of the financial asset of the same

type of issuer (in this case a company), which is why we were also interested in the evolution of the valuation of AAA corporate bonds in addition to that of shares of companies listed on the NYSE.

3 US Governament Bond Yields

3.1 Load the Data

Notice that here we don't apply the log-transform in our data since it is already given in percentage.

3.2 Augmented Dickey-Fuller Test

The Augmented Dickey-Fuller test is a unit root test that checks for stationarity. It considers the following hypotesis:

 H_0 : there is a unit root (the series contains a stochastic trend and is non-stationary)

 H_1 : there isn't a unit root (the series doesn't contain a stochastic trend and is stationary)

Once the Augmented Dickey-Fuller Test is performed and we have obtained our results, we should consider the following to take our conclusions:

- If the p-value is lower than 0.05, than we must reject the null hypotesys (and, consequently, accept the alternativel one).
- If the p-value is slightly above 0.05, then the critical values should be used to judge whether to reject the null hypotesis.

First, we are going to implement the augmented Dickey-Fuller Test to the most general regression:

$$\Delta X_t = b_0 + b_1 t + \rho X_{t-1} + \sum_{i=1}^{p-1} \varphi_i \Delta_{t-i} + \varepsilon_t$$

In this case, the hypotesis can be written as:

 $H_0: \rho = 0$ $H_1: \rho < 0$

```
[4]: # Obtains the ADF results for the general regression
adf_res = sm.adfuller(
    df_govbonds['value'],
    regression='ct',
    maxlag=12,
    autolag='AIC',
    regresults=True
)

# Show test results
print(f"T-statistic: {adf_res[0]}")
print(f"P-value: {adf_res[1]}")
print(f"Used lag: {adf_res[3].usedlag}")
```

T-statistic: -2.1596201496468836 P-value: 0.5125920716411859 Used lag: 12

From the results printed above we can conclude that **the null hypotesis shouldn't be rejected**, i.e., there isn't a unit root in the time series (it is non-stationary), since the p-value is way higher than 0.05. One could reach the same conclusion by observing the value of the T-statistic (since it's absolute value is lower than the absolute value of -3.45).

Once we didn't reject the null hypotesis, we should test wether the coefficient b_1 is significant or not.

```
[5]: print(adf_res[3].resols.summary())
```

OLS Regression Results

Dep. Variable: y R-squared: 0.174

Model:	OLS	Adj. R-squared:	0.158
Method:	Least Squares	F-statistic:	10.69
Date:	Sun, 19 Sep 2021	Prob (F-statistic):	2.90e-22
Time:	21:05:46	Log-Likelihood:	-27.423
No. Observations:	726	AIC:	84.85
Df Residuals:	711	BIC:	153.7
Df Model:	14		
	_		

Covariance Type: nonrobust

========	 =========		========		========	
	coef	std err	t	P> t	[0.025	0.975]
x1	-0.0081	0.004	-2.160	0.031	-0.015	-0.001
x2	0.3916	0.037	10.504	0.000	0.318	0.465
x3	-0.2393	0.040	-5.993	0.000	-0.318	-0.161
x4	0.1005	0.041	2.455	0.014	0.020	0.181
x5	-0.0675	0.041	-1.643	0.101	-0.148	0.013
x6	0.0957	0.041	2.325	0.020	0.015	0.176
x7	-0.0728	0.041	-1.765	0.078	-0.154	0.008
x8	-0.0486	0.041	-1.178	0.239	-0.130	0.032
x9	0.0780	0.041	1.896	0.058	-0.003	0.159
x10	0.0042	0.041	0.101	0.919	-0.077	0.085
x11	0.0278	0.041	0.679	0.497	-0.053	0.108
x12	0.0904	0.040	2.264	0.024	0.012	0.169
x13	-0.0724	0.037	-1.938	0.053	-0.146	0.001
const	0.0860	0.037	2.348	0.019	0.014	0.158
x14	-0.0001	5.19e-05	-2.141	0.033	-0.000	-9.21e-06
Omnibus:		77.	 089 Durbi:	 n-Watson:		2.000
Prob(Omnib	us):	0.0	000 Jarque	e-Bera (JB):		510.423
Skew:		0.	146 Prob(.	JB):		1.46e-111
Kurtosis:		7.0	097 Cond.	No.		2.98e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.98e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In the print above, the coefficient b_1 is represented by the variable x14 (which can only be seen once you click at "show more (open the raw output data in a text editor) ..."). We observe that its T-statistic is -2.141. Since the absolute value of its T-statistic is inferior than the T-statistic of 2.78 at the 5% confidence level, we conclude that **the trend coefficient** b_1 is **not statistically significant**.

Now, since we concluded that b_1 isn't statistically significant, we shall perform the ADF test again, but this time considering a restricted regression, as following:

$$\Delta X_t = b_0 + \rho X_{t-1} + \sum_{j=1}^{p-1} \varphi_j \Delta_{t-j} + \varepsilon_t$$

Again, our hypotesis can be written as:

 $H_0: \rho = 0$ $H_1: \rho < 0$

```
[5]: # Obtains the ADF results for the restricted regression
adf_res = sm.adfuller(
    df_govbonds['value'],
    regression='c',
    maxlag=12,
    autolag='AIC',
    regresults=True
)

# Show test results
print(f"T-statistic: {adf_res[0]}")
print(f"P-value: {adf_res[1]}")
print(f"Used lag: {adf_res[3].usedlag}")
```

T-statistic: -1.294841876108271 P-value: 0.6315288451340434

Used lag: 12

Once more, from the results printed above, we can conclude that **the null hypotesis shouldn't be rejected**, i.e., there isn't a unit root in the time series (it is non-stationary), since the p-value is way higher than 0.05. The same conclusion could be reached by observing the value of the T-statistic (since it's absolute value is lower than the absolute value of -2.89).

Once we didn't reject the null hypotesis, we should test wether the coefficient b_0 is significant or not.

[6]: print(adf_res[3].resols.summary())

OLS Regression Results

Dep. Variable:	у	R-squared:	0.169
Model:	OLS	Adj. R-squared:	0.153
Method:	Least Squares	F-statistic:	11.10
Date:	Sun, 19 Sep 2021	Prob (F-statistic):	6.93e-22
Time:	16:39:26	Log-Likelihood:	-29.756
No. Observations:	726	AIC:	87.51
Df Residuals:	712	BIC:	151.7

Df Model: 13 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
x1	-0.0043	0.003	-1.295	0.196	-0.011	0.002
x2	0.3940	0.037	10.550	0.000	0.321	0.467
x3	-0.2394	0.040	-5.979	0.000	-0.318	-0.161
x4	0.1021	0.041	2.489	0.013	0.022	0.183
x5	-0.0666	0.041	-1.615	0.107	-0.147	0.014
x6	0.0973	0.041	2.359	0.019	0.016	0.178
x7	-0.0719	0.041	-1.738	0.083	-0.153	0.009
x8	-0.0473	0.041	-1.144	0.253	-0.128	0.034
x9	0.0795	0.041	1.929	0.054	-0.001	0.160
x10	0.0052	0.041	0.127	0.899	-0.076	0.086
x11	0.0291	0.041	0.707	0.480	-0.052	0.110
x12	0.0911	0.040	2.276	0.023	0.013	0.170
x13	-0.0721	0.037	-1.924	0.055	-0.146	0.001
const	0.0230	0.022	1.053	0.293	-0.020	0.066
Omnibus:		74.9	986 Durbir	 n-Watson:		1.999
Prob(Omnibu	s):	0.0	000 Jarque	e-Bera (JB):		508.396
Skew:		0.0	064 Prob(3	JB):		4.01e-111
Kurtosis:		7.0	098 Cond.	No.		47.6

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In the print above, the coefficient b_0 is represented by the variable const (which can only be seen once you click at "show more (open the raw output data in a text editor) ..."). We observe that its T-statistic is 1.053. Since the absolute value of its T-statistic is inferior than the T-statistic of 2.54 at the 5% confidence level, we conclude that **the drift coefficient** b_0 is **not statistically significant**.

Now, since we concluded that b_0 isn't statistically significant, we shall perform the ADF test again, but this time considering an even more restricted regression, as following:

$$\Delta X_t = \rho X_{t-1} + \sum_{j=1}^{p-1} \varphi_j \Delta_{t-j} + \varepsilon_t$$

Again, our hypotesis can be written as:

 $H_0: \quad \rho = 0$ $H_1: \quad \rho < 0$

```
[7]: # Obtains the ADF results for the restricted regression
adf_res = sm.adfuller(
    df_govbonds['value'],
    regression='nc',
    maxlag=12,
    autolag='AIC',
    regresults=True
)

# Show test results
print(f"T-statistic: {adf_res[0]}")
print(f"P-value: {adf_res[1]}")
print(f"Used lag: {adf_res[3].usedlag}")
```

T-statistic: -0.7996081095853742 P-value: 0.3706833546535423

Used lag: 12

Once more, from the results printed above, we can conclude that **the null hypotesis shouldn't be rejected**, i.e., there isn't a unit root in the time series (it is non-stationary), since the p-value is way higher than 0.05. The same conclusion could be reached by observing the value of the T-statistic (since it's absolute value is lower than the absolute value of -1.95).

Once we didn't reject the null hypotesis, we finally conclude that **the series is non-stationary without constant**. We can verify this result by running the Augmented Dickey-Fuller test on the first difference of the series:

```
[8]: # Obtains the first difference of the time series
df_govbonds['diff'] = df_govbonds['value'].diff()

# Plots the first difference time series
plt.plot(df_govbonds['date'], df_govbonds['diff'])
plt.title("First Difference of US Governament Bond Yields")
plt.xlabel("Date")
plt.ylabel("First Difference Yields (%)")
plt.show()
```



```
[9]: # Obtains the ADF results for the restricted regression
adf_res = sm.adfuller(
    df_govbonds['diff'].dropna(),
    regression='ct',
    maxlag=12,
    autolag='AIC',
    regresults=True
)

# Show test results
print(f"T-statistic: {adf_res[0]}")
print(f"P-value: {adf_res[1]}")
print(f"Used lag: {adf_res[3].usedlag}")
```

T-statistic: -7.363656510594449 P-value: 2.0960706199430693e-09 Used lag: 11

From the results printed above, we can conclude that **the null hypotesis should be rejected**, i.e., there is a unit root in the time series (it is stationary), since the p-value is way lower than 0.05. This means that US Governament Bond Yields are I(1).

3.3 Decomposition and Analysis of Drift, Trend, and Seasonality for the First Difference Series

Now, we shall decompose the first difference series into trend, seasonality, and residues (cyclical component). We will assume that the series follow an annual period, and thus, we consider a period of 253 days (average number of trading days per year).

3.3.1 Deterministic Trend

```
[11]: model = OLS(df_govbonds['diff'].dropna(), decomposition.trend, missing='drop')
print(model.fit().summary())
```

OLS Regression Results

======

Dep. Variable: diff R-squared (uncentered):

0.004

Model: OLS Adj. R-squared (uncentered):

0.001

Method: Least Squares F-statistic:

1.728

Date: Sun, 19 Sep 2021 Prob (F-statistic):

0.189

Time: 16:39:27 Log-Likelihood:

-130.86

No. Observations: 486 AIC:

263.7

Df Residuals: 485 BIC:

267.9

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
trend	0.9128	0.694	1.314	0.189	-0.452	2.277
Omnibus: Prob(Omnibus Skew: Kurtosis:):	72.3 0.0 -0.4 7.8	00 Jarq 06 Prob	in-Watson: ue-Bera (JB) (JB): . No.	:	1.379 485.597 3.58e-106 1.00

Notes:

- [1] R^{2} is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

From the print above we can see that the trend component isn't statistically significant at the level 5%. This result indicates that the series doesn't have a deterministic trend when considering an annual period.

3.3.2 Seasonality

```
[12]: model = OLS(df_govbonds['diff'].dropna(), decomposition.seasonal,

→missing='drop')
print(model.fit().summary())
```

OLS Regression Results

======

Dep. Variable: diff R-squared (uncentered):

0.317

Model: OLS Adj. R-squared (uncentered):

0.316

Method: Least Squares F-statistic:

341.6

Date: Sun, 19 Sep 2021 Prob (F-statistic):

5.79e-63

Time: 16:39:27 Log-Likelihood:

46.544

No. Observations: 738 AIC:

-91.09

Df Residuals: 737 BIC:

-86.48

Df Model: 1

Covariance Ty	/pe:	nonrob	oust			
	coef	std err	t	P> t	[0.025	0.975]
seasonal	0.6861	0.037	18.484	0.000	0.613	0.759
Omnibus: Prob(Omnibus) Skew: Kurtosis:) :	0. -0.			:	1.327 229.872 1.21e-50 1.00

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

From the print above we can see that the seasonal component is statistically significant at the level 5%. This result indicates that the series has seasonality when considering an annual period.

We can also verify this by using dummy variables for each month and verifying their statistical significance.

OLS Regression Results

```
Dep. Variable: diff R-squared (uncentered):

0.022

Model: OLS Adj. R-squared (uncentered):

-0.009

Method: Least Squares F-statistic:

0.7028

Date: Sun, 19 Sep 2021 Prob (F-statistic):
```

0.846

Time: 16:39:27 Log-Likelihood:

-85.748

No. Observations: 738 AIC:

217.5

Df Residuals: 715 BIC:

323.4

Df Model: 23 Covariance Type: nonrobust

========	-ypo. 					
	coef	std err	t	P> t	[0.025	0.975]
is_1	-0.0017	0.047	-0.037	0.971	-0.093	0.090
is_5	0.0326	0.035	0.929	0.353	-0.036	0.101
is_9	0.0193	0.036	0.542	0.588	-0.051	0.089
is_10	-0.1550	0.195	-0.794	0.428	-0.538	0.228
is_13	0.0332	0.047	0.702	0.483	-0.060	0.126
is_14	0.0189	0.052	0.363	0.717	-0.084	0.121
is_17	0.0350	0.069	0.507	0.612	-0.101	0.171
is_18	0.0570	0.041	1.399	0.162	-0.023	0.137
is_22	-0.0467	0.039	-1.207	0.228	-0.123	0.029
is_23	-0.0545	0.083	-0.655	0.513	-0.218	0.109
is_26	0.0088	0.047	0.186	0.852	-0.084	0.102
is_27	0.0068	0.052	0.130	0.897	-0.096	0.109
is_30	-0.2133	0.113	-1.893	0.059	-0.435	0.008
is_31	0.0024	0.037	0.063	0.949	-0.071	0.075
is_35	-0.0652	0.043	-1.531	0.126	-0.149	0.018
is_36	0.0289	0.063	0.457	0.648	-0.095	0.153
is_39	-0.0350	0.056	-0.621	0.535	-0.146	0.076
is_40	-0.0376	0.045	-0.828	0.408	-0.127	0.052
is_44	-0.0412	0.036	-1.146	0.252	-0.112	0.029
is_45	-0.0150	0.195	-0.077	0.939	-0.398	0.368
is_48	-0.0033	0.043	-0.078	0.938	-0.087	0.080
is_49	-0.0653	0.063	-1.030	0.303	-0.190	0.059
is_52	0.0047	0.071	0.065	0.948	-0.135	0.145
Omnibus:		128.	387 Durbir	n-Watson:		1.404
Prob(Omnib	us):	0.0	000 Jarque	e-Bera (JB):		1245.605
Skew:		-0.4	449 Prob(3	JB):		3.31e-271
Kurtosis:	========	9.:	301 Cond.	No.	=======	5.57

Notes:

^[1] R^2 is computed without centering (uncentered) since the model does not contain a constant.

^[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The results indicate that some weeks of the year have statistically significant impacts on the value of the first difference series. This supports the previous finding that the series has a significant seasonal component.

3.4 Stationary ARMA Model

The goal here is to estimate the cyclical component through a stationary ARMA model. Firstly, we can plot the Autocorrelation and the Partial Autocorrelation of the time series to have an idea of the parameters of the model.

```
[14]: # Plot
fig, axs = plt.subplots(2, 1, figsize=(15, 8))
plot_acf(decomposition.resid.dropna(), ax=axs[0])
plot_pacf(decomposition.resid.dropna(), ax=axs[1])
plt.show()
```


To obtain the best parameters for the ARMA model we run a cross-validation using the AIC score (select the model with the lowest AIC).

```
[15]: best_model = None
for p, q in itertools.product(range(10), range(10)):
    print(f"\rCurrent {p=}, {q=}", end="")
    model = ARIMA(decomposition.resid.dropna(), order=(p, 0, q))
    model_fit = model.fit()
```

```
if p == 0 and q == 0:
    best_model = model_fit

if model_fit.aic < best_model.aic:
    best_model = model_fit

print(best_model.summary())</pre>
```

Current p=9, q=9 SARIMAX Results

 Dep. Variable:
 resid
 No. Observations:
 486

 Model:
 ARIMA(4, 0, 9)
 Log Likelihood
 125.189

 Date:
 Sun, 19 Sep 2021
 AIC
 -220.378

 Time:
 16:44:15
 BIC
 -157.585

 Sample:
 0
 HQIC
 -195.708

- 486

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
const	-0.0072	0.012	-0.587	0.557	-0.031	0.017
ar.L1	0.0366	0.094	0.388	0.698	-0.148	0.221
ar.L2	0.3762	0.078	4.799	0.000	0.223	0.530
ar.L3	-0.2875	0.068	-4.214	0.000	-0.421	-0.154
ar.L4	-0.7768	0.088	-8.811	0.000	-0.950	-0.604
ma.L1	0.4193	0.101	4.137	0.000	0.221	0.618
ma.L2	-0.4006	0.074	-5.448	0.000	-0.545	-0.256
ma.L3	0.0834	0.082	1.016	0.310	-0.078	0.244
ma.L4	0.9305	0.075	12.487	0.000	0.784	1.077
ma.L5	0.3889	0.076	5.102	0.000	0.240	0.538
ma.L6	0.0357	0.050	0.708	0.479	-0.063	0.135
ma.L7	-0.0653	0.048	-1.375	0.169	-0.158	0.028
ma.L8	-0.0412	0.042	-0.982	0.326	-0.124	0.041
ma.L9	0.1229	0.042	2.931	0.003	0.041	0.205
sigma2	0.0333	0.002	17.078	0.000	0.030	0.037

===

Ljung-Box (L1) (Q): 0.37 Jarque-Bera (JB):

116.61

Prob(Q): 0.54 Prob(JB):

0.00

Heteroskedasticity (H): 1.07 Skew:

0.01

Prob(H) (two-sided): 0.66 Kurtosis:

5.40

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

4 Moody's AAA Corporate Bond Yields

4.1 Load the Data

Notice that here we don't apply the log-transform in our data since it is already given in percentage.

```
[16]: # Loads data and drops non available values
df_aaa = pd.read_csv("datasets/AAA_corpbonds_yields.csv", names=['date', or'value'], parse_dates=['date'], skiprows=[0], na_values='.')
df_aaa.dropna(inplace=True)

# Plots the time series
plt.plot(df_aaa['date'], df_aaa['value'])
plt.title("AAA Corporate Bonds Yields")
plt.xlabel("Date")
plt.ylabel("Yields (%)")
plt.show()
```


4.2 Augmented Dickey-Fuller Test

First, we are going to implement the augmented Dickey-Fuller Test to the most general regression:

$$\Delta X_t = b_0 + b_1 t + \rho X_{t-1} + \sum_{j=1}^{p-1} \varphi_j \Delta_{t-j} + \varepsilon_t$$

In this case, the hypotesis can be written as:

 $H_0: \quad \rho = 0$
 $H_1: \quad \rho < 0$

```
[17]: # Obtains the ADF results for the general regression
adf_res = sm.adfuller(
    df_aaa['value'],
    regression='ct',
    maxlag=12,
    autolag='AIC',
    regresults=True
)

# Show test results
print(f"T-statistic: {adf_res[0]}")
print(f"P-value: {adf_res[1]}")
print(f"Used lag: {adf_res[3].usedlag}\n")
print(adf_res[3].resols.summary())
```

T-statistic: -2.658179551223335 P-value: 0.25385353029949714

0.0182

-0.0763

-0.0229

0.028

0.028

0.028

Used lag: 9

x7

x8 x9

OLS Regression Results

Dep. Variable: R-squared: 0.046 Model: OLS Adj. R-squared: 0.037 Method: Least Squares F-statistic: 5.337 Date: Sun, 19 Sep 2021 Prob (F-statistic): 2.63e-08 Time: 16:44:16 Log-Likelihood: 1955.7 No. Observations: 1241 AIC: -3887. Df Residuals: 1229 BIC: -3826. Df Model: 11 Covariance Type: nonrobust coef P>|t| [0.025 0.975] std err t. x1-0.0105 0.004 -2.658 0.008 -0.018 -0.003 x2 0.0113 0.028 0.397 0.691 -0.044 0.067 0.0911 xЗ 0.028 3.208 0.001 0.035 0.147 x4 0.0729 0.028 2.567 0.010 0.017 0.129 -0.0949 -3.329 0.001 -0.151 x5 0.028 -0.039x6 0.0284 0.029 0.994 0.320 -0.028 0.085

0.638

-2.688

-0.807

0.524

0.007

0.420

-0.038

-0.132

-0.078

0.074

-0.021

0.033

x10 -0.0777	0.028	-2.741	0.006	-0.133	-0.022
const 0.0446	0.017	2.670	0.008	0.012	0.077
x11 -1.706e-05	6.72e-06	-2.539	0.011	-3.03e-05	-3.88e-06
	=========				=======
Omnibus:	537.82	0 Durbi	n-Watson:		1.998
Prob(Omnibus):	0.00	00 Jarque	e-Bera (JB)):	32528.550
Skew:	1.17	7 Prob(.	JB):		0.00
Kurtosis:	27.97	'1 Cond.	No.		1.63e+04
		.=======			========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.63e+04. This might indicate that there are strong multicollinearity or other numerical problems.

We verify that p-value for the ADF is not low enough, which means that we do not reject $H_0: \rho = 0$.

Then, we verify if the coefficient of the trend is statistically significant. Since the t-stat for x11 = -2.539, we conclude that the coef. of the trend is not statistically significant compared to the critical value of 2.78 at the 5% cofidence level.

The next step is to run the test again without the trend term.

```
[18]: # Obtains the ADF results for the restricted regression
adf_res = sm.adfuller(
          df_aaa['value'],
          regression='c',
          maxlag=12,
          autolag='AIC',
          regresults=True
)

# Show test results
print(f"T-statistic: {adf_res[0]}")
print(f"P-value: {adf_res[1]}")
print(f"Used lag: {adf_res[3].usedlag}\n")
print(adf_res[3].resols.summary())
```

T-statistic: -1.033952299163935 P-value: 0.7406804882311689

Used lag: 9

${\tt OLS} \ {\tt Regression} \ {\tt Results}$

=======================================			=========
Dep. Variable:	у	R-squared:	0.041
Model:	OLS	Adj. R-squared:	0.033
Method:	Least Squares	F-statistic:	5.203
Date:	Sun, 19 Sep 2021	Prob (F-statistic):	1.66e-07

Time: No. Observations: Df Residuals: Df Model:		16:44:16 1241 1230 10	Log-Lil AIC: BIC:	xelihood:		1952.5 -3883. -3827.
Covariance Type:	 coef	nonrobust ====================================	 t	P> t	[0.025	0.975]

	coef	std err	t	P> t	[0.025	0.975]
x1	-0.0024	0.002	-1.034	0.301	-0.007	0.002
x2	0.0086	0.028	0.303	0.762	-0.047	0.064
x3	0.0884	0.028	3.107	0.002	0.033	0.144
x4	0.0699	0.028	2.458	0.014	0.014	0.126
x5	-0.0982	0.029	-3.444	0.001	-0.154	-0.042
x6	0.0257	0.029	0.898	0.369	-0.030	0.082
x7	0.0154	0.029	0.540	0.590	-0.041	0.071
x8	-0.0791	0.028	-2.781	0.005	-0.135	-0.023
x9	-0.0251	0.028	-0.883	0.378	-0.081	0.031
x10	-0.0796	0.028	-2.804	0.005	-0.135	-0.024
const	0.0072	0.008	0.914	0.361	-0.008	0.023
Omnibus:		527.	550 Durbi:	======= n-Watson:	=======	1.998
Prob(Omnib	ous):	0.	000 Jarqu	e-Bera (JB):		32344.620
Skew:		1.	134 Prob(JB):		0.00
Kurtosis:		27.	907 Cond.	No.		80.1
=======					=======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

We do not reject the non-stationarity hypothesis, because the p-value is 0.713.

Then, we check that constant term is NOT statistically significant, because its t-value is not high enough.

The next step is to run a restricted regression (no constand and no trend.)

```
[19]: # Obtains the ADF results for the restricted regression
adf_res = sm.adfuller(
          df_aaa['value'],
          regression='nc',
          maxlag=12,
          autolag='AIC',
          regresults=True
)

# Show test results
print(f"T-statistic: {adf_res[0]}")
print(f"P-value: {adf_res[1]}")
```

```
print(f"Used lag: {adf_res[3].usedlag}\n")
print(adf_res[3].resols.summary())
```

T-statistic: -0.7469882196814753 P-value: 0.39281257611444154

Used lag: 9

OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.040

Model: OLS Adj. R-squared (uncentered):

0.032

Method: Least Squares F-statistic:

5.149

Date: Sun, 19 Sep 2021 Prob (F-statistic):

2.06e-07

Time: 16:44:16 Log-Likelihood:

1952.1

No. Observations: 1241 AIC:

-3884.

Df Residuals: 1231 BIC:

-3833.

Df Model: 10
Covariance Type: nonrobust

========		========		.=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
x1	-0.0003	0.000	-0.747	0.455	-0.001	0.001
x2	0.0073	0.028	0.256	0.798	-0.048	0.063
x3	0.0871	0.028	3.065	0.002	0.031	0.143
x4	0.0687	0.028	2.417	0.016	0.013	0.124
x5	-0.0996	0.028	-3.496	0.000	-0.155	-0.044
x6	0.0244	0.029	0.854	0.393	-0.032	0.081
x7	0.0142	0.028	0.500	0.617	-0.042	0.070
x8	-0.0803	0.028	-2.828	0.005	-0.136	-0.025
x9	-0.0264	0.028	-0.931	0.352	-0.082	0.029
x10	-0.0810	0.028	-2.855	0.004	-0.137	-0.025
Omnibus:		535.	======== 547	 n-Watson:	=======	1.998

0.000

1.167

28.006

Notes:

Skew:

Kurtosis:

Prob(Omnibus):

Prob(JB):

Cond. No.

Jarque-Bera (JB): 32614.863

0.00

76.8

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Since we cannot reject the non-stationarity hypothesis, the ADF test suggests that the series is non-stationary without constant. This means that the series has a unit root (stochastic trend), but no drift. We can check this result by running the ADF test on the first difference of the series.

```
[20]: df_aaa['diff'] = df_aaa['value'].diff()

# Plot

plt.plot(df_aaa['date'], df_aaa['diff'])

plt.title("First Difference of AAA Corporate Bonds Yields")

plt.xlabel("Date")

plt.ylabel("Yields (%)")

plt.show()
```



```
[21]: adf_res = sm.adfuller(
          df_aaa['diff'].dropna(),
          regression='ct',
          maxlag=12,
          autolag='AIC',
          regresults=True
)

# Show test results
print(f"T-statistic: {adf_res[0]}")
print(f"P-value: {adf_res[1]}")
print(f"Used lag: {adf_res[3].usedlag}\n")
print(adf_res[3].resols.summary())
```

T-statistic: -13.713251329274184 P-value: 2.0647792264106046e-21

Used lag: 8

OLS Regression Results

Dep. Variate Model: Method: Date: Time: No. Observate Df Residual Df Model: Covariance	stions: Ls:	Least Squ Sun, 19 Sep 16:4	2021 44:16 1241 1230 10	Adj. F-st Prob	uared: R-squared: atistic: (F-statisti	ic):	0.516 0.512 131.1 6.81e-186 1952.2 -3882. -3826.
=======	coef	std err		===== t	P> t	[0.025	0.975]
x1 x2 x3 x4 x5 x6 x7 x8 x9 const x10	-1.0896 0.0964 0.1830 0.2513 0.1514 0.1754 0.1893 0.1086 0.0816 0.0009 -2.687e-06	0.079 0.074 0.069 0.064 0.059 0.053 0.047 0.040 0.028 0.003 4e-06	2 3 2 3 4 2 2	.713 .301 .665 .933 .575 .335 .013 .719 .875 .297	0.194 0.008 0.000 0.010 0.001 0.000 0.007 0.004 0.766	-0.049 0.048 0.126 0.036 0.072 0.097 0.030 0.026 -0.005	0.242 0.318 0.377 0.267 0.279 0.282 0.187 0.137 0.006 5.16e-06
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	(2.753 0.000 197 3.082	Jarq Prob	======== in-Watson: ue-Bera (JB) (JB): . No.		1.998 32827.037 0.00 7.93e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.93e+04. This might indicate that there are strong multicollinearity or other numerical problems.

By running the ADF test on the first difference series, we obtain the result that the non-stationarity hypothesis is rejected, which means that AAA Corporate Bond Yields are I(1). We can also see that both the constant and trend coefficients are not significant, suggesting that the first difference series does not have drift or trend.

4.3 Decomposition and Analysis of Drift, Trend, and Seasonality for the First Difference Series

Now, we shall decompose the first difference series into trend, seasonality, and residues (cyclical component). We will assume that the series follow an annual period, and thus, we consider a period of 253 days (average number of trading days per year).

4.3.1 Deterministic Trend

```
[23]: model = OLS(df_aaa['diff'].dropna(), decomposition.trend, missing='drop')
print(model.fit().summary())
```

OLS Regression Results _____ _____ ====== Dep. Variable: diff R-squared (uncentered): 0.003 Model: OLS Adj. R-squared (uncentered): 0.002 Method: Least Squares F-statistic: 2.915 Sun, 19 Sep 2021 Prob (F-statistic): Date: 0.0881 16:44:17 Log-Likelihood: Time: 1511.8 No. Observations: 998 AIC: -3022.Df Residuals: 997 BTC: -3017.Df Model: Covariance Type: nonrobust ______ P>|t| Γ0.025 coef std err t ______ 1.1026 1.707 0.646 0.088 -0.165 ______ Omnibus: 423.075 Durbin-Watson: 1.977 Jarque-Bera (JB): Prob(Omnibus): 0.000 40074.391

Notes:

Skew:

Kurtosis:

[1] R^2 is computed without centering (uncentered) since the model does not contain a constant.

0.977

33.982

[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB):

Cond. No.

0.00

1.00

We can see that the trend component is not statistical significant at the 5% level, which confirms our previous findings. Therefore, these results indicate that the series don't have a deterministic trend when considering an annual period.

4.3.2 Seasonality

```
[24]: model = OLS(df_aaa['diff'].dropna(), decomposition.seasonal, missing='drop')
print(model.fit().summary())
```

OLS Regression Results

======

Dep. Variable: diff R-squared (uncentered):

0.173

Model: OLS Adj. R-squared (uncentered):

0.172

Method: Least Squares F-statistic:

260.8

Date: Sun, 19 Sep 2021 Prob (F-statistic):

2.00e-53

Time: 16:44:17 Log-Likelihood:

2060.0

No. Observations: 1250 AIC:

-4118.

Df Residuals: 1249 BIC:

-4113.

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
seasonal	0.6959	0.043	16.149	0.000	0.611	0.780
Omnibus: Prob(Omnibus): Skew: Kurtosis:		316.21 0.00 0.45 17.22	0 Jarq 7 Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.999 10588.675 0.00 1.00

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

We can see that the seasonal component is statistically significant, when considering a period equivalent to the trading year, indicating that there's seasonality in the series. We can also verify this by using dummy variables for each month and verifying their statistical significance.

```
[25]: # create dummy vars columns for week of the year df_aaa['period'] = df_aaa['date'].dt.weekofyear
```

OLS Regression Results

======

Dep. Variable: diff R-squared (uncentered):

0.065

Model: OLS Adj. R-squared (uncentered):

0.024

Method: Least Squares F-statistic:

1.599

Date: Sun, 19 Sep 2021 Prob (F-statistic):

0.00493

Time: 16:44:17 Log-Likelihood:

1983.4

No. Observations: 1250 AIC:

-3863.

Df Residuals: 1198 BIC:

-3596.

Df Model: 52 Covariance Type: nonrobust

=======		========		========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
is_1	0.0071	0.011	0.647	0.518	-0.015	0.029
is_2	4.337e-19	0.010	4.29e-17	1.000	-0.020	0.020
is_3	0.0100	0.011	0.928	0.354	-0.011	0.031
is_4	-0.0135	0.011	-1.278	0.201	-0.034	0.007
is_5	0.0124	0.010	1.226	0.220	-0.007	0.032
is_6	-0.0020	0.010	-0.198	0.843	-0.022	0.018
is_7	0.0062	0.010	0.605	0.545	-0.014	0.027
is_8	0.0010	0.011	0.086	0.931	-0.021	0.023
is_9	0.0108	0.010	1.068	0.286	-0.009	0.031
is_10	-0.0040	0.010	-0.395	0.693	-0.024	0.016
is_11	0.0236	0.010	2.333	0.020	0.004	0.043
is_12	0.0304	0.010	3.006	0.003	0.011	0.050

is_13	-0.0643	0.011	-6.103	0.000	-0.085	-0.044
is_14	-0.0104	0.011	-1.028	0.304	-0.030	0.009
is_15	-0.0126	0.011	-1.196	0.232	-0.033	0.008
is_16	0.0029	0.010	0.283	0.778	-0.017	0.023
is_17	0.0004	0.010	0.040	0.968	-0.019	0.020
is_18	0.0100	0.010	0.989	0.323	-0.010	0.030
is_19	0.0052	0.010	0.514	0.607	-0.015	0.025
is_20	-0.0040	0.010	-0.395	0.693	-0.024	0.016
is_21	-0.0124	0.010	-1.226	0.220	-0.032	0.007
is_22	-0.0125	0.011	-1.105	0.269	-0.035	0.010
is_23	0.0032	0.010	0.316	0.752	-0.017	0.023
is_24	-0.0156	0.010	-1.542	0.123	-0.035	0.004
is_25	0.0008	0.010	0.079	0.937	-0.019	0.021
is_26	-0.0116	0.010	-1.147	0.252	-0.031	0.008
is_27	0.0030	0.011	0.265	0.791	-0.019	0.025
is_28	-0.0128	0.010	-1.266	0.206	-0.033	0.007
is_29	-0.0032	0.010	-0.316	0.752	-0.023	0.017
is_30	-0.0044	0.010	-0.435	0.664	-0.024	0.015
_ is_31	-0.0036	0.010	-0.356	0.722	-0.023	0.016
is_32	-0.0052	0.010	-0.514	0.607	-0.025	0.015
_ is_33	0.0016	0.010	0.158	0.874	-0.018	0.021
_ is_34	-0.0024	0.010	-0.237	0.812	-0.022	0.017
_ is_35	0.0068	0.010	0.672	0.501	-0.013	0.027
_ is_36	0.0110	0.011	0.973	0.331	-0.011	0.033
is_37	0.0158	0.010	1.534	0.125	-0.004	0.036
is_38	-0.0108	0.010	-1.068	0.286	-0.031	0.009
is_39	-0.0008	0.010	-0.079	0.937	-0.021	0.019
is_40	0.0076	0.010	0.751	0.453	-0.012	0.027
is_41	0.0029	0.010	0.283	0.778	-0.017	0.023
is_42	-0.0030	0.011	-0.289	0.773	-0.024	0.018
is_43	0.0140	0.010	1.384	0.167	-0.006	0.034
is_44	-0.0028	0.010	-0.277	0.782	-0.023	0.017
is_45	0.0122	0.011	1.155	0.249	-0.009	0.033
is_46	0.0068	0.011	0.632	0.527	-0.014	0.028
is_47	-0.0118	0.011	-1.096	0.273	-0.033	0.009
is_48	-0.0035	0.011	-0.330	0.742	-0.024	0.017
is_49	0.0037	0.010	0.363	0.716	-0.017	0.024
is_50	-0.0084	0.010	-0.831	0.406	-0.028	0.011
is_51	0.0036	0.010	0.356	0.722	-0.016	0.023
is_52	-0.0100	0.011	-0.884	0.377	-0.032	0.012
Omnibus:		469.1	 106 Durbi:	 n-Watson:		2.068
Prob(Omnibus):		0.0	000 Jarque	e-Bera (JB):		28206.685
Skew:		0.9	901 Prob(.	Prob(JB):		0.00
Kurtosis:		26.2	202 Cond.	No.		1.12

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The results indicate that some weeks of the year have statistically significant impacts on the value of the first difference series. This supports the previous finding that the series has a significant seasonal component.

4.4 Stationary ARMA Model

The goal here is to estimate the cyclical component through a stationary ARMA model. First, let's estimate the parameters q and p through the autocorrelation and partial autocorrelation of the series.

```
[26]: # Plot
fig, axs = plt.subplots(2, 1, figsize=(15, 8))
plot_acf(decomposition.resid.dropna(), ax=axs[0])
plot_pacf(decomposition.resid.dropna(), ax=axs[1])
plt.show()
```


From the autocorrelation plot we can estimate that values are close enough to zero when q > 9, and from the partial autocorrelation plot, we can estimate the same when p > 7. Now, we can fit the model and verify the results.

```
[27]: arma_model = ARIMA(decomposition.resid.dropna(), order=(9, 0, 7))
print(arma_model.fit().summary())
```

SARIMAX Results ______

Dep. Variabinded: Model: Date: Time: Sample: Covariance	Su	ARIMA(9, 0, n, 19 Sep 20 16:44 - 9	7) Log L: 021 AIC :28 BIC 0 HQIC 998	bservations: ikelihood		998 1716.102 -3396.204 -3307.901 -3362.640
		std err	z	P> z	[0.025	0.975]
const	0.0003	0.001				
ar.L1	0.0299	0.365	0.082	0.935	-0.686	0.745
ar.L2	0.1119	0.262	0.427	0.669	-0.401	0.625
ar.L3	0.0959	0.263	0.365	0.715	-0.419	0.610
ar.L4	0.0137	0.218	0.063	0.950	-0.414	0.441
ar.L5	0.0764	0.224	0.341	0.733	-0.363	0.515
ar.L6	-0.0467	0.213	-0.219	0.827	-0.465	0.372
ar.L7	0.2691	0.178	1.513	0.130	-0.079	0.618
ar.L8	-0.0568	0.074	-0.769	0.442	-0.201	0.088
ar.L9	-0.1341	0.070	-1.904	0.057	-0.272	0.004
ma.L1	-0.0192	0.366	-0.052	0.958	-0.736	0.698
ma.L2	-0.0493	0.263	-0.187	0.851	-0.565	0.467
ma.L3	-0.0213	0.249	-0.085	0.932	-0.509	0.467
ma.L4	-0.1085	0.211	-0.515	0.607	-0.521	0.305

35.315

0.217 -0.366 0.715

0.274

-2.340

0.784

0.019

0.000

-0.505

-0.359

-0.745

0.002

0.346

0.475

-0.066

0.002

Ljung-Box (L1) (Q): 0.36 Jarque-Bera (JB):

0.213

0.173

5.38e-05

4006.25

ma.L5

ma.L6

ma.L7

sigma2

Prob(Q): 0.55 Prob(JB):

0.00

Heteroskedasticity (H): 2.17 Skew:

-0.0794

0.0583

-0.4056

0.0019

0.36

Prob(H) (two-sided): 0.00 Kurtosis:

12.79

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complexstep).

5 NYSE Stock Yields

5.1 Load the Data

Notice that here we don't apply the log-transform in our data since it is already given in percentage.

First, we are going to implement the augmented Dickey-Fuller Test to the most general regression:

$$\Delta X_t = b_0 + b_1 t + \rho X_{t-1} + \sum_{j=1}^{p-1} \varphi_j \Delta_{t-j} + \varepsilon_t$$

In this case, the hypotesis can be written as:

$$H_0: \rho = 0$$

 $H_1: \rho < 0$

```
[29]: # Obtains the ADF results for the general regression
adf_res = sm.adfuller(
    df_nyse['value'],
```

```
regression='ct',
   maxlag=12,
   autolag='AIC',
   regresults=True
)

# Show test results
print(f"T-statistic: {adf_res[0]}")
print(f"P-value: {adf_res[1]}")
print(f"Used lag: {adf_res[3].usedlag}\n")
print(adf_res[3].resols.summary())
```

T-statistic: -3.4096114441815564 P-value: 0.050116958198374056

Used lag: 4

OLS Regression Results

=========	======	========				=======	=======
Dep. Variable	:		У	R-squ	ared:		0.150
Model:			OLS	Adj.	R-squared:		0.140
Method:		Least Squa	res	F-sta	tistic:		14.88
Date:	S ⁻	un, 19 Sep 2	021	Prob	(F-statistic)	:	1.06e-15
Time:		16:44	:29	Log-I	Likelihood:		-110.74
No. Observati	ons:		513	AIC:			235.5
Df Residuals:			506	BIC:			265.2
Df Model:			6				
Covariance Ty	pe:	nonrob	ust				
========	coef	std err	=====	===== t	P> t	[0.025	0.975]
x1	-0.0378	0.011	-3	.410	0.001	-0.060	-0.016
x2	0.3334	0.044	7	.581	0.000	0.247	0.420
x3	-0.0507	0.045	-1	.116	0.265	-0.140	0.039
x4	-0.1785	0.045	-3	.947	0.000	-0.267	-0.090
x5	0.1344	0.044	3	.054	0.002	0.048	0.221
const	0.2057	0.066	3	.126	0.002	0.076	0.335
x6	-0.0001	9.73e-05	-1	.450	0.148	-0.000	5.01e-05
=========	======		=====	=====			
Omnibus:		155.	383	Durbi	.n-Watson:		1.998
Prob(Omnibus)	:	0.	000	-	ıe-Bera (JB):		9645.278
Skew:		-0.	331	Prob((JB):		0.00
Kurtosis:		24.	232	Cond.	No.		1.50e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.5e+03. This might indicate that there are strong multicollinearity or other numerical problems.

We can see that the t-statistic is not statistically significant at a 1% risk level so we can not reject the null hypothesis. b1 (here x6) is not statistically significant.

Thus, we perform the restricted regression without the trend term.

T-statistic: -3.0879577428483445 P-value: 0.02745730031042599

Used lag: 4

OLS Regression Results

========	ULS Regression Results						
Dep. Varial	ble:		y]	R-sai	lared:		0.146
Model:			•	-	R-squared:		0.138
Method:		Least Squa		•	atistic:		17.40
Date:		Sun, 19 Sep 2	2021	Prob	(F-statistic):		6.53e-16
Time:		16:44	1:29	Log-I	Likelihood:		-111.81
No. Observa	ations:		513	AIC:			235.6
Df Residual	ls:		507	BIC:			261.1
Df Model:			5				
Covariance Type: nonrobust			oust				
========			======	====		=======	
	coef	std err		t 	P> t	[0.025	0.975]
x1	-0.0317	0.010	-3.	088	0.002	-0.052	-0.012
x2	0.3311	0.044	7.	526	0.000	0.245	0.418
x3	-0.0535	0.045	-1.	178	0.239	-0.143	0.036
x4	-0.1807	0.045	-3.	992	0.000	-0.270	-0.092
x5	0.1321	0.044	3.	002	0.003	0.046	0.219
const	0.1418	0.049	2.	900	0.004	0.046	0.238
Omnibus:	=========	 151.	753	-== = Durb:	======== in-Watson:	======	1.998

```
      Prob(Omnibus):
      0.000 Jarque-Bera (JB):
      9615.288

      Skew:
      -0.257 Prob(JB):
      0.00

      Kurtosis:
      24.203 Cond. No.
      20.0
```

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

We can see that the t-statistic is not statistically significant at a 1% risk level so we can not reject the null hypothesis.

b0 (here constant) is not statistically significant at a 1% risk level

Thus, we perform the restricted regression without the trend term and without the constant

T-statistic: -1.0848432040960392 P-value: 0.2513731607012235

Used lag: 4

No. Observations:

OLS Regression Results

```
======
Dep. Variable:
                                       R-squared (uncentered):
                                   У
0.132
Model:
                                 OLS
                                     Adj. R-squared (uncentered):
0.124
Method:
                       Least Squares
                                     F-statistic:
15.51
                    Sun, 19 Sep 2021 Prob (F-statistic):
Date:
3.27e-14
Time:
                            16:44:30 Log-Likelihood:
-116.03
```

513

AIC:

242.1

Df Residuals: 508 BIC:

263.3

Df Model: 5
Covariance Type: nonrobust

========		========	=======	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
x1 x2	-0.0031 0.3167	0.003	-1.085 7.192	0.279 0.000	-0.009 0.230	0.002
x3	-0.0697	0.045	-1.536	0.125	-0.159	0.019
x4 x5	-0.1944 0.1159	0.045 0.044	-4.287 2.635	0.000	-0.283 0.029	-0.105 0.202
Omnibus: Prob(Omnib	ous):	0	.000 Jarq	======= in-Watson: ue-Bera (JB (JB):):	1.994 10308.014 0.00
Kurtosis:		_		. No.		19.6

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The t-value is not statistically significant

We conclude that the series is not stationnary without a drift.

We will now investigate the first difference time series in order to see if the series is I(1).

```
[32]: df_nyse['diff'] = df_nyse['value'].diff()

# Plot

plt.plot(df_nyse['date'], df_nyse['diff'])

plt.title("First Difference of NYSE Dividend Yields")

plt.xlabel("Date")

plt.ylabel("Yields (%)")

plt.show()
```



```
[33]: adf_res = sm.adfuller(
    df_nyse['diff'].dropna(),
    regression='ct',
    maxlag=12,
    autolag='AIC',
    regresults=True
)

# Show test results
print(f"T-statistic: {adf_res[0]}")
print(f"P-value: {adf_res[1]}")
print(f"Used lag: {adf_res[3].usedlag}\n")
print(adf_res[3].resols.summary())
```

T-statistic: -6.9019835918490875 P-value: 2.3517361165049426e-08

Used lag: 12

OLS Regression Results

===========			====				=======	
Dep. Variable:			У	R-squared:			0.419	
Model:			OLS	Adj. F	R-squared:		0.402	
Method:		Least Squa	res	F-stat	cistic:		25.15	
Date:	Sui	n, 19 Sep 2	021	Prob ((F-statistic):	4.69e-49	
Time:		16:44	:30	Log-Li	kelihood:		-108.70	
No. Observations:			504	AIC:			247.4	
Df Residuals:			489	BIC:			310.7	
Df Model:			14					
Covariance Type:		nonrob	ust					
	coef	std err	:====:	t	P> t	[0.025	0.975]	
x1 -0.9	9346	0.135	-(6.902	0.000	-1.201	-0.669	
x2 0.2	2694	0.131	4	2.059	0.040	0.012	0.526	

x3	0.1881	0.125	1.504	0.133	-0.058	0.434
x4	-0.0168	0.119	-0.141	0.888	-0.251	0.217
x5	0.1295	0.114	1.138	0.256	-0.094	0.353
x6	0.0689	0.107	0.646	0.519	-0.141	0.278
x7	0.1229	0.100	1.231	0.219	-0.073	0.319
x8	0.1021	0.093	1.098	0.273	-0.081	0.285
x9	0.0471	0.084	0.558	0.577	-0.119	0.213
x10	0.1573	0.076	2.065	0.039	0.008	0.307
x11	0.0724	0.063	1.144	0.253	-0.052	0.197
x12	0.0423	0.054	0.787	0.432	-0.063	0.148
x13	0.1573	0.045	3.528	0.000	0.070	0.245
const	0.0027	0.027	0.099	0.921	-0.051	0.056
x14	-2.448e-05	9.34e-05	-0.262	0.793	-0.000	0.000
Omnibus:		 178.	 880 Durbin	 n-Watson:		1.991
Prob(Omni	bus):	0.	000 Jarque	e-Bera (JB):		9810.814
Skew:		-0.	688 Prob(J	IB):		0.00

. - - -

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

24.571

Cond. No.

6.93e+03

[2] The condition number is large, 6.93e+03. This might indicate that there are strong multicollinearity or other numerical problems.

We can see that the t-value is statistically significant.

.

.

The b0 (constant) and b1 (trend term) are not statiscally significant, which confirms our previous findings.

We conclude that the time series is I(1) with no drift.

5.1.1 Deterministic Trend

```
[35]: model = OLS(df_nyse['diff'].dropna(), decomposition.trend, missing='drop')
print(model.fit().summary())
```

OLS Regression Results

======

Dep. Variable: diff R-squared (uncentered):

0.019

Model: OLS Adj. R-squared (uncentered):

0.015

Method: Least Squares F-statistic:

5.098

Date: Sun, 19 Sep 2021 Prob (F-statistic):

0.0248

Time: 16:44:32 Log-Likelihood:

-36.898

No. Observations: 265 AIC:

75.80

Df Residuals: 264 BIC:

79.38

Df Model:	1
Covariance Type:	nonrobust

	coef	std err	t	P> t	[0.025	0.975]
trend	4.8204	2.135	2.258	0.025	0.617	9.024
Omnibus: Prob(Omnibus Skew: Kurtosis:):	0	.000 Jaro	oin-Watson: que-Bera (JB o(JB): l. No.):	1.354 359.956 6.86e-79 1.00
=========	=======	=========		=========	========	========

Notes:

- [1] R^{2} is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

We find that b1 is not statiscally significant

5.1.2 Seasonality

[36]: model = OLS(df_nyse['diff'].dropna(), decomposition.seasonal, missing='drop')
print(model.fit().summary())

OLS Regression Results

======

Dep. Variable: diff R-squared (uncentered):

0.174

Model: OLS Adj. R-squared (uncentered):

0.172

Method: Least Squares F-statistic:

108.6

Date: Sun, 19 Sep 2021 Prob (F-statistic):

3.26e-23

Time: 16:44:32 Log-Likelihood:

-103.40

No. Observations: 517 AIC:

208.8

Df Residuals: 516 BIC:

213.1

Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

seasonal	0.4923	0.047	10.4	123 0.000	0.400	0.585
Omnibus:		358.4	 426 1	Ourbin-Watson:		1.464
Prob(Omnibus):	0.0	. 000	Jarque-Bera (JB)):	31957.458
Skew:		-2.3	194 1	Prob(JB):		0.00
Kurtosis:		41.2	266 (Cond. No.		1.00

Notes:

- [1] R^{2} is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The seasonal coefficient is statisfially significant. The time series has a seasonal component.

5.2 Stationary ARMA Model

The goal here is to estimate the cyclical component through a stationary ARMA model. First, let's estimate the parameters q and p through the autocorrelation and partial autocorrelation of the series.

```
[37]: # Plot
fig, axs = plt.subplots(2, 1, figsize=(15, 8))
plot_acf(decomposition.resid.dropna(), ax=axs[0])
plot_pacf(decomposition.resid.dropna(), ax=axs[1])
plt.show()
```


Graphically we can estimate q > 6.

```
[39]: arma_model = ARIMA(decomposition.resid.dropna(), order=(6, 0, 12)) print(arma_model.fit().summary())
```

SARIMAX Results

______ Dep. Variable: resid No. Observations: 265 Model: ARIMA(6, 0, 12) Log Likelihood 455.402 Date: Sun, 19 Sep 2021 AIC -870.804 16:45:48 BIC Time: -799.210 O HQIC Sample: -842.039

- 265

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
const	0.0034	0.004	0.781	0.435	-0.005	0.012
ar.L1	0.0639	2.432	0.026	0.979	-4.702	4.830
ar.L2	-0.2614	2.058	-0.127	0.899	-4.295	3.773
ar.L3	-0.1048	2.008	-0.052	0.958	-4.041	3.831
ar.L4	0.1677	1.781	0.094	0.925	-3.323	3.658
ar.L5	0.0546	1.114	0.049	0.961	-2.130	2.239
ar.L6	0.2892	0.712	0.406	0.684	-1.105	1.684
ma.L1	0.1085	2.431	0.045	0.964	-4.657	4.874
ma.L2	-0.2300	2.289	-0.100	0.920	-4.717	4.256
ma.L3	-0.1931	1.224	-0.158	0.875	-2.592	2.206
ma.L4	0.1384	0.777	0.178	0.859	-1.385	1.662
ma.L5	0.1245	0.810	0.154	0.878	-1.463	1.712
ma.L6	0.1774	0.997	0.178	0.859	-1.777	2.132
ma.L7	0.1370	1.214	0.113	0.910	-2.243	2.517
ma.L8	-0.1600	1.282	-0.125	0.901	-2.673	2.353
ma.L9	-0.0005	0.713	-0.001	0.999	-1.398	1.397
ma.L10	-0.3131	0.507	-0.617	0.537	-1.308	0.681
ma.L11	-0.0047	0.512	-0.009	0.993	-1.009	0.999
ma.L12	0.0528	0.432	0.122	0.903	-0.794	0.899
sigma2	0.0019	5.78e-05	32.117	0.000	0.002	0.002

===

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB):

28310.12

Prob(Q): 0.96 Prob(JB):

0.00

Heteroskedasticity (H): 1.00 Skew:

-1.21

Prob(H) (two-sided): 0.99 Kurtosis:

ヒる	ᄃ	Ç
00	U	C

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).