Examen de Topología

NOTA IMPORTANTE: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros.

Problema

Demostrar que en un espacio topológico (X,T) de Hausdorff, si M_1 , M_2 son dos subconjuntos compactos disjuntos, existen abiertos U_1 y U_2 que los separan; es decir $U_1 \supset M_1, U_2 \supset M_2$ y $U_1 \cap U_2 = \emptyset$. (3 puntos)

Solución

Proposición 11 del libro de teoría, página 180.

Problema

En el conjunto \mathbb{Z} de los números enteros se define la topología T mediante $T = \{M \subset Z \mid (0 \notin M) \ o \ (\mathbb{Z} - M \text{ es finito})\}.$

- a) Estudiar si (\mathbb{Z}, T) es conexo.
- b) Estudiar si (\mathbb{Z}, T) es compacto.
- (4 puntos)

Solución

- a) (\mathbb{Z},T) no es conexo, ya que $\mathbb{Z}=\{1\}\cup(\mathbb{Z}-\{1\})$, ambos conjuntos son abiertos y
- $\{1\} \cap (\mathbb{Z} \{1\}) = \emptyset.$
- b) Veamos que es compacto, si $F = \{U_i \mid i \in I\}$ es un recubrimiento abierto de (\mathbb{Z},T) , entonces alguno de los abiertos contendrá al 0, sea U_{i_o} , entonces $\mathbb{Z} U_{i_o} = \{n_1, \dots n_s\}$ es finito. Como F es un recubrimiento, para cada n_j existirá un abierto de F, U_{i_j} que contenga a n_j , luego $H = \{U_{i_o}, U_{i1}, \dots, U_{i_s}\}$ es un recubrimiento finito de F.

Problema

Sea $f: X \to Y$ una aplicación suprayectiva y supongamos que X tiene la topología trivial $T = \{X, \emptyset\}$. Probar que si S es una topología en Y, la aplicación $f: (X,T) \to (Y,S)$ es continua si y sólo si la topología S es la topología trivial de Y. (3 puntos)

Solución

Si la topología T de Y es trivial, f es continua con idependencia de la topología de X.

Si f es continua, sea $A \subset Y$ abierto de (Y,S); entonces $f^{-1}(A)$ es abierto en (X,T), por lo que, o bien $f^{-1}(A) = X$ o bien $f^{-1}(A) = \emptyset$.

Como f es suprayectiva, para todo $A \subset Y$ es $f(f^{-1}(A)) = A$; por lo tanto, si $f^{-1}(A) = X$, es A = f(X) = Y, y si $f^{-1}(A) = \emptyset$ se tiene que $A = f(\emptyset) = \emptyset$, y entonces $S = \{Y, \emptyset\}$.

Examen de Topología

NOTA IMPORTANTE: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros.

Problema

Sea (X,T) un espacio topológico (X,T). Demostrar que un subconjunto M de X es denso en X si y sólo si para todo abierto no vacío U de X se tiene que $U \cap M \neq \emptyset$. (3 puntos)

Solución

Proposición 13 del libro de teoría, página 44.

Problema

En el conjunto ${\mathbb R}$ de los números reales, definimos la topología

 $T = \{\mathbb{R}\} \cup P(\mathbb{R} - M)$, partes de $\mathbb{R} - M$, siendo M = (1,3)

- a) Estudiar si (\mathbb{R} , T) verifica el l axioma de numerabilidad
- b) Estudiar si (\mathbb{R} , T) es compacto
- (4 puntos)

Solución

a) El espacio verifica el I axioma de numerabilidad, puesto que para cada número

real x, si $x \in \mathbb{R} - M$, $B(x) = \{\{x\}\}$, es una base finita y por tanto numerable de entornos abiertos de x; y si $x \in M = (1,3)$, $B(x) = \{\mathbb{R}\}$ es una base finita y por tanto numerable de entornos abiertos de x.

b) (\mathbb{R}, T) es compacto, ya que dado cualquier recubrimiento por abiertos de (\mathbb{R}, T) , alguno de ellos contendrá el número 2, y ese solamente puede ser \mathbb{R} , luego ya tenemos un subrecubrimiento finito que es el formado por ese abierto.

Problema

Probar que un espacio topológico (X,T) es discreto si y solamente sí toda aplicación $f:(X,T)\to(\mathbb{R},T_u)$ es continua.

(3 puntos)

Solución

Es evidente que si (X,T) es un espacio discreto, cualquier aplicación $f:(X,T)\to(\mathbb{R},T_u)$ es continua.

Reciprocamente, supongamos que toda aplicación $f:(X,T)\to(\mathbb{R},T_u)$ es continua y sea $A\subset X$ arbitrario con $A\neq\emptyset$. La aplicación

f(x) = 0 si $x \in A$ e 1 si $x \notin A$ de $(X,T) \to (\mathbb{R}, T_u)$ es continua, por lo que $f^{-1}((\leftarrow, \frac{1}{2})) = A$ es abierto. Luego, como todo $A \subset X$ es abierto, la topología T es la topología discreta.