Regression analysis_Homework Assignment 5

心理所碩二 R08227112 林子堯 2020/11/30

1. Let $f_Y(y;\theta)$ be the distribution of random variable Y under parameter θ and $l=\ln f_Y(y;\theta)$ be the log-likelihood.

a. Show
$$E_{ heta}\left[rac{\partial^2 l}{\partial heta^2}
ight]+E_{ heta}\left[(rac{\partial^2 l}{\partial heta^2})^2
ight]=0$$

First of all, $\int f_Y(y;\theta)d\theta=1$. Under the regularity conditions, than the 1st derivative is

$$egin{aligned} 0 &= rac{\partial}{\partial heta} \int f_Y(y; heta) dy \ &= \int rac{\partial}{\partial heta} f_Y(y; heta) dy \ &= \int rac{rac{\partial}{\partial heta} f_Y(y; heta)}{f_Y(y; heta)} f_Y(y; heta) dy \ &= \int \left\{ rac{\partial}{\partial heta} \ln f_Y(y; heta)
ight\} f_Y(y; heta) dy \ &= E \left[rac{\partial}{\partial heta} \ln f_Y(y; heta)
ight] \end{aligned}$$

So
$$E\left[rac{\partial l}{\partial heta}
ight]=0$$
 .

The 2nd derivative is

$$egin{aligned} 0 &= rac{\partial^2}{\partial heta^2} \int f_Y(y; heta) dy \ &= \int rac{\partial}{\partial heta} iggl\{ rac{\partial}{\partial heta} \mathrm{ln} \, f_Y(y; heta) f_Y(y; heta) iggr\} \, dy \ &= \int iggl\{ rac{\partial^2}{\partial heta^2} \mathrm{ln} \, f_Y(y; heta) f_Y(y; heta) iggr\} + iggl\{ (rac{\partial}{\partial heta} \mathrm{ln} \, f_Y(y; heta))^2 f_Y(y; heta) iggr\} \, dy \ &= E \left[rac{\partial^2}{\partial heta^2} \mathrm{ln} \, f_Y(y; heta)
ight] + E \left[(rac{\partial}{\partial heta} \mathrm{ln} \, f_Y(y; heta))^2
ight] \end{aligned}$$

Since $E\left[\frac{\partial l}{\partial \theta}\right]=0$, $E\left[(\frac{\partial}{\partial \theta}\ln f_Y(y;\theta)-E\left[\frac{\partial}{\partial \theta}\ln f_Y(y;\theta)\right])^2\right]=Var\left[\frac{\partial}{\partial \theta}\ln f_Y(y;\theta)\right]$. Therefore, one has

$$egin{aligned} 0 &= E\left[rac{\partial^2 l}{\partial heta^2}
ight] + E\left[(rac{\partial l}{\partial heta})^2
ight] \ &= E\left[rac{\partial^2 l}{\partial heta^2}
ight] + Var\left[rac{\partial l}{\partial heta}
ight] \end{aligned}$$

b. Show
$$E_{ heta}\left[rac{\partial^3 l}{\partial heta^3}
ight] + 3Cov_{ heta}\left[rac{\partial^3 l}{\partial heta^3},rac{\partial l}{\partial heta}
ight] + E_{ heta}\left[(rac{\partial l}{\partial heta})^3
ight] = 0$$

The 3rd derivative is

$$\begin{split} 0 &= \frac{\partial^3}{\partial \theta^3} \int f_Y(y;\theta) dy \\ &= \int \frac{\partial}{\partial \theta} \left\{ \frac{\partial^2}{\partial \theta^2} \ln f_Y(y;\theta) f_Y(y;\theta) + \left(\frac{\partial}{\partial \theta} \ln f_Y(y;\theta) \right)^2 f_Y(y;\theta) \right\} dy \\ &= \int \left\{ \frac{\partial^3}{\partial \theta^3} \ln f_Y(y;\theta) f_Y(y;\theta) + \frac{\partial^2}{\partial \theta^2} \ln f_Y(y;\theta) \frac{\partial}{\partial \theta} \ln f_Y(y;\theta) f_Y(y;\theta) \right\} + \\ &\left\{ 2 \frac{\partial^2}{\partial \theta^2} \ln f_Y(y;\theta) \frac{\partial}{\partial \theta} \ln f_Y(y;\theta) f_Y(y;\theta) + \left(\frac{\partial}{\partial \theta} \ln f_Y(y;\theta) \right)^2 \frac{\partial}{\partial \theta} \ln f_Y(y;\theta) f_Y(y;\theta) \right\} dy \\ &= E \left[\frac{\partial^3}{\partial \theta^3} \ln f_Y(y;\theta) \right] + 3E \left[\left(\frac{\partial^2}{\partial \theta^2} \ln f_Y(y;\theta) \right) \left(\frac{\partial}{\partial \theta} \ln f_Y(y;\theta) \right) \right] + E \left[\left(\frac{\partial}{\partial \theta} \ln f_Y(y;\theta) \right)^3 \right] \end{split}$$

Again, since $E\left[rac{\partial l}{\partial heta}
ight]=0$,

$$\begin{split} &E\left[(\frac{\partial^{2}}{\partial\theta^{2}}\ln f_{Y}(y;\theta))(\frac{\partial}{\partial\theta}\ln f_{Y}(y;\theta))\right] \\ =&E\left[(\frac{\partial^{2}}{\partial\theta^{2}}\ln f_{Y}(y;\theta))(\frac{\partial}{\partial\theta}\ln f_{Y}(y;\theta))\right] - E\left[\frac{\partial^{2}}{\partial\theta^{2}}\ln f_{Y}(y;\theta)\right] E\left[\frac{\partial}{\partial\theta}\ln f_{Y}(y;\theta)\right] \\ =&Cov\left[\frac{\partial^{2}}{\partial\theta^{2}}\ln f_{Y}(y;\theta),\frac{\partial}{\partial\theta}\ln f_{Y}(y;\theta)\right] \end{split}$$

Therefore, one has

$$egin{aligned} 0 &= E\left[rac{\partial^3}{\partial heta^3} \mathrm{ln}\, f_Y(y; heta)
ight] + 3 Cov\left[rac{\partial^2}{\partial heta^2} \mathrm{ln}\, f_Y(y; heta), rac{\partial}{\partial heta} \mathrm{ln}\, f_Y(y; heta)
ight] + E\left[(rac{\partial}{\partial heta} \mathrm{ln}\, f_Y(y; heta))^3
ight] \ &= E\left[rac{\partial^3 l}{\partial heta^3}
ight] + 3 Cov\left[rac{\partial^2 l}{\partial heta^2}, rac{\partial l}{\partial heta}
ight] + E\left[(rac{\partial l}{\partial heta})^3
ight] \end{aligned}$$

2. Check whether Weibull, negative binomial, gamma distribution belong to the exponential family. If so, find the canonical forms.

a. Weibull distribution

Let $Y \sim Weibull(\gamma,\lambda)$, where $\gamma \geq 0$ and $\lambda \geq 0$ are two **unknwon** parameters. The pdf of Y is

$$f(y|\gamma,\lambda) = \lambda \gamma y^{\gamma-1} e^{-\lambda y^{\gamma}} 1_{\{0,\infty\}}(y)$$

we can find that a Weibull distribution with **two parameters** can't write as a canonical form.

But if γ is **known**, one can let $Z=Y^{\gamma}$, the cdf of Z is

$$P(Z \leq z) = P(Y^{\gamma} \leq z) = P(Y \leq z^{1/\gamma}) = \int_0^{z^{1/\gamma}} \!\! f(y|\gamma,\lambda) dy$$

and pdf of Z is

$$egin{aligned} f(z|\lambda) &= rac{d}{dz} P(Z \leq z) \ &= rac{1}{\gamma} z^{1/\gamma-1} \lambda \gamma(z^{1/\gamma})^{\gamma-1} e^{-\lambda(z^{1/\gamma})^{\gamma}} 1_{\{0,\infty\}}(z^{1/\gamma}) \ &= \lambda e^{-\lambda z} 1_{\{0,\infty\}}(z) \end{aligned}$$

The transformed random variable Z is exactly a exponential distribution with one parameter λ . It can write as the canonical form as follow

$$egin{aligned} f(z|lambda) &= exp\left\{z(-\lambda) + \ln \lambda + \ln(1_{\{0,\infty\}}(z))
ight\} \ &= \exp\left\{rac{z heta - b(heta)}{a(\phi)} + c(y,\phi)
ight\} \end{aligned}$$

where $\theta=-\lambda$, $b(\theta)=-\ln(-\theta)=-\ln(\lambda)$, $a(\phi)=\phi=1$ is a constant, and $c(y,\phi)=\ln(1_{\{0,\infty\}}(z))$. So Weibull distribution with **one parameters** λ can rewrite as a exponential distribution, which belongs to exponential family.

Further more, the expectation and variance of Z are separately

$$E[y] = \mu = b'(heta) = -rac{1}{ heta} = rac{1}{\lambda}$$

and

$$Var[y] = \mu'(heta) = a(\phi)b''(heta) = 1(rac{1}{ heta^2}) = rac{1}{\lambda^2}$$

b. Negative binomial distribution

Let $Y \sim NB(r,p)$, where Y denote the number of failures before the rth success, r>0 is a **known** positive integer and $p\in[0,1]$ is a **unknown** parameter. The pdf of Y is

$$egin{aligned} f(y|r,p) &= inom{r+y-1}{y} p^r (1-p)^y 1_{\{0,1,\ldots\}}(y) \ &= \expigg\{y \ln(1-p) + r \ln(p) + \lnigg(inom{r+y-1}{y} 1_{\{0,1,\ldots\}}(y)igg)igg\} \ &= \expigg\{rac{y(rac{1}{r} \ln(1-p)) + \ln(p)}{1/r} + \lnigg(inom{r+y-1}{y} 1_{\{0,1,\ldots\}}(y)igg)igg\} \ &= \expigg\{rac{y heta - b(heta)}{a(\phi)} + c(y,\phi)igg\} \end{aligned}$$

where $\theta=\frac{1}{r}\ln(1-p)\Rightarrow p=1-e^{r\theta}$, $b(\theta)=-\ln(1-e^{r\theta})=-\ln(1-p)$, $a(\phi)=\phi=1/r$ is a constant (since r is known), and $c(y,\phi)=\ln\Bigl(\binom{\phi^{-1}+y-1}{y}1_{\{0,1,\ldots\}}(y)\Bigr)=\ln\Bigl(\binom{r+y-1}{y}1_{\{0,1,\ldots\}}(y)\Bigr)$. So the negative binomial distribution belongs to the exponential family.

It follows, as expected, that

$$E[y] = \mu = b'(heta) = rac{re^{r heta}}{1-e^{r heta}} = rrac{1-p}{p}$$

and

$$Var[y] = \mu'(\theta) = a(\phi)b''(\theta) = r(\frac{r^2e^{r\theta}}{1-e^{r\theta}} + \frac{r^2(e^{r\theta})^2}{(1-e^{r\theta})^2}) = r(\frac{1-p}{p} + \frac{(1-p)^2}{p^2}) = r\frac{1-p}{p^2}$$

c. Gamma distribution

Let $Y \sim Gamma(\alpha, \beta)$, with two unknown parameters $\alpha, \beta > 0$. The pdf of Y is

$$egin{aligned} f(y|lpha,eta) &= rac{y^{lpha-1}e^{-rac{y}{eta}}}{\Gamma(lpha)eta^lpha} 1_{(0,\infty)}(y) \ &= \expigg\{y(-rac{1}{eta}) + lpha \ln(rac{1}{eta}) + (lpha-1)\ln(y) - \ln(\Gamma(lpha)) + \ln(1_{(0,\infty)}(y))igg\} \ &= \expigg\{rac{y(-rac{1}{lphaeta}) + \ln(rac{1}{lphaeta})}{1/lpha} + igl((lpha-1)\ln(y) - \ln(\Gamma(lpha)) + \ln(1_{(0,\infty)}(y))igr)igg\} \ &= \expigg\{rac{y heta - b(heta)}{a(\phi)} + c(y,\phi)igg\} \end{aligned}$$

where $\theta=-\frac{1}{\alpha\beta}$, $b(\theta)=-\ln(-\theta)=-\ln(\frac{1}{\alpha\beta})$, $a(\phi)=\phi=1/\alpha$, and $c(y,\phi)=(\phi^{-1}-1)\ln(y)-\ln(\Gamma(\phi^{-1}))+\ln(1_{(0,\infty)}(y))=(\alpha-1)\ln(y)-\ln(\Gamma(\alpha))+\ln(1_{(0,\infty)}(y))$. So gamma distribution belongs to the exponential family.

It follows, as expected, that

$$E[y] = \mu = b'(heta) = -rac{1}{ heta} = lpha eta$$

and

$$Var[y] = \mu'(heta) = a(\phi)b''(heta) = rac{1}{lpha}(rac{1}{ heta^2}) = rac{1}{lpha}(lphaeta)^2 = lphaeta^2$$