Faculté des Mathématiques **USTHB**

Master 1 ISMTID

Module: Processus Stochastiques 2

Semestre 2 année 2012/2013

Durée: 1h

Test

Exercice 1 (3 points) Soit Y une v.a. réelle sur (Ω, A, P) telle que $E(|Y|) < +\infty$.

- 1. Soit $\mathcal{F} = \{\emptyset, \Omega\}$. Déterminer $E(Y/\mathcal{F})$.
- 2. Soit X une v.a constante (p.s). Déterminer E(Y/X).

Exercice 2 (6 pts) Soit $\varepsilon_1, \varepsilon_2, ...$ des variables aléatoires indépendantes d'espérance nulle et de variance $Var[\varepsilon_i] = \sigma_i^2$. Posons

$$S_n = \sum_{i=1}^n \varepsilon_i, \quad et \ T_n^2 = \sum_{i=1}^n \sigma_i^2$$

Montrez que $S_n^2 - T_n^2$ est une martingale.

Exercice 3 (6 points)

- A/ Lequels de ces temps représente un temps d'arrêt:
- 1/Un joueur décide de s'arrêter au temps T_1 où sa fortune est maximale.
- 2/ Un joueur décide de s'arrêter au temps T_2 lorsque sa fortune dépasse le double de sa mise initiale.
- 3/ Un actionnaire demande à son banquier de vendre ses actions au temps T_3 où le cours de l'action atteint son maximum.
- 4/ Un actionnaire demande à son banquier de vendre au temps T_4 où le cours de l'action a réalisé pour la première fois une progression de 15% sur les 100 derniers jours
- B/ Considérons l'espace probabilisé (Ω, \mathcal{A}, P) sur lequel sont construites deux filtrations $(\mathcal{F}_t)_{t\geq 0}$ et $(\mathcal{G}_t)_{t\geq 0}$ satisfaisant $\mathcal{F}_t\subseteq \mathcal{G}_t$.
- 1) $Soit^-M = (M_t)_{t\geq 0}$ une \mathcal{F}_t -martingale (martingale par rapport à la filtration $(\mathcal{F}_t)_{t\geq 0}$) et soit $N = (N_t)_{t\geq 0}$ une \mathcal{G}_t -martingale . Est-ce que M est une \mathcal{G}_t -martingale ? Est-ce que N est une \mathcal{F}_t -martingale ? Justifiez vos réponses.
- 2) Soit T un \mathcal{F}_t -temps d'arrêt (temps d'arrêt par rapport à la filtration $(\mathcal{F}_t)_{t\geq 0}$) et S un \mathcal{G}_t -temps d'arrêt. Est-ce que S est un \mathcal{F}_t -temps d'arrêt? Est-ce que T est un \mathcal{G}_t -temps d'arrêt? Justifiez vos réponses.