2019 ADA miniHW 1

b07902064 資工二 蔡銘軒

September 21, 2019

From the definition of $g(n) = \Theta(F(n))$, there exist positive constants c_1 , c_2 , and n_0 , such that $0 \le c_1 F(n) \le g(n) \le c_2 F(n)$, for all $n \ge n_0$.

And from the definition of h(n) = o(F(n)), for every positive constant c > 0, there exists a constant $n_1 > 0$, such that $0 \le h(n) < cF(n)$, for all $n \ge n_1$.

By taking $n_2 = max(n_0, n_1)$, we have $0 \le h(n) < c_1 F(n) \le g(n) \le c_2 F(n)$, for all $n \ge n_2$. Subtracting the inequalities by h(n), we get $0 < c_1 F(n) - h(n) \le f(n) \le c_2 F(n) - h(n)$, for all $n \ge n_2$.

We now focus on the term $c_1F(n) - h(n)$. Since h(n) < cF(n) for all c > 0, we have $c_1F(n) - cF(n) = (c_1 - c)F(n) < c_1F(n) - h(n)$ for all c > 0. The term $(c_1 - c)$ can take any value in the interval $(-\infty, c_1)$. Since $c_1 > 0$, we can choose a constant c_3 such that $c_3 \in (-\infty, c_1)$ and $c_3 > 0$.

Now we arrive at $0 < c_3 F(n) < f(n)$, which can also be written as $0 \le c_3 F(n) \le f(n)$, for all $n \ge n_2 = max(n_0, n_1)$ with a positive constant $c_3 > 0$, which is the definition of $f(n) = \Omega(F(n))$. The statement is thus proven.