Københavns Universitets Økonomiske Institut

2. årsprøve 2018 S-2DM ex ret

Rettevejledning til skriftlig eksamen i Dynamiske Modeller Onsdag den 15. august 2018

Opgave 1. Vi betragter fjerdegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^4 + z^3 + 2z^2 + z + 1.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^4x}{dt^4} + \frac{d^3x}{dt^3} + 2\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 0,$$

og

$$(**) \frac{d^4x}{dt^4} + \frac{d^3x}{dt^3} + 2\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 12e^t + t^2.$$

(1) Udregn tallene P(2i) og $\sqrt{P(2i)}$.

Løsning. Vi finder, at P(2i) = 9 - 6i, og desuden finder vi, at

$$\sqrt{P(2i)} = \pm \left(\sqrt{\frac{\sqrt{117} + 9}{2}} - i\sqrt{\frac{\sqrt{117} - 9}{2}} \right).$$

(2) Vis, at betingelsen

$$\forall z \in \mathbf{C} : P(z) = (z^2 + 1)(z^2 + z + 1)$$

er opfyldt.

Løsning. Dette fremgår ved sammengangning af de to parenteser.

(3) Bestem samtlige rødder i polynomiet P.

Løsning. Vi ser, at

$$\begin{split} P(z) &= 0 \Leftrightarrow z^2 = -1 \, \vee \, z^2 + z + 1 = 0 \Leftrightarrow \\ z &= \pm i \, \vee \, z = \frac{-1 \pm \sqrt{1-4}}{2} \Leftrightarrow z = \pm i \, \vee \, z = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}. \end{split}$$

(4) Bestem den fuldstændige løsning til differentialligningen (*).

Løsning. Vi får straks, at

$$x = c_1 \cos t + c_2 \sin t + c_3 e^{-\frac{1}{2}t} \cos \left(\frac{\sqrt{3}}{2}t\right) + c_4 e^{-\frac{1}{2}t} \sin \left(\frac{\sqrt{3}}{2}t\right),$$

hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

(5) Bestem den fuldstændige løsning til differentialligningen (**).

Løsning. Først gætter vi på en løsning af formen $\hat{x} = \alpha e^t$, og vi ser, at så skal $\alpha = 2$. Dernæst gætter vi på en løsning af formen $x^* = At^2 + Bt + C$, og her finder vi, at A = 1, B = -2 og C = -2. Vi får derfor, at

$$x = c_1 \cos t + c_2 \sin t + c_3 e^{-\frac{1}{2}t} \cos \left(\frac{\sqrt{3}}{2}t\right) + c_4 e^{-\frac{1}{2}t} \sin \left(\frac{\sqrt{3}}{2}t\right) + 2e^t + t^2 - 2t - 2,$$

hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

For ethvert $s \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(***) \frac{d^4x}{dt^4} + \frac{d^3x}{dt^3} + s\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 0.$$

(6) Opstil Routh-Hurwitz matricen $A_4(s)$ for differentialligningen (***), og bestem de $s \in \mathbf{R}$, hvor (***) er globalt asymptotisk stabil.

Løsning. Routh-Hurwitz matricen er

$$A_4(s) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & s & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & s & 1 \end{pmatrix},$$

og vi ser, at de ledende hovedunderdeterminanter for denne matrix er $D_1 = 1, D_2 = s - 1, D_3 = s - 2$ og $D_4 = s - 2$. Hvis den givne differentialligning skal være globalt asymptotisk stabil, skal alle disse fire ledende hovedunderdeterminanter være positive. Vi ser, at dette krav er opfyldt, hvis og kun hvis s > 2.

Opgave 2. Vi betragter vektorfunktionen $f: \mathbb{R}^2 \to \mathbb{R}^2$, som er givet ved forskriften

$$\forall (x_1, x_2) \in \mathbf{R}^2 : f(x_1, x_2) = (x_1^2 + x_1 x_2, x_1 + x_2^2).$$

(1) Bestem Jacobimatricen $Df(x_1, x_2)$ for vektorfunktionen f i et vilkårligt punkt $(x_1, x_2) \in \mathbf{R}$, og vis, at Jacobimatricen Df(1, 1) er regulær.

Løsning. Vi finder, at

$$Df(x_1, x_2) = \begin{pmatrix} 2x_1 + x_2 & x_1 \\ 1 & 2x_2 \end{pmatrix}.$$

Endvidere ser vi, at det $Df(x_1, x_2) = 4x_1x_2 + 2x_2^2 - x_1$, så det Df(1, 1) = 5. Dette viser, at Jacobimatricen Df(1, 1) er regulær.

(2) Angiv differentialet df(1,1) for vektorfunktionen f ud fra punktet (1,1).

Løsning. Vi ser straks, at

$$df(1,1) = Df(1,1) \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix} = \begin{pmatrix} 3x_1 + x_2 - 4 \\ x_1 + 2x_2 - 3 \end{pmatrix}.$$

(3) Godtgør, at der findes åbne omegne V og W af (1,1) og f(1,1), så restriktionen af f til omegnen V er en bijektiv afbildning af V på W.

Løsning. Påstanden følger umiddelbart af sætningen om lokalt bijektive afbildninger.

(4) Løs ligningen

$$\left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = f(1,1) + df(1,1)$$

med hensyn til $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

Løsning. Idet f(1,1)=(2,2), er totalmatricen for dette ligningssystem

$$T = \left(\begin{array}{ccc|c} 3 & 1 & | & 2+y_1 \\ 1 & 2 & | & 1+y_2 \end{array}\right),$$

som omformes til echelonmatricen

$$F = \begin{pmatrix} 1 & 0 & | & \frac{2}{5}y_1 - \frac{1}{5}y_2 + \frac{3}{5} \\ 0 & 1 & | & -\frac{1}{5}y_1 + \frac{3}{5}y_2 + \frac{1}{5} \end{pmatrix}.$$

Dette viser, at $x_1 = \frac{2}{5}y_1 - \frac{1}{5}y_2 + \frac{3}{5}$ og $x_2 = -\frac{1}{5}y_1 + \frac{3}{5}y_2 + \frac{1}{5}$.

Lad (v_k) være en punktfølge på mængden

$$K = \{(x_1, x_2) \in \mathbf{R}^2 \mid 0 \le x_1 \le 5 \land -1 \le x_2 \le 7\}.$$

(5) Vis, at punktfølgen $(f(v_k))$ har en konvergent delfølge $(f(v_{k_p}))$, som har et grænsepunkt $g \in f(K)$.

Løsning. Mængden K er kompakt, og da f er en kontinuert vektorfunktion, er også mængden f(K) kompakt, hvoraf påstanden følger.

Opgave 3. Vi betragter systemet

$$\tau = \{\emptyset, \mathbf{C}, G(r) \mid r > 0\},\$$

hvor $G(r) = \{ z \in \mathbb{C} \mid |z| < r \} \text{ for } r > 0.$

(1) Vis, at systemet τ er en topologi på mængden C.

Løsning. Vi bemærker, at \emptyset og \mathbf{C} tilhører systemet τ . Lad os nu betragte en endelig familie (S_i) , hvor $i=1,2,\ldots,p$, af mængder fra τ . Hvis \emptyset er en mængde i denne familie, er sagen klar, thi da er $\cap S_i = \emptyset \in \tau$. Hvis \emptyset ikke er et element i familien, og hvis den ikke kun består af mængden \mathbf{C} , ser vi, at

$$S = \bigcap_{i=1}^{p} S_i = \bigcap_{i=1}^{p} G(r_i) = G(r) \in \tau,$$

hvor $r = \min\{r_1, r_2, \dots, r_p\}.$

Lad os dernæst betragte en vilkårlig familie (S_i) af mængder fra τ . Hvis denne familie udelukkende består af \emptyset , eller hvis \mathbf{C} er en mængde i denne familie, vil foreningsmængden af mængder i familien klart være en mængde i familien. Ellers ser vi, at

$$S = \bigcup_{i} G(r_i) = G(r) \in \tau,$$

hvor $r = \sup\{r_i\}.$

Hermed har vi vist, at systemet τ er en topologi på C.

(2) Bestem systemet κ af alle afsluttede mængder i den ovenfor anførte topologi.

Løsning. Systemet κ af alle afsluttede mængder i den ovenfor anførte topologi er mængden af alle komplementærmægder til mængderne i systemet τ . Derfor har vi, at

$$\kappa = \{\emptyset, \mathbf{C}, F(r) \mid r > 0\},\$$

hvor
$$F(r) = \{ z \in \mathbb{C} \mid |z| \ge r \}.$$

Vi betragter mængden

$$M = \{ z \in \mathbf{C} \mid \operatorname{Re} z > 0 \}.$$

(3) Bestem systemet τ_M bestående af alle mængder, der er åbne relativt til M.

Løsning. Det er klart, at $\emptyset, M \in \tau_M$. De øvrige elementer i τ_M er mængderne

$$G_M(r) = G(r) \cap M = \{ z \in \mathbb{C} \mid |z| < r \land \operatorname{Re} z > 0 \},$$

hvor r > 0.

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^1 (x^2 + xe^t + \dot{x}^2) dt,$$

hvor x(0) = 0 og $x(1) = \frac{5}{4}e$.

(1) Vis, at dette variationsproblem er et minimumsproblem.

Løsning. Vi betragter funktionen $F(x, \dot{x}) = x^2 + xe^t + \dot{x}^2$ og vi finder, at

$$\frac{\partial F}{\partial x} = 2x + e^t \text{ og } \frac{\partial F}{\partial \dot{x}} = 2\dot{x}.$$

Herefter ser vi, at

$$F'' = \left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right),$$

som er en positiv definit matrix. Variationsproblemet er således et minimumsproblem.

(2) Løs dette variationsproblem.

Løsning. Vi opstiller Euler-Lagranges differentialligning og finder, at

$$\frac{\partial F}{\partial x} - \frac{d}{dt} \left(\frac{\partial F}{\partial \dot{x}} \right) = 0 \Leftrightarrow 2x + e^t - 2\ddot{x} = 0 \Leftrightarrow \ddot{x} - x = \frac{1}{2}e^t,$$

som er en inhomogen differentialligning af anden orden.

Den tilhørende homogene differentialligning har det karakteristiske polynomium $P(\lambda) = \lambda^2 - 1$, så de karakteristiske rødder er $\lambda = \pm 1$.

En speciel løsning til den inhomogene differentialligning er af formen $\hat{x} = Ate^t$, og vi ser, at $\hat{x}' = Ae^t + Ate^t$ og $\hat{x}'' = 2Ae^t + Ate^t$, og ved indsættelse for vi, at $A = \frac{1}{4}$. Den fuldstændige løsning er derfor

$$x = \alpha e^t + \beta e^{-t} + \frac{1}{4} t e^t,$$

hvor $\alpha, \beta \in \mathbf{R}$.

Da x(0) = 0, er $\beta = -\alpha$, så

$$x = x(t) = \alpha(e^t - e^{-t}) + \frac{1}{4}te^t,$$

hvor $\alpha \in \mathbf{R}$.

Da $x(1)=\alpha(e-e^{-1})+\frac{1}{4}e=\frac{5}{4}e,$ får vi, at

$$\alpha = \frac{e}{e - e^{-1}} = \frac{e^2}{e^2 - 1}.$$

Den søgte løsning er derfor

$$x^* = x^*(t) = \frac{e^2}{e^2 - 1}(e^t - e^{-t}) + \frac{1}{4}te^t.$$