Gradients in Microbial Community Analysis

Christopher Quince Metapop NERC 2014

Introduction

- Gradients are highly important in structuring microbial communities
- Examine one example data set comprising archaeal amoA gene from 46 soils "Niche specialization of terrestrial archaeal ammonia oxidizers " (Gubry-Rangin et al. PNAS 2012)
- Protein coding interesting implications for noise removal
- 592 bp amplicons assembled via pairwise comparisons of forward and reverse reads
- 67 5% similarity average linkage OTUs

Installing R

R can be downloaded from:

http://www.r-project.org

There are pre-compiled binaries available for Windows and Mac

Answers to frequently asked questions about R are available here:

http://cran.r-project.org/doc/FAQ/R-FAQ.html

<u>http://cran.r-project.org/bin/windows/base/rw-FAQ.html</u> (FAQ on R for Windows)

There is a good introduction to R here:

http://cran.r-project.org/doc/manuals/R-intro.html

- For this session, you can use R on your amazon cloud EC2 image
 - Red commands to run

Getting started on the EC2

- Logon to amazon cloud and start up a terminal
- Get the tutorial from my Public Dropbox: wget https://dl.dropboxusercontent.com/u/ 7163977/MultivariateStats.tar.gz
- Go into Tutorials, expand directory and move into it:

tar –xvzf MultivariateStats.tar.gz cd MultivariateStats

Importing data and loading libraries

To start R command line on server type R. Type the commands in red at the R command line. Do not include the initial ">". You can redisplay and edit previous commands using the arrow keys

Import data:

```
>AS_C05 <- read.csv("AllSites_C05.csv",header=TRUE,row.names=1)
>Env <- read.csv("Env.csv",header=TRUE,row.names=1)
>pH <- Env$pH
Install libraries not all necessary:
>install.packages("mgcv")
```

```
>install.packages("mgcv")
>install.packages("picante")
>install.packages("gplots")
>install.packages("ggplot2")
>install.packages("RColorBrewer")
>install.packages("vegan")
>install.packages("ape")
>install.packages("GUniFrac")
```

Load libraries:

```
>library("mgcv")
>library("picante")
>library("gplots")
>library("ggplot2")
>library("RColorBrewer")
>library("vegan")
>library("ape")
>library("GUniFrac")
```

Species Richness

Sample sizes and species richness:

```
>AS <- t(AS_C05)
>N <- rowSums(AS)
>S <- specnumber(AS)
```

 Is species richness related to pH?

```
> qplot(pH,S,
geom=c("smooth","poi
nt"))+ xlab("pH") +
ylab("Species richness")
```

- Is it significant?
 - > cor.test(pH,S)
- Yes at p = 0.005%

Species Richness (cont.)

but should rarefy to account for sample size..

```
> summary(N)
>S.rar <- rarefy(AS,482)
>cor.test(pH,S.rar)
```

- But now p = 1% ...>cor.test(pH,N)
- Because N (sample size) and pH are uncorrelated!
- Linear multivariate regression reveals that only pH impacts species richness ...

```
>S.lm <- lm(S ~ pH + C + N + CN + Moisture + LOI + vegetation, data = Env) 
>summary(S.lm)
```

Phylogenetic Diversity

- Other diversity measures available e.g. Shannon:
 - >Sh <- diversity(AS, index = "shannon", MARGIN = 1, base = exp(1))
- Phylogentic diversity (PD) is a diversity measure that accounts for phylogenetic distance. Normalise frequency matrix and read in tree:
 - >ASP <- AS/rowSums(AS)
 >tr <- read.tree("RAxML bestTree.AllSite.tree")
- Calculate phylogentic diversity, plot, and test for significant relationship with pH (much higher!):
 - >pd.result <- pd(ASP, tr, include.root = TRUE)
 - >plot(pH,pd.result\$PD)
 - >cor.test(pH,pd.result\$PD)

Generating Heat Map

Make palette and order samples by pH:

```
>crp <-
    colorRampPalette(c("blue","red","orange","ye
    llow"))(100)
>ASPPH <- data.frame(ASP,pH)
>ASPPH.order <- as.matrix(ASPPH[order(pH),])
>ASPO <- ASPPH.order[,1:67]</pre>
```

Plot heat map without reordering

```
>heatmap.2
  (sqrt(ASPO),col=crp,trace="none",Rowv=FALS
    E,Colv=FALSE)
```


Sample32
Sample18
Sample18
Sample97
Sample17
Sample15
Sample15
Sample40
Sample40
Sample47
Sample47
Sample47
Sample48
Sample24
Sample48
Sample28
Sample49
Sample49
Sample49
Sample49
Sample49
Sample49
Sample49
Sample49
Sample49
Sample40
Sample41
Sample40
Sample41

Hierarchical Clustering

- Generate sample distance matrix from relative frequencies:
- > ASP.dist < vegdist(ASP,dist="bray"
)</pre>
- >ASP.hclust <hclust(ASP.dist, method = "ward")
- >plot(ASP.hclust)

ASP.dist hclust (*, "ward")

MDS using Unifrac

Calculate Unifrac distances: >ASP.gunifrac <- GUniFrac(ASP, tr, alpha=c(0, 0.5, 1))\$unifracs Extract weighted Unifrac distances: >ASP.uf <- ASP.gunifrac[,,"d_1"] Perform principle coordinates analysis: >ASP.uf.cap <- capscale(ASP.uf ~ 1) Rescale pH to integers and make and bind pH like color palette: >IPH <- floor((pH - 3.5)*2) + 1>crp2 <- colorRampPalette(c("red","orange","green","blue","darkblue"))(14) >palette(crp2) Plot: >ordiplot (ASP.uf.cap, display = 'si', type = 'n') > for (i in seq (1, 14)) points (ASP.uf.cap, select = (IPH == i), col = i, pch = 19)

Non-metric Multidimensional Scaling

- Perform NMDS using vegan metaMDS:
- >ASP.nmds <- metaMDS(ASP)
- Plot NMDS empty and add in sites coloured by pH:
- > ordiplot (ASP.nmds, display = 'si', type = 'n')
- > for (i in seq (1, 14)) points (ASP.nmds, select = (IPH == i), col = i, pch = 19)

Adding pH gradient...

- Very easy to do:
- >ordisurf(ASP.nmds, Env \$pH)
- >for (i in seq (1, 14))
 points (ASP.nmds,
 select = (IPH == i), col =
 i, pch = 19)

NMDS Using Phylogentic Distance Metric (MPD)

- First need to generate cophenetic distance matrix from tree:
- >tr.phydist <- cophenetic(tr)
- Use this to calculate mean pairwise distance between all communities:
- >ASP.comdist <- comdist(ASP, tr.phydist,abundance.weighted=TRUE)
- Perform NMDS using vegan metaMDS on those distances:
- >ASP.comdist.nmds <- metaMDS(ASP.comdist)
- Plot NMDS empty and add in sites coloured by pH:
- > ordiplot (ASP.comdist.nmds, display = 'si', type = 'n')
- > for (i in seq (1, 14)) points (ASP.comdist.nmds, select = (IPH == i), col = i, pch = 19)

Correspondence Analysis

- Long gradient suggests correspondence rather than redundancy analysis:
- >ASP.ca <- cca(ASP)
- Select species with over 3,000 reads:
- >selSp <- colSums(AS)>3000
- Generate plot:
- > ordiplot (ASP.ca, display = 'si', type = 'n')
- > for (i in seq (1, 14)) points (ASP.ca, select = (IPH == i), col = i, pch = 19)
- > text(ASP.ca,display='sp',select=selSp)

Canonical Correspondence Analysis

- Use same cca function but include regression formula:
 - >ASP.cca <- cca(ASP ~ pH + CN + LOI + Moisture+ vegetation, data=Env)
- What about significance use random permutations of columns (OTUs) of community matrix?

```
>anova(ASP.cca)
```

- >anova(ASP.cca, by="terms")
- >ASP.cca <- cca(ASP ~ pH + CN + LOI + Moisture+ vegetation, data=Env)
- In original, reference cluster study, only pH significant, now find pH**,
 LOI** and vegetation*. Redo CCA with these and generate plot:
 - >ASPR.cca <- cca(ASP ~ pH + LOI + vegetation,data=Env)
 - > ordiplot(ASPR.cca, display = 'si', type = 'n')
 - > for (i in seq (1, 14)) points (ASPR.cca, select = (IPH == i), col = i, pch = 19)
 - > text(ASPR.cca,"cn")

Principal coordinates

 Use same cca function but include regression formula try with Bray-Curtis, MPD and Unifrac:

```
>ASP.cap <- capscale(ASP ~ .,data=Env)
>ASP.comdist.cap <- capscale(ASP.comdist ~ .,data=Env)
>ASP.uf.cap <- capscale(ASP.uf ~ .,data=Env)
```

 What about significance – use random permutations of columns (OTUs) of community matrix?

```
>anova(ASP.comdist.cap)
>anova(ASP.comdist.cap, perm.max=2000,perm=2000,by="terms")
>anova(ASP.uf.cap, perm.max=2000,perm=2000,by="terms")
>anova(ASP.cap, perm.max=2000,perm=2000,by="terms")
```

For Unifrac pH and vegation lets plot ordination with these:

```
>ASPR.uf.cap <- capscale(ASP.uf ~ pH + vegetation,data=Env)
>ordiplot(ASPR.uf.cap, display = 'si', type = 'n')
>for (i in seq (1, 14)) points (ASPR.uf.cap, select = (IPH == i), col = i, pch = 19)
>text(ASPR.uf.cap,"cn")
```


Hypothesis testing without ordination

- Permutational Multivariate Analysis apply to any model e.g. bray-curtis:
 - >ASP.ado <- adonis(ASP ~ ., data=Env)
 - >ASP.ado
- Compare to phylogenetically aware metric:
 - >ASP.comdist.ado <- adonis(ASP.comdist ~ ., data=Env)
 - >ASP.comdist.ado
- And Unifrac:
 - >ASP.uf.ado <- adonis(ASP.uf ~ ., data=Env)
 - >ASP.uf.ado

We can also do Mantel tests

- Can only account dissimilarity matrix for continuous environmental variables:
 - >EnvN <- Env[,1:6]
 - >EnvN.dist <- vegdist(scale(EnvN), "euclid")
 - >mantel(ASP.dist,EnvN.dist)
 - >mantel(ASP.uf,EnvN.dist)

Relationship of the most abundant groups to pH

Sort OTU total frequencies:

```
>sort(colSums(AS))
```

Log-transform normalised OUT frequencies with pseudo-count:

```
> logASP < - log((AS + 1)/rowSums(AS + 1))
```

Pull out relative frequencies of three most abundant + C30:

```
>logC6 <- logASP[,"C6"]
>logC1 <- logASP[,"C1"]
>logC13 <- logASP[,"C13"]
>logC30 <- logASP[,"C30"]
```

Use penalized generalized additive model to fit to relative frequencies:

```
>logC6.gam<-gam(logC6~s(pH))
>summary(logC6.gam)
```

Highly significant and explain large percentage of variance, plot three fits:

```
>plot(logC6.gam, xlab = "pH", ylab = "C6", las=0, pch=20, cex.axis=0.8,
    tck=0.01, cex.lab=0.85)
>points(pH,logC6 - mean(logC6),pch=20)
```

Repeat for C1, C13 and C30 if you want

C13 - alkalinophile

C6 – neutralophile

C30 – extreme acidophile

Bonferroni-Hochberg Correction

To correct for multiple comparisons:

```
nT <- ncol(logASP)
p \leftarrow rep(0,nT)
for(i in 1:nT){
   temp <-gam(logASP[,i]~s(pH))
   stemp <- summary(temp)</pre>
   p[i] <- stemp$p.table[[4]]
pa <- p.adjust(p, method = "BH")
hcp.df <- data.frame(colnames(logASP))</pre>
hcp.df <- cbind(hcp.df,p,pa)
head(hcp.df[order(hcp.df$p),],10)
```

Conclusion

- Archael ammonia oxidiser community strongly structured by pH with different OTUs having clear pH range
- Community composition is further differentiated between moorland and forest, grassland and agricultural continuum at 5%