

RESULTANTES DE LOS SISTEMAS DE FUERZAS QUE ACTÚAN SOBRE LA PARTÍCULA

1 y 2. Halle gráficamente la magnitud y la dirección de las resultantes de los dos sistemas de fuerzas de las figuras. Utilice una escala tal, que permita resolver los problemas ocupando una hoja tamaño carta.

3 y 4. Resuelva analíticamente los dos problemas anteriores.

(Sol. 533 kg ∠10.8°; 5.69 N √ 6.6°)*

5. El cable *AB* ejerce una tensión de 120 kips y el *AC* otra de 80. Determine la magnitud y la dirección de la fuerza única que es capaz de producir los mismos efectos externos sobre la argolla.

(Sol. 188.4 kip \(\sum 9.2^\circ\)

6. Se desea sostener el cuerpo de 140 lb que se muestra en la figura. Diga qué tensión T deberá aplicarse para lograrlo y cuál debe ser el ángulo.

(Sol.
$$T = 81.2 \text{ lb}; \Theta = 29.5^{\circ}$$
)

7. Descomponga la fuerza horizontal de 500 kg en dos componentes, en las direcciones que se indican. Diga cuáles son las magnitudes de las componentes C_1 y C_2 .

(Sol.
$$C_1 = 543 \text{ kg}$$
, $C_2 = 442 \text{ kg}$)

^{*}Todos los resultados de la serie están expresados en notación decimal, redondeados a la tercera cifra significativa, o a la cuarta si el número comienza con 1. Y los ángulos, en grados sexagesimales con una cifra decimal

8. Los tractores A y B remolcan una embarcación a lo largo de un canal. La cuerda jalada por el tractor A forma un ángulo $\theta = 25^{\circ}$ respecto al eje del canal; la cuerda que jala B tiene una tensión de 3 kips y forma un ángulo $\phi = 40^{\circ}$ respecto al eje del canal. ¿Cuál es la tensión en la cuerda de A? ¿Qué magnitud tiene la resultante de las dos tensiones?

(Sol.
$$T_A = 4.56 \text{ kip}$$
; $R = 6.43 \text{ kip}$)

9. Si la embarcación del problema anterior produce una resistencia de 200 kN, y la cuerda gobernada por el tractor A debe soportar la mínima tensión posible, ¿qué ángulo θ deberá formar con eje del canal, si ϕ = 40°? ¿Cuál es la tensión de cada cuerda?

(Sol.
$$\Theta$$
= 50°; T_A = 128.6 kN; T_B = 153.2 kN)

10. Determine la magnitud de F y del ángulo Θ para lograr que la resultante de las compresiones ejercidas por los perfiles de la figura sea horizontal y de 2.4 ton. La fuerza Q es de 1.8 ton y el ángulo Φ = 45°.

(
$$Sol.F=2.30 \text{ ton}, \Theta=64.5^{\circ};$$

 $F'=1.097 \text{ ton}, \Theta'=25.5^{\circ})$

11. Si la fuerza F del elemento estructural del problema anterior es de 60 kips, Q de 75 y su resultante debe ser horizontal y de 90 kips, ¿qué valores deben tener los ángulos θ y ϕ ?

(Sol.
$$\theta$$
=41.4°; φ =55.8°)

12. El cuerpo que sostiene la grúa de la figura es de 800 kg. ¿Cuáles son las componentes de ese peso en las direcciones de las barras *AB* y *BC*?

(Sol.
$$C_{AB} = 1200 \text{ kg}$$
; $C_{BC} = 1600 \text{ kg}$)

13. El cable en el que se aplica la tensión de 750 kg tiene una pendiente de 4/3. Determine sus componentes cartesianas, conforme al sistema mostrado en la figura.

(Sol.
$$F_x = 628 \text{ kg}$$
; $F_y = 410 \text{ kg}$)

14. Diga cuáles son la magnitud y la dirección de la resultante de las tres tensiones que las cuerdas ejercen sobre la argolla de la figura.

20 # 20 #

200 N

20 #

15. Determine la magnitud y la dirección de la resultante de las cuatro fuerzas que se representan en la figura.

16. ¿Por qué fuerza única habría que cambiar las tres ejercidas por los perfiles sobre el elemento estructural mostrado, de modo que se produjeran los mismos efectos externos sobre éste?

17. En el centro de un hexágono regular están aplicadas fuerzas de 1, 3, 5, 7, 9 y 11 N, colocadas en ese mismo orden y dirigidas hacia los vértices. Determine la magnitud de su resultante y diga en la dirección de cuál de las fuerzas actúa.

18. Además de las dos fuerzas mostradas, sobre el poste de la figura actúa la tensión del cable. Diga cuáles son las magnitudes de dicha tensión y de la resultante de las tres fuerzas, sabiendo que es vertical.

(Sol.
$$T = 676 \text{ kg}$$
; $R = 804 \text{ kg}$)

