### Debugging

Sergey Mechtaev

mechtaev@pku.edu.cn

**Peking University** 

### Debugging

**Definition.** The process of identifying and removing errors from computer hardware or software.



### Cost of Debugging

On average, developers spend **50%** of their programming time finding and fixing bugs.

This inefficiency is estimated to cost the global economy \$312 billion annually.

Cambridge University, 2013

### Debugging techniques

- Defensive programming
- Printf debugging
- Interactive debuggers
- System debuggers
- Delta debugging
- Automated program repair

© Sergey Mechtaev

#### **Print Statements**

"The most effective debugging tool is still careful thought, coupled with judiciously placed print statements." – Brian Kernighan

Famous programmers who prefer print statements:

- Linus Torvalds (Linux)
- Robert C. Martin (Agile Manifesto)
- Brian W. Kernighan and Rob Pike (UNIX)
- Guido van Rossum (Python)

#### Java Debugger – jdb

- Breakpoints location or condition under which we want the execution to be suspended
  - Line Breakpoint
  - Method Breakpoint
  - Expression Breakpoint
  - Exception Breakpoint
- Allows to inspect:
  - Values of variables
  - Call stack
  - Threads

#### Call Stack

#### **Methods**

```
void main() {
    a();
    b();
void a() {
   c();
   d();
void b() {
   e();
```

#### **Calls**



### System Debuggers – procfs

The **proc filesystem (procfs)** is a special filesystem in Unix-like operating systems that presents information about processes.

#### Useful files/directories:

- /proc/PID/cmdline, the command that originally started the process.
- /proc/PID/cwd, a symlink to the current working directory of the process.
- /proc/PID/environ contains the names and values of the environment variables that affect the process.
- /proc/PID/fd, a directory containing a symbolic link for each open file descriptor.

#### System Debugger – strace

Utility for Linux that monitors system calls, signal deliveries, and changes of process state.

- open opens files
- execve starts programs
- write writes to files



### Delta-debugging

**Definition.** A methodology to automate the debugging of programs using a scientific approach of hypothesis-trial-result loop.

#### Applications:

- Isolating failure-inducing program input (e.g. an HTML page that makes a Web browser fail)
- Isolating failure-inducing user interaction (e.g. the keystrokes that make a program crash)
- Isolating failure-inducing changes to the program code (e.g. after a failing regression test)

### Delta-debugging

- Given
  - A set  $C = \{c_1, c_2, ..., c_n\}$
  - A function Interesting:  $C \rightarrow \{Yes, No\}$
  - Interesting(C) = Yes
  - Interesting is monotonic, unambiguous and consistent
- The delta debugging algorithm returns a one-minimal Interesting subset *M* of *C*:
  - Interesting(M) = Yes
  - $\forall m \in M$ , Interesting $(M \setminus \{m\}) = \text{No}$

#### Naïve Solution

- Try all subsets of C to find the smallest one that is Interesting
- Problem: there are  $2^{|c|}$  subsets
- We want a polynomial-time solution

### Assumptions

- Monotonic
  - Interesting(X)  $\Rightarrow$  Interesting( $X \cup \{c\}$ )
- Unambiguous
  - Interesting(X)  $\land$  Interesting(Y)  $\Rightarrow$  Interesting( $X \cap Y$ )
- Consistent
  - Interesting(X) = Yes or Interesting(X) = No

### Interesting function

#### Valid examples

 $Interesting(C) \Leftrightarrow 3 \in C \land 8 \in C$ 

where 3 and 8 are just some concrete elements

Monotonic, unambiguous, consistent

#### **Invalid examples**

- Interesting executes flacky test (that sometimes passes, sometimes fails) – not consistent
- Interesting  $(C) \Leftrightarrow p \in C$ where p is any prime number – not unambiguous

© Sergey Mechtaev 14

#### Polynomial-Time Solution

```
DD(P, \{c_1, c_2, ..., c_n\}) =
        if n = 1 then return \{c_1\}
       P_1 = \{c_1, \dots, c_{\frac{n}{2}}\}
       P_2 = \{c_{\frac{n}{2}+1}, \dots, c_n\}
        if Interesting (P \cup P_1) then return DD(P, P_1)
        if Interesting (P \cup P_2) then return DD(P, P_2)
        else return DD(P \cup P_1, P_2) \cup DD(P \cup P_2, P_1)
```

1 2 3 4 5 6 7 8

Interesting

| 1 2 3 4 5 6 7 8 | Interesting |
|-----------------|-------------|
| 1 2 3 4         | No          |

| 1 2 3 4 5 6 7 8 | Interesting |
|-----------------|-------------|
| 1 2 3 4         | No          |
| 5 6 7 8         | No          |

| 1 2 3 4 5 6 7 8 | Interesting |
|-----------------|-------------|
| 1 2 3 4         | No          |
| 5 6 7 8         | No          |
| 125678          | No          |

| 1 2 3 | 4 5 6 7 8 | Interesting |
|-------|-----------|-------------|
| 1 2 3 | 4         | No          |
| • • • | . 5 6 7 8 | No          |
| 12.   | . 5 6 7 8 | No          |
| 3     | 4 5 6 7 8 | Yes         |

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Interesting |
|---|---|---|---|---|---|---|---|-------------|
| 1 | 2 | 3 | 4 | • | • | • | • | No          |
| • | • | • | • | 5 | 6 | 7 | 8 | No          |
| 1 | 2 | • | • | 5 | 6 | 7 | 8 | No          |
| • | • | 3 | 4 | 5 | 6 | 7 | 8 | Yes         |
| • | • | 3 | • | 5 | 6 | 7 | 8 | Yes         |

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Interesting |
|---|---|---|---|---|---|---|---|-------------|
| 1 | 2 | 3 | 4 | • | • | • | • | No          |
| • | • | • | • | 5 | 6 | 7 | 8 | No          |
| 1 | 2 | • | • | 5 | 6 | 7 | 8 | No          |
| • | • | 3 | 4 | 5 | 6 | 7 | 8 | Yes         |
| • | • | 3 | • | 5 | 6 | 7 | 8 | Yes         |
| 1 | 2 | 3 | 4 | 5 | 6 | • | • | Yes         |

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Interesting |
|---|---|---|---|---|---|---|---|-------------|
| 1 | 2 | 3 | 4 | • | • | • | • | No          |
| • | • | • | • | 5 | 6 | 7 | 8 | No          |
| 1 | 2 | • | • | 5 | 6 | 7 | 8 | No          |
| • | • | 3 | 4 | 5 | 6 | 7 | 8 | Yes         |
| • | • | 3 | • | 5 | 6 | 7 | 8 | Yes         |
| 1 | 2 | 3 | 4 | 5 | 6 | • | • | Yes         |
| 1 | 2 | 3 | 4 | 5 | • | • | • | No          |

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Interesting |
|---|---|---|---|---|---|---|---|-------------|
| 1 | 2 | 3 | 4 | • | • | • | • | No          |
| • | • | • | • | 5 | 6 | 7 | 8 | No          |
| 1 | 2 | • | • | 5 | 6 | 7 | 8 | No          |
| • | • | 3 | 4 | 5 | 6 | 7 | 8 | Yes         |
| • | • | 3 | • | 5 | 6 | 7 | 8 | Yes         |
| 1 | 2 | 3 | 4 | 5 | 6 | • | • | Yes         |
| 1 | 2 | 3 | 4 | 5 | • | • | • | No          |
| 1 | 2 | 3 | 4 | • | 6 | • | • | Yes         |

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Interesting |
|---|---|---|---|---|---|---|---|-------------|
| 1 | 2 | 3 | 4 | • | • | • | • | No          |
| • | • | • | • | 5 | 6 | 7 | 8 | No          |
| 1 | 2 | • | • | 5 | 6 | 7 | 8 | No          |
| • | • | 3 | 4 | 5 | 6 | 7 | 8 | Yes         |
| • | • | 3 | • | 5 | 6 | 7 | 8 | Yes         |
| 1 | 2 | 3 | 4 | 5 | 6 | • | • | Yes         |
| 1 | 2 | 3 | 4 | 5 | • | • | • | No          |
| 1 | 2 | 3 | 4 | • | 6 | • | • | Yes         |