

House Price from Size

Notation

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315 — m
852	178
•••	

Notation:

```
\mathbf{m} = \text{Number of training examples}
\mathbf{x}'s = \text{"input" variable (features)}
\mathbf{y}'s = \text{"output" variable ("target" variable)}
\mathbf{x}^{(1)} = 2104
\mathbf{x}^{(2)} = 1416
\mathbf{x}^{(2)} = 1416
\mathbf{y}^{(1)} = 460
\mathbf{x}^{(i)}, \mathbf{y}^{(i)} - \mathbf{i}-th training example
```

Hypothesis

In machine learning, many times the goal is simply to compute a "hypothesis" denoted as h

• This hypothesis h can take as input x (feature) and produce output y (target). That is h(x) = y

• For example, if h(2100) = 457, we know the predicted price of a house of 2100 sq feet is \$457k

How can we compute h?

Hypothesis

h computed using the training dataset

Representing *h*?

Maybe *h* is a straight line? Linear Regression!

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Later: *h* is more complex

Computing *h*?

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 $\theta_i's$: coefficients or parameters

How to choose $\theta'_i s$ given training dataset?

Examples of Coefficients and h

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 = 1.5; \ \theta_1 = 0$$

$$\theta_0 = 0; \ \theta_1 = 0.5$$

$$\theta_0 = 1; \ \theta_1 = 0.5$$

- θ_0 is the starting point of the line
- θ_1 represents the "slope" or angle of the line

Linear Regression

Idea: Choose θ_0 , θ_1 so that $h_{\theta}(x)$ is "close" to y for our training examples $(x^{(i)}, y^{(i)})$

Cost Function

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0$$
, θ_1

X

Cost Function (squared error function):

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$ θ_0, θ_1

Visualizing Cost Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

J can be thought of as the sum of square of all the blue lines (divided by 2m)

Keep in mind: J is a function of θ_0 and θ_1 . Why?

Because θ_0 and θ_1 define the line (hypothesis h). Cost function J is different for different lines.

Cost Function

Why squares?

 Negatives and positives don't cancel each other out. Suppose:

$$h(x^{(1)}) - y^{(1)} = 500$$

$$h(x^{(2)}) - y^{(2)} = -500$$

Then summation will be 0 even though h is not predicting y well at all!

- minimizes squared distance between training data and predicted line
- Math works nicely

Simplified Cost Function

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$

$$heta_0$$
 , $heta_1$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize $J(\theta_1)$ θ_1

We plotted h, but can we plot J?

Say you the given the training data set such that:

 $x^{(i)} = y^{(i)}$ for every i

Of course, correct hypothesis h for this set is h(x) = x. Hence $\theta_1 = 1$ (and $\theta_0 = 0$).

But let's compute J for different values of θ_1 .

Left: plot of h, Right: plot of J

Completing the Plot

This is a 1-dimensional cost function. θ_1 is the only variable here. What if θ_0 was also non-zero?

2-Dimensional Cost Function

Goal: Find θ_0 and θ_1 for which the cost function is minimized. Gradient Descent Algorithm!

