## **Tutorial T11**

- **T11.1** Let us consider the LNA in figure, where the MOSFETs have threshold  $V_T=0.5 \text{V}, \quad \frac{1}{2}\mu C_{OX}=0.1 \text{mA/V}^2, \quad \left(\frac{W}{L}\right)_1=100 \text{ and } \frac{\gamma}{\alpha}=2/3.$ 
  - a) Derive the bias point of the circuit and the analytical expression of  $V_{out}/V_{in}$  at  $f_0 = 2.4 \, \mathrm{GHz}$ , assuming input matching.
  - b) Setting  $R_L$  = 600  $\Omega$ , size  $L_1$ ,  $C_1$  and  $I_1$  to obtain (i) input matching and (ii)  $V_{out}/V_{in}$  equal to 12dB.
  - Evaluate the noise figure of the circuit at 2.4GHz, neglecting the noise of the bias transistor.



[Sol. b)  $L_1 = 5nH$ ,  $C_1 = 0.88pF$ ,  $I_1 = 1.95mA$ ; c) Q = 1.5, NF = 3.92dB]

- **T11.2** Let us consider the LNA in figure, where  $V_{dd}=1.8V$ ,  $V_{g1}=1.2V$ ,  $V_{g3}=0.6V$ ,  $R_s=50\Omega$ ,  $R_2=300\Omega$  C =  $+\infty$ , and the MOSFETs have threshold  $V_T=0.5V$ ,  $\frac{1}{2}\mu C_{OX}=0.2 \text{mA/V}^2$  and  $\frac{\gamma}{\alpha}=2/3$ .
  - a) Considering all noise sources (resistor thermal noise and MOS channel noise) and input matching, derive the expression for the noise figure. Are there any noise contributions that can be cancelled at the output?
  - b) Size  $R_1$ ,  $\left(\frac{W}{L}\right)_1$ ,  $\left(\frac{W}{L}\right)_2$  and  $\left(\frac{W}{L}\right)_3$  to guarantee a voltage gain  $V_{out}/V_{in}=19.3dB$  and noise figure NF = 3.6dB.



$$[\text{Sol. a}) \ g_{m1} R_S = 1, \ \frac{R_1}{R_S} = g_{m2} R_2, \ \ NF = 1 + \frac{\gamma}{\alpha} \frac{R_2}{R_1} + \frac{\gamma}{\alpha} g_{m3} R_S + \frac{R_S}{R_1} \Big( 1 + \frac{R_2}{R_1} \Big); \ \text{b}) \ R_2 = 461 \Omega, \Big( \frac{W}{L} \Big)_1 = 500, \Big( \frac{W}{L} \Big)_2 = 768, \Big( \frac{W}{L} \Big)_3 = 500 \ ]$$

T11.3 Let us consider the LNA in figure, where  $V_{dd}=2.5V$ ,  $R_s=50\Omega$ ,  $C=+\infty$ ,  $I_2=1$ mA,  $R_1=1.5k\Omega$ , and the MOSFETs have threshold  $V_T=0.5V$ ,  $\frac{1}{2}\mu C_{OX}=0.2$ mA/ $V^2$ ,  $(W/L)_1=400$ ,  $(W/L)_2=125$  and  $\frac{\gamma}{\alpha}=2/3$ .

- a) Referring to the circuit in Fig. 1, derive its bias point and the expression for the input admittance  $Y_{in}$ . Size  $R_2$  to ensure input matching.
- b) Assuming input matching for the previous circuit, derive the expressions for voltage gain  $V_{out}/V_{in}$  and noise figure considering only thermal noise from  $R_2$  and  $R_s$ .
- c) Referring now to the circuit in Fig. 2, where  $C_{in}=1 pF$ , derive the expression for the input admittance  $Y_{in}$ . Under the assumption that  $\omega \ll 1/R_1C_1$ , size  $C_1$  in order to preserve input matching.



[Sol. a) 
$$m R_2=1.15k\Omega$$
; b)  $rac{V_{out}}{V_{in}}=rac{1}{2}\Big(1-rac{R_2}{R_s}\Big)$  = -11, NF = 0.7dB; c)  $m C_1=33fF$ ]