0		
σ ≎ □	<pre>importing all necessary libraries import os import random import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use("ggplot") %matplotlib inline from tqdm import tqdm_notebook, tnrange from itertools import chain from skimage.io import imread, imshow, concatenate_images from skimage.transform import resize from skimage.morphology import label from sklearn.model selection import train test split</pre>	
=	import tensorflow as tf from keras.models import Model, load_model from keras.layers import Input, BatchNormalization, Activation, Dense, Dropout from keras.layers.core import Lambda, RepeatVector, Reshape from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.pooling import MaxPooling2D, GlobalMaxPool2D from keras.optimizers import Adam	
ο ⇔ □	from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img [] #set some params , image width, height, border of image im_width = 128 im_height = 128 border = 5	
	<pre>#print the no.of images in training dataset ids = next(os.walk("/content/drive/My Drive/pancreas/train/img-panc"))[2] print("No. of images = ", len(ids)) No. of images = 6029 [] #initialize array X, y with size of image height, width</pre>	
	<pre>X = np.zeros((len(ids), im_height, im_width, 1), dtype=np.float32) y = np.zeros((len(ids), im_height, im_width, 1), dtype=np.float32) [] # tqdm is used to display the progress bar for n, id_ in tqdm_notebook(enumerate(ids), total=len(ids)):</pre>	
	<pre>try:</pre>	
≡ α ↔	<pre>X[n] = x_img/255.0 y[n] = mask/255.0 except: continue /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:2: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0 Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm notebook`</pre>	
	100% 6029/6029 [2:38:33<00:00, 1.58s/it] [] # Split train and valid X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.1, random_state=42)	
	<pre>[] # Visualize any randome image along with the mask ix = random.randint(0, len(X_train)) has_mask = y_train[ix].max() > 0 # Pancreas indicator fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (20, 15)) ax1.imshow(X_train[ix,, 0], cmap = 'plasma', interpolation = 'bilinear') if has_mask: # if Pancreas # draw a boundary(contour) in the original image separating Pancreas and non-Pancreas areas ax1.contour(y_train[ix].squeeze(), colors = 'k', linewidths = 5, levels = [0.5]) ax2.imshow(y_train[ix].squeeze(), cmap = 'gray', interpolation = 'bilinear')</pre>	
≡ 0	ax2.set_title('MASK-IMG-PANCREAS') CI-Scan-ABDOMINAL-IMAGING MASK-IMG-PANCREAS	
≡	<pre>"""Function to add 2 convolutional layers with the parameters passed to it"" # first layer x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\</pre>	
: 0	<pre>x = BatchNormalization()(x) x = Activation('relu')(x) # second layer x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\ kernel_initializer = 'he_normal', padding = 'same')(input_tensor) if batchnorm: x = BatchNormalization()(x) x = Activation('relu')(x) return x [] #standard u-net arch def get_unet(input_img, n_filters = 16, dropout = 0.1, batchnorm = True):</pre>	
	<pre>"""Function to define the UNET Model""" # Contracting Path c1 = conv2d_block(input_img, n_filters * 1, kernel_size = 3, batchnorm = batchnorm) p1 = MaxPooling2D((2, 2))(c1) p1 = Dropout(dropout)(p1) c2 = conv2d_block(p1, n_filters * 2, kernel_size = 3, batchnorm = batchnorm) p2 = MaxPooling2D((2, 2))(c2) p2 = Dropout(dropout)(p2)</pre>	
≡	c3 = conv2d_block(p2, n_filters * 4, kernel_size = 3, batchnorm = batchnorm) c4 = conv2d_block(p3, n_filters * 8, kernel_size = 3, batchnorm = batchnorm) p4 = MaxPooling2D((2, 2))(c4) p4 = Dropout(dropout)(p4)	
:	c5 = conv2d_block(p4, n_filters = n_filters * 16, kernel_size = 3, batchnorm = batchnorm) # Expansive Path u6 = Conv2DTranspose(n_filters * 8, (3, 3), strides = (2, 2), padding = 'same')(c5) u6 = concatenate([u6, c4]) u6 = Dropout(dropout)(u6) c6 = conv2d_block(u6, n_filters * 8, kernel_size = 3, batchnorm = batchnorm)	
	u7 = Conv2DTranspose(n_filters * 4, (3, 3), strides = (2, 2), padding = 'same')(c6) u7 = concatenate([u7, c3]) u7 = Dropout(dropout)(u7) c7 = conv2d_block(u7, n_filters * 4, kernel_size = 3, batchnorm = batchnorm) u8 = Conv2DTranspose(n_filters * 2, (3, 3), strides = (2, 2), padding = 'same')(c7)	
	<pre>u8 = concatenate([u8, c2]) u8 = Dropout(dropout)(u8) c8 = conv2d_block(u8, n_filters * 2, kernel_size = 3, batchnorm = batchnorm) u9 = Conv2DTranspose(n_filters * 1, (3, 3), strides = (2, 2), padding = 'same')(c8) u9 = concatenate([u9, c1]) u9 = Dropout(dropout)(u9) c9 = conv2d_block(u9, n_filters * 1, kernel_size = 3, batchnorm = batchnorm)</pre>	
≡	<pre>outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9) model = Model(inputs=[input_img], outputs=[outputs]) [] #compiling the model input_img = Input((im_height, im_width, 1), name='img')</pre>	
⇔	model = get_unet(input_img, n_filters=16, dropout=0.05, batchnorm=True) model.compile(optimizer=Adam(), loss="binary_crossentropy", metrics=["accuracy"]) model.summary() conv2d_transpose (Conv2DTranspo (None, 16, 16, 128) 295040 activation_9[0][0] concatenate (Concatenate) (None, 16, 16, 256) 0 conv2d_transpose[0][0]	
	activation_7[0][0] dropout_4 (Dropout) (None, 16, 16, 256) 0 concatenate[0][0] conv2d_11 (Conv2D) (None, 16, 16, 128) 295040 dropout_4[0][0] batch_normalization_11 (BatchNo (None, 16, 16, 128) 512 conv2d_11[0][0]	
	activation_11 (Activation) (None, 16, 16, 128) 0 batch_normalization_11[0][0] conv2d_transpose_1 (Conv2DTrans (None, 32, 32, 64) 73792 activation_11[0][0] concatenate_1 (Concatenate) (None, 32, 32, 128) 0 conv2d_transpose_1[0][0] activation_5[0][0] dropout_5 (Dropout) (None, 32, 32, 128) 0 concatenate_1[0][0]	
≡	conv2d_13 (Conv2D) (None, 32, 32, 64) 73792 dropout_5[0][0] batch_normalization_13 (BatchNo (None, 32, 32, 64) 256 conv2d_13[0][0] activation_13 (Notivation) (None_32_32_64) 0 batch_normalization_13[0][0] concatenate_2 (Concatenate) (None, 64, 64, 64) 0 conv2d_transpose_2[0][0]	
⇔	activation_3[0][0] dropout_6 (Dropout) (None, 64, 64, 64) 0 concatenate_2[0][0] conv2d_15 (Conv2D) (None, 64, 64, 32) 18464 dropout_6[0][0] batch_normalization_15 (BatchNo (None, 64, 64, 32) 128 conv2d_15[0][0] activation_15 (Activation) (None, 64, 64, 32) 0 batch_normalization_15[0][0]	
	conv2d_transpose_3 (Conv2DTrans (None, 128, 128, 16) 4624 activation_15[0][0] concatenate_3 (Concatenate) (None, 128, 128, 32) 0 conv2d_transpose_3[0][0] activation_1[0][0] dropout_7 (Dropout) (None, 128, 128, 32) 0 concatenate_3[0][0] conv2d_17 (Conv2D) (None, 128, 128, 16) 4624 dropout_7[0][0]	
	batch_normalization_17 (BatchNo (None, 128, 128, 16) 64 conv2d_17[0][0] activation_17 (Activation) (None, 128, 128, 16) 0 batch_normalization_17[0][0] conv2d_18 (Conv2D) (None, 128, 128, 1) 17 activation_17[0][0]	
	Total params: 1,179,121	
i≡ α	Total params: 1,179,121 Trainable params: 1,472 Non-trainable params: 1,472 [] #creating a checkboint to save the best model [] ReduceLROnPlateau(factor=0.1, patience=5, min_lr=0.00001, verbose=1), ModelCheckpoint('model-tgs-pancreas.h5', verbose=1, save_best_only=True, save_weights_only=True)	
Ш о ≎ □	Trainable params: 1,177,649 Non-trainable params: 1,472 [] #creating a checkboint to save the best model [] ReduceLROnPlateau(factor=0.1, patience=5, min_lr=0.00001, verbose=1),	
Q ↔	Trainable params: 1,177,649 Non-trainable params: 1,472 [] foreating a checkpoint to save the best model [] ReductRonPlateau(factor=0.1, patience=5, min lr=0.00001, verbose=1),	
Q ↔	Trainable params: 1,177,649 Non-trainable params: 1,472 [] foreating a checkpoint to save the best model [] ReduceLROOPLateau(factor=0.1, patience=5, min_lr=0.00001, verbose=1), ModelCheckpoint('model-tgs-pancreas.h5', verbose=1, save_best_only=True, save_weights_only=True) [] #fit the data to the model by training it results = model.fit(X_train, y_train, batch_size=32, epochs=30, callbacks=callbacks,\	
Q ↔	Trainable params: 1,477,699 Non-trainable params: 1,472 ReduceLRONFlatesuffactor=0.1; patience=5, min_lr=0.00001, verbose=1), NodelCheckpoint('model-tgs-pancress.h5', verbose=1, save_best_only=True, save_weights_only=True) If the data to the model by training it results = model.fit(K_train, y_train, batch_size=32, epochs=30, callbacks=callbacks,\	
o ≎ □	Trainable params: 1,177,649 Non-trainable params: 1,472 To firestino a checimoint to save the best model Peduc-ESOSPistess(factor=0.1, patiences), min_le=0,00001, verbose=1), ModelChecopoint(model-top-panoress.h5', verbose=1, save_best_only=True, save_weights_only=True) Sfit the data to the model by training it results = model.fit((train, y_train, batch_size=22, epochs=00, cellbacks=cellbacks,\	
σ ≎ □ σ ≎	Testimole params: 1,177,649	
σ ≎ □ σ ≎	### Ron-trainable params: 1,472 Account of the contraction of the	
σ ≎ □ σ ≎	Transbis process 1,172	
	### Sections and Control of Section 2015	
	### Description of Communication (1974)	
	### Provided September 1, 127 Provided September 1, 127 Provided September 2, 127	
	### The control of th	
	The second control of	
	The control of the	
	The state of the content of the co	
	The state of the control of the cont	
	The content of the	
	Processing the Control of the Cont	
$\sigma \; \diamond \; \square \qquad \qquad$	The content of the co	
$\sigma \; \diamond \; \square \qquad \qquad$	Part	
$\sigma \; \diamond \; \square \qquad \qquad$	Residence of the control of the cont	
	Fig. 1. Sec. 1	
	The content of the co	
	Part	
	The content of the co	