Varna 6 June 2011

Balanced metrics, TYZ expansion and quantization of Kähler manifolds

http://arxiv.org/abs/1105.5315

joint with

Claudio Arezzo and Fabio Zuddas

Balanced metrics

(M,L) polarized manifold (M compact complex manifold, L very ample holomorphic line bundle over M).

Let g be a Kähler metric on M such that $\omega \in c_1(L)$ and h hermitian metric on L such that $Ric(h) = \omega$.

Kempf's distortion function $T_g \in C^{\infty}(M, \mathbb{R}^+)$

$$T_g(x) = \sum_{j=0}^{N} h(s_j(x), s_j(x)), \ x \in M$$

where $\{s_0,\ldots,s_N\}$, $N+1=\dim H^0(L)$, is an o.b. with respect to

$$\langle s, t \rangle_h = \int_M h(s, t) \frac{\omega^n}{n!}, s, t \in H^0(L)$$

Definition (Donaldson): a polarized metric $g \in c_1(L)$ is said to be balanced if $T_g = cost = \frac{N+1}{V(M)}$, $V(M) = \int_M \frac{\omega^n}{n!}$.

Main results on balanced metrics

Theorem (Zhang, 1996): $\exists g \text{ balanced}, g \in c_1(L) \Leftrightarrow (M, L)$ Chow polystable.

Theorem (Donaldson, 2001): Let $g_{cscK} \in c_1(L)$ and $\frac{Aut(M,L)}{\mathbb{C}^*}$ discrete. Then, for all m >> 1, $\exists !$ balanced metric $g_m \in c_1(L^m)$ such that $\frac{g_m}{m} \xrightarrow{C^{\infty}} g_{cscK}$. Moreover, if $g_m \in c_1(L^m)$ is a sequence of balanced metrics such that $\frac{g_m}{m} \xrightarrow{C^{\infty}} g_{\infty}$ then g_{∞} is cscK.

Corollary: Let $g_{cscK} \in c_1(L)$ and $\frac{Aut(M,L)}{\mathbb{C}^*}$ discrete. Then (M,L) is asymptotically Chow stable.

Corollary: If $\frac{\operatorname{Aut}(M,L)}{\mathbb{C}^*}$ is discrete and it exists $g_{cscK} \in c_1(L)$ then g_{cscK} is unique in $c_1(L)$.

What happens without the assumption on Aut(M, L)

Theorem (C. Arezzo – L. , 2004): Let g and \tilde{g} be two balanced metrics in $c_1(L)$. Then there exists $F \in Aut(M,L)$ such that $F^*\tilde{g} = g$.

Theorem (A. Della Vedova – F. Zuddas, 2011): Let $M = Bl_{p_1,...,p_4}\mathbb{C}P^2$ (four points in the same line except one). Then there exists a polarization L of M and $g_{cscK} \in c_1(L)$ such that (M,L^m) is not Chow polystable for m >> 1.

Theorem (Chen –Tian, 2008): If $\tilde{g}_{cscK} \sim g_{cscK} \Rightarrow \exists F \in Aut(M)$ such that $F^*\tilde{g}_{cscK} = g_{cscK}$.

Some problems on balanced metrics

$$\mathcal{B}(L)=\{g_B \text{ balanced } | \ g_B\in c_1(L^{m_0}), \text{for some } m_0\}$$

$$\mathcal{B}_c(L)=\mathcal{B}(L)/\sim$$

$$\mathcal{B}_{g_B}=\{mg_B\in\mathcal{B}(L) \mid m\in\mathbb{N}\}, \qquad g_B\in\mathcal{B}(L)$$

Problem: study $\#\mathcal{B}_c(L)$ and $\#\mathcal{B}_{g_B}$.

Some problems on balanced metrics

A conjecture

Conjecture: Let (M,L) be a polarized manifold. If there exists $g_B \in \mathcal{B}(L)$ such that $\#\mathcal{B}_{g_B} = \infty$ then (M,g_B) is homogeneous and $\pi_1(M) = 1$.

Some results

Theorem 1: Let (M, L) be a polarized manifold, dim M = 1. If there exists $g_B \in \mathcal{B}(L)$ such that $\#\mathcal{B}_{g_B} = \infty$ then $M = \mathbb{C}P^1$.

Theorem 2: Let M be a toric manifold, $\dim M \leq 4$. If $g_{KE} \in c_1(L)$, $L = K^*$. Then $\#\mathcal{B}_c(L) = \infty$. Moreover, there exists $g_B \in \mathcal{B}(L)$ such that $\#\mathcal{B}_{g_B} = \infty$ iff M is either the projective space or the product of projective spaces.

Theorem 3: Let g_{cscK} be a cscK on a manifold M and let \tilde{g}_{cscK} be a cscK on $\tilde{M} = Bl_{p_1,...,p_k}M$ obtained by Arezzo-Pacard construction. Assume that there exists a polarization L of \tilde{g}_{cscK} . Then $\#\mathcal{B}_{g_B} < \infty$ for all $g_B \in \mathcal{B}(L)$.

Balanced and projectively induced metrics

(M,L) polarized manifold, $g \in c_1(L)$, $m \in \mathbb{N}^+$, $Ric(h_m) = m\omega$,

$$\{s_0,\ldots,s_{d_m}\},\ d_m+1=\dim H^0(L^m),\ \text{o.b.}\$$
for

$$\langle s, t \rangle_h = \int_M h_m(s, t) \frac{\omega^n}{n!}, s, t \in H^0(L^m).$$

 $\varphi_m: M \to \mathbb{C}P^{d_m}: x \mapsto [s_0(x): \cdots: s_{d_m}(x)]$ coherent states map

$$\left| \varphi_m^* \omega_{FS} = m\omega + \frac{i}{2} \partial \bar{\partial} \log T_{mg}(x) \right|$$

$$T_{mg}(x) = \sum_{j=0}^{d_m} h_m(s_j(x), s_j(x)).$$

Therefore: $mg \in c_1(L^m)$ is balanced $\Leftrightarrow mg$ is projectively induced by φ_m .

Approximation of polarized metrics

Theorem (G. Tian, 1990): Let (M,L) be a polarized manifold and $g \in c_1(L)$. Then

$$\frac{\varphi_m^* g_{FS}}{m} \xrightarrow{C^2} g.$$

TYZ (Tian-Yau-Zelditch) expansion

Theorem (S. Zelditch, 1998): Let (M, L) be a polarized manifold and $g \in c_1(L)$. Then

$$T_{mg}(x) \sim \sum_{j=0}^{\infty} a_j(x) m^{n-j}, a_0(x) = 1,$$

namely, for all r and k there exists $C_{k,r}$ such that

$$||T_{mg}(x) - \sum_{j=0}^{k} a_j(x)m^{n-j}||_{C^r} \le C_{k,r}m^{n-k-1}.$$

Corollary: Let (M,L) be polarized manifold and $g \in c_1(L)$. Then $\varphi_m^* g_{FS} \xrightarrow{C^{\infty}} g$.

Theorem (*Z. Lu, 2000*): Each $a_j(x)$ is a polynomial of the curvature (of the metric g) and of its covariant derivatives. Moreover,

$$\begin{cases} a_1(x) = \frac{1}{2}\rho \\ a_2(x) = \frac{1}{3}\Delta\rho + \frac{1}{24}(|R|^2 - 4|Ric|^2 + 3\rho^2) \\ a_3(x) = \frac{1}{8}\Delta\Delta\rho + \frac{1}{24}\operatorname{div}\operatorname{div}(R,Ric) - \frac{1}{6}\operatorname{div}\operatorname{div}(\rho Ric) + \\ + \frac{1}{48}\Delta(|R|^2 - 4|Ric|^2 + 8\rho^2) + \frac{1}{48}\rho(\rho^2 - 4|Ric|^2 + |R|^2) + \\ + \frac{1}{24}(\sigma_3(Ric) - Ric(R,R) - R(Ric,Ric)) \end{cases}$$

Lemma 1: Let (M,L) be a polarized manifold and $g \in c_1(L)$. Let $\mathcal{B}_g = \{mg \text{ is balanced } | m \in \mathbb{N}\}$. If $\#\mathcal{B}_g = \infty$ then the coefficients $a_j(x)$ of $T_{mg}(x) \sim \sum_{j=0}^{\infty} a_j(x) m^{n-j}$ are constants for all $j = 0, 1, \ldots$

proof: Let $\{m_s\}_{s=1,2,...}$ be an unbounded sequence such that $T_{m_sg}(x) = T_{m_s}$. We know that $a_0 = 1$. Assume that $a_j(x) = a_j$, for j = 0, ..., k-1. Then,

$$|T_{s,k,n} - a_k(x)m_s^{n-k}| \le C_k m_s^{n-k-1}, \quad T_{s,k,n} = T_{m_s} - \sum_{j=0}^{k-1} a_j m_s^{n-j}$$

for some constants C_k .

Then $|m_s^{k-n}T_{s,k,n}-a_k(x)| \leq C_k m_s^{-1}$ and if $s \to \infty$ then $m_s^{k-n}T_{s,k,n} \to a_k(x)$ and hence a_k is costant. \square

The proof of Theorem 1

Theorem 1: Let (M, L) be a polarized manifold, dim M = 1. If there exists $g_B \in \mathcal{B}(L)$ such that $\#\mathcal{B}_{g_B} = \infty$ then $M = \mathbb{C}P^1$.

proof:

If
$$\#\mathcal{B}_{g_B} = \infty \stackrel{Lemma1}{\Longrightarrow} g_B \operatorname{cscK} \Rightarrow M = \mathbb{C}P^1 \text{ and } g_B = m_0 g_{FS}$$
. \square

Lemma 2: Let (M,L) be a polarized manifold and $g = g_{cscK} \in c_1(L)$. Assume that one of the following conditions is satisfied:

- 1. mg is not proj. induced $\forall m$;
- 2. there exists $j_0 \ge 2$ such that $a_{j_0} \ne cost$ $(T_{mg}(x) \sim \sum_{j=0}^{\infty} a_j(x)m^{n-j})$

Then $\#\mathcal{B}_{g_B} < \infty$ for all $g_B \in \mathcal{B}(L)$.

proof: Let $g_B \in \mathcal{B}(L)$ (g_B balanced and $g_B \in c_1(L^{m_0})$ for some m_0).

If $\#\mathcal{B}_{g_B} = \infty$ $\stackrel{\text{Lemma 1}}{\Longrightarrow}$ a_j^B $(T_{mg_B}(x) \sim \sum_{j=0}^{\infty} a_j^B(x) m^{n-j})$ are constants for all $j = 0, 1, \ldots$

In particular $a_1^B = \rho_B/2$ is constant and hence (by Chen-Tian theorem) there exists $F \in Aut(M)$ such that $F^*g_B = m_0g$.

This implies that m_0g is proj. induced and that all the a_j 's are constants for all $j=0,1,\ldots$ in contrast with 1. and 2. \square

Remark: There exist polarized metrics $g_{cscK} \in c_1(L)$ such that all the coefficients of TYZ are costants but mg is not projectively induced for all m (e.g. hyperbolic metrics, flat metrics on abelian varieties).

The proof of Theorem 2

Theorem 2: Let M be a toric manifold, $\dim M \leq 4$. If $g_{KE} \in c_1(L)$, $L = K^*$. Then $\#\mathcal{B}_c(L) = \infty$. Moreover, there exists $g_B \in \mathcal{B}(L)$ such that $\#\mathcal{B}_{g_B} = \infty$ iff M is either the projective space or the product of projective spaces.

idea of the proof:

 $\#\mathcal{B}_c(L) = \infty$ follows by the fact that symmetric toric manifolds $(M, L = K^*)$ are asympt. Chow polystable.

Hard part: mg_{KE} is proj. induced for some m iff M is either the projective space or the product of projective spaces. Conclusion follows by Lemma 2. \square

The proof of Theorem 3

Theorem 3: Let g_{cscK} be a cscK on a manifold M and let \tilde{g}_{cscK} be a cscK on $\tilde{M} = Bl_{p_1,\ldots,p_k}M$ obtained by Arezzo-Pacard construction. Assume that there exists a polarization L of \tilde{g}_{cscK} . Then $\#\mathcal{B}_{g_B} < \infty$ for all g_B in $\mathcal{B}(L)$.

idea of the proof: One can prove that the coefficient a_2 of TYZ is not constant so the conclusion follows again by Lemma 2. \square

Some open problems on TYZ

- 1. Classify the Kähler manifolds where the coefficients of TYZ are all constants.
- 2. Classify the Kähler manifolds where $a_k = 0$, for k > n.

Teorema (L., 2005): There exists an open set $U \subset M$ such that:

$$a_k(x) = C_k(1) + \sum_{\substack{r+j=k\\r \ge 0 \ j \ge 1}} C_r(\tilde{a}_j(x,y))|_{y=x}$$

$$\mathcal{L}_{m}(f(x)) = \int_{U} f(y)e^{-mD(x,y)} \frac{\omega^{n}}{n!}(y) \sim \frac{1}{m^{n}} \sum_{r>0} m^{-r}C_{r}(f)(x),$$

$$T_{mg}(x,\bar{y}) \sim \sum_{j\geq 0} a_j(x,\bar{y}) m^{n-j} \quad \Rightarrow \quad |T_{m\omega}(x,\bar{y})|^2 \sim m^{2n} (1 + \sum_{j=1}^{+\infty} \tilde{a}_j(x,y) m^{-j})$$