IMPERIAL COLLEGE LONDON

BSc and MSci DEGREES – JANUARY 2010, for Internal Students of the Imperial College of Science, Technology and Medicine

This paper is also taken for the relevant examination for the Associateship

ADVANCED CHEMISTRY THEORY IIA

Organic Chemistry

Thursday 14th January 2010, 14:00-16:00

Answer ONE question from each attended course

USE A SEPARATE ANSWER BOOK FOR EACH QUESTION. WRITE YOUR CANDIDATE NUMBER ON EACH ANSWER BOOK.

Year 2/0110 Turn Over

2.O1 – Organic Synthesis Part 1

Q1. Answer part a) **OR** part b)

a) Give the products of **ALL** of the transformations i) – v) below, and provide a mechanism for each transformation.

(3 marks for correct product and 2 marks for correct mechanism for each part)

$$(CH_3)_3S^+I^-$$
NaH, $(CH_3)_2S=O$

iv)
$$\frac{(CH_3)_3CO^- K^+, CH_3I}{\text{tetrahydrofuran}}$$

$$\begin{array}{c} \text{V)} \\ \hline \\ \text{O} \\ \hline \end{array} \begin{array}{c} C_2 \text{H}_5 \text{O}^\text{-} \text{Na}^\text{+} \\ \hline \\ C_2 \text{H}_5 \text{OH} \\ \end{array}$$

QUESTION CONTINUED OVERLEAF

b) For the synthesis sequence shown below, provide structures for the lettered intermediates **A–D**, and draw a mechanism for the conversion of **B** into **C**.

(5 marks for each lettered structure, 5 marks for **B**→**C** mechanism)

$$\begin{array}{c} \text{add ketone to } ((\text{CH}_3)_2\text{CH})_2\text{N}^-\text{Li}^+\\ \hline \text{THF}, -78\ ^\circ\text{C} \\ \hline \text{then add } (\text{CH}_3)_3\text{SiCl} \\ \end{array} \begin{array}{c} \text{A} & \begin{array}{c} \text{H}_2\text{C}=\text{CHCO}_2\text{CH}_3\\ \text{toluene, heat} \\ \hline \text{then HCl} \\ \end{array} \begin{array}{c} \text{B} \text{ a ketoester} \\ \hline \text{HS} \text{ SH} \\ \hline \text{BF}_3\cdot\text{OEt}_2 \\ \end{array}$$

2.01 – Organic Synthesis (Functional Group Interconversions)

Q2. Answer part a) **AND** part b)

a) Suggest reagents to carry out **TWO** of the following transformations. In each case, give a mechanism and explain any issues of selectivity.

(6 marks each)

ii)
$$EtO_2C$$
 CO_2H EtO_2C OH

iii) OMe OMe

b) In the following synthetic sequence, suggest structures for compounds **B-D**, including stereochemistry where appropriate. Give a mechanism for the conversion of **A** to **B** and for the conversion of **C** to **D**.

(13 marks)

NBS B
$$C_8H_{13}Br$$
 H_2O, K_2CO_3 $C_8H_{14}O$ $MCPBA$ $C_8H_{14}O$

2IS.1 – Introduction to NMR Spectroscopy

Q3. Answer part a) and **EITHER** part b) **OR** c)

- a) Answer **ALL** parts
 - i) Give a brief definition of each of the following terms:

Spin angular momentum

Magnetic quantum number

Zeeman transition

(6 marks)

ii) Propose a structure for the molecule, $C_6H_{12}O$, which has the following 1H NMR spectrum - chemical shift, multiplicity, integration - (2.58, septet, 1H; 2.44, quartet, 2H; 1.06, doublet, 6H; 1.01, triplet, 3H) and an infra-red stretching peak at 1718 cm $^{-1}$. Give a brief explanation for your proposed structure.

(4 marks)

iii) Give the number of different ¹³C resonances for the following molecule in Fig. 1.

(2 marks)

iv) Rank in order of increasing chemical shift, in Fig. 2, the ¹H resonances for the following molecules.

(1 mark)

v) Explain why there are two different methyl resonances for the compound in Fig. 3.

Fig. 3

(2 marks)

b) Answer **ALL** parts

i) For the molecule shown in Fig. 4 draw the splitting pattern for all protons.

Fig. 4

(3 marks)

ii) For the molecule shown in Fig. 5 draw the splitting pattern for all protons.

Fig. 5

(4 marks)

iii) Discuss which factors affect the magnitude of chemical shift. Give examples in each case.

(3 marks)

c) Answer **ALL** parts

i) In Fig. 6 what is the approximate chemical shift and splitting pattern for all protons?

Fig. 6

(4 marks)

QUESTION CONTINUED OVERLEAF

ii) Describe the splitting pattern for all four methine protons in Fig. 7.

(3 marks)

Fig. 7

iii) Discuss the factors that affect the magnitude of spin-spin (J) coupling.

(3 marks)