Hoja 2

Problema 1. Resolver la ecuación diferencial asociada al modelo SIS:

$$x' = \kappa x(N - x) - \beta x$$

Estudiar el problema de valor inicial asociado y obtener el Teorema del Umbral para este modelo.

Problema 2. Resolver los problemas lineal y cuadrático asociados al problema de caída libre con resistencia al aire. Es decir, la ecuación

$$v' = g - \frac{\kappa}{m} v^n$$

para n = 1, 2.

Problema 3. Resolver las siguientes ecuaciones de Riccati:

- 1. $x' = \frac{t+1}{2t^2}x^2 + \frac{1}{2t}x \frac{t}{2}$. (Solución particular: $x_p(t) = t$)
- 2. $x' = x^2 e^t x + e^t$. (Solución particular: $x_p(t) = e^t$)
- 3. $x' = x^2 2x + 1$.

Problema 4. Un objeto de masa m se lanza desde el suelo verticalmente hacia arriba con una velocidad inicial v_0 . Se supone que el aire opone una resistencia proporcional a la velocidad.

1. Establecer la ecuación diferencial que rige el movimiento del objeto

- 2. Determinar la expresión de la velocidad en función del tiempo
- 3. Calcular el tiempo que el objeto tarda en alcanzar la altura máxima, así como el valor de esta.

Problema 5. Denotemos por Q(t) la cantidad de sal que contiene, en el instante t, un recipiente R con agua salada. Desde otro depósito se vierte agua en R con una concentración constante de C kg de sal por litro, a razón de r_0 litros por unidad de tiempo. Simultáneamente, y mientras se remueve continuamente el depósito R para obtener una mezcla uniforme, la solución resultante de la mezcla sale de R a razón de r litros por unidad de tiempo. Establecer la ecuación diferencial que satisface Q(t).