

#### PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL ESCOLA POLITÉCNICA

# Aprendizado de Máquina

Aprendizado Supervisionado III Paradigma Simbólico

Prof. Me. Otávio Parraga



## MALTA

Machine Learning Theory and Applications Lab

#### Aula Passada



Likelihood

Evidence

Posterior



### Aula de Hoje

- Árvores de Decisão
  - Conceitos
  - Como classificar?
  - Como induzir?
    - Indução top-down
  - Medidas de Impureza
  - Critérios de Parada
  - Vantagens e Desvantagens
  - Árvores de Decisão para Problemas de Regressão

#### Árvores de Decisão

 Método para aproximar funções discretas ou contínuas, representadas por meio de um grafo acíclico direcionado

- Tal grafo pode ser representado por um conjunto de regras "SE...ENTÃO"
  - Compreensibilidade
- Amplamente utilizado em aplicações práticas, principalmente em problemas de classificação

categorico continuo classe

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |

Yes No

NO

MarSt

Single, Divorced

TaxInc

≤ 80K

NO

YES

Dados de Treino

Modelo: Árvore de Decisão

Refund

categorico continuo class

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |



Dados de Treino

Modelo: Árvore de Decisão

categorico categorico continuo

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |

Yes No

NO MarSt

Single, Divorced Married

TaxInc NO

≤ 80K

NO

YES

Refund

Dados de Treino

Perfeitamente ajustada aos dados de treino

categorico continuo classe

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |



Note que várias árvores podem ser ajustadas aos mesmos dados!

Dados de Treino

### Classificação com Árvore de Decisão



Training Set

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 11  | No      | Small   | 55K     | ?     |
| 12  | Yes     | Medium  | 80K     | ?     |
| 13  | Yes     | Large   | 110K    | ?     |
| 14  | No      | Small   | 95K     | ?     |
| 15  | No      | Large   | 67K     | ?     |

**Test Set** 





| Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|--------|-------------------|-------------------|-------|
| No     | Married           | 80K               | ?     |











- A maior vantagem das árvores é a facilidade de interpretar a tomada de decisão
- Vamos colocar a prova essa facilidade!

#### Classificação com Árvore de Decisão



**Test Set** 

### Indução de Árvores de Decisão

- Descobrir "árvore ótima" é problema NP-Difícil
- Muitas heurísticas para gerar árvores
  - Top-Down
  - Bottom-Up
  - Híbrida
  - Algoritmos Evolutivos
  - etc.

### Indução Top-Down

#### Algoritmo de Hunt

- Assuma que  $D_t$  é o conjunto de instâncias de treino que chega ao nó t
- Assuma que  $y = \{y_1, ..., y_c\}$  são os rótulos das classes
- Passo 1:
  - Se todas instâncias em  $D_t\,$  pertencem a mesma classe  $y_i$ , então t é um nó folha rotulado como  $y_i$
- Passo 2:
  - Se  $D_t$  contém instâncias de mais de uma classe, um teste sobre determinado atributo é selecionado para particionar os registros em sub-conjuntos menores. Um nó é criado para cada resultado do teste e as instâncias em  $D_t$  são distribuídas por estes nós de acordo com os resultados. Aplicar algoritmo recursivamente para cada nó gerado

#### Algoritmo de Hunt Refund **Marital Taxable** Cheat **Status** Income Yes 125K No Single 2 No Married 100K No **Refund** 70K No 3 No Single No Yes No 120K 4 Yes Married No (7,3)Divorced 95K Yes 5 No No No No Married 60K No 6 (3,0)(4,3)Yes 220K No Divorced 85K No Single Yes 8 Refund) (Refund) No Married 75K No 9 Yes No Yes No 10 No Single 90K Yes Marital No Marital<sup>\*</sup> No Status Status Single, Single, **Married Married** Divorced. **Divorced** Taxable No Yes No Income (3,0)(1,3)(3,0)≤ 80K > 80K Yes No (0,3)

© Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 **(#)** 

(1,0)

### Indução Top-Down

- Estratégia Recursiva
- Estratégia Gulosa (greedy)
  - Divide os registros com base em teste sobre atributo que otimiza localmente determinado critério
- Questões de Projeto
  - Determinar como particionar os dados
    - Como filtrar os dados com base em um atributo?
    - Como <u>escolher o atributo</u> a ser utilizado?
  - Determinar quando parar de particionar

#### Indução Top-Down

- Estratégia Recursiva
- Estratégia Gulosa (greedy)
  - Divide os registros com base em teste sobre atributo que otimiza localmente determinado critério
- Questões de Projeto
  - Determinar como particionar os dados
    - Como <u>filtrar os dados</u> com base em um atributo?
    - Como <u>escolher o atributo</u> a ser utilizado?
  - Determinar quando parar de particionar

# Como filtrar os dados com base em um atributo?

- Depende do tipo de atributo
  - Nominal
  - Ordinal
  - Contínuo
- Depende do número de divisões desejado
  - Binária
  - Múltipla

#### Divisão para atributos categóricos nominais

Múltipla: dividir com base no número de categorias



 Binária: agregar categorias em dois sub-conjuntos. Necessário encontrar a divisão ótima.



#### Divisão para atributos categóricos ordinais

Múltipla: dividir com base no número de categorias



 Binária: agregar categorias em dois sub-conjuntos. Necessário encontrar a divisão ótima.



#### Divisão para atributos contínuos

Múltipla: discretizar os valores em intervalos



• Binária: definir ponto de divisão



### Indução Top-Down

- Estratégia Recursiva
- Estratégia Gulosa (greedy)
  - Divide os registros com base em teste sobre atributo que otimiza localmente determinado critério
- Questões de Projeto
  - Determinar como particionar os dados
    - Como <u>filtrar os dados</u> com base em um atributo?
    - Como <u>escolher o atributo</u> a ser utilizado?
  - Determinar quando parar de particionar

#### Como escolher o atributo?

Antes da divisão: 10 instâncias da classe  $C_0$  10 instâncias da classe  $C_1$ 



Qual atributo é melhor para dividir os dados?

#### Como escolher o atributo?

#### Estratégia gulosa

- Dar preferência a nós com distribuição de classe homogênea (pura!)
- Para tanto, precisamos de uma medida para <u>quantificar</u> impureza!



#### Medidas de Impureza de Nó

- Índice Gini
- Entropia
- Erro de Classificação

#### Medidas de Impureza de Nó

- Índice Gini
- Entropia
- Erro de Classificação

Índice Gini para um nó t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

p(j|t) é a frequência relativa da classe j no nó t

- Valor máximo:  $1 \frac{1}{C}$  (quando classes forem equiprováveis)
- Valor mínimo: () (quando todas instâncias pertencem à mesma classe)

| C1         | 0 |
|------------|---|
| C2         | 6 |
| Gini=0.000 |   |

| C1         | 1 |
|------------|---|
| C2         | 5 |
| Gini=0.278 |   |

| C1         | 2 |  |
|------------|---|--|
| C2         | 4 |  |
| Gini=0.444 |   |  |

| C1         | 3 |  |
|------------|---|--|
| C2         | 3 |  |
| Gini=0.500 |   |  |

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

| C1 | 0 |
|----|---|
| C2 | 6 |

$$p(C_1|t) = \frac{0}{6} = 0$$
  $p(C_2|t) = \frac{6}{6} = 1$ 

$$Gini(t) = 1 - [p(C_1|t)^2 + p(C_2|t)^2] = 1 - [0^2 + 1^2] = 0$$

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$p(C_1|t) = \frac{0}{6} = 0$$
  $p(C_2|t) = \frac{6}{6} = 1$ 

$$Gini(t) = 1 - [p(C_1|t)^2 + p(C_2|t)^2] = 1 - [0^2 + 1^2] = 0$$

$$p(C_1|t) = \frac{1}{6}$$

$$p(C_2|t) = \frac{5}{6}$$

$$Gini(t) = 1 - \left[p(C_1|t)^2 + p(C_2|t)^2\right] = 1 - \left[\left(\frac{1}{6}\right)^2 + \left(\frac{5}{6}\right)^2\right] = 0.278$$

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

| C1 | 0 |
|----|---|
| C2 | 6 |

$$p(C_1|t) = \frac{0}{6} = 0 p(C_2|t) = \frac{6}{6} = 1$$

$$Gini(t) = 1 - [p(C_1|t)^2 + p(C_2|t)^2] = 1 - [0^2 + 1^2] = 0$$

$$Gini(t) = 1 - [p(C_1|t)^2 + p(C_2|t)^2] = 1 - [0^2 + 1^2] = 0$$

$$p(C_1|t) = \frac{1}{6} p(C_2|t) = \frac{5}{6}$$

$$p(C_1|t) = \frac{1}{6}$$

$$p(C_2|t) = \frac{5}{6}$$

$$Gini(t) = 1 - \left[p(C_1|t)^2 + p(C_2|t)^2\right] = 1 - \left[\left(\frac{1}{6}\right)^2 + \left(\frac{5}{6}\right)^2\right] = 0.278$$

$$p(C_1|t) = \frac{2}{6}$$
  $p(C_2|t) = \frac{4}{6}$ 

$$Gini(t) = 1 - [p(C_1|t)^2 + p(C_2|t)^2] = 1 - \left[\left(\frac{1}{3}\right)^2 + \left(\frac{2}{3}\right)^2\right] = 0.444$$

# Computando uma divisão com o Índice Gini

 Quando um nó p é dividido em k partições (filhos), a qualidade dessa divisão é dada por:

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

onde,

 $n_i$  = número de exemplos no filho in = número de exemplos no nó pai p

## Computando Índice Gini para Atributos Binários

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$



|      | Pai     |
|------|---------|
| C1   | 6       |
| C2   | 6       |
| Gini | = 0.500 |

Gini(N1) = 1 - 
$$[(5/7)^2 + (2/7)^2]$$
  
= 0.4082

|    | N1 | N2 |
|----|----|----|
| C1 | 5  | 1  |
| C2 | 2  | 4  |

Gini(N2) = 1 - 
$$[(1/5)^2 + (4/5)^2]$$
  
= 0.32

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

## Computando Índice Gini para Atributos Categóricos

 Para cada categoria do atributo, faça as contagens por classe para descobrir as probabilidades de classe

#### Divisão Múltipla

|            | CarType              |   |   |  |  |  |  |  |  |  |
|------------|----------------------|---|---|--|--|--|--|--|--|--|
|            | Family Sports Luxury |   |   |  |  |  |  |  |  |  |
| <b>C</b> 1 | 1                    | 2 | 1 |  |  |  |  |  |  |  |
| C2         | 4                    | 1 |   |  |  |  |  |  |  |  |
| Gini       | 0.393                |   |   |  |  |  |  |  |  |  |

# Divisão Binária (encontre melhor divisão)

|      | CarType                  |   |  |  |  |  |  |
|------|--------------------------|---|--|--|--|--|--|
|      | {Sports, Luxury} {Family |   |  |  |  |  |  |
| C1   | 3                        | 1 |  |  |  |  |  |
| C2   | 2                        | 4 |  |  |  |  |  |
| Gini | 0.400                    |   |  |  |  |  |  |

|      | CarType  |                     |  |  |  |  |
|------|----------|---------------------|--|--|--|--|
|      | {Sports} | {Family,<br>Luxury} |  |  |  |  |
| C1   | 2        | 2                   |  |  |  |  |
| C2   | 1        | 5                   |  |  |  |  |
| Gini | 0.419    |                     |  |  |  |  |

### Computando Índice Gini para Atributos Contínuos

- Use decisões binárias baseada em limiar
  - Ordene os valores de forma ascendente
  - Percorrer linearmente os valores, atualizando cada vez a matriz de contagens e computando o índice Gini
  - Escolher o limiar que minimiza o Gini

|                  | Cheat |              | No |     | No | )   | N        | 0   | Ye  | s   | Ye  | S            | Υe    | es         | N          | 0         | N   | lo  | N  | lo           |          | No  |    |
|------------------|-------|--------------|----|-----|----|-----|----------|-----|-----|-----|-----|--------------|-------|------------|------------|-----------|-----|-----|----|--------------|----------|-----|----|
|                  |       |              |    | _   |    |     |          | _   |     | _   | Ta  | xabl         | le In | com        | е          | _         | -   |     |    |              | _        |     |    |
| Valores ordenado | s -   |              | 60 |     | 70 |     | 7        | 5   | 85  | ;   | 90  | )            | 9     | 5          | 10         | 00        | 12  | 20  | 12 | 25           |          | 220 |    |
| Limiares         | s     | 5            | 5  | 6   | 5  | 7   | 2        | 8   | 0   | 8   | 7   | 9            | 2     | 9          | 7          | 11        | 0   | 12  | 22 | 17           | 72       | 23  | 80 |
|                  |       | <b>&lt;=</b> | >  | <=  | >  | <=  | <b>^</b> | <=  | >   | <=  | >   | <b>&lt;=</b> | >     | <b>\=</b>  | <b>^</b>   | <b>\=</b> | >   | <=  | >  | <b>&lt;=</b> | <b>^</b> | <=  | >  |
|                  | Yes   | 0            | 3  | 0   | 3  | 0   | 3        | 0   | 3   | 1   | 2   | 2            | 1     | 3          | 0          | 3         | 0   | 3   | 0  | 3            | 0        | 3   | 0  |
|                  | No    | 0            | 7  | 1   | 6  | 2   | 5        | 3   | 4   | 3   | 4   | 3            | 4     | 3          | 4          | 4         | 3   | 5   | 2  | 6            | 1        | 7   | 0  |
|                  | Gini  | 0.4          | 20 | 0.4 | 00 | 0.3 | 375      | 0.3 | 343 | 0.4 | 117 | 0.4          | 100   | <u>0.3</u> | <u>800</u> | 0.3       | 343 | 0.3 | 75 | 0.4          | 00       | 0.4 | 20 |

#### Medidas de Impureza de Nó

- Índice Gini
- Entropia
- Erro de Classificação

# Entropia

Entropia de um nó t:

$$Entropy(t) = -\mathop{\mathring{a}}_{j} p(j \mid t) \log_2 p(j \mid t)$$

p(j|t) é a frequência relativa da classe j no nó t

- Valor máximo:  $log_2 c$  (quando classes forem equiprováveis)
- Valor mínimo: 0 (quando todas instâncias pertencem à mesma classe)

| p(j t) | log(p(j t))      | p(j t) * log(p(j t)) |
|--------|------------------|----------------------|
| 0      | valor indefinido | assumimos = 0        |
| 0.1    | -3.32            | -0.33                |
| 0.2    | -2.32            | -0.46                |
| 0.3    | -1.74            | -0.52                |
| 0.4    | -1.32            | -0.53                |
| 0.5    | -1.00            | -0.50                |
| 0.6    | -0.74            | -0.44                |
| 0.7    | -0.51            | -0.36                |
| 0.8    | -0.32            | -0.26                |
| 0.9    | -0.15            | -0.14                |
| 1      | 0.00             | 0.00                 |

#### Entropia

$$Entropy(t) = -\sum_{j} p(j|t) \log_{2} p(j|t)$$

| C1 | 0 |
|----|---|
| C2 | 6 |

$$p(C_1|t) = \frac{0}{6} = 0$$

$$p(C_2|t) = \frac{6}{6} = 1$$

$$p(C_1|t) = \frac{0}{6} = 0 p(C_2|t) = \frac{6}{6} = 1$$

$$E(t) = -[0\log_2 0 + 1\log_2 1] = -[0+0] = 0$$

$$p(C_1|t) = \frac{1}{6}$$

$$p(C_2|t) = \frac{5}{6}$$

$$p(C_1|t) = \frac{1}{6} p(C_2|t) = \frac{5}{6}$$

$$E(t) = -\left[\frac{1}{6}\log_2\frac{1}{6} + \frac{5}{6}\log_2\frac{5}{6}\right] = -[-0.65] = 0.65$$

$$p(C_1|t) = \frac{2}{6}$$
  $p(C_2|t) = \frac{4}{6}$ 

$$p(C_2|t) = \frac{4}{6}$$

$$E(t) = -\left[\frac{2}{6}\log_2\frac{2}{6} + \frac{4}{6}\log_2\frac{4}{6}\right] = -[-0.92] = 0.92$$

# Computando uma divisão com a Entropia

Ganho de Informação:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Nó pai, p, é dividido em k partições  $n_i$  é o número de instâncias na partição i

- Mede a <u>redução em entropia</u> devido à divisão. Procura-se minimizar a média ponderada das entropias dos nós filhos (equivalente a <u>maximizar o</u> ganho de informação)
- Utilizado nos algoritmos ID3 e C4.5 de J.R. Quinlan
- Desvantagem: assim como o índice Gini, é tendencioso àquelas divisões com número grande de partições, cada uma sendo pequena porém pura

#### Alternativa ao Ganho de Informação

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$$

Nó pai, p, é dividido em k partições  $n_i$  é o número de instâncias na partição i

- Ajusta o Ganho de Informação pela entropia da distribuição do particionamento (SplitINFO). Quanto maior a entropia do particionamento (número alto de partições pequenas), maior a penalidade ao Ganho de Informação!
- Utilizado no algoritmo C4.5

#### Medidas de Impureza de Nó

- Índice Gini
- Entropia
- Erro de Classificação

## Erro de Classificação

• Erro de classificação do nó t :

$$Erro(t) = 1 - \max_{i} P(i \mid t)$$

- Mede o erro de classificação feito em um nó
- Valor máximo:  $1 \frac{1}{c}$  (quando classes forem equiprováveis)
- Valor mínimo: 0 (quando todas instâncias pertencem à mesma classe)

## Erro de Classificação

$$Erro(t) = 1 - \max_{i} P(i \mid t)$$

$$p(C_1|t) = \frac{0}{6} = 0$$
  $p(C_2|t) = \frac{6}{6} = 1$ 

$$Erro(t) = 1 - \max(0,1) = 1 - 1 = 0$$

$$p(C_1|t) = \frac{1}{6}$$

$$p(C_2|t) = \frac{5}{6}$$

$$Erro(t) = 1 - \max\left(\frac{1}{6}, \frac{5}{6}\right) = 1 - \frac{5}{6} = \frac{1}{6}$$

| C1 | 2 |
|----|---|
| C2 | 4 |

$$p(C_1|t) = \frac{2}{6}$$

$$p(C_2|t) = \frac{4}{6}$$

$$Erro(t) = 1 - \max\left(\frac{2}{6}, \frac{4}{6}\right) = 1 - \frac{4}{6} = \frac{1}{3}$$

# Comparação entre os critérios de divisão

Para um problema de 2 classes:



#### Genericamente...

$$\Delta = I(v_{pai}) + \sum_{t=1}^{k} \frac{N(v_t)}{N} I(v_t)$$
 Média ponderada

#### onde:

I(v): mede o grau de impureza do nó v

 $N(v_t)$ : número de objetos no filho  $v_t$ 

 $\mathit{N}$ : número de objetos no nó pai  $v_{pai}$ 

## Indução Top-Down

- Estratégia Recursiva
- Estratégia Gulosa (greedy)
  - Divide os registros com base em teste sobre atributo que otimiza localmente determinado critério
- Questões de Projeto
  - Determinar como particionar os dados
    - Como filtrar os dados com base em um atributo?
    - Como <u>escolher o atributo</u> a ser utilizado?
  - Determinar quando parar de particionar

# Critérios de Parada para Indução Top-Down

- Parar de expandir nós quando:
  - Todas instâncias forem da mesma classe (homogeneidade de classe)
  - Todos valores de atributos forem iguais (homogeneidade de instâncias)
  - Atingir valor satisfatório do critério de divisão (parâmetro)
  - Atingir profundidade máxima (parâmetro)

**—** ...

#### Questões

- Árvores de decisão não possuem bias de restrição (isto é, são capazes de representar qualquer função de classificação de dados). Desta forma, responda:
  - Qual o limite inferior (lower bound) de taxa de erro que árvores construídas a partir do critério de homogeneidade de classes são capazes de atingir nos dados de treinamento?
  - Isso significa que árvores de decisão são mais sujeitas a underfitting ou overfitting?

# Vantagens e Desvantagens de Árvores de Decisão

#### Vantagens:

- Fácil de compreender (muito utilizadas por médicos!)
- Possível gerar regras com base nas árvores
- Custo baixo de geração do modelo
- Extremamente rápida para classificar novas instâncias

#### Desvantagens:

- Podem tornar-se muito grandes
- Sujeitas a overfitting (super-ajuste aos dados)
- Geram apenas hiperplanos paralelos aos eixos
  - Logo, não lidam bem com atributos correlacionados (por quê?)
- Solução localmente ótima pode estar longe do ótimo global













### Espaço de Hipóteses

 Cada percurso da raiz até o nó folha representa uma regra de classificação

- Cada nó folha
  - Está associado a uma classe
  - Corresponde a uma região do domínio dos atributos
    - Hiper-retângulo
    - Intersecção de hiper-retângulos é vazia
    - União é o espaço total

## De árvores para regras



Regras: disjunções de conjunções lógicas

- Se A ≤ a<sub>1</sub> E B ≤ b<sub>2</sub> Então Classe = Vermelha
   OU
- 2. Se  $A > a_1 E B \le b_3 Então Classe = Laranja$ OU

Exercício: complete as regras!

### Busca no Espaço de Hipóteses

- Não há backtracking
  - Impureza é minimizada localmente em cada nó!
    - Suposição: soma dos ótimos locais aproxima bem o ótimo global
- Espaço de hipóteses completo
  - A função objetivo certamente está contida nele
  - Sem bias de restrição
    - Proporcionando chances de overfitting
  - Com bias de busca (preferência)
    - Árvores onde atributos que geram maior redução de impureza estão nos níveis superiores
    - Tal bias implica em tendência para árvores mais curtas

### Alternativas às Desvantagens

- Como solucionar overfitting?
  - Navalha de Occam
  - Poda!

'Se em tudo o mais forem idênticas as várias explicações de um fenômeno, a mais simples é a melhor."

"Entia non sunt multiplicanda praeter necessitatem "

#### Pré-poda

 Interromper crescimento da árvore segundo algum critério (valor de medida de impureza, número mínimo de instâncias atingido, etc.)

#### Pós-poda

- Crescer a árvore até a homogeneidade de classes
- Cortar os nós de maneira bottom-up
- Se erro de generalização melhorar após corte, trocar sub-árvore por nó folha

- Erro de treinamento é tendencioso, e portanto não pode ser utilizado como medida confiável para avaliar se nós podem ser podados
- Solução: ajustar o erro de treinamento de forma a penalizar pela criação de novos nós

$$\overline{e}(T) = \frac{\sum_{t_i \hat{l}} e(t_i)}{\sum_{t_i \hat{l}} n(t_i)} = \frac{e(T)}{N}$$

$$\overline{e}''(T) = \frac{\sum_{t_i \in T} \left[ e(t_i) + W(t_i) \right]}{\sum_{t_i \in T} n(t_i)} = \frac{e(T) + W(T)}{N}$$

Valor típico de  $W(t_i) = 0.5$ 

| Classe = Sim | 20 |  |  |
|--------------|----|--|--|
| Classe = Não | 10 |  |  |
| Erro = 10/30 |    |  |  |

Erro de treino (pai) = 10/30Erro pessimista (pai) = (10 + 0.5)/30 = 10.5/30

| Classe = Sim | 20 |  |  |  |
|--------------|----|--|--|--|
| Classe = Não | 10 |  |  |  |
| Erro = 10/30 |    |  |  |  |

Erro de treino (pai) = 10/30

Erro pessimista (pai) = (10 + 0.5)/30 = 10.5/30

Erro de treino (filhos) = 9/30

Erro pessimista (filhos) = (9 + 4 \*0.5)/30 = 11/30



| Classe = Sim | 8 |
|--------------|---|
| Classe = Não | 4 |

| Classe = Sim | 3 |
|--------------|---|
| Classe = Não | 4 |

| Classe = Sim | 4 |
|--------------|---|
| Classe = Não | 1 |

| Classe = Sim | 5 |
|--------------|---|
| Classe = Não | 1 |

| Classe = Sim | 20 |
|--------------|----|
| Classe = Não | 10 |
| Erro = 10/30 |    |

Erro de treino (pai) = 10/30

Erro pessimista (pai) = (10 + 0.5)/30 = 10.5/30

Erro de treino (filhos) = 9/30

Erro pessimista (filhos) = (9 + 4 \*0.5)/30 = 11/30
PODAR!

A1

A4

| Classe = Sim | 8 |
|--------------|---|
| Classe = Não | 4 |

| Classe = Sim | 3 |
|--------------|---|
| Classe = Não | 4 |

| Classe = Sim | 4 |
|--------------|---|
| Classe = Não | 1 |

| Classe = Sim | 5 |
|--------------|---|
| Classe = Não | 1 |

# Exemplo 2 de Pós-Poda: Reduced-Error Pruning

- Separar uma parte dos dados de treino para conjunto de validação
  - Não utilizado para treinamento
- Avaliar de maneira <u>bottom-up</u> se trocar uma subárvore por nó folha reduz o erro no conjunto de validação
- Vantagem: complexidade linear
- Desvantagem: reduz o conjunto de treino

# Exemplo 3 de Pós-Poda: Cost-Complexity Pruning

- Define um custo associado ao tamanho da árvore
- Logo, considera o erro e o tamanho para estimar a árvore ideal

$$C_a(T) = \sum_{m=1}^{|T|} N_m E_m(T) + a|T|$$

# Exemplo 3 de Pós-Poda: Cost-Complexity Pruning

$$C_a(T) = \sum_{m=1}^{|T|} N_m E_m(T) + a|T|$$

- $N_m$ : Quantidade de itens que chegaram ao nó m
- $E_m(T)$ : Medida de erro para um nó m
- *a*: Termo penalizador
- |T|: Quantidade de nós folha na árvore

# Exemplo 3 de Pós-Poda: Cost-Complexity Pruning



$$C_a(T) = \sum_{m=1}^{|T|} N_m E_m(T) + a|T|$$

$$C_a(T_0) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{1}{11} \times 0 + a \times 5$$



$$C_a(T) = \sum_{m=1}^{|T|} N_m E_m(T) + a|T|$$

$$C_a(T_0) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{1}{11} \times 0 + \frac{1}{11} \times 0 + a \times 5$$

$$C_a(T_1) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{2}{11} \times 0.5 + a \times 4$$



$$C_a(T) = \sum_{m=1}^{\infty} N_m E_m(T) + a|T|$$

$$C_a(T_0) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{1}{11} \times 0 + \frac{1}{11} \times 0 + a \times 5$$

$$C_a(T_1) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{2}{11} \times 0.5 + a \times 4$$

$$C_a(T_2) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{5}{11} \times 0.32 + a \times 3$$



$$C_{a}(T) = \sum_{m=1}^{171} N_{m} E_{m}(T) + a|T|$$

$$C_{a}(T_{0}) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{1}{11} \times 0 + a \times 5$$

$$C_{a}(T_{1}) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{2}{11} \times 0.5 + a \times 4$$

$$C_{a}(T_{2}) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{5}{11} \times 0.32 + a \times 3$$

$$C_{a}(T_{3}) = \frac{4}{11} \times 0 + \frac{7}{11} \times 0.49 + a \times 2$$

Gini = 0

$$C_a(T) = \sum_{m=1}^{|T|} N_m E_m(T) + a|T|$$

$$C_a(T_0) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{1}{11} \times 0 + a \times 5$$

$$C_a(T_1) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{2}{11} \times 0.5 + a \times 4$$

$$C_a(T_2) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{5}{11} \times 0.32 + a \times 3$$

$$C_a(T_3) = \frac{4}{11} \times 0 + \frac{7}{11} \times 0.49 + a \times 2$$

$$C_a(T_4) = \frac{11}{11} \times 0.463 + a \times 1$$
Giri = 0.463

Grupo Prioritário

$$Gini = 0.463$$

$$C_{a}(T) = \sum_{m=1}^{|T|} N_{m} E_{m}(T) + a|T|$$

$$C_{a}(T_{0}) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{1}{11} \times 0 + \frac{1}{11} \times 0 + a \times 5$$

$$C_{a}(T_{1}) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{3}{11} \times 0 + \frac{2}{11} \times 0.5 + a \times 4$$

$$C_{a}(T_{2}) = \frac{4}{11} \times 0 + \frac{2}{11} \times 0 + \frac{5}{11} \times 0.32 + a \times 3$$

$$C_{a}(T_{3}) = \frac{4}{11} \times 0 + \frac{7}{11} \times 0.49 + a \times 2$$

$$C_{a}(T_{4}) = 1 \times 0.463 + a \times 1$$

$$C_{a}(T) = \sum_{m=1}^{|T|} N_{m} E_{m}(T) + a|T|$$

$$C_{a}(T_{0}) = 0 + 0 + 0 + 0 + 0 + a \times 5$$

$$C_{a}(T_{1}) = 0 + 0 + 0 + \frac{2}{11} \times 0.5 + a \times 4$$

$$C_{a}(T_{2}) = 0 + 0 + \frac{5}{11} \times 0.32 + a \times 3$$

$$C_{a}(T_{3}) = 0 + \frac{7}{11} \times 0.49 + a \times 2$$

$$C_{a}(T_{4}) = 1 \times 0.463 + a \times 1$$

$$C_{a}(T) = \sum_{m=1}^{|T|} N_{m} E_{m}(T) + a|T|$$

$$C_{a}(T_{0}) = 0 + a \times 5$$

$$C_{a}(T_{1}) = 0.09 + a \times 4$$

$$C_{a}(T_{2}) = 0.15 + a \times 3$$

$$C_{a}(T_{3}) = 0.31 + a \times 2$$

$$C_{a}(T_{4}) = 0.463 + a \times 1$$

$$caso \ a = 0.08$$
 $C_a(T_0) = 0.08 \times 5 = 0.4$ 
 $C_a(T_1) = 0.09 + 0.08 \times 4 = 0.41$ 
 $C_a(T_2) = 0.15 + 0.08 \times 3 = 0.39$ 
 $C_a(T_3) = 0.31 + 0.08 \times 2 = 0.47$ 
 $C_a(T_4) = 0.463 + 0.08 \times 1 = 0.543$ 



### Outros tipos de Pós-Poda

- Pessimistic Error Pruning (Quinlan 1987)
- Error-Based Pruning (Quinlan 1993)
- Minimum-Error Pruning (Niblett e Bratsko 1986)
- Critical-Value Pruning (Mingers 1987)
- Cost-Complexity Pruning (Breiman et al. 1984)

- Sugestão de Leitura:
  - Artigo no moodle (Esposito et al. 1997)

- Hiperplanos paralelos aos eixos
  - Vamos pensar no seguinte exemplo:



- Hiperplanos paralelos aos eixos
  - Outro exemplo:





- Hiperplanos paralelos aos eixos
  - Mais um exemplo:



- Hiperplanos paralelos aos eixos
  - Solução?
    - Árvores Oblíquas!!





Desvantagens?

- Solução localmente ótima pode estar longe do ótimo global
  - Solução?
    - Heurísticas que aproximam o ótimo global
      - Ex: computação evolutiva!
        - » Algoritmos Genéticos, Programação Genética
        - » Ver artigo no moodle
          - A Survey of Evolutionary Algorithms for Decision-Tree Induction

# Árvores de Decisão para Problemas de Regressão

- Árvores de Regressão
  - Folha contém média dos valores do atributo alvo dos exemplos de treino que chegam até lá



# Árvores de Decisão para Problemas de Regressão

- Árvores de Modelos
  - Folha contém função de regressão (não-)linear calculada sobre as instâncias que chegam até lá



# Árvores de Decisão para Problemas de Regressão

- Principal mudança: medida de divisão de nós
  - Exemplo: standard deviation reduction (SDR)
    - Mesma fórmula genérica do "ganho"
    - Em vez de entropia ou Gini, apenas calcular o desvio padrão do atributo alvo para as instâncias de cada nó e ponderá-las pelas frequências

$$SDR = SD(v_{pai}) - \mathop{a}\limits_{t=1}^{k} \frac{N(v_t)}{N} SD(v_t)$$

### Exemplos de Algoritmos

- ID3 (Quinlan 1986)
  - Iterative Dichotomiser 3
  - Lida apenas com atributos nominais
  - Medida de impureza: ganho de informação
  - Tipo de poda: pré-poda (limite de instâncias)
- C4.5 (Quinlan 1993)
  - J48 (Weka), C5.0 (comercial)
  - Atributos discretos e contínuos
  - Medida de impureza: gain ratio
  - Tipo de poda: pós-poda (error-based pruning)

### Exemplos de Algoritmos

- CART (Breiman et al. 1984)
  - Classification and Regression Trees
  - Árvores de Classificação e Regressão
  - Atributos discretos e contínuos
  - Divisões sempre binárias (agrega categorias)
  - Medida de impureza: índice Gini / twoing / sum of squares
  - Tipo de poda: pós-poda (cost-complexity pruning)

### Exemplos de Algoritmos

- M5 (Quinlan 1992)
  - M5P (Weka)
  - Árvores de Regressão e Árvores de Modelos
  - Atributos discretos e contínuos
  - Medida de impureza: SDR
  - Tipo de poda: erro corrigido (leva em conta o número de parâmetros dos modelos lineares)

### Sugestão de Leitura



Capítulo 2! (livro inteiro está no moodle)

### Sugestão de Leitura

- Seção 4.3 (Tan et al., 2006)
- Capítulo 6 (Faceli et al., 2011)
- Artigos no Moodle

#### Créditos e Referências

Slides adaptados dos originais gentilmente cedidos por:

- Prof. Dr. Rodrigo Coelho Barros (PUCRS)
- André Carvalho, Eduardo Hruschka, Ricardo Campello (ICMC-USP)
- Pang-Ning Tan (Michigan State University)
- Eamon Keogh (University of California at Riverside)
  - <a href="http://www.cs.ucr.edu/~eamonn/">http://www.cs.ucr.edu/~eamonn/</a>
  - eamonn@cs.ucr.edu

- Tan, P. N., Steinbach, M., Kumar, V. Introduction to Data Mining. Addison-Wesley, 2005. 769 p.
- Faceli et al. Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina. LTC, 2011. 378 p.