My solutions to

Deep Learning: Foundations and Concepts

Dario Miro Konopatzki

5 Single-Layer Networks: Classification

5.1

For all $1 \le k \le K$:

$$\mathbb{E}[T_k|X = x] = \sum_{t \in \{0,1\}} t \, p_{T_k|X = x}(t)$$

$$= 0 \cdot p_{T_k|X = x}(0) + 1 \cdot p_{T_k|X = x}(1)$$

$$= p_{T_k|X = x}(1)$$

$$= \begin{cases} 1 & \text{if class of } x \text{ is } c_k \\ 0 & \text{otherwise} \end{cases}$$

$$= p_{C|X = x}(c_k)$$

Hence $\mathbb{E}\left[T|X=x\right] = \left(p_{C|X=x}(c_k)\right)_{1 \le k \le K}$.

5.2

Assume the convex hulls intersect, i.e. t.e. (α_n) and (β_m) s.t.

$$z := \sum_{n} \alpha_{n} x_{n} = \sum_{m} \beta_{m} y_{m}$$

Now assume the sets are linearly separable, i.e. t.e. \hat{w}, w_0 s.t. $\hat{w}^{\top} x_n + w_0 > 0$ for all x_n and $\hat{w}^{\top} y_m + w_0 < 0$ for all y_m . Then

$$\hat{w}^{\top} z + w_0 = \hat{w}^{\top} \left(\sum_n \alpha_n x_n \right) + w_0$$

$$= \sum_{n} \alpha_n \hat{w}^{\top} x_n + w_0$$

$$> \sum_{n} \alpha_n (-w_0) + w_0 \qquad \alpha_n \ge 0 \text{ f.a. } n$$

$$= -w_0 \sum_{n} \alpha_n + w_0$$

$$= -w_0 \cdot 1 + w_0 \qquad \sum_{n} \alpha_n = 1$$

$$= 0$$

but also, $\hat{w}^{\top}z + w_0 < 0$ by the analogous argument via $z = \sum_m \beta_m y_m$, which is a contradiction.

The converse statement, that if the two sets of points are not linearly separable, then their convex hulls intersect, follows immediately from the contrapositive of the separating hyperplane theorem.

5.18

$$\frac{d\sigma}{da} = \frac{d}{da} \frac{1}{1 + e^{-a}}$$

$$= \frac{0 \cdot (1 + e^{-a}) - 1 \cdot (-1)e^{-a}}{(1 + e^{-a})^2}$$

$$= \frac{e^{-a}}{(1 + e^{-a})^2}$$

$$= \frac{1}{1 + e^{-a}} \frac{e^{-a}}{1 + e^{-a}}$$

$$= \sigma(a) \frac{1 + e^{-a} - 1}{1 + e^{-a}}$$

$$= \sigma(a) (1 - \sigma(a))$$