Exercice 1

Considérons $1m^3$ d'air assimilé à un gaz parfait sous pression $P_1 = 10bar$ suibit une détente à température constante, la pression finale est de $P_2 = 1bar$.

- 1. Déterminer le travail W issu de la détente
- 2. Déterminer la quantité de chaleur échangée Q par l'air lors de son évolution
- 3. Déduire la variation de l'énergie interne ΔU au cours de cette détente isotherme.

EXERCICE 2

Un récipient fermé par un piston mobile renferme 2g d'hélium (gaz parfait monoatomique) dans les conditions (P_1, V_1) . On opère une compression adiabatique de façon réversible qui amène le gaz dans les conditions (P_2, V_2) . Sachons que :

$$P_1 = 1bar$$
, $V_1 = 10l$, $P_2 = 3bar$

Calculer:

- 1. Le volume final V_2 du gaz.
- 2. Le travail échangé par le gaz avec le milieu extérieur
- 3. La variation d'énergie interne du gaz
- 4. Déduire la variation de température du gaz sans calculer sa température initiale.

On donne : $\gamma = 1.6$ et R = 8.32 J/K.mole

EXERCICE 3

L'état initial d'une mole de gaz parfait est caractérisé par $P_0 = 2.10^5 Pa$, $V_0 = 14 litres$. On fait subir successivement à ce gaz les transformations réversibles suivantes :

- Une détente isobare qui double son volume, transformation : $(0 \to 1)$.
- Une compression isotherme qui le ramène à son volume initial, transformation : $(1 \rightarrow 2)$.
- Un refroidissement isochore qui le ramène à l'état initial, transformation : $(2 \to 0)$.
- 1. Représenter l'allure de ce cycle de transformations dans le diagramme (P en ordonnées, V en abscisse). Echelle arbitraire.
- 2. A quelle température s'effectue la compression isotherme? En déduire la pression maximale atteinte.
- 3. Calculer les travaux : $W_{0\to 1}$, $W_{1\to 2}$, $W_{2\to 0}$ et les quantités de chaleurs échangées par le système au cours du cycle : $Q_{0\to 1}$, $Q_{1\to 2}$, $Q_{2\to 0}$, en fonction de P_0 , V_0 et $\gamma = \frac{C_p}{C_v} = 1.4$
- 4. Le 1er principe est-il vérifié pour ce cycle?

Exercice 4

Une mole de gaz supposé parfait, à une température initiale de $T_1 = 298K$ se détend d'une pression de 5atm à une pression de 1atm. Dans les deux cas suivants :

 $Cas\ 1$: Détente isotherme réversible $Cas\ 2$: Détente isotherme irréversible

Calculer:

- 1. La température finale du gaz : T_2
- 2. La variation de l'énergie interne du gaz : ΔU
- 3. Le travail effectué par le gaz
- 4. La quantité de chaleur échangée
- 5. La variation de l'enthalpie du gaz : ΔH