

Contents

- 1. Research rationale
- 2. Methodology
- 3. Research Location Tokyo
- 4. Pre-Processing
- 5. Model Fitting
- 6. Results
- 7. Interpretation

Published in **November 2021**

Article number: 6763

The role of urban trees in reducing land surface temperatures in European cities

Prepared by researchers of ETH Zurich

Jonas Schwaab Ronny Meier Gianluca Mussetti Sonia Seneviratne Christine Bürgi Eduoard Davin

Research Rationale

Emerging Urban Heat Islands

Exemplary Urban Forest Ecosystem Services

Research Rationale

Emerging Urban Heat Islands

Exemplary Urban Forest Ecosystem Services

Methodology

Comparison				
Authors		Schwaab et al. (2021)	Our approach	
Country				
City		Various	Tokyo	
Köppen classifi	cation	Cfb, Csa	Cfa	
Methods		Generalized Additive Model	Generalized Additive Model	
Data source		Landsat 30m LULC Copernicus Urban Atlas EU-DEM v1.0	Landsat 8 LST 30m from RS Lab HRLULC from JAXA Japanese-DEM from JAXA MODIS Vegetation Model from NASA	
Data		Minimum 80 per city	>36 for Tokyo*	
requirement Timeframe		across 12 years	across 3 years*	
Results		Urban trees contribute towards cooling, but extend depends on climate	•••	

The role of urban trees in reducing land surface temperatures in European cities

Research Location Tokyo

Tailwind for existing change

Personal interest

Upside potential

Share of Urban green space (2015 data) Source: World Cities Culture Forum (2022)

Singapore	47%
Chengdu	42%
Shenzhen	41%
Nanjing	41%
Hong Kong	40%
Seoul	28%
Guangzhou	20%
Shanghai	16%
Tokyo	7.5%
Taipei	3%

Pre-processing

LST Selection process

Model Fitting

Our results (1)

Our results (1)

Our results (2)

Linear regression model

Year Date Cloud Cover	2018 08/04/2018 17.9%	2019 11/04/2019 3.9%	2020 29/04/2020 1.2%
LST - VCF corr	-0.321	-0 337	-0.447
LST - VCF COIT	-0.521	-0.557	-0.447

Intercept (β_0)	23.06274***	- - 17.385577***	- 23. 3 4 9 3 8 7***-
vcf_2018	-0.09823 ***	-0.024348***	-0.046549***
lu_percent_2	 -3.94643 ***	- - 4.107929*** -	5.6 8 7862*** J
lu_percent_4	3.07862***	2.896111***	3.767533 ***
lu_percent_5	-0.66237	-2.300663***	-2.240579***
lu_percent_6	-0.60247	0.817421**	-0.567646
lu_percent_8	-2.40762*	-0.336959	0.499397
lu_percent_9	-7.51984***	-6.891491***	-6.783993***
Northface_sum	0.04632**	0.047787***	0.034412**
Southface_sum	0.05804***	0.085887***	0.037603**

 Adjusted R-squared
 0.4825
 0.5551
 0.61

0.5573

0.4854

Significance codes: '***' 0.001 '**' 0.01 '*' 0.05

R-squared

VCF is significantly correlated with LST!

Generalized additive model

Year	2018	2019	2020
Date	08/04/2018	11/04/2019	29/04/2020
Cloud Cover	17.9%	3.9%	1.2%
R-squared	0.560	0.633	0.679
Deviance explained	56.30%	63.50%	68.10%

Pre-adjustment			
VCF	6.58%	6.80%	6.80%
LST mean	26.9°C	21.9°C	28.7°C
_LST st.dev	2.4℃		2.7℃
LST min.	12.6°C	15.4°C	13.5°C
LST max.	41.1°C	27.7°C	38.4°C

Prediction (+10% vegetation cover)

Post-adjustment			
VCF	16.58%	16.80%	16.80%
LST mean	25.7°C	21.4°C	27.8°C
-LST-st-dev	17°C	12°C	
			•
LST min.	15.4°C	14.9°C	19.1°C
LST max.	29.2°C	23.9°C	31.3°C

Cooling range of [0.5; 1.2] °C while reducing St.dev

Interpretation

Authors	Country	City	Input		Impact
Wong et al. (2011)	(:	Singapore	10%p	[-0.9°C , -1.2°C]	
Stepanie et al. (2022)		Jakartha	10%p 40%p	[-1.5°C, -2.5°C]	
Huang et al. (1987)		Multiple	10%p 25%p	11-18% 25-42%	electricity reduction p.a
·					
Wong et al. (2011)	(:	Singapore	-1.2°C		ctricity reduction p.a ent buildings
Chen and Wong (2006)	*}	Guangzhou	-1°C	5% electricity reduction p.a.	
Yabe (2005)		Tokyo	+1°C	0.45% base-load increase, 180 MWh per peak-load	

Quite in line with existing research and effects! (De Frenne et al. (2019)

Higher vegetation cover desirable – plant trees in the right spots to reap benefits!

Sources:

Climatology, 26(9), 1103-1116.

Page 1 https://pixabay.com/photos/architecture-buildings-cars-city-1837176/ Page 2 https://en.wikipedia.org/wil-12---Page 3 Hiemstra, Jelle A., Hadas 2017, 7-19. https://data.worldbank.or https://www.data.jma.go. Page 4 Thank you for your attention! https://en.wikipedia.org/v https://en.wikipedia.org/v Schwaab, J., Meier, R., Mu Page 5 https://www.tokyu.co.jp/ https://www.mori.co.jp/e Any comment, question or criticism would be https://www.kanpai-japar Page 8 highly appreciated! https://learningstatisticsw https://environmentalcon Page 11 Wong, N. H., Jusuf, S. K., S rphology on building energy consumpt Stepani, H. M. N., & Emm. nesia). Atmosphere, 13(2), 184. an Area of China. Shen, T., Chow, D. H. C., & International Journal of Low-Carbon Technologies, 11(1), 130-139. De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., ... & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5), 744-749. Huang, Y. J., Akbari, H., Taha, H., & Rosenfeld, A. H. (1987). The potential of vegetation in reducing summer cooling loads in residential buildings. Journal of Applied Meteorology and

K. Yabe Proceedings of National Convention of the Institute of Electrical Engineers of Japan (IEEJ) (2005)