

FUNDAMENTALS OF DEEP LEARNING

Part 2: How a Neural Network Trains

AGENDA

Part I: An Introduction to Deep Learning Part 2: How a Neural Network Trains Part 3: Convolutional Neural Networks Part 4: Data Augmentation and Deployment Part 5: Pre-trained Models Part 6: Advanced Architectures

AGENDA – PART 2

- Recap
- A Simpler Model
- From Neuron to Network
- Activation Functions
- Overfitting
- From Neuron to Classification

RECAP OF THE EXERCISE

What just happened?

Loaded and visualized our data

Edited our data (reshaped, normalized, to categorical)

Created our model

Compiled our model

Trained the model on our data

DATA PREPARATION

Input as an array

DATA PREPARATION

Targets as categories

0		[1,0,0,0,0,0,0,0,0]
1		[0,1,0,0,0,0,0,0,0]
2		[0,0,1,0,0,0,0,0,0,0]
3		[0,0,0,1,0,0,0,0,0,0]
	•	
	•	

AN UNTRAINED MODEL

$$y = mx + b$$

X	у
1	3
2	5

$$y = mx + b$$

X	у
1	3
2	5

$$y = mx + b$$

x	У	ŷ
1	3	4
2	5	3

Start Random

$$m = -1$$

$$b = 5$$

$$y = mx + b$$

X	у	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =			2.5
RMSE = 1.6			

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$y = mx + b$$

X	у	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =			2.5
RMSE =			1.6


```
data = [(1, 3), (2, 5)]
    m = -1
    b = 5
    def get_rmse(data, m, b):
         """Calculates Mean Square Error"""
        n = len(data)
        squared error = 0
        for x, y in data:
11
            # Find predicted y
12
            y hat = m*x+b
            # Square difference between
14
            # prediction and true value
15
            squared_error += (
16
                y - y hat)**2
        # Get average squared difference
        mse = squared_error / n
        # Square root for original units
        return mse ** .5
```


OPTIMIZERS

- Adam
- Adagrad
- RMSprop
- SGD

BUILDING A NETWORK

• Scales to more inputs

BUILDING A NETWORK

- Scales to more inputs
- Can chain neurons

BUILDING A NETWORK

- Scales to more inputs
- Can chain neurons
- If all regressions are linear, then output will also be a linear regression

ACTIVATION FUNCTIONS

Linear

$$\hat{y} = wx + b$$

- 1 # Multiply each input
 2 # with a weight (w) and
 3 # add intercept (b)
 4 y hat = wx+b
- 10 5 0 -5 -10 -10 -5 0 5 10

ReLU

$$\hat{y} = \begin{cases} wx + b & \text{if } wx + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

```
1 # Only return result
2 # if total is positive
3 linear = wx+b
4 y_hat = linear * (linear > 0)
```


Sigmoid

$$\hat{y} = \frac{1}{1 + e^{-(wx+b)}}$$

```
1 # Start with line
2 linear = wx + b
3 # Warp to - inf to 0
4 inf_to_zero = np.exp(-1 * linear)
5 # Squish to -1 to 1
```

6 y hat = 1 / (1 + inf to zero)

ACTIVATION FUNCTIONS

ACTIVATION FUNCTIONS

OVERFITTINGWhy not have a super large neural network?

OVERFITTINGWhich Trendline is Better?

OVERFITTINGWhich Trendline is Better?

TRAINING VS VALIDATION DATA

Avoid memorization

Training data

Core dataset for the model to learn on

Validation data

 New data for model to see if it truly understands (can generalize)

Overfitting

- When model performs well on the training data, but not the validation data (evidence of memorization)
- Ideally the accuracy and loss should be similar between both datasets

AN MNIST MODEL

AN MNIST MODEL

AN MNIST MODEL

RMSE FOR PROBABILITIES?

RMSE FOR PROBABILITIES?

CROSS ENTROPY

CROSS ENTROPY

p(x) = probability prediction of point x

CROSS ENTROPY


```
def cross_entropy(y_hat, y_actual):
    """Infinite error for misplaced confidence."""
    loss = log(y_hat) if y_actual else log(1-y_hat)
    return -1*loss
```


THE NEXT EXERCISE

The American Sign Language Alphabet

APPENDIX: GRADIENT DESCENT

HELPING THE COMPUTER CHEAT CALCULUS

Learning From Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y - (mx + b))^2$$

$$MSE = \frac{1}{2}((3 - (m(1) + b))^2 + (5 - (m(2) + b))^2)$$

$$\frac{\partial MSE}{\partial m} = 5m + 3b - 13 \qquad \qquad \frac{\partial MSE}{\partial b} = 3m + 2b - 8$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \qquad \frac{\partial MSE}{\partial b} = -1$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

 $\lambda = .6$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \; \frac{\partial MSE}{\partial m}$$

$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

$$m := -1 + 7 \lambda = -0.3$$

$$b := 5 + 3 \lambda = 4.7$$

