Search for diboson resonances with CMS and Pixel Barrel Detector Calibration and Upgrade

Dissertation

711r

Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.)

vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich

Jennifer Ngadiuba

Promotionskomitee

Prof. Dr. Benjamin Kilminster Prof. Dr. Florencia Canelli Prof. Dr. Laura Baudis Prof. Dr. Ueli Straumann

Zürich 2016

Contents

1	Intr	roduction	1			
2	The	e Standard Model and beyond	2			
	2.1	The Standard Model	2			
		2.1.1 Particles and interactions	2			
		2.1.2 Spontaneous symmetry breaking	2			
		2.1.3 The Higgs mechanism	2			
		2.1.4 The Higgs boson discovery at LHC	2			
	2.2	The hierarchy problem and other SM limitations	2			
	2.3	Theories of new physics	2			
		2.3.1 Warped Extra dimensions	2			
		2.3.2 Compositeness	2			
		2.3.3 Heavy vector triplet	2			
3	The	e CMS Experiment at the LHC	3			
	3.1	The Large Hadron Collider	3			
	3.2	The CMS Detector	7			
		3.2.1 The Silicon Tracker	7			
		3.2.2 The Electromagnetic Calorimeter	7			
		3.2.3 The Hadronic Calorimeter	7			
		3.2.4 The Muon System	7			
		3.2.5 The Trigger System	7			
	3.3	The CMS detector simulation	7			
Ι	Sea	arch for diboson resonances with CMS	8			
4	Dib	oson resonances as signature for new physics	9			
5	Eve	ent simulation	10			
	5.1	Monte Carlo event generators	10			
	5.2	Simulation of physics processes	10			
		5.2.1 Simulation of signal processes	10			
		5.2.2 Simulation of background processes	10			
6	Object and event reconstruction 1					
	6.1	Tracks and vertices	11			
	6.2	Electrons	11			
	6.3	Muons	11			
	6.4	Jets	11			
		6.4.1 Identification of b jets	11			
	6.5	Missing transverse energy	11			
	6.6	$W \rightarrow \ell \nu$ reconstruction	11			

CONTENTS 3

7	Boosted $H \rightarrow b\overline{b}$ and $W/Z \rightarrow q\overline{q}^{(\prime)}$ identification with jet substructure			
	7.1	Jet substructure algorithms	12	
		7.1.1 Jet pruning	12	
		7.1.2 N-subjettiness	12	
	7.2	W/Z-tagging validation in top enriched sample	12	
	7.3	H-tagging algorithm	12	
8	Fina	al event selection and categorization	13	
	8.1	Search for a WH resonance in the $\ell\nu$ b final state at $\sqrt{s}=8$ TeV	13	
		8.1.1 $t\bar{t}$ background rejection	13	
		8.1.2 Final selection and control plots	13	
	8.2	Search for WW/WZ resonances in the $\ell\nu q\overline{q}^{(\prime)}$ final state at $\sqrt{s}=13~{\rm TeV}$	13	
		8.2.1 W/Z-jet mass categories	13	
		8.2.2 Final selection and control plots	13	
		r		
9	Bac	kground modeling	14	
	9.1	W+jets background estimate with alpha method	14	
		9.1.1 Description	14	
		9.1.2 Extraction of the W+jets normalization	14	
		9.1.3 Extraction of the W+jets shape	14	
	9.2	Top quark production	14	
	9.3	Systematic uncertainties in the background estimation	14	
10	Sign	nal modeling and statistical treatment	15	
	_	Signal modeling	15	
	-0	10.1.1 Parametrization of the resonance mass	15	
		10.1.2 Signal efficiency	15	
	10.2	Systematic uncertainties in the signal prediction	15	
		Testing new resonance hypothesis	15	
	10.0	10.3.1 Profile likelihood procedure	15	
		10.3.2 The CL_s method	15	
		10.3.3 Treatment of uncertainties	15	
11	Ros	ults with 8 TeV data	16	
11		Final m_{WH} distribution	16	
		Studies on the excess	16	
		Significance of the data	16	
		Cross section limits	16	
19	Dog	ults with 13 TeV data	17	
14		Final m_{WV} distribution	17	
		Cross section limits	17	
	12.2		11	
13		abination of searches for diboson resonances at $\sqrt{s}=8$ and 13 TeV	18	
	13.1	Inputs to the combination	18	
		13.1.1 8 TeV VV searches	18	
		13.1.2 13 TeV VV searches	18	
		13.1.3 8 TeV VH searches	18	
		13.1.4 13 TeV VH searches	18	
	13.2	Combination procedure	18	

4 CONTENTS

	13.3 Results	18
	13.3.1 Limits on W'	18
	13.3.2 Limits on Z'	18
	13.3.3 Limits on heavy vector triplet (W'+Z')	18
	13.3.4 Limits on Bulk Graviton	18
	13.3.5 Significance at 2 TeV	18
14	Conclusions	19
II	Calibration and Upgrade of the CMS Pixel Barrel Detector	20
15	introduction chapter: why pixels are so important for physics	21
16	The CMS Pixel Barrel Detector	22
	16.1 Design of the CMS Pixel Barrel Detector	22
	16.2 Detector modules	22
	16.2.1 Sensor	22
	16.2.2 Readout Chip	22
	16.2.3 Token Bit Manager	22
	16.3 Readout and control system	22
	16.3.1 Analog readout chain	22
	16.3.2 Front End Driver	22
	16.3.3 Supply Tube	22
	16.3.4 Communication and Control Unit	22
	16.3.5 Front End Controller	22
	16.4 Pixel Online Software	22
	16.5 Performance at $\sqrt{s} = 8$ and 13 TeV	22
17	Optimization and commissioning for LHC Run II	23
	17.1 Radiation damage after LHC Run I	23
	17.2 Optimization for LHC Run II	23
	17.2.1 Overview of pixel calibrations	23
	17.2.2 Temperature dependence	23
	17.3 Commissioning for LHC Run II	23
	17.3.1 Installation into CMS	23
	17.3.2 Check out of optical connections	23
	17.3.3 Adjustment of readout chain settings	23
	17.3.4 Optimisation of signal performance	23
18	Phase I Upgrade of the CMS Pixel Barrel Detector	24
	18.1 Motivations	24
	18.2 Summary of changes	24
	18.3 The digital readout chain	24
	18.4 The Phase I supply tubes	24
	18.5 The test stand	24
	18.6 Supply tubes assembly and commissioning	24
	18.7 Detector commissioning	24
19	Conclusions	25

CONTENTS	5
III Summary	26
Bibliography	28

CHAPTER 1

Introduction

The Standard Model and beyond

- 2.1 The Standard Model
- 2.1.1 Particles and interactions
- 2.1.2 Spontaneous symmetry breaking
- 2.1.3 The Higgs mechanism
- 2.1.4 The Higgs boson discovery at LHC
- 2.2 The hierarchy problem and other SM limitations
- 2.3 Theories of new physics
- 2.3.1 Warped Extra dimensions
- 2.3.2 Compositeness
- 2.3.3 Heavy vector triplet

The CMS Experiment at the LHC

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [1] is a proton-proton (pp) collider located at the European Particle Physics Laboratory (CERN) near Geneva, Switzerland. It is situated in the former CERN Large Electron-Positron Collider (LEP) tunnel with a circumference of 27 km about 100 m under ground crossing the border between France and Switzerland. A hadron collider has been chosen to allow higher centre of mass energies compared to electron-positron (e^-e^+) colliders, the latter limited by synchrotron radiation due to the low mass of the particles to be accelerated. High centre of mass energies are required for the production of heavy SM particles such as the top quark and the Higgs boson, and to search for new BSM interactions at the TeV scale. For this purpose, the LHC is designed to produce pp collisions up to a centre of mass energy ($\sqrt{s} = 2E_{\text{beam}}$) of 14 TeV, superseding previous high energy hadron colliders by a factor of 7. In addition to colliding protons, the LHC is also capable of accelerating and colliding heavy nuclei, which is, however, not considered in this work.

The LHC is the final element in a succession of machines that accelerate protons to increasingly higher energies. Each machine boosts the energy of a beam of protons, before injecting the beam into the next machine in the sequence. Protons, obtained from a hydrogen source, are first accelerated by a linear accelerator (LINAC 2) to energies of 50 MeV. The beam is then injected into the Proton Synchrotron Booster (PSB), which accelerates the protons to 1.4 GeV, followed by the Proton Synchrotron (PS), which pushes the beam to 25 GeV. Protons are then sent to the Super Proton Synchrotron (SPS) where they are accelerated to 450 GeV. Finally, the beam is injected in the LHC ring, where it completes several revolutions to reach the targeted energy. The LHC ring and the acceleration chain are sketched in Fig. 3.1. Inside the ring, the two proton beams circulate in opposite directions in two tubes kept at ultrahigh vacuum, referred as beam pipes. The acceleration of protons inside LHC is made by radio-frequency cavities (400 MHz), giving a 492 keV energy gain per revolution, with a 7 keV loss per turn due to synchrotron radiation. It takes 4 minutes and 20 seconds to fill each LHC ring, and 20 minutes for the protons to reach their maximum energy of 7 TeV. The maximum energy of the protons is limited by the strength of the magnetic field required for keeping the protons inside the ring. For 7 TeV-protons a magnetic field of 8.3 T has to be produced, which can only be reasonably obtained by superconducting magnets. The ring is equipped with 1232 dipole magnets for bending and 392 quadrupole magnets for focussing made of niobium-titanium (NbTi) are therefore cooled down to a temperature of 1.9 K with the help of super-fluid helium. After acceleration the protons move through the ring in separate bunches of protons with a fixed spatial separation. The LHC ring has four interaction points at which the two counter rotating beams are made to cross and the particle detectors are located. Just prior to collosion, particles from the incoming beams must be squeezed closer together in order to maximize the chances of interaction. For this purpose, a system of three quadrupole magnets, so-called inner triplet, is located at each side of each detector, which squeeze the beams and lead them to collisions in the centre of the detector. Inner triplets tighten the beam, making it 12.5 times narrower from 0.2 mm down to 16 μ m across.

Besides the high centre of mass energy required for the production of heavy particles, a high event rate has to be obtained to allow the discovery of processes with low production cross sections. The instantaneous luminosity \mathcal{L} characterizes the interaction rate. For a process with a cross section σ , the interaction rate is given by

$$\frac{dN_{ev}}{dt} = \sigma \mathcal{L}. (3.1)$$

The instantaneous luminosity depends only on the beam parameters and can be written for a Gaussian beam distribution as:

$$\mathcal{L} = \frac{N_b^2 n_b f_{\text{rev}} \gamma_r}{4\pi \sigma_x \sigma_y} \,, \tag{3.2}$$

where N_b is the number of particles per bunch, n_b the number of bunches per beam, f_{rev} the revolution frequency, γ_r the relativistic gamma factor, while σ_x and σ_y characterise the widths of the transverse beam profiles in the horizontal and vertical direction, respectively. The number of interaction events in a period of running time of the collider can be derived as

$$N_{ev} = \sigma \int \mathcal{L}dt = \sigma L , \qquad (3.3)$$

where L is called the integrated luminosity. It is a measurement of the collected data size and it is usually expressed in inverse of cross section.

The LHC beams can reach very high luminosity with a high frequency bunch crossing and a high density of protons per bunch. In the ring, 2808 bunches of $1.15 \cdot 10^{11}$ protons are circulated, with an average length of 7.5 cm, a width of about 16 μ m and a bunch spacing of 25 ns (collision frequency of 40 MHz). This corresponds to the design luminosity of 10^{34} cm²s¹, which superseds by a factor of 100 the luminosity reached by previous hadron colliders.

Proton collisions take place in four points of the LHC tunnel where the four main experiments are located: ATLAS (A Toroidal LHC ApparatuS) [2], CMS (Compact Muon Solenoid) [3], LHCb (LHC beauty experiment) [4] and ALICE (A Lead Ion Collider Experiment) [5]. ATLAS and CMS are general purpose experiments, designed to get an extensive study of SM and BSM physics and to operate at a peak of instantaneous luminosity of $10^{34} \text{cm}^2 \text{s}^1$ for pp collisions. The LHCb experiment is instead optimized for bottom quark physics studies while the ALICE experiment is dedicated to the study of the lead-lead collisions with a peak luminosity of $10^{27} \text{cm}^2 \text{s}^1$.

LHC operation officially started at the beginning of September 2008 but it was interrupted after a short period, due to the breakdown of superconducting magnets. The collider has been reactivated in November 2009 with first pp collisions at $\sqrt{s} = 900$ GeV, officially starting a new era in the particle physics experiments. Figure 3.2 shows the LHC timeline together with the phases of its operation. The operating center-of-mass energies in pp collisions have so far been 7 TeV in 2010-2011, 8 TeV in 2012 and 13 TeV in 2015-2016. The 7 and 8 TeV periods together make out the *LHC Run 1*, while the 13 TeV period is called the *LHC Run 2*. The work presented in this document is based on both data collected at 8 TeV in 2012 and at 13 TeV in 2015. In the whole Run 1, the LHC operated with a 50 ns bunch spacing. The peak of instantaneous luminosity in 2011 has been $\sim 0.4 \cdot 10^{34} \text{cm}^2 \text{s}^1$ for a total delivered integrated luminosity of 6.10 fb⁻¹. In 2012 the beam energy increased to 4 TeV per beam with a peak of instantaneous luminosity of $\sim 0.8 \cdot 10^{34} \text{cm}^2 \text{s}^1$ and 23.3 fb⁻¹ delivered integrated luminosity by the end of that year. The increment of the instantaneous luminosity leads to a no more negligible number of simultaneous interactions per bunch crossing, the so-called pile-up

ALICE TT20 ATLAS BOOSTER 1979 (1970 to Realton Collider SPS Super Proton Synchrotron PS Proton Synchrotron PS Proton Synchrotron

Figure 3.1: The LHC scheme together with its injection chain and the locations of the four main experiments ATLAS, CMS, LHCb and ALICE [6].

AD Antiproton Decelerator CTF3 Clic Test Facility AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine Device

LER Low Energy Ion Ring LINAC LINear Accelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

(PU) events. It depends on the cross section of inelastic collisions (75 mb at $\sqrt{s} = 7$ TeV-add cite), and it is directly linked to the instantaneous luminosity. The average PU of the data collected in 2012 is equal to 21 (Fig. blabla) while it has been around 15 in 2011 - add cite.

A shut-down period for the LHC (LS1) occurred in the whole 2013 and 2014, where upgrades and technical improvements have been performed in order to reach the designed instantaneous luminosity and centre of mass energy. On March, 21st 2015 the first pp collisions at $\sqrt{s}=13$ TeV has been obtained, a new record-breaking energy. For the first three months the machine operated with 50 ns bunch spacing while, from August 2015, it has been reduced to the designed 25 ns and the number of bunches per beam has been increased. The first part of this Run 2 phase ended on November 2015 with a total delivered integrated luminosity of $4.22~{\rm fb^{-1}}$ and a peak of instantaneous luminosity of $\sim 0.5 \cdot 10^{34} {\rm cm^2 s^1}$ with an average pileup of 12 - add cite. The LHC Run 2 has been restarted in April 2016, after an end-of-the-year technical stop, reaching a peak luminosity of $\sim 1.2 \cdot 10^{34} {\rm cm^2 s^1}$ (change this number at some point). The machine has remained in operation at $\sqrt{s}=13$ TeV for the whole year with a total delivered integrated luminosity of 30 fb⁻¹ (change this number at some point). Accordingly to the current LHC schedule, the Run 2 will proceed up to the end of 2018 with a total expected integrated luminosity of 100 fb⁻¹. The data collected in 2016 are not considered in this work.

add some comments about HL-LHC

Figure 3.2: LHC timeline.

Figure 3.3: Integrated lumi and PU for 2012.

Figure 3.4: Integrated lumi and PU for 2015.

3.2 The CMS Detector

- 3.2.1 The Silicon Tracker
- 3.2.2 The Electromagnetic Calorimeter
- 3.2.3 The Hadronic Calorimeter
- 3.2.4 The Muon System
- 3.2.5 The Trigger System
- 3.3 The CMS detector simulation

Part I Search for diboson resonances with $\overline{\text{CMS}}$

Diboson resonances as signature for new physics

Event simulation

- 5.1 Monte Carlo event generators
- 5.2 Simulation of physics processes
- 5.2.1 Simulation of signal processes
- 5.2.2 Simulation of background processes

Object and event reconstruction

- 6.1 Tracks and vertices
- 6.2 Electrons
- 6.3 Muons
- 6.4 Jets
- 6.4.1 Identification of b jets
- 6.5 Missing transverse energy
- 6.6 $W\rightarrow \ell\nu$ reconstruction

Chapter 7

Boosted $H \rightarrow b\overline{b}$ and $W/Z \rightarrow q\overline{q}^{(\prime)}$ identification with jet substructure

- 7.1 Jet substructure algorithms
- 7.1.1 Jet pruning
- 7.1.2 N-subjettiness
- $7.2~~\mathrm{W/Z}$ -tagging validation in top enriched sample
- 7.3 H-tagging algorithm

Final event selection and categorization

- 8.1 Search for a WH resonance in the $\ell\nu b\overline{b}$ final state at \sqrt{s} = 8 TeV
- 8.1.1 $t\bar{t}$ background rejection
- 8.1.2 Final selection and control plots
- 8.2 Search for WW/WZ resonances in the $\ell\nu q\overline{q}^{(\prime)}$ final state at $\sqrt{s}=$ 13 TeV
- 8.2.1 W/Z-jet mass categories
- 8.2.2 Final selection and control plots

Background modeling

- 9.1 W+jets background estimate with alpha method
- 9.1.1 Description
- 9.1.2 Extraction of the W+jets normalization
- 9.1.3 Extraction of the W+jets shape
- 9.2 Top quark production
- 9.3 Systematic uncertainties in the background estimation

Signal modeling and statistical treatment

Signal modeling 10.1 Parametrization of the resonance mass 10.1.1 10.1.2 Signal efficiency Systematic uncertainties in the signal prediction 10.2 Testing new resonance hypothesis 10.3 10.3.1 Profile likelihood procedure The CL_s method 10.3.210.3.3 Treatment of uncertainties

Results with 8 TeV data

- 11.1 Final m_{WH} distribution
- 11.2 Studies on the excess
- 11.3 Significance of the data
- 11.4 Cross section limits

Results with 13 TeV data

- 12.1 Final $m_{
 m WV}$ distribution
- 12.2 Cross section limits

Combination of searches for diboson resonances at $\sqrt{s}=8$ and $13~{\rm TeV}$

- 13.1 Inputs to the combination
- 13.1.1 8 TeV VV searches
- 13.1.2 13 TeV VV searches
- 13.1.3 8 TeV VH searches
- 13.1.4 13 TeV VH searches
- 13.2 Combination procedure
- 13.3 Results
- 13.3.1 Limits on W'
- 13.3.2 Limits on Z'
- 13.3.3 Limits on heavy vector triplet (W'+Z')
- 13.3.4 Limits on Bulk Graviton
- 13.3.5 Significance at 2 TeV

Chapter 14

Conclusions

Part II

Calibration and Upgrade of the CMS Pixel Barrel Detector

introduction chapter: why pixels are so important for physics

The CMS Pixel Barrel Detector

- 16.1 Design of the CMS Pixel Barrel Detector16.2 Detector modules
- _____
- 16.2.1 Sensor
- 16.2.2 Readout Chip
- 16.2.3 Token Bit Manager
- 16.3 Readout and control system
- 16.3.1 Analog readout chain
- 16.3.2 Front End Driver
- 16.3.3 Supply Tube
- 16.3.4 Communication and Control Unit
- 16.3.5 Front End Controller
- 16.4 Pixel Online Software
- 16.5 Performance at $\sqrt{s} = 8$ and 13 TeV

Optimization and commissioning for LHC Run II

17.1	Radiation damage after LHC Run I
17.2	Optimization for LHC Run II
17.2.1	Overview of pixel calibrations
17.2.2	Temperature dependence
17.3	Commissioning for LHC Run II
17.3.1	Installation into CMS
17.3.2	Check out of optical connections
17.3.3	Adjustment of readout chain settings
17.3.4	Optimisation of signal performance

Phase I Upgrade of the CMS Pixel Barrel Detector

- 18.1 Motivations
- 18.2 Summary of changes
- 18.3 The digital readout chain
- 18.4 The Phase I supply tubes
- 18.5 The test stand
- 18.6 Supply tubes assembly and commissioning
- 18.7 Detector commissioning

Chapter 19

Conclusions

Part III Summary

Bibliography

- [1] L. Evans and P. Bryant, "LHC Machine", JINST 3 (2008) S08001.
- [2] ATLAS Collaboration, "The ATLAS Experiment at the CERN Large Hadron Collider", JINST 3 (2008) S08003, doi:10.1088/1748-0221/3/08/S08003.
- [3] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [4] LHCb Collaboration, "The LHCb Detector at the LHC", JINST 3 (2008) S08005, doi:10.1088/1748-0221/3/08/S08005.
- [5] ALICE Collaboration, "The ALICE experiment at the CERN LHC", JINST **3** (2008) S08002, doi:10.1088/1748-0221/3/08/S08002.
- [6] F. Marcastel, "CERN's Accelerator Complex. La chane des acclrateurs du CERN",. General Photo.