Partiel - 10 novembre 2022 (durée : 1h30)

Documents autorisés : une feuille A4 manuscrite recto-verso. Aucun appareil électronique. Apportez le plus grand soin à la rédaction et à la présentation. La notation en tiendra compte.

Exercice 1 Résoudre dans \mathbb{C} l'équation $z^2 + 2(1+i)z - 5(1+2i) = 0$

INDICATION : $\sqrt{20^2 + 48^2} = 52$

Exercice 2

Chacune des zones A et B indiquées dans le dessin-cicontre est caractérisée par des conditions sur les affixes z des points dans cette zone. Pour chaque zone, indiquer (en justifiant votre réponse) de quelles conditions il s'agit parmi celles ci-dessous :

(C1)
$$|z| \ge 2$$
 et $-1 \le \Re e(z) \le -\frac{1}{2}$

(C2)
$$\frac{\pi}{6} \le \arg z \le \frac{\pi}{3}$$
 et $\mathcal{I}m(z) \le 2$

(C3)
$$1 \le |z| \le 2$$
 et $\frac{\pi}{6} \le \arg z \le \frac{\pi}{3}$

(C4)
$$\Re e(z) \le -\frac{1}{2}$$
 et $|z| \le 1$

(C5)
$$-1 \le \mathcal{R}e(z) \le -\frac{1}{2}$$
 et $-1 \le \mathcal{I}m(z) \le 1$

(C6)
$$\frac{1}{2} \le \Re e(z) \le 2$$
 et $\frac{\pi}{6} \le \arg z \le \frac{\pi}{3}$

Exercice 3

- **1.** Pour quelle(s) valeur(s) des coordonnées a et b les vecteurs $\overrightarrow{u} = \begin{pmatrix} a \\ b \end{pmatrix}$ et $\overrightarrow{v} = \begin{pmatrix} b \\ a \end{pmatrix}$ sont-ils orthogonaux? Colinéaires?
- **2.** Les vecteurs $\overrightarrow{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\overrightarrow{v} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ et $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}$ sont-ils coplanaires?

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de \mathbb{R}^3 , et $\theta \in [0,\pi]$ l'angle non orienté entre ces vecteurs. On rappelle que $(\overrightarrow{u}.\overrightarrow{v}) = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos \theta$ et que $\|\overrightarrow{u} \wedge \overrightarrow{v}\| = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \sin \theta$.

- 3. Déterminer l'angle entre les vecteurs $\overrightarrow{u} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et $\overrightarrow{v} = \begin{pmatrix} 1 + \sqrt{2} \\ -\sqrt{2} \\ 1 \sqrt{2} \end{pmatrix}$
- **4.** Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de \mathbb{R}^3 . Montrer que $\|\overrightarrow{u} \wedge \overrightarrow{v}\|^2 + (\overrightarrow{u} \cdot \overrightarrow{v})^2 = \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2$

TOURNEZ SVP .../...

Exercice 4

1. Calculer
$$S_2 = \sum_{k=1}^{2} k(k!)$$
 et $S_3 = \sum_{k=1}^{3} k(k!)$

- **2.** Montrer que, pour tout $k \in \mathbb{N}$, k(k!) = (k+1)! k! **3.** En déduire la valeur de $S_n = \sum_{k=1}^n k(k!)$ pour $n \in \mathbb{N}^*$.

Ce résultat est-il cohérent avec les valeurs de S_2 et S_3 calculées à la question 1?

Exercice 5

Simplifier l'expression $\sum_{k=0}^{7} {7 \choose k} (2i)^{k+1} (1-i)^{7-k}$ et mettre le résultat sous forme exponentielle.

Exercice 6 Soit θ un réel fixé et n un entier naturel.

Le but de cet exercice est de calculer les sommes $C_n = \sum_{k=0}^{n} \cos k\theta$ et $S_n = \sum_{k=0}^{n} \sin k\theta$.

- 1. Quelles sont les valeurs de θ telles que $e^{i\theta} = 1$?
- **2.** Calculer $E_n = \sum_{i=1}^{n} e^{ik\theta}$ (on distinguera les deux cas $e^{i\theta} = 1$ et $e^{i\theta} \neq 1$)
- 3. Montrer que, pour tout α réel, $e^{i\alpha} 1 = 2i e^{i\alpha/2} \sin \frac{\alpha}{2}$. En déduire que, si $e^{i\theta} \neq 1$, $E_n = \frac{\sin \frac{(n+1)\theta}{2}}{\sin \frac{\theta}{2}} e^{in\theta/2}$
- 4. En déduire les expressions de C_n et S_n (pour les deux cas distingués précédemment).

2