What does biomedical data look like?

Typical questions

How can we find **meaningful biological relationships** between these multiple datasets?

Possible input?

Genes (p1)

Possible input?

DNA RNA Protein

Samples (n)

Somatic Change Binary, continuous or integer

Samples (n)

Protein
cts
~ missing values

Samples (n)

Gene expression continuous measurements

Samples (n)

(p4)

Variables

Clinical continuous and factors

Gene expression continuous measurements

Protein

cts

~ missing values

Gene expression continuous measurements

Clinical continuous and factors

Protein

cts

~ missing values

Somatic Change Binary, continuous or integer

Gene expression continuous measurements

Clinical continuous and factors

Proteins (p3)

Genes (p1)

Steps in preparing an RNA-seq library

- 1. Purify RNA
- 2. Bind polyA fraction (mRNA)
- 3. Fragment RNA (200 bp)

4. Convert to cDNA by random priming

- Apply adaptors and sequence
- 6. Analyze millions of 25 bp reads

gene

Basic principles of discrimination

Each object associated with

- a class label (or response) Y ∈ {1, 2, ..., K} and
- a feature vector of P measurements: $X = (X_1, ..., X_P)$

Aim: predict Y from X.

Predefined class {1,2,...K}

Objects

Classification rule?

Basic principles of discrimination

Each object associated with

- a class label (or response) Y ∈ {1, 2, ..., K} and
- a feature vector of P measurements: $X = (X_1, ..., X_P)$

Aim: predict Y from X.

Predefined class {1,2,...K}

Objects

Y = Class Label = 2

X = Feature vector
{colour, shape}

Classification rule?

X = {red, square}

Basic principles of discrimination

Each object associated with

- a class label (or response) Y ∈ {1, 2, ..., K} and
- a feature vector of P measurements: $X = (X_1, ..., X_P)$

Aim: predict Y from X.

Predefined class {1,2,...K}

Objects

Classification rule?

 $X = \{red, square\}$

Y = Class Label = 2

X = Feature vector
{colour, shape}

Learning set

Predefine classes

Tumor type

Objects

Array

Feature vectors

Gene

expression

Golub et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439): 531-537.

Classification Rule

new

array

Learning set

Predefine classes

Tumor type

Objects

Array

Feature vectors

Gene

expression

Golub et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439): 531-537.

Classification Rule

Discrimination and prediction

Discrimination and prediction

One can think of the classification rule as a black box, some methods provides more insight into the box.

Classification Rule

- Classification procedure,
- Feature selection,
- Parameters
- Distance measure,
- Aggregation methods.
- pthers ...

Classification

Many algorithms out there ...

Some code limma stuff DE for feature selection

Do show MA-plot + vocano plot and describe what it means.

The difference between DE and biomarker.

Don't forget logistic regression

ML discriminant rules - special cases

Gaussian ML discriminant rules

- For multivariate Gaussian (normal) class densities $XIY = k \sim N(\mu_k, \Sigma_k)$, the ML classifier is

$$C(\mathbf{X}) = \operatorname{argmin}_{k} \{ (\mathbf{X} - \mu_{k}) \sum_{k=1}^{k} (\mathbf{X} - \mu_{k})^{2} + \log \sum_{k=1}^{k} |\mathbf{X} - \mu_{k}|^{2} \}$$

- In general, this is a quadratic rule (Quadratic discriminant analysis, or QDA)
- In practice, population mean vectors μ_k and covariance matrices Σ_k are estimated by corresponding sample quantities

[DLDA]
Diagonal linear discriminant analysis
class densities have the same diagonal
covariance matrix ∇ = diag(s₁², ..., s_p²)

Nearest neighbor classification

- Based on a measure of distance between observations (e.g. Euclidean distance or one minus correlation).
- k-nearest neighbor rule (Fix and Hodges (1951)) classifies an observation X as follows:
 - find the k observations in the learning set closest to X
 - predict the class of X by majority vote, i.e., choose the class that is most common among those k observations.
- The number of neighbors k can be chosen by cross-validation (more on this later).

Classification - k Nearest Neighbor

$$\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$
 Nk(x): the k closest points to x

15-nearest neighbor averaging

1-nearest neighbor averaging

Classification tree

- Partition the feature space into a set of rectangles, then fit a simple model in each one
- Binary tree structured classifiers are constructed by repeated splits of subsets (nodes) of the measurement space_X into two descendant subsets (starting with_X itself)
- Each terminal subset is assigned a class label;
 the resulting partition of X corresponds to the classifier

Classification with SVMs

A quick summary (update with package)

- Classical Maximum Likelihood classifiers:
 - Linear Discriminant Analysis (LDA)
 - DLDA
 - DQDA
 - K-Nearest Neighbour Classifiers
- Modern LDA Derivatives:
 - PAMR (http://www-stat.stanford.edu/~tibs/PAM/)
 - SCRDA
- Support Vector Machines (SVM)
- Aggregated Trees (CART)
- Other classifiers:
 - Neural networks (NN)
 - Bayesian belief networks

.

Learning set Bad Good

Classification Rule

Case studies

Feature selection.
Correlation with class
labels, very similar to t-test.

Using cross validation to select 70 genes

Reference 1
Retrospective study

L van't Veer et al Gene expression profiling predicts clinical outcome of breast cancer. Nature, Jan 2002.

.

295 samples selected from Netherland Cancer Institute tissue bank (1984 – 1995).

Results" Gene expression profile is a more powerful predictor then standard systems based on clinical and histologic criteria

Reference 2
Retrospective study

M Van de Vijver et al. A gene expression signature as a predictor of survival in breast cancer. The New England Jouranl of Medicine, Dec 2002.

Agendia (formed by reseachers from the Netherlands Cancer Institute)

Start in Oct. 2003

- 1) 3000 subjects [Health Council of the Netherlands]
- 5000 subjects New York based Avon Foundation.
 Custorm arrays are made by Aglient including
 70 genes + 1000 controls

Reference 3
Prospective trials.
Aug 2003

Clinical trials http://www.agendia.com/

Session 2 Performance assessment

Performance assessment

- Any classification rule needs to be evaluated for its performance on the future samples. It is almost never the case in microarray studies that a large independent population-based collection of samples is available at the time of initial classifier-building phase.
- One needs to estimate future performance based on what is available: often the same set that is used to build the classifier.
- Assessing performance of the classifier based on
 - Cross-validation.
 - Test set.
 - Independent testing on future dataset.
 - Independent testing on existing dataset (integrative analysis).

Diagram of performance assessment

Diagram of performance assessment

5-fold CV

Common Splitting Strategies

Common question

Platforms comparison

Individual platform

- Clinical: CPM

G: mRNA

- P: protein

- M: microRNA

