PruebaLatex

Ejercicio 1

Lectura de los datos

```
library(readxl)
dt <- read_excel("~/ejercicio1seminario.xlsx",col_names = TRUE, col_types = "numeric")
dt <- as.data.frame(dt)
rownames(dt) <- paste0("Empresa ", 1:nrow(dt))
head(dt)</pre>
```

	Innovación	Comunicación	Eficiencia	Responsabilidad
Empresa 1	4	5	4	5
Empresa 2	1	2	5	4
Empresa 3	1	2	2	3
Empresa 4	4	5	1	2
Empresa 5	5	5	5	3
Empresa 6	1	2	2	3
	Atención a	l Cliente Com	unidad	
Empresa 1		4	3	
Empresa 2		1	4	
Empresa 3		4	2	
Empresa 4		2	1	
Empresa 5		4	3	
Empresa 6		3	3	

Prueba de normalidad

```
library(MVN)
```

Warning: package 'MVN' was built under R version 4.3.3

normalidad <- mvn(dt, mvnTest = "mardia") normalidad</pre>

\$multivariateNormality

		Test	Statistic	p value	Result
1	${\tt Mardia}$	${\tt Skewness}$	43.4819357405774	0.888829218092923	YES
2	Mardia	${\tt Kurtosis}$	-1.80347342648514	0.0713138951310004	YES
3		MVN	<na></na>	<na></na>	YES

\$univariateNormality

	Test	Variable	Statistic	p value	Normality
1	Anderson-Darling	Innovación	0.8477	0.0237	NO
2	Anderson-Darling	Comunicación	1.1134	0.0049	NO
3	Anderson-Darling	Eficiencia	1.0229	0.0084	NO
4	Anderson-Darling	Responsabilidad	0.5851	0.1126	YES
5	Anderson-Darling	Atención al Cliente	0.8940	0.0181	NO
6	Anderson-Darling	Comunidad	0.8734	0.0204	NO

\$Descriptives

	n	Mean	Std.Dev	Median	Min	Max	25th	75th	Skew
Innovación	20	2.65	1.308877	2.0	1	5	2.00	4	0.35755502
Comunicación		2.95	1.356272	2.5	1	5	2.00	4	0.32557373
Eficiencia		3.10	1.618967	3.0	1	5	1.75	5	-0.08200978
Responsabilidad		3.05	1.316894	3.0	1	5	2.00	4	-0.08637027
Atención al Cliente	20	2.95	1.431782	3.0	1	5	2.00	4	-0.01967529
Comunidad	20	2.80	1.542384	3.0	1	5	1.00	4	0.15370990
	Kι	urtos	is						

Innovación -1.207362
Comunicación -1.378612
Eficiencia -1.676884
Responsabilidad -1.249458
Atención al Cliente -1.546286
Comunidad -1.549809

Los datos presentan normalidad, así que se procede con el método de clustering.

Primero se tratara de definir cuantos clusters son los ideales

```
#install.packages("NbClust")
library(NbClust)
res.nbclust <- NbClust(dt, distance = "euclidean",</pre>
```

```
min.nc = 2, max.nc = 6,
method = "complete", index ="all")
```


***: The Hubert index is a graphical method of determining the number of clusters.

In the plot of Hubert index, we seek a significant knee that corresponds to significant increase of the value of the measure i.e the significant peak in index second differences plot.

***: The D index is a graphical method of determining the number of clusters.

In the plot of D index, we seek a significant knee (the significant peak in become differences plot) that corresponds to a significant increase of the vector the measure.

- * Among all indices:
- * 5 proposed 2 as the best number of clusters
- * 3 proposed 3 as the best number of clusters
- * 10 proposed 4 as the best number of clusters
- * 5 proposed 6 as the best number of clusters

***** Conclusion *****

* According to the majority rule, the best number of clusters is 4

Nuestro primer metodo inida que lo adecuado serian 4 clusters.

library(clValid)

Warning: package 'clValid' was built under R version 4.3.3

Loading required package: cluster

Warning in fanny(Dist, nc, ...): the memberships are all very close to 1/k. Maybe decrease 'memb.exp'?

Warning in fanny(Dist, nc, \dots): the memberships are all very close to 1/k. Maybe decrease 'memb.exp' ?

Warning in vClusters(mat, clMethods[i], nClust, validation = validation, : fanny unable to find 3 clusters, returning NA for these validation measures

Warning in fanny(Dist, nc, \dots): the memberships are all very close to 1/k. Maybe decrease 'memb.exp' ?

Warning in vClusters(mat, clMethods[i], nClust, validation = validation, : fanny unable to find 4 clusters, returning NA for these validation measures

Warning in fanny(Dist, nc, ...): the memberships are all very close to 1/k. Maybe decrease 'memb.exp'?

Warning in vClusters(mat, clMethods[i], nClust, validation = validation, : fanny unable to find 5 clusters, returning NA for these validation measures

Warning in fanny(Dist, nc, \dots): the memberships are all very close to 1/k. Maybe decrease 'memb.exp' ?

Warning in vClusters(mat, clMethods[i], nClust, validation = validation, : fanny unable to find 6 clusters, returning NA for these validation measures

summary(validclus)

Clustering Methods:

hierarchical kmeans diana fanny pam clara agnes

Cluster sizes:

2 3 4 5 6

Validation Measures:

		2	3	4	5	6
hierarchical	Connectivity	6.0798	15.9718	20.6115	24.3917	25.9429
	Dunn	0.4913	0.4237	0.5092	0.5517	0.5517
	Silhouette	0.2082	0.1871	0.2479	0.2475	0.2357
kmeans	Connectivity	12.1103	18.8056	20.7163	23.9440	25.9429
	Dunn	0.3714	0.4410	0.5092	0.5517	0.5517
	Silhouette	0.1918	0.2228	0.2743	0.2729	0.2357
diana	Connectivity	16.1770	17.7060	20.7238	26.9929	28.8107
	Dunn	0.2981	0.2981	0.3123	0.3430	0.3651
	Silhouette	0.1776	0.0904	0.0522	0.1030	0.1287
fanny	Connectivity	13.9187	NA	NA	NA	NA
	Dunn	0.4564	NA	NA	NA	NA
	Silhouette	0.1832	NA	NA	NA	NA
pam	Connectivity	18.1060	20.4905	26.0647	28.9270	30.2659
	Dunn	0.3262	0.3536	0.4082	0.4663	0.4663
	Silhouette	0.1525	0.2198	0.2353	0.2208	0.2507
clara	Connectivity	15.2171	20.4905	25.1869	29.2813	30.6202
	Dunn	0.3444	0.3536	0.5189	0.4170	0.4170
	Silhouette	0.1562	0.2198	0.2336	0.2127	0.2310
agnes	Connectivity	6.0798	15.9718	20.6115	24.3917	25.9429
	Dunn	0.4913	0.4237	0.5092	0.5517	0.5517
	Silhouette	0.2082	0.1871	0.2479	0.2475	0.2357

Optimal Scores:

	Score	Method	Clusters
Connectivity	6.0798	${\tt hierarchical}$	2
Dunn	0.5517	${\tt hierarchical}$	5
Silhouette	0.2743	kmeans	4

con el segundo método, se concluye que el numero de clusters a escoger serán 4.

Se realiza el dendograma para visualizar que empresas están en cada cluster.

```
dist <- dist(dt,method = "euclidean")
modelo <- hclust(dist, method = "complete")
library(factoextra)</pre>
```

Warning: package 'factoextra' was built under R version 4.3.3

Loading required package: ggplot2

Warning: package 'ggplot2' was built under R version 4.3.3

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as of ggplot2 3.3.4.

i The deprecated feature was likely used in the factoextra package.

Please report the issue at https://github.com/kassambara/factoextra/issues.

Cluster Dendrogram

El dendograma muestra los 4 clusters que se forman y que empresas las conforman.

Análisis de las medias de los clusters

```
clust <- kmeans(dt, centers = 4)
cluster_membership <- clust$cluster
dt_clustered <- cbind(dt, cluster = cluster_membership)
summary_by_cluster <- aggregate(. ~ cluster, data = dt_clustered, FUN = mean)
print(summary_by_cluster)</pre>
```

```
cluster Innovación Comunicación Eficiencia Responsabilidad
1
        1
            2.142857
                         2.428571
                                     4.285714
                                                     3.428571
2
        2
            4.333333
                         4.666667
                                     1.000000
                                                     3.000000
3
        3
            1.833333
                         1.833333
                                     1.833333
                                                     2.166667
4
        4
            3.500000
                         4.250000
                                     4.500000
                                                     3.750000
  Atención al Cliente Comunidad
1
             1.857143 1.857143
2
             2.333333
                       1.333333
3
             3.500000 4.000000
             4.500000
                       3.750000
```

Al calcular las medias de cada variable para cada cluster, podemos identificar patrones y diferencias entre los grupos. El Cluster 4 destaca por tener valores medios superiores en

general, lo que sugiere que las empresas en este grupo exhiben características más elevadas en comparación con los otros clusters.

Identificación de las mejores empresas

```
suma_medias <- rowSums(summary_by_cluster[, -1])
suma_medias_df <- data.frame(cluster = summary_by_cluster$cluster, Suma_de_Medias = suma_med
print(suma_medias_df)</pre>
```

	cluster	$Suma_de_Medias$
1	1	16.00000
2	2	16.66667
3	3	15.16667
4	4	24.25000

Conclusión: El Cluster 4 se distingue por sus valores medios superiores en general, sugiriendo que este grupo de observaciones representa empresas con características más elevadas en comparación con los otros clusters.

Las empresas pertenecientes al Cluster 4 son las que destacan por sus altos niveles en múltiples dimensiones, como innovación, comunicación, eficiencia, responsabilidad, atención al cliente y compromiso comunitario.