BIOE 348 / 6498 Molecular Techniques in Bioengineering Spring Semester 2024

INSTRUCTOR

Dr. Bilal Ghosn

office: BRC 231 Class Location: BRC 284 phone: 713.348.2648 email: bghosn@rice.edu

office hours: by appointment.

Teaching Assistant

Chia-Yu Ho email: ch116@rice.edu

COURSE TIMES

11:00 a.m. – 11:50 a.m. on Mondays, Wednesdays, and Fridays

Catalog Course Description:

(3 credit hours) Prerequisites: BIOS 341, concurrent enrollment in BIOE 342 and/or permission of instructor. Introduction to fundamental physical principles light interaction with matter, separation (by charge, size, conformation) and detection techniques utilized in the field of bioengineering. These include absorbance and fluorescence spectroscopy, light and fluorescence microscopy, flow cytometry, electrophoresis, PCR, Blotting, and ELISA. Students will learn and apply several techniques commonly used in biotechnology settings to evaluate molecular level markers. Students will also learn experimental design and apply it to an in-course problem. This course will require students to come in outside of assigned class time on several occasions.

Prerequisites:

BIOS 341 Cell Biology and BIOE 342 Laboratory in Tissue culture.

Objectives:

- 1. To understand the fundamental physical principles and their application in molecular laboratory methods commonly used in the bioengineering field.
- 2. To develop an understanding of the fundamentals of the interaction of light with matter, microscopy, electrophoretic mobility and PCR.
- 3. To understand and perform analysis for data collected using molecular techniques.
- 4. To design and develop experimental plans and protocols for evaluating various factors in biological systems utilizing molecular techniques.
- 5. To reinforce understandings of the cell and molecular functions through the direct evaluation of cellular expression of DNA, RNA, proteins, and other molecules.

Office Hours:

By appointment. Appointments can be scheduled by phone or email.

Text:

No text required. Students will be supplied lecture notes and various excerpts via electronic format prior to each class. Students are encouraged to consult texts listed below as well as their own online research for relevant material. Students are also encouraged to check on online source validity with the instructor.

Recommended texts for reference:

Ninfa, A.J., Ballou, A. J. N. D. P., and M. Benore. (2009). <u>Fundamental Laboratory Approaches</u> <u>for Biochemistry and Biotechnology</u>. 2nd Edition. Hoboken, NJ. John Wiley and Sons.

Johnson, I. and Spence. M. T. Z. (2010). <u>Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies</u>. Life Technologies.

Hermanson, G. T. (2008). <u>Bioconjugate Techniques</u>. 2nd Edition. Boston, MA. Elsevier Academic Press.

Grading Policy:

The course grades will be determined by a combination of homework assignments, lab reports, course project, and final exam. Grades will be broken down as follows:

Homework/Labs*	20%
Quizzes/Attendance (unannounced)	5%
Course Project Report and Presentation	15%
Exams (2)	60%

Late materials for homework will result in a 20% grade deduction (i.e. 1 day late starts at 80%, 2 days late as 60% as highest, etc) in the grade except in the case of acceptable documented personal or medical emergencies. Concerns on potential conflicts should be discussed with the instructor prior to the assignment deadline if possible.

* Homework/Lab grades will include the Technique Review Report for BIOE 648 students. See assignment description below.

Breakdown of Graded materials:

Students will receive grades on the material described in the grading policy of this syllabus.

Students will be assigned 5 homework assignments during the semester covering the material taught and experiments undertaken over a given 2-3 week period. Assignments will be graded based not only on providing adequate responses, but also on the legibility and organization of the student's work.

Students (in groups of 2) will be assigned a project topic in the beginning of the course regarding the design of experiments for a given system to be chosen by each group. Students will prepare a report (10% of total course grade) and a presentation (5% of total grade) to be submitted towards the end of the semester. Students again will be grading on the quality of their designed experiments and their ability to coherently express their story both in written and oral form.

<u>BIOE 648 Only:</u> Students will be assigned with a written technique review report. In this assignment, students will be asked to write a technical review report on recent advancements in one of the techniques discussed in this course. Further details on this assignment will be provided during the semester. This is an individual assignment and will be counted towards the Homework/Labs portion of the student's overall grade.

A final examination will be given during the final examination period. The date and time of the exam will be released at a later date. This exam will cover techniques learned throughout the semester and their application in several example studies described within the exam.

Expectations for Students Outside of Regularly Class Time:

Students are expected to review videos of laboratory demonstrations and data collection for those experiments outside of class. We may also have lab opportunities that will run over course time slightly.

Academic Integrity:

Students are expected adhere to the Rice Honor Code at all times. All graded work will be covered by the code, which will be distributed to students on the first day of class. It is the responsibility of the students to inquire with the instructor on any concerns, questions, or needed clarifications on the expectations about academic integrity.

Failure to comply with the Rice Honor code can result in a zero grade on the offending assignment/material and students will be reported to the honor council for further evaluation.

Any student with a documented disability needing academic adjustments or accommodations is requested to speak with me during the first two weeks of class. All discussions will remain confidential. Students with disabilities should also contact Disability Support Services in Allen Center.

Course Topics and Daily Schedule (Tentative)

Date	Class Day	Class Week	Topics	Assignments
1/8/2024	1	1	Course Introduction, Overview of methods	
1/10/2024	2		Review of Experimental Design	
1/12/2024	3		Absorbance of Light	
1/15/2024	4	2	Absorbance of Light	
1/17/2024	5		Spectroscopy and Absorbance	
1/19/2024	6		Spectroscopy and Absorbance Lab/Demo #1	HW#1 Assigned
1/22/2024		3	HOLIDAY (MLK)	
1/24/2024	7		Principles of Fluorescence	Assign Groups/Topics
1/26/2024	8		Principles of Fluorescence	
1/29/2024	9	4	Fluorescence Spectroscopy	
1/31/2024	10		Fluorescence Spectroscopy (Cont'd)	
2/2/2024	11		FRET/Luminescence/Principle of photomultiplier tubes (PMTs)	
2/5/2024	12	5	Methods of Synthesis of labeled materials	HW#1 Due/HW #2 Assigned
2/7/2024	13		Light Scattering/Optical Imaging Basics	
2/9/2024			HOLIDAY (Spring Recess)	
2/12/2024	14	6	Light Scattering/Optical Imaging Basics (Cont'd)	
2/14/2024	15		Microscopy/Fluorescence Microscopy	
2/16/2024	16		Microscopy/Fluorescence Microscopy	
2/19/2024	17	7	Fluorescence Microscopy (Cont'd)	HW #2 Due/HW#3 Assigned
2/21/2024	18		Confocal Microscopy	
2/23/2024	19		Principles of Separation	
2/26/2024	20	8	Principles of Chromatography	
2/28/2024	21		Principles of Gel Electrophoresis for Nucleic Acids	
3/1/2024	22		Chromatography (Cont'd) (Lab/Demo)	
3/4/2024	23	9	Principles of Gel Electrophoresis for Proteins	HW#3 Due
3/6/2024	24		Review	
3/8/2024	25		Mid-term Exam	
3/11/2024		10	HOLIDAY	
3/13/2024			HOLIDAY	
3/15/2024			HOLIDAY	
3/18/2024	26	11	Antibodies in Molecular Methods	
3/20/2024	27		Principles of Blotting	
3/22/2024	28		Applications of Gel Electrophoresis (Demo/Lab)	HW#4 Assigned

3/25/2024	29	12	Western Blotting and its applications	
3/27/2024	30		Enzyme-Linked Immunosorbent Assay (ELISA)	
3/29/2024	31		Principles of RNA isolation, Fundamentals of	
			Polymerase Chain Reaction	
4/1/2024	32	13	End point PCR	
4/3/2024	33		Group Work	HW#4 Due
4/5/2024	34		ELISA Lab (Lab/Demonstration)	
4/8/2024	35	14	HOLIDAY (Solar Eclipse)	
4/10/2024	36		Principles of Quantitative PCR	
4/12/2024	37		Flow Cytometry	
4/15/2024	38	15	Project Presentations	
4/17/2024	39		Project Presentations	Projects Due
4/19/2024	40		Final Review	

[#] Flex Days represent days that may be used for shifting lectures or to provide opportunity to work in groups for project work.

^{**} Date is the Monday following Completion of the course.

Topics			
Course Introduction, Overview of methods	Oversions and Even saint and all Design		
Review of Experimental Design	Overview and Experimental Design		
Introduction to light and its interactions with Matter			
Absorbance of Light	Light interaction with matter		
Spectroscopy and Absorbance			
Principles of Fluorescence			
Principles of Fluorescence and Fluorescence Spectroscopy			
FRET/Luminescence/Principle of photomultiplier tubes (PMTs)			
Light Scattering/Optical Imaging Basics			
Microscopy/Fluorescence Microscopy	Microscopy Basics		
Confocal Microscopy			
Exam #1 (Materials Above Covered)			
Methods for Synthesis of labeled materials	G (* /A1 1 /F1		
Principles of Separation / Principles of Chromatography			
Principles of Gel Electrophoresis for Nucleic Acids and Proteins	Separation/Absorbance/Fluorescence		
Chromatography/Electrophoresis Demo Lab			
Antibodies in Molecular Methods/Blotting			
Principles of Blotting	Separation and Detection of proteins		
Western Blotting and its applications	Separation and Detection of proteins		
Enzyme-Linked Immunosorbent Assay (ELISA)			
Principles of RNA isolation, Fundamentals of Polymerase Chain Reaction			
End point PCR	Isolation and Detection of RNA/DNA		
Principles of Quantitative PCR			
Flow Cytometry	Characterization of Cells		
Exam #2 (All Materials Covered)			