LABORATOR#5

EX#1 Fie $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = x^2 + 2x - 3$, și formula de aproximare a derivatei f'(x) cu diferențe finite ascendente

$$\frac{f(x+h) - f(x)}{h}, \qquad h > 0. \tag{1}$$

Scrieţi un fişier script în MATLAB® care reprezintă grafic erorile absolută şi, respectiv, relativă asociate formulei de aproximare cu diferențe finite ascendente (1) a lui f'(2) ca funcții de parametrul $h \in \{10^{-1}, 10^{-2}, \dots, 10^{-20}\}$.

Folosiţi reprezentări grafice formatate, în scală liniară, în scală semilogaritmică în raport cu x, respectiv cu y, şi în scală logaritmică.

EX#2 Fie funcția sin : $[-2\pi, 2\pi] \longrightarrow \mathbb{R}$ și polinomul Taylor de grad n asociat funcției sin x și punctului $x_0 = 0$

$$T_n(\cdot; x_0) : [-2\pi, 2\pi] \longrightarrow \mathbb{R}, \qquad T_n(x; x_0) = \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{(2k+1)!}.$$
 (2)

Folosind cele trei versiuni de reprezentări grafice multiple în aceeași figură, să se reprezinte grafic, în aceeași figură, funcțiile $\sin x$ și $T_n(x; x_0)$, n = 1, 2, 3, cu $x \in [-2\pi, 2\pi]$.

EX#3 Reprezentați grafic, în aceeași pagină, funcțiile $f_1, f_2 : [-\pi, \pi] \longrightarrow \mathbb{R}, f_1(x) = \frac{1 - \cos x}{x^2}$ și $f_2(x) = \frac{\sin^2 x}{x^2(1 + \cos x)}$, considerând $x \in \{10^{-8}, 10^{-7}, \dots, 10^{-1}\}$ și $x \in \{\pi - 10^{-1}, \pi - 10^{-2}, \dots, \pi - 10^{-8}\}$.

Comentați rezultatele grafice și determinați o modalitate de calcul cu acuratețe mare a funcțiilor de mai sus în intervalul $[-\pi, \pi]$.

- **EX#4** (a) Evaluați și reprezentați grafic funcția $y_1(x) = \sqrt{2x^2 + 1} 1$ pentru 100 valori ale lui $x \in [10^{14}, 10^{16}]$.
 - Determinați o altă modalitate de calcul cu acuratețe mare a funcției $y_1(x)$, $x \in [10^{14}, 10^{16}]$, și reprezntați grafic această nouă funcție $y_2(x)$, $x \in [10^{14}, 10^{16}]$.
 - (b) Evaluați și reprezentați grafic funcția $z_1(x) = \sqrt{x+4} \sqrt{x+3}$ pentru 100 valori ale lui $x \in [10^{-9}, 10^{-7.4}]$.

Determinați o altă modalitate de calcul cu acuratețe mare a funcției $z_1(x)$, $x \in [10^{-9}, 10^{-7.4}]$, și reprezntați grafic această nouă funcție $z_2(x)$, $x \in [10^{-9}, 10^{-7.4}]$.

EX#5 Calculați următoarea expresie

$$S_n(\lambda) = \sum_{k=0}^n \frac{\lambda^k}{k!} e^k, \qquad \lambda = 100 \quad n = 155,$$
(3)

cu și fără așa-numita structură "nested computation".

EX#6 Reprezentați grafic, folosind comanda MATLAB® fplot, cicloida dată de ecuațiile parametrice

$$x(\rho, \theta) = \rho(\theta - \sin \theta), \qquad y(\rho, \theta) = \rho(\theta - \cos \theta),$$
 (4)

pentru $\rho = 1.5$ și $\theta \in [0, 4\pi]$.

 $\mathbf{EX\#7}$ Reprezentați grafic funcția $f:[-5,5]\longrightarrow \mathbb{R}$ definită prin

$$f(x) = \begin{cases} x^2, & x \in (-2,0) \\ x^3, & x \in [0,3) \\ x^2 + 18, & x \in [3,4) \\ 0, & \text{altfel}. \end{cases}$$
 (5)

EX#8 Scrieţi un fişier script în care calculează soluţia numerică, $\mathbf{x} \in \mathbb{R}^n$, a sistemului de ecuaţii liniare $\mathbf{A}\mathbf{x} = \mathbf{b}$, unde $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ este o matrice superior triunghiulară, $\mathbf{b} \in \mathbb{R}^n$, iar \mathbf{A} şi \mathbf{b} sunt date în câte un fişier de date, de unde se citesc în fişierul script.

Indicație: Trebuie verificate următoarele condiții:

- (i) A este o matrice pătratică;
- (ii) A este o matrice superior triunghiulară;
- (iii) A este o matrice inversabilă;
- (iv) \mathbf{A} și \mathbf{b} sunt compatibili.

Dimensiunea sistemului se determină din dimensiunile matricei A și a vectorului b.

OBSERVAȚIE: Toate graficele trebuie *formatate* corespunzător, i.e. etichete pe axe (font Arial, dimensiune 12pt), titlul graficului (font Times New Roman, dimensiune 14pt) și, acolo unde este cazul, legenda figurii, și trebuie salvate ca fișiere *.eps, *.png sau *.jpeg.