1.

(a)

$$f(M, m) = e^{M+3M-0} + e^{M-3M-0} + 2x\frac{1}{2}e^{-M-0}$$

$$= 4 + \sqrt{e^{M+3M-0} \cdot e^{M-3M-0} \cdot (\frac{1}{2}e^{-M-0})^2}$$

$$= 2\sqrt{2}e^{-M}$$

$$f(M, m) = \frac{e^{-M}}{K} \quad \text{iff} \quad e^{M+3M-0} = e^{M-3M-0} = \frac{1}{2}e^{-M-0}$$

$$= \frac{1}{2}e^{-M-0}$$

$$= \frac{1}{2}e^{-M-0}$$

$$= \frac{1}{2}e^{-M-0}$$

$$= \frac{1}{2}e^{-M-0}$$

$$= \frac{1}{2}e^{-M-0}$$

(b) Use $t_0 = 1$. The output is

solution: [-3.46574284e-01 3.04072749e-07] number of iterations in the outer loop: 29 number of iterations in the inner loop: 151

The figures are

(c) When t = 0.1, the output is

solution: [-3.46576607e-01 3.21465960e-18] number of iterations: 45

When t = 0.01, the output is

solution: [-3.46577419e-01 8.65140907e-18] number of iterations: 490

(d) Use $t_0 = 1$. The output is

solution: [-3.4657238e-01 6.5447655e-07] number of iterations in the outer loop: 33 number of iterations in the inner loop: 197

The figures are

(e) The output is

solution: [-3.46569713e-01 -7.62280416e-18] number of iterations: 985

If we use the step sizes in part (c), there will be a floating number overflow error.

2.

(a)
$$||\chi_{k+1} - \chi^{*}|| = ||(\widetilde{\chi}_{k+1} - \chi^{*}) + (\chi_{k+1} - \widetilde{\chi}_{k+1})||$$

 $\leq ||\widetilde{\chi}_{k+1} - \chi^{*}|| + ||\chi_{k+1} - \widetilde{\chi}_{k+1}||$
 $= ||\widetilde{\chi}_{k+1} - \chi^{*}|| + t||\mathcal{E}_{k+1}||$
 $\leq ||\widetilde{\chi}_{k+1} - \chi^{*}|| + tE$

- (c) Problem (b) is the case when k=D.

 Assume that $||x_k x^*|| \le q^k ||x_0 x^*|| + \frac{l-q^k}{l-q} tE$ Then $||x_{k+1} x^*|| \le q ||x_k x^*|| + tE$ $\le q \left(q^k ||x_0 x^*|| + \frac{l-q^k}{l-q} tE\right) + tE$ $= q^{k+1} ||x_0 x^*|| + \frac{l-q^k}{l-q} tE$ Therefore, $||x_k x^*|| \le q^k ||x_0 x^*|| + \frac{l-q^k}{l-q} tE$ holds

 for any non-negative integer k.

(d) sup
$$\|x_k - x^*\| \le q^k \|x_0 - x^*\| + \frac{l-q^k}{l-q} tE$$
 $q = \sqrt{l-mt} < l$, so letting $k \to \infty$ on both sides will get lim sup $\|x_k - x^*\| \le \lim_{k \to \infty} \left(q^k \|x_0 - x^*\| + \frac{l-q^k}{l-q} tE\right)$
 $= \frac{tE}{l-q}$
 $(q-1)^2 \ge 0$
 $\Rightarrow Z(l-q) \ge l-q^* = mt$
 $\Rightarrow \sum_{m=3}^{2} \frac{t}{l-q}$

Thus, $\lim_{k \to \infty} \sup \|x_k - x^*\| \le \frac{tE}{l-q} \le \frac{2E}{m}$