

Instructor: Zhenyu (Henry) Huang (509) 438-7235, h_zyu@yahoo.com

EE 521: Analysis of Power Systems

Lecture 22 Voltage Control

Fall 2009

Mondays & Wednesdays 5:45-7:00 August 24 – December 18

Test 216

Topics

- Why Voltage Control?
- Voltage and Power Transfer
 - Thermal limit
 - Surge Impedance Loading (SIL)
- Automatic Voltage Regulators
 - Generator Capability Curve
- Operator Actions
 - Identifying problem conditions.
 - Using voltage control equipment.
 - Operating "smart"

Why Voltage Control?

- Transmission and Distribution
 - Support power transfer
 - Maintain stability
 - Equipment protection
- End Use
 - Equipment Protection
 - Maintain reliable functions of end-use devices
 - Motor stalling issues
 - Ballasts for fluorescent lamps

Voltage requirements:

✓ Transmission: ± 10%

✓ Distribution: ± 5% (± 8% emergency)

Voltage Problems

- Over-voltage
 - · Causes:
 - Short-term Overvoltage: Lightning, Switching, Load Loss
 - Long-term Overvoltage: Light loading, Disturbances, Ferranti voltage rise
 - Problems:
 - Generator self-excitation
 - Insulation breakdown
 - Flashover
 - Customer equipment damage
 - Excessive heating of overexcited transformers
- Under-voltage
 - Causes:
 - Heavy line loading, Disturbances, High customer demand
 - · Problems:
 - Induction motor heating/stalling, Dim lights → more lights, Less heat → more heaters,
 Voltage collapse

Power Transfer Capability

Transmission Line Thermal Limit

- All transmission lines have a thermal limit: I_{max}
 - E.g. $I_{\text{max}} = 1650 \text{ A}$, 525 kV \rightarrow 1500 MW, if PF = 1. 500 kV \rightarrow 1429 MW
- Effect of power factor
 - Lower power factor requires more reactive power support

PF	MW	MVA	MVAr
1.000	100	100	0
0.900	100	111	49
0.800	100	125	75
0.700	100	143	102

How many VARs do we need to transfer power?

- SIL: Surge Impedance Loading
 - The capacitive VARs generated by the line capacitance
 the inductive VARs created by the line loading
 - i.e. No VARs are needed to transfer power

World Class. Face to Face.

How many VARs do we need to transfer power? cont'd

Example: 100 mile, 345 kV line, SIL = 450 MW

VAR Producers

- Capacitive VAR Producers
 - Overexcited generators and synchronous condensers, capacitors, lightly loaded lines, and underground cables.
- Inductive VAR Producers (VAR Consumers)
 - Underexcited generators and synchronous condensers, reactors, power transformers, induction motors and generators, and heavily loaded lines
- VARs usually flow from relatively high voltage to relatively low voltage.
- VAR flow causes I²R loss → supply VAR locally.

WASHINGTON STATE UNIVERSITY TRI-CITIES

World Class. Face to Face.

Automatic Voltage Regulator (AVR)

- V > Vset → decrease generator excitation → decrease field current.
- V < Vset → increase generator excitation → increase field current.
- Vset the voltage set point can be changed by operator.

AVR Limit

- Generator Capability Curve
 - Field winding overheating limit
 - Short-term boost capability
 - 135-150% (some 300-400%)
 - Rotor winding overheating limit
 - Stator end-iron overheating limit

What an operator can do to mitigate voltage problems?

- Three Categories of Operator Actions:
 - Identifying problem conditions.
 - Using voltage control equipment.
 - Operating "smart"
- Long-term voltage problems can be mitigated.
- Short-term voltage problems can be prevented by operating the system within established thermal, stability, loading, and voltage guidelines (the system itself is more resistant to short-term voltage problems).

Identifying Problem Conditions

- From Control Center Meters/Displays (experience)
 - Voltage oscillations at high load levels.
 - Abnormally high or low voltage on key buses.
 - Voltage drifting up and down.
 - Higher than normal reactive (VAR) flow.
 - VAR flow in an abnormal direction.
 - LTCs on a more extreme higher or lower tap than normal.
 - Generator, synchronous condenser, or SVC reactive loadings rising or higher than usual.

Identifying Problem Conditions

- Voltage Problem Scenarios
 - The radial load problem.
 - Long distance, heavy load transfer (think about PV curves)
 - The reactive shortage problem.
 - Loss of local VAR support.
 - A special case: HVDC transmission.
 - The loss of synchronism problem.
 - Combination of voltage difficulties with instability

Identifying Problem Conditions

- Triggering Events
 - A line or cable outage.
 - Loss of a generator.
 - A capacitor bank trip.
 - SVC or synchronous condenser outage.
 - Heavy power transfers.
 - Heavy line loading due to loop or parallel flows.
 - Rapid load buildup.
 - Unusually high customer demand.
 - Motor load instability.

Using Voltage Control Equipment

- For Under-voltage Problems
 - Remove switched shunt reactors.
 - Insert switched shunt capacitors.
 - Energize open lines.
 - Raise LTC set points.
 - Raise automatic voltage regulator set points on generators, synchronous condensers, and SVCs.
 - Use the generators' temporary reactive overload capability.
 - Request reactive support from neighboring systems.
 - Curtail interruptible loads.
 - Shed firm loads.

- ✓ Using local resources first.
- ✓ Maintain reserves on VAR sources → Allow rapid response to voltage deviations.

Using Voltage Control Equipment cont'd

- For Over-voltage Problems
 - Remove switched shunt capacitors.
 - Insert switched shunt reactors.
 - Lower voltage set points on SVCs, LTCs, and synchronous condensers.
 - Operate generators in underexcitation mode.
 - Close open-ended lines to reduce capacitance, or;
 - Take transmission lines out of service to remove their capacitance and to load up parallel lines.

Operating "Smart"

- Get under the voltage
- Use proper switching sequences
- Re-dispatch generation
- Get help from neighbors
- Request voluntary load reductions
- Manually shed load

What we have just talked about

- Some theory
- Lots of guidelines
- Real-time operation requires lots of experience

Questions?

