2. Moving Bar Magnet

- (a) A long cylinder of radius r_0 has uniform permanent magnetization density \mathbf{M} perpendicular to the axis of the cylinder. Find the fields \mathbf{B} and \mathbf{H} everywhere. Let $\hat{z} = \text{axis}$ of the cylinder, and $\mathbf{M} = M\hat{x}$ as shown.
- (b) Suppose the cylinder is given uniform velocity $\mathbf{v} = v\hat{z}$ along its axis. Find the resulting charge density and electric field everywhere. You may ignore effects of order $(v/c)^2$.