Заняття 5. Закон збереження енергії.

Аудиторне заняття

- 1. [1.101] З пружинного пістолета вистрілили кулькою, маса якої m. Жорсткість пружини k. Пружина до пострілу була стиснута на Δx . Визначити швидкість кульки v при її вильоті з пістолета. Знайти висоту h, на яку підніметься кулька, якщо постріл спрямувати вертикально вгору.
- 2. [1.65] Ракета встановлена на поверхні Землі для запуску у вертикальному напрямі. При якій мінімальній швидкості V, наданій ракеті, вона віддалиться від поверхні на відстань R, що дорівнює радіусу Землі? Вважати, що на ракету діє тільки гравітаційна сила з боку Землі.
- 3. [1.80] Тіло масою m починає ковзати по похилій площині довжиною l, яка утворює кут нахилу α з горизонтом. Коефіцієнт тертя між тілом і площиною μ . Знайти роботи сили тертя A_t та сили тяжіння A_{mg} за час ковзання тіла. Визначити потужність сили P_t тертя в момент часу t після початку руху.
- 4. [1.85] Яку мінімальну роботу треба виконати, щоб однорідний куб, який знаходиться на горизонтальні площині, перевернути з однієї грані на сусідню? Маса куба m = 100 кг, довжина ребра l = 50 см.
- 5. [1.82] Під дією сталої сили тіло масою m = 100 кг піднімається на висоту h = 15 м протягом t = 10 с. Визначити роботу цієї сили. Початкова швидкість тіла дорівнює нулю.

Домашнє завдання

- 1. [1.100] Шайба масою m починає ковзати без початкової швидкості по похилій площині, яка утворює кут α з горизонтом, і, пройшовши по горизонталі відстань L, зупиняється. Знайти роботу сил тертя A на всьому шляху. Вважати, що коефіцієнт тертя всюди однаковий і рівний μ .
- 2. [1.86] Частинка здійснила переміщення за деякою траєкторією з точки з радіус-вектором $r_1 = \mathbf{i} + 2\mathbf{j}$ в точку з радіус-вектором $r_2 = 2 \mathbf{i} 3\mathbf{j}$. При цьому на частинку діяли деякі сили, одна з яких $F = 3 \mathbf{i} + 4\mathbf{j}$. Знайти роботу A, яку виконала сила F.
- 3. [1.83] Яку мінімальну роботу необхідно виконати, щоб телеграфний стовп масою $m_l = 200$ кг, до вершини якого прикріплена хрестовина масою $m_2 = 30$ кг, перевести з горизонтального положення у вертикальне. Довжина стовпа l = 10 м.