SUMMARY

Q1: Which brewery produces the strongest beers by abv?

Answer:

beer_reviews_by_brewery_stats = beer_reviews_copy[["brewery_name", "beer_abv"]].groupby beer_reviews_by_brewery_stats.columns = beer_reviews_by_brewery_stats.columns.droplevel beer_reviews_by_brewery_stats.sort_values(by=["max", "var", "mean"], ascending=[False, out[189...

	min	mean	max	var	count
brewery_name					
Schorschbräu	4.900	19.229	57.700	151.962	34
BrewDog	0.500	9.905	41.000	39.208	4033
De Struise Brouwers	2.000	10.763	39.000	10.425	3866
Hair of the Dog Brewing Company / Brewery and Tasting Room	3.200	9.407	29.000	5.374	3769
Boston Beer Company (Samuel Adams)	4.000	6.415	27.000	8.895	38812
					•••
Yellow Rose Brewing Company	0.000	0.000	0.000	0.000	0
Yozgut Bira Fabrikasi / Tekel Birasi	0.000	0.000	0.000	0.000	0
Yuiga Doxon Ji Beer	0.000	0.000	0.000	0.000	0
Zea Rotisserie & Brewery	0.000	0.000	0.000	0.000	0
Zerodegrees Bristol	0.000	0.000	0.000	0.000	0

5742 rows × 5 columns

http://cms.worlds-strongest-beer.com/wp-content/uploads/2014/01/Schorschbock-57-033-quadrat.jpg

How I got there:

- Data aggregation
- Sorting by Max Desc, Var Asc, Mean Desc

Vecchio Birraio Foreign / Export Stout Black Horse Black Beer

Q2: If you had to pick 3 beers to recommend to someone, how would you approach the problem?

Examples:

```
In [112...
    beer_content_based_recommender(("Vecchio Birraio", "Hefeweizen", "Sausa Weizen")).sort_
    initial beer index: 0
    len scores: 3
    recommended beers indexes: [1, 2, 3]
Out[112...
    brewery_name    beer_style    beer_name    mean    count    Score
```

3.000

0.027

	brewery_name	beer_style	beer_name	mean	count	Score
1	Vecchio Birraio	English Strong Ale	Red Moon	3.000	1	0.027
2	Vecchio Birraio	German Pilsener	Sausa Pils	3.000	1	0.027

In [113...

beer_content_based_recommender(("The Defiant Brewing Company", "Pumpkin Ale", "The Hors

initial beer index: 65753

len scores: 3

recommended beers indexes: [65709, 57392, 14767]

Out[113...

	brewery_name	beer_style	beer_name	mean	count	Score	
0	Voodoo Brewing Company	Pumpkin Ale	Headless Horseman	3.731	13	0.262	
1	The Defiant Brewing Company	Pumpkin Ale	Headless Horseman Pumpkin Ale	3.571	7	0.161	
2	Mishawaka Brewing Company	American Amber / Red Ale	The Fifth Horseman	4.000	1	0.027	

In [114...

beer_content_based_recommender(("Warsteiner Brauerei", "German Pilsener", "Warsteiner P

initial beer index: 22531

len scores: 3

recommended beers indexes: [22577, 22587, 22578]

Out[114...

	brewery_name	beer_style	beer_name	mean	count	Score
1	Warsteiner Brauerei	Märzen / Oktoberfest	Warsteiner Premium Oktoberfest	3.552	165	0.819
2	Warsteiner Brauerei	Fruit / Vegetable Beer	Warsteiner Premium Orange	2.500	6	0.141
0	Warsteiner Brauerei	Light Lager	Warsteiner Premium Light	3.000	4	0.099

How I got there:

- Concatenation of text fields
- TFIDF -- Term Frequency * Inverse Document
 - Term Frequency ==
 - Number of occurrences of a term in the document (can be a simple count)
 - Inverse Document Frequency ==
 - How few documents contain this term or:
 - log (#documents / #documents with term)
- Computing Cosine similarity:

cosine = linear_kernel(tfidf_matrix, tfidf_matrix, dense_output=True)

• Filtering cosine dataset by indices of input dataset to get a list of most similiar beers

Q3: What are the factors that impacts the quality of beer the most?

Answer:

I hoped to get Factors that impacts the quality of beer the most from Feature Importance metrics. Unfortunately getting Feature Importance when you develop a model with a use of sklearn piplines is a bit tricky

How I got there:

- Imputation:
 - numeric:
 - SimpleImputer(strategy="median")
 - character
 - Most frequent
- Feature Engeneering:
 - Deviations defined as:
 - deviation_feature = ((dataframe[feature] category_mean) / category_std).rename(category_feature)
 - Dummy Variables for:
 - o "beer_style"
- Variables selection methods used:
 - VarianceThreshold:
 - threshold=(.6 * (1 .6))) == 0.24
 - Variables of variance lower than 0.24 were removed from process of fitting classifier
 - SelectKBest(f_classif, k = 3)
 - "Compute the ANOVA F-value for the provided sample."
- Scaling of imputes data:
 - StandardScaler()
 - Devietions derived during Feature Enginnering are of diffrent scale than review Ratings
- Classifier RandomForestClassifier:

```
In [188... print(score_df)

accuracy precision recall f1 auc
0 0.785 0.775 0.818 0.796 0.784
```

...however no Feature Importance yet

Q4: I enjoy a beer which aroma and appearance matches the beer style. What beer should I buy ?

Answer:

```
reviews_by_beer_style_mean_count = beer_reviews_copy[["review_overall", "beer_style", " reviews_by_beer_style_mean_count.columns = reviews_by_beer_style_mean_count.columns.dro
```

reviews_by_beer_style_mean_count = reviews_by_beer_style_mean_count.reset_index() reviews_by_beer_style_mean_count

$\overline{}$		г о	_	_	
()	IIT.	レノ	h	-/	
\circ	uL	-	\cup	/	

beer_style		er_style beer_name i		count
0	Altbier	"Alt"ered State		2
1	Altbier	"Nein Toll Bier" German Alt	4.000	1
2	Altbier	'Sconnie Rustic Trail Amber		2
3	Altbier	(512) Alt		11
4	Altbier	2010 Cleveland Beer Week Collaboration Altbier		5
•••				
58887	Witbier	ZomerWit	2.500	1
58888	Witbier	Zomerbier	4.000	11
58889	Witbier	Zomewhit	4.500	1
58890	Witbier	Zon Jager Wit	4.000	1
58891	Witbier	ZÔN	3.829	208

58892 rows × 4 columns

```
In [262...
```

```
q1 = """
SELECT \
beer_style \
,beer_name \
,mean \
,count \
,((count / (count + (SELECT 2000 AS MinCount)) * mean) + (count / (count + (SELECT 2000
FROM reviews_by_beer_style_mean_count \
ORDER BY Score desc
scores = ps.sqldf(q1, locals())
scores
```

Out[262...

	beer_style	beer_name	mean	count	Score
0	American Double / Imperial IPA	90 Minute IPA	4.146	3290	0.310
1	Russian Imperial Stout	Old Rasputin Russian Imperial Stout	4.174	3111	0.299
2	American IPA	Sierra Nevada Celebration Ale	4.169	3000	0.291
3	American IPA	Two Hearted Ale	4.330	2728	0.272
4	American Double / Imperial IPA	Stone Ruination IPA	4.162	2704	0.270
•••					
58887	Witbier	Zeeuwsche Witte	3.500	1	0.000
58888	Witbier	Zoe's Belgian Wit	4.000	1	0.000
58889	Witbier	ZomerWit	2.500	1	0.000
58890	Witbier	Zomewhit	4.500	1	0.000

	beer_style	beer_name	mean	count	Score
58891	Witbier	Zon Jager Wit	4.000	1	0.000

58892 rows × 5 columns

In [265...

scores['rank'] = scores.groupby(["beer_style"])['Score'].rank(method='first')
scores.sort_values(by=["rank"])

Out[265...

	beer_style	beer_name	mean	count	Score	rank
56133	Oatmeal Stout	'Fèileadh Air Teine' - Scottish Oatmeal Stout	3.500	1	0.000	1.000
54885	Lambic - Unblended	Amarillo Lambik	4.000	1	0.000	1.000
52039	Flanders Oud Bruin	Barrel-Aged Belgian Brown	4.000	1	0.000	1.000
57275	Schwarzbier	Černá Hora Granat	3.500	1	0.000	1.000
40853	American Brown Ale	15.0	4.000	1	0.000	1.000
•••						
19	American IPA	HopDevil Ale	4.115	2302	0.240	3163.000
12	American IPA	60 Minute IPA	4.173	2475	0.253	3164.000
7	American IPA	Stone IPA (India Pale Ale)	4.258	2575	0.261	3165.000
3	American IPA	Two Hearted Ale	4.330	2728	0.272	3166.000
2	American IPA	Sierra Nevada Celebration Ale	4.169	3000	0.291	3167.000

58892 rows × 6 columns

How I got there:

- Custom Score base on "review_overall"
- Ranking ["beer_style"] By Custom Score
- Sorting of Custom Score to get best beers among all ["beer_styles"]
- Filtering ["beer_styles"] by value of interest