Аналитические и численные алгоритмы

Различие между аналитическими и численными алгоритмами

- Аналитика четкая постановка задачи, вычисление точного решения
- Уисленное решение приближенное решение, возможно предварительное предположение о характере и самом решении с последующей проверкой

Рассмотрим эти различия на примере классических задач, связанных с **полиномами**

Полиномы – аналитические методы

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

$$n = 2: x_{1,2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2a_0}}{2a_2}$$

n=3: - формула Кардано

n=4: - метод Феррари

Формула Кардано (1545)

$$y^3+py+q=0 \ ax^3+bx^2+cx+d=0 \qquad x=y-rac{b}{3a}$$

$$p=rac{c}{a}-rac{b^2}{3a^2}=rac{3ac-b^2}{3a^2}, \ q=rac{2b^3}{27a^3}-rac{bc}{3a^2}+rac{d}{a}=rac{2b^3-9abc+27a^2d}{27a^3}$$

Формула Кардано

$$y^3 + py + q = 0$$

$$Q=\left(rac{p}{3}
ight)^3+\left(rac{q}{2}
ight)^2$$

- Q >0 один вещественный корень и два сопряжённых комплексных корня
- Q = 0 один однократный вещественный корень и один двукратный, или, если p = q = 0, то один трёхкратный вещественный корень
- Q < 0 три вещественных корня

Формула Кардано

$$y^3 + py + q = 0$$

$$Q=\left(rac{p}{3}
ight)^3+\left(rac{q}{2}
ight)^2$$

$$y_1=lpha+eta, \ y_{2,3}=-rac{lpha+eta}{2}\pm irac{lpha-eta}{2}\sqrt{3},$$

$$\alpha\beta = -p/3$$

$$lpha = \sqrt[3]{-rac{q}{2} + \sqrt{Q}},$$

$$eta = \sqrt[3]{-rac{q}{2}} - \sqrt{Q},$$

Метод Феррари

$$x^4+ax^3+bx^2+cx+d=0.$$
 $y^3-by^2+(ac-4d)y-a^2d+4bd-c^2=0$ Пусть у, – любой корень

$$x^2 + rac{a}{2}x + rac{y_1}{2} = \pm \sqrt{\left(rac{a^2}{4} - b + y_1
ight)x^2 + \left(rac{a}{2}y_1 - c
ight)x + rac{y_1^2}{4} - d},$$

Деление полиномов

$$x^9 + x^8 - 6x^7 + 2x^6 - 4x^5 + 3x^3 - x^2 - 9x - 2 = 0$$

Ряд и теорема Штурма

$$f_0(x), f_1(x), \ldots, f_s(x)$$

- $\bullet f_0(x) = f(x);$
- $\bullet f_1(x) = f_0'(x);$

$$f_{k+1}(x) = -f_{k-1}(x) \bmod f_k(x)$$

$$3x^4 + 2x^3 + 3x^2 + 5x + 1 = 0$$

Ряд и теорема Штурма (пример)

$3x^4 + 2x^3 + 3x^2 + 5x + 1$
$12x^3 + 6x^2 + 6x + 5$
$-\frac{5}{1}x^2 - \frac{7}{2}x - \frac{19}{21}$
$-\frac{1}{4}x^{2} - \frac{1}{2}x - \frac{1}{24}$ 1892 562
$\begin{array}{c c} & - & x - \\ & 25 & 25 \\ & 1478575 & \end{array}$
20738992

- ∞	∞	0
+	+	+
-	+	+
-	-	-
+	-	-
-	-	-
3	1	1

Wolfram Mathematica

https://www.wolfram.com/language/fas t-introduction-for-math-students/en

Библиотеки символьных вычислений

- SymPy библиотека Python с открытым исходным кодом, используемая для символьных вычислений (компьютерная алгебра) https://www.sympy.org/en/index.html
- > Библиотека GiNaC, линейная алгебра, дифференцирование https://www.ginac.de/
- > Библиотека ViennaMath http://viennamath.sourceforge.net/viennamath-about.html

Численные алгоритмы

аналоги

http://vmath.ru/vf5/polynomial/newton

http://vmath.ru/vf5/polynomial/zero_local

Алгоритм метода Ньютона

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots$$

Алгоритм метода

π Алгоритм Евклида — НОД (A,B)

- Если A = 0, тогда НОД(A,B) = B, поскольку HOД(0,B) = B, и алгоритм останавливается.
- Если В = 0, тогда НОД(A,B) = A, поскольку GCD(A,0) = A, и алгоритм останавливается.
- Делим A на B с остатком (A = B·Q + R)
- Находим НОД(B,R) при помощи алгоритма Евклида, поскольку HOД(A,B) = HOД(B,R)

Схема Горнера

Схема Горнера

$$5x^4 + 5x^3 + x^2 - 11$$
 Ha $(x - 1)$

	5	5 211	1	0	-11
1-	•5	10			

	5	5	ر <u>ا</u> الح	0	$\lfloor -11 \rfloor$
1	Ε.	•10 ⁻	1"1		_
1		LIO	1 T		

	5	5	1	0	$\lfloor -11 \rfloor$
1_	4	10	₊ 1 1∕	11	
T		10	. т т	т т	

Алгоритм Карацубы $O(n^2) \longrightarrow O(n^{\log_2 3})$

$$A(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_n \cdot x^n$$

= $a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 + \dots + a_n \cdot 10^n$

$$a(x) = a_1(x) + x^k a_2(x)$$
 $p_1(x) = a_1(x) \cdot b_1(x)$ $b(x) = b_1(x) + x^k b_2(x)$ $p_2(x) = a_2(x) \cdot b_2(x)$

$$t(x) = (a_1(x) + a_2(x)) \cdot (b_1(x) + b_2(x))$$

Алгоритм Карацубы

$$egin{align} c(x) &= a(x) \cdot b(x) = p_1(x) + x^k \cdot (t(x) - p_1(x) - p_2(x)) + x^{2k} \cdot p_2(x) \ &oldsymbol{\Theta}ig(n^{\log_2 3}ig) pprox oldsymbol{\Theta}ig(n^{1.58}ig) \end{gathered}$$

Похожий метод можно применить к матричному умножению Алгоритм Штрассена

$$O(n^{\log_2 7}) pprox O(n^{2.81})$$