TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P01A, 14 jun 2021
Prof. Nelson Luís Dias

4		١
-	L	J

D I	• -	- / 11	J - /4º	.1 - 🕜	de Engenharia	A 1- 2 4 - 1	1!	
i ieciara <i>i</i>	ane ceann a	romian i	ne enica i	na i iirea	ae knaennaria	A mnientai an	reguizar ecta	nrava
DCCIAIO (uuc segui u	, courso i	uc cuca i	uv Cursv	ut Engumaria	Ampichiai av	i canzai csta	DIVIA

NOME: Assinatura: _____

1 [25] Considere o início de programa a seguir:

```
fruta = ["maçã", "laranja", "pera"]
peso = [ 2.00, 3.50, 4.70 ]
punit = [ 5.56, 1.90, 6.36 ]
```

Acima, peso contém o peso adquirido de cada fruta, e punit contém o preço unitário (preço por quilo) de cada fruta. Continue o programa de tal forma que ele imprima na tela uma tabela contendo: na $1^{\underline{a}}$ coluna o nome da fruta, na $2^{\underline{a}}$ coluna o peso adquirido da fruta, e na $3^{\underline{a}}$ coluna o preço total (preço unitário \times peso adquirido) pago pela quantidade adquirida da fruta. Note que, aqui, peso é o nome coloquial para massa.

SOLUÇÃO DA QUESTÃO:

```
fruta = ["maçã", "laranja", "pera"]
peso = [ 2.0, 3.5, 4.7]
punit = [ 5.56, 1.90, 6.36 ]
print(" fruta", " peso", "preço total");
for i in range(0,3):
    print( "%8s%8.2f%12.2f" % (fruta[i],peso[i],peso[i]*punit[i]));
```

2 [25] O que o programa abaixo imprime na tela?

```
from numpy import array
ival = array([317,43,32,991,-47,212,647])
n = len(ival)
imax = ival[0]
for k in range(1,n):
    if ival[k] > imax :
        imax = ival[k]
print("imax = ",imax)
```

SOLUÇÃO DA QUESTÃO:

991

 $\mathbf{3}$ [25] Considere a função f(x) definida pela integral

$$f(x) = \int_1^x \frac{e^{-u}}{u} du, \qquad x \in [1, \infty].$$

Utilizando o resultado clássico

$$e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!},$$

expanda e^{-u} na integral, integre termo a termo, e obtenha uma expressão envolvendo uma soma infinita para f(x). **Atenção**: o termo n = 0 precisa ser tratado de forma diferente.

SOLUÇÃO DA QUESTÃO:

$$f(x) = \int_{1}^{x} \frac{1}{u} \sum_{n=0}^{\infty} \frac{(-1)^{n} u^{n}}{n!} du$$

$$= \sum_{n=0}^{\infty} \int_{1}^{x} \frac{(-1)^{n} u^{n-1}}{n!} du$$

$$= \int_{1}^{x} \frac{du}{u} + \sum_{n=1}^{\infty} \int_{1}^{x} \frac{(-1)^{n} u^{n-1}}{n!} du$$

$$= \int_{1}^{x} \frac{du}{u} + \sum_{n=1}^{\infty} \frac{(-1)^{n} u^{n}}{n \times n!} \Big|_{1}^{x}$$

$$= \ln(x) + \sum_{n=1}^{\infty} \frac{(-1)^{n} (x^{n} - 1)}{n \times n!} \blacksquare$$

$$I_e = \int_0^{\pi} \operatorname{sen}(x) \, \mathrm{d}x = 2.$$

Ajuste uma parábola, $y = ax^2 + bx + c$, a 3 pontos da função sen: (0,0), $(\pi/2,1)$ e $(\pi,0)$ (ou seja: obtenha a,b e c de tal forma que a parábola passe por esses pontos). Integre

$$I_n = \int_0^{\pi} \left[ax^2 + bx + c \right] \mathrm{d}x.$$

Quanto vale I_n ? (**depois** de integrar, calcule I_e manualmente, usando $\pi \approx 3,14$).

SOLUÇÃO DA QUESTÃO:

$$a = -\frac{4}{\pi^2},$$

$$b = \frac{4}{\pi},$$

$$c = 0;$$

$$\int_0^{\pi} [ax^2 + bx + c] dx = \frac{2\pi}{3} \approx 2,09 \blacksquare$$