NT AND TRADEMARK OFFICE

Appl. No.

10/783,652

Confirmation No.:

Applicant

Mark DEWIS et al.

Filed:

1 3 2004

February 20, 2004

Title

Alkyldienamides exhibiting taste and sensory effect in flavor compositions

TC/A.U.

1614

Examiner

To Be Assigned

Docket No.

IFF-53-1

DEC 1 5 2004

Commissioner for Patents U.S. Patent and Trademark Office 2011 South Clark Place Customer Window, Mail Stop **DD** Crystal Plaza Two, Lobby, Room 1B03 Arlington, VA 22202

TECH CENTER 1600/2900

December 13, 2004

PRIOR ART SUBMISSION - 37 C.F.R. §1.291

Sir:

Please enter this Prior Art Submission - 37 C.F.R. §1.291 in the above-captioned application.

(1)

Remarks start on page 2.

deleted as not in conformance with 37 CFR 1,291

Certificate of Service

This **PRIOR ART SUBMISSION - 37 C.F.R. §1.291**, including a copy of each cited document, has been served by pre-paid first class mail on the attorney of record in Application 10/783,652:

Correspondence Address		
Name:	Joseph F.Leightner, Esq.	
Address:	INTERNATIONAL FLAVORS & FRAGRANCES INC. 521West 57th Street New York NY 10019	

Respectfully submitted,

Kendrew H. Colton

P.O. Box 65973

Washington, D.C. 20035

DEC 1 5 2004

BOOK OF ABSTRACTS

224TH ACS NATIONAL MEETING AUGUST 18-22, 2002 • BOSTON, MA

ABSTRACTS OF PAPERS

Part 1

224th ACS National Meeting 0-8412-3840-5

American Chemical Society

Boston, MA

August 18-22, 2002

54

PEPTIDES AS FLAVORANTS. Wilhelm Pickenhagen, Corporate Research Division, DRAGOCO Gerberding & Co. AG, 37601 Holzminden, Germany, Fax: +49-5531-971158, doris.gattermann@eu.dragoco.com

The sensory impression of flavor is stimulated by interaction of volatile and non-volatile materials with the chemoreceptors taste and smell. Whereas the chemical nature of volatile materials is quite well understood, much less is known about non-volatile materials. One class of these compounds that contribute to the overall flavor impression of food are peptides. This paper discusses general and specific aspects of the sensory impacts that this defined class of compounds elicits. Emphasis will be given to correlations between the chemical structure of peptides and their taste contribution.

55.

SAVORY PEPTIDES PRESENT IN MOROMI FILTRATE OBTAINED FROM SOY SAUCE FERMENTATION OF YELLOW SOYBEAN. Hanifah Nuryani Lioe¹, Anton Apriyantono², Dedi Fardiaz², Budiatman Satiawihardja², Jennifer M. Ames³, and Elizabeth L. Inns³. (1) Department of Food Technology and Human Nutrition, Bogor Agricultural University, Indonesia, Kampus IPB Darmaga, PO Box 220, Bogor, West Java 16002, Indonesia, Fax: 62-251-626725; 624546, hanilioe@hotmail.com, (2) Department of food technology and human nutrition, Bogor Agricultural University, (3) School of Food Biosciences, The University of Reading

The presence of savory peptides in moromi filtrate has been investigated. Moromi filtrate was prepared by fermenting yellow soybean using Aspergillus oryzae as the starter at the first step (mold fermentation) and 20% brine solution at the next step (brine fermentation). The moromi was then ultrafiltered stepwise using membranes with MW cut-offs of 10,000, 3,000, and 500 Da, respectively. The fraction with MW < 500 Da was chromatographed using Sephadex G-25 SF to yield four fractions, 1-4. Analysis of soluble peptides, NaCl content, alpha-amino nitrogen, amino acid composition, peptide profile using CE coupled with DAD, taste profile and free glutamic acid content, were performed for each fraction. Fraction 2 contained a relatively high total glutamic acid content, but a relatively low free glutamic acid content and had the highest umami taste. This fraction also had more peptides containing non-aromatic amino acids than the other fractions. The peptides present in fraction 2 may play a role, at least in part, in its intense umami taste.

56

PUNGENT AND TINGLING COMPOUNDS IN ASIAN CUISINE. Christophe C. Galopin¹, Stefan M. Furrer¹, and Andreas Goeke². (1) Ingredient Systems, Givaudan Flavors R&D, 1199 Edison Drive, Cincinnati, OH 45216. Fax: 513-948-3582, christophe.galopin@givaudan.com, (2) Fragrance Research, Givaudan Duebendorf Ltd

Southern Asian cuisine is well known for its use of flavorful and pungent spices. The sanshool chemicals, such as alpha-hydroxy-sanshool from the Japanese Sancho pepper and other Asian peppers, are particularly interesting because they not only give a hot sensation in the mouth cavity but also a tingling effect on the tongue. In order to understand the effect of the sanshool chemicals we have synthesized a variety of derivatives. Tasting of those derivatives provided information about Structure Activity Relationship (SAR) for the tingling effect exhibited by these chemicals. Based on this study we are able to propose a minimal structure required for the tingling effect. We also used this SAR knowledge to design stable compounds with potential tingling effect.

57.

SYNTHESIS, STRUCTURE, AND ACTIVITY OF NOVEL GLYCOCONJUGATES EXHIBITING UMAMI TASTE. Imre Blank', Fabien Robert', Laurent B. Fay', Ersan Beksan², Thomas Hofmann², and Peter Schieberle². (1) Nestle Research Center, Nestec Ltd, Vers-chez-les-Blanc, P.O. Box 44, 1000 Lausanne 26, Switzerland, Fax: +41 21 785-8554, imre.blank@rdls.nestle.com, (2) Deutsche Forschungsanstalt für Lebensmittelchemie

Since recently, the so-called umami taste is accepted as the fifth basic taste quality along with the taste modalities sweet, sour, salty, and bitter. This is mainly due to the identification of the taste receptor for glutamate. Other compounds with similar sensory characteristics belong to the group of purine-5'-nucleotides. These compounds occur in many savory foods such as meat, fish, seafood, and mushrooms. They are also widely used as taste-enhancers in culinary products and snacks.

In this paper, we focus on structure elucidation, synthesis, and sensory properties of novel glycoconjugates, e.g. N-glucosyl glutamate and the Amadori compound fructosyl glutamate, which represent a new class of umami-tasting compounds. Their stability was studied by NMR measurements showing that the Amadori compound is much more stable as compared to the N-glucosyl derivative.

58

TASTE-ACTIVE GLYCOCONJUGATES OF GLUTAMATE: NEW UMAMI COMPOUNDS. Hedwig Schlichtherle-Cerny, Christoph Cerny, and Fabien Robert, Nestlé Research Center, Nestec Ltd, Vers-chez-les-Blanc. P.O. Box 44. CH-1000 Lausanne 26, Switzerland. Fax: +41-21-785-8949. hedwig.schlichtherle-cerny@rdls.nestle.com

Hydrolyzed plant proteins are widely used as ingredients in culinary poducts for their glutamate-like "umami" taste. The comparison of the taste profiles of three different wheat gluten hydrolyzates revealed the enzymatic hydrolyzate of acid-deamidated wheat gluten to elicit an intense glutamate-like taste. The hydrolyzate was analyzed by "LC-tasting", a technique comprising stepwise fractionation of a food by different chromatographic methods, such as gel permeation chromatography and RP-HPLC, and the sensory evaluation of the obtained fractions after lyophilization. The chemical analysis of the most intense glutamate-like subfraction by hydrophilic interaction liquid chromatography coupled to electrospray ionization mass spectrometry (HILIC-ESI-MS) revealed many hydrophilic glutamyl di- and tripeptides, as well as the presence of different glycoconjugates of glutamate, glutamine, and lysine. The most abundant Amadori compound, M-(1-deoxy-fructos-1-yl) glutamate, was identified as eliciting an intense umami taste. Glycoconjugates of glutamate represent a new class of compounds which putatively impart umami taste to various foods.

59.

STABILITY OF CYCLIC &-KETO ENAMINES WITH COOLING EFFECT. Christoph Cerny, Fabien Robert, and Renaud Villard, Nestlé Research Center, Nestec Ltd, Vers-chez-les-Blanc, P.O.Box 44, Lausanne CH-1000, Switzerland, Fax: +41-21-785-8554, christoph.cerny@rdls.nestle.com

Recently a novel class of compounds eliciting a cooling sensation in the oral cavity and on the skin, with a cyclic α -keto enamine structure was discovered. We studied the stability of three of these new "cooling" compounds with low cooling thresholds, 5-methyl-2-(1-pyrridinyl)-2-cyclopenten-1-one (5-MPC), 5-methyl-4-(1-pyrridinyl)-3(2H)-furanone (5-MPF) and 4-methyl-3-(1-pyrridinyl)-2(5H)-furanone (4-MPF). The compounds were dissolved in deuterated chloroform and deuterated methanol/water, respectively, and stored at 20°C and 37°C for up to 3 months. The stability was followed by ¹H-NMR and GC/MS analyses. The 5-MPC showed only poor stability and isomerisation into 3-methyl-2-(1-pyrridinyl)-2-cyclopenten-1-one (3-MPC) occured. On the other hand, 5-MPF and 4-MPF were reasonably stable under both lipophilic and hydrophilic conditions and more than 75% survived at 37°C. The ¹H-NMR and GC/MS data suggest that in all three compounds the protons at the cyclopestage.

ACS SYMPOSIUM SERIES 867

FRIEIUS TERG HANGURALIOU

Figure Polisions Figure Polisions and Milianus Polisions Milianus Polisions

Library of Congress Cataloging-in-Publication Data

Challenges in taste chemistry and biology / Thomas Hofmann, editor, Chi-Tang Ho, editor, Wilhelm Pickenhagen, editor; sponsored by the ACS Division of Agricultural and Food Chemistry.

p. cm.—(ACS symposium series; 867)

Includes bibliographical references and index.

ISBN 0-8412-3852-9

- Flavor—Congresses. 2. Flavoring essences—Congresses. 3. Food—Odor—Congresses. 4. Taste—Congresses.
- I. Hofmann, Thomas F., 1968- II. Ho, Chi-Tang, 1944- III. Pickenhagen, Wilhelm, 1939- IV. American Chemical Society. Meeting (224th: 2002: Boston, Mass.) V. Series.

TP372.5.C43 2003 664'.07—dc22

2003057712

The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984.

Copyright @ 2004 American Chemical Society

Distributed by Oxford University Press

All Rights Reserved. Reprographic copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Act is allowed for internal use only, provided that a perchapter fee of \$24.75 plus \$0.75 per page is paid to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. Republication or reproduction for sale of pages in this book is permitted only under license from ACS. Direct these and other permission requests to ACS Copyright Office, Publications Division, 1155 16th St., N.W., Washington, DC 20036.

The citation of trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval by ACS of the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto. Registered names, trademarks, etc., used in this publication, even without specific indication thereof, are not to be considered improtected by law.

PRINTED IN THE UNITED STATES OF AMERICA

vide a me purpose of oped fron search. Oc other orga audience.

Betents is reinterest to the book; appropriate chapters a manuscrip

papers are ously publ

ACS Bool

- T.; ACS Symposium Series 409; American Chemical Society: Washington, DC, 1992; pp. 102-117.
- Graham, H. N. In The Methylxanthine Beverages and Foods: Chemistry, Consumption and Health Effects, Spiller, G. A., Ed., Alan R. Liss: New York, 1984; pp. 29-74.
- 8. Robertson A. In Tea, Cultivation to Consumption, Chapman & Hall: London, UK, 1992, 555-601.
- Roberts, E.A.H.; Cartwright, R.A.; Oldschool, M. J. Sci. Food Agric. 1957, 8, 72-80.
- Jakino, Y.; Imagawa, H.; Horikawa, H.; Tanaka, A. Agric. Biol. Chem. 1964, 28, 64-71.
- Bryce, T.; Collier, P.D.; Fowlis, I.; Thomas, P.E.; Frost, D.; Wilkins, C.K. Tetrahedron letter 1970, 32, 2789-2792.
- Collier, P.D.; Mallows, B.R.; Thomas, P.E.; Frost, D.J.; Korver, O.; Wilkins, C.K. Tetrahedron 1973, 29, 125-142.
 Coxon, D.T.; Holmes, A.; Ollis, W.D. Tetrahedron Letter 1970, 60, 5241.
 - 5246.
 14. Coxon, D.T.; Holmes, A.; Ollis, W.D.; Vora, V.C. Tetrahedron Letter 1970, 60, 5237-5240.
- Wan, X.; Nursten, H. E.; Cai, Y.; Davis, A.L.; Wilkins, J.P.G.; Davis, A.P. J. Sci. Food Agric. 1997, 74, 401-408.
- Lewis, J.R.; Davis, A.L.; Cai, Y.; Davies, A.P.; Wilkins, J. P. G.;
 Pennington M. Phytochemistry 1998, 49, 2511-2519.
- Brown, A.G.; Byton, W.B.; Holmes, A.; Ollis, W. D. Phytochemistry 1969,
 2333-2340.
 Berkowitz, J.E.; Coggon, P.; Sanderson G.W. Phytochemistry 1971, 10,
- Yamanishi, T. Food Rev. Internat. 1995, 11, 477-525.
- 20. Obanda, M.; Owuro, P. O.; Mang'oka, R. Food Chem. 2001, 75, 395-404.
 - 21. Robertson A. Phytochemistry 1983, 22, 889-896.

Chapter 9

Pungent and Tingling Compounds in Asian Cuisine

Christophe C. Galopin¹, Stefan M. Furrer¹, and Andreas Gocke²

¹Ingredient Systems, Givaudan Flavors R&D, 1199 Edison Drive, Cincinnati, OH 45069 ² Fragrance Research, Givaudan Dübendorf Ltd., Uberlandstrasse 138,

8600 Dubendorf, Switzerland

Southern Asian cuisine is well known for its use of flavorful and pungent spices. The sanshool chemicals, such as alphahydroxy-sanshool from the Japanese Sanchoo pepper and other Asian peppers, are particularly interesting because they not only give a hot sensation in the mouth cavity but also a tingling effect on the tongue. In order to understand the effect of the sanshool chemicals we have synthesized a variety of derivatives. Tasting of those derivatives provided information about Structure Activity Relationship (SAR) for the tingling effect exhibited by these chemicals. Based on this study we are able to propose a minimal structure required for the tingling effect. We also used this SAR knowledge to design stable compounds with potential tingling effect.

Introduction

The research on pungent compounds has been very active in the past few years thanks to commercial and scientific interests. On the commercial side, consumer trends show an increased demand for strongly pungent flavors all over the world. This demand is created by Americans and Europeans who are more and more interested in spicy Asian and Latin American foods and by the

expanding Asian and Latin American markets. The classic pungent compounds, piperine and capsaicin, do not satisfy the consumers' need for "burn-to-death" pungency. On the scientific side, pungency is a very interesting area. Pungency is a mouthfeel which involves non-volatile molecules that interact with trigentinal nerves. In contrast with cooling, which involves cold thermoreceptor, pungency (or homess) involves trigentinal pain nerves. In fact, many pungent chemicals are weak anesthetics as they saturate the pain nerve response proventing any further pain signal from being transmitted to the brain. Pungency can therefore be described as a pleasurablemain in the mouth

can therefore be described as a pleasurable pain in the mouth.

Thanks to our Taste TrekTM expeditions to Asia and to our interest in Sanshoo pepper, we became interested not only in pungent chemicals but also in chemicals that create a tingling sensation on the tongue. It has been reported that long-chained amides from the sanshool and bungeanool families exhibit pungent and tingling properties and have long been used as anesthetics in folk medicine (1). Nevertheless, these chemicals are difficult to synthesize and are often unstable (2). We wondered whether we could stabilize these molecules by removing unnecessary features. Although it was noticed that one of the cisdouble bond in the fatty chain was a key element of activity (3), little structure activity relationship (SAR) information is available. Here we wish to describe our research to identify the elements of sanshools and bungeanools that are required for pungency. We will show how that knowledge can be applied to the synthesis of new molecules with the desired properties.

Experimental

Methyl (2E, 4E, 8Z, 11Z)-tetradeca-2, 4, 8, 11-tetraenoate 21

To a solution of methyl 4-(diethoxyphosphoryl)crotonate (4.66g (19.7 mmol) in THF (50 ml) was added BuOK (2.40g, 19.7 mmol) at 0° C and the mixture was slirred for 30 minutes. The red-brown solution was cooled to -30° C and (42,7Z)-decadienal 20° (1.90g, 13.2 mmol) was added dropwise. The mixture was warmed to room temperature during 30 minutes and poured into a saturated solution of NH₂Cl. The mixture was extracted with MTBE, the organic phase was washed with water and brine, dried (MgSO₄) and concentrated in vacuo. The yellow residue was purified by chromatography to yield 1.31g (45%) of a yellowish oil (containing about 10 % of the 4Z-isomer). H-NMR (400MHz, CDC), (6 in ppm): 7.26 (dd, J = 15.6, 10.0 Hz, 1H), 6.21-6.08 (m, 2H), 5.80 (d, J = 15.6 Hz, 1H), 5.44-5.25 (m, 4H), 3.74 (s, 3H), 2.77 (dd, J = 7, 7 Hz, 2H), 2.25-2.15 (m, 4H), 2.07 (dq, J = 7, 7 Hz, 2H), 0.97 (t, J = 7 Hz, 3H); 13 C-NMR

(100MHz, CDCl₃): 167.6 (s), 145.1 (d), 143.8 (d), 132.0 (d), 129.1 (d), 128.7 (d), 128.4 (d), 126.9 (d), 119.0 (d), 51.4 (q), 32.9 (t), 26.4 (t), 25.5 (t), 20.5 (t), 14.2 (q); MS (EI): 234 (M⁺, I), 129 (2), 203 (3), 175 (14), 152 (17), 133 (10), 119 (12), 105 (14), 93 (15), 67 (100), 59 (9), 55 (26), 41 (15); IR (neat): 3011w, 2962m, 1719s, 1644m, 1435m, 1251s, 1135s, 999s, 723m cm⁻¹.

Bungeanool 7

Ester 21 (2.00g, 8.5 mmol) was dissolved in water/MeOH (30 ml, 1:3) and saponified with KOH (1.67g, 30 mmol) overnight. The mixture was brought to acidic pH with ice-cold HCl and extracted with MTBE. The organic phase was washed with water and brine, dried (MgSO₄) and concentrated in vacuo to yield 1.52g of the $(2E_4E_58Z_11Z)$ -tetradeca-2,4,8,11-tetracnoic acid. This was dissolved in CH₂Cl₂ (30 ml) containing a drop of DMF. Oxalyl chloride (5.08g, 40 mnol) was added dropwise and the mixture was stirred for 8h at room temperature. The solvent and the excess of oxalylchloride were evaporated and the residue was dried in vacuo. The oily material was again taken up in CH₂Cl₂ and 1-amino-2-methyl-2-propanol (1.25g, 14 mmol) was added. The mixture was stirred for 1h, the solvent was evaporated and the residue purified by chromatography to yield 0.98g (40%) of bungeanool 7 as a slightly yellow oil. 'H-NMR (200MHz, CDCl₃) (6 in ppm): 7.21 (dd, J = 15 Hz, 1H), 5.47-5.25 (m, 4H), 3.35 (d, J = 6 Hz, 2H), 6.20-6.05 (m, 2H), 6.85 (d, J = 15 Hz, 1H), 5.47-5.25 (m, 4H), 3.35 (d, J = 6 Hz, 2H), 1.23 (s, 6H), 0.97 (t, J = 7 Hz, 2H).

N-isobutyl (2E, 4E, 8Z)-undeca-2, 4, 8-trienamide 28

At 0°C, in a round-bottom flask under an inert atmosphere of nitrogen, a solution of 2.77g (11mmol) of diethyl diethyl N-isopropyl phosphonoacctamide in 20nL of dry tetrahydrofuran is added to 15.5mL of a 1.5M solution of butyl lithium (23mmol) in hexane. The mixture is stirred at 0°C for thirty numutes. A solution of 1.4g of E2,Z6-nonadienal in 5mL of dry tetrahydrofuran is then added dropwise to the stirred reaction mixture. The mixture is stirred at 0°C for two hours. The reaction mixture is then diluted in 100mL of hexane and washed with a saturated aqueous solution of ammonium chloride. The organic phase is collected and dried over anhydrous magnesium sulfate, filtered and concentrated. The residue is purified by chromatography on silica gel with EtOAc/Hexane;2/8 as the eluent to give 0.5g of product as a white fluffy powder. H NMK-(300MHz in CDCl₁) (6 in ppm): 7.2 (dd, J=15, 10.2 Hz, 1H), 6.1 (m, 2H), 5.75 (d, J=15 Hz, 1H), 5.34 (m, 3H), 3.2 (t, J=6.5Hz, 2.E), 2.2 (m,

2H), 2.0 (quintuplet, J=7.5Hz, 1H), 1.8 (septuplet, J=6.6Hz, 1H), 0.96(t, J=7.5Hz, 3H), 0.93 (d, J=6.9Hz, 3H),

Methyl (2E, 4E, 8Z)-deca-2, 4,8-trienoate 30:

To a solution of methyl 4-(diethoxyphosphoryl)crotonate (11.6 g, 49.2 mmol) in TkIF (70 ml) was added 'BuOK (5.98g, 49.2 mmol) at 0°C. The mixture was cooled to -78°C and a solution of (Z)-hex.4-enal (4.00g, 40.8 mmol) in TkF (10 ml) was added dropwise. After the cooling bath was removed and the mixture had warmed up to room temperature, sat. NR₄Cl was added and the mixture was extracted with pentane. The organic phase was washed with water and brine, dried (MgSO₄) and concentrated in vacuo. The residue was distilled bulb (90°C/0.01 Torr) to yield 30 (2.4g, 33%) as a 7/3 mixture of the (4E/Z)-isomers. 'H-NMR (200MKz, CDCl₁) (6 in ppm): 7.69-7.20 (m, 1H), 6.29-5.31 (m, 5H), 3.76, 3.74 (2s, 3H), 2.45-2.13 (m, 4H), 1.61 (d, J = 6.5 Kz, 3H); MS (EI): 180 (M', 2), 149 (6), 121 (10), 111 (27), 93 (28), 67 (51), 59 (32), 55 (100), 39 (35), 29 (28); IR (neat): 3015m, 2949m, 1720s, 1644m, 1435m, 1264s, 1137m cm⁻¹.

N-(2-lydroxy-2-methyl-propyl) (2E,4E,8Z)-deca-2,4,8-trienamide 29

Ester 30 (1.90g, 10.56 nuttol) was saponified with NaOH (2.11g, 52.8 mmol) in H₂O/McOH (5/1, 60 n₁l) for 2 days. The crude reaction mixture was brought to pH = 1 with IICl (2N) and extracted 5 times with MTBE. The organic phase was washed with brine, dried (MgSO,) and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (30 ml) containing a drop of DMF and treated overnight with exaltyl chloride (2.0g, 15.7 mmol). The solvent was removed in vacuo 12.4 mmol) and triethyl amine (1.5g, 15 mmol) in CH2Cl2 (20 ml). The mixture (while keeping the temperature around 20°C), the residue was redissolved in 2.25-2.13 (m, 4H), 1.60 (d, J = 6.5 Hz, 3H); MS (EI): 237 (M⁺, 4), 179 (62), 164 (13), 149 (23), 124 (48), 110 (100), 94 (22), 84 (25), 66 (30), 59 (47), 55 CH₂Cl₂ (10 ml) and added to a solution of 1-amino-2-methyl-2-propanol (1.1g, was stirred for 5th and was then quenched with water and extracted with CH₂Cl₂. and concentrated in vacuo. N-(2-hydroxy-2-methyl-propyl) (2E,8Z)-deca-2,4,8trienamide 29 (2.0g, 80%) crystallized from ethyl acetate/hexane as a 7/3 mixture of the (4E/Z)-isomers in form of slightly yellow crystals, (4E)-Isomer: 5.52-5.44 (m, 1H), 5.39-5.32 (m, 1H), 3.49 (s, 1H), 3.33 (d, J = 6.0 Hz, 2H), The organic phase was washed with IN HCl, water and brine, dried (MgSO4) 'H-NMK (400MHz, CDCl₃) (6 in ppm): 7.19 (dd, J = 15.0 Hz, 10.3 Hz, 1H), 6.56 (broad $t_{\rm c}J = 6.0~{\rm Hz}$, IH), 6.19-6.03 (m, 2H), 5.86 (d, $J = 15.0~{\rm Hz}$, 1H),

(88), 41 (24), 30 (34); IR (neat): 3287br(OH), 2974m, 2931m, 1038s, 1027s, 1609s, 1537s, 1179m, 1161m, 996m, 913m cm.

Example of the synthesis of a cinnamanide.

In a round-bottom flask under an inert atmosphere of nitrogen, ciunamic acid (37.04g, 0.25 mol) and thionyl chloride (44.6g, 0.375mol) were dissolved in tetrahydroftirane. Two drops of pyridine were added and the mixture was beated at reflux for 4h. The red mixture was concentrated (40°C / 125mbar) and 42.7 g of crude cinnamy! choride were recovered as a brownish oil. In a round-bottom flask under an inert atmosphere of nitrogen, cinnamyl chloride (4.1 g, 25 mmol) is dissolved in a mixture of 25ml of dry tetrahydrofuran contain and 5 ml of pyridine was added. To this solution, propylamine (1.77g, 30mmol) was added over a period of 30 minutes at room temperature. The mixture was stirred for 5h at room temperature. The reaction mixture was diluted with MTBE and extracted with water. The organic phase was washed with aqueous hydrochloric acid (1N) and brine, dried (MgSO₄), filtered and concentrated. The residue was crystallized from MTBE/hexane to give 4.1g of product as a yellowish fluffy powder, 'H NMR (300MHz, CDCl₃) (5 in ppm): 7.6 (d, J= 15.6Hz 1H), 7.5 (m, 2H), 7.4 (m, 3H), 6.4 (d, J= 15.9Hz, 1H), 5.8 (broad s, 1H), 3.4 (q, J= 6.7Hz, 2H), 1.6 (sextuplet, J= 7.3Hz, 2H), 1.0 (t, J= 7.3Hz, 3H).

Sanshool and Bungeanool Families

General description

Sanshools and bungeanools (Figure I) are both long-chained polyenamides found in the Achillea, Echinacea and Zanthoxylum plant species. It seems that α -sanshool, a.k.a. echinacein and neoherculin, was first isolated from Echinacea angustifolia (4) and Zanthoxylum piperitum (Sanshoo pepper) (5) and later from Zanthoxylum clava-herculin (6). Bungeanools were first recognized as a family when isolated from Zanthoxylum bungeanum² (7) although similar chemicals had been described earlier (8).

The main difference between sanshools (1-6) and bungeanools (7-10) is the presence of three conjugated double bonds at the end of the amide chain of sanshools whereas bungeanools only have two or less unconjugated double bonds. Moreover, sanshools are either α, β or $\alpha, \beta, \gamma, \delta$ unsaturated amides

Figure 1 Examples of sanshools and bungeanools

whereas all bungeanools seem to be $\alpha,\beta,\gamma,\delta$ unsaturated amides. In both families, the N-alkyl group is predominantly 2-hydroxy-2-methylpropane, but chemicals with dehydrated (5) or dehydroxylated (6) groups have been reported 7, 9). Interestingly enough, the first sanshool isolated had no hydroxyl group on the N-alkyl chain so the word "sanshool" refers to a non-functionalized N-alkyl group.

Chemical Synthesis

The difficulty of the synthesis of these chemicals depends on the case of synthesis of the intermediate aldehydes such as 14 and 20. These aldehydes are often expensive and complex to synthesize (10). Scheme 1 and 2 show examples of synthesis of α -sanshool (2) and bungeanool. Almost all chemicals in either family can be obtained by using similar techniques.

SAR Study of the Fatty Chain

In order to establish an SAR for these chemicals, we decided to synthesize a small series of sanshools, bungeanools and derivatives, and screen them for pungency. We decided to synthesize derivatives with a variety of functionalities representative of, both families. These derivatives are α, β and $\alpha, \beta, \gamma, \delta$ unsaturated amides with up to three unsaturations at the end of the chain. We also made some arachidonic acid derivatives (23-25) that have no conjugated double bonds.

From the pungency results shown in Figure 3, it can be concluded that having a cis-double in the chain is indeed a key element (3) but it is not the only one. The inactivity of the arachidonic derivatives show that a certain motif must be preserved. The activity of compound 22 indicates that the long chain does play a role in pungency. The activity of compound 10 indicates that the end of the chain must be unsaturated but the activity of compound 4 suggests that the unsaturation must follow a certain pattern. It becomes apparent that all active compound share a common motif (CH=Z=CH-CH2-CH2-CH=E=CH) in addition to the amide function. This motif cannot be branched (27) and although it seems required it is not enough to give activity (25). Finally, the lydroxy group on the N-alkyl group does not seem to be required since 16 and 1 are both pungent.

Scheme 1: Synthesis of a-sanshool

As a result of our observations we propose the model in Figure 4 as a good representation of the features require for sanshool and bungeanool-type chemicals to be pungent.

To test our model we designed two new molecules 28 and 29 that follow the rules shown in Figure 4.

These molecules were very interesting because we expected that the absence of a triene system would stabilize the molecule, these structures had never been reported before, and their fatty chain could easily be made from commercially-available aldehydes 29 and 31 (Scheme 3). Amide 28 was of particular interest since we could synthesize it in one step by modification of a published method (Scheme 3) (11).

This experiment allowed us to validate our model since 28 and 29 exhibited a pungency typical of that of the sanshool and bungeanool families. Neat amides 28 and 29 showed enhanced stability properties probably because they could be obtained as white powders instead of thick oils. The crystalline matrix may slow down the polymerization reaction. While 29 was more pungent, 28 was easier to synthesize thanks to a one-pot reaction.

Figure 3 Activity of some sanshool and bungeanool derivatives

$$C_xH_y$$

Minimal Structure: R=H, n=1, x=1

Optional Features: R=OH, n=2, x > 2

Noticeable Pungency = Minimal Structure + two Optional Features

Figure 4 Proposed structural requirements

Scheme 3 Synthesis of 28 and 29

Application of the SAR Study of the Fatty Chain

It appeared to us that the only way to stabilize these molecules was to climinate all unsaturation at the end of the chain. This was however impossible since we showed that at least one cis-double bond is needed at the end of the chain. We came up with the idea that the cis-double bond may be replaced by a phonyl group. In fact we realized that there may be three different ways that the chain could wrap up so that it would sterically look like a phenyl group (Figure 5).

To test this idea a series of phenyl-containing amides was prepared, a few examples are shown in Figure 6.

All the chemicals made in this series were stable at ambient temperature but only 35 showed a noticeable pungency. As far as we know, this simple cinuamamide had never been described as being pungent. Unfortunately, 35 is very weak and does not have the tingling character of the sanshool and bungcanool families.

SAR Study of the N-Alkyl Group

Although 35 was not a viable solution to our stability problem, it gave us a very accessible skeleton that we could use to vary the N-alkyl group. A series of cinnanamides was synthesized with the N-alkyl groups shown in Figure 7.

None of the new ciunamanides was pungent, which indicated that the isobutyl group was indeed required for pungency.

Conclusion

We have shown that a model could be built to predict whether a polyenanide of the sanshool or bungeanool type was pungent or not. We were able to validate the model by synthesizing unknown structures that fit the model and were found to be pungent. We were able to adapt the model to create a phenyl containing amide that had a pungent character. The activity of cinuaunatuide 35 suggests that sanshools and bungeanools must be activate their corresponding heat and tactile receptors as conformers were the fatty chain is wrapped up to activate. This theory will be difficult to prove until we have more information about the receptor, with which these chemicals are binding.

Figure 5 Wrapping of the fatty chain of a minimal pungent structure

Figure 6 Same phenyl containing amides that fit the "wrapped" model

Figure 7 Various amines used to make cinnamamides

References

- Bryant, B; Mczine, I. Brain Research 1999, 842, 452-460
 - Sonnet, P. E. J. Org. Chem. 1969, 34(4), 1147-1149
- Mizutani, K.; Fukunaga, Y.; Tanaka, O.; Takasugi, N.; Saruwatari, Y.-I.; Tuwa, T.; Yamauchi, T.; Wang, J.; Jia, M.-R.; Li, F.-Y.; Ling, Y.-K. Chem. Pharin. Bull. 1988, 36(7), 2362-2365.
 - Crombie, L. J. Chem. Soc. 1955, 995.
- Orombic, L.; Tayler, J. L. J. Chem. Soc. 1957, 2760.
 - lacobson, M. J. Org. Chem. 1967, 32, 1646.
- Xiong, Q; Shi, D.; Yamanoto H.; Mizuno, M. Phytochemistry 1997, 46(6), 1123-1126.

Maillard reaction in heated glucose/L-proline mixtures, as well as in roasted malt. To gain more insights into the

3-Methyl- and 5-methyl-2-(1-pyrrolidinyl)-2-cyclopenten-1one were recently identified as cooling compounds formed by syclic keto enamine derivatives were synthesized, and their

nodification of the amino molety, the carbocyclic ring size, or

physiological cooling activities

the alkyl substitution led to an increase of the cooling threshold. Insertion of an oxygen atom into the carbocycle,

were evaluated. Any

molecular requirements of this cooling effect, a range of

- Crombic, L. J. Chem. Soc. 1952, 4338-4346.
- Chen, I.-S.; Chen, T.-L; Lin, W.-Y.; Tsai, I.-L.; Chen Y.-C. Phytochemistry 1999, 52, 357-360
- van der Linde, L. M.; van Lier, F. P.; van der Weerdt, A. J. A. European natent 0173395 A1, 1985. ું
 - Crombic, L., Fisher, D. Tetrahedron Lett. 1985, 26(20), 2477-2480. 11.
- Ward, J. P.; Van Dorjr, D. A. Recl. Trav. Chim. Pays-Bas 1969, 88, 177.

eyelopentenone resulted in a even more drastic effect, e.g. the 2(5H)-furanone exhibited the strongest cooling effect at the

incorporation of an oxygen into the 5-position of the

threshold concentration found for the 2-cyclopenten-1-one.

the corresponding3(2H)-furanone was

nowever, increased the cooling activity, e.g. the threshold of

smelling (--)-menthol, these keto enamines are odorless, but

mpart a cooling sensation to the oral cavity and to the skin.

ow threshold of 0.02-0.06 mmol/L. In contrast to the minty

Chapter 10

Structural Requirements for the Cooling Activity of Cyclic α-Keto Enamines

Thomas Hofmann¹, Tomislav Soldo², and Harald Ottinger²

'Institut für Lebensmittelchemie, Corrensstrasse 45, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany ²Deutsche Forschungsanstalt für Lebensmittelchemie, Lichtenberstrasse 4, D-85748 Garching, Germany

© 2004 American Chemical Society

BELP & YOUR ACCOUNT & WISE LIST CART =

PROWSE SECTIONS BESTSELLERS SALE USED OTHER VOICES

CUSEARCH?

BABOUT THIS BOOK

Synopses & Reviews

More Books by Thomas Hofmann Et Al.; Sponsored By The Acs Division Of Agricultural And Food Chemistry

R RELATED AISLES

Chemistry

Chemical Engineering

Read our interview with Bill Bryson and save 30% on A Short History of Nearly Everything

IN THE CITY TODAY

Find Books

- Award Winners
- Book Clubs
- Great Deals
- Hosted Bookshelves
- . Hot_Titles
- · Lord of the Rings
- Recently Arrived Used
- Staff Picks

Read the City

- Author Interviews
- From the Author
- · Fup. Store Cat.
- Other Voices Review-a-Day
- Writer's Almanac

Win Free Books!

- Daily Dose
- Happy Holidays Contest

Rare Books * Technical Books * Textbooks * Kids' Books * eBooks * New Arrivals

Ø

à

Bake our favorite New Titles of the Season is a stick bere if

IN STOCK

Ships in 1 to 3 days \$108.00 List Price: \$135.00

HARDCOVER, NEW

ADD TO CART

Click here to show store and shelf locations

C

ACS Symposium #867: Challenges in Taste Chemistry and **Biology**

by Thomas Hofmann Et Al.; Sponsored By The Acs Division Of **Agricultural And Food** Chemistry

Available at: Quimby Warehouse

This title ships for free on qualified orders! Find out

ISBN: 0841238529 Editor: Hofmann, Thomas F. Editor: Ho, Chi-Tang Editor: Pickenhagen, Wilhelm Publisher: American Chemical Society Subject: Food Subject: Taste Subject: Food Science Subject: Life Sciences - Biochemistry Subject: Flavor Subject: Flavoring essences Edition Description: Includes bibliographical references and index. Series: ACS symposium series; Series Volume: 867 Publication Date: November 2003 Binding: Hardcover Language: English Illustrations: Yes Pages: 304

Synopses & Reviews

Publisher Comments:

This book discusses the biochemistry of human taste transduction and perception, with a review of a new taste activity concept. It discusses food taste from both a

other titles in the ACS Symposium series:

- Agrochemical Resistance: Extent, Mechanism, and Detection
- Omega-3 Fatty Acids: Chemistry, Nutrition, and Health Effects
- Agrochemical Faté and Movement: Perspectives and Scale of Study
- Anisotropic Organic Materials: Approaches to Polar Order
- Synthetic Macromolecules with Higher Structural Order
- #310 Chemistry and Function of **Pectins**
- #478 Partnerships in Chemical Research and Education
- #526 Protein Folding: In Vivo and in Vitro
- #560 Synthetic Oligosaccharides: Indispensable Probes for the Life Sciences
- #589 Computer-Aided Molecular Design: Applications in Agrochemicals, Materials, and <u>Pharmaceuticals</u>
- #660 Spices Flavor Chemistry Oif <u>Antioxidants</u>
- #664 Phytoremediation of Soil and Water Contaminants
- 674 Flavor and Lipid Chemistry of Seafoods
- #686 Synthesis and Chemistry of <u>Agrochemicals V</u>
- #690 Polymers in Sensors: Theory and Practice
- #693 Particle Size Distribution III; Assessment and Characterization
- #697 Lionin and Lignan Biosynthesis #701 Functional Foods for Disease Prevention 1: Fruits, Vegetables,

and Teas

PowellsBooks.news

- December 8, 2004
- Archived Editions
- More newsletters

biochemical and a chemical point of view.

Book News Annotation:

The two-day symposium Taste Research: Chemical and Physiological Aspects was held at the 224th meeting of the American Chemical Society in Boston in August 2002. Participants were researchers from academia and industry working in areas including the biochemistry, genetics, and physiology of human taste transductionperception; the identification and structure-activity relationships of key compounds involved in the taste of foods; and topics such as human sensory analysis, taste-aroma interactions, and the process of technologically optimizing tastant formation during food processing. The volume contains 18 papers. Annotation ©2004 Book News, Inc., Portland, OR. (booknews.com)

back to top

- #702 <u>Functional Foods for Disease</u>
 Prevention II: <u>Medicinal Plants</u>
 and Other Foods
- #705 Flavor Analysis: Developments in Isolation and Characterization
- #709 Tailored Polymeric Materials for Controlled Delivery Systems
- #710 Structure and Properties of Glassy Polymers
- #717 Solid-State NMR Spectroscopy of Inorqanic Materials
- #720 Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique
- #726 Field Responsive Polymers:
 Electroresponsive,
 Photoresponsive, and Responsive
 Polymers in Chemistry and
 Biology
- #728 <u>Intelligent Materials for</u> <u>Controlled Release</u>
- #730 Spectroscopy of Superconducting Materials
- #731 Chromatography of Polymers:
 Hyphenated and Multidimensional
 Techniques
- #732 Modeling NMR Chemical Shifts: Gaining Insights Into Structure and Environment
- #734 Pesticides: Managing Risks and Optimizing Benefits
- #735 Semiconducting Polymers: Applications, Properties, and Synthesis
- #742 Lignin: Properties and Materials
- #746 <u>Asymmetric Fluoroorganic</u>
 <u>Chemistry: Synthesis,</u>
 <u>Applications, and Future</u>
 <u>Directions</u>
- #747 <u>Analysis of Environmental</u> <u>Endocrine Disruptors</u>
- #752 Controlled Drug Delivery:

 Designing Technologies for the
 Future
- #758 Citrus Limonoids: Functional Chemicals in Agriculture and Food
- #765 <u>Associative Polymers in Aqueous</u> <u>Media</u>
- #770 Imaging in Chemical Dynamics
- #772 <u>Pesistent</u>, <u>Bioaccumulative</u>, and <u>Toxic Chemicals I</u>
- #775 Chemistry and Physiology of Selected Food Colorants
- #777 Pesticide Biotransformation in Plants and Microorganisms: Similarities and Divergences
- #778 Nuclear Site Remediation: First Accomplishments of the Environmental Management Science Program
- #784 <u>Chemicals and Materials from</u> <u>Renewable Resources</u>
- #785 Oxidative Delignification Chemistry: Fundamentals and Catalysis
- #789 Solid-Liquid Interface Theory
- #792 Bioactive Fibers and Polymers
- #793 Polymer Research in Microgravity: Polymerization and Processing
- 470

Optical Polymers: Fibers and

664.500

Flavour Research at the Dawn of the Twenty-first Century

Proceedings of the 10th Weurman Flavour Research Symposium

Edited by J.L. Le Quéré and P.X. Étiévant

Chez le même éditeur

Meat Science and Technology J. Culioli, G. Monin, M. Saudan, guest editors-in-chief Sciences des Aliments – An international journal of food science and technology, vol. 23-1, 2003.

Dairy Products, Nutrition and Health
J. Schrezenmeir, guest editor-in-chief
Sciences des Aliments – An international journal of food science and technology, vol. 22-4, 2002.

The World Wheat Book
A. Bonjean, W. Angus, editors, 2001.

Nutritional Recommendations for the French Population A. Martin, guest editors-in-chief

Sciences des Aliments – An international journal of food science and technology, vol. 21-4, 2001.

Cheesemaking - From Science to Quality Assurance A. Eck, editor, 2nd edition, 2000.

Toxic Plants Dangerous to Humans and Animals J. Bruneton, 1999

Pharmacognosy, Phytochemistry, Medicinal Plants J. Bruneton, 2nd edition, 1999

Dictionnaire agroalimentaire/Dictionary of Food Science and Industry français/anglais – English/French
J. Adrian, N. Adrian, K. Harper, 2nd edition, 1996.

© LAVOISTER, 2003 ISBN: 2-7430-0639-0

© INTERCEPT Ltd, 2003 ISBN: 1-898298-94-7

Toute reproduction ou représentation intégrale ou partielle, par quelque procédé que ce soit, des pages publiées dans le présent ouvrage, faite sans outorisation de l'éditeur ou du Centre Français d'Exploitotion du droit de copie (20, rue des Grands-Augustins, 75 006 Paris), est illicite et constitue une contréfaçon. Seules sont autorisées, d'une pari, les reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective, et, d'outre part, les analyses et courtes citations justifiées par le caractère scientifique ou d'information de l'œuvre dans laquelle elles sont incorporées (toi du 1^{et} juillet 1992 - art. 40 et 41 et Code Fénal art. 425).

Prefac

It was a g the Scient was the se the 1984 I

During the the flavou contribution already the of this inte

Indeed, go interested) flavour of the olfacto effects of a

Most of th the 1975 ea entitled "T. The impor between fl research c progresses taste. This this future we believe psychologi: first interac highest inte the differen emotional a symposium committee.

中国的教育的,这个时间的一种,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们们的一个人的,我们们的一个人的,我们们的一个人的人的,我们就是一个人的人的

This book
Beaune, fic
Europe, Ind
idea, and d
participants
presentation
167 contrib
plus picture
information
nephew of c
almost 30 ye

The world of non-volatiles: heating compounds for today and tomorrow

Christophe C. Galopin

Givaudan Flavours Corp., Research and Development Dept., Ingredient Systems Group, 1199 Edison Drive, Cincinnati OH 45216, USA.

Abstract

Four new commercially interesting pungent compounds are presented along with a short review of piperine and capsaicin. Advantages, drawbacks and differences are discussed. An insight on synthesis and commercial availability is also given.

Introduction

Flavour companies have contemplated the world of non-volatiles for many years. These compounds have a special effect in the mouth with no or little aroma and often elude chemists who rely solely on GC data for analysis. Non-volatiles are believed to be essential for the reconstitution of many fruit and vegetable flavours where the aroma alone fails to describe the real taste of the botanical. Those non-volatiles are often very difficult to isolate because they cannot be identified by simple GC-O techniques. Moreover, few people know how to describe mouthfeel and how to separate it into its basic components.

However, non-volatile research has been active for a long time in the area of pungency; certainly because it is the mouthfeel effect that is the easiest to describe. Since the nineteenth century, piperine and capsaicin have been known as the pungent principle of black and red pepper, respectively. These two compounds have been widely used in flavour industry when a pungent sensation is desired without pepper flavour or to boost the pungency of pepper flavours. Although these compounds are still of use today they may fall short of customers' expectations for stronger burning sensations.

In the past decade, Givandan has put a lot of effort into the identification and commercialisation of new pungent compounds. After a short review of piperine and capsaicin, we wish to report findings on three new pungent compounds isolated during our Tastetrek expeditions in Gabon and China, as well as one artificial derivative.

Pungent ingredients of today

Piperine

Piperine 1 was first isolated from black pepper in 1821 (Pelletier, 1821; Pelletier, 1832). It has been described as virtually odourless and creating a hot, burning sensation in the back of the mouth and near the throat (Arctander, 1969). It is widely used in flavours when mild pungency is required.

Many syntheses of piperine have been described and the most practical one seems to be the simple amidation of chavicinoyl chloride with piperidine (Arctander, 1969; Lohaus,

1928). Nevertheless, a simple aldolisation reaction of heliotropine should not be ignored (Schultze and Oediger, 1981). Black pepper oleoresin can also be used as a natural substitute for piperine.

Capsaicin

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Capsaicin 2 was first isolated from Capsicum in 1876 (Thresh, 1876). It has been described as having a mild warm-herbaceous odour and a burning-pungent taste. It is widely used in flavours to enhance the pungency of flavour composition. It is considered characteristic of red pepper pungency.

Capsaicin can be made from iso-decenyl chloride and vanillylamine, however synthesis of the iso-decenyl part can be challenging (Kaga et al., 1996). As a result, a related compound, called synthetic capsaicin, made from nonanyl chloride and vanillylamine is often preferred. A natural substitute of capsaicin are Capsicum oleoresins.

Pungent ingredients for tomorrow

1'-acetoxychavicol acetate and derivatives

Givaudan recently reported the identification of 3 as the pungent component of Alpinia galangal (Yang and Eilerman, 1999). Although it has been described as less pungent than capsaicin, it is much easier to synthesise (Gautschi et al., 1999), a feature that makes it an interesting substitute of capsaicin.

One major drawback of 1'-acetoxychavicol acetate (ACA) is its instability in water. We determined (Yang and Eilerman, 1999) that the instability of 3 was due to a sigmatropic rearrangement that produced a non-pungent component. The rearrangement of ACA 3 was noticed to be faster in aqueous solutions, a known feature of this type of rearrangement (Ganem, 1996).

As a result of a structure activity relationship study (Gautschi et al., 1999), compound 4 was shown to be stable and as pungent as ACA 3. Although 4 is an artificial ingredient, it can be widely used where a strong pungency is required and price-constraint forbid the use of capsaicin.

Sanshool

Long-chained unsaturated alkylamides such as alpha-hydroxysanshool 5, have been isolated from Sansho, Huajiao and Zanthoxylum species (Xiong et al., 1997; Ito et al., 1997). Alpha-hydroxysanshool and gamma-hydroxysanshool were identified as pungent by a Monell research group (Bryant and Mezine, 1999). These findings were confirmed by a study run at the same time at Givaudan on the pungent principle of Sansho peppers. Our Givaudan Tastetrek in China in 2001 has also identified alpha-hydroxysanshool as the pungent principle of several Chinese dishes.

Nevertheless, the pungency of sanshool chemicals is not their most interesting characteristic. Sanshool compounds also give a unique tingling sensation in the mouth accompanied by a mouth-watering effect. These compounds can be used in mildly pungent preparations where a special mouthfeel is sought.

Syntheses of sanshool chemicals involve at least five steps and may require the use of non-readily available materials (Sonnet, 1969; van der Linde et al., 1985; Crombie and Fisher, 1985). They are also unstable and tend to decompose even when stored under nitrogen in the cold. These physical characteristics unfortunately make them difficult to use as single ingredients.

Aframodial

Aframodial 6 was recently identified as the pungent principle of the seeds of wild ginger plants harvested during our Tastetrek in Gabon in 1999. Chemically, this compound is very different from the others since it does not have any amide bond. Nevertheless it belongs to a known family of pungent dialdehydes like isovelleral or cinnamodial (Szallasi et al., 1998).

The synthesis of this compound is simple but long and not chemically efficient (Kim and Isoe, 1983). Nevertheless, it is interesting to notice that, like ACA 3, this compound was also found in galangal (Hiroshi and Hideji, 1988). Aframodial may be useful as a pungency booster of ACA.

Conclusion

Although many new pungent compounds can be found in nature, few are as versatile as capsaicin or piperine. Nevertheless, the discovery of these new pungent compounds gives us access to new structures with pungent activity. The interest may not be in these new compounds themselves but in the derivatives than can be made from them.

e been
et al.,
gent by
d by a
rs. Our
as the

mouth ungent use of

nie and under to use

f wild pound less it zallasi

(Kim pound 1 as a

tile as gives anew

References

Arctander S (1969). Perfume and Flavour Chemicals. Steffen Arctander Publisher, Montclair, N.J.

Bryant B, Mezine I (1999). Alkylamides that produce tingling paresthesia activate tactile and thermal trigeminal neurons. *Brain Research*, 842: 452-460.

Crombie L, Fisher D (1985). Synthesis of natural polyene isobutylamides. Stereochemistry of the Wittig reactions. *Tetrahedron Lett.*, 26: 2481-2484.

Ganem B (1996). The mechanism of the Claisen rearrangement: deja vu all over again. Angew. Chem., Int. Ed. Engl., 35: 936-945.

Gautschi M, Yang X, Eilerman R, Frater G (1999). Flavour Chemicals with pungent properties. In: Teranishi R, Wick EL, Hornstein I, Flavour Chemistry: 30 Years of Progress. Kluwer Academics, Plenum publishers, New York, 199-210.

Hiroshi M, Hideji I (1988). Cytotoxic and antifungal diterpenes from the seeds of Alpinia galanga. Planta Med., 54: 117-120.

Ito C, Katagiri H, Sato A, Shi D-W, Kadota S, Komatsu K, Namba T (1997). Pharmacognostical Studies of the Sino-Japanese Crude Drugs "Huajiao" and "Sansho" Natural Medicines, 51: 249-258.

Kaga H, Goto K, Takahashi T, Hino M, Tokuhashi T, Orito K (1996). A general and stereoselective synthesis of capsaicinoids via the orthoester Claisen rearrangement. *Tetrahedron*, 52: 8451-8470.

Kim T, Isoe S (1983). Total Synthesis of (+/-)-(E)-8b,17-Epoxylabd-12-ene-15,16-dial. J. Chem. Soc., Chém. Commun., 730-731.

Lohaus H (1928). Synthesis of isomers of piperic acid. J. Prakt. Chem., 119: 235-271.

Pelletier (1821). Ann. Chim. (Paris), 16(2): 344.

Pelletier (1832). Ann. Chim. (Paris), 51(2): 199.

Schultze A, Oediger H (1981). Neue Möglichkeiten der Aldol-Reaktion am Beispiel einfacher Synthesen von Piperin. Liebigs Ann. Chem., 9: 1725-1727.

Sonnet P (1969). Synthesis of the N-isobutylamide of all-trans-2,6,8,10-dodeca-tetraenoic acid. J. Org. Chem., 34: 1147-1149.

Szallasi A, Bíró T, Modarres S, Garlaschelli L, Petersen M, Klusch A, Vidari G, Jonassohn M, De Rosa S, Sterner O, Blumberg P, Krause J (1998). Dialdehyde sesquiterpenes and other terpenoids as vanilloids. Eur. J. Pharmacol., 356: 81-89.

Thresh (1876). Capsaicin, the active principle of capsicum fruits. *Pharm. J. and Trans.*, 7: 21.

van der Linde L, van Lier F, van der Weerdt A (1985) Perfume compositions and perfumed products which contain one or more 4,7-alkadienals as the essential substance. Patent NL 8402579.

Xiong Q, Shi D, Yamamoto H, Mizuno M (1997). Alkylamides from pericarps of Zanthoxylum bungeanum. Phytochemistry, 46: 1123-1126.

Yang X, Eilerman R (1999) Pungent Principal of Alpinia galangal (L.) Swartz and Its Applications. J. Agric. Food Chem., 47:1657-1662.