TP Multirésolution de Chaikin

Figure 1: A gauche, image référence. A droite, résultat après déformation à basse résolution.

1 Formules de Chaikin

 $i \in \mathbb{N}$ l'indice du point et $n \in \mathbb{N}$ le niveau de décomposition.

Formule de Décomposition :

$$x_i^n = \frac{1}{4} \left(-x_{2i-2}^{n+1} + 3x_{2i-1}^{n+1} + 3x_{2i}^{n+1} - x_{2i+1}^{n+1} \right)$$
 Moyenne

$$y_i^n = \frac{1}{4} \left(x_{2i-2}^{n+1} - 3x_{2i-1}^{n+1} + 3x_{2i}^{n+1} - x_{2i+1}^{n+1} \right) \qquad \text{D\'etail}$$

Formule de Recomposition:

$$x_{2i}^{n+1} = \frac{3}{4} \left(x_i^n + y_i^n \right) + \frac{1}{4} \left(x_{i+1}^n - y_{i+1}^n \right)$$

$$x_{2i+1}^{n+1} = \frac{1}{4} (x_i^n + y_i^n) + \frac{3}{4} (x_{i+1}^n - y_{i+1}^n)$$

Note: Si les détails y_i sont nuls, on retrouve la subdivision de Chaikin

2 Travail demandé

2.1 Décomposition/Recomposition

- Implémenter la décomposition totale et la reconstruction totale de Chaikin.
- Utiliser les fichiers croco.d et hyppo.d pour tester vos fonctions.
- Les données reconstruites sont-elles identiques aux données d'origine ?

2.2 Multi-Résolution

- Implémenter une compression en mettant à zéro les détails inférieurs à $\epsilon \in \mathbb{R}$.
- Pour différents ϵ , visualiser la recomposition après compression.
- Calculer l'erreur entre la reconstruction totale et la reconstruction partielle.
- Tracer le graphe de l'erreur en fonction du seuil ϵ .
- Déplacer quelques sommets à basse résolution et observer l'influence de la modification sur la reconstruction.

2.3 Rendu

Rendre sous forme d'archive :

- Le code qui doit pouvoir être compilé/executé et pouvoir générer des sorties compréhensibles.
- Un document (pdf) contenant vos résultats (réponses, images, commentaires, ...).