Приклад 2. Застосовуючи формулу Сімпсона, обчислити наближено визначений інтеграл з точністю ε = 0,0001

$$I \coloneqq \int_{0}^{1} x^{3} \cdot e^{x^{3}} dx = 0.4587925$$
 - точне значення інтеграла

$$f(x) := x^3 \cdot e^{x^3}$$
 $a := 0$ $b := 1$

1) Визначимо мінімальну кількість кроків n, необхідну для забезпечення заданої точності ε , за формулою оцінки похибки методу Сімпсона

$$|R_4(f)| \le \frac{(b-a)^5}{180n^4} \max_{x \in [a,b]} |f^{(4)}(x)|$$

Знайдемо похідну четвертого порядку підінтегральної функції

$$f_{fourth_derivative}(t) := \frac{d^4}{dt^4} f(t) \rightarrow (81 \cdot t^{11} + 648 \cdot t^8 + 1152 \cdot t^5 + 360 \cdot t^2) \cdot e^{t^3}$$

За графіком похідної визначимо найбільше за модулем значення похідної на відрізку [a, b] $t \coloneqq 0,0.05..1$

Отже, найбільше за модулем значення похідної на відрізку [a, b] в точці x=1

$$|f \text{ fourth derivative } (1)| = 6091.6695776$$

Обчислимо граничну абсолютну похибку (аналітичну похибку)

$$\Delta_analytical := \frac{(b-a)^5}{180 \cdot n^4} \cdot |f_fourth_derivative(1)| \xrightarrow{simplify} \frac{249 \cdot e}{20 \cdot n^4}$$

Нерівність Δ _analytical $\leq \varepsilon$ розв'язуємо підбором:

$$\varepsilon \coloneqq 0.0001 \qquad \frac{249 \cdot e}{20 \cdot n^4} \le \varepsilon$$
 при $n \coloneqq 24 \qquad \frac{249 \cdot e}{20 \cdot n^4} = 0.000102 \qquad \frac{249 \cdot e}{20 \cdot n^4} < \varepsilon = 0$ при $n \coloneqq 25 \qquad \frac{249 \cdot e}{20 \cdot n^4} = 0.0000866 \qquad \frac{249 \cdot e}{20 \cdot n^4} < \varepsilon = 1$

Отже, при $n \ge 25$ виконується нерівність Δ _analytical $\le \varepsilon$.

Візьмемо $n \coloneqq 40$

Обчислимо крок розбиття h:

$$h \coloneqq \frac{b-a}{n} \to \frac{1}{40} = 0.025$$

Отже, розіб'ємо відрізок інтегрування [a, b] на n рівних частин та обчислимо значення підінтегральної функції у відповідних точках.

$$x := \left\| \begin{array}{c} \text{for } i \in 0 \dots n \\ \left\| x_i \leftarrow a + i \cdot h \right\| \\ \text{return } x \end{array} \right\| y := \left\| \begin{array}{c} \text{for } i \in 0 \dots n \\ \left\| y_i \leftarrow f(x_i) \right\| \\ \text{return } y \end{array} \right\|$$

	0		0
	0.025		0.0000156
	0.05		0.000125
	0.075		0.0004221
	0.1		0.001001
	0.125		0.0019569
	0.15		0.0033864
	0.175		0.0053882
	0.2		0.0080643
i	0.225		0.0115211
	0.25		0.0158711
	0.275		0.0212339
	0.3		0.0277389
	0.325		0.035527
	0.35	İ	0.0447532
	0.375		0.0555899
	0.4		0.0682299
	0.425		0.0828907
	0.45		0.0998189
	0.475		0.1192958
x =	0.5	y=	0.1416436
	0.525		0.1672329
	0.55		0.1964915
	0.575		0.2299148
	0.6		0.2680781
	0.625		0.3116513
	0.65		0.3614167
	0.675		0.4182898
	0.7		0.4833449
	0.725		0.5578458
	0.75		0.6432826
	0.775		0.7414168
	0.8		0.8543361
	0.825		0.984521
	0.85		1.1349269
	0.875		1.3090841
	0.9		1.5112218
	0.925		1.7464209
	0.95		2.0208033
	0.975		2.3417674
	[1]		2.7182818

За формулою Сімпсона отримаємо

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left(y_0 + y_n + 4 \sum_{i=1}^{n-1} y_i + 2 \sum_{j=1}^{n-2} y_j \right),$$

де i – непарні цілі числа, j – парні цілі числа.

$$I_Simpson := \begin{vmatrix} S \leftarrow 0 \\ SI \leftarrow 0 \\ S2 \leftarrow 0 \end{vmatrix}$$

$$| for \ i \in 1 \dots n-1$$

$$| | fir \ mod(i,2) = 0 |$$

$$| | S2 \leftarrow S2 + y_i$$

$$| else$$

$$| | SI \leftarrow SI + y_i$$

$$| S \leftarrow \frac{h}{3} \cdot \left(y_0 + y_n + 4 \cdot SI + 2 \cdot S2 \right)$$

$$| return \ S$$

3) Оцінимо похибку отриманого результату

Обчислимо граничну абсолютну похибку (аналітичну похибку)

$$\Delta_{analytical} := \frac{(b-a)^{5}}{180 \cdot n^{4}} \cdot |f_{fourth_derivative}(1)| = 0.0000132$$

Обчислимо істинну абсолютну похибку (реальну похибку)

$$\Delta real := |I - I Simpson| = 0.0000016$$