CO2008 - KIẾN TRÚC MÁY TÍNH

Khoa Khoa học và kỹ thuật máy tính Đai học Bách Khoa - ĐHQG Tp.HCM

02/2022

Bài thực hành 1

CHƯƠNG 1: KHÁI NIỆM VÀ HIỆU SUẤT MÁY TÍNH

Muc tiêu

- Tính toán, so sánh hiệu suất của các máy tính.
- Hiểu được các thuật ngữ cơ bản về máy tính.

Nhắc lai

CPU time = IC * CPI * clock cycle time = (IC * CPI) / Clock rate.

CPU time: thời gian thực thi (không tính thời gian giao tiếp I/O, thời gian chờ ...).

IC(instruction count): tổng số lệnh thực thi.

CPI(cycle per instruction): số chu kỳ hoàn tất một lệnh.

Clock rate: Tần số (Số chu kỳ trên một giây), ví dụ: 4GHz=4 tỉ chu kỳ một giây.

Clock cycle time = 1/Clock rate

CPU clock cycles = IC * CPI

CPU clock cycles: tổng số chu kỳ thực thi.

CPU time = CPU clock cycles * clock cycle time = CPU clock cycles / Clock rate.

Bài tập

- 1. Trả lời ngắn gọn các câu hỏi sau:
 - Sư giống/khác nhau giữa compiler và asembler.
 - Sự giống/khác nhau giữa Operating system và Application software.
 - Sắp xếp theo sự tăng dần mức độ trừu tượng (dưới góc nhìn người lập trình): Machine language, High-level language, Assembly language.
 - Liệt kê các điểm khác nhau của các loại máy tính sau: supercomputer, low-end server, server, desktop computer.
- 2. Cho thông số của hệ thống hiển thị màu: mỗi màu được biểu diễn 8-bit, mỗi pixel gồm 3 màu cơ bản (red, green, blue). Đô phân giải 1280x1024.
 - a) Xác định dung lượng lưu trữ của mỗi khung hình.
 - b) Thời gian tối thiểu để truyền khung hình này khi biết tốc đô mang là 100Mbit/s.
- 3. Xem xét 3 bô xử lý thực thi cùng tập lệnh với tần số, CPI như bảng sau:

Processor	Clock rate	CPI
P1	3 GHz	1.5
P2	2.5 GHz	1.0
P3	4 GHz	2.2

- a) Bộ xử lý nào có hiệu suất cao nhất tính theo số lệnh trên giây (instructions per second-IPS)?
- b) Nếu một bộ xử lý thực thi một chương trình mất 10 giây. Tìm tổng số lệnh, tổng số chu kỳ đã thực thi.
- c) Khi người ta thay đổi kiến trúc bộ xử lý với mong muốn giảm thời gian thực thi của chương trình đi 30%, nhưng điều đó làm cho CPI tăng lên 20%, như vậy cần thay đổi tần số của hệ thống như thế nào để đạt được điều đó?

4. Xem xét thông tin trong bảng sau:

Processor	Clock rate	No. Instructions	Time
P1	3 GHz	2.00E+10	7s
P2	2.5 GHz	3.00E+10	10s
P3	4 GHz	9.00E+10	$9_{\rm S}$

- a) Tìm số lệnh mỗi chu kỳ IPC (instructions per cycle) của mỗi bộ xử lý.
- b) Tìm tần số của P2 sao cho thời gian thực thi của nó giảm xuống bằng thời gian thực thi của P1.
- c) Tìm tổng số lệnh của P2 sao cho thời gian thực thi của nó giảm xuống bằng thời gian thực thi của P3.
- 5. Xem xét 2 bộ xử lý có cùng kiến trúc, tập lệnh. Tập lệnh được chia ra thành 4 loại lệnh: A, B, C, và D. Tần số và CPI của mỗi bộ xử lý được cho như bảng bên dưới:

Processor	Clock rate	CPI loại A	CPI loại B	CPI loại C	CPI loại D	
P1	2.5 GHz	1	2	3	3	
P2	3 GHz	2	2	2	2	

- a) Cho một chương trình với 10⁶ lệnh, biết các lệnh chia theo tỉ lệ: 10% loại A, 20% loại B, 50% loại C, and 20% loại D. Bộ xử lý nào thực thi chương trình trên nhanh hơn?
- b) Tính tổng số chu kỳ thực thi chương trình của mỗi bộ xử lý.
- c) Xác định CPI trung bình.

6. Số lệnh của một chương trình được cho trong bảng sau:

8	8				
Arith	Store	Load	Branch	Total	
650	100	600	50	1400	

- a) Giả sử lệnh số học (arith) thực thi mất 1 chu kỳ, lệnh nạp (load), cất (store) thực thi mất 5 chu kỳ, lệnh rẻ nhánh (branch) thực thi mất 2 chu kỳ. Tính thời gian chạy chương trình trên máy tính có tần số 2 GHz.
- b) Tính CPI của chương trình.
- c) Khi cải tiến chương trình, số lệnh load giảm đi một nửa. Tính speedup và CPI sau khi cải tiến.