

Sergio González Muriel Antonio David Ponce Martínez

Introducción

- Problema:

- Cuando una vida humana depende de un robot, ¿Qué debería hacer?
- ¿Quién tiene la responsabilidad de tal decisión?
- ¿Realidad o ficción?
 - Foster-Miller TALON
 - ATLAS
 - Avances en IA

Códigos éticos

- Reglas de compromiso
 - Acordadas por alguna nación o grupo
- Utilitario
 - o Representado en lógica deóntica
 - Basado en lógica computacional
- Éticas de comando divino
 - Basado en los conceptos monoteístas de qué es correcto e incorrecto

Ramas de la ética

- Metaética
 - Estado ontológico de los conceptos básicos de la ética (Correcto e incorrecto)
- Éticas aplicadas
 - Más práctico y específico
 - Comienza con un conjunto de reglas morales para aplicarlas a escenarios concretos
- Éticas normativas (Ética moral)
 - Compara y contrasta formas de definir conceptos de obligación, prohibición, deber, etc.
 - Consecuencialistas
 - No consecuencialistas

Robots éticamente correctos

- 1. Sólo realizan acciones permitidas
- 2. Todas las acciones relevantes que son obligatorias son llevadas a cabo, teniendo en cuenta dependencias y conflictos con otras acciones.
- 3. Todas las acciones permitidas pueden ser verificadas por el robot como tal, y dicha verificación debe de poder ser expresada en lenguaje natural.

Axiomas, teoremas y definiciones

- A1: $\forall p \forall q pRq \supset M(p \& q)$
- Teorema 1: \forall p \forall q pRq \supset Mp
- Teorema 2: \forall p \forall q pRq \supset Mq
- <u>A2:</u> (pRq & pRs) ⊃ pR (q & s)
- D1: sOpq = def pRq & ~((p & s) Rq) & M (p & s & q)
- <u>D2:</u> plq = def pRq & ~ ∃ s (sOpq)
- D3: Oq = def $\exists p (p \& pRq \& \sim \exists s (s \& sOpq))$
- <u>A3:</u> Mp ⊃ (Cp) lp

- A1: ∀ p ∀ q pRq ⊃ M (p & q)
 Teorema 1: ∀ p ∀ q pRq ⊃ Mp
- Teorema 2: $\forall p \forall q pRq \supset Mq$
- A2: (pRq & pRs) ⊃ pR (q & s)
 D1: sOpq = def pRq & ~((p & s) Rq)
 - & M (p & s & q) ▶ **D2:** plq = def pRq & ~ ∃ s (sOpq)
- <u>D3:</u> Oq = def ∃ p(p&pRq&~∃s(s&sOpq))
- <u>A3:</u> Mp ⊃ (Cp) lp