$12a_{0286} \ (K12a_{0286})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1.08457 \times 10^{28} u^{31} - 9.68465 \times 10^{27} u^{30} + \dots + 3.30621 \times 10^{28} b + 6.26853 \times 10^{28},$$

$$1.00919 \times 10^{29} u^{31} - 4.41562 \times 10^{28} u^{30} + \dots + 3.30621 \times 10^{28} a + 4.42115 \times 10^{28}, \ u^{32} - 2u^{30} + \dots + 2u + 1$$

$$I_2^u = \langle -u^3 + u^2 + 4b - 5u + 2, \ a, \ u^4 - u^3 + 5u^2 - 2u + 4 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 36 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.08 \times 10^{28} u^{31} - 9.68 \times 10^{27} u^{30} + \dots + 3.31 \times 10^{28} b + 6.27 \times 10^{28}, \ 1.01 \times 10^{29} u^{31} - 4.42 \times 10^{28} u^{30} + \dots + 3.31 \times 10^{28} a + 4.42 \times 10^{28}, \ u^{32} - 2u^{30} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -3.05243u^{31} + 1.33556u^{30} + \dots - 5.33264u - 1.33723 \\ 0.328041u^{31} + 0.292923u^{30} + \dots + 0.733300u - 1.89599 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 6.38763u^{31} - 3.08529u^{30} + \dots + 7.92825u + 8.64307 \\ -0.227028u^{31} + 0.570345u^{30} + \dots - 1.64514u + 1.43963 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -2.72438u^{31} + 1.62848u^{30} + \dots - 4.59934u - 3.23322 \\ 0.328041u^{31} + 0.292923u^{30} + \dots + 0.733300u - 1.89599 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 5.67422u^{31} - 2.13572u^{30} + \dots + 1.41383u + 9.56776 \\ -0.486384u^{31} + 0.379216u^{30} + \dots - 2.86928u - 0.514941 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -3.24515u^{31} + 1.67422u^{30} + \dots - 3.02690u - 4.97838 \\ 0.304612u^{31} - 0.193228u^{30} + \dots + 3.65994u - 0.679133 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 7.00844u^{31} - 0.808937u^{30} + \dots - 7.09680u + 17.1331 \\ -2.34735u^{31} - 0.0978616u^{30} + \dots - 1.67702u - 2.05955 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -3.95240u^{31} + 1.64688u^{30} + \dots - 4.21803u - 4.56877 \\ 0.349246u^{31} + 0.484634u^{30} + \dots + 0.455964u - 1.58467 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -2.33177u^{31} + 0.938856u^{30} + \dots + 3.06552u - 9.72970 \\ 2.18533u^{31} - 0.590773u^{30} + \dots + 3.26730u + 2.12120 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -8.37149u^{31} + 5.01296u^{30} + \dots + 3.26730u + 2.12120 \\ -1.24677u^{31} - 0.611740u^{30} + \dots + 8.72740u - 2.92118 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4.80290u^{31} 0.110659u^{30} + \cdots 8.67744u + 4.28329$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	-
c_1	$u^{32} - 16u^{31} + \dots - 10u + 1$	
c_2	$u^{32} - 4u^{31} + \dots - 6u + 1$	
c_3	$u^{32} + 8u^{30} + \dots + 6u + 1$	
c_4	$u^{32} - 2u^{30} + \dots + 2u + 1$	
c_5	$u^{32} - 4u^{31} + \dots + 8u + 1$	
c_6	$u^{32} + 4u^{31} + \dots + 6u + 1$	
c_7	$u^{32} - 10u^{31} + \dots - 2u + 1$	
c_8	$u^{32} + 6u^{31} + \dots + 4u + 1$	
<i>c</i> ₉	$u^{32} + 10u^{31} + \dots + 538u + 73$	
c_{10}	$u^{32} + 10u^{31} + \dots + 2u + 1$	
c_{11}	$u^{32} + 4u^{31} + \dots - 8u + 1$	
c_{12}	$u^{32} + 4u^{31} + \dots - 2u + 1$	
	4	-

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{32} + 4y^{31} + \dots + 10y + 1$
c_2, c_6	$y^{32} + 16y^{31} + \dots + 10y + 1$
c_3	$y^{32} + 16y^{31} + \dots - 12y + 1$
c_4	$y^{32} - 4y^{31} + \dots - 16y + 1$
c_5, c_{11}	$y^{32} + 20y^{31} + \dots + 16y + 1$
c_7, c_{10}	$y^{32} + 18y^{31} + \dots + 22y + 1$
c_8	$y^{32} - 12y^{31} + \dots + 14y + 1$
<i>c</i> ₉	$y^{32} - 14y^{31} + \dots + 77162y + 5329$
c_{12}	$y^{32} - 4y^{31} + \dots + 20y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.011430 + 0.076540I		
a = -0.299553 - 1.057440I	1.95636 + 4.51992I	-2.62248 - 7.58475I
b = 0.066450 + 1.277390I		
u = -1.011430 - 0.076540I		
a = -0.299553 + 1.057440I	1.95636 - 4.51992I	-2.62248 + 7.58475I
b = 0.066450 - 1.277390I		
u = -0.195501 + 0.960625I		
a = -0.54851 - 1.43505I	-1.46529 - 0.97885I	-11.84592 - 4.46110I
b = -0.037707 - 0.482351I		
u = -0.195501 - 0.960625I		
a = -0.54851 + 1.43505I	-1.46529 + 0.97885I	-11.84592 + 4.46110I
b = -0.037707 + 0.482351I		
u = 0.963349 + 0.082588I		
a = 0.874463 + 0.489100I	0.52518 - 1.70904I	1.303152 + 0.227505I
b = -1.056860 - 0.880917I		
u = 0.963349 - 0.082588I		
a = 0.874463 - 0.489100I	0.52518 + 1.70904I	1.303152 - 0.227505I
b = -1.056860 + 0.880917I		
u = 0.897933 + 0.134537I		
a = -0.079600 - 1.057370I	-1.93841 - 3.89093I	-2.89352 + 9.56275I
b = -0.417549 + 0.423958I		
u = 0.897933 - 0.134537I		
a = -0.079600 + 1.057370I	-1.93841 + 3.89093I	-2.89352 - 9.56275I
b = -0.417549 - 0.423958I		
u = -0.790801 + 0.178174I		
a = -1.07264 + 1.31010I	-1.66071 - 1.88565I	0.611617 + 0.405112I
b = 0.144360 - 0.486258I		
u = -0.790801 - 0.178174I		
a = -1.07264 - 1.31010I	-1.66071 + 1.88565I	0.611617 - 0.405112I
b = 0.144360 + 0.486258I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.725473 + 0.306578I		
a = 2.59490 + 0.04955I	-0.233393 + 0.291097I	-5.20473 + 2.81677I
b = -1.370940 - 0.282852I		
u = 0.725473 - 0.306578I		
a = 2.59490 - 0.04955I	-0.233393 - 0.291097I	-5.20473 - 2.81677I
b = -1.370940 + 0.282852I		
u = -0.358787 + 1.159020I		
a = 0.506557 + 0.930883I	7.03446 - 10.43960I	3.24799 + 7.92017I
b = -0.576105 + 0.212433I		
u = -0.358787 - 1.159020I		
a = 0.506557 - 0.930883I	7.03446 + 10.43960I	3.24799 - 7.92017I
b = -0.576105 - 0.212433I		
u = -1.236250 + 0.423599I		
a = -1.23017 + 0.89428I	4.04750 - 6.51115I	7.4827 + 17.7604I
b = 1.08185 - 1.47183I		
u = -1.236250 - 0.423599I		
a = -1.23017 - 0.89428I	4.04750 + 6.51115I	7.4827 - 17.7604I
b = 1.08185 + 1.47183I		
u = 0.754987 + 1.099260I		
a = -0.851878 + 0.547278I	8.54048 + 4.66147I	5.60896 - 3.18468I
b = 0.676413 + 0.328413I		
u = 0.754987 - 1.099260I		
a = -0.851878 - 0.547278I	8.54048 - 4.66147I	5.60896 + 3.18468I
b = 0.676413 - 0.328413I		
u = -0.541157 + 0.373122I		
a = -0.611032 - 0.446290I	2.56066 - 1.39415I	8.59786 - 1.04596I
b = 1.48390 - 0.85410I		
u = -0.541157 - 0.373122I		
a = -0.611032 + 0.446290I	2.56066 + 1.39415I	8.59786 + 1.04596I
b = 1.48390 + 0.85410I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.078990 + 0.816307I		
a = 1.071980 - 0.021161I	0.04554 + 9.55039I	0.17757 - 7.82747I
b = -1.00062 - 1.06785I		
u = 1.078990 - 0.816307I		
a = 1.071980 + 0.021161I	0.04554 - 9.55039I	0.17757 + 7.82747I
b = -1.00062 + 1.06785I		
u = 0.349670 + 0.386213I		
a = -0.448966 - 0.257825I	3.77595 + 1.55640I	-10.9090 - 16.7964I
b = 1.82694 + 1.31311I		
u = 0.349670 - 0.386213I		
a = -0.448966 + 0.257825I	3.77595 - 1.55640I	-10.9090 + 16.7964I
b = 1.82694 - 1.31311I		
u = 1.21893 + 0.86163I		
a = -0.997262 - 0.051859I	7.91161 + 4.63893I	7.21423 - 8.93330I
b = 0.766581 + 0.643238I		
u = 1.21893 - 0.86163I		
a = -0.997262 + 0.051859I	7.91161 - 4.63893I	7.21423 + 8.93330I
b = 0.766581 - 0.643238I		
u = -1.27730 + 0.81643I		
a = -0.841795 + 0.203609I	2.06970 - 6.21261I	-3.30852 + 0.I
b = 0.93799 - 1.07457I		
u = -1.27730 - 0.81643I		
a = -0.841795 - 0.203609I	2.06970 + 6.21261I	-3.30852 + 0.I
b = 0.93799 + 1.07457I		
u = -0.435914 + 0.191346I		
a = 3.01618 - 0.43588I	1.57422 - 2.11475I	0.389556 + 1.338497I
b = -0.516431 - 0.791322I		
u = -0.435914 - 0.191346I		
a = 3.01618 + 0.43588I	1.57422 + 2.11475I	0.389556 - 1.338497I
b = -0.516431 + 0.791322I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.14221 + 1.69421I		
a = -0.082679 - 0.594170I	1.44470 + 2.66235I	7.15055 - 3.68105I
b = -0.008276 - 0.433413I		
u = -0.14221 - 1.69421I		
a = -0.082679 + 0.594170I	1.44470 - 2.66235I	7.15055 + 3.68105I
b = -0.008276 + 0.433413I		

II.
$$I_2^u = \langle -u^3 + u^2 + 4b - 5u + 2, \ a, \ u^4 - u^3 + 5u^2 - 2u + 4 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{4}u^{3} - \frac{1}{4}u^{2} + \frac{5}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{4}u^{3} - \frac{1}{4}u^{2} + \frac{5}{4}u - \frac{1}{2} \\ \frac{1}{4}u^{3} - \frac{1}{4}u^{2} + \frac{5}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{4}u^{3} + \frac{1}{4}u^{2} - \frac{5}{4}u + \frac{1}{2} \\ -\frac{1}{4}u^{3} + \frac{1}{4}u^{2} - \frac{5}{4}u + \frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{8}u^{3} + \frac{1}{8}u^{2} + \frac{3}{8}u + 1 \\ \frac{1}{8}u^{3} - \frac{7}{8}u^{2} + \frac{3}{8}u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{4}u^{3} + \frac{1}{4}u^{2} - \frac{5}{4}u + \frac{1}{2} \\ -\frac{1}{4}u^{3} + \frac{1}{4}u^{2} - \frac{5}{4}u + \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{4}u^{3} - \frac{1}{4}u^{2} + \frac{5}{4}u - \frac{1}{2} \\ \frac{1}{4}u^{3} - \frac{1}{4}u^{2} + \frac{9}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{8}u^{3} - \frac{1}{8}u^{2} - \frac{3}{8}u \\ -\frac{1}{8}u^{3} - \frac{9}{8}u^{2} - \frac{3}{8}u - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}u^{2} + \frac{1}{4}u + \frac{3}{4} \\ -\frac{3}{4}u^{2} + \frac{5}{4}u - \frac{5}{4} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{103}{32}u^3 + \frac{223}{32}u^2 \frac{279}{32}u + \frac{21}{16}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u^2 - u + 1)^2$
c_2	$(u^2+u+1)^2$
c_3	$4(4u^4 - 6u^3 + 11u^2 - 6u + 1)$
C ₄	$u^4 - u^3 + 5u^2 - 2u + 4$
<i>C</i> ₅	$4(4u^4 + 2u^3 + 5u^2 + u + 1)$
c_7, c_8	$(u-1)^4$
<i>C</i> 9	u^4
c_{10}	$(u+1)^4$
c_{11}, c_{12}	$4(4u^4 - 2u^3 + 5u^2 - u + 1)$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6	$(y^2+y+1)^2$
c_3	$16(16y^4 + 52y^3 + 57y^2 - 14y + 1)$
<i>C</i> ₄	$y^4 + 9y^3 + 29y^2 + 36y + 16$
c_5, c_{11}, c_{12}	$16(16y^4 + 36y^3 + 29y^2 + 9y + 1)$
c_7, c_8, c_{10}	$(y-1)^4$
<i>C</i> 9	y^4

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.175835 + 1.026610I		
a = 0	-1.64493 + 2.02988I	-5.57770 - 3.25874I
b = -0.162083 + 0.946318I		
u = 0.175835 - 1.026610I		
a = 0	-1.64493 - 2.02988I	-5.57770 + 3.25874I
b = -0.162083 - 0.946318I		
u = 0.32417 + 1.89264I		
a = 0	-1.64493 - 2.02988I	-14.6411 + 11.9508I
b = -0.087917 + 0.513305I		
u = 0.32417 - 1.89264I		
a = 0	-1.64493 + 2.02988I	-14.6411 - 11.9508I
b = -0.087917 - 0.513305I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^2)(u^{32} - 16u^{31} + \dots - 10u + 1)$
c_2	$((u^2+u+1)^2)(u^{32}-4u^{31}+\cdots-6u+1)$
c_3	$4(4u^4 - 6u^3 + \dots - 6u + 1)(u^{32} + 8u^{30} + \dots + 6u + 1)$
c_4	$(u^4 - u^3 + 5u^2 - 2u + 4)(u^{32} - 2u^{30} + \dots + 2u + 1)$
c_5	$4(4u^4 + 2u^3 + \dots + u + 1)(u^{32} - 4u^{31} + \dots + 8u + 1)$
c_6	$((u^2 - u + 1)^2)(u^{32} + 4u^{31} + \dots + 6u + 1)$
<i>C</i> ₇	$((u-1)^4)(u^{32}-10u^{31}+\cdots-2u+1)$
c_8	$((u-1)^4)(u^{32}+6u^{31}+\cdots+4u+1)$
<i>c</i> ₉	$u^4(u^{32} + 10u^{31} + \dots + 538u + 73)$
c_{10}	$((u+1)^4)(u^{32}+10u^{31}+\cdots+2u+1)$
c_{11}	$4(4u^4 - 2u^3 + \dots - u + 1)(u^{32} + 4u^{31} + \dots - 8u + 1)$
c_{12}	$4(4u^4 - 2u^3 + \dots - u + 1)(u^{32} + 4u^{31} + \dots - 2u + 1)$ 15

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^2)(y^{32} + 4y^{31} + \dots + 10y + 1)$
c_2, c_6	$((y^2 + y + 1)^2)(y^{32} + 16y^{31} + \dots + 10y + 1)$
c_3	$16(16y^4 + 52y^3 + \dots - 14y + 1)(y^{32} + 16y^{31} + \dots - 12y + 1)$
c_4	$(y^4 + 9y^3 + 29y^2 + 36y + 16)(y^{32} - 4y^{31} + \dots - 16y + 1)$
c_5, c_{11}	$16(16y^4 + 36y^3 + \dots + 9y + 1)(y^{32} + 20y^{31} + \dots + 16y + 1)$
c_7, c_{10}	$((y-1)^4)(y^{32}+18y^{31}+\cdots+22y+1)$
c ₈	$((y-1)^4)(y^{32}-12y^{31}+\cdots+14y+1)$
<i>c</i> ₉	$y^4(y^{32} - 14y^{31} + \dots + 77162y + 5329)$
c_{12}	$16(16y^4 + 36y^3 + \dots + 9y + 1)(y^{32} - 4y^{31} + \dots + 20y + 1)$