CSC 226

Algorithms and Data Structures: II
Graphs
Tianming Wei
twei@uvic.ca
ECS 466

Abstract Meaning of the Term Graph

• A graph G = (V, E) is a set V of vertices (nodes) and a collection E of pairs from V, called edges (arcs).

Graph Example:

$$V = \{A, B, C, D\}$$

$$E = \begin{cases} \{A, B\}, \{A, B\}, \{A, C\}, \\ \{B, C\}, \{B, D\}, \{B, D\}, \{C, D\} \end{cases}$$

Abstract Meaning of the Term Graph

• A digraph G = (V, E) is a set V of vertices (nodes) and a collection E of ordered pairs from V, called edges (arcs).

• Digraph Example:

$$V = \{A, B, C, D\}$$

$$E = \{(A, B), (B, A), (B, D), (D, B), (B, C), (D, C), (C, A)\}$$

Graph Terminology

 Much of the terminology for graphs is applicable to undirected graphs and directed graphs

Undirected Edges

- An *undirected edge e* represents a *symmetric* relation between two vertices *v* and *w* represented by the vertices.
 - \triangleright We usually write $e = \{v, w\}$, where $\{v, w\}$ is an unordered pair.
 - \triangleright v, w are the *endpoints* of the edge
 - \triangleright v is adjacent to w
 - \triangleright e is *incident* upon v and w
 - The *degree* of a vertex is the number of incident edges, eg. deg(v) = 5
 - \triangleright parallel edges more than one edge between a pair of vertices, eg. f and g
 - \gt self-loop edge that connects a vertex to itself, eg. h
 - Typically, the number of vertices is denoted by n and the number of edges by m.

Directed Edges or Arcs

• A directed edge (or arc) e represents an asymmetric relation between two vertices v and w.

e = (v, w) denotes an ordered pair.

 \triangleright v, w are the endpoints of the edge

- \triangleright v is adjacent to w
- \triangleright e is *incident* upon v and w
- The arc goes from the *source* vertex *v* to the *destination* vertex *w*
- The *indegree* of a vertex is the number of incoming arcs
- The *outdegree* of a vertex is the number of outgoing arcs

Walks

- A walk in a graph is a sequence of vertices $v_1, v_2, ..., v_n$ such that there exist edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}$
- If $v_1 = v_n$ it's *closed*, otherwise it's *open*.
- The *length* of a walk is the number of edges.
- If no edge is repeated it's a *trail*. If closed a *circuit*.
- If no vertex is repeated it's a *path*. If closed a *cycle*.

Graphs

- A graph is *connected* if every pair of vertices is connected by a path.
- A *simple graph* is a graph with no self-loops and no parallel or multiedges
- A *complete graph* is a simple graph where an edge connects every pair of vertices

Connected Digraphs

• Given vertices u and v of a digraph G, we say v is *reachable* from u if G has a directed path from u to v.

• A digraph *G* is *connected* if every pair of vertices is connected by an undirected path.

• A digraph *G* is *strongly connected* if for every pair of vertices *u* and *v* of *G*, *u* is reachable from *v* and *v* is reachable from *u*.

Directed Acyclic Graphs (DAGs)

• A directed acyclic graph (DAG) is a directed graph with no cycles.

Subgraphs

- A subgraph of G = (V, E) is a graph G' = (V', E') where
 - \triangleright V' is a subset of V
 - \triangleright E' consists of edges $\{v, w\}$ in E such that both v and w are in V'
- A *spanning subgraph* of *G* contains all the vertices of *G*

Theorem

• Theorem: If G = (V, E) is an undirected graph, then

$$\sum_{v \in V} \deg(v) = 2|E|.$$

- Proof:
 - Every edge contributes 2 to the total degree.
- Corollary: For any undirected graph, the number of vertices of odd degree must be even.

Euler Circuits

- Let G = (V, E) be an undirected graph with no isolated vertices. Then G is said to have an *Euler circuit* if there is a circuit in G that traverses every edge exactly once.
 - If there is a trail from vertex a to b which traverses every edge exactly once, it is an *Euler trail*.

Theorem

- Theorem: Let G = (V, E) be an undirected graph with no isolated vertices.
 Then, G has an Euler circuit if and only if G is connected and every vertex has an even degree.
 - This is the 7 bridges of Konigsberg.

• *Corollary:* There exists an Euler trail in *G* if and only if *G* is connected and has exactly two vertices of odd degree.

7 bridges of Konigsberg

• Is it possible to devise a walk through the city that would cross each of those bridges once and only once?

7 bridges of Konigsberg

• Is it possible to devise a walk through the city that would visit each of towns once and only once?

> Hamiltonian cycle

Depth-first search

Goal. Systematically traverse a graph.

Idea. Mimic maze exploration. — function-call stack acts as ball of string

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked vertices w adjacent to v.

Typical applications.

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

Design challenge. How to implement?

Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

Depth-first search demo

To visit a vertex v:

- Mark vertex *v* as visited.
- Recursively visit all unmarked vertices adjacent to v.

V	marked[]	edgeTo[]
0	Т	_
1	Т	0
2	Т	0
3	Т	5
4	Т	6
5	Т	4
6	Т	0
7	F	_
8	F	_
9	F	_
10	F	_
11	F	_
12	F	_

Breadth-first search

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited. Repeat until the queue is empty:

- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue, and mark them as visited.

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

V	edgeTo[]	distTo[
0	-	0	
1	0	1	
2	0	1	
3	2	2	
4	2	2	
5	0	1	

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing
- 6. Advanced Programming

tasks

precedence constraint graph

feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

directed edges

DAG

topological order

Solution. DFS. What else?

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

postorder

4 1 2 5 0 6 3

topological order

3 6 0 5 2 1 4

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
{
    ...
}
```

```
public class B extends C
{
    ...
}
```

```
public class C extends A
{
    ...
}
```

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Graph-processing challenge

Problem. Find a cycle.

How difficult?

- Any programmer could do it.
- ✓ Typical diligent algorithms student could do it.
 - · Hire an expert.
 - Intractable.
 - No one knows.
 - Impossible.

Graph-processing challenge

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

- Any programmer could do it.
- · Typical diligent algorithms student could do it.
- Hire an expert.
 - Intractable.
 - No one knows.
 - Impossible.

linear-time DFS-based planarity algorithm discovered by Tarjan in 1970s (too complicated for most practitioners)

Graph-processing challenge

Problem. Are two graphs identical except for vertex names?

How difficult?

- Any programmer could do it.
- Typical diligent algorithms student could do it.
- Hire an expert.
- Intractable.
- ✓ No one knows.
 - Impossible.

graph isomorphism is longstanding open problem

 $0 \leftrightarrow 4$, $1 \leftrightarrow 3$, $2 \leftrightarrow 2$, $3 \leftrightarrow 6$, $4 \leftrightarrow 5$, $5 \leftrightarrow 0$, $6 \leftrightarrow 1$

Some graph-processing problems

problem	description	
s-t path	Is there a path between s and t?	
shortest s-t path	What is the shortest path between s and t?	
cycle	Is there a cycle in the graph?	
Euler circuit	Is there a cycle that uses each edge exactly once?	
Hamilton cycle	Is there a cycle that uses each vertex exactly once?	
connectivity	Is there a way to connect all of the vertices?	
biconnectivity	Is there a vertex whose removal disconnects the graph?	
planarity	Can the graph be drawn in the plane with no crossing edges?	
graph isomorphism	Do two adjacency lists represent the same graph?	

Challenge. Which graph problems are easy? difficult? intractable?

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

problem	BFS	DFS	time
path between s and t	~	~	E + V
shortest path between s and t	~		E + V
connected components	~	~	E + V
biconnected components		~	E + V
cycle	~	~	E + V
Euler circuit		~	E + V
Hamilton cycle			$2^{1.657V}$
bipartiteness	~	~	E + V
planarity		~	E + V
graph isomorphism			$2^{c\sqrt{V\log V}}$

Trees and Forests

- A (*free*) *tree* is an undirected graph T such that
 - $\triangleright T$ is connected
 - $\succ T$ has no cycles
 - This definition of tree is different from the one of a rooted tree
- A forest is an undirected graph without cycles
 - The connected components of a forest are trees

Spanning Trees and Forests

- A *spanning tree* of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A *spanning forest* of a graph is a spanning subgraph that is a forest

• Which one is a DAG?

• Hamiltonian path in DAGs.

➤ Given a DAG, design a linear-time algorithm to determine whether there is a directed path that visits each vertex exactly once.

• Hamiltonian path in DAGs.

- ➤ Given a DAG, design a linear-time algorithm to determine whether there is a directed path that visits each vertex exactly once.
- Solution: Compute a topological sort and check if there is an edge between each consecutive pair of vertices in the topological order.

- How to find a "Directed Eulerian Circuit".
 - ➤ A directed Eulerian circuit is a directed circuit that contains each edge exactly once.
 - ➤ Hint: Prove that a digraph G has a directed Eulerian circuit if and only if vertex in G has its indegree equal to its outdegree and all vertices with nonzero degree belong to the same strong component.