What is claimed is:

1	1.	A method comprising:
2		storing first tuples in a first table in a database system;
3		storing second tuples in a second table in the database system;
4		partitioning the first and second tuples into plural portions;
5		redistributing the first and second tuples to plural nodes according
6	to the partition	oning; and
7		hash joining the first and second tuples to produce result tuples as
8	the first and	second tuples are being redistributed to the plural nodes.
1	2.	The method of claim 1, further comprising:
2		retrieving the result tuples once the hash join is performed.
1	3.	The method of claim 1, further comprising:
2		retrieving the result tuples at random.
1	4.	The method of claim 1, hash joining the first and second tuples to
2	produce resi	ult tuples as the first and second tuples are being redistributed to the
3		further comprising:
4		producing result tuples at one of the plural nodes; and
5		simultaneously producing result tuples at a second of the plural
6	node	s.

1	5.	The method of claim 1, wherein redistributing the first and second	
2	tuples to plu	ural nodes comprises redistributing based on split vectors containing	
3	predefined r	anges.	
1	6.	The method of claim 5, wherein partitioning the first and second	
2	tuples into p	lural portions comprises:	
3		partitioning first and second tuples into hash tables in each node.	
1	7.	The method of claim 6, wherein hash joining the first and second	
2	tuples comprises:		
3		allocating a portion of a memory to a first hash table;	
4		allocating a second portion of the memory to a second hash table;	
5	and		
6		hash joining first tuples in the first hash table with second tuples in	
7	the second	hash table.	
1	8.	The method of claim 7, wherein hash joining the first and second	
2	tuples comprises:		
3		determining that the portion of the memory allocated to the first	
4	hash table is full;		
5		allocating a stable storage to the first hash table; and	
6		storing first tuples in the stable storage.	
1	9.	The method of claim 8, further comprising:	
2		continuing to store second tuples in the second hash table; and	
3		hash joining second tuples in the second hash table with first tuples	
4	in the first l	nash table.	

1	10.	The method of claim 9, further comprising:	
2		determining that the second portion of the memory allocated to the	
3	second hash table is full;		
4		allocating a second stable storage to the second hash table;	
5		storing second tuples in the second stable storage; and	
6		hash joining second tuples in the second stable storage with first	
7	tuples in the	first hash table.	
1	11.	The method of claim 10, wherein hash joining the first and second	
2	tuples comp	rises:	
3	-	generating a third hash table once all first tuples and second tuples	
4	are redistrib	uted to each node;	
5		retrieving one of the first tuples from the stable storage;	
6		hash joining the one of the first tuples with tuples in the second	
7	hash table; a	and	
8		storing the one of the first tuples in the third hash table.	
1	12.	The method of claim 11, further comprising:	
2		retrieving one of the second tuples from the second stable storage;	
3	and		
4		hash joining the one of the second tuples with tuples in the third	
5	hash table.		
1	13.	A system comprising:	
2		a processor;	
3		a storage; and	
4		instructions executable by the processor, for enabling the system	
5	to:		
6		store first tuples in a first table;	
_		ctore second tuples in a second table.	

8	partition the first and second tuples into plural portions;
9	redistribute the first and second tuples to plural nodes
10	according to the partitioning; and
11	hash join the first and second tuples to produce result tuples
12	as the first and second tuples are being redistributed to the plural nodes.
1	14. The system of claim 13, wherein the result tuples are available
2	once the hash join is performed
_	Onos and mash jem to perfermen
1	15. The system of claim 13, wherein the result tuples are available at
2	random.
1	16. The system of claim 13, wherein each node comprises a memory,
2	and wherein the instructions further partition the first and second tuples into
3	plural portions by:
4	partitioning first tuples into first hash tables; and
5	partitioning second tuples into second hash tables, wherein
6	the hash tables are in the memory.
1	17. The system of claim 16, wherein the instructions further:
2	allocate a portion of the memory to the first hash table;
3	allocate a second portion of the memory to the second hash table;
4	and
5	hash join first tuples in the first hash table with second tuples in
6	the second hash table.

1	18.	The system of claim 17, wherein the instructions further:	
2		determine that the portion of the memory allocated to the first	
3	hash table is full; and		
4		store first tuples in a stable storage.	
1	19.	The system of claim 18, wherein the instructions further:	
2		continue to store second tuples in the second hash table; and	
3		hash join second tuples in the second hash table with first tuples in	
4	the first hash	h table.	
1	20.	The system of claim 19, wherein the instructions further:	
2		determine that the second portion of the memory allocated to the	
3	second hash	table is full;	
4		allocate a second stable storage to the second hash table;	
5		store second tuples in the second stable storage; and	
6		hash join second tuples in the second stable storage with first	
7	tuples in the	e first hash table.	
1	21.	The system of claim 20, wherein the instructions further:	
2		generate a third hash table once all first tuples and second tuples	
3	are redistributed to each node;		
4		retrieve one of the first tuples from the stable storage;	
5		hash join the one of the first tuples with tuples in the second hash	
6	table; and		
7		store the one of the first tuples in the third hash table.	
1	22.	The system of claim 21, wherein the instructions further:	
2		retrieve one of the second tuples from the second stable storage;	
3	and		

4		hash join the one of the second tuples with tuples in the third hash
5	table.	
1	23.	An article comprising a medium storing instructions for enabling a
2	processor-b	ased system to:
3	•	store first tuples in a first table in a database system;
4		store second tuples in a second table in the database system;
5		partition the first and second tuples into plural portions;
6		redistribute the first and second tuples to plural nodes according to
7	the partition	ning; and
8		hash join the first and second tuples to produce result tuples as the
9	first and sec	cond tuples are being redistributed to the plural nodes.
1	24.	The article of claim 23, further storing instructions for enabling a
2	processor-based system to:	
3		retrieving the result tuples once the hash join is performed.
1	25.	The article of claim 24, further storing instructions for enabling a
2	processor-b	pased system to:
3		redistribute based on split vectors containing predefined ranges.
1	26.	The article of claim 25, further storing instructions for enabling a
2	processor-based system to:	
3	·	partition first and second tuples into hash tables in each node.
1	27.	The article of claim 26, further storing instructions for enabling a
2	processor-t	pased system to:
3		allocate a portion of a memory to a first hash table;
4		allocate a second portion of the memory to a second hash table;
5	and	

6		hash join first tuples in the first hash table with second tuples in
7	the se	econd hash table.
1	28.	The article of claim 27, further storing instructions for enabling a
2	processor-ba	ased system to:
3		determine that the portion of the memory allocated to the first
4	hash table is	s full; and
5		store first tuples in a stable storage.
1	29.	The article of claim 28, further storing instructions for enabling a
2	processor-based system to:	
3		continue to store second tuples in the second hash table; and
4		hash join second tuples in the second hash table with first tuples in
5	the first has	sh table.
1	30.	The article of claim 29, further storing instructions for enabling a
2	processor-b	ased system to:
3		determine that the second portion of the memory allocated to the
4	second has	h table is full;
5		allocate a second stable storage to the second hash table;
6		store second tuples in the second stable storage; and
7		hash join second tuples in the second stable storage with first
8	tuples in the	e first hash table.
1	31.	The article of claim 30, further storing instructions for enabling a
2	processor-b	pased system to:
3		generate a third hash table once all first tuples and second tuples
4	are redistril	buted to each node;
5		retrieve one of the first tuples from the stable storage;

6		hash join the one of the first tuples with tuples in the second hash
7	table; and	
8		store the one of the first tuples in the third hash table.
1	32.	The article of claim 31, further storing instructions for enabling a
2	processor-ba	ased system to:
3		retrieve one of the second tuples from the second stable storage;
4	and	
5		hash join the one of the second tuples with tuples in the third hash
6	table.	