Barrière Sympact

ÉLÉMENTS DE CORRIGÉS DES TP

02 Chaîne fonctionnelle

Chaine fonctionnelle du Moteur à courant continu

Identification des caractéristiques du ressort

Modélisation

☐ Caractéristiques de la barrière

☐ Lisse:

- □ Longueur : L = 0.84 m
- □ Masse : M = 0.84 kg
- Masse fixe

 - □ Longueur : $L_f = 0.825 \text{ m}$
 - \square Masse : $M_F = 2.8 \text{ kg}$
- Masse mobile

 - \square Masse : $M_m = 2.8 \text{ kg}$
- Modélisation du couple ressort

 - \square Lorsque $\varphi = \frac{\pi}{2}$, $C_r = k\varphi_0$

Résolution

- ☐ On applique le TMS en *O*

 - □ On a donc $C_{pes} + C_r = 0$ □ Soit $\left(\frac{L}{2}M + L_f M_f + \lambda M_m\right) g \cos \varphi = k \left(\varphi_0 + \frac{\pi}{2}\right) k\varphi$
 - □ Illustration du couple de la pesanteur pour différentes positions de masse mobile
 - □ Illustration du couple ressort pour une raideur de 25,78 Nm/rad et un angle de précontrainte de 0,1 rad
 - □ Objectif : déterminer la raideur et l'angle de précontrainte.
 - □ Pour cela :
 - \Box on fait un choix de λ
 - on cherche les positions angulaires ou la pesanteur équilibre le couple ressort
 - \square On en déduit φ_0 et k

Expérience ... à faire

- ☐ Là je prends des valeurs au pif, parce qu'il faut que je fasse l'essai.
- □ Admettons
 - \square qu'on a pris une position $\lambda_0 = 0.5 m$
 - \square qu'on mesure $\varphi_1=20^\circ$ et $\varphi_2=50^\circ$
 - On a donc :
 - $\Box \left(\frac{L}{2}M + L_f M_f + \lambda_0 M_m\right) g \cos \varphi_1 = k \left(\varphi_0 + \frac{\pi}{2} \varphi_1\right) \text{(E1)}$
 - $\Box \left(\frac{L}{2}M + L_f M_f + \lambda_0 M_m\right) g \cos \varphi_2 = k \left(\varphi_0 + \frac{\pi}{2} \varphi_2\right)$ (E2)
 - On a donc
 - $\square \frac{E_1}{E_2} \Rightarrow \frac{\cos \varphi_1}{\cos \varphi_2} = \frac{\varphi_0 + \frac{\pi}{2} \varphi_1}{\varphi_0 + \frac{\pi}{2} \varphi_2} \Rightarrow \varphi_0 \cos \varphi_1 + \frac{\pi}{2} \cos \varphi_1 \varphi_2 \cos \varphi_1 = \varphi_0 \cos \varphi_2 + \frac{\pi}{2} \cos \varphi_2 \varphi_1 \cos \varphi_2$
 - $\square \Rightarrow \varphi_0 = \frac{\left(\frac{\pi}{2} \varphi_1\right)\cos\varphi_2 + \left(-\frac{\pi}{2} + \varphi_2\right)\cos\varphi_1}{\cos\varphi_1 \cos\varphi_2}$
 - $\square \Rightarrow k = \text{en injectant phi0 dans E1.}$

XX Couple Moteur en statique

HYPOTHÈSE: MOTEUR SUR LA BARRIÈRE

Modélisation

☐ Bilan d'action mécanique

- Pesanteur
- Masse fixe $\{\mathcal{T}(\text{pes} \to 1_f)\} = \{-m_f g \overrightarrow{j_0}\}_B \text{ avec } \overrightarrow{AB} = L \overrightarrow{i_1}$ Masse mobile $\{\mathcal{T}(\text{pes} \to 1_m)\} = \{-m_m g \overrightarrow{j_0}\}_G \text{ avec } \overrightarrow{AG} = r \overrightarrow{i_1}$
- Ressort
 - □ Raideur : $100^{\circ} \rightarrow 100 \times \frac{\pi}{180} = 1,745 \ rad$ pour 4,5 daN. m. La raideur est donc de $\frac{45}{1.745} = 25,8 \ \text{Nm. rad}^{-1}$
 - □ 25N à 62 mm
 - \square On a donc $C_r(\theta) = 42 25.8 \times \theta$
- Couple moteur
- \square TMS en A en projection sur k_0
 - $\Box C_m + 42 25.8 \theta m_f gL \cos \theta m_m gr \cos \theta = 0$

Problème 1

• Paramétrage géométrique

•
$$\overrightarrow{AG_B} = L_B \overrightarrow{x_1}$$

•
$$\overrightarrow{AG_M} = L_M \overrightarrow{x_1}$$

• $\overrightarrow{AG_F} = L_F \overrightarrow{x_1}$

•
$$\overrightarrow{AG_F} = L_F \overrightarrow{x_1}$$

Problème 1

Paramétrage géométrique

•
$$\overrightarrow{AG_B} = L_B \overrightarrow{x_1}$$

• $\overrightarrow{AG_M} = L_M \overrightarrow{x_1}$

•
$$\overrightarrow{AG_M} = L_M \overrightarrow{x_1}$$

• Bilan des actions mécaniques

- Pesanteur
- Couple moteur
- Théorème de la résultante statique

Problème 1

• Paramétrage géométrique

•
$$\overrightarrow{AG_B} = L_B \overrightarrow{x_1}$$

• $\overrightarrow{AG_M} = L_M \overrightarrow{x_1}$

•
$$\overrightarrow{AG_M} = L_M \overrightarrow{x_1}$$

• Bilan des actions mécaniques

- Pesanteur
- Couple moteur
- Théorème de la résultante statique