Содержание

- 1 Колебание функции и критерий Римана интегрируемости в терминах колебаний. Следствие
- 1
- 2 Мелкость разбиения. Теорема об интеграле Римана как пределе сумм Дарбу со стремящейся к нулю мелкостью. Следствие

3

3 Эквивалентность определений интеграла Римана как предела интегральных сумм Римана и как предела сумм Дарбу по разбиениям с исчезающей мелкостью

6

4 Сохранение интегрируемости при переходе к меньшему промежутку

7

5 Сохранение интегрируемости при переходе к объединению промежутков

8

1 Колебание функции и критерий Римана интегрируемости в терминах колебаний. Следствие

Напомним формулировку критерия Римана интегрируемости в терминах колебаний функции.

Определения

Функция f(x), $x \in \Delta$, интегрируема по Риману на промежутке Δ тогда и только тогда, когда для любого $\varepsilon > 0$ существует разбиение $\tau(\Delta) = \{\Delta_1, \Delta_2, \dots, \Delta_N\}$ промежутка Δ , такое что

$$\sum_{j=1}^{N} \omega(f; \Delta_j) |\Delta_j| < \varepsilon. \tag{(R'_1)}$$

В качестве удобного следствия критерия Римана докажем следующее утверждение.

Лемма (о последовательности разбиений)

Функция f(x), $x \in \Delta$, интегрируема по Риману на промежутке Δ тогда и только тогда, когда существует последовательность $\{\tau_k(\Delta)\}$ k=1 разбиений промежутка Δ , обладающая следующим предельным свойством:

$$\lim_{k \to +\infty} [S(f, \tau_k) - s(f, \tau_k)] = 0.$$
 ((1))

Если последовательность $\{\tau_k(\Delta)\}\ _{k=1}^{\infty}$ разбиений обладает свойством (1), то функция f(x) не только интегрируема на промежутке Δ , но и удовлетворяет при этом следующим предельным равенствам:

$$\int_{\Delta} f(x)dx = \lim_{k \to +\infty} S(f, \tau_k) = \lim_{k \to +\infty} s(f, \tau_k). \tag{(2)}$$

Доказательство

Убедимся в достаточности существования последовательности разбиений $\tau_k(\Delta)$ $k=1,2,\ldots$ с предельным свойством (1) для интегрируемости функции f(x). Взяв произвольное $\varepsilon>0$, найдем такое разбиение $\tau_k(\Delta)$ из рассматриваемой последовательности с условием (1), для которого выполняется оценка $S(f,\tau_k)-s(f,\tau_k)=\sum\limits_{j=1}^N\omega(f;\Delta_j)|\Delta_j|<\varepsilon$. Таким образом, условие (R'_1) выполнено и, согласно уже установленному критерию Римана, функция f(x) интегрируема на промежутке Δ .

Убедимся, что условия (1) и (2) с необходимостью выполняются для интегрируемой по промежутку Δ функции. Взяв $\varepsilon=\frac{1}{k}>0$, где k натуральное, воспользуемся критерием Римана и найдем такое разбиение $\tau_{\varepsilon}\equiv \tau_k(\Delta)$ промежутка Δ , для которого выполняются оценки $0\leq S(f,\tau_k)-s(f,\tau_k)\leq \frac{1}{k}$. Переходя здесь к пределу при $k\to +\infty$, получаем искомое равенство (1).

Далее, интеграл Римана $J(f)=\int\limits_{\Delta}f(x)dx$, как это уже установлено, удовлетворяет оценкам $0\leq J(f)-s(f,\tau_k)\leq S(f,\tau_k)-s(f,\tau_k)$. Переходя здесь к пределу при $k\to +\infty$ и пользуясь (1), получим $0\leq \lim\limits_{k\to +\infty}[J(f)-s(f,\tau_k)]\leq \lim\limits_{k\to +\infty}[S(f,\tau_k)-s(f,\tau_k)]=0$. Это означает, что интеграл $\int\limits_{\Delta}f(x)dx$ представляет собой предел последовательности нижних

сумм Дарбу, соответствующих разбиениям τ_k промежутка интегрирования:

$$\int_{\Delta} f(x)dx = \lim_{k \to +\infty} s(f, \tau_k).$$

Аналогично рассматривается последовательность верхних сумм Дарбу, для которых справедливы оценки $0 \le S(f,\tau_k) - J(f) \le S(f,\tau_k) - s(f,\tau_k)$. Переходя здесь к пределу при $k \to +\infty$ и пользуясь (1), получаем $0 \le \lim_{k \to +\infty} [S(f,\tau_k) - J(f)] \le \lim_{k \to +\infty} [S(f,\tau_k) - s(f,\tau_k)] = 0$. Следовательно, интеграл $\int_{\Delta} f(x) dx$ равен пределу последовательности верхних сумм Дарбу, соответствующих разбиениям τ_k промежутка интегрирования:

$$\int_{\Delta} f(x)dx = \lim_{k \to +\infty} S(f, \tau_k).$$

Таким образом, оба равенства (2) полностью доказаны. \square

2 Мелкость разбиения. Теорема об интеграле Римана как пределе сумм Дарбу со стремящейся к нулю мелкостью. Следствие

Возьмем произвольное разбиение $\tau(\Delta) = \{\Delta_1, \Delta_2, \dots, \Delta_N\}$ промежутка Δ на мелкие промежутки $\Delta_i = \langle x_{i-1}, x_i \rangle$, где $i = 1, 2, \dots, N$. Длину малого промежутка Δ_i , т. е. число $h_i = x_i - x_{i-1}$, называют шагом сетки $\tau(\Delta)$.

Определение

Максимальный из шагов сетки $\tau(\Delta)$ называют ее мелкостью и обозначают как $|\tau|$: $|\tau|=\max_{i=1,2,\dots,N}(h_i)$.

В теории интеграла особую роль играют разбиения, мелкость которых в пределе стремится к нулю. Отметим, что для любого конечного промежутка всегда найдется разбиение со сколь угодно малой мелкостью. Такое разбиение можно получить, взяв, например равномерное распределение N узлов на промежутке при достаточно большом N.

Теорема (предел сумм Дарбу)

Пусть функция f(x) интегрируема по Риману на промежутке $\Delta \subset D_f$. Тогда для любой последовательности $\{\tau_k(\Delta)\}$ k=1 разбиений промежутка Δ , обладающей тем свойством, что при $k \to +\infty$ мелкость $|\tau_k|$ стремится к нулю, выполняются следующие предельные равенства:

$$\lim_{k \to +\infty} s(f, \tau_k) = \lim_{k \to +\infty} S(f, \tau_k) = \int_{\Delta} f(x) dx. \tag{(R_{lim})}$$

Доказательство

Пусть есть последовательность $\{\tau_k(\Delta)\}$ $\sum_{k=1}^{\infty}$ разбиений промежутка Δ с исчезающей в пределе мелкостью: $\tau_k(\Delta) = \{\Delta_1^k, \Delta_2^k, \dots, \Delta_{N_k}^k\}$, $\lim_{k \to +\infty} |\tau_k| = 0$. Задавшись интегрируемой функцией f(x), введем следующее обозначение $\Lambda_k = \sum_{i=1}^{N_k} \omega(f; \Delta_j^k) |\Delta_j^k| = S(f, \tau_k) - s(f, \tau_k)$.

Если доказать, что $\lim_{k\to +\infty} \Lambda_k = 0 \Leftrightarrow \lim_{k\to +\infty} [S(f,\tau_k) - s(f,\tau_k)] = 0$, то искомые предельные соотношения $(R_{\rm lim})$ получаются по той же схеме, что и равенства (2), т.е. переходом к пределу при $k\to +\infty$ в неравенствах $0 \le J(f) - s(f,\tau_k) \le S(f,\tau_k) - s(f,\tau_k)$ и $0 \le S(f,\tau_k) - J(f) \le S(f,\tau_k) - s(f,\tau_k)$, где через J(f) обозначен интеграл $\int_{\Lambda} f(x) dx$.

Таким образом, доказательство теоремы сводится к обоснованию предела $\lim_{k\to +\infty} \Lambda_k = 0$. Заметим, что из интегрируемости функции f(x) следует ее ограниченность на промежутке Δ , т.е. существование такой конечной постоянной M, что $|f(x)| \leq M \ \forall x \in \Delta$. Из определения колебания функции получаем теперь $\Delta_j^k \subset \Delta \Rightarrow \omega(f; \Delta_j^k) \leq 2M$.

Далее, пусть $\varepsilon > 0$. Тогда согласно критерию интегрируемости Римана найдется такое разбиение $\tau_{\varepsilon}(\Delta) = \{\Delta_1^{\varepsilon}, \Delta_2^{\varepsilon}, \dots, \Delta_{N_{\varepsilon}}^{\varepsilon}\}$ промежутка Δ , для которого справедливо неравенство $S(f, \tau_{\varepsilon}) - s(f, \tau_{\varepsilon}) < \varepsilon$. Сумму Λ_k разобьем на два слагаемых $\Lambda_k = \Lambda_k^* + \Lambda_k^{**}$, где Λ_k^* включает в себя те и только те слагаемые $\omega(f; \Delta_j^k) |\Delta_j^k|$, для которых малый промежуток Δ_j^k из $\tau_k(\Delta)$ не содержится ни в одном из малых промежутков Δ_l^{ε} из разбиения $\tau_{\varepsilon}(\Delta)$. Слагаемое же Λ_k^{**} включает в себя те и только те величины $\omega(f; \Delta_j^k) |\Delta_j^k|$, которые не вошли в первую сумму Λ_k^* . Заметив,

что $|\Lambda_k| \leq |\Lambda_k^*| + |\Lambda_k^{**}|$, оценим поочередно обе величины в правой части последнего неравенства.

В частичной сумме Λ_k^* содержится не более чем N_{ε} неотрицательных слагаемых, для каждого из которых справедлива следующая оценка сверху: $\omega(f;\Delta_j^k)|\Delta_j^k| \leq 2M \max_{l=1,2,\dots,N_k}(|\Delta_l^k|) = 2M|\tau_k|$. Суммируя эти неравенства по всем допустимым значениям j, получаем неравенство $|\Lambda_k^*| \leq 2M|\tau_k| \cdot N_{\varepsilon}$.

Вторая частичная сумма Λ_k^{**} согласно ее же определению допускает следующее специальное представление: $\Lambda_k^{**} = \sum_{l=1}^{N_{\varepsilon}} (\sum_{\{j \colon \Delta_j^k \subset \Delta_l^{\varepsilon}\}} \omega(f; \Delta_j^k) |\Delta_j^k|).$

Внутреннее суммирование здесь происходит по всем тем индексам j, $1 \leq j \leq N_k$, для которых $\Delta_j^k \subset \Delta_l^{\varepsilon}$. Если при заданном номере l, $1 \leq l \leq N_{\varepsilon}$ промежутков Δ_j^k , вложенных в промежуток Δ_l^{ε} , вообще нет, то внутренняя сумма в приведенном представлении величины Λ_k^{**} полагается равной нулю. Далее имеем $\Delta_j^k \subset \Delta_l^{\varepsilon} \Rightarrow \omega(f; \Delta_j^k) \leq \omega(f; \Delta_l^{\varepsilon})$. Подставляя это неравенство в рассматриваемое представление суммы

подставляя это неравенство в рассматриваемое представление суммы
$$\Lambda_k^{**}$$
, получаем неравенства $0 \leq \Lambda_k^{**} \leq \sum\limits_{l=1}^{N_\varepsilon} \omega(f; \Delta_l^\varepsilon) (\sum\limits_{\{j \colon \Delta_j^k \subset \Delta_l^\varepsilon\}} |\Delta_j^k|)$. Для

фиксированного номера k промежутки Δ_j^k , $1 \leq j \leq N_k$, попарно не пересекаются в соответствии с определением разбиения. По этой причине справедливо неравенство $\sum\limits_{\{j\colon \Delta_j^k\subset \Delta_l^\varepsilon\}} |\Delta_j^k| \leq \Delta_l^\varepsilon$. Таким образом, для второй частичной суммы Λ_k^{**} справедлива следующая оценка сверху:

второй частичной суммы Λ_k^{**} справедлива следующая оценка сверху: $|\Lambda_k^{**}| = \sum_{l=1}^{N_\varepsilon} \omega(f; \Delta_l^\varepsilon) |\Delta_l^\varepsilon| = S(f, \tau_\varepsilon) - s(f, \tau_\varepsilon) < \varepsilon$. Последнее неравенство здесь имеет место согласно изначальному выбору разбиения τ_ε .

Объединяя полученные верхние оценки частичных сумм Λ_k^* и Λ_k^{**} , приходим к неравенствам $|\Lambda_k| \leq |\Lambda_k^*| + |\Lambda_k^{**}| \leq 2M|\tau_k| \cdot N_\varepsilon + \varepsilon$. Таким образом, верхний и нижний пределы последовательности $|\lambda_k|, k=1,2,\ldots$ удовлетворяют соотношениям $0 \leq \varliminf_{k \to +\infty} |\Lambda_k| \leq \varlimsup_{k \to +\infty} |\Lambda_k| \leq \varepsilon$. Здесь ε любое положительное число, причем верхний и нижний пределы от этого параметра не зависят.

Учитывая это и переходя к пределу при $\varepsilon \to 0$, получаем равенства $\varliminf_{k\to +\infty} |\Lambda_k| = \varlimsup_{k\to +\infty} |\Lambda_k| = 0$. Следовательно, существует равный нулю предел последовательности Λ_k . \square

Следствие (критерий интегрируемости)

Функция f(x) интегрируема по Риману на промежутке $\Delta \subset D_f$ тогда и только тогда когда существует последовательность $\tau_k(\Delta)$, $k=1,2,\ldots$ разбиений промежутка Δ с условием, что при $k \to +\infty$ мелкость $|\tau_k|$ стремится к нулю и при этом выполняются следующие предельные равенства:

$$\lim_{k \to +\infty} [S(f, \tau_k) - s(f, \tau_k)] = 0.$$
 ((1'))

Отметим, что если найдется хотя бы одна последовательность $\tau_k(\Delta)$, $k=1,2,\ldots$ разбиений промежутка с исчезающей в пределе мелкостью, удовлетворяющая к тому же предельному условию (1'), то это же условие будет выполнено и для любой другой последовательности $\tau'_k(\Delta)$, $k=1,2,\ldots$ разбиений промежутка с нулевой мелкостью в пределе, т.е. такой, что $\lim_{k\to +\infty} |\tau'_k(\Delta)|=0$.

3 Эквивалентность определений интеграла Римана как предела интегральных сумм Римана и как предела сумм Дарбу по разбиениям с исчезающей мелкостью

Пусть для функции f(x), интегрируемой по Риману на промежутке $\Delta \subset D_f$, построена какая-нибудь последовательность $\tau_k(\Delta)$, $k=1,2,\ldots$ разбиений промежутка Δ с исчезающей в пределе при $k \to +\infty$ мелкостью $|\tau_k|$. Если при этом $\lim_{k\to +\infty} [S(f,\tau_k)-s(f,\tau_k)]=0$, то, как следует из теоремы о пределе сумм Дарбу, интеграл Римана функции f(x) по промежутку Δ получается по формулам

$$\lim_{k \to +\infty} s(f, \tau_k) = \lim_{k \to +\infty} S(f, \tau_k) = \int_{\Delta} f(x) dx.$$
 ((R_{lim}))

Вместо сумм Дарбу в последнем равенстве допустимо также использовать последовательность $\sigma(f; \tau_k, \xi)$ интегральных сумм Римана, связанную с суммами Дарбу соотношениями

$$s(f, \tau_k) \le \sigma(f; \tau_k, \xi) \le S(f, \tau_k). \tag{(\sigma_{\le})}$$

Напомним, что согласно определению $\sigma(f;\tau_k,\varepsilon)=\sum\limits_{i=1}^N f(\xi_i^k)|\Delta_i^k|$, где $\xi=(\xi_1^k,\xi_2^k,\ldots,\xi_N^k)$, а каждая из точек $\xi_i^k,\,k=1,2,\ldots,N$ лежит в своем мелком промежутке Δ_i^k и в остальном произвольна. Переходя в неравенствах (σ_{\leq}) к пределу при $k\to+\infty$ и пользуясь равенствами (R_{lim}) , получаем в результате

$$\lim_{k \to +\infty} \sigma(f; \tau_k, \xi) = \int_{\Lambda} f(x) dx. \qquad ((R'_{\lim}))$$

Равенства $(R_{\rm lim})$ и $(R'_{\rm lim})$ справедливы для любой последовательности $\tau_k(\Delta), k=1,2,\ldots$ разбиений промежутка Δ с исчезающей в пределе при $k\to +\infty$ мелкостью $|\tau_k|$. По этой причине вместо этих двух равенств зачастую используются следующие эквивалентные им формулы:

$$\lim_{|\tau|\to 0} s(f,\tau) = \lim_{|\tau|\to 0} S(f,\tau) = \int_{\Delta} f(x)dx,$$

$$\lim_{|\tau|\to 0} \sigma(f;\tau,\xi) = \int_{\Lambda} f(x)dx.$$

Последнее из этих равенств обычно рассматривают в качестве определения интеграла Римана от функции по промежутку. Проведенные нами рассуждения показывают, что это определение интеграла как предела интегральных сумм Римана равносильно принятому нами ранее.

4 Сохранение интегрируемости при переходе к меньшему промежутку

Свойство интегрируемости функции сохраняется при переходе к меньшему промежутку, содержащемуся в исходном.

Лемма

Пусть функция f(x) интегрируема по Риману на промежутке Δ . Тогда функция f(x) интегрируема по Риману и на любом меньшем промежутке Δ' , вложенном в исходный, $\Delta' \subset \Delta$.

Доказательство

Возьмем последовательность $\tau'_k(\Delta')$, $k=1,2,\ldots$ разбиений меньшего промежутка Δ' с исчезающей в пределе мелкостью $|\tau'_k|$, $|\tau'_k| \to 0$ при $k \to +\infty$. Каждое из взятых разбиений $\tau'_k(\Delta')$ дополним до некоторого разбиения $\tau_k(\Delta)$ большего промежутка Δ таким образом, чтобы мелкость $|\tau_k(\Delta)|$ не превосходила мелкости исходного меньшего разбиения: $|\tau_k(\Delta)| \le |\tau'_k(\Delta')|$, $k=1,2,\ldots$

Переходя здесь к пределу при $k \to +\infty$, видим, что мелкость $|\tau_k(\Delta)|$ также стремится к нулю. Следовательно, и в силу интегрируемости функции f(x) на промежутке Δ имеем равенство $\lim_{k\to +\infty} [S(f,\tau_k(\Delta)) - s(f,\tau_k(\Delta))] = 0$. Разбиение $\tau'_k(\Delta')$ вложено в дополняющее его множество $\tau_k(\Delta)$. По этой причине и в соответствии с определением сумм Дарбу имеем неравенство $S(f,\tau'_k(\Delta')) - s(f,\tau'_k(\Delta')) \leq S(f,\tau_k(\Delta)) - s(f,\tau_k(\Delta))$. Переходя здесь к пределу по $k\to +\infty$ и пользуясь предыдущим равенством, получаем $\lim_{k\to +\infty} [S(f,\tau'_k(\Delta')) - s(f,\tau'_k(\Delta'))] = 0$.

Таким образом, функция f(x) на промежутке Δ' с последовательностью разбиений $\tau'_k(\Delta')$, $k=1,2,\ldots$ удовлетворяет условию (1'). Применяя сформулированный в следствии критерий интегрируемости заключаем, что функция f(x) интегрируема и на промежутке Δ' . \square

5 Сохранение интегрируемости при переходе к объединению промежутков

Если функция интегрируема на двух примыкающих друг к другу, возможно с пересечением, промежутках, то она интегрируема и на объединении, которое также должно быть промежутком.

Лемма

Пусть Δ , Δ' и Δ'' — это промежутки, причем $\Delta = \Delta' \cup \Delta''$. Если функция f(x) интегрируема по Риману на Δ' и на Δ'' , то она интегрируема и на Δ .

Доказательство

Если $\Delta' = \Delta$ или $\Delta'' = \Delta$, то утверждение очевидно. Поэтому предполагаем, что $\Delta' \neq \Delta$ и $\Delta'' \neq \Delta$. При этом разность множеств $\Delta''' = \Delta'' \setminus \Delta'$ — это также непустой промежуток, причем $\Delta = \Delta' \cup \Delta'''$, $\Delta' \cap \Delta''' = \emptyset$. Возьмем $\tau'_k(\Delta')$ — разбиение промежутка Δ' с исчезающей в пределе при $k \to +\infty$ мелкостью $|\tau'_k|, |\tau'_k| \to 0$. Аналогично, пусть $\tau'''_k(\Delta''')$ — это разбиение промежутка Δ''' с мелкостью $|\tau'''_k|$, где $|\tau'''_k| \to 0$ при $k \to +\infty$. Объединение $\tau_k = \tau'_k(\Delta') \cup \tau'''_k(\Delta''')$ представляет собой некоторое разбиение промежутка Δ . Мелкость этого разбиения стремится к нулю при неограниченном увеличении k: $|\tau_k| = \max\{|\tau'_k|, |\tau'''_k|\} \to 0$ при $k \to +\infty$.

Вычисляя разность верхней и нижней сумм Дарбу при выбранном разбиении $\tau_k = \tau_k(\Delta)$, получаем $S(f, \tau_k(\Delta)) - s(f, \tau_k(\Delta)) = [S(f, \tau'_k) - s(f, \tau'_k)] + [S(f, \tau'''_k) - s(f, \tau'''_k)].$

По условию функция f(x) интегрируема по Риману на Δ' и на Δ'' . Учитывая, что $\Delta''' \subset \Delta''$ и применяя предыдущую лемму, заключаем, что функция f(x) интегрируема по Риману и на Δ''' . Таким образом, справедливы равенства

$$\lim_{k \to +\infty} [S(f, \tau'_k) - s(f, \tau'_k)] = 0,$$

$$\lim_{k \to +\infty} [S(f, \tau'''_k) - s(f, \tau'''_k)] = 0.$$

Но тогда и

$$\lim_{k \to +\infty} [S(f, \tau_k(\Delta)) - s(f, \tau_k(\Delta))] = 0.$$

Таким образом, функция f(x) на промежутке Δ с последовательностью разбиений $\tau_k(\Delta)$ $k=1,2,\ldots$ удовлетворяет условию (1'). Применяя сформулированный ранее в следствии критерий интегрируемости заключаем, что функция f(x) интегрируема также и на всем промежутке Δ .