# Архитектура ЭВМ

Лектор: к.т.н., доцент, Попов Алексей Юрьевич

#### Цель дисциплины:

•получить знания и навыки, необходимые для проектирования и эффективного использования современных аппаратных вычислительных средств.

#### Задачами дисциплины является изучение:

- •принципов организации ЭВМ;
- •методики проектирования ЭВМ и устройств, их составляющих.

#### **ЛИТЕРАТУРА**

- 1. Угрюмов Е. П. Цифровая схемотехника: Учеб. Пособие для вузов. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2004. 800 с.: ил.
- 2. Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем: Учебник для вузов. СПб.: Питер, 2004. 668 с.: ил.
- 3. Каган Б.М. Электронные вычислительные машины и системы. М.: Энергоатомиздат, 1991. 2018 Архитектура ЭВМ 1

## План проведения теоретических и практических занятий:

| Семестр | <b>Теоретические занятия</b> Попов Алексей Юрьевич                                                                         | <b>Лабораторные работы</b><br>Шипилова Татьяна Дмитриевна<br>Попов Алексей Юрьевич                                                                                                                                                                                                                                                        | Вид<br>отчетности |
|---------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 4       | •Вводная часть •Арифметические основы ЭВМ •Логические основы ЦВТ •Элементы и узлы ЭВМ •Организация памяти ЭВМ              | <ul> <li>Исследование работы триггеров</li> <li>Исследование работы регистров</li> <li>Исследование работы счетчиков.</li> <li>Исследование работы мультиплексоров.</li> </ul>                                                                                                                                                            | Зачет             |
| 5       | •Принципы построения и архитектура ЭВМ<br>•Процессорные устройства<br>•Организация ввода вывода<br>•Вычислительные системы | <ul> <li>●Разработка радиоэлектронной аппаратуры на основе микроконтроллеров ARM7 TDMI</li> <li>●Синхронизация микроконтроллеров ARM7 TDMI и управление таймерами</li> <li>●Хакатон: Быстрое прототипирование решений Интернета вещей</li> <li>●Организация памяти конвейерных суперскалярных электронных вычислительных машин</li> </ul> | Экзамен           |

#### Страница курса

#### e-learning.bmstu.ru/moodle/

- •Поиск (google,yandex) по слову «ИУ6»
- •Ресурсы,
- •Курсы,
- •Учебные дисциплины кафедры «Компьютерные системы и сети»
- •Архитектура ЭВМ



# І. Введение

# История развития вычислительной техники.

Механические вычислительные устройства.

Абак

Машина Паскаля Машина Лейбница Машина Бэбиджа Современные механические машины













# Электромеханические счетные машины

Машины Конрада Цузе (Z1, Z2, Z3, Z4)

- Z1 полностью механическая машина (1936);
- Z2 использование реле в арифметическом устройстве (1939);
- Z3 и Z4 электромеханические машины с механической памятью (1941 и 1945).



Машина Z3



Машина Z4

## Поколения электронных вычислительных машин

#### Первое поколение ЭВМ (с конца 30-х до середины 50-х)

| Поколение ЭВМ                            | Эле ментная<br>база                                    | Тип основного<br>запоминающего<br>устройства                                                                              | Представители<br>классов ЭВМ                                                                                                    | Языки<br>программи-<br>рования         | Программное<br>обеспечение | Средства связи<br>с<br>пользователем              |
|------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|---------------------------------------------------|
| I (с конца 30-х<br>до середины 50-<br>х) | Электро-<br>магнитные<br>реле;<br>электронные<br>лампы | Линии задержки<br>на электронные<br>лучевых трубках,<br>Ферритовые<br>сердечники (~2 <sup>12</sup> -<br>2 <sup>16</sup> ) | Калькуляторы<br>(ABC, <u>ENIAC</u> ),<br>Большие ЭВМ<br>(MARK I, EDVAC,<br>UNIVAC, <u>БЭСМ,</u><br>МЭСМ, Стрела,<br>Минск, IAS) | Ручная<br>коммутация,<br>Машинные коды | Ассемблер                  | Индикаторы,<br>Пульт<br>управления,<br>Перфокарты |



**JBM MARK I** 



Ферритовые сердечники

Архитектура ЭВМ

**3BM ENIAC** 



#### Второе поколение ЭВМ (с середины 50-х до середины 60-х)

| Поколение<br>ЭВМ                                | Элементная<br>база | Тип основного<br>запоминающего<br>устройства      | Представители<br>классов ЭВМ                                                                                              | Языки<br>программиров<br>ания | Программное<br>обеспечение                                                  | Средства<br>связи с<br>пользователем                             |
|-------------------------------------------------|--------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|
| II<br>(с середины 50-<br>х до середины<br>60-х) | Транзисторы        | Ферритовые<br>сердечники (до<br>2 <sup>19</sup> ) | Малые и<br>средние ЭВМ<br>(БЭСМ-4, урал-<br>14, Минск-2,<br>Днепр),<br>Большие<br>ЭВМ 7030 IBM<br>7090 Тх-0,<br>БЭСМ-2,3) | Фортран, Алгол,<br>Кобол      | Компиляторы,<br>автоматизирова<br>нные системы<br>управления,<br>диспетчеры | Индикаторы,<br>Пульт<br>улравления,<br>Перфокарты,<br>Перфоленты |

ЭВМ БЭСМ-4



#### Третье поколение ЭВМ (с середины 60-х до середины 70-х)

| Поколение<br>ЭВМ                                   | Элементная база                                                | Тип основного<br>запоминающего<br>устройства                                 | Представители<br>классов ЭВМ                                                                                                                       | Языки<br>программи-<br>рования | Программное<br>обеспечение                                         | Средства связи<br>с<br>пользователем |
|----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------|--------------------------------------|
| III<br>(с середины<br>60-х до<br>середины<br>70-х) | Интегральные<br>схемы малой и<br>средней степени<br>интеграции | Полупроводни-<br>ковые ЗУ на<br>интегральных<br>схемах (до 2 <sup>25</sup> ) | Мини и микро-ЭВМ (Мир-1, М220), Средние и большие универсальные ЭВМ (ILLIAC IV, <u>CDC6600</u> , CDC7600, IBM 360, EC ЭВМ, СМ ЭВМ, <u>БЭСМ-6</u> ) | Фортран,<br>Алгол, В, С        | ОС (UNIX,<br>IBM), СУБД,<br>САПР, Пакеты<br>прикладных<br>программ | Алфавитно-<br>цифровые<br>дисплеи    |





ЭВМ БЭСМ-6

8

#### Четвертое поколение ЭВМ (с середины 70-х до середины 80-х)

| Поколение<br>ЭВМ                                  | Элементная база                                                          | Тип основного<br>запоминающего<br>устройства                                    | Представители<br>классов ЭВМ                                                                                                        | Языки<br>программи-<br>рования    | Программное<br>обеспечение                                                                             | Средства связи<br>с<br>пользователем           |
|---------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|
| IV<br>(с середины<br>70-х до<br>середины<br>80-х) | Интегральные<br>схемы большой и<br>сверхбольшой<br>степени<br>интеграции | Полупроводниковые ЗУ на сверх больших интегральных схемах (до 2 <sup>28</sup> ) | Персональные<br>компьютеры<br>(Intellec8, IBM<br>PC/XT/AT, Sinclair<br>Spectrum), Средние<br>и Большие ЭВМ<br>(Cray, Эльбрус-1,2,3) | Пролог,<br>Фортран, С,<br>Паскаль | Графические<br>ОС,Среды<br>визуальной<br>разработки,<br>САПР,<br>Системы<br>программиров<br>ания, Игры | Графические<br>дисплеи,<br>клавиатура,<br>мышь |





Intellec8 (Intel 8080)

Sinclair Spectrum

### Пятое поколение ЭВМ (с середины 80-х)

| Поколение<br>ЭВМ          | Элементная база                                                | Тип основного<br>запоминающего<br>устройства                         | Представители<br>классов ЭВМ                                                                                                            | Языки<br>программи-<br>рования                                                                                                                         | Программное<br>обеспечение | Средства связи<br>с<br>пользователем                 |
|---------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------|
| V<br>(с середины<br>80-х) | Интегральные<br>схемы<br>сверхбольшой<br>степени<br>интеграции | Полупроводниковые ЗУ на сверх больших интегральных схемах (до ~2^32) | ПК на универсальных конвейерных МП (IA 32, PowerPC), Средние большие ЭВМ с массовым параллелизмом (серия IBM Mainframes, Cray, HP, DEC) | Языки с<br>ООП, Языки<br>параллельн<br>ого<br>программир<br>ования<br>(MPI),<br>Специализи<br>рованные<br>языки<br>(VHDL, Perl,<br>PHP, SQL и<br>т.д.) | Мультимедиа,<br>WWW        | Графические<br>дисплеи,<br>клавиатура,<br>мышь, звук |

# Классификация ЭВМ

# Классификация ЭВМ по назначению: Общего назначения

- Супер ЭВМ
- Минисупер ЭВМ
- Мэйнфреймы
- Серверы
- Рабочие станции
- Персональные компьютеры
- Ноутбуки
- Портативные компьютеры
- ...

#### Специализированные

• • •

#### Классификация ЭВМ по структуре:

- Однопроцессорные
- Многопроцессорные

# <u>Классификация ЭВМ по режимам</u> работы:

- Однопрограммные
- Мультипрограммные
- Мультипрограммные в составе систем
- ЭВМ в системах реального времени

# Классификация ЭВМ по количеству потоков команд и данных:

- ЭВМ с одним потоком команд и одним потоком данных (ОКОД, SISD);
- ЭВМ с одним потоком команд и многими потоками данных (ОКМД, SIMD);
- ЭВМ с многими потоками команд и одним потоком данных (МКОД, MISD);
- ЭВМ с многими потоками команд и многими потоками данных (МКМД, МІМD).

#### ОКОД, SISD

# Команды Устройство управления Память Данные, результаты Обрабатывающее устройство

#### OКMД, SIMD



#### МКОД, MISD



#### MKMД, MIMD



## Основные характеристики ЭВМ

- •Эффективность
- •Производительность
- •Надежность
- •Стоимость
- •Энергопотребление

#### Общий коэффициент эффективности

$$\ni := \frac{P}{C_{\ni BM} + C_{\ni KCIIIVATAIIИИ}}$$

- Общий коэффициент эффективности, - Производительность,

- Стоимость ЭВМ,

- Стоимость эксплуатации.

$$\mathfrak{I}' := \frac{P}{C_{\mathfrak{I}}}$$

$$9 := \frac{P \cdot K_{\text{M}}}{C}$$

$$C_{\ensuremath{\mathsf{ЭBM}}} >> C_{\ensuremath{\mathsf{Эксплуагации}}}$$

Э'

- Эффективность без учета эксплуатационных издержек.

Эн

- Эффективность с учетом эксплуатационной надежности.

#### Производительность ЭВМ

$$P := \frac{\sum_{s=1}^{n} K_{s}}{\sum_{s=1}^{n} K_{s} \cdot t_{s}}$$

K

- Весовой коэффициент задачи S,

ts

- Время выполнения задачи S.

Единицы измерения производительности:

MIPs =  $10^6$  целочисленных операций в секунду.

MFlops = 10<sup>6</sup> операций с плавающей запятой в секунду.



#### Закон Мура

Число транзисторов на кристалле будет удваиваться каждые 24 месяца

#### CPU Transistor Counts 1971-2008 & Moore's Law



#### Закон Мура

Количество транзисторов на чипе Intel по сравнению с законом Мура



https://m.habr.com/ru/post/440760/ Архитектура ЭВМ

16

2018

#### Масштабирование Деннарда

По мере увеличения плотности транзисторов потребление энергии на транзистор будет падать, поэтому потребление на мм² кремния будет почти постоянным

Количество транзисторов на чип и потребление энергии на мм²



https://m.habr.com/ru/post/440760/ Архитектура ЭВМ

17

#### Эффективность современных микропроцессоров

Потраченные впустую инструкции в процентах от всех инструкций, выполненных на Intel Core i7 для различных целочисленных тестов SPEC



https://m.habr.com/ru/post/440760/ Архитектура ЭВМ

#### Эффективность современных микропроцессоров

Рост компьютерной производительности по целочисленным тестам (SPECintCPU)



https://m.habr.com/ru/post/440760/ Архитектура ЭВМ

#### Список наиболее производительных ЭВМ (11.2018)

Параметры: Количество процессоров; Максимальная производительность Rmax (TFlops); Пиковая производительность Rpeak (TFlops); Рассеиваемая мощность (KW).

| Rank | System                                                                                                                                                                                                                           | Cores      | Rmax<br>(TFlop/s) | Rpeak<br>(TFlop/s) | Power (kW) |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|--------------------|------------|
| 1    | Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States                                                          | 2,397,824  | 143,500.0         | 200,794.9          | 9,783      |
| 2    | Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA<br>Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox<br>DOE/NNSA/LLNL<br>United States                                                    | 1,572,480  | 94,640.0          | 125,712.0          | 7,438      |
| 3    | Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz,<br>Sunway , NRCPC<br>National Supercomputing Center in Wuxi<br>China                                                                                                | 10,649,600 | 93,014.6          | 125,435.9          | 15,371     |
| 4    | Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH<br>Express-2, Matrix-2000 , NUDT<br>National Super Computer Center in Guangzhou<br>China                                                                     | 4,981,760  | 61,444.5          | 100,678.7          | 18,482     |
| 5    | Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland                                                                      | 387,872    | 21,230.0          | 27,154.3           | 2,384      |
| 6    | Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , Cray Inc. DOE/NNSA/LANL/SNL United States                                                                                   | 979,072    | 20,158.7          | 41,461.2           | 7,578      |
| 7    | Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon<br>Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu<br>National Institute of Advanced Industrial Science and Technology (AIST)<br>Japan | 391,680    | 19,880.0          | 32,576.6           | 1,649      |
| 8    | SuperMUC-NG - ThinkSystem SD530, Xeon Platinum 8174 24C 3.1GHz,<br>Intel Omni-Path , Lenovo<br>Leibniz Rechenzentrum<br>Germany                                                                                                  | 305,856    | 19,476.6          | 26,873.9           |            |
| 9    | Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x, Cray Inc. DOE/SC/Oak Ridge National Laboratory United States                                                                                 | 560,640    | 17,590.0          | 27,112.5           | 8,209      |
| 10   | Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom , IBM DOE/NNSA/LLNL United States                                                                                                                                           | 1,572,864  | 17,173.2          | 20,132.7           | 7,890      |







#### Список наиболее производительных ЭВМ (11.2018, продолжение)

| Rank | System                                                                                                                                                                                            | Cores  | Rmax<br>(TFlop/s) | Rpeak<br>(TFlop/s) | Power<br>(kW) |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|--------------------|---------------|
| 63   | Lomonosov 2 - T-Platform A-Class Cluster, Xeon E5-2697v3 14C 2.6GHz,<br>Infiniband FDR, Nvidia K40m , T-Platforms<br>Moscow State University - Research Computing Center<br>Russia                | 42,688 | 2,102.0           | 2,962.3            | 1,079         |
| 227  | Lomonosov - T-Platforms T-Blade2/1.1, Xeon X5570/X5670/E5630 2.93/2.53 GHz, Nvidia 2070 GPU, PowerXCell 8i Infiniband QDR, T-Platforms Moscow State University - Research Computing Center Russia | 78,660 | 901.9             | 1,700.2            | 2,800         |
| 412  | Polytechnic RSC Tornado - RSC Tornado, Xeon E5-2697v3 14C 2.6GHz,<br>Infiniband FDR , RSC Group<br>St. Petersburg Polytechnic University<br>Russia                                                | 19,936 | 658.1             | 829.3              | 320           |





#### INSTALLATION TYPE



Application Area / Systems
June 2011



Processor Family / Systems
June 2011



# Operating system Family / Systems June 2011





# **Device democracy**

# Интернет вещей - IoT (Internet of Things)

концепция вычислительной сети физических объектов («вещей»), оснащённых встроенными технологиями для взаимодействия друг с другом или с внешней средой, рассматривающая организацию таких сетей как явление, способное перестроить экономические и общественные процессы, исключающее из части действий и операций необходимость участия человека.

# Демократия устройств - Device Democracy

Концепция построения сети физических объектов, которым предоставлены полномочия самостоятельного и коллегиального принятия решений о дальнейшем поведении.

IBM Global Business Services Executive Report

Electronics

IBM Institute for Business Value

#### **Device democracy**

Saving the future of the Internet of Things





In the emerging device-driven democracy, power in the IoT will shift from the center to the edge.



As devices compete and trade in real-time, they will create liquid markets out of the physical world.



In the IoT of hundreds of billions of devices, connectivity and intelligence will be a means to better products and experiences, not an end.







**Цепочка блоков (blockchain)** является непрерывным рядом блоков, которая содержит в себе полную историю операций. Каждый из этих блоков может содержать любой тип данных, которые разработчик счёл необходимыми в него включить.

Система платежей в Bitcoin организована таким образом, что транзакции не подтверждаются, пока не будут коллективными усилиями сети упакованы в последовательность блоков. Блок представляет собой запись последних транзакций, которые ещё не были записаны в предыдущие блоки. Он делится на заголовок и список транзакций. Заголовок блока включает в себя свой хеш SHA-256, хеш предыдущего блока из цепочки, список хешей транзакций, время создания блока и другую служебную информацию.



2018

# II. Арифметические основы ЭВМ

<u>Системой счисления</u> называется совокупность правил для представления чисел с помощью символов (цифр).

#### Позиционная система счисления:

$$(...a_3a_2a_1a_0.a_{-1}a_{-2}a_{-3}...) = ... + a_3b^3 + a_2b^2 + a_1b^1 + a_0 + a_{-1}b^{-1} + a_{-2}b^{-2} + a_{-3}b^{-3}$$

Системы счисления, используемые в ЭВМ:

- Двоичная (0,1)
- Десятичная (0,...,9)
- Восьмеричная (0,...,7)
- Шестнадцатиричная (0,...,9,A,B,C,D,E,F)
- Двоично-десятичная (0000,...,1001)
- Шестидесятиричная (0,...,59)
- Троичная (-1,0,1)

Преобразование из двоичной системы счисления в десятичную:  $1011.01_2 = 1*2^3 + 0*2^2 + 1*2^1 + 1 + 0*2^{-1} + 1*2^{-2} = (8 + 2 + 1 + 0.25)_{10} = 11.25_{10}$ 

Преобразование из двоичной системы счисления в восьмеричную:  $10111101_2 = 010$  111  $101 = 275_8$ 

Преобразование из двоичной системы счисления в шестнадцатиричную:  $10111101_2 = 10\ 11$   $1101 = BD_{16}$ 

#### Преобразование из десятичной системы счисления в двоичную:

$$17,95_{10} = 10001,11110..._{2}$$



#### Дробная часть

$$ilde{ ilde{ ilde{X}}}$$
 Старший разряд  $ilde{ ilde{ ilde{X}}} ilde{ ilde{X}} ilde{ ilde{$ 

#### Двоичная арифметика

#### Пример сложения и умножения

# Прямой, обратный и дополнительный коды

#### Прямой код

$$A-B=A+(-B)$$

$$G_{np} = \left\{ egin{array}{ll} G, & \text{при } G{>}{=}0 & G-n{-} \text{разрядное число}; \ A-\text{вес старшего разряда} \ A=2^{n-1}$$
 для целых и  $A{=}1$  для дробей

#### Положительные

числа

$$10_{10} = 01010_2$$
  
 $0.75_{10} = 0.110_2$ 

#### Отрицательные числа

$$-10_{10} = 11010_2 = 10000 + 01010$$

$$-0.75_{10} = 1.110_2 = 1.000 + 0.110$$

#### Обратный код

$$G_{ofp} = \begin{cases} G, & \text{при } G>=0 \\ B-|G|, & \text{при } G<=0 \end{cases}$$

G – n-разрядное число;

В – наибольшее число без знака

 $B = 2^{n}-1$  для целых и  $B=2-2^{-(n-1)}$  для дробей

#### Положительные числа

$$10_{10} = 01010_2$$
  
 $0.75_{10} = 0.110_2$ 

Отрицательные числа

$$-10_{10} = 10101_2 = 11111-01010$$

$$-0.75_{10} = 1.001_2 = 1.111-0.110$$

#### Дополнительный код

$$G_{\text{доп}} = \begin{cases} G, & \text{при } G >= 0 \\ C - |G|, & \text{при } G < 0 \end{cases}$$

G – n-разрядное число;

С – наибольшее число без знака + 1

 $C = 2^n$  для целых и C = 2 для дробей

Положительные числа

$$10_{10} = 01010_2$$
  
 $0.75_{10} = 0.110_2$ 

Отрицательные числа

$$-10_{10} = 10110_2 = 100000 - 01010$$

$$-0.75_{10} = 1.010_2 = 10.000 - 0.110$$

Переполнение при сложении чисел в дополнительном коде определяется, если перенос в знаковый разряд не вызывает перенос из знакового разряда, и перенос из знакового разряда не вызван переносом в знаковый

Переполнение

Переполнение

Нет переполнения

#### •<u>Числа</u> в ЭВМ:

Числа с фиксированной запятой (позиция разделителя дробной и целой части заранее определена)

Числа с плавающей запятой (позиция разделителя определяется с помощью порядка числа)

Числа с плавающей запятой:

$$X = S^{P*}q$$

q – мантисса числа X;

Р – порядок числа

S – основание характеристики

(для двоичной системы S=2);

S<sup>P</sup> - характеристика

 $0,0110000 * 10^{011}_{2} = 0,375 * 2^{3}_{10} =$   $=0.0011000*10^{100}_{2} = 0.1100000*10^{010}_{2} =$   $0.75*2^{2}_{10}$ 

Для представления порядка используется смещенный код, в котором знаковый разряд инвертирован. Это позволяет легко сравнивать порядки чисел

- •Сравнение числе с Ф.3 и с П.3.:
- У Ч.П.З. Большой диапазон представления

Арифметика над Ч.П.З. более сложная

# III. Логические основы цифровой вычислительной техники



Любую ЭВМ можно рассматривать как сложное устройство, на вход которого подается входная информация в определенной последовательности. При этом на выходе должна формироваться ожидаемая выходная информация

•ЭВМ состоит из взаимодействующих устройств, задачей которых является преобразование входной информации в выходную.

Такие устройства бывают двух типов:

Комбинационные схемы Цифровые автоматы

#### Комбинационные схемы



#### Цифровые

Цифровые ав **ТРИТАРМ АТ ЕН** ставляют собой комбинационные схемы и устройства хранения (память).

Работа цифровых автоматов происходит в соответствии с частотой поступления входного слова. Для того, чтобы сигналы поступали одновременно, срабатывание ЦА происходит по синхросигналу

#### Цифровые автоматы

Для задания ЦА необходимо определить:

- •Входной алфавит: множество значений x(t).
- •Выходной алфавит: множество значений y(t).
- •Алфавит состояний: Q.
- •Начальное состояния Q<sub>0</sub>.
- •Функция переходов A(Q,x).
- •Функция выходов B(Q, x).

Автомат Мили

Автомат Мура

$$\begin{cases} Q(t+1) = A(Q(t),x(t)). \\ Y(t+1) = B(Q(t)). \end{cases}$$

Схема автомата Мили

Схема автомата Мура



Y(t+1)

#### Проектирование комбинационных схем

Проектирование комбинационных схем заключается в определении выходного слова в виде функции алгебры логики от входного слова

Дизъюнктивной (конъюнктивной) нормальной формой называется равносильная ей формула, представляющая собой дизъюнкцию (конъюнкцию) элементарных конъюнкций (дизъюнкций).



Любую функцию можно образовать посредством базисных операций: Отрицания, дизъюнкции и конъюнкции.

ДНФ и КНФ не являются самым простым способом задания ФАЛ. Для минимизации нормальных форм применяют карты Карно



## Логические функции

| Α | 0 | 0 | 1 | 1 | Обозначение функции | Название функции     |
|---|---|---|---|---|---------------------|----------------------|
| В | 0 | 1 | 0 | 1 |                     |                      |
|   | 0 | 1 | 1 | 1 | AUB                 | Дизъюнкция           |
|   | 0 | 0 | 0 | 1 | A∩B                 | Конъюнкция           |
|   | 1 | 1 | 0 | 0 | <sup>-</sup> A      | Отрицание А          |
|   | 0 | 0 | 1 | 0 | <sup>-</sup> A → B  | Запрет ⁻А→В          |
|   | 0 | 1 | 0 | 0 | ¯B→A                | Запрет ⁻В→А          |
|   | 0 | 1 | 1 | 0 | A⁻B                 | Исключающее ИЛИ      |
|   | 1 | 0 | 0 | 0 | A↓B                 | Стрелка Пирса ИЛИ-НЕ |
|   | 1 | 0 | 0 | 1 | A~B                 | Равнозначность       |
|   | 1 | 0 | 1 | 1 | B→A                 | Импликация от В к А  |
|   | 1 | 1 | 0 | 1 | A→B                 | Импликация от A к B  |
|   | 1 | 1 | 1 | 0 | A/B                 | Штрих Шеффера И-НЕ   |