

About an Identity and its Applications

Mihály Bencze and Florentin Smarandache

Str. Hărmanului 6, 505600 Săcele, Jud. Brașov, Romania
University of New Mexico, 200 College Road, Gallup, NM 87301, USA

Theorem 1. If $x, y \in C$ then $2(x^2 + y^2)^3 - (x+y)^3(x^3 + y^3) = (x-y)^4(x^2 + xy + y^2)$.

Proof. With elementary calculus.

Application 1.1. If $x, y \in C$ then

$$(2(x^2 + y^2)^3 - (x+y)^3(x^3 + y^3))(2(x^2 + y^2)^3 - (x-y)^3(x^3 - y^3)) = (x^2 - y^2)^4(x^4 + x^2y^2 + y^4)$$

Proof. In Theorem 1 we replace $y \rightarrow -y$, etc.

Application 1.2. If $x \in R$ then

$$(\sin x - \cos x)^4(1 + \sin x \cos x) + (\sin x + \cos x)^3(\sin^3 x + \cos^3 x) = 2$$

Proof. In Theorem 1 we replace $x \rightarrow \sin x$, $y \rightarrow \cos x$

Application 1.3. If $x \in R$ then $2ch^6x - (1+shx)^3(1+sh^3x) = (1+shx)^4(shx + ch^2x)$.

Proof. In Theorem 1 we replace $x \rightarrow 1$, $y \rightarrow shx$

Application 1.4. If $x, y \in C$ ($x \neq \pm y$) then

$$\frac{2(x^2 + y^2)^3 - (x+y)^3(x^3 + y^3)}{(x-y)^4} + \frac{2(x^2 + y^2)^3 - (x-y)^3(x^3 - y^3)}{(x+y)^4} = 2(x^2 + y^2)$$

Application 1.5. If $x, y \in C$ then

$$\frac{2(x^2 + y^2)^3 - (x+y)^3(x^3 + y^3)}{x^2 + xy + y^2} + \frac{2(x^2 + y^2)^3 - (x-y)^3(x^3 - y^3)}{x^2 - xy + y^2} = 2(x^4 + 6x^2y^2 + y^4)$$

Application 1.6. If $x, y \in R$ then $2(x^2 + y^2)^3 \geq (x+y)^3(x^3 + y^3)$.

(See József Sándor, Problem L.667, Matlap, Kolozsvár, 9/2001.)

Proof. See Theorem 1.

Theorem 2. If $x, y, z \in R$ then $3(x^2 + y^2 + z^2)^3 \geq (x+y+z)^3(x^3 + y^3 + z^3)$.

Proof. With elementary calculus.

Application 2.1. Let $ABCDA_1B_1C_1D_1$ be a rectangle parallelepiped with sides a, b, c and diagonal d . Prove that $3d^6 \geq (a+b+c)^3(a^3 + b^3 + c^3)$.

Application 2.2. In any triangle ABC the followings hold:

$$1) 3(p^2 - r^2 - 4Rr)^3 \geq 2p^4(p^2 - 3r^2 - 6Rr)$$

$$2) 3(p^2 - 2r^2 - 8Rr)^3 \geq p^4(p^2 - 12Rr)$$

$$3) 3((4R+r)^2 - 2p^2)^3 \geq (4R+r)^3((4R+r)^3 - 12p^2R)$$

$$4) 3(8R^2 + r^2 - p^2)^3 \geq (2R - r)^3 \left((2R - r) \left((4R + r)^2 - 3p^2 \right) + 6Rr^2 \right)$$

$$5) 3((4R + r)^2 - p^2)^3 \geq (4R + r)^3 \left((4R + r)^3 - 3p^2(2R + r) \right)$$

Proof. In Theorem 2 we take:

$$\{x, y, z\} \in$$

$$\in \left\{ \{a, b, c\}; \{p-a, p-b, p-c\}; \{r_a, r_b, r_c\}; \left\{ \sin^2 \frac{A}{2}, \sin^2 \frac{B}{2}, \sin^2 \frac{C}{2} \right\}; \left\{ \cos^2 \frac{A}{2}, \cos^2 \frac{B}{2}, \cos^2 \frac{C}{2} \right\} \right\}$$

Application 2.3. Let ABC be a rectangle triangle, with sides $a > b > c$ then

$$24a^6 \geq (a+b+c)^3(a^3+b^3+c^3)$$

Theorem 3. If $x_k > 0$, $k = 1, 2, \dots, n$, then $n \left(\sum_{k=1}^n x_k^2 \right)^3 \geq \left(\sum_{k=1}^n x_k \right)^3 \sum_{k=1}^n x_k^3$.

Application 3.1 The following inequality is true: $\sum_{k=0}^n \left(C_n^k \right)^3 \leq (n+1) \left(\frac{C_{2n}^n}{2} \right)^3$.

Proof. In Theorem 3 we take $x_k = C_n^k$, $k = 0, 1, 2, \dots, n$.

Application 3.2. In all tetrahedron $ABCD$ holds:

$$1) \frac{\left(\sum \frac{1}{h_a^2} \right)^3}{\sum \frac{1}{h_a^3}} \geq \frac{4}{r^3} \quad 2) \frac{\left(\sum \frac{1}{r_a^2} \right)^3}{\sum \frac{1}{r_a^3}} \geq \frac{2}{r^3}$$

Proof. In Theorem 3 we take $x_1 = \frac{1}{h_a}, x_2 = \frac{1}{h_b}, x_3 = \frac{1}{h_c}, x_4 = \frac{1}{h_d}$ and

$$x_1 = \frac{1}{r_a}, x_2 = \frac{1}{r_b}, x_3 = \frac{1}{r_c}, x_4 = \frac{1}{r_d}.$$

Application 3.3. If $S_n^\alpha = \sum_{k=1}^n k^\alpha$ then $n(S_n^{2\alpha})^3 \geq (S_n^\alpha)^3 S_n^{3\alpha}$.

Proof. In Theorem 3 we take $x_k = k^\alpha$, $k = 0, 1, 2, \dots, n$.

Application 3.4. If F_k denote Fibonacci numbers, then $\sum_{k=1}^n F_k^3 \leq n \left(\frac{F_n F_{n+1}}{F_{n+2} - 1} \right)^3$.

Proof. In Theorem 3 we take $x_k = F_k$, $k = 1, 2, \dots, n$.

References:

- [1] Mihály Bencze, *Inequalities* (manuscript), 1982.
- [2] Collection of “Octagon Mathematical Magazine”, 1993-2004.