EL2520 - Control Theory and Practice - Advanced Course

Solution/Answers - 2017-06-05

- 1. (a) (i) The determinant is $\det G = \frac{s}{(5s+1)^2}$ and the denominator is the LCD for all minors. Hence there are two poles in s=-0.2 and one zero at s=0. (ii) The zero at s=0 implies that the system is singular at steady-state and hence we can not control the two outputs independently at steady-state. (The correlation between the two outputs is given by direction orthogonal to the zero output direction $y_z^H = [-1\ 1]$, i.e., $y=[1\ 1]$).
 - (b) (i) We get $S = \frac{s}{(1+K)s-K}$ and $w_P S = 0.5 \frac{s+1}{(1+K)s-K}$. The closed loop is stable for $K \in [-1,0]$. As noted in the hint, the peak value of $|w_P S(i\omega)|$ will occur at $\omega = 0$ or $\omega = \infty$ (depending on the size of the pole relative to the zero). At $\omega = 0$ we get $|w_P S| = -0.5/K$ and at $\omega = \infty$ we get $|w_P S| = 0.5/(1+K)$. Thus, we get the peak at $\omega = 0$ for $K \in [-0.5,0]$ and at $\omega = \infty$ for $K \in [-1,-0.5]$. For both intervals the minimum is obtained for K = -0.5, which hence is the optimal gain. The corresponding $||w_P S||_{\infty} = 1$ and hence we just satisfy the performance requirement. (ii) We know that S(z) = 1 for RHP zero in G at s = z. Then, from Maximum Modulus Thm we get that $||w_P S||_{\infty} > |w_P(z)|$. Here z = 1 and $|w_P(1)| = 4/3 > 1$ and hence it is not possible to achieve $||w_P S||_{\infty} < 1$ with any controller.
- 2. (a) The RGA is $G \times (G^{-1})^T$. For 2×2 systems $\lambda_{11} = \lambda_{22} = \frac{1}{1 \frac{G_{12}G_{21}}{G_{11}G_{22}}}$ and $\lambda_{12} = \lambda_{21} = 1 \lambda_{11}$. At $\omega = 0$ we get $\lambda_{11} = -10$ and $\lambda_{12} = 11$. Since we should not pair on negative steady-state RGA elements, this suggests the off-diagonal pairing as the only viable option. At the expected bandwidth $\omega = 1$ we get $\lambda_{11}(i1) = 1/(1 1.1(i + 1))$ and $\lambda_{12} = 1 \lambda_{11}$ then gives $|\lambda_{12}(i1)| = 1.41$ which is close to 1 and hence implies that there are relatively weak interactions around the bandwidth and we should expect decentralized control to work well with the off-diagonal pairing.
 - (b) The transfer matrix G(s) has a RHP zero at s=1. For internal stability, this zero needs to be retained in the complementary sensitivity T(s). We have

$$T = I - S = \frac{1}{10s + 1} \begin{pmatrix} 1 & -s \\ 0 & 1 \end{pmatrix}$$

which has no zeros whatsoever. Thus, the controller has cancelled the RHP zero by a corresponding RHP pole and the closed-loop is not internally stable.

(c) All RHP poles in G(s) must be retained as RHP zeros in S(s) to satisfy internal stability. Here G is unstable, i.e., has RHP poles,

while S has no RHP zeros, and hence a RHP pole zero cancellation has occured between the controller and plant and the closed loop is not internally stable.

3. (a) We have $y = 2\hat{y}$, $u = \hat{u}/3$, $d = 10\hat{d}$. This gives

$$y = 2 \cdot 3\hat{G}u + 2 \cdot 0.1\hat{G}_d d = \frac{6}{2s+1}e^{-4s}u + \frac{1.6}{(2s+1)(5s+1)}e^{-2s}d$$

- (b) The control has a delay of 4 time units, which gives an approximate upper bound $\omega_B < 1/4$ for the sensitivity function S. To determine the frequency range where we need sensitivity reduction, i.e., |S| < 1, we consider frequencies for which $|G_d| > 1$. Since G_d has low pass characteristics (no zeros,only real poles), it suffices to check $|G_d(i\omega)| = 1.6/(\sqrt{4\omega^2+1}\sqrt{25\omega^2+1})$ for $\omega=0.25$ to get $|G_d(i0.25)| = 0.89$ which is smaller than 1 and it suffices to have |S| < 1 for $\omega < 0.25$ and the time delay should hence not represent a problem. We also need to check whether we have sufficient input for disturbance attenuation. We consider first the input required for perfect disturbance attenuation, which is $u = |G^{-1}G_d| = |(4/15)/(\sqrt{25\omega^2+1})|$ which is less than 1 at all frequences and hence we sufficient input for disturbance attenuation. In summary, we should be able to obtain acceptable disturbance attenuation using feedback only.
- (c) The requirements are $||SG_d||_{\infty} < 1$, $||F_ySG_d||_{\infty} < 1$, $||0.3T||_{\infty} < 1$ and we stack all of these into one matrix that we minimize the norm of

$$\min_{u} \left\| \begin{array}{c} SG_d \\ F_y SG_d \\ 0.3T \end{array} \right\|_{\infty}$$

Wee have y = SGdd and $u = F_ySG_d$ and hence we should have d as an input and $z = [y \ u]^T$ as an output of the extended system for the first two criteria. Unfortunately, it is difficult to find an output which has the transfer function T from the input d. Thus, we have to add another input, e.g., measurement noise n with gain 0.3 since then y = 0.3Tn. The disadvantage of adding the second input n is that we then also include the transfer function from n to u in the objective.

4. (a) Here G(s) has a RHP zero at s=1 and the corresponding output direction is $y_z=\frac{1}{\sqrt{2}}[-1\ 1]^T$. Then, based on the fact that S(z)=1 and the Maximum Mod Thm, we get $|y_z^HG_d(z)|<1$ as a requirement for $||SG_d||_{\infty}<1$, i.e., acceptable disturbance attenuation. For d_1 we get $|y_z^HG_{d1}(1)|=0$ and hence no problems with attenuation due to the RHP zero. For d_2 we get $|y_z^HG_{d2}(1)|=6/\sqrt{2}>1$ and hence it is not possible to get acceptable attenuation of disturbance d_2 due to

the existence of the RHP zero. (The first disturbance is othogonal to the zero direction, while the second one is alligned with the zero direction).

- (b) (i) We get $F = e^{AT} = 1$ and $G = \int_0^T e^{A\tau} B d\tau = T$. The eigenvalue is 1 which corresponds to a pure integrator, and this corresponds well with the eigenvalue at 0 in the continuous time system.
 - (ii) With N = 1, $J = k_1(x(k+1) r(k+1))^2 + q_2u^2(k)$. We have x(k+1) = x(k) + Tu(k) and inserting this in J gives

$$J = q_1(x(k) + Tu(k) - r(k+1))^2 + q_2u^2(k)$$

Minimizing this with respect to u(k)s corresponds to a quadratic program and is hence convex. Taking the derivative $dJ/du(k) = 2q_1(x(k) + Tu(k) - r(k+1))T + 2q_2u(k)$ and setting it to zero yields the control law

$$u(k) = \frac{Tq_1(r(k+1) - x(k))}{T^2q_1 + q_2}$$

The closed-loop is then

$$x(k+1) = x(k) + T \frac{Tq_1(r(k+1) - x(k))}{T^2q_1 + q_2}$$

and the eigenvalue is then $1-T^2q_1/(T^2q_1+q_2)$ which is always in the range [0,1], and hence the closed loop stable, for all positive q_1,q_2 . As $q_1\to\infty$ we get that the eigenvalue goes to zero which corresponds to bringing the system to steady-state in one sample (known as dead beat control).

- 5. (a) Since the uncertainty implies that a pole may cross the imaginary axis we would need an unstable perturbation in the multiplicative set and it is then not possible to employ the small gain theorem to derive a robust stability criterion (the standard robust stability criterion assumes both nominal stability and a stable perturbation).
 - (b) Employ the inverse multiplicative uncertainty $G_p = G(1+W_{iI}\Delta_{iI})^{-1}$. With this description is it possible to represent poles crossing the imaginary axis even with a stable perturbation $\Delta_{iI}(s)$. By drawing the description in a block-diagram, then rewriting the diagram on $M-\Delta$ form we find that $M=W_{iI}S$ and according to the SGT we then have robust stability if $W_{iI}(s)S(s)$ stable, $\Delta_{iI}(s)$ and $\|W_{iI}S\Delta_{iI}\|_{\infty} < 1$. With $\|\Delta_{iI}\|_{\infty} < 1$ we get the RS condition $\|W_{iI}S\|_{\infty} < 1$.
 - (c) We can write

$$2\frac{(s+1)(s+z)}{(5s+1)^2(s+p)} = 2\frac{(s+1)}{(5s+1)^2}(1+\Delta_G(s))^{-1}$$

which gives

$$1 + \Delta_G = \frac{s+p}{s+z} \quad \Rightarrow \quad \Delta_G = \frac{p-z}{s+z}$$

The maximum amplitude of Δ_G is obtained for p-z=4 and z=1 (somewhat conservative choice). Thus the uncertainty can be represented by an inverse multiplicative uncertainty with $\|\Delta_{iI}\|_{\infty} < 1$ and

$$W_{iI}(s) = \frac{4}{s+1}$$

We then get that the RS condition $\|SW_{iI}(s)\|_{\infty} < 1$ implies that

$$|S| \le \frac{|i\omega + 1|}{4} \quad \forall \omega$$

which implies |S| < 1 for $\omega < \sqrt{15}$, hence we need a bandwidth of at least $\sqrt{15} = 3.873 \ rad/s$ to guarantee robust stability.

(Remark: it would obviously have been better to use z=2 for the nominal model, as this is the center value).