Recall: If A is an upper triangular matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

then $\det A = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$.

Note. If A is a square matrix then the row echelon form of A is always upper triangular.

Theorem

Let A and B be $n \times n$ matrices.

1) If B is obtained from A by interchanging two rows (or two columns) then

$$\det B = - \det A$$

2) If B is obtained from A by multiplying one row (or one column) of A by a scalar k then

$$\det B = k \cdot \det A$$

2) If B is obtained from A by adding a multiple of one row of A to another row (or adding a multiple of one column to another column) then

$$\det B = \det A$$

Example.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 7 \\ 2 & 5 & 1 \end{bmatrix}$$

$$det A = 1 \cdot C_{11} + 2 \cdot C_{12} + 3 \cdot C_{13}$$
$$C_{11} = (-1)^{1+1} det \begin{bmatrix} 0 & 7 \\ 5 & 1 \end{bmatrix}$$
$$C_{12} = \cdots$$

$$B = \begin{bmatrix} 4.1 & 4.2 & 4.3 \\ 1 & 0 & 7 \\ 2 & 5 & 1 \end{bmatrix} det B = (4.1) \cdot C_{11} + (4.2) \cdot C_{12} + (4.3) \cdot C_{13}$$

$$C_{11} = (-1)^{11/2} det \begin{bmatrix} 0 & 7 \\ 5 & 1 \end{bmatrix}$$

$$C_{12} = \dots$$

So:
$$detB = 4 \cdot (1 \cdot C_{11} + 2 \cdot C_{12} + 3 \cdot C_{13})$$

= $4 \cdot detA$

Computation of determinants via row reduction

Idea. To compute det A, row reduce A to the row echelon form. Keep track how the determinant changes at each step of the row reduction process.

Example. Compute det A where

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & 4 & 0 & 10 \\ 3 & 4 & 1 & 7 \\ -2 & 5 & 3 & 0 \end{bmatrix}$$

$$\det \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & 4 & 0 & 10 \\ 3 & 4 & 1 & 7 \\ -2 & 5 & 3 & 0 \end{bmatrix} = (-1) \cdot \det \begin{bmatrix} 24 & 0 & 10 \\ 0 & 1 & 2 & 3 \\ 3 & 4 & 1 & 7 \\ -2 & 5 & 3 & 0 \end{bmatrix} \cdot \left(\frac{1}{2}\right)$$

$$= (2)(-1) \det \begin{bmatrix} 1 & 2 & 0 & 5 \\ 0 & 1 & 2 & 3 \\ 3 & 4 & 1 & 7 \\ -2 & 5 & 3 & 0 \end{bmatrix} = 2 \cdot (-1) \cdot \det \begin{bmatrix} 1 & 2 & 0 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & -2 & 1 & -8 \\ 0 & 9 & 3 & 10 \end{bmatrix} = (-9)$$

reciprocal of
$$\frac{1}{2}$$

$$= 2 \cdot (-1) \cdot \det \begin{bmatrix} 1 & 2 & 0 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 5 & -2 \\ 0 & 0 & -15 & -17 \end{bmatrix} 2 (3)$$

$$= 2 \cdot (-1) \cdot \det \begin{bmatrix} 1 & 2 & 0 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 5 & -2 \\ 0 & 0 & -23 \end{bmatrix}$$

upper triangular

$$= 2 \cdot (-1) \cdot 1 \cdot 1 \cdot 5 \cdot (-23)$$

$$= 230$$

Theorem

If A is a square matrix then A is invertible if and only if $\det A \neq 0$

<u>Recall:</u> A is invertible if and only if its reduced row echelon form is the identity matrix.

Further properties of determinants

1)
$$det(A^T) = det A$$

2)
$$det(AB) = (det A) \cdot (det B)$$

3)
$$\det(A^{-1}) = (\det A)^{-1}$$

Note. In general $det(A + B) \neq det A + det B$.

example:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 &$$