Geometri og trigonometri 08 Cosinusrelationerne

Sidste gang blev I introduceret for *sinusrelationerne*, der gjorde jer i stand til at beregne de resterende stykker i *vilkårlige trekanter*, hvis I kendte til tre (3) af stykkerne. Der var dog to tilfælde, hvor I ikke kunne bruge sinusrelationerne, nærmere betegnet disse tilfælde:

- De tre (3) sider er kendt.
- To (2) sider samt den mellemliggende vinkel.
- Tre (3) vinkler er kendt den kan aldrig bestemmes entydigt.

I dag skal vi udlede en formel (værktøj) til at klare de sidste to trekantstilfælde beskrevet ovenfor.

Teori

Vi kigger på den *vilkårlige trekant* ΔABC , hvor alle vinkler er spidse (dvs. der er med garanti ingen ret vinkel).

1. Jeg starter, som ved sinusrelationerne, med at indtegne højden h_b , der er ortogonal (vinkelret) på siden b og går gennem punktet B. Højden h_b inddeler siden b i to stykker. Hvis længden af det ene stykke er x, så må længden af det andet stykke være b-x.

Lærer: Mikkel Lund (MCL)

2. Jeg benytter Pythagoras' læresætning i begge retvinklede trekanter:

$$a^2 = h^2 + x^2$$
 og $c^2 = h^2 + (b - x)^2$

3. Jeg isolerer h^2 i den første ligning.

$$h^2 = a^2 - x^2$$
 og $c^2 = h^2 + (b - x)^2$

4. Substituerer (erstatter) h^2 i den anden ligning:

$$c^2 = a^2 - x^2 + (b - x)^2$$

5. Udregner parentesen vha. kvadratsætning 2:

$$c^2 = a^2 - x^2 + b^2 + x^2 - 2bx$$

6. De to led med x^2 går ud mod hinanden.

$$c^2 = a^2 + b^2 - 2bx$$

7. Anvender formlen for cosinus i en retvinklet trekant på den højre af de retvinklede trekanter:

$$\cos(C) = \frac{x}{a} \Leftrightarrow x = a \cdot \cos(C)$$

8. Substituerer (erstatter) x i pkt. 6, og rydder lidt op.

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(C)$$

Lærer: Mikkel Lund (MCL)

9. Jeg kan også manipulere lidt med formlen, så jeg kan bestemme $\cos(C)$ - så jeg kan bestemme

vinkel
$$C$$
:
$$c^{2} = a^{2} + b^{2} - 2 \cdot a \cdot b \cdot \cos(C)$$

$$\updownarrow$$

$$2 \cdot a \cdot b \cdot \cos(C) = a^{2} + b^{2} - c^{2}$$

$$\updownarrow$$

$$\cos(C) = \frac{a^{2} + b^{2} - c^{2}}{2 \cdot a \cdot b}$$

Eksempler

Eksempel 1

I den vilkårlige $\triangle ABC$ er a=3, b=4 og c=6.

a) Bestem trekantens øvrige stykker.

Starter med at skitsere trekanten (på tavlen).

Da jeg kender trekantens tre sider, kan jeg benytte cosinusrelationerne til at bestemme alle tre vinkler.

i. Bestemmer vinkel A med cosinusrelationen $\cos(A) = \frac{b^2 + c^2 - a^2}{2 \cdot b \cdot c}$.

$$\cos\left(A\right) = \frac{b^2 + c^2 - a^2}{2 \cdot b \cdot c}$$

1

$$A = \cos^{-1}\left(\frac{b^2 + c^2 - a^2}{2 \cdot b \cdot c}\right) = \cos^{-1}\left(\frac{4^2 + 6^2 - 3^2}{2 \cdot 4 \cdot 6}\right) = \cos^{-1}\left(\frac{43}{48}\right) = 26.4^{\circ}$$

ii. Bestemmer vinkel B med cosinusrelationen $\cos(B) = \frac{a^2 + c^2 - b^2}{2 \cdot a \cdot c}$.

$$\cos(B) = \frac{a^2 + c^2 - b^2}{2 \cdot a \cdot c}$$

1

$$B = \cos^{-1}\left(\frac{a^2 + c^2 - b^2}{2 \cdot a \cdot c}\right) = \cos^{-1}\left(\frac{3^2 + 6^2 - 4^2}{2 \cdot 3 \cdot 6}\right) = \cos^{-1}\left(\frac{29}{36}\right) = 36.3^{\circ}$$

iii. Bestemmer vinkel C med cosinusrelationen $\cos(C) = \frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}$.

$$\cos(C) = \frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}$$

1

$$C = \cos^{-1}\left(\frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}\right) = \cos^{-1}\left(\frac{3^2 + 4^2 - 6^2}{2 \cdot 3 \cdot 4}\right) = \cos^{-1}\left(\frac{-11}{24}\right) = 117.3^{\circ}$$

iv. Kontrollerer mine resultater med vinkelsumsformlen $A + B + C = 180^{\circ}$.

$$A+B+C=26.4^{\circ}+36.3^{\circ}+117.3^{\circ}=180.0^{\circ}$$
. OK! Trekantens øvrige stykker $A=26.4^{\circ}$, $B=36.3^{\circ}$ og $C=117.3^{\circ}$.

Eksempel 2

I den vilkårlige $\triangle ABC$ er $A=40^{\circ}$, b=7 og c=8.

a) Bestem trekantens øvrige stykker.

Starter med at skitsere trekanten (på tavlen).

Da jeg kender en vinkel og de to hosliggende sider kan jeg benytte cosinusrelationerne til at bestemme de resterende stykker.

i. Bestemmer siden a med cosinusrelationen $a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos(A)$.

$$a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos(A)$$

$$\Rightarrow a = \sqrt{b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos(A)} = \sqrt{7^{2} + 8^{2} - 2 \cdot 7 \cdot 8 \cdot \cos(40^{\circ})} = 5.2$$

ii. Bestemmer vinkel B med cosinusrelationen $\cos(B) = \frac{a^2 + c^2 - b^2}{2 \cdot a \cdot c}$.

$$\cos(B) = \frac{a^2 + c^2 - b^2}{2 \cdot a \cdot c}$$

 $\hat{\mathbb{I}}$

$$B = \cos^{-1}\left(\frac{a^2 + c^2 - b^2}{2 \cdot a \cdot c}\right) = \cos^{-1}\left(\frac{5 \cdot 21^2 + 8^2 - 7^2}{2 \cdot 5 \cdot 21 \cdot 8}\right) = 59.6^{\circ}$$

iii. Bestemmer vinkel C med cosinusrelationen $\cos(C) = \frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}$.

$$\cos(C) = \frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}$$

 \bigcirc

$$C = \cos^{-1}\left(\frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}\right) = \cos^{-1}\left(\frac{5 \cdot 21^2 + 7^2 - 8^2}{2 \cdot 5 \cdot 21 \cdot 7}\right) = 80.4^{\circ}$$

iv. Kontrollerer mine resultater med vinkelsumsformlen $A + B + C = 180^{\circ}$.

$$A + B + C = 40^{\circ} + 59.6^{\circ} + 80.4^{\circ} = 180.0^{\circ}$$
.

Trekantens øvrige stykker a = 5.2, $B = 59.6^{\circ}$ og $C = 80.4^{\circ}$.

Opgaver

Opgave 1

Bestem de ukendte sider og vinkler i den spidsvinklede ΔABC , når:

a)
$$a = 3$$
, $b = 5$ og $c = 7$

b)
$$A = 30^{\circ}$$
, $b = 3$ og $c = 4$

c)
$$a = 5$$
, $b = 6$ og $c = 7$

d)
$$a = 3$$
, $B = 40^{\circ}$ og $c = 6$