Ayudantía

Almacenamiento de Datos

Resumen Flancos Diseño de Circuitos

Resumen

Resumen Flancos Diseño de Circuitos

Objetivos

- Comprender por qué es necesario almacenar datos en una máquina programable.
- Conocer componentes digitales (latches, flip-flops) que permiten el almacenamiento.
- Realizar ejercicios que consoliden los conceptos aprendidos.

Almacenamiento de Datos

Lo que sabemos

- Hasta ahora tenemos una ALU, pero ¿Qué pasa con los resultados de la ALU?
 No se guardan:
- Necesitamos almacenar información para utilizarla y seguir operando
- ¡Hoy veremos componentes digitales que permiten guardar datos y comenzaremos a construir nuestro primer computador!

hacia el final del curso

Latches: Retención simple de estado

- Permiten guardar un bit en un circuito
- ¡Su estado depende de las entradas y del estado anterior!
- Tipos principales:
 - **RS**: Reset-Set, presenta un estado inválido
 - D: Más seguro, evita combinaciones inválidas
- Se activan mientras la señal de control está activa

Latch D

Latch RS

Componente que realiza Reset (Q=0), Set (Q = 1) ó mantiene un estado previo: Q(t+1) = Q(t). A continuación, veremos cómo funciona

S	R	Q(t+1)
0	0	-
0	1	0
1	0	1
1	1	Q(t)

Latch D

Componente que actualiza el valor de un estado **Q** con una señal **D** si, y solo si la señal de control está activa (C = 1). D = Data.

С	D	Q(t+1)
0	0	Q(t)
0	1	Q(t)
1	0	0
1	1	1

Flancos

Suponemos una **señal** *clock* llamada **CLK**, la cual cambia de 1 a 0 y de 1 a 0 en una **frecuencia constante**.

- Flanco de SUBIDA: $0 \rightarrow 1$
- Flanco de BAJADA: 1 → 0

Flip-Flops

- Son construidos con latches
- Por defecto, almacenan datos sólo en flanco de subida del clock (señal CLK), pero son modificables
- Ideales para **sincronizar** operaciones
- Tipos:
 - o D: Almacena un valor dado
 - o JK y T: más flexibles, pero menos usados en este curso

Flip-Flop D

Flip-Flop D

Abstracción

Componente que permite guardar el estado anterior de una señal en un instante dado. *Por defecto, la acción ocurre en flanco de* subida

CLK	D	Q(t+1)
0/1/↓	0/1	Q(t)
↑	1	Q(t)
↑	0	0

Registros

- Un registro es un conjunto de flip-flops que guarda varios bits
- Se puede controlar con señales:
 - Load (L): Autoriza carga de un nuevo dato
 - Reset (R): Borra el contenido (el registro guarda un 0)

Abstracción: Registro de 4 bits

Diagrama Interno Registro A0

Registros: RESET

Esta señal actúa directamente sobre la entrada D del Flip-Flop D donde se almacena AO.

Casos

- R = 1 : el Flip-Flop guardará un 0, dado que AND resulta en 0
- R = 0, el valor almacenado A0
 dependerá de la salida del Mux

Registros: LOAD

Esta señal es el **selector del Mux** que escoge entre D0 y Q(t)

Casos

- L = 1: Se escoge la señal de entrada D0 y se manda al AND.
- o OJO
 - si R = 0, entonces se guardará D0 en el Flip-Flop.
 - Si R = 1, ocurre un reset.
- L = 0 : Se escoge Q(t) y se almacena, por ende Q(t+1) = Q(t)

Tipos de Memoria: RAM & ROM

- RAM (Random Access Memory)
 - Es la memoria temporal donde se cargan los programas en ejecución
 - Se pierden sus datos al finalizar el programa
- ROM (Read-Only Memory)
 - Acorde a la arquitectura Harvard, la ROM almacena las instrucciones del programa a ejecutar (el código assembly en nuestro caso)

Flancos

Resumen Flancos Diseño de Circuitos

El desafío de este ejercicio es **entender la relación entre Latches, Flancos y Flip-Flops**. Para esto, se tiene una entrada CLK y una señal D de un latch D. Se asumen que todas las salidas comienzan en 0 (nada ocurrió antes)

- **Objetivo**: Dibujar las señales de salida de:
 - Latch D
 - Flip-Flop D en flanco de subida
 - Flip-Flop D en flanco de bajada

Objetivo: Dibujar las señales de salida de:

- Latch D
- Flip-Flop D en flanco de subida
- Flip-Flop D en flanco de bajada

Objetivo: Dibujar las señales de salida de:

- Latch D
- Flip-Flop D en flanco de subida
- Flip-Flop D en flanco de bajada

Objetivo: Dibujar las señales de salida de:

- Latch D
- Flip-Flop D en flanco de subida
- Flip-Flop D en flanco de bajada

Diseño de Circuitos

Resumen Flancos Diseño de Circuitos

Diseño: a)

Diseñe, utilizando todos los elementos de circuitos lógicos vistos en clase, un contador secuencial de 2 bits que se incrementa con cada *flanco de bajada* de la señal de control. Este contador deberá partir en 00 y volver a 00 por *overflow* una vez llega a su valor máximo.

Diseño: a) SOLUCIÓN

Diseñe, utilizando todos los elementos de circuitos lógicos vistos en clase, un contador secuencial de 2 bits que se incrementa con cada *flanco de bajada* de la señal de control. Este contador deberá partir en 00 y volver a 00 por overflow una vez llega a su valor máximo.

Modificación: En la modificación el Latch de entrada ya no tiene la entrada de control C negada

Flip-Flop D modificado

Diseño: a) SOLUCIÓN

Diseñe, utilizando todos los elementos de circuitos lógicos vistos en clase, un contador secuencial de 2 bits que se incrementa con cada *flanco de bajada* de la señal de control. Este contador deberá partir en 00 y volver a 00 por overflow una vez llega a su valor máximo.

Consejo: Crear una tabla para representar cada estado posible

Q ^t ₁	Q ^t ₀	Q ^{t+1} 1	Q ^{t+1} ₀
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

Diseño: a) SOLUCIÓN

Diseñe, utilizando todos los elementos de circuitos lógicos vistos en clase, un contador secuencial de 2 bits que se incrementa con cada *flanco de bajada* de la señal de control. Este contador deberá partir en 00 y volver a 00 por overflow una vez llega a su valor máximo.

Diseño del circuito: Se deduce que $Q_0^{t+1} = Q_0^t y Q_1^{t+1} = Q_0^t x OR Q_1^t$

Q ^t ₁	Q ^t ₀	Q ^{t+1}	Q ^{t+1} ₀
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

Diseño: b)

Modifique el circuito anterior para que pase a ser un contador secuencial de 3 bits.

Diseño: b) SOLUCIÓN

Modifique el circuito anterior para que pase a ser un contador secuencial de 3 bits.

Respuesta: Se debe agregar un tercer Flip-Flop D (modificado) que representa el bit más significativo. Se debe hacer otra tabla de verdad para

representar todos los estados posibles $2^3 = 8$.

Q ^t ₂	Q ^t ₁	Q ^t ₀	Q ^{t+1} ₂	Q ^{t+1}	Q ^{t+1} ₀
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Diseño: b) SOLUCIÓN

Modifique el circuito anterior para que pase a ser un contador secuencial de 3 bits.

Respuesta: Se debe agregar un tercer Flip-Flop D (modificado) que representa el bit más significativo. Se debe hacer otra tabla de verdad para representar todos los estados posibles 2³ = 8.

Diseño: Es importante notar que Q_2 alterna su valor si y sólo si $Q_1 = Q_2 = 1$. Por ende, $Q^{t+1}_2 = (Q_1^t \text{ AND } Q_0^t) \text{ XOR } Q_2^t$

Q ^t ₂	Q ^t ₁	Q ^t ₀	Q ^{t+1} 2	Q ^{t+1} 1	Q ^{t+1} ₀
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Diseño: b) SOLUCIÓN

Diseño: Es importante notar que Q_2 alterna su valor si y sólo si $Q_1 = Q_2 = 1$. Por ende, $Q_2^{t+1} = (Q_1^t AND Q_0^t) XOR Q_2^t$

Q ^t ₂	Q ^t ₁	Q ^t ₀	Q ^{t+1} 2	Q ^{t+1} 1	Q ^{t+1} ₀
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Diseño: c)

Este contador debe recibir una señal de entrada R de 1 bit. Si el valor de R es igual a 1 **durante el flanco de bajada** de la señal de control, entonces el contador debe actualizar su valor a 0 en vez de incrementarse en una unidad.

Diseño: c) SOLUCIÓN

Este contador debe recibir una señal de entrada R de 1 bit. Si el valor de R es igual a 1 **durante el flanco de bajada** de la señal de control, entonces el contador debe actualizar su valor a 0 en vez de incrementarse en una unidad.

Respuesta: Para implementar la señal de reset R hay que considerar que si R= 1, entonces $Q^{t+1}_{2}Q^{t+1}_{0}Q^{t+1}_{0} = 000$. Por lo tanto, haciendo uso de la ley de dominación, se pueden ajustar las expresiones de los estados del contador de la siguiente forma:

$$Q_{0}^{t+1} = R^{t} \wedge Q_{0}^{t}$$

$$Q_{1}^{t+1} = R^{t} \wedge (Q_{0}^{t} \oplus Q_{1}^{t})$$

$$Q_{2}^{t+1} = R^{t} \wedge ((Q_{1}^{t} \wedge Q_{0}^{t}) \oplus Q_{2}^{t}).$$

Finalmente, el siguiente diagrama representa el contador modificado conectado a la señal R:

Feedback

Resumen Flancos Diseño de Circuitos

Ayudantía

Almacenamiento de Datos

Resumen Flancos Diseño de Circuitos