Handout: Loss in Machine Learning

Presenter: Unmesh Raskar

ESL 344- Concept Presentation, 23/10/2024

1. What is Loss?

Loss quantifies how far a machine learning model's predictions are from the actual values. It's crucial in understanding model performance.

2. Types of Loss Functions:

Regression Loss (Mean Squared Error) Classification Loss (Cross-Entropy Loss)

Measures the squared difference between predictions and actual values.

Measures the difference between predicted probability and actual class label.

Used in predicting continuous values.

Used in classification tasks.

Discussion 1:

- Can you think of examples where minimizing the loss might not always improve realworld performance?
 - Consider cases like healthcare diagnostics or recommendation systems where reducing prediction error might conflict with other goals (e.g., fairness, interpretability).

3. The Process of Minimizing Loss:

Steps:

- 1. Train the model
- 2. Calculate loss
- 3. Adjust model parameters
- 4. Reduce loss
- 5. Repeat until loss is minimized

Discussion 2:

 How might different optimization techniques impact how fast or effectively we minimize loss? What trade-offs do you think might arise if we minimize loss too aggressively (e.g., overfitting or ignoring generalization)?

4. Comparing High vs. Low Loss:

- High Loss: Large errors between predictions and actual values.
- Low Loss: Small errors; the model is well-optimized.
- Shared Goal: Reduce the loss to improve model accuracy.

Critical Thinking Challenge:

- Minimizing loss can sometimes lead to unintended side effects, such as overfitting.
 - What strategies can we use to ensure the model generalizes well while reducing loss?
 - Can someone share an example where a model minimized loss in training but failed during deployment?

Discussion 3:

- Imagine a self-driving car system. What could go wrong if the model reduces loss during training but doesn't account for all possible real-world scenarios?
 - Could there be scenarios where minimizing loss during training doesn't translate into safe driving behavior?

Key Takeaways:

- Loss measures how well a model is performing.
- The goal is to **minimize loss** to improve model predictions, but blindly minimizing loss can introduce other issues.
- Loss functions need to be chosen carefully based on the task (e.g., MSE for regression, Cross-Entropy for classification).

For more details, refer to the presentation