The Pigeonhole Principle

Andrew Palacci - CS131 Spring 2021

Presentation Overview

1. The Pigeonhole Principle

Definition and example

Demonstration using Java

2. Generalized Pigeonhole Principle

Definition and example

Demonstration using Java

3. Applications of the Pigeonhole Principle

Hair-Counting example

Lossless compression algorithms

What is the Pigeonhole Principle?

- States that "If k is a positive integer and k +
 1 or more objects are placed into k boxes,
 then there is at least one box containing two
 or more of the objects."
- Example (using pigeons): if 10 pigeons flew into a set of 9 pigeonholes, at least one of the nine holes must contain at least two pigeons.
- This principle can be applied to far more than pigeons, as the rest of the slides will show

Pigeonhole Principle Demonstration

The Generalized Pigeonhole Principle

- States that "If N objects are placed into k
 boxes, then there is at least one box
 containing at least [N/k] objects."
- Example: if 55 pigeons fly into the same 9 holes from earlier, there will be at least
 [55/9] = 7 of them in at least one hole
- This principle is a useful extension of the Pigeonhole Principle because it can be used to make a more specific conclusion when given positive integers N and k

Generalized Pigeonhole Principle Demonstration

Applications of the Pigeonhole Principle

Hair-Counting example:

- The maximum amount of hairs a human head can have is approximately 1,000,000
- Los Angeles County is home to 10.1 million people, so by the Generalized Pigeonhole Principle, there are at least [10,100,000/1,000,000] = 11 people in Los Angeles County with exactly the same amount of hairs on their head

Lossless compression algorithms:

- The Pigeonhole Principle allows us to show that it is impossible to create a lossless compression algorithm that always reduces a file's size
- This is because a compression that always reduces file size would result in different files being placed in the same "pigeonhole," and thus having the same compressed result.
- Since the different files were compressed into the same result, at least one of them must have lost information, showing that a perfectly lossless compression is *not possible*

Works Cited (texts and images)

Hamel, Lutz. "Section 6.2.", 6 Sept. 2012.

Jin. "Pigeonhole Principle," Jineral Knowledge, 14 Jan. 2014,

jineralknowledge.com/pigeonhole-principle/.

Rosen, Kenneth H. Discrete Mathematics and Its Applications.

New York, Ny, Mcgraw-Hill, 2019.