

www.sites.google.com/site/faresfergani

<u>السنة الدراسية : 2015/2014</u>

المفاهيمي :

السقوط الحقيقي للأجسام في الهواء

• القوى المؤثرة على جسم صلب يسقط في المواء:

- أثناء سقوط جسم صلب في الهواء تحدث تأثيرات متبادلة بين هذا الجسم الصلب و الوسط الخارجي تتمثل في الهواء ، الأرض ،

و ينتج عن هذه التأثيرات خضوع الجسم الصلب إلى قوى أهمها:

قوة الثقل:

- يرمز لها $\stackrel{\rightarrow}{P}$ ناتجة عن تأثير الأرض على الجسم الصلب
- تتناسب قوة الثقل \vec{P} مع شعاع حقل الجاذبية \vec{g} وفق العلاقة الشعاعية : $\vec{P}=m$ م

- بجوار سطح الأرض أين يكون شعاع حقل الجاذبية ثابت و عمودي على سطح الأرض (الشكل-34) تكون قوة الثقل ثابتة و متجهة عموديا نحو سطح الأرض في كل نقطة من حقل الجاذبية الأرضية .
- شدة قوة ثقل جسم صلب كتلته m موجود في نقطة من حقل الجاذبية الأرضية شدته g عند هذه النقطة يعطى بالعبارة :

$$P = m g$$

دافعة أرخميدس:

- كل جسم صلب مغمور في مائع (هواء أو سائل) يخضع لفعل ميكانيكي يدعى دافعة أرخميدس.
- ننمذج دافعة أرخميدس بقوة شاقولية يرمز لها ب $\vec{\Pi}$ متجهة نحو الأعلى قيمتها تساوي ثقل المائع المزاح و عليه يعبر عنها بالعلاقة :

$$\Pi = \rho \ Vg$$

.kg/m³ - الكتلة الحجمية للمائع يقدر ب

 \mathbf{m}^3 : حجم المائع المنزِ اح و يساوي حج الجسم الصلب يقدر ب \mathbf{V}

 m/s^2 : الجاذبية تقدر بـ m/s^2

قوة الإحتكاك :

- يخضع كل جسم صلب يتحرك في مائع لعدة قوى موزعة على سطحه ، تتعلق بطبيعة المائع و شكل الجسم الصلب و كذا خشونة السطح .
 - تزداد قيمة هذه القوى بتزايد السرعة.
 - يمكن نمذجة المجموع الشعاعي لهذه القوى التلامسية بقوة شاقولية ، معاكسة لجهة الحركة ، تدعى قوة الإحتكاك.
 - التعبير عن قوة الاحتكاك بدلالة السرعة معقد ماعدا في الحالتين التاليتين:
 - عندما تكون السرعة ضعيفة تكون قيمة القوة متناسبة مع قيمة السرعة $f=\mathrm{kv}$
 - $f = \mathrm{kv}^2$: عندما تكون قيمة السرعة كبيرة تكون قيمة القوة متناسبة مع مربع قيمة السرعة $f = \mathrm{kv}^2$
 - . \vec{v} الشعاع معاكس للشعاع الشعاع عن الشعاع التين . و الشعاع

<u>ملاحظة :</u>

سقوط الأجسام الصلبة في السوائل يشبه سقوط الأجسام الصلبة في الهواء.

<u>التمرين (1) :</u>

- ، ρ و كتلته الحجمية $V=5.0~{
 m cm}^3$ و كتلته الحجمية $\rho=8.9~{
 m g/cm}^3$ و كتلته الحجمية و $V=5.0~{
 m cm}^3$ د غمر كليا جسما صلبا حجمه و $V=5.0~{
 m cm}^3$ د غمر كليا جسما صلبا حجمه و $V=5.0~{
 m cm}^3$
 - أ- أحسب ثقل هذا الجسم .
 - $ho' = 1.0 \; ext{g.cm}^{-3}$. $ho' = 1.0 \; ext{g.cm}^{-3}$.
 - ho أحسب قيمة دافعة أرخميدس في الحالة التي يكون فيها المائع هو الهواء حيث ho : ho ho

<u>الأجوبة :</u>

<u>2</u>- ثقل الجسم:

نحسب قيمة m

 $P = m \ g \ \rightarrow \ P = \rho \ V \ g$

الأستاذ : فرقاني فارس

$$\rho = \frac{m}{V} \rightarrow m = \rho V$$

$$m = 8.9.5 = 44.5 g$$

 $P = 44.5 \cdot 10^{-3} \cdot 9.8 = 0.47 \text{ N}$

ومنه يكون الثقل:

ب- قيمة دافعة أرخميدس حيث المائع هو الماء:

دافعة أرخميدس هي ثقل المائع المنزاح عندم يغمر فيه الجسم الصلب و عليه :

$$\Pi = m'g = \rho'V'g$$

: حجم الماء المنزاح يساوي حجم الجسم المغمور في الماء و الذي حل محل المائع المنزاح ، أي V=V' ومنه $\Pi=\rho'V$ g

$$\Pi = 10^{-3}.5.9.8 = 4.9.10^{-2} \text{ N}$$

جـ- دافعة أرخميدس حيث يكون الماء هو الهواء:

$$\Pi' = \rho'' V g$$

$$\Pi' = 1.3.10^{-3}.10^{-3}.5.9.8 = 6.37.10^{-5} \text{ N}$$

• دراسة حركة السقوط الحقيقي لجسم صلب في المواء:

- نعتبر جملة مادية مكونة من أربعة بالونات خفيفة مثقلة بجسم له كتلة m=19g و حجم v=5.41 . و ذو حجم كاف لبلوغ السرعة الحدية بعد قطع 2m تقريبا من السقوط ، و أن لا يسمح شكل الجملة بدور انه خلال السقوط لتكون الحركة انسحابية شاقولية (الشكل) .

- البيان التالي يمثل تطور سرعة البالونات بدلالة الزمن.

- من البيان يتضح وجود نظامين:

- نظام إنتقالي : تكون فيه قيمة السرعة متزايدة بشكل سريع في البداية و أقل فأقل مع مرور الزمن. إذن حركة البالونات متسارعة في هذه المرحلة . (النظام الانتقالي)
- نظام دائم : تكون فيه قيمة السرعة ثابتة حيث تبلغ قيمتها الحدية $v_\ell = 2.0 \; \text{m/s}$ في هذه المرحلة و تصبح حركة البالونات منتظمة.

الزمن المميز للسقوط τ:

يقطع مماس البيان v(t) عند اللحظة t=0 في حالة t=0 الخط المقارب $v=v_\ell$ في لحظة تمثل مقدار يدعى الزمن المميز للسقوط يرمز له ب τ و وحدته الثانية t=0 .

• إبراز المعادلة التفاضلية :

- الجملة المعتبرة: بالونات.
- مرجع الدارسة: سطحي أرضى نعتبره غاليليا.
- القوى الخارجية المؤثرة على الجملة : الثقل \vec{P} ؛ دافعة أرخميدس $\vec{\Pi}$ و قوة الإحتكاك \vec{f}
 - بتطبيق القانون الثاني لنيوتن:

$$\Sigma \vec{F}_{ext} = m \vec{a}_{G}$$
$$\vec{P} + \vec{\Pi} + \vec{f} = m \vec{a}$$

بتحليل العلاقة الشعاعية على المحور (Oz):

P-
$$\Pi$$
- f = m a_z
m g- ρ_{air} V_{air}- f = m $\frac{dv}{dt}$

$$\frac{dv}{dt} + \frac{1}{m}f = \frac{mg - \rho_{air}V_{air}g}{m}$$

- إن الشكل النهائي للمعادلة التفاضلية له علاقة بشكل قيمة قوة الإحتكاك f .
 - f = kv من أجل

تكون المعادلة من الشكل:

$$\frac{dv}{dt} + \frac{K}{m}v = \frac{mg - \rho_{air}V_{air}g}{m}$$

و هي معادلة تفاضلية من الدرجة الأولى حلها من الشكل:

$$v = v_{\ell} (1 - e^{-t/\tau})$$

t=0 عند اللحظة v=f(t) هو الزمن المميز للسقوط و هندسيا يحسب من خلال تقاطع مماس البيان v=f(t) عند اللحظة مع المستقيم المقارب في النظام الدائم .

الصفحة : 5

- في النظام الدائم أين يكون $\frac{\mathrm{d} v}{\mathrm{d} t}=0$ و تبلغ السرعة قيمتها الحدية v_ℓ يكون بالتعويض في المعادلة التفاضلية :

$$\frac{K}{m}v_{\ell} = \frac{m g - \rho_{air}V_{air} g}{m}$$

$$Kv_{\ell} = mg$$
 - $\rho_{air} \; V_{air} \; g$

$$Kv_{\ell} = \rho_S V_S g - \rho_{air} V_{air} g$$

حجم المائع (الهواء) المنزاح هو نفسه حجم الجملة S بمعنى $V_{
m air}=V_{
m S}$ و منه يصبح :

$$Kv_{\ell} = \; \rho_S \; V_S \; g \; \text{--} \; \rho_{air} \; V_S \; g \; \label{eq:Kv_lambda}$$

$$Kv_{\ell} = V_S g (\rho_S - \rho_{air})$$

$$v_{\ell} = \frac{V_{S}.g}{K} (\rho_{S} - \rho_{air})$$

• من أجل $f = kv^2$: تكون المعادلة من الشكل ·

$$\frac{dv}{dt} + \frac{K}{m}v^2 = \frac{mg - \rho_{air}V_{air}g}{m}$$

- في النظام الدائم أين يكون $\frac{\mathrm{d} v}{\mathrm{d} t} = 0$ و تبلغ السرعة قيمتها الحدية v_ℓ يكون بالتعويض في المعادلة التفاضلية :

$$\frac{k}{m}v_{\ell}^2 = \frac{mg - \rho_{air}V_{air}g}{m}$$

$$kv_{\ell}^2 = mg - \rho_{air} V_{air} g$$

$$kv_{\ell}^2 = \rho_S V_S g - \rho_{air} V_{air} g$$

حجم المائع (الهواء) المنزاح هو نفسه حجم الجملة S بمعنى $V_{air}=V_S$ و منه يصبح :

$$kv_{\ell}^2 = \rho_S V_S g - \rho_{air} V_S g$$

$$kv_{\ell}^2 = V_S g (\rho_S - \rho_{air})$$

$$v_{\ell} = \sqrt{\frac{V_{S}.g}{k} (\rho_{S} - \rho_{air})}$$

حالة خاصة :

إذا اعتبرنا f = kv و أهملنا دافعة أرخميدس تكون المعادلة التفاضلية كما يلي :

$$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{K}{m}v = g$$

<u>التمرين (2):</u>

 $m=100~{\rm kg}$ يسقط شاقوليا مظلي كتاته مع تجهيزه $v_\ell=4.5~{\rm m.s}^{-1}$ نهمل فيبلغ سرعة ثابتة حدية قيمتها أمام القوى الأخرى خلال السقوط دافعة أرخميدس أمام القوى الأخرى المطبقة على المظلي و تجهيزه ، نعتبر أن قوة الاحتكاك المطبقة من طرف الهواء على المظلي من الشكل $g=9.8~{\rm m/s}^2$. $f=k~{\rm v}^2$

المنحنى البياني التالي يمثل تغيرات سرعة (المظلي و مظلته) بدلالة الزمن .

1- أوجد المعادلة التفاضلية التي تعبر عن سرعة حركة مركز عطالة المظلى و تجهيزه

2-. فسر لماذا يمكن للسرعة أن تصبح ثابتة .

 $_{\rm C}$ أحسب المعامل $_{\rm K}$ الذي يتدخل في قوة الاحتكاك .

<u>الأجوبة :</u>

1- المعادلة التفاضلية:

- الجملة المدروسة: المظلى و تجهيزه.

- مرجع الدراسة: سطحي أرضي نعتبره غاليلي .

- القوى الخارجية المؤثرة : الثقل \overrightarrow{P} ، قوى الاحتكاك \overrightarrow{f} .

- بتطبيق القانون الثاني لنيوتن:

$$\sum \vec{F}_{ext} = m \vec{a}_{G}$$
$$\vec{P} + \vec{f} = m \vec{a}_{G}$$

بتحليل العلاقة الشعاعية وفق محور (oz) شاقولي و متجه نحو الأسفل يكون :

$$P - f = m a$$

 $m g - kv^2 = ma$

$$m g - k v^2 = m \frac{dv}{dt}$$

$$m\frac{dv}{dt} + k v^2 = m g$$
 $\rightarrow \frac{dv}{dt} + \frac{k}{m} v^2 = g$

2- تفسير الحركة المستقيمة المنتظمة (ثبات السرعة):

قوة الثقل لا تتغير أثناء الحركة ، في بداية الحركة تكون سرعة الجسم معدومة و بالتالي قوة الاحتكاك تكون معدومة أيضا ، و أثناء الحركة أين تكون حركة (المظلي مع تجهيزه) متسارعة ، تزداد سرعة المضلي مع تجهيزه ما يجعل قوة الاحتكاك تزداد تدريجيا إلى أن تصبح مساوية للثقل في الشدة P=f ، و بالعودة إلى قانون نيوتن الثاني نجد في هذه الحالة :

$$P-f=m$$
 a $P-P=m$ a \rightarrow a $=0$ \rightarrow v (ثابتة)

3- قيمة k

قيمة k ثابتة لا تتعلق بالزمن و عليه يمكن حسابها في أي لحظة من اللحظات .

- نختار اللحظة التي تكون فيها سرعة (المظلي مع تجهيزه) ثابتة و حدية (نظام دائم) أين يكون :

$$v=v_{m}=$$
 ثابت ، $\dfrac{dv}{dt}=0$

بالتعويض في المعادلة التفاضلية:

$$\frac{k}{m} v_m^2 = g$$

$$k = \frac{g \cdot m}{v_m^2} \rightarrow k = \frac{9.8 \cdot 100}{(4.5)^2} = 48.4 \text{ kg/m}$$

التمرين (3):

قام فوج من التلاميذ في حصة للأعمال المخبرية بدراسة السقوط الشاقولي لجسم صلب (S) في الهواء كتلته m=19 g m=19 (Webcam) عولج شريط الفيديو ببرمجية "Avistep" بجهاز الإعلام الآلي فتحصلوا على البيان v=f(t) الذي يمثل تغيرات سرعة مركز عطالة (S) بدلالة الزمن (الشكل).

يعطى : g = 9.8 N.kg⁻¹

1- حدد طبيعة حركة مركز عطالة الجسم (S) في النظامين الإنتقالي و الدائم علل .

2- بالاعتماد على البيان عين:

أ- السرعة الحدية v_ℓ ، و ثابت الزمن τ المميز للسقوط . ب- تسارع الحركة في اللحظة t=0 ، و عند اللحظة $t=12~{\rm s}$

جـ قيمة الطاقة الحركية للجسم (S) في النظام الدائم .

3- كيف يكون الجسم الصلب (S) متميزا و هذا للحصول على حركة مستقيمة شاقولية انسحابية في نظاميين انتقالي و دائم ؟

4- بين أن المعادلة التفاضلية لحركة (S) بالعبارة : (S) بالعبارة : (S) حيث (S) حيث (S) حيث (S) عبارتهما ، نذكر أن (S) الكتلة الحجمية للهواء ، (S) حجم الجسم (S) .

5- توقع شكل مخطط السرعة عند إهمال دافعة أرخميدس و مقاومة الهواء . علل .

<u>الأجوبة :</u>

1- طبيعة حركة مركز عطالة الجسم (S):

النظام الانتقالي:

المنحنى v = f(t) عبارة عن خط منحني ، و بما أن السرعة متزايدة تكون طبيعة الحركة في هذه المرحلة مستقيمة متسارعة من دون انتظام .

النظام الدائم:

المنحنى v=f(t) عبارة عن مستقيم يوازي محور الأزمنة ، إذن طبيعة الحركة في هذه المرحلة مستقيمة منتظمة .

ي أ- السرعة الحدية v_ℓ ، و ثابت الزمن au المميز للسقوط: au

 $\tau = 2 \, \mathrm{s}$ ، $v_{\mathrm{f}} = 19 \, \mathrm{m/s}$: من البیان مباشرة

 $t = 12 \text{ s} \cdot t = 0$ ب- تسارع الحركة في اللحظتين

تسارع الحركة في لحظة t مساوي لميل مماس المنحنى v=f(t) عند هذه اللحظة و الذي نعتبره t مساوي لميل مماس المنحنى t

•
$$t = 0 \rightarrow \tan \alpha = \frac{19}{2} = 9.5 \rightarrow a = 9.5 \text{ m/s}^2$$

•
$$t = 12 \text{ s} \rightarrow \tan \alpha = 0 \rightarrow a = 0$$

جـ الطاقة الحركية في النظام الدائم:

$$E_C = \frac{1}{2} m v^2$$

من البيان و في النظام الدائم يكون : $m v =
m v_{\ell} = 19~m/s$ و منه :

$$E_C = 0.5 \cdot 19.10^{-3} (19)^2 = 3.43 J$$

3- للحصول على حركة مستقيمة شاقولية إنسحابية في نظامين انتقالي و دائم ، يجب أن يكون الجسم (S) خفيف و ذو حجم كاف لبلغ السرعة الحدية ، كما لا يكون شكله انسيابي كي يجعل تأثير قوة الاحتكاك أكبر .

4- المعادلة التفاضلية:

- الجملة المدر وسة : جسم (S). - مرجع الدراسة: سطحي أرضى نعتبره غاليلي.

- القوى الخارجية المؤثرة: الثقل \overrightarrow{P} ، دافعة أرخميدس $\overrightarrow{\Pi}$ ، قوة الاحتكاك \overrightarrow{f} .

$$\Sigma \vec{F} = m \vec{a}
\vec{P} + \vec{\Pi} + \vec{f} = m \vec{a}$$

بتحليل العلاقة الشعاعية وفق المحور (oz):

$$P - \Pi - f = m a$$

$$m.g - m_{air}g - kv = m \frac{dv}{dt} \rightarrow m.g - \rho_{air}V.g - kv = m \frac{dv}{dt}$$

$$m\frac{dv}{dt} + k v = m g - \rho_{air}V.g \rightarrow \frac{dv}{dt} + \frac{k}{m}v = g - \frac{\rho_{air}V}{m}.g$$

$$\frac{dv}{dt} + \frac{k}{m}v = g(1 - \frac{\rho_{air}V}{m})$$

المعادلة التفاضلية من الشكل:

$$\frac{dv}{dt} + A v = C (1 - \frac{\rho_{air}V}{m})$$

 $A = \frac{k}{m}$ ، C = g :حيث

5- شكل مخطط السرعة عند إهمال دافعة أرخميدس و مقاومة الهواء : عند إهمال قوة الاحتكاك و كذا دافعة أرخميدس ، تكون المعادلة التفاضلية كما يلي :

الصفحة : 9

$$\frac{\mathrm{d}v}{\mathrm{d}t} = g \quad \to \quad v = g \ t + C$$

- من الشروط الابتدائية:

$$t=0 \ \rightarrow \ v=0 \ \rightarrow \ C=0 \ \rightarrow \ v=gt$$

أي أن المنحنى ${
m v}={
m f}({
m t})$ عبارة عن مستقيم يمر من المبدأ ، معادلته من الشكل ${
m v}={
m t}$ كما يلي :

<u>التمرين (4):</u>

يسقط مظلى كتلته مع تجهيزه m = 100 kg سقوطا شاقوليا بدءا من نقطة O بالنسبة لمعلم أرضى دون سرعة ابتدائية . يخضع أثناء سقوطه إلى قوة مقاومة الهواء عبارتها من الشكل $f=k\ v$ (تهمل دافعة أرخميدس) .

1- بتطبيق القانون الثاني لنيوتن ، أكتب المعادلة التفاضلية لحركة المظلى بدلالة السرعة (v(t

 $k \cdot m \cdot g$ عبر عن السرعة الحدية v_{ℓ} بدلالة -2

 $v = v_{\ell}(1 - e^{-rac{K}{m}t})$: بين أن المعادلة تقبل الحل التالى $v = v_{\ell}(1 - e^{-rac{K}{m}t})$

4- أكتب العبارة اللحظية لتسارع المظلي . $a=f_2(t)$ ، $v=f_1(t)$. $a=f_2(t)$

 $\frac{k}{m}$ ، حدد وحدة هذا المقدار -6 تتميز الحركة السابقة بقيمة المقدار .

7- يمثل البيان الشكل-2- تغيرات (a) تسارع مركز عطالة المظلى بدلالة السرعة (v)

أ- استنتج من البيان قيمتي g و k .

ب- أحسب السرعة الحدية v_e للمظلى .

الأحوية :

- 1- المعادلة التفاضلية بدلالة v(t) :
- الجملة المدروسة: (مظلي مع تجهيزه)
- مرجع الدراسة: سطحى أرضى نعتبره غاليلى.
- القوى الخارجية المؤثرة: الثقل $\vec{\mathbf{p}}$ ، قوة الاحتكاك $\vec{\mathbf{f}}$.

f

- بتطبيق القانون الثاني لنبوتن:

بتحليل العلاقة الشعاعية وفق المحور (oz):

$$P - f = m a$$

m.g - kv =
$$m \frac{dv}{dt}$$

$$m \frac{dv}{dt} + k v = m g$$

$$\frac{dv}{dt} + \frac{k}{m} v = g$$

$\frac{1}{2}$ یا بدلالهٔ یا بدلالهٔ

عند النظام الدائم يكون : $\frac{dv}{dt}=0$ ، $v=v_\ell$ ؛ بالتعويض في المعادلة التفاضلية نجد

$$0 + \frac{k}{m} v_{\ell} = g \rightarrow v_{\ell} = \frac{m.g}{k}$$

3- إثبات حل المعادلة التفاضلية:

•
$$v = v_{\ell} (1 - e^{-\frac{k}{m}t}) = \frac{mg}{k} (1 - e^{-\frac{k}{m}})$$

$$\frac{dv}{dt} = \frac{mg}{k} \left(0 - \left(-\frac{k}{m} e^{-\frac{k}{m}} \right) \right) = g e^{-\frac{k}{m}t}$$

بالتعويض في المعادلة التفاضلية :

$$g e^{-\frac{k}{m}} + \frac{k}{m} \cdot \frac{mg}{k} (1 - e^{-\frac{k}{m}t}) = g$$

$$g e^{-\frac{k}{m}} + g (1 - e^{-\frac{k}{m}t}) = g$$

$$g e^{-\frac{k}{m}} + g - g e^{-\frac{k}{m}t} = g \rightarrow g = g$$

إذن الحل المعطى هو حل للمعادلة التفاضلية .

4- عبارة التسارع اللحظية: لدبنا:

$$a = \frac{dv}{dt}$$

و مما سبق وجدنا:

$$\frac{dv}{dt} = g e^{-\frac{k}{m}t} \longrightarrow a = g e^{-\frac{k}{m}t}$$

5- المنحنيين (a(t) ، v(t : 5 المنحنيين لا : 5 المنحنيين عما الله الله على الله على

•
$$v = v_{\ell} (1 - e^{-\frac{k}{m}t})$$

• $a = g e^{-\frac{k}{m}t}$

و من هاتين العلاقتين نجد:

$$\begin{array}{l} t=0 \ \rightarrow \ v=0 \ \rightarrow \ a=g \\ t=\infty \ \rightarrow \ v=v_{\ell} \ , \ a=0 \end{array}$$

إذن المنحنيين يكونان كما يلي:

تمارين مقترحة

التمرين (5): (بكالوريا 2010 – علوم تجريبية) (الحل المفصل: تمرين مقترح 09 على الموقع)

قام فوج من التلاميذ في حصة للأعمال المخبرية بدراسة السقوط الشاقولي لجسم صلب (S) في الهواء ، و ذلك باستعمال كاميرا رقمية (Webcam) ، عولج شريط الفيديو ببرمجية "Avistep" بجهاز الإعلام الآلي فتحصلوا على البيان v = f(t) الذي يمثل تغيرات سرعة مركز عطالة v = f(t) بدلالة الزمن (الشكل-4) .

1- حدد طبيعة حركة مركز عطالة الجسم (٥) في النظامين الإنتقالي و الدائم علل .

2- بالاعتماد على البيان عين:

أ/ السرعة الحدية $v_{
m lim}$.

t=0 بر تسارع الحركة في اللحظة

3- كيف يكون الجسم الصلب (S) متميزا و هذا للحصول على حركة مستقيمة شاقولية انسحابية في نظاميين انتقالي و دائم ؟

4- باعتبار دافعة أرخميدس مهملة ، مثل القوى المؤثرة على الجسم (S) أثناء السقوط ، و استنتج عندئذ المعادلة التفاضلية للحركة بدلالة السرعة v في حالة السرعات الصغيرة .

5- توقع شكل مخطط السرعة عند إهمال دافعة أرخميدس و مقاومة الهواء . علل .

<u>أجوبة مذتصرة :</u>

1) النظام الإنتقالي v = f(t) عبارة عن خط منحني ، و بما أن السرعة متزايدة تكون طبيعة الحركة في هذه المرحلة مستقيمة متسارعة (من دون انتظام) منحني ، و بما أن السرعة متزايدة تكون طبيعة الحركة في هذه المرحلة مستقيمة متسارعة (من دون انتظام) النظام الدائم v = f(t) عبارة عن مستقيم يوازي محور الأزمنة إذن طبيعة الحركة في هذه المرحلة مستقيمة منتظمة .

 $a = 9.5 \text{ m/s}^2 (\because \text{ } \text{ } \text{v}_{\text{lim}} = 19.6 \text{ m/s} \text{ } \text{(}^{1}\text{ } \text{-2} \text{)}$

3) - يجب أن يكون الجسم خفيف و ذو حجم كاف لبلوغ السرعة الحدية .

4) تمثيل القوى المؤثرة الجسم (2):

• المعادلة التفاضلية : v = f(t) المنحنى (5 ، $\frac{dv}{dt} + \frac{k}{m}v = g$ عبارة عن مستقيم يمر من المبدأ معادلته من الشكل v = at .

p

التمرين (6): (بكالوريا 2012 - علوم تجريبية) (الحل المفصل: تمرين مقترح 14 على الموقع)

ندرس في مرجع سطحي أرضي نعتبره غاليليا حركة سقوط كرية في الهواء . (الشكل-3) يمثل تطور سرعة مركز عطالة الكرية $\, v \,$ بدلالة الزمن $\, t \,$

1- من البيان:

أ- حدد المجال الزمني لنظامي الحركة .

 v_{ℓ} عين قيمة السرعة الحدية

t=0 عطالة الكرية في اللحظة a_0 ماذا تستنتج a_0

د- ما هي قيمة التسارع لحظة وصول الكرية إلى سطح الأرض؟

t = 3 s اللحظة الحركية للكرية في اللحظة

2- مثلُ كيفيا مخطط السرعة (v(t لحركة "السقوط الشاقولي لمركز عطالة الكرية في الفراغ.

m = 30 g: كتلة الكرية $g = 9.80 \text{ m.s}^{-2}$

<u>أجوبة مختصرة :</u>

 $v_\ell = 4.9 \; . \; 4 = 19.6 \; \text{m/s} \; (ب ، \; t > 9 \; \text{s} \; : النظام الانتقالي : <math>0 \le t \le 9 \; \text{s} \; : 1$ النظام الانتقالي : $0 \le t \le 9 \; \text{s} \; : 1$

جـ) $a_0=9.8~\mathrm{m/s^2}$ ، نلاحظ أن $a_0=g$ ، نستنتج أن دافعة أر خميدس مهملة .

د) يتضح من البيان أن الكرية بلغت النّظام الدائم قبل وصولها إلى الأرض، و اثناء ذلك تكون السرعة ثابتة

و عليه التسارع يكون معدوم $(a = \frac{dv}{dt} = 0)$ في النظام الدائم و كذلك لحظة و صول الكرية إلى سطح $(v = C^{te})$

. $E_C = \frac{1}{2} \text{ m v}^2 = 3.1 \text{ J}$ (هـ ، الأرض ، هـ)

 $\frac{1}{2}$ الفراغ يقصد به عدم وجود الهواء و بالتالي عدم وجود تأثيرات الهواء المتمثلة في قوى الاحتكاك و دافعة أرخمييس ، في حالة الحالة الكرية تخضع إلى قوة وحيدة ثابتة تتمثل في قوة الثقل ، و حركتها أثناء ذلك تكون مستقيمة متسارعة بانتظام بدون سرعة ابتدائية (سقوط حر) ، يكون المخطط v(t) إذن عبارة عن مستقيم يمر من المبدأ معادلته من الشكل v = at.

التمرين (7): (الحل المفصل: تمرين مقترح 47 على الموقع)

عند اللحظة t=0 نترك كرة تنس كتلتها m=57 g لتسقط في الهواء ، ندرس حركة مركز العطالة للكرة في المرجع السطحي الأرضي المزود بالمعلم المستقيم (O,\vec{k}) حيث \vec{k} شاقولي و موجه نحو الأسفل .

تظهر نتائج الدراسة أن سرعة مركز عطالة الكرة تحقق المعادلة التفاضلية التالية:

$$\frac{dv}{dt} = A - B.v^2$$

. B = 0.02 m ، $A = 9.8 \text{ m/s}^2$: حیث

. $\|\vec{f}\| = k.v^2$: شدتها تعطى بالعلاقة القوم المتكاك ، شدتها تعطى بالعلاقة

1- ما هي القيمة الابتدائية لشدة هذه القوة ؟ كيف تتغير شدة القوة مع الزمن أثناء السقوط؟

2- ما هي القوى الخارجية الأخرى المطبقة على الكرة ؟ هل تتغير شدة هذه القوى أثناء السقوط؟

t=0 باستعمال المعادلة التفاضلية أوجد قيمة تسارع مركز عطالة الكرة عند اللحظة t=0

4- أكتب عند t=0 قانون نيوتن الثاني و استنتج أنه يمكن اهمال إحدى القوى الخارجية المطبقة على الكرة أثناء دراسة حركتها .

 v_{ℓ} باستعمال المعادلة التفاضلية ، أوجد قيمة السرعة الحدية v_{ℓ}

 $_{0}$ إن المنحنى البياني الذي يمثل تغيرات السرعة $_{0}$ بدلالة الزمن له الشكل التالي :

أ- مثل المماس عند اللحظة t = 0 ، و كذا المستقيم المقارب

للمنحنى عند $\infty o t$ ، أكتب معادلة هذا الأخير

ب- هي قيمة معامل توجيه هذا المستقيم؟

ب- كيف نسمي اللحظة الموافقة لفاصلة نقطة تقاطع مماس المنحى v(t) عند v(t) عند v(t) و المستقيم المقارب لنفس المنحنى عند v(t) ، أوجد قيمة هذه اللحظة

 $g=9.8~\mathrm{m/s}^2$. $g=9.8~\mathrm{m/s}$

<u>أجوبة مختصرة :</u>

t(s) دافعة P=m.g: حيث \overrightarrow{P} حيث \overrightarrow{P} دافعة $(2 \cdot f=0)(1 \cdot \Pi=\rho_{air}.V.g$ رخميدس $\overrightarrow{\Pi}$ حيث $(2 \cdot f=0)(1 \cdot \Pi=\rho_{air}.V.g)$

. ρ_{air} ، g ، m : عون الشدة كون (\overrightarrow{P} ، \overrightarrow{P}) هاتين القوتين

 $a_0 = 9.8 \text{ m/s}^2$ (3)

و حيث أن $g - \frac{\Pi}{m} = a_{(t=0)} \leftarrow P - \Pi = m.a_{(t=0)}$: و حيث أن $\vec{P} + \vec{\Pi} + \vec{f} = m \vec{a}_{(t=0)}$ (4 و حيث أن g = 9.8). g = 9.8