

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

į.

AD A 131

HIGH REYNOLDS NUMBER CYLINDER FLOW STUDIES

PREPARED FOR:

OFFICE OF NAVAL RESEARCH UNDER CONTRACT SFRC NUMBER NØØØ14-81-K-0479

FILE COPY

Department Of Physics

Alabama Agricultural And Mechanical University

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

Normal, Alabama

(205) 859-7308

83

08

05 046

HIGH REYNOLDS NUMBER CYLINDER FLOW STUDIES

PREPARED FOR:

OFFICE OF NAVAL RESEARCH

UNDER CONTRACT

SFRC NUMBER NØØØ14-81-K-0479

DEPARTMENT OF PHYSICS
ALABAMA A. & M. UNIVERSITY
NORMAL, AL 35762

Approved for public release;
Distribution Unlimited

D

REPORT DOCU	MENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	AI31 // L	
TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
		Final: 5/81 to 10/82
High Reynolds Number Cy	ylinder Flow Studies	6. PERFORMING ORG, REPORT NUMBER
AUTHOR(e)		B. CONTRACT OR GRANT NUMBER(*)
M. C. George		N00014-81-K-0479
PERFORMING ORGANIZATION NAM Department of Physics Alabama A & M Universit Normal, AL 35762	ty	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND		12. REPORT DATE
Office of Naval Research	;h	10 January 1983
Department of the Navy Arlington, VA 22217		13. NUMBER OF PAGES
	DDRESS(II different from Controlling Office)	
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for Public Rel	lease; Distribution Unlimit	ted
17. DISTRIBUTION STATEMENT (of the	e abstract entered in Block 20, if different fro	on Report)
18. SUPPLEMENTARY NOTES		
•	de if necessary and identify by block number	0
Cylinder Flow Wind Tunnel Data	Boundary Layer Flow Roughness Effects	Turbulence Cylinder Drag
	-	· · · · · · · · · · · · · · · · · · ·

conducted in the NASA-Ames 12-foot pressurized wind tunnel. Experiments were conducted on smooth and rough cylinders at Reynolds numbers that ranged from 10^5 to 7×10^6 . Roughnesses were obtained by using four sizes of wire mesh to cover the smooth cylinder. Sample results are included, but the complete data set is the subject of a forthcoming report.

10000.

DD 1 JAN 73 1473

1,

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

FINAL REPORT

HIGH REYNOLDS NUMBER CYLINDER FLOW STUDIES

PREPARED FOR:

OFFICE OF NAVAL RESEARCH UNDER CONTRACT SFRC NUMBER NØØØ14-81-K-0479

CONTENTS

- TEST SETUP
- RUN MATRIX
- · MEAN PRESSURE DATA
- INTEGRATED RESULTS
- BOUNDARY LAYER SURVEYS
- DYNAMIC DATA
- TRANSITION EXPERIMENTS
- · CONCLUDING REMARKS

Model Instrumentation at O Degrees Roll Angle

ŧ,

į

1

ŧ,

Table 1. Simulated Roughnesses

Figure 3.6a Schematic of Boundary Layer Probe in Cylinder -7-

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AMES RESEARCH CENTER

Aeronautica Division Experimental Investigations Branch

Model: FAR CYLINDER

Test No. 226-/2

TABLE II - Key to Configurations

Config.	Component Notation
1	SMOSTH CYLINDER
11	SMOOTH CYLINDER + PROBE
4	CYLINDLE T NO. 6 MESH SCREEN
41	CYLINDER + NO.S MESH SCREEN + PROBE
3	CYLINDER + NO. 60 MESH SCREEN!
31	CYLINDER - NO. 60 MESH SCREEN + PROBE.
2	CYLINDER + NO. 250 MESH SCREEN
21	CYLINDER + NO. 250 MESH SCREEN + PROBE.

FIGURE 6.1 TWELVE-FOOT PRESSURE TUNNEL TEST SCHEDULE

アアー 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 524 TTF PROBE DATE 524 524 524 524 524 521 521 521 521 02 SEP 82419:33 CONT. PAGE RUN SCHFINLF (AVFDAGE VALJES FOR A RUN) 70.8 71.0 70.3 70.2 67.0 12.6 72.4 71.9 71.6 71.4 6663 4.99 6.41 73.6 73.5 73.4 73.2 73.0 72.8 12.2 71.7 2.5 66.7 66.5 867.5 PIN 2094.6 2093.9 2095.3 2095.4 2094.6 841.9 828.9 735.7 767.2 2095.3 2094.1 2094.8 2095.8 2095.8 2096.0 2096.3 2096.5 2096.7 2095.8 2095.6 2095.1 2094.B 2092.3 2092-2 2095.2 2095-1 AERONAUTICS AND SPACE ADMINISTRATION EXPERIMENTAL INVESTIGATIONS BRANCH 11.4 200 12.3 6.5 £. 5.3 4.8 4.6 4.3 3.2 4:0 4.5 1.4 5.3 5.4 9.9 VARY 2099.9 2100.7 797.5 819.4 2101.0 2100.6 2100.6 2100.6 2100.6 AMES RESEARCH CENTER 2100.6 2100.6 2100.6 2100.6 6.6602 6.6602 2099.9 AFPERANAMICS DIVISION 841.2 778.7 2100-6 2095.9 6.6602 2100.6 4 2100.5 2099-9 2100-6 0.259 0.389 0.452 0.389 805.0 090.0 Da146 Da407 0.146 0.270 0.415 0.477 0.390 0.056 0.3RI 0.368 0.053 0.358 0.047 0.318 0.358 0.054 0.369 0.055 0.378 0.388 0.060 0.410 0.416 0.063 0.430 0.519 0.146 0.381 0.060 0.411 194.0 790.0 ALPEA MACHU RN/FT 0.514 0.057 0.391 D-SUMMARYO 0.057.4 ı 0.146 0.054 0.052 0.061 0.145 190.0 0.076 0.061 0.076 0.063 0.057 0.057 TAPLF IV VARY YAPY VARY VARV VARY VARY VARY VARY VARV VARY NATICNAL CONF MODEL: FAR CYLINDER 45:5 SEQ 100 50 50 50 10 10 K K: N K 50 50 50 50 50 50 **50 00 00** Ú, TA-12 アンドア SFO TST-226 PH-1 47 69 54 52 53 55 9 58 66 9 62 65 99 69 2 7 7 -12-

4444

69.5 69.5 69.2 69.0

2096.8

2097.0

4.3 4.1

2101.3

0.054 0.370

0.055 0.380

VARY

23

74

2101-3

68.5

2098.2 2098.2

2102.0

0.251

0.051

VARY

0.051

VARY

2102-0

0.052 0.358

0.361

0.053

VARY

50 50 10

Ŕ

ė,

Tital Cittle 1-10 Ject L

I D-SUMMARYO

02 SEP 62419:33 CCNT. PAGE

NATICNAL AERCHAUTICS AND SPACE ACMINISTRATION
AMES RESEARCH CENTER
AERCDYNAMICS DIVISION
EXPERIMENTAL INVESTIGATIONS BRANCH

TABLE IV - RUN SCHEDULE (AVERAGE VALUES FOR A RUN) MUNEL: FAR CYLINDER

		1	I					ļ									!			:						1			;					
F 14 T			-	_	-	2	4	2	2 01	2 FLOW	2	*	1	1	-		1		ga-1	1	_	gard	1	-	-	1	-	_	1	2		-	_	,
DATE F		524	2		524	524	524	524	425	524	524	525	\$26	:26	£.26	7.56	*26	97	, 56	3.5	, 26	126	97.	326	126	326	925	526	526	526	125 *	3	52	
PROBE				•	1		100						•			<i>-</i>	العد	٠,٠	K .	ار	•	_		•	_		10		*	~	***** 0	0.03	VARY	
TTF		6.8	6.8	67.7	67.5	99		69	70	70	VAR	73	1.56	8	5	9	5	88.6	3	80	8		9	8	81	8	7	-		80	46	98	100	
Plu		2098.5	2099.1	2099.4	2099.5	VARY	2098.5	2097.5	2095.2	2098.7			-				- 1			- 1	1857.0		1252.6	1110.1	979.8	858.1	741.4	17.	g	i	10032.9	10016-2) ,
010		2		เก้	3	VARY	4.2	5.2		4.0	- 1	1	4	r,	100	~	4	_	~	7	80		4	4			יים	~	j	VARY	430.8	427.3	428.1	
PT		102	02.	102.	—	VARY	2102.7	2102.7	2102.7	2102.7	2101.7	2100.8	10468.9	9288-1	8018.7	6640.0	5327.0	3920.7	3279.0	260649	1938.5	1608.8	1307.5	1159.4	1023.0	895.7	773.6	644.5	51126	VARY	10470.3	0450	10457.6	
RN/FT		722.0	0.3	•	0	(7)	0.3	0.4	6	0	0	0		9	5		3	2		-		-	7	ö	•	d	0	0	9	>	~	7	7.6	. ,
MACHU		0.049	0	0.047	0.047	>	0	0	9	0.0	0	0	ö	d	1	ö	d	•	•	å	0	0	d	0	ö	- 1	ö	0	0.2	0.2	.24	0.247	-24	
ALPHA		VARY			VAPY				•	0.00	ΔCI		VARY	VARY	VARY	VARY	VARY	VARY	VAPY	VARY	VARY	VARY	VARY	VARY	VARY	VARY	VARY	VARY	VARY	VARY	VARY	α	VARY	•
CUNF		-	-	_	-	-			-	_		-	~	-	-	-	-	-		-	-	~	4	-	-	-	-	-	-		11	11	11	ŧ •
0 L V	1 0	ta'	S.	ľ	₹	196	18	4	٤	ĸ	92	114	5	5	ιc	ร	5	z.	5	2	ĸ	ĸ	5	N.	ĸ	5	r	ĸ	8	57	S	5	ď	•
0 P C	₹(. L	-	-	ىم	-	-	~	-	-	-	4	1		-		-	-	-	part.	-		1	1		,	1	7	-	-	6	_	-	-	•
14614		ç.	8.0	81	Ca	33	34	R P	86	87	8	89	16	92	4	46	95	96	45	S.8	66	100	101	102	103	104	105	106	108	601	112	113	114	· .
												- 1	13-	_				-				. -		-								ļ		

										•	304	·	
		:	NATICNA	1	AFROMAUTI	CS AND	AAUTICS AND SPACE ADMINISTRATION	ISINIACI	RALION	į			į
				A PERIME		FSFARCE AMICS CINVESTI	AMFS RESFARCH CENTER AFREDYNAMICS DIVISION MENIAL INVESTIGATIONS	N S PREMCH					
•	: Tacux	FAF	CYL INDFR	TABLE	LE 1V -		HEOULE	(AVERA.	RUN SCHEMILE (AVERAGE VALUES FOR A RUN)	S F08	A RUN)		
N.C.Y	0 d S	V	FO CONF	ALPHA		MACHU RN/FT	1d	ר פינט	PIU	J TTF	PROBE	CATE F	FMT
	# U C H		L										
116	-		20 11	20.	1 0.247	7.502	10451.3	427.1	10017.6		108.4 0.017	527	-2
117	_)		2 VARY	VARY	VARY	VARY	VAKY		0.023	527	2
(1)	-	<i>y</i> -	20 11	35.	2 0.248	5.923	9176.3	3 337.6	7833.4	106.6		527	~
113	1		-	20.	1 0.248	5. P90	8153.5	3 325a B	7812.6	108-0	0.023	527	2
120	-		13 11	10.0	•	5.678	8130.5	5 327.6	7787.		0.017	527	7
121	-4		17 11	0.03	3 0.248		8223.5		7878.3	109.6		527	7
122	-	, =	16 11	0-0	d	4.782	6581-1	271.7	63056	105.3	0.011	527	7
123	-		11 51	20.	•	4.769	6562.6					527	2
124	, ,,	. •	22 11	35	2 0.249		6532.6		6257	3 106.7	0.023	527	7
125	-		10 11	\sim	2	2.984	4057.6	5 166.8	3888.2	98.9	0.005	527	7
126	~	•	22 11	20.	1 0.248	2.580	4047.6		3877.6		0.018	527	2
127	,	. •	22 11	10.0	O		4029.0		3859.8	4.66 8		527	7
129			22 11	25.	9	2.958	4010-9	i	3842.4	- 1	0.022	527	7
129	_		1 11	25.0	0	2.957	6 8 6 b £	166.1	3830.2		0.019	527	2
130			5 11	VARY	0.249	2.951	3990.6	5 165.5	3822.5	98.4	0.019	527	-

2 406	MODEL: FA	AP CYLI SEQ TC 7 5 5	EXP CYLINDER CQ CGNF A	AE ERI	300	S AND	SPACE A	ADMINISTRATION R	RATION				
2 E E E E E E E E E E E E E E E E E E E	. 000	CYL CYL TC 7		ERI	SO	SFARCH	CENTER		ı				
33 33	" 00 WHHHHHHH	SH			_	MICS N	WWAMICS PIVISION L INVESTIGATIONS	BRANCH					
		ושיט	CGNF 4	TABLE	>	RUN SC	SCHEDULF	(A V EF A G E	E VALUES	FOR	A RUN)		
131)	ا ر	4	ALPHA	MACHU	RN/FT	1d	010	P1U	TTF	PR 0B E	DATE	FMT
132		w w w		0.07	148	5.457	1034120	7002	10143.2	82.2	****	528	-
133		יט יט	•	VARY	0.198	346	10348.2	276.9	3	S		12	_
		5	4	VARY	198	4.916	7965.8	212.6	7751.1	C	****	~	_
136			4	VARY	204	4.030	631847	- 1	613H.9	19.6	****	528	-
135		ν.	*	VARY	861.	2.936	4699.5	_	4573.2	76.3	****	528	~ •
136		ĸ	4	VARY	197	2.443	3920.3	_	3816.1	75.0	****	528	~
		2	•	VARY	203	1.588	3087.9	ł	3000.7	74.2	***	52 B	-
139	_	3	4	VARY	.198	1.480	2293.8	•	2231.9		****	601	_
	•	ĸ	•	VARY	191	1.239	1556.7		1904.4	•	****	601	-
142	-	2	4	VARY	196	004-0	628.6	16.5	612.0		****	109	-
4	7	ĸ	*	VARY	191	0.455	782.9		762.0	~	****	601	-
144	-	ĸ	*	VARY	198	965.0	943.2	25.2	917.7	72.7	****	601	
4	1	3	-	VARY	199	0.701	1111.4	29.9	1081.3	7	44 22 2	109	-
146	1	ĸ	•	VARV	.200	0.800	1267.0	34.5	•	16	****	601	~
◂	, 1	S	*	VARY	202	0.912	1434-1	39.8	1393.8		****	601	
148	7	5	•	VARY	203	1.018	1598.4	44.8	1553.2	7.9	****	109	1
150		3	•	VARY	.031	1.052	10378.7	7.0	10321.7		****	601	_
151	~	ß	•	VARY	040	1.369	10328.3	11.7	10316.6		****	601	-
152	-	5	•	VARY	060	2.048	10326.6	26.1	10300-5	- [****	601	-
153	-	. 10	*	VARY		• 386	10326.1	71.5	10254.5	S	****	601	—
154	-	2	•	VARY	.120	.054	10330.0	103.1	10226.5	8.99	****	601	-
	1	6	4	VARY	150	025	10326.4	160.7	10164-8	4-69	***	109	-
	1	2	*	VARY	179	5.909	10322.9	227.3	10093.7	73.6	****	601	-
151	-		•	VARY	200	462	328	281.3	10044.3	80.6	***	601	-
	, (1	42	7	00-0	204	8		-	•	0.08	0.060	602	· ~
159	-	2.5	17	16.4	205	410	VARY	74.6	VARY	91.6	VARY	602	2
	۰,	5	7) (204	676	VARY	72.5	VARY	93.3	VARY	602	^
141	- ۱	4	: 4	35.2	204	040	VARY		VARY	4-96	VARY	603	. ^
	-	47	14	15.0		900	VARY	77.9	VARY	97.1	VARY	VARY	~
•	-	7	1	25.0	204	068	VARV	0	VARY	97.2	VARY	602	^
164	• ~	. E	- 14	²	204	•	314245	88.6	3053.0	_	0.061	602	2
9	-	30	1.4		-204		i e	90.	093.	84	VARY	602	2
166	۱	3.5) (205		3150.5	90-2	9	83	VARY	602	· ~

PACE ADMINISTRATION CENTER VISION SATIONS SRANCH	(AVERAGE VALUES FOR A RUN)	PT Q1U P1U TTF PROBE DATE FMT	0.6 76.3 10444.3 78.9 0.060 60	9.0 26.6 10442.5 72.3 0.069 60	25.6 VAKY 66.5 VARY 60	24.9 581.0 66.1 **** 60	30.7 722.5 69.2 **** 60	35.5 848.1 71.3 **** 60	41.1 967.1 72.8 **** 60	\$6.0 1094.5 74.4 **** 60	51.2 1225.5 75.7 **** 60	55.0 1534.6 /8.6 **** 60 78.5 1856.1 81.2 ***** 40	102.9 2423.1 70.5 **** 50	133.2 3143.5 83.6 **** 60	163.0 VARY 91.9 **** 60	222.3 5067.8 91.5 **** 50	107.3 2478.1 81.4 **** 50	193.1 89.0 ***** 501.4 62.0 *****	25.0 604.5 67.7 ***** 10	30.6 725.4 70.5 **** .0	31.5 743.9 71.3 **** 0	32.5 767.4 72.5 ****	47 0 700, h 77	47.1 1103.6 76.8 **** 60	6.0 52.3 1232.8 78.2 **** 60	6.7 62.9 1492.8 68.1 **** 60	2.0 77.7 1823.1 74.7 **** 60	3.9 108.9 2563.3 89.6 ****	6.8 136.4 3198.3 93.7 **** 60
AERONAUTICS AND S AMES RESEARCH AERODYNAMICS DI	LE IV - RUN	ALPHA MACHU RN/FT	.00 0.060 2.004 10	0 0.060 2.047 1	5.0 0.060 2.026 V/	ARY 0.247 0.461	ARY 0.247 0.592	244 0.685	ARY 0.247 0.785 1	.245 0.879	ARY 0.244 0.579	246 1.227	ARY 0.246 1.576 2	ARY 0.246 2.483	0.246 2.577 VI	ARY 0.250 4.002	ARY 0.249 1.990 2	VARY 0.248 2.505 555 VARY 0.739 0.405 52	ARY 0.243 0.450	ARY 0.246 0.590	20.0 0.246 0.605	0.246 0.622	AKY U.246 U.694	ARY 0.247 0.889	N 0.246 0.987	ARY 0-245 1-220 1	RY 0.247 1.475 1	APY 0.246 1.599 26	247 2.476
NATICNAL	FAG CYLIN	C SEC CONF	28	22 4	7 4		· w	5	5	ς.	5	ر د د	, ru	æ	7	5 2		2 2	5 2	~	2 2	~	~ 1	5 2	2 2	2	2	_	~

		FXT	-	_	_	-	~		-	-	-	4	-	~	2	7	~ (7	~ (٦ ر	,	\ F	4 بـ		-	-	-	~	7	- i	,	-	-
		DATE	109	607	607	607	607	607	607	607	109	607	607	607	808	608	803	108	£08	5 C	200		200	609	603	509	609	609	509	609	609	509	700
	RUN	PRCBE	***	****	****	****	****	****	****	****	****	****	****	****	0.015	0.016	0.017	0.032	0.041	9(0.000	"			****	****	****	****	****	****	****	****	
	FOR A	TIF	102.8	0	0	18.3	9	75.5	75.3	76.8	78.8	81.3	84.8	VARY	œ	S	90.1	9	ο,	101.	70101	Λ.	76.9	0	82.3	83.0	m	83.7	ď	Š	- (70.0
	. VALUES	P1U	650643	•	9014.7	VAKY		7780.7	VAKY	7722.5	/ARY	7656.6	7.8097		2451.3	2467.2	2475.0	5139.4		5111-7	7777	7 2 2 2	603.6	736.3	860.8	996.9	1118.5	1242.0	1552-9	1869.2	K K	513 1	1.6216
BRANCH	(A VEF AGE	DLO	279.5	40.	œ	- 1		÷	VARY	. 72.0	VARY	160.4	227.8	VARY V		105.2	106.4	221.0	220.8 \	220.3	9 (n	25.0	3 N	37.8	m	8	53.5	Q	19.1	VARY		132.0
DIVISION IGALIONS	SCHEDULE	1 d	790.	22	408.	YARY	VARY	7792.1	VARY	7794.7	VARY	7818-2	7839.0	VARY	2557.7	2573.9	2583.0	5363	ARY	5335.4		•	420.0		899.2	•	1167.3	1296.3	1620.5	1950.1	ARY	oj c	1366.9
2 Z	RUN SCH	RN/FT	4a 553	5.563	•	781		_	VARY	2.872	ARY	4.243	5.015		1.968	•	1.940	22	3.949 V	3,913	q	0.000	644.0	0.594	•	0.798	•	•	•	1.474	⋖	85.	C0+07
AFREDYNAMIC	E IV -	MACHU	0.248	0.249	0.248	0-113	0.036			0.115	ARY	0-173	. 207		0.247	0.247	0.248	0.248	0.247	0.248		247.0	0.240	0.249	0.251	- 1	0.248	0.248	0.247	0.247	AR.	0-247	7 * 7 * 0
A EXPERIM	TABL	ALPHA	VARY_	VARY	VARY	VAPY	VARY	VARY	VARY	VARY	VARY	VARY	VARY	40.0	400	•	25.1	_		25.1	~	1201	YAR Y	VARY	VARY	VARY	VARY	VARY	VARY	VARY	VARY	VARY	- X & A
ш	CYL INDER	CUNF	2	~	7	2	2	7	7	2	~	7	~	2	21	21	21	7	21	21	7;	7,	ח ת	6	· (C)		m	m	2	m	m	6	•
		SE0 16	5	3	ᡗ	2	ς.	S	2	ι ν	ĸ	2	S	20	18	12	10	9	18	5 4		9	ח צו	2	ĸ	5	, RV	~	4	2	ic i	ر ا	.
	WCDEL: FAR	SEC		~	-	-			1			1	_	2	-		~	1	۽ اسم	, i		- -	- -	1	-	-	-	-	1		 (-	
	•	R CN	204	205	906	209	502	210	211	212	213	214	215	216	217	812	612	220	221	222	-577 227	*77	227	228	229	230	231	232	233	3	235	m 6	107

02 SEP 82320:24 CONT. PAGE

ID-SUMMARYO

151-226 0H-2 TW-12 204:5

			1																										
4			DATE FMT	1 509	1 509	604 1	609	1 509	1 609	1 509	1 F	09 1	1 60	05 1	1 609		09 1	1 609	1 60	1 60	1 509	1 50	1 60	609		1 609	1 509	610 2	
T. PAGE		RUN)	PROBE DA	*****	9 ****	· * * * * * * * * * * * * * * * * * * *		9 *****			9 ****	9 *****	_				١	9 *****	*****			****			9 #####		9 *****	_	
24 CONT.		FOR A	TTF	7.46	97.2	101-5	1	108.1	10 2 - 2	σ,	0000	91.1	89.6	88.4	87.0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85.1	84.9	85.0	85.8	87.4	54.9	56.5	61.3	64.7	∞ (72.0	, 4
P 82420:24	RAT ICN	E VALUES	PIU	4484.7	О	7827.3	0	_	-	9512.7	9300.9	9291.9	9569.6	9254.1	9223.8	7.0170	9156.7	9119.5	9091.3	9051-1	9009.5	2122.0	2115.8	2113.0	2103.0	2085.1	2069.9	•	, , ,
02 SEP	ADMINISTRATION FF N SRANCH	(AVEPAGE	010	191.0	270.1	2.612	405.0	270.8	217.7	•	48.4	33.4	25.3	10.5	9.9	25.2	33.5	67.8	97.9	151.7	220-6	1.2	2,5	, E	VARY	32,3	6763		
	SPACE CENTS IVISION	SCHEDULE (PT			8166.7	,				9399.0	9325.4	9294.9	5264.5	9229.9	92026	9190.3	9187.4	9189.6		9232.0	2123.2	2118.3	2118.3	1	2117.6	211746	0	
SUMMARYO	UTICS AND S RESEARCH DYNAMICS D	RUN SC	RA/FT	3.462	3.962	5.895		5.770		4.394	3.539	2.073	1.806	19164	0.886	2/101		2.971	3.567	4.433	5.329	2020	0.295	0-421	0.700	1.023		1.222	1
ID-SUM	S R DYA	, , , , , , , , , , , , , , , , , , ,	MACHU	0.247		0-247	0.248	0.203	0.181	0.151	• (0.072	0.062	0.040	•		0.072	•		.155	187	300	3	090	100	•	181	. 4	
	L AE	TABLE	ALPHA	VARY	RY	VARY	_		1	so.	* 4		0.65	0.63	m r		32	0.53	~	~	0.53	٧,) K	ım	53	53		0.04	5
5	NATI CNA	CYLINDER	CCNF	6	הי (א ניה			2	m (40 Fc	4	m	3	m (א) נא	1	m	-	m ·	സ	44 (4	, (1)	1 (17)	3	ET I	m.	, k	1
530:		AK CYL 1	SEC	ر بر	5	ւ Մ	5	2	-	, ,		-	-	4	~ ,	→ -	-	-	-	-	~ •		- ،	• ~	3	~	٦,	72)
-2 Th-12		MODEL: FA	SEQ.) "— 1	 .	 -	-	7	1	, -4 •		1	-	-	, ,	-	-		1	-	, ,	-	• -	•	-		-	- -	٠,
-114 9c2-) X	RUN	562	240	142	243	544	245	246	747	548	250	251	252	254	255	256	257	258	259	261	262	263	264	592	266	768	200
151												- :	l8 -																

.

AMES RESEARCH CENTE ARE RECORDING SPACE ARE RECORDING STIGATION TABLE INVESTIGATION TABLE IV - RUN SCHEDULE TO 0 0 248 0 503 654 2551 VARY 0 0 492 VARY 25 1 0 248 0 681 9 487 25 1 0 248 0 681 9 487 25 1 0 248 1 613 2117 25 1 0 248 6 617 VARY 20 0 0 248 6 687 9342 25 1 0 248 6 617 VARY 20 0 0 248 7 6 62 676 613 15 0 0 247 7 6 65 6 766 15 0 247 3 870 VARY 20 0 0 248 1 658 8 245 4001 25 1 0 247 2 423 3 308 262 20 0 0 248 1 558 262 20 0 0 248 1 558 262 20 0 0 248 1 558 262 20 0 0 248 1 558 262 20 0 0 248 1 558 262 20 0 0 248 1 558 262 20 0 0 248 1 558 262 20 0 0 248 1 558 262 20 20 0 248 1 558 262 20 20 0 248 1 558 262 20 20 0 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 262 20 20 248 1 558 20 20 248 2	ATICNAL AERONALITICS AND SPACE AERODYNAMICS DIVISIO EXPERIMENTAL INVESTIGATION ILINDER TABLE IV - RUN SCHEDULE CONF ALPHA MACHU RN/FT P CONF ALPHA RN/FT P CONF ALPHA MACHU	OZ SEP 82420:24 CONT. PAGE 5 ADMINISTRATION R N S BRANCH	(AVERAGE VALUES FOR A RUN)	QIU PIU TTF PROBE D	26.5 615.3 81.3 0.038 610	27.0 626.6 80.1 0.045 610	VARY VARY 79.3 0.075 610 2	VARY VARY 79.5 0.053 610	44-1 VARY 78-8 VARY	159.8 3731.4 84.8 0.043 610	VARY 86.9 VARY 610	VARY VARY 88.6 0.059	87.6 2028.7 83.5 0.059 610	384.8 8971.1 104.0 0.052 611	385.4 8973.4 108.2 VARY 611	384.2 8951.9 111.1 0.069 611	393.4 VARY 113.8 0.051 611	341.0 7944.3 112.8 0.046.61 339.4 VARV 112.9 VARV 61	VARY 113.0 0.059 611	283.1 6569.1 110.0 0.061 611	279.6 6529.5 109.9 VARY 611	277.3 6484.8 109.5 0.049 611	-2 VARY 611	18.8 VAKY 104.3 0.073 611	218.7 5072.0 103.7 0.061 611	165.0 3833.7 99.2 VARY 611	135.1 3171.2 96.4 VARY 611	134.3 3138.6 95.7 0.057 611	107.9 2513.0 92.3 0.056 611
TABLE	ALPERIO 255.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	IMMARYO LICS AND SPACE RESEARCH CENTE RNAMICS DIVISIO	- RUN SCHEDULE	1,	0-493 642	8 0.503	0.492 V	0-763 VARY	0 0.819 V	2,955 389	VARY V	2.861 VARY	48 1.618 2117	48 1.613 2117. 48 6.807 9361.	48 6-749 9364	48 6.687 9342	6.617 VARY	5.912 5.075 V	5.835	0.6.9	47 4.885 6313.	47 4.852 6766	47 3 918 60 3 909	V 3.870 V	48 3 860	48 2.545 4	47 2.439 3308	47 2, 423 3275	48 1.958 262
	AATIC AATIC AATIC AATIC 311 311 311 311 311 311 311 31	PER	ABLE	ALPHA	0 90	0 0.0	5.1	200	5.1 0.	5.0 0	٠١.	00	0 0	- 0	1	0 0	.1 0.	15.0 0.	20-0	20.0	25.1 0.	15.0 0.	9 -	17		0	5.1 0.	0.0	0.0

-20-

226,1,12 33.00: 5.00 DUNC PRESS. COEFFICIENTS CL+ 0.0117 CD+ 0.9994 RNO-0.306

226,1,12 38.00: 5.00 DUNC PRESS. COEFFICIENTS CL- 0.1787 CD- 0.8525 RND-0.389

CP1U 40.0 60.0 80.0 100.0 120.0 140.0 160.0 100.0 200.0 220.0 240.0 260.0 280.0 300.0 320.0 340.0 360.0 THETH (DEG)

226,1,12 39.00: 5.00 DUNC PRESS. COEFFICIENTS CL- 0.3610 CD- 0.7471 RND-0.402

226, 1, 12 45.00: 5.00 DUNC PRESS. COEFFICIENTS CL- 0.4760 CD- 0.6473 RND-0.422

ŧ,

226, 1, 12 42.00: 5.00 DUNC PRESS. COEFFICIENTS CL--0.1810 CD- 0.7215 RND-0.426

١,

226,1,12 43.00: 5.00 DUNC PRESS. COEFFICIENTS CL- 0.9230 CD- 0.4224 RND-0.433

226,1,12 22.00: 5.00 DUNC PRESS. COEFFICIENTS CL- 0.0510 CD- 0.1755 RND-0.509

CP1U 4 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 200.0 320.0 340.0 360.
THETRIDEGI

226,1,12 20.00: 5.00 OUNC PRESS. COEFFICIENTS CL- 0.0707 CD- 0.1742 RNO-0.695

226, 1, 12 16.00: 5.00 DUNC PRESS. COEFFICIENTS CL--0.1956 CD- 0.2943 RND-1.266

-34-

-3.0

80

8.0

80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0 320.0 340.0 360.0 THETR(DEG)

226,1,12 13.00: 5.00 OUNC PRESS. COEFFICIENTS CL- 0.2163 CD- 0.3428 RND-2.520

226, 1, 12 12.00: 5.00 DUNC PRESS. COEFFICIENTS CL- 0.3584 CD- 0.3668 RND-2.971

-38-

226.1,12 8.00: 5.00 DUNC PRESS. COEFFICIENTS CL- 0.1136 CD- 0.4310 RND-4.919

CP1U -3.0 -2.5 -2.0 0.0 0.5 1.0 1.5 80.0 . 0. 4 80.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0 320.0 340.0 360.1 THETRIDEGI 4 ٥, 4 -Œ 4 4 Œ∷ 44

226,1,12 7.00: 5.00 QUNC PRESS. COEFFICIENTS CL- 0.1371 CD- 0.4633 RND-5.873

ŧ,

6.00: 5.00 DUNC PRESS. COEFFICIENTS CL- 0.0914 CD- 0.4735 RND-6.726

226,1,12 5.00: 5.00 DUNC PRESS. COEFFICIENTS CL- 0.0518 CD- 0.4930 RND-7.683

-43-

Ł,

21.00: 5.00 LONGITUDINAL PRESSURE COEFFICIENTS

226.2,12 171.00: 5.00 DUNC PRESS. COEFFICIENTS CL--0.9019 CD- 5.0454 RND-0.410

b.

226,2,12 192.00: 5.00 DUNC PRESS. COEFFICIENTS CL--0.1900 CD- 0.7011 RND-0.649

226,2,12 199.00: 5.00 DUNC PRESS. COEFFICIENTS CL--0.0626 CD- 0.7516 RND-1.533

226,2,12 205.00: 5.00 OUNC PRESS, COEFFICIENTS CL- 0.0682 CD- 0.7293 RND-6.182

226,2,12 229.00: 5.00 OUNC PRESS. COEFFICIENTS CL--0.0297 CD- 0.7954 RND-0.725

226,2,12 233.00: 5.00 DUNC PRESS. COEFFICIENTS CL--0.0185 CD- 0.8593 RNO-1.279

226,2,12 238.00: 5.00 DUNC PRESS. COEFFICIENTS CL--0.0152 CD- 0.8298 RND-3.093

1.

226,2,12 243.00: 5.00 DUNC PRESS, COEFFICIENTS CL--0.0152 CD- 0.8007 RND-7.270

۱**۶**.

226,2,12 147.00: 5.00 OUNC PRESS. COEFFICIENTS CL--0.0604 CD- 1.1907 RND-0.949

Ł,

-63-

Roughness Effect on Drag Coefficient

١,

Effects of Relative Roughness on Strouhal Number in Reynolds Numbers Independence Regime

BOUNDARY LAYER ANALYSIS

١,

DATA: BL RAKE - 4 PITOTS, 1 STATIC DEFINITIONS: $\theta = \sqrt{\frac{4}{4\pi}(l-\frac{4}{4\pi})} \frac{4}{4\gamma}$; $S^* = \sqrt{\frac{4}{4\pi}(l-\frac{4}{4\pi})} \frac{4}{4\gamma}$

VELOCITY PROFILES: $u/n_c = \{(c_{pc} - c_{pc})/(r - c_{pc})\}^{\frac{2}{h}}$ $u+=u/u_0 = \frac{4}{4c}(2/c_0)^{\frac{2}{h}}$ $y+=u/u_0 = \frac{4}{4c}(2/c_0)^{\frac{2}{h}}$

INTEGRAL MOMENTUM RELATION:

do + (2+4) & dus = Co

H= 5 16

1,

SE = 35.00 C (TY PROFILE STATE OF PROFIL	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
--	---------------------------------------

1

<u>,</u>≥}:

.

					; ;	
13/82				9 0		
3	Pres.				0	
2000						•
Run 163 Rn = 6,3 Rn = 250 Rn = 250	P705:			· · · · · · · · · · · · · · · · · · ·		
<u></u>		(H) 2 H	•	M	j	
T OR)				• • • • • • • • • • • • • • • • • • •
200						<u>-</u>
VELO	× ×		9 9 9	• 000	0 0000	
	Static Pi					0.0
08 = 3 575 7791	P 701 :				· · ·	· ·
R R 8 9	,					·
<u> </u>	F		-76-			:

Smoth Cylinger THICKNESS US. ANGLE Smoth Cylinger Smoth Cylinger Smoth Cylinger (Inch) Rp = 0.2 Rp = 0.3			• • • • • • •		; · · · !			5
Smooth Collis (1978)		•			· · · · · · · · · · · · · · · · · · ·			l
Smoth Cylinery Smoth Cylinery	6			1 : 1		ΘX		5
Smoth Cylinder LAYER, THICKNESS US. Smoth Cylinder Smoth Cyl	3		· · · · · · · · · · · · · · · ·			;	e X-	٤
Sampth Cylifer Sampth Cylife							ð.	1
Smooth Culinder LAYER THICKNESS US. Smooth Culinder (Inch)				· · · · · · · · · · · · · · · · · · ·				1
Smoth Cylinch Boundage Layer Thickness US. Smoth Cylinch Boundage Charles Thickness US. Smoth Cylinch Boundage Charles Thickness US. Smoth Cylinch Boundage Charles Thickness US.	4N6C	6.7 × 6.7 ×		- 				l
Smooth Cylinder Smooth				• •				1
Smooth Cylinder LAYER THICKING (12CH)	S N	% ⊙×			•			
Smooth Cylinfer Smooth Cylinfer O R. = 7.8 x/o 6	Z H S	S = E	1.1	5 4 60	ن ې	Åi + vì	· 4	1
Smooth Cylinder Smooth Cylinder Smooth Cylinder	TRICK	2					. :	1
Smooth Cylinder Smooth Cylinder O R. = 7.8 x10	2							1
Smooth Cylinker Smooth Cylinker	X #7					O		
Smooth CC!.	Q			•				1
Smooth CV []	<u> </u>							
2 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6		2				1	1	
		4 3 ",	1	 		i		ł
		\wedge	į		· · · · · · · · · · · · · · · · · · ·			ı

•1

*

¥.,

1.

ŧ,

			1	TIT		1.	T :				;			
														•
						ļ.,uijud				: : <u>.</u>	1.			
	1					 					: 	5	<u></u>	:
		######################################	<u> </u>						:i-		<u> </u>			• • •
		<u> </u>		- 2::::::::::::::::::::::::::::::::::::	<u>, 1000, 1000</u> 				122111					
										····································				
		1		1 1 1		1						9.		÷
	1										1			::-
						. 								. : :
											<u> </u>	2		
											<u> </u>	\frac{1}{2} 		
	in i na					1	 	 	 	<u></u>	. <u>4</u>		 -	
								·	:	; :=: <u> -</u> -:		o.		
									 -		:	- 12		
									<u> </u>		i:- 1"	3	11. 1	
						-	.			-			- ::::	
					.		1		 	<u>:</u>	i			:.
						•			1	!	:	3		
		.		·•·· · · ••·· · · · · · · · · · · · · ·		1.			;	· · · ·		1.7	:	
		· · · · · · · · · · · · · · · · · · ·	<u>.</u>	<u> </u>						•		1		
					1] :	.]	;		Ĺ ₄	. <u>.</u>		· · · · · ·	
			 							######################################	11111	2 5	2	
					1	-							}	
												``````````````````````````````````````	<u>. </u>	
			-		7							9	3.	
					1							06:		
					1									
	363		1		[]	i vi			ļ		<u>.</u>			:
	£ £				\			!				22	: :	
	, V				\									
	· · · · · · · · · · · ·		1		74						<u> </u>			
1 . ******. ***. ***									.		:	٥		
	11 . 1. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .									I		- 4		
			6			N.	•	J e:		E -		9		
	Ni.		d.	7		\	I							
	*		ů.			<u> </u>						0		
	71		Ġ.			•								
	-Q-14		9					V o						
	4,4		7											
	4,4,		7											

SOME PRELIMINARY BL DOODLINGS

$c_{\rm F}({ m Re_D})^{1/2}$	24.1 38.8 68.8 87.5
CF/2X10 ³	9.64 12.88 24.88 35.88
S/R	. 822 837 148
6/RX183	3.21 7.59 18.88
0/RX103	2.41 4.75 8.93 15.88
PHI (DEG)	65 98 98 188

Rey = 6.25 × 10 6 1/4 = 10-2

d= 2R = 12.96"

RECOMMENDATION

- STEADY PRESSURE DATA NEEDS FURTHER SCRUTINY
 - BAD POINTS SHOULD BE ELIMINATED FROM INTEGRATED OR AVERAGED RESULTS
 - · FINAL PLOTS WITHOUT BAD POINTS REQUIRED
 - PERFORM DATA ANALYSIS
- NEED A CRITERION BASED ON VORTEX SHEDDING STRENGTH TO DEFINE PRESENCE OF PERIODIC SHEDDING
- · CHECK ACCURACY OF DYNAMIC DATA WITH CORRECTED MEAN DATA: COMPLETE DATA ANALYSIS
- TURBULENT ROUGH WALL BOUNDARY LAYER ANALYSIS WITH PRESSURE GRADIENT:
 - · PROFILE CALCULATIONS
 - BL INTEGRAL PROPERTIES
 - ' SKIN FRICTION
 - · SIMILARITY IDEAS

DATE ILME