Car Classification: Identify the cars in images using CNNs

2021. 10. 12

Assistant: Jinhee Kim

1-1. Image classification

• The goal is to predict a single label for a given image.

Image size: (3, H, W)

Source: https://cs231n.github.io/classification/

- Images are 3-dimensional arrays of integers from 0 to 255 with three color channels Red, Green, Blue.
- Challenges of image classification:

1-1. Image classification

• Data-driven approach in deep learning:

Source: https://cs231n.github.io/classification/

Convolutional Neural Network (CNN)

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Convolution

http://cs231n.stanford.edu/slides/2021/lecture_9.pdf

Image source: https://github.com/vdumoulin/conv_arithmetic

Image source: https://github.com/vdumoulin/conv_arithmetic

• Convolutional filters learned by Krizhevsky et al.

Source: https://cs231n.github.io/convolutional-networks/

• Pooling layer downsamples the activation maps *spatially*.

Source: https://cs231n.github.io/convolutional-networks/

2. Overview

2-1. Image augmentation

- Purpose of Image augmentation is
 - to expand the training set size by generating new samples from the original images
 - to improve the model to generalize better

- There are a lot of Python library for image augmentation
 - Torchvision
 - https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
 - Albumentations
 - https://github.com/albumentations-team/albumentations

2-1. Data normalization (preprocessing)

2-2. Data normalization (on activations)

Different normalization methods

2-2. Pretrained CNN models

https://pytorch.org/vision/stable/models.html

Inception

2-2. Make your own model

https://pytorch.org/vision/stable/models.html

https://www.researchgate.net/figure/Basic-architecture-of-CNN_fig3_335086346

2-2. Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

2. Car classification using Kaggle data

https://www.kaggle.com/c/car-classificationproject-vision/data

2. Car classification using Kaggle data

- Dataset configuration
 - number of class: **45** different cars
 - number of images:
 - training set: 100 images for each car
 - test set: 450 images of different cars

		Α	В	С
	1	Cars	Class Numbers	
2	2	Alfa Romeo Stelvio	0	
3	3	Aston Martin DB11	1	
4	4	Aston Martin DBS	2	
	5	Aston Martin Valkyrie	3	
- 6	6	Aston Martin Vantage	4	
7	7	Aston Martin Vulcan	5	
8	3	Audi A3	6	
9	9	Audi A6	7	
1	0	Audi E-tron GT	8	
1	1	Audi R8	9	
1	2	Bentley Bentayga	10	
1	3	Bentley Continental	11	
1	4	BMW 3-series	12	
1	5	BMW 7-series	13	
	6	BMW x7	14	
1	7	Bugatti Centidieci	15	
1	8	Bugatti Chiron	16	
1	9	Bugatti Divo	17	
	0	Bugatti La Voiture Noire	18	
	1	Buggati Veyron	19	
	2	Cadillac Escalade	20	
	3	Corvette ZR	21	
	4	Ferrari 458	22	
	5	Ferrari FF	23	
	6	Ferrari Pininfarina	24	
	7	Jaguar F-type	25	
	8	Jaguar XJ	26	
	9	Koenigsegg CC8S	27	
	0	Koenigsegg CCX	28	
	1	La Ferrari	29	
_	2	Lamborghini Gallardo	30	
	3	Lamborghini Murceilago	31	
	4	Lamborghini Veneno	32	
	5	Mustang GT	33	
	6	Pagani Zonda	34	
	7	Porsche 911	35	
	8	Porsche Cayenne	36	
	9	Range Rover Discovery	37	
	0	Renault Duster	38	
	1	Rolls Royce Ghost	39	
	2	Rolls Royce Phantom	40	
	3	Tata Tiago	41 42	
4	4	Toyota Fortuner	42	

2. Car classification using Kaggle data

- Submission on Kaggle
 - The model predictions on the 450 images of the test set
 - The prediction results should be stored in a csv file as example

