UNDERSAMPLING AND ALIASING

Undersampling and Aliasing

When $\omega_s < 2 \omega_M = >$ Undersampling (and resulting aliasing)

Undersampling and Aliasing

 $X_{r}(j\omega) \neq X(j\omega)$ Distortion because of *aliasing*

 Higher frequencies of x(t) are "folded back" and take on the "aliases" of lower frequencies

(a) original signal spectrum; (b) spectrum of sampled signal with $\omega_S = 6\omega_0$; (c) spectrum of sampled signal with $\omega_S = 3\omega_0$; (d) spectrum of sampled signal with $\omega_S = (3/2) \omega_0$; (e) spectrum of sampled signal with $\omega_S = (6/5) \omega_0$;

Effect of aliasing on a sinusoidal signal for each of four values of ω_0 . For each value of ω_0 , the pair of plots show the original sinusoidal samples along with the reconstructed signal (dashed curve); (a) $\omega_0 = \omega_S / 6$ (no aliasing); (b) $\omega_0 = 2\omega_S / 6$ (no aliasing); (c) $\omega_0 = 4\omega_S / 6$ (aliasing); (d) $\omega_0 = 5\omega_S / 6$ (aliasing).

• ω_0 takes on the identity or "alias" of a lower frequency (ω_s - ω_0)

Picture would be modified...→ phase reversals occur due to aliasing

Sampling - Problem

A signal x(t) has a Nyquist rate of ω_o . Find the Nyquist rates of the following signals

a)
$$y(t) = x(t) + x(t-1)$$

b)
$$y(t) = \frac{dx(t)}{dt}$$

c)
$$y(t) = x^2(t)$$

$$d) y(t) = x(t)cosw_0 t$$

END