

Dipartimento di **Ingegneria**

Sistema di controllo antioscillazioni per carriponte

Ermidoro Michele

Introduzione

Descrizione generale

Cosa è un carroponte?

Descrizione problema

Durante la movimentazione di carichi possono introdursi delle oscillazioni pericolose per gli operai

Come risolvere questo problema?

Per poter evitare le oscillazione dobbiamo prima riuscire ad identificarle:

Si è scelto di utilizzare una piattaforma inerziale per stimare le oscillazioni del carico

Dove arriveremo

Indice

- Modellizzazione matematica del sistema
- Stima inclinazione
- Stima dell'angolo di oscillazione
- Validazione risultati intermedi
- Problema di controllo

Modellizzazione del sistema

Equazioni di Eulero-Lagrange

Le equazioni di Lagrange sono le **equazioni del moto di un sistema** conservativo, in quanto si ottengono direttamente a partire dal principio variazionale di Hamilton: minimizzando l'azione, esse descrivono il moto di un oggetto che obbedisce al secondo principio della dinamica e **mettono in relazione la posizione e la velocità di ogni elemento che compone un sistema meccanico**, in modo che è possibile caratterizzarne completamente la dinamica.

Utilizzo:

- Lagrangiana:
- Equazioni del moto:
 - In assenza di forze esterne:
 - In presenza di forze esterne:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = F$$

q – variabili di sistema

F – forza esterna

Modello fisico (1/4)

Energia Cinetica:

Formula generica:

$$T = \frac{1}{2} \cdot m \cdot v^2$$

Masse in gioco:

• m: massa carico

M: massa carrello

Approssimazioni:

- Carico considerato puntiforme
- Cavo rigido
- Massa del cavo trascurabile
- Il carrello si muove senza attrito

$$T = \frac{1}{2}(M+m)\dot{x}^2 + \frac{1}{2}ml^2\dot{\vartheta}^2 + ml\dot{\vartheta}\dot{x}\cos\vartheta$$

Modello fisico (2/4)

Energia Potenziale:

Formula generica:

"altezza di masse da terra"

Masse in gioco:

m: massa carico

M: massa carrello

Approssimazioni:

Carico considerato puntiforme

Cavo rigido

Massa del cavo trascurabile

Il carrello si muove senza attrito

Facilitazione:

Lo zero dell'asse zeta è al livello del binario di scorrimento del carrello

$$U = -mgl\cos\vartheta$$

Modello fisico (3/4)

Equazioni di Eulero-Lagrange:

$$L = \frac{1}{2}(M+m)\dot{x}^2 + \frac{1}{2}ml^2\dot{\vartheta}^2 + ml\dot{\vartheta}\dot{x}\cos\vartheta + mgl\cos\vartheta$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\vartheta}} - \frac{\partial L}{\partial \vartheta} = -b\dot{\vartheta}$$
Attrito viscoso rotazionale

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = F$$
Forza esterna applicata

$$\frac{\partial L}{\partial \theta} = -\left(ml\dot{\vartheta}\dot{x} + mgl\right)\sin\vartheta \qquad \frac{\partial L}{\partial \dot{\vartheta}} = ml^2\dot{\vartheta} + ml\dot{x}\cos\vartheta \qquad \frac{d}{dt}\frac{\partial L}{\partial \dot{\vartheta}} = ml^2\ddot{\vartheta} + ml\left(\ddot{x}\cos\vartheta - \dot{x}\dot{\vartheta}\sin\vartheta\right)$$

$$\frac{\partial L}{\partial x} = 0 \qquad \qquad \frac{\partial L}{\partial \dot{x}} = (M+m)\dot{x} + ml\dot{\theta}\cos\theta \qquad \qquad \frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = (M+m)\ddot{x} + ml\big(\ddot{\theta}\cos\theta - \dot{\theta}^2\sin\theta\big)$$

Modello fisico (4/4)

$$L = \frac{1}{2}(M+m)\dot{x}^2 + \frac{1}{2}ml^2\dot{\vartheta}^2 + ml\dot{\vartheta}\dot{x}\cos\vartheta + mgl\cos\vartheta$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\vartheta}} - \frac{\partial L}{\partial \vartheta} = -b\dot{\vartheta}$$

$$ml^2\ddot{\vartheta} + ml\ddot{x}\cos\vartheta + mgl\sin\vartheta = -b\dot{\vartheta}$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = F$$

$$(M+m)\ddot{x}+ml(\ddot{\vartheta}\cos\vartheta-\dot{\vartheta}^2\sin\vartheta)=F$$

 $l \ ensuremath{\,\hat{\mathrm{e}}}$ costante \Rightarrow nonlineare, IV ordine

l è un parametro tempo-variante \Rightarrow

nonlineare, tempo-variante, IV ordine

Modello utilizzato

- L'obbiettivo è minimizzare/eliminare le oscillazioni del carico;
- L'input del sistema è dato dall'operatore che utilizza il carroponte;

Si considera come variabile di stato solamente l'oscillazione del carico

$$\ddot{\vartheta}(t) = -\left(\frac{\ddot{x}(t)}{l}\cos\vartheta(t) + \frac{g}{l}\sin\vartheta(t) + \frac{b}{ml^2}\dot{\vartheta}(t)\right)$$

Consideriamo:
$$\begin{cases} x_1(t) = \vartheta(t) \\ x_2(t) = \dot{\vartheta}(t) \end{cases} \qquad \qquad \begin{cases} \dot{x_1}(t) = x_2(t) \\ \dot{x_2}(t) = -\left(\frac{u(t)}{l}\cos x_1(t) + \frac{g}{l}\sin x_1(t) + \frac{b}{ml^2}x_2(t)\right) \end{cases}$$

Linearizzando otteniamo:

$$G(s) = \frac{\Theta}{\ddot{X}} = -\frac{\frac{1}{g}}{\frac{l}{g}s^2 + \frac{b}{mlg}s + 1}$$

Osservazioni

$$G(s)G(s) = \frac{-\frac{1}{l}}{s^2 + s\frac{2b_{\perp}g}{ml^2}} + \frac{g}{l}$$

$$\omega_n = \sqrt{\frac{g}{l}} \sqrt{\frac{g}{l}} \quad \xi = \xi = \frac{b}{2m\sqrt{gl^3}}$$

Si considera il caso con assenza di attrito (b=0, WORST CASE)

- In caso di attrito nullo son presenti due poli puramente immaginari;
- Le oscillazioni dipendono **solamente** dall'altezza del carico da terra;
- La massa del carico non influisce il periodo delle oscillazioni;
- La massa del carrello **non influenza** l'ampiezza e la frequenza delle oscillazioni;
- Il sistema si è considerato disaccoppiato sui due assi;

Considerando $h_{min} = 1m \text{ ed } h_{max} = 7m$:

• $f_{min} = 0.1884 \text{ Hz}$ • $f_{max} = 0.4985 \text{ Hz}$

Stima angolo oscillazioni

Cosa è una piattaforma inerziale?

Una piattaforma inerziale è un'unione di diverse tipologie di sensore, nel nostro caso:

- Accelerometro triassiale MEMS;
- Giroscopio triassiale MEMS.

Giroscopio Misura la velocità angolare di rotazione attorno ai principali assi. In condizioni statiche misura solamente rumore elettronico Pitch (θ)

Come stimare l'angolo?

Accelerometro

Ci si basa su come si distribuisce il "vettore gravità"

$$\vartheta = \tan^{-1} \left(\frac{A_x}{A_z} \right)$$

Accelerazioni esterne lineari

$$\vartheta = \tan^{-1} \left(\frac{(A_x + A_E)}{A_z} \right)$$

Giroscopio

Si integra la velocità angolare misurata

$$d\vartheta = \omega_y \cdot \Delta t$$

Perché non usare un singolo sensore?

Drift dovuto ad integrazione

$$\boldsymbol{\vartheta} = (\boldsymbol{\omega}_y + \boldsymbol{\varepsilon}) \cdot \Delta \boldsymbol{t}$$

Stima angolo

Accelerometro

Il vettore gravità è costante, frequenza pressochè nulla.

Giroscopio

L'offset è a bassa frequenza, l'errore in alta.

L'idea è di integrare il giroscopio e di aggiornare la stima con l'angolo calcolato con l'accelerometro.

$$\begin{cases} \boldsymbol{\vartheta}_{x|t} = \boldsymbol{\vartheta}_{x|t-1} + \Delta_t \boldsymbol{\omega}_x + K_t (\boldsymbol{\vartheta}_{AccX|t} - \boldsymbol{y}_{x|t}) \\ \boldsymbol{y}_{x|t} = \boldsymbol{\vartheta}_{x|t} \end{cases}$$

$$\theta_{AccX|t} = \tan^{-1}\left(\frac{A_y}{A_x}\right)$$

Stima angolo

Accelerometro

Il vettore gravità è costante, frequenza pressochè nulla.

Giroscopio

L'offset è a bassa frequenza, l'errore in alta.

Filtro Complementare

$$\theta_{Acc} = \tan^{-1} \left(\frac{A_y}{A_x} \right)$$

$$\vartheta_{gyro} = \theta_{old} + \omega_y \cdot \Delta t$$

$$\theta = \vartheta_{Acc} \cdot k + \vartheta_{gyro} \cdot (1 - k) \qquad k \div 0, 1$$

La scelta di k influenza la banda passante dei filtri.

Filtro di Kalman di regime del 1° ordine

Filtraggio stima angolo di oscillazioni

Filtraggio angolo stimato (1/2)

Problema 1:

Capofisso non perpendicolare

Offset variabile di angolo

Filtraggio angolo stimato (2/2)

Validazione

Test Anello Aperto (1/2)

Il modello calcolato approssima in modo soddisfacente il sistema?

$$T = \frac{2\pi}{\omega_n \sqrt{1 - \xi^2}}$$

Sappiamo che: periodo $T \sim \sqrt{l}$

Puls. Nat. $\omega_n \sim 1/\sqrt{l}$

Smorzamento $\xi \sim 1/\sqrt{l^3}$

	Theory	Measured
$\frac{T_{4.5}}{T_3}$	1.22	1.23
$\frac{(\omega_n \xi)_{4.5}}{(\omega_n \xi)_3}$	2.25	2.14

Test Anello Aperto (2/2)

Il sistema è veramente disaccoppiato?

X e Y **non sono perfettamente disaccoppiati** (ampiezza 1 a 40)

Movimentazione a velocità massima su asse Y (open-loop)

Validazione

E' giusto posizionare la piattaforma inerziale sul capofisso?

The pulley is free to slide over the ropes, with the hook which tends always to keep a vertical orientation. So, the accelerometer on the pulley will measure lower acceleration than the one of the fixed end.

Basically, no acceleration is measured (the hook points to the ground) [1] The pulley oscillations are visible in the gyro measure [2]

Risultati filtraggio

La stima delle oscillazioni è utilizzabile in un sistema di controllo?

Problema di controllo

- M(s): funzione di trasferimento dei motori, considerati ideali
- * \$G(s): funz l'ingresso ir
 * \$\vartheta(s)\$ Quale \(\hat{e}\) il miglior controllore C
 * \$\vartheta(t)\$: angolo per svolgere questo compito?
- **Gen**: funzione che riceve in ingresso I segnali della pulsantiera (operatore) e genera una forma d'onda di riferimento
- $\vartheta_{ref}(t)=0$: vogliamo minimizzare le oscillazioni

Progettazione controllore

Problema di controllo

Quale è il miglior controllore C per svolgere questo compito?

"Try simple first" PID controller

Scelta controllore

$$I(s) = M(s) = 1$$
$$H(s) = sG(s)$$

$$L(s) = PID(s) \cdot H(s)$$

$$PID(s) = \frac{K_d s^2 + K_p + K_i}{s}$$

$$H(s) = -\frac{\frac{1}{g}s}{\frac{l}{g}s^2 + 1}$$

Cancellazione di zeri nell'origine con poli nell'origine sono da evitare

Scelta controllore

$$L(s) = PID(s) \cdot H(s)$$

$$PD(s) = K_d s + K_p$$

$$H(s) = -\frac{\frac{1}{g}s}{\frac{l}{g}s^2 + 1}$$

$$L(s) = -\frac{\frac{1}{g}(K_d s^2 + K_p s)}{\frac{l}{g}s^2 + 1}$$
Due zeri nell'origine.
Sfasamento iniziale
180°, poco margine fase

Scelta controllore

$$L(s) = PID(s) \cdot H(s)$$

$$P(s) = K_p$$

$$H(s) = -\frac{\frac{1}{g}s}{\frac{l}{g}s^2 + 1}$$

$$L(s) = -\frac{\frac{1}{g}K_ps}{\frac{l}{g}s^2 + 1}$$

Il controllore teoricamente migliore è un semplice controllore proporzionale

Analisi in anello chiuso (1/2)

Single axis control

$$I(s) = M(s) = 1$$

$$L(s) = K_p \cdot H(s)$$

Funzione trasferimento d'anello

$$L(s) = K_p \cdot \frac{-\frac{1}{l}s}{s^2 + \frac{g}{l}}$$

Funzione trasferimento anello chiuso

$$F(s) = \frac{-\frac{1}{l}K_p s}{s^2 - \frac{1}{l}K_p s + \frac{g}{l}}$$

Analisi in anello chiuso (2/2)

Asintoticamente stabile?

Parametri anello chiuso:

Solo per $K_p < 0$

$$\xi = -\frac{K_p}{2\sqrt{gl}}$$

- K_p negativo per via del guadagno negativo del sistema
- Pulsazione naturale invariata
- Smorzamento direttamente proporzionale a K_p

Analisi prestazionale – Simulazione (1/2)

Single axis control

Analisi prestazionale –Simulazione (2/2)

Single axis control

No control

Medium control

High control

Scelta di K_p (1/2) - luogo delle radici

Il luogo delle radici è uno strumento grafico per l'analisi e la sintesi di sistemi retro-azionati. E' definito come il luogo geometrico dei punti del piano complesso descritto dalle radici dell'equazione caratteristica al variare del parametro ρ da $-\infty$ a $+\infty$ con $\rho \neq 0$

$$L(s) = \rho \frac{N(s)}{D(s)} \quad L(s) = -K_p \frac{\frac{1}{l}s}{s^2 + \frac{g}{l}}$$

$$\rho = -K_p$$

- All'aumentare di Kp i due poli si allontanano, approssimando il sistema a singolo polo (il più lento);
- La griglia identifica i vari valori di smorzamento del sistema al variare di ρ ;
 - Si nota come un Kp negativo stabilizzi il sistema

NB:
$$\xi = -\frac{K_p}{2\sqrt{gl}} \rightarrow K_p = -2\sqrt{gl} \rightarrow \xi = 1$$

Scelta di K_p (2/2)

- l = 7: prestazioni peggiori in termini di smorzamento angolo ($\xi \ge 0.7$)
- l = 2: prestazioni peggiori in termini di raggiungimento velocità massima («Slow» pole in -1.1)
- Gain scheduling: $K_p = K_p(l)$?

Prestazioni controllore

Come valutare quanto è "buono"?

"Try simple first" PID controller

P controller, PRO & CONS:

- Semplice
- Facilmente implementabile
- "indipendente" dal modello
- Le prestazioni che garantisce sono buone

Dubbi:

- Forse è "troppo" Semplice?
- Come possiamo garantire che queste prestazioni siano effettivamente buone?

Confronto con CONTROLLO OTTIMO

Il **controllo ottimo** è, nell'ambito dei controlli automatici, l'insieme di algoritmi di controllo che stabilizzano un sistema dinamico, minimizzando una cifra di merito che dipende dallo stato del sistema e dal vettore degli ingressi.

Controllo ottimo

Data

$$\dot{x}(t) = f(x(t), u(t)) \text{ with } x(t_0) = x_0$$

$$J = g(x(t_f)) + \int_{t_0}^{t_f} l(x(t), u(t)) dt$$

a dynamical system

a $\cos t$ function (of state and control) between t_0 and t_f

Problem

find a control action $u^*(t)$ over (t_0, t_f) that minimizes the cost function J having the state equation as a constraint.

The solution can be obtained by solving a **constrained optimization problem** using Lagrange multipliers $\lambda(t)$ also called "co-states".

Solution – NC for optimal control

$$\mathcal{H}(\mathbf{x}, u, \lambda) = l(\mathbf{x}, u) + \lambda^{T} f(\mathbf{x}, u)$$

$$\frac{\partial \mathcal{H}}{\partial u} = 0 \Rightarrow u^{*} = h(\mathbf{x}, \lambda) \text{ and } \mathcal{H}^{*} = \mathcal{H}(\mathbf{x}, u^{*}, \lambda)$$

$$\begin{cases} \dot{\mathbf{x}} = \frac{\partial \mathcal{H}^{*T}}{\partial \lambda} \\ \dot{\lambda} = -\frac{\partial \mathcal{H}^{*T}}{\partial x} \end{cases} \Rightarrow \mathbf{x}^{*}, \lambda^{*} \Rightarrow u^{*} = h(\mathbf{x}^{*}, \lambda^{*})$$

The Hamiltonian

Minimize it and evaluate the minimum

Compute the solutions of the equations and put them into the minimum

Controllo ottimo a tempo minimo

$$\dot{x}(t) = Ax(t) + Bu(t) \text{ with } x(0) = x_0 \text{ and } u_{min} \le u(t) \le u_{max}$$

$$J = \int_0^T dt = T \text{ with } x(T) = 0$$

a LTI dynamical system

a "special" cost function

Problem

Find the optimal control action $u^*(t)$ over (0, T)

Solution – the bang bang control

$$\mathcal{H}(\mathbf{x}, u, \lambda) = 1 + \lambda^{T} (A\mathbf{x} + Bu) = 1 + \lambda^{T} A\mathbf{x} + \lambda^{T} Bu$$

$$\frac{\partial \mathcal{H}}{\partial u} = 0 \Rightarrow \lambda^{T} B = 0$$

$$u^{*} = \begin{cases} u_{min} & \text{if } \lambda^{T} B > 0 \\ u_{max} & \text{if } \lambda^{T} B < 0 \end{cases}$$

The **Hamiltonian** is very simple

Minimize it

Define the switching times

Remark: open loop control (as is, but it is possible to define a closed loop law)

Applicazione controllo tempo minimo (1/3)

Azione di controllo che garantisce raggiungimento condizioni finali in **tempo minimo**

NB: "open-loop","non-adaptive "control

Applicazione controllo tempo minimo (2/2)

 $\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{b}{ml^2} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac{1}{l} \end{bmatrix} u(t)$ m = 1000 Kg - l = 5 m - b = 12000

- Il controllo a tempo ottimo ha prestazioni nettamente migliori rispetto al sistema senza controllo;
- Controllo ottimo, in condizioni di perfetta conoscenza del modello, garantisce prestazioni migliori rispetto al P;

Problemi:

- Conosciamo in modo perfetto il modello?
- La lunghezza è fissa?

Controllo con incertezze

Al termine dell'azione di controllo il time optimal non smorza più le oscillazioni

Il controllore P si adatta al meglio alle possibili imprecisioni/variazioni del sistema

Scelta controllo

Perfetta conoscenza del modello:

	Settling Time [s]	Max Overshoot [%]
No-Control	>15	57.9
Time-Optimal Control	4.47	39.1
P Control	6.31	36.2

Incertezze sul modello:

	Settling Time [s]	Max Overshoot [%]
Time-Optimal Control	9.38	32
P Control	5.66	29.5

- Il controllore ottimo è il miglior risultato ottenibile **teoricamente**
- Le prestazioni del controllore P non distano in modo significativo dal TO in condizioni nominali
- Il controllore P è molto più robusto ed adattabile ad una soluzione reale.

Implementazione

Implementazione

Risoluzione problemi

Ritardo

Conseguenze:

- Il ritardo si "mangia" margine di fase, rischiando di rendere instabile il sistema;
- Le prestazioni degradano in quanto l'azione di controllo è ritardata.

Scheduling guadagni

Il ritardo introdotto dall'accoppiata inverter/motore riduce la **robustezza** del sistema

Cambiare i K_p in base all'altezza del carico

$$K_p(l) = K_{pmin} + (K_{pmax} - K_{pmin}) \cdot \frac{L_{est} - h_{min}}{h_{max} - h_{min}}$$

- $K_{pmin} \ e K_{pmax}$ calcolati tramite test sul campo:
- $h_{min} eh_{max}$ dipendenti dalla geometria del carroponte;
- L_{est} è la stima di altezza;

Come stimare l'altezza?

Stima altezza (1/2)

Per la stima dell'altezza sono stati implementati due metodi completamente diversi:

- 1. Integrazione velocità mottore discilevamento;
- 2. Stimmaffeqquerazasoskatlanioni.

$$L_{est}(t) = L_{est}(t-1) + v_z(t) \cdot \Delta t$$

- In 300 s di prova l'errore è di **solo 10 cm**;
- Con il tempo la misura è destinata a driftare;
- La misura viene aggiornata grazie ai fine corsa → necessaria "calibrazione" periodica;
- La lettura della velocità richiede particolari inverter e l'utilizzo di un ingresso analogico ulteriore.

Stima altezza (2/2)

Per la stima dell'altezza sono stati implementati due metodi completamente diversi:

- 1. Integrazione velocità motore di sollevamento;
- 2. Stima frequenza oscillazioni (Frequency tracker).

$$\begin{cases} \dot{x}_1(t) = \boldsymbol{\omega} \cos(\omega t) \\ \dot{x}_2(t) = -\boldsymbol{\omega} \sin(\omega t) \end{cases}$$

$$\begin{cases} \omega(k+1) = \omega(k) \\ x_1(k+1) = K^*(k) + \\ \omega(k)dtx_2(k) \\ x_2(k+1) = \omega(k)dtx_1(k) + \\ K^*x_1(k) \\ y(k) = x_1(k) \end{cases}$$

 K^* : coefficiente per stabilizzare il sistema

Sollevamento non verticale

Risultati

Controllo asse X (carrello)

Oscillazione massima di circa 3°.

Controllo asse Y (carrello)

Oscillazione massima di circa 8°.

Controllo asse X (carrello)

Oscillazione massima di circa 2°.

Controllo asse Y (carrello)

Angolo massimo circa 5°. In questo caso si tentava di indurre l'oscillazione, ma il sistema riusciva a bloccare l'innesto.

Confronto Controllo ON-OFF

Confronto Controllo ON-OFF

Confronto Controllo ON-OFF

Conclusioni

- Progetto concluso
- La soppressione delle oscillazioni si è rivelata ottimale
- Il sistema è stato dichiarato "molto utile" dagli operatori che lavorano tutti i giorni con i carriponte
- Sistema completamente adattativo, robusto a variazioni di altezza, di carico e pure di struttura meccanica.
- Sistema in fase di brevetto

Possibili sviluppi futuri

- Rendere il sistema più "ampio". Permettere di avere più carrelli sullo stesso ponte che si muovono in modo cooperativo per smorzare le oscillazioni
- Rendere il sistema estendibile ad altri tipi di gru
- Compensare ritardo (predittore Schmidt, azione derivativa?)
- Migliorare la comunicazione (profiBUS,profiNET..)
- Controllo in posizione?
- Stimare angolo oscillazione da misura corrente motore?