

planetmath.org

Math for the people, by the people.

the category of T0 Alexandroff spaces is equivalent to the category of posets

 $Canonical\ name \qquad The Category Of T0 Alexandroff Spaces Is Equivalent To The Category Of Posets$

Date of creation 2013-03-22 18:46:04 Last modified on 2013-03-22 18:46:04

Owner joking (16130) Last modified by joking (16130)

Numerical id 8

Author joking (16130) Entry type Theorem Classification msc 54A05 Let \mathcal{AT} be the category of all T_0 , Alexandroff spaces and continuous maps between them. Furthermore let \mathcal{POSET} be the category of all posets and order preserving maps.

Theorem. The categories \mathcal{AT} and \mathcal{POSET} are equivalent. *Proof.* Consider two functors:

$$T: \mathcal{AT} \to \mathcal{POSET};$$

 $S: \mathcal{POSET} \to \mathcal{AT},$

such that $T(X,\tau)=(X,\leq)$, where \leq is an induced partial order on an Alexandroff space and T(f)=f for continuous map. Analogously, let $S(X,\leq)=(X,\tau)$, where τ is an induced Alexandroff topology on a poset and S(f)=f for order preserving maps. One can easily show that T and S are well defined. Furthermore, it is easy to verify that equalities $T\circ S=1_{\mathcal{POSET}}$ and $S\circ T=1_{\mathcal{AT}}$ hold, which completes the proof. \square

Remark. Of course every finite topological space is Alexandroff, thus we have very nice ,,interpretation" of finite T_0 spaces - finite posets (since functors T and S do not change set-theoretic properties of underlying sets such as finitness).