Théorie des Langages – Feuille n° 1 Alphabets, Langages et Grammaires

Exercice 1 - On considère l'alphabet $X = \{a, b, c\}$. On rappelle que |w| représente la longueur du mot w, et ϵ représente le mot vide. Soit deux mots w = ababc et q = caba.

- 1. Calculez w^0 , w^1 et w^2
- 2. Calculez wq^2w
- 3. Calculez $|w|_{ab}$, $|(ab)^4|$ et $|(ab)^4|_{aba}$
- 4. Donnez les préfixes, les préfixes propres, les suffixes et les suffixes propres de q
- 5. Donnez le miroir du mot wq.

Exercice 2 - Soit l'alphabet $X = \{a, b\}$.

- 1. Montrez qu'il ne peut y avoir de mot $w \in X^*$ tel que aw = wb.
- 2. Quels sont les deux langages dont la fermeture par l'étoile donne le langage uniquement composé du mot vide ϵ ?
- 3. Les mots suivants sont-ils générés par le langage $(ab)^*b^*$: ϵ , a, aa, ba, abbb, ababb, baba? Même question avec le langage $(ab^*)b^*$.

Exercice 3 - On considère l'alphabet $X = \{a, b\}$. Donner les langages correspondant aux propriétés suivantes :

- 1. Les mots qui commencent par ab;
- 2. Les mots qui terminent par bb;
- 3. les mots qui ne contiennent aucun b;
- 4. les mots qui ne contiennent pas ab;
- 5. les mots qui contiennent au moins un a;
- 6. les mots qui ne commencent pas par ba;
- 7. les mots de longueur paire

Exercice 4 - On considère l'alphabet $X = \{a, b, c\}$.

- 1. Calculez les ensembles X^0 , X^1 et X^2
- 2. Pour chacun des ensembles suivants, caractérisez L_1^* , et calculez $L_1 \cap L_2$, $L_1 \cup L_2$, $L_1 L_2$, $L_2 L_1$

$$L_1 = \{ab, bb\}$$
 et $L_2 = \{a, ab, bbc, ca\}$
 $L_1 = \{\epsilon\}$ et $L_2 = \{bbc, ca\}$
 $L_1 = \emptyset$ et $L_2 = \{bbc, ca\}$
 $L_1 = \{ab, bb\}$ et $L_2 = X^*$

Exercice 5 - On considère l'alphabet $X = \{a, b\}$, et les langages L_1 et L_2 suivants :

$$L_1 = \{a^n b^n | n \in \mathbb{N}\}$$

$$L_2 = \{b^n a^n | n \in \mathbb{N}\}$$

Calculez $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1.L_2$, L_1^2 .

Exercice 6 - On considère des langages sur un alphabet quelconque.

- 1. Démontrez les propriétés suivantes :
 - (a) $L_1 \subseteq L_2 \Rightarrow L.L_1 \subseteq L.L_2$
 - (b) $L.(L_1 \cup L_2) = L.L_1 \cup L.L_2$
- 2. Montrez que $L.(L_1 \cap L_2) \subseteq L.L_1 \cap L.L_2$. A l'aide d'un contre-exemple, montrez que l'égalité n'est pas forcément atteinte.

Exercice 7

- 1. Est-ce que les éléments suivants sont des monoïdes?
 - (a) $\langle \mathbb{N}, +, 0 \rangle$
 - (b) $\langle \mathbb{N}, -, 0 \rangle$
- 2. Est-ce que $(3\mathbb{N}, +, 0)$ est un sous-monoïde de $(\mathbb{N}, +, 0)$?
- 3. Soit $B = \{n \in \mathbb{N} \mid n \text{ impair}\}$. Est-ce que $\langle B, +, 0 \rangle$ est un sous-monoïde de $\langle \mathbb{N}, +, 0 \rangle$?

Exercice 8 - Soient les langages L_1 , L_2 , L_3 et L_4 suivants construits sur l'alphabet $\Sigma = \{a, b, c\}$. Montrer que ces 4 langages sont tous deux à deux différents.

- $-L_1 = (a+b)^* ca^* b^*$
- $-L_2 = a^*b^*c(a+b)^*$
- $-L_3 = (a^* + b^*)ca^*b^*$
- $-L_4 = \{(a+b)^n ca^m b^n, n, m \in \mathbb{N}\}$

Exercice 9 - Soient les langages L_1 , L_2 et L_3 construits sur l'alphabet $X = \{a, b\}$. On rappelle que $(a + b) = \{a\} \cup \{b\}$.

$$L_{1} = \{a^{n}b(a+b)^{n}, n \in \mathbb{N}\}$$

$$L_{2} = \{(a+b)^{n}ba^{n}, n \in \mathbb{N}\}$$

$$L_{3} = \{(a+b)^{n}b(a+b)^{n}, n \in \mathbb{N}\}$$

- 1. Montrez que les langages L_1 , L_2 et L_3 ne sont pas égaux
- 2. Soit $L_4 = \{(a+b)^m b a^n, m, n \in \mathbb{N}\}$. Montrez que $L_2 \neq L_4$
- 3. Donnez les grammaires qui engendrent L_2 et L_4

Exercice 10 - Soit la grammaire $G = \langle V, \Sigma, P, S \rangle$, avec $V = \{a, b, S\}$, $\Sigma = \{a, b\}$ et $P = \{S \rightarrow aSa; S \rightarrow bSb; S \rightarrow \epsilon\}$.

- 1. Soit $G' = \langle V, \Sigma, P', S \rangle$, avec $P' = P \cup \{S \to SS\}$. Montrez que $aabaab \in \mathcal{L}(G')$. Montrez ensuite que G' est ambigüe.
- 2. Quel est le langage engendré par G? Démontrez
- 3. Pourquoi G n'est pas ambigüe?

Exercice 11 - Soit la grammaire $G = \langle V, \Sigma, P, A \rangle$, avec $V = \{a, b, A, B\}$, $\Sigma = \{a, b\}$ et $P = \{A \rightarrow aA|bB; B \rightarrow b|bB\}$.

- 1. De quel type est la grammaire G?
- 2. Construisez l'arbre de dérivation de profondeur 4 de G.
- 3. A l'aide des règles de production et des mots dérivés de l'arbre de dérivation, déduisez quel est le langage généré par G (écriture en compréhension)?