PRELIMINARY INFORMATION

ON THE

EXECUTION TIME OF THE

1103A FLOATING POINT INSTRUCTIONS

15 October 1956 Dates

Prepared by: F. Warburton

Issued by:

Systems Analysis Dept.
Systems Group of Univac Scientific Applications

SUMMARY OF EXECUTION TIMES

•	Max.	Min.
Floating add and subtract (N ≤ 1)	300 / sec.	144 M 80c.
$(N) = (u_c) - (v_c) \qquad (N \ge 2)$	236	148
Floating multiply	380	162
Floating divide	654	648
Floating polynomial multiply	619	262
Floating inner product	637	280
Floating unpack	52	54
Floating normalize pack	180	144
Normalize exit	20	20

All times given include magnetic core reference time. If (u) is A, subtract 6 \not sec.; if Q, subtract 4 \not sec. All cases are for NE FF set to zero. If NE FF = 1, set K = 0 and subtract 12 \not sec. All cases include rounding. If the full number of normalizing shifts are made (35 for addition and subtraction, 2 for multiplication and division), the mantissa is zero and rounding is omitted. For this case, subtract 14 \not sec.

The following symbols are used in the formulas.

$$N = (u_c) - (v_c)$$
 for operations 64, 65, 66, and 67

$$N = (Q_0)_c - (v_c)$$
 for operation 01

$$N = (uv)_c - (Q_c)$$
 for operation 02

No is the sign of this difference (corresponding to So at the

points when
$$(S) = (u_c) - (v_c)$$

or $(S) = (Qu)_c - (v_c)$
or $(S) = (uv)_c - (Q_c)$

K is the number of normalizing shifts (the number of shifts necessary to put the MSB of the arithmetic result of (u_m) and (v_m) in A_{61} — maximum of 35 for addition and subtraction, 2 for multiplication and division).

Floating point add and subtract (FAuv and FSuv)

N≤1, Maximum time: 300 µ sec. Minimum time: 144 µ sec.

N ≥ 2, Maximum time: 236 μ sec. Minimum time: 148 μ sec.

Note: In cases I and II, maximum addition times are 4μ sec. less than shown. (If (u) and (v) are both positive, K = 0.)

Floating point multiply (FMuv)

MP 0 (Unpack (u) sequence)
1 (Unpack (v) sequence)
26 (Multiply sequence)
5 (NRP sequence)
6 & 7 (Set up NI)

Total (clock pulses)
$$81+(u_{35})+4 \sum_{i=1}^{26} (u_{35})u_{i})+2(u_{35})u_{0})+2k$$

$$162+2(u_{35})+8 \sum_{i=1}^{26} (u_{35})u_{i})+4(u_{35})u_{0})+4k$$

Maximum time: 380 M sec.

Minimum time: 162 M sec.

*If (u) is negative, the complement of (u) is sent to Q. Therefore, Q_{35-27} is always zero, and (Q_{26-0}) may be the complement of (u_{26-0}) .

Floating point divide (FDuv)

MP 0 (Unpack (u) sequence) 7 + (u ₃₅) 1 (Unpack (v) sequence) 7 2 (Initial shift of (u) 36 3 (Divide sequence) 222 4 (Q → A sequence) 6 5 (NRP sequence) 39 + 2k 6 & 7 (Set up NI) 7	-
Total (clock pulses) 324 + (u ₃₅) + 2k	
Total (μ sec.) 648 + 2(u_{35}) + 4k	

Maximum time: 654 Msec.

Minimum time: 648 M sec.

Floating point polynomial multiply (FPuv)

Total (clock pulses):97+(Q₃₅)+4 $\sum_{i=1}^{26}$ (Q₃₅ Φ u_i)+2(Q₃₅ Φ u₀)+5(N₉)+2|N|+(34-|N|)+2K Total (μ sec.):194+2(Q₃₅)+8 $\sum_{i=1}^{26}$ (Q₃₅ Φ u_i)+4(Q₃₅ Φ u₀)+5(N₉)+4|N|+(68-2|N|)+4K

Maximum and minimum times depend upon the value of N as well as (Q). (See the four cases given under Floating add and subtract.)

Taking the largest maximum (N=1) and the smallest minimum (N=0), the maximum and minimum time are:

Maximum time (N = 1): 619 μ sec. Minimum time (N = 0): 262 μ sec.

Floating point inner product (Fluv)

Total (clock pulses): $106+(u_{35})+4\frac{26}{1-1}(u_{35})+2(u_{35})$

Maximum and minimum times depend upon the value of N as well as (u). (See the four cases given under Floating add and subtract.)

Taking the largest maximum (N = 1) and the smallest minimum (N = 0), maximum and minimum times are:

Maximum (N = 1): 637 μ sec.

Minimum (N = 0): 280 μ sec.

Floating point unpack (UPuv)

Floating point normalize pack (NPuv)

MP 0 (Read (v) sequence) 1 (v _c → c sequence) 2 (Read (u) sequence) 3 (u → A sequence) 4 (NRP sequence) 5 (Write in (u) sequence) 6&7	7 1 7 3 39 + 2K 7	
Total (clock pulses)	72 + 2K	•
Total (M sec.)	144 + 4K	(9 > K ≥ 0)
Maximum time: 180 / sec.		

Floating point normalize exit (NEj-)

MP 0 (Clear x) 1 (Set NE FF 5	1 1 1 -7
Total (clock pulses)	10
Total (A sec.)	20

Minimum time: 144 m sec.