Applied Deep Learning

Nitish Bhardwaj

Overview of Session-2:

- Introduction to Computer vision and Natural Language Processing
- Applications of CV and NLP
- Demos

Computer Vision

- Classification
- Detection
- Segmentation
- Generation
- And Lot more

Natural Language Processing

Search Autocorrect and Autocomplete

Language Translation

- Text Classification
- Chatbots
- Voice Assistants
- Social Media Analytics
- Advertisements
- Summarization
- And lot more

Image Classification

Image classification

Dataset

- Images
- Classes

Feature extraction

HOG: Histogram of Oriented Gradients

• SIFT: Scale Invariant Feature Transform

• SURF: Speeded-Up Robust Feature

CNN: Convolution Neural Network

https://setosa.io/ev/image-kernels/

Convolution neural Network

Coding Session

Let's Deep Dive

Deep Learning

What society thinks I do

What my friends think I do

What other computer scientists think I do

What mathematicians think I do

What I think I do

In [1]:
import keras
Using TensorFlow backend.

What I actually do

LET'S CODE...

https://www.youtube.com/watch?v=inN8seMm7UI

https://colab.research.google.com/

The Jupyter Notebook is a web-based interactive computing platform that allows users to author data- and code-driven narratives that combine live code, equations, narrative text, visualizations, interactive dashboards and other media.

Google Colaboratory

https://colab.research.google.com/drive/13rPobflI6GsLyxIbTnO9EP0FexdAqoab?usp=sharing

Image Classification: Walkthrough

https://drive.google.com/file/d/1BCNFyTAVp8fTcN9mrmQRbFY-3afjRYkk/view?usp=sharing

Object Detection

Object detection

Dataset

- Images
- Bounding Boxes(x,y,w,h)
- Classes

Region Proposal
Network, providing a
number of regions which
are then passed to
common DL based
classification
architectures.

With the need of real time object detection, many one-step object detection architectures have been proposed, like YOLO, YOLOv2, YOLOv3, SSD, RetinaNet etc. which try to combine the detection and classification step.

Segmentation

Dataset

- Images
- Coordinates[list of (x,y)]
- Classes

Segmentation Masks

The mask branch is CNN that takes the positive regions selected by the ROI classifier and generates masks for them.

The generated masks are low resolution: 28x28 pixels. But they are soft masks, represented by float numbers, so they hold more details than binary masks.

Face recognition

Dataset

- Images
- Classes

Facebook automatically tags people in your photos that you have tagged before. I'm not sure if this is helpful or creepy! :P

Algorithm:

- Face Detection
- Face Alignment
- DeepNet Model to extract features
 Pass the centered face image through a neural network that knows
 how to measure features of the face. Save those 128
 measurements.
- Testing new face: Extract 128 measurements and find the most similar match

Style transfer

- Problem Statement
 - o Given:
 - Content Image
 - Style Image
 - o Result:
 - Stylized Image
- Algorithm
 - Feature Extraction of Content (A)
 - Feature Extraction of Style (B)
 - Merge Features(A+B)

Image analytics

- 1. Problem Statement
- 2. Data Preparation
- Choosing model(s)
 - a. Training
 - b. Evaluation / Validation
 - c. Hyperparameter tuning
 - d. Prediction/**Testing**
- 4. Combine Results
- 5. Presentation

Text Classification

Text Classification

Embedding Vector

Word	index
------------------------	-------

- TF-IDF
- word2vec
- Doc2vec
- Glove
- Transformers
- BERT

Dimensions

animal

pet

fluffy

domesticated

Word vectors	dog	-0.4	0.37	0.02	-0.34
	cat	-0.15	-0.02	-0.23	-0.23
	lion	0.19	-0.4	0.35	-0.48
	tiger	-0.08	0.31	0.56	0.07
	elephant	-0.04	-0.09	0.11	-0.06
	cheetah	0.27	-0.28	-0.2	-0.43
	monkey	-0.02	-0.67	-0.21	-0.48
	rabbit	-0.04	-0.3	-0.18	-0.47
	mouse	0.09	-0.46	-0.35	-0.24
	rat	0.21	-0.48	-0.56	-0.37

Sentiment Analysis: Walkthrough

https://colab.research.google.com/github/agungsantoso/deep-learning-v2-pytorch/blob/master/sentiment-rnn/Sentiment RNN Exercise.ipynb#scrollTo=TT8spavKpmxH

References

Computer Vision :

- https://setosa.io/ev/image-kernels/
- https://poloclub.github.io/cnn-explainer/
- https://towardsdatascience.com/gentle-dive-into-math-behind-convolutional-neural-networks-79a07dd44cf9
- https://reiinakano.com/arbitrary-image-stylization-tfjs/
- https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-c nn-and-tensorflow-7c761e238b46
- https://github.com/ageitgey/face_recognition
- https://medium.com/@manivannan_data/how-to-train-yolov2-to-detect-custom-objects-9
 https://medium.com/@manivannan_data/how-to-train-yolov2-to-detect-custom-objects-9
 010df784f36

References

- Natural Language Processing :
 - Text classification from scratch :
 https://colab.research.google.com/drive/1gAS_eDzGRhEznUosanlUvjv-g96jfQZE#scrollTo=
 39CgD8t68Otg
 - Sentiment Analysis with an RNN:
 https://colab.research.google.com/github/agungsantoso/deep-learning-v2-pytorch/blob/master/sentiment-rnn/Sentiment RNN Exercise.ipynb#scrollTo=TT8spavKpmxH

Overview of Session:

- Understanding of Deep Learning code
- CNN / Object Detection

Thank you!

