Dataset description:

Data was collected by web crawler form Polish Car trading website - Otomoto.pl It consists of around 19708 observations (some of them are duplicated) and 18 variables

Objective:

Main objective of this analysis is to select Unsupervised Learning method which will increase fit of Supervised Regression model. Which in this case is Random Forest Regressor.

To perform clustering, 3 models were chosen: K-Means, Mean Shift and DBSCAN.

Variables description:

Price-Price of a car

Brand-Brand of a car

Model-Model of a car

Year_produced-year in which car was produced

Mileage-car's mileage

Cylinders_capacity - Car's cylinders capacity

Fuel_type- Diesel/Petrol etc.

HP - Horse Power

transmission - type of transmission

drive_type - type of drive (FWD,AWD,RWD)

Colour-car's colour

Serviced - whether it was serviced in authorized mechanic

New/Used-Describes whether car was used before or is it brand new

Feature engineering:

- Removed two outliers (first one because its price was too big and second one because its liters per km ratio was too high)
- Reviewed each variable separately and converted it to an expected type and format
- Filled missing values with mean values of a sub groups
- Removed the rest if there were still missing values
- Grouped car brands and models as 'Other' when they appearing too rarely
- All numeric variables were transformed using log1p transformation due to their skewness

Final 'clean' dataset consists of 8503 observations

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 8503 entries, 1 to 19706
Data columns (total 18 columns):
                       Non-Null Count Dtype
    Column
    Price
                                      float64
0
                       8503 non-null
 1
    Brand
                       8503 non-null object
 2
                       8503 non-null
    Mode1
                                     object
 3
    Year produced
                       8503 non-null
                                     int32
                       8503 non-null
                                     float64
 4
    mileage
    Cylinders_capacity 8503 non-null
                                     float64
 6
                       8503 non-null object
    Fuel type
 7
    HP
                       8503 non-null
                                      float64
 8
    transmission
                       8503 non-null
                                      object
 9
    drive type
                       8503 non-null
                                      object
 10 liters per km
                       8503 non-null
                                      float64
                       8503 non-null object
 11 Type
 12 CO2 emission
                       8503 non-null
                                     float64
 13 No of doors
                       8503 non-null
                                      float64
 14 No_of_seats
                       8503 non-null
                                     float64
 15 Colour
                       8503 non-null object
                       8503 non-null object
 16 Serviced
 17 New/Used
                       8503 non-null object
dtypes: float64(8), int32(1), object(9)
memory usage: 1.2+ MB
```

EDA:

All correlations are as we should expect:

- -The higher cylinder capacity the higher the price
- -The higher the cylinder capacity the more horse power car has
- -The higher the fuel burning rate the higher the price
- -The newer the car the more expensive it is

Correlation between variables:

When it comes to direction in which different parameters are correlated with the price: There are top 30 negatively and positively correlated:

There are top 30 negatively	and positively con	related.	
mileage	-0.565052	Price	0.743590
liters_per_km	-0.350799	No_of_doors_5.0	0.220582
transmission_Manual	-0.255964	Colour_White	0.168758
drive_type_RWD	-0.235059	HP	0.150132
CO2 emission	-0.209621	No_of_seats_5.0	0.118961
No_of_doors_3.0	-0.180385	Colour_Gray	0.084075
Fuel_type_Petrol	-0.169636	Model_tipo	0.080530
Cylinders_capacity	-0.168949	Brand škoda	0.079569
Colour_Silver	-0.134902	Model q3	0.079486
Model_Other	-0.133237	Brand dacia	0.075577
Model_sl	-0.105919	Model arteon	0.072460
Model_a4	-0.096026	Model xc40	0.071079
Model_seria3	-0.094904	Brand hyundai	0.063899
No_of_seats_4.0	-0.090991	drive type FWD	0.063314
Model_vectra	-0.083228	Model kuga	0.059911
Colour_Green	-0.073809	Model_kuga Model stelvio	0.058353
Colour_Other	-0.069774	Model duster	0.056153
Model_xj	-0.068230	_	0.056000
Model_clk	-0.065800	Model_tucson	
Model_grandvitara	-0.065063	Brand_volvo	0.053735
Model_meriva	-0.063083	Brand_kia	0.053553
Colour_Gold	-0.059779	Model_spacestar	0.053518
No_of_seats_2.0	-0.059733	Model_xc60	0.053138
Brand_bmw	-0.059520	Serviced_Yes	0.052882
Model_9-3	-0.059374	Model_superb	0.052706
Brand_saab	-0.059374	Model_compass	0.051220
Brand_daihatsu	-0.059018	Model_tiguan	0.049479
Brand_honda	-0.058072	Model_giulia	0.049156
Model_klasas	-0.057067	Model_ateca	0.048580
Model_accord	-0.055774	Model_captur	0.047847
Name: Year_produced,	dtype: float6	Name: Year produce	ed, dtype: float64
A		the annual selection and a second and a second and	

As we can see all of them are more or less in line with common sense

Histograms of continuous variables are presented below, all are indicating high skewness:

Histograms after performing logarithmic transformation look much closer to normal distribution:

Clustering:

Models used:

- -K-Means
- -Mean Shift
- -DBSCAN

K-Means:

Mean Shift:

DBSCAN:

Regression and Summary:

In this part regression was performed based on 4 versions of this dataset

- 1. Without any Unsupervised Learning clusters
- 2. With K-Means Clustering
- 3. With Mean Shift Clustering
- 4. With DBSCAN clustering

Results are summarized below:

As we can see all in each case clustering increased overall fit to test data, and reduced MSE.

However best results are reached thanks to **DBSCAN** clustering. There is a chance that K-Means, Mean Shift or DBSCAN would bring even better results but it requires a lot of testing of hyperparameters of those clustering methods and then running regression model each time which can be really time consuming.