Online Course on Machine Learning, Deep Learning and Neural Networks

Day 3

Conducted by

Mr. Anupam Borthakur

Prime Minister's Research Fellows (PMRF)

Centre of Excellence in Artificial Intelligence Indian Institute Of Technology, Kharagpur Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh

Agenda

- 1. Recap of Supervised Learning
- 2. Introduction to Support Vector Machine (SVM)
- 3. Code implementation of that

Types of Machine Learning

Unsupervised

Find patterns

- Groups
- Clusters

Simple Structure of a Database

Supervised

	Age	Class
*	14	Т
	24	А
*	17	Т
	30	Α

Types of Supervised Learning

Types of Supervised Learning

Age	Class
14	Т
24	Α
17	Т
30	Α

Simple Training Pipeline of Machine Learning

Introduction to Support Vector Machine (SVM)

- 1. 1D to 2D
- 2. Decision Surface/ Hyperplane
- 3. Linearly Separable
- 4. Margin
- 5. Support Vectors
- 6. Functional Margin
- 7. Non-linearly Separable

1D to 2D

- How many decision surface there could be? → Infinite?
- Which decision surface to choose?

Minimum Distance of a training instance from the **Decision surface**

Minimum Distance of a training instance from the Decision surface

- ✓ Margin: Minimum Distance of a training instance from the
 Decision surface
- ✓ Choose that Decision Surface for which the Margin width is maximum
- ✓ Number of support vectors should be extremely small
- ✓ Minimum two support vectors should be there

Larger functional Margin more confidence in predicting

Which decision surface to choose?

Reason which decision surface is best

Coding Tutorial

Difference between Linearly Separable and Non- Separable

Thank You

For your Attention!

Any Questions?

