Theorie 3: Quantenmechanik

Übungsblatt 7: Der harmonische Oszillator

Deadline: Mittwoch 12.06.2024 18.00 via eCampus

Der 1D harmonische Oszillator

Wir betrachten den harmonischen Oszillator in einer Dimension, mit Hamilton-Operator

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2.$$

Wir nehmen an, dass sich das System zum Zeitpunkt t=0 in einem Zustand $|\phi_0\rangle$ befindet, dessen Wellenfunktion im Ortsraum gegeben ist durch

$$\langle x|\phi_0\rangle = N e^{-\alpha x^2/2} (1 - x\sqrt{2\alpha})$$

wobei $\alpha := \frac{m\omega}{\hbar}$.

- 1. (1 Punkt) Bestimmen Sie N so dass $\|\phi_0\| = 1$.
- 2. (2 Punkte) Bestimmen Sie den Zustand des Systems zu einem beliebigen Zeitpunkt t > 0 (wir nehmen an dass zwischen t = 0 und t keine Messung vorgenommen wird).
- 3. (4 Punkte) Bestimmen Sie den Erwartungswert und die Varianz einer Messung der Energie zum Zeitpunkt t.
- 4. (5 Punkte) Bestimmen Sie den Erwartungswert und die Varianz einer Messung der Position zum Zeitpunkt t.
- 5. (2 Punkte) Berechnen Sie den Erwartungswert des Impulses zum Zeitpunkt t mit Hilfe des Ehrenfest Theorems.

Der 2D harmonische Oszillator

Der Hamilton-Operator eines harmonisches Oszillators in 2 Dimensionen ist gegeben durch:

$$\hat{H} = \frac{1}{2m}(\hat{p}_x^2 + \hat{p}_y^2) + \frac{1}{2}m\omega^2(\hat{x}^2 + \hat{y}^2).$$

 $1.\ (3\ \mathrm{Punkte})$ Zeigen Sie dass eine Orthonormalbasis an Eigenfunktionen im Ortsraum gegeben ist durch:

$$\phi_{n_1,n_2}(x,y) = \phi_{n_1}(x)\,\phi_{n_2}(y)\,,$$

wobei $\phi_n(x)$ die Eigenfunktionen des 1D harmonischen Oszillators sind.

- 2. (2 Punkte) Zeigen Sie dass die Energie
eigenwerte von \hat{H} gegeben sind durch $E_N=(1+N)\hbar\omega,$ mit $N\geq 0.$
- 3. (1 Punkt) Zeigen Sie dass der Energie
eigenwert E_N entartet ist für $N \ge 1$, und der Grad der Entartung (also, die Anzahl der line
ar unabhängigen Eigenvektoren mit diesem Eigenwert) genau N+1 ist.