Rec'd PCT/PTO 15 JUN 2005 PCT/US2003/038878 10/538998

N-(SUBSTITUTED ARYLMETHYL)-4-(DISUBSTITUTED METHYL)PIPERIDINES AND PYRIDINES

5

10

15

20

25

FIELD OF THE INVENTION

The present invention generally relates to insecticidal compounds and their use in controlling insects. In particular, it pertains to insecticidal N-(substituted aryl)-4-(disubstituted methyl)piperidines and pyridine derivatives, N-oxides, and agriculturally acceptable salts thereof, compositions of these insecticides, and methods for their use in controlling insects.

BACKGROUND OF THE INVENTION

It is well known that insects in general can cause significant damage, not only to crops grown in agriculture, but also, for example, to structures and turf where the damage is caused by soil-borne insects, such as termites and white grubs. Such damage may result in the loss of millions of dollars of value associated with a given crop, turf or structures. Thus, there is a continuing demand for new insecticides that are safer, more effective, and less costly. Insecticides are useful for controlling insects which may otherwise cause significant damage to crops such as wheat, corn, soybeans, potatoes, and cotton to name a few. For crop protection, insecticides are desired which can control the insects without damaging the crops, and which have no deleterious effects to mammals and other living organisms.

A number of patents disclose a variety of insecticidally active substituted piperidine and piperazine derivatives. For example, as set forth in United States Patent 5,569,664, compounds of the following structure are reported to be insecticidally active:

$$V = V = N = R^{1}$$

$$V = Z = R^{2}$$

10

15

where U is selected from -(CH₂)_n- and ethylidine, where n is 1, 2, or 3; Q is selected from hydrogen, hydroxy, sulfhydryl, and fluorine; V is selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsilyloxy, dialkylamino, cyano, nitro, hydroxy, and phenyl; W is selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, nitro, amino, phenoxy, and phenylalkoxy; X is selected from hydrogen, hydroxy, halogen, alkyl, alkoxyalkyl, cycloalkylalkoxy, haloalkoxy, alkenyloxy, alkynyloxy, alkylsilyloxy, alkylthio, haloalkylthio, cyano, cyanoalkoxy, nitro, amino, monoalkylamino, dialkylamino, alkylaminoalkoxy, alkylcarbonylamino, alkoxycarbonylamino, alkylcarbonyl, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyloxy, phenyl, phenylalkoxy, phenoxy, and phenoxyalkyl; Y and Z are independently selected from hydrogen and alkoxy; R¹ and R² are independently selected from phenyl substituted with halogen, alkyl, haloalkyl, haloalkoxy, alkoxyalkyl, hydroxy, arylthio, alkoxy, dialkylamino, dialkylaminosulfonyl, hydroxyalkylaminocarbonyl, alkylsulfonyloxy, and haloalkylsulfonyloxy; and the corresponding N-oxides and agriculturally acceptable salts.

As set forth in United States Patent 5,639,763 compounds of the following structure are reported to be insecticidally active:

20

25

where U is selected from $-(CH_2)_n$ - and ethylidine, where n is 1, 2, or 3; Q is selected from hydrogen, hydroxy, sulfhydryl, and fluorine; V is selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsilyloxy, dialkylamino, cyano, nitro, hydroxy, and phenyl; Y and Z are independently selected from hydrogen and alkoxy; W and X taken together is $-OCH_2CH_2O$ -, $-CH_2C(CH_3)_2O$ -, $-OC(CH_3)_2O$ -, or $-N=C(C_2H_5)O$ -; R^1 and R^2 are independently selected from phenyl substituted with halogen, alkyl, haloalkyl, haloalkoxy,

10

15

20

alkoxyalkyl, hydroxy, arylthio, alkoxy, dialkylamino, dialkylaminosulfonyl, hydroxyalkylaminocarbonyl, alkylsulfonyloxy, and haloalkylsulfonyloxy; and the corresponding N-oxides and agriculturally acceptable salts.

As set forth in United States Patent 5,795,901 compounds of the following structure are reported to be insecticidally active:

$$\begin{array}{c|c} & & & \\ & & & \\ V & & & \\ V & & \\ W & & \\ X & & Y \end{array} \qquad \begin{array}{c} & & \\ & &$$

where V, W, Y, and Z are hydrogen; X is alkoxy, cycloalkoxy, alkoxycarbonyl, alkoxycarbonylamino, or a five- or six-membered heteroaryl or heteroaryloxy, each heteroaryl optionally substituted with halogen, cyano, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxyalkyl, or haloalkoxyalkyl; R¹and R² are independently selected from haloalkyl, phenyl substituted with halogen, halothio, haloalkyl, or haloalkoxy; or a five- or six-membered heteroaryl substituted with halogen or alkyl; R³ is alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, dialkylaminoalkyl, alkylaminocarbonyloxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylcarbonyloxyalkyl, alkoxycarbonylalkyl, carboxyalkyl, carboxyarylalkyl, arylcarbonyl, sulfonato, or sulfonatoalkyl, and may bear a negative charge resulting in an inner salt, and a separate anion is chloride, bromide, iodide, or a phenyl, or alkyl sulfate or sulfonate.

As set forth in United States Patent 5,939,438 compounds of the following structure are reported to be insecticidally active:

$$Z + \bigcup_{Q \in \mathbb{Z}} Q$$

$$R^{1} \times \mathbb{N} \times \mathbb{R} \times \mathbb{Q}$$

$$Z + \bigcup_{Q \in \mathbb{Z}} Q$$

$$Z + \bigcup_{Q \in \mathbb{Z}} Q$$

where R is hydrogen, halogen, alkyl, alkoxy, or dialkylamino; R^1 is hydrogen, alkyl, haloalkyl, alkoxyalkyl, alkylcarbonyl, or alkylaminocarbonyl; Q is fluoro or hydroxy; X is oxygen or NR^2 ; Z is halogen, haloalkyl, haloalkoxy, pentahalothio, haloalkylthio, haloalkylsulfinyl, haloalkylsulfonyl, , or $-OCF_2O$ -attached to two adjacent carbon atoms of the phenyl ring; n is 0 or 1; and, when X is NR^2 , R^2 is hydrogen, alkyl, alkylcarbonyl, alkoxycarbonyl, or R^1 and R^2 taken together may be $-C_mH_{2m}$ -, or $-C_2H_4OC_2H_4$ -, where m is 3-9; and their agriculturally acceptable salts.

As set forth in United States Patent 6,017,931 compounds of the following structure are reported to be insecticidally active:

15

20

5

10

where V, W, and Z are hydrogen; X is selected from alkoxy, haloalkoxy, alkoxyalkyl, cycloalkylalkoxyl, halocycloalkylalkoxy, alkoxycarbonyl, haloalkoxycarbonyl, cycloalkylalkoxylcarbonyl, halocycloalkylalkoxylcarbonyl, alkoxyalkoxycarbonyl, alkoxycarbonylamino, haloalkoxycarbonylamino, cycloalkylalkoxycarbonylamino, halocycloalkylalkoxycarbonylamino, alkylaminocarbonyl, haloalkylaminocarbonyl, cyanoalkoxycarbonylamino, phenylcarbonylamino, and phenoxycarbonyl, each cycloalkyl moiety or phenyl ring optionally substituted with halogen; Y is selected from hydrogen or halogen;

10

15

 R^1 and R^2 are independently selected from phenyl or pyridyl, each substituted with haloalkyl, haloalkoxy, or alkylthio, and the corresponding N-oxides and agriculturally acceptable salts.

As set forth in United States Patent 6,030,987 compounds of the following structure are reported to be insecticidally active:

$$V$$
 Z
 X
 Y
 R^{1}
 R^{2}
 R^{2}

where V, W, Y and Z are hydrogen; X is a five- or six-membered heterocycle optionally substituted with halogen, alkyl, alkoxy, alkoxyalkyl, cyano, aminocarbonyl, haloalkyl, haloalkoxy, or haloalkoxyalkyl; and the heterocycle is optionally connected to the phenyl ring through a -O-, -S-, $-(CH_2)_p$ -, -C(O)-, or $-O(CR^3R^4)_q$ - linkage; R^1 and R^2 are independently selected from phenyl or pyridyl, each substituted with haloalkyl, or haloalkoxy; R^3 and R^4 are independently selected from hydrogen and methyl; n and p are independently 1, 2, or 3; and q is 1 or 2, and the corresponding N-oxides and agriculturally acceptable salts.

As set forth in United States Patent 6,184,234 compounds of the following structure are reported to be insecticidally active:

$$V$$
 X
 Y
 R^1
 R^2
 R
 R^2
 R

20

25

where V, W, Y and Z are hydrogen; X is a five- or six-membered heterocycle optionally substituted with bromine, chlorine, fluorine, alkyl, alkoxy, alkoxyalkyl, cyano, aminocarbonyl, haloalkyl, haloalkoxy, or haloalkoxyalkyl; and the heterocycle is optionally connected to the phenyl ring through a -O-, -S-, -

10

15

20

 $(CH_2)_{p^-}$, -C(O)-, or $-O(CR^3R^4)_{q^-}$ linkage; R^1 and R^2 are independently selected from i) phenyl or pyridyl, each substituted with pentahalothio, haloalkylthio, haloalkylsulfinyl, or haloalkylsulfonyl; ii) phenyl substituted with $-OC(M)_2O$ -, where M is bromine, chlorine, or fluorine to provide a dihalobenzodioxolyl fused ring; or iii) pyridyl substituted with $-OC(M)_2O$ -, to provide a dihalodioxoleneopyridyl fused ring; R^3 and R^4 are independently selected from hydrogen and methyl; n and p are independently 1, 2, or 3; and q is 1 or 2, and the corresponding N-oxides and agriculturally acceptable salts.

As set forth in United States Statutory Invention Registration H1,838 compounds of the following structure are reported to be insecticidally active:

$$X$$
 W
 R^1
 OH
 $(Y)_n$
 R^2

where m is 2 or 3; n is 0 or 1; X is hydrogen, alkoxy, cycloalkylalkoxy, haloalkoxyimino, or a five- or six-membered heteroaryl or heteroaryloxy in which one or more hetero atoms may be optionally substituted with alkyl; R¹ and R² are independently selected from hydrogen, haloalkyl, halothio, or haloalkoxy; and when n is 1, Y represents (a) an N-oxide of the ring nitrogen; or (b) an agriculturally acceptable anionic salt of the ring nitrogen; or (c) forms an OR³ linkage in which R³ is selected from hydrogen, alkyl, alkoxycarbonylalkyl, hydroxycarbonylethyl in association with an agriculturally acceptable anion resulting in an ionic salt, or R³ is an oxycarbonylalkyl group bearing a negative charge resulting in an inner salt.

As set forth in United States Statutory Invention Registration H1,996 photostable, agriculturally acceptable acid salts of an organic or inorganic acid of the following structure are reported to be insecticidally active:

where R is alkoxycarbonyl, alkoxycarbonylamino, cycloalkylalkoxy, 2-alkyl-2H-tetrazol-5-yl, or 2-haloalkyl-2H-tetrazol-5-yl; R¹ is trihaloalkyl, or trihaloalkoxy; n is 0, or 1; and said salt is at least 2.5 times more photostable than its non-ionic parent and is derived from hydrochloric acid, hydrobromic acid, boric acid, phosphoric acid, maleic acid, fumaric acid, phthalic acid, D-glucuronic acid; the sulfonic acid R²SO₃H where R² is alkyl, haloalkyl, hydroxyalkyl, D-10-camphoryl, or phenyl optionally substituted with alkyl or halogen; the carboxylic acid R³CO₂H where R³ is hydrogen, alkyl, trihaloalkyl, carboxyl, phenyl optionally substituted with alkyl or halogen; the phosphonic acid R⁴B(OH)₂ where R⁴ is alkyl or phenyl optionally substituted with alkyl or halogen; the phosphonic acid R⁵PO₃H₂ where R⁵ is alkyl, haloalkenyl, or phenyl optionally substituted with alkyl or halogen; the sulfuric acid R⁶OSO₃H where R⁶ is hydrogen or alkyl; or the alkanoic acid X-(CH₂)_qCO₂H where q is 0 to 11, X is halogen, trihaloalkyl, haloalkenyl, cyano, aminocarbonyl, or CO₂R⁷ where R⁷ is hydrogen or alkyl.

As set forth in United States Statutory Invention Registration H2,007 compounds of the following structures are reported to be insecticidally active:

$$(CH_2)_n$$
 $(CH_2)_n$
 $(CH_2)_n$

20

5

10

15

10

15

20

25

where A and B are independently selected from lower alkyl; U is selected from lower alkylidene, lower alkenylidene, and CH-Z, where Z is selected from hydrogen, lower alkyl, lower cycloalkyl, or phenyl; R is -CHR3R4 where R3 and R⁴ are are independently selected from phenyl, optionally substituted with halogen, lower alkyl, lower alkoxy, lower haloalkoxy, lower alkenyl, or R^1 phenyl: phenyl, naphthyl, tetrazolylphenyl, phenylcyclopropyl, phenoxyphenyl, benzyloxyphenyl, pyridylphenyl, pyridyloxyphenyl, thiadiazolyloxyphenyl, each optionally substituted with halogen, cyano, hydroxy, lower alkyl, lower haloalkyl, lower alkoxy, amino, lower dialkylamino, nitro, lower haloalkylsulfonyloxy, lower alkylcarbonyloxy, lower alkylcarbonylamino, lower alkoxycarbonyl, lower alkoxyalkoxycarbonyl, lower cycloalkylalkoxycarbonyl, lower alkoxyalkylalkoxycarbonyl, lower alkoxycarbonylamino, alkoxythiocarbonylamino, lower alkyldithiocarbonylamino, lower dialkyldioxolylalkoxycarbonylamino, or halophenylamino; or lower alkyl substituted with any one of the foregoing cyclic R¹ groups; m is 2 or 3; and n is 1, 2, or 3.

As set forth in unexamined Japanese Patent Application 2002-220372 compounds of the following structures are reported to be insecticidally active:

$$\mathbb{R}^{3}$$
 \mathbb{N}
 \mathbb{R}^{1}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

where R¹ and R² are independently selected from hydrogen, halogen, lower alkyl, lower haloalkyl, lower alkoxy, lower haloalkoxy, or lower alkylsulfonyloxy; R² is selected from hydrogen, lower alkyl, lower alkenyl, lower alkoxyalkyl, or lower alkylcarbonyl; X and Y are independently oxygen or sulfur; R³ is selected from lower alkenyl, or lower alkynyl, which are optionally substituted with

hydroxy, halogen, lower alkoxy, lower haloalkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower cycloalkyl, lower alkoxyalkoxy, amino, lower alkylamino, lower dialkylamino, lower alkoxycarbonyl, nitro, cyano, trimethylsilyl, phenyl, or lower cycloalkenyl; and the corresponding N-oxides and salts.

As set forth in PCT Publication WO 02/068392A1 compounds of the following structures are reported to be insecticidally active:

$$R^{6}$$
 R^{4}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{2}

10

15

20

25

5

where R¹ and R² are independently selected from halogen, C₁-C₆alkyl, $\label{eq:conditional} halo C_1-C_6 alkyl, \quad C_1-C_6 alkoxy, \quad halo C_1-C_6 alkoxy, \quad -S(=O)_p-R^9, \quad or \quad SF_5; \quad R^3 \quad is$ hydrogen, hydroxy, C₁-C₆alkoxy, , or -OC(=O)-C₁-C₆alkyl; R⁴ is hydrogen, halogen, C₁-C₆alkyl, haloC₁-C₆alkyl, C₁-C₆alkoxy, haloC₁-C₆alkoxy, or -S(=O)_p-R⁹, or -SCN; R⁵ and R⁶ are independently selected from C₁-C₁₂alkyl, haloC₁-C₁₂alkyl, C₂-C₁₂alkenyl, haloC₂-C₁₂alkenyl, C₂-C₁₂alkynyl, haloC₂-C₁₂alkynyl, C₃- C_8 cycloalkyl, $-C(=O)-OR^7$, $-C(=S)-OR^8$, $-C(=Y)-ZR^8$, $-S(=O)_p-R^9$, aryl, aryl C_1 -C₆alkyl, heterocycle, heterocycleC₁-C₆alkyl, each substituted in the ring from one to five times independently of one another by halogen, hydroxy, cyano, nitro, C1-C6alkyl, haloC1-C6alkyl, C1-C6alkoxy, haloC1-C6alkoxy; or in common together with the nitrogen atom to which they are attached to form a heterocyclic ring which is substituted or unsubstituted; Y is oxygen or sulfur; X is a bond, -NR¹⁰-, or R^7 C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkylthio- C_1 - C_6 alkyl, C_{1} - C_6 alkylamino- C_1 - C_6 alkyl, C_3 - C_6 alkynyl, C_1 - C_6 alkyl-S(=O)_p- C_1 - C_6 alkyl, C₈cycloalkyl, aryl, aryl-C₁-C₆alkyl, heterocyclyl, or heterocyclyl-C₁-C₆alkyl each substituted in the ring from one to five times independently of one another by

halogen, cyano, nitro, C₁-C₆alkyl, haloC₁-C₆alkyl, C₁-C₆alkoxy, or haloC₁-C₆alkoxy; R⁸ is C₁-C₆alkyl, haloC₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkyl, C₂-C₆alkyl, C₂-C₆alkyl, C₃-C₆alkyl, C₁-C₆alkyl, C₃-C₆alkyl, aryl, aryl-C₁-C₆alkyl, heterocyclyl, or heterocyclyl-C₁-C₆alkyl, or is C₃-C₈cycloalkyl, aryl, aryl-C₁-C₆alkyl, heterocyclyl, or heterocyclyl-C₁-C₆alkyl each substituted in the ring from one to five times independently of one another by halogen, cyano, nitro, C₁-C₆alkyl, haloC₁-C₆alkyl, C₁-C₆alkoxy, or haloC₁-C₆alkoxy; R⁹ is C₁-C₆alkyl, C₃-C₈cycloalkyl, haloC₁-C₆alkyl, or benzyl; R¹⁰ is hydrogen, C₁-C₆alkyl, C₃-C₈cycloalkyl, haloC₁-C₆alkyl, or benzyl; p is 0, 1, or 2; q is 0 or 1; and, where apporopriate, E/Z isomers, E/Z isomer mixtures and/or toutomers, each in free form or in salt form.

As set forth in PCT Publication WO 200020409A1 compounds of the following structures are reported to be insecticidally active:

$$\mathbb{R}^2$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

15

20

5

10

where R^1 is halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy; R^2 is hydrogen, hydroxyl, halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfonyl, optionally substituted phenyl or carbamoyl; Z is O or $S(O)_p$, p is O or O; and O and O or O or O.

As set forth in PCT Publication WO 03/022808A1 compounds of the following structures are reported to be pesticidally active:

10

where R¹ represents aryl or heteroaryl that is optionally identically or differently substituted once or several times; R² and R³ are identical of different and represent arylor heteroaryl that is optionally identically or differently substituted once or several times, whereby both groups can also be bridged by a common substituent; M is optionally substituted (CH₂)₁, where I is 1, 2, or 3, CO, or –HN-C(O); X represents H, OH, halogen, OR4 or CN; Y represents (O), H, OH, OR⁴, R⁴; (in the last four groups, in which nitrogen has a positive charge, in combination with a corresponding anion); R⁴ is identical or different and represents (C₁-C₄)alkyl, (C₁-C₄)alkanoyl, (C₁-C₄)haloalkyl; m is 0, 1, 2, 3, ; and n 0 or 1.

As set forth in published Japanese Patent Application JP 62,145,018, the following compound is disclosed as being an antiallergy pharmaceutical agent:

15

There is no disclosure or suggestion in any of the citations set forth above of the piperidine or pyridine derivatives of the present invention.

SUMMARY OF THE INVENTION

In accordance with the present invention, it has now been found that certain N-(substituted arylmethyl)-4-(disubstituted methyl)piperidine and pyridine derivatives, (hereinafter termed "compounds of formula I"), N-oxides, and agriculturally acceptable salts thereof are surprisingly active when used in the insecticidal compositions and methods of this invention. The compounds of formula I are represented by the following general formula I:

$$R^8 - E_s$$
 D_p
 R^6
 R^7
 R^7
 R^7
 R^3

10

15

20

5

I

wherein;

m, n, q, r, and s are independently selected from 0 or 1; and p is 0, 1, 2, or 3;

A is selected from C and CH, forming a six-membered azine ring selected from piperidine, 1,4-dihydropyridine, and 1,2,5,6-tetrahydropyridine;

R², R³, R⁴, R⁵, and R⁶ are independently selected from hydrogen, halogen, alkyl, haloalkyl, hydroxyl, alkoxy, haloalkoxy, pentahalothio, alkylthio, cyano, nitro, alkylcarbonyl, alkoxycarbonyl, aryl, or aryloxy, provided that at least one of R², R³, R⁴, R⁵, and R⁶ are other than hydrogen; and, wherein either of R² and R³, or R³ and R⁴ are taken together with -OCF₂O-, -OCF₂CF₂-, -CF₂CF₂O-, or -CH=CHCH=CH-, forming a benzo-fused ring;

And when,

(a) m and n are 0;

a double bond between methyl carbon (a) and the 4-position of the six-membered azine ring is formed,

$$R^8 - E_s$$
 D_p
 A
 A
 B
 R^5
 R^4
 R^7
 R^3

where

B is phenyl substituted with R⁹, R¹⁰, R¹¹, R¹², and R¹³,

$$R^{13}$$
 R^{12}
 R^{11}

5

10

where

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from hydrogen, halogen, alkyl, haloalkyl, hydroxyl, alkoxy, haloalkoxy, mercapto, and alkylthio, cyano, alkylcarbonyl, alkoxycarbonyl, or aryloxy; and, wherein either of R⁹ and R¹⁰, or R¹⁰ and R¹¹ may be taken together with -OCF₂O-, -OCF₂CF₂-, or - CF₂CF₂O-, forming a benzo-fused ring, providing that at least one of R⁹, R¹⁰, R¹¹, R¹², and R¹³ is other than hydrogen;

and when

(b) m is 1, and n is 0;

a double bond between methyl carbon (a) and the 4-position of the six-membered azine ring is formed,

$$R^8 - E_s$$
 D_p
 R^6
 R^7
 R^7
 R^7
 R^3

where

B is a bridging group from methyl carbon (a) to R;

5 where

B is selected from O, S, *CH₂O, *OCH₂, OC(=O)O, *OC(=O)NR¹⁵, *NR¹⁵C(=O)O, *OC(=S)NR¹⁵, *NR¹⁵C(=S)O, *OCH₂C(=O)NR¹⁵, *NR¹⁵C(=O)CH₂O, *CH₂OC(=O)NR¹⁵, *NR¹⁵C(=O)OCH₂, *NR¹⁵CH₂, *CH₂NR¹⁵, *NR¹⁵C(=O), *C(=O)NR¹⁵, *NR¹⁵SO₂, *SO₂NR¹⁵, *NR¹⁵NHSO₂, *SO₂NHNR¹⁵, *OC(=O)NR¹⁵SO₂, *SO₂NR¹⁵C(=O)O, *OC(=O)NR¹⁵CHR¹⁶, *CHR¹⁶NR¹⁵C(=O)O, *NR¹⁵C(=O)NR¹⁶; 1,4-dioxycyclohexyl, or 4-oxypiperidin-1-yl, where the asterisk denotes attachment to the methyl carbon (a);

where

15 R¹⁵ and R¹⁶ are independently selected from hydrogen, alkyl, alkylaminocarbonyl, and arylcarbonyl wherein the aryl is optionally substituted with halogen, alkyl, alkoxy, haloalkyl, haloalkoxy, or nitro;

where

R is alkyl, cycloalkyl, alkenyl, or alkoxycarbonyl;

20 or

R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹;

or,

R is pyrid-2-yl substituted with R^{18} , R^{19} , R^{20} , and R^{21} ,

5 or

pyrid-3-yl substituted with R^{17} , R^{19} , R^{20} , and R^{21} ,

or

pyrid-4-yl substituted with R¹⁷, R¹⁸, R²⁰, and R²¹,

$$R^{21} \xrightarrow{R^{17}} R^{18}$$

or

pyridazin-3-yl substituted with R¹⁹, R²⁰ and R²¹,

15

where

5

R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹ are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, cyano, nitro, alkylcarbonyl, alkoxycarbonyl, alkoxycarbonylamino, aryl, aryloxy, and 2-alkyl-2H-tetrazole, and, wherein either of R¹⁷ and R¹⁸, or R¹⁸ and R¹⁹ may be taken together with -CH₂CH=CHCH₂-, -OCF₂O-, -OCF₂CF₂-, or -CF₂CF₂O-, to form benzo-fused rings;

and when

(c) m and n are 1;

a single bond between methyl carbon (a) and the 4-position of the six-membered azine ring is formed;

$$R^{8}$$
 E_{s} D_{p} A R^{1} R^{2} R^{3} R^{3}

15 where

B is a bridging group from methyl carbon (a) to R; where

B is selected from O, S, *CH₂O, *OCH₂, OC(=O)O, *OC(=O)NR¹⁵, *NR¹⁵C(=O)O, *OC(=S)NR¹⁵, *NR¹⁵C(=S)O, *OCH₂C(=O)NR¹⁵, *NR¹⁵C(=O)CH₂O, *CH₂OC(=O)NR¹⁵, *NR¹⁵C(=O)OCH₂, *NR¹⁵CH₂, *CH₂NR¹⁵, *NR¹⁵C(=O), *C(=O)NR¹⁵, *NR¹⁵SO₂, *SO₂NR¹⁵, *NR¹⁵NHSO₂, *SO₂NHNR¹⁵, *OC(=O)NR¹⁵SO₂, *SO₂NR¹⁵C(=O)O, *OC(=O)NR¹⁵CHR¹⁶, *CHR¹⁶NR¹⁵C(=O)O, *NR¹⁵C(=O)NR¹⁶; 1,4-dioxycyclohexyl, or 4-oxypiperidin-1-yl, where the asterisk denotes attachment to the methyl carbon (a); where R¹⁵ and R¹⁶ are described above;

and,

R is alkyl, cycloalkyl, alkenyl, or alkoxycarbonyl;

or

5

R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; pyrid-2-yl substituted with R¹⁸, R¹⁹, R²⁰, and R²¹; pyrid-3-yl substituted with R¹⁷, R¹⁹, R²⁰, and R²¹; pyrid-4-yl substituted with R¹⁷, R¹⁸, R²⁰, and R²¹; or pyridazin-3-yl substituted with R¹⁹, R²⁰ and R²¹; where R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹ are described above:

R1 is selected from hydrogen, alkyl, alkoxyalkyl, or aryl;

10 when p is 1, 2, or 3;

D is -CH₂-, and an azabicyclo derivative of the six-membered azine ring is formed;

when q is 0, and r is 1, an N-oxide derivative of the six-membered azine ring nitrogen is formed;

when q is 1 and r is 0 or 1;

R⁷ is selected from alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, dialkylaminoalkyl, alkylaminocarbonyloxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylcarbonyloxyalkyl, alkoxycarbonylalkyl, carboxyalkyl, arylalkyl, arylcarbonyl, sulfonato, or sulfonatoalkyl, and may bear a negative charge resulting in an inner salt; and a separate ion is chloride, bromide, iodide, or an alkyl or phenyl sulfate or sulfonate;

when s is 0 or 1;

R⁸ is selected from hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, alkoxy, alkoxyalkyl, amino, morpholinyl, optionally substituted indolyl. piperidinyl, optionally substituted (pyridyl)alkenyl, optionally substituted 1,2,3,4tetrahydronaphthylenyl, optionally substituted arylpyrazolyl, 30 benzo[b]thiophenyl. 5-hydropyridino[1,2a]pyrimidinonyl, optionally 4-hydro-1,3-thiazolino[3,2a]pyrimidinonyl, substituted 1,2,3,4tetrahydroquinolinyl. 2-thioxo-1,3-dihydroquinazolinonyl, 1,3dihydroquinazolindionyl, or benzo[c]azolindionyl, wherein the optional substituent is selected from halogen, alkyl, alkoxy, and nitro;

or

 R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ,

5

$$R^{26}$$
 R^{25}
 R^{24}

or

pyrid-2-yl substituted with R²³, R²⁴, R²⁵, and R²⁶,

$$R^{26}$$
 R^{25}
 R^{24}

10

or

pyrid-3-yl substituted with R²², R²⁴, R²⁵, and R²⁶,

$$R^{26}$$
 R^{26}
 R^{25}
 R^{24}

15

or

pyrid-4-yl substituted with R²², R²³, R²⁵, and R²⁶,

$$R^{26}$$
 R^{25}
 R^{25}

where

R²², R²³, R²⁴, R²⁵, and R²⁶ are independently selected from hydrogen, halogen, 5 alkyl, hydroxy, alkoxy, alkoxyalkyl, dialkoxyalkyl. trialkoxyalkyl. alkoxyiminoalkyl. alkenyloxyiminoalkyl, alkynyloxyiminoalkyl, cycloalkylalkoxy, alkoxyalkoxy, alkylthio, dithioalkoxyalkyl. trithioalkoxyalkyl, alkylsulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, cycloalkylaminosulfonyl, alkenyloxy, alkynyloxy, haloalkenyloxy, alkylsulfonyloxy, optionally substituted arylalkoxy, cyano, nitro, amino, 10 alkylamino, alkylcarbonylamino. alkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, haloalkylcarbonylamino, alkoxyalkoxycarbonylamino. (alkyl)(alkoxycarbonyl)amino, alkylsulfonylamino, optionally substituted (heteroaryl)(alkoxycarbonyl)amino, optionally substituted arylcarbonylamino, formyl, optionally substituted 1,3-· 15 dioxolan-2-yl, optionally substituted 1,3-dioxan-2-yl, optionally substituted 1,3-oxazolidin-2-yl, optionally substituted 1,3-oxazaperhydroin-2-yl, optionally substituted 1,3-dithiolan-2-yl, optionally substituted 1,3-dithian-2-yl, alkoxycarbonyl. alkylaminocarbonyloxy, alkylaminocarbonylamino. 20 dialkylaminocarbonylamino, alkylamino(thiocarbonyl)amino, dialkylphosphoroureidyl, optionally substituted thienyl, optionally substituted 1,3-thiazolylalkoxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryloxyalkyl, optionally substituted arylaminocarbonyloxy, optionally substituted heteroaryl, optionally substituted heteroaryloxy, optionally substituted pyrrolyl, optionally substituted pyrazolyl, 25 optionally substituted pyrazinyloxy. optionally substituted 1,3-oxazolinyl, optionally substituted 1,3-oxazolinyloxy, optionally substituted oxazolinylamino, optionally substituted 1,2,4-triazolyl, optionally substituted

10

15

20

25

30

1,2,3-thiadiazolyl. optionally substituted 1,2,5-thiadiazolyl, optionally substituted 1,2,5-thiadiazolyloxy, optionally substituted 2H-tetrazolyl. optionally substituted pyridyl, optionally substituted pyridyloxy, optionally substituted pyridylamino, optionally substituted pyrimidinyl, optionally substituted pyrimidinyloxy, optionally substituted 3.4.5.6tetrahydropyrimidinyloxy, optionally substituted pyridazinyloxy, or optionally substituted 1,2,3,4-tetrahydronaphthalenyl, wherein the optional substituent is selected from one or more of halogen, alkyl, haloalkyl, alkoxy, dialkoxyalkyl, dithioalkoxyalkyl, cyano, nitro, amino, or alkoxycarbonylamino, provided that at least one of R²², R²³, R²⁴, R²⁵, and R²⁶ is other than hydrogen;

when s is 1;

E is a bridging group selected from $(CR^{27}R^{28})_{x}$ - $(CR^{29}R^{30})_{y}$, $(CR^{27}R^{28})_{x}$ - $(CR^{29}R^{30})_{y}O^{*}$, $C_{3}H_{6}$, $C_{4}H_{8}$, C(=O), $C(=O)C_{2}H_{4}^{*}$, $C_{2}H_{4}C(=O)^{*}$, $C_{3}H_{6}C(=O)^{*}$, $C_{4}H_{8}NHC(=O)^{*}$, or $C(=S)NH^{*}$, where the asterisk denotes attachment at R^{8} ,

where

x is 1; y is 0, or 1;

and.

where R²⁷, R²⁸, R²⁹, and R³⁰ are independently selected from hydrogen, alkyl, and aryl optionally substituted with alkoxy;

N-oxides;

and

agriculturally-acceptable salts thereof.

The present invention is also directed to compositions containing an insecticidally effective amount of at least one of a compound of formula I, and optionally, an effective amount of at least one of a second compound, with at least one agriculturally acceptable extender or adjuvant.

The present invention is also directed to methods of controlling insects, where control is desired, which comprise applying an insecticidally effective amount of the above composition to the locus of crops, or other areas where insects are present or are expected to be present. Other aspects of the present invention will become apparent.

DETAILED DESCRIPTION OF THE INVENTION

One aspect of the present invention relates to certain new and useful compounds, namely certain novel N-(substituted arylmethyl)-4-(disubstituted methyl)piperidine and pyridine derivatives as depicted in general formula I:

$$R^8 - E_s$$
 D_p
 R^1
 R^3
 R^3

Ī

10 wherein;

m, n, q, r, and s are independently selected from 0 or 1; and p is 0, 1, 2, or 3;

A is selected from C and CH, forming a six-membered azine ring selected from piperidine, 1,4-dihydropyridine, and 1,2,5,6-tetrahydropyridine;

R², R³, R⁴, R⁵, and R⁶ are independently selected from hydrogen, halogen, alkyl, haloalkyl, hydroxyl, alkoxy, haloalkoxy, pentahalothio, alkylthio, cyano, nitro, alkylcarbonyl, alkoxycarbonyl, aryl, or aryloxy, provided that at least one of R², R³, R⁴, R⁵, and R⁶ are other than hydrogen; and, wherein either of R² and R³, or R³ and R⁴ are taken together with -OCF₂O-, -OCF₂CF₂-, -CF₂CF₂O-, or -CH=CHCH=CH-, forming a benzo-fused ring;

and when,

(a) m and n are 0:

a double bond between methyl carbon (a) and the 4-position of the six-membered azine ring is formed,

$$R^{8}$$
 E_{s} R^{6} R^{4} R^{7} R^{9} R^{9} R^{2} R^{3}

where

B is phenyl substituted with R^9 , R^{10} , R^{11} , R^{12} , and R^{13} ,

5

10

where

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from hydrogen, halogen, alkyl, haloalkyl, hydroxyl, alkoxy, haloalkoxy, mercapto, and alkylthio, cyano, alkylcarbonyl, alkoxycarbonyl, or aryloxy; and, wherein either of R⁹ and R¹⁰, or R¹⁰ and R¹¹ may be taken together with -OCF₂O-, -OCF₂CF₂-, or - CF₂CF₂O-, forming a benzo-fused ring, and;

and when

(b) m is 1, and n is 0;

a double bond between methyl carbon (a) and the 4-position of the six-membered azine ring is formed,

$$R^8 - E_s$$
 Q^r
 R^6
 R^6
 R^4
 R^7
 R^7
 R^7
 R^7

where

B is a bridging group from methyl carbon (a) to R; where

B is selected from O, S, *CH₂O, *OCH₂, OC(=O)O, *OC(=O)NR¹⁵, *NR¹⁵C(=O)O, *OC(=S)NR¹⁵, *NR¹⁵C(=S)O, *OCH₂C(=O)NR¹⁵, *NR¹⁵C(=O)CH₂O, *CH₂OC(=O)NR¹⁵, *NR¹⁵C(=O)OCH₂, *NR¹⁵CH₂, *CH₂NR¹⁵, *NR¹⁵C(=O), *C(=O)NR¹⁵, *NR¹⁵SO₂, *SO₂NR¹⁵, *NR¹⁵NHSO₂, *SO₂NHNR¹⁵, *OC(=O)NR¹⁵SO₂, *SO₂NR¹⁵C(=O)O, *OC(=O)NR¹⁵CHR¹⁶, *CHR¹⁶NR¹⁵C(=O)O, *NR¹⁵C(=O)NR¹⁶; 1,4-dioxycyclohexyl, or 4-oxypiperidin-1-yl, where the asterisk denotes attachment to the methyl carbon (a);

where

R¹⁵ and R¹⁶ are independently selected from hydrogen, alkyl, alkylaminocarbonyl, and arylcarbonyl wherein the aryl is optionally substituted with halogen, alkyl, alkoxy, haloalkyl, haloalkoxy, or nitro;

where

R is alkyl, cycloalkyl, alkenyl, or alkoxycarbonyl;

or

20 R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹;

or,

R is pyrid-2-yl substituted with R¹⁸, R¹⁹, R²⁰, and R²¹,

or

pyrid-3-yl substituted with R¹⁷, R¹⁹, R²⁰, and R²¹,

OI

. 5

pyrid-4-yl substituted with R^{17} , R^{18} , R^{20} , and R^{21} ,

$$R^{21} \xrightarrow{R^{17}} R^{18}$$

$$R^{20}$$

10 or

pyridazin-3-yl substituted with R19, R20 and R21,

15 where

R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹ are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, cyano, nitro,

alkylcarbonyl, alkoxycarbonyl, alkoxycarbonylamino, aryl, aryloxy, and 2-alkyl-2H-tetrazole, and, wherein either of R^{17} and R^{18} , or R^{18} and R^{19} may be taken together with $-CH_2CH=CHCH_2$ -, $-OCF_2O$ -, $-OCF_2CF_2$ -, or $-CF_2CF_2O$ -, to form benzo-fused rings;

5 and when

(c) m and n are 1;

a single bond between methyl carbon (a) and the 4-position of the six-membered azine ring is formed;

$$R^8 - E_s$$
 D_p
 R^6
 R^7
 R^7
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8

10

where

B is a bridging group from methyl carbon (a) to R; where

B is selected from O, S, *CH₂O, *OCH₂, OC(=O)O, *OC(=O)NR¹⁵, *NR¹⁵C(=O)O, *OC(=O)NR¹⁵, *NR¹⁵C(=O)O, *OCH₂C(=O)NR¹⁵, *NR¹⁵C(=O)CH₂O, *CH₂OC(=O)NR¹⁵, *NR¹⁵C(=O)OCH₂, *NR¹⁵CH₂, *CH₂NR¹⁵, *NR¹⁵C(=O), *C(=O)NR¹⁵, *NR¹⁵SO₂, *SO₂NR¹⁵, *NR¹⁵NHSO₂, *SO₂NHNR¹⁵, *OC(=O)NR¹⁵SO₂, *SO₂NR¹⁵C(=O)O, *OC(=O)NR¹⁵CHR¹⁶, *CHR¹⁶NR¹⁵C(=O)O, *NR¹⁵C(=O)NR¹⁶; 1,4-dioxycyclohexyl, or 4-oxypiperidin-1-yl, where the asterisk denotes attachment to the methyl carbon (a); where R¹⁵ and R¹⁶ are described above;

and,

R is alkyl, cycloalkyl, alkenyl, or alkoxycarbonyl;

25 or

R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; pyrid-2-yl substituted with R¹⁸, R¹⁹, R²⁰, and R²¹; pyrid-3-yl substituted with R¹⁷, R¹⁹, R²⁰, and R²¹; pyrid-4-yl substituted with R¹⁷, R¹⁸, R²⁰, and R²¹; or pyridazin-3-yl substituted with R¹⁹, R²⁰ and R²¹; where R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹ are described above;

5

R¹ is selected from hydrogen, alkyl, alkoxyalkyl, or aryl;

when p is 1, 2, or 3;

D is -CH₂-, and an azabicyclo derivative of the six-membered azine ring is 10 formed;

when q is 0, and r is 1, an N-oxide derivative of the six-membered azine ring nitrogen is formed;

when q is 1 and r is 0 or 1;

R⁷ is selected from alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, dialkylaminoalkyl, alkylaminocarbonyloxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylcarbonyloxyalkyl, alkoxycarbonylalkyl, carboxyalkyl, arylalkyl, arylcarbonyl, sulfonato, or sulfonatoalkyl, and may bear a negative charge resulting in an inner salt; and a separate ion is chloride, bromide, iodide, or an alkyl or phenyl sulfate or sulfonate;

when s is 0 or 1;

R8 is selected from hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, alkoxy, alkoxyalkyl, amino, morpholinyl, optionally substituted indolyl. piperidinyl, 25 (pyridyl)alkenyl, optionally substituted optionally substituted 1,2,3,4tetrahydronaphthylenyl, optionally substituted arylpyrazolyl, benzo[b]thiophenyl. 5-hydropyridino[1,2a]pyrimidinonyl, optionally substituted 4-hydro-1,3-thiazolino[3,2a]pyrimidinonyl, 1,2,3,4-30 tetrahydroquinolinyl, 2-thioxo-1,3-dihydroquinazolinonyl, 1,3dihydroquinazolindionyl, or benzo[c]azolindionyl, wherein the optional substituent is selected from halogen, alkyl, alkoxy, and nitro;

or

 R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ,

$$R^{26}$$
 R^{26}
 R^{25}
 R^{24}

5 or

pyrid-2-yl substituted with R²³, R²⁴, R²⁵, and R²⁶,

$$R^{26}$$
 R^{25}
 R^{24}

10 or

pyrid-3-yl substituted with R^{22} , R^{24} , R^{25} , and R^{26} ,

$$R^{26}$$
 R^{26}
 R^{25}
 R^{24}

or

pyrid-4-yl substituted with R^{22} , R^{23} , R^{25} , and R^{26} ,

$$R^{26}$$
 R^{22}
 R^{23}
 R^{25}

where

5

R²², R²³, R²⁴, R²⁵, and R²⁶ are independently selected from hydrogen, halogen, alkyl, hydroxy, alkoxy, alkoxyalkyl, dialkoxyalkyl, trialkoxyalkyl, alkoxyiminoalkyl, alkenyloxyiminoalkyl, alkynyloxyiminoalkyl, cycloalkylalkoxy, alkoxyalkoxy, alkylthio, dithioalkoxyalkyl, trithioalkoxyalkyl, alkylsulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, cycloalkylaminosulfonyl, alkenyloxy, alkynyloxy, haloalkenyloxy, alkylsulfonyloxy, optionally substituted arylalkoxy, cyano, nitro, amino, 10 alkylamino, alkylcarbonylamino, alkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, haloalkylcarbonylamino, alkoxyalkoxycarbonylamino, (alkyl)(alkoxycarbonyl)amino, alkylsulfonylamino, optionally substituted (heteroaryl)(alkoxycarbonyl)amino, optionally substituted arylcarbonylamino, formyl, optionally substituted 1,3-15 dioxolan-2-yl, optionally substituted 1,3-dioxan-2-yl, optionally substituted 1,3-oxazolidin-2-yl, optionally substituted 1,3-oxazaperhydroin-2-yl, optionally substituted 1,3-dithiolan-2-yl, optionally substituted 1,3-dithian-2-yl, alkoxycarbonyl, alkylaminocarbonyloxy, alkylaminocarbonylamino, dialkylaminocarbonylamino, alkylamino(thiocarbonyl)amino, 20 dialkylphosphoroureidyl, optionally substituted thienyl, optionally substituted 1,3-thiazolylalkoxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryloxyalkyl, optionally substituted arylaminocarbonyloxy, optionally substituted heteroaryl, optionally substituted heteroaryloxy, optionally substituted pyrrolyl, optionally substituted pyrazolyl, optionally substituted pyrazinyloxy. optionally substituted 1,3-oxazolinyl, 25 optionally substituted 1,3-oxazolinyloxy, optionally substituted oxazolinylamino, optionally substituted 1,2,4-triazolyl, optionally substituted 1,2,3-thiadiazolyl, optionally substituted 1,2,5-thiadiazolyl,

substituted 1,2,5-thiadiazolyloxy, optionally substituted 2H-tetrazolyl, optionally substituted pyridyl, optionally substituted pyridyloxy, optionally substituted pyridylamino, optionally substituted pyrimidinyl, optionally substituted pyrimidinyloxy, optionally substituted 3,4,5,6tetrahydropyrimidinyloxy, optionally substituted pyridazinyloxy, or optionally substituted 1,2,3,4-tetrahydronaphthalenyl, wherein the optional substituent is selected from one or more of halogen, alkyl, haloalkyl, alkoxy, dialkoxyalkyl, dithioalkoxyalkyl, cyano, nitro, amino, or alkoxycarbonylamino, provided that at least one of R²², R²³, R²⁴, R²⁵, and R²⁶ is other than hydrogen;

10

5

when s is 1;

E is a bridging group selected from $(CR^{27}R^{28})_{x}$ - $(CR^{29}R^{30})_{y}$, $(CR^{27}R^{28})_{x}$ - $(CR^{29}R^{30})_{y}O^{*}$, $C_{3}H_{6}$, $C_{4}H_{8}$, C(=O), $C(=O)C_{2}H_{4}^{*}$, $C_{2}H_{4}C(=O)^{*}$, $C_{3}H_{6}C(=O)^{*}$, $C_{4}H_{8}NHC(=O)^{*}$, or $C(=S)NH^{*}$, where the asterisk denotes attachment at R^{8} ,

15 where

x is 1; y is 0, or 1;

and,

where R²⁷, R²⁸, R²⁹, and R³⁰ are independently selected from hydrogen, alkyl, and aryl optionally substituted with alkoxy;

20 N-oxides;

and

25

30

agriculturally-acceptable salts thereof.

Compounds within the scope of the present invention that are of particular interest are those where p and q are 0; r is 0 or 1; and s is 1; R², R³, R⁴, R⁵, and R⁶ are independently selected from hydrogen, halogen, alkyl, haloalkyl, hydroxyl, alkoxy, haloalkoxy, pentahalothio, alkylthio, nitro, aryl, and aryloxy; E is the bridging group - $(CR^{27}R^{28})_x$ - $(CR^{29}R^{30})_y$ -, where x is 1 and y is 0, R^{27} and R^{28} are hydrogen; and R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶, where R²², R²³, R²⁴, R²⁵, and R²⁶ are independently selected from hydrogen, alkoxy, dialkoxyalkyl, dithioalkoxyalkyl, alkoxyiminoalkyl, alkenyloxyiminoalkyl, alkynyloxyiminoalkyl, alkoxycarbonylamino, optionally substituted arylcarbonylamino, alkoxycarbonyl, alkylaminocarbonyloxy, optionally substituted

1,3-dioxolane-2-yl, optionally substituted 1,3-dioxan-2-yl, optionally substituted 1,3-dithiolan-2-yl, optionally substituted 1,3-dithian-2-yl, optionally substituted aryl, optionally substituted aryloxy, optionally substituted 2H-tetrazole, optionally substituted pyridyl, optionally substituted pyridyloxy, optionally substituted pyrimidinyl, optionally substituted pyrimidinyloxy, and optionally substituted pyridazinyloxy.

In one aspect of the present invention, preferred compounds of the present invention are those where A is C, forming the piperidine ring; m is (a) 0 or (b) 1, and n is 0, forming a double bond between methyl carbon (a) and the 4-position of said piperidine ring;

and when

5

10

15

20

25

30

(a) m and n are 0;

B is phenyl substituted with R⁹, R¹⁰, R¹¹, R¹², and R¹³, where R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from hydrogen, halogen, alkyl, haloalkyl, hydroxyl, alkoxy, haloalkoxy, mercapto, and alkylthio;

or

when

(b) m is 1, and n is 0;

B is the bridging group selected from O, *OC(=O)NR¹⁵, and *SO₂NR¹⁵, where R¹⁵ is hydrogen;

and,

R is phenyl substituted with R^{17} , R^{18} , R^{19} , R^{20} , and R^{21} where R^{17} , R^{18} , R^{19} , R^{20} , and R^{21} are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, nitro, aryl, aryloxy, and 2-alkyl-2H-tetrazole.

More preferred are those compounds where R², R³, R⁴, R⁵, and R⁶ are independently selected from hydrogen, halogen, haloglen, haloglen, and haloglen, and haloglen, and R²², R²³, R²⁴, R²⁵, and R²⁶ are independently selected from hydrogen, dialkoxyalkyl, dithioglen, dishoxyalkyl, alkoxyiminoglen, alkylaminocarbonyloxy, optionally substituted 1,3-dioxolan-2-yl, optionally substituted 1,3-dioxan-2-yl, optionally substituted aryloxy, optionally substituted 2H-tetrazole, optionally substituted pyrimidinyloxy, optionally substituted pyrimidinyloxy, and optionally substituted pyrimidinyloxy.

10

Particularly preferred are those compounds i) where (a) m and n are 0; and R^9 , R^{10} , R^{11} , R^{12} , and R^{13} are independently selected from hydrogen, halogen, haloalkyl, and haloalkoxy; more particularly where R^2 , R^3 , R^5 , R^6 , R^9 , R^{10} , R^{12} , R^{13} , R^{22} , R^{23} , R^{25} , and R^{26} are hydrogen; R^4 and R^{11} are difluoromethyl, trifluoromethyl or trifluoromethoxy; and R^{24} is pyrid-2-yloxy or pyrimidin-2-yloxy.

Other particularly preferred are those compounds ii) where (b) m is 1, and n is 0; B is the bridging group O or *OC(=O)NR¹⁵; and R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹ are independently selected from hydrogen, halogen, haloalkyl, and haloalkoxy; more particularly where R², R³, R⁵, R⁶, R¹⁷, R¹⁸, R²⁰, R²¹, R²², R²³, R²⁵, and R²⁶ are hydrogen; R⁴ and R¹⁹ are difluoromethyl, trifluoromethyl or trifluoromethoxy; and R²⁴ is pyrid-2-yloxy or pyrimidin-2-yloxy.

In another aspect of the present invention, preferred compounds of the present invention are those where A is CH, forming the piperidine ring;

15 (c) m and n are 1, forming a single bond between methyl carbon (a) and the 4-position of said rings;

R¹ is hydrogen;

B is the bridging group selected from O, *OC(=O)NR¹⁵, and *SO₂NR¹⁵, where R¹⁵ is hydrogen;

20 and

R is phenyl substituted with R^{17} , R^{18} , R^{19} , R^{20} , and R^{21} where R^{17} , R^{18} , R^{19} , R^{20} , and R^{21} are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, nitro, aryl, aryloxy, and 2-alkyl-2H-tetrazole.

More preferred are those compounds where R², R³, R⁴, R⁵, and R⁶ are independently selected from hydrogen, halogen, haloalkyl, and haloalkoxy; and R²², R²³, R²⁴, R²⁵, and R²⁶ are independently selected from hydrogen, dialkoxyalkyl, dithioalkoxyalkyl, alkoxyiminoalkyl, alkylaminocarbonyloxy, optionally substituted 1,3-dioxolan-2-yl, optionally substituted 1,3-dioxan-2-yl, optionally substituted aryloxy, optionally substituted 2H-tetrazole, optionally substituted pyrimidinyloxy, and optionally substituted pyrimidinyl, optionally substituted pyrimidinyloxy, and optionally substituted pyridazinyloxy.

Particularly preferred are those compounds where B is the bridging group O or *OC(=O)NR¹⁵; R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹ are independently selected from hydrogen, halogen, haloalkyl, and haloalkoxy; more particularly where R², R³, R⁵, R⁶, R¹⁷, R¹⁸, R²⁰, R²¹, R²², R²³, R²⁵, and R²⁶ are hydrogen; R⁴ and R¹⁹ are difluoromethyl, trifluoromethyl or trifluoromethoxy; and R²⁴ is pyrid-2-yloxy or pyrimidin-2-yloxy.

5

10

15

20

25

30

In certain cases the compounds within the scope of formula I may possess asymmetric centers, which can give rise to optical enantiomorphs and diastereomers. Compounds within the scope of formula I may exist in two or more forms, i.e., polymorphs, which are significantly different in physical and chemical properties. Compounds within the scope of formula I may also exist as tautomers, which are in equilibrium. Compounds within the scope of formula I may also possess acidic or basic moieties, which may allow for the formation of agriculturally acceptable salts or agriculturally acceptable metal complexes.

This invention includes the use of such enantiomorphs, polymorphs, tautomers, salts and metal complexes. Agriculturally acceptable salts and metal complexes include, without limitation, for example, ammonium salts, the salts of organic and inorganic acids, such as hydrochloric acid, sulfonic acid, ethanesulfonic acid, trifluoroacetic acid, methylbenzenesulfonic acid, phosphoric acid, gluconic acid, pamoic acid, and other acid salts, and the alkali metal and alkaline earth metal complexes with, for example, sodium, potassium, lithium, magnesium, calcium, and other metals.

The methods of the present invention are predicated on causing an insecticidally effective amount of a compound of formula I to be present within insects in order to kill or control the insects. Preferred insecticidally effective amounts are those that are sufficient to kill the insect. It is within the scope of the present invention to cause a compound of formula I to be present within insects by contacting the insects with a derivative of that compound, which derivative is converted within the insect to a compound of formula I. This invention includes the use of such compounds, which can be referred to as pro-insecticides.

Another aspect of the present invention relates to compositions containing an insecticidally effective amount of at least one compound of formula I, and,

10

15

20

25

30

optionally, an effective amount of at least one second compound, with at least one agriculturally acceptable extender or adjuvant.

Another aspect of the present invention relates to methods of controlling insects by applying an insecticidally effective amount of a composition set forth above to a locus of crops such as, without limitation, cereals, cotton, vegetables, and fruits, other areas where insects are present or are expected to be present, or adjacent to areas where insects are present or are expected to be present.

The present invention also includes the use of the compounds and compositions set forth herein for control of non-agricultural insect species, for example, ants, dry wood termites and subterranean termites as well as other insects; and also for use as pharmaceutical agents and compositions thereof.

In the field of veterinary medicine, the compounds of the present invention are expected to be effective against certain *endo-* and *ecto-*parasites, such as insects and worms, which prey on animals. Examples of such animal parasites include, without limitation, *Gastrophilus* spp., *Stomoxys* spp., *Trichodectes* sp., *Rhodnius* spp., Ctenocephalides canis, and other species.

As used in this specification and unless otherwise indicated the substituent terms "alkyl", "alkenyl", "alkynyl", "alkoxy", "alkenyloxy", and "alkynyloxy" used alone or as part of a larger moiety, includes straight or branched chains of at least one or two carbon atoms, as appropriate to the substituent, and preferably up to 12 carbon atoms, more preferably up to ten carbon atoms, most preferably up to seven carbon atoms, wherein "alkenyl" has at least one carbon to carbon double bond, and "alkynyl" has at least one carbon to carbon triple bond. The term "aryl" refers to an aromatic ring structure, including fused rings, having four to ten carbon atoms, for example, phenyl and naphthyl. The term "heteroaryl" refers to an aromatic ring structure, including fused rings, having four to ten carbon atoms, and in which one or more of the atoms in the ring is other than carbon, for example, sulfur, oxygen, or nitrogen. The term "THF" refers to tetrahydrofuran. The term "DMSO" refers to methyl sulfoxide. The term "DMF" refers to N,Ndimethylformamide. The term "halogen" or "halo" refers to fluorine, bromine, iodine, or chlorine. The term "ambient temperature" or "room temperature" often

10

abbreviated as "RT", for example, in reference to a chemical reaction mixture temperature, refers to a temperature in the range of 20 °C to 30 °C.

The compounds of formula I of the present invention can be synthesized by methods that are individually known to one skilled in the art from intermediate compounds readily available in commerce.

Scheme 1 below illustrates a general procedure for synthesizing those compounds of formula I, where A is C, forming a piperidine ring; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; m, p, and q are 0; r is 1, forming an N-oxide; and s is 1; E is $-(CR^{27}R^{28})_x$ - $(CR^{29}R^{30})_y$ -, where x is 1, and y is 0; R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; B is phenyl substituted with R^9 , R^{10} , R^{11} , R^{12} , and R^{13} , where R^{27} and R^{28} are hydrogen:

Scheme 1

where R²⁴ is a substituent other than hydrogen

10

15

20

25

c) CF₃COOH / 70 °C; d) K₂CO₃ / EtOH / 25-75°C; e) H₂ / 5% Pt on carbon / EtOH / HOAc / 75 °C; f) H₂ / Fe / EtOH / HOAc / 65 °C; g) C₂H₅CO₂Cl / EtOAc / 0-5 °C; h) 30% H₂O₂ / MeOH

In a first step: as set forth in Scheme 1, an appropriately substituted methanol (C), for example, 4-{bis[4-(trifluoromethyl)phenyl]hydroxymethyl}piperidine, was treated with trifluoroacetic acid at reduced temperature, yielding the corresponding unsaturated methylene derivative **(D)**, for example, 4-{bis[4-(trifluoromethyl)phenyl]methylene}piperidine. Intermediate (D) was then reacted with an appropriately substituted phenyl bromide, for example, 4nitrophenylmethyl bromide, under basic conditions in an appropriate solvent, providing the 1-substituted pyridyl derivative (E), for example, 4-{bis/4-(trifluoromethyl)phenyl]methylene}-1-[(4-nitrophenyl)methyl]piperidine. Intermediate (E) was then hydrogenated in the presence of a catalyst, for example, 5% palladium on carbon, at elevated temperature thereby reducing the nitro group to the amino group, providing 4-[(4-{bis(trifluoromethyl)phenyl]methylene}piperidyl)methyl]phenylamine **(F)**. Intermediate (F) was in turn reacted with an alkyl haloformate, for example, ethyl chloroformate, under basic conditions in an appropriate solvent, affording the corresponding alkyl carboxamide, for example N-{4-[(4-{bis[4-(trifluoromethyl)phenyl]methylene}-

piperidyl)methyl]phenyl}ethoxycarboxamide, a compound of formula I. The

10

so-prepared carboxamide was then converted to the corresponding 1-oxypiperidyl derivative (an N-oxide) by treating it with, for example, 30% hydrogen peroxide in methanol, to provide additional compounds of formula I. Example 1, set forth below provides a detailed procedure for this synthesis.

Scheme 2 below illustrates a general procedure for synthesizing those compounds of formula **I** where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; E is $(CR^{27}R^{28})_x-(CR^{29}R^{30})_y$, where x is 1, and y is 0; R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; and R is phenyl substituted with R^{17} , R^{18} , R^{19} , R^{20} , and R^{21} , where R^{27} and R^{28} are hydrogen:

Scheme 2

CHO

i

$$R^6$$
 R^5
 R^4
 R^5
 R^6
 R^5
 R^5
 R^5
 R^6
 R^6
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7

15

$$G \xrightarrow{j} R^{6} \longrightarrow OH_{2}^{+}CI \xrightarrow{k} R^{6} \longrightarrow OH_{2}^{+}CI$$

$$R^{6} \longrightarrow R^{2} \xrightarrow{R^{3}} R^{2} \longrightarrow R^{3}$$

$$R^{17} \xrightarrow{NCO} R^{21} \qquad R^{24} \xrightarrow{R^{25}} R^{26} \qquad R^{20} \xrightarrow{R^{19}} R^{18}$$

$$R^{18} \xrightarrow{R^{19}} R^{20} \qquad R^{25} \xrightarrow{R^{26}} \qquad R^{26} \xrightarrow{R^{19}} R^{18}$$

$$R^{18} \xrightarrow{R^{19}} R^{20} \qquad R^{21} \xrightarrow{R^{19}} R^{18}$$

$$R^{18} \xrightarrow{R^{19}} R^{20} \qquad R^{21} \xrightarrow{R^{19}} R^{18}$$

$$R^{18} \xrightarrow{R^{19}} R^{19} \xrightarrow{R^{19}} R^{18}$$

$$R^{18} \xrightarrow{R^{19}} R^{19} \xrightarrow{R^{19}} R^{18}$$

$$R^{19} \xrightarrow{R^{19}} R^{19} \xrightarrow{R^{19}} R^{19}$$

$$R^{19} \xrightarrow{R^{$$

A compound of formula I

10

15

i) Mg / I2 / THF \leq 40 °C; j) HCl (g) / EtOAc; k) H2 / PtO2 / MeOH; l) N,N-diisopropylethylamine / DMSO; m) Et3N / CH2Cl2 / 35 °C

In one syntheses, as depicted in Scheme 2, Intermediate (J1) was first prepared by reacting an appropriate formaldehyde, for example (4-(2-pyridyloxy)phenyl)formaldehyde, with sodium borohydride at reduced temperature in an appropriate solvent, yielding the corresponding substituted methanol derivative, for example, (4-(2-pyridyloxy)phenyl)methanol; which was in turn reacted with thionyl chloride in the presence of a catalytic amount of pyridine, at reduced temperature in an appropriate solvent, yielding, for example, (4-(2-pyridyloxy)phenyl)methyl chloride (J1). In a second syntheses, as depicted in Scheme 2, an appropriate carboxaldehyde, for example, 4-pyridinecarboxaldehyde, was reacted with a Grignard Reagent, for example, 4-

10

15

20

25

30

trifluoromethylphenylmagnesium bromide, at an elevated temperature in an appropriate solvent, yielding the corresponding pyridylmethanol, for example, 4-(trifluoromethylphenyl)-4-pyridylmethanol (G). Intermediate (G) was then converted to its hydrochloride salt (H) by treating it with hydrogen chloride gas in an appropriate solvent. The so-formed salt (H) was then hydrogenated in the presence of platinum oxide, affording the corresponding piperidylmethanol, for example, hydrochloride salt of 4-(trifluoromethylphenyl)-4piperidylmethanol (J). To substitute the 1-position of the piperidine ring, intermediate (J) was reacted with intermediate (J1) under basic conditions in an appropriate solvent, providing the corresponding methanol derivative (K), for {1-[(4-(2-pyridyloxy)phenyl)methyl](4-piperidyl)}[4example, (trifluoromethyl)phenyl]methanol. Intermediate (K) was then reacted with an appropriate isocyanate, for example, 4-chlorophenylisocyanate, under basic conditions in an appropriate solvent, affording the corresponding compound, for N-(4-chlorophenyl)({1-[(4-(2-pyridyloxy)phenyl)methyl](4piperidyl)}[4-(trifluoromethyl)phenyl]methoxy)carboxamide, a compound of formula I. Example 2, set forth below provides a detailed procedure for this synthesis. The so-prepared carboxamide set forth in Example 2 was converted to the corresponding 1-oxypiperidyl derivative (an N-oxide) by treating it with, for example, 50% hydrogen peroxide in an appropriate solvent. Example 6, set forth below provides a detailed procedure for this synthesis. procedure as depicted in Scheme 2 was used to prepare analogous compounds where A is C, forming a 1,2,5,6-tetrahydropyridine ring. Example 5, set forth below provides a detailed procedure for this synthesis.

Scheme 3 below illustrates a general procedure for synthesizing those compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; E is - $(CR^{27}R^{28})_x$ - $(CR^{29}R^{30})_y$ -, where x is 1, and y is 0; and R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; where R^{27} and R^{28} are hydrogen:

$$R^{23}$$
 R^{22}
 R^{23}
 R^{24}
 R^{25}
 R

A known compound where R²², R²³, R²⁵ and R²⁶ are hydrogen; See Example 19 of US 5,639,763

5

$$R \xrightarrow{H_3C-N} \stackrel{R^{23}}{\stackrel{R^{22}}{\stackrel{R^{22}}{\stackrel{R^{23}}{\stackrel{R^{24}}{\stackrel{R^{25}}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}}{\stackrel{R^{25}}{\stackrel{R^{25}}{\stackrel{R^{25}}}{\stackrel{R^{25}}{\stackrel{R^{25}}}}{\stackrel{R^{25}}}{\stackrel{R^{25}}}{\stackrel{R^{25}}}{\stackrel{R^{25}}}{\stackrel{R^{25}}}{\stackrel{R^{25}}}{\stackrel{R^{25}}}}{\stackrel{R^{25}}}{\stackrel{R^{25}}}}{\stackrel{R^{25}}}{\stackrel{R^{25}}}}{\stackrel{R^{25}}}{\stackrel{R^{25}}}}{\stackrel{R^{25}}}}{\stackrel{R^{25$$

10

15

A compound of formula I

q) N,N-diisopropylethylamine / DMSO; r) NaOH / H_2O / MeOH / THF; s) (EtO)₂P(O)CN / HN(OCH₃)(CH₃):HCl / DMF / 0 °C; t) Mg / THF / RT-60 °C; v) H_2NOH :HCl / Et_3N / EtOH / Reflux; w) LiAlH₄ / THF / RT-65 °C; x) $C_3H_7SO_2Cl$ / Et_3N / CH_2Cl_2

As depicted in Scheme 3, the known compound, for example, 5-[4-(bromomethyl)phenyl]-2-methyl-1,2,3,4-tetraazole (O) was reacted with ethyl isonipecotate under basic conditions in an appropriate solvent, providing the corresponding ester (P), for example, ethyl 1-{[4-(2-methyl-1,2,3,4-tetraazol-5-yl)phenyl]methyl}piperidine-4-carboxylate, which was in turn converted to its piperidinecarboxylic acid (Q) by reacting it with aqueous sodium hydroxide in an appropriate solvent, affording, for example, 1-{[4-(2-methyl-1,2,3,4-tetraazol-5-yl)phenyl]methyl}piperidinecarboxylic acid. Intermediate (Q) was then reacted with, for example, N,O-dimethylhydroxylamine hydrochloride and

15

20

25

diethylcyanophosphonate, under basic conditions at reduced temperature in an appropriate solvent, yielding the corresponding piperidine carboxamine (R), $1-\{[4-(2-methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl\}(4$ for piperidyl)-N-methoxy-N-methylcarboxamide. Intermediate (R) was reacted with a Grignard Reagent, for example, 4-trifluoromethoxyphenylmagnesium bromide, in an appropriate solvent, affording the corresponding ketone (T), for $1-\{[4-(2-methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl\}(4$ piperidyl)4-(trifluoromethoxy)phenyl ketone. Intermediate (T) was in turn reacted with hydroxylamine hydrochloride at an elevated temperature under basic conditions in an appropriate solvent, yielding the corresponding hydroxyimino (U) intermediate, for example, (hydroxyimino)(1-[[4-(2methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl]}(4-piperidyl)[4-(trifluoromethoxy)phenyl]methane. Intermediate (U) was then reacted with, for example, lithium aluminum hydride, then with ammonium chloride in an appropriate solvent, affording the corresponding amine (V) derivative, for $1\hbox{-}[[4\hbox{-}(2\hbox{-methyl}(1,2,3,4\hbox{-tetraazol-}5\hbox{-yl})phenyl]methyl}](4\hbox{-}$ example, piperidyl))[4-(trifluoromethoxy)phenyl]methylamine. The amine (V) was in turn reacted with an appropriate halide, such as 1-propanesulfonyl chloride, under basic conditions in an appropriate solvent, affording a compound of formula I, for example, $[(1-\{[4-(2-methyl(1,2,3,4-tetraazol-5$ yl))phenyl]methyl}(4-piperidyl))[4-(trifluoromethoxy)phenyl]methyl]propylsulfonylamide. Example 3, set forth below provides a detailed procedure for this synthesis.

Scheme 4 below illustrates another general procedure for synthesizing those compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; E is $(CR^{27}R^{28})_x-(CR^{29}R^{30})_y$, where x is 1, and y is 0; and R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; where R^{27} and R^{28} are hydrogen:

;

30 Scheme 4

10

R²⁰

$$R^{19}$$
 R^{19}
 R^{25}
 R^{25}
 R^{25}
 R^{22}
 R^{22}
 R^{23}
 R^{22}
 R^{23}
 R^{22}
 R^{23}
 R^{22}
 R^{23}
 R^{23}
 R^{23}
 R^{23}
 R^{23}

y) Mg / THF / 40 °C; z) HCl (g) / Et₂O; aa) H₂ / PtO₂ / MeOH; bb) N,N-diisopropylethylamine / DMSO; cc) NaH / DMSO / 85-90 °C

As depicted in Scheme 4, a cyanopyridine (W), for example 4-cyanopyridine, was reacted with a Grignard Reagent, for example, 4-

10

15

20

25

trifluoromethoxyphenylmagnesium bromide, in an appropriate solvent, affording the corresponding ketone (X), for example, 4-pyridyl 4-(trifluoromethoxy)phenyl ketone, which was, in turn converted to its hydrochloride salt (Y), by reacting it with hydrogen chloride gas in an appropriate solvent. Intermediate (Y) was in turn hydrogenated in the presence platinum oxide and in an appropriate solvent, providing the corresponding methanol (Z), for example, 4-piperidyl[4-(trifluoromethoxy)phenyl]methanol, hydrochloride. To substitute the 1-position of the piperidine ring, intermediate (Z) was reacted with an appropriate methyl halide, for example, 5-[4-(bromomethyl)phenyl]-2-methyl-1,2,3,4-tetraazole, under basic conditions in an appropriate solvent, affording the corresponding methanol (AA) derivative, ${1-[(2-methyl(1,2,3,4-tetraazol-5-yl))methyl](4-piperidyl)}[4-piperidyl)$ for example, (trifluoromethoxy)phenyl]methanol. Intermediate (AA) was in turn treated with sodium hydride at elevated temperature, and then it was reacted with an appropriate halide, for example, 2-fluoro-5-trifluoromethylpyridine, affording a pyridine derivative, for example, 2-[(1-{[4-(2-methyl(1,2,3,4-tetraazol-5yl))phenyl]methyl}(4-piperidyl))[4-(trifluoromethoxy)phenyl]methoxy]-5-(trifluoromethyl)pyridine, a compound of formula I. Example 4, set forth below provides a detailed procedure for this synthesis.

Scheme 5 below illustrates a general procedure for synthesizing those compounds of formula I where A is C, forming a piperidine ring; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring, where B is a bridging group from the methyl carbon to R; p, q, and r are 0; m and s are 1; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; and R is phenyl substituted with R¹⁷, R¹⁸ R¹⁹, R²⁰, and R²¹; where R²⁷, and R²⁸ are hydrogen:

10

$$P \xrightarrow{\Gamma} Q \xrightarrow{R^{25}} R^{25}$$

$$Q \xrightarrow{CO_2H} R^{25}$$

$$R^{25}$$

$$R^{25}$$

$$R^{25}$$

$$R^{25}$$

$$R^{25}$$

$$R^{26}$$

$$R^{26}$$

$$R^{26}$$

$$R^{26}$$

$$R^{26}$$

$$R^{26}$$

$$R^{26}$$

10

15

A compound of formula I

n) NaN₃ / NH₄Cl / DMF / 140 °C; o) Etl / K_2CO_3 / DMF; p) NBS / CCl₄ / Reflux;

q) N,N-diisopropylethylamine / DMSO; r) NaOH / H₂O / MeOH / THF;

s) (EtO)₂P(O)CN / HN(OCH₃)(CH₃):HCl / DMF / 0 °C; t) Mg / THF / RT-70 °C; u) POCl₃ / Et₂O; v) K₂CO₃ / DMF

As depicted in Scheme 5, Intermediate (M), for example, 5-(4-methylphenyl)-1,2,3,4-tetraazole, was prepared by reacting an appropriate toluonitrile, for example para-toluonitrile, with sodium azide at elevated temperature in an appropriate solvent. Intermediate (M) was then alkylated with an appropriate iodoalkane under basic conditions, affording the corresponding alkylated tetraazole (N), for example, 2-ethyl-5-(4-methylphenyl)-1,2,3,4-tetraazole. Intermediate (N) was in turn brominated with, for example, N-bromosuccinimide at elevated temperature in an appropriate solvent, providing the corresponding bromomethyl derivative (O), for example, 5-[4-(bromomethyl)phenyl]-2-ethyl-1,2,3,4-tetraazole. Intermediate (O) was then reacted with ethyl isonipecotate under basic conditions in an appropriate

30

solvent, providing the corresponding ester (P), for example, ethyl 1-{[4-(2ethyl-1,2,3,4-tetraazol-5-yl)phenyl]methyl}piperidine-4-carboxylate, which was in turn converted to its piperidinecarboxylic acid (Q) by reacting it with aqueous sodium hydroxide in an appropriate solvent, affording, for example, 1-5 {[4-(2-ethyl-1,2,3,4-tetraazol-5-yl)phenyl]methyl}piperidinecarboxylic acid. Intermediate **(Q)** was then reacted with, example. N,Odimethylhydroxylamine hydrochloride and diethylcyanophosphonate, under basic conditions at reduced temperature in an appropriate solvent, yielding the corresponding piperidine carboxamine (R), for example, 10 ethyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl)-N-methoxy-Nmethylcarboxamide. Intermediate (R) was reacted with a Grignard Reagent, for example, 4-trifluoromethoxyphenylmagnesium bromide, in an appropriate solvent, affording the corresponding ketone (S), for example, 1-{[4-(2ethyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl)4-(trifluoromethoxy)-15 phenyl ketone. The ketone (S) is then halogenated with, for example, phosphorous oxychloride in an appropriate solvent, yielding the corresponding halogen compound (S1), for example, $\{4-[chloro(1-\{[4-(2-ethyl(1,2,3,4$ tetraazol-5-yl))phenyl]methyl}(4-piperidyl))methyl]phenoxy}trifluoromethane. Intermediate (S1) is in turn reacted with, for example, an appropriate phenol. such as 4-(trifluoromethoxy)phenol in an appropriate solvent, providing the 20 corresponding phenoxy derivative, a compound of formula I, for example, 1-[(1-[[4-(2-ethyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidylidene))[4-(trifluoromethoxy)phenyl]methoxy]-4-(trifluoromethoxy)benzene. Example 11, set forth below provides a detailed procedure for this synthesis.

Examples 7, 8, 9, and 10, set forth below provide detailed procedures for the synthesis of other compounds of formula I, prepared by methods derived from those procedures provided in Schema 1-4 and the Examples associated with these schema.

One skilled in the art will, of course, recognize that the formulation and mode of application of a toxicant may affect the activity of the material in a given application. Thus, for agricultural use the present insecticidal compounds may be formulated as a granular of relatively large particle size

(for example, 8/16 or 4/8 US Mesh), as water-soluble or water-dispersible granules, as powdery dusts, as wettable powders, as emulsifiable concentrates, as aqueous emulsions, as solutions, or as any of other known types of agriculturally-useful formulations, depending on the desired mode of application. It is to be understood that the amounts specified in this specification are intended to be approximate only, as if the word "about" were placed in front of the amounts specified.

5

10

15

20

25

30

These insecticidal compositions may be applied either as water-diluted sprays, or dusts, or granules to the areas in which suppression of insects is desired. These formulations may contain as little as 0.1%, 0.2% or 0.5% to as much as 95% or more by weight of active ingredient.

Dusts are free flowing admixtures of the active ingredient with finely divided solids such as talc, natural clays, kieselguhr, flours such as walnut shell and cottonseed flours, and other organic and inorganic solids which act as dispersants and carriers for the toxicant; these finely divided solids have an average particle size of less than about 50 microns. A typical dust formulation useful herein is one containing 1.0 part or less of the insecticidal compound and 99.0 parts of talc.

Wettable powders, also useful formulations for insecticides, are in the form of finely divided particles that disperse readily in water or other dispersant. The wettable powder is ultimately applied to the locus where insect control is needed either as a dry dust or as an emulsion in water or other liquid. Typical carriers for wettable powders include Fuller's earth, kaolin clays, silicas, and other highly absorbent, readily wet inorganic diluents. Wettable powders normally are prepared to contain about 5-80% of active ingredient, depending on the absorbency of the carrier, and usually also contain a small amount of a wetting, dispersing or emulsifying agent to facilitate dispersion. For example, a useful wettable powder formulation contains 80.0 parts of the insecticidal compound, 17.9 parts of Palmetto clay, and 1.0 part of sodium lignosulfonate and 0.3 part of sulfonated aliphatic polyester as wetting agents. Additional wetting agent and/or oil will frequently be added to a tank mix for to facilitate dispersion on the foliage of the plant.

WO 2004/060371 PCT/US2003/038878

Other useful formulations for insecticidal applications are emulsifiable concentrates (ECs) which are homogeneous liquid compositions dispersible in water or other dispersant, and may consist entirely of the insecticidal compound and a liquid or solid emulsifying agent, or may also contain a liquid carrier, such as xylene, heavy aromatic naphthas, isphorone, or other non-volatile organic solvents. For insecticidal application these concentrates are dispersed in water or other liquid carrier and normally applied as a spray to the area to be treated. The percentage by weight of the essential active ingredient may vary according to the manner in which the composition is to be applied, but in general comprises 0.5 to 95% of active ingredient by weight of the insecticidal composition.

5

10

15

20

25

30

Flowable formulations are similar to ECs, except that the active ingredient is suspended in a liquid carrier, generally water. Flowables, like ECs, may include a small amount of a surfactant, and will typically contain active ingredients in the range of 0.5 to 95%, frequently from 10 to 50%, by weight of the composition. For application, flowables may be diluted in water or other liquid vehicle, and are normally applied as a spray to the area to be treated.

Typical wetting, dispersing or emulsifying agents used in agricultural formulations include, but are not limited to, the alkyl and alkylaryl sulfonates and sulfates and their sodium salts; alkylaryl polyether alcohols; sulfated higher alcohols; polyethylene oxides; sulfonated animal and vegetable oils; sulfonated petroleum oils; fatty acid esters of polyhydric alcohols and the ethylene oxide addition products of such esters; and the addition product of long-chain mercaptans and ethylene oxide. Many other types of useful surface-active agents are available in commerce. Surface-active agents, when used, normally comprise 1 to 15% by weight of the composition.

Other useful formulations include suspensions of the active ingredient in a relatively non-volatile solvent such as water, corn oil, kerosene, propylene glycol, or other suitable solvents.

Still other useful formulations for insecticidal applications include simple solutions of the active ingredient in a solvent in which it is completely WO 2004/060371 PCT/US2003/038878

49

soluble at the desired concentration, such as acetone, alkylated naphthalenes, xylene, or other organic solvents. Granular formulations, wherein the toxicant is carried on relative coarse particles, are of particular utility for aerial distribution or for penetration of cover crop canopy. Pressurized sprays, typically aerosols wherein the active ingredient is dispersed in finely divided form as a result of vaporization of a low-boiling dispersant solvent carrier may also be used. Water-soluble or water-dispersible granules are free flowing, non-dusty, and readily water-soluble or water-miscible. In use by the farmer on the field, the granular formulations, emulsifiable concentrates, flowable concentrates, aqueous emulsions, solutions, etc., may be diluted with water to give a concentration of active ingredient in the range of say 0.1% or 0.2% to 1.5% or 2%.

5

10

15

20

25

30

The active insecticidal compounds of this invention may be formulated and/or applied with one or more second compounds. Such combinations may provide certain advantages, such as, without limitation, exhibiting synergistic effects for greater control of insect pests, reducing rates of application of insecticide thereby minimizing any impact to the environment and to worker safety, controlling a broader spectrum of insect pests, safening of crop plants to phytotoxicity, and improving tolerance by non-pest species, such as mammals and fish.

Second compounds include, without limitation, other pesticides, plant growth regulators, fertilizers, soil conditioners, or other agricultural chemicals. In applying an active compound of this invention, whether formulated alone or with other agricultural chemicals, an effective amount and concentration of the active compound is of course employed; the amount may vary in the range of, e.g. about 0.001 to about 3 kg/ha, preferably about 0.03 to about 1 kg/ha. For field use, where there are losses of insecticide, higher application rates (e.g., four times the rates mentioned above) may be employed.

When the active insecticidal compounds of the present invention are used in combination with one or more of second compounds, e.g., with other pesticides such as herbicides, the herbicides include, without limitation, for example: N-(phosphonomethyl)glycine ("glyphosate"); aryloxyalkanoic acids

such (2,4-dichlorophenoxy)acetic as acid ("2,4-D"),(4-chloro-2-methylphenoxy)acetic acid ("MCPA"), (+/-)-2-(4chloro-2methylphenoxy)propanoic acid ("MCPP"); ureas such as N,N-dimethyl-N'-[4-(1-methylethyl)phenyl]urea ("isoproturon"); imidazolinones such as 2-[4,5dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-5 pyridinecarboxylic acid ("imazapyr"), a reaction product comprising (+/-)-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-4methylbenzoic acid and (+/-)2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methylbenzoic acid ("imazamethabenz"), (+/-)-2-[4,5dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-10 pyridinecarboxylic acid ("imazethapyr"), and (+/-)-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinolinecarboxylic acid ("imazaquin"); diphenyl. ethers such as 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid ("acifluorfen"), methyl 5-(2,4-15 dichlorophenoxy)-2-nitrobenzoate ("bifenox"), and 5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide ("fomasafen"); hydroxybenzonitriles such as 4-hydroxy-3,5-diiodobenzonitrile ("ioxynil") and 3,5-dibromo-4-hydroxybenzonitrile, ("bromoxynil"); sulfonylureas such as 2-[[[(4chloro-6-methoxy-2pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoic acid ("chlorimuron"), 2-20 chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2yl)amino]carbonyl]benzenesulfonamide (achlorsulfuron"), 2-[[[[[(4,6dimethoxy-2-pyrimidinyl)amino]carbonyl]amino]sufonyl]methyl]benzoic acid ("bensulfuron"), 2-[[[(4,6-dimethoxy-2-pyrimidinyl)aminolcarb-25 onyl]amino]sulfonyl]-1-methy-1H-pyrazol-4-carboxylic acid ("pyrazosulfuron"), 3-[[[(4-methoxy-6-methyl-1,3,5-triazin-2yl)amino]carbonyl]amino]sulfonyl]-2-thiophenecarboxylic acid ("thifensulfuron"), 2-(2-chloroethoxy)-N[[(4-methoxy-6-methyl-1,3,5and triazin-2-yl)amino]carbonyl]benzenesulfonamide ("triasulfuron"); 2-(4-30 aryloxyphenoxy)alkanoic acids such as (+/-)-2[4-[(6-chloro-2benzoxazolyl)oxy]phenoxy]propanoic acid (fenoxaprop"), (+/-)-2-[4[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid ("fluazifop"), (+/-)-

10

15

20

25

30

2-[4-(6chloro-2-quinoxalinyl)oxy]phenoxy]propanoic acid ("quizalofop"), and -2-[(2,4-dichlorophenoxy)phenoxy]propanoic acid ("diclofop"); benzothiadiazinones such as 3-(1-methylethyl)-1H-1,2,3-benzothiadiazin-4(3H)-one-2,2-dioxide ("bentazone"); 2-chloroacetanilides such as N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide ("butachlor"), chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide ("metolachlor"), 2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6methylphenyl)acetamide ("acetochlor"), and (RS)-2-chloro-N-(2,4-dimethyl-3thienyl)-N-(2-methoxy-1-methylethyl)acetamide ("dimethenamide"): arenecarboxylic acids such as 3,6-dichloro-2-methoxybenzoic ("dicamba"); pyridyloxyacetic acids such as [(4-amino-3,5-dichloro-6-fluoro-2pyridinyl)oxy]acetic acid ("fluroxypyr"), and other herbicides.

When the active insecticidal compounds of the present invention are used in combination with one or more of second compounds, e.g., with other pesticides such as other insecticides, the other insecticides include, for example: organophosphate insecticides, such as chlorpyrifos, diazinon, dimethoate, malathion, parathion-methyl, and terbufos; pyrethroid insecticides, such as fenvalerate, deltamethrin, fenpropathrin, cyfluthrin, flucythrinate, alpha-cypermethrin, biphenthrin, resolved cyhalothrin, etofenprox; esfenvalerate, tralomehtrin, tefluthrin, cycloprothrin, betacyfluthrin, and acrinathrin; carbamate insecticides, such as aldecarb, carbaryl, carbofuran, and methomyl; organochlorine insecticides, such as endosulfan, endrin, heptachlor, and lindane; benzoylurea insecticides, such as diflubenuron, triflumuron, teflubenzuron, chlorfluazuron, flucycloxuron, hexaflumuron, flufenoxuron, and lufenuron; and other insecticides, such as amitraz, clofentezine, fenpyroximate, hexythiazox, spinosad, and imidacloprid.

When the active insecticidal compounds of the present invention are used in combination with one or more of second compounds, e.g., with other pesticides such as fungicides, the fungicides include, for example: benzimidazine fungicides, such as benomyl, carbendazim, thiabendazine, and thiophanate-methyl; 1,2,4-triazine fungicides, such as epoxyconazine, cyproconazine, flusilazine, flutriafol, propiconazine, tebuconazine, triadimefon,

WO 2004/060371 PCT/US2003/038878

52

and triadimenol; substituted anilide fungicides, such as metalaxyl, oxadixyl, procymidone, and vinclozolin; organophosphorus fungicides, such as fosetyl, iprobenfos, pyrazophos, edifenphos, and tolclofos-methyl; morpholine fungicides, such as fenpropimorph, tridemorph, and dodemorph; other systemic fungicides, such as fenarimol, imazalil, prochloraz, tricyclazine, and triforine; dithiocarbamate fungicides, such as mancozeb, maneb, propineb, zineb, and ziram; non-systemic fungicides, such as chlorothalonil, dichlofluanid, dithianon, and iprodione, captan, dinocap, dodine, fluazinam, gluazatine, PCNB, pencycuron, quintozene, tricylamide, and validamycin; inorganic fungicides, such as copper and sulphur products, and other fungicides.

5

10

15

20

25

30

When the active insecticidal compounds of the present invention are used in combination with one or more of second compounds, e.g., with other pesticides such as nematicides, the nematicides include, for example: carbofuran, carbosulfan, turbufos, aldecarb, ethoprop, fenamphos, oxamyl, isazofos, cadusafos, and other nematicides.

When the active insecticidal compounds of the present invention are used in combination with one or more of second compounds, e.g., with other materials such as plant growth regulators, the plant growth regulators include, for example: maleic hydrazide, chlormequat, ethephon, gibberellin, mepiquat, thidiazon, inabenfide, triaphenthenol, paclobutrazol, unaconazol, DCPA, prohexadione, trinexapac-ethyl, and other plant growth regulators.

Soil conditioners are materials which, when added to the soil, promote a variety of benefits for the efficacious growth of plants. Soil conditioners are used to reduce soil compaction, promote and increase effectiveness of drainage, improve soil permeability, promote optimum plant nutrient content in the soil, and promote better pesticide and fertilizer incorporation. When the active insecticidal compounds of the present invention are used in combination with one or more of second compounds, e.g., with other materials such as soil conditioners, the soil conditioners include organic matter, such as humus, which promotes retention of cation plant nutrients in the soil; mixtures of cation nutrients, such as calcium, magnesium, potash, sodium, and hydrogen complexes; or microorganism compositions which promote conditions in the

10

15

25

30

soil favorable to plant growth. Such microorganism compositions include, for example, bacillus, pseudomonas, azotobacter, azospirillum, rhizobium, and soil-borne cyanobacteria.

Fertilizers are plant food supplements, which commonly contain nitrogen, phosphorus, and potassium. When the active insecticidal compounds of the present invention are used in combination with one or more of second compounds, e.g., with other materials such as fertilizers, the fertilizers include nitrogen fertilizers, such as ammonium sulfate, ammonium nitrate, and bone meal; phosphate fertilizers, such as superphosphate, triple superphosphate, ammonium sulfate, and diammonium sulfate; and potassium fertilizers, such as muriate of potash, potassium sulfate, and potassium nitrate, and other fertilizers.

The following examples further illustrate the present invention, but, of course, should not be construed as in any way limiting its scope. The examples are organized to present protocols for the synthesis of the compounds of formula I of the present invention, set forth a list of such synthesized species, and set forth certain biological data indicating the efficacy of such compounds.

EXAMPLE 1

This example illustrates one protocol for the preparation of N-{4-[(4-{bis[4-(trifluoromethyl)phenyl]methylene}piperidyl)methyl]phenyl} ethoxycarboxamide, N-oxide (Compound 101 in table below)

Step A Synthesis of 4-{bis[4-(trifluoromethyl)phenyl]methylene} piperidine as an intermediate

A solution of 10.0 grams (0.025 mole) of 4-{bis[4-(trifluoromethyl)phenyl]hydroxymethyl}piperidine (known compound) in 50 mL of trifluoroacetic acid was heated to 70 °C where it stirred for four hours. After this time, excess trifluoroacetic acid was removed by distillation. The residue remaining from the distillation was added drop wise to ice water. Upon completion of addition, the mixture was neutralized with an aqueous solution saturated with potassium carbonate. The mixture was then extracted with

WO 2004/060371 PCT/US2003/038878

54

methylene chloride, and the extract was washed with an aqueous solution saturated with sodium chloride. The extract was concentrated under reduced pressure to a residue, and the residue was crystallized in hexane, yielding in two crops, 9.1 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

5

10

15

20

25

30

Step B Synthesis of 4-{bis[4-(trifluoromethyl)phenyl]methylene}-1[(4-nitrophenyl)methyl]piperidine as an intermediate

A stirred mixture of 3.8 grams (0.010 mole) of 4-{bis[4-(trifluoromethyl)phenyl]methylene}piperidine, 2.2 grams (0.010 mole) of 4-nitrophenylmethyl bromide, and 1.7 grams (0.012 mole) of potassium carbonate in about 20 mL of ethanol was warmed to 75 °C, where it stirred for about 18 hours. After this time, an additional 0.2 gram (0.001 mole) of 4-nitrophenylmethyl bromide and an additional 0.2 gram (0.001 mole) of potassium carbonate was added to the reaction mixture. The reaction mixture was again heated to 75 °C, where it stirred for about eight hours. After this time, the reaction mixture was cooled and filtered to remove excess potassium carbonate. The reaction mixture was then taken up in acetic acid, and 0.2 gram (catalyst) of 5% platinum on carbon was added to the mixture in preparation for the following hydrogenation step. A quantitative yield of the subject compound was assumed.

Step C Synthesis of 4-[(4{bis(trifluoromethyl)phenyl]methylene}piperidyl)
methyl]phenylamine as an intermediate

The reaction product from Step B of this example and 5% platinum on carbon in acetic acid was stirred at 75 °C for about 18 hours while hydrogen gas was bubbled into the reaction mixture. Analysis of the reaction mixture after this time indicated that the hydrogenation had not taken place. A mixture of 1:1 ethanol:acetic acid and 3.0 grams of iron powder was added to the reaction mixture and the hydrogenation was continued at 65 °C during a one hour period. Analysis of the reaction mixture after this time indicated that the

10

15

20

hydrogenation was complete. The reaction mixture was then cooled and filtered through diatomaceous earth. The filtrate was concentrated under reduced pressure to a residue. The residue was dissolved in methylene chloride and the solution was washed with water, and then with an aqueous solution saturated with sodium carbonate. The organic layer was concentrated under reduced pressure, yielding 4.2 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

Step D Synthesis of N-{4-[(4-{bis[4(trifluoromethyl)phenyl]methylene}
piperidyl)methyl]phenyl}ethoxycarboxamide as an intermediate
(Compound 55 in table below)

A stirred solution of 0.52 gram (0.0011 mole) of 4-[(4-{bis(trifluoromethyl)phenyl]methylene}piperidyl)methyl]phenylamine and 0.20 gram (0.0020 mole) of triethylamine in 5 mL of ethyl acetate was cooled to 0-5 °C, and 0.11 gram (0.0010 mole) of ethyl chloroformate was added. Upon completion of addition, the reaction mixture was stirred for about ten minutes. After this time, the reaction mixture was washed with a saturated solution saturated with potassium carbonate and then it concentrated under reduced pressure to a residue. The residue was purified with column chromatography on silica gel using mixtures of ethyl acetate and hexane as eluants. The appropriate fractions were combined and concentrated under reduced pressure, yielding 0.12 gram of Compound 144. The NMR spectrum was consistent with the proposed structure.

25

30

Step E Synthesis of Compound 101

A solution of 0.06 gram (0.00011 mole) of Compound 144 in 3 mL of methanol was stirred, and 1.5 mL of 30% hydrogen peroxide was added. Upon completion of addition, the reaction mixture became cloudy and additional methanol was added to keep the reaction mixture clear. The reaction mixture was stirred for about three days at ambient temperature, during which time an additional 0.5 mL of 30% hydrogen peroxide was added to drive the reaction to

completion. After this time, the reaction mixture was extracted with methylene chloride, and the extract was concentrated under reduced pressure, yielding 0.06 gram of Compound 101. The NMR spectrum was consistent with the proposed structure.

5

EXAMPLE 2

This example illustrates one protocol for the preparation of N-(4-chlorophenyl)({1-[(4-(2-pyridyloxy)phenyl)methyl](4-piperidyl)}[4-(trifluoromethyl)phenyl]methoxy)carboxamide (Compound 227 in table below)

10

15

20

25

Step A Synthesis of (4-(2-pyridyloxy)phenyl)methanol as an intermediate

A stirred solution of 15.3 grams (0.077 mole) of (4-(2pyridyloxy)phenyl)formaldehyde (a known compound) in 150 mL of methanol was cooled to 0-5 °C, and 3.2 grams (0.085 mole) of sodium borohydride was added portion wise. Upon completion of addition, the reaction mixture was allowed to warm to ambient temperature where it stirred for 30 minutes. After this time, the reaction mixture was cooled to 5 °C and 150 mL of water was carefully added to destroy excess sodium borohydride. The mixture was cooled to 0 °C and neutralized with concentrated hydrochloric acid. Excess acid was added causing the mixture to be acidic. The mixture was brought to neutrality by the addition of solid sodium bicarbonate. The mixture was concentrated under reduced pressure to remove some of the methanol. The concentrate was taken up in ethyl acetate and washed with an aqueous solution saturated with sodium chloride. The organic layer was dried with sodium sulfate, filtered, and concentrated under reduced pressure, yielding 12.6 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

30 Step B

Synthesis of (4-(2-pyridyloxy)phenyl)methyl chloride as an intermediate

10

15

20

A stirred solution of 4.4 gram (0.037 mole) of thionyl chloride in 75 mL of dry methylene chloride was cooled to 0 °C, and 0.07 gram (catalyst) of pyridine was added. A solution of 5.0 grams (0.025 mole) of (4-(2-pyridyloxy)phenyl)methanol in 25 mL of methylene chloride was then added drop wise. Upon completion addition of addition, the reaction mixture was allowed to warm to 22 °C where it stirred for 30 minutes. After this time an aliquot of the reaction mixture was taken up in ethyl acetate and treated with solid sodium bicarbonate. The organic layer was dried with sodium sulfate, filtered, and concentrated under reduced pressure to a residue. The NMR spectrum was consistent with the proposed structure. Inasmuch as this compound is unstable, it was used without further purification. The yield was estimated at about 5.0 grams.

Step C Synthesis of 4-(trifluoromethylphenyl)-4-pyridylmethanol as an intermediate

A solution of 4-bromobenzotrifluoride in 62 mL of THF was carefully added to a mixture of 1.9 grams (0.079 mole) of magnesium turnings and an iodine crystal (catalyst), during a period of 60 minutes while maintaining the reaction mixture at a temperature of no higher than 40 °C. After this time, the reaction mixture was stirred and a solution of 5.0 grams (0.047 mole) of 4-pyridinecarboxaldehyde in 45 mL of THF was added dropwise. Upon completion of addition, the reaction mixture was stirred at ambient temperature for about 16 hours. The reaction mixture was then cooled to 0 °C and a sufficient amount of an aqueous solution saturated with ammonium chloride was added to quench the reaction. The mixture was then extracted with ethyl acetate, and the extract was washed with an aqueous solution saturated with sodium chloride. The extract was dried with sodium sulfate, filtered, and concentrated under reduced pressure, yielding about 15.2 grams of crude product.

30

25

Step D Synthesis of 4-(trifluoromethylphenyl)-4-piperidylmethanol, hydrochloride salt as an intermediate

10

15

25

30

A solution of 6.4 grams (0.020 mole) of 4-(trifluoromethylphenyl)-4pyridylmethanol in 80 mL of ethyl acetate was stirred, and dry hydrogen chloride gas was bubbled through the solution, thereby forming the hydrochloride salt of the pyridylmethanol intermediate. The salt was collected by filtrátion and washed with a small amount of ethyl acetate. The damp solid was then dissolved in 100 mL of methanol and placed in a Parr hydrogenation bottle, along with 0.5 gram (catalyst) of platinum oxide. The mixture was then hydrogenated at 45 pounds per square inch (psi) for about 75 minutes, using a Parr Hydrogenator. An NMR taken of the reaction mixture indicated that the reaction was about 90% complete. An additional 0.25 gram of platinum oxide catalyst was added to the reaction mixture, and the hydrogenation at 45 psi was continued for an additional 60 minutes. After this time, the reaction mixture was filtered through diatomaceous earth. The filter cake was washed with methylene chloride and the combined wash and filtrate was concentrated under reduced pressure, yielding 5.2 grams of subject compound. The NMR spectrum was consistent with the proposed structure. The reaction was repeated.

Step E Synthesis of {1-[(4-(2-pyridyloxy)phenyl)methyl](4-20 piperidyl)}[4-(trifluoromethyl)phenyl]methanol as an intermediate

A solution of 6.1 grams (0.021 mole) of 4-(trifluoromethylphenyl)-4piperidylmethanol, hydrochloride salt in 31 mL of DMSO was stirred, and 10.7 grams (0.083 mole) of N,N-diisopropylethylamine was added. completion of addition, the reaction mixture was stirred for 10 minutes, and was then added to the 5.0 grams (0.023)mole) (4-(2of pyridyloxy)phenyl)methyl chloride that was prepared in Step B of this Example. Upon completion of addition, the reaction mixture was stirred at ambient temperature for 16 hours. After this time, the reaction mixture was treated with aqueous 10% sodium carbonate and extracted with ethyl acetate. The ethyl acetate layer was washed with water, then with an aqueous solution saturated with sodium chloride. The ethyl acetate layer was dried with sodium

sulfate, filtered, and concentrated under reduced pressure to a residue. The residue was purified with column chromatography on silica gel using mixtures of acetone and methylene chloride as eluants. The appropriate fractions were combined and concentrated under reduced pressure, yielding 4.2 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

Step F Synthesis of Compound 227

A 0.06 gram (0.0004 mole) sample of 4-chlorophenylisocyanate was weighed into a two-dram vial, followed in turn by 1.2 mL of methylene chloride, 0.18 gram (0.0004 mole) of {1-[(4-(2-pyridyloxy)phenyl)methyl](4-piperidyl)}[4-(trifluoromethyl)phenyl]methanol, and 0.06 mL of triethylamine. The vial was tightly capped and gently shaken at 35 °C for 16 hours using a vortex mixer. After this time, the methylene chloride was removed under a nitrogen stream to provide a residue. The residue was purified with column chromatography on silica gel using mixtures of acetone and methylene chloride as eluants. The appropriate fractions were combined and concentrated under reduced pressure, yielding 0.2 gram of Compound 227. The NMR spectrum was consistent with the proposed structure.

20

25

30

15

5

10

EXAMPLE 3

This example illustrates one protocol for the preparation of [(1-{[4-(2-methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl))[4-(trifluoromethoxy)phenyl]methyl]propylsulfonylamide (Compound 433 in table below)

Step A Synthesis of ethyl 1-{[4-(2-methyl-1,2,3,4-tetraazol-5-yl)phenyl]methyl}piperidine-4-carboxylate as an intermediate

A solution of 30.0 grams (0.191 mole) of ethyl isonipecotate in 75 mL of DMSO and 99 mL of methanol was stirred and 61.7 grams (0.477 mole) of N,N-diisopropylethylamine, followed by 40.2 grams (0.159 mole) of 5-[4-(bromomethyl)phenyl]-2-methyl-1,2,3,4-tetraazole (known compound-US

WO 2004/060371 PCT/US2003/038878

5,639,763) were added. Upon completion of addition the reaction mixture was stirred at ambient temperature for about 72 hours. The reaction mixture was then diluted with 175 mL of ethyl acetate and washed with 175 mL of a solution comprised of one part of an aqueous solution saturated with sodium chloride and one part of water. The organic layer was concentrated under reduced pressure to a residue. NMR analysis of the residue indicated the presence of some of the starting ethyl isonipecotate. The residue was dissolved in 370 mL of methanol and water was added to precipitate a solid material. After standing for about 20 minutes, the solid was collected by filtration and was washed with a cold solution of one part methanol and one part of water. The solid was dried, yielding 32.9 grams of the subject compound. A second crop of solid was collected from the filtrate, yielding an additional 11.0 grams of the subject compound. The NMR spectra were consistent with the proposed structure.

Step B Synthesis of 1-{[4-(2-methyl-1,2,3,4-tetraazol-5-yl)phenyl]methyl}piperidinecarboxylic acid as an intermediate

A solution of 51.6 grams (0.157 mole) of ethyl 1-{[4-(2-methyl-1,2,3,4-tetraazol-5-yl)phenyl]methyl}piperidine-4-carboxylate in 264 mL of THF was stirred, and a solution of 6.9 grams (0.172 mole) of sodium hydroxide in 186 mL of water, followed by 160 mL of methanol were added. Upon completion of addition, the reaction mixture was stirred at ambient temperature for two hours. After this time, the reaction mixture was concentrated under reduced pressure to a residue. The residue was dissolved in 250 mL of water and the solution was cooled to about 4 °C. The solution was then neutralized with concentrated hydrochloric acid, yielding a solid. The water was removed under a stream of nitrogen during about a 60 hour period. The resultant solid was dried in a vacuum oven, yielding 53.4 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

10

15

Step C Synthesis of 1-{[4-(2-methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl)-N-methoxy-N-methylcarboxamide as an intermediate

A solution of 47.2 grams (0.157 mole) of 1-{[4-(2-methyl-1,2,3,4tetraazol-5-yl)phenyl]methyl}piperidinecarboxylic acid in 675 mL of DMF was stirred, and 18.3 grams (0.188 mole) of N,O-dimethylhydroxylamine hydrochloride was added. The reaction mixture was cooled to 0 °C, and 30.7 grams (0.188 mole) of diethyl cyanophosphonate, followed by 34.9 grams (0.345 mole) of triethylamine were added. Upon completion of addition, the reaction mixture was allowed to warm to ambient temperature as it stirred for two hours. The reaction mixture was then diluted with ethyl acetate and a 1:1 solution of an aqueous solution saturated with sodium chloride and water. The aqueous layer was separated from the organic layer and washed with ethyl The wash was then combined with the organic layer, and the acetate. combination was washed with one portion of water, and then with four 150 mL portions of an aqueous solution saturated with sodium chloride. The mixture was dried with sodium sulfate, filtered, and concentrated under reduced pressure, yielding 44.1 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

20

25

30

Step D Synthesis of 1-{[4-(2-methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl)4-(trifluoromethoxy)phenyl ketone as an intermediate

To a Grignard Reagent prepared from 46.2 grams (0.192 mole) of 1-bromo-4-trifluoromethoxybenzene and 5.0 grams (0.205 gram-atom) of magnesium metal in 133 mL of THF was added a solution of 44.1 grams (0.128 mole) of 1-{[4-(2-methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl)-N-methoxy-N-methylcarboxamide in 65 mL of THF. Upon completion of addition, the reaction mixture was warmed to 60 °C, where it stirred for an additional 60 minutes. After this time, the reaction mixture was poured into a cold solution of 15.5 mL of concentrated hydrochloric acid in 101.5 mL of ethanol, and stirred for five minutes. The mixture was diluted

10

15

20

25

30

methylene chloride and washed with an aqueous solution saturated with sodium bicarbonate. The organic layer was washed with an aqueous solution saturated with sodium chloride, dried with sodium sulfate and filtered. The filtrate was concentrated under reduced pressure to a residue, yielding 58.5 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

Step E Synthesis of (hydroxyimino)(1-[[4-(2-methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl]}(4-piperidyl)[4- (trifluoromethoxy)phenyl]methane as an intermediate

A solution of 40.0 grams (0.090 mole) of 1-{[4-(2-methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl)4-(trifluoromethoxy)phenyl ketone in 641 mL of ethanol was stirred and 6.3 grams (0.091 mole) of hydroxylamine hydrochloride, followed by 9.1 grams (0.090 mole) of triethylamine were added. Upon completion of addition, the reaction mixture was warmed to reflux where it stirred 16 hours. After this time an additional 0.1 equivalent each of hydroxylamine hydrochloride and triethylamine were added to the reaction mixture, and heating under reflux was continued for another three hours. The reaction mixture was then cooled and concentrated under reduced pressure to a residue. The residue was dissolved in methylene chloride and washed in turn with an aqueous solution saturated with sodium bicarbonate and an aqueous solution saturated with sodium chloride. The organic layer was concentrated under reduced pressure to a residue. The residue was dried under reduced pressure, yielding 39.9 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

Step F Synthesis of 1-[[4-(2-methyl(1,2,3,4-tetraazol-5-yl)phenyl]methyl}(4-piperidyl))[4-(trifluoromethoxy)phenyl]methylamine as an intermediate

A stirred solution of 39.9 grams (0.087 mole) of (hydroxyimino)(1-[[4-(2-methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl])(4-piperidyl)[4-(trifluoromethoxy)phenyl]methane in 100 mL of THF was cooled to -10 °C,

and 19.1 mL (0.191 mole-1M in THF) of lithium aluminum hydride was added. Upon completion of addition, the reaction mixture was warmed to 65 °C where it stirred for 2.5 hours. After this time, the reaction mixture was cooled to about ambient temperature and added by cannulation to a cold, stirred aqueous solution saturated with ammonium chloride. The mixture was then extracted ethyl acetate, in which the extracts were separated from the aqueous layer by cannulation. The combined extracts were concentrated under reduced pressure to a residue. The residue was dried, yielding 36.1 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

10

15

20

5

Step G Synthesis of Compound 433

A solution of 0.30 gram (0.0007 mole) of $1-[[4-(2-\text{methyl}(1,2,3,4-\text{tetraazol-}5-yl)phenyl]methyl}(4-piperidyl))[4-$

(trifluoromethoxy)phenyl]methylamine, 0.10 gram (0.0007 mole) of 1-propanesulfonyl chloride, and 0.11 gram (0.0011 mole) of triethylamine in 7 mL of methylene chloride was stirred at ambient temperature for about 18 hours. After this time, the reaction mixture was concentrated under reduced pressure to a residue. The residue was purified with column chromatography on silica gel using hexane, ethyl acetate, and mixtures thereof as eluants. The appropriate fractions were combined and concentrated under reduced pressure, yielding 0.07 gram of Compound 433. The NMR spectrum was consistent with the proposed structure.

EXAMPLE 4

This example illustrates one protocol for the preparation of 2-[(1-{[4-(2-methyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl))[4-(trifluoromethoxy)phenyl]methoxy]-5-(trifluoromethyl)pyridine (Compound 434 in table below)

30 Step A Synthesis of 4-pyridyl 4-(trifluoromethoxy)phenyl ketone as an intermediate

To a Grignard Reagent prepared from 21.3 grams (0.088 mole) of 1-bromo-4-trifluoromethoxybenzene and 2.5 grams (0.102 gram-atom) of magnesium metal was added a solution of 7.1 grams (0.068 mole) of 4-cyanopyridine in 50 mL of THF. Upon completion of addition, the reaction mixture was stirred at 40 °C for 18 hours. After this time, the reaction mixture was poured into an aqueous dilute solution of ammonium chloride, and was acidified to a pH of 3 with aqueous 10% hydrochloric acid. The mixture was extracted with methylene chloride and the combined extracts were dried with sodium sulfate. The mixture was filtered, and the filtrate was concentrated under reduced pressure to a residue. The residue was purified with column chromatography on silica gel using acetone, methylene chloride, and mixtures thereof as eluants. The appropriate fractions were combined and concentrated under reduced pressure, yielding the subject compound. The NMR spectrum was consistent with the proposed structure.

15

20

25

10

5

Step B Synthesis of 4-pyridyl 4-(trifluoromethoxy)phenyl ketone hydrochloride as an intermediate

A solution of 20.0 grams (0.075 mole) of 4-pyridyl 4-(trifluoromethoxy)phenyl ketone in 350 mL of ethanol was stirred as hydrogen chloride gas was bubbled through during a five minute period. Upon completion of addition, the reaction mixture was stirred for one hour, and then it was filtered to collect a solid. The solid was washed with three portions of diethyl ether, and dried in a vacuum oven, yielding about 22.0 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

Step C Synthesis of 4-piperidyl[4-(trifluoromethoxy)phenyl]methanol, hydrochloride as an intermediate

Platinum oxide, 1.0 gram (catalyst) was added to a 2000 mL Parr hydrogenation bottle, and the bottle was purged with dry nitrogen. To the bottle was then added 1.0 gram of platinum oxide and a solution of 22.0 grams (0.072 mole) of 4-(trifluoromethoxy)phenyl ketone hydrochloride in 750 mL of

15

25

30

ethanol. The bottle was placed in a Parr hydrogenator, and the contents of the bottle were subjected to hydrogenation conditions. When the theoretical amount of hydrogen gas was taken up, the bottle was removed from the hydrogenator, and the contents filtered through diatomaceous earth. The filter cake was washed with methylene chloride, and the combined filtrate and washes were concentrated under reduced pressure, yielding the subject compound. The NMR spectrum was consistent with the proposed structure.

Step D Synthesis of {1-[(2-methyl(1,2,3,4-tetraazol-5-yl))methyl](4-piperidyl)}[4-(trifluoromethoxy)phenyl]methanol as an intermediate

This compound was prepared in a manner analogous to that of Step E of Example 3, using 7.0 grams (0.026 mole) of 4-piperidyl[4-(trifluoromethoxy)phenyl]methanol, hydrochloride, 6.8 grams (0.026 mole) of 5-[4-(bromomethyl)phenyl]-2-methyl-1,2,3,4-tetraazole (prepared in a manner analogous to that of Steps A-C of Example 4), and 9.9 grams (0.077 mole) of N,N-diisopropylethylamine in about 40 mL of DMSO. The NMR spectrum was consistent with the proposed structure.

20 Step E Synthesis of Compound 434

A stirred mixture of 0.89 gram (0.002 mole) of {1-[(2-methyl(1,2,3,4-tetraazol-5-yl))methyl](4-piperidyl)}[4-(trifluoromethoxy)phenyl]methanol, 0.36 gram (0.002 mole) of 2-fluoro-5-trifluoromethylpyridine, and 0.08 gram (0.002 mole) of 60% sodium hydride (in mineral oil) in about 10 mL of DMSO was heated at 85-90 °C for three hours. After this time, the reaction mixture was allowed to cool to ambient temperature, and then it was poured into water. The mixture was extracted with diethyl ether and the combined extracts were dried with magnesium sulfate. The mixture was filtered and the filtrate was concentrated under reduced pressure to a residue. The residue was purified with column chromatography on silica gel using mixtures of methylene chloride and methanol eluants. The appropriate fractions were combined and

concentrated under reduced pressure, yielding 0.63 gram of Compound 434. The NMR spectrum was consistent with the proposed structure.

EXAMPLE 5

This example illustrates one protocol for the preparation of N-(3,5-difluorophenyl)({1-[(4-pyrimidin-2-yloxyphenyl)methyl](4-1,2,5,6-tetrahydropyridyl)}[4-(trifluoromethyl)phenyl]methoxy)carboxamide (Compound 786 in table below)

10 Step A Synthesis of 2-[4-(chloromethyl)phenoxy]pyrimidine as an intermediate

A stirred solution of 4.0 grams (0.02 mole) of (4-pyrimidin-2-yloxyphenyl)methanol (known compound) and seven drops of pyridine in 35 mL of methylene chloride was cooled in an ice-water bath and a solution of 2.0 mL (0.027 mole) of thionyl chloride was added dropwise. Upon completion of addition the reaction mixture was stirred at about 10 °C to 20 °C during a three-hour period. After this time, the reaction mixture was poured into a cold aqueous solution of sodium bicarbonate. The mixture was then stirred for 30 minutes and the organic layer was separated. The aqueous layer was extracted with one 50 mL portion of methylene chloride. The extract was combined with the organic layer, and the combination was passed through silicone-coated filter paper to remove traces of water. The filtrate was concentrated under reduced pressure, yielding grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

25

30

15

20

Step B Synthesis of 4-pyridyl[4-(trifluoromethyl)phenyl]methanol as an intermediate

Under a dry nitrogen atmosphere, an appropriate amount of freshly cut magnesium chips was suspended in 150 mL of THF. To this was added about 5% of a solution of 22.5 grams (0.100 mole) of 4-bromobenzotrifluoride in 75 mL of THF. The reaction mixture was then warmed to about 30 °C to initiate the reaction. Once the reaction was proceeding, the remainder of the solution

10

15

20

25

30

of 4-bromobenzotrifluoride was added during a one hour period, at a rate to maintain the reaction mixture temperature at about 34 °C to about 38 °C. Upon completion of addition, the reaction mixture was stirred during a one hour period, as it cooled to ambient temperature. After this time a solution of 8.5 grams (0.075 mole) of 4-pyridinecarboxaldehyde in 75 mL of THF was added portion wise while maintaining the reaction mixture temperature below 30 °C. Upon completion of addition the reaction mixture was stirred at ambient temperature for about 18 hours. With vigorous stirring the reaction mixture was then poured into 600 mL of aqueous 10% ammonium chloride. mixture was extracted with two 300 mL portions of ethyl acetate. The combined extracts were washed with 250 mL of an aqueous solution saturated with sodium chloride, then dried with magnesium sulfate. The mixture was filtered and the filtrate was concentrated under reduced pressure, yielding 21.2 grams of the subject compound. The product was used without purification in the following reaction.

Step C Synthesis of 4-pyridyl[4-(trifluoromethyl)phenyl]methanol hydrochloride salt as an intermediate

A solution of 21.2 grams (0.070 mole) of 4-pyridyl[4-(trifluoromethyl)phenyl]methanol in 500 mL of ethyl acetate was stirred vigorously and anhydrous hydrogen chloride gas was slowly added during a 15 minute period, below the surface of the solution. The reaction mixture was then stirred for an additional 15 minutes, and a solid was collected by filtration. The solid was washed with ethyl acetate and dried, yielding 11.4 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

Step D Synthesis of {1-[(4-pyrimidin-2-yloxyphenyl)methyl](4-pyridyl)}[4-(trifluoromethyl)phenyl]methanol, hydrochloride salt as an Intermediate

A 3.3 gram (0.0113 mole) aliquot of 4-pyridyl[4-(trifluoromethyl)phenyl]methanol, hydrochloride salt was partitioned between

10

15

20

diethyl ether and an aqueous solution of sodium bicarbonate. The ether layer was separated and dried with magnesium sulfate. The mixture was filtered and the filtrate was concentrated under reduced pressure to a residue. The residue was dissolved in 100 mL of acetone, and 2.5 grams (0.0113 mole) of 2-[4-(chloromethyl)phenoxy]pyrimidine and 0.2 gram (0.0012 mole) of potassium iodide were added. Upon completion of addition, the reaction mixture was warmed to 50 °C where it stirred for about 18 hours. The reaction mixture was then concentrated under reduced pressure to a residue, and the residue was triturated with 150 mL of diethyl ether, yielding when dried, 5.2 grams of solid product. The NMR spectrum was consistent with the proposed structure.

Step E Synthesis of {1-[(4-pyrimidin-2-yloxyphenyl)methyl](4-1,2,5,6-tetrahydropyridyl)}[4-(trifluoromethyl)phenyl]methanol as an Intermediate

A stirred solution of 1.0 gram (0.0021 mole) of {1-[(4-pyrimidin-2yloxyphenyl)methyl](4-pyridyl)}[4-(trifluoromethyl)phenyl]methanol, hydrochloride salt in 30 mL of ethanol was cooled in an ice-water bath, and 0.1 gram (0.0026 mole) of sodium borohydride was added in one portion. Upon completion of addition, the reaction mixture was stirred at about 10 °C to 20 °C during a three-hour period. After this time the reaction mixture was diluted with 100 mL of water and extracted with two 75 mL portions of ethyl acetate. The combined extracts were washed with one 75 mL portion of aqueous 10% lithium chloride, and the combination was dried with sodium sulfate. The mixture was then filtered and the filtrate was concentrated under reduced pressure to a residue. The residue was purified with column chromatography on neutral alumina (6% water) using 1% to 2% methanol/methylene chloride mixtures as eluants. The appropriate fractions were combined and concentrated under reduced pressure, yielding 0.44 gram of the subject compound. The NMR spectrum was consistent with the proposed structure.

÷

30

25

15

20

25

30

This compound was prepared in a manner analogous to that of Step F of Example 2, using 0.44 gram (0.0010 mole) of {1-[(4-pyrimidin-2-yloxyphenyl)methyl](4-1,2,5,6-tetrahydropyridyl)}[4-(trifluoromethyl)phenyl]methanol, 0.21 gram (0.0014 mole) of 3,5-difluorophenylisocyanate, 0.14 gram (0.0014 mole) of triethylamine, and 0.05 gram (catalyst) of 4-dimethylaminopyridine in 15 mL of methylene chloride. The reaction product was purified with column chromatography on silica gel using 10% to 25% acetone/methylene chloride mixtures as eluants. The appropriate fractions were combined and concentrated under reduced pressure, yielding 0.18 gram of Compound 786, mp 85-92 °C. The NMR spectrum was

EXAMPLE 6

consistent with the proposed structure.

This example illustrates one protocol for the preparation of N-(4-chlorophenyl)({1-[(4-(2-pyridyloxy)phenyl)methyl](4-(1-oxypiperidyl)))}[4-(trifluoromethyl)phenyl]methoxy)carboxamide (Compound 395 in table below)

A solution of 12.9 grams (0.0216 mole) of Compound 227 (prepared by the method of Example 2) and 390 grams of methanol was stirred, and 117.7 grams (1.7315 moles) of aqueous 50% hydrogen peroxide was added. Upon completion of addition, the reaction mixture was stirred during a 48 hour period as it was being monitored by high pressure liquid chromatography and NMR analyses for completion of reaction. After this time the reaction mixture was concentrated under reduced pressure to remove the methanol, and then the concentrate was extracted with methylene chloride. The methylene chloride was removed under reduced pressure, leaving a residue. The residue was purified with column chromatography on neutral alumina (6% water) using 1% to 2% methanol/methylene chloride mixtures as eluants. The appropriate fractions were combined and concentrated under reduced pressure, yielding 9.2 grams of Compound 395. The NMR spectrum was consistent with the proposed structure.

10

15

EXAMPLE 7

This example illustrates one protocol for the preparation of N-(4-chlorophenyl)({1-ethoxy-1-[(4-(2-pyridyloxy)phenyl)methyl](4-piperidyl))[4-(trifluoromethyl)phenyl]methoxy)carboxamide, ethyl sulfate salt (Compound 860 in table below)

A stirred solution of 0.5 gram (0.0008 mole) of Compound 493 (prepared in Example 6) and 0.25 gram (0.0016 mole) of diethyl sulfate in 10 mL of chloroform was heated at reflux during a 24 hour period. After this time the reaction mixture was concentrated under reduced pressure to a residue. The residue was triturated with diethyl ether during a 24 hour period, then washed with fresh diethyl ether. The residue was dried under reduced pressure at 60 °C, yielding 0.57 gram of solid material. The solid was dissolved in one mL of chloroform, and re-precipitated with about 10 mL of diethyl ether. The chloroform was decanted and the remaining solid was dried under reduced pressure at 60 °C, yielding 0.45 gram of Compound 860. The NMR spectrum was consistent with the proposed structure.

EXAMPLE 8

This example illustrates one protocol for the preparation of 2-{4[{bis[4(trifluoromethyl)phenyl]methylene}piperidyl)methyl]phenoxy}pyrimidine
(Compound 824 in table below) as an Intermediate

25 This compound was prepared in a manner analogous to that of Step B of Example 1, using 26.0 grams (0.1011)mole) of 2-[4-(chloromethyl)phenoxy]pyrimidine hydrochloride (prepared in a manner analogous to Step A of Example 7) and 34.0 grams (0.0882 mole) of 4-{bis[4-(trifluoromethyl)phenyl]methylene}piperidine (prepared in Step A of Example 2), 36.0 grams (0.2604 mole) of potassium carbonate in 200 grams of DMF. 30 The yield of Compound 824 was 41.0 grams. The NMR spectrum was consistent with the proposed structure.

15

20

30

EXAMPLE 9

This example illustrates one protocol for the preparation of 2-{4-[{bis[4-(trifluoromethyl)phenyl]methylene}1-

5 oxypiperidyl)methyl]phenoxy}pyrimidine (Compound 854 in table below)

This compound was prepared in a manner analogous to that of Step E of Example 1, using 40.0 grams (0.0702 mole) of Compound 824 (prepared in Example 8) and 50 grams of 30% hydrogen peroxide in 140 mL of methanol. The yield of Compound 854 was 35.0 grams. The NMR spectrum was consistent with the proposed structure.

EXAMPLE 10

•

This example illustrates one protocol for the preparation of 2-{4-[(9-aza-3-{bis[4-(trifluoromethyl)phenyl]methylene}bicyclo[3.3.1]non-9-yl)methyl]phenoxy}pyridine (Compound 117 in table below)

This compound was prepared in a manner analogous to that of Step A of Example 1, using 0.18 gram (0.00025 mole) of {9-aza-9-[(4-(2-pyridyloxy)phenyl)nethyl]bicyclo[3.3.1]non-3-yl}bis[4-(trifluoromethyl)phenyl]methanol (known compound-disclosed in US Statutory Invention Registration H1,838) in trifluoroacetic acid, yielding Compound 117. The NMR spectrum was consistent with the proposed structure.

25 EXAMPLE 11

This example illustrates one protocol for the preparation of 1-[(1-[[4-(2-ethyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl)(4-piperidylidene))[4-(trifluoromethoxy)phenyl]methoxy]-4-(trifluoromethoxy)benzene (Compound 137 in table below)

Step A Synthesis of 5-(4-methylphenyl)-1,2,3,4-tetraazole as an intermediate

15

20

30

A solution of 10.0 grams (0.085 mole) of para-toluonitrile in 160 mL of DMF was stirred and 5.6 grams (0.085 mole) of sodium azide was added. Upon completion of addition, the reaction mixture was warmed to 135 °C where it stirred for three hours. The reaction mixture was then cooled and poured into 200 mL of stirred, cold aqueous 1N hydrochloric acid. Upon completion of addition, the mixture was stirred for five minutes and filtered to collect a white solid. The solid was dried for 16 hours in a vacuum oven at 35-40 °C, yielding 7.1 grams of the subject compound. The reaction was repeated.

10 Step B Synthesis of 2-ethyl-5-(4-methylphenyl)-1,2,3,4-tetraazole as an intermediate

A solution of 20.0 grams (0.125 mole) of 5-(4-methylphenyl)-1,2,3,4-tetraazole in 230 mL of acetonitrile was stirred and 48.7 grams (0.312 mole) of iodoethane, followed by 17.3 grams (0.125 mole) of potassium carbonate were added. Upon completion of addition, the reaction mixture was warmed to reflux, where it stirred for two hours. After this time, the reaction mixture was concentrated under reduced pressure to a residue. The residue was taken up in ethyl acetate and filtered. The filtrate was concentrated under reduced pressure to a residue. The residue was purified with column chromatography on silica gel using 1:4 ethyl acetate:hexane as an eluant. The appropriate fractions were combined and concentrated under reduced pressure, yielding 18.8 grams of the subject compound. The NMR spectrum was consistent, with the proposed structure.

25 Step C Synthesis of 5-[4-(bromomethyl)phenyl]-2-ethyl-1,2,3,4-tetraazole as an intermediate

A solution of 18.8 grams (0.100 mole) of 2-ethyl-5-(4-methylphenyl)1,2,3,4-tetraazole in 156 mL of carbon tetrachloride was stirred, and 19.6 grams (0.110 mole) of N-bromosuccinimide, followed by 0.24 gram (0.001 mole) of benzoyl peroxide were added. Upon completion of addition, the reaction mixture was heated to reflux where it stirred for 90 minutes. After this time the reaction mixture was cooled and filtered. The filtrate was

10

15

20

25

30

concentrated under reduced pressure, yielding 27.7 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

Step D Synthesis of ethyl 1-{[4-(2-ethyl-1,2,3,4-tetraazol-5-yl)phenyl]methyl}piperidine-4-carboxylate as an intermediate

A solution of 16.0 grams (0.102 mole) of ethyl isonipecotate in 50 mL of DMSO and 66 mL of methanol was stirred, and 44 mL (0.256 mole) of N,Ndiisopropylethylamine, followed by 22.8 grams (0.085 mole) of 5-[4-(bromomethyl)phenyl]-2-ethyl-1,2,3,4-tetraazole added. were Upon completion of addition, the reaction mixture was stirred at ambient temperature for about 72 hours. After this time, the reaction mixture was diluted with 130 mL of ethyl acetate, and washed with a 1:1 solution of an aqueous solution saturated with sodium chloride and water. The organic layer was then washed with an aqueous solution saturated with sodium chloride and water, dried with sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to a residue. The residue was purified with column chromatography on silica gel using mixtures of methylene chloride and acetone. appropriate fractions were combined and concentrated under reduced pressure, yielding 20.9 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

Step E Synthesis of 1-{[4-(2-ethyl-1,2,3,4-tetraazol-5-yl)phenyl]methyl}piperidinecarboxylic acid as an intermediate

A solution of 20.9 grams (0.078 mole) of ethyl 1-{[4-(2-ethyl-1,2,3,4-tetraazol-5-yl)phenyl]methyl}piperidine-4-carboxylate in 132 mL of THF was stirred, and a solution of 3.4 grams (0.086 mole) of sodium hydroxide in 93 mL of water, followed by 80 mL of methanol were added. Upon completion of addition, the reaction mixture was stirred at ambient temperature for two hours. After this time, the reaction mixture was concentrated under reduced pressure to a residue. The residue was taken up in toluene and concentrated under reduced pressure to remove any remaining solvents. The residue was dissolved in 100 mL of water and extracted with diethyl ether. The aqueous layer was

cooled to about -2 °C, and was brought to a pH of 7 with concentrated hydrochloric acid. The resultant solid was collected by filtration, washed with water, and dried, yielding 18.2 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

5

10

15

20

30

Step F Synthesis of 1-{[4-(2-ethyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl)-N-methoxy-N-methylcarboxamide as an intermediate

A solution of 18.2 grams (0.058 mole) of 1-{[4-(2-ethyl-1,2,3,4tetraazol-5-yl)phenyl]methyl}piperidinecarboxylic acid in 240 mL of DMF was stirred, and 6.8 grams (0.070 mole) of N,O-dimethylhydroxylamine hydrochloride was added. The reaction mixture was cooled to 0 °C, and 11.3 grams (0.070 mole) of diethyl cyanophosphonate, followed by 17.8 mL (0.127 mole) of triethylamine were added. Upon completion of addition, the reaction mixture was stirred for two hours, and then it was diluted with ethyl acetate and a 1:1 solution of an aqueous solution saturated with sodium chloride and water. To aid in separating the organic layer from the aqueous layer, hexane and solid sodium chloride were added to the reaction mixture. The organic layer was organic layer was separated and washed with water, and then with an aqueous solution saturated with sodium chloride. The mixture was dried with sodium sulfate, filtered, and concentrated under reduced pressure, yielding 18.5 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

25 Step G

Synthesis of 1-{[4-(2-ethyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl)4-(trifluoromethoxy)phenyl ketone as an intermediate

١,

To a Grignard Reagent prepared from 9.3 grams (0.039 mole) of 1-bromo-4-trifluoromethoxybenzene and 1.0 gram (0.041 gram-atom) of magnesium metal in 27 mL of THF was added a solution of 9.3 grams (0.026 mole) of 1-{[4-(2-ethyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl)-N-methoxy-N-methylcarboxamide in 13 mL of THF. Upon completion of

addition, the reaction mixture was stirred at ambient temperature for 90 minutes, and then it was warmed to 70 °C, where it stirred for an additional 60 minutes. After this time, the reaction mixture was poured into a cold solution of 13 mL of concentrated hydrochloric acid in 93 mL of ethanol, and stirred for ten minutes. The mixture was diluted methylene chloride and washed with an aqueous dilute solution of sodium bicarbonate. The organic layer was dried with sodium sulfate and filtered. The filtrate was concentrated under reduced pressure to a residue, yielding 10.2 grams of the subject compound. The NMR spectrum was consistent with the proposed structure.

10

15

25

30

5

Step H Synthesis of {4-[chloro(1-{[4-(2-ethyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-

piperidyl))methyl]phenoxy}trifluoromethane as an intermediate

A solution of 1-{[4-(2-ethyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl)4-(trifluoromethoxy)phenyl ketone and phosphorous oxychloride in diethyl ether is heated under reflux for about two hours. After this time, the reaction mixture is concentrated under reduced pressure to yield the subject compound.

20 Step I Synthesis of Compound 137

A solution of {4-[chloro(1-{[4-(2-ethyl(1,2,3,4-tetraazol-5-yl))phenyl]methyl}(4-piperidyl))methyl]phenoxy}trifluoromethane, 4-(trifluoromethoxy)phenol and potassium carbonate in DMF is stirred at ambient temperature for about two hours. After this time the reaction mixture is poured into water and the mixture is extracted with ethyl acetate. The extract is dried with magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure, yielding compound 137.

It is well known to one of ordinary skill in the art that compounds like the compounds of formula I of the present invention can contain optically active and racemic forms. It is also well known in the art that compounds like the compounds of formula I may contain stereoisomeric forms, tautomeric forms and/or exhibit polymorphism. It is to be understood that the present

invention encompasses any racemic, optically active, polymorphic, tautomeric, or stereoisomeric form, or mixtures thereof. It should be noted that it is well known in the art how to prepare optically active forms, for example by resolution of a racemic mixture, or by synthesis from optically active intermediates.

The following table sets forth some additional examples of compounds of formula I useful in the present invention:

Table 1

Insecticidal N-substituted-4-(substituted arylmethyl)piperidines and Pyridines

15

5

Compounds of the formula I where A is C, forming a piperidine ring; m, p, q, r and s are 0; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; and B is phenyl substituted with R^9 , R^{10} , R^{11} , R^{12} , and R^{13} ; where R^2 , R^5 , R^6 , R^9 , R^{10} , R^{12} , and R^{13} are hydrogen:

$$R^{8}$$
 E_{s}
 R^{6}
 R^{5}
 R^{4}
 R^{13}
 R^{12}
 R^{10}

Cmpd.	_ 3			
No.	R ³	R ⁴	R ⁸	R ¹¹
4				
1	H	H	H	H
2¹	H	H	H	H
3 ⁴	H	H	H	H
4 ¹ 5 ¹	Cl	H	H	Ĥ
5 ¹	H	Cl	H	H
6¹	F	Н	H	H
7 ⁶	H	F	H	F
8	H	CF ₃	Ĥ	ĈĘ.
9	H .	OCF ₂	H	OCE.
10	H	$ \begin{array}{c} OCF_3\\ C_2H_5 \end{array} $	H	CF₃ OCF₃ C₂H₅
11	H	Cl	CH ₃	H
12	H	OCF ₃	CH ₃	OCF ₃

Compounds of formula I where A is C, forming a piperidine ring; m, p, q, and r are 0; s is 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; B is phenyl substituted with R^9 , R^{10} , R^{11} , R^{12} , and R^{13} ; where R^2 , R^5 , R^6 , R^9 , R^{12} , and R^{13} are hydrogen:

$$R^{7}$$
 R^{13}
 R^{12}
 R^{10}
 R^{10}

ċ

R ¹¹	C ₂ H ₅	н	ഥ	Ħ	ĮΤ	(н	H	Ħ	н	 =	NCH,	Œ	; ;;	: E	H
R ¹⁰	H	н	Н	Н	щ	. (Ą.	H	Н	н	Œ	Ι¤	ı ¤	! #	H	H
Rå	4-fluoroindol-3-yl	indol-3-yl	2-thioxo-1,3-dihydroquinolin-4-on-3-yl	7-methyl-4-hydro-1,3-thiazolino[3,2-	a]pyrimidin-5-on-6-yl 7-methyl-4-hydro-1,3-thiazolino[3,2-	a]pyrimidin-5-on-6-yl	piperidin-1-yl	1,2,3,4-tetrahydro-quinolin-1-yl	NH2	benzo[c]azoline-1,3-dion-2-yl	morpholin-1-yl	OC(CH3)1	OC(CH ₃)	2-(pyrid-3-vl)-ethenyl	2-(2-methylpyrid-5-yl)ethenyl	CH ₃
R ²⁹ / R ³⁰	l	н:	耳耳:	ΗН	ΗН	н	l	ŀ	1	ı	Ì	i	ļ	1	ļ	1.
>	0	-	₽.	_	_		1	ŀ	;	1	1	ļ	1	1	1	ł
x R ²⁷ /R ²⁸ y R ²⁹ /R ³⁰	Щр	4 12 13	耳耳:	цщ	нн	н	l	1	1	ł	ļ	I	į	ł	ł	I
×	-	_	П	П	-		ŀ	1	:	1	:	ŀ	ŧ	;	1	1
Ħ	13 H C_2H_5 $(CR^{27}R^{28})_{x}$ - $(CR^{29}R^{30})_y$	$(CR^{27}R^{28})_x$ - $(CR^{29}R^{30})_y$	$(CR^{27}R^{28})_{\kappa}$ - $(CR^{29}R^{30})_{y}$	$(CR^{27}R^{28})_x$ - $(CR^{29}R^{30})_y$	(CR ²⁷ R ²⁸) _x -(CR ²⁹ R ³⁹) _y		֓֟֞֟֓֟֓֟֟֓֟֓֟֓֟֓֟֓֟֓֟֓֟֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓	C3H ₆	$C_{4}H_{8}$	C_tH_g	C(=0)C ₂ H ₄	C(=0)	C3H,C(=0)	C4H ₈ NHC(=0)	C4H8NHC(=0)	C(=S)NH
R4	C_2H_5	н	Щ	ᅜ	叶	Þ	d ₽	耳 :	Н	н	Ħ	SCH ₃	н	Н	н	H
E 3	H	H	Ħ	H	Н	٤	÷ ځ	# ;	Ħ	Ħ	Н	Ħ	Ħ	H	Ħ	H
No No	13	14	15	16	17	181	107		20	21	22	23	241	25	3 6	27

Compounds of formula I where A is C, forming a piperidine ring; m, p, q, and r are 0; s is 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; E is, unless otherwise noted, $-(CR^{27}R^{28})_x-(CR^{29}R^{30})_y$ where x is 1 and y is 0; R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; B is phenyl substituted with R^9 , R^{10} , R^{11} , R^{12} ; and R^{13} ; where R^2 , R^5 , R^6 , R^9 , $R^{12}R^{13}$, R^{25} , R^{26} , R^{27} and R^{28} are hydrogen;

$$R^{25}$$
 R^{24}
 R^{25}
 R^{26}
 R^{22}
 R^{6}
 R^{22}
 R^{6}
 R^{2}
 R^{2}

10

Cmpd. No.	R^3/R^4	R ²²	R ²³	R ²⁴	R10 / R11
28	H/F	Н	Н	Н	Н
29	H/F	н	Н	H	CI H
30	H/CF ₃	Н	Н	Н	F H
31	H/CF ₃	Н	Н	Н	H H F
32	H/OCF ₃	H	H	н	г Н Н
33	H/CF ₃	Н	Н	Br	H CF ₃
34	H/CF ₃	Н	Н	F	Н
35	H/OCF ₃	Н	Н	F	Н Н
36	H/Cl	Н	F	F	Н Н
37	H/F	Н	F	F	H H
38	H/CF ₃	H.	F	F	н н
39	H/Cl	Н	Н	OCH₃	H H
40	H/F	Н	Н	OCH ₃	Н Н Н

Cmpd. No.	R^3/R^4	R ²²	R ²³	R ²⁴	R ¹⁰ /R ¹¹
41	H/CF ₃	Н	Н	OCH ₃	Н
42	H/OCF ₃	н	Н	OCH ₃	H H
43	H/C_2H_5	Н	н	OCH₃	OCF ₃ H
44	н/он	н .	н	OC ₃ H ₇	C₂H₅ H
45	CF ₃ /H	' Н	Н	OC₃H ₇	OH CF₃
46	H/CF ₃	Н	Н	OC₃H ₇	H H
47	OCF ₃ / H	Н	Н	OC_3H_7	CF₃ OCF₃
48	H/OCF ₃	Н	Н	OC₃H ₇	H H
49	H/OCF ₃	OCH ₃	н	OC ₃ H ₇	OCF₃ H
50	H/CF ₃	Н	Н	CO ₂ C ₂ H ₅	OCF ₃ H
51	H/CF ₃	н	н	CO ₂ CH(CH ₃) ₂	CF₃ H
52	H/CF ₃	Н	Н	NHC(=0)CH ₃	CF₃ H
53	H/CF ₃	H	н	NHC(=O)CF ₃	CF₃ H
54	H/CF ₃	Н	Н	NHCO₂CH₃	CF₃ H
55	H/CF ₃	Н	Н	NHCO₂C₂H5	CF₃ H
56	H/CF ₃	H	Н	N(CH ₃)CO ₂ C ₂ H ₅	CF₃ H
57	H/CF ₃	Н	Н	NHCO ₂ C ₃ H ₇	CF₃ H
58	H/CF ₃	Н	Н	NHCO ₂ CH(CH ₃) ₂	CF₃ H
59	H/CF ₃	Н	H	NHCO ₂ CH ₂ CH(CH ₃) ₂	CF₃ H
60	H/CF ₃	Н	Н	CH=NOC ₂ H ₅	CF₃ H
61	H/CF ₃	Н	Н	1,3-thiazol-2-ylmethoxy	CF ₃ H
62	H/CF ₃	Н	Н	pyrid-2-yl	CF ₃ H
63	H/CF ₃	Н	Н	3-chloropyrid-2-yl	CF ₃ H
64	H/OCF ₃	Н	Н	3-chloropyrid-2-yl	CF ₃ H
65	H/CF ₃	Н	Н	5-chloropyrid-2-yl	OCF ₃ H
· 66	H/CF ₃	Н	Н	6-chloropyrid-2-yl	CF₃ H
67	H/CF ₃	н	Н	3-trifluoromethylpyrid-2-yl	CF ₃ H
68	H/OCF ₃	н	Н	3-trifluoromethylpyrid-2-yl	CF ₃ H
69	H/CF ₃	н	Н	5-trifluoromethylpyrid-2-yl	OCF ₃ H
70	H/CF ₃	н	н	3-cyanopyrid-2-yl	CF ₃ H CF ₃

Cmpd. No.	R^3/R^4	R ²²	R ²³	R ²⁴	R ¹⁰ /R ¹¹
71	H/CF ₃	H	Н	5-cyanopyrid-2-yl	H CF ₃
72	H/CF ₃	н	н	3-nitropyrid-2-yl	H
72	iii oi 3		••	5 maopyii- 2 yi	CF ₃
73	H/CF ₃	H	H	3-(methoxycarbonylamino)-	H
				pyrid-2-yl	CF ₃
74	H/CF ₃	H	H	2-methyl-2H-tetrazol-5-yl	H
75	H/CF ₃	н	н	2-methyl-2H-tetrazol-5-yl	· Cl H
75	H7 Cl-3	**	**	2-methy1-211-tetta201-5-y1	CF ₃
76	H/Cl	н	н	2-ethyl-2H-tetrazol-5-yl	H
				•	H
77	H/Cl	H	H	2-ethyl-2H-tetrazol-5-yl	H
	** / ***			0 4 1077 1 1 2 1 5 1	Cl
78	H/F	H	Н	2-ethyl-2H-tetrazol-5-yl	H F
79 `	H/F	н	н	2-ethyl-2H-tetrazol-5-yl	H H
,,	2272	**/	••	2 cary 211 tourson 5 y.	Cl
80	H/CF ₃	H	H	2-ethyl-2H-tetrazol-5-yl	Н
	•			•	H
81	H/CF ₃	Н	H	2-ethyl-2H-tetrazol-5-yl	H
82	H / CE	Н	н	2-ethyl-2H-tetrazol-5-yl	F H
84	H/CF ₃	п	п	z-emyi-zri-tettazoi-j-yi	CF ₃
83ª	-OCF ₂ O-	Н	Н	2-ethyl-2H-tetrazol-5-yl	-OCF₂O-
	_				
84	H/H	CH ₃	Cl	` Н	H
05	TT / TT	7.7		Н	H
85	H/H	H	H	n	H H

^aIn Cmpd 83, R^3 and R^4 , and R^{10} and R^{11} are taken together with $-OCF_2O$ - to form 2,2-difluoro[d]1,3-benzodioxolane rings. In Cmpd. 84, E is C(=S)NH, and in Cmpd. 85, E is $C_2H_4C(=O)$.

5

10

Compounds of formula I where A is C, forming a piperidine ring; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; m and p are 0; q is 0 and r is 1, forming an N-oxide; and s is 1; E is $-(CR^{27}R^{28})_{x}-(CR^{29}R^{30})_{y}$, where x is 1, and y is 0; R^{8} is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; B is phenyl substituted with R^{9} , R^{10} , R^{11} , R^{12} , and R^{13} ; where R^{2} , R^{5} , R^{6} , R^{9} , R^{12} , R^{13} , R^{25} , R^{26} , R^{27} , and R^{28} are hydrogen:

Cmpd.

114

115°

Η

-OCF₂O-

CF₃

H

Н

H

Н

2-ethyl-2H-tetrazol-5-yl

2-ethyl-2H-tetrazol-5-yl

H

CF₃

-OCF₂O-

$$R^{25}$$
 R^{24}
 R^{23}
 R^{5}
 R^{4}
 R^{26}
 R^{22}
 R^{6}
 R^{2}
 R^{7}
 R^{7}
 R^{13}
 R^{10}
 R^{10}

 \mathbb{R}^3 R^4 R^{22} \mathbb{R}^{23} No. R^{24} R^{11} R^{10} CF₃ 86 Н H H Br H CF₃ 87 H CF₃ F H Br H CF₃ 88 H CI F F H Η 89 H F F F H Η 90 H CF₃ F F H Н 91 H Cl Н OCH₃ H Н 92 H F H OCH₃ H Η 93 H CF_3 H OCH₃ Η Н 94 CF₃ H Н OC₂H₅ Η CF_3 95 H CF_3 H OC₃H₇ H CF₃ 96 H OCF₃ H OC₃H₇ Η OCF₃ 97^b *-OCF₂CF₂-H H OC₃H₇ *-OCF₂CF₂-98 H CF₃ H Н cyclopropylmethoxy H CF₃ 99 H CF₃ H CO₂C₂H₅ H Η CF_3 100 H CF₃ H H CO₂CH(CH₃)₂ H CF_3 101 H CF₃ NHCO₂C₂H₅ H H Η CF₃ 102 H CF₃ Н H NHCO₂C₃H₇ H CF₃ 103 NHCO₂CH(CH₃)₂ H CF₃ H H н CF_3 104 H CF₃ H H NHCO₂CH₂CH(CH₃)₂ Η CF₃ 105 H CF₃ H H 1,3-thiazol-2-ylmethoxy Η CF₃ 106 H CF₃ H Н pyrid-2-yloxy H CF₃ 107 H CF₃ H H 5-chloropyrid-2-yloxy H CF_3 H 108 CF₃ Н H 6-chloropyrid-2-yloxy H CF₃ 109 H CF₃ Н H 3-trifluoromethylpyrid-2-H CF₃ yloxy 110 Н CF₃ Н H 5-trifluoromethylpyrid-2-Η CF₃ yloxy 111 H CF₃ Н H 5-cyanopyrid-2-yloxy Н CF₃ 112 Н CF₃ H H 2-methyl-2H-tetrazol-5-yl Н CF₃ 113 Η Cl H H 2-ethyl-2H-tetrazol-5-yl H CI

25

^bIn Cmpd 97, R^3 and R^4 , and R^{10} and R^{11} are taken together with $-OCF_2CF_2$ - to form 2,2,3,3-tetrafluoro-2,3-dihydrobenzo[b]furan rings, where the asterisk denotes connection at R^3 and at R^{10} .

⁶ In Cmpd 115, R³ and R⁴, and R¹⁰ and R¹¹ are taken together with -OCF₂O- to form 2,2-difluoro[d]1,3-benzodioxolane rings.

Compounds of formula I where A is C, forming a piperidine ring; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; m and p are 0; r is 0, and q is 1, forming an N-disubstituted derivative; and s is 1; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; B is phenyl substituted with R⁹, R¹⁰, R¹¹, R¹², and R¹³; where R², R³, R⁵, R⁶, R⁹, R¹⁰, R¹², R¹³, R²², R²³, R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen:

$$R^{25}$$
 R^{24}
 R^{23}
 R^{5}
 R^{4}
 R^{26}
 R^{22}
 R^{6}
 R^{2}
 R^{6}
 R^{2}
 R^{6}
 R^{2}
 R^{3}
 R^{7}
 R^{13}
 R^{10}
 R^{10}

Cmpd. No.	R ⁴	R ⁷	R ¹¹	R ²⁴	
1165	OCHF ₂	4-(C ₃ H ₇ O)PhCH ₂	OCHF ₂	OC₃H ₇	

Compounds of formula I where A is C, forming a piperidine ring; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; m, q and r are 0; s is 1; p is other than 0, forming an azabicyclo derivative; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; E is - (CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; B is phenyl substituted with R⁹, R¹⁰, R¹¹, R¹², and R¹³; where R², R³, R⁵, R⁶, R⁹, R¹⁰, R¹², R¹³, R²², R²³, R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen:

$$R^{25}$$
 R^{24}
 R^{23}
 R^{5}
 R^{4}
 R^{26}
 R^{22}
 R^{6}
 R^{2}
 R^{6}
 R^{2}
 R^{7}
 R^{7}
 R^{13}
 R^{10}
 R^{10}

_	Cmpd. No.	R ⁴	D	р	R ¹¹	R ²⁴
	117	CF ₃	CH ₂	3	CF₃	ругіd-2-yloxy

Compounds of formula I where A is C, forming a piperidine ring; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; m is 0; q and r are 1, forming a N-substituted oxy derivative; p is other than 0, forming an azabicyclo derivative; s is 1; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; B is phenyl substituted with R⁹, R¹⁰, R¹¹, R¹², and R¹³; and E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; where R², R³, R⁵, R⁶, R⁹, R¹⁰, R¹², R¹³, R²², R²³, R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen:

10

$$R^{25}$$
 R^{26}
 R^{26}
 R^{22}
 R^{6}
 R^{22}
 R^{6}
 R^{7}
 R^{7}
 R^{7}
 R^{13}
 R^{10}
 R^{10}

10

Cmpd. No.	R ⁴	R ⁷	D	р	R ¹¹	R ²⁴
118 ⁵	CF ₃	C ₂ H ₄ CO ₂ C ₂ H ₅	-CH ₂ -	3	CF₃	pyrid-2-yloxy

Compounds of formula I where A is C, forming a piperidine ring; m, p, q, and r are 0; s is 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; R^8 is pyrid-3-yl substituted with R^{22} , R^{24} , R^{25} , and R^{26} ; E is - $(CR^{27}R^{28})_x$ - $(CR^{29}R^{30})_y$ -, where x is 1, and y is 0; B is phenyl substituted with R^9 , R^{10} , R^{11} , R^{12} , and R^{13} ; where R^2 , R^3 , R^5 , R^6 , R^9 , R^{10} , R^{12} , R^{13} , R^{22} , R^{25} , R^{26} , R^{27} , and R^{28} are hydrogen;

$$R^{25}$$
 R^{26}
 R^{22}
 R^{6}
 R^{22}
 R^{6}
 R^{7}
 R^{7}
 R^{13}
 R^{10}
 R^{10}

I

Cmpd. No.	R ⁴	R ¹¹	. R ²⁴
119	CF ₃	CF ₃	Cl
120	CF₃	CF ₃	
121	CF₃	CF ₃	OC₃H ₇ C≡N
122	CF ₃	CF ₃	NHC ₃ H ₇
123	CF ₃	CF ₃	NHCO ₂ C ₂ H ₅

Compounds of formula I where A is C, forming a piperidine ring; m, p, and q, are 0; s is 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; r is 1, forming an N-oxide; R⁸ is pyrid-3-yl substituted with R²², R²⁴, R²⁵, and R²⁶; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; B is phenyl substituted with R⁹, R¹⁰, R¹¹, R¹², and R¹³; where R², R³, R⁵, R⁶, R⁹, R¹⁰, R¹², R¹³, R²², R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen;

$$R^{25}$$
 R^{24}
 R^{26}
 R^{22}
 R^{6}
 R^{22}
 R^{6}
 R^{2}
 R^{2}
 R^{6}
 R^{2}
 R^{2}

Cmpd. No.	R ⁴	R ¹¹	R ²⁴
124	CF₃	CF ₃	Cl
125	CF ₃	CF ₃	OC ₃ H ₇
126	\mathbb{CF}_3	CF ₃	. C≡N
127	CF_3	CF ₃	NHC ₃ H ₇
128	CF ₃	CF ₃	NHCO ₂ C ₂ H ₅

Compounds of formula I where A is C, forming a 1,4-dihydropyridine ring; m, p, q, and r are 0; s is 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the pyridine ring; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; B is phenyl substituted with R⁹, R¹⁰, R¹¹, R¹², and R¹³; where R², R³, R⁵, R⁶, R⁹, R¹⁰, R¹², R¹³, R²², R²³R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen;

$$R^{25}$$
 R^{26}
 R^{26}
 R^{22}
 R^{6}
 R^{22}
 R^{6}
 R^{7}
 R^{13}
 R^{10}
 R^{10}

Cmpd. No.	R ⁴	R ¹¹	R ²⁴
129	CF_3	Br	OC_3H_7
130	CF ₃	F	NHCO ₂ C ₂ H ₅
131	CF ₃	CF ₃	$CO_2C_2H_5$
132	CF ₃	CF_3	pyrid-2-yloxy
133	Cl	Cl	2-ethyl-2H-tetrazol-5-yl
134	CF ₃	Cl	2-ethyl-2H-tetrazol-5-yl
135	CF_3	CF ₃	2-ethyl-2H-tetrazol-5-yl
136	OCF ₃	OCF ₃	2-ethyl-2H-tetrazol-5-yl

Compounds of formula I where A is C, forming a piperidine ring; p, q, and r are 0; m and s are 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; E is $-(CR^{27}R^{28})_x-(CR^{29}R^{30})_y$, where x is 1, and y is 0; B is a bridging group from the methyl carbon to R; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; where R², R³, R⁵, R⁶, R¹⁷, R¹⁸, R²⁰, R²¹, R²², R²³R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen;

$$R^{25}$$
 R^{26}
 R^{26}
 R^{22}
 R^{6}
 R^{22}
 R^{6}
 R^{2}
 R^{2}

Cmpd. No.	R ⁴	В	R ¹⁵	R ¹⁹	R ²⁴
137	OCF ₃	0		OCF ₃	2-ethyl-2H-tetrazol-5-
138	CF ₃	CH₂		CF ₃	yl OC₃H ₇
139	CF ₃	CH ₂ O		CF ₃	NHCO ₂ C ₂ H ₅
140	CF_3	OCH_2		CF_3	CH=NOC ₂ H ₅
141	CF ₃	OCH ₂ CH ₂ O		CF ₃	OC ₃ H ₇
142	Cl	$OC(=0)NR^{15}$	H	Cl	pyrid-2-yloxy
143	CF_3	OC(=0)NR ¹⁵	H	Cl	pyrid-2-yloxy

 Cmpd. No.	R ⁴	В	R ¹⁵	R ¹⁹	R ²⁴
144 145	OCF ₃ CF ₃	OC(=O)NR ¹⁵ OC(=O)NR ¹⁵	H	CF ₃ CF ₃	pyrid-2-yloxy 2-ethyl-2H-tetrazol-
146	CF ₃	NR ¹⁵ SO ₂	н	CF ₃	5-yl pyrid-2-yloxy

Compounds of formula I where A is C, forming a 1,4-dihydropyridine ring; p, q, and r are 0; m and s are 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the pyridine ring; E is - $(CR^{27}R^{28})_x$ - $(CR^{29}R^{30})_y$ -, where x is 1, and y is 0; B is a bridging group from the methyl carbon to R; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; where R², R³, R⁵, R⁶, R¹⁷, R¹⁸, R²⁰, R²¹, R²², R²³, R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen;

10

5

$$R^{25}$$
 R^{24}
 R^{25}
 R^{26}
 R^{22}
 R^{6}
 R^{22}
 R^{6}
 R^{20}
 R^{17}
 R^{18}
 R^{19}
 R^{18}

Cmpd. No.	R ⁴	В	R ¹⁵	R ¹⁹	R ²⁴
147	CF ₃	0		CF ₃	pyrid-2-yloxy
148	CF ₃	CH_2		CF_3	OC ₃ H ₇
149	CF ₃	CH_2		CF ₃	CO ₂ C ₂ H ₅
150	Cl	CH_2		Cl	NHCO ₂ C ₂ H ₅
151	OCF₃	CH ₂		CF ₃	NHCO ₂ C ₂ H ₅
152	OCF ₃	CH ₂		OCF_3	NHCO ₂ C ₂ H ₅
153	CF ₃	CH ₂ O		CF ₃	NHCO ₂ C ₂ H ₅
154	CF ₃	$OC(=O)NR^{15}$	H	CF₃	2-ethyl-2H-tetrazol-5

15

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and

r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; E is $(CR^{27}R^{28})_{x}$ - $(CR^{29}R^{30})_{y}$ -, where x is 1, and y is 0; R^{8} is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; and R is phenyl substituted with R^{17} , R^{18} , R^{19} , R^{20} , and R^{21} ; where R^{1} , R^{2} , R^{3} , R^{5} , R^{6} , R^{22} , R^{23} , R^{25} , R^{26} , R^{27} , and R^{28} are hydrogen:

$$R^{19}$$
 R^{18}
 R^{19}
 R^{18}
 R^{18}
 R^{19}
 R^{19}
 R^{20}
 R^{21}
 R^{22}
 R^{23}
 R^{24}
 R^{25}
 R^{24}
 R^{25}
 R^{24}
 R^{25}
 R^{25}

Cmpd. No.	R4	R ²⁴	R ¹⁷ / R ¹⁸	R ¹⁹	R ²⁰ / R ²¹	В	R ¹⁵ /R ¹⁶
155	OCF3	0C ₃ H ₇	Ħ	ū	H	0	1
156	Ą.	CO ₂ C ₂ H ₅	ц	೮	피 I 티 :	0	: 1
157	ਉਂ	NHCO ₂ C,H ₅	##;	ರ	田田:	0	1 1
158	Ŗ	CH=NOC ₂ H ₅	耳口:	5	五田 :	0	1 1
159	R.	pyrid-2-yloxy	ц ш ;	ರ	## ;	0	1 1
160	Ą	CO ₂ C ₂ H ₅	п п	ŭ		S	1 1
161	Ŗ,	2-ethyl-2H-tetrazol-5-yl	I II :	ŭ	##:	SO ₂	111
162	Ą.	2-ethyl-2H-tetrazol-5-yl	ı II I	Ü		SO ₂ NR ¹⁵	l III
163	CF3	pyrid-2-yloxy	п п :	ರ	ΗЩ	NR ¹⁵ SO ₂	ıш
164	G,	2-ethyl-2H-tetrazol-5-yl	ᄪᄪ	೮	щщι	NR ¹⁵ NHSO ₂	ıΉ
165	ಕ್ಟ	CH=NOC,H5	피 표 :	ប	4 年 3	OC,H4O	1 1
. 166	ಕ್ಟ	OC ₃ H ₇	耳田田	D.	ццц	04	1 1 1
167	Ą.	CH=NOC2H5	нн	Ö	н		1 1

Cmpd. No.	R ⁴	R ²⁴	R ¹⁷ / R ¹⁸	R ¹⁹	$ m R^{20}/ m R^{21}$	В	R ¹⁵ /R ¹⁶
168	Ą	OC_3H_7	щщ	Ü	нн	Ż	1 1
169	Ą.	CH=NOC2H5	μщ	ប	н		1 1
170	Ŗ	OC,H ₅	ΗН	ប	ш	OC(=0)NR ¹⁵	СЩ
171	OCF3	0С,Н,	ᄪᄪ	ū	4 # \$	OC(=0)NR ¹⁵	- FE
172	£,	ОС∕Н4ОСН₃	ᄪᄩ	Ū	4 E E	OC(=0)NR ¹⁵	- E
173	Ŗ	CO ₂ C ₂ H ₅	4 E P	ō	ц ш р	OC(=0)NR ¹⁵	- "
174	OCF3	CO ₂ CH(CH ₃) ₂	ц н :	ט		OC(=0)NR ¹⁵	· Е
175	ਉਂ	NHCO ₂ C ₂ H ₅	4 # #	ŭ		$OC(=O)NR^{15}$	· Æ
176	OCF ₃	NHCO ₂ CH(CH ₃) ₂	ц н :	ŭ		OC(=0)NR ¹⁵	-CH3
177	Ŗ	NHCO2CH2CH=CH2		ט	d ## 1	OC(=0)NR ¹⁵	· 변
178	OCF3	NHCO2CH2C=CH	п н н	ŭ	- # :	OC(=0)NR ¹⁵	- H5
179	Ą.	NHCO2C2H4OCH3	ц щ :	Ü	4 # ;	OC(=0)NR ¹⁵	- E
180	Ą	OC(=0)NHCH(CH ₃) ₂	цщр	ប	d EE 6	OC(=0)NR ¹⁵	- Æ
181	OCF3	4-fluorophenylamino-carbonyloxy	ц щ :	ഥ	4	OC(=0)NR ¹⁵	ΙĦ
182	GF3	CH=NOC,H5	цщ	ប៊	пп	OC(=0)NR ¹⁵	H

	R ²⁴	R ¹⁷ / R ¹⁸	R ¹⁹	R ²⁰ / R ²¹	В	R ¹⁵ /R ¹⁶
CH=NOC ₂ H ₅		нн	Br	шш	OC(=0)NR ¹⁵	ıΉ
CH=NOCH3		-	H	다 (대)	OC(=0)NR ¹⁵	ı H
CH=NOC2H5		т Ш (Н	피 퍼 !	OC(=0)NR ¹⁵	ιШ
CH=NOCH3		4 H F	Щ	цц	OC(=0)NR ¹⁵	1 12
CH=NOC2H5		ч ш :	Щ	ᄪᄪ	OC(=0)NR ¹⁵	ı H
CH=NOC2H5		# T 6	н	ᄪᄪ	OC(=0)NR ¹⁵	н
CH=NOC2H5		J ⊭ €	Ü	цщ	OC(=0)NR ¹⁵	H
CH=NOC2H5		J 0 :	Ü	##:	OC(=0)NR ¹⁵	I III
CH=NOC2H5		# 17 F	н	≖ ᡦ :	OC(=0)NR ¹⁵	IЩ
CH=NOC2H5		# T #	ō	# ᡦ :	OC(=0)NR ¹⁵	ıЩ
CH=NOC2H3		ር ተ ክ	ſĽţ	u ## #	OC(=0)NR ¹⁵	ΙЩ
CH=NOCH3			ΙĽ	-	OC(=0)NR ¹⁵	ıΉ
CH=NOC2H5		4 H F	ជ	d m :	OC(=0)NR ¹⁵	1 123
CH=NOC,H5		чщр	т .	ц ш ;	OC(=0)NR ¹⁵	IЩ
CH=NOCH(CH ₃) ₂	2	чн	ᅜ	ᄪᄪ	OC(=0)NR ¹⁵	ΙЩ

Cmpd. No.	\mathbb{R}^4		R ²⁴	R ¹⁷ / R ¹⁸	R ¹⁹	R ²⁰ /R ²¹	В	R ¹⁵ /R ¹⁶
				Ľ		н	ž	ł i
198	Ą.	CH=NOC2H3		፲4 ដ	ш	ᅜᄇ	OC(=0)NR ¹²	Η 1
199	굕	CH=NOC2H5		로 뜨 :	н	: ## #	OC(=0)NR ¹⁵	Ħ I
200	Ŗ.	CH=NOC2H5		d EE 4	H	, E. J	OC(=0)NR ¹⁵	Ħ 1
201	G_3	CH=NOC2H5			Ħ	1 H H	OC(=0)NR ¹⁵	Ħ I
202	Ą	CH=NOC2H5		i Et E	щ	E. E.	OC(=0)NR ¹⁵	ĦI
203	Ą.	CH=NOC2H5		£	н	шш	OC(=0)NR ¹⁵	Щι
204	CF3	CH=NOC2H5		3 m	н	Ήπ	OC(=0)NR ¹⁵	щι
205	Ą	CH=NOC,H5		у ш ш	Д ,	шш	OC(=0)NR ¹⁵	щι
206	Ą	CH=NOC,H5	,	: £ =	ō	шш	OC(=0)NR ¹⁵	Ηι
207	Ŗ	CH=NOC2H5		i III E	ū	шш	OC(=0)NR ¹⁵	ш :
208	Ŗ	CH=NOC,H5		្ចិម្ <mark>ច</mark>	Br	шш	OC(=0)NR ¹⁵	щ ;
209	A.	CH=NOC,H5		нш	осн	шш	OC(=O)NR ¹⁵	н
210	Ą	CH=NOC2H5		OCH, H	ОСН3	I D H	OC(=0)NR ¹⁵	E I
211	Ą.	CH=NOC2H5		н ш	OCF ₃	нн	OC(=0)NR ¹⁵	щι
212	Ŗ,	CH=NOC,H5		1 Ш	phenyl	H	OC(=0)NR ¹⁵	н

Cmpd. No.	₩.	R ²⁴	R ¹⁷ /R ¹⁸	R ¹⁹	R ²⁰ / R ²¹	В	R ¹⁵ / R ¹⁶
213	£	CH=NOC,H,	нн	phenoxv	Ηн	OC(=0)NR ¹⁵	 #
214	, Ę	H.CON=H.C	HOHUHU-	þ			
215	ĵ E	Olarmid 2 nd	 	‡ ₹	:	OC(0)1418	4 1 3
21.5	<u> </u>	4-C.pyi.u-2-yi	4 14 1	J i	# # :	OC(=0)NK"	I
017	ا ر	2-Cipy(10-2-y)	цЩ	5	ΗН	OC(=0)NK"	#
217	뜐	6-Cipyrid-2-yl	H H	ರ	шш	OC(=0)NR ¹⁵	ΗΙ
218	క్ట్	5-CH ₃ Opyrid-2-yl	шш	Ö		OC(=0)NR ¹⁵	н
219	Ę,	5-CF ₃ pyrid-2-yl	шш	ರ	ш	OC(=0)NR ¹⁵	H
220	9	2-(C ₃ H ₇ O)pyrid-5-yl	нн	Ü	ашп	OC(=0)NR ¹⁵	I III I
221	Br	pyrid-2-yloxy	нн	Ū	: III II	OC(=0)NR ¹⁵	н н
222	ㄸ	pyrid-2-yloxy	нн	ប	нн	OC(=0)NR ¹⁵	ш
223	NO_2	pyrid-2-yloxy	нн	ប ,	HH	OC(=0)NR ¹⁵	CH ₃
224	SF_5	pyrid-2-yloxy	т н	ប	н	OC(=O)NR ¹⁵	H H
225	OPh	pyrid-2-yloxy	: स स	ਹ	нн	OC(=0)NR ¹⁵	GH.
226	OCF ₂ H	pyrid-2-yloxy	нн	บ	НН	.OC(=0)NR ¹⁵	H
227	Ą.	pyrid-2-yloxy	IЩ	ប	Ħ	OC(=0)NR ¹⁵	Н

Cmpd. No.	R4		R ²⁴	R ¹⁷ / R ¹⁸	R ¹⁹	R ²⁰ / R ²¹	В	R15/R16
				н		Ħ		ı
228	CF ₃	pyrid-2-yloxy		ם :	н	H	OC(=0)NR ¹⁵	H
ļ				ぴ		Ħ,	1	ŀ
229	f F	pyrid-2-yloxy		D 1	೮	Ħ I	OC(=O)NR ¹⁵	Ħ
230	£	ranio 2 viora		♂ □	ξ	H 1	Slaw O-YOU	
00	รี	py114-2-y10Ay		= ರ	J	# ##	Vr(0-)70	۹ ۱
231	£.	pyrid-2-yloxy		ぴ	Н	ロ	OC(=O)NR ¹⁵	н
				н		Н		ł
232	පි	pyrid-2-yloxy		田で	н	ʊ ¤	OC(=O)NR ¹⁵	н
233	Ą.	pyrid-2-yloxy		ಶ ರ	Ħ	ш	OC(=O)NR ¹⁵	! Щ
				н		Ū		:
234	Ę,	pyrid-2-yloxy		ぴ	Ü	ರ	OC(=O)NR ¹⁵	Н
(Н		Ħ	:	ì
235	OCF ₃	pyrid-2-yloxy		щи	Н	# 1	OC(=0)NR ¹⁵	Н
236	OCF ₃	pyrid-2-yloxy		H	ſĽ	Ħ	OC(=0)NR ¹⁵	н
				H		H		ŀ
237	£,	pyrid-2-yloxy		Ħ ¤	ſĽ	шь	OC(=0)NR ¹⁵	Н
238	OCF ₃	pyrid-2-yloxy		H	ㄸ	н	OC(=0)NR ¹⁵	Н
				ŗ.		H		1
239	පි	pyrid-2-yloxy		ᄄ	Н	Щ ;	OC(=0)NR ¹⁵	Ħ
	ļ	- :		H		щ	:	:
240	F	pyrid-2-yloxy		# 14	Н	ŭ, þ	OC(=0)NR ¹³	エ
241	£	pvrid-2-vloxv		i II.	н	c po	OC/=ONR ¹⁵	ĻŒ
	•			Ħ	1	ഥ		: 1
242	CF3	pyrid-2-yloxy		щ	ᄄ	н	OC(=0)NR ¹⁵	Ħ

t,

Cmpd. No. R ⁴		R ²⁴	R ¹⁷ /R ¹⁸	R ¹⁹	R ²⁰ /R ²¹	В	R ¹⁵ /R ¹⁶
(40)	CF ₃ pyrid-2-yloxy		ㅜ 1ㅜ 1	[L	# # 1	OC(=0)NR ¹⁵	ıμ
-5"	CF ₃ pyrid-2-yloxy		4 بد إ	н	ı II :	OC(=0)NR ¹⁵	1 🖽
£.	s pyrid-2-yloxy		5° = :	£,	4 # 1	OC(=0)NR ¹⁵	1 🖽
بنا	OCF ₃ pyrid-2-yloxy		4 124 1 2	G,	= = :	OC(=0)NR ¹⁵	H
CF_3	pyrid-2-yloxy		= == {	ŭ	π	OC(=0)NR ¹⁵	ΙЩ
\mathcal{R}	pyrid-2-yloxy		£ # €	Н	≖ ዚ፝ :	OC(=0)NR ¹⁵	IΉ
CF3	pyrid-2-yloxy		, = =	OCF.	ц μ;	OC(=0)NR ¹⁵	IΗ
CF_3	pyrid-2-yloxy		4 54 5	phenyl	##:	OC(=0)NR ¹⁵	Н
G_{3}	pyrid-2-yloxy		с ш	henoxy	프 프 :	OC(=0)NR ¹⁵	ıщ
CR_3	pyrimidin-2-yl		4 124 1	ū	= = :	OC(=0)NR ¹⁵	н
G.	5-chloropyrimidin-2-	-2-yl	ᄪᄪ	ਹ	щщ	OC(=0)NR ¹⁵	ιш
$\mathcal{G}_{\mathbf{r}}$	5-methoxy-pyrimidin	din-2-yl	# # ;	ប	д ш ;	OC(=O)NR ¹⁵	ıЖ
$G_{\!\!\!H}$	thien-3-yl		4 12 	Ü	프 6 2 1	OC(=O)NR ¹⁵	ıπ
C_{F_3}	1-methylpyrol-3-yl	3-yl	ᄪ ᄪ :	ū	###	OC(=0)NR ¹⁵	ıπ
CF_3	5-methyl-1,3-oxazol-2-y	ol-2-yl	н н	ū	щщ	OC(=O)NR ¹⁵	H

Стра. No.	R⁴	R ²⁴	R ¹⁷ /R ¹⁸	R ¹⁹	R ²⁰ /R ²¹	В	R ¹⁵ /R ¹⁶
	i		н		Н		1
	Ą	4-methoxy-1,2,5-thiadia-zol-3-yl	шр	ŭ	н:	OC(=O)NR ¹⁵	Ħ
	CF3	8-methoxy-1,2,3,4-tetra-hydronaphthalen-5-yl	а н :	ರ	프 (프)	OC(=0)NR ¹⁵	ıш
	CF3	2H-tetrazol-5-yl	ц н :	ಠ	# ##	OC(=O)NR ¹⁵	H
	OCF3	2-ethyl-2H-tetrazol-5-yl	n in i	н	ΗН	OC(=O)NR ¹⁵	ΙЩ
262	OCF3	2-methyl-2H-tetrazol-5-yl	# 0 #	н	ЩΗΙ	OC(=0)NR ¹⁵	ι #
263	OCF3	2-methyl-2H-tetrazol-5-yl	二 元 ;	Н	ΗЩ	OC(=0)NR ¹⁵	I ##
264	ಠ	2-methyl-2H-tetrazol-5-yl	ರ ⊭ :	ŭ	ΗН	OC(=0)NR ¹⁵	I ##
	Ą.	2-ethyl-2H-tetrazol-5-yl	c ic :	0	##:	OC(=0)NR ¹⁵	н
	OCF3	2-methyl-2H-tetrazol-5-yl	r m :	ប	田田	OC(=0)NR ¹⁵	ιщ
-	OCF3	2-ethyl-2H-tetrazol-5-yl	## :	បី	耳耳	OC(=0)NR ¹⁵	H
	Ŗ.	2-ethyl-2H-tetrazol-5-yl	ц щ ,	н	нн	OC(=0)NR ¹⁵	н
	GF ₃	2-ethyl-2H-tetrazol-5-yl	H:	Br	ΗН	OC(=0)NR ¹⁵	ı ¤
-	OCF3	2-ethyl-2H-tetrazol-5-yl	ц ш :	Br	ΗН	OC(=0)NR ¹⁵	ΙĦ
J	OCF3	2-ethyl-2H-tetrazol-5-yl	4 111 :	⊢	шш	OC(=0)NR ¹⁵	ΙЩ
_	OCF3	2-methyl-2H-tetrazol-5-yl	ᄑᄪ	н	шш	OC(=0)NR ¹⁵	H

R⁴	R ²⁴	R ¹⁷ /R ¹⁸	R ¹⁹	R ²⁰ /R ²¹	В	R ¹⁵ /R ¹⁶
2-m	2-methyl-2H-tetrazol-5-yl	ΗНΙ	н	н	OC(=0)NR ¹⁵	H
2-1	2-methyl-2H-tetrazol-5-yl	ч ш ;	щ	щщ	OC(=0)NR ¹⁵	ιш
5	2-methyl-2H-tetrazol-5-yl	ц μ ;	ഥ	耳耳	OC(=0)NR ¹⁵	ıπ
6	2-methyl-2H-tetrazol-5-yl	ч н :	뚀	耳耳:	OC(=0)NR ¹⁵	ıμ
6	2-ethyl-2H-tetrazol-5-yl	ш ш :	Ħ	шш;	OC(=O)NR ¹⁵	ıж
C	2-methyl-2H-tetrazol-5-yl	ц ш ;	Ľ 4	# #	OC(=O)NR ¹⁵	ıπ
(4	2-methyl-2H-tetrazol-5-yl	# 0 t	н	ΗН	OC(=0)NR ¹⁵	ı⊞
• • •	2-ethyl-2H-tetrazol-5-yl	ָ ס פ	ฮ	프 # :	OC(=0)NR ¹⁵	H
• • •	2-ethyl-2H-tetrazol-5-yl	# T :	Н	# 5 :	OC(=0)NR ¹⁵	ΙЩ
• •	2-ethyl-2H-tetrazol-5-yl	= 0 :	Н	пп	OC(=0)NR ¹⁵	! #
- '	2-ethyl-2H-tetrazol-5-yl	## (Ü	IJ¤!	OC(=0)NR ¹⁵	ıΉ
	2-ethyl-2H-tetrazol-5-yl	j # C	н	포 당 :	OC(=0)NR ¹⁵	ΙĦ
- •	2-ethyl-2H-tetrazol-5-yl	J # :	CH³	· ¤ #	OC(=0)NR ¹⁵	l Ħ
• • •	2-ethyl-2H-tetrazol-5-yl	ц ш ;	CH(CH ₃) ₂	프 토 :	OC(=0)NR ¹⁵	1 12
• •	2-ethyl-2H-tetrazol-5-yl	цш	CH,	耳耳	OC(=0)NR ¹⁵	- H

Cmpd. No.	\mathbb{R}^4	R ²⁴	R ¹⁷ / R ¹⁸	R ¹⁹	R ²⁰ / R ²¹	В	R ¹⁵ /R ¹⁶
			ш		ш		!
288	Ą.	2-ethyl-2H-tetrazol-5-yl	· # 8	Н	щ	OC(=0)NR ¹⁵	Н
289	CF ₃	2-ethyl-2H-tetrazol-5-yl	ž ¤ ¤	CF3	цщр	OC(=0)NR ¹⁵	I. #
290	OCF3	2-methyl-2H-tetrazol-5-yl	чыр	G,		OC(=0)NR ¹⁵	н
291	OCE	2-ethyl-2H-tetrazol-5-yl	ц ш р	G,	4 14 1	OC(=0)NR ¹⁵	ΙЩ
292	CF3	2-ethyl-2H-tetrazol-5-yl	п н ғ	ū	4 124 12	OC(=0)NR ¹⁵	I III
293	Ę,	2-ethyl-2H-tetrazol-5-yl	Z = E	Н	a A.	OC(=0)NR ¹⁵	H
294	OCF3	2-methyl-2H-tetrazol-5-yl	ўн F	OCF ₃		OC(=0)NR ¹⁵	Η
295	OCF3	2-ethyl-2H-tetrazol-5-yl	日田日	OCF3	C III 1	OC(=O)NR ¹⁵	Н
296	OCF3	2-ethyl-2H-tetrazol-5-yl	4 H H	NO_2		$OC(=O)NR^{15}$	1 ш
297	Ą	2-ethyl-2H-tetrazol-5-yl		phenyl	c ## 6	OC(=0)NR ¹⁵	IЩ
298	Ę,	2-ethyl-2H-tetrazol-5-yl		phenoxy		$OC(=O)NR^{15}$	IΗ
299	Ę,	2-ethyl-2H-tetrazol-5-yl	古姓口	Ü		OC(=O)NR ¹⁵ CH ₂	I H
300	සි	2-methyl-2H-tetrazol-5-yl	i bu p	Ö		CH ₂ C(=0)NR ¹⁵	н
301	£.	2-methyl-2H-tetrazol-5-yl	п п	ū	4 12 1	OCH2C(=0)NR ¹⁵	I #
302	OCF3	2-ethyl-2H-tetrazol-5-yl	T III	G.	пщ	OC(=S)NR ¹⁵	н

R ¹⁵ /R ¹⁶	!	ı !	!!	, ,	, ,	, ,		1 H		. н		, ,			. —	
R ¹⁵		•	•	•			1 1	1 14	1 E	1 14	1 111		i itti	1 222	IÆ,	1 122
В	ξ	CE ₂	OCH2	0 CH $_2$	OCH2	OC(=0)	0C(=0)	NR ¹⁵ CH ₂	NR ¹⁵ CH ₂	NR ¹⁵ CH ₂	NR ¹⁵ CH ₂	NR ¹⁵ CH ₂	NR 15 CH2	NR ¹⁵ CH ₂	NR ¹⁵ CH2	NR ¹⁵ CH ₂
R ²⁰ / R ²¹	нь	d	i # :	= =	##!	д ш :	耳田:	# #	二 	##:	프 ## :	# #;	цш:	##	щμι	нн
R ¹⁹	٤	3	CF3	OCF3	2-methyl-2H-tetrazol-5-yl	CF,	OCF	H	н	IJ	Br	Н	н	ቪ	I	СН3
R ¹⁷ / R ¹⁸	щ	ci be	: H	ш ш :	# # ;			≖ ਹ :	# # 6	IJ#:	4 12 13	I II		ч ш ;	ч ш :	##
R ²⁴	CO-C-H.	CO202115	2-ethyl-2H-tetrazol-5-yl	2-ethyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-ethyl-2H-tetrazol-5-yi	2-ethyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl
R4	Ę	ij	OCF ₃	OCF3	OCF ₃	OCF3	OCF3	OCF ₃	OCF3	OCF ₃	OCF3	OCF3	OCF3	OCF3	OCF3	OCF3
Cmpd. No.	303		304	305	306	307	308	309	310	311	312	313	314	315	316	317

Cmpd. No.	R⁴	R ²⁴	R ¹⁷ /R ¹⁸	R ¹⁹	R ²⁰ /R ²¹	В	R ¹⁵ /R ¹⁶
			н		н		a
318	OCF3	2-methyl-2H-tetrazol-5-yl	шр	OCH,	щ: '	NR ¹⁵ CH ₂	Н
319	OCF3	2-methyl-2H-tetrazol-5-yl	: # :	OCF ₃	c # ;	NR ¹⁵ CH ₂	н
320	OCF ₃	2-methyl-2H-tetrazol-5-yl	ц ш :	NO2	표 표 :	NR ¹⁵ CH ₂	ıн
321	OCF3	2-methyl-2H-tetrazol-5-yl	цц	Н	##	NR ¹⁵ C(=0)	IĦ
322	OCF3	2-methyl-2H-tetrazol-5-yl	≖ ℧ :	Н	ш ш :	NR ¹⁵ C(=0)	н
323	OCF3	2-methyl-2H-tetrazol-5-yl	ᄪ	н	цщ	NR ¹⁵ C(=0)	ıĦ
324	OCF3	2-methyl-2H-tetrazol-5-yl	J # :	Ö	шш	NR ¹⁵ C(=0)	- Н
325	OCF ₃	2-methyl-2H-tetrazol-5-yl	п п;	Br	щщ¦	NR ¹⁵ C(=0)	ΙΉ
326	OCF3	2-methyl-2H-tetrazol-5-yl	I; [L. ;	щ	щщ	NR ¹⁵ C(=0)	H
327	OCF3	2-methyl-2H-tetrazol-5-yl	# # 1	щ	шш	NR ¹⁵ C(=0)	H
328	OCF3	2-methyl-2H-tetrazol-5-yl	ᄔᄪ	讧	표 표 :	NR ¹⁵ C(=0)	ΙĦ
329	OCF3	2-methyl-2H-tetrazol-5-yl	ч н :	I	шш	NR ¹⁵ C(=0)	- н
330	OCF3	2-methyl-2H-tetrazol-5-yl	T III :	CH ₃	耳耳:	NR ¹⁵ C(=0)	ΙH
331	OCF ₃	2-methyl-2H-tetrazol-5-yl	ч ш ;	OCH;	耳 耳	NR ¹⁵ C(=0)	ΙН
332	OCF ₃	2-methyl-2H-tetrazol-5-yl	щщ	OCF ₃	##	NR ¹⁵ C(=0)	ΙН

R15/R16	ΙÞ	1 !	راه H	¹⁶ Н		λ ¹⁶ Η Η				,		у ₁₆ н н	,	, –, –		H
В	NP ¹⁵ C/-O	(O-)> VNI	NR ¹⁵ C(=0)NR ¹⁶	$ m NR^{15}C(=0)NR^{16}$	NR ¹⁵ C(=0)NR ¹⁶	$NR^{15}C(=0)0$										
R ²⁰ / R ²¹	нп			щн	# ## ##	ш	шп	ш	ш	шш	шш	шш		шш	шш	‡ #
R ¹⁹	Ç	INO2	Ħ	н	ַ	Br	H	н	ជ	H	СН	OCH ₃	R.	OCF ₃	NO_2	Ħ
R ¹⁷ /R ¹⁸	щ	ць	: ʊ ¤	1 H C	J ## ##	: m :	i 44 p	а ш ш	, pr p	i pu p	1 111 111	: III II	: ¤ ¤	1 121 12	: E	= 5
R ²⁴		2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	2-methyl-2H-tetrazol-5-yl	Company of total 5 wil
R⁴	Ę	OCF3	OCF3	OCF3	OCF_3	OCF3	OCF3	OCF3	OCF3	OCF3	OCF3	OCF3	OCF3	OCF3	OCF3	Ę
Cmpd. No.		333	334	335	336	337	338	339	340	341	342	343	344	345	346	17.0

Cmpd. No.	₽₩.	R ²⁴	R ¹⁷ /R ¹⁸	R ¹⁹	R ²⁰ / R ²¹	В	R ¹⁵ /R ¹⁶
			ш		Н		1
348	OCF ₃	2-methyl-2H-tetrazol-5-yl	Ħ	Н	H	NR ¹⁵ C(=0)0	H
			ರ		H	,	ł
349	OCF3	2-methyl-2H-tetrazol-5-yl	H	ರ	Ħ	$NR^{15}C(=0)O$	Н
050	ξ	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	щ	f	н:	, m 150, 00, 00	1 }
occ	<u>ٿ</u>	z-memyi-zh-terrazoi-ɔ-yi	4 :	БГ	¤ :	NK-C(=0)0	Ħ
251	ב כ	3 [c-c-t-] OII total	Ę F	ŧ	# ‡	mlfor one	1 =
100	<u></u>	z-meniyi-zn-tenazoi-J-yi	4 þ	Ц	#	NK_C(=0)0	I;
Cic	Ę		- :		⊏ ;	16.00	1 ;
700	Į Š	2-methyl-2H-tetrazol-5-yl	II f	I	= ;	NR"C(=0)0	Ħ
1			ц		ヸ	•	:
353	OCF3	2-methyl-2H-tetrazol-5-yl	Ħ;	ក	Ħ	NR'2C(=0)0	н
			Ħ		Ħ	,	1
354	OCF3	2-methyl-2H-tetrazol-5-yl	# :	П	Ħ	NR ¹⁵ C(=0)0	H
			щ		Н		1
355	OCF3	2-methyl-2H-tetrazol-5-yl	E	Œ,	н	NR ¹⁵ C(=0)0	H
			щ		H	•	ł
356	OCF.	2-methyl-2H-tetrazol-5-yl	Н	OCH ₃	Ħ	$NR^{15}C(=0)0$	Н
			н		H	:	:
357	OCF3	2-methyl-2H-tetrazol-5-yl	Ħ i	OCF_3	田	NR ¹⁵ C(=0)0	H
1			щ		Н	;	1
358	OCF3	2-methyl-2H-tetrazol-5-yl	H	NO ₂	ж	NR 15C(=0)0	н
					Ħ		ł

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R, where B is OC(=0)NR¹⁵; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; and R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; where R², R³, R⁵, R⁶, R¹⁵, R¹⁷, R¹⁸, R²⁰, R²¹, R²², R²³, R²⁵, R²⁶ R²⁷, and R²⁸ are hydrogen:

10

$$R^{19}$$
 R^{18}
 R^{10}
 R

Cmpd.	Ť			
No.	R ¹	R ⁴	\mathbb{R}^{19}	R ²⁴
359	CH_3	CF ₃	H	CH=NOC ₂ H ₅
360	CH_3	CF ₃	Cl	CH=NOC ₂ H ₅
361	CH₃	OCF ₃	Cl	CH=NOC ₂ H ₅
362	$CH(CH_3)_2$	CF ₃	H	CH=NOC ₂ H ₅
363	$CH(CH_3)_2$	CF ₃	Cl	CH=NOC ₂ H ₅
364	$CH(CH_3)_2$	OCF ₃	Cl	CH=NOC ₂ H ₅
365	CH_2OCH_3	CF ₃	H	CH=NOC ₂ H ₅
366	CH_2OCH_3	CF ₃	Cl	CH=NOC ₂ H ₅
367	CH_2OCH_3	OCF ₃	Cl	CH=NOC ₂ H ₅
368	phenyl	CF_3	H	CH=NOC ₂ H ₅
369	phenyl	CF_3	Cl	CH=NOC ₂ H ₅
370	phenyl	OCF_3	Cl	CH=NOC ₂ H ₅
371	CH_3	CF_3	H	pyrid-2-yloxy
372	ĆH₃	CF_3	Cl	pyrid-2-yloxy
373	CH ₃	OCF_3	Cl	pyrid-2-yloxy
374	$CH(CH_3)_2$	CF_3	H	pyrid-2-yloxy
375	$CH(CH_3)_2$	CF_3	CI	pyrid-2-yloxy
376	$CH(CH_3)_2$	OCF ₃	Cl	pyrid-2-yloxy
377	CH ₂ OCH ₃	CF ₃	H	pyrid-2-yloxy
378	CH ₂ OCH ₃	CF ₃	Cl	pyrid-2-yloxy
379	CH₂OCH₃	OCF_3	CI	pyrid-2-yloxy
380	phenyl	CF_3	H	pyrid-2-yloxy
381	phenyl	CF ₃	Cl	pyrid-2-yloxy
382	phenyl	OCF ₃	Cl	pyrid-2-yloxy

No.	R ¹	R ⁴	R ¹⁹	R ²⁴
383	СН₃	CF ₃	Н	2-ethyl-2H-tetrazol-5-y
384	CH ₃	CF ₃	Ĉĺ	2-ethyl-2H-tetrazol-5-y
385	CH₃	OCF_3	Cl	2-ethyl-2H-tetrazol-5-y
386	CH(CH ₃) ₂	CF ₃	H	2-ethyl-2H-tetrazol-5-y
387	CH(CH ₃) ₂	CF_3	Cl	2-ethyl-2H-tetrazol-5-y
388	CH(CH ₃) ₂	OCF ₃	Cl	2-ethyl-2H-tetrazol-5-y
389	CH ₂ OCH ₃	\mathbb{CF}_3	H	2-ethyl-2H-tetrazol-5-y
390	CH ₂ OCH ₃	CF ₃	C1	2-ethyl-2H-tetrazol-5-y
391	CH ₂ OCH ₃	OCF ₃	CI	2-ethyl-2H-tetrazol-5-y
392	phenyl	\mathbb{CF}_3	Ħ	2-ethyl-2H-tetrazol-5-y
393	phenyl	CF ₃	Cl	2-ethyl-2H-tetrazol-5-y
394	phenyl	OCF₃	Cl	2-ethyl-2H-tetrazol-5-y

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p is 0; q is 0, and r is 1, forming an N-oxide; m, s, and r are 1; B is a bridging group from the methyl carbon to R, where B is OC(=O)NR¹⁵; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y, where x is 1, and y is 0; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; and R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; where R¹, R², R³, R⁵, R⁶, R¹⁵, R²¹, R²², R²³, R²⁵, R²⁶, R²⁷ and R²⁸ are hydrogen:

$$R^{19}$$
 R^{18}
 R^{19}
 R^{18}
 R^{10}
 R^{10}

I

 R^4

	R ⁴	R ¹⁷	R ¹⁸	R ¹⁹	R ²⁰	R ²⁴
395	CF ₃	н	H	Cl	н	pyrid-2-yloxy
396	CF ₃	H	CI	· Cl	H	pyrid-2-yloxy
397	CF ₃	H	F	н	F	pyrid-2-yloxy
398	CF_3	H	H	CF ₃	H	pyrid-2-yloxy
399	OCF ₃	H	H	Cl	H	2-methyl-2H-tetrazol-5-yl
400	OCF ₃	H	H	F	H	2-methyl-2H-tetrazol-5-yl
401	OCF_3	H	H	F	H	2-ethyl-2H-tetrazol-5-yl
402	OCF_3	H	H	CF_3	H	2-methyl-2H-tetrazol-5-yl
403	OCF ₃	H	H	CF ₃	H	2-ethyl-2H-tetrazol-5-yl
404	OCF_3	H	H	OCF ₃	H	2-methyl-2H-tetrazol-5-yl
405	OCF ₃	H	H	OCF ₃	H	2-ethyl-2H-tetrazol-5-yl

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R, where B is O; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; and R is pyrid-2-yl substituted with R¹⁸, R¹⁹, R²⁰, and R²¹; where R², R³, R⁵, R⁶, R¹⁷, R¹⁸, R²¹, R²², R²³, R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen:

$$R^{19}$$
 R^{18}
 R^{20}
 R^{20}
 R^{21}
 R^{2}
 R^{21}
 R^{2}
 R^{21}
 R^{20}
 R^{21}
 R^{20}
 R^{21}
 R^{20}
 R^{21}
 R^{20}
 R^{21}
 R^{20}
 R^{21}
 R^{22}
 R^{23}
 R^{24}
 R^{25}
 R^{25}
 R^{24}

Cmpd. No.	R ¹	R ⁴	R ¹⁹	R ²⁰	R ²⁴
406	H	CF ₃	OCF ₃	Н	OCH(CH ₃) ₂
407	H	CF_3	CF ₃	H	NHCO ₂ CH(CH ₃) ₂
408	H	CF ₃	CF ₃	H	2-methyl-2H-tetrazol-5-yl
409	H	CF_3	CF ₃	H	2-ethyl-2H-tetrazol-5-yl
410	CH ₃	OCF ₃	CF ₃	н ՝	OC ₃ H ₇
411	CH ₃	CF ₃	CF ₃	H	CH=NOC ₂ H ₅
412	CH ₃	CF_3	н	F	2-ethyl-2H-tetrazol-5-yl
413	$CH(CH_3)_2$	CF ₃	Cl	H	CO ₂ C ₂ H ₅

10

15

20

 CH ₂ OCH ₃	CF₃	F	H	pyrid-2-yloxy
nenylmethyl	CF₃	Br	H	OC₃H ₇

Compounds of formula I where A is C, forming a 1,2,5,6-tetrahydropyridyl ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; E is $-(CR^{27}R^{28})_x-(CR^{29}R^{30})_y$ -, where x is 1, and y is 0; R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; and R is phenyl substituted with R^{17} , R^{18} , R^{19} , R^{20} , and R^{21} ; where R^{1} , R^{2} , R^{3} , R^{5} , R^{6} , R^{22} , R^{23} , R^{25} , R^{26} , R^{27} , and R^{28} are hydrogen:

$$R^{19}$$
 R^{18}
 R^{10}
 R

Cmpd.	-4	_ 10		•	
No.	R ⁴	R ¹⁹	B	R ¹⁵	R ²⁴
416 417 418 419 420 421 422 423 424 425 426	CF ₃ CI CF ₃ CCF ₃ CF ₃	CF ₃ CF ₃ CF ₃ CF ₃ CF ₃ CF ₃ CCF ₃ CCF ₃ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	O S CH ₂ CH ₂ O OCH ₂ O OC(=0)NR ¹⁵ OC(=0)NR ¹⁵ OC(=0)NR ¹⁵ OC(=0)NR ¹⁵ NR ¹⁵ SO ₂	 H H H	pyrid-2-yloxy CO ₂ C ₂ H ₅ OC ₃ H ₇ NHCO ₂ C ₂ H ₅ CH=NOC ₂ H ₅ OC ₃ H ₇ pyrid-2-yloxy pyrid-2-yloxy pyrid-2-yloxy 2-ethyl-2H-tetrazol-5-yl
424 425	CF ₃ OCF ₃ CF ₃	Cl CF ₃ CF ₃	OC(=O)NR ¹⁵ OC(=O)NR ¹⁵ OC(=O)NR ¹⁵	H H H	

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; E is $(CR^{27}R^{28})_x$ - $(CR^{29}R^{30})_y$ -, where x is 1, and y is 0; and R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; where R^2 , R^3 , R^5 , R^6 , R^{22} , R^{23} , R^{25} , R^{26} R^{27} , and R^{28} are hydrogen:

$$\begin{array}{c|c}
R^{7}_{q} \\
\hline
P^{7}_{q} \\
\hline
P^{7}_{q} \\
\hline
P^{7}_{q} \\
\hline
P^{22}_{q} \\
R^{23}_{q} \\
R^{23}_{q} \\
R^{24}_{q} \\
R^{25}_{q} \\
R^{24}_{q} \\
R^{25}_{q} \\
R^{24}_{q} \\
R^{25}_{q} \\
R^{25}_{q} \\
R^{25}_{q} \\
R^{26}_{q} \\
R^{27}_{q} \\
R^{28}_{q} \\
R^{29}_{q} \\
R^{29}_{q} \\
R^{29}_{q} \\
R^{21}_{q} \\
R^{21}_{q} \\
R^{22}_{q} \\
R^{24}_{q} \\
R^{25}_{q} \\
R^{25}_{q} \\
R^{25}_{q} \\
R^{26}_{q} \\
R^{26}_{q} \\
R^{26}_{q} \\
R^{27}_{q} \\
R^{28}_{q} \\
R^{29}_{q} \\
R^{2$$

Cmpd. No.	R	R ⁴	В	R ¹⁵	R ²⁴
427	C_3H_7	CF ₃	OC(=O)NR ¹⁵ -	н	pyrid-2-yloxy
428	$CH(CH_3)_2$	Cl	-OC(=O)NR ¹⁵ -	H	pyrid-2-yloxy
429	$CH(CH_3)_2$	CF_3	-OC(=O)NR ¹⁵ -	H	pyrid-2-yloxy
430	$CH(CH_3)_2$	OCF ₃	-OC(=O)NR ¹⁵ -	Н	pyrid-2-yloxy
431	CH ₂ CH=CH ₂	CF ₃	-OC(=O)NR ¹⁵ -	H	pyrid-2-yloxy
432	cyclohexyl	CF ₃	-OC(=O)NR15-	H	pyrid-2-yloxy
433	C_3H_7	OCF_3	-NR ¹⁵ SO ₂ -	H	2-methyl-2H-tetrazol-5-y

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; where R is pyrid-2-yl substituted with R^{18} , R^{19} , R^{20} , and R^{21} ; E is $-(CR^{27}R^{28})_x-(CR^{29}R^{30})_y$ -, where x is 1, and y is 0; and R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; where R^1 , R^2 , R^3 , R^5 , R^6 , R^{18} , R^{21} , R^{22} , R^{23} , R^{25} , R^{26} R^{27} , and R^{28} are hydrogen:

10

$$R^{19}$$
 R^{18}
 R^{20}
 R^{20}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{22}
 R^{23}
 R^{24}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{18}
 R^{18}
 R^{7}_{q}
 R^{22}
 R^{23}
 R^{24}

Cmpd. No.	В	R ⁴	R ¹⁹	R ²⁰	R ²⁴
434	0	OCF ₃	CF ₃	Н	2-methyl-2H-tetrazol-5-yl
435	Ŏ	CF ₃	Cl	H	2-methyl-2H-tetrazol-5-yl
436	OC(=O)NR ¹⁵ *	CF ₃	H	Н	pyrid-2-yloxy
437	0	CF ₃	CF ₃	Н	pyrid-2-yloxy
438	Ο	CF ₃	H	CF_3	pyrid-2-yloxy
439	OC(=O)NR ¹⁵ *	CF ₃	Cl	H	pyrid-2-yloxy
440	Ó	CF ₃	CF ₃	н	6-chloropyridazin-3-yloxy
441	Ο	CF ₃	н	CF_3	6-chloropyridazin-3-yloxy

^{*} R¹⁵ is hydrogen.

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p is 0; m and s are 1; q is 0 and r is 1, forming an N-oxide; B is a bridging group from the methyl carbon to R; where R is pyrid-2-yl substituted with R¹⁸, R¹⁹, R²⁰, and R²¹; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; and R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; where R¹, R², R³, R⁵, R⁶, R¹⁸, R²⁰, R²¹, R²², R²³, R²⁵, R²⁶ R²⁷, and R²⁸ are hydrogen:

$$R^{20}$$
 R^{20}
 R^{20}
 R^{21}
 R^{20}
 R^{21}
 R^{20}
 R

15

20

 Cmpd. No.	В	R ⁴	R ¹⁹	R ²⁴	
442	0	CF ₃	CF₃	pyrid-2-yloxy	

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; where R is pyrid-3-yl substituted with R¹⁷, R¹⁹, R²⁰, and R²¹; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; and R⁸ is phenyl substituted with R²², R²³,

 R^{24} , R^{25} , and R^{26} ; where R^1 , R^2 , R^3 , R^5 , R^6 , R^{21} , R^{22} , R^{23} , R^{25} , R^{26} R^{27} , and R^{28} are hydrogen:

$$R^{19}$$
 R^{20}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{22}
 R^{23}
 R^{24}
 R^{24}
 R^{25}
 R^{24}

1

•

Cmpd. R^4 R^{17} R¹⁹ В R^{20} R^{24} No. 443 O CF₃ Н Н Cl pyrid-2-yloxy 444 CF₃ $OC(=0)NR^{15}$ Н Н Н pyrid-2-yloxy 445 $OC(=O)NR^{15}$ CF₃ H CI H pyrid-2-yloxy 446 $OC(=O)NR^{15}$ CF₃ Н CN H pyrid-2-yloxy 447 $OC(=O)NR^{15}$ CF₃ Cl Н Н pyrid-2-yloxy $OC(=O)NR^{15}$ 448 CF₃ Н CF₃ Н pyrid-2-yloxy

* R¹⁵ is hydrogen.

10

15

5

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; where R is pyrid-4-yl substituted with R¹⁷, R¹⁸, R²⁰, and R²¹; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; and R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; where R¹, R², R³, R⁵, R⁶, R¹⁷, R²¹, R²², R²³, R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen:

$$R^{20}$$
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{22}
 R^{23}
 R^{24}
 R^{25}
 R^{24}
 R^{25}
 R^{24}

Cmpd. No.	В	R ⁴	R ¹⁸	R ²⁰	R ²⁴
449 [*]	О	OCF ₃	Н	H	2-methyl-2H-tetrazol-5-yl
450	OC(=0)NR15 **	CF_3	H	Н	pyrid-2-yloxy
451	$OC(=O)NR^{15}$	CF_3	Cl	Cl	pyrid-2-yloxy

5 *N-oxide of the pyrid-4-yl moiety. ** R¹⁵ is hydrogen.

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; where R is pyridazin-3-yl substituted with R¹⁹, R²⁰, and R²¹; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; and R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; where R¹, R², R³, R⁵, R⁶, R²⁰, R²¹, R²², R²³, R²⁵, R²⁶ R²⁷, and R²⁸ are hydrogen:

$$R^{20}$$
 R^{20}
 R^{20}

Cmpd. No.	В	R ⁴	R ¹⁹	R ²⁴
452	0	CF ₃	Cl	pyrid-2-yloxy
453	Ō	OCF ₃	Cl	2-methyl-2H-tetrazol-5-yl

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; where R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; and R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; where R¹, R², R³, R⁶, R²¹, R²², R²³, R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen:

10

$$R^{19}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{19}
 R^{18}
 R^{18}
 R^{19}
 R^{19}
 R^{21}
 R^{22}
 R^{23}
 R^{24}
 R^{25}
 R^{24}

R ²⁴	CH=NOC,H,	pyrid-2-yloxy	pyrimidin-2-yloxy	NHCO,CH(CH ₃),	H	ם	Ü	ſĽ	Н	НО	НО	NH,	NH,	C,H,	OCH;	OCH,	OC,H,	OC ₃ H,	OC3H,	OC3H,	OC,H,	OC,H,	OC,H,	OC,H,	OC,H,	OC,H,	OC3H,
$ m R^{19} / m R^{20}$	CF,/H	CF,/H	G,/H	NHCO ₂ CH(CH ₃) ₂ / H	F/H	F/H	H/F	H/F	H/F	CI/H	H/F	CI/H	H/F	H/F	F/H	H/F	CI/H	F/H	H/H	CF3/H	H/F	CI/H	F/H	H/H	CF3/H	H/F	CI/H
R ¹⁷ /R ¹⁸	H/H	H/H	H/H	H/H	H/H	H/H	H/F	H/F	H/F	H/H	H/F	H/H	H/F	H/F	H/H	H/F	H/H	H/H	H/CF3	H/H	H/F	H/H	H/H	H/CF_3	H/H	H/F	H/H
R4/R5	CF ₃ /H	CF3/H	OCF ₃ /H	CF_3/H	OCF_3/H	OCF_3/H	OCF_3/H	OCF_3/H	OCF_3/H	CF ₃ /H	CF3/H	CF ₃ /H	CF ₃ /H	CF_3/H	$0CF_3/H$	OCF_3/H	CI/H	CI/H	CI/H	CI/H	CI/H	F/H	F/H·	F/H	F/H	F/H	CI/H
$\mathbb{R}^2/\mathbb{R}^3$	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/CI
R ¹⁵ /R ¹⁶	***	1	1	1	H/	H/	H/	/H	H/	H/	H/	H/	H/-	H/	H/	H/	H/	H/	H/-	H/-	H/	H/-	-/H	H/	H/	H/	H/
В	0	0	0	OCH,	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	$OC(=0)NR^{15}$	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	OC(=0)NR ¹³	OC(=0)NR ¹⁵	OC(=0)NR ¹³							
Cmpd. No.	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480

																									٠					
R ²⁴	OC ₃ H,	0C ₃ H,	ОС3H,	OC3H,	OC,H,	OC,H,	OC3H,	OC ₃ H,	OC ₃ H,	OC ₃ H ₇	OC3H,	$CO_2CH(CH_3)_2$	$CO_2CH(CH_3)_2$	NHC(=0)CH ₃	NHC(=0)CH ₃	$NHC(=0)CH(CH_3)_2$	$NHC(=0)C(CH_3)_3$	NHCO ₂ CH ₃	NHCO ₂ C ₂ H ₅	NHCO ₂ CH(CH ₃) ₂										
R ¹⁹ /R ²⁰	F/H	H/F	H/H	СР3/H	CI/H	F/H	H/F	H/H	CF3/H	CI/H	H/F	CI/H	H/F	CI/H	H/F	H/F	H/F	H/F	H/F	CI/H	H/H	H/F	CI/H	H/H	H/F	CI/H	H/F	CI/H	H/H	H/F
R ¹⁷ /R ¹⁸	н/н	H/F	H/CF_3	H/H	H/H	H/H	H/F	H/CF_3	H/H	H/H	H/F	H/H	H/F	H/H	H/F	H/F	H/F	H/F	H/F	H/H	H/F	H/F	H/H	H/F	H/F	H/H	H/F	H/H	H/F	H/F
R4/R5	CI/H	CI/H	CI/H	CI/H	H/H	H/H	H/H	H/H	H/H	CF3/H	CF_3/H	CF3/H	CF3/H	CF_3/H	CF3/H	CF3/H	CF3/H	CF ₃ /H	CF ₃ /H	CI/H	CI/H	CI/H	F/H	F/H	F/H	CI/H	CI/H	H/Cl	H/CI	H/CI
$\mathbb{R}^2/\mathbb{R}^3$	H/CI	H/CI	H/C	H/CI	H/CF_3	H/CF_3	H/CF3	H/CF_3	H/CF3	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	CI/H	CI/H	H/CI	H/Cl	H/CI
R15/R16	/H	H/	H/	H/	H/	H/	H/	H/-	H/	-/H	H/-	H/-	-/H	H/	H/	/H	H/	H/	/H	/H	-/H	H/	H/	H/	H/-	H/-	H/	H/	H/	H/
Ф	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵
Cmpd. No.	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	200	501	205	503	504	505	206	507	208	509	510

R ²⁴	NHCO ₂ CH(CH ₃) ₂	$N(pyrid-2-yI)(CO_2CH_3)$	NHC(=0)NHC ₂ H ₅	NHC(=S)NHC ₂ H ₅	$NHC(=0)N(CH_3)_2$	NHC(=0)NP(0)(OC ₂ H ₅) ₂	OC(=O)NHCH ₃	OC(=O)NHCH ₃	CH=NOC2H5	CH=NOC2H5	CH=NOC2H5	CH=NOC,H ₅	CH=NOC,H5	CH=NOC,H,	CH=NOC,H ₅	CH=NOC,H ₅	CH=NOC,H,	CH=NOC2H5	CH=NOC,H ₅	CH=NOC,H5	CH=NOC,H5	· CH=NOC,H,	CH=NOC,H ₅	CH=NOC,H,	CH=NOCH2C=CH	CH=NOCH2C=CH				
$ m R^{19}$ $ m IR^{20}$	CI/H	H/F	CI/H	H/H	H/F	H/F	H/F	H/F	H/F	H/F	H/H	H/F	CI/H	H/H	H/F	CI/H	H/H	H/F	CI/H	H/H	H/F	CI/H	H/H	H/F	H/H	H/H	CI/H	H/F	CI/H	H/F
$ m R^{17}/ m R^{18}$	H/H	H/F	H/H	H/F	H/F	H/F	H/F	H/F	H/F	H/F	H/H	H/F	- н/н	H/F	H/F	H/H	H/F	H/F	H/H	H/F	H/F	H/H	H/F	H/F	H/F	H/H	.H/H	H/F	H/H	H/F
$\mathbb{R}^4/\mathbb{R}^5$	CF3/H	CF_3/H	$0CF_3/H$	$0CF_3/H$	OCF ₃ /H	$\mathrm{CF_3/H}$	CF3/H	CF ₃ /H	CF ₃ /H	CF_3/H	CF_3/H	CF ₃ /H	CI/H	CI/H	CI/H	F/H	F/H	F/H	CI/H	CI/H	CI/H	H/CI	H/CI	H/CI	CF3/H	CF_3/H	OCF_3/H	OCF3/H	CF_3/H	CF3/H
$\mathbb{R}^2/\mathbb{R}^3$	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	CI/H	CI/H	CI/H	H/C	H/CI	H/CI	H/H	H/H	H/H	H/H	H/H	H/H
$ m R^{15}/ m R^{16}$		H/-	H/	H/-	H/	H/	H/	H/-	H/	H/	H/	R ^{15*} /	H/	H/	H/	H/-	H/	/ H	H/	H/-	H/	H/	H/	H/	H/	CH3/	H/	H/-	H/	H/
М	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵															
Cmpd. No.	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540

)																	
R ²⁴	SO ₂ N(C ₂ H ₅) ₂	SO ₂ N-cyclopentyl	Ph	4.	OPh	OPh	O(2-F-Ph)	$O(2,6-F_2-Ph)$	OCH2Ph	NHC(=0)(2-Cl-Ph)	NHC(=0)(2,6-Cl ₂ -Ph)	$NHC(=O)(2,6-F_2-Ph)$	$NHC(=0)(2-0CH_3-Ph)$	NHC(=0)(4-0CH ₃ -Ph)	pyrazol-1-yl	pyrazol-1-yl	1,2,4-triazol-1-yl	1,2,4-triazol-1-yl	1,2,3-thiadiazol-4-yl	1,2,3-thiadiazol-4-yl	3-Cl-1,2,5-thiadiazol-	4-yloxy	3-CI-1,2,5-thiadiazol-	4-yloxy	1,3-oxazolin-2-ylamino	2-ethyl-2H-tetrazol-5-yl	2-ethyl-2H-tetrazol-5-yl	2-ethyl-2H-tetrazol-5-yl	2-ethyl-2H-tetrazol-5-yl	2-ethyl-2H-tetrazol-5-yl
R ¹⁹ /R ²⁰	H/F	H/F	CI/H	H/F	CI/H	H/F	H/F	H/F	H/F	H/F	H/F	H/F	H/F	H/F	F/H	H/F	F/H	H/F	F/H	H/F	CI/H		H/F		H/F	CI/H	CF3/H	H/F	CI/H	CI/H
R ¹⁷ /R ¹⁸	H/F	H/F	H/H	H/F	H/H	H/F	H/F	H/F	H/F	H/F	H/F	H/F	H/F	H/F	H/H	H/F	H/H	H/F	H/H	H/F	H/H		H/F		H/F	H/H	H/H	H/CF ₃	H/H	H/CI
R4/R5	CF3/H	CF_3/H	CF_3/H	CF3/H	CF ₃ /H	CF_3/H	CF_3/H	CF3/H	CF ₃ /H	CF_3/H	CF_3/H	CF ₃ /H	CF ₃ /H	CF3/H	CF ₃ /H	CF ₃ /H	CF_3/H	CF3/H	CF3/H	CF ₃ /H	CF_3/H		CF ₃ /H		. CF3/H	H/H	H/H	H/H	H/H	H/H
$\mathbb{R}^2/\mathbb{R}^3$	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H		H/H		H/H	H/H	H/H	H/H	CI/H	CI/H
R ¹⁵ / R ¹⁶	/H	H/	H/	H/	H/	H/	H/	H/	H/	H/	H/	H/	H/-	H/	H/	H/	H/	-/H	H/	H/	H/		H/		H/	H/	H/	H/	H/	H/
щ	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵		OC(=0)NR ¹⁵		OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵
Cmpd. No.	541									550													562							268

R ²⁴ .	2-ethyl-2H-tetrazol-5-yl	2-ethyl-2H-tetrazol-5-yi	2-ethyl-2H-tetrazol-5-yl																											
R ¹⁹ /R ²⁰	F/H	H/F	CF ₃ /H	CI/H	CI/H	F/H	H/F	CF ₃ /H	CI/H	CI/H	F/H	H/F	CF_3/H	CI/H	CI/H	F/H	H/F	H/H	CF ₃ /H	CI/H	H/F	CI/H	CI/H	F/H	H/F	CF_3/H	CI/H	CI/H	F/H	H/F
R ^{I7} /R ¹⁸	H/F	H/F	H/H	H/H	H/CI	H/F	H/F	H/H	H/H	H/CI	H/F	H/F	H/H	H/H	H/C	H/F	H/F	H/CF3	H/H	H/H	H/F	H/H	H/CI	H/F	H/F	H/H	H/H	H/CI	H/F	H/F
R ⁴ /R ⁵	H/H	H/H	H/H	CI/H	CI/H	CI/H	CI/H	CI/H	H/CI	H/CI	H/CI	H/CI	H/CI	H/H	H/H	H/H	H/H	H/H	H/H	F/H	F/H	H/F	H/F	H/F	H/F	H/F	CH ₃ /H	CH_3/H	CH ₃ / H	CH ₃ /H
$\mathbb{R}^2/\mathbb{R}^3$	CI/H	CI/H	CI/H	H/CI	H/F	H/H	H/H	H/H	н/н																					
R ¹⁵ /R ¹⁶	H/	H/	H/	H/	H/-	H/	H/	/H	H/	H/	H/	H/	H/-	H/-	H/	H/	H/-	H/	H/	H/	H/-	H/	H/	H/	H/-	H/	H/	H/	H/	H/
В	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	OC(=O)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	$OC(=O)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵									
Cmpd. No.	569	570	571	572	573	574	575	216	277	578	579	580	581	582	583	584	585	286	287	288	589	290	591	592	593	594	595	296	597	298

R ²⁴	2-ethyl-2H-tetrazol-5-yl	pyrid-2-yl																											
R ¹⁹ /R ²⁰	н/н	CF3/H	CI/H	CI/H	F/H	H/F	H/H	CF3/H	Ph/H	CI/H	H/F	H/F	CI/H	CI/H	F/H	H/F	СF3/Н	CI/H	CI/H	F/H	H/F	H/H	Ph/H	OPh/H	CI/H	CI/H	F/H	H/F	CI/H
R ¹⁷ /R ¹⁸	H/CF3	H/H	H/H	H/CI	H/F	H/F	H/CF3	H/H	H/H	H/H	H/F	H/F	H/H	H/CI	H/F	H/F	H/H	H/H	H/C	H/F	H/F	H/CF3	H/H	H/H	H/H	H/Cl	H/F	H/F	н/н
R4/R5	СН3/Н	CH ₃ /H	OCH_3/H	OCH_3/H	OCH_3/H	OCH ₃ /H	OCH ₃ /H	OCH ₃ / H	OCH ₃ / H	ОСН3/Н	OCH3 / H	CF_3/H	Ph/H	Ph/H	Ph/H	Ph/H	Ph/H	OPh/H	H/	H/-	H/	H/	Œ₃/H						
$\mathbb{R}^2/\mathbb{R}^3$	н/н	H/H	H/OCH_3	H/OCH3	H/H	H/	H/	H/	H/~	H/H																			
R ¹⁵ / R ¹⁶	H/	H/-	H/	H/	H/	H/-	H/	H/																					
В	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹³	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	OC(=O)NR ¹⁵	OC(=O)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵					
Cmpd. No.	599	009	601	602	603	604	605	909	607	809	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626 **	627

R ²⁴	pyrid-2-yl	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy
$ m R^{19}/ m R^{20}$	H/F	CI/H	F/H	H/F	H/CH_3	H/OCH ₃	H/H	CF ₃ /H	CF ₃ /H	CF ₃ /H	H/H	CI/H	F/H	H/F	H/H	CF3/H	CF ₃ /H	CI/H	F/H	H/F	H/H	H/OCH_3	H/H	CF_3/H	. CI/H	F/H	H/F	H/H	CF ₃ /H	H/H
R ¹⁷ /R ¹⁸	H/F	H/H	H/H	H/F	H/CH_3	H/OCH3	H/CF3	H/H	H/H	H/H	H/CO_2CH_3	H/H	H/H	H/F	H/CF3	H/H	H/H	H/H	H/H	H/F	H/OCH3	H/OCH3	H/CF3	H/H	H/H	H/H	H/F	$\mathrm{H}/\mathrm{CF}_{3}$	H/H	H/H
R4/R5	CF₃/H	CI/H	CI/H	CI/H	CI/H	CI/H	CI/H	CI/H	CI/H	CI/H	CI/H	F/H	F/H	F/H	F/H	F/H	CI/H	CI/H	CI/H	CI/H	CI/H	CI/H	CI/H	CI/H	H/H	H/H	H/H	H/H·	H/H	CF ₃ /H
$\mathbb{R}^2/\mathbb{R}^3$	н/н	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/CI	H/CI	H/CI	H/CI	H/CI	H/CI	H/CI	H/CI	H/CF3	$\mathrm{H}/\mathrm{CF}_{3}$	H/CF_3	H/CF3	$\mathrm{H}/\mathrm{CF}_{3}$	H/H
R15 / R16	H/-	H/	H/	H/	/H	H/	H/	H/	CH ₃ /	C2H5/	H/-	-/H	H/	H/	/H	H/	H/	H/	H/	H/	H/	H/	H/	H/	H/-	H/	H/	H/	H/	H/
В	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	OC(=O)NR ¹⁵	OC(=O)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	OC(=0)NR ¹⁵ SO ₂	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	$OC(=0)NR^{15}$	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵				
Cinpa. No.	628	629	630	631	632	633	634	635	929	637	638	639	640	641	642	643	644 4	645	. 646	647	648	649	650	651	652	653	654	655	929	657

R ²⁴	pyrid-2-yloxy pyrid-2-yloxy	pynu-2-yloxy pyrid-2-yloxy	pyrid-2-yloxy	pyna-2-yloxy pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy, N-oxide	3-cyanopyrid-2-yloxy	5-cyanopyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy, N-oxide	3-Cl-pyrid-2-yloxy	5-Cl-pyrid-2-yloxy	6-Cl-pyrid-2-yloxy	3,5-Cl ₂ -pyrid-2-yloxy	3-cyanopyrid-2-yloxy
R ¹⁹ /R ²⁰	H/H H/H	H/H	H/H	H/H H/H	CI/H	CI/H	CI/H	CI/H	CI/H	CI/H	CI/H	H/H	Br/H	· Н/Н	F/H	F/H	Η/Ι	CI/H	F/H	H/F	H/F	H/F	H/F	H/F	H/F	H/F	H/F
R ¹⁷ /R ¹⁸	H/H H/H	H/H H/H	CI/H	C/H H/C	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/Br	H/H	H/F	H/H	H/H	H/H	CI/H	F/H	H/F	. H/F	H/F	H/F	H/F	H/F	H/F	H/F
R4/R5	СБ3/Н СБ3/Н Э	Ŧ Ĕ Ĕ	G,/H	# # # # #	CF_3/H	CF3/H	$\mathrm{CF_3/H}$	CF_3/H	$\mathrm{CF_3/H}$	CF_3/H	\mathbb{C}_3/H	$\mathrm{CF_3/H}$	CF_3/H	CF_3/H	CF_3/H	CF_3/H	CF_3/H	CF_3/H	CF3/H	CF3/H	CF_3/H	CF_3/H	CF ₃ /H	CF_3/H	CF ₃ /H	CF3/H	Œ₃/H
R ² /R ³	H/H H/H	H/H H/H	H/H	н/н н/н	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H
R ¹⁵ /R ¹⁶	CH ₃ / H/H	н/С ц з	H/	H/H H/	H/	H/	H/	H/	H/	H/	H/	H/	H/	H/	H/	H/-	H/-	H/-	H/	H/	H/	H/	H/	H/-	H/	H/	H/-
В	OC(=0)NR ¹⁵ OC(=0)NR ¹⁵ CHR ¹⁶	OC(=0)NK"CHK" OC(=0)0	OC(=0)NR ¹⁵	OC(=0)NR"CHR" OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	OC(=S)NR ¹⁵	OC(=0)NR ¹⁵ SO ₂	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵ CHR ¹⁶	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵ CHR ¹⁶	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=S)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR.15	OC(=0)NR ¹⁵	OC(=O)NR ¹⁵	OC(=0)NR ¹⁵
Cmpd. No.	658	660 661	662	663 664	999	999	<i>L</i> 99	899	699	019	671	672	673	674	675	919	<i>LL</i> 9	678	629	089	681	682	683	684	685	989	289

R ²⁴	5-cyanopyrid-2-yloxy	3-CF ₃ -pyrid-2-yloxy	4-CF ₃ -pyrid-2-yloxy	5-CF ₃ -pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy	pyrid-2-yloxy, N-oxide	3-cyanopyrid-2-yloxy	5-cyanopyrid-2-yloxy	pyrid-2-yloxy, N-oxide	3-cyanopyrid-2-yloxy	5-cyanopyrid-2-loxy	pyrimid-2-yloxy	pyrimid-2-yloxy	pyrimid-2-yloxy	pyrimid-2-yloxy	pyrimid-2-yloxy	pyrimid-2-yloxy
$ m R^{19}/ m R^{20}$	H/F	H/F	H/F	H/F	H/H	$ m CF_3/H$	H/H	CH ₃ /H	CH_3/H	F/F	OCH ₃ /H	OCH3/H	OCH ₃ / H	OCHF ₂ /H	SCH ₃ /H	SCF_3/H	CN/H	$C(=0)CH_3/H$	CI/H	CI/H	CI/H	H/F	H/F	H/F	CI/H	H/H	H/F	CI/H	H/H	H/F
$ m R^{17}/ m R^{18}$	H/F	H/F	H/F.	H/F	H/CF3	H/H	H/CH3	H/H	H/H	H/F	H/H	H/CI	H/F	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/F	·H/F	H/F	H/H	H/F	H/F	H/H	H/F	H/F
R4/R5	С Б 3/Н	CF ₃ /H	CF3/H	GF3/H	CF_3/H	CF_3/H	CF3/H	CF_3/H	CF_3/H	CF_3/H	CF_3/H	CF_3/H	CF_3/H	CF_3/H	CF_3/H	CF3/H	CF_3/H	CF3/H	OCF_3/H	OCF3/H	OCF_3/H	OCF_3/H	OCF3/H	$0CF_3/H$	CI/H	CI/H	CI/H	F/H	F/H	F/H
$\mathbb{R}^2/\mathbb{R}^3$	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H	H/H
R ¹⁵ /R ¹⁶	H/	H/	H/	H/	H/	-/H	H/	H/	H/	H/	H/	H/-	H/	H/	H/	H/	H/	H/	H/	H/	H/	H/-	H/	H/	H/	H/	H/	-/H	H/	т/Н
В	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=S)NR ¹⁵	OC(=S)NR ¹⁵	OC(=0)NR ¹⁵ CHR ¹⁶	OC(=0)NR ¹⁵ CHR ¹⁶	$OC(=0)NR^{15}SO_2$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵ CHR ¹⁶	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	OC(=0)NR ¹⁵	$OC(=0)NR^{15}$	OC(=0)NR ¹³	OC(=0)NR ¹³						
Cmpd. No.	889	689	069	691	692	693	694	695	969	697	869	669	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717

]		
		ring.
R ²⁴	pyrimid-2-yloxy pyridazin-3-yloxy f-chloropyridazin-3-yloxy 6-chloropyridazin-3-yloxy 1,3,5-triazin-2-yloxy 1,3,5-triazin-2-yloxy	form a benzo-fused
o,	·	ಽ
R ¹⁹ /R ²⁰	CO/H CO/H	-СН=СНСН=СН-
 R ¹⁷ /R ¹⁸	H H H H H H H H H H H H H H H H H H H	with
		together
R4/R5	CC/H CC/H CG/H CG/H CG/H CG/H CG/H CG/H	taken
R2/R3	нн н нннинннин н нн	are
R ² ,	H	\mathbb{R}^4
/R ¹⁶		and
R ¹⁵ /		R³
		626:
ф	HCH3	and
	OC(=O)NR ¹⁵	625
	8	624,
Cmpd. No.	718 OC(=O)NR ¹⁵ 720 OC(=O)NR ¹⁵ 721 OC(=O)NR ¹⁵ 722 OC(=O)NR ¹⁵ 723 OC(=O)NR ¹⁵ 724 OC(=O)NR ¹⁵ 729 OC(=O)NR ¹⁵ 729 OC(=O)NR ¹⁵ 729 OC(=O)NR ¹⁵ 729 OC(=O)NR ¹⁵ 730 OC(=O)NR ¹⁵ 731 OC(=O)NR ¹⁵ 732 OC(=O)NR ¹⁵ 734 OC(=O)NR ¹⁵ 735 OC(=O)NR ¹⁵ 736 OC(=O)NR ¹⁵ 737 OC(=O)NR ¹⁵ 737 OC(=O)NR ¹⁵ 736 OC(=O)NR ¹⁵ 737 OC(=O)NR ¹⁵ 737 OC(=O)NR ¹⁵ 736 OC(=O)NR ¹⁵ 737 OC(=O)NR ¹⁵ 737 OC(=O)NR ¹⁵ 737 OC(=O)NR ¹⁵ 739 OC(=O)NR ¹⁵ 739 OC(=O)NR ¹⁵ 739 OC(=O)NR ¹⁵ 739 OC(=O)NR ¹⁵ 740 OC(=O)NR ¹⁵	623,
	Ö II.	pďu;

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p is 0; and; m and s are 1; B is a bridging group from the methyl carbon to R; where R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; q is 0 and r is 1, forming an N-oxide; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; and R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; where R¹, R², R³, R⁵, R⁶, R²¹, R²², R²³, R²⁵, R²⁶ R²⁷, and R²⁸ are hydrogen:

$$R^{19}$$
 R^{18}
 R^{20}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{22}
 R^{22}
 R^{23}
 R^{24}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{6}

15

Cmpd.	•				
No	В	R ⁴	R^{17}/R^{18}	R^{19}/R^{20}	R ²⁴
	· · · · · · 16 ·				
741	$OC(=O)NR^{15}*$	CF_3	H/F	H/F	OC ₃ H ₇
742	$OC(=O)NR^{15}$	CF_3	H/F	H/H	CH=NOC ₂ H ₅
743	$OC(=O)NR^{15}$	CF_3	H/F	H/F	CH=NOC ₂ H ₅
744	$OC(=O)NR^{15}$	CF_3	H/F	H/F	CH=NOCH2C≡CH
745	$OC(=O)NR^{15}$	CF_3	H/H	Cl/H	CO ₂ CH(CH ₃) ₂
746	$OC(=O)NR^{15}$	CF_3	H/F	H/F	NHCO ₂ CH(CH ₃) ₂
747	$OC(=O)NR^{15}$	CF_3	H/H	Cl/H	Ph
748	$OC(=O)NR^{15}$	CF_3	H/F	H/F	Ph
749	OC(=O)NR ¹⁵	CF_3	H/F	H/F	OPh
750	$OC(=O)NR^{15}$	CF_3	H/F	H/F	O(2-F-Ph)
751	OC(=O)NR ¹⁵	CF_3	H/F	H/F	O(2,6-F ₂ -Ph)
752	OC(=0)NR ¹⁵	F	H/F	H/F	pyrid-2-yloxy
753	OC(=O)NR ¹⁵	CF_3	F/H	F/H	pyrid-2-yloxy
754	$OC(=O)NR^{15}$	CF_3	H/F	F/H	pyrid-2-yloxy
755	$OC(=O)NR^{15}$	CF_3	H/F	H/F	3-chloropyrid-2-yloxy
756	$OC(=O)NR^{15}$	CF_3	H/F	H/F	5-chloropyrid-2-yloxy
<i>.</i> 757	$OC(=O)NR^{15}$	CF_3	H/F	H/F	6-chloropyrid-2-yloxy
758	$OC(=O)NR^{15}$	CF_3	H/F	H/F	3,5-di-Cl ₂ -pyrid-2-yloxy
759	$OC(=O)NR^{15}$	CF_3	H/F	H/F	3-CF ₃ -pyrid-2-yloxy
760	OC(=O)NR ¹⁵	CF_3	H/F	H/F	4-CF ₃ -pyrid-2-yloxy
761	OC(=O)NR ¹⁵	CF_3	H/F	H/F	N-(methoxycarbonyl)-
		-		· -	pyrid-2-ylamino

Cmpd. No.	В	R ⁴	R^{17}/R^{18}	R^{19}/R^{20}	R ²⁴
762 763 764 765 766 767 768	OC(=O)NR ¹⁵ OC(=O)NR ¹⁵ OC(=O)NR ¹⁵ OC(=O)NR ¹⁵ OC(=O)NR ¹⁵ OC(=O)NR ¹⁵	CF ₃ CF ₃ CF ₃ CF ₃ OCF ₃ CF ₃	H/H F/H H/F H/F H/H H/H	CI/H F/H F/H H/F CF ₃ /H CI/H H/F	pyrimidin-2-yloxy pyrimidin-2-yloxy pyrimidin-2-yloxy pyrimidin-2-yloxy pyrimidin-2-yloxy 6-chloropyridazin-3-yloxy

^{*}R¹⁵ is hydrogen in Cmpds 741-765, 767, 768.

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; E is - (CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; and R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; where R¹, R², R³, R⁵, R⁶, R²², R²³, R²⁵, R²⁶ R²⁷, and R²⁸ are hydrogen:

$$R^{2}$$
 R^{2}
 R^{2}

Cmpd.						
No.	В	R ¹⁵	R ¹⁶	R	\mathbb{R}^4	R^{24}
769	О			CH ₂ CH=CH	CF_3	pyrid-2-yloxy
770	OC(=O)O			$CH(CH_3)_2$	CF_3	pyrid-2-yloxy
771	$OC(=O)NR^{15}$	H		CH ₃	CF_3	pyrid-2-yloxy
772	$OC(=S)NR^{15}$	H		CH ₃	CF_3	pyrid-2-yloxy
773	$OC(=O)NR^{15}$	CH₃		CH ₃	CF_3	CH=NOC ₂ H ₅
774	$OC(=O)NR^{15}$	H		C_2H_5	CF ₃	pyrid-2-yloxy
775	$OC(=O)NR^{15}$	H		C_3H_7	CF_3	pyrid-2-yloxy
776	$OC(=O)NR^{15}$	H		$CH(CH_3)_2$	CF_3	pyrid-2-yloxy
777	$OC(=S)NR^{15}$	H		$CH(CH_3)_2$	CF ₃	pyrid-2-yloxy
<i>7</i> 78	$OC(=O)NR^{15}$	CH_3		$CH(CH_3)_2$	CF ₃	pyrid-2-yloxy
779	$OC(=O)NR^{15}$	H		$C(CH_3)_3$	CF ₃	pyrid-2-yloxy
780	$OC(=O)NR^{15}$	H		CH ₂ CH=CH	CF ₃	pyrid-2-yloxy
781	$OC(=O)NR^{15}$	H		cyclopentyl	CF ₃	pyrid-2-yloxy
782	$OC(=O)NR^{15}$	H		cyclohexyl	CF ₃	pyrid-2-yloxy
					•	15 5000

10

Cmpd. No.	В	R ¹⁵	R ¹⁶	R	R ⁴	R ²⁴
783	OC(=O)NR ¹⁵ CHR ¹⁶	H	H	CO ₂ C ₂ H ₅	CF ₃	pyrid-2-yloxy
784	OC(=O)NR ¹⁵ CHR ¹⁶	H	CH(CH ₃) ₂	CO ₂ CH ₃	CF ₃	pyrid-2-yloxy

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p is 0; m and s are 1; B is a bridging group from the methyl carbon to R; q is 0 and r is 1, forming an N-oxide; E is $-(CR^{27}R^{28})_{x}-(CR^{29}R^{30})_{y}$, where x is 1, and y is 0; and R^{8} is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; where R^{1} , R^{2} , R^{3} , R^{5} , R^{6} , R^{22} , R^{23} , R^{25} , R^{26} , R^{27} , and R^{28} are hydrogen:

$$R^{2}$$
 R^{2}
 R^{2}

 Cmpd.
 No.
 B
 R¹⁵
 R
 R⁴
 R²⁴

 785
 OC(=O)NR¹⁵
 H
 CH(CH₃)₂
 CF₃
 pyrid-2-yloxy

Compounds of formula I where A is C, forming a 1,2,5,6-tetrahydropyridyl ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p, q, and r are 0; m and s are 1; B is a bridging group from the methyl carbon to R; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; and R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; where R¹, R², R³, R⁵, R⁶, R²¹, R²², R²³, R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen:

$$R^{19}$$
 R^{18}
 R^{10}
 R

Cmpd. No.	В	R ⁴	R ¹⁷ /R ¹⁸	R ¹⁹ /R ²⁰	R ²⁴
786	OC(=O)NR ¹⁵ *	CF ₃	H/F	H/F	pyrimidin-2-yloxy

* R¹⁵ is hydrogen. 5

10

15

Compounds of formula I where A is C, forming a 1,2,5,6-tetrahydropyridyl ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p is 0; m and s are 1; B is a bridging group from the methyl carbon to R; q is 0 and r is 1, forming an N-oxide; E is $-(CR^{27}R^{28})_x-(CR^{29}R^{30})_y$, where x is 1, and y is 0; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; and R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; where R¹, R², R³, R⁵, R⁶, R²¹, R²², R²³, R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen:

$$R^{19}$$
 R^{18}
 R^{20}
 R^{17}
 R

Cmpd. No.	В	R ⁴	R ¹⁷ /R ¹⁸	R^{19}/R^{20}	R ²⁴
787	OC(=0)NR ¹⁵ *	CF ₃	H/F	H/F	pyrimidin-2-yloxy

5

10

* R¹⁵ is hydrogen.

Compounds of formula I where A is C, forming a piperidine ring; m, p, q, and r are 0; s is 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; B is phenyl substituted with R⁹, R¹⁰, R¹¹, R¹², and R¹³; where R², R⁵, R⁶, R⁹, R¹² R¹³, R²², R²³, R²⁵, R²⁶ R²⁷ and R²⁸ are hydrogen;

$$R^{25}$$

$$R^{26}$$

$$R^{26}$$

$$R^{22}$$

$$R^{6}$$

$$R^{22}$$

$$R^{6}$$

$$R^{22}$$

$$R^{6}$$

$$R^{22}$$

$$R^{9}$$

R¹¹

R¹²

'R'

788 H/H/CF ₃ /H H/CF ₃ OC(=O)CH ₃ 789 H/H/CI/H H/CI OC(=O)NHCH ₃ 790 H/H/CF ₃ /H H/CF ₃ OC(=O)NHCH ₃ 791 H/H/OCF ₃ /H H/OCF ₃ OC(=O)NHCH ₃ 792 H/H/CF ₃ /H H/CF ₃ OC(=O)NHCH(CH ₃) ₂ 793 H/H/H/H H/H NHCO ₂ CH(CH ₃) ₂ 794 H/H/F/H H/F NHCO ₂ CH(CH ₃) ₂ 795 H/CI/CI/H CI/CI NHCO ₂ CH(CH ₃) ₂ 796 H/F/CI/H F/CI NHCO ₂ CH(CH ₃) ₂ 797 H/H/CF ₃ /H H/CF ₃ NHCO ₂ CH(CH ₃) ₂ 798 H/H/CI/H H/CI NHCO ₂ CH ₂ C=CH ₂ 798 H/H/CI/H H/CI NHCO ₂ CH ₂ C=CHCH ₃ 800 H/H/CI/H H/CI NHCO ₂ CH ₂ C=CHCH ₃ 801 H/H/CI/H H/CI NHCO ₂ CH ₂ C=CHCH ₃ 801 H/H/CI/H H/CI NHCO ₂ CH ₂ C=CH ₂ 801 H/H/CI/H H/CI NHCO ₂ CH ₂ C=CHCH ₃ 802 H/H/CI/H H/CI NHCO ₂ CH ₂ C=CHCH ₃ 803 H/H/CI/H H/CI NHCO ₂ CH ₂ C=CHCH ₃ 804 H/H/CI/H H/CI NHCO ₂ CH ₂ C=CHCH ₃	Cmpd. No.	$R^2/R^3/R^4/R^5$	R ¹⁰ / R ¹¹	. R ²⁴	
802 H/H/CF ₃ /H H/CF ₃ NHCO ₂ CH ₂ C≡CH 803 H/H/CF ₃ /H H/CF ₃ OSO ₂ CH ₃ 804 H/H/CF ₃ /H H/CF ₃ OSO ₂ CH(CH ₃) ₂ 805 H/H/CF ₃ /H H/CF ₃ NHSO ₂ CH ₃ 806 H/H/CF ₃ /H H/CF ₃ O(2-F-Ph) 807 H/H/CF ₃ /H H/CF ₃ pyrid-2-yl	789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806	H/H/CI/H H/H/CF ₃ /H H/H/CF ₃ /H H/H/CF ₃ /H H/H/H/H H/H/F/H H/H/F/H H/CI/CI/H H/F/CI/H H/H/CF ₃ /H H/H/CI/H H/H/CF ₃ /H	H/CI H/CF ₃ H/CF ₃ H/CF ₃ H/H H/F CI/CI F/CI H/CF ₃ H/CI H/CF ₃ H/CI H/CF ₃ H/CF ₃ H/CF ₃	OC(=O)NHCH ₃ OC(=O)NHCH ₃ OC(=O)NHCH ₃ OC(=O)NHCH(CH ₃) ₂ NHCO ₂ CH(CH ₃) ₂ NHCO ₂ CH ₂ C=CH ₂ NHCO ₂ CH ₂ C=CHCH ₃ NHCO ₂ CH ₂ C=CH NHCO ₂ CH ₂ C=CH NHCO ₂ CH ₂ C=CH NHCO ₂ CH ₃ C=CH NHCO ₂ CH ₃ C=CH NHCO ₂ CH ₃ C=CH OSO ₂ CH ₃ OSO ₂ CH(CH ₃) ₂ NHSO ₂ CH ₃ O(2-F-Ph)	

Cmpd. No.	$R^2/R^3/R^4/R^5$	R^{10}/R^{11}	R ²⁴
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823	H/H/H/H H/H/CI/H H/H/CI/H H/H/CI/H H/H/CI/H H/CI/CI/H CI/H/H/H H/CI/H/H H/CI/H/H H/CI/CI/H H/F/H/H H/CI/CI/H H/CI/H/CI H/F/H/F H/CI/H/CI H/F/H/F H/F/CI/H H/CF ₃ /H/H H/H/CF ₃ /H H/H/CF ₃ /H H/H/CF ₃ /H	H/H H/CI H/F H/CF3 H/CI CI/CI H/CF3	pyrid-2-yloxy pyrid-2-yloxy pyrid-2-yloxy pyrid-2-ylamino pyrimidin-2-yloxy 3,4,5,6-tetrahydropyrimidin-2-yloxy pyrimidin-2-yloxy pyrimidin-2-yloxy pyrimidin-2-yloxy

Compounds of formula I where A is C, forming a piperidine ring; s is 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; m and p are 0; q is 0 and r is 1, forming an N-oxide; E is $(CR^{27}R^{28})_x$ - $(CR^{29}R^{30})_y$ -, where x is 1, and y is 0; R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; B is phenyl substituted with R^9 , R^{10} , R^{11} , R^{12} , and R^{13} ; where R^6 , R^9 , $R^{12}R^{13}$, R^{22} , R^{23} , R^{25} , $R^{26}R^{27}$ and R^{28} are hydrogen;

$$R^{25}$$
 R^{24}
 R^{25}
 R^{26}
 R^{22}
 R^{6}
 R^{22}
 R^{6}
 R^{25}
 R^{26}
 R^{26}
 R^{27}
 R^{7}
 R^{7}
 R^{13}
 R^{10}
 R^{10}

5

Cmpd. No.	$R^2/R^3/R^4/R^5$	R ¹⁰ / R ¹¹	24
			R ²⁴
827	H/H/Cl/H	TT / CI	
828	H/H/CF ₃ /H	H/CI	OC(=O)NHCH ₃
829	H/H/OCF ₃ /H	H/CF ₃	OC(=O)NHCH ₃
830	H/H/CF ₃ /H	H/OCF ₃	OC(=O)NHCH ₃
831	H/H/Cl/H	H/CF ₃	$OC(=O)NHCH(CH_3)_2$
832	H/H/F/H	H/Cl	NHCO ₂ CH(CH ₃) ₂
833	H/Cl/Cl/H	H/F	NHCO ₂ CH(CH ₃) ₂
834	H/F./Cl/H	CI/CI	NHCO ₂ CH(CH ₃) ₂
835	H/H/OCH ₃ /H	F/Cl	NHCO ₂ CH(CH ₃) ₂
836	H/H/CF ₃ /H	H/OCH ₃	NHCO ₂ CH(CH ₃) ₂
837	$H/H/CF_3/H$	H/CF ₃	NHCO2CH2CH=CH2
838	$H/H/CF_3/H$	H/CF ₃	NHCO2CH2CH=CHCH3
839	$H/H/CF_3/H$	H/CF ₃	NHCO2CH2C≡CH
840	$H/H/CF_3/H$	H/CF ₃	O(2-F-Ph)
841	H/H/Cl/H	H/CF ₃	pyrid-2-yl
842	H/H/F/H	H/Cl	pyrid-2-yloxy
843	H/H/CF ₃ /H	H/F	pyrid-2-yloxy
844	H/H/Cl/H	H/CF ₃ H/Cl	pyrid-2-ylamino
845	CI/H/H/H		pyrimidin-2-yloxy
846	H/C1/H/H	H/CF ₃	pyrimidin-2-yloxy
847	H/H/Cl/H	H/CF ₃	pyrimidin-2-yloxy
848	H/F/H/H	H/CF ₃ H/CF ₃	pyrimidin-2-yloxy
849	H/Cl/Cl/H	Cl/Cl	pyrimidin-2-yloxy
850	H/Cl/Cl/H	H/CF ₃	pyrimidin-2-yloxy
851	H/Cl/H/Cl	H/CF ₃	pyrimidin-2-yloxy
852	H/F/Cl/H	H/CF ₃	pyrimidin-2-yloxy
853	H/CF ₃ /H/H	H/CF ₃	pyrimidin-2-yloxy
854	H/H/CF ₃ /H	H/CF ₃	pyrimidin-2-yloxy
855	H/H/CF ₃ /H	H/CF ₃	pyrimidin-2-yloxy
	3, 22	11/ CF3	6-chloropyridazin-3-yloxy

Compounds of formula I where A is C, forming a piperidine ring; s is 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the 5 piperidine ring; m and p are 0; q is 0 and r is 1, forming an N-oxide; E is - $(CR^{27}R^{28})_x$ - $(CR^{29}R^{30})_y$ -, where x is 1, and y is 0; R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ; B is phenyl substituted with R^9 , R^{10} , R^{11} , R^{12} , and R^{13} ; where R^6 , R^9 , $R^{11}R^{13}$, R^{22} , R^{23} , R^{25} , $R^{26}R^{27}$ and R^{28} are hydrogen;

$$R^{25}$$
 R^{24}
 R^{25}
 R^{26}
 R^{22}
 R^{6}
 R^{22}
 R^{6}
 R^{2}
 R^{2}

Cmpd. No.	R^3/R^4	R ⁹	R ¹⁰	R ¹²	p 24
856	H/CF ₃	H	Cl	Cl	pyrimidin-2-yloxy
857	H/CF ₃	Cl	H	H	pyrimidin-2-yloxy

Compounds of formula I where A is C, forming a piperidine ring; m, p, q, and r are 0; s is 1; n is 0, forming a double bond between the methyl carbon (a) and the 4-position of the piperidine ring; R⁸ is pyrid-3-yl substituted with R²², R²⁴, R²⁵, and R²⁶; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; B is phenyl substituted with R⁹, R¹⁰, R¹¹, R¹², and R¹³; where R², R³, R⁵, R⁶, R⁹, R¹⁰, R¹², R¹³, R²², R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen;

$$R^{25}$$
 R^{26}
 R^{26}
 R^{22}
 R^{6}
 R^{22}
 R^{6}
 R^{2}
 R^{6}
 R^{2}
 R^{2}
 R^{6}
 R^{2}
 R^{2}

5

10

15

20

Cmpd. No.	R ⁴	R ¹¹	
858	CF ₃	CF₃	phenoxy
859	CF ₃	CF₃	pyrimidin-2-ylamino

Compounds of formula I where A is CH, forming a piperidine ring; n is 1, forming single bonds from the methyl carbon (a) and its substituents; p is 0; q, and r are 1, forming an N-substituted oxy derivative; m and s are 1; B is a bridging group from the methyl carbon to R; where R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; and R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; where R¹, R², R³, R⁶, R²¹, R²², R²³, R²⁵, R²⁶, R²⁷, and R²⁸ are hydrogen:

$$R^{19}$$
 R^{18}
 R^{20}
 R^{18}
 R^{18}
 R^{18}
 R^{19}
 R^{21}
 R^{22}
 R^{23}
 R^{24}
 R^{25}
 R^{24}
 R^{25}
 R^{24}

Cmpd. No.	В	R ¹⁵	R ⁴	R ⁷	R ¹⁹	R ²⁴
860°	OC(=O)NR ¹⁵	н	CF ₃	C_2H_5	, Cl ·	pyrid-2-yloxy

Compounds of formula I where A is CH, forming a piperidine ring; n is 1; forming single bonds from the methyl carbon (a) and its substituents; p is 0; and; m and s are 1; B is a bridging group from the methyl carbon to R; where R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹; q is 0 and r is 1, forming an N-oxide; E is -(CR²⁷R²⁸)_x-(CR²⁹R³⁰)_y-, where x is 1, and y is 0; and R⁸ is phenyl substituted with R²², R²³, R²⁴, R²⁵, and R²⁶; where R¹, R², R³, R⁵, R⁶, R²¹, R²², R²³, R²⁵, R²⁶ R²⁷, and R²⁸ are hydrogen:

$$R^{19}$$
 R^{18}
 R^{19}
 R^{18}
 R^{19}
 R^{18}
 R^{19}
 R^{18}
 R^{19}
 R^{18}
 R^{18}
 R^{19}
 R^{20}
 R^{21}
 R^{22}
 R^{23}
 R^{24}
 R^{24}
 R^{3}
 R^{4}
 R^{5}
 R^{5}

Cmpd. No.	В	R ⁴	R^{17}/R^{18}	R ¹⁹ / R ²⁰	R ²⁴
861	OC(=O)NR ^{15*}	CF₃	H/F	H/F	6-chloropyrid-3-yloxy
862	OC(=O)NR ¹⁵	CF₃	H/H	Cl/H	CH=NOC ₂ H ₅
863	OC(=O)NR ¹⁵	Cl	H/H	OCF3/H	pyrid-2-yloxy

5 *R¹⁵ in Cmpds 861-863 is hydrogen.

¹chloride salt, ²trifluoroacetate salt, ³succinate salt, ⁴tartarate salt, ⁵bromide salt, ⁶oxalate salt, ⁷chloride salt, monohydrate, ⁸ethanesulfonate salt, ⁹ethyl sulfate salt

10

The following table sets forth physical characterizing data for compounds of formula I of the present invention:

15

Table 2
Physical Characteristics

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
1 2 3 4 5 6 7 8	C ₁₈ H ₁₉ N C ₁₈ H ₁₉ N.HCl C ₁₈ H ₁₉ N.HBr C ₁₈ H ₁₈ ClN.HCl C ₁₈ H ₁₈ ClN.HCl C ₁₈ H ₁₈ ClN.HCl C ₁₈ H ₁₇ F ₂ N.C ₂ H ₂ O ₄ .H ₂ O C ₂₀ H ₁₇ F ₃ N ₆ C ₂₀ H ₁₇ F ₆ NO ₂	Physical State / Melting Point (°C) Solid, 200 Solid, 93-95 Oil
10 11	C ₂₂ H ₂₇ N	Oil
12 13	C ₁₉ H ₂₀ ClN.HCl C ₂₁ H ₁₉ F ₆ NO ₂ C ₃₁ H ₃₃ FN ₂	 Oil Oil

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
14	$C_{28}H_{28}N_2$	Flater 105 105
15	C ₂₈ H ₂₅ F ₂ N ₃ OS	Flakes, 105-107
16		Solid, 228-230
	C ₂₇ H ₂₆ FN ₃ OS	Solid, 153-155
17	$C_{27}H_{25}F_2N_3OS$	Solid, 134-137
18	$C_{28}H_{32}F_6N_2.HCI$	
19	$C_{30}H_{34}N_2.HCl.H_2O$	
20	$C_{22}H_{28}N_2$	Liquid
21	$C_{30}H_{30}N_2O_2$	Solid, 105-107
22	$C_{25}H_{30}N_2O_2$	
23	$C_{25}H_{31}N_2O_2S_2$	Solid, 136-137
24	$C_{18}H_{18}CIN.HCI$	
25	$C_{30}H_{33}N_3O$	Solid, 159-160
26	$C_{31}H_{35}N_3O$	Solid, 134-135
27	$C_{22}H_{22}N_2S$	
28	C ₂₅ H ₂₃ CIFN	Oil
29	$C_{25}H_{23}F_2N$	Oil
30	$C_{26}H_{24}F_3N$	Oil
31	$C_{26}H_{23}F_4N$	Oil
32	C ₂₆ H ₂₄ F ₃ NO	Oil
33	$C_{27}H_{22}BrF_6N$	Solid
34	$C_{26}H_{23}F_4N$	Viscous oil
35	C ₂₆ H ₂₃ F ₄ NO	Oil
36	$C_{25}H_{22}C1F_2N$	
37	$C_{25}H_{22}C_{11} = 1$ $C_{25}H_{22}F_3N$	Viscous oil
38	·	Viscous oil
39	$C_{26}H_{22}F_5N$	Viscous oil
40	C ₂₆ H ₂₆ CINO	Viscous oil
41	C ₂₆ H ₂₆ FNO	Solid, 87-89
42	C ₂₇ H ₂₆ F ₃ NO	Viscous oil
	$C_{28}H_{25}F_6NO_3$	Oil
43	$C_{30}H_{35}NO$	Solid, 86-89
44	C ₂₈ H ₃₁ NO ₃	Solid, 114-115
45	$C_{30}H_{29}F_6NO$	Solid
46	$C_{29}H_{27}F_6NO$	Solid
47	$C_{30}H_{29}F_6NO_3$	Solid
48	$C_{30}H_{29}F_6NO_3$	Oil
49	$C_{31}H_{31}F_6NO_4$	Oil
50	$C_{30}H_{27}F_6NO_2$	Sticky solid
51	$C_{31}H_{29}F_6NO_2$	Sticky solid
52	$C_{29}H_{26}F_6N_2O$	Solid
53	$C_{29}H_{23}F_{9}N_{2}O$	Solid
54	$C_{29}H_{26}F_6N_2O_2$	Solid
55	$C_{30}H_{28}F_6N_2O_2$	Solid
56	$C_{31}H_{30}F_6N_2O_2$	Sticky solid
57	$C_{31}H_{30}F_6N_2O_2$	Solid
58	$C_{31}H_{30}F_6N_2O_2$	Solid, 60-65
59	$C_{32}H_{32}F_6N_2O_2$	Solid
60	$C_{30}H_{28}F_6N_2O$	Solid
61	$C_{31}H_{26}F_6N_2OS$	Sticky solid
62	$C_{32}H_{26}F_6N_2O$	Solid
63	C ₃₂ H ₂₅ ClF ₆ N ₂ O	Solid
64	C ₃₂ H ₂₅ ClF ₆ N ₂ O ₃	
65	C ₃₂ H ₂₅ ClF ₆ N ₂ O ₃	Solid Solid
66	C ₃₂ H ₂₅ ClF ₆ N ₂ O C ₃₂ H ₂₅ ClF ₆ N ₂ O	Solid
67		Solid
68	$C_{33}H_{25}F_9N_2O$	Solid
00	$C_{33}H_{25}F_9N_2O_3$	Solid

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
69	$C_{33}H_{25}F_{9}N_{2}O$	Solid
70	C ₃₃ H ₂₅ F ₆ N ₃ O	
71	C ₃₃ H ₂₅ F ₆ N ₃ O	Solid Solid
72	C ₃₂ H ₂₅ F ₆ N ₃ O ₃	
73	C ₃₄ H ₂₉ F ₆ N ₃ O ₃	Solid
74	C ₂₈ H ₂₅ ClF ₃ N ₅	Solid
75	C ₂₉ H ₂₅ F ₆ N ₅	Oil ·
76	C ₂₈ H ₂₈ ClN ₅	Solid, 58-63
77 77		Solid
77 78	C ₂₈ H ₂₇ Cl ₂ N ₅	Oil
78 79	$C_{28}H_{27}F_2N_5$	Oil
80	C ₂₈ H ₂₇ ClFN ₅	Solid
	$C_{29}H_{28}F_3N_5$	Oil
81	$C_{29}H_{27}F_4N_5$	Oil
82	$C_{30}H_{27}F_6N_5$	Solid, 104-106
83	$C_{30}H_{25}F_4N_5O_4$	Solid
84	$C_{26}H_{25}CIN_2S$	
85	$C_{27}H_{28}NO$	
. 86	$C_{27}H_{22}BrF_6NO$	Solid
87	$C_{27}H_{21}BrF_7NO$	Solid
88	$C_{25}H_{22}ClF_2NO$	Solid, 90-96
89	$C_{25}H_{22}F_3NO_2$	Solid, 159-160
90	$C_{26}H_{22}F_5NO$	Solid, 162-167
91	$C_{26}H_{26}CINO_2$	Solid, 155-163
92	$C_{26}H_{26}FNO_2$	Solid, 179-183
93	$C_{27}H_{26}F_3NO_2$	Solid, 158-162
94	$C_{29}H_{27}F_6NO_2$	Sticky solid
95	$C_{30}H_{29}F_6NO_2$	Solid
96	$C_{30}H_{31}F_{6}NO_{4}$	Solid, 76-80
97	$C_{32}H_{27}F_8NO_4$	Solid
98	$C_{31}H_{29}F_6NO_2$	Sticky solid
99	$C_{30}H_{27}F_6NO_3$	Solid
100	$C_{31}H_{29}F_6NO_3$	Solid
101	$C_{30}H_{28}F_6N_2O_3$	Solid
102	$C_{31}H_{30}F_6N_2O_3$	Solid
103	$C_{31}H_{30}F_6N_2O_3$	Solid
104	$C_{32}H_{32}F_6N_2O_3$	Solid
105	$C_{31}H_{26}F_6N_2O_2S$	Sticky solid
106	$C_{32}H_{26}F_6N_2O_2$	Solid
107	$C_{32}H_{25}CIF_6N_2O_2$	Solid
108	$C_{32}H_{25}ClF_6N_2O_2$	Solid
109	$C_{33}H_{25}F_{9}N_{2}O_{2}$	Solid
110	$C_{33}H_{25}F_{9}N_{2}O_{2}$	Solid
111	$C_{33}H_{25}F_6N_3O_2$	Solid
112	$C_{29}H_{25}F_6N_5O$	Solid, 90-95
113	$C_{28}H_{27}Cl_2N_5O$	Solid, 90-93
114	C ₃₀ H ₂₇ F ₆ N ₅ O	
115	C ₃₀ H ₂₅ F ₄ N ₅ O ₅	Sticky solid
116	C ₄₀ H ₄₃ F ₄ NO ₄ ,HBr	Solid
117	C ₃₅ H ₃₀ F ₆ N ₂ O	Solid, 121-123
118	C ₄₀ H ₃₈ F ₆ N ₂ O ₄ HBr	Solid
181	C ₄₀ H ₃₀ F ₅ N ₃ O ₅	Solid
182	$C_{34}H_{30}F_{5}N_{3}O_{5}$ $C_{30}H_{31}CIF_{3}N_{3}O_{3}$	Solid, 98-103
183		Solid foam
184	$C_{30}H_{31}BrF_{3}N_{3}O_{3}$	
185	C ₂₉ H ₂₉ F ₄ N ₃ O ₄	Oil
103	$C_{30}H_{31}F_4N_3O_4$	Oil

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
186	C ₂₉ H ₂₉ F ₄ N ₃ O ₄	Oil ·
		Oil
187	C ₃₀ H ₃₁ F ₄ N ₃ O ₄	
188	C ₃₀ H ₃₀ Cl ₂ F ₃ N ₃ O ₃	
189	$C_{30}H_{30}Cl_2F_3N_3O_3$	••
190	$C_{30}H_{30}Cl_2F_3N_3O_3$	
191	$C_{30}H_{30}Cl_2F_3N_3O_3$	
192	$C_{30}H_{29}Cl_3F_3N_3O_3$	
193	$C_{30}H_{30}F_5N_3O_3$	
194	$C_{29}H_{28}F_5N_3O_4$	Sticky solid
195	$C_{30}H_{30}F_5N_3O_4$	Oil
196	$C_{30}H_{30}F_5N_3O_3$	
197	$C_{32}H_{34}F_5N_3O_3$	wm
198	$C_{30}H_{30}F_5N_3O_3$	
199	$C_{30}H_{30}F_5N_3O_3$	
200	$C_{30}H_{30}F_5N_3O_3$	
201	$C_{30}H_{29}F_6N_3O_3$	
202	$C_{30}H_{23}F_{8}N_{3}O_{3}$ $C_{30}H_{27}F_{8}N_{3}O_{3}$	
203	$C_{31}H_{31}F_6N_3O_3$	
204		
	$C_{31}H_{31}F_6N_3O_3$. •••
205	$C_{31}H_{31}F_6N_3O_3$	
206	$C_{31}H_{30}ClF_6N_3O_3$	
207	$C_{31}H_{30}CIF_6N_3O_3$	
208	$C_{31}H_{30}BrF_6N_3O_3$	
209	$C_{31}H_{34}F_3N_3O_4$	
210	$C_{32}H_{35}ClF_3N_3O_5$	
211	$C_{31}H_{31}F_6N_3O_4$	
212	$C_{36}H_{36}F_3N_3O_3$	
213	$C_{36}H_{36}F_3N_3O_3$	
214	$C_{34}H_{34}F_3N_3O_3$	
227	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₃	**
228	$C_{32}H_{28}Cl_2F_3N_3O_3$	
229	C ₃₂ H ₂₈ Cl ₂ F ₃ N ₃ O ₃	m.**
230	C ₃₂ H ₂₈ Cl ₂ F ₃ N ₃ O ₃	
231	C ₃₂ H ₂₈ Cl ₂ F ₃ N ₃ O ₃	
232	C ₃₂ H ₂₈ Cl ₂ F ₃ N ₃ O ₃	
233	C ₃₂ H ₂₈ Cl ₂ F ₃ N ₃ O ₃	
234	C ₃₂ H ₂₇ Cl ₃ F ₃ N ₃ O ₃	
235	C ₃₂ H ₂₉ F ₄ N ₃ O ₄	Solid, 73-78
236	$C_{32}H_{29}F_4N_3O_4$	Solid, 75-78 Solid, 75-80
237		301Id, 73-60
238	$C_{32}H_{28}F_5N_3O_3$	G-1:4 CE 70
	$C_{32}H_{28}F_5N_3O_4$	Solid, 65-70
239	C ₃₂ H ₂₈ F ₅ N ₃ O ₃	
240	$C_{32}H_{28}F_5N_3O_3$	
241	$C_{32}H_{28}F_5N_3O_3$	- -
242	$C_{32}H_{27}F_6N_3O_3$	~ ~
243	$C_{32}H_{25}F_8N_3O_3$	
244	$C_{33}H_{29}F_6N_3O_3$	
245	$C_{33}H_{29}F_6N_3O_3$	Solid foam
246	$C_{33}H_{29}F_6N_3O_4$	Solid, 75-80
247	$C_{33}H_{28}CIF_6N_3O_3$	
248	C ₃₄ H ₂₈ F ₉ N ₃ O ₃	
249	C ₃₃ H ₂₉ F ₆ N ₃ O ₄	
250	C ₃₈ H ₃₄ F ₃ N ₃ O ₃	pa no.
251	C ₃₈ H ₃₄ F ₃ N ₃ O ₃	w-
261	$C_{30}H_{31}F_{3}N_{6}O_{3}$	Solid foam, 70-75
201	-3011311 3146~3	John Joans, 70-73

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
		Just Dieter, Morning Fornt (C)
262	$C_{29}H_{28}CiF_3N_6O_3$	Solid foam, 65-69
263	$C_{29}H_{28}ClF_3N_6O_3$	Solid foam, 79-83
264	$C_{28}H_{28}Cl_2N_6O_2$	Solid
265	$C_{30}H_{30}ClF_3N_6O_2$	
267	$C_{29}H_{28}ClF_3N_6O_3$	Solid foam, 85-89
267	C ₃₀ H ₃₀ ClF ₃ N ₆ O ₃	Solid foam, 85-89
268	$C_{30}H_{30}BrF_3N_6O_2$	
269	$C_{30}H_{30}BrF_{3}N_{6}O_{2}$	
270	$C_{30}H_{30}BrF_3N_6O_3$	Solid foam, 93-97
271	$C_{30}H_{30}F_{3}IN_{6}O_{3}$	Solid foam, 89-92
272	$C_{29}H_{28}F_4N_6O_3$	Solid foam, 66-70
273	$C_{29}H_{28}F_4N_6O_3$	Solid foam, 80-84
274	C ₂₈ H ₂₈ ClFN ₆ O ₂	Solid Solid
275	$C_{29}H_{28}F_4N_6O_3$	Solid foam, 78-81
276	C ₂₉ H ₂₉ F ₄ N ₆ O ₃ .C ₂ H ₅ O ₃ S	Solid
277	C ₃₀ H ₃₀ F ₄ N ₆ O ₃	Semi-solid
278	C ₃₀ H ₃₀ F ₄ N ₆ O ₃	· = -
279	C ₃₀ H ₂₉ Cl ₂ F ₃ N ₆ O ₂	
280	C ₃₀ H ₂₉ Cl ₂ F ₃ N ₆ O ₂	~~
281	C ₃₀ H ₂₉ Cl ₂ F ₃ N ₆ O ₂	••• ,
282	C ₃₀ H ₂₉ Cl ₂ F ₃ N ₆ O ₂	
283	C ₃₀ H ₂₉ Cl ₂ F ₃ N ₆ O ₂	. ••
284	C ₃₀ H ₂₉ Cl ₂ F ₃ N ₆ O ₂	=
285	$C_{31}H_{33}F_3N_6O_3$	G 11.1.6
286	$C_{33}H_{37}F_3N_6O_3$	Solid foam, 81-83
287	$C_{31}H_{33}F_3N_6O_4$	Solid foam, 76-79
288	$C_{31}H_{30}F_6N_6O_2$	Solid foam, 76-79
289	$C_{31}H_{30}F_{6}N_{6}O_{2}$ $C_{31}H_{30}F_{6}N_{6}O_{2}$	
290		Solid foam
291	$C_{30}H_{28}F_6N_6O_3$	Solid, 70-80
292	$C_{31}H_{30}F_6N_6O_3$	Gum
293	$C_{31}H_{29}ClF_6N_6O_2 \ C_{32}H_{29}F_9N_6O_2$	** !-
294		
295	$C_{30}H_{28}F_6N_6O_4$	Solid, 70-80
296	$C_{31}H_{30}F_6N_6O_4$	Gum
290 297	$C_{30}H_{30}F_3N_7O_5$	
298	$C_{36}H_{35}F_3N_6O_2$	
302	C ₃₆ H ₃₅ F ₃ N ₆ O ₃	
304	$C_{31}H_{30}F_6N_6O_2S$	Semi-solid
305	$C_{31}H_{31}F_6N_5O_2$	Gum
306	$C_{31}H_{31}F_6N_5O_3$	Gum
307	$C_{31}H_{32}F_3N_9O_2$	Solid, 148-155
	$C_{31}H_{29}F_6N_5O_3$	Gum
308	$C_{31}H_{29}F_6N_5O_4$	Gum
309	$C_{29}H_{30}ClF_3N_6O$	Syrup
310	$C_{29}H_{30}CIF_3N_6O$	Syrup
311	C ₂₉ H ₃₀ ClF ₃ N ₆ O	Syrup
312	$C_{29}H_{30}BrF_3N_6O$	Semi-solid, 56-61
313	$C_{29}H_{30}F_4N_6O$	Syrup
314	$C_{29}H_{30}F_4N_6O$	Syrup
315	$C_{29}H_{30}F_4N_6O$	Syrup
316	$C_{29}H_{30}F_3IN_6O$	Semi-solid, 58-62
317	$C_{30}H_{33}F_3N_6O$	Syrup
318	$C_{30}H_{33}F_3N_6O_2$	Syrup
319	$C_{30}H_{30}F_6N_6O_2$	Syrup
320	$C_{29}H_{30}F_3N_7O_3$	Semi-solid, 57-62
		36HH-80Hd, 37-02

321 C ₂₂ H ₂₂ F ₃ N ₆ O ₂ Solid, 180-184 322 C ₂₂ H ₂₂ CIF ₃ N ₆ O ₂ Solid, 173-175 323 C ₂₂ H ₂₂ CIF ₃ N ₆ O ₂ Solid, 173-175 324 C ₂₂ H ₂₂ CIF ₃ N ₆ O ₂ Solid, 217-220 325 C ₂₃ H ₂₂ Bri ₃ N ₆ O ₂ Solid, 217-220 326 C ₂₃ H ₂₂ F ₃ N ₆ O ₂ Solid, 217-220 327 C ₂₃ H ₂₂ F ₃ N ₆ O ₂ Solid, 217-220 328 C ₂₃ H ₂₂ F ₃ N ₆ O ₂ Solid, 151-159 329 C ₂₃ H ₂₂ F ₃ N ₆ O ₂ Solid, 195-198 329 C ₂₃ H ₂₂ F ₃ N ₆ O ₂ Solid, 215-218 331 C ₂₃ H ₃ F ₃ N ₆ O ₂ Solid, 215-218 331 C ₂₃ H ₃ F ₃ N ₆ O ₃ Solid, 215-218 332 C ₂₃ H ₂₂ F ₃ N ₆ O ₃ Solid, 210-213 333 C ₂₃ H ₂₃ F ₃ N ₆ O ₃ Solid, 210-213 334 C ₂₃ H ₂₂ CIF ₃ N ₇ O ₂ Solid foam, 75-78 335 C ₂₃ H ₂₂ CIF ₃ N ₇ O ₂ Solid foam, 75-78 336 C ₂₃ H ₂₂ CIF ₃ N ₇ O ₂ Solid foam, 75-78 337 C ₂₃ H ₂₃ Er ₃ N ₇ O ₂ Solid foam, 94-99 338 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 94-99 339 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 84-88 339 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 84-89 340 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 84-89 341 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 74-78 341 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 74-78 342 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 74-78 343 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 74-78 344 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 74-78 345 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 75-79 346 C ₂₃ H ₂₃ F ₃ N ₇ O ₂ Solid foam, 75-79 347 C ₂₃ H ₂₃ F ₃ N ₇ O ₃ Solid foam, 75-79 348 C ₂₃ H ₂₃ F ₃ N ₇ O ₃ Solid foam, 75-79 349 C ₂₃ H ₂₃ CIF ₃ N ₇ O ₃ Solid foam, 75-79 340 C ₂₃ H ₂₃ F ₃ N ₇ O ₃ Solid foam, 75-79 341 C ₂₃ H ₂₃ F ₃ N ₇ O ₃ Solid foam, 75-79 342 C ₂₃ H ₂₃ F ₃ N ₇ O ₃ Solid foam, 75-79 343 C ₂₃ H ₂₃ F ₃ N ₇ O ₃ Solid foam, 75-79 344 C ₂₃ H ₂₃ F ₃ N ₇ O ₃ Solid foam, 75-79 345 C ₂₃ H ₂₃ F ₃ N ₇ O ₃ Solid foam, 75-79 346 C ₂₃ H ₂₃ F ₃ N ₇ O ₃ Solid foam, 73-76 350	Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
322	321	Ca-Ha-R-N-O	S-1:1 100 104
323			
324			
325			
326			
327			
328			
329			
330			
331			
332			
333			
334			Solid, 210-213
335			
336			
337			Solid foam, 75-78
338			Solid foam, 89-93
339			Solid foam, 94-99
340			Solid foam, 84-88
341			Solid foam, 89-92
341			Solid foam, 74-78
342			
343			
344		$C_{30}H_{32}F_3N_7O_3$	
345 346 C ₂₉ H ₂₉ F ₃ N ₈ O ₄ Solid foam, 83-88 346 C ₂₉ H ₂₉ F ₃ N ₈ O ₄ Solid foam, 105-110 347 C ₂₉ H ₂₈ ClF ₃ N ₆ O ₃ Solid foam, 76-79 348 C ₂₉ H ₂₈ ClF ₃ N ₆ O ₃ Solid foam, 58-61 349 C ₂₉ H ₂₈ ClF ₃ N ₆ O ₃ Solid foam, 58-61 350 C ₂₉ H ₂₈ F ₃ N ₆ O ₃ Solid foam, 73-76 351 C ₂₉ H ₂₈ F ₃ N ₆ O ₃ Solid foam, 73-76 352 C ₂₉ H ₂₈ F ₄ N ₆ O ₃ Solid foam, 63-69 353 C ₂₉ H ₂₈ F ₄ N ₆ O ₃ Solid foam, 92-95 354 C ₂₉ H ₂₈ F ₄ N ₆ O ₃ Solid foam, 73-75 355 C ₃₀ H ₃₁ F ₃ N ₆ O ₃ Solid foam, 73-75 356 C ₃₀ H ₃₁ F ₃ N ₆ O ₄ Solid foam, 73-75 357 C ₃₀ H ₂₈ F ₄ N ₆ O ₄ Solid foam, 73-75 358 C ₂₉ H ₂₈ F ₄ N ₇ O ₅ Solid foam, 69-72 358 C ₂₉ H ₂₈ F ₄ N ₇ O ₅ Solid foam, 69-72 395 C ₂₂ H ₂₉ ClF ₃ N ₃ O ₄ 397 C ₃₂ H ₂₉ ClF ₃ N ₃ O ₄ 397 C ₃₂ H ₂₉ ClF ₃ N ₃ O ₄ 397 C ₃₂ H ₂₉ ClF ₃ N ₃ O ₄ 399 C ₂₉ H ₂₈ ClF ₃ N ₆ O ₄ Solid 400 C ₂₉ H ₂₈ F ₄ N ₆ O ₄ Solid 401 C ₃₀ H ₃₉ F ₄ N ₆ O ₄ Solid 401 C ₃₀ H ₃₉ F ₄ N ₆ O ₄ Solid 401 C ₃₀ H ₃₈ F ₄ N ₆ O ₄ Solid 402 C ₃₀ H ₃₈ F ₄ N ₆ O ₄ Solid 403 C ₃₁ H ₃₆ F ₄ N ₆ O ₅ Solid foam, 118-122 404 C ₃₀ H ₃₈ F ₄ N ₆ O ₅ Solid foam, 118-122 405 C ₃₁ H ₃₉ F ₄ N ₆ O ₅ Solid foam, 120-125 427 C ₂₉ H ₃₂ F ₃ N ₃ O ₃ Oil 433 C ₂₂ H ₃₂ F ₃ N ₃ O ₃ Oil 434 C ₂₈ H ₃₆ F ₃ N ₃ O ₃ Oil 435 C ₂₈ H ₃₆ F ₃ N ₃ O ₃ Oil 436 C ₂₈ H ₃₆ F ₃ N ₃ O ₃ Oil 437 C ₂₈ H ₃₆ F ₃ N ₃ O ₃ Oil 438 C ₂₈ H ₃₆ F ₃ N ₃ O ₃ Oil 439 C ₂₈ H ₃₆ F ₃ N ₃ O ₃ Oil 431 C ₂₈ H ₃₆ F ₃ N ₃ O ₃ Oil	344	$C_{30}H_{29}F_6N_7O_2$	
346	345	$C_{30}H_{29}F_6N_7O_3$	
347		$C_{29}H_{29}F_3N_8O_4$	
348	347		
349 C ₂₉ H ₂₈ BClF ₃ N ₆ O ₃ Solid foam, 153-156 350 C ₂₉ H ₂₈ BrF ₃ N ₆ O ₃ Solid foam, 73-76 351 C ₂₉ H ₂₈ F ₄ N ₆ O ₃ Solid foam, 76-80 352 C ₂₉ H ₂₈ F ₄ N ₆ O ₃ Solid foam, 63-69 353 C ₂₉ H ₂₈ F ₄ N ₆ O ₃ Solid foam, 92-95 354 C ₂₉ H ₂₈ F ₃ IN ₆ O ₃ Solid foam, 73-75 355 C ₃₀ H ₃₁ F ₃ N ₆ O ₃ Solid foam, 73-76 356 C ₃₀ H ₃₁ F ₃ N ₆ O ₄ Solid foam, 73-75 357 C ₃₀ H ₂₈ F ₆ N ₆ O ₄ Solid foam, 69-72 358 C ₂₉ H ₂₈ F ₃ N ₇ O ₅ Solid, 143-146 395 C ₃₂ H ₂₉ ClF ₃ N ₃ O ₄ 396 C ₃₂ H ₂₉ ClF ₃ N ₃ O ₄ 397 C ₃₂ H ₂₈ F ₅ N ₃ O ₄ 398 C ₃₃ H ₂₉ F ₆ N ₃ O ₄ 399 C ₂₉ H ₂₈ F ₄ N ₆ O ₄ Solid 400 C ₂₉ H ₂₈ F ₄ N ₆ O ₄ Solid 401 C ₃₀ H ₃₉ F ₆ N ₆ O ₅ Solid foam, 118-122 404 C ₃₀ H ₃₉ F ₆ N ₆ O ₅ Solid foam, 120-125 405 C ₃			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	349		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	351		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	352		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	353		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	354		
356	355		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
395			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			301ld, 143-140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			~~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			 O-1/1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
405			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Oil
433 $C_{25}H_{31}F_3N_6O_3S$ Oil 434 $C_{28}H_{26}P_6N_6O_2$ Oil			Oil
434 C28H26F6N6O2 Oil			Oil
434 $C_{28}H_{26}F_6N_6O_2$ Oil			Oil
107			
	435	$C_{27}H_{26}ClF_3N_6O$	Liquid

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
436	$C_{31}H_{29}F_3N_4O_3$	White solid
437	$C_{31}H_{27}F_6N_3O_2$	Paste
438	$C_{31}H_{27}F_6N_3O_2$	Pasty solid
439	C ₃₁ H ₂₈ ClF ₃ N ₄ O ₃	Solid
440	C ₃₀ H ₂₅ ClF ₆ N ₄ O ₂	Solid
441	C ₃₀ H ₂₅ ClF ₆ N ₄ O ₂	Solid
442	C ₃₁ H ₂₇ F ₆ N ₃ O ₃	Solid
443	C ₃₀ H ₂₇ ClF ₃ N ₃ O ₂	Sticky solid
444	$C_{31}H_{29}F_3N_4O_3$	White solid
445	C ₃₁ H ₂₈ ClF ₃ N ₄ O ₃	White solid
446	$C_{32}H_{28}F_3N_5O_3$	Solid
447	C ₃₁ H ₂₈ ClF ₃ N ₄ O ₃	White solid
448	$C_{32}H_{28}F_6N_4O_3$	Solid
449	$C_{27}H_{27}F_3N_6O_3$	Solid
450	C ₃₁ H ₂₉ F ₃ N ₄ O ₃	White solid
451	C ₃₁ H ₂₇ Cl ₂ F ₃ N ₄ O ₃	
452	C ₂₉ H ₂₆ ClF ₃ N ₄ O ₂	Sticky solid
453	C ₂₆ H ₂₅ ClF ₃ N ₇ O ₂	Solid
454	$C_{30}H_{30}F_6N_2O_2$	Gooey solid
455	$C_{32}H_{28}F_6N_2O_2$	Gooey solid
456·	$C_{31}H_{27}F_6N_3O_3$	Solid
457	C ₃₅ H ₄₂ F ₃ N ₃ O ₅	Solid
458	$C_{27}H_{26}F_4N_2O_3$	Solid
459	C ₂₇ H ₂₅ ClF ₄ N ₂ O ₃	Solid
460	C ₂₇ H ₂₄ ClF ₅ N ₂ O ₃	Solid
461	$C_{27}H_{24}F_6N_2O_3$	Solid
462	C ₂₇ H ₂₄ F ₅ IN ₂ O ₃	Solid
463	C ₂₇ H ₂₆ ClF ₃ N ₂ O ₃	Solid
464	$C_{27}H_{25}F_5N_2O_3$	Solid
465	C ₂₇ H ₂₇ ClF ₃ N ₃ O ₂	Solid
466	$C_{27}H_{26}F_5N_3O_2$	Solid
467	$C_{32}H_{35}F_5N_2O_2$	Solid
468	$C_{28}H_{28}F_4N_2O_4$	Solid
469	$C_{28}H_{27}F_5N_2O_4$	Solid
470	$C_{29}H_{32}Cl_2N_2O_3$	
471	$C_{29}H_{32}ClFN_2O_3$	
474	$C_{30}H_{32}ClF_3N_2O_3$	
473	$C_{30}H_{32}ClF_3N_2O_3$	
474	$C_{29} H_{31} ClF_2 N_2 O_3$	
475	$C_{29}H_{32}CIFN_2O_3$	
476	$C_{29}H_{32}F_2N_2O_3$	
477	$C_{30}H_{32}F_4N_2O_3$	~~
478	$C_{30}H_{32}F_4N_2O_3$	
479	$C_{29}H_{31}F_3N_2O_3$	
480	$C_{29}H_{31}Cl_3N_2O_3$	
481	$C_{29}H_{31}Cl_2FN_2O_3$	
482	$C_{29}H_{30}Cl_2F_2N_2O_3$	••
483	$C_{30}H_{31}Cl_2F_3N_2O_3$	~~
484	$C_{30}H_{31}Cl_2F_3N_2O_3$	••
485	$C_{30}H_{32}ClF_3N_2O_3$	
486	$C_{30}H_{32}F_4N_2O_3$	
487	$C_{30}H_{31}F_5N_2O_3$	
488	$C_{31}H_{32}F_6N_2O_3$	
489	$C_{31}H_{32}F_6N_2O_3$	
490	$C_{30}H_{32}ClF_3N_2O_3$	Solid

G 137	m and the to	
Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
491	$C_{30}H_{31}F_5N_2O_3$	Solid
492	C ₃₁ H ₃₂ ClF ₃ N ₂ O ₄	Solid
493	$C_{31}H_{31}F_5N_2O_4$	Solid
494	C ₂₉ H ₂₉ ClF ₃ N ₃ O ₃	Solid
495	C ₂₉ H ₂₈ F ₅ N ₃ O ₃	Solid
496	C ₃₁ H ₃₂ F ₅ N ₃ O ₃	Solid
497	C ₃₂ H ₃₄ F ₅ N ₃ O ₃	Solid
498	C ₂₉ H ₂₈ F ₅ N ₃ O ₄	Solid
499	C ₃₀ H ₃₀ F ₅ N ₃ O ₄	Solid
500	C ₃₀ H ₃₃ Cl ₂ N ₃ O ₄	Sond
501	C ₃₀ H ₃₃ ClFN ₃ O ₄	
502	C ₃₀ H ₃₂ CIF ₂ N ₃ O ₄	
503	C ₃₀ H ₃₂ ClFN ₃ O ₄	
504	C ₃₀ H ₃₃ F ₂ N ₃ O ₄	
505	C ₃₀ H ₃₂ F ₃ N ₃ O ₄	
506	C ₃₀ H ₃₂ P ₃ N ₃ O ₄ C ₃₀ H ₃₂ Cl ₃ N ₃ O ₄	
507	C ₃₀ H ₃₂ C ₁₃ N ₃ O ₄ C ₃₀ H ₃₁ Cl ₂ F ₂ N ₃ O ₄	•••
508		
508 509	C ₃₀ H ₃₂ Cl ₃ N ₃ O ₄	
510	C ₃₀ H ₃₂ Cl ₂ FN ₃ O ₄	·
510	$C_{30}H_{31}Cl_2F_2N_3O_4$	G-1' 4
	$C_{31}H_{25}F_6N_3O$	Solid
512	C ₃₁ H ₃₂ F ₅ N ₃ O ₄	Solid
513	C ₃₁ H ₃₃ ClF ₃ N ₃ O ₅	
514	C ₃₁ H ₃₃ F ₄ N ₃ O ₅	
515	$C_{31}H_{32}F_5N_3O_5$	
516	$C_{34}H_{31}F_5N_4O_4$	Solid, 95-110
517	$C_{30}H_{31}F_5N_4O_3$	Solid
518	$C_{30}H_{31}F_5N_4O_2S$	Solid
519	$C_{30}H_{31}F_5N_4O_3$	Solid
520	$C_{32}H_{36}F_5N_4O_6P$	Solid
521	$C_{29}H_{30}F_3N_3O_4$	Solid
522	$C_{31}H_{31}F_5N_4O_5$	Solid
523	$C_{29}H_{31}Cl_2N_3O_3$	***
524 525	$C_{29}H_{31}CIFN_3O_3$	
525	$C_{29}H_{30}CIF_2N_3O_3$	
526	$C_{29}H_{31}CIFN_3O_3$	••
527	$C_{29}H_{31}F_2N_3O_3$	
528	$C_{29}H_{30}F_3N_3O_3$	••
529 529	$C_{29}H_{30}Cl_3N_3O_3$	**
530	$C_{29}H_{30}Cl_2FN_3O_3$	
531	$C_{29}H_{29}Cl_2F_2 N_3O_3$	*··
532	$C_{29}H_{30}Cl_3N_3O_3$	
533	$C_{29}H_{30}Cl_2FN_3O_3$	
534	$C_{29}H_{29}Cl_2F_2N_3O_3$	
535	$C_{30}H_{31}F_4N_3O_3$	Solid, 63-73
536	$C_{31}H_{34}F_3N_3O_3$	Solid
537	$C_{30}H_{31}ClF_3N_3O_4$.
538	$C_{30}H_{30}F_5N_3O_4$	
539	$C_{31}H_{29}ClF_3N_3O_3$	Solid
540	$C_{31}H_{28}F_5N_3O_3$	Solid
541	$C_{31}H_{34}F_5N_3O_4S$	
542	C ₃₂ H ₃₄ F ₅ N ₃ O ₄ S	
543	$C_{33}H_{30}CIF_3N_2O_2$	Solid
544	$C_{33}H_{29}F_5N_2O_2$	Solid
545	$C_{33}H_{30}ClF_3N_2O_3$	Solid

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
546	$C_{33}H_{29}F_5N_2O_3$	0-1:4
547	$C_{33}H_{28}F_6N_2O_3$	Solid
548	C ₃₃ H ₂₇ F ₇ N ₂ O ₃	Solid, 58-67
549	$C_{34}H_{31}F_{5}N_{2}O_{3}$	Solid, 72-81
550		Solid
551	C ₃₄ H ₂₉ ClF ₅ N ₃ O ₃	Solid
552	C ₃₄ H ₂₈ Cl ₂ F ₅ N ₃ O ₃	Solid
	$C_{34}H_{28}F_7N_3O_3$	Solid
553 554	$C_{35}H_{32}F_5N_3O_4$	Solid
554	$C_{35}H_{32}F_5N_3O_4$	Solid
555	$C_{30}H_{28}F_4N_4O_2$	Solid
556	$C_{30}H_{27}F_5N_4O_2$	Solid
557	$C_{29}H_{27}F_4N_5O_2$	Solid
558	$C_{29}H_{26}F_5N_5O_2$	Solid
559	$C_{29}H_{26}F_4N_4O_2S$	Solid
560	$C_{29}H_{25}F_5N_4O_2S$	Solid
561	$C_{29}H_{25}Cl_2F_3N_4O_3S$	Solid
562	C ₂₉ H ₂₄ CIF ₅ N ₄ O ₃ S	Solid
563	C ₃₀ H ₂₉ F ₅ N ₄ O ₃	Solid
564	$C_{29}H_{31}CIN_6O_2$	50Hd
565	$C_{30}H_{31}F_3N_6O_2$	
566	C ₃₀ H ₃₀ F ₄ N ₆ O ₂	
567	$C_{29}H_{30}Cl_2N_6O_2$	
568	C ₂₉ H ₂₉ Cl ₃ N ₆ O ₂	
569	C ₂₉ H ₂₉ ClF ₂ N ₆ O ₂	***
570	C ₂₉ H ₂₉ CIF ₂ N ₆ O ₂	n-a
571	C ₃₀ H ₃₀ CIF ₃ N ₆ O ₂	~~
572	$C_{30}H_{30}CH_{31}N_{6}O_{2}$ $C_{29}H_{29}Cl_{3}N_{6}O_{2}$	
573		
574	$C_{29}H_{28}Cl_4N_6O_2$	
575	C ₂₉ H ₂₈ Cl ₂ F ₂ N ₆ O ₂	
576	$C_{29}H_{28}Cl_2F_2N_6O_2$	 (
577	C ₃₀ H ₂₉ Cl ₂ F ₃ N ₆ O ₂	
578	C ₂₉ H ₂₉ Cl ₃ N ₆ O ₂	
	C ₂₉ H ₂₈ Cl ₄ N ₆ O ₂	
579 580	$C_{29}H_{28}Cl_2F_2N_6O_2$	
580	$C_{29}H_{28}Cl_2F_2N_6O_2$	
581	$C_{30}H_{29}Cl_2F_3N_6O_2$	ww
582	$C_{29}H_{30}CIFN_6O_2$	
583	$C_{29}H_{29}Cl_2FN_6O_2$	
584	$C_{29}H_{29}F_3N_6O_2$	
585	$C_{29}H_{29}F_3N_6O_2$	
586	$C_{30}H_{30}F_4N_6O_2$	
587	$C_{30}H_{30}F_4N_6O_2$	
588	$C_{29}H_{29}ClF_2N_6O_2$	
589	$C_{29}H_{28}F_4N_6O_2$	
590	$C_{29}H_{29}ClF_2N_6O_2$	
591	$C_{29}H_{28}Cl_2F_2N_6O_2$	
592	$C_{29}H_{28}F_4NO_2$	
593	$C_{29}H_{28}F_4N_6O_2$	
594	C ₃₀ H ₂₉ F ₅ N ₆ O ₂	
595	C ₃₀ H ₃₃ ClN ₆ O ₂	
596	$C_{30}H_{32}Cl_2N_6O_2$	
597	$C_{30}H_{32}C_{12}N_6O_2$ $C_{30}H_{32}F_2N_6O_2$	
598		
599	$C_{30}H_{32}F_2N_6O_2$	
600	$C_{31}H_{33}F_3N_6O_2$	
000	$C_{31}H_{33}F_3N_6O_2$	***

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
601	$C_{30}H_{33}CIN_6O_3$	
602	$C_{30}H_{32}CI_2N_6O_3$	
603	$C_{30}H_{32}E_{12}I_{4}G_{3}$ $C_{30}H_{32}F_{2}N_{6}O_{3}$	
604	$C_{30}H_{32}F_{2}N_{6}O_{3}$	
605	$C_{30}H_{32}F_{21}V_{6}O_{3}$ $C_{31}H_{33}F_{3}N_{6}O_{3}$	
606	$C_{31}H_{33}F_3N_6O_3$	
607	C ₃₆ H ₃₈ N ₆ O ₃	
608	C ₃₁ H ₃₅ ClN ₆ O ₄	
609	C ₃₁ H ₃₄ F ₂ N ₆ O ₄	••
610	C ₃₀ H ₂₉ F ₅ N ₆ O ₂	· ·
611	$C_{35}H_{35}CIN_6O_2$	
612	C ₃₅ H ₃₄ Cl ₂ N ₆ O ₂	
613	$C_{35}H_{34}F_2N_6O_2$	
614	C ₃₅ H ₃₄ F ₂ N ₆ O ₂	
615	$C_{36}H_{35}F_3N_6O_2$	
616	C ₃₅ H ₃₅ CIN ₆ O ₃	
617	C ₃₅ H ₃₄ Cl ₂ N ₆ O ₃	
618	$C_{35}H_{34}F_{2}N_{6}O_{3}$	
619	$C_{35}H_{34}F_2N_6O_3$	
620	$C_{36}H_{35}F_3N_6O_3$	
621	$C_{41}H_{40}N_6O_3$	
622	$C_{41}H_{40}N_6O_4$	
623	C ₃₃ H ₃₃ ClN ₆ O ₂	No. No.
624	$C_{33}H_{32}Cl_2N_6O_2$	
625	$C_{33}H_{32}F_2N_6O_2$	***
626	$C_{33}H_{32}F_2N_6O_2$	##
627	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₂	Solid
628	$C_{32}H_{28}F_5N_3O_2$	Solid
629	C ₃₁ H ₂₉ Cl ₂ N ₃ O ₃	
630	C ₃₁ H ₂₉ ClFN ₃ O ₃	
631	C ₃₁ H ₂₈ ClF ₂ N ₃ O ₃	
632	$C_{33}H_{34}CIN_3O_3$	
633	C ₃₃ H ₃₄ CiN ₃ O ₅	
634	C ₃₂ H ₂₉ CIF ₃ N ₃ O ₃	
635	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₃	
636	C ₃₃ H ₃₁ ClF ₃ N ₃ O ₃	White solid
637	C ₃₄ H ₃₃ ClF ₃ N ₃ O ₃	White solid
638	$C_{33}H_{32}CIN_3O_5$	
639	$C_{31}H_{29}CIFN_3O_3$	
640	$C_{31}H_{29}F_2N_3O_3$	
641	$C_{31}H_{28}F_3N_3O_3$,
642	$C_{32}H_{29}F_4N_3O_3$	
643	$C_{32}H_{29}F_4N_3O_3$	
644	$C_{31}H_{29}Cl_2N_3O_5S$	
645	$C_{31}H_{28}Cl_3N_3O_3$	~~
646	$C_{31}H_{28}Cl_2FN_3O_3$	•••
647	$C_{31}H_{27}Cl_2F_2N_3O_3$	
648	$C_{32}H_{31}Cl_2N_3O_4$	·
649	C ₃₃ H ₃₃ Cl ₂ N ₃ O ₅	·
650	C ₃₂ H ₂₈ Cl ₂ F ₃ N ₃ O ₃	
651	C ₃₂ H ₂₈ Cl ₂ F ₃ N ₃ O ₃	
652	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₃	
653	$C_{32}H_{29}F_4N_3O_3$	
654	$C_{32}H_{28}F_5N_3O_3$	***
655	$C_{33}H_{29}F_6N_3O_3$	

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
656	C ₃₃ H ₂₉ F ₆ N ₃ O ₃	_
657	C ₃₂ H ₃₀ F ₃ N ₃ O ₃	
658	C ₃₃ H ₃₂ F ₃ N ₃ O ₃	White solid
659	$C_{33}H_{32}F_3N_3O_3$	Oil
660	C ₃₄ H ₃₄ F ₃ N ₃ O ₃	Oil
661		
662	C ₃₂ H ₂₉ F ₃ N ₂ O ₄	White solid
	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₃	Tan solid
663	C ₃₃ H ₃₁ ClF ₃ N ₃ O ₃	Oil
664	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₃	Yellow solid
665	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₃	Solid
666	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₃ .HCl	
667	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₂ S	ww.
· 668	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₅ S	
669	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₄	Solid
670	$C_{33}H_{28}ClF_3N_4O_3$	White solid
671	$C_{33}H_{28}ClF_3N_4O_3$	White solid
672	$C_{32}H_{29}BrF_3N_3O_3$	Thick oil
673	$C_{32}H_{29}BrF_3N_3O_3$	Tan solid
674	$C_{32}H_{29}F_4N_3O_3$	Yellow paste
675	$C_{32}H_{29}F_4N_3O_3$	·
676	$C_{33}H_{31}F_4N_3O_3$	Oil
677	$C_{32}H_{29}F_3IN_3O_3$	Solid, 85-99
678	$C_{33}H_{30}Cl_2F_3N_3O_3$	Oil .
679	$C_{32}H_{28}F_5N_3O_3$	Solid
680	$C_{32}H_{28}F_5N_3O_3$	Solid
681	$C_{32}H_{28}F_5N_3O_2S$	
682	$C_{32}H_{28}F_5N_3O_4$.	White solid
683	$C_{32}H_{27}ClF_5N_3O_3$	Solid, 81-91
684	$C_{32}H_{27}ClF_5N_3O_3$	Solid, 61-77
685	$C_{32}H_{27}ClF_5N_3O_3$	Solid, 76-83
686	$C_{32}H_{26}Cl_2F_5N_3O_3$	Solid, 78-90
687	$C_{33}H_{27}F_5N_4O_3$	White solid
688	$C_{33}H_{27}F_5N_4O_3$	White solid
689	$C_{33}H_{27}F_8N_3O_3$	Solid, 75-86
690	$C_{33}H_{27}F_8N_3O_3$	Solid, 77-86
691	$C_{33}H_{27}F_8N_3O_3$	· Solid, 80-88
692	$C_{33}H_{29}F_6N_3O_2S$	
693	$C_{33}H_{29}F_6N_3O_2S$	
694	$C_{34}H_{34}F_3N_3O_3$	Oil
695	$C_{34}H_{34}F_3N_3O_3$	Oil
696	$C_{33}H_{32}F_3N_3O_5S$	
697	$C_{32}H_{27}F_6N_3O_3$	White solid
698	$C_{34}H_{34}F_3N_3O_4$	Oil
699	$C_{33}H_{31}CIF_3N_3O_4$	Solid
700	$C_{33}H_{31}F_4N_3O_4$	Solid
701	$C_{33}H_{30}F_5N_3O_4$	
702	$C_{33}H_{32}F_3N_3O_3S$	
703	$C_{33}H_{29}F_6N_3O_3S$	
704	$C_{33}H_{29}F_3N_4O_3$	
705	$C_{34}H_{32}F_3N_3O_4$	
706	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₅	Solid
707	$C_{33}H_{28}ClF_3N_4O_4$	White solid
708	C ₃₃ H ₂₈ ClF ₃ N ₄ O ₄	White solid
709	$C_{32}H_{28}F_5N_3O_5$	Solid
710	$C_{33}H_{27}F_5N_4O_4$	White solid
	•- • • •	

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
711	C ₃₃ H ₂₇ F ₅ N ₄ O ₄	White solid
712	C ₃₀ H ₂₈ Cl ₂ N ₄ O ₃	Winte soild
713	C ₃₀ H ₂₈ ClFN ₄ O ₃	
714	C ₃₀ H ₂₇ ClF ₂ N ₄ O ₃	
715	C ₃₀ H ₂₈ ClFN ₄ O ₃	
716	$C_{30}H_{28}E_{1}H_{4}O_{3}$	
717	$C_{30}H_{27}F_3N_4O_3$	
718	C ₃₀ H ₂₇ Cl ₃ N ₄ O ₃	
719	C ₃₀ H ₂₇ Cl ₂ FN ₄ O ₃	••
720	C ₃₀ H ₂₆ Cl ₂ F ₂ N ₄ O ₃	
721	C ₃₀ H ₂₇ Cl ₃ N ₄ O ₃	Solid
722	C ₃₀ H ₂₇ Cl ₂ FN ₄ O ₃	Solid
723	C ₃₀ H ₂₆ Cl ₂ F ₂ N ₄ O ₃	Solid
724	C ₃₁ H ₂₇ Cl ₂ F ₃ N ₄ O ₃	Solid
725	C ₃₁ H ₂₇ Cl ₂ F ₃ N ₄ O ₃	Solid
726	C ₃₀ H ₂₇ Cl ₃ N ₄ O ₃	Solid
727	C ₃₀ H ₂₇ Cl ₂ FN ₄ O ₃	
728	C ₃₀ H ₂₆ Cl ₂ F ₂ N ₄ O ₃	~-
729	C ₃₁ H ₂₈ ClF ₃ N ₄ O ₃	Solid, 94-104
730	C ₃₁ H ₂₇ F ₅ N ₄ O ₃	Solid, 94-104
731	C ₃₁ H ₂₇ F ₅ N ₄ O ₃	Solid, 92-102
732	$C_{31}H_{27}F_5N_4O_3$	Solid, 92-102 Solid
733	C ₃₁ H ₂₈ ClF ₃ N ₄ O ₄	
734	$C_{31}H_{28}F_4N_4O_4$	 ·
735	$C_{31}H_{27}F_5N_4O_4$	
736	$C_{31}H_{27}F_5N_4O_3$	Solid
737	C ₃₁ H ₂₇ Cl ₂ F ₃ N ₄ O ₃	Solid
738	C ₃₁ H ₂₆ CIF ₅ N ₄ O ₃	Solid
739	$C_{30}H_{26}F_5N_5O_3$	Sond
740	C ₃₂ H ₃₀ F ₅ N ₅ O ₅	
741	$C_{30}H_{31}F_5N_2O_4$	Solid
742	$C_{30}H_{31}F_4N_3O_4$	Solid, 136-142
743	$C_{30}H_{30}F_5N_3O_4$	Solid, 138-143
744	$C_{31}H_{28}F_5N_3O_4$	Solid
745	$C_{31}H_{32}CIF_3N_2O_5$	Solid
746	$C_{31}H_{32}F_5N_3O_5$	Solid
747	C ₃₃ H ₃₀ ClF ₃ N ₂ O ₃	Solid
748	$C_{33}H_{29}F_5N_2O_3$	Solid
749	C ₃₃ H ₂₉ F ₅ N ₂ O ₄	Solid
750	$C_{33}H_{28}F_6N_2O_4$	Solid, 135-144
751	$C_{33}H_{27}F_7N_2O_4$	Solid, 141-146
752	$C_{31}H_{28}F_3N_3O_4$	50ffd, 141-140
753	C ₃₂ H ₂₈ F ₅ N ₃ O ₄	Solid
754	$C_{32}H_{28}F_5N_3O_4$	Solid
755	C ₃₂ H ₂₇ ClF ₅ N ₃ O ₄	Solid, 145-148
756	C ₃₂ H ₂₇ CIF ₅ N ₃ O ₄	Solid, 143-148 Solid, 157-161
757	C ₃₂ H ₂₇ ClF ₅ N ₃ O ₄	Solid, 137-161 Solid, 137-142
758	C ₃₂ H ₂₆ Cl ₂ F ₅ N ₃ O ₄	Solid, 137-142 Solid, 172-174
759	C ₃₃ H ₂₇ F ₈ N ₃ O ₄	Solid, 172-174 Solid, 142-144
760	C ₃₃ H ₂₇ F ₈ N ₃ O ₄	
761	C ₃₄ H ₃₁ F ₅ N ₄ O ₅	Solid, 159-161 Solid, 149-153
762	C ₃₁ H ₂₈ ClF ₃ N ₄ O ₄	
763	C ₃₁ H ₂₇ F ₅ N ₄ O ₄	Solid, 171-175
764	$C_{31}H_{27}F_5N_4O_4$	Solid Solid
765	$C_{31}H_{27}F_5N_4O_4$	Solid 150 153
	- 3121~ 3^ \4~4	Solid, 150-153

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
766	$C_{31}H_{27}F_6N_3O_4$	Solid
767	$C_{31}H_{27}Cl_2F_3N_4O_4$	Solid, 152-154
768	C ₃₁ H ₂₆ ClF ₅ N ₄ O ₄	Solid, 151-154
769	$C_{28}H_{29}F_3N_2O_2$	Solid
<i>7</i> 70	$C_{29}H_{31}F_3N_2O_4$	Gum
771	$C_{27}H_{28}F_3N_3O_3$	White solid
772	$C_{27}H_{28}F_3N_3O_2S$	Yellow solid
773	$C_{26}H_{32}F_3N_3O_3$	Solid
774	$C_{28}H_{30}F_3N_3O_3$	Tan solid
775	$C_{29}H_{32}F_3N_3O_3$	Oil
776	$C_{29}H_{32}F_3N_3O_3$	Oily solid
777	$C_{29}H_{32}F_3N_3O_2S$	Yellow solid
778	$C_{30}H_{34}F_3N_3O_3$	Yellow solid
7 79	$C_{30}H_{34}F_3N_3O_3$	Solid
780	$C_{29}H_{30}F_3N_3O_3$	Oil
781	$C_{31}H_{34}F_3N_3O_3$	Solid
782	$C_{32}H_{36}F_3N_3O_3$	Oil
783	$C_{30}H_{32}F_3N_3O_5$	Solid
784	$C_{32}H_{36}F_3N_3O_5$	Oil
785	$C_{29}H_{32}F_3N_3O_4$	Solid
786	$C_{31}H_{25}F_5N_4O_3$	Solid, 85-92
787	$C_{31}H_{25}F_5N_4O_4$	Solid, 137-141
788	$C_{29}H_{25}F_6NO_2$	Solid
789	$C_{27}H_{26}Cl_2N_2O_2$	Solid
790	$C_{29}H_{26}F_6N_2O_2$	Solid
791	$C_{29}H_{26}F_6N_2O_4$	Solid
792	$C_{31}H_{30}F_6N_2O_2$	Solid
793	$C_{29}H_{32}N_2O_2$	Solid
. 794	$C_{29}H_{30}F_2N_2O_2$	Solid
795	$C_{29}H_{28}Cl_4N_2O_2$	Solid
796	$C_{29}H_{28}Cl_2F_2N_2O_2$	· Solid
797	$C_{31}H_{28}F_6N_2O_2$	Solid
798	$C_{30}H_{30}Cl_2N_2O_2$	Solid
799	$C_{32}H_{30}F_6N_2O_2$	Solid
800	$C_{30}H_{30}Cl_2N_2O_2$	Solid
801	$C_{29}H_{26}Cl_2N_2O_2$	Solid
802	$C_{31}H_{26}F_6N_2O_2$	Solid
803	$C_{28}H_{25}F_6NO_3S$	Solid
804	$C_{30}H_{29}F_6NO_3S$	Solid
805	$C_{28}H_{26}F_6N_2O_2S$	Solid
806	$C_{33}H_{26}F_7NO$	Solid, 50-59
807	$C_{32}H_{26}F_6N_2$	Solid
808	$C_{30}H_{28}N_2O$	Solid
809	$C_{30}H_{26}Cl_2N_2O$	Solid
810	$C_{30}H_{26}F_2N_2O$	Solid
811	$C_{32}H_{27}F_6N_3$	Paste
812	C ₂₉ H ₂₅ Cl ₂ N ₃ O	Paste
813	C ₂₉ H ₂₃ Cl ₄ N ₃ O	Solid
814	C ₃₀ H ₂₅ ClF ₃ N ₃ O	Solid
815	C ₃₀ H ₂₅ ClF ₃ N ₃ O	Solid
816	C ₃₀ H ₂₅ ClF ₃ N ₃ O	Solid
817	C ₃₀ H ₂₅ F ₄ N ₃ O	Solid
818	C ₃₀ H ₂₄ Cl ₂ F ₃ N ₃ O	. Solid
819	C ₃₀ H ₂₄ Cl ₂ F ₃ N ₃ O	Solid
820	C ₃₀ H ₂₄ F ₅ N ₃ O	Solid
-		

5

Cmpd No.	Emperical Formula	Physical State / Melting Point (°C)
001		
821	$C_{30}H_{24}ClF_4N_3O$	Solid
822	$C_{31}H_{25}F_6N_3O$	Solid
823	$C_{31}H_{29}F_6N_3O$	Paste
824	$C_{31}H_{25}F_6N_3O$	Solid
825	$C_{31}H_{25}F_6N_3O$	Solid
826	$C_{31}H_{24}ClF_6N_3O$	Solid, 68-77
827	$C_{27}H_{26}Cl_2N_2O_3$	Solid
828	$C_{29}H_{26}F_6N_2O_3$	Solid
829	$C_{29}H_{26}F_6N_2O_5$	Solid
830	$C_{31}H_{30}F_6N_2O_3$	Solid
831	$C_{29}H_{30}Cl_2N_2O_3$	Solid
832	$C_{29}H_{30}F_2N_2O_3$	Solid
833	C ₂₉ H ₂₈ Cl ₄ N ₂ O ₃	Solid
834	C ₂₉ H ₂₈ Cl ₂ F ₂ N ₂ O ₃	Solid
835	C ₃₁ H ₃₆ N ₂ O ₅	Solid
836	C ₃₁ H ₂₈ F ₆ N ₂ O ₃	Solid
837	C ₃₂ H ₃₀ F ₆ N ₂ O ₃	Solid
838	$C_{31}H_{26}F_6N_2O_3$	Solid
839	$C_{33}H_{26}F_7NO_2$	Solid, 171-173
840	$C_{32}H_{26}F_6N_2O$	Solid, 171-175
841	$C_{30}H_{26}Cl_2N_2O_2$	
842	$C_{30}H_{26}C_{12}V_{2}O_{2}$ $C_{30}H_{26}F_{2}N_{2}O_{2}$	Solid
843	$C_{30}H_{26}F_{21}V_{2}C_{2}$ $C_{32}H_{27}F_{6}N_{3}O$	Solid
844	$C_{29}H_{25}Cl_2N_3O_2$	Paste
845	$C_{30}H_{25}Cl_{21}V_{3}O_{2}$ $C_{30}H_{25}ClF_{3}N_{3}O_{2}$	Solid
846		Solid
847	C ₃₀ H ₂₅ ClF ₃ N ₃ O ₂	Solid
848	C ₃₀ H ₂₅ CIF ₃ N ₃ O ₂	Solid
849	$C_{30}H_{25}F_4N_3O_2$	Solid
	C ₂₉ H ₂₃ Cl ₄ N ₃ O ₂	Solid
850	$C_{30}H_{24}Cl_2F_3N_3O_2$	Solid
851	$C_{30}H_{24}Cl_2F_3N_3O_2$	Solid
852	$C_{30}H_{24}ClF_4N_3O_2$	Solid
853	$C_{31}H_{25}F_6N_3O_2$	Solid
854	$C_{31}H_{25}F_6N_3O_2$	Solid
955	$C_{31}H_{24}ClF_6N_3O_2$	Solid, 128-135
856	$C_{30}H_{24}Cl_2F_3N_3O_2$	Solid
857	$C_{30}H_{25}CIF_3N_3O_2$	Solid
858	$C_{32}H_{26}F_6N_2O$	Solid
859	$C_{30}H_{25}F_6N_5$	Solid
860	$C_{34}H_{34}ClF_3N_3O_4C_2H_5O_4S$	Solid
861	C ₃₂ H ₂₇ ClF ₅ N ₃ O ₄	Solid, 158-161
862	C ₃₀ H ₃₁ ClF ₃ N ₃ O ₄	Solid
863	C ₃₂ H ₂₉ ClF ₃ N ₃ O ₅	Solid

Candidate insecticides were evaluated for activity against the tobacco budworm (<u>Heliothis virescens</u> [Fabricius]) in a surface-treated diet test.

In this test one mL of molten (65-70°C) wheat germ-based artificial diet was pipetted into each well of a four by six (24 well) multi-well plate (ID# 430345-15.5 mm dia. x 17.6 mm deep; Corning Costar Corp., One Alewife

WO 2004/060371 PCT/US2003/038878

Center, Cambridge, MA 02140). The diet was allowed to cool to ambient temperature before treatment with candidate insecticide.

For a determination of insecticidal activity, solutions of the candidate insecticides were prepared for testing using a Packard 204DT Multiprobe Robotic System (Packard Instrument Company, 800 Research Parkway, Meriden, CT 06450), in which the robot first diluted a standard 50 millimolar DMSO solution of candidate insecticide with a 1:1 water/acetone solution (V/V) in a ratio of 1:7 stock solution to water/acetone. The robot subsequently pipetted 40 microliters of the so-prepared solution onto the surface of the diet in each of three wells in the 24 multi-well plate. The process was repeated with solutions of seven other candidate insecticides. Once treated, the contents of the multi-well plate were allowed to dry, leaving 0.25 millimoles of candidate insecticide on the surface of the diet, or a concentration of 0.25 millimolar. Appropriate untreated controls containing only DMSO on the diet surface were also included in this test.

5

10

15

20

For evaluations of the insecticidal activity of a candidate insecticide at varying rates of application, the test was established as described above using sub-multiples of the standard 50 millimolar DMSO solution of candidate insecticide. For example, the standard 50 millimolar solution was diluted by the robot with DMSO to give 5, 0.5, 0.05, 0.005, 0.0005 millimolar, or more dilute solutions of the candidate insecticide. In these evaluations there were six replicates of each rate of application placed on the surface of the diet in the 24 multi-well plate, for a total of four rates of application of candidate insecticide in each plate.

In each well of the test plate was placed one second instar tobacco budworm larvea, each weighing approximately five milligrams. After the larvae were placed in each well, the plate was sealed with clear polyfilm adhesive tape. The tape over each well was perforated to ensure an adequate air supply. The plates were then held in a growth chamber at 25 °C and 60% relative humidity for five days (light 14 hours/day).

5

10

After the five-day exposure period insecticidal activity for each rate of application of candidate insecticide was assessed as percent inhibition of insect weight relative to the weight of insects from untreated controls, and percent mortality when compared to the total number of insects infested.

Insecticidal activity data at selected rates of application from this test are provided in Table 3. The test compounds of formula I are identified by numbers that correspond to those in Table 1.

Insecticidal Activity of Test Compounds Applied to the Surface of the Diet of Tobacco Budworm

20	19	96	59	0	59	89	100	100	79	83	100	95	100	100	106	100	100	117	100	100
48	100	100	58	100	100	<i>L</i> 9	0	86	78	29	100	98	100	100	105	100	100	115	100	100
47	0	11	57	100	100	99	100	100	77	100	100	93	33	26	104	100	100	114	100	100
46	100	100	56	100	100	65	100	100	9/	0	91	87	100		103	10 10 10	100	113	100	. 100
45	0	. 24	55	100	100	. 49	100	100	75	100	96	85	100	100	102	100	100	112	100	100
4	<i>L9</i>	100	54	100	100	63	33	100	74	100	100	83	100	100	101	100	100	111	100	100
42	100	100	53	0	100	62	100	100	72	100	100	82	100	100	100	100	100	109	100	100
31	17	83	52	33	100	· 19	100	100	71	100	100	81	100	100	66	100	100	108	100	100
30	100	54	51	0	56	09	100	100	70	100	100	80	33	100	86	100	100	107	100	100
Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition

188	100	100	197	0	94	207	100	100	228	100	100	237	100	100	246	100	100	264	100	100
187	100	100	196	100	100	206	100	100	227	100	100	236	100	100	245	100	100	263	100	100
186	100	100	195	100	100	202	33	100	214	0	100	235	100	100	244	100	100	262	100	100
185	100	100	194	100	100	204	100	100	213	100	100	234	100	100	243	100	100	261	100	100
184	100	100	193	100	100	203	100	100	212	100	. 100	233	33	100	242	100	100	251	100	100
183	100	100	192	<i>L</i> 9	86	202	100	100	211	100	100	232	100	100	241	100	100	250	100	100
182	100	100	191	100	100	201	100	100	210	0	<i>L</i> 9	231	100	100	240	100	100	249	100	100
181	100	100	190	100	100	. 200	100	100	209	100	100	230	100	100	239	100	100	248	100	100
118	100	100	189	100	100	199	100	100	208	100	100	229	100	100	238	100	100	247	100	100
Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition

273	100	100	283	100	100	292	100	100	306	33	29	315	100	100	324	83		333	17	66
272	66	100	282	0	95	291	100	95	305	100	95	314	100	100	323	<i>L</i> 9	86	332	100	100
271	100	. 100	281	100	100	290	100	100	304	100	95	313	100	100	. 322	0	78	331	<i>L</i> 9	86
270	100	100	280	100	100	289	100	100	302	100	100	312	100	001	321	17	95	330	33	68
269	100	100	279	100	100	288	100	100	298	100	100	311	100	100	320	100	100	329	20	66
268	100	. 100	<i>TTZ</i>	100	100	287	100	100	297	100	100	310	100	100	319	100	100	328	0	95
267	100	100	276	17	62	286	20	94	295	.100	26	309	100	100	318	100	100	327	0	8
266	100	100	275	100	100	285	100	100	294	100	100	308	100	35	317	100	100	326	0	93
265	100	100	274	100	100	284	100	100	293	17	93	307	100	6	316	20	100	325	20	100
Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition

342 100 100	351 50 100	396 100 100	100	100	100	16
341 100 100	350 100 100	395 100 100	100	100	17 100	17
340 83 100	349 100 100	358 83 99	100 100	50 100 445	100 100	100
339 50 100	348 100 100	100 100	100	100 100 444	96	100
338 100 100	347 83 100	356 100 100	100	100 100 443	33 100 453	100
337 100 100	346 100 100	355 100 100	100	100 100 442	100 100 452	67 100
336 100 100	345 100 100	354 100 100	100	100 100 441	100	100
335 100 100	344 100 100	353 17 87 308	100	100 100 440	100	0 0
334 100 100	343	352 83 100	100	33 100 439	100	100
Cmpd. No Percent Mortality Percent Growth Inhibition	Cmpd. No Percent Mortality Percent Growth Inhibition	Cmpd. No Percent Mortality Percent Growth Inhibition	Percent Mortality Percent Growth Inhibition	Percent Mortality Percent Growth Inhibition Cmpd. No	Percent Mortality Percent Growth Inhibition	Percent Mortality Percent Growth Inhibition

463 464 465 466	0		473 474	100 100 100 100	100 100	481 482 483 484	100	100 100	492	100 100	100 100 100 100	501 501	100	100 100 100 100	509	100 100 100 100	100 100	519	0 17 17 17	96 93
462	83	100	471	100	100	480	100	100	489	100	100	498	100	100	207	100	100	516	100	100
461	0	86	470	100	100	479	100	100	488	100	100	497	17	100	206	100	100	515	100	100
460	0	100	469	17	100	478	100	100	487	100	100	496	100	100	505	100	100	514	100	100
459	0	66	468	33	100	477	100	100	486	100	100	495	0	86	504	100	100	513	100	100
458	0	94	467	0	89	476	100	100	485	100	100	494	0	11	503	100	100	512	100	100
Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition

529	100	100	538	100	100	547	100	100	556	100	100	565	100	100	574	100	100	583	100	. 100
528	100	100	537	100	100	546	100	100	555	33	100	564	100	100	573	100	100	582	100	100
527	100	100	536	100	100	545	100	100	554	0	66	563	0	96	572	100	100	581	100	001
526	. 100	100	535	100	100 -	544	100	100	553	100	100	562	33	100	571	100	100	580	100	100
525	100	100	534	100	100	543	100	100	552	100	100	561	50	100	570	100	100	579	100	100
524	100	100	533	100	100	542	0	43	551	100	100	260	33	96	569	100	100	578	100	100
523	100	100	532	100	100	541	0	59	550	100	100	559	17	26	268	100	100	577	100	100
522	100	100	531	100	100	540	100	100	549	0	86	558	17	66	292	100	100	276	100	100
521	100	100	530	100	100	239	100	100	548	190	100	557	0	. 98	995	100	100	575	100	100
Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition

	1			1			t						1							
592	100	100	601	100	100	019	100	100	619	17	100	628	100	100	637	100	100	646	100	100
591	100	100	009	100	100	609	33	100	618	100	100	627	100	100	636	100	100	645	100	100
290	. 100	100	599	100	100	809	83	100	617	0	14	979	100	100	635	100	100	644	0	0
289	100	100	298	100	100	209	100	100	919	100	100	625	100	100	634	100	100	643	100	100
588	. 100	100	297	100	100	909	100	100	615	17	72	624	100	100	633	20	100	642	100	100
. 587	100	100	596	100	100	605	100	100	614	16	66	623	100	100	632	100	100	641	100	100
586	100	100	595	100	100	604	100	100	613	83	100	622	0	4	631	100	100	640	100	100
585	100	100	594	100	100	603	100	100	612	0	84	621	0	4	630	100	100	639	100	100
584	100	. 100	593	100	100	602	100	100	611	83	100	620	0	29	629	100	100	638	. 001	100
Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition

	1			ı			1										,			
655	100	100	664	100	100	673	100	100	682	100	100	691	100	100	700	100	100	400	100	100
654	100	100	999	50	100	672	100	100	681	100	100	069	100	100	669	100	100	708	100	100
653	100	100	999	100	100	671	100	100	089	17	100	689	100	100	869	100	100	707	100	100
652	100	100	199	0	91	019	100	100	629	100	100	889	100	100	<i>L</i> 69	100	100	902	100	100
651	100	100	099	0	86	699	100	100	829	100	100	687	100	100	969	0	32	705	17	100
920	100	100	629	20	100	899	0	25	<i>LL</i> 9	100	100	989	17	86	695	100	100	704	100	100
648	83	100	658	0	100	299	100	100	929	100	100	685	100	100	694	20	100	703	100	100
648	100	100	657	100	100	999	100	100	675	100	100	684	100	100	693	100	100	702	. 001	100
647	100	100	929	100	100	665	0	100	674	100	100	683	100	100	692	100	100	701	100	<u>8</u> .
Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition

718 100 100	727 100 100	736 100 100	745 100 100	754 100 100	100	100
717 100 100	726 100 100	735 100	744 100 100	753 100 100	762 100 100	772 0 78
716 100 100	725 100 100	734 100 100	743 100 100	752 100 100	761 100 100	771 17 72
715 100 100	100	733 100 100	742 100 100	751 100 100	760 100 100	0 0 76
714 100 100	723 100 100	732 100 100	100	750 100 100	759 100 100	769 0 13
713 100 100	722 83 100	731 100 100	740 100 100	749 100 100	758 100 100	768 100 100
100	721 100 100	730 100 100	739	748 100 100	757 100 100	767 100 100
110	720 100 100	729 100 100	738 100 100	747 100 100	756 100 100	765 100 100
100	100	100	100	746 100 100	755 100 100	764 · 100 100
Cmpd. No Percent Mortality Percent Growth Inhibition	Cmpd. No Percent Mortality Percent Growth Inhibition	Cmpd. No Percent Mortality Percent Growth Inhibition	Cmpd. No Percent Mortality Percent Growth Inhibition	Cmpd. No Percent Mortality Percent Growth Inhibition	Cmpd. No Percent Mortality Percent Growth Inhibition	Cmpd. No Percent Mortality Percent Growth Inhibition

782	100	100	791	100	100	800	0	98	809	100	100	818	100	100	827	100	100	836	100	100
781	100	100	790	100	100	799	0	83	808	0	4	817	100	100	826	100	100	835	0	80
780	0	88	789	100	100	798	0	59	807	100	100	816	100	100	825	83	100	834	100	100
611	100	100	788	33	87	767	100	100	908	0	. 001	815	100	100	824	100	100	833	100	. 001
778	0		787	100	100	196	100	100	805	33	100	814	100	100	823	<i>L</i> 9	100	832	83	100
777	<i>L</i> 9	100	786	100	100	795	20	8	804	100	100	813	100	100	822	100	100	831	. 001	100
911	100	100	785	100	100	794	83	100	803	100	100	812	100	100	821	100	100	830	100	100
775	33	100	784	100	100	793	0	9/	802	100	100	811	100	100	820	20	35	829	100	100
1774	0	86	783	0	70	792	100	100	801	100	100	810	100	100	819	20	100	828	001	100
Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	· Percent Mortality	Percent Growth Inhibition

845	83	100	854	100	100			
8	100	100	853	100	100	862	100	100
843	100	100	852	100	100	861	100	100
842	100	100	851	50	100	098	100	100
841	100	100	850	100	100	859	0	46
840	100	100	849	100	100	858	17	66
839	100	100	848	83	100	857	83	100
838	100	100	847	100	100	856	20	100
837	100	100	846	100	100	855	100	100
Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition	Cmpd. No	Percent Mortality	Percent Growth Inhibition

WO 2004/060371 PCT/US2003/038878

159

These tests were conducted with 0.25 millimoles of candidate insecticide on the surface of the diet.

As set forth in the foregoing Table 3, most of the compounds therein provided 100% mortality and 100% growth inhibition of tobacco budworm.

5

10

While this invention has been described with an emphasis upon preferred embodiments, it will be understood by those of ordinary skill in the art that variations of the preferred embodiments may be used and that it is intended that the invention may be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications encompassed within the spirit and scope of the invention as defined by the following claims.