7. Differenziale - Calcolo approssimato

Sia f una funzione derivabile in un intervallo (a; b) e siano x_0 e $x_0 + \Delta x$ due punti di (a; b).

Definizione

Si dice **differenziale** della funzione f relativo al punto x_0 la funzione lineare:

$$df: \mathbb{R} \to \mathbb{R}/\!\!\to \Delta x \to f'(x_0)\Delta x$$

che associa all'incremento Δx della variabile x il prodotto della derivata della funzione f calcolata nel punto x_0 per l'incremento Δx .

Il differenziale $f'(x_0)\Delta x$ viene indicato anche con i simboli:

df oppure df

Proprietà fondamentali dei differenziali :

a)
$$dc = 0$$
 se c è una costante

b)
$$dx = \Delta x$$
 se x è la variabile indipendente

c)
$$d(cf) = cdf$$

d)
$$d(f \pm g) = df \pm dg$$

e)
$$d(f \cdot g) = gdf + fdg$$

f)
$$d\left(\frac{f}{g}\right) = \frac{gdf - fdg}{g^2}$$
 $(g \neq 0)$

$$g) df(g) = f'(g) dg$$

Esercizi

Calcolare il differenziale delle seguenti funzioni relativo al punto x_0 a fianco indicato:

1)
$$f(x) = \sqrt{x+1} - 2x$$
 $x_0 = 0$

2)
$$f(x) = \frac{1-x^2}{x}$$
 $x_0 = 2$

3)
$$f(x) = \sin^2 x + \cos x$$
 $x_0 = \frac{\pi}{4}$

4)
$$f(x) = \log(-x + 2)$$
 $x_0 = -1$

5)
$$f(x) = arctg(x^2 - 1)$$
 $x_0 = 1$

6)
$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$
 $x_0 = 0$

7)
$$f(x) = e^{\sin x} \qquad x_0 = 0$$

8)
$$f(x) = e^{-x^2}$$
 $x_0 = -1$

L. Mereu – A. Nanni Calcolo differenziale

Approssimazione lineare di una funzione

L'incremento Δf della funzione f(x) dovuto all'incremento Δx differisce dal differenziale df di un infinitesimo o(Δx) di ordine superiore rispetto a Δx , quindi possiamo scrivere

$$\Delta f = df + o(\Delta x)$$

cioè

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + o(\Delta x).$$

In definitiva, se $x=x_0+\Delta x$ è vicino a x_0 , cioè per Δx "piccolo", vale la seguente approssimazione lineare di f:

$$f(x) = f(x_0 + \Delta x) \cong f(x_0) + f'(x_0)\Delta x$$

Esempi di approssimazioni lineari di f(x) in un intorno di $x_0 = 0$ ($\alpha \in \mathbb{R}$)

	$(1+x)^{\alpha} \simeq 1 + \alpha x$	$(1-x)^{\alpha} \simeq 1 - \alpha x$
$\alpha = -1$	$\frac{1}{1+x} \simeq 1-x$	$\frac{1}{1-x} \simeq 1+x$
$\alpha = -2$	$\frac{1}{(1+x)^2} \simeq 1 - 2x$	$\frac{1}{(1-x)^2} \simeq 1 + 2x$
$\alpha = \frac{1}{2}$	$\sqrt{1+x} \simeq 1 + \frac{1}{2}x$	$\sqrt{1-x} \simeq 1 - \frac{1}{2}x$
$\alpha = -\frac{1}{2}$	$\frac{1}{\sqrt{1+x}} \simeq 1 - \frac{1}{2}x$	$\frac{1}{\sqrt{1-x}} \simeq 1 + \frac{1}{2}x$
$\alpha = \frac{1}{3}$	$\sqrt[3]{1+x} \simeq 1 + \frac{1}{3}x$	$\sqrt[3]{1-x} \simeq 1 - \frac{1}{3}x$

$\sin(\alpha x) \simeq \alpha x$	$\cos(\alpha x) \simeq 1 - \frac{1}{2}(\alpha x)^2$	$tg(\alpha x) \simeq \alpha x$
$\log(1+\alpha x) \simeq \alpha x$	$e^{\alpha x} \simeq 1 + \alpha x$	$10^{\alpha x} \simeq 1 + \alpha x log 10$
$\arcsin(\alpha x) \simeq \alpha x$	$\arccos(\alpha x) = \frac{\pi}{2} - \alpha x$	$arctg(\alpha x) \simeq \alpha x$

Esempi

a) Calcolare un valore approssimato di

Considerata la funzione f(x) = logx la cui derivata è $Dlogx = \frac{1}{x}$, si ha :

$$x = 1.4$$
 $x_0 = 1$ $\Delta x = 0.4$ $\frac{1}{x_0} = 1$

quindi:

$$\log(1.4) = \log(1 + 0.4) \cong \log 1 + 1 \cdot 0.4 \implies \log(1.4) \cong 0.4$$

b) Calcolare un valore approssimato di $\sqrt[3]{1,06}$ e $\frac{1}{0.98}$

Dalla tabella si ha che:

$$\sqrt[3]{1,06} = \sqrt[3]{1+0,06} \cong 1 + \frac{1}{3} \cdot 0,06 = 1,02;$$
 $\frac{1}{0,98} = \frac{1}{1-0,02} \cong 1+0,02 = 1,02$

Esercizi

Calcolare i valori approssimati di :

9)
$$\sqrt{1,06}$$

10)
$$e^{0.02}$$

11)
$$\frac{1}{1.07}$$

15)
$$\frac{1}{1.03^2}$$

13)
$$\log(1,04)$$
 14) $\cos(0,06)$ 15) $\frac{1}{1.03^2}$ 16) $\log(0.8)$ 17) $e^{-0.02}$

17)
$$e^{-0.02}$$

Soluzioni

1. S.
$$df = -\frac{3}{2}dx$$
; **2. S.** $df = -\frac{5}{4}dx$; **3. S.** $df = \frac{2-\sqrt{2}}{2}dx$; **4. S.** $df = -\frac{1}{3}dx$;

5. S.
$$df = 2dx$$
; **6. S.** $df = dx$; **7. S.** $df = dx$; **8. S.** $df = 2e^{-1}dx$;

16. S.
$$-0.2$$
; **17. S.** 0.98 ;