Micro - interrogation n° 2

Exercice 1 Répondre par vraie ou faux, en justifiant votre réponse .

- 1- La fonction $f:(E,\mathcal{A})\to (F,\mathcal{B})$ est mesurable si et seulement si pour tout $A\in\mathcal{A}$ on a $f(A)\in\mathcal{B}$.
- 2- Soit $\{f_n\}_{n\geq 0}$ une suite de de fonctions mesurables de (E,\mathcal{A}) dans \mathbb{R} , qui converge simplement vers f sur E. Alors f est aussi mesurable.
- 3- Soient (E, \mathcal{T}) un espace topologique et $f: E \to \mathbb{R}$ est une fonction mersurable, alors elle est continue.

Exercice 2 Montrer que les fonctions suivantes sont mesurables et λ -intégrables puis cal-

culer
$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n(x) d\lambda$$

(a)
$$f_n(x) = \frac{x}{x^n + e^x} \mathbb{I}_{[0, +\infty[}(x).$$
 (b) $f_n(x) = f(x) \exp(-n \sin^2 x) \operatorname{sur} \mathbb{R}$ où $f \in \mathcal{L}^1(\mathbb{R}).$

Licence Mathématiques $3^{i\grave{e}me}$ année Matière: Mesure et intégration

2021/2022

Micro - interrogation n° 2

 $\underline{\textbf{Exercice 1}}\$ Répondre par vraie ou faux, en justifiant votre réponse .

- 1- La fonction $f:(E,\mathcal{A})\to(F,\mathcal{B})$ est mesurable si et seulement si pour tout $A\in\mathcal{A}$ on a $f(A)\in\mathcal{B}$.
- 2- Soit $\{f_n\}_{n\geq 0}$ une suite de de fonctions mesurables de (E,\mathcal{A}) dans \mathbb{R} , qui converge simplement vers f sur E. Alors f est aussi mesurable.
- 3- Soient (E, \mathcal{T}) un espace topologique et $f: E \to \mathbb{R}$ est une fonction mersurable, alors elle est continue.

Exercice 2 Montrer que les fonctions suivantes sont mesurables et λ -intégrables puis cal-

culer
$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n(x) d\lambda$$

(a)
$$f_n(x) = \frac{x}{x^n + e^x} \mathbb{I}_{[0, +\infty[}(x).$$
 (b) $f_n(x) = f(x) \exp(-n \sin^2 x) \operatorname{sur} \mathbb{R}$ où $f \in \mathcal{L}^1(\mathbb{R}).$

Corrigé de la micro-interrogation

Exercice 1.

- 1- Faux, (0.5 pt) car la définition est : f est mesurable $\iff f^{-1}(B) \in \mathcal{A}$ pour tout $B \in \mathcal{B}$. (0.5 pt)
- 2- Vraie (0.5 pt), c'est une propriété des fonctions mesurables .(0.5 pt)
- 3- Faux $(0.5 \ pt)$, si on prend $f(x) = \mathbb{I}_{\mathbb{Q}}(x)$ sur \mathbb{R} , cette fonction est mesurable, car $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$, mais elle est discontinue en tout point de \mathbb{R} . $(0.5 \ pt)$

Exercice 2

- (a) (*) Pour tout $n \in \mathbb{N}$,: $f_n(x) = \frac{x}{x^n + e^x} \mathbb{I}_{[0, +\infty[}(x), \text{alors les } f_n \text{ sont continues sur } \mathbb{R}^* (0.25 \ pt) \Longrightarrow$.elles sont mesurables (boréliennes)(0.25 pt)
- (*) On a pour tout $n \in \mathbb{N}$ $|f_n(x)| \leq \frac{x}{e^x} \mathbb{I}_{[0,+\infty[}(x) = xe^{-x} \mathbb{I}_{[0,+\infty[}(x) = g(x) \text{ sur } \mathbb{R} \ (0.25 \ pt)$. Comme g est intégrable au sens de Lebesgue (λ -intégrable) sur \mathbb{R} , les f_n ; $n \geq 0$, sont tous λ -intégrable sur \mathbb{R} (0.25 pt)

(*) On a
$$\lim_{n \to +\infty} f_n(x) = \begin{cases} \lim_{n \to +\infty} \frac{x}{x^n + e^x} & : x \ge 0 \\ 0 & : \text{sinon} \end{cases} = \begin{cases} \frac{x}{e^x} & : 0 \le x < 1 \\ \frac{1}{1 + e} & : x = 1 \\ 0 & : \text{sinon} \end{cases}$$
 (0.25 pt)

(*) Comme $|f_n| \leq g \in \mathcal{L}^1(\mathbb{R})$ et $\{f_n\}_n$ converge simplement sur \mathbb{R} , alors d'après le T.C.D. $(0.25 \ pt)$. on a

$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n(x) d\lambda(x) = \int_{\mathbb{R}} \lim_{n \to +\infty} f_n(x) d\lambda(x) (0.25 \ pt)$$
$$= \int_{[0,1[} xe^{-x} d\lambda(x) = \int_{0}^{1} xe^{-x} dx = 1 - 2e^{-1} (0.25 \ pt).$$

- (b) (*) Pour tout $n \in \mathbb{N}$,: $f_n(x) = f(x) \exp(-n \sin^2 x)$ sur \mathbb{R} où $f \in \mathcal{L}^1(\mathbb{R})$. On a $f \in \mathcal{L}^1(\mathbb{R}) \Longrightarrow f$ est borélienne. En plus la fonction exponentielle est continue sur \mathbb{R} (0.25 pt). Donc les f_n sont boréliennes (0.25 pt)
- (*) On a pour tout $n \in \mathbb{N}$ $|f_n(x)| \le |f(x)| \text{ sur } \mathbb{R}$ (0.25 pt). On a $f \in \mathcal{L}^1(\mathbb{R})$, alors les $f_n; n \ge 0$, sont tous λ -intégrable sur \mathbb{R} (0.25 pt)

(*) On a
$$\lim_{n \to +\infty} f_n(x) = 0$$
 p.p. sur \mathbb{R} ($\lim_{n \to +\infty} f_n\left(k\frac{\pi}{2}\right) = f\left(k\frac{\pi}{2}\right)$, pour tout $k \in \mathbb{Z}$).(0.25 pt)

(*) Comme $|f_n| \leq |f| \in \mathcal{L}^1(\mathbb{R})$ et $\{f_n\}_n$ converge simplement p.p. sur \mathbb{R} , alors d'après le T.C.D. $(0.25\ pt)$. on a

$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n(x) d\lambda(x) = \int_{\mathbb{R}} \lim_{n \to +\infty} f_n(x) d\lambda(x) (0.25 \ pt)$$
$$= \int_{\mathbb{R}} 0 d\lambda(x) = 0 (0.25 \ pt).$$