Math 136 - Linear Algebra

Winter 2016

Lecture 16: February 8, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

16.1 Linear Mapping Example

Example 16.1 Write down the standard matrix for $Proj_{\vec{a}}$ with $\vec{a} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^n$

$$Proj_{\vec{a}}(\vec{e_n}) = \frac{\vec{e_n} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a} = \frac{1}{n} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

16.2 Rotation

Definition 16.2 Let $\mathbb{R}_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ denote the function of the map that rortates a vector $\vec{x} \in \mathbb{R}^2$ about the orgin counterclockwise through a angle θ , then we have

$$R_{\theta}(x_1, x_2) = (x_1 \cos \theta - x_2 \sin \theta, x_1 \sin \theta + x_2 \cos \theta)$$

Example 16.3 Let $R(\vec{e_1}) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ $R(\vec{e_2}) = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$ then,

$$\begin{bmatrix} \mathbb{R}_{\theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Theorem 16.4 For $\mathbb{R}_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2 \ \forall \vec{x}, \vec{y} \in \mathbb{R}^2$ we have.

1. $\|\mathbb{R}_{\theta}(\vec{x})\| = \|\vec{x}\|$

2. $\mathbb{R}_{\theta}(\vec{x}) \cdot \mathbb{R}_{\theta}(\vec{y}) = \vec{x} \cdot \vec{y}$

16.3 Reflection

Definition 16.5 Let $Refl_p : \mathbb{R}^n \to \mathbb{R}^n$ denote the mapping that sends \vec{x} to its mirror image in hyperplane P with normal vector \vec{n} , then we define a reflection as:

$$Refl_P(\vec{x}) = \vec{x} - 2Proj_{\vec{n}}(\vec{x})$$

16.4 Special Subspaces

Definition 16.6 Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping, then the range of L is defined by :

$$Range(L) = \{ L(\vec{x}) \mid \vec{x} \in \mathbb{R}^m \}$$

Theorem 16.7 The range of a linear mapping $L: \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of \mathbb{R}^m

Proof:

```
\begin{split} L(\vec{0}) &= \vec{0} \in Range(L), \text{ non- empty} \\ \forall L(\vec{x}), L(\vec{y}) \in Range(L) \quad L(\vec{x}) + L(\vec{y}) = L(\vec{x} + \vec{x}) \in Range(L) \ \forall L(\vec{x}) \in Range(L), \forall c \in \mathbb{R} \quad cL(\vec{x}) = L(c\vec{x}) \in Range(L) \\ &\Longrightarrow Range(L) \text{ is a subspace of } \mathbb{R}^m \end{split}
```

End of Lecture Notes Notes By: Harsh Mistry