ΑΝΑΛΟΓΙΕΣ

7 Σεπτεμβρίου 2015

ΑΝΑΛΟΓΑ ΤΜΗΜΑΤΑ - ΑΝΑΛΟΓΙΕΣ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΑΝΑΛΟΓΙΑ

Αναλογία ευθυγράμμων τμημάτων ονομάζεται η ισότητα δύο ή περισσότερων λόγων ευθυγράμμων τμημάτων. Αν a, β, γ, δ είναι ευθύγραμμα τμήματα τότε η αναλογία έχει ως εξής

$$\frac{a}{\beta} = \frac{\gamma}{\delta} = \lambda$$

- Τα ευθύγραμμα τμήματα *a*, β, γ, δ ονομάζονται **όροι** της αναλογίας.
- Οι αριθμητές της αναλογίας είναι ανάλογοι προς τους παρονομαστές της δηλαδή τα ευθύγραμμα τμήματα a, γ είναι ανάλογα προς τα β, δ .
- Τα ευθύγραμμα τμήματα a και δ ονομάζονται **άκροι όροι** ενώ τα β , γ **μέσοι όροι** της αναλογίας.
- Το ευύγραμμο τμήμα δ ονομάζεται **τέταρτη ανάλογος** των a, β, γ .
- Τα ευθύγραμμα τμήματα που βρίσκονται μέσα στον ίδιο λόγο (κλάσμα) ονομάζονται ομόλογα ή αντίστοιχα.
- Αν σε μια αναλογία οι μέσοι όροι είναι μεταξύ τους ίσοι τότε η αναλογία ονομάζεται συνεχής.

$$\frac{a}{\beta} = \frac{\beta}{\gamma}$$

Ο μέσος όρος β ονομάζεται **μέση ανάλογος** ή **γεωμετρικός μέσος** των a, γ .

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΑΝΑΛΟΓΙΩΝ

Για κάθε αναλογία με όρους τα ευθύγραμμα τμήματα a, β, γ, δ θα ισχύουν οι παρακάτω ιδιότητες :

	Ιδιότητα	Συνθήκη
1	Χιαστί γινόμενα	$\frac{a}{\beta} = \frac{\gamma}{\delta} \Leftrightarrow a \cdot \delta = \beta \cdot \gamma$
2	Εναλλαγή μέσων και άκρων όρων	$\frac{a}{\beta} = \frac{\gamma}{\delta} \Leftrightarrow \frac{a}{\gamma} = \frac{\beta}{\delta} \text{kai} \frac{\delta}{\beta} = \frac{\gamma}{a}$
3	Άθροισμα - Διαφορά στους αριθμητές	$\frac{a}{\beta} = \frac{\gamma}{\delta} \Leftrightarrow \frac{a \pm \beta}{\beta} = \frac{\gamma \pm \delta}{\delta}$
4	Άθροισμα - Διαφορά στους παρονομαστές	$\frac{a}{\beta} = \frac{\gamma}{\delta} \Leftrightarrow \frac{a}{a \pm \beta} = \frac{\gamma}{\gamma \pm \delta}$
5	Άθροισμα - Διαφορά αριθμ. και παρονομ.	$\frac{a}{\beta} = \frac{\gamma}{\delta} = \frac{a \pm \beta}{\gamma \pm \delta}$