Gem5使用报告

默认参数设置

sieve程序数据规模: 1000000, 编译选项 -static -lm

内存大小: 8GB

L1i缓存: 16kB

L1d缓存: 64kB

L2缓存: 256kB

CPU模型: TimingSimpleCPU, AtomicSimpleCPU, DerivO3CPU, O3CPU (新版Gem5在x86下不支持

MinorCPU, 故未使用)

内存类型: DDR3_1600_x64, DDR3_2133_x64, LPDDR2_S4_1066_x32

实验数据

详见附件Gem5-Data.xlsx

CPU frequency(GHz)		TimingSimpleCPU			AtomicSimpleCPU			DerivO3CPU			O3CPU		
Memory	DDR3_1600_x64	DDR3_2133_x64	LPDDR2_S4_1066_x32	DDR3_1600_x64	DDR3_2133_x64	LPDDR2_S4_1066_x32	DDR3_1600_x64	DDR3_2133_x64	LPDDR2_S4_1066_x32	DDR3_1600_x64	DDR3_2133_x64	LPDDR2_S4_1066_x32	
1	0.260373s	0.257688s	0.279842s	0.087587s	0.087587s	0.087587s	0.118693s	0.115787s	0.142115s	0.118693s	0.115787s	0.142115s	
1.5	0.189303s	0.186764s	0.210261s	0.058420s	0.058420s	0.058420s	0.094858s	0.091853s	0.119390s	0.094858s	0.091853s	0.119390s	
2	0.152997s	0.150182s	0.176292s	0.043793s	0.043793s	0.043793s	0.082485s	0.079386s	0.107751s	0.082485s	0.079386s	0.107751s	
2.5	0.131395s	0.129024s	0.154846s	0.035035s	0.035035s	0.035035s	0.075049s	0.072267s	0.101127s	0.075049s	0.072267s	0.101127s	
3	0.117579s	0.114780s	0.141280s	0.029166s.	0.029166s	0.029166s.	0.070292s	0.067235s	0.096602s	0.070292s	0.067235s	0.096602s	

结果分析

本次实验采用了两种<u>SimpleCPU</u>类型——TimingSimpleCPU和AtomicSimpleCPU,以及两种<u>O3CPU</u>类型——DerivO3CPU和O3CPU。SimpleCPU模型顾名思义非常地单纯,采用顺序执行,没有冗繁的细节,可能就只包含用户信息处理和程序运行等阶段;而O3CPU模型采用的是乱序,采用"Pipeline"流水线的方式,经历Fetch、Decode、Rename、Issue/Execute/Writeback、Commit阶段,并且采用了**Execute-in-execute model**去尽可能实现时间上的精确。

以模拟时间来表征性能,可以看到DerivO3和O3在实验中的性能表现完全一致。

当CPU频率和内存选项相同时他们的性能由于TimingSimple, TimingSimple又优于AtomicSimple。

当CPU模型和CPU频率相同时,不同内存下的性能表现为DDR3_2133_x64优于DDR3_1600_x64优于LPDDR2_S4_1066_x32,并且DDR3_2133_x64和DDR3_1600_x64的性能较为接近,但是CPU模型为AtomicSimple时,三种内存的性能表现完全一样

当CPU模型和内存相同时,性能随着CPU频率升高而增强。

对Assignment中几个问题的回答

由于DerivO3和O3在实验中性能表现完全相同,下统称O3

哪种CPU模型对CPU频率更敏感,为什么?

AtomicSimple是最敏感的,这与其采用顺序执行的方式和Atomic式访存有关,顺序执行时所有指令排成一列,而Atomic访存是非常简单的一种访存方式,相较于复杂的访存方法,完成需求时能避免资源冲突和需求队列造成的延迟,这使得影响AtomicSimple性能的因素较少,CPU频率能有相对更大的影响。

哪种CPU模型对内存类型更敏感,为什么?

O3最敏感。这可能与其实现中的"Memory Order Misspeculation"有关,因为O3采用乱序,读写的顺序在执行命令后会有重排操作,这导致其对Memory的性能要求比采用顺序的SimpleCPU更高。

埃氏筛法程序对CPU频率和内存类型哪个更敏感,为什么?

对CPU频率更敏感,原因在于算法空间复杂度是O(n)而时间复杂度是O(nloglogn),时间复杂度更高,导致程序对时间因素更敏感。

换一个程序,结论会改变吗,为什么?

我认为会,例如用C++实现对于给定**有序**序列的二分查找,空间复杂度是O(n),时间复杂度是O(logn),那么应该会对内存类型更敏感。