User Guide: Visual Filter App

Introduction

The Visual Filter App is designed to help users to filter and process animal tracking data from the ATLAS system (Advanced Tracking and Localization of Animals in real-life Systems).

System Requirements

Software: R version 4.0 or higher (version 4.2.2. is the most recommended), RStudio (recommended)

Access: a working VPN connection to the ATLAS database server, and credentials to connect to the database.

R Packages:

- roxygen2
- crayon
- lubridate
- DBI
- RMySQL
- RSQLite
- Rcpp
- dplyr
- leaflet
- sf
- RColorBrewer
- htmltools
- leaflet.extras

Usage

Instructions for the first run

- 1. Download the App Folder
 - 1.1. Download the folder Visual_Filter_App
- 2. Install the required packages:
 - 2.1. open and run the script:

```
install_required_R_packages_visual_filter.R
```

- 3. Set the Working Directory
 - 3.1. Open the script visual_filter_shiny_app.R
 - 3.2. Update the variable path_to_visual_filter_folder to the path where Visual_Filter_App is located.
 - 3.3. Make sure to include "/" at the end of the path
- 4. Set the running configuration:

open the file config_visual_filter.R and modify the following sections as follows:

- 4.1. Data to retrieve
 - 4.1.1. Choose your animal's name code, e.g.:
 - 4.1.1.1. Choose two English letters which represent the animal's name
 - 4.1.1.2. Example: animal_name_code <- "BO" for Barn Owl
 - 4.1.2. Insert the tag number and time range:
 - 4.1.2.1. tag_number <- 972006000556
 - 4.1.2.2. start_time <- '2021-07-04 17:00:00'
 - 4.1.2.3. end_time <- '2021-07-06 05:00:00'
- 4.2. Baseline Filter Settings:
 - 4.2.1. set the values that apply to the animal you are working on
 - 4.2.2. Please tag outliers in data of one animal and one tag at a time
- 4.3. Start and End times for the AssignDayNumbers function
 - 4.3.1. The Visual Filter divides the data into day segments and assigns them DAY numbers (e.g. 1, 2, etc.)
 - 4.3.2. The function which does that is called AssignDayNumbers

4.3.3. If you want to see data only within a specific time range each day (e.g.,

05:00-18:00), set:

- 4.3.3.1. day_start_time <- "05:00:00"
- 4.3.3.2. day_end_time <- "17:00:00"
- 4.3.4. Otherwise, leave as **full-day settings**:
 - 4.3.4.1. day_start_time <- "00:00:00"
 - 4.3.4.2. day_end_time <- "00:00:00"

4.4. File Paths

- 4.4.1. Create two folders:
 - 4.4.1.1. One for the raw ATLAS data (input)
 - 4.4.1.2. One for the filtered data (output)
- 4.4.2. Set the folder paths in the config file:
 - 4.4.2.1. raw_data_path <- "path/to/raw_data_folder/"
 - 4.4.2.2. filtered_data_path <- "path/to/filtered_data_folder/"
 - 4.4.2.3. Make sure to include '/' at the end of the paths

4.5. CSV Settings

4.5.1. The **manual tagging** process requires raw data from the ATLAS server.

Keep this setting:

- 4.5.1.1. upload_gps_data_from_csv <- FALSE
- 4.5.2. To upload data later from CSV files for other uses, set:
 - 4.5.2.1. upload_gps_data_from_csv <- TRUE
- 4.5.3. To save filtered data as CSV in addition to the default SQLite storage:
 - 4.5.3.1. save_filtered_data_as_csv <- TRUE
- 4.6. **Background Map Setting** choose between:
 - 4.6.1. 'Esri.WorldImagery'
 - 4.6.2. 'CartoDB.Positron'
- 4.7. Credentials of the Harod ATLAS database
 - 4.7.1. In case the credentials change later, update them here
 - 4.7.2. **Do not share these credentials** with unauthorized users or store them in Git or other unsecured cloud platforms.

4.8. ATLAS time information

4.8.1. No changes needed

- 5. Connect to the TAU VPN server (GlobalProtect)
 - 5.1. Ensure you are connected to the TAU VPN before running the app.
- 6. Run the app
 - 6.1. Open visual_filter_shiny_app.R and click on 'Run App' in RStudio.
- 7. Tag outliers and save the data
 - 7.1. Instructions in the next section
- 8. Upload and plot the filtered data
 - 8.1. Open upload_and_plot_filtered_data.R
 - 8.2. Set the file name you want to upload, for example:

file_name <- "BO_0556_from_2021-07-04_17-00-03_to_2021-07-04_23-59-58_filtered.sqlite"

- 9. Validate the outliers tagging
- 10. Submit the .sqlite files of the tagged data

Instructions for runs with modified parameters

1. Modify parameters in config_visual_filter.R

To retrieve data for a different **animal**, **tag number**, or **time range**:

1.1. Set the Data to Retrieve:

Open config_visual_filter.R and update the following variables:

- 1.1.1. animal_name_code <- "BO"
- 1.1.2. tag_number <- 972006000556
- 1.1.3. start_time <- '2021-07-04 17:00:00'
- 1.1.4. end_time <- '2021-07-06 05:00:00'
- 1.2. Adjust the baseline filter thresholds (if needed)
 - 1.2.1. Speed in m/s: speed_threshold_baseline_filter <- 20
 - 1.2.2. Standard Deviation: std_threshold_baseline_filter <- 15
 - 1.2.3. Number of participating Base Stations:

```
nbs_threshold_baseline_filter <- 3
```

1.3. Modify the Start and End times for the AssignDayNumbers function (if needed)

- 1.3.1. day_start_time <- "00:00:00"
- 1.3.2. day_end_time <- "00:00:00"

(If you want to filter data within a specific time window each day, change these values accordingly.)

- 2. Run visual_filter_shiny_app.R
- 3. Tag outliers and save the data
 - 3.1. Instructions in the next section
- 4. Upload and plot the filtered data
 - 4.1. Open upload_and_plot_filtered_data.R
 - 4.2. Set the file name you want to upload, for example:

file_name <- "BO_0556_from_2021-07-04_17-00-03_to_2021-07-04_23-59-58_filtered.sqlite"

- 5. Validate the outliers tagging
- 6. Submit the .sqlite files of the tagged data

App Features: Manual Tagging of Outliers

Running the App in a Web Browser

• Click "Open in Browser" to launch the app in your web browser:

Data Display Options

• The data can be displayed in **daily segments** (as assigned by the AssignDayNumbers function) or in **custom-sized chunks** (set by the user):

Viewing the Track

- For each segment, you can choose between:
- 1. **Unfiltered Track** Displays the entire track without filtering:

2. **Filtered Track** – Shows valid points and outliers based on the baseline filter thresholds set in the config file:

Manual Tagging of Data

To manually tag the data, ensure that you are in "Filtered Data" Display Mode.

Tagging Individual Points

- In "Filtered Data" Display Mode, you can manually toggle the classification of single points (valid vs. outlier) by clicking on them.
- By hovering over a point, a popup will appear, which includes the date, time, standard deviation (STD), and number of participating base stations (NBS):

Tagging by Polygon Selection

• You can mark multiple points using a polygon selection tool:

 In the "Polygon Action" menu, choose whether to classify selected points as Valid Points or Outliers:

2. Click the **polygon button** on the map to activate polygon selection:

3. Click on the map to place polygon vertices and create the desired selection area:

Removing Marked Polygons

To clear marked polygons, click "Delete Layers", then select "Clear All":

Saving the tagged data

To save the segment data when finished tagging, click "Save Data":

 The Outliers will change their colour. If needed, you can keep toggling points and save again:

Navigating to the next or previous data segment

 To navigate to the next or previous segment, click "Next Segment" or "Previous Segment":

 You will be asked if to save the data or not, even if you saved it already, in order to make sure the data is saved

Contact Information

For support, contact:

Dr. Neta Tsur

Email: tsur.neta@gmail.com