Data Structures & Algorithms 1

Topic 9 – Recursion

Recursive methods

When a method is called the program goes off and runs it

Consider the following method...

```
public static void sayHello()
{
    System.out.println("Hello World!");
    sayHello();
}
```

What will happen?

Recursive methods

As you'd expect, the main method calls <code>sayHello()</code>, which prints out "Hello World!" and calls

...and all of a sudden the program crashes!

Recursion

- Recursion is when a method calls itself
- It is used when a complicated problem can be broken down into a simpler problem of the same type
- In that case you can just call the same method on the simpler problems and use the results to solve the bigger problem

Iterative example

- This program figures out the factorial of a number using an ordinary loop
- public static int factorial(int N) {
 int product = 1;
 for (int j=1; j<=N; j++)
 product = product * j;
 return product;
 }</pre>

Recursive example

- This program does exactly the same thing but cleverly calls itself
- It can do this because factorial (5) =
 factorial (4) x 5 and factorial (4) =
 factorial (3) x 4
- Figure out the answer to the smaller problem first and use this to figure out the answer to the bigger problem

```
public static int factorial( int N ) {
  return N * factorial( N-1 ) ;
}
```

Base case

- There's a flaw with the previous piece of code
- The problem is that it goes on forever
- We need to get it to stop at some point
- In order to stop, all recursive methods must have base case where the answer is known automatically without calling another recursive method

Base case

- The answer to factorial (1) will always be 1
- We can set this as the base case using an if statement

```
public static int factorial( int N ) {
  if ( N == 1 )
    return 1;
  else
    return N * factorial( N-1 );
}
```

Recursive example

• So, to calculate factorial (5):

Recursion

- The method keeps calling itself until it reaches the base case and then it filters back up
- Recursion can be used to simplify a problem conceptually
- It also reduces the amount of code needed
- The characteristics of a recursive method are
 - It calls itself
 - When it calls itself, it does so to solve a smaller problem
 - There's some version of the problem that is simple enough that the routine can solve it and return without calling itself

Example

 How can we find the nth term of this sequence?

```
[1 3 6 10 15 21 ...]
```

- Each time the nth term is obtained by adding n to the term before
- The numbers are called triangular numbers because they can be visualized as a triangular arrangement of numbers
- The 3rd term is the total number of items in three rows etc.

Total = 10

Example

- Say we want to get the fourth term we have to add 4+3+2+1=10
- We can do this with a while loop:

```
public static int triangle (int n) {
  int total = 0;
  while(n > 0) {
    total=total+n;
    n--;
  }
  return total;
}
```

Algorithm

• Therefore the following is true:

pins in N rows = pins in row N + pins in N-1 rows

- Here is the algorithm for recursive triangular numbers:
 - Triangle(1) = 1
 - Triangle(N) = N + Triangle(N 1)

Example

• So, to calculate triangle (5):

```
triangle(5) = 5 + triangle (4)

= 5 + (4 + triangle (3))

= 5 + (4 + (3 + triangle (2)))

= 5 + (4 + (3 + (2 + triangle (1))))

= 5 + (4 + (3 + (2 + 1)))

= 5 + (4 + 6)

= 5 + 24

= 120
```

Fibonacci Series

- The Fibonacci series is as follows:
- 1, 1, 2, 3, 5, 8, 13...
- Each term is calculated by the sum of the two terms before it

```
public static long fibonacci(int n) { f_1 = 1 if (n == 1) return 1; f_2 = 1 if (n == 2) return 1; f_n = f_{n-1} + f_{n-2} }
```

The Efficiency of Recursion

- Recursive implementation of fib is straightforward
- First few calls to fib are quite fast
- For larger values, the program pauses an amazingly long time between outputs
- It turns out that using recursion to compute Fibonacci numbers is terrible!!
- Lesson: recursion can simplify code but is not always more efficient

Call tree for computing fib(6)

The efficiency of recursion

- Method takes so long because every level doubles the number of recursive calls
- The computation of fib(6) calls fib(3) three times and fib(2) five times!
- · A recursive method should not call itself more than once
- The most efficient way to compute Fibonacci numbers is just using an ordinary loop

Remember Binary Search?

- We keep dividing our search space and therefore need to keep track of the bounds
 - Upperbound
 - Lowerbound
- If the number is bigger than 27 then 27 is the new lower bound

Recursive Binary Search

- The binary search for arrays keeps dividing the array in half and then selecting the half where the desired cell can be
- Instead of using a loop as before, we can simply call the search function on the half of the array
- The find method makes the initial call to search the whole array using recursive find

```
public int find(long searchKey) {
  return recFind(searchKey, 0, nElems-1);
}
```

Recursive Binary Search

```
private int recFind(long searchKey, int lowerBound,
                                         int upperBound) {
     int middle;
     middle = (lowerBound + upperBound ) / 2;
     if(a[middle] == searchKey)
       return middle;
                                     // found it
     else if(lowerBound > upperBound)
                                     // can't find it
       return -1;
     else {
                                    // divide range
      if(a[middle] < searchKey)</pre>
                                 // it's in upper half
          return recFind(searchKey, middle+1, upperBound);
                                   // it's in lower half
         return recFind(searchKey, lowerBound, middle-1);
        } // end else divide range
  // end recFind()
```

Recursive Binary Search Method

Call with lowerbound=0 upperbound=15

```
Lowerbound=0
Upperbound=15
Lowerbound=6
Lowerbound=0
Upperbound=2
Lowerbound=2
Uppperbound=2
Found it at 2
Return 2
```

Divide and Conquer

- Recursive binary search is an example of the divide and conquer approach
- The big problem is divided into two smaller problems and each one is solved separately
- These are then divided into even smaller problems etc.
- The process continues until you get to the base case which can be solved easily with no further division
- The answer is then filtered back through all the recursive method calls

Towers of Hanoi

- In the late Victorian era, a toy came out that was based on an idea of a French mathematician, Edouard Lucas. The toy consisted of a set of three rods and a set of discs
- The idea is to move all the discs one at a time without ever placing a disc on top of a smaller one

Starting Position

Ending Position

Solution

Legend

- Somewhere in Tibet, in a remote temple, monks labor day and night to transfer 64 golden disks from one of three diamondstudded towers to another
- When all the discs have been correctly moved, the universe will end
- Do we need to be worried? Not if we remember Big O Notation
- The problem is exponential O(2ⁿ)
- At a second per move, it will take the monks about five hundred trillion years

Recursive Algorithm

- Lets call the initial tree-shaped arrangement of disks a tree and the smaller groupings subtrees
- In order to transfer 5 disks, one of the intermediate steps involves a subtree of 4 disks
- The creation of a subtree is the only way to transfer a larger disk from one tower to another

Recursive Algorithm

- We can break the problem into smaller and smaller subtrees
- Assuming there are n disks, the algorithm is
 - Move the subtree of the top n-1 disks from source rod to intermediate rod
 - 2. Move the remaining largest disk from source rod to destination rod
 - Now solve moving the subtree from intermediate rod to destination rod
- Keep calling the recursive algorithm for moving the smaller subtrees
- What's the base case? When you're moving only one disk, you just move it, there's nothing else to do

Java Implementation

Output

Disk 1 from A to C Disk 2 from A to B Disk 1 from C to B Disk 3 from A to C Disk 1 from B to A Disk 2 from B to C Disk 1 from A to C

- How about those monks?
- Put nDisks = 64 and what output do you get?

Palindromes

- A palindrome is a phrase that reads the same forwards as backwards
- You can also think about it as a string whose first half is a mirror image of its second half

"rats live on no evil star"

"ten animals I slam in a net"

N A Y A N

Think Recursively

- How do we make the problem smaller?
 - Remove both the first and last characters
 - Remove a character from the middle
- Most promising simplification: remove first and last characters
 - "AVA", is a palindrome too!
- A word is a palindrome if
 - The first and last characters match, and
 - Word obtained by removing the first and last characters is a palindrome

Palindromes

- If we have a palindrome like radar we can check if the first and last letters are the same
- If they are not then it is not a palindrome
- We now need to check the middle letters to see if they are a palindrome
- Call the recursive method on the middle letters

Palindromes

To pick out the middle letters we can use the substring method

```
word.substring(1, word.length()-1);
```

 The base case is when we have just one or two letters left and all the other letters have checked out

radar

Raising to a power

- We can use recursion to raise a number to a power
- For example, 28 is 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
- Do we really need to multiply these all out?
- After we've calculated 2 x 2 x 2 x 2 we know we can just square it
- But in order to get 2⁴ we only need to multiply 2 x 2 and then square that!
- We can keep halving the problem
- In fact we can figure out 2⁸ using just 3 multiplications instead of 7 – that is O(logn) instead of O(n)

Raising to a power

- In the previous example, the power was always even, so could be easily divided by two
- If the power happens to be odd then we need to subtract one from the power, solve that, and then multiply it again to account for the power we subtracted
- Base case is raising to the power of zero

```
int power(int k, int n) {    // raise k to the power n
    if (n == 0)
        return 1;
else{
    int t = power(k, n/2);    //if odd, will discard remainder
    if ((n % 2) == 0)
        return t * t;
    else
        return k * t * t;    //extra multiplication to make up
    }
}
```

Mergesort

- Our final example of recursion is Mergesort
- This is more efficient than any of the other sorting algorithms we have considered, which were all O(n²)
- Mergesort is O(n*logn)
- If the number of items to be sorted is 10,000 then n² is 10 million whereas n*logn is only 40,000
- If this many items can be sorted in a second by Mergesort, it would take nearly an hour using insertion sort

Merge Sort Example

 The idea of mergesort is to divide an array in half and sort each half

5 9 10 12 17 1 8 11 20 32

- They don't have to be the same size
- Both halves are merged into a separate workspace array
- Keeps comparing the lowest number in each of the halves before copying one into a workspace array

Merge Sort Example

 Merge the two sorted arrays into a single sorted array

Sorted array									
5	9	10	12	17	1	8	11	20	32
5	9	10	12	17	1	8	11	20	32
5	9	10	12	17	1	8	11	20	32
5	9	10	12	17	1	8	11	20	32
5	9	10	12	17	1	8	11	20	32
5	9	10	12	17	1	8	11	20	32
5	9	10	12	17	1	8	11	20	32
5	9	10	12	17	1	8	11	20	32
5	9	10	12	17	1	8	11	20	32
5	9	10	12	17	1	8	11	20	32

How to Merge

Here are two lists to be merged:

First: (12, 16, 17, 20, 21, 27) Second: (9, 10, 11, 12, 19)

Checkout 12 and 9

First: (12, 16, 17, 20, 21, 27) Second: (10, 11, 12, 19)

Workspace: (9)

Checkout 12 and 10

First: (12, 16, 17, 20, 21, 27)

Second: (11, 12, 19)

Workspace: (9, 10)

Merge Example

Checkout 12 and 11

First: (12, 16, 17, 20, 21, 27)

Second: (12, 19) Workspace: (9, 10, 11)

Checkout 12 and 12

First: (16, 17, 20, 21, 27)

Second: (12, 19) Workspace: (9, 10, 11, 12)

Merge Example

Checkout 16 and 12

First: (16, 17, 20, 21, 27)

Second: (19) Workspace: (9, 10, 11, 12, 12)

Checkout 16 and 19

First: (17, 20, 21, 27)

Second: (19)

Workspace: (9, 10, 11, 12, 12, 16)

Merge Example

Checkout 17 and 19

First: (20, 21, 27) Second: (19)

Workspace: (9, 10, 11, 12, 12, 16, 17)

Checkout 20 and 19

First: (20, 21, 27)

Second: ()

Workspace: (9, 10, 11, 12, 12, 16, 17, 19)

Merge Example

Checkout 20 and empty list

First: ()
Second: ()

Workspace: (9, 10, 11, 12, 12, 16, 17, 19, 20, 21, 27)

Java Implementation

- In the following merge method
 - theArray is the array being sorted
 - first, second and upperBound define the edges of the two halves being sorted. first and second are incremented as items are copied into the workspace
 - first → second 1 is the first half
 - second → upperBound is the second half
 - workSpace is the intermediate array into which values are copied
 - The values from workSpace are then copied back into theArray

Java Implementation

```
public void merge(long[] workSpace, int first,
                          int second, int upperBound) {
     int j = 0;
                                             // workspace index
    int lowerBound = first;
    int mid = second - 1;
    int n = upperBound-lowerBound+1;
                                           // # of items
     while (first <= mid && second <= upperBound) //halves not empty
       if( theArray[first] < theArray[second] )</pre>
           workSpace[j++] = theArray[first++];
           workSpace[j++] = theArray[second++];
     while(first <= mid)</pre>
                                 //check first half for remaining
        workSpace[j++] = theArray[first++];
     while (second <= upperBound) //check second half for remaining
        workSpace[j++] = theArray[second++];
     for (j=0; j< n; j++)
        theArray[lowerBound+j] = workSpace[j]; //copy the workspace back
} // end merge()
```

Merge

- Merges two areas of an array into a workspace (temporary array)
- Copies the workspace back onto original array

recMergeSort method

- Computes the midpoint
- Calls recMergeSort method on each of the halves
- Calls merge method to merge the two sorted halves back together
- Base case is when the range contains only one element (lowerBound==upperBound)
- A single element is always sorted (obviously!) so it just returns itself

	,														
lergeS	or	t													
			1		ı										_
Original	24		26	1	12	27	38	15							L
Divide in 2	24	13	26	1		12	27	38	15						
Divide in 4	24	13		26	1		12	27		38	15				
Divide in 8	24		13		26		1		12		27		38		1
Merge 2	13	24			1	26			12	27			15	38	
Merge 4	1	13	24	26					12	15	27	38			
Merge 8	1	12	13	15	24	26	27	38							

Execution Example (cont.)

Merge

Java Implementation

MergeSort Alternative Version (2 in 1)

```
public static void mergeSort(int left, int right) {
  int mid = (left + right) /2; // computes midpoint
  if(left==right)
                              //base case
      return;
 mergeSort(left, mid);
 mergeSort(mid+1, right);
  for(int i=left; i<=right; i++)</pre>
      workSpace[i]=array[i]; //copies entire array into workspace
  int i1=left;
  int i2=mid+1;
  for(int curr=left; curr<=right; curr++) { //merge workspace</pre>
      if(i1>mid){
                                             //copies all remnants in
              array[curr]=workSpace[i2++];
      }else if(i2>right){
                                             //copies all remnants in
              array[curr] = workSpace[i1++];
      }else if(workSpace[i1]>workSpace[i2]){
                                                        This alternative
              array[curr]=workSpace[i1++]; //merge
                                                        version copies the
      }else{
                                                        elements into
              array[curr]=workSpace[i2++]; //merge
                                                        workspace first
                                                        and then merges
                                                        these back into
                                                        array
```

Analyzing the Merge Sort Algorithm

n	Merge Sort (ms)	Selection Sort (ms)					
10,000	31	772					
20,000	47	3,051					
30,000	62	6,846					
40,000	80	12,188					
50,000	97	19,015					
60,000	113	27,359					

Merge Sort Timing (blue) versus Selection Sort (red)

Analyzing the Merge Sort Algorithm

- In an array of size n, lets figure out the number of copies and comparisons needed
- Copies take longer than comparisons but the order of the algorithm is determined by whichever of these has the highest order
- Every time the array is split again, each element is going to end up being copied (see tree diagram a few slides back)
- The number of levels / splits required will be log₂n since each step halves the search space (see Topic 3)
- Number of copies will be the number of levels multiplied by n since the full array is copied on each level
- Total number will be doubled because these need to be copied back into the array (copied from workspace back into original array)
- Number of copies is proportional to n*logn

Number of Comparisons

- When merging, the maximum number of comparisons needed will be at most one less than the number of items being merged (n-1)
- Minimum comparisons will be half the number of items being merged (n/2)
- There are still log₂n number of levels each involving a full merging of the array
- If the number of comparisons for each level is somewhere between n/2 and n-1 then the total number of comparisons is O(n*logn)
- Both copies and comparisons are O(n*logn) so algorithm is more efficient than insertion sort

