研究トレンド予測

これまでの論文の投稿履歴を用いて、今後の研究トピックのトレンドを予測する。研究トピックのトレンドを予測し、研究者に対して、新しい示唆を与える人工知能の作成を目標とする。

イントロダクション

近年、論文の投稿数が増えてきていて、全ての論文に目を通すことは難しい。その結果、研究者は、狭い範囲の専門家になっていってしまっている。人工知能の期待される役割として、新しい示唆を人間に与えることにある。新しい示唆を研究者に与え、より幅広い分野であり、新規性の高い研究トピックを推薦するAIを作成したい。

問題設定

これまでの論文に含まれる、研究トピックを特定する。そして、二つの研究トピックがともに存在する論文があった時、その研究トピック間のエッジに重みを1追加する。このようにすることで、重み付きのグラフを作成する。そして、現在の重み付きのグラフG=(V,E)から、将来の重み付きグラフの各エッジの重みG'=(V',E')を予測する。

手法

研究トピックの特定

研究トピックは、論文のキーワードにする。2000年から2015年までの論文に含まれるキーワードの数は、6,266,923個ある。多すぎるため、出現数が2000以上の1123個のキーワードを作成した。

研究トピックの予測

今後の研究トピックのトレンド予測を行う。現在を2015年であるとする。

(学習時)2000年~2010年の重み付きのグラフから特徴量を作成し、2010年~2015年の重み付きのグラフのエッジ 予測を行う。

(テスト時)2000年~2015年の重み付きのグラフから特徴量を作成し、2015年~2020年の重み付きのグラフのエッジ 予測を行う。

予測手法は、NN、LightGBM(Random Forestは、実行時間orメモリの問題で処理が終わらない)、線形回帰を実行。

イメージ

枝の重みは、論文数を表す。リンクなし=論文数0。 2005年~2010年の重み付きのグラフ

2005年~2010年の重み付きのグラフ

2005年~2010年の重み付きのグラフにおける各トピック(ノード)の特徴量に加えて、現在の論文数の推移を特徴量に入れて、2010年~2015年の重み付きのグラフを予測する。

実験

今回は、Aminer(https://www.aminer.org/citation)で実験を行った。情報系の論文を登録しているデータセット。論文数は、5,354,309である。訓練データの密度: 0.298, テストデータの密度: 0.0829とかなり、密度の高いグラフである。出現数が2000以上のキーワードに絞っていることが理由として考えられる。

特徴量は、参考論文で用いられていた特徴量に加えて、過去5年の二つのトピックに関する論文数を用いる。合計23次元である。

結果

一旦、ニューラルネットの結果は、保留。学習に時間がかかるため。追加して、LightGBM,線形回帰でもうまく予測ができてしまう。相関係数と、rank@100で評価する。precision@100では、予測値の上位100位までを選んだ時、実際の論文数が上位100位に入っている確率である。

	線形回帰	LightGBM	NN
相関係数	0.536	0.592	0.4
precision@100	0.51	0.28	0.12
RMSE	12.3	9.02	10.5
MSE	152.0	81.4	110.3

つまり、線形回帰で予測された上位100個のトピックのペアのうち、51%のトピックは、5年後のそのトピックに関する論文数は、上位100位に属する。かなり良い予測であると感じる。

うまく予測ができる理由は次のことが関係していると考える。今後5年間に出版される各トピックのペアの論文数と、過去5年のそれぞれの論文数との相関を調べる。すると、相関係数はとても高いことがわかる。つまり、人気なテーマは、継続して高い傾向が得られる。

追加実験

前回までは、今後5年で発表される論文数を当てる問題にした。ここで、各トピックペアに関する論文数の変化(=今後5年で発表される論文数 - 過去5年で発表される論文数)を当てる問題にする。precision@100では、予測値の下位100

位までを選んだ時、実際の論文数が下位100位に入っている確率である。

	線形回帰	LightGBM	NN
相関係数	0.96	0.917	0.78
precision@100	0.86	0.73	0.62
RMSE	12.3	12.4	30.5
MSE	152.0	154.8	931.7

疑問点

- 予測がうまくいっているが、問題が簡単すぎるのか?
- 些細なこと
 - 。 10000 * 10000の行列計算が終わらないことがある。→ daskでなんとかするのが普通?

研究トレンドの推薦方法

未定