Exercice 1

Créez les deux *data.frame* A et B. A partir de ces deux *data.frame* obtenez la matrice C. Quelle fonction on va utiliser dans ce cas ?

	Ident sexe Poids				Ident sexe Taille				Ident sexe Poids Taille			
	1	H	75		1	H	182		1	Н	75	182
A =	2	F	68	B =	2	F	165	C =	2	F	68	165
	3	F	48		3	F	160		3	F	48	160
	4	Н	72		4	Н	178		4	Н	72	178
	5	Н	83		5	Н	183		5	Н	83	183

Exercice 2

Créez le vecteur *taille*<-c(183,160,170,150,191) et le vecteur *sexe*<-c(0,1,1,1,0) contenant les tailles en (cm) et le sexe (codé en 0=H/1=F) de cinq personnes. Extrayez du vecteur *taille* les tailles des femmes. Utilisez l'approche d'extraction par indice puis par masque logique.

Exercice 3

Extrayez du vecteur suivant tous les nombres compris entre 2 et 3 : x=c(0.2, 0.6, 2.1, 3.7, 2.8, 2.7, 1.9, 2.3, 5.9)

Exercice 4

Créez la matrice Y suivante (en respectant les noms des lignes et les noms des colonnes) :

	column 1	column 2	column 3	column 4
row-1	1	6	5	0
row-2	0	6	6	1
row-3	3	0	2	2
row-4	4	4	3	4

Calculer le déterminant puis inverser la matrice en utilisant les fonctions nécessaires.

Exercice 5

- a) Charger le jeu de données Orange (disponible sous R). Calculer les statistiques de bases (moyenne,écart-type,min,etc.) des deux dernières variables de ce jeu de données.
- b) Calculez les quartiles de chacune des deux variables.
- c) En utilisant la fonction *apply*, calculez tous les déciles de chacune des deux variables en utilisant l'argument *probs* de la fonction *quantile*.

Exercice 6

a) Créez le vecteur k de longueur égale à 9 formé de trois fois la suite de nombres (8;2 ;6) b) Créez le vecteur k composé de sept fois le chiffre 4, de 5 fois le chiffre 9 et de 3 fois le chiffre 2 (par deux méthodes différentes).

Exercice 7

- a) Saisissez la variables *taille* contenant les 9 valeurs suivantes : 178;175;160;191;176;155;163;174;182.
- b) Saisissez la variable taille1 contenant les 5 valeurs suivantes : 164;172;156;195;166.
- c) A partir des variables *taille* et *taille*1, créez la variable *new.taille* contenant : les cinq valeurs de *taille*1 répétées deux fois et les sept dernières valeurs de *taille*.
- d) Enregistrez, dans votre répertoire de travail, la variable *new.taille* dans un fichier de format .csv.

Exercice 8

Chargez le jeu de données *iris*, puis visualiser les 7 premières lignes. Créez un sous-jeu de données comportant uniquement les données de la modalité *versicolor* de la variable *Species* (appelez ce nouveau jeu de données *new.iris*).

b) Triez par ordre décroissant les données de *new.iris* en fonction de la variable *Sepal.Length*.

Exercice 9

Convertissez la matrice A de type *character* en matrice *numérique*.

```
> A

[,1] [,2]

[1,] "8" "16"

[2,] "9" "2"
```