Lista Entrega 2

Davi Wentrick Feijó

2023-04-25

4) Exercício 30 da Lista 3

Utilize a decomposição espectral $\Sigma = UDV^T$ para mostrar que $\sum_{i=1}^n Var(x_i) = \sum_{i=1}^n \lambda_i$, em que λ_i são os elementos da matriz diagonal D.

kable(dados)

53	58	51	69
91	52	50	69
97	59	70	63
63	82	91	72

Vamos calcular a matriz de covariancias!

kable(cov)

454.66667	-127.00	-45.33333	-55.00
-127.00000	174.25	236.50000	26.75
-45.33333	236.50	373.66667	16.50
-55.00000	26.75	16.50000	14.25

Vamos obter os autovetores e autovalores

```
## eigen() decomposition
## $values
## [1] 6.162642e+02 3.915484e+02 9.020790e+00 1.452954e-14
##
## $vectors
## [,1] [,2] [,3] [,4]
## [1,] 0.60105416 0.76927209 0.1886343 -0.1066369
## [2,] -0.50567684 0.19806846 0.3803186 -0.7486104
## [3,] -0.61168719 0.60319643 -0.2624244 0.4394613
## [4,] -0.09414674 -0.07171749 0.8665496 0.4848554
```

Obtendo a matriz diagonal dos autovalores

616.2642	0.0000	0.00000	0
0.0000	391.5484	0.00000	0
0.0000	0.0000	9.02079	0
0.0000	0.0000	0.00000	0

Matriz do autovetores

Obtendo a matriz de autovetores

P <- autovetores

Obtendo a matriz inversa dos autovetores

0.6010542	-0.5056768	-0.6116872	-0.0941467
0.7692721	0.1980685	0.6031964	-0.0717175
0.1886343	0.3803186	-0.2624244	0.8665496
-0.1066369	-0.7486104	0.4394613	0.4848554