Uncovering the Relationship Between Elon Musk's Tweets & Bitcoin Stock Prices

Group 12

Nujailah Noor, Pie Liu, Yunxi Yang, Sam Barnett, Yiming Ma, Zozo Chunyu

Overview

- 1. Introduction
- 2. Data Collection & Cleaning
- 3. Exploratory Data Analysis
- 4. Sentiment Analysis
- 5. Predictive Modeling
- 6. Limitations & Next Steps

Introduction

Background

Twitter's sentiment ratio is positively correlated with Bitcoin prices,
 with significant impact from Elon Musk

- Musk Effect Elon Musk changed Twitter bio to #bitcoin
 - Bitcoin value soared from \$32,000 to over \$38,000 in a few hours
 - Market boosted capitalization by \$111 billion

Research Questions

- To what degree does the sentiment conveyed in Elon Musk's tweets impact the closing prices of Bitcoin?
 - What is the relationship between Elon Musk's tweets and the closing prices of Bitcoin, if any?
- Will the inclusion of Elon Musk's tweet sentiments in models predicting Bitcoin prices substantially enhance the model's performance?

Data Collection & Cleaning

Data Collection

Dataset: "Elon Musk Tweets (2010-2011)"

Source: Kaggle

Variables: conversation_id, created_at, date, time, timezone, user id, username, name, tweet + 36

others

Date Range: January 1, 2010 to March 5, 2022

Size: 34, 881 rows

Dataset: "Python `yfinance` package"

Source: Yahoo Finance

Variables: Nasdaq Composite Index, S&P 500 Index, Dow Jones Index Average, Crude Oil Price,

and Gold Price

Date Range: January 2, 2021 to January 31, 2022

Size: 252 rows

Dataset: "Daily Bitcoin Stock Price"

Source: Kaggle

Variables: date, open, high, low, close, Adjusted

Close, and Volume

Date Range: September 17th, 2014 to February

19, 2022

Size: 2,713 rows

Dataset: "Tweet Sentiment Extraction"

Source: Kaggle

Variables: TextID, Text and Sentiment

Date Range: N/A

Size: 27, 481

Data Cleaning

"Elon Musk Tweets (2010-2022)"

"Daily Bitcoin (Stock) Price"

"Python Yahoo Finance Package"

Dataset: "Tweets Grouped"

Variables: date, concatenated tweets txt

Date Range: February 1, 2021 to

January 31, 2022

Size: 352 rows

Each row in this dataset is representative of all tweets made by Musk in a single day.

Dataset: "Stock Combined"

Variables: date, Btc_open, Btc_close, Btc_volume, Nasdaq_close,

Dji_close, Sp_close, Oil_close, Gold_close

Date Range: February 1, 2021 to January 31, 2022

Size: 365 rows

Exploratory Data Analysis (EDA)

Date Range: 2021.02.01 - 2022.01.31

- Stock indices are related to BTC closing price
- Musk's tweets include BTC, doge (seems roughly on par with "mars")

```
needed starship actually indeed duction
last Way high a masston yes production
last Way high a most on yes production
last Way high a m
```

Sentiment Analysis

Sentiment Analysis | Overview

Sentiment Analysis | Naive Bayes - Methodology

- 1. Features & Labels: Label "text" column as X. "Label "sentiment" as y.
- 2. Train | Test Split: Split the data into training (80%) and test (20%) sets.
- **3. Vectorization:** Vectorize X_train using Tfidf vectorizer.
- **4. Model Training:** Apply model to X_train and y_train.
- **5. Predictions:** Use model on X_test to predict for y_test.
- **6. Final Results:** Print accuracy score, classification report and confusion matrix. Determine optimal classifier for sentiment.
- 7. **Apply Model:** Apply the most optimal model to "Tweets Grouped" dataset to classify Elon Musk's tweets.
- 8. Data Matching: Match the "date" column in "Tweets Grouped" dataset to "Stock Combined" dataset's "date" column and concatenate the classification returned by the model.

New "Stock Combined" Dataset

Btc_open	Btc_close	Btc_volume	Nasdaq_close	Dji_close	Sp_close	Oil_close	Gold_close	nb_classification

Sentiment Analysis | Binary Classification - Results

MNB, BNB, Random Forest and Decision Tree Classifier all achieve over 80% accuracy and F1 scores, but they are not the optimal model.

Naive Bayes | MultinomialNB

- Accuracy Score: 0.86
- Confusion Matrix: [1348 184]
 [258 1483]
- Classification Report
 - F1-Score for "Negative": 0.86
 - F1-Score for Positive: 0.87

Random Forest Classifier

- Accuracy Score: 0.86
- Confusion Matrix:

[1343 189] [268 1473]

- Classification Report
 - F1-Score for "Negative": 0.85
 - F1-Score for "Positive": 0.87

Decision Tree Classifier

- Accuracy Score: 0.81
- Confusion Matrix:

[1216 316] [317 1424]

- Classification Report
 - F1-Score for "Negative": 0.79
 - F1-Score for "Positive": 0.82

Naive Bayes | BernoulliNB

- Accuracy Score: 0.87
- Confusion Matrix:
 [[1492 139]

[[1402 130] [307 1434]]

- Classification Report
 - F1-Score for "Negative": 0.87
 - F1-Score for Positive: 0.87

Sentiment Analysis | Part A - Best Model & Results

Naive Bayes | ComplementNB

- Accuracy Score: 0.87
- Confusion Matrix:

[1385 147] [288 1453]

- Classification Report
 - F1-Score for "Negative": 0.87
 - F1-Score for Positive: 0.87

Complement NB has the highest accuracy score and F1 score, so we will use Complement NB sentiment classification results for Bitcoin price modeling.

Sentiment Analysis | VADER - Methodology

- 1. **Apply VADER Package:** Apply vader package to each tweet in "Tweets Grouped" dataset to generate polarity scores.
- 2. Data Matching: Match the "date" column in "Tweets Grouped" dataset to "Stock Combined" dataset's "date" column and concatenate the compound_score.

New "Stock Combined" Dataset

Btc_open	Btc_close	Btc_volume	Nasdaq_close	Dji_close	Sp_close	Oil_close	Gold_close	nb_ classification	compound_ score	
----------	-----------	------------	--------------	-----------	----------	-----------	------------	-----------------------	--------------------	--

Sentiment Analysis | Correlation with Bitcoin Price

The graph above shows that there's weak correlation between Elon Musk's tweet sentiment and Bitcoins closing price.

Predictive Modeling

Predictive Modeling | Overview

Aim to exam to what extent Elon Musk's tweets sentiment can help predict Bitcoin's closing prices.

3 Variations for Further Comparisons "Stock Combined" Baseline With Vader With NB **Predictors** Macro Signals + Macro Signals + Macro Signals, (X)VADER Continuous **Naive Baves** only Binary (compound score) Classifier **Outcome Bitcoin Close** DATASET Bitcoin Close Bitcoin Close (Y) Price (USD) Price (USD) Price (USD)

Model Comparison, to determine: 1. Whether adding the sentiment score as a regressor help improve prediction power 2. Based on the 2 methodology of sentiment analysis, which score output shows greater influence? Continuous or Binary?

Predictive Modeling | Methodology

Features and Labels: Label "btc volume", "Nasdag close", "Dji close", "Sp close", "Oil close", "Gold close" and "compound score"/ "nb classification" (tentative) as X. Label "Btc close" as y. (Note: the features are dependent on which version of dataset the model is being applied to)

Data partition: Train | Test Split: Split the data into training (80%) and test (20%) sets.

- **Grid Search & Cross Validation:** Determine model parameters to test and apply GridSearchCV (applied to Random Forest Modeling only). **Final Results:** Print the **R2** and **RMSE** scores to find most optimal model.

a. **Baseline**: macro signals

b. With Vader: macro signals + vader sentiment score

c. **With NB**: macro signals + Naive Bayes classification

	Linear Modeling			Random Forest				XGBoost			
Scores	Baseline	With Vader	With NB	Scores	Baseline	With Vader	With NB	Scores	Baseline	With Vader	With NB
RMSE	7830	7852	7864	RMSE	2967	2972	2954	RMSE	3282	3474	3185
R2	0.31	0.30	0.30	R2	0.90	0.90	0.90	R2	0.87	0.86	0.89

RMSE (Root Mean Squared Error): typical distance between the predicted values and the actual values. Lower RMSE values imply better model performance.

R-squared: the proportion of variance in the dependent variable that is explained by the independent variables. Higher R-square values imply better model performance.

The most optimal model for predicting Bitcoin's closing prices is **Random Forest Regression with the Naive Bayes classification** as a feature. Additionally, Elon Musk's tweet sentiment **does not significantly improve** the performance of any model in predicting Bitcoin's closing prices.

Limitations & Next Steps

Limitations

- Focus limited to daily impact of Musk's tweets; studies have shown fluctuations within hours of Musk's tweet
- Focused on closing value, not returns -> high RMSE
- Imputed stock values for weekends to fill missing data

Next Steps

- Exploring the influence of Musk's tweets on the price and volume of Bitcoin within shorter timeframe
- Expected return as the dependent variable
- Collect Musk's tweets over a longer time horizon for larger sample size to isolate effect of his crypto-related tweets

Thank You!

Reference

- [1] Pavel Ciaian, Miroslava Rajcaniova & d'Artis Kancs (2016) The economics of BitCoin price formation, Applied Economics, 48:19, 1799-1815, DOI: 10.1080/00036846.2015.1109038
- [2] Georgoula, Ifigeneia and Pournarakis, Demitrios and Bilanakos, Christos and Sotiropoulos, Dionisios and Sotiropoulos, Dionisios and Giaglis, George M., Using Time-Series and Sentiment Analysis to Detect the Determinants of Bitcoin Prices (May 17, 2015). SSRN: https://ssrn.com/abstract=2607167 or http://dx.doi.org/10.2139/ssrn.2607167
- [3] Meiryani, M., Tandyopranoto, C. D., Emanuel, J., Lindawati, A. S. L., Fahlevi, M., Aljuaid, M., & Hasan, F. (2022). The effect of global price movements on the energy sector commodity on bitcoin price movement during the COVID-19 pandemic. Heliyon, 8(10).
- [4] Hakan Yilmazkuday (2023) COVID-19 effects on the S&P 500 index, Applied Economics Letters, 30:1, 7-13, DOI: 10.1080/13504851.2021.1971607
- [5] Hsu P P, Chen Y H, Wang C H. Currency or commodity competition? Bitcoin price trends in the post-pandemic era[J]. International Journal of Applied Economics, Finance and Accounting, 2023, 15(2): 61-70.
- [6] J. Luo, Q. Ji, High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets Energy Econ., 76 (2018), pp. 424-438