1 / 1 point

1 / 1 point

1. The function

 $\beta(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \mathbf{y}$

is

✓ symmetric

⊘ Correct

Yes: $eta(\mathbf{x},\mathbf{y}) = eta(\mathbf{y},\mathbf{x})$

- not symmetric
- positive definite
- **⊘** Correct

Yes, the matrix has only positive eigenvalues and $eta(\mathbf{x},\mathbf{x})>0$ for all $\mathbf{x}\neq\mathbf{0}$ and $eta(\mathbf{x},\mathbf{x})=0\iff\mathbf{x}=\mathbf{0}$

- **✓** bilinear
- **⊘** Correct

⊘ Correct

Yes:

- β is symmetric. Therefore, we only need to show linearity in one argument.
- For any $\lambda \in \mathbb{R}$ it holds that $\beta(\mathbf{x} + \lambda \mathbf{z}, \mathbf{y}) = \beta(\mathbf{x}, \mathbf{y}) + \lambda \beta(\mathbf{z}, \mathbf{y})$. This holds because of the rules for vector-matrix multiplication and addition.
- not positive definite
- not an inner product
- an inner product
- ✓ Correct

It's symmetric, bilinear and positive definite. Therefore, it is a valid inner product.

- not bilinear
- 2. The function

[1 1]

$$\beta(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \mathbf{y}$$

is

- not positive definite
- \bigcirc Correct With $x=[1,1]^T$ we get $\beta(\mathbf{x},\mathbf{x})=0$. Therefore β is not positive definite.
- not an inner product

Correct: Since $\boldsymbol{\beta}$ is not positive definite, it cannot be an inner product.

- **✓** bilinear
- **⊘** Correct

Correct:

- β is symmetric. Therefore, we only need to show linearity in one argument.
- $\beta(\mathbf{x} + \lambda \mathbf{z}, \mathbf{y}) = \beta(\mathbf{x}, \mathbf{y}) + \lambda \beta(\mathbf{z}, \mathbf{y})$. This holds because of the rules for vector-matrix multiplication and addition.
- ✓ symmetric
- **⊘** Correct

Correct: $eta(\mathbf{x},\mathbf{y}) = eta(\mathbf{y},\mathbf{x})$

	positive definite not bilinear not symmetric an inner product		
i 	The function $\beta(\mathbf{x},\mathbf{y}) = \mathbf{x}^T \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \mathbf{y}$ is $\square \text{ symmetric}$	1/1 poin	ıt.
	 ✓ Correct Correct. not bilinear an inner product ✓ not an inner product ✓ Correct Correct Correct: Symmetry is violated. 		
	The function $\beta(\mathbf{x},\mathbf{y}) = \mathbf{x}^T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{y}$ is	1/1 point	
	 not positive definite not bilinear symmetric ✓ Correct It is the dot product, which we know already. Therefore, it is symmetric. an inner product ✓ Correct It is the dot product, which we know already. Therefore, it is also an inner product. 		
5.	For any two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ write a short piece of code that defines a valid inner product. 1 import numpy as np 2 3 def dot(a, b): 4 """Compute dot product between a and b. 5 Args: 6 a, b: (2,) ndarray as R^2 vectors 7 8 Returns: 9 a number which is the dot product between a, b 10 """ 11 12 dot_product = np.dot(a, b) 13 14 return dot_product 15 16 # Test your code before you submit. 17 a = np.array([1,0]) 18 b = np.array([0,1]) 19 print(dot(a,b))	Run	1/1 point

⊘ Correct

3.

Good job!