

Faculty of Engineering

Course Name	Engineering Shop	Course Code	EEE3110	Semester	Summer 2022	2021-	Section	D
Faculty	Nuzat Nuary Alam					'		
Assignment	Project Proposal						Group No	01

SL	Student Name	ID	Dept.
01	ANJUM, MD. SAMIN	19-39434-1	EEE
02	PAUL RUPA	19-41050-2	EEE
03	HASAN MAHMUD	17-33881-1	CSE
04	KABIR SHAILA	17-35642-3	CSE
05	NAZAM NAGVI	19-40422-1	EEE

Faculty of Engineering

TITLE: Working of Lead Acid Battery Charger Circuit

Introduction:

Lead Acid Batteries are one of the oldest rechargeable batteries available today. Due to their low cost (for the capacity) compared to newer battery technologies and the ability to provide high surge currents (an important factor in automobiles), Lead Acid Batteries are still the preferred choice of batteries in almost all vehicles. The main concern with any battery is it discharges over time and must be recharged so that it can provide the necessary voltage and current.

Literature Review:

The circuit diagram of the Lead Acid Battery Charger is shown in figure 01. To charge a battery from AC we need a step down transformer, a rectifier, filtering circuit, regulator to maintain the constant voltage. Then we can give the regulated voltage to the battery to charge it. Think if you have only DC voltage and charge the lead acid battery, we can do it by giving that DC voltage to a DC-DC voltage regulator and some extra circuitry before giving to the lead acid battery. Car battery is also a lead acid battery.

Faculty of Engineering

Design Methodology & Working Process:

For calibrating the circuit, we need a variable DC Power Supply (a bench power supply). Set the voltage in your bench power supply to 14.5V and connect it to CB+ and CB- of the Circuit. Initially, set the jumper between positions 2 and 3 for calibrating. Now slowly turn the $50K\Omega$ Potentiometer until the "Charged" LED turns ON. Now disconnect the power supply and connect the jumper between 1 and 2. Your circuit is ready as all you need is a DC (or AC) supply of 18V. The 14.5V we set in the calibration is called the Tripping Point. When the Tripping point is set to 14.5V, the battery will charge for about 75% of its capacity. If you want to charge 100%, then set the tripping point to $\approx 16V$ by removing the 7815 regulator and directly supplying 18V DC, but this is not recommended.

Fig: Circuit Diagram

Faculty of Engineering

Timeline:

Date	July 06-11	July 11-17	July 17-23	July 23-29	July 29-August-06	August 06-11
Task	-					
Topic Selection						
Preparing Project						
Repots and Submit						
Optimizing Circuits						
and Software work						
Project Report						
Writing						
Submission of						
Project And Report						
Attending Final						
And Presenting the						
Project						

Under the Supervision of

Nuzat Nuary Alam

Faculty of Engineering

According to the Engineering Shop Laboratory class and AIUB academic calender