Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte-Carlo.

Lionel Riou-Durand

50th anniversary - Parallel Sessions September 9, 2022

Joint work with

Jure Vogrinc

Hamiltonian dynamics

• Goal: approximate sampling from a target with density

$$\Pi(\boldsymbol{x}) \propto \exp\{-\Phi(\boldsymbol{x})\}, \qquad \boldsymbol{x} \in \mathbb{R}^d.$$

■ A1: The potential $\Phi \in C^1(\mathbb{R}^d)$ has a Lipschitz gradient

$$\exists M > 0, \qquad |\nabla \Phi(\boldsymbol{x}) - \nabla \Phi(\boldsymbol{y})| \le M|\boldsymbol{x} - \boldsymbol{y}|, \qquad \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d.$$

■ Hamiltonian dynamics for $t \ge 0$:

$$d \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{V}_t \end{bmatrix} = \begin{bmatrix} \boldsymbol{V}_t \\ -\nabla \Phi(\boldsymbol{X}_t) \end{bmatrix} dt.$$

■ Invariant measure: $\Pi \otimes \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$ with density

$$\Pi_*({\bm x}, {\bm v}) \propto \exp\{-\Phi({\bm x}) - |{\bm v}|^2/2\}, \qquad ({\bm x}, {\bm v}) \in \mathbb{R}^{2d}.$$

Leapfrog integrator

- Leapfrog: a standard integrator for Hamiltonian dynamics.
- lacksquare For a time step h>0, define $oldsymbol{ heta}_h:(oldsymbol{x}_0,oldsymbol{v}_0)\mapsto (oldsymbol{x}_h,oldsymbol{v}_h)$ as

$$egin{aligned} oldsymbol{v}_{h/2} &= oldsymbol{v}_0 - (h/2)
abla \Phi(oldsymbol{x}_0) \ oldsymbol{x}_h &= oldsymbol{x}_0 + h oldsymbol{v}_{h/2} \ oldsymbol{v}_h &= oldsymbol{v}_{h/2} - (h/2)
abla \Phi(oldsymbol{x}_h). \end{aligned}$$

• A trajectory is composed of $L = \lceil T/h \rceil$ steps: $\theta_h^L = \theta_h \circ \cdots \circ \theta_h$.

Hamiltonian Monte Carlo

- Duane et al. 1987
- HMC for h > 0, T > 0. Set $L = \lceil T/h \rceil$.
 - refresh the momentum $V' \leftarrow \boldsymbol{\xi} \sim \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$
 - ullet propose a trajectory $(oldsymbol{X}_L, oldsymbol{V}_L) = oldsymbol{ heta}_h^L(oldsymbol{X}_0, oldsymbol{V}')$
 - accept with probability $\pi_*(\boldsymbol{X}_L, \boldsymbol{V}_L)/\pi_*(\boldsymbol{X}_0, \boldsymbol{V}')$
 - ullet if rejected, flip the momentum $(oldsymbol{X}_L, oldsymbol{V}_L) \leftarrow (oldsymbol{X}_0, -oldsymbol{V}')$
- Remark: full refreshments erase the momentum flips.

Generalized Hamiltonian Monte Carlo

- Horowitz 1991
- GHMC for h > 0, T > 0, and persistence $\alpha \in [0,1)$. Set $L = \lceil T/h \rceil$.
 - refresh the momentum $V' \leftarrow \alpha V_0 + \sqrt{1 \alpha^2} \boldsymbol{\xi} \sim \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$.
 - ullet propose a trajectory $(oldsymbol{X}_L, oldsymbol{V}_L) = oldsymbol{ heta}_h^L(oldsymbol{X}_0, oldsymbol{V}')$
 - accept with probability $\pi_*(X_L, V_L)/\pi_*(X_0, V')$
 - ullet if rejected, flip the momentum $(oldsymbol{X}_L, oldsymbol{V}_L) \leftarrow (oldsymbol{X}_0, -oldsymbol{V}')$
- Remark: momentum flips are only partially erased.

HMC: tuning the time step

- Choosing h for a given T, when $\alpha = 0$ (full refreshments).
- A2: The potential writes $\Phi(x) = \sum_{i=1}^d \phi(x_i)$ where $\phi \in C^4(\mathbb{R})$

$$\int_{\mathbb{R}} x^8 \exp\{\phi(x)\} dx < \infty, \qquad \|\phi^{(k)}\|_{\infty} < \infty, \qquad k = 2, 3, 4.$$

- Beskos et al. 2013: optimal scaling of the acceptance rate, as $d \to \infty$.
- Choose $h = \ell_T d^{-1/4}$ to get an asym. acceptance rate $a(\ell_T) \approx 65\%$.

HMC: tuning the integration time

- Auto-Correlation Functions: $\rho_i(T) \triangleq \text{Corr}(X_i(T), X_i(0)), i = 1, ..., d.$
 - Heterogeneity of scales, Gaussian

$$\Phi(\boldsymbol{x}) = \sum_{i=1}^{d} x_i^2 / (2\sigma_i^2).$$

Periodic ACFs

$$\rho_i(T) = \cos(T/\sigma_i).$$

- The worst ACF $\max_{i \in [\![1,d]\!]} |\rho_i(T)|$ can be arbitrarily erratic and close to 1.
- Bou-Rabee and Sanz-Serna 2017: $T \sim \mathcal{E}xp(\lambda)$, Randomized HMC.
- Smoothing effect: $\mathbb{E}[\rho_i(T)] = \frac{\sigma_i^2}{\sigma_i^2 + \lambda^{-2}} \le \frac{\sigma_{\max}^2}{\sigma_{\max}^2 + \lambda^{-2}} \Rightarrow$ monotonic.

Langevin diffusion

- Damping parameter $\gamma \geq 0$, a.k.a friction.
- Langevin SDE for $t \ge 0$:

$$d \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{V}_t \end{bmatrix} = \begin{bmatrix} \boldsymbol{V}_t \\ -\nabla \Phi(\boldsymbol{X}_t) \end{bmatrix} dt + \begin{bmatrix} \boldsymbol{0}_d \\ -\gamma \boldsymbol{V}_t dt + \sqrt{2\gamma} d\boldsymbol{W}_t \end{bmatrix}.$$

- Langevin dynamics = Hamiltonian dynamics with momentum refreshment continuously induced by a Brownian Motion $(\mathbf{W}_t)_{t\geq 0}$.
- Same invariant measure: $\Pi \otimes \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$.

Control of the worst ACF

■ ACF for HMC and the Langevin diffusion ($\gamma = 2$), for various $\sigma_i > 0$.

■ Positive damping enables a uniform control of the correlations

$$\gamma = 2/\sigma_{\max} \Rightarrow \max_{i \in [\![1,d]\!]} |\rho_{i,\gamma}(T)| \le e^{-T/\sigma_{\max}} \left(1 + T/\sigma_{\max}\right).$$

Quantitative mixing rates

■ Randomized HMC with parameters (λ, α) , a jump-type SDE for $t \geq 0$:

$$d \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{V}_t \end{bmatrix} = \begin{bmatrix} \boldsymbol{V}_t \\ -\nabla \Phi(\boldsymbol{X}_t) \end{bmatrix} dt + \begin{bmatrix} \boldsymbol{0}_d \\ \left(\alpha \boldsymbol{V}_{t-} + \sqrt{1 - \alpha^2} \boldsymbol{\xi}_{\boldsymbol{N}_{t-}} - \boldsymbol{V}_{t-}\right) d\boldsymbol{N}_t \end{bmatrix}.$$

■ A3: the potential $\Phi \in C^2(\mathbb{R}^d)$, such that for some $M \geq m > 0$

$$m\mathbf{I}_d \prec \nabla^2 \Phi(\mathbf{x}) \prec M\mathbf{I}_d, \qquad \mathbf{x} \in \mathbb{R}^d.$$

■ Theorem: Let $\lambda = \frac{2\sqrt{M+m}}{1-\alpha^2}$, then for any $\alpha \in [0,1)$ we have

$$W_2((\nu \mathbf{P}^t)_{\boldsymbol{x}}, \Pi) \le C e^{-rt} W_2(\nu_{\boldsymbol{x}}, \Pi), \qquad \nu = \nu_{\boldsymbol{x}} \otimes \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$$
$$\|\mathbf{P}^t f\| < C' e^{-rt} \|f\|, \qquad f \in \mathbb{L}_0^2(\Pi)$$

where
$$r = \frac{1+\alpha}{2} \left(\frac{m}{\sqrt{M+m}} \right), \quad C, C' \leq 1.56$$

Quantitative mixing rates

- Interpolation of Deligiannidis et al. 2018 and Dalalyan and R-D 2020.
- Randomized HMC and Langevin diffusion generators, for $f \in C_c^{\infty}(\mathbb{R}^{2d})$.

$$\mathcal{L}_{\lambda,\alpha}^{\mathrm{RH}} \triangleq \mathcal{L}^{\mathrm{H}} + \lambda \mathcal{R}_{\alpha}^{\mathrm{PP}}$$

$$\mathcal{L}_{\gamma}^{\mathrm{LD}} \triangleq \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\gamma}^{\mathrm{H}} \triangleq \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\alpha}^{\mathrm{H}} \triangleq \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\alpha}^{\mathrm{H}} = \mathcal{L}_{\alpha}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\alpha}^{\mathrm{H}} = \mathcal{L}_{\alpha}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{R}_{\alpha}^{\mathrm{BM}} = \mathcal{L}_{\alpha}^{\mathrm{H}} + \gamma \mathcal{L}_{\alpha}^{\mathrm{BM}} = \mathcal{L}_{\alpha}^{\mathrm{H}} + \gamma \mathcal{L}_{\alpha}^{\mathrm{BM}} = \mathcal{L}_{\alpha}^{\mathrm{H}} = \mathcal{L}_{\alpha}^{\mathrm{H}} + \gamma \mathcal{L}_{\alpha}^{\mathrm{BM}} = \mathcal{L}_{\alpha}^{\mathrm{H}} = \mathcal{L}_{\alpha}^{\mathrm{H}$$

- Proposition: If $\lambda = \frac{2\gamma}{1-\alpha^2}$ then $\|\mathcal{L}_{\lambda,\alpha}^{\mathrm{RH}} f \mathcal{L}_{\gamma}^{\mathrm{LD}} f\|_{\infty} \to 0$ as $\alpha \to 1$.
- The Langevin diffusion is a limit of Randomized HMC that achieves the fastest exponential mixing rate for strongly log-concave targets.
- Motivates the construction of a sampler drawing Langevin trajectories.

A discretization for Langevin Trajectories

- A standard integrator for Langevin dynamics (A1 \Rightarrow strong accuracy):
- Set $\alpha = e^{-\gamma h/2}$, let $(x_h, v_h) \sim \mathbf{Q}_{h,\gamma}((x_0, v_0), .)$ such that

$$egin{aligned} oldsymbol{v}_0' &= lpha oldsymbol{v}_0 + \sqrt{1-lpha^2} oldsymbol{\xi} \ oldsymbol{v}_{h/2} &= oldsymbol{v}_0' - (h/2)
abla \Phi(oldsymbol{x}_0) \ oldsymbol{x}_h &= oldsymbol{x}_0 + h oldsymbol{v}_{h/2} \ oldsymbol{v}_h' &= oldsymbol{v}_{h/2} - (h/2)
abla \Phi(oldsymbol{x}_h) \ oldsymbol{v}_h &= lpha oldsymbol{v}_h' + \sqrt{1-lpha^2} oldsymbol{\xi}'. \end{aligned}$$

■ Langevin trajectory, $L = \lceil T/h \rceil$ steps: $({m X}_L, {m V}_L) \sim {f Q}_{h,\gamma}^L(({m x}_0, {m v}_0),.)$

Metropolis Adjusted Langevin Trajectories

- MALT for h > 0, T > 0, and damping $\gamma \ge 0$. Set $L = \lceil T/h \rceil$.
 - refresh the momentum $oldsymbol{V}_0 \leftarrow oldsymbol{\xi} \sim \mathcal{N}_d(oldsymbol{0}_d, oldsymbol{I}_d)$
 - propose $(\boldsymbol{X}_L, \boldsymbol{V}_L) \sim \mathbf{Q}_{b,\gamma}^L((\boldsymbol{X}_0, \boldsymbol{V}_0),.)$
 - accept with probability

$$\frac{\pi_*(\boldsymbol{X}_L, \boldsymbol{V}_L)}{\pi_*(\boldsymbol{X}_0, \boldsymbol{V}_0)} \times \prod_{i=1}^L \frac{q_{h,\gamma}((\boldsymbol{X}_i, -\boldsymbol{V}_i), (\boldsymbol{X}_{i-1}, -\boldsymbol{V}_{i-1}))}{q_{h,\gamma}((\boldsymbol{X}_{i-1}, \boldsymbol{V}_{i-1}), (\boldsymbol{X}_i, \boldsymbol{V}_i))}$$

- ullet if rejected, flip the momentum $(oldsymbol{X}_L, oldsymbol{V}_L) \leftarrow (oldsymbol{X}_0, -oldsymbol{V}_0)$
- Remark: full refreshments erase the momentum flips.

```
Algorithm 1: MALT (h, T, \gamma), set L = |T/h| and \alpha = \exp\{-\gamma h\}
1 for n \leftarrow 1 to N do
          draw fresh momentum start V' \sim \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)
          set (\boldsymbol{x}_0, \boldsymbol{v}_0) \leftarrow (\boldsymbol{X}^{n-1}, \boldsymbol{V}') and \Delta \leftarrow 0
3
          for i \leftarrow 1 to L do
4
                 draw m{\xi} \sim \mathcal{N}_d(m{0}_d, \mathbf{I}_d) and refresh m{v}_{i-1}' = lpha m{v}_{i-1} + \sqrt{1-lpha^2}m{\xi}
                                                                                                                                  Propose a
5
                perform a Leapfrog step (x_i, v_i) = \theta_h(x_{i-1}, v'_{i-1})
                                                                                                                                  Langevin
6
              update \Delta \leftarrow \Delta + (|\boldsymbol{v}_i|^2 - |\boldsymbol{v}_{i-1}'|^2)/2
                                                                                                                                  trajectory.
7
```

set $(\boldsymbol{X}^n, \boldsymbol{V}^n) \leftarrow (\boldsymbol{x}_L, \boldsymbol{v}_L)$ and $\Delta \leftarrow \Delta + \Phi(\boldsymbol{x}_L) - \Phi(\boldsymbol{x}_0)$ draw a uniform random variable U on (0,1)if $U > \exp\{-\Delta\}$ then reject $X^n \leftarrow X^{n-1}$

end 14 end 15 return X^1, \cdots, X^N .

end

8

q

10

11

12

13

Metropolis Adjusted Langevin Trajectories

- A neat Metropolis adjustment for the Langevin diffusion.
- The length of the trajectories can be chosen by the user.
- Momentum flips can be erased by full refreshments.
- For $\gamma > 0$ the trajectories are ergodic \Rightarrow no U-turns.
- Positive damping enables control of the worst ACF.
- A robust extension to HMC: what about tuning & scaling?

Optimal scaling: an extension to positive friction

- Choosing h for a given T and friction $\gamma \geq 0$?
- A2: The potential writes $\Phi(x) = \sum_{i=1}^d \phi(x_i)$ where $\phi \in C^4(\mathbb{R})$

$$\int_{\mathbb{D}} x^8 \exp\{\phi(x)\} dx < \infty, \qquad \|\phi^{(k)}\|_{\infty} < \infty, \qquad k = 2, 3, 4.$$

- Theorem: optimal scaling of the acceptance rate, as $d \to \infty$.
- Choose $h = \ell_T d^{-1/4}$ to get an asym. acceptance rate $a(\ell_T) \approx 65\%$.
- An extension of Beskos et al. 2013 to any friction $\gamma \geq 0$.

Numerical illustration

 \blacksquare Gaussian: $\Phi({\pmb x}) = \sum_{i=1}^d x_i^2/(2\sigma_i^2)$. Heterogeneous scales: $\sigma_i^2 = i/d$.

Figure: Gaussian d=50. Worst ESS per time for estimating the mean and variance.

Numerical illustration

- Setting: h > 0 is fixed to obtain acceptance rates close to 65%.
- lacksquare Objective: tuning L to obtain good efficiency for every function.

Table: Gaussian d=50. Worst ESS per gradient evaluation for various functions.

	odd				even			
f(x)	x	x^3	sgn(x)	$\sin(x)$	x^2	x^4	$e^{- x }$	$\cos(x)$
MALT: $L=8$	0.25	0.31	0.31	0.27	0.40	0.42	0.43	0.40
RHMC: $L=5$	0.40	0.43	0.45	0.41	0.29	0.31	0.31	0.29
HMC: $L=3$	0.19	0.25	0.26	0.21	0.00	0.00	0.00	0.00
$MALA\;(L=1)$	0.06	0.08	0.09	0.07	0.12	0.12	0.16	0.13

Summary of contributions

- Langevin diffusion is a limit of Randomized HMC that achieves the fastest exponential mixing rate for strongly log-concave targets.
- Positive damping enables control of the worst ACF.
- MALT, a neat Metropolis correction for Langevin trajectories:
 - the length of the trajectories can be chosen by the user
 - momentum flips can be erased by full refreshments
- Optimal scaling, an extension of Beskos et al. 2013: we establish $d^{1/4}$ scaling for any damping, without additional assumptions.

References I

- [Bes+13] Alexandros Beskos et al. "Optimal tuning of the hybrid Monte Carlo algorithm". In: *Bernoulli* 19.5A (2013), pp. 1501–1534.
- [Bet17] Michael Betancourt. "A conceptual introduction to Hamiltonian Monte Carlo". In: arXiv preprint arXiv:1701.02434 (2017).
- [BS17] Nawaf Bou-Rabee and Jesús Maria Sanz-Serna. "Randomized hamiltonian monte carlo". In: *The Annals of Applied Probability* 27.4 (2017), pp. 2159–2194.
- [Del+18] George Deligiannidis et al. "Randomized Hamiltonian Monte Carlo as scaling limit of the bouncy particle sampler and dimension-free convergence rates". In: arXiv preprint arXiv:1808.04299 (2018).

References II

- [DR20] Arnak S Dalalyan and Lionel R-D. "On sampling from a log-concave density using kinetic Langevin diffusions". In: Bernoulli 26.3 (2020), pp. 1956–1988.
- [Dua+87] Simon Duane et al. "Hybrid monte carlo". In: *Physics letters B* 195.2 (1987), pp. 216–222.
- [Hor91] Alan M Horowitz. "A generalized guided Monte Carlo algorithm". In: *Physics Letters B* 268.2 (1991), pp. 247–252.
- [Nea+11] Radford M Neal et al. "MCMC using Hamiltonian dynamics". In: Handbook of markov chain monte carlo 2.11 (2011), p. 2.

Pictures

■ Hamiltonian dynamics: Betancourt 2017

■ Leapfrog integrator: Neal et al. 2011

Thank you!