15~16

一、单项选择题(共6道小题,每小题3分,满分18分,下列每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内.)

1. 函数 $f(x,y) = \sqrt{x^2 + y^4}$ 在点(0,0)处的偏导数().

(A) $f'_x(0,0)$ 存在, $f'_y(0,0)$ 不存在 (B) $f'_x(0,0)$ 不存在, $f'_y(0,0)$ 存在

(C) $f'_{\nu}(0,0)$, $f'_{\nu}(0,0)$ 都存在

(D) $f'_{x}(0,0)$, $f'_{y}(0,0)$ 都不存在

2. 设方程 $xyz + e^z = 1$ 确定 $z \in \mathbb{R}$,y 的函数,则 $\frac{\partial z}{\partial r} = 0$

(A) $-\frac{yz}{e^z}$ (B) $\frac{yz}{e^z}$ (C) $-\frac{yz}{xy+e^z}$ (D) $\frac{yz}{xy+e^z}$

3. 空间区域 $\Omega = \{(x, y, z) | z \le \sqrt{4 - x^2 - y^2}, x^2 + y^2 \le 1, z \ge 0 \}$ 的体积是(

(A) $\int_{0}^{2\pi} d\theta \int_{0}^{2} r \sqrt{4 - r^{2}} dr$ (B) $4 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} r \sqrt{4 - r^{2}} dr$

(C) $\int_{0}^{2\pi} d\theta \int_{0}^{2} \sqrt{4 - r^{2}} dr$ (D) $4 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} \sqrt{4 - r^{2}} dr$

4. $I_1 = \iint [\ln(x+y)]^9 \, dx dy$, $I_2 = \iint (x+y)^9 \, dx dy$, $I_3 = \iint [\sin(x+y)]^9 \, dx dy$, 其中平面区域D由 直线 $x + y = 1, x + y = \frac{1}{2}, x = 0, y = 0$ 所围成,则(A).

(A) $I_1 \le I_3 \le I_2$ (B) $I_3 \le I_2 \le I_1$ (C) $I_1 \le I_2 \le I_3$ (D) $I_3 \le I_1 \le I_2$

5. 设空间区域 $\Omega = \{(x,y,z) | x^2 + y^2 + z^2 \le 2, z \ge \sqrt{x^2 + y^2} \}$, f(x,y,z)为连续函数,则三重积分 $\iiint f(x,y,z)dV = (D).$

(A) $\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{\sqrt{2-x^2-y^2}}^{\sqrt{x^2+y^2}} f(x,y,z) dz$

(B) $4\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} f(x,y,z) dz$

(C) $\int_0^{2\pi} d\theta \int_0^1 dr \int_r^{2-r^2} f(r\cos\theta, r\sin\theta, z) dz$

(D) $\int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{4}} d\varphi \int_{0}^{\sqrt{2}} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) r^{2} \sin \varphi dr$

6. 如果反常积分 $\int_{-\infty}^{0} e^{-kx} dx$ 收敛,则必有(B).

(A) k > 0

(B) k < 0

(C) $k \ge 0$ (D) $k \le 0$

二、填空题(共6道小题,每小题3分,满分18分,请将答案写在题后的横线上.)

1. 极限
$$\lim_{\substack{x\to 0\\y\to\pi}}\frac{\sin(xy)}{x}=$$
 ______.

2. 直线
$$L: \frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$$
 与平面 $\Pi: -x-y+2z=1$ 的夹角为______.

3. 曲线
$$\Gamma$$
: $\begin{cases} x^2 + y^2 + z^2 = 4, \\ y = z + x \end{cases}$ 在 Oxz 平面上的投影柱面方程为______.

- 4. 由曲线 $y = x^2$ 与 $x = y^2$ 所围成的图形绕 x 轴旋转一周所形成的旋转体的体积是______
- 5. 曲面 z = xy 在点 M(-1,-1,1) 处的切平面方程为______.
- 6. $\int_{0}^{2} dx \int_{x}^{2} e^{-y^{2}} dy =$ ______.

三、按要求解答下列各题(共4道小题,每小题8分,满分32分).

1. 设
$$f$$
为 $C^{(2)}$ 类函数,且 $z = f(x+y,x-y)$,求 dz 和 $\frac{\partial^2 z}{\partial x \partial y}$.

2. 设
$$y = y(x), z = z(x)$$
 是由方程组 $\begin{cases} x^2 + 2y^2 + z^2 = 10, \\ x + y + z = 0 \end{cases}$ 确定的隐函数,求 $\frac{dy}{dx}, \frac{dz}{dx}$.

3. 求过点
$$(-1,2,3)$$
垂直于直线 $\frac{x}{4} = \frac{y}{5} = \frac{z}{6}$,且平行于平面 $7x + 8y + 9z + 10 = 0$ 的直线方程.

4. 设平面区域
$$D = \{(x,y) | x^2 + y^2 \le 1, x \ge 0 \}$$
, 计算二重积分 $\iint_D \frac{1+xy}{1+x^2+y^2} dxdy$.

四、按要求解答下列各题(共4道小题,每小题8分,满分32分).

- 1. 求心脏线 $r = 2(1 + \cos \theta)$ 的全长.
- 2. 设 n 是曲面 $2x^2 + 3y^2 + z^2 = 6$ 在点 P(1,1,1) 处的指向外侧的法向量,求函数

$$u = \frac{\sqrt{6x^2 + 8y^2}}{z}$$
在点 P 处沿方向 n 的方向导数.

3. 曲面
$$\Sigma$$
 是由曲线
$$\begin{cases} y = \sqrt{z-1}, \\ x = 0 \end{cases}$$
 ($1 \le z \le 3$) 绕 z 轴旋转一周所形成的曲面.

- (1) 写出Σ的方程;
- (2) 设区域 Ω 是由曲面 Σ 与平面z=3 围成的区域,计算 $\iint_{\Omega} e^z dx dy dz$.
- 4. 已知 a,b 满足 $\int_a^b |x| dx = \frac{1}{2} (a \le 0 \le b)$,求曲线 $y = x^2 + ax$ 与直线 y = bx 所围区域面积的最大值和最小值.

16-17

一、填空题 1. xoz 平面上的直线 x=1绕 z 轴旋转一周所形成的旋转曲面方程为______

3. 方程 $xy - yz + zx = e^z$ 确定的隐函数 z = z(x, y) 在点(1,1)处的全微分为_____。

4. 设
$$D$$
 是由曲线 $y = 1 - x^2$ 与 $y = x^2 - 1$ 所围成的区域,则 $\iint_D (x^3 + y^3 + xy) d\sigma = _______.$

5. 曲面 $z = x^2 + 2y^2$ 在点 $P_0(1,-1,3)$ 处的切平面方程为______。

二、选择题 1. 函数 $z=\sqrt{x^2+y^2}$ 在点(0,0)处 ().

(A) 沿任何方向的方向导数都不存在(B) 不连续(C) $f_{\nu}'(0,0)$ 与 $f_{\nu}'(0,0)$ 相等 (D) 梯度不存在

2. 下列反常积分收敛的是().

(A)
$$\int_{2}^{+\infty} \frac{\ln x}{x} dx$$
 (B) $\int_{2}^{+\infty} \frac{1}{x \ln x} dx$ (C) $\int_{2}^{+\infty} \frac{1}{x (\ln x)^{2}} dx$ (D) $\int_{2}^{+\infty} \frac{1}{x \sqrt{\ln x}} dx$

- **3.** 方程 $\frac{x^2}{2} \frac{y^2}{4} = z$ 所表示的曲面为().
- (A) 椭球面 (B) 双曲抛物面 (C) 柱面 (D) 旋转抛物面
- **4.** 若 z = f(x, y) 在点 $P_0(x_0, y_0)$ 处的两个偏导数都存在,则().
- (A) f(x,y) 在 P_0 的某个邻域内有界 (B) f(x,y) 在 P_0 的某个邻域内连续
- (C) $f(x, y_0)$ 在点 x_0 处连续 (D) f(x, y) 在 P_0 处连续

5. 设空间区域 $\Omega = \{(x,y,z) | 0 \le x \le 1, 0 \le y \le 1-x, 0 \le z \le x+y \}$, f(x,y,z) 为连续函数,则三重积分 $\iiint_{\Omega} f(x,y,z) \mathrm{d} V = \ ().$

(A)
$$\int_0^1 dy \int_0^y dz \int_0^{1-y} f(x, y, z) dx + \int_0^1 dy \int_y^1 dz \int_{z-y}^{1-y} f(x, y, z) dx$$

(B)
$$\int_{0}^{1} dz \int_{0}^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta + \sin\theta}}^{\frac{z}{\cos\theta + \sin\theta}} f(r\cos\theta, r\sin\theta, z) r dr$$

(C)
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\sin\theta + \cos\theta} dr \int_0^{r\sin\theta + r\cos\theta} f(r\cos\theta, r\sin\theta, z) r dz$$

(D)
$$\int_0^{\frac{\pi}{2}} d\theta \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\varphi \int_0^{\frac{1}{\sin\varphi\cos\theta + \sin\varphi\sin\theta}} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 \sin\varphi dr$$

三、解答题 1. 求由曲线 $y = x^2$ 与 y = 2x + 3 围成的平面图形的面积。

2. 求过直线
$$L_1: \frac{x-2}{1} = \frac{y-1}{0} = \frac{z+2}{-2}$$
,且平行于直线 $L_2: \frac{x+2}{2} = \frac{y-1}{-1} = \frac{z}{-2}$ 的平面 π 的方程。

3. 设
$$f$$
 为 $C^{(2)}$ 类函数,且 $u = f(x + y + z, x^2 + y^2 + z^2)$, 求 $\frac{\partial^2 u}{\partial x^2}$ 。

- **4.** 求函数 u = x 2y + 2z 在约束条件 $x^2 + y^2 + z^2 = 1$ 下的极值。
- **四、解答题 1.** 计算二重积分 $\iint_D |x^2+y^2-1| d\sigma$,其中平面区域 $D=\{(x,y)|0 \le x \le 1, 0 \le y \le x\}$ 。
 - **2.** 已知空间区域 $\Omega = \left\{ (x, y, z) \left| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\} \right\}$, 利用重积分求 Ω 的体积。
 - 3. 函数 $f(x,y) = \begin{cases} \sqrt{x^4 + y^4}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$
 - (1) 求其在点 $P_0(0,0)$ 处的偏导数,
 - (2) 判别其在点 $P_0(0,0)$ 处的可微性。
 - 4. 已知三重积分 $\iint_{\Omega} \frac{1}{x^2 + y^2} \, \mathrm{d}V$, 其中空间区域 $\Omega = \{(x, y, z) | 1 \le x \le 2, 0 \le y \le x, 0 \le z \le y\}$.
 - (1) 在柱坐标下计算三重积分, (2) 在球坐标下计算三重积分。

17-18

一、选择题: $1\sim6$ 小题,每小题 3 分,共 18 分.下列每题给出的四个选项中,只有一个选项是符 合题目要求的. 请将答案写在答题卡上, 写在试题册上无效.

1. 曲线 $y = \frac{1}{x}$, y = x 及 x = 2 所围成的图形面积为 S,则 S = (

(A)
$$\int_{1}^{2} \left(\frac{1}{x} - x\right) dx$$

(B)
$$\int_{1}^{2} \left(x - \frac{1}{x}\right) dx$$

(C)
$$\int_{1}^{2} \left(2 - \frac{1}{y}\right) dy + \int_{1}^{2} (2 - y) dy$$
 (D) $\int_{1}^{2} \left(2 - \frac{1}{x}\right) dx + \int_{1}^{2} (2 - x) dx$

(D)
$$\int_{1}^{2} \left(2 - \frac{1}{x}\right) dx + \int_{1}^{2} (2 - x) dx$$

2. 如果反常积分 $\int_{1}^{+\infty} x^{p} (e^{-\cos\frac{1}{x}} - e^{-1}) dx$ 收敛,则常数 p 的取值范围是(

(A)
$$p \in (-\infty, 2)$$

(B)
$$p \in (-\infty, 1)$$

(C)
$$p \in (-1, +\infty)$$

(D)
$$p \in (1, +\infty)$$

3. 母线平行于 x 轴且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16, \\ x^2 - v^2 + z^2 = 0 \end{cases}$ 的柱面方程是 (

(A) 椭圆柱面
$$3x^2 + 2z^2 = 16$$
.

(B) 椭圆柱面
$$x^2 + 2y^2 = 16$$
.

(C) 双曲柱面
$$3y^2 - z^2 = 16$$
.

(D) 抛物柱面
$$3y^2 - z = 16$$
.

4. 设函数
$$f(x,y) = \begin{cases} \sqrt{x^2 + y^2} + \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$
, 则函数 $f(x,y)$ 在点 $(0,0)$ 处 $(x,y) = (0,0)$

- (A) 连续, 且偏导数存在
- (B) 连续, 但偏导数不存在
- (C) 不连续, 但偏导数存在
- (D) 不连续, 且偏导数不存在

5. 函数
$$z = x^2 - y^2 + 2y + 7$$
 ().

(A) 没有驻点,也没有极值点 (B) 有驻点,也有极值点

- (C)有驻点,但没有极值点
- (D) 没有驻点, 但有极值点

6. 过点(1,0,0)与(0,1,0),且与曲面 $z = x^2 + y^2$ 相切的平面方程为(

(A)
$$z = 0 - 5x + y - z = 1$$

(B)
$$z = 0 = 32x + 2y - z = 2$$

(C)
$$y = x - 5x + y - z = 1$$

(D)
$$y = x - 2x + 2y - z = 2$$

二、填空题: 7~12 小题, 每小题 3 分, 共 18 分. 请将答案写在答题卡上, 写在试题册上无效.

7. 曲线 $y = \ln(1-x^2)$ 上相应于 $0 \le x \le \frac{1}{2}$ 的一段弧的长度等于______

8. 设函数
$$f(x) = \begin{cases} 2e^{-2x}, & x > 0, \\ 0, & x \le 0, \end{cases}$$
 则 $\int_{-\infty}^{+\infty} x f(x) dx = \underline{\qquad}$.

9. 如果向量 $\mathbf{a} = (2, -3, 5)$ 与 $\mathbf{b} = (3, m, -2)$ 互相垂直,则常数 $m = \underline{}$

10. Oyz 面上的曲线 f(y,z) = 0 绕 z 轴旋转所生成的旋转曲面方程为______

11. 设 z = f(x+y,xy),其中 $f \in C^{(1)}$ 类函数,则 $\frac{\partial z}{\partial x} =$ ______.

12. 函数 $u = x^2 + y^2 - xyz$ 在点 (1,1,1) 处的方向导数的最大值是______.

- 三、解答题: 13~19 小题, 共 64 分. 解答应写出文字说明、证明过程或演算步骤.
 - 13. (本题满分 10 分)

计算 $I = \int_0^1 \mathrm{d}x \int_0^{x^2} \frac{y \mathrm{e}^y}{1 - \sqrt{y}} \mathrm{d}y$.

14. (本题满分 10 分)

求过点(0,2,4)且与平面x+2z=1及y-3z=2都平行的直线的对称式方程和参数方程.

15. (本题满分 10 分)

已知函数 z = z(x, y) 是由方程 $x = z \cdot e^{y+z}$ 所确定的隐函数,求 $dz|_{(e,0)}$ 及 $\frac{\partial^2 z}{\partial y \partial x}|_{(e,0)}$.

16. (本题满分 10 分)

计算 $\iint_{\Omega} \sqrt{x^2 + y^2} dV$,其中 Ω 是由 $x^2 + y^2 = z^2$ 和 z = 1 所围成的闭区域.

17. (本题满分8分)

求圆域 $x^2 + (y-5)^2 \le 16$ 绕x轴旋转一周所生成的旋转体的体积.

18. (本题满分8分)

利用 Lagrange 乘数法求函数 f(x,y) = 2x - y + 1满足约束条件 $x^2 + y^2 = 5$ 下的最大值和最小值.

19. (本题满分8分)

设 f(x) 满足 $f(x) = x^2 + x \int_0^{x^2} f(x^2 - t) dt + \iint_D f(xy) dx dy$, 其中区域 D 是以 (-1, -1), (1, -1), (1, 1) 为顶点的 三角形区域,且 f(1) = 0,求 $\int_0^1 f(x) dx$.

(A) 1,1.-1

一、 选择题: $1\sim6$ 小题,每小题 3 分,共 18 分.下列每题给出的四个 选项中,只有一个选项是符合题目要求的.请将答案写在答题卡上,写在试题册上无效.

(B) -1,-1,3 (C) -1,-1,-3 (D) 1,1,-3

1. 设 f(1,1) = -1 为函数 $f(x,y) = ax^3 + by^3 + cxy$ 的极值,则 a,b,c 分别等于(

2. 函数 $z = f(x, y)$ 在点 $M_0(x_0, y_0)$ 偏导数存在是 $z = f(x, y)$ 在点 M_0 可微的()条件. (A) 必要非充分 (B) 充分非必要 (C) 充分必要 (D) 既非充分又非必要 3. 设 $I_1 = \iint_{D_1} (x^2 + y^2) d\sigma$,其中 D_1 是矩形区域 $-1 \le x \le 1, -2 \le y \le 2$,又 $I_2 = \iint_{D_2} (x^2 + y^2) d\sigma$,其中 D_2 是矩形	形区
域 $0 \le x \le 1, 0 \le y \le 2$, 利用二重积分的几何意义说明 $I_1 = I_2$ 之间的关系().	
(A) $I_1 = 3I_2$ (B) $I_1 = 2I_2$ (C) $I_1 = I_2$ (D) $I_1 = 4I_2$	
4. 下列反常积分收敛的是().	
(A) $\int_0^{+\infty} \cos x dx$ (B) $\int_{-\infty}^{+\infty} \frac{1}{(2x+1)^{\frac{3}{2}}} dx$	
(C) $\int_0^{+\infty} \frac{1}{\sqrt{x+1}} dx$ (D) $\int_0^2 \frac{1}{(x-1)^2} dx I_1 = 4I_2$	
5. 设区域 Ω 由 $z = x^2 + y^2$ 与 $x^2 + y^2 + z^2 = 2(z \ge 0)$ 所围成,则三重积分 $\iint_{\Omega} (x^2 + y^2 + z^2) dV$ 化为柱坐标系	系下
三次积分为().	
(A) $\int_0^{2\pi} d\theta \int_0^2 r dr \int_{r^2}^{\sqrt{2-r^2}} (r^2 + z^2) dz$ (B) $\int_0^{2\pi} d\theta \int_0^{\sqrt{2}} r dr \int_{r^2}^{\sqrt{2-r^2}} (r^2 + z^2) dz$ (C)
$\int_0^{2\pi} d\theta \int_0^1 r dr \int_{r^2}^{\sqrt{2-r^2}} \left(r^2 + z^2\right) dz $ (D) $\int_0^{2\pi} d\theta \int_0^1 r dr \int_{r^2}^{\sqrt{2-r^2}} 2dz$	
6. 设直线 $L:$ $\begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$, 平面 $\pi: 4x-2y+z=0$, 则直线 L ().	
(A) 平行于平面 π 但不在 π 上 (B) 垂直于平面 π	
(C) 在平面π上 (D) 与平面π相交但不垂直	
$^-$ 、填空题 \cdot 7 \sim 12 小题,每小题 3 分,共 18 分,请将答案写在答题卡上,写在试题册 \cdot	┝╫

7. $z = \cos e^{xy}$,则 dz =______.

效.

8. 积分
$$\int_0^8 dx \int_{\sqrt[3]{x}}^2 \frac{1}{1+y^4} dy = \underline{\hspace{1cm}}.$$

9.
$$\int_{-\infty}^{0} x e^{-x^2} dx = \underline{\hspace{1cm}}$$

10. 由曲线 $y = x^2, x = y^2$ 围成图形绕 x 轴旋转一周所形成的旋转体体积为______.

11. 已知
$$f(x,y) = \ln(x^3 + xy^2)$$
, 求 $f_x(1,0) =$ ______.

12. 空间曲线 $C: \begin{cases} x^2 + y^2 + z^2 = 4 \\ y = z \end{cases}$ 在 xoz 平面上的投影曲线方程为______.

三、解答题: $13\sim19$ 小题, 共 64 分. 解答应写出文字说明、证明过程或演算步骤.

13. (本题满分 10 分)

求过点M(3,1,-2)且通过直线 $\frac{x-4}{5} = \frac{y+3}{2} = \frac{z}{1}$ 的平面方程.

14. (本题满分 10 分)

设
$$z = x^3 f\left(xy, \frac{y}{x}\right)$$
, f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial y \partial y}$.

15. (本题满分 10 分)

已知平面区域
$$D = \left\{ (r, \theta) \middle| 2 \le r \le 2 (1 + \cos \theta), -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \right\}$$
, 计算二重积分 $\iint_{\mathbb{R}} x dx dy$.

16. (本题满分10分)

求 $u = xy^2 + yz^3$ 在 $P_0(2,-1,1)$ 的梯度及沿 $\vec{l} = (2,2,-1)$ 方向的方向导数.

17. (本题满分 10 分)

求函数
$$z = x^2 + y^2$$
 在圆域 $D = \left\{ (x, y) \middle| (x - \sqrt{2})^2 + (y - \sqrt{2})^2 \le 9 \right\}$ 上的最大值与最小值.

18. (本题满分8分)

求曲面 $x^2 + 2y^2 + 3z^2 = 21$ 平行于平面x + 4y + 6z = 0的切平面方程.

19. (本题满分6分)

计算
$$I = \iint_{\Omega} \left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} \right)^2 dxdydz$$
,其中 $\Omega = \left\{ (x, y, z) \middle| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}$,

选择题: $1\sim6$ 小题,每小题 3 分,共 18 分.下列每题给出的四个 选项中,只有一个选项是符合题目要求的.请将答案写在答题卡上,写在试题册上无效.

- 1. 下列反常积分收敛的是(

 - (A) $\int_0^{+\infty} \cos x \, dx$ (B) $\int_0^2 \frac{1}{(x-1)^2} dx$
 - (C) $\int_{2}^{+\infty} \frac{1}{x(\ln x)^{2}} dx$ (D) $\int_{-\infty}^{+\infty} \frac{1}{(x+1)^{2}} dx$
- **2.** 曲线 $\begin{cases} x^2 + y^2 + z^2 = a^2 \\ x^2 + z^2 = ax \end{cases}$ (a > 0) 在 xoy 面上的投影线为 ().
 - (A) 抛物线
- (B) 双曲线
- (C)椭圆
- (D) 圆

- 3. $\lim_{(x,y)\to(0,0)} (x^2 + y^2)^{xy} = ($
 - (A) 1
- (B) 0
- (C) 1/2 (D) 不存在

4. 函数 z = f(x, y) 在点 $M_0(x_0, y_0)$ 沿任一方向的方向导数都存在是 z = f(x, y) 在点 M_0 连续的()条 件.

(A) 充分必要

- (B) 必要非充分
- (C) 充分非必要
- (D) 既非充分又非必要

5. 设区域 $D = \{(x,y) | x^2 + y^2 \le 4, x + y \ge 0\}$, f(x) 为 D 上 的 正 值 连 续 函 数 , a,b 为 常 数 , 则 $\iint_{D} \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma =$

- (A) $ab\pi$ (B) $\frac{ab}{2}\pi$ (C) $(a+b)\pi$ (D) $\frac{a+b}{2}\pi$

6. 已知 $\Omega = \{(x,y,z) | x^2 + y^2 \le a^2, x^2 + z^2 \le a^2, x \ge 0, y \ge 0, z \ge 0 \}$, f 在 Ω 上连续,下列等式中正确的有

- 1) $\iiint_{\Omega} f(z) dV = \int_{0}^{a} dx \int_{0}^{\sqrt{a^{2} x^{2}}} dy \int_{0}^{\sqrt{a^{2} x^{2}}} f(z) dz$
- 2) $\iiint_{\Omega} f(y) dV = \int_{0}^{a} dz \int_{0}^{\sqrt{a^{2} z^{2}}} dx \int_{0}^{\sqrt{a^{2} x^{2}}} f(y) dy$
- 3) $\iiint_{\Omega} f(x) dV = \int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{\frac{a}{\cos \theta}} r dr \int_{0}^{\sqrt{a^{2} r^{2} \cos^{2} \theta}} f(x) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{\frac{a}{\sin \theta}} r dr \int_{0}^{\sqrt{a^{2} r^{2} \sin^{2} \theta}} f(x) dx$
- 4) $\iiint_{\Omega} f(z) dV = \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\arctan \frac{1}{\sin \theta}} d\varphi \int_{0}^{\frac{\alpha}{\sqrt{2-\sin^{2}\theta \sin^{2}\varphi}}} f(r\cos\varphi) r^{2} \sin\varphi dr$ $+ \int_0^{\frac{\pi}{2}} d\theta \int_{\arctan\frac{1}{2}}^{\frac{\pi}{2}} d\varphi \int_0^{\frac{a}{\sin\varphi}} f(r\cos\varphi) r^2 \sin\varphi dr$
- (A) 1
- (B) 2
- (C) 3
- (D) 4

二、填空题: $7\sim12$ 小题,每小题 3 分,共 18 分.请将答案写在答题卡上,写在试题册上无 效.

7. 摆线
$$\begin{cases} x = 1 - \cos t \\ y = t - \sin t \end{cases}$$
 (0 \le t \le \pi) 的弧长 $s =$ _______.

8. 过点
$$M(1,1,-1)$$
 且与直线 $\begin{cases} x=2+t, \\ y=4+3t,$ 垂直的平面方程为_______. $z=1+t \end{cases}$

9.
$$z = \sqrt{3x^2 + 3y^2}$$
 在点 (0,0) 处沿 x 轴正向的方向导数为______.

10. 函数
$$u = xyz$$
 满足 $x + y + z = 3(x > 0, y > 0, z > 0)$ 的条件极值 $u = \underline{\hspace{1cm}}$

11. 设
$$f(x)$$
 为连续函数, $F(t) = \int_{1}^{t} dy \int_{y}^{t} f(x) dx$,则 $F'(t) =$ ______.

三、解答题: $13\sim19$ 小题, 共 64 分. 解答应写出文字说明、证明过程或演算步骤.

13. (本题满分 10 分)

求 $y = 2x - x^2$ 与 y = 0 所围的封闭区域绕 x 轴旋转一周生成旋转体的体积.

14. (本题满分10分)

求过直线
$$L_1: \frac{x-1}{1} = \frac{y-1}{0} = \frac{z-1}{-2}$$
 且平行于直线 $L_2: \frac{x+2}{2} = \frac{y-1}{-1} = \frac{z}{-2}$ 的平面方程.

15. (本题满分 10 分)

求椭球面 $2x^2 + 3y^2 + z^2 = 9$ 上点 M(1,1,2) 处的切平面方程与法线方程.

16. (本题满分 10 分)

设
$$u = f(x, xy, xyz)$$
, f 具有二阶连续偏导数, 求 $\frac{\partial u}{\partial y}$, $\frac{\partial^2 u}{\partial y^2}$.

17. (本题满分 10 分)

求函数
$$z = x^2 + y^2 - 2x - y$$
 在 $D = \{(x, y) | 2x + y \le 4, x \ge 0, y \ge 0\}$ 上的最值.

18. (本题满分8分)

求在上半球体 $x^2 + y^2 + z^2 \le 1$ $(z \ge 0)$ 除去柱体 $x^2 + y^2 \le x$ 的空间立体的体积.

19. (本题满分6分)

已知
$$\Omega = \left\{ \left(x, y, z\right) \middle| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^4}{c^4} \le 1 \right\},$$
 计算 $I = \iiint_{\Omega} \left(\frac{x}{a} + \frac{y}{b} + \frac{z^2}{c^2}\right)^2 dV$.

20 - 21

选择题: $1\sim6$ 小题,每小题 3 分,共 18 分.下列每题给出的四个 选项中,只有一个选项是符合题目要求的.请将答案写在答题卡上,写在试题册上无效.

- **1.** 双纽线 $(x^2 + y^2)^2 = x^2 y^2$ 所围成的区域面积可用积分表示为().
 - (A) $2\int_{0}^{\frac{\pi}{4}}\cos 2\theta d\theta$ (B) $4\int_{0}^{\frac{\pi}{4}}\cos 2\theta d\theta$

 - (C) $2\int_{0}^{\frac{\pi}{4}} \sqrt{\cos 2\theta} d\theta$ (D) $\frac{1}{2} \int_{0}^{\frac{\pi}{4}} (\cos 2\theta)^{2} d\theta$
- 2. 设 f(x,y) 连续,且 $f(x,y)=xy+\iint_{\mathbb{R}}f(x,y)\mathrm{d}x\mathrm{d}y$,其中 D 是由 y=0, $y=x^2$, x=1所围的封闭区域,则 f(x, y) 等于(
- (B) 2xy (C) $xy + \frac{1}{9}$ (D) xy + 1
- **3.** 在曲线 $x=t, y=-t^2, z=t^3$ 的所有切线中,与平面 x+2y+z-4=0 平行的切线(
 - (A) 只有1条
- (B) 只有 2 条 (C) 只有 3 条 (D) 不存在

- 4. $\lim_{(x,y)\to(0,0)} \frac{xy}{x+y} = ($).

- (B) 1 (C) 2 (D) 不存在
- **5.** 隐函数 z = z(x, y) 由方程 $F(\frac{y}{x}, \frac{z}{x}) = 0$ 所确定,其中 F 可微,且 $F_2' \neq 0$,则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$).
 - (A) $\frac{yF_1' + zF_2'}{xF_2'}$ (B) $-\frac{F_1'}{F_2'}$ (C) z

- 6.下列积分中,收敛的反常积分有()个.
- 1) $\int_{1}^{+\infty} \frac{\ln x}{x-1} dx$ 2) $\int_{0}^{1} \frac{\sin x^{2}}{x^{2}} dx$ 3) $\int_{0}^{+\infty} \frac{1}{x^{2} \ln x} dx$ 4) $\int_{-\infty}^{+\infty} \frac{x}{\sqrt{1+x^{4}}} dx$

- (A) 0
- (B) 1 (C) 2
- (D) 3

二、填空题: $7\sim12$ 小题, 每小题 3 分, 共 18 分. 请将答案写在答题卡上, 写在试题册上无 效.

- 7. 由曲线 $y = x^2$, $x = y^2$ 围成的封闭图形绕 x 轴旋转一周所形成的旋转体体积为______
- 8. $\int_0^{+\infty} x e^{-x} dx = \underline{\hspace{1cm}}$
- **9.** 由 xoz 面上的曲线 $x^2 + z = 1$ 绕 z 轴旋转一周所形成的旋转曲面方程为_____

- 12. 设 Ω 为 曲 面 $z=\sqrt{x^2+y^2}$ 与 $z=\sqrt{1-x^2-y^2}$ 所 围 成 的 封 闭 区 域 , $\iiint\limits_{\Omega} (xy + yz + zx) dV = \underline{\hspace{1cm}}.$

三、解答题: $13\sim19$ 小题, 共 64 分. 解答应写出文字说明、证明过程或演算步骤.

13. (本题满分 10 分)

求 $y = 2x - x^2$ 与 y = x - 2 所围的封闭图形的面积.

14. (本题满分 10 分)

求过坐标原点O, 且与直线 $L_1: \frac{x-1}{0} = \frac{y+1}{1} = \frac{z-2}{1}$ 和 $L_2: \frac{x+1}{1} = \frac{y+2}{2} = \frac{z-1}{1}$ 都平行的平面方程.

15. (本题满分 10 分)

设
$$u = f(xy, x^2 + y^2)$$
, f 具有二阶连续偏导数, 求 $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x \partial y}$

16. (本题满分 10 分)

求函数 f(x,y,z) = x + 2y + 2z 在约束条件 $x^2 + y^2 + z^2 = 1$ 下的最值.

17. (本题满分 10 分)

计算
$$I = \iint_D \frac{\sin y}{y} dxdy$$
, 其中 D 是由 $y = x$ 和 $y^2 = x$ 所围成的封闭区域.

18. (本题满分8分)

已知
$$\Omega = \left\{ (x, y, z) \middle| x^2 + y^2 \le 1, \sqrt{1 - x^2 - y^2} \le z \le 1, y \ge 0, x \ge 0 \right\}$$
,

- 1) 写出球坐标变换公式,
- 2) 球坐标系下计算 $\iiint_{\Omega} (x^2 + y^2 + z^2)^2 dV$.
- 19. (本题满分6分)

已知
$$\Omega = \left\{ (x, y, z) \middle| x^2 + y^2 \le 1, y + x \ge 0, 0 \le z \le \sqrt{x^2 + y^2} \right\}$$
,

- 1) 写出柱坐标变换公式,
- 2) 计算 $\iint_{\Omega} \left| 2z \sqrt{2} \frac{xz + yz}{x^2 + y^2} \right| dV.$