HCMC University of Technology

Dung Nguyen

Probability and Statistics

Anova

Outline I

- The analysis of variance (ANOVA): the analysis of quantitative responses from experimental units.
 - The effects of (five) different brands of gasoline on automobile engine operating efficiency (mpg).
 - ② The effects of the presence of (four) different sugar solutions (glucose, sucrose, fructose, and a mixture of the three) on bacterial growth.
 - Whether hardwood concentration in pulp (%) has an effect on tensile strength of bags made from the pulp.
 - Whether the color density of fabric specimens depends on the amount of dye used.

Example

A manufacturer of paper used for making grocery bags is interested in improving the product's tensile strength. Product engineering believes that tensile strength is a function of the hardwood concentration in the pulp and that the range of hardwood concentrations of practical interest is between 5 and 20%. A team of engineers responsible for the study decides to investigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to make up six test specimens at each concentration level by using a pilot plant. All 24 specimens are tested on a laboratory tensile tester in random order.

Hardwood concentration				stre		
5 %	7	8	15	11	9	10
10%	12	17	13	18	19	15
15%	14	18	19	17	16	18
5% 10% 15% 20%	19	25	22	23	18	20

Hardwood concentration	Tensile strength					Sum	Average	
5 %	7	8	15	11	9	10	60	10.00
10%	12	17	13	18	19	15	94	15.67
15 %	14	18	19	17	16	18	102	17.00
20%	19	25	22	23	18	20	127	21.17
							383	15.99

- The levels of the factor: treatments.
- Each treatment: observations or replicates.
- The runs: in random order.
- Balanced design vs. Unbalanced design

Group 1		x_{11}	x_{12}	 x_{1J_1}
Group 1 Group 1 Group 1	-	<i>X</i> 21	<i>X</i> ₂₂	 X_{2J_2}
Group 1	:	x_{I1}	x_{I2}	 X_{IJ_I}

Let $\overline{X}_1,\ldots,\overline{X}_I$ be the sample means of the subpopulations and \overline{X} be the grand mean

$$X_{i} = \sum_{j=1}^{J_{i}} X_{ij}, \quad \overline{X}_{i} = \frac{\sum_{j=1}^{J_{i}} X_{ij}}{J_{i}}, \quad \overline{X} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J_{i}} X_{ij}}{N}.$$

				Sum	Average
Group 1					\overline{X}_1
Group 1	<i>x</i> ₂₁	<i>x</i> ₂₂	 X_{2J_2}	X_2	\overline{X}_2
Group I	x_{I1}	x_{I2}	 X_{IJ_I}	$X_{\mathcal{I}}$	\overline{X}_I
				X	\overline{X}

The I population or treatment distributions are all normal with the same variance σ^2 :

$$X_{ij} \sim \mathsf{N}(\mu_i, \sigma^2), \quad \mathsf{E}(X_{ij}) = \mu_i, \quad \mathsf{V}(X_{ij}) = \sigma^2.$$

$$X_{ij} = \mu_i + \epsilon_{ij}, \qquad \epsilon_{ij} \sim N(0, \sigma^2)$$

Sums of squares

• The total sum of squares

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (X_{ij} - \overline{X})^2.$$

• The treatment sum of squares

$$SSTr = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (\overline{X}_i - \overline{X})^2 = \sum_{i=1}^{I} J_i (\overline{X}_i - \overline{X})^2.$$

• The error sum of squares

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (X_{ij} - \overline{X}_i)^2$$

Hardwood concentration	Tensile st			strength			Sum	Average
5 %	7	8	15	11	9	10	60	10.00
10%	12	17	13	18	19	15	94	15.67
15 %	14	18	19	17	16	18	102	17.00
20%	19	25	22	23	18	20	127	21.17
							383	15.99

$$SST = SSTr + SSE$$
 and $df(SST) = df(SSTr) + df(SSE)$.

Sum of squares	df	Definition	Computation
Total (SST)	N-1	$\sum_{i,j} (X_{ij} - \overline{X})^2$	i,j
Treatment (SSTr)	I-1	$\sum_{i,j} (\overline{X}_i - \overline{X})^2$	$\sum_{i} \frac{X_i^2}{J_i} - \frac{X^2}{N}$
Error (SSE)	N-I	$\sum_{i,j} (X_{ij} - \overline{X}_i)^2$	SST — SSTr

Hardwood concentration	Tensile			stre	engt	h	Sum	Average
5 %	7	8	15	11	9	10	60	10.00
10%	12	17	13	18	19	15	94	15.67
15 %	14	18	19	17	16	18	102	17.00
20%	19	25	22	23	18	20	127	21.17
							383	15.99

$$SST = (7^2 + 8^2 + \dots + 20^2) - \frac{383^2}{(4)(6)} = 512.9583$$

$$SSTr = \frac{1}{6} (60^2 + 94^2 + 102^2 + 127^2) - \frac{383^2}{(4)(6)} = 382.7917$$

$$SSE = 512.9583 - 382.7917 = 130.1667.$$

- The mean square for treatment: MSTr = SSTr/df(SSTr).
- The mean square for error: MSE = SSE/df(SSE).

Consider the following statistic

$$F = rac{MSTr}{MSE} = rac{rac{SSTr}{I-1}}{rac{SSE}{N-I}}.$$

If H_0 is true then

$$F \sim F(I - 1, N - I).$$

Source of	Df	Sum of	Mean	F
variation		squares	square	
Treatment	I - 1	SSTr	$MSTr = \frac{SSTr}{I - 1}$	$\frac{MSTr}{MSE}$
Error	N-I	SSE	$MSE = \frac{SSE}{N-I}$	
Total	N - 1	SST		

Rejection region	$F \geq F_{\alpha,I-1,N-I}$
------------------	-----------------------------

Source of	Df	Sum of	Mean	F
variation		squares	square	
Treatment	3	382.79	127.60	19.60
Error	20	130.17	6.51	
Total	23	512.96		

Rejection	region	$F \ge 3.01$
-----------	--------	--------------

$$\sigma^2 \approx \mathit{MSE}$$

Confidence Interval on a Treatment Mean:

$$\mu_i = \overline{X}_i \pm t_{\alpha/2} \operatorname{se}, \quad \operatorname{se} = \sqrt{\frac{MSE}{J_i}}$$

Hardwood concentration	Т	ens:	ile	str	engt	h	Sum	Average
5 %	7	8	15	11	9	10	60	10.00
10%	12	17	13	18	19	15	94	15.67
15 %	14	18	19	17	16	18	102	17.00
20%	19	25	22	23	18	20	127	21.17
							383	15.99

MOE =
$$t_{0.025}$$
 se = 2.086 * $\sqrt{6.51/6}$ = 2.1728
 $\mu_1 = 10.00 \pm 2.1728$, $\mu_2 = 15.67 \pm 2.1728$,
 $\mu_3 = 17.00 \pm 2.1728$, $\mu_4 = 21.17 \pm 2.1728$,

$$\mu_i - \mu_k = (\overline{X}_i - \overline{X}_k) \pm LSD, \quad LSD = t_{\alpha/2} \sqrt{\frac{MSE}{J_i} + \frac{MSE}{J_k}}.$$

Hardwood concentration	Tensile strength					Sum	Average	
5 %	7	8	15	11	9	10	60	10.00
10%	12	17	13	18	19	15	94	15.67
15 %	14	18	19	17	16	18	102	17.00
20 %	19	25	22	23	18	20	127	21.17
							383	15.99

$$LSD = t_{0.025} \sqrt{\frac{MSE}{6} + \frac{MSE}{6}} = 2.086 \sqrt{2(6.51)/6} = 3.07$$
.

Therefore, any pair of treatment averages that differs by more than 3.07 implies that the corresponding pair of treatment means are different.

Hardwood concentration	Tensile strength					Sum	Average	
5 %	7	8	15	11	9	10	60	10.00
10%	12	17	13	18	19	15	94	15.67
15 %	14	18	19	17	16	18	102	17.00
20%	19	25	22	23	18	20	127	21.17
							383	15.99

The comparisons among the observed treatment averages are as follows (LSD=3.07):

- 4 vs. 1 = 21.17 10.00 = 11.17 > 3.07
- 4 vs. 2 = 21.17 15.67 = 5.50 > 3.07
- 4 vs. 3 = 21.17 17.00 = 4.17 > 3.07
- 3 vs. 1 = 17.00 10.00 = 7.00 > 3.07
- 3 vs. 2 = 17.00 15.67 = 1.33 < 3.07
- \bullet 2 vs. 1 = 15.67 10.00 = 5.67 > 3.07

The Random-Effects Model

In Montgomery's book, he describes a single-factor experiment involving the random-effects model in which a textile manufacturing company weaves a fabric on a large number of looms. The company is interested in loom-to-loom variability in tensile strength. To investigate this variability, a manufacturing engineer selects four looms at random and makes four strength determinations on fabric samples chosen

Loom	Ten	sil	e st	rength
1	98	97	99	96
2	91	90	93	92
3	96	95	97	95
4	95	96	99	98

Loom	Ten	sil	e st	Sum	Average	
1	98	97	99	96	390	97.5
2	91	90	93	92	366	91.5
3	96	95	97	95	383	95.8
4	95	96	99	98	388	97.0
					1527	95.45

Source of	Df	Sum of	Mean	F
variation		squares	square	
Loom	3	89.188	29.729	16.183
Error	12	22.045	1.837	(> 5.953)
Total	15	111.938		