Register Number					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test – III KEY Question Paper

Degree & Branch	B.E. & Computer Science and Engineering LICS 1401 & Computer Organization and				Semester	IV
Subject Code & Name	UCS1401 & Computer Organization and Architecture			Regulation:	2018	
Academic Year	2021-2022 Batch 2020-2024 Date			26-05-2022	FN	
Time: 90 Minutes	Answer All Questions			Maximum	: 50 Marks	

 $Part - A (6 \times 2 = 12 Marks)$

$Part - A (6 \times 2 = 12 Marks)$					
Knowle -dge Level	Question	Course Outcome	Performa -nce Indicator		
K1	1 ANS: 512 KB Memory needs 19 address lines and 8 data lines.	CO4	1.3.1		
K2	2. Show the structure of the memory hierarchy. ANS: Fast and expensive Increasing performance and increasing cost Secondary Storage (disks) Off-line Storage (Tape) Slow and inexpensive	CO4	1.3.1		
К2	3 Classify the different cache mapping methods? ANS: Direct, Associative and set associative mappings	CO4	1.3.1		
K2	4. Explain write through policy. ANS: Content of Main memory updated while updating content of cache	CO4	1.3.1		
K1	5. What are multicore architectures? ANS: A single IC package has core logic of more than one processor. Each core has its own resources like execution pipelines, caches,registers, etc Eg:Dual core, Quad core processors	CO5	1.3.1		
K1	6. List examples processors for SIMD architectures. ANS:	CO5	1.3.1		

Vector Processors, Multimedia extensions architectures (MMX), GPU	
processors	
	ļ

$Part - B (3 \times 6 = 18 Marks)$

K2	ANS: 16KB CACHE MEMORY line size 32 bytes no of lines =16 x 1023/32 = 512 lines line no = 9 bits line offset =5 bits	CO4	1.3.1
К3	 8. A computer uses RAM chips of 1024x1 bit capacity. a) Identify the number of chips needed to construct a memory capacity of 1024 bytes b) Identify the number of chips are needed to provide a memory capacity of 16 kilobytes. ANS: a) 8 chips are needed with the address lines connected in parallel. b) 16x8 = 128 chips. Use 14 address lines (16k = (2 power 14)) 10 lines to specify the chip address 4 lines are decoded in to 16 chip select inputs. 	CO4	1.4.1 2.2.3
K2	9. Explain the Flynn's classification of parallel processing models. ANS: SISD, SIMD, MISD, MIMD	CO5	1.3.1

 $Part - C (2 \times 10 = 20 Marks)$

	$Part - C (2 \times 10 = 20 Marks)$					
	10. A two way set associative cache memory uses a block size of 4 words.					
	The cache can accommodate a total of 2048 words from main memory.					
	The main memory size is 128k x 32.					
	a) Identify all pertinent information to construct a cache memory.					
	b) Identify the size of the cache memory.					
	ANS:					
	128k =(2 power 17); for a set size of 2, the index address has 10 bits to acco					
	2048/2=1024 words of cache.		222			
K3	a) 7 10 =17 Bits	CO4	3.2.2			
	TAG INDEX		13.3.1			
	block word 8bits 2bits					
	b)					
	7 32 7 32					
	Tag1 data1 tag2 data2					
	size of the cache is $\rightarrow 1024*2(7+32)=1024*78$					
	(OR)					
	11. Construct a static RAM memory of size 2M x 32 memory module using					
	512K x 8 static memory		3.2.2			
K3	ANS:	CO4	13.3.1			
	4*4 matrix of 512K * 8 chips		13.3.1			
	12 What are the 1'ff are the CDH and CDH and CDH.					
K2	12. What are the differences between CPU and GPU architectures.	CO5	1.3.1			
KZ	Explain the architecture of Graphics processing units. ANS:	COS	1.3.1			
	11100					

	 A GPU is tailored for highly parallel operation while a CPU executes programs serially For this reason, GPUs have many parallel execution units and higher transistor counts, while CPUs have few execution units and higher clock speeds A GPU is for the most part deterministic in its operation GPUs have much deeper pipelines (several thousand stages vs 10-20 for CPUs) GPUs have significantly faster and more advanced memory interfaces as they need to shift around a lot more data than CPUs 		
	(OR)		
K2	 What are the limitations of single core processors. Highlight the merits and demerits of multicore architectures. List the applications of multicore architectures. ANS: Smaller transistors = faster processors. Faster processors = increased power consumption. Increased power consumption = increased heat. Increased heat = unreliable processors A simple Thump rule is that For every 1% rise in the clock frequency you will see 3% rise in the power consumption Thus the heat dissipation also increases. Merits Occupies less space on PCB Higher throughput Consume less power Cache coherency can be greatly improved Performs more operations/sec with less frequency Demerits Maximizing the utilization of the computing resources provided by multi-core processors requires adjustments both to the operating system (OS) support and to existing application software They are more difficult to manage thermally than lower-density single-chip designs Applications: Data base servers 	CO5	1.3.1

■ Web	servers	
■ Com	pilers	
■ Mult	timedia Applications	
■ Scien	ntific Applications	
■ Gene	eral applications with TLP as opposed to ILP	
■ Dow	rnloading s/w while running Anti virus s/w	
■ Editi	ing photo while recording TV show.	

Prepared By	Reviewed By	Approved By
Dr. D.Venkata Vara Prasad		
Dr.S.Saraswathi		
Course Coordinator	PAC Team	НОД