Étale Homotopy Theory and Adams' Conjecture

David Zhu

October 29, 2024

Definition 0.0.1 (Čech Nerve). Let X be a finite CW complex, and $\mathcal{U} := \{U_i : i \in I\}$ be an open cover of X. Then, we may define a simplicial set call the <u>Čech Nerve</u> $N\mathcal{U}$ as follows: we have the assignment on objects $[n] \mapsto \{\text{functions from } [n] \text{ to } I : \bigcap_{i=1}^n U_{f(i)} \neq \emptyset\}$. The face maps and degeneracy maps are defined by deleting and inserting appropriate indices.

Alternatively, we can think of a covering \mathcal{U} as follows: suppose given a covering $X = \bigcup_{i \in I} U_i$; let $\mathcal{U} = \coprod_{i \in I} U_i$, and the covering is the obvious map $\mathcal{U} \to X$. Note that we have

$$U_i \cap U_j = U_i \times_X U_j$$

so the *n*-fold fiber product $U \times_X ... \times_X U$ is the disjoint union of *n*-fold intersections of opens in the cover. Then, the *n*th simplices of the Čech nerve is $\pi_0(\underbrace{U \times_X ... \times_X U})$. The face maps are projections, and the

degeneracy maps are various diagonal embeddings.

Theorem 0.1. If the covering \mathcal{U} satisfies the property that arbitrary intersections of opens in the cover is either empty or contractible, then th realization $|N\mathcal{U}|$ is weakly equivalent to X.