Devoir surveillé n°12

NOM: Prénom: Note:

A lire attentivement avant de répondre aux questions

- ► Certaines questions, de numéros consécutifs, sont liées et regroupées dans des parties distinctes.
- ▶ Pour chaque question, il peut y avoir 0, 1 ou 2 bonnes réponses.
- ► Répondre directement sur le sujet : entourer les réponses justes (A), (B), (C), (D) et barrer les réponses fausses (A, B, C, D).
- ▶ Lorsqu'une question admet deux réponses justes, 2 points par réponse juste entourée. Lorsqu'une question admet une seule réponse juste, 4 points si seule la réponse juste est entourée, 2 points si la réponse juste est entourée mais qu'une autre réponse est également entourée, 0 point sinon. Lorsqu'une question n'admet aucune réponse juste, 4 points si toutes les réponses sont barrées, 0 point sinon. Les questions où toutes les réponses ne sont pas soit entourées soit barrées ainsi que les réponses ou plus de deux réponses sont entourées ne seront pas corrigées.
- ► Les calculatrices sont **interdites**.
- ▶ Ne pas d'oublier d'indiquer son nom sur le sujet.
- ► Conseil d'ami : faites marcher votre esprit de déduction et votre bon sens. En particulier, vérifiez la cohérence entre vos réponses aux différentes questions.

— Exemple ————		
On considère le polynôme $P = X^2$	-1.	
★ 0 est racine de P.	\mathcal{K} 0 est racine de P.	\mathcal{K} 0 est racine de P.
(B) 1 est racine de P.	⅓ 1 est racine de P.	B 1 est racine de P.
\bigcirc -1 est racine de P.		C −1 est racine de P.
𝓜 P n'admet pas de racine réelle.		D P n'admet pas de racine réelle.
Question corrigée (4 points)	Question corrigée (2 points)	Question non corrigée (0 point)
A = P(0) = 1.	$\mathcal{K} P' = 1.$	A P(0) = 1
$\mathbf{B}' P'(0) = 1.$	B $P'(0) = 1$.	$\mathcal{B}' P'' = 1.$
\mathbb{C} $P' = 2X$.	$\bigcirc P' = 2X.$	\mathcal{L} P(1)=-1.
$\mathcal{D} P(X^2) = (X^2 - 1)^2.$	$\mathcal{D} P(X^2) = (X^2 - 1)^2.$	$\not \! D P''(1) = 1.$
Question corrigée (4 points)	Question corrigée (2 points)	Question corrigée (4 points)

© Laurent Garcin

Géométrie euclidienne

On munit \mathbb{R}^3 de son produit scalaire usuel noté $\langle \cdot, \cdot \rangle$. On considère le plan F d'équation 2x - 2y + z = 0.

Q1. La matrice du projecteur orthogonal p sur le plan F est

$$\mathbf{A}. \quad \mathbf{M} = \begin{pmatrix} -3 & 4 & -2 \\ 4 & -3 & 2 \\ -2 & 2 & 0 \end{pmatrix}$$

B.
$$M = \frac{1}{3} \begin{pmatrix} -1 & 4 & -2 \\ 4 & -1 & 2 \\ -2 & 2 & 2 \end{pmatrix}$$

$$\mathcal{L}. \quad M = \frac{1}{3} \begin{pmatrix} 7 & -4 & 2 \\ -4 & 7 & 2 \\ 2 & -2 & 4 \end{pmatrix}$$

$$\begin{array}{cccc}
\mathbf{D.} & \mathbf{M} = \frac{1}{9} \begin{pmatrix} 5 & 4 & -2 \\ 4 & 5 & 2 \\ -2 & 2 & 8 \end{pmatrix}$$

Q2. \not **X.** p est un automorphisme orthogonal

B:
$$rg(p) = 1$$

$$(C.) \forall (x,y) \in (\mathbb{R}^3)^2, \langle p(x), y \rangle = \langle x, p(y) \rangle$$

$$\mathcal{D}$$
: $\operatorname{tr}(p) = 1$

Q3. On note *s* la symétrie orthogonale par rapport au plan F.

- (A.) La matrice de s dans la base canonique est orthogonale.
 - **B**. Le déterminant de *s* vaut 1.
 - \mathcal{L} . Le vecteur (2, -2, 1) est invariant par s.

D. Il existe une base orthonormée de
$$\mathbb{R}^3$$
 dans laquelle la matrice de s est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

Q4. On considère le vecteur u = (1, 2, 3). La distance de u à F vaut

(A.)
$$\frac{1}{3}$$
 B. $\frac{1}{9}$ **C**. $\frac{2}{9}$ **D**. $\frac{2}{3}$

Q5. On considère maintenant le plan G d'équation x + y - 2z = 0.

$$\mathcal{K}$$
. $(F+G)^{\perp} = \text{vect}(3,-1,-1)$

B.
$$(F \cap G)^{\perp} = \text{vect}((2, -2, 1), (1, 1, -2))$$

$$\mathscr{C}$$
. $F^{\perp} + G^{\perp} = \text{vect}((1, 1, 0), (1, 1, 1))$

$$(\mathbf{D}_{\bullet})$$
 $(F \cap G)^{\perp} = \text{vect}((3, -1, -1), (1, -3, 3))$

Une suite de polynômes

Q6. On pose
$$J_n = \int_{-1}^{1} (1 - x^2)^n dx$$
 et $K_n = \int_{-1}^{1} x^2 (1 - x^2)^{n-1} dx$ pour $n \in \mathbb{N}^*$.

$$\mathbf{A}'$$
. $K_n = (2n+1)J_n$

B.
$$K_n = 2nJ_n$$

$$C$$
. $K_n = \frac{1}{2n+1} J_n$

$$\mathcal{K}. \ \mathbf{K}_n = (2n+1)\mathbf{J}_n \qquad \mathcal{B}. \ \mathbf{K}_n = 2n\mathbf{J}_n \qquad \mathcal{C}. \ \mathbf{K}_n = \frac{1}{2n+1}\mathbf{J}_n \qquad \mathbf{D}. \ \mathbf{K}_n = \frac{1}{2n}\mathbf{J}_n$$

Q7. En calculant $J_n - J_{n-1}$ pour $n \in \mathbb{N}^*$, on obtient la relation de récurrence suivante.

$$A$$
. $J_n = \frac{2n-1}{2n} J_{n-1}$

B.
$$J_n = \frac{2n+1}{2n-1}J_{n-1}$$

A.
$$J_n = \frac{2n-1}{2n}J_{n-1}$$
 B. $J_n = \frac{2n+1}{2n-1}J_{n-1}$ **C.** $J_n = \frac{2n}{2n+1}J_{n-1}$ **D.** $J_n = \frac{2n}{2n-1}J_{n-1}$

$$\mathbf{p}$$
. $J_n = \frac{2n}{2n-1}J_{n-1}$

Q8. On pose
$$I_n = \int_{-1}^{1} (x^2 - 1)^n dx$$
.

A.
$$I_n = (-1)^n 2^{2n+1} \frac{(2n+1)!}{(n!)^2}$$

B.
$$I_n = (-1)^n 2^{2n} \frac{(2n+1)!}{(n!)^2}$$

(C.)
$$I_n = (-1)^n 2^{2n+1} \frac{(n!)^2}{(2n+1)!}$$

D:
$$I_n = (-1)^n 2^{2n} \frac{(2n)!}{((n+1)!)^2}$$

Q9. On définit pour $n \in \mathbb{N}$ les polynômes $P_n = (X^2 - 1)^n$ et $L_n = P_n^{(n)}$ (dérivée $n^{\text{ème}}$ de P_n).

X. Le monôme de plus haut degré de L_n est $\frac{(2n+1)!}{(n+1)!}X^{n+1}$.

B. L_n est toujours un polynôme pair.

 \mathcal{L}_n a la même parité que n+1.

 $(\mathbf{D}.)$ L_n a la même parité que n.

Q10. A partir de la définition de L_n , on peut écrire :

A.
$$L_n = \sum_{k=1}^n \binom{n}{k} [(X-1)^n]^{(k)} [(X+1)^n]^{(n-k)}$$

(B.)
$$L_n = \sum_{k=0}^n \binom{n}{k} [(X-1)^n]^{(k)} [(X+1)^n]^{(n-k)}$$

$$\mathscr{C}. \quad L_n = \sum_{k=1}^n \frac{n(n-1)\cdots(n-k)}{k(k-1)\cdots 1} [(X-1)^n]^{(k)} [(X+1)^n]^{(n-k)}$$

D.
$$L_n = \sum_{k=0}^n \frac{n(n-1)\cdots(n-k)}{k(k-1)\cdots 1} [(X-1)^n]^{(k)} [(X+1)^n]^{(n-k)}$$

Q11. On en déduit alors que pour tout $n \in \mathbb{N}$,

$$A$$
. $L_n(1) = L_n(-1)$

B.
$$L_n(1) = 0$$

$$\mathcal{L}$$
. L_n(1) = n

A.
$$L_n(1) = L_n(-1)$$
 B. $L_n(1) = 0$ **C.** $L_n(1) = n!$ **D.** $L_n(1) = 2^n n!$

- **Q12.** En calculant P'_n et P''_n , on constate que
 - **K.** P'_n et P''_n n'ont pas de racines autres que 1 et -1 dans [-1,1].
 - **B**. P'_n possède une racine dans]-1,1[et P''_n n'a pas de racines dans]-1,1[.
 - \mathcal{L} . P_n'' possède une racine double dans]-1,1[.
 - $(\mathbf{D}.)$ P_n'' possède deux racines opposées dans]-1,1[.
- **Q13.** On considère deux entiers naturels k et n tels que k < n.
 - **A.** Les seules racines de $P_n^{(k)}$ sont 1 et -1.
 - **B**. A l'aide du théorème de Rolle, on montre que $P_n^{(k)}$ s'annule exactement k fois sur [-1,1].
 - (C.) A l'aide du théorème de Rolle, on montre que $P_n^{(k)}$ s'annule exactement k fois sur]-1,1[.
 - \mathbb{D} . A l'aide du théorème de Rolle, on montre que $P_n^{(k)}$ s'annule exactement k+1 fois sur]-1,1[.
- Q14. On peut déduire des questions précédentes que :
 - \mathcal{A} . Pour tout $n \in \mathbb{N}$, $L_n(1) = L_n(-1)$.
 - $(\mathbf{B}_{\boldsymbol{\cdot}})$ L_n est scindé sur \mathbb{R} à racines simples toutes comprises dans l'intervalle]-1,1[.
 - (C.) Si n est impair, les racines de L_n sont opposées deux à deux.
 - **D**. Si n est pair, 0 est racine de L_n .
- **Q15.** En calculant P_{n+1}'' pour $n \in \mathbb{N}^*$, on obtient la relation

A.
$$P''_{n+1} = 2(2n+1)^2 P_n + 4n(n+1) P_{n-1}$$

B.
$$P''_{n+1} = (n+1)^2 P_{n-1} + 4n(n+1) P_n$$

(C.)
$$P''_{n+1} = 2(2n+1)(n+1)P_n + 4n(n+1)P_{n-1}$$

D:
$$P_{n+1}'' = (2n-1)(n+1)P_n - 4n(n+1)P_{n-1}$$

Q16. En dérivant n fois P'_{n+1} , on obtient pour n non nul :

A.
$$L_{n+1} = 2(n+1)XL_n + 2(n+1)X^2P_n^{(n-1)}$$

B.
$$L_{n+1} = 2(n+1)XL_n + 2(n+1)(n-1)^2P_n^{(n-1)}$$

(C.)
$$L_{n+1} = 2(n+1)XL_n + 2n(n+1)P_n^{(n-1)}$$

D.
$$L_{n+1} = 2(n+1)XL_n + 2(n-1)(n+1)P_n^{(n-1)}$$

Q17. En dérivant n-1 fois l'expression de \mathbf{P}''_{n+1} obtenue précédemment, on obtient pour $n \in \mathbb{N}^*$,

A.
$$L_{n+1} = 2(2n+1)^2 P_n^{(n-1)} + 4n(n+1)L_{n-1}$$

B.
$$L_{n+1} = (n+1)^2 P_{n-1}^{(n-1)} + 4n(n+1) L_n$$

(C.)
$$L_{n+1} = 2(n+1)(2n+1)P_n^{(n-1)} + 4n(n+1)L_{n-1}$$

D.
$$L_{n+1} = (n+1)(2n-1)P_n^{(n-1)} - 4n(n+1)L_{n-1}$$

Q18. On obtient finalement pour $n \in \mathbb{N}^*$ la relation permettant d'exprimer L_{n+1} en fonction de L_n et L_{n-1} .

A.
$$L_{n+1} = 2(n+1)XL_n - 4(n-1)^2L_{n-1}$$

B.
$$L_{n+1} = 2(n+1)XL_n - 4n^2L_{n-1}$$

$$\mathcal{L}$$
. $L_{n+1} = 2(n+1)XL_n + 4n^2L_{n-1}$

D.
$$L_{n+1} = 2(n+1)XL_n + 4(n-1)^2L_{n-1}$$

On munit $\mathbb{R}[X]$ du produit scalaire défini par

$$\forall (P,Q) \in \mathbb{R}[X]^2, \langle P,Q \rangle = \int_{-1}^1 P(t)Q(t) dt$$

On notera ||P|| la norme d'un polynôme P.

Q19. En procédant à des intégrations par parties successives, on montre que pour $k \le m < n$

$$\textbf{\textit{A}}. \quad \langle \mathbf{L}_{n}, \mathbf{X}^{m} \rangle = (-1)^{k+1} m(m-1) \cdots (m-k) \int_{-1}^{1} t^{m-k} \mathbf{P}_{n}^{(n-k)}(t) \, \mathrm{d}t$$

$$\textbf{\textit{B}}. \quad \langle \mathbf{L}_{n}, \mathbf{X}^{m} \rangle = (-1)^{k} m(m-1) \cdots (m-k) \int_{-1}^{1} t^{m-k} \mathbf{P}_{n}^{(n-k)}(t) \, \mathrm{d}t$$

$$\mathscr{L}. \ \langle L_n, X^m \rangle = (-1)^m m! \int_{-1}^1 t P_n^{(n-m+1)}(t) dt$$

(D.)
$$\langle L_n, X^m \rangle = (-1)^{m-1} m! \int_{-1}^1 t P_n^{(n-m+1)}(t) dt$$

Q20. On en déduit que pour m < n:

$$A$$
. $\langle L_n, X^m \rangle = (-1)^m m!$

B.
$$\langle L_n, X^m \rangle = (-1)^{m-1} (m-1)!$$

$$\mathcal{L}$$
. $\langle L_n, X^m \rangle = (n-m)!$

$$(\mathbf{D}.)$$
 $\langle \mathbf{L}_n, \mathbf{X}^m \rangle = 0$

Q21. On peut alors en déduire que si m est différent de n:

$$\mathcal{K}. \quad \langle \mathbf{L}_n, \mathbf{L}_m \rangle = (-1)^{m+n} (m+n)!$$

B:
$$\langle L_n, L_m \rangle = (-1)^{m-1} (m-1)!$$

$$\mathscr{L}$$
. Si $n > m$, alors $\langle L_n, L_m \rangle = (-1)^{n-m} (n-m)!$

$$(\mathbf{D}.) \ \langle \mathbf{L}_n, \mathbf{L}_m \rangle = 0$$

Q22. En intégrant n fois par parties l'intégrale définissant $\|\mathbf{L}_n\|^2$, on obtient

$$\mathcal{A}. \quad ||\mathbf{L}_n||^2 = \int_{-1}^1 \mathbf{P}_n(t) \mathbf{P}_n^{(2n+1)}(t) \, \mathrm{d}t$$

B.
$$\|\mathbf{L}_n\|^2 = (-1)^n \int_{-1}^1 \mathbf{P}_n(t) \mathbf{P}_n^{(2n+1)}(t) dt$$

$$(C.) ||L_n||^2 = (-1)^n \int_{-1}^1 P_n(t) P_n^{(2n)}(t) dt$$

$$\mathbf{D}. \quad \|\mathbf{L}_n\|^2 = \int_{-1}^1 \mathbf{P}_n(t) \mathbf{P}_n^{(2n)}(t) \, \mathrm{d}t$$

Q23. On obtient alors comme expression de $\|L_n\|^2$:

$$A. \|L_n\|^2 = \frac{2^{2n}(n!)^2}{2n+1}$$

A.
$$\|\mathbf{L}_n\|^2 = \frac{2^{2n}(n!)^2}{2n+1}$$
 B. $\|\mathbf{L}_n\|^2 = \frac{2^{2n+1}(n!)^2}{2n+1}$ **C.** $\|\mathbf{L}_n\|^2 = \frac{2^{2n}(n!)^2}{(2n+1)!}$ **D.** $\|\mathbf{L}_n\|^2 = 1$

$$\mathcal{L}$$
. $\|\mathbf{L}_n\|^2 = \frac{2^{2n}(n!)^2}{(2n+1)!}$

$$\mathbf{D}. \|\mathbf{L}_n\|^2 = 1$$

Une autre suite de polynômes

On note T_n l'unique polynôme de $\mathbb{R}[X]$ tel que $T_n(\cos x) = \cos(nx)$ pour tout $x \in \mathbb{R}$.

Q24. On s'intéresse au polynôme T_3 .

$$A_{\bullet}$$
 $T_3 = 3X^3 - 4X$

A.
$$T_3 = 3X^3 - 4X$$
 B. $T_3 = 4X^3 - 3X$ **C.** $T_3 = X^3 - 4X$ **D.** $T_3 = 4X^3 - X$

$$C: T_3 = X^3 - 4X$$

D.
$$T_3 = 4X^3 - X$$

Q25. La suite (T_n) vérifie la relation de récurrence :

$$A$$
: $\forall n \in \mathbb{N}, T_{n+2} = T_n - 2XT_{n+1}$

B.
$$\forall n \in \mathbb{N}, T_{n+2} = T_n + 2XT_{n+1}$$

$$\mathcal{L}$$
: $\forall n \in \mathbb{N}$, $T_{n+2} = 2XT_n + T_{n+1}$

$$(\mathbf{D}.) \quad \forall n \in \mathbb{N}, \ \mathbf{T}_{n+2} = 2\mathbf{X}\mathbf{T}_{n+1} - \mathbf{T}_n$$

Q26. On note $P \circ Q$ la composée de deux polynômes P et Q.

$$(\mathbf{A}.) \ \forall (m,n) \in \mathbb{N}^2, \ \mathbf{T}_m \circ \mathbf{T}_n = \mathbf{T}_{mn}$$

B.
$$\forall (m,n) \in \mathbb{N}^2$$
, $0 \le m \le n \Longrightarrow T_{m+n} - T_{m-n} = 2T_m T_n$

$$\mathscr{C}$$
. $\forall (m,n) \in \mathbb{N}^2$, $T_m \circ T_n = T_m + T_n$

$$(\mathbf{D}_{\boldsymbol{\cdot}}) \ \forall (m,n) \in \mathbb{N}^2, \ 0 \leq m \leq n \Longrightarrow \mathbf{T}_{m+n} + \mathbf{T}_{m-n} = 2\mathbf{T}_m \mathbf{T}_n$$

Q27. On s'intéresse aux racines de T_n où $n \in \mathbb{N}^*$.

$$\boldsymbol{\mathcal{K}}$$
. Les racines de T_n sont les $\cos\left(\frac{2k\pi}{n}\right)$ pour $k \in [0, n-1]$

- (**B.**) T_n est scindé à racines simples.
 - \mathcal{C} . La somme des racines de T_n est toujours nulle.
- (**D.**) Le produit des racines de T_n est nul si n est impair.

Q28. On note $P \wedge Q$ le PGCD de deux polynômes P et Q.

$$A$$
: $\forall n \in \mathbb{N}, T_{n+2} \wedge T_{n+1} = T_n$

$$\mathbf{B.} \quad \forall n \in \mathbb{N}, \ \mathbf{T}_{n+2} \wedge \mathbf{T}_{n+1} = \mathbf{T}_{n+1} \wedge \mathbf{T}_n$$

$$(C.) \quad \forall n \in \mathbb{N}, \ T_{n+1} \wedge T_n = 1$$

$$\mathcal{D}. \quad \forall n \in \mathbb{N}, \ T_{n+2} \wedge T_n = T_{n+1}$$

Q29.
$$\forall \theta \in \mathbb{R}, T'_n(\cos \theta) = -\sin(n\theta)$$

$$(\mathbf{B}.) \quad \forall \theta \in \mathbb{R}, \ n \sin(\theta) \mathbf{T}'_n(\cos \theta) = \sin(n\theta)$$

$$\mathcal{L}$$
. $\forall \theta \in \mathbb{R}$, $T'_n(\cos \theta) = -n \sin(n\theta)$

$$\mathcal{D}. \quad \forall \theta \in \mathbb{R}, \ \mathbf{T}'_n(\sin \theta) = -n \sin(n \theta)$$

Q30. On en déduit que la décomposition en éléments simples de $\frac{1}{T_n}$ est

A.
$$\frac{1}{T_n} = \sum_{k=1}^{n} \frac{1}{X - \cos \frac{2k\pi}{n}}$$

B.
$$\frac{1}{T_n} = \frac{1}{n} \sum_{k=1}^n \frac{(-1)^k}{X - \cos\frac{(2k-1)\pi}{n}}$$

$$\mathcal{C}. \quad \frac{1}{T_n} = \sum_{k=1}^n \frac{\sin\frac{(2k-1)\pi}{n}}{X - \cos\frac{(2k-1)\pi}{n}}$$

$$\mathbf{p}. \quad \frac{1}{T_n} = \frac{1}{n} \sum_{k=1}^n \frac{(-1)^k}{X - \cos\frac{2k\pi}{n}}$$

Q31. On munit $\mathbb{R}[X]$ du produit scalaire défini par

$$\forall (P,Q) \in \mathbb{R}[X]^2, \langle P,Q \rangle = \int_0^{\pi} P(\cos x) Q(\cos x) dx$$

 \mathcal{K} . La famille $(T_0, ..., T_n)$ est une base orthonormée de $\mathbb{R}_n[X]$.

B.
$$\forall n \in \mathbb{N}, ||\mathbf{T}_n||^2 = \pi$$

- (C_{\bullet}) La famille $(T_n)_{n\in\mathbb{N}}$ est une base de $\mathbb{R}[X]$.
- $(\mathbf{D}.)$ Pour tout $n \in \mathbb{N}$, $T_{n+1} \in \mathbb{R}_n[X]^{\perp}$.

Séries

Q32. On se donne a et b deux réels et on s'intéresse à la série $\sum_{n} \frac{a^n}{n^b}$.

- **X.** La série diverge grossièrement pour tout $(a, b) \in \mathbb{R} \times \mathbb{R}_{-}$.
- **B**. La série converge pour tout $(a, b) \in \mathbb{R} \times]1, +\infty[$.
- \mathcal{C} . La série converge pour tout $(a, b) \in \mathbb{R}^*_- \times \mathbb{R}$.
- La série converge pour tout $(a, b) \in]-1, 1[\times \mathbb{R}]$

Q33. Soit $n \in \mathbb{N}^*$. On considère la dérivée $n^{\text{ème}}$ de la fonction $f: x \mapsto \ln(1+x)$.

A.
$$\forall x \in]-1,+\infty[, f^{(n)}(x) = \frac{(n-1)!}{(1+x)^n}$$

B.
$$\forall x \in]-1,+\infty[, f^{(n)}(x) = \frac{n!(-1)^n}{(1+x)^n}$$

$$\mathscr{C}$$
. $\forall x \in]-1,+\infty[, f^{(n)}(x) = \frac{n!(-1)^{n-1}}{(1+x)^{n+1}}$

(D.)
$$\forall x \in]-1, +\infty[, f^{(n)}(x) = \frac{(n-1)!(-1)^{n-1}}{(1+x)^n}$$

Q34. On en déduit via l'inégalité de Taylor-Lagrange que

(A.)
$$\left| \ln(2) - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \right| \le \frac{1}{n}$$

B.
$$\left| \ln(2) - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k!} \right| \le \frac{1}{n!}$$

$$\mathcal{L}. \left| \ln(2) - \sum_{k=1}^{n} \frac{(-1)^k}{k} \right| \le \frac{1}{n}$$

$$\mathbb{D}.$$
 $\left| \ln(2) - \sum_{k=1}^{n} \frac{(-1)^k}{k!} \right| \le \frac{1}{n!}$

Q35. On en déduit que

$$\cancel{K}. \sum_{n=0}^{+\infty} \frac{(-1)^n}{n} = \ln(2)^n$$

BY:
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} = \ln(2)$$

$$C. \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \ln(2)$$

$$\mathcal{K}. \sum_{n=1}^{+\infty} \frac{(-1)^n}{n} = \ln(2) \qquad \mathcal{B}. \sum_{n=1}^{+\infty} \frac{(-1)^n}{n!} = \ln(2) \qquad \boxed{\mathbf{C}.} \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \ln(2) \qquad \boxed{\mathbf{D}.} \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n} = \ln(2)$$

Q36. On s'intéresse à la série $\sum_{n>2} \frac{1}{n(\ln n)^{\alpha}}$ où $\alpha \in \mathbb{R}$.

K. A l'aide d'une comparaison à une intégrale, on montre que la série $\sum_{n\geq 2} \frac{1}{n(\ln n)^{\alpha}}$ converge si et seulement si $\alpha > 0$.

A l'aide d'une comparaison à une intégrale, on montre que la série $\sum_{n\geq 2} \frac{1}{n(\ln n)^{\alpha}}$ converge si et

$$\mathcal{C}: \sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^2} \le \frac{1}{\ln 2}.$$

D. La série $\sum_{n=0}^{\infty} \frac{1}{n(\ln n)^{\alpha}}$ diverge grossièrement lorsque $\alpha < 0$.

Q37. On pose $u_n = \ln(\ln(n+1)) - \ln(\ln(n))$ pour tout entier $n \ge 2$.

$$\mathcal{K}. \quad u_n = \mathcal{O}\left(\frac{1}{n^2}\right)$$

B.
$$u_n \sim \frac{1}{n \to +\infty}$$

 \mathscr{L} . La série $\sum u_n$ converge absolument.

(D.) La série $\sum_{n>2} \frac{1}{u_n}$ diverge grossièrement.

Une suite de déterminants

Soient $(a,b,c) \in \mathbb{R}^3$ et Δ_n le déterminant d'ordre n suivant

$$\Delta_n = \begin{vmatrix} a & b & 0 & \dots & 0 \\ c & a & b & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & b \\ 0 & \dots & 0 & c & a \end{vmatrix}$$

Q38. La suite (Δ_n) vérifie la relation de récurrence

$$(\mathbf{A}.) \quad \forall n \in \mathbb{N}^*, \ \Delta_{n+2} = a\Delta_{n+1} - b \, c \, \Delta_n$$

B.
$$\forall n \in \mathbb{N}^*, \ \Delta_{n+2} = b \ c \Delta_{n+1} + a \Delta_n$$

$$\mathcal{L}$$
. $\forall n \in \mathbb{N}^*, \ \Delta_{n+2} = a\Delta_n - bc\Delta_{n+1}$

D.
$$\forall n \in \mathbb{N}^*, \ \Delta_{n+2} = ab\Delta_n - c\Delta_{n+1}$$

Q39. Dans cette question, on suppose que a = 3, b = 2, c = 1. Pour tout $n \in \mathbb{N}^*$,

$$A$$
. $\Delta_n = 2^n - 1$

B.
$$\Delta_n = 4n-1$$

$$C \wedge A = 3^n - r$$

A.
$$\Delta_n = 2^n - 1$$
 B. $\Delta_n = 4n - 1$ C. $\Delta_n = 3^n - n$ D. $\Delta_n \ge 0$

Q40. On suppose dans cette question que $a^2 = 4bc$. Alors pour tout $n \in \mathbb{N}^*$

$$(A.) \ \Delta_n = \frac{(n+1)a^n}{2^n} \qquad \text{B.} \ \Delta_n = \frac{na^{n+1}}{2^n} \qquad \text{C.} \ \Delta_n = \frac{na^n}{2^{n-1}} \qquad \text{D.} \ \Delta_n = \frac{bc}{2^{n+1}}$$

$$\mathbf{B}. \ \Delta_n = \frac{na^{n+1}}{2^n}$$

$$\mathcal{L}. \ \Delta_n = \frac{na^n}{2^{n-1}}$$

$$\mathbf{D}. \ \Delta_n = \frac{b \, c}{2^{n+1}}$$