University of Birmingham School of Mathematics

RA Real Annalysis

Autumn 2024

Problem Sheet 3 - self assessment

issued Week 6

Questions

- Q1. Find the derivatives of following functions according to the definition, where they exist.
 - (a) $f(x) = x^2$.
 - (b) $f(x) = e^x$.
- **Q2.** Assume that f(x) is an even function and differentiable at x = 0. Show that f'(0) = 0.
- **Q3**. For each $n \in \{0, 1, 2\}$, define the function $f_n : \mathbb{R} \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} x^n \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

These functions are all differentiable at all points x in $\mathbb{R}\setminus\{0\}$, and hence continuous there. Decide whether these functions are continuous or differentiable at 0.

- **Q4**. (a) If $f(x) = x/\sin x$, find the exact value of $f'(\pi/3)$
 - (b) If $y = \sqrt{1 + \sqrt{x}}$, find $\frac{dy}{dx}$.

Note that $f'(\pi/3)$ means to find the f'(x) first and substitute in $\pi/3$ for x. It is not the derivative of $f(\pi/3)$, which is 0.

- **Q5**. (a) Find an expression (by implicit differentiation) for the derivative at the point (x,y) on the ellipse $x^2/3 + y^2/6 = 1$. Hence find the gradients of the tangent lines when x = 1/4.
 - (b) Differentiate $x^{\cos x}$ with respect to x.
- Q6. Prove that

$$(\sin x)^{(n)} = \sin\left(x + \frac{n\pi}{2}\right), \quad (\cos x)^{(n)} = \cos\left(x + \frac{n\pi}{2}\right)$$

Hint - $use\ mathematical\ induction.$

Q7. Find the derivatives of the following functions.

$$(1) \ y = \frac{x^2 + 4x + 3}{\sqrt{x}}$$

$$(2) \ g(x) = (x^2 + 1)^3 (x^2 + 2)^6$$

$$(3) \ B(u) = (u^3 + 1)(2u^2 - u - 6)$$

$$(4) \ g(t) = (t + 1)^{\frac{2}{3}} (2t^2 - 1)^3$$

$$(5) \ y = \frac{1}{t^3 - 2t^2 + 1}$$

$$(6) \ f(x) = \sqrt{\frac{1 + \sin x}{1 + \cos x}}$$

$$(7) \ y = \frac{x}{x + \frac{2}{x}}$$

$$(8) \ f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}$$

$$(9) \ u = \frac{t \sin t}{t}$$

$$(10) \ y = [x + (x + \sin^2 x)^3]^4$$

 $(9) \ y = \frac{t \sin t}{1+t}$ (12) $y = \tan(\sec(\cos x))$

(11) $y = x \sin x \tan x$

Q8. Use logarithmic differentiation to find the derivatives of the following curves y =f(x):

(a)
$$y = \sqrt{x}e^{x^2 - x}(x+1)^{2/3}$$
, (b) $y = x^x$,
(c) $y = \sin(x^x)$, (d) $y = x^{\sin x}$,
(e) $y = (\sin x)^{\ln x}$, (f) $y = (\ln x)^{\sin x}$.

Q9. Find y' if $x^y = y^x$.

Q10. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function such that $|f(x) - f(y)| \leq |x - y|^{\alpha}$, for all $x, y \in \mathbb{R}$ with $\alpha > 1$. Show that f(x) = C for some constant C. Hint: Show that f is differentiable at all points and compute the derivative.

Q11. Let $f:(a,b)\to\mathbb{R}$ be an unbounded differentiable function. Show that $f':(a,b)\to\mathbb{R}$ \mathbb{R} is unbounded.

Q12. Using L'Hôpital's rule, or otherwise, prove that the function $f:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$ given

$$f(x) = \begin{cases} \frac{\tan x - x}{x^2}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$

is differentiable at $x_0 = 0$ and state f'(0). Is f continuous at $x_0 = 0$? Justify your answer.

Q13. Determine the following limits:

(a)
$$\lim_{x \to -1} \frac{x^2 - 1}{\sin(1 + x)}$$
;
(b) $\lim_{x \to 0} \frac{k^x - 1}{x}$, where $k > 0$;

(b)
$$\lim_{x\to 0} \frac{1}{x}$$
, where $k>0$

(c)
$$\lim_{x \to 0} \frac{x \sin x}{1 - \cos x};$$

(d) $\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}.$

(d)
$$\lim_{x \to 0} \frac{e^{-1-x}}{x^2}$$
.

Q14. Find $\frac{dy}{dx}$ by implicit differentiation. (a) $x^2 - 4xy + y^2 = 4$. (b) $\cos(xy) = x + \sin y$. (c) $\tan\left(\frac{x}{y}\right) = x + y$.

(a)
$$x^2 - 4xy + y^2 = 4$$

(b)
$$\cos(xy) = x + \sin y$$
.

(c)
$$\tan\left(\frac{x}{y}\right) = x + y$$

Q15. Show by implicit differentiation that the tangent to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

at the point (x_0, y_0) is

$$\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1.$$

Q16. A ladder 10 m long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1 metre per second (m/s), how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 m from the wall?

- Q17. A man walks along a straight path at a speed of 4 m/s. A searchlight is located on the ground 20 m from the path and is kept focused on the man. At what rate is the searchlight rotating when the man is 15 m from the point on the path closest to the searchlight?
- Q18. A wire of length L is cut into two pieces. One piece is shaped into a circle and the other is shaped into a square. Let A_C be the area contained within the circle and A_S be the area contained within the square. What are the maximum and minimum values of $A_C + A_S$?
- **Q19.** Suppose $f:[a,b]\to\mathbb{R}$ is differentiable and $c\in(a,b)$. Show there exists a sequence $\{x_n\}$ converging to c, with $x_n\neq c\ \forall n\in\mathbb{N}$, and such that

$$f'(c) = \lim_{n \to \infty} f'(x_n)$$
.

Moreover, explain why this does not imply that f' is continuous.

Q20. Assume that f(x) is bounded on $[a, \infty)$ for some $a \in \mathbb{R}$, f is differentiable on (a, ∞)

$$\lim_{x \to \infty} f'(x) = b.$$

Prove that b = 0.

Q21. Use L'Hôpital's rule to find the following limits, when it applies:

(a)
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$
.
(b) $\lim_{x \to 0^+} \frac{\ln x}{x}$

(b)
$$\lim_{x \to 0^+} \frac{\ln x}{x}$$

(c)
$$\lim_{x \to 1} \frac{x^8 - 1}{x^5 - 1}$$

(d)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$
(e)
$$\lim_{x \to 0^+} (\tan 2x)^x$$

(e)
$$\lim_{x\to 0^+} (\tan 2x)^x$$

(f)
$$\lim_{x \to \infty} \left(\frac{a^{1/x} + b^{1/x}}{2} \right)^x \text{ for } a, b > 0$$

Q22. Find the limit

$$\lim_{x \to \infty} \frac{(x+2)^{\frac{1}{x}} - x^{\frac{1}{x}}}{(x+3)^{\frac{1}{x}} - x^{\frac{1}{x}}}.$$

Q23. Prove that

$$\ln(1+x) < \frac{x}{\sqrt{1+x}}$$

for all x > 0.

- **Q24**. Use Taylor's Theorem to approximate the following functions $f:Dom(f)\to\mathbb{R}$ about points $x \in Dom(f)$. Moreover, state an appropriate error term for your approximation in each case.
 - (a) $f(x) = \tan x$ about x = 0, accurate to order 3 terms.
 - (b) $f(x) = e^x$ about x = 0, accurate to order 4 terms.
 - (c) $f(x) = \ln x$ about x = 1, accurate to order 4 terms.
 - (d) $f(x) = \cos x 1$ about $x = 2\pi$, accurate to order 4 terms.

Q25. Determine the types of stationary points for $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = x^4 - 6x^2 + 8x + 1 \quad \forall x \in \mathbb{R}.$$

Q26. Sketch the curve

$$y = \frac{2x^2}{x^2 - 1} \,.$$

Q27. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2 e^x$ for all $x \in \mathbb{R}$.

- (i) Calculate f' and f''.
- (ii) Find and determine the nature of the stationary points of f.
- (iii) Find the points of inflection of f.
- (iv) Determine the regions in which f is strictly increasing and decreasing.
- (v) Determine the regions in which f is concave up and concave down.
- (vi) Determine all the asymptotes of f.
- (vii) Sketch the graph of f.