CSC343 Course Wrap-Up

csc343, Introduction to Databases Nosayba El-Sayed Fall 2015

Database Design – Recap & Comments

- Closure +
- Projection
- Minimal Cover
- Finding Keys for R
- BCNF Decomposition
- 3NF Decomposition

Bogdan's section (L0101) used a slightly different algorithm. It's ok if you use either approach!

Just get it right:-)

Tutorial examples posted on course website are important. If you only rely on course slides, you don't get the full picture!

Minimal Cover

- Step I: Reduce RHS to Singletons
- Step 2: Remove redundant FDs
- Step 3: Reduce LHS whenever possible
- Step 4: Repeat steps 2, 3 until no changes occur
- ✓ In the other approach, reverse steps 2, 3, eliminate 4.
- ✓ Both are cited as valid Minimal Cover algorithms.
- ✓ This one (above) since is consistent with the text book we're using for this course.

Database Design – Recap & Comments

- Closure +
- Projection
- Minimal Cover
- Finding Keys for R
- BCNF Decomposition
- 3NF Decomposition

There are *techniques* to help you limit the scope of attributes you use to find a relation's Keys

Finding Keys from FDs – Helping techniques

- Prime attribute: if it's part of any key
- Example #I: R(ABC), FDs = $\{A \rightarrow B, B \rightarrow C\}$
- A is clearly a key
- => A is prime, B and C are non-prime
- Example #2: R(ABC), $FDs = \{AB \rightarrow C, C \rightarrow A\}$
- AB and BC are the keys (Check: closure test!)
- => A, B, and C are prime (but not keys alone!)
- How do I know AB and BC are keys?

Keys from FDs – Helping technique (Example 1)

- R(ABC), FDs = $\{A \rightarrow B, B \rightarrow C\}$
- Table of where attributes appear in FDs

```
Only Left | Middle (appears both left/right) | Only Right
```

- ✓Only on Left => must be part of any key
- ✓Only on Right => cannot be part of any key
- ✓ Middle => maybe (in combination with LEFT atts); maybe not.
- In this case: A
- A+ = ABC => A is the key
- A is part of any key, and it happens to be a key
- => no need to look at B

Keys from FDs – Helping technique (Example 2)

- R(ABC), FDs = $\{AB \rightarrow C, C \rightarrow B, C \rightarrow D\}$
- Table of where attributes appear in FDs:

```
Left | Middle | Right
-----
A | B, C | D
```

- A must be part of any key; might be a key on its own, might not (test!)
- => A+ = A
- Add one from Middle: AB
- => AB+ = ABCD
- Must try it with the other Middles too: AC
- => AC+ = ACBD
- => both AB, AC are keys!
- ◆What if all attributes of a relation were in the middle?
- ◆ Try one at a time, then combinations of two, etc.

The Final

- Comprehensive (covers the whole term), including:
 - RA
 - SQL (DDL, DML); JDBC
 - DTDs, XML, XQuery
 - FD theory and normalization
 - ER modelling and DB design

Preparing for the exam

- Re-solve parts of the assignments where you didn't get full marks.
- For topics you aren't fully confident in, re-do the lecture prep and in-class exercises.
- Go over solutions for in-class exercises
- Make up your own queries in RA, SQL, XQuery to hit on query types and language features you need practice in.
- Solve old tests and finals.

The Final

- You need to know the syntax of each language.
- You don't need to memorize function/method APIs.
 We will provide what you need and/or be forgiving when marking those details.
- SQL: views are always welcome, as long as correct.
- Comments are never necessary unless we say otherwise.
- Questions may be similar to previous tests and final exams, but don't count on that!

The Final

- It's about 24 pages long, but
 - A page towards the end is empty (for rough work)
 - Last 2 pages: the schemas for reference (you can detach this last sheet, for convenience – do not detach anything else though)
 - Page I is the cover
 - Lots of empty space to fill in your answers
- So it's really 20 pages, with lots of white space
- You need 40% on the final to pass the course, regardless of the rest of the term marks

Final Exam – Logistics

- When and where:
- http://www.artsci.utoronto.ca/current/exams/dec | 5

CSC343H1F	A - MC	TUE 15 DEC	EV 7:00 - 10:00	BN 2N
CSC343H1F	ME - Z	TUE 15 DEC	EV 7:00 - 10:00	BN 2S
CSC369H1F	A - T	FRI 11 DEC	EV 7:00 - 10:00	BN 3
CSC369H1F	U - Z	FRI 11 DEC	EV 7:00 - 10:00	ST VLAD
CSC373H1F		THU 17 DEC	EV 7:00 - 10:00	BN 3

- Clara Benson Building (BN), 320 Huron Street
- Next to Athletic Centre!
- EV == evening! So, it's at 7-10PM, not AM!

Course wrap-up - Lessons learned

- What do I take away from this course?
 - Data models are important
 - Relational model: concept of relation/table
 - Schema vs. instance!
 - Keys, integrity constraints
 - RA: foundation of SQL
 - SQL: DML, DDL, expressive power/limitations
 - Embedded SQL: more control, addresses SQL limitations by combining it with a conventional language
 - XML/DTD + Xpath/Xquery not all data fits a rigid schema; unstructured data needs another representation
 - Database design theory:
 client requirements => E/R diagram => relational schema.
 - FD theory helps bring schema into a normal form

Why should I care?

- In the era of Big Data, having knowledge of database systems is really important! E.g.,
 - What type of data do I have? Structured vs. unstructured
 - How do I start designing a database?
 - How do I optimize my design?
 - How do I use a database system?
- Database systems are all part of a bigger picture

Trends in DB Research

- Managing huge amounts of data: approximate querying, statistical methods, self-tuning, power management
- NoSQL technologies
- Stream processing
- Data mining
- Data privacy and security
- Different kinds of data, e.g., spatial, temporal, data from sensors, social network data, graph databases
- Visualization of data
- Top-tier database conferences: VLDB, SIGMOD, ICDE, EDBT,
 CIDR, CIKM, SIGSPATIAL GIS, IEEE BigData

NoSQL – why should I check it out?

BigData – no "one-size fits all"

- Relational databases are not always a good fit
- No "one-size fits all"
 - Typical relational database: less than ITB of data
 - Google: 900 TB of search engine data (mostly unstructured!)
 - Youtube: 80PB video data/year
 - Scientific data
 - US department of energy: 3.5PB

Need for flexible data model

- Relational schema: too rigid
 - No way to change dynamically
 - Need a DB admin to "stop the world" and change the schema, migrate the data in the new structures, etc.
- Many applications' data: no fixed structure
 - Log processing
 - Stream processing
 - Graph processing
 (e.g. think Google Maps)

NoSQL advantages

- Data is replicated to multiple nodes (availability and fault-tolerance) and can be partitioned
 - Down nodes easily replaced
 - No single point of failure
- Can scale up and down
- Doesn't require a schema
 - Not really.. :)

What are we sacrificing instead?

• Decades of database optimizations (carefully-designed query optimizers, indexing, etc.)

Joins

ACID Transactions

• SQL, powerful expressive query language (mostly)

• Easy integration with other applications that support SQL

Should I be using NoSQL Databases?

- NoSQL data storage systems makes sense for applications that need to deal with very large semistructured data
 - Log Analysis
 - Social Networking Feeds
- Most of us work on organizational databases, which are not that large and have low update/query rates
 - Regular relational databases are the right solution for most such applications

Source:

https://kvaes.wordpress.com/2015/01/21/database-variants-explained-sql-or-nosql-is-that-really-the-question/

Big Picture What next?

THE FUTURE OF THE DATABASE

Source: wired.com

Source: wired.com

CSC443

- "Database System Technology"
- Takes the perspective of building a DBMS.
- Internals of a DBMS
- Topics like:
 - Memory management bufferpool
 - Query optimization produce good query plans
 - Managing storage row-oriented, column-oriented, etc.
 - Concurrency control
 - Tuning for performance
 - Types of workloads: OLTP, OLAP, etc.
 - Data mining

Thank you!

Hope you found this course interesting; good luck using what you learned in your future career prospects!

Good luck with the final exam :-)

