Лекция в Операции над идеалами

🗊 Сумпа, произбедение и пересегение идеалов

Определения 8.1: Пуст $I, J \in k[x_1,...,x_n]$ - идеала lyunoù I u J называется инотество

 $I + J = \{f + g: (f \in I) \land (g \in J)\}$

Предложение 8.1: Пусль $I, J \in k[x_1,...,x_n]$ - идеаль. Тогда их сумпа I+J эвляется наименьшим идеаль $l k[x_1,...,x_n]$, содержащим идеаль I u J. Белее того, если $I = \langle f_1,...,f_r \rangle$ и $J = \langle g_1,...,g_s \rangle$, то $I+J = \langle f_1,...,f_r \rangle$, $g_1,...,g_s \rangle$.

в частности,

< f1,..., fr7 = <f1>+...+<fr7

Lorazareno crbo: Javenuu, zmo $0=0+0\in I+J$. Spegnovoreum, zmo $h_1,h_2\in I+J$, m.e. $h_1=f_1+g_1$ u $h_2=f_2+g_2$, $g_1,g_2\in J$. Ho morga $h_1+h_2=(f_1+f_2)+(g_1+g_2)$,

где впратения в первой скобие летия в I, а во второй в J, поэтолу h_1+h_2 в I+J. Рассмотрим $h\in I+J$ и $l\in k[x_1,...,x_n]$, многожим h=f+g, где $f\in I$ и $g\in J$. Произведение $l\cdot h=l\cdot (f+g)=l\cdot f+l\cdot g$ очевидно принадлетий I+J. Таким образом, сумма I+J дейсявительно являетах идеалам

Предположим, что идеа H, m.z I < H и J < H. Если $f \in I$ и $g \in J$, то $f, g \in H$. Эначит $f+g \in H$, m.e. $I+J \subset H$. Любой пдеах, содержащий I и J, содержий I и сумиу I+J, потому сумпа I+J — напменьший идеах, содержащий I и J.

Если $I = \langle f_1, ..., f_r \rangle$, $J = \langle g_1, ..., g_s \rangle$, то $\langle f_1, ..., f_r, g_1, ..., g_s \rangle$ содержий I и J, поэтому $I + J < \langle f_1, ..., f_r, g_1, ..., g_s \rangle$. Обратное включение очевидно вледовательно, $\langle f_1, ..., f_r \rangle + \langle g_5, ..., g_s \rangle = \langle f_1, ..., f_r, g_1, ..., g_s \rangle$.

Teopena 8.1: Вих идеанов $I, J \subset k[x_1,...,x_n]$ аффичное многообразие $V(I+J) = V(I) \wedge V(J)$.

Dokazamers cmbo: Ugearor $I, J \subset I+J$, normany no measure 7.4 $V(1+J) \subset V(I)$ $u V(I+J) \subset V(J)$, m.e. $V(I+J) \subset V(I) \cap V(I)$

Dokamen objammoe включение. Пусть $x \in V(I) \cap V(J)$, а инотогием $h \in I + J$. Найдугая uncoording $f \in I$ u $g \in J$, m.r. h = f + g. Torga h(x) = f(x) + g(x) = 0 + 0 = 0. Cuegobamessno, morka $x \in V(I+J)$, m.e. $V(I+J) \supset V(I) \wedge V(J)$.

Как нам известно (см. предложение 1.2) для объединения аффиниля

 $V(f_1,...,f_r) \cup V(g_1,...,g_s) = V(f_ig_1, 1 \leq i \leq r, 1 \leq j \leq s)$

Onpegenerue 8.2: Tyen I, J < k[x1,...,xn] - ugeann. Ux mpous begennen I: J наупваетих идеах, поротовённый всевозмотным произведениями f.g, rge f E I u g E J, m.e. I . J := { f, g, + ... + fxgx: f, ..., fx & I, g, ..., gx & J, gxe KEN}

Due $I = \langle f_1, ..., f_r \rangle$, $J = \langle g_1, ..., g_s \rangle$ upour beganne I.J = < fig; 1 = i = r, 1 = j = 5 >

Teopena 8.2: $\prod_{g \in \mathcal{F}} I, J \subset k[x_1, ..., x_n] - ugeans, Torga V(I·J) = V(I) \cup V(J)$

Доказачения вледует очевидити образам.

Перейдом к расспотрению переселений преаков. Очевидио, что In J Abereman ugeanow, ease I, J < k[x1,...,xn] - ugeanor. Sociousny $fg \in InJ$, age $f \in I$ is $g \in J$, unserve businesself $I : J \cap J$. B obujest cryptale обратного викичения может не быть. Например, если I=J=<x,47, то пропрведение

 $IJ = \langle x^2, xy, y^2 \rangle \subsetneq InT = \langle x, y \rangle$

Ec. I - ugear b $k[x_1,...,x_n]$, a unioroesen $f(b) \in k[t]$, mo bygen oboznaraz repez f:I ugear b $k[x_1,...,x_n,t]$ nopomgénusii unomectou $\{f\cdot h: h\in I\}$

Speg somence 8.4:

- 1) Ecus $I = \langle p_1(x), ..., p_r(x) \rangle \in k[x_1,...,x_n], \text{ mo } b \quad k[x_1,...,x_n,t] \text{ ugeas}$ $f(t)I = \langle f(t)\rho_1(z), ..., f(t)\rho_r(z) \rangle$
- e) Ecu $g(x,t) \in f(t)I$ u ask, mo $g(x,a) \in I$.

Donagarenecto: 1) Éche $g(x,t) \in f(t)I$, mo on eas eyena exaraenerz buga $h(x,t) \cdot f(t) \cdot p(x)$, ege $h(x,t) \in k[x,...,x_n,t]$ in $p(x) \in I$. Sammen uncoronne b buge $p(x) = \sum q_i(x)p_i(x)$,

rge $q_i(x) \in k[x_i, ..., x_n]$. Torga enpalequibo npegcrabienue (8.1) $h(x,t) \cdot f(t) \cdot p(x) = \sum_{i=t}^{r} h(x,t) q_i(x) f(t) p_i(x),$

a gracum, nocuously craraeune $h(x,t) \cdot f(t) \cdot p(x) \in \langle f(t)p_1(x), ..., f(t)p_r(x) \rangle$, mo a superseen $g(x,t) \in \langle f(t), p_1(x), ..., f(t), p_r(x) \rangle$.

2) Ocebugus nocie nogeranobnu a E k 6 (8.1)

Teopena 8.3: Tyers $I, J \subset k[x_1, ..., x_n]$ - ugean Torga repecerence $I \cap J = (tI + (1-t)J) \cap k[x_1, ..., x_n]$ Dokazarensobo: Tyers $f \in I \cap J$, morga $t f \in t \cdot I$, m. $k \in I$, $u \cdot (1-t)f \in (1-t)J$

m.к. $f \in J$. Fockously $f = t \cdot f + (1-t)f$, mo $f \in t \cdot I + (1-t)J$. Зашель, гию $I, J \in k[x_1, ..., x_n]$, заики $f \in t \cdot I + (1-t)J \cap k[x_1, ..., x_n]$. Тем самом вымочение $I \cap J \subseteq t \cdot I + (1-t)J \cap k[x_1, ..., x_n]$ доходано.

Dδραποιο, ryen $f \in tI + (1-t)J \cap k[z_1,...,z_n]$, morga uncoroccen f(z) = g(z,t) + h(z,t),

rge $g(x,t) \in t \overline{I}$ is $h(x,t) \in (1-t) \overline{J}$. Foreverse b = 0, f(x) = g(x,0) + h(x,0) = 0 + h(x,0) = h(x,0),

ige so yrteprogenius 2) regioneius 8.4 $h(x,0) \in J$. Anaiorieno, noioxub t^{-1} , $f(x) = g(x,1) + h(x,1) = g(x,1) + 0 = g(x,1) \in I$.

Taxun oppgon, $f \in I \cap J$, m.e. $(tI+(1-t)J) \cap k[x_1,...,x_n] \subset I \cap J$.

Теорена 8.3 дайт бору для ангоричнического выписления пересегения идеалов $I=\langle f_1,...,f_r\rangle$ и $J=\langle g_1,...,g_s\rangle$: нумню найти барис Греднера идеала $\langle tf_1,...,tf_r$, $(1-t)g_1,...,(1-t)g_s\rangle \subset k[x_1,...,x_n,t]$

относительно lex: $t > x_{ij} > ... > x_{in}$. Te элементо базыса, которые не зависят от t, образуют базис идеала InJ.

Jример 8.1: Найдён пересегение $\langle x^2y \rangle \wedge \langle xy^2 \rangle \subset \mathbb{Q}[x,y]$. Для этого рассиотрин $t \ I + (1-t)J = \langle tx^ty, (1-t)xy^2 \rangle = \langle tx^ty, txy^2 - xy^2 \rangle$ в кольце k[x,y,t].

Boruchum $S_{12}=y\cdot tx^2y-x(txy^2-xy^2)=x^2y^2$. The beginn, who hadep $\{tx^2y,txy^2-xy^2,x^2y^2\}$ of payer fague The Shepa emprecurement tx:t>x>y: $S_{15}=y\cdot tx^2y-t\cdot x^2y^2=0, \quad S_{25}=x(txy^2-xy^2)-tx^2y^2=x^2y^2\rightarrow 0.$

Onpequerue 8.3: Typos $f,g \in k[x_1,...,x_n]$. Haunerounn obyen kpampan unprovident f n g raphboemae unproviden h:=lom(f,g), echi 1) f genum h, n g genum h;

2) h geum mosoù movoren, komoponi gemmae na f n g.

Hanpunep, $lcm(x^2y, xy^2) = x^2y^2$. B obusen cuycae, que $f, g \in k[x_1, ..., x_n]$ paccuompun pregetablemus $f = c f_1^{a_1} ... f_r^{a_r} \quad n \quad g = c'g_1^{a_1} ... g_s^{a_s}$

b виде степеней разменях неприводимях иногочень. Некоторам f_i могут c точносью до непунього мнотичем из k совпадай c некоторами g_j -ми. без ограничение общности можно считать, что для некоторого $l \in \{1,..., \min(r,s)\}$ $f_i = a_i g_i$, $ige a_i \in k-\{0\}$, при $1 \le i \le l$; a для i,j > l отношение $\frac{f_i}{g_j} \ge k$. Тогда (8.1) $lcm(f,g) = f_1$ $max(a_i,b_i)$ $max(a_i,b_i)$ b_{l+1} b_s a_{l+1} a_r a_r (8.1)

Ecu y f u g rum odiyux unomureveir, mo lem (f, g) = f.g.

lugobameuro, $\langle x^{i}y \rangle \wedge \langle xy^{i} \rangle = \langle x^{i}y^{i} \rangle$.

Предложение ℓ .5: Echn $I=\langle f \rangle$ и $J=\langle g \rangle$ – главняе идеам в $k[x_1,...,x_n]$, то переихение $I \cap J=\langle h \rangle$, где h=lom(f,g), т.е. тоте является влавням идеами. Фоказаченного: Пусть h=lom(f,g), тогда, если многочен $p\in \langle f \rangle \wedge \langle g \rangle$, то же демей на f и g, а значит p демей на k, т.е. $p\in \langle h \rangle$. Следовачено, $\langle f \rangle \wedge \langle g \rangle \sim \langle h \rangle$

Oбратию, оченидию, это, если h=lcm(f,q), то $h\in 47$ и $h\in 97$. Таким образом, 47<47, 47

Unson nation lem(f,g) hymno borneux nepectronic <f>n<g>- nustax obposypoyax smoo exaluoro ugeara u 6ygem lem(f,g)

Предложение 8.6: Вих $f,g \in k[x_1,...,x_n]$ их наибольший общий деличень $gid(f,g) = \frac{f.g}{lemb(g)}$

Доказачельство: Заметим, что в силу разложения f,g в произведение етепеней неприводимях множийскей и соотношения (3.1), справедливо соотношение

 $lem(f,g) \cdot gcd(f,g) = f \cdot g$.

Teopena 8.4: Nyca $I, I \in k[x_1, ..., x_n]$ - ugeans. Torga $V(I \cap I) = V(I) \cup V(I)$.

Derajarensorbo: Plyets totha $x \in V(1) \cup V(1)$, morga $x \in V(1)$ um $x \in V(1)$, m.e. f(x) = 0 get been $f \in I$ um f(x) = 0 get been $f \in I$. Debuguo, two morga f(x) = 0 get been $f \in I \cap I$, zharum $x \in V(I \cap I)$. Takum obpazon, $V(I) \cup V(I) \subseteq V(I \cap I)$.

Обратно, мог знаем, что $I:J\subset I\cap J$. Тогда $V(I\cap J)\subset V(I:J)=V(I)\cup V(J)$ по теорем 8.2.

Pregioneenie 8.7: Éau I, J - ugeain, mo $\sqrt{I \cap J} = \sqrt{I'} \cap \sqrt{J}$.

Doxogazensorbo: Echi $f \in \sqrt{InJ}$, mo gue nexomoporo yelono m= 1 emeneu $f^m \in InJ$. Tax eax $f^m \in I$, mo $f \in \sqrt{I}$. Anaiomeno $f \in \sqrt{J}$. No eveny $\sqrt{InJ} \subset \sqrt{I} \cap \sqrt{J}$.

Objamus, nyers $f \in VInJJ$, morga cycyccibyror years mz1 n pz1, mz. $f^m \in I$ n $f^m \in J$. Commences $f^{m*p} = f^m$. $f^p \in InJ$, noorossy $f \in VInJ$.

в.г. Замыкание по варискому и частное идеалов

Івнения, что для мистейва $S \in k^m$ (необязательно артомичного многообразия) $I(S) := \{f \in k[x_1,...,x_n]: f(a_{i,...,a_n}) = 0 \text{ для вих } (a_{i,...,a_n}) \in S\}$ звизетах радикамични идеалам. Образ V(I(S)) звизетах артомичным многообразили.

Предложение 8.8: Вля $S \subset k^n$ ардинное многообразие V(I(S)) Авляета напистычна адаринали многообразием, содержащим множество S, т.е., если $W \subseteq k^n$ — адаринное многообразие, содержащее S, то $V(I(S)) \subseteq W$.

Dokazarenscibo: Tyers $S \subset W$, morga $I(W) \subset I(S)$, u $V(I(S)) \subset V(I(W))$. Ho, echi W - approve unoropopoux, mo V(I(W)) = W.

Определение 8.4° Заможание по Зарнскому нодиномества арфинного пространства — это наименьний арфинисе многообразие, содержащее это подинометью; т.е., если $S \subset k^n$, то заможение по Зарнскому $\overline{S} = V(I(S))$.

Tax rax $S \subset \overline{S}$, mo $I(\overline{S}) \subset I(S)$. Ecm $f \in I(S)$, mo $S \subset V(f)$, guarut $S \subset \overline{S} \subset V(f)$. Ho morga $u \in I(\overline{S})$, maxim objection $I(\overline{S}) \subset I(S)$. Umax, $I(S) = I(\overline{S})$

Теорена 8.5: Пусть h - алгебрангески замкнутое поле, $V = V(f_1,...,f_s) \in k^n$ и $f_L: k^n \to k^{n-l}$ - проенуме на последние n-l координат. Если $I_L = \langle f_1,...,f_s \rangle \wedge k[x_{Lif},...,x_n]$, то $V(I_L) = \overline{f_L(V)}$.

Dokazamensorbo: Π_{0} kamen, emo $V(I_{k}) = V(I(I_{l}(V)))$. Mor ghaen, emo $I_{l}(V) \subset V(I_{k})$ (numa 5.1). Mnoroobpague $V(I(I_{l}(V))) \subset V(I_{l})$, m.k. $V(I(I_{l}(V))) -$ nannenemee agopunese necoroobpague, cosepmansee $I_{l}(V)$.

Teneps rpegnosomum $f \in \overline{I}(I_L(V))$, gracum $f(a_{u_1,...,a_n}) = 0$ guz beez $(a_{t+1},...,a_n) \in I_L(V)$. Gockosky f sement u b $k[x_1,...,x_n]$, $f(a_1,...,a_n) = 0$ guz beez $(a_1,...,a_n) \in V$. Torga no meopene Ihubéepma 0 kysax guz kezomoporo yeasoo $N \ge 1$ emenent $f^N \in \{f_1,...,f_s\}$. Muorozaks $f \in k[x_{l+1},...,x_n]$, noorowy u $f^N \in k[x_{l+1},...,x_n]$, zuarum $f^N \in \{f_1,...,f_s\} \land k[x_{l+1},...,x_n] = I_L$.

Mor gorazam, uno $f \in \overline{I_L}$, m.e. $I(I_L(V)) \subset \overline{I_L}$, a $V(\overline{I_L}) \subset V(\underline{I}(I_L(V)))$. Us pabenciba $V(I_L) = V(\overline{I_L})$ bormencem, uno $V(I_L) \subset V(I(I_L(V)))$.

Предложение 8.9: Пусь \overline{V} и \overline{W} - адариниче иногообразия, m. r. \overline{V} $\subset \overline{W}$. Torga иногообразия $\overline{W} = \overline{V} \cup \overline{(W-V)}$. Доказательно: Многообразия $\overline{W} \supset \overline{W} - \overline{V}$, поэтолу замихание $\overline{W} - \overline{V} \subset \overline{W}$ Госкальну $\overline{V} \subset \overline{W}$,

mo $V \cup (W-V) \subset \overline{W}$.

Objamore, nucle $\overline{W} = \overline{V} \cup (W-V)$, m.r. $\overline{V} \subset \overline{W}$. B cuty branceone $\overline{W} - \overline{V} \subset \overline{W-V}$, suppose $\overline{W} \subset \overline{V} \cup (\overline{W-V})$.

Orpegenenne 8.5: Nyor $I, J \in k[x_1,...,x_n]$ - ugeans. Torga ux racmumu nagribaerus $I: J = \{ f \in k[x_1,...,x_n]: fg \in I \text{ gas beex } g \in I \}.$

Предложения 8.10: Пусть $I, J \subset k[x_1,...,x_n]$ Тогда их гастное I:J эксяется идеалам b $k[x_1,...,x_n]$, содержащим I.

Donazamentito: Ecui $f \in I$, mo $fg \in I$ get been $g \in k[x_1,...,x_n]$, b raconvocame a gre ban $g \in J$, m.e. $f \in I$: J.

Остаетая доказага, что I:I-иделя. Нумвой многочим очевидно метих в I:I

Nyon $f_1, f_2 \in I:J$, morga gar brea $g \in J$ npourbegenur f_1g u f_2g sence $g \in I$. 3 narris $(f_1+f_2)g$ mome servis $g \in I$, a $f_1+f_2 \in I:J$. Eccu $g \in I:J$ u $g \in$

Теорена 8.6: Пуст $I, J \in k[x_1,...,x_n]$ – идеамп. Тогда $V(I:J) \supset V(I) - V(J)$. Бане гого, если k аневраниески занкнуго, а идеан I радиканняй, то $V(I:J) = \overline{V(I)} - V(J)$.

Dokazamento: Dokamen, two $I:J\subset \overline{I}\left(V(I)-V(J)\right)$ Nyer $f\in I:J$ n $x\in V(I)-V(J)$. Typouzhegenne $fg\in I$ gir boez $g\in J$. Tak kak $x\in V(I)$, mo f(x)g(x)=0 gir kex $g\in J$. Typouzhou $g(x)\neq 0$ gir necomposo $g\in J$, m.n. $x\notin V(J)$. Cregobamento, f(x)=0 gir boez $x\in V(I)-V(J)$, m.e. $f\in \overline{I}(V(J)-V(J))$. Omenga $V(I(V(I)-V(J)))\subset V(I:J)$.

Lugambre: $\Pi_{y \in \mathbb{R}} \ V_{,W} \subset \mathbb{R}^n - apquente unorootpagns.$ Torge I(V): I(W) = I(V-W).

Donogares cibo: Mor yma nonogam, two $I:J\subset I(V(I)-V(J))$. Boropab I=I(V) u J=I(W), nonytum become $I(V):I(W)\subset I(V-W)$. Ease $f\in I(V-W)$, no get basens $g\in I(W)$ reposses for some series $f\in I(V)$. Toropa no expresence $f\in I(V):I(W)$.

Упратнение 8.1: Пуст $I, J, K \in k[x_1, ..., x_n]$ - идеам. Докатия, что

- 1) $I: k[x_1,...,x_n] = I$
- 4) $IJCK \Leftrightarrow ICK:J$

Inpamerence 8.2: Tyen I, I_i, J, J_i u K - ugeam b $k[x_1, ..., x_n], zge <math>1 \le i \le r$. Dokamume, ruso

Dokamume, runo

1)
$$\left(\bigcap_{i=1}^{n} I_{i}\right): J = \bigcap_{i=1}^{n} \left(I_{i}: J\right).$$

$$\mathcal{L} = \mathcal{L} : \left(\sum_{i=1}^{r} \mathcal{J}_{i} \right) = \bigcap_{i=1}^{r} \left(\mathcal{I} : \mathcal{J}_{i} \right).$$

3) (I:J):K = I:JK

Yerobunus nucato I:f buecmo $I:\langle f \rangle$, morga corrocno n. 2) ynparmenus 8.2 $I:\langle f_1,f_2,...,f_r \rangle = \bigcap_{i=1}^r (I:f_i)_i$

Teopena 8.7. Myere I - ugene, a g - uniorozen l $k[x_1,...,x_n]$ $ccu \{h_1,...h_p\}$ - smo capac ugene a $I \land \langle g \rangle$, mo $\{h_1 \}_{g,...,h_p} \}_g - sayac$ ugene a $I : \langle g \rangle$. box against constant <math>a = bg ugene a $g \in agains (g \in agains)$ $a = bg \in agains (g \in agains)$ $a = bg \in agains (g \in agains)$ $a = bg \in agains$ $a = bg \in agains$

Cregobamerono, ft I: (9)

Обратно, пуст $f \in I: \langle gr. Torga fg \in I,$ по посиольну $fg \in \langle g \rangle$ то произведение $fg \in I \land \langle g \rangle = \langle h_1, ..., h_p \rangle$. Значит для некоторых $r_i \in k[x_1, ..., x_n]$ произведение $fg = \sum r_i h_i$. Катамі $h_i \in \langle g \rangle$, почому все h_i / g — многосиено, и многосиен

 $f = \sum_{i=1}^{n} r_i \binom{hi/g}{g}$ where $g = \sum_{i=1}^{n} \binom{hi/g}{g}$

Ha smoot meopene ocnoban arropumu burncienus sajuca racmnoso ugeand. Echi $I=\langle f_1,...,f_r\rangle$ in $J=\langle g_1,...,g_s\rangle=\langle g_1\rangle+...+\langle g_s\rangle$. Umosu burncients sajuc I:J, chepba mymno burncanis sajuc $J:\langle g_i\rangle$ gus I=1,...,s, hauge sajuc $\langle f_1,...,f_r\rangle$ in $J=\langle g_i\rangle$. Sociegnes momeno egenas, burncient sajuc Jpesurpa ugeana $\langle f_1,...,f_r\rangle$, $(1-f)g_i\rangle$ omnomisemno (ex c f_1 capine bux f_1 , a gamen buspab eno sementar, ne jabunanjue om f_1 . Deneme sin sementar ha g_i gacun sajuc ugeana $J:\langle g_i\rangle$. Harones, upunantar f_1 for an arropum ne songeme reservence ugeans, no upun sajuc $J:\langle g_1,g_2\rangle=(J:\langle g_1,g_2\rangle-(J:\langle g_1\rangle),(J:\langle g_2\rangle)$ $J:\langle g_1,g_2\rangle=J:\langle g_1,g_2\rangle$ if $J:\langle g_1,g_2\rangle=J:\langle g_1,g_2\rangle$ if $J:\langle g_1,g_2\rangle=J:\langle g_1,g_2\rangle$ if $J:\langle g_1,g_2\rangle=J:\langle g_1,g_2\rangle$ if $J:\langle g_1,g_2\rangle$ if