Satisfiability Modulo Theories Lecture 8 - Introduction to SMT-based Model-Checking

(slides revision: Saturday 14^{th} March, 2015, 11:47)

Roberto Bruttomesso

Seminario di Logica Matematica (Corso Prof. Silvio Ghilardi)

15 Dicembre 2011

Outline

- 1 Basics
 - Modeling
 - Checking
 - Implementing a Model-Checker

- 2 MCMT
 - Two simple protocols

Introduction

Model-Checking is a set of techniques to approach the verification of a system (e.g., a hardware circuit, a program, a protocol)

It was proposed by Clarke-Emerson and Sifakis-Quine as a way of automatically prove properties of a system

The authors received the Turing Award in 2007

The idea of model-checking was in contrast with the established "philosophy" at that time (~ 1980) which was suggesting semi-automatic human-driven approaches: MC is loved by industry because of this "push-button" characteristic

Model-Checking - Modeling

In MC we model the behavior of a system with the notion of **state**. A state is a configuration of the system at a particular time instant

The system can change state by means of a transition

We are interested in a **property** of the system

Model-Checking - Modeling

In MC we model the behavior of a system with the notion of **state**. A state is a configuration of the system at a particular time instant

The system can change state by means of a transition

We are interested in a **property** of the system

Example:

- System: a washing machine
- A state: "the door is open and the engine is off"
- A transition: "if the door is open then close the door"
- A property: "When the engine is on, the door is closed"

System to Model

State variables can be used to describe a particular state

State variable	Values
door	open, closed
tray	empty, filled
engine	off, on

State variables can be used to describe a particular state

State variable	Values
door	open, closed
tray	empty, filled
engine	off, on

E.g.:

door=open engine=on tray=empty

which stands for "the door is open, the engine is on, and the tray is empty".

State variables can be used to describe a particular state

State variable	Values
door	open, closed
tray	empty, filled
engine	off, on

E.g.:

door=open engine=on tray=empty

which stands for "the door is open, the engine is on, and the tray is empty". How many different states can we describe with our state variables?

door=open engine=off tray=empty

door=closed engine=off tray=empty door=open engine=off tray=full

door=closed engine=off tray=full door=closed engine=on tray=empty

door=closed engine=on tray=full door=open engine=on tray=empty door=open engine=on tray=full

Some states are called $\bf initial$ (green). Initial states are the configurations of the system at time 0

Transitions describe the evolution of the system. They transform the "current" state into a "next" state

Transitions describe the evolution of the system. They transform the "current" state into a "next" state

Transition			Name	
if	door=open	then	door'=closed	[close_door]
if	tray=empty	then	tray'=full	$[{\rm fill_tray}]$
if	engine=off door=closed	then	engine'=on tray'=empty	$[start_wash]$
if	door=closed	then	door'=open engine'=off	[open_door]

var' indicates the value of var in the next state

Modeling - (Safety) Property

Last step, we need to model the property

"when the engine is on the door is closed"

It is a **safety** property: they are easy to define as they are properties of the states

Modeling - (Safety) Property

Last step, we need to model the property

"when the engine is on the door is closed"

It is a **safety** property: they are easy to define as they are properties of the states

We call **bad state** (or unsafe state) a state that does not satisfy the property

door=open engine=on tray=full

Checking (= Reachability)

To establish if a model satisfies a safety property amounts to check if some **bad state** is **reachable** from the set of initial states

This can be done automatically by **visiting** the set of states that are **reachable** from the initial state with the application of a transition

Checking (= Reachability)

To establish if a model satisfies a safety property amounts to check if some **bad state** is **reachable** from the set of initial states

This can be done automatically by **visiting** the set of states that are **reachable** from the initial state with the application of a transition

Let $S^{(0)}$ be the set of initial states. Algorithmically, it amounts to implement the following loop (iteration i)

Forward-Reachability

Safety Check If $S^{(i)}$ contains a bad state, return unsafe Next States Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Fix-Point Check If $S^{(i+1)} \equiv S^{(i)}$, return safe

 $T(S^{(i)}) =$ states that can be reached from $S^{(i)}$ with a transition

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe**

Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe**

Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

If
$$S^{(i+1)} \equiv S^{(i)}$$
, return safe

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe**

Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe**

Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Forward-Reachability

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains a bad state, return **unsafe** Compute $S^{(i+1)} := S^{(i)} \cup T(S^{(i)})$

Back to the washing machine

Iteration: 0

door=open engine=on tray=empty door=open engine=on tray=full

Iteration: 1

door=open engine=on tray=empty door=open engine=on tray=full

Iteration: 2

Iteration: 3

Iteration: 4 - Fix Point Reached - System is SAFE

Checking - Backward Reachability

Backward-Reachability ($S^{(0)} \equiv$ "bad states")

Safety Check Next States Fix-Point Check If $S^{(i)}$ contains an initial, return **unsafe**

Compute $S^{(i+1)} := S^{(i)} \cup T^{-1}(S^{(i)})$

If $S^{(i+1)} \equiv S^{(i)}$, return safe

Checking - Backward Reachability

Backward-Reachability ($S^{(0)} \equiv$ "bad states")

Safety Check Next States

Fix-Point Check

If $S^{(i)}$ contains an initial, return **unsafe**

Compute $S^{(i+1)} := S^{(i)} \cup T^{-1}(S^{(i)})$

If $S^{(i+1)} \equiv S^{(i)}$, return safe

Implementing a Model-Checker

In order to implement model-checker we need:

- 1 representing large sets of states
- 2 computing $T(S^{(i)})$
- 3 check if bad states are in $S^{(i)}$
- 4 check if $S^{(i)} \equiv S^{(i+1)}$

Implementing a Model-Checker

In order to implement model-checker we need:

- 1 representing large sets of states
- 2 computing $T(S^{(i)})$
- 3 check if bad states are in $S^{(i)}$
- 4 check if $S^{(i)} \equiv S^{(i+1)}$

The naive way would be to represent states **explicitly** (e.g., with a C struct containing values for state variables)

Very few model-checkers adopt this method (e.g., SPIN)

Implementing a Model-Checker

In order to implement model-checker we need:

- 1 representing large sets of states
- 2 computing $T(S^{(i)})$
- 3 check if bad states are in $S^{(i)}$
- 4 check if $S^{(i)} \equiv S^{(i+1)}$

The naive way would be to represent states **explicitly** (e.g., with a C struct containing values for state variables)

Very few model-checkers adopt this method (e.g., SPIN)

A more powerful approach represents states **symbolically**, by means of SAT/SMT-formulæ: each set of states S is represented by a formula ϕ such that S corresponds to the models of ϕ

Examples:

door=open engine=on tray=empty

door_open \land engine_on $\land \lnot$ tray_full

Examples:

door=open engine=on tray=empty

door=closed engine=on tray=empty door_open \wedge engine_on $\wedge \neg$ tray_full

 \neg door_open \land engine_on $\land \neg$ tray_full

Examples:

door=open engine=on tray=empty

door=closed engine=on tray=empty

door=open engine=on tray=empty door=closed engine=on tray=empty door_open \land engine_on $\land \neg$ tray_full

 \neg door_open \land engine_on $\land \neg$ tray_full

engine_on $\land \neg \text{tray_full}$

Examples:

door=open engine=on trav=empty

 $door_{open} \land engine_{on} \land \neg tray_{full}$

door=closed engine=on tray=empty

 \neg door_open \land engine_on $\land \neg$ trav_full

door=open engine=on trav=emptv door=closed engine=on trav=emptv

engine_on $\land \neg \text{trav_full}$

Also, it is easy to see that:

$$S_1 \cup S_2$$
 $\phi_1 \lor \phi_2$ $S_1 \cap S_2$ $\phi_1 \land \phi_2$

$$\phi_1 \lor \phi_2$$

$$\phi_1 \wedge \phi_1$$

$$S_1 \subseteq S_2$$
 $\phi_1 \to \phi_2$

Symbolic Model-Checking - Representing Transitions

Transitions are also represented as formulæ between state variables and their primed versions

 $\neg door_open \land \neg engine_on \land \neg door_open' \land engine_on' \land \neg tray_full'$

Symbolic Model-Checking - Representing Transitions

Transitions are also represented as formulæ between state variables and their primed versions

 $\neg door_open \land \neg engine_on \land \neg door_open' \land engine_on' \land \neg tray_full'$

This formula says that the following pair of states are related

$$\neg door_open \land \neg engine_on \land \neg tray_full \\ \neg door_open' \land engine_on' \land \neg tray_full'$$

 $\neg door_open \land \neg engine_on \land tray_full \qquad \quad \neg door_open' \land engine_on' \land \neg tray_full'$

Symbolic Model-Checking - Computing Next State

From a set of states $S^{(i)}$, represented symbolically by a formula $\phi(\vec{s})$, and a transition t_j , represented symbolically by a formula $\psi(\vec{s}, \vec{s'})$, the next states $t_j(S^{(i)})$ can be expressed as

$$\exists \vec{s}. \ \phi(\vec{s}) \land \psi(\vec{s}, \vec{s'})$$

By means of an operation called **quantifier elimination**, we can remove \vec{s} . If then we rename $\vec{s'}$ as \vec{s} we obtain the symbolic representation of $t_j(S^{(i)})$

Symbolic Model-Checking - Computing Next State

From a set of states $S^{(i)}$, represented symbolically by a formula $\phi(\vec{s})$, and a transition t_j , represented symbolically by a formula $\psi(\vec{s}, \vec{s'})$, the next states $t_j(S^{(i)})$ can be expressed as

$$\exists \vec{s}. \ \phi(\vec{s}) \land \psi(\vec{s}, \vec{s'})$$

By means of an operation called **quantifier elimination**, we can remove \vec{s} . If then we rename $\vec{s'}$ as \vec{s} we obtain the symbolic representation of $t_i(S^{(i)})$

Example:

```
\begin{array}{l} \phi \equiv \neg \text{door\_open} \land \neg \text{engine\_on} \\ \psi \equiv \neg \text{door\_open} \land \neg \text{engine\_on} \land \neg \text{door\_open'} \land \text{engine\_on'} \land \neg \text{tray\_full'} \end{array}
```

Quantifier elimination of \exists door_open, engine_on. $\phi \land \psi$ is

 \neg door_open' \land engine_on' \land \neg tray_full'

and therefore

¬door_open ∧ engine_on ∧ ¬tray_full

is $t_i(S^{(i)})$. The whole set of next states $T(S^{(i)})$ is $\bigvee_i t_i(S^{(i)})$

Symbolic Model-Checking - Bad states in $S^{(i)}$

Suppose that ϕ is the symbolic representation of $S^{(i)}$, and that β is the symbolic representation of the **bad states**

checking if some bad state is in $S^{(i)}$ can be simply done with

Symbolic Model-Checking - Bad states in $S^{(i)}$

Suppose that ϕ is the symbolic representation of $S^{(i)}$, and that β is the symbolic representation of the **bad states**

checking if some bad state is in $S^{(i)}$ can be simply done with

 $\phi \wedge \beta$ is satisfiable ?

Suppose that ϕ_i is the symbolic representation of $S^{(i)}$ and that ϕ_{i+1} is the symbolic representation of $S^{(i+1)}$ how do I that $S^{(i)} \equiv S^{(i+1)}$?

Suppose that ϕ_i is the symbolic representation of $S^{(i)}$ and that ϕ_{i+1} is the symbolic representation of $S^{(i+1)}$ how do I that $S^{(i)} \equiv S^{(i+1)}$?

First of all, notice that $S^{(i)} \equiv S^{(i+1)}$ if and only if

$$S^{(i)} \subseteq S^{(i+1)}$$
 and $S^{(i+1)} \subseteq S^{(i)}$

Suppose that ϕ_i is the symbolic representation of $S^{(i)}$ and that ϕ_{i+1} is the symbolic representation of $S^{(i+1)}$ how do I that $S^{(i)} \equiv S^{(i+1)}$?

First of all, notice that $S^{(i)} \equiv S^{(i+1)}$ if and only if

$$S^{(i)} \subseteq S^{(i+1)}$$
 and $S^{(i+1)} \subseteq S^{(i)}$

 $S^{(i)} \subseteq S^{(i+1)}$ always holds (explored states grow monotonically)

Suppose that ϕ_i is the symbolic representation of $S^{(i)}$ and that ϕ_{i+1} is the symbolic representation of $S^{(i+1)}$ how do I that $S^{(i)} \equiv S^{(i+1)}$?

First of all, notice that $S^{(i)} \equiv S^{(i+1)}$ if and only if

$$S^{(i)} \subseteq S^{(i+1)}$$
 and $S^{(i+1)} \subseteq S^{(i)}$

 $S^{(i)} \subseteq S^{(i+1)}$ always holds (explored states grow monotonically)

 $S^{(i+1)} \subseteq S^{(i)}$ can be perfored with the following check

 $\phi_{i+1} \to \phi_i$ is a tautology ? or equivalently $\phi_{i+1} \land \neg \phi_i$ is unsafisfiable ?

Symbolic Model-Checking - Summary

Model-Checking can be implemented by representing states and transitions symbolically with SAT/SMT-formulæ

Next states $T(S^{(i)})$ can be computed using quantifier elimination

Presence of bad states can be computed with a satisfiability call of the form $\phi \wedge \beta$

Fix-point check can be computed with a satisfiability call of the form $\phi_{i+1} \wedge \neg \phi_i$

Symbolic Model-Checking - Termination

Forward-Reachability

Safety Check If $\phi_i \wedge \beta$ is satisfiable, return unsafe Next States Compute ϕ_{i+1} with quantifier elimination Fix-Point Check If $\phi_{i+1} \wedge \neg \phi_i$ is unsatisfiable, return safe

Model-Checking always terminates if the satisfiability tests above terminates

- If the system under inspection is a **finite state machine**, everything can be encoded into Booleans, and so they always terminate (SAT-solver is enough)
- If the system has **infinite states** (e.g., $0 \le x \land y \ge 2$), it terminates if everyting can be encoded into a decidable SMT theory (e.g., \mathcal{LIA}) (SMT-Solver necessary)
- If quantifiers are needed to express states, then Forward-Reachability might not terminate (SMT-Solver plus clever way of handling quantifiers)

Outline

- 1 Basics
 - Modeling
 - Checking
 - Implementing a Model-Checker

- 2 MCMT
 - Two simple protocols

MCMT: Model-Checking Modulo Theories

MCMT is a Model-Checker invented and developed by S. Ghilardi and S. Ranise et al. (see http://www.dsi.unimi.it/ ghilardi/mcmt/ for complete and precise acknowledgements)

It implements a Symbolic Backward-Reachability algorithm (it relies on yices)

It was invented to handle safety properties for distributed algorithms (protocols), which are infinite-state systems

MCMT demo

The following example is taken from the tutorial

Model Checking Modulo Theories: Theory and Practice

available at http://st.fbk.eu/MCMTtutorial

Description

- No data, only locations
- All processes start from the 1st location
- A process in location 3 is inside the critical section
- We want to check if the protocol ensures the mutual exclusion, i.e., at most one process is inside the critical section

Variable

■ One *local* variable 1

:smt (define-type locations (subrange 1 4))

:local l locations

Initial configuration

All processes start in location 1

$$\forall x. (\mathbf{1}[x]=1)$$

Initial configuration

■ All processes start in location 1

$$\forall x. (\mathbf{1}[x] = 1)$$

:initial

:var x

:cnj (= 1[x] 1)

Unsafe configuration

• Mutual exclusion: At most one process is in location 3

Unsafe configuration

■ Mutual exclusion: At most one process is in location 3

$$U := \exists z_1, z_2. \, (\mathbf{1}[z_1] = 3 \land \mathbf{1}[z_2] = 3 \land z_1 \neq z_2)$$

Unsafe configuration

■ Mutual exclusion: At most one process is in location 3

$$U := \exists z_1, z_2. (\mathbf{1}[z_1] = 3 \land \mathbf{1}[z_2] = 3 \land z_1 \neq z_2)$$

:unsafe

:var z1

:var z2

:cnj (= 1[z1] 3) (= 1[z2] 3)

Transitions

• A process in location 1 moves to location 2

$$\tau_1 := \exists x. \left(\begin{array}{l} \mathbf{1}[x] = 1 \ \land \\ \mathbf{1}' = \lambda j. \ (\text{if} \ (x = j) \ \text{then} \ 2 \ \text{else} \ \mathbf{1}[j]) \right)$$

Transitions

■ A process in location 1 moves to location 2

$$\tau_1 := \exists x. \left(\begin{aligned} \mathbf{1}[x] &= 1 \ \land \\ \mathbf{1}' &= \lambda j. \ (\text{if} \ (x=j) \ \text{then} \ 2 \ \text{else} \ \mathbf{1}[j]) \end{aligned} \right)$$

```
:transition
:var x
:var j
:guard (= l[x] 1)
:numcases 2
:case (= x j)
:val 2
:case (not (= x j))
:val l[j]
```



```
:transition
:var x
:var j
:guard (= l[x] 1)
:numcases 2
:case (= x j)
:val 2
:case (not (= x j))
:val 1[j]
:transition
:var x
:var j
:guard (= 1[x] 3)
:numcases 2
:case (= x j)
:val 4
:case (not (= x j))
:val 1[i]
```

```
:transition
:var x
:var j
:guard (= 1[x] 2)
:numcases 2
:case (= x j)
 :val 3
:case (not (= x j))
 :val 1[j]
:transition
:var x
:var j
:guard (= 1[x] 4)
:numcases 2
:case (= x j)
 :val 1
:case (not (= x/j))
 :val 1[j]
```

Execution

\$./mcmt simple_unsafe.in

Execution - Get informations from counterexample

```
[...]
Doing state space exploration...

node 1= [t2_1][0]

node 2= [t1_1][t2_1][0]

node 3= [t2_2][t2_1][0]

node 4= [t2_2][t1_1][t2_1][0]

node 5= [t4_1][t1_1][t2_1][0]

node 6= [t1_2][t2_2][t1_1][t2_1][0]
```

System is UNSAFE!

[...]

Counterexample analysis from trace

Initial state: $\forall i. \ (\ \mathbf{1}[i] = 1\)$

Unsafe state: $\exists z1, z2. (1[z1] = 3 \land 1[z2] = 3)$

Counterexample analysis from trace

Initial state: $\forall i. (1[i] = 1)$

Unsafe state: $\exists z1, z2. (1[z1] = 3 \land 1[z2] = 3)$

$$l=3$$
 $l=3$

[0]
$$\exists z1, z2. (1[z1] = 3 \land 1[z2] = 3)$$

Counterexample analysis from trace

Initial state: $\forall i. \ (\ \mathbf{1}[i] = 1\)$

Unsafe state: $\exists z1, z2. (1[z1] = 3 \land 1[z2] = 3)$

Counter-example: node 6 = [t1_2][t2_2][t1_1][t2_1][0]

$$\tau_2 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 2 \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x = j) \text{ then } 3 \text{ else } \mathbf{1}[j]) \end{pmatrix}$$

z1

z2

[0]
$$\exists z1, z2. (1[z1] = 3 \land 1[z2] = 3)$$

$$l=3$$

$$l=3$$

Counterexample analysis from trace

Initial state: $\forall i. \ (\ \mathbf{1}[i] = 1\)$

Unsafe state: $\exists \mathtt{z1}, \mathtt{z2}. \ (\mathtt{1[z1]} = 3 \land \mathtt{1[z2]} = 3)$

Counter-example: node $6 = [t1_2][t2_2][t1_1][t2_1][0]$

$$\tau_2 := \exists x. \left(\begin{aligned} \mathbf{1}[x] &= 2 \ \land \\ \mathbf{1}' &= \lambda j. \ (\text{if} \ (x = j) \ \text{then} \ 3 \ \text{else} \ \mathbf{1}[j]) \end{aligned} \right)$$

z1 z2

$$l=2$$
 $l=3$

Counterexample analysis from trace

Initial state: $\forall i. (1[i] = 1)$

Unsafe state: $\exists \mathtt{z1}, \mathtt{z2}. \ (\mathtt{1[z1]} = 3 \land \mathtt{1[z2]} = 3)$

Counter-example: node $6 = [t1_2][t2_2][t1_1][t2_1][0]$

$$\tau_1 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 1 \land \\ \mathbf{1}' = \lambda j. \text{ (if } (x = j) \text{ then } 2 \text{ else } \mathbf{1}[j]) \end{pmatrix}$$

z1 z2

$$l=2$$
 $l=3$

[0]
$$\exists z1, z2. (1[z1] = 3 \land 1[z2] = 3)$$

[t2_1] $\exists z1, z2. (1[z1] = 2 \land 1[z2] = 3)$

Counterexample analysis from trace

Initial state: $\forall i. \ (\ \mathbf{1}[i] = 1\)$

Unsafe state: $\exists z1, z2. (1[z1] = 3 \land 1[z2] = 3)$

Counter-example: node $6 = [t1_2][t2_2][t1_1][t2_1][0]$

$$\tau_1 := \exists x. \left(\begin{aligned} \mathbf{1}[x] &= 1 \ \land \\ \mathbf{1}' &= \lambda j. \ (\text{if} \ (x = j) \ \text{then} \ 2 \ \text{else} \ \mathbf{1}[j]) \end{aligned} \right)$$

z1 z2

$$l=1$$
 $l=3$

Counterexample analysis from trace

Initial state: $\forall i. (1[i] = 1)$

Unsafe state: $\exists \mathtt{z1}, \mathtt{z2}. \ (\mathtt{1}[\mathtt{z1}] = 3 \land \mathtt{1}[\mathtt{z2}] = 3)$

Counter-example: node 6 = [t1_2][t2_2][t1_1][t2_1][0]

$$\tau_2 := \exists x. \left(\begin{aligned} \mathbf{1}[x] &= 2 \ \land \\ \mathbf{1}' &= \lambda j. \ (\text{if} \ (x = j) \ \text{then} \ 3 \ \text{else} \ \mathbf{1}[j]) \end{aligned} \right)$$

z1 z2

l=1 l=3

$$\begin{array}{ll} \texttt{[0]} & \exists \mathtt{z1},\mathtt{z2}. \ (\ \mathtt{1[z1]} = 3 \land \mathtt{1[z2]} = 3 \) \\ \texttt{[t2_1]} & \exists \mathtt{z1},\mathtt{z2}. \ (\ \mathtt{1[z1]} = 2 \land \mathtt{1[z2]} = 3 \) \\ \texttt{[t1_1]} & \exists \mathtt{z1},\mathtt{z2}. \ (\ \mathtt{1[z1]} = 1 \land \mathtt{1[z2]} = 3 \) \end{array}$$

Counterexample analysis from trace

Initial state: $\forall i. (1[i] = 1)$

Unsafe state: $\exists \mathtt{z1}, \mathtt{z2}. \ (\mathtt{1}[\mathtt{z1}] = 3 \land \mathtt{1}[\mathtt{z2}] = 3)$

$$\tau_2 := \exists x. \left(\begin{aligned} \mathbf{1}[x] &= 2 \ \land \\ \mathbf{1}' &= \lambda j. \ (\text{if} \ (x = j) \ \text{then} \ 3 \ \text{else} \ \mathbf{1}[j]) \end{aligned} \right)$$

$$l=1$$
 $l=2$

Counterexample analysis from trace

Initial state: $\forall i. (1[i] = 1)$

Unsafe state: $\exists \mathtt{z1}, \mathtt{z2}. \ (\mathtt{1}[\mathtt{z1}] = 3 \land \mathtt{1}[\mathtt{z2}] = 3)$

$$\tau_1 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 1 \land \\ \mathbf{1}' = \lambda j. \text{ (if } (x = j) \text{ then } 2 \text{ else } \mathbf{1}[j]) \end{pmatrix}$$

$$z1$$
 $z2$

$$l=1$$
 $l=2$

Counterexample analysis from trace

Initial state: $\forall i. (1[i] = 1)$

Unsafe state: $\exists \mathtt{z1}, \mathtt{z2}. \ (\mathtt{1[z1]} = 3 \land \mathtt{1[z2]} = 3)$

$$\tau_1 := \exists x. \left(\begin{aligned} \mathbf{1}[x] &= 1 \ \land \\ \mathbf{1}' &= \lambda j. \ (\text{if} \ (x = j) \ \text{then} \ 2 \ \text{else} \ \mathbf{1}[j]) \end{aligned} \right)$$

$$l=1$$
 $l=1$

Description

- Like before, but with a **global** flag c that takes care of mutual exclusion
- All processes start from the 1st location
 - A process in location 3 is inside the critical section
- We want to check if the protocol ensures the mutual exclusion, i.e., at most one process is inside the critical section

Variable(s)

• One *local* variable 1

```
:smt (define-type locations (subrange 1 4))
:smt (define-type counter (subrange 1 2))
```

:local 1 location :global c counter

Initial configuration

■ All processes start in location 1, with counter set to 1

$$\forall x. \; (\; \mathbf{1}[x] = 1 \land \mathbf{c}[x] = 1 \;)$$

Initial configuration

■ All processes start in location 1, with counter set to 1

$$\forall x. \; (\; \mathbf{1}[x] = 1 \land \mathbf{c}[x] = 1\;)$$

:initial :var x

:cnj (= 1[x] 1) (= c[x] 1)

Unsafe configuration

Mutual exclusion: At most one process is in location 3

Unsafe configuration

• Mutual exclusion: At most one process is in location 3

$$U := \exists z_1, z_2. \, (\mathbf{1}[z_1] = 3 \land \mathbf{1}[z_2] = 3 \land z_1 \neq z_2)$$

Unsafe configuration

Mutual exclusion: At most one process is in location 3

$$U := \exists z_1, z_2. (1[z_1] = 3 \land 1[z_2] = 3 \land z_1 \neq z_2)$$

:unsafe

:var z1

:var z2

:cnj (= 1[z1] 3) (= 1[z2] 3)

$$\tau_2 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 2 \land \mathbf{c}[x] = 1 \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x = j) \text{ then } 3 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. 2 \end{pmatrix}$$


```
\tau_2 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 2 \land \mathbf{c}[x] = 1 \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x = j) \text{ then } 3 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. 2 \end{pmatrix}
```

```
:transition
:var x
:var j
:guard (= l[x] 2) (= c[x] 1)
:numcases 2
:case (= x j)
:val 3
:val 2
:case (not (= x j))
:val 1[j]
:val 2
```



```
:transition
:var x
:var i
:guard (= 1[x] 1)
:numcases 2
:case (= x j)
 :val 2
 :val c[x]
:case (not (= x j))
 :val l[i]
 :val c[x]
transition:
:var x
:var j
:guard (= 1[x] 3) (= c[x] 2)
·numcases 2
:case (= x j)
 :val 4
 ·val 1
:case (not (= x j))
 :val 1[i]
 ·val 1
```

```
:transition
:var x
:var i
:guard (= 1[x] 2) (= c[x] 1)
:numcases 2
:case (= x j)
·val 3
:val 2
:case (not (= x j))
:val l[i]
:val 2
·transition
:var x
:var j
:guard (= 1[x] 4)
·numcases 2
:case (= x j)
:val 1
:val c[j]
:case (not (= x j))
:val 1[i]
 :val c[i]
```


Execution

\$./mcmt simple_safe.in

Execution

Set of (un)reachable states

Initial state: $\forall i$. ($1|i|=1 \land c|i|=1$)

Unsafe state: $\exists z1, z2. \ (1[z1] = 3 \land 1[z2] = 3)$

$$\tau_1 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 1 \ \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 2 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{c}[j] \end{pmatrix}$$

$$\tau_2 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 2 \wedge \mathbf{c}[x] = 1 \wedge \\ \mathbf{1}' = \lambda j. (\text{if } (x=j) \text{ then } 3 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. 2 \end{pmatrix}$$

$$\tau_3 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 3 \land \mathbf{c}[x] = 2 \land \\ \mathbf{1}' = \lambda j. (\text{if } (x = j) \text{ then } 4 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. 1 \end{pmatrix}$$

$$au_4 := \exists x.$$

Set of (un)reachable states

Initial state: $\forall i. \ (\ \mathbf{1}[i] = 1 \land \mathbf{c}[i] = 1)$

Unsafe state:
$$\exists z1, z2. (1[z1] = 3 \land 1[z2] = 3)$$

$$\tau_1 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 1 \ \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 2 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{c}[j] \end{pmatrix}$$

$$\tau_2 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 2 \wedge \mathbf{c}[x] = 1 \wedge \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 3 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. 2 \end{pmatrix}$$

$$\tau_3 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 3 \land \mathbf{c}[x] = 2 \land \\ \mathbf{1}' = \lambda j. \text{ (if } (x = j) \text{ then } 4 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{1} \end{pmatrix}$$

$$\tau_4 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 4 \land \\ \mathbf{1}' = \lambda j. (\text{if } (x = j) \text{ then } 1 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{c}[j] \end{pmatrix}$$

t2_z1

l = 3

l = 3

Set of (un)reachable states

Initial state: $\forall i. \ (\ \mathbf{1}[i] = 1 \land \mathbf{c}[i] = 1)$

Unsafe state: $\exists \mathtt{z1}, \mathtt{z2}. \ (\ \mathtt{1}[\mathtt{z1}] = 3 \land \mathtt{1}[\mathtt{z2}] = 3 \)$

$$\begin{bmatrix} l = 1 & l = 3 \\ c = 1 & c = 1 \end{bmatrix}$$

$$t1.21$$

$$\begin{bmatrix} l = 2 & l = 3 \\ c = 1 & c = 1 \end{bmatrix}$$

$$t2.21$$

$$\begin{bmatrix} l = 3 & l = 3 \end{bmatrix}$$

$$\tau_1 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 1 \ \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 2 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{c}[j] \end{pmatrix}$$

$$\tau_2 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 2 \wedge \mathbf{c}[x] = 1 \wedge \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 3 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j.2 \end{pmatrix}$$

$$\tau_3 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 3 \land \mathbf{c}[x] = 2 \land \\ \mathbf{1}' = \lambda j. \text{ (if } (x=j) \text{ then } 4 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. 1 \end{pmatrix}$$

$$\tau_4 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 4 \land \\ \mathbf{1}' = \lambda j. (\text{if } (x = j) \text{ then } 1 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{c}[j] \end{pmatrix}$$

Set of (un)reachable states

Initial state: $\forall i. \ (\ \mathbf{1}[i] = 1 \land \mathbf{c}[i] = 1)$

Unsafe state:
$$\exists z1, z2. (1[z1] = 3 \land 1[z2] = 3)$$

$$\tau_1 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 1 \ \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 2 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{c}[j] \end{pmatrix}$$

$$\tau_2 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 2 \land \mathbf{c}[x] = 1 \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 3 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. 2 \end{pmatrix}$$

$$\tau_3 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 3 \wedge \mathbf{c}[x] = 2 \wedge \\ \mathbf{1}' = \lambda j. \text{ (if } (x=j) \text{ then } 4 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. 1 \end{pmatrix}$$

Set of (un)reachable states

Initial state: $\forall i. \ (\ \mathbf{1}[i] = 1 \land \mathbf{c}[i] = 1)$

Unsafe state: $\exists \mathtt{z1}, \mathtt{z2}. \ (\ \mathtt{1}[\mathtt{z1}] = 3 \land \mathtt{1}[\mathtt{z2}] = 3 \)$

$$\tau_1 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 1 \ \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 2 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{c}[j] \end{pmatrix}$$

$$\tau_2 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 2 \wedge \mathbf{c}[x] = 1 \wedge \\ \mathbf{1}' = \lambda j. (\text{if } (x=j) \text{ then } 3 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. 2 \end{pmatrix}$$

$$\tau_3 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 3 \wedge \mathbf{c}[x] = 2 \wedge \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 4 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{1} \end{pmatrix}$$

Set of (un)reachable states

Initial state: $\forall i. \ (\ \mathbf{1}[i] = 1 \land \mathbf{c}[i] = 1)$

Unsafe state: $\exists \mathtt{z1}, \mathtt{z2}. \ (\mathtt{1[z1]} = 3 \land \mathtt{1[z2]} = 3)$

$$\tau_1 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 1 \ \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 2 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{c}[j] \end{pmatrix}$$

$$\tau_2 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 2 \land \mathbf{c}[x] = 1 \land \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 3 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. 2 \end{pmatrix}$$

$$\tau_3 := \exists x. \begin{pmatrix} \mathbf{1}[x] = 3 \wedge \mathbf{c}[x] = 2 \wedge \\ \mathbf{1}' = \lambda j. \, (\text{if } (x=j) \text{ then } 4 \text{ else } \mathbf{1}[j]) \\ \mathbf{c}' = \lambda j. \mathbf{1} \end{pmatrix}$$