Scilab Textbook Companion for Solid State Pulse Circuits by D. A. Bell¹

Created by
Vivek Kumar Thakur
B.tech
Electrical Engineering
Uttarakhand Technical University
College Teacher
None
Cross-Checked by
Mukul

June 12, 2015

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Solid State Pulse Circuits

Author: D. A. Bell

Publisher: Phi, New Delhi

Edition: 4

Year: 2006

ISBN: 9788120307445

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
1	Pulse Fundamentals	8
2	RC circuits	14
3	Diode switching	20
4	Transistor switching	26
5	IC operational amplifiers in switching circuits	33
6	Schmit Trigger Circuits and voltage comparators	37
7	Monostable and astable multivibrators	42
8	IC timer circuits	47
9	Ramp Pulse and function generator	50
10	Basic Logic gates and logic functions	57
11	Logic circuits	59
12	IC logic gates	60
13	Bistable Multivibrators	63
11	Digital counting and measurement	65

15	Samping	conversion	${\bf modulation}$	and	multiplexing	
----	---------	------------	--------------------	-----	--------------	--

List of Scilab Codes

	9
	J
	10
er	10
pulse	
	11
mum	
	11
	12
	12
	13
	14
	14
	15
	16
	16
	16
	17
	18
	18
	19
	20
//Ex3.	3 2
•	21
	22
	22
	er

Exa 3.7	Calculate Capacitance and Resistance
Exa 3.8	Find Capacitance and Resistance required to design the
	circuit
Exa 3.9	Calculate Capacitance
Exa 3.10	Calculate Capacitance C1 and C2
Exa 4.1	hfe for changed resistor
Exa 4.2	Calculate the transistor power dissipation at
Exa 4.3	Before input pulse is applied
Exa 4.4	Capacitance that can give max turn on time
Exa 4.5	Calculate Rc and Rb
Exa 4.6	Determine maximum value of capacitor
Exa 4.7	Design a transistor by determining Rc
Exa 4.8	Calculate Rc Rb and Cc
Exa 4.9	Determine required capacitance
Exa 4.10	Determine output voltage
Exa 5.1	design a non inverting amplifier
Exa 5.3	Design an inverter by determining input resistance 3
Exa 5.4	Design a differentiating circuit by determining required
	resistances
Exa 5.5	Calculate lowest operating frequency for circuit 3
Exa 6.1	Determine schmitt trigger circuit components for de-
	signing it
Exa 6.2	Find circuit components for designing a schmitt trigger
	circuit
Exa 6.3	Determine Largest speed up capacitance
Exa 6.4	Actual UTP and LTP
Exa 6.5	Design Schmitt circuit components
Exa 6.6	Design a non inverting schmitt trigger circuit 4
Exa 7.1	Design a collector coupled monostable multivibrator . 4
Exa 7.2	Find capacitance
Exa 7.3	Design a monostable multivibrator using op amp 741.
Exa 7.4	Design a astable multivibrator
Exa 7.5	Design a astable multivibrator using 741 op amp//Ex7.5 4
Exa 7.6	Design a astable multivibrator using 311 comparator . 4
Exa 8.1	Design a 555 monostable circuit
Exa 8.2	Design a 555 astable multivibrator
Exa 8.3	Determine actual PRF and duty cycle
Exa 8.4	Design a square wave generator using 7555 CMOS 4

Exa 9.1	esign RC ramp generator//Ex9.1
Exa 9.2	Design a linear ramp generator
Exa 9.4	Determine Rsmax, Rsmin, and minimum drain source volt-
	age
Exa 9.5	find peak to peak output amplitude
Exa 9.6	Design a transistor bootstrap ramp generator
Exa 9.9	Calculate drain current
Exa 9.12	Design a pulse generator using 8038 IC
Exa 9.13	Calculate output maximum and minimum frequencies
Exa 10.1	Determine low and high voltage outputs
Exa 10.2	Find minimum value of the resistance to design OR Gate
Exa 11.3	Determine output for given logic circuit
Exa 12.1	Determine fan out for DTL NAND gate
Exa 12.2	Determine Resistance to drive inputs of 5 TTL gates .
Exa 12.4	Design a interface circuit for CMOS
Exa 13.1	Design a collector coupled bistable multivibrator
Exa 13.4	Determine the capacitance for flip flop
Exa 14.1	Determine Resistors Rc and Rb
Exa 14.5	Determine meter indication when time base uses
Exa 14.6	Determine required current
Exa 15.1	Determine the errors due to Rs and Rd
Exa 15.2	Determine capacitance and minimum acquisition time
Exa 15.3	Determine the error due to capacitance
Exa 15.4	Calculate the output voltage

Chapter 1

Pulse Fundamentals

Scilab code Exa 1.1 Duty cycle

```
1 // Caption: Find (a) Pulse amplitude (b) PRF (c) PW (d)
      Duty cycle and (e)M/S ratio
2 / Exa : 1.1
3 clc;
4 clear;
5 close;
6 v=1//Vertical scale (Volt per division)
7 h=0.1//Horizontal scale (Milli sec per division)
8 pv=3.5//Amplitude of pulse in divisions
9 t=6//Time in divisions
10 pw=2.5//Width of pulse
11 P = pv * v
12 disp(P, '(a) Pulse Amplitude (in volts)=')
13 \quad T=t*h
14 \text{ prf} = (1/T) * 1000
15 disp(prf, '(b)PRF(in pps)=')
16 p = pw * h
17 disp(p, '(c)PW (in ms)=')
18 \text{ sw=pv*h}
19 d=(p/T)*100
20 disp(d, '(d) Duty cycle(in \%)=')
```

```
21 m=p/sw
22 disp(m,'(e)M/S ratio=')
```

Scilab code Exa 1.2 pulse amplitude

```
1 // Caption: Determine (a) Pulse amplitude, tilt, rise
       time, fall time, PW, PRF, mark to space ratio, and
       duty cycle (b) tilt
\frac{2}{2} / \frac{\text{Ex1.2}}{2}
3 clc;
4 clear;
5 close;
6 vs=100//Vertical scale(in mv/divisions)
7 hs=100//Horizontal scale(in micro sec/division)
8 e1=380//first peak of waveform(in mv)
9 e2=350//second peak of waveform(in mv)
10 E = (e1 + e2)/2
11 t=(e1-e2)*100/E
12 \text{ tr=0.3*hs}
13 \text{ tf} = 0.4 * \text{hs}
14 \ T = 5 * hs
15 prf=10^6/T
16 \text{ pw} = 2.2 * \text{hs}
17 \text{ sw} = 2.8 * \text{hs}
18 \text{ ms=pw/sw}
19 dc = (pw * 100) / T
20 disp(dc,ms,pw,prf,tf,tr,t,E,'(a)Pulse Amplitude(in
      mv), tilt (in %), rise time (in micro sec), fall time (
       in micro sec), PW(in micro sec), PRF(in pps), M/s
       ratio, Duty cycle(in %)=')
21 \text{ eb=0.5*vs}
22 \text{ ee} = 2.25 * vs
23 tb=eb*100/ee
24 disp(tb, '(b) Tilt(in %)=')
```

Scilab code Exa 1.3 Average voltage level

```
1 //Caption: Determine average voltage level
\frac{2}{2} / Ex1.3
3 clc;
4 clear;
5 close;
6 vs=2//Vertical scale(V/div)
7 hs=1//Horizontal scale (ms/div)
8 v1=8//Amplitude of signal in (+)ve direction (in
      volts)
9 v2=-1//Amplitude of signal in (-)ve direction (in
      volts)
10 t1=0.8//Horizontal divisions for v1
11 t2=2.2//Horizontal divisions for v2
12 T = 3 * hs
13 T1=t1*hs
14 T2=t2*hs
15 Va=((T1*v1)+(T2*v2))/T
16 disp(Va, 'Average voltage (in volts)=')
```

Scilab code Exa 1.4 Determine the upper 3db frequency of the amplifier

```
1 //Caption:Determine the upper 3db frequency of the
        amplifier
2 //Ex1.4
3 clc;
4 clear;
5 close;
6 tr=1//Rise time(in micro sec)
7 fu=0.35*10^6/tr
```

```
8 disp(fu, 'The upper 3db frequency of the amplifier(in hertz)=')
```

Scilab code Exa 1.5 Determine Minimum upper cut frequency Minimum pulse width and duty cycle

```
1 // Caption: Determine (a) Minimum upper cut frequency (
      b) Minimum pulse width and duty cycle
\frac{2}{2} //Ex1.5
3 clc;
4 clear;
5 close;
6 prf=1.5//in Khz
7 dc=3//Duty cycle (in %)
8 pa=1.5//Amplitude of pulse(in Khz)
9 fu=1//High frequency limit (in Mhz)
10 tr=10//Rise time(in \%)
11 pw = (dc/100) *10^3/pa
12 \text{ Tr} = (\text{tr}/100) * \text{pw}
13 fh=0.35*10^6/Tr
14 disp(fh, '(a) Minimum upper cut frequency(in hertz)=')
15 Tr2=0.35*10^{(-6)}/fu
16 \, Pw = 10 * Tr 2
17 dc=Pw*100*(pa*1000)
18 disp(dc, Pw, '(b) Pulse width (in sec) and Duty cycle (in
       \%)=')
```

Scilab code Exa 1.6 Calculate Rise time in output waveform and Minimum upper cut off frequency and displayed rise time

```
1 // Caption: Calculate a. Rise time in output waveform
b. Minimum upper cut off frequency and displayed
rise time
```

```
2 //Ex1.6
3 clc;
4 clear;
5 close;
6 tr=10//Rise time of input waveform(in micro sec)
7 fu=350//Upper cut off frequency(in KHz)
8 ti=100//Input rise time(in ns)
9 trc=0.35*(10^(-3))/350
10 tro=sqrt(((tr)*(10^(-6)))^2+(trc^2))*10^6
11 disp(tro,'(a)Rise Time(in Micro sec)=')
12 tc=ti*(10^(-9))/3
13 fh=0.35*10^(-6)/tc
14 Tro=sqrt((ti*(10^(-9)))^2+(tc^2))*10^9
15 disp(Tro,fh,'(b)Minimum upper cut off frequency(in Mhz) and rise time(in ns)=')
```

Scilab code Exa 1.7 Calculate lowest input frequency

```
//Caption: Calculate lowest input frequency
//Exa:1.7
clc;
clear;
close;
fl=10//Lower cutoff frequency(in hertz)
t=0.02//Tilt on output waveform
f=%pi*fl/(t*1000)
disp(f,'Lowest input frequency(in Khz)=')
```

Scilab code Exa 1.8 Determine upper cutoff frequency and lower cutoff frequency

```
1 // Caption: Determine upper cutoff frequency and lower cutoff frequency
```

```
2 //Ex:1.8
3 clc;
4 clear;
5 close;
6 f=1//frequency of square wave(in khz)
7 tr=200//rise time of output(in ns)
8 t=0.03//fractional tilt
9 fh=0.35*10^3/tr
10 disp(fh,'(a)upper cutoff frequency(in mhz)=')
11 fl=f*t*1000/%pi
12 disp(fl,'(b)Lower cutoff frequency(in hz)=')
```

Scilab code Exa 1.9 Determine upper and lower Frequencies

```
//Caption: Determine upper and lower Frequencies
//Ex:1.9
clc;
clear;
tr=30//Rise time(in micro sec)
PRF=2000//Pulse repetition Frequency(in pps)
t=0.082//Tilt(in %)
Pw=220//Pulse width(in micro sec)
fh=0.35*10^(6)/tr
fl=t*10^6/(2*%pi*Pw)
disp(fl,fh,'Upper and lower frequencies(in hz)=')
```

Chapter 2

RC circuits

Scilab code Exa 2.3 Calculate voltage after 8ms

```
//Caption: Calculate voltage after 8ms
//Ex:2.3
clc;
clear;
close;
c=1//Capacitance of capacitor(in micro farad)
vs=6//Source voltage(in volts)
r=10//Resistor(in kilo ohm)
vi=-3//Initial voltage(in volts)
t=8//Time (in milli sec)
e=vs-((vs-vi)*2.718^(-t/(r*c)))
disp(e, 'Voltage after 8ms(in volts)=')
```

Scilab code Exa 2.4 Determine EC

```
4 clear;
5 close;
6 r1=1//Resistor(in kilo ohm)
7 c1=1//Capacitance (in micro farad)
8 e1=10//Voltage(in volts)
9 r2=20//Resistor(in kilo ohm)
10 c2=0.1//Capacitance(in micro farad)
11 e2=12//Voltage(in volts)
12 t1=r1*c1*0.78
13 e=e1*1
14 ec1=e*t1
15 t2=r2*c2*0.025
16 E=e2*1
17 \text{ ec2} = \text{E} * \text{t2}
18 disp(ec2,ec1,'(a)Ec at 1.5ms(in volts) and (b)Ec at
      6ms(in volts)=')
```

Scilab code Exa 2.5 Calculate Rise time

```
1 // Caption: Calculate Rise time, time for capacitor to
      charge to required amount and time required for
      complete charging
2 / Ex2.5
3 clc;
4 clear;
5 close;
6 V=5//Voltage source(in volts)
7 r=39 // Resistor (in kilo ohm)
8 c=500//Capacitance of capacitor(in pf)
9 \text{ tr}=2.2*r*c*10^{(-3)}
10 t=r*c*10^{(-3)}
11 tc=5*r*c*10^{(-3)}
12 disp(tc,t,tr, 'Rise time, time for 63.2% charging and
       time required for complete charging (in micro sec
      )=,
```

Scilab code Exa 2.6 Calculate minimum square wave frequency

```
//Caption: Calculate minimum square wave frequency
//Ex2.6
clc;
clear;
Close;
C=1//Coupling capacitor(in micro farad)
R=1//Input resistance(in Mega ohm)
t=0.01//Tilt
PW=t*R*C
f=1/(2*PW)
disp(f, 'Frequency required(in hertz)=')
```

Scilab code Exa 2.7 Determine fastest rise time

```
//Caption: Determine fastest rise time
//Ex2.7
clc;
clear;
close;
r=600//Output resistance(in ohms)
c=30//Input capacitance(in pf)
tr=2.2*r*c*10^(-3)
disp(tr,'Fastest rise time(in ns)=')
```

Scilab code Exa 2.8 Calculate voltage at 14 ms

```
1 //Caption: Calculate voltage at 14 ms
```

```
2 //Ex2.8
3 clc;
4 clear;
5 close;
6 Eo=0//Voltage at t=0sec(in volt)
7 E=20//Peak voltage(in volts)
8 r=3.3//Resistance(in kilo ohm)
9 c=1//Capacitance(in micro farad)
10 t1=4//Time(in ms)
11 t2=2//Time(in ms)
12 e1=E-((E-Eo)*(2.718)^(-t1/(r*c)))
13 e2=Eo-((Eo-e1)*(2.718)^(-t1/(r*c)))
14 e3=E-((E-e2)*(2.718)^(-t1/(r*c)))
15 e3=Eo-((Eo-e3)*(2.718)^(-t2/(r*c)))
16 disp(e3,'Voltage at 14ms(in volts)=')
```

Scilab code Exa 2.9 Determine max and min voltage at which capacitor voltage will settle

Scilab code Exa 2.10 Calculate output voltage

```
1 //Caption: Calculate output voltage for (a) 10V and 1
      ms Pw (b) 10V and 2ms PW (c) 20V and 1ms PW
2 / Ex2.10
3 clc;
4 clear;
5 close;
6 e1=10//Voltage applied (in volts)
7 e0=0/Voltage at t=0sec (in volts)
8 \text{ t1=1}/\text{PW(in ms)}
9 t2=2/PW(in ms)
10 e2=20//Input voltage (in volts)
11 r=10//Resistance(in kilo ohm)
12 c=20 // Capacitance (in micro farad)
13 eo1=(e1-((e1-e0)*(2.718)^(-t1/(r*c))))*1000
14 eo2=(e1-((e1-e0)*(2.718)^(-t2/(r*c))))*1000
15 eo3=(e2-((e2-e0)*(2.718)^(-t1/(r*c))))*1000
16 disp(eo3,eo2,eo1, 'Output voltage for(a)(in mv),(b)(
      in mv),(c)(in mv)=')
```

Scilab code Exa 2.11 Calculate output voltage

```
// Caption: Calculate output voltage for (a) 10V and (b
) 20V
//Ex2.11
clc;
clear;
close;
E1=10//Input voltage(in volts)
E2=20//Input voltage(in volts)
c=1//Capacitance(in micro farad)
```

```
9 r=1//Resistance(in kilo ohm)
10 t=100//Pulse width(in ms)
11 i1=(c*E1*10^(-6))/(t*10^(-3))
12 eo1=i1*r*1000
13 disp(eo1, 'Output voltage for (a)(in volts)=')
14 i2=(c*E2*10^(-6)/(t*10^(-3)))
15 eo2=i2*r*1000
16 disp(eo2, 'Output voltage for (b)(in volts)=')
```

Scilab code Exa 2.12 Calculate amplitude of output waveform

```
1 //Caption: Calculate amplitude of output waveform for
       (a) Rise time (b) Fall time
2 / Ex2.12
3 clc;
4 clear;
5 close;
6 r=1//Resistance(in kilo ohm)
7 c=100//Capacitance(in pf)
8 tr=1//Rise time(in micro sec)
9 tf=3//Fall time(in micro sec)
10 e1=8//Change in voltage for rise time(in volts)
11 e2=-8//Change in voltage for fall time(in volts)
12 \text{ eo1} = r*c*0.001*e1/tr
13 disp(eo1, 'Amplitude of output waveform for (a) Rise
      time(in volts)=')
14 \text{ eo2=r*c*0.001*e2/tf}
15 disp(eo2, 'Amplitude of output waveform for (b) Fall
      time(in volts)=')
```

Chapter 3

Diode switching

Scilab code Exa 3.1 Forward Current

```
1 // Caption: Calculate (a) Resistance (b) Forward Current
       (c) Power dissipation (d) Peak Reverse Voltage
2 / Ex: 3.1
3 clc;
4 clear;
5 close;
6 e=50//Input voltage (in volts)
7 i=20//Output Current(in mA)
8 v=0.5//Output voltage (in volts)
9 is=5//Reverse Leakage Current (in micro ampere)
10 vf=0.7//Forward voltage of diode(in volts)
11 R = v * 1000 / is
12 disp(R, '(a) Resistance (in Kilo ohm)=')
13 I = (e - vf)/R
14 P = (e^2)/R
15 \quad if = i + I
16 disp(if, '(b) Forward Current(in mA)=')
17 p = vf * if
18 disp(p, '(c) Power Dissipation (in mW)=')
19 ер=-е
20 disp(ep, '(d)Peak Reverse Voltage(in volts)=')
```

Scilab code Exa 3.3 Calculate resistance and amplitude of output signal//Ex3.3

```
//Caption: Calculate resistance and amplitude of
    output signal
//Ex3.3
clc;
close;
E=2//Input voltage(in volts)
v=0.5//Input noise voltage(in volts)
Vf=0.7//Forward diode voltage(in volts)
if=1//Forward current of diode(in mA)
V=E-Vf
R=V/if
disp(V,R,'Resistance(in kilo ohm) and Output signal amplitude(in volts)=')
```

Scilab code Exa 3.4 Calculate Resistance and diode forward current

12 disp(if,R,'Resistance(in kilo ohm) and Diode forward current(in mA)=')

Scilab code Exa 3.5 Calculate Resistance

```
//Caption: Calculate Resistance
//Ex3.5
clc;
clear;
close;
V=2.7//Output voltage(in volts)
E=8//Input voltage(in volts)
i=1//Output current(in mA)
vf=0.7//Diode forward voltage(in volts)
if=1//Diode forward current(in mA)
vb=V-vf
R=(E-vb-vf)/(i+if)
disp(R, 'Resistance(in kilo ohm)=')
```

Scilab code Exa 3.6 Find Zener voltage and Resistance

```
//Caption:Find Zener voltage and Resistance
//Ex3.6
clc;
clear;
close;
E=25//Input voltage(in volts)
V=11//Output voltage(in volts)
Vf=0.7//Forward diode voltage(in volts)
i=1//Output current(in mA)
v=9.1//Voltage for 1N757 diode
I=20//Current across 1N757 diode(in mA)
Vz=V-Vf
```

```
13 Vr=E-(Vf+v)
14 Iz=0.25*I
15 Ir=Iz+i
16 R=Vr/Ir
17 disp(R,Vz, 'Zener voltage(in volts) and Resistance(in Kilo ohm)=')
```

Scilab code Exa 3.7 Calculate Capacitance and Resistance

```
//Caption: Calculate Capacitance and Resistance
//Ex3.7
clc;
clear;
close;
E=10//Input voltage(in volts)
f=1//Frequency(in Khz)
Rs=500//Source resistance(in ohms)
t=0.01//Tilt
T=1/(f)
pw=T*1000/2
C=pw/Rs
R=pw/(t*C*1000)
disp(R,C,'Capacitance(in micro farad) and Resistance
(in Kilo ohm)=')
```

Scilab code Exa 3.8 Find Capacitance and Resistance required to design the circuit

```
1 //Caption:Find Capacitance and Resistance required
     to design the circuit
2 //Ex3.8
3 clc;
4 clear;
```

```
5 close;
6 E=20//Input waveform amplitude(in volts)
7 f=2//Frequency(in Khz)
8 t=0.02//Tilt
9 R=600//Resistance(in ohm)
10 T=1/f
11 pw=T*1000/2
12 C=pw/R
13 R=pw/(t*C)
14 disp(R,C,'Capacitance(in micro farad) and Resistance (in ohm)=')
```

Scilab code Exa 3.9 Calculate Capacitance

```
1 // Caption: Calculate Capacitance, Resistance and Zener
       Voltage
\frac{2}{2} //Ex3.9
3 clc;
4 clear;
5 close;
6 E=15//Amplitude of input waveform (in volts)
7 Rs=1//Source Resistance (in Kilo ohm)
8 V=9//Output Voltage (in volts)
9 Vf=0.7//Diode forward voltage (in volts)
10 f=500//Frequency(in hertz)
11 t=0.01 // Tilt
12 T = 1000/f
13 \text{ pw=T/2}
14 C=pw/Rs
15 R=pw/(t*C)
16 Vz=V-Vf
17 disp(Vz,R,C, 'Capacitance (in micro farad), Resistance (
      in Kilo ohm) and Zener Voltage (in volts)=')
```

Scilab code Exa 3.10 Calculate Capacitance C1 and C2

```
1 // Caption: Calculate Capacitance Cland C2, Diode
      reverse recovery time and input voltage
2 / Ex3.10
3 clc;
4 clear;
5 close;
6 V=12//Output voltage(in volts)
7 Vd=0.7//Diode forward voltage (in volts)
8 R=1.2//Load resistance(in Kilo ohm)
9 f=1//Frequency(in KHz)
10 r=10//Ripple in output voltage (in %)
11 Il=V/R
12 t = 1000/(2*f)
13 C2=(I1*t)*10^{(-3)}/((r/(2*100))*V)
14 C1=(2*I1*t)*10^{(-3)}/((r/(2*100))*V)
15 trr=t/10
16 Vpp=V+((r/100)*V)+(2*Vd)
17 Vp = Vpp/2
18 disp(C1,C2,trr,Vp,'Input voltage(in volts), Diode
      reverse recovery time (in micro sec), C2 and C1 (in
     micro farad)=')
```

Chapter 4

Transistor switching

Scilab code Exa 4.1 hfe for changed resistor

```
1 // Caption: Determine (a) hfe (b) hfe for changed
      resistor
\frac{2}{2} / Ex4.1
3 clc;
4 clear;
5 close;
6 Ib=0.2//Base current(in mA)
7 Vcc=10//Collector voltage(in volts)
8 Rc1=1//Collector resistor(in kilo ohm)
9 Rc2=220//Changed collector resistor(in ohm)
10 \text{ Ic1=Vcc/Rc1}
11 h1=Ic1/Ib
12 disp(h1, '(a) hfe=')
13 Ic2=Vcc*1000/Rc2
14 h2=Ic2/Ib
15 disp(h2, '(b) hfe for changed resistor=')
```

Scilab code Exa 4.2 Calculate the transistor power dissipation at

```
1 //Caption: Calculate the transistor power dissipation
       at (a) Cutoff (b) Saturation (c) When Vce is 2V
\frac{2}{2} / \frac{\text{Ex4.2}}{2}
3 clc;
4 clear;
5 close;
6 Vcc=10//Collector voltage (in volts)
7 Ic=50//Collector current(in nA)
8 Rc=1//Collector resistor(in kilo ohm)
9 Vs=0.2//Voltage of collector emitter junction at
      saturation (in volts)
10 Vce=2//Collector emitter voltage (in volts)
11 P1 = Ic * Vcc / 1000
12 disp(P1, '(a) Power dissipation at cutoff(in micro
      watt = ')
13 P2=(Vcc/Rc)*Vs
14 disp(P2, '(b) Power dissipation at saturation (in mW)='
15 I = (Vcc - Vce)/Rc
16 P3=I*Vce
17 disp(P3, '(c) Power dissipation at given Vce(in mW)=')
```

Scilab code Exa 4.3 Before input pulse is applied

```
10 t=250//Switch off time(nA)
11 Vce=Vcc-(Ix*Rc*10^(-6))
12 disp(Vce, '(a) Collector emitter voltage before input
        pulse is applied(in volts)=')
13 Vce2=Vcc-(0.1*Vcc)
14 disp(Vce2, '(b) Collector emitter voltage at end of
        delay time(in volts)=')
15 Vce3=Vcc-(0.9*Vcc)
16 disp(Vce3, '(c) Collector emitter voltage at end of
        turn on time(in volts)=')
17 T=(t*10^(-3))+pw
18 disp(T, '(d) Total time from commencement of input to
        transistor switch off(in micro sec)=')
```

Scilab code Exa 4.4 Capacitance that can give max turn on time

Scilab code Exa 4.5 Calculate Rc and Rb

```
1 //Caption: Calculate Rc and Rb
\frac{2}{2} / Ex4.5
3 clc;
4 clear;
5 close;
6 Vcc=12//Collector voltage (in volts)
7 V=3//Input voltage(in volts)
8 Ic=1//collector current(in mA)
9 Vce=0.2//Saturated collector emitter voltage (in
      volts)
10 \, \text{hfe} = 70
11 Vbe=0.7//Base emitter voltage (in volts)
12 Rc=(Vcc-Vce)/Ic
13 Ib=Ic*1000/hfe
14 Rb=(V-Vbe) *1000/Ib
15 disp(Rb,Rc,'Rc and Rb(in kilo ohm)=')
```

Scilab code Exa 4.6 Determine maximum value of capacitor

```
//Caption: Determine maximum value of capacitor
//Ex4.6
clc;
clear;
f=45//Frequency(in khz)
Rb=150//Base Resistor(in ohms)
t=1000/(2*f)
C=t*1000/(2.3*Rb)
disp(C, 'Maxixmumvalue of capacitor(in pF)=')
```

Scilab code Exa 4.7 Design a transistor by determining Rc

```
1 //Caption: Design a transistor by determining Rc, Rb
      and amplitude of output waveform
2 / Ex4.7
3 clc;
4 clear;
5 close;
6 E=10//Input voltage (in volts)
7 Vcc=15//Collector voltage (in volts)
8 R=100//Load resistance (in kilo ohm)
9 Vce=0.2//Saturted collector emitter voltage (in volts
10 Vd=0.7//Diode forward voltage (in volts)
11 hfe=35
12 Vbe=0.7//Base emitter voltage (in volts)
13 \text{ Rc}=R/10
14 \text{ Ic} = (\text{Vcc} - \text{Vce} - \text{Vd}) / \text{Rc}
15 Ib=Ic/hfe
16 Rb = (E-Vbe-Vd)/Ib
17 Vmin=Vd+Vce
18 Vmax = (Vcc*R)/(R+Rc)
19 Vo=Vmax-Vmin
20 disp(Vo, Rb, Rc, 'Rc, Rb(in kilo ohm), and amplitude of
      output waveform (in volts)=')
```

Scilab code Exa 4.8 Calculate Rc Rb and Cc

```
1 //Caption: Calculate Rc,Rb, and Cc
2 //Ex4.8
3 clc;
4 clear;
5 close;
6 Vcc=10//Collector voltage(in volts)
7 Vce=0.2//Saturated collector emitter voltage(in volts)
8 Ic=10//Collector current(in mA)
```

```
9 Vbe=0.7//Base emitter voltage(in volts)
10 hfe=100
11 Pw=1//Pulse width(in ms)
12 Vi=4//Input voltage(in volts)
13 Rc=(Vcc-Vce)*1000/Ic
14 Ib=Ic*1000/hfe
15 Rb=(Vcc-Vbe)*1000/Ib
16 Vb=Vi-Vbe-0.5
17 I=(Vcc+Vi)/Rb
18 Cc=I*Pw/Vb
19 disp(Cc,Rb,Rc,'Rc(in ohm),Rb(in kilo ohm),Cc(in micro farad)=')
```

Scilab code Exa 4.9 Determine required capacitance

```
1 // Caption: Determine required capacitance
\frac{2}{2} / Ex4.9
3 clc;
4 clear;
5 close;
6 E=4//Input voltage (in volts)
7 Pw=1//Pulse width(in ms)
8 Rs=1//Source resistance(in kilo ohm)
9 Vce=0.2//Saturated Collector emitter voltage (in
      volts)
10 Rc=1//Collector resistance (in kilo ohm)
11 Vcc=10//Collector voltage (in volts)
12 hfe=100
13 Vbe=0.7//Base emitter voltage (in volts)
14 Rb=10//Base resistance (in kilo ohm)
15 Ic=(Vcc-Vce)/Rc
16 \text{ Ib=Ic*}1000/\text{hfe}
17 Irb=Vbe*1000/Rb
18 ic=Ib+Irb
19 I = (E - Vbe)/Rs
```

```
20 C=Pw/(Rs*(log(I*1000/ic)))
21 disp(C, 'Required capacitance(in micro farad)=')
```

Scilab code Exa 4.10 Determine output voltage

```
1 // Caption: Determine output voltage when (a) Device is
       cutoff (b) Device is switched on
\frac{2}{2} //Ex4.10
3 clc;
4 clear;
5 close;
6 Idf=0.25//Drain current at cutoff(in ns)
7 rd=40//Drain resistance at switched on(in ohm)
8 Vdd=15//Drain voltage(in volts)
9 Rd=6.8//Drain resistance(in kilo ohm)
10 Vo = Vdd - (Idf * Rd * 10^{(-6)})
11 disp(Vo, 'Output voltage when device is cutoff(in
      volts = ')
12 Id=Vdd/Rd
13 \text{ Vo2=Id*rd}
14 disp(Vo2, 'Output voltage when device is switched on(
      in milli volts)=')
```

Chapter 5

IC operational amplifiers in switching circuits

Scilab code Exa 5.1 design a non inverting amplifier

```
1 // Caption: Design a non inverting amplifier by
      determining Required resistances and output
      voltage
2 / Ex5.1
3 clc;
4 clear;
5 close;
6 Av=28//Voltage gain
7 E=50//Input voltage(in mV)
8 Ib=500//Base current(in nA)
9 i=100*Ib*0.001
10 R3=E/i
11 Vo = Av * E * 0.001
12 r = Vo * 1000/i
13 R2 = r - R3
14 R1 = (R2*R3)/(R2+R3)
15 disp(R1,R2,R3,Vo, 'Output voltage(in volts), Required
      resistances R3, R2 and R1(in kilo ohm)=')
```

Scilab code Exa 5.3 Design an inverter by determining input resistance

```
1 //Caption: Design an inverter by determining input
      resistance, current and capacitance
\frac{2}{2} //Ex5.3
3 clc;
4 clear;
5 close:
6 Vo=11//Output voltage (in volts)
7 Vcc=12//Collector voltage (in volts)
8 Vi=6//Input voltage(in volts)
9 f=1//Frequency(in Khz)
10 Vb=0.5//Base voltage (in volts)
11 Vee=-12//Emitter voltage(in volts)
12 Ib=500//Max base current(in nA)
13 Vc=2//Collector voltage (in volts)
14 Vr2=Vb-Vee
15 I2=100*Ib*0.001
16 R2 = Vr2/I2
17 i = Vr2/R2
18 R1 = (Vcc - Vb)/i
19 Ri = (R1*R2)*1000/(R1+R2)
20 Ii=Vi*1000/Ri
21 \text{ pw} = 1000/(2*f)
22 C = (Ii*pw)*10^{(-6)}/Vc
23 disp(C, Ii, Ri, 'Input resistance (in kilo ohm), Input
      current (in micro ampere) and Capacitance (in micro
       farad = '
```

Scilab code Exa 5.4 Design a differentiating circuit by determining required resistances

```
1 //Caption: Design a differentiating circuit by
      determining required resistances and capacitance
2 / Ex5.4
3 clc;
4 clear;
5 close;
6 Vo=5//Output voltage(in volts)
7 Vi=1//Change in input voltage (in volts)
8 t=100//Time period(in micro sec)
9 I=1//Circuit current(in mA)
10 R2 = Vo/I
11 R1=R2*1000/20
12 R3=R2
13 C=Vo*t/(R2*Vi*1000)
14 disp(R3, R2, R1, C, 'Required components for circuit are
       Capacitance (in micro farad), Resistances R1 (in
     ohm), R2 (in kilo ohm), R3 (in kilo ohm)=')
```

Scilab code Exa 5.5 Calculate lowest operating frequency for circuit

```
14 R2=(R3*R1)/(R1+R3)

15 t=1000/(2*f)

16 C=(I*t)/V

17 F=20*1000/(2*%pi*C*R3)

18 disp(F, 'Required frequency(in hz)=')
```

Schmit Trigger Circuits and voltage comparators

Scilab code Exa 6.1 Determine schmitt trigger circuit components for designing it

```
1 // Caption: Determine schmitt trigger circuit
      components for designing it
2 / Ex6.1
3 clc;
4 clear;
5 close;
6 u=5//Upper trigger point voltage (in volts)
7 Vbe=0.7//Base emitter voltage (in volts)
8 I=2//Collector current(in mA)
9 \text{ hfe} = 100
10 Vcc=12//Collector voltage (in volt)
11 Vce=0.2//Saturated collector emitter voltage (in
      volts)
12 Ve=u-Vbe
13 Re=Ve/I
14 Rc=(Vcc-Ve-Vce)/I
15 i = I/10
16 R2=u/i
```

Scilab code Exa 6.2 Find circuit components for designing a schmitt trigger circuit

```
1 // Caption: Find circuit components for designing a
      schmitt trigger circuit
2 / Ex6.2
3 clc;
4 clear;
5 close;
6 u=5//Upper trigger point voltage (in volts)
7 Vbe=0.7//Base emitter voltage(in volts)
8 I=2//Collector current(in mA)
9 \text{ hfe} = 100
10 Vcc=12//Collector voltage(in volt)
11 Vce=0.2//Saturated collector emitter voltage(in
      volts)
12 1=3//Lower trigger point voltage (in volts)
13 \ Ve=u-Vbe
14 \text{ Re=Ve/I}
15 Rc = (Vcc - Ve - Vce)/I
16 i = I/10
17 R2=u/i
18 \text{ Ib2=I/hfe}
19 I2=u/i
20 \text{ It} = \text{Ib}2 + \text{i}
21 r = (Vcc - u)/It
22 I1=1/R2
```

Scilab code Exa 6.3 Determine Largest speed up capacitance

```
//Caption: Determine Largest speed up capacitance
//Ex6.3
clc;
clear;
close;
f=1//Frequency(in Mhz)
R1=22//Resistance(in kilo ohm)
R2=22//Resistance(in kilo ohm)
Rc1=4.7//Resistance(in kilo ohm)
R=R1*(Rc1+R2)/(R1+Rc1+R2)
t=1/f
C=t*1000/(2.3*R)
disp(C, 'Required Capacitance(in pF)=')
```

Scilab code Exa 6.4 Actual UTP and LTP

```
//Caption: Calculate R1,R2 and Actual UTP and LTP
//Ex6.4
clc;
clear;
close;
u=3//Upper trigger voltage(in volts)
Ib=500//Max base current(in nA)
Vcc=15//Collector voltage(in volts)
i=Ib*0.1
```

```
10    R2=u*1000/i
11    I=u/R2
12    Vo=Vcc-1
13    Vr1=Vo-u
14    R1=Vr1/I
15    utp=Vo*R2/(R1+R2)
16    ltp=-utp
17    disp(ltp,utp,R2,R1,'Circuit components R1,R2(in kilo ohm) and actual UTP and LTP(in volts)=')
```

Scilab code Exa 6.5 Design Schmitt circuit components

```
1 // Caption: Design Schmitt circuit components R1, R2, R3
      , R4 and R5
2 / Ex6.5
3 clc;
4 clear;
5 close;
6 u=3//Upper trigger voltage(in volts)
7 Ib=500//Max base current(in nA)
8 Vf=0.7//Forward diode voltage (in volts)
9 Vk1=-2//Voltage(in volts)
10 Vcc=15//Collector voltage (in volts)
11 Vk2 = -Vk1
12 i = Ib * 0.1
13 R2=u*1000/i
14 I=u/R2
15 \text{ Vo=Vcc-1}
16 Vr1=Vo-u
17 R1=Vr1/I
18 I4 = 100 * i
19 Va1=Vk1+Vf
20 \, \text{Vee} = - \, \text{Vcc}
21 V4=Va1-Vee
22 R4 = V4 * 1000 / I4
```

```
23 Va2=Vk2+Vf

24 V5=Va2-Va1

25 R5=V5*1000/I4

26 R3=(Vcc-Va2)*1000/I4

27 disp(R5,R4,R3,R2,R1,'R1,R2,R3,R4,R5(in kilo ohm)=')
```

Scilab code Exa 6.6 Design a non inverting schmitt trigger circuit

```
1 // Caption: Design a non inverting schmitt trigger
       circuit
\frac{2}{2} / \frac{\text{Ex6.6}}{6}
3 clc;
4 clear;
5 close;
6 Vcc=15//Collector voltage (in volts)
7 u=2//Upper trigger point(in volts)
8 Ib=500//Base current(in nA)
9 I2=Ib*0.1
10 \text{ Vo=Vcc-1}
11 R2 = Vo * 1000 / I2
12 i = Vo * 1000 / R2
13 R1 = u * 1000 / i
14 disp(R2,R1, 'Circuit components R1 and R2(in kilo ohm
      )=,
```

Monostable and astable multivibrators

Scilab code Exa 7.1 Design a collector coupled monostable multivibrator

```
1 // Caption: Design a collector coupled monostable
      multivibrator by determining rc, rb, r2, r1 and vb1
2 / Ex7.1
3 clc;
4 clear;
5 close;
6 vs=9//Supply voltage(in volts)
7 Ic=2//Collector current(in mA)
9 vd=0.7//Diode forward voltage(in volts)
10 vce=0.2//Saturated collector emitter voltage (in
      volts)
11 Vbb=-9//Base voltage (in volts)
12 Vbe=0.7//Base emitter voltage (in volts)
13 Rc=(vs-vd-vce)/Ic
14 \text{ Ib2=Ic*1000/hfe}
15 Rb = (vs - Vbe - vd) * 1000 / Ib2
16 \quad I2 = Ic * 1000 / 10
17 Vr2=Vbe-Vbb
```

```
18     R2=Vr2*1000/I2
19     i=Ib2+I2
20     r=(vs-Vbe)*1000/i
21     R1=r-Rc
22     Vc2=vd+vce
23     Vr1=R1*(vs-Vbb)/(R1+R2)
24     Vb1=Vc2-Vr1
25     disp(Vb1,R1,R2,Rb,Rc,'Required components for circuit design are Rc,Rb,R2,R1(in kilo ohm) and Vb1(in volts)=')
```

Scilab code Exa 7.2 Find capacitance

```
//Caption:Find capacitance
//Ex7.2
clc;
clear;
close;
t=250//Pulse width(in micro sec)
E=9//Input voltage(in volts)
Vbe=0.7//Base emitter voltage(in volts)
Vd=0.7//Diode forward voltage(in volts)
Rb=180//Base resistor(in kilo ohm)
Eo=-(E-Vbe-Vd)
C=t*1000/(Rb*log((E-Eo)/E))
disp(C, 'Required capacitance(in pF)=')
```

Scilab code Exa 7.3 Design a monostable multivibrator using op amp 741

```
4 clear;
5 close;
6 Vcc=15//Collector voltage(in volts)
7 Vt=1.5//Trigger voltage(in volts)
8 t=200//Output pulse width(in micro sec)
9 Ib=500//Base current(in nA)
10 Vr2=1//R2 Resistor voltage (in volts)
11 I2=0.1*Ib
12 R2 = Vr2 * 1000 / I2
13 i2 = Vr2 * 1000 / R2
14 Vr1=Vcc-Vr2
15 R1=Vr1*1000/i2
16 R3 = (R1 * R2) / (R1 + R2)
17 E=Vr2-(Vcc-1)
18 \text{ ec=Vcc-1}
19 Ec = Vr2 + (Vcc - 1)
20 \text{ Rc} = \text{R1} * \text{R2} / (\text{R1} + \text{R2})
21 \quad C=t*1000/(Rc*log((Vcc-E)/(Vcc-ec)))
22 disp(C,R3,R2,R1, 'Circuit components are resistances
      R1, R2, R3(in kilo ohm) and Capacitance (in pF)=')
```

Scilab code Exa 7.4 Design a astable multivibrator

```
//Caption: Design a astable multivibrator
//Ex7.4
clc;
clear;
close;
f=1//Frequency of output waveform(in Khz)
Vs=5//Supply voltage(in volts)
Il=20//Output load current(in micro Ampere)
hfe=70
Vbe=0.7//Base emitter voltage(in volts)
Ic=Il*100/1000
Rc=Vs/Ic
```

Scilab code Exa 7.5 Design a astable multivibrator using 741 op amp//Ex7.5

```
1 //Caption: Design a astable multivibrator using 741
      op amp
2 / Ex7.5
3 clc;
4 clear;
5 close;
6 f=300//Output frequency(in hertz)
7 Vo=11//Output Amplitude(in volts)
8 utp=0.5//Upper trigger voltage (in volts)
9 Vr3=0.5//Votage across R3 resistor(in volts)
10 Ib=500//Base current(in nA)
11 Vcc=Vo+1
12 I2 = 100 * Ib / 1000
13 R3=Vr3*1000/I2
14 Vr2=Vo-Vr3
15 R2=Vr2*1000/I2
16 Ir1=100*Ib/1000
17 Vr1=Vo-Vr3
18 R1=Vr1*1000/Ir1
19 t = 1000/f
20 \text{ tc1=0.5*t}
21 ltp=-utp
22 \text{ v=utp-ltp}
23 C=Ir1*tc1*10^{(-3)}/v
24 disp(C,R3,R2,R1, 'Circuit components for designing
```

```
astable multivibrator are R1, R2, R3(in kilo ohm) and Capacitance (in micro farad)=')
```

Scilab code Exa 7.6 Design a astable multivibrator using 311 comparator

```
1 //Caption:Design a astable multivibrator using 311
      comparator
2 / Ex7.6
3 clc;
4 clear;
5 close;
6 V=12//Supply voltage (in volts)
7 f=3//Frequency(in Khz)
8 Ib=250//Base current(in nA)
9 R2=1//Selected resistor (in kilo ohm)
10 I4 = 100 * Ib / 1000
11 \ Vr4 = V/3
12 R4=Vr4*1000/I4
13 R3=R4
14 R5 = R4
15 \text{ Ir}2=V/R2
16 Ir1=100*Ib/1000
17 Vr1=Vr4
18 R1=Vr1*1000/Ir1
19 t = 1000/(2*f)
20 C=t*1000/(R1*(log (2)))
21 disp(C,R5,R4,R3,R2,R1, 'Circuit components required
      to design the circuit are R1, R2, R3, R4, R5 (in kilo
      ohm) and Capacitance (in pF)=')
```

IC timer circuits

Scilab code Exa 8.1 Design a 555 monostable circuit

```
//Caption: Design a 555 monostable circuit
//Ex8.1
clc;
clear;
close;
t=1//Pulse width(in ms)
Vcc=15//Supply voltage(in volts)
Ith=0.25//Threshold current(in micro Ampere)
Ic=100*Ith
R=Vcc*1000/(3*Ic)
C=t*10^6/(1.1*R)
disp(C,R,'Components required for designing 555 monostable circuit are R(in kilo ohm) and C(in pF)=')
```

Scilab code Exa 8.2 Design a 555 astable multivibrator

```
1 // Caption: Design a 555 astable multivibrator
```

```
\frac{2}{2} //Ex8.2
3 clc;
4 clear;
5 close;
6 p=2//Pulse repetition frequency (in Khz)
7 d=0.66//Duty cycle
8 Ic=1//Minimum collector voltage selected (in mA)
9 Vcc=18//Supply voltage (in volts)
10 t = 1000/p
11 t1=d*t
12 t2=t-t1
13 R=Vcc/(3*Ic)
14 C=t1*0.001/(0.693*R)
15 Rb=t2*0.001/(0.693*C)
16 \quad Ra=R-Rb
17 disp(C, Rb, Ra, 'Components required to design the
      circuit are resistors Ra, Rb(in kilo ohm) and
      Capacitance (in micro farad)=')
```

Scilab code Exa 8.3 Determine actual PRF and duty cycle

```
//Caption: Determine actual PRF and duty cycle
//Ex8.3
clc;
close;
C=0.082//Capacitance(in micro farad)
Ra=3.3//Resistance(in kilo ohm)
Rb=2.7//Resistance(in kilo ohm)
t1=0.693*C*(Ra+Rb)*1000
t2=0.693*C*Rb*1000
T=t1+t2
P=1000/T
det1*100/T
disp(P,d,'Duty cycle(in %) and PRF(in Khz)=')
```

Scilab code Exa 8.4 Design a square wave generator using 7555 CMOS

```
1 //Caption: Design a square wave generator using 7555
     CMOS
2 / Ex8.4
3 clc;
4 clear;
5 close;
6 V=5//Supply voltage(in volts)
7 f1=1//Frequency(in khz)
8 f2=3//Frequency(in khz)
9 C=0.01//Capacitance(in micro farad)
10 Ra=47 // Choosed resistor (in kilo ohm)
11 t1=1/(2*f1)
12 t2=1/(2*f2)
13 R=t1/(0.693*C)
14 Rb=R-Ra
15 disp(C,Rb,Ra, 'Components required to design the
      circuit are Ra, Rb(in kilo ohm) and Capacitance(in
      micro farad)=')
```

Ramp Pulse and function generator

Scilab code Exa 9.1 esign RC ramp generator//Ex9.1

```
1 // Caption: Design RC ramp generator
2 / Ex9.1
3 clc;
4 clear;
5 close;
6 V=5//Output voltage (in volts)
7 Vs=15//Supply voltage (in volts)
8 R=100//Load resistance(in kilo ohm)
9 v=3//Amplitude of triggering pulse(in volts)
10 vb=0.5//Bse voltage(in volts)
11 p=1//Pulse width(in ms)
12 t=0.1//Time interval(in ms)
13 vbe=0.7//Base emitter voltage(in volts)
14 E=0.2//Initial voltage (in volts)
15 e=5//Final voltage(in volts)
16 \text{ hfe} = 50
17 Il=V/R
18 I1=100*I1/1000
19 R1=(Vs-V)/(I1*1000)
```

```
20 C1=p/(R1*log((Vs-E)/(Vs-e)))
21 Ic=10*I1
22 Ib=Ic/hfe
23 Rb=(Vs-vbe)/(Ib*1000)
24 Vbb=v-vbe-vb
25 I=(Vs+v)/Rb
26 C2=I*p/Vbb
27 disp(C2,C1,R1,Rb,'Components required to design circuit are resistances Rb,R1(in kilo ohm) and Capacitors C1,C2(in micro farad)=')
```

Scilab code Exa 9.2 Design a linear ramp generator

```
1 // Caption: Design a linear ramp generator
2 / Ex9.2
3 clc;
4 clear;
5 close;
6 V=5//Output voltage(in volts)
7 Vcc=15//Supply voltage (in volts)
8 Vce2=3//Voltage(in volts)
9 C1=1//Capacitance (in micro fard)
10 t=1//pulse width (in ms)
11 Vbe=0.7//Base emitter voltage (in volts)
12 V3=Vcc-Vce2-5
13 \text{ Ic=C1*V/t}
14 R3=V3/Ic
15 \text{ Vb=V3+Vbe}
16 I1 = Ic/10
17 R1 = Vb/I1
18 i1 = Vb/R1
19 \quad V2 = Vcc - Vb
20 R2 = V2/I1
21 disp(C1,R3,R2,R1, 'Components required to design the
      circuit are resistors R1, R2, R3(in kilo ohm) and
```

Scilab code Exa 9.4 Determine Rsmax, Rsmin, and minimum drain source voltage

```
1 // Caption: Determine Rsmax, Rsmin, and minimum drain
      source voltage
2 / Ex9.4
3 clc;
4 clear;
5 close;
6 I=2//Drain Current(in mA)
7 Vgsm=3//Maximum gate source voltage (in volts)
8 Vgsn=0.5//Minimum gate source voltage (in volts)
9 V=6//Peak voltage (in volts)
10 Rs1 = Vgsm/I
11 Rs2=Vgsn*1000/I
12 \quad Vds = V - Vgsm + 1
13 disp(Vds, Rs2, Rs1, 'Required resistances Rsmax(in kilo
       ohm), Rsmin(in ohm) and drain source voltage (in
      volts = ')
```

Scilab code Exa 9.5 find peak to peak output amplitude

```
// Caption: Design a UJT relaxation oscillator and
    find peak to peak output amplitude
//Ex9.5
clc;
clear;
close;
Vbb=20//Supply voltage(in volts)
f=5//Frequency(in khz)
Veb=3//Fringe Voltage(in volts)
```

Scilab code Exa 9.6 Design a transistor bootstrap ramp generator

```
1 // Caption: Design a transistor bootstrap ramp
      generator
2 / Ex9.6
3 clc;
4 clear:
5 close;
6 V=8//Amplitude of output voltage (in volts)
7 Vd=0.7//Forward diode voltage (in volts)
8 Vce=0.2//Saturated collector emitter voltage (in
      volts)
9 t=1//Interval between pulses (in ms)
10 Vt=3//Triggering voltage (in volts)
11 E=15//Supply voltage (in volts)
12 vbe=0.7//Base emitter voltage (in volts)
13 vb=0.5//Bse voltage(in volts)
14 \, \text{hfe} = 100
15 R=1//Load resistor (in kilo ohm)
16 \text{ Ie1=E/R}
17 Ie2=(V-(-E))/R
18 Ib1=Ie1/hfe
```

```
19 Ib2=Ie2/hfe
20 Ibc=Ib2-Ib1
21 I1 = 100 * Ibc / 1000
22 C1 = I1 * t * 1000 / V
23 \text{ Vr1=E-Vd-Vce}
24 R1 = Vr1/I1
25 Vc3=E/100
26 \quad C3 = I1 * t * 1000 / Vc3
27 Il=V/R
28 I1=100*I1/1000
29 Ic = 10 * I1
30 Ib=Ic/hfe
31 Rb = (E - vbe) / (Ib * 1000)
32 \quad Vbb=V-vbe-vb
33 I = (E+Vt)/Rb
34 C2=I*t/Vbb
35 disp(C3,C2,C1,Rb,'Circuit components are resistor Rb
      (in kilo ohm) and capacitances C1, C2, C3 (in micro
      farad = '
```

Scilab code Exa 9.9 Calculate drain current

```
//Caption: Calculate drain current
//Ex9.9
clc;
clear;
close;
V=5//Output peak voltage(in volts)
p=1//Pulse width(in ms)
s=50//Space width(in micro sec)
C=0.03//Capacitance(in micro farad)
Vp=6//Gate source voltage(in volts)
I1=C*V*1000/p
Vi=Vp+1
R1=Vi/I1
```

```
14 Id=I1*p/s
15 disp(Id, 'Drain current(in mA)=')
```

Scilab code Exa 9.12 Design a pulse generator using 8038 IC

```
1 //Caption: Design a pulse generator using 8038 IC
\frac{2}{2} //Ex9.12
3 clc;
4 clear;
5 close;
6 p=200//Pulse width(in micro sec)
7 f=1//Pulse repetition frequency (in khz)
8 V=10//Output voltage (in volts)
9 I=1//Maximum current(in mA)
10 T = 1000/f
11 t2=T-p
12 \quad Ib=I*p/t2
13 Ra=V/(5*I)
14 C=0.6*p/(Ra*1000)
15 Rb = 2*V/(5*(I+Ib))
16 Rl=V/I
17 disp(Ra, Rb, Rl, C, 'Circuit components are Capacitance (
      in micro farad) and Resistances Rl, Rb, Ra(in kilo
      ohm = '
```

Scilab code Exa 9.13 Calculate output maximum and minimum frequencies

```
1 //Caption:Calculate output maximum and minimum
    frequencies
2 //Ex9.13
3 clc;
4 clear;
```

```
5 close;
6 V=15//Supply voltage(in volts)
7 Imin=10//Minimum current(in micro ampere)
8 Imax=1//Maximum current(in mA)
9 C=3600//Capacitor(in pF)
10 Rmax=V/(10*Imin)
11 Rmin=V/(10*Imax)
12 fmin=0.15*10^6/(C*Rmax)
13 fmax=0.15*10^6/(C*Rmin)
14 disp(fmin,fmax,'Maximum frequency(in khz) and minimum frequency(in hz)=')
```

Basic Logic gates and logic functions

Scilab code Exa 10.1 Determine low and high voltage outputs

```
//Caption: Determine low and high voltage outputs and
resistance for desinging the gate circuit
//Ex10.1
clc;
close;
close;
Vcc=5//Supply voltage(in volts)
Vf=0.7//Diode forward voltage(in volts)
I=0.5//Collector current(in mA)
Vce=0.2//Collector emitter voltage(in volts)
R=(Vcc-Vf-Vce)/I
Vl=Vce+Vf
Vh=Vcc
disp(R,Vh,Vl, 'Low and high voltage outputs(in volts)
and Required resistance(in kilo ohm)=')
```

Scilab code Exa
 ${\bf 10.2}\,$ Find minimum value of the resistance to design
 OR Gate

```
//Caption:Find minimum value of the resistance to
    design OR Gate
//Ex10.2
clc;
close;
Rc=3.3//Collector resistance(in kilo ohm)
V=3.5//Gate output voltage(in volts)
Vcc=5//Supply voltage(in volts)
Vf=0.7//Forward diode voltage(in volts)
I=(Vcc-Vf-V)/Rc
R=V/I
disp(R, 'Minimum value of resistance to design the circuit is(in kilo ohm)=')
```

Logic circuits

Scilab code Exa 11.3 Determine output for given logic circuit

```
//Caption: Determine output for given logic circuit
//Ex11.3
clc;
clear;
close;
A=1
B=0
C=1
D=1
c=A-1
n=c//Output of NOT gate
a=B*C*D//Output of OR gate
disp(o,'Output for given logic circuit is=')
```

IC logic gates

Scilab code Exa 12.1 Determine fan out for DTL NAND gate

```
1 //Caption: Determine fan out for DTL NAND gate
\frac{2}{2} / \text{Ex} 12.1
3 clc;
4 clear;
5 close;
6 \, \text{hfe} = 20
7 Vbe=0.7//Base emitter voltage (in volts)
8 R3=6//Resistance(in kilo ohm)
9 R2=5//Resistance(in kilo ohm)
10 Vcc=5//Supply voltage (in volts)
11 R1=2//Resistance(in kilo ohm)
12 Vce=0.2//Collector emitter voltage (in volts)
13 Vf4=0.7//Diode forward voltage
14 Vf5=Vf4
15 Vf6=Vf4
16 I2=Vbe/R2
17 \text{ Va=Vf4+Vf5+Vbe}
18 I1 = (Vcc - Va)/R1
19 Ib=I1-I2
20 \quad Ic1=hfe*Ib
21 \quad I3 = (Vcc - Vce)/R3
```

Scilab code Exa 12.2 Determine Resistance to drive inputs of 5 TTL gates

```
//Caption:Determine Resistance to drive inputs of 5
    TTL gates
//Ex12.2
clc;
clear;
close;
Ii=1.6//Maximum input current(in mA)
Io=16//Maximum output current(in mA)
Vcc=5//Supply voltage(in volts)
Vo=0.4//Maximum output voltage(in volts)
Il=5*Ii
Irc=Io-Il
Vrc=(Vcc-Vo)
Rc=Vrc*1000/Irc
disp(Rc, 'Required resistance(in ohm)=')
```

Scilab code Exa 12.4 Design a interface circuit for CMOS

```
1 //Caption: Design a interface circuit for CMOS
2 //Ex12.4
3 clc;
4 clear;
5 close;
6 Vdd=15//Drain voltage(in volts)
7 Rd=1//Drain resistance(in kilo ohm)
```

```
8 Vcc=5//Supply voltage(in volts)
9 Ih=40//Current(in micro ampere)
10 hfe=20
11 Vce=0.2//Saturated collector emitter voltage(in volts)
12 vih=2//High input voltage(in volts)
13 il=1.6//Low input current
14 Vbe=0.7//Base emitter voltage(in volts)
15 Rc=(Vcc-vih)*1000/(2*Ih)
16 Ic=((Vcc-Vce)/Rc)+(2*il)
17 Ib=Ic/hfe
18 R=(Vdd-Vbe)/Ib
19 Rb=R-Rd
20 disp(Rc,Rb,'Components required to design circuit are resistors Rb and Rc(in kilo ohm)=')
```

Bistable Multivibrators

Scilab code Exa 13.1 Design a collector coupled bistable multivibrator

```
1 //Caption: Design a collector coupled bistable
      multivibrator
\frac{2}{2} //Ex13.1
3 clc;
4 clear;
5 close;
6 V=5//Supply voltage (in volts)
7 Ic=2//Saturated collector current (in mA)
8 Vce=0.2//Collector emitter voltage (in volts)
9 \text{ hfe} = 70
10 Vbe=0.7//Base emitter voltage (in volts)
11 Vbb=-5//Base voltage (in volts)
12 Rc = (V - Vce) / Ic
13 Ib=Ic/hfe
14 \quad Vb1 = Vbe - Vbb
15 I2=Ic/10
16 R2 = Vb1/I2
17 I2 = Vb1/R2
18 R = (V - Vbe) / (I2 + Ib)
19 R1=R-Rc
20 disp(Rc,R1,R2, 'Components required to design the
```

Scilab code Exa 13.4 Determine the capacitance for flip flop

```
//Caption: Determine the capacitance for flip flop
design and triggering frequency
//Ex13.4
clc;
clear;
close;
R1=15//Resistor(in kilo ohm)
R2=27//Resistor(in kilo ohm)
R2=27//Resistor(in kilo ohm)
R=R1*R2/(R1+R2)
C=t/(0.1*R)
f=10^6/(2.3*C*R)
disp(f,C,'Capacitance(in pF) and Frequency(in Khz)='
)
```

Digital counting and measurement

Scilab code Exa 14.1 Determine Resistors Rc and Rb

```
1 //Caption: Determine Resistors Rc and Rb
\frac{2}{2} / \frac{\text{Ex}14.1}{}
3 clc;
4 clear;
5 close;
6 Vcc=5//Collector voltage(in volts)
7 Vi=5//Input voltage(in volts)
8 Vf=1.2//Diode forward voltage(in volts)
9 \text{ hfe} = 100
10 I=20//Diode minimum forward current(in mA)
11 Vce=0.2//Collector emitter saturated voltage (in
      volts)
12 Vbe=0.7//Base emitter voltage (in volts)
13 Rc=(Vcc-Vf-Vce)*1000/I
14 \text{ Ib=I*1000/hfe}
15 Rb = (Vi - Vbe) * 1000 / Ib
16 disp(Rb,Rc, 'Resistors are Rc and Rb(in kilo ohm)=')
```

Scilab code Exa 14.5 Determine meter indication when time base uses

```
1 //Caption: Determine meter indication when time base
      uses (a)6 decade counter (b)4 decade counter
\frac{2}{2} / \frac{\text{Ex}14.5}{}
3 clc;
4 clear;
5 close;
6 f=3500//Applied frequency(in hz)
7 F=10^6//Clock generator frequency (in hz)
8 f1=F/(10^6)
9 t1=1/f1
10 c1=f*t1
11 disp(c1, 'Cycles of input counted during t1=')
12 f2=F/(10^4)
13 t2=1/f2
14 c2=f*t2
15 disp(c2, 'Cycles of input counted during t2=')
```

Scilab code Exa 14.6 Determine required current

```
//Caption: Determine required current
//Ex14.6
clc;
clear;
close;
c=1280//Input wave clock cycles
f=200//Output frequency(in khz)
p=1000//Pulses during t2
V=1//Input voltage(in volts)
R=10//Resistance(in kilo ohm)
C=0.1//Capacitance(in micro farad)
```

```
12  I=V*1000/R
13  T=1000/f
14  t1=T*c
15  vo=(I*t1)/(C*1000)
16  t2=T*p
17  Ir=C*vo*1000/t2
18  disp(Ir, 'Required current(in micro ampere)=')
```

Samping conversion modulation and multiplexing

Scilab code Exa 15.1 Determine the errors due to Rs and Rd

```
1 //Caption: Determine the errors due to Rs and Rd
2 / Ex15.1
3 clc;
4 clear;
5 close;
6 Vs=1//Source voltage(in volts)
7 Rs=100//Source resistance (in ohm)
8 Rl=10//Load resistance(in kilo ohm)
9 Rd=30//Drain resistance (in ohm)
10 Vgs=10//Gate source voltage (in volts)
11 V1 = -(Vs + Vgs + 1)
12 \text{ Id=Vs/(Rs+Rd+R1)}
13 e1=(Id*Rs)*100/(Vs)
14 e2 = (Id*Rd)*100/(Vs)
15 disp(e2,e1, 'Errors due to Rs(in %) and due to Rd(in
     \%)=')
```

Scilab code Exa 15.2 Determine capacitance and minimum acquisition time

```
1 // Caption: Determine capacitance and minimum
      acquisition time
2 / Ex15.2
3 clc;
4 clear;
5 close;
6 Vs=1//Supply voltage (in volts)
7 a=0.25//Accuracy(in %)
8 t=500//Holding time(in micro sec)
9 Ib=500//Maximum base current(in nA)
10 Rd=30 // Drain Resistance (in ohm)
11 \quad v = Vs * 0.1/100
12 C = Ib*t*10^(-9)/v
13 T = 7 * C * Rd
14 disp(T,C, 'Required capacitance (in micro farad) and
      acquisition time (in micro sec)=')
```

Scilab code Exa 15.3 Determine the error due to capacitance

```
//Caption: Determine the error due to capacitance
//Ex15.3
clc;
clear;
close;
Vgs=10//Gate source voltage(in volts)
C=10.5//Capacitance(in pF)
Vs=1//Supply voltage(in volts)
C1=0.25//Capacitance(in micro farad)
V1=-(Vs+Vgs+1)
Vgsm=Vs-(V1)
Q=C*Vgsm
Vo=Q/C1
e=Vo*10^(-6)*100/Vs
```

```
15 disp(e, 'Error due to capacitance(in %)=')
```

Scilab code Exa 15.4 Calculate the output voltage

```
1 //caption: Calculate the output voltage
\frac{2}{2} //Ex15.4
3 clc;
4 clear;
5 close;
6 Vie=1//Input voltage for resistor Re(in volts)
7 Vid=0//Input voltage for resistor Rd(in volts)
8 Vic=1//Input voltage for resistor Rc(in volts)
9 Vib=1//Input voltag for resistor Rb(in volts)
10 Via=0//Input voltage for resistor Ra(in volts)
11 R=16//Input Resistor(in kilo ohm)
12 re=1//Resistor(in kilo ohm)
13 rd=2//Resistor(in kilo ohm)
14 rc=4//Resistor(in kilo ohm)
15 rb=8//Resistor(in kilo ohm)
16 ra=16 // Resistor (in kilo ohm)
17 Vo=R*((Vie/re)+(Vid/rd)+(Vic/rc)+(Vib/rb)+(Via/ra))
18 disp(Vo, 'Output voltage(in volts)=')
```