<u>עץ פורש מינימלי</u>

בהינתן גרף ממושקל לא מכוון, נרצה למצוא **עץ פורש** – תת גרף שמכיל את כל הקודקודים ו- n-1 צלעות. **עץ פורש מינימלי** הוא עץ פורש שיש לו משקל צלעות מינימלי.

אם נוסיף צלע T עבור עפ"מ $A\subseteq T$ עבור ער, ו- $A\subseteq T$ כך ש $A\subseteq C$ כך ש $A\subseteq E$ כך ש $A\subseteq E$ השיטה הכללית: נניח שיש לנו קבוצה $A\subseteq C$ בער שע בער הוסיף כל פעם, נגדיר מושג: משמרת את התכונות האלה, באינדוקציה אחרי $A\subseteq C$ צעדים נקבל עץ פורש. כדי לדעת איה צלע להוסיף כל פעם, נגדיר מושג:

.X , Y = V/X אקבוצות: $\chi = (X,Y)$ חתר $\chi = (X,Y)$

 $.u \in X, \ v \in Y$ (בה"כ) אם חוצה את החתך (u,v) צלע

חתך נקרא **מכבד את A** אם אין צלע בA שחוצה את החתך.

פ צלע e חתך שמכבד את $\chi=(X,Y)$ ווהי אוהי MST תת קבוצה של $A\subseteq T$ עענה: תהי $A\subseteq T$ מינימלית שחוצה את את (מבין הצלעות שחוצות את החתך, הצלע עם המשקל הכי קטן).

. היא גם תת קבוצה של MST אזי, $A \cup \{e\}$ היא גם תת

הוכחה: יהיו A, T, e כמתואר. אם $\notin T$ היא סוגרת מעגל בT (כי יש בT ח-1 צלעות. אז כל e צלע שנוסיף לה, תסגור מעגל). אז יש צלע אחרת, f, כבדה יותר מ e שחוצה את החתך ונמצאת בT. (אם אין עוד צלע, e היא היחידה שחוצה את החתך, היא חייבת להיות בT). אז נוכל להחליף את e וe ולקבל עץ קל יותר. סתירה.

מסקנה: e חייבת להיות בT. נקרא לה צלע בטוחה.

אז אם יהיה לנו אלגוריתם שמתחיל עם קבוצה $A\subseteq T$ ומוסיפים לה בכל פעם צלע בטוחה, נקבל עפ"מ.

נתאר שני אלגוריתמים כאלה:

:Kruskal's algorithm – האלגוריתם של קרוזקל

משתמש ביוניון-פיינד כדי לשמור שתי קבוצות של הקודקודים – זה מתאר חתך. בכל שלב ניקח את הצלע הקלה שמחברת בין שתי קבוצות. ע"פ הטענה הקודמת שהוכחנו, זה מייצר MST:

 $m \leq {n \choose 2} = {n^2 \over 2} \in O(n^2)$ (פיבוכיות: ראשית נשים לב ש: $O(\log m) \in O(\log n)$, $\log n^2 = 2\log n \in O(\log n)$ ($\log n \in O(\log n)$). וגם, מכיוון ש $2 \in O(\log n)$ ($\log n \in O(\log n)$). ביתוח לשיעורין: $O((m+n)\alpha(n)) \in O(m \cdot \alpha(n))$ מיון של הצלעות זה $O((m\log n))$.

Kruskal sort E by weight for($e = (u, v) \in E$, by order) if(find(u) \neq find(v)) $A \leftarrow e$ union(u, v)

:Prim's algorithm - האלגוריתם של פרים

נשתמש בתור עדיפויות כדי לשמור את הקודקודים שעוד לא בעץ, ועץ parent-pointer בשביל הMST עצמו. (כל קודקוד מצביע על אבא שלו). בתור, (k(v) זה המשקל של הצלע הכי קלה שמחברת את v לעץ. (אם אין צלע, המשקל ∞). הצלע הראשונה בתור היא צלע בעלת משקל מינימלי שחוצה את החתך – צלע בטוחה. בכל פעם שמוסיפים קודקוד, נעדכן את הא של השכנים שלו.

$$\begin{split} \text{Prim} & Q \leftarrow V \\ & \text{for all } v \in V \colon \pi(v) \leftarrow \text{null, } k(v) \leftarrow \infty \\ & \text{choose one } v \in V \colon k(v) \leftarrow 0 \\ & \text{while}(Q \neq \emptyset) \\ & u \leftarrow Q. \text{ extractMin} \\ & \text{for}\big(v \in N(u)\big) \\ & \text{if}\big(v \in Q \text{ and } w(u,v) < k(v)\big) \\ & \pi(v) \leftarrow u, k(v) \leftarrow w(u,v) \end{split}$$

זמן ריצה של תור קדימויות:

	times	Binary heap	Fibonacci heap
init	1	0(n)	0(n)
extractMin	n	O(logn)	O(logn)
decreaseKey	m	O(logn)	0(1)
total		$O(mlogn) = O(n^2logn)$	O(m + nlogn)

.MST-טענה: \mathbf{e}_0 , הצלע הקלה בגרף, תהייה בוודאות חלק מה

. כלומר e_0 סוגרת מעגל בגרף. מרטחה: תהי e_0 הצלע הקלה, ונב"ש שהיא לא בm שהיא לא בארף. מחכחה: תהי m הוכחה: תהי m הצלע הקלה, ונב"ש שהיא לא בm שהיא לא בm במקום m ונקבל m שגם חוצה את אותו חתך. ניקח את m במקום m ונקבל m שגם שגם חוצה את אותו חתך. ניקח את m במקום m ונקבל m שגם חוצה את אותו חתך. ניקח את m במקום m שגם חוצה את אותו חתך. ניקח את m במקום m שגם חוצה את אותו חתך. ניקח את m במקום m שגם חוצה את אותו חתך. ניקח את m במקום m שגם חוצה את מעגל בגרף.

ס"ד אלגוריתמים 1 תשפ"ד ידידיה אבן-חן

 $\sum_{v} d_{T}(v) \cdot w(v)$ בהינתן גרף לא מכוון, עם משקלים על הקודקודים. נרצה למצוא עץ פורש שממזער את: (המשקל של הקודקוד כפול הדרגה שלו בעץ).

: ונמצא עפ"מ. מתקיים, f $ig(e=(u,v)ig)\coloneqq w(u)+w(v)$ ונמצא עפ"מ. מתקיים

$$\sum_{(u,v)\in E_T} f(u,v) = \sum_{(u,v)\in E_T} w(u) + w(v) = \sum_{v\in V} w(v) \cdot d_T(v)$$

נתבונן ב∨ כלשהו. כמה פעמים ספרנו את (v)? בשני המקרים, פעם אחת לכל צלע של T שמתחברת ל∨

בהינתן גרף קשיר, לא מכוון, עם משקלים אי-שליליים על הצלעות. אלגוריתם שמוצא לפחות צלע אחת מכל מעגל, עם משקל בהינתן גרף קשיר, לא מכוון, עם משקלים אי-שליליים על הצלעות. אלגוריתם שמוצא לפחות צלע אחת מכל מעגל יש לפחות צלע מינימלי: ניקח את העץ פורש **המקסימלי** T, ונחזיר את $E' = E/E_T$. הוכחת נכונות: בגלל ש $E' = E/E_T$ אחת שלא ב $E' = E/E_T$ אחת שלא ב $E' = E/E_T$ אונימליות – נב"ש ש $E' = E/E_T$ לא מינימלית, וקיים $E' = E/E_T$ הוא יער שאפשר להרחיב לעץ פורש $E' = E/E_T$. נשים לב שיע של $E' = E/E_T$ אז W(E') = W(E) + W(E') + W(E') + W(E') + W(E') + W(E') + W(E'). אז W(E') = W(E') + W(E') + W(E') + W(E'). גום, W(E') = W(E') + W(E') + W(E'). סתירה.

לגרף קשיר, לא מכוון, עם משקלים אי-שליליים כך שאין 2 צלעות באותו משקל, יש MST יחיד. הוכחה: נב"ש שיש 2 T_1 את פ זה T_1 , שונים אז יש צלעות ב T_2 שלא נמצאות ב T_2 . (בה"כ). ניקח את T_1 , הקלה מהן. מכיוון ש T_2 הוא עץ, אם נוסיף לו את T_1 אז ניקח את T_2 סוגר מעגל, ויש צלע T_1 במעגל שלא נמצאת ב T_1 . מתקיים T_2 מתקיים T_2 כי אחרת היינו לוקחים את T_3 ל- T_1 . אז ניקח את T_1 במקום T_1 ונקבל עץ מינימלי יותר. סתירה.