Lecture 12 Graphs Exercises ANS

Department of Computer Science Hofstra University

Q1. Adjacency matrix and adjacency list

 Write out the adjacency matrix and adjacency list for the directed graph.

Q1. Adjacency matrix and adjacency list ANS

• Write out the adjacency matrix and adjacency list for the directed graph.

G

Α	В	С	D	Е	F	G
0	1	0	1	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	1	0
0	1	0	0	1	1	0
0	0	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	0	0	1	0

Q2. Adjacency matrix and adjacency list

 Write out the adjacency matrix and adjacency list for the undirected graph.

Q2. Adjacency matrix and adjacency list ANS

 Write out the adjacency matrix and adjacency list for the directed graph.

	Α	В	С	D	Ε	F	G
Α	0	1	0	1	0	0	0
В	1	0	1	1	0	0	0
C	0	1	0	0	0	1	0
D	1	1	0	0	1	1	0
Ε	0	0	0	1	0	1	0
F	0	0	1	1	1	0	1
G	0	0	0	0	0	1	0

Q3: Pre-Order & Post-Order Traversals

DFS Pre-Order:

DFS Post-Order:

Stack:

Α

DFS Post-Order:

Stack: A

A, B

DFS Post-Order:

Stack: A, B

A, B, C

DFS Post-Order:

Stack: A, B, C

A, B, C, F

DFS Post-Order:

Stack: A, B, C, F

A, B, C, F

DFS Post-Order:

F

Stack: A, B, C

A, B, C, F

DFS Post-Order:

F, C

Stack: A, B

A, B, C, F

DFS Post-Order:

F, C, B

Stack: A

A, B, C, F, D

DFS Post-Order:

F, C, B

Stack: A, D

A, B, C, F, D, E

DFS Post-Order:

F, C, B,

Stack: A, D, E

A, B, C, F, D, E

DFS Post-Order:

F, C, B, E

Stack: A, D

A, B, C, F, D, E

DFS Post-Order:

F, C, B, E, D

Stack: A,

A, B, C, F, D, E

DFS Post-Order:

F, C, B, E, D, A

Stack:

Stack:

DFS Pre-Order: A, B, C, F, D, E, G

DFS Post-Order: F, C, B, E, D, A, G

Toplogical Sort (reverse of DFS Post-Order):
G, A, D, E, B, C, F

* if we allow DFS to restart on unmarked nodes, G would be added to the stack (and forming the last element in both the preorder and postorder traversals)

Q4. BFS

BFS:

Queue: A

BFS:

Queue: B D

BFS: A B

Queue: D C

Queue: C E F

BFS: A B D C

Queue: E F

BFS: ABDCE

Queue: F

BFS: ABDCEF

Queue:

BFS:

ABDCEF

Queue: G

BFS:

ABDCEFG

Queue:

Q5. Graph Traversals

- Starting from node A:
 - Pre-order traversal:
 - Post-order traversal:
 - Topological Sort:
 - BFS:
- Starting from node C:
 - Pre-order traversal:
 - Post-order traversal:
 - Topological Sort:
 - BFS:

Q5. Graph Traversals ANS

- Starting from node A:
 - Pre-order traversal: (A, B, E, H, D, C, F, G)
 - Post-order traversal: (H, E, B, D, A, G, F, C)
 - Topological Sort: (C, F, G, A, D, B, E, H)
 - BFS: (A, B, D, E, H, C, F, G)
- Starting from node C, '
 - Pre-order traversal: (A, B, E, H, D, C, F, G)
 - Post-order traversal: (H, E, B, D, A, G, F, C)
 - Topological Sort: (C, F, G, A, D, B, E, H)
 - BFS: (C, D, F, E, G, H, A, B)

