

DSI-SRI-MCW

Présenté par: Mme. BENAZZOU Salma

1	Coefficient: 15		
6 points	Exercice 1:		
	On considère les équations différentielles suivantes :		
	(E): $y'' - 3y' - 10y = -14e^{-2x}$ et (H): $y'' - 3y' - 10y = 0$		
	où y est une fonction de la variable réelle x deux fois dérivable sur \mathbb{R} .		
1	1. Résoudre l'équation différentielle (H) .		
1	2. Vérifier que la fonction g définie par : $g(x) = 2xe^{-2x}$ est une solution particulière de (E) .		
0,5	3. Déduire la solution générale $de(E)$.		
1	4. Déterminer la solution f de (E) vérifiant: $f(0) = 3$ et $f'(0) = -4$.		
	5. On suppose que $f(x) = (2x+3)e^{-2x}$ et on considère l'intégrale généralisée : $I = \int_{0}^{+\infty} f(x) dx$		
1	a- Calculer $\lim_{x \to +\infty} x^2 f(x)$ et en déduire la nature de I .		
1,5	b- En utilisant une intégration par parties, montrer que :		
	$I(\alpha) = \int_0^\alpha f(x) dx = 2 - (\alpha + 2) e^{-2\alpha} \text{où } \alpha > 0$		
	puis donner la valeur de l'intégrale 1.		

- Q1,Q2,Q3,Q4:
 Presque le même
 exercice est
 proposé au
 national, 2020,
 2017 (exercice 1)
- Q5: Presque la même en national 2014 et
 2013, (exercice 3)

1-Résoudre (H): y"-3y'-10y=0

L'équation caractéristique associé est : r²-3r-10=0

Le discriminant est: $\Delta = (-3)^2 - 4(-10) = 49 = 7^2$

Les racines:
$$r1 = \frac{3-7}{2} = -2$$
 et $r2 = \frac{3+7}{2} = 5$

Alors yh= $Ae^{-2x} + Be^{5x}$

2-Verifier que la fonction g définie par $g(x) = 2xe^{-2x}$ est solution particulière de (E)

On a (E)
$$y''-3y'-10y=-14e^{-2x}$$

$$g(x) = \frac{2xe^{-2x}}{g'(x)} = 2(x'e^{-2x} + x(e^{-2x})') = 2(e^{-2x} - 2xe^{-2x}) = 2e^{-2x} - 4xe^{-2x}$$

$$(e^{ax})'=ae^{ax}$$

(u.v)'=u'v+uv'

g''(x)=
$$-4e^{-2x} - 4(e^{-2x} - 2xe^{-2x})$$
= $-4e^{-2x} - 4e^{-2x} + 8xe^{-2x}$ = $-8e^{-2x} + 8xe^{-2x}$

g"-3g'-10g=
$$-8e^{-2x} + 8xe^{-2x} - 3(2e^{-2x} - 4xe^{-2x}) - 10(2xe^{-2x})$$

$$= -8e^{-2x} + 8xe^{-2x} - 6e^{-2x} + 12xe^{-2x} - 20xe^{-2x}$$

$$= -14 e^{-2x}$$

3-La solution générale :

$$yg=yh+yp=yh+g(x) = Ae^{-2x} + Be^{5x} + 2xe^{-2x}$$

4-La solution f vérifiant des conditions initiales :

On a la solution générale de (E) est yg= $Ae^{-2x} + Be^{5x} + 2xe^{-2x}$

La fonction f est solution de (E) donc $f(x) = Ae^{-2x} + Be^{5x} + 2xe^{-2x}$ et f(0) = 3 et f'(0) = -4

Et f'(x)=
$$-2Ae^{-2x} + 5Be^{5x} + 2e^{-2x} - 4xe^{-2x}$$

Alors
$$\begin{cases} f(0) = A + B = 3 \\ f'(0) = -2A + 5B + 2 = -4 \end{cases}$$
 Donc $\begin{cases} A + B = 3 \\ -2A + 5B = -6 \end{cases}$ Donc $\begin{cases} A + B = 3 \\ -A + \frac{5}{2}B = -3 \end{cases}$

Equation 1 + Equation 2 donne $A + B + (-A + \frac{5}{2}B) = 0$ donc $\frac{7}{2}B = 0$ alors B = 0En remplaçant dans la première équation on obtient A = 3

Donc $f(x) = 3e^{-2x} + 2xe^{-2x} = (3 + 2x)e^{-2x}$

5-A calculer $\lim_{x\to +\infty} x^2 f(x)$ et en déduire la nature de $I = \int_0^{+\infty} f(x) dx$

$$\lim_{t\to -\infty} t^{\infty} e^t = 0$$

On a $f(x)=(2x+3)e^{-2x}$,

$$\lim_{x \to +\infty} x^2 f(x) = \lim_{x \to +\infty} (2x + 3) x^2 e^{-2x}, = \lim_{x \to +\infty} 2x^3 e^{-2x} + 3x^2 e^{-2x} = 0 \text{ (il faut justifier)}$$

Alors d'après le critère de Riemann α =2>1 donc l'est convergente

<u>Justification</u>

$$\lim_{x \to +\infty} x^2 e^{-2x} = 0 ??$$
Je pose t= $-2x$
Alors x= $-\frac{t}{2}$

$$\lim_{x \to +\infty} (-\frac{t}{2})^2 e^t =$$

$$\lim_{t \to -\infty} \frac{1}{4} t^2 e^t$$

=0

5-b Montrer que $I(x) = \int_0^{\infty} f(x) dx = 2 - (x + 2)e^{-2x}$ puis donner la valeur de I

• Calculons $\int_0^{\infty} (2x+3)e^{-2x} dx$ (intégration par partie: technique ALPES)

U=2x+3
V'=
$$e^{-2x}$$

U'=2
 $V = \frac{e^{-2x}}{-2} = -\frac{1}{2}e^{-2x}$

$$\int_0^\infty (2x+3)e^{-2x}dx = \left[-\frac{1}{2}(2x+3)e^{-2x}\right]_0^\infty + \int_0^\infty e^{-2x} = \left[-\frac{1}{2}(2x+3)e^{-2x} - \frac{1}{2}e^{-2x}\right]_0^\infty$$

$$= \left(-\frac{1}{2}(2 \propto +3)e^{-2 \propto} - \frac{1}{2}e^{-2 \propto}\right) - \left(-\frac{1}{2}(2.0+3)e^{-2.0} - \frac{1}{2}e^{-2.0}\right)$$

$$=(-e^{-2\alpha}(\frac{(2\alpha+3)}{2}+\frac{1}{2})-(-\frac{3}{2}-\frac{1}{2})=-e^{-2\alpha}(\frac{(2\alpha+4)}{2})+2=2-(\alpha+2)e^{-2\alpha}$$

$$I = \int_0^{+\infty} (2x+3)e^{-2x} dx = \lim_{\alpha \to +\infty} \int_0^{\alpha} (2x+3)e^{-2x} dx = \lim_{\alpha \to +\infty} 2 - \alpha e^{-2\alpha} - 2e^{-2\alpha} = 2$$

$$\int e^{ax} = \frac{e^{ax}}{a}$$

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} x^{\alpha} e^{x} = 0$$

$$\lim_{\infty \to +\infty} - \propto e^{-2\alpha} = 0 ??$$

Je pose t=
$$-2$$
 ∝

Alors
$$\propto = -\frac{t}{2}$$

$$\lim_{x \to +\infty} (-\frac{t}{2})e^t =$$

$$\lim_{t\to-\infty}-\frac{1}{2}te^t$$

=0

3 points	Exercice 2:
	Soit la série numérique $\sum_{n\geq 1} u_n$ où $u_n = \frac{2n+1}{n^2(n+1)^2}$.
1	1. Montrer que $\frac{2n+1}{n^2(n+1)^2} \sim \frac{2}{n^3}$ et en déduire la nature de $\sum_{n\geq 1} u_n$.
0,5	2. Vérifier que pour tout entier $k \ge 1$, $\frac{2k+1}{k^2(k+1)^2} = \frac{1}{k^2} - \frac{1}{(k+1)^2}$
1,5	3. On pose : $S_n = \sum_{k=1}^n u_k$. Montrer que $S_n = 1 - \frac{1}{(n+1)^2}$ et en déduire $\sum_{k=1}^{+\infty} u_k$.

Presque le même exercice est proposé au national 2016 (exercice 3)

1-Montrons que Un $\sim \frac{2}{n^3}$ et déduire la nature de $\sum_{n\geq 1} Un$

On a Un=
$$\frac{2n+1}{n^2(n+1)^2}$$

Au voisinage de l'infini on a : $n+1 \sim n$ donc $(n+1)^2 \sim n^2$

alors
$$n^2(n+1)^2 \sim n^4$$
 et $2n+1\sim 2n$ alors $\frac{2n+1}{n^2(n+1)^2} \sim \frac{2n}{n^4}$
Donc Un $\sim \frac{2}{n^3}$

On a
$$\sum_{n=1}^{+\infty} \frac{2}{n^3} = 2$$
. $\sum_{n=1}^{+\infty} \frac{1}{n^3}$

 $\operatorname{Or}\sum_{n=1}^{+\infty}\frac{1}{n^3}$ est convergente car c'est une série de Riemann $\alpha=3>1$ donc $\sum_{n=1}^{+\infty}\frac{2}{n^3}$ est convergente

Donc d'après le critère d'équivalence la série $\sum_{n=1}^{+\infty} Un$ est convergente

2-a-Vérifier que
$$\frac{2k+1}{k^2(k+1)^2} = \frac{1}{k^2} - \frac{1}{(k+1)^2}$$

On a
$$\frac{1}{k^2} - \frac{1}{(k+1)^2} = \frac{(k+1)^2 - k^2}{k^2(k+1)^2}$$

$$=\frac{k^2+2k+1-k^2}{k^2(k+1)^2}$$

$$= \frac{2k+1}{k^2(k+1)^2}$$

3-Montrer que Sn=
$$\sum_{k=1}^n U_k = 1 - \frac{1}{(n+1)^2}$$
 et en déduire $\sum_{n=1}^{+\infty} U_n$

$$\sum_{k=1}^{n} U_k = U_1 + U_2 + \dots + U_n$$

$$U_k = \frac{1}{k^2} - \frac{1}{(k+1)^2}$$

$$U_1 = \frac{1}{1} - \frac{1}{2^2}$$

$$U_1 = \frac{1}{1} - \frac{1}{2^2}$$

$$U_2 = \frac{1}{2^2} - \frac{1}{3^2}$$

$$U_{n-1} = \frac{1}{(n-1)^2} - \frac{1}{n^2}$$
$$U_n = \frac{1}{n^2} - \frac{1}{(n+1)^2}$$

$$\sum_{k=1}^{n} U_k = U_1 + U_2 + \dots + U_n$$

Sn=1-\frac{1}{(n+1)^2}

• Calculer
$$\sum_{n=1}^{+\infty} U_n : \sum_{n=1}^{+\infty} U_n = \lim_{n \to +\infty} 1 - \frac{1}{(n+1)^2} = 1$$

points Exercice 3:	points	Exercice 3:
--------------------	--------	-------------

Soient f la fonction numérique définie sur]0; $+\infty[par: f(x) = 2x - 2 + x \ln(1 + \frac{1}{x})]$ et (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1. Donner le développement limité à l'ordre 2 au voisinage de 0 de la fonction : $t \mapsto \ln(1+t)$
 - 2. Déduire le développement limité généralisé de f au voisinage de +∞ sous la forme :

$$f(x) = ax + b + \frac{c}{x} + o\left(\frac{1}{x}\right)$$
 où a, b et c sont des nombres réels à déterminer

3. Donner l'équation de l'asymptote (Δ) à la courbe (C_f) au voisinage de $+\infty$ et préciser sa position relative par rapport à (C_f) .

Presque le même exercice est proposé au national 2013 (exercice 3)

1-Donner le DL2(0) de
$$t \rightarrow \ln (1+t)$$

On a $\ln (1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} \dots + (-1)^{n-1} \frac{t^n}{n} + o(t^n)$

Donc ln (1+t)=
$$t - \frac{t^2}{2} + o(t^2)$$

2-Déduire le développement limité de la fonction f au voisinage de +∞

On a
$$f(x) = 2x - 2 + x \ln(1 + \frac{1}{x})$$
 Je pose $t = \frac{1}{x}$

On a ln (1+t)=
$$t - \frac{t^2}{2} + o(t^2)$$

Donc
$$\ln (1 + \frac{1}{x}) = \frac{1}{x} - \frac{(\frac{1}{x})^2}{2} + o((\frac{1}{x})^2) = \frac{1}{x} - \frac{1}{2x^2} + o(\frac{1}{x^2})$$

Alors
$$x \ln(1 + \frac{1}{x}) = 1 - \frac{1}{2x} + o(\frac{1}{x})$$

Donc
$$f(x) = 2x - 2 + x \ln(1 + \frac{1}{x}) = f(x) = 2x - 2 + 1 - \frac{1}{2x} + o(\frac{1}{x})$$

Alors
$$f(x) = 2x - 1 - \frac{1}{2x} + o(\frac{1}{x})$$

Donc a=2 , b= -1, c=
$$-\frac{1}{2}$$

3 - l'équation de l'asymptote

On a
$$f(x) = 2x - 1 - \frac{1}{2x} + o(\frac{1}{x})$$

Alors l'équation de l'asymptote est y=2x-1

 $f(x)-y=-\frac{1}{2x}+o(\frac{1}{x})$ <0 alors la courbe de f est au dessous de l'asymptote au voisinage de +\infty

Spoints Exercice 4:

0.5

1.5

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice relativement à la base canonique

$$\mathcal{B} = (e_1, e_2, e_3)$$
 est : $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- 1. Montrer que le polynôme caractéristique de A est : $P_A(\lambda) = -\lambda(1-\lambda)(2-\lambda)$.
- 2. En déduire les valeurs propres λ_1 , λ_2 et λ_3 de Λ où λ_1 (λ_2 (λ_3 .
- 3. Soit $\mathcal{B}' = (u_1, u_2, u_3)$ où $u_1 = (1, 1, 0)$, $u_2 = (0, 1, 1)$ et $u_3 = (1, -1, 0)$.
- 0,5 a. Etablir que \mathscr{B}' est une base de \mathbb{R}^3 .
 - b. Vérifier que u_1 , u_2 et u_3 sont des vecteurs propres de f associés respectivement aux valeurs propres λ_1 , λ_2 et λ_3 .
 - 4. Donner la matrice de passage P de \mathcal{B} à \mathcal{B}' et vérifier que $P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}$
 - 5. Déterminer la matrice diagonale D vérifiant $A = PDP^{-1}$.
 - 6. On considère le système différentiel (S) suivant :

(S)
$$\begin{cases} x_1'(t) = x_1(t) - x_2(t) + x_3(t) \\ x_2'(t) = -x_1(t) + x_2(t) \end{cases}$$
 où t est une variable réclle.
$$\begin{cases} x_1'(t) = x_1(t) + x_2(t) \\ x_3'(t) = x_3(t) \end{cases}$$

On pose:
$$X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_2(t) \end{pmatrix}$$
 et $Y(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{pmatrix} = P^{-1} X(t)$.

- a- Vérifier que X'(t) = AX(t) et en déduire que : $(S) \Leftrightarrow Y'(t) = DY(t)$.
- b-Déterminer $y_1(t)$, $y_2(t)$ et $y_3(t)$ en fonction de t.
- c-Déduire $x_1(t)$, $x_2(t)$ et $x_3(t)$ en fonction de t.

1 Le polynôme caractéristique: $P(\lambda) = -\lambda (1 - \lambda)(2 - \lambda)$

$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A-\lambda I = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda & -1 & 1 \\ -1 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{pmatrix}$$

$$Det(A-\lambda I) = \begin{vmatrix} 1-\lambda & -1 & 1 \\ -1 & 1-\lambda & 0 \\ 0 & 1-\lambda & 0 \end{vmatrix} = (1-\lambda)(1-\lambda)(1-\lambda)-(1-\lambda) = (1-\lambda)^3 - (1-\lambda)$$

$$P(\lambda) = (1-\lambda) [(1-\lambda)^2 - 1] = (1-\lambda) [(1+\lambda^2 - 2\lambda - 1]$$

$$= (1-\lambda) [\lambda^2-2\lambda] = \lambda(1-\lambda) (\lambda-2) = -\lambda (1-\lambda) (2-\lambda)$$

2-Déduire les valeurs propres

$$P(\lambda) = -\lambda (1-\lambda) (2-\lambda)$$

$$P(\lambda)=0 \text{ alors -} \lambda \text{ (1---}\lambda) \text{ (2---}\lambda)=0 \text{ donc (} \lambda=0 \text{ ou 1---}\lambda=0 \text{ ou 2---}\lambda=0 \text{) alors (} \lambda=0 \text{ ou } \lambda=1 \text{ ou } \lambda=2)$$

Alors les valeurs propres de A sont:

$$\lambda 1 = 0$$

$$\lambda 2 = 1$$

$$\lambda 3=2$$

3-a-Etablir que B'=(U1,U2,U3) est une base :

On a Card B'= $\dim R^3 = 3$; donc montrer que B' est base reviens a montrer que B est libre.

Det (U1,U2,U3)=
$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{vmatrix}$$

$$=1-(-1)=2\neq 0$$
 alors B' est base

3-b-Vérifier que U1,U2,et U3 sont des vecteurs propres:

U1=(1,1,0)	U2=(0,1,1)	U3=(1,-1,0)
Montrons que A.U1= λ 1.U1	Montrons que A.U2= λ 2.U2	Montrons que A.U3= λ 3.U3
$\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$
$= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0. \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \lambda 1. U1$	$= \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 1. \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \lambda 2. U2$	$= \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} = 2. \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \lambda 3. U3$
Donc U1 est le vecteur propre associé à la valeur propre λ1	Donc U2 est le vecteur propre associé à la valeur propre λ2	Donc U3 est le vecteur propre associé à la valeur propre λ3

4 - Donner la matrice de passage et vérifier que
$$P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$

On sait que A est diagonalisable et les vecteurs propres sont

$$U1=(1,1,0)$$

$$U2=(0,1,1)$$

$$U3=(1,-1,0)$$

Donc P=
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

-Vérifier que
$$P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$

$$: \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & -1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{pmatrix}$$
L2-L1

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & -1 & 1 & 0 \\
0 & 0 & 2 & 1 & -1 & 1
\end{pmatrix}$$
L3-L2

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{vmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \stackrel{1}{2} L3$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}
\end{pmatrix}$$
L1-L3
$$L2+2L3$$

Donc
$$P^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$

5- Déterminer la matrice diagonal D Vérifiant $A = P DP^{-1}$

On a la matrice A est diagonalisable de valeurs propre 0 ,1,et 2 donc la matrice D définie par :

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

6-a-Vérifier que X'(t)=A.X(t)

On a:
$$\begin{cases} x_1'(t) = x_1(t) - x_2(t) + x_3(t) \\ x_2'(t) = -x_1(t) + x_2(t) \\ x_3'(t) = x_3(t) \end{cases}$$

Avec X(t)=
$$\begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}$$

La forme matricielle associé au système est :

$$\begin{pmatrix} x'_1(t) \\ x'_2(t) \\ x'_3(t) \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}$$

Alors
$$X'(t)=A$$
. $X(t)$

$$= \begin{pmatrix} x_1(t) - x_2(t) + x_3(t) \\ -x_1(t) + x_2(t) \\ x_3(t) \end{pmatrix}$$

$$= \begin{pmatrix} x'_1(t) \\ x'_2(t) \\ x'_3(t) \end{pmatrix} = X'(t)$$

-Déduire que Y'(t)=DY(t)

On a
$$Y(t)=P^{-1}X(t)$$

Alors Y'(t)= P^{-1} X'(t) et d'après la question précédente X'(t)=A. X(t)

Donc Y'(t)=
$$P^{-1}$$
 A. X(t) et A=PD P^{-1}

Donc Y'(t)=
$$P^{-1}$$
 PD P^{-1} . X(t)

Or
$$P^{-1}$$
 P=I

Alors Y'(t)=D
$$P^{-1}$$
. X(t)

C'est-à-dire Y'(t)=D
$$Y(t)$$

b-Déterminer $y_1(t)$, $y_2(t)$ et $y_3(t)$ en fonction de t

On a Y'(t)=DY(t) et Y(t)=
$$\begin{pmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{pmatrix}$$

Alors $\begin{pmatrix} y'_1(t) \\ y'_2(t) \\ y'_3(t) \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{pmatrix} = \begin{pmatrix} 0 \\ y_2(t) \\ 2y_3(t) \end{pmatrix}$

$$\begin{cases} y'_{1}(t) = 0 \\ y'_{2}(t) = y_{2}(t) \text{ alors} \end{cases} \begin{cases} y'_{1}(t) = 0 \\ y'_{2}(t) - y_{2}(t) = 0 \\ y'_{3}(t) = 2y_{3}(t) \end{cases}$$

$$\begin{cases} y_{1}(t) = \alpha e^{-\int \frac{0}{1} dt} = \alpha e^{0.t} = \alpha \\ y_{2}(t) = \beta e^{-\int \frac{-1}{1} dt} = \beta e^{t} \\ y_{3}(t) = \gamma e^{-\int \frac{-2}{1} dt} = \gamma e^{2t} \end{cases}$$

Si:
$$ay'(t)+by(t)=0$$

Alors:
$$y(t) = \alpha e^{-\int \frac{b}{a} dt}$$

= $\alpha e^{-\frac{b}{a}t}$

c-Déduire $x_1(t)$, $x_2(t)$ et $x_3(t)$ en fonction de t

On a Y(t)=
$$P^{-1}X(t)$$
 alors $P.Y(t)=P.P^{-1}X(t)$

Donc
$$X(t)=P.Y(t)$$

Donc
$$\begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta e^t \\ \gamma e^{2t} \end{pmatrix}$$

Donc
$$\begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} = \begin{pmatrix} \alpha + \gamma e^{2t} \\ \alpha + \beta e^t - \gamma e^{2t} \\ \beta e^t \end{pmatrix}$$

Donc
$$x_1(t) = \alpha + \gamma e^{2t}$$
, $x_2(t) = \alpha + \beta e^t - \gamma e^{2t}$ et $x_3(t) = \beta e^t$

