FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

A New and stable Mo-Mo₂C modified g-C₃N₄ photocatalyst for efficient visible light photocatalytic H₂ production

Jie Dong^a, Ying Shi^a, Cunping Huang^b, Qiang Wu^{a,*}, Tao Zeng^{c,*}, Weifeng Yao^{a,d,*}

- a Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power. Shanghai PR China
- b Aviation Fuels Research Laboratory, Federal Aviation Administration William J. Hughes Technical Center, Atlantic City International Airport, Atlantic City, NJ 08405, United States
- c Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Research Institute of Materials, Shanghai 200437, PR China
- ^d Shanghai Institute of Pollution Control and Ecological Security, Shanghai, PR China

ARTICLE INFO

Keywords: Noble-metal-free cocatalyst Hydrogen production Mo_2C Photocatalysis

ABSTRACT

Design and preparation of highly efficient and stable cocatalysts are critical to the improvement of photocatalyst performance. A traditional cocatalyst consists of metal nanoparticles for the separation of photo-induced electron-hole pairs and for the reduction of protons. In this research we report a metal-semiconductor composite cocatalyst to increase light adsorption and to effectively enhance proton reduction capacity. A molybdenum rich molybdenum carbide (Mo-Mo₂C) based noble-metal-free metal/semiconductor cocatalyst was loaded onto graphitic carbon nitride (g-C₃N₄) for highly efficient photocatalytic H₂ evolution from water. The Mo-Mo₂C was synthesized via a temperature-programmed reaction using (NH₄)₆Mo₇O₂₄·4H₂O as a precursor. The cocatalyst loaded 2.0 wt.% Mo-Mo₂C/g-C₃N₄ composite photocatalyst has demonstrated excellent photocatalytic performance. The hydrogen evolution rate for the 2.0 wt.% Mo-Mo₂C/g-C₃N₄ nanocomposites can be as high as 219.7 μ mol h $^{-1}$ g $^{-1}$, which is 440 times higher than that of g-C₃N₄ alone and 90% as high as 0.5 wt.% Pt/g-C₃N₄ photocatalyst (244.1 μmol h⁻¹ g⁻¹). Due to strong synergetic effects between Mo and Mo₂C nanoparticles, this rate is 11.47 and 3.60 times higher than those for 2.0 wt.% Mo/g- C_3N_4 (19.1 μ mol h $^{-1}$ g $^{-1}$) and 2.0 wt.% Mo₂C/ $^{-1}$ g- C_3N_4 (60.9 μ mol h^{-1} g^{-1}) photocatalysts respectively. Moreover, the 2.0 wt.% Mo-Mo₂C/g- C_3N_4 catalyst is significantly stable for application in photocatalytic hydrogen evolution, with an apparent quantum efficiency of 8.3%—one of the highest noble-metal-free efficiencies reported in literature. All results indicate that metal/ semiconductor composites can serve as highly efficient cocatalysts for photocatalytic hydrogen evolution from water reduction.

1. Introduction

In the past few decades increasing energy demands have resulted in greater consumption of fossil fuels, creating environmental concerns and, in turn, greatly invigorated efforts into the research and development of alternate renewable energy sources [1–3]. Solar photocatalytic water splitting for the production of hydrogen is one of the promising processes for the production of eco-friendly renewable energy [4–6]. In order to efficiently convert solar energy to hydrogen chemical energy a photocatalyst is necessary. To be highly effective a photocatalyst must absorb as broad a sunlight spectrum as possible [7].

Among the robust and visible-light-driven photocatalysts, graphitic carbon nitride (g-C₃N₄) has been widely accepted as a next generation

photocatalyst due to its remarkable physicochemical stability and attractive electronic band structures [8–11]. g- G_3N_4 can be synthesized via a facile thermal polymerization of less expensive precursors such as urea [12–14], cyanamide [15–18], dicyandiamide [19–21], thiourea [22–24] and melamine [25,26]. Recently, Wang et al. reported for the first time that g- G_3N_4 can be used to generate hydrogen via water splitting under visible light irradiation, even in the absence of a noble metal cocatalyst [4]. However, owing to the high recombination rate of photo-generated charge carriers, low electrical conductivity and narrow absorption range (< 460 nm), pristine g- G_3N_4 does not have a very high level of photocatalytic activity [27].

A cocatalyst is crucial for the separation of photo-induced electronhole pairs and the reduction of protons in order to increase the

E-mail addresses: qiangwu@shiep.edu.cn (Q. Wu), zengtao@srim.com.cn (T. Zeng), yaoweifeng@shiep.edu.cn (W. Yao).

^{*} Corresponding authors at: Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai, PR China.

efficiency of a photocatalyst [28–30]. Normally, cocatalysts for $\rm H_2$ production consist mainly of noble metals such as platinum [31], palladium [32], rhodium [33] or gold [34], but the application of these noble metals is limited due to high costs and scarcity. Thus, the exploitation of inexpensive and earth-abundant alternative cocatalysts is of great significance.

 Mo_2C has recently attracted intensive research interest as a promising electrocatalyst for hydrogen evolution reaction (HER) at significant low cost due to its Pt-like electronic structures and electrocatalytic activities for HER [35–38]. Our group has more recently reported a facile method for the synthesis of a metallic Mo rich Mo_2C (Mo-Mo_2C) electrocatalyst with an enhanced electrocatalytic activity toward HER [35], since metallic Mo can improve the electron conductivity of Mo_2C . However, to the best of our knowledge, Mo-Mo_2C has not been reported as a cocatalyst for photocatalytic H_2 production from water reduction.

Our previous research into the Ag rich Ag_3PO_4 photocatalyst [39] determined that additional metal particles in a semiconductor can effectively increase the photocatalytic activity of the photocatalyst. We have also found that a highly effective electrocatalyst toward HER can be a highly efficient cocatalyst for photocatalytic hydrogen production as well [40–42]. In this research we report, for the first time, a highly active noble-metal-free Mo-Mo₂C cocatalyst on g-C₃N₄ for photocatalytic H₂ production under visible light irradiation. This metal-semiconductor cocatalyst can absorb a wider spectrum of solar irradiation and can reduce the recombination rate of electron-hole pairs more significantly, leading to higher quantum efficiency for solar energy conversion.

2. Experimental

All reagents used in this research were commercially available, without need for further purification.

2.1. Synthesis of Mo-Mo₂C cocatalyst

The synthesis of Mo-Mo₂C is adopted from a published method [35]. In a typical process, 2.0 mmol (NH₄)₆Mo₇O₂₄·4H₂O and 36.0 mmol aniline were added into a 100 mL 3-necked round-bottom flask containing 40 mL of deionized water. Next, 1.0 M HCl aqueous solution was added to adjust the solution pH to 4.0. After reaction at 50 °C for 4 h the precipitates were collected via centrifuging and thoroughly washed with deionized water and ethanol. A white powder, Mo₃O₁₀(C₆H₈N)₂·2H₂O, was obtained after drying overnight in a vacuum oven at 60 °C. Next the Mo₃O₁₀(C₆H₈N)₂·2H₂O product was transferred into a tube furnace. Under vacuum the furnace tube was filled with Ar gas. The sample was heated from room temperature to 775 °C at a heating rate of 2 °C/min and annealed at 775 °C for 2 h. The Mo-Mo₂C sample was obtained after naturally cooling the furnace to room temperature. Pure Mo₂C was also synthesized using the same procedures, except that the targeted annealing temperature was controlled at 675 °C.

2.2. Synthesis of g- C_3N_4 photocatalyst

Graphitic carbon nitride (g- C_3N_4) was synthesized as follows: 5.00 g melamine was transferred into a quartz crucible that was placed in a muffle furnace. The furnace was first heated from room temperature to 500 °C at a 2 °C/min heating rate. After 2 h the sample temperature was increased from 500 °C to 520 °C at the same heating rate and the temperature was maintained at 520 °C for 2 h. Next, the bulk g- C_3N_4 sample was rapidly cooled to room temperature. Finally, the bulk g- C_3N_4 sample was ground into powder and preserved in a glass bottle.

2.3. Preparation of Mo-Mo₂C/g- C_3N_4 photocatalysts

Mo-Mo₂C/g-C₃N₄ photocatalysts were prepared using an ultrasound

assisted deposition method [43]. In a typical procedure a certain amount of prepared g-C₃N₄ powder was added into a beaker containing 25 mL methanol. After sonication for 30 min the Mo-Mo₂C nanorod sample was dispersed in the prepared suspension and stirred at room temperature for 24 h. The remaining methanol was removed by evaporation under a nitrogen gas stream. The obtained yellowish powder was collected and dried overnight in a vacuum oven at 60 °C. The Mo₂C/g-C₃N₄ catalyst sample was synthesized using the same procedure, with Mo₂C as the cocatalyst. The Mo/g-C₃N₄ catalyst sample was synthesized using the photodeposition method. All the loading weight percent of Mo-Mo₂C, Mo₂C and Mo was 2.0 wt.% based on the total cocatalyst and g-C₃N₄ mass. X-Ray photoelectron spectrometer (XPS) and Inductively coupled plasma (ICP) analyses show that the Mo-Mo₂C concentration in as-synthesized 2.0 wt% Mo-Mo₂C/g-C₃N₄ is 1.60 wt.% and 1.34 wt.%, respectively (Table S1). Considering the experimental errors, these results are close to the apparent 2.0 wt.% loading amount. In this research, we use apparent 2.0 wt.% as Mo-Mo₂C loading concentration for Mo-Mo₂C/g-C₃N₄ photocatalyst.

2.4. Photocatalyst characterizations

Transmission electron microscope (TEM) images were obtained on a JEM-2010 and FEI Tecnai G2 F30 electron microscope operated at 200 kV. Powder X-ray diffraction (XRD) patterns were recorded with a Bruker-D8 X-ray diffractometer equipped with Cu K α radiation. Raman spectra are recorded on a laser confocal Raman microspectrometer (inVia) with an excitation laser wavelength of 532 nm. The field emission scanning electronic microscopy (FESEM) images were collected with a Hitachi SU-1500 SEM system at 5 kV. Fourier transform infrared spectroscopy (FT-IR) was taken with a Spectrum Two[™] FT-IR Spectrometer (PerkinElmer, America). UV-vis diffuse reflectance spectroscopy (DRS) was performed on a UV-2550 spectrophotometer (Shimadzu, Japan) using BaSO₄ powder as a reference. X-Ray photoelectron spectrometer (XPS) surveys were conducted with a Thermo ESCALAB 250 Kα spectrometer. The photoluminescence (PL) spectra were measured using the FLS980 Fluorescence Spectrometer (Edinburgh, Britain). The inductively coupled plasma (ICP) measurements were tested by a 710-ES ICP Optical Emission Spectrometer for elemental analysis.

2.5. Evaluation of photocatalyst activities

The photocatalytic activities of photocatalysts were measured using a small flask wrapped in a sheet of tinfoil. The dimensions of the window were 2.0 cm X 2.5 cm. In a typical reaction 5.0 mg Mo-Mo₂C/g-C₃N₄ catalyst powder was added into a 10 mL suspension containing 8 mL H₂O and 2 mL triethanolamine (TEOA) under magnetic stirring. Prior to a photocatalytic reaction, the photolyte suspension was degassed with high purity N₂ gas to remove dissolved oxygen. A 300 W Xe lamp (Perfectlight, China) with a cut off filter (λ > 420 nm) was used as a visible light source for the photocatalytic hydrogen evolution reaction (HER). The generated H₂ was analyzed using an online gas chromatograph (GC-2014, Shimadzu, Japan; high purity N₂ was used as the carrier gas) equipped with a thermal conductivity detector (TCD). The total amount of H₂ production every hour was recorded as the rate of photocatalytic HER.

The apparent quantum efficiency (AQE) was calculated according to the following equation:

Apparent quantum efficiency (%) =
$$\frac{\text{The number of reacted electrons}}{\text{The number of incident photons}} \times 100$$

= $\frac{\text{Number of evolved } H_2 \text{molecules x 2}}{\text{Number of incident photons}} \times 100$
= $\frac{2 \times n_{\text{H}_2}}{I_0 \times t} \times 100$

where n_{H_2} is the number moles for hydrogen evolution from t = 0 to

time t. I_0 ($I_0 = 4.7 \times 10^{-9} \text{ mol s}^{-1}$) is the Einstein of incident photons per second measured at $\lambda = 420 \text{ nm}$.

2.6. Photoelectrochemical measurements

Photocurrent measurements, Mott-Schottky (M-S) analyses, electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) for photocatalysts were all performed on a CHI660E electrochemical workstation. Working electrodes were prepared as follows: 10.0 mg photocatalysts were dispersed into a mixture containing 450 µL ethanol and 50 µL 5 wt.% Nafion solution and sonicated for at least 30 min to form a homogeneous ink. Next, 25 µL of the ink was coated onto a fluorine doped tin oxide (FTO) glass electrode and dried in air. A saturated calomel electrode (SCE) and a Pt foil were used as reference electrode and counter electrode, respectively. The amperometric i ~ t curves were measured at the 0.2 V potential (vs. SCE) under a 300 W Xe lamp with a 420 nm cut off filter. The M-S plots were recorded at a frequency of 2 kHz in a 0.5 M Na₂SO₄ aqueous solution. LSV spectra were carried out at a 2 mV/s scan rate. EIS tests were measured at an open circuit potential over frequencies ranging from 10^{-2} Hz to 10^{6} Hz, with an amplitude of 5 mV. The LSV and EIS were performed in 10 mL of 20% (v/v) TEOA with 40 mL 0.2 M Na₂SO₄ aqueous solution because the electrolyte provides a neutral environment for testing.

3. Results and discussion

3.1. Material characterizations

The Mo-Mo₂C/g-C₃N₄ photocatalyst was prepared in a two-step process. In the first step, the Mo-Mo₂C cocatalyst was synthesized via a temperature-programmed reduction method [35]. Fig. S1 shows the XRD pattern of prepared Mo-Mo₂C. The diffraction peaks of Mo-Mo₂C are fully consistent with those previously reported for Mo-Mo₂C [35]. In the second step, the prepared Mo-Mo₂C powder was loaded onto the surface of a g-C₃N₄ photocatalyst using the ultrasonic assisting deposition method. Fig. 1 illustrates the synthesis scheme of Mo-Mo₂C/g-C₃N₄ photocatalysts. The Mo-Mo₂C/g-C₃N₄ XRD diffraction peaks (Fig. 2) at 13.1° and 27.4° belong to (100) and (002) of g-C₃N₄ [44]. The diffraction peak at 39.4° can be ascribed to the (101) of Mo₂C. FT-IR analysis was carried out in order to further confirm the structure and performance of $g-C_3N_4$ and $Mo-Mo_2C/g-C_3N_4$ photocatalysts. The IR peaks (Fig. 3) at 809 and 250 - $1700\,\mathrm{cm}^{-1}$ correspond to the tri-s-triazine ring units and stretching modes [44,45]. All these peaks are typically characteristic IR spectra of g-C₃N₄. There are no significant differences between g-C₃N₄ and Mo-Mo₂C/g-C₃N₄ IR spectra. The Raman spectra of bare g-C₃N₄ and 2.0 wt.% Mo-Mo₂C/g-C₃N₄ did not show significant difference in the spectrum either (Fig. S2). These observations indicate that the loading of Mo-Mo₂C cocatalyst particles onto the surface of a g-C₃N₄ photocatalyst does not change the g-C₃N₄ structure.

Fig. 1. Schematic illustration of the synthesis procedures of $Mo\text{-}Mo_2C/g\text{-}C_3N_4$ photocatalyst.

Fig. 2. XRD patterns of g-C₃N₄ and 2.0 wt.% Mo-Mo₂C/g-C₃N₄ photocatalysts.

Fig. 3. FT-IR spectra of g-C₃N₄ and 2.0 wt.% Mo-Mo₂C/g-C₃N₄ photocatalysts.

The TEM image (Fig. 4(a)) shows that Mo-Mo₂C cocatalyst crystals consist of nano-belt structures. The lattice fringes of Mo₂C with d-spacings of 0.24 nm and 0.23 nm can be assigned to (002) and (101) crystal planes (Supporting Information, Fig. S3), respectively. The 0.22 nm dspacing can be ascribed to the (110) crystal plane for a metallic Mo. Fig. 4(b) and (c, d) presents the typical TEM images of bare g-C₃N₄ and 2.0 wt.% Mo-Mo₂C/g-C₃N₄, respectively, where Mo-Mo₂C shows a darker color than g-C₃N₄ in the image. The HRTEM image of Mo-Mo₂C/ $g-C_3N_4$ (Fig. 4e) shows the clear lattice fringes of Mo_2C (d = 0.23 nm and $0.24\,\text{nm}$ corresponding to Mo_2C (101) and (002)) coupled with the fringes of g-C₃N₄, implying that two semiconductors contact very tightly. This tight contact enables the stability and promotes the separation and transfer of photogenerated carriers between Mo-Mo2 and g-C₃N₄. This is definitely beneficial for the photocatalytic hydrogen evolution reaction [46]. The EDS element mapping analysis (Fig. 4(f)) verifies the presence of elemental C, N and Mo in Mo-Mo₂C/g-C₃N₄.

The overall XPS survey spectrum (Fig. 5(a)) suggests the existence of C, N, Mo and O elements, which agrees with the EDS results of Mo-Mo₂C/g-C₃N₄ (Fig. 4(d)). Obviously, there is no Mo element XPS peak in the measured spectrum of bare g-C₃N₄ (Fig. S4). In Fig. 5(b), the C 1 s spectrum shows two binding energy peaks at 288.2 and 284.8 eV, which are associated with sp²-bonded carbon with nitrogen (N–C=N) [47] and C–C. The N 1 s spectrum is shown in Fig. 5(c). The peaks centered at

Fig. 4. TEM images of the Mo-Mo₂C (a), g-C₃N₄ (b), 2.0 wt.% Mo-Mo₂C/g-C₃N₄ (c, d), HR-TEM images of the 2.0 wt.% Mo-Mo₂C/g-C₃N₄ (e) and EDS elemental mapping for C, N, Mo elements (f) over the 2.0 wt.% Mo-Mo₂C/g-C₃N₄ photocatalyst.

400.7, 399.3 and 398.6 eV can be attributed to an amino function group with hydrogen (C-NH₂) [48], N-(R)₃ [49] and sp²-hybridized structure in triazine rings (C-N=C) [50]. As shown in Fig. 5(d), the Mo 3d spectrum of Mo-Mo₂C/g-C₃N₄ indicates the existence of +2, +4, +6 and 0 valence states of Mo, showing the coexistence of metallic Mo with Mo₂C. Fig. S5 shows that the Mo 3d and N 1s XPS spectra of g-C₃N₄, Mo-Mo₂C and 2.0 wt.% Mo-Mo₂C/g-C₃N₄ samples. It is noted that the Mo 3d binding energy of 2.0 wt.% Mo-Mo₂C/g-C₃N₄ exhibits negative-shift trend comparing with that of pristine Mo-Mo₂C (Fig. S5(a)). Meanwhile, the N 1 s binding energy of $2.0\,\text{wt.}\%$ Mo-Mo₂C/g-C₃N₄ exhibits positive-shift trend comparing with that of g- C_3N_4 (Fig. S5(b)) [51]. These results indicate that the electron density within Mo-Mo₂C increases after deposition of Mo-Mo₂C particles on g-C₃N₄. In other words, when Mo-Mo₂C is deposited on g-C₃N₄, electrons are transferred from g-C₃N₄ to Mo-Mo₂C. This conclusion is supported by the different flat band potentials. The flat band potentials of Mo-Mo₂C and g-C₃N₄ have been determined using Mott-Schottky (M-S) method as -1.03 and -0.47 V vs. SCE, respectively, as introduced in the following section.

3.2. Evaluation of optical properties of 2.0 wt.% Mo-Mo $_2$ C/g-C $_3$ N $_4$ photocatalyst

The UV–vis diffuse reflectance spectroscopy (DRS) of Mo-Mo₂C, pure g-C₃N₄ and 2.0 wt.% Mo-Mo₂C/g-C₃N₄ cocatalyst and photocatalysts are shown in Fig. 6(a). Compared with pure g-C₃N₄ UV–vis DRS, the UV–vis DRS of 2.0 wt.% Mo-Mo₂C/g-C₃N₄ shows an enhanced photo-absorption in the wavelength range from 400 to 800 nm that is caused by the strong photo-absorption of Mo-Mo₂C cocatalyst. In addition, Mo-Mo₂C demonstrates stronger photo-absorption in the wavelength ranging from 200 to 800 nm. Fig. 6(b) and (c) show the Tauc plot of $(\alpha h\nu)^2$ as a function of photonic energy $(h\nu)$ for g-C₃N₄ and Mo-Mo₂C, respectively. The Tauc functions are derived using the Kubelka-Munk method [52]. The corresponding band gap energies calculated based on Tauc plots are 2.71 eV and 1.49 eV for g-C₃N₄ and Mo-Mo₂C, respectively.

A photoluminescence (PL) spectrum is commonly used to evaluate the charge separation efficiency of photogenerated electron-hole pairs.

Fig. 5. XPS spectra of 2.0 wt.% Mo-Mo₂C/g-C₃N₄ photocatalyst: (a) a survey spectrum; (b) high-resolution spectra of C 1 s; (c) N 1 s and; (d) Mo 3d.

Generally, a lower PL intensity of a photocatalyst suggests that the photocatalyst has a higher charge separation efficiency for electronhole pairs of a photocatalyst. As shown in Fig. 6(d), the intensity of the PL spectrum peak of 2.0 wt.% Mo-Mo₂C/g-C₃N₄ sample is much weaker than that of pure g-C₃N₄, indicating a higher charge separation efficiency and a lower charge recombination rate when Mo-Mo₂C cocatalyst is loaded onto the surface of g-C₃N₄ [53]. Along with the higher charge separation efficiency the enhanced visible light absorption capability also leads to a more significant photocatalytic activity increase for 2.0 wt.% Mo-Mo₂C/g-C₃N₄ photocatalyst.

3.3. Photocatalytic performance of 2.0 wt.% Mo-Mo $_2 C/g\text{-}C_3 N_4$ photocatalyst

To investigate the photocatalytic behavior of as-prepared samples were evaluated with triethanolamine (TEOA) as a sacrificial electron donor to simulate visible-light-driven hydrogen production from water. Fig. S6 show the $\rm H_2$ evolution activity of $\rm Mo_2C/g\textsc{-}C_3N_4$ photocatalysts with different loading amounts of $\rm Mo_2C$. Notably, the highest photocatalytic $\rm H_2$ evolution rate is achieved with 2.0 wt.% loading, which is 60.9 $\mu \rm mol \, h^{-1} \, \, g_{\rm catal}^{\, -1}$. Therefore, we select 2.0 wt.% $\rm Mo_2C/g\textsc{-}C_3N_4$ photocatalyst as a reference sample. To maintain comparability, Mo-Mo_2C/g-C_3N_4 photocatalyst with a 2.0 wt.% cocatalyst concentration same to that of 2.0 wt.% Mo-Mo_2C/g-C_3N_4 was also selected as the reference sample.

Fig.7 shows the hydrogen evolution rates for six photocatalysts. Results show that pure g- C_3N_4 has a very low activity and pure Mo-

Mo₂C does not have any activity at all for photocatalytic hydrogen production. When 2.0 wt.% Mo-Mo₂C cocatalyst is loaded onto the surface of g-C₃N₄ main photocatalyst, the photocatalytic activity of the g-C₃N₄ catalyst increases significantly. This result indicates that Mo-Mo₂C is an effective cocatalyst for photocatalytic H₂ production. As shown in Fig. 7, the 5-hour average hydrogen evolution rates over $2.0 \text{ wt.} \% \ \text{Mo}_2\text{C/g-C}_3\text{N}_4, \ 2.0 \text{ wt.} \% \ \text{Mo/g-C}_3\text{N}_4, \ 2.0 \text{ wt.} \% \ \text{Mo-Mo}_2\text{C/g-C}_3\text{N}_4$ C₃N₄, 0.5 wt.% Pt/g-C₃N₄ and g-C₃N₄ catalysts are 60.9, 19.1, 219.7, 244.1 and 0.5 $\mu mol \, h^{-1} \, g^{-1},$ respectively. The hydrogen evolution rate $(219.7 \,\mu\text{mol}\,h^{-1}\,g^{-1})$ for $2.0 \,\text{wt.}\%$ Mo-Mo₂C/g-C₃N₄ photocatalyst is 440 times greater than that of g-C₃N₄ and 90% of the rate for 0.5 wt.% Pt/g-C₃N₄ The apparent quantum efficiency for hydrogen production over 2.0 wt.% Mo-Mo₂C/g-C₃N₄ was measured to be 8.3% at 420 nm light irradiation. Compared with the hydrogen evolution rate for 2.0 wt. % Mo₂C/g-C₃N₄ and 2.0 Mo wt.%/g-C₃N₄ photocatalysts, the rate for 2.0 wt.% Mo-Mo₂C/g-C₃N₄ has increased from 60.9 and 16.1 to $219.7\,\mu\text{mol}\,h^{-1}\,g^{-1},$ a 3.6 times increase over $2.0\,\text{Mo}_2\text{C/g-C}_3\text{N}_4$ and an 11.5 times increase over 2.0 wt.% Mo/g-C₃N₄. The significantly increased hydrogen evolution rate for the 2.0 wt.% Mo-Mo₂C/g-C₃N₄ photocatalyst results from the presence of metallic Mo in Mo₂C cocatalyst, which increases the conductivity of the cocatalyst particles. The metallic Mo particles in Mo₂C also play an important role in the electron transfer from g-C₃N₄ to combine with holes from Mo₂C to form an electron-hole pair scheme as described in the following section. It is noted that the efficiency of the 2.0 wt.% Mo-Mo₂C/g-C₃N₄ is higher than most recently reported g-C₃N₄-based photocatalysts (Table S2). Fig. 8 shows the stability for 2.0 wt.% Mo-Mo₂C/g-C₃N₄ photocatalyst

Fig. 6. (a) UV–vis diffusion reflection spectra (DRS) of g- C_3N_4 , Mo-Mo $_2C$ and 2.0 wt.% Mo-Mo $_2C/g$ - C_3N_4 . (b) $(\alpha h \nu)^{1/2}$ vs. photonic energy $(h \nu)$ for g- C_3N_4 . (c) $(\alpha h \nu)^{1/2}$ vs. photonic energy $(h \nu)$ for Mo-Mo $_2C$ and (d) PL spectra of g- C_3N_4 and 2.0 wt.% Mo-Mo $_2C/g$ - C_3N_4 .

Fig. 7. Specific photocatalytic H_2 evolution rates of 2.0 wt.% Mo_2C/g - C_3N_4 , 2.0 wt.% Mo/g- C_3N_4 , 0.5 wt.% Pt/g- C_3N_4 , 2.0 wt.% Mo- Mo_2C/g - C_3N_4 and g- G_3N_4 under visible-light irradiation.

Fig. 8. Stability of $\rm H_2$ evolution over 2.0 wt.% Mo-Mo_2C/g-C_3N_4 photocatalyst under visible-light irradiation.

during five consecutive hydrogen production cycles with a total of 25 h reaction time. As shown in Fig. 8, in five photocatalytic reaction cycles, the hydrogen rates of 2.0 wt.% Mo-Mo₂C/g-C₃N₄ were almost identical.

The XRD, Raman, XPS and TEM characterization for the 2.0 wt.% Mo-Mo₂C/g-C₃N₄ constructed material before and after the photocatalytic reaction were carried out. The analyses have shown that no differences in the XRD pattern (Fig. S7), Raman spectra (Fig. S8) and TEM images (Fig. 4e and Fig. S9) of the samples before and after 25 h' the H₂ evolution have been found identical. The Mo 3d XPS spectra of Mo-Mo₂C/g-C₃N₄, after a 25 h' photocatalytic reaction, is nearly the same in comparison with those before reaction (Fig. S10-S11). These observations suggest that the 2.0 wt.% Mo-Mo₂C/g-C₃N₄ photocatalyst is stable during the visible-light photocatalytic H₂ evolution reaction.

3.4. Photoelectrochemical properties of 2.0 wt.% Mo-Mo $_2$ C/g-C $_3$ N $_4$ photocatalyst

The Mo rich Mo_2C (Mo- Mo_2C) has recently been developed as an efficient electrocatalyst for HER. It exhibited a low onset potential (67 mV), a low Tafel slope (55 mV dec $^{-1}$) and a high exchange current density (0.019 mA cm $^{-2}$) for HER in an acidic medium [35]. The efficiency of a cocatalyst/photocatalyst composite is believed to be strongly influenced by the electrocatalytic performance of the cocatalyst for proton reduction [42,54]. The good electrocatalytic performance of Mo- Mo_2C is believed to contribute to the high photocatalytic activity of $Mo-Mo_2C/g-C_3N_4$ for H_2 production.

Fig. 9 shows the transient photocurrent responses for three photocatalyst samples: g-C₃N₄, 2.0 wt.% Mo-Mo₂C/g-C₃N₄ and 0.5 wt.% Pt/g-C₃N₄. Under dark conditions the photocurrent densities for all three samples are almost zero. Under visible light irradiation, however, the photocurrents increase significantly. The photocurrent intensity sequence of these three catalysts are: pure g-C₃N₄ < 2.0 wt.% Mo-Mo₂C/g-C₃N₄ < 0.5 wt.% Pt/g-C₃N₄. This photocurrent intensity sequence is consistent with the sequences of photocatalytic H₂ production rates.

In this research the photoelectrochemical hydrogen evolution activities of $g\text{-}C_3N_4$ and 2.0 wt.% Mo-Mo₂C/ $g\text{-}C_3N_4$ were also investigated using a linear sweep voltammetry (LSV) method. In the LSV spectra the current densities of 2.0 wt.% Mo-Mo₂C/ $g\text{-}C_3N_4$ exhibit improved performance in comparison with that of $g\text{-}C_3N_4$ (Fig. S12). This result indicates that Mo-Mo₂C cocatalyst is also a remarkably active photoelectrocatalyst for water reduction. Fig. S13 illustrates the Nyquist impedance plots for $g\text{-}C_3N_4$

Fig. 9. Transient photocurrent responses for g- C_3N_4 , 2.0 wt.% Mo- Mo_2C/g - C_3N_4 and 0.5 wt.% Pt/g- C_3N_4 photocatalysts in a 0.2 M Na₂SO₄ aqueous solution.

 C_3N_4 , 2.0 wt.% Mo-Mo₂C/g-C₃N₄ and 0.5 wt.% Pt/g-C₃N₄ photocatalysts. For comparison, the radius of the Nyquist plot of 2.0 wt.% Mo-Mo₂C/g-C₃N₄ is significantly smaller than that of g-C₃N₄, indicating that Mo-Mo₂C cocatalyst loading significantly increases the charge transfer efficiency.

In summary, all the photoelectrochemical measurements and characterizations of pure g-C $_3$ N $_4$, 2.0 wt.% Mo-Mo $_2$ C/g-C $_3$ N $_4$ and 0.5 wt.% Pt/g-C $_3$ N $_4$ photocatalysts indicate that Mo-Mo $_2$ C is an efficient non-noble-metal based cocatalyst for photocatalytic H $_2$ production.

3.5. Possible photocatalytic mechanisms of a Mo-Mo₂C/g-C₃N₄ photocatalyst

All catalyst characterization results have pointed out that the superior photocatalytic performance of a Mo-Mo₂C/g-C₃N₄ photocatalyst is attributed to the higher efficiency of charge separation and transfer of the photo-generated electron-hole pairs. In this research, Mott-Schottky (M-S) plots were carried out to determine the semiconductor types and their electronic structures for g-C₃N₄ photocatalyst and Mo-Mo₂C cocatalyst. As shown in Fig. S14, the positive slopes of M-S curves indicate that both g-C₃N₄ and Mo-Mo₂C are n-type semiconductors. The estimated flat band potentials for g-C₃N₄ and Mo-Mo₂C are -1.03 and -0.47 V vs. SCE, respectively (Fig. S14). In general, the conduction band (CB) potential of n-type semiconductors is about 0.20 V more negative than its flat band potential [55]. Thus, the CB edge potentials for g-C₃N₄ and Mo-Mo₂C are about -1.23 and -0.67 V vs. SCE, that is -0.99 and -0.43 V (vs normal hydrogen electrode (NHE)). The valence band (VB) potentials of g-C₃N₄ and Mo-Mo₂C are 1.72 and 1.06 V vs. NHE, calculated based on $E_{VB} = E_{CB} + E_{g}$. The electronic structures for bare Mo₂C particles were also determined using the Mott-Schottky (M-S) plot tests (Fig. S15). The calculated E_{CB} and E_{VB} edge positions of g-C₃N₄, Mo₂C and Mo-Mo₂C were summarized in Table S3.

Based on the junction of two n-type semiconductor systems of g-C₃N₄ and Mo-Mo₂C we can propose a photocatalytic mechanism to explain the improved photocatalytic efficiency of 2.0 wt.% Mo-Mo $_2$ C/g-C₃N₄ photocatalyst for hydrogen production. Fig. 10 depicts a postulated photocatalytic mechanism. Clearly, g-C₃N₄ is a conjugated host scaffold that co-assembles with a secondary Mo₂C semiconductor. A metallic Mo particle can serve as an electron mediator to form a solidstate Z-scheme system [56-58]. As shown in Fig. 10(a), the photoexcited electrons in conduction band (CB) of g-C3N4 can migrate to a Mo metallic particle, where they combine holes from Mo₂C as a relay of the electron and hole pairs. The photogenerated electrons in the CB of Mo₂C (in Mo-Mo₂C) have sufficient reduction power (-0.43 V) to catalyze a proton reduction reaction for H2 production. Simultaneously, photogenerated holes in the valance band (VB) of g-C₃N₄ can oxidize TEOA with potential of 1.72 V (vs. NHE)). This scheme of charge transfer promotes a higher H₂ production rate than can be achieved by an Mo₂C/g-C₃N₄ photocatalyst. For the Mo₂C/g-C₃N₄ composite, the band edge positions of g-C₃N₄ and Mo₂C constitute a n-n type heterojunction (Fig. 10(b)), CB-electrons of g-C₃N₄ can be inject into the CB of Mo₂C reduction active sites for participating H₂ production reaction. Meanwhile, VB-holes of g-C₃N₄ are reacted with the TEOA in the aqueous solution. Certainly, some VB-holes of g-C₃N₄ can transfer to the VB of Mo₂C and combine with electrons to accelerate charge carriers recombination. Therefore, the Mo₂C/g-C₃N₄ photocatalyst shows weakened photocatalytic H2 production in agreement with the above theories. That is, the charge carriers separation and recombination are two competition processes. Based on these results we can conclude that Mo metal particles in the Mo-Mo₂C composite cocatalyst greatly improve the separation rate of electron-hole pairs, resulting in significant enhancement of photocatalytic activity of the Mo-Mo₂C/g-C₃N₄ photo-

Fig. 10. Schematic diagrams of electron transfer in (a) Mo-Mo₂C/g-C₃N₄ and (b) Mo₂C/g-C₃N₄ system.

4. Conclusions

In this research we report a Mo rich Mo₂C (Mo-Mo₂C) metal/metal carbide composite as a non-noble-metal cocatalyst for efficient photocatalytic H₂ production. The Mo-Mo₂C was deposited onto the surface of g-C₃N₄ semiconductor photocatalyst for hydrogen production under visible light irradiation. The 2.0 wt.% Mo-Mo₂C/g-C₃N₄ photocatalyst was prepared using an ultrasonic-assisting deposition method. The 2.0 wt.% Mo-Mo₂C/g-C₃N₄ semiconductor/metal/ semiconductor nanocomposite photocatalyst exhibits a high H2 production rate of 219.7 µmol h⁻¹ g⁻¹ with 8.3% apparent quantum efficiency, which is 440 times greater than that of g-C₃N₄ alone and 90% of that of 0.5 wt.% Pt/g-C₃N₄. It is also 3.6 times greater than that of 2.0 wt.% Mo_2C/g -C₃N₄ photocatalyst and 11.5 times greater than that of 2.0 wt.% Mo/g-C₃N₄ photocatalyst. The superior photocatalytic performance of the 2.0 wt.% Mo-Mo₂C/g-C₃N₄ photocatalyst results from fast electron transfer, which reduces the recombination of electron-hole pairs. This work reveals a new and low-cost non-noble-metal cocatalyst system for highly efficient photocatalytic solar H2 evolution.

Acknowledgments

The National Natural Science Foundation of China (21103106, 21107069), Shanghai Key Project for Fundamental Research (13JC1402800), and Science and Technology Commission of Shanghai Municipality (14DZ2261000) support this research and are acknowledged.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.10.016.

References

- [1] C.C. Chen, W.H. Ma, J.C. Zhao, Chem. Soc. Rev. 39 (2010) 4206–4219.
- [2] Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. Engl. 54 (2015) 12868–12884.
- [3] A. Kudo, Y. Miseki, Chem. Soc. Rev. 38 (2009) 253–278.
- [4] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76–80.
- [5] K. Maeda, K. Domen, J. Phys. Chem. Lett. 1 (2010) 2655-2661.
- [6] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440 (2006) 295-295.
- [7] X. Zhang, L. Yu, C. Zhuang, T. Peng, R. Li, X. Li, ACS Catal. 4 (2014) 162–170.
- [8] S. Cao, J. Yu, J. Phys. Chem. Lett. 5 (2014) 2101–2107.
- [9] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159–7329.
- [10] X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2 (2012) 1596-1606.
- [11] J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391 (2017) 72–123.

- [12] J. Liu, W. Li, L. Duan, X. Li, L. Ji, Z. Geng, K. Huang, L. Lu, L. Zhou, Z. Liu, W. Chen, L. Liu, S. Feng, Y. Zhang, Nano Lett. 15 (2015) 5137–5142.
- [13] N. Liu, M. Han, Y. Sun, C. Zhu, Y. Zhou, Y. Zhang, H. Huang, V. Kremnican, Y. Liu, Y. Lifshitz, Z. Kang, Energ. Environ. Sci. 11 (2018) 1841–1847.
- [14] L. Cui, X. Ding, Y. Wang, H. Shi, L. Huang, Y. Zuo, S. Kang, Appl. Surf. Sci. 391 (2017) 202–210.
- [15] X.H. Li, J.S. Chen, X. Wang, J. Sun, M. Antonietti, J. Am. Chem. Soc. 133 (2011) 8074–8077.
- [16] J. Liu, H.Q. Wang, Z.P. Chen, H. Moehwald, S. Fiechter, R. van de Krol, L.P. Wen, L. Jiang, M. Antonietti, Adv. Mater. 27 (2015) 712–718.
- [17] J.J. Zhu, Y.C. Wei, W.K. Chen, Z. Zhao, A. Thomas, Chem. Commun. 46 (2010) 6965–6967.
- [18] B. Jia, W. Zhao, L. Fan, G. Yin, Y. Cheng, F. Huang, Cata. Sci. Technol. 8 (2018) 1447–1453.
- [19] J. Oh, R.J. Yoo, S.Y. Kim, Y.J. Lee, D.W. Kim, S. Park, Chem. Eur. J. 21 (2015) 6241–6246.
- [20] G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Adv. Mater. 26 (2014) 805–809.
- [21] Q. Liang, Z. Li, Z.H. Huang, F. Kang, Q.H. Yang, Adv. Funct. Mater. 25 (2015) 6885–6892
- [22] G.G. Zhang, J.S. Zhang, M.W. Zhang, X.C. Wang, J. Mater. Chem. 22 (2012) 8083–8091
- [23] K. Wang, Q. Li, B.S. Liu, B. Cheng, W.K. Ho, J.G. Yu, Appl. Catal. B:Environ. 176-177 (2015) 44–52.
- [24] J. Yu, K. Wang, W. Xiao, B. Cheng, Phys. Chem. Chem. Phys. 16 (2014) 11492–11501.
- [25] J. Fang, H. Fan, M. Li, C. Long, J. Mater. Chem. A 3 (2015) 13819–13826.
- [26] Q. Liang, Z.H. Huang, F. Kang, Q.H. Yang, ChemCatChem 7 (2015) 2897–2902.
- [27] C. Ye, J.X. Li, Z.J. Li, X.B. Li, X.B. Fan, L.P. Zhang, B. Chen, C.H. Tung, L.Z. Wu, ACS Catal. 5 (2015) 6973–6979.
- [28] J. He, L. Chen, Z.Q. Yi, C.T. Au, S.F. Yin, Ind. Eng. Chem. Res. 55 (2016) 8327–8333
- [29] B. Ma, H. Xu, K. Lin, J. Li, H. Zhan, W. Liu, C. Li, ChemSusChem 9 (2016) 820–824.
- [30] Q.D. Yue, Y.Y. Wan, Z.J. Sun, X.J. Wu, Y.P. Yuan, P.W. Du, J. Mater. Chem. A 3 (2015) 16941–16947.
- [31] Q. Xu, B. Cheng, J. Yu, G. Liu, Carbon 118 (2017) 241–249.
- [32] T. Sreethawong, S. Yoshikawa, Catal. Commun. 6 (2005) 661–668.
- [33] K. Shimura, H. Kawai, T. Yoshida, H. Yoshida, Chem. Commun. 47 (2011) 8958–8960
- [34] A. Iwase, H. Kato, A. Kudo, Catal. Lett. 108 (2006) 7-10.
- [35] J. Dong, Q. Wu, C.P. Huang, W.F. Yao, Q.J. Xu, J. Mater. Chem. A 6 (2018) 10028–10035.
- [36] D.C. Geng, X.X. Zhao, Z.X. Chen, W.W. Sun, W. Fu, J.Y. Chen, W. Liu, W. Zhou, K.P. Loh, Adv. Mater. 29 (2017) 1700072.
- [37] J. Jia, W. Zhou, Z. Wei, T. Xiong, G. Li, L. Zhao, X. Zhang, H. Liu, J. Zhou, S. Chen, Nano Energy 41 (2017) 749–757.
- [38] J. Gao, Z.H. Cheng, C.X. Shao, Y. Zhao, Z.P. Zhang, L.T. Qu, J. Mater. Chem. A 5 (2017) 12027–12033.
- [39] Y. Li, P. Wang, C. Huang, W. Yao, Q. Wu, Q. Xu, Appl. Catal. B: Environ. 205 (2017) 489–497.
- 40] J. Sun, L. Duan, Q. Wu, W. Yao, Chem. Eng. J. 332 (2018) 449–455.
- [41] Q. Zhao, W. Yao, C. Huang, Q. Wu, Q. Xu, ACS Appl. Mater. Inter. 9 (2017) 42734–42741.
- [42] M.H. Luo, W.F. Yao, C.P. Huang, Q. Wu, Q.J. Xu, J. Mater. Chem. A 3 (2015) 13884–13891.
- [43] R. Yin, Q.Z. Luo, D.S. Wang, H.T. Sun, Y.Y. Li, X.Y. Li, J. An, J. Mater. Sci. 49 (2014)
- [44] Z. Li, Y. Wu, G. Lu, Appl. Catal. B: Environ. 188 (2016) 56–64.
- [45] M.H. Wu, L. Li, Y.C. Xue, G. Xu, L. Tang, N. Liu, W.Y. Huang, Appl. Catal. B: Environ. 228 (2018) 103–112.
- [46] B. Wang, J. Zhang, F. Huang, Appl. Surf. Sci. 391 (2017) 449-456.

- [47] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347 (2015) 967-970.
- [48] T. Komatsu, T. Nakamura, J. Mater. Chem. 11 (2001) 474-478.
- [49] J. Lv, K. Dai, J.F. Zhang, L. Geng, C.H. Liang, Q.C. Liu, G.P. Zhu, C. Chen, Appl. Surf. Sci. 358 (2015) 377-384.
- [50] X. Lu, Y. Jin, X. Zhang, G. Xu, D. Wang, J. Lv, Z. Zheng, Y. Wu, Dalton Trans. 45 (2016) 15406–15414.

- [51] R. Tang, S. Zhou, L. Zhang, L. Yin, Adv. Funct. Mater. 28 (2018) 1706154.
 [52] M. Nowak, B. Kauch, P. Szperlich, Rev. Sci. Instrum. 80 (2009) 046107.
 [53] J. Zhang, L. Qi, J. Ran, J. Yu, S.Z. Qiao, Adv. Energy Mater. 4 (2014) 1301925.
- [54] M.H. Luo, P. Lu, W.F. Yao, C.P. Huang, Q.J. Xu, Q. Wu, Y. Kuwahara, H. Yamashita, ACS Appl. Mater. Interfaces 8 (2016) 20667-20674.
- [55] X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, X.B. Chen, J. Mater. Chem. A 3 (2015) 2485-2534.
- [56] H. Li, H. Yu, X. Quan, S. Chen, Y. Zhang, ACS Appl. Mater. Inter. 8 (2016) 2111-2119.
- [57] Y. Yang, W. Guo, Y. Guo, Y. Zhao, X. Yuan, Y. Guo, J. Hazard. Mater. 271 (2014) 150-159.
- [58] D. Zheng, C. Pang, X. Wang, Chem. Commun. (Camb.) 51 (2015) 17467-17470.