TancarFlow

TensorFlow API r1.4

tf.keras.layers.Embedding

```
Contents
Class Embedding
Properties
activity_regularizer
dtype
```

Class Embedding

Inherits From: Layer

Defined in tensorflow/python/keras/_impl/keras/layers/embeddings.py.

Turns positive integers (indexes) into dense vectors of fixed size.

```
eg. [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]
```

This layer can only be used as the first layer in a model.

Example:

```
model = Sequential()
model.add(Embedding(1000, 64, input_length=10))
# the model will take as input an integer matrix of size (batch,
input_length).
# the largest integer (i.e. word index) in the input should be no larger
than 999 (vocabulary size).
# now model.output_shape == (None, 10, 64), where None is the batch
dimension.

input_array = np.random.randint(1000, size=(32, 10))

model.compile('rmsprop', 'mse')
output_array = model.predict(input_array)
assert output_array.shape == (32, 10, 64)
```

Arguments:

- input_dim: int > 0. Size of the vocabulary, i.e. maximum integer index + 1.
- output_dim: int >= 0. Dimension of the dense embedding.
- embeddings_initializer: Initializer for the embeddings matrix.
- embeddings_regularizer: Regularizer function applied to the embeddings matrix.
- embeddings_constraint: Constraint function applied to the embeddings matrix.
- mask_zero: Whether or not the input value 0 is a special "padding" value that should be masked out. This is useful when using recurrent layers, which may take variable length inputs. If this is **True** then all subsequent layers in the model need to support masking or an exception will be raised. If mask_zero is set to True, as a consequence, index 0 cannot be used in the vocabulary (input_dim should equal size of vocabulary + 1).

• input_length: Length of input sequences, when it is constant. This argument is required if you are going to connect Flatten then Dense layers upstream (without it, the shape of the dense outputs cannot be computed).

Input shape: 2D tensor with shape: (batch_size, sequence_length).

Output shape: 3D tensor with shape: (batch_size, sequence_length, output_dim).

References: - A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

Properties

activity_regularizer

Optional regularizer function for the output of this layer.

dtype

graph

input

Retrieves the input tensor(s) of a layer.

Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer.

Returns:

Input tensor or list of input tensors.

Raises:

• AttributeError: if the layer is connected to more than one incoming layers.

Raises:

• RuntimeError: If called in Eager mode.

AttributeError: If no inbound nodes are found.

input_mask

Retrieves the input mask tensor(s) of a layer.

Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer.

Returns:

Input mask tensor (potentially None) or list of input mask tensors.

Raises:

• AttributeError: if the layer is connected to more than one incoming layers.

input_shape

Retrieves the input shape(s) of a layer.

Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer, or if all inputs have the same shape.

Returns:

Input shape, as an integer shape tuple (or list of shape tuples, one tuple per input tensor).

Raises:

- AttributeError: if the layer has no defined input_shape.
- RuntimeError: if called in Eager mode.

losses

name

non_trainable_variables

non_trainable_weights

output

Retrieves the output tensor(s) of a layer.

Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer.

Returns:

Output tensor or list of output tensors.

Raises:

- AttributeError: if the layer is connected to more than one incoming layers.
- RuntimeError: if called in Eager mode.

output_mask

Retrieves the output mask tensor(s) of a layer.

Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer.

Returns:

Output mask tensor (potentially None) or list of output mask tensors.

Raises:

AttributeError: if the layer is connected to more than one incoming layers.

output_shape
Retrieves the output shape(s) of a layer.
Only applicable if the layer has one output, or if all outputs have the same shape.
Returns:
Output shape, as an integer shape tuple (or list of shape tuples, one tuple per output tensor).
Raises:
AttributeError: if the layer has no defined output shape.
RuntimeError: if called in Eager mode.
scope_name
trainable_variables
trainable_weights
updates
variables
Returns the list of all layer variables/weights.
Returns:
A list of variables.
weights
Returns the list of all layer variables/weights.
Returns:
A list of variables.
Methods
init

```
__init__(
    input_dim,
    output_dim,
    embeddings_initializer='uniform',
    embeddings_regularizer=None,
    activity_regularizer=None,
    embeddings_constraint=None,
    mask_zero=False,
    input_length=None,
    **kwargs
```

__call__

```
__call__(
   inputs,
   **kwargs
)
```

Wrapper around self.call(), for handling internal references.

If a Keras tensor is passed: - We call self._add_inbound_node(). - If necessary, we **build** the layer to match the shape of the input(s). - We update the _keras_history of the output tensor(s) with the current layer. This is done as part of _add_inbound_node().

Arguments:

- inputs: Can be a tensor or list/tuple of tensors.
- **kwargs: Additional keyword arguments to be passed to call().

Returns:

Output of the layer's call method.

Raises:

• ValueError: in case the layer is missing shape information for its build call.

__deepcopy__

```
__deepcopy__(memo)
```

add_loss

```
add_loss(
    losses,
    inputs=None
)
```

Add loss tensor(s), potentially dependent on layer inputs.

Some losses (for instance, activity regularization losses) may be dependent on the inputs passed when calling a layer. Hence, when reusing a same layer on different inputs **a** and **b**, some entries in **layer.losses** may be dependent on **a** and some on **b**. This method automatically keeps track of dependencies.

The get_losses_for method allows to retrieve the losses relevant to a specific set of inputs.

Arguments:

- losses: Loss tensor, or list/tuple of tensors.
- inputs: Optional input tensor(s) that the loss(es) depend on. Must match the inputs argument passed to the __call__ method at the time the losses are created. If None is passed, the losses are assumed to be unconditional, and will apply across all dataflows of the layer (e.g. weight regularization losses).

Raises:

• RuntimeError: If called in Eager mode.

add_update

```
add_update(
    updates,
    inputs=None
)
```

Add update op(s), potentially dependent on layer inputs.

Weight updates (for instance, the updates of the moving mean and variance in a BatchNormalization layer) may be dependent on the inputs passed when calling a layer. Hence, when reusing a same layer on different inputs **a** and **b**, some entries in **layer.updates** may be dependent on **a** and some on **b**. This method automatically keeps track of dependencies.

The get_updates_for method allows to retrieve the updates relevant to a specific set of inputs.

This call is ignored in Eager mode.

Arguments:

- updates: Update op, or list/tuple of update ops.
- inputs: Optional input tensor(s) that the update(s) depend on. Must match the inputs argument passed to the __call__ method at the time the updates are created. If None is passed, the updates are assumed to be unconditional, and will apply across all dataflows of the layer.

add_variable

```
add_variable(
   name,
   shape,
   dtype=None,
   initializer=None,
   regularizer=None,
   trainable=True,
   constraint=None
)
```

Adds a new variable to the layer, or gets an existing one; returns it.

Arguments:

- name: variable name.
- shape: variable shape.
- dtype: The type of the variable. Defaults to self.dtype or float32.
- initializer: initializer instance (callable).
- regularizer: regularizer instance (callable).
- trainable: whether the variable should be part of the layer's "trainable_variables" (e.g. variables, biases) or "non_trainable_variables" (e.g. BatchNorm mean, stddev).
- constraint: constraint instance (callable).

Returns:

The created variable.

Raises:

• RuntimeError: If called in Eager mode with regularizers.

add_weight

```
add_weight(
   name,
   shape,
   dtype=None,
   initializer=None,
   regularizer=None,
   trainable=True,
   constraint=None
)
```

Adds a weight variable to the layer.

Arguments:

- name: String, the name for the weight variable.
- shape: The shape tuple of the weight.
- dtype: The dtype of the weight.
- initializer: An Initializer instance (callable).
- regularizer: An optional Regularizer instance.
- trainable: A boolean, whether the weight should be trained via backprop or not (assuming that the layer itself is also trainable).
- constraint: An optional Constraint instance.

Returns:

The created weight variable.

apply

```
apply(
   inputs,
   *args,
   **kwargs
)
```

Apply the layer on a input.

This simply wraps self.__call__.

Arguments:

- inputs: Input tensor(s).
- *args: additional positional arguments to be passed to self.call.
- **kwargs: additional keyword arguments to be passed to self.call.

Returns:

Output tensor(s).

build

```
build(input_shape)
```

call

```
call(inputs)
```

compute_mask

```
compute_mask(
   inputs,
   mask=None
)
```

count_params

```
count_params()
```

Count the total number of scalars composing the weights.

Returns:

An integer count.

Raises:

• ValueError: if the layer isn't yet built (in which case its weights aren't yet defined).

from_config

```
from_config(
   cls,
   config
)
```

Creates a layer from its config.

This method is the reverse of <code>get_config</code>, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Container), nor weights (handled by <code>set_weights</code>).

Arguments:

• config: A Python dictionary, typically the output of get_config.

Returns:

A layer instance.

get_config

```
get_config()
```

get_input_at

```
get_input_at(node_index)
```

Retrieves the input tensor(s) of a layer at a given node.

Arguments:

• node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A tensor (or list of tensors if the layer has multiple inputs).

Raises:

• RuntimeError: If called in Eager mode.

get_input_mask_at

```
get_input_mask_at(node_index)
```

Retrieves the input mask tensor(s) of a layer at a given node.

Arguments:

• node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A mask tensor (or list of tensors if the layer has multiple inputs).

get_input_shape_at

```
get_input_shape_at(node_index)
```

Retrieves the input shape(s) of a layer at a given node.

Arguments:

• node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A shape tuple (or list of shape tuples if the layer has multiple inputs).

Raises:

• RuntimeError: If called in Eager mode.

get_losses_for

```
get_losses_for(inputs)
```

Retrieves losses relevant to a specific set of inputs.

Arguments:

inputs: Input tensor or list/tuple of input tensors. Must match the inputs argument passed to the __call__
method at the time the losses were created. If you pass inputs=None, unconditional losses are returned, such as
weight regularization losses.

Returns:

List of loss tensors of the layer that depend on inputs.

Raises:

• RuntimeError: If called in Eager mode.

get_output_at

```
get_output_at(node_index)
```

Retrieves the output tensor(s) of a layer at a given node.

Arguments:

• node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A tensor (or list of tensors if the layer has multiple outputs).

Raises:

• RuntimeError: If called in Eager mode.

get_output_mask_at

```
get_output_mask_at(node_index)
```

Retrieves the output mask tensor(s) of a layer at a given node.

Arguments:

• node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A mask tensor (or list of tensors if the layer has multiple outputs).

get_output_shape_at

```
get_output_shape_at(node_index)
```

Retrieves the output shape(s) of a layer at a given node.

Arguments:

• node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A shape tuple (or list of shape tuples if the layer has multiple outputs).

Raises:

• RuntimeError: If called in Eager mode.

get_updates_for

```
get_updates_for(inputs)
```

Retrieves updates relevant to a specific set of inputs.

Arguments:

• inputs: Input tensor or list/tuple of input tensors. Must match the inputs argument passed to the __call__ method at the time the updates were created. If you pass inputs=None, unconditional updates are returned.

Returns:

List of update ops of the layer that depend on inputs.

Raises:

• RuntimeError: If called in Eager mode.

get_weights

```
get_weights()
```

Returns the current weights of the layer.

Returns:

Weights values as a list of numpy arrays.

set_weights

set_weights(weights)

Sets the weights of the layer, from Numpy arrays.

Arguments:

• weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of get_weights).

Raises:

• ValueError: If the provided weights list does not match the layer's specifications.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0 License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated November 2, 2017.

Stay Connected

Blog

GitHub

Twitter

Support Issue Tracker Release Notes Stack Overflow English Terms | Privacy