Prácticas con Python

Francisco Javier Mercader Martínez

Actividad 1. Realizar las siguientes operaciones con Python:

(a)
$$(2^4+3)^2$$

(c)
$$\left(\frac{4+4^3}{2}+5^2\right)^6$$

(e)
$$(2+3^2+5^3)^{\frac{1}{3}}$$

(b)
$$\frac{2+4^4}{1+\frac{2}{4\cdot 3^3}}$$

(d)
$$1+2\frac{7}{2^4+5}$$

(f)
$$\left(1+2^3\frac{5}{2^4+1}\right)^{\frac{1}{2}}$$

```
(2**4+3)**2
(2+4**4)/(1+2/(4*3**3))
((4+4**3)/2+5**2)**6
(1+2*(7/(2**4+5)))
(2+3**2+5**3)**(1/3)
(1+2**3*5/(2**4+1))**(1/2)
```

$$(2^4+3)^2=361$$

$$\frac{2+4^4}{1+\frac{2}{4\cdot 3^3}} = 253.3091$$

$$\left(\frac{4+4^3}{2}+5^2\right)^6 = 42180533641$$

$$1 + 2\frac{7}{2^4 + 5} = 1.6667$$

$$(2+3^2+5^3)^{\frac{1}{3}} = 5.1426$$

$$\left(1 + 2^3 \frac{5}{2^4 + 1}\right)^{\frac{1}{2}} = 1.8311$$

Activadad 2. Obtener el resto y el cociente de las siguientes divisiones enteras:

(a) 45 entre 3

(c) 99 entre 54

(b) 111 entre 67

(d) 103964 entre 78

```
print("45 entre 3")
print(f"Cociente: {45 // 3}")
print(f"Resto: {45 % 3}")
print()
print("111 entre 67")
print(f"Cociente: {111 // 67}")
print(f"Resto: {111 % 67}")
print()
print("99 entre 54")
print(f"Cociente: {99 // 54}")
print(f"Resto: {99 % 54}")
print()
print(f"Resto: {103964 entre 78")
print(f"Cociente: {103964 // 78}")
print(f"Resto: {103964 // 78}")
```

45 entre 3 Cociente: 15 Resto: 0

```
111 entre 67
Cociente: 1
Resto: 44
99 entre 54
Cociente: 1
Resto: 45
103964 entre 78
Cociente: 1332
Resto: 68
```

Actividad 3. Dadas las listas A de los 10 primeros números naturales pares y B de los 5 primeros múltiplos de 3, hacer las siguientes operaciones:

```
A = list((i+1)*2 for i in range(10))
B = list((i+1)*3 for i in range(5))
```

1. Hacer la unión de A y B. Llamar C a esta nueva lista

```
C = list(set(A) | set(B))
print(f"C = {C}")
```

```
C = [2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20]
```

2. Eliminar los elementos repetidos de C eliminado el elemento repetido que aparece en primer lugar.

```
C = list(dict.fromkeys(C))
print(f"C sin repetidos (primer lugar): {C}")
```

```
C sin repetidos (primer lugar): [2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20]
```

3. Añadir a la lista resultante los número 5 y 7 al final de la lista.

```
C.extend([5, 7])
print(f"C con 5 y 7 añadidos: {C}")
```

```
C con 5 y 7 añadidos: [2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 5, 7]
```

4. Añadir a la lista resultante los números 3, 4 y 5 al principio de la lista.

```
C = [3,4,5] + C
print(f"C on 3, 4 y 5 al principio: {C}")
```

```
\tt C on 3, 4 y 5 al principio: [3, 4, 5, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 5, 7]
```

5. Eliminar los elementos repetidos de C eliminado el elemento repetido que aparece en último lugar.

```
C = list(dict.fromkeys(C[::-1]))[::-1]
print(f"C sin elementos repetidos (último lugar): {C}")
```

C sin elementos repetidos (último lugar): [2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 5, 7]

6. Crear una nueva lista D con los elementos pares de C, sin escribir el número en cuestión, sino seleccionándolo de la lista C.

```
D = [i for i in C if i % 2 == 0]
print(f"D = {D}")
```

```
D = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
```

Actividad 4. Dada la función f(x) = 3.95x(1-x) y $x_0 = 0.5$, obtener los 100 primeros elementos de la recursión

$$x_{n+1} = f(x_n)$$

```
# Definir la función f(x)
def f(x):
    return 3.5 * x * (1-x)

# Inicilizar la lista con el valor inicial x_0
x_0 = 0.5
```

```
val_recursion = [x_0]
# Calcular los 100 primeros elementos de la recursión
for _ in range(100):
    x_next = f(val_recursion[-1])
    val_recursion.append(x_next)
# Imprimir los primeros 10 valores de la recursión para ver qué todo es correcto
for i, val in enumerate(val_recursion[:10]):
    print(f"x_{i} = {val}")
x_0 = 0.5
x_1 = 0.875
x_2 = 0.3828125
x_3 = 0.826934814453125
x_4 = 0.5008976948447526
x_5 = 0.87499717950388
x_6 = 0.3828199037744718
x_7 = 0.826940887670016
x_8 = 0.500883795893397
x 9 = 0.8749972661668659
Actividad 5. Dada la recursión de la activada 4, obtener los 100 primeros elementos pares, es decir, los de la sucesión
x_0, x_2, x_4, x_6, \dots
# Definir la función f(x)
def f(x):
    return 3.5 * x * (1-x)
# Inicilizar la lista con el valor inicial x_0
x_0 = 0.5
val_recursion_pares = [x_0]
# Calcular los 200 primeros elementos de la recursión para luego hacer la separación
for _ in range(200):
    x_next = f(val_recursion_pares[-1])
    val_recursion_pares.append(x_next)
val_recursion_pares = val_recursion_pares[::2][:100]
# Imprimir los primeros 10 valores de la recursión para ver qué todo es correcto
for i, val in enumerate(val_recursion_pares[:10]):
    print(f"x_{2*i} = {val}")
x_0 = 0.5
x 2 = 0.3828125
x_4 = 0.5008976948447526
x_6 = 0.3828199037744718
x 8 = 0.500883795893397
x_10 = 0.38281967628581853
x_12 = 0.5008842229438679
x_14 = 0.3828196832226365
x_16 = 0.5008842099217973
x_18 = 0.3828196830110622
Actividad 6. Dada la recursión de la actividad 4, obtener los 100 primeros elementos múltiplos de 4, es decir, los de
la sucesión x_0, x_4, x_8, x_{12}.
# Definir la función f(x)
def f(x):
    return 3.5 * x * (1-x)
```

Inicilizar la lista con el valor inicial x_0

 $x_0 = 0.5$

 $val_recursion_4 = [x_0]$

```
# Calcular los 400 primeros elementos de la recursión para luego hacer la separación
for _ in range(400):
    x_next = f(val_recursion_4[-1])
    val_recursion_4.append(x_next)

val_recursion_4 = val_recursion_4[::4][:100]

# Imprimir los primeros 10 valores de la recursión para ver qué todo es correcto
for i, val in enumerate(val_recursion_4[:10]):
    print(f"x_{4*i} = {val}")
```

```
x_0 = 0.5

x_4 = 0.5008976948447526

x_8 = 0.500883795893397

x_12 = 0.500884229438679

x_16 = 0.5008842099217973

x_20 = 0.5008842103189732

x_24 = 0.5008842103068593

x_28 = 0.5008842103072292

x_32 = 0.5008842103072179

x_36 = 0.5008842103072179
```

Actividad 7. Dada la función f(x) = 3.95x(1-x) y $x_0 = 0.5, x_1 = 0.25$, obtener los 100 primeros elementos de la recursión

$$x_{n+1} = 0.25 \cdot x_{n-1} + 0.75 \cdot f(x_n).$$

```
# Definir la función f(x)
def f(x):
    return 3.5 * x * (1-x)

# Inicilizar la lista con el valor inicial x_0
x_0 = 0.5
x_1 = 0.25
val_recursion_2 = [x_0, x_1]

# Calcular los 100 primeros elementos de la recursión para luego hacer la separación
for _ in range(100):
    x_next = 0.25 * val_recursion_2[-2] + 0.75*f(val_recursion_2[-1])
    val_recursion_2.append(x_next)

# Imprimir los primeros 10 valores de la recursión para ver qué todo es correcto
for i, val in enumerate(val_recursion_2[:10]):
    print(f"x_{i} = {val}")
x_0 = 0.5
```

```
x_1 = 0.25

x_2 = 0.6171875

x_3 = 0.6827011108398438

x_4 = 0.7229251732569537

x_5 = 0.6964742414218985

x_6 = 0.7356507085156734

x_7 = 0.6845990122426351

x_8 = 0.7507110894114075

x_9 = 0.66240262088179
```

Actividad 8. Dados los elementos obtenidos en las actividades 4 y 7, obtener una lista que resulte de multiplicar los elementos de las dos lista dos a dos.

```
val_recursion_3 = []

for i, val_1 in enumerate(val_recursion):
    for j, val_2 in enumerate(val_recursion_2):
        val_recursion_3.append(val_1 * val_2)
```

```
for i, val in enumerate(val_recursion_3[:10]):
    print(f"x_{i} = {val}")

x_0 = 0.25
x_1 = 0.125
x_2 = 0.30859375
x_3 = 0.3413505554199219
x_4 = 0.36146258662847686
x_5 = 0.34823712071094926
x_6 = 0.3678253542578367
x_7 = 0.34229950612131754
```

Actividad 9. Definir las funciones siguientes

 $x_8 = 0.37535554470570376$ $x_9 = 0.331201310440895$

$$f_1(x,y) = 3x^2 + x - 1 \qquad f_2(x) = \frac{2x+1}{x^2+1}$$

$$f_3(x) = \begin{cases} 2x & \text{si } x \le 0 \\ x^2 & \text{si } x > 0 \end{cases} \qquad f_4(x) = \begin{cases} \frac{2x}{x+1} & \text{si } 0 < x \le 2 \\ x^2+3 & \text{si } x > 2 \end{cases}$$

$$f_5(x) = \begin{cases} 2x & \text{si } x \le 0 \\ x^2 & \text{si } 0 < x < 2 \\ x^3+1 & \text{si } x \ge 2 \end{cases} \qquad f_6(x) = \begin{cases} \frac{2x+1}{x^2} & \text{si } x \le -1 \\ x^2 & \text{si } 0 < x < 2 \\ 0 & \text{si } x \ge 3 \end{cases}$$

```
def f_1(x):
    return 3*x**2+x-1
def f_2(x):
    return (2*x+1)/(x**2+1)
def f_3(x):
    if x <= 0:
        return 2*x
    else:
        return x**2
def f_4(x):
    if x > 0 and x \le 2:
       return 2*x/(x+1)
    elif x > 2:
       return x**2+3
def f 5(x):
    if x <= 0:
       return 2*x
    elif x > 0 and x < 2:
        return x**2
    else:
       return x**3 + 1
def f_6(x):
    if x <= -1:
       return (2*x+1)/x**2
    elif x > 0 and x < 2:
       return x**2
    elif x >= 3:
       return 0
```

Actividad 10. Definir las funciones siguientes

$$\begin{split} f_1(x,y) &= xy^2 & f_2(x,y) = \frac{x+y^2}{x-y} \\ f_3(x,y,z) &= xy^2 + zy^3 & f_4(x,y,z,t) = x^2 + y^2 - z^{t-x} \\ f_5(x,y) &= \begin{cases} 2xy & \text{si } xy \leq 0 \\ xy^2 & \text{si } xy > 0 \end{cases} & f_6(x,y) = \begin{cases} 2x^y & \text{si } x+y^2 \leq 1 \\ x^{y^2} & \text{si } x+y^2 > 1 \end{cases} \end{split}$$

```
def f1(x, y):
    return x * y**2
def f2(x, y):
    return (x + y**2) / (x - y)
def f3(x, y, z):
    return x * y**2 + z * y**3
def f4(x, y, z, t):
    return x**2 + y**2 - z**(t - x)
def f5(x, y):
    if x * y <= 0:
       return 2 * x * y
    else:
        return x * y**2
def f6(x, y):
    if x + y**2 <= 1:
        return 2 * x**y
        return x**(y**2)
```

Actividad 11. Dadas las lista A de los 10 primeros números naturales impares y B de los 5 primeros múltiplos de 4, hacer las siguientes operaciones:

```
A = [i for i in range(1, 20, 2)]
B = [(i+1)*4 for i in range(5)]
```

1. Insertar en A el número 10 en la posición 2 y llamar A a la lista resultante.

```
A.insert(2, 10)
print(A)
```

2. Eliminar de B el primer y último elemento y llamar B a la lista resultante.

```
B = B[1:-1]
print(B)
```

[8, 12, 16]

3. Añadir a A los dos primeros elementos de B y llamar A a la lista resultante.

```
A.extend(B[:2])
print(A)
```

```
[1, 3, 10, 5, 7, 9, 11, 13, 15, 17, 19, 8, 12]
```

4. Definir C como la unión de B y A, por este orden.

```
C = B + A
print(C)
```

```
[8, 12, 16, 1, 3, 10, 5, 7, 9, 11, 13, 15, 17, 19, 8, 12]
```

5. Añadir a la lista resultante los números 3,4 y 5 al final de la lista.

```
C.extend([3,4,5])
print(C)
```

```
[8, 12, 16, 1, 3, 10, 5, 7, 9, 11, 13, 15, 17, 19, 8, 12, 3, 4, 5]
```

Actividad 12. Dados los conjuntos

 $A = \{1, 2, 3, 4, 5\}$ $B = \{2, 4, 6, 8, 10, 12\}$

у

$$C = \{1, 9, 4, 3, 2, 5, 11\}$$

obtener:

(a) $A \cap B \cup C$

(c) $(B \backslash C) \cup A$

(e) $A \cap (C \triangle B)$

(b) $B \setminus C \cup A$

(d) $(A \cup C) \triangle B$

(f) $(A \triangle B) \cup (B \backslash C)$

```
A = {1,2,3,4,5}
B = {2,4,6,8,10,12}
C = {1,9,4,3,2,5,11}

print(f"a) {A & B | C}")
print(f"b) {B - C | A}")
print(f"c) {(B - C) | A}")
print(f"d) {(A | C) ^ B}")
print(f"e) {A & (C ^ B)}")
print(f"f) {(A ^ B) | (B - C)}")
```

- a) {1, 2, 3, 4, 5, 9, 11}
- b) {1, 2, 3, 4, 5, 6, 8, 10, 12}
- c) {1, 2, 3, 4, 5, 6, 8, 10, 12}
- d) {1, 3, 5, 6, 8, 9, 10, 11, 12}
- e) {1, 3, 5}
- f) {1, 3, 5, 6, 8, 10, 12}

Actividad 13. Crear un módulo llamado fun1var.py con las funciones definidas en la actividad 9.

Actividad 14. Crear un módulo llamado fun2var.py con las funciones definidas en la actividad 10.

Actividad 15. Construir con Python las tablas de verdad de $p \lor q$, $p \land q$, y $p \leftrightarrow q$.

```
from sympy import symbols, Or, And, Equivalent

# Definición de las variables lógicas
p, q = symbols('p q')

# Lista de combinaciones de valores para p y q
combinaciones = [(True, True), (True, False), (False, True), (False, False)]

# Evaluación y conversión a 1 (True) o 0 (False)
for p_val, q_val in combinaciones:
    or_res = Or(p, q).subs({p: p_val, q: q_val})
    and_res = And(p, q).subs({p: p_val, q: q_val})
    equiv_res = Equivalent(p, q).subs({p: p_val, q: q_val})
```

p	q	$p \vee q$	$p \wedge q$	$p \leftrightarrow q$
1	1	1	1	1
1	0	1	0	0
0	1	1	0	0
0	0	0	0	1

Actividad 16. Comprobar que $p \vee \neg (p \wedge q)$ es una tautología.

```
# Definición de las variables lógicas
p, q = symbols('p q')

# Lista de combinaciones de valores para p y q
combinaciones = [(True, True), (True, False), (False, True), (False, False)]

# Evaluación y conversión a 1 (True) o 0 (False)
for p_val, q_val in combinaciones:
    p_and_q = And(p, q).subs({p: p_val, q: q_val})
    not_p_and_q = Not(And(p, q)).subs({p: p_val, q: q_val})
    p_or_not_p_and_q = Or(p, Not(And(p, q))).subs({p: p_val, q: q_val})
```

_				
p	q	$p \wedge q$	$\neg(p \land q)$	$p \vee \neg (p \wedge q)$
1	1	0	0	1
1	0	0	0	1
0	1	0	0	1
0	0	0	0	1

Actividad 17. Demostrar que las proposiciones $\neg(p \land q)$ y $\neg p \lor \neg q$ son lógicamente equivalentes.

```
from sympy import symbols, Or, And, Not

p, q = symbols('p q')

print(Not(Or(p, q)).equals(And(Not(p), Not(q))))
```

True

Actividad 18. Demostrar que el argumento $\{p \to q, \neg p\}$ implica $\neg q$ es una falacia.

\overline{p}	q	$p \rightarrow q$	$\neg p$	$\neg q$	$(p \to q) \land \neg p$	$((p \to q) \land \neg p) \to \neg q$
1	1	1	0	0	0	1
1	0	0	0	1	0	1
0	1	1	1	0	1	0
0	0	1	1	1	1	1

Actividad 19. Determinar la validez del argumento $\{p \to q, \neg p\}$ implica $\neg q$.

```
from sympy import symbols, Or, And, Not, Implies

p, q = symbols('p q')

combinaciones = [(True, True), (True, False), (False, True), (False, False)]

# Evaluación y conversión a 1 (True) o 0 (False)

for p_val, q_val in combinaciones:
    p_to_q = Implies(p, q).subs({p: p_val, q: q_val})
```