



# Discrete-Time Markov Chains

Eating Habits, Gamblers and Google



# **Applied Discrete Modeling**

### Topics of last ItS lecture

- (Discrete Time) Markov Chains, DTMC (Graham and the CIA)
- Hidden Markov Models (What illness does the patient have?)
- Hidden non-Markovian Models (Quality tester at a factory)
- Virtual Stochastic Sensors

# **Advanced Discrete Modeling**

### Today's agenda (= the part of the lecture relevant to the exam)

- (Discrete Time) Markov Chains, DTMC (Graham and the CIA)
- Hidden Markov Models (What illness does the patient have?)
- Hidden non-Markovian Models (Quality tester at a factory)
- Virtual Stochastic Sensors

### We know Graham ate at the Chinese restaurant today

Where will he eat the day after tomorrow?

Graham is dining out every night, always in one of these three restaurants: Chinese, Greek or Italian

We observed Graham for the past days and recorded his restaurant choices:

• C, I, G, G, I, I, G, I, G, I, C, C, C, C, I, I ...



We now assume, that Graham's dinner choice only depends on where he ate the evening before

### Information extracted from the recorded sequence:

| Restaurant | Frequency |
|------------|-----------|
| Chinese    | 250       |
| Greek      | 410       |
| Italian    | 530       |

| Choice one evening | Next choice | Frequency |
|--------------------|-------------|-----------|
| Chinese            | Chinese     | 50        |
| Chinese            | Greek       | 75        |
| Chinese            | Italian     | 125       |
| Greek              | Chinese     | 41        |
| Greek              | Greek       | 123       |
| Greek              | Italian     | 246       |
| Italian            | Chinese     | 159       |
| Italian            | Greek       | 212       |
| Italian            | Italian     | 159       |



We can now compute the probabilities for each choice **B**, depending on the choice **A** of the night before

 $P(B|A) = H(B \land A)/H(A)$ 

| Choice A | H(A) |
|----------|------|
| Chinese  | 250  |
| Greek    | 410  |
| Italian  | 530  |

| Choice A | Choice B | H(B∧A) | H(B∧A) / H(A) | P(B A) = Probability |
|----------|----------|--------|---------------|----------------------|
| Chinese  | Chinese  | 50     | 50 / 250      | 0.2                  |
| Chinese  | Greek    | 75     | 75 / 250      | 0.3                  |
| Chinese  | Italian  | 125    | 125 / 250     | 0.5                  |
| Greek    | Chinese  | 41     | 41 / 410      | 0.1                  |
| Greek    | Greek    | 123    | 123 / 410     | 0.3                  |
| Greek    | Italian  | 246    | 246 / 410     | 0.6                  |
| Italian  | Chinese  | 159    | 159 / 530     | 0.3                  |
| Italian  | Greek    | 212    | 212 / 530     | 0.4                  |
| Italian  | Italian  | 159    | 159 / 530     | 0.3                  |



# We can now represent Graham's dining behavior as an annotated directed graph

### Graphical representation

# Tabular representation



| $A \rightarrow B$ | Chinese | Greek | Italian |
|-------------------|---------|-------|---------|
| Chinese           | 0.2     | 0.3   | 0.5     |
| Greek             | 0.1     | 0.3   | 0.6     |
| Italian           | 0.3     | 0.4   | 0.3     |



$$P = \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.1 & 0.3 & 0.6 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$$

### Back to our question:

- We know he ate in the Chinese restaurant two days ago  $(\pi_0)$
- Where will Graham eat tonight?

# Probability Vector $\pi_k = (\pi_C, \pi_G, \pi_I)$

- Each element represents the probability of the corresponding system state in step k
- Our initial probability vector:

$$\pi_0 = (1.00 \quad 0.00 \quad 0.00)$$

### Back to our question:

- We know he ate in the Chinese restaurant two days ago  $(\pi_0)$
- Where will Graham eat tonight?  $(\pi_2)$

#### How to find the answer?

• Compute the probability of each restaurant choice two days (=steps) later  $\rightarrow \pi_2$ 

### Iteratively compute $\pi_2$

- Use  $\pi_0$  and P to obtain  $\pi_1$ ; and then  $\pi_1$  and P to obtain  $\pi_2$
- In general: use current state probabilities  $(\pi_k)$  and the state transition probabilities (P) to gain the state probabilities  $(\pi_{k+1})$  for the next step



### Computing the next state probabilities

$$\pi_{1} = (\pi_{1,C} \quad \pi_{1,G} \quad \pi_{1,I})$$

$$\pi_{1,C} = \pi_{0,C} p_{CC} + \pi_{0,G} p_{GC} + \pi_{0,I} p_{IC} \qquad \pi_{1,C} = 1.0 \cdot 0.2 + 0 \cdot 0.1 + 0 \cdot 0.3 = 0.2$$

$$\pi_{1,G} = \pi_{0,C} p_{CG} + \pi_{0,G} p_{GG} + \pi_{0,I} p_{IG} \qquad \pi_{1,G} = 1.0 \cdot 0.3 + 0 \cdot 0.3 + 0 \cdot 0.4 = 0.3$$

$$\pi_{1,I} = \pi_{0,C} p_{CI} + \pi_{0,G} p_{GI} + \pi_{0,I} p_{II} \qquad \pi_{1,I} = 1.0 \cdot 0.5 + 0 \cdot 0.6 + 0 \cdot 0.3 = 0.5$$

$$\pi_{1} = (0.2 \quad 0.3 \quad 0.5)$$

# ... and now much easier!



$$\pi_0 P = (1.0 \quad 0.0 \quad 0.0) \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.1 & 0.3 & 0.6 \\ 0.3 & 0.4 & 0.3 \end{bmatrix} = (0.2 \quad 0.3 \quad 0.5) = \pi_1$$

#### Now the answer:

Where will Graham eat tonight?

$$\pi_0 = (1.00 \quad 0.00 \quad 0.00)$$
 $\pi_1 = \pi_0 P = (0.20 \quad 0.30 \quad 0.50)$ 
 $\pi_2 = \pi_1 P = (0.22 \quad 0.35 \quad 0.43)$ 

 He will most likely (43% probability) eat at the Italian restaurant and least likely (22% probability) at the Chinese restaurant



# DTMC Theory in a Nutshell

### **DTMC Basics**

### Properties of a stochastic matrix P

The matrix is square

$$P = \{p_{ij}\}_{n \times n}$$

All elements are probabilities

$$0 \le p_{ii} \le 1$$

The sum of all outgoing transitions of each state is 1

$$\sum_{j=1}^{n} p_{ij} = 1$$

### Properties of a stochastic vector $\pi$

- All elements are probabilities  $0 \le \pi_i \le 1$
- The sum of all state probabilities is 1  $\sum_{i=1}^{n} \pi_i = 1$

### Discrete-Time Markov Chains

### Consider a system with n possible discrete states s<sub>i</sub>

# Transition probability matrix $P_{(nxn)}$

• Contains the probabilities to change from one state to the next in one step  $p_{ii} = P(s_{k+1} = j \mid s_k = i)$ 

Initial probability vector  $\pi_{(n)}$ 

Contains the initial probability of each system state

$$\pi_{0,i} = P(s_0 = i)$$

### **Graphical representation**

Interpret P as the adjacency matrix of an annotated directed graph

# Solving DTMCs - The Power Method

An iterative method to compute the transient and steady state probabilities of a discrete time Markov chain

#### **Transient solution:**

system state probability at a particular point in the future:

$$\pi_j^{k+1} = \sum_{i=1...n} \pi_i^k p_{ij}$$

$$\pi_{k+1} = \pi_k P$$

### Steady state solution $\pi$ :

- = system state probability after infinite number of steps
- = state probabilities that do not change anymore in one step
- $\pi_k$  converges to  $\pi$  to satisfy the following equations:

$$\pi_{k+1} = \pi_k$$

$$\pi = \pi P$$

# Example 2: Gamblers Ruin

### Gamblers Ruin – A Random Walk

### Two gamblers own a combined fortune of 200€

Initially each gambler owns 100€

### They throw a coin, betting 50€ every time

- Heads Gambler A wins 50€ from gambler B
- Tails Gambler B wins 50€ from gambler A

### The game ends when either of the gamblers is broke!

### Possible questions

- Who will win the game most likely?
- What happens if the coin is not fair?



# Gamblers Ruin - A Random Walk

### Possible system states

| State     | Gambler A | Gambler B |
|-----------|-----------|-----------|
| 0 / 200   | 0€        | 200€      |
| 50 / 150  | 50€       | 150€      |
| 100 / 100 | 100€      | 100€      |
| 150 / 50  | 150€      | 50€       |
| 200 / 0   | 200€      | 0€        |

### Graphical representation of the system state space



### Gamblers Ruin - A Random Walk

### Mathematical representation

- Each coin throw corresponds to a state change
- Assuming we have a fair coin

$$\pi = (\pi_{0/200} \quad \pi_{50/150} \quad \pi_{100/100} \quad \pi_{150/50} \quad \pi_{200/0})$$

$$\pi_0 = (0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0)$$

$$P = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.0 & 0.5 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.0 & 0.5 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

### **Graphical representation**



### Gamblers Ruin - A Random Walk

What is the probability for each of the gamblers to win the game after a certain number of coin throws?

 For a fair coin, each of the gamblers will have won with equal probability after every step

$$\pi_0 = (0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0)$$
 $\pi_1 = (0.0 \quad 0.5 \quad 0.0 \quad 0.5 \quad 0.0)$ 
 $\pi_2 = (0.25 \quad 0.0 \quad 0.5 \quad 0.0 \quad 0.25)$ 
 $\pi_3 = (0.25 \quad 0.25 \quad 0.0 \quad 0.25 \quad 0.25)$ 
 $\pi_4 = (0.375 \quad 0.0 \quad 0.25 \quad 0.0 \quad 0.375)$ 
 $\vdots$ 
 $\pi_k = (0.5 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.5)$ 

- What will happen if the coin is not fair? P(Heads) = 0.6
- How about a different initial distribution of the money?



# Example 3: Google Page Rank

### The initial question

How to rank the results of a query with a particular key phrase?

### ... can be "reduced" to the question

• How to rank all the websites in the WWW?

### **Assumptions:**

- A user on the internet surfs by clicking links most of the time
- Sometimes he directly enters a URL

### Implications:

- A website is more important, the more links point to it
- A link from an important web site (e.g. Wikipedia) is more important than a link from a less important web site (e.g. a student's hompage)

This random walk can be represented by a discrete-time Markov chain (... and it really is done that way!)



### Consider the following system of four websites

- The websites of OvGU, FIN, and ISG and ...
- ... a particular student's personal home page

### Assume the following link structure in this system





Normalize the edge weights by dividing each one by the total number of outgoing links of the web-site



This is already a DTMC!



The matrix P<sub>link</sub> contains the probabilities to go from one website to the next by following an existing link



The fully connected matrix  $P_{full}$  contains the probabilities to go from one website to the next by directly entering a URL



### Quantifying the assumptions

- Clicking links most of the time → 85%
- Sometimes directly entering a URL → 15%

$$P = 0.85 * P_{link} + 0.15 * P_{full}$$

... leads to a combined matrix P that contains the probabilities to go from one website to the next by entering a URL or following a link

$$P = \begin{bmatrix} 0.0375 & 0.6325 & 0.25 & 0.08 \\ 0.5475 & 0.0375 & 0.3775 & 0.0375 \\ 0.3775 & 0.505 & 0.0375 & 0.08 \\ 0.2925 & 0.4625 & 0.2075 & 0.0375 \end{bmatrix}$$

```
\pi = (\pi_{FIN} \quad \pi_{OvGU} \quad \pi_{ISG} \quad \pi_{student})
\pi_0 = (1.0 \quad 0.0 \quad 0.0 \quad 0.0)
\pi_1 = (0.0375 \quad 0.6325 \quad 0.25 \quad 0.08)
\pi_2 = (0.4655 \quad 0.2107 \quad 0.2741 \quad 0.0497)
\vdots
\pi_k = (0.3248 \quad 0.3706 \quad 0.243 \quad 0.0616)
```

# The larger this probability, the higher the PageRank!

- The OvGU website has the highest rank
- The student's website has the lowest rank



#### Some remarks

- The Google matrix had an n=2.7 Billion in October 2002
- We presented you with the original algorithm, which is susceptible to manipulation
- The currently running algorithm contains some modifications to counteract manipulations and generate more useful results
- There are numerous resources on the web regarding PageRank

To learn more about DTMCs, HMMs and HnMMs ... visit our Master module "Applied Discrete Modeling"



# **Learning Goals**

You are now able to solve question 8 of the ItS Exam