

CAICT 中国信通院

边缘计算发展中的若干热点问题及思考

中国信息通信研究院 刘阳 2018年3月23日

问题1:

边缘计算并不是一个新概念,为什么突然火起来了?

边缘计算概念历经多年发展,趋于话题宣传峰口

AKMAAI与IBM开始合 作"边缘计算",在 WebSphere上提供基 于Edge服务

欧洲电信标准化协会 (ETSI)成立移动边缘 计算(MEC)工作组, 后更名为多址边缘计算 华为、沈自所、信通院、英特尔、 ARM、软通动力等6家机构联合发 起成立了边缘计算产业联盟 (Edge Computing Consortium)

CCSA联合AII联盟启动 首批4项工业互联网 边缘计算行业标准立

2004 2003

2012

2014

2015 2016

2017

新加坡信息研究所 教授H.H. Pang发表 第一篇关于"边缘 计算"学术论文

前思科副总裁Flavio Bonomi博士发表第 一篇关于"雾计算" 奠基性学术论文

思科、ARM、戴尔、英特尔、 微软、普林斯顿大学等6家机构 联合发起成立了开放雾计算联 盟(OpenFog Consortium)

IEC/ISO JTC1 SC41 成立 边缘计算研究组; IIC成立边缘计算技术工作组; IEEE成立雾计算网络架构工作组

云计算自身不足和新产业发展带动边缘计算快速走热

内因:云计算的中心化能力在 网络边缘存在诸多不足

- **1** 计算:线性增长的集中式云计算能力无法匹配爆炸式增长的海量边缘数据
- **传输**:传输带宽负载急剧增加造成较长网络延迟,难以满足控制类数据、实时/准实时流式数据传输需求
- 安全:云计算的安全与应用 软件、平台、操作系统、多 段网络、权限管理等多方面 因素有关,边缘数据的安全 隐私受到极大关注
- **能耗**:边缘设备传输数据到 云平台消耗较大电能;从云 平台获取数据到设备现场也 需要二次消耗远程传输电能

外因:消费物联网和工业互联网 等新产业的需求进一步旺盛

设备

消费物联网:

随着网络覆盖的扩大、带宽的增强、资费的下降, 万物互联触发了新的生产模式和商业模式,催生新的数据生产和消费方式

工业互联网:

离散制造和流程制造亟待靠近现场、能提供可靠性高、实时性/准实时性强的ICT系统,以实现IT与OT深度融合所需的局部数据闭环

问题2:

究竟什么是边缘计算?

究竟什么是边缘计算/雾计算,众说纷纭

"边缘计算是一种优化云 计算系统的方法,在网络 边缘执行数据处理,靠近 数据的来源。"

"雾计算是一种水平的系统级架构,可以将云到物 统级架构,可以将云到物 连续性中的计算、存储、 控制、网络功能更接近用 户。"

Gartner

"边缘计算描述了一种计算拓扑,在这种拓扑结构中,信息处理、内容采集和分发均被置于距离信息更近的源头处完成。"

"一千个读者心中有一千个哈姆雷特" → 边缘计算处于发展初期

边缘计算将可能激发新的产业生态

- 边缘计算是一种新的生态模式,通过在网络边缘侧汇聚网络、计算、存储、应用、智能等五类资源,提高网络服务性能("<u>程速</u>")、开放网络控制能力("<u>敏捷</u>"),从而激发类似于移动互联网产业生态的新模式和新应用。
- 边缘计算的技术理念实际上与特定网络接入方式无关,可以适用于固定互联网、 移动通信网、消费物联网、工业互联网等不同情况,形成各自的网络架构增强。

问题3:

边缘计算和雾计算是什么区别?

边缘计算和雾计算的发展历程

最初提出的时候, 是这样的: 但现在 , 是这样的 :

边缘计算和雾计算的融合是大势所趋

- 边缘计算和雾计算有不同的出发点:
 - ✓ 前者关注能力下沉
 - ✓ 后者关注水平融合
- 边缘计算和雾计算随着发展,概念边界已经渐渐模糊,很可能将逐步融合,甚至可能形成一个新的架构,类似于TCP/IP协议一样的网络基础

问题4:

是否应该为边缘计算设计统一的架构?

在固定互联网中谈边缘计算

1

以存储换带宽 提升处理效率

意义

促进网络架构扁 平化

资源下沉

2

CDN从传输服务 变为边缘计算

边缘计算新的生 力军

能力融合

在移动通信网中谈边缘计算

核心网功能和资 源进一步下沉到

二是将核心网的 署, 支持AR/VR、 工业互联网等低

接入侧设备和平 台的能力进一步 开放

将更多接入侧网 络信息和网络控 制功能开放给第 三方,实现垂直 行业个性化定制、 跨行业的合作业 务创新,例如基 于用户位置及无 线传输质量信息 的在线广告业务

实现商业价值创 新

能力开放

在工业互联网/消费物联网中谈边缘计算

边缘计算理念下的不同网络架构增强

AII联盟和ECC联盟联合发布边缘计算参考

2017年, 工业互联网产业联盟(AII)与边缘计算产业联盟(ECC)联合发布了《边缘计算参考架构(2.0版本)》白皮书

一个更形象的架构

边缘计算参考架构

问题5:

都有哪些企业在边缘计算的圈子里?

三方博弈,各有所长

<u>互联网企业</u>:以物联网为主要场景 , 将公有云服务能力扩展到边缘侧

■ 发布 "Azure IoT Edge"等边 Microsoft 缘侧产品,并为Azure云服务增 强流数据分析等能力

亚马逊:

■ 发布 "AWS Greengrass" 等边 缘侧软件,将AWS云服务无缝 扩展至设备

工业企业:以智能制造为主要场景, 发挥自身工业联接和工业云服务优势

西门子:

SIEMENS

■ 发布MindConnect Nano、 IoT2040等两款工业网关设备, 可以兼容多种工业通信协议

通用:

■ 通过Predix平台独特的边缘侧设 备和技术为边缘计算提供数据总 线服务,并与Predix平台配合

思科:

- 牵头开放雾计算联盟(Openfog)
- 发布Cisco 829 工业路由器等面向 智能制造或物联网场景的边缘侧 专用设备
 - ■核心是IOx,利用软件定义技术重 组边缘侧产品生态

华为:

- 牵头边缘计算产业联盟 (ECC)
- 发布轻量计算系统和融合网 关设备,推动面向智能制造 场景的实时以太网TSN技术, 形成整体解决方案

通信企业:以边缘计算/雾计算为契机, 利用网络联接设备的剩余价值,挺进智能制造和消费物联网

不同阵营对边缘计算的概念说法不一

问题6:

如何推动边缘计算的产业发展?

存在整体部署和单点突破两种推进方式

方式一:边缘侧的整体统筹部署

□ 主要特点:强调边缘侧各节点间的互动

口 核心技术:软件定义机器+分布式计算

口 突破重点:统一的操作系统

□ 典型代表:思科,nebbiolo,OFC联盟

- ・ 设备、传感器
- ・ 路由器、交换机
- ・ 第三方节点

方式二:边缘侧的单点能力突破

□ 主要特点:强调边缘侧在局部范围内的小闭环处理

□ 核心技术:轻量计算系统+通信协议融合+边缘智能

ロ 突破重点:云端协同

口 典型代表:华为,ECC联盟

发展边缘计算的若干建议

- 一是加强研究软件定义机器、虚拟化、容器、分布式计算等边缘计算关键技术。
- 二是重点突破可跨越不同环境进行移植的统一轻量级操作系统,实现服务动态加载。
- **三是**研发设计适合于边缘计算节点,占用少量计算资源和存储资源的轻量级算法、程序库、并行编程模型、开发框架和工具包。
- 四是研究制定边缘侧计算的架构模型、部署方式、南北向数据接口(用于云端协同)、东西向数据接口(用于节点间协同)等相关技术标准。

融合·协作·共赢 共同把握工业互联网的历史机遇

