

Shupang chen @ mail utownto a

$$f(\mathbf{x}) = \sum_{k=1}^{K} \pi_k N_m(\mathbf{x}; \mu_k, \Sigma_k), \qquad (3.7)$$

where $\pi_k \geq 0$ are the mixture weights such that $\sum_{k=1}^K \pi_k = 1$, and $N_m(\mathbf{x}; \mu_k, \Sigma_k)$ denotes the multivariate normal density with mean $\mu_k \in \mathbb{R}^m$ and covariance matrix $\Sigma_k \in \mathbb{S}^m$

Exercise 3.5.25. Equation (3.7) provides the density of the Gaussian mixture model. Verify this function indeed integrates to 1.

WT.S
$$\int_{D^m} f(x) dx = 1$$
 where $f(x) = \sum_{b=1}^{k} \pi_b N_m(x) \mu_b$, $\int_{D^{a_1}} \pi_b = 1$ (by def).

$$=\int_{\mathbb{R}^{m}} \frac{1}{|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-\mu)^{\frac{1}{2}}(x-\mu)) dx$$

$$=\int_{\mathbb{R}^{m}} \frac{1}{|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-\mu)^{\frac{1}{2}}(x-\mu)) dx$$

$$=\int_{\mathbb{R}^{m}} \frac{1}{|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-\mu)^{\frac{1}{2}}(x-\mu)^{\frac{1}{2$$

Let
$$S=LL^{7}$$
 where L is lower throughout Matrix, Define $Z=L^{7}$

$$= \frac{m}{(2\pi)^{2}|S|^{\frac{1}{2}}} \int_{\mathbb{R}^{m}} \exp(-\frac{1}{2}Z^{7}Z) |Z|^{\frac{1}{2}} dZ$$

$$=\frac{1}{(2\pi)^{2}}\int_{\mathbb{R}^{m}}\exp\left(-\frac{1}{2}z^{7}z\right)dz$$

$$=\frac{1}{(2\pi)^{2}}\int_{-\infty}^{\infty}\exp\left(-\frac{1}{2}z^{7}z\right)dz$$

$$=\frac{1}{(2\pi)^{2}}\int_{-\infty}^{\infty}\exp\left(-\frac{1}{2}z^{7}z\right)dz$$

$$=\frac{1}{(2\pi)^{2}}\int_{-\infty}^{\infty}\exp\left(-\frac{1}{2}z^{7}z\right)dz$$

$$=\frac{1}{(2\pi)^{2}}\int_{-\infty}^{\infty}\exp\left(-\frac{1}{2}z^{7}z\right)dz$$

Exercise 3.5.29. Consider the Gaussian mixture model with a fixed number of components K. Suppose that a sample $\mathbf{x}_1, \ldots, \mathbf{x}_n$ is observed and take the corresponding log-likelihood function. We will show that this function is not bounded.

- 1. Consider the density $f(x; \mu, \sigma^2)$ of the <u>uniform normal $N(\mu, \sigma^2)$.</u> What happens to $f(x; \mu, \sigma^2)$ when $\sigma^2 \to 0$ for a fixed μ ? Specifically, evaluate $f(x; \mu, \sigma^2)$ when $x = \mu$.
- 2. Now consider a GMM with K=2 and $\pi_1=0.5$, $\pi_2=0.5$. Let \mathbf{x}_1 be one of the data points. Show that if one component, say $N_m(x; \boldsymbol{\mu}_1, \Sigma_1)$, collapses onto \mathbf{x}_1 (i.e., $\boldsymbol{\mu}_1=\mathbf{x}_1, \Sigma_1\to\mathbf{0}$), then the likelihood becomes arbitrarily large.

1.
$$\int (x_{i}|U, 6^{2}) = \frac{1}{|2\pi6^{2}|} \exp(-\frac{(x_{i}-\mu)^{2}}{26^{2}})$$
when $x=\mu$

$$= \frac{1}{|2\pi6^{2}|} \cdot e^{\circ}$$

$$= \emptyset \quad \text{as} \quad 6^{2} \rightarrow 0$$

$$2. \quad l(0) = \sum_{i=1}^{n} \log(\frac{1}{2\pi} \log N_{i}(X_{i})) = \sum_{i=1}^{n} \log(X_{i}) = \sum_{i=1}^{n} \log(X$$

As
$$\overline{\Sigma}_{1} \rightarrow 0$$
 $|\overline{\Sigma}_{1}| \rightarrow 0$ and $|\overline{\Sigma}_{1}|^{\frac{1}{2}} \rightarrow \infty$
So $|\log(\overline{\Sigma}_{1}, N_{m}(X_{1}, N_{1}; \Sigma_{1}) + \overline{\Sigma}_{2}, N_{m}(X_{1}, N_{2}; \Sigma_{2})) \stackrel{\wedge}{\sim} |og(0.5 \cdot \omega) = \omega.$

Principal Component Analysis

The primary challenge in multivariate statistics is managing a large number of variables, potentially in the millions. One approach is to model these variables directly using high-dimensional statistical techniques. Alternatively, dimensionality reduction methods can be applied to derive a smaller set of variables that capture the most significant relationships in the data. These derived variables often serve as effective substitutes for the original data.

Exercise 4.8.2. Suppose you apply PCA to a dataset and find that the first two principal components explain 95% of the variance. What does this tell you about the structure of the data?

Exercise 4.8.3. Let $X \sim N_m(0, \Sigma)$. Show that PCA transformations preserve normality, i.e., the principal components also follow a normal distribution. Show that in this case the principal components are independent.

27.7.2 O Redundance Features / highly correlated

Strong I mear Relationships.

```
4.8.3
O Given \times \sim N_m(O, \Sigma)
                    Σ = UΛU (ty eigendecomposition)
       1) is orthogonal Matrix whose coluns one the eigenvectors of 5
         N is diagonal Matrix with eigenvalues of I on digonal.
         Priciple comporants: Z= U(X
                                           ··· X ~ Nm (O, I) We have Ax u N/LO, A I A<sup>T</sup>)
          and have A=U
            S Z= U'x ~ Nn (0, UTI)
                   U^{T} = U^{T} (U \wedge U^{T}) U = \Lambda
                                                                                                                                                                                                                                                                                       of ergan clecaposition
                       So Zu Nm(0, 1)
  (2); Since 2 ~ Nm(0, 1)
                                We have components of I are uncorrelated
                                                                                                                                                                                                                                                                                                                         (ov(Zi,Z7)=0
                    ii) Since Z is also Multivairce Norma
             by i, ii we have Z is independent
         No[c: \frac{1}{\sqrt{x_i}} = \frac{1}{\sqrt{x_i}} \frac{1}{\sqrt{x
```

Exercise 4.8.6. Show that the principal components are uncorrelated by computing the covariance matrix of the transformed variables.

Exercise 4.8.19. Show that the matrix AB with $A \in \mathbb{R}^{k \times l}$ and $B \in \mathbb{R}^{l \times m}$ has $rank \leq l$.

Suppose
$$X \sim N(\mu, \Sigma)$$
, V 's columns are

 $Z = U^{T}(X - \mu)$
 Z

$$I = U \wedge U$$

$$CouZ = U^{T} U \wedge U^{T} U = \wedge$$

So Covariale Matrix of Z is chargened Matrix, Thur is Cov(Zi, Zz)=0

4.9.19 gran AGRENT, BGRENM

Consider B=Ih, bz...bm] where be one columns of B.

AB=AIb1, bz...bm]=IAb1,Abm]

each column of ABis a linear combinarian of the column of A

Column space of AB C column space of A

So Rank(AB) < Rank (A)

Pecall that, Dimonsion of column space of a Matrix = Rank CMatrix)

=> Rank(AB) < Rank(A) < V

Install ggplot2 if not already installed

install.packages("ggplot2")

Load ggplot2 for visualization

library(ggplot2)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

Importance of components: PCI PC2 PC3 PC4
Standard deviation 1.7084 0.9560 0.38309 0.14393
Proportion of Variance 0.7296 0.2285 0.03669 0.00518
Cumulative Proportion 0.7296 0.9881 0.99842 1.00000

 Petal.Length
 0.5804131
 -0.02449161
 -0.1421264
 -0.8014492

 Petal.Width
 0.5648565
 -0.06894199
 -0.6342727
 0.5235971

A matrix: 150 × 4 of type dbl
PC1 PC2 PC3 PC4
-2.257141 -0.47842383 0.127279624 0.024087508 -2.074013 0.67188269 0.233825517 0.102662845 -2.356335 0.34076642 -0.044053900 0.028282305 -2.291707 0.59539986 -0.090985297 -0.065735340 -2.381863 -0.64467566 -0.015685647 -0.035802870 -2.068701 -1.48420530 -0.026878250 0.006586116 -2 435868 -0 04748512 -0 334350297 -0 036652767 -2.225392 -0.22240300 0.088399352 -0.024529919 -2.326845 1.11160370 -0.144592465 -0.026769540 -2.177035 0.46744757 0.252918268 -0.039766068 -2.159077 -1.04020587 0.267784001 0.016675503 -2.318364 -0.13263400 -0.093446191 -0.133037725

-2.211044 0.72624318 0.230140246 0.002416941 -2.624309 0.95829635 -0.180192423 -0.019151375 -2.191399 -1.85384655 0.471322025 0.194081578 -2.254661 -2.67731523 -0.030424684 0.050365010 -2.200217 -1.47865573 0.005326251 0.188186988 -2.183036 -0.48720613 0.044067686 0.092779618 -1.892233 -1.40032757 0.373093377 0.060891973 -2.335545 -1.12408360 -0.132187626 -0.037630354

-1.907931 -0.40749058 0.419885937 0.010884821 -2.199644 -0.92103587 -0.159331502 0.059398340 -2.765081 -0.45681330 -0.331069982 0.019582826 -1.812597 -0.08527285 -0.034373442 0.150636353 -2.219727 -0.13679618 -0.117599666 -0.269238379 -1.945329 0.62352971 0.304620475 0.043416203

-2.044303 -0.24135499 -0.086075649 0.067454082 -2.161336 -0.52538942 0.206125707 0.010241084 -2.132420 -0.31217200 0.270244895 0.083977887 -2.257698 0.33660425 -0.068207276 -0.107918349

2.0309126 -0.90742744 -0.234015510 0.167390481 0.9747153 0.56985526 -0.825362161 0.027662914 2.8879765 -0.41225995 0.854558973 -0.126911337

1.3287806 0.48020250 0.005410239 0.139491837 1.6950553 -1.01053648 -0.297454114 -0.061437911 1.1711801 0.31533806 -0.129503907 0.125001677

1.7823788 0.18673563 -0.269754304 0.030983849 2.4278203 -0.25841871 0.725386035 -0.017863520

1.8564838 0.17795333 -0.352966242 0.099675959 1.1104277 0.29194458 0.182875741 -0.185721512

1.1984584 0.80860836 0.164173760 -0.487849130 2.7894256 -0.85394254 0.541093785 0.294893130 1.5709929 -1.06501321 -0.942695700 0.035486875 1.3417970 -0.42102015 -0.180271551 -0.214702016 0.9217370 -0.01716559 -0.415434449 0.005220919

2.0880832 -0.61183593 -0.426902678 0.246711805 1.8954342 -0.68727307 -0.129640697 0.468128374 1.1540156 0.69653640 -0.528389994 -0.040385459

1.9914755 -1.04566567 -0.630301866 0.213330527 1.8642579 -0.38567404 -0.255418178 0.387957152

 1.5593565
 0.89369285
 0.026283300
 0.219456899

 1.5160915
 -0.26817075
 -0.179576781
 0.118773236

 1.3682042
 -1.00787793
 -0.930278721
 0.026041407

Create a data frame with the first two principal components and the species information pca_data <- data.frame(PCl = pca_result\$x[, 1], PC2 = pca_result\$x[, 2], Species = iris\$8.

Flot the first two principal components
ggplot(pca_data, asc(x = PCl, y = PC2, color = Species)) +
geom_point() +
labs(title = PPCA of Iris Dataset*, x = *Principal Compone
theme_principal)

