NostraDomicile

By:
Jeremy Hutton, Christian Simaan,
Richard Andrews, Ochaun Marshall

REDFIN

?trulia

Approach

• Problem:

 It can be difficult to determine whether a house will sell and what factors will influence its desirability in a particular area.

• Solution:

 Create a web application which uses machine learning and determines if a house will sell based on desirable factors in an area and allows users to explore a suite of data visualizations based on their area of interest.

Important Links

- Website:
 - o <u>www.NostraDomicile.com</u>
- Github:
 - o <u>www.github.com/nreader72/NostraDomicile</u>

Overview

- Functional Requirements
- User-interface Requirements
- Security Requirements
- System Model
- Subsystems
 - Front-end
 - o Back-end
 - Database
 - Machine Learning
- Demonstration
- Future Efforts

Functional Requirements

- Users able to input attributes and location for predictive home sale analysis
- Users able to view data visualizations for housing data based on zip code
- Users able to view most influential factors in home sales for a given area
- "About" section with detailed explanation of web application functions and its goal.
- "Blog" section with articles by experts in real estate.
- "Contact" section capable of taking in user feedback via email
- "Help" section which offers users a tutorial

User Interface and Usability Requirements

- Text area for target zip code in order to return predictions and data visualizations.
- Text areas and drop down boxes for users to enter their home's attributes.
- Submit buttons to return prediction on home sale, most important factors for home sales, and data visualizations..
- The application will load within 1-2 second interval.
- All buttons will conform to the same style.
- Any text area, checkbox, or dropdown box will have helpful instructions.
- Any function of the web application may be reached within 2-3 clicks.
- Any subsequent page within the application will adhere to the same style

System Interface Requirements

- Application must be successfully hosted and displayed by cloud service(AWS).
- Front end of web application must successfully query database upon user request.
- Database must successfully return requested data run through machine learning algorithm, statistical analysis and data visualization program and front end must successfully display request.

Security Requirements

- Home data in DB can't be altered except by authorized automated scripts or administrators.
- Realtor blog articles can't be placed, removed or altered except by administrators.

System Model

- Frontend handles both displaying information to the user, and getting data from the user that will allow our application to analyze attributes.
- The backend analyzes the data that the frontend gets, and send it to the machine learning functions/system. The backend will also make request to the zillow api or our database depending on the request made, and whether we have the data required.
- We use the Random Forest Classifier to analyze the data it gets from the backend, and provide answers to the backend.
- The database will store information we get from requests to the Zillow API, as well as any other information we need to store.

System Model

Front End Subsystem

- Goal of the Front End Subsystem:
 - Fulfill the needs set forth in the Functional, User Interface, and Usability Requirements
- Developed using JavaScript and HTML/CSS through the frameworks
 AngularJS v.1.3.14 and Bootstrap v.3.3.7
- Single Page Web Application
 - Fulfills requirement that any part of the application can be reached within
 2-3 clicks
 - Lends to a simple user interface

NostraDomicile

Smart Solutions For Data Driven Real Estate Queries

Front End Subsystem

Navigation Bar

- Fulfills functional requirements that the application has About, Expert Blog, Contact Us, and Help Sections
- Makes use of Angular Routing to ensure that NostraDomicile.com is a single page application, with no need for page reloads

Front End Subsystem

User Input

- User Interface and Usability
 Requirements are satisfied by creating text input areas, drop down boxes and submit buttons follow the same design
- For longer load times a loading wheel has been created

Prediction on Sale

Click the button below to see if your house will sell based on the attributes you have provided.

Will My House Sell?

Prediction on Most Important Attributes

Click the button below to see the most attractive factors leading to home sales in the chosen area.

Most Important Attributes

Data Visualizations

Click the button below to see a collection of valuable statistics pertaining to the chosen area.

Data Visualizations

Front End Subsystem

Function Cards

- Satisfies the Functional Requirements:
 - Users able to input attributes and location for predictive home sale analysis
 - Users able to view data
 visualizations for housing data
 based on zip code
 - Users able to view most influential factors in home sales for a given area
- Results displayed in pop-up modals which continue the adherence to Single Page Web

⁻Application

Back End Subsystem

- Programming language: Python
- Web Framework: Django
- Web Server: Apache
- Host: AWS
- Description: The Django backend will also be broken into many different functions, but it will follow a MVC format. Functions such as making calls to the Zillow API, querying the database, sending data to the frontend to be displayed, etc.

Database Subsystem

- MySQL Database data stored in relational DB. Includes, among other things:
 - Zipcode
 - Status (sold/unsold)
 - Home attributes (floor type, parking, etc.)
- Data from Zillow (via PyZillow API).
 - Ideally, data would be directly from MLS database- constantly updated and more complete.

Machine Learning Subsystem

- Machine Learning with Random Forest.
 - Binary classifications on categorical features is more straightforward
 - Generates an ensemble of decision trees and uses the majority classification of those trees to determine result
 - implemented using Scikit-learn library in Python
 - K-fold Cross validation

Tasks

- Generates a trained random forest model from the data from surrounding homes
- Makes predictions on whether a user's house will sell based on the features of the home
- Generate a list of features

Demonstration

Future Efforts

- Allow multiple data visualization options
- Invite realtors to submit posts to the blog
- Adjust the front-end for mobile phone browsers
- Add support for more classifiers
 - Support Vector Machine
 - Deep Belief Network
- Implement a login system for saving results
- Predicting the price of a home sale by running multiple Random Forests
- Realtor Ranking

References

- 1. Breiman, Leo. "Random Forests." *Machine Learning* 45.1 (2001): 5-32. Print.
- 2. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Ijcai. 1995. Stanford, CA. Print.
- 3. Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference. 2010. van der Voort S, Millman J. Print.
- 4. Pedregosa, Fabian, et al. "Scikit-Learn: Machine Learning in Python." *Journal of Machine Learning Research* 12.Oct (2011): 2825-30. Print.
- 5. Walt, Stéfan van der, S Chris Colbert, and Gael Varoquaux. "The Numpy Array: A Structure for Efficient Numerical Computation." *Computing in Science & Engineering* 13.2 (2011): 22-30. Print.

Thanks!