

Lecture 2: Number System

By A. L. Jannat Tariq

Decimal Number System

Base (also called radix) = 10

- 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- **Digit Position**
- Integer & fraction
- Digit Weight
- Weight = $(Base)^{Position}$

Magnitude

■ Sum of "Digit x Weight"

Formal Notation

Octal Number System

```
Base = 8
```

■ 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }

Weights

• Weight = $(Base)^{Position}$

Magnitude

Sum of "Digit x Weight"

Formal Notation

Binary Number System

```
Base = 2
```

• 2 digits { 0, 1 }, called binary digits or "bits"

Weights

• Weight = $(Base)^{Position}$

Magnitude

■ Sum of "Bit x Weight"

Formal Notation

Groups of bits
$$4 \text{ bits} = Nibble$$

 $8 \text{ bits} = Byte$

1011

11000101

Hexadecimal Number System

```
Base = 16
```

■ 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }

Weights

• Weight = $(Base)^{Position}$

Magnitude

Sum of "Digit x Weight"

Formal Notation

 $(1E5.7A)_{16}$

Base-r Number System

For Base - r system
$$(a_n a_{n-1} ... a_1 a_0. a_{-1} a_{-2} ... a_{-m})_r$$

$$a_n \times r^n + a_{n-1} \times r^{n-1} \dots a_1 \times r^1 + a_0 \times r^0 + a_{-1} \times r^{-1} + \dots a_{-m} \times r^{-m}$$

Find the decimal equivalent of

$$(123.4)_8$$
 [Octal] = 1 x 8² + 2 x 8¹ + 3 x 8⁰ + 4 x 8⁻¹ = 83.5

$$(B2.4)_{16}$$
 [Hexa decimal] =11 x 16¹ + 2 x 16⁰ + 4 x 16⁻¹ =178.25

 $(110101)_2$ [Binary]

$$=1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 53$$

Convert $(50)_{10}$ to $()_2$

Remainder 50

 $(110010)_2$

Convert
$$(0.125)_{10}$$
 to $()_2$

Integer

$$0.125x\ 2 = 0.25$$

$$0.25 \times 2 = 0.5$$

$$0.5 \times 2 = 1.0$$

1

$$(0.125)_{10} = (0.001)_2$$

$$(0.125)_{10} = (0.0010)_2$$

Expand to required number of digits Required

Convert
$$(0.49)_{10}$$
 to $()_2$

$$0.49 \times 2 = 0.98$$

$$0.98 \times 2 = 1.96$$

$$0.96 \times 2 = 1.92$$

$$0.92 \times 2 = 1.84$$
Integer

 $(0.49)_{10} = (0.0111111....)_2$ Limited to required number of digits

Binary to Decimal Conversion

Convert $(110110)_2$ to $()_{10}$

$$=1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$=1 \times 32 + 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 2^{0}$$

$$=1 \times 32 + 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 2^{0}$$

$$=54$$

Binary to Octal Conversion

1110001010101

For Octal- 2^3, 8bit: 2^3

$$(1110001010101)_2 \longrightarrow (16125)_8$$

Octal to Binary Conversion

octal to binary Octal: base 8 digits used 0-7

$$(6373)_8 \longrightarrow (110011111011)_2$$

Binary to Hexadecimal Conversion

1110001010101 4 bit, then Hexa decimal-2⁴

Binary Addition

Binary Addition

Binary Subtraction

Rules of Binary Subtraction

$$\Rightarrow 1 - 0 = 1$$

$$\Rightarrow 1 - 1 = 0$$

$$\Rightarrow 0 - 0 = 0$$

$$\Rightarrow 0 - 1 = 1$$

(This can not be done directly, hence we borrow one digit from the digit to the left or the next higher order digit.)

Binary Subtraction

Binary Multiplication

Binary Division

Thank you