

ADAM S.R. PARKER: PH.D. STUDENT, REHABILITATION SCIENCE

DR. PATRICK M. PILARSKI: SUPERVISOR

HUMANS AND COMPUTING

- Increasingly, humans are interacting with machine learning
- Increasing need to think about human and machine-learning interactions

 $https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSy4iqTWu-fEr3H_blu9s2Sc6TgjXz9hWGmVCBjE8D7XTurrUFf$

REHABILITATION MEDICINE

- Human-human interaction
- Human-machine interaction
- Person first [1]
 - Language
 - Treatment

https://cloudfront.ualberta.ca/-/media/rehabilitation/faculty-site/research/research-images/navigation-4.jpg

PROSTHETIC LIMBS

- Artificial limb
- Specific rehabilitation robot
 - intended to live closely with user
- Users of prosthetic arms tend to use physical systems over myoelectric [1]

https://cdn.shopify.com/s/files/1/0870/8326/products/hook_arm_3690__10781_grande.jpeg?v=1530075365

https://www.tagesspiegel.de/images/heprodimagesfotos87120150822roboticarm-jpg/12219146/2-format43.jpg

MACHINE LEARNING AND PROSTHETICS

- Prediction
 - Dynamic/adaptive switching^[1]
- Representation
 - Selective Kanerva coding^[2]
- Control
 - Surface EMG classification for hands^[3]

^[1] Edwards, A. L., Dawson, M. R., Hebert, J. S., Sherstan, C., Sutton, R. S., Chan, K. M., & Pilarski, P. M. (2016). Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching. *Prosthetics and orthotics international*, 40(5), 573-581.

^[2] Travnik, J. B., & Pilarski, P. M. (2017, July). Representing high-dimensional data to intelligent prostheses and other wearable assistive robots: A first comparison of tile coding and selective Kanerva coding. In 2017 International Conference on Rehabilitation Robotics (ICORR) (pp. 1443-1450). IEEE.

^[3] Castellini, C., Gruppioni, E., Davalli, A., & Sandini, G. (2009). Fine detection of grasp force and posture by amputees via surface electromyography. *Journal of Physiology-Paris*, 103(3-5), 255-262.

PERSPECTIVES

- Machine-learning agent can't move robot
 - Has a goal
 - Has a human

PERSPECTIVES

PERSPECTIVES

JOINT ACTION AND EMERGENT COMMUNICATION

 Two machine agents develop an arbitrary vocabulary^[1]

- Prediction another agent^[2]
- Non-verbal communication^[3]

https://i.pinimg.com/originals/1b/6e/b2/1b6eb2e 475ce39634e43a1f7ac55450e.png

^[1] Lazaridou, A., Peysakhovich, A., & Baroni, M. (2016). Multi-agent cooperation and the emergence of (natural) language. arXiv preprint arXiv:1612.07182.

^[2] Sebanz, N., & Knoblich, G. (2009). Prediction in Joint Action: What, When, and Where. Topics in Cognitive Science, 1(2), 353–367. https://doi.org/10.1111/j.1756-8765.2009.01024.x

^[3] Brennan, A. A., & Enns, J. T. (2015). What's in a friendship? Partner visibility supports cognitive collaboration between friends. PloS one, 10(11), e0143469.

MOVING FORWARD

- Capacity for adaptation of machine learning could be of great value to rehabilitation
- Studying human-ML interactions could provide insight into human-human interaction

https://images.theconversation.com/files/214559/original/file -20180412-549-7ljgm5.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=754&fit=clip

CONCLUSION

- The world contains humans
- Communicating is an action
- Collaboration

THANK YOU

QUESTIONS?

