STOR566: Introduction to Deep Learning

Lecture 12: Generative Models I

Yao Li UNC Chapel Hill

Oct 10, 2024

Unsupervised Learning

- Working with datasets without a response variable
- Some Applications:
 - Clustering
 - Data Compression
 - Exploratory Data Analysis
 - Generating New Examples
 - ...
- Example: PCA, K-means, Autoencoders, GAN, etc

Autoencoder: Basic Architecture

 Autoencoder: A special type of DNN where the target (response) of each input is the input itself.

Autoencoder: Basic Architecture

 Autoencoder: A special type of DNN where the target (response) of each input is the input itself.

• Objective:

$$\|\mathbf{x} - \mathbf{D}(\mathbf{E}(\mathbf{x}))\|^2$$

Encoder: $\boldsymbol{E}: \mathbb{R}^n \to \mathbb{R}^d$

Decoder: $\mathbf{D}: \mathbb{R}^d \to \mathbb{R}^n$

Transposed Convolution

(Figure from Dive into Deep Learning)

- Multiple input and output channels: works the same as the regular convolution
- Number of weights: $k_1 \times k_2 \times d_{in} \times d_{out} + d_{out}$

Transposed Convolution

(Figure from Dive into Deep Learning)

- Strides are specified for the output feature map
- Padding: remove rows and columns from the output

Overfitting

- Overfitting is a problem
- Solutions:
 - ullet Bottleneck layer: a low-dimensional representation of the data (d < n)
 - Denoise autoencoder
 - Sparse autoencoder
 - ...

Regularization

• Objective:

$$L(\mathbf{x}, \hat{\mathbf{x}})$$
 + regularizer,

Regularization

Objective:

$$L(x, \hat{x})$$
 + regularizer,

 $L(\cdot,\cdot)$: captures the distance between the input (x) and the output (\hat{x}) .

• Example: $\|\boldsymbol{x} - \hat{\boldsymbol{x}}\|^2$

Regularization

Objective:

$$L(x, \hat{x})$$
 + regularizer,

 $L(\cdot,\cdot)$: captures the distance between the input (x) and the output (\hat{x}) .

• Example: $\|\boldsymbol{x} - \hat{\boldsymbol{x}}\|^2$

Regularizer example:

- L_1 penalty: $\sum_i |h_i^I|$
- h_i^I : hidden output of j-th neuron in I-th layer

Sparse Autoencoder

• Objective:

$$\|\mathbf{x} - \mathbf{D}(\mathbf{E}(\mathbf{x}))\|^2 + \lambda \sum_{i} |z_i|$$

Iterate over layers.

Sparse Autoencoder

Another regularizer:

$$\|\mathbf{x} - \mathbf{D}(\mathbf{E}(\mathbf{x}))\|^2 + \lambda \sum_{j} KL(p_j||\hat{p}_j)$$

- Convert value of z to [0,1]. (e.g., sigmoid activation)
- ullet p_j : probability of activation for neuron j in the bottleneck layer

$$\bullet \hat{p}_j = \frac{1}{B} \sum_{i=1}^B z_{ij}$$

Denoising Autoencoder

Figure from Bank, Dor, Noam Koenigstein, and Raja Giryes. "Autoencoders." (2020).

• Another regularizer:

$$\|\mathbf{x} - \mathbf{D}(\mathbf{E}(\mathbf{x} + \mathbf{\delta}))\|^2$$

• δ : Random noise

Denoising Autoencoder

- ullet noisy data o clean data
- Learn to capture valuable features and ignore noise

Generative Model

Generative Problem

 In general, a trained Vanilla auto-encoder cannot be used to generate new data

Variational Autoencoder (VAE)

- Probabilistic model: will let us generate data from the model
- ullet Encoder outputs μ and σ
- ullet Draw $ilde{z} \sim \mathit{N}(\mu, \sigma)$
- ullet Decoder decodes this **latent** variable $ilde{z}$ to get the output

Variational Autoencoder (VAE)

- Maximum likelihood approach: $\Pi_i p(\mathbf{x}_i)$
- Variational lower bound as objective:
 - End-to-End reconstruction loss (e.g., square loss)
 - Regularizer: $KL(q_{\Phi}(z|x)||p(z))$
- Objective:

$$L(\mathbf{x}, \hat{\mathbf{x}}) + KL(q_{\Phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Re-parameterization Trick

Figure from Jeremy Jordon Blog

- Cannot back-propagate error through random samples
- Reparameterization trick: replace $ilde{z} \sim \mathcal{N}(\mu, \sigma)$ with $\epsilon \sim \mathcal{N}(0, I)$, $z = \epsilon \sigma + \mu$

Variational Lower Bound

Variational lower bound:

$$\log p(x) \ge E_{q(\boldsymbol{z}|\boldsymbol{x})} \left(\log p(\boldsymbol{x}|\boldsymbol{z})\right) + KL\left(q(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z})\right)$$

• How to derive the variational lower bound from the likelihood?

Adversarial Autoencoder

- The top row is a standard autoendoer
- Force the embedding space distribution towards the prior

Embedding Space Visualization

Commonly used visualization tools:

- t-SNE (t-Distributed Stochastic Neighbor Embedding)
 - Van der Maaten et al. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11).
 - Available: sklearn
- UMAP (Uniform Manifold Approximation and Projection)
 - McInnes et al. (2018). UMAP: Uniform Manifold Approximation and Projection. Journal of Open Source Software, 3(29), 861,
 - Availalbe: umap-learn
- PCA (Principal Component Analysis)
 - Available: sklearn

Examples with tSNE

- Embedding space visualization for a Vanilla autoencoer and a VAE trained on MNIST
- VAE: more compact

Examples with PCA

Problem: Game Result Prediction

Figure: Heroes of the Storm and Dota 2 characters

Assumption

Assumption

We assume a team's score can be written as

$$s_t^+ = \sum_{i \in I_t^+} w_i + \sum_{i \in I_t^+} \sum_{j \in I_t^+} \mathbf{v}_i^T \mathbf{v}_j$$

- w_i: individual ability of i-th player
- $\mathbf{v}_i \in R^d$: teamwork ability of *i*-th player
- I_t^+ : winning team player index set
- s_t^+ : winning team score

Team Ability Visualization (PCA)

Figure: Projection of team ability vector for each character (v_i) to 2-D space. Colors represents the official categorization for these characters.

Conclusions

- Autoencoder
- Regularization
- Variational Autoencoder
- Visualization tools

Questions?