The Banach-Mazur Game Gaining some intuition on Baire Categories

Nivedita Tewary

University of Auckland

The Baire Category Definitions

Let (X, \mathcal{T}) be a topological space and $M \subseteq X$.

Definition 1 (Rare). M is **rare** if the closure \bar{M} has an empty interior.

Definition 2 (Meager). M is said to be **meager** (or of the first category in X) if M is the union of countably many rare sets in X.

Definition 3 (Non-Meager). M is said to be **non-meager** (or of the second category) in X if M is not meager in X.

Can you think of examples of meager and non-meager sets of \mathbb{R} with the usual topology?

Examples of sets of the first and second categories.

In \mathbb{R} , the following sets are *non-meager*:

 \mathbb{R} i.e The Real Line

In \mathbb{R} the following sets are *meager*:

- 1 N i.e. the Natural Numbers
- 2 Q i.e the Rational Numbers

Meet Alice and Bob

Alice and Bob are immortal beings with infinite time.

(a) Alice

(b) Bob

Figure: Bob is (clearly) Evil!!!

The Banach-Mazur Game

Let's play the game!

Let X be a set with some Topology \mathcal{T} and let $\mathcal{W} \subset \mathcal{T}$ be the set of all nonempty open sets of \mathcal{T} . Alice and Bob take turns choosing sets.

- Bob goes first and chooses a non-empty open set $B_1 \subset X$.
- Then Alice chooses a non-empty open set $A_1 \subset B_1$
- Then it is now Bob's turn again so he chooses a new non-empty open subset of the set Alice chose and we continue on ...

Alice wins if:
$$\bigcap_{k=1}^{\infty} A_k \neq \emptyset$$

Otherwise Bob Wins.

Example: The Banach-Mazur Game on $\mathbb R$

Choose some $X \subseteq \mathbb{R}$.

Here it is equivalent to Alice and Bob choosing nesting open intervals of $X \subseteq \mathbb{R}$ and Alice wins if the set of all these **nested open intervals** has a common point with X.

Mazur observed:

If the complement of the set X itself is of the first Baire Category on \mathbb{R} then Alice wins!

When can Bob win the game.

Theorem Let *X* be non-meager in itself, then *X* admits no winning strategies for Bob.

Proof. Suppose for contradiction that X admits a winning strategy for Bob, call this strategy T.

Note T is based on all the sets that have been chosen before it. Let B_1 be the first set chosen by Bob under this strategy. Consider the sets directly from which Bob chooses (Alice's turn before and construct a sequence of tuples. For all $n \in \mathbb{N}$ define $\gamma_n := (A_{n-1}, B_n)$. If we let $A_0 = B_0 = X$ this is well defined.

I don't want to let Bob win the Game.

Theorem Let *X* be non-meager in itself, then *X* admits no winning strategies for Bob.

Proof. (continued) Additionally, since $(\gamma_n)_{n\in\mathbb{N}}$ is a part of a valid sequence of moves in the game we have:

- 1 For all $n \ge 2$ and $(A_{n-1}, B_n) \in \gamma_n$ there is some $(A_{n-2}, B_{n-1}) \in \gamma_{n-1}$ such that $A_{n-1} \subset B_{n-1}$.
- 2 for all $n \ge 2$ and $(A_{n-1}, B_n) \in \gamma_n$ there are some $(A_{i-1}, B_i) \in \gamma_i$ for all i < n such that the sequence $(B_1, A_1, ..., B_{n-1}, A_{n-1})$ are all all valid moves in the game by turn n - 1.

Let the sets B_i of $(\gamma_n)_{n\in\mathbb{N}}$ be chosen to be maximal under these conditions under the strategy T.

Bob wont win:)

Theorem Let *X* be non-meager in itself, then *X* admits no winning strategies for Bob.

Proof.(continued) Let $W_n := \bigcup \{B_i : (A_{i-1}, B_i) \in \gamma_i, \forall i \leq n\}$ Now we aim to show that W_n is dense in B_1 .

Consider as a base case that $W_1 = B_1$ is clearly dense in B_1 . Suppose true for all $1 \le k \le n$ then if W_{n+1} is not dense in B_1 there is some open $U \in B_1$ such that $U \cap W_{n+1} = \emptyset$. However since W_n is dense in B_1 by inductive hypothesis we have that so there is some $\gamma_n = (A_{n-1}, B_n)$ so that $B_n \cap B_1 \ne \emptyset$ and

 $\gamma_n = (A_{n-1}, B_n)$ so that $B_n \cap B_1 \neq \emptyset$ and so there is a sequence (by condition 2) such that $(B_1, A_1, ..., B_{n-1}, A_{n-1})$ and $B_n = T(B_1, A_1, ..., B_{n-1}, A_{n-1})$

I wont let Bob win!!!

Theorem Let *X* be non-meager in itself, then *X* admits no winning strategies for Bob.

Proof.(continued) Let $A'_n = B_n \cap X$ and let $B'_{n+1} = T(B_1, A_1, ..., B_n, A'_n)$. But then if we let the sequence $(\gamma'_n)_{n \in \mathbb{N}}$ be defined to contain these new sets we have a sequence of sets larger than (γ_n) , so the constructed W_n are all dense in B_1 . However, since there is a winning strategy for Bob, we have:

$$\bigcap_{n=1}^{\infty} W_n = \bigcap_{n=1}^{\infty} B_n = \emptyset.$$

Thus, the we have a collection of dense sets whose intersection is empty. Taking the converse of this statement gives us that X is meager!

not today BOB

Figure: Bob Losing

The End

Questions? Comments?