Série 4 : Réseaux électriques

Exercice 4.1:

La différence de potentiel aux bornes d'une batterie d'accumulation est de **8.5V** lorsqu'un courant de **3A** la traverse de la borne négative vers la borne positive. Quand un courant de **2A** la traverse en sens inverse, la différence de potentiel devient **11V**.Déterminer les valeurs de la résistance interne de la batterie et de sa force électromotrice.

Exercice 4.2:

Un générateur dont la f.e.m. est de **140V** présente une ddp entre ses bornes de **120V** quand il débite un courant de **50A**. Calculer :

- 1. sa résistance interne.
- 2. la puissance fournie par ce générateur.
- 3. la puissance dissipée à l'intérieur du générateur.

Exercice 4.3:

La figure 1 est une association de résistances. Quel est la résistance équivalente entre A et B.

Exercice 4.4:

Le circuit de la figure 2 comporte deux générateurs identiques mis en parallèle de f.e.m. \mathbf{E} et de résistance interne \mathbf{r} , une résistance variable $\mathbf{R}\mathbf{x}$ et un assemblage de résistances entre les points \mathbf{B} et \mathbf{C} .

- 1. Trouver la résistance équivalente \mathbf{R}_{BC} entre \mathbf{B} et \mathbf{C} .
- 2. Exprimer l'intensité du courant traversant la résistance $\mathbf{R}_{\mathbf{X}}$ en fonction de \mathbf{E} , \mathbf{r} , $\mathbf{R}_{\mathbf{X}}$ et $\mathbf{R}_{\mathbf{BC}}$.
- **3. a.** Trouver la puissance dissipée dans la résistance $\mathbf{R}_{\mathbf{X}}$.
 - **b.** Pour quelle valeur de **R**x cette puissance est-elle maximale?

On donne : E=6V, $r=1\Omega$, $R=14\Omega$.

Exercice 4.5:

Le circuit de la figure 3 comporte deux générateurs identiques de f.e.m \mathbf{E} et de résistances internes \mathbf{r} , une résistance $\mathbf{R}=2\mathbf{r}$ et une résistance variable $\mathbf{R}_{\mathbf{X}}$.

- 1. Déterminer les expressions des courants I₁, I₂, et I₃ en fonction de r, R_x, et E.
- 2. Déterminer l'expression de la puissance dissipée dans la résistance **R**x.
- 3. Pour quelle valeur de la résistance $\mathbf{R}_{\mathbf{X}}$ en fonction de \mathbf{r} cette puissance est-elle maximale ?

Exercice 4.6:

Le circuit de la figure 4 comprend un générateur de f.e.m. **E** et de résistance interne **r**₁, un récepteur de f.c.e.m. **e** et de résistance interne **r**₂, et une résistance **R**.

- 1. Déterminer les valeurs des intensités de courant I₁, I₂, et I₃.
- **2.** Déterminer les puissances reçue et utile du récepteur ainsi que son rendement.
- **3.** Déterminer la puissance dissipée par effet Joule dans le circuit.
- 4. Faire le bilan d'énergie du circuit.

On donne : E=20V, e=10V, $r_1=1\Omega$, $r_2=2\Omega$, $R=6\Omega$.

Figure 4

Exercice 4.7:

On considère le circuit de la figure 5 ci-contre comportant un générateur de f.e.m. $E_1=100V$ et un générateur réversible de f.e.m. $E_2=50V$, de résistances internes respectives $\mathbf{r}_1=1\mathbf{k}\Omega$, $\mathbf{r}_2=2\mathbf{k}\Omega$, et un récepteur de f.c.e.m. \mathbf{e} et de résistance interne $\mathbf{r}'=1\mathbf{k}\Omega$.

- Etablir les expressions des intensités des courants I₁, I₂ et I₃ circulant dans les différentes branches du circuit.
- 2. Quelle condition doit vérifier la f.c.e.m. du récepteur pour que le dispositif puisse fonctionner?
- 3. Calculer I_1 , I_2 et I_3 pour e=60V.
- 4. L'élément de f.e.m. **E2** fonctionne t-il comme générateur ou récepteur? Justifier.

Figure 5

Exercice 4.8 : La figure 6 représente un circuit composé d'un générateur de fem E et de résistance interne négligeable, de deux résistances R_1 et R_2 , d'un condensateur de capacité C et d'un interrupteur C. En réalité le condensateur C est assemblage de plusieurs condensateurs comme le montre la figure 7. On donne : $R_1 = R_2 = 1k\Omega$. $C_0 = 4\mu F$, et E = 12V.

- I. On considère C complètement chargé et K fermé :
 - 1. Calculer la capacité équivalente C en fonction de C₀.
 - 2. Calculer les intensités de courant dans chaque branche du circuit de la figure 6.
 - 3. Calculer la valeur de la ddp V_A-V_B, et déduire la charge emmagasinée dans C.
- II. On ouvre l'interrupteur K.
 - 1. Que va t-il se passer.
 - 2. Etablir l'équation différentielle de la charge Q(t) dans C en fonction du temps t.
 - **3.** Résoudre cette équation et déduire l'expression de Q(t).
 - **4.** Tracer qualitativement l'évolution de $\mathbf{Q}(\mathbf{t})$ en précisant les valeurs de la constante de temps et des charges finale et initiale.

<u>Exercice 4.9</u>: On considère le circuit électrique de la figure 8, comprenant deux générateurs réversibles de f.e.m E₁=2E et E₂=E, deux résistances R₁=2R et R₂=R, un condensateur de capacité C et un interrupteur K. Initialement, le condensateur est déchargé et K fermé.

- 1. Déterminer les expressions des courants i_1 , i_2 , et i_3 tels qu'indiqués dans le circuit en fonction de \mathbf{E} ,
- R, C et q, q étant la charge du condensateur.
- 2. Déduire l'équation différentielle régissant la charge $\mathbf{q}(t)$ du condensateur et montrer que sa solution peut être écrite sous la forme : $\mathbf{q}(t) = \mathbf{Q}_0 \left(\mathbf{1} e^{-\frac{t}{\tau}} \right)$. Préciser les expressions de la charge finale \mathbf{Q}_0 et de $\boldsymbol{\tau}$ ainsi que leurs valeurs numériques.
- 3. Trouver l'expression du courant de charge $i_3(t)$. Tracer la courbe de ce courant en fonction du temps en précisant ses valeurs à t=0 et $t=\tau$.
- 4. Le condensateur est complètement chargé, calculer les valeurs des courants dans le circuit.
- 5. Le condensateur étant complètement chargé, on ouvre l'interrupteur K. Calculer la valeur de la nouvelle charge finale Q_1 . Comparer Q_0 et Q_1 et expliquer ce qui s'est passé.

Exercice 4.10 : On considère le circuit de la figure 9, formé d'un générateur de f.e.m E, de deux résistances R₁ et R₂, et de deux condensateurs C₁ et C₂ initialement non chargés.

- 1- Le commutateur **K** étant en position 1 :
 - a- Etablir l'équation différentielle régissant la charge
 q2(t) du condensateur C2 en fonction du temps t.
 - b- Déterminer l'expression de q₂(t).
 - c- Déduire le courant de la charge du condensateur
 i(t) et tracer qualitativement sa courbe.
- 2. Le condensateur C2 étant entièrement chargé :
 - a- Quelle est l'énergie WG fournie par le générateur?
 - b- Quelle est l'énergie Wc2 emmagasinée par C2?
 - c- Quelle a été l'énergie W_J dissipée par effet Joule dans le réseau?
 - **d-** Quelles sont les charges Q_1 et Q_2 , respectivement de C_1 et C_2 ?
- 3- Le condensateur C_2 étant toujours entièrement chargé, on met le commutateur K en position 2, déterminer à l'état d'équilibre final :
 - a- Les charges Q'1 et Q'2 de C1 et C2, respectivement.
 - b- Les énergies W'c1 et W'c2 emmagasinées respectivement par C1 et C2.
 - c- En déduire l'énergie W'J dissipée dans le réseau.

Exercice 4.11 : On considère le circuit de la figure 10, composé d'un générateur de f.e.m E et de résistance interne r, d'un condensateur de capacité C, d'un interrupteur K, de deux résistances identiques R et d'un récepteur de f.c.e.m e et de résistance interne r'.

Partie A : On considère l'interrupteur K fermé et le condensateur C complètement chargé. Calculer :

- 1. Les intensités des courants circulant dans chaque branche.
- 2. La puissance utile P_e du récepteur et la puissance P_J dissipée par effet Joule dans les résistances. Etablir le bilan d'énergie.
- 3. Le rendement η du récepteur.
- **4.** La différence de potentiel **V**_C aux bornes du condensateur, sa charge **Q**₀ accumulée ainsi que son énergie emmagasinée **U**_C.

Partie B: A l'instant t=0s, on ouvre l'interrupteur K.

- 1. Ecrire l'équation différentielle décrivant l'évolution de la charge $\mathbf{Q}(\mathbf{t})$ du condensateur.
- 2. Déterminer l'expression de la charge Q(t) et montrer qu'on peut l'écrire sous la forme :

 $Q(t) = (Q_i - Q_f)\exp(-t/\tau) + Q_f$, Préciser les valeurs de Q_i , Q_f , et de la constante de temps τ .

- 3. a) Déduire l'expression de la différence de potentiel $V_C(t)$ aux bornes du condensateur.
 - b) Tracer la courbe de $V_c(t)$. Prendre $\exp(-1)=0$;37. Echelle : $1 \text{cm} \rightarrow 20 \text{ ms}$, $1 \text{cm} \rightarrow 10 \text{ V}$.
 - c) Le condensateur se décharge-t-il entièrement. Justifier.

Figure 9