rafa:: R Automatic Forecasting Algorithm

J. Renato Leripio Codeplan/DF

9 de maio de 2019

Motivação

• Geração de benchmarks (variáveis com referência).

¹Dentro da classe de modelos univariados utilizados.

Motivação

- Geração de benchmarks (variáveis com referência).
- Melhor previsão possível¹ (variáveis sem referência).

¹Dentro da classe de modelos univariados utilizados.

Objetivo

• Gerar previsões robustas:

Objetivo

- Gerar previsões robustas:
- Identificar o modelo com melhor desempenho preditivo.

Objetivo

- Gerar previsões robustas:
- Identificar o modelo com melhor desempenho preditivo.
- ② Calcular corretamente o intervalo de confiança.

 A partir de uma série temporal qualquer, ajustar um grande conjunto de modelos.

- A partir de uma série temporal qualquer, ajustar um grande conjunto de modelos.
- ② Calcular estatísticas de acurácia para cada modelo.

- A partir de uma série temporal qualquer, ajustar um grande conjunto de modelos.
- 2 Calcular estatísticas de acurácia para cada modelo.
- Melhor modelo é selecionado.

- A partir de uma série temporal qualquer, ajustar um grande conjunto de modelos.
- 2 Calcular estatísticas de acurácia para cada modelo.
- Melhor modelo é selecionado.
- Melhor modelo sofre processo adicional de refinamento.

- A partir de uma série temporal qualquer, ajustar um grande conjunto de modelos.
- 2 Calcular estatísticas de acurácia para cada modelo.
- Melhor modelo é selecionado.
- Melhor modelo sofre processo adicional de refinamento.
- São geradas as previsões (valores centrais/intervalo de confiança).

Etapa 1: Modelos disponíveis (pacote forecast)

- ARFIMA
- ARIMA
- ETS
- HOLT
- HOLT-WINTERS
- MEANF
- NNETAR
- SES
- SPLINEF
- STRUCTS
- TBATS
- THETAF

Etapa 2: Computar os erros de previsão.

Forma convencional

Fonte: Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2.

Etapa 3: Calcular acurácia dos modelos.

RMSE =
$$\sqrt{\frac{\sum_{i=1}^{n}(y_{i} - \hat{y}_{i})^{2}}{n}}$$
 (1)

$$MAE = \frac{\left|\sum_{t=1}^{T} (y_t - \hat{y_t})\right|}{n}$$
 (2)

$$DIR = \begin{cases} 1 & \text{se } sgn(\hat{y}_t - y_{t-1}) = sgn(y_t - y_{t-1}) \\ -1 & \text{se } sgn(\hat{y}_t - y_{t-1}) \neq sgn(y_t - y_{t-1}) \end{cases}$$
(3)

Etapa 4: Refinamento das previsões (bagging).

Passo 1: Série é decomposta e parte "aleatória" sofre processo de reamostragem.

Passo 2: Variações da parte aleatória são reintroduzidas à série.

Fonte: Elaboração própria com dados da PED/DF

Projeções são computadas

Densidade das projeções para cada horizonte.

Fonte: Elaboração própria com dados gerados pelo modelo.

Sintaxe: rafa::auto_forecast

data = série temporal univariada

rafa :: auto_forecast(data, h, h_cv, window, acc, n, level, exclude, test)

```
h = \text{horizonte para previsões } (12)
h cv = horizonte para validação-cruzada (1)
window = tamanho da janela para validação-cruzada (NULL)
acc = medida de acurácia ("MAE")
n = \text{número de simulações por bootstrap} (100)
level = nível de significância para os intervalos de confiança (0.05)
exclude = modelos a serem excluídos do processo (NULL)
test = data ou número da primeira observação da amostra de teste (NULL)
```

Exemplo: Taxa de desemprego.

Fonte: Elaboração própria com dados da PED/DF.

Performance dos modelos

Model	MAE	RMSE	Wrong dir	Right dir
tbats	0.21	0.26	3	9
ets	0.26	0.32	3	9
arfima	0.28	0.31	3	9
hw	0.31	0.37	3	9
holt	0.32	0.38	3	9
StrucTS	0.34	0.39	2	10
nnetar	0.35	0.42	5	7
ses	0.35	0.41	5	7
thetaf	0.35	0.41	4	8
splinef	0.37	0.42	2	10
meanf	3.73	3.79	7	5

Previsões para os próximos 12 meses

Point	Lower_0.95	Higher_0.95
19.81	18.84	20.54
19.69	18.78	20.44
19.48	18.41	20.31
19.01	17.99	19.85
18.76	17.68	19.56
18.45	17.47	19.29
18.48	17.40	19.37
18.39	17.27	19.31
18.23	17.19	19.34
18.65	17.37	19.76
19.24	17.89	20.34
19.84	18.47	20.91
	19.81 19.69 19.48 19.01 18.76 18.45 18.48 18.39 18.23 18.65 19.24	19.81 18.84 19.69 18.78 19.48 18.41 19.01 17.99 18.76 17.68 18.45 17.47 18.48 17.40 18.39 17.27 18.23 17.19 18.65 17.37 19.24 17.89

Inspecionando os erros

onte. Elaboração propria com base nos resultados do modeio.

• Estratégia rectify (Taieb e Hyndman, 2012): "o melhor dos dois mundos".

- Estratégia rectify (Taieb e Hyndman, 2012): "o melhor dos dois mundos".
 - Previsões recursivas: viesada, menor variância.

- Estratégia rectify (Taieb e Hyndman, 2012): "o melhor dos dois mundos".
 - Previsões recursivas: viesada, menor variância.
 - Previsões diretas: não-viesada, maior variância.

- Estratégia rectify (Taieb e Hyndman, 2012): "o melhor dos dois mundos".
- Previsões recursivas: viesada, menor variância.
- Previsões diretas: não-viesada, maior variância.
- Solução?

- Estratégia rectify (Taieb e Hyndman, 2012): "o melhor dos dois mundos".
- Previsões recursivas: viesada, menor variância.
- Previsões diretas: não-viesada, maior variância.
- Solução?
- Previsões recursivas da série + diretas do erro de previsão

- Estratégia rectify (Taieb e Hyndman, 2012): "o melhor dos dois mundos".
- Previsões recursivas: viesada, menor variância.
- Previsões diretas: não-viesada, maior variância.
- Solução?
- Previsões recursivas da série + diretas do erro de previsão
- Resultados parecem promissores.

- Estratégia rectify (Taieb e Hyndman, 2012): "o melhor dos dois mundos".
- Previsões recursivas: viesada, menor variância.
- Previsões diretas: não-viesada, maior variância.
- Solução?
- Previsões recursivas da série + diretas do erro de previsão
- Resultados parecem promissores.
- Mas altamente sensíveis ao método empregado.

- Estratégia rectify (Taieb e Hyndman, 2012): "o melhor dos dois mundos".
- Previsões recursivas: viesada, menor variância.
- Previsões diretas: não-viesada, maior variância.
- Solução?
- Previsões recursivas da série + diretas do erro de previsão
- Resultados parecem promissores.
- Mas altamente sensíveis ao método empregado.
- Covariáveis

- Estratégia rectify (Taieb e Hyndman, 2012): "o melhor dos dois mundos".
- Previsões recursivas: viesada, menor variância.
- Previsões diretas: não-viesada, maior variância.
- Solução?
- Previsões recursivas da série + diretas do erro de previsão
- Resultados parecem promissores.
- Mas altamente sensíveis ao método empregado.
- Covariáveis
- Deep learning (LSTM)

- Estratégia rectify (Taieb e Hyndman, 2012): "o melhor dos dois mundos".
- Previsões recursivas: viesada, menor variância.
- Previsões diretas: não-viesada, maior variância.
- Solução?
- Previsões recursivas da série + diretas do erro de previsão
- Resultados parecem promissores.
- Mas altamente sensíveis ao método empregado.
- Covariáveis
- Oeep learning (LSTM)
 - Sugestões?

Repositório: https://github.com/leripio/rafa

Versão de teste:

```
devtools::install_github("leripio/rafa")
```

```
library(rafa)
```

Agradecimento: Esta ferramenta vem sendo desenvolvida na Codeplan <www.codeplan.df.gov.br> como um esforço para obter previsões confiáveis e tempestivas de variáveis econômicas.

Disclaimer: Deve-se ter em mente que esta ferramenta serve apenas para guiar análises econômicas e não deve ser considerada como uma ferramenta oficial da Codeplan ou do Governo do Distrito Federal.

Contato: joao.gomes@codeplan.df.gov.br