Cours-TD d'introduction à l'Intelligence Artificielle Partie III

Le Perceptron

Simon Gay

Menu :

- Théorie :
 - le neurone formel, pourquoi ça marche
 - Le principe du perceptron
- Pratique :
 - implémentation d'un percpetron
 - Optimisation du réseau

Le neurone formel

- Un ensemble de poids
- Apprentissage sur des exemples
- Règle de Widrow-Hoff
- Résultats concluants sur des exemples non connus

Le neurone formel

 Le neurone formel fait une moyenne des résultats positifs et des résultats négatif pour former une 'image moyenne' faisant ressortir les caractéristiques de l'élément à détecter

- Cette 'image moyenne' permet de détecter l'élément sur un vecteur d'entrées non connu
- Mais pourquoi ça marche ?

Le perceptron

- Un des plus ancien réseau supervisé
 - inventé en 1957 par Frank Rosenblatt
 - Un ou plusieurs neurones formels
 - Règle de Hebbs (puis Widrow-Hoff plus tardivement)
- Classifieur binaire : chaque neurone retourne 0 ou 1
 - Fonction d'activation à seuil

Fonction linéaire dans un plan

exemple:

$$3.y + 2.x + 1 = 0$$
 ($y = -(2/3).x - 1/3$)

Cette fonction sépare le plan en 2 :

- Si 3.y+2.x+1 > 0
 - → espace A au dessus de la courbe
- Si 3.y+2.x+1 < 0
 - → espace B en dessous de la courbe

Et si on ne connaît pas la fonction ?

Soit une fonction a.x + b.y + c = 0

Avec un ensemble de points $X_i = [x_i, y_i]$ tels que $f(X_i) > 0$ ou $f(X_i) < 0$

→ On doit trouver un triplet (a, b, c) respectant toutes les contraintes

- On prend un triplet au hasard
- On teste chaque exemple
 - Si $f(X_i)>0$ mais $ax_i+by_i+c<0$
 - II faut augmenter ax_i+by_i+c
 - Si $f(X_i)<0$ mais $ax_i+by_i+c>0$
 - Il faut réduire ax_i+by_i+c
 - Sinon, on ne fait rien

Et si on ne connaît pas la fonction ?

Pour chaque paramètre a, b et c, il faut légèrement augmenter ou diminuer la valeur proportionnellement, respectivement, à x, y et 1

- Si on note $r_i = 1$ si $f(X_i)>0$ et $r_i = -1$ si $f(X_i)<0$
 - Alors
 - $a \leftarrow a + \alpha \cdot r_i \cdot x_i$
 - $b \leftarrow b + \alpha \cdot r_i \cdot y_i$
 - $c \leftarrow c + \alpha \cdot r_i$
 - On teste les points Xi, jusqu'à ce qu'ils soient tous du bon côté de la courbe

• Les paramètres vont évoluer jusqu'à converger vers une solution

```
Algorithme:
erreurs = vrai
tant que erreurs faire
      erreurs = faux
      pour chaque Xi faire
            si f(X_i). (a.x_i+b.y_i+c) < 0 faire
                  a += \alpha \cdot r_i \cdot x_i
                  b += \alpha \cdot r_i \cdot y_i
                  c += \alpha \cdot r_i
                  erreurs = vrai
            fin si
      fin pour
fin tant que
```


• On ne met à jour que si il y a erreur

Et le perceptron dans tout ça ?

Écrivons :

$$- a.x + b.y + c = 0$$
 \rightarrow $w_1.x_1 + w_2.x_2 + b = 0$

On généralise à un espace à n dimensions :

$$\sum_{k} w_{k}.x_{k}+b=0$$

- Les poids d'un neurone formel forment l'équation d'un hyperplan
- L'apprentissage modifie les poids pour séparer l'espace en deux pour séparer deux groupes de points de cet espace

- Quelques propriétés :
- Si l'ensemble d'exemples peut être séparé par un plan, alors :

- Convergence assurée en un nombre fini d'étapes
 - Quel que soit le nombre d'exemples
 - Quelle que soit la distribution
 - Quel que soit le nombre de dimensions de l'espace

• Perceptron avec plusieurs neurones (réseau simple couche)

- Utilisé pour définir plus de deux classes
 - Possibilité d'une sortie sur plusieurs bits
 - Exemples : code ascii d'une lettre, conversion binaire vers afficheur 7 segment...
 - Un neurone par classe
 - Compétition entre les neurones, peut utilisée car possibilité d'égalité entre deux neurones
 - → neurones à fonction d'activation continue

Perceptron avec fonction d'activation continue

- Fonctions sigmoïde, tanh, linéaire, RELU ...
 - Ajoute une information supplémentaire : le niveau de confiance dans le résultat
 - Plus on est proche de 0 ou de 1, plus on est sûr du résultat
 - Compétition entre les neurones : on considère le neurone le plus actif (pas de seuillage des résultats, résolution d'ambiguïté)

```
(1:0,013) (2:0,658) (3:0,553) (4:0,350) (5:0,112) (6:0,092)...
```

- Apprentissage par la méthode Widrow-Hoff
 - Prend en compte l'erreur → recherche plus efficace de solutions

Passons à la pratique!