COMMUTATIVE ALGEBRA

M. ATIF ZAHEER

Contents

1.	Rings and ideals	1
1.1.	Ideals and ring homomorphisms	1
1.2.	Zero-divisors, nilpotents, and units	2
1.3.	Prime and maximal ideals	2
1.4.	Nilradical and Jacobson radical	3

1. Rings and ideals

1.1. Ideals and ring homomorphisms.

Definition 1.1. Let A be a ring. A subset \mathfrak{a} of A is said to be an *ideal* of A if \mathfrak{a} is an additive subgroup of A and $\mathfrak{a}x \subset \mathfrak{a}$ for every $x \in A$.

Proposition 1.2. Let A be a ring and let \mathfrak{a} be an additive subgroup of A. Then \mathfrak{a} is an ideal of A if and only if the multiplication operation

$$(x+\mathfrak{a})(y+\mathfrak{a}) = xy + \mathfrak{a}$$

on the quotient group A/\mathfrak{a} is well-defined.

Proposition 1.3 (characterization of ideals in a quotient ring). Let A be a ring and let \mathfrak{a} be an ideal of A. Then there is an inclusion preserving bijective correspondence between the ideals \mathfrak{b} of A containing \mathfrak{a} and the ideals of A/\mathfrak{a} given by $\mathfrak{b} \mapsto \mathfrak{b}/\mathfrak{a}$.

If $\pi: A \to A/\mathfrak{a}$ is the canonical projection map, then the inverse of the map $\mathfrak{b} \mapsto \mathfrak{b}/\mathfrak{a}$ above is given by $\overline{\mathfrak{b}} \mapsto \pi^{-1}(\overline{\mathfrak{b}})$.

Claim 1.4. Images and preimages of subrings are subrings under a ring homomorphism.

Claim 1.5. Preimage of an ideal under a ring homomorphism is an ideal. The image of an ideal is an ideal of the image ring.

The image of an ideal need not be an ideal. Consider the embedding $\mathbb{Z} \to \mathbb{Q}$.

Theorem 1.6 (Isomorphism theorems).

- (a) Let $f: A \to B$ be a ring homomorphism. Then $A/\ker f \cong \operatorname{im} f$.
- (b) Let \mathfrak{a} be an ideal and let B be a subring of A. Then $B + \mathfrak{a}$ is a subring of A, $B \cap \mathfrak{a}$ is an ideal of B and

$$(B+\mathfrak{a})/\mathfrak{a} \cong B/(B\cap\mathfrak{a}).$$

(c) If $\mathfrak{a} \subset \mathfrak{b}$ are ideals of a ring A, then

$$(A/\mathfrak{a})/(\mathfrak{b}/\mathfrak{a}) \cong A/\mathfrak{b}.$$

1.2. Zero-divisors, nilpotents, and units.

Claim 1.7. The set of zero-divisors and units are disjoint.

A nilpotent is always a zero-divisor in a nonzero ring but the converse is not true as $\overline{3} \in \mathbb{Z}/6\mathbb{Z}$ and $\overline{x} \in k[x,y]/(xy)$ are both zero-divisors but not nilpotents.

Problem 1.1. Identify nilpotent elements in the ring $\mathbb{Z}/n\mathbb{Z}$.

Solution. An element $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ is nilpotent if and only if $\prod_{p|n} p$ divides a.

Proposition 1.8. Let A be a ring $\neq 0$ Then the following are equivalent:

- (a) A is a field.
- (b) The only ideals of A are 0 and (1).
- (c) Every nonzero ring homomorphism from A to a ring B is injective.

1.3. Prime and maximal ideals.

Definition 1.9. Let A be a ring. A proper ideal \mathfrak{p} of A is said to be *prime* if $xy \in A$ implies $x \in A$ or $y \in A$.

Example 1.10. (1) If A is an integral domain, then 0 is a prime ideal of A.

- (2) The prime ideals of \mathbb{Z} are precisely the zero ideal and ideals of the form (p), where p is a prime number.
- (3) The ideal $(x) \subset k[x,y]$ is prime.

Proposition 1.11. An ideal \mathfrak{p} of a ring A is prime if and only if A/\mathfrak{p} is an integral domain.

Claim 1.12. If $f: A \to B$ is a ring homomorphism and \mathfrak{q} is a prime ideal of B, then the inverse image $f^{-1}(\mathfrak{q})$ is also prime.

Proof. The proof is quite simple following directly from the definition but a more instructive proof is as follows: Consider the map $\pi \circ f : A \to B/\mathfrak{q}$, where $\pi : B \to B/\mathfrak{q}$ is the canonical projection. Then $\ker(\pi \circ f) = f^{-1}(\mathfrak{q})$. Thus we have $A/f^{-1}(\mathfrak{q}) \cong (\pi \circ f)(A)$. Since B/\mathfrak{q} is an integral domain, it follows that the subring $(\pi \circ f)(A)$ and hence $A/f^{-1}(\mathfrak{q})$ is an integral domain. This implies that $f^{-1}(\mathfrak{q})$ is prime in A.

Claim 1.13. Let $f: A \to B$ be a surjective ring homomorphism and let \mathfrak{p} be a prime ideal of A such that $\mathfrak{p} \supset \ker f$. Then the image $f(\mathfrak{p})$ is prime in B.

Definition 1.14. Let A be a ring. A proper ideal \mathfrak{m} of A is said to be *maximal* if there is no proper ideal strictly containing \mathfrak{m} .

Proposition 1.15. An ideal \mathfrak{m} of A is maximal if and only if A/\mathfrak{m} is a field.

The inverse image of a maximal ideal need not be maximal. Consider the embedding $\mathbb{Z} \to \mathbb{Q}$. However, the image of a maximal ideal under a surjective ring homomorphism containing the kernel is a maximal ideal.

Theorem 1.16. Every nonzero ring A has a maximal ideal.

Proof. Follows from Zorn's lemma.

Corollary 1.17. If \mathfrak{a} is a proper ideal of a ring A, then there is a maximal ideal of A containing \mathfrak{a} .

Corollary 1.18. Every nonunit element is contained in some maximal ideal.

Problem 1.2. Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1. Show that every prime ideal is maximal.

Solution. Let \mathfrak{p} be a prime ideal of A. Then we know that \mathfrak{p} is contained in some maximal ideal \mathfrak{m} of A. Suppose for the sake of contradiction that \mathfrak{p} is properly contained in \mathfrak{m} and let $x \in \mathfrak{m} \backslash \mathfrak{p}$. Then we have $x^n = x$ for some n > 1 and so $x(x^{n-1} - 1) = 0 \in \mathfrak{p}$. This implies that $x^{n-1} - 1 \in \mathfrak{p}$ as $x \notin \mathfrak{p}$. It now follows that $x^{n-1} - 1 \in \mathfrak{m}$ as $\mathfrak{p} \subset \mathfrak{m}$. Finally, we get that $1 \in \mathfrak{m}$ as $x \in \mathfrak{m}$, a contradiction. Hence we must have $\mathfrak{p} = \mathfrak{m}$.

Another solution: Let \mathfrak{p} be a prime ideal of A. Then A/\mathfrak{p} is an integral domain. Let $x \in A$. Then $x^n = x$ for some n > 1 and so $\overline{x}^n = \overline{x}$. If $\overline{x} \neq 0$, then $\overline{x}^{n-1} = \overline{1}$ and so \overline{x} is a unit. This shows that A/\mathfrak{p} is a field and so \mathfrak{p} is a maximal ideal.

Claim 1.19. If \mathfrak{m} is a proper ideal of a ring A such that $A \setminus \mathfrak{m} \subset A^{\times}$, then \mathfrak{m} is the unique maximal ideal of A.

Proof. Every proper ideal \mathfrak{a} is contained in $A \setminus A^{\times} \subset \mathfrak{m}$.

Claim 1.20. If \mathfrak{m} is a maximal ideal of A such that $1 + \mathfrak{m} \subset A^{\times}$, then \mathfrak{m} is the unique maximal ideal of A.

Proof. If x is a nonunit element not contained in \mathfrak{m} , then $\mathfrak{m} + (x) = (1)$ and so $x \in 1 + \mathfrak{m} \subset A^{\times}$, a contradiction.

Problem 1.3. Show that the only idempotents in a local ring are 0 and 1.

Solution. Let x be an idempotent element in a ring A and \mathfrak{m} be the unique maximal ideal of A. Then $x^2 = x$ and so x(x-1) = 0. Because $\mathfrak{m} = A \setminus A^{\times}$ we get that either x or 1-x is a unit for if both are nonunits, then both lie in \mathfrak{m} which results in $1 \in \mathfrak{m}$, a contradiction. This implies that x = 0 or x = 1.

Claim 1.21. In a PID every nonzero prime ideal is maximal.

1.4. Nilradical and Jacobson radical.

Claim 1.22. The set \mathfrak{N} of all nilpotent elements in a ring A form an ideal. Moreover, the ring A/\mathfrak{N} does not have any nonzero nilpotent elements.

Theorem 1.23. Let A be a ring. Then

$$\mathfrak{N} = \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{p}.$$

Proof. The inclusion \subset is easy. For the other inclusion let $x \in \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{p}$. Suppose for the sake of contradiction that x is not nilpotent. Then the collection of all ideals \mathfrak{a} of A for which $x^n \notin \mathfrak{a}$ for every $n \in \mathbb{N}$ has a maximal element \mathfrak{p} by the Zorn's lemma. It is then easy to see that \mathfrak{p} is a prime ideal and so we obtain a contradiction.

Problem 1.4. Let A be a ring and let \mathfrak{N} be its nilradical. Show that the following are equivalent:

- (a) A has exactly one prime ideal.
- (b) Every element of A is either a unit of a nilpotent.
- (c) A/\mathfrak{N} is a field.

Solution. (a) \Rightarrow (b): Let $x \in A$ be a nonunit. Then x lies in some prime ideal \mathfrak{p} of A. But by assumption \mathfrak{p} is the unique prime ideal of A and so $\mathfrak{N} = \mathfrak{p}$. Thus x is a nilpotent.

- (b) \Rightarrow (c): By assumption we have $A \setminus A^{\times} \subset \mathfrak{N}$. This immediately shows that \mathfrak{N} is the unique maximal ideal of A by Claim 1.19 and so A/\mathfrak{N} is a field.
- (c) \Rightarrow (a): If \mathfrak{p} is a prime ideal of A, then $\mathfrak{N} \subset \mathfrak{p}$. Since \mathfrak{N} is a maximal ideal we get that $\mathfrak{p} = \mathfrak{N}$. Hence, \mathfrak{N} is the unique prime ideal of A.

Theorem 1.24. Let \mathfrak{R} be the Jacobson radical of a ring A. Then $x \in \mathfrak{R}$ if and only if $1 + xy \in A^{\times}$ for every $y \in A$.