

Winter - 2015Examination

Subject& Code:Basic Maths (17105)

Model Answer

Page No:1/26

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
		Important Instructions to the Examiners:		
		1) The answers should be examined by key words and not as		
		word-to-word as given in themodel answer scheme.		
		2) The model answer and the answer written by candidate may		
		vary but the examiner may tryto assess the understanding		
		level of the candidate.		
		3) The language errors such as grammatical, spelling errors		
		should not be given more importance. (Not applicable for		
		subject English and Communication Skills.)		
		4) While assessing figures, examiner may give credit for		
		principal components indicated in thefigure. The figures		
		drawn by the candidate and those in the model answer may		
		vary. The examiner may give credit for any equivalent		
		figure drawn.		
		5) Credits may be given step wise for numerical problems. In		
		some cases, the assumed constant values may vary and there		
		may be some difference in the candidate's answers and the		
		model answer.		
		6) In case of some questions credit may be given by judgment		
		on part of examiner of relevant answer based on candidate's		
		understanding.		
		7) For programming language papers, credit may be given to		
		any other program based on equivalent concept.		

Subject& Code:Basic Maths (17105)

Model Answer

Page No:2/26

Que.	Sub.	Model Answer	Marks	Total
No. 1.	Que.	Attempt any <u>TEN</u> of the following:		Marks 20
		Solve $\begin{vmatrix} 1 & x & x^2 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 5 & 4 \\ 5 & 4 \end{vmatrix}$	1	
	Ans	$1(4-2)-x(4-1)+x^{2}(2-1)=20-20$		
		$2-3x+x^2=0$	1/2	
		(x-1)(x-2) = 0 $ x = 1 or x = 2$	1/2	2
		x = 1 or $x = 2$	72	
	b)	If $A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$, find $2A + 3B - 4I$, Where I is the unit matrix of order two		
	Ans	$2A + 3B - 4I = 2\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} + 3\begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
		$= \begin{bmatrix} 4 & 6 \\ 8 & 14 \end{bmatrix} + \begin{bmatrix} 3 & 9 \\ 12 & 18 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$	1	
		$= \begin{bmatrix} 3 & 15 \\ 20 & 28 \end{bmatrix}$	1	2
	c)	If $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Prove that $A^2 - 3A = 2I$,		
		Where I is the unit matrix of order two		
	Ans	$A^2 = AA = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 12 \\ 3 & 5 \end{bmatrix}$	1	
		$3A = \begin{bmatrix} 6 & 12 \\ 3 & 3 \end{bmatrix}$	1/2	
		$\begin{bmatrix} A^2 - 3A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 2I$	1/2	2
	d)	If $A = \begin{bmatrix} 1 & 2 \\ 5 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 6 \\ -3 & 4 \end{bmatrix}$ then verify that $(AB)' = B'A'$		
	Ans	$AB = \begin{bmatrix} 1 & 2 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 14 \\ 1 & 42 \end{bmatrix}$	1/2	

Subject& Code:Basic Maths (17105)

Model Answer

Page No:3/26

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
1.		$(AB)' = \begin{bmatrix} -4 & 1 \\ 14 & 42 \end{bmatrix}$	1/2	
		$(AB)' = \begin{bmatrix} -4 & 1\\ 14 & 42 \end{bmatrix}$ $B'A' = \begin{bmatrix} 2 & -3\\ 6 & 4 \end{bmatrix} \begin{bmatrix} 1 & 5\\ 2 & 3 \end{bmatrix}$	1/2	
		$= \begin{bmatrix} -4 & 1 \\ 14 & 42 \end{bmatrix}$	1/2	2
	e) Ans	Resolve into partial fraction $\frac{1}{x^2 + 3x + 2}$ $\frac{1}{x^2 + 3x + 2} = \frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$	1/2	
		$\therefore 1 = A(x+2) + B(x+1)$		
		Put $x = -1$	1/2	
		A = 1 Put $x = -2$	1/2	
		B=-1		
		$\therefore \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} + \frac{-1}{x+2}$	1/2	2
	f)	Prove that $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$		
	Ans	$\cos 2\theta = \cos(\theta + \theta)$	1/2	
		$= \cos \theta \cos \theta - \sin \theta \sin \theta$ $= \cos^2 \theta - \sin^2 \theta$	1 1/2	2
		- cos <i>v</i> - sin <i>v</i>		
	g)	Without using calculator, find the value of sin15 ⁰		
	Ans	$\sin 15^0 = \sin \left(60^0 - 45^0 \right)$		
		$= \sin 60^{\circ} \cos 45^{\circ} - \cos 60^{\circ} \sin 45^{\circ}$	1	
		$=\frac{\sqrt{3}}{2}\frac{1}{\sqrt{2}}-\frac{1}{2}\frac{1}{\sqrt{2}}$		
		$=\frac{\sqrt{3}-1}{2\sqrt{2}}$	1	2
		$Q\sqrt{2}$ QR		
		$\sin 15^{0} = \sin \left(45^{0} - 30^{0} \right)$		

Subject& Code:Basic Maths (17105) **Model Answer Page No:**4/26

Que.	Sub.	Model Answer	Marks	Total
No.	Que.			Marks
1.		$= \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$ $= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \frac{1}{2}$ $= \frac{\sqrt{3} - 1}{2\sqrt{2}}$	1	2
	h) Ans	Prove that $\frac{\tan 420^{0} + \tan 300^{0}}{1 - \tan 420^{0} \tan 660^{0}} = 0$ $\frac{\tan 420^{0} + \tan 300^{0}}{1 + \tan 300^{0}}$		
		$1 - \tan 420^{\circ} \tan 660^{\circ}$ $= \frac{\tan 420^{\circ} + \tan 300^{\circ}}{1 - \tan 420^{\circ} \tan \left(360^{\circ} + 300^{\circ}\right)}$	1/2	
		$= \frac{\tan 420^{\circ} + \tan 300^{\circ}}{1 - \tan 420^{\circ} \tan 300^{\circ}}$ $= \tan \left(420^{\circ} + 300\right)$	1/2	
		$=\tan\left(720^{\circ}\right)$	1/2	2
		=0	1/2	
		$\frac{\tan 420^{0} + \tan 300^{0}}{1 - \tan 420^{0} \tan 660^{0}}$		
		$= \frac{\tan(4\times90^{0}+60^{0})+\tan(3\times90^{0}-30^{0})}{1-\tan420^{0}\tan660^{0}}$	1/2	
		$= \frac{\tan(60^{\circ}) - \cot(30^{\circ})}{1 - \tan 420^{\circ} \tan 660^{\circ}}$	1/2	
		$= \frac{\sqrt{3} - \sqrt{3}}{1 - \tan 420^{\circ} \tan 660^{\circ}}$	1/2	
		$1 - \tan 420^{\circ} \tan 660^{\circ}$ = 0	1/2	2
	i) Ans	If $\sin 80 + \sin 50 = 2 \sin A \cos A$ then find A and B Consider $\sin 80 + \sin 50 = 2 \sin A \cos A$ $\therefore 2 \sin 65 \cos 15 = 2 \sin A \cos A$ In this case we can not find B		
	j)	Prove that: $\sin(n+1)A\sin(n+2)A + \cos(n+1)A\cos(n+2)A = \cos A$		
	Ans	$\sin(n+1)A\sin(n+2)A + \cos(n+1)A\cos(n+2)A$		

Subject& Code:Basic Maths (17105)

Model Answer

Page No:5/26

Que.	Sub.	M - 1-1 A	M1	Total
No.	Que.	Model Answer	Marks	Marks
1.		$=\cos((n+1)A-(n+2)A)$	1	
		$=\cos\left(nA+A-nA-2A\right)$		
		$=\cos(-A)$	1/2	
		$=\cos A$	1/2	2
	k)	Find distance between parallel lines $3x + 2y - 6 = 0$ and $3x + 2y - 12 = 0$		
	,			
	Ans	$p = \left \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right $		
			1	
		$= \left \frac{-12 - \left(-6\right)}{\sqrt{3^2 + 2^2}} \right $		
		$= \left \frac{-6}{\sqrt{13}} \right $		
		$=\frac{6}{\sqrt{13}}$	1	
		√13	1	2
		3 4 2		
	1)	Evaluate 12 16 8		
		$ -5 -6 \ 0 $		
		3 4 2		
	Ans	12 16 8		
		$\begin{vmatrix} -5 & -6 & 0 \end{vmatrix}$	1	
		= 3(0-(-48))-4(0-(-40))+2(-72-(-80))	1	
		=0	1	2
		Attached and FOLID of the fellowing		16
2.		Attempt any <u>FOUR</u> of the following:		
	a)	Solve the following equations by using Cramer's rule		
		x + y - z = 0, 2x + y + 3z = 9, x - y + z = 2		
	Ans	$D = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & -1 & 1 \end{vmatrix} = 1(1+3)-1(2-3)-1(-2-1) = 8$		
		$\begin{bmatrix} b - 2 & 1 & 3 \\ 1 & -1 & 1 \end{bmatrix}$	1	
		$D_{x} = \begin{vmatrix} 0 & 1 & -1 \\ 9 & 1 & 3 \\ 2 & -1 & 1 \end{vmatrix} = 0(1+3)-1(9-6)-1(-9-2) = 8$	1/2	

Subject& Code: Basic Maths (17105)

Model Answer

Page No:6/26

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
2.	~	$D_{y} = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 9 & 3 \\ 1 & 2 & 1 \end{vmatrix} = 1(9-6) - 0(2-3) - 1(4-9) = 8$ $\begin{vmatrix} 1 & 1 & 0 \end{vmatrix}$	1/2	
		$D_z = \begin{vmatrix} 1 & 1 & 0 \\ 2 & 1 & 9 \\ 1 & -1 & 2 \end{vmatrix} = 1(2+9)-1(4-9)+0(-2-1)=16$	1/2	
		$\therefore x = \frac{D_x}{D} = \frac{8}{8} = 1$	1/2	
		$\therefore y = \frac{D_y}{D} = \frac{8}{8} = 1$	1/2	
		$\therefore z = \frac{D_z}{D} = \frac{16}{8} = 2$	1/2	4
	b)	Find x, y, z if $ \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix} + 2 \begin{bmatrix} 3 & 0 & 2 \\ 1 & 4 & 5 \\ 2 & 1 & 0 \end{bmatrix} $		
	Ans	$ \left\{ \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix} + 2 \begin{bmatrix} 3 & 0 & 2 \\ 1 & 4 & 5 \\ 2 & 1 & 0 \end{bmatrix} \right\} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} $		
			1/2	
		$\begin{bmatrix} 7 & 3 & 6 \\ 4 & 8 & 11 \\ 7 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	1	
		$\begin{bmatrix} 7+6+18 \\ 4+16+33 \\ 7+6+6 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	1	
		$\begin{bmatrix} 31 \\ 53 \\ 19 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	1	
		$\therefore x = 31, y = 53, z = 19$	1/2	4
	c)	If $A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$ show that $A^2 - 8A$ is scalar matrix		

Subject& Code:Basic Maths (17105) **Model Answer** **Page No:**7/26

Que.	Sub.	Model Angrees	Monles	Total
No.	Que.	Model Answer	Marks	Marks
2.	Ans	$A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$ $A^{2} = AA = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$ $= \begin{bmatrix} 4+16+16 & 8+8+16 & 8+16+8 \\ 8+8+16 & 16+4+16 & 16+8+8 \\ 8+16+8 & 16+8+8 & 16+16+4 \end{bmatrix}$	1/2	
		$= \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix}$	1	
		$8A = 8 \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16 \end{bmatrix}$	1/2	
		$A^{2} - 8A = \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix} - \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16 \end{bmatrix}$	1	
		$= \begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{bmatrix}$ $\therefore A^2 - 8A \text{ is scalar matrix}$	1	4
	d) Ans	If $A = \begin{bmatrix} -2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 1 & 1 \end{bmatrix}$ show that the matrix AB is non-singular $AB = \begin{bmatrix} -2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 1 & 1 \end{bmatrix}$		
		$= \begin{bmatrix} 0+0+1 & -2+0+1 \\ 0+4+3 & 1+6+3 \end{bmatrix}$ $= \begin{bmatrix} 1 & -1 \\ 7 & 10 \end{bmatrix}$	2	
		$AB = \begin{vmatrix} 1 & -1 \\ 7 & 10 \end{vmatrix} = 10 - (-7)$ $= 17$	1½	

Subject& Code:Basic Maths (17105)

Model Answer

Page No:8/26

Que.	Sub.	Model Answer	Marks	Total
No.	Que.			Marks
2.		∴ $AB \neq 0$ ∴ AB is non-singular matrix	1/2	4
	e)	Resolve into partial fraction $\frac{3x-1}{(x-4)(2x+1)(x-1)}$		
	Ans	$\frac{3x-1}{(x-4)(2x+1)(x-1)} = \frac{A}{x-4} + \frac{B}{2x+1} + \frac{C}{x-1}$	1/2	
		3x-1=A(2x+1)(x-1)+B(x-4)(x-1)+C(x-4)(2x+1)		
		Put $x = 4$		
		3(4)-1=A(2(4)+1)(4-1)		
		11 = A(9)(3)		
		11 = A(27)		
		$\therefore A = \frac{11}{27}$	1	
		Put $x = \frac{-1}{2}$		
		$3\left(\frac{-1}{2}\right) - 1 = B\left(\frac{-1}{2} - 4\right)\left(\frac{-1}{2} - 1\right)$		
		$\frac{-5}{2} = B\left(\frac{-9}{2}\right)\left(\frac{-3}{2}\right)$		
		$\frac{-5}{2} = B\left(\frac{27}{4}\right)$	1	
		$\therefore B = \frac{-10}{27}$		
		Put $x = 1$		
		3(1)-1=C(1-4)(2(1)+1)		
		$2 = C\left(-3\right)\left(3\right)$	1	
		$\therefore C = \frac{-2}{9}$	1	
		$\frac{3x-1}{(x-4)(2x+1)(x-1)} = \frac{\frac{11}{27}}{x-4} + \frac{\frac{-10}{27}}{2x+1} + \frac{\frac{-2}{9}}{x-1}$	1/2	4

Subject& Code:Basic Maths (17105)

Model Answer

Page No:9/26

Que.	Sub.			Total
No.	Que.	Model Answer	Marks	Marks
2.	f)	Solve by Cramer's rule $x + y + z = 6$, $2x - y + 3z = 9$, $x + 2y + 3z = 14$		
	Ans	$D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \\ 1 & 2 & 3 \end{vmatrix} = 1(-3-6)-1(6-3)+1(4+1) = -7$	1	
		$D_{x} = \begin{vmatrix} 6 & 1 & 1 \\ 9 & -1 & 3 \\ 14 & 2 & 3 \end{vmatrix} = 6(-3-6)-1(27-42)+1(18+14) = -7$	1/2	
		$D_{y} = \begin{vmatrix} 1 & 6 & 1 \\ 2 & 9 & 3 \\ 1 & 14 & 3 \end{vmatrix} = 1(27 - 42) - 6(6 - 3) + 1(28 - 9) = -14$	1/2	
		$D_z = \begin{vmatrix} 1 & 1 & 6 \\ 2 & -1 & 9 \\ 1 & 2 & 4 \end{vmatrix} = 1(-14-18)-1(28-9)+6(4+1) = -21$	1/2	
		$\therefore x = \frac{D_x}{D} = \frac{-7}{-7} = 1$	1/2	
		$\therefore y = \frac{D_y}{D} = \frac{-14}{-7} = 2$	1/2	
		$\therefore z = \frac{D_z}{D} = \frac{-21}{-7} = 3$	1/2	4
3.		Attempt any <u>FOUR</u> of the following:		16
3.	a)	Using matrix inversion method solve the following equations: x+3y+2z=6, $3x-2y+5z=5$, $2x-3y+6z=7$		10
	Ans	$Let A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & -3 & 6 \end{bmatrix}$		
		A = 1(-12+15) - 3(18-10) + 2(-9+4)		
		A = 3 - 24 - 10		
		$\therefore A = -31 \neq 0$	1/2	
		$\therefore A^{-1}$ exists		
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} -2 & 5 \\ -3 & 6 \end{vmatrix} & \begin{vmatrix} 3 & 5 \\ 2 & 6 \end{vmatrix} & \begin{vmatrix} 3 & -2 \\ 2 & -3 \end{vmatrix} \\ \begin{vmatrix} 3 & 2 \\ -3 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 2 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 2 & -3 \end{vmatrix} \\ \begin{vmatrix} 3 & 2 \\ -2 & 5 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 3 & -2 \end{vmatrix} \end{bmatrix}$		

Subject& Code:Basic Maths (17105) **Model Answer Page No:**10/26

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
3.	~	Matrix of minors $= \begin{bmatrix} 3 & 8 & -5 \\ 24 & 2 & -9 \\ 19 & -1 & -11 \end{bmatrix}$		
		Matrix of cofactors = $\begin{bmatrix} 3 & -8 & -5 \\ -24 & 2 & 9 \\ 19 & 1 & -11 \end{bmatrix}$	1½	
		$Adj.A = \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix}$	1/2	
		$A^{-1} = \frac{1}{ A } \text{Adj.} A$ $A^{-1} = \frac{1}{-31} \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix}$ $\therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{-31} \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ 7 \end{bmatrix}$	1/2	
		$ \therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{-31} \begin{bmatrix} 18 - 120 + 133 \\ -48 + 10 + 7 \\ -30 + 45 - 77 \end{bmatrix} $ $ \therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{-31} \begin{bmatrix} 31 \\ -31 \\ -62 \end{bmatrix} $ $ \therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} $ $ \therefore x = -1, y = 1, z = 2 $	1/2	4
	b) Ans	Resolve into partial fractions $\frac{2x-3}{(x+1)(x^2+4)}$ $\frac{2x-3}{(x+1)(x^2+4)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+4}$ $\therefore 2x-3 = (x^2+4)A + (x+1)(Bx+C)$ Put $x = -1$ $\therefore 2(-1)-3 = ((-1)^2+4)A+0$	1/2	

Subject& Code:Basic Maths (17105)

Model Answer

Page No:11/26

Que.	Sub.	N. 1.1.A) / 1	Total
No.	Que.	Model Answer	Marks	Marks
3.		$\therefore -5 = 5A$ $\therefore \boxed{A = -1}$ Put $x = 0$	1	
		$\therefore 2(0) - 3 = ((0)^{2} + 4)A + ((0) + 1)(B(0) + C)$ $\therefore -3 = 4A + C$ $\therefore -3 = -4 + C$ $\therefore \boxed{C = 1}$ Put $x = 1$ $\therefore 2(1) - 3 = (1^{2} + 4)A + (1 + 1)(B(1) + C)$ $\therefore -1 = 5A + 2B + 2C$ $\therefore -1 = -5 + 2B + 2$ $\therefore \boxed{B = 1}$	1	
		$\therefore \frac{2x-3}{(x+1)(x^2+4)} = \frac{-1}{x+1} + \frac{x+1}{x^2+4}$	1/2	4
	c)	Resolve into partial fractions $\frac{5\cos x - 3}{(\cos x + 1)(\cos x - 3)}$		
	Ans	Put $\cos x = t$	1/2	
		$\frac{5\cos x - 3}{(\cos x + 1)(\cos x - 3)} = \frac{5t - 3}{(t + 1)(t - 3)} = \frac{A}{(t + 1)} + \frac{B}{(t - 3)}$ $\therefore 5t - 3 = (t - 3)A + (t + 1)B$	1/2	
		Put $t = -1$ $\therefore 5(-1) - 3 = (-1 - 3)A + (-1 + 1)B$ $\therefore -8 = -4A + 0$ $\therefore \boxed{A = 2}$ Put $t = 3$	1	
		$\therefore 5(3) - 3 = (3 - 3)A + (3 + 1)B$ $\therefore 12 = 0 + 4B$ $\therefore \boxed{3 = B}$	1	
		$\frac{5t-3}{(t+1)(t-3)} = \frac{2}{(t+1)} + \frac{3}{(t-3)}$	1/2	4
		$\frac{5\cos x - 3}{(\cos x + 1)(\cos x - 3)} = \frac{2}{(\cos x + 1)} + \frac{3}{(\cos x - 3)}$	1/2	

Subject& Code:Basic Maths (17105)

Model Answer

Page No:12/26

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
3.	d)	Resolve into partial fractions $\frac{x^4}{x^3+1}$		Warks
	Ans	x^3+1 x^4		
		$x^4 + x$		
		$\frac{x^4}{x^3 + 1} = x - \frac{x}{x^3 + 1}$		
			1/2	
		$\frac{x}{x^3+1} = \frac{x}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$	72	
		$\therefore x = (x^2 - x + 1)A + (x + 1)(Bx + C)$		
		Put $x = -1$		
		$\therefore -1 = ((-1)^2 - (-1) + 1)A + (-1 + 1)(B(-1) + C)$		
		$\therefore -1 = 3A$		
		$A = -\frac{1}{3}$	1	
		Put $x = 0$		
		$\therefore 0 = (0^2 - 0 + 1)A + (0 + 1)(B(0) + C)$		
		$\therefore 0 = A + C$		
		$\therefore 0 = -\frac{1}{3} + C$		
		$C = \frac{1}{2}$	1	
		Put x = 1		
		$\therefore 1 = (1^2 - 1 + 1)A + (1 + 1)(B + C)$		
		$\therefore 1 = A + 2B + 2C$		
		$\therefore 1 = -\frac{1}{3} + 2B + \frac{2}{3}$		
		$\therefore \boxed{B = \frac{1}{3}}$	1	
		$\frac{x}{x^3+1} = \frac{-\frac{1}{3}}{x+1} + \frac{\frac{1}{3}x + \frac{1}{3}}{x^2 - x + 1}$		4
		$x^3 + 1$ $x + 1$ $x^2 - x + 1$	1/2	-

Subject& Code:Basic Maths (17105) **Model Answer Page No:**13/26

Que.	Sub.		3.5.1	Total
No.	Que.	Model Answer	Marks	Marks
3.	e)	Find inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$		
	Ans	$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ $ A = \begin{vmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{vmatrix} = 1(3-0)-2(-1-0)-2(2-0)$ $\therefore A = 1 \neq 0$ $\therefore A^{-1} \text{ exists}$ $Matrix of minors = \begin{bmatrix} \begin{vmatrix} 3 & 0 \\ -2 & 1 \end{vmatrix} & \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} -1 & 3 \\ 0 & -2 \end{vmatrix} \\ \begin{vmatrix} 2 & -2 \\ -2 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 0 & -2 \\ -2 & 1 \end{vmatrix}$	1	
		$= \begin{bmatrix} 3 & -1 & 2 \\ -2 & 1 & -2 \\ 6 & -2 & 5 \end{bmatrix}$	1/2	
		Matrix of cofactors = $\begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 2 \\ 6 & 2 & 5 \end{bmatrix}$	1½	
		$\therefore \operatorname{adj}(A) = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$		
		$\therefore A^{-1} = \frac{1}{ A } \operatorname{adj}(A)$ $= \frac{1}{1} \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$ $\therefore A^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$	1	4
				T

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17105) Model Answer Page No:14/26

Subje	ect& Co	de:Basic Maths (17105) Model Answer	Page No:14/2	26
Que. No.	Sub. Que.	Model Answer	Marks	Tota Mark
3.	f)	If <i>I</i> is an unit matrix of order 3 and $A = \begin{bmatrix} 1 & 2 & 6 \\ 7 & 4 & 10 \\ 1 & 3 & 5 \end{bmatrix}$		
	Ans	$A^{2} = AA$ $= \begin{bmatrix} 1 & 2 & 6 \\ 7 & 4 & 10 \\ 1 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 6 \\ 7 & 4 & 10 \\ 1 & 3 & 5 \end{bmatrix}$		
		$= \begin{bmatrix} 21 & 28 & 56 \\ 45 & 60 & 132 \\ 27 & 29 & 61 \end{bmatrix}$	1	
		$ \begin{vmatrix} 3A = 3 \begin{bmatrix} 1 & 2 & 6 \\ 7 & 4 & 10 \\ 1 & 3 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 18 \\ 21 & 12 & 30 \\ 3 & 9 & 15 \end{bmatrix} $	1/2	
		$A^{2} - 3A + I = \begin{bmatrix} 21 & 28 & 56 \\ 45 & 60 & 132 \\ 27 & 29 & 61 \end{bmatrix} - \begin{bmatrix} 3 & 6 & 18 \\ 21 & 12 & 30 \\ 3 & 9 & 15 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 19 & 22 & 38 \end{bmatrix}$	1	
		$= \begin{bmatrix} 19 & 22 & 38 \\ 24 & 49 & 102 \\ 24 & 20 & 47 \end{bmatrix}$	1½	4

Subject& Code:Basic Maths (17105)

Model Answer

Page No:15/26

Que.	Sub.	N	Model Answer	Marks	Total
No. 4.	Que.	Attempt any <u>FOUR</u> of the follo		171012110	Marks 16
1.	a)	Prove that $\cos(A+B) = \cos(A+B)$			
	Ans	A+B A	P P M	1	
		Right AngledTrian Acute Ar	ngle Trigonometric Ratios		
		Δ OMP ∠MOP :	$= A \qquad \sin A = \frac{PM}{OP}, \cos A = \frac{OM}{OP}$		
		Δ OPQ ∠POQ :	$= B \qquad \sin B = \frac{PQ}{OQ}, \cos B = \frac{OP}{OQ}$		
		Δ PRQ ∠PQR =	$= A \qquad \sin A = \frac{PR}{PQ}, \cos A = \frac{QR}{PQ}$		
		Δ ONQ ∠NOQ A+B	$\cos(A+B) =$		
		$\cos(A+B) = \frac{ON}{OQ}$ $= \frac{OM - M}{OQ}$ $= \frac{OM - PR}{OQ}$	_	1	
		$= \frac{OM}{OQ} - \frac{P}{OQ}$ $= \frac{OM}{OP} \times \frac{OQ}{OQ}$		1	4

Subject& Code:Basic Maths (17105) **Model Answer Page No:**16/26

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
4.	<u> Que.</u>	Note: The above is proved by different ways in several books. Consider all these proof but check whether the method is falling within the scope of curriculum and give appropriate marks in accordance with the scheme of marking. In accordance with the Teacher's Manual published by MSBTE, the result is treated as Fundamental Result which is not proved by the help of any another result. If the above result is proved by students using any another result, suppose using cos (A+B), then this result i.e., cos (A+B) must have been proved first.		TVI TTO
	b)	Prove that $\cos(3A) = 4\cos^3 A - 3\cos A$		
	Ans	$\cos(3A) = \cos(2A + A)$		
		$= \cos 2A \cos A - \sin 2A \sin A$	1	
		$= (2\cos^2 A - 1)\cos A - (2\sin A\cos A)\sin A$	1/2	
		$= 2\cos^3 A - \cos A - 2\cos A\sin^2 A$	1/2	
		$=2\cos^3 A - \cos A - 2\cos A\left(1 - \cos^2 A\right)$	1/2	
		$= 2\cos^{3} A - \cos A - 2\cos A + 2\cos^{3} A$	1/2	4
		$= 4\cos^3 A - 3\cos A.$	1	
	c)	Without using calculator show that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$		
	Ans	$\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$		
		$= \frac{1}{2} (2\cos 20^{\circ}\cos 40^{\circ}) \cdot \left(\frac{1}{2}\right) \cos 80^{\circ}$	1/2	
		$= \frac{1}{4} \left[\cos \left(20^{\circ} + 40^{\circ} \right) + \cos \left(20^{\circ} - 40^{\circ} \right) \right] \cos 80^{\circ}$	1	
		$= \frac{1}{4} \left[\cos \left(60^{\circ} \right) + \cos \left(-20^{\circ} \right) \right] \cos 80^{\circ}$		
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \cos 20^{\circ} \cos 80^{\circ} \right]$	1/2	
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \frac{1}{2} (2 \cos 20^{\circ} \cos 80^{\circ}) \right]$		
		$= \frac{1}{8} \left[\cos 80^{\circ} + \cos \left(20^{\circ} + 80^{\circ} \right) + \cos \left(20^{\circ} - 80^{\circ} \right) \right]$	1	
		$= \frac{1}{8} \left[\cos 80^{\circ} + \cos \left(180^{\circ} - 80^{\circ} \right) + \cos \left(-60^{\circ} \right) \right]$		

Subject& Code:Basic Maths (17105)

Model Answer

Page No:17/26

Que.	Sub.	26.114	3.6.1	Total
No.	Que.	Model Answer	Marks	Marks
4.		$= \frac{1}{8} \left[\cos 80^{\circ} - \cos (80^{\circ}) + \frac{1}{2} \right]$ $= \frac{1}{16}$	1/2	4
	d)	Without using calculator show that $\frac{\sin 19^\circ + \cos 11^\circ}{\cos 19^\circ - \sin 11^\circ} = \sqrt{3}$		
	Ans	$\sin 19^\circ = \sin\left(\frac{\pi}{2} - 71^\circ\right) = \cos 71^\circ$	1/2	
		$\sin 11^\circ = \sin\left(\frac{\pi}{2} - 79^\circ\right) = \cos 79^\circ$	1/2	
		$ \frac{\sin 19^{\circ} + \cos 11^{\circ}}{\cos 19^{\circ} - \sin 11^{\circ}} = \frac{\cos 71^{\circ} + \cos 11^{\circ}}{\cos 19^{\circ} - \cos 79^{\circ}} $ $ = \frac{2\cos\left(\frac{71^{\circ} + 11^{\circ}}{2}\right)\cos\left(\frac{71^{\circ} - 11^{\circ}}{2}\right)}{2\sin\left(\frac{19^{\circ} + 79^{\circ}}{2}\right)\sin\left(\frac{79^{\circ} - 19^{\circ}}{2}\right)} $ $ = \frac{2\cos(41^{\circ})\cos(30^{\circ})}{2\sin(49^{\circ})\sin(30^{\circ})} $ $ = \frac{\cos(41^{\circ})\left(\frac{\sqrt{3}}{2}\right)}{\cos(41^{\circ})\left(\frac{1}{2}\right)} $ $ = \sqrt{3} $	1 1/2 1/2	4
	e)	Prove that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$		
	Ans	$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}}\right)$	1	
		$= \tan^{-1} \left(\frac{\frac{5}{6}}{1 - \frac{1}{6}} \right)$		

Subject& Code:Basic Maths (17105)

Model Answer

Page No:18/26

Que.	Sub.			Total
No.	Que.	Model Answer	Marks	Marks
4.		$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{5}{\frac{6}{5}}\right)$ $= \tan^{-1}\left(1\right)$ $= \frac{\pi}{4}$	1 1 1	4
	f) Ans	Prove that $\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right) = \sin^{-1}\left(\frac{77}{85}\right)$ Let $A = \sin^{-1}\left(\frac{3}{5}\right)$, $B = \sin^{-1}\left(\frac{8}{17}\right)$		
	Tills	$\therefore \sin A = \frac{3}{5} , \sin B = \frac{8}{17}$ $\cos A = \frac{4}{5}, \cos B = \frac{15}{17}$ $\therefore \sin(A+B) = \sin A \cos B + \cos A \sin B$ 5 4 15 B	1	
		$= \frac{3}{5} \times \frac{15}{17} + \frac{4}{5} \times \frac{8}{17}$ $= \frac{45}{85} + \frac{32}{85}$ $\sin(A+B) = \frac{77}{85}$	2	
		$\therefore A + B = \sin^{-1}\left(\frac{77}{85}\right)$	1/2	4
		$\therefore \sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right) = \sin^{-1}\left(\frac{77}{85}\right)$	1/2	*
		<u>OR</u>		
		$A = \sin^{-1}\left(\frac{3}{5}\right) \qquad , \qquad B = \sin^{-1}\left(\frac{8}{17}\right)$ $\therefore \sin A = \frac{3}{5} \qquad , \qquad \sin B = \frac{8}{17}$ $3 \qquad \qquad$	1/2	

Subject& Code:Basic Maths (17105)

Model Answer

Page No:19/26

Que.	Sub.	Model Answer	Marks	Total Marks
No. 4.	Que.	$\tan A = \frac{3}{4} \qquad , \qquad \tan B = \frac{8}{15}$		Warks
		$\therefore A = \tan^{-1}\left(\frac{3}{4}\right) \qquad , \qquad B = \tan^{-1}\left(\frac{8}{15}\right)$	1/2	
		$\therefore \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right) , \sin^{-1}\left(\frac{8}{17}\right) = \tan^{-1}\left(\frac{8}{15}\right)$		
		$\therefore \sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right)$		
		$= \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{8}{15}\right)$		
		$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{8}{15}}{1 - \frac{3}{4} \cdot \frac{8}{15}} \right)$	1	
		$= \tan^{-1} \left(\frac{\frac{45+32}{60}}{\frac{60-24}{60}} \right)$		
		$= \tan^{-1}\left(\frac{77}{36}\right)$	1/2	
		$Let \tan^{-1}\left(\frac{77}{36}\right) = C$		
		$\therefore \tan C = \frac{77}{36}$	1/2	
		$\therefore \sin C = \frac{77}{85}$		
		$\therefore C = \sin^{-1}\left(\frac{77}{85}\right) \tag{77}$		
		$\therefore \tan^{-1}\left(\frac{77}{36}\right) = \sin^{-1}\left(\frac{77}{85}\right)$		_
		$\therefore \sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right) = \sin^{-1}\left(\frac{77}{85}\right)$	1	4
		77 85		
		36 C		

Subject& Code:Basic Maths (17105)

Model Answer

Page No:20/26

Que.	Sub.	Model Answer	Marks	Total
No.	Que.		IVICITES	Marks
5.		Attempt any FOUR of the following:		16
	a)	Prove that $\cos\left(\frac{\pi}{2} + \theta\right) = -\cos\theta$		
	Ans	$\cos\left(\frac{\pi}{2} + \theta\right)$		
		$=\cos\frac{\pi}{2}\cos\theta-\sin\frac{\pi}{2}\sin\theta$	2	
			1	
		$= 0\cos\theta - (1)\sin\theta$ $= -\sin\theta$	1	4
	b)	Prove that $\frac{\sin A + 2\sin 2A + \sin 3A}{\cos A + 2\cos 2A + \cos 3A} = \tan(2A)$		
	Ans	$\sin A + 2\sin 2A + \sin 3A$		
		$\cos A + 2\cos 2A + \cos 3A$	1/	
		$= \frac{\left(\sin A + \sin 3A\right) + 2\sin 2A}{\left(\cos A + \cos 3A\right) + 2\cos 2A}$	1/2	
		$= \frac{2\sin(2A)\cos(A) + 2\sin 2A}{2\cos(2A)\cos(A) + 2\cos 2A}$	2	
		$= \frac{2\sin(2A)\left[\cos(A)+1\right]}{2\cos(2A)\left[\cos(A)+1\right]}$	1	
		$=\tan(2A)$	1/2	4
	c)	Prove that $\frac{\sin 7x + \sin x}{\sin 7x + \sin x} = \sin 2x - \cos 2x \cot x$		
		Prove that $\frac{1}{\cos 5x - \cos 3x} = \sin 2x - \cos 2x \cot x$		
	Ans	$\frac{\sin 7x + \sin x}{5} = \frac{\sin 7x + \sin x}{5}$		
		$ \cos 5x - \cos 3x \qquad \cos 5x - \cos 3x \\ - 2\sin(4x)\cos(3x) $		
		$=\frac{2\sin(4x)\cos(6x)}{2\sin(4x)\sin(-x)}$	1	
		$=\frac{\cos(2x+x)}{\cos(2x+x)}$	1	
		$-\sin x$	1	
		$= \frac{\cos(2x)\cos x - \sin(2x)\sin x}{-\sin x}$		
		$-\sin x$ $= \sin 2x - \cos 2x \cot x$	1	4

Subject& Code:Basic Maths (17105)

Model Answer

Page No:21/26

Que.	Sub.			Total
No.	Que.	Model Answer	Marks	Marks
5.	d)	Prove that $\frac{\sin 9\theta}{\sin 3\theta} - \frac{\cos 9\theta}{\cos 3\theta} = 2$		
	Ans	$\frac{\sin 9\theta}{\sin 3\theta} - \frac{\cos 9\theta}{\cos 3\theta} = \frac{\sin(9\theta)\cos(3\theta) - \cos(9\theta)\sin(3\theta)}{\sin(3\theta)\cos(3\theta)}$	1	
		$= \frac{\sin(9\theta - 3\theta)}{\sin(3\theta)\cos(3\theta)}$	1	
		$=\frac{\sin(6\theta)}{\sin(3\theta)\cos(3\theta)}$	1	
		$= \frac{2\sin(3\theta)\cos(3\theta)}{\sin(3\theta)\cos(3\theta)}$		
		= 2	1	4
	e)	Prove that $\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$		
	Ans	We know that,		
		$\cos(A+B) + \cos(A-B) = 2\cos A\cos B$	1	
		Put $A + B = C$		
		A-B=D		
		$\therefore A = \frac{C+D}{2} \text{and}$	1	
		$B = \frac{C - D}{2}$	1	
		$\therefore \cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$	1	4
		$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$		
	f)	If $x > 0$, $y > 0$, then prove that $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left\lfloor \frac{x - y}{1 + xy} \right\rfloor$		
	Ans	Let $\tan^{-1} x = A$ & $\tan^{-1} y = B$ $\therefore x = \tan A$ $\therefore y = \tan B$	1	
		Now $\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$	1	
			1/2	
		$\tan\left(A - B\right) = \frac{x - y}{1 + xy}$	/2	
		$(A-B) = \tan^{-1} \left[\frac{x-y}{1+xy} \right]$	1/2	
		$\therefore \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left[\frac{x - y}{1 + xy} \right]$	1	4
		[

Subject& Code:Basic Maths (17105)

Model Answer

Page No:22/26

Que.	Sub.		1	Total
No.	Que.	Model Answer	Marks	Marks
6.		Attempt any <u>FOUR</u> of the following:		16
	a)	If $P(x_1, y_1)$ be any point outside the line $ax + by + c = 0$, then prove that		
		perpendicular distance from the point to the line is $d = \left \frac{ax_1 + by_1 + c}{\sqrt{A^2 + B^2}} \right $		
	Ans	Let $Q\left(\frac{-c}{a},0\right)$ and $R\left(0,\frac{-c}{b}\right)$	1/2	
		$A(\Delta PQR) = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ -c & 0 & 1 \\ 0 & \frac{-c}{b} & 1 \end{vmatrix} = \frac{1}{2} \left[x_1 \left(0 + \frac{c}{b} \right) - y_1 \left(\frac{-c}{a} - 0 \right) + 1 \left(\frac{c^2}{ab} \right) \right]$	1/2	
		$= \frac{1}{2} \left[\frac{x_1 c}{b} + \frac{y_1 c}{a} + \frac{c^2}{ab} \right]$ $= \frac{1}{2} \frac{c}{ab} \left(ax_1 + by_1 + c \right)$	1	
		$d(QR) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{\left(\frac{-c}{a} - 0\right)^2 + \left(0 + \frac{c}{b}\right)^2}$	1/2	
		$= \sqrt{\frac{c^2}{a^2} + \frac{c^2}{b^2}}$ $= \sqrt{\frac{b^2 c^2 + a^2 c^2}{a^2 b^2}}$ $= \frac{c}{ab} \sqrt{a^2 + b^2}$	1/2	
		$A(\Delta PQR) = \frac{1}{2} \times d(QR) \times PM$ $1 c \sqrt{\frac{2}{2} + \frac{1}{2}} PM$		
		$= \frac{1}{2} \times \frac{c}{ab} \sqrt{a^2 + b^2} \times PM$ $\therefore \frac{1}{2} \frac{c}{ab} (ax_1 + by_1 + c) = \frac{1}{2} \times \frac{c}{ab} \sqrt{a^2 + b^2} \times PM$ $= \frac{ax_1 + by_1 + c}{ab}$	1/2	
		$\therefore PM = \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$ $\therefore PM = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right \therefore \text{ distance is positive}$	1/2	4

Subject& Code:Basic Maths (17105)

Model Answer

Page No:23/26

Que.	Sub.	Model Answer	Marks	Total
No.	Que.		iviaiks	Marks
6.	b)	If m_1 and m_2 are the slope of two lines then prove that angle between two		
		lines is $\theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
	Ans	$\left 1+m_{1}m_{2}\right $		
		\uparrow L_1 \uparrow L_2		
		$\overline{\theta}$		
		θ_2 θ_1		
		I at A = Indination of I		
		Let θ_1 = Inclination of L_1 θ_2 = Inclination of L_2	1	
		$\therefore \text{ Slope of } L_1 \text{ is } m_1 = \tan \theta_1$		
		Slope of L_2 is $m_2 = \tan \theta_2$		
		from figure,		
		$\theta = \theta_1 - \theta_2$	1/2	
		$\therefore \tan \theta = \tan \left(\theta_1 - \theta_2\right)$	1	
		$= \frac{\tan(\theta_1) - \tan(\theta_2)}{1 + \tan(\theta_1)\tan(\theta_2)}$	_	
			1/	
		$\tan \theta = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$	1/2	
		θ is acute,		
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $		
			1	
		$\therefore \theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $		4
	c)	Find the length of perpendicular on the line $3x + 4y - 6 = 0$ from the		
	<i>-</i> ()	point (3,4)		
	Ans			
		a = 3, b = 4, c = -6	1	
		length of perpendicular from the point to the line is		
	Ans	Let $L = 3x + 4y - 6 = 0$, point $(x_1, y_1) = (3, 4)$ a = 3, b = 4, c = -6	-	1

Subject& Code:Basic Maths (17105)

Model Answer

Page No:24/26

Que.	Sub.	Model Answer	Marks	Total
No.	Que.	111000111101101	1,101110	Marks
6.		$d = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $ $= \left \frac{3(3) + 4(4) - 6}{\sqrt{3^2 + 4^2}} \right $ $= \frac{19}{5} \text{ or } 3.8$	2	4
	d) Ans	Find the equation of straight line passing through the point of intersection of lines $4x+3y=8$ and $x+y=1$ and parallel to the line $5x-7y=3$ $\therefore 4x+3y=8$ $\underline{x+y=1}$		
		$\therefore 4x + 3y = 8$ $-4x + 4y = 4$ $-y = 4$ $y = -4$ $\therefore x - 4 = 1$	1 1/2	
		$\therefore x = 5$ $\therefore \text{ Point of intersection} = (5, -4)$ Slope of the line $5x - 7y = 3$ is,	1	
	e)	$m_0 = -\frac{a}{b} = -\frac{5}{-7} = \frac{5}{7}$ $\therefore \text{ Slope of the required line is,}$ $m = m_0 = \frac{5}{7}$ $\therefore \text{ equation is,}$ $y - y_1 = m(x - x_1)$ $\therefore y + 4 = \frac{5}{7}(x - 5)$ $\therefore 5x - 7y - 53 = 0$ Find the equation of line passing through the point of intersection of	1 1/2	4
	<i>e)</i>	the lines $2x + 3y = 13,5x - y = 7$ and passing through the point $(1,-1)$		

Subject& Code:Basic Maths (17105)

Model Answer

Page No:25/26

0	C1-		1	T-1-1
Que.	Sub. One	Model Answer	Marks	Total Marks
No. 6.	Que.	$2x+3y=13$ $5x-y=7$ $2x+3y=13$ $15x-3y=21$ $17x=34$ $x=2$ $y=3$ $Point of intersection = (2, 3)$ Given point $(1,-1)$ $equation is,$ $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$ $\frac{y-3}{3+1} = \frac{x-2}{2-1}$ $4x-y-5=0$ Find the acute angle between the lines $3x-2y+4=0$ and	1 1 1 1	Marks 4
	·	2x-3y-7=0		
	Ans	For $3x - 2y + 4 = 0$ slope $m_1 = -\frac{a}{b} = \frac{3}{2}$	1	
		For $2x-3y-7=0$, slope $m_2 = -\frac{a}{b} = -\frac{2}{-3} = \frac{2}{3}$	1	
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $ $= \left \frac{\frac{3}{2} - \frac{2}{3}}{1 + \left(\frac{3}{2}\right) \cdot \left(\frac{2}{3}\right)} \right $	1	
		$\begin{vmatrix} 1 + \left(\frac{3}{2}\right) \cdot \left(\frac{2}{3}\right) \end{vmatrix}$ $= \frac{5}{12}$ $\therefore \theta = \tan^{-1} \left(\frac{5}{12}\right)$	1	4

Subject& Code:Basic Maths (17105) **Model Answer Page No:**26/26

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
INO.	Que.	Important Note		Mark
		<u> </u>		
		In the solution of the question paper, wherever possible all the possible		
		alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such		
		case, first see whether the method falls within the scope of the		
		curriculum, and then only give appropriate marks in accordance with the scheme of marking.		