Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра систем управления и информатики

Отчет по лабораторной работе №1 «НАЗВАНИЕ РАБОТЫ» по дисциплине «Название дисциплины»

Выполнили: студенты гр. Р4135

Фамилия И.О.,

Фамилия И.О.

Преподаватель: Фамилия И.О.,

должность каф. СУиИ

Санкт-Петербург

Содержание

Обозначения и сокращения				и сокр	виня	4	
	В	вед	ение				6
	1	1 Описание манипулятора					7
	2	\mathbf{M}	атемати	ческая	мод	ель манипулятора	9
		2.1	1 Кинема	сание манипулятора сематическая модель манипулятора Кинематика манипулятора 2.1.1 Общие замечания 2.1.2 Прямая задача кинематики 2.1.3 Обратная задача кинематики 1.1 2.1.3 Обратная задача кинематики 1.3 Динамика манипулятора 1.7 2.2.1 Общие замечания 1.7 2.2.2 Вывод уравнений движения 1.9 2.2.3 Учет динамики приводов 2.2.4 Альтернативная матричная форма записи 2.3 нтификация параметров манипулятора Описание метода 2.6 Описание метода 2.7 тез систем управления Предварительные замечания Система управления для принятия определенной конфигурации 2.9 чение 3.1 КСУИ.101.4135.001 ПЗ			
			2.1.1	Общие	заме	чания	9
			2.1.2	Прямая	зада	ача кинематики	11
			2.1.3	Обратн	ая за	дача кинематики	13
		2.2	2 Динам	ика ман	ипул	ятора	17
			2.2.1	Общие	заме	чания	17
			2.2.2	Вывод :	ураві	нений движения	19
			2.2.3	Учет ди	инам	ики приводов	21
			2.2.4	Альтері	нати	вная матричная форма записи	23
	3	И,	дентифи	кация	пара	аметров манипулятора	
		3.1	1 Описан	ние мето	да .		26
		3.2	2 Резуль	гаты .			27
	$\frac{1}{4}$	\mathbf{C}_{1}	интез си	стем уг	грав	ления	28
		4.1	1 Предва	рителы	ные з	вамечания	28
		4.2	2 Систем	іа управ	влени	ия для принятия определенной конфигурации .	29
	3	акл	ючение				31
		!пис	ок испол	ILDODAL	JULIX	у истоиников	39
		лис	OK HCHOJ	ibsobar	111D1 <i>2</i>	A MCTO-HIMROB	9 2
	П	Грил	ожение	А Мат	риц	ы однородного преобразования	33
						КСУИ 101 4135 001 ПЗ	ра 9
	_	Лист	№ докум.	+	Дата		
	Разра Пров		Антонов, Артемо Котельников Ю.І	-			
						1/ 1 \/ 1 1	TMO
	H. ко Утв.	онтр.				1 , 1	иИ
1	. 12.					Vorumenous (A	

ложение Н	5 Терминол	огия относи	тельных изм	ерений	é

Подп. и дата

Взам. инв. \mathbb{N}^{2} Инв. \mathbb{N}^{2} Дубл.

Подп. и дата

Инв. $\mathcal{N}^{\underline{o}}$ подл.

Обозначения и сокращения

Используемые далее по тексту общие обозначения:

- СК система координат;
- КП кинематическая пара;
- ДХ Денавита-Хартенберга (Denavit-Hartenberg), например, соглашение;
- ИСО инерциальная система отсчета;
- ПЗК прямая задача кинематики;
- ОЗК обратная задача кинематики;
 - n количество звеньев робота, n = 5;
 - q_i-i -ая $(i=\overline{1,n})$ обобщенная координата манипулятора (угол, регистрируемый энкодером робота в i-ом сочленении);
 - q вектор-столбец обобщенных координат робота, $q = [q_1 \ q_2 \ q_3 \ q_4 \ q_5]^T$;
 - ${}^{i}R_{j}$ матрица поворота, характеризующая поворот СК $Ox_{j}y_{j}z_{j}$ относительно СК $Ox_{i}y_{i}z_{i}$;
 - ${}^{i}A_{j}$ матрица однородного преобразования, описывающая смещение и поворот СК $Ox_{j}y_{j}z_{j}$ относительно СК $Ox_{i}y_{i}z_{i}^{*}$;
 - $r^i_{j,\,k}$ вектор из начала $Ox_jy_jz_j$ в начало $Ox_ky_kz_k$, выраженный относительно $Ox_iy_i{z_i}^{**};$
 - g_i ускорение свободного падения, выраженное относительно $Ox_iy_iz_i;$
 - v_j^i линейная скорость начала $Ox_jy_jz_j$ относительно используемой в решении ИСО,*** выраженная относительно $Ox_iy_iz_i$;
 - a_j^i линейное ускорение начала $Ox_jy_jz_j$ относительно ИСО, выраженное относительно $Ox_iy_iz_i$;
 - * За пояснениями обратитесь к Приложению А
- ** За пояснениями к применяемой здесь и далее терминологии, касающейся относительных измерений, обратитесь к Приложению Б.
 - *** В качестве ИСО в документе используется $Ox_0y_0z_0$.

Изм.	Лист	№ докум.	Подп.	Дата

инв. $\mathcal{N}^{\underline{o}}$

Взам. 1

Подп.

КСУИ.101.4135.001 ПЗ

KCVN.101.4135.001 II3

- ω_j^i угловая скорость вращения $Ox_jy_jz_j$ относительно ИСО, выраженная относительно $Ox_iy_iz_i$;
- $\omega_{j,\,k}^i$ угловая скорость вращения $Ox_ky_kz_k$ относительно $Ox_jy_jz_j$, выраженная относительно $Ox_iy_iz_i$;
 - $\dot{\omega}^i_j$ угловое ускорение $Ox_jy_jz_j$ относительно ИСО, выраженное относительно $Ox_iy_iz_i;$
 - z_j^i орт $[0\ 0\ 1]^T$ системы координат $Ox_jy_jz_j$, выраженный относительно $Ox_iy_iz_i$;
 - f_j^i сила, действующая на j-ое звено (тело) механизма со стороны (j-1)го звена (тела), выраженная относительно $Ox_iy_iz_i$;
 - au_j^i момент силы, действующий на j-ое звено (тело) механизма со стороны (j-1)-го звена (тела), выраженный относительно $Ox_iy_iz_i$;
 - au_i обобщенный момент, ответственный за изменение обобщенной координаты q_i ;
 - m_i масса i-го звена;
 - \mathcal{I}^i_j тензор инерции j-го звена относительно $Ox_iy_iz_i;$
- a_i, d_i обозначения для длин, входящих в число параметров Денавита-Хартенберга, $i = \overline{1,n}$;
- α_i, θ_i обозначения для углов, входящих в число параметров Денавита-Хартенберга, $i=\overline{1,n};$
- s_{γ}, c_{γ} синус и косинус угла γ соответственно;
- s_i, c_i синус и косинус угла θ_i соответственно;
- $x\{a\}$ абсцисса вектора a; аналогично $y\{a\}$ и $z\{a\}$ означают его ординату и аппликату соответственно;
- $A^{\{i\}}-\ i$ -ая строка матрицы A.

Изм.	Лист	№ докум.	Подп.	Дата

Введение

В данном документе будет рассказано о процессе разработки системы управления для манипулятора робота Kuka Youbot [1], дающей ему возможность для совершения двух действий: занятия позиции, при которой его схват будет принимать заданные положение и ориентацию, а также перемещения схвата по заданной траектории*. В целом содержание пояснительной записки можно описать примерно так:

- в разделе 1 будут приведены технические сведения о роботе, необходимые для решения поставленных задач;
- раздел 2 расскажет о процессе составления математической модели манипулятора, а именно о решении применительно к нему прямой и обратной задач кинематики и о составлении дифференциальных уравнений, описывающих протекающие в роботе электрические и механические процессы;
- в разделе 4 речь пойдет о синтезе соответствующих систем управления, о проверке их работоспособности с помощью моделирования, о результатах аппробации на реальном роботе и проч.

Изм. Лист № докум. Подп. Дата

Подп. и дата

Взам. инв. №

Подп.

Инв. № подл.

 $KCУИ.101.4135.001\ \Pi 3$

^{*} Здесь и далее, когда речь будет идти о траектории движении схвата, под последней будет подразумеваться не просто кривая, описываемая при этом схватом в пространстве, но таковая, явно параметризованная временем.

1 Описание манипулятора

Рассматриваемый в данной работе манипулятор робота Kuka Youbot представляет собой пятизвенный манипулятор, снабженный двухпальцевым схватом. Описание его массогабаритных параметров дается таблицей 1.1 и рисунком 1.1. Неуказанные там параметры робота, требуемые для дальнейших расчетов, неизвестны и поэтому подлежат измерению или идентификации, речь о которых пойдет ниже по тексту.

Таблица 1.1 – Общая информация о манипуляторе робота Kuka Youbot.

Параметр	Значение
Количество сочленений	5
Macca	5.3 кг
Допустимая нагрузка	0.5 кг
Точность повторного воспроизведения позиции	1 мм
Максимальная скорость в сочленении	$90^{\circ} \text{ c}^{-1}$
Интерфейс	EtherCAT
Напряжение питание	24 B

Инв. № подл. Подп. и дата Взам. инв. № Див. № дубл. Подп. и да

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 1.1 – Некоторые параметры манипулятора Kuka Youbot: а — размеры рабочей области (вид сбоку); б — размеры рабочей области (вид сверху); в длины звеньев и предельные значения для углов вращения по каждому из сочленений [2].

Подп. Лист № докум. Дата

Подп. и дата

Инв. № подл.

б)

 $KCУИ.101.4135.001\ \Pi 3$

в)

Лист

0 mm

2 Математическая модель манипулятора

2.1 Кинематика манипулятора

2.1.1 Общие замечания

Последовательная кинематическая цепь рассматриваемого манипулятора, включающая только вращательные КП V-класса (цилиндрические шарниры), изображена на рисунке 2.1а.

Рисунок 2.1 – Схемы рассматриваемого манипулятора: а — кинематическая при $q_i=0,\ i=\overline{1,5};$ б — расположения СК КП.

Для описания положений звеньев манипулятора друг относительно друга воспользуемся методом Денавита—Хартенберга, состоящим из трех данных шагов:

Изм.	Лист	№ докум.	Подп.	Дата

подл.

КСУИ.101.4135.001 ПЗ

KCVN.101.4135.001 FI3

- а) «привязка» к каждому звену СК, чьи оси удовлетворяют следующим условиям:
 - 1) ось z_{i-1} направлена вдоль оси i-ой КП;
 - 2) ось x_i перпендикулярна оси z_{i-1} и пересекает ее;
 - 3) ось y_i дополняет оси z_i и x_i до правой декартовой СК.
- б) определение параметров ДХ:
 - 1) a_i расстояния от z_{i-1} до z_i вдоль x_i ;
 - 2) α_i угла от z_{i-1} до z_i вокруг x_i ;
 - 3) d_i расстояния от x_{i-1} до x_i вдоль z_{i-1} ;
 - 4) θ_i угла от x_{i-1} до x_i вокруг z_{i-1} .
- в) расчет матриц однородного преобразования в соответствии со следующими формулами:

$$^{i-1}A_i = R_{z,\theta_i} \cdot T_{z,d_i} \cdot T_{x,a_i} \cdot R_{x,\alpha_i}$$
(2.1)

где R_{z,θ_i} — матрица поворота вокруг оси z на угол $\theta_i,\,T_{z,d_i}$ — матрица смещения вдоль оси z на расстояние $d,\,T_{x,a_i}$ —матрица смещения вдоль оси x на расстояние $a_i,\,R_{x,\alpha_i}$ — матрица поворота вокруг оси x на угол α_i , равные

$$R_{z,\theta_i} = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & 0 & 0 \\ \sin \theta_i & \cos \theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad T_{z,d_i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}, \tag{2.2}$$

$$T_{x,a_i} = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad R_{x,\alpha_i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_i & -\sin \alpha_i & 0 \\ 0 & \sin \alpha_i & \cos \alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \tag{2.3}$$

Изм. Лист № докум. Подп. Дата

Взам. инв. №

подл.

КСУИ.101.4135.001 ПЗ

ИТОГО

$$^{i-1}A_{i} = \begin{bmatrix} \cos\theta_{i} & -\cos\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\sin\theta_{i} & a_{i}\cos\theta_{i} \\ \sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i}\cos\theta_{i} & a_{i}\sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.4)

Результаты выполнения для исследуемого манипулятора двух первых шагов представлены на рисунке 2.16 и в таблице 2.1, а третьего — в лице следующих выражений:

$${}^{0}A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & a_{1}c_{1} \\ s_{1} & 0 & -c_{1} & a_{1}s_{1} \\ 0 & 1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{1}A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{2}A_{3} = \begin{bmatrix} c_{3} & -s_{3} & 0 & a_{3}c_{3} \\ s_{3} & c_{3} & 0 & a_{3}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$${}^{3}A_{4} = \begin{bmatrix} c_{4} & 0 & s_{4} & 0 \\ s_{4} & 0 & -c_{4} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{4}A_{5} = \begin{bmatrix} c_{5} & -s_{5} & 0 & 0 \\ s_{5} & c_{5} & 0 & 0 \\ 0 & 0 & 1 & d_{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
 (2.5)

Таблица 2.1 – Параметры Денавита-Хартенберга

Звено	a_i , MM	α_i , рад	d_i , mm	θ_i , рад
1	33	$\pi/2$	147	q_1
2	155	0	0	$q_2 + \pi/2$
3	135	0	0	q_3
4	0	$\pi/2$	0	q_4
5	0	0	218	q_5

2.1.2 Прямая задача кинематики

Информация о смещении и повороте СК $Ox_5y_5z_5$ относительно СК $Ox_0y_0z_0$ содержится в матрице 0A_5 . Следовательно, для того чтобы решить ПЗК, оста-

Изм.	Лист	№ докум.	Подп.	Дата

 $KCУИ.101.4135.001\ \Pi 3$

ется лишь найти эту матрицу в соответствии с формулой:

$${}^{0}A_{5} = \prod_{i=1}^{5} {}^{i-1}A_{i}(q_{i}). \tag{2.6}$$

Рисунок 2.2 – Конфигурация манипулятора при $q = [q_1, q_2, q_3, q_4, q_5]^T = [0, 0, 0, \pi/2, 0]^T$.

Для проверки рассмотрим конфигурацию манипулятора, изображенную на рисунке 2.2. В результате решения для нее ПЗК должны получиться следующие матрица поворота и вектор смещения :

$${}^{0}R_{5} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad r_{0,5}^{0} = \begin{bmatrix} 0.033 \\ 0 \\ 0.655 \end{bmatrix}.$$
 (2.7)

Изм. Лист № докум. Подп. Дата

инв.

Инв. № подл.

КСУИ.101.4135.001 ПЗ

Выполняя соответствующие вычисления получаем:

$${}^{0}A_{5} = {}^{0}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5} = \begin{bmatrix} 1 & 0 & 0 & 0.033 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0.147 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0.155 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$\begin{bmatrix}
1 & 0 & 0 & 0.135 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0.218 \\
0 & 0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
-1 & 0 & 0 & 0.033 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0.655 \\
0 & 0 & 0 & 1
\end{bmatrix}, (2.8)$$

что предложенный способ решения ПЗК в данном случае приводит к правильному ответу.

2.1.3 Обратная задача кинематики

Заданные смещение и поворот СК $Ox_5y_5z_5$ относительно СК $Ox_0y_0z_0$ можно описать с помощью матрицы 0A_5 . Используя ее и матрицы из (2.5), найти расчетные формулы для углов q_i $(i=\overline{1,5})$ можно из следующих соображений.

Введем обозначения для элементов матрицы 0A_5 в соответствии с формулой:

$${}^{0}A_{5} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
 (2.9)

Приравняв матрицу 0A_5 и правую часть выражения (2.6) и домножив с обеих сторон на ${}^0A_1^{-1}$, придем к выражению:

$${}^{0}A_{1}^{-1} \cdot {}^{0}A_{5} = {}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5}, \tag{2.10}$$

где левая часть с учетом (2.5) равна

$${}^{0}A_{1}^{-1} \cdot {}^{0}A_{5} = \begin{bmatrix} r_{11}c_{1} + r_{21}s_{1} & r_{12}c_{1} + r_{22}s_{1} & r_{13}c_{1} + r_{23}s_{1} & p_{x}c_{1} + p_{y}s_{1} - a_{1} \\ r_{31} & r_{32} & r_{33} & p_{z} - d_{1} \\ r_{11}s_{1} - r_{21}c_{1} & r_{12}s_{1} - r_{22}c_{1} & r_{13}s_{1} - r_{23}c_{1} & p_{x}s_{1} - p_{y}c_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}, (2.11)$$

Изм. Лист № докум. Подп. Дата

Инв. № дубл.

инв. $N^{\underline{o}}$

Взам.

подл.

Инв. №

 $KCУИ.101.4135.001\ \Pi 3$

а правая —

$${}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5} = \begin{bmatrix} c_{5}c_{234} & -s_{5}c_{234} & s_{234} & a_{2}c_{2} + a_{3}c_{23} + d_{5}s_{234} \\ c_{5}s_{234} & -s_{5}s_{234} & -c_{234} & a_{2}s_{2} + a_{3}s_{23} - d_{5}c_{234} \\ s_{5} & c_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, (2.12)$$

где в свою очередь

$$\theta_{23} = \theta_2 + \theta_3, \qquad \theta_{234} = \theta_2 + \theta_3 + \theta_4.$$
 (2.13)

Теперь, сопоставляя элементы матриц с одинаковыми индексами из выражений (2.11) и (2.12), получим, что расчетные формулы для двух наборов значений углов θ_1 , θ_5 и θ_{234} дают

— равенство элементов (3,4):

$$p_x s_1 - p_y c_1 = 0 \implies \operatorname{tg} \theta_1 = \frac{p_y}{p_x} \implies \begin{cases} \theta_1^{\mathsf{I}} = \operatorname{atan2}(p_y, p_x) \\ \theta_1^{\mathsf{II}} = \operatorname{atan2}(-p_y, -p_x) \end{cases}$$
 (2.14)

- равенство элементов (3,1) и (3,2):

$$\begin{cases} s_{5} = r_{11}s_{1} - r_{21}c_{1} \\ c_{5} = r_{12}s_{1} - r_{22}c_{1} \end{cases} \Rightarrow \\ c_{5} = r_{12}s_{1} - r_{22}c_{1} \end{cases} \Rightarrow \begin{cases} \theta_{5}^{\mathsf{I}} = \operatorname{atan2}(r_{11}\sin\theta_{1}^{\mathsf{I}} - r_{21}\cos\theta_{1}^{\mathsf{I}}, \ r_{12}\sin\theta_{1}^{\mathsf{I}} - r_{22}\cos\theta_{1}^{\mathsf{I}}) \\ \theta_{5}^{\mathsf{II}} = \operatorname{atan2}(r_{11}\sin\theta_{1}^{\mathsf{II}} - r_{21}\cos\theta_{1}^{\mathsf{II}}, \ r_{12}\sin\theta_{1}^{\mathsf{II}} - r_{22}\cos\theta_{1}^{\mathsf{II}}) \end{cases} (2.15)$$

- равенство элементов (2,3) и (1,3):

$$\begin{cases} c_{234} = -r_{33} \\ s_{234} = r_{13}c_1 + r_{23}s_1 \end{cases} \Rightarrow \begin{cases} \theta_{234}^{\mathsf{I}} = \operatorname{atan2}(r_{13}\cos\theta_1^{\mathsf{I}} + r_{23}\sin\theta_1^{\mathsf{I}}, -r_{33}) \\ \theta_{234}^{\mathsf{II}} = \operatorname{atan2}(r_{13}\cos\theta_1^{\mathsf{II}} + r_{23}\sin\theta_1^{\mathsf{II}}, -r_{33}) \end{cases}$$
(2.16)

Изм. Лист № докум. Подп. Дата

инв. $N^{\underline{\varrho}}$

Взам. 1

подл.

Инв. №

 $KCУИ.101.4135.001\ \Pi 3$

Далее домножим выражение (2.11) на $^4A_5^{-1}$ справа — получим матрицу 1A_4 :

$${}^{1}A_{4} = \begin{bmatrix} \cdots & \cdots & (p_{y} - d_{5}r_{23})s_{1} + (p_{x} - d_{5}r_{13})c_{1} - a_{1} \\ \cdots & \cdots & p_{z} - d_{1} - d_{5}r_{33} \\ \cdots & \cdots & p_{x}s_{1} - p_{y}c_{1} - d_{5}(r_{13}s_{1} - r_{23}c_{1}) \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad (2.17)$$

в которой символами \cdots обозначены элементы, не представляющие интереса в дальнейших расчетах. Заметим, что с учетом (2.14) и равенства элементов (3,3) в (2.11) и (2.12) справедливо

$$p_x s_1 - p_y c_1 - d_5(r_{13} s_1 - r_{23} c_1) = 0. (2.18)$$

С учетом этого и (2.17), имеем что

$$r_{1,4}^{1} = \begin{bmatrix} (p_y - d_5 r_{23})s_1 + (p_x - d_5 r_{13})c_1 - a_1 \\ p_z - d_1 - d_5 r_{33} \\ 0 \end{bmatrix}.$$
 (2.19)

Далее заметим, что одно и то же положение 4-го звена может достигаться при двух разных способах расположения звеньев 2 и 3 (см. рисунок 2.3). Следовательно, углы θ_2 , θ_3 и θ_4 при одних и тех же значениях углов θ_1 и θ_5 имеют по два возможных значения. Ниже выводятся формулы для последних.

Выпишем, пользуясь теоремой косинусов, выражение для $\cos \theta_3$ (его зависимость от θ_1 обуславливается зависимостью от этого угла вектора $r_{1,4}^1$):

$$c_3(\theta_1) = \frac{(r_{1,4}^1)^T \cdot r_{1,4}^1 - a_2^2 - a_3^2}{2a_2 a_3}$$
 (2.20)

С учетом этого для θ_3 можно получить следующие формулы

$$\theta_3^{\mathsf{I},\mathsf{II}} = \mp \operatorname{atan2}(\sqrt{1 - c_3^2(\theta_1^{\mathsf{I}})}, c_3(\theta_1^{\mathsf{I}}))$$
 (2.21)

$$\theta_3^{\text{III,IV}} = \mp \operatorname{atan2}\left(\sqrt{1 - c_3^2(\theta_1^{\text{II}})}, \ c_3(\theta_1^{\text{II}})\right) \tag{2.22}$$

Как видно из рисунка 2.3, $\theta_2=\varphi+\beta$ при $\theta_3^{\mathsf{I,III}}<0$ и $\theta_2=\varphi-\beta$ при $\theta_3^{\mathsf{II,IV}}>0$. Следовательно, принимая во внимание то, что

$$\varphi(\theta_1) = \text{atan2}(y_r, x_r), \qquad \beta(\theta_3) = \text{atan2}(a_3 \sin |\theta_3|, a_2 + a_3 \cos |\theta_3|), \qquad (2.23)$$

Изм. Лист № докум. Подп. Дата

Инв. № дубл.

подл.

Инв. №

 $KСУИ.101.4135.001\ \Pi 3$

Рисунок 2.3 – Плоская часть манипулятора

где x_r и y_r — проекции вектора $r_{1,4}^1$ на оси абсцисс и ординат (их значения см. в (2.19)), для возможных значений угла θ_2 получаем следующие формулы:

$$\theta_2^{\mathsf{I}} = \varphi(\theta_1^{\mathsf{I}}) + \beta(\theta_3^{\mathsf{I}}), \qquad \qquad \theta_2^{\mathsf{II}} = \varphi(\theta_1^{\mathsf{I}}) - \beta(\theta_3^{\mathsf{II}}), \qquad (2.24)$$

$$\theta_2^{\mathsf{III}} = \varphi(\theta_1^{\mathsf{II}}) + \beta(\theta_3^{\mathsf{III}}), \qquad \qquad \theta_2^{\mathsf{IV}} = \varphi(\theta_1^{\mathsf{II}}) - \beta(\theta_3^{\mathsf{IV}}). \tag{2.25}$$

Формулы для значений угла θ_4 после этого с учетом (2.13) приобретают простой вид:

$$\theta_4^{\mathsf{I},\mathsf{II}} = \theta_{234}^{\mathsf{I}} - \theta_2^{\mathsf{I},\mathsf{II}} - \theta_3^{\mathsf{I},\mathsf{II}}, \qquad \theta_4^{\mathsf{III},\mathsf{IV}} = \theta_{234}^{\mathsf{II}} - \theta_2^{\mathsf{III},\mathsf{IV}} - \theta_3^{\mathsf{III},\mathsf{IV}}. \tag{2.26}$$

Таким образом, любые положение и ориентацию схвата относительно основания манипулятор может обеспечить 4-мя собственными конфигурациями, которым соответствуют следующие наборы значений для его обобщенных координат $q = [q_1, q_2, q_3, q_4, q_5]^T$ (с учетом таблицы 2.1):

$$q^{\mathsf{I}} = \begin{bmatrix} \theta_1^{\mathsf{I}} & \theta_2^{\mathsf{I}} - \frac{\pi}{2} & \theta_3^{\mathsf{I}} & \theta_4^{\mathsf{I}} & \theta_5^{\mathsf{I}} \end{bmatrix}^T, \qquad q^{\mathsf{II}} = \begin{bmatrix} \theta_1^{\mathsf{I}} & \theta_2^{\mathsf{II}} - \frac{\pi}{2} & \theta_3^{\mathsf{II}} & \theta_4^{\mathsf{II}} & \theta_5^{\mathsf{I}} \end{bmatrix}^T, \tag{2.27}$$

$$q^{\mathsf{III}} = \begin{bmatrix} \theta_1^{\mathsf{II}} & \theta_2^{\mathsf{III}} - \frac{\pi}{2} & \theta_3^{\mathsf{III}} & \theta_4^{\mathsf{III}} & \theta_5^{\mathsf{II}} \end{bmatrix}^T, \quad q^{\mathsf{IV}} = \begin{bmatrix} \theta_1^{\mathsf{II}} & \theta_2^{\mathsf{IV}} - \frac{\pi}{2} & \theta_3^{\mathsf{IV}} & \theta_4^{\mathsf{IV}} & \theta_5^{\mathsf{II}} \end{bmatrix}^T \tag{2.28}$$

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

инв. $\mathcal{N}^{\underline{o}}$

Взам. 1

Подп.

Инв. № подл.

 $KCУИ.101.4135.001\ \Pi 3$

2.2 Динамика манипулятора

2.2.1 Общие замечания

Введем в рассмотрение барицентрические СК $Ox_{ci}y_{ci}z_{ci}^*$, где $i=\overline{1,5}$, показанные на рисунке 2.4. Заметим, что каждая СК $Ox_{ci}y_{ci}z_{ci}$ сонаправлена с $Ox_iy_iz_i$.

Рисунок 2.4 – Положение барицентрических СК и направление вектора \vec{g} .

^{*} Системы координат, чьи начала совпадают с центрами масс соответствующих звеньев.

Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

инв.

Взам.

и дата

Подп.

Инв. № подл.

 $KСУИ.101.4135.001\ \Pi 3$

KCVN.101.4135.001 FI3

Для описания положения введенных СК воспользуемся следующими векторами:

$$r_{i,ci}^{i} = \begin{bmatrix} x_{ci} \\ y_{ci} \\ z_{ci} \end{bmatrix}, \quad i = \overline{1,5}, \tag{2.29}$$

где x_{ci}, y_{ci} и z_{ci} — некоторые постоянные величины.

Для компонент тензоров инерции $\mathcal{I}_i^i = const$ введем следующие обозначения:

$$\mathcal{I}_{i}^{i} = \begin{bmatrix} I_{i,xx} & I_{i,xy} & I_{i,xz} \\ I_{i,xy} & I_{i,yy} & I_{i,yz} \\ I_{i,xz} & I_{i,yz} & I_{i,zz} \end{bmatrix}.$$
(2.30)

Заметим, что

$$g_0 = \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix}, \tag{2.31}$$

где $g = 9.82 \text{ м/c}^2$.

Подп. и дата

Инв. № дубл.

инв. $N^{\underline{\varrho}}$

Взам.

Подп. и дата

Инв. № подл.

В заключении раздела приведем формулы для расчета величин, которые потребуются в дальнейшем (везде $i=\overline{1,5}$):

— для расчета $r_{0,i}^0$ и 0R_i (см. Приложение A):

$${}^{0}A_{i} = {}^{0}A_{1} \cdot {}^{1}A_{2} \cdot \dots \cdot {}^{i-1}A_{i}; \tag{2.32}$$

— для расчета $r_{0,i}^i$:

$$r_{0,i}^i = {}^{0}R_i^T \cdot r_{0,i}^0; (2.33)$$

— для расчета z_i^0 :

$$z_i^0 = {}^{0}R_i \cdot z_i^i = {}^{0}R_i \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; \tag{2.34}$$

— для расчета g_i, v_i^i и ω_i^i :

$$g_i = {}^{0}R_i^T \cdot g_0, \qquad v_i^i = {}^{0}R_i^T \cdot v_i^0, \qquad \omega_i^i = {}^{0}R_i^T \cdot \omega_i^0.$$
 (2.35)

Изм. Лист № докум. Подп. Дата

 $KCУИ.101.4135.001\ \Pi 3$

2.2.2 Вывод уравнений движения

Потенциальная энергия манипулятора

$$U = -\sum_{i=1}^{5} \left(m_i g_i^T r_{0,ci}^i \right) = -\sum_{i=1}^{5} \left(m_i g_i^T r_{0,i}^i + g_i^T (m_i r_{i,ci}^i) \right), \tag{2.36}$$

Якобианы, устанавливающие в соответствии с формулой

$$v_i^0 = J_{vi}\dot{q}, \quad i = \overline{1,5} \tag{2.37}$$

связь между линейными скоростями начал соответствующих CK и вектором \dot{q} :

$$J_{v1} = \left[z_0^0 \times \left(r_{0,1}^0 - r_{0,0}^0 \right) \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \right], \tag{2.38}$$

$$J_{v2} = \left[z_0^0 \times \left(r_{0,2}^0 - r_{0,0}^0 \right) \ z_1^0 \times \left(r_{0,2}^0 - r_{0,1}^0 \right) \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \right], \tag{2.39}$$

$$J_{v3} = \begin{bmatrix} z_0^0 \times (r_{0,3}^0 - r_{0,0}^0) & z_1^0 \times (r_{0,3}^0 - r_{0,1}^0) & z_2^0 \times (r_{0,3}^0 - r_{0,2}^0) & \mathbf{0} \end{bmatrix}, \quad (2.40)$$

$$J_{v4} = \begin{bmatrix} z_0^0 \times (r_{0,4}^0 - r_{0,0}^0) \\ z_1^0 \times (r_{0,4}^0 - r_{0,1}^0) \\ z_2^0 \times (r_{0,4}^0 - r_{0,2}^0) \\ z_3^0 \times (r_{0,4}^0 - r_{0,3}^0) \\ \mathbf{0} \end{bmatrix}, \qquad J_{v5} = \begin{bmatrix} z_0^0 \times (r_{0,5}^0 - r_{0,0}^0) \\ z_1^0 \times (r_{0,5}^0 - r_{0,1}^0) \\ z_2^0 \times (r_{0,5}^0 - r_{0,2}^0) \\ z_3^0 \times (r_{0,5}^0 - r_{0,3}^0) \\ z_4^0 \times (r_{0,5}^0 - r_{0,3}^0) \end{bmatrix}, \qquad (2.41)$$

где $\mathbf{0} = [0 \ 0 \ 0]^T$ — нулевой вектор.

Якобианы, устанавливающие в соответствии с формулой

$$\omega_i^0 = J_{\omega i}\dot{q}, \quad i = \overline{1,5} \tag{2.42}$$

связь между угловыми скоростями звеньев и вектором \dot{q} :

$$J_{\omega 1} = \begin{bmatrix} z_0^0 & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \qquad J_{\omega 2} = \begin{bmatrix} z_0^0 & z_1^0 & \mathbf{0} & \mathbf{0} \end{bmatrix}, \tag{2.43}$$

$$J_{\omega 3} = \begin{bmatrix} z_0^0 & z_1^0 & z_2^0 & \mathbf{0} & \mathbf{0} \end{bmatrix}, \qquad J_{\omega 4} = \begin{bmatrix} z_0^0 & z_1^0 & z_2^0 & z_3^0 & \mathbf{0} \end{bmatrix}, \tag{2.44}$$

$$J_{\omega 5} = \begin{bmatrix} z_0^0 & z_1^0 & z_2^0 & z_3^0 & z_4^0 \end{bmatrix}. \tag{2.45}$$

Кинетическая энергия манипулятора

$$K = \sum_{i=1}^{5} \left(\frac{1}{2} m_i (v_i^i)^T v_i^i + \frac{1}{2} (\omega_i^i)^T \mathcal{I}_i^i \omega_i^i + (m_i r_{i,ci}^i)^T \cdot (v_i^i \times \omega_i^i) \right). \tag{2.46}$$

Изм. Лист № докум. Подп. Дата

инв. $N^{\underline{o}}$

Взам.

Инв. № подл.

КСУИ.101.4135.001 ПЗ

Функция Лагранжа

$$L = K - U =$$

$$= \sum_{i=1}^{5} \left(m_{i} \left(\frac{1}{2} (v_{i}^{i})^{T} v_{i}^{i} + g_{i}^{T} r_{0,i}^{i} \right) + (m_{i} r_{i,ci}^{i})^{T} \cdot \left(v_{i}^{i} \times \omega_{i}^{i} + g_{i} \right) + \frac{1}{2} (\omega_{i}^{i})^{T} \mathcal{I}_{i}^{i} \omega_{i}^{i} \right) =$$

$$= \sum_{i=1}^{5} \left(m_{i} \underbrace{\left(\frac{1}{2} (v_{i}^{i})^{T} v_{i}^{i} + g_{i}^{T} r_{0,i}^{i} \right)}_{L_{i,1}} + m_{i} x_{ci} \cdot \underbrace{x \left\{ v_{i}^{i} \times \omega_{i}^{i} + g_{i} \right\}}_{L_{i,2}} +$$

$$+ m_{i} y_{ci} \cdot \underbrace{y \left\{ v_{i}^{i} \times \omega_{i}^{i} + g_{i} \right\}}_{L_{i,3}} + m_{i} z_{ci} \cdot \underbrace{z \left\{ v_{i}^{i} \times \omega_{i}^{i} + g_{i} \right\}}_{L_{i,4}} + I_{i,xx} \cdot \underbrace{\frac{1}{2} \cdot \left(x \left\{ \omega_{i}^{i} \right\} \right)^{2}}_{L_{i,5}} +$$

$$+ I_{i,yy} \cdot \underbrace{\frac{1}{2} \cdot \left(y \left\{ \omega_{i}^{i} \right\} \right)^{2}}_{L_{i,6}} + I_{i,zz} \cdot \underbrace{\frac{1}{2} \cdot \left(z \left\{ \omega_{i}^{i} \right\} \right)^{2}}_{L_{i,7}} + I_{i,xy} \cdot \underbrace{x \left\{ \omega_{i}^{i} \right\}}_{L_{i,8}} + \underbrace{V \left\{ \omega_{i}^{i} \right\}}_{L_{i,8}} +$$

$$+ I_{i,xz} \cdot \underbrace{x \left\{ \omega_{i}^{i} \right\}}_{L_{i,9}} \cdot z \left\{ \omega_{i}^{i} \right\}}_{L_{i,10}} + I_{i,yz} \cdot \underbrace{y \left\{ \omega_{i}^{i} \right\}}_{L_{i,10}} \cdot z \left\{ \omega_{i}^{i} \right\}}_{L_{i,10}} \right). \tag{2.47}$$

Уравнения движения робота:

Подп. и дата

Инв. № дубл.

инв.

Взам.

Подп. и дата

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = \tau_i, \quad i = \overline{1,5} \qquad \Rightarrow \tag{2.48}$$

$$\Rightarrow \begin{cases}
\sum_{i=1}^{5} \left(m_{i} \cdot \mathcal{L}_{1} \{ L_{i,1} \} + m_{i} x_{ci} \cdot \mathcal{L}_{1} \{ L_{i,2} \} + \ldots + I_{i,yz} \cdot \mathcal{L}_{1} \{ L_{i,10} \} \right) = \tau_{1} \\
\sum_{i=1}^{5} \left(m_{i} \cdot \mathcal{L}_{2} \{ L_{i,1} \} + m_{i} x_{ci} \cdot \mathcal{L}_{2} \{ L_{i,2} \} + \ldots + I_{i,yz} \cdot \mathcal{L}_{2} \{ L_{i,10} \} \right) = \tau_{2} \\
\vdots \\
\sum_{i=1}^{5} \left(m_{i} \cdot \mathcal{L}_{5} \{ L_{i,1} \} + m_{i} x_{ci} \cdot \mathcal{L}_{5} \{ L_{i,2} \} + \ldots + I_{i,yz} \cdot \mathcal{L}_{5} \{ L_{i,10} \} \right) = \tau_{5}
\end{cases} (2.49)$$

где \mathcal{L}_j — оператор, работающий в соответствии с формулой:

$$\mathcal{L}_j: \quad \mathcal{L}_j\{f\} = \frac{d}{dt} \frac{\partial f}{\partial \dot{q}_j} - \frac{\partial f}{\partial q_j},$$
 (2.50)

Изм.	Лист	№ докум.	Подп.	Дата

где в свою очередь $f = f(\dot{q}(t), q(t))$. Если же заметить, что

$$\mathcal{L}_{j}\{L_{i,k}\} = 0$$
 при $j > i$, $i, j = \overline{1,5}$, $k = \overline{1,10}$, (2.51)

то выражения для них упрощаются до:

$$\begin{cases}
\sum_{i=1}^{5} \left(m_{i} \cdot \mathcal{L}_{1} \{ L_{i,1} \} + m_{i} x_{ci} \cdot \mathcal{L}_{1} \{ L_{i,2} \} + \ldots + I_{i,yz} \cdot \mathcal{L}_{1} \{ L_{i,10} \} \right) = \tau_{1} \\
\sum_{i=2}^{5} \left(m_{i} \cdot \mathcal{L}_{2} \{ L_{i,1} \} + m_{i} x_{ci} \cdot \mathcal{L}_{2} \{ L_{i,2} \} + \ldots + I_{i,yz} \cdot \mathcal{L}_{2} \{ L_{i,10} \} \right) = \tau_{2} \\
\vdots \\
m_{5} \cdot \mathcal{L}_{5} \{ L_{5,1} \} + m_{5} x_{c5} \cdot \mathcal{L}_{5} \{ L_{5,2} \} + \ldots + I_{5,yz} \cdot \mathcal{L}_{5} \{ L_{5,10} \} \right) = \tau_{5}
\end{cases} \tag{2.52}$$

или в матричном виде

$$\tau = \xi \chi, \tag{2.53}$$

где $\tau=[\tau_1,\ \tau_2,\ \dots,\ \tau_5]^T$ — вектор обобщенных моментов, $\chi=[\chi_1,\ \chi_2,\ \dots,\ \chi_5]^T\in\mathbb{R}^{50}$ — вектор параметров робота, где в свою очередь

$$\chi_{i} = \begin{bmatrix} m_{i} & m_{i}x_{ci} & m_{i}y_{ci} & m_{i}y_{ci} & I_{i,xx} & I_{i,yy} & I_{i,zz} & I_{i,xy} & I_{i,xz} & I_{i,yz} \end{bmatrix}_{;}^{T}$$
 (2.54)

 ξ — так называемый регрессор, равный

$$\xi = \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \cdots & \xi_{1,5} \\ O_{1\times 10} & \xi_{2,2} & \cdots & \xi_{2,5} \\ \vdots & \vdots & \ddots & \vdots \\ O_{1\times 10} & O_{1\times 10} & O_{1\times 10} & \xi_{5,5} \end{bmatrix}, \tag{2.55}$$

где в свою очередь $O_{1\times 10}$ — вектор-строка, состоящая из 10 нулей, а $\xi_{j,i}=\xi_{j,i}(\ddot{q},\dot{q},q)$ — вектор-строка, рассчитываемый по формуле

$$\xi_{j,i} = \left[\mathcal{L}_j \{ L_{i,1} \} \ \mathcal{L}_j \{ L_{i,2} \} \ \dots \ \mathcal{L}_j \{ L_{i,10} \} \right].$$
 (2.56)

2.2.3 Учет динамики приводов

Уравнения, описывающие динамику приводов, в матричном виде имеют вид

$$I_a \ddot{q} = \tau_e - \tau, \tag{2.57}$$

Изм.	Лист	№ докум.	Подп.	Дата

 $KCУИ.101.4135.001\ \Pi 3$

KCVN.101.4135.001 FI3

где I_a — диагональная матрица приведенных к выходным валам моментов инерции приводов, τ_e — вектор-столбец приведенных к выходным валам приводов моментов силы, развиваемых двигателями, имеющие вид:

$$I_{a} = \begin{bmatrix} I_{a,1} & 0 & \cdots & 0 \\ 0 & I_{a,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & I_{a,5} \end{bmatrix}, \qquad \tau_{e} = \begin{bmatrix} \tau_{e,1} \\ \tau_{e,2} \\ \vdots \\ \tau_{e,5} \end{bmatrix}.$$
 (2.58)

Объединяя уравнения (2.53) и (2.57), получим

$$\tau_e = I_a \ddot{q} + \xi \chi, \tag{2.59}$$

а, добавив в это выражение учет моментов трения, окончательно будем иметь

$$\tau_e = I_a \ddot{q} + \xi \chi + t_f. \tag{2.60}$$

В качестве модели трения возьмем поясняемую рисунком 2.5 и описываемую следующим уравнением

$$\tau_f(\dot{q}) = f_v \dot{q} + f_c \operatorname{sign}(\dot{q}) + f_{\text{off}}, \tag{2.61}$$

где f_v , f_c — диагональные матрицы коэффициентов вязкого и сухого трения соответственно, $f_{\rm off}$ — вектор-столбец сдвигов в моментах силы, имеющие вид

$$f_{v} = \begin{bmatrix} f_{v,1} & 0 & \cdots & 0 \\ 0 & f_{v,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & f_{v,5} \end{bmatrix}, \quad f_{c} = \begin{bmatrix} f_{c,1} & 0 & \cdots & 0 \\ 0 & f_{c,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & f_{c,5} \end{bmatrix}, \quad f_{\text{off}} = \begin{bmatrix} f_{\text{off},1} \\ f_{\text{off},2} \\ \vdots \\ f_{\text{off},5} \end{bmatrix}. \quad (2.62)$$

Подставляя (2.61) в (2.60), получим

$$\tau_e = I_a \ddot{q} + \xi \chi + f_v \dot{q} + f_c \operatorname{sign}(\dot{q}) + f_{\text{off}}. \tag{2.63}$$

Если ввести в рассмотрение новые матрицы $\bar{\chi} = [\bar{\chi}_1, \ \bar{\chi}_2, \ \dots, \ \bar{\chi}_5]^T$ и

$$\bar{\xi} = \begin{bmatrix} \bar{\xi}_{1,1} & \bar{\xi}_{1,2} & \cdots & \bar{\xi}_{1,5} \\ O_{1\times 10} & \bar{\xi}_{2,2} & \cdots & \bar{\xi}_{2,5} \\ \vdots & \vdots & \ddots & \vdots \\ O_{1\times 10} & O_{1\times 10} & O_{1\times 10} & \bar{\xi}_{5,5} \end{bmatrix}, \tag{2.64}$$

Изм. Лист № докум. Подп. Дата

КСУИ.101.4135.001 ПЗ

Рисунок 2.5 – График, поясняющий выбранную модель трения.

определяемые выражениями

$$\bar{\chi}_i = \begin{bmatrix} \chi_i & I_{a,i} & f_{v,i} & f_{c,i} & f_{\text{off},i} \end{bmatrix}^T, \tag{2.65}$$

$$\bar{\xi}_{j,i} = \begin{cases} \begin{bmatrix} \xi_{j,i} & 0 & 0 & 0 & 0 \\ \xi_{j,i} & \ddot{q} & \dot{q} & \text{sign}(\dot{q}) & 1 \end{bmatrix}, & i = j \end{cases}$$
 (2.66)

то данное выражение может быть записано в следующем матричном виде:

$$\tau_e = \bar{\xi}\bar{\chi}. \tag{2.67}$$

2.2.4 Альтернативная матричная форма записи

Выражение (2.53) может быть переписано в форме

$$\tau = D(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q),$$
 (2.68)

где D(q) — матрица инерции, $C(q,\dot{q})$ — матрица центробежных и Кориолисовых сил, G(q) — вектор гравитации. С учетом этого факта и уравнения (2.60) можно получить, что

$$\tau_e = M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) + t_f(\dot{q}),$$
(2.69)

где $M(q) = I_a + D(q)$.

Инв. № дубл.

Взам. инв. №

Подп.

подл.

Изм.	Лист	№ докум.	Подп.	Дата

Выражение для матрицы D(q) может быть найдено из формулы для кинетической энергии с учетом того, что справедливо

$$K = \frac{1}{2}\dot{q}^T D(q)\dot{q},\tag{2.70}$$

для матрицы $C(q,\dot{q})$ — из выражения для D(q) в соответствии с формулами:

$$C_{ijk} = \frac{1}{2} \left(\frac{\partial D_{kj}}{\partial q_i} + \frac{\partial D_{ki}}{\partial q_j} - \frac{\partial D_{ij}}{\partial q_k} \right), \tag{2.71}$$

$$C_{kj} = \sum_{i=1}^{n} C_{ijk} \dot{q}_i, \tag{2.72}$$

где D_{ij} , C_{ij} — элементы матриц D(q) и $C(q,\dot{q})$ соответственно, стоящие на пересечении i-ой строки и j-го столбца; а для вектора G(q) — по формуле

$$G(q) = \left[\frac{\partial U}{\partial q_1} \frac{\partial U}{\partial q_2} \dots \frac{\partial U}{\partial q_5} \right]^T$$
 (2.73)

Выражение для кинетической энергии в форме (2.70) может быть получено из уравнения (2.46) с учетом формул (2.35), (2.37) и (2.42):

$$K = \sum_{i=1}^{5} \left(\frac{1}{2} m_{i} \cdot \left({}^{0}R_{i}^{T} J_{vi} \dot{q} \right)^{T} \cdot \left({}^{0}R_{i}^{T} J_{vi} \dot{q} \right) + \frac{1}{2} \left({}^{0}R_{i}^{T} J_{\omega i} \dot{q} \right)^{T} \cdot \mathcal{I}_{i}^{i} \cdot \left({}^{0}R_{i}^{T} J_{\omega i} \dot{q} \right) + \right.$$

$$\left. + \left(m_{i} r_{i,ci}^{i} \right)^{T} \cdot \left(\left({}^{0}R_{i}^{T} J_{vi} \dot{q} \right) \times \left({}^{0}R_{i}^{T} J_{\omega i} \dot{q} \right) \right) \right) =$$

$$= \sum_{i=1}^{5} \left(\frac{1}{2} m_{i} \dot{q}^{T} J_{vi}^{T} J_{vi} \dot{q} + \frac{1}{2} \dot{q}^{T} J_{\omega i}^{T} {}^{0}R_{i} \mathcal{I}_{i}^{i} {}^{0}R_{i}^{T} J_{\omega i} \dot{q} + \left(m_{i} \underbrace{{}^{0}R_{i}^{T} J_{\omega i}}_{r_{i,ci}^{i}} \right)^{T} \cdot \left(\left(J_{vi} \dot{q} \right) \times \left(J_{\omega i} \dot{q} \right) \right) \right) =$$

$$= \frac{1}{2} \dot{q}^{T} \left(\sum_{i=1}^{5} \left(m_{i} J_{vi}^{T} J_{vi} + J_{\omega i}^{T} {}^{0}R_{i} \mathcal{I}_{i}^{i} {}^{0}R_{i}^{T} J_{\omega i} + x \{ m_{i} r_{i,ci}^{0} \} \cdot J_{x} + \right.$$

$$\left. + y \{ m_{i} r_{i,ci}^{0} \} \cdot J_{y} + z \{ m_{i} r_{i,ci}^{0} \} \cdot J_{z} \right) \right) \dot{q}, \tag{2.74}$$

при преобразованиях которого учтено то, что

$$(J_{vi}\dot{q}) \times (J_{\omega i}\dot{q}) = \begin{bmatrix} J_{vi}^{\{1\}}\dot{q} \\ J_{vi}^{\{2\}}\dot{q} \\ J_{vi}^{\{3\}}\dot{q} \end{bmatrix} \times \begin{bmatrix} J_{\omega i}^{\{1\}}\dot{q} \\ J_{\omega i}^{\{2\}}\dot{q} \\ J_{\omega i}^{\{3\}}\dot{q} \end{bmatrix} = \begin{bmatrix} -J_{vi}^{\{3\}}\dot{q}J_{\omega i}^{\{2\}}\dot{q} + J_{vi}^{\{2\}}\dot{q}J_{\omega i}^{\{3\}}\dot{q} \\ J_{vi}^{\{3\}}\dot{q}J_{\omega i}^{\{1\}}\dot{q} - J_{vi}^{\{1\}}\dot{q}J_{\omega i}^{\{3\}}\dot{q} \\ -J_{vi}^{\{2\}}\dot{q}J_{\omega i}^{\{1\}}\dot{q} + J_{vi}^{\{1\}}\dot{q}J_{\omega i}^{\{2\}}\dot{q} \end{bmatrix} = \begin{bmatrix} -J_{vi}^{\{3\}}\dot{q}J_{\omega i}^{\{2\}}\dot{q} - J_{vi}^{\{1\}}\dot{q}J_{\omega i}^{\{3\}}\dot{q} \\ -J_{vi}^{\{2\}}\dot{q}J_{\omega i}^{\{1\}}\dot{q} + J_{vi}^{\{1\}}\dot{q}J_{\omega i}^{\{2\}}\dot{q} \end{bmatrix}$$

И	ЗМ.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

инв. $N^{\underline{o}}$

Взам. 1

подл.

KCVM.101.4135.001 FI3

$$= \begin{bmatrix} -\dot{q}^{T} \left(J_{vi}^{\{3\}}\right)^{T} J_{\omega i}^{\{2\}} \dot{q} + \dot{q}^{T} \left(J_{vi}^{\{2\}}\right)^{T} J_{\omega i}^{\{3\}} \dot{q} \\ \dot{q}^{T} \left(J_{vi}^{\{3\}}\right)^{T} J_{\omega i}^{\{1\}} \dot{q} - \dot{q}^{T} \left(J_{vi}^{\{1\}}\right)^{T} J_{\omega i}^{\{3\}} \dot{q} \\ -\dot{q}^{T} \left(J_{vi}^{\{2\}}\right)^{T} J_{\omega i}^{\{1\}} \dot{q} + \dot{q}^{T} \left(J_{vi}^{\{1\}}\right)^{T} J_{\omega i}^{\{2\}} \dot{q} \end{bmatrix} = \begin{bmatrix} \dot{q}^{T} J_{x} \dot{q} \\ \dot{q}^{T} J_{y} \dot{q} \\ \dot{q}^{T} J_{z} \dot{q} \end{bmatrix},$$
(2.75)

где

$$J_x = -\left(J_{vi}^{\{3\}}\right)^T J_{\omega i}^{\{2\}} + \left(J_{vi}^{\{2\}}\right)^T J_{\omega i}^{\{3\}}, \tag{2.76}$$

$$J_y = \left(J_{vi}^{\{3\}}\right)^T J_{\omega i}^{\{1\}} - \left(J_{vi}^{\{1\}}\right)^T J_{\omega i}^{\{3\}}, \tag{2.77}$$

$$J_z = -\left(J_{vi}^{\{2\}}\right)^T J_{\omega i}^{\{1\}} + \left(J_{vi}^{\{1\}}\right)^T J_{\omega i}^{\{2\}}.$$
 (2.78)

Подп. и дата				
Инв. № дубл.				
Взам. инв. №				
Подп. и дата				
Инв. № подл.	Изм. Лист № докум.	Подп. Дата	КСУИ.101.4135.001 ПЗ Копировал	Лист 25 Формат A4

3 Идентификация параметров манипулятора

3.1 Описание метода

Для определения неизвестных значений параметров робота, составляющих вектор $\bar{\chi}$, воспользуемся методом наименьших квадратов. Алгоритм необходимых действий в таком случае будет следующим:

а) с помощью поставляемого производителем робота ΠO^* дать манипулятору команды на последовательное достижение N произвольных конфигураций, по возможности охватывающих всю его рабочую область; во время его работы снять и записать следующие показания:

где $t_k > t_3 > t_2 > t_1$;

б) используя полученные данные, составить матрицы

$$\Xi = \begin{bmatrix} \bar{\xi}(\ddot{q}(t_1), \dot{q}(t_1), q(t_1)) \\ \bar{\xi}(\ddot{q}(t_2), \dot{q}(t_2), q(t_2)) \\ \vdots \\ \bar{\xi}(\ddot{q}(t_k), \dot{q}(t_k), q(t_k)) \end{bmatrix}, \qquad T_e = \begin{bmatrix} \tau_e(t_1) \\ \tau_e(t_2) \\ \vdots \\ \tau_e(t_k) \end{bmatrix}; \tag{3.1}$$

в) рассчитать оценку $\hat{\chi}$ вектора $\bar{\chi}$ по формуле:

$$\hat{\chi} = (\Xi^T \cdot \Xi)^{-1} \cdot \Xi^T \cdot T_e; \tag{3.2}$$

^{*} У Youbot такое «стандартное» ПО осуществляет управление углами в сочленениях робота с помощью ПИД-регуляторов.

Изм.	Лист	№ докум.	Подп.	Дата

инв. $\mathcal{N}^{\underline{o}}$

Взам. 1

 $KCУИ.101.4135.001\ \Pi 3$

KCVN.101.4135.001 FI3

- г) дать роботу команды на достижение других N позиций и при этом получить те же самые данные;
- д) используя найденную в п. в) оценку $\hat{\chi}$ и снятые в п. г) данные, рассчитать по формуле (2.67) значения для τ_e ; сравнить их с полученными в п. г) и сделать выводы об успешности идентификации.

3.2 Результаты

_					
Подп. и дата					
Инв. № дубл.					
B3am. IHB. $N^{\underline{\varrho}}$					
Подп. и дата					
длл.					
Инв. № подл.	Изм. Лист	г № докум.	Подп. Дата	КСУИ.101.4135.001 ПЗ	Лист 27
		\(\text{A} = -\sqrt{111}\)	-A A	Копировал	Формат А4

4 Синтез систем управления

4.1 Предварительные замечания

Каждый из приводов манипулятора робота Kuka Youbot имеет собственную систему управления, структура которой иллюстрируется схемой с рисунка 4.1. Из нее видно, что каждый из приводов робота может управляться заданием значения для угла q_{di} , или скорости \dot{q}_{di} , или момента силы $\tau_{ed,i}$, который должен быть на нем обеспечен. Это значение подается на вход соответствующего ПИД-регулятора, коэффициенты которого доступны настройке, и далее (уже в виде сигнала напряжения u) — на контролируемый двигатель.

Рисунок 4.1 – Структура системы управления, контролирующей работу каждого из приводов робота.

Далее в тексте документа будут рассмотрены системы управления, в которых в качестве управляющего сигнала рассматривается вектор $\tau_e(t)$. При этом будет предполагаться, что задаваемые значения для моментов сил достигаются на двигателях мгновенно. Такое предположение будем считать возможным по той причине, что процессы в контуре момента в рассмотренной выше системе управления характеризуются малыми временами переходных процессов. В качестве иллюстрации к сказанному можно привести рисунок 4.2. На нем показан график переходной функции системы управления моментом силы, развиваемым приводом ???-го звена.

Из величин, описывающих состояние робота в данный момент времени, в используемом ПО доступны вектора $q(t), \dot{q}(t)$ и $\tau_e(t)$.

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

и дата

Подп.

Инв. № подл.

КСУИ.101.4135.001 ПЗ

 $\verb|pid_transition_function.pdf|\\$

Рисунок 4.2 – График переходной функции системы управления приводом ???-го звена.

4.2 Система управления для принятия определенной конфигурации

Для системы управления процессом принятия роботом желаемой конфигурации, описываемой вектором $q_d = \left[q_{d1} \; q_{d2} \; q_{d3} \; q_{d4} \; q_{d5}\right]^T = const$, выберем следующий закон управления:

$$\tau_e = K_p(q_d - q) - K_d \dot{q} + G(q) + t_f(\dot{q}), \tag{4.1}$$

где $K_p = \operatorname{diag}\{k_{pi}\} = const$ и $K_d = \operatorname{diag}\{k_{di}\} = const$, при этом $k_{pi} > 0$ и $k_{di} > 0$ для $\forall i = \overline{1,5}$. С учетом его и уравнения (2.69) модель замкнутой системы примет вид:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} = K_p(q_d - q) - K_d\dot{q}.$$
 (4.2)

Это выражение с использованием обозначений

$$e = q - q_d,$$
 $x = \begin{bmatrix} e \\ \dot{q} \end{bmatrix},$ (4.3)

можно переписать следующим образом

$$\dot{x} = f(x),\tag{4.4}$$

Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Взам. инв. №

 $KCУИ.101.4135.001\ \Pi 3$

где

$$f(x) = \begin{bmatrix} \dot{q} \\ -M^{-1}(e) \left(K_p e + K_d \dot{q} + C(e, \dot{q}) \dot{q} \right) \end{bmatrix}.$$
 (4.5)

Заметим, что равновесным состоянием системы (4.4) является точка $x_0 = [0 \ 0 \ \dots \ 0]^T$, так как $f(x_0) = [0 \ 0 \ \dots \ 0]^T$.

Рассмотрим следующую функцию Ляпунова:

$$V(x) = \frac{1}{2}\dot{q}^{T}M(e)\dot{q} + \frac{1}{2}e^{T}K_{p}e.$$
(4.6)

Ее производная по времени*

$$\frac{d}{dt}V(x) = \dot{q}^{T}M(e)\ddot{q} + \dot{q}^{T}\frac{d}{dt}\left(\frac{1}{2}M(e)\right)\dot{q} + \dot{e}^{T}K_{p}e =
= \dot{q}^{T}\left(\tau_{e} - C(q,\dot{q})\dot{q} - G(q) - t_{f}(\dot{q})\right) + \dot{q}^{T}\frac{d}{dt}\left(\frac{1}{2}M(q)\right)\dot{q} + \dot{q}^{T}K_{p}e =
= \dot{q}^{T}\left(\tau_{e} - G(q) - t_{f}(\dot{q}) + K_{p}e\right) + \dot{q}^{T}\left(\frac{d}{dt}\left(\frac{1}{2}M(q)\right) - C(q,\dot{q})\right)\dot{q} =
= \dot{q}^{T}\left(K_{p}(q_{d} - q) - K_{d}\dot{q} + G(q) + t_{f}(\dot{q}) - G(q) - t_{f}(\dot{q}) + K_{p}(q - q_{d})\right) =
= -\dot{q}^{T}K_{d}\dot{q} < 0$$
(4.7)

при $x \neq x_0$ и равна нулю при $x = x_0$. Следовательно, по 2-ой теореме Ляпунова состояние системы $x = x_0$, при котором, к слову сказать, $q = q_d$ и $\dot{q} = [0 \ 0 \ \dots \ 0]^T$, является асимптотически устойчивым.

Изм. Лист № докум. Подп. Дата

инв. $N^{\underline{\varrho}}$

Взам. 1

подл.

Инв. №

КСУИ.101.4135.001 ПЗ

^{*} В представленных ниже выкладках учтен тот факт, что матрица (0.5M(q))- $C(q,\dot{q})$ является кососимметричной.

	ETI 100.3514.101.N	KCNI	
	Заключе	ние	
	Текст заключе	ения	
т дата			
Подп. и			
цубл.			
Инв. № дубл.			
инв. №			
Взам. инв.			
1	4		
г дата			
Подп. и дата			
Инв. № подл. Подп. и дата			

KCVN.101.4135.001 II3

Список использованных источников

- $1\ \mathrm{KUKA}\ \mathrm{YOUBOT.}-\ \mathrm{URL:}\ \mathrm{http://www.technomatix.ru/kuka-youbot}$ (дата обращения: 08.03.2017).
- 2 YouBot Detailed Specifications. — URL: http://www.youbotstore.com/wiki/index.php/YouBot_Detailed_Specifications (дата обращения: 04.04.2017).

инв. $\mathcal{N}^{\underline{o}}$ Взам. 1 Подп. и дата Инв. № подл. Лист $KCУИ.101.4135.001\ \Pi 3$ 32 Изм. Лист № докум. Подп. Дата

Приложение A (рекомендуемое)

Матрицы однородного преобразования

Матрицей однородного преобразования iA_j называется матрица размера 4×4 , служащая для описания смещения и поворота СК $Ox_jy_jz_j$ относительно СК $Ox_iy_iz_i$ и имеющая следующую структуру:

$${}^{i}A_{j} = \begin{bmatrix} {}^{i}R_{j} & r_{i,j}^{i} \\ O_{1\times 3} & 1 \end{bmatrix}, \tag{A.1}$$

где $O_{1\times 3} = [0\ 0\ 0].$

Подп. и дата

Инв. № дубл.

инв.

Взам.

подл.

Инв. №

Принципы ее использования поясняет следующий пример.

Рассмотрим рисунок А.1. Чтобы найти координаты точки C относительно $Ox_0y_0z_0$ при известных векторах r_C^2 , $r_{0,1}^0$ и $r_{1,2}^1$ и поворотах всех СК друг относительно друга, могут быть использованы следующие выражения:

$$\begin{cases} r_C^0 = {}^{0}R_1r_C^1 + r_{0,1}^0 \\ r_C^1 = {}^{1}R_2r_C^2 + r_{1,2}^1 \end{cases} \Rightarrow r_C^0 = {}^{0}R_1{}^{1}R_2r_C^2 + {}^{0}R_1r_{1,2}^1 + r_{0,1}^0$$
 (A.2)

где $r_C^0,\,r_C^1,\,r_C^2$ — радиус-векторы точки C в $Ox_0y_0z_0,\,Ox_1y_1z_1$ и $Ox_2y_2z_2$ соответственно. В это же время можно воспользоваться и матрицами 0A_1 и 1A_2 :

$$\begin{cases}
\begin{bmatrix} r_{C}^{0} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} {}^{0}R_{1} & r_{0,1}^{0} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \begin{bmatrix} r_{C}^{1} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{0}R_{1}r_{C}^{1} + r_{0,1}^{0} \\ 1 \end{bmatrix} \\
= \begin{bmatrix} {}^{1}R_{2} & r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix} \begin{bmatrix} r_{C}^{2} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{1}L_{3} \end{bmatrix} \\
\Rightarrow \begin{bmatrix} r_{C}^{0} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} {}^{0}R_{1} & r_{0,1}^{0} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2} & r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{2}} \begin{bmatrix} r_{C}^{2} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} {}^{0}R_{1} & r_{0,1}^{0} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{2} \\ {}^{0}L_{3} & 1 \end{bmatrix}}_{0A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1$$

Изм. Лист № докум. Подп. Дата

КСУИ.101.4135.001 ПЗ

KCVN.101.4135.001 FI3

Дополнительная информация о матрицах однородного преобразования доступна, например, в $\|.$

Рисунок А.1 – Системы координат из пояснительного примера.

	-	
Подп. и дата		
Инв. № дубл.		
Взам. инв. №		
Подп. и дата		
нв. № подл.	КСУИ.101.4135.001 ПЗ	Лист

Дата

Подп.

Изм. Лист

№ докум.

Приложение Б (рекомендуемое)

Терминология относительных измерений

Относительно координат некоторых векторов, являющихся в большинстве своем некоторыми кинематическими величинами, в тексте документа можно встретить указания на то, что они получены (или отсчитаны) «... относительно такой-то системы координат...» и при этом «... выражены относительно такой-то системы координат...». Это приложение разъясняет смысл данных фраз нижеследующим простым примером.

Рассмотрим рисунок Б.1. На нем изображены стоящий неподвижно куст, тележка, катящаяся со скоростью $v=1\,\mathrm{m/c}$, облако, движущееся со скоростью $u=3\,\mathrm{m/c}$, и жестко связанные с ними правосторонние системы координат $Ox_0y_0z_0,\,Ox_1y_1z_1$ и $Ox_2y_2z_2$. Опишем скорость движения облака вектором V. В зависимости от своего физического смысла он будет иметь разные координаты. Наглядно это демонстрирует таблица Б.1.

Рисунок Б.1 – Воображаемая ситуация из пояснительного примера.

Изм. Лист № докум. Подп. Дата

Подп.

Инв. № дубл.

инв.

Взам. 1

Подп.

Инв. № подл.

 $KCУИ.101.4135.001\ \Pi 3$

KCVN.101.4135.001 FI3

Таблица Б.1 – Координаты вектора V в зависимости от его физического смысла.

Смысл вектора V	Значение V^T
Скорость $Ox_2y_2z_2$ относительно $Ox_0y_0z_0$, выраженная относительно $Ox_0y_0z_0$	$\begin{bmatrix} 3 & 0 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_0y_0z_0$, выраженная относительно $Ox_1y_1z_1$	$\begin{bmatrix} 0 & 3 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_0y_0z_0$, выраженная относительно $Ox_2y_2z_2$	$\begin{bmatrix} 0 & 0 & -3 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_1y_1z_1$, выраженная относительно $Ox_0y_0z_0$	$\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_1y_1z_1$, выраженная относительно $Ox_1y_1z_1$	$\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_1y_1z_1$, выраженная относительно $Ox_2y_2z_2$	$\begin{bmatrix} 0 & 0 & -2 \end{bmatrix}$

Изм. Лист № докум. Подп. Дата

Взам. инв. №

Подп. и дата

 \overline{M} нв. $\mathcal{N}^{\underline{o}}$ подл.

 $KСУИ.101.4135.001\ \Pi 3$