

Statement of purpose

Task: maintenance cost reduction

Solution: Predictive maintenance

Technology: neural network

Output: plotted fault predictions

Data analysis

- Important: choose correct input variables for each component. Also from other turbines
- Visual inspection
- Some failures are unpredictable.
 E.g. short-circuits

Data processing

- All presented data combined;
- Missing values are filled with by interpolation of neighbors
- Each feature normalized within given turbine
- Feature engineering.

One dimensional convolutional neural network (D1 CNN)

Overcoming limited data amount - data augmentation

References

- Francisco Javier Ordonez and Daniel Roggen. "Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition". (2016)
- Nijat Mehdiyev, Johannes Lahann, Andreas Emrich, David Enke, Peter Fettke, Peter Loos. "Time Series Classification using Deep Learning for Process Planning: A Case from the Process Industry". (2017)
- Simon Malinowski, Romain Tavenard. "Data Augmentation for Time Series Classification using Convolutional Neural Networks Arthur Le Guennec". (2016)

Results

Prediction savings: 34506.7 €

Total grade: 11.8

Gearbox: 16.9

Generator: 14.5

Generator Bearing: 0.0

Transformer: 9.4

Hydraulic Group: 13.2

Thank you for the attention!