HW-CH30

1. A rectangular coil of N turns and of length a and width b is rotated at frequency f in a uniform magnetic field \vec{B} , as indicated in Fig. 30-38. The coil is connected to co-rotating cylinders, against which metal brushes slide to make contact. (a) Show that the emf induced in the coil is given (as a function of time t) by

$$\mathcal{E} = 2\pi f NabB \sin(2\pi ft) = \mathcal{E}_0 \sin(2\pi ft).$$

This is the principle of the commercial alternating-current generator. (b) What value of Nab gives an emf with $\mathcal{E}_0 = 150$ V when the loop is rotated at 60.0 rev/s in a uniform magnetic field of 0.500 T?

2. Figure 30-45 shows two parallel loops of wire having a common axis. The smaller loop (radius r) is above the larger loop (radius R) by a distance $x \gg R$. Consequently, the magnetic field due to the counterclockwise current i in the larger loop is nearly uniform throughout the smaller loop. Suppose that x is increasing at the constant rate $dx/dt = \nu$. (a) Find an expression for the magnetic flus through the area of the smaller loop as a function of x. (Hint: See Eq. 29-27.) In the smaller loop, find (b) an expression for the induced emf and (c) the direction of the induced current.

Fig. 30-45 Problem 23.

3. Inductors in series. Two inductors L_1 and L_2 are connected in series and are separated by a large distance so that the magnetic field of one cannot affect the other. (a) Show that the equivalent inductance is given by

$$L_{eq} = L_1 + L_2.$$

(*Hint:* Review the derivations for resistors in series and capacitors in series. Which is similar here?) (b) What is the generalization of (a) for N inductors in series?

4. Inductors in parallel. Two inductors L_1 and L_2 are connected in parallel and separated by a large distance so that the magnetic field of one cannot affect the other. (a) Show that the equivalent inductance is given by

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}.$$

(*Hint*: Review the derivations for resistors in parallel and capacitors in parallel. Which is similar here?) (b) What is the generalization of (a) for N inductors in parallel?

5. In Fig. 30-64, after switch S is closed at time t=0, the emf of the source is automatically adjusted to maintain a constant current i through S. (a) Find the current through the indicator as a function of time. (b) At what time is the current through the resistor equal to the current through the inductor?

6. Two coils connected as shown in Fig. 30-68 separately have inductances L_1 and L_2 . Their mutual inductance is M. (a) show that this combination can be replaced by a single coil of equivalent inductance given by

$$L_{eq} = L_1 + L_2 + 2M.$$

(b) How could the coils in Fig. 30-68 be reconnected to yield an equivalent inductance of

$$L_{eq} = L_1 + L_2 - 2M$$
?

(This problem is an extension of Problem 47, but the requirement that the coils be far apart has been removed.)

Fig. 30-68 Problem 77.

7. A uniform magnetic field \vec{B} is perpendicular to the plane of a circular wire loop of radius r. The magnitude of the field varies with time according to $B = B_0 e^{-t/\tau}$, where B_0 and τ are constants. Find an expression for the emf in the loop as a function of time.