NATURAL DISASTERS INTENSITY ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

TEAM ID: PNT2022TMID04308

LITERATURE SURVEY

S.NO	PAPER	AUTHOR	YEAR	METHOD AND ALGORITHM	ACCURACY
1.	Natural Disasters Intensity Analysis and Classification Based on Multispectral Images Using Multi-Layered Deep Convolutional Neural Network	Muhammad Aamir , Tariq Ali, Muhammad Irfan , Ahmad Shaf , Muhammad Zeeshan Azam , Adam Glowacz, Frantisek Brumercik , Witold Glowacz , Samar Alqhtani and Saifur Rahman	2021	Multilayered deep convolutional neural network method consists of two blocks of a convolutional neural network. The first block detects a natural disaster occurring and the second one defines the intensity type of the natural disaster.	99.92%
2.	Multimodal deep learning based on multiple correspondence analysis for disaster management	Samira Pouyanfar, YudongTao Haiman Tian · Shu-Ching Chen1 · Mei-Ling Shyu2	2018	Deep networks including a temporal audio model and a spatio-temporal visual model are presented to analyze the audio-visual modalities in video clips effectively. Multiple Correspondence Analysis (MCA) algorithm which con siders the correlations between data modalities and final classes.	73%
3.	Research on the identification method for the forest fire based on deep learning	Zhaochun Liu, Kai Zhang b, Chenyang Wang a, Siyu Huang	2020	The forest fire image recognition method proposed in this paper can obtain higher recognition	97.6%

S.NO	PAPER	AUTHOR	YEAR	METHOD AND ALGORITHM	ACCURACY
				rate and lower false alarm rate after training with fewer samples than other algorithms. HOG + Adaboost, CNN + SVM	
4.	A Deep Learning Framework for the Detection of Tropical Cyclones From Satellite Images	K.S.S.Sai Srujan, Sayali R.Kulkarni, Kshitij Alwadhi, Navya Jain, Hariprasad Kodamana, S. Sandeep, and Viju O. John	2022	An automated TC detection from satellite images based On a novel deep learning technique. In this study, we propose a multistaged deep learning framework for the detection of TCs, including, 1) a detector—Mask region convolutional neural network (R-CNN); 2) a wind speed filter; and 3) a classifier—convolutional neural network (CNN).	86.55%
5.	Earthquake risk assessment in NE India using deep learning and geospatial analysis	Ratiranjan Jena a, Biswajeet Pradhan, Sambit Prasanajit Naik d, Abdullah M. Alamri	2021	Convolutional neural network (CNN) model for earthquake probability assessment in NE India. The details of the training process of convolutional neural network (CNN) were described mathematically to explain parameter learning. The description was portrayed using the artificial neural network (ANN) technique	94%