TR-17-008 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

1	Journal: Genome Announcements
2	Title: Genome Sequences of eight Crimean-Congo hemorrhagic fever virus strains
3	Authors: JW Koehler ¹ , KL Delp ¹ , BJ Kearney ¹ , TA Conrad ¹ , RJ Schoepp ¹ , AR Garrison ² , LA Altamura ¹ ,
4	CA Rossi ¹ , TD Minogue ¹
5	
6	Author Affiliations:
7	¹ Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases,
8	1425 Porter Street, Fort Detrick, MD, 21702 USA
9	² Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter
10	Street, Fort Detrick, MD, 21702 USA
11	
12	Abstract:
13	Crimean-Congo hemorrhagic fever virus (CCHFV) is a geographically widespread RNA virus with a high
14	degree genomic diversity that complicates sequence-based diagnostics. Here, we sequenced eight CCHFV
15	strains for improved assay design and deposition into FDA-ARGOS, the FDA's pathogen database for
16	diagnostic assay verification studies.
17	
18	Article Text:
19	Crimean-Congo hemorrhagic fever virus (CCHFV) is a geographically widespread [1-6] and genetically
20	diverse virus [7-9]. Account for this genomic diversity is critical for efficacious diagnostic assay design,
21	as highlighted by Atkinson and colleagues [10]. Capturing appropriate viral diversity with sufficient
22	depth of coverage and completeness is required for inclusion in FDA-ARGOS, a database of regulatory-
23	grade genomes for clinically relevant pathogens maintained by the US Food and Drug Administration
24	(FDA). Here, we sequenced each genome segment of multiple CCHFV strains prepared by the Unified
25	Culture Collection (UCC) to improve our CCHFV assay and include in FDA-ARGOS.
26	

TR-17-008

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

27	Total nucleic acids were acquired from the UCC for eight CCHFV strains including IbAr 10200 (UCC#
28	R4401), DAK8194 (UCC# R4416), SPU 128/81 (UCC# R4417), SPU 115/87 (UCC# R4448), UG 3010
29	(UCC# R4432), JD-206 (UCC# R4413), HY-13 (UCC# R4459), and Drosdov (UCC# R4405). Each
30	segment was amplified using a previously published protocol [7] with primers modified for Nextera-
31	based sequencing. Amplicon for each genome segment was gel-extracted, processed with the Nextera XT
32	kit (Illumina, San Diego, CA), and sequenced on the MiSeq Sequencer (Illumina).
33	
34	Sequencing reads were analyzed using CLC Genomics Workbench (Qiagen, Valencia, CA). Reads were
35	trimmed for quality and to remove the internal L amplification primer sequences, de novo assembled, and
36	BLAST analyzed to identify the closest matching CCHFV sequence. Total reads were mapped again
37	against the virus-specific contigs to generate a final consensus sequence for each genome segment. For
38	JD-206, The L2 segment amplified poorly, resulting in an incomplete assembly. This segment was re-
39	amplified and sequenced using a sequence-optimized L2-F primer (5'-
40	GGAAGAGTTATACAACATAAGGC) modified for Nextera sequencing. The 5' end of the M segment
41	of JD-206 did not fully assemble, and Sanger sequencing data using the primer CCHF JD-206 M R (5'-
42	TTCCTCCATTGTGAGATGAAGC) was used to complete the assembly.
43	
44	All segments had at least 100x coverage across the genome. Segments for IbAr 10200 (M segment),
45	Drosdov (M segment), SPU128/81 (M and S segments), UG3010 (L segment), and HY-13 (S segment)
46	had multiple nucleotide variants resulting in amino acid changes and/or in-frame deletions. Sequencing of
47	SPU 128/81 (L segment) and HY-13 (M segment) extended and completed the sequences already in
48	GenBank. Sequences for SPU 115/87 (all segments), the L segment for HY-13, and the L and M
49	segments of JD-206 have not been deposited into GenBank. All sequences were accessioned into
50	GenBank with the exception of those exactly matching sequences in GenBank. Sequencing reads for all
51	strains were deposited with NCBI Sequence Read Archive (SRA), and consensus sequences were
52	deposited into FDA-ARGOS as the assembly qualities met database requirements.

TR-17-008 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

53	
54	Overall, we generated 24 separate CCHFV genome segments from eight different strains. Six new
55	sequences having nonsynonymous variants or in-frame deletions were generated for genome segments
56	already within GenBank. Two segments in GenBank were extended to completion, and five novel
57	segment sequences were completed. Additionally, these data were collected in a manner amenable for
58	transition to the FDA-ARGOS database.
59	
60	Nucleotide Sequence Accession Numbers:
61	Genome accession numbers to public databases are listed in Table 1.
62	
63	Acknowledgements:
64	Opinions, interpretations, conclusions, and recommendations are those of the author and are not
65	necessarily endorsed by the U.S. Army. This effort was funded by Defense Threat Reduction Agency
66	(DTRA) through the JSTO-CBD project 1143798.

References:

67

- 68 1. Chumakov MP, Butenko AM, Shalunova NV, Mart'ianova LI, Smirnova SE, Bashkirtsev Iu N, et
- al. [New data on the viral agent of Crimean hemorrhagic fever]. Vopr Virusol. 1968;13(3):377. PubMed
- 70 PMID: 4235803.
- 71 2. Papa A, Christova I, Papadimitriou E, Antoniadis A. Crimean-Congo hemorrhagic fever in
- 72 Bulgaria. Emerg Infect Dis. 2004;10(8):1465-7. doi: 10.3201/eid1008.040162. PubMed PMID:
- 73 15496250; PubMed Central PMCID: PMC3320408.
- 74 3. Yen YC, Kong LX, Lee L, Zhang YQ, Li F, Cai BJ, et al. Characteristics of Crimean-Congo
- hemorrhagic fever virus (Xinjiang strain) in China. Am J Trop Med Hyg. 1985;34(6):1179-82. PubMed
- 76 PMID: 2422968.
- 77 4. Mishra AC, Mehta M, Mourya DT, Gandhi S. Crimean-Congo haemorrhagic fever in India.
- 78 Lancet. 2011;378(9788):372. doi: 10.1016/S0140-6736(11)60680-6. PubMed PMID: 21784269.
- 79 5. Saidi S, Casals J, Faghih MA. Crimean hemorrhagic fever-Congo (CHF-C) virus antibodies in
- 80 man, and in domestic and small mammals, in Iran. Am J Trop Med Hyg. 1975;24(2):353-7. PubMed
- 81 PMID: 164135.
- 82 6. Karti SS, Odabasi Z, Korten V, Yilmaz M, Sonmez M, Caylan R, et al. Crimean-Congo
- 83 hemorrhagic fever in Turkey. Emerg Infect Dis. 2004;10(8):1379-84. doi: 10.3201/eid1008.030928.
- PubMed PMID: 15496237; PubMed Central PMCID: PMC3320426.
- 85 7. Deyde VM, Khristova ML, Rollin PE, Ksiazek TG, Nichol ST. Crimean-Congo hemorrhagic
- 86 fever virus genomics and global diversity. Journal of virology. 2006;80(17):8834-42. doi:
- 87 10.1128/JVI.00752-06. PubMed PMID: 16912331; PubMed Central PMCID: PMC1563879.
- 88 8. Anagnostou V, Papa A. Evolution of Crimean-Congo Hemorrhagic Fever virus. Infect Genet
- 89 Evol. 2009;9(5):948-54. doi: 10.1016/j.meegid.2009.06.018. PubMed PMID: 19560561.
- 90 9. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo
- 91 hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity.
- 92 Antiviral research. 2013;100(1):159-89. doi: 10.1016/j.antiviral.2013.07.006. PubMed PMID: 23906741.
- 93 10. Atkinson B, Chamberlain J, Logue CH, Cook N, Bruce C, Dowall SD, et al. Development of a
- 94 real-time RT-PCR assay for the detection of Crimean-Congo hemorrhagic fever virus. Vector Borne
- 95 Zoonotic Dis. 2012;12(9):786-93. doi: 10.1089/vbz.2011.0770. PubMed PMID: 22217175.

96