http://github.com/bmtgoncalves/NLPGotham

Natural Language Processing From Scratch

Bruno Gonçalves

www.bgoncalves.com

Teaching machines to read!

- How can computers represent, analyze and understand a piece of text?
- Computers are really good at crunching numbers but not so much when it comes to words.
- Perhaps can we substitute words by numbers?
 - Unfortunately, computers assume that numbers are sequential.
- Vectors work much better!
 - Each word corresponds to a unique dimension.

$$v_{after} = (0,0,0,1,0,0,\cdots)^T$$
 One-hot $v_{above} = (0,0,1,0,0,0,\cdots)^T$ encoding

1	а		
2	about		
3	above		
4	after		
5	again		
6	against		
7	all		
8	am		
9	an		
10	and		
11	any		
12	are		
13	aren't		
14	as		

$$v_{after} = (0, 0, 0, 1, 0, 0, \cdots)^{T}$$

 $v_{above} = (0, 0, 1, 0, 0, 0, \cdots)^{T}$

- What about full texts instead of single words?
- The vector representation of a text is simply the vector sum of all the words it contains:

Mary had a little lamb, little lamb, little lamb, Mary had a little lamb whose fleece was white as snow. And everywhere that Mary went Mary went, Mary went, everywhere that Mary went The lamb was sure to go.

$$v_{text} = (2, 4, 1, 2, 2, 1, 1, 2, 6, 1, 5, 1, 2, 1, 1, 1, 1, 4, 1)^{T}$$

nad	10	lamh
		Ialliv
went	11	as
and	12	that
Э	13	sure
was	14	whose
Ī.O	15	go
Snow	16	the
everywhere	17	little
mary	18	white
Teece		
	and vas o snow everywhere nary	and 12 13 vas 14 0 15 snow 16 everywhere 17 mary 18

$$v_{after} = (0, 0, 0, 1, 0, 0, \cdots)^{T}$$

 $v_{above} = (0, 0, 1, 0, 0, 0, \cdots)^{T}$

- What about full texts instead of single words?
- The vector representation of a text is simply the vector sum of all the words it contains:

Mary had a little lamb, little lamb, little lamb, Mary had a little lamb whose fleece was white as snow. And everywhere that Mary went Mary went, Mary went, everywhere that Mary went The lamb was sure to go.

$$v_{text} = (2, 4, 1, 2, 2, 1, 1, 2, 6, 1, 5, 1, 2, 1, 1, 1, 1, 4, 1)^{T}$$

had	10	lamb
went	11	as
and	12	that
а	13	sure
was	14	whose
to	15	go
snow	16	the
everywhere	17	little
mary	18	white
fleece		
	went and a was to snow everywhere mary	 went and 12 a 13 was 14 to 15 snow everywhere 17 mary 18

$$v_{after} = (0, 0, 0, 1, 0, 0, \cdots)^{T}$$

 $v_{above} = (0, 0, 1, 0, 0, 0, \cdots)^{T}$

- What about full texts instead of single words?
- The vector representation of a text is simply the vector sum of all the words it contains:

Mary had a little lamb, little lamb, little lamb, Mary had a little lamb whose fleece was white as snow. And everywhere that Mary went Mary went, Mary went, everywhere that Mary went The lamb was sure to go.

$$v_{text} = (2, 4, 1, 2, 2, 1, 1, 2, 6, 1, 5, 1, 2, 1, 1, 1, 1, 4, 1)^{T}$$

- In practice it's much more convenient to use a dictionary instead of an actual vector
- This is known as a Bag of Words, and word order is discarded.

had	2	lamb	5
went	4	as	1
and	1	that	2
а	2	sure	1
was	2	whose	1
to	1	go	1
snow	1	the	1
everywhere	2	little	4
mary	6	white	1
fleece	1		

www.bgoncalves.com

```
import re
from collections import Counter
word_regex = re.compile(r"\w+", re.U)
text = """Mary had a little lamb, little lamb,
   little lamb, Mary had a little lamb
    whose fleece was white as snow.
   And everywhere that Mary went
   Mary went, Mary went, everywhere
   that Mary went
   The lamb was sure to go."""
# extract all words from the text, ignoring punctuation and case
words = word regex.findall(text.lower())
# Count how many times each word appears
counts = Counter(words) # This is essentially our "bag of words"
items = list(counts.items())
# Extract word dictionary and vector representation
word dict = dict([[items[i][0], i] for i in range(len(items))])
text vector = [items[i][1] for i in range(len(items))]
print(text vector)
print(word dict)
```

Stopwords

- Some words are much more common than others.
- While most words are very rare.
- The most common words in a corpus of 17M words:

These are known as "stopwords"

words that carry little meaning and can be discarded.

 After removing the most common words we go from 17M to 9M.


```
from collections import Counter
import gzip
import matplotlib.pyplot as plt
import numpy as np
data = []
for line in gzip.open("text8.gz"):
    data.extend(line.strip().split())
counts = Counter(data)
sorted counts = sorted(list(counts.items()), key=lambda x:x[1], reverse=True)
for word, count in sorted counts[:100]:
    print(word, count)
dist = Counter(counts.values())
dist = list(dist.items())
dist.sort(key=lambda x:x[0])
dist = np.array(dist)
norm = np.dot(dist.T[0], dist.T[1])
plt.loglog(dist.T[0], dist.T[1]/norm)
plt.xlabel("count")
plt.ylabel("P(count)")
plt.title("Word frequency distribution")
plt.savefig("freq.png")
stopwords = set([word for word, count in sorted counts[:100]])
clean data = []
for word in data:
    if word not in stopwords:
        clean data.append(word)
```

@bgonca print("Original size:", len(data))
print("Clean size:", len(clean_data))

most_common_words.py

Stopwords

- In practice, stopwords aren't simply the most common words but rather curated lists of common and non-informative words.
- Computational Linguists have published lists of stop words that can easily be found online, and that were curated for different languages and purposes.
- Stopwords in 40 languages: https://www.ranks.nl/stopwords
- NLTK also includes stopwords from the 14 languages listed here:
 http://anoncvs.postgresql.org/cvsweb.cgi/pgsql/src/backend/snowball/stopwords/
 plus Romanian (http://arlc.ro/resources/) and Kasakh.

TF-IDF

- We already saw that some words are much more common than others
- The number of times that a word appears in a document is known as the "Term Frequency" (TF)
- After the removal of stopwords, the Term Frequency is a good indicator
 of what words are most important. A book on Python Programming
 will likely have words like "code", "script", "print", "error", etc much
 more frequently than a book on Football.
- TF gives us an idea of how popular a specific term is within a document, but how can we compare across documents within a corpus?
- The Inverse Document Frequency (IDF) tells us how unusual it is for a document to include that word. The idea is that words that appear in more documents are less meaningful.

the	1061396
of	593677
and	416629
one	411764
in	372201
а	325873
to	316376
zero	264975
nine	250430
two	192644
a to zero nine	32587 31637 26497 25043

TF-IDF

• Mathematically there are several possible definitions for both TF and IDF

	TF	IDF	
Number of time term toccurs in document d	$N_{t,d}$	$\log\left(\frac{N}{N_t}\right)$	Number of documents
	$\frac{N_{t,d}}{\sum_{t'} N_{t',d}}$	$\log\left(1 + \frac{N}{N_t}\right)$	Number of documents in which term t appears
	$1 + \log\left(N_{t,d}\right)$		

- TF-IDF is the product of these two quantities and is useful to find terms that are important for the specific document (high TF) and uncommon in the corpus as a whole (large IDF/small DF).
- In particular, a term that occurs in every document is meaningless when it comes to distinguish between documents.
- Stopwords, are naturally weighed down due to appearing in all documents.

Document Clustering

- Documents represented by their TF-IDF vectors can be grouped using an unsupervised clustering algorithm
- K-Means is a popular choice:
 - Choose k randomly chosen points to be the centroid of each cluster
 - Assign each point to belong the cluster whose centroid is closest
 - Recompute the centroid positions (mean cluster position)
 - Repeat until convergence

@bgoncalves

http://youtu.be/M0sCjfRP32k

K-Means: sklearn

```
from sklearn.cluster import KMeans
   kmeans = KMeans(n_clusters=nclusters)
   kmeans.fit(data)
   centroids = kmeans.cluster_centers_
   labels = kmeans.labels_
                                   0
                                  - 2
                                                                              KMeans.py
@bgoncalves
```

K-Means: Limitations

@bgoncalves

K-Means: Limitations

- No guarantees about Finding "Best" solution
- Each run can find different solution
- No clear way to determine "k"

@bgoncalves