RF Circuit Design

<u>L10</u>

· L-match network design rules Given wo Re Re C Ton Re Re A Ton Re A Ton Re A Ton A T 1. $R_{p} = R_{s} (1 + Q_{L}^{2}) \Rightarrow Q_{L} = \sqrt{\frac{R_{s}}{R_{s}}} - 1 \Rightarrow$ large transformation - Narrowband transform. 2. $Q_L = \frac{\omega_o L}{Rs} \Rightarrow Q = \frac{Q_L \cdot Rs}{\omega_o}$ RP at wo= Tipe C T RI 3. wo = 1 , Lp = L. 1+Q2 Q2 O=

L-match network Downward Vin Vont Con Vin Con Vont UPWARD DOWNWARD | Vout | ~ Q. IVIn] Lossless approximation: Zin (jwo) a Re parallel-toseries transform Accurate calculation: C I JRP RS GAMILERS

C I J S CS Rs J jwc, y Cs /

Qc = wcRp After calc. : at $\omega_0 = \frac{1}{\sqrt{LC_S}}$ $\begin{cases} R_S = \frac{R_P}{1 + Q_c^2} \end{cases}$ J-com-I-JRP · Fregn. response · Dc blocking
· Absorption of stray cap Zin (jwo) = Rs 4 types of L-match

Re/Q2 Vout (LPF)

(HPF) Q2R, F FRS FRS FRP UPWARI> DOWN WARD

$$Z_{iin} = \frac{1}{T_{c}} = \frac{1}{T_{c}} + \frac{1}$$

Rin
$$T \subset I$$
 $T \subset I$ $T \subset I$

 $P_{Diss} = \frac{1}{2} \frac{|V_2|^2}{R_P} = \frac{1}{2} \left(\frac{C_1}{C_1 + C_2} \right)^2 \cdot |V_0| = V_0 - V_2 = -\frac{C_2 V_2 \cdot V_2}{C_1}$ $= -\left(1 + \frac{C_2}{C_1} \right) \cdot V_2 = -\frac{C_2 V_2 \cdot V_2}{C_1}$

 $Rin = RP\left(\frac{C_2}{C_1}\right)^2$

Rin = Rp. (Cz)2 Rin IC, CZ RP Q = WO C2 RP · (1+ C2) Q - factor of TI - match a factor of enhanement network > Q -factor egnivalent L-match factor of L-match · General case Rin CITTUPWARD TO TEST OF RP DOHNWARD

Rin
$$C_1 = \frac{1}{1 - L_1} = \frac{1}{1 - L_2} = \frac{$$

Rin = Rs · (1+Q₁) = Rp ·
$$\frac{1+Q_1^2}{1+Q_2^2}$$

Where Q_1 = $\frac{\omega \cdot L_1}{Rs}$ Rin = $\frac{1+Q_1^2}{Rp}$
 Q_1 = $\frac{Rin}{Rs}$ - 1

Given parameters

$$Rin$$
 $L_1 \mid L_2$
 Rin
 Rin

5.
$$\omega_0 = \sqrt{\frac{1+Q_1^2}{Q_2^2}}$$
 $\sqrt{\frac{1+Q_1^2}{Q_1^2}}$
 $\sqrt{\frac{Q_1^2}{Q_2^2}}$
 $\sqrt{\frac{Q_2^2}{Q_2^2}}$
 $\sqrt{\frac{Q_1^2}{Q_2^2}}$
 $\sqrt{\frac{Q_2^2}{Q_2^2}}$
 $\sqrt{\frac{Q_1^2}{Q_2^2}}$
 $\sqrt{\frac{Q_2^2}{Q_2^2}}$
 $\sqrt{\frac{Q_2^2}{Q_1^2}}$
 $\sqrt{\frac{Q_2^2}{Q_2^2}}$
 $\sqrt{\frac{Q_2$

$$\frac{V_2}{V_0} \approx \frac{C_1}{C_1 + C_2}$$

$$R_{in} = R_P \cdot \frac{V_0^2}{V_z^2} \approx R_P \cdot \left(1 + \frac{C_2}{C_1}\right)^2 \quad \text{upward}$$

T- match network

$$I_1 \cap I_2 \cap I_2 \cap I_3 \cap I_4 \cap I_4 \cap I_5 \cap I_6 \cap I_6$$

Positive Mutual

$$I_2$$
 ENERGY

 V_1 V_1 V_2 V_3 V_4 V_5 V_6
 V_1 V_1 V_2 V_6 V_7 V_8 $V_$