Reinforcement Learning (RL)

Outline:

- MDP V.S. RL
- Active RL V.s. Passive RL
- Active RL
 - Model based Learning
 - Model Free Learning
 - O Direct Evaluation
 - O Temporal Difference Learning
 - O-learning

RL: Unknown Transition and Reward Model

- We saw how MDP can be Solved
- What if the environment model is not entirely known?
 - How can we find a Policy?
- Here Comes Rl
 - 12 Learning what?
 - The MDP model OR some parts of the model (e.g., value functions or Q-functions which are enough to find the optimal policy
 - Learning from what?
 - From Samples (aka episodes) of the process (i.e. transition of states)

Reinforcement Learning (RL)

- We still assume a MDP □ (S,A,T,R,γ)
- We are still looking for a good policy
- We have a new challenge
 - We don't know T or R
 - Must explore new states and actions to observe environment
 - Basic Idea: Lourn how to maximize

expected rewards based on observed

samples of transitions

round: r state: S

action

3

MDP vs. RL

Passive RL vs. Active RL

- Passive RL:

 - How to Learn from already given experiences

 Similar to supervise learning: learns from already given
 - labeled datapoints
- Active RL:
 - How to collect new experience and learn from them

Passive RL

■ Approaches to Passive RL
Model-Based Learning
Leurn the MDP Dynamics (i.e. T) and Reward (i.e. R) from
Samples
Then, Solve the MDP (i.e., use Policy iteration or value iteration
Model-Free Learning
Directly learns V(s) or Q(s,a) from experience
113 Uses V(s) or Q(s,a) to make Lecisions

Model-based Learning

- Model-based learning:
 - Basic idea:
 - Leurn an estimate MDP model (1.e. T) based on experience
 - Then, Solve the approximate MPP
- Step 1: Leurn empirical MDP model T(5,0,5')=P(5/5,0)
 - Count outcomes s' for each 5, a
 - Use the count to estimate $f(s,a,s')=\hat{p}(s'/s,a)$
- Similarly estimate R(5,a, 3')
- Step 2: Solve the learned MDP (e.g., with Value iteration or policy iteration)

Example: Model-based Learning Example

$$R(B, \text{evot}, C) = R(c, \text{evot}, D) = R(c, \text{evot}, A) = \vdots$$

Pros and Cons of Model-based Learning

Week 12- Part 3 Fall 2024

Basic Idea Behind Model-Free Learning

To approximate	e expectations w.	r.t. a distribution	1, we can either
Estimate +	le distribution from	n Samples, then	compute the
expectation	based on the	estimated distrib	ution
Cr, bypass	the distribution	and estimate	the expectation
from the	samples direc	ctly	

Let's See an Example

- Consider the task of estimating the expected age of Uof T students: E[A]
- If the probability distribution of A was known, we could find it easily: $E[A] = \sum P(\alpha) \cdot \alpha$
- Without P(A), we have to Collect samples: [a,, a,..., a,]
 - Model-Based approach: A = NaEstimat P(A) first: P[A=a] = Na
 - Then we use \hat{P} to estimate E[A]: $\hat{E}[A] = \sum_{\alpha} \hat{P}[A=\alpha] \cdot \alpha$ Model-Free approach.
 - Model-Free approach:

 Use the samples to estimate E(A]: $\frac{\sum_{i}^{i} a_{i}}{N}$

Basic Idea Behind Model-Free Learning

In RL, our ultimate goal is to find an estimate of expected return in each state.

Model-basel Coming: Estimate the probability distribution of return from the Samples. Then use it to calculate the expected return.

Model-Free: estimate the expected return directly from samples.

Passive RL

Simplified Passive RL model

Input: stream of transitions produced by following

Some fixed Policy TC(s)

E.g., we are given the following easites: $(S,\pi(s),s',\gamma,\pi(s'),r',\dots,end)$ $(S,\pi(s),s',\gamma,\pi(s''),\gamma'',\dots,end)$

Output: estimate of the state values $\frac{1}{12}(S)$

Note: we don't know T and R

Direct Evaluation

- Consider the passive learning model described before, with the goal of estimating V_{rels} , i.e. expected total discounted reward from s onward.
- Direct Evaluation: It uses returns, the actual sums of discounted reward from 5 award.
- Average over multiple trials and visits to "5." Everytime you visit "S", find the sum of discounted rewark from "5" to the end.

U; (5) = R(5, x(s), s') + YR(5', x(s'), s")+Y"....

The i-th time you. $V_{rc}(5) = \frac{1}{N} \sum_{i} U_{i}(5)$ Saw 'S'

Saw 'S'

This is also known as "direct utility estimation or Monte-Carla evaluation"

Example: Direct Evaluation

Episle 2

Episle 4

	-/0 '	
+8	+4	10
////	-2	

$$V_{\mathcal{K}}(E) = \frac{U_1(E) + U_2(E)}{2}$$

$$(-1+8(-1)+3(0))+((-1)+3(-1)+3(-10))$$

How GME V(E) + V(B) ?

Direct Evaluation Pros and Cons

Pros:

- It does not require any knowledge of T and R

 It Converges to the right answer in the limit.
- Cons:
 - It ignores information about state Connections.

 Each state must be learned separately

 50, slow to learn.

How Can We Incorporate Information About state Connections?

18

Before TD, Let's See Some Naive Ideas

- Before we present TD, let's study some naive ideas to exploit state Connections

 The Idea 1: Use actual samples to estimate the expectation

 The Idea 2: Update value of S after each transition s, a, s, r
- These two naïve ideas help us better understand the design principle behind TD

Idea 1

Let's take a second lack at the state value recursion relation: $V_{r}(s) = \sum_{s'} T(s, r(s), s') \left[R(s, r(s), s') + 7, V_{r}(s') \right]$ = $\mathbb{F}\left[R(S,\pi\iota s),s')+YV_{\kappa}(s')\right]$ = Hence, to estimate $V_{\kappa}(s)$, we must estimate the expectation

If Just like whit we saw earlier, estimate the expected value of a random variable by finding average of its realizations.

Next Lecture: Idea 2, TO, Q-Learning, ...