

BGSA12GN10

Low C_{OFF} Dual-Pole Single Throw Antenna Tuning Switch

Data Sheet

Revision 2.1 - 2016-03-08

Power Management & Multimarket

Edition 2016-03-08

Published by Infineon Technologies AG 81726 Munich, Germany

©2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History

Document No.: BGSA12GN10.pdf

Revision History: 2.0

Previous Version: 1.2 - 2015-08-04

	1040 VOICION 112 2010 00 01					
Page	Subjects (major changes since last revision)					
6	added on Table. 3 Absolute Maximum RF Voltage					
9	deleted RF Operating Voltage on Table. 7					
12	Package Dimensions Drawing figure updated (Figure3)					

Trademarks of Infineon Technologies AG

 $AURIX^{TM}, C166^{TM}, CanPAK^{TM}, CIPOS^{TM}, CIPURSE^{TM}, CoolGaN^{TM}, CoolMOS^{TM}, CoolSiC^{TM}, CoolSiC^{TM}, CORECONTROL^{TM}, DAVE^{TM}, DI-POL^{TM}, EasyPIM^{TM}, EconoBRIDGE^{TM}, EconoDUAL^{TM}, EconoPACK^{TM}, EconoPIM^{TM}, EiceDRIVER^{TM}, eupec^{TM}, FCOS^{TM}, HITFET^{TM}, HybridPACK^{TM}, ISOFACE^{TM}, I^2RF^{TM}, IsoPACK^{TM}, MIPAQ^{TM}, ModSTACK^{TM}, my-d^{TM}, NovalithIC^{TM}, OmniTune^{TM}, OptiMOS^{TM}, ORIGA^{TM}, OPTIGA^{TM}, PROFET^{TM}, PRO-SIL^{TM}, PRIMARION^{TM}, PrimePACK^{TM}, RASIC^{TM}, ReverSave^{TM}, SatRIC^{TM}, SIEGET^{TM}, SIPMOS^{TM}, SOLID FLASH^{TM}, SmartLEWIS^{TM}, TEMPFET^{TM}, thinQ!^{TM}, TriCore^{TM}, TRENCHSTOP^{TM}. \\$

Other Trademarks

Advance Design SystemTM (ADS) of Agilent Technologies, AMBATM, ARMTM, MULTI-ICETM, PRIMECELLTM, REALVIEWTM, THUMBTM of ARM Limited, UK. AUTOSARTM is licensed by AUTOSAR development partnership. BluetoothTM of Bluetooth SIG Inc. CAT-iqTM of DECT Forum. COLOSSUSTM, FirstGPSTM of Trimble Navigation Ltd. EMVTM of EMVCo, LLC (Visa Holdings Inc.). EPCOSTM of Epcos AG. FLEXGOTM of Microsoft Corporation. FlexRayTM is licensed by FlexRay Consortium. HYPERTERMINALTM of Hilgraeve Incorporated. IECTM of Commission Electrotechnique Internationale. IrDATM of Infrared Data Association Corporation. ISOTM of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLABTM of MathWorks, Inc. MAXIMTM of Maxim Integrated Products, Inc. MICROTECTM, NUCLEUSTM of Mentor Graphics Corporation. MifareTM of NXP. MIPITM of MIPI Alliance, Inc. MIPSTM of MIPS Technologies, Inc., USA. muRataTM of MURATA MANUFACTURING CO., MICROWAVE OFFICETM (MWO) of Applied Wave Research Inc., OmniVisionTM of OmniVision Technologies, Inc. OpenwaveTM Openwave Systems Inc. RED HATTM Red Hat, Inc. RFMDTM RF Micro Devices, Inc. SIRIUSTM of Sirius Sattelite Radio Inc. SOLARISTM of Sun Microsystems, Inc. SPANSIONTM of Spansion LLC Ltd. SymbianTM of Symbian Software Limited. TAIYO YUDENTM of Taiyo Yuden Co. TEAKLITETM of CEVA, Inc. TEKTRONIXTM of Tektronix Inc. TOKOTM of TOKO KABUSHIKI KAISHA TA. UNIXTM of X/Open Company Limited. VERILOGTM, PALLADIUMTM of Cadence Design Systems, Inc. VLYNQTM of Texas Instruments Incorporated. VXWORKSTM, WIND RIVERTM of WIND RIVER SYSTEMS, INC. ZETEXTM of Diodes Zetex Limited.

Last Trademarks Update 2012-12-13

Data Sheet 3 Revision 2.1 - 2016-03-08

Contents

Contents	C	0	n	te	n	ts
----------	---	---	---	----	---	----

1	Features	5
2	Product Description	5
3	Maximum Ratings	6
4	Operation Ranges	7
5	Logic Table	7
6	RF small signal parameter	8
7	RF large signal parameter	9
8	Package Outline and Pin Configuration	11
Li	ist of Figures	
	BGSA12GN10 block diagram Pinout (top view) Package Dimensions Drawing (TSNP-10-1) Package Dimensions Drawing (TSNP-10-2) Land pattern and stencil mask (TSNP-10-1/-2) Tape drawing (TSNP-10-1) Tape drawing (TSNP-10-2) Package marking (TSNP-10-1): Date code digits Y and W are found in Table 13/14 Package marking (TSNP-10-2): Date code digits Y and W are found in Table 13/14	
Li	ist of Tables	
	1 Ordering Information 2 Maximum Ratings, Table I 3 Maximum Ratings, Table II 4 Operation Ranges 5 Logic Table 6 RF small signal specifications 7 RF large signal Specifications 8 IIP2 conditions table 9 IIP3 conditions table 10 SV-LTE conditions table 11 Pin description 12 Mechanical data 13 Year date code marking 14 Week date code marking	5 6 7 7 7 8 9 10 10 11 11 14 14

BGSA12GN10 Low C_{OFF} Dual-Pole Single Throw Antenna Tuning Switch

1 Features

- high-linearity SPDT for antenna aperture switching applications
- Ultra-Low R_{ON} of 1.6 Ω in ON state
- Ultra-Low C_{OFF} of 120 fF in OFF state
- High max RF voltage handling
- · Low harmonic generation
- No power supply blocking required
- Supply voltage: 1.8 to 3.6 V
- Control voltage: 1.35 to 3.3 V (control high)
- Suitable for EDGE / C2K / LTE / WCDMA Applications
- 0.1 to 5.0 GHz coverage
- Small form factor 1.1 mm x 1.5 mm
- 400 μ m pad pitch
- RoHS and WEEE compliant package

2 Product Description

The BGSA12GN10 is a Single Pole Dual Throw (SPDT) RF antenna aperture switch optimized for low $C_{\it off}$ enabling applications up to 5.0 GHz. This single supply chip integrates on-chip CMOS logic driven by a simple, single-pin CMOS or TTL compatible control input signal. The 0.1 dB compression point exceeds the switch maximum input power level, resulting in linear performance at all signal levels. Unlike GaAs technology, the 0.1 dB compression point exceeds the switch maximum input power level, resulting in linear performance at all signal levels and external DC blocking capacitors at the RF ports are only required if DC voltage is applied externally. Due to its very high RF voltage ruggedness it is suited for switching any reactive devices such as inductors and capacitors in RF matching circuits without significant losses in quality factors.

Table 1: Ordering Information

Туре	Package	Marking	Chip
BGSA12GN10	TSNP10-1/-2	A2	BGSA12GN10

Data Sheet 5 Revision 2.1 - 2016-03-08

Figure 1: BGSA12GN10 block diagram

3 Maximum Ratings

Table 2: Maximum Ratings, Table I at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Frequency Range	f	0.1	_	_	GHz	1)	
Supply voltage ²⁾	V_{DD}	-0.5	_	3.6	V	_	
Storage temperature range	T _{STG}	-55	_	150	°C	_	
RF input power	P_{RF_TRx}	_	_	39	dBm	25 % Duty Cycle	
RF voltage ³⁾	V _{RF_max}	_	_	48	V	All switch throws operated in	
						isolation mode.	
ESD capability, CDM ⁴⁾	V _{ESD_{CDM}}	-1.5	_	+1.5	kV		
ESD capability, HBM ⁵⁾	$V_{ESD_{HBM}}$	-1	_	+1	kV		
ESD capability, system level (RFC	V _{ESD_{ANT}}	-8	_	+8	kV	RFC vs system GND, with	
port) 6)						27 nH shunt inductor	
Junction temperature	T_j	_	_	125	°C	_	

¹⁾ Switch has no highpass response. There is also a high ohmic DC to the RF path. The DC voltage at RF ports V_{RFDC} has to be 0V.

Warning: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Data Sheet 6 Revision 2.1 - 2016-03-08

²⁾ Note: Consider any ripple voltages on top of V_{DD} . A high RF ripple at the V_{DD} can exceed the maximum ratings by $V_{DD} = V_{DC} + V_{Ripple}$.

^{3) 1000}h over 8 years lifetime-short pulse duration

⁴⁾ Field-Induced Charged-Device Model JESD22-C101. Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.

⁵⁾ Human Body Model ANSI/ESDA/JEDEC JS-001-2012 ($R=1.5~\mathrm{k}\Omega,~C=100~\mathrm{pF}$).

⁶⁾ IEC 61000-4-2 ($R = 330 \Omega$, C = 150 pF), contact discharge.

Table 3: Maximum Ratings, Table II at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Maximum DC-voltage on RF-Ports	V_{RFDC}	0	_	0	٧	No DC voltages allowed on
and RF-Ground						RF-Ports
Control Voltage Levels	V _{CTRL}	-0.7	_	3.3	V	_

4 Operation Ranges

Table 4: Operation Ranges

Parameter	Symbol		Values			Note / Test Condition	
		Min.	Тур.	Max.			
Supply voltage	V_{DD}	1.8	2.85	3.6	V	_	
Supply current ¹⁾	I _{DD}	-	80	150	μ A	_	
Control voltage low	V _{Ctrl,low}	0		0.45	V	_	
Control voltage high	V _{Ctrl,high}	1.2	1.8	2.85	V	$V_{Ctrl,high} \ll V_{DD}$	
Control current low	I _{Ctrl,low}	-1	0	1	μ A	_	
Control current high	I _{Ctrl,high}	-1	0	1	μ A	$V_{Ctrl,high} \ll V_{DD}$	
Ambient temperature	T _A	-30	25	85	°C	_	
RF switching time	t _{sw}	2	5	7	μ s	_	
Startup time	t _{sw}		20	30	μ s	_	

¹⁾ $T_A = -30 \, ^{\circ}\text{C} - +85 \, ^{\circ}\text{C}, \ V_{VDD} = 1.8 - 3.6 \ V$

5 Logic Table

Table 5: Logic Table

CTRL	Mode
0	RF1 connected to RFC
1	RF2 connected to RFC

Data Sheet 7 Revision 2.1 - 2016-03-08

6 RF small signal parameter

Table 6: RF small signal specifications

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Frequency range	f	0.1	_	5.0	GHz	_	
Switch ON resistance	R _{ON}	-	1.6		Ω	RFx to RFC	
Switch OFF capacitance	C _{OFF}	-	120		fF	RFx to RFC	
Parasitic RF shunt capaci-	C _{SH,PAR}	_	42		fF	RFx to GND, extracted value	
tance						for 2 GHz	
Switch series inductance	L _{SER}	_	0.1		nH		
Insertion Loss (1,2,3)				<u>'</u>			
698 - 960 MHz		_	0.25	0.35	dB		
1710 - 1980 MHz		_	0.32	0.42	dB	$V_{DD} = 2.3 - 3.6 V, Z_0 = 50 \Omega$	
1980 - 2170 MHz	IL	_	0.33	0.42	dB	$T_A = -30 \text{ C} \cdot \cdot \cdot +85 \text{ C}$	
2170 - 2690 MHz		_	0.39	0.49	dB	-	
Return Loss ^(1,2,3)	J						
All Ports @ 698 - 915 MHz		27.9	32	38	dB	$V_{DD} = 2.3 - 3.6 V$, $Z_0 = 50 \Omega$	
All Ports @ 1710 - 2170 MHz	RL	22	25	30	dB	$V_{DD} = 2.3 - 3.6 \text{ V}, Z_0 = 30 \text{ M}$ $T_A = -30 \text{ C} \cdot \cdot \cdot + 85 \text{ C}$	
All Ports @ 2170 - 2690 MHz		20	23	27	dB	7 _A = -30 C · · · +65 C	
Isolation RFx to RFC ^(1,2,3)							
698 - 915 MHz		28.5	30	30	dB		
1710 - 1980 MHz	ISO	22	23	24	dB	$V_{DD} = 2.3 - 3.6 V, Z_0 = 50 \Omega$	
1980 - 2170 MHz	130	22	22	23	dB	$T_A = -30 \text{ C} \cdot \cdot \cdot +85 \text{ C}$	
2170 - 2690 MHz		19	20	21	dB	-	
Isolation RFx to RFx ^(1,2,3)		•	•	•	•		
698 - 915 MHz		29.5	30	31	dB		
1710 - 1980 MHz	ISO	22	23	24	dB	$V_{DD} = 2.3 - 3.6 V, Z_0 = 50 \Omega$	
1980 - 2170 MHz	130	21	1 22 23		dB	$\mathcal{F}_A = -30 \text{ C} \cdot \cdot \cdot +85 \text{ C}$	
2170 - 2690 MHz		19	20	21	dB		

Data Sheet 8 Revision 2.1 - 2016-03-08

¹⁾ Valid for all RF power levels, no compression behavior $^{2)}$ Network analyser input power: $P_{IN} = -20 \, dBm$ $^{3)}$ On application board without any matching components

7 RF large signal parameter

Table 7: RF large signal specifications Harmonic Generation up to 12.75 GHz^(1,2,3)

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min. Typ.		Max.			
All RF Ports - Second Order	P _{H2}	-	105	_	dBc	25 dBm, 50Ω, $f_0 = 786$ MHz	
Harmonics							
All RF Ports - Third Order Har-	P _{H3}	_	115	_	dBc	25 dBm, 50Ω, $f_0 = 786$ MHz	
monics							
All RF Ports - Second Order	P _{H2}	-	93	_	dBc	33 dBm, 50Ω, f_0 = 824 MHz	
Harmonics							
All RF Ports - Third Order Har-	P _{H3}	-	94	_	dBc	33 dBm, 50Ω, f_0 = 824 MHz	
monics							
All RF Ports	P _{Hx}	105	_	_	dBc	25 dBm, 50Ω, CW mode	
Intermodulation Distortion IM	D2 (1,2,3)				•		
IIP2, low	IIP2,I	-	110	_	dBm	UDO conditions table 0	
IIP2, high	IIP2,h	-	120	_	dBm	IIP2 conditions table 8	
Intermodulation Distortion IM	D3 (1,2,3)						
IIP3	IIP3	_	75	_	dBm	IIP3 conditions table 9	
SV LTE Intermodulation (1,2,3)		•	•		•		
IIP3,SVLTE	IIP3,SV	_	75	_	dBm	SV-LTE conditions table 10	

Data Sheet 9 Revision 2.1 - 2016-03-08

¹⁾Terminating Port Impedance: $Z_0 = 50 \Omega$ ²⁾Supply Voltage: $V_{DD} = 1.8 - 3.6 V$ ³⁾On application board without any matching components

Table 8: IIP2 conditions table

Band	In-Band Frequency	Blocker Frequency 1	Blocker Power 1	Blocker Frequency 2	Blocker Power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 1 Low	2140	1950	20	190	-15
Band 1 High	2140	1950	20	4090	-15
Band 5 Low	881.5	836.5	20	45	-15
Band 5 High	881.5	836.5	20	1718	-15

Table 9: IIP3 conditions table

Band	In-Band Frequency	Blocker Frequency 1	Blocker Power 1	Blocker Frequency 2	Blocker Power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 1	2140	1950	20	1760	-15
Band 5	881.5	836.5	20	791.5	-15

Table 10: SV-LTE conditions table

Band	In-Band Frequency	Blocker Frequency 1	Blocker Power 1	Blocker Frequency 2	Blocker Power 2	
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]	
Band 5	872	827	23	872	14	
Band 13	747	786	23	747	14	
Band 20	878	833	23	2544	14	

Data Sheet 10 Revision 2.1 - 2016-03-08

8 Package Outline and Pin Configuration

Figure 2: Pinout (top view)

Table 11: Pin Description

Pin No.	Name	Pin	Buffer	Function
		Туре	Туре	
1	N.C.	N.C.		Not connected
2	RF1	I/O		RF1
3	GND	GND		Ground
4	VDD	PWR		Supply voltage
5	N.C.	N.C.		Not connected
6	CTRL	I		Control Pin
7	GND	GND		Ground
8	RF2	I/O		RF2
9	N.C.	N.C.		Not connected
10	RFC	I/O		Common RF

Table 12: Mechanical Data

Parameter	Symbol	Value	Unit
X-Dimension	X	1.1 ± 0.05	mm
Y-Dimension	Y	1.5 ± 0.05	mm
Size	Size	1.65	mm ²
Height	Н	0.375	mm

Data Sheet 11 Revision 2.1 - 2016-03-08

Figure 3: Package Dimensions Drawing (TSNP-10-1)

Figure 4: Package Dimensions Drawing (TSNP-10-2)

Data Sheet 12 Revision 2.1 - 2016-03-08

Figure 5: Land pattern and stencil mask (TSNP-10-1/-2)

Figure 6: Tape drawing (TSNP-10-1)

Figure 7: Tape drawing (TSNP-10-2)

Data Sheet 13 Revision 2.1 - 2016-03-08

Figure 8: Package marking (TSNP-10-1): Date code digits Y and W are found in Table 13/14

Figure 9: Package marking (TSNP-10-2): Date code digits Y and W are found in Table 13/14

Table 13: Year date code marking - digit "Y"

Year	"Y"	Year	"Y"	Year	"Y"
2000	0	2010	0	2020	0
2001	1	2011	1	2021	1
2002	2	2012	2	2022	2
2003	3	2013	3	2023	3
2004	4	2014	4	2024	4
2005	5	2015	5	2025	5
2006	6	2016	6	2026	6
2007	7	2017	7	2027	7
2008	8	2018	8	2028	8
2009	9	2019	9	2029	9

Table 14: Week date code marking - digit "W"

Week	"W"	Week	"W"	Week	"W"	Week	"W"	Week	"W"
1	Α	12	N	23	4	34	h	45	V
2	В	13	Р	24	5	35	j	46	x
3	С	14	Q	25	6	36	k	47	у
4	D	15	R	26	7	37	1	48	z
5	E	16	S	27	a	38	n	49	8
6	F	17	T	28	b	39	р	50	9
7	G	18	U	29	С	40	q	51	2
8	Н	19	V	30	d	41	r	52	3
9	J	20	W	31	e	42	s		
10	K	21	Y	32	f	43	t		
11	L	22	Z	33	g	44	u		

Data Sheet 14 Revision 2.1 - 2016-03-08

www.infineon.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

BGSA12GN10E6327XTSA1