PS 6 "Sources Consulted: a friend"

1. b) divisors (b) 1 divisors (a-b) C divisors (a) 1 divisors (b)

[. Suppose C is an arbitrary element of divisors(b) A divisors (a-b)

2. C & divisors(b) A C & divisors (a-b)

3. C & divisors(b)

4. C & divisors (a-b)

5. divisors (b) = & C & Z : C | b & divisors (a-b) = & C & Z : C | (a-b) & divisors (a-b) = & C & Z : C | (a-b) & divisors (a-b) = & C & Z : C | (a-b) & divisors (a-b) = & C & Z : C | (a-b) & divisors (a-b) = & C & Z : C | (a-b) & divisors (a-b) = & C & Z : C | (a-b) & divisors (a-b) = & C & Z : C | (a-b) & divisors (a-b) = & C & Z : C | (a-b) & divisors (a-b) = & C & Z : C | (a-b) & divisors (a-b) = & C & Z : C | (a-b) & divisors (a-b) & divi

13-0=(K,·c)+(K2·c)

14. a=(k,+k2)C

15. (K_1+K_2) is a particular element in 22.

16.79672 (a=q·c)

n. cla

18. CE divisors (a)

 $\frac{|Q|. C \in divisors (a) \land divisors (b)}{\forall x \land x \in (divisors (b) \cap divisors (a-b))} \rightarrow \\
 \times \in (divisors (a) \cap divisors (b)))$

Universal Instantiation

given from, I Simplification, 2

Surplification, 2 definition of divisors (a-b), 3 definition of divisors (a-b), 3

definition of 1,4 definition of 1,5

Existential Instantiation

Existential Instantiation

algebra, 9 algebra, 10,11 algebra, 12 algebra, 8, 9

algebra, 8

Existential Generalization, 13,14 definition of 1,15

definition of duisons(a), lb Conjunction, 3,18 Universal Generalization 1,19

"Sources Consulted: a friend" 2, b) $P(A \cap B) \subseteq P(A) \cap P(B)$ P(ANB) = YC(CGP(A) / CGP(B) Universal Instantation 1. Suppose Cis an arbitrary element of P(AAB)

2 CC(ANB) 3 CSA

4. C SB

5. CEPCA) 6. CEP(B) 7. AC(CEPCA) VCEP(B))

: P(A) \P(B)

Def of powerset, 1

Simplification 2 Simplification 2

Def of powerset 3

Def of powerset 4 Universal Greneralization 215,6 Det of 1,7

l. Suppose C is an arbitiony integer number	Universal Instantation
2. C-C=0	a foet than algebra
3. C-C ∈ Z	algebra, 2
4 4xeZ(x-xeZ)	Universul Grenendizontion
: VXGZ(XRX)	
when D is symmetric: YxYy∈Z(xPy→yPx)	
1. Suppose c,d, one orbitrary integer number	Universal Instantation
2. c-de2	def of R,1
3. ∃q∈Z(c-d=q)	def of int, 2
4. let k be a porticular element in 2 whene Gd=k	Existential Instantation, 3
5(c-d) = -k	algebra, H
6. d-c=-k	algebra, to
7. 3q62(d-c=q)	Existential Generalization, a, 6
8. d- c∈ Z	def of int, 7
9. <u>dRc</u>	definit P18
YxYy ∈Z (xRy→yRx)	Universal Generalization
when R is transitive: YXYYYZ EZ (XRy)	
1. Suppose a, b, c one abilitary integers	Universal Instantiation
2. a-b 672	let of R,1
3. b-cEZ	Let of Pal
4. 3q EZ(a-b=q)	det of int, 2
5. ∃q∈Z(b-c=9)	det of int, 3
6. Let k, be a particular integer s.t. a-b=k,	Existentical Instantation,4
? Let ke be a porticular integer st. b-C=ke	Existential Instantation, 5
8. (a-b)-(b-c)=k-k2	Algebra, 6, 17
	Algebra 8
q. a-c=k1-k2	Ejistential Generalization, 9
q. a-c=k-k2 lo. ∃q€Z(a-c=q)	
	def of int,10
10. ∃q€Z(a-c=q)	def of 12,11

4.

a) 1. Suppose (a_1b) , $(c_1d)_1(e_1f)$ are arbitrary trieger number

2. $a \le c$ and $b \le d$ 3. $c \le e$ and $d \le f$ 4. $a \le c \le e$ 5. $b \le d \le f$ 6. (a_1b) $R(e_1f)$ 1. $\forall (a_1b), (c_1d)_1(e_1f)$ are arbitrary trieger number

1. Algebra;

2. Universal Instantiation

1. Algebra;

2. Algebra;

2. Algebra;

2. Algebra;

2. Algebra;

3. Algebra;

3. Algebra;

4. Algebra;

5. Algebra;

6. Algebra;

6.

b) Yes. If a SC and Che, then whe . Also, if bed and def, then bef. Since a, c, e and b, d, f shows a transitively, R is transitive