Representação de Números no Computador e Erros

Análise Numérica

Patrícia Ribeiro e Artur M. C. Brito da Cruz

Escola Superior de Tecnologia Instituto Politécnico de Setúbal $2015/2016^{-1}$

 $^{^{1}}$ versão 20 de Setembro de 2017

Conteúdo

1	Introdução
2	Representação dos números reais
2.1	Representação em diferentes bases
2.2	Representação em Ponto Flutuante
2.3	Operações Aritméticas em Ponto Flutuante
3	Erros
4	Propagação de Erros. Fórmula Fundamental do Cálculo de Erros 9
4.1	Estimativas do Erro em Operações Aritméticas Elementares
4.2	Propagação de Erros Relativos

1 Introdução

A análise numérica tem por objectivo dar respostas numéricas, i.e. soluções com números, a problemas físicos. Por exemplo, em matemática uma solução pode ser dada por

$$x = \sqrt{2}\pi$$

mas para um computador esta solução não é adequada, pois um computador apenas consegue manipular um número finito de símbolos ou operações.

Além disso, quando se usa um computador ou uma máquina obtemos diversos tipos de erros:

- Erros de aproximação do modelo matemático associado a um problema real;
- Erros nos dados (obtidos experimentalmente);
- Erros da precisão finita na representação de números reais.

2 Representação dos números reais

2.1 Representação em diferentes bases

A notação usual dos números reais é em base b=10. Por exemplo

$$49.75 = 4 \times 10 + 9 \times 10^{0} + 7 \times 10^{-1} + 5 \times 10^{-2}$$
.

Frequentemente é usada a base b = 2. O número anterior escrito em base 2 terá que ser calculado em dois passos. Primeiro calcula-se a representação da parte inteira

e conclui-se que $(49)_{10} = (110001)_2$ onde

$$(110001)_2 = 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^0.$$

A parte fraccionária é obtida da seguinte maneira

$$0.75 \times 2 = 1.5$$

 $0.5 \times 2 = 1.0$

e tem-se que $(0.75)_{10} = (0.11)_2$. onde

$$(0.11)_2 = 1 \times 2^{-1} + 1 \times 2^{-2}$$

Finalmente conclui-se que

$$49.75 = (110001.11)_2$$
.

Exemplo. 1. $(101101)_2 = (45)_{10}$

$$2. (176)_{10} = (10110000)_2$$

3.
$$(1A0F)_{16} = (6671)_{10}$$

4.
$$(0.1)_{10} = (0.00011...)_2$$

5.
$$(3.8)_{10} = (11.11001100...)_2$$

6.
$$(0.110)_2 = (0.75)_{10}$$

7.
$$(341.9424)_{10} = (2331.4324)_5$$

2.2 Representação em Ponto Flutuante

Como nos computadores usa-se um número finito de números, teremos que recorrer a sistemas que façam arredondamentos.

Quando se representam números muitos grandes ou muito pequenos, recorre-se usualmente à **notação científica**. Dado um número x, em notação científica, este número representa-se por

$$x = \pm mb^e$$

onde $m \ge 0$ é um número real designado por mantissa, $b \ge 2$ é um número natural designado por base e e é um número inteiro designado por expoente.

Por exemplo, o número

admite a representação na base 10

$$+3.2567 \times 10^{1}$$
.

Infelizmente esta representação não é única pois o número 32.567 também tem a representação

$$+3256.7 \times 10^{-2}$$
.

Para resolver este problema, usa-se a **notação científica normalizada** onde se impõem as seguintes convenções para a mantissa

$$\begin{cases} m = 0 & \text{se} \quad x = 0 \\ b^{-1} \leqslant m < 1 & \text{se} \quad x \neq 0. \end{cases}$$

Neste caso, o número 32.567 apenas tem a representação

$$+0.32567 \times 10^{2}$$
.

Note-se que a representação científica normalizada continua a não resolver o problema da unicidade na representação pois

$$0 \times 10^1 = 0 \times 10^2 = \dots$$

A notação científica não pode ser implementada num computador pois teríamos que ter infinitos dígitos para a mantissa e para o expoente. Quando restringimos a mantissa a um número finito p de dígitos e o expoente a um número finito q de dígitos, obtém-se a designada **representação em ponto flutuante**. O sistema de representação em ponto flutuante normalizado $FP(b, p, e_{min}, e_{max})$ de base b, mantissa até p dígitos

$$m = (0.d_{-1}d_{-2}...d_{-p})_b$$

e o expoente e tal que $e_{min} \leq e \leq e_{max}$, contém todos os números reais da forma

$$x = 0 \text{ se } d_{-1} = 0$$

ou

$$x = \pm mb^{e}$$

$$= \pm (0.d_{-1}d_{-2}...d_{-p})_{b} \times b^{e}$$

$$= \pm (d_{-1} \cdot b^{-1} + d_{-2} \cdot b^{-2} + ... + d_{-p} \cdot b^{-p}) \times b^{e}$$

se $d_{-1} \neq 0$.

Exemplo. O sistema de ponto flutuante FP(10,6,-2,2) tem base 10, mantissa até 6 dígitos. Este sistema inclui o zero e todos os números da forma

$$\pm 0.d_{-1}d_{-2}\dots d_{-6}\times 10^e$$

onde $0 \le d_{-i} \le 9$, i = 1, ..., 6 e $d_{-1} \ne 0$. Por exemplo, o número 32.567 neste sistema representa-se por

$$+0.32567 \times 10^{2}$$
.

Note-se que neste sistema o maior número representável é $+0.999999 \times 10^2 = 99.9999$ e o menor número positivo representável é $+0.1 \times 10^{-2} = 0.001$. O número $100 = +0.1 \times 10^3$ não é representável neste sistema e nesta situação diz-se que ocorreu um **Overflow**. Analogamente o número $+0.1 \times 10^{-3}$ também não é representável neste sistema e diz-se que ocorreu um **Underflow**. O número $\pi = 3.1415926...$ não possui representação exacta neste sistema pois tem mais do que 6 dígitos.

Exemplo. O sistema de ponto flutuante FP(2,3,-1,2) tem base 2, mantissa até 3 algarismos que se chamam bits e o expoente varia entre -1 e 2. Este sistema inclui o zero e todos os números da forma

$$x = \pm (d_{-1} \cdot 2^{-1} + d_{-2} \cdot 2^{-2} + d_{-3} \cdot 2^{-3}) \times 2^{e}$$

ou seja,

$$FP(2,3,-1,2) = \{0, \pm \frac{1}{4}, \pm \frac{5}{16}, \pm \frac{3}{8}, \pm \frac{7}{16}, \pm \frac{1}{2}, \pm \frac{5}{8}, \pm \frac{3}{4}, \pm \frac{7}{8}, \\ \pm 1, \pm \frac{5}{4}, \pm \frac{3}{2}, \pm \frac{7}{4}, \pm 2, \pm \frac{5}{2}, \pm 3, \pm \frac{7}{2}\}$$

$$= \{0, \pm 0.25, \pm 0.3125, \pm 0.375, \pm 0.4375, \pm 0.5, \pm 0.625, \pm 0.75, \pm 0.875, \\ \pm 1, \pm 1.25, \pm 1.5, \pm 1.75, \pm 2, \pm 2.5, \pm 3, \pm 3.5\}.$$

Dado um número real $x \in \mathbb{R}$, representa-se por \bar{x} ou fl(x) a representação de x em $FP(b, p, e_{min}, e_{max})$. Se $x = \bar{x}$, diz-se que x tem **representação exacta** em $FP(b, p, e_{min}, e_{max})$. Se $x \neq \bar{x}$ existem duas técnicas para determinar \bar{x} :

- Truncatura: \bar{x} obtém-se desprezando os números da mantissa do número x para além dos p primeiros. Por exemplo o número π é representado em FP(10, 3, -2, 2, T) por $\bar{\pi} = +0.314 \times 10^{1}$.
- Arrendondamento: \bar{x} é o número do sistema $FP(b, p, e_{min}, e_{max})$ que está mais próximo de x. Por exemplo o número $\pi = 3.14159...$ é representado em FP(10, 5, -2, 2, A) por $\bar{\pi} = +0.31416 \times 10^1$.

Em alguns casos, o arrendondamento não determina univocamente a aproximação \bar{x} . Por exemplo, o número

no sistema FP(10, 1, -1, 1, A) tem dois elementos equidistantes de 0.75: 0.8 e 0.7. E necessário então introduzir regras adicionais e uma das mais utilizadas é a regra Roundto-Even, que nestes casos opta pela aproximação que deixa o último dígito da mantissa par. Logo,

$$\overline{0.75} = 0.8$$

e

$$\overline{0.65} = 0.6.$$

2.3 Operações Aritméticas em Ponto Flutuante

Considere-se os seguintes números

$$x = 1.2568$$
$$y = 0.9854$$

cuja representação em FP(10, 4, -2, 2, T) é dada por

$$\bar{x} = 0.1256 \times 10$$
 $\bar{y} = 0.9854$.

A soma destes números é

$$\bar{x} + \bar{y} = 2.2414$$

que não é um elemento de FP(10, 4, -2, 2, T).

Logo, depois de se efectuar a operação ter-se-á que representar o resultado no sistema em ponto flutuante. Neste caso, a soma é dada por

$$\overline{\overline{x} + \overline{y}} = 0.2241 \times 10.$$

Por isso, num sistema de ponto flutuante é necessário definir as operações aritméticas elementares (soma, subtração, multiplicação e divisão) nesse sistema.

Sejam $x, y \in FP(b, m, e_{min}, e_{max})$ e $\odot \in \{+, -, \times, /\}$ uma operação aritmética. Define-se

$$\bar{x} \odot \bar{y} = \overline{\bar{x} \odot \bar{y}}.$$

3 Erros

No que se segue, considera-se que se está na notação de base 10 e que as aproximações são feitas por arredondamento.

Seja $x \in \mathbb{R}$ e \bar{x} uma aproximação de x. Define-se como **erro da aproximação** a

$$\epsilon_{\bar{x}} = x - \bar{x}.$$

Diz-se que \bar{x} é uma aproximação por defeito se $\bar{x} < x$ e diz-se que \bar{x} é uma aproximação por excesso se $\bar{x} > x$.

Chama-se de **erro absoluto** ao módulo do erro

$$\Delta_{\bar{x}} = |x - \bar{x}|$$

e erro relativo a

$$r_{\bar{x}} = \frac{\Delta_{\bar{x}}}{|x|} = \left| \frac{x - \bar{x}}{x} \right|$$

se $x \neq 0$.

Por exemplo, se x = 3.333... e $\bar{x} = 3.33$, então,

$$\Delta_{\bar{x}} = 0.0033\dots$$

е

$$r_{\bar{x}} = 0.001.$$

Para y = 0.00333... e $\bar{y} = 0$, tem-se que

$$\Delta_{\bar{y}} = 0.0033\dots$$

e

$$r_{\bar{y}}=1.$$

Com estes exemplos verifica-se que o erro relativo fornece mais informação que o erro absoluto (distância entre a aproximação e o valor) pois tem em conta a ordem de grandeza do valor de x.

Outras medidas da qualidade de uma aproximação é o número de casas decimais correctas e o número de dígitos significativos. Diz-se que o número x se encontra representado com d casas decimais correctas quando a sua parte decimal apresenta d algarismos decimais e resulta de um arredondamento correctamente efectuado sobre um outro número. Diz-se que o número x se encontra representado com k algarismos significativos quando está representado com k algarismos, contados da esquerda para a direita, a partir do primeiro algarismo diferente de zero desde que resulte de um arredondamente bem efectuado sobre um outro número. Na prática, k corresponde ao número de dígitos correctos de mantissa.

Seja $x \in \mathbb{R}$ e \bar{x} uma aproximação de x. Diz-se que \bar{x} é uma aproximação de x com **pelo menos** d casas decimais correctas se

$$\Delta_{\bar{x}} = |x - \bar{x}| \leqslant \frac{1}{2} 10^{-d}.$$

Note-se que esta definição só é válida para a notação científica normalizada.

Exemplo. Sejam $x = \sqrt{2} = 1.41421356237...$ $e \bar{x} = 1.41$ uma aproximação de x. Como

$$|x - \bar{x}| = 0.00421356...$$

 $\leq 0.005 = \frac{1}{2}10^{-2},$

então \bar{x} é uma aproximação de $\sqrt{2}$ com pelo menos 2 casas decimais correctas.

Exemplo. Seja $y = \sqrt{5} = 2.23606...$ e $\bar{y} = 2.24$ uma aproximação de y. Como

$$|y - \bar{y}| = 0.0039320...$$

 $\leq 0.005 = \frac{1}{2}10^{-2},$

então \bar{y} é uma aproximação de $\sqrt{5}$ com pelo menos 2 casas decimais correctas.

Considere-se $x \in \mathbb{R}$ e \bar{x} uma aproximação de x que tem a seguinte representação científica

$$\bar{x} = \pm 0.d_{-1}d_{-2}\dots d_{-k}d_{-k-1}\dots d_{-k-l} \times 10^p.$$

Diz-se que \bar{x} é uma aproximação de x com **pelo menos** k algarismos significativos se

$$\Delta_{\bar{x}} = |x - \bar{x}| \leqslant \frac{1}{2} 10^{-k+p}.$$

Adicionalmente, se

$$\Delta_{\bar{x}} = |x - \bar{x}| > \frac{1}{2} 10^{-k+p-1}$$

diz-se que \bar{x} é uma aproximação de x com **com exactamente** k **algarismos significativos**.

Exemplo. Sejam $\bar{\pi}_1 = (0.31415) \, 10^1 \, e \, \bar{\pi}_2 = (0.31416) \, 10^1 \, duas \, aproximações \, de \, \pi = 3.14159265 \dots \, Então,$

$$0.5 \times 10^{-4+1-1} \le |\pi - \bar{\pi}_1| = 0.9265 \times 10^{-4} \le 0.5 \times 10^{-3} = 0.5 \times 10^{-4+1}$$

e

$$0.5 \times 10^{-5+1-1} \le |\pi - \bar{\pi}_2| = 0.735 \times 10^{-5} \le 0.5 \times 10^{-4} = 0.5 \times 10^{-5+1}$$
.

Logo, $\bar{\pi}_1$ tem 3 casas decimais correctas e tem exactamente 4 algarismos significativos e $\bar{\pi}_2$ tem 4 casas decimais correctas e tem exactamente 5 algarismos significativos.

Exemplo. Seja $\bar{x} = 0.25$ uma aproximação de x. Se se souber que $\Delta_{\bar{x}} \leqslant 0.005$, então como

$$\Delta_{\bar{x}} = |x - \bar{x}| \le 0.5 \times 10^{-2}$$

conclui-se que \bar{x} tem 2 casas decimais correctas e pelo menos 2 algarismos significativos.

Exemplo. Seja $\bar{x} = 0.00589 = 0.589 \times 10^{-2} \ e \ \Delta_{\bar{x}} \leqslant 0.5 \times 10^{-4}$. Uma vez que

$$\Delta_{\bar{x}} \leq 0.5 \times 10^{-4} = 0.5 \times 10^{-k-2}$$

logo

$$k=2$$
.

Assim $\bar{x} = 0.00589$ tem 4 casas decimais correctas e pelo menos 2 algarismos significativos.

4 Propagação de Erros. Fórmula Fundamental do Cálculo de Erros

Nesta secção, considera-se que todas as funções são contínuas e diferenciáveis.

Se se quiser calcular y=f(x), em que apenas se conhece um valor aproximado \bar{x} de x, qual o erro que se irá obter na solução $\bar{y}=f(\bar{x})$? Ou seja, qual é o efeito de propagação do erro $\Delta_{\bar{x}}$ na solução do problema? Pelo Teorema de Lagrange no intervalo $I=[\bar{x}-\Delta_{\bar{x}},\bar{x}+\Delta_{\bar{x}}]$, existe um ponto $c\in I$ tal que

$$f'(c) = \frac{f(x) - f(\bar{x})}{x - \bar{x}}$$

$$\Leftrightarrow f(x) - f(\bar{x}) = f'(c)(x - \bar{x}).$$

Logo,

$$|f(x) - f(\bar{x})| = |f'(c)| |x - \bar{x}|$$

$$\Leftrightarrow \Delta_{f(\bar{x})} = |f'(c)| \Delta_{\bar{x}}$$

onde $\Delta_{f(\bar{x})} = |f(x) - f(\bar{x})|$. Como na prática não se conhece o valor de c, então majorase o erro da seguinte forma

$$\Delta_{f(\bar{x})} \leqslant |f'(x)|_M \Delta_{\bar{x}}$$

em que

$$|f'(x)|_{M} = \sup_{x \in I} f'(x).$$

A esta desigualdade dá-se o nome de **Fórmula Fundamental do Cálculo de Erros** (**FFCE**) e que também pode ser escrita na forma

$$\Delta_{f(\bar{x})} \leqslant \left| \frac{\partial f}{\partial x} \right|_{M} \Delta_{\bar{x}}$$

onde $\frac{\partial f}{\partial x} = f'(x)$ (notação de Leibniz).

Exemplo. Seja $f(x) = 2x^2 + 3$. Qual é o erro propagado a f(x) se se tomar $\bar{x} = 1.3$? Se se considerar todos os algarismos da aproximação significativos, tem-se que

$$x \in]1.3 - 0.05, 1.3 + 0.05[.$$

Um valor aproximado de f(x) é

$$f(\bar{x}) = 2 \times 1.3^2 + 3 = 6.38$$

e um majorante do erro da aproximação é dado por

$$\Delta_{f(\bar{x})} \leqslant |f'(x)|_M \Delta_{\bar{x}}$$

$$\leqslant |4x|_M \Delta_{\bar{x}}$$

$$\leqslant 4 \times (1.3 + 0.05) \times 0.05$$

$$\leqslant 0.27.$$

Logo,

$$x \in]1.3 - 0.05, 1.3 + 0.05[\Rightarrow f(x) \in]6.38 - 0.27, 6.38 + 0.27[.$$

Usualmente, uma função f depende de várias variáveis x_1, x_2, \ldots, x_n e a **genera-**lização da FFCE a várias variáveis é dada por

$$\Delta_{\bar{f}} \leqslant \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \right|_{M} \Delta_{\bar{x}_i},$$

onde $\bar{f} = f(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$ e $\frac{\partial f}{\partial x_i}$ é a derivada parcial de f em relação à variável x_i . Por exemplo, para

$$f(x, y, z) = 2xy + 3z^2 - y^2z$$

tem-se que

$$\frac{\partial f}{\partial x} = (2xy + 3z^2 - y^2z)'_x = 2y,$$

$$\frac{\partial f}{\partial y} = (2xy + 3z^2 - y^2z)'_y = 2x - 2yz \quad e$$

$$\frac{\partial f}{\partial z} = (2xy + 3z^2 - y^2z)'_z = 6z - y^2.$$

Exemplo. Considere-se $f(x,y) = xy + x^2$.

 $Se \ x \in]3.1-0.01, 3.1+0.01[\ e \ y \in]2.3-0.3, 2.3+0.3[. \ Um \ valor \ aproximado \ de \ f \ \acute{e}$

$$\bar{f} = f(\bar{x}, \bar{y}) = 3.1 \times 2.3 + 3.1^2 = 16.74.$$

Como

$$\Delta_{\bar{f}} \leqslant \left| \frac{\partial f}{\partial x} \right|_{M} \Delta_{\bar{x}} + \left| \frac{\partial f}{\partial y} \right|_{M} \Delta_{\bar{y}}
\leqslant |y + 2x|_{M} \Delta_{\bar{x}} + |x|_{M} \Delta_{\bar{y}}
\leqslant |(2.3 + 0.3) + 2(3.1 + 0.01)| \times 0.01 + |3.1 + 0.01| \times 0.3
\leqslant 1.02128
\leqslant 1.03.$$

Logo

$$f(x,y) \in]16.74 - 1.03, 16.74 + 1.03[=]15.71, 17.77[.$$

4.1 Estimativas do Erro em Operações Aritméticas Elementares

Considere-se a operação Soma definida por S = x + y. Então,

$$\Delta_{\bar{S}} \leqslant \left| \frac{\partial S}{\partial x} \right|_{M} \Delta_{\bar{x}} + \left| \frac{\partial S}{\partial y} \right|_{M} \Delta_{\bar{y}}$$
$$\leqslant 1\Delta_{\bar{x}} + 1\Delta_{\bar{y}}.$$

Logo

$$\Delta_{\bar{S}} \leqslant \Delta_{\bar{x}} + \Delta_{\bar{y}}.$$

A operação Subtracção definida por D = x - y, tem o erro majorado por

$$\Delta_{\bar{D}} \leqslant \left| \frac{\partial D}{\partial x} \right|_{M} \Delta_{\bar{x}} + \left| \frac{\partial D}{\partial y} \right|_{M} \Delta_{\bar{y}}$$
$$\leqslant 1\Delta_{\bar{x}} + |-1| \Delta_{\bar{y}}$$

Logo

$$\Delta_{\bar{D}} \leqslant \Delta_{\bar{x}} + \Delta_{\bar{y}}.$$

A operação Produto Escalar definida por $P_k = kx$, onde $k \in \mathbb{R}$, tem o erro majorado por

$$\Delta_{\overline{P_k}} \leqslant \left| \frac{\partial P_k}{\partial x} \right|_M \Delta_{\bar{x}}$$
$$\leqslant |k| \Delta_{\bar{x}}.$$

Exemplo. Sejam f(x,y) = 3x - 5y, $x \in]5.3 - 0.2, 5.3 + 0.2[$ $e y \in]2 - 0.1, 2 + 0.1[$. Um valor aproximado de f, será

$$f(\bar{x}, \bar{y}) = 3 \times 5.3 - 5 \times 2 = 5.9$$

e o erro é majorado por

$$\Delta_{\bar{f}} \leqslant 3\Delta_{\bar{x}} + 5\Delta_{\bar{y}} = 1.1.$$

Logo

$$f(x,y) \in]5.9 - 1.1, 5.9 + 1.1[.$$

No caso da operação Produto definida por P = xy, tem-se que

$$\Delta_{\bar{P}} \leqslant |y|_M \, \Delta_{\bar{x}} + |x|_M \, \Delta_{\bar{y}}$$

e no caso da operação Quociente $Q = \frac{x}{y}$, tem-se que

$$\Delta_{\bar{Q}} \leqslant \left| \frac{1}{y} \right|_{M} \Delta_{\bar{x}} + \left| -\frac{x}{y^2} \right|_{M} \Delta_{\bar{y}}.$$

4.2 Propagação de Erros Relativos

O erro relativo é dado por

$$r_{\bar{x}} = \frac{\Delta_{\bar{x}}}{|x|} = \left| \frac{x - \bar{x}}{x} \right|,$$

ou seja,

$$\Delta_{\bar{x}} = |x| \times r_{\bar{x}}.$$

Se se considerar uma função $f=f\left(x_{1},x_{2},\ldots,x_{n}\right)$ e a fórmula fundamental dos erros

$$\Delta_{\bar{f}} \leqslant \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \right|_{M} \Delta_{\overline{x_i}}$$

e se substituir os erros absolutos pelo relativos, obtém-se

$$\left| f \times r_{\bar{f}} \right| \leqslant \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_{i}} \right|_{M} \left| x_{i} \times r_{\bar{x}_{i}} \right|$$

$$\Leftrightarrow r_{\bar{f}} \leqslant \sum_{i=1}^{n} \left| \frac{x_{i} \frac{\partial f}{\partial x_{i}}}{f} \right|_{M} r_{\bar{x}_{i}}$$

$$\Leftrightarrow r_{\bar{f}} \leqslant \sum_{i=1}^{n} \left| p_{i} \right|_{M} r_{\bar{x}_{i}}.$$

A esta última expressão dá-se o nome de fórmula fundamental para erros relativos. Os factores p_i

$$p_i = \frac{x_i \frac{\partial f}{\partial x_i}}{f}$$

são denominados de números de condição. Na prática o valor exacto de x é geralmente desconhecido, sendo comum substituir-se x por \bar{x} na fórmula anterior.

Em seguida, apresentam-se estimativas para os erros relativos das operações aritméticas elementares.

O erro relativo da operação Soma S=x+y é estimado por

$$\begin{array}{rcl} r_{\bar{S}} & \approx & \left| p_{\bar{x}} \right| r_{\bar{x}} + \left| p_{\bar{y}} \right| r_{\bar{y}} \\ & \approx & \left| \frac{\bar{x}}{\bar{x} + \bar{y}} \right| r_{\bar{x}} + \left| \frac{\bar{y}}{\bar{x} + \bar{y}} \right| r_{\bar{y}}. \end{array}$$

Ou seja,

$$r_{\bar{S}} pprox rac{\Delta_{\bar{x}} + \Delta_{\bar{y}}}{|\bar{x} + \bar{y}|}.$$

Analogamente o erro relativo da operação Subtracção é estimado por

$$r_{ar{D}} pprox \left| rac{ar{x}}{ar{x} - ar{y}}
ight| r_{ar{x}} + \left| rac{ar{y}}{ar{x} - ar{y}}
ight| r_{ar{y}}$$

i.e.,

$$r_{\bar{D}} pprox rac{\Delta_{ar{x}} + \Delta_{ar{y}}}{|ar{x} - ar{y}|}.$$

O erro relativo da operação Produto P=xy é estimado por

$$\begin{array}{ll} r_{\bar{P}} & \approx & \left| p_x \right| r_{\bar{x}} + \left| p_y \right| r_{\bar{y}} \\ & \approx & \left| \frac{\bar{x}\bar{y}}{\bar{x}\bar{y}} \right| r_{\bar{x}} + \left| \frac{\bar{x}\bar{y}}{\bar{x}\bar{y}} \right| r_{\bar{y}} \\ & \approx & r_{\bar{x}} + r_{\bar{y}} \end{array}$$

e o erro relativo da operação Quociente $Q=\frac{x}{y}$ é estimado

$$\begin{split} r_{\bar{Q}} &\approx & \left| p_x \right| r_{\bar{x}} + \left| p_y \right| r_{\bar{y}} \\ &\approx & \left| \frac{\bar{x} \frac{1}{\bar{y}}}{\frac{\bar{x}}{\bar{y}}} \right| r_{\bar{x}} + \left| \frac{\bar{y} \left(-\frac{\bar{x}}{\bar{y}^2} \right)}{\frac{\bar{x}}{\bar{y}}} \right| r_{\bar{y}} \\ &\approx & r_{\bar{x}} + r_{\bar{y}}. \end{split}$$

A tabela seguinte resume os erros, absolutos e relativos, das operações aritméticas:

	Erro Absoluto	Erro Relativo
Soma	$\Delta_{\bar{S}} \leqslant \Delta_{\bar{x}} + \Delta_{\bar{y}}$	$r_{ar{S}}pprox rac{\Delta_{ar{x}}+\Delta_{ar{y}}}{ ar{x}+ar{y} }$
Diferença	$\Delta_{\bar{D}} \leqslant \Delta_{\bar{x}} + \Delta_{\bar{y}}$	$r_{ar{D}} pprox rac{\Delta_{ar{x}} + \Delta_{ar{y}}}{ ar{x} - ar{y} }$
Produto	$\Delta_{\bar{P}} \leqslant y _M \Delta_{\bar{x}} + x _M \Delta_{\bar{y}}$	$r_{\bar{P}} pprox r_{\bar{x}} + r_{\bar{y}}$
Quociente	$\left\ \Delta_{ar{Q}} \leqslant \left\ rac{1}{y} \right\ _{M} \Delta_{ar{x}} + \left\ rac{x}{y^{2}} \right\ _{M} \Delta_{ar{y}} ight\ _{M}$	$r_{ar{Q}} pprox r_{ar{x}} + r_{ar{y}}$

Exemplo. Determine-se o número de algarismos significativos do resultado de cada uma das operações xy e x + y em que \bar{x} = 1010 e \bar{y} = 1000. Se todos os algarismos são significativos, então

$$\Delta_{\bar{x}} < 0.5 \quad e \quad \Delta_{\bar{y}} < 0.5$$

e

$$r_{\bar{x}} = \frac{\Delta_{\bar{x}}}{|x|} \approx \frac{\Delta_{\bar{x}}}{|\bar{x}|} < 0.495 \times 10^{-3}$$

 $r_{\bar{y}} \approx 0.5 \times 10^{-3}$.

Então,

$$\Delta_{\bar{P}} \leqslant |y|_M \Delta_{\bar{x}} + |x|_M \Delta_{\bar{y}}$$

 $\leqslant 1000.5 \times 0.5 + 1010.5 \times 0.5 = 1005.5$

e

$$r_{\bar{P}} \approx 0.495 \times 10^{-3} + 0.5 \times 10^{-3} = 0.995 \times 10^{-3}.$$

Além disso, como

$$\bar{x}\bar{y} = 1010000 = 0.1010 \times 10^7$$

e

$$\Delta_{\bar{P}} \leqslant 1005 < 5000 = 0.5 \times 10^4 = 0.5 \times 10^{-3+7},$$

 $o\ produto\ tem\ 3\ algarismos\ significativos.$

Em relação aos erros da soma, tem-se que

$$\Delta_{\bar{S}} \leqslant \Delta_{\bar{x}} + \Delta_{\bar{y}} < 0.5 + 0.5 = 1$$

e

$$r_{\bar{S}} \approx \frac{\Delta_{\bar{x}} + \Delta_{\bar{y}}}{|\bar{x} + \bar{y}|} = \frac{1}{2010}$$

 $\approx 0.498 \times 10^{-3}$.

Além disso, como

$$\bar{x} + \bar{y} = 2010 = 0.201 \times 10^4$$

e

$$\Delta_{\bar{S}} \leqslant 1 < 5 = 0.5 \times 10 = 0.5 \times 10^{-3+4}$$

 $a\ soma\ tem\ 3\ algarismos\ significativos.$