CQF 1.3 Probability & Introduction to Stochastic Calculus

Throughout this problem sheet, you may assume that X is a Brownian Motion (Weiner Process) and dX is its increment.

- 1. Let ϕ be a random variable which follows a standardised normal distribution, i.e. $\phi \sim N(0,1)$. If $\mathbb{E}[X]$ and $\mathbb{V}[X]$ are used to denote the Expectation and Variance of x in turn, calculate
- (a) $\mathbb{E}\left[\phi^2\right]$
- (b) $\mathbb{E}[\psi]$
- (c) $\mathbb{V}[\psi]$

where $\psi = \sqrt{dt}\phi$. dt is a small time-step.

2. Consider the probability density function p(x)

$$p(x) = kx^2 \exp(-\lambda x^2)$$
, $-\infty < x < \infty$,

where $\lambda (>0)$ and k are both constants. Show that

$$k = \frac{2\lambda^{3/2}}{\sqrt{\pi}}.$$

Deduce that the odd moments of p(x) are all zero, i.e.,

$$E\left[x^{2n+1}\right] = 0, \quad n = 0, 1, 2, \dots$$

3. Using the formula below for stochastic integrals, for a function $F(X(\tau), \tau)$,

$$\int_{0}^{t} \frac{\partial F}{\partial X} dX\left(\tau\right) = F\left(X\left(t\right), t\right) - F\left(X\left(0\right), 0\right) - \int_{0}^{t} \left(\frac{\partial F}{\partial \tau} + \frac{1}{2} \frac{\partial^{2} F}{\partial X^{2}}\right) d\tau$$

show that we can write

a.
$$\int_{0}^{t} X(\tau) dX(\tau) = \frac{1}{2}X^{2}(t) - \frac{1}{2}t$$

b.
$$\int_{0}^{t} \tau dX \left(\tau\right) = tX\left(t\right) - \int_{0}^{t} X\left(\tau\right) d\tau$$

c.
$$\int_{0}^{t} X^{2}(\tau) dX(\tau) = \frac{1}{3}X^{3}(t) - \int_{0}^{t} X(\tau) d\tau$$

4. Use Itô's lemma to obtain a SDE for each of the following functions: $\frac{1}{2}$

(a)
$$f(X) = X^n$$

(b)
$$y(X) = \exp(X)$$

(c)
$$g(X) = \ln X$$

(d)
$$h(X) = \sin X + \cos X$$