4.2 The Mean Value Theorem

微分應用之二: 瞬間即平均.

- 1. Rolle's Theorem 羅爾定理
- 2. Mean Value Theorem 均值定理

0.1 Rolle's Theorem

Theorem 1 (Rolle's Theorem)

Let f be a function that satisfies the following three hypothesis:

- 1. f is continuous on [a, b], 閉連續
- 2. f is **differentiable** on (a,b), 開可微
- $3. \ f(a) = f(b).$ 頭尾同

Then $\exists c \in (a,b) \ni ($ 某處水平)

$$f'(c) = 0$$

Proof.

Case 1. f(x) = k is a constant function. $\implies f'(c) = 0, \forall c \in (a, b).$

Case 2. f(x) > f(a) for some $x \in (a, b)$. Hypothesis 1 + Extreme Value Theorem $\implies f$ has max in (a, b) (f(a) = f(b) are not). Hypothesis 2 + Fermat's Theorem $\implies \exists c \in (a, b) \ni f'(c) = 0$.

Case 3. f(x) < f(a) for some $x \in (a, b)$. Similarly, f has min in (a, b) and $\exists c \in (a, b) \ni f'(c) = 0$.

Example 0.1 經過同一點時,期間會有速率爲零.

Proof. Let s(t) be position function, then v(t) = s'(t) is the velocity function. By Rolle's Theorem, s(a) = s(b), then $\exists c \in (a,b) \ni v(c) = 0$.

Example 0.2 $x^3 + x - 1$ has exactly one real root.

Proof. $:: f(x) = x^3 + x - 1$ is continuous and differentiable on \mathbb{R} . (勘根定理證明有根) $f(0)f(1) = (-1) \cdot 1 < 0$, $\exists c \in (0,1) \ni f(c) = 0$. (證明只有一根) Suppose there are two roots a,b, i.e. f(a) = f(b) = 0. By Rolle's Theorem, $\exists c \in (a,b) \ni f'(c) = 0$.

But $f'(x) = 3x^2 + 1 > 0$ for all x, a contradiction.

Therefore, f has exactly one root.

0.2 Mean Value Theorem

Theorem 2 (Mean Value Theorem) Let f be a function that satisfies the following two hypothesis.

1. f is continuous on [a, b], 閉連續

2. f is differentiable on (a, b), 開可微

Then $\exists c \in (a,b) \ni$

$$f'(c) = rac{f(b) - f(a)}{b - a}$$

Equivalently,

$$oxed{f(b)-f(a)=f'(c)(b-a)}$$

Note: $\frac{f(b) - f(a)}{b - a}$ 是從 (a, f(a)) 到 (b, f(b)) 的割線斜率.

f'(c) 是 f 在 (c, f(c)) 的切線斜率.

Proof. Let $y = L(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$ be the secant line function through (a, f(a)) and (b, f(b)), and let

$$\frac{h(x)}{h(x)} = f(x) - L(x) = f(x) - f(a) - \frac{f(b) - f(a)}{h - a}(x - a).$$

 \therefore f is continuous on [a,b] and differentiable on (a,b), so are L and h. (1.62.)

:
$$h(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a}(a - a) = 0,$$

and
$$h(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a}(b - a) = 0$$
, $h(a) = h(b)$ (3.)

By Rolle's Theorem, $\exists c \in (a,b) \ni 0 = h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$,

$$\implies f'(c) = \frac{f(b) - f(a)}{b - a} \text{ or } f(b) - f(a) = f'(c)(b - a).$$

Example 0.3 A car traveled 180 km in 2 hours, then velocity 90 km/h at least once.

Example 0.4 f(0) = -3, $f'(x) \le 5$ for all x, how large can f(2) be?

Proof. : f is differentiable (and hence continuous) for all x. By Mean Value Theorem, $\exists c \in (0,2) \ni f(2) - f(0) = f'(c)(2-0)$. $\implies f(2) = 2f'(c) + f(0) \le 2 \cdot 5 - 3 = 7.$

Theorem 3 f'(x) = 0 for all $x \in (a,b)$ then f is **constant** on (a,b). 開可微零導數是常數

Proof. $\forall x_1, x_2 \in (a, b), x_1 < x_2, f$ is differentiable on (x_1, x_2) and continuous on $[x_1, x_2]$.

By Mean Value Theorem, $\exists c \in (x_1, x_2) \ni f(x_2) - f(x_1) = f'(c)(x_2 - x_1) =$ $0, \implies f(x_1) = f(x_2).$

Therefore, f is constant on (a, b).

Corollary 4 f'(x) = g'(x) for all $x \in (a,b)$ then f - g is constant on (a,b); that is $\mathbf{f}(\mathbf{x}) = \mathbf{g}(\mathbf{x}) + \mathbf{c}$ where c is a constant. 同導數差常數

Note: 要 (a, b), 不可斷. Ex: $f(x) = \frac{x}{|x|}$ on $D = \{x \neq 0\}$, f'(x) = 0 on D, but f(x) is not constant. If choose $D = (0, \infty)$ or

 $D = (-\infty, 0)$ then f is constant.

Example 0.5 Prove identity $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$.

Proof. Let $f(x) = \tan^{-1} x + \cot^{-1} x$. Then $f'(x) = \frac{1}{1+x^2} + \frac{-1}{1+x^2} = 0$, so f(x) is constant.

Therefore,
$$f(x) = f(1) = \tan^{-1} 1 + \cot^{-1} 1 = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$
.

Additional: $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$, $\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$.

$$((\sin^{-1} x)' = \frac{1}{\sqrt{1 - x^2}}, (\sec^{-1} x)' = \frac{1}{x\sqrt{x^2 - 1}}.)$$

Exam 4.2

National Chiao Tung University Campus Run is about 4.5 km. Suppose that you finish it in one hour, and your position function (from the beginning) is continuous (on a closed interval) and differentiable (on an open interval). Prove that your velocity reaches 1.25 m/s at least once during the running.

交大校園路跑約 4.5 km. 假設你一小時跑完, 而且位置函數是閉連續開可微. 證明途中你必定曾經達到速率 1.25 m/s.