Numerical Solutions to Partial Differential Equations

numpde_lecture_10_c3.pdf

School of Mathematical Sciences
Peking University

A Model Problem of the Advection-Diffusion Equation

A Model Problem of the Advection-Diffusion Equation

3.4节 (P126)

- An initial value problem of a 1D constant-coefficient advection-diffusion equation (a > 0, c > 0): $u_t + au_x = cu_{xx}$, (3.4.1) $x \in \mathbb{R}$, t > 0; $u(x,0) = u^0(x)$, $x \in \mathbb{R}$.
- By a change of variables y = x at and $v(y, t) \triangleq u(y + at, t)$, $v_t = cv_{yy}$, $y \in \mathbb{R}$, t > 0; $v(x, 0) = u^0(x)$, $x \in \mathbb{R}$. (3.4.2)

Characteristic global properties of the solution u:

- There is a characteristic speed as in the advection equation, which plays an important role to the solution, especially when $|a| \gg c$ (advection dominant).
- 2 Along the characteristic, the solution behaves like a parabolic solution (dissipation and smoothing).

Finite Difference Schemes for Advection-Diffusion Equations

Classical Explicit and Implicit Difference Schemes

Classical Difference Schemes and Their Stability Conditions

Classical explicit difference schemes:

$$\left[\tau^{-1}\triangle_{t+} + a(2h)^{-1}\triangle_{0x}\right]U_{i}^{m} = \tilde{c}h^{-2}\delta_{x}^{2}U_{i}^{m},\tag{3.4.3}$$

 $(\tilde{c} = c, \text{ central}; c + \frac{a^2\tau}{2}, \text{ modified central}; c + \frac{1}{2}ah, \text{ upwind}).$

2
$$\mathbb{L}^2$$
 strongly stable $\Leftrightarrow \frac{\tilde{c}\tau}{h^2} \leq \frac{1}{2}$ and $\tau \leq \frac{2\tilde{c}}{a^2}$. (3.4.10)

The Crank-Nicolson scheme

$$\tau^{-1}\delta_t U^{m+\frac{1}{2}} + a (4h)^{-1} \triangle_{0x} \left[U_j^m + U_j^{m+1} \right] = c (2h^2)^{-1} \delta_x^2 \left[U_j^m + U_j^{m+1} \right],$$

- **1** Maximum principle $\Leftrightarrow \mu \leq 1$, $h \leq \frac{2c}{a}$.
- 2 Unconditionally \mathbb{L}^2 strongly stable.

(3.4.20)

(3.4.21)

What Do We See Along a Characteristic Line?

3.4.4节: 特征FDS(P132)

For constant-coefficient advection-diffusion equation:

- **1** The characteristic equation for the advection part: $\frac{dx}{dt} = a$.
- ② Unit vector in characteristic direction: $\mathbf{n}_s = (\frac{a}{\sqrt{1+a^2}}, \frac{1}{\sqrt{1+a^2}})$.
- 3 Let s be the length parameter for the characteristic lines.

(3.4.26)

5 This yields $\frac{\partial u}{\partial s} = \tilde{c} \frac{\partial^2 u}{\partial x^2}$, (i.e. along the characteristics $\frac{\mathrm{d}x}{\mathrm{d}t} = a$, the solution u to the constant-coefficient advection-diffusion equation $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = c \frac{\partial^2 u}{\partial x^2}$ behaves like a solution to a diffusion equation with diffusion coefficient $\tilde{c} = \frac{c}{\sqrt{1+a^2}}$.)

Finite Difference Schemes for Advection-Diffusion Equations

Characteristic Difference Schemes

Operator Splitting and Characteristic Difference Schemes

For general variable coefficients advection-diffusion equations:

- The idea of the characteristic difference schemes for the advection-diffusion equation is to approximate the process by applying the operator splitting method.
- 2 Every time step will be separated into two sub-steps.
- 3 In the first sub-step, approximate the advection process by the characteristic method: $\tilde{u}_j^{m+1} \triangleq u(\bar{x}_j^m) = u(x_j a_j^{m+1}\tau)$, along the characteristics.

Characteristic Difference Schemes

Operator Splitting and Characteristic Difference Schemes

4 In the second sub-step, approximate the diffusion process with \tilde{u}_j^{m+1} as the initial data at t_m by, say, the implicit scheme:

$$\frac{u_j^{m+1} - u(\bar{x}_j^m)}{\tau} = c_j^{m+1} \frac{u_{j+1}^{m+1} - 2u_j^{m+1} + u_{j-1}^{m+1}}{h^2} + \bar{T}_j^m,$$

- **5** The local truncation error $\bar{T}_j^m = O(\tau + h^2)$.
- **6** Replacing $u(\bar{x}_j^m)$ by certain interpolations of the nodal values leads to characteristic difference schemes.

Characteristic Difference Schemes

A Characteristic Difference Scheme by Linear Interpolation

Suppose $\bar{x}_j^m \in [x_{i-1}, x_i)$ and $|\bar{x}_j^m - x_{i-1}| < h$. Approximate $u(\bar{x}_j^m)$ by the linear interpolation of u_{i-1}^m and u_i^m leads to:

$$\frac{U_{j}^{m+1} - \alpha_{j}^{m}U_{i}^{m} - (1 - \alpha_{j}^{m})U_{i-1}^{m}}{\tau} = c_{j}^{m+1} \frac{U_{j+1}^{m+1} - 2U_{j}^{m+1} + U_{j-1}^{m+1}}{h^{2}},_{(3.4.28)}$$

where $\alpha_j^m = h^{-1}(\bar{x}_j^m - x_{i-1}) \in [0,1)$, or equivalently

$$(1+2\mu_j^{m+1})U_j^{m+1} = \alpha_j^m U_i^m + (1-\alpha_j^m)U_{i-1}^m + \mu_j^{m+1}(U_{j+1}^{m+1} + U_{j-1}^{m+1}),$$
(3.4.29)

where $\mu_{j}^{m+1} = c_{j}^{m+1} \tau h^{-2}$.

Finite Difference Schemes for Advection-Diffusion Equations

Characteristic Difference Schemes

A Characteristic Difference Scheme by Linear Interpolation

- **2** Maximum principle holds. (Note $\alpha_j^m \in [0,1)$, $\mu_j^{m+1} > 0$.)
- $oxed{3}$ Since $e^{-\mathrm{i}k(j-i+1)h}=e^{-\mathrm{i}k(lpha_j^mh+a_j^{m+1} au)}$, we have

$$\frac{\lambda_{k}}{\lambda_{k}} = \frac{1 - \alpha_{j}^{m} (1 - \cos kh) + i \alpha_{j}^{m} \sin kh}{1 + 4\mu_{j}^{m+1} \sin^{2} \frac{1}{2}kh} e^{-ik(\alpha_{j}^{m}h + a_{j}^{m+1}\tau)}, \quad |\lambda_{k}| \leq \frac{1}{3!431} \forall_{k}, \quad (3.4.30)$$

$$\therefore |1 - \alpha_{j}^{m} (1 - \cos kh) + i \alpha_{j}^{m} \sin kh|^{2} = 1 - 2\alpha_{j}^{m} (1 - \alpha_{j}^{m}) (1 - \cos kh).$$

- **4** Unconditionally locally L² stable.
- **5** Optimal convergence rate is O(h), when $\tau = O(h)$.

A Characteristic Difference Scheme by Quadratic Interpolation

Suppose $\alpha_j^m = h^{-1}(\bar{x}_j^m - x_{i-1}) \in [-\frac{1}{2}, \frac{1}{2}]$. Approximate $u(\bar{x}_j^m)$ by the quadratic interpolation of u_{i-2}^m , u_{i-1}^m and u_i^m leads to:

$$\frac{U_{j}^{m+1} - \frac{1}{2}\alpha_{j}^{m}(1 + \alpha_{j}^{m})U_{i}^{m} - (1 - \alpha_{j}^{m})(1 + \alpha_{j}^{m})U_{i-1}^{m} + \frac{1}{2}\alpha_{j}^{m}(1 - \alpha_{j}^{m})U_{i-2}^{m}}{\tau} \\
= c_{j}^{m+1} \frac{U_{j+1}^{m+1} - 2U_{j}^{m+1} + U_{j-1}^{m+1}}{h^{2}}.$$
(3.4.32)

- $T_j^m = O(\tau + \tau^{-1}h^3 + h^2)$. (quadratic interpolation error $O(h^3)$).
- **2** Maximum principle does not hold. (Note $\alpha_j^m \in [-\frac{1}{2}, \frac{1}{2}]$.)

$$\begin{array}{c} \text{ } & \frac{\lambda_{\pmb{k}}}{\lambda_{\pmb{k}}} = \frac{1 - (\alpha_j^m)^2 (1 - \cos kh) + \mathrm{i} \; \alpha_j^m \sin kh}{1 + 4\mu_j^{m+1} \sin^2 \frac{1}{2} kh} \; e^{-\mathrm{i} k \left(\alpha_j^m h + a_j^{m+1} \tau\right)}, \; |\lambda_{\pmb{k}}| \leq 1, \; \forall k. \; \text{ } \\ & (\because |1 - (\alpha_j^m)^2 (1 - \cos kh) + \mathrm{i} \; \alpha_j^m \sin kh|^2 = 1 - (\alpha_j^m)^2 (1 - (\alpha_j^m)^2) (1 - \cos kh).) \end{array}$$

- 4 Unconditionally locally \mathbb{L}^2 stable.
- **5** Optimal convergence rate is $O(h^{3/2})$, when $\tau = O(h^{3/2})$.

Characteristic Difference Schemes

Dissipation, Dispersion and Group Speed of the Scheme

In the case of the constant-coefficient, $u(x,t) = e^{-ck^2t}e^{ik(x-at)}$ are the Fourier mode solutions for the advection-diffusion equation.

- ① Dissipation speed: e^{-ck^2} ; dispersion relation: $\omega(k) = -ak$; group speed: C(k) = a; for all k.
- 2 For the Fourier mode $U_j^m = \lambda_k^m e^{ikjh}$,

$$\lambda_{k} = \frac{1 - (\alpha_{j}^{m})^{2} (1 - \cos kh) + i \alpha_{j}^{m} \sin kh}{1 + 4\mu_{j}^{m+1} \sin^{2} \frac{1}{2}kh} e^{-ik(\alpha_{j}^{m}h + a_{j}^{m+1}\tau)}, \quad \forall k.$$
(3.4.33)

3 The errors on the amplitude, phase shift and group speed can be worked out (see Exercise 3.12).

Initial and Initial-Boundary Value Problems of the Wave Equation

3.5节 (P136)

1 1 D wave equation $u_{tt} = a^2 u_{xx}, \quad x \in I \subset \mathbb{R}, \ t > 0.$

(3.5.1)

2 Initial conditions

$$u(x,0) = u^{0}(x), \qquad x \in I \subset \mathbb{R},$$

$$u(x,0) = u^{0}(x), \qquad x \in I \subset \mathbb{R}$$
(3.5.2)

$$u_t(x,0) = v^0(x), \quad x \in I \subset \mathbb{R}.$$

3 Boundary conditions, when I is a finite interval, say I = (0,1),

$$\alpha_0(t)u(0,t) - \beta_0(t)u_x(0,t) = g_0(t), \quad t > 0,$$
 (3.5.6)

$$\alpha_1(t)u(1,t) + \beta_1(t)u_x(1,t) = g_1(t), \quad t > 0,$$

where
$$\alpha_i \ge 0$$
, $\beta_i \ge 0$, $\alpha_i + \beta_i \ne 0$, $i = 0, 1$.

(3.5.7)

Equivalent First Order Hyperbolic System of the Wave Equation

① Let $v = u_t$ and $w = -au_x$ (a > 0). The wave equation is transformed to

$$\begin{bmatrix} v \\ w \end{bmatrix}_t + \begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix}_x = 0.$$
 (3.5.8)

- 2 The eigenvalues of the system are $\pm a$.
- 3 The two families of characteristic lines of the system

$$\begin{cases} x + at = c, \\ x - at = c, \end{cases} \quad \forall c \in \mathbb{R}.$$
 (3.5.9)

4 The solution to the initial value problem of the wave equation:

$$u(x,t) = \frac{1}{2} \left[u^0(x+at) + u^0(x-at) \right] + \frac{1}{2a} \int_{x-at}^{x+at} v^0(\xi) \, d\xi. \quad (3.5.10)$$
d'Alembert 公式

The Explicit Difference Scheme for the Wave Equation

$$\frac{U_j^{m+1} - 2U_j^m + U_j^{m-1}}{\tau^2} - a^2 \frac{U_{j+1}^m - 2U_j^m + U_{j-1}^m}{h^2} = 0.$$
 (3.5.11)

2 The local truncation error:

$$\left[\left(\tau^{-2}\delta_t^2-h^{-2}a^2\delta_x^2\right)-\left(\partial_t^2-a^2\partial_x^2\right)\right]u_j^m=O(\tau^2+h^2).$$

3 By
$$u(x,\tau) = u(x,0) + \tau \underbrace{u_t(x,0)}_{1} + \frac{1}{2}\tau^2 \underbrace{u_{tt}(x,0)}_{1} + O(\tau^3),$$
 (3.5.12)

$$u(x,\tau) = u^{0}(x) + \tau v^{0}(x) + \frac{1}{2} \nu^{2} (u^{0}(x+h) - 2u^{0}(x) + u^{0}(x-h)) + O(\tau^{3} + \tau^{2}h^{2}).$$
(3.5.13)

4 The discrete initial conditions (local truncation error $O(\tau^3 + \tau^2 h^2)$), denote $v = a\tau/h$:

$$U_j^0 = u_j^0;$$
 $U_j^1 = \frac{1}{2}\nu^2\left(U_{j+1}^0 + U_{j-1}^0\right) + (1 - \nu^2)U_j^0 + \tau v_j^0.$

Remark: If an additional term $\frac{1}{6}\tau\nu^2\delta_x^2v^0(x)$ is used in (3), then the truncation error is $O(\tau^4 + \tau^2h^2)$.

The Explicit Scheme for the Wave Equation

Boundary Conditions for the Explicit Scheme of the Wave Equation

- For $\beta = 0$, use the Dirichlet boundary condition of the problem directly;
- ② For $\beta \neq 0$, say $\beta_0 = 1$, $\alpha_0 > 0$, introduce a ghost node x_{-1} , and a discrete boundary condition with truncation error $O(h^2)$: $U_1^m U_{-1}^m$

 $\alpha_0^m U_0^m - \frac{U_1''' - U_{-1}'''}{2h} = g_0^m.$ (3.5.16)

3 Eliminating U_{-1}^m leads to an equivalent difference scheme with truncation error $O(\tau^2 + h)$ (see Exercise 3.13) at x_0 :

$$\frac{U_0^{m+1} - 2U_0^m + U_0^{m-1}}{\tau^2} - 2a^2 \frac{U_1^m - (1 + \alpha_0^m h)U_0^m + g_0^m h}{h^2} = 0.$$
(3.5.17)

Fourier Analysis for the Explicit Scheme of the Wave Equation

- 1 Initial value problem of constant-coefficient wave equation.
- Characteristic equation of the discrete Fourier mode $U_i^m = \lambda_k^m e^{ikjh}$: $\lambda_k^2 - 2\lambda_k + 1 = \lambda_k \nu^2 (e^{ikh} - 2 + e^{-ikh})$. (3.5.18)
- 3 The corresponding amplification factors are given by

$$\lambda_k^{\pm} = 1 - 2\nu^2 \sin^2 \frac{1}{2} kh \pm i2\nu \sin \frac{1}{2} kh \sqrt{1 - \nu^2 \sin^2 \frac{1}{2} kh}.$$
 (3.5.19)

(3.5.19)

- **4** If the CFL condition, *i.e.* $\nu \leq 1$, is satisfied, $|\lambda_k^{\pm}| = 1$; (3.5.20)
- **5** there is phase lag, and the relative phase error is $O(k^2h^2)$, $\arg \lambda_k^{\pm} = \pm ak\tau \left(1 - \frac{1 - \nu^2}{24}k^2h^2 + \cdots \right), \ \forall kh \ll 1, \ (\nu \le 1).$
 - **6** Group speed $C^{\pm}(k) = \pm a$, $C_h^{\pm}(k)\tau = -\frac{\mathrm{d}}{\mathrm{d}k} \arg \lambda_k^{\pm}$.

The θ -Scheme of the Wave Equation

• For $\theta \in (0,1]$, θ -scheme of the wave equation $(O(\tau^2 + h^2))$:

$$\frac{U_{j}^{m+1} - 2U_{j}^{m} + U_{j}^{m-1}}{\tau^{2}} = a^{2} \left[\frac{\theta}{h^{2}} \frac{U_{j+1}^{m+1} - 2U_{j}^{m+1} + U_{j-1}^{m+1}}{h^{2}} + \left(\frac{1 - 2\theta}{h^{2}} \right) \frac{U_{j+1}^{m} - 2U_{j}^{m} + U_{j-1}^{m}}{h^{2}} + \frac{\theta}{h^{2}} \frac{U_{j+1}^{m-1} - 2U_{j}^{m-1} + U_{j-1}^{m-1}}{h^{2}} \right].$$
(3.5.22)

2 Characteristic equation of the Fourier mode $U_j^m = \lambda_k^m e^{ikjh}$:

$$\lambda_k^2 - 2\lambda_k + 1 = \left(\theta \nu^2 \lambda_k^2 + (1 - 2\theta) \nu^2 \lambda_k + \theta \nu^2\right) \left(e^{ikh} - 2 + e^{-ikh}\right). \tag{3.5.23}$$

1 The corresponding amplification factors are given by

$$\lambda_k^{\pm} = 1 - \frac{2\nu^2 \sin^2 \frac{1}{2} kh}{1 + 4\theta \nu^2 \sin^2 \frac{1}{2} kh} \pm \frac{\sqrt{-4\nu^2 \sin^2 \frac{1}{2} kh \left(1 + \nu^2 (4\theta - 1) \sin^2 \frac{1}{2} kh\right)}}{1 + 4\theta \nu^2 \sin^2 \frac{1}{2} kh}. \tag{3.5.24}$$

\mathbb{L}^2 Stability Conditions for the heta-Scheme of the Wave Equation

4 The \mathbb{L}^2 stability condition of the θ -scheme:

$$\begin{cases} (1-4\theta)\nu^2 \leq 1, & \theta < \frac{1}{4}; \\ \text{unconditionally stable}, & \theta \geq \frac{1}{4}. \end{cases}$$
 (3.5.25)

- **5** When the *θ*-scheme is \mathbb{L}^2 stable, $\lambda_k^+ = \bar{\lambda}_k^-$, $|\lambda_k^{\pm}| = 1$, $\forall k$;
- **6** the relative phase error is $O(k^2h^2)$, if $kh \ll 1$ or $\pi kh \ll 1$, there is always a phase lag

$$rg \lambda_k^\pm = \pm a k au \left(1 - rac{1}{24}(1 + (12 heta - 1)
u^2)k^2h^2 + \cdots
ight).$$

Remark 1: We may calculate the group speed to see how the scheme works on superpositions of Fourier modes.

Remark 2: For many physical problems, the energy stability analysis can be a better alternative approach.

The Wave Equation and Its Mechanical Energy Conservation

For the initial-boundary value problem of the wave equation:

$$u_{tt} = (a^2 u_x)_x, x \in (0,1), t > 0,$$

 $u(0,t) = 0, u(1,t) = 0, t > 0,$
 $u(x,0) = u^0(x), u_t(x,0) = v^0(x), x \in [0,1],$

(3.5.27)

(3.5.30-31)

(3.5.28-29)

if a > 0 is a constant, it follows from integral by parts, and

$$\int_0^1 \left(u_{tt} - (a^2 u_x)_x\right) u_t \, \mathrm{d}x = 0, \quad u_t(0,t) = u_t(1,t) = 0,$$

that the mechanical energy of the system is a constant, i.e.

$$E(t) \triangleq \int_0^1 \frac{1}{2} \left(u_t^2 + a^2 u_x^2 \right) dx = \text{const.}$$

The above result also holds for $a = a(x) > a_0 > 0$.

Energy Method and Stability of Implicit Schemes

Variable-coefficient θ -Scheme and the Idea of the Energy Method

Let $0 < A_0 \le a(x, t) \le A_1$, consider the θ -scheme

$$\tau^{-2}\delta_t^2 U_j^m = h^{-2} \underline{\triangle}_{-x} \left[\underline{a}^2 \underline{\triangle}_{+x} \right] \left(\underline{\theta} U_j^{m+1} + \underline{(1-2\theta)} U_j^m + \underline{\theta} U_j^{m-1} \right), \tag{3.5.3}$$

where

$$\triangle_{-x} \left[a^2 \triangle_{+x} \right] U_j^m = (a_j^m)^2 \left(U_{j+1}^m - U_j^m \right) - (a_{j-1}^m)^2 \left(U_j^m - U_{j-1}^m \right). \tag{3.5.33}$$

Energy Method and Stability of Implicit Schemes

Variable-coefficient θ -Scheme and the Idea of the Energy Method

The idea of the energy method is to find a discrete energy norm $\|U^{m}\|_{E} \equiv En(U^{m}, U^{m-1})$, and a function $S(U^{m}, U^{m-1})$, so that

- 2 There exist constants $0 < C_0 \le C_1$, such that

$$\underline{C_0En(U^m, U^{m-1})} \le S(U^m, U^{m-1}) = S(U^1, U^0) \le \underline{C_1En(U^1, U^0)};$$

3 Thus, the solution U^m of the θ -scheme is proved to satisfy the energy inequality: $C_0 \|U^m\|_E \leq C_1 \|U^1\|_E$, for all m>0.

Energy Method and Stability of Implicit Schemes

Establish $\|\triangle_{-t}U^{m+1}\|_2^2 - \|\triangle_{-t}U^m\|_2^2$ by Manipulating the θ -Scheme

Remember in the continuous problem, the mechanical energy has a $\frac{\text{term } \int_0^1 u_t^2 dx}{\sqrt{u_t^m}}$, and notice that in the θ -scheme the term

$$\delta_t^2 U_j^m = (U_j^{m+1} - U_j^m) - (U_j^m - U_j^{m-1}) = \triangle_{-t} U_j^{m+1} - \triangle_{-t} U_j^m.$$

Multiplying

$$h\left(U_{j}^{m+1}-U_{j}^{m-1}\right)=h\triangle_{-t}U_{j}^{m+1}+h\triangle_{-t}U_{j}^{m},$$

on the both sides of the θ -scheme

$$\tau^{-2}\delta_t^2 \mathit{U}_j^m = h^{-2}\triangle_{-x} \left[a^2\triangle_{+x} \right] \left(\theta \; \mathit{U}_j^{m+1} + \left(1 - 2\theta \right) \mathit{U}_j^m + \theta \; \mathit{U}_j^{m-1} \right),$$

and summing up with respect to $j = 1, 2, \dots, N-1$,

Energy Method and Stability of Implicit Schemes

Establish $\|\triangle_{-t}U^{m+1}\|_2^2 - \|\triangle_{-t}U^m\|_2^2$ by Manipulating the θ -Scheme

we are lead to

$$\frac{\tau^{-2} \|\triangle_{-t} U^{m+1}\|_{2}^{2} - \tau^{-2} \|\triangle_{-t} U^{m}\|_{2}^{2}}{= \theta h^{-2} \left\langle \triangle_{-x} \left[a^{2} \triangle_{+x} \right] \left(U^{m+1} + U^{m-1} \right), U^{m+1} - U^{m-1} \right\rangle_{2}} + (1 - 2\theta) h^{-2} \left\langle \triangle_{-x} \left[a^{2} \triangle_{+x} \right] U^{m}, U^{m+1} - U^{m-1} \right\rangle_{2},$$
(3.5.34)

where $\|U\|_2^2 = \langle U, U \rangle_2$ is the \mathbb{L}^2 norm of the grid function U and

$$(U, V)_2 = \sum_{j=1}^{N-1} U_j V_j h = \int_0^1 UV \, dx.$$
 (3.5.35)

Energy Method and Stability of Implicit Schemes

Summation by Parts and a Discrete Version of $(\|u_t\|_2^2)_t = -(\|u_x\|_2^2)_t$

Corresponding to the integral by parts, we have the formula of summation by parts

$$\langle \triangle_{-x} U, V \rangle_{2} = h \sum_{j=1}^{N-1} U_{j} V_{j} - h \sum_{j=1}^{N-1} U_{j-1} V_{j}$$

$$= h \sum_{j=1}^{N-1} U_{j} V_{j} - h \sum_{j=1}^{N-1} U_{j} V_{j+1} = -\langle U, \triangle_{+x} V \rangle_{2}.$$
(3.5.36)

Energy Method and Stability of Implicit Schemes

Summation by Parts and a Discrete Version of $(\|u_t\|_2^2)_t = -(\|u_x\|_2^2)_t$

Thus, the two terms on the right can be rewritten respectively as

$$-\theta h^{-2} \left\langle a \triangle_{+x} U^{m+1}, a \triangle_{+x} U^{m+1} \right\rangle_{2} + \theta h^{-2} \left\langle a \triangle_{+x} U^{m-1}, a \triangle_{+x} U^{m-1} \right\rangle_{2}$$

$$= -\theta h^{-2} \left(\left\| \underbrace{a \triangle_{+x} U^{m+1}} \right\|_{2}^{2} - \left\| a \triangle_{+x} U^{m-1} \right\|_{2}^{2} \right),$$

$$(3.5.37)$$

$$-(1 - 2\theta) h^{-2} \left[\left\langle a \triangle_{+x} U^{m}, a \triangle_{+x} U^{m+1} \right\rangle_{2} - \left\langle a \triangle_{+x} U^{m}, a \triangle_{+x} U^{m-1} \right\rangle_{2} \right]$$

$$= \frac{1 - 2\theta}{4} h^{-2} \left[-\left\| a \triangle_{+x} (U^{m} - U^{m-1}) \right\|_{2}^{2} + \left\| a \triangle_{+x} (U^{m+1} - U^{m}) \right\|_{2}^{2} + \left\| a \triangle_{+x} (U^{m+1} + U^{m}) \right\|_{2}^{2} \right]$$

$$+ \left\| a \triangle_{+x} (U^{m} + U^{m-1}) \right\|_{2}^{2} - \left\| a \triangle_{+x} (U^{m+1} + U^{m}) \right\|_{2}^{2} \right].$$

$$(3.5.38)$$

P142

The above analysis show that $S_{m+1} = S_m$, if we define

$$\begin{split} & \underbrace{S_{m}} = \tau^{-2} \| \triangle_{-t} U^{m} \|_{2}^{2} + \theta h^{-2} \left[\| a \triangle_{+x} U^{m} \|_{2}^{2} + \| a \triangle_{+x} U^{m-1} \|_{2}^{2} \right] \\ & + \frac{1 - 2\theta}{4} h^{-2} \left[\| a \triangle_{+x} (U^{m} + U^{m-1}) \|_{2}^{2} - \| a \triangle_{+x} (U^{m} - U^{m-1}) \|_{2}^{2} \right]. \end{aligned} \tag{3.5.39}$$

Notice that

$$||a\triangle_{+x}U^{m}||_{2}^{2} + ||a\triangle_{+x}U^{m-1}||_{2}^{2} = \frac{1}{2} \left[||a\triangle_{+x}(U^{m} + U^{m-1})||_{2}^{2} + ||a\triangle_{+x}(U^{m} - U^{m-1})||_{2}^{2} \right],$$

we can equivalently rewrite S_m as

$$S_{m} = \left\| \frac{\triangle_{-t}}{\tau} U^{m} \right\|_{2}^{2} + \frac{1}{4} \left\| a \frac{\triangle_{+x}}{h} (U^{m} + U^{m-1}) \right\|_{2}^{2} + \frac{4\theta - 1}{4} \left\| a \frac{\triangle_{+x}}{h} (U^{m} - U^{m-1}) \right\|_{2}^{2}.$$
(3.5.41)

(3.5.40)

Energy Method and Stability of Implicit Schemes

Establishment of the Energy Inequality for $0 \le \theta < 1/4$

If
$$0 \le \theta < 1/4$$
, denote $\bar{\nu} = \tau h^{-1}$, by $0 < A_0 \le a(x, t) \le A_1$ and
$$\|a\triangle_{+x}(U^m - U^{m-1})\|_2^2 \le 4A_1^2\|U^m - U^{m-1}\|^2 = 4A_1^2\|\triangle_{-t}U^m\|^2,$$

we have

$$S_{m} \geq \left(1 - A_{1}^{2}(1 - 4\theta)\bar{\nu}^{2}\right) \left\|\frac{\triangle_{-t}}{\tau} U^{m}\right\|_{2}^{2} + \frac{A_{0}^{2}}{4} \left\|\frac{\triangle_{+x}}{h} (U^{m} + U^{m-1})\right\|_{2}^{2}.$$

$$(3.5.42)$$

Furthermore, if $0 \le \theta < 1/4$, we have

$$|S_1| \leq \left\| \frac{\triangle_{-t}}{\tau} U^1 \right\|_2^2 + \frac{A_1^2}{4} \left\| \frac{\triangle_{+x}}{h} (U^1 + U^0) \right\|_2^2. \tag{3.5.43}$$

Lenergy Method and Stability of Implicit Schemes

Establishment of the Energy Inequality for $0 \le \theta < 1/4$

Define

$$\|U^{m}\|_{E}^{2} = \left\|\frac{\triangle_{-t}}{\tau}U^{m}\right\|_{2}^{2} + \left\|\frac{\triangle_{+x}}{h}(U^{m} + U^{m-1})\right\|_{2}^{2}, \tag{3.5.44}$$

then, we have

27 / 42

Energy Method and Stability of Implicit Schemes

Establishment of the Energy Inequality for $1/4 \le \theta \le 1$

If
$$1/4 \le \theta \le 1$$
, by $0 < A_0 \le a(x, t) \le A_1$, we have

$$S_{m} \geq \left\| \frac{\triangle_{-t}}{\tau} U^{m} \right\|_{2}^{2} + \frac{A_{0}^{2}}{4} \left[\left\| \frac{\triangle_{+x}}{h} (U^{m} + U^{m-1}) \right\|_{2}^{2} + (4\theta - 1) \left\| \frac{\triangle_{+x}}{h} (U^{m} - U^{m-1}) \right\|_{2}^{2} \right],$$

$$(3.5.47)$$

$$S_{1} \leq \left\| \frac{\triangle_{-t}}{\tau} U^{1} \right\|_{2}^{2} + \frac{A_{1}^{2}}{4} \left[\left\| \frac{\triangle_{+x}}{h} (U^{1} + U^{0}) \right\|_{2}^{2} + (4\theta - 1) \left\| \frac{\triangle_{+x}}{h} (U^{1} - U^{0}) \right\|_{2}^{2} \right]. \tag{3.5.48}$$

Energy Method and Stability of Implicit Schemes

Establishment of the Energy Inequality for $1/4 \le \theta \le 1$

Thus, if we define the energy norm $\|\cdot\|_{E(\theta)}$ as

$$\|U^{m}\|_{E(\theta)} = \left\|\frac{\triangle_{-t}}{\tau}U^{m}\right\|_{2}^{2} + \left\|\frac{\triangle_{+x}}{h}(U^{m} + U^{m-1})\right\|_{2}^{2} + [4\theta - 1]^{+} \left\|\frac{\triangle_{+x}}{h}(U^{m} - U^{m-1})\right\|_{2}^{2},$$

where $[\alpha]^+ = \max\{0, \alpha\}$, then the following energy inequality holds:

$$||U^m||_{E(\theta)}^2 \le K_2 ||U^1||_{E(\theta)}^2, \quad \forall m > 1.$$
 (3.5.50)

where $K_2 = \max\{1, A_1^2/4\}/\min\{1, A_0^2/4\}$.

Summary of the Stability of the θ -Scheme for the Wave Equation

The θ -scheme for the wave equation (0 $\leq \theta \leq$ 1):

$$\tau^{-2}\delta_t^2 U_j^m = h^{-2} \triangle_{-x} \left[a^2 \triangle_{+x} \right] \left(\theta \ U_j^{m+1} + \left(1 - 2\theta \right) U_j^m + \theta \ U_j^{m-1} \right),$$

The energy norm $\|\cdot\|_{E(\theta)}$:

$$\|U^{m}\|_{E(\theta)} = \left\|\frac{\triangle_{-t}}{\tau}U^{m}\right\|_{2}^{2} + \left\|\frac{\triangle_{+x}}{h}(U^{m} + U^{m-1})\right\|_{2}^{2} + \left[4\theta - 1\right]^{+} \left\|\frac{\triangle_{+x}}{h}(U^{m} - U^{m-1})\right\|_{2}^{2}.$$

The energy norm stability: $\|U^m\|_{E(\theta)}^2 \le K(\theta) \|U^1\|_{E(\theta)}^2, \ \forall \ m>1$,

$$\begin{cases} (1-4\theta)A_1^2\bar{\nu}^2 \leq 1, & \text{if } \theta < \frac{1}{4}; \\ \text{unconditionally stable}, & \text{if } \theta \geq \frac{1}{4}, \end{cases}$$
 (3.5.51)

where $K(\theta) = \max\{1, A_1^2/4\} / \min\{1 - A_1^2[1 - 4\theta]^{+} \bar{\nu}^2, A_0^2/4\}$.

The First Order Hyperbolic System and Its Difference Approximation

3.5.4节 (P144)

1 Let $\mathbf{u} = (v, w)^T$ with $v = u_t$ and $w = -au_x$ (a > 0 constant).

The wave equation is transformed to $\mathbf{u}_t + A \mathbf{u}_x = \mathbf{0}$, or (3.5.53)

$$\begin{bmatrix} v \\ w \end{bmatrix}_t + \begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix}_x = 0.$$
 (3.5.52)

2 Expanding \mathbf{u}_{j}^{m+1} at (x_{j}, t_{m}) in Taylor series

$$\mathbf{u}_{j}^{m+1} = \left[\mathbf{u} + \tau \,\mathbf{u}_{t} + \frac{1}{2}\tau^{2}\mathbf{u}_{tt}\right]_{j}^{m} + O(\tau^{3}), \tag{3.5.54}$$

Since $\mathbf{u}_t = -A \mathbf{u}_x$, $\mathbf{u}_{tt} = A^2 \mathbf{u}_{xx}$,

$$\mathbf{u}_{j}^{m+1} = \left[\mathbf{u} - \tau A \mathbf{u}_{x} + \frac{1}{2} \tau^{2} A^{2} \mathbf{u}_{xx}\right]_{j}^{m} + O(\tau^{3}).$$
 (3.5.55)

Various difference schemes can be obtained by replacing the differential operators by appropriate difference operators. The Lax-Wendroff Scheme Based on the 1st Order System

The Lax-Wendroff Scheme and Its Stability Analysis

The Lax-Wendroff scheme (denote $\bar{\nu} = \tau/h$)

$$\mathbf{U}_{j}^{m+1} = \mathbf{U}_{j}^{m} - \frac{1}{2}\bar{\nu}A\left[\mathbf{U}_{j+1}^{m} - \mathbf{U}_{j-1}^{m}\right] + \frac{1}{2}\bar{\nu}^{2}A^{2}\left[\mathbf{U}_{j+1}^{m} - 2\mathbf{U}_{j}^{m} + \mathbf{U}_{j-1}^{m}\right]. \quad (3.5.57)$$

- **1** Local truncation error $O(\tau^2 + h^2)$.
- ② The Fourier mode: $\mathbf{U}_{j}^{m} = \lambda_{k}^{m} \begin{bmatrix} V \\ W \end{bmatrix} e^{\mathrm{i}kjh}$.
- The characteristic equation:

$$\lambda_k \begin{bmatrix} V \\ W \end{bmatrix} = \left(I - 2\bar{\nu}^2 \sin^2 \frac{1}{2} kh A^2 - i\bar{\nu} \sin kh A \right) \begin{bmatrix} V \\ W \end{bmatrix}, \quad (3.5.59)$$

- $|\lambda_k|^2 = 1 4\nu^2(1 \nu^2)\sin^4\frac{1}{2}kh \le 1 \Leftrightarrow |\nu| \le 1 \Leftrightarrow \mathbb{L}^2 \text{ stable.}$
- **6** Dissipation, dispersion and group speed are the same as the Lax-Wendroff scheme for the scalar advection equation.

(3.5.58)

(3.5.61)

The Staggered Leap-frog Scheme

• The staggered leap-frog scheme:

$$\frac{V_{j}^{m+\frac{1}{2}} - V_{j}^{m-\frac{1}{2}}}{\tau} + a \frac{W_{j+\frac{1}{2}}^{m} - W_{j-\frac{1}{2}}^{m}}{h} = 0, (\Leftrightarrow \delta_{t} V_{j}^{m} + \nu \delta_{x} W_{j}^{m} = 0)$$
 (3.5.64)
$$\frac{W_{j+\frac{1}{2}}^{m+1} - W_{j+\frac{1}{2}}^{m}}{\tau} + a \frac{V_{j+1}^{m+\frac{1}{2}} - V_{j}^{m+\frac{1}{2}}}{h} = 0, (\Leftrightarrow \delta_{t} W_{j+\frac{1}{2}}^{m+\frac{1}{2}} + \nu \delta_{x} V_{j+\frac{1}{2}}^{m+\frac{1}{2}} = 0).$$
 (3.5.65)
$$V_{j}^{m+\frac{1}{2}} = \tau^{-1} \delta_{t} U_{j}^{m+\frac{1}{2}}, W_{j+\frac{1}{2}}^{m} = -a h^{-1} \delta_{x} U_{j+\frac{1}{2}}^{m}, \Rightarrow \begin{bmatrix} \delta_{t}^{2} - \nu^{2} \delta_{x}^{2} \end{bmatrix} U_{j}^{m} = 0.$$
 (3.5.66)
$$\circ \text{ for } W$$

$$\times \text{ for } V$$

The Fourier Analysis of the Staggered Leap-frog Scheme

1 The Fourier mode for the staggered leap-frog scheme:

$$\begin{bmatrix} V_j^{m-\frac{1}{2}} \\ W_{j-\frac{1}{2}}^m \end{bmatrix} = \lambda_k^m \begin{bmatrix} \widehat{V}_k \\ \widehat{W}_k e^{-\mathrm{i}\frac{1}{2}kh} \end{bmatrix} e^{\mathrm{i}kjh}, \quad \text{(where } \widehat{V}_k \text{ and } \widehat{W}_k \text{ are real numbers.)}$$
(3.5.

2 The characteristic equation:

$$\begin{bmatrix} \lambda_k - 1 & i2\nu \sin\frac{1}{2}kh \\ i2\lambda_k\nu \sin\frac{1}{2}kh & \lambda_k - 1 \end{bmatrix} \begin{bmatrix} \widehat{V}_k \\ \widehat{W}_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
 (3.5.68)

- **3** $\lambda_k^2 2\left(1 2\nu^2\sin^2\frac{1}{2}kh\right)\lambda_k + 1 = 0$. (Exactly as (3.5.18))
- **4** L² stable $\Leftrightarrow |\nu| \leq 1$. There is no dissipation. If $|\nu| < 1$, there is a phase lag, and phase error is $O(k^2h^2)$.
- Nothing special so far.

Local Energy Conservation of the Staggered Leap-frog Scheme

Local Energy Conservation of the Wave Equation

1 The mechanical energy of the system on (x_l, x_r) :

$$\underline{E(x_l, x_r; t)} = \int_{x_l}^{x_r} E(x, t) dx \triangleq \int_{x_l}^{x_r} \left[\frac{1}{2} v^2(x, t) + \frac{1}{2} w^2(x, t) \right] dx,$$
(3.5.6)

- ② The only external forces exerted on (x_l, x_r) are $-a^2u_x(x_l, t) = aw(x_l, t)$ and $a^2u_x(x_r, t) = -aw(x_r, t)$.
- **3** The local energy conservation law (recall $v = u_t$):

$$\frac{dE(x_{I}, x_{r}; t)}{dt} = -av(x_{r}, t)w(x_{r}, t) + av(x_{I}, t)w(x_{I}, t).$$
(3.5.70)

Local Energy Conservation of the Staggered Leap-frog Scheme

Local Energy Conservation of the Wave Equation

Equivalently,

$$\frac{\left[\frac{1}{2}v^2(x,t) + \frac{1}{2}w^2(x,t)\right]_t + \left[av(x,t)w(x,t)\right]_x = 0;$$
(3.5.71)

or $\int_{\partial \omega} \left[f(v, w) \, dt - E(x, t) \, dx \right] = \int_{\omega} \left[E_{\underline{t}} + f(v, w)_{\underline{x}} \right] (x, t) \, dx \, dt = 0,$ (3.5.72)
where $E(x, t) = \frac{1}{2} (v^2(x, t) + w^2(x, t))$ is the mechanical energy of

where $E(x,t) = \frac{1}{2}(v^2(x,t) + w^2(x,t))$ is the mechanical energy of the system, and f(v,w) = avw is the energy flux.

We will see that the staggered leap-frog scheme somehow inherits this property.

How Does the Discrete Mechanical Energy Change?

• The average operators σ_t and σ_x :

P149

$$\sigma_t V_j^m = \frac{1}{2} \left(V_j^{m + \frac{1}{2}} + V_j^{m - \frac{1}{2}} \right), \ \sigma_x V_{j + \frac{1}{2}}^{m + \frac{1}{2}} = \frac{1}{2} \left(V_{j + 1}^{m + \frac{1}{2}} + V_j^{m + \frac{1}{2}} \right).$$
(3.5.73)

• Then, the solution of the staggered leap-frog scheme satisfies:

$$(3.5.65a) \longrightarrow \delta_t \left[\frac{1}{2} \left(V_j^m \right)^2 \right] + \nu \left[\left(\underline{\sigma_t V_j^m} \right) \left(\delta_x W_j^m \right) \right] = 0, \tag{3.5.74}$$

(3.5.65b)
$$\longrightarrow \delta_t \left[\frac{1}{2} \left(W_{j+\frac{1}{2}}^{m+\frac{1}{2}} \right)^2 \right] + \nu \left[\left(\underline{\sigma_t W_{j+\frac{1}{2}}^{m+\frac{1}{2}}} \right) \left(\delta_x V_{j+\frac{1}{2}}^{m+\frac{1}{2}} \right) \right] = 0.$$
 (3.5.75)

The Enclosed Path Integral of the Discrete Kinetic Energy $\int_{\partial \omega_i^m} \frac{1}{2} V^2 dx$

- The control volume ω_j^m is enclosed by the line segments connecting the nodes [1, 12, 13, 14, 15, 16] = [0] (as shownin figure
 - connecting the nodes $\mathbf{j_1}$, $\mathbf{j_2}$, $\mathbf{j_3}$, $\mathbf{j_4}$, $\mathbf{j_5}$, $\mathbf{j_6} = \mathbf{j_0}$ (as shownin figure). Calculate $-\int_{\partial \omega_i^m} \frac{1}{2} V^2 dx$ by applying the middle point

第1个积分项 quadrature rule on three broken line segments $\widehat{j_0j_1j_2}$, $\widehat{j_2j_3j_4}$ and $\overline{j_4j_5j_6}$, yields

$$-\int_{\partial \omega_{j}^{m}} \frac{1}{2} V^{2} dx = \frac{1}{2} h \left(V_{j}^{m+\frac{1}{2}} \right)^{2} - \frac{1}{2} h \left(V_{j}^{m-\frac{1}{2}} \right)^{2} = h \delta_{t} \left[\frac{1}{2} \left(V_{j}^{m} \right)^{2} \right]. \tag{3.5.76}$$

- Equivalent 1st Order System of the Wave Equation
 - Local Energy Conservation of the Staggered Leap-frog Scheme

The Enclosed Path Integral of the Discrete Elastic Energy $\int_{\partial \omega_i^m} \frac{1}{2} W^2 dx$

• Calculate $-\int_{\partial \omega^m} \frac{1}{2} W^2 dx$ by applying the middle point

第2个积分项

quadrature rule on three broken line segments $\vec{j_1} \vec{j_2} \vec{j_3}$, $\vec{j_3} \vec{j_4} \vec{j_5}$ and $\vec{j_5} \vec{j_6} \vec{j_1}$, yields

$$-\int_{\partial \omega_{j}^{m}} \frac{1}{2} W^{2} dx = \frac{1}{2} h \left(W_{j+\frac{1}{2}}^{m+1} \right)^{2} - \frac{1}{2} h \left(W_{j+\frac{1}{2}}^{m} \right)^{2} = h \delta_{t} \left[\frac{1}{2} \left(W_{j+\frac{1}{2}}^{m+\frac{1}{2}} \right)^{2} \right].$$
(3.5.77)

The Enclosed Path Integral of the Discrete Energy Flux $\int_{\partial \omega_i^m} aVW \ dx$

 $_{\hat{\mathfrak{A}}^3 ext{PR}}$ Calculate $\int_{\partial \omega_i^m} aVW \ dx$ by applying the numerical quadrature rule

on six broken line segments $\overline{\mathbf{j}_i \mathbf{j}_{i+1}}$, i = 0, 1, 2, 3, 4, 5, using node values of V and W on the broken line segments, yields

$$\int_{\partial \omega_{j}^{m}} aVW \, dt = \frac{1}{2} a\tau \left[V_{j}^{m-\frac{1}{2}} W_{j+\frac{1}{2}}^{m} + V_{j+1}^{m+\frac{1}{2}} W_{j+\frac{1}{2}}^{m} + V_{j+1}^{m+\frac{1}{2}} W_{j+\frac{1}{2}}^{m+1} \right]$$

$$- \frac{1}{2} a\tau \left[V_{j}^{m+\frac{1}{2}} W_{j+\frac{1}{2}}^{m+1} + V_{j}^{m+\frac{1}{2}} W_{j-\frac{1}{2}}^{m} + V_{j}^{m-\frac{1}{2}} W_{j-\frac{1}{2}}^{m} \right]$$

$$= a\tau \left[\left(\sigma_{t} V_{j}^{m} \right) \left(\delta_{x} W_{j}^{m} \right) + \left(\sigma_{t} W_{j+\frac{1}{2}}^{m+\frac{1}{2}} \right) \left(\delta_{x} V_{j+\frac{1}{2}}^{m+\frac{1}{2}} \right) \right] .$$
o for W

$$\times \text{ for } V$$

$$\text{Mathematical mathematical mathem$$

(3.5.78)

Local Energy Conservation of the Staggered Leap-frog Scheme

The Discrete Local Energy Conservation

Combining (3.5.76-78) with (3.5.74-75) gives

(3.5.72)的左端=
$$\int_{\partial \omega_j^{m}} \left[\underline{aVW} \, dt - \underbrace{\left(\frac{1}{2}V^2 + \frac{1}{2}W^2\right)}_{J} \, dx \right] = 0.$$
 (3.5.79)

This is the discrete version of the local energy conservation law

$$\int_{\partial \omega} \left[\underline{f(v,w)} \, dt - \underline{E(x,t)} \, dx \right] = \int_{\omega} \left[E_t + f(v,w)_x \right] (x,t) \, dx \, dt = 0.$$
ofor W

$$\times \text{ for } V$$

j+1

j-1

习题 3: 12, 13; 上机作业 2 Page 151

Thank You!