National University of Computer and Emerging Sciences, Lahore Campus

No.	AL UNIVA	
SAULID	AL UNIVE	SIII
CIENC	Q	9
CINE	S EWER	Har
CHIES COLENGES	N3W3'8WE	COMP

Course: Program: **Duration:**

Data Mining BS(Data Science)

Course Code: Semester: **Total Marks:**

CS4059 Spring 2024

Weight

80

4

Due Date: 11Jun24 Section: A, B & C Exam:

Final Exam

Page(s): Roll No.

Instruction/Notes:

- Read the Questions carefully. Make sure you have understood the requirements/expectations of the Questions and answer accordingly.
- Any form of cheating or plagiarism will result in an award of ZERO marks.
- For MCQs, you must attempt them on the sheet provided and fill the MCQs on Google Classroom.
- For Coding Question, you must submit them on Google Classroom renamed as "L21XXXX.ipynb"
- Don't submit the databases or any other file on Google Classroom.

Question #1 N	ICQs [40 marks]		
1. What is the prim	nary algorithm behind the J48	classifier in WEKA?	
A) Naive Bayes	B) Decision Tree	C) Neural Network	D) kNearest Neighbors
2. Which of the fol	lowing is not a type of attribu	ite in WEKA?	
A) Nominal	B) Ordinal	C) Numeric	D) Binary
3. Which metric is	not typically used to evaluate	e a classification model in	n WEKA?
A) Accuracy	B) Precision	C) Recall	D) Lift
4. In WEKA, which	h tool allows you to compare	multiple models on the s	ame dataset?
A) Explorer	B) Experimenter	C) Knowledge Flow	D) Simple CLI
5. What does the "l	Filter" option in WEKA allov	v you to do?	
A) Visualize dat	a		
B) Remove miss	ing values		
C) Classify data			
D) Generate asso	ociation rules		

6. Which clustering al	gorithm is commonly used in	n WEKA?		
A) kMediod	B) Hierarchical Cluster	B) Hierarchical Clustering		
C) KMeans	D) Centroidbased Clust	D) Centroidbased Clustering		
7 What is the main m	of almotoning in data	-::		
•	rpose of clustering in data n			
A) Predicting future		B) Classifying new instances		
C) Finding natural §	groupings in data	D) Visualizing data		
8. Which parameter rules?	in the Apriori algorithm	specifies the minimum acceptable level of confidence for		
A) MinSupport	B) MinConfidence	C) MaxSupport D) MaxConfidence		
kappa statistic value?		Breast Cancer dataset with default settings, what is the		
A) 0.60 B)	0.70 C) 0.80	D) 0.90		
	_	in the bottomright cell indicate?		
A) High false nega	tives B) High true p	ositives		
C) High true negati	ves D) High false j	positives		
11. Identify the attribu	ite with the highest number of	of missing values in the Breast Cancer dataset.		
A) Age B)	Menopause C) Tur	morsize D) Nodecaps		
12. Using the Filter What is the accuracy of		betes dataset, first apply the Normalize filter, then use J48.		
A) 70% B)	75% C) 80%	D) 85%		
13. Load the Weath missing values?	er dataset in WEKA. Wh	nat type of data preprocessing is required if there are any		
A) Normalization	B) Discretizati	on		
C) Imputation	D) Attribute se	election		

14. Using the J48	8 classifier on	the Titanic dataset	, which attribute is at the root of the decision tree?
A) Class	B) Sex	C) Age	D) Fare
15. Using the IB	k (knearest nei	ghbors) classifier	on the Wine dataset, what is the accuracy when k=3?
A) 85%	B) 90%	C) 95%	D) 100%
16. What is the the Wine dataset		e mean absolute	error for the IBk (knearest neighbors) classifier with k=3 on
A) 0.02	B) 0.04	C) 0.06	D) 0.08
17. Apply the Curve) for the m		ifier on the Hear	rt Disease dataset. What is the AUC (Area Under the ROC
A) 0.70	B) 0.80	C) 0.94	D) 1.00
18. Load the I sum of squared e			ply the kmeans clustering algorithm with k=3. What is the
A) 56.67	B) 78.85	C) 102.34	D) 133.17
		et in WEKA. Us reated by default?	se the "Discretize" filter on the 'temperature' attribute. What
A) 5	B) 10	C) 15	D) 20
		mperature' attribu	nte in the Weather dataset, apply the NaiveBayes classifier. nal dataset?
A) Yes, by mo	ore than 5%		
B) Yes, by les	ss than 5%		
C) No change	;		
D) Accuracy	decreases		

Question #2 [40 marks]

You are provided with the "Diabetes dataset". Your task is to build a machine learning model to predict its target variable using various Data Mining techniques.

- Data Exploration and Visualization:
 - Load the dataset and explore its structure using Pandas.
 - Visualize key features to gain insights into the data.
- Data Preprocessing:
 - Handle any missing values and outliers in the dataset.
 - Perform feature scaling and transformation if necessary.
- Model Building and Evaluation:
 - Split the dataset into training and testing sets (e.g., 70% training, 30% testing).
 - Build and train a classification model using the following algorithms:

Naïve Bayes || SVM

- Evaluate the model's performance using metrics like accuracy, precision, recall, and F1score on the test set.
- Visualize the confusion matrix and ROC curve for model evaluation.
- Determine which model classification accuracy is better.