Improving Mobile Security

Braden Luthi

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

29 April 2014

Outline

- Background
- GSM Weakness in UMTS
- Application Security Threat
- EM Leaking Key Information
- conclusion

Outline

- Background
 - Cryptography
 - GSM and UMTS
 - GSM
 - UMTS
- GSM Weakness in UMTS
- Application Security Threat
- 4 EM Leaking Key Information
- conclusion

Cryptography

Cryptography or 'secret writing' is the study and practice of techniques for securing communications between two parties.

- plain-text Readable message to be sent during communications.
- cipher method for transforming plain-text
- key parameter for cryptographic algorithm
- cipher-text Unreadable form of the message

Cryptography

- Symmetric cryptography Both parties share a secret key for encryption and decryption
- Asymmetric cryptography Each individual has a public and a private key. Parties use the public keys for encryption and the private keys for decryption

GSM

Global System for Mobile Communications (GSM) is a 2G telecommunication standard developed in the early 90's by the European Telecommunications Institute. Has become one of the most widely used standards, reaching an 80% market share at its height.

UMTS

Universal Telecommunications Standard (UMTS) is 3G telecommunication standard based on GSM by the Third Generation Partnership Project.

Outline

- Background
- GSM Weakness in UMTS
 - Authentication
 - GSM and UMTS Inter-working Networks
 - Man-in-the-middle Attack
 - Solution
- Application Security Threat
- 4 EM Leaking Key Information
- 5 conclusion

Encryption in GSM and UTMS

- GSM and UMTS both have secret keys that are shared between the mobile and the mobile's home network authentication center.
- GSM and UMTS both utilize the A5 family of encryption algorithms.
 - A5/0
 - A5/1
 - A5/2
 - A5/3

Luthi (U of Minn, Morris)

Luthi (U of Minn, Morris)

Inter-working Networks

Man-in-the-middle Attack

Man-in-the-middle weakness in GSM

Luthi (U of Minn, Morris)

Protecting UMTS from GSM Man-in-the-middle attack

Outline

- Background
- GSM Weakness in UMTS
- Application Security Threat
 - Applications
 - Solution
- EM Leaking Key Information
- 6 conclusion

Applications (Apps)

Application Permissions in Android

Luthi (U of Minn, Morris)

Application Threat keyboard Key-logger

KBS Checker

Outline

- Background
- GSM Weakness in UMTS
- Application Security Threat
- EM Leaking Key Information
 - Side channel attack
 - Side channel through EM
- 5 conclusion

What is a Side channel attack?

RSA Example

Ranged Side channel

Luthi (U of Minn, Morris)

Findings

Solution

Outline

- Background
- GSM Weakness in UMTS
- Application Security Threat
- 4 EM Leaking Key Information
- conclusion

Conclusion

Questions

Questions?

