Predictive Modelling - VI

Support Vector Machines

Rita P. Ribeiro

Data Mining I - 2023/2024

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

.

Summary

- Support Vector Machines
 - Linear SVMs
 - Non-Linear SVMs
 - SVMs for Multi-class Classification
 - SVMs for Regression

Predictive Modelling: Where we at?

- Distance-based Approaches
 - e.g. kNN
- Probabilistic Approaches
 - · e.g. Naive Bayes, Bayesian Networks
- Mathematical Formulae
 - e.g. multiple linear regression
- Logical Approaches
 - e.g. CART
- Optimization Approaches
 - e.g. SVM, ANN
- Ensemble Approaches
- DATA MINING I 23/24 PREDICTIVE MODELLING VI

3

Support Vector Machines

Support Vector Machines (SVM)

- Introduced in 1992
- Based on statistical learning theory
- Have a strong mathematical foundation
- Originally designed to binary classification and regression tasks
- Gave origin to a new class of algorithms named kernel machines
- A good reference on SVMs:
 - N. Cristianini and J. Shawe-Taylor: An introduction to Support Vector Machines. Cambridge University Press, 2000.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

,

Support Vector Machines (SVM)

Why?

A linear classifier cannot classify these examples

And now?

- Nonlinear decision boundary (in the original feature space X)
- Linear decision boundary (in the extended feature space of $X: X^2$)

Setting

- Given a data set $D = \{\langle x_i, y_i \rangle\}_{i=1}^N$, where x_i is a feature vector and $y_i \in Y$ is the value of the nominal variable in $\{-1, +1\}$
- Every feature vector x_i is a point in a high-dimensional space.
- *D* is linearly separable if there is an hyperplane: $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$ that divides the input space, such that,

$$g(\mathbf{x}) = sgn(h(\mathbf{x})) = \begin{cases} +1 & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \\ -1 & \text{if } \mathbf{w} \cdot \mathbf{x} + b < 0 \end{cases}$$

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

6

Support Vector Machines: Linear SVMs

The intuition

- Find a decision boundary to separate data.
- Many solutions exist.
- Which solution is better?
- Find a decision boundary that maximizes the margin.

- There is an inifinite number of hyperplanes h(x)
- · Which one is better?
- Maximize generalization ability
- Ensure a better accuracy on unseen data
- SVMs approach this problem: search for the maximum margin hyperplane

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

8

Support Vector Machines: Linear SVMs

Maximum Margin Hyperplane

- The hyperplane that separates the examples from the two classes with the maximum margin.
- Largest margin \rightarrow better generalization
- The goal is to find **w** and *b* given that

$$\begin{cases} \mathbf{w} \cdot \mathbf{x}_i + b \ge +1 & \text{if } y_i = +1 \\ \mathbf{w} \cdot \mathbf{x}_i + b \le -1 & \text{if } y_i = -1 \end{cases}$$

• Equivalent to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \ge 0, \forall (\mathbf{x}_i, y_i) \in D$

The Support Vectors

 $H_1: g(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = 1$

 $H_2: g(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = -1$

- All cases that fall on the hyperplanes H₁ and H₂ are called the support vectors.
- · Removing all other cases would not change the solution!

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

10

Support Vector Machines: Linear SVMs

The Optimal Hyperplane

- The distance between the two hyperplanes H_1 and H_2 is $\frac{2}{||\mathbf{w}||}$
- Goal: Maximize this margin, i.e.

$$\min_{\mathbf{w},b} \quad \frac{||\mathbf{w}||^2}{2} = \frac{1}{2} \sum_{i=1}^{n} w_i^2$$

s.t.
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \ge 0, \forall i = 1, \dots, N$$

 A constrained optimization problem that can be solved using Lagrange multiplier method

These are Hard Margin SVMs

- · Works well when data is linearly separable
- · On real-world data this is hardly the case
- · Does not take into account presence of noise

Solution

- Tolerate some misclassification errors to increase the size of the separation margin, so that other points can still be classified correctly.
- These points allowed inside the margin are referred to as "slack variables".

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

12

Support Vector Machines: Linear SVMs

Soft Margin SVMs

- Regularization term *C*: trade-off between maximizing the margin and minimizing the misclassification errors
- When *C* is small, misclassification errors are given less importance, the focus is on maximizing the margin
- When *C* is large, misclassification more costly, the focus is on avoiding them at the expense of keeping the margin small

$$\min_{\mathbf{w},b,\xi} \quad \frac{||\mathbf{w}||^2}{2} + C\left(\sum_{i=1}^N \xi_i\right)$$
s.t.
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i, \xi_i \ge 0, \forall i = 1, \dots, N$$

• ξ_i are the slack variables

Non-Linear SVMs

- Most real world problems have inherent nonlinearity
- SVMs solve this by "moving" into a extended input space where classes are linearly separable
- This means the maximum margin hyperplane needs to be found on this new very high dimensional space

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

14

Support Vector Machines: Non-Linear SVMs

Example

• Input space \mathbf{x} mapped to high-dimensional feature space $\phi(\mathbf{x})$ where the classes are linearly separable.

Main idea

- Map the original data into a new (higher dimension) coordinates system where the classes are linearly separable
- Same optimization problem, but involving $\phi(\mathbf{x})$ instead of \mathbf{x}
- Still, the solution to the optimization equation involves dot products between feature vectors, **x**_i and **x**_j, that are computationally heavy on high-dimensional spaces
- Calculate the image of $\phi(\mathbf{x})$ of each input vector \mathbf{x} and then do the dot product can be quite expensive.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

16

Support Vector Machines: Non-Linear SVMs

The Kernel Trick:

- It was demonstrated that the result of these complex calculations is equivalent to the result of applying certain functions (kernel functions) in the space of the original variables.
- The kernel function takes as its inputs vectors in the original space and returns the dot product of the vectors in the feature space;
- Using kernels, we do not need to embed the data into the space explicitly, because a number of algorithms only require the inner products between image vectors!
- We never need the coordinates of the data in the feature space!

The Kernel Trick: (cont.)

- instead of calculating the dot products in a high dimensional space
- take advantage of the proof that $K(\mathbf{x_i}, \mathbf{x_i}) = \phi(\mathbf{x_i}) \cdot \phi(\mathbf{x_i})$
- perform operations in the original space (without a feature transformation!)
- replace the complex dot products by these simpler and efficient calculations
- use a linear optimization solution to solve a non-linear problem

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

18

Support Vector Machines: Non-Linear SVMs

An Example

- $\mathbf{X}_i = (X_{i1}, X_{i2}, X_{i3}), \ \mathbf{X}_j = (X_{j1}, X_{j2}, X_{j3}).$
- $\phi(\mathbf{x}) = (x_1x_1, x_1x_2, x_1x_3, x_2x_1, x_2x_2, x_2x_3, x_3x_1, x_3x_2, x_3x_3)$, a mapping from 3-dimensional to 9-dimensional space.
- the kernel is $K(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i \cdot \mathbf{x}_i)^2$.
- $\mathbf{x}_i = (1,2,3); \mathbf{x}_i = (4,5,6).$
- $\phi(\mathbf{x}_i) = (1,2,3,2,4,6,3,6,9),$ $\phi(\mathbf{x}_i) = (16,20,24,20,25,30,24,30,36)$
- $\phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_i) = 16 + 40 + 72 + 40 + 100 + 180 + 72 + 180 + 324 = 1024$
- if we use the kernel instead: $K(\mathbf{x}_i, \mathbf{x}_i) = (4 + 10 + 18)^2 = 32^2 = 1024$
- Same result, but this calculation is so much easier!

Mercer's theorem: what functions can be kernels?

• every semi-positive definite symmetric function is a kernel

Examples of Kernel Functions

- Linear:
 - $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$
- Polynomial of power p:
 - $K(\mathbf{x}_i, \mathbf{x}_j) = (\delta(\mathbf{x}_i \cdot \mathbf{x}_j) + \kappa)^p$, if $p = 1, \delta = 1, \kappa = 0$ is equivalent to Linear
- Gaussian (radial-basis function network):

•
$$K(\mathbf{x}_i, \mathbf{x}_i) = exp(-\sigma||\mathbf{x}_i - \mathbf{x}_i||^2)$$

- Sigmoidal:
 - $K(\mathbf{x}_i, \mathbf{x}_j) = tanh(\delta(\mathbf{x}_i \cdot \mathbf{x}_j) + k)$

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

20

Support Vector Machines: Non-Linear SVMs

Examples of different kernel functions

Examples of a Polynomial Kernel function

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

22

Support Vector Machines: Non-Linear SVMs

Example of a Gaussian RBF Kernel function

Support Vector Machines: Multiclass Classification

How to handle more than 2 classes?

- Solve several binary classification tasks
- Essentially, find the support vectors that separate each class from all others

The Algorithm

- Given a m classes task
- Obtain m SVM classifiers, one for each class
- Given a test case assign it to the class whose separating hyperplane is more distant from the test case

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

24

Support Vector Machines: Regression

- Vapnik (1995) proposed the ε -SVR (Support Vector Regression)
- Find a linear function $h(\mathbf{x})$ that approximates the training cases with a precision of ε
- arepsilon-SVR uses the following arepsilon-insensitive loss function,

$$|\xi|_{\varepsilon} = \begin{cases} 0 & |\xi| \leq \varepsilon \\ |\xi| - \varepsilon & \text{otherwise} \end{cases}$$

Support Vector Machines: Regression

The theoretical development of this idea leads to the following optimization problem,

$$\min_{\mathbf{w},b,\xi,\xi^{\star}} \frac{1}{2} ||\mathbf{w}||^{2} + C \sum_{i=1}^{I} (\xi_{i} + \xi_{i}^{\star})$$
s.t.
$$\begin{cases} y_{i} - \mathbf{w} \cdot \mathbf{x} - b & \leq \varepsilon + \xi_{i} \\ \mathbf{w} \cdot \mathbf{x} + b - y_{i} & \leq \varepsilon + \xi_{i}^{\star} \\ \xi_{i}, \xi_{i}^{\star} & \geq 0 \end{cases}$$

where C corresponds to the cost to pay for each violation of the error limit ε and ξ and ξ^* are slack variables

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

26

Support Vector Machines: Regression

- In summary, by the use of the $|\xi|_{\varepsilon}$ loss function we reach a very similar optimization problem to find the support vectors
- As within classification, for a non-linear regression problem, we use the kernel trick to map a non-linear problem into a high dimensional space where we solve the same quadratic optimization problem as in the linear case

Support Vector Machines: Summary

- As problems are usually non-linear on the original feature space, move into a high-dimensional space where linear separability is possible
- Find the optimal separating hyperplane on this new space using quadratic optimization algorithms
- Avoid the heavy computational costs of the dot products using the kernel trick

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

28

Support Vector Machines: Key Issues

- Choice of kernel
 - Gaussian or polynomial kernel is default
 - if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - e.g. σ in Gaussian kernel, i.e. the distance between the closest points with different classifications
 - in the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion
 - · Hard margin vs Soft margin
 - a lengthy series of experiments with various parameters tested

Support Vector Machines: Wrap-up

Pros:

- · Models with strong theoretical foundations
- Sparse solution for large dataset: only support vectors are used to specify the separating hyperplane
- Handles large feature spaces: complexity does not depend on its dimensionality
- Overfitting is controlled by soft margin
- A simple convex optimization problem which is guaranteed to converge to a single global solution

- DATA MINING I 23/24 - PREDICTIVE MODELLING - VI

30

Support Vector Machines: Wrap-up

Cons:

- · Original technique can only deal with binary classification tasks
- Very sensitive to hyper-parameter values
- With large number of support vectors, complexity (storage+computation) is high
- · Produces black-box models

References

References

- Aggarwal, Charu C. 2015. Data Mining, the Texbook. Springer.
- Gama, João, André Carlos Ponce de Leon Ferreira de Carvalho, Katti Faceli, Ana Carolina Lorena, and Márcia Oliveira. 2015. *Extração de Conhecimento de Dados: Data Mining -3rd Edition*. Edições Sílabo.
- Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. *Data Mining: Concepts and Techniques*. 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
- Moreira, João, Andre Carvalho, and Tomás Horvath. 2018. *Data Analytics: A General Introduction*. Wiley.
- Smola, Alex J., and Bernhard Schölkopf. 2004. "A Tutorial on Support Vector Regression." *Statistics and Computing* 14 (3): 199–222.
- Tan, Pang-Ning, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. 2018. *Introduction to Data Mining*. 2nd ed. Pearson.