Problem 6 (Resnick, page 25 Problem 34) Suppose \mathcal{B} is a σ -algebra of subsets of Ω , and suppose $A \notin \mathcal{B}$. Show that $\sigma(\mathcal{B} \cup \{A\})$, the smallest σ -algebra containing both \mathcal{B} and A, consists of sets of the form

$$(A \cap B) \cup (A^{c} \cap B^{'}), \qquad B, B^{'} \in \mathcal{B}.$$

Proof.

Define $\mathcal{C} = \mathcal{B} \cup \{A\}$ and $\mathcal{D} = (A \cap B) \cup (A^c \cap B')$, then we need to show $\sigma(\mathcal{C}) = \sigma(\mathcal{D})$.

It suffices to show $\mathcal{C} \subset \sigma(\mathcal{D})$ and $\mathcal{D} \subset \sigma(\mathcal{C})$.

 $A \cap \Omega = A$ and $A^c \cap \emptyset = \emptyset$.

So $A = A \cup \emptyset = (A \cap \Omega) \cup (A^c \cap \emptyset)$.

Since \mathcal{B} is a σ -algebra of subses of Ω , \emptyset , $\Omega \in \mathcal{B}$.

Then $A \in \mathcal{D} \subset \sigma(\mathcal{D})$.

For any set $B \in \mathcal{B}$, $B = \Omega \cap B = (A \cup A^c) \cap B = (A \cap B) \cup (A^c \cap B)$.

Then $B \in \mathcal{D} \subset \sigma(\mathcal{D})$. So $\mathcal{B} \subset \sigma(\mathcal{D})$.

Thus $\mathcal{C} \subset \sigma(\mathcal{D})$.

On the other hand, we show $\mathcal{D} \subset \sigma(\mathcal{C})$.

 $A \in \mathcal{C} \subset \sigma(\mathcal{C})$, then $A^c \in \sigma(\mathcal{C})$.

For any two sets $B, B' \in \mathcal{B}, B, B' \in \mathcal{C} \subset \sigma(\mathcal{C})$.

So $A \cap B$, $A^c \cap B' \in \sigma(\mathcal{C})$ since σ -algebras are closed under finite intersections.

Then $(A \cap B) \cup (A^c \cap B') \in \sigma(\mathcal{C})$ since σ -algebras are closed under finite unions.

Thus, $\mathcal{D} \subset \sigma(\mathcal{C})$.