```
1.
a.
f(n) = log_3(n^3) = 3log_3(n)
g(n) = n
We need to prove
f(n) \le Cg(n) for n \ge n_0. Then:
3\log_3(n) / n \le C
\Rightarrow choose n_0 = 1 and C = 3
3\log_3(n) / n \le 3 \text{ with } n \ge 1
True
b.
f(n) = 3^{n}
g(n) = n^k with k \ge 1
Assume 3^n >= Cn^k then:
3^{n}/n^{k}>=C
The left side has no limit with any constant k when n to infinity.
False
3.
a. T(n) = 4T(n/2) + 1
According to Master Theorem, a=4, b=2, f(n)=1
n \land (\log_2(4) - \varepsilon) = n \land 0
=> case 1
\varepsilon = 2
T(n) = \Theta(n^2)
True
b. T(n) = 3T(n/5) + 3
According to Master Theorem, a=3, b=5, f(n)=3
n \land (\log_5(3) - \varepsilon) = n \land 0
=> case 1
\varepsilon = \log_5(3)
T(n) = \Theta(n \land (\log_5(3)))
True
4.
a.
f(n) = n^2 - 6n + 3
g(n) = n
We need to prove
f(n) \le Cg(n) for n \ge n_0. Then:
n - 6 + 3/n \le C
no exist constant C with all n \ge 1
False
b.
f(n) = 5^n
g(n) = 4^n
```

We need to prove

 $f(n) \le Cg(n)$ for $n \ge n_0$. Then:

 $(5/4)^n <= C$

=> The left side has no limit when n to infinity => no exist constant C with all n >= 1 False

c.

 $f(n) = 5n(\log(n))^3$

 $g(n) = n \wedge (4/3)$

We need to prove

 $f(n) \le Cg(n)$ for $n \ge n_0$. Then:

 $5n(\log(n))^3 / n^4(4/3) <= C$

 $<=> 5 \log(n)^3 / n^(1/3) <= C$

 $<=> 5 \log(n)^3 / (n^(1/9))^3 <= C$

compare n and $2^{(n^{1/9})}$, the left side doesn't increase speed as the right side

So the statement is true

5.

In order to check "A is an integer array with n elements" statement, we can iterate all elements in A to check whether all elements are integer and exist integer x in A elements.

It can be run in O(n) with n is size of A. It runs in polynomial time, therefore this P is in NP.

6.

a. Since T is MST, so there is a unique path (shortest path) from $u \rightarrow v$ with u,v in T and u,v $\in V$

In the image above, The MST is a-v-b-u, there is only path from u->v $\,$

b. Since the edges have the same weight, so the MST T is not unique, we can form another MST T' In the image above we can form a MST like this:

7.

We simply calculate n clauses with certificate C, then calculate the formula the formed from clauses.

Loop calculate 1 clause: k

Loop calculate n clauses: n

O(nk), run in polynomial time.

8.

This fasted algorithm running on O(n) if x is always the first element if B.

The efficient time complexity is O(nlogm) in case x is not in B, then we can find it by binary search tree since B is a sorted array, so to find x is in B it takes O(log(m)) time

2.

9.

10.

Shortest paths between vertex A and all others

$$A -> A = 0$$

$$A -> E -> B = 3$$

$$A -> C = 7$$

$$A -> E -> D = 4$$

$$A -> E = 2$$

$$A -> F = 4$$

$$A -> F -> G = 5$$

Vexter	Α	В	С	D	E	F	G
Step			50				
0	0	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)
1	(5)	(∞,-)	(<u>7,A</u>)	(∞,-)	(2,A)	(4,A)	(∞,-)
2	-	(3,E)	(7,A)	(<u>4,E</u>)	-	(4,A)	(7,E)
3	-20	-	(<u>7,A</u>)	(<u>4,E</u>)	-	(<u>4,A</u>)	(<u>7,E</u>)
4	(37)	-	(7,A)	6.50	1.73	(4,A)	(7,E)
5	-	-	(<u>7,A</u>)	-	(e.c)	-	(<u>5,F</u>)
6	(42)	-	(7,A)	-	-	2	-
7	95%	-	-		5 7 00	-	70