

Vukan Antić 225/2018 Petar Nikić 049/2018

Matematički fakultet Univerzitet u Beogradu

Šta je Lofi?

- Low-fidelity music
- Sastoji se od 3 ključna dela:
 - Muzickog uzorka (Sample)
 - Bubnjeva
 - Pozadinskih zvukova (npr. padanje kiše)
- Ideja: Generisanje muzičkog uzoraka korišćenjem mreže, i onda se dodaju bubnjevi koji su sinhronizovani sa njim

Obrada podataka

- Za obradu uzorka korišćena je biblioteka Music21
- Svaka pesma se sastoji iz niza nota i akorda(Note, Chord)
- Uz pomoć biblioteke, razlaže se pesma na elemente, i formira se jedan veliki niz nota
 - □ Pesme su slične prirode, samim tim ne pravi veliku razliku da li će se sve note složiti u jedan niz, ili detaljno odvajati po pesmama
 - □ Postojao je pokušaj da se razdvoje različite pesme unutar istog niza korišćenjem padding-a, ali nije pravilo nikakvu razliku

Rest

- Pauza (Rest) pored note i akorda, predstavlja ključni deo svake pesme, ali je problematičan za obradu
 - Zbog veličine uzorka koji je korišćen za treniranje modela i dužine samih pesama, pauze čine većinu od svih mogućih izbora
 - Problem nastaje onda, jer se model previše navikne na pauze, i onda dobijamo rezultate gde pauza čini većinu pesme, ili je cela pesma

Priprema za treniranje

- Korišćenjem niza svih noti, organizujemo podatke za trening
- Niz nota dužine sequence_length nam predstavlja jednu instancu, a predviđenu vrednost nam predstavlja nota koja se u nizu svih nota nalazi posle njega
- Primer :
 - * Ako niz svih nota ide [A, B, C, C, D, E,], i sequence_length = 5
 - * X1 = [A, B, C, C, D] i Y1 = E
- Što je veći sequence_length, to model više uči dugotrajnu strukturu (eksperimentalnim metodama određen)

2. Modeli

Rekurentne neuronske mreže

- Pored trenutne ulazne vrednosti, rekurentne mreže uzimaju u obzir i rezultate prethodnih ulaza
- Ovakve mreže su savršene za generisanje muzike, jer pri izboru sledeće note, ne želimo da uzimamo samo prethodnu notu, već prethodnih n nota u obzir
- Vrste rekurentnih mreža:
 - I. Prost RNN
 - II. GRU
 - III. LSTM

- Prost RNN predstavlja klasični oblik RNN-a, ali se ne koristi zbog:
 - U toku backpropagation-a nastaje problem nestajućeg gradijenta
 - Posle nekog vremena gradijent postane toliko mali, da više ne utiče na učenje
- LSTM i GRU rešavaju ovaj problem uvođenjem kapija (gate), koje predstavljaju kontrolisano menjanje stanja
- LSTM funkcioniše koristeći koncept ćelije, na osnovu koje se određuje vrednost skrivenog sloja, i 3 kapije koje kontrolišu promene (forget, input, output)
- GRU koristi 2 kapije (update i reset), i ne koristi koncept *ćelije*, zbog toga je jednostavniji, ali ima slične karakteristike kao LSTM

Konvolutivne neuronske mreže

- Konvolutivne neuronske mreže karakteriše naizmenični niz 1D konvolucija, i 1D max agregacija
- Ovakve mreže formiraju narednu vrednost uzimajući u obzir prethodne vrednosti sekvence, i zato one isto predstavljaju dobro rešenje našeg problema

Generisanje pesme

- Da bi se generisala nova pesma, najpre se napravi nasumičan niz noti dužine sequence_length
- Uz pomoć tog niza i modela, generišemo narednu notu
- Odbacujemo prvu notu sa nasumičnog niza, i dodajemo generisanu notu na kraj istog
- Generišemo pesmu dužine koja je unapred zadata (500 noti)

3. Rezultati

Neki od rezultata

GRU LSTM CNN

Naši favoriti (Odsečci pesama)

Reference

- 1. https://towardsdatascience.com/how-to-generate-music-using-a-lstm-neural-network-in-keras-68786834d4c5
- 2. https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
- 3. https://ai.plainenglish.io/building-a-lo-fi-hip-hop-generator-e24a005d0144
- 4. https://www.analyticsvidhya.com/blog/2020/01/how-to-perform-automatic-music-generation/
- 5. Alex Graves. "Generating Sequences With Recurrent Neural Networks". https://arxiv.org/abs/1308.0850
- 6. DeepMind "WaveNet: A Generative Model for Raw Audio" https://arxiv.org/abs/1609.03499

Hvala na pažnji.