MAT1100 - Grublegruppen Notat 5

Jørgen O. Lye

Metriske rom

Ideen er å utvide begreper fra Kalkulus litt. La X være en mengde. I utgangspunktet hva man vil: \mathbb{R} , \mathbb{C} , kontinuelige funksjoner fra \mathbb{R} inn i \mathbb{R} , stedsnavn, etc. Med en metrikk skal vi mene en funksjon

$$d: X \times X \to \mathbb{R}$$

som tilfredsstiller disse kravene for alle $x, y, z \in X$:

- $d(x,y) \ge 0$ (positivitet)
- $d(x,y) = 0 \Leftrightarrow x = y$
- $d(x,y) \le d(x,z) + d(z,y)$ (trekantulikhet)
- d(x,y) = d(y,x) (symmetri)

En mengde X med en slik funksjon (med en metrikk) kalles et metrisk rom (metric space). Eksempler inkluderer $X = \mathbb{R} \mod d(x,y) = |x-y|$, dvs vanlig avstandsmål. Dette fungerer også i \mathbb{R}^n .

Et annet eksempel er \mathbb{R}^2 med metrikken $d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$. Dvs man tenker seg at man bare får bevege seg langs rette linjer. Denne metrikken kalles ting som taxi-metrikk, eller Manhatten-metrikk.

Et par topologiske konsepter

Gitt et metrisk rom X og et punkt $a \in X$, definer den åpne ballen B(a, r) om a og med radius r til å være

$$B(a,r) = \{ x \in X : d(a,x) < r \}$$

For \mathbb{R}^n med sin standard-metrikk blir dette vanlige baller. Hvordan ser de ut i \mathbb{R}^2 med taxi-metrikk? En mengde $U \subset X$ kalles åpen dersom det for alle $a \in U$ finnes en r > 0 slik at $B(a,r) \subset U$. Man kan tenke på dette som at man alltid skal ha litt margin. U kalles lukket hvis komplementet er åpent. Dvs $X \setminus U$ er åpen. En annen (ekvivalent) definisjon av lukket er at U skal ha med alle sine randpunkter, hvor et randpunkt betyr følgende: $a \in U$ er et randpunkt dersom alle baller B(a,r) vil inneholde både punkter fra U og fra komplementet. Lag en tegning for å se hvorfor dette gir mening.

Dette fører til følgende paradoksale situasjon (paradoksal i forhold til navnene; matematikken er det ikke noe galt med): ethvert metrisk rom X er både åpen og lukket.

Å kunne snakke om åpne og lukkede mengder er av stor betydning i matematikk, selv om det kanskje ikke ser slik ut på dette stadiet. I kalkulus (dvs. $X = \mathbb{R} \mod d(x,y) = |x-y|$) så er åpne intervaller åpne mengder, mens lukkede intervaller er lukkede mengder. Kanskje ikke noe stort sjokk.

Funksjonsrom

La X = C([a, b]), dvs alle kontinuerlige funksjoner fra [a, b] inn i \mathbb{R} . Da har man 2 vanlige valg av metrikker. Den ene er $d(f, g) = \sup_{x \in [a, b]} |f(x) - g(x)|$, mens den andre er $d(f, g) = \int_a^b |f(x) - g(x)| \, dx$. Disse er essensielt forskjellige metrikker, og understreker poenget at et metrisk rom er både en mengde og en metrikk, og en må derfor gjøre 2 valg.

Det er en aldri så liten oppgave å vise at disse er metrikker.

Oppgave

La $[a, b] = [0, 2\pi]$, og $f(x) = \sin(x)$, $g(x) = \cos(x)$. Regn ut avstandene mellom disse med begge metrikker. For metrikk nr. 2 så må en gjerne dele opp integralet sitt slik at man får rett fortegn på $\sin(x) - \cos(x)$.

Legg også merke til at for f(x) = c, g(x) = 0, dvs konstanter, og med et uendelig intervall (f.eks. hvis man hadde tillatt \mathbb{R} istedenfor [a, b] i definisjonen over), så er den ene metrikken |c|, mens den andre er ∞ (og følgelig ikke en metrikk, siden $\infty \notin \mathbb{R}$).

Kalkulus på funkjonsrom

Man sier at en følge $\{x_n\} \subset X$ konvergerer mot $x \in X$ dersom det gitt en $\epsilon > 0$ finnes en N slik at $d(x_n, x) < \epsilon$ når $n \geq N$. Dvs den samme definisjonen som Kalkulus, men med $|x_n - x|$ byttet ut med $d(x_n, x)$.

Hvis X er et metrisk rom med metrikk d_X og Y er et metrisk rom med metrikk d_Y , så er en funksjon $f: X \to Y$ kontinuerlig i punktet $a \in X$ dersom det for enhver $\epsilon > 0$ finnes en $\delta > 0$ slik at $d_Y(f(x), f(a)) < \epsilon$ når $d_X(x,a) < \delta$. Igjen, mer eller mindre den samme som definisjonen i \mathbb{R} . Merk at her skiller man klarere på avstanden målt der punktene kommer fra og avstanden målt der punktene ender opp

En liten reformulering av funksjonsfølger

Tidligere snakket vi om følger av funksjoner $\{f_n(x)\}$ og tenkte på dem som følger av tall for hver x. Et mer naturlig sted å snakke om funksjonsfølger, er som følger i C([-R,R]), dvs kontinuerlige funksjoner $f:[-R,R]\to\mathbb{R}$. For å få såkalt punktvis konvergens må man bruke avstanden $d(f,g)=\sup_{x\in[-R,R]}|f(x)-g(x)|$. Hvis man underforstår denne et øyeblikk, så vil man si at en funksjonsfølge $\{f_n\}$ konvergerer mot en kontinuerlig funksjon f ved den generelle definisjonen over: dersom det gitt en $\epsilon>0$ finnes en N slik at $d(f_n,f)<\epsilon$ når $n\geq N$.

Pass på at man sier at $f_n \to f$ bare hvis f er kontinuerlig! Hvis f_n er en følge kontinuerlige funksjoner som konvergerer mot noe diskontinuerlig, og man tenker på sitt metriske rom som C([a,b]), så sier man at f_n ikke konvergerer. Dette er helt analogt med hvordan man behandler følger fra \mathbb{Q} som konvergerer i \mathbb{R} men ikke i \mathbb{Q} .

L^p -rommene

Et mye brukt funksjonsrom i matematikk og fysikk er følgende. La $U \subset \mathbb{R}$ eller \mathbb{C} (egentlig fungerer dette for \mathbb{R}^n også):

$$L^p(U) = \{ \text{Integrerbare funksjoner } f: U \to \mathbb{R} \text{ eller } \mathbb{C} \text{ slik at } \int_U |f|^p \, dx < \infty \}$$

Metrikken her er

$$d_p(f,g) = \left(\int_U |f - g| \, dx\right)^{1/p}$$

Å vise at dette er et metrisk rom er litt krevende når det kommer til trekantulikhet.

Merk at disse rommene er større enn C([a,b]): dere kommer til å vise at kontinuerlige funksjoner definert på en lukket og begrenset mengde er integrerbare. Men det finnes mange funksjoner som er integrerbare men ikke

kontinuerlige. Et enkelt eksempel er $f:[0,2]\to\mathbb{R}$ definert ved

$$f(x) = \begin{cases} 1 & x \in [0, 1] \\ 0 & x \in (1, 2] \end{cases}$$

Litt oppgaver

Er $f(x) = \frac{1}{\sqrt{x}} \in L^1((0,\infty))$? Hva med $L^2((0,\infty))$? Er $f(x) = x \in L^p(\mathbb{R})$ for noen p? Hva med $\sin(x)$ eller $\cos(x)$? Har du forslag til hva som går galt? Eventuelt noen tanker om hvordan man kan "fikse" dette?

L^p og sannsynlighet

Et enkelt eksempel på sannsynlighetstetthet er en funksjon $p: U \to \mathbb{R}$ slik at $\int_a^b p(x) \, dx$ gir deg sannsynligheten for at noe er mellom a og b: hvis p(x) modellerer sannsynligheten for å finne folk av en viss høyde i cm, så vil $\int_{160}^{190} p(x) \, dx$ gi deg sannsynligheten for at du finner en person med høyde mellom 160 og 190. Siden sannsynligheter alltid skal være positive, så er p(x) = |p(x)|. Og siden sannsynligheten totalt skal bli 1, så er $\int_U |p(x)| \, dx = 1 < \infty$. Så med andre ord er $p \in L^1(U)$. Dette er et naivt eksempel hvordan L^P -rom kommer inn i statistikk og relaterte områder.

Hvis $p(x) = |\psi(x)|^2$, så vil man si at $\psi \in L^2(U)$. Dette er presist kravet til løsninger av Schrödinger-ligningen i kvantemekanikk:

$$i\hbar\frac{\partial}{\partial t}\psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial}{\partial x}\psi(x,t) + V(x)\psi(x,t)$$

Litt mer om denne senere.

Hvordan dette kravet oppstår er gjennom et postulat: det er ikke noe man lukter seg frem til fra ligningen over.