Master CSI 2 2011-2012

Cryptologie Avancée — M1MA9W07 Responsables : G. Castagnos – G. Zémor

Examen — 20 décembre 2011

Durée 3h — Documents non autorisés

Partie G. Castagnos

1 Une variante d'Elgamal

On considère le schéma de chiffrement asymétrique « Hash Elgamal », défini dans le modèle de l'oracle aléatoire comme suit :

- Soit \mathcal{H} un oracle aléatoire pouvant prendre en entrée des éléments de tout groupe cyclique G retourné par $\mathsf{GenDH}(1^k)$ ci-dessous et retournant des valeurs de $\{0,1\}^k$ pour tout $k \in \mathbf{N}$
- Soit GenDH un algorithme polynomial qui prend en entrée 1^k et retourne la description d'un groupe cyclique G son ordre q premier tel que |q| = k et un générateur g.
- L'algorithme KeyGen appelle GenDH puis choisit x aléatoire avec probabilité uniforme dans $\mathbb{Z}/q\mathbb{Z}$ et calcule $X = q^x$. KeyGen retourne pk = (G, q, g, X) et sk = (G, q, g, x).
- L'algorithme Encrypt sur l'entrée (pk, m) avec $m \in \{0, 1\}^k$ choisit y uniformément dans $\mathbb{Z}/q\mathbb{Z}$ calcule $Y = g^y$ et $Z = X^y$ dans G et retourne $c = (Y, m \oplus \mathcal{H}(Z))$, où \oplus désigne l'addition modulo 2 bit à bit.
 - (a) Donner l'algorithme de déchiffrement Decrypt correspondant, montrer que pour tout $m \in \{0,1\}^k$ et tout couple de clefs (pk, sk), Decrypt $(sk, \mathsf{Encrypt}(pk, m)) = m$.
 - (b) Quel est l'intérêt de cette variante comparé au chiffrement d'Elgamal classique?

Dans le reste de l'exercice, on note \mathcal{A} un attaquant polynomial probabiliste IND – CPA contre Hash Elgamal et on suppose que l'avantage ϵ de \mathcal{A} lors de l'expérience IND – CPA est non négligeable.

(c) Donner l'expérience IND — CPA que joue \mathcal{A} . Que signifie que son avantage est non négligeable?

À partir de \mathcal{A} , on veut construire un attaquant \mathcal{B} avec un succès non négligeable pour l'expérience ci-après :

On définit l'expérience $\mathbf{Exp}^{\mathsf{List}-\mathsf{CDH}}_{\mathsf{GenDH},k}(\mathcal{B})$:

- (a) Lancer GenDH avec entrée 1^k pour obtenir G, q, g
- (b) Choisir $x, y \stackrel{\$}{\leftarrow} (\mathbf{Z}/q\mathbf{Z})$, et calculer $X = g^x$ et $Y = g^y$
- (c) ${\mathcal B}$ prend G,q,g,(X,Y) en entrée et renvoie L un ensemble d'éléments de G
- (d) La sortie de l'expérience est 1 si $g^{xy} \in L$ et 0 sinon

Le succès de $\mathcal B$ pour résoudre le problème List $-\mathsf{CDH}$ est

$$\Pr[\mathbf{Exp}_{\mathsf{GenDH},k}^{\mathsf{List-CDH}}(\mathcal{B}) = 1].$$

- (d) Donner un algorithme qui permet à $\mathcal B$ d'interagir avec $\mathcal A$ pour simuler l'expérience IND CPA.
- (e) Comment \mathcal{B} peut-il simuler l'oracle aléatoire \mathcal{H} auquel \mathcal{A} a accès? En particulier, comment utiliser la liste des requêtes de \mathcal{A} pour résoudre le problème List CDH?
- (f) Donner une minoration de la probabilité de succès, en fonction de ϵ , de l'algorithme \mathcal{B} que vous avez construit pour résoudre List CDH. Conclure sur la sécurité IND CPA d'Hash Elgamal dans le modèle de l'oracle aléatoire.

2 Relation entre List – CDH et CDH

Dans cet exercice on veut établir les relations qu'il existe entre le problème classique CDH et la version List – CDH introduite par l'expérience $\mathbf{Exp}^{\mathsf{List}-\mathsf{CDH}}_{\mathsf{GenDH},k}(\mathcal{B})$ dans l'exercice précédent (encadré ci-dessus). Il n'est pas nécessaire d'avoir fait l'exercice précédent pour faire celui-ci et réciproquement.

- (a) Soit \mathcal{A} un attaquant polynomial probabiliste contre CDH avec succès ϵ . Construire un attaquant \mathcal{B} polynomial probabiliste contre List CDH. Quel est sa probabilité de succès ?
 - Dans la suite de l'exercice, on considère un attaquant \mathcal{B} polynomial probabiliste contre List CDH avec succès ϵ et on veut construire un attaquant \mathcal{A} polynomial probabiliste contre CDH.
- (b) Quel est le succès de \mathcal{A} si l'on se contente de retourner un élément pris au hasard dans la liste retournée par \mathcal{B} ? Qu'en pensez vous?
 - On veut construire un attaquant \mathcal{A} ayant une meilleure probabilité de succès. On note dans la suite X, Y deux éléments uniformément distribués dans G un groupe cyclique d'ordre q premier engendré par g. Soit $x \in \mathbf{Z}/q\mathbf{Z}$ tel que $X = g^x$. On choisit s_1 et s_2 uniformément dans $\mathbf{Z}/q\mathbf{Z}$.
- (c) Montrer que $X' := g^{s_1}/X^{s_2}$ est uniformément distribué dans G et indépendant de X.

(d) On pose $x' := s_1 - xs_2$ dans $\mathbb{Z}/q\mathbb{Z}$. On considère fixées les valeurs de X, X' et Y. Soit Z et Z' deux autres éléments fixes de G. Montrer qu'avec probabilité au moins $1 - \frac{1}{q}$,

$$Z = Y^x \text{ et } Z' = Y^{x'} \iff Z^{s_2}Z' = Y^{s_1}$$

(e) En déduire une construction de \mathcal{A} en faisant deux appels à \mathcal{B} obtenant un meilleur succès qu'en (b). Que peut on conclure sur les problèmes CDH et List — CDH?

3 Échange de clef et schéma de chiffrement

On définit un protocole d'échange de clef \mathcal{P} entre Alice et Bob à deux passes et sa sécurité. Soit k un paramètre de sécurité, on suppose connu par tous un groupe cyclique G, son ordre q avec |q|=k, et un générateur g. On suppose que toutes les quantités échangées et la clef secrète établie sont des éléments de G. Le protocole se déroule ainsi :

- 1. Bob à partir de G, q, g produit un état s_B et un élément $X \in G$ qu'il envoie à Alice;
- 2. Alice à partir de G, q, g produit un état s_A et un élément $Y \in G$ qu'elle envoie à Bob;
- 3. Alice calcule à partir de s_A et X une clef $K_A \in G$. De même Bob calcule à partir de s_B et Y une clef $K_B \in G$.

Le protocole \mathcal{P} est correct si $K_A = K_B =: K$. Il est sûr si un adversaire \mathcal{A} observant les données échangées par Alice et Bob ne peut distinguer la clef K établie d'un élément de G aléatoire. Plus formellement on définit $\mathbf{Exp}_{\mathcal{P},k}(\mathcal{A})$:

- 1. Sous l'entrée 1^k Alice et Bob exécute le protocole \mathcal{P} . Ceci produit les quantités échangées X et Y et la clef K éléments de G d'ordre q avec |q|=k;
- 2. on choisit un bit aléatoire $b^* \leftarrow \{0,1\}$. Si $b^* = 1$ alors Z := K sinon Z est tiré uniformément dans G;
- 3. on donne (G, q, g, X, Y, Z) à \mathcal{A} qui sort un bit b;
- 4. la sortie de l'expérience est 1 si $b = b^*$ et 0 sinon.

L'avantage de l'attaquant \mathcal{A} est défini par

$$\mathbf{Adv}_{\mathcal{P},k}(\mathcal{A}) = \left| \Pr \left(\mathbf{Exp}_{\mathcal{P},k}(\mathcal{A}) = 1 \right) - \frac{1}{2} \right|.$$

Le protocole \mathcal{P} est sûr si pour tout algorithme polynomial probabiliste \mathcal{A} l'avantage $\mathbf{Adv}_{\mathcal{P},k}(\mathcal{A})$ est négligeable.

- (a) Que sont $s_B, s_A, X, Y, K_A, K_B, K$ dans le cas du protocole de Diffie-Hellman? Quelle est l'hypothèse qui assure que le protocole est sûr?
- (b) Montrer qu'à partir de n'importe quel protocole d'échange de clef \mathcal{P} à deux passes, on peut construire un schéma de chiffrement à clef publique Π . Montrer que si \mathcal{P} est sûr alors Π est sémantiquement sûr pour des attaques à clairs choisis.

Partie G. Zémor

[4] Soit G un groupe cyclique d'ordre premier q et g_1, g_2 deux générateurs de G. On considère le langage L défini par

$$(g_1, g_2, h_1, h_2) \in L \iff \exists w \in \mathbf{Z}/q\mathbf{Z} \text{ tel que } \log_{g_1} h_1 = w = \log_{g_2} h_2$$

On considère le protocole suivant destiné à prouver l'appartenance de (g_1, g_2, h_1, h_2) à L:

- Le prouveur choisit r aléatoirement et uniformément dans $\mathbf{Z}/q\mathbf{Z}$ et donne $a_1 = g_1^r$ et $a_2 = g_2^r$ au vérificateur.
- Le vérificateur choisit aléatoirement et uniformément un élément $c \in \mathbf{Z}/q\mathbf{Z}$ et le donne au prouveur.
- Le prouveur calcule z = r + wc modulo q et l'envoie au vérificateur. Ce dernier accepte la preuve si et seulement si $g_1^z = a_1 h_1^c$ et $g_2^z = a_2 h_2^c$.
 - (a) Démontrer que le protocole est complet, c'est-à-dire que si (g_1, g_2, h_1, h_2) est dans L, le vérificateur accepte la preuve.
 - (b) Démontrer que le protocole est valide.
 - (c) Démontrer que le protocole est sans divulgation.

5 Soit n = pq un entier RSA, e un exposant de chiffrement, d l'exposant secret de déchiffrement associé. Le protocole suivant a pour but de prouver au vérificateur V que le prouveur P connaît l'exposant secret $d \mod \phi(n)$.

- -V choisit un entier x aléatoire et le donne à P
- -P calcule $y=x^d \mod n$ et le donne à V
- -V vérifie que $y^e = x \mod n$.

Ce protocole est-il sans divulgation? Pourquoi?

Soit le langage L constitué des quintuplets (p, q, g, h, k) où p, q, g, h, k sont des entiers vérifiant les propriétés suivantes :

- -p est premier
- -q est premier et divise p-1
- $-g \neq 1$ et $g^q = 1 \mod p$
- il existe deux entiers x et y tels que $xy = 1 \mod q$ et tels que $h = g^x \mod p$ et $k = g^y \mod p$.

On admettra que l'on dispose d'un algorithme polynomial pour vérifier la primalité. Proposer un protocole sans divulgation qui démontre l'appartenance à L. Démontrer successivement que votre protocole est complet, valide, sans divulgation.