ARHANGELSKII'S α -PRINCIPLES AND SELECTION GAMES

STEVEN CLONTZ

ABSTRACT. Arhangelskii's convergence properties α_2 and α_4 may be characterized in terms of Scheeper's selection games. We generalize these folklore results to hold for more general collections.

- The following characterizations were given as Definition 1 by Kocinac in [cite Kocinac selection principles related].
- **Definition 1.** Arhangelskii's α -principles $\alpha_i(\mathcal{A}, \mathcal{B})$ are defined as follows for $i \in \{1, 2, 3, 4\}$. Let $A_n \in \mathcal{A}$ for all $n < \omega$; then there exists $B \in \mathcal{B}$ such that:
 - α_1 : $A_n \cap B$ is cofinite in A_n for all $n < \omega$.
- 8 α_2 : $A_n \cap B$ is infinite for all $n < \omega$.

2

- α_3 : $A_n \cap B$ is infinite for infinitely-many $n < \omega$.
- 10 α_4 : $A_n \cap B$ is non-empty for infinitely-many $n < \omega$.
- When (A, B) is omitted, it is assumed that A = B is the collection $\Gamma_{X,x}$ of sequences converging to some point $x \in X$, as introduced by Arhangelskii in [cite
- Arhangelskii frequency spectrum]. Provided \mathcal{A} only contains infinite sets, it's easy
- to see that $\alpha_n(\mathcal{A}, \mathcal{B})$ implies $\alpha_{n+1}(\mathcal{A}, \mathcal{B})$.
- We aim to relate these to the following games.
- Definition 2. The selection game $G_1(\mathcal{A}, \mathcal{B})$ (resp. $G_{fin}(\mathcal{A}, \mathcal{B})$) is an ω -length
- game involving Players I and II. During round n, I chooses $A_n \in \mathcal{A}$, followed
- by II choosing $a_n \in A_n$ (resp. $F_n \in [A_n]^{\aleph_0}$). Player II wins in the case that
- 19 $\{a_n : n < \omega\} \in \mathcal{B}$ (resp. $\bigcup \{F_n : n < \omega\} \in \mathcal{B}$), and Player I wins otherwise.
- Such games are well-represented in the literature; see [cite Scheepers combi-
- 21 natorics ramsey] for example. We will also consider the similarly-defined games
- $G_{<2}(\mathcal{A},\mathcal{B})$ (II chooses 0 or 1 points from each choice by I) and $G_{cf}(\mathcal{A},\mathcal{B})$ (II
- chooses cofinitely-many points).
- **Definition 3.** Let P be a player in a game G. P has a winning strategy for G,
- denoted $P \uparrow G$, if P has a strategy that defeats every possible counterplay by
- 26 their opponent. If a strategy only relies on the round number and ignores the
- 27 moves of the opponent, the strategy is said to be *predetermined*; the existence of a
- predetermined winning strategy is denoted $P \uparrow G$.
 - pre
- We briefly note that the statement I $\uparrow G_{\star}(\mathcal{A}, \mathcal{B})$ is often denoted as the *selection*
- 30 principle $S_{\star}(\mathcal{A}, \mathcal{B})$.
- The equivalence of $\alpha_2(\Gamma_{X,x}\Gamma_{X,x})$ and I γ $G_1(\Gamma_{X,x},\Gamma_{X,x})$ was briefly asserted by
- 32 Sakai in the introduction of [cite Sakai sequence selection properties]; the similar

33 equivalence of $\alpha_4(\Gamma_{X,x}\Gamma_{X,x})$ and I $\gamma_{\text{pre}} G_{fin}(\Gamma_{X,x},\Gamma_{X,x})$ seems to be folklore. In

fact, these relationships hold in more generality.

1. Main Results

Definition 4. Let $\Gamma_{X,x}$ be the collection of non-trivial sequences $S \subseteq X$ converging to x, that is, infinite subsets of $X \setminus \{x\}$ such that for each neighborhood U of x, $S \cap U$ is cofinite in S.

Definition 5. Let Γ_X be the collection of open γ -covers \mathcal{U} of X, that is, infinite open covers of X such that $X \notin \mathcal{U}$ and for each $x \in X$, $\{U \in \mathcal{U} : x \in U\}$ is cofinite in \mathcal{U} .

The similarity in nomenclature follows from the observation that every nontrivial sequence in $C_p(X)$ converging to the zero function $\mathbf{0}$ naturally defines a corresponding γ -cover in X, see e.g. Theorem 4 of [Scheepers a sequential property and covering property].

Note that by these definitions, convergent sequences (resp. γ -covers) may be uncountable, but any infinite subset of either would remain a convergent sequence (resp. γ -cover), in particular, countably infinite subsets. We capture this idea as follows.

Definition 6. Say a collection \mathcal{A} is Γ -like if it satisfies the following for each $A \in \mathcal{A}$.

• $|A| \geq \aleph_0$

51

52

55

56

57

• If $A' \subseteq A$ and $|A'| \ge \aleph_0$, then $A' \in \mathcal{A}$.

We also require the following.

Definition 7. Say a collection \mathcal{A} is *almost*- Γ -like if for each $A \in \mathcal{A}$, there is $A' \subseteq A$ such that:

- $|A'| = \aleph_0$.
 - If A'' is a cofinite subset of A', then $A'' \in \mathcal{A}$.
- So all Γ -like sets are almost- Γ -like.

We are now able to prove a few general equivalences between α -princples and selection games.

Theorem 8. Let \mathcal{A} be almost- Γ -like and \mathcal{B} be Γ -like. Then $\alpha_2(\mathcal{A}, \mathcal{B})$ holds if and only if $\prod_{pre} G_1(\mathcal{A}, \mathcal{B})$.

Proof. We first assume $\alpha_2(\mathcal{A}, \mathcal{B})$ and let $A_n \in \mathcal{A}$ for $n < \omega$ define a predetermined strategy for I. We may apply $\alpha_2(\mathcal{A}, \mathcal{B})$ to choose $B \in \mathcal{B}$ such that $|A_n \cap B| \ge \aleph_0$. We may then choose $a_n \in (A_n \cap B) \setminus \{a_i : i < n\}$ for each $n < \omega$. It follows that $B' = \{a_n : n < \omega\} \in \mathcal{B}$ since B' is an infinite subset of $B \in \mathcal{B}$; therefore A_n does not define a winning predetermined strategy for I.

Now suppose I $\uparrow G_1(\mathcal{A}, \mathcal{B})$. Given $A_n \in \mathcal{A}$ for $n < \omega$, first choose $A'_n \in \mathcal{A}$ such

that $A'_n = \{a_{n,j} : j < \omega\} \subseteq A_n, j < k \text{ implies } a_{n,j} \neq a_{n,k}, \text{ and } A_{n,m} = \{a_{n,j} : m \leq j < \omega\} \in \mathcal{A}$. Finally choose some $\theta : \omega \to \omega$ such that $|\theta^{\leftarrow}(n)| = \aleph_0$ for each $n < \omega$.

Since playing $A_{\theta(m),m}$ during round m does not define a winning strategy for I in $G_1(\mathcal{A},\mathcal{B})$, II may choose $x_m \in A_{\theta(m),m}$ such that $B = \{x_m : m < \omega\} \in \mathcal{B}$. Choose $i_m < \omega$ for each $m < \omega$ such that $x_m = a_{\theta(m),i_m}$, noting $i_m \geq m$. It follows that $A_n \cap B \supseteq \{a_{\theta(m),i_m} : m \in \theta^{\leftarrow}(n)\}$. Since for each $m \in \theta^{\leftarrow}(n)$ there exists $M \in \mathcal{A}$

75 $\theta^{\leftarrow}(n)$ such that $m \leq i_m < M \leq i_M$, and therefore $a_{\theta(m),i_m} \neq a_{\theta(m),i_M} = a_{\theta(M),i_M}$,
76 we have shown that $A_n \cap B$ is infinite. Thus B witnesses $\alpha_2(\mathcal{A},\mathcal{B})$.

Theorem 9. Let \mathcal{A} be almost- Γ -like and \mathcal{B} be Γ -like. Then $\alpha_4(\mathcal{A}, \mathcal{B})$ holds if and only if I $\gamma \atop pre G_{<2}(\mathcal{A}, \mathcal{B})$ if and only if I $\gamma \atop pre G_{fin}(\mathcal{A}, \mathcal{B})$.

Proof. We first assume $\alpha_4(\mathcal{A},\mathcal{B})$ and let $A_n \in \mathcal{A}$ for $n < \omega$ define a predetermined strategy for I in $G_{<2}(\mathcal{A},\mathcal{B})$. We then may choose $A'_n \in \mathcal{A}$ where $A'_n = \{a_{n,j} : j < \omega\} \subseteq A_n, j < k$ implies $a_{n,j} \neq a_{n,k}$, and $A''_n = A'_n \setminus \{a_{i,j} : i,j < n\} \in \mathcal{A}$.

By applying $\alpha_4(\mathcal{A},\mathcal{B})$ to A_n'' , we obtain $B \in \mathcal{B}$ such that $A_n'' \cap B \neq \emptyset$ for infintelymany $n < \omega$. We then let $F_n = \emptyset$ when $A_n'' \cap B = \emptyset$, and $F_n = \{x_n\}$ for some $x_n \in A_n'' \cap B$ otherwise. Then we will have that $B' = \bigcup \{F_n : n < \omega\} \subseteq B$ belongs to \mathcal{B} once we show that B' is infinite. To see this, for $m \leq n < \omega$ note that either F_m is empty (and we let $j_m = 0$) or $F_m = \{a_{m,j_m}\}$ for some $j_m \geq m$; choose $N < \omega$ such that $j_m < N$ for all $m \leq n$ and $F_N = \{x_N\}$. Thus $F_m \neq F_N$ for all $m \leq n$ since $x_N \notin \{a_{i,j} : i, j < N\}$. Thus II may defeat the predetermined strategy A_n by playing F_n each round.

Since I γ $G_{<2}(\mathcal{A},\mathcal{B})$ immediately implies I γ $G_{fin}(\mathcal{A},\mathcal{B})$, we assume the latter.

Given $A_n \in \mathcal{A}$ for $n < \omega$, we note this defines a (non-winning) predetermined strategy for I, so II may choose $F_n \in [A_n]^{<\aleph_0}$ such that $B = \bigcup \{F_n : n < \omega\} \in \mathcal{B}$. Since B is infinite, we note $F_n \neq \emptyset$ for infinitely-many $n < \omega$. Thus B witnesses $\alpha_4(\mathcal{A},\mathcal{B})$ since $A_n \cap B \supseteq F_n \neq \emptyset$ for infinitely-many $n < \omega$.

This shows that II gains no advantage from picking more than one point per round. This in fact only depends on \mathcal{B} being Γ -like, which we formalize in the following results.

Theorem 10. Let \mathcal{B} be Γ -like. Then $I \uparrow_{pre} G_{<2}(\mathcal{A}, \mathcal{B})$ if and only if $I \uparrow_{pre} G_{fin}(\mathcal{A}, \mathcal{B})$.

Proof. Assume $\bigcup \mathcal{A}$ is well-ordered. Given a winning predetermined strategy A_n for I in $G_{<2}(\mathcal{A},\mathcal{B})$, consider $F_n \in [A_n]^{<\aleph_0}$. We set

$$F_n^* = \begin{cases} \emptyset & \text{if } F_n \setminus \bigcup \{F_m : m < n\} = \emptyset \\ \{\min(F_n \setminus \bigcup \{F_m : m < n\})\} & \text{otherwise} \end{cases}$$

Since $|F_n^*| < 2$, we have that $\bigcup \{F_n^* : n < \omega\} \not\in \mathcal{B}$. In the case that $\bigcup \{F_n^* : n < \omega\}$ is finite, we immediately see that $\bigcup \{F_n : n < \omega\}$ is also finite and therefore not in \mathcal{B} . Otherwise $\bigcup \{F_n^* : n < \omega\} \not\in \mathcal{B}$ is an infinite subset of $\bigcup \{F_n : n < \omega\}$, and thus $\bigcup \{F_n : n < \omega\} \not\in \mathcal{B}$ too. Therefore A_n is a winning predetermined strategy for I in $G_{fin}(\mathcal{A},\mathcal{B})$ as well.

Theorem 11. Let \mathcal{B} be Γ-like. Then $I \uparrow G_{<2}(\mathcal{A}, \mathcal{B})$ if and only if $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$.

107 Proof. Assume $\bigcup \mathcal{A}$ is well-ordered. Suppose $I \uparrow G_{<2}(\mathcal{A}, \mathcal{B})$ is witnessed by the strategy σ . Let $\langle \rangle^* = \langle \rangle$, and for $s \cap \langle F \rangle \in ([\bigcup \mathcal{A}]^{<\aleph_0})^{<\omega} \setminus \{\langle \rangle\}$ let

$$(s^{\frown}\langle F \rangle)^{\star} = \begin{cases} s^{\star \frown} \langle \emptyset \rangle & \text{if } F \setminus \bigcup \text{range}(s) = \emptyset \\ s^{\star \frown} \langle \{\min(F \setminus \bigcup \text{range}(s))\} \rangle & \text{otherwise} \end{cases}$$

We then define the strategy τ for I in $G_{fin}(\mathcal{A}, \mathcal{B})$ by $\tau(s) = \sigma(s^*)$. Then given any counterattack $\alpha \in ([\bigcup \mathcal{A}]^{<\aleph_0})^{\omega}$ by II played against τ , we note that $\alpha^* =$

114

115

116

117

118

119

120

121

122

123

125 126

132

134

136

137

144

145

 $\{(\alpha \upharpoonright n)^* : n < \omega\}$ is a counterattack to σ , and thus loses. This means $B = \{(\alpha \upharpoonright n)^* : n < \omega\}$ $||\operatorname{Jrange}(\alpha^*)| \notin \mathcal{B}.$ 112

We consider two cases. The first is the case that $\bigcup \text{range}(\alpha^*)$ is finite. Noting that $\alpha^*(m) \cap \alpha^*(n) = \emptyset$ whenever $m \neq n$, there exists $N < \omega$ such that $\alpha^*(n) = \emptyset$ for all n > N. As a result, $\bigcup \operatorname{range}(\alpha) = \bigcup \operatorname{range}(\alpha \upharpoonright n)$, and thus $\bigcup \operatorname{range}(\alpha)$ is finite, and therefore not in \mathcal{B} .

In the other case, $|\operatorname{Jrange}(\alpha^*) \notin \mathcal{B}$ is an infinite subset of $|\operatorname{Jrange}(\alpha)|$, and therefore $\bigcup \operatorname{range}(\alpha) \notin \mathcal{B}$ as well. Thus we have shown that τ is a winning strategy for I in $G_{fin}(\mathcal{A}, \mathcal{B})$.

We note that the above proof technique could be used to establish that perfectinformation and limited-information strategies for II in $G_{fin}(\mathcal{A}, \mathcal{B})$ may be improved to be valid in $G_{<2}(\mathcal{A},\mathcal{B})$, provided \mathcal{B} is Γ -like. As such, $G_{<2}(\mathcal{A},\mathcal{B})$ and $G_{fin}(\mathcal{A},\mathcal{B})$ are effectively equivalent games under this hypothesis.

Theorem 12. Let A be almost- Γ -like and B be Γ -like. Then

- I↑ G_{fin}(A,B) if and only if I↑ G_{fin}(A,B), and
 I↑ G₁(A,B) if and only if I↑ G₁(A,B).

Proof. We assume $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$ and let the symbol \dagger mean $\langle \aleph_0 \rangle$ (respectively, 127 $I \uparrow G_1(\mathcal{A}, \mathcal{B})$ and $\dagger = 1$, and for convenience we assume II plays singleton subsets of \mathcal{A} rather than elements). As \mathcal{A} is almost-Γ-like, there is a winning strategy σ where $|\sigma(s)| = \aleph_0$ and $\sigma(s) \cap \bigcup \operatorname{range}(s) = \emptyset$ (that is, σ never replays the choices 130 of II) for all partial plays s by II. 131

For each $s \in \omega^{<\omega}$, suppose $F_{s \mid m} \in [\bigcup A]^{\dagger}$ is defined for each $0 < m \le |s|$. Then let $s^*: |s| \to [\bigcup \mathcal{A}]^{\dagger}$ be defined by $s^*(m) = F_{s \upharpoonright m+1}$, and define $\tau': \omega^{<\omega} \to \mathcal{A}$ by $\tau'(s) = \sigma(s^*)$. Finally, set $[\sigma(s^*)]^{\dagger} = \{F_{s \cap \langle n \rangle} : n < \omega\}$, and for some bijection $b:\omega^{<\omega}\to\omega$ let $\tau(n)=\tau'(b(n))$ be a predetermined strategy for I in $G_{fin}(\mathcal{A},\mathcal{B})$ (resp. $G_1(\mathcal{A}, \mathcal{B})$).

Suppose α is a counterattack by II against τ , so

$$\alpha(n) \in [\tau(n)]^{\dagger} = [\tau'(b(n))]^{\dagger} = [\sigma(b(n)^{\star})]^{\dagger}$$

It follows that $\alpha(n) = F_{b(n) \cap \langle m \rangle}$ for some $m < \omega$. In particular, there is some infinite subset $W \subseteq \omega$ and $f \in \omega^{\omega}$ such that $\{\alpha(n) : n \in W\} = \{F_{f \upharpoonright n+1} : n < \omega\}$. Note here that $(f \upharpoonright n+1)^* = (f \upharpoonright n)^* \cap \langle F_{f \upharpoonright n+1} \rangle$. This shows that $F_{f \upharpoonright n+1} \in [\sigma((f \upharpoonright n+1))^*]$ $[n]^*$)] is an attempt by II to defeat σ , which fails. Thus $\bigcup \{F_{f \mid n+1} : n < \omega\} = 0$ $\{ \{ \alpha(n) : n \in W \} \notin \mathcal{B}, \text{ and since this set is infinite (as } \sigma \text{ prevents II from repeating } \}$ 142 choices) we have $\bigcup \{\alpha(n) : n < \omega\} \notin \mathcal{B}$ too. Therefore τ is winning.

Note that the assumption in Theorem 12 that A be almost- Γ -like cannot be omitted. In [todo cite Clontz k-tactics in Gruenhage game] an example of a space X^* and point $\infty \in X^*$ where $I \uparrow G_1(\mathcal{A}, \mathcal{B})$ but $I \not \uparrow G_1(\mathcal{A}, \mathcal{B})$ is given, where \mathcal{A} is the

set of open neighborhoods of ∞ (which are all uncountable), and \mathcal{B} is the set $\Gamma_{X^*,\infty}$ of sequences converging to that point. (Note that $G_1(\mathcal{A},\mathcal{B})$ is called $Gru_{O,P}(X^*,\infty)$ 148 in that paper, and an equivalent game $Gru_{K,P}(X)$ is what is directly studied. In fact, more is shown: I has a winning perfect-information strategy, but for any 150 natural number k, any strategy that only uses the most recent k moves of II and the round number can be defeated.)

```
While \mathcal{A} is often not almost-\Gamma-like in general, it may satisfy that property in
153
       combination with the selection principles being considered.
154
       Proposition 13. Let \mathcal{B} be \Gamma-like, \mathcal{B} \subseteq \mathcal{A}, and I \underset{pre}{\gamma} G_{fin}(\mathcal{A}, \mathcal{B}). Then \mathcal{A} is almost-
155
       \Gamma-like.
156
       Proof. Let A \in \mathcal{A}, and for all n < \omega let A_n = A. Then A_n is not a winning
157
       predetermined strategy for I, so II may choose finite sets B_n \subseteq A_n = A such that
158
       A' = \bigcup \{B_n : n < \omega\} \in \mathcal{B} \subseteq \mathcal{A}.
159
           It follows that A' \subseteq A and |A'| = \aleph_0, and for any infinite subset A'' \subseteq A' (in
160
       particular, any cofinite subset), A'' \in \mathcal{B} \subseteq \mathcal{A}. Thus \mathcal{A} is almost-\Gamma-like.
161
           Note that in the previous result, I \gamma G_{fin}(\mathcal{A}, \mathcal{B}) could be weakened to the choice
162
       principle \binom{\mathcal{A}}{\mathcal{B}}: for every member of \mathcal{A}, there is some countable subset belonging to
163
164
       Corollary 14. Let \mathcal{B} be \Gamma-like and \mathcal{B} \subseteq \mathcal{A}. Then
165
               • I \(\backslash G_{fin}(\mathcal{A}, \mathcal{B})\) if and only if I \(\backslash G_{fin}(\mathcal{A}, \mathcal{B})\), and
• I \(\backslash G_1(\mathcal{A}, \mathcal{B})\) if and only if I \(\backslash G_1(\mathcal{A}, \mathcal{B})\).
166
167
       Proof. Assuming I \uparrow G_{fin}(\mathcal{A}, \mathcal{B}), we have I \uparrow G_{fin}(\mathcal{A}, \mathcal{B}) by Proposition 13 and
168
       Theorem 12.
169
       Similarly, assuming I \gamma G_1(\mathcal{A}, \mathcal{B}) \Rightarrow I \gamma G_{fin}(\mathcal{A}, \mathcal{B}), we have I \gamma G_1(\mathcal{A}, \mathcal{B}) by Proposition 13 and Theorem 12.
170
171
           This corollary generalizes e.g. Theorems 26 and 30 of [cite Scheepers 1996 Ram-
172
       sey], Theorem 5 of [cite MR2119791], and Corollary 36 of [cite Clontz dual games].
173
           In summary, using the selection principle notation S_{\star}(\mathcal{A},\mathcal{B}):
174
       Corollary 15. Let \mathcal{B} be \Gamma-like and \mathcal{B} \subseteq \mathcal{A}. Then
175
                • I \gamma G_{fin}(A, B) if and only if S_{fin}(A, B) if and only if \alpha_2(A, B), and
176
                • I \not\uparrow G_1(\mathcal{A}, \mathcal{B}) if and only if S_1(\mathcal{A}, \mathcal{B}) if and only if \alpha_4(\mathcal{A}, \mathcal{B}).
177
                                                           2. Conclusion
178
           We conclude with the following easy result, and a couple questions.
179
       Proposition 16. Let \mathcal{B} be \Gamma-like. Then \alpha_1(\mathcal{A}, \mathcal{B}) holds if and only if \Gamma \underset{pre}{\uparrow} G_{cf}(\mathcal{A}, \mathcal{B}).
180
       Proof. We first assume \alpha_1(\mathcal{A}, \mathcal{B}) and let A_n \in \mathcal{A} for n < \omega define a predetermined
181
       strategy for I. By \alpha_1(\mathcal{A},\mathcal{B}), we immediately obtain B \in \mathcal{B} such that |A_n \setminus B| < \aleph_0.
182
       Thus B_n = A_n \cap B is a cofinite choice from A_n, and B' = \bigcup \{B_n : n < \omega\} is an
183
       infinite subset of B, so B' \in \mathcal{B}. Thus II may defeat I by choosing B_n \subseteq A_n each
184
       round, witnessing I \uparrow \atop \text{pre} G_{cf}(\mathcal{A}, \mathcal{B}).
185
           On the other hand, let I \uparrow_{\text{pre}} G_{cf}(\mathcal{A}, \mathcal{B}). Given A_n \in \mathcal{A} for n < \omega, we note that
```

Question 17. Is there a game-theoretic characterization of $\alpha_3(\mathcal{A}, \mathcal{B})$?

B witnesses $\alpha_1(\mathcal{A}, \mathcal{B})$ since $|A_n \setminus B| \leq |A_n \setminus B_n| \leq \aleph_0$.

II may choose a cofinite subset $B_n \subseteq A_n$ such that $B = \bigcup \{B_n : n < \omega\} \in \mathcal{B}$. Then

186

187

188

195

Noting that I $\uparrow G_1(\Gamma_X, \Gamma_X)$ if and only if I $\uparrow G_{fin}(\Gamma_X, \Gamma_X)$ [cite Kocinac], but the same is not true of $G_{\star}(\Gamma_{X,x}, \Gamma_{X,x})$ (i.e. there are α_4 spaces that are not α_2 [cite Arhangelskii]), we also ask the following.

193 **Question 18.** Is there an elegant condition on \mathcal{A}, \mathcal{B} guaranteeing $I \uparrow G_1(\mathcal{A}, \mathcal{B}) \Rightarrow$ 194 $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$?

References

 196 Department of Mathematics and Statistics, The University of South Alabama, Mo- 197 Bile, AL 36688

198 Email address: sclontz@southalabama.edu