ECONOMICS 8100

GREG LEO

Part 1. Budget

1. Consumption Set X

Assumptions: (Universe of Choice Objects): X

Bundles: Elements of X. $x \in X$

Assumptions about X.

- 1. $\emptyset \neq X \subseteq \mathbb{R}^n_+$.
- 2. X is closed.
- 3. X is convex.
- 4. $0 \in X$.

FIGURE 1.1. Examples of a Convex/Non-Convex Set.

2. Budget Set B

Budget Set: $B \subseteq X$

X defines the scope of the model. B is what an $individual\ consumer\ chooses\ among.$

Example. Budget Set with Prices and Income

$$B = \{x | x \in X \& x_1 p_1 + x_2 p_2 \le m\}$$

Example. Ice Cream Bowls

Every ice cream bowl x has some non-negative number of scoops of Vanilla, Chocolate, Strawberry.

$$X = \mathbb{R}^3_+$$

Budget B is the set of bowls with no more than one scoop of ice cream.

$$B = \left\{ x | x \in R_+^3 \& \sum_{i=1}^3 x_i \le 1 \right\}$$

This is the unit-simplex in \mathbb{R}_3 .

 $(1,0,0) \in B$. (On the boundary.)

 $(0.5, 0.5, 0) \in B$. (On the boundary.)

 $(0.25, 0.25, 0.25) \in B$. (In the interior.)

 $(2,0,0) \notin B$

Part 2. Preference

3. The Preference Relation

Preference Relation is a Binary Relation.

Formally, a binary relation on set X is a subset of the Cartesian product X with itself.

$$\succeq \subseteq X \times X$$

Another way to denote an ordered pair is "in" the relation:

If $(x, y) \in \succ$ we can also write $x \succ y$.

Informally we say "x" is at least as good as "y", or "x" preferred "y".

Axioms of \succeq .

Axiom 0 (reflexive): $\forall x \in X, x \succ x$. This is implied by axiom 1.

Axiom 1 (complete): $\forall x, x' \in X$, either $x \succeq x'$ or $x' \succeq x$ (or both).

The consumer has "some" preference over every pair of objects.

Axiom 2 (transitive): $\forall x, x', x'' \in X$ if $x \succeq x'$ and $x' \succeq x'' \Rightarrow x \succeq x''$.

 \succeq is a "weak order" if it is complete and transitive.

4. Relations and Sets Related to ≥

Subrelations:

 \sim is the indifference relation. $x \succeq y$ and $y \succeq x \Leftrightarrow x \sim y$.

 \succ is the strict relation. $x \succeq y$ and not $y \succeq x \Leftrightarrow x \succ y$.

Related Sets:

 $\succeq (x)$ "upper contour set", "no worse than set"

 \lesssim (x) "lower contour set", "no better than set"

5. From Preferences to Choice

Choice Correspondence.

We will assume that from a budget set B a consumer "chooses" choice set C according to their preference \succeq . $C = \{x | x \in B \& \forall x' \in B, x \succeq x' \}$.

Informally, C is the set of objects that are at least as good as anything else in the set.

Example With Transitive Preferences

 $X = \{a, b, c\}. \ a \succeq b, c \succeq a, c \succeq b.$

$$C\left(\{a\}\right)=a,C\left(\{b\}\right)=b,C\left(\{c\}\right)=c$$

$$C\left(\{a,b\}\right)=a,C\left(\{a,c\}\right)=c,C\left(\{b,c\}\right)=c$$

$$C\left(\{a,b,c\}\right)=c$$

- 6. Cycles Lead to Empty Choice Sets
- 6.1. The Problem with Intransitive Preferences. $X = \{a, b, c\}$. $a \succeq b, c \succeq a, b \succeq c$. This is intransitive!

Choice correspondence:

$$C: P\left(X\right)/\emptyset \to X$$

$$C\left(\left\{a\right\}\right) = a, C\left(\left\{b\right\}\right) = b, C\left(\left\{c\right\}\right) = c$$

$$C\left(\left\{a,b\right\}\right) = a, C\left(\left\{a,c\right\}\right) = c, C\left(\left\{b,c\right\}\right) = b$$

$$C\left(\left\{a,b,c\right\}\right) = \emptyset$$

This consumer cannot make a choice from the set $\{a, b, c\}$.

6.2. Cycles and Empty Choices. Notice in the previous example, $a \succ b, a \succ c, c \succ a$. We have proved (essentially) that if there is a cycle, there is an empty choice set.

In fact, suppose, there is an empty choice set $\mathbf{and}\ X$ is finite. There must be a cycle.

$$\forall x \in B, \# (\succsim (x)) < \# (B)$$

By completeness, $\forall x \exists x' \in X : x' \succ x$. Choose an x_1 , let x_2 be any element of $\succ (x_1)$. We have $x_2 \succ x_1$. If there is an $x_3 \in \succ (x_2)$ such that $x_1 \succ x_3$ we have identified a cycle. Otherwise, we continue with an inductive step. Suppose we have $x_n \succ \dots \succ x_1 . \succ (x_n)$ is non-empty. Either it contains an element x_{n+1} such that there is an $x_i \succ x_{n+1}$ in which case we have identified a cycle or it does not and we continue with another inductive step. Either we find a cycle or reach the N_{th} step

with $x_N \succ x_{n-1} \succ ... \succ x_1$. $\succ (x_N)$ is non-empty.

So, the cycle condition is equivalence to a non-empty choice set. Transitivity of \succeq implies transitivity of \succ which implies no cycles (try this last step at home). But do no-cycles imply transitivity of \succeq ? No. Here is a counter-example:

$$x \succ y, y \sim z, z \succ x$$

7. Intransitivity: Empty Choices, Incoherent Choices: Pick One.

So if no-cycles of the strict preference is equivalent to non-empty choice (in finite sets), and transitivity of \succeq is not equivelent to no-cycles, why do we assume it?

Finite non-emptyness: For any B with $\#(B) \in \mathbb{I}$, $C(B) \neq \emptyset$

Coherence: For every x, y and B, B' such that $x, y \in B \cap B'$, $x \in C(B) \land y \notin C(B) \Rightarrow y \notin C(B')$.

Suppose there is an intransitive \succeq . There exists either a B where $C(B) = \emptyset$ or there exists a x, y, B, B' where the choice correspondence is incoherent.

By intransitivity:

1)
$$x \succ y, y \succ z, z \succ x$$

$$C(\{x, y, z\}) = \emptyset$$
2) $x \sim y, y \sim z, z \succ x$
3) $x \sim y, y \succ z, z \succ x$

$$x \notin C(\{x, y, z\})$$

$$y \in C(\{x, y, z\})$$

$$x \in C(\{x, y\})$$
4) $x \succ y, y \sim z, z \succ x$

Can you find the incoherent choice?

8. Indifference Sets

- 8.1. **Indifference Maps.** To understand preferences, we often draw sets of the form $\sim (x)$. Many times these are one dimension smaller than the space of bundles, in which case we often call them *indifference curves*, but they need not have any special structure, unless we make further assumptions about preferences. There is only one things we really know about these sets.
- 8.2. Complete, Transitive Preferences have Indifference Sets that Do Not Intersect. Result. Indifference curves do not cross. For two bundles $x\succ y$, $\sim (x)\cap \sim (y)=\emptyset$.

Proof is given visually below:

Figure 8.1. Distinct Indifference Sets do not Intersect

Part 3. From Preference to Utility

9. Utility Represents Preferences

Suppose there is some $U: X \to \mathbb{R}$ such that $U(x) \ge U(x') \Leftrightarrow x \succeq x'$ then we say u() represents preference relation \succeq . When does such a representation exist?

9.1. Finite X.

Proposition 1. A U() exists that represents $\succsim \Leftrightarrow \succsim$ is complete and transitive.

Proof. Let's start with \Rightarrow .

Because \geq is complete on the real numbers, for every $x,y\in X$ either $u\left(x\right)\geq u\left(y\right)$ or $u\left(y\right)\geq u\left(x\right)$ thus because $u\left(y\right)$ represents \succsim , it is complete.

By similar argument, \succeq is transitive. For every three $x, y, z \in X$. If $u(x) \ge u(y)$ and $u(y) \ge u(z)$ then $u(x) \ge u(z)$ because \ge is transitive on the real numbers.

Now we prove \Leftarrow :

Define $U(x) \equiv \# (\preceq (x))$

Example: $a \succ b, b \succ c$. $\preceq (a) = \{a, b, c\} . U(a) = 3$.

Lemma: For $x \gtrsim y, \lesssim (y) \subseteq \lesssim (x)$ (proved in PS1).

By this lemma, for $x \gtrsim y$, $\precsim (y) \subseteq \precsim (x)$ and thus $\# \precsim (y) \leq \# \precsim (x)$ and $u(x) \geq u(y)$.

9.2. Countably infinite X. Pick any arbitrary order on the bundles: $(x_1, x_2, ...)$. And assign weights to those bundles $w(x_i) = \frac{1}{i^2}$. The following utility function represents preferences:

$$u\left(x\right) = \sum_{y \in \lesssim \left(x\right)} w\left(y\right)$$

Example: " π shows up unexpectedly when eating ice cream."

An even number of scoops of ice cream are better than an odd number of scoops and otherwise more is better than less.

$$u(2) = \sum_{i=1}^{\infty} \left(\frac{1}{(2i-1)^2} \right) = \frac{\pi^2}{8}$$
$$u(4) = \frac{1}{4} + \frac{\pi^2}{8}$$

9.3. Uncountable X. The Lexicographic preferences have no utility representation:

$$X = \mathbb{R}^2_{\perp}$$

 $(x_1, x_2) \succ (y_1, y_2)$ if $x_1 > y_1$ or $x_1 = y_1$ and $x_2 > y_2$.

 \succeq is complete, and transitive. [Prove this for practice].

Pick two real numbers $v_2 > v_1$ and construct four bundles $(v_1, 1), (v_2, 1), (v_1, 2), (v_2, 2)$.

$$(v_2, 2) \succ (v_2, 1) \succ (v_1, 2) \succ (v_1, 1)$$

Suppose there is a utility function representing these preferences, then we have two disjoint intervals:

$$[u(v_2,1),u(v_2,2)]$$

$$[u(v_1,1),u(v_1,2)]$$

For every real number, we can construct an interval like this. Because the rationals are dense in the reals, there is a rational number in each of these intervals. Thus, for every real, we can find a unique rational number. That is, we have a mapping from the reals into the rationals which implies that the cardinality of the rationals

is at least as large as that of the reals. $\#\mathbb{Q} \geq \#\mathbb{R}$. This contradicts that the cardinality of the rationals is strictly smaller than the reals.

9.4. An example of preference relation with a utility representation. Cars have horse power in [0,999] and cup holders in \mathbb{Z}_+ (integers).

Suppose preferences are lexicographic and more cup holders are more important than more horsepower.

 $u\left(c_{i},h_{i}\right)=c_{i}+\frac{h_{i}}{1000}$ represents these preferences.

See problem set 2 for example where we do not bound the horse power.

9.5. What ensures a utility representation in an uncountable universe? A preference relation is representable by a utility function $U\left(x\right)$ iff $\forall x,y\in X\ s.t.\ x\succ y,\ \exists x^*\in X^*\subset X\ s.t.\ x\succsim x^*\succ y$ and the set X^* is countable.

To construct the utility function, U(x), Pick any arbitrary order on the bundles in X^* : $(x_1, x_2, ...)$. And assign weights to those bundles $w(x_i) = \frac{1}{i^2}$. The following utility function represents preferences:

$$u\left(x\right) = \sum_{y \in \lesssim (x) \cap X^*} w\left(y\right)$$

9.6. Continuous \succeq . Preference relation \succeq is continuous if $\forall x \in X, \succeq (x)$ and $\preceq (x)$ are closed in X.

FIGURE 9.1. Not Continuous/Continuous Lexicographic Preferences.

9.7. What ensures a continuous utility representation? A complete, transitive, and continuous preference relation \succeq can be represented by a continuous utility function U(x) and, a continuous utility function represented C,T,C preferences.

10. Other Properties of ≿

10.1. **Monotonicity.** Ensure consumers consume on the boundary of the budget set.

FIGURE 10.1. Locally Non-satiated vs. Strictly Monotone

10.1.1. Strict Monotonicity. More stuff is better.

First, some notation:

For $X \subseteq \mathbb{R}^n$

 $x \geq x'$ iff $x_i \geq x_i'$ for all $i \in \{1, 2, ..., n\}$

 $x \gg x'$ iff $x_i > x_i'$ for all $i \in \{1, 2, ..., n\}$

Fro example: $(2,2) >> (1,1), (2,1) \ge (1,1), (1,1) \ge (1,1)$

Definition. Strict Monotonicity. $x \ge x' \Rightarrow x \succsim x'$ and $x \gg x' \Rightarrow x \succ x'$

10.1.2. Local Nonsatiation. **Definition. Local Nonsatiatin.** $\forall x \in X \text{ and } \forall \varepsilon > 0, \exists x^* \in B_{\varepsilon}(x) \text{ such that } x^* \succ x.$

A consumer can always change the bundle a "little bit" no matter how small that little bit is, and find something strictly better.

10.2. Convex Sets, Convex/Concave Functions, Quasi-Convex/Concave Functions.

10.2.1. Convex Sets. In a subset of euclidean space X, the line between $x \in X$ and $x' \in X$ is another point in the set X given by tx + (1-t)x' where $t \in [0,1]$. We call points like this **Convex Combinations** of x and x'.

For example: x = (1,0), x' = (0,1). If we take t = 0.5. The convex combination is 0.5(1,0) + 0.5(0,1) = (0.5,0.5).

A **convex set** $S \subseteq X$ is a set of points that contains all of its convex combinations. Formally, $\forall x, x' \in S, \ \forall t \in [0, 1], \ tx + (1 - t)x' \in S$.

FIGURE 10.2. A Convex and Non-Convex Set

10.2.2. Convex Functions. A line between two points "on the function" lies above the function itself.

Convex Function:

$$\forall x, x' \in X, t \in [0, 1], tf(x) + (1 - t) f(x') \ge f(tx + (1 - t) x')$$

Strictly Convex Function:

$$\forall x, x' \in X, t \in (0, 1), tf(x) + (1 - t)f(x') > f(tx + (1 - t)x')$$

Contour Sets:

A convex function has **convex lower contour sets**.

10.2.3. Concave Functions. A line between two points "on the function" lies above the function itself.

Concave Function:

$$\forall x, x' \in X, t \in [0, 1], tf(x) + (1 - t) f(x') \le f(tx + (1 - t) x')$$

Strictly Concave Function:

$$\forall x, x' \in X, t \in (0,1), tf(x) + (1-t)f(x') < f(tx + (1-t)x')$$

A concave function has **convex upper contour sets**.

10.2.4. Quasi-Concave Functions. A function f(x) is quasi-concave if **and only** it has convex upper contour sets.

A function f(x) is quasi-concave if and only if is a monotonic transformation of a concave function.

A function f(x) is quasi-concave if and only if $f(tx + (1 - t)x') \ge min\{f(x), f(x')\}$ for $t \in [0, 1]$.

A function f(x) is **strictly quasi-concave** if and only if $f(tx + (1 - t)x') > min\{f(x), f(x')\}$ for $t \in (0, 1)$.

Notice that, for a strictly quasi-concave utility function, let $x' \succ x$, then the set $tx + (1-t)x' \in \succ (x)$ for $t \in (0,1)$. Thus, there is a small enough ball around that point $B_{\epsilon}(tx + (1-t)x') \in \succsim (x)$. Thus, these points are in the interior of $\succsim (x)$ and \succsim is **strictly convex.**

10.2.5. Quasi-Convex Functions. A function f(x) is quasi-convex if **and only** it has convex lower contour sets.

A function f(x) is quasi-concave if and only if is a monotonic transformation of a convex function.

A function f(x) is quasi-convex if and only if $f(tx + (1 - t)x') \le max\{f(x), f(x')\}$ for $t \in [0, 1]$.

A function f(x) is **strictly quasi-concave** if and only if $f(tx + (1 - t)x') < max\{f(x), f(x')\}$ for $t \in (0, 1)$.

10.3. Convexity of \succsim . Convex Preferences: $x \succsim x' \Rightarrow t(x) + (1-t)x' \succsim x', t \in [0,1]$

$$x \in \gtrsim (x') \Rightarrow t(x) + (1-t)x' \in \gtrsim (x')$$

Thus, \succsim (x) are convex if \succsim is a convex preference relation.

Strictly Convex Preferences: $x \gtrsim x' \Rightarrow t(x) + (1-t)x' > x', t \in (0,1)$

The upper contour sets $\gtrsim (x)$ are *strictly* convex.

- 10.4. Utility and Preference Relationships. If U represents \succeq :
- 1) \succeq (strictly) **convex** \Leftrightarrow U is (strictly) **quasi-concave**.
- 2) \succeq are strictly monotonic \Leftrightarrow U is strictly increasing.
- 3) \succeq are strictly monotonic \Leftarrow U is strongly increasing.

11. The Consumer Problem

11.1. **Choice.** The set of all "best things" in the budget set. This is what we are looking for:

$$C\left(B\right) = \left\{x | x \in B \land x \succsim x', \forall x' \in B\right\}$$

Competitive Budgets:

$$B = \{x | x \in \mathbb{R}^n_+, p \cdot x \le m\}$$

p is the vector of prices. m is the "income".

Constrained problem:

$$Max_{x \in X}U(x) s.t. p \cdot x \le m$$

FIGURE 11.1. Finding the best spot for a selfie.

11.2. The Lagrange Method. If both the objective and the constraint are smooth, at the optimal the *direction* of the gradient of the objective has to be equal to the *direction* of the gradient of the constraint. Otherwise, moving along the constraint boundary in *some* direction will yield a larger value of the objective! (Caveat: this assumes we *can* move in every direction along the constraint. That will only be true at non-boundary points.)

Thus, for smooth functions, the equality of the direction of the gradients of the objective and the constraint are **necessary** for an non-boundary optimum.

Since the direction of the gradient is just a scaling of the gradient, suppose U is our objective and G is the function for the boundary of the constraint. Then,

$$\nabla U\left(x\right) = \lambda \nabla G\left(x\right)$$

Can we write a function such that the first order condition will yield this gradient condition? Sure:

$$\mathcal{L} = U(x) - \lambda (G(x) - c)$$

Let's treat this as an unconstrained problem. The FOC. of this function is:

$$\nabla U(x) - \lambda \nabla G(x) = 0$$

$$\nabla U\left(x\right) = \lambda \nabla G\left(x\right)$$

This is precisely the necessary condition we need for the constrained problem.

Thus, FOC for unconstrained optimization of the Lagrangian is the necessary constrained optimization condition.

11.3. Indirect Utility.

- 11.3.1. Properties. 1. Continuous.
- 2. Homogeneous of degree zero in (p, y).
- 3. Strictly increasing in y.
- 4. Decreasing (weakly) in p.
- 5. Quasi-convex in (p, y).
- 6. Roy's Identity.