Использование векторного представления текста для решения задачи определения категории товара.

Александр Широков ПМ-1701

Задачи обработки текстов

- Информационный поиск (Informational retrieval): найти релевантные документы
- Анализ тональности (Sentiment analysis): определить позитивное или негативное отношение несёт текст;
- Языковые модели (Language models): по заданному отрывку текста предсказать следующее слово или символ;
- Pacпознавание именованных сущностей (Named entity recognition): имена, географические объекты и.т.д;
- Морфологическая сегментация (Morphological segmentation) разделить слова на морфемы (приставки, суффиксы);

Предобработка текста

Первичная

- Токенизация
- Удаление лишних символов
 - большие буквы, слова-архаизмы
- Удаление стоп-слов

```
■ "будто", "наконец", ...
```

Лемматизация

```
>> стали -> [(стать, 0.97),
             (сталь, 0.03)]
```

Стэмминг

```
>> просвещения -> просвещён
```

Интеллектуальная

- Разбиение слова на сегменты
- Исправление опечаток
- Исправление сокращений
- Исправление одинаково звучащих слов

Разбиение слова на сегменты

- Алгоритм максимального соответствия
 - >> input: новаявеличинарусскойпоэтическойреальности
 - >> output: новая величина русской поэтической реальности
- Алгоритм обратного максимального соответствия
 - >> input: новаявеличинарусскойпоэтическойреальности
 - >> output: новая величина русской по эти чес кой реальности
- Двунаправленный алгоритм максимального соответствия
- Рекуррентная максимизация вероятности первого слова
- Реализация алгоритма выбора наиболее вероятной подпоследовательности с помощью перемножения вероятностей биграмм

Исправление опечаток

- Алгоритм **Питера Норвига** + N-gram модель
 - Для слова w необходимо найти наиболее вероятную правку c = correct(w).
 - Находим всех кандидатов c, которые достаточно близки к w
 - Выбираем наиболее вероятный из них
 - Расстояние Левенштейна минимальное необходимое количество удалений, перестановок, вставок и замен символов, необходимых, чтобы одно слово превратить в другое

(a,b) пары	камн+Ø	кам+н	ка+мн	к+амн	Ø+камн	Пары:
Удаление первой буквы в b		кам+Ø	ка+н	к+мн	Ø+амн	Удаления:
Перемена мест двух первых букв b			ка+нм	к+ман	Ø+акмн	Перемена мест:
замена буквы в начале \emph{b}		кам+?	ка+?н	к+?мн	Ø+?амн	Замена:
Вставка буквы между a и b	камн+?+Ø	кам+?+н	ка+?+мн	к+?+амн	Ø+?+камн	Вставка:

- >> input: Я бы не хоетл задаваться вопрсом. Чот ты здес длаешь?
- >> output: Я бы не хотел задаваться вопросом. Что ты здесь делаешь

Исправление сокращений

- Алгоритм
 - Найдём словаре (либо префиксном дереве) N-граммы, начинающиеся с данного сокращения слова
 - Возьмём наиболее вероятную

```
>> input: салфетки бумажные в/уп 5 шт.
>> output: салфетки бумажные (вакуумная упаковка) 5 штук
>> input: Подуш"ШокоZAVR"молоч. Шок240гр
>> output: подушка шоколад ZAVR молочный шоколад 240 грамм
```

Data Fusion Contest - Goodsification

- Задача: по текстовому описанию чека определить категорию товара
- Исходные данные:
 - Более 8 миллионов уникальных чеков
 - 96 категорий товара
 - Mетрика: WEIGHTED F1-SCORE

- 0 алкогольная продукция
- 1 презерватиры
- 2 сигареты
- 3 стики, нагреваемые табачные палочки
- 4 автомобильная лампа
- 6 различные приборы чистки для авто: щётки, стеклоочистители
- 7 газовые колонки, топливо, заправка
- 9 дизельное топливо
- 11 щётка, услуги автомойки
- 12 масла, смазки, ароматизаторы, антифризы для автомобилей
- 13 ремонт машин
- 19 канцелярские принадлежности, бумага
- 20 газеты, журналы
- 24 детская литература, книжки для малышки
- 26 органайзеры, ножницы, листки, закладки, корректоры

Векторное представление текста: подходы

- 1. TF-IDF + SVM
 - чем чаще слово встречается в документе, тем оно важнее;
 - чем реже слово встречается в других документах, тем оно важнее;
- 2. Word2Vec + KNN
 - Получение эмбеддингов слова векторного представления слова
 - Каждый чек среднее эмбеддингов слов, в него входящих
- 3. FastText + KNN
 - Попытка выучить не эмбединги слов, а эмбединги предложения

Сравнение результатов с предобработкой

■ Исходный словарь встречаемости слов – обучен на миллионе статей Wikipedia

F1 - SCORE	TF-IDF + SVM Classifier	Word2Vec + k- Nearest Neighbors	FastText + k-Nearest Neighbors
Без предобработки	0.817	0.778	0.834
Разбиение на сегменты	0.824	0.811	0.8455
Исправление опечаток	0.834	0.815	0.8478
Поиск сокращений	0.825	0.808	0.8433
Полная предобработка	0.844	0.8203	0.8501

Выводы

- Перед обучением текстовых моделей весьма желательно тщательно обработать текст
- 3-е место среди публичных решений / бронзовая медалька на boosters

Источники:

- сравнение результатов предобработки текста
- решение соревнования с описанием методов

Спасибо за внимание!

github.com/aptmess