CS 6501 Natural Language Processing

Probabilistic Context-Free Grammars

Yangfeng Ji

September 24, 2018

Department of Computer Science University of Virginia

Overview

- 1. Probabilistic CFGs
- 2. Probabilistic CKY Algorithm

Based on slides from [Collins, 2017, Smith, 2017]

1

Probabilistic CFGs

A Probabilistic Context-Free Grammar (PCFG)

- ► *N*: a set of non-terminal symbols
- ▶ $S \in N$: a distinguished start symbol
- \triangleright Σ : a set of terminal symbols

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Probability of a Tree

The probability of a tree t with rules $\{\alpha_i \to \beta_i\}$, such as

$$S \rightarrow NP \ VP, NP \rightarrow DT \ NN, \dots, Vi \rightarrow sleeps$$

is

$$P(t) = \underbrace{\prod_{i=1}^{n} P(\alpha_i \to \beta_i)}_{\text{production rule form}}$$

$$= \underbrace{\prod_{i=1}^{n} P(\beta_i \mid \alpha_i)}_{\text{Standard conditional prob form}}$$
(1)

4

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

[Vi	\Rightarrow	sleeps	1.0
'	Vt	\Rightarrow	saw	1.0
П	NN	\Rightarrow	man	0.7
	NN	\Rightarrow	woman	0.2
	NN	\Rightarrow	telescope	0.1
П	DT	\Rightarrow	the	1.0
	IN	\Rightarrow	with	0.5
	IN	\Rightarrow	in	0.5

$$P(t) = P(NP VP \mid S)$$

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$P(t) = P(NP VP \mid S) \cdot P(DT NN \mid NP)$$

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$P(t) = P(\mathsf{NP} \; \mathsf{VP} \; | \; \mathsf{S}) \cdot P(\mathsf{DT} \; \mathsf{NN} \; | \; \mathsf{NP}) \cdot P(\mathsf{Vi} \; | \; \mathsf{VP})$$

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$P(t) = P(NP \ VP \ | \ S) \cdot P(DT \ NN \ | \ NP) \cdot P(Vi \ | \ VP)$$

$$\cdot P(the \ | \ DT)$$

5

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$P(t) = P(NP VP \mid S) \cdot P(DT NN \mid NP) \cdot P(Vi \mid VP)$$
$$\cdot P(the \mid DT) \cdot P(man \mid NN)$$

5

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$P(t) = P(\text{NP VP} \mid \text{S}) \cdot P(\text{DT NN} \mid \text{NP}) \cdot P(\text{Vi} \mid \text{VP})$$

$$\cdot P(\text{the} \mid \text{DT}) \cdot P(\text{man} \mid \text{NN}) \cdot P(\text{sleeps} \mid \text{Vi})$$

Properties of PCFGs

 Assigns a probability to each derivation, or parse-tree, allowed by the underlying CFG

Properties of PCFGs

- Assigns a probability to each derivation, or parse-tree, allowed by the underlying CFG
- ► If one sentence has more than one derivations, we can rank them based on their probabilities

Properties of PCFGs

- Assigns a probability to each derivation, or parse-tree, allowed by the underlying CFG
- ▶ If one sentence has more than one derivations, we can rank them based on their probabilities
- ► The most likely parse tree for a sentence is

$$\arg\max_{t\in\mathcal{T}(s)}P(t|s)\tag{3}$$

where $\mathcal{T}(s)$ is the set of all possible parse trees of sentence s.

Probabilistic CKY Algorithm

Score of Parse Trees: An example

$$P(t \mid s) = P(\text{NP VP} \mid S) \cdot P(\text{DT NN} \mid \text{NP}) \cdot P(\text{Vi} \mid \text{VP})$$

$$\cdot P(\text{the} \mid \text{DT}) \cdot P(\text{man} \mid \text{NN}) \cdot P(\text{sleeps} \mid \text{Vi})$$
(4)

- ▶ Decoding $arg max_t P(t \mid s)$
- Effect of change on non-terminal node
- Similar phonemenon is handled by Viterbi decoding in HMM and CRF

Notations (I)

- ► X: non-terminal node
- ▶ i, j: word indices, $1 \le i \le j \le n$
- ▶ $\mathcal{T}(i, j, X)$: the set of all parse trees for words x_i, \dots, x_j with X as the root
- ightharpoonup Example: $\mathcal{T}(1,2,NP)$

Notations (II)

- ► X: non-terminal node
- ▶ i, j: word indices, $1 \le i \le j \le n$
- $\pi(i, j, X) = \max_{t \in \mathcal{T}(i, j, X)} P(t)$
- ightharpoonup Example: $\pi(1, 2, NP)$

Notations (II)

- ► X: non-terminal node
- ▶ i, j: word indices, $1 \le i \le j \le n$
- ightharpoonup Example: $\pi(1, 2, NP)$

 \blacktriangleright $\pi(i, j, X) = 0$, if $\Im(i, j, X) = \emptyset$, for example $\pi(1, 2, VP)$

Special Cases of $\mathcal{T}(i, j, X)$ and $\pi(i, j, X)$

 $\mathcal{T}(1,n,S)$... S ... S ... $\mathcal{T}(1,n,S)$... S ... S ... $\mathcal{T}(1,n,S)$... S ...

Special Cases of $\mathcal{T}(i, j, X)$ and $\pi(i, j, X)$

 \blacktriangleright $\pi(1, n, S)$: the score of the optimal tree

man

the

man

sleeps

Special Cases of $\Im(i, j, X)$ and $\pi(i, j, X)$

For the example sentence the man sleeps

$$\mathcal{T}(1,1,X) \text{ if } X = DT$$

$$DT$$

$$|$$
the

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	⇒	DT	NN	0.3
NΡ	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

\Rightarrow	sleeps	1.0
\Rightarrow	saw	1.0
\Rightarrow	man	0.7
\Rightarrow	woman	0.2
\Rightarrow	telescope	0.1
\Rightarrow	the	1.0
\Rightarrow	with	0.5
\Rightarrow	in	0.5
	\Rightarrow \Rightarrow \Rightarrow \Rightarrow	⇒ saw ⇒ man ⇒ woman ⇒ telescope ⇒ the ⇒ with

Special Cases of $\mathcal{T}(i, j, X)$ and $\pi(i, j, X)$

For the example sentence the man sleeps

$$\mathcal{T}(1,1,X) \text{ if } X = DT$$

$$DT$$

$$|$$
the

- $\pi(1, 1, DT) = 1$
- \blacktriangleright What if X = NN?

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Special Cases of $\mathcal{T}(i, j, X)$ and $\pi(i, j, X)$

For the example sentence the man sleeps

$$\mathfrak{T}(1,1,X) \text{ if } X = DT$$

$$DT$$

$$|$$
the

- $\pi(1, 1, DT) = 1$
- \blacktriangleright What if X = NN?

$$\mathcal{T}(1,1,NN) = \emptyset$$
$$\pi(1,1,NN) = 0$$

because there is no such rule $NN \rightarrow the$

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	⇒	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

1.0
1.0
0.7
0.2
0.1
1.0
0.5
0.5

Notation Summary

- $ightharpoonup \mathfrak{I}(i,j,X)$. Special cases
 - ► *T*(1, *n*, *S*)
 - **▶** $\Im(i, i, X)$
- $ightharpoonup \pi(i,j,X)$. Special cases
 - $ightharpoonup \pi(1, n, S)$
 - $ightharpoonup \pi(i,i,X)$

Notation Summary

- $ightharpoonup \mathfrak{I}(i,j,X)$. Special cases
 - ► *T*(1, *n*, *S*)
 - $ightharpoonup \mathfrak{I}(i,i,X)$
- \blacktriangleright $\pi(i, j, X)$. Special cases
 - \blacktriangleright $\pi(1, n, S)$
 - $ightharpoonup \pi(i,i,X)$
- Parsing:
 - from $\mathcal{T}(1, n, S)$, find the tree with score $\pi(1, n, S)$
 - ▶ starting points $\mathcal{T}(i, i, X)$, $\forall i \in \{1, ..., n\}$

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \to P NP$	1.0	NP → astronomers	0.1
$VP \rightarrow V NP$	0.7	NP → ears	0.18
$VP \rightarrow VP PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \to P NP$	1.0	NP → astronomers	0.1
$VP\rightarrowVNP$	0.7	NP → ears	0.18
$VP \to VP \; PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

Sentence

astronomers saw stars with ears

Parse Chart

Parsing:

- from $\mathcal{T}(1, n, S)$, find the tree with score $\pi(1, n, S)$
- ▶ starting points $\mathcal{T}(i, i, X)$, $\forall i \in \{1, ..., n\}$

Parse Chart

Parsing:

- from $\mathcal{T}(1, n, S)$, find the tree with score $\pi(1, n, S)$
- ▶ starting points $\mathcal{T}(i, i, X)$, $\forall i \in \{1, ..., n\}$

	1	2	3	4	5
astronomers	(1, 1, X)				
	saw	(2, 2, X)			
		stars	(3,3,X)		
			with	(4, 4, X)	
				ears	(5,5,X)

1

2

3

Parse Chart

Parsing:

- from $\mathcal{T}(1, n, S)$, find the tree with score $\pi(1, n, S)$
- ▶ starting points $\mathcal{T}(i, i, X)$, $\forall i \in \{1, ..., n\}$

	1	2	3	4	5	
astronomers	(1, 1, X)				(1,5,S)	
	saw	(2, 2, X)				
		stars	(3, 3, X)			
			with	(4, 4, X)		
				ears	(5, 5, X)	

1

2

3

Probabilistic CKY: Base cases

Sentence

astronomers saw stars with ears

▶ For $i \in \{1, ..., n\}$ and for each $X \in \mathcal{N}$

$$\pi(i,i,X) = P(x_i \mid X)$$

Probabilistic CKY: Base cases

Sentence

astronomers saw stars with ears

▶ For $i \in \{1, ..., n\}$ and for each $X \in \mathcal{N}$

$$\pi(i,i,X) = P(x_i \mid X)$$

ightharpoonup Example: $x_2 = \text{saw}$

$$\pi(2, 2, V) = P(V \to \text{saw}) = 1.0$$

 $\pi(2, 2, NP) = P(NP \to \text{saw}) = 0.04$ (5)

Probabilistic CKY: Base cases

	$S \rightarrow NPV$ $PP \rightarrow PN$ $VP \rightarrow VN$ $VP \rightarrow WP$ $P \rightarrow with$ $V \rightarrow saw$	P 1.0 P 0.7 PP 0.3 1.0	$NP \rightarrow ear$ $NP \rightarrow saw$ $NP \rightarrow staw$	ronomers s	0.4 0.1 0.18 0.04 0.18 0.1
	1	2	3	4	5
astronomers	NP, 0.1				
	saw	V, 1.0 NP, 0.04			
		stars	NP, 0.18		
			with	P, 1.0	
				ears	NP, 0.18

Probabilistic CKY: Recursive cases

For each i, j such that $1 \le i < j \le n$ and each $X \in \mathcal{N}$

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} P(X \to Y Z) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z) \quad (6)$$

Probabilistic CKY: Recursive cases

For each i, j such that $1 \le i < j \le n$ and each $X \in \mathcal{N}$

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} P(X \to Y Z) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z) \quad (6)$$

Example with
$$i = 2$$
 and $j = 3$

$$\pi(2,3,X) = \max_{Y,Z \in \mathcal{N}, k \in \{2\}} P(X \to Y Z) \cdot \pi(2,k,Y) \cdot \pi(k+1,3,Z)$$
 (7)

Example with i = 2 and j = 3

$$\pi(2,3,X) = \max_{Y,Z \in \mathcal{N}, k \in \{2\}} P(X \to Y Z) \cdot \pi(2,k,Y) \cdot \pi(k+1,3,Z)$$
 (8)

►
$$\pi(2,3, \text{NP}) = P(\text{NP} \to \text{Y} Z) \cdot \pi(2,2,Y) \cdot \pi(3,3,Z), Y,Z \in \mathcal{N}$$

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \rightarrow P NP$	1.0	NP → astronomers	0.1
$VP \rightarrow V NP$	0.7	NP → ears	0.18
$VP \to VP \; PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

Example with i = 2 and j = 3

$$\pi(2,3,X) = \max_{Y,Z \in \mathcal{N}, k \in \{2\}} P(X \to Y Z) \cdot \pi(2,k,Y) \cdot \pi(k+1,3,Z)$$
 (8)

- ► $\pi(2,3,NP) = P(NP \to YZ) \cdot \pi(2,2,Y) \cdot \pi(3,3,Z), Y,Z \in \mathcal{N}$
- ► $\pi(2,3, VP) = P(VP \to YZ) \cdot \pi(2,2,Y) \cdot \pi(3,3,Z), Y,Z \in \mathcal{N}$

S → NP VP	1.0	NP → NP PP	0.4
$PP \rightarrow P NP$	1.0	NP → astronomers	0.1
$VP \rightarrow V NP$	0.7	NP → ears	0.18
$VP \rightarrow VP PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

Recursive Cases: Example (I)

$$\pi(2,3,X) = \max_{Y,Z \in \mathcal{N}, k \in \{2\}} P(X \to Y Z) \cdot \pi(2,k,Y) \cdot \pi(k+1,3,Z) \qquad (9)$$

$$\begin{array}{c} S - \mathsf{NP} \mathsf{VP} & 1.0 & \mathsf{NP} - \mathsf{NP} \mathsf{PP} & 0.4 \\ \mathsf{PP} - \mathsf{P} \mathsf{NP} & 1.0 & \mathsf{NP} - \mathsf{astronomers} & 0.1 \\ \mathsf{VP} - \mathsf{V} \mathsf{NP} & 0.7 & \mathsf{NP} - \mathsf{ears} & 0.18 \\ \mathsf{VP} - \mathsf{VP} \mathsf{PP} & 0.3 & \mathsf{NP} - \mathsf{saw} & 0.04 \\ \mathsf{P} - \mathsf{with} & 1.0 & \mathsf{NP} - \mathsf{stars} & 0.18 \\ \mathsf{V} - \mathsf{saw} & 1.0 & \mathsf{NP} - \mathsf{telescopes} & 0.1 \\ \end{array}$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$1 \qquad \mathsf{astronomers} \qquad NP, 0.1 \qquad 1$$

$$\mathsf{saw} \qquad \frac{\mathsf{V}_{1.0}}{\mathsf{NP}_{.0.04}} \quad \mathsf{VP}, 0.126 \qquad 2$$

$$\mathsf{stars} \qquad \mathsf{NP}, 0.18 \qquad 3$$

$$\mathsf{with} \qquad P, 1.0 \qquad 4$$

$$\mathsf{ears} \qquad \mathsf{NP}, 0.18 \qquad 5$$

Recursive Cases: Example (II)

Recursive Cases

NP, 0.18

ears

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} P(X \to Y|Z) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z)$$

$$\begin{array}{c} \text{S} - \text{NP VP} & \text{1.0} & \text{NP} - \text{NP PP} & \text{0.4} \\ \text{PP} - \text{P NP} & \text{1.0} & \text{NP} - \text{astronomers} & \text{0.1} \\ \text{VP} - \text{V NP} & \text{0.7} & \text{NP} - \text{ears} & \text{0.18} \\ \text{VP} - \text{VP PP} & \text{0.3} & \text{NP} - \text{saw} & \text{0.04} \\ \text{P} - \text{with} & \text{1.0} & \text{NP} - \text{stars} & \text{0.18} \\ \text{V} - \text{saw} & \text{1.0} & \text{NP} - \text{telescopes} & \text{0.1} \end{array}$$

	_	_	9	·	9
astronomers	NP, 0.1	Ø	S, 0.0126		
	saw	V, 1.0 NP, 0.04	VP, 0.126	Ø	
		stars	NP, 0.18	Ø	NP, 0.01296
			with	P, 1.0	PP, 0.18
				ears	NP, 0.18

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} P(X \to Y|Z) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z)$$

$$\begin{array}{c} \text{S} - \text{NP} \cdot \text{VP} & 1.0 & \text{NP} - \text{NP} \cdot \text{PP} & 0.4 \\ \text{PP} - \text{P} \cdot \text{NP} & 1.0 & \text{NP} - \text{astronomers} & 0.1 \\ \text{VP} - \text{V} \cdot \text{NP} & 0.7 & \text{NP} - \text{ears} & 0.18 \\ \text{VP} - \text{VP} \cdot \text{PP} & 0.3 & \text{NP} - \text{saw} & 0.04 \\ \text{P} - \text{with} & 1.0 & \text{NP} - \text{stars} & 0.18 \\ \text{V} - \text{saw} & 1.0 & \text{NP} - \text{telescopes} & 0.1 \end{array}$$

	_	_	9	·	9
astronomers	NP, 0.1	Ø	S, 0.0126	Ø	
	saw	V, 1.0 NP, 0.04	VP, 0.126	Ø	VP, 0.015876
		stars	NP, 0.18	Ø	NP, 0.01296
			with	P, 1.0	PP, 0.18
				ears	NP, 0.18

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} P(X \to Y|Z) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z)$$

$$\begin{array}{c} \text{S} - \text{NP} \cdot \text{VP} & 1.0 & \text{NP} - \text{NP} \cdot \text{PP} & 0.4 \\ \text{PP} - \text{P} \cdot \text{NP} & 1.0 & \text{NP} - \text{astronomers} & 0.1 \\ \text{VP} - \text{V} \cdot \text{NP} & 0.7 & \text{NP} - \text{ears} & 0.18 \\ \text{VP} - \text{VP} \cdot \text{PP} & 0.3 & \text{NP} - \text{saw} & 0.04 \\ \text{P} - \text{with} & 1.0 & \text{NP} - \text{stars} & 0.18 \\ \text{V} - \text{saw} & 1.0 & \text{NP} - \text{telescopes} & 0.1 \end{array}$$

	1	2	3	7	9
astronomers	NP, 0.1	Ø	S, 0.0126	Ø	S, 0.0015876
	saw	V, 1.0 NP, 0.04	VP, 0.126	Ø	VP, 0.015876
		stars	NP, 0.18	Ø	NP, 0.01296
			with	P, 1.0	PP, 0.18
				ears	NP, 0.18

Probabilistic CKY

Input: a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$. **Initialization:**

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i,i,X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:

- For $l = 1 \dots (n-1)$
 - For $i = 1 \dots (n l)$
 - * Set i = i + l
 - * For all $X \in N$, calculate

$$\pi(i,j,X) = \max_{\substack{X \rightarrow YZ \in \mathbb{R}, \\ s \in \{i,...(j-1)\}}} \left(q(X \rightarrow YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

and

$$bp(i,j,X) = \underset{\substack{X \rightarrow YZ \in R, \\ s \in \{i...(j-1)\}}}{\max} \left(q(X \rightarrow YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

Output: Return $\pi(1, n, S) = \max_{t \in \mathcal{T}(s)} p(t)$, and backpointers bp which allow recovery of $\arg \max_{t \in \mathcal{T}(s)} p(t)$.

Remarks

- Space and runtime requirements
 - Space: $\mathbb{O}(|\mathcal{N}|n^2)$ Time: $\mathbb{O}(|\mathcal{N}|n^3)$

astronomers					
	saw				
		stars			
			with		
				ears	

Probabilistic CKY vs. Viterbi Decoding

Viterbi decoding

Probabilistic CKY

Keywords: conditional independence, forward enumerating, backward tracing, dynamic programming

Summary

1. Probabilistic CFGs

2. Probabilistic CKY Algorithm

Reference

Collins, M. (2017).

Natural language processing: Lecture notes.

Smith, N. A. (2017).

Natural language processing: Lecture notes.