على التفرع	على التسلسل		– تذكير
$\begin{array}{c} I_{1} \\ I_{2} \\ I_{3} \\ \end{array}$	$I \rightarrow I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow $	- شدة التيار الكهربائي المار عبر ناقل والتي يرمز لها ب I هي كمية الكهرباء q التي تعبر هذا الناقل خلال وحدة الزمن، يعبر عنها بـ : $I = \frac{ q }{t}$ و وحدتما هي الامبير I . - جهة التيار تكون خارجة من القطب الموجب للمولد وداخلة من القطب السالب(عكس جهة حركة الإلكترونات)	الله الكهربائي I الكهربائي I الكهربائي
$I_{eq} = I_1 + I_2 + I_3$	$I_{eq} = I_1 = I_2 = I_3$	- جهاز قياس شدة التيار الكهربائي يسمى الامبير متر	1'
A R ₁ U B A A A A A A A A A A A A A A A A A A	A R ₁ R ₂ B	(V) فرق الكمون الكهربائي (أو التوتر الكهربائي) مقدار جبري قابل للقياس ووحدته الفولط الكهربائي (أو التوتر الكهربائي مقدار جبري قابل للقياس ووحدته الفولط $U_{AB}=U_A-U_B$: - يرمز للتوتر الكهربائي (فرق الكمون) بين $U_{AB}=U_A-U_B$ و نكتب $U_{BA}=U_{AB}=U_B-U_A$ $U_{BA}=U_B-U_A$ $U_{AB}>0 \Rightarrow U_A>U_B$ $U_{AB}>0 \Rightarrow U_A<0$	Uالتوتر الكهربائي
$U_{\mathbf{e}q} = U_1 = U_2$	$U_{\mathbf{e}q} = U_1 + U_2$	- جهاز قياس التوتر الكهربائي الفولط متر (V) أو راسم الاهتزاز المهبطي أو مقياس الفولط الرقمي.	
ال الله الله الله الله الله الله الله ا	السفال الأورسي المكافئ A R ₁ R ₂ B	الناقل الأومي ثنائي قطب خامل يحول جزء من الطاقة الكهربائية التي يتلقاها إلى طاقة الحرارية بفعل الجول $U_R=R imes I$. $U_R=R$ \times I . مقاومة الناقل الأومي و وحدتما الأوم Ω)	الناقل الاومي R
$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$	$R_{\mathbf{e}q} = R_1 + R_2$	 جهاز قياس مقاومة الناقل الأومي يدعى الأوم متر 	
$\begin{array}{c c} & & & & \\ \hline \end{array}$	$\begin{array}{c c} & & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline &$	– المكثفة عنصر كهربائي ثنائي قطب قادر على تخزين الشحنات الكهربائية. – تتكون من ناقلين كهربائيين يدعى كل منهما لبوس المكثفة يفصل بينهما بعازل للكهرباء (شمع، هواء، ورق،). – من مميزتما سعتها $ $	المكثفة <i>C</i>
$C_{\mathbf{e}q} = C_1 + C_2$	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$		$\dashv \vdash$
⊕ ⊕ E —		- المولد ثنائي قطب يجعل الشحنة كهربائية تتحرك باستمرار بين القطبين وبالتالي إعطاء تيار كهربائي، جهته عكس جها (فهو يسحب الإلكترونات من جهة قطبه الموجب ويدفعها من جهة قطبه السالب).	المولد الكهربائي
		الوشيعة عنصر كهربائي ثنائي قطب عبارة عن سلك ناقل ملفوف على شكل حلقات ومن مميزتما أن لها مقاومة R و N مقدار موجب يقدر بالهنري تتعلق قيمته بالشكل الهندسي للوشيعة (الطول ℓ ، نصف القطر r ، عدد اللفات L	الوشيعة

	أثناء شحن المكثفة					
الرسومات البيانية	المعادلات التفاضلية و حلها		الرسومات البيانية	المعادلات التفاضلية و حلها		
E	$\frac{U_C(t)}{\tau} + \frac{dU_C(t)}{dt} = 0$	المعادلة	E	$\frac{U_C(t)}{\tau} + \frac{dU_C(t)}{dt} = \frac{E}{\tau}$	المعادلة	التوتر بين طرفي U_C المكثفة
τ	$U_C(t) = Ee^{-t/\tau}$	الحل	τ	$U_C(t) = E(1 - e^{-t/\tau})$	الحل	00
Ţ	$\frac{U_R(t)}{\tau} + \frac{dU_R(t)}{dt} = 0$	المعادلة	E	$\frac{U_R(t)}{\tau} + \frac{dU_R(t)}{dt} = 0$	المعادلة الحل	التوتر بين طرفي U_R المقاومة
-EZ	$U_R(t) = -Ee^{-t/\tau}$	اعل	τ	$U_R(t) = Ee^{-t/\tau}$	المحل	
CE	$\frac{q(t)}{\tau} + \frac{dq(t)}{dt} = 0$	المعادلة	CE	$\frac{q(t)}{\tau} + \frac{dq(t)}{dt} = \frac{E}{R}$	المعادلة	
τ	$q(t) = CEe^{-t/\tau} = q_0e^{-t/\tau}$	الحل	τ	$q(t) = CE \left(1 - e^{-t/\tau}\right)$ $= q_0 \left(1 - e^{-t/\tau}\right)$	الحل	عبارة الشحنة <i>q</i>
Ţ	$\frac{i(t)}{\tau} + \frac{di(t)}{dt} = 0$ $i(t) = -\frac{E}{R}e^{-t/\tau} = -I_0e^{-t/\tau}$	المعادلة	E/R	$= q_0 (1 - e^{-t/\tau})$ $\frac{i(t)}{\tau} + \frac{di(t)}{dt} = 0$ $i(t) = \frac{E}{R} e^{-t/\tau}$	المعادلة	عبارة تيار الشحن
$-\frac{E}{R}$	$i(t) = -\frac{E}{R}e^{-t/\tau} = -I_0e^{-t/\tau}$	الحل	t	$i(t) = \frac{E}{R} e^{-t/\tau}$	الحل	I
E_C	$E_{\mathcal{C}}$			$E(c) = \frac{1}{2}CU_{c}^{2} = \frac{1}{2}qU_{c} = \frac{1}{2}u_{c}$	$1 a^2$	
$\frac{1}{2}CE^2$	$\frac{1}{2}CE^2$	ريغ	1	$E(c) = \frac{1}{2}CU_c^2 = \frac{1}{2}qU_c =$	$=\frac{1}{2}\frac{q}{C}$	
			$\frac{-CE^2J}{2}$ $\frac{E(C)}{2} = 0$ $\frac{U}{2}$	ت فة الأعظمية يعبر عنها بــ:	ص کے –طاقة المكثا	
تفریغ مکثفة 0. 37E(c)	0.4E(c)	E(c) =	$\frac{1}{2}CU_c^2 j E(c) = \frac{1}{2}CU_c^2 j = 0 \le t \le 57$ النظام الانتقالي	$E(c) = \frac{1}{2}CE^2$		E(c) الطاقة
0.13E(c)	شحن المكثفة	E(c) =	Ojule $E(c) = \frac{1}{2}CE^2j$ $t \ge 5\tau$ ludia lulia	$(t_{1/2})$ س طاقة المكثفة إلى النصف	– زمن تناقص	
Ť/2 Ť	, t		, ~ 1 <u>1</u>	$\left(t_{1/2}\right) = \frac{\tau}{2} \ln 2$		

و التيار)	أثناء فتح القاطعة (انقطاع		أثناء غلق القاطعة (ظهور التيار)			
الرسومات البيانية	المعادلات التفاضلية و حلها		الرسومات البيانية	المعادلات التفاضلية و حلها		
E/R	$\frac{1}{\tau}i + \frac{di}{dt} = 0$ مادلة	مهرا	E /	$\frac{1}{\tau}i(t) + \frac{di(t)}{dt} = \frac{E}{L}$	المعادلة	التيار الكهربائي
τ	$i(t) = \frac{E}{R}e^{-t/\tau}$	-1	τ	$i(t) = \frac{E}{R} \left(1 - e^{-t/\tau} \right)$	الحل	I
0	$ri + L\frac{di}{dt} = U_L$ مادلة	مهرا	E	$ri + L\frac{di}{dt} = U_L$	المعادلة	
$-R_0 \frac{E}{R}$	$U_{\mathrm{L}}(t) = Ee^{-t/ au}(rac{r}{R}-1)$	-1	$r\frac{E}{R}$	$U_{L}(t) = r\frac{E}{R} + Ee^{-t/\tau}(1 - \frac{r}{R})$	الحل	التوتر بين طرفي U_L الوشيعة
$R_0 \frac{E}{R}$	$rac{dU_R}{dt} + rac{R_0}{L}(1 + rac{r}{R_0})U_R = 0$	ملاا	$R_0 \frac{E}{R}$	$\frac{dU_R}{dt} + \frac{R_0}{L}(1 + \frac{r}{R_0})U_R = \frac{ER_0}{L}$	المعادلة	التوتر بين طرفي الناقل الأومى
τ	$U_{\rm R}(t) = R_0 \frac{E}{R} {\rm e}^{-{\rm t}/{ m \tau}}$	-1		$U_R(t) = RI = R_0 \frac{E}{R} \left(1 - e^{-t/\tau} \right)$	الحل	U_R
$\frac{1}{2}L\left(\frac{E}{R}\right)^{2}$	$\frac{1}{2}L\left(\frac{E}{R}\right)^{-E_L}$			$E(L) = \frac{1}{2}LI^2$		
$\frac{1}{2}L\left(\frac{E^2}{R}\right) \times 0.37 - \cdots$	قتح القاطعة $\frac{1}{2}L\left(\frac{E}{R}\right) > 0,4$		غلمة	$E(c)=rac{1}{2}L\left(rac{E}{R} ight)^2$. يعة الأعظمية يعبر عنها بــ $t=1$ تكون الطاقة المخزنة في الوشيعة 40% من الطاقة الأعد		E(L) الطاقة
	2 (R)		300 (0) 30	طعة).	(غلق القا	
$\overline{\tau}/_2$	τ		t (ä	ىد $t=0$ يقطع محور الأزمنة في $t=7/2$ فتح القاطع	- المماس عن	

المكثف المستقالة المستقالة

شدة التيار الكهربائي تقاس بالامبير (A)	i	$\langle q angle$ الشحنة	$\langle I angle$ التيار	
(C) شحنة التيار الكهربائي تقاس بالكولوم	q=n.é	$q = C.U_c$	<u> </u>	حالة تيار ثابت
الزمن يقاس به الثانية (S)	t	q Grot	$l = \frac{1}{t}$	الشدة
(F) سعة المكثفة تقاس بـ الفاراد	С	$Q(t) = C.U_c(t)$	$i(t) = \frac{dq(t)}{dt} = C \frac{dU_c(t)}{dt}$	حالة تيار متغير
		$Q(\iota) = 0.0_{c}(\iota)$	$t(t) = \frac{dt}{dt} = c. \frac{dt}{dt}$	الشدة

 $\langle \, U_{eq} = E = U_R + U_C
angle$ قانون التوترات في حالة الربط على التسلسل التوتر الكليE = 2مجموع التوترات الموجودة بين طرفي كل ثنائي قطب

الوحدة		القانون		تعريف	
يقاس ب: Farad (F)		سعة المكثفة	С	c	
m^2 : تقاس ب		مساحة اللبوس	S	$C = \varepsilon \frac{3}{d}$	
m: يقاس ب		البعد بين اللبوسين	d	u	4
		ثابت العزل الكهربائي	ε	$\varepsilon = \varepsilon_0 \times \varepsilon_r$	سعة المكثفة
$\varepsilon_0 = 8.85. 10^{-12} \mathrm{J}$	$F.m^{-}$	$^{-1}$ ثابت العزل الكهربائي المطلق للفراغ	ε_0		المستوية
		ثابت العزل الكهربائي النسبي (يميز العازل)	ε_r		
سعة المكثفة (F)	С	au =	<i>R. C</i>		
$Ohm~(\Omega)$ مقاومة ناقل أومي	R	$[\tau] = [R.C] = [R].[C] = \frac{[U]}{[I]}$			au ثابت الزمن $ au$
		متجانس مع الزمن)	(τ)	بعد الزمن هو الثانية (S) (

ثابت الزمن وزمن نصف الشحن

	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
المدلول الفيزيائي	$U_C(t) = E\left(1 - e^{-t/\tau}\right)$	اللحظات		
المكثفة فارغة	$U_C(0) = E(1-1) = 0$	t = 0		
المكثفة شحنت كليا (نظام دائم)	$U_C(\infty) = E(1 - e^{-\infty}) = E$	t = ∞		
اللحظة التي شحنت فيها المكثفة بنسبة (63%)	$U_{\rm C}(\tau) = E(1 - e^{-1}) = 0.63E$	$t = \tau$		
زمن نصف الشحن	$U_{C}\left(t_{\frac{1}{2}}\right) = \frac{E}{2} = E\left(1 - e^{-t^{1/2}/\tau}\right)$	$t = t_{\frac{1}{2}}$ $= \tau \ln 2$		
نظام دائم (99%)	$U_{\rm C}(5\tau) = E(1 - e^{-5}) = 0.99E$	$t = 5\tau$		
ملاحظة : يمكن تطبيق طريقة الجدول والمنحنيين البيانيين على بقية الحلول بالنسبة للمكثفة أو الوشيعة				

منحنى تطور u_c أثناء شحن المكثفة

- يمكن لراسم الاهتزاز المهبطي إعطاء منحنيين في آن واحد .
- يقيس جهاز راسم الاهتزاز المهبطي التوتر U_{AB} حيث تكون النقطة Aمن الدارة مرتبطة بأحد المدخلين Y و فيحين تكون النقطة Bمرتبطة بأرضي راسم الاهتزاز المهبطي.
 - (INV) إذا أردنا أن نقلب المنحنى (نجعل قيمة سالبة بعد أن كانت موجبة أو العكس) نضغط على الزر

ـــة	الوشيع		
	$r \neq 0$	مقاومة الوشيعة غير مهملة	الوشيعة الغير صافية
	r = 0	مقاومة الوشيعة مهملة	الوشيعة الصافية (المثالية)
		مية وخاصية التحريضية	خاصية الوشيعة لها خاصية المقاو

		م بين طرفي الوشيعة	قانون أو	لتوترات	قانون ا
		الوشيعة الغير صافية	الوشيعة صافية	عند فتح القاطعة	عند غلق القاطعة
ذاتية الوشيعة وحدتما الهنري H	L	$U_L = ri + L \frac{di}{dt}$	$U_L = L \frac{di}{dt}$	$U_R + U_L = 0$	$U_R + U_L = E$
Ω مقاومتها الداخلية وحدتها الاوم	r	dt	at dt		
(نقول أنها سلكت سلوك ناقل أومي)		aı	لة الوشيعة غير صافية) ي	لتيار ثابتة عبر الوشيعة (في حا	ملاحظة اذاكانت شدة ا
اومة الناقل الأومي		$\iota = \frac{1}{2}$	$\langle R = R_{eq}$	$=R_0+r\rangle$	
اومة مكافئة لكل النواقل الأومية	R مق	R	. 64	,	ثابت الزمن ٢
((τ متجانس مع الزمن)	(S)	[τ] بعد الزمن هو الثانية	$=\frac{[L]}{[R]}=\frac{[I]^{-1}}{[I]}$	$\frac{1}{T} \cdot [U] \cdot [T] = [T]$	وتحليله البعدي

 $\langle U_L + U_R = U_{eq} = E
angle$ قانون التوترات في حالة الربط على التسلسل التوتر الكلي = مجموع التوترات الموجودة بين طرفي كل ثنائي قطب

		بعض المفاهيم الواردة في البكالوريا
1	الطريقة الاولى (حسابيا)	au = L/R أو $ au = R.C$
	الطريقة الثانية (بيانيا)	$t(s)$ نسقط نقطة تقاطع المماس عند $(t=0)$ مع المستقيم المقارب $U_C=E$ على محور الأزمنة
تحديد قيمة ثابت الزمن τ	الطريقة الثالثة (بيانيا)	يكون : $U_C=0.63E$ أو $U_C=0.37$ بالإسقاط في البيان نجد قيمة ل
		U_C الموافقة لقيمتي $ au$
1	الطريقة الرابعة (بيانيا)	(au=t/5) ومنه $(t=5 au)$ ومنه النظام الدائم يكون بعد اللحظة
ì	شحن مكثفة	هو الزمن اللازم لكي تشحن المكثفة بنسبة %63.
ثابت الزمن حسب الدارة	تفريغ المكثفة	هو الزمن اللازم لكي تفرغ المكتفة إلى نسبة %37 (أو تفرغ بنسبة %63).
ت	تطبيق التيار على وشيعة	هو الزمن اللازم لتبلغ شدة التيار في الدارة %63 من قيمتها العظمى.
ق	قطع التيار عن وشيعة	هو الزمن اللازم لكي تنقص شدة التيار الى نسبة %37 من قيمتها العظمى.
_ قمة ثابت النمية عمل فكمة	ق من من قباليم ما السالطالم	si di

- قيمة ثابت الزمن تعطي فكرة عن مدة الوصول إلى النظام الدائم.
- لمتابعة التطور الزمني للتوتر الكهربائي يمكن ربط ثنائي القطب براسم الاهتزاز المهبطي.
 - حاملات الشحنة الكهربائية تتمثل في الإلكترونات.
- وشيعة). وي كل الحالات سواء كانت مكثفة أو وشيعة). $t_{1/2}$
 - بالنسبة للطاقة في المكثفة والوشيعة هناك ضياع لهذه الطاقة على شكل تحويل حراري في المقاومات بفعل الجول.