Résoudre une inéquation

On se propose de résoudre les inéquations suivantes.

$$\cos(x)\geqslant -rac{1}{2}$$
 sur l'intervalle $]-\pi;\pi]$

1. Déterminons les points du cercle trigonométrique ayant pour abscisse $-\frac{1}{2}$. Ces points sont associés à des angles dont la cosinus est égal à $-\frac{1}{2}$. Nous trouvons deux points A et B associés respectivement aux angles $-\frac{2\pi}{3}$ et $\frac{2\pi}{3}$. 2. L'ensemble des solutions de l'équation est l'ensemble des angles associés aux points situés sur un des deux arcs de cercle reliants A et B. Pour déterminer lequel des deux arcs, partons par exemple du point A et déplaçons-nous sur le cercle de manière à augmenter le cosinus de l'angle pour qu'il soit plus grand que $-\frac{1}{2}$. Nous trouvons que l'arc de cercle reliant A et B est le grand arc de cercle en se déplaçant dans le sens direct (ou trigonométrique).

3. Donc l'ensemble des solutions de l'inéquation est l'intervalle $\left]-\frac{2\pi}{3};\frac{2\pi}{3}\right]$.

$\sin(x) < rac{\sqrt{2}}{2}$ sur l'intervalle $]-\pi;\pi]$

1. Déterminons les points du cercle trigonométrique ayant pour ordonnée $\frac{\sqrt{2}}{2}$. Ces points sont associés à des angles dont la sinus est égal à $\frac{\sqrt{2}}{2}$. Nous trouvons deux points A et B associés respectivement aux angles $\frac{\pi}{4}$ et $\frac{3\pi}{4}$. 2. L'ensemble des solutions de l'équation est l'ensemble des angles associés aux points situés sur un des deux arcs de cercle reliants A et B. Pour déterminer lequel des deux arcs, partons par exemple du point A et déplaçons-nous sur le cercle de manière à diminuer le sinus de l'angle pour qu'il soit plus petit que $\frac{\sqrt{2}}{2}$. Nous trouvons que l'arc de cercle reliant A et B est le grand arc de cercle en se déplaçant dans le sens indirect.

3. Donc l'ensemble des solutions de l'inéquation est l'intervalle $\left]-\pi;\frac{\pi}{4}\right[\cup\left]\frac{3\pi}{4};\pi\right]$.

Résoudre une inéquation

On se propose de résoudre les inéquations suivantes.

$$\cos(x)\geqslant -rac{1}{2}$$
 sur l'intervalle $]-\pi;\pi]$

1. Déterminons les points du cercle trigonométrique ayant pour abscisse $-\frac{1}{2}$. Ces points sont associés à des angles dont la cosinus est égal à $-\frac{1}{2}$. Nous trouvons deux points A et B associés respectivement aux angles $-\frac{2\pi}{3}$ et $\frac{2\pi}{3}$. 2. L'ensemble des solutions de l'équation est l'ensemble des angles associés aux points situés sur un des deux arcs de cercle reliants A et B. Pour déterminer lequel des deux arcs, partons par exemple du point A et déplaçons-nous sur le cercle de manière à augmenter le cosinus de l'angle pour qu'il soit plus grand que $-\frac{1}{2}$. Nous trouvons que l'arc de cercle reliant A et B est le grand arc de cercle en se déplaçant dans le sens direct (ou trigonométrique).

3. Donc l'ensemble des solutions de l'inéquation est l'intervalle $\left]-\frac{2\pi}{3};\frac{2\pi}{3}\right]$.

$\sin(x) < rac{\sqrt{2}}{2}$ sur l'intervalle $]-\pi;\pi]$

1. Déterminons les points du cercle trigonométrique ayant pour ordonnée $\frac{\sqrt{2}}{2}$. Ces points sont associés à des angles dont la sinus est égal à $\frac{\sqrt{2}}{2}$. Nous trouvons deux points A et B associés respectivement aux angles $\frac{\pi}{4}$ et $\frac{3\pi}{4}$. 2. L'ensemble des solutions de l'équation est l'ensemble des angles associés aux points situés sur un des deux arcs de cercle reliants A et B. Pour déterminer lequel des deux arcs, partons par exemple du point A et déplaçons-nous sur le cercle de manière à diminuer le sinus de l'angle pour qu'il soit plus petit que $\frac{\sqrt{2}}{2}$. Nous trouvons que l'arc de cercle reliant A et B est le grand arc de cercle en se déplaçant dans le sens indirect.

3. Donc l'ensemble des solutions de l'inéquation est l'intervalle $\left]-\pi;\frac{\pi}{4}\right[\cup\left]\frac{3\pi}{4};\pi\right]$.