Practical 4

MAKING AND USING GRAPHS IN R

Before you even begin conducting inferential statistical testing, it is always a good idea to explore your data visually and to get a sense of the structure of the data. R provides different ways to get a summary of the data, so you can look at the measures of dispersion (such as standard deviation or quartiles) and measures of central tendency (such as mean or median).

We have looked a using boxplots and histograms to get a feel for the structure of the data. In this lab, we'll look at a few more graphing options that R provides.

Simple Line Graphs

Assume that you have collected some data on the number of different drinks sold in a café. The data look like this...

	Mon	Tue	Wed	Thu	Fri
Tea	5	6	4	3	2
Coffee	8	9	5	6	6
Hot	3	4	5	4	3
chocolate					
Lemonade	3	1	2	2	1

We could create a table for these data directly in R...

```
>tea<-c(5,6,4,3,2)
>coffee<-c(8,9,5,6,6)
>hot_chocolate<-c(3,4,5,4,3)
>lemonade<-c(3,1,2,2,1)
```

Or we could create a text or csv file called 'beverages', and use File / Import Dataset / From Text (base)

This should give an option to import the file, and then shows the table at the top of your window.

You'll also have the following R command:

- > beverages <- read.csv("C:/Program Files/R/beverages.csv") > view(beverages)
- Then type:

>attach(beverages)

You can make sure that the data is imported by typing:

>show(beverages)

Now we'll make line graphs for these data.

>plot(tea)

We plot an overlaid line, using type "o" and assign a colour to this...

But we want to make this more useful. We add the other data for comparison...First, we need to make sure that the y-axis is large enough to include the other values. The largest number in our set is 9, so we need to have the y-axis range 0 to 10.

$$>$$
 plot(tea, type = "o", col = "blue", ylim = $c(0,10)$)

We can then add the other drinks...

- > lines(coffee,type="o",pch=22,lty=2,col="red")
- > lines(hot_chocolate,type="o",pch=22,lty=2,col="green")
- > lines(lemonade,type="o",pch=22,lty=2,col="brown")

Next, we want to label the x-axis with the days of the week.

First, we need remove the existing labels on the graph...

```
plot(tea, type= "o", col = "blue", axes=FALSE, ann=FALSE, ylim = c(0,10))
```

Then we add the x-axis labels that correspond to days of the week and y-axis for the full range of the set (we'll call this 'd full'):

```
> d_full<-range(0,tea,coffee,hot_chocolate,lemonade)
> show(d_full)
[1] 0 9

> axis(1, at=1:5, lab=c("Mon","Tue","Wed","Thu","Fri"))
> axis(2, las=1, at=0:d_full[2])
```

And we want to provide labels for the axes...

```
> title(xlab="Days", col.lab = "black", font.main=4)
> title(ylab="Sales", col.lab="black", font.main=4)
```

Then we can add back the other lines...

Finally, we want to add the Legend to explain what the different colours mean...

> legend(3,d_full[2],c("tea", "coffee", "hot chocolate", "lemonade"), cex=0.8,col=c("blue", "green", "red", "brown"), pch=1:2,lty=1:2)

Stacked Barchart

```
> barplot(as.matrix(bev_data), col=rainbow(5))
```

> legend("topright", c("mon", "tue", "wed", "thu", "fri"), cex=0.6, bty="n", fill=rainbow(5))

Pie Chart

> pie(coffee, main="coffee sales", col=rainbow(length(coffee)),labels = c("mon", "tue", "wed ", "thu", "fri"))

coffee sales

In this practical, we have provided a couple of simple exercises to get you started.

If these are too easy for you, have a look at: https://www.r-graph-gallery.com/all-graphs/

A couple of examples of graphs from this site are given below.

There are also some excellent resources and tools under the ggplot function that R supports. This tutorial is pretty comprehensive:

http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html

Heatmap

Using the Mtcars dataset that we looked at last week, we can create variations on a heatmap.

>mtcars

>data=as.matrix(mtcars)

>heatmap(data, Colv = NA, Rowv = NA, scale="column")

you can play with the colours...

> heatmap(data, Colv = NA, Rowv= NA, scale="column", col = terrain.colors(256))

1	2	3	4	5	6	7	8	9	10	-11	12	13	14	15.	16	37	18	19	20	21
22	23		25							-	33	34	36-		37	38	39	40	41	42
43	44	45	46	47	48	49	50	11	102	.53	54	11		57	188	.69	60	41	52	63
54	65	88	67.	68	89	70	71	72		74	75	76	27	78	29	893	1	82	83	
55	86	87	88	199	90	91	92	99	91.	95	96	17	100			101	102	103	104	106
98	107	100	109	110	313	112	m	114	115	116	112	110	110		121	122	123	124	125	126
27	128	128	130	-	102	100	134	135	1200	100	138	131	140	141	142	143	144	145	101	147
48	149	150	251	152			_													
					114	111	171	111	175	179	111	101	100	185	111	1105	100	1117	118	Inh
90	193	102	193	334	105	194	197	136	110	200	201	202	2013	204	205	206	297	208	203	210
211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231
32	233	234	235	236	237	238	239	240	241	242	243	244	245	246	-247	248	249	250	251	252
53	254	255	256	257		259	260						_	-	_	_		_		
			-		-		-			2704	211		195	210	270	2001	291	292	297	214
95	200	267	218	200	300	301	302	303	304	305	386	307	308	300	310.	311	252	313	314	315
314	257	318	319	320	321	322	323	324	325	328	327	328	529	330	331	332	333	334	335	336
37	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357
558	359	360	361	362	363	364	365	366	367	368	289	370	201	372	373	374	1576		377	378
379	380	381	382	363	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399
100	401	492	200	404	405	406	407	408	(MDK)	410	411	412	413	1614	415	416	417	418	419	420
121	422	423	424	425	428	427		429	430	431	432	433	A34	435	436	437	438	439	440	441
42	443	444	445	448	447	144	449	450	41	1	410		400	456	457	1		460		912 (000)
(6)	464	465		467	468	469	470	471	472	473	474	475	478		478	479	480	481	482	483
184	485	486	487	488	483			492	(420	494	495	496	497	498	410	500	501	102	503	364
-05	-		508	509	510	511	(MIXED)	513	514	515	518	517	216	519	520	521	522	521	524	525
26	727	524	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546
	Total Control	620	100	7 36		100	200	-	900	35T	558	559	560	5410		353	384	1	75	
968 TOTAL	569	570	571		573	574	575	576	\$77	979	579	580	581	582	583	200	565	500	507	-
189	590	591	592	4900	350	595	598			500/	600	601	602	603	200411	605	606	607	608	609
310	811	612	613.	635	636	616	638	618	840	620	621	622	623	1524	625	626	627	628	829	651