МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Лабораторная работа 2.3.1 Получение и измерение вакуума

Автор: Григорьев Даниил Б01-407

1 Аннотация

Цель работы: 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

2 Теоретическая часть

2.1 Процесс откачки

Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений i обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\rm u}$, десорбция с поверхностей внутри сосуда $Q_{\rm d}$, обратный ток через насос $Q_{\rm h}$. Тогда имеем:

$$-VdP = \left(PW - \sum Q_i\right)dt\tag{1}$$

При достижении предельного вакуума устанавливается $P_{\rm np}$, и dP=0. В таком случае:

$$W = \frac{\sum Q_i}{P_{\text{np}}} \tag{2}$$

Поскольку обычно $Q_{\text{и}}$ постоянно, а $Q_{\text{н}}$ и $Q_{\text{д}}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\pi p} = (P_0 - P_{\pi p}) \exp\left(-\frac{W}{V}t\right) \tag{3}$$

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \ldots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W_{\rm H}} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{4}$$

2.2 Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При переходе к высокому вакууму столкновения молекул между собой начинают играть меньшую роль, чем соударения со стенками.

Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}} \cdot \frac{P_2 - P_1}{l} \tag{5}$$

Если труба соединяет установку с насосом, то давлением P_1 у его конца можно пренебречь. Давление в сосуде $P = P_2$. Тогда пропускная способность трубы:

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4r^3}{3l} \sqrt{\frac{2\pi RT}{\mu}} \tag{6}$$

3 Экспериментальная установка

Установка изготовлена из стекла, и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (M_1 и M_2), форвакуумного насоса (ФН) и соединительных кранов ($K_1, K_2, \ldots K_6$) (Рис. 1). Кроме того, в состав установки входят: реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Рис. 1. Схема экспериментальной установки

4 Ход работы

4.1 Определение объема форвакуумной и высоковакуумной частей установки

- 1. Атмосферное давление равно $P_{\rm A} = (752 \pm 1)$ торр.
- 2. Впустим в установку атмосферный воздух через краны К1 и К2.
- 3. Закроем краны К5 и К6, запрем $V_{\text{зап}} = 50 \text{ см}^3$ воздуха.
- 4. Закроем краны K1 и K2, включим форвакуумный насос. Подключим установку к форвакуумному насосу краном K2 и откачаем ее до давления 10^{-2} торр.
- 5. Повернув рукоятку крана K2, отсоединим установку от форвакуумного насоса. Откроем кран K1.
- 6. Перекрыв К3, отделим ВБ от ФБ.
- 7. Закроем К4.
- 8. Откроем К5, измерим уровень масла слева и справа, которые дадут нам давление P_1 . Из закона Бойля-Мариотта $V_{\Phi \text{B}} = V_{\text{зап}} P_{\text{A}}/P_1$.
- 9. Аналогичным методом измерим объем $V_{\text{вв}}$, открыв кран K3.

10. Результаты первого измерения в таблице 1. Погрешность измерения уровня примем $\Delta h = 0.1~{\rm cm}$.

h_1 , cm	h_2 , cm	P_1 , Topp	h_3 , cm	h_4 , cm	P_2 , торр
35,0	15,0	13,0	31,6	18,8	8,3

Таблица 1. Таблица первых показаний масляного манометра.

Сотрудник лаборатории сразу понял, что измерения неверны, поэтому измерим второй раз, более внимательно. Результаты в таблице 2.

h_1 , cm	h_2 , cm	P_1 , Topp	h_3 , cm	h_4 , см	P_2 , торр
38,3	11,3	$18,\!6$	33,7	16,3	11,8

Таблица 2. Таблица вторых показаний масляного манометра.

Расхождения в измерениях скорее всего связаны с тем, что в первом случае при снятии измерений мы поторопились и не дождались равновесного положения жидкости в масляном манометре.

11. Получим $V_{\rm фв}=(2139\pm40)~{\rm cm}^3,~V_{\rm вв}=(1180\pm30)~{\rm cm}^3.$ Относительная погрешность может быть вычислена в обоих случаях как $\varepsilon_V=\varepsilon_P+\varepsilon_{P_{\rm A}}.~\varepsilon_{V_{\rm фв}}=0,2,~\varepsilon_{V_{\rm вв}}=0,3.$

4.2 Получение высокого вакуума и измерение скорости откачки

- 12. Установим ток в лампе $I_0 = 0.6$ A.
- 13. После того, как давление упало ниже $3\cdot 10^{-2}$ торр, закроем K6 и установим ток $I_{\rm max}=1{,}29$ А для нагревания масла.
- 14. Когда давление достигнет 10^{-3} торр, включим ионизационный манометр.
- 15. По достижении $1.6 \cdot 10^{-4}$ торр начнем дегазацию.
- 16. Получаем предельное давление $P_{\rm np} = 7.5 \cdot 10^{-5}$ торр.
- 17. Остановим откачку и откроем кран K3. Снимем зависимость P(t) в процессе ухудшения, а затем в процессе улучшения вакуума.
- 18. Все результаты представим на графиках:

Из графиков 3 и 5 по МНК получаем коэффициенты прямых:

$$k_1 = (-0.203 \pm 0.090)c^{-1}$$

 $k_2 = (-0.188 \pm 0.010)c^{-1}$
 $k_{cp} = (-0.195 \pm 0.011)c^{-1}$

Из формулы (3) приборная погрешность скорости откачки:

$$\sigma_W^{\text{приб}} = W \sqrt{\left(\frac{\sigma_{V_{\text{вв}}}}{V_{\text{вв}}}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2 + \left(\frac{\sigma_{P-P_{\text{пред}}}}{(P-P_{\text{пред}})ln(P-P_{\text{пред}})}\right)^2}$$
$$\sigma_W = \sqrt{\sigma_W^{\text{случ}2} + \sigma_W^{\text{приб}^2}} = 47\text{см}^3/\text{с}$$

Рис. 2. Ухудшение вакуума 1

Рис. 3. Улучшение вакуума 1

Рис. 4. Ухудшение вакуума 2

Рис. 5. Улучшение вакуума 2

Итого:

$$W = -k_{\rm cp} * V_{\scriptscriptstyle \rm BB} = (230 \pm 47) {\rm cm}^3/{\rm c}$$

19. Оценивим величину потока газа, поступающего из насоса назад в откачиваемую систему. Воспользуемся уравнением

$$V_{\scriptscriptstyle
m BB} dP = (Q_{\scriptscriptstyle
m I} + Q_{\scriptscriptstyle
m I\hspace{-1pt}I}) dt$$

Получаем зависимость (k - средний из двух коэффициентов наклона прямых графиков в координатах P(t) при ухудшении вакуума)

$$Q_{\scriptscriptstyle \rm I\hspace{-.1em}I} + Q_{\scriptscriptstyle \rm I\hspace{-.1em}I} = k V_{\scriptscriptstyle \rm BB}$$

$$k_1 = (0.081 \pm 0.009) * 10^{-5}$$
 MM.pt.ct/c
 $k_2 = (0.086 \pm 0.005) * 10^{-5}$ MM.pt.ct/c
 $k = (0.083 \pm 0.014) * 10^{-5}$ MM.pt.ct/c

Зная также, что $P_{\text{пред}}W = Q_{\text{д}} + Q_{\text{н}} + Q_{\text{н}}$, получим

$$Q_{\rm H} = P_{\rm пред}W - kV_{\rm BB}$$

$$Q_{\rm H} = 7.4*10^{-3} {\rm mm.pt.ct}^*{\rm cm}^3/{\rm c}$$

$$\sigma_{Q_{\rm H}} = \sqrt{\left(\frac{PV_{\rm BB}}{t}\right)^2 \left(\left(\frac{\sigma_P}{P}\right)^2 + \left(\frac{\sigma_{V_{\rm BB}}}{V_{\rm BB}}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2\right) + \left(P_{\rm пред}W\right)^2 \left(\left(\frac{\sigma_{P_{\rm пред}}}{P_{\rm пред}}\right)^2 + \left(\frac{\sigma_W}{W}\right)^2\right)}$$

$$\sigma_{Q_{\rm H}} = 5, 8*10^{-4} {\rm mm.pt.ct}^*{\rm cm}^3/{\rm c}$$

- 20. Оценим пропускную способность трубки от высоковакуумного баллона до насоса. Вычислим по формуле (6) и соответствующей формуле для приборной погрешности. $C_{\rm тp}=(24\pm5){\rm cm}^3/{\rm c}$ Как видим, полученное значение вполне согласуется с рассчитанной ранее производительностью насоса.
- 21. Введём искуственную течь в систему. То есть открываем кран между форвакуумной и высоковакуумными частями установки. В результате через 3-5 минут в обеих частях установились разные давления:

$$P_{
m yct} = (1.2 \pm 0.6) * 10^{-4}
m MM.рт.ст$$
 $P_{
m \phib} = (2.0 \pm 0.3) * 10^{-3}
m MM.рт.ст$

22. Рассчитаем производительность диффузионного насоса через Р и Р.

$$P_{ ext{пред}}W=Q_1,\quad P_{ ext{yct}}W=Q_1+rac{(PV)_{ ext{кап}}}{dt}$$

$$W=rac{C_{ ext{тр}}P_{ ext{фв}}}{P_{ ext{yct}}-P_{ ext{пред}}}$$

Аналогично предыдущим пунктам рассчитываем полную погрешность и само значение:

$$W = (0.19 \pm 0.04) \pi/c$$

Напомним, что ранее мы получили производительность насоса $W = (0.23 \pm 0.05) \pi/c$.

5 Вывод

Измерили объёмы форвакуумной и высоковакуумной частей установки. Определили скорость откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума. Полученные результаты сравнимы в пределах погрешностей.

Ухудшение 1			Улучшение 1	Ухудшение 2		Улучшение 2	
t, сек	$p, \text{ MM. pt. ct} * 10^{-4}$		$p, \text{MM.pt.ct} * 10^{-4}$		$p, \text{MM.pt.ct} * 10^{-4}$		
0	1.0	0	2.2	0	1.1	0	1.9
1	1.1	1	2.0	1	1.2	1	1.7
2	1.2	2	1.8	2	1.3	2	1.6
3	1.3	3	1.6	3	1.4	3	1.5
4	1.4	4	1.5	4	1.5	4	1.3
5	1.5	5	1.3	5	1.6	5	1.2
6	1.6	6	1.2	6	1.7	6	1.1
7	1.7	7	1.1	7	1.8	7	1.0
8	1.7	8	1.0	8	1.9	8	1.0
9	1.8	9	0.97	9	2.0	9	0.97
10	1.9	10	0.96	10	2.1	10	0.96
11	2.0	11	0.94	11	2.2		
12	2.1			12	2.3		
13	2.2			13	2.4		
14	2.3			14	2.5		
15	2.4			15	2.6		
16	2.4			16	2.7		
17	2.5			17	2.8		
18	2.6			18	2.8		
19	2.7			19	2.9		
20	2.8			20	3.0		
21	2.9			21	3.1		
22	3.0			22	3.2		
23	3.1			23	3.3		
24	3.1			24	3.4		
25	3.2			25	3.5		
26	3.3			26	3.6		
27	3.3			27	3.7		
28	3.4			28	3.7		
29	3.4			29	3.8		
30	3.5			30	3.9		
31	3.6			31	3.9		
32	3.7			32	4.0		
33	3.8			33	4.1		
34	3.9			34	4.2		
35	4.0			35	4.3		
36	4.1			36	4.4		
37	4.1			37	4.5		
38	4.2			38	4.6		
39	4.3			39	4.7		
40	4.4			40	4.7		
41	4.3			41	4.8		
42	4.5			42	4.9		
43	4.6			43	5.0		
44	4.7			44	5.0		

Таблица 3. Результаты измерения давления в высоковакуумной части. Часть 1.

Ухудшение 1		7	Улучшение 1	7	Ухудшение 2	Улучшение 2	
t, сек	$p, \text{mm.pt.ct} * 10^{-4}$	t, сек	p , мм. рт. ст $*10^{-4}$	t, сек	p , мм. рт. ст $*10^{-4}$	t, сек	p , мм.рт.ст $*10^{-4}$
45	4.8			45	5.1		
48	5.0			48	5.3		
47	4.9			47	5.3		
50	5.2			50	5.5		
49	5.1			49	5.4		
52	5.3			52	5.7		
51	5.3			51	5.6		
53	5.4			53	5.7		
54	5.5			54	5.8		
55	5.5			55	5.9		
56	5.6			56	5.9		
57	5.7			57	6.0		
58	5.7						
59	5.8						
60	5.9						
61	6.0						

Таблица 4. Результаты измерения давления в высоковакуумной части. Часть 2