LP19 - Bilans thermiques : flux conductifs, convectifs et radiatifs.

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Formulation locale du bilant thermique

2. Grandeurs associées aux transferts à travers une surface Σ

Le **flux thermique** entrant à travers Σ à t la quantité $\Phi_{\Sigma}(t)$ telle que :

$$\delta Q_{entrant} = \Phi_{\Sigma}(t)dt.$$

Le flux thermique surfacique élémentaire entrant à travers dS_M à t la quantité $\varphi(M,t)$ telle que :

$$\delta Q_{entrant} = \varphi(M, t) dS_M dt$$

$$par dS_M$$

Le **vecteur densité de flux thermique** le champ $\overrightarrow{j_{th}}(M,t)$ tel que, en tout point, à tout instant, et quelque soit l'élément de surface dS_M orienté par \overrightarrow{n} étudié, on ait :

$$\varphi(M,t) = \overrightarrow{j_{th}}(M,t).\overrightarrow{n}$$

II. Propriétés des différents flux

1. Transfert par diffusion: la conduction

Ordres de grandeur de la CONDUCTIVITÉ THERMIQUE λ (en $W.m^{-1}.K^{-1}$) :

Matériau étudié	Ordre de grandeur de λ	Exemples
Métal	100	Cu : 386 – Al : 210 – acier : 13 à 46
Solide ou liquide usuel	10^{-1} à 1	Verre: 0,7 à 1 – eau: 0,6 – bois: 0,1 à 0,2
Gaz	10^{-2}	Air: $2,6.10^{-2}$
Solide + Gaz emprisonné	10^{-2}	Laine de verre : 0,004 – duvet : 0,02 – polystyrène : 0,004

 $[\]lambda$ quantifie L'INTENSITÉ des transferts thermiques diffusifs, permettant de distinguer les bon conducteurs thermiques (métaux) des bons isolants (gaz, gaz emprisonné dans un solide)

II. Propriétés des différents flux

1. Transfert par diffusion : la conduction

Ordres de grandeur de la DIFFUSIVITÉ THERMIQUE $D=\lambda/\rho c$

Matériau étudié	$\lambda (W. m^{-1}. K^{-1})$	$\rho (kg.m^{-3})$	$c(J.kg^{-1}.K^{-1})$	$D(m^2.s^{-1})$
Métal	100		10 ³	10^{-5} à 10^{-4}
Solide ou liquide usuel	10^{-1} à 1	10^3 à 10^4		10^{-7} à 10^{-6}
Gaz	10^{-2}	1		10^{-5} à 10^{-4}

D quantifie LA RAPIDITÉ des transferts thermiques diffusifs : plus D est grand pour un matériau, plus la diffusion thermique y est rapide.

II. Propriétés des différents flux

2. Transfert par convection

Discontinuité APPARENTE de température

Modèle de la COUCHE LIMITE

1. Position du problème

1. Position du problème

III. 3. Résolution

III. 3. Résolution

III. 3. Résolution

III.3) Résolution

$$\varphi_{4} = \underbrace{\frac{1}{h + h_{\text{rad}}} + \frac{d_{v}}{\lambda_{v}} + \frac{d_{a}}{\lambda_{a} + h_{\text{rad}}d_{a}}}_{T_{0} - T_{F}} + \varphi_{s} \underbrace{\frac{1}{h + h_{\text{rad}}} + \frac{d_{v}}{\lambda_{v}} + \frac{d_{a}}{\lambda_{a} + h_{\text{rad}}d_{a}}}_{T_{0} - T_{F}} + \varphi_{s} \underbrace{\frac{1}{h + h_{\text{rad}}} + \frac{d_{v}}{\lambda_{v}} + \frac{d_{a}}{\lambda_{a} + h_{\text{rad}}d_{a}}}_{T_{0} - T_{F}} + \varphi_{s} \underbrace{\frac{1}{h + h_{\text{rad}}} + \frac{d_{v}}{\lambda_{v}} + \frac{d_{a}}{\lambda_{a} + h_{\text{rad}}d_{a}}}_{T_{0} - T_{F}} + \varphi_{s} \underbrace{\frac{1}{h + h_{\text{rad}}} + \frac{d_{v}}{\lambda_{v}} + \frac{d_{a}}{\lambda_{a} + h_{\text{rad}}d_{a}}}_{T_{0} - T_{F}} + \varphi_{s} \underbrace{\frac{1}{h + h_{\text{rad}}} + \frac{d_{v}}{\lambda_{v}} + \frac{d_{a}}{\lambda_{a} + h_{\text{rad}}d_{a}}}_{T_{0} - T_{0} - T_{0}}$$

Merci pour votre attention!

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

	Conduction électrique dans un conducteur ohmique en régime permanent (tube de courant)	Diffusion thermique (sans rayonnement ni convection) dans un solide en l'absence de sources internes et de fuite thermiques par les bords en régime permanent
Equation locale	$\overrightarrow{j_{elec}} = -\gamma \ \overrightarrow{grad}(V)$ $\Delta(V) = -\frac{\rho}{\epsilon_0}$	$\overrightarrow{j_{th}} = -\lambda \ \overrightarrow{grad}(T)$ $\Delta(T) = 0$
Flux	$I = \iint_{\Sigma} \vec{J}_{elec}. \ \overrightarrow{dS}$	$\Phi = \iint_{\Sigma} ec{j}_{th} . \overrightarrow{dS}$
Résistance	$V_2 - V_1 = -R_{elec}I$ $R_{elec} = \frac{1}{\gamma} \frac{L}{S}$	$T_2 - T_1 = R_{\theta} \Phi$ $R_{\theta} = \frac{1}{\lambda} \frac{L}{S}$

