SDSC HPC User Training January 22, 2021

Mary Thomas

<u>mpthomas@ucsd.edu</u>

https://www.sdsc.edu/~mthomas/

Last updated: 1/22/21 @ 9:30am

Agenda

- Welcome
 - Introduction to Program
 - Introduce Mentors
- HPC User Training Orientation
- HPC Overview
- Registration for Expanse Account

HPC Training Mentors

- Mary Thomas < mpthomas@ucsd.edu
- Marty Kandes, Martin, <u>mkandes@sdsc.edu</u>
- Jeff Sale, <u>isale@sdsc.edu</u>,
- Bob Sinkovits, <u>sinkovit@sdsc.edu</u>
- Mahi Tatineni, <u>mahidhar@sdsc.edu</u>
- Wong, Cindy, <u>cwong@sdsc.edu</u>>
- Susan Rathbun, <u>susan@sdsc.edu</u>
- Others TBD

Early parallel computers based on commodity hardware

Stone Soupercomputer (2003):

Cheapest cost/flop=\$0, ~20 MFlops

https://web.archive.org/web/20031121211117/http://stonesoup.esd.ornl.gov

What is High Performance Computing?

- Aggregating computing power
- Delivers much higher performance than desktop computer or workstation
- Solve large problems in science, engineering, or business.

EXPANSE COMPUTING WITHOUT BOUNDARIES 5 PETAFLOP/S HPC and DATA RESOURCE

For more details see the Expanse user guide @ https://www.sdsc.edu/support/user-guides/expanse.html and the "Introduction to Expanse" webinar @ https://www.sdsc.edu/event-items/202006-Introduction-to-Expanse.html

HPC User Training

- SDSC supports training of its user community in all aspects of High-performance computing (HPC).
- The HPC User Training activity is designed to promote workforce development in technologies needed to work in HPC.
- Training is provided free to all users, including:
 - UCSD students (both graduate and undergraduate),
 - Post-docs
 - Researchers, faculty, staff, and collaborators on SDSC systems.
- To encourage student participation, some projects and activities are supported/mentored by the Supercomputing Club.

HPC Training: Scope

The scope of the training effort includes several skill development activities, including:

- Study HPC architectures (CPU, GPU), software, and admin skills.
- Learn the basics of parallel programming, including MPI using C, Fortran, and possibly other languages.
- Running HPC applications in the areas of performance characterization of the cluster, bioinformatics, numerical methods, password security, and other applications.
- Cloud Computing
- Visualization and analysis of big data sets.
- Intro to Machine Learning

HPC User Training 2021

Registration & Information Page: https://na.eventscloud.com/website/21055/home/

- Series of 2 hour sessions:
 - SDSC Staff: Fridays from 1:00pm to 3:00pm
 - Session #1: 01/22/21 to 3/12/21 (8)
 - Session #2: 4/2/21 to 5/7/21 (6)
- Workload:
 - Regular attendance
 - Successfully complete assignments
 - 1-4 hrs/week
- Evaluation metrics will include:
 - Completion of tasks
 - Credit for experience (working/internships, classes taken)

- Participants who successfully complete the HPC Training program will:
 - Receive an SDSC Certificate of Completion in HPC Training.
 - Awarded account allocations on E X P A N S E for 1 year
- In addition, UCSD students who successfully complete the HPC
 - Receive an UCSD Co-curricular Record of credit in HPC Training.
 - Become eligible to apply to be on the SCC Core team.
 - Note: the final SCC team will be chosen from this group.

HPC User Training 2021: Schedule

Week	Date	Session #1: January 22, 2021 - March 12, 2021
1	1/22/2021	Program orientation, history, plan, registration process & accounts HPC overview & Expanse Architecture
2	1/29/2021	Parallel Queues & batch scripting; intro to applications (hello world, 2Djacobian)
3	2/5/2021	GPU Architectures, CUDA
4	2/12/2021	GPU Computing with CUDA Python
5	2/19/2021	CPU Computing: Introduction to OpenMP/Threads
6	2/26/2021	CPU Computing: Introduction to MPI
7	3/5/2021	CPU Profiling, monitoring: gprof, mpiP/comms, uProf
8	3/12/2021	GPU Profiling, monitoring: comms, NSight
		Session #2: April 2, 2021 - May 7, 2021
9	4/2/2021	Containers for CPU and GPU computing
10	4/9/2021	Cloud Computing: AWS
11	4/16/2021	Cloud Computing: Azure
12	4/23/2021	Machine Learning; Tensor Flow
13	4/30/2021	SCC21 Applications: HPL, HPCG
14	5/7/2021	Accessing and Visualizing large data sets on HPC systems Using Jupyter Notebooks (pandas, to see Lustre data sets, Matplotlib, Boqeh, SeaBorn)

https://na.eventscloud.com/website/21055/home/

SDSC HPC Students Program

HPC Student Activities

- Support the Supercomputing Club
- SDSC Internships (CCR)
- HPC Training (CCR)
- Building/Supporting HPC Internship knowledge database
- Raspberry PI Cluster build:
 - Spring'21
 - SDSC Supplies hardware, location, network, etc.
 - Supercomputing Club students build-out/admin

@Supercomputing:

- Student cluster competition (SCC) teams
 - SCC20: selected
 - SCC21: planning
- Student volunteers:
 - 4 selected for SC19
- All expenses paid by SDSC and Club sponsors!

Support the Supercomputing Club!

Supercomputing and the Student Cluster Competition

http://www.studentclustercompetition.us/

https://sc20.supercomputing.org/

SCC History/Background

- Began in 2007 to provide HPC experience to undergraduate and high school students.
- Students design and build small clusters, learn scientific computing, run applications.
- Compete in a non-stop, 48-hour challenge to complete a real-world scientific workload:
 - Operate and maintain the cluster
 - Run and test science applications
 - Reproducibility Challenge: students attempt to reproduce a science paper
 - Power outage challenge restart system without warning

SCC: How to Compete

http://www.studentclustercompetition.us/

- Entering is competitive: we must write a formal application
- Max of 6 undergraduate students can be on the official team, at SC
 - All travel and expenses will be paid for (SCC, SDSC)
- Participation requires a significant level of commitment and hard work:
 - Learn HPC, applications, cluster hardware
 - Work during Fall to build competition cluster
 - o Be ablehttps://epal/trapperenngputing.org/

SCC Team Preparation Process: 3 Steps

- Step 1: HPC Training
- Step 2: Application submission
- Step 3: If selected, start learning the programs

Team Superscalar Celebration!!! 4th overall/ 19 teams

Student Cluster Competition 2020

San Diego Supercomputer Center The University of California at San Diego

About the Team

Computer Science, Math Skills: Cloud Administration, PID Control, RL.

Jacob Xiaochen Li

Role: Team Leader, Team Lead for Reproducibility Challenge (MemXCT)

Arunav Gupta

Data Science and Math

Skills: Machine Learning, Cloud Computing, Statistics

Role: Team Lead for HPCG Benchmark, 2nd Lead for MemXCT

Role: Team Lead for Gromacs

Hongyi Pan

Cognitive Science

Language Processing

Max Apodaca Computer Engineering

Skills: Cloud Computing,

Hongyu Zou Computer Science

Skills: Systems, Databases, and Networks

Role: Team Lead for HPL

Role: Team Lead for CESM

Skills: Machine learning, Natural

Applications

High Performance Linpack

CESM GROMACS MemXCT

View of main Grafana dashboard

- Part of group of 13/19 teams
- Benchmarks:
 - HPCG (3rd): 4.056/15/8
 TF/s
 - IO500 (6th): 16/144 "io500 pts"
 - o HPL (11th): 53.9/300 TF/s

- Applications: (4)
 - MemXCT: completed, submitted paper
 - Mystery App (miniVite): completed
 - GROMACS: completed 60-70% (2 / 3 tasks)
 - CESM: completed 70% (3 / 5 tasks)

Activity: Raspberry PI Cluster

- Spring Quarter 2021
- Goal is to build a 16 node PI Cluster:
 - 16 PI-4 (4 GB) devices
 - Large display monitor
 - MPI, visualization, WFI, TCP/IP
- Club Project (ACM):
 - members will build, admin
- Cluster dedicated to student projects:
 - Simulations
 - Running jobs will be displayed in lobby

HPC Students Sponsors

HALICIOĞLU DATA SCIENCE INSTITUTE

Tasks for Week 1:

- Register for the Training: https://na.eventscloud.com/website/21055/home/
- Clone the GitHub repo:
- Obtain your Expanse account
 - https://portal.xsede.org → create portal account
 - Submit XSEDE PortalID to Form: https://tinyurl.com/hpc-user-training-signup
 - Use xsede portal username
- Once your account is created, make sure you can logon
- Complete Homework for Week1 (see README file):
 - https://github.com/sdsc-hpc-training-org/hpc-training-2021