

Loaners data predictions - Final presentation

Data Science Lab

Lenny PORCHER Lucas PUPAT Cambyse MOUSSAVI AZARBAYEJANI

Table of contents

- I. Problem definition
- II. Dataset description & preprocessing
- III. Data visualization
- IV. Data formatting
- V. Machine Learning Model Training &

Evaluation Metrics

VI. Deep Learning Model Training &

Evaluation Metrics

VII. Responsible AI Practices

I. Problem definition

Objective: predict whether a person is eligible for a loan

loaners_training_data_for_ml.csv (79.85 MB)								
Detail (Compact	Column			10 of 42 cc	lumns 🗸		
About this file This file does not have a description yet.								
#	=	# SK_ID_CURR =	△ NAME_CONTRAC =	△ CODE_GENDER =	✓ FLAG_OWN_CAR =	✓ FLAG_0		
0	308k	100k 456k	Cash loans 90% Revolving loans 10%	F 66% M 34% Other (4) 0%	true 105k 34% false 203k 66%	Talsa		
0		100002	Cash loans	М	N	Y		
1		100003	Cash loans	F	N	N		
2		100004	Revolving loans	М	Υ	Υ		
3		100006	Cash loans	F	N	Υ		
4		100007	Cash loans	М	N	Υ		
5		100008	Cash loans	М	N	Υ		
6		100009	Cash loans	F	Υ	Υ		
7		100010	Cash loans	М	Υ	Υ		

42 columns 307510 Inputs

kaggle

https://www.kaggle.com/datasets/benjamincornurota/bcr-loaners-data-for-solvency-prediction/data

a. Data type identification

Datas

a. Data type identification

Qualitative Datas Quantitative

a. Data type identification

- b. Managing undefined values, median imputation and mode imputation
- > <u>Handle undefined values with Low Impact Delete rows</u>
- AMT_ANNUITY (**N/A**: 12)
- CNT_FAM_MEMBERS

- CODE_GENDER
- TARGET

- df.dropna(subset=['TARGET', 'AMT_ANNUITY', 'CODE_GENDER', 'CNT_FAM_MEMBERS'], inplace=True)
- > Handle missing values with median imputation
- AMT_GOODS_PRICE (N/A: 278)

df['AMT_GOODS_PRICE].fillna(df['AMT_GOODS_PRICE'].median(), inplace=True)

- > <u>Handle missing values with mode imputation</u>
- NAME_TYPE_SUITE

df['NAME_TYPE_SUITE'].fillna(df['NAME_TYPE_SUITE'].mode()[0], inplace=True)

a. Loan Approval Distribution

Dataset balance analysis

Influential data

sns.countplot(x='TARGET', data=df)

Loan Approval Distribution

• Highly imbalanced – 91.93% approved

b. Borrower Demographics

Individual, career and relationship analysis (Examples)

<u>Influential data</u>

sns.histplot(data=df, x='LOANER AGE', hue='TARGET', ...

Age vs Loan Approval< 40 are more likely approved

Moderately influential data

sns.countplot(x='CODE_GENDER', hue='TARGET', data=df)

Gender vs Loan Approval

- Male approval rate: 89.86 %
- Female approval rate: 93.00%
 A \ B ≈ 3%

Data with little or no influence

plt.bar(grouped['OWNERSHIP_GROUP'], ...

Asset Ownership and Loan Approval

• Difference is marginal (~1%)

c. Financial situation

Analysis of individual's economic situation (Examples)

Influential data

sns.histplot(data=df, x='AMT_INCOME_TOTAL', hue='TARGET', ...

Income Distribution • Approval highest between 50K200K income

Data with little or no influence

sns.boxplot(data=df, x='REVENUE_CLASS', y='AMT_INCOME_TOTAL')

Revenue Class

• Difference is marginal (~1%)

d. Regional data and environment

Analysis of individuals' geographical location (Examples)

Influential data

Region Population and Loan
Approval

Low region population (< 0.2

Low region population (< 0.28) → higher approval

Regional Mobility Correlation
• High mobility \rightarrow possible lower approval

e. Loan application form Individual Ioan analysis

Influential data

 $\verb|sns.countplot(x='NAME_CONTRACT_TYPE', hue='TARGET', data=df|)|$

Contract type and Loan Approval

 Revolving loans → higher approval (94.5%)

IV. Dataset formatting

Managing qualitative & quantitative values

Convert nominal variables to 0 and 1

```
df['CODE_GENDER'] = df['CODE_GENDER'].map({'F': 0, 'M': 1})
```

One-hot encode categorical variable

```
df = pd.get_dummies(df, columns=[
  'NAME_CONTRACT_TYPE', 'NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE',
  'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_TYPE_SUITE',
  'OWNERSHIP_GROUP'])
```

Quantitative values

1

 Use a logarithmic transformation to reduce the impact of extreme values and skewed distributions

```
num_cols = [
'AMT_INCOME_TOTAL', 'AMT_CREDIT', 'AMT_GOODS_PRICE',
'AMT_ANNUITY',
'CREDIT_SHARE', 'NUM_ANNUITY']

df[num_cols] = np.log1p(df[num_cols])
```

V. Machine Learning Model Training & Evaluation

Metrics

a. Initial Model on Imbalanced Dataset

Distribution: {0: 282430, 1: 24812}

SGDClassifier

- Accuracy 0.872463
- Precision 0.181777
- Recall 0.159475
- F1 Score 0.169897

V. Machine Learning Model Training & Evaluation Metrics

b. Strategy 1: Oversampling (SMOTE)

Distribution:

{0: 282430, 1: 282430}

SGDClassifier

- Accuracy 0.812538
- Precision 0.784532
- Recall 0.862382
- F1 Score 0.821617

V. Machine Learning Model Training & Evaluation Metrics

c. Strategy 2: Hybrid Resampling (Under + Over Sampling)

Distribution after under sampling: {0.0: 49624, 1.0: 24812}

Distribution after over sampling: {0.0: 49624, 1.0: 49624}

V. Machine Learning Model Training & Evaluation Metrics

c. Strategy 2: Hybrid Resampling (Under + Over Sampling)

KNeighbors Classifier	Accuracy: 0.716423	
	Precision: 0.674990	
	Recall: 0.823116	
	F1 Score: 0.741730	

Random Forest Classifier	Accuracy: 0.709572
Ciassillei	Precision: 0.709344
	Recall: 0.699593
	F1 Score: 0.704435

Logistic Regression	Accuracy: 0.698287
	Precision: 0.732210
	Recall: 0.615071
	F1 Score: 0.668548

VI. Deep Learning Model Training & Evaluation Metrics

Deep Learning

- Accuracy 0.8523
- Precision 0.9201
- Recall 0.7719
- F1 Score 0.8395

VI. Deep Learning Model Training & Evaluation Metrics

Deep Learning

- Recall 0.7719 -
- F1 Score 0.8395

VI. Deep Learning Model Training & Evaluation Metrics

Deep Learning

- Accuracy 0.8523
- Precision **0.9201** +
- Recall 0.7719 -
- F1 Score 0.8395

SGDClassifier

- Accuracy 0.812538
- Precision **0.784532**
- Recall **0.862382**
- F1 Score 0.821617

VII. Responsible AI Practices

Bias in data

Watch for historical and representation biases.

Data limitations

Model can't reflect individual or internal bank factors.

Continuous monitoring

Model can't reflect individual or internal bank factors.

Fairness evaluation

Use multiple metrics, not just F1-score (demographic parity, equal opportunity, ...

Data privacy

Update regularly to stay fair and accurate.

Conclusion

SGDClassifier: Achieving an F1-score of 80%.

Areas for Improvement:

- Include minimum class representation data
- Build a weighted scoring system for bank evaluation

Thank you for listening

