

———从0开始实现OpenGL

授课:赵新政 资深三维工程师 专注3D图形学技术 教育品牌

只给你一个画点的功能

构建一个三维世界

制作自己的虚拟GPU

什么是计算机图形学?

- 计算机图形学 (Computer Graphic) : 计算机图形学是研究计算机中对图形表示/计算/渲染过程的科学
- 主要包括内容:
 - 1. 图形建模 (Modeling): 研究如何制作建模软件算法 (3dsmax, maya, blender)等
 - 2. 图形渲染 (Rendering): 通过图形渲染算法,将模型呈现为真实/虚拟/风格化等各种渲染结果,进行呈现
 - 3. 动画 (Animation): 研究如何制作动画 (顶点/骨骼/反向动力/动作捕捉等)
 - 4. 模拟仿真 (Simulating): 通过物理/几何等算法,模拟物理世界物体之间/物体与环境的真实效果 (CAE)

图形渲染手段方法

- 硬件渲染 (GPU Rendering) : 通过GPU提供的功能接口 (**OpenGL, Vulkan, DirectX, Metal**) , 利用GPU硬件进行加速渲染
 - 使用硬件加速,速度更快,并行化更高
 - 使用成熟的图形API接口,免去复杂的算法封装
- **软件渲染 (Software Rendering)** : 拿到一个画点的功能,自己编写所有的渲染算法,最终能够在屏幕上呈现三维模型的过程
 - 适合学习图形学基础算法原理,为学习GPU渲染接口打下坚实的基础
 - 掌握图形渲染管线常用算法,在复杂项目中可以定向优化
 - 完全模拟一套OpenGL代码框架,从而可以跟标准图形接口保持一致

前置课程

- C++编程语言
- 线性代数基础知识

课程学习成果

- 完全掌握计算机图形光栅化渲染的数学原理,不留死角,你可以做到完整推导三维变换的所有矩阵
- 完全掌握GPU光栅化背后的原理与机制(剪裁/剔除/深度/混合/透视修正),你可以做到推导并验证所有光栅化算法
- 得到一套成型的软件光栅化系统,你可以得到本课程所有的阶段性功能代码,层层递进
- 学习如何应用本API 制作摄像机/光照/模型读取等应用功能

第一章节		
环境准备与直线绘制	cmake工程管理介绍	
	Windows下窗口构建介绍	
	Windows下窗口构建实践	点绘制
	GDI绘图环境介绍	
	GDI绘图环境实践	直线绘制
	点的绘制实践	
	直线绘制—Brensenham算法介绍	
	直线绘制—Brensenham算法实现	
	插值算法介绍	
	彩色直线绘制实践	

课程安排

第二章节	
三角形绘制	线性代数-向量介绍
	线性代数-向量叉乘介绍
	向量算法实践
	三角形扫描线算法介绍
	三角形绘制实践
	三角形重心插值介绍
	彩色三角形绘制实践

彩色三角形

第三章节		
图片与纹理	实践: 图片读取与显示	
	实践: 颜色混合	
	uv坐标详解	
	实践: uv坐标代码实现	
	双线性插值算法详解	
	实践: 双线性插值算法实现	uv贴图
	纹理Wrap方式详解	uv动画
	实践: 纹理Wrap方式实现	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

第四章节	
	矩阵概念与特性
	矩阵行列视图
ケロ <i>の</i> ナエ田とへ	矩阵行列式计算
矩阵理论	矩阵行列式基本性质
	矩阵行列式化简
	矩阵行列式几何意义
	矩阵的逆矩阵
	实践: 矩阵类实现代码
	实践: 矩阵功能函数实现

课程安排

第五章节	
	二维空间变换
	三维空间变换
chilaith	任意轴旋转
空间变换	视图变换
	变换与基向量
	实践: 空间变换代码
	正交投影矩阵
	透视投影矩阵
	屏幕空间变换
	实践: 实现三维旋转的三角形

旋转三角形

第六章节	
	渲染管线概念与设计
	几何信息存储方案VBO
\$ ⇒ \$九 <i>锋</i> 4	几何信息存储方案VAO与EBO
渲染管线	实践:程序状态机重构
	实践: VAO/VBO代码
	图形状态机
	Draw流程设计与Shader
	实践: Shader类编写
	实践: Draw函数及三角形案例

第七章节		
	剪裁前置几何知识	
	多边形剪裁算法	
宣纵终北地	实践: 多边形剪裁算法实现	
高级管线功能	透视修正推导与方法	多边形剪裁
	实践: 透视修正代码	背面剔除
	实践: 剔除算法与代码	颜色混合
	实践: 深度检测算法与代码	
	实践: 颜色混合原理与代码	
	实践: 纹理系统	

第八章节		
应用功能	摄像机系统设计	
	实践: 摄像机系统代码	
	Lambert光照模型解析	
	实践: Lambert光照代码	摄像机
	模型与Assimp库介绍	光照
	Mesh系统设计	模型
	实践: Mesh类代码实现	
	实践: Model类编写 (一)	
	实践: Model类编写 (二)	

课程配套

- 所有课程使用源代码 (cmake版本)
- 课程资料pdf版本