# Reglerdimensionierung mittels Phasengangmethode

## Fachbericht

31. Mai 2015

Studiengang | EIT

Modul | Projekt 2

Team 4

Auftraggeber | Peter Niklaus

Fachcoaches | Peter Niklaus, Richard Gut, Pascal Buchschacher, Anita Gertiser

Autoren | Anita Rosenberger, Benjamin Müller, Manuel Suter, Florian Alber, Raphael Frey

Version | Entwurf

#### **Abstract**

Im Gebiet der Regelungstechnik ist das Dimensionieren von Regler eine zentrale Aufgabe, da mit der korrekten Einstellung der Regler stabil und die Differenz zwischen Ist und Soll-Wert möglichst klein ist.

Die Phasengangmethode ist eine ursprünglich eine graphische Berechnungsart, welche anhand der Schrittantwort die Reglerwerte berechnet. Die Aufgabe der Implementierung dieser Methode in Java war die Hauptaufgabe.

Die Ziel dieses Projektes war, ein benutzerfreundliches Softwaretool, das heisst auch für ein ungeübter Regelungstechniker benutzen kann, zu entwickeln, welches anhand der Phasengangmethode die Dimensionierung eines PI und PID Reglers durchführt. Die Ausgabe des Tools soll anhand der Eingabe der Schrittantwortwerte die numerische wie auch die graphische Lösung ausgeben.

Die Phasengangmethode und die als Vergleich angewendete Faustformeln wurden in Matlab geschrieben und mit Referenzdaten getestet. Die Implementierung in Java war ein zweistufiger Prozess, in welchem zuerst die matlabtypischen Berechungsfunktionen ausprogrammiert und im zweiten Schritt die Regeldimensionierung implementiert wurden.

Das Softwaretool besitzt eine graphische Benutzeroberfläche, über welche auf der linken Seite die Werte der Schrittantwort eingelesen und die numerserischen Lösungen des Reglers ausgegeben und über die rechte Seite die graphischen Lösungen dargestellt werden.

Das Zentrale an der Lösung ist die Berechungungseschwindigkeit mit welcher das Tool arbeitet. Dies ermöglicht eine Echtzeit "Dimensionierung des Reglers. Das Neue an dieser Lösung ist das Einbinden der Phasengangmethode in ein Reglerdimensionierungstool.

### Projekt P2 - Aufgabenstellung vom Auftraggeber (FS\_2015)

## Reglerdimensionierung mit Hilfe der Schrittantwort

#### 1. Einleitung

In der Praxis werden die klassischen Regler (PI, PID, PD, ...) oft mit sog. Faustformeln dimensioniert. Dazu benötigt man bestimmte Informationen der zu regelnden Strecke. Handelt es sich dabei um "langsame Strecken" mit Zeitkonstanten im Bereich von Sekunden bis Minuten, so ist das Bestimmen und Ausmessen der Schrittantwort oft die einzige Möglichkeit zur Identifikation der Strecke. Typische Beispiele dafür sind Temperaturheizstrecken, welc. • meistens mit einem PTn-Verhalten modelliert werden können (Kaffeemaschine, Boiler, Raumhe ungen, Lötkolben, Warmluftfön, usw.).

Die Schrittanwort wird mit Hilfe einer Wendetangente vermessen und die Kenngroßen Streckenbeiwert ( $K_s$ ), Verzugszeit ( $T_u$ ) und Anstiegszeit ( $T_g$ ) werden bestimmt. Nies kann so vohl von Hand (grafisch) oder auch automatisiert durchgeführt werden, frohs die Mendaten elektronisch vorliegen. Mit diesen drei Kenngrössen können mit Hilfe sog. Faus Normeln 1.1- und PID-Regler dimensioniert werden (Ziegler/Nichols, Chien/Hrones/Regnenk, Oppen Rosenberg). Die Faustformeln liefern zwar sehr schnell die Reglerdaten, aben die Sch. Hantworten der entspr. Regelungen sind teilweise weit vom "Optimum" entfernt und der Regelkreis kann sogar instabil werden. In der Praxis muss man diese "Startwerte" häufig in Noptimieren, damit die Schrittantwort der Regelung die Anforderungen erfüllt.

Die sog. "Phasengangmethode zu. Reglerd. Persionierung" wurde von Jakob Zellweger (FHNW) entwickelt und liefert Regle Arten, welche näher am "Optimum" sind und für die Praxis direkt verwendet werden können. Dabei kann das Überschwingen der Schrittantwort vorgegeben werden (z.B. 20%, 10%, 2%, oder ageriodische Bei dieser Methode kann also das für viele Anwendungen wich ager Verhalm der Schrittantwort beeinflusst werden. Um die Phasengangmethode anwenden zu können, mund der Frequenzgang der Strecke bekannt sein (analytisch oder numerisch gemessen). Mit Hilfe der Problem gelös in dem vorgängig aus den Kenngrössen der Schrittantwort ( $K_s$ ,  $T_u$ ,  $T_g$ ) eine PTn-aproximation der Strecke erzeugt wird. Mit dem Frequenzgang der PTn-Approximation können. Jann die Regler dimensioniert werden (I, PI, PID). Die Phasengangmethode war ursprünglich eine geläsche Methode, basierend auf dem Bodediagramm der Strecke. Aktuell soll die Methode direkt numerisch im Rechner durchgeführt werden.

In dieser Arbeit geht es um die Entwicklung und Realisierung eines Tools zur **Reglerdimensionierung mit der Phasengangmethode**. Ausgehend von der PTn-Schrittantwort der Strecke sollen "optimale Regler" (PI, PID-T1) dimensioniert werden, wobei das Überschwingen der Regelgrösse vorgegeben werden kann. Zum Vergleich sollen die Regler auch mit den üblichen Faustformeln dimensioniert werden. Wünschenswert wäre auch eine Simulation der Schrittantwort des geschlossenen Regelkreises, so dass die Dimensionierung kontrolliert und evtl. noch "verbessert" werden könnte.

#### 2. Aufgaben/Anforderungen an Tool

Entwerfen und realisieren Sie ein benutzerfreundliches Tool/Programm/GUI/usw. mit welchem PI- und PID-Regler mit der Phasengangmethode dimensioniert werden können. Dabei sind folgende Anforderungen und Randbedingungen vorgegeben:

- Die zu regelnden Strecken sind PTn-Strecken, wobei entweder die Schrittantwort grafisch vorliegt oder die Kenngrössen  $K_s$ ,  $T_u$  und  $T_g$  schon bekannt sind
- Die Bestimmung einer PTn-Approximation wird vom Auftraggeber zur Verfügung gestellt und muss entsprechend angepasst und eingebunden werden (Matlab zu Java)
- Das Überschwingen der Regelgrösse (Schrittantwort) soll gewähl werden können
- Zum Vergleich sind die Regler auch mit den üblichen Faustformeln 2. dimensionieren.
- Das dynamische Verhalten des geschlossenen Regelkreises soll auch berecated visualisiert werden (Schrittantwort)

#### 3. Bemerkungen

Die Software und das GUI sind in enger Absprache mit dem Auftraggeb Azu entwickeln. Der Auftraggeber steht als Testbenutzer zu Verfügung und soll bei au Evaluation des GUI eingebunden werden. Alle verwendeten Formeln, Algoritht en und Berechnungen sind zu verifizieren, eine vorgängige oder parallele Programmierung in Machbist zu empfehlen. Zum Thema der Regelungstechnik und speziell zur Reglerdimen ionierung mit der Phasengangmethode werden Fachinputs durchgeführt (Fachcoach

#### Literatur

- [1] J. Z. dweger, Regelkreise und Pegelungen, Vorlesungsskript.
- [2] J. Zen ger, 'nazengang Methode, Kapitel aus Vorlesungsskript.
- [3] H. Unbeh. 'n, Regelung technik I, Vieweg Teubner, 2008.
- [4] W. Schumach, W. Leonhard, *Grundlagen der Regelungstechnik*, Vorlesungsskript, TU Braunschweig, 2003.
- [5] B. Bate, *PID-Einstellregeln*, Projektbericht, FH Dortmund, 2009.

16.02.2015 Peter Niklaus

## Inhaltsverzeichnis

| 1                         | Ein                           | leitung                                                             | 7  |  |  |  |
|---------------------------|-------------------------------|---------------------------------------------------------------------|----|--|--|--|
| 2                         | Gru                           | undlagen der Regelungstechnik                                       | 8  |  |  |  |
|                           | 2.1                           | Regelstrecke                                                        | 8  |  |  |  |
|                           | 2.2                           | Regler                                                              | 8  |  |  |  |
|                           | 2.3                           | Die Steuerung                                                       | 9  |  |  |  |
|                           | 2.4                           | Der geschlossene Regelkreis                                         | 9  |  |  |  |
| 3                         | Fac                           | hlicher Hintergrund zur Regler-Dimensionierung                      | 11 |  |  |  |
|                           | 3.1                           | Frequenzgang der Regelstrecke                                       | 12 |  |  |  |
|                           | 3.2                           | Reglerdimensionierung mittels Faustformeln                          | 13 |  |  |  |
|                           | 3.3                           | Reglerdimensionierung mittels Phasengangmethode: PI-Regler          | 15 |  |  |  |
|                           | 3.4                           | Regler<br>dimensionierung mittels Phasengang<br>methode: PID-Regler | 19 |  |  |  |
|                           | 3.5                           | Umrechnung zwischen bodekonformer und reglerkonformer Darstellung   | 25 |  |  |  |
| 4                         | Soft                          | Software                                                            |    |  |  |  |
|                           | 4.1                           | View                                                                | 26 |  |  |  |
|                           | 4.2                           | Controller                                                          | 26 |  |  |  |
|                           | 4.3                           | Model                                                               | 26 |  |  |  |
|                           | 4.4                           | Benutzungs-Beispiel (Use-Case)                                      | 26 |  |  |  |
|                           | 4.5                           | Beschreibung der Algorithmen                                        | 27 |  |  |  |
| 5                         | Tes                           | ts                                                                  | 29 |  |  |  |
| 6                         | $\operatorname{\mathbf{Sch}}$ | lussfolgerungen                                                     | 30 |  |  |  |
| $\mathbf{A}_{\mathbf{I}}$ | ppen                          | dix                                                                 | 32 |  |  |  |
| $\mathbf{A}$              | Bes                           | chreibung der Algorithmen                                           | 32 |  |  |  |
| В                         | Ma                            | nuelle Berechnung des Hilfsparameteres $\beta$                      | 34 |  |  |  |
| $\mathbf{Li}^{\cdot}$     | terat                         | urverzeichnis                                                       | 36 |  |  |  |

## Versionsgeschichte

04.05.2015: Version 0.01 06.05.2015: Version 0.02



### 1 Einleitung

Im Rahmen des Projektes soll ein Tool entwickelt werden, welches einen PI- respektive einen PID-Regler mittels der von Prof. Jakob Zellweger entwickelten Phasengangmethode dimensioniert. Zum Vergleich soll der entsprechende Regler ebenfalls mittels verschiedenen Faustformeln berechnet werden.

referenz script Zellweger

Die Phasengangmethode ist eine graphische Methode, die bis anhin mit Stift und Papier durchgeführt wurde. Folglich ist die Ausführung zeitaufwändig, speziell wenn Schrittantworten mit unterschiedlichen Parameterwerten durchgespielt werden sollen. Das Tool soll ausgehend von drei Parametern aus der Schrittantwort der Strecke (Verstärkung  $K_s$ , Anstiegszeit  $T_g$ , Verzögerungszeit  $T_u$ ) mittels der Phasengangmethode möglichst ideale Regelparameter berechnen sowie die Schrittantwort des darauf basierenden geschlossenen Regelkreises graphisch darstellen. Die Benutzeroberfläche der Software soll intuitiv sein, sodass sich auch mit dem Thema nicht eingehend vertraute Regelungstechniker einfach zurechtfinden.

Die erforderlichen Algorithmen wurden zuerst in Matlab als Prototypen implementiert und anschliessend vollständig in Javakonvertiert. Die graphische Benutzeroberfläche baut ganz auf Java. Um optimale Wartbarkeit, Übersichtlichkeit und Modularität des Codes zu gewährleisten, ist die Software gemäss Model-View-Controllern-Pattern aufgebaut.

mehr/ander Inhalt?

Nach der Implementierung in Matlab wurde klar, dass die Berechnung durch die hohe Rechenleistung sehr schnell durchgeführt werden kann und somit eine Dimensionierung des geschlossenen Regelkreises anhand dieser Methode von Herrn Zellweger möglich ist.

Der Bericht gliederte sich in zwei Teile: Der ersten Teil erläutert die theoretischen Grundlagen und darauf aufbauend stellt der zweite Teil der Aufbau der Software dar.

## 2 Grundlagen der Regelungstechnik

#### 2.1 Regelstrecke

In der Regelungstechnik wird die zu regel<br/>nde Strecke als Regelstrecke bezeichnet. Die Regelstrecke wird durch ihr Zeitverhalten charakterisiert, welches den Aufwand und die Güte der Regelung bestimmt. Um das Zeitverhalten zu beschreiben, verwendet man die Sprungantwort, welche zeigt, wie die Regelgrösse auf Stellgrössenänderung reagiert. Mit der entstehenden Regelgrösse werden verschiedene Regelstrecken unterschieden:

- P-Regelstrecke
- I-Regelstrecke
- Strecken mit einer Totzeit
- Strecken mit Energiespeicher

Dieses Projekt beschäftigt sich mit den PTn-Strecken, welche eine Kombination einer Strecke mit proportionalen Verhalten und einer mit Totzeit sowie der Angabe der Ordnung n der Strecke sind.

#### P-Regelstrecke

Bei der Regelstrecke mit proportionalem Verhalten folgt die Regelstrecke proportional der Stellgrösse ohne Verzögerung. Dies kommt in der Praxis nicht vor, da immer eine Verzögerung vorhanden ist. Ist diese jedoch sehr klein spricht man von einer P-Strecke. Der Proportionalitätsfaktor wird mit  $K_p$  abgekürzt. Wird  $K_p < 1$  wirkt  $K_p$  nicht mehr verstärkend sondern abschwächend.

#### Strecken mit Totzeit

Ändert sich die Stellgrösse, wirkt sich diese Änderung bei einer Strecke mit Totzeit erst nach einer gewissen Zeit auf die Regelgrösse aus. Mit  $T_t$  wird das Mass der Totzeit gekennzeichnet.

Totzeiten verursachen schnell Schwingungen, da sich die Stellgrösseänderung zeitverzögert auf die Regelgrösse auswirkt. Die Schwingungen entstehen wenn sich die Stellgrösse und die Regelgrösse periodisch ändern.

Bild Blockschaltbild Totzeit

Bild Block

schaltbild P-Strecke

#### I-Regelstrecke

Die I-Regelstrecke antwortet auf eine Stellgrössenänderung mit einer fortwährenden Änderung in steigende oder fallende Richtung. Die Begrenzung dieses Vorganges ist mit den systemgegeben Schranken gegeben. Die Integrierzeit  $T_i$  ist ein Mass für die Anstiegsgeschwindigkeit der Regelgrösse.

Bild Blockschaltbild I-Strecke

#### 2.2 Regler

Die Aufgabe eines Reglers besteht die zu regelnde Strecke mit einem Stellsignal so zu beeinflussen, dass der Wert der Regelgrösse gleich dem Wert der Führungsgrösse entspricht. Der Regler besteht aus einem Vergleichsglied, welches die Reglerdifferenz aus der Differenz zwischen Führungs- und Reglergrösse bildet und dem Reglerglied. Das Reglerglied erzeugt aus der Reglerdifferenz die Stellgrösse.

2.3 Die Steuerung 9

Es wird zwischen P-, I- und D-Regler unterschieden. In diesem Projekt werden die PI- und PID-Regler, welche Kombinationen der oben genannten Regler sind, behandelt.

#### PI-Regler

Der PI-Regler besteht aus einer Parallelschaltung eines P- und eines I-Reglers. Durch diese Kombination werden die Nachteile beider Regler kompensiert und die Vorteile (schnell, stabil) hervorgehoben.

Bild Block schaltbild PI-Regler

#### **PID-Regler**

Wird dem PI-Regler ein D-Anteil parallel geschaltet, entsteht der PID-Regler. Der PID-Regler ist ein sehr oft verwendeter Regler, da durch den D-Anteil die Regelgrösse rascher den Sollwert erreicht und der Einschwingvorgang schneller abgeschlossen ist. Der PID-Regler ist geeignet für Strecken höheren Ordung, welche möglichst schnell und ohne bleibende Regelabweichung geregelt werden müssen.

Bild Blocks schaltbild PID-Regler

#### 2.3 Die Steuerung

Unter einer Steuerung versteht man eine offen Wirkungskette wie in Abbildung XX, dass heisst die Wirkglieder sind kettenähnlich aufgereiht und besitzen keine Rückkopplung. Die Steuerkette wird genau für eine Steuerung ausgelegt und kann nur einer Art von Störgrösse entgegenwirken. Ohne die Rückkopplung wird das Ausgangsignal nicht mit dem Eingangssignal verglichen und es können keine Korrekturen vorgenommen werden.

bild offene Regelkreis

Referenz Bild offener Regelkreis

#### 2.4 Der geschlossene Regelkreis

Die Aufgabe eines geschlossenen Regelkreises (Abbildung 1) ist es, einen vorgegeben Sollwert zu erreichen und diesen auch bei Störungen aufrecht zu erhalten. Dabei sollen die unten genannten dynamischen Anforderungen eingehalten werden, damit die Stabilität des Regelsystems garantiert ist. Die wichtigste Bedingung für die Schrittantwort ein geschlossenen Regelkreis heisst, dass der Regelfehler, die Differenz zwischen Ist- und Sollwert, gleich Null oder möglichst klein ist.



Abbildung 1: Geschlossener Regelkreis

- y<sub>s</sub>oll bezeichnet den Sollwert der Regelgrösse.
- e Regelabweichung (Regelfehler)

- u Steuergrösse
- x Stellgrösse
- y Regelgrösse
- z Störgrössen werden in diesem Projekt nicht berücksichtigt
- $y_i st$  ist der Ist-Wert der Regelgrösse und wird auch als die Schrittantwort des Regelkreises bezeichnet.

Grundsätzlich können fünf Anforderungen für einen geschlossenen Regelkreis und deren Schrittantworten zusammengefasst werden:

- 1. Der Regelkreis muss stabil sein: Für das Regelsystem heisst stabil, dass es in seinen Gleichgewichtszustand zurückgeführt werden kann.
- 2. Der Regelkreis muss genügend gedämpft sein.
- 3. Der Regelkreis muss eine bestimmte stationäre Genauigkeit aufweisen: Das bedeutet, der Regelfehler e(t) soll für t-> oo gegenNull gehen.
- 4. Der Regelkreis muss hinreichend schnell sein: Ist die Dämpfung zu stark oder zu schwach, braucht der Einschwingvorgang mehr Zeit. Hierbei muss darauf geachtet werden, dass die spezifischen Anforderungen an das Regelsystem eingehalten werden.
- 5. Der Regelkreis muss robust sein: Der Regelkreis muss so ausgelegt werden, dass das Regelsystem auch im schlimmsten Fall (je nach Regelsystem situationsabhängig) in der Lage ist, das System zurück in den stabilen Zustand (vgl. Punkt 1) zu regeln.

#### Die Schrittantwort des geschlossenen Regelkreises

Als Schrittantwort eines geschlossenen Regelkreises wird das Ausgangssignal y(t) bezeichnet. Im Zusammenhang mit den Anforderungen an den geschlossenen Regelkreis, werden an die Schrittantwort folgende Forderungen gestellt:

- 1. Die Schrittantwort eines stabilen Regelkreises darf nach dem Erreichen des eingeschwungenen Zustand kein erneutes Überschwingen auftreten.
- 2. Die Dämpfung der Schrittantwort soll so stark sein, dass der eingeschwungene Zustand möglichst rasch erreicht wird ohne dass das Überschwingen des Systems zu stark wird.
- 3. Die Schrittantwort muss für ein t->00 gleich  $y_soll$  sein.
- 4. Die Schnelligkeit des Einschwingvorganges der Schrittantwort ist stark von der Dämpfung abhängig. Wenn diese zu stark oder zu schwach ist, ist der Regelkreis zu langsam.

math mode

Bild Schrittantworten

passend zu

Aufzählung

unten

### 3 Fachlicher Hintergrund zur Regler-Dimensionierung

Das Kernstück dieser Arbeit und des zugehörigen Softwaretools stellt die so genannte "Phasengang-Methode zur Reglerdimensionierung" von Jakob Zellweger dar [1]. Diese wurde ursprünglich als vereinfachte grafische Methode zur Approximation der -20dB/Dek Methode erarbeitet und im Rahmen dieses Projektes in einem Java-Tool automatisiert. Als Vergleich wertet die Software ebenfalls einige der gängigen Faustformeln aus.

Das Tool führt grob vereinfacht folgende Schritte aus:

- Bestimmung des Frequenzgangs der Regelstrecke aus Verzögerungszeit  $T_u$ , Anstiegszeit  $T_g$  und Verstärkung  $K_s$  (Abschnitt 3.1)
- Dimensionierung des Reglers mittels Faustformeln (Abschnitt 3.2)
- Dimensionierung des Reglers durch Phasengangmethode (Abschnitte 3.3 und 3.4)
- Umrechung der Regler-Darstellung zwischen bodekonformer und reglerkonformer Darstellung (Abschnitt 3.5)
- Berechnung der Schrittantwort des geschlossenen Regelkreises (Abschnitt??)

Im folgenden Kapitel wird auf diese Punkte genauer eingegangen und das Vorgehen anhand eines konkreten Beispiels rechnerisch und grafisch erläutert. Die Durchrechnung der Phasengangmethode orientiert sich an den Rezepten, welche im fachlichen Teil des Pflichtenheftes dieses Projektes zu finden sind [2]. Genauere Hintergrundinformationen zur Phasengangmethode selbst sind dem Vorlesungs-Skript von J. Zellweger zu entnehmen [1].

Das Überschwingverhalten kann im Software-Tool vom Benutzer auf einen Zielwert zwischen 0% und 30% eingestellt werden. Das Tool optimiert den resultierenden Regler dann entsprechend, um dieser Vorgabe möglichst nahe zu komen.

#### 3.1 Frequenzgang der Regelstrecke

Als Ausgangspunkt der Reglerdimensionierung dient die Schrittantwort der Strecke. Durch Einzeichnen der Wendetangente <sup>1</sup> ergeben sich Schnittpunkte der Wendetangente mit der Zeitachse  $[T_u, 0]$  und mit dem Zielwert  $[T_g + T_g, 1]$ . Es können nun also die Verzögerungszeit  $T_u$  und die Anstiegszeit  $T_g$  aus aus Abbildung 2 abgelesen werden.

Wir werden in diesem Bericht folgende Strecke als Beispiel nehmen:



**Abbildung 2:** Schrittantwort der Beispielstrecke (schwarz), Wendetangende (rot),  $T_u$  und  $T_g$  (blau)

Ausmessen der Schrittantwort ergibt:

- $K_s = 2^2$   $T_u = 1.1 \,\mathrm{s}$   $T_g = 8.9 \,\mathrm{s}$

Der geschlossene Regelkreis soll schlussendlich maximal etwa 16.3% überschwingen.

Da die Reglerdimensionierung mit der Phasengangmethode vom Frequenzgang einer Strecke ausgeht und nicht von deren Schrittantwort, besteht der nächste Schritt nun darin, aus den obigen Werten den Frequenzgang der Strecke zu bestimmen. Dies erledigt die Methode p\_sani<sup>3</sup>, welche uns die Werte für die Übertragungsfunktion der Strecke liefert. In unserem Fall ergibt dies folgendes Polynom:

<sup>&</sup>lt;sup>1</sup>Die Wendetangante ist die Tangente an den Wendepunkt in der Anstiegs-Phase der Schrittantwort.

<sup>&</sup>lt;sup>2</sup>Abbildung 2 ist auf 1 normiert, die Verstärkung unserer Beispielstrecke beträgt 2. An den Werten für die Verzögerungs- und Anstiegszeit oder am Ausmessen der Schrittantwort ändert sich dadurch nichts

 $<sup>^3</sup>$ Die Methode  ${ t p\_sani}$  wurde zu Beginn des Projektes in einer Matlab-Implementation zur Verfügung gestellt und anschliessend für unser Tool in Java übersetzt.

Sie kann aus der Verzögerungszeit, der Anstiegszeit und der Verstärkung der Strecke ein Polynom für deren Übertragungsfunktion vom Grad 1 bis 8 ausrechnen.

Als Eingabeparameter werden die Werte  $T_u$ ,  $T_g$  und  $K_s$  benötigt, als Rückgabewert erhält man ein Array mit den Zeiten  $T_i$  für die Nenner der Faktoren des Polynoms (siehe Gleichung 1).

$$H_s(s) = K_s \cdot \frac{1}{1 + s \cdot T_1} \cdot \frac{1}{1 + s \cdot T_2} \cdot \frac{1}{1 + s \cdot T_2}$$

$$= 2 \cdot \frac{1}{1 + s \cdot 0.4134 \,\mathrm{s}} \cdot \frac{1}{1 + s \cdot 1.4894 \,\mathrm{s}} \cdot \frac{1}{1 + s \cdot 5.3655 \,\mathrm{s}}$$
(1)

Mit einem geeigneten Tool kann man sich den dazugehörigen Plot erstellen lassen.



Abbildung 3: Frequenzgang der Strecke

Somit ist der Frequenzgang der Strecke bekannt und man kann mit einer geeigneten Methode den Regler dimensionieren.

#### 3.2 Reglerdimensionierung mittels Faustformeln

Im Praxiseinsatz stehen für die Dimensionierung von Reglern einfache Berechnungsformeln zur Verfügung. Diese Lieferun Einstellwerte anhand von  $T_u$ ,  $T_g$  und  $K_s$ . An dieser Stelle wird daher unsere Beispielstrecke zuerst mit einigen der gängigen Faustformeln dimensioniert, um das Ergebnis anschliessend mit dem Resultat der Phasengangmethode vergleichen zu können.

| Faustformel                                          | PI-Regle        | er                                       | PID-T1-I         | Regler           |                                          |
|------------------------------------------------------|-----------------|------------------------------------------|------------------|------------------|------------------------------------------|
|                                                      | $T_n$           | $K_p$                                    | $T_n$            | $T_v$            | $K_p$                                    |
| Chiens, Hrones, Reswick (0% Überschwingen) [3], [4]  | $1.2 \cdot T_g$ | $\frac{0.35}{K_s} \cdot \frac{T_g}{T_u}$ | $T_g$            | $0.5 \cdot T_u$  | $\frac{0.6}{K_s} \cdot \frac{T_g}{T_u}$  |
| Chiens, Hrones, Reswick (20% Überschwingen) [3], [4] | $T_g$           | $\frac{0.6}{K_s} \cdot \frac{T_g}{T_u}$  | $1.35 \cdot T_g$ | $0.47 \cdot T_u$ | $\frac{0.95}{K_s} \cdot \frac{T_g}{T_u}$ |
| Oppelt [5]                                           | $3 \cdot T_u$   | $\frac{0.8}{K_s} \cdot \frac{T_g}{T_u}$  | $2 \cdot T_u$    | $0.42 \cdot T_u$ | $\frac{1.2}{K_s} \cdot \frac{T_g}{T_u}$  |

| Faustformel   | PI-Regler                      |                                      | PID-T1-Regler |                  |                                         |
|---------------|--------------------------------|--------------------------------------|---------------|------------------|-----------------------------------------|
|               | $T_n$                          | $K_p$                                | $T_n$         | $T_v$            | $K_p$                                   |
| Rosenberg [5] | $3.3 \cdot T_u  \frac{0.9}{K}$ | $\frac{01}{s} \cdot \frac{T_g}{T_u}$ | $2 \cdot T_u$ | $0.45 \cdot T_u$ | $\frac{1.2}{T_s} \cdot \frac{T_g}{T_u}$ |

 ${\bf Tabelle~1:}~{\bf Faust formeln~zur~Regler dimensionier ung}$ 



| Faustformel                                          | PI-Regl           | er    | PID-T1            | -Regler          |       |
|------------------------------------------------------|-------------------|-------|-------------------|------------------|-------|
|                                                      | $T_n$             | $K_p$ | $T_n$             | $T_v$            | $K_p$ |
| Chiens, Hrones, Reswick (0% Überschwingen) [3], [4]  | $10.68\mathrm{s}$ | 1.42  | 8.9 s             | $0.55\mathrm{s}$ | 2.43  |
| Chiens, Hrones, Reswick (20% Überschwingen) [3], [4] | $8.9\mathrm{s}$   | 2.43  | $12.02\mathrm{s}$ | $52\mathrm{s}$   | 3.84  |
| Oppelt [5]                                           | $3.3\mathrm{s}$   | 3.24  | $2.2\mathrm{s}$   | $0.46\mathrm{s}$ | 4.85  |
| Rosenberg [5]                                        | $3.63\mathrm{s}$  | 3.68  | $2.2\mathrm{s}$   | $0.50\mathrm{s}$ | 4.85  |

Setzt man die Werte für  $K_s,\,T_u,\,T_g$  in diese Formeln ein, ergibt sich Folgendes:

Tabelle 2: Reglerparameter bestimmt mit Faustformeln aus Tabelle 1

#### 3.3 Reglerdimensionierung mittels Phasengangmethode: PI-Regler

Es werden nun anhand der Phasengangmethode sowohl ein PI- wie auch ein PID-Regler für die in Abschnitt 3.1 ausgemessene Strecke dimensioniert (siehe nächster Abschnitt für PID-Regler).

Tabelle 3 fasst die häufig verwendeten Begriffe in einer Übersicht zusammen:

| $H_s(j\omega)$ Übertragungsfunktion der Regelstrecke                                                                 |
|----------------------------------------------------------------------------------------------------------------------|
|                                                                                                                      |
| $\Lambda (i, i) \mid H(i, i) \mid$                                                                                   |
| $A_s(j\omega) =  H_s(j\omega) $ Amplitudengang der Regelstrecke                                                      |
| $\varphi_s(j\omega) = arg(H_s(j\omega))$ Phasengang der Regelstrecke                                                 |
| $H_r(j\omega)$ Übertragungsfunktion des Reglers                                                                      |
| $A_r(j\omega) =  H_r(j\omega) $ Amplitudengang des Reglers                                                           |
| $\varphi_r(j\omega) = arg(H_r(j\omega))$ Phasengang des Reglers                                                      |
| $H_o(j\omega) = H_s \cdot H_r(j\omega)$ Übertragungsfunktion des offenen                                             |
| Regelkreises                                                                                                         |
| $A_o(j\omega) =  H_o(j\omega) $ Amplitudengang des offenen Regel-                                                    |
| kreises                                                                                                              |
| $\varphi_o(j\omega) = arg(H_o(j\omega)) = \varphi_s(j\omega) + \varphi_r(j\omega)$ Phasengang des offenen Regelkrei- |
| ses                                                                                                                  |
| $H_{rpid} = K_{rk} \left[ \frac{(1+sT_{nk})(1+sT_{vk})}{sT_{vk}} \right]$ Übertragungsfunktion des PID-              |
| $\operatorname{Reglers}$ (bodekonform)                                                                               |
| $H_{rpi} = K_{rk} \left[ 1 + \frac{1}{sT_{nk}} \right]$ Übertragungsfunktion des PI-                                 |
| $T_{rpi} = T_{rk} \begin{bmatrix} 1 & s_{T_{nk}} \end{bmatrix}$ Reglers (bodekonform)                                |
|                                                                                                                      |

Tabelle 3: Die wichtigsten Begriffsdefinitionen

#### Ziel

Das Ziel ist die Bestimmung der Parameter  $K_{rk}$  und  $T_{nk}$  in der Übertragungsfunktion des Reglers:

$$H_{rpi} = K_{rk} \cdot \left[ 1 + \frac{1}{s \cdot T_{nk}} \right] \tag{2}$$

#### 1 Bestimmung der Reglerfrequenz $\omega_{pi}$

Zuerst wird im Phasengang der Strecke die Frequenz  $\omega_{pi}$  bestimmt, für welche die Phase der Strecke  $-90^{\circ}$  beträgt, ersichtlich in Abbildung 4 <sup>4</sup>.





**Abbildung 4:**  $\omega_{pi}$  eingetragen (vertikale gestrichelte Linie).

Wie man aus Abbildung 4 ablesen kann, liegt dieser Wert für  $\omega_{pi}$  in unserem Beispiel bei ungefähr  $0.3\,\mathrm{s}^{-1}$ . Die Kontrollrechnung mittels Matlab ergibt:

$$\omega_{pi} = 0.3039 \,\mathrm{s}^{-1} \tag{4}$$

<sup>&</sup>lt;sup>4</sup>Der Winkel stellt keinen endgültigen Wert dar. Dieser wurde von Jakob Zellweger fixiert, um eine grafische Evaluation überhaupt zu ermöglichen. Durch Anpassung dieses Wertes kann je nach Regelstrecke das Regelverhalten weiter optimiert werden.

#### 2 Bestimmung von $T_{nk}$

Damit kann nun  $T_{nk}$  direkt bestimmt werden<sup>5</sup>:

$$T_{nk} = \frac{1}{\omega_{pi}} = \frac{1}{0.3039 \,\mathrm{s}^{-1}} = 3.2902 \,\mathrm{s}$$
 (5)

#### 3 Bestimmung der Durchtrittsfrequenz $\omega_d$

Die Durchtrittsfrequenz ist die Frequenz, bei der eine betrachtete Übertragungsfunktion eine Verstärkung von  $0 \, \mathrm{dB} = 1$  aufweist. In der Phasengangmethode soll sie so festgelegt werden, dass der offene Regelkreis Gleichung 6 erfüllt. Dabei ist für  $\varphi_s$  abhängig vom gewünschten Überschwingverhalten ein Wert aus Tabelle 4 auszuwählen <sup>6</sup>. Nach dem Festlegen der Durchtrittsfrequenz wird dann im nächsten Abschnitt die Verstärkung des Reglers noch angepasst.

$$\varphi_o(\omega_d) = \varphi_s.$$
Überschwingen 0% 16.3% 23.3%
$$\varphi_s \qquad -103.7^{\circ} \quad -128.5^{\circ} \quad -135^{\circ}$$

**Tabelle 4:** Werte für  $\varphi_s$ 

Um Gleichung 6 auswerten zu können, wird der Phasengang des offenen Regelkreises benötigt. Dazu wird der in Gleichung 5 erhaltene Wert für  $T_{nk}$  in die Übertragungsfunktion des Reglers (Gleichung 2) eingesetzt.  $K_{rk}$  ist noch unbekannt, hat aber auf die Phase keinen Einfluss und wird somit vorerst einfach auf 1 gesetzt.

$$H_{rpi} = K_{rk} \cdot \left[ 1 + \frac{1}{s \cdot T_{nk}} \right]$$

$$= 1 \cdot \left[ 1 + \frac{1}{s \cdot 3.2902 \,\mathrm{s}} \right]$$
(7)

Daraus kann nun der Frequenzgang des offenen Regelkreises (Übertragungsfunktion  $H_o$ , Amplitudengang  $A_o$ , Phasengang  $\varphi_o$ ) bestimmt werden.

$$H_{o}(s) = H_{rpi}(s) \cdot H_{s}(s)$$

$$= \left(K_{rk} \cdot \left[1 + \frac{1}{s \cdot T_{nk}}\right]\right) \cdot K_{s} \cdot \left(\frac{1}{1 + s \cdot T_{1}} \cdot \frac{1}{1 + s \cdot T_{2}} \cdot \frac{1}{1 + s \cdot T_{2}}\right)$$

$$= \left(1 \cdot \left[1 + \frac{1}{s \cdot 3.2902 \,\mathrm{s}}\right]\right) \cdot 2 \cdot \left(\frac{1}{1 + s \cdot 0.4134 \,\mathrm{s}} \cdot \frac{1}{1 + s \cdot 1.4894 \,\mathrm{s}} \cdot \frac{1}{1 + s \cdot 5.3655 \,\mathrm{s}}\right)$$
(8)

<sup>&</sup>lt;sup>5</sup>Um die Akkumulation von Ungenauigkeiten zu minimieren, werden bei diesen Berechnungen die genauen Werte aus Matlab verwendet und nicht die gerundeten Zwischenresultate, was zu Abweichungen zu den von Hand berechneten Ergebnissen führen kann.

<sup>&</sup>lt;sup>6</sup>Die Werte für  $\varphi_s$  aus Tabelle 4 stellen keine abschliessende Auflistung dar und sind lediglich als Anhaltspunkte zu betrachten. Weicht das Verhalten des geschlossenen Regelkreises am Schluss zu stark vom gewünschten Ergebnis ab, besteht durch die Wahl anderer Werte für  $\varphi_s$  die Möglichkeit weiterer Optimierung.

Von besonderem Interesse ist der Phasengang  $\varphi_o(j\omega)$  dieser Übertragungsfunktion (siehe Tabelle 3). Wie Anfangs spezifiziert, soll ein maximals Überschwingen von ca. 16.3% angestrebt werden. Dazu muss gemäss Tabelle 4 die Durchtrittsfrequenz  $\omega_d$  gefunden werden, an welcher der offene Regelkreis eine Phase von  $-128.5^{\circ}$  aufweist (Gleichung 6). In Abbildung 5 kann dies grafisch verifiziert werden.



**Abbildung 5:** Phasengang  $\varphi_o(j\omega)$  des offenen Regelkreises mit eingetragener Durchtrittsfrequenz  $\omega_d$  (vertikale gestrichelte Linie). Wie man sieht, weist der offene Regelkreis unseres Beispiels bei dieser Kreisfrequenz eine Phase von  $-128.5^{\circ}$  auf (etwa  $-2.24\,\mathrm{rad}$ ).

Dies ergibt:

$$\omega_d = 0.2329 \,\mathrm{s}^{-1} \tag{9}$$

#### 4 Bestimmung der Reglerverstärkung $K_{rk}$

Im letzten Schritt muss nun wie im vorherigen Abschnitt erwähnt die Verstärkung  $K_{rk}$  des Reglers noch angepasst werden, damit der offene Regelkreis bei der angestrebten Durchtrittsfrequenz  $\omega_d$  auch effektiv eine Verstärkung von 1 aufweist. Dazu wird  $j\omega_d$  in Gleichung 8 für den Parameter s eingesetzt und  $|H_o(j\omega_d)| = 1$  gesetzt.

$$A_{o} = |H_{o}(j\omega_{d})| = |H_{rpi}(j\omega) \cdot H_{s}(j\omega)|$$

$$= \left| \left( K_{rk} \cdot \left[ 1 + \frac{1}{j \cdot \omega_{d} \cdot T_{nk}} \right] \right) \cdot K_{s} \cdot \left( \frac{1}{1 + j \cdot \omega_{d} \cdot T_{1}} \cdot \frac{1}{1 + j \cdot \omega_{d} \cdot T_{2}} \cdot \frac{1}{1 + j \cdot \omega_{d} \cdot T_{2}} \right) \right| \quad (10)$$

$$= 1$$

Mit den Werten

$$K_s = 2$$

$$T_{nk} = 3.2902 \,\mathrm{s}$$

$$T_1 = 0.4134 \,\mathrm{s}$$

$$T_2 = 1.4894 \,\mathrm{s}$$

$$T_3 = 5.3655 \,\mathrm{s}$$

$$\omega_d = 0.2329 \,\mathrm{rad} \,\mathrm{s}^{-1}$$
(11)

löst man Gleichung 10 nun nach  $K_{rk}$  auf und erhält:

$$K_{rk} = 0.517577 \tag{12}$$

#### 5 Resultat

Somit ist der PI-Regler vollständig bestimmt und hat folgende Form:

$$H_{rpi} = 0.518 \cdot \left[ 1 + \frac{1}{s \cdot 3.29 \,\mathrm{s}} \right]$$
 (13)

In Abbildung 6 sind die wichtigsten Werte für diesen Prozess nochmals in einer Übersicht zusammengefasst.



**Abbildung 6:** Frequenzgang des Reglers (grün), der Strecke (blau) und des offenen Regelkreises (rot).

Fix vertical line  $\omega_d$ 

#### 3.4 Reglerdimensionierung mittels Phasengangmethode: PID-Regler

#### Ziel

Das Ziel ist die Bestimmung der Parameter  $K_{rk}$ ,  $T_{nk}$  und  $T_{vk}$  in der Übertragungsfunktion des Reglers:

$$H_{rpid} = K_{rk} \cdot \left[ \frac{(1 + s \cdot T_{nk}) \cdot (1 + s \cdot T_{vk})}{s \cdot T_{nk}} \right]$$
(14)

#### 1 Bestimmung der Reglerfrequenz $\omega_{pid}$

Analog zum PI-Regler wird zuerst im Phasengang der Strecke die Frequenz  $\omega_{pid}$  bestimmt, für welche die Phase einen bestimmten Wert aufweist, nur wird hier  $-135^{\circ}$  benutzt <sup>7</sup>:

$$\varphi_s(\omega_{pid}) = -135^{\circ} \tag{15}$$

In unserem Beispiel ergibt dies:

$$\omega_{pid} = 0.6714 \,\mathrm{s}^{-1} \tag{16}$$

Eine grafische Überprüfung kann anhand von Abbildung 7 durchgeführt werden.

#### 2 Steigung des Phasengangs bei der Reglerfrequenz

Anschliessend wird die Steigung des Phasengangs  $\varphi_s$  der Strecke bei der Frequenz  $\omega_{pid}$  bestimmt. Ausgangspunkt dafür ist die von p\_sani bestimmte Übertragungsfunktion der Strecke (siehe Gleichung 1).

$$\frac{d\varphi_s}{d\omega}\Big|_{\omega=\omega_{pid}} = \frac{d(arg(H_s(j\omega)))}{d\omega}\Big|_{\omega=\omega_{pid}} = -1.5124 s$$
(17)

Einheit überprüfen

#### 3 Hilfsparameter $\beta$

Zwischen den Steigungen der Phasen des offenen Regelkreises  $(\varphi_o)$ , der Strecke  $(\varphi_s)$  und des Reglers  $(\varphi_r)$  gilt gemäss Tabelle 3 folgende Beziehung:

$$\varphi_o = \varphi_s + \varphi_r \tag{18}$$

Da die Ableitung eine lineare Funktion ist, gilt somit auch:

$$\frac{d\varphi_o}{d\omega} = \frac{d\varphi_s}{d\omega} + \frac{d\varphi_r}{d\omega} \tag{19}$$

Diese Beziehungen können auch gut in Abbildung 7 von Hand überprüft werden.

Es soll nun gelten:

$$\frac{d\varphi_o}{d\omega}\Big|_{\omega=\omega_{odd}} = -\frac{1}{2} \tag{20}$$

Da  $\frac{d\varphi_s}{d\omega}$  durch die Strecke gegeben und somit unveränderlich ist, kann lediglich der Wert von  $\frac{d\varphi_r}{d\omega}$  angepasst werden, damit  $\frac{d\varphi_o}{d\omega}$  Gleichung 20 erfüllt.

Dazu führt man den Hilfsparameter  $\beta$  ein, für den gilt:

$$\frac{1}{T_{vk}} = \frac{\omega_{pid}}{\beta}$$

$$\frac{1}{T_{nk}} = \omega_{pid} \cdot \beta$$

$$0 < \beta < 1$$
(21)

<sup>&</sup>lt;sup>7</sup>Wie auch beim PI-Regler stellt diese Frequenz lediglich einen Ausgangspunkt dar und kann zur weiteren Optimierung des Resultats noch angepasst werden.

Wie in Abbildung 7 gesehen werden kann <sup>8</sup>, liegen die beiden Frequenzen  $\frac{1}{T_{vk}}$  und  $\frac{1}{T_{nk}}$  symmetrisch um den Faktor  $\beta$  respektive  $\frac{1}{\beta}$  oberhalb bzw. unterhalb der Frequenz  $\omega_{pid}$ .

Will man  $\beta$  von Hand berechnen, trifft zuerst eine "vernünftige" Annahme, zum Beispiel:

$$\beta = 0.5 \tag{22}$$

Mit diesem Startwert bestimmt man nun  $T_{nk}$  und  $T_{vk}$ :

$$T_{vk} = \frac{\beta}{\omega_{pid}} = \frac{0.5}{0.6714 \,\mathrm{s}^{-1}} = 0.7447 \,\mathrm{s}$$

$$T_{nk} = \frac{1}{\omega_{pid} \cdot \beta} = \frac{1}{0.6714 \,\mathrm{s}^{-1} \cdot 0.5} = 2.9789 \,\mathrm{s}$$
(23)

Die somit erhaltenen Werte setzt man in Gleichung 14 ein, zusammen mit dem Wert für  $\omega_{pid}$  aus Gleichung 16. Da  $K_{rk}$  noch unbekannt ist, aber auf den Phasengang keinen Einfluss hat, setzt man vorerst  $K_{rk} = 1$ , um weiterrechnen zu können.

$$H_{rpid} = K_{rk} \cdot \left[ \frac{(1 + j\omega \cdot T_{nk}) \cdot (1 + j\omega \cdot T_{vk})}{j\omega \cdot T_{nk}} \right]$$

$$= 1 \cdot \left[ \frac{(1 + j\omega \cdot 2.9789 \,\mathrm{s}) \cdot (1 + j\omega \cdot 0.7447 \,\mathrm{s})}{j\omega \cdot 2.9789 \,\mathrm{s}} \right]$$
(24)

Von dieser Gleichung bestimmt man nun den Phasengang und wertet danach dessen Ableitung an der Stelle  $\omega = \omega_{pid}$  aus. Die zugehörige Rechnung kann in Anhang ?? gefunden werden.

$$\varphi_r(j\omega) = arg(H_{rpid}(j\omega))$$

$$\frac{d\varphi_r}{d\omega}\Big|_{\omega=\omega_{pid}} = 1.1920 \,\mathrm{s}$$
(25)

Setzt man dies in Gleichung 18 ein, erhält man:

$$\frac{d\varphi_o}{d\omega}\Big|_{\omega=\omega_{pid},\beta=0.5} = \frac{d\varphi_s}{d\omega}\Big|_{\omega=\omega_{pid}} + \frac{d\varphi_r}{d\omega}\Big|_{\omega=\omega_{pid},\beta=0.5}$$

$$= -1.5124 \,\mathrm{s} + 1.1920 \,\mathrm{s}$$

$$= -0.3204 \,\mathrm{s}$$

$$> -\frac{1}{2}$$
(26)

Mit  $\beta = 0.5$  erhält man also eine zu hohe Steigung des offenen Regelkreises an der Stelle  $\omega_{pid}$ , folglich muss  $\beta$  verkleinert werden. Diese Berechnungen werden nun mit jeweils neuen Werten für  $\beta$  solange wiederholt, bis die Steigung des offenen Regelkreises die gewünschte Nähe zu  $-\frac{1}{2}$  aufweist.

Da die manuelle Iterierung dieses Prozesses enorm viel Zeit in Anspruch nimmt, bietet sich hier eine Automatisierung an. Die Berechnung mittels eines geeigneten Algorithmus in Matlab liefert schlussendlich folgendes Ergebnis:

Allenfalls
MatlabAlgo in
Anhang
und Verweis

$$\beta = 0.2776$$

$$T_{vk} = \frac{\beta}{\omega_{pid}} = 0.4134 \,\mathrm{s}$$

$$T_{nk} = \frac{1}{\omega_{pid} \cdot \beta} = 5.3656 \,\mathrm{s}$$

$$(27)$$

Diese Werte sind in ebenfalls in 7 eingetragen.

Sollte man für  $\beta$  einen komplexen Wert erhalten, wird  $\beta = 1$  gesetzt.

#### 4 Durchtrittsfrequenz $\omega_d$

Als letzte Unbekannte verbleibt die Verstärkung  $K_{rk}$ . Wie auch beim PI-Regler ist zum Finden der Verstärkung die Durchtrittsfrequenz  $\omega_d$  zu bestimmen, um anschliessend mit deren Hilfe  $K_{rk}$  auszurechnen.

Die Resultate aus Gleichung 27 werden in Gleichung 14 eingesetzt.  $K_{rk}$  ist immer noch unbekannt, und wird daher vorerst bei 1 belassen.

$$H_{rpid} = K_{rk} \cdot \left[ \frac{(1 + s \cdot T_{nk}) \cdot (1 + s \cdot T_{vk})}{s \cdot T_{nk}} \right] = 1 \cdot \left[ \frac{(1 + s \cdot 5.3656 \,\mathrm{s}) \cdot (1 + s \cdot 0.4134 \,\mathrm{s})}{s \cdot 5.3656 \,\mathrm{s}} \right]$$
(28)

Es interessiert hier der Phasengang des offenen Regelkreises (auch eingetragen in Abbildung 7), wozu die Übertragungsfunktion der Strecke (siehe Gleichung 1) mit der soeben bestimmten provisorischen Übertragungsfunktion des Reglers (Gleichung 28) multipliziert wird.

$$H_o(j\omega) = H_{rpid}(j\omega) \cdot H_s(j\omega) \tag{29}$$

Nun wird die Durchtrittsfrequenz  $\omega_d$  bestimmt, an welcher der offene Regelkreis eine Verstärkung von  $0 \, dB = 1$  aufweisen soll. Wie auch beim PI-Regler werden wir hier ein Überschwingen von 16.3% anstreben, womit gemäss Tabelle 4 gilt:

$$\varphi_s(\omega_d) = \varphi_s = -128.5^{\circ} \tag{30}$$

Dieser Wert wird analog zum PI-Regler aus dem Phasengang des offenen Regelkreises abgelesen (siehe Abbildung 7). Eine Nachrechnung mittels Matlab ergibt:

$$\omega_d = 0.5341 \,\mathrm{s}^{-1} \tag{31}$$

Wie kann dies egtl. bassieren?

 $<sup>^8</sup>$ Man beachte dabei, dass der Plot logarithmisch skaliert ist. Eine identische Wegstrecke zwischen zwei Punkte-Paaren auf der Frequenzachse bedeutet also, dass diese um denselben Faktor auseinander liegen, und nicht, dass die Differenz zwischen den jeweiligen Punkten identisch ist. Im Falle der Punkte-Paare  $\left[\frac{1}{T_{nk}},\omega_{pid}\right]$  und  $\left[\omega_{pid},\frac{1}{T_{vk}}\right]$  ist dieser Faktor  $\beta$ , wie in Gleichung 21 ersichtlich.

#### 5 Bestimmung der Reglerverstärkung $K_{rk}$

Im letzten Schritt wird nun der Amplitudengang des offenen Regelkreises an der Stelle  $\omega_d$  gleich 1 gesetzt und diese Gleichung nach  $K_{rk}$  aufgelöst:

$$A_{o}(j\omega_{d}) = |H_{o}(j\omega_{d})| = |H_{rpid}(j\omega_{d}) \cdot H_{s}(j\omega_{d})|$$

$$= \left| K_{rk} \cdot \left[ \frac{(1 + j\omega_{d} \cdot T_{nk}) \cdot (1 + j\omega_{d} \cdot T_{vk})}{j\omega_{d} \cdot T_{nk}} \right] \right|$$

$$\cdot \left| K_{s} \cdot \frac{1}{1 + j\omega_{d} \cdot T_{1}} \cdot \frac{1}{1 + j\omega_{d} \cdot T_{2}} \cdot \frac{1}{1 + j\omega_{d} \cdot T_{2}} \right|$$

$$= 1$$
(32)

Die einzusetzenden Werte sind:

$$K_s = 2$$
 $T_1 = 0.4134 \,\mathrm{s}$ 
 $T_2 = 1.4894 \,\mathrm{s}$ 
 $T_3 = 5.3655 \,\mathrm{s}$ 
 $T_{nk} = 5.3656 \,\mathrm{s}$ 
 $T_{vk} = 0.4134 \,\mathrm{s}$ 
 $\omega_d = 0.5341 \,\mathrm{s}^{-1}$ 
(33)

Womit man für die Verstärkung den Wert

$$K_{rk} = 1.83084 \tag{34}$$

erhält.

#### 6 Resultat

Somit ist der Regler vollständig bestimmt und hat folgende Übertragungsfunktion:

$$H_{rpid}(s) = 1.83084 \cdot \left[ \frac{(1+s \cdot 5.3656 \,\mathrm{s}) \cdot (1+s \cdot 0.4134 \,\mathrm{s})}{s \cdot 5.3656 \,\mathrm{s}} \right]$$
(35)

Zusammenfassend sind in Abbildung 7 die verschiedenen Frequenzgänge und Frequenzen eingetragen.



**Abbildung 7:** Frequenzgang der Strecke (blau), des Reglers (grün) und des offenen Regelkreises (rot). Ebenfalls eingetragen sind die Reglerfrequenz  $\omega_{pid}$ , die beiden Frequenzen  $\frac{1}{T_{vk}}$  und  $\frac{1}{T_{nk}}$  sowie die Durchtrittsfrequenz  $\omega_d$ .

#### 3.5 Umrechnung zwischen bodekonformer und reglerkonformer Darstellung

Die Formeln in Tabelle 5 dienen zur Umrechnung zwischen der bodekonformen Darstellung und der reglerkonformen Darstellung. Nähere Informationen zu den verschiedenen Darstellungsarten können der Quelle [6] entnommen werden.

|     | $\  \     \   {\rm bodekonform} \rightarrow {\rm reglerkonform}$                                                                                                              | $\operatorname{reglerkonform} \to \operatorname{bodekonform}$                                                                                                                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PI  | $T_n = T_{nk}$                                                                                                                                                                | $K_{rk} = K_r$                                                                                                                                                                           |
| PID | $T_{n} = T_{nk} + T_{vk} - T_{p}$ $T_{v} = \frac{T_{nk} \cdot T_{vk}}{T_{nk} + T_{vk} - T_{p}} - T_{p}$ $K_{r} = K_{rk} \cdot \left(1 + \frac{T_{vk} - T_{p}}{T_{nk}}\right)$ | $T_{nk} = 0.5 \cdot (T_n + T_p) \cdot (1 + \epsilon)$ $T_{vk} = 0.5 \cdot (T_n + t_p) \cdot (1 - \epsilon)$ $K_{rk} = 0.5 \cdot K_r \cdot (1 + \frac{T_p}{T_{nk}}) \cdot (1 + \epsilon)$ |
|     | wobei $\epsilon^2 = 1 - \left(4 \cdot T_n \cdot \frac{T_v - T_p}{(T_n + T_p)^2}\right)$                                                                                       |                                                                                                                                                                                          |

Tabelle 5: Formeln zur Umrechung zwischen bode- zu reglerkonformer Darstellung [6], [7]

Für die Berechnungen in diesem Projekt wird, wenn nicht anders angegeben, mit  $T_p = \frac{1}{10} \cdot T_v$  gerechnet.

Allenfalls noch ein paar kurze Sinn dieser Übung? Sonst wird nirgends darauf wirklich Bezug genommen, Abschnitt ist ein we-Kontext in der Landschaft.

26 4 SOFTWARE

#### 4 Software

Verweis auf Klassendiagramm

Zweck der Applikation ist die Dimensionierung eines Reglers ausgehend von einer Strecke und der zugehörigen Schrittantwort. Abschliessend werden die numerischen Parameter des dimensionierten Reglers ausgegeben sowie die Schrittantwort des geschlossenen Regelkreises grafisch dargestellt.

Die Software ist im bekannten Model-View-Controller-Pattern aufgebaut.

#### **4.1** View

Die *View* ist aus zwei übergeordneten Panels aufgebaut. Im linken Panel befinden sich Ein- und Ausgabefelder für numerische Werte, im rechten Panel werden die zugehörigen Plots dargestellt.

Image Gesamt-GUI

Image Panel Schrittantwort vermessen

Image Referenzen

lmage Butttons PI-, PID-T1-Regler

Check: korrekter Begriff

Image Panel Phasengangmetho-

Image Panel rechts

Einfügen Wert, Referenz Im Bereich 1 werden die Parameter der vermessenen Strecke eingegeben. Darunter befinden sich die Schalftflächen zur Wahl zwischen der Dimensionierung eines PI- respektive eines PID-T1-Reglers.

Das Panel Reglerwerte dient hauptsächlich der Ausgabe der berechneten Reglerwerte mittels der verschiedenen Berechnungsmethoden. Ebenfalls kann für die Phasengangmethode die Zeitkonstante  $T_p$  spezifiziert werden.

Der obere Bereich des rechten Panels beinhaltet zwei Slider zur Eingabe des gewünschten Überschwingens respektive des Phasenrands.

Im unteren Bereich werden die Plots der mittels Faustformeln und Phasengangmethode errechneten Resultate ausgegeben. Zu jeder Faustformel wird die zugehörige Schrittantwort abgebildet. Die Resultate der Phasengangmethode werden durch drei Kurven dargestellt. Eine Kurve benutzt den Standardwert des Phasenrands gemäss Zellweger , die beiden anderen Kurven basieren auf Benutzereingaben für einen oberen und unteren Offset des Phasenrandes im Bereich von  $-45^{\circ}$  bis  $+45^{\circ}$ .

#### 4.2 Controller

Der Controller ist verantwortlich für die Steueraufgaben und erzeugt den Regler. Da Regler übersetzt auf Englisch Controller ist, heisst die generische Reglerklasse in unserer Software Controller. Die Klasse, welche die die Rolle des Controller im Kontext von Model-View-Controller wahrnimmt, heisst daher GUIController, um Namenskonflikte zu vermeiden.

#### 4.3 Model

Leserführung Model. Ausschnitt Klassendiagramm, Verweis auf gesamtes Diagramm.

#### 4.4 Benutzungs-Beispiel (Use-Case)

Leserführung Use-Case. Ausschnitt Klassendiagramm, Verweis auf gesamtes Diagramm.

#### 4.5 Beschreibung der Algorithmen

#### Sani

#### 1 Input

Tu Verzugszeit Tg Anstiegszeit

#### 2 Output

n Ordnung der Regelstrecke T Zeitkonstante

## 3 Algorithmus

- 1. Ungültige Eingaben warden abgefangen und ein Fehler zurückgegeben.
- 2. Lädt Werte für Tu und Tg.
- 3. Erstellt 50 Werte zwischen 0 und 1 für ri.
- 4. Bestimmt die Ordnung der Regelstrecke.
- 5. Spline für r und w
- 6. T(n) wird aus w\*tg berechnet.
- 7. Umspeichern & Sortieren

#### 4 Matlab-Code

```
function [n,T] = p2_sani(tu,tg,p)
3
   if tu <= 0 || tg <= 0
      disp(' ');
      error('!!!!! unsinnige Zeiten !!!!!
6
   v=tu/tg;
9
   if v>0.64173
      disp(' ');
      error('!!!!!! Tu/Tg zu gross
    end;
   if v<0.001
14
      disp(' ');
16
      error('!!!!! Tu/Tg zu klein
18
   load('p2_sani_tu_tg');
19
20
   pause (0.1);
                                     % Pause, damit Laden vom File erfolgreich!!!!
21
22
   % Berechnet mit NN=50 (r-Aufloesung)
23
   ri=linspace(0,1,50);
25
   if v <= 0.103638
                              \mbox{\ensuremath{\mbox{\%}}} abhaengig von n werden vorberechnete
26
                               % Datenfiles von der Festplatte geladen.
    elseif v <= 0.218017
                              % 2 <= n <= 8
27
                               \% n=1 ist trivial und fuehrt zu Abbruch
      n=3;
29
    elseif v <= 0.319357
30
     n=4:
    elseif v <= 0.410303</pre>
     n=5;
    elseif v <= 0.4933
34
     n=6;
   elseif v <= 0.5700
     n=7;
36
37
    elseif v<=0.64173</pre>
```

28 4 SOFTWARE

```
38
      n=8;
    else
40
     n=10;
41
    end;
42
43
   r=spline(Tu_Tg(n,:),ri,v);
   w=spline(ri,T_Tg(n,:),r);
44
45
   T(n)=w*tg;
47
                                      % Umspeicher, damit gleiche Reihenfolge wie bei Hudzovik
48
   for i=n-1:-1:1,
49
     T(i)=T(n)*r^{(n-i)};
52
   % Plots der Schrittantworten
   if p==1
        TT=4*(tg);
        t=linspace(0,TT,2500);
56
        za=1;
57
        n1=conv([T(1) 1],[T(2) 1]);
        for k=3:n
59
            nen1=conv(n1,[T(k) 1]);
60
            n1=nen1;
        end;
61
62
        nens=n1;
        step(za,nens,'k'); grid on;
64
        hold on;
65
        %wendepkt(T);
        hold off;
```

#### Umrechnung von reglerkonformer in bodekonforme Darstellung

#### 5 Input

| Tv        | Vorhaltezeit                  |
|-----------|-------------------------------|
| Tn        | Nachstellzeit                 |
| Тр        | Periodendauer                 |
| Kr        | Verstärkungsfaktor des Regler |
| Reglertyp | Typ des Reglers (P, PI, PID)  |

#### 6 Output

Trk Nachstellzeit Tvk Vorhaltezeit

Krk Verstärkungsfaktor des Reglers

#### 7 Algorithmus

- 1. Wählt je nach Reglertyp die Umrechnungsformel.
- 2. Falls der I-Regler gewählt wird, gibt der Algorithmus einen Fehler zurück, da der I-Regler nicht implementiert ist.
- 3. PI-Regler:  $T_{nk} = T_n$ ,  $K_{rk} = K_r$ ,  $T_{vk} = 0$
- 4. Für PID-Regler:

$$\varepsilon = \frac{\sqrt{1 - (4 \cdot T_n \cdot (T_v - T_p))}}{(T_n + T_p)^2}$$

$$T_{nk} = \frac{(T_n + T_p) \cdot (1 + \varepsilon)}{2}$$

$$K_{rk} = \frac{K_r \cdot (\frac{1+T_p}{T_{nk}}) \cdot (1+\varepsilon)}{2}$$

$$T_{vk} = \frac{(T_n + T_p) * (1 + \varepsilon)}{2}$$

## 8 Matlab-Code



30 5 TESTS

## 5 Tests



## 6 Schlussfolgerungen



## Ehrlichkeitserklärung

Mit der Unterschrift bestätigt der Unterzeichnende (Projektleiterin), dass das Dokument selbst geschrieben worden ist und alle Quellen sauber und korrekt deklariert worden sind.

| Anita Rosenberger: |   |  |
|--------------------|---|--|
|                    |   |  |
| Ort, Datum:        | 7 |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |
|                    |   |  |

### A Beschreibung der Algorithmen

#### Sani

#### 9 Input

| Tu | Verzugszeit  |
|----|--------------|
| Tg | Anstiegszeit |

#### 10 Output

| n | Ordnung der Regelstrecke |
|---|--------------------------|
| T | Zeitkonstante            |

#### 11 Algorithmus

- 1. Ungültige Eingaben warden abgefangen und ein Fehler zurückgegeben.
- 2. Lädt Werte für Tu und Tg.
- 3. Erstellt 50 Werte zwischen 0 und 1 für ri.
- 4. Bestimmt die Ordnung der Regelstrecke.
- 5. Spline für r und w
- 6. T(n) wird aus w\*tg berechnet.
- 7. Umspeichern & Sortieren

#### 12 Matlab-Code

```
function [n,T] = p2_sani(tu,tg,p)
3
   if tu <= 0 || tg <= 0</pre>
      disp(' ');
4
5
      error('!!!!! unsinnige Zeiten !!!!!
6
   v=tu/tg;
9
   if v>0.64173
      error('!!!!!! Tu/Tg zu gross
    end;
13
   if v<0.001
14
      disp(' ');
16
      error('!!!!! Tu/Tg zu klein
17
18
   load('p2_sani_tu_tg');
19
20
   pause (0.1);
                                     % Pause, damit Laden vom File erfolgreich!!!!
   % Berechnet mit NN=50 (r-Aufloesung)
   ri=linspace(0,1,50);
   if v <= 0.103638
                              \mbox{\ensuremath{\%}} abhaengig von n werden vorberechnete
26
      n=2;
                              % Datenfiles von der Festplatte geladen.
    elseif v <= 0.218017
                              % 2 <= n <= 8
27
      n=3;
                              \% n=1 ist trivial und fuehrt zu Abbruch
29
    elseif v <= 0.319357</pre>
30
     n=4:
    elseif v <= 0.410303
32
     n=5;
    elseif v <= 0.4933
34
     n=6;
   elseif v <= 0.5700
     n=7;
36
    elseif v <= 0.64173
```

```
38
      n=8;
    else
40
     n = 10;
41
    end;
42
43
   r=spline(Tu_Tg(n,:),ri,v);
   w=spline(ri,T_Tg(n,:),r);
44
45
   T(n)=w*tg;
47
                                      % Umspeicher, damit gleiche Reihenfolge wie bei Hudzovik
48
   for i=n-1:-1:1,
49
     T(i)=T(n)*r^{(n-i)};
52
   % Plots der Schrittantworten
        TT=4*(tg);
        t=linspace(0,TT,2500);
56
        za=1;
        n1=conv([T(1) 1],[T(2) 1]);
        for k=3:n
59
            nen1=conv(n1,[T(k) 1]);
60
            n1=nen1;
        end;
61
        nens=n1;
        step(za,nens,'k'); grid on;
64
        hold on;
65
        %wendepkt(T);
        hold off;
```

#### Umrechnung von reglerkonformer in bodekonforme Darstellung

#### 13 Input

| Τv        | Vorhaltezeit                   |
|-----------|--------------------------------|
| Tn        | Nachstellzeit                  |
| Tp        | Periodendauer                  |
| Kr        | Verstärkungsfaktor des Reglers |
| Reglertyp | Typ des Reglers (P, PI, PID)   |

#### 14 Output

Tnk Nachstellzeit
Tvk Vorhaltezeit

Krk Verstärkungsfaktor des Reglers

#### 15 Algorithmus

- 1. Wählt je nach Reglertyp die Umrechnungsformel.
- 2. Falls der I-Regler gewählt wird, gibt der Algorithmus einen Fehler zurück, da der I-Regler nicht implementiert ist.
- 3. PI-Regler:  $T_{nk} = T_n$ ,  $K_{rk} = K_r$ ,  $T_{vk} = 0$
- 4. Für PID-Regler:

$$\varepsilon = \frac{\sqrt{1 - (4 \cdot T_n \cdot (T_v - T_p))}}{(T_n + T_p)^2}$$

$$T_{nk} = \frac{(T_n + T_p) \cdot (1 + \varepsilon)}{2}$$

$$K_{rk} = \frac{K_r \cdot (\frac{1+T_p}{T_{nk}}) \cdot (1+\varepsilon)}{2}$$
$$T_{vk} = \frac{(T_n + T_p) * (1+\varepsilon)}{2}$$

#### 16 Matlab-Code

### B Manuelle Berechnung des Hilfsparameteres $\beta$

Der erste Iterationsschtitt der in Abschnitt 3.4 erwähnten manuellen Berechnung des Hilfsparameteres  $\beta$  ist hier im Detail ausgeführt.

Zur Rekapitulation eine kurze Wiederholung der Ausgangslage:

$$\omega_{pid} = 0.6714 \,\mathrm{s}^{-1}$$

$$T_{vk} = \frac{\beta}{\omega_{pid}} = \frac{0.5}{0.6714 \,\mathrm{s}^{-1}} = 0.7447 \,\mathrm{s}$$

$$T_{nk} = \frac{1}{\omega_{pid} \cdot \beta} = \frac{1}{0.6714 \,\mathrm{s}^{-1} \cdot 0.5} = 2.9789 \,\mathrm{s}$$

$$K_{rk} = 1$$
(36)

Diese Werte eingesetzt in Gleichung 14 ergeben:

$$H_{rpid}(j\omega) = K_{rk} \cdot \left[ \frac{(1+s \cdot T_{nk})(1+s \cdot T_{vk})}{s \cdot T_{nk}} \right]$$

$$= 1 \cdot \left[ \frac{(1+j\omega \cdot 0.7447 \,\mathrm{s})(1+j\omega \cdot 2.9789 \,\mathrm{s})}{j\omega \cdot 2.9789 \,\mathrm{s}} \right]$$

$$= \frac{1+j\omega \cdot (2.9789 \,\mathrm{s} + 0.7447 \,\mathrm{s}) - \omega^2 \cdot 0.7447 \,\mathrm{s} \cdot 2.9789 \,\mathrm{s}}{j\omega \cdot 2.9789 \,\mathrm{s}}$$

$$= \frac{1-2.2184 \,\mathrm{s}^2 \cdot \omega^2 + j\omega \cdot 3.7236 \,\mathrm{s}}{j\omega \cdot 2.9789 \,\mathrm{s}}$$

$$= \frac{-\omega \cdot 3.7236 \,\mathrm{s} + j(1-\omega^2 \cdot 2.2184 \,\mathrm{s}^2)}{\omega \cdot 2.9789 \,\mathrm{s}}$$

$$= -1.250 + j \cdot (\omega^{-1} \cdot 0.3357 \,\mathrm{s}^{-1} - \omega \cdot 0.7450 \,\mathrm{s})$$

$$(37)$$

Von dieser Zahl gilt es nun, das Argument zu bestimmen und abzuleiten.  $H_{rpid}(j\omega)$  ist eine komplexe Zahl in der linken Halbebene (Re < 0), somit kommen folgende Formeln zur Berechnung des Arguments in Frage:

$$\varphi(Re+j\cdot Im) = atan\left(\frac{Im}{Re}\right) + \pi \qquad Re < 0 \land Im \ge 0$$

$$\varphi(Re+j\cdot Im) = atan\left(\frac{Im}{Re}\right) - \pi \qquad Re < 0 \land Im < 0$$
(38)

Da aber in diesem Fall lediglich die Ableitung von  $\varphi$  benötigt wird, fällt der Summand  $\pm \pi$  weg und welche Formel für die Berechnung des Arguments verwendet wird, ist ohne Konsequenz.

$$\varphi(H_{rpid}(j\omega)) = atan\left(\frac{\omega^{-1} \cdot 0.3357 \,\mathrm{s}^{-1} - \omega \cdot 0.7450 \,\mathrm{s}}{-1.250}\right) \pm \pi$$
$$= atan\left(\omega^{-1} \cdot -0.2686 \,\mathrm{s}^{-1} - \omega \cdot 0.5960 \,\mathrm{s}\right) \pm \pi$$
(39)

Die Ableitung des Arkustangens ist:

$$\frac{d}{dx}atan(x) = \frac{1}{1+x^2} \tag{40}$$

Mit

$$x(j\omega) = \omega^{-1} \cdot -0.2686 \,\mathrm{s}^{-1} - \omega \cdot 0.5960 \,\mathrm{s}$$
(41)

folgt

$$\frac{d}{d\omega}\varphi(H_{rpid}(j\omega)) = \frac{d}{dx}atan(x(j\omega)) \cdot \frac{d}{d\omega}x(j\omega) 
= \frac{0.5960 + \omega^{-2} \cdot 0.2686 \,\mathrm{s}^2}{1 + (\omega \cdot 0.5960 \,\mathrm{s} - \omega^{-1} \cdot 0.2686 \,\mathrm{s}^{-1})^2} 
\approx 1.1920$$
(42)

Wie in Gleichung 26 gezeigt, ist dies noch nicht der gesuchte Wert für  $\beta$ . Für den nächsten Iterationsschritt würde nun ein kleinerer Wert gewählt (z.B.  $\beta=0.25$ ), der zu neuen Werten für  $T_{nk}$  und  $T_{vk}$  führen würde, mit denen dann die Berechnungen aus Gleichungen 37 bis 42 erneut ausgeführt würden. Bei zufriedenstellender Nähe der Steigung des offenen Regelkreises zu  $-\frac{1}{2}$  ist die Iteration beendet.

LITERATUR 37

### Literatur

- [1] J. Zellweger, "Phasengang-Methode," Kapitel aus Vorlesungsskript.
- [2] A. Rosengerger, B. Müller, M. Suter, F. Alber, und R. Frey, "Projekt 2: Pflichtenheft Fachlicher Teil," April 2015.
- [3] (2011, März) Reglereinstellung nach Chiens, Hrones, Reswick. [Online]. Verfügbar: http://mathematik.tsn.at/content/files1/CHR\_mit\_ohne\_Ausgleich1344.pdf [Stand: 23. März 2015].
- [4] (2015, März) Faustformelverfahren (Automatisierungstechnik). [Online]. Verfügbar: http://de.wikipedia.org/wiki/Faustformelverfahren\_(Automatisierungstechnik) [Stand: 23. März 2015].
- [5] (1999, Jan) Anpassung eines Reglers an eine Regelstrecke Einstellregeln. [Online]. Verfügbar: http://techni.chemie.uni-leipzig.de/reg/parcalchelp.html [Stand: 23. März 2015].
- [6] J. Zellweger, "Regelkreise und Regelungen," Vorlesungsskript.
- [7] W. Schumacher und W. Leonhard, "Grundlagen der Regelungstechnik," 2001, Vorlesungsskript.

