Complexes - des exercices supplémentaires

1. Exercices fondamentaux

Exercice 1 Mettre sous la forme a + ib $(a, b \in \mathbb{R})$ les nombres suivants :

a)
$$\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$$
; b) $\frac{3+6i}{3-4i}$; c) $\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$.

Exercice 2 Mettre sous forme algébrique $(\sqrt{3} - i)^8$ et $(-1 + i)^{10}$.

Exercice 3 Comment choisir l'entier naturel n pour que $(\sqrt{3}+i)^n$ soit un réel ? un imaginaire pur ?

Exercice 4 Déterminer les ensembles de solutions des équations suivantes, de la variable complexe z.

1)
$$z^2 - (1+i)z - 4 + 8i = 0$$

3)
$$z^2 - 7z + 1 + 7i = 0$$

2)
$$z^2 + (-5 + 2i)z + 4 - 8i = 0$$

4)
$$z^2 - (2+6i)z - 5 + 10i = 0$$

Exercice 5

1) Déterminer, sous forme trigonométrique, les solutions complexes de l'équation

$$z^3 = 4\sqrt{2}(-1+i).$$

- 2) En utilisant les racines cubiques de l'unité, écrire les solutions de cette équation sous forme algébrique.
- 3) En déduire les valeurs de $\cos\left(\frac{11\pi}{12}\right)$ et $\sin\left(\frac{11\pi}{12}\right)$, puis celles de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 6 Linéariser les expressions suivantes, où $x \in \mathbb{R}$.

1)
$$\sin^3(x)\cos(x)$$

3)
$$\cos^2(x)\sin^2(x)$$

2)
$$\cos^2(x) + \cos^4(x) + \cos^6(x)$$

4)
$$\cos^3(x)\sin^3(x) + 3\sin(x)\cos^2(x)$$

2. Exercices standards

Exercice 7 Déterminer les racines quatrièmes de -7 - 24i.

Exercice 8 Soit α une racine 7-ième de l'unité, différente de 1. Montrer que :

$$\frac{\alpha}{1+\alpha^2} + \frac{\alpha^2}{1+\alpha^4} + \frac{\alpha^3}{1+\alpha^6} = -2.$$

1

Exercice 9 Résoudre les équations suivantes :

$$z^6 = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$$
 ; $z^4 = \frac{1 - i}{1 + i\sqrt{3}}$.

Exercice 10

- 1) Soient z_1, z_2, z_3 trois nombres complexes distincts ayant le même cube. Exprimer z_2 et z_3 en fonction de z_1 .
- 2) Donner, sous forme trigonométrique, les solutions dans \mathbb{C} de :

$$z^6 + (7 - i)z^3 - 8 - 8i = 0.$$

Exercice 11 Déterminer le lieu géométrique des complexes z vérifiant :

- 1) z^2 , 1-z et \bar{z} ont même module.
- **2)** $\operatorname{Re}(z^3) = \operatorname{Im}(z^3)$.
- 3) Les points d'affixe 1, z et $1 + z^2$ sont alignés.

3. Exercices plus difficiles

Exercice 12 ($\stackrel{\triangleright}{\blacktriangleright}$) Montrer que $\frac{3+4i}{5}$ n'est pas une racine n^{ieme} de l'unité.

On pourra:

- Montrer : $\exists \theta \in \mathbb{R}$, $\frac{3+4i}{5} = \exp(i\theta)$ Montrer : $\forall n \in \mathbb{N}^*$, $\forall \theta \in \mathbb{R}$, $\exists (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{Z}^n$, $\cos(n\theta) = 2^{n-1} \cos^n \theta + \alpha_1 \cos^{n-1} \theta + \dots + \alpha_{n-1} \cos \theta + \alpha_n$.
- $Calculer \cos n\theta \ et \cos \theta$.
- Conclure

Exercice 13 $(\stackrel{\triangleright}{})$ Sur une horloge à aiguilles, combien y a-t-il de configurations possibles telles que, lorsque l'on échange les aiguilles des heures et des minutes, cela donne aussi une heure valide?

2