GRAFOS

Pesos

Pesos

- •Grafos ponderados (ou valorados) possuem pesos associados às suas arestas.
- •Estes pesos podem significar distâncias, relações, dependências,
- •Os pesos trazem ao grafo a capacidade de resolver uma nova gama de problemas.

Pesos

Leitura de Grafos

Existem alguns formatos de descrição de grafos em arquivos, e alguns formatos livres, para o primeiro trabalho não vai ser pedido, mas vamos trabalhar com grafos carregados em arquivos, que serão texto simples com o seguinte formato:

V A D P
Ao Ad Ap
Ao Ad Ap
Ao Ad Ap
Ao Ad Ap
...

Onde:

V = Número de vértices

A = Número de Arestas

D = Direcionado ou não (O para não e 1 para sim)

P = Ponderado ou não (O para não e 1 para sim)

A primeira linha é sempre presente seguida de A linhas, uma linha para cada aresta, onde:

Ao = Vértice de origem da aresta

Ad = Vértice de destino da aresta

Ap = Peso da aresta (somente presente em grafos ponderados)

Lembrando que em grafos não direcionados as arestas devem ser criadas nos dois sentidos

Menor caminho

- Problemas para encontrar os menores caminhos de um grafo podem ter inúmeras aplicações, literais e simbólicas.
- Muitos desses problemas têm algoritmos bem definidos e estudados para resolvê-los.
- O primeiro que iremos estudar é o Dijkstra, um algoritmo que tem como intuito encontrar os menores caminhos, a partir de um vértice de origem, para cada outro vértice do grafo.

- •O primeiro passo do Dijkstra é definir um vértice de origem, o algoritmo garantirá o menor caminho de cada outro vértice do grafo para este, e não a menor distância entre outros dois vértices.
- •O algoritmo pode ser definido pelo seguinte pseudocódigo:

Dijkstra - Pseudocódigo

Inicializar todos os vértices como aberto

Inicializar todos os vértices como sem vértice anterior

Inicializar todos os vértices como distância infinita

Definir o vértice inicial como vértice atual

Definir a distância do vértice atual como zero

Enquanto existir algum vértice aberto com distância não infinita

Para cada vizinhos do vértices atual

Se a distância do vizinho é maior que a distância do vértice atual mais o peso da aresta que os une

Atribuir esta nova distância ao vizinho

Definir como vértice anterior deste vizinho o vértice atual

Marcar o vértice atual como fechado

Definir o vértice aberto com a menor distância (não infinita) como o vértice atual

	Α	В	С	D	E
Distância	8	8	8	8	8
Anterior	ı	ı	•	•	ı
Fechado	n	n	n	n	n

	Α	В	С	D	E
Distância	0	8	8	∞	∞
Anterior	ı	ı	ı	•	•
Fechado	n	n	n	n	n

	Α	В	С	D	E
Distância	0	8	8	∞	∞
Anterior	ı	ı	ı	-	-
Fechado	n	n	n	n	n

	Α	В	С	D	Ε
Distância	0	3	8	8	8
Anterior	ı	Α	ı	ı	ı
Fechado	n	n	n	n	n

	A	В	С	D	Е
Distância	0	3	5	8	8
Anterior	ı	A	A	ı	ı
Fechado	n	n	n	n	n

	A	В	С	D	E
Distância	0	3	5	6	∞
Anterior	ı	Α	Α	Α	ı
Fechado	n	n	n	n	n

	A	В	C	D	Ε
Distância	0	3	5	6	8
Anterior	ı	Α	A	Α	Α
Fechado	n	n	n	n	n

	Α	В	С	D	Ε
Distância	0	3	5	6	8
Anterior	ı	A	A	A	Α
Fechado	У	n	n	n	n

	Α	В	С	D	Ε
Distância	0	3	5	6	8
Anterior	ı	Α	A	Α	Α
Fechado	У	n	n	n	n

	Α	В	C	D	E
Distância	0	3	5	6	8
Anterior	ı	Α	A	A	Α
Fechado	У	n	n	n	n

	A	В	C	D	E
Distância	0	3	5	5	8
Anterior	ı	Α	Α	В	Α
Fechado		n	n	n	n

	A	В	С	D	Е
Distância	0	3	5	5	8
Anterior	ı	Α	Α	В	Α
Fechado	У	n	n	n	n

	Α	В	С	D	Ε
Distância	0	3	5	5	8
Anterior	ı	A	A	В	Α
Fechado	У	У	n	n	n

	A	В	С	D	Ε
Distância	0	3	5	5	8
Anterior	ı	Α	Α	В	Α
Fechado	У	У	n	n	n

	Α	В	С	D	Ε
Distância	0	3	5	5	8
Anterior	ı	Α	A	В	Α
Fechado	V	V	n	n	n

	A	В	С	D	Ε
Distância	0	3	5	5	7
Anterior	ı	Α	Α	В	С
Fechado	У	у	n	n	n

	Α	В	С	D	Ε
Distância	0	3	5	5	7
Anterior	ı	Α	Α	В	С
Fechado	У	У	У	n	n

	Α	В	С	D	Ε
Distância	0	3	5	5	7
Anterior	ı	Α	Α	В	С
Fechado	У	У	У	n	n

	Α	В	С	D	Ε
Distância	0	3	5	5	7
Anterior	ı	Α	A	В	С
Fechado	У	у	У	n	n

	A	В	C	D	Ε
Distância	0	3	5	5	7
Anterior	ı	Α	Α	В	С
Fechado	У	У	У	У	n

	A	В	C	D	Ε
Distância	0	3	5	5	7
Anterior	ı	Α	Α	В	С
Fechado	у	У	у	у	n

	Α	В	С	D	Ε
Distância	0	3	5	5	7
Anterior	ı	Α	A	В	С
Fechado	У	У	У	У	n

	Α	В	С	D	Ε
Distância	0	3	5	5	7
Anterior	ı	Α	A	В	С
Fechado	У	у	У	у	у

Alternativas ao Dijkstra

Bellman-Ford - Para grafos com arestas negativas.

Floyd-Warshall - Para grafos com ciclos negativos.

Alternativas ao Dijkstra

Bellman-Ford - Para grafos com arestas negativas.

Floyd-Warshall - Para grafos com ciclos negativos.