

CMSC 5743 Efficient Computing of Deep Neural Networks

Implementation 02: Direct Conv

Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Latest update: September 2, 2024)

2024 Fall

Overview

1 Loop Reordering

2 Direct Convolution

3 Dataflow Optimization

Loop Reordering

1D Convolution Example

OA[q] += IA[q+s] * W[s];

```
Output Stationary (OS)
Dataflow
```

```
Output
Activation

A B C

Q
```

```
for (s=0; s<S; s++) {
  for(q=0; q<Q; q++) {
    OA[q] += IA[q+s] * W[s];
  }
}</pre>
```

Weight Stationary (WS)

Dataflow

Buffer Access Pattern 1: Output Stationary

Buffer Access Pattern 2: Weight Stationary

2D Convolution Example

	InP	OutP	ROW
Input reuse (B)	Poor	Excellent	Poor
Output reuse (C)	Excellent	Poor	Good
Index intersection	Inefficient	Efficient	Efficient
Psum granularity	Scalar	Matrix	Vector

Direct Convolution

Direct Convolution

Direct Convolution: Loop Ordering

Direct Convolution: Loop Ordering + Unrolling

Direct Convolution: Loop Ordering + Unrolling + Tiling


```
for (n=0; n<N; n++)
        for (r=0; r<R; r++)
        for (s=0; s<S; s++) {
        for (c_t=0; c_t<C/16; c_t++) {</pre>
        for (k t=0; k t< K/64; k t++) {
        spatial_for (c_s=0; c_s<16; c_s++) {
        spatial_for (k_s=0; k_s<64; k_s++) {
            int curr c = c t * 16 + c s;
            int curr k = k t * 64 + k s;
            float curr w = W[r][s][curr c][curr k];
10
11
            for (p=0; p<P; p++) for (q=0; q<Q; q++) {
                h = p * stride - pad + r; w = q * stride - pad + s;
12
                OA[n][curr k][p][q] += IA[n][curr c][h][w] * curr w;
13
14
```

Dataflow Optimization

Systolic Array

[HPCA2020] Communication Lower Bound in Convolution Accelerators

Case Study 2 Communication Lower Bound in CNN Accelerators

Memory Bottleneck in CNN Accelerators

- Memory access consumes most of total energy
- CNN accelerators are mostly memory dominant

Google slide, one of ten lessons learned from three generations TPUs

Convolutional Layer

- Complicated data reuse
 - Input reuse
 - Sliding window reuse
 - Weight reuse
 - Output reuse
- Finding minimum communication is difficult: huge search space caused by 7 levels of loops and complex data reuse schemes

Communication in Matrix Multiplication

Naive matrix multiplication

$$Q = 2XYZ + XY \\ \approx 2XYZ$$

Communication-optimal matrix multiplication

$$Q = \frac{XY}{xy}(xZ + yZ) + XY$$

$$\approx XYZ\left(\frac{1}{x} + \frac{1}{y}\right) \ge \frac{2XYZ}{\sqrt{xy}}$$

$$\ge \frac{2XYZ}{\sqrt{S}}$$

S: on-chip memory capacity

Relation between Convolution & Matrix Multiplication (im2col)

- Weights and outputs are just reshaped ---- without adding or removing elements
- Inputs are unfolded ---- all sliding windows (having overlapped elements) are explicitly expanded
- Convolution has only one more level of data reuse (sliding window reuse) than matrix multiplication

Communication-optimal convolution

= communication-optimal matrix multiplication + sliding window reuse?

Communication Lower Bound of Convolution

- Matrix multiplication only used to inspire derivation process, there
 is not an actual conversion in our implementation
- Theoretical derivation based on Red-Blue Pebble Game [1]

$$Q = \Omega \left(\frac{BW_O H_O C_O W_K H_K C_I}{\sqrt{RS}} \right)$$

$$R = \frac{W_K H_K}{D_W D_H} \qquad \begin{array}{ll} W_K \ \& \ H_K \text{: kernel size} \\ D_W \ \& \ D_H \text{: stride size} \end{array}$$

R: max reuse number of each input by sliding window reuse

Communication-optimal Dataflow

Tiling parameters < b, x, y, z, k >

- Communication-optimal tiling parameters
 - bxy ≈ Rz: balanced loading volumes of inputs & weights
 - bxyz ≈ S & k = 1: most of on-chip memory should be for Psums (using least inputs to produce most outputs)

Communication-optimal Architecture

- Straightforward implementation of communication-optimal dataflow
- Elaborate multiplexer structure to adapt to different tiling parameters, no inter-PE data propagation

DRAM access: 4.5% more than lower bound, >40% reduction than Eyeriss [1]

Energy consumption: 37-87% higher than lower bound