Vuoden 1998 pohjoismaisen kilpailun ratkaisut

1. Kun yhtälöön sijoitetaan x = y = 0, saadaan 2f(0) = 4f(0), joten f(0) = 0. Olkoon sitten y = nx, missä n on luonnollinen luku. Nyt saadaan

$$f((n+1)x) = 2f(x) + 2f(nx) - f((n-1)x).$$

Tästä saadaan f(2)x = 2f(x) + 2f(x) - f(0) = 4f(x), f(3x) = 2f(x) + 2f(2x) - f(x) = 9f(x), Todistetaan, että $f(nx) = n^2 f(x)$. Käytetään induktiota. Kaava on tosi, kun n = 1. Oletetaan, että $f(kx) = k^2 f(x)$, kun $k \le n$. Tällöin

$$f((n+1)x) = 2f(x) + 2f(nx) - f((n-1)x) = (2 + 2n^2 - (n-1)^2)f(x) = (n+1)^2f(x).$$

Siis $f(nx)=n^2f(x)$. Kun x=1/q, $f(1)=f(qx)=q^2f(x)$, so $f(1/q)=f(1)/q^2$. Tästä seuraa $f(p/q)=p^2f(1/q)=(p/q)^2f(1)$, joten $f(x)=ax^2$ jollekin rationaaliluvulle a. Kääntäen, jos $f(x)=ax^2$, niin $f(x+y)+f(x-y)=a(x+y)^2+a(x-y)^2=2ax^2+2ay^2=2f(x)+2f(y)$, joten $f(x)=ax^2$ on yhtälön ratkaisu.

- 2. Kun lasketaan pisteen P potenssi ympyröiden C_1 ja C_2 suhteen, saadaan $PA \cdot PB = PC \cdot PD = PE \cdot PF$. Koska M_1P on kohtisuorassa jännettä CD vastaan, P:n on oltava CD:n keskipiste, joten PC = PD. Samoin saadaan PE = PF. Kaiken kaikkiaan $PC = PD = PE = PF = \sqrt{PA \cdot PB}$. Koska C, D, E ja F ovat kaikki P-keskisellä ympyrällä, jonka halkaisijoita ovat CD ja EF, niin kulmat $\angle ECF$, $\angle CFD$ jne. ovat kaikki suoria. CDEF on suorakaide.
- 3. (a) Oletetaan, että x_1,\ldots,x_n on tehtävässä vaadittu jono. Silloin $x_1+\cdots+x_n=\frac{n(n+1)}{2}$. Tämä summa on jaollinen n:llä, mikä on mahdollista vain, kun n on pariton, jolloin $\frac{(n+1)}{2}$ on kokonaisluku. Jos n=2m, niin $\frac{n(n+1)}{2}=m(2m+1)=2m^2+m\equiv m \mod 2m$. Oletetaan nyt, että n=2m+1>1. Vaaditaan, että n-1=2m on tekijänä luvussa $x_1+\cdots+x_{n-1}$. Koska $x_1+\cdots+x_{n-1}=(m+1)(2m+1)-x_n\equiv m+1-x_n \mod 2m$, ja $1\leq x_n\leq n$, niin $x_n=m+1$. Seuraavaksi vaaditaan, että n-2=2m-1 on tekijänä luvussa $x_1+\cdots+x_{n-2}$. Koska $x_1+\cdots+x_{n-2}=(m+1)(2m+1)-x_n-x_{n-1}\equiv m+1-x_{n-1}\mod 2m-1$ ja $-m\leq m+1-x_{n-1}\leq m$, on $x_{n-1}=m+1\mod 2m-1$. Jos n>3 eli $m\geq 1$, on $x_{n-1}=m+1=x_n$, mikä on ristiriita. Siis n=1 ja n=3 ovat ainoat mahdollisuudet. Jos n=1, $x_1=1$ on kelvollinen jono. Jos n=3, on oltava $x_3=2$. x_1 ja x_2 ovat 1 ja 3 kummassa tahansa järjestyksessä.
- (b) Olkoon $x_1 = 1$. Määritellään jono palautuskaavan avulla. Oletetaan, että x_1, \ldots, x_{n-1} on valittu ja että näiden lukujen summa on A. Olkoon m pienin positiivinen kokonaisluku, jota ei vielä ole käytetty. Jos asetetaan $x_{n+1} = m$, x_n :llä on kaksi rajoitusta:

$$A + x_n \equiv 0 \mod n$$
 ja $A + x_n + m \equiv 0 \mod n + 1$.

Koska n ja n+1 ovat yhteistekijättömiä, on olemassa y, jolle pätee $y \equiv -A \mod n$, $y \equiv -A - m \mod n + 1$ ("kiinalainen jäännöslause") Jos y:hyn lisätään tarpeeksi suuri

n(n+1):n monikerta, saadaan luku, jota ei vielä ole käytetty jonoon. Täten jonoa voidaan aina jatkaa kahdella termillä, ja se tulee sisältämään jokaisen kokonaisluvun.

4. Kun kirjoitetaan Pascalin kolmio mod 2:

havaitaan, että rivi 1 sisältää kaksi rivin 0 kopiota, rivit 2 ja 3 sisältävät kaksi rivien 1 ja 2 kopiota jne.

Pascalin kolmion perusominaisuudesta $\binom{n+1}{p} = \binom{n}{p-1} + \binom{n}{p}$ seuraa, että jos rivin k kaikki luvut ovat $\equiv 1 \mod 2$, niin rivillä k+1 tasan ensimmäinen ja viimeinen luku on $\equiv 1 \mod 2$. Jos k:nnella rivillä vain ensimmäinen ja viimeinen luku ovat $\equiv 1 \mod 2$, niin rivit $k, k+1, \ldots, 2k-1$ muodostuvat kahdesta rivien $0, 1, \ldots k-1$ kopiosta. Koska rivillä 0 on luku 1, rivi 1 on kahden ykkösen muodostama, 2 ja 3 ovat kahden rivien 0 ja 1 muodostaman kolmion kopioita jne. Tästä päätellään induktiolla, että kaikilla k rivi 2^k-1 muodostuu pelkistä ykkösistä (siinä on kaksi kopiota rivistä $2^{k-1}-1$ ja rivi $2^1-1=0$ on pelkkä ykkönen). Täten rivi 2^k muodostuu nollista ja päissä olevista ykkösistä. Tästä seuraa edelleen, että rivit 2^k , 2^k+1 , $2^{k+1}-1$ ovat kaksi kopiota riveistä $0, 1, \ldots 2^k-1$. Olkoon N_n rivin, $n=2^k+m$, $m<2^k$, parittomien lukujen määrä. Silloin $N_1=2$ ja $N_n=2N_m$. Siis N_n on aina kakkosen potenssi. Todetaan vielä, että $N_n=2^p$, missä p on n:n binääriesityksen ykkösten lukumäärä y(n). Koska $N_0=1=2^{y(0)}$, kaava pätee, kun n=0. Luvun $n=2^k+m$ binääriesityksessä on yksi ykkönen enemmän kuin luvun m binääriesityksessä. Toisaalta $N_n=2N_m=2\cdot 2^{y(m)}=2^{y(m)+1}=2^{y(n)}$.

On vielä osoitettava, että $\binom{2^k}{p} \equiv 1$ vain, kun p=0 tai $p=2^k$. Tämä seuraa esimerkiksi siitä, että $\binom{2^k-1}{p} \equiv 1$ kaikilla p, mikä taas seuraa edellisestä induktiosta.