Forcasting issues

Forcast Padawan 2 November 17, 2016

The goal of this experiment is to design the best model to forcaste the number of issue in the per day in the comming two weeks. We think that sthis could help Open Source organisation to manage there human ressources.

Load the data

```
#install.packages('forecast')
library('forecast')
library(knitr)
#load the data frame
issues.csv <- read.csv("issues/julialang_julia.csv")
commits.csv <- read.csv("commits/julialang_julia.csv")

issues.csv$date = as.POSIXlt(as.Date(issues.csv$date,format='%m/%d/%Y'))
commits.csv$date = as.POSIXlt(as.Date(commits.csv$date,format='%m/%d/%Y'))</pre>
```

keep the last 12 months

```
to_date <- issues.csv$date[length(issues.csv$date)]
from_date <- to_date
from_date$year <- from_date$year - 1

issues.csv <- subset(issues.csv, date <= to_date & date >= from_date)
commits.csv <- subset(commits.csv, date <= to_date & date >= from_date)
```

```
#loading issues and commits into a ts object
issues.ts <- ts(issues.csv$number_of_issues, frequency = 7)

commits.ts <- ts(commits.csv$number_of_commits, frequency = 7)
plot(issues.ts, main = 'Issues', bty = 'l', ylab = 'Number of Issues')</pre>
```

Issues

plot(commits.ts, main = 'Commits', bty = 'l', ylab = 'Number of Commits')

Commits

time <- time(issues.ts)</pre>

Naive Forecast

Naive

```
train.issues.naive.pred <- naive(train.issues.ts, h=n.valid)
kable(accuracy(train.issues.naive.pred, valid.issues.ts))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.0376812	6.718998	5.260870	-13.08450	42.03105	1.011591	-0.2812264	NA
Test set	5.5238095	7.361418	5.904762	29.53819	34.64023	1.135402	0.5978010	1.293618

```
hist(valid.issues.ts - train.issues.naive.pred$mean)
```

Histogram of valid.issues.ts - train.issues.naive.pred\$mean

valid.issues.ts - train.issues.naive.pred\$mean

plot(valid.issues.ts - train.issues.naive.pred\$mean)

plot(train.issues.naive.pred)
lines(valid.issues.ts)

Forecasts from Naive method

Seasonal Naive

train.issues.snaive.pred <- snaive(train.issues.ts, h=n.valid)
kable(accuracy(train.issues.snaive.pred, valid.issues.ts))</pre>

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.0029499	6.552038	5.200590	-12.839076	42.21488	1.000000	0.1720590	NA
Test set	0.5238095	7.201190	5.761905	-7.239015	42.64360	1.107933	0.0766326	1.489315

hist(valid.issues.ts - train.issues.snaive.pred\$mean)

Histogram of valid.issues.ts – train.issues.snaive.pred\$mean

valid.issues.ts - train.issues.snaive.pred\$mean

plot(valid.issues.ts - train.issues.snaive.pred\$mean)

plot(train.issues.snaive.pred)
lines(valid.issues.ts)

Forecasts from Seasonal naive method

Smoothing

Holt Winter

```
train.issues.hw.pred <- hw(train.issues.ts, hw = "ZAA", h = n.valid)
kable(accuracy(train.issues.hw.pred, valid.issues.ts))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.0265046	4.977548	3.872611	-13.061762	32.46036	0.7446484	0.077384	NA
Test set	0.7779834	4.639578	3.621891	-4.980661	27.43986	0.6964384	0.602180	0.837638

hist(valid.issues.ts - train.issues.hw.pred\$mean)

Histogram of valid.issues.ts – train.issues.hw.pred\$mean

plot(valid.issues.ts - train.issues.hw.pred\$mean)

plot(train.issues.hw.pred)
lines(valid.issues.ts)

Forecasts from Holt-Winters' additive method

Double differencing

```
train.issues.d1 <- diff(train.issues.ts, lag = 1)
train.issues.d1.d7 <- diff(train.issues.d1, lag = 7)

ma.trailing <- rollmean(train.issues.d1.d7, k = 7, align = "right")
last.ma <- tail(ma.trailing, 1)
ma.trailing.pred <- ts(c(train.issues.d1.d7[1:6], ma.trailing, rep(last.ma, n.valid)), start=c(2,2), fr

ma.dd.pred.d1 <- diffinv(ma.trailing.pred, lag = 7, xi=train.issues.d1[1:7])
ma.dd.pred <- diffinv(ma.dd.pred.d1, lag = 1, xi=train.issues.ts[1])

kable(accuracy(ma.dd.pred[(n.train+1):(n.train+n.valid)], valid.issues.ts))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Test set	57.85034	58.8597	57.85034	440.1622	440.1622	0.7177956	12.1168

```
hist(valid.issues.ts - ma.dd.pred[(n.train+1):(n.train+n.valid)])
```

Histogram of valid.issues.ts - ma.dd.pred[(n.train + 1):(n.train + n.vali

valid.issues.ts - ma.dd.pred[(n.train + 1):(n.train + n.valid)]

plot(valid.issues.ts - ma.dd.pred[(n.train+1):(n.train+n.valid)])


```
plot(ma.dd.pred,col='red')
lines(issues.ts,col='blue')
```


Regression

Linear regression

```
train.issues.linear.regr.add.m <- tslm(train.issues.ts ~ trend + season, lambda = 0)</pre>
train.issues.linear.regr.add.m
##
## Call:
## tslm(formula = train.issues.ts ~ trend + season, lambda = 0)
##
## Coefficients:
##
   (Intercept)
                                  season2
                                                              season4
                       trend
                                                season3
##
      2.483884
                    0.001444
                                -0.191684
                                              -0.488595
                                                            -0.354584
##
       season5
                     season6
                                  season7
     -0.011783
                  -0.018838
                                 0.016470
train.issues.linear.regr.add.pred <- forecast(train.issues.linear.regr.add.m , h=n.valid)</pre>
kable(accuracy(train.issues.linear.regr.add.pred, valid.issues.ts))
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.9509424	5.238848	4.086120	-8.514036	33.40185	0.7857032	0.2766360	NA
Test set	-3.0456515	5.618531	4.613154	-34.294688	42.08708	0.8870443	0.5703958	1.276547

Histogram of valid.issues.ts - train.issues.linear.regr.add.pred\$mea

valid.issues.ts - train.issues.linear.regr.add.pred\$mean

plot(valid.issues.ts - train.issues.linear.regr.add.pred\$mean)


```
plot(train.issues.linear.regr.add.pred)
lines(valid.issues.ts)
```

Forecasts from Linear regression model

exponential regression

```
train.issues.linear.regr.mult.m <- tslm(train.issues.ts ~ trend + season, lambda = 0)
train.issues.linear.regr.mult.m</pre>
```

```
##
## Call:
## tslm(formula = train.issues.ts ~ trend + season, lambda = 0)
## Coefficients:
##
   (Intercept)
                      trend
                                  season2
                                               season3
                                                             season4
                                             -0.488595
##
      2.483884
                   0.001444
                                -0.191684
                                                           -0.354584
                    season6
##
       season5
                                  season7
##
     -0.011783
                  -0.018838
                                 0.016470
```

train.issues.linear.regr.mult.pred <- forecast(train.issues.linear.regr.mult.m , h=n.valid)
kable(accuracy(train.issues.linear.regr.mult.pred, valid.issues.ts))</pre>

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.9509424	5.238848	4.086120	-8.514036	33.40185	0.7857032	0.2766360	NA
Test set	-3.0456515	5.618531	4.613154	-34.294688	42.08708	0.8870443	0.5703958	1.276547

Histogram of valid.issues.ts - train.issues.linear.regr.mult.pred\$mea

valid.issues.ts - train.issues.linear.regr.mult.pred\$mean

plot(valid.issues.ts - train.issues.linear.regr.mult.pred\$mean)

plot(train.issues.linear.regr.mult.pred)
lines(valid.issues.ts)

Forecasts from Linear regression model

external regression

```
plot(issues.ts, col='blue')
lines(commits.ts, col='green')
```



```
train.commits.d1 <- diff(train.commits.ts, lag = 1)
train.commits.d1.d7 <- diff(train.commits.d1, lag = 7)

plot(train.issues.d1.d7, col='blue')
lines(lag(train.commits.d1.d7,2), col='green')</pre>
```


 $\label{train.issues.arima.ext.m} $$ \leftarrow Arima(train.issues.ts, order=c(1,0,0), seasonal=c(1,0,0), xreg=train.commit train.issues.arima.ext.m$

```
## Series: train.issues.ts
## ARIMA(1,0,0)(1,0,0)[7] with non-zero mean
##
## Coefficients:
##
           ar1
                  sar1 intercept train.commits.ts
                           7.9198
                                             0.4004
##
        0.2050 0.2187
## s.e. 0.0548 0.0565
                           0.7248
                                             0.0366
##
## sigma^2 estimated as 21.16: log likelihood=-1017.15
## AIC=2044.3 AICc=2044.48 BIC=2063.53
```