APROXIMACIÓN Y ERRORES

- 1.— El caso especial n=1 del Teorema de Taylor se conoce como *Teorema del valor medio*: sea f una función continua en [a,b] tal que existe f' en (a,b), entonces hay un ξ en (a,b) con $f(b)-f(a)=f'(\xi)(b-a)$.
 - a) Deducir a partir del Teorema de Taylor el Teorema del valor medio.
- b) Encontrar el valor de ξ que se menciona en el Teorema del valor medio en el caso de la función

$$f(x) = 3 - 2x + x^2$$
 y el intervalo $[a, b] = [1, 3]$.

- 2.— El *n*-ésimo polinomio de Taylor para una función f en x_0 se conoce a veces como un polinomio de grado n a lo sumo, que mejor aproxima a f cerca de x_0 .
 - a) Explique por qué es adecuada esta descripción.
- b) Determina el polinomio cuadrático que mejor aproxima una función f cerca de $x_0 = 1$ si la recta tangente en $x_0 = 1$ tiene la ecuación y = 4x 1 y si f''(1) = 6.
- 3.— Si la serie de Taylor para $f(x) = \ln x$ en $x_0 = 1$ se corta en el término que comprende a $(x-1)^{100}$ y después se utiliza para aproximar $\ln 2$, ¿qué cota se puede imponer al error?
- 4.— Determine el segundo polinomio de Taylor $P_2(x)$ para la función $f(x) = e^x \cos x$ entorno a $x_0 = 0$.
 - a) Utilizar $P_2(0.5)$ para aproximar f(0.5).
- b) Calcular una cota del error $|f(x) P_2(x)|$ al usar $P_2(x)$ para aproximar f(x) en el intervalo [0,1].
- 5.— Utilizando la serie de Taylor de e^x , ξ cuántos términos se necesitan para aproximar e^2 con una precisión de cuatro cifras decimales (por redondeo)?
- - 7.— Calcular $\cos 0.1$ con un error menor que 10^{-7} .
 - 8.— Obtener la expresión del polinomio de Taylor de grado n de la función

$$f(x) = \ln \sqrt{\frac{1+x}{1-x}}$$
 entorno al punto $x_0 = 1$.

1

Tomando en particular n=3 y x=0.8 calcular el valor aproximado de ln 3.

9.— Supongamos que medimos tres cantidades independientes x, y, z, obteniendo los valores $x=20\pm 1, y=40, z=0$. Aproxima el error absoluto y relativo que se comete al evaluar la función:

$$f(x, y, z) = \frac{(x+y)}{(x-z)}.$$

- $\+ i$ Qué ocurriría siz=19?
 - 10. Se desea calcular la expresión

$$E = \frac{2\sqrt{2} + 4}{3\pi}$$

tomando como valores $\pi=3.1$ y $\sqrt{2}=1.4$, que poseen todas sus cifras correctas. Calcular la aproximación, la cota del error absoluto propagado, así como las cifras correctas del resultado.