<u>1.</u> Сформулирова	ать определение несовместных со	обытий. <mark>Как связ</mark>	ваны свойства несовместности и нез	вависимости событий?	
• Если А и В несовм	иестные события, (а также $P(A) \neq$	$0, P(B) \neq 0$, To	жется невозможным событием, т.е. А о они обязательно зависимые. Если А они могут быть как совместными, та	А и В – совместные, то они могут	
2. Сформулирова	ать геометрическое определение	вероятности.			
	(2) $\mu(\Omega)$ $<\infty$, где μ – мера множес $n=1$, площадь для $n=2$, объём для		$A\subseteq \Omega$ пропорциональна мере множ и расположения внутри Ω .		
Тогда вероятностью	о осуществления события А назыв	вают число $P\{A\}$			
	ать определение сигма-алгебры со				
	обытий на множестве элементарн		зывают такой набор подмножеств $\beta \subseteq \{2\}$ $A_1,, A_n \in \beta => A_1 + \cdots + A_n \subseteq \{3\}$		
	ия из определения сигма-алгебры $ \ 2. \ \emptyset \in \mathcal{G};$	$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	$\beta => A_1 * \dots * A_n * \dots \in \beta;$	$ 4. A, B \in \beta => A \setminus B \in \beta.$	
<u>4.</u> Сформулирова			Сформулировать основные свойства	вероятности.	
• Пусть Ω – простра $P\{A\} \ge 0; P\{$		оятностью назыі	авается отображение $P: \beta \to \mathbb{R}$, для кольтий $A1,, An,$ $P\{A_1 + \cdots + A_n + \cdots \}$		
• Свойства вероятно в $P(\overline{A}) = 1 - P(A)$	ости:	$ 5 \rangle P(4 + R) -$	$P(\Delta) + P(R) - P(\Delta R)$		
P(A) = 1 - P(A) $P(\emptyset) = 0$		5) $P(A + B) = P(A) + P(B) - P(AB)$ 6) \forall конечного набора событий $A_1,, A_n$,			
$B \mid A \subseteq B => P(A) \le$	$P(\Phi) = 0$ $A \subseteq B \Rightarrow P(A) \le P(B)$		$P(A_1 + \dots + A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n}^n P(A_i A_j) + \dots + (-1)^{n+1} \sum_{1 \le i < j \le n}^n P(A_i \dots A_n).$		
$4) \ \forall A \in \beta \ 0 \le P(A) \le$	<u> </u>			,	
Расширенная аксио Аксиома непрерывн $A_n + \cdots = \lim_{n \to \infty} P$	ма сложения: для попарно несовм ности: для любой неубывающей п	естных событий оследовательнос	A_n справедливо $P(A_1+\cdots+A_n)=A_1,\ldots,A_n,\ldots$ $P\{A_1+\cdots+A_n+\cdots\}=A_1,\ldots,A_n$	$= P\{A_1\} + \dots + P\{A_n\} + \dots$	
	ать определение условной вероят 				
• Пусть А и В – соб $\frac{P(AB)}{P(B)}$. Условная вероя	ытия, $P(B) \neq 0$. Условной вероятитность $P(A B)$ удовлетворяет акси	ностью осуществ помам безусловно	зления А при условии произошедшег		
7. Сформулирова			ей для двух событий и для произволь	ного числа событий.	
Теорема 2: пусть со	A_1 (A) > 0. Тогда $P(AB) = P(A)P(B)$ обытия $A_1,, A_n$ таковы, что $P(A_1)P(A_2 A_1) * P(A_3 A_1A_2) * * P(A_3 A_1A_2)$	$(A).$ $(1 * * A_n) > 0.$			
осуществления?	ать определение пары независимь ~~ ~~~ ~~~ ~~~ ~~~		независимость двух событий связан	а с условными вероятностями их	
• Пусть А и В – соб	ытия, связанные с одним и тем же А и В независимы тогда и только	экспериментом.	. А и В называются независимыми, ес $A B\rangle = P(A)$. Аналогично, если $P(A)$		
собой?			независимых в совокупности. Как эт	пи свойства связаны между	
• События A_1, \dots, A_n пюбого набора $i_1 < \cdots$		іми, если $\forall i \neq j$ $i_k = P(A_{i_1}) * \dots$	$P(A_iA_j) = P(A_i)P(A_j);$ независимы * $P(A_{i_k})$.	ми в совокупности, если для	
10. Сформулирова	ать определение полной группы сс	обытий. Верно ли	и, что некоторые события из полной	ї группы могут быть	

• Говорят, что H образует полную группу событий, если $H_i \cap H_j = \emptyset$, $\bigcup_{i=1}^n H_i = \Omega$. • Так как $H_i, H_j \ \forall i \neq j$ являются несовместными событиями и их вероятность не равна нулю, то они могут быть только зависимыми.

11. Сформулировать теорему о формуле полной вероятности. **Теорема**: Пусть H1...Hn – полная группа событий, A – некоторое событие и $P(H_i) > 0$, $i = \overline{1,n}$. Тогда $P(A) = P(A|H_1)P(H_1) + \cdots + P(H_n)P(H_n)$ $P(A|H_n)P(H_n)$. 12. Сформулировать теорему о формуле Байеса. <u>Теорема</u>: Пусть выполняются все условия теоремы о полной вероятности и P(A)>0. Тогда $P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1)+\cdots+P(A|H_n)P(H_1)}$. **13.** Дать определение схемы испытаний Бернулли. Записать формулу для вычисления вероятности осуществления ровно К успехов в серии из N испытаний. • Рассмотрим случайный эксперимент, в результате которого возможна реализация одного из двух ЭИ; первый будем называть «успех», второй «неудача»; вероятность успеха: p, вероятность неудачи: q=1-p. Схемой испытаний Бернулли называется серия последовательных экспериментов такого вида, в которых также: вероятность успеха неизменна во всех испытаниях; испытания - независимы, т.е. вероятность исхода і-го испытания не зависит от исходов испытаний 1...і-1. • Обозначим $P_n(k)$ – вероятность реализации к успехов в серии из п испытаний Бернулли. Тогда $P_n(k) = C_n^k p^k q^{n-k}$. 14. Записать формулы для вычисления вероятности осуществления в серии из N испытаний а) ровно к успехов; б) хотя бы одного успеха; в) от к1 до к2 успехов. Пусть $P_n(k)$ – вероятность реализации к успехов в серии из п испытаний Бернулли. Тогда $P_n(k) = C_n^k p^k q^{n-k}$. Пусть $P_n(k \ge 1)$ – вероятность реализации хотя бы одного успеха. Тогда $P_n(k \ge 1) = 1 - q^n$. Пусть $P_n(k_1 \le k \le k_2)$ – вероятность реализации от к1 до к2 успехов. Тогда $P_n(k_1 \le k \le k_2) = \sum_{i=k_1}^{k_2} C_n^i p^i q^{n-i}$. 15. Сформулировать определение элементарного исхода случайного эксперимента и пространства элементарных исходов. Сформулировать классическое определение вероятности. Привести пример. • Элементарный исход эксперимента – такой его исход, который в рамках данного эксперимента: 1) мыслится неделимым; 2) никакие 2 ЭИ не могут произойти одновременно (в рамках одного эксперимента); 3) в результате эксперимента всегда имеет место ровно один из ЭИ. • Пусть 1) количество ЭИ эксперимента $|\Omega| = N \neq \infty$; 2) по условиям эксперимента все ЭИ равновозможны; 3) событие А состоит из N_a элементов ($|A| = N_A$). Тогда вероятностью осуществления события A называется $P\{A\} = \frac{N_A}{N}$. • Пример: 2 раза бросают игральную кость, $A=\{$ сумма выпавших очков $>=11\}$. $\Omega = \{(x_1, x_2), x_i \in \{1 \dots 6\}\}, |\Omega| = 36. A = \{(5,6), (6,5), (6,6)\} = P\{A\} = \frac{3}{26} = \frac{1}{12}$ 16. Сформулировать классическое определение вероятности. Опираясь на него доказать основные свойства вероятности. • Пусть 1) количество ЭИ эксперимента $|\Omega| = N \neq \infty$; 2) по условиям эксперимента все ЭИ равновозможны; 3) событие А состоит из N_a элементов ($|A| = N_A$). Тогда вероятностью осуществления события A называется $P\{A\} = \frac{N_A}{N}$. • Теорема: 2. $P{\Omega} = 1$; 1. $\forall A \subseteq \Omega \ P\{A\} \ge 0$; 3. Если A и B несовместн, то $P\{A+B\}=P\{A\}+P\{B\}$. Доказательство: 1. $P\{A\} = \frac{N_A}{N}$. $N_A \ge 0$, N > 0, $=> P\{A\} \ge 0$. $2. P\{\Omega\} = \frac{N_{\Omega}}{N} = \frac{N}{N} = 1.$ |AB| = |A| + |B| - |AB| по формуле включений и исключений. |AB| = 0, следовательно $N_{A+B} = N_A + N_B = N_$ $\frac{N_B}{N} = P\{A\} + P\{B\}.$ 17. Сформулировать статистическое определение вероятности. Указать его основные недостатки. • Пусть 1) Эксперимент проведён п раз; 2) событие A при этом произошло N_A раз. Тогда вероятностью осуществления события A называют число $P\{A\} = \lim_{n \to \infty} \frac{N_A}{N}$. • Недостатки: а) на практике невозможно провести эксперимент бесконечное число раз; для конечных N отношение может изменяться при разных N. б) с позиций современной математики, статистическое определение является архаизмом, т.к. не дает достаточной базы для дальнейшего развития теории. **18.** Доказать основные свойства сигма-алгебры событий. • Сигма-алгеброй событий на множестве элементарных исходов Ω называют такой набор подмножеств $\beta \subseteq \Omega$, что: 1) $A \subseteq \beta => \bar{A} \subseteq \beta$; 2) $A_1, \dots, A_n \in \beta => A_1 + \dots + A_n \subseteq \beta$. Теорема: 2. $\emptyset \in \beta$; 3. $A_1, \dots A_n, \dots \in \beta = A_1 * \dots * A_n \in \beta$; 4. $A, B \in \beta = A \setminus B \in \beta$. $1. \Omega \subseteq \mathcal{B}$:

Доказательство:

2) $\Omega \in \beta => \overline{\Omega} \in beta$, $\overline{\Omega} = \emptyset$.

1) $\beta \neq \emptyset$, следовательно $A \in \beta = A + \bar{A} \in \beta$, $A + \bar{A} \in \beta$, $A + \bar{A} = \Omega$.

3) $A_1 \dots A_n \in \beta => (1 \text{ cb.}) \overline{A_1}, \dots, \overline{A_n} \in \beta => (2 \text{ cb.}) \overline{A_1} + \dots + \overline{A_n} \in \beta => (1 \text{ cb.}) \overline{\overline{A_1} + \dots + \overline{A_n} + \dots} \in \beta => A_1 * \dots * A_n * \dots \in \beta.$

• Пусть Ω – пространство ЭИ, β – сигма-алгебра. Вероятностью называется отображение $P: \beta \to \mathbb{R}$, для которо	
$P\{A\} \ge 0$; $P\{\Omega\} = 1$; для попарно несовместных событий $A1,, An,$ $P\{A_1 + \cdots + A_n + \cdots\} = P\{A_1\} + \cdots + P\{A_n + \cdots\} = P\{A_n\} + \cdots + P\{A_n\} $	$\{a_n\} + \cdots$
$\frac{1}{1}$ (в)	
1) $\Omega = A + \bar{A}$, $1 = (a\kappa c. 2) P(\Omega) = P(A + \bar{A}) = (a\kappa c. 3) P(A) + P(\bar{A}) => P(\bar{A}) = 1 - P(A)$.	
2) $\emptyset = \overline{\Omega} = P(\emptyset) = (\pi. 1) 1 - P(\Omega) = (a\kappa c. 2) 1 - 1 = 0.$	
3) $B = A + B \setminus A$, причем $A(B \setminus A) = \emptyset = > (aкc. 3) P(B) = P(A) + P(B \setminus A)$. По аксиоме $1, P(B \setminus A) \ge 0$, следон	вательно $P(B) \ge 0$.
20. Сформулировать свойства вероятности для суммы двух событий и для суммы произвольного числа собо этих свойств.	ытий. Доказать первое и
• <u>Теорема</u> : $P(A+B) = P(A) + P(B) - P(AB)$. Для любого конечного набора событий $A_1, \dots, A_N, P(A_1+\dots \sum_{1\leq i < j \leq n}^n P(A_iA_j) + \dots + (-1)^{n+1} \sum_{1\leq i < j \leq n}^n P(A_i \dots A_n)$	$+ A_n) = \sum_{i=1}^n P(A_i) -$
<u>Доказательство</u> : a) $A + B = A + B \setminus A$, причем $A(B \setminus A) = \emptyset$. Следовательно, $P(A + B) = P(A) + P(B \setminus A)$. 6) $B = B \setminus A + AB = P(B) = P(B \setminus A) + P(AB)$.	
21. Сформулировать определение условной вероятности. Доказать, что она удовлетворяет трем основны	м свойствам безусловной

вероятности.

• Пусть A и B – события, $P(B) \neq 0$. Условной вероятностью осуществления A при условии произошедшего B называют число P(A|B) =P(AB)

Теорема: условная вероятность P(A|B) удовлетворяет аксиомам безусловной вероятности:

 $1^0.P(A|B) \geq 0; \quad 2^0.P(\Omega|B) = 1; \quad 3^0. \, \forall \,$ попарно непересекающихся $A_1, \dots A_n, \dots \, P(A_1 + \dots + A_n + \dots | B) = P(A_1|B) + P(A_2|B) + \dots$

- Доказательство:
- Доказательство:
 1) $P(A|B) = \frac{P(AB) \ge 0}{P(B) \ge 0} \ge 0$.
 2) $P(\Omega|B) = \frac{P(\Omega B)}{P(B)} = \frac{P(B)}{P(B)} = 1$.
 3) $P(A_1 + \cdots | B) = \frac{P((A_1 + \cdots) | B)}{P(B)} = \text{(счетная дистрибутивность } \cap \text{ относительно } \cup) \frac{P(A_1 B + \cdots)}{P(B)} = \text{(акс. 3)} \frac{P(A_1 B) + \cdots + P(A_n B) + \cdots}{P(B)} = \frac{P(A_1 B) + \cdots + P(A_n B) + \cdots}{P(A_n B)} = \frac{P(A_1 B) + \cdots}{P(A_n B$
- 22. Доказать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.

Теорема 1: пусть P(A) > 0. Тогда P(AB) = P(A)P(B|A).

<u>Доказательство</u>: $P(A) \ge 0 =>$ по определению условной вероятности, $P(B|A) = \frac{P(AB)}{P(A)} => P(AB) = P(A) * P(B|A)$.

Теорема 2: пусть события A_1, \dots, A_n таковы, что $P(A_1 * \dots * A_n) > 0$. Тогда $P(A_1 * \dots * A_n) = P(A_1)P(A_2|A_1) * P(A_3|A_1A_2) * \dots * P(A_n|A_1 \dots A_{n-1})$.

<u>Доказательство</u>: $P(A_1 * ... A_{n-1}A_N) = P(A_1 ... A_{n-1})P(A_n|A_1 ... A_{n-1}) = (*). A_1 ... A_{n-2}A_{n-1} \subseteq A_1 ... A_{n-2} \Rightarrow P(A_1 ... A_{n-2}) \ge P(A_1 ... A_{n-1}) > 0$ 0. Следовательно, (*)= $P(A_1 ... A_{n-2})P(A_{n-1}|A_1 ... A_{n-2})*P(A_n|A_1 ... A_{n-1})$. Повторяя это утверждение, получаем требуемую формулу $P(A_1 * A_1 ... A_{n-1})$ $... * A_n) = P(A_1)P(A_2|A_1) * P(A_3|A_1A_2) * ... * P(A_n|A_1 ... A_{n-1}).$

23. Сформулировать и доказать теорему о связи независимости двух событий с условными вероятностями их осуществления.

<u>Теорема</u>: 1) Если P(B) > 0, то A и B независимы тогда и только тогда, когда P(A|B) = P(A). 2) Аналогично, если P(A) > 0, то A и B независимы тогда и только тогда, когда P(B|A) = P(B).

<u>Доказательство</u>: 1) необходимость. P(A|B) = P(A)P(B). По определению условной вероятности: $P(A|B) = \frac{P(A)P(B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$. Достаточность. P(AB) = P(B) * P(A|B) = P(A)P(B). Следовательно, A и B независимы 2) доказывается полностью аналогично.

24. Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Показать на примере, что из первого не следует второе.

- События $A_1, ..., A_n$ называются попарно независимыми, если $\forall i \neq j \ P(A_i A_j) = P(A_i) P(A_j);$ независимыми в совокупности, если для любого набора $i_1 < \dots < i_k$, $k \in \{1, \dots, n\}$ $P(A_{i_1} * \dots * A_{i_k}) = P(A_{i_1}) * \dots * P(A_{i_k})$.
- Если А независимы попарно, то из этого не следует, что они независимы в совокупности. Это подтверждает пример Бернштейна: рассмотрим правильный тетраэдр, на трех гранях которого записаны числа 1, 2, 3, а на 4-й все три числа. Тетраэдр кидают на плоскость и рассматривают три события: $A_1 = \{$ на нижней грани 1 $\}$, $A_2 = \{-'' - 2\}$, $A_3 = \{-'' - 3\}$. А независимы попарно, но не в совокупности: а) $P(A_1) = \frac{2}{4} = \frac{1}{2}$; $P(A_2) = \frac{1}{2}$; $P(A_3) = \frac{1}{2}$;
- b) $P(A_1A_2) = P\{$ на нижней грани 1 и 2) $= \frac{1}{4} = P(A_1A_3) = P(A_2A_3)$. $P(A_iA_j) = P(A_i)P(A_j) = >$ А попарно независимые.

Для независимости в совокупности: $P(A_1A_2A_3)$? = $P(A_1)P(A_2)P(A_3)$; $\frac{1}{4} \neq \frac{1}{8}$. Следовательно, А не являются независимыми в совокупности.

25. Доказать теорему о формуле полной вероятности.

Говорят, что H образует полную группу событий, если $H_i \cap H_j = \emptyset$, $\bigcup_{i=1}^n H_i = \Omega$.

<u>Теорема</u>: Пусть H1...Hn – полная группа событий, A – некоторое событие и $P(H_i) > 0$, $i = \overline{1,n}$. Тогда $P(A) = P(A|H_1)P(H_1) + \cdots + \overline{1,n}$

<u>Доказательство</u>: $P(A) = P(A\Omega) = P\left(A(H_1 + \dots + H_n)\right) = P(AH_1 + \dots + AH_n) = P(AH_1) + \dots + P(AH_n)$, поскольку $(AH_i)(AH_j) = \emptyset$ при $i \neq 1$

j. Далее, поскольку $P(H_i) \geq 0 = P(AH_i) = P(H_i)P(A|H_i)$, то $P(A) = P(AH_1) + \cdots + P(AH_n) = P(A|H_1)P(H_1) + \cdots + P(A|H_n)P(H_n)$.

26. Доказать теорему о формуле Байеса.

Теорема: Пусть выполняются все условия теоремы о полной вероятности и P(A)>0. Тогда $P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1)+\dots+P(A|H_n)P(H_1)}$. **Доказательство**: $P(H_i|A) = \frac{P(AH_i)}{P(A)}$. По формуле полной вероятности, можно представить $P(A) = P(A|H_1)P(H_1) + \dots + P(A|H_n)P(H_n)$; тогда $P(H_i|A) = \frac{P(AH_i)}{P(A|H_1)P(H_1)+\dots+P(A|H_n)P(H_n)}$.

27. Доказать формулу для вычисления вероятности осуществления ровно к успехов в серии из н испытаний по схеме Бернулли.

Обозначим $P_n(k)$ — вероятность реализации к успехов в серии из n испытаний Бернулли.

Теорема: Тогда $P_n(k) = C_n^k p^k q^{n-k}$.

<u>Доказательство</u>: опишем результаты испытаний кортежами $(x_1, ..., x_n)$, где $x_i = \begin{cases} 1$, если в i испытании произошёл успех 0, иначе которых произошло ровно k успехов, C_n^k штук. Вероятность осуществления ровно одного такого исхода: $P((x_1, ..., x_n)) = P\{\{\text{в 1 исп. результат } x_1\} * \{\text{во 2м: } x_2\} * ... \{\text{в } n\text{м: } x_n\}\} = (испытания независимы) <math>P(\{\text{в 1 м: } x_1\}) * ... * P(\{\text{в 2 м } x_n\})$. В случае k успехов, имеем k раз и k по k раз; следовательно, k случае k успехов, являются несовместными, то k испехов k успехов, являются несовместными, то k случае k успехов k успехов, являются несовместными, то k случае k успехов, являются несовместными, то k случае k успехов.

1. Сформулировать определения случайной величины и функции распределения вероятностей СВ. Записать основные свойства функции распределения.
• Случайной величиной называют скалярную функцию $X(\omega)$, заданную на пространстве элементарных исходов, если для любого $x \in \mathbb{R}$ множество $\{\omega: X(\omega) < x\}$ элементарных исходов, удовлетворяющих условию $X(\omega) < x$, является событием. • Функцией распределения (вероятностей) СВ X называют функцию $F(x)$, значение которой в точке x равно вероятности события $\{X < x\}$ – т.е. события, состоящего из только тех элементарных исходов, для которых при $X(\omega) < x$: $F(x) = P\{X < x\}$. • Свойства функции распределения: 1) $0 \le F(x) \le 1$ 2) $F(x_1) \le F(x_2)$, при $x \le x \le x$.
3) $F(-\infty) = \lim_{x \to -\infty} F(x) = 0; F(+\infty) = \lim_{x \to +\infty} F(x) = 1$ 4) $P\{x_1 \le X < x_2\} = F(x_2) - F(x_1)$ 5) $F(x) = F(x - 0), \text{где } F(x - 0) = \lim_{y \to x - 0} F(y); \text{т.e. } \Phi - \text{ непрерывная слева функция.}$ 2. $C\phi$ ормулировать определения дискретной CB ; понятие ряда распределения. Сформулировать определение непрерывной CB и функции плотности распределения вероятностей.
• СВ X называют дискретной, если множество её возможных значений конечно или счетно. • Рядом распределения (вероятностей) ДСВ X называют таблицу, состоящую из двух строк: в верхней строке перечислены все возможные значения случайной величины, а в нижней вероятности $p_i = P\{X = x_i\}$ того, что случайная величина принимает эти значения. • Непрерывной называют СВ X, функцию распределения которой можно представить в виде $F(x) = \int_{-\infty}^{x} f(y) dy$. • Функцию $f(x)$ называют плотностью распределения вероятностей НСВ X.
3. Записать основные свойства функции плотности распределения вероятностей НСВ.
• 1) $\forall n \ f(n) \ge 0$ 2) $P\{x_1 \le X < x_2\} = \int_{x_1}^{x_2} f(x) dx$
$3)\int_{-\infty}^{+\infty} f(x)dx = 1$ 4) $P\{x \le X < x + \Delta x\} \approx f(x)\Delta x$ в точках непрерывности плотности распределения

Сформулировать определение дискретного случайного вектора и его функции распределения вероятностей. Записать свойства

• n-мерным случайным вектором называется совокупность CB $X_1 = X_1(\omega), ..., X_n = X_n(\omega)$, заданных на одном и том же вероятностном

• Функцией распределения n-мерного СВектора $F(x_1, ..., x_n) = F_{X_1, ..., X_n}(x_1, ..., x_n)$ называют функцию, значение которой в точке $(x_1, ..., x_n) \in \mathbb{R}$ равно вероятности совместного осуществления событий $\{X_1 < x_1\}, ..., \{X_n < x_n\}$, т.е. $F(x_1, ..., x_n) = P\{X_1 < x_1, ..., X_n < x_n\}$.

Сформулировать определения ДСВектора, понятие таблицы распределения двумерного СВектора. Сформулировать определения

на пересечении столбца уј и строки хі находится вероятность $p_{ij} = P\{X = x_i, Y = y_i\}$ совместного осуществления событий $\{X = x_i\}$ и $\{Y = y_i\}$.

• СВектор (X1,...Xн) называют непрерывным, если его совместную функцию распределения $F_{X_1,...,X_n}(x_1,...,x_n)$ можно представить в виде

Функцию $f(x_1, ..., x_n)$ называют совместной двумерной плотностью распределения СВ X1...Xn, либо плотностью распределения СВектора

• Двумерный случайный вектор (Х,У) называют дискретным, если каждая из случайных величин Х и У является дискретной.

в верхней строке перечислены все возможные значения $y_1, ..., y_j, ... y_m$ CB У; в левом столбце – значения $x_1, ..., x_i, ... x_n$ CB Х;

на пересечении Рх и хі записывается число $p_{x_i}=p_{i1}+\cdots p_{im}$; на пересечении Ру и уј записывается $p_{y_j}=p_{1j}+\cdots +p_{nj}$.

5) $P\{X = x\} = 0$ для любого наперед заданного $x \in \mathbb{R}$.

пространстве (Ω , B, P). Сами СВ X_1 , ..., X_n называют копонентами СВектора.

 $F(x_1, x_2)$ – неубывающая функция по каждому из аргументов х1 и х2.

непрерывного СВектора и его функции плотности распределения вероятностей.

Таблицей распределения двумерного СВектор называют таблицу следующего вида:

сходящегося несобственного интеграла $F(x_1, ..., x_n) = \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_n} f(y_1, ..., y_n) dy_1 ... dy_n$.

5) $P\{a_1 \le X_1 \le b_1, a_2 \le X_2 \le b_2\} = F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_1, a_2).$

6) $F(x_1, x_2)$ – непрерывна слева в любой точке $(x_1, x_2) \in \mathbb{R}^2$ по каждому из аргументов x1, x2.

функции распределения двумерного СВектора.

• Свойства двумерной функции распределения:

 $F_{X_1,X_2}(x,+\infty) = F_{X_1}(x); \quad F_{X_1,X_2}(+\infty,x) = F_{X_2}(x).$

Также обычно добавляют строку Ру и столбец Рх:

1) $0 \le F(x_1, x_2) \le 1$

4) $F(+\infty, +\infty) = 1$

3) $F(-\infty, x_2) = F(x_1, -\infty) = 0$

 $(X1,...Xn); f(x_1,...,x_n) = \frac{\partial^n F(x_1,...,x_n)}{\partial x_1...\partial x_n}.$

<u>о.</u> Записать основные своиства функции плотности распреоеления овумерных Свекторов.
• Свойства функции плотности двумерных СВекторов: 1) $f(x,y) \ge 0$
2) $P\{a_1 < X < b_1, a_2 < Y < b_2\} = \int_{a_1}^{b_1} dx \int_{a_2}^{b_2} f dy$
3) $\int_{-}^{+} \int_{-}^{+} f(x, y) dx dy = 1$ 4) $P\{x < X < x + \Delta x, y < Y < y + \Delta y\} \cong f(x, y) \Delta x \Delta y$ 5) $P\{X = x, Y = y\} = 0$
6) $P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy$
7) $f_X(x) = \int_{-\pi}^{\pi} f_{X,Y}(x,y) dy$
8) $f_Y(y) = \int_{-}^{+} f_{X,Y}(x,y) dx$
7. Сформулировать определение независимых СВ. Сформулировать их свйоства. Сформулировать определение попарно независимых СВ CB, независимых в совокупности.
• CB X и У называют независимыми, если совместная функция распределения $F_{XY}(xy)$ является произведением одномерных функций наспределения: $F_{XY}(xy) = F_X(x)F_Y(y)$
• CB X1Xn, заданные на одном вероятностном пространстве, называются независимыми в совокупности, если $F_{X_1X_n}(x_1x_n) = F_{X_1}(x_1)F_{X_n}(x_n)$; независимыми попарно, если $\forall i, j = \overline{1,n}, i \neq j, X_i$ и X_j независимые. • Свойства независимых CB:
1) СВ X и У независимы тогда и только тогда, когда $\forall x, y \in \mathbb{R}$ события $\{X \le x\}, \{Y \le y\}$ независимы
2) Х и У независимы $\Leftrightarrow \forall x_1, x_2, y_1, y_2 \in \mathbb{R} \{x1 \le X \le x2\}, \{y1 \le Y \le y2\}$ независимы 3) Х и У независимы $\Leftrightarrow \forall M1, M2 \{x \in M1\}, \{Y \in M2\}$ независимы, где М — промежутки, либо объединения промежутков
4) Если X,У – ДСВ, то X,У независимы $\Leftrightarrow p_{ij} \ge p_{x_i} * p_{y_j}; \ p_{ij} = P\{X = x_i, Y = y_j\}, p_{x_i} = P\{X = x_i\}, p_{y_j} = P\{Y = y_j\}.$
5) Если X,У – HCB, то они независимы $\Leftrightarrow f(x,y) = f_X(x)f_Y(y)$.
8. Понятие условного распределения. <mark>Доказать</mark> формулу для вычисления условного ряда распределения одной компоненты двумерного дискретного СВектора при условии, что другая компонента приняла определенное значение. Записать формулу для вычисления условной илотности распределения одной компоненты двумерного НСВектора при условии, что другая компонента приняла определенное значение.
• Пусть дан двумерный СВектор (Х,У) и известно, что СВ У принимает значение у.
• Пусть (X,Y) – дискретный СВектор; $X \in \{x_1, \dots, x_n\}, Y \in \{y_1, \dots, y_n\}, p_{ij} = P\{(X,Y) = (x_i, y_j)\} = P\{X = x_i, Y = y_j\}$. Пусть для некоторого ј
$Y = y_j; P\{X = x_i, Y = y_j\} = \frac{P\{(X,Y) = (x_i,y_j)\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{y_j}}$. Условной вероятностью того, что СВ X примет значение хі при условии что У принимает
начение уј, называется число $\Pi_{ij} = \frac{p_{ij}}{p_{y_i}}$; набор вероятностей Π_{ij} , $\forall i,j$ называется условным распределением CB X.
• Пусть (XУ) – непрерывный СВектор. Условной функцией распределения СВ X при условии $Y = y$ называется отображение $F_X(x Y=y) =$
$P\{X < x Y = y\}$. Условной плотностью распределения СВ X при условии У=у называется функция $f_X(x Y = y) = \frac{f(x,y)}{f_Y(y)}$, где $f(x,y)$ – совместная
потность распределения СВектора.
9. Сформулировать критерий независимости двух СВ в терминах условных распределений.
• Пусть (X,Y) – двумерный случайный вектор. Тогда:
1. СВ X,У независмы $\Leftrightarrow \begin{bmatrix} F_X(x) & Y & Y & Y & Y & Y & Y & Y & Y & Y & $
2. Если (X,Y) – НСВектор, то X,Y независимы $\Leftrightarrow f_X(x Y=y) = f_X(x)$
1. СВ X,У независмы \Leftrightarrow $F_X(x Y=y) = F_X(x) \forall y$, на которых определена $F_X(x Y=y)$ $F_Y(y X=x) = F_Y(y) \forall x$, на которых определена $F_Y(y X=x)$ 2. Если (X,У) – НСВектор, то X,У независимы \Leftrightarrow $f_X(x Y=y) = f_X(x)$ $f_Y(y X=x) = F_Y(y)$ 3. Если (X,У) – ДСВектор, то X,У независимы \Leftrightarrow $P\{X=x_i Y=y_j\} = P\{X=x_i\}$ $P\{Y=y_j X=x_i\} = P\{Y=y_j\}$

10. Понятие функции СВ. Указать способ построения ряда распределения функции ДСВ. Сформулировать теорему о плотности

• СВ У, которая каждому значению СВ X ставит в соответствие число $Y = \phi(x)$, называют скалярной функцией скалярной СВ X. При этом сама У также является случайной величиной: если X – ДСВ, то У – также ДСВ; если X – НСВ, то У может быть НСВ, ДСВ или СВ смешаного

• Если X – ДСВ, то ряд распределения У строится следующим образом – в первой строке записываются значения $y_i = \phi(x_i)$, а во вторую

• Теорема: если X – HCB с плотностью распределения $f_X(x), \ \phi : \mathbb{R} \to \mathbb{R}$ - монотонная и непрерывно диффернцируемая скалярная функция, а

11. Понятие скалярной функции случайного векторного аргумента. Доказать формулу для нахождения значения функции распределения

• Пусть (X1, X2) – СВектор, $\phi: \mathbb{R}^2 \to \mathbb{R}$ - скалярная функция. СВ $Y = \phi(X_1, X_2)$ называют скалярной функией случайного вектора.

• Теорема: Пусть (X1,X2) – НСВектор и $Y=\phi(X1,X2)$. Тогда $F_Y(y)=\iint_{D(y)}f(x_1,x_2)dx_1dx_2$. Доказательство: $F_Y(y)=P\{Y< y\}$. События $\{Y< y\},\{(X_1,X_2)\in D(y)\}$ эквивалентны. Следовательно, $F_Y(y)=P\{(X_1,X_2)\in D(y)\}=0$

распределения функции от НСВ.

 $\iint_{D(v)} f(x_1, x_2) dx_1 dx_2.$

строку переписываются значения p_i , соответствовавшие x_i .

СВ У, функционльно зависящей от случайных величин X1 и X2.

 ψ – обратная к ϕ), то для CB $Y = \phi(x)$ функция распределения $f_Y(y) = f_X(\psi(y))|\psi'(y)|$.

12. Сформулировать и доказать теорему о формуле свертки.

• Теорема: пусть (X,Y) – СВектор, непрерывный и независимый, а Z=X+Y. Тогда $f_Z(\mathbf{z})=\int_{-\infty}^{\infty}f_X(x)f_Y(\mathbf{z}-\mathbf{x})dx$.

Доказательство: $F_Z(z) = P\{Z < z\} = P\{X + Y < z\} = P\{Y < z - X\} = P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy = \int_{-\infty}^{+\infty} f(x,y) dy$. Т.к. X,У независимы, то $f(x,y) = f_X(x)f_Y(y)$, следовательно $F_Z(z) = \int_-^+ dx \int_-^{z-x} f_X(x)f_Y(y)dy = \int_-^+ f_X(x)dx \int_-^{z-x} f(y)dy$. Наконец, $f_Z(z) = \frac{d}{dz}F_Z(z) = \frac{d}{dz}\left[\int_-^+ f_X(x)dx \int_-^{z-x} f_Y(y)dy\right] = \int_-^+ f_X(x)f_Y(z-x)dx$. Выражение $(f1*f2)(y) = \int_-^+ f1(x1)f2(y-x)dx$ называется сверткой функций f1,f2.

 Сформулировать определение математического ожидания СВ (дискретный и непрерывный случаи). Записать формулы вычисления МО функции от СВ. Сформулировать свойства МО и его механический смысл.

- ДСВ: Математическим ожиданием СВ X называется число $M[X] = \sum_i p_i x_i$, где $p_i = P\{X = x_i\}$, x_i пробегает множество всех значений X. HCB: Математическим ожиданием CB X называется число $M[x] = \int_{-}^{+} x f(x) dx$, где f(x) – плотность распределения HCB X.
 - Если X CB, ϕ : $\mathbb{R} \to \mathbb{R}$ скалярная функция, то $M[\phi(X)] = \sum_i p_i \phi(x_i)$ для ДСВ и = $\int_-^+ \phi(x) f(x) dx$ для НСВ.
- Механический смысл мат.ожидания: пусть есть стержень, обладающий «вероятностной массой» и в хі лежит её рі часть. Тогда математическое ожидание задаёт x0 – центр тяжести для этого стержня. В случае HCB, f(x) можно интерпретировать как «плотность» бесконечного стержня.

Свойства МО:

- 1) Если X принимает значение x0 с вероятностью 1 (т.е. не является CB), то МX=x0.
- M[aX + b] = aM[X] + b
- M[X + Y] = MX + MY
- Если X и У независимые, то M[XY] = MXMY

14. Сформулировать определение дисперсии СВ. Записать формулы вычисления дисперсии в дискретном и непрерывном случае. Сформулировать свойства дисперсии и её механический смысл.

• Дисперсией CB X называют математическое ожидание квадрата отклонения CB X от её среднего значения: $D[X] = M[X - MX]^2$. Для ДСВ: $DX = \sum_{i} (x_i - MX)^2 p_i$; для НСВ: $DX = \int_{-}^{+} (x - MX)^2 f(x) dx$.

Механический смысл. Дисперсия представляет собой второй момент центрированной CB $X: X^0 = X - MX$ //коментарий автора: это не икс в нулевой, это икс с кружочком сверху

• Свойства дисперсии:

- 1) Если СВ X принимает всего одно значени С с вероятностью 1, то DC = 0
- $D[aX + b] = a^2DX$
- 3) $DX = M[X^2] (MX^2)$
- D[X + Y] = DX + DY, если X и У независимые CB.

15. Сформулировать определения начального и центрального моментов СВ. МО и дисперсия как моменты. Сформулировать определение

- Начальным моментом K-го порядка CB X называют математическое ожидание K-й степени этой CB: $m_k = M[X^k] = \sum_i x_i^k p_i$.
- Центральным моментом K-го порядка X называют матожидание к-й степени величины $X^o = X MX$: $m_k^o = M[(X MX)^k] =$
- Математическое ожидание СВ X совпадает с моментом первого порядка. Дисперсия совпадает с центральным моментом 2-го порядка.
- Квантилью CB X уровня а называется число q_{α} , определяемое соотношением $P\{X < q_{\alpha}\} \le \alpha$, $P\{X > q_{\alpha}\} \le 1 \alpha$. Медианой CB X называется её квантиль уровня 0.5.

16. Сформулировать определение ковариации СВ. Записать формулы вычисления ковариации в дискретном и непрерывном случаях. Сформулировать свойства ковариации.

• Коварацией СВ X и У называется число cov(X,Y) = M[(X-m1)(Y-m2)], где m1=MX, m2=MY.

Если X,У – ДСВ, то ковариация $cov(X,Y) = \sum_{ij} (x_i - MX)(y_j - MY)p_{ij}$; если НСВ - $cov(X,Y) = \int_{-}^{+} \int_{-}^{+} (x - MX)(y - MY)f_{XY}(x,y)dxdy$.

- Свойства ковариации:
- 1) cov(X,X) = DX
- cov(X,Y) = 0, если X,У независимые СВ
- 3) Если $Y_1 = a_1 X_1 + b_1$, $Y_2 = a_2 X_2 + b_2$, то $cov(Y1, Y2) = a_1 a_2 cov(X1, X2)$
- $-\sqrt{DXDY} \le cov(X,Y) \le \sqrt{DXDY};$
- 5) Равенство $|cov(X,Y)| = \sqrt{DXDY}$ верно тогда и только тогда, когда CB X,У связаны линейной зависимостью, т.е. Y = aX + b.
- cov(X,Y) = M(XY) MXMY.