

Autumn Examinations 2016/2017

Course Instance Code(s)	1CSD1, 1CSD2, 1SPE1			
` '	MSc in Computer Science – Data Analytics			
\ /	CT5101 Natural Language Processing			
Paper No. Repeat Paper	1 Yes			
External Examiner(s) Internal Examiner(s)	Professor Liam Maguire Dr. Michael Schukat Dr. Paul Buitelaar Dr. John McCrae Dr. Ian Wood Dr. Mihael Arcan			
Instructions: Answer all questions. There are 4 sections; each section is worth 25 marks (100 marks total). Use a separate answer book for each section answered.				
Duration No. of Pages Discipline(s) Course Co-ordinator(2 hours 6 Engineering and Information Technology s) Dr. Conor Hayes			
Requirements: Release in Exam Venu				
MCQ Handout Statistical/ Log Tables Cambridge Tables Graph Paper Log Graph Paper	Yes No X None None None None None			

CT5101 Natural Language Processing

Exam Duration: 2 Hours

You must complete Sections 1 to 4

Section 1: Tagging and Parsing

Instructions: Provide answers for questions 1A and 1B

Question 1A 10 Marks

Give an example of an ambiguous English sentence and explain how a part-of-speech tagger **or** a parser can resolve this ambiguity.

Question 1B 15 Marks

Consider the probabilistic context-free grammar as follows

 $P(NP \rightarrow N) = 0.4$ $P(NP \rightarrow A NP) = 0.3$ $P(NP \rightarrow N NP) = 0.1$ $P(NP \rightarrow DET NP) = 0.2$ $P(N \rightarrow good) = 0.2$ $P(N \rightarrow work) = 0.4$ $P(N \rightarrow purchase) = 0.4$ $P(A \rightarrow good) = 0.8$ $P(A \rightarrow kind) = 0.2$ $P(DET \rightarrow the) = 0.5$ $P(DET \rightarrow a) = 0.5$

What is the probability of the noun phrase 'a good work' (use NP as the start symbol). Provide **all** valid parse trees.

Section 2: Machine Learning

Instructions: Provide answers for questions 2A, 2B and 2C

Question 2A 5 Marks

Briefly explain why it is important to have separate data for training and testing supervised classification models.

Question 2B 10 Marks

The F_{β} measure is frequently used for text classification models. Write down the formula for the F_{β} measure. Briefly discuss the impact of varying the β parameter. In what circumstances would you choose a low β value such as 0.2?

Question 2C 10 Marks

Real world data for binary classification of emotion classes such as *disgust* are usually highly unbalanced, with much fewer examples expressing the target emotion class than those that do not express it.

Briefly discuss why the F₁ measure is usually a better choice than overall prediction accuracy for evaluation of a binary classification model with unbalanced test data.

Calculate the F₁measure for *disgust* given the evaluation results below.

Emotion	True Positive	False Positive	True Negative	False Negative
joy	50	10	35	5
sadness	12	9	66	13
disgust	5	15	75	5
anger	20	5	65	10

Section 3: Machine Translation

Instructions: Provide answers for questions 3A, 3B, 3C, and 3D.

Question 3A 5 Marks

Name at least three different approaches to Machine Translation.

Question 3B 10 Marks

Given the translation table below, provide four English sentences that can be generated for the German sentence "das Haus ist klein" and compute the translation probabilities for these sentences.

f =	"das"	f = "H	aus"	f =	= "ist"	f =	"klein"
е	P(e f)	е	P(e f)	е	P(e f)	е	P(e f)
the	0.7	house	0.8	is	0.8	small	0.4
that	0.15	building	0.16	's	0.16	little	0.4
which	0.075	home	0.02	exists	0.02	short	0.1
who	0.05	household	0.015	has	0.015	minor	0.06
this	0.025	shell	0.005	are	0.005	petty	0.04

Question 3C 5 Marks

Why is count smoothing important in language model generation?

Question 3D 5 Marks

Briefly explain how the BLEU score for automatic translation evaluation is calculated.

Section 4: Sentiment Analysis

Instructions: Provide answers for questions 4A, 4B, and 4C.

Sentiment lexicon:

Word	Part of Speech	Sentiment value
small	Adjective	-1
tiny	Adjective	-2
comfortable	Adjective	+1
delicious	Adjective	+2
fresh	Adjective	+1
variety	Noun	+1
delicious	Adjective	+2
noisy	Adjective	-2

Sentences:

- 1. Our room was tiny and the bath was small too.
- 2. The bed was very comfortable, but the walls were thin and we were unfortunate to get noisy neighbours.
- 3. The breakfast did not have much variety, however everything was fresh and delicious.

Question 4A 10 Marks

Using the following two features:

Feature 1: Count of positive sentiment adjectives in the sentence.

Feature 2: The sum of sentiment values for all the word of the sentence (Use 0 for words not in the table).

Fill in the table with the feature values for the provided sentences. Use the given lexicon to calculate the values. Use 0 if a word is not present in the lexicon.

Sentence	Feature 1	Feature 2	Aspect, Sentiment Class
#1			Room, Negative
#2			Bed, Positive
#3			Breakfast, Conflict

Question 4B 5 Marks

Do you think Features 1 and 2 are useful to predict the sentiment class of a given aspect? Explain.

Question 4C 10 Marks

Suggest a third feature, which you think would be useful for predicting the aspect based sentiment class of a given sentence. Explain how you would calculate the value of this feature.

END