Exercice 1:

Soit $I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Pour tout $x \in I$, on pose $g(x) = \tan(x)$.

1. Montrer que, pour tout entier naturel n, il existe un polynôme P_n tel que :

$$\forall x \in I, \ g^{(n)}(x) = P_n(\tan(x)).$$

Déterminer également (au cours du raisonnement) une relation entre P_{n+1} et P'_n .

- 2. Calculer P_0 , P_1 , P_2 , P_3 , P_4 et P_5 . Calculer $g^{(6)}(x)$ pour $x \in I$.
- 3. Factoriser P_5 dans $\mathbb{C}[X]$.
- 4. Déterminer (en justifiant) le monôme dominant de P_n pour tout entier naturel n.

Exercice 2:

- 1. Exprimer M en fonction de a, I_4 et J.
- 2. Trouver une relation très simple entre J^2 et J. En déduire une expression de M^2 en fonction de M et I_4 .
- 3. Trouver les valeurs de a pour lesquelles M est inversible, et déterminer M^{-1} le cas échéant.
- 4. Calculer J^3 en fonction de J puis J^4 en fonction de J. Conjecturer et démontrer une formule reliant J^n à J pour $n \in \mathbb{N}^*$.
- 5. En déduire le calcul de M^n pour tout entier naturel n.

Exercice 3 |

On note $M = \begin{pmatrix} 3 & -2 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & 2 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (matrice unité de $\mathcal{M}_3(\mathbb{R})$).

- 1. Trouver deux entiers a et b tels que : $M^2 = aM + bI$
- 2. Montrer que, pour tout entier $n \in \mathbb{N}$, il existe un couple de réels (a_n, b_n) tel que :

$$M^n = a_n M + b_n I$$

Donner les valeurs de a_0 , b_0 , a_1 et b_1 , et exprimer, pour tout entier $n \in \mathbb{N}$, a_{n+1} et b_{n+1} en fonction de a_n et b_n .

- 3. Montrer que la suite $(a_n)_{n\geqslant 0}$ vérifie : $\forall n\in\mathbb{N}, a_{n+2}=3a_{n+1}-2a_n$.
- 4. En déduire a_n puis b_n , en fonction de n, et enfin l'expression (détaillée) de M^n en fonction de n.