1. PHYSICAL CONSTANTS

Table 1.1. Reviewed 2010 by P.J. Mohr (NIST). Mainly from the "CODATA Recommended Values of the Fundamental Physical Constants: 2006" by P.J. Mohr, B.N. Taylor, and D.B. Newell in Rev. Mod. Phys. 80 (2008) 633. The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard-deviation uncertainties in the last digits; the corresponding fractional uncertainties in parts per 10^9 (ppb) are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). The full 2006 CODATA set of constants may be found at http://physics.nist.gov/constants. See also P.J. Mohr and D.B. Newell, "Resource Letter FC-1: The Physics of Fundamental Constants," $\stackrel{.}{\rm Am}$. $\stackrel{.}{\rm J}$. Phys, **78** (2010) 338.

Quantity	Symbol, equation	Value	Uncertainty (ppb)
speed of light in vacuum Planck constant Planck constant, reduced	$c h \ \hbar \equiv h/2\pi$	$\begin{array}{c} 299\ 792\ 458\ \mathrm{m\ s^{-1}} \\ 6.626\ 068\ 96(33)\times 10^{-34} \\ 1.054\ 571\ 628(53)\times 10^{-3} \\ = 6.582\ 118\ 99(16)\times 10 \end{array}$	4 J s $^{-22}$ MeV s 25
electron charge magnitude conversion constant conversion constant	$e \over \hbar c \over (\hbar c)^2$	$1.602\ 176\ 487(40) \times 10^{-1}$ $197.326\ 9631(49)\ \text{MeV f}$ $0.389\ 379\ 304(19)\ \text{GeV}^2$	
electron mass proton mass	$m_e \ m_p$	$938.272\ 013(23)\ \text{MeV}/c^2$ = 1.007\ 276\ 466\ 77(10)	$e^2 = 9.109 382 15(45) \times 10^{-31} \text{ kg}$ 25, 50 = 1.672 621 637(83) × 10 ⁻²⁷ kg 25, 50 u = 1836.152 672 47(80) m_e 0.10, 0.43
deuteron mass unified atomic mass unit (u)	m_d (mass ¹² C atom)/12 = (1 g)/(N_A mol)		$= 1.660538782(83) \times 10^{-27} \text{ kg} $ 25, 50
permittivity of free space permeability of free space	$\epsilon_0 = 1/\mu_0 c^2$ μ_0		2 F m ⁻¹ exact 5 566 370 614 $\times 10^{-7}$ N A ⁻² exact
fine-structure constant classical electron radius $(e^- \text{ Compton wavelength})/2\pi$ Bohr radius $(m_{\text{nucleus}} = \infty)$ wavelength of 1 eV/c particle Rydberg energy Thomson cross section	$\begin{split} &\alpha = e^2/4\pi\epsilon_0\hbar c \\ &r_e = e^2/4\pi\epsilon_0 m_e c^2 \\ &\lambda_e = \hbar/m_e c = r_e \alpha^{-1} \\ &a_\infty = 4\pi\epsilon_0 \hbar^2/m_e e^2 = r_e \alpha^{-2} \\ &hc/(1 \text{ eV}) \\ &hcR_\infty = m_e e^4/2(4\pi\epsilon_0)^2 \hbar^2 = m_e c^2 \alpha^2/2 \\ &\sigma_T = 8\pi r_e^2/3 \end{split}$	$7.297\ 352\ 5376(50) \times 10^{-1}$ $2.817\ 940\ 2894(58) \times 10^{-1}$ $3.861\ 592\ 6459(53) \times 10^{-1}$ $0.529\ 177\ 208\ 59(36) \times 10^{-1}$ $1.239\ 841\ 875(31) \times 10^{-6}$ $13.605\ 691\ 93(34)\ eV$ $0.665\ 245\ 8558(27)\ barn$	1.4 m
Bohr magneton nuclear magneton electron cyclotron freq./field proton cyclotron freq./field	$\mu_B = e\hbar/2m_e$ $\mu_N = e\hbar/2m_p$ $\omega_{\text{cycl}}^e/B = e/m_e$ $\omega_{\text{cycl}}^p/B = e/m_p$	$5.788 \ 381 \ 7555(79) \times 10^{-}$ $3.152 \ 451 \ 2326(45) \times 10^{-}$ $1.758 \ 820 \ 150(44) \times 10^{11}$ $9.578 \ 833 \ 92(24) \times 10^{7}$ ra	$^{-14}$ MeV T ⁻¹ 1.4 rad s ⁻¹ T ⁻¹ 25
gravitational constant ‡	G_N	$6.674\ 28(67) \times 10^{-11}\ \text{m}^3$ = $6.708\ 81(67) \times 10^{-39}$	$kg^{-1} s^{-2}$ 1.0×10^5 $\hbar c (GeV/c^2)^{-2}$ 1.0×10^5
standard gravitational accel.	g_N	$9.806~65~{\rm m~s^{-2}}$	exact
Avogadro constant Boltzmann constant molar volume, ideal gas at STP Wien displacement law constant Stefan-Boltzmann constant	N_A k $N_A k (273.15 \text{ K})/(101 \ 325 \text{ Pa})$ $b = \lambda_{\text{max}} T$ $\sigma = \pi^2 k^4/60 \hbar^3 c^2$	$6.022\ 141\ 79(30) \times 10^{23}\ r$ $1.380\ 6504(24) \times 10^{-23}\ J$ $= 8.617\ 343(15) \times 10^{-5}$ $22.413\ 996(39) \times 10^{-3}\ m$ $2.897\ 7685(51) \times 10^{-3}\ m$ $5.670\ 400(40) \times 10^{-8}\ W$	$\begin{array}{cccc} K^{-1} & 1700 \\ {\rm eV} \ K^{-1} & 1700 \\ {\rm 3} \ {\rm mol}^{-1} & 1700 \\ {\rm K} & 1700 \end{array}$
Fermi coupling constant**	$G_F/(\hbar c)^3$	$1.166\ 37(1) \times 10^{-5}\ \mathrm{GeV}^{-}$	9000
weak-mixing angle W^{\pm} boson mass Z^0 boson mass strong coupling constant	$\sin^2 \widehat{ heta}(M_Z) \ (\overline{ ext{MS}})$ m_W m_Z $lpha_s(m_Z)$	$\begin{array}{c} 0.231\ 16(13)^{\dagger\dagger} \\ 80.399(23)\ {\rm GeV}/c^2 \\ 91.1876(21)\ {\rm GeV}/c^2 \\ 0.1184(7) \end{array}$	5.6×10^{5} 2.9×10^{5} 2.3×10^{4} 5.9×10^{6}
$\pi = 3.141\ 592\ 653\ 5$			$\gamma = 0.577\ 215\ 664\ 901\ 532\ 861$
1 in $\equiv 0.0254 \text{ m}$ 1 G $\equiv 10$ 1 Å $\equiv 0.1 \text{ nm}$ 1 dyne $\equiv 10$ 1 barn $\equiv 10^{-28} \text{ m}^2$ 1 erg $\equiv 10$		76 $487(40) \times 10^{-19} \text{ J}$ 61 $758(44) \times 10^{-36} \text{ kg}$ 1 atmospherical results of the second	kT at 300 K = $[38.681 \ 685(68)]^{-1}$ eV 0 °C $\equiv 273.15$ K sphere $\equiv 760$ Torr $\equiv 101 \ 325$ Pa

^{*} The meter is the length of the path traveled by light in vacuum during a time interval of 1/299 792 458 of a second.

 $^{^\}dagger$ At $Q^2=0.$ At $Q^2\approx m_W^2$ the value is $\sim 1/128.$

 $^{^\}ddagger$ Absolute lab measurements of G_N have been made only on scales of about 1 cm to 1 m. ** See the discussion in Sec. 10, "Electroweak model and constraints on new physics."

^{††} The corresponding $\sin^2 \theta$ for the effective angle is 0.23146(12).