Paper Reading: Review Networks for Caption Generation

Jie Hao

June 11, 2018

Introduction

- Review network: a novel extension of the encoder-decoder framework.
- ➤ The review network implement some review steps with attention mechanism on the encoder hidden states and outputs the fact vectors, which are more compact, abstractive, and global representation.
- ► Experiments: image captioning and source code captioning.

Previous: Attentive encoder-decoder models

Issues:

Lacks global modeling abilities because attention mechanism proceeds in a sequential manner.

For example, at the generation step t, the decoded token is conditioned on the attention results at current step \tilde{h}_t , but has no information about future attention results $\tilde{h}_{\star'}$, $t^{'}>t$.

▶ Did not integrate discriminative supervision, which is beneficial for generative models.

Comparison between previous model and paper's model

Reviewer: $\mathbf{f}_t = g_t(H, \mathbf{f}_{t-1})$, where g_t is a modified LSTM unit with attention mechanism at review step t.

(a) Attentive Encoder-Decoder Model.

(b) Review Network. Blue components denote optional discriminative supervision. T_r is set to 3 in this example.

Figure 1: Model Architectures.

Attentive Input Reviewer

$$\tilde{\mathbf{f}} = \textit{att}(H, \mathbf{f}_{t-1}) = \Sigma_{i=1}^{|H|} \frac{\alpha(\mathbf{h}_i, \mathbf{f}_{t-1})}{\Sigma_{J}^{|H|} \alpha(\mathbf{h}_{J'}, \mathbf{f}_{t-1})} \mathbf{h}_i \text{ , } g_t(H, \mathbf{f}_{t-1}) = f_t^{'}(\tilde{\mathbf{f}}_t, \mathbf{f}_{t-1}).$$

Here, α is a function that determines the weights for the hidden state. f_t' is an LSTM unit at step t.

Attentive Output Reviewer

$$\tilde{\mathbf{f}} = att(H, \mathbf{f}_{t-1}), \ g_t(H, \mathbf{f}_{t-1}) = f_t^{'}(\mathbf{0}, \mathbf{f}_{t-1}) + \mathbf{W}\tilde{\mathbf{f}}_t$$

Discriminative Supervision

$$\mathcal{L}_d = \frac{1}{Z} \Sigma_{j \in W} \Sigma_{i \neq j} \max(0, 1 - (s_j - s_i)).$$

Here s_i is the score of world i after the max pooling layer, and W is the set of all words that occur in \mathbf{y} .

Experiments

MSCOCO dataset:

Model	BLEU-4	METEOR	CIDEr
Attentive Encoder-Decoder	0.278 (0.255)	0.229 (0.223)	0.840 (0.793)
Review Net	0.282 (0.259)	0.233 (0.227)	0.852 (0.816)
Review Net + Disc Sup Review Net + Disc Sup + Untied Weights	0.287 (0.264) 0.290 (0.268)	0.238 (0.232) 0.237 (0.232)	0.879 (0.833) 0.886 (0.852)

Inspiration for current work

- Use Review Network to improve the current Transformer model. Specifically, we use fact vectors as an auxiliary input to the decoder.
- Implement a discriminative loss to the system.