Démarche adoptée pour la préparation d'une configuration plus complexe

Heiarii Lou Chao

23 février 2023

Table des matières

1	Préparation de la configuration			2
2	Détermination des listes de molécules et de liaisons			
	2.1	Forma	at du fichier de données LAMMPS	4
		2.1.1	En-tête du fichier	4
		2.1.2	Corps du fichier	4
2	2.2		ment des données	
		2.2.1	Détermination des liaisons	5
		2.2.2	Détermination des molécules	5
		2.2.3	Détermination des angles	5
		2.2.4	Implémentation	8

Introduction

Nous souhaitons effectuer des simulations sur des structures plus complexes que l'exemple précédent (LAMMPS Lennard-Jones), pour cela nous préparons la simulation de molécules d'eau réparties dans une boîte.

1 Préparation de la configuration

Pour préparer la configuration, nous suivons une démarche similaire à la précédente – celle adoptée pour la structure graphite + eau – et nous utilisons PACKMOL.

```
Les dimensions de la boîte de simulation sont : X = Y = Z = 6.0 \,\text{Å}
```

En prenant $\rho_{\rm H_2O} = 1000\,{\rm kg.m^{-3}}$, $\mathcal{N}_A = 6.022 \times 10^{23}\,{\rm mol^{-1}}$ et $M_{\rm H_2O} = 1.801 \times 10^{-2}\,{\rm kg.mol^{-1}}$, nous trouvons le nombre de molécules d'eau à répartir dans la boîte de simulation : $N \approx 7$.

Comme précédemment, nous prendrons une tolérance de $\boxed{\mathtt{tol} = 1.5\,\text{Å}}$

Pour anticiper l'application des conditions aux limites périodiques, nous réduisons la région où répartir les molécules à : $X^m = Y^m = Z^m = 0.75 \,\text{Å}$ et $X^M = Y^M = Z^M = 5.25 \,\text{Å}$.

Le script PACKMOL est présenté au List. 1.

```
tolerance 1.5
output init.xyz
filetype xyz
structure water.xyz
number 7
inside box 0.75 0.75 5.25 5.25 5.25
end structure
```

Listing 1 – Répartition des molécules d'eau

Celui-ci donne la configuration optimisée de la Fig. 1.

 ${\tt FIGURE} \ 1 - Configuration initiale \ des \ molécules \ d'eau$

2 Détermination des listes de molécules et de liaisons

Pour effectuer des simulations de systèmes tels que le précédent, il est nécessaire de fournir un fichier de données à LAMMPS. Celui-ci doit se présenter sous un format spécifique et contenir les informations du système (manuel utilisateur de LAMMPS).

Il est donc nécessaire de pré-traiter les données fournies par le fichier XYZ produit par PACKMOL pour les formater et les soumettre à LAMMPS.

2.1 Format du fichier de données LAMMPS

2.1.1 En-tête du fichier

L'en-tête du fichier de notre simulation doit comprendre les champs suivants :

- atoms, le nombre d'atomes
- bonds, le nombre de liaisons
- angles, le nombre d'angles
- atom types, le nombre de types d'atomes
- bond types, le nombre de types de liaisons
- angle types, le nombre de types d'angles
- xlo xhi, les limites de la boîte selon l'axe [Ox)
- ylo yhi, les limites de la boîte selon l'axe [Oy)
- zlo zhi, les limites de la boîte selon l'axe [Oz)

où chaque ligne doit se présenter sous la forme

```
value(s) keyword(s)
```

2.1.2 Corps du fichier

Le corps du fichier de notre simulation doit comprendre les sections suivantes :

— Masses, avec le format

```
atom-type mass
```

Atoms, avec le format full

```
atom-ID molecule-ID atom-type q x y z
```

Angles, avec le format

```
angle-ID angle-type atom1 atom2 atom3
```

Bonds, avec le format

```
bond-ID bond-type atom1 atom2
```

2.2 Traitement des données

Pour le traitement des données, il est important de se rendre compte que les données suivantes doivent être renseignées par l'utilisateur :

- le nombre de types d'atomes
- le nombre de types de liaisons
- le nombre de types d'angles
- les limites de l'espace
- les correspondances types d'atomes-masses

— les correspondances types d'atomes-charges

Et les données restantes doivent être déterminées par un script :

- le nombre d'atomes
- le nombre de liaisons
- le nombre d'angles
- les positions des atomes
- les atomes mis en jeu pour les liaisons
- les atomes mis en jeu pour les angles

Enfin, le diagramme de la Fig. 2 nous permet de dire qu'il faudra déterminer les données du corps du fichier avant de déterminer les données de l'en-tête.

FIGURE 2 – Détermination des éléments du fichier de données

2.2.1 Détermination des liaisons

Pour déterminer les liaisons entre les atomes du système nous nous basons sur les distances inter-atomiques. Ceci nous permet de concevoir le diagramme de la Fig. 3 et l'Alg. 1.

FIGURE 3 – Détermination des liaisons

2.2.2 Détermination des molécules

Pour déterminer les molécules, nous nous basons sur les liaisons en partant du principe qu'une molécule est un ensemble d'atomes liés entre eux au moins deux à deux.

Par exemple avec un tableau de liaisons L = [[[1,2],[2,3]]], on veut avoir le résultat M = [[1,2,3]] de sorte à ce que l'entrée M_0 corresponde à la première molécule, mettant en jeu les atomes numérotés 1, 2 et 3.

Nous pouvons alors concevoir le diagramme de la Fig. 4 et l'Alg. 2.

2.2.3 Détermination des angles

Pour déterminer les angles nous nous basons sur les molécules. Nous pouvons concevoir le diagramme de la Fig. 5, cependant une méthode alternative adaptée pour un système à un type d'angle fonctionne et a été implémentée directement.

Algorithme 1 : Détermination des liaisons

Données : N_{part} le nombre de particules, r les positions des particules, N_{tliaisons} le nombre de types de liaisons, t les seuils des liaisons

Sorties: L le tableau des indices des paires de particules liées

```
1 début
 2
         pour i de 0 à N_{part} faire
             pour j de i + 1 à N<sub>part</sub> faire
 3
                  \mathtt{r_{ij}} \leftarrow |\mathtt{r_i} - \mathtt{r_j}|
 4
                  pour k de 0 à N_{tliaisons} faire
 5
                       \mathbf{si}\ t_k \leq \mathtt{r_{ij}} \leq t_{k+1}\ \mathbf{alors}
 6
                            ajouter(L_k,[i,j])
 7
 8
 9
                   fin pour
             fin pour
10
         fin pour
11
         retourner L
12
13 fin
```


FIGURE 4 – Détermination des molécules

Figure 5 – Détermination des angles

Algorithme 2 : Détermination des molécules

```
Données : L le tableau des indices des paires de particules liées
   Sorties : M le tableau des indices des atomes appartenant aux mêmes molécules
       L' \leftarrow concatener(L, axe = 0)
 3
       pour i de 0 à nombre(L') faire
           \mathtt{ajoute} \leftarrow \mathtt{faux}
 4
           pour chaque atome de L'<sub>i</sub> faire
 5
               pour chaque molecule de M faire
 6
                    si atome \in molecule alors
 7
                        \mathtt{retirer}(\mathtt{L_i'},\mathtt{atome})
 8
                        \mathtt{ajouter}(\mathtt{molecule}, \mathtt{L_i'})
 9
                        \mathtt{ajoute} \leftarrow \mathtt{vrai}
10
                        stopper
11
                    fin si
12
               fin pour chaque
13
                si ajoute alors
14
                    stopper
15
               fin si
16
           fin pour chaque
17
           si non ajoute alors
18
               ajouter(M, L'_i)
19
           fin si
20
       fin pour
21
       retourner M
22
23 fin
```

2.2.4 Implémentation

Ces algorithmes ont pu être implémentés pour construire un script permettant, à partir d'un fichier d'entrée et du fichier de configuration au format XYZ, d'écrire un fichier de données LAMMPS automatiquement.

Le fichier d'entrée doit contenir les informations sur le système à simuler. Un exemple est présenté par le List. 2.

```
# input.txt
configuration_file: init.xyz
output_file: data.lammps
atom_types: 0 H
    masses: 15.9994 1.008
    charges: -0.8476 0.4238
bond_types: 1
    thresholds: 0.90 1.00
angle_types: 1
space_boundaries: 0.0 0.0 0.0 6.0 6.0 6.0
```

Listing 2 – Fichier d'entrée pour la conversion

Et le résultat est présenté par un fichier tel que présenté par le LIST. 3.

```
# data.lammps
LAMMPS Description

21 atoms
14 bonds
...

Masses

10 1 15.9994 # 0
2 1.008 # H
...

Atoms

1 1 2 0.4238 4.978146 3.160309 2.519717
2 1 1 -0.8476 5.220404 2.390845 1.990387
...

20 Bonds

1 1 2 2
2 1 2 3
...
```

Listing 3 – Fichier de sortie de la conversion