AUTOMATY A GRAMATIKY

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

Kontextové uzávěrové vlastnosti (1)

- kontextové jazyky jsou uzavřené na konečná sjednocení
 - kontextové gramatiky $G_1 = (V_N^1, V_T, S_1, P_1)$ a $G_2 = (V_N^2, V_T, S_2, P_2)$, kde $V_N^1 \cap V_N^2 = \emptyset$
 - položme G = $(V_N^1 \cup V_N^2 \cup \{S'\}, V_T, S', P1UP2 \cup \{S' \to S_1 | S_2 \})$
 - S' je nový neterminál
 - ošetřit přepis původních počátečních symbolů na λ
 - platí $L(G) = L(G_1) \cup L(G_2)$
- kontextové jazyky jsou uzavřené na konkatenaci
 - položme G = $(V_N^1 \cup V_N^2 \cup \{S'\}, V_T, S', P_1 \cup P_2 \cup \{S' \rightarrow S_1, S_2\})$
 - S' je nový neterminál
 - ošetřit přepis původních počátečních symbolů na λ
 - platí $L(G) = L(G_1).L(G_2)$
- kontextové jazyky jsou uzavřené na iteraci
 - položme G = $(V_N^1 \cup \{S', S''\}, V_T, S', P_1 \cup \{S' \rightarrow \lambda \mid S'', S'' \rightarrow S''S_1 \mid S_1\})$
 - S', S'' isou nové neterminály
 - je třeba dávat pozor na výskyt počátečního neterminálu vpravo (u bezkontextových netřeba)
 - platí L(G) = L(G₁)*
- kontextové jazyky jsou uzavřené na zrcadlový obraz
 - položme G = $(V_N^1, V_T, S_1, \{v^R \rightarrow w^R \mid v \rightarrow w \in P_1\})$
 - platí $L(G) = L(G_1)^R$

Kontextové uzávěrové vlastnosti (2)

- kontextové jazyky jsou uzavřené na kontextovou substituci
 - □ substituce $f: X \to 2^{Y^*}$ je <u>kontextová substituce</u>, jestliže f(x) je kontextový jazyk pro každé $x \in X$
 - máme $G_x = (V_N^x, Y, S_x, P_x)$, že $f(x) = L(G_x)$ pro každé $x \in X$
 - V_Nx jsou po dvou disjunktní
 - \blacksquare mějme G = (V_N , X, S, P), zajímá nás kontextovost f(L(G))
 - položíme G' = $(V_N \cup U_{x \in X} V_N^x \cup X, Y, S, P \cup U_{x \in X} P^x \cup \{x \to S_x \mid x \in X\})$
 - případně ošetříme přepis neterminálů jiných než S na λ
 - platí L(G') = f(L(G))
- kontextové jazyky jsou uzavřené na doplňky a konečné průniky
 - velmi hluboký výsledek (řešilo se asi 20 let)
 - věta Immerman–Szelepcsényi

Turingův stroj (1)

Turingův stroj

- □ automat, který může přepisovat pásku
- páska je potenciálně nekonečná
 - v konečném čase stroj použije její konečnou část
- historická vsuvka
 - 30. léta 20. století
 - konečná výpočetní zařízení, formalizace algoritmu a problému
 - Turingův stroj, λ-kalkulus, RAM (random access machine)
 - osobnosti
 - Turing, Kleene, Markov, Post, Church
 - Churchova hypotéza (metavěta)
 - všechna konečná výpočetní zařízení jsou ekvivalentní, tj. ekvivaletní Turingovu stroji
 - nedokázáno ani nevyvráceno

Turingův stroj (2)

Turingův stroj formálně

- \Box T = (Q, X, δ, q₀, b, F)
 - Q konečná neprázdná množina stavů
 - X konečná neprázdná množina symbolů (abeceda)
 - F⊆Q množina přijímajících stavů
 - $\delta: (Q-F) \times X \to Q \times X \times \{-1, 0, +1\}$
 - přechodová funkce
 - pro stav a čtený symbol dává nový stav, symbol k zápisu a následující pozici na pásce
 - v přijímajícím stavu výpočet končí
 - q₀∈Q počáteční stav
 - b∈X symbol pro prázdnou buňku na pásce

předpoklady

- páska je směrem doprava nekonečná
- vstupní slovo je napsané na levém konci pásky
 - zprava doplněné symbolem b do nekonečna
- počáteční pozice je na prvním písmenu vstupního slova

Výpočet Turingova stroje

- konfigurace Turingova stroje
 - trojice (u,q,v), kde u,v∈X* a q∈Q
 - u.v je slovo na nejmenší souvislé části pásky obsahující symboly ≠ b a čtenou buňku
 - u je **část vlevo** od aktuální čtené pozice (kromě)
 - v je **část vpravo** od aktuální čtené pozice (včetně)
- změna konfigurace (u,q,v) na (w,p,z), jestliže
 - \Box (i) $v = x \cdot v'$ pro $x \in X$, w = u, $z = y \cdot v'$ a $\delta(q,x) = (p,y,0)$, nebo
 - žádný posun
 - □ (ii) v = x.v' pro $x \in X$, w = u.y, z = v' a $\delta(q,x) = (p,y,+1)$, nebo
 - posun doprava
 - □ (iii) u = u'.x', v = x.v' pro $x,x' \in X, w = u', z = x'.y.v'$ a $\delta(q,x) = (p,y,-1)$
 - posun doleva
 - zapisujeme $(u,q,v) \vdash_T (w,p,z)$
 - nutno ošetřit případy, kdy u=λ
- změna konfigurace na konečně mnoho kroků
 - $\square (u,q,v) \vdash_{\mathsf{T}}^* (w,p,z)$

Varianty Turingova stroje

nedeterministický

- přechodová funkce bude nedeterministická
 - $\bullet \delta: (Q-F) \times X \rightarrow 2^{Q \times X \times \{-1, 0, +1\}}$
- pojem změny konfigurace se upraví
 - místo $\delta(q,x) = ...$ budeme mít $\delta(q,x) \ni ...$

vícepáskový (k pásek)

- - případně δ: (Q-F)× $X^k \rightarrow 2^{Q \times X^k \times \{-1, 0, +1\}^k}$ u nedeterministické varianty
- vstupní slovo na první pásce
- změna konfigurace analogicky

multi-dimenzionální

- páska má několik rozměrů (například 2D, 3D)
 - pohyb je možný ve všech směrech

Jazyky a Turingovy stroje

- □ slovo w∈(X-{b})* je **přijímáno** Turingovým strojem $T = (Q, X, \delta, q_0, b, F)$, jestliže
 - \square $(\lambda, q_0, w) \vdash_T (u, f, v)$ pro $u, v \in X^*$ a $f \in F$
 - někdy je vyžadováno smazání pásky, tj. $(\lambda, q_0, w) \vdash_T * (\lambda, f, b)$
- jazyk L(T) přijímaný Turingovým strojem T
 - □ $L(T) = \{ w \mid w \in (X \{b\})^* \land (\exists f \in F)(\lambda, q_0, w) \vdash_T^* (u, f, v) \}$
- jazyky přijímané Turingovými stroji jsou právě rekurzivně spočetné jazyky (typu 0) [recursively enumerable language]
 - platí s libovolnou variantou Turingova stroje (více pásek, více dimenzí, s nedeterminismem)
 - všechny varianty TS mají stejnou výpočetní sílu
 - lze se omezit na jednopáskový deterministický

Turingŭv stroj ⇒ gramatika

- mějme deterministický jednopáskový TS T = (Q, X, δ , q_0 , b, F)
 - hledáme gramatiku $G=(V_N,X,S,P)$ (bez omezení), že L(G) = L(T)
 - G vygeneruje pásku s prostorem pro výpočet a kopii vstupního slova, simuluje výpočet T nad vygenerovanou páskou (páska obsahuje zracadlový obraz vstupu)
 - - I pomocný neterminál pro generování w∈X* a w^R, B pro generování prostoru na simulované pásce, E pro mazání simulační pásky
 - pravidla P
 - zahájení
 - $S \rightarrow IQ_{qq}B$
 - $I \rightarrow X I X$ B pro $X \in X$
 - generování slova w a jeho kopie w^R
 - \blacksquare B \rightarrow X_h B | X_h
 - generování volného prostoru
 - simulace výpočtu nad w^R
 - $X_x Q_q X_y \rightarrow X_z Q_p X_y kdy \check{\delta}(q,x) = (p,z,0)$
 - $X_x Q_q X_v \rightarrow Q_p X_z X_v \text{ když } \delta(q,x)=(p,z,+1)$
 - $X_x Q_0 X_y \rightarrow X_z X_y Q_0 \text{ když } \delta(q,x) = (p,z,-1)$
 - mazání pásky

■ $Q_f \rightarrow E$ pro $f \in F$ $X \to E$ pro $X \in V_N$ $E \times X \rightarrow E$ pro $X \in V_N$

nechť w =
$$x_1x_2...x_n$$

derivace: $S \Rightarrow_G^* ...$
 $x_1x_2...x_n I X_{x_n} X_{x_{n-1}}...X_{x_1} Q_{q_0} B \Rightarrow_G$
 $x_1x_2...x_n B X_{x_n} X_{x_{n-1}}...X_{x_1} Q_{q_0} B \Rightarrow_G^* ...$
 $x_1x_2...x_n X_b...X_b X_{x_n} X_{x_{n-1}}...X_{x_1} Q_{q_0} X_b...X_b \Rightarrow_G^* ...$
 $x_1x_2...x_n u Q_f v \text{ pro } u,v \in \{X_x \mid x \in X\}^* \text{ a } f \in F \Rightarrow_G$
 $x_1x_2...x_n u E v \Rightarrow_G^* ...$
 $x_1x_2...x_n E v \Rightarrow_G^* x_1x_2...x_n E \Rightarrow_G^* x_1x_2...x_n$

 $E \rightarrow \lambda$

Gramatika ⇒ Turingův stroj

- □ mějme gramatiku (bez omezení) G=(V_N,V_T,S,P)
 - □ hledáme TST = (Q, X, δ , q_0 , b, F), že L(T) = L(G)
 - pracné po technické stránce, ukážeme abstraktně
 - konstrukce, z nichž na vyšší úrovni sestavíme T
 - TST_1 , že $L(T_1)$ = { $\#u\#v\# \mid u,v\in X^* \land u \Rightarrow_G v$ }, $\#\notin V_N \cup V_T$
 - na všech možných místech v <u>u</u> je vyzkoušena aplikace všech pravidel G
 - TS T₂, že L(T₂) = {w | (∃n∈N₀) w = #u₁#u₂#...#u_n# ∧ u₁,...,u_n∈(V_NUV_T)* ∧ u₁ ⇒_G u₂ ∧ u₂ ⇒_G u₃ ∧ ... ∧ u_{n-1} ⇒_G u_n}
 - T₂ bude založen na T₁
 - TS T₃ generující systematicky všechna slova nad V_NUV_TU{#} začínající #S#
 - T₃ vstupní slovo přepíše na následující slovo
 - spojením T₂ a T₃ vznikne požadovaný TS T

```
vstup: z∈ V<sub>T</sub>*

na volné místo na pásce <u>zapiš</u> w = #S#
loop
  if w∈L(T<sub>2</sub>) then
    if w končí #z# then <u>přijmi</u> z
  w ← výsledek práce T<sub>3</sub> nad w
```

Kódování, slova a čísla

- kódování různých datových typů vysoké úrovně
 - na nižší úrovni jen <u>řetězce</u> nebo přirozená <u>čísla</u>
 - ASCII či Unicode řetězce jsou reprezentovány posloupností bitů, tj. slovy nad {0, 1}
 - slova nad {0, 1} lze interpretovat jako přirozená čísla
 - interpretace $b_{n-1}...b_1b_0 = \sum b_i 2^i + 2^n$, kde $b_i ∈ \{0,1\}$ pro i=0,1,...,n-1
 - máme pojem <u>i-tého řetězce</u> pro i∈N
 - analogicky pro bitmapové obrázky
 - obrázek → kódování jako binární řetězec
 → číslo
 - máme pojem <u>i-tého obrázku</u>
 - program je jen vhodně interpretovaný řetězec
 - máme <u>i-tý program</u> (respektive <u>i-tý Turingův stroj</u>)
 - "program + bitmapové obrázky = počítačová hra"
 - máme <u>i-tou hru</u>
 - důkaz je posloupnost výrazů
 - <u>i-tý důkaz</u>

13. binární řetězec

21. binární řetězec

37. binární řetězec

Př.: 101

0101

00101

Množiny konečné a nekonečné

■ konečná množina K

Př.: {a, b, c} je konečná množina kardinality 3

- □ počet jejích prvků **kardinalita** je číslo $\in \mathbb{N}_0$
 - neexistuje vzájemně jednoznačné zobrazení mezi K a její

vlastní podmnožinou

- nekonečná množina N
 - existuje vzájemně jednoznačné zobrazení mezi N a její vlastní podmnožinou
- spočetná množina S
 - existuje vzájemně jednoznačné zobrazení mezi S a N
 - spočetné množiny jsou nekonečné

Př.: \mathbb{N} je nekonečná $1 \leftrightarrow 2$ $2 \leftrightarrow 4$ $3 \leftrightarrow 6$

Př.: celá čísla \mathbb{Z}

 $0 \leftrightarrow 1$ $-i \leftrightarrow 2i$

 $i \leftrightarrow 2i+1$

...

Enumerace a jazyky (1)

- enumerace množiny M je vzájemně jednoznačné zobrazení mezi M a N
 - máme tedy enumeraci řetězců, programů, obrázků, ...
- □ lze enumerovat jazyky na danou abecedou X (={0,1})?
 - nikoli
 - **pro spor** předpokládejme, že jazyky nad {0, 1} enumerovat lze
 - máme tedy <mark>pojem i-tého jazyka</mark>, označme jazyky <mark>L_i pro i∈N</mark>
 - položme L = { w | w∈{0,1}* \land w je i-tý binární řetězec \Rightarrow w \notin L_i}
 - L je nad {0, 1}, mělo by se tedy jednat o j-tý jazyk pro jisté j∈N
 - uvažme j-tý binární řetězec v a otázku, zda v∈L
 - když v∈L, pak v∉L podle definice L
 - když v∉L, pak v∈L podle definice L

Enumerace a jazyky (2)

- byla použita diagonalizace
 - překlopíme hodnoty na diagonále
 - nová diagonála nemůže být řádkem
 - s každým řádkem se v jedné buňce liší
- předpoklad, že jazyky nad {0,1} lze enumerovat, byl chybný

- máme více jazyků než programů (Turingových strojů)
 - existují jazyky, pro které nemáme program (Turingův stroj), který je přijímá
 - nikoli všechny jazyky jsou rekurzivně spočetné
 - nekonstruktivní přístup
 - jak takový jazyk vypadá?