# Cluster Algebras from Triangulations of Surfaces

Emily Gunawan (University of Minnesota)

Wednesday, December 2, 2015

Central Michigan University
Algebra and Combinatorics Seminar

Slides available at umn.edu/home/egunawan

#### Overview

#### Cluster Algebras (Fomin - Zelevinsky, 2001)

- \* Commutative rings with rich combinatorial structure.
- \* Appear in discrete dynamical systems, quiver representations, geometry, string theorey, etc.

Cluster algebras from surfaces (Fock - Goncharov, Gekhtman - Shapiro - Vainshtein, and

Fomin - Shapiro - Thurston, 2003-2006)

Almost all cluster algebras with finitely many matrices arise from surfaces (Felikson, Shapiro, Tumarkin 2008).

T-path formulas (Schiffler - Thomas, Dupont - Thomas, 2007 - 2011)

Generalize to surfaces with punctures (G. and Musiker)

#### Atomic Basis

Combinatorial proof for type D cluster algebras (G. and Musiker)

umn.edu/home/egunawan



Consider the recurrence 
$$x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$$
  
Set  $x_1 = x_2 = 1$ 

$$x_3 = \frac{x_2^2 + 1}{x_1} = (1^2 + 1)/1 = 2$$

Consider the recurrence 
$$x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$$
  
Set  $x_1 = x_2 = 1$ 

$$x_3 = \frac{x_2^2 + 1}{x_1} = (1^2 + 1)/1 = 2$$

$$x_4 = \frac{x_3^2 + 1}{x_2} = (2^2 + 1)/1 = 5$$

Consider the recurrence 
$$x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$$
  
Set  $x_1 = x_2 = 1$ 

$$x_3 = \frac{x_2^2 + 1}{x_1} = (1^2 + 1)/1 = 2$$

$$x_4 = \frac{x_3^2 + 1}{x_2} = (2^2 + 1)/1 = 5$$

$$x_5 = \frac{x_4^2 + 1}{x_3} = (5^2 + 1)/2 = 26/2 = 13$$

Consider the recurrence 
$$x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$$
  
Set  $x_1 = x_2 = 1$ 

$$x_3 = \frac{x_2^2 + 1}{x_1} = (1^2 + 1)/1 = 2$$

$$x_4 = \frac{x_3^2 + 1}{x_2} = (2^2 + 1)/1 = 5$$

$$x_5 = \frac{x_4^2 + 1}{x_3} = (5^2 + 1)/2 = 26/2 = 13$$

$$x_6 = \frac{x_5^2 + 1}{x_4} = (13^2 + 1)/5 = 170/5 = 34$$

Consider the recurrence  $x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$ Set  $x_1 = x_2 = 1$ 

$$x_3 = \frac{x_2^2 + 1}{x_1} = (1^2 + 1)/1 = 2$$

$$x_4 = \frac{x_3^2 + 1}{x_2} = (2^2 + 1)/1 = 5$$

$$x_5 = \frac{x_4^2 + 1}{x_3} = (5^2 + 1)/2 = 26/2 = 13$$

$$x_6 = \frac{x_5^2 + 1}{x_4} = (13^2 + 1)/5 = 170/5 = 34$$

$$x_7 = \frac{x_6^2 + 1}{x_5} = (34^2 + 1)/13 = 1157/13 = 89$$

Consider the recurrence 
$$x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$$
  
Set  $x_1 = x_2 = 1$ 

$$x_3 = \frac{x_2^2 + 1}{x_1} = (1^2 + 1)/1 = 2$$

$$x_4 = \frac{x_3^2 + 1}{x_2} = (2^2 + 1)/1 = 5$$

$$x_5 = \frac{x_4^2 + 1}{x_3} = (5^2 + 1)/2 = 26/2 = 13$$

$$x_6 = \frac{x_5^2 + 1}{x_4} = (13^2 + 1)/5 = 170/5 = 34$$

$$x_7 = \frac{x_6^2 + 1}{x_5} = (34^2 + 1)/13 = 1157/13 = 89$$

Consider the recurrence 
$$x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$$
  
Set  $x_1 = x_2 = 1$ 

$$x_3 = \frac{x_2^2 + 1}{x_1} = (1^2 + 1)/1 = 2$$

$$x_4 = \frac{x_3^2 + 1}{x_2} = (2^2 + 1)/1 = 5$$

$$x_5 = \frac{x_4^2 + 1}{x_3} = (5^2 + 1)/2 = 26/2 = 13$$

$$x_6 = \frac{x_5^2 + 1}{x_4} = (13^2 + 1)/5 = 170/5 = 34$$

$$x_7 = \frac{x_6^2 + 1}{x_5} = (34^2 + 1)/13 = 1157/13 = 89$$

$$x_8 = \frac{x_7^2 + 1}{x_6} = (89^2 + 1)/34 = 7922/34 = 233$$

$$x_9 = \frac{x_8^2 + 1}{x_7} = (233^2 + 1)/89 = 54290/89 = 610$$

Integer sequence  $1, 1, 2, 5, 34, 89, 233, 610, \dots$ 

Do you recognize this sequence?



The same recurrence 
$$x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$$

$$x_3 = \frac{x_2^2 + 1}{x_1}$$

The same recurrence 
$$x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$$

$$x_3 = \frac{x_2^2 + 1}{x_1}$$

$$x_4 = \frac{x_3^2 + 1}{x_2} = \frac{\left(\frac{x_2^2 + 1}{x_1}\right)^2 + 1}{x_2} = \frac{x_2^4 + 2x_2^2 + x_1^2 + 1}{x_2 x_1^2}$$

The same recurrence  $x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$ 

$$x_3 = \frac{x_2^2 + 1}{x_1}$$

$$x_4 = \frac{x_3^2 + 1}{x_2} = \frac{\left(\frac{x_2^2 + 1}{x_1}\right)^2 + 1}{x_2} = \frac{x_2^4 + 2x_2^2 + x_1^2 + 1}{x_2 x_1^2}$$

The same recurrence  $x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$ 

$$x_3 = \frac{x_2^2 + 1}{x_1}$$

$$x_4 = \frac{x_3^2 + 1}{x_2} = \frac{\left(\frac{x_2^2 + 1}{x_1}\right)^2 + 1}{x_2} = \frac{x_2^4 + 2x_2^2 + x_1^2 + 1}{x_2 x_1^2}$$

The same recurrence  $x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$ 

$$x_3 = \frac{x_2^2 + 1}{x_1}$$

$$x_4 = \frac{x_3^2 + 1}{x_2} = \frac{\left(\frac{x_2^2 + 1}{x_1}\right)^2 + 1}{x_2} = \frac{x_2^4 + 2x_2^2 + x_1^2 + 1}{x_2 x_1^2}$$

The same recurrence  $x_n = \frac{x_{n-1}^2 + 1}{x_{n-2}}$ 

$$x_3 = \frac{x_2^2 + 1}{x_1}$$

Laurent polynomials in  $x_1$ ,  $x_2$ , with positive coefficients!

- $\triangleright$  Fix an oriented Riemann surface S + marked points.
- ▶ Points are either on the boundary of S or in the interior (called punctures).
- ► An **ideal triangle** is one the following:



▶ An **ideal triangulation**  $T^o$  cuts S into ideal triangles.

#### Example







<sup>&</sup>lt;sup>1</sup>based on Fock-Goncharov and Gekhtman-Shapiro-Vainshtein, 2003.

#### Seeds

#### Definition

A **seed**  $(\{U_1, U_2, \dots, U_n\}, T)$  is a triangulation T together with a transcendence basis

$$\{U_1,U_2,\ldots,U_n\}\subset \mathbb{Q}(x_1,x_2,\ldots,x_n)$$
 (a cluster)

identified with the internal diagonals (arcs) of T.

#### Example





### Seed mutations with Ptolemy rule

- ▶ In practice, start with an initial seed  $(\{x_1, ..., x_n\}, T_{\text{initial}})$ .
- ▶ To produce all seeds, repeatedly perform a **mutation**  $\mu_k$  in each of the *n* positions:

#### Definition (Mutations)

▶ Replace diagonal k with k'

$$b \stackrel{c}{\underset{a}{\bigsqcup}} d \stackrel{\mu_k}{\longleftrightarrow} b \stackrel{c}{\underset{a}{\bigsqcup}} d$$

▶ Replace  $\{U_1, \ldots, U_n\}$  with  $\{U_1, \ldots, U_n\} \setminus \{U_k\} \cup \{U_k'\}$ , where  $U_k U_k' = U_a U_c + U_b U_d$ .

Set weight of a boundary edge to 1.

▶ Remark:  $\mu_k$  is an involution.

# Example: once-punctured disk



#### Remark

Arc 4 in the two right-most triangulations looks like it cannot be flipped, but there is a way to mutate at 4.

# Example: Annulus with 2 marked points

| Initial seed $(T_{\text{initial}}, \{x_1, x_2\})$ |
|---------------------------------------------------|
| Opasis<br>1 Inside<br>2                           |
| inside<br>2 1 2<br>outside                        |
| $\{x_1, x_2\}$                                    |

$$(\mu_1(T_{\mathsf{initial}}), \{x_3, x_2\})$$

mutate at 1





$$x_3 = \frac{x_2^2 + 1}{x_1}$$









$$x_4 = \frac{x_3^2 + 1}{x_2}$$

$$=\frac{x_2^4+2x_2^2+x_1^2+x_1^2+x_2^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+x_1^2+$$

### There is exactly one triangulation up to relabeling



Figure: Rotating the inside boundary clockwise  $\mu_1(T_{\text{initial}})$ 

#### Remark

Mutating a triangulation results in the same triangulation, but there are infinitely many diagonals.

# Mutations correspond to the recurrence $x_n x_{n-2} = x_{n-1}^2 + 1$



#### Definition

- ► Two seeds are **mutation equivalent** if they are connected by a sequence of mutations.
- ► The set of **cluster variables** is the union of the *U*<sub>i</sub>s in all mutation-equivalent seeds.

### Definition (Fomin-Zelevinsky 2001)

The **cluster algebra** is the subring of  $\mathbb{Q}(x_1, \dots, x_n)$  generated by all cluster variables.

#### Definition

- Two seeds are mutation equivalent if they are connected by a sequence of mutations.
- ► The set of **cluster variables** is the union of the *U*<sub>i</sub>s in all mutation-equivalent seeds.

### Definition (Fomin-Zelevinsky 2001)

The **cluster algebra** is the subring of  $\mathbb{Q}(x_1,\ldots,x_n)$  generated by all cluster variables.

#### **Theorem**

- ▶ Laurent Phenomenon: each cluster variable can be expressed as a Laurent polynomial in  $\{x_1, ..., x_n\}$ .
- ▶ Positivity: this Laurent polynomial has positive coefficients (Lee Schiffler, Gross Hacking Keel Kontsevich, 2014, and special cases by others).

# Seeds from skew-symmetric matrices and quivers

A **seed** is  $(\{U_1, \ldots, U_n\}, B)$  where B is a skew-symmetric matrix.

#### Example



corresponds to the quiver  $2 \Rightarrow 1$  and the matrix  $B = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$ .

- ▶ A is said to be of **finite mutation type** it there are finitely many quivers/B-matrices.
- ▶ Because there are finitely many triangulations of (S, M), any  $\mathcal{A}(S, M)$  is of finite mutation type.

### Finite type classification

 $\mathcal{A}$  is of **finite type** if there are finitely many seeds.

- The finite type cluster algebras are classified by the Dynkin diagrams.
- ▶ Type A and D are modeled by marked surfaces.



► Type *B* and *C* are modeled by orbifolds.

### Surfaces with punctures

Example (Twice-punctured 
$$(n-3)$$
-gon,  $n=7$ , type  $\widetilde{D}_6$ )

- When the marked surface has punctures, each endpoint of the internal diagonals is assigned a choice of two tags.
- This introduces new technical difficulties.

#### Goal

Generalize results to surfaces with punctures.

### T-paths

#### Result 1

We extend T-path definitions and formulas [Schiffler - Thomas, Dupont - Thomas, 2008-2011] to surfaces with punctures.

### Definition $((T, \gamma)$ -path)

Let T be a triangulation and let  $\gamma$  be an arc that crosses T. A  $(T,\gamma)$ -path  $\alpha=(\alpha_1,\ldots,\alpha_{2d+1})$  is a concatenation of edges of T such that:

- (T1) Each even step  $\alpha_{2k}$  is the k-th arc that  $\gamma$  crosses.
- (T2) The path  $\alpha$  is homotopic to  $\gamma$ , and satisfies stronger local homotopy condition.

### T-path formulas

#### Definition (Laurent monomial from a T-path $\alpha$ )

If  $\alpha = (\alpha_1, \dots, \alpha_{2d+1})$  is a T-path,

$$x(\alpha) := \left(\prod_{i \text{ odd}} x_{\alpha_i}\right) \left(\prod_{i \text{ even}} x_{\alpha_i}^{-1}\right).$$

#### Theorem (*T*-path formula for plain arcs)

The cluster variable  $x_{\gamma}$  expressed in the variables of T is

$$x_{\gamma} = \sum_{\alpha} x(\alpha)$$

over all  $(T^o, \gamma)$ -paths  $\alpha$  of  $\gamma$ .

We have T-path formulas for arcs with decorations on each endpoint (tagged arcs) and for closed curves in the interior of S.



### Example of *T*-paths

Let T and  $\gamma$  be:



Three of the five  $(T^o, \gamma)$ -paths:







$$w = (b_1, 1, 2, 2, 2, 3, b_4) w = (4, 1, b_2, 2, 2, 3, b_4) w = (4, 1, 1, 2, 3, 3, b_3)$$

$$x(w) = \frac{b_1 x_2 x_2 b_4}{x_1 x_2 x_3} \qquad x(w) = \frac{x_4 b_2 x_2 b_4}{x_1 x_2 x_3} \qquad x(w) = \frac{x_4 x_1 x_3 b_3}{x_1 x_2 x_3}$$

$$x(w) = \frac{x_4 b_2 x_2 b_4}{a_1 a_2 a_2 b_4}$$

$$x(w) = \frac{x_4 x_1 x_3 b_3}{x_1 x_2 x_3}$$

#### Direct formula vs. recursive definition

It's not clear which sequence of mutations will lead us to a triangulation containing an arc  $\gamma$ . Use the T-path formula to compute any cluster variable directly.

# Example (Compute arc 4 recursively)



inside inside

### Snake graphs (Musiker - Schiffler - Williams, 2009)

#### Proposition (G. and Musiker)

Generalized to surface with punctures the (natural) bijection between T-paths are in natural bijection to snake graphs.



Note: Figures drawn and calculated using SageMath

- Grading: the number of boxes enclosed in a red cycle.
- ▶ This data is related to a certain lamination on the surface:
- ▶ r boxes enclosed in a red cycle  $\leftrightarrow r$  even steps in the T-path have orientations that agree with the lamination.

#### Atomic bases

Introduced by Sherman - Zelevinsky in 2003

#### Definition

Let A be a cluster algebra.

•  $y \in \mathcal{A}$  is a **positive element** if: y is a positive Laurent polynomial with respect to **any** cluster,  $i.e, y \in \mathbb{Z}_{\geq 0}[U_1^{\pm 1}, \dots, U_n^{\pm 1}]$  for any cluster  $\{U_1, \dots, U_n\}$ . For example, cluster variables are positive elements.

#### Atomic bases

#### Introduced by Sherman - Zelevinsky in 2003

#### Definition

Let A be a cluster algebra.

- $y \in \mathcal{A}$  is a **positive element** if: y is a positive Laurent polynomial with respect to **any** cluster,  $i.e, y \in \mathbb{Z}_{\geq 0}[U_1^{\pm 1}, \dots, U_n^{\pm 1}]$  for any cluster  $\{U_1, \dots, U_n\}$ . For example, cluster variables are positive elements.
- An indecomposable positive element cannot be written as a sum of two positive elements.
- ► The **atomic basis** is a basis which is precisely the set of all indecomposable positive elements.

# Application of T-paths: atomic basis proof

#### Definition

A **cluster monomial** is a product of cluster variables all coming from the same cluster, e.g.  $a^5be^2$  is a cluster monomial if  $\{a,b,c,d,e\}$  is a cluster.

#### Theorem (Cerulli Irelli, 2011)

For a cluster algebra of type D, the basis of cluster monomials is atomic.

Cerulli Irelli's proof is by representation theory and also work for type A and E cluster algebras.

#### Result 2 (G. and Musiker)

A combinatorial proof (using the T-path formula) for above.

▶ Type *D* cluster algebra is modeled by once-punctured disk.

### Question: which cluster algebras have atomic bases?

#### Remark

Atomic bases don't always exist. For some cluster algebras, the set of indecomposable positive elements fail to be linearly independent.

For example, the cluster algebra corresponding to  $\begin{pmatrix} 0 & r \\ -r & 0 \end{pmatrix}$  with  $r \geq 3$  (Lee, Li, Zelevinsky, 2012).

#### Atomic bases for other surfaces

#### Conjecture (Fomin - Shapiro - Thurston)

The atomic basis is the **bracelets collection**, the cluster monomials + bracelets.



- True for:
  - ▶ disks with  $\leq 1$  puncture and annuli (types  $A_n$ ,  $D_n$ ,  $\widetilde{A}_{\rho,q}$ ) [Cerulli Irelli, Dupont Thomas]
  - ▶ certain orbifolds (type  $B_n$ ,  $C_n$ , and  $C_n^{(1)}$ ) [Felikson Tumarkin].
- ► The bracelets collection forms a basis for surfaces [Musiker Schiffler Williams, 2011] and orbifolds [Felikson Tumarkin, 2015] without punctures.

# Thank you

Slides available at umn.edu/home/egunawan

# Proof for atomic bases for type A and D

#### Definition

- ▶ A proper Laurent monomial in a cluster  $\mathbf{x} = \{x_{i_1}, \dots, x_{i_n}\}$  is a product  $x_{i_1}^{c_1} \dots x_{i_n}^{c_n}$  where one of the  $c_k$  is negative.
- ▶  $\mathcal{A}$  has the **proper Laurent monomial property** if for any cluster  $\mathbf{x} = \{x_{i_1}, \dots, x_{i_n}\}$  and any cluster monomial  $\Sigma$ , the cluster monomial  $\Sigma$  is a proper Laurent polynomial in the variables of  $\mathbf{x}$  (unless all factors of  $\Sigma$  come from  $\mathbf{x}$ ).

#### Theorem (Cerulli Irelli, Keller, Labardini, and Plamondon, 2012)

All cluster algebras arising from directed graphs (note: these include type D) have the proper Laurent monomial property.

#### Corollary

For type A and D, the basis of cluster monomials is atomic.