Формула замены переменных

Теорема 1. (Формула замены переменных) Пусть $\Omega_x, \Omega_y \subset \mathbb{R}^n$ - открытые и ограниченные множества. $\varphi \colon \Omega_x \to \Omega_y$ - диффеоморфизм, $\overline{E} \subset \Omega_x$ и E - допустимое множество. Пусть $f \colon \varphi(E) \to \mathbb{R}$, тогда функция f интегрируема по Риману на $\varphi(E) \Leftrightarrow f(\varphi(x)) \cdot |\det J_{\varphi}(x)|$ интегрируема на E и в случае интегрируемости верно равенство:

$$\int_{\varphi(E)} f(y)dy = \int_{E} f(\varphi(x)) \cdot |\det J_{\varphi}(x)| dx$$

Rm: 1. Не обязательно, чтобы $\Omega_x, \Omega_y \subset \mathbb{R}^n$ были ограниченными, поскольку сама теорема будет верна для допустимых множеств.

Проверка формулы в частном случае 2):

$$\varphi \colon \Omega_x = \mathbb{R}^n \to \Omega_y = \mathbb{R}^n, \ \varphi(x) = Ax + b, \ \det(A) \neq 0$$

Множество E это брус или образ бруса при невырожденном аффинном преобразовании (как φ). Пусть f будет непрерывна на \mathbb{R}^n . Проверим равенство:

$$\int_{\varphi(E)} f(y)dy = \int_{E} f(\varphi(x)) \cdot |\det(A)| dx$$

Лемма 1. Всякое отображение: $\varphi(x) = Ax + b$ является композицией конечного набора отображений следующего вида:

- (1) Переставление координат (смотри случай 1));
- (2) $y_1 = x_1, \ldots, y_{n-1} = x_{n-1}, y_n = x_n + c$, где c какое-то число;
- (3) $y_1 = x_1, \dots, y_{n-1} = x_{n-1}, y_n = c \cdot x_n$, где c какое-то число;
- (4) $y_1 = x_1, \dots, y_{n-1} = x_{n-1}, y_n = x_n + x_{n-1};$

То есть $\varphi = \varphi_1 \circ \varphi_2 \circ \ldots \circ \varphi_m$, где каждое отображение является одного из этих видов.

 \Box (1) и (2) \Rightarrow далее считаем $b = 0 \Rightarrow \varphi(x) = Ax$. Вспомним, что E_{ij} - матрица, где на (i,j)-м месте стоит 1 и 0 на всех остальных, то есть матричная единица. Тогда:

$$(I + E_{ij})A = A + A_{ij}, i \neq j$$

где A_{ij} это матрица состоящая из j-ой строки матрицы A на i-ом месте \Rightarrow мы получили прибавление к i-ой строке j-ой строки. Рассмотрим матрицу E_i^c - матрица полученная из единичной, домножением на c единицы на (i,i)-м месте. Тогда $E_i^c \cdot A$ - домножение i-ой строчки на c. Следовательно, мы умеем складывать строчки и умножать на числа \Rightarrow мы умеем переставлять строчки местами:

$$\begin{pmatrix} i \\ j \end{pmatrix} \xrightarrow[i+j]{} \begin{pmatrix} i \\ i+j \end{pmatrix} \xrightarrow[j-(i+j)]{} \begin{pmatrix} -j \\ i+j \end{pmatrix} \xrightarrow[i+j+(-j)]{} \begin{pmatrix} -j \\ i \end{pmatrix} \xrightarrow[\cdot(-1)]{} \begin{pmatrix} j \\ i \end{pmatrix}$$

Умножая матрицу A на матрицы E_1, \ldots, E_m мы можем привести её к единичной матрице:

$$E_m \cdot E_{m-1} \cdot \ldots \cdot E_2 \cdot E_1 \cdot A = I$$

Также заметим, что обратные преобразования - это преобразования такого же вида, тогда:

$$A = E_1^{-1} \cdot \ldots \cdot E_m^{-1} = \widetilde{E}_1 \cdot \ldots \cdot \widetilde{E}_m$$

Аналогично, при умножении таких матриц на вектора: $E_{ij} \cdot x \Rightarrow x_i \to x_i + x_j$ и $E_i^c \cdot x \Rightarrow x_i \to c \cdot x_i$. Таким образом, мы представили: $\varphi(x) = A \cdot x$ в виде композиций отображений вида: $x_i \cdot c$ или $x_i + x_j$, где остальные координаты остаются на местах. С учетом возможности перестановки координат, лемма доказана.

Применим теорему Фубини и проверим, что для каждого из преобразований (2), (3), (4) верна Φ 3 Π :

$$\varphi = \varphi_1 \circ \varphi_2 \circ \ldots \circ \varphi_m, \int_{\varphi(E)} f(y) dy = \int_{\varphi_2 \circ \ldots \circ \varphi_m(E)} f(\varphi_1(z)) \cdot |\varphi'_1(z)| dz = \ldots =$$

$$= \int_{E} f(\varphi_{1} \circ \varphi_{2} \circ \dots \circ \varphi_{m}(x)) \cdot |\varphi'_{1}| \cdot |\varphi'_{2}| \cdot \dots \cdot |\varphi'_{m}| dx = \int_{E} f(\varphi(x)) \cdot |\varphi'| dx$$

Таким образом, достаточно проверить для каждого из простых преобразований верность формулы выше. Проверим для (4) (аналогично для (2) и (3)):

$$\varphi \colon y_1 = x_1, \dots, y_{n-1} = x_{n-1}, y_n = x_n + x_{n-1}$$

Мы знаем, что E это заведомо допустимое множество: брус или его образ аффинного преобразования, в частности это выпуклое множество, его одномерные сечения это промежутки, а поскольку E - ограничено, то это ограниченные промежутки (либо интервал, либо полуинтервал, либо отрезок). Если f всюду непрерывна, то всё можно интегрировать по этим сечениям. Пусть верно:

$$E \subset I_{n-1} \times [a_n, b_n], \ \overline{E} \subset \mathring{I}_{n-1} \times (a_n, b_n) \Rightarrow$$
$$\Rightarrow \varphi(E) \subset \{(y_1, \dots, y_n) \mid (y_1, \dots, y_{n-1}) \in I_{n-1}, \ a_n + y_{n-1} \le y_n \le b_n + y_{n-1}\}$$

Поскольку y_1, \ldots, y_{n-1} бегают по бруску, то:

$$\exists A, B \colon E, \, \varphi(E) \subset \mathring{I}_{n-1} \times (A, B) \Rightarrow \int_{\varphi(E)} f(y_1, \dots, y_n) dy_1 \cdot \dots \cdot dy_n = \int_{I_{n-1} \times [A, B]} f(y) \chi_{\varphi(E)}(y) dy$$

Применяем теорему Фубини и мы получим:

$$\int_{\mathrm{I}_{n-1}\times[A,B]} f(y)\chi_{\varphi(E)}(y)dy = \int_{\mathrm{I}_{n-1}} dy_1 \cdot \ldots \cdot dy_{n-1} \int_A^B f(y_1,\ldots,y_{n-1},y_n) \cdot \chi_{\varphi(E)}(y_1,\ldots,y_{n-1},y_n)dy_n = \int_{\mathrm{I}_{n-1}\times[A,B]} f(y)\chi_{\varphi(E)}(y)dy = \int_{\mathrm{I}_{n-1}\times[A,B]} dy_1 \cdot \ldots \cdot dy_n \cdot \int_A^B f(y_1,\ldots,y_{n-1},y_n) \cdot \chi_{\varphi(E)}(y_1,\ldots,y_{n-1},y_n)dy_n = \int_A^B f(y_1,\ldots,y_{n-1},y_n)dy_n = \int_A^B f(y_1,\ldots,y_{n-1},$$

$$= \int_{\mathbf{I}_{n-1}} dx_1 \cdot \ldots \cdot dx_{n-1} \int_A^B f(x_1, \ldots, x_{n-1}, y_n) \cdot \chi_{\varphi(E)}(x_1, \ldots, x_{n-1}, y_n) dy_n$$

Далее, мы делаем замену $y_n = x_n + x_{n-1}$ в одномерном интеграле, которую мы умеем делать из второго семестра:

$$\int_{A}^{B} f(x_{1}, \dots, x_{n-1}, y_{n}) \cdot \chi_{\varphi(E)}(x_{1}, \dots, x_{n-1}, y_{n}) dy_{n} =$$

$$= \int_{A-x_{n-1}}^{B-x_{n-1}} f(x_{1}, \dots, x_{n-1}, x_{n} + x_{n-1}) \cdot \chi_{\varphi(E)}(x_{1}, \dots, x_{n-1}, x_{n} + x_{n-1}) dx_{n} = (*)$$

где $\chi_{\varphi(E)}(x_1,\dots,x_{n-1},x_n+x_{n-1}=\chi_{\varphi(E)}(\varphi(x))=\chi_E(x),$ поскольку φ - диффеоморфизм. Далее, поскольку мы выбрали A и B столь большими, что: $E\subset \mathrm{I}_{n-1}\times[A-x_{n-1},B-x_{n-1}],$ тогда:

$$[A - x_{n-1}, B - x_{n-1}] \subset [A, B] \Rightarrow (*) = \int_{A}^{B} f(x_1, \dots, x_{n-1}, x_n + x_{n-1}) \chi_E(x_1, \dots, x_n) dx_n \Rightarrow$$

$$\Rightarrow \int_{\varphi(E)} f(y) dy = \int_{I_{n-1}} dx_1 \cdot \dots \cdot dx_{n-1} \int_{A}^{B} f(x_1, \dots, x_{n-1}, x_n + x_{n-1}) \chi_E(x) dx_n =$$

$$= \int_{I_{n-1}} dx_1 \cdot \dots \cdot dx_{n-1} \int_{A}^{B} f(\varphi(x)) \chi_E(x) dx_n = \int_{E} f(\varphi(x)) dx$$

где в последнем равенстве мы опять воспользовались теоремой Фубини. Это является правильной формулой замены переменной, поскольку для такого преобразования: $|\varphi'| = 1$.

Rm: 2. Как доказывается вся ФЗП с помощью такого же приема - смотри Зорич, второй том.

Rm: 3. Общий случай будет разобран позднее и сразу для интеграла Лебега, но из того, что мы доказали уже следует полезное равенство: E это брус, $\varphi(x) = Ax + b$, $\det(A) \neq 0$, то тогда:

$$|\varphi(E)| = |\det(A)| \cdot |E|$$

Чтобы получить это равенство, надо в доказанном взять f=1. Смысл этой формулы: объем параллелепипеда равен определителю матрицы, задающей вектора параллелепипеда, умноженному на объем бруса из которого этот параллелепипед получается.

Следствие 1. Значение интеграла Римана не зависит от выбора декартовой системы координат.

 \square Пусть изначально были координаты в \mathbb{R}^n - x, которые мы ортогональным преобразованием заменили на y. Поскольку преобразование ортогональное, то определитель φ равен единице и верно равенство:

$$\int_{E_x} f(x)dx = \int_{E_y} f(y)dy$$

Rm: 4. Заметим, что если начнутся какие-либо растяжения, менять объемы, то значения интеграла также будут меняться. Поэтому речь идет только об ортонормированных системах координат.

Применение формулы замены переменной

Теорема Брауэра

Теорема 2. (**Брауэра**) Если f - непрерывное отображение замкнутого шара: $\overline{\mathcal{B}} \to \overline{\mathcal{B}}$, то:

$$\exists x \in \overline{\mathcal{B}} \colon f(x) = x$$

Rm: 5. Доказательство предложил Милнер. Следствие теоремы Брауэра - теорема Шаудера.

 \square Начнём со случая, когда $f \colon \mathbb{R}^n \to \mathbb{R}^n$ - гладкое отображение. Для определенности возьмем единичный шар: $\mathcal{B} = \mathcal{B}(0,1), f \colon \overline{\mathcal{B}} \to \overline{\mathcal{B}}$. Обычно первая часть доказательства всегда сводится к лемме о барабане: нельзя стянуть полотно барабана не разорвав на границе. Предположим, что $f(x) \neq x$ на $\overline{\mathcal{B}}$, тогда проведём луч через f(x) и x до пересечения с границей:

$$F(x) = x + \lambda(x) \cdot (x - f(x)), \quad \lambda(x) : ||F(x)|| = 1$$

Pис. 1: Построение F(x).

Мы ожидаем от него следующее:

- (1) F(x) гладкая в $\mathcal{B}(0, 1 + \delta), \, \delta > 0$;
- (2) ||F(x)|| = 1, to ecth: $F : \overline{\mathcal{B}}(0,1) \to \partial \mathcal{B}(0,1)$;
- (3) (Ретракция): $\forall x \in \partial \mathcal{B}(0,1), F(x) = x;$

<u>Идея</u>: Из того, что $f(x) \neq x$, мы построим такое отображение F(x), а затем с помощью ФЗП поймем, что такого отображения не существует и придём к противоречию. То, что такого отображения не существует и называется леммой о барабане/леммой об отсутствии ретракции шара на свою границу.

$$1 = \|F(x)\|^2 = \|x + \lambda \cdot (x - f(x))\|^2 = \|x\|^2 + \lambda^2 \|x - f(x)\|^2 + 2\lambda \langle x, x - f(x) \rangle \Rightarrow$$

$$\Rightarrow \lambda(x) = \frac{-\langle x, x - f(x) \rangle + \sqrt{\langle x, x - f(x) \rangle^2 + (1 - \|x\|^2) \cdot \|x - f(x)\|^2}}{\|x - f(x)\|^2}$$

Хотим понять, что F(x) - гладкая функция, для этого заметим, что:

$$\forall x \in \overline{\mathcal{B}}(0,1), \|x - f(x)\| > 0 \Rightarrow \exists \, \delta > 0 \colon \min_{\overline{\mathcal{B}}(0,1+\delta)} \|x - f(x)\| > 0$$

Минимум найдется, поскольку мы рассматриваем компакт: $\overline{\mathcal{B}}(0,1+\delta)$. Он положителен, поскольку если это не так, то:

$$\exists x_n \in \overline{\mathcal{B}}(0, 1+\delta) \colon ||x_n|| \to 1, \ f(x_n) = x_n \land x_n \to x_0 \Rightarrow ||x_0|| = 1 \Rightarrow x_0 \in \overline{\mathcal{B}}(0, 1) \land f(x_0) = x_0$$

Получили противоречие $\Rightarrow \forall x \in \overline{\mathcal{B}}(0,1+\delta), x \neq f(x) \Rightarrow$ в функции $\lambda(x)$ знаменатель это гладкая функция, не обращающаяся в 0 в этом шаре. Нам надо понять, что можно сказать про подкоренное выражение: оно или может уйти в минус, или обращаться в $0 \Rightarrow$ не будет гладкой функцией:

$$\psi(x) = \underbrace{\langle x, x - f(x) \rangle^2}_{\geq 0} + \underbrace{(1 - \|x\|^2)}_{>0, \forall x \in \overline{\mathcal{B}}(0,1)} \cdot \underbrace{\|x - f(x)\|^2}_{\neq 0, \forall x \in \mathcal{B}(0,1+\delta)} \geq 0$$

Выясним, когда это выражение на $\overline{\mathcal{B}}(0,1)$ равняется нулю:

$$1 = ||x|| \land \langle x, x - f(x) \rangle = 0 \Rightarrow \psi(x) = 0, \ x \in \overline{\mathcal{B}}(0, 1) \Rightarrow$$
$$\Rightarrow \langle x, x - f(x) \rangle = ||x||^2 - \langle x, f(x) \rangle = 0 \Rightarrow$$
$$\Rightarrow 1 = ||x||^2 = \langle x, f(x) \rangle \le ||f(x)|| \cdot ||x|| = ||f(x)|| \le 1$$

где последнее верно, в силу того, что $f: \overline{\mathcal{B}}(0,1) \to \overline{\mathcal{B}}(0,1)$ и следовательно, мы получаем равенство в неравенстве КБШ $\Rightarrow f(x) = c \cdot x$ вместе с тем, что $\|x\|^2 = \langle x, f(x) \rangle \Rightarrow c = 1 \Rightarrow f(x) = x \Rightarrow$ противоречие \Rightarrow уменьшая $\delta > 0$ можно считать, что $\psi(x) > 0$ в $\mathcal{B}(0,1+\delta)$. Итого, $\psi(x) > 0$ в окрестности, корень на положительной оси - гладкая функция $\Rightarrow \lambda(x)$ это гладкая функция на $\mathcal{B}(0,1+\delta)$. $\|F(x)\| = 1$ по построению. Осталось проверить, что если $x \in \partial \mathcal{B}(0,1)$, то F(x) = x. Пусть $x \in \partial \mathcal{B}(0,1)$, тогда:

$$||x|| = 1 \Rightarrow \langle x, x - f(x) \rangle = ||x||^2 - \langle x, f(x) \rangle \ge ||x||^2 - ||f(x)|| \cdot ||x|| = 1 - ||f(x)|| \ge 1 - 1 = 0 \Rightarrow \lambda(x) = 0$$

Таким образом, мы проверили корректность всех трех свойств, ожидаемых от функции F(x).

Докажем, что такого F(x) не существует и придём к противоречию. Возьмем $t \in [0,1]$ и рассмотрим функцию (гомотопия тождественного отображения и отображения F):

$$F_t(x) = (1 - t)x + tF(x)$$

<u>Идея гомотопии</u>: это отображение, как непрерывная кривая в пространстве отображений, соединяет тождественное и наше отображение F(x). При непрерывных преобразованиях некоторые свойства сохраняются \Rightarrow если сумели соеденить непрерывной кривой тождественное отображение (с набором хороших свойств) и наше, то есть ожидание, что пусть не все, но хотя бы некоторые из свойств тождественного должны совпасть/перенестись на свойства F(x), а у F(x) этого свойства нет \Rightarrow противоречие.

Заметим, что $F_t(x)$ в окрестности $\mathcal{B}(0,1+\frac{\delta}{2})$ - гладкое отображение и $\exists\,t_0\in(0,1)\colon\forall t\in[0,t_0]$ выполнено:

1) $F_t(x)$ - инъекция на $\mathcal{B}(0, 1 + \frac{\delta}{2})$:

$$F_t(x) - F_t(z) = (1 - t)(x - z) + t(F(x) - F(z)) \Rightarrow$$

$$\Rightarrow ||F_t(x) - F_t(z)|| = ||(1 - t)(x - z) + t(F(x) - F(z))|| \ge (1 - t)||x - z|| - t||F(x) - F(z)||$$

где если перенести последнее слагаемое в левую часть, то мы получим обычное неравенство треугольника. Поскольку F(x) - гладкая на $\overline{\mathcal{B}}(0, 1+\delta)$, то $\exists L > 0$:

$$\forall x, z \in \overline{\mathcal{B}}(0, 1 + \delta), \|F_t(x) - F_t(z)\| \le L\|x - z\| \Rightarrow$$

$$\Rightarrow \|F_t(x) - F_t(z)\| \ge (1 - t)\|x - z\| - t \cdot L\|x - z\| = (1 - t(L + 1))\|x - z\|$$

Если $t_0 < \frac{1}{2(L+1)}$, то $\forall t \in [0, t_0]$ будет оценка:

$$||F_t(x) - F_t(z)|| \ge \frac{1}{2}||x - z|| \Rightarrow x \ne z \Rightarrow F_t(x) \ne F_t(z)$$

Следовательно, $F_t(x)$ - инъекция на $\mathcal{B}(0, 1 + \frac{\delta}{2})$;

2) $\det F_t'>0$ на окрестности $\mathcal{U}\colon \overline{\mathcal{B}}(0,1)\subset \mathcal{U}=\mathcal{B}(0,1+\frac{\delta}{2})$. Данное свойство верно из непрерывности:

$$t = 0 \Rightarrow F_t(x) = x \Rightarrow \det F'_t = 1 > 0$$

Поскольку $F_t(x)$ - непрерывно по t и x, то оно равномерно непрерывно по t относительно $x \Rightarrow$ при малых t можем считать, что определитель для всех $x \in \overline{\mathcal{B}}(0,1)$ отличается от 1 меньше, чем на $\varepsilon \Rightarrow$ определитель положителен;

Остальное - в следующий раз.