More analysis problems.

The first couple of problems have to do with the completeness of the L^p spaces.

Theorem 1. Let (X, μ) and $1 \leq p < \infty$ be a measure space and let $g_1, g_2, g_3, \ldots \in L^p(X, \mu)$, so that

$$M:=\sum_{k=1}^{\infty}\|g_k\|_{L^p}<\infty.$$

Then the series

$$g(x) := \sum_{k=1}^{\infty} g_k(x)$$

converges absolutely for almost all $x \in X$. Also $g \in L^p(X)$ and the series converges to g in L^p in the sense that

$$\lim_{n \to \infty} \left\| g - \sum_{k=1}^{n} g_k \right\|_{L^p} = 0.$$

Problem 1. Prove this. *Hint:* Here is an outline of one way to do this. First a bit of notation. Let

$$G_n(x) = \sum_{k=1}^n |g_k(x)|.$$

(a) Use the Minkowski inequality (that is the triangle inequality in L^p) to show

$$\left(\int_X G_n^p \, d\mu\right)^{\frac{1}{p}} = \|G_n\|_{L^p} \le \sum_{k=1}^{\infty} \|g_n\|_{L^p} = M.$$

and therefore

$$\int_X G_n^p \, d\mu \le M^p < \infty$$

for all n.

(b) Show the sequence $\langle G_n^p \rangle_{k=1}^{\infty}$ satisfies the hypothesis of the Monotone Convergence Theorem and use this to show the limit

$$S(x) = \lim_{n \to \infty} G_n(x)^p = \left(\sum_{k=1}^n |g_k(x)|\right)^p$$

exists almost everywhere, which is equivalent to $\sum_{k=1}^{\infty} g_k(x)$ being absolutely convergent almost everywhere, and

$$\int_X \left(\sum_{k=1}^{\infty} |g_k(x)| \right)^p d\mu = \int_X S(x) d\mu \le M^p.$$

(c) Use Part (b) to show $g \in L^p(X)$ and

$$||g||_{L^p} \le \sum_{k=1}^{\infty} ||g_k||_{L^p}.$$

(d) Let $S_n = \sum_{k=1}^n g_k$ be the *n*-th partial sum for the series for g. Then $g - S_n = \sum_{k=n+1}^{\infty}$ and therefore applying where we have already proven to the sequence g_{n+1}, g_{n+1}, \ldots we have

$$||g - S_n||_{L_p} \le \sum_{k=n+1}^{\infty} ||g_k||_{L^p}.$$

Use this to show $\lim_{n\to\infty} \|g - S_n\|_{L^p} = 0$ and complete the proof. \square

Theorem 2 (Riesz–Fischer Theorem). For any measure space (X, μ) and $1 \le p < \infty$ the space $L^p(X)$ is a complete metric space.

Problem 2. Prove this. *Hint:* Let $\langle f_k \rangle_{k=1}^{\infty}$ be a Cauchy sequence in $L^p(X)$. Show that by replacing this with a subsequence may assume $||f_k - f_{k-1}||_{L^p} < 1/2^k$ for all $k \geq 2$. Let $g_1 = f_1$ and $g_k = f_k - f_{k-1}$ for $k \geq 2$, so that the partial sums of the series $\sum_{k=1}^{\infty} g_k$ are $\sum_{k=1}^{n} g_k = f_n$. Now use Problem 1 to complete the proof.

Problem 3. This is a lemma for the next problem. Show that for any $a, b \ge 0$ the inequality

$$\frac{a+b}{1+a+b} \le \frac{a}{1+a} + \frac{b}{1+b}$$

holds.

Let (X, μ) be a measure space with $\mu(X) < \infty$. Let $L^0(X)$ be the set of measurable functions $f: X \to \mathbb{R}$. For $f \in L^0(X)$ let

$$||f|| = \int_X \frac{|f(x)|}{1 + |f(x)|} d\mu(x).$$

(a) Show that for all $f \in L^0(X)$

$$0 \le ||f|| \le \mu(X)$$

and that ||f|| = 0 if and only if f = 0 almost everywhere.

(b) For $f, g \in L^0(X)$ show

$$||f + g|| \le ||f|| + ||g||.$$

(c) For $f, g \in L^0(X)$ define

$$d(f, g) = ||f - g||.$$

Show this makes $L^0(X)$ into a metric space.

(d) Show

$$\lim_{n \to \infty} \|f - f_n\| = 0$$

if and only if $f_n \to f$ in measure.

(e) Show with this metric the space $L^0(X)$ is a complete metric space. \square

Problem 4. Let $\varphi \colon \mathbb{R} \to \mathbb{R}$ be a continuous function with compact support. That is the set $\{x: \varphi(x) \neq 0\}$ has compact closure. Show that φ is uniformly continuous and that

$$\lim_{h\to 0} \int_{\mathbb{R}} |\varphi(x+h) - \varphi(x)| \, dx = 0.$$

Problem 5. (a) Let [a,b] be a bounded interval in \mathbb{R} and let $s=\mathbb{1}_{[a,b]}$. Show

$$\lim_{h \to 0} \int_{\mathbb{R}} |s(x+h) - s(x)| \, dx = 0$$

(b) Let $\varphi = \sum_{k=0}^{n} c_k \mathbb{1}_{[a_k,b_k]}$ be a step function with compact support. Use Part (a) and linearity to show

$$\lim_{h\to 0}\int_{\mathbb{R}}|\varphi(x+h)-\varphi(x)|\,dx=0.$$
 Problem 6. Let $f\in L^1(\mathbb{R})$. Show

$$\lim_{h \to 0} \int_{\mathbb{R}} |f(x+h) - f(x)| dx = 0.$$

Hint: Reduce this to either Problem 4 or Problem 5.