01

Spotify Genre Predictor

John Dilligard
David Obembe
Will Pumphrey
Ryan Thomas
Brian Yu

Data Processing

Data Gathering

- Used a Kaggle dataset that compiled song features from Spotify API.
- data contained information on 160,000 tracks.
- Tracks from 1921 through 2020.

Data Cleaning

- The cleaning of the data was primarily focused on narrowing down the genres/subgenres.
- Ensuring that each song/artist was mapped to one genre
- Dropping missing rows of data
- Encoding Data(one-hot encoding)

Exploratory Data Analysis

With Python & Tableau

Tools

- Matplotlib
- Seaborn
- Tableau
- Pandas

Correlations

- A heatmap was used to visualise and explore the correlation between Spotify song features.
- Dark red Spots: (-1) correlation.
- white spots:(+1) correlations.

04

Genre Distribution

- most represented Genres: rock & Pop.
- Least represented Genres: Worship.

Heat Map

(+) correlations

- valence & danceability(0.55).
- popularity & loudness(0.40).
- Loudness & energy(0.81).
- Speechiness & rap(0.44).

(-) correlations

- acoustic & energy(-0.8).
- acoustic & loudness(-0.66).
- acoustic & popularity(-0.46)
- instrumental and loudness(-0.48).

06

Distribution

- **speechiness** represents the present of spoken word and rap
- valence is the level of happiness of a song

BUSINESS REVIEW | 2020

07

Predictive models

Logistic regression

- This was our first choice due to the dependent variable(target) in our data being categorical.
- The Metric scores proved that the logistic model was relatively accurate for classical music, rap, jazz and worship.
- Indie music, pop and show tunes were poorly predicted.

Random Forest

- We used this model because of its ability to run efficiently on large databases and its ability to produce a highly accurate classifier.
- The Random Forest had better metric scores than Logistic regression on all genres.
- accuracy score was 0.58.

XGBoosting Classifier

- gradient boosted decision trees designed for speed and performance.
- The XGBoost model was better than the logistic model but failed to improve on random forest classifier.
- accuracy score was 0.57.

O8 Metric Tests

Туре	Accuracy	Precision	Recall
Logistic regression	0.41	0.39	0.41
Random Forest	0.58	0.63	0.60
XGBoost	0.57	0.63	0.59

Random Forest

XGBoosting Classifier

09 Clustering

K-Means clustering analysis

K-Means Cluster analysis is a method that could have been used to narrow down the genres/sub-genres from over a hundred to a much more manageable number. An elbow chart was generated using the K-Means Clustering algorithm. K-Means clustering algorithm suggested that between 4-6 genres would be most optimal. The team felt that 4-6 genres was too small. Another analysis method was needed.

Silhouette analysis is another method that could be used for selecting the optimal number genres. The silhouette analysis suggested that 4 or 12 genres would be most optimal. Twelve genres was chosen.


```
For n_clusters = 2 The average silhouette_score is : 0.6079242852854773

For n_clusters = 3 The average silhouette_score is : 0.5352989576156786

For n_clusters = 4 The average silhouette_score is : 0.5386705491676994

For n_clusters = 5 The average silhouette_score is : 0.5262795408389992

For n_clusters = 6 The average silhouette_score is : 0.5220593189293783

For n_clusters = 7 The average silhouette_score is : 0.5222729425136402

For n_clusters = 8 The average silhouette_score is : 0.5192483608748929

For n_clusters = 9 The average silhouette_score is : 0.5253176264967226

For n_clusters = 10 The average silhouette_score is : 0.5270401497856418

For n_clusters = 11 The average silhouette_score is : 0.5324148241242771

For n_clusters = 12 The average silhouette_score is : 0.5323482789638017
```

Timeline

10

<u>Q1</u>

Project selection and Proposal

<u>Q2</u>

 Data exploration and model selection

report started

<u>Q3</u>

• Tableau Viz

• Report writing

Q4

Website building

embeddingTableau

<u>Q5</u>

Executive summary.

• Power point.

Presented by

Ryan

ML Cook

David

Documentation President

Brian

Tableau Legend

William

Visualisation Expert

<u>John</u>

Clustering Master

Thank you!

http://ml.rtaa.ninja/mlmodels