Chapitre 3

Espaces \mathbb{R}^n et \mathbb{C}^n

Pré-requis □ Nombres complexes.
Ø Objectifs
\square Savoir effectuer les opérations dans \mathbb{R}^n , \mathbb{C}^n (addition, multiplication par un scalaire).
☐ Savoir calculer un produit scalaire/hermitien,
☐ Connaître la notion d'orthogonalité,
☐ Savoir calculer une norme,
☐ Savoir calculer un produit vectoriel.

Sommaire	
Séquence 1 : Opérations sur les vecteurs	3
Définitions et opérations de base.	
Séquence 2 : Produit scalaire et norme	11
Produit scalaire et produit hermitien - Norme.	
$f S\'equence\ 3: Dans\ \mathbb{R}^3: le\ produit\ vectoriel$	19
Le produit vectoriel.	
Le produit vectoriel.	

Opérations sur les vecteurs

Définitions et opérations de base 1

 $\triangleright \mathbb{R}^2$ est l'ensemble de tous les couples de réels (a,b). Il s'écrit :

$$\mathbb{R}^2 = \{ (a, b) \mid a \in \mathbb{R}, b \in \mathbb{R} \}.$$

 $ightharpoonup \mathbb{R}^3$ est l'ensemble de tous les triplets de réels (a,b,c). Il s'écrit :

$$\mathbb{R}^3 = \{ (a, b, c) \mid a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R} \}.$$

 \triangleright De manière plus générale, on peut considérer l'ensemble des n-uplets de nombres réels : (x_1,\ldots,x_n) , où $n\in\mathbb{N}^*$. Cet ensemble est appelé \mathbb{R}^n .

🔁 Définitions

Soit $n \in \mathbb{N}^*$. On appelle \mathbb{R}^n l'ensemble de tous les n-uplets de nombres réels, c'est-à-dire

$$\mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R}\}.$$

L'entier n est appelé la dimension de \mathbb{R}^n . Les éléments de \mathbb{R}^n sont appelés des vecteurs. Pour tout vecteur $x = (x_1, \dots, x_n)$ de \mathbb{R}^n , on appelle **composantes** (ou **coordonnées**) de x les réels x_1,\ldots,x_n .

\right Remarque

En général, on écrit les vecteurs en colonne $\begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix}$ plutôt que (x_1, \dots, x_n) (notation en ligne). Néanmoins, on utilisera souvent la notation en ligne pour un gain de place.

Exemples

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \in \mathbb{R}^2, \quad \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3, \quad \begin{pmatrix} \pi \\ \sqrt{2} \\ e \end{pmatrix} \in \mathbb{R}^3, \quad \begin{pmatrix} 0 \\ 1 \\ \sqrt{2} \\ 4 \end{pmatrix} \in \mathbb{R}^4, \quad \begin{pmatrix} 1/2 \\ 3 \\ 2/25 \\ 1/7 \\ \sqrt{3} \end{pmatrix} \in \mathbb{R}^5.$$

🔁 Propriétés

Soient $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ et $y = (y_1, \dots, y_n) \in \mathbb{R}^n$. Alors, x = y si et seulement si $x_i = y_i$, pour tout entier i compris entre 1 et n.

Attention

En particulier, cela signifie que l'ordre des composantes d'un vecteur est important : $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

3

? Remarques – Opérations dans \mathbb{R}^2 et \mathbb{R}^3

 \triangleright Dans \mathbb{R}^2 , on a

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}.$$

Plus généralement, pour tous $a, b, c, d \in \mathbb{R}$, on a

$$\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} a+c \\ b+d \end{pmatrix}.$$

▷ En particulier,

$$\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} -a \\ -b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix}.$$

 \triangleright De plus, pour tout $\lambda \in \mathbb{R}$, on a

$$\lambda \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \lambda a \\ \lambda b \end{pmatrix}.$$

Ces règles de calcul s'étendent à \mathbb{R}^n pour tout entier $n \geq 2$:

 $lackbox{0.5}{f D}$ **Définitions** - Opérations dans \mathbb{R}^n

Soient $x, y \in \mathbb{R}^n$ et $\lambda \in \mathbb{R}$.

> Somme de deux vecteurs.

$$x + y = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}.$$

> Produit d'un vecteur par un scalaire.

$$\lambda x = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix},$$

le nom scalaire vient du fait que, dans le cadre de \mathbb{R}^n , les réels sont appelés des scalaires.

ightharpoonup Le **vecteur nul** de \mathbb{R}^n est le vecteur $0_{\mathbb{R}^n} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$

Remarque

En prenant $\lambda = -1$, on a $\lambda x = -x$ qui est appelé **opposé** de x et vérifie

$$x + (-x) = x - x = 0_{\mathbb{R}^n}$$

💪 Attention

La somme de deux vecteurs n'est définie que si ceux-ci ont le même nombre de composantes. Par exemple, il n'est pas possible d'additionner un vecteur de \mathbb{R}^4 et un vecteur de \mathbb{R}^3 .

© Exemples

⊳ On a

$$2\begin{pmatrix}1\\2\\3\\0\end{pmatrix} + \begin{pmatrix}4\\5\\6\\7\end{pmatrix} = \begin{pmatrix}6\\9\\12\\7\end{pmatrix} \quad \text{et} \quad \frac{\sqrt{2}}{3}\begin{pmatrix}3\sqrt{2}\\0\\0\end{pmatrix} + \pi\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}2\\\pi\\0\end{pmatrix}.$$

$$ightharpoonup$$
 L'expression $\binom{1}{2} + \binom{1}{2}$ n'a pas de sens.

S Exercice 1.

1) Calculer (lorsque cela est possible) le résultat des opérations suivantes :

a)
$$(2,1,3) + (5,6,7)$$
, b) $(3,1,0) + (4,-5)$, c) $(2,1,3,-5)$, d) $(3,1,0) + (4,-5)$.

2) Soient x = (2, -7, 1), y = (-3, 0, 4) et z = (0, 5, -8). Calculer 3x - 4y et 2x - 5z.

Propriétés

Soient x, y, z trois vecteurs de \mathbb{R}^n et $\lambda, \mu \in \mathbb{R}$.

- 1. Propriétés de l'addition de vecteurs
 - (a) l'addition est commutative : x + y = y + x,
 - (b) l'addition est associative : x + (y + z) = (x + y) + z,
 - (c) l'addition admet $0_{\mathbb{R}^n}$ comme élément neutre : $x + 0_{\mathbb{R}^n} = 0_{\mathbb{R}^n} + x = x$,
 - (d) tout vecteur admet un opposé: $x + (-x) = 0_{\mathbb{R}^n}$.
- 2. Propriétés de la multiplication par un scalaire
 - (a) la multiplication admet 1 comme élément neutre : 1x = x,
 - (b) la multiplication est associative et commutative : $\lambda(\mu x) = (\lambda \mu) x = \mu(\lambda x)$.
- 3. Distributivité entre l'addition et la multiplication

$$\lambda(x+y) = \lambda x + \lambda y$$
 et $(\lambda + \mu) x = \lambda x + \mu x$.

Remarque

Chacune de ces propriétés découle directement de la définition de la somme de vecteurs de \mathbb{R}^n et de leur multiplication par un scalaire. Ces propriétés font de \mathbb{R}^n muni de ces opérations un **espace vectoriel** noté $(\mathbb{R}^n, +, \cdot)$. Dans un cadre plus général, ce sont ces propriétés qui définissent ce qu'est un espace vectoriel (cours du 2^{nd} semestre).

🔁 Définition

Soient $k \in \mathbb{N}^*$ et $u^{(1)}, \dots, u^{(k)}$ des vecteurs de \mathbb{R}^n . On appelle **combinaison linéaire** de $u^{(1)}, \dots, u^{(k)}$ tout vecteur de \mathbb{R}^n de la forme

$$\lambda_1 u^{(1)} + \lambda_2 u^{(2)} + \dots + \lambda_k u^{(k)},$$

où $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Cette expression s'écrit plus simplement

$$\sum_{i=1}^k \lambda_i \, u^{(i)}.$$

Le symbole \sum désigne une somme.

Exemples

 \triangleright Pour tous $a, b \in \mathbb{R}$, on a

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix},$$

donc $\binom{a}{b}$ est combinaison linéaire de $u^{(1)} = \binom{a}{0}$ et $u^{(2)} = \binom{0}{b}$ avec $\lambda_1 = \lambda_2 = 1$.

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

donc $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ est combinaison linéaire de $u^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $u^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $u^{(3)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ avec

S Exercice 2.

Soient

$$u^{(1)} = \begin{pmatrix} 1\\2\\0\\4 \end{pmatrix}, \quad u^{(2)} = \begin{pmatrix} 0\\1\\3\\7 \end{pmatrix} \quad \text{et} \quad u^{(3)} = \begin{pmatrix} 1\\1\\2\\0 \end{pmatrix}$$

- 1) Calculer les combinaisons linéaires $\frac{1}{4}u^{(1)} + \frac{1}{2}u^{(3)}$ et $u^{(1)} + 2u^{(2)} + 3u^{(3)}$.
- 2) Montrer que le vecteur (3,8,6,26) est combinaison linéaire de $u^{(1)}$ et $u^{(2)}$

Tout ce que l'on a vu précédemment se généralise à des vecteurs ayant des composantes complexes :

Définition

Soit $n \in \mathbb{N}^*$. On appelle \mathbb{C}^n l'ensemble de tous les n-uplets de nombres complexes, c'est-à-dire

$$\mathbb{C}^n = \{(z_1, \dots, z_n) \mid z_1 \in \mathbb{C}, \dots, z_n \in \mathbb{C}\}.$$

Dans le cadre de \mathbb{C}^n , les éléments de \mathbb{C} sont appelés des scalaires.

Dans \mathbb{C}^n , l'addition de vecteurs et la multiplication par un scalaire sont définis comme dans \mathbb{R}^n , et $(\mathbb{C}^n,+,\cdot)$ est un espace vectoriel.

6

Exemples

$$\begin{pmatrix} 1+i\\2 \end{pmatrix} \in \mathbb{C}^2, \quad \begin{pmatrix} 1\\2\\i \end{pmatrix} \in \mathbb{C}^3, \quad i \begin{pmatrix} 1-i\\2\\3 \end{pmatrix} = \begin{pmatrix} 1+i\\2i\\3i \end{pmatrix}, \quad (1-i) \begin{pmatrix} 1\\2\\0\\3 \end{pmatrix} + \begin{pmatrix} i\\-2\\0\\0\\3 - 3i \end{pmatrix} = \begin{pmatrix} 1\\-2i\\0\\3 - 3i \end{pmatrix}.$$

Feuille d'exercices : Séquence 1

Effectuer, si possible, les opérations suivantes :

1)
$$(3, -4, 5) + (1, 1, -2),$$

3)
$$-3(4, -5, -6)$$
,

2)
$$(0,2,-3)+(4,-5)$$
,

4)
$$2(2,3,7,6) - 5(1,-2,4,-1)$$
.

Exercice 2.

Soient x = (2,7,1), y = (-3,0,4) et z = (0,5,-8). Calculer

1)
$$3x - 4y$$
,

3)
$$x - 2iy + (1 - i)z$$
,

2)
$$2x + 3y - 5z$$
,

4)
$$\frac{1+\sqrt{2}i}{3}y-\frac{\sqrt{3}+2i}{4}z$$
.

Exercice 3.

Soient u = (3 - 2i, 4i, 1 + 6i) et v = (5 + i, 2 - 3i, 5). Calculer

1)
$$u + v$$
,

3)
$$(1+i)v$$
,

4)
$$(1-2i)u + (3+i)v$$
.

Exercice 4.

Trouver $a, b, c \in \mathbb{R}$ tels que

1)
$$(a,3) = (2, a+b),$$

2)
$$(4,b) = a(2,3),$$

3)
$$(2,-3,4) = a(1,1,1) + b(1,1,0) + c(1,0,0).$$

Exercice 5.

Déterminer, s'il existe, un vecteur $x \in \mathbb{R}^3$ solution de l'équation

$$2((1,1,0) - x) + 4(x + (0,1,-1)) = (2,-1,2).$$

Même chose pour l'équation 2((1,1,0)-x)+3(x+(0,1,-1))-x=(2,1,-2).

Exercice 6.

Soit $n \in \mathbb{N}^*$. Montrer que tout vecteur de \mathbb{R}^n est un vecteur de \mathbb{C}^n , ce qui se note $\mathbb{R}^n \subset \mathbb{C}^n$.

7

Exercice 7.

Soient x = (2, 1, 0), y = (0, -1, 1) et $z = (1, -1, \frac{3}{2})$. Calculer

1)
$$2x + 6y - 4z$$
,

2)
$$\frac{1}{3}x+y-\frac{2}{3}z$$
,

En déduire que z est combinaison linéaire de x et y.

Exercice 8.

Montrer que (1,2) est combinaison linéaire de (1,-2) et (2,3).

Exercice 9.

Soient $v_1 = (2, -1, 1)$, $v_2 = (4, -2, 2)$, $v_3 = (1, 1, 0)$ et $v_4 = (0, -3, 1)$. Montrer que l'on a $v_4 = 3v_1 - v_2 - 2v_3$ et $v_4 = 5v_1 - 2v_2 - 2v_3$.

Exercice 10.

Soit $x = (1, -2, k) \in \mathbb{R}^3$, où $k \in \mathbb{R}$. Déterminer pour quelle valeur de k, x est combinaison linéaire de y = (3, 0, 2) et z = (2, -1, -5).

Exercice 11.

Soient x = (2, -3) et $y = \left(-1, \frac{3}{2}\right)$. Écrire le vecteur (0, 0) comme combinaison linéaire de x et y en deux façons différentes.

Notation

On écrit $k \in [1; n]$ pour signifier que k est un entier compris entre 1 et n.

Exercice 12.

Pour tout $k \in [1; n]$, on note e_k le vecteur de \mathbb{R}^n dont la k-ème coordonnée vaut 1 et toutes les autres sont nulles. On appelle **base canonique** de \mathbb{R}^n le n-uplet de vecteurs (e_1, \ldots, e_n) .

- 1) Donner les bases canoniques de \mathbb{R}^n pour n=2,3,4.
- 2) Montrer que tout vecteur de \mathbb{R}^n est combinaison linéaire des n vecteurs de la base canonique.
- 3) Même question dans \mathbb{C}^n .

Remarque

La base canonique de \mathbb{R}^2 est souvent notée (i,j) et celle de \mathbb{R}^3 est souvent notée (i,j,k).

Exercice 13.

Soient $u = (3, 7, 1, 0), u^{(1)} = (2, 0, 0, 0), u^{(2)} = (1, 1, 0, 0), u^{(3)} = (0, 3, 1, 0) \text{ et } u^{(4)} = (0, 0, 1, 1).$

- 1) Déterminer $a, b, c, d \in \mathbb{R}$ tels que $u = a u^{(1)} + b u^{(2)} + c u^{(3)} + d u^{(4)}$.
- 2) En déduire que u est combinaison linéaire de $u^{(1)}, u^{(2)}$ et $u^{(3)}$.

Exercice 14.

Soient u = (1, 0, 0) et v = (1, 1, 0).

- 1) Montrer que (1,2,3) n'est pas combinaison linéaire de u et v.
- 2) Montrer que w=(3,2,0) est combinaison linéaire de u et v.
- 3) En déduire que (1,2,3) n'est pas combinaison linéaire de u,v et w.

Exercice 15.

Soient u = (1, 0, 0), v = (1, 1, 0) et w = (1, 1, 1).

- 1) Montrer que (1,2,3) est combinaison linéaire de u,v et w.
- 2) Plus généralement, montrer que tout vecteur (x,y,z) de \mathbb{R}^3 est combinaison linéaire de u,v

et w

- 3) Que peut-on remarquer pour (x, y, z) = (0, 0, 0)?
- 4) En déduire qu'il est impossible d'écrire un des vecteurs u,v ou w comme combinaison linéaire des deux autres.

Lorsque trois vecteurs u, v, w vérifient les points 2) et 4) précédents, on dit que (u, v, w) est une base de \mathbb{R}^3 .

Exercice 16.

- Émile achète pour sa maman une bague contenant 2g d'or, 5g de cuivre et 4g d'argent. Il la paie 6200 euros.
- ▶ Pauline achète pour sa maman une bague contenant 3g d'or, 5g de cuivre et 1g d'argent. Il la paie 5300 euros.
- $\,\rhd\,$ Frédéric achète pour sa chérie une bague contenant 5g d'or, 12g de cuivre et 9g d'argent.

Combien Frédéric va-t-il payer?

Produit scalaire et norme

2 Produit scalaire et produit hermitien

© Exemples – Produit scalaire dans \mathbb{R}^2 et \mathbb{R}^3

1. Le produit scalaire de deux vecteurs $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ et $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ de \mathbb{R}^2 est défini par

$$x \cdot y = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = x_1 y_1 + x_2 y_2.$$

2. Le produit scalaire de deux vecteurs $x=\begin{pmatrix}x_1\\x_2\\x_2\end{pmatrix}$ et $y=\begin{pmatrix}y_1\\y_2\\y_3\end{pmatrix}$ de \mathbb{R}^3 est défini par

$$x \cdot y = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Plus généralement, on a :

Définition

Le **produit scalaire** de deux vecteurs x et y de \mathbb{R}^n est le $r\acute{e}el$ défini par

$$x \cdot y = x_1 y_1 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i.$$

Exemples

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 1 \\ 2 \end{pmatrix} = 6 + 2 + 6 = 14, \qquad \begin{pmatrix} \sqrt{2} \\ 1 \\ 1/2 \end{pmatrix} \cdot \begin{pmatrix} -\sqrt{2} \\ 1 \\ 2 \end{pmatrix} = 0, \qquad \begin{pmatrix} 1/3 \\ 2 \\ 0 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1/2 \\ 4/3 \\ 15 \\ 1 \end{pmatrix} = \frac{35}{6}.$$

0 Remarque

D'autres notations existent pour le produit scalaire. Les plus fréquentes sont (x, y), $(x \mid y)$, $\langle x,y\rangle$ et $\langle x\mid y\rangle$.

🖊 Attention

Le produit scalaire de deux vecteurs n'est défini que si ceux-ci ont le même nombre de composantes. Par exemple, il n'est pas possible de calculer le produit scalaire d'un vecteur de \mathbb{R}^4 et d'un vecteur de \mathbb{R}^3 .

11

S Exercice 1.

Pour les différents vecteurs x, y ci-dessous calculer, lorsque cela est possible, le produit scalaire $x \cdot y$:

1)
$$x = (1, 2)$$
 et $y = (3, 4)$,

3)
$$x = (1, 5, 13)$$
 et $y = (0, 3, 4, 1)$,

2)
$$x = (2, -3, 6)$$
 et $y = (8, 2, -3)$,

4)
$$x = (1, -8, 0, 5)$$
 et $y = (3, -5, 2, 1)$.

Propriétés

Soient $x, y, z \in \mathbb{R}^n$ et $\lambda \in \mathbb{R}$. Le produit scalaire est :

$$\triangleright$$
 symétrique : $x \cdot y = y \cdot x$,

⊳ bilinéaire :

$$(\lambda x) \cdot y = \lambda x \cdot y,$$
 $(x+y) \cdot z = x \cdot z + y \cdot z.$

et

$$x \cdot (\lambda y) = \lambda x \cdot y, \qquad x \cdot (y+z) = x \cdot y + x \cdot z.$$

Les propriétés précédentes se démontrent très simplement. Par exemple, pour la symétrie, on a

$$x \cdot y = x_1 y_1 + \dots + x_n y_n = y_1 x_1 + \dots + y_n x_n = y \cdot x,$$

ce qui montre le résultat. On pourra remarquer que l'on a seulement utilisé le fait que le produit est commutatif dans \mathbb{R} , c'est-à-direab = ba pour tous réels a, b.

🔁 Définition

Le **produit hermitien** de deux vecteurs u et v de \mathbb{C}^n est le complexe défini par

$$u \cdot v = u_1 \overline{v_1} + \dots + u_n \overline{v_n} = \sum_{k=1}^n u_k \overline{v_k},$$

où, pour tout $k \in [1; n]$, \overline{v}_k désigne le conjugué de v_k .

\checkmark Attention

Pour tous vecteurs $u, v \text{ de } \mathbb{C}^n \text{ et } \lambda \in \mathbb{C}$, on a

$$u \cdot v = \overline{v \cdot u}$$
 et $u \cdot (\lambda v) = \overline{\lambda} u \cdot v$.

Exemples

$$\binom{1}{i} \cdot \binom{1}{1} = 1 \times 1 + i \times 1 = 1 + i \quad \text{et} \quad \binom{1}{1} \cdot \binom{1}{i} = 1 \times 1 + 1 \times (-i) = 1 - i = \overline{1+i},$$

$$\binom{2}{3} \cdot \binom{2i}{i} = 2 \times (-2i) + 3 \times (-i) = -7i = -i \binom{2}{3} \cdot \binom{2}{1}.$$

S Exercice 2.

Pour les vecteurs de \mathbb{C}^n ci-dessous, calculer tous les produits hermitiens possibles :

$$(1-2i,3+i)$$
, $(3-2i,4i,1+6i)$, $(4+2i,5-6i)$, $(5+i,2-3i,7+2i)$.

Notation

L'ensemble \mathbb{K} désigne soit \mathbb{R} , soit \mathbb{C} . Ainsi, l'ensemble \mathbb{K}^n est soit \mathbb{R}^n , soit \mathbb{C}^n .

Définition

On dit que deux vecteurs x et y de \mathbb{K}^n sont **orthogonaux** s'ils vérifient $x \cdot y = 0$.

Exercice 3.

1) Parmi les vecteurs ci-dessous déterminer ceux qui sont orthogonaux :

$$x = \left(1, 2, \sqrt{2}, \frac{3}{4}\right), \quad y = \left(\frac{1}{2}, -\sqrt{3}, 5, \frac{1}{3}\right) \quad \text{et} \quad z = \left(-2\sqrt{2}, \frac{3}{2}, 2, -4\right).$$

- 2) Déterminer le réel k de sorte que les deux vecteurs suivants soient orthogonaux : (1, k, -3)et (2, -5, 4).
- 3) Montrer que (1+i, -2, 0) et (1+i, 1, 2i) sont orthogonaux.

Norme 3

🄁 Définition

La **norme** d'un vecteur x de \mathbb{K}^n est le *réel*, noté ||x||, défini par

$$||x|| = \sqrt{x \cdot x} = \sqrt{|x_1|^2 + \dots + |x_n|^2} = \sqrt{\sum_{i=1}^n |x_i|^2}.$$

1 Remarque

En particulier, on a $||x||^2 = x \cdot x$.

Exemples

 \triangleright Soit x = (1, 2, 3, 4). On a

$$x \cdot x = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = 1 + 4 + 9 + 16 = 30,$$

d'où $||x|| = \sqrt{30}$.

 \triangleright Soit x = (3 + 4i, 5 - 2i, 1 - 3i). Alors,

$$||x||^2 = |3 + 4i|^2 + |5 - 2i|^2 + |1 - 3i|^2 = 9 + 16 + 25 + 4 + 1 + 9 = 64,$$

d'où ||x|| = 8.

S Exercice 4.

Calculer les normes des vecteurs suivants :

$$u_1 = (6, 2, -1), \quad u_2 = (4 - i, 2i, 3 + 2i, 1 - 5i), \quad u_3 = (5, 3, -2, -4, -1), \quad u_4 = (1 + i, -3 - 6i).$$

🔁 Propriétés

Soient x, y, z trois vecteurs de \mathbb{K}^n et $\lambda \in \mathbb{K}$. La norme vérifie les propriétés suivantes :

- \triangleright **séparation** : ||x|| = 0 si et seulement si $x = 0_{\mathbb{K}^n}$,
- ightharpoonup homogénéité : $\|\lambda x\| = |\lambda| \|x\|$,
- \triangleright inégalité triangulaire : $||x + y|| \le ||x|| + ||y||$.

🔁 Définition

Un vecteur $x \in \mathbb{K}^n$ tel que ||x|| = 1 est dit **vecteur unité** (ou **vecteur unitaire**).

Proposition

Pour tout vecteur non nul $x \in \mathbb{K}^n$, le vecteur $\frac{x}{\|x\|}$ est un vecteur unité.

Démonstration. C'est une conséquence de l'homogénéité et de la séparation de la norme. En effet, si $x \in \mathbb{K}^n$ est non nul, alors $||x|| \neq 0$ et on a

$$\left\| \frac{x}{\|x\|} \right\| = \frac{1}{\|x\|} \|x\| = 1.$$

Exemple

Pour u = (1, -1), on a $||u|| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$. Alors,

$$v = \frac{u}{\|u\|} = \frac{1}{\sqrt{2}}(1, -1) = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$

est un vecteur unité. En effet, on peut vérifier :

$$||v|| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(-\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1.$$

Exercice 5.

Soit u = (1, -1, 0). Déterminer $v = \frac{u}{\|u\|}$ et vérifier que l'on a bien un vecteur unité.

Feuille d'exercices : Séquence 2

Exercice 1.

Soient u = (1, 2, 3), v = (2, 0, 6) et w = (6, 0, 2). Calculer:

1) $u \cdot v$,

3) $v \cdot w$,

5) ||v||,

 $2) u \cdot w,$

4) ||u||,

6) ||w||.

Exercice 2.

Calculer les normes et tous les produits scalaires possibles pour les vecteurs ci-dessous

$$u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad w = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \quad x = \begin{pmatrix} \sqrt{2} \\ \sqrt{2} \\ 2 \end{pmatrix}, \quad y = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{5} \\ 0 \end{pmatrix} \quad \text{et} \quad z = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{3}{4} \end{pmatrix}.$$

Exercice 3.

Calculer les normes et tous les produits hermitiens possibles pour les vecteurs ci-dessous

$$u = \begin{pmatrix} i \\ 2i \end{pmatrix}, \quad v = \begin{pmatrix} 1-i \\ 2+3i \\ 4 \end{pmatrix}, \quad w = \begin{pmatrix} 2+i \\ 1-2i \\ 0 \end{pmatrix},$$

$$x = \begin{pmatrix} \sqrt{2} + \sqrt{2}i \\ \frac{\sqrt{2}}{2} - i \end{pmatrix}, \quad y = \begin{pmatrix} -\frac{i}{2} \\ 2i \\ 0 \end{pmatrix} \quad \text{et} \quad z = \begin{pmatrix} \frac{\sqrt{2}i}{2} \\ \frac{3}{4} - i \end{pmatrix}.$$

S Exercice 4.

Calculer tous les produits scalaires et/ou hermitiens possibles pour les vecteurs ci-dessous

$$u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad w = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \quad x = \begin{pmatrix} \sqrt{2} + \sqrt{2}i \\ \frac{\sqrt{2}}{2} - i \end{pmatrix}, \quad y = \begin{pmatrix} -\frac{i}{2} \\ 2i \\ 0 \end{pmatrix} \quad \text{et} \quad z = \begin{pmatrix} \frac{\sqrt{2}i}{2} \\ \frac{3}{4} - i \end{pmatrix}.$$

Exercice 5.

Calculer $u \cdot v$ et $v \cdot u$ pour u et v donnés par

1)
$$u = (1+7i, 2-6i)$$
 et $v = (5-2i, 3-4i)$,

2)
$$u = (3 - 7i, 2i, -1 + i)$$
 et $v = (4 - i, 11 + 2i, 8 - 3i)$.

Que remarque t-on?

Exercice 6.

Soient x et y deux vecteurs de \mathbb{R}^n de même norme. Montrer que les vecteurs x+y et x-y sont deux vecteurs orthogonaux. Le résultat est-il encore vrai pour des vecteurs de \mathbb{C}^n ?

Exercice 7.

Faire la démonstration de la bilinéarité du produit scalaire.

Exercice 8.

Soit (e_1, \ldots, e_n) la base canonique de \mathbb{K}^n .

- 1) Calculer le produit scalaire $e_i \cdot e_j$, pour tous $i, j \in [1; n]$.
- 2) Pour tout $x \in \mathbb{K}^n$ et pour tout $i \in [1; n]$, calculer $x \cdot e_i$.

Exercice 9.

Soient x et y deux vecteurs de \mathbb{K}^n . Montrer l'égalité

$$\mathcal{R}e(x \cdot y) = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2).$$

En déduire le théorème de Pythagore : deux vecteurs x et y de \mathbb{R}^n sont orthogonaux si et seulement si $\|x+y\|^2 = \|x\|^2 + \|y\|^2$.

S Exercice 10.

Soient u=(1,2) et v=(3t+1,-2t). Trouver les valeurs de $t\in\mathbb{R}$ telles que

- 1) u et v soient colinéaires.
- 2) u et v soient orthogonaux.

Exercice 11.

Soient u = (1, 1, 0) et v = (-1, 0, 1). Calculer ||u - v|| et ||u|| - ||v||. Que remarque t-on?

Exercice 12.

Trouver un vecteur $x \in \mathbb{R}^2$ dont la norme est égale à 4 et dont la première composante est deux fois plus grande que la deuxième composante.

Exercice 13.

Soient $x = (2, -2, 1) \in \mathbb{R}^3$. Déterminer un vecteur y orthogonal à x et au vecteur k de la base canonique de \mathbb{R}^3 , et tel que $||y|| = \sqrt{3} ||x||$.

Exercice 14.

Soient x, y deux vecteurs de \mathbb{R}^n .

- 1) Pour tout $t \in \mathbb{R}$, on pose $P(t) = (x + ty) \cdot (x + ty)$. Donner l'expression développée de P en fonction de ||x||, ||y|| et $(x \cdot y)$.
- 2) Quel type de fonction usuelle est P?
- 3) Si un polynôme du second degré est toujours positif ou nul, quel est le signe de son discriminant?
- 4) En déduire que l'on a

$$x \cdot y \le ||x|| \, ||y||.$$

Cette inégalité s'appelle l'inégalité de Cauchy-Schwarz.

5) À partir de l'inégalité de Cauchy-Schwarz, montrer que $\|x+y\| \leq \|x\| + \|y\|$.

S Exercice 15.

Soient x, y deux vecteurs non nuls de \mathbb{R}^3 . Le vecteur

$$\operatorname{proj}_{y} x = \frac{x \cdot y}{\|y\|^{2}} y$$

est dit la **projection orthogonale** de x sur y.

- 1) Montrer que les vecteurs $x \text{proj}_y x$ et x sont orthogonaux.
- 2) Soit α l'angle formé par les vecteurs x et y. Montrer que $\|\operatorname{proj}_{y} x\| = \|x\| |\cos \alpha|$.
- 3) Soient x = (1, 2, 3) et y = (0, 0, 1). Calculer $\text{proj}_y x$.
- **4)** Soient x = (1, 2, 3) et y = (1, 1, 0). Calculer $\text{proj}_y x$.

Exercice 16.

Soit x un vecteur non nul de \mathbb{R}^2 .

- 1) Déterminer tous les vecteurs de \mathbb{R}^2 orthogonaux à x et de même norme.
- 2) En déduire tous les vecteurs de \mathbb{R}^2 orthogonaux à x.

Dans \mathbb{R}^3 : le produit vectoriel

Le produit vectoriel 4

Définition

Soient u et v deux vecteurs de \mathbb{R}^3 , on appelle **produit vectoriel** des vecteurs u et v le vecteur noté $u \wedge v$ défini par

$$u \wedge v = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}.$$

Remarque

- 1. On prendra garde de ne pas confondre les deux notions de produit de vecteurs : le produit scalaire est un scalaire tandis que le produit vectoriel est un vecteur.
- 2. Le produit vectoriel est parfois noté $u \times v$ (notamment dans la littérature anglophone et allemande).

Méthode – Moyen mnémotechnique

- \triangleright On écrit les vecteurs u, v deux fois par colonnes,
- ⊳ on barre la première et la dernière ligne,
- \triangleright pour obtenir la 1^{re} composante de $u \land v$ on effectue le produit en croix entre les 2^{es} et 3^{es} lignes (en tirets rouges sur la figure),
- \triangleright pour obtenir la 2^e composante de $u \land v$ on effectue le produit en croix entre les 3^{es} et 4^{es} lignes (en pointillé vert sur la figure),
- ightharpoonup pour obtenir la 3e coordonnée de $u \wedge v$ on effectue le produit en croix entre les 4es et 5es lignes (en bleu sur la figure)

d'où
$$u \wedge v = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

Exemple

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \land \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \times 6 - 3 \times 5 \\ 3 \times 4 - 1 \times 6 \\ 1 \times 5 - 2 \times 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}$$

🔼 Attention

Le produit vectoriel n'existe que dans \mathbb{R}^3 .

Proposition

Soient $u, v \in \mathbb{R}^3$. Alors, $u \wedge v$ est orthogonal à u et à v.

Démonstration. En effet, on a

$$(u \wedge v) \cdot u = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = u_1 u_2 v_3 - u_1 u_3 v_2 + u_2 u_3 v_1 - u_1 u_2 v_3 + u_1 u_3 v_2 - u_2 u_3 v_1 = 0,$$

ce qui montre que $u \wedge v$ est orthogonal à u. On procède de même pour v.

🔁 Rappel

On rappelle que deux vecteurs non nuls u et v de \mathbb{R}^n sont dits colinéaires s'il existe $k \in \mathbb{R}$ tel que u = k v.

À noter

Soient $u, v \in \mathbb{R}^3$ deux vecteurs non nuls. Alors,

- \triangleright si u et v sont colinéaires, $u \wedge v = 0_{\mathbb{R}^3}$,
- \triangleright si u et v ne sont pas colinéaires,
 - $u \wedge v$ est orthogonal à u et à v,
 - $||u \wedge v|| = ||u|| \, ||v|| \, |\sin(u, v)|$, où (u, v) est l'angle orienté entre u et v,
 - le triplet $(u, v, u \land v)$ est de sens direct (c'est-à-direvérifie les règles du bonhomme d'Ampère ou du tire-bouchon de Maxwell).

Propriétés

Soient $u, v, w \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$. Alors,

▷ le produit vectoriel est bilinéaire :

$$(u + \lambda v) \wedge w = u \wedge w + \lambda v \wedge w$$
 et $u \wedge (v + \lambda w) = u \wedge v + \lambda u \wedge w$,

 \triangleright le produit vectoriel est anti-symétrique : $u \wedge v = -v \wedge u$.

(i) Remarque

Lorsque l'on utilise des produits vectoriels, il est très important de faire attention à l'ordre d'écriture des facteurs.

Exemple

Soient u = (1, 4, -2) et v = (-1, -3 + 1) deux vecteurs de \mathbb{R}^3 . A partir du produit vectoriel on peut déterminer tous les vecteurs orthogonaux à u et à v. En effet, le produit vectoriel $u \wedge v$ est orthogonal à u et à v. On a :

$$u \wedge v = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \wedge \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \times 1 - (-2) \times (-3) \\ -2 \times (-1) - 1 \times 1 \\ 1 \times (-3) - 4 \times (-1) \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}.$$

De plus, tout vecteur colinéaire à $u \wedge v$ est orthogonal à u et v. Ainsi, on peut prendre $w = \lambda(-2, 1, 1)$, avec $\lambda \in \mathbb{R}$ et $\lambda \neq 0$.

0 Remarque

Dans \mathbb{R}^3 les vecteurs de la base canonique e_1, e_2, e_3 sont généralement notés i, j, k. Ceux-ci vérifient

$$i \wedge j = k$$
, $j \wedge k = i$ et $k \wedge i = j$.

S Exercice 1.

Soient u = (2, 3, -1) et v = (1, 4, -2). Calculer $u \wedge v, v \wedge u$ et $(u + v) \wedge (u - v)$.

$\overset{\bullet}{\mathbf{0}}$ $\mathbf{Remarque}$ — Interprétation géométrique du produit vectoriel

Soient u et v deux vecteurs de \mathbb{R}^3 . Alors $||u \wedge v||$ est l'aire du parallélogramme ayant comme cotés les vecteurs u et v.

En effet, $BH = OB \times |\sin \alpha| = ||v|| |\sin \alpha|$ et donc l'aire du parallélogramme est

$$OA \times BH = ||u|| ||v|| \sin \alpha| = ||u \wedge v||.$$

21

Feuille d'exercices : Séquence 3

Exercice 1.

Soient u = (2,0,1) et v = (3,1,-1). Déterminer $u \wedge v$, $v \wedge u$ et $(u+v) \wedge (u-v)$.

Exercice 2.

Montrer que les vecteurs i, j, k de la base canonique de \mathbb{R}^3 vérifient

$$i \wedge j = k$$
, $j \wedge k = i$ et $k \wedge i = j$.

Exercice 3.

Soit (i, j, k) la base canonique de \mathbb{R}^3 . On considère u = i, v = i + j et w = j. Calculer $(u \wedge v) \wedge w$, puis $u \wedge (v \wedge w)$.

Que peut-on conclure? Le produit vectoriel est-il associatif?

Exercice 4.

Soient u = (4, -1, 2), v = (1, 5, -3) et w = (2, 0, -4). Calculer et comparer :

1) $u \wedge v$ et $v \wedge u$,

- **3)** $u \wedge (2v)$, $(2u) \wedge v$, et $2(u \wedge v)$,
- **2)** $u \wedge (v+w)$ et $u \wedge v + u \wedge w$,
- **4)** $(u \wedge v) \wedge w$ et $u \wedge (v \wedge w)$.

S Exercice 5.

Déterminer un vecteur unitaire perpendiculaire au plan contenant u = (1, 1, 0) et v = (0, -1, 2).

Exercice 6.

Soient u, v, w deux vecteurs de \mathbb{R}^3 On définit le **produit mixte** des vecteurs u, v, w par le scalaire

$$[u, v, w] = u \cdot (v \wedge w).$$

- 1) Montrer que [u, w, v] = -[u, v, w].
- **2)** Montrer que [u, u, w] = [u, v, u] = 0.
- 3) Soit $\lambda \in \mathbb{R}$. Montrer que $[\lambda u, v, w] = [u, \lambda v, w] = \lambda [u, v, w]$.
- 4) Montrer que [u, v, w] = 0 si et seulement si les trois vecteurs sont coplanaires, c'est-à-dire qu'il existe des réels α, β, γ non tous nuls tels que $\alpha u + \beta v + \gamma w = 0$.
- 5) Montrer que |[u, v, w]| est le volume du parallélepipe de construit sur les vecteurs u, v et w.

Exercice 7.

Une particule de charge q et de masse m est soumise à un champ magnétique constant $\overrightarrow{B} = (0,0,B)$. Elle subit alors la force de Lorentz $\overrightarrow{F} = q\overrightarrow{v} \wedge \overrightarrow{B}$, et son mouvement est décrit par l'équation $m\overrightarrow{a} = \overrightarrow{F}$ (ici \overrightarrow{v} désigne la vitesse de la particule, et $\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt}$ son accélération). Écrire en fonction des coordonnées (v_x, v_y, v_z) de \overrightarrow{v} les équations correspondantes.