Examinare

MINISTERUL EDUCATIEI NATIONALE

Országos Magyar Matematika Olimpia

Megyei szakasz, 2019. január 26.

VIII. osztály

1. Feladat (10 pont)

Adott az $M = \{x \in \mathbb{N} | x = a^2 + b^2, a, b \in \mathbb{Z} \}$ halmaz. Igazold, hogy

- a.) $170 \in M, 71 \notin M$;
- b.) ha $x, y \in M$, akkor $x \cdot y \in M$;
- c.) $17^{17} \in M$.

(Matlap)

2. Feladat (10 pont)

A VABC szabályos háromoldalú gúlában az ABC háromszög az alap, $VB \perp (VAC)$ és AB = 12 cm. Számítsd ki:

- a) a gúla oldaléleinek hosszát;
- b) a VO magasság hosszát;
- c) a VC és AB egyenesek távolságát, azaz a közös merőlegesük hosszát!

3. Feladat (10 pont)

a) Igazold, hogy:
$$\frac{1}{\sqrt{2019}} - \frac{1}{\sqrt{2019} \cdot (1 + \sqrt{2019})} - \frac{1}{1 + \sqrt{2019}} = 0$$
;

b) Számítsd ki
$$\left(\frac{1}{a} + \frac{1}{b} - \frac{1}{a+b}\right)^2$$
-t, ha $a,b \in \mathbb{R}^*$ és $a+b \neq 0$;

c) Igazold, hogy
$$\sqrt{\frac{1}{(x-y)^2} + \frac{1}{(y-z)^2} + \frac{1}{(z-x)^2}} \in \mathbb{Q}$$
, bármely páronként különböző $x, y, z \in \mathbb{Q}$ számok esetén!

4. Feladat (10 pont)

Egy ládában arany és ezüst pénzérmék vannak. Az ezüstérmék száma több, mint az aranyaké. Egy aranyérme 5 gramm, egy ezüstérme 13 grammos. Hány ezüst és hány arany pénzérme lehet a ládában, ha az érmék tömege összesen háromnegyed kilogramm?