

#### UNIVERSIDADE FEDERAL DE SANTA CATARINA Ciência, tecnologia e Sociedade

### Energia nuclear

Manuella Bittencourt Verginio Pamela Santos Monteiro Pedro Artur de Aguiar Cabral Thabata John Barreto







Our World What are the safest and cleanest sources of energy? Death rate from accidents and air pollution Greenhouse gas emissions Measured as deaths per terawatt-hour of electricity production. Measured in emissions of CO-equivalents per gigawatt-hour of electricity over the lifecycle of the power plant. 1 terawatt-hour is the annual electricity consumption of 150,000 people in the EU. 1 gigawatt-hour is the annual electricity consumption of 150 people in the EU. Coal 24.6 deaths 820 tonnes 36% of elobal electricity -1230-times higher than solar 273-times higher than nuclear energy -Oil 18.4 deaths 720 tonnes 3% of global electricity -613-times higher than nuclear energy 180-times higher than wind Natural Gas 2.8 deaths 490 tonnes 22% of global electricity Biomass 4.6 deaths 34 tonnes 171,000 deaths from Bangian Dam failure in 1975, China Wind 4 tonnes Nuclear energy Includes deaths from Chernobyl and Fukushima disasters | 10% of global electricity 5 tonnes

Death rates from fossil fuels and biomass are based on state-of-the art plants with pollution controls in Europe, and are based on older models of the impacts of air pollution on health.
This means these death rates are likely to be very conservative. For further discussion, see our article: OurWorldinData,org/safest-sources-of-energy, Electricity shares are given for 2021.
Data sources: Markandya & Wilkinson (2007); UNSCEAR (2008; 2018); Sovacool et al. (2016); IPCC AR5 (2014); Pehl et al. (2017); Ember Energy (2021),
OurWorldinData,org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

#### Gerenciamento de Residuos





A <u>lei 10.308</u> de 2001 especifica tipos de depósitos e seleções de locais para descarte que vão desde a construção, o licenciamento e a administração.

- Coleta
- Armazenamento
  - sistema de armazenamento a seco com base "Canister"
- Disposição Final
  - Unidade de
     Armazenamento
     Complementar a Seco



#### **Acidentes Nucleares**

#### Pennsylvania (1979)

- Classificação nivel 5;
- As causas do acidentes divulgada pelo governo, foram falhas humanas;
- O reator danificado está desativado até hoje

#### **Brasil (1987)**

- Classificação nivel 5;
- As causas do acidentes, uma maquina de radiografia foi descartada de forma irregular;
- Fragmentos dessa cápsula de Césio foram espalhadas, contaminados várias pessoas.

#### Chernobyl (1986)

- Classificação nivel 7;
- As causas do acidentes, super aquecimentos;
- A taxa de radioatividade chegou a 95% da população da cidade.

#### Fukushima (2011)

- Classificação nivel 5;
  - As causas do acidentes, foi um tsunami de 14 m que atingiu os reatores da usina;
- Tres dos seis reatores sofreram avarias;

## **ENERGIA NUCLEAR - Acidentes**

|                                                                     | CRITÉRIOS OU ATRIBUTOS DE SEGURANÇA                                                                             |                                                                                                            |                                                                         |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                                                                     | IMPACTO FORA DA ÁREA<br>DA INSTALAÇÃO                                                                           | IMPACTO NA ÁREA<br>DA INSTALAÇÃO                                                                           | DEGRADAÇÃO DA DEFESA<br>EM PRÓFUNDIDADE                                 |
| 7<br>ACIDENTE<br>GRAVE                                              | LIBERAÇÃO GRAVE<br>MÚLTIPLOS EFEITOS Á<br>SAÚDE E AO MEIO<br>AMBIENTE                                           |                                                                                                            | I<br>I<br>I                                                             |
| 6<br>ACIDENTE<br>SÉRIO                                              | LIBERAÇÃO IMPORTANTE<br>POSSIBILIDADE DE<br>EXIGÊNCIA DA APLICAÇÃO<br>INTEGRAL DAS CONTRA-<br>MEDIDAS PREVISTAS |                                                                                                            |                                                                         |
| S<br>ACIDENTE COM RISCO<br>FORA DA ÁREA DA<br>INSTALAÇÃO            | LIBERAÇÃO LIMITADA<br>POSSIBILIDADE DE<br>EXIGÊNCIA DA APLICAÇÃO<br>PARCIAL DAS CONTRA-<br>MEDIDAS PREVISTAS    | DANOS GRAVES NO<br>NÚCLEO DO<br>REATOR/BARREIRAS<br>RADIOLÓGICAS                                           |                                                                         |
| 4<br>ACIDENTE SEM RISCO<br>IMPORTANTE FORA DA<br>ÁREA DA INSTALAÇÃO | LIBERAÇÃO PEQUENA<br>EXPOSIÇÃO DO PÚBLICO<br>EM TORNO DOS LIMITES<br>PRESCRITOS                                 | DANOS IMPORTANTES NO<br>NÚCLEO DO<br>REATOR/BARREIRAS<br>RADIOLÓGICAS/EXPOSIÇÃO<br>FATAL DE UM TRABALHÁDOR |                                                                         |
| 3<br>INCIDENTE<br>SÉRIO                                             | LIBERAÇÃO MUITO<br>PEQUENA<br>EXPOSIÇÃO DO PÚBLICO A<br>UMA FRÂÇÃO DOS LIMITES<br>PRESCRITOS                    | DISPERSÃO GRAVE DA<br>CONTAMINAÇÃO/EFEITOS<br>AGUDOS SOÉRE A SAÚDE<br>DE UM TRABALHADOR                    | QUASE ACIDENTE –<br>PERDA TOTAL DAS<br>BARREIRAS DE<br>SEGURANÇA        |
| 2<br>INCIDENTE                                                      |                                                                                                                 | DISPERSÃO IMPORTANTE<br>DA CONTAMINAÇÃO/<br>SUPEREXPOSIÇÃO DE UM<br>TRABALHADOR                            | INCIDENTE COM FALHAS<br>IMPORTANTES NOS<br>DISPOSITIVOS DE<br>SEGURANÇA |
| 1<br>ANOMALIA                                                       |                                                                                                                 |                                                                                                            | ANOMALIA ALÉM DO<br>REGIME DE OPERAÇÃO<br>AUTORIZADO                    |
| 0<br>ABAIXO DA ESCALA<br>DESVIO                                     | NENHUMA IMPOR                                                                                                   | RTÂNCIA COM RELAÇÃO                                                                                        | A SEGURANÇA                                                             |
| EVENTO FORA DA<br>ESCALA                                            | NENHUMA PERTI                                                                                                   | NÊNCIA COM RELAÇÃO                                                                                         | A SEGURANÇA                                                             |



Pennsylvania (1979)



**Brasil (1987)** 

Chernobyl (1986)



Fukushima (2011)

#### SEGURANCA NUCLEAR

#### POLÍTICA DE GESTÃO INTEGRADA DA SEGURANÇA

**Projeto** - Conjunto de barreiras que engloba os cuidados que são tomados antes mesmo da escolha do local onde a usina será construída. São analisados todos os possíveis riscos inerentes ao empreendimento.

Física - São todas as proteções utilizadas para conter ou minimizar os níveis de radiação inerentes ao funcionamento do reator nuclear.

Organizacionais - Controles legais e institucionais relativos à segurança. Elas incluem leis específicas de âmbito nacional e internacional, a existência de um órgão regulador – no caso brasileiro, a Comissão Nacional de Energia Nuclear (Cnen).

As políticas de gestão devem seguir a Lei Nº 6.453, de 17 de Outubro de 1977

 Dispõe sobre a responsabilidade civil por danos nucleares e a responsabilidade criminal por atos relacionados com atividades nucleares e dá outras providências.



## **TECNOLOGIA**

- Fusão Nuclear
- Reciclagem de resíduos
- IAs



## ACORDOS INTERNACIONAIS

- Tratado de Não-Proliferação Nuclear (1967)
- Tratado EURATOM (1957)
- Convenção Sobre a Proteção Física do Material Nuclear (1991)



## **ASPECTOS ECONÔMICOS**

 Grande investimento em obras de engenharia civil e montagem eletromecânica

 Extensas reservas brasileiras de urânio Quadro 1 – Comparação de custos de geração de eletricidade.

| Tipo de usina                                            | Custo de capital | Custo de combustível |
|----------------------------------------------------------|------------------|----------------------|
| Nuclear                                                  | Alto             | Baixo (10 a 15 %)    |
| Hidrelétrica                                             | Alto             |                      |
| Termoelétrica convencional<br>(gás natural, carvão, etc) | Baixo            | Alto (~ 60 %)        |

### **ASPECTOS AMBIENTAIS**

#### Quadro 2 – Impactos socioambientais das principais fontes de energia.

Fonte: : Referências (7, 8 e 9).

| Fonte        | Impactos ambientais                                                                         |
|--------------|---------------------------------------------------------------------------------------------|
| Petróleo     | Poluição do ar                                                                              |
| Carvão       | Emissão de óxidos de enxofre (SOx, SO <sub>2</sub> )                                        |
| Gás natural  | Emissão de óxidos de nitrogênio (NOx)                                                       |
|              | Emissão de monóxido de carbono (CO)                                                         |
|              | Emissão de matéria particulada suspensa (metais pesados)                                    |
|              | Ozônio                                                                                      |
|              | Aquecimento global via efeito estufa                                                        |
|              | Emissão de dióxido de carbono ( $CO_2$ ),<br>emissão de metano ( $CH_4$ )                   |
|              | Chuva ácida                                                                                 |
|              | Emissão de SO <sub>2</sub> formando ácido sulfúrico na atmosfera                            |
|              | Emissão de NOx formando ácido nítrico na atmosfera                                          |
| Hidrelétrica | Formação de grandes represas                                                                |
|              | Realocação das populações                                                                   |
|              | Aquecimento global via efeito estufa                                                        |
|              | Emissão de CH <sub>4</sub>                                                                  |
| Biomassa     | Poluição do ar                                                                              |
|              | Emissão de CO                                                                               |
|              | Emissão de matéria particulada                                                              |
|              | Emissão de CO <sub>2</sub>                                                                  |
|              | Uso intensivo do solo e da água                                                             |
|              | Diminuição da biodiversidade                                                                |
| Nuclear      | Rejeitos de nível baixo e médio de radioatividade                                           |
|              | Rejeitos de nível alto de radioatividade que requerem<br>armazenamento por milhares de anos |
|              | Desativação das instalações nucleares após término da vida út                               |

#### Quadro 3 — Tempos de degradação por processos naturais no ambiente.

Fonte: Referências (7, 11 e 12).

| Composto                                                               | Tempo para degradação |
|------------------------------------------------------------------------|-----------------------|
| Nylon                                                                  | 30 a 40 anos          |
| Co2 emitido pela combustão de<br>combustíveis fósseis e biomassa       | 50 a 200 anos         |
| Rejeitos radioativos de baixa, média<br>e alta atividade (incinerados) | 20 a 500 anos         |
| Latas de alumínio                                                      | 100 a 500 anos        |
| Tampas de garrafa                                                      | 100 a 500 anos        |
| Pilhas, baterias e metais pesados                                      | 100 a 500 anos        |
| Copos e sacos plásticos                                                | 200 a 450 anos        |
| Garrafas e frascos de vidro ou plástico                                | Indeterminado         |

#### Referências

#### **REFERÊNCIAS BIBLIOGRÁFICAS**

- Acidente de Three Mile Island
- Maiores acidentes nucleares da história, educação Globo, 2014
- "Plasma em combustão" é passo importante para geração de energia por fusão nuclear
- Fusão nuclear e o futuro da energia limpa | Unicamp
- ABEN Associação Brasileira de Energia Nuclear Aplicações da inteligência artificial na indústria nuclear
- Reciclagem de "lixo nuclear" pode impulsionar construção de usinas (gazetadopovo.com.br)
- Aspectos técnicos, econômicos e sociais do uso pacífico da energia nuclear
- Tratado de Não Proliferação Nuclear

- <u>Tratado de Não Proliferação de Armas Nucleares.</u>
- Emenda a convenção internacional sobre material nuclear é aprovada pelo Senado Fonte: Agência Senado



#### UNIVERSIDADE FEDERAL DE SANTA CATARINA Ciência, tecnologia e Sociedade

# Thanks!

Does anyone have any questions?