北京理工大学 2018-2019 学年第二学期

物理学院《大学物理 AI》期末考试题 A 卷

班级		学号				性名		_总分	
任课教	师姓名		_						
		枯	莫块一 力	学与热	学(60	分)			
	填空题	选择题	计算	<u>r</u> 1	计算 2		合计	复核人	
得分									
		-	牌 计 一	₹ ₽ ₽ ┣╴┚		0 ())	·		
	填空题		摸块二 波 计算 1				合计	复核人	
得分									
可能用到的物理常数 大气压 1 atm = 1.013×10^5 Pa, 万有引力常量 $G = 6.67 \times 10^{-11}$ N·m²·kg $^{-2}$ 普适气体常量 $R = 8.31$ J·mol $^{-1}$ ·K $^{-1}$, 玻耳兹曼常量 $k = 1.38 \times 10^{-23}$ J·K $^{-1}$ 模块一 力学与热学(60 分) 一、填空题(共 30 分,将答案写在试卷指定的横线""上) 1. (3 分) 质点由静止开始做半径为 1 m 的圆周运动,运动方程为 $\theta = 3 + 2t^2$ (SI 单位)。									
则 <i>t</i> =	2 s 时刻, 质	质点运动的	法向加速度	E的大小	为			,切向加速	
度的大	小为		o						
质量为 滑到斜 小为 ι 为	分)如图所示 m 的滑块从 劈底端时(表) i,则此时余 功为	静止开始流 未脱离斜面 料劈在光滑	沿斜面无摩 百),滑块相 骨水平面上 七过程中斜	擦地滑 对于斜壁的运动	下。当注	骨块 度大 大小	上,斜面的 <i>M</i>	的倾角为 θ, 一	

小球 m_2 静止于原点处、小球 m_1 以速率 v 沿 y 轴正方向朝着 m_2 运动并与小球 m_2 发生弹性碰撞,碰撞后小球 m_1 以 $v/2$ 的 速率沿着 x 正方向被弹出,请用矢量形式 (单位矢量以 i 、 j 表示) 分别表示出碰撞后小球 m_2 的速度 v_2 为
速率沿着 x 正方向被弹出,请用矢量形式 (单位矢量以 i 、 j 表示) 分别表示出碰撞后小球 m_2 的速度 v_2 为,以及碰撞后由两小球构成系统的质心的运动速度为。
表示)分别表示出碰撞后小球 m_2 的速度 \vec{v}_2 为
表示)分别表示由極揮后小球 m_2 的速度 v_2 为
为,以及碰撞后由两小球构成系统的质心的运动速度为。
4.(3分)飞轮对其转轴的转动惯量为 J ,在 $t=0$ 时角速度为 ω_0 。此后飞轮经历制动
过程。若阻力矩 M 的大小与角速度 ω 的平方成正比,比例系数为 k (k 为大于零的常
量)。则当 $\omega = \omega_0/3$ 时,飞轮的角加速度 $\alpha =$ 。从开始制动到 $\omega = \omega_0/3$ 所需
的时间 <i>t</i> =。
5. (4β) 由两条长度为 l 、质量为 m 的匀质细木条组成如图所示的对称 T 形结构,并将其底端悬挂于与 T 形平面垂直的水平转轴 O 上,其可绕转轴无摩擦地转动,则该 T
形结构绕 O 轴转动的转动惯量为。设 T 形结构
初始时自由悬挂处于静止,一质量为 m 的粘土小球在 A 端正上方 m_{\bullet}
l/2 处以一定速度被水平抛出,小球正好击中 T 形结构的交叉点 C
处并粘在 C 点处。则碰后瞬间 T 形结构绕 O 轴转动的角速度大小 C
为(重力加速度表示为 g)。
6. $(3 分)$ 氮气分子可视为刚性双原子分子, $2 \mod$ 氮气(视为理想气体,摩尔质量为 M)
处于平衡态,其分子按速率的分布遵从归一化的速率分布函数 $f(v)$ 。用 $f(v)$ 分别表示出:
该氮气系统分子的平均速率为,该氮气系统的内能
为。
7. (4分) 理想气体的准静态循环过程在 $p-V$ 图上可表示为两条等温线(温度分别为 T_1
和 T_2 ,且 $T_1 > T_2$)和两条绝热线,循环过程可以在 $p-V$ 图中分别按顺时针方向或逆时针
方向运行,对比这两种按相反方向运行的循环过程,写出它们之间的两个主要区别:
刀凹色17, 对几处内件按相区刀凹色17时相外过任,与田匕们之凹的内个土安区别:
万问运行,对比这两种按相及万问运行的循环过程,与出它们之间的两个主要区别: (1);

8. (3分) 2 mol 的氩气在 300 K 时的体积为 0.1	m³,如果经等压过	程膨胀到0.3 m	n³,则
氩气从外界吸收的热量为;如果约	经等温过程膨胀到 ₀	.3 m³,则氩气/	从外界
吸收的热量为。			
9. (3 分) 将 1 kg 处于 0°C 的冰与温度为 20°C恒	温热源接触,使冰雹	全部熔化成0°C	的水,
则水的熵变为,恒温热源的	勺熵变为	。(冰的炸	容化热
为 334 kJ/kg)			
二、选择题(共9分,单选,每题3分,将答案	₹写在试卷上指定的 ************************************	方括号 "[]	"内)
1.(3 分)如图所示, AB 为一段不光滑路径,身相同。若小木块以初速率 v_0 由 A 端经此路径滑向若小木块以相同初速率 v_0 由 B 端经此路径滑向木块沿不同方向运动时与轨道的摩擦系数相同)。	向 B 端,到达 B 端 A 端,到达 A 端时	时的速率减小シ 的速度减小为 1	り vB;
$(A) v_A < v_B$	v_0		
(B) $v_A > v_B$	\overrightarrow{A}		B
(C) $v_A = v_B$			
(D) 无法确定		Γ]
2. (3分)人造地球卫星绕地球做椭圆轨道运动, B 。用 L 和 E_k 分别表示卫星对地心的角动量及			74和
$(A) L_A < L_B , E_{kA} < E_{kB} ;$			
(B) $L_A > L_B$, $E_{kA} > E_{kB}$;			
$(C) L_A = L_B , E_{kA} < E_{kB} ;$			
(D) $L_A = L_B$, $E_{kA} > E_{kB}$ \circ		[]
3. (3分) 关于热力学定律,下列说法正确的是:	:		
(A) 在一定条件下物体的温度可以降到0K;			
(B) 吸收了热量的物体,其内能一定增加;			
(C) 物体从单一热源吸收的热量可全部用于做	故功;		
(D) 压缩气体一定能使气体的温度升高。		[]

三、计算题(共21分,将答案写在试卷空白处)

1. $(10\, \%)$ 长为 l、质量为 m 的柔软绳子盘放在水平桌面上,用手将绳子的一端以恒定的速率 v 向上提起. 试求: (1) 将此柔软绳子从桌面以匀速 v 上提至高度为 x 时,提力 F 的大小; (2) 将绳子正好全部提离地面时(不考虑绳子的左右偏离,认为绳子各部分都是在同一位置先后被提起),提力 F 所做的功为多少?

F x

2. (11 分) 如图所示,容器被绝热、不漏气的活塞分成 A、B 两个部分,容器左端导热,其它部分绝热。开始时左、右两侧分别有标准状态下的理想氢气,容积均为 36 L。从左端对 A 中气体加热,使活塞缓缓右移,直到 B 中气体变为 18 L。求:(1) A 中气体末态温度和压强;(2) 外界传给 A 中气体的热量。

模块二 波动与光学 (40分)

一、填空题(共9分,将答案写在试卷指定的横线""上) 1.(3分)一弹簧振子做简谐振动,振幅为 $A = 0.2 \, \text{m}$,如果弹簧的劲度系数为 $k = 2.0 \, \text{N/m}$, 所系物体的质量为 m = 0.50 kg,则当系统的动能是势能的 3 倍时,振子的位移 为______; 振子从最大位移处运动到动能等于势能的 3 倍处所需的最短 时间为_____。 2. (3 分) 在光栅衍射中, 单缝衍射(组成光栅的每条缝对光的衍射) 对光栅衍射条纹 3. (3 分)通过偏振片观察混在一起而又不相干的线偏振光和自然光,将偏振片从透过 光强最大的位置开始旋转 90°角,结果发现透过光强减少了 50%,则通过偏振片前的自 然光与线偏振光的光强之比为。 二、选择题(共6分,单选,每题3分,将答案写在试卷上指定的方括号"[]"内) 1. (3分)如图所示为一沿x轴正向传播的平面简谐波在t=0时刻的波形。若振动以余 弦函数表示,则 A 点处质元的振动初相为 (A) 0;(B) $\pi/2$: (C) π ; (D) $3\pi/2$. ſ 1 2. (3分)测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉: (B) 单缝衍射;

(D) 等倾干涉。

1

(C) 光栅衍射;

三、计算题(共25分,将答案写在试卷空白处)

1. (10 分) 如图所示,有一平面简谐波在空气中沿x轴正方向传播,波速 u=3 m/s。已知 x=3 m 处质元P 的振动函数为 $y=6\times10^{-2}\cos(\pi t-\pi/2)$ (SI 单位)。求:(1) 该波的波函数;(2) 若 x=9.9 m 的 A 点处有一相对空气为波密的垂直反射壁,设反射时无能量损耗,求反射波的波函数;(3) 入射波和反射波相叠加形成驻波,试确定出现在 O 点和 A 点间的波节的位置。

- 2.(10 分)如图所示,一块平板玻璃(折射率为 n_2 = 1.50)上有一层薄油膜(折射率为 n_1 = 1.20),油膜的上表面是半径为 R 的球面的一部分,其中心最厚处的厚度为 1.10 μ m。用 λ = 600 nm 的单色光垂直照射油膜,并观察油膜表面所形成的反射光干涉条纹,求: (1) 整个油膜上可观察到几条暗条纹?
- (2) 若离油膜中心最近的暗条纹环的半径为 0.3 cm,则油膜上表面球面的半径 R 为多少?

3. (5分)如图所示,一潜艇停在海平面下 100 m处,潜艇上所携声纳的喇叭对着前方发射声波(由于喇叭对波的衍射作用,发射出的声波有一定的覆盖范围,习惯上以第一级衍射极小所对应的张角为覆盖范围)。请你为潜艇的声纳设计一个喇叭,使该声纳在使用波长为 10 cm 的声波时,声波信号在水平方向的覆盖范围为 60° 张角(图中未表示出),且不让位于潜艇正前方 1000 m 内的水面敌舰收到信号,试给出该声纳的喇叭的大致形状和尺寸。

