

Database Design

Structured, meaningful data for rapid delivery of data driven applications.

Join the data-centric revolution!

(Terminus DB

A Database For The Web Age

Access structured data, in URLs, using technologies you know and trust

Industrial Strength

ACID compliance and enterprise grade functionality

TerminusDB Provides Answers

Answer complex questions relating to time, relationships, connections and geography

A Database For All

TerminusDB is open source, now and forever

TerminusDB Is The Law

Control data according to real-world rules

Data That Describes Itself

ACID compliance and enterprise grade functionality

TerminusDB Is A Git for Data

We allow you to branch, merge, time-travel and roll-back in your data

We represent data as graphs (triples)

- $SO Lift Nozzle \rightarrow S1$
- S1 Replace Nozzle → S0
- $S1 Authorize Pump \rightarrow S2$
- S2 Replace Nozzle → S0
- $S2 Pull Trigger \rightarrow S3$
- S3 Release Trigger → S2

We represent graphs with succinct data-structures

More details in: "Succinct Data Structures and Delta Encoding for Modern Databases"

String	Offset	Remainder
Pearl Jam	0	Pearl Jam
Pink Floyd	1	ink Floyd
Pixies	2	xies
The Beatles	0	The Beatles
The Who	4	Who

Table 1: *Plain Front Coding Dictionary*

We represent graphs with succinct data-structures

More details in: "Succinct Data Structures and Delta Encoding for Modern Databases"

Triples Er	ncoding	Description
(1, 2, 4) 1 $(2, 3, 5)$ 2 $(2, 4, 6)$ 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Subject Ids Encoded Subject Bit Sequence Predicate Vector Encoded Predicate Bit Sequence Object Vector

Table 2: Succinct Graph Representation

Schema driven language... (in OWL)

- Classes with multiple inheritance
- Properties with domain / range
- Restrictions (functionality, cardinality, value etc.)

Server: http://localhost:6363/

Dashboard

Change Server

View Databases

+ Create New Database

Database: Seshat

Database Home

Q Query

Schema

Document

import New Schema

a owl:Class;

adformment "Authority Popherischeise Deu Durch iffied Dufferfideren Tag | Manny

```
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix terminus: <http://terminusdb.com/schema/terminus#> .
@prefix doc: <http://localhost:6363/seshat/document/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix scm: <http://localhost:6363/seshat/schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix xdd: <http://terminusdb.com/schema/xdd#> .
@prefix vio: <http://terminusdb.com/schema/vio#> .
@prefix tcs: <http://terminusdb.com/schema/tcs#> .
@prefix tbs: <http://terminusdb.com/schema/tbs#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
scm:AgriculturalDiversity
 a owl:Class;
 rdfs:comment "IV-4-2. Agricultural Diversity [AR-SV-3; AR-SV-5]."@en ;
 rdfs:label "Agricultural Diversity"@en ;
 rdfs:subClassOf scm:FeaturePresenceRecord .
scm:AlternativeFoodSources
 a owl: Class ;
 rdfs:comment "IV-4-3. Alternative Food Sources. [AR-SV-7] [AR-SV-9] [AR-SV-11] "@en ;
 rdfs:label "Alternative Food Sources."@en :
 rdfs:subClassOf tcs:QualifiedByConfidenceTag .
scm: AuthorityEmphasis
 a owl:Class:
 rdfs:comment "Where the emphasis of group authority lies"@en ;
 rdfs:label "Authority Emphasis"@en ;
 rdfs:subClassOf tcs:QualifiedByConfidenceTag .
scm: AuthorityEmphasisChoice
 a owl:Class;
 rdfs:comment "The range of choices of authority emphasis"@en ;
 rdfs:label "Authority Emphasis Choice"@en;
 rdfs:subClassOf tcs:Enumerated:
 owl:oneOf ( scm:egalitarian scm:group_solidarity scm:group_priority scm:leader_priority scm:leader_emphasis ) .
scm: AuthorityEmphasisChoiceBox
 a owl:Class :
 rdfs:comment "The range of choices of authority emphasis"@en ;
 rdfs:label "Authority Emphasis Choice"@en ;
 rdfs:subClassOf tbs:Box .
scm:AuthorityEmphasisChoiceBoxQualifiedByConfidenceTag
```

WOQL (A JSON-LD Query language)

```
{"and": [
       {"re": [
           {"@value": "([^,]*),([^,]*)",
4
            "@type": "xsd:string"},
           {"@value": "Test, Bar",
6
            "@type": "xsd:string"},
           {"list": ["v:All","v:A","v:B"]}]}
```

Terminus DB

- ★ Home
- + Create Database
- Collaborate

Testing database

Documents

Q Query

Schema

WOQL.js (A fluent Query language)

```
WOQL.and(
    WOQL.re("([^,]*),([^,]*)",
             "Test, Bar",
             ["v:All","v:A","v:B"])
```

Terminus DB

★ Home

+ Create Database

Collaborate

Testing database

Documents

Q Query

Schema

Query returned 1 results in 0.18 seconds

В A All

Test Test,Bar Bar

Reflection in WOQL

```
W0QL.limit(20).start(0).and(
W0QL.quad("v:Property","range","v:Range","schema"),
W0QL.opt().quad("v:Property","type","v:Type","schema"),
W0QL.opt().quad("v:Property","label","v:Label","schema"),
W0QL.opt().quad("v:Property","comment","v:Comment","schema"),
W0QL.opt().quad("v:Property","domain","v:Domain","schema")
```


Visualisation of Graphs

```
view = View.graph();
view.node("Start_Label", "End_Label").hidden(true)
view.node("End").icon({color: [255,0,0], unicode: "\uf84a"})
    .text("v:End_Label").size(25).charge(-10)
view.node("Start").icon({color: [255,0,0], unicode: "\uf84a"})
    .text("v:Start_Label").size(25).collisionRadius(10)
view.edge("Start", "End").weight(100)
```


Next Steps

- Temporal constraint queries
- Named predicates (something like a datalog "view")
- A* search and other typical graph searches "out of the box"

Give TerminusDB a try!

Terminusdb.com

https://github.com/terminusdb/terminus-quickstart

