

1 Brondf

MATH 46 - HW8 - SOLUTTONS.

p. 345-346 #2 a. work x, it's ODE in x with y const.

= use Meth Und. coeffs. gives I particular solm.

$$u = G(y) \sin x + G(y) = \cos x + 6y$$

with y const.

d.
$$V = Ux$$
 so $V + V = 1$
integral $\Rightarrow V = 1 + a(x)e^{-t}$
in $x = 0$ $\Rightarrow U = x + A(x)e^{-t} + B(t)$

e.
$$\frac{1}{2}(u^2)_t = x - t$$
 so $\frac{u^2}{2} = xt - \frac{t^2}{2} + a(x)$

$$u = t\sqrt{2xt - t^2 + a(x)}$$

Ux =
$$f(x,t)$$
 $\int dt$ $\int dx$ $\int dx$

$$u = \int_{0}^{x} \int_{0}^{t} f(y,s) ds dy + A(x) + B(t)$$

Match. ICs
$$(t=0)$$
: $u(\kappa,0) = A(\kappa) + B(0) = g(\kappa)$. $\kappa > 0$. 0
BCs $(\kappa=0)$: $u(0,t) = A(0) + B(1) = h(1) + h(2)$

=0 ① gives
$$A(x) = g(x) - B(0)$$

② gives $B(t) = h(t) - A(0) \stackrel{\text{LO}}{=} h(t) + B(0) - h(0)$ or $g(0)$.

P. 365-367 (#)

$$W = eu/k$$
 $V = eu/k$
 $V = eu/k$

 $W_{x} = \frac{1}{W^{2}}$ $V_{x} = \frac{1}{W^{2}}$

Sohre heat egn on R: W (x,t) = I of effect of the end de solvation. Transform back to u: $u(x,t) = k \ln \left[\frac{1}{\sqrt{4\pi kt}} \int_{0}^{\sqrt{4\pi kt}} \int_{0}^{\sqrt{4\pi kt}} d\xi \right]$ a closed-form sepression! Energy meltiod', multi by in a sittypati: (or write of Surdx de subst. the PDE) (13) $\int u u_t dx = \int u \int u dx \qquad \int u \int u dx \qquad \int u \int u dx$ $\int u u_t dx \qquad \int u u_t dx \qquad \int u u_t dx$ $\int u u_t dx \qquad \int u u_t dx \qquad \int u u_t dx \qquad \int u u_t dx$ $\int u u_t dx \qquad \int u u_t dx$ so E'(+) ≤ O. (if a sat. homo, BG) But if u:= 11, - 112 is difference of 2 solutions to given problem, is sat. PDE with homog. IC u(x,0) = 0 $x \in SL$ homog. BC u(x,t) = 0 $x \in \partial\Omega, t>0$ Ic forces E(0) = 0, so E(t) = 0 for all t > 0. $\Rightarrow u(r,t) = 0 \times \leq 1$, t > 0. So u, = uz & the solution is rangue. total across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} u(r, 0, t) r dr d\theta$.

The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} u(r, 0, t) r dr d\theta$.

The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in annulus = $\int_{0}^{2\pi} \int_{0}^{b} r u(r, t) dr$ The state across in a state across in a state across in a state across in a state across in ous. Low (integral form) is at 21 Sa rate, t) dr = 21 [a J(a,t) - b J(b,t)] S) Differential form (get rid of integral signs since true for my a, b)

Fund. () - 5 () dr calculus: 5 () dr at ru = - (r J) use $\vec{J} = -D\vec{v}_n$ is radial part is $\vec{J} = -Dur$ $ut = + \frac{1}{r}(rur)_r$ = - f(rJ) tells you Du = - (rur) for radon function (Du = f(rur), + felles for polars).

 $u(x,t) = \int_{-\infty}^{\infty} u(x,t; \xi) f(\xi) d\xi = \int_{-\infty}^{\infty} \frac{-(x-\xi)^2}{4kt} \int_{-\infty}^{\infty} e^{-(x-\xi)^2} d\xi$ (subst fle) = sin N3). = 1 (47kP) - 4kt singly dq change var: ie = = K+49

dq = dy = Jankf Som e - that sin (px + py) dy = sin px (Arth) = e the cas py dy + cos px tarkt sin py dy
original f(x)

T(t)

Zer. even old symm original T(t) But noisy heat egn. Ut = keurx sub in U = singux T(H) singer TH = KT(+) (-p2 sinpx) holds Ux so $T' + kp^2T = 0$ an ODE for T(t), with initial conditions G solm. $T(t) = e^{-kp^2t}$ so we've done our friely integral quickly! T(0) = 1 since u(x,0) = sinplyIn fact this is the integral needed to derive the Fourier transform of the Gaussian: via equating T(t): Some that cos py dy = First e-kept $y=x, N=\frac{5}{4kt}=a$ $\int_{-a}^{a} e^{-ax^{2}} \cos \frac{5}{4x} dx = \int_{a}^{a} e^{-\frac{x^{2}}{4a}}$ since eigx = cosqx +isin gx but e-ax2 sin &x is odd symm (integral vanished), the Lots is equal to Sole-ax2 eixq dx = Ja e 4n J (-e-ari) (g) So we used hear equation table 6.2 to prove a Formier transform!

-- why good? note propagating heat egn in time multiplies by a Causian in freq. (Forming)

#11) u(x,t) = U(z) where z = x happene to be diviles. So $u_t = \frac{\partial}{\partial t} U(z) = \frac{\partial U}{\partial z} \frac{\partial z}{\partial t} = U \cdot \left(-\frac{1}{2} \frac{x}{\sqrt{k}} t^{-\frac{3}{2}}\right)$ Ux = 10 32 = U'. (TRP). URR = 3x (Tet U'(x)) = TRT dU' . Dz = JRT)2U" - 2 JKE3 U' = K-K+ U" a want all in terms of 2. - - セマリ = リ" set V=U' $\frac{V'}{V} = -\frac{1}{2}Z \qquad \text{integrate} \qquad \ln V = -\frac{1}{4}Z^2 + C$ =) $V(z) = \int V(z)dz = c \int e^{-z^2/4} dz + d$ match e, d to ICs. for 2100, Note So e-2/4 dz = 1/2/17 = 1/2 so total jump in it from x=0 to x=00 needs to be-1, $\begin{array}{c} x = \infty \\ \end{array}$ $\begin{array}{c} \lambda \\ = -\sqrt{\frac{\pi}{2}} \end{array}$ at x=0(z=0) u=1 so d=1. $= \int \int (z) = \int -\int z \int e^{-z^2/4} dz$ need to write as erf so change to e^{-y^2} $y^2 = \frac{z^2}{4} \quad \text{ie } y = \frac{z}{2} = \frac{x}{2 \text{ Jite}}$ ie $u(r,t) = 1 - erf(\frac{x}{2\sqrt{RE}})$ using definition $erf(y) := \frac{2}{3\pi}\int_{0}^{y} e^{-s^{2}}ds$ as in p.195 per(x,t) sheet entering the hor. erf(y) her entering the par.

(however defins of erf.)

Regardless of your defin of erf.

Vary.) u(x,t) = 1 - \(\frac{1}{2\kt} \int \) e - 4kt/dx p. 371-374 (#5) Look up (p. 369) Du = f2(r2ur)- + augular parts. so $f(r^2ur)_r = 0$ for radially symm. solutions. so $r^2ur = 0$ mult. by $r^2 \approx integrate$. $u = -cr^{-1} + d = = + d$ for const c,d. Alternative proof: $-r = \sqrt{x_1^2 + x_1^2 + x_2^2} \quad \text{so} \quad u_{x_1} = \frac{du}{dr} \frac{\partial r}{\partial x_1} = u'(r) \frac{x_1}{r} \quad \text{so} \quad u_{x_1 x_1} = \frac{u'}{r} + u''(\frac{x_1}{r})^2 - x_1 u' \frac{2x_1}{r} \frac{2(r-1)}{r}$ $50 \frac{3r}{5x} = \frac{4x_1}{2r} = \frac{x_1}{r} = \frac{x_1}{r} = \frac{x_1}{r}$ $50 \Delta u = \frac{2}{5} u_{x_1 x_1} = u'' + \frac{u'}{r} (3-1) = \frac{1}{5} (r^2 u')'$ as above.

 $-\Delta u = \Delta u \quad \text{mult. by } u \quad \text{k integrate as } n \quad \text{Energy nuthod}$ $-\int u \Delta u \, dx = 2 \int u^2 \, dx$ $-\int u \Delta u \, dx = 2 \int u^2 \, dx$ $\int \int u^2 \, dx = 2 \int u^2 \, dx$ $\int \int u^2 \, dx = 2 \int u^2 \, dx$ $\int \int u^2 \, dx = 2 \int u^2 \, dx$ $\int \int u^2 \, dx = 2 \int u$

1.365-367 #13. Energy method $\int uu_t dx = \int u_{xx} - uu^3 dx$ [unclt. by u a integrite] o homog. BCs $\frac{1}{2}E'(t) = \frac{1}{4t} \frac{1}{2} \int u^2 dx = -\int u_x^3 dx + \int uu_y^3 dx - \int u^4 dx$ 50 $E'(t) \le 0$ but E(t) > 0 and IC give E(0) = 0 $\Rightarrow E(t) = 0$ $\forall t \Rightarrow u = 0$ $\forall t, x \in [0,d]$ uniquely zero, trivial sola.

#3) a. $VLu = -V\overline{V} \cdot (p\overline{V}u) - quV$ } solvered & q's encel, uLV = $-u\overline{V} \cdot (p\overline{V}v) - quV$ } solvered write using $\overline{V} \cdot (up\overline{V}v) = u\overline{V} \cdot (p\overline{V}v) + p\overline{V}u \cdot \overline{V}v$ 50 $VLu - uLv = \overline{V} \cdot [up\overline{V}v - vp\overline{V}u]$ integrate them use $\int_{\Omega} (vLu - uLv) dv = \int_{\Omega} \overline{V} \cdot [p(u\overline{V}v - v\overline{V}u)] dx = \int_{\Omega} p(u\overline{v}v - v\overline{v}v) dA$ OED.

Learn the identity: V. (aVb) = Da. Db + a Db