САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра вычислительной техники

Отчёт по лабораторной работе № 1 по дисциплине «Теория автоматов» Вариант N24

Студент: Куклина М. Р3301

Преподаватель: Ожиганов А.А.

Цель и постановка задачи

Цель

Цель – практическое освоение методов взаимного преобразования автоматных моделей Милли и Мура. Проверка абстрактных автоматов Мили и Мура на эквивалентность.

Постановка задачи

Исходный абстрактный автомат задан графическим способом. При переходе от автомата Мура к Мили и наоборот учесть, что их входные и выходные алфавиты должны совпадать.

Графы исходного и преобразованного автоматов

Исходный граф автомата Мили

Преобразованный автомат Мура

Этапы преобразования автоматов

 $S_b = (A_b, Z_b, W_b, \delta_b, \lambda_b, a_{1b})$ Где

 A_b — множество состояний автомата Мили;

 Z_b – входной алфавит;

 W_b — выходной алфавит;

 δ_b — функция переходов автомата;

 λ_b — функция выходов автомата;

 a_{1b} — начальное состояние.

В эквивалентном автомате Мура $Z_b = Z_a$, $W_b = W_a$.

Построим таблицу автомата Мили.

δ	a_1	a_2	a_3	a_4	a_5
z_1	a_3	a_1	a_5	a_3	a_5
z_2	a_5	a_3		a_4	a_2
z_3	a_1	a_4			

Таблица 1. Таблица переходов автомата Мили

λ	a_1	a_2	a_3	a_4	a_5
z_1	w_2	w_1	w_1	w_1	w_1
z_2	w_2	w_2		w_2	w_1
z_3	w_2	w_1			

Таблица 2. Таблица выходов автомата Мили

По таблице определим пары (a_s, w_g) , определяющие эквивалентные состояния в автомате Мура.

$$A_1 = \{(a_1, w_1), (a_1, w_2)\} = \{b_1, b_2\}$$

$$A_2 = \{(a_2, w_1)\} = \{b_3\}$$

$$A_3 = \{(a_3, w_1), (a_3, w_2)\} = \{b_4, b_5\}$$

$$A_4 = \{(a_4, w_1), (a_4, w_2)\} = \{b_6, b_7\}$$

$$A_5 = \{(a_5, w_1), (a_5, w_2)\} = \{b_8, b_9\}$$

Составим таблицу переходов для автомата Мура. Для этого смотрим на состояние в исходной паре, ищем следующее множество состояний для автомата Мура из функции $\delta(a_s,z_f)$ и определяем состояние для автомата Мура из функции $\lambda(a_s,z_f)$ для автомата Мили.

δ	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9
λ	w_1	w_2	w_1	w_1	w_2	w_1	w_2	w_1	w_2
z_1	b_5	b_5	b_1	b_8	b_8	b_4	b_4	b_8	b_8
z_2	b_9	b_9	b_5	X	X	b_7	b_7	b_3	b_3
z_3	b_2	b_2	b_6	X	X	X	X	X	X

Таблица 3. Таблица выходов автомата Мили

Реакции автоматов на входное слово

Входное слово минимальной длины

Путём перебора находим слово миинимальной длины:

 $z_3z_1z_1z_1z_2z_1z_2z_2z_2z_1z_2z_3z_2z_1$

Реакция автоматов

Состояние	(a_1, z_3)	(a_1, z_1)	(a_3, z_1)	(a_5,z_1)	(a_5, z_2)	(a_2, z_1)	(a_1, z_2)
Слово	w_2	w_2	w_1	w_1	w_1	w_1	w_2
Состояние	(a_5, z_2)	(a_2, z_2)	(a_3, z_1)	(a_5, z_2)	(a_2, z_3)	(a_4, z_2)	(a_4, z_1)
Слово	(w_1)	w_2	w_1	w_1	w_1	w_2	w_1

Таблица 4. Реакция автомата Мили

Состояние	(b_1, z_3)	(b_2, z_1)	(b_5,z_1)	(b_8, z_1)	(b_8, z_2)	(b_3, z_1)	(b_1, z_2)	
Слово	x	w_2	w_2	w_1	w_1	w_1	w_1	
Состояние	(b_9, z_2)	(b_3, z_2)	(b_5, z_1)	(b_8, z_2)	(b_3, z_3)	(b_6, z_2)	(b_7, z_1)	b_4
Слово	(w_2)	w_1	w_2	w_1	w_1	w_1	w_2	w_1

Таблица 5. Реакция автомата Мура

Результаты:

Реакция автомата Мили: $w_2w_2w_1w_1w_1w_1w_2w_1w_2w_1w_2w_1w_2w_1$.

Реакция автомата Мура: $w_2w_2w_1w_1w_1w_1w_2w_1w_2w_1w_1w_2w_1$.

Реакции двух автоматов совпадают, следовательно, два постренных автомата эквивалентны.

Вывод

В ходе выполнения лабораторной работы были изучены автоматы Мили и Мура и способы преобразования. В ходе работы использовался табличный способ преобразования автоматов. В результате преобразования автомата Мили в эквивалентный автомат Мура выяснилось, что автомат Мура обладает большим количеством состояний, так что в данном случае использование автомата Мили выглядит более целесообразным.