

KNX eTR M

Push Button with Temperature Sensor

KNX eTR M1 Item numbers 71110 (white), 71112 (black)

KNX eTR M2 Item numbers 71120 (white), 71122 (black)

KNX eTR M4 Item numbers 71130 (white), 71132 (black)

Installation and Adjustment

1.	Description	3
	1.0.1. Area function	
	1.0.2. Scope of delivery	4
1.1.	Technical data	5
	1.1.1. Accuracy of the measurement	5
2.	Installation and commissioning	
2.1.	Installation notes	5
2.2.	Installation location	6
2.3.	Device structure	7
	2.3.1. Casing	
2.4.	Mounting	8
3.	Notes on mounting and commissioning	9
3.1.	Addressing of the device at the bus	10
4.	Maintenance and care 1	10
5.	Disposal 1	10
5. 6.		
6.	Transfer protocol 1 List of all communications objects 1	11
6.	Transfer protocol 1	1 1 11
6. 6.1. 7.	Transfer protocol	11 11 14
6.1. 7.1. 7.2.	Transfer protocol	11 11 14 14
6.1. 7.1. 7.2.	Transfer protocol	11 11 14 14
6.1. 7.1. 7.2. 7.3.	Transfer protocol	11 14 14 14 14
6.1. 7.1. 7.2. 7.3.	Transfer protocol	11 14 14 14 14 15
6.1. 7.1. 7.2. 7.3.	Transfer protocol	11 14 14 14 14 15 16
6. 6.1. 7. 7.1. 7.2. 7.3. 7.4.	Transfer protocol	11 11 14 14 14 15 16 19
6.1. 7.1. 7.2. 7.3. 7.4.	Transfer protocol	11 11 14 14 14 15 16 19 20
6.1. 7.1. 7.2. 7.3. 7.4.	Transfer protocol	11 11 14 14 14 15 16 19 20 21

Installation, inspection, commissioning and troubleshooting of the device must only be carried out by a competent electrician.

This manual is amended periodically and will be brought into line with new software releases. The change status (software version and date) can be found in the contents footer. If you have a device with a later software version, please check

www.elsner-elektronik.de in the menu area "Service" to find out whether a more up-todate version of the manual is available.

Clarification of signs used in this manual

Safety advice.

Safety advice for working on electrical connections, components, etc.

DANGER!

... indicates an immediately hazardous situation which will lead to

death or severe injuries if it is not avoided.

WARNING!

... indicates a potentially hazardous situation which may lead to

death or severe injuries if it is not avoided.

CAUTION!

... indicates a potentially hazardous situation which may lead to

trivial or minor injuries if it is not avoided.

ATTENTION! ... indicates a situation which may lead to damage to property if it is not avoided.

In the ETS tables, the parameter default settings are marked by

underlining.

1. Description

The **KNX eTR M push button** has touch-sensitive buttons, with which functions in the KNX building bus system can be called, such as switch lights and devices, dim, activate drives, send values, scenarios. A white LED is integrated into each touch button, the behaviour of which can be adjusted.

A temperature sensor is integrated into **KNX eTR M**. An external temperature reading can be received via the bus and processed with its own data to create a total temperature (mixed value).

Communication objects can be connected by AND and OR logic gates.

KNX eTR M1 functions:

 1 Touch bus button, can be configured as switch, selector switch, dimmer, blind (position and slats up/stop OR down/stop), shutters (up/down/stop), awning (in/out/stop), window (closed/open/stop), as 8 or 16-bit encoder or for scenario recall/storage

KNX eTR M2 functions:

- 2 Touch bus button, can be configured as switch, selector switch, dimmer, for operating drives, as 8 or 16-bit encoder or for scenario recall/storage
- Area function when touching both push buttons. Can be configured as switch, selector switch, as 8 or 16 bit encoder or for scenario recall

KNX eTR M4 functions:

- 4 Touch bus button, can be configured as switch, selector switch, dimmer, for operating drives, as 8 or 16-bit encoder or for scenario recall/storage
- Area function when touching two or more push buttons. Can be configured as switch, selector switch, as 8 or 16 bit encoder or for scenario recall

Function of all models:

- One LED per touch area. On for object value = 1 / Off for object value = 0, On after pressing button for settable time or always off. Settable, as to whether LED flashes at block object value = 1
- Temperature measurements. Mixed value from own measured value and external values (proportion can be set by percentage)
- 2 AND and 2 OR logic gates each with 4 inputs. 8 logic inputs (in the form
 of communications objects) can be used as inputs for the logic gates. The
 output from each gate can be configured optionally as 1-bit or 2 x 8-bit

Configuration is made using the KNX software ETS 5. The **product file** can be downloaded from the ETS online catalogue and the Elsner Elektronik website on **www.elsner-elektronik.de** in the "Service" menu.

1.0.1. Area function

If the area function in ETS has been activated, another function is available alongside the regular key functions. This is triggered by touching multiple keys, e.g. if you touch the sensor with the palm of your hand.

Using the area function

If a key is pressed and another (different) key is touched within 0.2 seconds, the action set in the ETS is performed for the area operation (See Fig. 1 a) and b)). The keys are then blocked for 0.5 seconds.

Using the normal key function

If a key is pressed and no other key is touched within 0.2 seconds, the normal key function is enabled/provided for 5 seconds (See Fig. 1 c) and d)). This is extended for 5 seconds with each push of the button.

If the area function in the ETS is disabled, the keys can be used normally at any time.

1.0.2. Scope of delivery

- Push button with mounting
- 4 screw anchors 4 x 20 mm, 4 flat head screws 3 x 25 mm

1.1. Technical data

Casing	Genuine glass, plastic
Colours	similar to RAL 9003 signal white similar to RAL 9005 deep black
Installation	on-wall (directly or with a socket Ø 60 mm, resp. cavity wall socket for hole Ø 68 mm)
Degree of protection	IP 10
Dimensions	housing approx. 81,5 x 81,5 (W x H, mm), mounting depth approx. 12 mm
Total weight	approx. 70 g
Ambient temperature	Operating 0+55°C, storage -30+85°C
Ambient humidity	595% RH, avoid condensation
Operating voltage	KNX bus voltage
Bus current	max. 10 mA
Data output	KNX +/- Bus plug-in terminal
Group addresses	max. 183
Allocations	max. 183
Communication objects	KNX eTR M1: 44 KNX eTR M2: 55 KNX eTR M4: 73
Temperature measurement range	0+55°C
Temperature resolution	0.1°C

The product is compliant with the provisions of EU Directives.

1.1.1. Accuracy of the measurement

Measurement variations from permanent sources of interference (see chapter *Installation position*) can be corrected in the ETS in order to ensure the specified accuracy of the sensor (offset).

When **measuring temperature**, the self-heating of the device is considered by the electronics. The heating is compensated by the software.

2. Installation and commissioning

2.1. Installation notes

Installation, testing, operational start-up and troubleshooting should only be performed by an electrician.

CAUTION! Live voltage!

There are unprotected live components inside the device.

- National legal regulations are to be followed.
- Ensure that all lines to be assembled are free of voltage and take precautions against accidental switching on.
- Do not use the device if it is damaged.
- Take the device or system out of service and secure it against unintentional use, if it can be assumed, that risk-free operation is no longer guaranteed.

The device is only to be used for the intended purpose described in this manual. Any improper modification or failure to follow the operating instructions voids any and all warranty and guarantee claims.

After unpacking the device, check it immediately for possible mechanical damage. If it has been damaged in transport, inform the supplier immediately.

The device may only be used as a fixed-site installation; that means only when assembled and after conclusion of all installation and operational start-up tasks and only in the surroundings designated for it.

Elsner Elektronik is not liable for any changes in norms and standards which may occur after publication of these operating instructions.

2.2. Installation location

The **KNX eTR M push button** is made for wall mounting. The device can be mounted directly on plaster or on a socket (\emptyset 60 mm).

May be installed and operated in dry interior rooms only. Avoid condensation.

When selecting an installation location, please ensure that the measurement results are affected as little as possible by external influences. Possible sources of interference include:

- Direct sunlight
- Drafts from windows and doors
- Draft from ducts which lead from other rooms or from the outside to the junction box in which the sensor is mounted
- Warming or cooling of the building structure on which the sensor is mounted,
 e.g. due to sunlight, heating or cold water pipes
- Connection lines and ducts which lead from warmer or colder areas to the sensor

Measurement variations from permanent sources of interference can be corrected in the ETS in order to ensure the specified accuracy of the sensor (offset).

2.3. Device structure

2.3.1. Casing

Fig. 2: Front view
1 Touch areas with LEDs

Fig. 3
Back view with mounting
2/3 Screw holes for different sockets

- 2/3 Screw holes for different sockets. Fastening with 2 screws is sufficient. For wall mounting, use a fixing material suitable for the ground!
- 4 KNX bus terminal +/- for connection when mounted on a socket
- 5 Spring-loaded terminals KNX bus for mounting directly on the wall

Fig. 4

Back view without mounting

- 4 KNX bus terminal +/- for connection when mounted on a socket
- 5 Spring-loaded terminals KNX bus for mounting directly on the wall
- 6 Programming LED
- 7 Programming button (recessed) for teaching device
- 8 Temperature sensor

PRG key is accessible from below/outside when the device is mounted (see chapter Addressing the device).

2.4. Mounting

Prepare the device

Remove the front panel from the mounting. Release the lock by moving the front panel a few millimetres upwards. The two parts can then be easily separated (Fig. 4).

Screw the mounting onto the wall or socket. The connecting wires (bus line +/-) are led through the opening in the mounting.

Installation directly on the wall

Remove the red-black KNX bus terminal, it is not required.

Connect the bus +/- connecting wires to the spring-loaded terminals on the front panel.

The wires are pushed into the connection openings.

Fig. 6 Spring-loaded terminals

To pull it out, press the spring down, e.g. with a screwdriver.

Installation on a socket

If there is a cavity behind the device, e.g. when using a socket, you can use the red/black KNX bus terminal for connection.

To avoid falsifying the temperature value, use a wind-proof socket and also seal the inlet pipes against draughts.

Finish mounting

Snap the front panel into place on the mounting (see Fig. 4): Place it slightly above the centre position, hook it in and slide it downwards.

The mounting must be installed so that the large opening faces downwards (see Fig. 4). This is necessary for a correct temperature measurement and for KNX eTR M2 and KNX eTR M4 also for button allocation.

3. Notes on mounting and commissioning

Never expose the device to water (e.g. rain) or dust. This can damage the electronics. You must not exceed a relative humidity of 95%. Avoid condensation.

After the bus voltage has been applied, the device will enter an initialisation phase lasting a few seconds. During this phase no information can be received or sent via the bus.

3.1. Addressing of the device at the bus

The individual address is assigned via the ETS. A button and a control LED are located on the unit for this purpose (Fig. 4, No. 6+7).

The programming button is located at the bottom outer side of the front panel of the device and is recessed. Use a thin object to reach the button, e. g. a 1.5 mm² wire.

Fig. 7 View from bottom

Temperature sensor

The equipment is delivered with the bus address 15.15.255. Another address can be programmed using the ETS.

When programming mode is active, the programming LED lights up and all other LEDs also flash.

4. Maintenance and care

Fingerprints on the glass panel are best removed with a cloth moistened with water or a microfiber cloth. Do not use an abrasive cleaning agent or aggressive cleansing agents.

5. Disposal

After use, the device must be disposed of or recycled in accordance with the legal regulations. Do not dispose of it with the household waste!

6. Transfer protocol

Units:

Temperatures in degrees Celsius

6.1. List of all communications objects

Abbreviation flags:

C Communication

R Read

W Write

T Transmit

U Update

No	Text	Function	Flags	DPT type	Size
0	Software version	Output	R-CT	[217.1] DPT_Version	2 Bytes
Only	with KNX eTR M2 and KNX eTR	M4			
31	Area operation on/off	Input	-WC-	[1.1] DPT_Switch	1 Bit
32	Area operation Output: Switch	Output	R-CT	depending on setting	2 Bytes
For a	all models				
33	All LEDs On/Off	Input	-WC-	[1.1] DPT_Switch	1 Bit
34	All LEDs Brightness	Input	-WC-	[5.1] DPT_Scaling	1 Byte
35	LED 1 on/off	Input	-WC-	[1.1] DPT_Switch	1 Bit
36	LED 1 Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
Only	with KNX eTR M2 and KNX eTR	M4			
37	LED 2 on/off	Input	-WC-	[1.1] DPT_Switch	1 Bit
38	LED 2 Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
Only	with KNX eTR M4				
39	LED 3 on/off	Input	-WC-	[1.1] DPT_Switch	1 Bit
40	LED 3 Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
41	LED 4 on/off	Input	-WC-	[1.1] DPT_Switch	1 Bit
42	LED 4 Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
For a	all models				
51	Temperature sensor: malfunction	Output	R-CT	[1.1] DPT_Switch	1 Bit
52	Temperature sensor: measured value external	Input	-WCT	[9.1] DPT_Value_Temp	2 Bytes
53	Temperature sensor: measured value	Output	R-CT	[9.1] DPT_Value_Temp	2 Bytes
54	Temperature sensor: measured value total	Output	R-CT	[9.1] DPT_Value_Temp	2 Bytes
55	Temperature sensor: meas- ured value min./max. query	Input	-WC-	[1.17] DPT_Trigger	1 Bit

No	Text	Function	Flags	DPT type	Size
56	Temperature sensor: measured value minimum	Output	R-CT	[9.1] DPT_Value_Temp	2 Bytes
57	Temperature sensor: measured value maximum	Output	R-CT	[9.1] DPT_Value_Temp	2 Bytes
58	Temperature sensor: measured value min./max. reset	Input	-WC-	[1.17] DPT_Trigger	1 Bit
61	Push button 1 long-term	Output	R-CT	[1.8] DPT_UpDown	1 Bit
62	Push button 1 short-term	Output	R-CT	[1.10] DPT_Start	1 Bit
63	Push button 1 switching	Output	R-CT	[1.1] DPT_Switch	1 Bit
64	Push button 1 dimming	Input / Output	RWCT	[3.7] DPT_Con- trol_Dimming	4 Bit
65	Push button 1 encoder 8 bit	Output	R-CT	[5.10] DPT_Value_1_U- count	1 Byte
66	Push button 1 encoder 16 bit	Output	R-CT	[9] 9.xxx	2 Bytes
67	Push button 1 Scene	Output	R-CT	[18.1] DPT_SceneControl	1 Byte
Only	with KNX eTR M2 and KNX eTR	M4			
68	Push button 2 long-term	Output	R-CT	[1.8] DPT_UpDown	1 Bit
69	Push button 2 short-term	Output	R-CT	[1.10] DPT_Start	1 Bit
70	Push button 2 switching	Output	R-CT	[1.1] DPT_Switch	1 Bit
71	Push button 2 dimming	Input / Output	RWCT	[3.7] DPT_Con- trol_Dimming	4 Bit
72	Push button 2 encoder 8 bit	Output	R-CT	[5.10] DPT_Value_1_U- count	1 Byte
73	Push button 2 encoder 16 bit	Output	R-CT	[9] 9.xxx	2 Bytes
74	Push button 2 Scene	Output	R-CT	[18.1] DPT_SceneControl	1 Byte
Only	with KNX eTR M4				
75	Push button 3 long-term	Output	R-CT	[1.8] DPT_UpDown	1 Bit
76	Push button 3 short-term	Output	R-CT	[1.10] DPT_Start	1 Bit
77	Push-button 3 switching	Output	R-CT	[1.1] DPT_Switch	1 Bit
78	Push button 3 dimming	Input / Output	RWCT	[3.7] DPT_Con- trol_Dimming	4 Bit
79	Push-button 3 encoder 8 bit	Output	R-CT	[5.10] DPT_Value_1_U- count	1 Byte
80	Push-button 3 encoder 16 bit	Output	R-CT	[9] 9.xxx	2 Bytes
81	Push button 3 Scene	Output	R-CT	[18.1] DPT_SceneControl	1 Byte
82	Push button 4 long-term	Output	R-CT	[1.8] DPT_UpDown	1 Bit
83	Push button 4 short-term	Output	R-CT	[1.10] DPT_Start	1 Bit
84	Push-button 4 switching	Output	R-CT	[1.1] DPT_Switch	1 Bit
85	Push button 4 dimming	Input / Output	RWCT	[3.7] DPT_Con- trol_Dimming	4 Bit

87 F	Push-button 4 encoder 8 bit Push-button 4 encoder 16 bit Push button 4 Scene	Output	R-CT	[5.10] DPT_Value_1_U-	1 Byte
88 F				count	,
	Push button 4 Scene	Output	R-CT	[9] 9.xxx	2 Bytes
For all		Output	R-CT	[18.1] DPT_SceneControl	1 Byte
	models				
91 L	Logic input 1	Input	-WC-	[1.2] DPT_Bool	1 Bit
92 L	Logic input 2	Input	-WC-	[1.2] DPT_Bool	1 Bit
93 L	Logic input 3	Input	-WC-	[1.2] DPT_Bool	1 Bit
94 L	Logic input 4	Input	-WC-	[1.2] DPT_Bool	1 Bit
95 L	Logic input 5	Input	-WC-	[1.2] DPT_Bool	1 Bit
96 L	Logic input 6	Input	-WC-	[1.2] DPT_Bool	1 Bit
97 L	Logic input 7	Input	-WC-	[1.2] DPT_Bool	1 Bit
98 L	Logic input 8	Input	-WC-	[1.2] DPT_Bool	1 Bit
	AND logic 1: 1 bit switching output	Output	R-CT	[1.2] DPT_Bool	1 Bit
102 A	AND logic 1: 8 bit output A	Output	R-CT	[5.010] DPT Value_1_Ucount	1 Byte
103 A	AND logic 1: 8 bit output B	Output	R-CT	[5.010] DPT Value_1_Ucount	1 Byte
104 <i>A</i>	AND logic 1: Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
	AND logic 2: 1 bit switching output	Output	R-CT	[1.2] DPT_Bool	1 Bit
106 A	AND logic 2: 8 bit output A	Output	R-CT	[5.010] DPT Value_1_Ucount	1 Byte
107	AND logic 2: 8 bit output B	Output	R-CT	[5.010] DPT Value_1_Ucount	1 Byte
108 A	AND logic 2: Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
	OR logic 1: 1 bit switching output	Output	R-CT	[1.2] DPT_Bool	1 Bit
110	OR logic 1: 8 bit output A	Output	R-CT	[5.010] DPT Value_1_Ucount	1 Byte
111 (OR logic 1: 8 bit output B	Output	R-CT	[5.010] DPT Value_1_Ucount	1 Byte
112 (OR logic 1: Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
	OR logic 2: 1 bit switching output	Output	R-CT	[1.2] DPT_Bool	1 Bit
114	OR logic 2: 8 bit output A	Output	R-CT	[5.010] DPT Value_1_Ucount	1 Byte
115 (OR logic 2: 8 bit output B	Output	R-CT	[5.010] DPT Value_1_Ucount	1 Byte
116	OR logic 2: Block	Input	-WC-	[1.1] DPT_Switch	1 Bit

7. Setting the parameters

7.1. Behaviour on power failure/ restoration of power

Behaviour following a failure of the bus power supply:

The device sends nothing.

Behaviour on bus restoration of power and following programming or reset:

The device sends all outputs according to their send behaviour set in the parameters with the delays established in the "General settings" parameter block.

7.2. General settings

Set the basic properties of the data transmission.

Transmission delay after reset/bus restoration	<u>5 s</u> • • 300 s
Maximum message rate	1 message per second 10 messages per second 50 messages per second

7.3. Temperature measured value

Select, whether a **malfunction object** is to be sent if the sensor is faulty.

Use malfunction object	<u>No</u> • Yes
------------------------	-----------------

Use Offsets to adjust the readings to be sent.

Offset in 0.1°C	-5050; 0

The unit can calculate a **mixed value** from its own reading and an external value. Set the mixed value calculation if desired. If an external portion is used, all of the following settings (threshold values, etc.) are related to the overall reading.

Use external measured value	<u>No</u> • Yes
Ext. Reading proportion of the total reading	5% • 10% • • <u>50%</u> • • 100%
Sending pattern for internal and total measured value	never periodically on change on change and periodically

At and above change of (if sent on change)	0.1°C • 0.2°C • <u>0.5°C</u> • • 5.0°C
Send cycle (if sent periodically)	5 s • <u>10 s</u> • • 2 h

The **minimum and maximum readings** can be saved and sent to the bus. Use the "Reset temperature min/max. value" objects to reset the values to the current readings. The values are not retained after a reset.

Use minimum and maximum value	<u>No</u> • Yes
-------------------------------	-----------------

7.4. Push button

On KNX eTR M2 and KNX eTR M4 there is a screen control with an additional function. It is activated by simultaneously touching multiple push buttons. The value of the activation object and the function is set for the screen control.

Set whether you want to use the screen control.

Use screen control	<u>No</u> • Yes
Use screen control	Yes
Activation object assessment	• Value 1 = active Value 0 = inactive • Value 0 = active Value 1 = inactive
Object value after reset	0 • <u>1</u>
Function	 Switch Selector switch 8 bit value 0 255 8 bit value 0 100% 16-bit floating point value Scenario recall
Value (switch)	0 • <u>1</u>
Value (8 bit value 0 255)	0 • • <u>255</u>
Value (8 bit value 0 100%)	0 • • <u>100</u>
Value in 0.1 (16 bit value floating point)	-6707600 • • 6707600; <u>10</u>
Scenario number(Scenario recall)	<u>1</u> • • 64

Enable the push button The menus for the other settings of the push buttons are shown on them.

Use push button 1 (top left)	<u>No</u> • Yes
Use push button 2 (top right)	<u>No</u> • Yes
Use push button 3 (bottom left)	<u>No</u> • Yes
Use push button 4 (bottom right)	<u>No</u> • Yes

7.4.1. Push button 1 / 2 / 3 / 4

Set the function of the push button.

Function	• Switch
	Selector switch
	Blind
	Shutters
	Awning
	Windows
	Dimmer
	8-bit encoder
	• 16-bit encoder
	Scenario recall/ Scenario storage

Push button as switch

Specify which value is sent when pressing/holding the push button and when.

Function	Switch
Command when pressing the button	• 0 Send
	• 1 Send
	Do not send message
Command when releasing the button	• 0 Send
	• 1 Send
	Do not send message
Send value	• If there is a change
	on change to 1
	• on change to 0
	on change and periodically
	on change to 1 and periodically
	• on change to 0 and periodically
Cycle (if transmission is "cyclical")	5 s • • <u>1 min</u> • • 2 h

Push button as selector switch

Specify whether a switch is performed when pressing or holding and whether there is an additional function after holding the push button for a long period.

Function	Selector switch
Use additional function for button held down	<u>No</u> • Yes
Use additional function for button held down	No
Command when pressing the button	Switch Do not send message
Command when releasing the button	Switch Do not send message

Use additional function for button held down	Yes
Time between tap and hold (0.1 sec)	0 50; <u>10</u>
Command when pressing the button	Do not send message
Command when releasing before time expires	• Switch • Do not send message
Command when pressing the button	0 Send 1 Send Switch Do not send message
Command when releasing the button	0 Send 1 Send Switch Do not send message
Send value	If there is a change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Transmission cycle (if cyclically sent)	5 s • <u>10 s</u> • • 2 h

Push button as blind, shutter, awning or window control

Specify the push button function and the control mode.

Function	Blind / shutters / awı	ning / window
Command (button function)	Up • Down	(Blind)
	Up • Down • Up/Down	(Shutters)
	Retract • Extend •	
	Retract/Extend	(Awning)
	Open • Close • Open/	
	Close	
		(Window)
Control mode*	Standard	
	Standard inverted	
	Comfort mode	
	Dead man switch	

^{*} For additional setting details, see 💷 "Control modes for drive control" on page 19

Push button as dimmer

If the push button should be used as a dimmer, select the function "Dimmer" and define the push button function, time interval (switching/dimming) and if required, the repeat interval for extended pressing of the push button.

Function Dimmer	
------------------------	--

Command	Brighter Darker Lighter/Darker
Time between switching and dimming (in 0.1 s)	0 50; <u>5</u>
Repeat the dim command	<u>No</u> • Yes
Repeat the dim command with a long hold of the button	every 0.1 s • • <u>every 0.5 s</u> • • every 2 s
Dim by	100% • • <u>6% •</u> • 1.5%

Push button as 8 bit encoder

If the push button is to be used as an 8-bit encoder, select the function "8-bit encoder" and define which value is to be transmitted.

Range	• 0 255 • 0% 100% • 0° 360°
Value	• 0 255 • <u>0</u> 100 • <u>0°</u> 360°

Push button as 16 bit encoder

If the push button is to be used as a 16-bit encoder, select the function "16-bit encoder" and define which value is to be transmitted.

Value (in 0.1)	-6707600 6707600; <u>0</u>
----------------	----------------------------

Push button as scenario control

If a scenario is to be recalled and saved with a push button, select the "Recall scenario / Save scenario" function and specify whether the push button should also be used to save the scenario (press longer)

Scenario (0-63, corresponds to scenario no. 1-64)	<u>0</u> 63
Scenario function	Call up • Call up and storage
Press button longer than (in 0.1s)> Scenario memory (for call up and storage)	0 <u>50</u>

7.4.2. Control modes for drive control

Behaviour on button actuation in standard control mode:

	short:	hold
Blind	Stop/Step	Up or down
Shutters	Stop	Up or down
Awning	Stop	In or out
Windows	Stop	Closed or open

Standard:

If briefly operated, the drive will move incrementally or stops. If operated longer, the drive will move up to the end position. The time difference between "short" and "long" is set individually.

Control mode	Standard
Behavior during button operation: short = stop/increment long = Up or Down	
Time between short and long in 0.1 seconds	150; <u>10</u>

Standard inverted:

When pushed shortly, the drive moves up to the end position. When pushed for longer, the drive moves incrementally or stops. The time difference between "short" and "long" and the repeat interval is set individually.

Control mode	Standard inverted
Behavior during button operation: short = Up or Down long = Stop/Step	
Time between short and long in 0.1 seconds	150; <u>10</u>
Repeat the step command for a long button press	every 0.1 s • every 2 sec; every 0.5 sec

Comfort mode:

In the **comfort mode** actuating the button briefly, a bit longer and long will trigger different responses of the drive. The time intervals are set individually.

Short actuation (shorter than Time 1): The drive is positioned step-wise and stopped. **Holding it slightly longer** (longer than Time 1, but shorter than Time 1+2): Drive running. Drive stops when the button is released.

Long holding (release after Time 1+2 runs out): Drive moves independently to the end position. The movement can be interrupted by a short tap.

Fig. 8
Time interval comfort mode diagram

Control mode	Comfort mode
Behavior during button operation: Button is pushed and released before time 1 expired = stop/step held longer than time 1 = Up or Down released between time 1 and 1-2= stop released after time 1 +2 = no more stop	
Time 1	0.0s • 2 s; <u>0.4 s</u>
Time 2	0 s • 2 s; 2 s

Dead man's switch:

The drive moves as soon as the button is actuated and stops as soon as the button is released.

Control mode	Dead man's switch
Behavior during button operation: Push button = Up or Down command Release button = Stop command	

7.5. LEDs

Set the LED mode.

L	ED mode	All LEDs off
		 All LEDs as ambient lighting
		All LEDs individually controllable

All LEDs as ambient lighting

If all LEDs are to be used as ambient lighting, illuminate all simultaneously. Set the brightness of the LEDs, whether objects are used and whether the LEDs switch off automatically after pushing the button.

LED mode	All LEDs as ambient lighting
Brightness	0 100%; <u>30%</u>

Use objects	<u>No</u> • Yes
Object value on/off after reset (if objects are used)	0 • <u>1</u>
Use automatic switch-off after pressing a button	No • <u>Yes</u>
Switch off after (is automatic switch off is used)	1 255; <u>30 secs. after pressing</u>

All LEDs individually controllable

This is where you set the brightness of the LEDs, whether objects are used and whether the LEDs switch off automatically after pushing the button.

LED mode	All LEDs individually controllable
	,
Brightness	0 100%; <u>30%</u>
Use objects	<u>No</u> • Yes
Object value on/off after reset	0 • 1
(if objects are used)	_
Function LED 1 (top left) / 2 (top right) / 3	always OFF
(bottom left) / 4 (bottom right)	On after pressing button for settable time
	On for object value = 1 /
	Off for object value = 0
Lighting period after pressing (if "On after	1 5 seconds ; 3 seconds
pressing button for a settable time")	·
Object value after reset (if "On for object	0 • 1
value = 1 / Off for object value = 0)	_
Use block object (if "On for object value = 1	No • Yes
/ Off for object value = 0)	-

7.6. Logic

The device has 8 logic inputs, 2 AND and 2 OR logic gates.

Activate the logic inputs and assign object values up to 1st communication.

Use logic inputs	Yes ● <u>No</u>
Object value prior to 1st communication for	
- Logic input 1 8	<u>0</u> • 1

Activate the required logic outputs

AND logic

AND logic 1/2	not active • active
---------------	---------------------

OR logic

OR logic 1/2	not active • active
--------------	---------------------

7.6.1. AND logic 1+2 and OR logic outputs 1+2

The same setting options are available for AND and OR logic.

Each logic output may transmit one 1-bit or two 8-bit objects. Determine what the out put should send if logic = 1 and = 0.

1. / 2. / 3. / 4. Input	Do not use Logic inputs 18 Logic inputs 18 inverted Temperature sensor malfunction ON Temperature sensor malfunction OFF
Output type	• <u>a 1-bit-object</u> • sends two 8-bit objects

If the **output type is a 1-bit object**, set the output values for the various conditions.

Output value if logic = 1	<u>1</u> •0
Output value if logic = 0	1 • <u>0</u>
Output value If block active	1 • <u>0</u>
Output value if monitoring time exceeded	1 • <u>0</u>

If the **output type is two 8-bit objects**, set the type of object and the output values for the various conditions.

Object type	 value (0255) Percent (0100%) Angle (0360°) Scene call-up (063) 		
Output value object A if logic = 1	0 255 / 100% / 360° / 63; <u>1</u>		
Output value object B if logic = 1	0 255 / 100% / 360° / 63; <u>1</u>		
Output value object A if logic = 0	0 255 / 100% / 360° / 63; <u>0</u>		
Output value object B if logic = 0	0 255 / 100% / 360° / 63; <u>0</u>		
Output value object A If block active	0 255 / 100% / 360° / 63; <u>0</u>		
Output value object B If block active	0 255 / 100% / 360° / 63; <u>0</u>		
Output value object A if monitoring time exceeded	0 255 / 100% / 360° / 63; <u>0</u>		
Output value object B if monitoring time exceeded	0 255 / 100% / 360° / 63; <u>0</u>		

Set the output send pattern.

Transmission behaviour	on change of logic on change of logic to 1 on change of logic to 0 on change of logic and periodically on change of logic to 1 and periodically on change of logic to 0 and periodically on change of logic + object receipt on change of logic + object receipt and cyclically
Send cycle (if sent periodically)	5 s • <u>10 s</u> • • 2 h

Block

If necessary, activate the block for the logic output and set what a 1 or 0 at the block input means and what happens in the event of a block.

Use block	<u>No</u> • Yes
Assessment of the block object	• At value 1: block At value 0: release • At value 0: block At value 1: release
Blocking object value before first Communication	<u>0</u> • 1
Output behaviour when blocking	Do not send message Send block value [see above, output value if block active]
when released (with 2 second release delay)	[send value for current logic status]

Monitoring

If necessary, activate the input monitoring. Set which inputs are to be monitored, at which intervals the inputs are to be monitored and what value the "monitoring status" should have, if the monitoring period is exceeded without a feedback being given.

Use input monitoring	No • Yes
Input monitoring	•1•2•3•4 •1+2•1+3•1+4•2+3•2+4•3+4 •1+2+3•1+2+4•1+3+4•2+3+4 •1+2+3+4
Monitoring period	5 s • • 2 h; <u>1 min</u>
Output behaviour on exceeding the monitoring time	Do not send message Send value exceeding [= value of the parameter "Monitoring period"]

7.6.2. OR LOGIC connection inputs

The OR logic connection inputs are the same as those for the AND logic. Additionally, the following inputs are available for the OR logic:

Switching output AND logic 1 Switching output AND logic 1 inverted Switching output AND logic 2 Switching output AND logic 2 inverted

