Euler class of taut foliations on QHS & Dehn Filling

Ying Hu (UNO)
Dec 03, 2020 GaT Online Seminar, Warwick.

Euler class of taut foliations and Dehn filling, https://arxiv.org/abs/1912.01645. Dec 03, 2019

M is closed oriented irreducible 3-manifold.

M is a rational homology sphere (RHS) (=) $H_{k}(M,R) = H_{k}(S^{3},R)$.

Codimension L poliation (co-orientable)

A decomposition of M into a disjoint union of orientable surfaces. (leaves of the foliation)

Assume lenves are C° [Calegari].

Examples:

 $F \rightarrow M \rightarrow 5'$

Reeb solid torus

* It is taut, if given any point p in M there exists a closed transverse loop passing p.

Ti the tangent plane field of the boliarion I.

Ti STM, Tip is tragent to the leaf at p

By assumption, Ti is orientable.

* Poliation = integrable tangent plane field over M

Enter class e of an oriented plane field $E \rightarrow M$ A cohomology class in $H^2(M)$

= The obstruction to 3 nowhere vanishing T: M→E

* e(E→m)=0 ⇔ 3T ⇔ E→M ≅ M×R²→M.

Question: When is e(T+) = = ?

Question: When does M have a taut foliation \pm with $e(T\pm)=0$?

L-space conjecture

(Boyer-Gordon-Watson, Juhász, Ozsváth - Szabó)

M is an irreducible QHS. Then M admits a taut foliation (=> TII(M) has a left order. (LO)

I - manifold an total order < on TI(M)

TI(M) (V Simply wanted an total order < on TI(M)

South A 1. satisfy a < b () ca < cb citle which TI. (M) (2 1R' nontrivially (Boyer - Rolfson - Wirst)

TI, (M) (25' Thm: M is a QHS.

> 3 tant foliation 7 with e(TF) = 0 => Th(M) has a left-order.

(Thurston: Calegari-Dunfield, Candel, Plante. Boyer - H.)

Prop. (H.) E > m is a tangent plane tield of M. If H2(M) = \$\Pi_2, then e(S) = 0.

Cor. (H.) If H'(M) = DZ2 (including H'(M) = 0). then M admits a taut foliation => TI(M) is LO.

is brivial M TM els) is an "wen" dass e Im (H2(M,2) = H2(M,2))

Dehn filling of X, $\partial X = T^2$

d-Dehn filling X(x)
L slope = simple closed curve

* x <>> = QU(=)

- * X is an ZH solid torus (i.e. $H_*(x) \cong H_*(S^{!} \times D^3)$) $H_2(X,\partial x) = Z \cong [F]$. Fn $\partial X = \lambda$.
- * $H^{2}(X(k)) \cong \mathbb{Z}_{p}$. (?>0)

Thm (H.)
$$\times$$
 is an 2H solid torus.
 f is a foliation on $\times(\frac{p}{k}) = \times \cup 0$ that is transverse to the core 0 . Then
$$e(T4) = 0 \iff a = 1 \pmod{p}$$

Intuition:

" $a = 1 \pmod{p} \iff \exists \tau_1 = X \to T \neq |_X$ $\tau_2 = N \to T \neq |_N$ measures

the notation

of τ_1 along of.

* If 7 is tant, then $|a| \le |x(f)|$ and a is odd. (Thurston)

Applications.

- 1. Compute the Euler class of taut foliations on Dehn fillings of the exterior .
 - O Pibered knots (Roberts, Krishna)
 - 2) Alternating knots (Roberts)
 - 3 Any nontrivial knots (Li-Roberts)

 a= ± N(F).
- => many new LO slopes for these knots
 - 4 Persistently foliar knots (Delman-Roberts)
- I Restriction on slopes.

7hm (H.)

- · S is nowhere dense
- · 5 \ (-25, 25) = 2, 5= 5(F)

$$\mathcal{M}_{1,4}$$
 : $rac{-1}{2}$ 0 $rac{1}{2}$

