Calculating TF-IDF Cosine Scores

tf-idf weighting has may variants

Term frequency		Docum	ent frequency	Normalization			
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1		
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$		
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{\mathit{N}-\mathrm{d}\mathrm{f}_t}{\mathrm{d}\mathrm{f}_t}\}$	u (pivoted unique)	1/u		
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$		
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$						

- 빨간색의 수식이 가장 잘 사용되는 방법
- 다른 방법들은 어떻게 normalizing을 할 것이냐에 따라 조금씩 다름
 - \circ a(augmented) ightarrow 0.5~1의 값이 나오도록
 - \circ p(prob idf) \rightarrow term이 전체 문서에서 반 이상나온다면 가중치 0을 주어 불용어 취급

Weighting may differ in queries VS. documents

- Many search engines allow for different weightings for queries VS. documents
- SMART Notation: denotes the combination in user in an engine, with the notation ddd.qqq, using the acronyms from the previous table
- A very standard weighting scheme is : lnc(document).ltc(query) or lnc.ltn
- Document : logarithmic tf, no idf and cosine normalization
 - o no idf를 사용하는 이유 : you've already put in an IDF factor for the same words in the query.
- query: logarithmic tf, idf, cosine normalization

tf-idf exmaple: Inc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term		Query						Document			
	tf- raw	tf-wt	df	idf	wt	n'liz e	tt-raw	tf-wt	wt	n'liz e	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is *N*, the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

• prod = query's n'lize * document's n'lize

Computing Cosine Scores

Computing cosine scores

CosineScore(q)

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term t
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- for each pair(d, tf_{t,d}) in postings list
- 6 **do** $Scores[d] += w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 **return** Top *K* components of *Scores*[]
- **length normalization of the query is actually unnecessary** because the query vector has some length and for whatever it is, the effective length normalization would just be a rescaling that applies to all query document calculation and wouldn't change the final result.
- 효율적인 알고리즘은 아니지만 가장 general idea 알고리즘

Summary - Vector Space Ranking

• Represent the query as a weighted tf-idf vector

- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- return the top K to the user

출처

• 스탠포드 IR 강의 (https://www.youtube.com/watch?v=k1tD7pYKWuM&list=PLaZQkZp6WhWwoDuD6pQCmgVyDbUWl ZUi&index=13)