# Jzi Kip C= (21 Cz - Cy) 2 Jzi Kip Cx Cz Cm; Cm; Cm) 2 Jviry Cx Cm; Cm; Cm)	Nouly write bragonal entries since me will apply trace				Γ (A ^T)			where you this is the matery of the materials of the ma	(guare ITMENSTOR 65 A)
2 4 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nouly write blagonal entr	13) / mem	E Cm d (1) mitting mitting)	す(x) = 土川の(x)-C川= 土下((の(x)-c)(の(x)-c)) = 土下((の(x)-c)(の(xx)-c)) = 土下(の(xx)-c)(の(xx)- て)) = 土下(の(xx)の(xx)- の(xx)で- しの(xx)で なび)	(Tr(A) = Tr(AT)	$ + \operatorname{Tr} (c c^{\intercal}) $	(46; (1-02(\$1.96,15)) /41. {]	freehol natices to be his compering [if one the fixed row, col so this is is the extripe of the sixty to the	Services (Services of Services
1 2 2 2 2 2 2 2 2 2	1 351 1817) 4 4 4 (14 4 18/17) 19-1 4 4 4 18/17)	1 2 [2] [[[]]]] mem [] [[]] [[]] [[]] [[]] []	2 [2, 0 (; 4, 4, 2, 1)]	= 1 o(xx) - C = 2 Tr { (o(xx) - c) (o(xx) - c)}	7- (co(x)) - co(x) + cc1 } 3-217 {co(xx) 3 + To {cc7}	(my) - 2 th for (th) 1 (cc)].	$\frac{51}{5n_{1j}} = \pm \left[\frac{n}{4} \left\{ 2 \sigma \left(\frac{n}{4} \lambda_{ki} \kappa_{ij} \right) \left(1 - \sigma^{2} \left(\frac{n}{4} \lambda_{ki} \kappa_{ij} \right) \right) \gamma_{ki} \right\} - 2 \frac{n}{4} (4n_{1j} \left(1 - \sigma^{2} \left(\frac{n}{4} \lambda_{ki} \kappa_{ij} \right) \right) \gamma_{ki} \right\} \right] \\ = \frac{n}{4} \left[\frac{n}{4} \left[\frac{1}{4} - \sigma^{2} \left(\frac{n}{4} \lambda_{ki} \kappa_{ij} \right) \right] \left[\sigma \left(\frac{n}{4} \lambda_{ki} \kappa_{ij} \right) - c_{kj} \right] \right]$	= = = 1 1 - 02 (2 / 1/4 / 1/4)] [0 (2 / 1/4 / 1/4) - C/4] .	
Y= 1/21 1/21 - 1/21 Y = 1/21 1/22 Jun/man	$a(X) = \sum_{j=1}^{L} a^{Lj} \left(\frac{1}{x} \left(\frac{1}{x} \right)^{2} a^{Lj} \right)$	P. M. T. P.	ce(jx) = ce(jx) =	$\frac{1}{2} (x) = \frac{1}{2} \ \sigma(yx) - C \ _{F}^{2}$ $= \frac{1}{2} Tr \left\{ \sigma(yx) \sigma(yx)^{-1} \right\}$	= = = Tr { = (xx) = (xx)^T -	= 2 [Rest jet 02 (4 1/2) / 1/2 1/2	5 = \(\frac{\alpha}{\alpha_{1}}\)\{\alpha}\(\beta\)\(\frac{\alpha}{\alpha_{1}}\)\{\alpha}\(\beta\)\(\frac{\alpha}{\alpha_{1}}\)\(\fr	= K=1 18; [1 - 02 (2)	e sagar