Kako se lotiš: Diferencialnih enačb

Patrik Žnidaršič

Prevedeno 16. januar 2024

Navadne diferencialne enačbe

NAVADNA DIFERENCIALNA ENAČBA k-TEGA REDA je enačba oblike

$$\vec{F}(t, x(t), x'(t), \dots, x^{(k)}(t)) = 0,$$

kjer je $x: \mathbb{R}^n \to \mathbb{R}^n$ funkcija, ki reši enačbo. Če je x vektorska funkcija (n > 1), enačbi pravimo SISTEM NDE. Za enačbo pravimo, da je AVTONOMNA, če F ni eksplicitno odvisna od t. Neavtonomen sistem lahko spravimo v avtonomnega tako, da uvedemo še eno odvisno spremenljivko v(t), ter enačbo $\dot{v} = 1$.

1 Prvi integral

Splošna rešitev enačbe y' = f(x,y) je enoparametrična družina funkcij y = y(x,C). Če obstaja funkcija u(x,y), za katero velja u(x,y(x,C)) = konst. za vsak C, jo imenujemo PRVI INTEGRAL ENAČBE. Vsaka implicitno podana krivulja y(x) z enačbo u(x,y) = D, kjer je u prvi integral neke diferencialne enačbe, je rešitev te diferencialne enačbe. Iskanje prvega integrala je torej kvečjemu močnejše od reševanja diferencialne enačbe.

Če imamo dano vektorsko polje $F=(P,Q):\mathbb{R}^2\to\mathbb{R}^2$, lahko poiščemo ortogonalne krivulje nanj z diferencialno enačbo

$$y' = -\frac{P}{Q}.$$

Če je polje potencialno s potencialom u, iste krivulje poiščemo z

$$y' = -\frac{\partial_x u}{\partial_y u},$$

torej je u prvi integral te enačbe. Ker potencial načeloma znamo poiskati z integralom, lahko enačbo rešimo. Če pa polje ni potencialno, mora obstajati funkcija $\lambda = \lambda(x,y)$, ki jo imenujemo integrirujoči množitelj, za katero je polje $(\lambda P, \lambda Q)$ potencialno. Če nam tako funkcijo uspe najti, smo enačbo rešili, njen prvi integral je enak

$$u(x,y) = \int_{(x_0,y_0)}^{(x,y)} \lambda P dx + \lambda Q dy.$$

Ko iščemo λ , si lahko pomagamo z enakostjo $\partial_x(\lambda Q) = \partial_y(\lambda P)$.

Včasih dobimo enačbo oblike Pdx + Qdy = 0. Če velja $P_y = Q_x$, je enačba EKSAKTNA, s prvih integralom u, za katerega velja $u_x = P$, $u_y = Q$. Rešitev je potem implicitno podana z nivojnico u = C. Če ni eksaktna, poskušamo najti integrirujoči množitelj.

2 Parametrično reševanje

Če imamo implicitno podano NDE prvega reda F(x, y, y') = 0, lahko nanjo gledamo kot na ploskev v \mathbb{R}^3 s substitucijo p = y'. Potem lahko enačbo obravnavamo na tri načine:

- Če y ne nastopa v F, parametriziramo nastalo krivuljo z x = x(t) in p = p(t). Parametrizacijo odvajamo in uporabimo dejstvo dy = pdx. Iz tega dobimo krivuljo $x \mapsto (x, y(x))$, ki je rešitev enačbe.
- Če x ne nastopa v F, spet parametriziramo y = y(t) in p = p(t), ter uporabimo dy = pdx. Iz tega lahko izračunaš krivuljo $t \mapsto (x(t), y(t))$, ki je rešitev DE.
- Če lahko enega od x, y, p eksplicitno izraziš, ta predpis direktno vstaviš v dy = pdx, in rešitev izraziš parametrično.

3 Tok

Naj bo dano vektorsko polje V. Tokovnica tega polja je taka krivulja γ , da velja $\dot{\gamma}(t) = V(\gamma(t))$. Tok je preslikava $(x,t) \mapsto \phi_t(x) \in \mathbb{R}^n$, da je $t \mapsto \phi_t(x)$ tokovnica za vsak x, in $\phi_0(x) = x$ za vse x.

Če imamo dano polje v polarnih koordinatah $(\dot{r}, \dot{\varphi}) = W(r, \varphi)$, ga lahko transformiramo v kartezične koordinate z

$$V = (\dot{x}, \dot{y}) = D_{\psi}(\eta(t))(\dot{r}, \dot{\varphi}),$$

kjer je $\eta(t) = (r(t), \varphi(t))$ in $\psi(r, \varphi) = (x, y)$.

4 Enačbe drugega reda

Naj bo dan sistem

$$\dot{\vec{q}} = \vec{G}(\vec{q}, \vec{p}),$$

$$\dot{\vec{p}} = \vec{F}(\vec{q}, \vec{p}).$$

Če obstaja taka funkcija $H: M \subseteq \mathbb{R}^{2n} \to \mathbb{R}$, da je

$$\partial_{\vec{q}}H = -\vec{F},$$
$$\partial_{\vec{p}}H = \vec{G},$$

potem pravimo, da je sistem HAMILTONSKI, funkciji H pa pravimo HAMILTONIAN. Tedaj je H tudi prvi integral enačbe. Da je sistem hamiltonski, mora biti vektorsko polje $(-\vec{F}, \vec{G})$ potencialno.

5 Cauchyjeve naloge

CAUCHYJEVA NALOGA ali ZAČETNI PROBLEM je sistem enačb

$$y' = f(x, y),$$
$$y(x_0) = y_0.$$

Izrek (Eksistenčni izrek). Dana je Cauchyjeva naloga y' = f(x, y), $y(x_0) = y_0$. Če je $f: C_{a,b} \to \mathbb{R}$ zvezna in Lipscitzova v spremenljivki y, kjer je

$$C_{a,b} = [x_0 - a, x_0 + a] \times [y_0 - b, y_0 + b],$$

obstaja enolična rešitev \tilde{y} , definirana na $(x_0 - \alpha, x_0 + \alpha)$, kjer je

$$\alpha = \min\{a, \frac{b}{M}, \frac{1}{L}\},$$

$$M = \max_{C_{a,b}} |f(x, y)|.$$

 $\check{C}e \ je \ f \in \mathcal{C}^k$, je tok tudi \mathcal{C}^k .

Lipscitzov pogoj lahko zamenjamo s pogojem, da je f zvezno odvedljiva. Izrek je pomemben, ker poleg obstoja zagotavlja tudi enoličnost rešitve. Če moramo dokazati, da je rešitev tudi globalno enolična, lahko uporabo izreka verižimo od začetne točke; če dobimo, da je rešitev enolična na razdalji α od začetne točke, se postavimo v točko $\frac{1}{2}\alpha$, tam uporabimo izrek, in (pod predpostavko, da se maksimalna razdalja ne zmanjša) dobimo obstoj in enoličnost do $\frac{3}{2}\alpha$. Postopek lahko potem nadaljujemo. Obstoj globalne rešitve pa lahko pokažemo tudi z naslednjo lemo:

Lema. Naj rešitev Cauchyjeve naloge obstaja na nekem intervalu (σ, ω) za $\sigma, \omega \in [-\infty, \infty]$.

• Če je $\omega < \infty$, potem

$$\lim_{x \to \omega} |y(x)| = \infty.$$

• Če je $\sigma > \infty$, potem

$$\lim_{x \to \sigma} |y(x)| = \infty.$$

6 Linearni sistemi NDE

Rešitev sistema $\dot{x}=Ax+b$ je vsota homogene in partikularne rešitve. Za homogen sistem $\dot{x}=Ax$ poiščemo fundamentalno rešitev

$$\phi = e^{At} = Pe^{Jt}P^{-1},$$

kjer je $A = PJP^{-1}$ Jordanov razcep. Za dobljeno matriko velja $\dot{\phi} = A\phi$ in $\phi(0) = I$, njeni stolpci podajajo bazo rešitev sistema. Če je $x(0) = x_0$ začetni pogoj, je ϕx_0 rešitev začetnega problema.

Partikularno rešitev poiščemo z nastavkom

$$x_p(t) = \int_0^t \phi(t)\phi(s)^{-1}b(s)ds = Pe^{Jt}\int_0^t e^{-Js}P^{-1}b(s)ds.$$

7 Linearne NDE višjega reda

Za homogeno enačbo

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = 0$$

zapišemo karakteristični polinom

$$f(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \ldots + a_n = 0.$$

Rešitve enačbe so vsote funkcij oblike

$$p(x)e^{\lambda_i x}$$
,

kjer je ničla $\lambda_i \in \mathbb{R}$ in $\deg p = \deg_f \lambda_i - 1$, ter funkcij oblike

$$q_1(x)e^{\Re\lambda_i\cdot x}\cos(\Im\lambda_i\cdot x)$$
 $q_2(x)e^{\Re\lambda_i\cdot x}\sin(\Im\lambda_i\cdot x)$

za $\deg q_1 = \deg q_2 = \deg_f \lambda - 1$ in kompleksno ničlo λ_i .

Če je desna stran oblike $p(x)e^{\mu x}$, je postopek reševanja opisan v razdelku 9.10, za splošno desno stran pa vzamemo linearno neodvisne rešitve homogenega dela y_1, \ldots, y_n , in poiščemo še partikularno rešitev z variacijo konstante

$$y_n = C_1(x)y_1 + \ldots + C_n(x)y_n.$$

8 Variacijski račun

Dana je $L: \mathbb{R}^3 \to \mathbb{R} \in \mathcal{C}^2$ ter funkcional

$$\mathcal{L}(y) = \int_{a}^{b} L(x, y, y') dx$$

na prostoru vseh C^2 funkcij $y:[a,b]\to\mathbb{R}$, za katere veljata robna pogoja y(a)=A in y(b)=B. Iščemo ekstreme tega funkcionala. Le-ti zadoščajo Euler-Lagrangeovi enačbi

$$L_y(x, y, y') - \partial_x L_{y'}(x, y, y') = 0,$$

kjer si pri odvajanju po y in y' (indeksa) mislimo, da sta to neodvisni spremenljivki, pri odvajanju po x (∂_x) pa upoštevamo y = y(x). Ko enačbo rešiš, dobiš predpis za y z dvema konstantama; konstanti določiš tako, da predpis vstaviš v robna pogoja. Če kakšnega robnega pogoja ne poznaš, ga nadomestiš z

$$L_{y'}(x_0, y(x_0), y'(x_0)) = 0,$$

kjer je x_0 tisti izmed a, b, za katerega ne poznaš začetne vrednosti.

Poznamo tudi dva posebna primera:

- Če je L = L(x, y'), velja Ly' = konst.. V tem primeru ne potrebujemo vstavljati v Euler-Lagrangeovo enačbo.
- Če je L = L(y, y'), uporabimo Bertranijevo identiteto $L y'L_{y'} = \text{konst.}$. V tem primeru moraš preveriti, da je dobljena rešitev dejansko rešitev Euler-Lagrangeove enačbe.

Podobno lahko delamo tudi v več dimenzijah; če je $y=(y_1,\ldots,y_n)$ iskana preslikava, preprosto uporabimo Euler-Lagrangeovo za vsako komponento posebej;

$$L_{y_i} - \partial_x(L_{y_i'}) = 0.$$

Če je L odvisen tudi od odvodov višjih redov, uporabiš Euler-Poissonovo enačbo

$$\sum_{k=0}^{n} (-1)^k (\frac{d}{dx})^k L_{y^{(k)}} = 0.$$

9 Pogosti postopki reševanja

9.1 Enačba z ločljivima spremenljivkama

Če imamo enačbo oblike

$$\dot{x} = f(t)g(x),$$

jo predelamo v

$$\frac{\dot{x}}{g(x)} = f(t),$$

in integriramo obe strani. Če je H primitivna funkcija $^{1}/g$, in F primitivna funkcija f, velja

$$x(t) = H^{-1}(F(t) + C)$$

za poljubno konstanto $C \in \mathbb{R}$.

9.2 Enačba s homogeno desno stranjo

Če je $\dot{x}=f(t,x)$, kjer velja $f(t,x)=f(\lambda t,\lambda x)$ za vse $\lambda\in\mathbb{R}\setminus\{0\}$, vpeljemo spremenljivko

$$v = \frac{x}{t} \qquad \qquad \dot{x} = t\dot{v} + v.$$

Ker velja $\dot{x} = f(1, v)$, dobimo enačbo

$$\dot{v} = \frac{1}{t}(f(1,v) - v),$$

to je enačba z ločljivima spremenljivkama, nadaljuješ kot v razdelku 9.1.

9.3 Enačbe višjega reda

Dana je enačba $F(x, y, y', \dots, y^{(n)}) = 0$. Imamo tri pristope:

- Če F ni odvisna od y, znižamo red z z = y'.
- Če F ni odvisna od x, znižamo red z z(x)=y'(y); pri tem velja $\partial_y z=y''/y'$.
- Če je $F(x, \lambda y, \dots, \lambda y^{(n)}) = \lambda^k F(x, y, \dots, y^{(n)})$, znižamo red z z = y'/y.

9.4 Linearna NDE prvega reda

Linearna NDE prvega reda je enačba oblike

$$y' = f(x)y + g(x).$$

Rešiš jo tako, da prvo rešiš homogeno enačbo

$$y' = f(x)y,$$

ki je enačba z ločljivimi spremenljivkami, rešitev poiščeš kot v razdelku 9.1. Vedno dobiš

$$y_h = C \exp\left(\int_a^x f(\xi)d\xi\right).$$

Splošna rešitev bo enaka vsoti homogene in partikularne rešitve. Slednjo poiščemo z nastavkom

$$y_p = C(x) \exp\left(\int_a^x f(\xi)d\xi\right),$$

postopku pravimo VARIACIJA KONSTANTE. Če nastavek vstavimo v originalno diferencialno enačbo, dobimo

$$C'(x) \exp\left(\int_a^x f(\xi)d\xi\right) = g(x).$$

Ko to integriramo, dobimo preslikavo C(x), in rešitev

$$y = C(x) \exp\left(\int_{a}^{x} f(\xi)d\xi\right) + D \exp\left(\int_{a}^{x} f(\xi)d\xi\right),$$

kjer je $D \in \mathbb{R}$ poljuben parameter (ki pride od homogene rešitve).

9.5 Bernoullijeva enačba

Bernoullijeva enačba je enačba oblike

$$p(x)y' + q(x)y = r(x)y^{\alpha}(x)$$

za nek $\alpha \in \mathbb{R}$. Če je $\alpha = 0$ ali $\alpha = 1$, sistem rešimo po razdelku 9.4. V nasprotnem primeru vpeljemo

$$z(x) = (y(x))^{1-\alpha},$$
 $z'(x) = (1-\alpha)y^{-\alpha}(x)y'(x).$

Če začetno enačbo delimo z $y^{-\alpha},$ dobimo

$$py'y^{-\alpha} + qy^{1-\alpha} = r,$$

oziroma

$$z' + \frac{q}{p}(1 - \alpha)z = \frac{r}{p}(1 - \alpha),$$

kar je nehomogena NDE prvega reda, ki jo rešimo po razdelku 9.4.

9.6 Riccatijeva enačba

Riccatijeva enačba je enačba oblike

$$y' = a(x)y^2 + b(x)y + c(x),$$

ki je v splošnem ne znamo rešiti. Če uganemo neko partikularno rešitev y_p , lahko uporabimo nastavek $y=y_p+z$, ki nam enačbo reducira na

$$z' = (2ay_p + b)z + az^2,$$

kar je Bernoullijeva enačba za $p=1, q=(-2ay_p+b), r=a$ in $\alpha=2$. Rešimo jo po postopku v razdelku 9.5.

9.7 Clairontova enačba

Clairontova enačba je enačba oblike

$$y = xy' + \psi(y').$$

Rešujemo jo parametrično, torej zapišemo p=y' in uporabimo dy=pdx. Ko dobimo splošno rešitev $y=Cx+\psi(C)$, zapišemo $G(x,y,C)=y-Cx-\psi(C)$, izračunamo še singularno rešitev z enačbama G=0 in $\partial_C G=0$.

9.8 Lagrangeova enačba

Lagrangeova enačba je enačba oblike

$$y = x\phi(y') + \psi(y').$$

Rešujemo jo parametrično, torej zapišemo p = y' in uporabimo dy = pdx. S tem se enačba prevede na linearno, ki jo rešimo kot v razdelku 9.4.

9.9 Eulerjeva enačba

Za reševanje Eulerjeve enačbe

$$a_0 x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + \ldots + a_n y = 0$$

uporabimo nastavek $y(x) = x^{\lambda}$. V postopku poiščemo ničle polinoma

$$q(\lambda) = a_0 \lambda(\lambda - 1) \dots (\lambda - n + 1) + a_1 \lambda(\lambda - 1) \dots (\lambda - n + 2) + \dots + a_{n-1} \lambda + a_n$$

Rešitev je vsota funkcij

$$p(\ln x)x^{\lambda}$$

za realno ničlo λ in $\deg p = \deg_f \lambda - 1.$ Za kompleksen λ pa

$$q_1(\ln x)x^{\Re\lambda}\cos(\Im\lambda\cdot x)$$
 $q_2(\ln x)x^{\Re\lambda}\sin(\Im\lambda\cdot x).$

9.10 Posebne nehomogene linearne NDE višjega reda

Za enačbo oblike

$$a_0 y^{(n)} + \ldots + a_{n-1} y' + a_n y = p(x) e^{\mu x}$$

je rešitev oblike $y_h + y_p$. Homogen del poiščemo kot v razdelku 7, partikularen del pa je oblike

$$y_p = e^{\mu x} q(x) x^k,$$

kjer je $\deg q = \deg p$ in $k = \deg_f \mu$ za polinom f iz razdelka 7.

Podobno rešimo tudi enačbo oblike

$$a_0 x^n y^{(n)} + \ldots + a_{n-1} x y' + a_n y = x^{\mu} p(\ln x)$$

kot $y=y_h+y_p$, kjer homogen del poiščemo kot v razdelku 9.9, partikularen pa z

$$y_p = x^{\mu} r(\ln x) (\ln x)^k$$

za $\deg r = \deg p$ in $k = \deg_q \mu$. Tu smo se sklicali na polinom q iz razdelka 9.9.

10 Razno

10.1 Iskanje ortogonalnih krivulj

Če imamo dano krivuljo y(x), in iščemo nanjo pravokotne krivulje, prvo odvajamo predpis za to krivuljo, da dobimo enačbo y = f(x, y'). V tej enačbi nato zamenjamo pojavitve y' z $^{-1}/y'$, da dobimo enačbo za ortogonalne trajektorije.

10.2 Determinanta Wronskega

Če imamo homogeno linearno NDE višjega reda

$$a_0 y^{(n)} + \ldots + a_{n-1} y' + a_n y = 0,$$

in zložimo bazne rešitve ter njihove odvode v matriko

$$\phi = \begin{bmatrix} y_1 & \cdots & y_n \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \cdots & y_n^{(n-1)} \end{bmatrix},$$

lahko zapišemo determinanto Wronskega kot $W(x) = \det \phi(x)$. Zanjo velja $W'(x) = \operatorname{tr}(A)W(x)$.

V dvodimenzionalnem primeru, ko ima enačba obliko

$$y'' + py' + qy = 0,$$

lahko z determinanto Wronskega poiščemo drugo rešitev, če prvo že imamo. Če sta u in v dve linearno neodvisni rešitvi, za determinanto W=uv'-u'v namreč velja W'+pW=0 ter

$$v = u \int \frac{W}{u^2} dx.$$

Če imamo enačbo in eno rešitev, prvo poiščemo W z diferencialno enačbo W' + pW = 0 (če je p = 0, pride W = konst., kar je popolnoma sprejemljivo), nato pa poiščemo drugo rešitev z zgornjim integralom.