CLAIMS

1	1. A method for detecting beats in a compression encoded audio bitstream, said
2	method comprising the steps of:
3	determining a baseline beat position using modified discrete cosine transform
4	coefficients obtained from the audio bitstream;
5	deriving a search window-switching pattern from the audio bitstream;
6	determining a window-switching beat position using said search window-
7	switching pattern;
8	comparing said baseline beat position with said window-switching beat
9	position; and
10	validating said window-switching beat position as a detected beat if a
11	predetermined condition is satisfied.
1	2. A method as in claim 1 further comprising the step of determining an inter-
2	heat interval related to said baseline heat position

- 1 3. A method as in claim 2 further comprising the step of storing said window-
- 2 switching beat position and said inter-beat interval for subsequent retrieval.
- 1 4. A method as in claim 1 wherein said step of determining a baseline beat
- 2 position comprises the step of determining at least one beat candidate and an inter-
- 3 onset interval.

- 1 5. A method as in claim 4 wherein said step of determining a baseline beat
- 2 position further comprises the step of checking said at least one beat candidate for
- 3 reliability using a predetermined confidence threshold value.
- 1 6. A method as in claim 4 further comprising the step of converging two or more
- 2 said beat candidates to a single beat candidate.
- 1 7. A method as in claim 1 wherein said step of deriving baseline beat information
- 2 from the audio bitstream comprises the step of deriving an energy value for at least
- 3 one subband from the compression encoded audio bitstream.
- 1 8. A method as in claim 7 wherein said subband comprises a member of the
- 2 group consisting of a frequency interval from 0 to 459 Hz, a frequency interval from
- 3 460 to 918 Hz, a frequency interval from 919 to 1337 Hz, a frequency interval from
- 4 1.338 to 3.404 kHz, a frequency interval from 3.405 to 7.462 kHz, and a frequency
- 5 interval from 7.463 to 22.05 kHz.
- 1 9. A method as in claim 7 wherein said step of deriving a beat position comprises
- 2 the step of identifying a maximum energy value within a search window.
- 1 10. A method as in claim 7 wherein said step of deriving an energy value for at
- 2 least one subband comprises the step of deriving an absolute energy value.
- 1 11. A method as in claim 7 wherein said step of deriving an energy value for at
- 2 least one subband comprises the step of deriving an element-to-mean energy value.
- 1 12. A method as in claim 7 wherein said step of deriving an energy value for at
- 2 least one subband comprises the step of deriving a differential energy value.

1	13. A beat detector suitable for placement into an audio device conforming to a
2	compression-encoded audio transmission protocol, said beat detector comprising:
3 4	a modified discrete cosine transform coefficient extractor, for obtaining transform coefficients;
5 6	at least one band feature value analyzer for analyzing a feature value for a related band;
7	a confidence score calculator; and
8 9	a converging and storage unit for combining two or more said analyzed band feature values.
1	14. The beat detector as in claim 13 wherein said feature value comprises a
2	member of the group consisting of an absolute energy value, an element-to-mean
3	energy value, and a differential energy value.
1 2	15. The beat detector as in claim 14 further comprising an element-to-mean ratio threshold comparator.
1	16. An audio encoder suitable for use with a compression-encoded audio
2	transmission protocol, said audio encoder comprising:
3	a beat detector including
4	a modified discrete cosine transform coefficient extractor, for obtaining
5	transform coefficients;
6	at least one band feature value analyzer for analyzing a feature value for a
7	related band;
8	a confidence score calculator; and 28 73436_1

9	means for including beat detection information as side information in audio
10	transmission.
1	17. An audio decoder suitable for use with a compression-encoded audio
2	transmission protocol, said audio decoder comprising:
3	a beat detector for providing beat position information, said beat detector
4	including
5	a modified discrete cosine transform coefficient extractor, for obtaining
6	transform coefficients;
7	at least one band feature value analyzer for analyzing a feature value for a
8	related band;
9	a confidence score calculator; and
10	error concealment means for concealing packet loss in audio transmission by
11	utilizing said beat position to identify audio data for replacement of
12	packet loss.