Chapter 10

Introduction to Artificial Neural Networks with Keras

And now for something different ...

Agenda

- Biologic Neurons and Neural Networks
- Artificial Neurons and Neural Networks
- Demo
 - TensorFlow
 - Keras

Animal Neuron

Animal Neural Network

Artificial Neuron

Artificial Neuron

Example Activation Functions

- Step (Perceptron)
- Binary
 - If x > threshold = 1 then x else 0
 - If x > 0.5 then 1 else 0 (Perceptron)
- Uncommon

- ReLU Rectified Linear Unit
- F(x) = max(0, x)
 - If x < 0 then 0 else x
- Common
- A parameter you set

Artificial Neuron

Neural Network Layers

Neural Network

- Train with batches of input data
- Training goal is to minimize error
- Training adjusts weights and biases using settings you specify
 - Epochs times through dataset
 - Batch Size # of random samples in a batch
 - Loss Function measures loss (error)
 - Optimizer updates weights to reduces loss
- Backward propagation of error (BackProp)
 - From Output towards Input
 - Adjust weights using optimizer to reduce loss
- Notes
 - Order and contents of training batches changes
 - 2+ Hidden layers -> Deep Neural Network

• Loss Space for ResNet-56

DEMO ENVIRONMENT

- Colab
- TensorFlow
- Keras
- Fashion MNIST Dataset

Fashion MNIST Dataset

- Clothing item recognition
 - 10 classes
- Fashion MNIST dataset
 - https://github.com/zalandoresearch/fashion-mnist
- Replacement for MNIST handwritten digits
 - Too easy for NN 99.7% accuracy common
 - Overused
 - Not representative of modern problems

Fashion MNIST Dataset

- 70,000 data points
 - 60,000 training & validation
 - 10,000 testing
- Each data point contains
 - 28 X 28 grayscale image (low-res)
 - Image class (0-9)
- Some images in different classes have similar appearance (sneaker/sandal)

Model Architecture


```
__modifier_ob.
 mirror object to mirro
mirror_object
peration == "MIRROR_X":
mirror_mod.use_x = True
mirror_mod.use_y = False
irror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
"Irror_mod.use_y = True"
 lrror_mod.use_z = False
 _operation == "MIRROR_Z":
 fror_mod.use_x = False
 __mod.use_y = False
 lrror_mod.use_z = True
 selection at the end -add
  ob.select= 1
  er ob.select=1
  ntext.scene.objects.action
  "Selected" + str(modified
   irror ob.select = 0
  bpy.context.selected_obje
  Mata.objects[one.name].sel
 int("please select exaction
  OPERATOR CLASSES ----
   vpes.Operator):
    X mirror to the selected
   ject.mirror_mirror_x"
  Fror X"
 ext.active_object is not
```

Demo

<u>SanDiego-ML/Hands on ML Chapter 10.ipynb at main</u> · JerryKurata/SanDiego-ML (github.com)

Network Tuning

- Based on experience
- Adjustments
 - Data
 - Arrangement of layers
 - Types of layers
 - Number of Hidden layers
 - Neurons per layer
 - Hyperparameters
 - Batch size, Learning rate, ...
- Covered in later chapters