图像视频编码大实验

陈嘉杰 2017011484

Exp1 Are they equivalent in effect?

子任务1 转换为灰度图片

见代码 grayscale.py ,直接采用 PIL 的相关函数即可。

原图:

灰度:

子任务2 尝试用不同方式对图片进行 DCT

代码在 lena_dct_exp1.py 中。

第一个方法是,先对行再对列进行 DCT ,第二个方法是,对整个图进行 DCT,这两个方法在数学上是等价的,只不过在后面 1/4 1/16 和 1/64 时权值的选取上可以有不一样的结果,后面会继续讨论。

第三个方法则是分割成 8x8 以后进行 DCT。

相关代码:

```
1 def dct2d(data):
2    return fftpack.dct(fftpack.dct(data, norm='ortho').T,
    norm='ortho').T
3
4 def idct2d(data):
5    return fftpack.idct(fftpack.idct(data, norm='ortho').T,
    norm='ortho').T
```

第一个和第二个方法得到的DCT的图:

可以看到,左上角的数值是比较大的,其他地方的数都很小,比较符合 DCT 的特征。

切分为 8x8 以后也有类似的分布:

也是只有左上角一到两个像素比较大。

在运行时间上,设图片都是正方形,边长为 n ,那么第一种方法需要循环 n * n * n * 2 ,第二种方法需要 n * n * n * n 次,第三种方法需要 8 * 8 * 8 * 8 * 8 * (n/8) * (n / 8) = 64 * n * n , 当 n 比较大的时候第三种方法最快。

代码输出了对应的 PSNR 值。由于第一种方法和第二种方法在数学上是相等的,代码中只用了第一种方法进行计算,得到 PSNR 为 315.48 ,比第三种方法的 PSNR 315.45 略大,说明考虑到计算精度的时候,第一种方法比第三种方法能留下更精确的信息。

接着对 DCT 之后的系数进行了"压缩",题目要求 1/4 1/16 和 1/64 ,首先对 8*8 的格子进行了 DCT 系数的选取,方法是,如果是 1/4 ,则选取左上角的 4*4,剩下为零,其它依此类推。再用 IDCT 恢复`到原来的图像,相关代码:

```
1 def matrix_select(data, side):
2    x, y = data.shape
3    result = np.zeros(data.shape)
4    for i in range(int(x/side)):
5        for j in range(int(y/side)):
6         result[i,j] = data[i,j]
7    return result
8
```

对比如下:

直接还原:

1/4 的情况:

1/16 的情况:

1/64 的情况:

可以看到,随着压缩率不断增加,图片清晰度也逐渐下降,但仍然保留了比较多原始的信息。由于分块 是按照 8x8 的,所以最后 1/64 比例时,每个 8*8 的块都是同一个像素值,显示出了明显的颗粒感。

直接对 2D DCT 进行类似的系数选取后,即对整个图片计算 2D DCT 后,保留左上角的一片系数,剩下都设置为 0,再 IDCT 恢复:

```
1 # 1/side^2 coefs
2 def full_compress(side):
3    idct_4 = np.zeros(data.shape)
4    dct_4 = matrix_select(dct,side)
5    idct_4 = idct2d(dct_4)
6    Image.fromarray(idct_4.clip(0,
        255).astype('uint8')).save('lena_2ddct_%d_2didct.png' % (side ** 2))
7    mse = np.mean((data - idct_4) ** 2)
8    psnr = 10 * np.log10(255.0 ** 2 / mse)
9
10 full_compress(2) # 1/4
11 full_compress(4) # 1/16
12 full_compress(8) # 1/64
```

原始图片:

1/4 的情况:

1/16 的情况:

1/64 的情况:

可以看到,图片压缩率越高,清晰度也在不断下降,但是下降的形式和之前 8*8 时不大一样。因为是直接对全图的 DCT 系数进行压缩,所以在 1/64 的时候看到一些很明显的波纹,这些对应着留下来的部分 DCT 系数。

接下来是采用 PPT 文档中所描述的 DCT 系数选取方法,即先对行进行 DCT ,选取一半的列以后,对这一部分再进行 DCT ,剩余部分都为 0 。按照这样的策略,得到的图片为:

原始图片

1/4:

1/16:

1/64:

可以看到,也出现了一些比较明显的线条,和之前的结果类似。虽然操作顺序不同,但和之前 2D-DCT 最后取左上角的结果是一致的,所以最后得到的图片也是一样的,只是在运行时间上不一样而已。

Exp2 Why quantization is so important?

子任务 1 分块量化并计算平均 PSNR

代码在 lena_dct_exp2.py 中。

首先分块为 8x8 的小块,对每一块进行量化,代码如下:

```
1 def quantize(matrix, data, a):
2    qq = a * matrix
3    return np.round(data / qq) * qq
```

按照矩阵中对应的值,近似到最近的倍数上,a是Q的系数。通过计算,得到平均的 PSNR 为 38.28 (a=1) 时

子任务 2 根据不同的 a 得到 PSNR 曲线

```
for i in range(int(x/8)):
    for j in range(int(y/8)):
        submatrix = data[i*8:(i+1)*8, j*8:(j+1)*8]
        dct = dct2d(submatrix)

for quan in range(1, 100):
        idct_quan = idct2d(quantize(Q, dct, quan / 50.0))
        psnr_8x8_quan[quan] += psnr(submatrix, idct_quan)
```

延续上面的思路,通过改变 a, 得到不同的 PSNR,得到图如下:

可以看到,当 a 比较小的时候,此时量化矩阵的系数比较小,所以对原来的 DCT 系数矩阵的值的影响也比较小,所以大趋势是,随着a增大,PSNR减小,失真程度越高。有趣的是,在 a=0.10 和 a=0.20 出出现了两个小的尖峰,可能正好有一些数据在相邻的 a 值下量化到了同一个区间的两边,导致取值偏差较大。

接下来,找了一张图,测试 Canon 和 Nikon 的量化矩阵:

首先灰度处理:

接着按照类似的方法进行量化(代码在 lena_dct_exp2_2.py 中),得到:

psnr 2ddct 8x8 canon: 50.276670307604974
psnr 2ddct 8x8 nikon: 50.78738331730147

可以看到对于这个图片, Nikon 比 Canon 会稍微好一些。

对于量化矩阵的选取,可以看到它里面的数值有的大有的小,小则说明这个位置的 DCT 系数对视觉效果的影响比较大,反之说明影响比较小,量化以后可以得到比较高的压缩率,同时保证人眼看到的样子。所以左上角的数字一般比较小,右下角的数字一般比较大,这和 DCT 的意义是符合的。

写了简单的随机,来获得一个对于上面这个图片 PSNR 比较高的 Q 矩阵:

```
1 psnr 2ddct 8x8 best: 50.805403292236115
```

2 Q: [[1. 2. 1. 2. 3. 4. 6. 7.]

3 Г1 1 2 3 3 6 7 7

4 [2. 1. 2. 3. 4. 9. 8. 9.]

5 [1. 1. 2. 4. 7. 13. 9. 8.]

6 Γ3. 4. 6. 9. 9. 16. 13. 11._]

7 [3. 4. 6. 8. 9. 12. 14. 10.]

8 [7. 10. 11. 13. 14. 15. 15. 12.]

9 [11. 13. 11. 14. 15. 15. 14. 11.]]

其效果也不是很好,并且也只能说明对于当前的这个图片,这个量化矩阵比较适合,但是不能保证它的 普遍性,即对于各种图片都有比较好的效果。