FINAL JEE(Advanced) EXAMINATION - 2019

(Held On Monday 27th MAY, 2019)

PAPER-2

TEST PAPER WITH ANSWER & SOLUTION

PART-2: CHEMISTRY

SECTION-1: (Maximum Marks: 32)

- This section contains **EIGHT (08)** questions.
- Each question has **FOUR** options. **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s)
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen and both

of which are correct.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen

and it is a correct option.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks : -1 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 marks;

choosing ONLY (B) will get +1 marks;

choosing ONLY (D) will get +1 marks;

choosing no option (i.e. the question is unanswered) will get 0 marks, and

choosing any other combination of options will get -1 mark.

- 1. The cyanide process of gold extraction involves leaching out gold from its ore with CN in the presence of **Q** in water to form **R**. Subsequently, **R** is treated with **T** to obtain Au and **Z**. Choose the correct option(s).
 - (1) **T** is Zn
 - (2) **R** is $[Au(CN)_{4}]^{-}$
 - (3) **Z** is $[Zn(CN)_4]^{2-}$
 - (4) **Q** is O_2

Ans. (1,3,4)

Sol.
$$4\text{Au}(s) + 8\text{CN}^{-}(aq) + 2\text{H}_{2}\text{O}(aq) + \text{O}_{2}(g) \rightarrow 4[\text{Au}(\text{CN})_{2}]^{-}(aq) + 4\text{OH}^{-}(aq)$$

$$(Q)$$

$$2[\text{Au}(\text{CN})_{2}]^{-}(aq) + \text{Zn}(s) \rightarrow [\text{Zn} \ (\text{CN})_{4}]^{2-}(aq) + 2\text{Au}(s)$$

$$(R) \qquad (T) \qquad (Z)$$

Which of the following reactions produce(s) propane as a major product? 2.

(1)
$$H_3C$$
 COONa + H_2O electrolysis

(2)
$$^{\text{H}_3\text{C}}$$
 $^{\text{COONa}}$ $^{\text{NaOH, CaO, }\Delta}$

(3)
$$H_3C$$
 Cl
 $Zn, dil. HCl$

$$Br$$

$$Cl$$
 Br

$$En$$

$$Zn$$

$$En$$

Ans. (2,3)

Sol.
$$CH_3 - CH_2 - CH_2 - CO_2Na + H_2O \xrightarrow{electrolysis} n$$
-hexane $CH_3 - CH_2 - CH_2 - CO_2Na \xrightarrow{NaOH + CaO} CH_3 - CH_2 - CH_3$

$$CH_3 - CH_2 - CH_2 - CI + Zn \longrightarrow CH_3 - CH_2 - CH_2 - ZnCl \xrightarrow{dil. HCl} CH_3CH_2CH_3$$

$$Br + Zn \xrightarrow{dehalogenation}$$

- The ground state energy of hydrogen atom is -13.6 eV. Consider an electronic state Ψ of He⁺ whose **3.** energy, azimuthal quantum number and magnetic quantum number are -3.4 eV, 2 and 0 respectively. Which of the following statement(s) is(are) true for the state Ψ ?
 - (1) It has 2 angular nodes
 - (2) It has 3 radial nodes
 - (3) It is a 4d state
 - (4) The nuclear charge experienced by the electron in this state is less than 2e, where e is the magnitude of the electronic charge.

Ans. (1,3)

Sol. #
$$-3.4 = \frac{-13.6 \times 4}{n^2}$$

 $n = 4$
$\ell = 2$
$m = 0$
Angular nodes = $\ell = 2$
Radial nodes = $(n - \ell - 1) = 1$
 $n \ell = 4d$ state

4. Choose the correct option(s) that give(s) an aromatic compound as the major product.

(1)
$$\leftarrow$$
 + $\text{Cl}_2(\text{excess}) \xrightarrow{\text{UV}, 500K}$

(2)
$$\begin{array}{c|c} H_3C & \stackrel{i) \text{ alc. KOH}}{\longrightarrow} \\ Br & \stackrel{ii) \text{ NaNH}_2}{\longrightarrow} \\ Br & \stackrel{iii) \text{ red hot iron tube, 873 K}}{\longrightarrow} \\ \end{array}$$

$$(4) \quad \xrightarrow{\text{NaOMe}} \quad$$

Ans. (2,4)

Sol. (1)
$$\longrightarrow$$
 + Cl₂ (excess) $\xrightarrow{\text{Uv}}$ $\xrightarrow{\text{Cl}}$ $\xrightarrow{\text{Cl}}$ (Non aromatic)

(2)
$$H_3C$$
 Br
 $i)$ alc. KOH
 $ii)$ NaNH₂
 CH_3
 CH_3
 H_3C
 CH_3
 CH_3

(Aromatic)

(Non aromatic)

$$(4) \qquad \xrightarrow{\text{NaOMe}} \qquad \bigoplus^{\Theta \text{Na}^+} + \text{MeOH}$$

$$(\text{Aromatic ion})$$

5. Consider the following reactions (unbalanced)

$$Zn + hot conc. H_2SO_4 \rightarrow G + R + X$$

$$Zn + conc. NaOH \rightarrow T + Q$$

$$G + H_2S + NH_4OH \rightarrow Z$$
 (a precipitate) + X + Y

Choose the correct option(s).

- (1) The oxidation state of Zn in T is +1
- (2) Bond order of Q is 1 in its ground state
- (3) Z is dirty white in colour
- (4) R is a V-shaped molecule

Ans. (2,3,4)

Sol.
$$\operatorname{Zn} + 2\operatorname{H}_2\operatorname{SO}_4$$
 (Hot and conc.) $\to \operatorname{ZnSO}_4 + \operatorname{SO}_2 \uparrow + 2\operatorname{H}_2\operatorname{O}$ (G) (R) (X)
$$\operatorname{Zn} + 2\operatorname{NaOH} \text{ (conc.)} \to \operatorname{Na}_2\operatorname{ZnO}_2 + \operatorname{H}_2 \uparrow$$
 (T) (Q)
$$\operatorname{ZnSO}_4 + \operatorname{H}_2\operatorname{S} + 2\operatorname{NH}_4\operatorname{OH} \to \operatorname{ZnS} \downarrow + 2\operatorname{H}_2\operatorname{O} + (\operatorname{NH}_4)_2\operatorname{SO}_4$$

$$(Z) \qquad (X) \qquad (Y)$$

- **6.** With reference to *aqua regia*, choose the correct option(s).
 - (1) Reaction of gold with aqua regia produces NO_2 in the absence of air
 - (2) Aqua regia is prepared by mixing conc. HCl and conc. HNO₃ in 3:1 (v/v) ratio
 - (3) Reaction of gold with aqua regia produces an anion having Au in +3 oxidation state
 - (4) The yellow colour of aqua regia is due to the presence of NOCl and Cl,

Ans. (2,3,4)

Sol. (1) Au + HNO₃ + 4HCl
$$\rightarrow$$
 AuCl₄ $^{\Theta}$ + H₃O $^{+}$ + NO + H₂O

- (2) Aqua regia = 3HCl(conc.) + HNO₂(conc.)
- (3) AuCl₄^{\text{\text{0}}} is produced
- (4) Yellow colour of aqua regia is due to it's decomposition into NOCl(orange yellow) and Cl₂(greenish yellow).

- 7. Choose the correct option(s) from the following
 - (1) Natural rubber is polyisoprene containing *trans* alkene units
 - (2) Nylon-6 has amide linkages
 - (3) Cellulose has only α -D-glucose units that are joined by glycosidic linkages
 - (4) Teflon prepared by heating tetrafluoroethene in presence of a persulphate catalyst at high pressure

Ans. (2,4)

Sol. 1. Natural rubber is polyisoprene containing cis alkene units

2. Nylon-6 has amide linkage
$$\frac{1}{1}$$
HN – (CH₂)₅ – $\frac{1}{1}$ $\frac{1}{1}$

3. Cellulose has only β -D glucose units.

8. Choose the correct option(s) for the following reaction sequence

$$\begin{array}{c} \text{CHO} \\ & \overset{i)\text{Hg}^{2+}, \text{ dil.H}_2\text{SO}_4}{\text{ii})\text{AgNO}_3, \text{ NH}_4\text{OH}} \\ & \overset{i)\text{AgNO}_3, \text{ NH}_4\text{OH}}{\text{iii})\text{Zn-Hg, conc. HCl}} \bullet Q \xrightarrow{i)\text{SOCl}_2 \text{ pyridine}} R \xrightarrow{\text{Zn-Hg} \\ \text{conc. HCl}} \bullet S \\ \end{array}$$

Consider Q, R and S as major products

OH
$$Q$$

$$Q$$

$$CO_{2}H$$

$$MeO$$

$$R$$

$$Q$$

$$R$$

$$MeO$$

$$R$$

$$MeO$$

$$R$$

$$MeO$$

$$R$$

$$S$$

$$MeO$$

$$R$$

$$S$$

Ans. (2,4)

SECTION-2: (Maximum Marks: 18)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **Two** decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered.

Zero Marks : 0 In all other cases.

1. The decomposition reaction $2N_2O_5(g) \xrightarrow{\Delta} 2N_2O_4(g) + O_2(g)$ is started in a closed cylinder under isothermal isochoric condition at an initial pressure of 1 atm. After Y × 10³ s, the pressure inside the cylinder is found to be 1.45 atm. If the rate constant of the reaction is 5×10^{-4} s⁻¹, assuming ideal gas behavior, the value of Y is ____

Ans. (2.30)

$$2N_2O_5(g) \xrightarrow{\Delta} 2N_2O_4(g) + O_2(g)$$
 at constant V, T

$$t = 0$$

$$t = y \times 10^3 \text{ sec}$$

$$(1 - 2P)$$

P

$$P_{T} = (1 + P) = 1.45$$

$$P = 0.45 \text{ atm}$$

$$(2K)t = 2.303 \log \left(\frac{1}{1-2P}\right)$$

$$(2 \times 5 \times 10^{-4}) \times y \times 10^{3} = 2.303 \log \frac{1}{0.1}$$

$$y = 2.303 = 2.30$$

Total number of isomers, considering both structural and stereoisomers, of cyclic ethers with the molecular 2. formula C₄H₈O is ____

Ans. (10.00)

Sol.
$$(1)$$
, (2) , (1)

(2)(R+S)

R,R

The amount of water produced (in g) in the oxidation of 1 mole of rhombic sulphur by conc.HNO₃ **3.** to a compound with the highest oxidation state of sulphur is ____

(Given data : Molar mass of water = 18 g mol^{-1})

Ans. (288.00)

Sol.
$$S_8 + 48 \text{ HNO}_3 \longrightarrow 8H_2SO_4 + 48NO_2 + 16H_2O_3$$

1 mole of rhombic sulphur produce 16 mole of $\rm H_2O$ i.e. 288 gm of $\rm H_2O$

4. Total number of cis N-Mn-Cl bond angles (that is, Mn-N and Mn-Cl bonds in cis positions) present in a molecule of cis-[Mn(en)₂Cl₂] complex is _____ (en = NH₂CH₂CH₂NH₂)

Ans. (6.00)

Number of cis (Cl-Mn-N) = 6

5. Total number of hydroxyl groups present in a molecule of the major product P is ____

$$\frac{i) \text{ H}_2, \text{ Pd-BaSO}_4, \text{ quinoline}}{ii) \text{ dil. KMnO}_4 \text{ (excess), 273 K}} P$$

Ans. (6.00)

Sol.

$$\begin{array}{c}
H_2/Pd - BaSO_4 \\
Quinoline
\end{array}$$

$$\begin{array}{c}
CH_2 \\
CH_2
\end{array}$$

$$\begin{array}{c}
CH_2
\end{array}$$

$$CH_2$$

total 6 -OH group present in a molecule of the major product.

6. The mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05. If the density of the solution is 1.2 g cm⁻³, the molarity of urea solution is ____

(Given data: Molar masses of urea and water are 60 g mol⁻¹ and 18 g mol⁻¹, respectively)

Ans. (2.98 or 2.99)

Sol.
$$X_{urea} = 0.05 = \frac{n}{n+50}$$

 $19n = 50$
 $n = 2.6315$

$$V_{sol} = \frac{(2.6315 \times 60 + 900)}{1.2} = 881.5789 \text{ ml}$$

Molarity =
$$\frac{2.6315 \times 1000}{881.5789}$$
 = 2.9849

Molarity = 2.98M

SECTION-3: (Maximum Marks: 12)

- This section contains **TWO (02)** List-Match sets.
- Each List-Match set has **Two (02)** Multiple Choice Questions.
- Each List-Match set has two lists: List-I and List-II
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Six entries (P), (Q), (R), (S), (T) and (U)
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the option corresponding to the correct combination is chosen.

Zero Marks : 0 If none of the options is chosen (i.e., the question is unanswered);

Negative Marks : -1 In all other cases

1. Answer the following by appropriately matching the lists based on the information given in the paragraph

Consider the Bohr's model of a one-electron atom where the electron moves around the nucleus. In the following List-I contains some quantities for the n^{th} orbit of the atom and List-II contains options showing how they depend on n.

	List-I	List-II
(I)	Radius of the n^{th} orbit	$(\mathbf{P}) \propto n^{-2}$
(II)	Angular momentum of the electron in the n^{th} orbit	$(\mathbf{Q}) \propto n^{-1}$
(III)	Kinetic energy of the electron in the n^{th} orbit	$(\mathbf{R}) \propto \mathbf{n}^0$
(IV)	Potential energy of the electron in the n^{th} orbit	$(S) \propto n^1$
		$(\mathbf{T}) \propto \mathbf{n}^2$
		(U) \propto n ^{1/2}

Which of the following options has the correct combination considering List-I and List-II?

- (1)(II),(R)
- (2) (I), (P)
- (3)(I),(T)
- (4) (II), (Q)

Sol.
$$r = 0.529 \times \frac{n^2}{z}$$
 $\Rightarrow r \propto n^2$ $\Rightarrow (I) (T)$

$$mvr = \frac{nh}{2\pi}$$
 \Rightarrow $(mvr) \propto n$ \Rightarrow (II) (S)

$$KE = +13.6 \times \frac{z^2}{n^2}$$
 $\Rightarrow KE \propto n^{-2}$ $\Rightarrow (III) (P)$

$$PE = -2 \times 13.6 \times \frac{z^2}{n^2} \Rightarrow PE \propto n^{-2}$$
 \Rightarrow (IV) (P)

2. Answer the following by appropriately matching the lists based on the information given in the paragraph

Consider the Bohr's model of a one-electron atom where the electron moves around the nucleus. In the following List-I contains some quantities for the n^{th} orbit of the atom and List-II contains options showing how they depend on n.

List-II List-II

- (I) Radius of the n^{th} orbit $(\mathbf{P}) \propto n^{-2}$
- (II) Angular momentum of the electron in the n^{th} orbit (Q) $\propto n^{-1}$
- (III) Kinetic energy of the electron in the n^{th} orbit $(\mathbf{R}) \propto n^0$
- (IV) Potential energy of the electron in the n^{th} orbit (S) \propto n¹ (T) \propto n²

(U) \propto n^{1/2}

Which of the following options has the correct combination considering List-I and List-II?

(1) (III), (S)

(2) (IV), (Q)

(3) (IV), (U)

(4) (III), (P)

Ans. (4)

Sol. Same as 1 (Section-3)

3. Answer the following by appropriately matching the lists based on the information given in the paragraph

List-I includess starting materials and reagents of selected chemical reactions. List-II gives structures of compounds that may be formed as intermediate products and/or final products from the reactions of List-I

List-II List-II

(I)
$$CN$$
 CN CN CN CO_2H CO_2H CO_2H CO_2H

(II)
$$(II) \underbrace{ \begin{array}{c} \text{i) O}_3 \\ \text{ii) Zn, H}_2\text{O} \\ \text{iii) NaBH}_4 \\ \text{iv) conc. H}_2\text{SO}_4 \end{array} }$$

(III)
$$Cl$$
 $i)$ KCN $ii)$ $H_3O_7^{\dagger}$ Δ $iii)$ $LiAlH_4$ $iv)$ conc. H_7SO_4

(IV)
$$CO_2Me$$
 i) LiAlH₄ (S) CO_2H

(T)
$$CO_2H$$

Which of the following options has correct combination considering List-I and List-II?

(1) (III), (S), (R)

(2) (IV), (Q), (R)

(3) (III), (T), (U)

(4) (IV), (Q), (U)

Ans. (2)

Sol.
$$\bigcirc$$
Cl \longrightarrow CN \longrightarrow CO₂CH₃ \longrightarrow CO₂H \longrightarrow C

III, T, Q, R

$$\begin{array}{c} CO_2Me \\ CO_2Me \\ \hline \end{array} \begin{array}{c} CO_2Me \\ \hline \end{array} \begin{array}{c} CO_2Me \\ \hline \end{array} \begin{array}{c} CH_2OH \\ \hline \end{array}$$

IV, Q, R

4. Answer the following by appropriately matching the lists based on the information given in the paragraph

List-I includess starting materials and reagents of selected chemical reactions. List-II gives structures of compounds that may be formed as intermediate products and/or final products from the reactions of List-I

(IV)
$$CO_2Me$$
 i) LiAlH₄ ii) conc. H₂SO₄ (S) CO_2H (T) CO_2H (U)

Which of the following options has correct combination considering List-I and List-II?

$$(2)$$
 (II), (P), (S), (U)

$$(3)$$
 (II), (P), (S), (T)

Ans. (2)

$$CH_2 - CH = O$$

$$CO_2H$$

$$NaBH_4$$

$$CH_2 - OH$$

$$CO_2H$$

$$CO_2H$$

$$CO_2H$$

$$CO_2H$$

$$COnc.H_2SO_4$$

II, P, S, U