NMR I Keto-Enol Tautomerization

Alec Beaton CHE 357

Spring 2020

Background: NMR

Background: NMR

Background: The nucleus

Gyromagnetic ratio

 $\gamma = \frac{\mu}{I\hbar}$

Nuclear spin angular momentum

Nuclear magnetic moment

Background: The nucleus

We typically only consider nuclei with $I = \frac{1}{2} (^{1}H, ^{13}C, ^{31}P)$

Magnets interact

Magnets interact

$$\frac{d}{dt}I\hbar = \mu \times B_0$$

Torque (rate of change of angular momentum)

Nuclear magnetic moment

Static magnetic field

Magnets interact

$$\frac{d}{dt}I\hbar = \mu \times B_0$$

Through simple algebra, we find that...

$$\frac{d}{dt}\mu = \mu \times \gamma B_0$$

The change in μ is always perpendicular to the plane defined by μ and B_0 -- i.e., μ precesses about B_0 , changing direction but not magnitude

Magnets interact

For $I = \frac{1}{2}$, 2I+1 states exist (i.e., two states exist)

Field Strength

The 400 MHz NMR has a magnetic field $B_0 =$ 9.4 T – which we find using γ for the ¹H nucleus

We apply an rf pulse to excite the spins – we are able to detect them in this state as they return to equilibrium, generating the Free Induction Decay (FID)

More on this next week

KETONE

ENOL

How do environmental factors, such as **solvent**, **temperature**, and **concentration** affect this equilibrium?

$$K_{e} = \frac{\%enol}{\%keto}$$

$$R_{1} \longrightarrow R_{2}$$

$$R_{1} \longrightarrow R_{2}$$

$$R_{2} \longrightarrow R_{1} \longrightarrow R_{2}$$

$$R_{3} \longrightarrow R_{4}$$

$$R_{1} \longrightarrow R_{2}$$

$$R_{2} \longrightarrow R_{2}$$

$$R_{3} \longrightarrow R_{4}$$

We assess this by comparing the **proton** resonances of the respective forms

For the variable temperature experiments, we will generate van't Hoff plots to determine thermodynamic quantities by linear fits

$$\ln(K_e) = \left(\frac{\Delta H}{R}\right) \left(\frac{1}{T}\right) + \left(\frac{\Delta S}{R}\right)$$

We will meet in LSB 215 to prepare some NMR samples – then run the proton NMR experiments together, followed by processing of the data.

Please be sure to refer to the handout posted on Blackboard for details of what I expect in your reports.

A note on the mole fraction calculation:

We prepare 600 μL (or 0.6 mL) samples. Using this final volume, find the volume of acetone-d6 and acac needed to prepare approx. 0.1 and 0.2 mf solutions (you will need the densities for each)

NMR II Lineshape Analysis of Reversible Hydrolysis Reaction

Alec Beaton CHE 357

Spring 2020

We apply an rf pulse to excite the spins – we are able to detect them in this state as they return to equilibrium, generating the Free Induction Decay (FID)

We call the rf pulse B_1 (remember the static field is called B_0) -- this causes the spins to tip

Thus let our coordinate axes also rotate at the Larmor frequency

See very clean
"tip" of the
magnetization
into the XY (or
transverse) plane

z v

As the spins return to equilibrium (along the z-axis), they induce a current in the coil, and we detect signal (FID)

The FID is an oscillatory decaying exponential

$$s(t) = e^{\frac{-t}{T_2}}$$

 T_2 (spin-spin or *transverse relaxation*) describes the decay of signal T_1 (spin-lattice or *longitudinal relaxation*) describes signal return to equilibrium

Theory: Fourier Transformation

Fourier Transformation of the FID provides the familiar NMR spectrum

$$S(v) = \int_{-\infty}^{+\infty} e^{-iv2\pi t} s(t) dt$$

SPECTRUN

Signal in the frequency domain

Signal in the time domain

Theory: Fourier Transformation

There are several *Fourier Transform pairs*, but in NMR

we only care about c

Theory: Fourier Transformation

The width of a Lorentzian line, often called the **full width half maximum** (**FWHM**) or **W** is determined by T_2^* and chemical exchange

$$W = \frac{1}{\pi T_2^*} + \frac{1}{\tau} = \frac{1}{\pi T_2^*} + k$$

 T_2^* contains the natural T_2 of the sample, as well as the extent of imperfections in B_0 (i.e., imperfections in the magnetic field)

In the presence of chemical exchange, two proton resonances broaden into one

OH
$$H_3C-\overset{\circ}{C}-COOH + H_2O \longrightarrow \overset{\circ}{H_3C}-\overset{\circ}{C}-COOH$$

2,2-dihydroxy propanoic acid

$$k_f = k_0^f + k_H^f [H^+]$$

 $k_r = k_0^r + k_H^r [H^+]$

$$K_{eq} = \frac{k_H^f}{k_H^r}$$

- We will study the effect of [H⁺] on the hydrolysis equilibrium:
 - Collect NMR spectra at varied concentrations of acid
 - Process NMR spectra to determine FWHM for peaks of interest at different concentrations
 - By plotting linewidth as a function of concentration, rate constants can be determined (for forward and reverse reactions)
 - Equilibrium constant can be calculated
- Additional considerations:
 - Assess the linear fit of FWHM vs [H⁺]
 - Chemical shift variations as function of [H⁺]

We will meet in LSB 301 to run the NMR spectra in the basement, then return to LSB 301 to process spectra together

Please be sure to refer to the handout posted on Blackboard for details of what I expect in your reports

ESR Introduction to Electron Spin Resonance Spectroscopy

Alec Beaton CHE 357

Spring 2020

science.jrank.org

Traditional NMR

- "Characterize nuclei" (nuclear spin)
- Pulses of radio frequency (MHz)
- Fixed, continuous magnetic field
- Detects signal in time domain FT into frequency domain (absorptive line shape)
- Spectrum as function of frequency (ppm, chemical shift)

$$\nu = \frac{\gamma_H B_0}{2\pi}$$

Less sensitive

NMR vs ESR

Traditional ESR

- "Characterize electrons" (electron spin)
- Fixed, continuous microwave frequency (GHz)
- · Vary the magnetic field
- Detects change in signal intensity with change in magnetic field (derivative line shape)
- Spectrum as function of magnetic field (G, g-factor)

$$v = g\beta B_0 = \frac{\gamma_e B_0}{2\pi}$$

More sensitive

-5

SPIN HAMILTONIAN

Instrumentation

$$\omega_0 = \gamma B_0$$

L 0.390-1.550 1.5 54 S 1.550-3.900 3.0 110 C 3.900-6.200 6.0 220 X 6.200-10.900 9.5 340 K 10.900-36.000 23 820	Band Designation	Band Range	Typical EPR Frequency ν (GHz)	Typical EPR Field <i>B</i> (mT)
C 3.900-6.200 6.0 220 X 6.200-10.900 9.5 340 K 10.900-36.000 23 820	L	0.390 - 1.550	1.5	54
X 6.200-10.900 9.5 340 K 10.900-36.000 23 820	S	1.550 - 3.900	3.0	110
K 10.900-36.000 23 820	C	3.900-6.200	6.0	220
	X	6.200-10.900	9.5	340
0 26,000 46,000 26 1200	K	10.900-36.000	23	820
Q 36.000-46.000 36 1300	Q	36.000-46.000	36	1300
V 46.000-56.000 50 1800	V	46.000-56.000	50	1800
W 56.000-100.000 95 3400	W	56.000-100.000	95	3400

1H NMR Frequency (MHz)	Field Strength (T)
300	7
400	9.4
800	18.8

Instrumentation

Power

Supply

Microwave Source (Bridge)

Resonator

© BRUKER

agnet

Determination of Hyperfine Structure Intensity Ratios for Two Equally Coupled I = 1 Nuclei (e.g., Nitrogen) Such As the Ones Found in DPPH

Spin Configurations	m ₁ no at	m ₂	$M=m_1+m_2$	Intensity Ratio	
s at it hard asia	oge basi	oue (d)	iliw sairs2 lucke	1	15 3
		-	fateraction between	1 2 1	
teliant our mail.	0	0	ratio itus follows he figo e indicas receeds their we	3	
*	•		coelesce istoronie. determined specia		
nad "Voespajskiji. ureselvad motsi			lev, Ch <u>c-p</u> nikova, scrukerd listeshene	1	l to

Hyperfine Interaction

$$2I + 1$$

Simulating EPR Spectra

TopSpin

We detect this in CW ESR

Report

Please be sure to refer to the handout posted on Blackboard for details of what I expect in your reports