CIS 511: Theory of Computation

Mar 28, 2017

Lecture 18: Randomized Complexity

Professor Sampath Kannan

Zach Schutzman

NB: These notes are from CIS511 at Penn. The course followed Michael Sipser's Introduction to the Theory of Computation (3ed) text.

Randomized Algorithms

Definition 18.1 A randomized algorithm is one in which we can toss random coins.

We don't worry about how this randomness is produced, we just take it as given that we can make these queries from an idealized source of randomness.

Definition 18.2 A randomized or probabilistic Turing machine may either move deterministically or reach a state where it can flip a coin and move according to the random output. A probabilistic Turing machine M is said to accept a string $x \in L$ with probability equal to the sum of the probabilities of the leaves where M produces the correct answer.

Definition 18.3 The class **Bounded Probabilistic Polynomial time (BPP)** is the class of languages recognizable by a randomized Turing machine which accept on inputs $x \in L$ with probability at least $\frac{2}{3}$.

Claim 18.4 We can equivalently define BPP as having error $0 \le \epsilon < \frac{1}{2}$.

Proof: Suppose we have a machine M with error $\epsilon < \frac{1}{2}$. Then we show there is an M' with error $\frac{1}{2^n}$ on inputs of size n. We simply have M' run M 2k times on input x and outputs the majority answer, where k is constructed as follows:

To see this, consider our sequence of M's outputs, e.g. cccwwcwccwc.... A sequence with more than k ws will cause an error in M'. We want this to occur with probability at most $\frac{1}{2^n}$. Any particular sequence with some number of cs and ws is $\epsilon^{\#w}(1-\epsilon)^{\#c}$. So M' makes a mistake when $\#w \ge k$. But this is less than $\epsilon^k(1-\epsilon)^k$. There are at most 2^{2k} 'bad' sequences (this is all of them!). Thus, the total probability of all bad sequences is less than or equal to $2^{2k}\epsilon^k(1-\epsilon)^k = (4\epsilon(1-\epsilon))^k$. This is strictly less than one whenever $\epsilon < \frac{1}{2}$.

We can then choose k to make the lower bound as low as we want for an equivalent definition of BPP.

What is the space complexity of probabilistic Turing machines?

Consider the language $UPATH = \{\langle G, s, t \rangle | \text{ there is an st path in } G \}$. This is in randomized log-space (RL). We can do this by randomly choosing a neighbor at each step, not exceeding n^3 steps on any branch.

Polynomial Identity

The problem of polynomial identity testing asks whether two multivariate polynomials f and g on n variables are exactly identical. We have two black boxes, one for f and one for g. We want to know if f = g.

Denote $L_{non-id} = \{\langle f, g \rangle | f \neq g \}$ for polynomials f and g. If f and g are univariate of degree less than or equal to d, we can know if f = g just by testing d + 1 different values.

Lemma 18.5 (Schwartz-Zippel) Let h be a non-zero polynomial on n variables of degree d. If values $x_1
dots x_n$ are chosen uniformly and independently at random from a set S of size n, then the probability that h(x) = 0 is less than or equal to $\frac{d}{n}$.

If we think of h = f - g, then we have the 'bad' event of getting unlucky of picking d + 1 points where f(x) = g(x) even when $f \neq g$ is sufficiently small.

Now we can come up with a randomized algorithm to recognize L_{not-id} . We choose a set S of 3d points from the domain of the variables. For each x_i pick uniformly at random some $r_i \in S$. Now, evaluate f(r) and g(r). If we get different answers, accept. Otherwise, reject. If f and g are identical, then the algorithm always correctly rejects. If f and g are different, the probability we picked a 'bad' point and make a mistake is at most $\frac{1}{3}$, because we have $\frac{d}{3d}$ probability by the lemma.