Álgebra Lineal I

Nota importante: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envian más de dos folios, solamente se leerán los dos primeros.

Problema1

- a) Demostrar que un sistema lineal $Ax^t = b^t$ en n incógnitas es compatible si y sólo si rg(A) = rg(A). En tal caso, el sistema es determinado si y sólo si rg(A) = n. (1,5 puntos)
- b) Se considera el sistema de ecuaciones $Ax^t = y^t \text{ con } A \in M_{nxn}(\mathbb{R}),$ $x \in \mathbb{R}^n$ e $y \in \mathbb{R}^n$. Sea S es el conjunto de soluciones del sistema.

Cuál de las siguientes afirmaciones es verdadera o falsa y explicar razonadamente el motivo:

- i) Si $rg(A) = rg(\tilde{A})$, donde \tilde{A} es la matriz ampliada del sistema, entonces S es un subespacio vectorial de \mathbb{R}^n .
- ii) Si $Ax^t = 0^t$ es compatible indeterminado entonces si $y \in \mathbb{R}^n$ $Ax^t = y^t$ es también compatible indeterminado. (2 puntos)

Problema 2

Sea $K_3[T]$ el espacio vectorial de los polinomios de grado menor o igual que 3 con coeficientes en el cuerpo K.

- a) Probar que $\{(1+T)^3, T(1+T), T^2(1+T), T^3\}$ forman una base de $K_3[T]$, y hallar respecto a esta base las coordenadas de los polinomios, $1, T, T^2, T^3$. (1,5 puntos)
- b) Hallar las matrices de los cambios de base correspondientes, respecto a la base estándar $\{1, T, T^2, T^3\}$. (1,5 puntos)

Problema 3

Sea
$$A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & -2 & 2 \end{pmatrix}$$
 y las bases

 $B_1 = \{(2,1,0),(-1,0,1),(0,1,1)\} \text{ de } \mathbb{R}^3 \text{ y } B_2 = \{(1,-2)(0,2)\} \text{ de } \mathbb{R}^2.$

- a) Determinar las ecuaciones implícitas del núcleo e imagen de la aplicación lineal $f_1: \mathbb{R}^3 \to \mathbb{R}^2$, representada por la matriz A, al considerar en los espacios de partida y de llegada las bases canónicas o estándar. (1,5 puntos)
- b) Hallar la aplicación lineal f_2 representada por A si en \mathbb{R}^3 se considera la base B_1 y en \mathbb{R}^2 se considera la base B_2 .(2 puntos)