Problem Set 5

D. Zack Garza

Tuesday 5th May, 2020

Contents

1	4.3																			
2	4.6																			
	2.1	Solution																		
		2.1.1 P																		
		2.1.2 S	tep 2																	
		2.1.3 S	tep 3																	
		2.1.4 S	tep 4																	
		2.1.5 S	tep 5																	
		2.1.6 S	tep 6																	
		2.1.7 S	tep 7																	
3	4.11																			

1 4.3

Proposition 1.1.

Suppose $\lambda + \rho \in \Lambda^+$. Then $M(w \cdot \lambda) \subset M(\lambda)$ for all $w \in W$. Thus all $[M(\lambda) : L(w \cdot \lambda)] > 0$.

More precisely, if $w = s_n \cdots s_1$ is a reduced expression for w in terms of simple reflections corresponding to roots α_i , then there is a sequence of embeddings:

$$M(w \cdot \lambda) = M(\lambda_n) \subset M(\lambda_{n-1}) \subset \cdots \subset M(\lambda_0) = M(\lambda)$$

Here

$$\lambda_0 := \lambda, \lambda_k := s_k \cdot \lambda_{k-1} = (s_k \dots s_1) \cdot \lambda \implies \lambda_n = s_n \cdot \lambda_{n-1} = w \cdot \lambda$$
$$w \cdot \lambda = \lambda_n \le \lambda_{n-1} \le \dots \le \lambda_0 = \lambda \text{with} \quad \langle \lambda_k + \rho, \alpha_{k+1}^{\vee} \rangle \in \mathbb{Z}^+ \text{ for } k = 0, \dots, n-1.$$

Assume $\lambda + \rho \in \Lambda^+$.

- a. Prove that the unique simple submodule of $M(\lambda)$ is isomorphic to $M(w_{\diamond} \cdot \lambda)$, where w_{\diamond} is the longest element of W.
- b. In case $\lambda \in \Lambda^+$, show that the inclusions obtained in the above proposition are all proper.

2 4.6

Theorem 2.1(Verma).

Let $\lambda \in \mathfrak{h}^{\vee}$. Given $\alpha > 0$, suppose $\mu := s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

Work through the steps of Verma's Theorem in the special case discussed in the previous problem

2.1 Solution

Let $\mathfrak{g} = \mathfrak{sl}(3,\mathbb{C})$ and identify its root system A_2 with $\Delta = \{\alpha,\beta\}$ and $\Phi^+ = \{\alpha,\beta,\gamma \coloneqq \alpha+\beta\}$ We can also identify the Weyl group as $W = \{1,s_{\alpha},s_{\beta},s_{\alpha}s_{\beta},s_{\beta}s_{\alpha},s_{\gamma}\}$ where there is a reduced expression $s_{\gamma} = w_0 = s_{\alpha}s_{\beta}s_{\alpha}$.

We can begin by letting $\lambda \in \Lambda$ be an arbitrary integral weight and let $\mu \neq \lambda$ be an arbitrary weight linked to λ , where WLOG apply some Weyl group element to μ to place it in the dominant chamber and assume

$$\mu \coloneqq s_{\alpha} \cdot \lambda < \lambda$$

(where the inequality is strict).

2.1.1 Part 1

Since μ is assumed integral, we can find some $w \in W$ such that

$$\mu' := w^{-1} \cdot \mu \in \Lambda^+ - \rho.$$

Claim: $w = s_{\alpha}s_{\beta}$, so $w^{-1} = s_{\beta}s_{\alpha}$ and thus

$$\mu' = s_{\beta} s_{\alpha} \cdot \mu$$

As in Proposition 4.3, we then write

$$\mu_0 = \mu'$$

$$\mu_1 = s_\beta \cdot \mu'$$

$$\mu_2 = s_\alpha s_\beta \cdot \mu' = w \cdot \mu' = \mu$$

which satisfies

$$\mu = \mu_2 \le \mu_1 \le \mu_0 = \mu'$$

$$\mu = s_{\alpha}s_{\beta} \cdot \mu' \le s_{\beta}\mu' \le \mu'.$$

2 4.6

which (by the proposition) gives a sequence of embeddings

$$M(\mu) = M(\mu_2) \hookrightarrow M(\mu_1) \hookrightarrow M(\mu_0) = M(\mu')$$
 i.e.
$$M(\mu) = M(s_{\alpha}s_{\beta} \cdot \mu') \hookrightarrow M(s_{\beta} \cdot \mu') \hookrightarrow M(\mu').$$

2.1.2 Step 2

We now define

$$\lambda' := w^{-1}\lambda = s_{\beta}s_{\alpha} \cdot \lambda$$

and the parallel list of weights

$$\begin{split} \lambda_0 &= \lambda' \\ \lambda_1 &= s_\beta \cdot \lambda' \\ \lambda_2 &= s_\alpha s_\beta \cdot \lambda' \coloneqq \lambda. \end{split}$$

We can similarly use the fact that $\lambda \neq \mu \implies \mu_k \neq \lambda_k$ for any k.

2.1.3 Step 3

To relate μ_k to λ_k , We now define $w_k = s_n \cdots s_{k+1}$:

$$w_0 = s_{\alpha} s_{\beta}$$
$$w_1 = s_{\alpha}$$
$$w_2 \coloneqq 1$$

and using the calculation

$$\mu_k = w_k^{-1} s_\alpha w_k \cdot \lambda_k = s_{\beta_k} \cdot \lambda_k$$

we compute

$$s_{\beta_0} = (s_{\alpha}s_{\beta})^{-1}s_{\alpha}(s_{\alpha}s_{\beta}) = s_{\gamma}$$

$$s_{\beta_1} = s_{\alpha}^{-1}s_{\alpha}s_{\alpha} = s_{\alpha}$$

$$s_{\beta_2} \coloneqq s_{\alpha}$$

and thus obtain

$$\mu_0 = s_\alpha \cdot \lambda_0$$

$$\mu_1 = s_\alpha \cdot \lambda_1$$

$$\mu_2 = s_\gamma \cdot \lambda_2.$$

2 4.6

2.1.4 Step 4

We have $\mu_0 \ge \mu_1 \ge \mu_2$ with $\lambda_0 < \mu_0$ but $\lambda_2 > \mu_2$, so we now look for where the inequality switches. It suffices to check how μ_1 and λ_1 are related, and we find $\mu_1 < \lambda_1$.

2.1.5 Step 5

From the last step, we fix k = 0 and now want to show $M(\mu_{k+i}) \subset M(\mu_{k+i})$ for i = 1, 2, since the i = 2 case yields the desired $M(\mu) \subset M(\lambda)$.

2.1.6 Step 6

We first want to show $M(\mu_1) \subset M(\lambda_1)$. We write

$$\mu_1 - \lambda_1 = s_1 \mu_0 - s_1 \lambda_0.$$

We then note that

$$\mu_1 - \lambda_1 = c_1 \beta_1$$

$$s_{\alpha} \mu_0 - s_1 \lambda_0 = s_{\alpha} (\mu_0 - \lambda_0) = d_1 \beta_0$$

where c_1 is negative and b_1 is positive, and we already know that $\beta_1 = \beta_0 = \alpha$ by a direct computation. Thus we have $\mu_1 = s_{\alpha}\lambda_1$, and applying Proposition 1.4,

$$M(s_{\alpha} \cdot \lambda_1) \hookrightarrow M(\lambda_1) \implies M(\mu_1) \hookrightarrow M(\lambda_1).$$

2.1.7 Step 7

We thus have embeddings

$$M(\mu_2) = M(s_\alpha \cdot \mu_1) \hookrightarrow M(\mu_1) \hookrightarrow M(\lambda_1),$$

and we then apply Proposition 4.5: set $n = \langle \lambda + \rho, \alpha^{\vee} \rangle$ (which is integral by assumption).

• If $n \leq 0$, we have $M(\lambda_1) \hookrightarrow M(s_\alpha \cdot \lambda_1) = M(\lambda)$, and since

In either case, we obtain

$$M(\mu) = M(\mu_2) \subset M(s_\beta \cdot \lambda_1) \hookrightarrow M(\lambda_2) = M(\lambda),$$

which is what we wanted to show.

3 4.11

In the case of $\mathfrak{sl}(3,\mathbb{C})$, what can be said at this point about Verma modules with a singular integral highest weight?

Aside from the trivial case $-\rho$, a typical linkage class has 3 elements. For example, if λ lies in the α hyperplane and is antidominant, the linked weights are λ , $s_{\beta} \cdot \lambda$, $s_{\alpha} s_{\beta} \cdot \lambda$.

3 4.11 4