Foundations of Financial Economics Two-period DSGE: introduction

Paulo Brito

¹pbrito@iseg.ulisboa.pt University of Lisbon

March 19, 2021

Topics

Two period General Equilibrium pricing of intertemporal contracts:

to set up a model we need assumptions regarding:

- ► The economic environment: information tree, real part of the economy
- ► The market environment: available contracts
- ► The variables defining the general equilibrium depend on those two categories.

We will study two models: Arrow-Debreu economy and Finance (or Radner) economy

Environments and general equilibrium

Common assumptions: regarding the economic environment

- 1. the time-information structure;
- 2. the real part of the economy: intertemporal preferences and availability of resources

Different assumptions regarding the market environment

- 1. simultaneous markets' opening;
- 2. sequential markets' opening;

Lead to different definitions of GE (general equilibrium) (that may be equivalent or not)

The time-information tree

This refers

- ▶ to the moments in which markets open
- ▶ to the timing of the decisions
- ▶ the information agents have

In discrete time we have to distinguish between

- ▶ time: the timing for **stocks** and prices of stocks
- periods: the timing for flows and prices of flows

Two period: The timing for flow and stock variables

Flow and stock variables: refer to prices and/or quantities

For flow variables

We assume:

- ▶ $t \in \mathbb{T} = \{0, 1\}$ where \mathbb{T} refer to periods
- information changes along time, from the perspective of period t = 0.

Most variables are 2-period random sequences

$$X = \{X_0, X_1\}$$

are determined on the basis of the information known at period t = 0:

ightharpoonup at period t = 0, they are observed

$$X_0 = x_0$$

• for period t = 1, they are contingent on the information available at period t = 0

$$X_1(\omega), \ \omega \in (\Omega, \mathcal{F}, \mathbb{P})$$

 X_1 is a random variable

Information for a flow variable

The information at period t = 0 is:

▶ If Ω is discrete and there are N elementary events, the information regarding period t = 1 we have

$$X_1 = (x_{1,1}, \dots, x_{1,s}, \dots, x_{1,N})^{\top}$$

 $P_1 = (\pi_1, \dots, \pi_s, \dots, \pi_N)^{\top}$

where $x_{1,s}$ is the **outcome** if event s realizes and π_s its probability

▶ and the sequences of possible outcomes and related probabilities are

The time-information tree

Timing of contracts: for stocks

We distinguish:

▶ **spot** contracts: contract, delivery and payment done in the same period

intertemporal or forward contracts: contract and payment in one period, delivery in a future period contract and payment delivery

They differ along two dimensions:

- ▶ the **timing** (which may be relevant if there is , v.g., impatience, depreciation)
- ▶ the **information** set associated to the several actions (and prices) involved

Timing of contracts: for flows

▶ spot contracts

▶ forward contracts

contract and payment delivery t t+1

information

observed stochastic t t+1

The real part of the economy

Refers to:

- ▶ technology: the type of availability of resources
 - exchange economies: the availability of the resources is independent of decisions throughout time,
 - **production** economies: availability of resources is dependent on decisions in previous periods
- ▶ preferences: choice among random sequences of cconsumption
- distribution of agents: they homogenous or heterogenous regarding
 - endowments or technology
 - preferences
 - **▶** information

Technology

If we consider a flow of resources for agent i:

The resource for agent i is a process $\{Y^i\} = \{y_0^i, Y_1^i\}$ where $y_{t,s}^i$ is the endowment of agent i at time t for the state of nature s, with possible realizations and probabilities

▶ in an exchange economy

$$Y_1^i$$
 independent of y_0^i

▶ in a production economy

$$Y_1^i = F_1^i(y_0^i)$$
 dependent on y_0^i

Agent i chooses among:

 \blacktriangleright Sequences of consumption $\{\mathit{C}^i\} = \{\mathit{c}_0^i,\mathit{C}_1^i\}$ is the consumption flow for agent i

$$\begin{pmatrix} c_{1,1}^i \\ \cdots \\ c_{1,s}^i \\ \cdots \\ c_{1,N}^i \end{pmatrix}, \begin{pmatrix} \pi_1^i \\ \cdots \\ \pi_s^i \\ \cdots \\ \pi_N^i \end{pmatrix}$$

where the probabilities can be objective or subjective, exogenous or endogenous, homogeneous or heterogeneous

Evaluated by an intertemporal utility functional

$$U^i(\{\,C^i\}) = \,U^i\!\left(\,c_0^i,\,C_1^i\,\right)$$

We can calculate several marginal utilities

ightharpoonup marginal utility for a change of consumption at period t=0

$$U_0 = \frac{\partial U(\{C\})}{\partial c_0}$$

ightharpoonup marginal utility for a change of consumption at period t=1 for state of nature s

$$U_1(s) = \frac{\partial U(\lbrace C \rbrace)}{\partial c_{1,s}}, \text{ for } s \in \lbrace 1, \dots, N \rbrace$$

▶ the intertemporal marginal rate of substitution is a random variable

$$IMRS_{0,1}(s) = \frac{U_0}{U_1(s)}, \text{ for } s \in \{1, \dots, N\}$$

The Allen-Uzawa elasticities are

 \triangleright "own elasticities" for period t=0 and period t=1

$$\varepsilon_0 = -\frac{\frac{\partial U_0}{\partial c_0}}{U_0} c_0, \ \varepsilon_1(s, s) = -\frac{\frac{\partial U_1(s)}{\partial c_{1,s}}}{U_1(s)} c_{1,s}, \text{ for } s \in \{1, \dots, N\}$$

crossed intertemporal elasticities

$$\varepsilon_{0,1}(s) = -\frac{\frac{\partial U_0}{\partial c_{1,s}}}{U_0} c_{1,s}, \text{ for } s \in \{1, \dots, N\}$$

▶ the elasticity of intertemporal substitution is also a random variable

$$IES_{0,1}(s) = \frac{c_0 \ U_0 + c_{1,s} \ U_1(s)}{c_{1,s} \ U_1(s) \varepsilon_0 - 2c_0 \ U_0 \varepsilon_{0,1}(s) + c_0 \ U_0 \varepsilon_1(s,s)}, \text{ for } s \in \{1, \dots, n\}$$

We can also calculate:

 \triangleright crossed inter-state elasticities for period t=1

$$\varepsilon_1(s,s') = -\frac{\frac{\partial U_1(s)}{\partial c_{1,s'}}}{U_1(s)} c_{1,s'}, \text{ for } s \neq s' \in \{1,\dots,N\}$$

 and an associated interstate elasticity of substitution (not commonly done)

► The most common utility functional is the discounted time-additive von-Neumann Morgenstern functional

$$U(\lbrace C^{i}\rbrace) = u^{i}(c_{0}^{i}) + \beta^{i}\mathbb{E}^{i}[u^{i}(C_{1}^{i})] = u^{i}(c_{0}^{i}) + \beta^{i}\sum_{s=1}^{N} \pi_{s}^{i}u^{i}(c_{1,s}^{i})]$$

where $0 \le \pi_s \le 1$ and $\sum_{s=1}^N \pi_s^i = 1$;

or, equivalently

$$U(\{C^i\}) = \mathbb{E}_0^i \left[\sum_{t=0}^{t=1} (\beta^i)^t u^i(c_{t,s}^i) \right]$$

- Observations
 - ▶ the utility functional U(.) is doubly additive: linear as regards both time and the states of nature;
 - probabilities may be objective or subjective
 - particular relationship between the intertemporal and the risk aversion properties

- Write it as $U(c_0, C_1) = u(c_0) + \beta \sum_{s=1}^{N} \pi_s u(c_{1,s})$
- ▶ Then the marginal utilities are

$$U_0 = u'(c_0)$$
 and $U_1(s) = \beta \pi_s u'(c_{1,s})$, for $s \in \{1, ..., N\}$

► The intertemporal marginal rate of substitution is state-dependent (random variable)

$$IMRS_{0,1}(s) = \frac{u'(c_0)}{\beta \pi_s u'(c_{1,s})}, \text{ for } s \in \{1, \dots, N\}$$

The Allen-Uzawa elasticities are

For period t = 0 and period t = 1

$$\varepsilon_0 = -\frac{u''(c_0)}{u'(c_0)} c_0, \ \varepsilon_1(s) = -\frac{u''(c_{1,s})}{u'(c_{1,s})} c_{1,s}, \ s = 1, \dots N$$

but the intertemporal elasticities are equal to zero

$$\varepsilon_{0,1}(s) = 0$$
, for all $s \in \{1, \dots, N\}$

(because of the separability between c_0 and C_1)

▶ Therefore, the elasticity of intertemporal substitution

$$IES_{0,1}(s) = \frac{c_0 u'(c_0) + \beta \pi_s u'(c_{1,s})}{\beta \pi_s u'(c_{1,s}) c_{1,s} \varepsilon_0 + c_0 u'(c_0) \varepsilon_1(s)}$$

is also a random variable but has not intertemporal substitution effects

▶ The Allen-Uzawa elasticities between states of nature are also equal to zero

$$\varepsilon_1(s, s') = 0$$
, for all $s \neq s' \in \{1, \dots, N\}$

▶ this means that the preferences regarding different states of nature are **independent**

▶ If we assume a constant relative risk aversion utility function

$$u(c) = \frac{c^{1-\zeta} - 1}{1-\zeta} \Rightarrow u'(c) = c^{-\zeta}, \ u''(c) = -\zeta \ c^{-\zeta-1}$$

 \blacktriangleright where the coefficient of relative risk aversion ϱ_r is

$$\varrho_r = -\frac{u''(c)}{u'(c)} c = \zeta > 0$$

▶ then the AU elasticities (own, intertemporal, and inter-state) are

$$\varepsilon_0 = \zeta$$

$$\varepsilon_{0,1}(s) = 0$$

$$\varepsilon_1(s) = \zeta$$

$$\varepsilon_1(s, s') = 0$$

are all state-independent.

▶ The elasticity of intertemporal substitution

$$IES_{0,1}(s) = \frac{1}{\zeta}$$

is:

- (1) state independent
- (2) is equal to the inverse of the CRRA
- ► This means that the we cannot distinguish the intertemporal and the stochastic properties of preferences
- ▶ Which is counterfactual (see Thimme (2017))

Epstein-Zin preferences

- ▶ Are becoming popular among macroeconomists
- ► They distinguish between the intertemporal preferences and risk aversion by parameterizing them with different parameters
- ▶ Most models are multi-period

Epstein-Zin preferences

- ► A two period version of EZ preferences
- ▶ Let $U(c_0, C_1)$ be the intertemporal utility functional
- ▶ There is an aggregator $V(c_0, C_1) = u^{-1}(U(c_0, C_1))$

$$V(c_0, C_1) = (1 - \beta)u(c_0) + \beta u(c_1^c)$$

where c_1^c is the certainty equivalent of consumption at period t = 1:

- intertemporal preferences are represented by u(c), which is increasing and concave $u^{''}(c) < 0 < u^{'}(c)$
- choice among states of nature is represented by

$$v(c_1^c) = \mathbb{E}[v(C_1)]$$

is a utility function displaying risk aversion

Epstein-Zin preferences

► Therefore

$$V(c_0, C_1) = (1 - \beta)u(c_0) + \beta u \left(v^{-1}(\mathbb{E}[v(C_1)])\right)$$

► For instance:

$$u(c) = \frac{c^{1-\zeta} - 1}{1-\zeta}$$
$$v(c) = \ln(c) \Leftrightarrow c = e^{v}$$

• then for this case $\rho = 1$,

$$V(\lbrace C \rbrace) = (1 - \beta) \frac{c_0^{1 - \zeta} - 1}{1 - \zeta} + \beta \frac{e^{(1 - \zeta)\mathbb{E}[\ln{(C_1)}]} - 1}{1 - \zeta}$$

▶ It can be proved that, if $\zeta = \varrho$ this model reduces to the benchmark case (prove this)

Distribution of agents

Distribution

- ► The idiosyncratic components defining a consumer are:
 - ightharpoonup endowments (Y^i)
 - ▶ preferences (β^i, u^i) (impatience, risk aversion)
 - information \mathbb{P}^i (only make sense with subjective probabilities)
- ► Agents can be homogeneous or heterogeneous regarding one or all of the previous variables and parameters

in a homogeneous, or representative agent economy: endowments, preferences and information are equal, i.e, $Y^{I} = Y^{I} = Y$, etc

in a heterogeneous economy: agents differ in at least one of the three dimensions: endowments $(Y^i \neq Y^j)$, preferences $(\beta^i \neq \beta^j \text{ or } u^i(.) \neq u^j(.))$, or information $(\mathbb{P}^i \neq \mathbb{P}^j)$

Autarky versus trade economies

The economies are distinguished by the exchanges that agents can make.

► In autarky we will have

$$c_{t,s}^{i} = y_{t,s}^{i}, \ t = 0, 1, \ s = 1, \dots, N$$

$$\begin{pmatrix} c_{1,1}^{i} \\ \vdots \\ c_{1,s}^{i} \\ \vdots \\ \vdots \\ c_{1,N}^{i} \end{pmatrix} = \begin{pmatrix} y_{1,1}^{i} \\ \vdots \\ y_{1,s}^{i} \\ \vdots \\ y_{1,N}^{i} \end{pmatrix}$$

$$c_{0}^{i} = y_{0}^{i} \qquad c_{1,N}^{i}$$

$$1 \qquad 2$$

Autarky versus trade economies

▶ If there are markets for intertemporal transfers of contingent goods, agents can trade and be able to make

$$c_{t,s}^i \neq y_{t,s}^i, \ t = 0, 1, \ s = 1, \dots, N$$

by shifting resources across time and states of nature.

Real versus financial markets

We distinguish further:

- real markets:
 market for goods,
 which can be spot or forward
 prices and deliveries are referred to periods
- financial markets:
 market on financial instruments,
 which are always forward (in an economic sense)
 and prices and deliveries are referred to times

Markets and general equilibrium models

Simultaneous versus sequential market economies

We consider next two economies which are distinguished by the type of intertemporal contracts available:

- ► Arrow Debreu economies:
 - there are AD contingent goods traded in spot and forward real markets ⇒ there is simultaneous market equilibrium
- ▶ finance economies:

Radner economies in which **financial** assets are traded \Rightarrow there is sequential market equilibrium

They can be **equivalent under some conditions**, i.e., have the same equilibrium allocations Julian Thimme. Intertemporal Substitution In Consumption: A

Literature Review. Journal of Economic Surveys, 31(1):226–257,

February 2017. URL https:
//ideas.repec.org/a/bla/jecsur/v31y2017i1p226-257.html.