CONCOURS SMF JUNIOR

ÉQUIPE TISANE

Problème 10

Auteurs : Chloé Papin Etienne Perrot Victor Quach

May 11, 2017

1 Problème 10

1.1 Question 1

Dans ce problème, on notera p la projection canonique de X dans X/G et \mathcal{R} la relation d'équivalence sur X définie par :

$$\forall x, y \in X, x \mathcal{R} y \Leftrightarrow \exists g \in G \text{ tel que } y = g(x)$$

Lemme 1.1. Il existe un rayon r > 0 tel que pour tout $x \in X$, la boule fermée centrée en x et de rayon r, B(x,r), soit compacte.

Preuve : Raisonnons par l'absurde, en supposant que ce résultat est faux.

On peut donc trouver une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de X, tels que, pour tout $n\in\mathbb{N}$, la boule $B\left(x_n,\frac{1}{n+1}\right)$ n'est pas compacte.

Comme X/G est compact, la suite $(y_n)_{n\in\mathbb{N}}=(p(x_n))_{n\in\mathbb{N}}$ admet une sous-suite $(y_{\sigma(n)})_{n\in\mathbb{N}}$ convergeant vers $y\in X/G$.

Pour bien comprendre le sens de cette convergence, il faut rappeler à quelle topologie de X/G on fait référence. En l'absence de précision, il s'agit de la topologie canonique de cet espace quotient, c'est-à-dire la plus fine pour laquelle la projection canonique p est continue. (L'ensemble des ouverts de cette topologie est l'ensemble des parties A de X/G, telles que $p^{-1}(A)$ est un ouvert de X.)

Fixons maintenant $x \in X$ un représentant de y. Comme X est localement compact, on peut fixer R>0 tel que B(x, 2R) est compacte. On pose $O = p(B_o(x, R))$ (avec $B_o(x, R)$ la boule ouverte de centre x et de rayon R).

Alors:

$$p^{-1}(O) = \{ z \in X \text{ tels que } p(z) \in p(B_o(x, R)) \}$$
$$= \{ z \in X \text{ tels que } \exists s \in B_o(x, R)) \text{ vérifiant } s \mathcal{R} z \}$$
$$= \bigcup_{g \in G} g(B_o(x, R)) = \bigcup_{g \in G} B_o(g(x), R)$$

(car les éléments de G sont des isométries)

D'où $p^{-1}(O)$ est un ouvert de X (car réunion d'ouverts de X), et O est un ouvert de X/G dans la topologie évoquée plus haut.

Comme de plus $y \in O$, la convergence de $(y_n)_{n \in \mathbb{N}}$ vers y assure qu'il existe un $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, y_n \in O$.

Quitte à choisir un n_0 plus grand, on peut supposer $n_0 \ge \frac{1}{R}$.

Comme $y_{n_0} = p(x_{n_0}) \in O$, on peut lui trouver un représentant $z \in B_o(x, R)$. Alors $B(z, R) \subset B(x, 2R)$ et B(z, R) est donc compact (car fermé dans un compact). De plus, $x_{n_0}\mathcal{R}z$, donc on peut fixer $g \in G$ tel que $x_{n_0} = g(z)$. Comme g est une isométrie, g est continue (car 1-lipschitzienne), et donc $g(B(z, R)) = B(x_{n_0}, R)$ est compact.

continue (car 1-lipschitzienne), et donc $g(B(z,R)) = B(x_{n_0},R)$ est compact. Enfin, comme $R \ge \frac{1}{n_0+1}$, $B\left(x_{n_0}, \frac{1}{n_0+1}\right)$ est compact car fermé dans un compact. CONTRADICTION

Dans la suite, on fixe un r vérifiant la propriété de ce lemme.

Lemme 1.2. Pour tout $x \in X$ et pour tout R > 0, B(x,R) est compacte.

Preuve: Soit $x \in X$.

Soit $R \ge 0$ tel que B(x,R) est compacte. Montrons que $B\left(x,R+\frac{r}{2}\right)$ l'est aussi

La sphère S(x,R) est compacte (car c'est un fermé dans un compact) et on peut donc extraire du recouvrement d'ouverts $\left\{B_o\left(z,\frac{r}{2}\right)\right\}_{z\in S(x,R)}$ un sous-recouvrement fini $\left\{B_o\left(z_i,\frac{r}{2}\right)\right\}_{1\leq i\leq n}$, où les $(z_i)_{1\leq i\leq n}$ sont dans S(x,R).

Soit maintenant $y \in B\left(x, R + \frac{r}{2}\right) \setminus B(x, R)$ et soit γ un segment géodésique entre x et y. On pose $w = \gamma(R)$, alors d(x, w) = R et $d(w, y) \leq \frac{r}{2}$.

Comme $w \in S(x, R)$, on peut fixer $i \in [1, n]$ tel que $w \in B_o(z_i, \frac{r}{2})$. Donc $d(z_i, y) \le d(z_i, w) + d(w, y) \le r$, c'est-à-dire $w \in B(z_i, r)$.

Par conséquent $B\left(x,R+\frac{r}{2}\right)\subset \left(\bigcup_{1\leq i\leq n}B(z_i,r)\right)\cup B(x,R).$

Or $(\bigcup_{1 \leq i \leq n} B(z_i, r)) \cup B(x, R)$ est compact comme réunion finie de compacts (les $B(z_i, r)$) sont compacts d'après le premier lemme).

Donc $B\left(x, R + \frac{r}{2}\right)$ est compact car fermé dans un compact.

Comme B(x,0) est compact, par récurrence immédiate, pour tout $n \in (N)$, $B(x, n_{\frac{r}{2}})$, puis (comme r > 0) on en déduit le lemme annoncé, en incluant toute boule fermée dans un compact de la forme $B(x, n_{\frac{r}{2}})$ pour n assez grand.

Ce deuxième lemme permet de conclure sur la question de l'énoncé:

Soit R > 0.

Si $g \in G$ vérifie $d(x, g(x)) \leq R$, alors $g(x) \in B(x, R) \cup g(B(x, R))$.

Donc $\{g \in G | d(x, g(x)) \leq R\} \subset \{g \in G | B(x, R) \cup g(B(x, R) \neq \emptyset\}$, qui est un ensemble fini comme l'action est proprement discontinue et B(x, R) compact d'après le deuxième lemme.

Donc $\{g \in G | d(x, g(x)) \leq R\}$ est un ensemble fini. On notera dans la suite $N_G(x, R)$ son cardinal.

1.2 Question 2

Soit $x \in X$.

Lemme 1.3. Il existe $\Lambda > 0$ tel que $\bigcup_{g \in G} B(g(x), \Lambda) = X$.

Preuve : Raisonnons par l'absurde, en supposant que cela est faux.

On peut donc construire une suite $(x_n)_{n\in\mathbb{N}}$ vérifiant $\forall n\in\mathbb{N}, \forall g\in G, d(x_n,g(x))>n$.

Comme X/G est compact, la suite $(y_n)_{n\in\mathbb{N}}=(p(x_n))_{n\in\mathbb{N}}$ admet une sous-suite $(y_{\sigma(n)})_{n\in\mathbb{N}}$ convergeant vers $y\in X/G$, dont on fixe un représentant $z\in X$.

On pose D = d(z, x) + 1 et $O = p(B_o(x, D))$.

En reprenant exactement le même raisonnement que dans la démonstration du lemme 1.1, il existe $n_0 \ge 2D$ tel que $y_{n_0} \in O$ et il existe donc $g \in G$ tel que $g(x_{n_0}) \in B_o(x, D)$.

Donc
$$d(g(x_{n_0}), z) \leq D$$
 et

$$d(x_{n_0}, g^{-1}(x)) = d(g(x_{n_0}), x) \le d(g(x_{n_0}), z) + d(z, x) \le 2D \le n_0.$$

CONTRADICTION

On fixe pour la suite un Λ tel que $\bigcup_{g \in G} B(g(x), \Lambda) = X$.

De plus, à partir de maintenant, on supposera X non borné (en effet, la question est triviale dans ce cas car pour tout $x, R \mapsto N_G(x, R)$ devient constante à partir d'un certain rayon).

On définit alors les deux fonctions suivantes

$$\phi_x : R > 0 \longmapsto \{g \in G \text{ tels que } R - 2\Lambda < d(x, g(x)) \le R + 2\Lambda\}$$

$$f: R > 0 \longmapsto \#\phi_x(R)$$

Remarques:

- D'après le résultat de la première question, pour tout R > 0, $\phi_x(R)$ est de cardinal fini et donc f est à valeurs dans \mathbb{N}
- Comme les éléments de G sont des isométries : $\forall g \in G, \forall R > 0, \phi_x(R) = \phi_{g(x)}(R)$
- Comme X est géodésique non borné, pour tout R > 0, on peut fixer y tel que $R \Lambda < d(x,y) < R + \Lambda$ (en prenant un élément de X assez loin de x puis en se plaçant au bon endroit sur le segment géodésique), et le lemme précédent nous assure donc que $\phi_x(R)$ est non vide. Par conséquent, f est à valeurs strictement positives.

On peut alors démontrer la proposition ci-dessous.

Proposition 1.1. La fonction f définie au-dessus vérifie, pour tous $R_1, R_2 > 0$, $f(R_1 + R_2) \le f(R_1) \times f(R_2)$.

Preuve:

Soient $R_1, R_2 > 0$. On pose $R = R_1 + R_2$.

Soit $\psi: (g_1, g_2) \in \phi_x(R_1) \times \phi_x(R_2) \longmapsto g_1 \circ g_2$. Montrons que $\phi_x(R) \subset \psi(\phi_x(R_1) \times \phi_x(R_2))$.

Soit $g \in \phi_x(R)$. On pose $\delta = \frac{d(x,g(x))-R}{2} \in [-\Lambda, \Lambda[$. (Remarque: on a $d(x,g(x)) \geq R - 2\Lambda \geq R_1 - 2\Lambda$)

Si $d(x, g(x)) \leq R_1$, alors $R_2 = R - R_1 \leq 2\Lambda$ et donc $g = g \circ Id = \psi(g, Id)$, où $(g, Id) \in \phi_x(R_1) \times \phi_x(R_2)$.

Sinon, fixons γ un chemin géodésique de x à g(x) et posons $y = \gamma(R_1 + \delta)$. Avec le lemme précédent, on peut fixer $g_1 \in G$ tel que $d(y, g_1(x)) \leq \Lambda$. On pose maintenant $g_2 = g \circ g_1^{-1}$, et donc $g = g_1 \circ g_2$.

Alors

$$R_1 - 2\Lambda < R_1 + \delta - \Lambda$$

$$\leq d(x, y) - d(y, g_1(x))$$

$$\leq d(x, g_1(x)) \leq d(x, y) + d(y, g_1(x))$$

$$\leq R_1 + \delta + \Lambda$$

$$< R_1 + 2\lambda$$

$$R_2 - 2\Lambda < R_2 + \delta - \Lambda$$

$$\leq d(g(x), y) - d(y, g_1(x))$$

$$\leq d(g(x), g_1(x))$$

$$\leq d(g(x), y) + d(y, g_1(x))$$

$$\leq R_2 + \delta + \Lambda$$

$$< R_2 + 2\lambda$$

Or $d(g(x), g_1(x)) = d(g_2 \circ g_1(x), g_1(x))$, donc $g_2 \in \phi_{g_1(x)}(R_1) = \phi_x(R_2)$ (d'après la remarque préliminaire)

Donc $g = g_1 \circ g_2 = \psi(g_1, g_2)$, où $(g_1, g_2) \in \phi_x(R_1) \times \phi_x(R_2)$.

Conclusion: On a bien $\phi_x(R) \subset \psi(\phi_x(R_1) \times \phi_x(R_2))$.

Par conséquent, comme les ensembles considérés sont finis:

$$f(R_1 + R_2) = \#\phi_x(R)$$

$$\leq \#(\phi_x(R_1) \times \phi_x(R_2))$$

$$= \#\phi_x(R_1) \times \#\phi_x(R_2)$$

$$= f(R_1) \times f(R_2)$$

Pour la suite, on notera :

 $\forall n \in \mathbb{N}, u_n = f(4\Lambda n) \text{ et } v_n = \ln(u_n).$

Remarques:

- Pour tout $n \in \mathbb{N}$, $u_n = f(4\Lambda n)$ est à valeurs entières strictement positives comme nous l'avons montré plus haut, donc $(v_n)_{n \in \mathbb{N}}$ est bien définie, et elle est de plus positive.
- Par définition de f:

$$\forall n \in \mathbb{N}, N_G(x, 2\Lambda(2n+1)) = \sum_{0 \le k \le n} f(4\Lambda n) = \sum_{0 \le k \le n} u_k$$

• D'après la proposition qui précède, on a :

 $\forall m, n \in \mathbb{N}, u_{m+n} = f(4\Lambda(n+m)) \leq u_m \times u_n$, et donc $v_{m+n} \leq v_m + v_n$, c'est-à-dire que v est sous-additive.

On va maintenant appliquer un lemme classique, en élargissant un peu son résultat.

Lemme 1.4. Soit $(v_n)_{n\in\mathbb{N}}$ une suite sous-additive. Alors, $\frac{v_n}{n}$ tend vers $l=\inf_{n>0}\frac{v_n}{n}\in\mathbb{R}\cup\{-\infty\}$ quand n tend vers $+\infty$.

De plus, si $l \leq 0$ et si l'on pose $\forall n \in \mathbb{N}$, $w_n = \max_{k \leq n} (v_k)$, alors $\frac{w_n}{n}$ tend vers l quand n tend vers $+\infty$.

<u>Preuve</u>:

Soit $m \in \mathbb{N}^*$.

On note $M = \max_{0 \le r < m} v_r$.

Soit $n \geq m$, que l'on décompose par division euclidienne sous la forme par division euclidienne sous la forme n = qm + r, avec $0 \le r \le m$.

Alors par récurrence immédiate, $v_{qm} \leq qv_m$ puis $\frac{v_n}{n} \leq \frac{v_{qm} + v_r}{n} \leq \frac{qv_m}{qm} + \frac{M}{n} \leq \frac{v_m}{m} + \frac{M}{n}$.

D'où $\limsup_{n\to+\infty} \frac{v_n}{n} \leq \frac{v_m}{m}$

Ceci étant vérifié pour tout $m \in \mathbb{N}^*$, on en déduit :

 $\limsup_{n \to +\infty} \frac{v_n}{n} \le \inf_{m \in \mathbb{N}^*} \frac{v_m}{m} \le \liminf_{m \to +\infty} \frac{v_m}{m}$, ce qui démontre la première partie du lemme.

On suppose maintenant que $l \leq 0$, on on pose $\forall n \in \mathbb{N}, w_n = \max_{k \leq n} (v_k)$.

D'après ce qui précède, on a alors: $\forall n \in \mathbb{N}, \frac{w_n}{n} \geq \frac{v_n}{n} \geq l$ Raisonnons par l'absurde en supposant que $\frac{w_n}{n}$ ne converge pas vers l. On peut donc fixer $\alpha > 0$ et extraire une sous-suite $\left(\frac{w_{\sigma(n)}}{\sigma(n)}\right)_{n \in \mathbb{N}}$ telle que, pour tout $n \in \mathbb{N}, \frac{w_{\sigma(n)}}{\sigma(n)} \geq$ $l + \alpha (> 0)$.

En particulier, on sait donc que la suite $w_{\sigma(n)}$ tend vers $+\infty$.

Comme $\lim_{n\to+\infty} \frac{v_n}{n} = l$, on peut fixer n_0 tel que pour tout $n \le n_0$, $\frac{v_n}{n} < l + \alpha$.

Comme de plus la suite $w_{\sigma(n)}$ tend vers $+\infty$, il existe donc $n > n_0$ tel que $w_{\sigma(n+1)} >$ $w_{\sigma(n)}$.

w étant croissante, en posant $p = \min\{k \in [\sigma(n), \sigma(n+1)] | w_k = w_{\sigma(n+1)}\}$ on a : $w_{\sigma(n+1)} = w_p > w_{p-1}$, et par définition de w, cela implique que $w_p = v_p$. Donc, comme $w_p = w_{\sigma(n+1)}$, on a: $w_{\sigma(n+1)} = v_p$.

Alors,

$$\frac{w_{\sigma(n+1)}}{\sigma(n+1)} = \frac{v_p}{\sigma(n+1)} \le \frac{v_p}{\sigma(p)} < l + \alpha$$

ce qui est absurde.

En appliquant ce lemme à $(v_n)_{n\in\mathbb{N}}$, qui est additive et positive, on en déduit que : $\frac{v_n}{n}$ tend vers $\inf_{n>0} \frac{v_n}{n}$. On note l cette limite (qui dépend a priori de x). Le lemme assure de plus que, si on note $(w_n = \max_{k \le n} v_k)_{n \in (N)}$, alors converge $\frac{w_n}{n}$ converge vers l.

On pose maintenant $\delta_G = \frac{l}{4\Lambda}$

Proposition 1.2. $\lim_{R\to+\infty}\frac{N_G(x,R)}{R}=\delta_G$ et il existe C>0 tel que : pour tout R>0, $N_G(x,R) \ge Ce^{\delta_G R}$

 $\begin{array}{l} \underline{\text{Preuve}:} \; \text{Soit} \; R > 6\Lambda. \\ \text{On pose} \; n = \left\lfloor \frac{R-2\Lambda}{4\Lambda} \right\rfloor \geq 1. \\ \text{Alors, comme} \; R \to N_G(x,R) \; \text{est croissante:} \end{array}$

$$N_G(x, 2\Lambda(2n+1)) \le N_G(x, R) \le N_G(x, 2\Lambda(2n+3))$$

Donc d'après la remarque et en utilisant la croissance du logarithme,

$$\ln\left(\sum_{0\leq k\leq n} u_k\right) \leq \ln(N_G(x,R)) \leq \ln\left(\sum_{0\leq k\leq n+1} u_k\right)$$

D'une part:

$$\ln(N_G(x,R)) \le \ln\left(\sum_{0 \le k \le n+1} u_k\right) \le \ln\left((n+2) \max_{k \le n+1} u_k\right) \le w_{n+1} + \ln(n+2)$$

Puis

$$\frac{\ln(N_G(x,R))}{R} \le \frac{w_{n+1}}{n+1} \frac{n+1}{R} + \frac{\ln(n+2)}{R}$$

$$\le \frac{w_{n+1}}{n+1} \frac{\frac{R+2\Lambda}{4\Lambda}}{R} + \frac{\ln\left(\frac{R+6\Lambda}{4\Lambda}\right)}{R}$$
(1)

D'autre part :

$$\ln(N_G(x,R)) \ge \ln\left(\sum_{0 \le k \le n} u_k\right) \ge \ln(u_n) = v_n$$

Donc

$$\frac{\ln(N_G(x,R))}{R} \ge \frac{v_n}{n} \frac{n}{R}$$

$$\ge l \frac{\frac{R-6\Lambda}{4\Lambda}}{R}$$

$$\ge \delta_G \left(1 - \frac{6\Lambda}{R}\right)$$
(2)

Or

$$\lim_{R \to +\infty} \frac{w_{n+1}}{n+1} \frac{\frac{R+2\Lambda}{4\Lambda}}{R} + \frac{\ln\left(\frac{R+2\Lambda}{4\Lambda}\right)}{R} = \frac{l}{4\Lambda} = \delta_G$$

et

$$\lim_{R \to +\infty} \delta_G \left(1 - \frac{6\Lambda}{R} \right) = \delta_G$$

D'après (1) et (2), on peut conclure par encadrement que $\lim_{R\to+\infty} \frac{N_G(x,R)}{R} = \delta_G$, ce qui démontre la première partie de la proposition.

On pose $C = e^{6\delta_G \Lambda}$.

Pour $R\in]0,6\Lambda]$, $Ce^{\delta_GR}\leq 1\leq N_G(x,R)$ (En effet, l'élément identité de G assure que $\{g\in G|d(x,g(x))\leq R\}$ est non vide) Et pour $R\in [6\Lambda,\infty[$, l'équation (2) assure que $N_G(x,R)\geq e^{\delta_G(R-\frac{6\Lambda}{R})}=Ce^{\delta_GR}$

Ainsi, pour tout R > 0, $N_G(x, R) \ge Ce^{\delta_G R}$, ce qui conclut la démonstration. \square