Testing	Woge (peresinance
---------	--------	-------------

Mzn abolute error (MAE)

$$MAF = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

$$NAF = \frac{0.5 + 1.2 + 0.3}{3} = \frac{2.0}{3} = 0.67$$

Lower MAE = bitter model parformance

Mean equared crook (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Squares the error, so it penalize larper errors more heavily than MAE.

Actual q.	. Predicted g.	Error (9-9)	Squered auror
, , , , ,	6.5	0.5.	0.25
4	5.2		1. ५ ५
	8.7.	0·3	ጋ ጋ ጎ

Lower MSE = Better model

R score (coefficient of detarmination)

$$\beta^{2} = (-\frac{\sum(y_{i}-\hat{y}_{i})^{2}}{\sum(y_{i}-\hat{y}_{j})^{2}}$$

90 = predicted value

Measures how much of the variation in mood scores the model Compares model error to baseline errors.	explaing	0	0 0
$R^2=1$ profess model (100% acc)		•	• •
\$ 2-0 model is no better than predicting the mean		0	• •
\$ 20 model is well than guessing the mean.		•	• •
Actually Predicted g Error ly-g) squared error 7 6.5 0.5 0.25		•	
6.5 as 0.25 5.2 -1.2 1.44		•	• •
. 9 8.7			• •
(1) SSF = 0.25+1.0(4+0.0+=1.28		٠	
2) ssi (total variotion)			• •
$\leq s_{\tau} = \left(g_{\dot{c}} - g_{\bar{c}} \right)^2$			
if y=6.67 (zup mood score):		۰	
SST= (7-6.67) ² +(4-6.67)-(1-6.67) ⁷ =4	.67.	•	
		۰	
$Q^{2} = 1 - \frac{SSE}{SST} = 1 - \frac{1.78}{4.67} = 0.62 - \frac{527}{545} = 0.62$ by $s(eep, 54)$	ol score	vovie Lecc	i.on vc:se