Using Sequence Determinants to Predict CRISPRa Ricin Susceptibility

Jenny Yang

Summer 2018

sgRNA

- used to direct Cas9 in binding DNA at specific target sequence (protospacer adjacent motif - PAM)
 - 5' NGG 3'
- depending on design specifications, Cas9 can be "programmed" to cleave host's genome at virtually any position
- key step in implementing CRISPR genetic screens is selecting sgRNAs that mediate high Cas9 activity

Previous Work

- nucleosome occupancy, sequence features, etc. can influence Cas9 activity
- sensitivity to toxins can provide insights into complex pathway mapping
- having a quantitative model incorporating these features can help predict highly active sgRNAs for CRISPRi and CRISPRa

Our Goal

Create a predictive model using sequence determinants to predict CRISPRa ricin susceptibility

Our Goal

Create a predictive model using sequence determinants to predict CRISPRa ricin susceptibility

Calculating Features

- used CRISPRa ricin tiling data from Gilbert et al. (2014)
- 48 genes chosen, known to modulate ricin sensitivity (Bassik et al., 2013; Gilbert et al., 2014)

- for sequence:
 - width of 38 bases
 - PAM located at positions 31, 32, 33

- want to predict activity:
 - activity calculated by log fold change of standard conditions vs. ricin treated expression levels
 - normalized about 0

Models

LASSO

shrinkage and variable selection method for linear regression models

Random Forest Regression

builds decision trees and merges them together for prediction

Support Vector Machine

 looks for hyperplane in N-dimensional space that distinctly classifies data points

Lasso Regression

Random Forest Regression

Support Vector Machine

Model Comparison

	LASSO	Random Forest	Support Vector
	Regression	Regression	Regression
Mean			
Squared	1.8813 x 10 ⁻⁵	8.2483 x 10 ⁻¹¹	1.6140 x 10 ⁻⁴
Error			
Pearson			
Correlation	0.99969	0.99999	0.99815
Coefficient			

Model Comparison

	LASSO	Random Forest	Support Vector
	Regression	Regression	Regression
Mean Squared Error	1.8813 x 10 ⁻⁵	8.2483 x 10 ⁻¹¹	1.6140 x 10 ⁻⁴
Pearson Correlation Coefficient	0.99969	0.99999	0.99815

Lasso Regression

Random Forest Regression

Lasso Regression

Random Forest Regression

Lasso Regression

Random Forest Regression

Considerations

- not enough structured data points
- models encode correlation, not causation or ontological relationships
- each narrow application needs to be specially trained

Next Steps

- further investigate layers of model
 - clusters of features that form the nodes
 - nodes with the strongest output signal
 - branching paths of random forest
- add more types of data (epigenetic, environmental, etc.)
- try other models (autoencoder, etc.)

Acknowledgements

- Timothy Daley
- Stanley Qi

Thank you Qi lab!

Virginia Diaz

