

Pertemuan ke_4 Ekuvalensi NFA

Tim pengampu 2022

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO

Finite State Automata Materi: **DFA dan NFA** Ekuivalensi NFA

Tim pengampu

2022

Capaian Pembelajaran

Mahasiswa memahami membentuk DFA yang ekivalen dengan suatu NFA yang diberikan

- DFA DAN NFA
- FSA secara umum ada dua jenis yaitu

- Deterministic Finite Automata (DFA)
- 2. Non Deterministic Finite Automata (NFA) atau NDFA

DFA

- Ciri DFA
 - 1. Jika misalkan Σ ={a,b}, maka SETIAP state mempunyai tepat satu input a dan satu input b
 - 2. Dalam Tabel Transisi state Tujuan tidak ditulis dalam bentuk Himpunan

DFA

- Suatu string x dinyatakan diterima, Bila δ (S,x) berada pada state akhir.
- Bila M adalah sebuah bahasa FSA $M = (Q, \Sigma, \delta, S, F)$ menerima bahasa yang disebut L(M) yang merupakan himpunan $\{x \mid \delta(S,x) \text{ anggota } F\}$

DFA

1. Jika misalkan Σ ={a,b}, maka SETIAP state mempunyai satu input a dan satu input b

2. Dalam Tabel Transisi state Tujuan tidak ditulis dalam bentuk himpunan

Bukan dalam bentuk himpunan

• Contoh 2

	a	b
S	В	Α
Α	С	S
B	S	С
C	Α	В

DFA DAN NFA

Contoh 3

Q = {S, A, B, C, D}

$$\Sigma$$
 = {0, 1}
 δ (S,0)=S, δ (A,0)=S, δ (B,0)=B, δ (C,0)=D, δ (D,0)=A
 δ (S,1)=A, δ (A,1)=C, δ (B,1)=D, δ (C,1)=B, δ (D,1)=B
 S= S
 F = {B, C}

DFA DAN NFA

- Ciri NFA
 - 1. Jika misalkan Σ ={a,b}, maka SETIAP state mempunyai input a dan input b yang jumlahnya bebas
 - 2. Dalam Tabel Transisi state Tujuan ditulis dalam bentuk Himpunan

1. Jika misalkan Σ ={a,b}, maka SETIAP state mempunyai input a dan input b yang jumlahnya bebas

2. Dalam Tabel Transisi state Tujuan ditulis dalam bentuk himpunan

	а	b
S	{A}	{S}
Α	{A,B}	({ }
В	{A}	{B,B}

dalam bentuk himpunan

- Suatu string diterima oleh NFA bila terdapat suatu urutan transisi sehubungan dengan input string tsb dari state awal sampai state akhir.
- NFA harus dicoba semua kemungkinan yang ada sampai terdapat satu yang mencapai state akhir.
- Suatu string x dinyatakan diterima oleh bahasa NFA, M = (Q, Σ , δ , S, F).
 - Bila $\{x \mid \delta(S,x) \text{ memuat sebuah state di dalam } F\}$

Contoh 1

• Contoh 2

	a	b
S	{B}	{A,B}
A	{B,C}	{S}
B	{ }	{C,C}
С	{A}	{ }

Contoh 3

```
Q = {S, A, B}

\Sigma = {0, 1}

\delta(S,0)={S}, \delta(A,0)={S,B}, \delta(B,0)={}

\delta(S,1)={A, B}, \delta(A,1)={A,S} \delta(B,1)={B,B}

S= S

F = {B}
```

Contoh 1

$$S = S$$

 $F = \{B\}$

	а	b
S	{B}	{A}
Α	{ }	{B}
В	{S}	{A, B}

Tentukan Graph Transisinya Tentukan Kelima Komponennya

	0	1
S	{S,C}	{S,A}
Α	{ }	{B}
В	{B}	{B}
С	{D}	{}
D	{D}	{D}

Tentukan Graph Transisinya Tentukan Kelima Komponennya

Contoh 3

Q = {S, A, B, C}
$$\Sigma$$
 = {a, b, c} δ (S,a)={A}, δ (A,a)={B, C}, δ (B,a)={}, δ (C,a)={A}, δ (C,b)={}, δ (C,c)={C} δ (S,b)={B}, δ (A,b)={B}, δ (B,b)={C} δ (S,c)={}, δ (A,c)={A,S}, δ (B,c)={} S = S F = {B, C}

- Di dunia nyata ada suatu sistem yang mengikuti mesin DFA ada juga NFA
- Tetapi Komputer hanya dapat menerima sistem DFA
- Bagaimana solusinya?

- Solusinya adalah merubah suatu NFA menjadi DFA yang ekivalen
- Ekivalen artinya mempunyai kemampuan yang sama

- Cara merubah NFA ke DFA
 - 1. Jika belum dibuat Tabel Transisi, maka buatlah Tabel Transisinya
 - 2. Berpedoman pada Tabel Transisi, ubahlah setiap state agar memenuhi syarat DFA dimulai state awal
 - 3. State Akhir baru DFA mengandung state akhir lama dari NFA

Dari Graph Transisi tersebut dibuat Tabel
 Transisi

	0	1
Α	{A, B}	{B}
В	{ }	{A, B}

- State awal A
- State akhir B

• Hasil DFA yg ekivalen adalah:

• Soal 1:

• Soal 2

S	= A
F	={D}

	0	1
Α	{A, B}	{A}
В	{C}	{C}
С	{D}	{ }
D	{D}	{D}

• Soal 3 Diketahui Kelima Komponen NFA Q = {A, B, C}, Σ = {0, 1} $\delta(A,0)$ ={A}, $\delta(A,1)$ ={C}, $\delta(B,0)$ ={B} $\delta(C,0)$ ={A,B}, $\delta(C,1)$ ={B} S= A, F={C}

• Soal 4 Diketahui Kelima Komponen NFA Q = {A, B, C}, Σ = {0, 1} δ (A,0)={B, C}, δ (A,1)={C}, δ (B,0)={B} δ (B,1)={C}, δ (C,0)={ }, δ (C,1)={A, C} S = A, F ={B}

• Soal 5:

Video Referensi

• https://www.youtube.com/watch?v=k IVxcPWySQ&list=PLRh5ykdCNEH3G RYC8S 1znK0FLV9GTV5