HHL algorithm: quantum algorithm for linear systems of equations

Purpose: solve $\vec{A}x = \vec{b}$ using a quantum computer

Reference: Harrow A W, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations[J]. Physical review letters, 2009, 103(15): 150502.

Picture: https://arxiv.org/pdf/1802.08227.pdf

 $A \rightarrow U = e^{iAt}$

Step 1.

Transfer a Hermitian matrix A into a unitary operator e^{iAt} .

PS. If A is not a Hermitian matrix, define $C = \begin{pmatrix} 0 & A \\ A^H & 0 \end{pmatrix}$. Then C is

Hermitian matrix, and we can solve $C\vec{y} = \begin{pmatrix} \vec{b} \\ 0 \end{pmatrix}$ to obtain $\vec{y} = \begin{pmatrix} 0 \\ \vec{x} \end{pmatrix}$.

Step 3.

Decompose $|b\rangle = \sum_{j=1}^{N} \beta_j |u_j\rangle$ in the eigenvector basis, using phase estimation.

- PS: 1. $|u_i\rangle$ is the eigenvector of A (or equivalently, of e^{iAt}), and λ_i is the eigenvalue.
- 2. The result in blue rectangle is obtained for the ideal situation, when we consider the phase estimation as an accurate process. For more information, please check the paper.
- 3. To make the graph simple, I use $|\lambda_j\rangle$ and $\beta_j|u_j\rangle$ to denote the clock and input registers after phase estimation (PE). However, they are actually in entanglement after PE, and both of them are in the sperposition of a series of quantum bases, as is shown in the blue rectangle.

$$\sum_{j=1}^{N} (\sqrt{1 - \frac{C^2}{\lambda_j^2}} |0\rangle + \frac{C}{\lambda_j} |1\rangle) \beta_j |u_j\rangle |\lambda_j\rangle$$

Step 4.

We use the clock register as a control qubit to rotate the ancilla qubit. The ancilla qubit register becomes the superposition of state 0 and 1. This process save the eigenvalue λ_j from the basis $|\lambda_j\rangle$ to the probability amplitudes $\sqrt{1-\frac{C^2}{\lambda_j^2}}$ and $\frac{C}{\lambda_j}$.

PS:
$$C = O(1/\kappa) \le min_i |\lambda_i|$$

$$\sqrt{1-\frac{C^2}{\lambda_j^2}}|0\rangle+\frac{C}{\lambda_j}|1\rangle$$

Step 5.

Use inverse phase estimation to uncompute $|\lambda_j\rangle$ ($|\lambda_j\rangle \to |0\rangle$). Measure the ancilla register, if the result of measurement is $|1\rangle$, we can get $|x\rangle$. If the result is $|0\rangle$, we need to recalculate.

PS:
$$N_{x'} = \sum_{j=1}^{N} (\frac{c}{\lambda_i} \beta_j)$$

Our goal:
$$|x\rangle = \sum_{j=1}^{N} \lambda_j^{-1} \beta_j |u_j\rangle$$

$$|x'\rangle = \frac{1}{\sqrt{N_{x'}}} \sum_{j=1}^{N} \frac{c}{\lambda_j} \beta_j |u_j\rangle \propto |x\rangle$$