APRENDIZAGEM DE MÁQUINA

(usando Python)

Thiago Marzagão

REGRESSÃO LINEAR MÚLTIPLA

- Aula passada: $\hat{y}_i = a + bx_i$
- Hoje: $\hat{y}_i = a + b_1 x_{1i} + b_2 x_{2i} + \dots$

- Aula passada: $\hat{y}_i = a + bx_i$ (regressão simples)
- Como encontrar b?
- $\min_{a,b} \sum_{i=1}^{N} e_i^2 = \min_{a,b} \sum_{i=1}^{N} (y_i a bx_i)^2$
- Hoje: $\hat{y}_i = a + b_1 x_{1i} + b_2 x_{2i} + \dots$ (regressão múltipla)
- Como encontrar b_1 , b_2 , etc?
- $\min_{a,b_1,b_2,...} \sum_{i=1}^N e_i^2 = \min_{a,b_1,b_2,...} \sum_{i=1}^N (y_i a b_1 x_{1i} b_2 x_{2i} ...)^2$

Em notação matricial:

$$\begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & \dots \\ 1 & x_{12} & x_{22} & \dots \\ \dots & \dots & \dots & \dots \\ 1 & x_{1N} & x_{2N} & \dots \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \dots \\ e_N \end{bmatrix}$$

Erros:

$$e = y - xb$$

Erros quadrados:

$$e^2 = (y - xb)^2$$

$$e'e = y'y - 2bx'y + b'x'xb$$

O que queremos minimizar:

$$\min_b \sum e'e = \min_b \sum y'y - 2bx'y + b'x'xb$$

a mágica do cálculo matricial acontece...

- $b = (x'x)^{-1}x'y$
- (Vale p/ regressão simples também!)

- $b = (x'x)^{-1}x'y$
- O "menos um" é notação p/ matriz inversa.
- ullet Se AB=BA=I, então B é a matriz inversa de A
- $oldsymbol{I}$ é uma matriz identidade (1s na diagonal principal e 0s nas demais células)
- Apenas matrizes quadradas (n x n) têm matrizes inversas.

crime per capita nos bairros de Boston

crime	n. de cômodos	% < 1940	distância	\$ valor
0,00632	6,575	65,2	4,0900	24.000
0,02731	6,421	78,9	4,9671	21.600
0,02729	7,185	61,1	4,9671	34.700
0,03237	6,998	45,8	6,0622	33.400
0,06905	7,147	54,2	6,0622	36.200
0,02985	6,430	58,7	6,0622	28.700
0,08829	6,012	66,6	5,5605	22.900
0,14455	6,172	96,1	5,9505	27.100

fonte: http://archive.ics.uci.edu/ml/datasets/Housing

crimes per capita nos bairros de Boston

- Impossível plotar c/ mais de 2 variáveis.
- Mas idéia é a mesma da aula passada (sorvete vs temperatura), apenas com mais dimensões.
- (Desenhar no quadro.)
- Já a interpretação dos coeficientes muda um pouco.
- Regressão simples: y varia em b unidades quando x varia uma unidade.
- Regressão múltipla: y varia em b_1 unidades quando x_1 varia uma unidade e x_2 , x_3 , etc, são mantidos constantes.
- Essa é a beleza da regressão múltipla: ela nos permite calcular o coeficiente de uma variável mantendo as demais variáveis constantes.
- Em outras palavras, a regressão múltipla nos permite calcular o efeito *líquido* de x_1 sobre y, i.e., já descontados os efeitos de x_2 , x_3 , etc.
- Regressão múltipla != múltiplas regressões simples.

crimes per capita nos bairros de Boston

- x_1 : n. de cômodos
- x_2 : % < 1940
- x₃: distância
- *x*₄: valor
- $\hat{y} = 7,317 + 1,420x_1 + 0,003x_2 1,217x_3 0,365x_4$
- Interpretação:
- P/ cada cômodo adicional, crime per capita aumenta 1,420 (mantendo as outras três variáveis constantes).
- P/ cada 1 ponto percentual a mais de imóveis < 1940, crime per capita aumenta 0,003 (mantendo as outras três variáveis constantes).
- P/ cada 1 milha a mais de distância do centro, crime per capita diminui 1,217 (mantendo as outras três variáveis constantes).
- P/ cada US\$ 1 mil dólares a mais de valor da propriedade, crime per capita diminui 0,365 (mantendo as outras três variáveis constantes).

desempenho do modelo

- Como sei se meu modelo está bom ou ruim?
- $R^2 = 1 \frac{\sum (y_i \hat{y}_i)^2}{\sum (y_i \bar{y})^2}$
- R^2 é o % da variância de y explicada pelo modelo.
- Varia entre 0 (modelo não explica nada) e 1 (modelo explica tudo).
- Usando scikit-learn: reg.score(x, y)
- Em geral quanto maior o \mathbb{R}^2 melhor o modelo. Mas...
- ullet ... R^2 sempre aumenta quando incluímos mais variáveis independentes no dataset de treino, mesmo que essas variáveis piorem o R^2 do modelo no dataset de teste
- ... o nome disso é overfitting: nós estamos forçando o modelo a responder a cada idiossincrasia do dataset de treino, em prejuízo do desempenho do modelo no dataset de teste
- ... nós veremos overfitting em mais detalhes quando chegarmos em classificação (árvores de decisão e SVM)

crimes per capita nos bairros de Boston

- Dataset está disponível no site da disciplina (http://thiagomarzagao.com/teaching/IPEA2017).
- P/ reproduzir os resultados acima:

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
data = pd.read_csv('dados_regressao.csv')
reg = LinearRegression()
x = data[['RM', 'AGE', 'DIS', 'MEDV']]
y = np.array(data['CRIM']).reshape(len(data), 1)
reg.fit(x, y)
reg.intercept_
reg.coef_
```

o que não vamos ver

- Inferência (b é estatisticamente diferente de zero?, etc; vide slide acima).
- ... inferência nos permite calcular intervalos de confiança p/ \hat{y} , o que é muito útil em mineração de dados; mas não há tempo p/ cobrirmos isso e vocês precisariam saber um bocado de estatística
- Relações não aditivas (ex.: $\hat{y} = a + b_1 x_1 + b_2 x_1^2$).
- Séries temporais (ex.: $\hat{y}_t = a + b_1 y_{t-1} + b_2 y_{t-2}$).
- Dados em painel (ex.: $\hat{y}_{it} = a + b_1 x_{1it} + b_2 x_{2it}$).
- Causalidade (x causa y? y causa x? z causa x e y?).
- Uma infinidade de outros tópicos!
- P/ quem quiser aprofundar em regressão:
- ... comecem com o Gujarati (Econometria Básica); excelente p/ self-learning
- ... depois partam p/ o Greene (Econometrics); é um tratamento menos didático mas mais avançado