# Exam 2 Notes

### Alex Socarras

# 4/8/2022

# Chapter 13 - Vector-Valued Functions

# 13.1 - Space Curves

Space curves vs Vector functions

• A space curve is a curve in  $\mathbb{R}^3$ . If  $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ , then the set of points (x, y, z) where x = f(t), y = g(t), z = h(t) is a space curve, C.



 $\vec{r}(t)$  is the position vector of the point P = (f(t), g(t), h(t)) on C.

Any continuous vector function defines a space curve.

Note: x = f(t), y = g(t), z = h(t) are again called parametric equations.

Identify/sketch a curve from its vector equation

Show a curve lies on a given surface. Use this to sketch the curve.

Parameterize a curve given Cartesian equations (solve/eliminate variable; use trig: x = rcos,y=rsin)

example Parametrize the curve C obtained as the intersections of the surfaces  $x^2 - y^2 = z - 1$  and  $x^2 + y^2 = 4$ .



# 13.2-13.3 - Arc Length & Speed

Derivatives, Tangent Vector, Tangent Line, Integrals



 $\mathbf{r}'(t)$  is the tangent vector to the curve defined by  $\mathbf{r}$  at the point P.  $\mathbf{r}'(t)$  exists and  $\mathbf{r}'(t) \neq 0$ 

$$(\mathbf{r}'(t) \text{ exists and } \mathbf{r}'(t) \neq 0)$$

The tangent line to C at P is defined to be

The tangent line to 
$$C$$
 at  $P$  is defined to be the line through  $P$  parallel to the tangent vector  $\mathbf{r}'(t)$ .

The unit tangent vector:

$$\overrightarrow{\tau}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||}$$

Find the tangent vector of r(t) at a given point. Find the line tangent to a curve at a given point.

### DERIVATIVE RULES

Let  $\mathbf{u}$  and  $\mathbf{v}$  be differentiable vector functions, c a scalar, and f a real-valued function.

$$\bullet \ \frac{d}{dt}(\mathbf{u}(t)+\mathbf{v}(t)) = \mathbf{u}'(t)+\mathbf{v}'(t) \qquad \bullet \ \frac{d}{dt}(c\mathbf{u}) = c\mathbf{u}'(t) \qquad \text{the product} \qquad \bullet \ \frac{d}{dt}(\mathbf{u}(t)+\mathbf{v}(t)) = \mathbf{u}'(t)+\mathbf{v}(t) \qquad \bullet \ \frac{d}{dt}(\mathbf{u}(t)+\mathbf{v}(t)) = \mathbf{u}'(t)+\mathbf{v}(t) = \mathbf{u}'(t)+\mathbf{v}(t) \qquad \bullet \ \frac{d}{dt}(\mathbf{u}(t)+\mathbf{v}(t)) = \mathbf{u}'(t)+\mathbf{v}(t) = \mathbf{u}'(t) = \mathbf{u}'($$

INTEGRALS

$$\int_a^b \mathbf{r}(t) dt = \left( \int_a^b f(t) dt \right) \vec{i} + \left( \int_a^b g(t) dt \right) \vec{j} + \left( \int_a^b h(t) dt \right) \vec{k}$$

Fundamental Theorem of Calculus...vector function edition

If  $\mathbf{r}(t)$  is continuous on [a, b], and  $\mathbf{R}(t)$  is an antiderivative of  $\mathbf{r}(t)$ , then

$$\int_{a}^{b} \mathbf{r}(t) dt = \mathbf{R}(b) - \mathbf{R}(a)$$

2

$$\begin{aligned} \mathbf{Arc\ Length} \colon L &= \int_a^b \|\vec{r}'(t)\| dt = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt \\ Parametric:\ s(t) &= \int_a^t \|\vec{r}'(u)\| du \\ \text{(u is "placeholder")} \end{aligned}$$

Speed: 
$$\frac{ds}{dt} = \|\vec{r}'(t)\|$$
 (at time  $t$ )

# Chapter 14 - Differentiation in Several Variables

### 14.1 - Functions of 2+ Variables

Find and sketch the domain of the function



Sketch graph of function



Sketch level curves and contour maps of a function



Sketch \*sections\* (vertical traces) of a graph

## 14.2 - Limits and Continuity in Several Variables

$$\lim_{\substack{x \to b}} f(x) = L \iff \left( \forall \epsilon > 0, \exists \delta > 0 \ s.t. \sqrt{(x_1 - b_1)^2 + (x_2 - b_2)^2 + \dots + (x_n - b_n)^2} < \delta \implies |f(x) - L| < \epsilon \right)$$

$$x = (x_1, x_2, \dots, x_n) \in D(f) \subset \mathbb{R}^n$$
Continuity: 
$$\lim_{\substack{(x,y) \to (a,b)}} f(x,y) = f(a,b)$$

#### Limit Existence:

If 
$$f(x,y) \to L_1$$
 as  $(x,y) \to (a,b)$  along a path  $C_1$  and if  $f(x,y) \to L_2$  as  $(x,y) \to (a,b)$  along a path  $C_2$  and 
$$L_1 \neq L_2, \text{ then } \lim_{(x,y)\to(a,b)} f(x,y) \text{ DNE}$$
Disclaime:

$$C_1 \neq C_2 \text{ might be}$$
difficult to pick.

$$Potential Options$$

$$X = 0, y = 0, y = kx^2$$

$$X = ky^2, y = mx, etc$$

### 14.3 - Partial Derivatives

\* Partial Derivatives: the rates of change with respect to each variable separately.

The partial derivative of f with respect to x at (a, b) is

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

similarly for y

$$f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

Graphically, we have the following:

Let P=(a,b). Then the partial derivatives at P are slopes of tangent lines to

the <u>Vertical tracy</u> curves through the point (a,b,f(a,b)).



Rogawski, J.D. and Adams, C. Calculus: Third Edition. Macmillan Learning, 2015.

# 14.4 - Differentiability and Tangent Planes



### TANGENT PLANES

Let  $C_1$  and  $C_2$  be curves on the surface obtained by obtaining the intersection with the surface and vertical planes.

 $T_1$  and  $T_2$  be tangents to  $C_1$  and  $C_2$  at the point P.

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

• Compare:  $y - y_0 = f'(x_0)(x - x_0)$ 

**Linear Approximation:** The linearization of f at (a,b) —  $L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$ 

### Differentials and Increments

**Increments**:  $\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$ 

Differentiability: If z = f(x, y), f is differentiable at (a, b) if

$$\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y + \varepsilon_1\Delta x + \varepsilon_2\Delta z$$
 and  $\varepsilon_1, \varepsilon_2 \to 0$  as  $(a,b) \to (0,0)$ 

**Theorem** — if  $f_x, f_y$  exist "near" (a, b) and are continuous at (a, b), then f is differentiable at (a, b)

Differentials:  $dz = f_x dx + f_y dy$ ,  $dz \approx \Delta z$ 



## 14.5 - Directional Derivatives and the Gradient of a Vector-Valued Function

The **directional derivative** of f at  $(x_0, y_0, z_0)$  in the direction of a unit vector  $\vec{u} = \langle a, b, c \rangle$ :

$$D_{\vec{u}}f(x,y,z) = \lim_{h\to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0)}{h}$$

**Theorem** — f(x, y, z) differentiable  $\implies \forall \vec{u} = \langle a, b, c \rangle$ , f has a directional derivative:

$$D_{\vec{u}}f(x,y,z) = f_x(x,y,z)a + f_y(x,y,z)b + f_z(x,y,z)c$$

**Gradient**:  $\nabla f(x, y, z) = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z} \vec{k}$ 

(similar for function of two variables,  $\nabla f(x,y) = \langle f_x, f_y \rangle$ )

Re: Directional Derivative:  $D_{\vec{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \vec{u}$ 

Assume  $\nabla f(p) \neq 0$ :

- $\pm \nabla f(p)$  points in the direction of max rate of increase/decrease of f at p
- $\nabla f(p)$  is normal to the level curve (or surface) of f at p— tangent plane of f(x,y,z)=k at  $p=(x_0,y_0,z_0)$ :  $\nabla f(x_0,y_0,z_0)\cdot\langle x-x_0,y-y_0,z-z_0\rangle=0$
- $\|\nabla f(p)\|$  gives max slope of a tangent line (max rate of change) to the surface z = f(x,y) at (p,f(p))

### 14.6 - The Chain Rule

1.) z is a differentiable function of two single-parameter differentiable functions

$$z = f(x(t), y(t)) \longrightarrow \frac{dz}{dt} = (\frac{\partial f}{\partial x})(\frac{dx}{dt}) + (\frac{\partial f}{\partial y})(\frac{dy}{dt})$$

2.) z is a differentiable function of two "double"-parameter differentiable functions

$$\begin{split} \frac{\partial z}{\partial s} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\ \frac{\partial z}{\partial t} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \end{split}$$

### 3.) Implicit Differentiation

For instance, consider the implicit function  $x^2y - xy^3 = 3$ . We learned to use the following steps to find  $\frac{dy}{dx}$ :

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( x^2 y - x y^3 \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left( 3 \right)$$

$$2xy + x^2 \frac{\mathrm{d}y}{\mathrm{d}x} - y^3 - 3xy^2 \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2xy - y^3}{x^2 - 3xy^2}.$$
(13.5.1)

Instead of using this method, consider  $z=x^2y-xy^3$ . The implicit function above describes the level curve z=3. Considering x and y as functions of x, the Multivariable Chain Rule states that

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\partial z}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}x} + \frac{\partial z}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x}.$$

$$\frac{dx}{dx} = 1 \text{ and, if } z \text{ is constant, } \frac{dz}{dx} = 0. \text{ Hence } \frac{\partial z}{\partial y} \neq 0 \implies \frac{dy}{dx} = -\frac{\partial z}{\partial x} / \frac{\partial z}{\partial y} = \frac{f_x}{f_y}$$
Note that

# Types of Questions

### 13.1

Identify/sketch a curve from its vector equation

Show a curve lies on a given surface. Use this to sketch the curve.

Parameterize a curve given Cartesian equations (solve/eliminate variable; use trig: x = rcos,y=rsin)

### 13.2-13.3

Find the tangent vector of r(t) at a given point.

Find the line tangent to a curve at a given point.

### 14.1

Find and sketch the domain of the multi-valued function

## 14.2

Where is the function continuous?

Determine if the limit exists and compute the limit if possible