EXERCISE FOR CSE202 - WEEK 9

The amortized complexity estimate for a sequence of m union or find operations with rank and path compression can be further improved. The basic observation is that the simple bound $T(m,n,r) \leq nr$ was used in an intermediate step to compute a better bound, that could be used in its place.

Question 1. Using this idea show that the amortized complexity of that algorithm is actually $O(m \log^* \log^* n)$ array accesses $(m \ge n)$. Indicate for which value of n this function $\log^* \log^* n$ becomes larger than 3.

Solution. The bound we have on T(F,C) is $m+2n\log^* r$. Using this bound for the high forest gives

$$T(F_+, C_+) \le m_+ + 2\frac{n}{2^s} \log^* r.$$

Thus, from the inequality at the bottom of slide 18,

$$T(F,C) \le T(F_-,C_-) + 2m_+ + n + 2\frac{n}{2^s}\log^* r$$

and since $m_+ = m - m_-$,

$$T(F,C) - 2m \le T(F_-, C_-) - 2m_- + n + 2\frac{n}{2^s}\log^* r.$$

Choosing $s = \lceil \log_2 \log^* r \rceil$, the last summand becomes smaller than 2n, whence

$$T(F,C) - 2m < T(F_-,C_-) - 2m_- + 3n.$$

where now F_{-} is a forest all whose nodes have rank at most $\log_2 \log^* r$. Iterating this construction on this forest and so on $\log^* \log^* r$ times gives

$$T(F, C) \le 2m + 3n \log^* \log^* r = O(m \log^* \log^* n).$$

The largest value of k such that $\log^* \log^* k = 3$ satisfies $\log^* k = 16$, which means that k is obtained by iterating 16 times the map $x \mapsto 2^x$ starting from x = 1. This is a number that is unimaginably large (and so is its number of digits). This, plus 1, is the value where this function becomes larger than 3.

Question 2. Improve this bound further to $O(m \log^{*^3} n)$, where \log^{*^p} denotes the \log^* function iterated p times.

Solution. The starting point is now

$$T(F_+, C_+) \le 2m_+ + 3\frac{n}{2^s} \log^* \log^* r,$$

so that the same set of steps leads to

$$T(F,C) \le 3m + 4n\log^{*^3} r.$$

Question 3. Improve finally this bound further to $O(m\alpha(n))$, where $\alpha(n)$ is the number of times the \log^* function must be applied before the value becomes at most 1. What is now the smallest value of n where this function becomes larger than 3?

1

Solution. By induction, for any integer $k \leq 2$, this reasoning leads to

$$T(F,C) \le km + (k+1)n\log^{*^k} r.$$

For $k = \alpha(r)$, both terms become O(km). This gives the result.

The largest value of k such that $\alpha(k)=3$ is the largest k such that $\log^{*^3}k=1$, i.e., $\log^{*^2}k=2$, $\log^*k=4$, $k=2^{16}=65536$. So the desired value is 65537, which is actually smaller than before.