Main

May 1, 2022

```
[]: import pandas as pd
     import numpy as np
     import itertools
     import keras
     import tensorflow as tf
     from sklearn import metrics
     from sklearn.metrics import confusion_matrix
     from tensorflow.keras.preprocessing.image import ImageDataGenerator, __
     →img_to_array, load_img
     from tensorflow.keras.models import Sequential
     from tensorflow.keras import optimizers
     from tensorflow.keras.preprocessing import image
     from tensorflow.keras.layers import Dropout, Flatten, Dense
     from tensorflow.keras import applications
     from keras.utils.np_utils import to_categorical
     import matplotlib.pyplot as plt
     import matplotlib.image as mpimg
     %matplotlib inline
     import math
     import datetime
     import time
     import warnings
     warnings.filterwarnings("ignore")
```

```
[]: #Default dimensions we found online
img_width, img_height = 224, 224

#Create a bottleneck file
top_model_weights_path = 'bottleneck_fc_model.h5'

# loading up our datasets
```

```
train_data_dir = 'C:/Users/arman/OneDrive/School/Spring 2022/ML/Final Project/
      →blood cell dataset/dataset2-master/dataset2-master/images/TRAIN'
     validation_data_dir = "C:/Users/arman/OneDrive/School/Spring 2022/ML/Final_
     → Project/blood cell dataset/dataset2-master/dataset2-master/images/VAL"
     test_data_dir = "C:/Users/arman/OneDrive/School/Spring 2022/ML/Final Project/
     →blood cell dataset/dataset2-master/dataset2-master/images/TEST"
     # number of epochs to train top model
     # batch size used by flow from directory and predict generator
     batch_size = 50
[]: # Loading vgc16 model
     # Here we're making use of transfer learning!? This is a great tool to make use
      →of when building CNN. We can make use of a prebuilt model to help provide
     ⇒some foundation to our model.
     vgg16 = applications.VGG16(include_top=False, weights='imagenet')
     datagen = ImageDataGenerator(rescale=1. / 255) # needed to create the
      \rightarrow bottleneck .npy files
[]: # Loading resnet50 model
     # Here we're making use of transfer learning!? This is a great tool to make use_{\sqcup}
      \hookrightarrow of when building CNN. We can make use of a prebuilt model to help provide_{\sqcup}
     → some foundation to our model.
     # resnet50 = applications.ResNet50V2(include_top=False, weights='imagenet')
     # datagen = ImageDataGenerator(rescale=1. / 255) # needed to create the_
     \rightarrowbottleneck .npy files
     # RUNNING OUT OF MEMORY (OOM) WHEN USING RESNET50V2 AND AN RTX 3070!? What!?
[]: # TRAINING HERE - making use of transfer training to create our .npy files for
     →our data preparation below
     start = datetime.datetime.now()
     generator = datagen.flow_from_directory(
         train_data_dir,
         target_size=(img_width, img_height),
         batch_size=batch_size,
         class mode=None,
         shuffle=False)
     nb_train_samples = len(generator.filenames)
     num_classes = len(generator.class_indices)
```

```
predict_size_train = int(math.ceil(nb_train_samples / batch_size))
     bottleneck_features_train = vgg16.predict_generator(generator,_
     →predict_size_train)
     # bottleneck_features_train = resnet50.predict_generator(generator,_
     →predict size train)
     np.save('bottleneck_features_train.npy', bottleneck_features_train)
     end= datetime.datetime.now()
     elapsed= end-start
     print ('Time: ', elapsed)
    Found 9957 images belonging to 4 classes.
    Time: 0:00:23.749635
[]: # TESTING HERE - making use of transfer training to create our .npy files for
     →our data preparation below
     start = datetime.datetime.now()
     generator = datagen.flow_from_directory(
         test data dir,
         target_size=(img_width, img_height),
         batch_size=batch_size,
         class_mode=None,
         shuffle=False)
     nb_test_samples = len(generator.filenames)
     num_classes = len(generator.class_indices)
     predict_size_test = int(math.ceil(nb_test_samples / batch_size))
     bottleneck_features_test = vgg16.predict_generator(generator, predict_size_test)
     # bottleneck_features_test = resnet50.predict_generator(generator,__
     → predict_size_test)
     np.save('bottleneck_features_test.npy', bottleneck_features_test)
     end= datetime.datetime.now()
     elapsed= end-start
     print ('Time: ', elapsed)
    Found 2239 images belonging to 4 classes.
    Time: 0:00:06.330560
[]: | # VALIDATION HERE - making use of transfer training to create our .npy files_
     → for our data preparation below
```

start = datetime.datetime.now()

```
generator = datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode=None,
    shuffle=False)
nb_val_samples = len(generator.filenames)
num_classes = len(generator.class_indices)
predict_size_val = int(math.ceil(nb_val_samples / batch_size))
bottleneck_features_val = vgg16.predict_generator(generator, predict_size_val)
# bottleneck features_val = resnet50.predict_generator(generator,_
\rightarrow predict_size_val)
np.save('bottleneck_features_val.npy', bottleneck_features_val)
end= datetime.datetime.now()
elapsed= end-start
print ('Time: ', elapsed)
```

Found 248 images belonging to 4 classes.

Time: 0:00:02.942569

```
[]: # TRAINING DATA - preparing our training data for our CNN below
     generator_top = datagen.flow_from_directory(
       train_data_dir,
       target_size=(img_width, img_height),
       batch_size=batch_size,
       class_mode='categorical',
        shuffle=False)
     nb train samples = len(generator top.filenames)
     num_classes = len(generator_top.class_indices)
     # load the bottleneck features saved earlier
     train_data = np.load('bottleneck_features_train.npy')
     # get the class labels for the training data, in the original order
     train_labels = generator_top.classes
     # convert the training labels to categorical vectors
     train_labels = to_categorical(train_labels, num_classes=num_classes)
     print(len(train_labels))
```

```
Found 9957 images belonging to 4 classes.
    9957
[]: | # TESTING DATA - preparing our testing data for our CNN below
     generator_top = datagen.flow_from_directory(
       test_data_dir,
       target_size=(img_width, img_height),
       batch_size=batch_size,
       class_mode='categorical',
        shuffle=False)
     nb_test_samples = len(generator_top.filenames)
     num_classes = len(generator_top.class_indices)
     # load the bottleneck features saved earlier
     test_data = np.load('bottleneck_features_test.npy')
     # get the class labels for the testing data, in the original order
     test_labels = generator_top.classes
     # convert the testing labels to categorical vectors
     test_labels = to_categorical(test_labels, num_classes=num_classes)
     print(len(test_labels))
     print(len(test_data))
    Found 2239 images belonging to 4 classes.
    2239
    2239
[]: # VALIDATION - preparing our validation data for our CNN below
     generator_top = datagen.flow_from_directory(
       validation_data_dir,
       target_size=(img_width, img_height),
       batch_size=batch_size,
       class_mode='categorical',
        shuffle=False)
     nb_val_samples = len(generator_top.filenames)
     num_classes = len(generator_top.class_indices)
     # load the bottleneck features saved earlier
     val_data = np.load('bottleneck_features_val.npy')
```

print(len(train_data))

```
# get the class labels for the validation data, in the original order
val_labels = generator_top.classes

# convert the validation labels to categorical vectors
val_labels = to_categorical(val_labels, num_classes=num_classes)

print(len(val_labels))
print(len(val_data))
```

Found 248 images belonging to 4 classes. 248

```
[]: # Setting up callback for the different models below

# EarlyStopping with patience 3 allows Keras to stop at an epoch count within the epoch count given- 100- when the accuracy of a given epoch doesn't improve after at least 3 epochs

callback = tf.keras.callbacks.EarlyStopping(monitor = "acc", patience = 3)
```

0.0.1 Base Model

```
(eval_loss, eval_accuracy) = modelBase.evaluate(val_data, val_labels) #,__
 \rightarrow batch_size=32, verbose=1)
print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))
print("[INFO] Loss: {}".format(eval_loss))
print("[INFO] EarlyStopping Epoch Count:", len(model_output.history["acc"]))
end= datetime.datetime.now()
elapsed= end-start
print ('Time: ', elapsed)
# Graphing our training and validation
acc = model output.history['acc']
val_acc = model_output.history['val_acc']
loss = model output.history['loss']
val_loss = model_output.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'r', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()
plt.show()
Epoch 1/100
0.4156 - val_loss: 1.2597 - val_acc: 0.4274
Epoch 2/100
0.6011 - val_loss: 1.2999 - val_acc: 0.4032
Epoch 3/100
0.6960 - val_loss: 1.2427 - val_acc: 0.4839
Epoch 4/100
```

```
0.7535 - val_loss: 1.2072 - val_acc: 0.5242
Epoch 5/100
0.7929 - val_loss: 1.4033 - val_acc: 0.4355
Epoch 6/100
0.8257 - val_loss: 1.4104 - val_acc: 0.4274
Epoch 7/100
0.8441 - val_loss: 1.3291 - val_acc: 0.4960
Epoch 8/100
0.8701 - val_loss: 2.2529 - val_acc: 0.4274
Epoch 9/100
0.8794 - val_loss: 1.6378 - val_acc: 0.5363
Epoch 10/100
0.8953 - val_loss: 1.5157 - val_acc: 0.5524
Epoch 11/100
0.9036 - val_loss: 1.3534 - val_acc: 0.6048
Epoch 12/100
0.9113 - val_loss: 2.2855 - val_acc: 0.4234
Epoch 13/100
0.9196 - val_loss: 1.7942 - val_acc: 0.5282
Epoch 14/100
0.9272 - val_loss: 1.8804 - val_acc: 0.4919
Epoch 15/100
0.9345 - val_loss: 1.8177 - val_acc: 0.6089
Epoch 16/100
0.9393 - val_loss: 1.7722 - val_acc: 0.5605
Epoch 17/100
0.9418 - val_loss: 1.9729 - val_acc: 0.5565
Epoch 18/100
0.9451 - val_loss: 1.8679 - val_acc: 0.6008
Epoch 19/100
0.9539 - val_loss: 2.1959 - val_acc: 0.5161
Epoch 20/100
```

```
0.9542 - val_loss: 1.7501 - val_acc: 0.6169
Epoch 21/100
0.9532 - val_loss: 2.1891 - val_acc: 0.5444
Epoch 22/100
0.9574 - val_loss: 2.0071 - val_acc: 0.5645
Epoch 23/100
0.9625 - val_loss: 2.3059 - val_acc: 0.5605
Epoch 24/100
0.9648 - val_loss: 1.9170 - val_acc: 0.6734
Epoch 25/100
0.9653 - val_loss: 2.5547 - val_acc: 0.5202
Epoch 26/100
0.9667 - val_loss: 2.0857 - val_acc: 0.6331
Epoch 27/100
0.9682 - val_loss: 2.0829 - val_acc: 0.5968
Epoch 28/100
0.9707 - val_loss: 2.9655 - val_acc: 0.4839
Epoch 29/100
0.9733 - val_loss: 2.6659 - val_acc: 0.5847
Epoch 30/100
0.9742 - val_loss: 2.9969 - val_acc: 0.5000
Epoch 31/100
0.9759 - val loss: 2.5995 - val acc: 0.5806
Epoch 32/100
0.9762 - val_loss: 2.8983 - val_acc: 0.5806
Epoch 33/100
0.9777 - val_loss: 2.7233 - val_acc: 0.5766
Epoch 34/100
0.9779 - val_loss: 2.5102 - val_acc: 0.5968
Epoch 35/100
0.9775 - val_loss: 2.4059 - val_acc: 0.6290
Epoch 36/100
```

```
0.9831 - val_loss: 2.8598 - val_acc: 0.5645
Epoch 37/100
0.9824 - val_loss: 2.5789 - val_acc: 0.5927
Epoch 38/100
0.9800 - val_loss: 2.6393 - val_acc: 0.6169
Epoch 39/100
312/312 [====
          0.9813 - val_loss: 2.6685 - val_acc: 0.6008
[INFO] accuracy: 60.08%
[INFO] Loss: 2.6685335636138916
[INFO] EarlyStopping Epoch Count: 39
Time: 0:00:39.187392
```


0.0.2 4 Hidden Layer CNN

```
# This is a new variant of our base model! We're going to add some extra layers_
here!

start = datetime.datetime.now()

model4 = Sequential()

model4.add(Flatten(input_shape=train_data.shape[1:]))
model4.add(Dense(256, activation=keras.layers.LeakyReLU(alpha=0.3)))
model4.add(Dropout(0.2))
model4.add(Dropout(0.2))
model4.add(Dropout(0.2))
model4.add(Dense(64, activation=keras.layers.LeakyReLU(alpha=0.3)))
model4.add(Dropout(0.2))
model4.add(Dropout(0.2))
model4.add(Dropout(0.2))
model4.add(Dropout(0.2))
model4.add(Dropout(0.2))
model4.add(Dropout(0.2))
model4.add(Dropout(0.2))
model4.add(Dropout(0.2))
```

```
model4.compile(optimizer = optimizers.RMSprop(lr=1e-4),
→loss='categorical_crossentropy', metrics=['acc'])
model_output = model4.fit(train_data, train_labels, epochs=100, batch_size=32,__
⇒callbacks = [callback], validation data=(val data, val labels))
model4.save_weights(top_model_weights_path)
(eval_loss, eval_accuracy) = model4.evaluate(val_data, val_labels) # ,_
\rightarrow batch size=32, verbose=1)
print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))
print("[INFO] Loss: {}".format(eval_loss))
print("[INFO] EarlyStopping Epoch Count:", len(model_output.history["acc"]))
end= datetime.datetime.now()
elapsed= end-start
print ('Time: ', elapsed)
# Graphing our training and validation
acc = model_output.history['acc']
val acc = model output.history['val acc']
loss = model_output.history['loss']
val_loss = model_output.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'r', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()
plt.show()
```

```
Epoch 1/100
0.3982 - val_loss: 1.1973 - val_acc: 0.4637
Epoch 2/100
0.6053 - val_loss: 1.1617 - val_acc: 0.5524
Epoch 3/100
0.7102 - val_loss: 1.1445 - val_acc: 0.5726
Epoch 4/100
0.7802 - val_loss: 1.2667 - val_acc: 0.5685
Epoch 5/100
0.8129 - val_loss: 1.1048 - val_acc: 0.6411
Epoch 6/100
0.8445 - val_loss: 2.3142 - val_acc: 0.4315
Epoch 7/100
0.8718 - val_loss: 2.7984 - val_acc: 0.5363
Epoch 8/100
0.8854 - val_loss: 1.6142 - val_acc: 0.5605
Epoch 9/100
0.8995 - val_loss: 1.8550 - val_acc: 0.5766
Epoch 10/100
0.9141 - val_loss: 1.5970 - val_acc: 0.5887
Epoch 11/100
0.9233 - val_loss: 2.1355 - val_acc: 0.5565
Epoch 12/100
0.9315 - val_loss: 1.8591 - val_acc: 0.6210
Epoch 13/100
0.9396 - val_loss: 3.8343 - val_acc: 0.3871
Epoch 14/100
0.9455 - val_loss: 2.4378 - val_acc: 0.4919
Epoch 15/100
0.9496 - val_loss: 2.4218 - val_acc: 0.5847
Epoch 16/100
0.9552 - val_loss: 2.3159 - val_acc: 0.6089
```

```
Epoch 17/100
0.9562 - val_loss: 4.0748 - val_acc: 0.4556
Epoch 18/100
0.9612 - val_loss: 2.1961 - val_acc: 0.6331
Epoch 19/100
0.9679 - val_loss: 2.7482 - val_acc: 0.5726
Epoch 20/100
0.9653 - val_loss: 2.2404 - val_acc: 0.6250
Epoch 21/100
0.9667 - val_loss: 2.3000 - val_acc: 0.6290
Epoch 22/100
0.9715 - val_loss: 2.8417 - val_acc: 0.6048
Epoch 23/100
0.9713 - val_loss: 2.8256 - val_acc: 0.6492
Epoch 24/100
0.9742 - val_loss: 2.7365 - val_acc: 0.6008
Epoch 25/100
0.9754 - val_loss: 5.9460 - val_acc: 0.4516
Epoch 26/100
0.9794 - val_loss: 3.2466 - val_acc: 0.6694
Epoch 27/100
0.9766 - val_loss: 3.0971 - val_acc: 0.5766
Epoch 28/100
0.9788 - val_loss: 3.2262 - val_acc: 0.6331
Epoch 29/100
0.9789 - val_loss: 2.7028 - val_acc: 0.6411
[INFO] accuracy: 64.11%
[INFO] Loss: 2.702789306640625
[INFO] EarlyStopping Epoch Count: 29
Time: 0:00:44.839195
```


5 Hidden Layer CNN

```
[]: # This is a new variant of our base model! We're going to add some extra layers
     here!
     start = datetime.datetime.now()
     model5 = Sequential()
     model5.add(Flatten(input_shape=train_data.shape[1:]))
     model5.add(Dense(256, activation=keras.layers.LeakyReLU(alpha=0.3)))
     model5.add(Dropout(0.2))
     model5.add(Dense(128, activation=keras.layers.LeakyReLU(alpha=0.3)))
     model5.add(Dropout(0.2))
     model5.add(Dense(64, activation=keras.layers.LeakyReLU(alpha=0.3)))
     model5.add(Dropout(0.2))
     model5.add(Dense(32, activation=keras.layers.LeakyReLU(alpha=0.3)))
     model5.add(Dropout(0.2))
     model5.add(Dense(16, activation=keras.layers.LeakyReLU(alpha=0.3)))
     model5.add(Dropout(0.2))
     model5.add(Dense(num_classes, activation='softmax'))
     model5.compile(optimizer = optimizers.RMSprop(lr=1e-4),__
      →loss='categorical crossentropy', metrics=['acc'])
     model_output = model5.fit(train_data, train_labels, epochs=100, batch_size=32,__
      →callbacks = [callback], validation_data=(val_data, val_labels))
     model5.save_weights(top_model_weights_path)
     (eval_loss, eval_accuracy) = model5.evaluate(val_data, val_labels) # ,__
     \rightarrow batch_size=32, verbose=1)
     print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))
     print("[INFO] Loss: {}".format(eval loss))
     print("[INFO] EarlyStopping Epoch Count:", len(model_output.history["acc"]))
     end= datetime.datetime.now()
     elapsed= end-start
     print ('Time: ', elapsed)
```

```
# Graphing our training and validation
acc = model_output.history['acc']
val_acc = model_output.history['val_acc']
loss = model output.history['loss']
val_loss = model_output.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'r', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()
plt.show()
Epoch 1/100
0.3583 - val_loss: 1.4402 - val_acc: 0.3790
Epoch 2/100
0.5213 - val_loss: 1.0737 - val_acc: 0.4919
Epoch 3/100
0.6447 - val_loss: 1.0387 - val_acc: 0.5766
Epoch 4/100
0.7195 - val_loss: 0.9940 - val_acc: 0.5766
Epoch 5/100
0.7703 - val_loss: 1.5677 - val_acc: 0.5000
0.8061 - val_loss: 1.8898 - val_acc: 0.3306
Epoch 7/100
0.8354 - val_loss: 1.5801 - val_acc: 0.5282
Epoch 8/100
0.8594 - val_loss: 1.5075 - val_acc: 0.5685
```

```
Epoch 9/100
0.8739 - val_loss: 2.2232 - val_acc: 0.4960
Epoch 10/100
0.8898 - val_loss: 1.7877 - val_acc: 0.4597
Epoch 11/100
0.8999 - val_loss: 2.1882 - val_acc: 0.4516
Epoch 12/100
0.9112 - val_loss: 2.6157 - val_acc: 0.5121
Epoch 13/100
0.9194 - val_loss: 2.4104 - val_acc: 0.5161
Epoch 14/100
0.9245 - val_loss: 2.3729 - val_acc: 0.5444
Epoch 15/100
0.9309 - val_loss: 1.8559 - val_acc: 0.6048
Epoch 16/100
0.9407 - val_loss: 2.5087 - val_acc: 0.5444
Epoch 17/100
0.9451 - val_loss: 2.5035 - val_acc: 0.5403
Epoch 18/100
0.9484 - val_loss: 2.9796 - val_acc: 0.5000
Epoch 19/100
0.9508 - val_loss: 2.1934 - val_acc: 0.6290
Epoch 20/100
0.9602 - val_loss: 2.8652 - val_acc: 0.5766
Epoch 21/100
0.9580 - val_loss: 2.5618 - val_acc: 0.6250
Epoch 22/100
0.9624 - val_loss: 2.7210 - val_acc: 0.5685
Epoch 23/100
0.9616 - val_loss: 3.1552 - val_acc: 0.5202
Epoch 24/100
0.9678 - val_loss: 3.1450 - val_acc: 0.5565
```

```
Epoch 25/100
0.9674 - val_loss: 3.7017 - val_acc: 0.4879
Epoch 26/100
0.9710 - val_loss: 3.9170 - val_acc: 0.5363
Epoch 27/100
0.9730 - val_loss: 3.2542 - val_acc: 0.5847
Epoch 28/100
0.9727 - val_loss: 3.9031 - val_acc: 0.5242
Epoch 29/100
0.9758 - val_loss: 3.7950 - val_acc: 0.5645
Epoch 30/100
0.9761 - val_loss: 2.9140 - val_acc: 0.6492
Epoch 31/100
0.9768 - val_loss: 3.5877 - val_acc: 0.5524
Epoch 32/100
0.9789 - val_loss: 3.4110 - val_acc: 0.5444
Epoch 33/100
0.9797 - val_loss: 3.4649 - val_acc: 0.6250
Epoch 34/100
0.9778 - val_loss: 4.0564 - val_acc: 0.5524
Epoch 35/100
0.9795 - val_loss: 3.3349 - val_acc: 0.5847
Epoch 36/100
0.9773 - val_loss: 3.3100 - val_acc: 0.6008
[INFO] accuracy: 60.08%
[INFO] Loss: 3.310025930404663
[INFO] EarlyStopping Epoch Count: 36
Time: 0:00:58.908960
```


	precision	recall	f1-score	support
EOSINOPHIL	0.37	0.49	0.42	561
LYMPHOCYTE	0.84	0.77	0.80	558
MONOCYTE	0.54	0.32	0.40	558
NEUTROPHIL	0.62	0.68	0.65	562
micro avg	0.57	0.56	0.57	2239
macro avg	0.59	0.56	0.57	2239
weighted avg	0.59	0.56	0.57	2239
samples avg	0.56	0.56	0.56	2239

```
[]: # Converting our data from it's numeric form into a form we can assign
     →predictive labels too!
     categorical_test_labels = pd.DataFrame(test_labels).idxmax(axis=1)
     categorical_preds = pd.DataFrame(preds).idxmax(axis=1)
     confusion_matrix = confusion_matrix(categorical_test_labels, categorical_preds)
     #To get better visual of the confusion matrix:
     def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion∪
     →matrix', cmap=plt.cm.Blues):
     #Add Normalization Option
        if normalize:
             cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
             print('Normalized confusion matrix')
        else:
             print('Confusion matrix, without normalization')
     # print(cm)
        plt.imshow(cm, interpolation='nearest', cmap=cmap)
        plt.title(title)
        plt.colorbar()
        tick_marks = np.arange(len(classes))
        plt.xticks(tick_marks, classes, rotation=45)
```

```
plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt), horizontalalignment='center', \( \)
        color='white' if cm[i, j] > thresh else 'black')

plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
```

```
[]: plot_confusion_matrix(confusion_matrix, ['EOSINOPHIL', 'LYMPHOCYTE', used to be a substitution of the confusion of the c
```

Confusion matrix, without normalization


```
[]: def read_image(file_path):
    print('[INFO] loading and preprocessing image...')
    image = load_img(file_path, target_size=(224, 224))
    image = img_to_array(image)
    image = np.expand_dims(image, axis=0)
```

```
image /= 255.
        return image
     def test_single_image(path):
       BC = ['EOSINOPHIL', 'LYMPHOCYTE', 'MONOCYTE', 'NEUTROPHIL']
       images = read_image(path)
       time.sleep(.5)
       bt_prediction = vgg16.predict(images)
       preds = model5.predict(bt_prediction)
       for idx, BCs, x in zip(range(0,6), BC , preds[0]):
        print('ID: {}, Label: {} {}%'.format(idx, BCs, round(x*100,2) ))
       print('Final Decision:')
       time.sleep(.5)
       for x in range(3):
       print('.'*(x+1))
       time.sleep(.2)
       class_predicted = model5.predict(bt_prediction)
       class_dictionary = generator_top.class_indices
       # inv_map = {v: k for k, v in class_dictionary.items()}
       # print('ID: {}, Label: {}'.format(class_predicted[0], __
      → inv_map[class_predicted[0]]))
       # print('ID: {}, Label: {}'.format(class_predicted, inv_map))
       return load_img(path)
[]: # Testing EOSINOPHIL classification
     path = "C:/Users/arman/OneDrive/School/Spring 2022/ML/Final Project/CHECK/EOS.
     ⇒jpeg"
     test_single_image(path)
    [INFO] loading and preprocessing image...
    ID: 0, Label: EOSINOPHIL 100.0%
    ID: 1, Label: LYMPHOCYTE 0.0%
    ID: 2, Label: MONOCYTE 0.0%
    ID: 3, Label: NEUTROPHIL 0.0%
    Final Decision:
    . .
[]:
```


Guessed this was an eosinophile with 100.00% confidence.

Guessed this was a lymphocyte with 100.00% confidence.

Guessed this was a monocyte with 31.76% confidence and 56.11% confidence this is an eosinphil. The model clearly has a hard time prediciting the classification of monocytes.

Guessed this image was a neutrophil with 66.86% confidence.