Word2Vec: learn a feature representation that preserves semantic relationships between words based on distance

Algorithm for the skip gram word2vec model

let $\mathbf{U} \in \mathbb{R}^{K \times N}$ be our center word embeddings corresponding to \mathbf{x}_{u} ,

let $\mathbf{V} \in \mathbb{R}^{K \times N}$ be our center word embeddings corresponding to \mathbf{x}_c

$$\forall (\mathbf{x}_w, \mathbf{x}_c) \in D \text{ do:}$$

set $\mathbf{u}_{w} = \mathbf{U}_{w}$ via the non-zero indice of our one-hot center word \mathbf{x}_{w}

compute inner product between \mathbf{u}_{w} and all context vectors $\mathbf{V}:\mathbf{u}_{w}\cdot\mathbf{V}\in\mathbb{R}^{N}$

cross entropy loss: $L(U, V | \mathbf{x}_w, \mathbf{x}_c) = -\mathbf{x}_c \cdot \log p(\mathbf{x}_c | \mathbf{x}_w; \mathbf{U}, \mathbf{V})$

gradients: $\nabla_{U_w} NLL = \mathbf{V} \cdot (P_{\mathbf{x}_c | \mathbf{x}_w} - \mathbf{x}_c)^T \in \mathbb{R}^K$

 $\nabla_{V} NLL = \mathbf{u}_{w} \cdot \left(P_{\mathbf{x}_{c} | \mathbf{x}_{w}} - \mathbf{x}_{c} \right) \in \mathbb{R}^{K \times N}$

gradient descent: $\mathbf{U}_w \leftarrow \mathbf{U}_w - \eta \nabla_{\mathbf{U}_w} NLL$ only w^{th} row of **U** gets updated

> $\mathbf{V} \leftarrow \mathbf{V} - \eta \nabla_{\mathbf{V}} NLL$ entire V gets updated

encodes

distributional

hypothesis