

Unit 4: Mensuration

Topic : Area and dimensions of plane figures

Course Outcome:

► Co4: Solve the problems based on measurement of regular closed figures and regular solids.

► Learning Objectives:

Determine the area of given square, parallelogram, rhombus and trapezium.

Contents

- Different formulae for area of square, Rectangle, rhombus.
- 2. Area of Parallelogram , Trapezium.
- 3. Examples to compute area of regular closed figures.

24 August 2020

Mensuration deals with length, area and volume of different kinds of shape- both plane and solid.

The area of a plane figure is a measure of the amount of space inside it.

1) Rectangle:

$$\begin{aligned} & \text{Area} = lengh \times breadh = l \times b \\ & \text{Perimeter} = 2(l+b) \\ & \text{Diagonal} = \text{d} = \sqrt{l^2 + b^2} \end{aligned}$$

2) Square:

Area =
$$(side)^2 = a^2$$

Perimeter = $4a$
Diagonal = $d = \sqrt{2} a$

Area of Parallelogram ,Rhombus and Trapezium

3) Parallelogram:

Area =
$$base \times altitude = ah$$

Perimeter = $2(a + b)$

4)Rhombus:

Area =
$$\frac{1}{2}$$
 product of diagonals

Area = $\frac{1}{2}$ ($d_1 \times d_2$)

Perimeter =
$$4a$$

Side of rhombus =
$$a = \frac{1}{2} \sqrt{{d_1}^2 + {d_2}^2}$$

5)Trapezium:

$$A = \frac{1}{2}(sum \ of \ parallel \ sides) \times height$$

$$A = \frac{1}{2}(b+d) \times h$$
Perimeter = $a+b+c+d$

Examples:

1. Find the area of rhombus whose diagonals are 6 cm and 9 cm.

Ans: Given: diagonals d_1 and d_2 are 6 cm and 9 cm.

We know, area of rhombus
$$=\frac{1}{2}(d_1 \times d_2)$$

$$\Rightarrow$$
 Area of rhombus $=\frac{1}{2}(6 \times 9) = 27 \text{ cm}^2$

2. The two parallel sides of a trapezium measures 50 m & 20 m respectively. Its altitude is 50m. Find its area.

Ans: We know,

Area of Trapezium = $\frac{1}{2}$ (sum of parallel sides) × height

$$\Rightarrow \qquad \text{Area} = \frac{1}{2}(50 + 20) \times 50$$

$$\Rightarrow \qquad \text{Area} = \frac{1}{2}(70) \times 50$$

Area =
$$1750 \, m^2$$

3. In exchange for a square plot of land, one of whose side is 25 metres, a man want to buy a rectangular plot 50 metres wide and of the same area as the square plot. Determine the length of the rectangular plot.

Ans: Given that side of square is 25 metres.

$$\therefore$$
 Area of square = $a^2 = (25)^2 = 625 m^2$

Also given that, area of square = area of rectangular plot

Now area of rectangular plot = $l \times b$

$$\Rightarrow$$
 625 = $l \times 50$

$$\Rightarrow \qquad l = \frac{625}{50}$$

$$\Rightarrow$$
 $l = 12.5 \text{ metre}$

4) Area of rhombus is $336\ cm^2$ & one diagonal is 14 cm. Find the length of the side.

Ans: We know, area of rhombus $=\frac{1}{2}(d_1 \times d_2)$

$$\Rightarrow \qquad 336 = \frac{1}{2}(14 \times d_2)$$

$$\Rightarrow d_2 = \frac{2 \times 336}{14} = 48 \, cm$$

Now side of rhombus $=\frac{1}{2}\sqrt{{d_1}^2+{d_2}^2}$

$$\Rightarrow \qquad a = \frac{1}{2} \sqrt{(14)^2 + (48)^2}$$

$$\Rightarrow$$
 $a = 25 cm$

5.) A square grassy plot is of side 100 metre. It has a gravel path 10 metres wide all round it on the inside. Find the area of the path.

Ans:

Given that side of square grassy plot is 100 metres.

The gravel path is of 10 metres wide on the inside

∴ From fig.

Area of path = Area of square grassy plot – Area of inner square grassy plot

$$\Rightarrow$$
 Area of path = $(100)^2 - (80)^2$

$$\Rightarrow$$
 Area of path = 3600 m²

Application of Concept/ Examples in real life:

- ► In engineering applications and in daily life ,often one needs to estimate the cost of various aspects ,the amount of production which indirectly deals with mensuration.
- ► Calculating areas is an important skill used by many people in their daily work.
- ▶ Builders and tradespeople often need to work out the areas and dimensions of the structures they are building, and so do architects, designers and engineers.

So today we learned....

- ► Formulae for Area of Rectangle, Square and, Rhombus.
- ► Formulae to find area of Parallelogram and Trapezium.
- ► To solve different problems related to area of regular closed figures.

Now take this quiz.....

1) The two parallel sides of a trapezium measures 50 m & 20 m respectively. Its altitude is 50m. Find its area.

a) 1650 m²

 $b)1700 \text{ m}^2$

c) 1650 m^2

d) 1750 m^2

2) The adjacent sides of a parallelogram are 12 cm and 10 cm. One diagonal is 8 cm. Find the area of the parallelogram.

a) $80 cm^2$

b) $79 cm^2$

- c) $79.37 cm^2$
- d) $78 cm^2$

3) Diagonals of a kite are 12cm and 13 cm in length. Find the area of the kite.

a) $75 cm^2$

b) $78 cm^2$

c) $80cm^2$

d) $73 cm^2$

Ans: 1) d 2) c 3) b

Thank you

