Proof of Linearity of Hadamard Code given by Sylvester Matrices

Mitsuru Takigahira

証明

数学的帰納法で示す。

$$n=2^m$$
 のとき

- Sylvester Matrix $\mathcal{E} S_m$
- S_m から生成される Hadamard Code を C_m
- $\bullet \ \ \textit{$C_m$} = \{ \bm{u}_1^m, \bar{\bm{u}}_1^m, \dots, \bm{u}_{2^m}^m, \bar{\bm{u}}_{2^m}^m \}$

と表記することにする

証明 (1/3)

m=0 のとき

$$S_m = (1) \text{ or } (-)$$
 より、 $C_0 = \{(1), (0)\}$ よって、 C_0 は (1) を基底として線形になり、 C_0 は線形符号。

帰納法の仮定

 $m = k \ge 0$ のとき C_k が線形になると仮定する。 このとき C_k は 2^{k+1} 個の符号 $\{\mathbf{u}_1^k, \bar{\mathbf{u}}_1^k, \dots, \mathbf{u}_{2^k}^k, \bar{\mathbf{u}}_{2^k}^k\}$ を持ち、これらは k+1 個の基底 $\mathbf{e}_1^k, \dots, \mathbf{e}_{k+1}^k$ をもち、線形である。

証明 (2/3)

S_{k+1} から作られる符号の線形性

補題
$$6.24$$
 より $S^{k+1} = \begin{pmatrix} S_k & S_k \\ S_k & -S_k \end{pmatrix}$ なので、 C_{k+1} に含まれる符号は $1 \leq i \leq 2^k$ に対して、 $(\mathbf{u}_i^k, \mathbf{u}_i^k), (\bar{\mathbf{u}}_i^k, \bar{\mathbf{u}}_i^k), (\mathbf{u}_i^k, \bar{\mathbf{u}}_i^k), (\bar{\mathbf{u}}_i^k, \mathbf{u}_i^k)$ の形になる。帰納法の仮定から、 $1 \leq i \leq 2^k$ のとき $\mathbf{u}_i^k, \bar{\mathbf{u}}_i^k$ はそれぞれ $\mathbf{e}_1^k, \dots, \mathbf{e}_{k+1}^k$ の線型結合で表せるので、 $1 \leq i \leq k+1$ のもと $\mathbf{e}_i^{k+1} = (\mathbf{e}_i^k, \mathbf{e}_i^k)$ とおけば、 $(\mathbf{u}_i^k, \mathbf{u}_i^k), (\bar{\mathbf{u}}_i^k, \bar{\mathbf{u}}_i^k)$ の形の符号は $\mathbf{e}_i^{k+1}, \dots, \mathbf{e}_{k+1}^{k+1}$ の線型結合で表せる。

証明 (3/3)

S^{k+1} から作られる符号の線形性

更に、 C_k は線形符号なので、 $\mathbf{0} = (0...0)$ を含むため、 C_{k+1} は $(\mathbf{0}, \bar{\mathbf{0}}) = (0...01...1)$ を含み、これは $(\mathbf{u}_i^k, \mathbf{u}_i^k), (\bar{\mathbf{u}}_i^k, \bar{\mathbf{u}}_i^k)$ の形ではない。 $\mathbf{e}_{k+2}^{k+1} = (0...01...1)$ とおくと、 $1 \le i \le 2^k$ に対し $\mathbf{e}_{k+2}^{k+1} + (\bar{\mathbf{u}}_{i}^{k}, \bar{\mathbf{u}}_{i}^{k}) = (\bar{\mathbf{u}}_{i}^{k}, \mathbf{u}_{i}^{k}) \; \text{to} \; \mathbf{e}_{k+2}^{k+1} + (\mathbf{u}_{i}^{k}, \mathbf{u}_{i}^{k}) = (\mathbf{u}_{i}^{k}, \bar{\mathbf{u}}_{i}^{k})$

よって、 C_k が線形のとき C_{k+1} は $\mathbf{e}_1^{k+1}, \ldots, \mathbf{e}_{k+2}^{k+1}$ を基底として線形となる。

以上から、数学的帰納法により、Sylvester Matrix から作られる Hadamard Code

は線形であることが示された。