ÄNDERUNGEN/SOFTWAREUPDATES

Noch keine

BUS-Protokoll für das RA-GAS-Modbus-System

Verwendete Abkürzungen:

Rreg (read) Lese-Register (kann nicht beschrieben werden)

RWreg (read/write) Lese- und Schreibregister (kann auch beschrieben werden, teilweise

mit Speicherung)

Fcode Funktionscode

Adr Adresse Reg Register

1 Registerbelegung

Tabelle der Lese(Read)-Register

Rreg Nr. (Fcode 0x04)	Wertebereich	Zugeordnete Größe und teilw. Einheit	Messwerteigenschaft
00	0 65535		Gerätekennung Kunden
01	0 65535		Arbeitsweise (Sensor)
02	010000	0 10000 ppm	Gaskonzentration im ppm
03	0 2500	0 25.00 mA	Berechneter Ausgangsstrom in mA (mit zwei Kommastellen)
04	-200 600	-20,0 60,0 °C	Interne Leiterplattentemperatur in °C (mit Kommastelle)
05	0 0xffff		Fehlererkennung (Bit's werden gesetzt)
40	0 16384		AD-Wert der Temperaturmessung
41	0 16384		AD-Wert des Potentiometers
42	0 16384		AD-Wert des Sensors
43	50 200	0,50 2,00	Verstärkungsfaktor durch Poti (100 = 1,00)
44	50 200	0,50 2,00	Verstärkungsfaktor durch Temperaturkennlinie (100 = 1,00)
45	0 16384		Korrigierter AD-Wert des Sensors
46	0 10000	0 10000 ppm	berechnete Gaskonzentration im ppm
49	0 31129		Softwaredatum bis 31.12.2029

Hinweis: der angegebene Wertebereich wiederspiegelt nicht gleichzeitig den Messbereich.

Dieser ist abhängig vom Sensor und der Kalibrierung.

Zusätzliche Erläuterungen zu einigen Rreg-Registern:

Rreg_00: hier befindet sich der Kundencode welcher vom Kunden in Register RWreg_00

geschrieben und gespeichert wurde. (kann z.B. zur Raumnummerierung verwendet

werden.

Rreg_01: Arbeitscode (Sensor)

10 = CO-Sensor (1000)

12 = CO-Sensor (300)

20 = NO-Sensor (250)

30 = NO2 (20)

40 = NH3 (1000)

42 = NH3 (100)

50 = CL2 (10)

60 = H2S (100)

Rreg_02: Berechneter ppm-Wert aus Rreg_46 (mit Nullpunktberuhigung)

Rreg_03: der berechnete Strom für den analogen Stromausgang 4..20mA

Rreg_05: Fehlerregister:

Bit 0 = 1: (Sensorspannung[Endwert –Nullwert])< 2 digit/ppm

Bit 1 = 1: (Sensorspannung Endwert od. Nullwert) < 50 od. > 16000 digit

Bit 2 = 1: (ungünstiger Kalibrierwert) Berechnung läuft zu < 50 und > 16000 digit

 $Bit_3 = 1$: Sensor-AD-Wert < 50 bzw. > 16000 digit

Bit_4 = 1: Ausgangsstrom < 390 bzw. > 2100

Der Fehlercode wird auch durch die rote LED dargestellt. (Anzahl der

Unterbrechungen entspricht dem gesetzten Bit)

Rreg_45: Rreg_46:

entspricht Rreg_42 * Rreg_43 * Rreg_44 Berechneter ppm-Wert aus dem linearen Zusammenhang RWreg_10.._13

Tabelle der Lese/Schreib(Read/Write)-Register

Rwreg Nr. (Fcode: 0x03, 0x06)	Wertebereich	Zugeordnete Größe und Einheit	Messwerteigenschaft	
00	0 65535 [0]		Kundencode: zur freien Belegung z.B. Raumcode	*
02	0 10000 [11111]	0 10000 ppm	Messwertvorgabe für Testzwecke	
03	0 2500 [11111]	0 25,00 mA	Ausgangsstrom vorgeben für Testzwecke	
03	-200 600 [11111]	-20,0 60,0 °C	Temperatur vorgeben für Testzwecke	
04	-200 000 [11111]	-20,0 00,0 C	Temperatur vorgeben für Testzwecke	
10	0 16383		Sensorspannung im Nullpunkt	*
11	0	0	Sensorwert Nullpunkt = 0	*
12	0 16383		Sensorspannung im Kalibrierpunkt (bei Endwert)	*
13	0 10000	0 10000 ppm	Sensorwert im Kalibrierpunkt (bei Endwert)	*
15	0 10000 [0]	0 10000 ppm [0 ppm]	Messwert unten für Ausgangsstrom unten	*
16	0 2500 [400]	0 25,00 mA [4 mA]	Ausgangsstrom im unteren Punkt	*
17	0 10000 [1000]	0 10000 ppm [1000ppm]	Messwert oben für Ausgangsstrom oben	*
16	0 2500 [2000]	0 25,00 mA [20 mA]	Ausgangsstrom im oberen Punkt	*
20	0/1		Status (Auswerte IC) (keine Eingabemöglichkeit)	
21	0/1		Lock (Auswerte IC)	*
22	0 7			*
23			TIA_GAIN (Auswerte IC)	*
24	0 3		RLOAD (Auswerte IC)	*
			REF_Source (Auswerte IC)	*
25	0 3		INT_Z (Auswerte IC)	*
26	0/1		BIAS_Sign (Auswerte IC)	*
27	0 13		BIAS (Auswerte IC)	*
28	0/1		FET_Short (Auswerte IC)	
29	0 7		OP_Mode (Auswerte IC)	*
30	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei -20°C	*
31	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 0°C	*
32	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 10°C	*
33	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 20°C	*
34	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 30°C	*
35	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 40°C	*
36	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 60°C	*
42	0 16000 [11111]		Sensor AD-Wert vorgeben für Testzwecke	
49	0 65535		Neustart / Grunddaten / entsichern	
50	1 247 [1]		Modbus-Geräteadresse	*
51	0 3 [1]		Modbus Baudrate	*
52	0 4 [0]		Modbus Mode	*
53	10 1000 [180]		Kalibrierwert Ausgangsstrom 4mA	*
54	10 1000 [900]		Kalibrierwert Ausgangsstrom 20mA	*
95	0, 129 256 [90]		Sensornummer für MCS4000 - Mode	
96	0 65535		Einschaltzähler	*
97	0 65535		Betriebsstunden	*

98	0 65535	Gerätekennung vom Werk	ŀ
99	0 65535	Arbeitsweise vom Werk	ŀ

Hinweise:

- * (**fett**) eingetragene Werte werden auch gespeichert (*Achtung: nicht kontinuierlich beschreiben!*)
- [x] Wert nach dem Einschalten bzw. bei Voreinstellung (Werkseinstellung)
- Grau hinterlegte Werte nur nach Entsicherung veränderbar

Zusätzliche Erläuterungen zu einigen RWreg-Registern:

RWreg_00: hier kann ein Kundencode für eine Gerätezuordnung eingetragen werden z.B. zur Raumnummerierung

RWreg_02, 03, 04, 46:

für Testzwecke Vorgabe verschiedener Werte. Mit 11111 ist dies inaktiv.

RWreg_10, 11, 12, 13:

Kennlinienpaar für die Umwandlung des Sensor AD_Wertes in die Gaskonzentration (lineare Interpolation mit diesen Werten)

RWreg_15, 16, 17, 18:

Kennlinienpaar für die Umwandlung der Gaskonzentration in den Ausgangsstrom (lineare Interpolation mit diesen Werten)

RWreg_20 bis _29:

Spezifische Einstellungen für den Auswerte IC

RWreg_30 bis _36:

Korrekturwerte entsprechend Vorgabe des Sensorherstellers bzgl. der Temperatur zwischen den Temperaturwerten wird linear interpoliert

RWreg_49: bei 10 = Reset

bei 20 = Systemneueinstellung und Reset

bei 9876 = entsichert

RWreg_51: bei 0 = 2400 baud

bei 1 = 9600 baud

bei 2 = 19200 baud

bei 3 = 38400 baud

RWreg_52: bei 0 = 8 Datenbits, 1 Stoppbit; keine parität

bei 1 = 8 Datenbits, 1 Stoppbit; ungerade Parität

bei 2 = 8 Datenbits, 2 Stoppbit; ungerade Parität

bei 3 = 8 Datenbits, 1 Stoppbit; gerade Parität

bei 4 = 8 Datenbits, 2 Stoppbit; gerade Parität

RWreg 53: zur Kalibrierung des Ausgangsstroms

Beispiel: in RWreg_3 = 400 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_53 bis 4 mA anliegen

RWreg_54: zur Kalibrierung des Ausgangsstroms

Beispiel: in RWreg_3 = 2000 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_54 bis 20 mA anliegen.

RWreg_94: Eingabe einer Zahl 129 ... 256 erzeugt ein Umschalten der RS485 Schnittstelle vom MODBUS-Mode in den MCS4000-Mode mit der entsprechenden Sensornummer

Achtung: nur über den Systemstecker ist eine Reaktivierung möglich (automatisch MODBUS auf Systemstecker und Zugriff auf die Register)

2 Modbus-Übertragungsaufbau

Start	Slave Adresse	Funktion	Daten	Checksumme	Ende
3.5* Zeichenzeit	8 Bit	8 Bit	N* 8 Bit	16 Bit	3.5* Zeichenzeit

Start/Ende:

Befinden sich auf dem Modbus keine Daten bzw. gibt es eine Datenpause von 3,5 * der Zeichenzeit, so wird die Datenerfassung zurückgesetzt.

Ein jetzt neues Zeichen auf dem Bus wird damit als erstes Zeichen (Adresse) erkannt und ausgewertet.

Beispiel: 9600 baud, keine Parität, ein Stoppbit

0,93 ms/Zeichen => ca. 3,3 ms für die Starterkennung

Slave Adresse (8 Bit = 1 Byte):

Die Slave-Adresse (spezifische Geräteadresse) ist im RWreg_50 abgelegt

Diese darf nur einmal im Modbusstrang verwendet werden.

Wird die Slave Adresse ,0' gesendet nehmen alle Geräte welche auf 1 bis 247 geschalten sind den Befehl an (Boardcast; es gibt jedoch keine Rückantwort!)

Funktionscode (8 Bit = 1 Byte):

Folgende Funktionscodes aus dem allgemeinen Modbus-Protokoll sind implementiert.

Code 03: Registerinhalt (16 Bit) lesen (eines Lese- und Schreib-Registers)

Code 04: Registerinhalt (16 Bit) lesen (eines nur Lese-Registers)

Code 06: Register beschreiben (16 Bit) - ein Register

Code 16: Register beschreiben (16 Bit) – mehrere nacheinander folgende Register (max. 10)

Register (16 Bit = 2 Byte):

Beschreibung siehe Kapitel Registeraufbau

Registeranzahl (16 Bit = 2 Byte):

Für eine Begrenzung der Übertragungszeit/Zeichenketten ist die Registeranzahl auf maximal 10 begrenzt [0x0001 bis 0x000a]

Checksumme (16 Bit = 2 Byte):

Die Ermittlung der Checksumme erfolgt nach den Richtlinien eines Modbus-Protokolls. Dabei entsteht ein 16 Bit Wert, der mit dem LO- und HI-Byte der Zeichenkette angehangen wird.

2.1 Funktionscode 03 lesen von Lese/Schreib(Read/Write)-Registern (16 Bit)

Anfrage:

Slave Adresse	0x00 0xff
Funktionscode	0x03
Start Register	Register HI
Start Register	Register LO
Registeranzahl	Registeranzahl HI
Registeranzahl	Registeranzahl LO
Checksumme	Check LO
Checksumme	Check HI

Rückantwort:

Slave Adresse	0x00 0xff
Funktionscode	0x03
Anzahl der Bytes	Anzahl [n] der Registerwerte (Bytes = n * 2)
1. Registerwert	Wert HI
1. Registerwert	Wert HO
n. Registerwert	Wert HI
n. Registerwert	Wert LO
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhaftem Register (siehe Registerbelegung)

Slave Adresse	0x00 0xff
Funktionscode	0x83
Fehlercode	0x02
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhafter Registeranzahl (>= 0x000a) [max. 10*]

Slave Adresse	0x00 0xff
Funktionscode	0x83
Fehlercode	0x03
Checksumme	Check LO
Checksumme	Check HI

2.2 Funktionscode 04 lesen von nur Lese(Read)-Registern (16 Bit)

Anfrage:

Slave Adresse	0x00 0xff
Funktionscode	0x04
Start Register	Register HI
Start Register	Register LO
Registeranzahl	Registeranzahl HI
Registeranzahl	Registeranzahl LO
Checksumme	Check LO
Checksumme	Check HI

Rückantwort:

Slave Adresse	0x00 0xff
Funktionscode	0x04
Anzahl der Bytes	Anzahl [n] der Registerwerte (Bytes = $n * 2$)
1. Registerwert	Wert HI
1. Registerwert	Wert HO
n. Registerwert	Wert HI
n. Registerwert	Wert LO
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhaftem Register (siehe Registerbelegung)

Slave Adresse	0x00 0xff
Funktionscode	0x84
Fehlercode	0x02
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhafter Registeranzahl (>= 0x000a) [max. 10*]

Slave Adresse	0x00 0xff
Funktionscode	0x84
Fehlercode	0x03
Checksumme	Check LO
Checksumme	Check HI

2.3 Funktionscode 06 schreiben einfach Register (16 Bit)

Anfrage:

Slave Adresse	0x00 0xff
Funktionscode	0x06
Register	Register HI
Register	Register LO
Register Wert	Wert HI
Register Wert	Wert LO
Checksumme	Check LO
Checksumme	Check HI

Rückantwort:

Slave Adresse	0x00 0xff
Funktionscode	0x06
Register	Register HI
Register	Register LO
Register Wert	Wert HI
Register Wert	Wert LO
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhaftem Register (siehe Registerbelegung)

Slave Adresse	0x00 0xff
Funktionscode	0x86
Fehlercode	0x02
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhaftem Wertebereich

Slave Adresse	0x00 0xff
Funktionscode	0x84
Fehlercode	0x03
Checksumme	Check LO
Checksumme	Check HI

Werden Werte übertragen, die außerhalb des Messbereiches liegen, werden diese auf den Messbereich begrenzt und verwendet. Es wird dennoch die Fehlermeldung (Fehlercode 0x03) gesendet.

2.4 Funktionscode 16 schreiben mehrfach Register (16 Bit)

Anfrage:

Slave Adresse	0x00 0xff
Funktionscode	0x10
Start Register	Register HI
Start Register	Register LO
Registeranzahl	Registeranzahl HI
Registeranzahl	Registeranzahl LO
Anzahl der Bytes	Anzahl der Register (n) mal 2
1. Registerwert	Wert HI
1. Registerwert	Wert LO
n. Registerwert	Wert HI
n. Registerwert	Wert LO
Checksumme	Check LO
Checksumme	Check HI

Rückantwort:

Slave Adresse	0x00 0xff
Funktionscode	0x10
Start Register	Register HI
Start Register	Register LO
Registeranzahl	Registeranzahl HI
Registeranzahl	Registeranzahl LO
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhaftem Register (siehe Registerbelegung)

Slave Adresse	0x00 0xff
Funktionscode	0x90
Fehlercode	0x02
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhafter Registeranzahl (>= 0x000a) [max. 10*] oder fehlerhaften Wertebereich

Slave Adresse	0x00 0xff
Funktionscode	0x90
Fehlercode	0x03
Checksumme	Check LO
Checksumme	Check HI

Werden Werte übertragen, die außerhalb des Messbereiches liegen, werden diese auf den Messbereich begrenzt und verwendet. Es wird dennoch die Fehlermeldung (Fehlercode 0x03) gesendet.

Hinweis: Die Rückantwortzeit nach erfolgter richtiger Anfrage liegt unter 250 ms (meist

kleiner 50 ms).

3 Anschlussinformation / Bedienelemente

Das Bild zeigt die wichtigsten Elemente zum Anschluss der Platine.

Versorgungsspannung: +UB = 10 - 36V DC

A & B: sind Leitungen einer RS485 OUT: Stromausgang 4 – 20mA

Achtung: max. Lastwiderstand abhängig von +UB

 $R_{last-max} = (+UB - 10V) / 0,02A$

Wird beim Systemstecker PIN_1 (GND) mit Pin_10 verbunden so schaltet das System in einen vorgegebenen Modus.

- Feste Adresse = 247
- Baudrate = 9600
- MODBUS
- Abschalten des A/B Stranges vom System

Taster:

- zur Nullpunktkalibrierung: drücken => rote LED blinkt, nach ca. 3sec loslassen
- zur Endpunktkalibrierung: drücken => rote LED blinkt, nach ca. 6sec (beim zweiten Dauerlicht) loslassen

LED grün: blinkt (blitzt) wenn Datenaustausch ok ist

LED rot: blitzt bei Fehler im Datenaustausch z.B. Register falsch beschrieben