Entrada e Saída

- Tipos e Características de Dispositivos
- Arquitetura do Sistema de E/S
- Discos
 - * Mecanismo, componentes de gravação e de posicionamento
 - * Controlador
 - * RAID
- Redes, barramentos, vazão e latência
- dispositivos, interfaces com CPU e com Sist Operacional
- Desempenho e projeto

HEPR Dento de Informática

ci212 — E/S (i): discos

2007-1

Características dos Dispositivos

- Comportamento
 - * entrada (lê uma vez só)
 - * saída (escreve uma vez só)
 - * armazenagem (lê muitas vezes, também escreve)
- contra-parte
 - * humano
 - * computador
- taxa de transferência
 - * taxa de pico
 - * taxa sustentada (sustentável em condições "normais")

HEPR Dento de Informática

2007-1

ci212 — E/S (i): discos

Tipos de Dispositivos

dispositivo	comportamento	parceiro	taxa [b/s]
teclado	entrada	humano	10
mouse	entrada	humano	20
scanner	entrada	humano	400 K
monitor gráfico	saída	humano	60 M
rede local	E/S	computador	0.5-10 M
fita	armazenagem	computador	2 M
disco	armazenagem	computador	2-10 M

Classes de Periféricos

- Lentos e Preguiçosos:
 - * teclado 10 caracteres por segundo
 - * mouse 30 caracteres por segundo
- Rápidos e Gulosos:
 - * disco rígido 512 bytes em 0.2ms (\approx 2 Mbytes/s)
 - * interface de rede 1024 bytes em 0.1ms (\approx 10 Mbytes/s)
 - * controlador de vídeo 30 Kbytes em 1ms (\approx 30 Mbytes/s)
- Tratamento diferente para as duas classes
 - * periféricos lentos podem esperar
 - * periféricos rápidos devem ser prontamente atendidos
 - * tratamento de grandes volumes é mais complexo que o de caracteres individuais

TIFPR Nento de Informática

<u>ci212 — E/S (i): discos</u>

Arquitetura do Sistema de E/S

Hierarquia de vias:

largura de banda é menor a medida em que desce na hierarquia barramentos distintos em cada nível

Processamento de E/S: controlado por programa

ADM

processadores de E/S

HEPR Dento de Informática

ci212 — E/S (i): discos 2007-1

Vazão e Latência

Vazão: taxa de transferência [bytes/segundo] depende de:

- largura da via (largura do barramento: 8, 32 ou 256 bits)
- taxa de sinalização (velocidade do relógio)
- tipo de sinalização (síncrona ou assíncrona)

Latência: lapso entre comando e resposta [segundo] depende de:

- tipo de sinalização (síncrona ou assíncrona)
- tipo dos dispositivos (memória, disco, mouse)
- organização (mapeamento de endereços, segmentação do caminho)

Entrada e Saída

- Tipos e Características de Dispositivos
- Arquitetura do Sistema de E/S
- Discos
 - * Mecanismo, componentes de gravação e de posicionamento
 - * Controlador
 - * RAID
- Redes, barramentos, vazão e latência
- dispositivos, interfaces com CPU e com Sist Operacional
- Desempenho e projeto

An introduction to Disk Drive Modeling, Ruemmler & Wilkes, IEEE Computer 27(3):17-28, Mar 1994

HEPR Danto de Informática

ci212 — E/S (i): discos 2007-1

E/S e Computação

E/S concorre com computação de maneiras complexas

$$\mathcal{T}_{\mathsf{tarefa}} = \mathcal{T}_{\mathsf{cpu}} + \mathcal{T}_{\mathsf{E/S}} - \mathcal{T}_{\mathsf{concorr}}$$

HEPR Danto de Informática 8

ci212 — E/S (i): discos 2007-1

Discos Magnéticos

Ruemmler & Wilkes, Computer Mar94

<u>ci212 — E/S (i)</u>: discos 2007-

Discos Magnéticos - Parâmetros Típicos

Característica	mín	máx
diâmetro [polegadas]	1,0	* 3,5
capacidade formatada [GB]	4	>200
discos/pratos	1	20
trilhas por superfície	6.000	25.000
setores por trilha	100	600
bytes por setor	512	4.096
velocidade [rpm]	5.400	15.000
cache [MB]	0,5	≥8
taxa transferência [MB/s]	2,5-5	27-40

^{*} tamanho típico (+popular) em 2004

IIEPR Pento de Informática 10

ci212 — E/S (i): discos 2007-1

Discos - organização

IIEPR Danto de Informática 1

ci212 — E/S (i): discos 2007-1

Mecanismo – componentes de gravação

- Diâmetro: 1.0, 1.3, 2.5, 3.5 ,8 polegadas
- densidade linear de gravação: 100 Kbpi [bits/inch]
- densidade de trilhas: 20 Ktpi [tracks/inch]
- efeito combinado: densidade por área cresce 60% aa
- velocidade 3.600, 7.200, 10.000, 15.000 cresce 12% aa
- ullet uma cabeça ativa por vez, taxa de leitura $\geq 100~\mathrm{Mbps}$
- conteúdo de um setor
 - ⋆ número do setor;
 - ⋆ espaço;
 - * informação do setor com código de detec&corr de erros
 - ⋆ espaço;
 - * …

ci212 — E/S (i): discos

Mecanismo – componentes de posicionamento

- Densidade é tão alta que noção de cilindro é quase irrelevante
- busca consiste de
 - \star aceleração até atingir $1/2~V_{
 m máx}$
 - $\star~V_{
 m m\acute{a}x}$ em distâncias longas
 - * desaceleração até trilha desejada
 - ★ estabilização da cabeça sobre a trilha (1-3 ms)
 - \star seeks longos: $\mathcal{T} \propto \operatorname{distância}$ (@ $V_{\mathrm{máx}}$)
 - \star seeks médios: $\mathcal{T} \propto \sqrt{\mathrm{distância}}$
- recalibrar posição a cada 15-30 min, durante 500-800 ms
- acompanhamento de trilhas
 - ★ troca de cabeças \rightarrow reposicionar braço (≈ 0.5 -1.5 ms)
 - \star troca de trilha \rightarrow estabilizar braço (\approx 1-3 ms)
 - \star controlador tenta leitura otimista assim que chega na trilha pode fazer escrita otimista? (≈ 0.75 ms até estabilizar para escrever)

HFPR Danto da Informática

<u>ci212 — E/S (i)</u>: discos 2007-1

Mecanismo – leiaute dos dados

- Disco visto pelo SO como vetor linear de blocos (256-1024 bytes)
- controlador mapeia vetor nos setores físicos $1D \sim 3D$ blocos[i] \sim disco[superfície, trilha, setor]
- #bits cresce ≈ linearmente com comprimento da trilha zoneamento: número de setores depende do raio
 ∃ 3-50 zonas com mesmo número de setores /zona
- deslocamento de setores nas trilhas:

setor 0 de cada trilha deslocado para esconder tempo de reposicionamento track skewing

- trilhas/setores sobressalentes: referências a setores danificados são re-mapeadas para setores/trilhas de reserva
 - ★ na formatação pula endereço da trilha com defeito slip sparing
 - ★ em uso re-mapeia endereço do setor/trilha para sobressalentes

IIEPR Danto de Informática 1

ci212 — E/S (i): discos 2007-1

Controlador

- Funções do controlador SCSI
 - * mediar acessos ao mecanismo
 - ★ executar sistema de acompanhamento de trilhas
 - ★ transferir dados entre disco e cliente
 - * gerenciar buffers/cache
- operação do controlador custa 0.3-1 ms (caindo lentamente) eletrônica segue Lei de Moore mas funcionalidade cada vez mais complexa
- interface com barramento
 - * transferências em modo síncrono, na veloc máxima do barramento
 - ★ pode operar com *split transactions* (latências enormes)
 - \star \exists buffer entre mecanismo e barramento por causa das diferenças de velocidade
- buffer usado como cache

ci212 — E/S (i): discos

Controlador – cache (leitura/escrita)

- Políticas da cache: read-ahead ≈ busca antecipada
 - * on-arrival read-ahead: assim que chegar na trilha, lê trilha toda
 - * read-ahead agressivo: atravessa trilhas e/ou cilindros
 - * read-ahead 'zen': pára no final de trilha/cilindro
 - * cache associativa:
 - particionar cache para ≠s seqüências entrelaçadas
- Cache pode corromper sistema de arquivos se faltar energia
 - * controlador avisa que completou operação após escrever na cache
 - * se cache tem bateria, problema desaparece (?)
- Cache com fila de comandos: controlador pode otimizar operações porque conhece geometria do disco

HEPR Danto da Informática

ci212 — E/S (i): discos 2007-1

Operação de Discos

- Comandos
 - * Latência/atraso no controlador + tempo na fila (OS)
 - * 0,5ms se não encontra na cache, 0,1ms se encontra na cache
- Seek (movimentação do braço entre trilhas/cilindros)
 - * move a cabeça até a trilha desejada
 - * tempo depende da posição inicial da cabeça
 - * valores típicos médios entre 5-12ms
- Latência rotacional
 - * espera até que setor desejado passe sob a cabeça ($\approx 1/2$ volta)
 - * na média, $0.5/\text{rpm} \rightarrow 0.5 / (7200\text{rpm} / 60\text{spm}) = 4.2\text{ms}$
- Transferência de dados
 - * taxa de transferência entre 2 e 40 MByte/s

HEPR Danto da Informática 17

<u>ci212 — E/S (i)</u>: discos 2007-1

Desempenho

- Tempo médio de acesso
 - = tempo médio de movimentação do braço (seek)
 - + latência rotacional média
 - + tempo de transferência
 - + tempo do controlador
- Exemplo: 7200 rpm, 10MByte/s

tempo médio de movimentação do braço: 10ms

tempo do controlador: 0,5ms

tempo para ler bloco de 4Kbytes (uma página)

10ms + 0.5/(7200rpm/60spm) + 4KB/10MB/s + 0.5ms

10ms + 4.2ms + 0.4ms + 0.5ms = 14.65ms

Desempenho (cont)

	distância		
	# trilhas	fração	
	0	24%	
Localidade:	15	23%	
discos exibem localidade	30	8%	
→ em "acessos locais" seek cai em 1/3	45	4%	
y em accesses locals seek car em 1/0	60	3%	
Cache:	75	3%	
buffer em memória (<i>Unix buffer cache</i>)	90	1%	
e na unidade de disco	105	3%	
→ latência cai para hit+transferência	120	3%	
	135	2%	
	150-195	11%	
	unix time-	sharing	

HEPR Dento de Informática

ci212 — E/S (i): discos 2007-1

Matrizes de Discos

Conjunto de discos individuais: cada disco com seu

braço/cabeça

Distribuição dos dados:

endereçamento independente listras de blocos pequenos listras de blocos grandes

fina

Hennessy&Patterson QA Fig-7.52

granularidade grossa

LIEPR Dento de Informática

ci212 — E/S (i): discos

Matrizes de Discos

- Endereçamento independente
 - ★ software/usuário distribui os dados
 - * balanceamento de carga entre discos pode ser problemático
- Listras de blocos pequenos (fine-grain striping)
 - * um bit, um byte, ou um setor
 - * #discos*|bloco| define menor quantidade de dados acessível
 - * balanceamento de carga perfeito; só uma requisição atendida por vez
 - \star taxa efetiva de transferência \approx N vezes melhor que um disco só
 - * tempo de acesso pode aumentar, a não ser que discos sejam sincronizados
- Listras de blocos grandes (coarse-grain striping)
 - * paralelismo na transferência de grandes volumes de dados
 - * concorrência para transferências pequenas
 - ★ balanceamento de carga pela aleatoriedade
- Granularidade escolhida em função da aplicação e tipo de carga

ci212 — E/S (i): discos

Mecanismos de Redundância

- Falhas em discos são parcela grande de falhas de hardware
 - * striping aumenta o número de arquivos perdidos por falha
- Replicação dos dados
 - espelhamento dos discos
 - → permite leituras em paralelo
 - → escritas devem ser sincronizadas
- Proteção com paridade
 - * usar disco para manter a paridade

TIFPR Nento de Informática

ci212 — E/S (i): discos 2007

Redundant Arrays of Inexpensive Disks - RAIDs

 Conjuntos de discos pequenos e baratos resultam em alto desempenho e alta confiabilidade

D = número de discos de dados no conjunto

V = número de discos de verificação no conjunto

- Nível 0: só listras, sem redundância (striping)
- Nível 1: discos espelhados (D=1, V=1)
 - * desperdício é elevado
- Nível 2: código de detecção de erros (D=10, V=4)
 - * mesmo tipo de código de detecção de erros usado com DRAMs
 - * todos os bits do conjunto são lidos
 - * agrega bits atualizados com bits que permanecem; recomputa a paridade
 - * re-escreve todo o conjunto, incluindo a verificação

TIEDR Dento de Informática

<u>ci212 — E/S (i)</u>: discos 2007

Redundant Arrays of Inexpensive Disks - RAIDs

- Nível 3: paridade com bits entrelaçados (D=4, V=1)
 - * disco com falha é identificado facilmente pelo controlador
 - * não é necessário código especial para descobrir disco em falha
- Nível 4: paridade com blocos entrelaçados
 - * usado com blocos grandes
 - * similar ao RAID 3, mas pode efetuar mais de um acesso com poucos dados a cada vez
 - * escrita deve atualizar disco com dados e disco com paridade

Redundant Arrays of Inexpensive Disks - RAIDs

- Nível 5: paridade distribuída por blocos entrelaçados
 - * paridade é distribuída pelos discos no conjunto
 - * atualizações distintas de paridade vão para discos distintos
- Nível 6: matriz bi-dimensional
 - * matriz de dados é bi-dimensional, com paridade nas linhas e nas colunas
 - * permite recuperação de duas falhas

HEPR Panto da Informática 2

ci212 — E/S (i): discos 2007-

RAID 4/5 – Blocos de Paridade

TIEPR Danto da Informática 9/

<u>ci212 — E/S (i): discos</u> 2007-1

RAID - Atualização "Pequena"

Qual é o número de operações de leitura/escrita nos discos individuais para efetuar escrita de poucos dados (= atualização pequena)?

RAID - Atualização "Pequena"

Qual é o número de operações de leitura/escrita nos discos individuais para efetuar escrita de poucos dados (= atualização pequena)?

HEPR Danto de Informática 95

ci212 — E/S (i): discos 2007-1

resumo - Discos

- Tempo médio de acesso
 - = tempo médio de movimentação do braço (seek)
 - + latência rotacional média
 - + tempo de transferência
 - + tempo do controlador
- Cache no controlador para tirar proveito de localidade
 - ★ falta de energia durante escrita de metadados corrompe sist de arquivos
 - $\star\,$ mesmos problemas que fila de escrita (riscos RAW a WAW)
- RAID usar discos baratos para
 - aumentar desempenho acessos em paralelo (striping)

е

melhorar confiabilidade - paridade