Thuật Toán 1 Quy trình huấn luyện mô hình sparse-DGCNN cho nhận dạng cảm xúc sử dụng tín hiệu EEG

Đầu vào: Tín hiệu đồ thị $G = \{V, W\}$ biểu diễn đặc trung EEG đa kênh, learning rate τ và trọng số ràng buộc thưa λ ;

Đầu ra: Ma trận liền kề W^* và trọng số của mô hình Θ^* ;

- 1: Khởi tạo ma trận liền kề W^* và các trọng số khác của mô hình Θ^* ;
- 2: Lặp lại
- Tính ma trận Laplacian và đa thức Chebyshev; 3:
- Tính kết quả của mạng thông qua các lớp tích chập 4: đồ thị, lớp tích chập 1×1 , hàm kích hoạt Relu và lớp kết nối đầy đủ
- Tính giá trị hàm mất mát; 5:
- Cập nhật trọng số của mô hình $\Theta \leftarrow \Theta \tau \frac{\partial \mathcal{L}}{\partial \Theta}$; 6:
- 7:
- 8:
- Tính $W^{\frac{1}{2}} = W \tau \frac{\partial \mathcal{L}}{\partial W};$ Tính $W = \arg\min_{W'} \left\{ ||W' W^{\frac{1}{2}}||_F^2 + \tau \lambda ||W'||_1 \right\}$ Diều chỉnh các phần tử w_{ij} của ma trận W với hàm 9: kích hoạt Relu để đảm bảo $w_{ij} \geq 0$;
- 10: Đến khi Thỏa mãn điều kiện hội tụ của thuật toán.