Программа курса повышения квалификации « Основы робототехники: Arduino и Lego mindstorms»

1. Общие положения

Основной акцент на программировании: педагоги изучают основы радиоэлектроники и учатся программировать на C++ и Arduino-C.

Цель и задачи дисциплины: формирование у учителей (слушателей курса) навыков по Основам Робототехники. В результате прохождения курса предполагается освоение педагогами:

навыков работы с платами Arduino и Lego, направленных на улучшение знаний по курсу «Основы робототехники: Arduino и Lego mindstorms EV3».

Актуальность программы:

В современном мире область применения робототехники в различных сферах деятельности человека очень широкая и не перестает расти. Применение роботов позволяет значительно снизить участие человека в тяжелой и опасной работе. Например, работа в оборонной сфере так же тушение пожаров без помощи оператора, выполнение спасательных операций или передвижение по заранее неизвестной местности. Так же робототехника применяется и для облегчения жизни людям с ограниченными возможностями. Постепенно роботы входят и в обычную жизнь человека. Использование мобильных роботов позволяем удовлетворять каждодневные потребности: роботы-сиделки, роботы - нянечки, роботы - домработницы и т. д. Как следствие современное общество очень нуждается в грамотных специалистах в этой области.

Продолжительность обучения-36 часов.

2. Глоссарий

	Это проектирование и конструирование всевозможных
Робототехника	интеллектуальных механизмов – роботов, имеющих
	модульную структуру и обладающих мощными
	микропроцессорами. По Робототехнике осуществляется

	работа с образовательными конструкторами серии LEGO Mindstorms. Для создания программы используются специальные языки программирования. Робототехника опирается на такие дисциплины, как электроника, механика, программное обеспечение. Выделяют строительную, промышленную, бытовую, авиационную и экстремальную (военную, космическую, подводную) робототехнику			
Робот	Автоматическое устройство, созданное по принципу живого организма, предназначенное для осуществления производственных и других операций, которое действует по заранее заложенной программе и получает информацию о внешнем мире от датчиков (аналогов органов чувств живых организмов), робот самостоятельно осуществляет производственные и иные операции, обычно выполняемые человеком. Внешний вид и конструкция современных роботов могут быть весьма разнообразными. Робот может управляться оператором либо работать по заранее составленной программе. Использование роботов позволяет облегчить или вовсе заменить человеческий труд на производстве, в строительстве, при рутинной работе, при работе с тяжёлыми грузами, вредными материалами, а также в других тяжёлых или небезопасных для человека условиях.			
Датчик цвета EV3	Способен различать восемь цветов и отсутствие цвета. Кроме того, его можно использовать как датчик освещённости. Улучшенная конструкция датчика цвета EV3, которая заключается в том, что на корпусе есть крепление типа крестовина, и датчик можно закрепить в рамке, позволяет собрать сложные, многофункциональные механизмы. Может измерять отражённый красный цвет.			
Средний серводвигатель	Разработан для работы с микрокомпьютером EV3 и имеет встроенный датчик вращения с точностью измерений до 1 градуса. Используя этот датчик, мотор может соединяться другими моторами, позволяя роботу двигаться с постоянной скоростью. Кроме того, датчик вращения может использоваться и при проведении различных экспериментов для точного считывания данных о расстоянии и скорости. Корпус мотора делает монтаж элементов передач и трансмиссии простым процессом.			
Большой сервомотор EV3	Подключается к микрокомпьютеру EV3 и заставляет робота двигаться: ехать вперёд и назад, поворачиваться и проезжать по заданной траектории. Большой сервомотор имеет встроенный датчик вращения, который позволяет очень точно контролировать перемещение робота и его скорость.			
Ультразвуковой датчик EV3	Основная функция — определение расстояния. Для этого датчик испускает звуковые волны и принимает их «эхо». К основной функции данного сенсора добавилась ещё одна — он			

Гироскопический датчик EV3 Измеряет вращательное движение робота и изменение его положения. Может использоваться для определени текущего направления вращения. Является сердцем и мозгом роботов, построенных выплатформе LEGO MINDSTORMS Education EV3 Микрокомпьютер включает в себя шестикнопочный интерфейс управления с функцией изменения подсветки длиндикации режима работы микрокомпьютера монохромный дисплей с высоким разрешением, встроенный спикер, пор USB, слот для чтения карт памяти формата mini SD, 4 порт ввода и 4 порта вывода. Микрокомпьютер EV3 также поддерживает Bluetooth, WiFi (поддерживается Wi-Fi адаптер NETGEAR WNA1100 Wireless-N 150), для связи компьютерами имеет программы и настраивать регистрации данные непосредственно на микрокомпьютере EV3 Микрокомпьютере EV3. Агдиіпо Uno контроллер построен на ATmega328. Платформ имеет 14 цифровых вход/выходов (6 из которых могу использоваться как выходы ШИМ), 6 аналоговых входов кварцевый генератор 16 МГц, разъем USB, силовой разъем разъем ICSP и кнопку перезагрузки. Для работы необходим подключить платформу к компьютеру посредством кабеле USB, либо подать питание при помощи адаптера АС/DC или батареи. Ошибки функция		также может слушать ультразвуковые колебания,					
положения. Может использоваться для определения текущего направления вращения. Программируемый Является сердцем и мозгом роботов, построенных и платформе LEGO MINDSTORMS Education EV3 Микрокомпьютер включает в себя шестикнопочный интерфейс управления с функцией изменения подсветки для индикации режима работы микрокомпьютера, монохромный дисплей с высоким разрешением, встроенный спикер, пор USB, слот для чтения карт памяти формата mini SD, 4 порт ввода и 4 порта вывода. Микрокомпьютер EV3 также поддерживает Bluetooth, WiFi (поддерживается Wi-Fi адаптер NETGEAR WNA1100 Wireless-N 150), для связи компьютерами имеет программный интерфейс, позволяющий создавать программы и настраивать регистрации данны непосредственно на микрокомпьютере EV3 Микрокомпьютер совместим с мобильными устройствами и питается батареями типа АА или аккумуляторной батарее EV3. Агduino Uno контроллер построен на ATmega328. Платформ имеет 14 цифровых вход/выходов (6 из которых могу использоваться как выходы ШИМ), 6 аналоговых входов кварцевый генератор 16 МГц, разъем USB, силовой разъем разъем ICSP и кнопку перезагрузки. Для работы необходим подключить платформу к компьютеру посредством кабел: USB, либо подать питание при помощи адаптера АС/DC или батареи. Ошибки функция представляет собой одно значение, которо		испускаемые другими датчиками ультразвука.					
Программируемый микрокомпьютер EV3 Является сердцем и мозгом роботов, построенных на платформе LEGO MINDSTORMS Education EV3 Микрокомпьютер включает в себя шестикнопочный интерфейс управления с функцией изменения подсветки для индикации режима работы микрокомпьютера, монохромный дисплей с высоким разрешением, встроенный спикер, пор USB, слот для чтения карт памяти формата mini SD, 4 порт ввода и 4 порта вывода. Микрокомпьютер EV3 также поддерживает Bluetooth, WiFi (поддерживается Wi-Fi адаптер NETGEAR WNA1100 Wireless-N 150), для связи компьютерами имеет программный интерфейс, позволяющий создавать программы и настраивать регистрации данный непосредственно на микрокомпьютере EV3 Микрокомпьютер совместим с мобильными устройствами и питается батареями типа АА или аккумуляторной батареей EV3. Агduino Uno контроллер построен на АТтеда328. Платформ имеет 14 цифровых вход/выходов (6 из которых могу использоваться как выходы ШИМ), 6 аналоговых входов кварцевый генератор 16 МГц, разъем USB, силовой разъем разъем ICSP и кнопку перезагрузки. Для работы необходим подключить платформу к компьютеру посредством кабеле USB, либо подать питание при помощи адаптера АС/DC или батареи. Ошибки функция представляет собой одно значение, которо	1 *	Измеряет вращательное движение робота и изменение его					
Программируемый микрокомпьютер EV3 Является сердцем и мозгом роботов, построенных и платформе LEGO MINDSTORMS Education EV3 Микрокомпьютер включает в себя шестикнопочный интерфейс управления с функцией изменения подсветки длиндикации режима работы микрокомпьютера, монохромный дисплей с высоким разрешением, встроенный спикер, пор USB, слот для чтения карт памяти формата mini SD, 4 порт ввода и 4 порта вывода. Микрокомпьютер EV3 также поддерживает Bluetooth, WiFi (поддерживается Wi-Fi адаптер NETGEAR WNA1100 Wireless-N 150), для связи компьютерами имеет программный интерфейс, позволяющий создавать программы и настраивать регистрации данный непосредственно на микрокомпьютере EV3 Микрокомпьютер совместим с мобильными устройствами и питается батареями типа АА или аккумуляторной батарее EV3. Агduino Uno контроллер построен на ATmega328. Платформ имеет 14 цифровых вход/выходов (6 из которых могу использоваться как выходы ШИМ), 6 аналоговых входов кварцевый генератор 16 МГц, разъем USB, силовой разъем ICSP и кнопку перезагрузки. Для работы необходим подключить платформу к компьютеру посредством кабеле USB, либо подать питание при помощи адаптера АС/DC или батареи. Ошибки функция Ошибки функция представляет собой одно значение, которо	датчик EV3	положения. Может использоваться для определения					
Является сердцем и мозгом роботов, построенных на платформе LEGO MINDSTORMS Education EV3 Микрокомпьютер включает в себя шестикнопочный интерфейс управления с функцией изменения подсветки для индикации режима работы микрокомпьютера, монохромный дисплей с высоким разрешением, встроенный спикер, пор USB, слот для чтения карт памяти формата mini SD, 4 порт ввода и 4 порта вывода. Микрокомпьютер EV3 такж поддерживает Bluetooth, WiFi (поддерживается Wi-Fi адаптер NETGEAR WNA1100 Wireless-N 150), для связи компьютерами имеет программый интерфейс, позволяющий создавать программы и настраивать регистрации данны непосредственно на микрокомпьютере EV3 Микрокомпьютер совместим с мобильными устройствами и питается батареями типа АА или аккумуляторной батарее EV3. Arduino Uno контроллер построен на ATmega328. Платформ имеет 14 цифровых входов (6 из которых могу использоваться как выходы ШИМ), 6 аналоговых входов кварцевый генератор 16 МГц, разъем USB, силовой разъем ICSP и кнопку перезагрузки. Для работы необходим подключить платформу к компьютеру посредством кабел USB, либо подать питание при помощи адаптера АС/DC или батареи. Ошибки функция Ошибки функция представляет собой одно значение, которо							
платформе LEGO MINDSTORMS Education EV3 Микрокомпьютер включает в себя шестикнопочный интерфейс управления с функцией изменения подсветки для индикации режима работы микрокомпьютера, монохромный дисплей с высоким разрешением, встроенный спикер, порт USB, слот для чтения карт памяти формата mini SD, 4 порт ввода и 4 порта вывода. Микрокомпьютер EV3 также поддерживает Bluetooth, WiFi (поддерживается Wi-Fi адаптер NETGEAR WNA1100 Wireless-N 150), для связи компьютерами имеет программый интерфейс, позволяющий создавать программы и настраивать регистрации данны непосредственно на микрокомпьютере EV3 Микрокомпьютер совместим с мобильными устройствами и питается батареями типа АА или аккумуляторной батареей EV3. Arduino Uno контроллер построен на АТтеда328. Платформ имеет 14 цифровых вход/выходов (6 из которых могу использоваться как выходы ШИМ), 6 аналоговых входок кварцевый генератор 16 МГц, разъем USB, силовой разъем разъем ICSP и кнопку перезагрузки. Для работы необходим подключить платформу к компьютеру посредством кабель USB, либо подать питание при помощи адаптера АС/DC или батареи. Ошибки функция Ошибки функция представляет собой одно значение, которо	Программируемый	<u> </u>					
Аrduino Uno контроллер построен на ATmega328. Платформ имеет 14 цифровых вход/выходов (6 из которых могу использоваться как выходы ШИМ), 6 аналоговых входов кварцевый генератор 16 МГц, разъем USB, силовой разъем разъем ICSP и кнопку перезагрузки. Для работы необходими подключить платформу к компьютеру посредством кабели USB, либо подать питание при помощи адаптера АС/DC или батареи. Ошибки функция Ошибки функция представляет собой одно значение, которо-		Микрокомпьютер включает в себя шестикнопочный интерфейс управления с функцией изменения подсветки для индикации режима работы микрокомпьютера, монохромный дисплей с высоким разрешением, встроенный спикер, порт USB, слот для чтения карт памяти формата mini SD, 4 порта ввода и 4 порта вывода. Микрокомпьютер EV3 также поддерживает Bluetooth, WiFi (поддерживается Wi-Fi адаптер NETGEAR WNA1100 Wireless-N 150), для связи с компьютерами имеет программный интерфейс, позволяющий создавать программы и настраивать регистрации данных непосредственно на микрокомпьютере EV3. Микрокомпьютер совместим с мобильными устройствами и питается батареями типа АА или аккумуляторной батареей					
Аrduino UNO имеет 14 цифровых вход/выходов (6 из которых могу использоваться как выходы ШИМ), 6 аналоговых входов кварцевый генератор 16 МГц, разъем USB, силовой разъем разъем ICSP и кнопку перезагрузки. Для работы необходими подключить платформу к компьютеру посредством кабели USB, либо подать питание при помощи адаптера АС/DС или батареи. Ошибки функция Ошибки функция представляет собой одно значение, которо-							
Ошибки функция Ошибки функция представляет собой одно значение, которо-	Arduino UNO	имеет 14 цифровых вход/выходов (6 из которых могут использоваться как выходы ШИМ), 6 аналоговых входов, кварцевый генератор 16 МГц, разъем USB, силовой разъем, разъем ICSP и кнопку перезагрузки. Для работы необходимо подключить платформу к компьютеру посредством кабеля					
		<u> </u>					
значениями одной или нескольких зависимых переменных.	Ошибки функция	Ошибки функция представляет собой одно значение, которое представляет собой разницу между желаемым и фактическим значениями одной или нескольких зависимых переменных.					
Автономный Работающий без предварительно запрограммированного поведения и без контроля со стороны людей.	Автономный	Работающий без предварительно запрограммированного					

Тематика Программы

Модуль 1. Понятие о робототехнике	1.1. Введение в "Основы робототехники: Arduino.1.2. Ознакомление с компонентами Arduino.1.3 Назначение пинов в Ардуино.1.4 Изучение массивов.
Модуль 2. Ознакомление с основами робототехники	2.1. Алгоритмы в робототехнике.2.2. Мигание светодиода на Ардуино.

	2.3. Включение светодиода кнопкой.
	2.4. Задержки Ардуино - delay и millis.
Модуль 3. Работа с	3.1. Изучение что такое фоторезистор.
компонентами Arduino	3.2. Подключение датчика света (фоторезистор).
	3.3.Изучение констант
	3.5. Подключение RGB светодиода к Ардуино.
Модуль 4. Подключение	4.1. Подключение потенциометра на Arduino.
компонентов Ардуино	4.2. Изучение что такое переменные.
	4.3. Границы переменных.
	4.4. Изучение массивов.
Модуль 5. Подключение компонентов набора Arduino	5.1 Подключение семисегментного индикатора к Ардуино по SPI.
Uno	5.2 Подключаем экран 16x2 символов к Ардуино.
	5.3 Управление сервоприводом.
	5.4 Ультразвуковой датчик расстояния на Ардуино.
Модуль 6. Понятие о наборе Lego Mindstorms Ev3	5.1 Возможность программирования любых роботов линейки LEGO Mindstorms.
	5.2 Подключение отправляющего сигналы роботу передатчика через USB-порт компьютера.
	5.3 Удобная рабочая область, внутри которой за действия каждого активного элемента робота отвечает отдельный визуальный модуль.
	5.4 Наличие комплектаций для взрослых и детей.

Тематика программы

Тема программы включает в себя широкий спектр тем:

Модуль 1

«Понятие о робототехнике»

- Введение в "Основы робототехники: Arduino;
- Ознакомление с компонентами Arduino;
- Назначение пинов в Ардуино;

Модуль 2

- "Ознакомление с основами робототехники"»
- Алгоритмы в робототехнике;

- Мигание светодиода на Ардуино;
- Включение светодиода кнопкой;
- Задержки Ардуино delay и millis.

Модуль 3

«Работа с компонентами Arduino»

- Изучение что такое фоторезистор.
- Подключение датчика света (фоторезистор).
- Изучение констант

Модуль 4

«Подключение компонентов Ардуино»

- Подключение потенциометра на Arduino.
- Изучение что такое переменные.
- Границы переменных.

Модуль 5

« Подключение компонентов набора Arduino Uno»

- Подключение семисегментного индикатора к Ардуино по SPI.
- Изучение массивов
- Подключаем экран 16х2 символов к Ардуино.
- Подключение RGB светодиода к Ардуино
- Управление сервоприводом.
- Подключение к плате Ардуино.
- Ультразвуковой датчик расстояния на Ардуино.
- Ардуино + шаговый двигатель 28ВУЈ

Модуль 6

« Понятие о наборе Lego Mindstorms Ev3»

- Возможность программирования любых роботов линейки LEGO Mindstorms;
- Подключение отправляющего сигналы роботу передатчика через USBпорт компьютера;
- Удобная рабочая область, внутри которой за действия каждого активного элемента робота отвечает отдельный визуальный модуль;
- Наличие комплектаций для взрослых и детей;

3. Цель, задачи и ожидаемые результаты программы

Цель и задачи дисциплины: формирование у учителей (слушателей курса) навыков по Основам Робототехники. В результате прохождения курса предполагается освоение учителями:

навыков работы с платами Arduino и Lego, направленных на улучшение знаний по курсу «Основы робототехники: Arduino и Lego mindstorms».

Ожидаемый результат:

Слушатели курса основы робототехники по предлагаемой программе осваивают:

- Основы работ с компонентами набора Ардуино;
- Основы языка С++;
- Применение полученных навыков в педагогике;
- Передача полученных навыков учащимся.

4. Структура и содержание программы

Содержание рабочего плана обучения состоит из 6 модулей, на каждого слушателя предоставляется 36 часовая программа.

Содержание программы Модуль 1

«Понятие о робототехнике»

Формирование примитивных знаний о робототехнике, введение в мир новых технологий.

Модуль 2

«Ознакомление с основами робототехники»

Изучение алгоритмов работы в робототехнике;

Выполнение первой сборки на базе набора Arduino UNO;

Написание кода для работы со сборкой на языке программирования С++;

Модуль 3

«Работа с компонентами Arduino»

Изучение нового компонента набора Arduino UNO; Написание кода для работы со сборкой на языке программирования С++; Изучение констант языка программирования С++;

Модуль 4

«Подключение компонентов Ардуино»

Изучение переменных языка программирования C++; Изучение массивов языка программирования C++; Сборка с компонентом потенциометр и написание кода;

Модуль 5

«Подключение компонентов набора Arduino Uno»

Продолжение изучения массивов языка программирования C++; Изучение нового компонента набора Arduino UNO; Написание кода для работы со сборкой на языке программирования C++;

Модуль 6 «Понятие о наборе Lego Mindstorms Ev3»

Изучение набора Lego Mindstorms Ev3; Рассмотрение программы для программирования компонентов; Ознакомление с компонентами набора Lego Mindstorms Ev3;

5. Организация учебного процесса

Организация учебного процесса основанным на цифровом подходе в образовании. Курсы повышения квалификации будут организованы в следующем формате:

- дистанционное обучение.

Учебный процесс осуществляется в соответствии с данной программой. Учебный процесс включает различные формы взаимодействия с участниками курсов:

Тема занятия	Методы и формы
Вводная часть.	Презентация.
	Объяснение.
Введение в "Основы робототехники: Arduino;	Домашнее задание.
Ознакомление с компонентами Arduino;	Проверка знания усвоенного
Ознакомление с компонентами Атаишо,	материала. Лекция.
Назначение пинов в Ардуино;	Домашнее задание.
2 7	домашнее задание.
Алгоритмы в робототехнике;	Проверка домашнего задания.
Мигание светодиода на Ардуино;	Лекция. Домашнее задание.
Включение светодиода кнопкой;	домашнее задание.
	Постояния
Задержки Ардуино - delay и millis.	Проверка домашнего задания. Лекция.
	Домашнее задание.
Изучение что такое фоторезистор.	
По жилиомомию подмуми ородо (фодовомодом)	Мини- Лекция
Подключение датчика света (фоторезистор)	
Изучение констант	
Подключение потенциометра на Arduino.	Лекция -диалог
Изучение что такое переменные.	
Границы переменных.	Лекция, домашнее задание
Изучение массивов	

Управление сервоприводом.	Лекция -диалог
Подключение к плате Ардуино.	Лекция –диалог Домашнее задание
Ультразвуковой датчик расстояния на Ардуино.	
Ардуино + шаговый двигатель 28BYJ	
Подключаем экран 16х2 символов к Ардуино	Лекция -диалог
Подключение семисегментного индикатора к Ардуино по SPI.	Лекция-диалог. Практика
Возможность программирования любых роботов линейки LEGO Mindstorms;	Лекция-диалог. Практика
Подключение отправляющего сигналы роботу передатчика через USB-порт компьютера;	Лекция. Практика
Компоненты набора Lego Mindstorms	Практика.
Обучение написания кода для сборки	Лекция, практика

7. Учебно-методическое обеспечение программы

Обеспечение курса учебно-методическими пособиями:

- методические пособия;
- видео материалы;
- интернет-ресурсы;
- раздаточные материалы.

8. Оценка результатов обучения

Оценка результатов обучения в объеме 33 часов:

- тестирование по темам курсов,
- анкетирование по удовлетворенности курсов повышения квалификации.

9. Посткурсовое сопровождение

No	Действие	Формат
1	Ориентация на то, как и в каком	дистанционное
	случае использовать конкретные	
	знания по пройденному курсу.	
2	Ответы на непонятные вопросы по	дистанционное
	теме курса.	
3	Проведение вебинаров, онлайн	дистанционное
	консультаций по вопросам курса	

Литература:

Бейктал, Дж. Конструируем роботов на Arduino. Первые шаги / Дж. Бейктал. - М.: Лаборатория знаний, 2016. - 320 с.

Бербюк, В. Е. Динамика и оптимизация робототехнических систем / В.Е. Бербюк. - М.: Наукова думка, 2014. - 192 с.

Бройнль, Томас Встраиваемые робототехнические системы. Проектирование и применение мобильных роботов со встроенными системами управления / Томас Бройнль. - Москва: РГГУ, 2012. - 520 с.

Каляев, И. А. Однородные нейроподобные структуры в системах выбора действий интеллектуальных роботов / И.А. Каляев, А.Р. Гайдук. - М.: Янус-К, 2015. - 280 с. Каляев, И. А. Однородные нейроподобные структуры в системах выбора действий интеллектуальных роботов / И.А. Каляев, А.Р. Гайдук. - Москва: Гостехиздат, 2009. - 280 с.

Конструируем роботов на ScratchDuino. Первые шаги. - Москва: Мир, 2016. - 183 с. Корсункий, В. А. Выбор критериев и классификация мобильных робототехнических систем на колесном и гусеничном ходу. Учебное пособие / В.А. Корсункий, К.Ю. Машков, В.Н. Наумов. - М.: МГТУ им.

Приложение 1

Учебно-тематический план

План составлен не по модулям. Темы должны совпадать с разделом «Тематика» и «Содержание». Не хватает 6 часов. Распределить часы на теоретические и практические

reop	етические и практические			
Nº	Тематика занятий	Теорити ческие занятия	Практиче ские занятия	Всего
1	Модуль 1. Понятие о робототехнике	4		4 часа
1.1	Ознакомление с компонентами Arduino.	1		1
1.2	Назначение пинов в Ардуино.	1		1
1.3	Изучение массивов.	40 минут	20 минут	1
1.4	Введение в "Основы робототехники: Arduino.	1		1
2	Модуль 2. Ознакомление с основами робототехники			4 часа
2.1	Алгоритмы в робототехнике.	1		1
2.2	Мигание светодиода на Ардуино.	1		1

2.3	Включение светодиода кнопкой.	1		1
2.4	Задержки Ардуино - delay и millis.	1		1
3	Модуль 3. Работа с компонентами Arduino			5
3.1	Изучение что такое фоторезистор.	1		1
3.2	Подключение датчика света (фоторезистор).	1		1
3.3.	Изучение констант	1	1	2
3.4.	Подключение RGB светодиода к Ардуино.	1		1
4	Модуль 4. Подключение компонентов			7
	Ардуино			
4.1	Подключение потенциометра на Arduino.	1	1	2
4.2	11	1		1
4.2	Изучение что такое переменные.	1		1
4.3	Границы переменных.	1	1	2
4.4	Изучение массивов.	1	1	2
5	Модуль 5. Подключение компонентов набора			7
	Arduino Uno			
5.1	Подключение семисегментного индикатора к	1	1	2
	Ардуино по SPI.			
5.2	Подключаем экран 16х2 символов к Ардуино.	1	30 минут	1.5
5.3	Управление сервоприводом.	1.5		1.5
5.4	Ультразвуковой датчик расстояния на Ардуино.	1	1	2
6	Модуль 6. Понятие о наборе Lego Mindstorms Ev3			9
6.1	Возможность программирования любых	1		2
0.1	роботов линейки LEGO Mindstorms.	1		2
6.2	Подключение отправляющего сигналы роботу		1	2
·	передатчика через USB-порт компьютера.			_
6.3	Удобная рабочая область, внутри которой за		1	3
	действия каждого активного элемента робота			-
	отвечает отдельный визуальный модуль.			
	Тесты	1	1	2
Bcei	70			36