Bayesian model comparison with the Hyvärinen score

Stephane Shao*

November 21, 2017

in collaboration with Pierre E. Jacob*, Jie Ding[†] and Vahid Tarokh[†]

^{*}Department of Statistics, Harvard University

[†]School of Engineering and Applied Sciences, Harvard University

1. Model comparison: setting and examples

- 2. Why not use Bayes factors
- 3. A new criterion: the Hyvärinen score
- 4. How to estimate it?
- 5. Asymptotic guarantees
- 6. Applications and discussion

1. Model comparison: setting and examples

2. Why not use Bayes factors?

3. A new criterion: the Hyvärinen score

4. How to estimate it?

5. Asymptotic guarantees

Applications and discussion

- 1. Model comparison: setting and examples
- 2. Why not use Bayes factors?
- 3. A new criterion: the Hyvärinen score
- 4. How to estimate it?
- 5. Asymptotic guarantees
- 6. Applications and discussion

- 1. Model comparison: setting and examples
- 2. Why not use Bayes factors?
- 3. A new criterion: the Hyvärinen score
- 4. How to estimate it?
- 5. Asymptotic guarantees
- 6. Applications and discussion

- 1. Model comparison: setting and examples
- 2. Why not use Bayes factors?
- 3. A new criterion: the Hyvärinen score
- 4. How to estimate it?
- 5. Asymptotic guarantees
- 6. Applications and discussion

- 1. Model comparison: setting and examples
- 2. Why not use Bayes factors?
- 3. A new criterion: the Hyvärinen score
- 4. How to estimate it?
- 5. Asymptotic guarantees
- 6. Applications and discussion

Setting and examples

- Given T observations $Y_{1:T} = (Y_1, ..., Y_T) \in (\mathbb{R}^{d_y})^T$.
- We want to compare candidate models from a finite set $\{M_1, ..., M_q\}$.
- Each model M_j is a collection of distributions $p_j(dy_{1:T}|\theta_j)$ parametrized by $\theta_j \in \mathbb{T}_j$ with a prior distribution $p_j(d\theta_j)$ on the parameter.
- We are interested in settings where the prior may be vague or improper

- Given T observations $Y_{1:T} = (Y_1, ..., Y_T) \in (\mathbb{R}^{d_y})^T$.
- We want to compare candidate models from a finite set $\{M_1,...,M_q\}$.
- Each model M_j is a collection of distributions $p_j(dy_{1:T}|\theta_j)$ parametrized by $\theta_j \in \mathbb{T}_j$ with a prior distribution $p_j(d\theta_j)$ on the parameter.
- We are interested in settings where the prior may be vague or improper

- Given T observations $Y_{1:T} = (Y_1, ..., Y_T) \in (\mathbb{R}^{d_y})^T$.
- We want to compare candidate models from a finite set $\{M_1,...,M_q\}$.
- Each model M_j is a collection of distributions $p_j(dy_{1:T}|\theta_j)$ parametrized by $\theta_j \in \mathbb{T}_j$ with a prior distribution $p_j(d\theta_j)$ on the parameter.
- We are interested in settings where the prior may be vague or improper

- Given T observations $Y_{1:T} = (Y_1, ..., Y_T) \in (\mathbb{R}^{d_y})^T$.
- We want to compare candidate models from a finite set $\{M_1,...,M_q\}$.
- Each model M_j is a collection of distributions $p_j(dy_{1:T}|\theta_j)$ parametrized by $\theta_j \in \mathbb{T}_j$ with a prior distribution $p_j(d\theta_j)$ on the parameter.
- We are interested in settings where the prior may be vague or improper.

What kind of models? i.i.d. models, state-space models, ...

• Example 1. Normal i.i.d. models (O'Hagan, 1995)

Model 1	Model 2
$Y_{1},,Y_{T} \boldsymbol{\theta}_{1}\overset{i.i.d.}{\sim}\mathcal{N}\left(\boldsymbol{\theta}_{1},1\right)$	$Y_1,,Y_T \mid \theta_2 \overset{i.i.d.}{\sim} \mathcal{N}\left(0,\theta_2\right)$
$ heta_1 \sim \mathcal{N}\left(0, \sigma_0^2 ight)$	$ heta_2 \sim ext{Inv-}\chi^2\left(u_0, ext{S}_0^2 ight)$

with known hyperparameters $\sigma_0 > 0$, $\nu_0 > 0$, and $s_0 > 0$.

What kind of models? i.i.d. models, state-space models, ...

• Example 2. Population dynamics of red kangaroos (Knape & de Valpine, 2012)

Model 1

 $\begin{aligned} & \text{Given parameters } (b,r,\sigma,\tau) \text{:} \\ & X_1 \sim \text{LN}(0,5) \\ & dX_t/X_t = (r - bX_t + \frac{\sigma^2}{2}) \, dt + \sigma \, dW_t \\ & Y_{1,t} \,\,, Y_{2,t} \, | \, X_t \overset{\text{i.i.d.}}{\sim} \, \text{NB}(X_t,X_t + \tau X_t^2) \end{aligned}$

with independent priors:

$$b, \sigma, \tau \sim \text{Unif}(0,10)$$

 $r \sim \text{Unif}(-10,10)$

Model 2

Given parameters (r, σ, τ) : $X_1 \sim \text{LN}(0,5)$ $dX_t/X_t = (r + \frac{\sigma^2}{2}) dt + \sigma dW_t$ $Y_{1,t}, Y_{2,t} \mid X_t \stackrel{i.i.d.}{\sim} \text{NB}(X_t, X_t + \tau X_t^2)$

with independent priors:

$$\sigma, \tau \sim \text{Unif}(0,10)$$

 $r \sim \text{Unif}(-10,10)$

Model 3

Given parameters (σ, τ) : $X_1 \sim \text{LN}(0,5)$

$$dX_t/X_t = \left(\frac{\sigma^2}{2}\right)dt + \sigma dW_t$$

Y_{1,t}, Y_{2,t} | X_t \(\tilde{\text{v.i.i.d.}}\) NB(X_t, X_t + \tau X_t²)

with independent priors:

$$\sigma, \tau \sim \text{Unif}(0,10)$$

Why not use Bayes factors ?

Limitations of Bayes factors: sensitivity to vague priors

• Bayes factors favor the model M_i with the largest evidence

$$p_j(y_{1:T}) = \int p_j(y_{1:T}|\theta_j) p_j(\theta_j) d\theta_j$$

(a.k.a. the *marginal likelihood* of M_i)

Sensitivity to the choice of prior

- The evidence of any model can be made arbitrarily small by making the prior arbitrarily vague, regardless of the sample size.
- Bayes factors do not allow for improper priors.

Yet, vague or improper priors often stem from reasonable approaches (genuine non-informativeness, Jeffreys prior, ...)

Limitations of Bayes factors: sensitivity to vague priors

 \cdot Bayes factors favor the model M_i with the largest evidence

$$p_j(y_{1:T}) = \int p_j(y_{1:T}|\theta_j) p_j(\theta_j) d\theta_j$$

(a.k.a. the marginal likelihood of M_i)

Sensitivity to the choice of prior

- The evidence of any model can be made arbitrarily small by making the prior arbitrarily vague, regardless of the sample size.
- Bayes factors do not allow for improper priors.

Yet, vague or improper priors often stem from reasonable approaches (genuine non-informativeness, Jeffreys prior, ...)

Limitations of Bayes factors: sensitivity to vague priors

Bayes factors favor the model M_i with the largest evidence

$$p_j(y_{1:T}) = \int p_j(y_{1:T}|\theta_j) p_j(\theta_j) d\theta_j$$

(a.k.a. the marginal likelihood of M_i)

Sensitivity to the choice of prior

- The evidence of any model can be made arbitrarily small by making the prior arbitrarily vague, regardless of the sample size.
- Bayes factors do not allow for improper priors.

Yet, vague or improper priors often stem from reasonable approaches (genuine non-informativeness, Jeffreys prior, ...)

A new criterion: the Hyvärinen score

Bayes factors relate to a particular choice of scoring rule

• Bayes factors favor the model minimizing $-\log p(y_{1:T})$ or equivalently

$$\sum_{t=1}^{T} -\log p(y_t|y_{1:t-1})$$

• This is a particular case of a more general decision rule that favors the model with the smallest prequential score

$$\sum_{t=1}^{T} S\left(y_t, p(dy_t|y_{1:t-1})\right)$$

with the choice of scoring rule $S(y, p) = -\log p(y)$ called the log-score

Key idea: use the Hyvärinen score (H-score) instead (Dawid & Musio, 2015)

$$\sum_{t=1}^{T} \mathcal{H}\left(y_t, \, p(dy_t|y_{1:t-1})\right)$$

with $\mathcal{H}(y, p) = 2 \Delta \log p(y) + \|\nabla \log p(y)\|^2$, where the Laplacian Δ and the gradient ∇ are taken with respect to the observation y

Bayes factors relate to a particular choice of scoring rule

• Bayes factors favor the model minimizing $-\log p(y_{1:T})$ or equivalently

$$\sum_{t=1}^{T} -\log p(y_t|y_{1:t-1})$$

 This is a particular case of a more general decision rule that favors the model with the smallest prequential score

$$\sum_{t=1}^{T} \mathcal{S}\left(y_{t}, \, p(dy_{t}|y_{1:t-1})\right)$$

with the choice of scoring rule $S(y, p) = -\log p(y)$ called the log-score

Key idea: use the Hyvärinen score (H-score) instead (Dawid & Musio, 2015)

$$\sum_{t=1}^{T} \mathcal{H}\left(y_t, \, p(dy_t|y_{1:t-1})\right)$$

with $\mathcal{H}(y, p) = 2 \Delta \log p(y) + \|\nabla \log p(y)\|^2$, where the Laplacian Δ and the gradient ∇ are taken with respect to the observation y

Bayes factors relate to a particular choice of scoring rule

• Bayes factors favor the model minimizing $-\log p(y_{1:T})$ or equivalently

$$\sum_{t=1}^{I} -\log p(y_t|y_{1:t-1})$$

• This is a particular case of a more general decision rule that favors the model with the smallest prequential score

$$\sum_{t=1}^{T} \mathcal{S}\left(y_{t}, \, p(dy_{t}|y_{1:t-1})\right)$$

with the choice of scoring rule $S(y, p) = -\log p(y)$ called the log-score

Key idea: use the Hyvärinen score (H-score) instead (Dawid & Musio, 2015)

$$\sum_{t=1}^{T} \mathcal{H}\left(y_t, \, p(dy_t|y_{1:t-1})\right)$$

with $\mathcal{H}(y, p) = 2 \Delta \log p(y) + \|\nabla \log p(y)\|^2$, where the Laplacian Δ and the gradient ∇ are taken with respect to the observation y

H-scores are robust to prior vagueness

• Example. Given i.i.d. realizations $y_1, ..., y_{100}$ from a \mathcal{N} (0,1), consider the model describing $Y_1, ..., Y_{100} \mid \mu \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(\mu, 1\right)$ with prior $\mu \sim \mathcal{N}\left(0, \sigma_0^2\right)$.

$$\sum_{t=1}^{T} \left(2 \frac{\partial^2 \log p(y_t|y_{1:t-1})}{\partial y_t^2} + \left(\frac{\partial \log p(y_t|y_{1:t-1})}{\partial y_t} \right)^2 \right)$$

- · Similarly to the log-score, the H-score is
 - ▶ Proper: the expected loss $\mathbb{E}_{\star}[\mathcal{H}(Y, p)]$ under $Y \sim p_{\star}$ is minimized at $p = p_{\star}$
 - ▶ m-local: $\mathcal{H}(y, p)$ is a function of y and $p(y), p'(y), \dots, p^{(m)}(y)$ (with m = 2)
- The H-score has the additional advantage of being 0-homogeneous
 - ▶ $\mathcal{H}(y, p)$ is unchanged when multiplying $p(y), p'(y), ..., p^{(m)}(y)$ by any $\lambda > 0$
- The H-score is the simplest scoring rule satisfying propriety, m-locality, and 0-homogeneity (Parry, Dawid & Lauritzen, 2012)
- It can be extended to discrete observations via finite differences, while preserving all the above properties (Dawid, Parry & Lauritzen, 2012)
- But it involves derivatives of typically intractable predictive densities $p(y_t|y_{1:t-1})$ at every $t \in \{1, ..., T\}$. This calls for sequential estimation.

$$\sum_{t=1}^{T} \left(2 \frac{\partial^2 \log p(y_t|y_{1:t-1})}{\partial y_t^2} + \left(\frac{\partial \log p(y_t|y_{1:t-1})}{\partial y_t} \right)^2 \right)$$

- · Similarly to the log-score, the H-score is
 - ▶ **Proper**: the expected loss $\mathbb{E}_{\star}[\mathcal{H}(Y, p)]$ under $Y \sim p_{\star}$ is minimized at $p = p_{\star}$
 - ► m-local: $\mathcal{H}(y, p)$ is a function of y and $p(y), p'(y), \dots, p^{(m)}(y)$ (with m = 2)
- The H-score has the additional advantage of being 0-homogeneous
 - ▶ $\mathcal{H}(y, p)$ is unchanged when multiplying $p(y), p'(y), ..., p^{(m)}(y)$ by any $\lambda > 0$
- The H-score is the simplest scoring rule satisfying propriety, m-locality, and 0-homogeneity (Parry, Dawid & Lauritzen, 2012)
- It can be extended to discrete observations via finite differences, while preserving all the above properties (Dawid, Parry & Lauritzen, 2012)
- But it involves derivatives of typically intractable predictive densities $p(y_t|y_{1:t-1})$ at every $t \in \{1,...,T\}$. This calls for sequential estimation.

$$\sum_{t=1}^{T} \left(2 \frac{\partial^2 \log p(y_t|y_{1:t-1})}{\partial y_t^2} + \left(\frac{\partial \log p(y_t|y_{1:t-1})}{\partial y_t} \right)^2 \right)$$

- · Similarly to the log-score, the H-score is
 - ▶ Proper: the expected loss \mathbb{E}_{\star} [$\mathcal{H}(Y, p)$] under $Y \sim p_{\star}$ is minimized at $p = p_{\star}$
 - ► m-local: $\mathcal{H}(y, p)$ is a function of y and $p(y), p'(y), \dots, p^{(m)}(y)$ (with m = 2)
- The H-score has the additional advantage of being 0-homogeneous
 - ▶ $\mathcal{H}(y, p)$ is unchanged when multiplying $p(y), p'(y), ..., p^{(m)}(y)$ by any $\lambda > 0$
- The H-score is the simplest scoring rule satisfying propriety, m-locality, and 0-homogeneity (Parry, Dawid & Lauritzen, 2012)
- It can be extended to discrete observations via finite differences, while preserving all the above properties (Dawid, Parry & Lauritzen, 2012)
- But it involves derivatives of typically intractable predictive densities $p(y_t|y_{1:t-1})$ at every $t \in \{1,...,T\}$. This calls for sequential estimation.

$$\sum_{t=1}^{T} \left(2 \frac{\partial^2 \log p(y_t|y_{1:t-1})}{\partial y_t^2} + \left(\frac{\partial \log p(y_t|y_{1:t-1})}{\partial y_t} \right)^2 \right)$$

- · Similarly to the log-score, the H-score is
 - ▶ **Proper**: the expected loss $\mathbb{E}_{\star}[\mathcal{H}(Y, p)]$ under $Y \sim p_{\star}$ is minimized at $p = p_{\star}$
 - ▶ m-local: $\mathcal{H}(y, p)$ is a function of y and $p(y), p'(y), \dots, p^{(m)}(y)$ (with m = 2)
- The H-score has the additional advantage of being 0-homogeneous
 - $\mathcal{H}(y, p)$ is unchanged when multiplying $p(y), p'(y), \dots, p^{(m)}(y)$ by any $\lambda > 0$
- The H-score is the simplest scoring rule satisfying propriety, m-locality, and 0-homogeneity (Parry, Dawid & Lauritzen, 2012)
- It can be extended to discrete observations via finite differences, while preserving all the above properties (Dawid, Parry & Lauritzen, 2012)
- But it involves derivatives of typically intractable predictive densities $p(y_t|y_{1:t-1})$ at every $t \in \{1,...,T\}$. This calls for sequential estimation.

$$\sum_{t=1}^{T} \left(2 \frac{\partial^2 \log p(y_t|y_{1:t-1})}{\partial y_t^2} + \left(\frac{\partial \log p(y_t|y_{1:t-1})}{\partial y_t} \right)^2 \right)$$

- · Similarly to the log-score, the H-score is
 - ▶ **Proper**: the expected loss $\mathbb{E}_{\star}[\mathcal{H}(Y, p)]$ under $Y \sim p_{\star}$ is minimized at $p = p_{\star}$
 - ► m-local: $\mathcal{H}(y, p)$ is a function of y and $p(y), p'(y), \dots, p^{(m)}(y)$ (with m = 2)
- The H-score has the additional advantage of being 0-homogeneous
 - $\mathcal{H}(y, p)$ is unchanged when multiplying $p(y), p'(y), \dots, p^{(m)}(y)$ by any $\lambda > 0$
- The H-score is the simplest scoring rule satisfying propriety, m-locality, and 0-homogeneity (Parry, Dawid & Lauritzen, 2012)
- It can be extended to discrete observations via finite differences, while preserving all the above properties (*Dawid, Parry & Lauritzen, 2012*)
- But it involves derivatives of typically intractable predictive densities $p(y_t|y_{1:t-1})$ at every $t \in \{1,...,T\}$. This calls for sequential estimation.

$$\sum_{t=1}^{T} \left(2 \frac{\partial^2 \log p(y_t|y_{1:t-1})}{\partial y_t^2} + \left(\frac{\partial \log p(y_t|y_{1:t-1})}{\partial y_t} \right)^2 \right)$$

- · Similarly to the log-score, the H-score is
 - ▶ **Proper**: the expected loss $\mathbb{E}_{\star}[\mathcal{H}(Y, p)]$ under $Y \sim p_{\star}$ is minimized at $p = p_{\star}$
 - ► m-local: $\mathcal{H}(y, p)$ is a function of y and $p(y), p'(y), \dots, p^{(m)}(y)$ (with m = 2)
- The H-score has the additional advantage of being 0-homogeneous
 - $\mathcal{H}(y, p)$ is unchanged when multiplying $p(y), p'(y), \dots, p^{(m)}(y)$ by any $\lambda > 0$
- The H-score is the simplest scoring rule satisfying propriety, *m*-locality, and 0-homogeneity (*Parry, Dawid & Lauritzen, 2012*)
- It can be extended to discrete observations via finite differences, while preserving all the above properties (Dawid, Parry & Lauritzen, 2012)
- But it involves derivatives of typically intractable predictive densities $p(y_t|y_{1:t-1})$ at every $t \in \{1,...,T\}$. This calls for sequential estimation.

$$\sum_{t=1}^{T} \left(2 \frac{\partial^2 \log p(y_t|y_{1:t-1})}{\partial y_t^2} + \left(\frac{\partial \log p(y_t|y_{1:t-1})}{\partial y_t} \right)^2 \right)$$

- · Similarly to the log-score, the H-score is
 - ▶ Proper: the expected loss $\mathbb{E}_* [\mathcal{H}(Y, p)]$ under $Y \sim p_*$ is minimized at $p = p_*$
 - ▶ m-local: $\mathcal{H}(y, p)$ is a function of y and $p(y), p'(y), ..., p^{(m)}(y)$ (with m = 2)
- The H-score has the additional advantage of being 0-homogeneous
 - ▶ $\mathcal{H}(y, p)$ is unchanged when multiplying $p(y), p'(y), ..., p^{(m)}(y)$ by any $\lambda > 0$
- The H-score is the simplest scoring rule satisfying propriety, m-locality, and 0-homogeneity (Parry, Dawid & Lauritzen, 2012)
- It can be extended to discrete observations via finite differences, while preserving all the above properties (Dawid, Parry & Lauritzen, 2012)
- But it involves derivatives of typically intractable predictive densities $p(y_t|y_{1:t-1})$ at every $t \in \{1,...,T\}$. This calls for sequential estimation.

How to estimate H-scores ?

H-scores via SMC if likelihoods can be evaluated

· By differentiating under the integral sign, the H-score turns out to be

$$\sum_{t=1}^{T} \left(2 \mathbb{E}_{t} \left[\frac{\partial^{2} \log p(y_{t}|y_{1:t-1},\Theta)}{\partial y_{t}^{2}} + \left(\frac{\partial \log p(y_{t}|y_{1:t-1},\Theta)}{\partial y_{t}} \right)^{2} \right] - \left(\mathbb{E}_{t} \left[\frac{\partial \log p(y_{t}|y_{1:t-1},\Theta)}{\partial y_{t}} \right] \right)^{2} \right)$$

where \mathbb{E}_t denotes posterior expectations with respect to $\Theta \sim p(d\theta|y_{1:t})$

Estimation using SMC (Chopin, 2002; Del Moral, Doucet & Jasra, 2006)

H-scores can be consistently estimated using standard SMC samplers, as long as one can evaluate the incremental likelihoods $p(y_t|y_{1:t-1}, \Theta)$

• However, incremental likelihoods $p(y_t|y_{1:t-1},\Theta)$ are typically intractable for general state-space models.

H-scores via SMC if likelihoods can be evaluated

By differentiating under the integral sign, the H-score turns out to be

$$\sum_{t=1}^{T} \left(2 \mathbb{E}_{t} \left[\frac{\partial^{2} \log p(y_{t}|y_{1:t-1},\Theta)}{\partial y_{t}^{2}} + \left(\frac{\partial \log p(y_{t}|y_{1:t-1},\Theta)}{\partial y_{t}} \right)^{2} \right] - \left(\mathbb{E}_{t} \left[\frac{\partial \log p(y_{t}|y_{1:t-1},\Theta)}{\partial y_{t}} \right] \right)^{2} \right)$$

where \mathbb{E}_t denotes posterior expectations with respect to $\Theta \sim p(d\theta|y_{1:t})$

Estimation using SMC (Chopin, 2002; Del Moral, Doucet & Jasra, 2006)

H-scores can be consistently estimated using standard SMC samplers, as long as one can evaluate the incremental likelihoods $p(y_t|y_{1:t-1}, \Theta)$

• However, incremental likelihoods $p(y_t|y_{1:t-1},\Theta)$ are typically intractable for general state-space models.

9

H-scores via SMC if likelihoods can be evaluated

By differentiating under the integral sign, the H-score turns out to be

$$\sum_{t=1}^{T} \left(2 \operatorname{\mathbb{E}}_{t} \left[\frac{\partial^{2} \log p(y_{t}|y_{1:t-1},\Theta)}{\partial y_{t}^{2}} + \left(\frac{\partial \log p(y_{t}|y_{1:t-1},\Theta)}{\partial y_{t}} \right)^{2} \right] - \left(\operatorname{\mathbb{E}}_{t} \left[\frac{\partial \log p(y_{t}|y_{1:t-1},\Theta)}{\partial y_{t}} \right] \right)^{2} \right)$$

where \mathbb{E}_t denotes posterior expectations with respect to $\Theta \sim p(d\theta|y_{1:t})$

Estimation using SMC (Chopin, 2002; Del Moral, Doucet & Jasra, 2006)

H-scores can be consistently estimated using standard SMC samplers as long as one can evaluate the incremental likelihoods $p(y_t|y_{1:t-1},\Theta)$

• However, incremental likelihoods $p(y_t|y_{1:t-1},\Theta)$ are typically intractable for general state-space models.

9

What is so challenging about state-space models?

- Unobserved Markov chain of latent states $X_1,...,X_T$ with $X_1 \sim \mu_{\theta}$ and $X_t \, | \, X_{t-1} \sim f_{\theta}(\cdot | X_{t-1})$ for $t \geq 2$
- · Observations $Y_1,...,Y_T$ conditionally independent given $X_1,...,X_T$ with $Y_t \mid X_t \sim g_{\theta}(\cdot \mid X_t)$ for $t \geq 1$

The likelihood is generally intractable

$$p(y_{1:T}|\theta) = \int \mu_{\theta}(x_1) \prod_{t=2}^{T} f_{\theta}(x_t|x_{t-1}) \prod_{t=1}^{T} g_{\theta}(y_t|x_t) dx_{1:T}$$

What is so challenging about state-space models?

• Unobserved Markov chain of latent states $X_1, ..., X_T$ with

$$X_1 \sim \mu_{\theta}$$
 and $X_t | X_{t-1} \sim f_{\theta}(\cdot | X_{t-1})$ for $t \ge 2$

• Observations $Y_1,...,Y_T$ conditionally independent given $X_1,...,X_T$ with $Y_t \mid X_t \sim g_{\theta}(\cdot \mid X_t)$ for $t \geq 1$

The likelihood is generally intractable

$$p(y_{1:T}|\theta) = \int \mu_{\theta}(x_1) \prod_{t=2}^{T} f_{\theta}(x_t|x_{t-1}) \prod_{t=1}^{T} g_{\theta}(y_t|x_t) dx_{1:T}$$

What is so challenging about state-space models?

• Unobserved Markov chain of latent states $X_1, ..., X_T$ with

$$X_1 \sim \mu_{\theta}$$
 and $X_t | X_{t-1} \sim f_{\theta}(\cdot | X_{t-1})$ for $t \ge 2$

· Observations $Y_1,...,Y_T$ conditionally independent given $X_1,...,X_T$ with $Y_t \mid X_t \sim g_{\theta}(\cdot \mid X_t)$ for $t \geq 1$

The likelihood is generally intractable

$$p(y_{1:T}|\theta) = \int \mu_{\theta}(x_1) \prod_{t=2}^{T} f_{\theta}(x_t|x_{t-1}) \prod_{t=1}^{T} g_{\theta}(y_t|x_t) dx_{1:T}$$

H-scores via SMC² for general state-space models

· Under further integrability conditions, the H-score proves to equal

$$\sum_{t=1}^{T} \left(2 \mathbb{E}_{t} \left[\frac{\partial^{2} \log g_{\Theta}(y_{t}|X_{t})}{\partial y_{t}^{2}} + \left(\frac{\partial \log g_{\Theta}(y_{t}|X_{t})}{\partial y_{t}} \right)^{2} \right] - \left(\mathbb{E}_{t} \left[\frac{\partial \log g_{\Theta}(y_{t}|X_{t})}{\partial y_{t}} \right] \right)^{2} \right)$$

where the expectations \mathbb{E}_t are now with respect to the joint posterior distributions $(\Theta, X_t) \sim p(d\theta|y_{1:t})p(dx_t|y_{1:t}, \theta)$

Estimation using SMC² (Chopin, Jacob & Papaspiliopoulos, 2013)

H-scores can be consistently estimated for state-space models, as long as one can simulate transitions from f_{θ} and evaluate g_{θ}

· SMC and SMC² can be used similarly in the case of discrete observations.

H-scores via SMC² for general state-space models

Under further integrability conditions, the H-score proves to equal

$$\sum_{t=1}^{T} \left(2 \mathbb{E}_{t} \left[\frac{\partial^{2} \log g_{\Theta}(y_{t}|X_{t})}{\partial y_{t}^{2}} + \left(\frac{\partial \log g_{\Theta}(y_{t}|X_{t})}{\partial y_{t}} \right)^{2} \right] - \left(\mathbb{E}_{t} \left[\frac{\partial \log g_{\Theta}(y_{t}|X_{t})}{\partial y_{t}} \right] \right)^{2} \right)$$

where the expectations \mathbb{E}_t are now with respect to the joint posterior distributions $(\Theta, X_t) \sim p(d\theta|y_{1:t})p(dx_t|y_{1:t}, \theta)$

Estimation using SMC² (Chopin, Jacob & Papaspiliopoulos, 2013)

H-scores can be consistently estimated for state-space models, as long as one can simulate transitions from f_{θ} and evaluate g_{θ}

· SMC and SMC² can be used similarly in the case of discrete observations.

H-scores via SMC² for general state-space models

Under further integrability conditions, the H-score proves to equal

$$\sum_{t=1}^{T} \left(2 \mathbb{E}_{t} \left[\frac{\partial^{2} \log g_{\Theta}(y_{t}|X_{t})}{\partial y_{t}^{2}} + \left(\frac{\partial \log g_{\Theta}(y_{t}|X_{t})}{\partial y_{t}} \right)^{2} \right] - \left(\mathbb{E}_{t} \left[\frac{\partial \log g_{\Theta}(y_{t}|X_{t})}{\partial y_{t}} \right] \right)^{2} \right)$$

where the expectations \mathbb{E}_t are now with respect to the joint posterior distributions $(\Theta, X_t) \sim p(d\theta|y_{1:t})p(dx_t|y_{1:t}, \theta)$

Estimation using SMC² (Chopin, Jacob & Papaspiliopoulos, 2013)

H-scores can be consistently estimated for state-space models, as long as one can simulate transitions from f_{θ} and evaluate g_{θ}

• SMC and SMC² can be used similarly in the case of discrete observations.

Asymptotic guarantees

- Assume the true data generating process is $Y_1, ..., Y_T \overset{\text{i.i.d.}}{\sim} p_\star$
- Consider two non-nested i.i.d. models M_1 and M_2 with respective posterior distributions concentrating around θ_1^* and θ_2^* . Let $p_{\theta_i^*} = p_j(dy|\theta_i^*)$
- \cdot Under regularity conditions, the H-scores \mathcal{H}_T of M_1 and M_2 satisfy

$$\frac{1}{T}\left(\mathcal{H}_{T}(M_{2})-\mathcal{H}_{T}(M_{1})\right) \xrightarrow[T\to+\infty]{\mathbb{P}_{\star}-a.s.} \Delta(p_{\star},M_{2})-\Delta(p_{\star},M_{1})$$

where
$$\Delta(p_{\star}, M_j) = \mathbb{E}_{\star}[\mathcal{H}(Y, p_{\theta_j^{\star}})] - \mathbb{E}_{\star}[\mathcal{H}(Y, p_{\star})]$$

with $\Delta(p_{\star}, M_j) \geq 0$ and $\Delta(p_{\star}, M_j) = 0$ if and only if $p_{\theta_j^{\star}} = p_{\star}$

• By analogy, the log-Bayes factor of M₁ against M₂ satisfies

$$\frac{1}{T} \left(\left(-\log p_2(Y_{1:T}) \right) - \left(-\log p_1(Y_{1:T}) \right) \right) \xrightarrow{\mathbb{P}_* - a.s.} \mathsf{KL}(p_*, M_2) - \mathsf{KL}(p_*, M_1)$$
where $\mathsf{KL}(p_*, M_i) = \mathbb{E}_*[-\log p_{\theta^*}(Y)] - \mathbb{E}_*[-\log p_*(Y)]$

· Similar results hold for dependent data and state-space models.

- Assume the true data generating process is $Y_1, ..., Y_T \overset{\text{i.i.d.}}{\sim} p_{\star}$
- Consider two non-nested i.i.d. models M_1 and M_2 with respective posterior distributions concentrating around θ_1^* and θ_2^* . Let $p_{\theta_i^*} = p_j(dy|\theta_i^*)$
- \cdot Under regularity conditions, the H-scores \mathcal{H}_T of M_1 and M_2 satisfy

$$\frac{1}{T}\left(\mathcal{H}_{T}(M_{2})-\mathcal{H}_{T}(M_{1})\right) \xrightarrow[T\to+\infty]{\mathbb{P}_{\star}-a.s.} \Delta(p_{\star},M_{2})-\Delta(p_{\star},M_{1})$$

where
$$\Delta(p_{\star}, M_j) = \mathbb{E}_{\star}[\mathcal{H}(Y, p_{\theta_j^{\star}})] - \mathbb{E}_{\star}[\mathcal{H}(Y, p_{\star})]$$

with $\Delta(p_{\star}, M_j) \geq 0$ and $\Delta(p_{\star}, M_j) = 0$ if and only if $p_{\theta_j^{\star}} = p_{\star}$

By analogy, the log-Bayes factor of M₁ against M₂ satisfies

$$\frac{1}{T} \left(\left(-\log p_2(\mathsf{Y}_{1:T}) \right) - \left(-\log p_1(\mathsf{Y}_{1:T}) \right) \right) \xrightarrow{\mathbb{P}_{\star} - a.s.} \mathsf{KL}(p_{\star}, \mathsf{M}_2) - \mathsf{KL}(p_{\star}, \mathsf{M}_1)$$
where $\mathsf{KL}(p_{\star}, \mathsf{M}_i) = \mathbb{E}_{\star}[-\log p_{\theta^{\star}}(\mathsf{Y})] - \mathbb{E}_{\star}[-\log p_{\star}(\mathsf{Y})]$

 \cdot Similar results hold for dependent data and state-space models.

- Assume the true data generating process is $Y_1, ..., Y_T \stackrel{\text{i.i.d.}}{\sim} p_{\star}$
- Consider two non-nested i.i.d. models M_1 and M_2 with respective posterior distributions concentrating around θ_1^* and θ_2^* . Let $p_{\theta_i^*} = p_j(dy|\theta_i^*)$
- Under regularity conditions, the H-scores \mathcal{H}_T of M_1 and M_2 satisfy

$$\frac{1}{T}\left(\mathcal{H}_{T}(M_{2})-\mathcal{H}_{T}(M_{1})\right)\xrightarrow{\mathbb{P}_{\star}-a.s.}\Delta(p_{\star},M_{2})-\Delta(p_{\star},M_{1})$$

where
$$\Delta(p_{\star}, M_j) = \mathbb{E}_{\star}[\mathcal{H}(Y, p_{\theta_j^{\star}})] - \mathbb{E}_{\star}[\mathcal{H}(Y, p_{\star})]$$

with $\Delta(p_{\star}, M_j) \ge 0$ and $\Delta(p_{\star}, M_j) = 0$ if and only if $p_{\theta_j^{\star}} = p_{\star}$

By analogy, the log-Bayes factor of M₁ against M₂ satisfies

$$\frac{1}{T}\left(\left(-\log p_2(Y_{1:T})\right) - \left(-\log p_1(Y_{1:T})\right)\right) \xrightarrow{\mathbb{P}_{\star} - a.s.} \mathsf{KL}(p_{\star}, M_2) - \mathsf{KL}(p_{\star}, M_1)$$
where $\mathsf{KL}(p_{\star}, M_i) = \mathbb{E}_{\star}[-\log p_{\theta^{\star}}(Y)] - \mathbb{E}_{\star}[-\log p_{\star}(Y)]$

 \cdot Similar results hold for dependent data and state-space models.

- Assume the true data generating process is $Y_1, ..., Y_T \overset{\text{i.i.d.}}{\sim} p_{\star}$
- Consider two non-nested i.i.d. models M_1 and M_2 with respective posterior distributions concentrating around θ_1^* and θ_2^* . Let $p_{\theta_i^*} = p_j(dy|\theta_i^*)$
- Under regularity conditions, the H-scores \mathcal{H}_T of M_1 and M_2 satisfy

$$\frac{1}{T} \left(\mathcal{H}_{T}(M_{2}) - \mathcal{H}_{T}(M_{1}) \right) \xrightarrow{\mathbb{P}_{\star} - a.s.} \Delta(p_{\star}, M_{2}) - \Delta(p_{\star}, M_{1})$$
where $\Delta(p_{\star}, M_{j}) = \mathbb{E}_{\star} [\mathcal{H}(Y, p_{\theta_{j}^{\star}})] - \mathbb{E}_{\star} [\mathcal{H}(Y, p_{\star})]$
with $\Delta(p_{\star}, M_{j}) \geq 0$ and $\Delta(p_{\star}, M_{j}) = 0$ if and only if $p_{\theta^{\star}} = p_{\star}$

• By analogy, the log-Bayes factor of M_1 against M_2 satisfies

$$\frac{1}{T} \left(\left(-\log p_2(Y_{1:T}) \right) - \left(-\log p_1(Y_{1:T}) \right) \right) \xrightarrow{\mathbb{P}_{\star} - a.s.} \text{KL}(p_{\star}, M_2) - \text{KL}(p_{\star}, M_1)$$
where $\text{KL}(p_{\star}, M_i) = \mathbb{E}_{\star} [-\log p_{\theta_{\star}^{\star}}(Y)] - \mathbb{E}_{\star} [-\log p_{\star}(Y)]$

Similar results hold for dependent data and state-space models.

- Assume the true data generating process is $Y_1, ..., Y_T \stackrel{\text{i.i.d.}}{\sim} p_{\star}$
- Consider two non-nested i.i.d. models M_1 and M_2 with respective posterior distributions concentrating around θ_1^* and θ_2^* . Let $p_{\theta_i^*} = p_j(dy|\theta_i^*)$
- \cdot Under regularity conditions, the H-scores \mathcal{H}_T of M_1 and M_2 satisfy

$$\frac{1}{T} \left(\mathcal{H}_T(M_2) - \mathcal{H}_T(M_1) \right) \xrightarrow{\mathbb{P}_{\star} - a.s.} \Delta(p_{\star}, M_2) - \Delta(p_{\star}, M_1)$$
where $\Delta(p_{\star}, M_j) = \mathbb{E}_{\star} [\mathcal{H}(Y, p_{\theta_j^{\star}})] - \mathbb{E}_{\star} [\mathcal{H}(Y, p_{\star})]$
with $\Delta(p_{\star}, M_j) \ge 0$ and $\Delta(p_{\star}, M_j) = 0$ if and only if $p_{\theta_j^{\star}} = p_{\star}$

• By analogy, the log-Bayes factor of M_1 against M_2 satisfies

$$\frac{1}{T} \left(\left(-\log p_2(Y_{1:T}) \right) - \left(-\log p_1(Y_{1:T}) \right) \right) \xrightarrow{\mathbb{P}_{\star} - a.s.} \text{KL}(p_{\star}, M_2) - \text{KL}(p_{\star}, M_1)$$
where $\text{KL}(p_{\star}, M_i) = \mathbb{E}_{\star}[-\log p_{\theta_i^{\star}}(Y)] - \mathbb{E}_{\star}[-\log p_{\star}(Y)]$

· Similar results hold for dependent data and state-space models.

Illustration of consistency for i.i.d. models

• Example 1. Given simulated $y_1,...,y_{1000} \sim \mathcal{N}(\mu_{\star},\sigma_{\star}^2)$, we compare

$$M_1: Y_1, ..., Y_T | \theta_1 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta_1, 1), \quad \theta_1 \sim \mathcal{N}(0, 10)$$

$$M_2: Y_1, ..., Y_T | \theta_2 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \theta_2), \quad \theta_2 \sim \text{Inv-}\chi^2(0.1, 1)$$

in the following four cases $(\mu_{\star}, \sigma_{\star}^2) = (1, 1), (0, 5), (4, 3), (0, 1).$

Illustration of consistency for i.i.d. models

• Example 1. Given simulated $y_1,...,y_{1000} \sim \mathcal{N}(\mu_{\star},\sigma_{\star}^2)$, we compare

$$M_1: Y_1, ..., Y_T \mid \theta_1 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(\theta_1, 1\right), \quad \theta_1 \sim \mathcal{N}\left(0, 10\right)$$

$$M_2: Y_1,...,Y_T | \theta_2 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,\theta_2), \quad \theta_2 \sim \text{Inv-}\chi^2(0.1,1)$$

in the following four cases $(\mu_{\star}, \sigma_{\star}^2) = (1, 1), (0, 5), (4, 3), (0, 1).$

Applications and discussion

Jumping back to kangaroos

• Example 2. Population dynamics of red kangaroos (Knape & de Valpine, 2012)

Summary

Advantages of using the H-score

- · Robust to prior vagueness and allows for improper priors
- Justified non-asymptotically and generally consistent asymptotically
- Can be estimated sequentially for a wide class of parametric models by using SMC methods

Limitations and avenues for future research

- Requires additional smoothness conditions on the densities
- Tends to require a larger number of particles than the log-evidence for accurate estimation via SMC methods
- Extension to nonparametric models?
- More details in the manuscript: arxiv.org/pdf/1711.00136
- R package available at: github.com/pierrejacob/bayeshscore

References (1/2)

O. E. Barndorff-Nielsen and N. Shephard.

Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics.

Journal of the Royal Statistical Society: Series B, 63(2):167––241, 2001.

N. Chopin.

A sequential particle filter method for static models.

N. Chopin, P. E. Jacob, and O. Papaspiliopoulos. SMC²: an efficient algorithm for sequential analysis of state-space models. *Journal of the Royal Statistical Society*, 75 (3):397–426, 2013.

A. P. Dawid, S. Lauritzen, and M. Parry.

Proper local scoring rules on discrete sample spaces.

The Annals of Statistics, 40 (1):593–608, 2012.

A. P. Dawid and M. Musio.

Bayesian model selection based on proper scoring rules.

Bayesian Analysis, 10 (2):479–499, 2015.

References (2/2)

P. Del Moral, A. Doucet, and A. Jasra.

Sequential Monte Carlo samplers.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006.

J. Knape and P. D. Valpine.

Fitting complex population models by combining particle filters with markov chain monte carlo.

Ecology, 93 (2):256-263, 2012.

F. B. Lempers.

Posterior Probabilities of Alternative Linear Models.

Rotterdam University Press, 1971.

A. O'Hagan.

Fractional bayes factor for model comparison.

Journal of the Royal Statistical Society, 57 (1):99–138, 1995.

M. Parry, A. P. Dawid, and S. Lauritzen.

Proper local scoring rules.

The Annals of Statistics, 40 (1):561–592, 2012.

What kind of models? i.i.d. models, state-space models, ...

• Example 3. Lévy-driven stochastic volatility models for log-returns of financial assets (Barndorff-Nielsen & Shephard, 2001)

Given parameters (λ, ξ, ω) , generate random variables $(V_t, Z_t)_{t>1}$ recursively as

$$\begin{array}{c} k \sim \text{Poisson}(\lambda \xi^2/\omega^2) \, ; \quad C_{1:k} \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(t-1,t) \, ; \quad E_{1:k} \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(\xi/\omega^2) \, ; \quad Z_0 \sim \Gamma(\xi^2/\omega^2, \xi/\omega^2) \\ Z_t = e^{-\lambda} Z_{t-1} + \sum_{j=1}^k e^{-\lambda(t-C_j)} E_j \, ; \quad V_t = \lambda^{-1} (Z_{t-1} - Z_t + \sum_{j=1}^k E_j) \end{array}$$

Model 1

Given parameters $(\lambda, \xi, \omega, \mu, \beta)$: $(V_t, Z_t) \sim (\mathbf{Q}_t^g)$ $X_t = (V_t, Z_t)$ $Y_t \mid X_t \sim \mathcal{N}(\mu + \beta V_t, V_t)$

with independent priors:

$$\lambda \sim \text{Exp(1)}; \quad \xi, \omega^2 \sim \text{Exp(1/5)}; \quad \mu, \beta \sim \mathcal{N}(0,10)$$

Model 2

Given parameters $(\lambda_1, \lambda_2, w_1, w_2, \xi, \omega, \mu, \beta)$: $(V_{1,t}, Z_{1,t}) \sim (\mathfrak{A}_{\sigma}^{\bullet})$ with $(\lambda_1, \xi w_1, \omega w_1)$ $(V_{2,t}, Z_{2,t}) \sim (\mathfrak{A}_{\sigma}^{\bullet})$ with $(\lambda_2, \xi w_2, \omega w_2)$ $X_t = (V_{1,t}, V_{2,t}, Z_{1,t}, Z_{2,t})$ $V_t = V_{1,t} + V_{2,t}$ $Y_t \mid X_t \sim \mathcal{N}(\mu + \beta V_t, V_t)$

with independent priors:

$$\lambda_1 \sim \text{Exp}(1); \quad \lambda_2 - \lambda_1 \sim \text{Exp}(1/2); \quad \xi, \omega^2 \sim \text{Exp}(1/5)$$

 $1 - w_2 = w_1 \sim \text{Unif}(0.1); \quad \mu, \beta \sim \mathcal{N}(0.10)$

Illustration of consistency for state-space models

• Example 3. Lévy-driven stochastic volatility models, given T=1000 observations simulated from a single-factor model with $\lambda=0.01$, $\xi=0.5$, $\omega^2=0.0625$, $\mu=0$, and $\beta=0$ (Barndorff-Nielsen & Shephard, 2001)

Model 1 (single-factor)

Given parameters $(\lambda, \xi, \omega, \mu, \beta)$: $(V_t, Z_t) \sim (\mathfrak{A}_{\theta}^{\theta})$ $X_t = (V_t, Z_t)$ $Y_t \mid X_t \sim \mathcal{N}(\mu + \beta V_t, V_t)$

with independent priors:

$$\lambda \sim \text{Exp}(1); \quad \xi, \omega^2 \sim \text{Exp}(1/5); \quad \mu, \beta \sim \mathcal{N}(0,10)$$

Model 2 (multi-factor)

Given parameters $(\lambda_1, \lambda_2, \mathsf{W}_1, \mathsf{W}_2, \xi, \omega, \mu, \beta)$: $(V_{1,t}, Z_{1,t}) \sim (\mathbf{W}_0^s) \text{ with } (\lambda_1, \ \xi \mathsf{W}_1, \ \omega \mathsf{W}_1)$ $(V_{2,t}, Z_{2,t}) \sim (\mathbf{W}_0^s) \text{ with } (\lambda_2, \ \xi \mathsf{W}_2, \ \omega \mathsf{W}_2)$ $X_t = (V_{1,t}, V_{2,t}, Z_{1,t}, Z_{2,t})$ $V_t = V_{1,t} + V_{2,t}$ $Y_t \mid X_t \sim \mathcal{N}(\mu + \beta V_t, V_t)$

with independent priors:

$$\lambda_1 \sim \text{Exp}(1); \quad \lambda_2 - \lambda_1 \sim \text{Exp}(1/2); \quad \xi, \omega^2 \sim \text{Exp}(1/5)$$

 $1 - w_2 = w_1 \sim \text{Unif}(0.1); \quad \mu, \beta \sim \mathcal{N}(0.10)$

Illustration of consistency for state-space models

• Example 3. Lévy-driven stochastic volatility models, given T=1000 observations simulated from a single-factor model with $\lambda=0.01$, $\xi=0.5$, $\omega^2=0.0625$, $\mu=0$, and $\beta=0$ (Barndorff-Nielsen & Shephard, 2001)

Prequential vs. Batch approach

· Notice that, unlike for the log scoring rule, here we have:

$$\mathcal{H}(y_{1:T}, p(dy_{1:T})) \neq \sum_{t=1}^{T} \mathcal{H}(y_t, p(dy_t|y_{1:t-1}))$$

- · Batch version:
 - Easier to compute, as it only requires to estimate final evidence $p(y_{1:T})$
 - · But typically inconsistent for model selection
- · Prequential version:
 - · Generally consistent for model selection
 - Requires to estimate all the intermediary predictive densities $p(dy_t|y_{1:t-1})$, but this can be achieved using algorithms such as SMC or SMC²

Partial Bayes factors (Lempers, 1971)

- Split the data $y_{1:T}$ into a training set $y_{1:m}$ and another set $y_{m+1:T}$ for some choice of m
- Idea: condition on the training set to make the prior proper (or less vague) then compute the Bayes factor on the remaining data
- Essentially we replace the prior $p(\theta|M)$ by the posterior given the training set $p(\theta|y_{1:m}, M)$, and compute the usual Bayes factor on the remaining data set $y_{m+1:T}$
- The partial Bayes factor between Models M_1 and M_2 is defined as:

$$\frac{p(y_{m+1:T}|y_{1:m},M_1)}{p(y_{m+1:T}|y_{1:m},M_2)}$$

• Drawback: choice of m is a bit ad-hoc, undesirable to "waste" data for the training set especially in settings where the number of observations is small (e.g. Example 2 where T=41)

Fractional Bayes factors (O'Hagan, 1995)

- In the setting of partial Bayes factors, if m and T are both large, the likelihood $p(y_{1:m}|\theta,M)$ of the training set will approximate (at least in the i.i.d. case) the full likelihood raised to a power $b \equiv m/T$
- For a given model M we define:

$$q_b(y_{1:T}|M) := \frac{\int p(\theta|M)p(y_{1:T}|\theta,M)d\theta}{\int p(\theta|M)p(y_{1:T}|\theta,M)^bd\theta}$$

which approximates $p(y_{m+1:T}|y_{1:m}, M)$ for large m and T

• The fractional Bayes factor between Models M_1 and M_2 is defined as:

$$\frac{q_b(y_{1:T}|M_1)}{q_b(y_{1:T}|M_2)}$$

 Drawback: choice of b is a bit ad-hoc, not very principled for small sample size since the main justification relies on asymptotics