Principe Physique des ordinateurs quantique

intro

- Architectures d'ordinateurs quantiques
 - Qubit supraconducteurs
 - ions piégés
 - qubits de spin
 - qubits topologiques
 - qubits photoniques
- Défi d'un ordinateur quantique
 - Avoir un long temps de vie
 - Pouvoir faire des opération à un qubit
 - Pouvoir faire des opération à deux qubits
 - le long temp de vie et le contrôle ont des besoin contradictoire (beaucoup d'interaction vs le moins d'interaction possible)
- ullet Circuit QED: Qubits supra (transmon) + cavité micro-onde

Plan

- Notion de base de l'info Q
- oscillateur harmoniques et circuits supra
- qubit supra
- interaction lumière-matière
- Dissipation
- info quantique

1 Info quantique: notion de base

1.1 Bits et qubits

classique:
$$0,1$$
 0 : $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, 1 : $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ quantique: $\{ \ |0\rangle\,, |1\rangle \}, 0 \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ 1 \sim \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Les qubits peuvent être en superposition

$$|\psi\rangle = \psi_0 |0\rangle + |1\rangle = \begin{pmatrix} \psi_0 \\ \psi_1 \end{pmatrix}$$

 $\langle \psi | \psi \rangle = 1$

Plusieurs qubits:

$$|0\rangle \otimes |1\rangle \otimes |0\rangle \cdots \otimes |0\rangle = |010 \cdots 0\rangle$$

1.2 Opérations logiques

1.2.1 Opérations à 1 bit

bit: 1, NOT

qubit: Une infinité d'opérations

Les opération sur des qubits sont des matrices unitaires

$$U^{\dagger}U=\mathbb{1}$$

Les matrices de Pauli forment un base des opération unitaires.

$$\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Ce sont les générateurs de rotation dans \mathbb{R}^3 : isomorphisme entre SO3 et SU2.

$$R_z(\theta) = e^{\frac{-iZ\theta}{2}}$$

Plus généralement

$$R_{\hat{n}}(\theta) = e^{\frac{i\hat{n}\cdot\vec{\sigma}}{2}}$$

1.2.2 Opérations à 2 bits

NAND est une porte universelle! (On peut construire tout les portes à n > 2 bits avec)

La version quantique de cette porte et le CNOT (Control not)

$$\mathtt{CNOT} = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & X \end{pmatrix}$$

IN	OUT
00	00
01	01
10	11
11	10

1.3 Critère de D

Critères minimal pour avoir un ordinateur quantique

- 1. Un system avec des qubits bien définis pouvant être *mis à l'échelle* <u>qubit</u>: Système à deux niveau <u>mise à l'échelle</u>: requiert la correction d'erreur
- 2. Possibilité d'initialiser un état: Ôter l'entropie du system Un moyen de le faire dans un system suffisement froid: attendre la relaxation: $\langle 1|\psi\rangle \to 1$ pour $t\ll 1$