Introduction

- This talks is about regression methods in which the dependent variable takes count (nonnegative integer) values.
- The dependent variable is usually the number of times an event occurs in a certain period of time.

- Linear regression is used to model and predict continuous measurement variables.
- Poisson regression is used to model and predict discrete count variables.

Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables.

Overview

Some examples of event counts are:

- number of claims per year on a particular car owners insurance policy,
- number of workdays missed due to sickness of a dependent in a one-year period,
- number of papers published per year by a researcher.

Poisson Distribution

- ► The number of persons killed by mule or horse kicks in the Prussian army per year.
- Ladislaus Bortkiewicz collected data from 20 volumes of Preussischen Statistik.
- These data were collected on 10 corps of the Prussian army in the late 1800s over the course of 20 years, giving a total of 200 observations of one corps for a one year period.
- The period or module of observation is thus one year.

- The total deaths from horse kicks were 122, and the average number of deaths per year per corps was thus 122/200 = 0.61.
- In any given year, we expect to observe, well, not exactly 0.61 deaths in one corps
- Here, then, is the classic Poisson situation: a rare event, whose average rate is small, with observations made over many small intervals of time.

```
rpois(200,lambda=0.61)
> X
Г17
   1 2 0 1 0 3 0 0 1 0 0 4 0 0 0 1 0 1 0 2
[21] 00022000100001000120
[41] 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 3 1
[141] 0 0 0 0 1 2 0 1 0 1 0 0 0 0 0 0 0 1 0 0
[161] 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 2 0 1
[181] 0 0 2 0 2 0 0 1 0 0 3 1 0 0 0 1 1 0 0 0
>
> mean(X)
[1] 0.53
> var(X)
[1] 0.5317588
```

Overview

- Poisson regression is main technique used to model count variables.
- Poisson Distribution : Mean and Variance are equal

$$E(X) = Var(X)$$

- Sometimes conventional Poisson Regression is not an appropriate technique, and alternative or variant techniques are used instead.
- For example, Negative Binomial regression is for modelling "over-dispersed" count outcome variables

Problem Areas

Over-Dispersion Important Poisson Distributon does not hold

Zero-Inflation More "Zeros" would occure than in conventional Poisson Process (This is actually "overdispersion" also, but we will treat them separately).

Zero-Truncation Process does not allow for a "Zero" outcome.

The glm() function

- ▶ In statistics, the problem of modelling count variables is an example of generalized linear modelling.
- ► Generalized linear models are fit using the glm() function.
- ▶ The form of the glm function is

```
glm(formula, family=familytype(link=linkfunction),
  data=dataname)
```

Family	Default Link Function		
binomial	(link = "logit")		
gaussian	(link = "identity")		
Gamma	(link = "inverse")		
inverse.gaussian	$(link = "1/mu^2")$		
poisson	(link = "log")		
quasibinomial	(link = "logit")		
quasipoisson	(link = "log")		

Texts on GLMs

- ▶ Dobson, A. J. (1990) An Introduction to Generalized Linear Models. (*London: Chapman and Hall.*)
- Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
- McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. (London: Chapman and Hall.)
- Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer.

pscl: Political Science Computational Laboratory

Author(s): Simon Jackman et al (Stanford University)

URL: http://pscl.stanford.edu/

Description

Bayesian analysis of item-response theory (IRT) models, roll call analysis; computing highest density regions; maximum likelihood estimation of zero-inflated and hurdle models for count data; goodness-of-fit measures for GLMs; data sets used in writing and teaching at the Political Science Computational Laboratory; seats-votes curves.

glm2: Fitting Generalized Linear Models

Author(s): Ian Marschner

Fits generalized linear models using the same model specification as glm in the stats package, but with a modified default fitting method that provides greater stability for models that may fail to converge using glm

VGAM: Vector Generalized Linear and Additive Models

Author(s): Thomas W. Yee (t.yee@auckland.ac.nz) URL: http://www.stat.auckland.ac.nz/ \sim yee/VGAM

Vector generalized linear and additive models, and associated models (Reduced-Rank VGLMs, Quadratic RR-VGLMs, Reduced-Rank VGAMs).

This package fits many models and distribution by maximum likelihood estimation (MLE) or penalized MLE. Also fits constrained ordination models in ecology.

PART 1: Poisson Regression

- Poisson regression is used to model count variables.
- Poisson regression has a number of extensions useful for count models.

Examples of Poisson regression

- The number of awards earned by students at a secondary or high school.
- Predictors of the number of awards earned include the type of program in which the student was enrolled (e.g., vocational, general or academic) and the score on their final exam in math.

Conventional OLS regression

- Count outcome variables are sometimes log-transformed and analyzed using OLS regression.
- Many issues arise with this approach, including loss of data due to undefined values generated by taking the log of zero (which is undefined) and biased estimates.

Description of the data

- For the purpose of illustration, we have simulated a data set for the last example.
- ▶ The data set is called *poisreg.csv*
- In this example, num_awards is the outcome variable and indicates the number of awards earned by students at a high school in a year.

Predictor Variables

- math is a continuous predictor variable and represents students' scores on their math final exam,
- prog is a categorical predictor variable with three levels indicating the type of program in which the students were enrolled.
- ▶ prog is coded as 1 = "General", 2 = "Academic" and 3 = "Vocational".

		id	n	um_award	ls	prog		math
1	:	1	Min.	:0.00	General	: 45	Min.	:33.0
2	:	1	1st Qu.	:0.00	Academic	:105	1st Qu.	:45.0
3	:	1	Median	:0.00	Vocational	: 50	Median	:52.0
4	:	1	Mean	:0.63			Mean	:52.6
5	:	1	3rd Qu.	:1.00			3rd Qu.	:59.0
6	:	1	Max.	:6.00			Max.	:75.0
	(Other	c):1	94					

- ► Each variable has 200 valid observations and their distributions seem quite reasonable.
- ► The mean and variance of our outcome variable are more or less the same.
- Our model assumes that these values, conditioned on the predictor variables, will be equal (or at least roughly so).

Poisson regression

- At this point, we are ready to perform our Poisson regression model analysis using the glm() function.
- We fit the model and save it in the object model1 and get a summary of the model.

```
model1 <- glm(num_awards ~ prog + math,
family="poisson", data=poisreg)
summary(model1)</pre>
```

```
Call:
glm(formula = num_awards ~ prog + math,
     family = "poisson",
     data = poisreg)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.204 -0.844 -0.511 0.256 2.680
```

```
Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
                        0.6585
                                      1.6e-15 ***
(Intercept) -5.2471
                                -7.97
progAcademic
              1.0839
                        0.3583
                                 3.03
                                       0.0025 **
progVocational
              0.3698
                        0.4411
                                 0.84
                                       0.4018
math
              0.0702
                        0.0106
                                 6.62
                                      3.6e-11 ***
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 287.67 on 199 degrees of freedom Residual deviance: 189.45 on 196 degrees of freedom

AIC: 373.5

Number of Fisher Scoring iterations: 6

glm function output

- The output begins with echoing the function call. Then the information on deviance residuals is displayed.
- Deviance residuals are approximately normally distributed if the model is specified correctly.
- Here it shows a little bit of skeweness since median is not quite zero.

glm function output

- ► The Poisson regression coefficients for each of the variables along with the standard errors, z-scores, p-values and 95% confidence intervals for the coefficients.
- ▶ The coefficient for math is 0.07.
- This means that the expected log count for a one-unit increase in math is 0.07.

```
Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
                        0.6585
                                      1.6e-15 ***
(Intercept) -5.2471
                                -7.97
progAcademic
              1.0839
                        0.3583
                                 3.03
                                       0.0025 **
progVocational
              0.3698
                        0.4411
                                 0.84
                                       0.4018
math
              0.0702
                        0.0106
                                 6.62
                                      3.6e-11 ***
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '

glm function output

- The indicator variable progAcademic compares between prog = Academic and prog =
 "General", the expected log count for prog =
 Academic increases by about 1.1.
- The indicator variable **prog.Vocational** is the expected difference in log count (≈ 0.37) between **prog** = "Vocational" and the reference group (**prog** = "General").

- ► The output above indicates that the incident rate for prog = "Academic" is 2.96 times the incident rate for the reference group (prog = "General").
- Likewise, the incident rate for prog = "Vocational" is 1.45 times the incident rate for the reference group holding the other variables at constant

► The percent change in the incident rate of num_awards is by 7% for every unit increase in math.

Deviance

- In statistics, deviance is a quality of fit statistic for a model that is often used for statistical hypothesis testing.
- It is a generalization of the idea of using the sum of squares of residuals in ordinary least squares to cases where model-fitting is achieved by maximum likelihood.

glm function output

- The information on deviance is also provided.
- We can use the residual deviance to perform a goodness of fit test for the overall model.
- ► The residual deviance is the difference between the deviance of the current model and the maximum deviance of the ideal model where the predicted values are identical to the observed.

glm function output

- Therefore, if the residual difference is small enough, the goodness of fit test will not be significant, indicating that the model fits the data.
- ▶ REMARK: Model Appraisal for GLMs subject of future talk.

glm function output

- If the test had been statistically significant, it would indicate that the data do not fit the model well.
- We could try to determine if there are omitted predictor variables, if our linearity assumption holds and/or if there is an issue of over-dispersion.

Comparing Candidate Models

- We can also test the overall effect of prog by comparing the deviance of the full model with the deviance of the model excluding prog.
- The two degree-of-freedom chi-square test indicates that prog, taken together, is a statistically significant predictor of num_awards.

Comparing Models

```
# update m1 model dropping prog
m2 <- update(m1, . ~ . - prog)</pre>
```

test model differences with chi square test
anova(m2, m1, test="Chisq")

Analysis of Deviance Table

Model 1: num_awards ~ math

```
Model 2: num_awards ~ prog + math
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1    198    204

2    196    189    2    14.6   0.00069 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
```

Incident Rate Ratios

- Sometimes, we might want to present the regression results as incident rate ratios (IRRs) and their standard errors, together with the confidence interval.
- To compute the standard error for the incident rate ratios, we will use the **Delta method** (Numerical Computation Method).
- To this end, we make use the function deltamethod implemented in R package msm.

Incident Rate Ratios

A rate ratio (sometimes called an incidence density ratio) in epidemiology, is a relative difference measure used to compare the incidence rates of events occurring at any given point in time. A common application for this measure in analytic epidemiologic studies is in the search for a causal association between a certain risk factor and an outcome.

Incidence Rate Ratio
$$=$$

$$\frac{Incidence Rate 1}{Incidence Rate 2}$$

Incident Rate Ratios

Incidence rate is the occurrence of an event over person-time, for example person-years.

Incidence Rate =
$$\frac{\text{events}}{\text{Person Time}}$$

Note: the same time intervals must be used for both incidence rates.

Delta Method

```
s <- deltamethod(list(~ exp(x1), ~ exp(x2), ~ exp(x3), ~ exp(
```

```
rexp.est
```

```
Estimate Robust SE LL UL (Intercept) 0.005263 0.00340 0.001484 0.01867 progAcademic 2.956065 0.94904 1.575551 5.54620 progVocational 1.447458 0.57959 0.660335 3.17284 math 1.072672 0.01119 1.050955 1.09484
```

- Sometimes, we might want to look at the expected marginal means.
- For example, what are the expected counts for each program type holding math score at its overall mean?
- ► To answer this question, we can make use of the predict function.
- First off, we will make a small data set to apply the predict function to it.

```
(s1 <- data.frame(math = mean(p$math),
 prog = factor(1:3, levels = 1:3,
 labels = levels(p$prog))))
   math
              prog
1 52.65 General
2 52.65 Academic
3 52.65 Vocational
```

```
predict(m1, s1, type="response", se.fit=TRUE)
 $fit
 0.2114 0.6249 0.3060
 $se.fit
 0.07050 0.08628 0.08834
 $residual.scale
 [1] 1
```

- ▶ In the output above, we see that the predicted number of events for level 1 of prog is about 0.21, holding math at its mean.
- ► The predicted number of events for level 2 of prog is higher at 0.62, and the predicted number of events for level 3 of prog is about .31.
- ▶ The ratios of these predicted counts $\left(\frac{0.625}{0.211} = 2.96, \frac{0.306}{0.211} = 1.45\right)$ match what we saw looking at the IRR.

- We can also graph the predicted number of events with the commands below.
- ► The graph indicates that the most awards are predicted for those in the academic program (prog = 2), especially if the student has a high math score.
- ► The lowest number of predicted awards is for those students in the general program (prog = 1).
- The graph overlays the lines of expected values onto the actual points, although a small amount of random noise was added vertically to lessen

Over-Dispersion

- Overdispersion is the presence of greater variability in a data set than would be expected based on a given simple statistical model.
- Poisson Distribution:

Zero-Inflation

- One common cause of over-dispersion is excess zeros, which in turn are generated by an additional data generating process.
- In this situation, zero-inflated model should be considered.
- ▶ If the data generating process does not allow for any 0s (such as the number of days spent in the hospital), then a zero-truncated model may be more appropriate.

Over-Dispersion

- When there seems to be an issue of dispersion, we should first check if our model is appropriately specified, such as omitted variables and functional forms.
- For example, if we omitted the predictor variable prog in the example above, our model would seem to have a problem with over-dispersion.
- In other words, a misspecified model could present a symptom like an over-dispersion problem.

- Assuming that the model is correctly specified, the assumption that the conditional variance is equal to the conditional mean should be checked
- There are several tests including the likelihood ratio test of over-dispersion parameter alpha by running the same model using negative binomial distribution.
- ► The R package pscl (Political Science Computational Laboratory, Stanford University) provides many functions for binomial and count data including odTest for testing

The odTest() command (pscl package)

- The function odTest is a likelihood ratio test for over-dispersion in count data
- odTest() Compares the log-likelihoods of a negative binomial regression model and a Poisson regression model.

```
odTest(glmobj, alpha=.05,
  digits = max(3, getOption("digits") - 3))
```

Exposure Variables - SKIP

- Count data often have an exposure variable, which indicates the number of times the event could have happened.
- This variable should be incorporated into a Poisson model with the use of the offset option.
- ► The outcome variable in a Poisson regression cannot have negative numbers, and the exposure cannot have 0s.

Some Remarks

- Many different measures of pseudo-R-squared exist. They all attempt to provide information similar to that provided by R-squared in OLS regression, even though none of them can be interpreted exactly as R-squared in OLS regression is interpreted.
- Poisson regression is estimated via maximum likelihood estimation. It usually requires a large sample size.

PART 2: Negative Binomial Regression

Negative binomial regression is for modeling over-dispersed count outcome variables.

- Negative binomial regression can be used for over-dispersed count data, that is when the conditional variance exceeds the conditional mean.
- ▶ It can be considered as a generalization of Poisson regression since it has the same mean structure as Poisson regression and it has an extra parameter (r) to model the over-dispersion.

$$\Pr(X = k) = {k+r-1 \choose k} p^k (1-p)^r \text{ for } k = 0, 1, 2, \dots$$

Examples of negative binomial regression

- **Example 1** School administrators study the attendance behavior of high school juniors at two schools. Predictors of the number of days of absence include the type of program in which the student is enrolled and a standardized test in math.
- **Example 2** A health-related researcher is studying the number of hospital visits in past 12 months by senior citizens in a community based on the characteristics of the individuals and the types of health plans under which each one is covered.

Description of the data Let's pursue Example 1 from above.

- We have attendance data on 314 high school juniors from two urban high schools in the file negbin.csv.
- The response variable of interest is days absent, daysabs.
- ► The variable **math** gives the standardized math score for each student.
- The variable **prog** is a three-level nominal variable indicating the type of instructional program in which the student is enrolled.

Exploratory Data Analysis

```
summary(dat)
```

```
id
               gender
                            math
                                        daysabs
1001 : 1 female:160
                        Min. : 1.0
                                     Min. : 0.00
1002 : 1
            male :154
                        1st Qu.:28.0
                                     1st Qu.: 1.00
1003 : 1
                        Median:48.0
                                     Median : 4.00
1004 : 1
                        Mean :48.3
                                     Mean : 5.96
1005
                        3rd Qu.:70.0
                                     3rd Qu.: 8.00
1006
                       Max. :99.0
                                     Max.
                                           :35.00
(Other):308
```

prog

General: 40 Academic: 167 Vocational: 107

- ► Each variable has 314 valid observations and their distributions seem quite reasonable.
- ► The unconditional mean of our outcome variable is much lower than its variance.

Data Set

The table below shows the average numbers of days absent by program type and seems to suggest that program type is a good candidate for predicting the number of days absent, our outcome variable, because the mean value of the outcome appears to vary by prog.

```
with(dat, tapply(daysabs, prog, function(x) {
sprintf("M (SD) = %1.2f (%1.2f)", mean(x), sd(x))
}))
##
                   General
## "M (SD) = 10.65 (8.20)"
##
                  Academic
## "M (SD) = 6.93 (7.45)"
##
                Vocational
## "M (SD) = 2.67 (3.73)"
```

Data Set

- The variances within each level of prog are higher than the means within some of the levels.
- These are the conditional means and variances. These differences suggest that over-dispersion is present and that a Negative Binomial model would be appropriate.

Negative binomial regression analysis

We will use the glm.nb function from the MASS package to estimate a negative binomial regression.

- R first displays the call and the deviance residuals.
- Next, we see the regression coefficients for each of the variables, along with standard errors, z-scores, and p-values.

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
         2.61527
                  0.19746 13.24 < 2e-16 ***
         -0.00599 0.00251 -2.39
math
                               0.017 *
progAcademic -0.44076 0.18261 -2.41
                               0.016 *
```

0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 Signif. codes:

- ► The variable math has a coefficient of -0.006, which is statistically significant.
- ► This means that for each one-unit increase in math, the expected log count of the number of days absent decreases by 0.006.
- ➤ The indicator variable shown as **progAcademic** is the expected difference in log count between group 2 and the reference group (prog=1).

- ▶ The expected log count for level 2 of prog is 0.44 lower than the expected log count for level 1.
- The indicator variable for progVocational is the expected difference in log count between group 3 and the reference group.

- ▶ The expected log count for level 3 of prog is 1.28 lower than the expected log count for level 1.
- ▶ To determine if prog itself, overall, is statistically significant, we can compare a model with and without **prog**.
- ▶ The reason it is important to fit separate models, is that unless we do, the overdispersion parameter is held constant.

```
m2 <- update(m1, . ~ . - prog)</pre>
anova(m1, m2)
## Likelihood ratio tests of Negative Binomial Models
##
## Response: daysabs
          Model theta Resid. df
##
                                    2 x log-lik. Test
## 1 math 0.8559
                             312
                                           -1776
## 2 math + prog 1.0327
                             310
                                           -1731 1 vs 2
      Pr(Chi)
##
## 1
## 2 1.652e-10
```


- The two degree-of-freedom chi-square test indicates that prog is a statistically significant predictor of daysabs.
- ▶ The null deviance is calculated from an intercept-only model with 313 degrees of freedom.
- ▶ Then we see the residual deviance, the deviance from the full model.
- We are also shown the AIC and 2*log likelihood.

▶ The theta parameter shown is the dispersion parameter.

```
(Dispersion parameter for Negative Binomial(1.033) family
##
       Null deviance: 427.54 on 313 degrees of freedom
##
## Residual deviance: 358.52 on 310 degrees of freedom
## AIC: 1741
##
## Number of Fisher Scoring iterations: 1
##
##
##
                 Theta: 1.033
##
             Std. Err.: 0.106
##
   2 x log-likelihood: -1731.258
##
```

Checking model assumption

- As we mentioned earlier, negative binomial models assume the conditional means are not equal to the conditional variances.
- ► This inequality is captured by estimating a dispersion parameter (not shown in the output) that is held constant in a Poisson model.
- ► Thus, the Poisson model is actually nested in the negative binomial model.
- We can then use a likelihood ratio test to compare these two and test this model assumption.
- ▶ To do this, we can run our model as a Poisson,

Confidence Intervals

We can get the confidence intervals for the coefficients by profiling the likelihood function.

```
(est <- cbind(Estimate = coef(m1), confint(m1)))
## Waiting for profiling to be done...
                  Estimate 2.5 % 97.5 %
##
## (Intercept) 2.615265 2.2421 3.012936
               -0.005993 -0.0109 -0.001067
## math
## progAcademic -0.440760 -0.8101 -0.092643
## progVocational -1.278651 -1.6835 -0.890078
```

Incidence Rate Ratios

- We might be interested in looking at incident rate ratios rather than coefficients.
- To do this, we can exponentiate our model coefficients.
- The same applies to the confidence intervals.

```
exp(est)
## Estimate 2.5 % 97.5 %
## (Intercept) 13.6708 9.4127 20.3470
## math 0.9940 0.9892 0.9989
## progAcademic 0.6435 0.4448 0.9115
## progVocational 0.2784 0.1857 0.4106
```

- ► The output above indicates that the incident rate for prog = 2 is 0.64 times the incident rate for the reference group (prog = 1).
- ► Likewise, the incident rate for prog = 3 is 0.28 times the incident rate for the reference group holding the other variables constant.
- ► The percent change in the incident rate of daysabs is a 1% decrease for every unit increase in math.

- ► The form of the model equation for negative binomial regression is the same as that for Poisson regression.
- ► The log of the outcome is predicted with a linear combination of the predictors:

$$ln(\widehat{daysabs_i}) = Intercept + b_1(prog_i = 2) + b_2(prog_i = 3) + b_3math_i$$

$$\widehat{daysabs}_i = e^{Intercept + b_1(prog_i = 2) + b_2(prog_i = 3) + b_3math_i}$$
$$= e^{Intercept} e^{b_1(prog_i = 2)} e^{b_2(prog_i = 3)} e^{b_3math_i}$$

- ▶ The coefficients have an additive effect in the ln(y) scale and the IRR have a multiplicative effect in the y scale.
- ▶ The dispersion parameter in negative binomial regression does not effect the expected counts, but it does effect the estimated variance of the expected counts.

Predicted values

- For assistance in further understanding the model, we can look at predicted counts for various levels of our predictors.
- Below we create new datasets with values of math and prog and then use the predict command to calculate the predicted number of events.

- ► First, we can look at predicted counts for each value of prog while holding math at its mean.
- To do this, we create a new dataset with the combinations of prog and math for which we would like to find predicted values, then use the predict command.

```
newdata1 <- data.frame(math = mean(dat$math),</pre>
prog = factor(1:3, levels = 1:3,
labels = levels(dat$prog)))
newdata1$phat <- predict(m1, newdata1,</pre>
 type = "response")
newdata1
    math
              prog phat
 1 48.27 General 10.237
 2 48.27 Academic 6.588
 3 48.27 Vocational 2.850
```

- In the output above, we see that the predicted number of events (e.g., days absent) for a general program is about 10.24, holding math at its mean.
- The predicted number of events for an academic program is lower at 6.59, and the predicted number of events for a vocational program is about 2.85.

Below we will obtain the mean predicted number of events for values of math across its entire range for each level of prog and graph these.

```
newdata2 <- cbind(newdata2, predict(m1, newdata2, type</pre>
newdata2 <- within(newdata2, {
DaysAbsent <- exp(fit)
LL \leftarrow exp(fit - 1.96 * se.fit)
UL \leftarrow exp(fit + 1.96 * se.fit)
})
```


Figure:

- ► The graph shows the expected count across the range of math scores, for each type of program along with 95 percent confidence intervals.
- Note that the lines are not straight because this is a log linear model, and what is plotted are the expected values, not the log of the expected values.

Things to consider

- It is not recommended that negative binomial models be applied to small samples.
- One common cause of over-dispersion is excess zeros by an additional data generating process. In this situation, zero-inflated model should be considered.
- If the data generating process does not allow for any 0s (such as the number of days spent in the hospital), then a zero-truncated model may be more appropriate.

- Count data often have an exposure variable, which indicates the number of times the event could have happened.
- This variable should be incorporated into your negative binomial regression model with the use of the offset option.

- ► The outcome variable in a negative binomial regression cannot have negative numbers.
- You will need to use the m1\$resid command to obtain the residuals from our model to check other assumptions of the negative binomial model

Poisson Regression "Exposure" and offset

- Poisson regression may also be appropriate for rate data, where the rate is a count of events occurring to a particular unit of observation, divided by some measure of that unit's exposure.
- ► For example, biologists may count the number of tree species in a forest, and the rate would be the number of species per square kilometre.
- Demographers may model death rates in geographic areas as the count of deaths divided by personyears.
- ▶ More generally, event rates can be calculated as events per unit time, which allows the observation window to vary for each unit.

Poisson Regression: Exposure and Offset

In these examples, exposure is respectively unit area, personyears and unit time. In Poisson regression this is handled as an offset, where the exposure variable enters on the right-hand side of the equation, but with a parameter estimate (for log(exposure)) constrained to 1.

$$\log (E(Y \mid x)) = \log (exposure) + \theta' x$$

which implies

$$\log (E(Y \mid x)) - \log (exposure) = \log \left(\frac{E(Y \mid x)}{exposure}\right) = \theta' x$$

Poisson Regression : Exposure and Offset

Offset in the case of a GLM in R can be achieved using the offset() function:

```
glm(y ~ offset(log(exposure)) + x, family=po
```

Though we can run a Poisson regression in R using the glm function in one of the core packages, we need another package to run the zero-inflated poisson model. We use the **pscl** package.

```
summary(m1 <- zeroinfl(count ~ child + camper |</pre>
     persons, data = zinb))
```

-1.237 -0.754 -0.608 -0.192 24.085

```
##
## Call:
## zeroinfl(formula = count ~ child + camper | persons, dand
##
## Pearson residuals:
## Min 1Q Median 3Q Max
```

```
## Count model coefficients (poisson with log link):
            Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 1.5979
                        0.0855 18.68 <2e-16 ***
## child -1.0428 0.1000 -10.43 <2e-16 ***
## camper1 0.8340 0.0936 8.91 <2e-16 ***
```

```
## Zero-inflation model coefficients (binomial with logit 1)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.297 0.374 3.47 0.00052 ***
## persons -0.564 0.163 -3.46 0.00053 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1
##
## Number of iterations in BFGS optimization: 12
## Log-likelihood: -1.03e+03 on 5 Df
```

- Below the model call, you will find a block of output containing Poisson regression coefficients for each of the variables along with standard errors, z-scores, and p-values for the coefficients.
- ► A second block follows that corresponds to the inflation model.
- ► This includes logit coefficients for predicting excess zeros along with their standard errors, z-scores, and p-values.

▶ All of the predictors in both the count and inflation portions of the model are statistically significant.

Vuong Testing

- Note that the model output above does not indicate in any way if our zero-inflated model is an improvement over a standard Poisson regression.
- We can determine this by running the corresponding standard Poisson model and then performing a Vuong test of the two models.

```
summary(p1 <- glm(count ~ child + camper,
family = poisson, data = fishing))</pre>
```

- ► The Vuong test compares the zero-inflated model with an ordinary Poisson regression model.
- In this example, we can see that our test statistic is significant, indicating that the zero-inflated model is superior to the standard Poisson model.

```
vuong(p1, m1)
## Vuong Non-Nested Hypothesis Test-Statistic: -3.574
## (test-statistic is asymptotically distributed N(0,1)
## null that the models are indistinguishible)
## in this case:
## model2 > model1, with p-value 0.0001756
```

Zero-Truncated Poisson regression

Data Set: hospitalstay

- ▶ We have a hypothetical data file, **hospitalstay** with 1,493 observations.
- The length of hospital stay variable is stay.
- ► The variable **age** gives the age group from 1 to 9 which will be treated as interval in this example.
- The variables **hmo** and **died** are binary indicator variables for HMO insured patients and patients who died while in the hospital, respectively.

Zero-Truncated Poisson regression

Data Set: hospitalstay

```
##
       stay
                              hmo
                                      died
                      age
                 Min. :1.00 0:1254
                                      0:981
##
   Min. : 1.00
##
   1st Qu.: 4.00
                 1st Qu.:4.00 1: 239
                                      1:512
   Median: 8.00
                 Median:5.00
##
   Mean : 9.73
                 Mean :5.23
##
##
   3rd Qu.:13.00
                 3rd Qu.:6.00
   Max. :74.00
##
                 Max.
                       :9.00
```


Zero-Truncated Poisson regression

Data Set: hospitalstay

- ► For the lowest ages, a smaller proportion of people in HMOs died, but for higher ages, there does not seem to be a huge difference, with a slightly higher proportion in HMOs dying if anything.
- Overall, as age group increases, the proportion of those dying increases, as expected.

Zero-truncated negative binomial regression

Zero-truncated negative binomial regression is used to model count data for which the value zero cannot occur and for which over dispersion exists.

Zero-truncated negative binomial regression

- ▶ To fit the zero-truncated negative binomial model, we use the vglm function in the VGAM package.
- This function fits a very flexible class of models called vector generalized linear models to a wide range of assumed distributions.
- In our case, we believe the data come from the negative binomial distribution, but without zeros.
- ▶ Thus the values are strictly positive poisson, for which we use the positive negative binomial family via the posnegbinomial function passed to vglm.

Zero-truncated negative binomial regression

Fitting the Model with R

We will use the hospitalstay data again.

```
m1 <- vglm(stay ~ age + hmo + died,
   family = posnegbinomial(),
   data = hospitalstay)
```

```
summary(m1)
##
## Call:
## vglm(formula = stay ~ age + hmo + died,
      family = posnegbinomial(),
##
##
      data = hospitalstay)
##
## Pearson Residuals:
##
              Min 1Q Median 3Q Max
## log(munb) -1.4 -0.70 -0.23 0.45 9.8
## log(size) -14.1 -0.27 0.45 0.76 1.0
```

```
## Coefficients:
```

##		Estimate	Std.	Error	Z	value
##	(Intercept):1	2.408		0.072		33.6
##	(Intercept):2	0.569		0.055		10.4
##	age	-0.016		0.013		-1.2
##	hmo1	-0.147		0.059		-2.5
##	died1	-0.218		0.046		-4.7

- ▶ The first intercept is what we know as the typical intercept.
- ▶ The second is the **over dispersion parameter**, α .
- ▶ The number of linear predictors is two, one for the expected mean λ and one for the over dispersion.
- ▶ Next the dispersion parameter is printed, assumed to be one after accounting for overdispersion.

- ► The value of the coefficient for age, -0.0157 suggests that the log count of stay decreases by 0.0157 for each year increase in age.
- ▶ The coefficient for hmo, -0.1471 indicates that the log count of stay for HMO patient is 0.1471 less than for non-HMO patients.
- ▶ The log count of stay for patients who died while in the hospital was 0.2178 less than those patients who did not die.

- ▶ The value of the constant 2.4083 is the log count of the stay when all of the predictors equal zero.
- ▶ The value of the second intercept, the over dispersion parameter, α is 0.5686.
- ▶ To test whether we need to estimate over dispersion, we could fit a zero-truncated Poisson model and compare the two. (Not Covered).

Standard Errors for Poisson Regression

- ▶ It is recommended using robust standard errors for the parameter estimates to control for mild violation of the distribution assumption that the variance equals the mean.
- ▶ The R package **sandwich** can be used to obtain the robust standard errors and calculated the p-values accordingly.
- ▶ Together with the p-values, we have also calculated the 95% confidence interval using the parameter estimates and their robust standard errors.

Standard Errors for Poisson Regression

sandwich R Package

- Robust Covariance Matrix Estimators
- Model-robust standard error estimators for cross-sectional. time series, and longitudinal data.

Robust Standard Errors

```
cov.model1 <- vcovHC(model1, type="HCO")</pre>
std.err <- sqrt(diag(cov.model1))</pre>
r.est <- cbind(Estimate= coef(model1),</pre>
"Robust SE" = std.err,
"Pr(>|z|)" = 2 * pnorm(abs(coef(model1)/std.err)|
lower.tail=FALSE),
LL = coef(model1) - 1.96 * std.err,
UL = coef(model1) + 1.96 * std.err)
```

Robust Standard Errors

r.est

```
Estimate Robust SE Pr(>|z|) LL UL (Intercept) -5.24712 0.64600 4.567e-16 -6.5133 -3 progAcademic 1.08386 0.32105 7.355e-04 0.4546 1 progVocational 0.36981 0.40042 3.557e-01 -0.4150 1 math 0.07015 0.01044 1.784e-11 0.0497 0
```

```
with(p, tapply(num_awards, prog, function(x) {
   sprintf("M (SD) = %1.2f (%1.2f)", mean(x), sd(x))
}))
```

```
## General Academic
## "M (SD) = 0.20 (0.40)" "M (SD) = 1.00 (1.28)" "M

ggplot(p, aes(num_awards, fill = prog)) +
   geom_histogram(binwidth=.5, position="dodge")
```

```
ggplot(dat, aes(daysabs, fill = prog)) + geom_histogram(b
    ., margins = TRUE, scales = "free")
```

```
with(dat, tapply(daysabs, prog, function(x) {
    sprintf("M (SD) = %1.2f (%1.2f)", mean(x), sd(x))
}))
## General Academic
```

"M (SD) = 10.65 (8.20)" "M (SD) = 6.93 (7.45)"

Predicted values

- For assistance in further understanding the model, we can look at predicted counts for various levels of our predictors.
- Below we create new datasets with values of math and prog and then use the predict command to calculate the predicted number of events.

- ► First, we can look at predicted counts for each value of prog while holding math at its mean.
- To do this, we create a new dataset with the combinations of prog and math for which we would like to find predicted values, then use the predict command.

```
newdata1 <- data.frame(math = mean(dat$math),</pre>
prog = factor(1:3, levels = 1:3,
labels = levels(dat$prog)))
newdata1$phat <- predict(m1, newdata1,</pre>
 type = "response")
newdata1
    math
              prog phat
 1 48.27 General 10.237
 2 48.27 Academic 6.588
 3 48.27 Vocational 2.850
```

- ▶ In the output above, we see that the predicted number of events (e.g., days absent) for a general program is about 10.24, holding math at its mean.
- ▶ The predicted number of events for an academic program is lower at 6.59, and the predicted number of events for a vocational program is about 2.85.

Below we will obtain the mean predicted number of events for values of math across its entire range for each level of prog and graph these.

```
newdata2 <- cbind(newdata2, predict(m1, newdata2, type
newdata2 <- within(newdata2, {
DaysAbsent <- exp(fit)
LL <- exp(fit - 1.96 * se.fit)
UL <- exp(fit + 1.96 * se.fit)
})</pre>
```


Figure:

- ► The graph shows the expected count across the range of math scores, for each type of program along with 95 percent confidence intervals.
- Note that the lines are not straight because this is a log linear model, and what is plotted are the expected values, not the log of the expected values.

Things to consider

- It is not recommended that negative binomial models be applied to small samples.
- One common cause of over-dispersion is excess zeros by an additional data generating process. In this situation, zero-inflated model should be considered.
- If the data generating process does not allow for any 0s (such as the number of days spent in the hospital), then a zero-truncated model may be more appropriate.

- Count data often have an exposure variable, which indicates the number of times the event could have happened.
- This variable should be incorporated into your negative binomial regression model with the use of the offset option.

- ► The outcome variable in a negative binomial regression cannot have negative numbers.
- You will need to use the m1\$resid command to obtain the residuals from our model to check other assumptions of the negative binomial model