Федеральное государственное автономное образовательное учреждение высшего образования Университет ИТМО

Дисциплина: Моделирование

Учебно-исследовательская работа 2 «Исследование Систем Массового Обслуживания на Марковских Моделях»

Вариант 37/73

Выполнили:

Чжоу Хунсян Группа: P34131

Преподаватель:

Тропченко Андрей Александрович

 $2024\ \Gamma.$ Санкт-Петербург

Оглавление

1. Цель работы	3
2. Постановка задачи и исходные данные:	4
Параметры структурной и функциональной организации исслед	цуемых
систем:	4
Параметры загрузки:	4
3. Описание исследуемой системы:	5
4. Выполнение	
Состояния Марковского процесса	7
Граф переходов Марковского процесса (СИСТЕМА 1)	7
Матрица интенсивностей переходов (СИСТЕМА 1)	8
Граф переходов Марковского процесса (СИСТЕМА 2)	9
Матрица интенсивностей переходов (СИСТЕМА_2)	9
Стационарные вероятности состояний (СИСТЕМА 1 и СИСТЕ	MA 2)
	10
Характеристики СИСТЕМЫ 1 и СИСТЕМЫ 2	
5. Вывод	

1. Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей — систем массового обслуживания (СМО) с однородным потоком заявок.

2. Постановка задачи и исходные данные:

Параметры структурной и функциональной организации исследуемых систем:

СИСТЕМА_1		СИСТЕМА_2		
П	EH	П	EH	Критерий эффект.
2	4/2 -> 4/1	3	0/2/0	(B)

Параметры загрузки:

Интенс. потока	Ср.длит. обсл.	Вероятность занятия прибора		
λ, 1/c	b, c	П1 П2		П3
0.3	20	0.4	0.55	0.05

Посколько у нас будет более 20 состояний в процессе с данными EH=4/2 для системы 1, Мы здесь уменьшаем его га 4/1

3. Описание исследуемой системы:

Система 1:

- Система содержит 2 обслуживающих прибора
- Поток поступающих в систему заявок однородный
- Длительность обслуживания заявок в приборе величина случайная
- Перед первым прибором есть 4 место для заявок, ожидающих обслуживания и образующих очередь. Перед вторым прибором 2 места.
- Поступающие в систему заявки образуют простейший поток с интенсивностью λ.
- Длительность обслуживания заявок в приборе распределена по экспоненциальному закону с интенсивностью $\mu=1/b$, где b средняя длительность обслуживания.
- Дисциплина буферизации с потерями: заявка, поступившая в систему и заставшая накопитель заполненным, теряется.
- Дисциплина обслуживания в порядке поступления по правилу «первым пришел первым обслужен» (FIFO).
- Заявка, поступившая в систему, с заданной вероятностью занятия прибора направляется к соответствующему прибору и ставится в очередь, либо теряется, если накопитель заполнен или отсутствует

Система 2:

- Система содержит 3 обслуживающих прибора
- Поток поступающих в систему заявок однородный
- Длительность обслуживания заявок в приборе величина случайная

- Перед вторым прибором есть 2 место для заявок, ожидающих обслуживания и образующих очередь. Перед первым и третьим приборами мест для ожидающих заявок нет.
- Поступающие в систему заявки образуют простейший поток с интенсивностью λ.
- Длительность обслуживания заявок в приборе распределена по экспоненциальному закону с интенсивностью $\mu=1/b$, где b средняя длительность обслуживания.
- Дисциплина буферизации с потерями: заявка, поступившая в систему и заставшая накопитель заполненным, теряется.
- Дисциплина обслуживания в порядке поступления по правилу «первым пришел первым обслужен» (FIFO).
- Заявка, поступившая в систему, с заданной вероятностью занятия прибора направляется к соответствующему прибору и ставится в очередь, либо теряется, если накопитель заполнен или отсутствует

4. Выполнение

Состояния Марковского процесса

Принятые обозначения П1/П2/П3/Е1/Е2:

- П1 описывает, обрабатывает заявку (1) или нет (0) первый прибор.
- П2 описывает, обрабатывает заявку (1) или нет (0) второй прибор.
- ПЗ описывает, обрабатывает заявку (1) или нет (0) третий прибор.
- Е1 описывает, емкость накопителя первого прибора.
- Е2 описывает, емкость накопителя второго прибора.

	CIACTEMAA 1	CIACTEMA 2
	СИСТЕМА_1	СИСТЕМА_2
Номер состояния	П1/П2, Е1/Е2	П1/П2/П3, Е2
E0	0/0, 0/0	0/0/0, 0
E1	1/0, 0/0	0/0/1, 0
E2	1/0, 1/0	0/1/0, 0
E3	1/0, 2/0	0/1/0, 1
E4	1/0, 3/0	0/1/0, 2
E5	1/0, 4/0	0/1/1, 0
E6	0/1, 0/0	0/1/1, 1
E7	0/1, 0/1	0/1/1, 2
E8	1/1, 0/0	1/0/0, 0
E9	1/1, 1/0	1/0/1, 0
E10	1/1, 2/0	1/1/0, 0
E11	1/1, 3/0	1/1/0, 1
E12	1/1, 4/0	1/1/0, 2
E13	1/1, 0/1	1/1/1, 0
E14	1/1, 1/1	1/1/1, 1
E15	1/1, 2/1	1/1/1, 2
E16	1/1, 3/1	
E17	1/1, 4/1	

Граф переходов Марковского процесса (СИСТЕМА 1)

$$\lambda 1 = \lambda \cdot p1 = 0.3 \times 0.4 = 0.12$$

 $\lambda 2 = \lambda \cdot p2 = 0.3 \times 0.6 = 0.18$
 $\mu = 1/b = 1/20 = 0.05$

Матрица интенсивностей переходов (СИСТЕМА 1)

Граф переходов Марковского процесса (СИСТЕМА 2)

$$\lambda 1 = \lambda \cdot p1 = 0.3 \times 0.4 = 0.12$$

$$\lambda 2 = \lambda \cdot p2 = 0.3 \times 0.55 = 0.165$$

$$\lambda 3 = \lambda \cdot p3 = 0.3 \times 0.05 = 0.015$$

$$\mu = 1/b = 1/20 = 0.05$$

Матрица интенсивностей переходов (СИСТЕМА_2)

Стационарные вероятности состояний (СИСТЕМА 1 и СИСТЕМА 2)

Номер	СИСТЕМА_1		система_2	
состояния	П1/П2, Е1/Е2	Вероятность	П1/П2/П3, Е2	Вероятность
E0	0/0, 0/0	0.0004	0/0/0, 0	0.0039
E1	1/0, 0/0	0.0010	0/0/1, 0	0.0007
E2	1/0, 1/0	0.0024	0/1/0, 0	0.0135
E3	1/0, 2/0	0.0058	0/1/0, 1	0.0470
E4	1/0, 3/0	0.0139	0/1/0, 2	0.1619
E5	1/0, 4/0	0.0334	0/1/1, 0	0.0028
E6	0/1, 0/0	0.0015	0/1/1, 1	0.0117
E7	0/1, 0/1	0.0054	0/1/1, 2	0.0527
E8	1/1, 0/0	0.0036	1/0/0, 0	0.0091
E9	1/1, 1/0	0.0087	1/0/1, 0	0.0008
E10	1/1, 2/0	0.0209	1/1/0, 0	0.0316
E11	1/1, 3/0	0.0501	1/1/0, 1	0.1111
E12	1/1, 4/0	0.1202	1/1/0, 2	0.3912
E13	1/1, 0/1	0.0130	1/1/1, 0	0.0036
E14	1/1, 1/1	0.0313	1/1/1, 1	0.0138
E15	1/1, 2/1	0.0751	1/1/1, 2	0.1447
E16	1/1, 3/1	0.1803		
E17	1/1, 4/1	0.4328		

Характеристики СИСТЕМЫ 1 и СИСТЕМЫ 2

Хар-ка	Прибор	Расчетная формула	сист.1	сист.2
	П1	λ1/μ	2.400	2.400
	П2	$\lambda 2/\mu$	3.600	3.300
	П3	λ3/μ		0.300
Нагрузка	Сумм.	λ/μ	6.000	6.000
	П1	$\sum_{i=1}^K p_i \cdot f(1)$	0.993	0.706
	П2	$\sum_{i=1}^{K} p_i \cdot f(2)$	0.943	0.986
Загрузка	п3	$\sum_{i=1}^{K} p_i \cdot f(3)$		0.231

		$\left(\sum_{i=1}^{K} \rho_{i}\right)/N$		
	Сумм.	(i=1)	0.968	0.641
	П1	$\sum_{i=0}^{L} i \left(\sum_{k=0}^{K} p_k \cdot g(1,i) \right)$	3.325	0.000
	П2	$\sum_{i=0}^{L} i \left(\sum_{k=0}^{K} p_k \cdot g(2, i) \right)$	0.738	1.685
	П3	$\sum_{i=0}^{L} i \left(\sum_{k=0}^{K} p_k \cdot g(3,i) \right)$		0.000
Длина очереди	Сумм.	$\sum_{i=1}^{N} l_i$	4.062	1.685
	П1	$\sum_{i=0}^{L+1} i \left(\sum_{k=0}^{K} p_k \cdot h(1,i) \right)$	4.317	0.986
	П2	$\sum_{i=0}^{L+1} i \left(\sum_{k=0}^{K} p_k \cdot h(2, i) \right)$	1.681	2.670
	П3	$\sum_{i=0}^{L+1} i \left(\sum_{k=0}^{K} p_k \cdot h(3, i) \right)$		0.231
Число заявок	Сумм.	$\sum_{i=1}^{N} m_i$	5.998	3.887
	П1	$m1/\lambda_1'$	86.980	8.213
	П2	$m2/\lambda_2'$	35.627	64.862
	П3	$m3/\lambda_3'$		15.387
Время пребывания	Сумм.	$\left(\sum_{i=1}^{N} u_i\right)/N$	61.954	22.062
,	П1	$l1/\lambda_1'$	66.983	0.000
	П2	$l2/\lambda_2'$	15.641	40.921
	П3	$l3/\lambda_2'$		0.000
Время ожидания	Сумм.	$\left(\sum_{i=1}^{N} w_i\right)/N$	41.963	9.562
1	-7	N		
Вероятность потери	П1	$\sum_{i=0}^{N} p_k \cdot g(1,R)$	0.586	0.000

	П2	$\sum_{i=0}^{N} p_k \cdot g(2,R)$	0.738	0.751
	П3	$\sum_{i=0}^{N} p_k \cdot g(3,R)$		0.000
	Сумм.	$\left(\sum_{i=1}^N \pi_i\right)/N$	0.662	0.250
	П1	$\lambda \cdot p_1 \cdot (1 - \pi_1)$	0.050	0.120
	П2	$\lambda \cdot p_2 \cdot (1 - \pi_2)$	0.047	0.041
	П3	$\lambda \cdot p_3 \cdot (1 - \pi_3)$		0.015
		$\sum_{i=1}^N \lambda_i'$	0.007	0.470
Производительность	Сумм.	<i>i</i> =1	0.097	0.176

R - емкость накопителя

Сравнительный анализ характеристик систем

Сравним полученные характеристики обеих систем:

- Системы имеют одинаковую нагрузку, что ожидаемо при одинаковых параметрах нагрузки, заданных по варианту.
- Система 1 имеет большее значение загрузки, чем система 2.

- Система 1 имеет большее значение длины очереди, чем система 2.
- Система 1 имеет большее число заявок в системе, чем система 2.
- Система 1 имеет большее время ожидания, чем система 2. Это говорит о том, что система 1 значительно быстрее обрабатывает заявки. (1.07% разница)
- Система 1 имеет большее время пребывания заявки в системе, чем система 2. (0.98% разница)
- Система 1 имеет большее вероятность потери заявки, чем система 2. Так как данный параметр является критерием эффективности, стоит выбрать первую систему. (0.46% разница)
- Система 1 имеет меньше производительность, чем система 2. (0.81% разница)

По сравнению с критерий эффективности из варианта, мы увидим, что Система 1 имеет больше максимальная загрузка, поэтому мы выбираем система 1.

5. Вывод

В начале выполнения УИР были проанализированы состояния марковских процессов для систем 1 и 2. На их основе были построены графы переходов марковских процессов, а впоследствии и матрицы интенсивностей переходов. С помощью программы МАКК были получены значения стационарных вероятностей, используя полученные матрицы интенсивностей переходов. Получив значения стационарных вероятностей, можно было приступать к этапу расчета характеристик для систем 1 и 2. Полученные характеристики для систем 1 и 2 были сопоставлены. В результате выяснилось, что система 1 имеет наименьшую вероятность потери заявки. Именно поэтому ей было отдано предпочтение при выборе наилучшей реализации из данных двух.