Feuille de travaux dirigés nº 3 Logique et circuits combinatoires

Exercice 3.1

Pour chacune des fonctions booléennes suivantes, donner la représentation en table de vérité, en tableau de Karnaugh et en schéma logique :

1.
$$F_1 = A + B + C$$

2.
$$F_2 = \overline{A} + C(\overline{B} + \overline{D})$$

3.
$$F_3 = \overline{A} \overline{B} \overline{C} + \overline{A} B C + A \overline{B} C + A B \overline{C}$$

Exercice 3.2

1. Donner les formes canoniques « somme de produits » et »produit de sommes » correspondant aux tables de vérité suivantes :

A	B	C	G_1		A	B	C	G_2
0	0	0	0	_	0	0	0	0
0	0	1	0		1	0	0	1
0	1	0	0		0	1	0	0
0	1	1	0		1	1	0	0
1	0	0	1		0	0	1	0
1	0	1	1		1	0	1	1
1	1	0	1		0	1	1	1
1	1	1	0		1	1	1	1

2. Simplifier les expressions obtenues en utilisant un tableau de Karnaugh.

Exercice 3.3

- 1. Dessiner le circuit logique affichant en sortie le nombre binaire correspondant à un code de Gray exprimé sur 4 bits ;
- 2. Dessiner le circuit logique affichant en sortie le code de Gray correspondant à un nombre binaire exprimé sur 4 bits.

Exercice 3.4

Simplifier par des manipulations algébriques les expressions booléennes suivantes :

1.
$$H_1 = A + \overline{A}B + \overline{A}B + \overline{A}BC + \overline{A}B + \overline{C}D$$

2.
$$H_2 = \overline{A} + \overline{A}\overline{B} + B\overline{C}\overline{D} + B\overline{D}$$

3.
$$H_3 = A\overline{B}C + (\overline{B} + \overline{C})(\overline{B} + \overline{D}) + \overline{A} + \overline{C} + \overline{D}$$

Exercice 3.5

Le registre d'état d'un microprocesseur 8 bits comporte un bit C de retenue (Carry) et un bit V de débordement (OVerflow). Donner une expression logique de C et V en fonctions des bits de poids forts b_x , b_y et b_r des opérandes et du résultat de l'addition.

Exercice 3.6

Un afficheur de chiffres hexadécimaux est composé de sept segments lumineux $\{a, b, c, d, e, f, g\}$:

L'affichage se fait de la façon suivante :

Le chiffre hexadécimal à afficher arrive sous forme d'une valeur numérique sur quatre bits (A,B,C,D). On désire réaliser un décodeur permettant l'affichage du chiffre correspondant en hexadécimal. Soit μ la fonction implémentée :

$$\mu(A, B, C, D) = (a, b, c, d, e, f, g)$$

avec la convention : « bit à 1 \iff segment allumé ».

- 1. Écrire la table de vérité de la fonction μ ;
- 2. Écrire l'expression booléenne des variables e et g en fonction de A, B, C et D sous la forme canonique « somme de produits » ;
- 3. Écrire l'expression booléenne des variables e et g en fonction de A, B, C et D sous la forme canonique « produit de sommes » ;
- 4. Simplifier les expressions des deux questions précédentes à l'aide de tableaux de Karnaugh;
- 5. Donner les schémas logiques correspondants;
- 6. Écrire les expressions équivalentes avec uniquement des NOR et donner les schémas logiques correspondants;
- 7. Écrire les expressions équivalentes avec uniquement des NAND et donner les schémas logiques correspondants.