CS 240

#17: API Best Practices and MapReduce

Computer Systems

Oct. 26, 2021 · Wade Fagen-Ulmschneider

Web APIs:

- 1. Stripe API: https://stripe.com/docs/api/
- 2. GitHub API: https://docs.github.com/en/rest
- 3. National Weather Service (NWS) Weather API https://www.weather.gov/documentation/services-web-api
- 4. Champaign-Urbana Mass Transit District (CUMTD) API https://developer.cumtd.com/
- 5. Queue@Illinois API https://github.com/illinois/queue/blob/master/doc/API.md

Common Features in Best in Class API design:

1.

2.

3.

4.

5.

Data Stores -- (SQL, NoSQL/Mongo/Redis):

- Optimized for data storage and lookup.
- Focus on queries for data:
 - SELECT * FROM table WHERE date="2021-11-26";
 - o find_one({date: {\$eq: "2021-11-26"}})
 - o ...
- Developer is responsible for processing the data.

Problems?

Big Data Processing

- Optimized for data processing on large data sets.
- Queries involve functions that perform logic as part of processing the data.
- Key Technology: ______

MapReduce

- Developed as a research project out of Google.
- OSDI'04: "MapReduce: Simplified Data Processing on Large Clusters"
- Big Idea: Create a framework for processing data based on functions that can be "automatically parallelized".
 - Allows many nodes to contribute to processing the data without human design/programming.

https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdio4.pdf

- Input:
- Output:

Reduce Function:

- Input:
- Output:

Example #1: Word Count

Example #1. Word Count									
	The	quick	brown	fox	jumps	over	the	lazy	dog
	[o]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

Map:

Reduce:

Example #2: Mutual Friends

Through asking about your friends about their friends, you have identified who are friends of whom (\rightarrow means "is friends with"):

$$A \rightarrow B$$
, C

$$B \rightarrow A, C, D$$

$$C \rightarrow A, B, D$$

$$D \rightarrow B$$
, C

You want to identify all **mutual friends** to any set of two people. For example: $\{A, B\} \rightarrow C$, D.

Map:

Reduce: