Caractérisation alternative de \mathcal{C} et \mathcal{R}

Cet exercice vise à proposer une caractérisation (c'est-à-dire une condition nécessaire et suffisante) alternative des classes de graphes dynamiques \mathcal{C} et \mathcal{R} vues en cours. Par souci de simplification, nous nous restreignons ici aux graphes évolutifs. Un graphe dynamique \mathcal{G} sera donc défini comme une suite de graphes statiques $\mathcal{G} = (G_0, G_1, G_2, \ldots)$ tels que, pour tout $t \in \mathbb{N}$, $G_t = (V, E_t)$.

Nous rappelons les définitions suivantes. La classe \mathcal{C} est constituée de l'ensemble des graphes dynamiques \mathcal{G} tels que, pour tout couple de sommets (u,v) de \mathcal{G} , il existe infiniment souvent un trajet de u à v dans \mathcal{G} . La classe \mathcal{R} est la sous-classe de \mathcal{C} constituée de tout les graphes dont chaque arête est récurrente (c'est-à-dire infiniment souvent présente). Enfin, l'empreinte d'un graphe dynamique \mathcal{G} est le graphe (statique) $E_{\mathcal{G}} = (V, E)$ défini sur l'ensemble des sommets V de \mathcal{G} et dont l'ensemble d'arêtes est caractérisé comme suit : $\{u,v\} \in E$ si et seulement si l'arête $\{u,v\}$ est présente dans \mathcal{G} (c'est-à-dire $\exists t \in \mathbb{N}, \{u,v\} \in E_t$).

Question 1 : Justifiez que l'empreinte de tout graphe de \mathcal{C} est connexe. Justifiez que la réciproque (c'est-à-dire que tout graphe dynamique dont l'empreinte est connexe est dans \mathcal{C}) est fausse.

La question précédente ayant montré que l'empreinte du graphe dynamique est insuffisante pour caractériser la classe \mathcal{C} (et donc la classe \mathcal{R}), nous introduisons ici un nouvel objet.

L'empreinte récurrente d'un graphe dynamique \mathcal{G} est le graphe (statique) $ER_{\mathcal{G}} = (V, E_r)$ défini sur l'ensemble des sommets V de \mathcal{G} et dont l'ensemble d'arêtes est caractérisé comme suit : $\{u, v\} \in E_r$ si et seulement si l'arête $\{u, v\}$ est infiniment souvent présente dans \mathcal{G} (c'est-à-dire si $\forall t \in \mathbb{N}, \exists t' > t, \{u, v\} \in E_{t'}$).

Question 2 : Justifiez (par l'absurde) que l'empreinte récurrente de tout graphe de \mathcal{C} est connexe. Justifiez que la réciproque (c'est-à-dire que tout graphe dynamique dont l'empreinte récurrente est connexe est dans \mathcal{C}) est vraie.

Question 3 : Proposez et justifiez une caractérisation de la classe \mathcal{R} ne faisant intervenir que l'empreinte et l'empreinte récurrente du graphe dynamique.