Object Detection

*Object Detection:

- * A computer vision technique to detect object in an image or video
- * Bounding Box information and Classification of Object

Three Types:

- * Object Classification
- * Object Detection
- * Object Segmentation

*Object Classification:

- * Image Recognition (What type of object in an image)
- * A complete image is sent for the classification. The output is single class

*Object Detection:

- * Identify and locate the presence of object in an image
- * Bounding Box with class
- * Can be multiple bounding box and class

*Object Segmentation:

- * Image Recognition, that identify and separate the distinct objects in an image on pixel level
- * More details

*Haar Feature:

* Mono Chromatic Image -> lighter area as white, dark area as black

*CNN => Convolutional Neural Network : [Classification, not detection]
Pattern Recognition -> Object Recognition -> Classification

*Performance Evaluation Metrics:

- * Localization (IoU)
- * Classification (mAP)

Localization (IoU):

```
* Intersection Over Union
```

- * If says how close the predicted boundary box is close to the Ground Truth [Over Lap]
- * If IoU = 1 then perfect detection, If IoU < 1 then no perfect, if IoU = 0 then no over lap
- * IoU = Area of Intersection / Area of Union

*Classification (mAP):

- * Confusion Matrix [True Positive, False Positive, False Negative, True Negative]
- * Precision [Actual Positives out of total positive predictions]
- * Precision = TP / TP + FP
- * Recall [Actual Positive out of all predictions]
- * Recall = TP / TP + FN
- * Mean Average Precision is mAP