科学计算中的量子算法:量子数值线性代数基本算法

安冬

北京大学北京国际数学研究中心(BICMR)

andong@bicmr.pku.edu.cn

24-25 学年第 2 学期

大纲

- ▶ 矩阵向量乘
- ▶ 向量内积: SWAP 测试与 Hadamard 测试
- ▶ 矩阵/向量加法: 线性酉组合 (LCU)
- ▶ 矩阵乘法

回顾: 向量与矩阵的量子表示

向量:
$$|u\rangle = \sum_{j=0}^{N-1} u_j |j\rangle = (u_0, u_1, \cdots, u_{N-1})^{\top}, \quad ||u\rangle|| = 1$$

$$O_u:|0\rangle\mapsto|u\rangle$$

矩阵: $A \in \mathbb{C}^{2^n \times 2^n}$ 的 (α, a, ϵ) -block-encoding 为酉矩阵 $U_A \in \mathbb{C}^{2^{n+a} \times 2^{n+a}}$:

$$\|A - \alpha (\langle 0|^{\otimes a} \otimes I) U_A (|0\rangle^{\otimes a} \otimes I)\| \leq \epsilon$$

$$U_A pprox \left(egin{array}{cc} rac{1}{lpha}A & * \ * & * \end{array}
ight).$$

回顾:矩阵向量乘

Input:

Block-encoding of A:

$$A \approx \alpha (\langle 0| \otimes I) U_A (|0\rangle \otimes I)$$

$$U_{\mathcal{A}} pprox \left(egin{array}{ccc} \langle 0| & \langle 1| \ & & \ \end{array}
ight) \begin{vmatrix} \langle 0| & \langle 1| \ & \ \end{array}
ight) \begin{vmatrix} \langle 0| & \langle 1| \ & \ \end{array}
ight) \langle 0| \langle 0| & \langle 0| \ \end{array}
ight)$$

or
$$U_A \approx |0\rangle \langle 0| \otimes \frac{A}{\alpha} + |0\rangle \langle 1| \otimes *$$

 $+ |1\rangle \langle 0| \otimes * + |1\rangle \langle 1| \otimes *$

Quantum state:

$$|u\rangle = \sum_{j=0}^{2^n-1} u_j |j\rangle$$

'Algorithm': applying block-encoding

$$|0\rangle$$
 U_A U_A

$$U_A\ket{0}\ket{u}pprox rac{1}{lpha}\ket{0}A\ket{u}+c\ket{1}\ket{*}$$

or
$$\begin{pmatrix} \frac{1}{\alpha}A & * \\ * & * \end{pmatrix} \begin{pmatrix} u \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\alpha}Au \\ * \end{pmatrix}$$

Need to measure the first ancilla gubit

Success probability: $(\|A\|u\|/\alpha)^2$

Number of repeats (after amplitude amplification): $\mathcal{O}\left(\alpha/\|A\|u\rangle\|\right)$

向量内积: SWAP 测试

目标: 计算 | ⟨*u*|*v*⟩ |

$$\begin{vmatrix} 0 \rangle & -H & -H \\ |u \rangle & + \\ |v \rangle & + \end{vmatrix}$$

$$|0\rangle |u\rangle |v\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle |u\rangle |v\rangle + |1\rangle |u\rangle |v\rangle) \rightarrow \frac{1}{\sqrt{2}}(|0\rangle |u\rangle |v\rangle + |1\rangle |v\rangle |u\rangle)$$

$$\rightarrow \frac{1}{2}|0\rangle (|u\rangle |v\rangle + |v\rangle |u\rangle) + \frac{1}{2}|1\rangle (|u\rangle |v\rangle - |v\rangle |u\rangle)$$

$$\mathbb{P}(\mathbf{第}\mathbf{-}\mathbf{ \wedge 量子比特}=1) = \left\|\frac{1}{2}\left(\left|\mathbf{u}\right\rangle\left|\mathbf{v}\right\rangle - \left|\mathbf{v}\right\rangle\left|\mathbf{u}\right\rangle\right)\right\|^2 = \frac{1}{2} - \frac{1}{2}|\left\langle\mathbf{u}|\mathbf{v}\right\rangle|^2$$

向量内积: SWAP 测试

随机变量 X: 与第一个量子比特的结果一致 (用 $|1\rangle\langle 1|$ 测量)

$$\mathbb{E}X = \frac{1}{2} - \frac{1}{2} |\langle u|v\rangle|^2$$

用 $\frac{1}{M}\sum_{m=1}^{M} X_m$ 来估计 $\frac{1}{2} - \frac{1}{2} |\langle u|v\rangle|^2$.

Q: *M* 需要取多大?

向量内积: SWAP 测试

Lemma (Hoeffding 不等式)

设 X_m 为相互独立的随机变量,几乎确定满足 $a_m \le X_m \le b_m$. 令 $S_M = X_1 + \cdots + X_M$,那么

$$\mathbb{P}\left(\left|S_{\mathsf{M}} - \mathbb{E}S_{\mathsf{M}}\right| \ge t\right) \le 2\exp\left(-\frac{2t^2}{\sum_{m=1}^{\mathsf{M}}(b_m - a_m)^2}\right)$$

在 SWAP 测试中:

$$\mathbb{P}\left(\left|\frac{1}{M}\sum X_{m} - \left(\frac{1}{2} - \frac{1}{2}|\langle u|v\rangle|^{2}\right)\right| \ge \epsilon\right) \le 2\exp\left(-2M\epsilon^{2}\right)$$

$$\implies M = \mathcal{O}\left(1/\epsilon^{2}\right)$$

酉矩阵的期望: Hadamard 测试

目标: 计算 $\langle \psi | U | \psi \rangle$, 其中 U 是一个酉矩阵

$$|0\rangle |\psi\rangle \to \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) |\psi\rangle \to \frac{1}{\sqrt{2}}(|0\rangle |\psi\rangle + |1\rangle |U|\psi\rangle)$$
$$\to \frac{1}{2} |0\rangle (I + U) |\psi\rangle + \frac{1}{2}(I - U) |\psi\rangle$$

$$\mathbb{P}(\mathbf{第}\mathbf{-}\mathbf{\uparrow}\mathbf{\Xi}\mathbf{\neq l}\mathbf{H}=0) = \left\|\frac{1}{2}(\mathbf{I}+\mathbf{U})|\psi\rangle\right\|^2 = \frac{1}{2} + \frac{1}{2}\mathrm{Re}(\langle\psi|\mathbf{U}|\psi\rangle)$$

酉矩阵的期望: Hadamard 测试

虚部:

西矩阵的期望: Hadamard 测试

与内积的关系: 取 $U = U_{\phi}U_{\psi}^{\dagger}$ (注意实际量子线路可以简化)

$$\langle \psi | U | \psi \rangle = \langle \psi | \phi \rangle$$

一般矩阵的期望: 计算 $\langle \psi | A | \psi \rangle$, 其中 A 是一个一般的矩阵, U_A 是它的 $(\alpha, a, 0)$ -block-encoding

矩阵/向量加法: 线性酉组合 (Linear Combination of Unitaries)

目标: 给定一组酉变换 U_j 和一组正实数 $c_j>0$,计算 $\sum_{j=0}^{J-1}c_jU_j$

▶ 一般来说不是酉变换

LCU: 例子

目标: 计算 $\frac{1}{2}(U_0 + U_1)$

- \triangleright (1, 1, 0)-block-encoding
- ▶ 成功概率: $\left\|\frac{1}{2}(U_0+U_1)|\psi\rangle\right\|^2$

LCU: 一般形式

目标: 给定一组酉变换 U_j 和一组正实数 $c_j > 0$,计算 $\sum_{j=0}^{J-1} c_j U_j$

$$|0^{\log_2 J}
angle$$
 O_{prep} O_{sel} O_{prep}

$$O_{\mathsf{prep}}:\ket{0}\mapsto rac{1}{\sqrt{\|ec{c}\|_1}}\sum_{j=0}^{J-1}\sqrt{c_j}\ket{j}, \quad O_{\mathsf{sel}}=\sum_{j=0}^{J-1}\ket{j}ra{j}\otimes U_j$$

- $ightharpoonup (\|\vec{c}\|_1, \log_2 J, 0)$ -block-encoding
- ▶ 成功概率: $\left\|\left(\sum_{j} c_{j} U_{j}\right) |\psi\rangle / \|\vec{c}\|_{1}\right\|^{2}$

向量加法

目标:给定一组量子态 $|u_j\rangle$ 和一组正实数 $c_j>0$,计算 $\sum_{j=0}^{J-1}c_j|u_j\rangle$

输入: 量子态的态制备 oracle $U_j: |0\rangle \mapsto |u_j\rangle$

$$\sum_{j=0}^{J-1} c_j |u_j\rangle = \left(\sum_{j=0}^{J-1} c_j U_j\right) |0\rangle$$

矩阵加法

目标: 给定一组矩阵 A_j 和一组正实数 $c_j > 0$,计算 $\sum_{j=0}^{J-1} c_j A_j$

▶ 输入: 矩阵 A_j 的 $(\alpha_j, a, 0)$ -block-encoding U_j (等价于矩阵 A_j/α_j 的 (1, a, 0)-block-encoding)

$$\sum_{j=0}^{J-1} c_j A_j = \sum_{j=0}^{J-1} \alpha_j c_j (A_j / \alpha_j)$$

矩阵加法

$$O_{\mathsf{prep}}:\ket{0}\mapsto rac{1}{\sqrt{\sum lpha_j c_j}} \sum_{j=0}^{J-1} \sqrt{lpha_j c_j}\ket{j}, \quad O_{\mathsf{sel}} = \sum_{j=0}^{J-1} \ket{j}ra{j}\otimes U_j$$

- $\triangleright (\sum \alpha_i c_i, a + \log_2 J, 0)$ -block-encoding
- ▶ 成功概率: $\left\|\left(\sum_{j} c_{j} A_{j}\right) |\psi\rangle / \left(\sum \alpha_{j} c_{j}\right)\right\|^{2}$

LCU 的计算复杂度与局限性

$$egin{align} O_{\mathsf{prep}} : \ket{0} &\mapsto rac{1}{\sqrt{\lVert ec{c}
Vert_1}} \sum_{j=0}^{J-1} \sqrt{c_j} \ket{j}, \ O_{\mathsf{sel}} &= \sum_{i=0}^{J-1} \ket{j} ra{j} \otimes U_j \ \end{pmatrix}$$

访问复杂度: $\mathcal{O}\left(\|\vec{c}\|_1^2/\left\|\left(\sum_j c_j U_j\right)|\psi\rangle\right\|^2\right)$ 次 O_{prep} 和 O_{sel}

- ► O_{sel} 的计算复杂度
 - ▶ 最坏的情况为构造每个 *Ui* 复杂度之和
 - ightharpoonup 如果 U_i 之间有一些联系,那么 O_{sel} 的计算复杂度可能会更低
- ightharpoonup 需要控制版本的 U_j 与额外的辅助量子比特
- ▶ 线路深度较深

LCU 的混合实现

目标: 计算 $\psi^*H\psi$,其中向量 $\psi=\sum_i c_i U_i |\psi_0\rangle$,H 是一个厄米矩阵

$$\psi^* H \psi = \sum_{j,j'} c_j c_{j'} \langle \psi_0 | U_j^\dagger H U_{j'} | \psi_0 \rangle$$

混合算法:

- 1. (经典计算机上) 以概率 $c_j c_{j'} / ||\vec{c}||_1^2$ 概率取样 (j,j')
- 2. (量子计算机上) 对每一个 (j,j') 的样本,分别计算 $\langle \psi_0|U_j^\dagger H U_{j'}|\psi_0
 angle$
- 3. (经典计算机上) 对所有的样本观测值取平均

LCU: 量子实现 vs 混合实现

	计算任务	总计算复杂度	辅助比特数量	控制操作	线路深度
量子实现	block-encoding	低	多	复杂	深
混合实现	测量值	高	少	简单	浅

矩阵乘法

考虑两个矩阵的矩阵乘法

▶ 两个酉矩阵 U₁U₀

▶ 两个一般矩阵 A₀ 和 A₁, 已知它们的 block-encodings U_{A0} 和 U_{A1}. 尝试:

▶ 该线路是不对的,因为 U_{A_1} 会将作用了 U_{A_0} 之后的一些"垃圾"部分带回 $|0\rangle$ 对应的子空间

矩阵乘法

思想: 使用多份独立的辅助量子比特

$$\begin{split} \left|0\right\rangle_{1}\left|0\right\rangle_{0}\left|\psi\right\rangle & \xrightarrow{\mathcal{U}_{A_{0}}} \left|0\right\rangle_{1}\left(\left|0\right\rangle_{0} \mathcal{A}_{0}\left|\psi\right\rangle + \left|1\right\rangle_{0}\left|*\right\rangle\right) \\ & = \left|0\right\rangle_{0}\left|0\right\rangle_{1} \mathcal{A}_{0}\left|\psi\right\rangle + \left|1\right\rangle_{0}\left|0\right\rangle_{1}\left|*\right\rangle \\ & \xrightarrow{\mathcal{U}_{A_{1}}} \left|0\right\rangle_{0}\left(\left|0\right\rangle_{1} \mathcal{A}_{1} \mathcal{A}_{0}\left|\psi\right\rangle + \left|1\right\rangle_{1}\left|*\right\rangle\right) + \left|1\right\rangle_{0}\left|0\right\rangle_{1}\left|*\right\rangle + \left|1\right\rangle_{0}\left|1\right\rangle_{1}\left|*\right\rangle \end{split}$$

J 个矩阵的乘法: 需要 $\mathcal{O}(Ja)$ 额外的辅助量子比特

▶ 更好的方法: compression gadget

矩阵乘法: compression gadget

▶ $a + \log_2 J$ 额外的辅助量子比特

阅读

阅读:

► LL: Chapter 3.1, 7.3