

Introduction to Machine Learning

Software Innovation Institute, ANU

What do we hope to cover?

Modern machine learning (ML) methods for natural language processing (NLP).

What do we hope to cover?

- Representation (for documents/sentences)
- Supervised Machine Learning
 - Linear Classifier
 - Deep Neural Network
- Unsupervised Machine Learning
 - Clustering
 - Self-supervised Learning

What is machine learning?

Machine Learning is about prediction

Examples / features	$x_1, \ldots, x_n \sim X$
Labels / annotations	$y_1, \dots, y_n \sim Y$
Predicator	$f_W(x)\colon X\longrightarrow Y$

Estimate best predicator = training

Given data $(x_1, y_1), \ldots, (x_n, y_n)$, find a predicator $f_W(x)$

Prediction ≠ Understanding

Glossary

Data=a table (dataset, database, sample)

	VAR 1	VAR 2	VAR 3	VAR 4	VAR 5	VAR 6	VAR 7	VAR 8	VAR 9	VAR 1	0 VAR 11	
Object 1	0	1	2	0	1	1	2	1	0	2	0	
Object 2	2	1	2	0	1	1	0	2	1	0	2	
Object 3	0	0	1	0	1	1	2	0	2	1	2	
Object 4	1	1	2	2	0	0	0	1	2	1	1	
Object 5	0	1	0	2	1	0	2	1	1	0	1	
Object 6	0	1	2	1	1	1	1	1	1	1	1	
Object 7	2	1	0	1	1	2	2	2	1	1	1	
Object 8	2	2	1	0	0	0	1	1	1	1	2	
Object 9	1	1	0	1	0	0	0	0	1	2	1	
Object 10	1	2	2	0	1	0	1	2	1	0	1	

- Variables (attributes, <u>features</u>) = measurements made on objects
- **Objects** (<u>samples</u>, observations, individuals, examples, patterns)
- **Dimension** = number of variables
- Size = number of objects

For example:

- Objects: samples, patients, documents, images...
- Variables: genes, proteins, words, pixels...

Supervised Learning

		Inpu	uts		Output		
	A1	A2	A3	A4	Υ		
Ī	-0.69	-0.72	Υ	0.47	Healthy	Supervised	
	-2.3	-1.2	Ν	0.15	Disease	•	
	0.32	-0.9	Ν	-0.76	Healthy	Learning	$Y = h(A_1, A_2, A_3 A_4)$
	0.37	-1	Υ	-0.59	Disease	ŕ	$I = h(A_1, A_2, A_3A_4)$
	-0.67	-0.53	Ν	0.33	Healthy		Model
	0.51	-0.09	Υ	-0.05	Disease		Hypothesis

- Goal: from the database (learning sample), find a function h
 of the inputs that approximates at best the output
- Discrete output ⇒ classification problem
- Numerical output ⇒ regression problem

How to model NLP as ML problem?

Each step generates many problems:

- Data generation: data types, corpus size, online/offline
- Preprocessing: representation, sampling, noise
- Machine learning: learning paradigm/algorithm
- Train & Validate: evaluation, loss, deployment

Outline

- Problems (NLP in Practice)
- Supervised Learning
 - Linear Classification (Sec 1)
- Representation (Sec 2)
- Supervised Learning
 - Deep Neural Network (Sec 3, 4)
- Unsupervised Learning
 - Clustering (Sec 5)
 - Self-supervised Learning (Sec 6)
- Evaluation (NLP in Practice)

