AYOMI AI - Classes

DATA Science (Syllabus)

1. Introduction to Data Science	 What is Data Science? Data Science vs. Machine Learning vs. Artificial Intelligence Applications of Data Science Roles and Responsibilities of a Data Scientist 		
2. Mathematics and Statistics for Data Science	 Linear Algebra (vectors, matrices, eigenvalues/eigenvectors) Probability Theory (distributions, Bayes' theorem) Descriptive Statistics (mean, median, variance, etc.) Inferential Statistics (hypothesis testing, p-values, confidence intervals) Sampling Methods and Estimations Regression Analysis (simple and multiple) 		
3. Programming for Data Science	 Introduction to Python or R Python Libraries: NumPy, Pandas, Matplotlib, Seaborn R Libraries: ggplot2, dplyr, tidyr Data Structures (lists, arrays, dataframes) Functions, Loops, and Conditional Statements File Handling (reading, writing data from CSV, JSON, SQL) 		
4. Data Preprocessing	 Data Cleaning (handling missing data, outliers) Data Transformation (scaling, encoding, normalization) Feature Engineering (creating new features, feature selection) Text Data Processing (tokenization, stopwords, TF-IDF) 		
5. Exploratory Data Analysis (EDA)	 Data Visualization (histograms, boxplots, scatterplots, etc.) Correlation and Covariance Identifying trends and patterns Summary Statistics Using Matplotlib, Seaborn, and Plotly for visualizations 		
6. Machine Learning	 Supervised Learning: Linear Regression Logistic Regression Decision Trees and Random Forests Support Vector Machines (SVM) k-Nearest Neighbors (k-NN) Neural Networks 		

	 Unsupervised Learning: Clustering (K-means, Hierarchical) Dimensionality Reduction (PCA, t-SNE) Model Evaluation (cross-validation, metrics like accuracy, precision, recall, F1 score) 				
7. Deep Learning	 Introduction to Neural Networks Backpropagation and Gradient Descent Convolutional Neural Networks (CNNs) Recurrent Neural Networks (RNNs) and LSTMs TensorFlow and Keras 				
8. Natural Language Processing (NLP)	 Text Preprocessing (tokenization, lemmatization, stemming) Bag-of-Words, TF-IDF, Word2Vec Sentiment Analysis Named Entity Recognition (NER) Text Classification and Clustering 				
9. Big Data and Data Engineering	 Introduction to Big Data Tools (Hadoop, Spark) Distributed Data Processing Working with NoSQL Databases (MongoDB, Cassandra) Data Pipelines and ETL (Extract, Transform, Load) Cloud Platforms (AWS, Azure, Google Cloud) 				
10. Model Deployment and Production	 Model Deployment using Flask/Django Introduction to REST APIs Cloud Deployment (AWS, GCP, Heroku) Continuous Integration and Continuous Deployment (CI/CD) Model Monitoring and Maintenance 				
11. Capstone Project	 Working on a real-world dataset Applying Data Science techniques to solve a business problem Presenting results and insights using visualizations 				
Optional: Special Topics in Data Science	 Reinforcement Learning Advanced Deep Learning (GANs, Transformers) Time Series Analysis Recommender Systems 				

-		