Feedback Vertex Set with Bounded Cycle Length: Approximation, Tractability and Beyond the Worst-Case Analysis

Martin Sokolov

Utrecht University

June 19, 2025

Outline

- Problem Overview
- 2 Approximation Schemes
- 3 Fixed-Parameter Tractability of FVS-BCL
- 4 Certified Algorithms
- Conclusion

Problems Studied (Emphasis on Focus Areas)

- Dominating Set
- Feedback Vertex Set (FVS)
- Feedback Vertex Set with Four Cycle Length (FVS-4CL)
- Feedback Vertex Set with Bounded Cycle Length (FVS-BCL)
- r-Dominating Set (r-DS)

FVS-4CL is the primary focus of this work. We aim to generalize results to **FVS-BCL**. (Our hope in the beginning was generalizing our results to **FVS**).

Approximation Algorithms for Feedback Vertex Set (FVS)

- $\min\{2\Delta^2, 4 \log n\}$ where Δ is the max. degree in G. (Bar-Yehuda et al., 1994)
 - Primal-dual algorithm on undirected graphs with general vertex weights.
- 2-Approximation (Bafna et al., 1995)
 Local ratio technique with improved efficiency.
- 2-Approximation (Becker and Geiger, 1996)
 Greedy-like approximation algorithm.
- 2-Approximation (Chudak et al., 1998)
 A primal-dual algorithm.
- Hardness: APX-Complete (Dinur and Safra, 2005)
 NP-hard to approximate within a factor better than 1.36 via reduction from Vertex Cover.

Approximation Algorithms for Feedback Vertex Set (FVS) in planar graphs

- PTAS for FVS (Kleinberg and Kumar, 2001)
- PTAS for FVS (Le and Zheng, 2020) Using a local search heuristic
- EPTAS for unweighted FVS (Demaine and Hajiaghayi)
 Using bidimensionality
- PTAS for weighted FVS (Cohen-Addad et al., 2016)
 Reduction from weighted feedback vertex set to vertex-weighted connected dominating set
- EPTAS for weighted FVS (Open question.)

FVS with Bounded Cycle Length (FVS-BCL)

 Inapproximability of Feedback Vertex Set for Bounded Length Cycles (Guruswami and Lee, 2014)

For any integer constant $\rho \geq 3$ and $\epsilon > 0$, it is hard to find a $(\rho - 1 - \epsilon)$ -approximate solution to the problem of intersecting every cycle of length at most ρ .

EPTAS via Baker's Technique

We obtain:

- $(1 + 2\epsilon)$ -approximation algorithm for the FVS-4CL problem with a running time of $2^{\mathcal{O}(\mathsf{tw}^2)} \cdot n^{\mathcal{O}(1)}$.
- $\left(1+\frac{\lfloor \rho/2\rfloor}{\epsilon}\right)$ -approximation for the FVS-BCL problem with a running time of $f\left(\mathrm{tw},\rho\right)\cdot n^{\mathcal{O}(1)}$ for some computable function f.

Baker's Technique for Unweighted FVS-4CL

Algorithm Baker's technique for the unweighted FVS-4CL

Require: Planar graph G = (V, E), parameter $\ell \leftarrow \frac{1}{\epsilon}$ **Ensure:** $(1 + \epsilon)$ -approximation for FVS-4CL

- 1: Perform BFS from some arbitrary vertex r
- 2: $S \leftarrow \emptyset$
 - i: shift; j: slice
- 3: **for** each i = 0 to $\ell 1$ **do**
- 4: Let $G_{i,j}$ be the subgraph induced on vertices at levels $j \cdot \ell + i$ through $(j+1) \cdot \ell + i + 1$ for all $j \geq 0$.
- 5: Let $S_{i,j}$ be the minimum unweighted FVS-4CL of $G_{i,j}$ using Algorithm 21 as a subroutine (weights are all ones).
- 6: Let $S_i = \bigcup_i S_{i,j}$
- 7: $S \leftarrow S \cup \{\tilde{S}_i\}$
- 8: end for
- 9: **return** S_{i*} from S with minimum cardinality

BFS Layered Tree Structure

Idea: Break graph into layers via BFS.

- Nodes grouped by distance from root.
- Overlap grouped by distance from root mod \(\ell \)
- Subgraphs $G_{0,0}, G_{0,1}, G_{0,2}, \dots$

Bounds on the Optimum Solution (Unweighted Case)

Lemma (Bound on the Optimum Solution in Subgraphs)

Let $S_{i,j}$ be the minimum unweighted feedback vertex set (FVS-4CL) for subgraph $G_{i,j}$, computed using Algorithm 1, and let $F \equiv OPT$ be the optimum solution for the full graph G.

Define $F_{i,j} := F \cap V(G_{i,j})$, i.e., the restriction of the global solution F to the subgraph $G_{i,j}$.

Then:

$$|S_{i,j}| \leq |F_{i,j}|$$

Result (Optimum solution bound for the whole graph)

Let S_i be the union of optimal solutions defined on Line 6 of Algorithm 1 for some shift i. Let $F \equiv OPT$ be the optimum solution in G and let $F_{i,j} = G_{i,j} \cap F$. For those sets it holds that:

$$|S_i| \leq \sum_i |S_{i,j}| \leq \sum_i |F_{i,j}|$$

◄□▶◀圖▶◀불▶◀불▶ 불

Bounds on the Optimum Solution (Unweighted Case)

Lemma (Bound for the vertices on the boundaries (Unweighted Case))

Let $F_i = F \cap \{vertices \ at \ levels \ i \ mod \ \ell\}$. The sets F_i are disjoint and $\bigcup_i F_i = F$. We claim that:

$$\exists q \in \{0, 1, \dots, \ell - 1\} : |F_q| + |F_{q+1}| \le \frac{2}{\ell} \cdot |F|.$$

Lemma (Bound for the cardinality of the intersection sets)

Let $F \equiv OPT$ be the optimal solution and $F_{i,j} = F \cap G_{i,j}$ be the intersection sets with the subgraphs. Then we have:

$$\sum_{i} |F_{i^*,j}| \leq |F| + \frac{2}{\ell} \cdot |F|$$

for some specific integer i*.

$$|S_{i^*}| \leq \sum_{j} |S_{i^*,j}| \leq \sum_{j} |F_{i^*,j}| \leq |F| + \frac{2}{\ell} \cdot |F| = (1 + \frac{2}{\ell}) \cdot |F|$$

Weighted Bounds for FVS-BCL Problems

Weighted FVS-4CL:

$$w(S_{i^*}) \leq \sum_j w(S_{i^*,j}) \leq \sum_j w(F_{i^*,j}) \leq w(F) + \frac{2}{\ell} \cdot w(F) = \left(1 + \frac{2}{\ell}\right) \cdot w(F)$$

Weighted FVS-BCL (break cycles of length ρ):

$$w(S_{i^*}) \leq \sum_{j} w(S_{i^*,j}) \leq \sum_{j} w(F_{i^*,j}) \leq \left(1 + \frac{\lfloor \rho/2 \rfloor}{\ell}\right) \cdot w(F)$$

Fixed-Parameter Tractability of FVS-BCL

Fixed-Parameter Tractability of FVS-BCL

- Monadic Second Order Logic for FVS-BCL
- Dynamic Programming Algorithm for FVS-BCL using Nice Tree Decompositions

MSOL Formulation

- An extension of First-Order Logic
- Object variables: *vertices*: v_1, v_2, \ldots and *edges*: e_1, e_2, \ldots
- Set variables: sets of vertices V_1, V_2, \ldots and sets of edges E_1, E_2, \ldots
- Binary relation \in : {object variable} \times {set variable} \rightarrow {0, 1}. Therefore $v \in V$ iff v is an element of the corresponding set V.
- The $Adj(e, v_i, v_j)$ relation. It detects whether edge e is an edge from vertex v_i to vertex v_j where $v_i \neq v_j$.
- Quantification over set variables: $\forall V_i, \forall E_i$ and $\exists V_i, \exists E_i$.

MSOL Formulation: Unweighted FVS-4CL

```
\min_{F \subseteq V} |F| :

\forall v : \forall u : \forall w : \forall z :

v \in (V \setminus F) \land u \in (V \setminus F) \land w \in (V \setminus F) \land z \in (V \setminus F)

\land v \neq w \land u \neq z

\land \neg ((v, u) \in E \land (u, w) \in E \land (w, z) \in E \land (v, z) \in E)

(1)
```

MSOL Formulation: Weighted FVS-4CL

```
\min_{F \subseteq V} w(F) : 

\forall v : \forall u : \forall w : \forall z : 

v \in (V \setminus F) \land u \in (V \setminus F) \land w \in (V \setminus F) \land z \in (V \setminus F) 

\land v \neq w \land u \neq z 

\land \neg ((v, u) \in E \land (u, w) \in E \land (w, z) \in E)

(2)
```

MSOL Formulation: Weighted FVS-ρCL

```
\min_{F \subseteq V} w(F):
        \forall v_1 : \forall v_2 : \dots \forall v_n :
        v_1 \in (V \setminus F) \land v_2 \in (V \setminus F) \cdots \land v_n \in (V \setminus F)
         \land (v_1 \neq v_2 \land v_1 \neq v_3 \land \cdots \land v_1 \neq v_o)
         \wedge (v_2 \neq v_1 \wedge v_2 \neq v_3 \wedge \cdots \wedge v_2 \neq v_0)
         \wedge (v_0 \neq v_1 \wedge v_0 \neq v_2 \wedge \cdots \wedge v_0 \neq v_{o-1})
         \land \neg ((v_1, v_2) \in E \land (v_2, v_3) \in E \land \cdots \land (v_{o-1}, v_o) \in E \land (v_o, v_1) \in E)
```

Courcelle's Theorem and MSOL Solvability of FVS-ρCL

Theorem (Courcelle's theorem)

Assume that ϕ is a MSOL formula and G is an n-vertex graph, with an evaluation of all free variables of ϕ . Suppose a tree decomposition of G of width t is given. Then there exists an algorithm that verifies whether ϕ is satisfied in G in time:

$$f(\|\phi\|,t)\cdot n^{\mathcal{O}(1)}$$

for some computable function f.

Corollary (MSOL Solvability of FVS- ρ CL on Bounded-Treewidth Graphs)

Let $\rho \geq 3$ be a constant and G = (V, E) be a graph of treewidth at most tw, with vertex-weight function $w: V \to \mathbb{N}$. Then the minimum-weight set breaking all ρ -cycles (FVS- ρ CL) can be computed in time:

$$f(\rho,\mathsf{tw})\cdot n^{\mathcal{O}(1)}$$

for some computable function f depending only on ρ and tw.

Dynamic Programming Algorithm for FVS-4CL over Nice Tree Decompositions

Algorithm Design for FVS-4CL

- **3** Solution: For the FVS-4CL problem, a solution for graph G is a set F such that G-F contains no 4-cycles.
- **② Partial Solution:** For subgraph $G_i = (V_i, E_i)$, a partial solution F_i is a subset $F_i \subseteq V_i$, a restriction of a full solution.
- **3** Extension of Partial Solution: A solution F extends F_i if $F \cap V_i = F_i$.
- **1** Characteristic of a Partial Solution: For X_i , vertices are partitioned as:
 - $I \subseteq X_i$: vertices in the partial solution.
 - $\mathcal{F} \subseteq X_i \times X_i$: pairs (v, u) with a common neighbour $w \in V_i \setminus X_i$ not in F_i .

$$ch(G_i,F_i)=\big(I,\{(v,u)\in X_i\times X_i:\exists w\in V_i\setminus X_i,(v,w),(u,w)\in E_i,w\notin F_i\}\big)$$

The valuation table $c[i, I, \mathcal{F}] \in \mathbb{N} \cup \{\infty\}$ gives the minimum weight of partial solution F_i :

$$c[i, I, \mathcal{F}] = \min\{w(W) : W \text{ is a FVS-4CL of } G_i \land W \cap X_i = I\}$$

§ Full Set of Characteristics: For node X_i , valuations exist for all

$$I \in \{0,1\}^{|X_i|}$$
 and $\mathcal{F} \in \{0,1\}^{|X_i imes X_i|}$

There are at most $2^{(tw+1)} \cdot 2^{\binom{tw+1}{2}} = 2^{\mathcal{O}(tw^2)}$ entries.

DP Transitions over Tree Decomposition Nodes

Leaf Node: $X_i = \emptyset$

$$c[i,\emptyset,\emptyset]=0$$

Introduce Node: Let $X_i = X_j \cup \{v\}$

$$\begin{split} c[i,I \cup \{v\},\mathcal{F}] &= w(v) + c[j,I,\mathcal{F}] \\ c[i,I,\mathcal{F}] &= \begin{cases} \infty & \text{if } \exists u,w \notin I: (u,w) \in \mathcal{F}, \ (v,u),(v,w) \in E_i \\ c[j,I,\mathcal{F}] & \text{otherwise} \end{cases} \end{split}$$

Forget Node: Let $X_i = X_j \setminus \{v\}$

$$c[i, I, \mathcal{F}] = \min \begin{pmatrix} c[j, I \cup \{v\}, \mathcal{F}], \\ c[j, I, \mathcal{F} \cup \{(u, w) : (v, u), (v, w) \in E_i\}] \end{pmatrix}$$

Join Node: Let $X_i = X_{j_1} = X_{j_2}$

$$c[i, I, \mathcal{F}] = \min_{\mathcal{F}_{1} \cup \mathcal{F}_{2} = \mathcal{F}} (c[j_{1}, I, \mathcal{F}_{1}] + c[j_{2}, I, \mathcal{F}_{2}] - w(I))$$

Infeasible if $\exists u, w \notin I : (u, w) \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow c[i, I, \mathcal{F}] = \infty$

Rhombus Graph and Tree Decomposition

Nice Tree Decomposition of the graph G with a width of 2.

Rhombus Graph and Tree Decomposition

(C)	$\overline{}$
{} Root	(9)
	(-)
<u>{</u> }	(-)
Forget d	(8)
{d}	\equiv
Forget c	(7)
{c,d}	
Forget b	(6)
{b,c,d}	
Introduce c	(5)
miroduce e	(3)
{b,d}	$\overline{}$
Forget a	(4)
{a,b,d}	
Introduce d	(3)
{a,b}	$\overline{}$
Introduce b	(2)
	=
({a})
Introduce a	(1)
(1)	
Loof	(0)
Leaf	(0))

i	1	\mathcal{F}	Value
0	Ø	### ##################################	0
1	а	Ø	1
1	a ∅	Ø	0
2	$\{a,b\}$	Ø	4
2	{a}	Ø	1
2	{b}	Ø	3
2	{a,b} {a} {b}	Ø	0
3	$\{a, b, d\}$	Ø	6
3	$\{a,b\}$	Ø	4
3	$\{a,d\}$	Ø	3
3	$\{b,d\}$	Ø	5
3	`{a}´	Ø	1
3	{ <i>b</i> }	Ø	3
3	{d}	Ø	2
3	{a, b, d} {a, b} {a, d} {b, d} {b} {d}	Ø	0
4	{b, d}	Ø	6
4	{b, d} {b, d} {b}	{ <i>b</i> , <i>d</i> }	5
4	`{b}') Ø	4
i 0 1 1 1 2 2 2 2 3 4 <td>{b, d} {b} {b}</td> <td>$\{b,d\}$</td> <td>0 1 0 4 1 3 0 6 4 3 5 1 3 2 0 6 5 4 3</td>	{b, d} {b} {b}	$\{b,d\}$	0 1 0 4 1 3 0 6 4 3 5 1 3 2 0 6 5 4 3

_	,		
1	1	<u> </u>	Value
4	$\mid \{d\}$	Ø	3
4	{d}	$\{b,d\}$	2
4	\ Ø	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1
4	Ø	$ \{b,d\} $	0
5	{d} {d} ∅ ∅ {b, c, d} {b, c, d}	$ \begin{cases} b, d \\ \emptyset \\ b, d \end{cases} $	10
5	$\{b,c,d\}$	$\begin{cases} \emptyset \\ \{b,d\} \end{cases}$	9
5	$\{b,d\}$	` Ø ´	6
5	$\{b,d\}$	$\{b,d\}$	5
5	$\{b,c\}$) Ø ´	8
5	$\{b,c\}$	$ \{b,d\} $	7
5	{b}	Ø	4
5	{ <i>b</i> }	{b, d} ∅ {b, d}	3
5	$\{c,d\}$	Ø	7
5	$\{c,d\}$	$\{b, d\}$	6
5	$\{d\}$	\ Ø	3
5	{ d }	$\{b, d\}$	2
5	{c}	Ø	5
144445555555555555555555	{b, d} {b, c} {b, c} {b, c} {b} {c, d} {c, d} {c, d} {d} {c} {c}	$\{b,d\}$	3 2 1 0 10 9 6 5 8 7 4 3 7 6 3 2 5 4 1
5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1
5	l Ø	$\{b, d\}$	$\mid \infty \mid$

Rhombus Graph and Tree Decomposition

{} Root	(9)
{} Forget d	(8)
{d}	\neg
Forget c	(7)
{c,d}	
Forget b	(6)
{b,c,d}	
Introduce c	(5)
{b,d}	
Forget a	(4)
${a,b,d}$	\neg
Introduce d	(3)
{a,b}	
Introduce b	(2)
{a}	\neg
Introduce a	(1)
{ }	
Leaf	(0)

i	1	$ \mathcal{F} $	Value
6	$\{c,d\}$	Ø	10
6	$\{c,d\}$	Ø	9
6	$\{d\}$	Ø	6
6	{d}	Ø	5
6	{c}	Ø	8
6	{c}	Ø	7
6	{c} {c} {c} ∅	\emptyset	4
6	Ø	Ø	3
6	$\{c,d\}$	$ \emptyset $	7
6	$\{c,d\}$	Ø	6
6	$\{d\}$	Ø	3
6	{ <i>d</i> }	Ø	2
6	{c}	Ø	5
6	{c}	$ \emptyset $	4
66666666666666666	{ <i>c</i> } ∅ ∅		10 9 6 5 8 7 4 3 7 6 3 2 5 4 1
6	Ø	Ø	∞

i	1	${\mathcal F}$	Value	
6	$\{c,d\}$	Ø	6	
6	$\{d\}$	Ø	6 2 4	
6	{c}	Ø	4	
6 6 7	\Ø	Ø	1	
7	{ <i>d</i> }	Ø	2	
7	Ø	Ø	1	
8	Ø	Ø	1	
9	Ø	Ø	1	

Beyond the Worst-Case Analysis

Beyond the Worst-Case Analysis

- Perturbation resilience
- m-Stitching and Π -m-Stitching
- Certified Algorithms

Definitions: γ -Perturbation and γ -Stability

Definition (γ -Perturbation for Vertex-Optimization Problems)

Let (G, w) be a weighted graph. For any $\gamma \in \mathbb{R}_{\geq 0}$, a γ -perturbation of the weight function $w: V \to \mathbb{N}$ is a function $w': V \to \mathbb{R}$ such that:

$$w(v) \le w'(v) \le \gamma \cdot w(v) \quad \forall v \in V.$$

the number may be different for each parameter!

Definition $(\gamma$ -Stability)

Let Π be a vertex-minimization problem. For any $\gamma \in \mathbb{R}_{\geq 0}$, a weighted graph (G,w) is called a γ -stable instance of Π if it admits a unique optimal solution S that remains optimal under all γ -perturbations of the weight function w.

Definition: Certified Algorithm

Definition (Certified Algorithm)

A γ -certified solution to an instance (G, w) of a weighted vertex-optimization problem Π is a pair (S, w'), where:

- w' is a γ -perturbation of the original weight function w, and
- S is an **optimal solution** for the instance (G, w').

A γ -certified algorithm for Π maps each instance (G, w) to a γ -certified solution.

Certified Algorithms and Perturbation Resilience

Perturbation-Resilient Instances

- An instance I is γ -perturbation resilient if:
 - I has a unique optimal solution, and
 - every γ -perturbation of I preserves that optimal solution.

Certified Algorithms

- A γ -certified algorithm:
 - Exactly solves all γ -perturbation-resilient instances.
 - Always returns a γ -approximate solution.
 - Gives a γ -approximate solution for the compliment problem.

Definition: *m*-stitching

Definition (*m*-stitching)

Assume $m \ge 0$ is an integer, J is an induced subgraph of G, and $S_1, S_2 \subseteq V(G)$. Then we define the m-stitch of S_2 onto S_1 along J as the set:

$$S_3 := (S_1 \setminus J) \cup (S_2 \cap N_G^m[J]).$$

Illustration of 2-stitching

Figure: Vertex set S_1

Figure: Vertex set S_2

Figure: J and $N_G^2[J]$

Figure: Remove J from S_1

Figure: Add $S_2 \cap N_G^2[J]$

Figure: Final set S_3

Meta-Theorem for Minor-Closed Graph Classes

Theorem (Meta-Theorem for Minor-Closed Graph Classes)

Let \mathcal{G} be a minor-closed graph class whose local treewidth is bounded by $g(r) = \lambda \cdot r$, for fixed $\lambda \in \mathbb{R}$ and $r \in \mathbb{N}$.

Let Π be a vertex-minimization problem such that:

- **①** Π is guessable.
- Π is m-stitchable.
- **3** There exists an algorithm A_{Π} that solves Π -m-stitching in time $f(t) \cdot |V(G)|^{\mathcal{O}(1)}$, where $t = \mathsf{tw}(G[N_G^m(J)])$ and f is computable.

Then, for each $\epsilon > 0$, there exists a $(1 + \epsilon)$ -certified algorithm for Π running in time $f(\lambda \cdot m/\epsilon) \cdot |V(G)|^{\mathcal{O}(1)}$ on any input $(G, w : V(G) \to \mathbb{N})$, with $G \in \mathcal{G}$ and polynomially-bounded weights.

Guessable Problems

Definition (Guessable)

A problem Π is *guessable* if there is an algorithm that outputs a feasible solution with no requirement for optimality in polynomial time.

In the case of FVS-BCL:

This set is $F \leftarrow V$ for a graph G = (V, E).

Lemma: FVS-BCL is 2-stitchable

Lemma (FVS-BCL is 2-stitchable)

Let (G, w) be any instance of the FVS-4CL problem, let $J \subseteq V(G)$ be a subset of the vertices in the graph, and let S_1 and S_2 be any two feasible solutions to the problem in G. Then the set

$$S_3:=(S_1\setminus J)\cup (S_2\cap N_G^2[J])$$

is a feasible solution to the problem.

Stitch-FVS-4CL Algorithm

Algorithm Stitch-FVS-4CL

Require: Vertex-weighted planar graph $(G, w : V(G) \to \mathbb{N})$, a feasible solution S_1 on G, and a vertex set $J \subseteq V(G)$

Ensure: Feasible solution S' on G, such that for all feasible solutions S^* , $w(S') \le w(S^* \oplus_{G \in I}^2 S_1)$

- 1: $H \leftarrow G[N_G^2[J] \setminus (S_1 \setminus J)]$
- 2: Let S_2 be the output of algorithm A on input (H, w)
- 3: **if** $w(S_2 \oplus_{G,J}^2 S_1) < w(S_1)$ **then**
- 4: **return** $S_2 \oplus_{G,J}^2 S_1$
- 5: **else**
- 6: **return** S_1
- 7: end if

Case-distinction proof

Figure: Sets $J \subseteq N_G^1[J] \subseteq N_G^2[J]$; Solution S_1 in blue

Figure: $\forall v \in \{v_1, v_2, v_3, v_4\}$, such that $v \in S_1$, it holds that $v \notin J$

Case-distinction proof

Figure: $\exists v \in \{v_1, v_2, v_3, v_4\}$, such that $v \in S_1$: $v \in J$

Figure: $\forall v \in \{v_1, v_2, v_3, v_4\}$, such that $v \in S_1$: $v \in J$

Meta-Theorem for Minor-Closed Graph Classes

Theorem (Meta-Theorem for Minor-Closed Graph Classes)

Let \mathcal{G} be a minor-closed graph class whose local treewidth is bounded by $g(r) = \lambda \cdot r$, for fixed $\lambda \in \mathbb{R}$ and $r \in \mathbb{N}$.

Let Π be a vertex-minimization problem such that:

- **①** Π is guessable.
- Π is m-stitchable.
- **3** There exists an algorithm A_{Π} that solves Π -m-stitching in time $f(t) \cdot |V(G)|^{\mathcal{O}(1)}$, where $t = \mathsf{tw}(G[N_G^m(J)])$ and f is computable.

Then, for each $\epsilon > 0$, there exists a $(1 + \epsilon)$ -certified algorithm for Π running in time $f(\lambda \cdot m/\epsilon) \cdot |V(G)|^{\mathcal{O}(1)}$ on any input $(G, w : V(G) \to \mathbb{N})$, with $G \in \mathcal{G}$ and polynomially-bounded weights.

$(1+\epsilon)$ -Certified Algorithm for FVS-4CL

Algorithm $(1 + \epsilon)$ -Certified algorithm for FVS-4CL

Require: Vertex-weighted planar graph $(G, w : V(G) \rightarrow \mathbb{N})$, $\epsilon > 0$

Ensure: A vertex set $S^* \subseteq V(G)$ and a $(1 + \epsilon)$ -perturbation w' of w such that S^* is optimal for FVS-4CL on (G, w')

- 1: $\kappa \leftarrow \left\lceil \frac{2m}{\epsilon} \right\rceil + 2m$, where $m \leftarrow 2$
- 2: Let S^* be a feasible solution (FVS-4CL is guessable)
- 3: Perform BFS from an arbitrary vertex r
- 4: **while** there exists a subgraph $J_{\kappa-2m}$ of width $\kappa-2m$ such that $w_{\Delta}((G,w),S^*,J_{\kappa-2m}) < w(S^*)$ **do**
- 5: $S^* \leftarrow A((G, w), S^*, J_{\kappa-2m})$
- 6: end while
- 7: Define $w':V(G)\to\mathbb{R}^+$ by:

$$w'(x) = \begin{cases} w(x) & \text{if } x \in S^* \\ (1+\epsilon)w(x) & \text{otherwise} \end{cases}$$

Summary of Contributions

- Applied Baker's technique to establish an EPTAS for the FVS-BCL and FVS-4CL problems in planar graphs.
- Proved that the FVS-4CL problem is tractable via dynamic programming over nice tree decompositions, and that the FVS-BCL problem is tractable via a formulation in monadic second-order logic (MSOL).
- Designed an algorithm for computing (1 + ε)-certified solutions for both problems.

Future Work

- Extend the DP algorithm over nice tree decompositions to FVS-BCL
- Improve the current algorithm that has a running time of $2^{\mathcal{O}(\mathsf{tw}^2)} \cdot n^{\mathcal{O}(1)}$
 - Cut & Count technique, which obtained a $3^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$ randomized algorithm (Cygan et al., 2011)
 - Deterministic $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$ rank-based approach (Bodlaender et al., 2015)
- Improve the certified algorithm for FVS-BCL. In particular, it would be valuable to develop an approach that eliminates the current reliance on the polynomially-bounded weights constraint

Thank you!

Questions?