Билеты по дискретной математике, 4 модуль

ПАДИИ, 1 курс

17 June 2024

1 Индивидные переменные. k-местные формулы и предикаты. Константы.

Определение:

 $M \neq \varnothing$

$$M^{k} = \{(x_1, x_2, ..., x_k) \mid x_i \in M\}, k$$
 - валентность.

 $f:M^k\longrightarrow M$ - k-местная функция.

 $P:M^k\longrightarrow \mathbb{B}$ - k-местный предикат.

Определение:

Функциональные символы - обозначения для функций.

Предикатные символы - обозначения для предикатов.

Определение:

Сигнатура - произвольный набор из предикатных и функциональных символов.

Определение:

Индивидные переменные - некоторый набор переменных, предназначенный для обозначения элементов множества.

Определение:

Константа - нульместный функциональный символ.

2 Атомарные функции и термы. Формулы языка первого порядка.

Определение:

Терм - последовательность переменных, запятых, скобок и символов сигнатуры, которую можно построить по следующим правилам:

- 1. Индивидная переменная терм.
- 2. Функциональный символ валентности 0 терм.

3. Если $t_1,t_2,...,t_k$ - термы, а f - функциональный символ валентности k>0, то $f(t_1,...,t_k)$ - терм.

Определение:

Атомарная формула - выражение $A(t_1,t_2,...,t_k)$, где A - предикатный символ валентности k, а $t_1,t_2,...,t_k$ - термы.

Правила построения формул:

- 1. Атомарная формула формула.
- 2. Если φ формула, то $\neg \varphi$ формула.
- 3. Если φ , ψ формулы, то φ & ψ , $\varphi \mid \psi$, $\varphi \longrightarrow \psi$ формулы.
- 4. Если φ есть формула, а ξ индивидная переменная, то выражения $\forall \xi \ \varphi$ и $\exists \xi \ \varphi$ являются формулами.

3 Язык первого порядка. Сигнатура и интерпретация. Примеры разных интерпретаций одной сигнатуры.

Такие формулы называются формулами первого порядка, а сигнатуры называются языками первого порядка.

Определение:

Пусть σ - сигнатура. Чтобы задать интерпретацию сигнатуры $\sigma,$ необходимо:

- 1. Указать множество M носитель интерпретации.
- 2. Для каждого предикатного символа сигнатуры σ указать предикат с соответствующим числом аргументов, определенный на M.
- 3. Для каждого функционального символа сигнатуры σ указать функцию с соответсвующим числом аргументов с аргументами и значениями из M.

Примеры:

4 Параметры формул. Свободные и связанные вхождения переменных. Проверка истинности формул. Оценки.

Определение:

Параметр формулы - свободная переменная формулы.

- 1. Параметры терма все входящие в него индивидные переменные.
- 2. Параметр атомарной формулы параметры всех входящих в нее термов.

- 3. Параметры формулы $\neg \varphi$ такие же, что и у формулы φ .
- 4. Параметры формул $\varphi \land \psi, \varphi \lor \psi, \varphi \longrightarrow \psi$ параметры формул φ и ψ .
- 5. Параметры формул $\forall \xi \ \varphi$ и $\exists \xi \ \varphi$ параметры формулы φ .

Определение:

Свобоный параметр - параметр, который входит в формулу без кванторов. Связанный параметр - параметр, который входит в формулу с кванторами.

Определение:

Оценка - отображение, которое ставит в соответствие каждой индивидной переменной некоторый элемент носителя интерпретации. Этот элемент значение переменной при данной оценке.

Определение:

Значение терма t при оценке π (обозначается как $[t](\pi)$:

- 1. Для переменных значение определено $\pi(t)$.
- 2. Если t константа, то $[t](\pi)$ не зависит от π и равно значению этой константы при данной интерпретации.
- 3. Если t имеет вид $f(t_1,...,t_k)$, где f функциональный символ валентности k, а $t_1, ..., t_k$ - термы, то $[t](\pi)$ определяется как $[f]([t_1](\pi), ..., [t_k](\pi))$.

Определение:

Значение формулы φ при оценке π (обозначается как $[\varphi](\pi)$:

- 1. Значение атомарной формулы $A(t_1,...,t_k)$ определяется как $[A]([t_1](\pi),...,[t_k](\pi))$.
- 2. $[\neg \varphi](\pi) = \neg [\varphi](\pi)$.
- 3. $[\varphi \wedge \psi](\pi) = [\varphi](\pi) \wedge [\psi](\pi)$.
- 4. $[\forall \xi \ \varphi](\pi) = \bigwedge_{m \in M} [\varphi](\pi + (\xi \longmapsto m)).$ 5. $[\exists \xi \ \varphi](\pi) = \bigvee_{m \in M} [\varphi](\pi + (\xi \longmapsto m)).$

Замкнутая формула = суждение = формула без параметров.

5 Выразимость предикатов. Примеры выразимых и невыразимых предикатов.

Определение:

k-местный предикат называется *выразимым*, если существует формула $\varphi(x_1, x_2, ..., x_k)$, такая что для любой оценки $\pi [\varphi](\pi) = 1$ и $P(x_1, x_2, ..., x_k) = 1$.

Определение:

Выразимое множество - область истинности выразимых предикатов.

Примеры:

1. $(\mathbb{N}, S, =)$. Предикат "быть нулем" выразим в данной интерпретации:

$$\neg \exists y \ (x = S(y))$$

2. ($\mathbb{Z},=,<$). Предикат x=0 невыразим в данной интерпретации. Автоморфизм: $\alpha(x)=x+1$. Заметим, что $\alpha(0)=1$.

6 Арифметичность предиката. Примеры для простых предикатов и битовых строк.

Определение:

Арифметические предикаты - предикаты, выразимые с помощью формул сигнатуры $(\mathbb{N},+,\cdot,=)$.

Метод Гёделя для доказательства арифметичности:

Зафиксируем взаимнооднозначное соответствие между натуральными числами и двоичными словами: чтобы получить слово, соответствующее числу n, нужно записать n+1 в двоичной системе счисления и удалить первую единицу.

Примеры:

1. Предикат "слово x состоит из нулей" арифметичен, т.к. при переходе к числам ему соответствует предикат "x+1 - степень двойки", а такой предикат арифметичен.

7 Проверка невыразимости предиката через автоморфизмы. Теорема об устойчивости относительно автоморфизмов. Примеры.

Определение:

Автоморфизм интерпретации $\alpha: M \longrightarrow M$ - отображение, при котором все функции и предикаты, входящие в интерпретацию, устойчивы относительно $\alpha.$

Определение:

k-местный предикат устойчивый относительно α , если

$$P(\alpha(m_1),...,\alpha(m_k)) \iff P(m_1,...,m_k).$$

Определение:

k-местная функция устойчивая относительно α , если

$$f(\alpha(m_1),...,\alpha(m_k)) \iff \alpha(f(m_1,...,m_k)).$$

Теорема:

Любой предикат, выразимый в данной интерпретации, устойчив отностиельно ее автоморфизмов.

Доказательство:

Пусть π - некоторая оценка, α - автоморфизм.

Заметим, что $[t](\alpha \circ \pi) = \alpha([t](\pi))$ и $[\varphi](\alpha \circ \pi) = [\varphi](\pi)$, а это определение устойчивых предикатов и функций.

Примеры:

Примеры смотрите TYT

8 Элиминация кванторов в $(\mathbb{Z}, =, S, 0)$.

Теорема:

Для всякой формулы рассматриваемой сигнатуры существует эквивалентная ей бескванторная формула.

Доказательство:

Для начала скажем, что будем доказывать теорему только для знака \exists , т.к. \forall выводится через него.

- $1.\ \varphi$ атомарная формула/конъонкция/дизъюнкция/импликация, тогда она и так бескванторная.
- 2. $\varphi \equiv \exists x \ \tau(x, x_1, ..., x_k), \ \tau$ булева комбинация атомарных формул.

Атомарная форма в нашем случае - S(S(S(...(S(u))...))) = S(S(...(S(v))...)), где u,v - переменные или костанта 0.

Если переменная x входит и в левую, и в правую часть, то атомарная формула либо всегда истинна (когда количество операций S в обеих частях одинаковое), либо всегда ложна, значит, можно заменить ее на тождественно истинную или тождественно ложную формулу, не зависящую от x.

После всех этих действий останутся такие атомарные формулы:

$$x = t_1 \ x = t_2 \dots x = t_n,$$

где t_i - какая-то константа или выражение вида x_j+c , где c - количество операций S, примененных к переменной $x_j,\,x_j$ - другая переменная из формулы $\tau.$

Тогда можно записать φ в бескванторном виде:

$$\varphi \equiv \tau(t_1, x_1, ..., x_k) \vee \tau(t_2, x_1, ..., x_k) \vee ... \vee \tau(t_n, x_1, ..., x_k)$$

Теперь нужно рассмотреть случай, когда x делает атомарную формулу ложной. Обозначим формулу для множества таких x как φ' . Тогда φ вычисляется так:

$$\varphi \equiv \tau(t_1, x_1, ..., x_k) \vee \tau(t_2, x_1, ..., x_k) \vee ... \vee \tau(t_n, x_1, ..., x_k) \vee \varphi'$$

9 Элиминация кванторов в $(\mathbb{Z}, =, <, S)$.

Теорема:

Всякая формула в $(\mathbb{Z},=,<,S)$ эквивалентна некоторой бескванторной формуле.

Доказательство:

Доказательство похоже на предыдущее, только кроме $x=t_i$ добавляются атомарные формулы $x < t_i$. Тогда φ состоит из дизъюнкций бескванторных формул 3 видов: $\tau(t_i, x_1, ..., x_k)$, $\tau(t_i-1, x_1, ..., x_k)$ и $\tau(t_i+1, x_1, ..., x_k)$. Почему именно так: $t_1, ..., t_n$ делят ось $\mathbb Z$ на промежутки, значит, чтобы проверить истинность формулы φ на всем множестве, нужно проверить истинность хотя бы на 1 числе из каждого промежутка.

10 Общезначимые формулы. Выполнимость и эквивалентность формул.

Определение:

Пусть σ - сигнатура.

Формула φ этой сигнатуры называется *общезначимой*, если она истинна в любой интерпретации σ на любой оценке.

Определение:

Формулы φ и ψ называются *эквивалентными*, если в любой интерпретации и на любой оценке, на которой истинна одна из них, истинна и другая.

Определение:

Формула называется ϵ ыполнимой, если она истинна в некоторой интерпретации на некоторой оценке.

11 Аксиомы исчисления предикатов.

Определение:

Область действия квантора - подформула, начинающаяся с этого квантора.

Определение:

Свободное вхождение индивидной переменной в формулу - вхождение, не попадающее в область действия одноименного квантора.

- 1. Любое вхождение переменной в терм или атомарную формулу свободно.
- 2. Свободные вхождения переменной в формулу φ являются свободными вхождениями в формулу $\neg \varphi$.
- 3. Свободные вхождения переменной в одной из формул φ и ψ являются

свободными вхождениями в формулах конъюнкции, дизъюнкции и импликапии.

4. Переменная ξ не имеет свободных вхождений в формулы $\forall \xi \ \varphi$ и $\exists \xi \ \varphi$; свободные вхождения остальных переменных в φ являются свободными вхождениями в эти две формулы.

Определение:

Связанное вхождение переменной в формулу - вхождение переменной, не являющееся свободным.

Аксиома 12:

$$\forall \xi \ \varphi \longrightarrow \varphi(t/\xi).$$

Аксиома 13:

$$\varphi(t/\xi) \longrightarrow \exists \xi \ \phi.$$

12 Правила вывода исчисления предикатов.

Правила Бернайса:

$$\frac{\psi \longrightarrow \varphi}{\psi \longrightarrow \forall \xi \ \varphi}$$

$$\frac{\varphi\longrightarrow\psi}{\exists\xi\;\varphi\longrightarrow\psi}$$

Правила обобщения:

$$\frac{\varphi}{\forall \xi \ \varphi}$$

13 Коллизии переменных. Корректные подстановки термов.

Определение:

Коллизия переменных - ситуация, когда при переименовании переменной x в y в формуле есть переменная, которая из свободной превращается в связанную.

Определение:

Корректная подстановка терма t вместо переменной ξ - такая подстановка, если в процессе текстуальной замены всех свободных вхождений переменной ξ на t никакая переменная из t не попадет в область действия одно-именного квантора.

1.
$$\xi(t/\xi) = t$$
.

2.
$$\mu(t/\xi) = \mu, \ \mu \neq \xi$$
.

3.
$$f(t_1,...,t_k)(t/\xi) = f(t_1(t/\xi),...,t_k(t/\xi)).$$

Для формул:

- 1. $A(t_1,...,t_k)(t/\xi) = A(t_1(t/\xi),...,t_k(t/\xi)).$
- 2. $[\neg \varphi](t/\xi) = \neg [\varphi(t/\xi)].$
- 3. $(\varphi \lor \psi)(t/\xi) = (\varphi(t/\xi) \lor \psi(t/\xi))$, аналогично для конъюнкции и импликании.
- 4а. ξ не является параметром формулы $\forall \mu \ \varphi$, тогда подстановка ничего не меняет в формуле.
- 4b. ξ является параметром формулы $\forall \mu \ \varphi$, но переменная μ не входит в терм t и подстановка $\varphi(t/\xi)$ корректна. Тогда

$$[\forall \mu \ \varphi](t/\xi) = \forall \mu \ [\varphi(t/\xi)].$$

14 Корректность исчисления предикатов. Схема доказательства теоремы о корректности.

Теорема:

Всякая выводимая в исчислении предикатов формула является общезначимой.

Доказательство:

Простая схема доказательства ТУТ

15 Вывод в исчислении предикатов. Примеры вывода. Вывод из посылок.

Примеры вывода:

Выведем формулу $\forall x \ \varphi \longrightarrow \exists x \ \varphi.$

Заметим, что подстановка переменной вместо себя является допустимой, поэтому по аксиомам 12 и 13 формула выводима.

Вывод из посылок:

 Γ - произвольное множество замкнутых формул в сигнатуре σ .

Формула A выводима из Γ , если ее можно вывести, используя аксиомы и формулы из Γ .

Теорема - выводимая из Г формула.

16 Лемма о дедукции в исчислении предикатов. Лемма о свежих константах. Лемма о добавлении констант.

Лемма о дедукции в исчислении предикатов:

Пусть Γ - множество замкнутых формул, A - замкнутая формула.

Тогда
$$\Gamma \vdash (A \longrightarrow B) \Longleftrightarrow \Gamma \cup \{A\} \vdash B$$

Доказательство:

 \Longrightarrow : Т.к. выводимо $\Gamma \vdash A \longrightarrow B$, то выводимо $\Gamma \vdash A \Longrightarrow$ по Modus Ponens выводимо $\Gamma \cup \{A\} \vdash B$.

 $\Longleftarrow: C_1, C_2, ..., C_n$ - вывод B из $\Gamma \cup \{A\}$, значит, выводимо $\Gamma \vdash A \longrightarrow C_i$

1. C_i - аксиома, тогда выводимы $C_i, C_i \longrightarrow (A \longrightarrow C_i), A \longrightarrow C_i$.

2а. $C_i \in \Gamma$, C_i - посылка. Аналогично пункту 1.

2b. $C_i = A$. Тогда выводимо $A \longrightarrow A$.

3. C_i по Modus Ponens получено из C_j : тогда

$$\Gamma \vdash (A \longrightarrow C_j), \Gamma \vdash (A \longrightarrow (C_j \longrightarrow C_i)) \implies (A \longrightarrow (C_j \longrightarrow C_i)) \longrightarrow ((A \longrightarrow C_j) \longrightarrow (A \longrightarrow C_i))$$

4. C_i по правилу Бернайса 1, т.е. $C_j \equiv \psi \longrightarrow \varphi$, $C_i \equiv \psi \longrightarrow \forall x \ \varphi$. Значит, $\Gamma \vdash A \longrightarrow (\psi \longrightarrow \varphi)$.

Заметим, что эта фрмула равносильна $\Gamma \vdash (A \land \psi) \longrightarrow \varphi$. Из этого следует, что $\Gamma \vdash (A \land \psi) \longrightarrow \forall x \ \varphi$.

Последнюю формулу заменим на равносильную: $\Gamma \vdash A \longrightarrow (\psi \longrightarrow \forall x \ \varphi)$.

5. C_i по правилу Бернайса 2: аналогично пункту 4.

$$\Gamma \vdash A \longrightarrow (\varphi \longrightarrow \psi) \Longleftrightarrow \Gamma \vdash \varphi \longrightarrow (A \longrightarrow \psi) \Longrightarrow$$
$$\Gamma \vdash \forall x \ \varphi \longrightarrow (A \longrightarrow \psi) \Longleftrightarrow \Gamma \vdash A \longrightarrow (\forall x \ \varphi \longrightarrow \psi)$$

Лемма о свежих константах:

Пусть выводима формула $\varphi(c/\xi)$, где φ - произвольная формула, c - константа, не входящая в φ , ξ - переменная. Тогда выводима φ .

Доказательство:

Возьмем переменную η , которой нет в выводе $\varphi(c/\xi)$, и во всем выводе заменим константу c на η . Значит, выводима формула $\varphi(\eta/\xi)$.

По правилу обобщения выводима формула $\forall \eta \ \varphi(\eta/\xi)$.

По 12 аксиоме $\forall \eta \ \varphi(\eta/\xi) \longrightarrow \varphi(\eta/\xi)(\xi/\eta)$, подстановка в правой части дает φ .

Лемма о добавлении констант:

Пусть формула φ некоторой сигнатуры σ выводима в исчислении предикатов расширенной сигнатуры σ' , полученной из σ путем добавления констант. Тогда φ выводима и в исчислении предикатов сигнатуры σ .

Доказательство:

Пусть φ , не содержащая новых констант, имеет вывод, в котором новые константы встречаются. Заменим их на свежие переменные, не входящие в вывод, тогда вывод останентся выводом, но без новых констант.

17 Противоречивые и непротеворечивые теории. Совместные множества. Полнота исчисления предикатов (б.д.).

Определение:

Теория Γ - произвольное множетсво замкнутых формул сигнатуры σ .

Определение:

Теория Γ противоречива, если в ней выводится формула φ и $\overline{\varphi}$. В этом случае из Γ выводима любая формула.

Определение:

Совместное множество - множество формул Γ , т.ч. существует набор значений переменных, при которых все формулы из Γ истинны.

Теорема о полноте исчисления предикатов: Всякая общезначимая формула выводима.

18 О теореме Геделя о неполноте.

Смотрим TYT, без пересказа сразу допса.