Ecole Nationale Supérieure de Techniques Avancées ParisTech PRB202 - Martingales et Algorithmes Stochastiques Corrigé PC4 - 21 décembre 2017

Exercice 1: 1. Pour tout $n \geq 1$, $\mathcal{F}_n = \sigma(S_1, \dots, S_n)$, d'après la question 1. de l'Exercice 1 de la PC2. Or $\sigma(S_1, \dots, S_n)$, $n \geq 1$, est la plus petite tribu sur (Ω, \mathcal{F}) qui rend les variables aléatoires (S_1, \dots, S_n) mesurables; en particulier, quel que soit $n \geq 1$, S_n est alors \mathcal{F}_n -mesurable. Comme $S_0 = 0$, S_n est \mathcal{F}_n -mesurable pour tout $n \in \mathbb{N}$.

Par définition, $S_n = X_1 + \cdots + X_n$, quel que soit $n \ge 1$ et X_n ne peut prendre que les valeurs 1 ou -1 à chaque unité de temps; vu que $S_0 = 0$, on en déduit que pour tout $n \ge 1$, $|S_n| \le n$. Ainsi, S_n est une variable aléatoire intégrable, quel que soit $n \in \mathbb{N}$.

Par ailleurs, pour tout $n \in \mathbb{N}$,

$$\mathbb{E}[S_{n+1}|\mathcal{F}_n] = \mathbb{E}[S_n|\mathcal{F}_n] + \mathbb{E}[X_{n+1}|\mathcal{F}_n], \text{ en utilisant la linéarité de l'espérance conditionnelle,}$$

$$= S_n + \mathbb{E}[X_{n+1}|\mathcal{F}_n], \text{ car } S_n \text{ est } \mathcal{F}_n \text{ -mesurable,}$$

$$= S_n + \mathbb{E}[X_{n+1}], \text{ vu que } X_{n+1} \text{ est indépendante de } \mathcal{F}_n,$$

$$= S_n.$$

puisque $\mathbb{E}[X_{n+1}] = \mathbb{E}[X_1] = 1 \times \mathbb{P}(X_1 = 1) + (-1) \times \mathbb{P}(X_1 = -1) = \frac{1}{2} - \frac{1}{2} = 0$. On en déduit que $(S_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale.

2. On a pour tout $n \in \mathbb{N}$, $Z_n^{\lambda} = f_n(S_n)$, où f_n est une fonction définie sur \mathbb{R} à valeurs dans \mathbb{R}^+ telle que $f_n(x) = \exp(\lambda x - n \log(\cosh(\lambda)))$.

 $f_n: \mathbb{R} \to \mathbb{R}^+$ est continue sur \mathbb{R} donc $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}^+))$ - mesurable et S_n est $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ - mesurable, quel que soit $n \in \mathbb{N}$, où $\mathcal{B}(\mathbb{R})$ (respectivement, $\mathcal{B}(\mathbb{R}^+)$) désigne la tribu borélienne de \mathbb{R} (respectivement, la tribu borélienne de \mathbb{R}^+). Z_n^{λ} est alors $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}^+))$ - mesurable, pour tout $n \in \mathbb{N}$ comme étant la composée de deux fonctions $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ et $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}^+))$ - mesurables.

Pour tout $n \ge 1$, $|S_n| \le n$ et puisque $\lambda S_n \le |\lambda| |S_n|$, la fonction $x \mapsto \exp(x)$ étant strictement croissante sur \mathbb{R} , il vient, quel que soit $n \ge 1$,

$$\begin{aligned} \forall n \geq 1 \,, \, \mathbb{E}[Z_n^{\lambda}] &= \exp(-n \log(\cosh(\lambda))) \mathbb{E}[\exp(\lambda S_n)] \,, \\ &\leq \exp(\log(\cosh(\lambda))^{-n}) \mathbb{E}[\exp(|\lambda| \, |S_n|)] \,, \\ &= (\cosh(\lambda))^{-n} \exp(|\lambda| \, n) < +\infty \,. \end{aligned}$$

 $Z_0^{\lambda} = 1$ et Z_n^{λ} est alors une variable aléatoire intégrable, pour tout $n \in \mathbb{N}$. De plus, quel que soit $n \in \mathbb{N}$,

$$\mathbb{E}[Z_{n+1}^{\lambda}|\mathcal{F}_n] = \exp(-(n+1)\log(\cosh(\lambda)))\mathbb{E}[\exp(\lambda(S_n + X_{n+1})|\mathcal{F}_n],$$

$$= \exp(-(n+1)\log(\cosh(\lambda)))\exp(\lambda S_n)\mathbb{E}[\exp(\lambda X_{n+1})|\mathcal{F}_n], \text{ car } S_n \text{ donc } \exp(\lambda S_n) \text{ est } \mathcal{F}_n \text{ -mesurable,}$$

$$= Z_n^{\lambda} \exp(-\log(\cosh(\lambda)))\mathbb{E}[\exp(\lambda X_{n+1})], \text{ puisque } X_{n+1} \text{ donc } \exp(\lambda X_{n+1}) \text{ est indépendante de } \mathcal{F}_n,$$

$$= Z_n^{\lambda} \exp(\log((\cosh(\lambda))^{-1})(\exp(\lambda) \times \mathbb{P}(X_{n+1} = 1) + \exp(-\lambda) \times \mathbb{P}(X_{n+1} = -1)),$$

$$= Z_n^{\lambda} (\cosh(\lambda))^{-1} \left(\frac{\exp(\lambda) + \exp(-\lambda)}{2}\right),$$

$$= Z_n^{\lambda}.$$

On en déduit que $(Z_n^{\lambda})_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.

- 3. Rappel: Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité muni d'une filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$. Une variable aléatoire τ définie sur Ω et à valeurs dans $\mathbb{N} \cup \{+\infty\}$ est un $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -temps d'arrêt si $\forall n \in \mathbb{N}, \{\tau \leq n\} \in \mathcal{F}_n$. Il est équivalent de montrer que pour tout $n \in \mathbb{N}, \{\tau = n\} \in \mathcal{F}_n$ ou $\{\tau > n\} \in \mathcal{F}_n$.

 Pour tout $n \geq 1$, on a : $\{\tau_a \leq n\}^c = \{\tau_a > n\} = \{S_1 < a, \dots, S_n < a\} = \cap_{1 \leq k \leq n} \{S_k < a\}$. Rappel:
 - Soit un ensemble E muni d'une topologie \mathcal{T} . On appelle **tribu de Borel** de E (ou **tribu borélienne**) et on note $\mathcal{B}(E)$, la tribu $\sigma(\mathcal{T})$, c'est-à-dire la plus petite tribu sur E contenant les ouverts de E pour la topologie \mathcal{T} . Les éléments de $\mathcal{B}(E)$ sont appelés les **boréliens** de E.
 - Soit (Ω, \mathcal{F}) et (E, \mathcal{E}) deux espaces mesurables. Une application $f: \Omega \to E$ est dite $(\mathcal{F}, \mathcal{E})$ mesurable si, pour tout $A \in \mathcal{E}$, $f^{-1}(A) \in \mathcal{F}$. Si E est un espace topologique et $\mathcal{E} = \mathcal{B}(E)$, on dit simplement \mathcal{F} - mesurable pour $(\mathcal{F}, \mathcal{E})$ - mesurable.

A la question **1.**, il a été remarqué que S_k est $(\mathcal{F}_k, \mathcal{B}(\mathbb{R}))$ - mesurable, quel que soit $1 \leq k \leq n$. Ainsi, comme $]-\infty, a[\in \mathcal{B}(\mathbb{R}), \{S_k < a\} = \{S_k \in]-\infty, a[\} = S_k^{-1}(]-\infty, a[) \in \mathcal{F}_k \subset \mathcal{F}_n$, pour $1 \leq k \leq n$.

La tribu \mathcal{F}_n , $n \geq 1$ étant stable par intersection dénombrable donc finie, on en déduit que pour tout $n \geq 1$, $\{\tau_a > n\} \in \mathcal{F}_n$ et τ_a est alors un $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -temps d'arrêt.

- 4. Rappel : Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité muni d'une filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$.
 - un instant déterministe $m, m \in \mathbb{N}$ est un $(\mathcal{F}_n)_{n \in \mathbb{N}}$ temps d'arrêt.
 - si τ_1 et τ_2 sont deux $(\mathcal{F}_n)_{n\in\mathbb{N}}$ temps d'arrêt, alors $\tau_1 \wedge \tau_2$ est encore un $(\mathcal{F}_n)_{n\in\mathbb{N}}$ temps d'arrêt.

 τ_a étant un $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - temps d'arrêt, $\tau_a\wedge n$ est également un $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - temps d'arrêt, comme étant l'infimum de deux temps d'arrêt; de plus, $\tau_a\wedge n$ est **borné** par n.

Rappel: Théorème d'arrêt de Doob

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité muni d'une filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$.

Etant donnés une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale $(M_n)_{n\in\mathbb{N}}$ et τ un $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - temps d'arrêt **BORNÉ**, on a :

$$\mathbb{E}[M_{\tau}] = \mathbb{E}[M_0] .$$

Comme $(Z_n^{\lambda})_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale et $\tau_a \wedge n$ un $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -temps d'arrêt **borné**, en utilisant le théorème d'arrêt de Doob, il vient alors, pour tout $n\in\mathbb{N}$:

$$\mathbb{E}[Z_{\tau_a \wedge n}^{\lambda}] = \mathbb{E}[Z_0^{\lambda}] = 1,$$

soit,

$$\mathbb{E}[\exp(\lambda S_{\tau_a \wedge n} - (\tau_a \wedge n)\log(\cosh(\lambda)))] = 1. \tag{1}$$

5. En remarquant que $1 = \mathbf{1}_{\Omega} = \mathbf{1}_{\{\tau_a < +\infty\}} + \mathbf{1}_{\{\tau_a = +\infty\}}$, l'égalité (1) se réécrit de la façon suivante, pour tout $n \in \mathbb{N}$:

$$\mathbb{E}[\exp(\lambda S_{\tau_a \wedge n} - (\tau_a \wedge n) \log(\cosh(\lambda))) \mathbf{1}_{\{\tau_a < +\infty\}}] + \mathbb{E}[\exp(\lambda S_{\tau_a \wedge n} - (\tau_a \wedge n) \log(\cosh(\lambda))) \mathbf{1}_{\{\tau_a = +\infty\}}] = 1. \quad (2)$$

• soit $\omega \in \Omega$ tel que $\tau_a(\omega) < +\infty$; pour tout $n \ge \tau_a(\omega)$, $S_{\tau_a \wedge n}(\omega) = S_{\tau_a(\omega) \wedge n}(\omega) = S_{\tau_a(\omega)}(\omega) = S_{\tau_a}(\omega)$. On en déduit que $S_{\tau_a \wedge n} \to S_{\tau_a}$, lorsque $n \to +\infty$. De plus, $(\tau_a \wedge n)(\omega) \xrightarrow[n \to +\infty]{} \tau_a(\omega)$, pour tout $\omega \in \{\tau_a < +\infty\}$.

Ainsi, sur l'évènement $\{\tau_a < +\infty\}$, la convergence suivante a lieu lorsque $n \to +\infty$:

$$\exp(\lambda S_{\tau_a \wedge n} - (\tau_a \wedge n) \log(\cosh(\lambda))) \rightarrow \exp(\lambda S_{\tau_a} - \tau_a \log(\cosh(\lambda))) = \exp(\lambda a - \tau_a \log(\cosh(\lambda))), \quad (3)$$

puisque $S_{\tau_a} = a$, par définition de τ_a .

• D'autre part, sur l'évènement $\{\tau_a = +\infty\}$, nous avons pour tout $n \in \mathbb{N}$, $S_{\tau_a \wedge n} = S_n < a$ et $\tau_a \wedge n = n$. Il vient alors, pour tout $n \in \mathbb{N}$:

$$\exp(\lambda S_{\tau_a \wedge n} - (\tau_a \wedge n) \log(\cosh(\lambda))) \mathbf{1}_{\{\tau_a = +\infty\}} = \exp(\lambda S_n - n \log(\cosh(\lambda))) \mathbf{1}_{\{\tau_a = +\infty\}}$$

$$\leq \exp(\lambda a - n \log(\cosh(\lambda))) \mathbf{1}_{\{\tau_a = +\infty\}}.$$

Comme $\lambda > 0$, $\cosh(\lambda) > 1$, de sorte que $\log(\cosh(\lambda)) > 0$.

Nous en déduisons que, si $\lambda > 0$, la convergence suivante a lieu sur l'évènement $\{\tau_a = +\infty\}$ lorsque $n \to +\infty$:

$$\exp(\lambda S_{\tau_a \wedge n} - (\tau_a \wedge n) \log(\cosh(\lambda))) \to 0. \tag{4}$$

En regroupant les deux cas précédents (3) et (4), on obtient alors, pour tout $\lambda > 0$, la convergence presquesûre suivante pour $n \to +\infty$:

$$\exp(\lambda S_{\tau_a \wedge n} - (\tau_a \wedge n) \log(\cosh(\lambda))) \to \exp(\lambda a - \tau_a \log(\cosh(\lambda))) \mathbf{1}_{\{\tau_a < +\infty\}}. \tag{5}$$

Par ailleurs, puisque pour tout $n \in \mathbb{N}$, $\tau_a \wedge n \leq \tau_a$, on a $S_{\tau_a \wedge n} \leq a$, d'après la définition de τ_a . Si $\lambda > 0$, il vient, quel que soit $n \in \mathbb{N}$,

$$\exp(\lambda S_{\tau_a \wedge n} - (\tau_a \wedge n) \log(\cosh(\lambda))) \le \exp(\lambda S_{\tau_a \wedge n}) \le \exp(\lambda a)$$
.

En passant à la limite lorsque $n \to +\infty$, dans l'égalité (1), on obtient, d'après le théorème de convergence dominée :

$$\lim_{n \to +\infty} \mathbb{E}[\exp(\lambda S_{\tau_a \wedge n} - (\tau_a \wedge n) \log(\cosh(\lambda)))] = \mathbb{E}[\lim_{n \to +\infty} \exp(\lambda S_{\tau_a \wedge n} - (\tau_a \wedge n) \log(\cosh(\lambda)))] = 1, \quad (6)$$

soit, en tenant compte de (5),

$$\mathbb{E}[\exp(\lambda a - \tau_a \log(\cosh(\lambda))) \mathbf{1}_{\{\tau_a < +\infty\}}] = 1, \tag{7}$$

pour tout $\lambda > 0$ fixé.

6. Soit $(\lambda_n)_{n\in\mathbb{N}}$ une suite de réels positifs vérifiant pour tout $n\in\mathbb{N}$, $0<\lambda_n<1$ et convergeant vers 0 lorsque $n\to+\infty$. D'après l'égalité (7) démontrée à la question précédente, il vient, quel que soit $n\in\mathbb{N}$,

$$\mathbb{E}[\exp(\lambda_n a - \tau_a \log(\cosh(\lambda_n))) \mathbf{1}_{\{\tau_a < +\infty\}}] = 1.$$
(8)

Or, pour tout $n \in \mathbb{N}$, on a:

$$\exp(\lambda_n a - \tau_a \log(\cosh(\lambda_n))) \le \exp(a)$$
.

Passant à la limite lorsque $n \to +\infty$, dans l'égalité (8), nous obtenons, d'après le théorème de convergence dominée :

$$\lim_{n \to +\infty} \mathbb{E}[\exp(\lambda_n a - \tau_a \log(\cosh(\lambda_n))) \mathbf{1}_{\{\tau_a < +\infty\}}] = \mathbb{E}[\lim_{n \to +\infty} \exp(\lambda_n a - \tau_a \log(\cosh(\lambda_n))) \mathbf{1}_{\{\tau_a < +\infty\}}] = 1,$$

soit, puisque $\exp(\lambda_n a - \tau_a \log(\cosh(\lambda_n))) \mathbf{1}_{\{\tau_a < +\infty\}} \xrightarrow[n \to +\infty]{} \mathbf{1}_{\{\tau_a < +\infty\}}$,

$$\mathbb{E}[\mathbf{1}_{\{\tau_a<+\infty\}}]=1$$
 ou encore $\mathbb{P}(\tau_a<+\infty)=1$.

7. Puisque $\mathbb{P}(\tau_a < +\infty) = 1$, en réécrivant l'égalité (7) obtenue à la question **5.**, il vient, quel que soit $\lambda > 0$ fixé :

$$\mathbb{E}[\exp(\lambda a - \tau_a \log(\cosh(\lambda)))] = 1. \tag{9}$$

Pour tout $\lambda > 0$, $\cosh(\lambda) > 1$ et $\log(\cosh(\lambda)) > 0$. Considérons la fonction ψ définie quel que soit $\lambda > 0$ par $\psi(\lambda) = \log(\cosh(\lambda))$. On a : $\forall \lambda > 0$, $\psi'(\lambda) = \frac{\sinh(\lambda)}{\cosh(\lambda)} = \tanh(\lambda) > 0$ de sorte que ψ est strictement croissante et de classe \mathcal{C}^1 sur \mathbb{R}_+^* . Elle est alors bijective de \mathbb{R}_+^* sur \mathbb{R}_+^* , son inverse ψ^{-1} est bien définie et de classe \mathcal{C}^1 sur \mathbb{R}_+^* . Soit y > 0 tel que $y = \psi(\lambda) = \log(\cosh(\lambda))$; alors $\cosh(\lambda) = \exp(y)$ soit $\psi^{-1}(y) = \lambda = \operatorname{argcosh}(\exp(y))$.

On déduit de l'égalité (9) que, quel que soit y > 0,

$$\mathbb{E}[\exp(\psi^{-1}(y)a - \tau_a y)] = 1, \tag{10}$$

soit:

$$\mathbb{E}[\exp(-y\tau_a)] = \exp(-a\operatorname{argcosh}(\exp(y))). \tag{11}$$

8. Rappel : Théorème de dérivation sous l'espérance

Soit U un intervalle de \mathbb{R} , $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et $f: U \times \Omega \mapsto \mathbb{R}$ une fonction. Considérons l'application F définie sur U et à valeurs réelles telle que pour tout $x \in U$, $F(x) = \mathbb{E}[f(x, \omega)]$. On suppose, de plus, que :

- pour tout $x \in U$, $x \mapsto f(x, \omega)$ est intégrable sous \mathbb{P} ,
- pour presque tout $\omega \in \Omega$ et pour tout $x \in U$, la dérivée partielle $\frac{\partial f}{\partial x}(x,\omega)$ existe et vérifie :

$$\left| \frac{\partial f}{\partial x}(x,\omega) \right| \le h(\omega),$$

où h est une variable aléatoire intégrable tel que $\mathbb{E}[h(\omega)] < +\infty$. Alors la fonction F est dérivable sur U et pour tout $x \in U$, $F'(x) = \mathbb{E}\left[\frac{\partial f}{\partial x}(x,\omega)\right]$.

Considérons la fonction F définie par $F(y) = \mathbb{E}[f(y,\omega)]$, pour tout y > 0, avec $f(y,\omega) = \exp(-y\tau_a(\omega))$. D'après l'égalité montrée en (11), on a bien que, pour tout y > 0, $\mathbb{E}[f(y,\omega)] < +\infty$.

De plus, en utilisant que $\max_{x \in \mathbb{R}} (x \exp(-yx)) = \frac{e^{-1}}{y}$, il vient, pour tout $y \in]z - \epsilon, z + \epsilon[$ où z et ϵ sont deux réels strictement positifs quelconque tel que $]z - \epsilon, z + \epsilon[\subset \mathbb{R}_+^* :$

$$\left| \frac{\partial f}{\partial y}(y,\omega) \right| = \left| -\tau_a \exp(-y\tau_a) \right| = \tau_a \exp(-y\tau_a) \le \frac{e^{-1}}{y} \le \frac{e^{-1}}{z-\epsilon}.$$

Le théorème de dérivation sous l'espérance assure alors que F est dérivable sur \mathbb{R}_+^* et de plus, pour tout y > 0, $F'(y) = \mathbb{E}[-\tau_a \exp(-y\tau_a)]$.

En dérivant par rapport à y les deux membres de l'identité (11), on obtient, quel que soit y > 0:

$$\mathbb{E}[-\tau_a \exp(-y\tau_a)] = -a \frac{\exp(y)}{\sqrt{\exp(2y) - 1}} \exp(-a \operatorname{argcosh}(\exp(y))), \qquad (12)$$

puisque, pour tout $x \in]1, +\infty[, (\operatorname{argcosh})'(x) = \frac{1}{\sqrt{x^2-1}}]$.

Considérons alors une suite de réels $(y_n)_{n\in\mathbb{N}}$ strictement positifs convergeant en décroissant vers 0 lorsque $n\to +\infty$.

D'après l'égalité obtenue précédemment en (12), il vient, pour tout $n \in \mathbb{N}$:

$$\mathbb{E}[\tau_a \exp(-y_n \tau_a)] = a \frac{\exp(y_n)}{\sqrt{\exp(2y_n) - 1}} \exp(-a \operatorname{argcosh}(\exp(y_n))). \tag{13}$$

 $(\tau_a \exp(-y_n \tau_a))_{n \in \mathbb{N}} \text{ est une suite de variables aléatoires positives convergeant en croissant vers } \tau_a \text{ ; d'après le théorème de convergence monotone, } \lim_{n \to +\infty} \mathbb{E}[\tau_a \exp(-y_n \tau_a)] = \mathbb{E}[\lim_{n \to +\infty} (\tau_a \exp(-y_n \tau_a))] = \mathbb{E}[\tau_a] \text{ . Passant à la limite quand } n \to +\infty \text{ , dans } (13), \text{ on obtient : } \mathbb{E}[\tau_a] = +\infty \text{ , puisque } \exp(-a \operatorname{argcosh}(\exp(y_n))) \xrightarrow[n \to +\infty]{} 1 \text{ et } \frac{\exp(y_n)}{\sqrt{\exp(2y_n)-1}} \xrightarrow[n \to +\infty]{} +\infty \text{ . }$

Exercice 2 : Soit $(M_n)_{n \in \mathbb{N}}$ une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale de carré intégrable telle que $M_0 = 0$ et $(\langle M \rangle_n)_{n \in \mathbb{N}}$ son crochet. On note $\langle M \rangle_{\infty} = \lim_{n \to +\infty} \langle M \rangle_n$.

Rappel: Théorème de décomposition de Doob et crochet d'une martingale de carré intégrable

• Soit $(X_n)_{n\in\mathbb{N}}$ une sous-martingale relativement à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. Il existe une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale $(M_n)_{n\in\mathbb{N}}$ et un processus croissant $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - prévisible $(A_n)_{n\in\mathbb{N}}$ nul en 0 tels que, pour tout $n\in\mathbb{N}$,

$$X_n = M_n + A_n .$$

La décomposition précédente est unique au sens où si $(M_n^{'})_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale et $(A_n^{'})_{n\in\mathbb{N}}$ un processus croissant $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - prévisible nul en 0 tels que, quel que soit $n\in\mathbb{N}$,

$$X_{n} = M_{n}^{'} + A_{n}^{'},$$

alors, pour tout $n \in \mathbb{N}$,

$$M_n = M_n'$$
 et $A_n = A_n'$, \mathbb{P} – p.s. .

Le processus $(A_n)_{n\in\mathbb{N}}$ est appelé le **compensateur** de la sous-martingale $(X_n)_{n\in\mathbb{N}}$. De plus, on a, quel que soit $n\in\mathbb{N}$,

$$A_0 = 0 \text{ et } \forall n \ge 1, A_n = \sum_{k=1}^n \mathbb{E}[X_k - X_{k-1} | \mathcal{F}_{k-1}],$$

et:

$$M_0 = X_0 \text{ et } \forall n \ge 1, M_n = X_n - A_n = X_n - \sum_{k=1}^n \mathbb{E}[X_k - X_{k-1} | \mathcal{F}_{k-1}].$$

• Soit $(M_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale de carré intégrable, c'est-à-dire telle que $\mathbb{E}[M_n^2] < +\infty$, pour tout $n\in\mathbb{N}$. Il résulte de l'inégalité de Jensen conditionnelle que $(M_n^2)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - sous-martingale. Le crochet noté $(< M>_n)_{n\in\mathbb{N}}$ de la martingale de carré intégrable $(M_n)_{n\in\mathbb{N}}$ est le compensateur de la sous-martingale $(M_n^2)_{n\in\mathbb{N}}$.

 $(M_n^2 - \langle M \rangle_n)_{n \in \mathbb{N}}$ est alors une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale et $(\langle M \rangle_n)_{n \in \mathbb{N}}$ est un processus croissant $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - prévisible tel que $\langle M \rangle_0 = 0$ et vérifiant d'après le cours, pour tout $n \geq 1$:

$$< M >_n = \sum_{k=0}^{n-1} \mathbb{E}[(M_{k+1} - M_k)^2 | \mathcal{F}_k].$$

Considérons le processus $(X_n)_{n\in\mathbb{N}}$ défini par $X_0=M_0=0$ et pour tout $n\geq 1$:

$$X_n = \sum_{k=1}^n \frac{M_k - M_{k-1}}{1 + \langle M \rangle_k} \,.$$

- 1. Rappel : soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité muni d'une filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$.
 - Etant donné un processus $(\mathcal{F}_n)_{n\in\mathbb{N}}$ prévisible $(H_n)_{n\geq 1}$ et $(M_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ martingale, on définit le processus $((H \bullet M)_n)_{n\geq 1}$ par, pour tout $n\geq 1$,

$$(H \bullet M)_n = \sum_{k=1}^n H_k(M_k - M_{k-1}).$$

 $((H \bullet M)_n)_{n \geq 1}$ est appelé l'intégrale stochastique discrète du processus $(H_n)_{n \geq 1}$ par rapport à la martingale $(M_n)_{n \in \mathbb{N}}$.

• Si $(H_n)_{n\geq 1}$ est à valeurs bornées, alors $((H \bullet M)_n)_{n\geq 1}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale.

Pour tout $n \ge 1$, posons : $H_n = \frac{1}{1 + \langle M \rangle_n}$. Comme $(\langle M \rangle_n)_{n \in \mathbb{N}}$ est $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - prévisible, $\langle M \rangle_n$ est $(\mathcal{F}_{n-1}, \mathcal{B}(\mathbb{R}^+))$ - mesurable, quel que soit $n \ge 1$.

De plus, la fonction $x \mapsto \frac{1}{1+x}$ est continue sur \mathbb{R}^+ donc $(\mathcal{B}(\mathbb{R}^+), \mathcal{B}(\mathbb{R}^+))$ - mesurable; H_n est alors $(\mathcal{F}_{n-1}, \mathcal{B}(\mathbb{R}^+))$ - mesurable, pour tout $n \geq 1$, comme étant la composée de deux fonctions $(\mathcal{F}_{n-1}, \mathcal{B}(\mathbb{R}^+))$ et $(\mathcal{B}(\mathbb{R}^+), \mathcal{B}(\mathbb{R}^+))$ - mesurables.

On en déduit que le processus $(H_n)_{n\geq 1}$ est $(\mathcal{F}_n)_{n\geq 1}$ - prévisible.

Il est de plus à valeurs localement bornés puisque pour tout $n \ge 1$, $< M >_n \ge 0$ et $\frac{1}{1 + < M >_n} \le 1$.

Il apparaît alors que $(X_n)_{n\in\mathbb{N}}$ est l'intégrale stochastique discrète de $(H_n)_{n\geq 1}$ par rapport à $(M_n)_{n\in\mathbb{N}}$; on en déduit que $(X_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale.

Par ailleurs, en utilisant l'inégalité vectorielle :

$$|x_1 + \ldots + x_l|^2 \le l^2(|x_1|^2 + \ldots + |x_l|^2),$$

valide quel que soit $l \geq 1$ et $(x_1, \ldots, x_l) \in \mathbb{R}^l$, on obtient, pour tout $n \geq 1$:

$$\mathbb{E}[|X_n|^2] \le n^2 \sum_{k=1}^n \left| \frac{M_k - M_{k-1}}{1 + \langle M \rangle_k} \right|^2.$$

Or, quel que soit $k \in \{1, \dots, n\}$, $\frac{1}{1 + \langle M \rangle_k} \leq 1$ et $\mathbb{E}[|M_k - M_{k-1}|^2] \leq 2 (\mathbb{E}[|M_k|^2] + \mathbb{E}[|M_{k-1}|^2]) < +\infty$, puisque pour tout $n \in \mathbb{N}$, $\mathbb{E}[M_n^2] < +\infty$. On en déduit que $(X_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale de carré intégrable.

2. On a, pour tout $n \ge 1$:

$$\mathbb{E}[(X_n - X_{n-1})^2 | \mathcal{F}_{n-1}] = \mathbb{E}\left[\left(\frac{M_n - M_{n-1}}{1 + \langle M \rangle_n}\right)^2 | \mathcal{F}_{n-1}\right]$$
$$= \left(\frac{1}{1 + \langle M \rangle_n}\right)^2 \mathbb{E}[(M_n - M_{n-1})^2 | \mathcal{F}_{n-1}],$$

 $\operatorname{car}\left(\frac{1}{1+\langle M\rangle_n}\right)^2$ est \mathcal{F}_{n-1} - mesurable.

De plus le crochet $(\langle M \rangle_n)_{n \in \mathbb{N}}$ est caractérisé par $\langle M \rangle_0 = 0$ et pour tout $n \geq 1$:

$$< M >_n = \sum_{k=0}^{n-1} \mathbb{E}[(M_{k+1} - M_k)^2 | \mathcal{F}_k].$$

Ainsi, quel que soit $n \ge 1$, il vient :

$$\mathbb{E}[(M_n - M_{n-1})^2 | \mathcal{F}_{n-1}] = < M >_n - < M >_{n-1},$$

 et

$$\mathbb{E}[(X_n - X_{n-1})^2 | \mathcal{F}_{n-1}] = \frac{\langle M \rangle_n - \langle M \rangle_{n-1}}{(1 + \langle M \rangle_n)^2}$$

$$\leq \int_{\langle M \rangle_n}^{\langle M \rangle_n} \frac{1}{(1+x)^2} dx,$$

car le processus $(\langle M \rangle_n)_{n \in \mathbb{N}}$ est croissant et la fonction $x \mapsto \frac{1}{(1+x)^2}$ est décroissante sur \mathbb{R}_+ .

Enfin, quel que soit $n \geq 1$, on obtient :

$$\int_{_{n-1}}^{_n} \frac{1}{(1+x)^2} dx = \left[\frac{-1}{1+x}\right]_{_{n-1}}^{_n}$$

$$= \frac{1}{1+_{n-1}} - \frac{1}{1+_n},$$

et l'inégalité demandée est vérifiée.

3. $(X_n)_{n \in \mathbb{N}}$ étant une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale de carré intégrable, son crochet $(\langle X \rangle_n)_{n \in \mathbb{N}}$ vérifie $\langle X \rangle_0 = 0$ et pour tout $n \ge 1$:

$$< X >_n = \sum_{k=0}^{n-1} \mathbb{E}[(X_{k+1} - X_k)^2 | \mathcal{F}_k].$$

Ainsi, quel que soit $n \ge 1$, $\mathbb{E}[(X_n - X_{n-1})^2 | \mathcal{F}_{n-1}] = \langle X \rangle_n - \langle X \rangle_{n-1}$ et tenant compte de l'inégalité démontrée à la question précédente, on a :

$$\langle X \rangle_n = \sum_{k=1}^n (\langle X \rangle_k - \langle X \rangle_{k-1})$$

$$\leq \sum_{k=1}^n \left(\frac{1}{1 + \langle M \rangle_{k-1}} - \frac{1}{1 + \langle M \rangle_k} \right)$$

$$= 1 - \frac{1}{1 + \langle M \rangle_n}$$

$$\leq 1 .$$

Comme $\langle X \rangle_0 = 0$, on a bien que, pour tout $n \in \mathbb{N}$, $\langle X \rangle_n \leq 1$.

Rappel : Théorème de convergence des martingales uniformément bornées dans \mathbb{L}^2 .

Soit $(M_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale de carré intégrable telle que $\sup_{n\in\mathbb{N}} M_n^2 < +\infty$. Alors la suite $(M_n)_{n\in\mathbb{N}}$ converge \mathbb{P} - presque-sûrement et dans \mathbb{L}^2 vers une variable aléatoire \mathcal{F}_{∞} - mesurable, notée M_{∞} . Ainsi,

$$M_n \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} M_{\infty} \text{ et } \mathbb{E}[(M_n - M_{\infty})^2] \xrightarrow[n \to +\infty]{} 0.$$

On a, de plus, pour tout $n \in \mathbb{N}$, $\mathbb{E}[M_{\infty}|\mathcal{F}_n] = M_n$.

 $(X_n^2 - \langle X \rangle_n)_{n \in \mathbb{N}}$ étant une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale, il vient, quel que soit $n \in \mathbb{N}$:

$$\mathbb{E}[X_n^2 - \langle X \rangle_n] = \mathbb{E}[X_0^2 - \langle X \rangle_0] = \mathbb{E}[X_0^2] = 0,$$

 et

$$\mathbb{E}[X_n^2] = \mathbb{E}[\langle X \rangle_n] \le 1.$$

On en déduit que $\sup_{n\in\mathbb{N}}\mathbb{E}[X_n^2]<+\infty$. La martingale $(X_n)_{n\in\mathbb{N}}$ étant uniformément bornée dans \mathbb{L}^2 , elle converge alors \mathbb{P} - presque-sûrement.

4. Posons, pour tout $n \in \mathbb{N}$, $a_n = 1 + \langle M \rangle_n$ et $x_n = M_n - M_{n-1}$, si $n \ge 1$.

Pour tout $n \in \mathbb{N}$, $a_n > 0$ et sur l'évènement $\{ < M >_{\infty} = +\infty \}$, la suite $(a_n)_{n \in \mathbb{N}}$ converge en croissant vers $+\infty$.

De plus, comme $(X_n)_{n\in\mathbb{N}}$ converge \mathbb{P} - presque-sûrement, la série de terme général $\frac{x_n}{a_n}$, $n\in\mathbb{N}$ est convergente. Par ailleurs, sur l'ensemble $\{< M>_{\infty}=+\infty\}$, la suite $(< M>_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ en croissant, elle est donc non nulle à partir d'un certain rang (aléatoire) $N(\omega)$.

En remarquant alors que pour tout $n \geq N(\omega)$

$$\frac{M_n}{< M>_n} = \frac{M_n}{1 + < M>_n} \frac{1 + < M>_n}{< M>_n} = \frac{M_n}{1 + < M>_n} \left(1 + \frac{1}{< M>_n}\right),$$

et utilisant le lemme de Kronecker rappelé dans l'énoncé, comme $\sum_{k=1}^{n} x_k = M_n$, quel que soit $n \ge 1$, il vient que sur l'évènement $\{\langle M \rangle_{\infty} = +\infty\}$:

$$\frac{M_n}{\langle M \rangle_n} \xrightarrow[n \to +\infty]{} 0.$$

Exercice 3: 1. Pour tout $n \geq 1$, $\mathcal{F}_n = \sigma(S_1, \dots, S_n)$, d'après la question 1. de l'Exercice 1 de la PC2. Or $\sigma(S_1, \dots, S_n)$, $n \geq 1$, est la plus petite tribu sur (Ω, \mathcal{F}) qui rend les variables aléatoires (S_1, \dots, S_n) mesurables; en particulier, quel que soit $n \geq 1$, S_n est alors \mathcal{F}_n - mesurable.

Comme $M_0 = 0$, $M_n = S_n - n \mathbb{E}[X_1]$ est \mathcal{F}_n - mesurable pour tout $n \in \mathbb{N}$.

Par ailleurs, $\mathbb{E}[|S_n|] \leq \sum_{k=1}^n \mathbb{E}[|X_k|] \leq n \mathbb{E}[|X_1|] < +\infty$, quel que soit $n \in \mathbb{N}$, puisque $(X_n)_{n \geq 1}$ est une suite

de variables aléatoires intégrables et de même loi.

Ainsi, $(M_n)_{n\in\mathbb{N}}$ est un processus intégrable.

De plus, comme $S_{n+1} = S_n + X_{n+1}$ et que S_n est \mathcal{F}_n -mesurable, on a pour tout $n \in \mathbb{N}$:

$$\begin{split} \mathbb{E}[S_{n+1} - (n+1)\mathbb{E}[X_1]|\mathcal{F}_n] &= S_n - (n+1)\,\mathbb{E}[X_1] + \mathbb{E}[X_{n+1}|\mathcal{F}_n] \\ &= S_n - (n+1)\,\mathbb{E}[X_1] + \mathbb{E}[X_{n+1}]\,, \text{ car } X_{n+1} \text{ est indépendante de la tribu } \mathcal{F}_n \ , \\ &= S_n - (n+1)\,\mathbb{E}[X_1] + \mathbb{E}[X_1] \\ &= S_n - n\,\mathbb{E}[X_1]\,. \end{split}$$

On en conclut que $(M_n)_{n\in\mathbb{N}}$ est bien une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale.

2. Soit T un $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -temps d'arrêt intégrable, c'est-à-dire que tel que $\mathbb{E}[T]<+\infty$; on remarque alors que T est fini \mathbb{P} -presque sûrement, soit $\mathbb{P}(T<+\infty)=1$.

 $(M_n)_{n\in\mathbb{N}}$ étant une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale et puisque $T \wedge n$ est un $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - temps d'arrêt **borné** (par n), on obtient par le théorème d'arrêt de Doob que, pour tout $n\in\mathbb{N}$,

$$\mathbb{E}[M_{T\wedge n}] = \mathbb{E}[M_0],$$

soit, comme $M_0 = 0$, que :

$$\mathbb{E}[S_{T \wedge n}] = \mathbb{E}[X_1]\mathbb{E}[T \wedge n], \qquad (14)$$

quel que soit $n \in \mathbb{N}$.

3. La suite de variables aléatoires positives $(T \wedge n)_{n \in \mathbb{N}}$ converge en croissant vers T, puisque $\mathbb{P}(T < +\infty) = 1$; ainsi d'après le théorème de convergence monotone, on a :

$$\lim_{n \to +\infty} \mathbb{E}[T \wedge n] = \mathbb{E}\left[\lim_{n \to +\infty} (T \wedge n)\right] = \mathbb{E}[T]. \tag{15}$$

Supposons dans un premier temps que les variables aléatoires X_n , $n \ge 1$, soient à valeurs positives.

Comme pour tout $n \in \mathbb{N}$, $S_{T \wedge n} = \sum_{k=1}^{T \wedge n} X_k$, on a : $S_{T \wedge n} \geq 0$ et vu que $T \wedge n \leq T \wedge (n+1)$, il vient :

 $S_{T \wedge (n+1)} - S_{T \wedge n} \geq 0$, de sorte que $(S_{T \wedge n})_{n \in \mathbb{N}}$ est une suite croissante de variables aléatoires positives.

En appliquant le théorème de convergence monotone, on obtient alors que :

$$\lim_{n \to +\infty} \mathbb{E}[S_{T \wedge n}] = \mathbb{E}\left[\lim_{n \to +\infty} S_{T \wedge n}\right] = \mathbb{E}[S_T]. \tag{16}$$

Passant à la limite lorsque $n \to +\infty$ dans l'égalité (14) et tenant compte de (15) et (16), il vient :

$$\mathbb{E}[S_T] = \mathbb{E}[X_1]\mathbb{E}[T]. \tag{17}$$

Comme $\mathbb{E}[T] < +\infty$, la variable aléatoire S_T est intégrable et la relation demandée est prouvée lorsque $X_n \geq 0$, pour tout $n \geq 1$.

Pour traiter le cas général, considérons les suites de variables aléatoires $(S_n^{(1)})_{n\geq 1}$ et $(S_n^{(2)})_{n\geq 1}$ définies pour tout $n\geq 1$, par :

$$S_n^{(1)} = \sum_{k=1}^n X_k^+ \text{ et } S_n^{(2)} = \sum_{k=1}^n X_k^-,$$

où $X_k^+ = \max(X_k, 0)$ et $X_k^- = -\min(X_k, 0)$, $X_k = X_k^+ - X_k^-$, quel que soit $k \in \{1, \dots, n\}$.

On a bien, pour tout $n \ge 1$, que $S_n = S_n^{(1)} - S_n^{(2)}$.

Par ailleurs, puisque X_n^+ et X_n^- sont à valeurs positives quel que soit $n \geq 1$, il vient alors :

$$\mathbb{E}[S_T^{(1)}] = \mathbb{E}[X_1^+]\mathbb{E}[T], \tag{18}$$

$$\mathbb{E}[S_T^{(2)}] = \mathbb{E}[X_1^-]\mathbb{E}[T]. \tag{19}$$

En soustrayant l'égalité (19) à (18), on a :

$$\mathbb{E}[S_T] = \mathbb{E}[S_T^{(1)}] - \mathbb{E}[S_T^{(2)}]$$
$$= \mathbb{E}[(X_1^+ - X_1^-)]\mathbb{E}[T]$$
$$= \mathbb{E}[X_1]\mathbb{E}[T].$$

Comme $\mathbb{E}[S_T^{(1)}] < +\infty$ et $\mathbb{E}[S_T^{(1)}] < +\infty$, S_T est intégrable et l'identité annoncée est démontrée.

Exercice 4: 1. Pour tout $x \in \mathbb{R}$, on a:

$$f(x,1) = (1 + \mu + \sigma)x$$
 et $f(x,-1) = (1 + \mu - \sigma)x$.

Il résulte alors des inégalités

$$-\sigma \le |\sigma| < 1 + \mu \text{ et } \sigma \le |\sigma| < 1 + \mu,$$

que, quel que soit $x \in \mathbb{R}^+$, $f(x, 1) \ge 0$ et $f(x, -1) \ge 0$.

Posons $\epsilon = \pm 1$; comme $-|\sigma| \le \sigma \epsilon \le |\sigma|$, il vient, pour tout x > 0:

$$0 < (1 + \mu - |\sigma|)x \le f(x, \epsilon) = (1 + \mu + \sigma\epsilon)x \le (1 + \mu + |\sigma|)x.$$
 (20)

Par ailleurs, on remarque que, quel que soit $n \ge 1$, $S_n = f(S_{n-1}, \epsilon_n)$.

Montrons alors par récurrence sur $n \in \mathbb{N}^*$ que $S_n > 0$ et pour tout $n \ge 1$:

$$0 < (1 + \mu - |\sigma|)^n s_0 \le S_n \le (1 + \mu + |\sigma|)^n s_0.$$
(21)

D'après l'énoncé, $S_0 = s_0 > 0$ et compte tenu de l'inégalité (20) et la relation $S_1 = f(S_0, \epsilon_1)$, on obtient $S_1 > 0$ et :

$$0 < (1 + \mu - |\sigma|)s_0 \le S_1 \le (1 + \mu + |\sigma|)s_0$$
.

Supposons le résultat à démontrer vrai au rang $n \in \mathbb{N}^*$.

Ainsi $S_n > 0$ et en utilisant à nouveau (20), il vient :

$$0 < (1 + \mu - |\sigma|)S_n \le S_{n+1} = f(S_n, \epsilon_{n+1}) \le (1 + \mu + |\sigma|)S_n$$
.

de sorte que $S_{n+1} > 0$ et d'après l'hypothèse de récurrence, on a :

$$0 < (1 + \mu - |\sigma|)^{n+1} s_0 \le S_{n+1} \le (1 + \mu + |\sigma|)^{n+1} s_0.$$

On déduit du développement précédent que pour tout $n \in \mathbb{N}^*$, $S_n > 0$ et l'inégalité (21) est valide quel que soit $n \geq 1$.

- 2. Pour tout $n \ge 1$, on pose $\Delta S_n = S_n S_{n-1}$.
 - (a) Il a été remarqué à la question précédente que pour tout $n \geq 1$, $S_n = f(S_{n-1}, \epsilon_n)$, avec $f(x,\epsilon) = (1+\mu+\sigma\epsilon)x, (x,\epsilon) \in \mathbb{R}_+^* \times \{-1,1\}.$ De plus, f est $(\mathcal{B}(\mathbb{R}_+^*) \otimes \mathcal{P}(\{-1,1\}), \mathcal{B}(\mathbb{R}_+^*))$ - mesurable, où $\mathcal{P}(\{-1,1\})$ désigne l'ensemble des parties de $\{-1,1\}$.

Montrons par récurrence sur $n \ge 1$ que : $\mathcal{F}_n = \sigma(\epsilon_1, \dots, \epsilon_n)$.

On a : $S_1 = f(s_0, \epsilon_1)$, ainsi S_1 s'écrit comme une fonction déterministe et $(\mathcal{P}(\{-1,1\}), \mathcal{B}(\mathbb{R}_+^*))$ mesurable de ϵ_1 de sorte que S_1 est $\sigma(\epsilon_1)$ - mesurable et on en déduit que : $\sigma(S_1) \subset \sigma(\epsilon_1)$.

(On pourra consulter à nouveau et avec profit le corrigé de la question 1. de l'Exercice 1 de la PC2)

L'inclusion réciproque $\sigma(\epsilon_1) \subset \sigma(S_1)$ est assurée en remarquant que : $\epsilon_1 = \frac{\frac{S_1}{s_0} - (1+\mu)}{\sigma}$, avec $s_0 > 0$ et $\sigma > 0$, c'est-à-dire que ϵ_1 est une fonction déterministe et mesurable de S_1 .

Supposons désormais que $\mathcal{F}_n = \sigma(\epsilon_1, \cdots, \epsilon_n)$, pour un $n \geq 1$. On a : $\sigma(\epsilon_1, \cdots, \epsilon_n) \subset \sigma(\epsilon_1, \cdots, \epsilon_n, \epsilon_{n+1})$ et puisque d'après l'hypothèse de récurrence,

 $\sigma(\epsilon_1, \dots, \epsilon_n) = \sigma(S_1, \dots, S_n)$, il vient alors : $\sigma(S_1, \dots, S_n) \subset \sigma(\epsilon_1, \dots, \epsilon_n, \epsilon_{n+1})$.

 S_n est alors $\sigma(\epsilon_1, \dots, \epsilon_n, \epsilon_{n+1})$ - mesurable; de plus, ϵ_{n+1} est naturellement $\sigma(\epsilon_1, \dots, \epsilon_n, \epsilon_{n+1})$ - mesurable. Comme $S_{n+1} = f(S_n, \epsilon_{n+1})$ et f étant mesurable comme remarqué ci-dessus, on en déduit que S_{n+1} est $\sigma(\epsilon_1, \dots, \epsilon_n, \epsilon_{n+1})$ - mesurable.

Ainsi : $(S_1, \dots, S_n, S_{n+1})$ est $\sigma(\epsilon_1, \dots, \epsilon_n, \epsilon_{n+1})$ - mesurable de sorte que :

 $\mathcal{F}_{n+1} = \sigma(S_1, \dots, S_n, S_{n+1}) \subset \sigma(\epsilon_1, \dots, \epsilon_n, \epsilon_{n+1}).$

L'inclusion réciproque découle de façon analogue de la relation $\epsilon_{n+1} = \frac{\frac{S_{n+1}}{S_n} - (1+\mu)}{\sigma}$ et de l'hypothèse de récurrence.

On conclut que pour tout $n \geq 1$, $\mathcal{F}_n = \sigma(\epsilon_1, \dots, \epsilon_n)$.

(b) $(\mathcal{F}_n)_{n\in\mathbb{N}}$ désignant la filtration naturelle du processus $(S_n)_{n\in\mathbb{N}}$, S_n est une variable aléatoire \mathcal{F}_n -mesurable, quel que soit $n\in\mathbb{N}$.

De plus, on déduit de l'inégalité (21) que S_n est intégrable pour tout $n \in \mathbb{N}$.

D'après la question précédente, $\mathcal{F}_n = \sigma(\epsilon_1, \dots, \epsilon_n)$, quel que soit $n \geq 1$; la variable aléatoire ϵ_n est alors indépendante de la tribu \mathcal{F}_{n-1} , pour tout $n \geq 1$.

On a, pour tout $n \ge 1$, $\Delta S_n = S_n - S_{n-1} = S_{n-1}(\mu + \sigma \epsilon_n)$.

Ainsi, quel que soit $n \in \mathbb{N}^*$

$$\begin{split} \mathbb{E}[\Delta S_n|\mathcal{F}_{n-1}] &= S_{n-1}\mathbb{E}[(\mu + \sigma\epsilon_n)|\mathcal{F}_{n-1}] \,, \text{ car } S_{n-1} \text{ est } \mathcal{F}_{n-1} \text{ -mesurable}, \\ &= S_{n-1}\mathbb{E}[(\mu + \sigma\epsilon_n)] \,, \text{ vu que } \epsilon_n \text{ donc } \mu + \sigma\epsilon_n \text{ est indépendante de } \mathcal{F}_{n-1} \,, \\ &= S_{n-1}((\mu + \sigma)\mathbb{P}(\epsilon_n = 1) + (\mu - \sigma)\mathbb{P}(\epsilon_n = -1)) \,, \\ &= S_{n-1}\left(\frac{1}{2}(\mu + \sigma) + \frac{1}{2}(\mu - \sigma)\right) \,, \end{split}$$

soit:

$$\mathbb{E}[\Delta S_n | \mathcal{F}_{n-1}] = \mu S_{n-1}. \tag{22}$$

Puisque $S_{n-1} > 0$, pour tout $n \ge 1$,

- si $\mu > 0$, alors $\mathbb{E}[S_n | \mathcal{F}_{n-1}] > S_{n-1}$ et $(S_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ sous-martingale,
- si $\mu = 0$, alors $\mathbb{E}[S_n | \mathcal{F}_{n-1}] = S_{n-1}$ et $(S_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ martingale,
- si $\mu < 0$, alors $\mathbb{E}[S_n | \mathcal{F}_{n-1}] < S_{n-1}$ et $(S_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ sur-martingale.
- (c) Rappel:
 - Soit $(X_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ sous-martingale telle que $\sup_{n\in\mathbb{N}}\mathbb{E}[X_n^+]<+\infty$. Alors la suite $(X_n)_{n\in\mathbb{N}}$ converge \mathbb{P} presque-sûrement vers une variable aléatoire limite noté X_∞ vérifiant $\mathbb{E}[X_\infty]<+\infty$.
 - Si $(X_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ sur-martingale à valeurs positives, alors $(X_n)_{n\in\mathbb{N}}$ converge \mathbb{P} presquesûrement vers une variable aléatoire intégrable $X_\infty \geq 0$. En effet, si $(X_n)_{n\in\mathbb{N}}$ est une sur-martingale à valeurs positives, alors $(-X_n)_{n\in\mathbb{N}}$ est une sous-

martingale à valeurs négatives et $X_n^+ = 0$, pour tout $n \in \mathbb{N}$. Ainsi, $\sup_{n \in \mathbb{N}} \mathbb{E}[X_n^+] < +\infty$ et la suite

 $(X_n)_{n\in\mathbb{N}}$ converge \mathbb{P} - presque-sûrement vers une variable aléatoire positive X_∞ vérifiant : $\mathbb{E}[X_\infty]<+\infty$.

On se place dans le cas où $\mu < 0$; d'après la question précédente, $(S_n)_{n \in \mathbb{N}}$ est alors une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - surmartingale; elle est de plus à valeurs positives.

On en déduit que $(S_n)_{n\in\mathbb{N}}$ converge \mathbb{P} - presque-sûrement vers une variable aléatoire positive S_∞ vérifiant $\mathbb{E}[S_\infty]<+\infty$.

En prenant l'espérance dans l'égalité (22), il vient, pour tout $n \geq 1$:

$$\mathbb{E}[\Delta S_n] = \mu \mathbb{E}[S_{n-1}],$$

soit:

$$\mathbb{E}[S_n] = (\mu + 1)\mathbb{E}[S_{n-1}].$$

Ainsi $(\mathbb{E}[S_n])_{n\in\mathbb{N}}$ est une suite géométrique de raison $(\mu+1)$ et quel que soit $n\geq 1$, $\mathbb{E}[S_n]=(\mu+1)^ns_0$. On a : $0\leq |\sigma|<1+\mu$ et puisque $\mu<0$, $1+\mu<1$; on en déduit que $\lim_{n\to+\infty}\mathbb{E}[S_n]=0$.

Rappel : Lemme de Fatou Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires positives définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. On a l'inégalité suivante dans $\mathbb{R}^+ \cup \{+\infty\}$:

$$\mathbb{E}[\liminf_{n \to +\infty} X_n] \le \liminf_{n \to +\infty} \mathbb{E}[X_n].$$

En utilisant le lemme de Fatou, il vient alors :

$$\mathbb{E}[S_{\infty}] \leq \lim_{n \to +\infty} \mathbb{E}[S_n] = 0.$$

Comme $S_{\infty} \geq 0$, \mathbb{P} - p.s., il résulte de l'inégalité précédente que $S_{\infty} = 0$, \mathbb{P} - p.s..

3. On déduit de l'inégalité (21) que, pour tout $n \ge 1$,

$$S_n^2 \leq (1 + \mu + |\sigma|)^{2n} s_0^2$$
.

Ainsi, quel que soit $n \geq 1$, S_n est de carré intégrable.

Pour tout $n \ge 1$, $S_n = S_{n-1}(1 + \mu + \sigma \epsilon_n)$ et $S_n^2 = S_{n-1}^2(1 + \mu + \sigma \epsilon_n)^2$.

Comme ϵ_n est indépendante de \mathcal{F}_{n-1} donc de S_{n-1} , S_{n-1}^2 et $(1 + \mu + \sigma \epsilon_n)^2$ sont également deux variables aléatoires indépendantes.

Il en résulte que, pour tout $n \ge 1$:

$$\begin{split} \mathbb{E}[S_n^2] &= \mathbb{E}[S_{n-1}^2] \mathbb{E}[(1+\mu+\sigma\epsilon_n)^2] \,, \\ &= \mathbb{E}[S_{n-1}^2] ((1+\mu+\sigma)^2 \mathbb{P}(\epsilon_n=1) + (1+\mu-\sigma)^2 \mathbb{P}(\epsilon_n=-1)) \,, \\ &= \mathbb{E}[S_{n-1}^2] \frac{1}{2} ((1+\mu+\sigma)^2 + (1+\mu-\sigma)^2) \,, \\ &= ((1+\mu)^2 + \sigma^2) \mathbb{E}[S_{n-1}^2] \,. \end{split}$$

 $(\mathbb{E}[S_n^2])_{n\in\mathbb{N}}$ est alors une suite géométrique de raison $((1+\mu)^2+\sigma^2)$ et on en déduit que, quel que soit $n\geq 1$,

$$\mathbb{E}[S_n^2] = ((1+\mu)^2 + \sigma^2)^n s_0^2. \tag{23}$$

4. (a) Comme $S_n > 0$, $Z_n = \log(S_n)$ est bien défini quel que soit $n \in \mathbb{N}$.

La fonction $x \mapsto \log(x)$ est continue sur \mathbb{R}_+^* donc $(\mathcal{B}(\mathbb{R}_+^*), \mathcal{B}(\mathbb{R}))$ - mesurable et S_n est $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}_+^*))$ - mesurable, quel que soit $n \in \mathbb{N}$, où $\mathcal{B}(\mathbb{R})$ (respectivement, $\mathcal{B}(\mathbb{R}_+^*)$) désigne la tribu borélienne de \mathbb{R} (respectivement, la tribu borélienne de \mathbb{R}_+^*). Z_n est alors $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ - mesurable, pour tout $n \in \mathbb{N}$ comme étant la composée de deux fonctions $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}_+^*))$ et $(\mathcal{B}(\mathbb{R}_+^*), \mathcal{B}(\mathbb{R}))$ - mesurables.

Par ailleurs, utilisant l'inégalité (21), on obtient pour tout $n \ge 1$,

$$\mathbb{E}[Z_n] \le \log(s_0) + \log(1 + \mu + |\sigma|)^n < +\infty, \tag{24}$$

et la variable aléatoire Z_n est intégrable quel que soit $n \ge 1$.

On a $S_0 = s_0$ et pour tout $n \ge 1$, $S_n = S_{n-1}(1 + \mu + \sigma \epsilon_n)$, de sorte que $Z_0 = \log(s_0)$ et :

$$\log(S_n) = \log(S_{n-1}) + \log(1 + \mu + \sigma\epsilon_n),$$

soit, quel que soit $n \geq 1$,

$$Z_n = Z_{n-1} + \log(1 + \mu + \sigma\epsilon_n). \tag{25}$$

Pour tout $n \ge 1$, il vient alors :

$$\begin{split} \mathbb{E}[Z_n|\mathcal{F}_{n-1}] &= \mathbb{E}[Z_{n-1}|\mathcal{F}_{n-1}] + \mathbb{E}[\log(1+\mu+\sigma\epsilon_n)|\mathcal{F}_{n-1}] \,, \,\, \text{d'après la linéarité de l'espérance conditionnelle,} \\ &= Z_{n-1} + \mathbb{E}[\log(1+\mu+\sigma\epsilon_n)] \,, \,\, \text{puisque } Z_{n-1} \,\, \text{est } \mathcal{F}_{n-1} \,\, \text{-mesurable} \\ &\quad \text{et } \epsilon_n \,\, \text{donc } 1+\mu+\sigma\epsilon_n \,\, \text{est indépendante de } \mathcal{F}_{n-1} \,, \\ &= Z_{n-1} + \log(1+\mu+\sigma)\mathbb{P}(\epsilon_n=1) + \log(1+\mu-\sigma)\mathbb{P}(\epsilon_n=-1) \,, \\ &= Z_{n-1} + \frac{1}{2}\log[(1+\mu+\sigma)(1+\mu-\sigma)] \,, \\ &= Z_{n-1} + \frac{1}{2}\log[(1+\mu)^2-\sigma^2] \,, \\ &= Z_{n-1} + \log(\lambda) \,, \end{split}$$

c'est-à-dire:

$$\mathbb{E}[Z_n|\mathcal{F}_{n-1}] = Z_{n-1} + \log(\lambda). \tag{26}$$

Ainsi, quel que soit $n \ge 1$,

- si $\lambda > 1$, alors $\mathbb{E}[Z_n | \mathcal{F}_{n-1}] > Z_{n-1}$ et $(Z_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ sous-martingale,
- si $\lambda = 1$, alors $\mathbb{E}[Z_n | \mathcal{F}_{n-1}] = Z_{n-1}$ et $(Z_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ martingale,
- si $\lambda < 1$, alors $\mathbb{E}[Z_n | \mathcal{F}_{n-1}] < Z_{n-1}$ et $(Z_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ sur-martingale,
- (b) D'après l'égalité (25), on a, pour tout $k\geq 1\,,$

$$Z_k = Z_{k-1} + \log(1 + \mu + \sigma \epsilon_k),$$

soit, quel que soit $n \geq 1$,

$$Z_n = Z_0 + \sum_{k=1}^n \log(1 + \mu + \sigma \epsilon_k) = \log(s_0) + \sum_{k=1}^n \log(1 + \mu + \sigma \epsilon_k).$$
 (27)

Les variables aléatoires $(\epsilon_n)_{n\in\mathbb{N}}$ étant i.i.d. et intégrables, $(\log(1+\mu+\sigma\epsilon_n)_{n\in\mathbb{N}})$ constitue une suite de variables aléatoires intégrables, indépendantes et identiquement distribuées.

(c) Rappel : Loi des grands nombres Si $(X_n)_{n\geq 1}$ est une suite de variables aléatoires intégrables indépendantes et identiquement distribuées, alors :

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} \mathbb{E}[X_1].$$

D'après la loi des grands nombres,

$$\frac{\sum_{k=1}^{n} \log(1 + \mu + \sigma \epsilon_k)}{n} \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} \mathbb{E}[\log(1 + \mu + \sigma \epsilon_1)] = \log(\lambda),$$

de sorte que $\frac{Z_n}{n} = \frac{\log(s_0)}{n} + \frac{\sum_{k=1}^n \log(1+\mu+\sigma\epsilon_k)}{n} \xrightarrow[n \to +\infty]{\mathbb{P}-\mathrm{p.s.}} \log(\lambda)$.

Il en résulte que :

- si $\lambda > 1$, alors $Z_n \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} +\infty$,
- si $\lambda = 1$, alors $\frac{Z_n}{n} \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} 0$,
- si $\lambda < 1$, alors $Z_n \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} -\infty$.
- (d) Comme $S_n = \exp(Z_n)$, pour tout $n \in \mathbb{N}$, on déduit des résultats précédents que :
 - si $\lambda > 1$, alors $S_n \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} +\infty$,
 - si $\lambda = 1$, alors $\frac{\log(S_n)}{n} = \log\left(S_n^{\frac{1}{n}}\right) \xrightarrow[n \to +\infty]{\mathbb{P}-\mathrm{p.s.}} 0$, soit $S_n^{\frac{1}{n}} \xrightarrow[n \to +\infty]{\mathbb{P}-\mathrm{p.s.}} 1$.
 - si $\lambda < 1$, alors $S_n \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} 0$.
- 5. On se place dans le cas particulier où $|\sigma| < \frac{1}{\sqrt{2}}$ et $(1+\mu)^2 + \sigma^2 < 1$.
 - (a) Comme $|\sigma| < 1 + \mu$, on a : $\sigma^2 < (1 + \mu)^2$ et l'inégalité $(1 + \mu)^2 + \sigma^2 < 1$ peut-être réalisée dès que $\sigma^2 < \frac{1}{2}$ soit $|\sigma| < \frac{1}{\sqrt{2}}$; dans ce cas, on doit avoir $\mu < 0$ et d'après la question $\mathbf{2.(b)}$, $(S_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ sur-martingale, c'est-à-dire que $(-S_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ sous-martingale.
 - (b) Comme $(-S_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -sous-martingale, d'après le théorème de décomposition de Doob (**cf le rappel de cours en liminaire du corrigé de l'exercice 2**), il existe une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ martingale $(M_n)_{n\in\mathbb{N}}$ et un processus croissant $(\mathcal{F}_n)_{n\in\mathbb{N}}$ prévisible tel que, pour tout $n\geq 1$, $-S_n=M_n+A_n$.

On a, $A_0 = 0$ et quel que soit $n \ge 1$, $A_n = \sum_{k=1}^n \mathbb{E}[\Delta(-S_k)|\mathcal{F}_{k-1}]$; de plus, $M_0 = -S_0 = -s_0$ et

 $M_n = -S_n - A_n$, pour tout $n \ge 1$.

Utilisant l'égalité trouvée en (22), il vient alors :

$$A_0 = 0 \text{ et } \forall n \ge 1, A_n = -\mu \sum_{k=1}^n S_{k-1} = -\mu \sum_{k=0}^{n-1} S_k.$$

Par ailleurs,

$$M_0 = -s_0 \text{ et } \forall n \ge 1, M_n = -S_n - A_n = -S_n + \mu \sum_{k=0}^{n-1} S_k.$$
 (28)

(c) En utilisant l'inégalité vectorielle

$$|x_1 + \ldots + x_l|^2 \le l^2(|x_1|^2 + \ldots + |x_l|^2)$$
,

valide quel que soit $l \ge 1$ et $(x_1, \ldots, x_l) \in \mathbb{R}^l$, on obtient, pour tout $n \ge 1$:

$$M_n^2 \le (n+1)^2 (S_n^2 + \mu^2 \sum_{k=0}^{n-1} S_k^2).$$

D'après la question 3., S_n est, quel que soit $n \ge 1$, une variable aléatoire de carré intégrable; on déduit de l'inégalité précédente que $(M_n)_{n \in \mathbb{N}}$ est une martingale de carré intégrable.

Son crochet noté $(\langle M \rangle_n)_{n \in \mathbb{N}}$ est défini comme l'unique processus croissant prévisible nul en 0 tel que $(M_n^2 - \langle M \rangle_n)_{n \in \mathbb{N}}$ soit une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale.

Il est, de plus, caractérisé par $\langle M \rangle_0 = 0$ et pour tout $n \geq 1$:

$$\langle M \rangle_n = \sum_{k=0}^{n-1} \mathbb{E}[(M_{k+1} - M_k)^2 | \mathcal{F}_k].$$
 (29)

Or, pour tout $k \ge 1$, $M_{k+1} - M_k = -(S_{k+1} - S_k) + \mu S_k$, d'après l'égalité (28). Comme, $S_{k+1} = (1 + \mu)S_k + \sigma S_k \epsilon_{k+1}$, quel que soit $k \ge 1$, on obtient : $M_{k+1} - M_k = -\sigma S_k \epsilon_{k+1}$. Il résulte alors de (29) que, pour tout $n \ge 1$:

$$\langle M \rangle_n = \sigma^2 \sum_{k=0}^{n-1} \mathbb{E}[S_k^2 \epsilon_{k+1}^2 | \mathcal{F}_k],$$

$$= \sigma^2 \sum_{k=0}^{n-1} S_k^2 \mathbb{E}[\epsilon_{k+1}^2 | \mathcal{F}_k], \text{ car } S_k \text{ donc } S_k^2 \text{ est } \mathcal{F}_k \text{- mesurable,}$$

$$= \sigma^2 \sum_{k=0}^{n-1} S_k^2 \mathbb{E}[\epsilon_{k+1}^2], \text{ puisque } \epsilon_{k+1} \text{ donc } \epsilon_{k+1}^2 \text{ est indépendante de } \mathcal{F}_k,$$

$$= \sigma^2 \sum_{k=0}^{n-1} S_k^2 (1^2 \mathbb{P}(\epsilon_{k+1} = 1) + (-1)^2 \mathbb{P}(\epsilon_{k+1} = -1)),$$

$$= \sigma^2 \sum_{k=0}^{n-1} \frac{1}{2} (1+1) S_k^2,$$

ainsi,

$$< M >_0 = 0 \text{ et } \forall n \ge 1, < M >_n = \sigma^2 \sum_{k=0}^{n-1} S_k^2.$$
 (30)

(d) Nous obtenons, pour tout $n \ge 1$,

$$\mathbb{E}[\langle M \rangle_n] = \sigma^2 \sum_{k=0}^{n-1} \mathbb{E}[S_k^2],$$

soit, compte tenu de l'égalité (23) :

$$\mathbb{E}[\langle M \rangle_n] = \sigma^2 s_0^2 \sum_{k=0}^{n-1} ((1+\mu)^2 + \sigma^2)^k = \sigma^2 s_0^2 \frac{1 - ((1+\mu)^2 + \sigma^2)^n}{1 - ((1+\mu)^2 + \sigma^2)}.$$
 (31)

Par ailleurs, $(M_n^2 - \langle M \rangle_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale, de sorte que, quel que soit $n \in \mathbb{N}$:

$$\mathbb{E}[M_n^2 - < M >_n] = \mathbb{E}[M_0^2 - < M >_0] = \mathbb{E}[M_0^2] = s_0^2,$$

 $_{
m et}$

$$\mathbb{E}[M_n^2] = s_0^2 + \mathbb{E}[\langle M \rangle_n].$$

Comme $(1 + \mu)^2 + \sigma^2 < 1$, on déduit de (31) que la suite $(\mathbb{E}[< M>_n])_{n \in \mathbb{N}}$ est convergente; ainsi $\sup_{n \in \mathbb{N}} \mathbb{E}[X_n^2] < +\infty$. La martingale $(X_n)_{n \in \mathbb{N}}$ étant bornée dans \mathbb{L}^2 , elle converge alors presque-sûrement $n \in \mathbb{N}$

(cf le rappel de cours sur le théorème de convergence des martingales uniformément bornées dans \mathbb{L}^2 dans le corrigé de la question 3. de l'exercice 2).

6. Considérons le processus $(W_n)_{n\in\mathbb{N}}$ défini pour tout $n\in\mathbb{N}$, par $W_n=\log\left(\frac{S_n}{\lambda^n}\right)$.

Par ailleurs, en utilisant l'égalité (26), il vient, pour tout n > 1:

(a) On a, pour tout $n \ge 1$, $W_n = \log\left(\frac{S_n}{\lambda^n}\right) = \log(S_n) - n\log(\lambda) = Z_n - n\log(\lambda)$. W_n est alors une variable aléatoire \mathcal{F}_n -mesurable et intégrable quel que soit $n \in \mathbb{N}$, puisque Z_n l'est, d'après la question **4.(a)**.

$$\mathbb{E}[W_n|\mathcal{F}_{n-1}] = \mathbb{E}[Z_n|\mathcal{F}_{n-1}] - n\log(\lambda),$$

$$= Z_{n-1} + \log(\lambda) - n\log(\lambda),$$

 $=W_{n-1}$.

On en déduit que $(W_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale.

De plus, d'après l'inégalité (21), on a, quel que soit $n \ge 1$

$$Z_n^2 = (\log(S_n))^2 \le (\log((1 + \mu + |\sigma|)^n) + \log(s_0))^2$$
.

Ainsi, Z_n^2 est une variable aléatoire de carré intégrable pour tout $n \in \mathbb{N}$ et compte tenu de la définition du processus $(W_n)_{n \in \mathbb{N}}$, il apparaît alors que $(W_n)_{n \in \mathbb{N}}$ est une martingale de carré intégrable. Son crochet $(< W>_n)_{n \in \mathbb{N}}$ est caractérisé par $< W>_0 = 0$ et pour tout $n \ge 1$:

$$_n=\sum_{k=0}^{n-1}\mathbb{E}[(W_{k+1}-W_k)^2|\mathcal{F}_k].$$

Or, pour tout $k \in \mathbb{N}$,

$$\begin{aligned} W_{k+1} - W_k &= \log \left(\frac{S_{k+1}}{\lambda^{k+1}} \right) - \log \left(\frac{S_k}{\lambda^k} \right) , \\ &= \log \left(\frac{S_{k+1}}{\lambda^{k+1}} \right) + \log \left(\frac{\lambda^k}{S_k} \right) , \\ &= \log \left(\frac{S_{k+1}}{\lambda S_k} \right) , \\ &= \log \left(\frac{1 + \mu + \sigma \epsilon_{k+1}}{\lambda} \right) \end{aligned}$$

Ainsi, quel que soit $n \ge 1$,

$$\begin{split} _n &= \sum_{k=0}^{n-1} \mathbb{E}\left[\left(\log\left(\frac{1+\mu+\sigma\epsilon_{k+1}}{\lambda}\right)\right)^2 \Big| \mathcal{F}_k\right]\,,\\ &= \sum_{k=0}^{n-1} \mathbb{E}\left[\left(\log\left(\frac{1+\mu+\sigma\epsilon_{k+1}}{\lambda}\right)\right)^2\right] \,, \text{puisque } \epsilon_{k+1} \,\, \text{donc} \,\left(\log\left(\frac{1+\mu+\sigma\epsilon_{k+1}}{\lambda}\right)\right)^2 \,\, \text{est indépendante de } \mathcal{F}_k\,,\\ &= \sum_{k=0}^{n-1} \left(\left(\log\left(\frac{1+\mu+\sigma}{\lambda}\right)\right)^2 \mathbb{P}(\epsilon_{k+1}=1) + \left(\log\left(\frac{1+\mu-\sigma}{\lambda}\right)\right)^2 \mathbb{P}(\epsilon_{k+1}=-1)\right)\,,\\ &= \sum_{k=0}^{n-1} \frac{1}{2} \left(\left(\log\left(\frac{1+\mu+\sigma}{\lambda}\right)\right)^2 + \left(\log\left(\frac{1+\mu-\sigma}{\lambda}\right)\right)^2\right)\,,\\ &= \sum_{k=0}^{n-1} \frac{1}{2} \left(\left(\log\left(\frac{1+\mu+\sigma}{\lambda}\right)\right) + \log\left(\frac{1+\mu-\sigma}{\lambda}\right)\right)^2 - 2\log\left(\frac{1+\mu+\sigma}{\lambda}\right)\log\left(\frac{1+\mu-\sigma}{\lambda}\right)\right)\,,\\ &= n\,\delta\,. \end{split}$$

car

$$\log\left(\frac{1+\mu+\sigma}{\lambda}\right) + \log\left(\frac{1+\mu-\sigma}{\lambda}\right) = \log\left(\frac{(1+\mu)^2-\sigma^2}{\lambda^2}\right) = \log(1) = 0.$$

Comme pour tout $n \in \mathbb{N}$, $< W >_n \ge 0$, on vérifie que $\delta > 0$.

(b) On en déduit que $(< W>_n)_{n\in\mathbb{N}}$ converge en croissant vers $< W>_{\infty} = +\infty$ lorsque $n\to +\infty$. Utilisant alors le résultat démontré à la question **4.** de l'exercice 2, il vient : $\frac{W_n}{< W>_n} \xrightarrow[n\to +\infty]{\mathbb{P}-p.s.} 0$, soit :

$$\frac{\log(S_n) - n\log(\lambda)}{n} \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} 0,$$

ce qui implique que :

$$S_n^{\frac{1}{n}} \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} \lambda$$
.

- 7. On définit le processus $(R_n)_{n\geq 1}$ par pour tout $n\geq 1$, $R_n=\lambda^{-\sqrt{n}}S_n^{\frac{1}{\sqrt{n}}}$.
 - (a) On a, pour tout $n \ge 1$, $\log(R_n) = \frac{1}{\sqrt{n}} Z_n \sqrt{n} \log(\lambda)$, soit d'après l'égalité (27)

$$\log(R_n) = \frac{1}{\sqrt{n}} \left(Z_0 + \sum_{k=1}^n (\log(1 + \mu + \sigma \epsilon_k) - \log(\lambda)) \right).$$

Or, pour tout $n \geq 1$,

$$\mathbb{E}[\log(1 + \mu + \sigma \epsilon_n)] = \log(1 + \mu + \sigma) \mathbb{P}(\epsilon_n = 1) + \log(1 + \mu - \sigma) \mathbb{P}(\epsilon_n = -1),$$

$$= \frac{1}{2} (\log(1 + \mu + \sigma) + \log(1 + \mu - \sigma)),$$

$$= \frac{1}{2} \log((1 + \mu)^2 - \sigma^2),$$

$$= \log(\sqrt{(1 + \mu)^2 - \sigma^2}),$$

$$= \log(\lambda),$$
(32)

et

$$\mathbb{E}[(\log(1+\mu+\sigma\epsilon_n)^2] = (\log(1+\mu+\sigma))^2 \mathbb{P}(\epsilon_n = 1) + (\log(1+\mu-\sigma))^2 \mathbb{P}(\epsilon_n = -1),$$

$$= \frac{1}{2}((\log(1+\mu+\sigma))^2 + (\log(1+\mu-\sigma))^2).$$

Ainsi, quel que soit $n \geq 1$,

$$\begin{aligned} \operatorname{Var}(\log(1+\mu+\sigma\epsilon_n) &= \mathbb{E}[(\log(1+\mu+\sigma\epsilon_n)^2] - (\mathbb{E}[\log(1+\mu+\sigma\epsilon_n)])^2 \,, \\ &= \frac{1}{2}((\log(1+\mu+\sigma))^2 + (\log(1+\mu-\sigma))^2) \\ &\qquad \qquad - \frac{1}{4}(\log(1+\mu+\sigma) + \log(1+\mu-\sigma))^2 \,, \text{d'après (32)} \\ &= \frac{1}{4}((\log(1+\mu+\sigma))^2 + (\log(1+\mu-\sigma))^2 - 2\log(1+\mu+\sigma)\log(1+\mu-\sigma)) \,, \\ &= \frac{1}{4}((\log(1+\mu+\sigma) - \log(1+\mu-\sigma))^2) \,, \\ &= \frac{1}{4}\left(\log\left(\frac{1+\mu+\sigma}{1+\mu-\sigma}\right)\right)^2 \,. \end{aligned}$$

Rappel: Théorème central limite

• On dit qu'une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}}$ converge vers la loi d'une variable aléatoire X (par abus de langage, on dit aussi que la suite converge en loi vers X), si pour toute fonction g à valeurs réelles, continue et bornée, on a :

$$\lim_{n \to +\infty} \mathbb{E}[g(X_n)] = \mathbb{E}[g(X)].$$

• Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires de carré intégrable, indépendantes et de même loi;

on pose $\mu = \mathbb{E}[X_1]$ et $\sigma^2 = \operatorname{Var}(X_1)$. Alors la suite $\left(\frac{\sum_{k=1}^n (X_k - \mu)}{\sqrt{n}}\right)_{n \geq 1}$ converge en loi vers la loi gaussienne $\mathcal{N}(0, \sigma^2)$:

$$\frac{\sum_{k=1}^{n} (X_k - \mu)}{\sqrt{n}} \xrightarrow[n \to +\infty]{\text{en loi}} \mathcal{N}(0, \sigma^2).$$

Les variables aléatoires $(\epsilon_n)_{n\in\mathbb{N}}$ étant i.i.d., $(\log(1+\mu+\sigma\epsilon_n)_{n\in\mathbb{N}})$ constitue une suite de variables aléatoires indépendantes et identiquement distribuées; compte tenu du développement précédent, elles sont également de carré intégrable avec :

$$\mathbb{E}[\log(1+\mu+\sigma\epsilon_1)] = \log(\lambda) \text{ et } \operatorname{Var}(\log(1+\mu+\sigma\epsilon_1)) = \frac{1}{4} \left(\log\left(\frac{1+\mu+\sigma}{1+\mu-\sigma}\right)\right)^2 := \rho^2.$$

On déduit alors du théorème central limite que :

$$\log(R_n) = \frac{1}{\sqrt{n}} \left(Z_0 + \sum_{k=1}^n (\log(1 + \mu + \sigma \epsilon_k) - \log(\lambda)) \right) \xrightarrow[n \to +\infty]{\text{en loi}} \mathcal{N}(0, \rho^2).$$

(b) Il en résulte que, pour toute fonction g à valeurs réelles continue et bornée, on a :

$$\lim_{n \to +\infty} \mathbb{E}[g(\log(R_n))] = \int_{\mathbb{R}} g(x) \frac{1}{|\rho| \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\rho^2}\right) dx.$$

Soit alors f une fonction continue et bornée définie sur \mathbb{R}_+^* ; comme $f \circ \exp$ est également une fonction continue et bornée, il vient :

$$\lim_{n \to +\infty} \mathbb{E}[f(R_n)] = \lim_{n \to +\infty} \mathbb{E}[f(\exp(\log(R_n)))] = \int_{\mathbb{R}} f(\exp(x)) \frac{1}{|\rho| \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\rho^2}\right) dx.$$

En faisant le changement de variables de \mathbb{R} sur \mathbb{R}_+^* défini par $y=\exp(x)$, on obtient :

$$\lim_{n\to +\infty} \mathbb{E}[f(R_n)] = \int_{\mathbb{R}_+^*} f(y) \frac{1}{|\rho|\sqrt{2\pi}} \frac{1}{y} \exp\left(-\frac{(\log(y))^2}{2\rho^2}\right) \, dy \,.$$

Nous en déduisons que $(R_n)_{n\in\mathbb{N}}$ converge en loi vers la loi log-normale de paramètres 0 et $\rho^2=\frac{1}{4}\left(\log\left(\frac{1+\mu+\sigma}{1+\mu-\sigma}\right)\right)^2$, dont la densité par rapport à la mesure de Lebesgue est l'application :

$$y \mapsto \mathbf{1}_{\mathbb{R}_+^*}(y) \frac{1}{|\rho|\sqrt{2\pi}} \frac{1}{y} \exp\left(-\frac{(\log(y))^2}{2\rho^2}\right).$$