

Course Introduction

Advanced Microeconometrics

Anders Munk-Nielsen 2022

Practical info

Practical information

- Lecturers: Theory, background, intuition
 - Anders Munk-Nielsen (me)
 - Jesper Riis-Vestergaard Sørensen
- "Office" hours: Fridays until 14.00 until 11.00 with Anders in 25.0.10.
 - Please email in advance or follow from the lecture.
- Exercise classes: Hands-on experience with real data and Python.
 - Instructor: Sophie Caroline Köppe Bindslev
- Projects: 3 major hand-ins
 - Groups: highly suggested coding alone is tough
 - Peer-feedback: can be used to improve project
- Exam: Portfolio
 - 48 hour take-home with new data
 - 1 of the 3 projects is selected randomly for assessment

Practical info 1 / 14

Lecturers

	Anders	Jesper		
Research	Cars and drugs	Econometric theory Rainy Los Angeles		
PhD from	Sunny Copenhagen			
Strength	Talks fast	Very smart		
Spirit animal	Mantis Shrimp	Pomeranian		
Music for coding	Viking death metal	K-pop		
Callsign	Munken	Mr. Dish		
Favourite sport	Wheelchair rugby	Formula 1		
Specialty	Coffee roasting	People roasting		

Practical info 2 /

Projects

- 3 major hand-ins
- New dataset
- Contents: Theoretical questions, estimation tasks, some more open-ended "real" questions
 - Similar to exercise problem sets...
- **Groups:** we suggest 2–3 people
 - E.g. form during first ex. classes
 - Those without a group: come talk at lecture 16 Sept. and get matched!
 - Important: coding alone is unnecessarily hard!
- Peer-feedback: can be used to improve project

Practical info 3 / 14

Peer feedback

Proven, successful tool for learning

Reading/listening: 5-20% retention

Practical use: 25-75%

■ Teaching others: 75-90%

Learn to reverse-engineer the grading process

- Going from student to teacher gives an "aha" moment...
- ... learn to think like your thesis censor will!
- Learn critical thinking
 - Students blindly accept teacher feedback
 - ... with peer feedback, you guys are super critical and engage in discussion! ⇒ learning!
- Giving and receiving feedback is a general life skill
 - Demanding: for us and for you
 - Relevant for your future (both thesis and work)

Practical info 4 /

The Projects

- Research question: General formulation, more than one way of approaching it...
 - ... but not very many given the models you encounter.
 - Important learning objective: How to structure an empirical project.
 - Finding vs. following a path.
- **Typically,** many doubt their chosen approach.
 - Yet most end up doing the same thing.
- Limited lecturer feedback ⇒ we can "give points" for more stuff at the exam.
 - + you are choosing the path ⇒ ownership + credit + independence.
- Feedback: Benefit 50% from giving and receiving! (don't over-do it)

Practical info 5 / 14

Expectation Management

- Preparation lectures:
 - Expected: read the assigned chapter,
 - Bare minimum: suggested minimal reading.
- Preparation exercises:
 - Expected: read problem set + begin work on code,
 - Bare minimum: read problem set.
 - Practice for the problem sets invest the time!

Practical info 6 /

Course Contents

• Part I: linear models

• Part II: high-dimensional models

• Part III: M-estimation

• Part IV: non-linear models

Practical info 7 /

Part I: linear models

- Part I: linear models
 - Estimation with / without panel data
 - More rigorous formulation
 - Frame of reference for non-linear methods
- Part II: high-dimensional models
- Part III: M-estimation
- Part IV: non-linear models

Practical info 8 / 1

Part II: High-dimensional Models

- Part I: linear models
- Part II: high-dimensional models
 - Introduction to high-dimensional statistics
 - LASSO
- Part III: M-estimation
- Part IV: non-linear models

Practical info 9 /

Part III: Estimation methods

- Part I: linear models
- Part II: high-dimensional models
- Part III: M-estimation methods
 - Numerical optimization
 - Inference with M-estimators
- Part IV: non-linear models

Practical info 10 / 14

Part IV: Non-linear models

- Part I: linear models
- Part II: high-dimensional models
- Part III: M-estimation
- Part IV: non-linear models
 - Probit
 - Tobit
 - Logit
 - Likelihood for panel data (SML)
 - Quantile regression
 - Non-parametric methods

Practical info 11 / 14

Symbolically

- Part I: $y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}$
- Part II: $y_i = \mathbf{x}_i \boldsymbol{\beta} + u_{it}$, $\dim(\boldsymbol{\beta}) \to \infty$ (!!)
- Part III: $\hat{\theta} = \arg\min_{\theta} N^{-1} \sum_{i=1}^{N} q_i(\theta)$
- Part IV: $y_i = g(\mathbf{x}_i \boldsymbol{\beta}, u_{it})$

Practical info

An overview of the *ion canon

Part	Topic	Parameterization non-linear	Estimation non-linear	Dimension	Numerical optimization	M-estimation (Part III)	Outcome (y_i)	Panel (c_i)
1	OLS	÷	÷	low	÷	✓	R	✓
H	LASSO	÷	✓	high	✓	÷	R	÷
	Probit	✓	✓	low	✓	✓	{0,1}	÷
	Tobit	✓	✓	low	✓	✓	[0;∞)	÷
IV	Logit	✓	✓	low	✓	✓	{1, 2,, <i>J</i> }	÷
	Sample selection	✓	✓	low	✓	✓	\mathbb{R} and $\{0,1\}$	÷
	Simulated Likelihood	✓	✓	low	✓	✓	Any	✓
	Quantile Regression	÷	✓	(low)	✓	✓	R	÷
	Non-parametric	✓	(√)	∞	÷	÷	R	÷

Practical info

Curriculum

Practical info 14 / 14