

Aula 02

Matrizes

Karla Lima

Sumário

- 1. Matrizes no Cotidiano
- 2. Um Problema de Inventário
- 3. Matrizes: Definição
- 4. Operações com Matrizes

Matrizes no Cotidiano

Matrizes

- No dia a dia, informações podem ser organizadas em tabelas, para que se possa melhor analisar as variáveis.
- Por exemplo, uma tabela que mostra a quantidade mensal aproximada de quatro alimentos básicos, em quilograma, consumida por uma família durante um trimestre:

> Consumo de alimentos – 2º trimestre

Mês Alimento	Abril Maio		Junho	
Arroz	10 kg	11,5 kg	9 kg	
Feijão	4 kg	5 kg	6 kg	
Carne	8,5 kg	7 kg	10 kg	
Legumes	12 kg	11 kg	16,5 kg	

Fonte: Dados fictícios.

Matrizes

▶ Você consegue pensar em matrizes no seu cotidiano?

Planilha de Gastos Pessoais

Para a planilha de gastos mensais, podemos representar a matriz com as linhas representando os meses e as colunas as categorias de gastos.

Mês	Alimentação	Transporte	Moradia	Lazer
Janeiro	500	200	1500	300
Fevereiro	550	180	1500	350
Março	600	220	1500	250

Tabela Nutricional

Aqui temos uma matriz que representa a tabela nutricional, com os alimentos nas linhas e os nutrientes nas colunas.

Alimento (por 100g)	Calorias	Carboidratos	Proteínas	Gorduras
Arroz	130	28 <i>g</i>	2 <i>g</i>	0 <i>g</i>
Feijão	100	20 <i>g</i>	8 <i>g</i>	0.5 <i>g</i>
Frango	200	0 <i>g</i>	30 <i>g</i>	10 <i>g</i>

Grade de Horários

A grade de horários pode ser representada por uma matriz com os horários nas linhas e os dias da semana nas colunas.

Horário	Segunda-feira	Terça-feira	Quarta-feira	Quinta-feira	Sexta-feira
08:00 - 10:00	Matemática	História	Física	Geografia	Química
10:00 - 12:00	Biologia	Química	Matemática	História	Física

Sistema de Recomendação de Produtos

Aqui está a matriz que representa as avaliações dos produtos por diferentes usuários:

Usuário / Produto	Produto A	Produto B	Produto C
João	5	3	2
Maria	4	5	1
Pedro	2	4	5

Matriz de Inventário

Imaginamos que um supermercado tem 3 prateleiras com os seguintes produtos:

▶ Produto 1: Arroz

▶ Produto 2: Feijão

► Produto 3: Açúcar

Matriz de Inventário

A matriz de inventário representa a quantidade de cada produto em cada prateleira.

$$S = \begin{bmatrix} 10 & 15 & 30 \\ 5 & 25 & 12 \\ 20 & 8 & 14 \end{bmatrix} \leftarrow \begin{array}{l} \text{Prateleira 1} \\ \leftarrow & \text{Prateleira 2} \\ \leftarrow & \text{Prateleira 3} \end{array}$$

Onde:

- A primeira linha representa a **prateleira 1**, com 10 pacotes de arroz, 15 pacotes de feijão, e 30 pacotes de açúcar.
- A segunda linha representa a prateleira 2, com 5 pacotes de arroz, 25 pacotes de feijão, e 12 pacotes de açúcar.
- ► A terceira linha representa a **prateleira 3**, com 20 pacotes de arroz, 8 pacotes de feijão, e 14 pacotes de açúcar.

Adição de Estoques

O supermercado recebeu uma nova remessa de produtos. Vamos adicionar as seguintes quantidades:

- Arroz: 5 pacotes em cada prateleira.
- ▶ Feijão: 10 pacotes na prateleira 2, 5 pacotes na prateleira 1, e 5 pacotes na prateleira 3.
- Açúcar: 2 pacotes em todas as prateleiras.

Como ficaria a matriz que representa a remessa?

Adição de Estoques

A matriz de remessa seria:

$$R = \begin{bmatrix} 5 & 5 & 2 \\ 5 & 10 & 2 \\ 5 & 5 & 2 \end{bmatrix}$$

Adição de Estoques

Agora, somamos as matrizes *S* e *R* para atualizar o inventário com os novos produtos recebidos:

$$S + R = \begin{bmatrix} 10 & 15 & 30 \\ 5 & 25 & 12 \\ 20 & 8 & 14 \end{bmatrix} + \begin{bmatrix} 5 & 5 & 2 \\ 5 & 10 & 2 \\ 5 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 15 & 20 & 32 \\ 10 & 35 & 14 \\ 25 & 13 & 16 \end{bmatrix}$$

Agora, o inventário foi atualizado com a nova remessa.

Subtração de Estoques

Suponha que o supermercado fez algumas vendas ou transferências para outra unidade. Os seguintes itens foram retirados:

- Arroz: 2 pacotes de cada prateleira.
- ► Feijão: 5 pacotes da prateleira 1, 10 pacotes da prateleira 2, e 3 pacotes da prateleira 3.
- Açúcar: 3 pacotes de todas as prateleiras.

Como seria a matriz de remoção?

Subtração de Estoques

A matriz de remoção seria:

$$M = \begin{bmatrix} 2 & 0 & 3 \\ 2 & 10 & 3 \\ 2 & 0 & 3 \end{bmatrix}$$

Subtração de Estoques

Agora, subtraímos a matriz M da matriz S+R para refletir a venda ou transferência de produtos:

$$S + R - M = \begin{bmatrix} 15 & 20 & 32 \\ 10 & 35 & 14 \\ 25 & 13 & 16 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 3 \\ 2 & 10 & 3 \\ 2 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 13 & 20 & 29 \\ 8 & 25 & 11 \\ 23 & 13 & 13 \end{bmatrix}$$

E temos o inventário atualizado após as vendas ou transferências dos produtos.

Matrizes: Definição

Definição

Definição 1

Uma **matriz** é definida como um arranjo retangular de números, dispostos em linhas e colunas que ficam entre colchetes [] ou parênteses ().

$$\begin{bmatrix} 15 & 20 & 32 \\ 25 & 13 & 16 \end{bmatrix} \text{ ou } \begin{pmatrix} 15 & 20 & 32 \\ 25 & 13 & 16 \end{pmatrix}$$

Os membros do arranjo são denominados <u>elementos</u> da matriz e são representados por a_{ij}, onde i determina em qual linha da matriz o elemento se encontra e j determina em qual coluna.

- Os membros do arranjo são denominados <u>elementos</u> da matriz e são representados por a_{ij}, onde i determina em qual linha da matriz o elemento se encontra e j determina em qual coluna.
- As linhas são numeradas de cima para baixo e as colunas, da esquerda para a direita, como mostra o exemplo a seguir:

▶ Uma matriz é dita ter <u>ordem</u> $m \times n$ se possui m linhas e n colunas. Podemos descrever tais matrizes das seguintes formas: $A_{m \times n}$ ou $[a_{ij}]_{m \times n}$.

- ▶ Uma matriz é dita ter <u>ordem</u> $m \times n$ se possui m linhas e n colunas. Podemos descrever tais matrizes das seguintes formas: $A_{m \times n}$ ou $[a_{ij}]_{m \times n}$.
- ightharpoonup A matriz anterior tem 4 linhas e 3 colunas, logo é uma matriz de ordem 4 imes 3:

As matrizes geralmente são nomeadas com uma letra maiúscula e, para indicar os elementos dessa matriz, usamos a mesma letra, porém minúscula, acompanhada de dois índices que representam, respectivamente, a linha e a coluna em que o elemento está localizado.

As matrizes geralmente são nomeadas com uma letra maiúscula e, para indicar os elementos dessa matriz, usamos a mesma letra, porém minúscula, acompanhada de dois índices que representam, respectivamente, a linha e a coluna em que o elemento está localizado.

$$A = \begin{pmatrix} 15 & 20 & 32 \\ 25 & 13 & 16 \end{pmatrix} \qquad \rightarrow \qquad a_{11} = 15, \ a_{21} = 25, \ a_{12} = 20$$

Na representação expandida e, também, na abreviada, o elemento a_{ij} está na linha i e na coluna j, em que i assume valores no conjunto $\{1, 2, 3, ..., m\}$ e j assume valores no conjunto $\{1, 2, 3, ..., n\}$.

- Na representação expandida e, também, na abreviada, o elemento a_{ij} está na linha i e na coluna j, em que i assume valores no conjunto $\{1, 2, 3, ..., m\}$ e j assume valores no conjunto $\{1, 2, 3, ..., n\}$.
- ▶ Por exemplo, se *A* \acute{e} uma matriz 2 \times 3, temos $i \in \{1, 2\}$ e $j \in \{1, 2, 3\}$:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{12} \\ a_{21} & a_{22} & a_{32} \end{pmatrix}$$

Exemplo

Exemplo 1

Seja A uma matriz 2 imes 3, cujos elementos podem ser obtidos pela lei de formação:

$$a_{ij}=3i+j$$
.

Obtenha cada elemento e determine a matriz A.

Operações com Matrizes

Adição e Subtração

Para somar ou subtrair duas matrizes, ambas devem ter a mesma ordem. Se isto é satisfeito, basta aplicar a operação de adição (ou subtração) a cada par de elementos correspondentes:

$$\left[egin{array}{ccc} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{array}
ight] + \left[egin{array}{ccc} b_{11} & b_{12} \ b_{21} & b_{22} \ b_{31} & b_{32} \end{array}
ight] = \left[egin{array}{ccc} a_{11} + b_{11} & a_{12} + b_{12} \ a_{21} + b_{21} & a_{22} + b_{22} \ a_{31} + b_{31} & a_{32} + b_{32} \end{array}
ight]$$

Exemplo

Dadas as matrizes
$$A = \begin{bmatrix} 4 & 9 \\ 2 & 1 \end{bmatrix}$$
 $e B = \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}$, ambas 2×2 , a soma $A + B$ \acute{e} dada por:

$$\left[\begin{array}{cc} 4 & 9 \\ 2 & 1 \end{array}\right] + \left[\begin{array}{cc} 2 & 0 \\ 0 & 7 \end{array}\right] = \left[\begin{array}{cc} 4+2 & 9+0 \\ 2+0 & 1+7 \end{array}\right] = \left[\begin{array}{cc} 6 & 9 \\ 2 & 8 \end{array}\right].$$

Exemplo

Dadas as matrizes
$$A = \begin{bmatrix} 19 \\ 2 \\ 3 \end{bmatrix}$$
 e $B = \begin{bmatrix} 6 \\ 8 \\ 1 \end{bmatrix}$, ambas 3×1 , a subtração $A - B$ é dada por:

$$\begin{bmatrix} 19 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 6 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 19-6 \\ 2-8 \\ 3-1 \end{bmatrix} = \begin{bmatrix} 13 \\ -6 \\ 2 \end{bmatrix}.$$

Operações com matrizes: adição e subtração

Em geral, escrevemos

- $[a_{ij}]_{m\times n} [b_{ij}]_{m\times n} = [d_{ij}]_{m\times n}, \text{ onde } d_{ij} = a_{ij} b_{ij}.$