	Page No. (Date: / /201	
	THEORY ASSIGNMENT	
	QUESTION 1	
	XOR f' cannot be modelled using a rewal network with linear activation function. As a newal network with linear activation for is equal to a linear activation for is equal to	
	function. As a neural network with	
	a linear or model.	
7	X WL W2-	
	(E)	
	B	
	(B) (B2)	
	Input at hidden lagen 1.	
·	z ₩,×	
	Ontfort at midden lager 1	
	= W, X + B,	
	Input at output layer	
	$= \omega_2(\omega_1 x + \beta_1)$	

Evergreen Page No. Date: Output layen QUESTION 2 the problem'. Problem the occus Signoid Herec 1 the. problem

E	1er dr	reen
· Page No		
Date:	1	/201

	Sodichia
	Possible solutions:. Scale down input by a factor for Vanishing Gradient (Problem).
	· Scale down input by a factor
	for Vanishing Gradient (Problem).
	enpet data.
	enput data.
	Quéstion 3
	Let
	y = target g = poedieted
	g = poedicted
	$\alpha = \sigma(z)$
	10: 11
	$\sigma(z) = \frac{1}{1+e^{z}}$ (Sigmoid)
	^ ^/-
	$\hat{y} = e(z) = \sigma(\omega x + b)$
	Non
	$MSE = \frac{1}{2} \left(y - \hat{y} \right)$
	By diff.
	dm(E) = (1, 2) 2(2) = -4)
	$\frac{d(msE) = -(y-\hat{y})\partial(\hat{y})}{\partial\omega} = -(y-\hat{y})\partial(\hat{y})$
	2(2) = 0(-(2))
	$\frac{\partial(\hat{q})}{\partial\omega} = \frac{\partial(\sigma(z))}{\partial\omega}.$
	$= \rho^{-2} \times$
	$= e^{-2} \times \frac{1}{(1+e^{-2})^2}$
	$(1+e^{-})$

Page No. Date: / /201
$= \sigma(2)(1-\sigma(2)). \chi \qquad (2)$
Using 1) and (2)
$\frac{\partial ms\bar{\epsilon}}{\partial \omega} = (y^2 - y) \sigma(2) (1 - \sigma(2)) \cdot 2 - (3)$
For Cross Enlargy Cost Fn.
$C = -\left(y\log \hat{y} + (1-y)\log(1-\hat{y})\right)$
000
$\partial C = - \left[y \partial(\hat{y}) + (o(\hat{y} - 1) \partial(\hat{y}) \right]$
$\frac{1}{2\omega}$ $\frac{1}{2\omega}$ $\frac{1}{2\omega}$ $\frac{1}{2\omega}$ $\frac{1}{2\omega}$
$= -\frac{y}{2} + -(1-y) / \partial(\hat{y})$
(1-9) 20
= 4 + (-(1-4)) + (-1)
$=\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}$
= 9 -9 ot2) (1 o(2)).2.
Jet y)
$= (\hat{y} - \hat{y}) \cdot \lambda \cdot \qquad (4)$
Coonparing 3 and 4, we can say o(2)(1-r(2)) acts as slow down factor.
acts as U slaw down factors.