Hypothesis testing, experiments, difference in means

Hannah Frank frankh@tcd.ie

Department of Political Science Trinity College Dublin

September 20, 2023

Today's Agenda

- (1) Lecture recap
- (2) Tutorial exercises

What are the five steps of null-hypothesis significance testing?

TABLE 6.1: The Five Parts of a Statistical Significance Test

1. Assumptions

Type of data, randomization, population distribution, sample size condition

2. Hypotheses

Null hypothesis, H_0 (parameter value for "no effect") Alternative hypothesis, H_a (alternative parameter values)

3. Test statistic

Compares point estimate to H_0 parameter value

4. P-value

Weight of evidence against H_0 ; smaller P is stronger evidence

5. Conclusion

Report P-value

Formal decision (optional; see Section 6.4)

(Agresti 2018, 147)

Step 1: Assumptions

- Type of data: Continuous or categorical data
- <u>Sampling method</u>: Data randomly obtained (e.g., random sample)
- Population distribution: Variable assumed to follow certain distribution (e.g., normal distribution)
- Sample size: Validity improves with increasing sample size

(Agresti 2018, 144)

Step 2: Hypotheses

- Hypothesis: "a statement about a population. It takes the form
 of a prediction that a parameter takes a particular numerical
 value or falls in a certain range of values" (Agresti 2018, 143).
- Null (H_0) and alternative hypothesis (H_a) : "The null hypothesis is a statement that the parameter takes a particular value. The alternative hypothesis states that the parameter falls in some alternative range of values. Usually the value in the null hypothesis corresponds, in a certain sense, to no effect. The values in the alternative hypothesis then represent an effect of some type" (Agresti 2018, 144).
- Can be one-sided $(<,>,\geq,\leq)$ or two-sided $(=,\neq)$

Step 3: Test statistic

- <u>Test statistic</u>: "The test statistic summarizes how far that estimate falls from the parameter value in H_0 . Often this is expressed by the number of standard errors between the estimate and the H_0 value" (Agresti 2018, 145).
- Depending on probability distribution, test statistic is also called z-statistic or t-statistic.

Step 4: P-value

• <u>P-value</u>: "The P-value is the probability that the test statistic equals the observed value or a value even more extreme in the direction predicted by H_a . It is calculated by presuming that H_0 is true. The smaller the P-value, the stronger the evidence is against H_0 " (Agresti 2018, 145).

Step 5: Conclusion

		Null hypothesis (H₀) is	
		True	False
Decision about Null hypothesis (H ₀)	Don't reject	Correct inference (true negative) (probability = 1–α)	Type II Error (false negative) (probability = β)
	Reject	Type I Error (false positive) (probability = α)	Correct inference (true positive) (probability = 1-β)

ightarrow most concerned about Type I Error, probability of obtaining a false positive result, lpha (error probability), p-value.

Step 5: Conclusion

- Validate whether the obtained test statistic is unlikely to occur, under the assumption that the null hypothesis is true. → p-value, if probability is low, we reject H₀.
- More precisely, select α -level, which indicates acceptable probability of Type I error (usually 0.05, 0.01). If p-value $< \alpha$, we reject H_0 . \rightarrow proof by contradiction (disprove the null)
- Careful when making conclusion, there is still a probability that we falsely reject H_0 , even if p-value $< \alpha$. \rightarrow We use a certain language

Two types of hypothesis tests for today

- 1. Significance test for a mean
- 2. Significance test for a difference in means

TABLE 6.3: The Five Parts of Significance Tests for Population Means

Assumptions

Quantitative variable

Randomization

Normal population (robust, especially for two-sided H_a , large n)

2. Hypotheses

 $H_0: \mu = \mu_0$

 H_a : $\mu \neq \mu_0$ (or H_a : $\mu > \mu_0$ or H_a : $\mu < \mu_0$)

3. Test statistic

$$t = \frac{\overline{y} - \mu_0}{se}$$
 where $se = \frac{s}{\sqrt{n}}$

P-value

In t curve, use

 $P = \text{Two-tail probability for } H_a: \mu \neq \mu_0$

 $P = \text{Probability to right of observed } t\text{-value for } H_a: \mu > \mu_0$

 $P = \text{Probability to left of observed } t\text{-value for } H_a$: $\mu < \mu_0$

5. Conclusion

Report P-value. Smaller P provides stronger evidence against H_0 and supporting H_a . Can reject H_0 if $P \leq \alpha$ -level.

TABLE 6.2: Responses of Subjects on a Scale of Political Ideology

	Race				
Response	Black	White	Other		
1. Extremely liberal	10	36	1		
2. Liberal	21	109	13		
3. Slightly liberal	22	124	13		
4. Moderate, middle of road	74	421	27		
5. Slightly conservative	21	179	9		
6. Conservative	27	176	7		
7. Extremely conservative	11	28	2		
	n = 186	n = 1073	n = 72		

 H_0 : mean political ideology is moderate $\rightarrow \mu = 4.0$ H_a : mean political ideology falls in liberal or conservative direction $\rightarrow \mu \neq$ 4.0, (μ < 4 or μ > 4).

(Agresti 2018, 149)

Significance test for a mean (t-test)

With
$$\bar{y}=4.075$$
, $s=1.512$, we calculate $se=\frac{s}{\sqrt{n}}=\frac{1.512}{\sqrt{186}}=0.111$ and then $t=\frac{\bar{y}-\mu_0}{se}=\frac{4.075-4.0}{0.111}=0.68$

How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

(Agresti 2018, 150)

Significance test for a mean (t-test)

What is the conclusion? P-value=0.50, and is not < 0.05, thus we cannot reject $H_0 \rightarrow$ It is plausible that the population mean is 4.0, and therefore moderate.

One-sided versus two-sided test

"In most research articles, significance tests use two-sided P-values" (Agresti 2018, 153). Why? <u>But</u> can also be two-sided, <u>always</u> depends on research question.

Confidence intervals and NHST

Does confidence intervals contain parameter under the null hypothesis?

Significance test for a difference in means (t-test)

What is a t-test for the difference in means?

- Null and alternative hypothesis: (Step 2) The means of two groups are identical, $\bar{y}_1 = \bar{y}_2$ or $\bar{y}_1 \bar{y}_2 = 0$ (H_0), the means of two groups are different, $\bar{y}_1 \neq \bar{y}_2$ (H_a).
- Test statistics: (Step 3) "measures the number of standard errors between the estimate and the H_0 value" (Agresti 2018, 192).

$$t = \frac{\textit{Estimate of parameter} - \textit{Null hypothesis value of parameter}}{\textit{Standard error of estimate}}$$

$$t=rac{(ar{y}_1-ar{y}_2)-0}{se}$$
, H_0 assumes $ar{y}_2-ar{y}_1=0$, $se=\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$

Significance test for a difference in means (t-test)

What is a t-test for the difference in means?

TABLE 7.1: Cooking and Washing Up Minutes, per Day, for a National Survey of Men and Women Working Full Time in Great Britain

Sex	Sample Size	Cooking and Washing Up Minutes		
		Mean	Standard Deviation	
Men	1219	23	32	
Women	733	37	16	

$$t = \frac{(\bar{y}_2 - \bar{y}_1) - 0}{\text{se}} = \frac{(37 - 23)}{1.09} = 12.8$$

How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

(Agresti 2018, 192)

Significance test for a difference in means (t-test)

What is the conclusion? P-value < 0.05, We can reject H_0 with an error probability (p-value) of essentially 0%. \rightarrow Suggests that population means differ, and sample means show that women have a higher mean household work time than men

Causal effect

What is a causal effect? What is the fundamental problem of causal inference?

What is a causal effect?

- Outcome/dependent variable (Y), with potential outcomes $Y_{T=0,i}/Y_{i}^{0}$ and $Y_{T=1,i}/Y_{i}^{1}$
- Treatment/independent variable (T), with control (T = 0) and treatment condition (T=1)
- Causal effect: "change in some feature of the world that would result from a change to some other feature of the world", $Y_{T=1,i} - Y_{T=0,i} = Y_i^1 - Y_i^0$
- Counterfactual comparison: "outcome would be different in a counterfactual world in which the action was different" \rightarrow what would be the state of Y, had X not occurred?

(Bueno de Mesquita and Fowler 2021, 159)

Causal effect

What is the fundamental problem of causal inference?

- "we can only observe, at most, one of the two quantities— Y_{1i} or Y_{0i} —for any individual at a particular point in time" (Bueno de Mesquita and Fowler 2021, 164).
 - \rightarrow causal effect is unobservable

SATE, Difference in means

What is the sample average treatment effect (SATE)? And what can we actually observe?

- SATE = $\frac{1}{n} \sum_{i=1}^{n} \{Y_i(1) Y_i(0)\}$, "the average of individual-level treatment effects in the sample".
- SATE is unobservable due to fundamental problem of causal inference → we only observe sample difference in means

(Imai 2017, 49)

SATE, Difference in means

- Sample difference in means = $Mean(y_i^1) Mean(y_i^0)$, "difference in average outcome comparing the subgroup of people who in fact received treatment to the subgroup of people who in fact did not receive treatment".
- Sample difference in means is biased estimate of the true SATE
 - → Correlation does not imply causation

(Bueno de Mesquita and Fowler 2021, 187)

What are the sources of bias? And how can we overcome bias?

What are the sources of bias?

 Baseline differences: "[d]ifference in the average potential outcome between two groups (e.g., the treated and untreated groups), even when those two groups have the same treatment status" → Confounders may cause baseline differences, which may cause bias (*omitted variable bias*)

(Bueno de Mesquita and Fowler 2021, 187)

What are the sources of bias?

1. Confounder: "A feature of the world that (1) has an effect on treatment status and (2) has an effect on the potential outcome over and above the effect it has through its effect on treatment status".

(Bueno de Mesquita and Fowler 2021, 187)

What are the sources of bias?

2. Other sources of bias: Reverse causality, unobserved unit heterogeneity (special type of omitted variable bias), post-treatment bias

And how can we overcome bias?

- 1. Control for confounders:
 - But "there will still be unobservable confounders that we can't control for, reverse causation, or variables that are part confounder and part mechanism" (Bueno de Mesquita and Fowler 2021, 215).
- 2. Randomized experiments: Randomly assigning units to treatment and control group eliminates baseline differences
 - But "the ideal experiment that we'd like to run is often impractical, infeasible, or unethical" (Bueno de Mesquita and Fowler 2021, 239).
- 3. Causal inference methods (e.g., Difference-in-Difference Design, Instrumental Variables)

Software check

How to update your local repository? How to git pull?

We will learn how to git push next week.

Software check

- 1. Synchronize fork
- 2. Fetch origin

References I

Bueno de Mesquita, Ethan, and Anthony Fowler. 2021. *Thinking clearly with data: A guide to quantitative reasoning and analysis*. Princeton: Princeton University Press.

Imai, Kosuke. 2017. *Quantitative social science: an introduction.* OCLC: ocn958799734. Princeton: Princeton University Press.