ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Φ орма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 101 1

1. Сформулируйте определение случайной выборки из конечной генеральной совокупности. Какие виды выборок вам известны? Перечислите (с указанием формул) основные характеристики выборочной и генеральной совокупностей

Здесь очень много исчерпывающей информации о выборках из генеральной совокупности и про различные виды выборок

2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;4]и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0.182 \le Z \le 1.21).$

1) Функция распределения $F_Z(x)$ имеет вид: $F_Z(x) = \begin{cases} 0, x \leqslant 0; \\ \frac{2x}{3}, 0 \leqslant x \leqslant \frac{3}{4} \approx 0,75; \\ 1 - \frac{3}{8x}, x \geqslant \frac{3}{4}; \end{cases}$ распределения $f_Z(x)$ имеет вид: $f_Z(x) = \begin{cases} 0, x < 0; \\ \frac{2}{3}, 0 \leqslant x \leqslant \frac{3}{4} \approx 0,75; \\ \frac{2}{3}, 0 \leqslant x \leqslant \frac{3}{4} \approx 0,75; \\ \frac{3}{8x^2}, x \geqslant \frac{3}{4}; \end{cases}$

3) вероятность равна: $\P(0.182 \leqslant Z \leqslant 1.21) = 0.56852$.

3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \leqslant x \leqslant$ 1. Наблюдения показали, что в среднем она составляет 88,8889%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 89%

Найдём плотность рапределения как интеграл от ΦP , а дальше всё и вовсе простою Ответ: 3936588805702081

4. Создайте эмперические совокупности \cos и \log вида $\cos(1), \cos(2), ..., \cos(98)$ и $\log(1), \log(2), ..., \log(98)$.

Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности cos, её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков cos и log на совокупности натуральных чисел от 1 до 98.

Используя

$$\begin{split} E(X) &= sum(X)/n \\ Var(X) &= E(X^2) - [E(X)]^2 \\ \mu_4(X) &= E((X - E(X))^4) \\ Ex &= \frac{\mu_4(X)}{[\sigma(X)]^4} - 3 \\ r_{xy} &= \frac{E(XY) - E(X) * E(Y)}{\sigma(X) * \sigma(Y)} \end{split}$$

рассчитаем искомые значения.

Ответы: $-0.01464, 0.70686, 0.37349, -1.50394, 1.0 \cdot 10^{-5}$.

5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y = 4	Y = 5
X = 200	17	3	13
X = 300	21	23	23

Из Ω случайным образом без возвращения извлекаются 10 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

- 1) математическое ожидание $\mathbb{E}(\bar{Y})$: 3.6 2) стандартное отклонение $\sigma(\bar{X})$: 257.2355 3) ковариацию $Cov(\bar{X},\bar{Y})$: 0.7091
- 6. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{5X_1 + 2X_2 + X_3 + 2X_4}{10}, \hat{\theta}_1 = \frac{4X_1 + 4X_2 + X_3 + X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?

Обе они несмещенные, потому что в числителе выходит в сумме 10. Какая-то точно должна быть, а может и нет....

2 Билет 102

1. Сформулируйте определение случайной выборки из конечной генеральной совокупности. Какие виды выборок вам известны? Перечислите (с указанием формул) основные характеристики выборочной и генеральной совокупностей

Здесь очень много исчерпывающей информации о выборках из генеральной совокупности и про различные виды выборок

2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;2] и [0;6] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,532\leqslant Z\leqslant 4,716)$.

1) Функция распределения
$$F_Z(x)$$
 имеет вид: $F_Z(x) = \begin{cases} 0, x \leq 0; \\ \frac{x}{6}, 0 \leq x \leq 3 \approx 3,0; \\ 1 - \frac{3}{2x}, x \geqslant 3; \end{cases}$ пределения $f_Z(x)$ имеет вид: $f_Z(x) = \begin{cases} 0, x < 0; \\ \frac{1}{6}, 0 \leq x \leq 3 \approx 3,0; \\ \frac{3}{2x^2}, x \geqslant 3; \end{cases}$

- 3) вероятность равна: $\P(2,532 \leqslant Z \leqslant 4,716) = 0,25993$.
- 3. Случайная величина Y принимает только значения из множества $\{10,7\}$, при этом P(Y=10)=0.24. Распределение случайной величины X определено следующим образом:

$$X|Y = \begin{cases} 4*y, \text{ свероятностью } 0.53 \\ 9*y, \text{ свероятностью } 1 - 0.53 \end{cases}$$

Юный аналитик Дарья нашла матожидание и дисперсию X.

Помогите Дарье найти матожидание и дисперсию величины X

Первым этапом надо найти характеристики случайной величины Y

$$E(Y) = 10 * 0.24 + 7 * (1 - 0.24)$$

$$Var(Y) = E(Y^2) - [E(Y)]^2 = 10^2 * 0.24 + 7^2 * (1 - 0.24) - [E(Y)]^2$$

Перейдем к рассмотрению характеристик условной случайно величины Х

четвёртый эмпирический центральный момент и эмпирический эксцесс.

$$E(X) = E(E(X|Y)) = E[E(4*Y)*0.53 + E(9*Y)*(1-0.53)] = E(Y)*(4*0.53 + 9*(1-0.53)) = 49.022$$

$$E(Var(X|Y)) = E[b * Var(c3 * Y) + (1 - b) * Var(c4 * Y)] = Var(Y) * (c3^2 * b + c4^2 * (1 - b))$$

$$Var(E(X|Y)) = E(X^{2}|Y) - [E(X)]^{2} = [E(Y)]^{2} * (b * c3^{2} + (1 - b) * c4^{2}) - E(X)]^{2}$$

$$Var(X) = E(Var(X|Y)) + Var(E(X|Y)) = 447.56552$$

4. Создайте эмперические совокупности \exp и \log вида $\exp(1), \exp(2), ..., \exp(77)$ и $\log(1), \log(2), ..., \log(77)$ Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности \exp , её

Кроме того, найдите эмпирический коэффициент корреляции признаков exp и log на совокупности натуральных чисел от 1 до 77.

Используя

$$\begin{split} E(X) &= sum(X)/n \\ Var(X) &= E(X^2) - [E(X)]^2 \\ \mu_4(X) &= E((X - E(X))^4) \\ Ex &= \frac{\mu_4(X)}{[\sigma(X)]^4} - 3 \\ r_{xy} &= \frac{E(XY) - E(X) * E(Y)}{\sigma(X) * \sigma(Y)} \end{split}$$

рассчитаем искомые значения.

Ответы: $5.66740783200168 \cdot 10^{31}$, $3.33285124990578 \cdot 10^{32}$, $7.03150966623892 \cdot 10^{131}$, 53.98819, 0.0006.

5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y = 4	Y = 5
X = 200	1	6	23
X = 300	13	30	27

Из Ω случайным образом без возвращения извлекаются 13 элементов. Пусть $ar{X}$ и $ar{Y}$ – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

- 1) математическое ожидание $\mathbb{E}(\bar{Y})$: 4.22 2) стандартное отклонение $\sigma(\bar{X})$: 255.4769 3) ковариацию $Cov(\bar{X}, \bar{Y})$: -1.2655
- 6. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X=-9	X=-8	X=-7
Y = 8	0.09	0.005	0.23
Y = 9	0.249	0.095	0.331

Дарья получила, что E(Y|X+Y=1)=8.2921. Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

$$E(Y|X + Y = 1) = \frac{\sum (P(X=1-y_i, y=y_i)*y_i)}{\sum (P(X=1-y_i, y=y_i)}.$$

Ответ: 8.2921

Подготовил

П.Е. Рябов

Утверждаю:

Первый заместитель

руководителя департамента

Дата 01.06.2021

Феклин В.Г.