Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Отчет по лабораторной работе по теме «Управляемость и наблюдаемость»

по дисциплине "Теория автоматического управления"

Вариант 24

Выполнил студент: Поляков А. А.

Преподаватель: Пашенко Артем Витальевич

Содержание

1	Исследование управляемости 1.1 Условие задания 1.2 Решение задания	2 2 2
2	Еще одно исследование управляемости 2.1 Условие задания 2.2 Решение задания	3 3
3	Исследование наблюдаемости 3.1 Условие задания 3.2 Решение задания	
4	Еще одно исследование наблюдаемости 4.1 Условие задания 4.2 Решение задания	5 5
5	Общие выводы	7

1. Исследование управляемости

1.1. Условие задания

Необходимо рассмотреть систему:

$$\dot{x} = Ax + Bu$$

Рассмотреть математическую модель в форме дифференциального уравнения при коэффициентах $a_2 = 9, a_1 = 26, a_0 = 24, b_2 = 2, b_1 = 6, b_0 = 8$:

$$\ddot{y} + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = b_2 \ddot{u} + b_1 \dot{u} + b_0 u$$

$$\ddot{y} + 9 \ddot{y} + 26 \dot{y} + 24 y = 2 \ddot{u} + 6 \dot{u} + 8 u$$
 (1)

операций построить структурную схему одноканальной линейной динамической системы.

Выполнить моделирование при входном воздействии u(t) = 1 и нулевых начальных условиях $\ddot{y}(0), \dot{y}(0), y(0)$.

1.2. Решение задания

В нашем случае имеем следующие начальные данные:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad B = (a, b, c, d, e) \qquad x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 (2)

2. Еще одно исследование управляемости

2.1. Условие задания

Рассмотреть математическую модель в форме дифференциального уравнения при коэффициентах $a_2=9, a_1=26, a_0=24, b_2=2, b_1=6, b_0=8$:

$$\ddot{y} + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = b_2 \ddot{u} + b_1 \dot{u} + b_0 u$$

$$\ddot{y} + 9 \ddot{y} + 26 \dot{y} + 24 y = 2 \ddot{u} + 6 \dot{u} + 8 u$$
(3)

операций построить структурную схему одноканальной линейной динамической системы. Выполнить моделирование при входном воздействии u(t) = 1 и нулевых начальных условиях $\ddot{y}(0)$, $\dot{y}(0)$, y(0).

2.2. Решение задания

3. Исследование наблюдаемости

3.1. Условие задания

Рассмотреть математическую модель в форме дифференциального уравнения при коэффициентах $a_2=9, a_1=26, a_0=24, b_2=2, b_1=6, b_0=8$:

$$\ddot{y} + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = b_2 \ddot{u} + b_1 \dot{u} + b_0 u$$

$$\ddot{y} + 9 \ddot{y} + 26 \dot{y} + 24 y = 2 \ddot{u} + 6 \dot{u} + 8 u$$
(4)

операций построить структурную схему одноканальной линейной динамической системы. Выполнить моделирование при входном воздействии u(t) = 1 и нулевых начальных условиях $\ddot{y}(0)$, $\dot{y}(0)$, y(0).

3.2. Решение задания

4. Еще одно исследование наблюдаемости

4.1. Условие задания

Рассмотреть математическую модель в форме дифференциального уравнения при коэффициентах $a_2=9, a_1=26, a_0=24, b_2=2, b_1=6, b_0=8$:

$$\ddot{y} + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = b_2 \ddot{u} + b_1 \dot{u} + b_0 u$$

$$\ddot{y} + 9 \ddot{y} + 26 \dot{y} + 24 y = 2 \ddot{u} + 6 \dot{u} + 8 u$$
 (5)

операций построить структурную схему одноканальной линейной динамической системы. Выполнить моделирование при входном воздействии u(t) = 1 и нулевых начальных условиях $\ddot{y}(0)$, $\dot{y}(0)$, y(0).

4.2. Решение задания

В соответствии с моим вариантом:

5. Общие выводы

В этой работе были рассмотрен критерий Найквиста и его логарифмическая версия. В первых двух заданиях ожидания о устойчивости системы исходя из аналитического анализа ее передаточных функций совпали с результатами, полученными с помощью критерия Найквиста и подтвердились моделированием.

В третьем задании мы проанализировали устойчивость системы с запаздыванием с помощью логарифмического критерия Найквиста. Все результаты совпали с ожиданиями.

Использовал связку Live-script + Matlab, там же можно взглянуть на графики и код, в репозитории можно найти исходники.