

Closing the Loop for Polyurethanes

Dr. Daniel Freidank, Dr. Mark Staniford

BASF Polyurethanes FSK Tagung

We aim to reach €10 billion sales from Loop Solutions for our customers by 2030

Possible loops for a successful transition to sustainability

Elevating the standards

State of the art comparison of polyurethane waste treatment

Energy demand

Mechanical treatment

Homogeneity of waste

Chemical treatment	Incineration	Gasification	Depolymerization
	Known technology for energy recover	Broad range of waste can be treated incl. ASR	Decomposition to isocyanate & polyol
	Linear technology & emission of greenhouse gasses	High energy process	Quality & complexity closely linked to accessible feedstock

PU waste composites	Mechanical recycling
Recycled lightweight alternative	Enables closed loop process
	So far only known for "Thermoplastics"

Plastics circularity builds on two key requirements

Recyclability

What happens at plastics end-of-life?

Recyclability
of plastics
at scale required

Circular content

Obligatory quotas for post-consumer waste as feedstock

We look at the MAKE phase

Mechanical recycling of PU via meltable foams

Meltable PU foams – footwear

Meltable BASF safety shoe PU

New safety shoe TPU outsole

	PU safety shoe
Density [kg/L]	0.57
Hardness [Shore A]	52
Tensile strength [MPa]	7.3
Elongation [%]	500
Tear strength [N/mm]	7.3
Abrasion [mm ³]	120

	virgin TPU*	+ 10% PU Foam	+ 20% PU Foam
Density [kg/L]	1.218	1.221	1.219
Hardness [Shore A]	61 60		60
Tensile strength [MPa]	34	21	22
Elongation [%]	790	860	800
Tear strength [N/mm]	64	44	40
Abrasion [mm ³]	54	44	84

*PESOL-based [ADS/MEG/BDO] + 4,4-MDI Index 1000

Meltable PU foams - furniture

Meltable BASF PU Flexible Foam

Density = 36 g/L

	PU Foam
Polyol [PG+PO/EO; OH number = 29 mg KOH/g]	96.04
Lupragen N201	0.79
H ₂ O	2.97
Additives	0.20
Lupranat MI	46.98
Index	95

	virgin TPU*	+ 10% PU Foam	+ 20% PU Foam
Density [kg/L]	1.1	1.1	1.1
Hardness [Shore A]	94	93	92
Tensile strength [MPa]	43	44	36
Elongation [%]	510	560	580
Tear strength [N/mm]	112	98	78
Abrasion [mm ³]	52	60	84

Meltable PU foams – furniture

Meltable BASF PU Flexible Foam

Compr. set [22h/70°C/50%)

Ball rebound [%]

	PU Flexible Foam
Density [g/L]	54.0
Compr. strength 40% [kPa]	3.7
Hysteresis loss 70% [%]	21.2
Tensile strength [kPa]	118
Strain at break [%]	157

DMA analysis of produced injection molds – storage modulus G' in MPA

temperature T / °C

8.8

58

Meltable PU foams - flexible foam / multiple recycling

Meltable BASF PU Flexible Foam

Molded Foam

8% recycle-PU in flexible foam PU

	Tensile strengt (kPa)	h	
Rebound resilience (%)			on at break (%)
Compression set (%)		Т	ear strength (N/mm)
Hysteresis at 75% (%)		ILD	25% (N)
ILD 65% (N	1)	ILD 40% (N)	

1 Virgin Foam 2 Foam with recycle-foam from generation 1

3 Foam with recycle-foam from generation 2

4 Foam with recycle-foam from generation 3

Closing the loop of PU – holistically

BASF activities on mechanical recycling, glycolysis, etc.

- ✓ Recycled Content < 30%</p>
- ✓ Demonstrate general recyclability
- ✓ Closed and Open Loop
- ✓ No Separation of Polyol & Isocyanate

With *Vitra*, PU office chair foam can be mechanically recycled; **up to ~30%**

With Rampf, Krauss-Maffei and Remondis recycled content **up to ~20%.**

Full depolymerization solutions

- ✓ Recycled Content > 50%
- ✓ Demonstrate Recyclability
- ✓ Closed Loop
- ✓ Recovery of Isocyanates

Few robust chemical recycling technologies for many variable PU waste streams

The challenge of closed loops

https://eu.boell.org/en/end-of-life-vehicles-final-destination https://creativecommons.org/licenses/by-sa/4.0/

Closing the loop of PU – sorting trinamiX *Mobile NIR Spectroscopy*

- trinamiX GmbH was founded in 2015 as a wholly owned subsidiary of BASF SE
- trinamiX mobile Near-Infrared (NIR) Spectroscopy Solution identifies plastics anywhere, anytime, in seconds
 - portable handheld device, trinamiX cloud-based data analysis, a mobile app and customer portal
 - determines diverse compositions of different plastics
 - supports design for recycling, cleaner sorting and quality control
- Recycling and recyclability are improved, paying off for both the environment and businesses alike
- Application for Footwear materials / Automotive flexible foams
- Qualitative identification of midsole materials

Turn the recycling challenge

into a successful business

