Licence 1

Examen d'Analyse 1 (Fonctions réelles d'une variable réelle) session 1

Exercice 1 (5 points)

Soit f une application de \mathbb{R} dans \mathbb{R} et $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

- 1. Ecrire à l'aide des symboles mathématiques usuels $(\forall, \exists, \Rightarrow)$ les phrases suivantes :
 - a) f(x) tend vers $-\infty$ quand x tend vers $+\infty$
 - b) $(u_n)_{n\in\mathbb{N}}$ est bornée.
- 2. Enoncer avec précision le théorème des accroissements finis et montrer à l'aide de ce résultat que pour tous réels a et b tels que 0 < a < b on a

$$a < \frac{b - a}{\ln b - \ln a} < b.$$

Exercice 2 (5 points) Calculer mes limites suivantes:

$$\lim_{x \to 0} \frac{(\tan x)^2}{\cos(2x) - 1} \quad \text{et} \quad \lim_{x \to 1^+} (x^3 - 1) \ln(2x^2 + x - 3).$$

Exercice 3 (4 points)

Soit $f:]0, +\infty[\rightarrow \mathbb{R}$ la fonction f définie par

$$f(x) = 1 - xE\left(\frac{1}{x}\right),\,$$

où pour tout $t \in \mathbb{R}$, E(t) désigne la partie entière de t.

- 1. Montrer que pour tout $t \in \mathbb{R}$, $t 1 < E(t) \leq t$.
- 2. En déduire que pour tout x > 0, on a $x > f(x) \ge 0$.
- 3. La fonction f est-elle prolongeable par continuité en 0 ?
- 4. Etudier la continuité de f en 1.

Exercice 4 (6 points)

Soit les suites numériques $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies pour u_0 et u_1 fixés dans \mathbb{R} par

$$u_{n+2} = \frac{u_n + u_{n+1}}{2}$$
 et $v_n = u_{n+1} + \frac{1}{2}u_n$.

On pose $\alpha = \frac{2v_0}{3}$.

- 1. Pour tout entier n, calculer v_{n+1} en fonction de v_n . Que peut-on en déduire pour la suite $(v_n)_{n\in\mathbb{N}}$?
- 2. Pour tout entier n, donner une relation entre v_0 , u_n et u_{n+1} .
- 3. Montrer que la suite $(u_n \alpha)_{n \in \mathbb{N}}$ est une suite géométrique dont on précisera la raison.
- 4. En déduire pour tout entier n, l'expression de u_n en fonction de n, u_0 et u_1 .
- 5. Calculer la limite, lorsqu'elle existe, de la suite $(u_n)_{n\in\mathbb{N}}$.