How to designe et FIR filter (Fourierkoefficient metoden)

- 1. Find filtertypen (Højpas, Lavpas, Båndpas, Båndstop)
- 2. Vælg vinduesfunktion:

Vindue	B_n	M_{min}	Min. stopbåndsdæmpning	Max. pasbåndsripple
Rektangulær	2	f_s/Δ_f	20 dB	1,5 dB
Bartlett	4	$2f_s/\Delta_f$	25 dB	0,1 dB
Hamming	4	$2f_s/\Delta_f$	50 dB	0,05 dB
Hanning	4	$2f_s/\Delta_f$	45 dB	0,1 dB
Kaiser ($\beta=\pi$)	2,8	$1,4f_s/\Delta_f$	40 dB	0,2 dB
Kaiser ($\beta=2\pi$)	4,4	$2,2f_s/\Delta_f$	65 dB	0,01 dB

3. Bestem fourierkoefficienterne:

Filtertype	c_0	$c_m = c_{-m}$	
Lavpas	$2Tf_a$	$\frac{1}{m\pi}\sin(2\pi mTf_a)$	c_{M-i}
Højpas	$1-2Tf_a$	$\frac{1}{m\pi}(\sin(m\pi) - \sin(2\pi mTf_a))$	c_{M-i}
Båndpas	$2T(f_{a_2} - f_{a_1})$	$\frac{1}{m\pi}(\sin(2\pi mTf_{a_2}) - \sin(2\pi mTf_{a_1}))$	c_{M-i}
Båndstop	$1 - 2T(f_{a_2} - f_{a_1})$	$\frac{1}{m\pi}(\sin(m\pi) + \sin(2\pi mTf_{a_1}) - \sin(2\pi mTf_{a_2}))$	c_{M-i}

Udregn antal koefficienter baseret på ordenstallet $M = \frac{B_n f_s}{2\Delta f}$

4. Bestem de nye fourierkoefficienter:

$$C'_m = C_m * W_m$$

hvor W_m er den samplede vinduesfunktion $W(m)$

5. Bestem filterkoefficienterne:

$$a_i = c_{m-i}$$

6. Verificer filterets amplitudekarakteristik og redesign om nødvendigt filteret med nyt ordenstal