7. EJERCICIO EXPERIMENTAL.

7.1. Material.

- 1 transistor BD137 o BC107 (npn)
- 1 transistor BD138 (pnp)
- 1 resistencia de $10K\Omega$, 1/4W.
- 1 resistencia de 1K Ω , 1/4W.

7.2. Proceso.

1.- Con los transistores que se proporcionan averiguar cuáles son sus terminales, indicar si son *pnp* o *npn* y dibujarlos de modo que se pueda apreciar la forma de su encapsulado y la situación de sus terminales.

2.- Si se dispone de polímetro con medidor del parámetro β , medirlo e indicarlo:

Ampl (High Imp) Freq

3.- Introducir una tensión V_{BB} senoidal de $20V_{pp}$ y 200Hz, $V_{CC}=15V$, $R_B=10K\Omega$ y $R_L=1K\Omega$. Representar dos periodos de la tensión V_{CE} e I_C .

Señalar en la representación anterior las distintas zonas de trabajo en las que se encuentra el transistor, señalando también los puntos de disipación máxima.

4.- Repetir el apartado anterior para el transistor complementario. Dibujar el circuito colocando el signo correcto de las tensiones que deben ser aplicadas. - 15 V

5→

5.- Ajustar la fuente de alimentación de modo que la tensión $V_{BB} = 0.5 V$, medir V_{CE} e I_C . Comparar con los valores teóricos. Calcular la potencia disipada en el transistor y la potencia transferida a la carga. Indicar el estado de conducción en que se encuentra. $R_L = 1K\Omega$ y $R_B = 10K\Omega$.

	KC - 11/26								•
		CALCULADO		MEDIDO			POTENCIA (mW)		ZONA DE
	V _{BB} (V)	V _{CE} (V)	I _c (mA)	V _{CE} (V)	VRC(V)	Che Ic(mA)	TRANSISTOR (P=V _{CE} *I _C)	CARGA (P=I _C ^{2*} R _C)	TRABAJO
•	0,4 0,5	14,9	13,2	1,8	13,2	0,6	1,8.0,6=	7,72	Saturación
•	4,1 1,5	5,3	13,98	1.02	13,98	0.8	0,846	0,82.43,98/6,8=	Activa
	2,4 10	0.53	15	0	15	1.76	0 · A,46 =	4.16 ^{1. 45} /4.36 =	Corte

6.- Ajustar la alimentación de modo que la tensión $V_{BB}=2V$, repetir apartado 5.

7.- Ajustar la fuente de modo que la tensión $V_{BB} = \frac{2.4}{10}V$, repetir apartado 5.

8.- ¿En que zonas de trabajo del transistor se obtiene un mayor rendimiento?