Calculus II

Homework

Integrals of involving radicals of quadratics

1. Let $x \in (0,1)$. Express the following using x and $\sqrt{1-x^2}$.

(a) $\sin(\arcsin(x))$.

(b) $\sin(2\arcsin(x))$.

(c) $\sin(3\arcsin(x))$.

(d) $\sin(\arccos(x))$.

(e) $\sin(2\arccos(x))$.

(f) $\sin(3\arccos(x))$.

(g) $\cos(2\arcsin(x))$.

(h) $\cos(3\arccos(x))$.

2. Express as the following as an algebraic expression of x. In other words, "get rid" of the trigonometric and inverse trigonometric expressions.

(a) $\cos^2(\arctan x)$.

(c) $\frac{1}{\cos(\arcsin x)}$.

(b) $-\sin^2(\operatorname{arccot} x)$.

(d) $-\frac{1}{\sin(\arccos x)}$.

3. Rewrite as a rational function of t. This problem will be later used to derive the Euler substitutions (an important technique for integrating).

(a) $\cos(2 \arctan t)$.

(b) $\sin(2 \arctan t)$.

(c) $\tan (2 \arctan t)$.

(d) $\cot (2 \arctan t)$.

(e) $\csc(2 \arctan t)$.

(f) $\sec (2 \arctan t)$.

(g) $\cos(2\operatorname{arccot} t)$.

(h) $\sin(2\operatorname{arccot} t)$.

(i) $\tan (2 \operatorname{arccot} t)$.

(j) $\cot (2 \operatorname{arccot} t)$.

(k) $\csc(2\operatorname{arccot} t)$.

(1) $\sec (2 \operatorname{arccot} t)$.

4. Compute the derivative (derive the formula).

(a) $(\arctan x)'$.

(b) $(\operatorname{arccot} x)'$.

(c) $(\arcsin x)'$.

(d) $(\arccos x)'$.

(e) Let arcsec denote the inverse of the secant function. Compute $(\operatorname{arcsec} x)'$.

5. (a) Let $a+b \neq k\pi$, $a \neq k\pi + \frac{\pi}{2}$ and $b \neq k\pi + \frac{\pi}{2}$ for any $k \in \mathbb{Z}$ (integers). Prove that

$$\frac{\tan a + \tan b}{1 - \tan a \tan b} = \tan(a + b) \quad .$$

(b) Let x and y be real. Prove that, for $xy \neq 1$, we have

$$\arctan x + \arctan y = \arctan \left(\frac{x+y}{1-xy}\right)$$

1

if the left hand side lies between $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

6. Evaluate the indefinite integral. Illustrate the steps of your solutions.

(a)
$$\int x \sin x dx$$
.

(b)
$$\int xe^{-x}dx$$
.

(c)
$$\int x^2 e^x dx$$
.

(d)
$$\int x \sin(-2x) dx.$$

(e)
$$\int x^2 \cos(3x) dx.$$

(f)
$$\int x^2 e^{-2x} dx.$$

(g)
$$\int x \sin(2x) dx$$
.

(h)
$$\int x \cos(3x) dx.$$

(i)
$$\int x^2 e^{2x} dx.$$

(j)
$$\int x^3 e^x dx$$
.

7. Evaluate the indefinite integral. Illustrate the steps of your solutions.

(a)
$$\int x^2 \cos(2x) dx.$$

(b)
$$\int x^2 e^{ax} dx$$
, where a is a constant.

(c)
$$\int x^2 e^{-ax} dx$$
, where a is a constant.

(d)
$$\int x^2 \frac{(e^{ax} + e^{-ax})^2}{4} dx$$
, where a is a constant.

(e)
$$\int \frac{1}{\cos^2 x} dx$$
. (Hint: This problem does not require integration by parts. What is the derivative of $\tan x$?)

(f)
$$\int (\tan^2 x) dx$$
. (Hint: This problem does not require integration by parts. We can use $\tan^2 x = \frac{1}{\cos^2 x} - 1$ and the previous problem.)

(g)
$$\int x \tan^2 x dx$$
. (Hint: $\tan^2 x dx = d(F(x))$, where $F(x)$ is the answer from the preceding problem).

(h)
$$\int e^{-\sqrt{x}} dx$$
.

(i)
$$\int \cos^2 x \, dx$$
.

(j)
$$\int \frac{x}{1+x^2} dx$$
 (Hint: use substitution rule, don't use integration by parts)

(k)
$$\int (\arctan x) dx$$
.

(l)
$$\int (\arcsin x) dx$$
.

(m)
$$\int (\arcsin x)^2 dx$$
. (Hint: Try substituting $x = \sin y$.)

(n)
$$\int \arctan\left(\frac{1}{x}\right) dx$$
.

(o)
$$\int \sin x e^x dx$$

(p)
$$\int \cos x e^x dx$$

(q)
$$\int \sin(\ln(x)) dx$$
.

(r)
$$\int \cos(\ln(x)) dx$$
.

(s)
$$\int \ln x dx$$

(t)
$$\int x \ln x \, dx$$
.

(u)
$$\int \frac{\ln x}{\sqrt{x}} dx$$
.

(v)
$$\int (\ln x)^2 dx$$
.

(w)
$$\int (\ln x)^3 dx$$
.

(x)
$$\int x^2 \cos^2 x dx$$
. (This problem is related to Problem 7.d as $\cos x = \frac{e^{ix} + e^{-ix}}{2}$).

8. Compute $\int x^n e^x dx$, where n is a non-negative integer.

9. Integrate. Illustrate the steps of your solution.

(a)
$$\int \frac{1}{x+1} dx$$

(b)
$$\int \frac{x-1}{x+1} dx$$

(c)
$$\int \frac{1}{(x+1)^2} \mathrm{d}x$$

(d)
$$\int \frac{x}{(x+1)^2} dx$$

$$(e) \int \frac{1}{(2x+3)^2} \mathrm{d}x$$

(f)
$$\int \frac{x}{2x^2 + 3} \mathrm{d}x$$

(g)
$$\int \frac{1}{2x^2 + 3} dx$$

(h)
$$\int \frac{x}{2x^2 + x + 1} dx .$$

(i)
$$\int \frac{x}{2x^2 + x + 3} \mathrm{d}x$$

(j)
$$\int \frac{x}{x^2 - x + 3} \mathrm{d}x$$

$$\text{(k)} \int \frac{1}{\left(x^2+1\right)^2} \mathrm{d}x$$

(1)
$$\int \frac{1}{(x^2+x+1)^2} dx$$

$$(\mathbf{m}) \int \frac{1}{\left(x^2+1\right)^3} \mathrm{d}x$$

10. Let a, b, c, A, B be real numbers. Suppose in addition $a \neq 0$ and $b^2 - 4ac < 0$. Integrate

$$\int \frac{Ax+B}{ax^2+bx+c} \mathrm{d}x \quad .$$

The purpose of this exercise is to produce a formula in form ready for implementation in a computer algebra system.

11. Let a, b, c, A, B be real numbers and let n > 1 be an integer. Suppose in addition $a \neq 0$ and $b^2 - 4ac < 0$. Let

$$J(n) = \int \frac{1}{\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)^n} \mathrm{d}x \quad .$$

(a) Express the integral

$$\int \frac{Ax + B}{\left(ax^2 + bx + c\right)^n} \mathrm{d}x$$

via J(n).

(b) Express J(n) recursively via J(n-1)

The purpose of this exercise is to produce a formula in form ready for implementation in a computer algebra system.

12. Integrate. Some of the examples require partial fraction decomposition and some do not. Illustrate the steps of your solution.

(a)
$$\int \frac{1}{4x^2 + 4x + 1} dx$$

(b)
$$\int \frac{1}{1-x^2} \mathrm{d}x$$

(c)
$$\int \frac{1}{5 - x^2} dx$$

(d)
$$\int \frac{x}{4x^2 + x + \frac{1}{16}} dx$$

(e)
$$\int \frac{x+1}{2x^2+x} \mathrm{d}x$$

(f)
$$\int \frac{x}{4x^2 + x + 5} \mathrm{d}x$$

$$(g) \int \frac{x}{4x^2 + x - 5} \mathrm{d}x$$

(h)
$$\int \frac{x}{3x^2 + x - 2} dx$$

(i)
$$\int \frac{x}{3x^2 + x + 2} dx$$

(j)
$$\int \frac{x}{2x^2 + x + 1} dx$$

(k)
$$\int \frac{x}{2x^2 + x - 1} \mathrm{d}x$$

(l)
$$\int \frac{1}{x^2 + x + 1} \mathrm{d}x$$

(m)
$$\int \frac{1}{2x^2 + 5x + 1} dx$$

13. Evaluate the indefinite integral. Illustrate all steps of your solution.

(a)
$$\int \frac{x^3 + 4}{x^2 + 4} dx$$

(b)
$$\int \frac{4x^2}{2x^2 - 1} dx$$

(c)
$$\int \frac{x^3}{x^2 + 2x - 3} dx$$

$$(d) \int \frac{x^3}{x^2 + 3x - 4} \mathrm{d}x$$

(e)
$$\int \frac{x^3}{2x^2 + 3x - 5} dx$$

(f)
$$\int \frac{x^2 + 1}{(x - 3)(x - 2)^2} dx$$

(g)
$$\int \frac{x^4}{(x+1)^2(x+2)} dx$$

(h)
$$\int \frac{15x^2 - 4x - 81}{(x-3)(x+4)(x-1)} dx$$

(i)
$$\int \frac{x^4 + 10x^3 + 18x^2 + 2x - 13}{x^4 + 4x^3 + 3x^2 - 4x - 4} dx$$

Check first that $(x-1)(x+2)^2(x+1) = x^4 + 4x^3 + 3x^2 - 4x - 4$.

(j)
$$\int \frac{x^4}{(x^2+2)(x+2)} dx$$

$$\text{(k)} \int \frac{x^5}{x^3 - 1} \mathrm{d}x$$

(l)
$$\int \frac{x^4}{(x^2+2)(x+1)^2} dx$$

(m)
$$\int \frac{3x^2 + 2x - 1}{(x - 1)(x^2 + 1)} dx$$

(n)
$$\int \frac{x^2 - 1}{x(x^2 + 1)^2} dx$$

14. Integrate

$$\int \frac{x^6 - x^5 + \frac{9}{2}x^4 - 4x^3 + \frac{13}{2}x^2 - \frac{7}{2}x + \frac{11}{4}}{x^5 - x^4 + 3x^3 - 3x^2 + \frac{9}{4}x - \frac{9}{4}} \mathrm{d}x \quad .$$

15. Integrate.

(a)
$$\int \frac{1}{3 + \cos x} \mathrm{d}x.$$

(b) $\int \frac{1}{4 + \cos x} dx.$

(c)
$$\int \frac{1}{3 + \sin x} dx.$$

(d) $\int \frac{1}{2 + \tan x} dx$. (Hint: this integral can be done simply with the substitution $x = \arctan t$.)

(e)
$$\int \frac{\mathrm{d}x}{2\sin x - \cos x + 5}.$$

16. Integrate. The answer key has not been proofread, use with caution.

(a)
$$\int \sin(3x)\cos(2x)dx.$$

(b) $\int \sin x \cos(5x) dx.$

(c)
$$\int \cos(3x)\sin(2x)dx.$$

(d)
$$\int \sin(5x)\sin(3x)dx.$$

(e)
$$\int \cos(x)\cos(3x)dx.$$

17. Integrate.

(a)
$$\int \sin^2 x \cos x dx.$$

(c)
$$\int \cos^3 x dx$$
.

(b)
$$\int \sin^2 x dx$$
.

(d)
$$\int \sin^3 x \cos^4 x dx.$$

18. Integrate.

(a)
$$\int \sec x dx$$
.

(b)
$$\int \sec^3 x dx$$
.

(c)
$$\int \tan^3 x dx$$
.

(d)
$$\int \sec^2 x \tan^2 x dx$$
.

19. Find a linear substitution (via completing the square) to transform the radical to a multiple of an expression of the form $\sqrt{u^2+1}$, $\sqrt{u^2-1}$ or $\sqrt{1-u^2}$.

4

(a)
$$\sqrt{x^2 + x + 1}$$
.

(b)
$$\sqrt{-2x^2 + x + 1}$$

20. Compute the integral.

(a)
$$\int \frac{\sqrt{1+x^2}}{x^2} \mathrm{d}x.$$

21. Compute the integral using a trigonometric substitution.

(a)
$$\int \frac{\sqrt{9-x^2}}{x^2} dx .$$

22. Compute the integral.

(a)
$$\int \sqrt{x^2 + 1} dx$$

(b)
$$\int \sqrt{x^2 + 2} dx$$

(c)
$$\int \sqrt{x^2 + x + 1} dx$$

(d)
$$\int \sqrt{(2x^2 + 2x + 1)} \mathrm{d}x$$

(e)
$$\int \sqrt{(3x^2 + 2x + 1)} dx$$

$$(f) \int \frac{\sqrt{x^2+1}}{x+1} \mathrm{d}x$$

23. Let $b^2 - 4ac < 0$ and a > 0 be (real) numbers. Show that

$$\int \sqrt{(ax^2 + bx + c)} dx = \frac{\sqrt{a}D}{2} \left(\ln \left(\sqrt{\left(\frac{2xa + b}{2\sqrt{D}a}\right)^2 + 1} + \frac{2xa + b}{2\sqrt{D}a} \right) + \frac{2xa + b}{2\sqrt{D}a} \sqrt{\left(\frac{2xa + b}{2\sqrt{D}a}\right)^2 + 1} \right) + C,$$

where
$$D = \frac{4ac - b^2}{4a^2}$$
.

24. Integrate

(a)
$$\int \sqrt{1-x^2} dx$$

(b)
$$\int \sqrt{2-x^2} dx$$

(c)
$$\int \sqrt{-x^2 + x + 1} dx$$

(d)
$$\int \sqrt{2-x-x^2} dx$$

(e)
$$\int \frac{\sqrt{1-x^2}}{1+x} \mathrm{d}x$$

$$(f) \int \frac{\sqrt{1-x^2}}{2+x} \mathrm{d}x$$

25. Integrate

(a)
$$\int \sqrt{x^2 - 1} dx$$

(b)
$$\int \sqrt{x^2 - 2} dx$$

(c)
$$\int \sqrt{2x^2 + x - 1} dx$$

(d)
$$\int \sqrt{x^2 + x - 1} dx$$

26. (a) Express x, dx and $\sqrt{x^2 + 1}$ via θ and $d\theta$ for the trigonometric substitution $x = \cot \theta$, $\theta \in (0, \pi)$.

(b) Express x, dx and $\sqrt{x^2 + 1}$ via t and dt for the Euler substitution $x = \cot(2 \arctan t)$, t > 0. Express t via x.

27. Let the variables x and t be related via $\sqrt{x^2 + 1} = x + t$.

(a) Express x via t.

(b) Express $\sqrt{x^2 + 1}$ via t alone.

(c) Express dx via t and dt.

- 28. (a) Express x, dx and $\sqrt{x^2+1}$ via θ and $d\theta$ for the trigonometric substitution $x=\tan\theta, \theta\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.
 - (b) Express x, dx and $\sqrt{x^2 + 1}$ via t and dt for the Euler substitution $x = \tan(2 \arctan t)$, $t \in (-1, 1)$. Express t via x.
- 29. Let the variables x and t be related via $\sqrt{x^2 + 1} = \frac{x}{t} 1$.
 - (a) Express x via t.
 - (b) Express $\sqrt{x^2 + 1}$ via t alone.
 - (c) Express dx via t and dt.
- 30. (a) Express x, dx and $\sqrt{1-x^2}$ via θ and $d\theta$ for the trigonometric substitution $x=\cos\theta,\,\theta\in[0,\pi]$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x=\cos(2\arctan t)$, $t\geq 0$. Express t via x.
- 31. Let the variables x and t be related via $\sqrt{-x^2+1} = (1-x)t$.
 - (a) Express x via t.
 - (b) Express $\sqrt{-x^2+1}$ via t alone.
 - (c) Express dx via t and dt.
- 32. (a) Express x, dx and $\sqrt{1-x^2}$ via θ and $d\theta$ for the trigonometric substitution $x=\sin\theta, \theta\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x = \sin(2\arctan t)$, $t \in [-1,1]$. Express t via x.
- 33. Let the variables x and t be related via $\sqrt{-x^2+1}=1-xt$.
 - (a) Express x via t.
 - (b) Express $\sqrt{-x^2+1}$ via t alone.
 - (c) Express dx via t and dt.
- 34. (a) Express x, dx and $\sqrt{x^2 1}$ via θ and $d\theta$ for the trigonometric substitution $x = \csc \theta$, $\theta \in \left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right)$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x=\sec(2\arctan t),\,t\in(-\infty,-1)\cup[1,0).$ Express t via x.
- 35. Let the variables x and t be related via $\sqrt{x^2 1} = (x + 1)t$.
 - (a) Express x via t.
 - (b) Express $\sqrt{x^2 1}$ via t alone.
 - (c) Express dx via t and dt.
- 36. (a) Express x, $\mathrm{d}x$ and $\sqrt{1-x^2}$ via θ and $\mathrm{d}\theta$ for the trigonometric substitution $x=\csc\theta,\,\theta\in\left[0,\frac{\pi}{2}\right]\cup\left[\pi,\frac{3\pi}{2}\right)$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x=\csc(2\arctan t),\,t\in(-\infty,-1)\cup[0,1).$ Express t via x.
- 37. Let the variables x and t be related via $\sqrt{x^2 1} = \frac{1}{t} x$.
 - (a) Express x via t.
 - (b) Express $\sqrt{x^2-1}$ via t alone.
 - (c) Express dx via t and dt.