Crittografia a chiave pubblica

Alessandro Armando

Laboratorio di sicurezza informatica (CSec) DIBRIS, Università di Genova

Sicurezza del computer

Contorno

- 1 Introduzione alla crittografia a chiave pubblica
- Teoria dei numeri
- L'algoritmo RSA
- 4 Algoritmi asimmetrici per la distribuzione di chiavi segrete
 - Distribuzione di chiavi segrete con
 - scambio di chiavi RSA Diffie-Hellman

Motivazione

La crittografia a chiave pubblica nasce nel maggio 1975, figlia di due problemi: il problema della distribuzione delle chiavi e il problema delle firme. La scoperta consisteva non in una soluzione, ma nel riconoscimento che i due problemi, ciascuno dei quali sembrava irrisolvibile per definizione, potevano essere risolti del tutto e che le soluzioni per entrambi arrivavano in un unico pacchetto.

Whitfield Diffie, *I primi dieci anni della crittografia a chiave pubblica*, 1988

Consideriamo fino a che punto questi problemi sono "risolti".

Crittografia a chiave pubblica

- Permettere {Ee: e K} e {De: e K} formare uno schema di crittografia.
- Considera le coppie di trasformazione (E_e , D_D) dove sapere? E_e è irrealizzabile, dato C Cper trovare un M dove $E_e(m) = C$. Ciò implica che è impossibile determinare D a partire dal e.
 - ? Ee costituisce una botola con funzione unidirezionale con botola D.
- Chiave pubblica come e può essere un'informazione pubblica

(a) Crittografia

Crittografia convenzionale (simmetrica) e a chiave pubblica (asimmetrica)

Conventional Encryption			Public-Key Encryption		
Needed to Work:		Needed to Work:			
1.	The same algorithm with the same key is used for encryption and decryption.	1.	One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption.		
2.	The sender and receiver must share the algorithm and the key.	2.	The sender and receiver must each have one of the matched pair of keys (not the same one).		
Needed for Security:		Needed for Security:			
1.	The key must be kept secret.	1.	One of the two keys must be kept secret.		
2.	It must be impossible or at least impractical to decipher a message if no other information is available.	2.	It must be impossible or at least impractical to decipher a message if no other information is available.		
3.	Knowledge of the algorithm plus samples of ciphertext must be insufficient to determine the key.	3.	Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key.		

Crittografia a chiave pubblica: segretezza

Crittografia a chiave pubblica: autenticazione

Crittografia a chiave pubblica: segretezza e autenticazione

Requisiti per la crittografia a chiave pubblica

- \bigcirc È computazionalmente facile per B per generare una coppia (chiave pubblica PUB, chiave privata PRB).
- \bigcirc È computazionalmente facile per il mittente *UN*, sapendo *PUB* e *m*, generare

$$C = E(PUB, m)$$

È computazionalmente facile per il ricevitore B decifrare C usando PRB riprendersi m.

$$m = D(PRB, C) = D(PRB, E(PUB, m))$$

- È computazionalmente irrealizzabile per un avversario, sapendo PUB determinare PRB.
- \bullet È computazionalmente irrealizzabile per un avversario, sapendo *PUB* e C = E(PUB, m) riprendersi m.
- (Utile, ma non sempre necessario) Le due chiavi possono essere applicate in qualsiasi ordine:

$$m = D(PUB, E(PRB, m)) = D(PRB, E(PUB, m))$$

- Questi sono requisiti difficili.
- Di fatto solo pochi algoritmi che godono dei requisiti di cui sopra hanno ricevuto finora un'ampia accettazione:

	Crittografia/		
Algoritmo	decrittazione	Firma digitale	Scambio di chiavi
RSA	sì	sì	sì
Curva ellittica	sì	sì	sì
Diffie Hellman	No	No	sì
DSS	No	sì	No

Funzioni unidirezionali

- Una funzione $F: X \to si$ è un funzione unidirezionale, Se F è "facile" da calcolare per tutti X: X, ma F-1 è "difficile" da calcolare
- Esempio: problema di radici cubiche modulari
 - Seleziona numeri primi P = 48611 e Q = 53993.
 - Permettere n = pq = 2624653723 e $X = \{1, 2, ..., n-1\}$.
 - Definire $F: X \to n$ di $F(X) = X_3$ modalità n.
 - Esempio: F(2489991) = 1981394214. Informatica Fè facile. Invertendo F
 - è difficile: dato si e n, trova X tale che $X_3 = si$ modalità n.
- Nota: Da non confondere con le funzioni unidirezionali che prendono un campo dati arbitrariamente come argomento e lo mappano su un output a lunghezza fissa.

Funzioni botola unidirezionali

• UN botola funzione unidirezionale è una funzione unidirezionale $F\kappa: X \to si$ tale che

$$Si = FK(X)$$
 facile, se $Ke X$ sono conosciuti
 $X = F_{\vec{K}}$ (Si) facilmente, se $Ke Si$ sono conosciuti
 $X = F_{\vec{K}}$ (Si) irrealizzabile, se Si è noto ma K non è noto

Kè il informazioni sulla botola.

• **Esempio:** Il calcolo delle radici cubiche modulari (sopra) è facile quando *P* e *Q* sono noti (teoria dei numeri di base) ma difficili se non sono noti.

Crittoanalisi a chiave pubblica

- Attacchi di forza bruta Contromisura: usate chiavi grandi!
 - Ma è necessario un compromesso poiché la complessità della crittografia/decrittografia potrebbe non scalare in modo lineare con la lunghezza della chiave.
 - In pratica: la crittografia a chiave pubblica è limitata a *gestione delle chiavi* e *firma digitale*.
- Calcolo della chiave privata dalla chiave pubblica. Nessuna prova che questo attacco sia irrealizzabile!
 (Anche per RSA)
- Attacco di probabile messaggio. Immagina un breve messaggio m (ad esempio una chiave DES a 56 bit) viene inviato crittografato con PUun, cioè C = E(PUun, m). L'attaccante calcola tutto siio = E(PUun, Xio) per tutto il testo in chiaro possibile Xio per $io = 1, \ldots, 256$ e si ferma non appenasiio = C concludendo che m = Xio (il messaggio inviato).

Soluzione: aggiungi alcuni bit casuali a *m*.

Contorno

- 🕕 Introduzione alla crittografia a chiave pubblica
- Teoria dei numeri
- L'algoritmo RSA
- 4 Algoritmi asimmetrici per la distribuzione di chiavi segrete
 - Distribuzione di chiavi segrete con
 - scambio di chiavi RSA Diffie-Hellman

Fattorizzazione primi

- Fattorizzare un numero n è scriverlo come prodotto di altri numeri: n = un ? B ? C.
- Moltiplicare i numeri è facile, fattorizzare i numeri sembra difficile.

Non possiamo fattorizzare la maggior parte dei numeri con più di 1024 bit.

• Il *scomposizione in fattori primi* di un numero *un* equivale a scriverlo come un prodotto di potenze di numeri primi:

dove *P* è l'insieme dei numeri primi e *unp?* N.

Fattorizzazione primi

- Fattorizzare un numero n è scriverlo come prodotto di altri numeri: n = un ? B ? C.
- Moltiplicare i numeri è facile, fattorizzare i numeri sembra difficile.
 Non possiamo fattorizzare la maggior parte dei numeri con più di 1024 bit.
- Il *scomposizione in fattori primi* di un numero *un* equivale a scriverlo come un prodotto di potenze di numeri primi:

$$un = P?P PunP = 2um ?3um ?5um ?7um ?11um1 …$$

dove *P* è l'insieme dei numeri primi e *unp?* N.

Per esempio

$$91 = 7.213$$

$$3600 = 24.232.252$$

Numeri relativamente primi e gcd

 Due numeri un, B sono relativamente primo se non hanno divisori/fattori comuni oltre a 1, cioè se gcd(a, b) = 1.

Ad esempio, 8 e 15 sono relativamente primi poiché

- i fattori di 8 sono 1,2,4,8, i fattori
- di 15 sono 1.3.5.15 e 1 è l'unico
- fattore comune.
- Viceversa possiamo determinare il massimo comun divisore confrontando le loro scomposizioni in fattori primi e utilizzando le potenze minime.

Ad esempio, 300 = 22 ?31 ?52, 18 = 21 ?32 quindi gcd(18, 300) = 21 ?31 ?50 = 6

Aritmetica modulare

- ?un.?qr. (un = Q?n+R) dove 0 ?r < n.
 Qui Rè il resto . Scriviamo il resto come un modalità n.
- a, b? Z sono congruente modulo n, Se un modalità n = B modalità n. Lo scriviamo come un = n B. Proprietà:

•

- $(un \cdot B) = n(un \text{ modalità } n) \cdot (B \text{ modalità } n)$ per $\{+, -, *\}$ cioè, $(un \cdot B)$ modalità $n = [(un \text{ modalità } n) \cdot (B \text{ modalità } n)]$ modalità $n = [(un \text{ modalità } n) \cdot (B \text{ modalità } n)]$
- Se un?B=nun?Ce unè relativamente primo a n, poi B=nC.

Funzione Totient di Eulero

- Quando si esegue l'aritmetica modulo nSet
- completo di *residui* è 0, . . . ,*n*−1
- Insieme ridotto di residui consiste di quei numeri (residui) che sono relativamente primi a n
 - Ad esempio, per n = 10:
 - l'insieme completo dei residui è {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - insieme ridotto di residui è {1, 3, 7, 9}
- Il Funzione Totient di Eulero (n) denota il numero di elementi nell'insieme ridotto di residui.

Proprietà

$$\mathcal{R}(P) = p - 1$$
 se P è primo

 $\mathcal{R}(pq) = \mathcal{R}(P)\mathcal{R}(Q) = (p-1)(q-1)$ se $P \in Q$ sono primi

Funzione Totient di Eulero

- Quando si esegue l'aritmetica modulo nSet
- o completo di *residui* è 0, . . . , n−1
- Insieme ridotto di residui consiste di quei numeri (residui) che sono relativamente primi a n

Ad esempio, per n = 10:

- l'insieme completo dei residui è {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- insieme ridotto di residui è {1, 3, 7, 9}
- Il Funzione Totient di Eulero (n) denota il numero di elementi nell'insieme ridotto di residui.

Proprietà:

(Apq) = (AP)(AQ) = (p-1)(q-1) se $P \in Q$ sono primi.

Teorema di Eulero

Teorema

 $un\chi_n = n$ 1 per ogni a, n tale che gcd(un) = 1.

- Se un = 3 e n = 10, allora ?(10) = 4 e 34 = 81 = 10 1
- Se un = 2 e n = 11, poi $\mathcal{X}(11) = 10$ e $2_{10} = 1024 = 111$

Teorema di Eulero

Teorema

 $un\chi_n = n$ 1 per ogni a, n tale che gcd(un) = 1.

- Se un = 3 e n = 10, allora $\frac{1}{2}(10) = 4$ e 34 = 81 = 10 1
- Se un = 2 e n = 11, poi $\mathcal{L}(11) = 10$ e $2_{10} = 1024 = 111$

Teorema di Eulero

Teorema

 $un\chi_n = n$ 1 per ogni a, n tale che gcd(un) = 1.

- Se un = 3 e n = 10, allora $\frac{2}{3}(10) = 4$ e 34 = 81 = 10 1
- Se un = 2 e n = 11, poi $\mathcal{L}(11) = 10$ e $2_{10} = 1024 = 111$

Contorno

- 🕕 Introduzione alla crittografia a chiave pubblica
- Teoria dei numeri
- L'algoritmo RSA
- 4 Algoritmi asimmetrici per la distribuzione di chiavi segrete
 - Distribuzione di chiavi segrete con
 - scambio di chiavi RSA Diffie-Hellman

- Prende il nome dagli inventori: Rivest, Shamir, Adleman, 1978.
- Pubblicato dopo la sfida del 1976 da Diffie e Hellman.
- La sicurezza deriva dalla difficoltà di fattorizzare grandi numeri
 Le chiavi sono funzioni di una coppia di grandi, ≥ 100 cifre, numeri primi
- Algoritmo a chiave pubblica più popolare
 Utilizzato in molte applicazioni, ad es. PGP, PEM, SSL, ...

- Permettere *n* essere un numero conosciuto da mittente e destinatario. Testo
- in chiaro diviso in blocchi di \mathcal{B} tronco d'albero2(n) \mathcal{C} bit.

 Ouindi ogni blocco rappresenta un numero m tale che M < n. La
- crittografia e la decrittografia sono definite come segue:

```
C = me \mod \ln n
m = CD \mod \ln n = (me) D \mod \ln n = med \mod n
```

- algoritmo di crittografia a chiave pubblica con
 - chiave pubblica PU = (e, n) e
 - chiave privata PR = (d, n).

- Permettere *n* essere un numero conosciuto da mittente e destinatario. Testo
- in chiaro diviso in blocchi di \mathcal{B} tronco d'albero2(n) \mathcal{C} bit.

 Ouindi ogni blocco rappresenta un numero m tale che M < n. La
- crittografia e la decrittografia sono definite come segue:

$$C = me_{\text{modalità }n}$$

$$m = C_D \mod \operatorname{alità} n = (m_e)_D \mod \operatorname{alità} n = m_{ed} \mod \operatorname{alità} n$$

- algoritmo di crittografia a chiave pubblica con
 - chiave pubblica PU = (e, n) e
 - chiave privata PR = (d, n).

- Permettere *n* essere un numero conosciuto da mittente e destinatario. Testo
- in chiaro diviso in blocchi di Btronco d'albero2(n)C bit.

Quindi ogni blocco rappresenta un numero m tale che M < n. La

• crittografia e la decrittografia sono definite come segue:

$$C = me_{\text{modalità }n}$$

$$m = C_D$$
 modalità $n = (m_e)_D$ modalità $n = m_{ed}$ modalità n

- algoritmo di crittografia a chiave pubblica con
 - chiave pubblica PU = (e, n) e
 - chiave privata PR = (d, n).

- Permettere *n* essere un numero conosciuto da mittente e destinatario. Testo
- in chiaro diviso in blocchi di *B*tronco d'albero2(*n*)*C* bit.

Quindi ogni blocco rappresenta un numero m tale che M < n. La

• crittografia e la decrittografia sono definite come segue:

$$C = me_{\text{modalità }n}$$

$$m = C_D$$
 modalità n = (m e) $_D$ modalità n = m e d modalità n

- algoritmo di crittografia a chiave pubblica con
 - chiave pubblica *PU* = (*e*, *n*) e
 - chiave privata PR = (d, n).

Affinché l'algoritmo RSA funzioni, devono essere soddisfatti i seguenti requisiti:

- **1** È possibile trovare valori di e, D, e n tale che med modalità n = m per tutti M < n.
- È relativamente facile da calcolare memodalità n e Comodalità n per tutti i valori di M < n.
 </p>
- Non è fattibile determinare *D* dato *e* e *n*.

Correttezza di RSA

Definizione (inversi moltiplicativi)

xey sono inverse moltiplicative modalità R se xy modalità R = 1.

Teorema (correttezza di RSA)

Se d ed e sono inversi moltiplicativi modalità $\mathcal{I}(n)$, ovvero se ed mod $\varphi(n) = 1$, quindi Med modalità n = M per tutti M < n.

Lemma

Siano p e q numeri primi e n = pq. Se d ed e sono inversi moltiplicativimodalità ?(n), quindi Med ?P M e Med ?Q M, cioè (med - M) è multiplo di p e q.

Prova di correttezza di RSA.

Permettere D e e sono moltiplicativi inversi modalità $\mathcal{X}(n)$. Per Lemma, (med - M) è multiplo di P e Q. Da quando P e Q sono primi allora (med - M) è anche multiplo di pq e quindi di pq.

Correttezza della RSA – continua

Dimostrazione di Lemma.

Permettere D e e sono moltiplicativi inversi modalità $\chi(n)$. Allora esiste un intero K tale che $ed = k\varphi(n) + 1$.

Dobbiamo dimostrare che $med = mk\varphi(n)+1$? Pm. Due casi:

Caso 1: *m* e *P* sono relativamente primi.

$$m_{k\varphi(P)+1}$$
 modalità $P = m \cdot m_{k(P-1)(q-1)}$ modalità P

$$= m \cdot (m_{(P-1)})_{k(q-1)}$$
 modalità P

$$= m \cdot (m_{(P-1)})_{k(q-1)}$$
 modalità P da P è primo
$$= m \cdot (1)_{k(q-1)}$$
 modalità P dal teorema di Eulero= m
modalità P

Caso 2: $m \in P$ non sono relativamente primi. Quindim è un multiplo di P, cioè m modalità P = 0 e quindi $m \log_{(D)+1}$ modalità P = m modalità P.

Algoritmi RSA

- Genera una coppia di chiavi pubblica/privata:
 - Genera due (grandi) numeri primi distinti P e Q
 - 2 . Calcolare n = pq e ?= (p-1)(q-1). Seleziona un
 - e, 1 < e <, relativamente primo a ?. Calcolare D</p>
 - 4 tale che *ed* modalità ?= 1.
 - Pubblicare (e, n), mantenere (d, n) privato, scartare $P \in Q$.
- Crittografia con chiave (e, n)
 - Interrompi messaggio *m* in blocchi *m* m · · · insieme a *mio* < n
 - Calcolare Cio = Meio modalità n.
- decrittazione con chiave (d, n):
 - Calcolare mio = CD io modalità n.

Algoritmi RSA: Esempio

- Genera una coppia di chiavi pubblica/privata:
 - Genera due (grandi) numeri primi distinti Pe Q
 - 2 . Calcolare n = pq e ?= (p-1)(q-1). Seleziona un
 - e, 1 < e <, relativamente primo a ?. Calcolare D</p>
 - 4 tale che *ed* modalità ?= 1.
 - Dubblicare (e, n), mantenere (d, n) privato, scartare Pe Q.
- Crittografia con chiave (e, n)
 - Interrompi messaggio m in blocchi m₁m₂ ··· insieme a mio < n</p>
 - Calcolare Cio = meio modalità n.
- decrittazione con chiave (d, n):
 - Calcolare mio = CD io modalità n

Algoritmi RSA: Esempio

- Genera una coppia di chiavi pubblica/privata:
 - creare P = 47, Q = 71
 - 2 Calcolare n = pq e ?= (p-1)(q-1). Seleziona un
 - e, 1 < e <, relativamente primo a ?. Calcolare D</p>
 - 4 tale che *ed* modalità ?= 1.
 - Pubblicare (e, n), mantenere (d, n) privato, scartare $P \in Q$.
- Crittografia con chiave (e, n)
 - Interrompi messaggio m in blocchi m₁m₂ ··· insieme a mio < n</p>
 - Calcolare Cio = meio modalità n.
- decrittazione con chiave (d, n):
 - Calcolare mio = CD io modalità n

- Genera una coppia di chiavi pubblica/privata:
 - ① creare P = 47, Q = 71
 - ② Calcolare n = pq = 3337 e ? = (p-1)(q-1) = 46 ?70 = 3220Seleziona
 - un e, 1 < e <, relativamente primo a ?. Calcolare D tale che ed
 - omodalità ?= 1.
 - Dubblicare (e, n), mantenere (d, n) privato, scartare Pe Q.
- Crittografia con chiave (e, n)
 - Interrompi messaggio m in blocchi m₁m₂ ··· insieme a mio < n</p>
 - Calcolare Cio = meio modalità n.
- decrittazione con chiave (d, n):
 - Calcolare mio = CD io modalità n

- Genera una coppia di chiavi pubblica/privata:
 - ① creare P = 47, Q = 71
 - 2 Calcolare n = pq = 3337 e ?= (p-1)(q-1) = 46 ?70 = 3220Scegliere

 - modalità ?= 1.
 - Pubblicare (e, n), mantenere (d, n) privato, scartare $P \in Q$.
- Crittografia con chiave (e, n)
 - Interrompi messaggio *m* in blocchi *m*1 *m*2 ··· insieme a *mio* < *n*
 - Calcolare Cio = meio modalità n.
- decrittazione con chiave (d, n):
 - Calcolare mio = CD io modalità n

- Genera una coppia di chiavi pubblica/privata:
 - creare P = 47, Q = 71
 - 2 Calcolare n = pq = 3337 e ? = (p-1)(q-1) = 46 ?70 = 3220Scegliere e = 46 ?70 = 3220Scegliere
 - ³ 79 (casualmente nell'intervallo [1..3220]) Calcola D tale che ⁷⁹ · D
 - omodalità 3220 = 1: D = 1019Pubblicare (e, n), mantenere (d, n) privato,
 - scartare P e Q.
- Crittografia con chiave (e, n)
 - Interrompi messaggio m in blocchi m₁m₂ ··· insieme a mio < n</p>
 - Calcolare Cio = meio modalità n.
- decrittazione con chiave (d, n):
 - Calcolare mio = CD io modalità n

- Genera una coppia di chiavi pubblica/privata:
 - creare P = 47, Q = 71
 - 2 Calcolare n = pq = 3337 e ?= (p-1)(q-1) = 46 ?70 = 3220Scegliere e = 46 ?70
 - ③ 79 (casualmente nell'intervallo [1..3220]) Calcola *D* tale che 79 · *D*
 - Modalità 3220 = 1: D = 1019Chiave pubblica (e, n) = (79, 3337), chiave
 - **o** privata (d, n) = (1019, 3337)
- Crittografia con chiave (e, n)
 - Interrompi messaggio m in blocchi $m_1 m_2 \cdots$ insieme a $m_{io} < n$
 - Calcolare Cio = meio modalità n.
- decrittazione con chiave (d, n):
 - Calcolare mio = CD io modalità n

- Genera una coppia di chiavi pubblica/privata:
 - ① creare P = 47, Q = 71
 - 2 Calcolare n = pq = 3337 e ? = (p-1)(q-1) = 46 ?70 = 3220Scegliere e = 46 ?70 = 3220Scegliere
 - ③ 79 (casualmente nell'intervallo [1..3220]) Calcola *D* tale che 79 · *D*
 - modalità 3220 = 1: D = 1019Chiave pubblica (e, n) = (79, 3337), chiave
 - **o** privata (d, n) = (1019, 3337)
- Crittografia con chiave (*e, n*)= (79, 3337)
 - Interrompi messaggio m in blocchi $m_1 m_2 \cdots$ insieme a $m_{io} < n$
 - Calcolare Cio = Meio modalità n.
- decrittazione con chiave (d, n):
 - Calcolare mio = CD io modalità n

- Genera una coppia di chiavi pubblica/privata:
 - creare P = 47, Q = 71
 - 2 Calcolare n = pq = 3337 e ? = (p-1)(q-1) = 46 ?70 = 3220Scegliere e = 46 ?70 = 3220Scegliere
 - ³ 79 (casualmente nell'intervallo [1..3220]) Calcola D tale che ⁷⁹ · D
 - modalità 3220 = 1: D = 1019Chiave pubblica (e, n) = (79, 3337), chiave
 - \bigcirc privata (*d*, *n*) = (1019, 3337)
- Crittografia con chiave (*e*, *n*)= (79, 3337)
 - Interrompi messaggio *m* in blocchi, ad es 688 232 687 966 668 ···
 - Calcolare Cio = Meio modalità n.
- decrittazione con chiave (d, n):
 - Calcolare mio = CD io modalità n

- Genera una coppia di chiavi pubblica/privata:
 - ① creare P = 47, Q = 71
 - ② Calcolare n = pq = 3337 e ?= (p-1)(q-1) = 46 ?70 = 3220Scegliere e = 46 ?70
 - § 79 (casualmente nell'intervallo [1..3220]) Calcola D tale che 79 · D
 - modalità 3220 = 1: D = 1019Chiave pubblica (e, n) = (79, 3337), chiave
 - \bigcirc privata (*d*, *n*) = (1019, 3337)
- Crittografia con chiave (*e, n*)= (79, 3337)
 - Interrompi messaggio m in blocchi, ad es 688 232 687 966 668 ···
 - 2 Calcolare $C_1 = 68879$ modalità 3337 = 1570, $C_2 = ...$
- decrittazione con chiave (d, n):
 - Calcolare mio = CD io modalità n

- Genera una coppia di chiavi pubblica/privata:
 - creare P = 47, Q = 71
 - 2 Calcolare n = pq = 3337 e ?= (p-1)(q-1) = 46 ?70 = 3220Scegliere e = 46 ?70
 - 3 79 (casualmente nell'intervallo [1..3220]) Calcola D tale che 79 · D
 - modalità 3220 = 1: D = 1019Chiave pubblica (e, n) = (79, 3337), chiave
 - **o** privata (d, n) = (1019, 3337)
- Crittografia con chiave (*e*, *n*)= (79, 3337)
 - Interrompi messaggio m in blocchi, ad es 688 232 687 966 668 ···
 - 2 Calcolare $C_1 = 68879$ modalità 3337 = 1570, $C_2 = ...$
- decrittazione con chiave (d, n)= (1019, 3337):
 - Calcolare mio = CD io modalità n

- Genera una coppia di chiavi pubblica/privata:
 - creare P = 47, Q = 71
 - 2 Calcolare n = pq = 3337 e ?= (p-1)(q-1) = 46 ?70 = 3220Scegliere e = 46 ?70
 - 3 79 (casualmente nell'intervallo [1..3220]) Calcola D tale che 79 · D
 - Modalità 3220 = 1: D = 1019Chiave pubblica (e, n) = (79, 3337), chiave
 - \bigcirc privata (*d*, *n*) = (1019, 3337)
- Crittografia con chiave (*e, n*)= (79, 3337)
 - Interrompi messaggio m in blocchi, ad es 688 232 687 966 668 ...
 - 2 Calcolare $C_1 = 68879$ modalità 3337 = 1570, $C_2 = ...$
- decrittazione con chiave (*d, n*)= (1019, 3337):
 - Calcolare $m_1 = 1570_{1019}$ modalità 3337 = 688, $m_2 = ...$

Calcolo dell'inverso moltiplicativo

Adattando l'algoritmo euclideo esteso:

```
funzione inverso (a, n)
         t := 0: nt := 1: r := n:
         nr := a;mentre nr != 0
               q := r div numero;
               (t, nt) := (nt, tq*nt); (r, nr) := (nr, r)
               ra*nr):
         Se r > 1 poi restituire "a is non invertibile"; Se t < 0 poi t :=
         t + n: restituire t:
10
```


Sicurezza RSA

- Calcolo del segreto *D* dato (*e, n*)
 - Difficile come fattorizzare. Se possiamo fattorizzare n = pq allora possiamo calcolare?= (p-1)(q-1) e quindi D.
 - Nessun algoritmo di tempo polinomiale noto.
 Ma visti i progressi nel factoring, n dovrebbe avere almeno 1024 bit.
- Calcolo di *mio*, dato *Cio*, e (*e, n*)
 - Non è chiaro (= nessuna prova) se è necessario calcolare *D*, cioè fattorizzare *n*.
- ? I progressi nella teoria dei numeri potrebbero rendere insicura RSA.

Malleabilità di RSA

• Ricordiamo che una funzione crittografica E(K, M) è malleabile se esistono due funzioni F(X) e G(X) tale che

$$F(E(K, M)) = E(KG(m))$$
 per tutte le chiavi K e messaggi m

• Crittografia RSA, vale a dire $E((e, n), m) = m_e \mod \operatorname{alità} n$ è chiaramente malleabile. Permettere $F(X) = X ? (m_e \mod \operatorname{and} n)$ per qualsiasi dato m_1 .

$$F(E((e, n), m)) = E((e, n), m) ? (me_1 \text{ modalità } n) =$$

$$= (me \text{ modalità } n) ? (me_1 \text{ modalità } n) = (m?mt)e \text{ modalità } n =$$

$$= E((e, n), m?mt) = E((e, n), G(m))$$

 Per questo motivo, RSA è comunemente usato insieme a metodi di riempimento come OAEP o PKCS1.

Contorno

- Introduzione alla crittografia a chiave pubblica
- Teoria dei numeri
- 3 L'algoritmo RSA
- Algoritmi asimmetrici per la distribuzione di chiavi segrete
 - Distribuzione di chiavi segrete con
 - scambio di chiavi RSA Diffie-Hellman

Algoritmi asimmetrici per la distribuzione di chiavi segrete

- Utilizza algoritmi di crittografia a chiave pubblica per supportare la crittografia simmetrica (più veloce).
- Vedremo due approcci:
 - Distribuzione di chiavi segrete con
 - scambio di chiavi RSA Diffie-Hellman

Contorno

- Introduzione alla crittografia a chiave pubblica
- Teoria dei numeri
- L'algoritmo RSA
- Algoritmi asimmetrici per la distribuzione di chiavi segrete
 - Distribuzione della chiave segreta con
 - RSAScambio di chiavi Diffie-Hellman

Distribuzione della chiave segreta con RSA

- Crittografia di m (con chiave pubblica (e, n))
 - scegliere K a caso
 - $c = (K_e \text{ modalità } n, E_K(m))$
- Decrittografia (con chiave privata (d, n))
 - Diviso C in (C1, C2)
 - $K = C_{D} \mod \operatorname{alita} n$ $m = D_K(C_2)$
- Esempio: SSL

Alice sceglie un segreto, lo crittografa con il PK di Bob e il resto della sessione è protetto in base a quel segreto.

• **Problema:** se la chiave privata (*d, n*) viene compromesso, allora *K* può essere recuperato da un intruso dal traffico osservato in precedenza.

Contorno

- Introduzione alla crittografia a chiave pubblica
- Z Teoria dei numeri
- L'algoritmo RSA
- Algoritmi asimmetrici per la distribuzione di chiavi segrete
 - Distribuzione della chiave segreta con
 - RSAScambio di chiavi Diffie-Hellman

Background sui logaritmi discreti

• UN radice primitiva S di un numero primo P è un numero le cui potenze generano 1 $\dots, p-1$.

Così S modalità P, S_2 modalità P, . . . , S_{p-1} modalità P sono distinti, cioè una permutazione da 1 ap-1. Quindi:

?B ? Z.
$$\exists io \{0, ..., p-1\}$$
. $B = S_{io} \mod A$

- Dato B?Z, esponente io sopra è il logaritmo discreto di B per base S, modalità P. Il
- calcolo di log discreti sembra impossibile.

Scambio di chiavi Diffie-Hellman

- I principali condividono il primo Q e radice primitiva α di Q. Entrambi possono
- essere pubblici. UN e B generare numeri casuali Xune XB (risp.) entrambi inferiori
- a *Q.UN* calcola *sìu*N= α XUN modalità *Q. B* calcola *sìB*= α XB modalità *Q.UN* e *B*
- scambiare i risultati.
- UN calcola $KUN = si \times UB$ modalità Q, B calcola $KB = si \times BD$ modalità Q. Le chiavi sono uguali, cioè KUN = KB:

$$KUN = si \, \text{Bumodalità} \, Q$$

- (αx_B) x_{UN} modalità O
- (αχυ_N)χ_Bmodalità O
- K_{R} *SÌU*/#modalità *O* =

La sicurezza dipende dalla difficoltà di elaborazione di log discreti.

Diffie-Hellman: punti di forza

- Il segreto condiviso viene creato dal nulla!
- Il segreto condiviso non viene mai trasmesso (nemmeno in forma crittografata).
- ? Perfetta segretezza in avanti (PFS), cioè se qualcuno registra l'intera conversazione e poi scopre le chiavi private di Alice e/o Bob, non sarà in grado di decifrare nulla!

Le chiavi sono non autenticato e quindi è vulnerabile a quanto segue *Attacco man-in-the-middle* :

- A trasmette siun essere
- io intercetta siune trasmette sib a β . Calcolo anche io $K_2 = (siun)x_{D2}$ modalità Q.
- 3 B riceve siD_1 e calcola KB = (si) $D) \times B \mod B$
- B trasmette sìB ad A
- io intercetta siB e trasmette siD_2 ad A. io calcolo $K_1 = (siB)X_{D_1}$ modalità Q.

Ora *UN* e *B* pensano che condividano una chiave segreta, ma invece *UN* condivide la chiave segreta *K*2 insieme a *io*e *B* condivide la chiave segreta *K*1 insieme a *io*.

Le chiavi sono non autenticato e quindi è vulnerabile a quanto segue *Attacco man-in-the-middle* :

- A trasmette sìun essere
- io intercetta siune trasmette sio a β . Calcolo anche io $K_2 = (siun)x_{22}$ modalità Q.
- B riceve siD_1 e calcola KB = (si) $D)_{XB}$ modalità C
- B trasmette sìB ad A
- io intercetta siB e trasmette siD, ad A. io calcolo $K_1 = (siB)xD_1$ modalità Q.

Ora *UN* e *B* pensano che condividano una chiave segreta, ma invece *UN* condivide la chiave segreta *K*2 insieme a *io*e *B* condivide la chiave segreta *K*1 insieme a *io*.

Le chiavi sono non autenticato e quindi è vulnerabile a quanto segue *Attacco man-in-the-middle*:

- A trasmette sìun essere
- io intercetta siune trasmette sio a β . Calcolo anche io $K_2 = (siun)x_{22}$ modalità Q.
- 3 B riceve siD_1 e calcola KB = (si) $D_{\lambda k} modalità Q$
- B trasmette sìB ad A
- io intercetta siB e trasmette siD_2 ad A. io calcolo $K_1 = (siB)XD_1$ modalità Q.
- ⑤ A riceve sìo₂ e calcola Kun= (sìo)xunmodalità Q

Ora *UN* e *B* pensano che condividano una chiave segreta, ma invece *UN* condivide la chiave segreta *K*2 insieme a *io*e *B* condivide la chiave segreta *K*1 insieme a *io*.

Le chiavi sono non autenticato e quindi è vulnerabile a quanto segue *Attacco man-in-the-middle*:

- A trasmette sìun essere
- io intercetta siune trasmette sio a β . Calcolo anche io $K_2 = (siun)x_{22}$ modalità Q.
- **3** B riceve siD_1 e calcola KB = (si) $D_{j,X_B \text{modalità } Q}$
- B trasmette sìB ad A
- io intercetta siB e trasmette siD_2 ad A. io calcolo $K_1 = (siB)x_{D_1}$ modalità Q.
- ⑤ A riceve sìo₂ e calcola Kun= (sìo)xunmodalità Q

Ora *UN* e *B* pensano che condividano una chiave segreta, ma invece *UN* condivide la chiave segreta *K*2 insieme a *io*e *B* condivide la chiave segreta *K*1 insieme a *io*.

Le chiavi sono non autenticato e quindi è vulnerabile a quanto segue *Attacco man-in-the-middle*:

- A trasmette sìun essere
- ② io intercetta sìuν e trasmette sìo a β. Calcolo anche io $K_2 = (sìuν)x_{22}$ modalità Q.
- In the size of th
- B trasmette sìB ad A
- io intercetta siB e trasmette siD_2 ad A. io calcolo $K_1 = (siB)X_{D_1}$ modalità Q.
- ⑤ A riceve sìo₂ e calcola Kun= (sìo)xunmodalità Q

Ora *UN* e *B* pensano che condividano una chiave segreta, ma invece *UN* condivide la chiave segreta *K*2 insieme a *io*e *B* condivide la chiave segreta *K*1 insieme a *io*.

Le chiavi sono non autenticato e quindi è vulnerabile a quanto segue *Attacco man-in-the-middle*:

- A trasmette sìun essere
- io intercetta siune trasmette sio a β . Calcolo anche io $K_2 = (siun)x_{22}$ modalità Q.
- In the size of th
- B trasmette sìB ad A
- o intercetta siB e trasmette siD_2 ad A. io calcolo $K_1 = (siB)X_{D_1}$ modalità Q.
- **1** A riceve si_{D2} e calcola $Ku_N = (si_D)x_{uN}$ mpdalità Q

Ora *UN* e *B* pensano che condividano una chiave segreta, ma invece *UN* condivide la chiave segreta *K*2 insieme a *io*e *B* condivide la chiave segreta *K*1 insieme a *io*.

Le chiavi sono non autenticato e quindi è vulnerabile a quanto segue *Attacco man-in-the-middle*:

- A trasmette sìun essere
- io intercetta siune trasmette sio a β . Calcolo anche io $K_2 = (siun)x_{22}$ modalità Q.
- **3** B riceve siD_1 e calcola KB = (si) D_{XB} modalità Q
- B trasmette sìB ad A
- io intercetta sìB e trasmette sì D_2 ad A. io calcolo $K_1 = (si_B)x_{D_1}$ modalità Q.
- A riceve sìo₂ e calcola Kun= (sìo)xunmodalità Q

Ora UN e B pensano che condividano una chiave segreta, ma invece UN condivide la chiave segreta la loe B

condivide la chiave segreta K1 insieme a io.

Le chiavi sono non autenticato e quindi è vulnerabile a quanto segue *Attacco man-in-the-middle*:

- A trasmette sìun essere
- io intercetta siune trasmette sip a β . Calcolo anche io $K_2 = (siun)x_{\infty}$ modalità Q.
- **3** B riceve siD_1 e calcola KB = (si) D_{XB} modalità Q
- B trasmette sìB ad A
- io intercetta siB e trasmette siD_2 ad A. io calcolo $K_1 = (siB)xD_1$ modalità Q.
- **1** A riceve si_{D2} e calcola $Ku_N = (si_D)x_{uN}$ mpdalità Q

Ora $UN \in B$ pensano che condividano una chiave segreta, ma invece UN condivide la chiave segreta K_2 insieme a ioe B condivide la chiave segreta K_1 insieme a io.

Le chiavi sono non autenticato e quindi è vulnerabile a quanto segue *Attacco man-in-the-middle*:

- A trasmette sìun essere
- ② io intercetta sìuν e trasmette sìo a β. Calcolo anche io $K_2 = (sìuν)x_{22}$ modalità Q.
- **3** B riceve siD_1 e calcola KB = (si) D_{XB} modalità Q
- B trasmette sìB ad A
- io intercetta siB e trasmette siD_2 ad A. io calcolo $K_1 = (siB)XD_1$ modalità Q.
- A riceve sìo₂ e calcola Kun= (sìo)xunmodalità Q

Ora $UN \in B$ pensano che condividano una chiave segreta, ma invece UN condivide la chiave segreta K_2 insieme a io condivide la chiave segreta K_1 insieme a io.

