Qualifying Exam (2011 spring)-Real Analysis

Do five of the following seven problems.

Problem 1

Let g be an integrable function and suppose $\lim_{x\to 1} g(x) = 0$. Prove that

$$\lim_{n \to \infty} \int_{[0,1]} n \, x^n \, g(x) \, dx = 0.$$

Problem 2

Let f be an integrable function. Prove that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x) \sin(nx) \, dx = 0.$$

Hint: Prove this first when f is the characteristic function of an interval.

Problem 3

Let $S \subset \mathbb{R}$ be measurable such that $0 < m(S) < \infty$. Prove that

$$\lim_{h \to 0} \frac{m(S \cap (x - |h|, x + |h|))}{2|h|} = \chi_S(x)$$

for almost every $x \in \mathbb{R}$.

Problem 4

Let $\{S_n | n \in \mathbb{N}\}$ be a collection of measurable sets such that $S_n \subset S_{n+1}$ and let m be Lebesgue measure on \mathbb{R} . Prove that

$$\lim_{n} m(S_n) = m\left(\bigcup_{n \in \mathbb{N}} S_n\right).$$

Problem 5

Let (X, \mathcal{B}, μ) be a finite (positive) measure. Call a set $\Phi \subseteq L_1(\mu)$ uniformly integrable if to each $\epsilon > 0$ corresponds a $\delta > 0$ such that

$$\left| \int_E f d\mu \right| < \epsilon$$

whenever $f \in \Phi$ and $\mu(E) < \delta$. Show that every finite subset of $L_1(\mu)$ is uniformly integrable.

Problem 6

Suppose that $1 \leq p < \infty$, $f \in L_1(\mathbb{R})$, $g \in L_1(\mathbb{R}) \cap L_p(\mathbb{R})$. f * g is defined by

$$f * g(y) = \int f(y - x)g(x)dx.$$

Show that

$$||f * g||_p \le ||f||_1 ||g||_p.$$

Problem 7

A function f is said to satisfy a Lipschitz condition on an interval if there is a constant M such that $|f(x) - f(y)| \le M|x - y|$ for all x and y in the interval.

- 1. Show that a function satisfying a Lipschitz condition is absolutely continuous.
- 2. Show that an absolutely continuous function f on a finite interval [a, b] satisfies a Lipschitz condition if and only if |f'| is essentially bounded.