

Heat in ideal gas

Joule-Kelvin effect

Back to ideal gas

At constant volume
$$C_V = \left(\frac{dQ}{dT}\right)_V \neq \left(\frac{\partial U}{\partial T}\right)_V$$

At constant pressure, it is
$$C_p = \left(\frac{dQ}{dT}\right)_p + \left(\frac{\partial U}{\partial T}\right)_p + p\left(\frac{\partial V}{\partial T}\right)_p$$

for a ideal gas: U=U(T) only (remind yourself why), which means $\left(\frac{\partial U}{\partial T}\right)_p = \left(\frac{\partial U}{\partial T}\right)_V$ here C is the constant of C.

$$\left(\frac{\partial U}{\partial T}\right)_p = \left(\frac{\partial U}{\partial T}\right)_V$$

$$(\partial V)$$
 temp for an ∂V

$$C_p = \left(\frac{dQ}{\partial T}\right)_p = C_V + p\left(\frac{\partial V}{\partial T}\right)_p$$

For a ideal gas
$$pV = nRT \leftrightarrow V = \frac{nRT}{p}$$
, $\left(\frac{\partial V}{\partial T}\right)_p = \frac{nR}{p}$.

$$C_p = C_V + nR$$

$$C_p > C_V$$

$$C_p > C_V$$

Back to ideal gas

$$dQ = dU - dW = dU + pdV$$

$$C_V = \left(\frac{dQ}{dT}\right)_V = \left(\frac{\partial U}{\partial T}\right)_V = \frac{dU}{dT}$$

$$\Rightarrow dU = C_V dT = dQ - pdV$$

$$dQ = C_V dT + pdV$$

Ideal gas EoS: pV = nRT

$$pdV + Vdp = nRdT$$

$$\rightarrow pdV = nRdT - Vdp$$

$$dQ = (C_V + nR)dT - Vdp$$

$$dQ = C_p dT - V dp$$

Adiabatics of ideal gas

$$dQ = C_V dT + p dV$$

$$dQ = C_p dT - V dp$$

for an adiabatic reversible process dQ = 0

$$p dV = -C_V dT$$
$$V dp = C_p dT$$

$$\frac{\mathrm{d}p}{p} = -\frac{C_p}{C_V} \frac{\mathrm{d}V}{V}$$

$$\ln p = -\gamma \ln V + const$$

$$\gamma \equiv \frac{C_p}{C_V} \quad \text{or} \quad pV^\gamma = const \quad \gamma = \text{adiabatic index}$$

This is valid for an adiabatic, reversible process in an ideal gas.

(Reversible) ways to change the state of a gas

5

Joule-Kelvin Effect

Push gas through plug very slowly from 1 to 2

Adiabatic process so

work done on **1** is $\Delta W_1 = -p_1 \int_{V_1}^0 \mathrm{d}V = p_1 V_1$

work done on **2** is $\Delta W_2 = -p_2 \int_0^{V_2} dV = -p_2 V_2$

Total work done on gas is $\Delta W = p_1 V_1 - p_2 V_2$

Joule-Kelvin Effect

Adiabatic process, so dQ = 0; from first law:

$$\begin{aligned} \Delta U &= \Delta W \\ U_2 - U_1 &= p_1 V_1 - p_2 V_2 \\ U_1 + p_1 V_1 &= U_2 + p_2 V_2 \\ H_1 &= H_2 \end{aligned}$$

isenthalpic process (Enthalpy is conserved)

