معلى الله على مالله مثال تعفى: 54 5-ر منال روبو، مقير X يوانر + ا_ -H(X) = -2 log 3 - 1 log /3 H(X) >= 0) = -1 log 1 - 1 log 2 = H(x/y=0) & H(x) ب) درس، زیا هج طف نه دری هو نظر در مطای آن کمر از طف نه نیز باشد. Ebourds our che in trade-off Luings is its (? وگامی اومات برای کامن عظای واردانی، سلی از بایاس فای مزیم. د) درات ، زرای است ده لزرو بری مان دان سسن ما دار سل کرد وفعط برداده ها سکی نبود.

هـ) درست، زرا دفت کر ویژی مالت های زیادی داشته این فرندان آن ا مل ما معمد عونه خلاهند بود و لذا آنروس فرنسان مولاً تزمل ب enter le site information Grain is feller eles de les les els overfitting des Testes, in circles D={n,..., nn} $\hat{\mu}_{MAP} = arg man P(\mu|D) = arg man P(D|\mu) P(\mu)$ $P(O|\mu) = \prod_{i=1}^{n} P(x_i|\mu) \implies \ln P(D|\mu) = \sum_{i=1}^{n} \ln P(x_i|\mu)$ $= \frac{n}{\sum_{i=1}^{n} \ln \frac{1}{\sqrt{2\pi}}} e^{-(x_i - \mu)^2} = -n \ln 2\pi - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2$

const

$$\frac{1}{MAP} = \arg \max \ln P(D|M) + \ln P(M)$$

$$= \arg \max \frac{-1}{2} \sum_{i=1}^{n} (x_i - M)^2 + \ln \mu - \ln \sigma - \frac{\mu^2}{2\sigma^2}$$

$$\frac{\partial g}{\partial \mu} = + \sum_{i=1}^{n} (x_i - M) + \frac{1}{\mu} - \frac{M}{\sigma^2} = 0$$

$$\Rightarrow + Z \Rightarrow n\mu + \frac{1}{\mu} - \frac{M}{\sigma^2} = 0$$

$$\Rightarrow \mu = + Z + \sqrt{Z^2 + 4R}$$

$$2R$$

$$\Rightarrow \mu = \frac{Z}{2R} (1 + \sqrt{1 + \frac{4R}{Z^2}})$$
21. 06:

$$P(\mu|D) \propto P(D|\mu) P(\mu)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{\frac{(x_i - \mu)^2}{2}} \frac{\mu^2}{\sigma^2}$$

$$\propto \mu \exp\left(-\frac{\sum (x_i - \mu)^2 + \mu^2/\sigma^2}{2}\right)$$

$$= \lim_{i=1}^{n} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}}$$

$$= \lim_{i=1}^{n} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}}$$

$$= \lim_{i=1}^{n} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}}$$

$$= \lim_{i=1}^{n} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}}$$

$$= \lim_{i=1}^{n} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} e^{\frac{i}{2}}$$

$$= \lim_{i=1}^{n} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} e^{\frac{i}{2}} e^{\frac{i}{2}}$$

$$= \lim_{i=1}^{n} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} e^{\frac{i}{2}} e^{\frac{i}{2}} e^{\frac{i}{2}}$$

$$= \lim_{i=1}^{n} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} e^{\frac{i}{2}} e^{\frac{i}{2}} e^{\frac{i}{2}}$$

$$= \lim_{i=1}^{n} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} e^{\frac{i}{2}} e^{\frac{i}{2}} e^{\frac{i}{2}}$$

$$= \lim_{i=1}^{n} \frac{(x_i - \mu)^2}{\sqrt{2\pi}} e^{\frac{i}{2}} e$$

ازدر طف راهلی با ما کاریم ، $-2\ln\theta - \frac{\chi^2}{2\sigma^2} = \ln\theta - \theta\chi$ AND STABLE STABORDED $\Rightarrow \chi^2 - 2\sigma^2 \partial \chi + 2\sigma^2 \left(\ln \theta \sigma^2 \right) = 0$ $\chi = \sigma^2 \theta \pm \sqrt{\sigma^4 \theta^2 - 2\sigma^2 \ln \theta \sigma^2}$ $\Rightarrow \chi = \theta \sigma^2 \pm \int \sigma \sqrt{\sigma^2 \theta^2 - 2 \ln \theta \sigma^2}$ y=2 y=1 y=2 o January X 002+05-مین ایک براس سادر ۵ ده می از ریدهای عادم اله سی کود دی نازی ب رای مان های عمل ریشه های مادله باله سس.

	الحال ع
ه از GLM ورُدر من فطی وه بالسکاه لنر لوکال رُدر کی	الم الم
In maximum likelihood In iou in Lai	
م ٥ كني زني. هيد از روك ماي بايه آونوس كود غو كاس	المائر د
e e e e e e e e e e e e e e e e e e e	כאנם בן
	موال ۵
$\hat{\omega}_{MAP} = arg \max_{\omega} \log P(\omega D)$	المستادات وال
z arg man log P(D/W) + log P(W)	
$\log P(D \omega) = \sum_{i=1}^{n} \log P(y_i x_i,\omega) = \sum_{$	9 1 - 1 (y: -wh)
	const.
$\Rightarrow \hat{\omega}_{MAP} = \arg \max_{\omega} -\frac{1}{2} \sum_{i=1}^{n} (y_i - \omega_{pl_i})^2$	
اماد باق (۶) با که باز عدادت ، باک شک در داده ا	const.

$$\Rightarrow \hat{\omega}_{MAP} = \underset{i=1}{\text{arg min}} \sum_{i=1}^{n} (y_i - \omega_{Ni})^2 + 2 |\omega|$$

$$= \underbrace{-\frac{1}{n}}_{NAP} = \underset{i=1}{\text{arg min}} \sum_{i=1}^{n} (y_i - \omega_{Ni})^2 + 2 |\omega|$$

$$= \underbrace{-\frac{1}{n}}_{NAP} = \underset{i=1}{\text{arg min}} \sum_{i=1}^{n} (y_i - \omega_{Ni})^2 + 2 |\omega|$$

سوال ۶ درخت تصمیم (۱۴ نمره)

فرض کنید که ویژگی باینری B ،A و C به همراه برچسب کلاس هر داده بیان شده باشد (جدول زیر). می خواهیم درخت تصمیم با کمترین عمق را برای دادههای داده شده بیابیم. آیا الگوریتم ID3 (بدون هرس کردن) درخت بهینه را مییابد؟ با رسم درختهای مربوطه جواب خود را شرح دهید.

A	В	С	Class
1	1	0	0
1	0	1	1
0	1	1	1
0	0	1	0

جواب:

Minimum-depth tree:

Tree learned by ID3:

سوال ۷ شبکه عصبی (۱۲ نمره)

شبکه عصبی زیر را برای طبقه بندی دو کلاسه در نظر بگیرید. فرض کنید که لایه های میانی از تابع فعالسازی خطی (h(z)=cz) و تابع $X=(x_1,x_2)$ و تابع $X=(x_1,x_2)$ است که در آن $Y=(x_1,x_2)$ است که در آن $Y=(x_1,x_2)$ است.

الف) خروجی شبکه عصبی P(Y=1|X,w) را بر حسب پارامترهای شبکه (W ,x) و ثابت P(Y=1|X,w) نوشته و مرز تصمیم نهایی را به دست آورید

$$g(w_7 + w_8h(w_1 + w_3x_1 + w_5x_2) + w_9h(w_2 + w_4x_1 + w_6x_2)) = \frac{1}{1 + \exp(-(w_7 + cw_8w_1 + cw_9w_2 + (cw_8w_3 + cw_9w_4)x_1 + (cw_8w_5 + cw_9w_6)x_2))}$$

The classification boundary is:

$$w_7 + cw_8w_1 + cw_9w_2 + (cw_8w_3 + cw_9w_4)x_1 + (cw_8w_5 + cw_9w_6)x_2 = 0$$

ب) آیا می توان شبکه عصبی بدون لایه مخفی به دست آورد که معادل شبکه عصبی فوق باشد؟ در صورت وجود شبکه پیشنهادی را رسم کنید.

