

Instituto Federal de Educação Ciências e Tecnologia da Paraíba

Campus Campina Grande

Bacharelado em Engenharia de Computação

Projeto Modelagem 3D - Braço robotico

Allan dos Santos B. Bastos Erica C. de Carvalho Guilherme S. Esdras de Souza

Introdução

Foi realizada a criação de um braço robótico no software de modelagem 3D, Fusion 360 para o Projeto de Modelagem 3D da disciplina de Técnicas de prototipagem.

Braço robótico com aplicação voltada a carregar caixas de pequeno porte. Podendo ser utilizadas, em indústrias, como por exemplo, para colocação de caixas em esteira, prateleira, organização de caixas no correio, em mercados e diversas outras aplicações.

Objetivo é realizar a criação de um braço robótico de acordo com a aplicação escolhida, com isso adquirindo conhecimento de técnicas de prototipagem, dos softwares de modelagem utilizados e também softwares de fatiamento, prototipagem 3D por extrusão.

Atividades Executadas

Base

Atividades

Sustentar todos os componentes e fixar o braço em um local. Conecta o Braço. Possui um motor responsável por permitir girar o Braço em 360°.

Dimensões

Base inferior:

Engate do motor:

Stepper motor:

Suporte do motor:

Suporte rotatório inferior:

Suporte rotatório superior:

Tampa da base:

Braço

Atividades

Responsável por sustentar os demais componentes do braço, além de efetuar um giro de 360° para alcance da garra.

Conecta a Base ao Antebraço e possui um motor responsável por girar o antebraço.

Dimensões

Braço base:

Engate giratório do braço para antebraço:

Motor do braço:

Tampa do braço:

Antebraço

Atividades

Responsável por levantar e abaixar os componentes conectados à Garra, utilizando o Servo Motor (assim como os outros).

É conectado no Braço e na Junta Superior.

Dimensões

Antebraço:

Engate:

Tampa:

Motor do antebraço:

Junta Superior

Atividades

Onde fica localizado o motor responsável por girar o Conector da Garra

Dimensões

Encaixe:

Junta Parte Anterior:

Junta Parte Posterior:

Junta Superior:

Motor da junta superior:

Tampa parte anterior:

Conector

Atividades

Responsável por conectar a Junta Superior ao Conector da Garra. Também possui um motor responsável por girar verticalmente o Conector da Garra.

Dimensões

Corpo do conector:

Engate giratório do conector:

Motor do conector:

Trava do conector:

Conector Junta-Segurador

Atividades

Responsável por Conectar a Garra ao Encaixe e efetuar os giros através de um motor.

Dimensões

Conector da junta:

Engate giratório:

Motor do conector da junta:

Tampa do conector da junta seguradora:

Encaixe Segurador da Garra

Atividades

Encaixa o Conector a Garra.

Dimensões

Garra

Atividades

Efetuar o manuseio dos objetos.

Possui um Servo Motor capaz de fechar e abrir a garra para ajustar o item.

Dimensões

Barra eixo:

Corpo da pá:

Pá direita:

Pá esquerda:

Presilha:

Tampa inferior:

Tampa superior:

SG90 - Micro Servo 9g - Tower Pro:

Resultados

Todos os componentes conectam e trabalham em conjunto, efetuando as devidas rotações necessárias para o correto funcionamento do braço.

Os motores ficam localizados em locais estratégicos e necessários para a correta rotação dos componentes.

Os modelos geraram o arquivo gcode com as configurações especificadas corretas para serem impressos em uma impressora 3D utilizando o software PrusaSlicer.

Conclusão

Vários conhecimentos foram adquiridos durante o processo de desenvolvimento deste Braço Robótico.

Dentre eles, podemos citar a utilização, criação, modelagem e renderização de componentes em 3D utilizando o Fusion 360. Um poderoso Software, com diversas funcionalidades e fases de desenvolvimento. Desde a criação do Sketch (esboço), até a modelagem de fato, o dimensionamento e cotagem, e as animações do modelo.

Além disso, o fatiamento e configuração de uma impressora 3D utilizando o PrusaSlicer e o Cura3D também foram importantes conhecimentos adquiridos ao longo do processo.

Conhecimentos esses que abrem portas para diversas oportunidades e profissões em diversas áreas da engenharia e tecnologia que são abertas todos os dias.