Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение Высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа 2 по вычислительной математике

Численное решение нелинейных уравнений и систем Вариант №10

Преподаватель: Малышева Татьяна Алексеева

Выполнил: Состанов Тимур Айратович

Группа: Р3214

Г. Санкт-Петербург

Оглавление

Цель работы	3
Вычислительная реализация задачи	
Решение нелинейного уравнения	
Решение системы нелинейных уравнений	6
Программная реализация задачи	7
Метод Ньютона	7
Метод хорд	8
Метод простых итераций	9
Результат работы программы	11
Вывод	14

Цель работы

Изучить численные	методы решения	нелинейных	уравнений и их	систем,	найти корни	заданного	нелинейного
уравнения/системы	нелинейных урав	нений, выпо.	лнить программ	ную реа	лизацию мет	одов.	

Вычислительная реализация задачи

Решение нелинейного уравнения

$$x^3 - 3{,}125x^2 - 3{,}5x + 2{,}458$$

Интервалы изоляции корней:

- 1) [-2; -1]
- 2) [0;1]
- 3) [3;4]

Для уточнения значения корней воспользуемся:

- 1) Метод половинного деления
- 2) Метод простой итерации
- 3) Метод Ньютона

Уточняем крайний левый корень:

			Метод поло	винного д	целения		
№ шага	а	b	Х	f(a)	f(b)	f(x)	$ b_n - a_n \le \varepsilon$
				-			
0	-2,000	-1,000	-1,500	11,042	1,833	-2,698	1
1	-1,500	-1,000	-1,250	-2,698	1,833	-0,003	0,5
2	-1,250	-1,000	-1,125	-0,003	1,833	1,017	0,25
3	-1,250	-1,125	-1,1875	-0,003	1,017	0,533	0,125
4	-1,250	-1,1875	-1,21875	-0,003	0,533	0,272	0,0625
5	-1,250	-1,21875	-1,234375	-0,003	0,272	0,136	0,03125
6	-1,250	-1,234375	-1,2421875	-0,003	0,136	0,067	0,015625
7	-1,250	-1,2421875	<mark>-1,24609375</mark>	-0,003	0,067	0,032	0,0078125

Уточняем средний корень:

$$f'(x) = 3x^2 - 6,25x - 3,5$$

$$f'(0) = -3,5$$

$$f'(1) = -6,75$$

$$f'[0,1] < 0, \text{поэтому}$$

$$\lambda = \frac{1}{6,75} = 0,148$$

$$x = x + 0,148(x^3 - 3,125x^2 - 3,5x + 2,458)$$

$$\varphi(x) = 0,148x^3 - 0,463x^2 + 0,482x + 0,364$$

Условие сходимости:

$$\phi'(x) = 0,444x^2 - 0,926x + 0,482$$

$$\phi'(0) = 0,482$$

$$\phi'(1) = 0$$

Условие сходимости выполняется

	Me	год прос	той итераці	ии	
№ шага	Х	X _{k+1}	f(x _k +1)	$[X_{k+1}-X_k]$	
0	1,000	0,531	-0,132		0,469
1	0,531	0,512	-0,019		0,019
2	0,512	0,509	-0,0013		0,003

Уточняем крайний правый корень:

$$f'(x) = 3x^2 - 6,25x - 3,5$$
$$f''(x) = 6x - 6,25$$

-9,167
2,458
11,75
17,75

		Me	тод Ньютон	ıa		
№ шага	X _k	f(x _k)	f'(x _k)	X_{k+1}	$[X_{k+1}-X_k]$	
1	4,000	2,458	19,5	3,874		0,126
2	3,874	0,140	17,311	3,866		0,008

Решение системы нелинейных уравнений

$$\begin{cases} \sin(x + 0.5) - y = 1\\ \cos(y - 2) + x = 0 \end{cases}$$

Решение уравнений находится в области

$$\begin{cases}
0.5 < x < 1 \\
-0.5 < y < 0
\end{cases}$$

Выразим $\varphi(x)$

$$\begin{cases} x = -\cos(y - 2) \\ y = \sin(x + 0.5) - 1 \end{cases}$$

Проверяем условие сходимости

$$\frac{\partial \varphi_1}{\partial x} = 0 \qquad \qquad \frac{\partial \varphi_1}{\partial y} = \sin(y - 2)$$

$$\frac{\partial \varphi_2}{\partial x} = \cos(x + 0.5) \qquad \frac{\partial \varphi_2}{\partial y} = 0$$

$$|\sin(y-2)| < \sin(2) < 1$$

$$|cos(x + 0.5)| < cos(1) < 1$$

 $max(\sin(2);\cos(1)) = \sin(2) < 1 => Процесс сходящийся$

Начальное приближение: x = 0.5, y = -0.1

			Мет	од итерац	ий	
№ шага	X _k	y _k	X _{k+1}	y _{k+1}	X _{k+1} - X _k	y _{k+1} - y _k
0	0,500	-0,100	0,506	-0,158	0,006	0,058
1	0,506	-0,158	0,554	-0,155	0,048	0,030
2	0,554	-0,155	0,552	-0,131	0,002	0,024
3	0,552	-0,131	0,531	-0,132	0,021	0,001
4	0,531	-0,132	0,532	-0,142	0,001	0,010
5	0,532	-0,142	0,541	-0,142	0,009	0,000

Программная реализация задачи

Метод Ньютона

```
x_i = x_0
                                                                           A3 A1 ★29 ^
table = [["VТерация", "x_i", "f(x_i)", "f'(x_i)", "x_i(i + 1)", "|x_i(i + 1) - |x_i["]]
while True:
   if iterations >= max_iterations:
        print("Достигнуто максимальное количество итераций. Решение не найдено.")
        return None
   f_x_i = equation(x_i)
    f_{prime_x_i} = derivative(x_i)
   f_double_prime_x_i = second_derivative(x_i)
   x_i_plus_1 = x_i - (f_x_i / f_prime_x_i)
   difference = abs(x_i_plus_1 - x_i)
   table.append([iterations + 1, x_i, f_x_i, f_prime_x_i, x_i_plus_1, difference])
    if abs(f_x_i) <= epsilon or difference <= epsilon:</pre>
        print("Метод Ньютона завершен после", iterations + 1, "итераций.")
        print("Приближенное значение корня:", x_i_plus_1)
        print(tabulate(table, headers="firstrow", tablefmt="fancy_grid"))
        return x_i_plus_1
    if f_double_prime_x_i == 0:
        print("Производная второго порядка равна нулю. Метод Ньютона не применим.")
        return None
   x_i = x_i_plus_1
   iterations += 1
```

```
A 3 × 16
b = interval_end
iterations = 0
table = [["Итерация", "a", "b", "x_i", "f(a)", "f(b)", "f(x_i)"]]
while True:
    if iterations >= max_iterations:
        print("Достигнуто максимальное количество итераций. Решение не найдено.")
        return None
   x_i = a - (b - a) * equation(a) / (equation(b) - equation(a))
   table.append([iterations+1, a, b, x_i, equation(a), equation(b), equation(x_i)])
    if abs(equation(x_i)) <= epsilon:</pre>
        print("Метод хорд завершен после", iterations+1, "итераций.")
        print("Приближенное значение корня:", x_i)
        print(tabulate(table, headers="firstrow", tablefmt="fancy_grid"))
        return x_i
    if np.sign(equation(a)) * np.sign(equation(x_i)) < 0:</pre>
       b = x_i
    else:
       a = x_i
   iterations += 1
```

Метод простых итераций

```
max_abs_derivative = max(abs(derivative(a)), abs(derivative(b)))

lmbda = 1 / max_abs_derivative * ((-1) if (derivative(a) >= 0 and derivative(b) >= 0) else 1)

± tsostanov

def phi(x):
    return x + lmbda * equation(x)

# YCNOBUE CXOMMOCTU

max_phi_derivative = max(abs(derivative_by_definition(phi, a)), abs(derivative_by_definition(phi, b)))

if max_phi_derivative >= 1:
    # print("Merog простой итерации не гарантирует сходимость на данном интервале.")

# return None

pass

iteration_data = []

while True:
    if iterations > max_iterations:
        print("Достигнуто максимальное количество итераций. Решение не найдено.")
        return None

f_x = equation(initial_guess)
        next_x = initial_guess + lmbda * f_x
```

```
iteration_data.append({
    "₩ итерации": iterations,
    "x_i": initial_guess,
    "φ(x_i)": phi(initial_guess),
    "f(x_i)": f_x,
    "|x_i+1 - x_i|": abs(next_x - initial_guess)
})

if abs(next_x - initial_guess) <= epsilon:
    print("Метод завершен после", iterations, "итераций.")
    print("Приближенное значение корня:", next_x)

headers = "keys"
    print(tabulate(iteration_data, headers=headers, tablefmt="fancy_grid"))
    return next_x

initial_guess = next_x
iterations += 1</pre>
```

```
def newton_solver(equation_system, x_quess, y_quess):
    max_iterations = 100
    tolerance = 1e-6
    data = []
    for iteration in range(max_iterations):
        equations = equation_system(x_guess, y_guess)
        if equation_system.__name__ == "first_system":
             jacobi_matrix = np.array([
                 first_jacobi_for_first(x_guess, y_guess),
                 second_jacobi_for_first(x_guess, y_guess)
             ])
        else:
             jacobi_matrix = np.array([
                 first_jacobi_for_second(x_quess, y_quess),
                 second_jacobi_for_second(x_guess, y_guess)
             1)
        deltas = np.linalg.solve(jacobi_matrix, -np.array(equations))
        x_guess += deltas[0]
        y_guess += deltas[1]
     data.append([iteration, x_guess, y_guess, deltas[0], deltas[1]])
     if max(abs(i) for i in deltas) < tolerance:</pre>
        print("Решение найдено:")
        print("x =", x_guess)
        print("y =", y_guess)
        break
 else:
     print("Достигнуто максимальное количество итераций. Решение не найдено.")
 headers = ['Итерация', 'x', 'y', 'Δx', 'Δy']
 print(tabulate(data, headers=headers, tablefmt='pretty'))
```

Результат работы программы

Для нелинейных уравнений:


```
Выберите уравнение для решения:
1. Кубическое уравнение: y = x ** 3 - 3.125 * x ** 2 - 3.5 * x + 2.458
2. Уравнение с тригонометрическими функциями: y = cos(x ** 2) + sin(x)
3. Еще одно уравнение с тригонометрическими функциями: y = sin(x ** 2) + cos(x)
Введите номер уравнения (1, 2 или 3): 1
Выберите источник ввода данных:
1. Ввод с клавиатуры
2. Чтение данных из файла
Выберите источник данных (1 - ввод с клавиатуры, 2 - ввод из файла): 1
Введите начало интервала: -2
Введите конец интервала: -1
Введите начальное приближение к корню (ноль, если начальное приближение не требуется): -2
Введите погрешность вычисления: 0.001
Выбранное уравнение: cubic_equation
Интервал: -2.0 - -1.0
Начальное приближение к корню: -2.0
Погрешность вычисления: 0.001
Производная функции сохраняет знак на интервале, что гарантирует наличие только одного корня.
Выберите метод решения уравнения:
1. Метод Ньютона
2. Метод хорд
3. Метод простых итераций
Введите номер метода (1, 2 или 3): 3
Метод завершен после 9 итераций.
Приближенное значение корня: -1.250772372758154
```

N° итерации	x_i	φ(x_i)	f(x_i)	x_i+1 - x_i
0	-2	-1.47419	-11.042	0.52581
1	-1.47419	-1.36098	-2.37747	0.113213
2	 -1.36098 	-1.30918	-1.08778	0.0517989
3	-1.30918	-1.28252	-0.559832	0.0266587
4	-1.28252	-1.2681	-0.302925	0.014425
5	-1.2681	-1.26009	-0.168052	0.00800246
6	-1.26009	-1.25559	-0.0944738	0.00449875
7	-1.25559	-1.25305	-0.053499	0.00254757
8	-1.25305	-1.2516	-0.0304194	0.00144854
9	-1.2516	-1.25077	-0.0173362	0.000825534

Process finished with exit code $\boldsymbol{\theta}$


```
Выберите систему уравнений:
Первая система уравнений:
/\sin(x + 0.5) - y = 0
Вторая система уравнений:
/\cos(x + 0.5) - y = 0
Введите номер системы (1 или 2): 1
Первая система уравнений:
\cos(y - 2) + x = 0
Выбранная система: first_system
Введите начальное приближение для переменной х: 1
Введите начальное приближение для переменной у: 1
Начальное приближение для х: 1.0
Начальное приближение для у: 1.0
Решение найдено:
x = -0.026657227832235595
y = 0.45586405918632056
```

+	+		+		+	-+
Итераці		X	I у	Δx	Δγ	!
0		-0.4517796878904705	0.8948001540446715	+ -1.4517796878904705	+	-+
1		-0.050564825581120354	0.44895012790288125	0.40121486230935016	-0.44585002614179026	
2		-0.02672389900729022	0.455930216254222	0.023840926573830135	0.006980088351340736	
] 3		-0.026657228399053694	0.4558640596948876	6.667060823652501e-05	-6.615655933439551e-05	
4		-0.026657227832235595	0.45586405918632056	5.668180994383211e-10	-5.085670159279799e-10	

Исходный код: https://github.com/tsostanov/CompMath2.

https://github.com/tsostanov/CompMath2.2

Вывод

В ходе работы были изучены численные методы решения нелинейных уравнений и систем нелинейных уравнений. В результате работы были найдены корни заданных уравнений и систем с использованием различных численных методов, а также были построены графики функций и были написана программа для автоматического нахождения корней в заданной области