Общая информация Срок сдачи: 5 апреля 2022, 08:30 Штраф за опоздание: по 1 баллу за 24 часа задержки. Через 5 дней домашнее задание сгорает. При отправлении ДЗ указывайте фамилию в названии файла Присылать ДЗ необходимо в виде ссылки на свой github репозиторий на почту ml1.sphere@mail.ru с указанием темы в следующем формате: [ML0220, Задание 1] Фамилия Имя. Используйте данный Ipython Notebook при оформлении домашнего задания. Штрафные баллы: 1. Отсутствие фамилии в имени скрипта (скрипт должен называться по аналогии со stroykova_hw1.ipynb) -0.5 баллов 2. Все строчки должны быть выполнены. Нужно, чтобы output команды можно было увидеть уже в git'е. В противном случае -0.5 баллов In [1]: from scipy import stats import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.base import BaseEstimator from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.neighbors import KDTree Задание 1 (1 балл) Реализовать KNN в классе MyKNeighborsClassifier (обязательное условие: точность не ниже sklearn реализации) Разберитесь самостоятельно, какая мера расстояния используется в KNeighborsClassifier дефолтно и реализуйте свой алгоритм именно с этой мерой. Для подсчета расстояний можно использовать функции отсюда In [2]: class MyKNeighborsClassifier(BaseEstimator): def euclidean(self, X_train, X_test): X_train = X_train[:,:, np.newaxis] $dist = (X_{train} - X_{test.T}) ** 2$ dist = np.sqrt(np.sum(dist, axis=1)) return dist def brute(self, X): distances = self.euclidean(self.X_train, X) distances = distances.argpartition(self.K, axis=0)[:self.K, :] values = np.take(self.y_train, distances.T) return stats.mode(values, axis=1)[0].reshape(-1) def kd_tree(self, X): nearest_x_ind = self.tree.query(X, k=self.K, return_distance=False) values = np.take(self.y_train, nearest_x_ind) return stats.mode(values, axis=1)[0].reshape(-1) def __init__(self, n_neighbors, algorithm='brute', $leaf_size = 40,$ self.K = n neighborsself.algorithm name = algorithm if algorithm == 'brute': self.algorithm = self.brute elif algorithm == 'kd_tree': self.algorithm = self.kd_tree self.leaf_size = leaf_size else: assert 0, 'Wrong algorithm\'s name' def fit(self, X, y): $self.X_train = np.array(X)$ $self.y_train = np.array(y)$ if self.algorithm_name == 'kd_tree': self.tree = KDTree(X, leaf_size=self.leaf_size) def predict(self, X): return self.algorithm(X) **IRIS** В библиотеке scikit-learn есть несколько датасетов из коробки. Один из них Ирисы Фишера In [3]: iris = datasets.load_iris() In [4]: X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.1, stratify=iris.target) In [5]: clf = KNeighborsClassifier(n_neighbors=2, algorithm='brute') my_clf = MyKNeighborsClassifier(n_neighbors=2, algorithm='brute') In [6]: clf.fit(X_train, y_train) my_clf.fit(X_train, y_train) In [7]: sklearn_pred = clf.predict(X_test) my_clf_pred = my_clf.predict(X_test) assert abs(accuracy_score(y_test, my_clf_pred) - accuracy_score(y_test, sklearn_pred))<0.005, "Score must be simillar"</pre> Задание 2 (0.5 балла) Давайте попробуем добиться скорости работы на fit, predict сравнимой со sklearn для iris. Допускается замедление не более чем в 2 раза. Для этого используем numpy. In [8]: %time clf.fit(X_train, y_train) CPU times: user 2.01 ms, sys: 187 μ s, total: 2.2 ms Wall time: 7.62 ms Out[8]: KNeighborsClassifier(algorithm='brute', n_neighbors=2) In [9]: %time my_clf.fit(X_train, y_train) CPU times: user 435 μ s, sys: 40 μ s, total: 475 μ s Wall time: 2.26 ms In [10]: %time clf.predict(X_test) CPU times: user 3.57 ms, sys: 0 ns, total: 3.57 ms Wall time: 13.6 ms Out[10]: array([2, 2, 1, 0, 0, 0, 1, 2, 2, 0, 2, 2, 2, 0, 1]) In [11]: %time my_clf.predict(X_test) CPU times: user 1.57 ms, sys: 0 ns, total: 1.57 ms Wall time: 1.58 ms Out[11]: array([2, 2, 1, 0, 0, 0, 1, 2, 2, 0, 2, 2, 2, 0, 1]) Задание 3 (1 балл) Добавьте algorithm='kd_tree' в реализацию KNN (использовать KDTree из sklearn.neighbors). Необходимо добиться скорости работы на fit, predict сравнимой со sklearn для iris. Допускается замедление не более чем в 2 раза. Для этого используем numpy. Точность не должна уступать значению KNN из sklearn. In [12]: clf = KNeighborsClassifier(n_neighbors=2, algorithm='kd_tree') my_clf = MyKNeighborsClassifier(n_neighbors=2, algorithm='kd_tree') X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.1, stratify=iris.target) In [14]: %time clf.fit(X_train, y_train) CPU times: user 0 ns, sys: 1.88 ms, total: 1.88 ms Wall time: 9.67 ms KNeighborsClassifier(algorithm='kd_tree', n_neighbors=2) Out[14]: In [15]: %time my_clf.fit(X_train, y_train) CPU times: user 879 μ s, sys: 85 μ s, total: 964 μ s Wall time: 2.67 ms In [16]: %time clf.predict(X_test) CPU times: user 3.63 ms, sys: 353 µs, total: 3.98 ms Wall time: 27.4 ms Out[16]: array([2, 1, 1, 0, 1, 0, 1, 2, 2, 2, 0, 2, 0, 0, 1]) %time my_clf.predict(X_test) CPU times: user 3.16 ms, sys: 0 ns, total: 3.16 ms Wall time: 5.32 ms Out[17]: array([2, 1, 1, 0, 1, 0, 1, 2, 2, 2, 0, 2, 0, 0, 1]) In [18]: sklearn_pred = clf.predict(X_test) my_clf_pred = my_clf.predict(X_test) assert abs(accuracy_score(y_test, my_clf_pred) - accuracy_score(y_test, sklearn_pred))<0.005, "Score must be simillar"</pre> Задание 4 (2.5 балла) Рассмотрим новый датасет 20 newsgroups In [19]: newsgroups = fetch_20newsgroups(subset='train', remove=['headers', 'footers', 'quotes']) In [20]: train_size = len(newsgroups['data']) data = newsgroups['data'] target = newsgroups['target'] Преобразуйте текстовые данные из data с помощью CountVectorizer. Словарь можно ограничить по частотности. In [21]: $max_features = 100$ vectorizer = CountVectorizer(max_features=max_features, stop_words='english', max_df=0.06) X_train = vectorizer.fit_transform(data).toarray() y_train = np.asarray(target) Так мы получили векторное представление наших текстов. Значит можно приступать к задаче обучения модели Реализуйте разбиение выборки для кросс-валидации на 3 фолдах. Разрешено использовать sklearn.cross_validation In [22]: folds = 3#тестовые фолды split_X = np.array_split(X_train, folds) split_y = np.array_split(y_train, folds) #трэйновые фолды Xtrain = [np.concatenate([split_X[j] for j in range(folds) if j != i]) for i in range(folds)] ytrain = [np.concatenate([split_y[j] for j in range(folds) if j != i]) for i in range(folds)] Напишите метод, позволяющий найти оптимальное количество ближайших соседей(дающее максимальную точность в среднем на валидации на 3 фолдах). Постройте график зависимости средней точности от количества соседей. Можно рассмотреть число соседей от 1 до 10. (было рассмотрено от 1 до 100, т. к. при числе соседей до 10 точность сильно меньше, чем при больших значениях.) In [23]: K_min = 1 #Минимальное число соседей, которое будет проверяться K = 100 #Сколько вариантов будет проверяться K_step = 1 #Шаг, с которым будет проверяться число соседей k_range = range(K_min, K_min+K*K_step, K_step) #Числа соседей, которые будут проверяться def optimal(split_X, split_y, folds): scores = np.zeros(K) for k in k_range: print(k, end=' ') #печатает, на каком этапе выполнение функции my_clf = MyKNeighborsClassifier(n_neighbors=k, algorithm='kd_tree') for i in range(folds): my_clf.fit(Xtrain[i], ytrain[i]) my_clf_pred = my_clf.predict(split_X[i]) score += accuracy_score(split_y[i], my_clf_pred) scores[(k-K_min) // K_step] = score / folds print("") return scores Метрика евклидова, векторизация с помощью CountVectorizer: In [24]: accuracy = optimal(split_X, split_y, folds) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 In [25]: plt.plot(k_range, accuracy) print("Лучшая точность: ", accuracy.max(), "\nЧисло соседей: ", accuracy.argmax()*K_step+K_min) Лучшая точность: 0.24845376320319187 Число соседей: 46 0.25 0.24 0.23 0.22 0.21 0.20 100 Как изменится качество на валидации, если: 1. Используется косинусная метрика вместо евклидовой. 2. К текстам применяется Tfldf векторизацию(sklearn.feature_extraction.text.TfidfVectorizer) Сравните модели, выберите лучшую. #Далее все рассчёты быдут проводиться только для 46 соседей $K_{min} = 46$ K = 1 $K_step = 1$ k_range = range(K_min, K_min+K*K_step, K_step) Метрика косинусная, векторизация с помощью CountVectorizer: In [27]: $X_{train} = X_{train} / (np.sqrt((X_{train} ** 2).sum(axis=1))[:, np.newaxis] + 0.00001)$ #нормировка векторов split_X = np.array_split(X_train, folds) Xtrain = [np.concatenate([split_X[j] for j in range(folds) if j != i]) for i in range(folds)] accuracy_cos = optimal(split_X, split_y, folds) In [28]: #plt.plot(k_range, accuracy_cos) print("Точность: ", accuracy_cos.max(), "Число соседей: ", accuracy_cos.argmax()*K_step+K_min) Точность: 0.2605618973245524 Число соседей: 46 Метрика евклидова, векторизация с помощью TfidfVectorizer: In [29]: tfidf_vectorizer = TfidfVectorizer(max_features=max_features, stop_words='english', max_df=0.06) In [30]: X_train = tfidf_vectorizer.fit_transform(data).toarray() split_X = np.array_split(X_train, folds) accuracy_tfidf = optimal(split_X, split_y, folds) 46 In [31]: #plt.plot(k_range, accuracy_tfidf) print("Точность: ", accuracy_tfidf.max(), "Число соседей: ", accuracy_tfidf.argmax()*K_step+K_min) Точность: 0.2644511344459714 Число соседей: 46 Метрика косинусная, векторизация с помощью TfidfVectorizer: In [32]: X_train = X_train / (np.sqrt((X_train ** 2).sum(axis=1))[:, np.newaxis] + 0.00001) #нормировка векторов split_X = np.array_split(X_train, folds) Xtrain = [np.concatenate([split_X[j] for j in range(folds) if j != i]) for i in range(folds)] accuracy_tfidf_cos = optimal(split_X, split_y, folds) In [33]: #plt.plot(k_range, accuracy_tfidf_cos) print("Точность: ", accuracy_tfidf_cos.max(), "Число соседей: ", accuracy_tfidf_cos.argmax()*K_step+K_min) Точность: 0.26445101727486436 Число соседей: 46 Итог: Лучше всего работает Tfldf векторизация, метрика особо ни на что не влияет, формально точнее была евклидова метрика. Число соседей 46. Загрузим теперь test часть нашей выборки и преобразуем её аналогично с train частью. Не забудьте, что наборы слов в train и test части могут отличаться. In [34]: newsgroups = fetch_20newsgroups(subset='test', remove=['headers', 'footers', 'quotes']) Оценим точность вашей лучшей модели на test части датасета. Отличается ли оно от кросс-валидации? Попробуйте сделать выводы, почему отличается качество. In [35]: test_size = len(newsgroups['data']) data_test = newsgroups['data'] target_test = newsgroups['target'] #объединение словарей data_all = data + data_test target_all = np.concatenate((target, target_test)) X = tfidf_vectorizer.fit_transform(data_all).toarray() X_test = X[train_size:train_size+test_size, :] $\#X_{test} = X_{test} / (np.sqrt((X_{test} ** 2).sum(axis=1))[:, np.newaxis] + 0.00001)$ v test = np.asarray(target test) X_train = X[:train_size, :] y_train = target[:train_size] $\#X_{train} = X_{train} / (np.sqrt((X_{train} ** 2).sum(axis=1))[:, np.newaxis] + 0.00001)$ my_clf = MyKNeighborsClassifier(n_neighbors=46, algorithm='kd_tree') my_clf.fit(X_train, y_train) my_clf_pred = my_clf.predict(X_test) print("Точность на тестовой выборке: ", accuracy_score(y_test, my_clf_pred)) Точность на тестовой выборке: 0.24362719065321295 Точность чуть меньше (была 0.265). Но, во-первых, на разных выборка всегда будут разные результаты, во-вторых, при добавлении тестовой выборки был изменён словарь, а при достаточно скудной возможности выбора максимального числа слов, это тоже влияет на погрешность измерений. In [36]: scores = np.zeros(folds) split_X = np.array_split(X_train, folds) split_y = np.array_split(y_train, folds) #трэйновые фолды Xtrain = [np.concatenate([split_X[j] for j in range(folds) if j != i]) for i in range(folds)] ytrain = [np.concatenate([split_y[j] for j in range(folds) if j != i]) for i in range(folds)] for i in range(folds): my_clf.fit(Xtrain[i], ytrain[i]) my_clf_pred = my_clf.predict(split_X[i]) scores[i] = accuracy_score(split_y[i], my_clf_pred) In [37] print(f"Точности на 1-ом, 2-ом и 3-м фолдах: {scores}") Точности на 1-ом, 2-ом и 3-м фолдах: [0.25795334 0.24635375 0.2543092]