[320] Classification

Department of Computer Sciences University of Wisconsin-Madison

Machine Learning

Regression Supervised Machine Learning predict a quantity data is labeled, we know what we want to predict Classification predict a category Clustering *Unsupervised Machine Learning place rows in groups data is **unlabeled**, we're just looking for patterns Decomposition represent rows as combos of "component" rows

this semester, we'll learn at least one technique in each of these four categories

I. Regression (Supervised)

	x0	x1	x2	х3	x4	y (label)
0	37	green	40	triangle	68	5
1	50	green	7	circle	79	25
2	56	red	5	circl	fit	44
3	89	blue	85	triangle	88	72
4	36	blue	52	square	14	59
5	53	green	67	triangle	55	????
6	47	blue	9	triangle	27	????
7	50	blue	20	circ p	redict	????
8	36	green	66	circle		????
9	27	red	16	circle	9	????

problem: can we predict an unknown quantity?

2. Classification (Supervised)

	x0	х1	x2	х3	x4	y (label)
0	37	green	40	triangle	68	orange
1	50	green	7	circle	79	pear
2	56	red	5	circl	fit	pear
3	89	blue	85	triangle	38	apple
4	36	blue	52	square	14	pear
5	53	green	67	triangle	55	????
6	47	blue	9	triangle	27	????
7	50	blue	20	circ p	redict	????
8	36	green	66	circle		????
9	27	red	16	circle	9	????

problem: can we predict an unknown category?

I. Regression (Supervised)

+

2. Classification (Supervised)

```
linear_model.LogisticRegression([penalty, ...])
linear_model.LogisticRegressionCV(*[, Cs, ...])
linear_model.PassiveAggressiveClassifier(*)
linear_model.Perceptron(*[, penalty, alpha, ...])
linear_model.RidgeClassifier([alpha, ...])
linear_model.RidgeClassifierCV([alphas, ...])
linear_model.SGDClassifier([loss, penalty, ...])
linear_model.Ridge([alpha, fit_intercept, ...])
linear_model.RidgeCV([alphas, ...])
linear_model.RidgeCV([alphas, ...])
linear_model.SGDRegressor([loss, penalty, ...])
```

```
svm.LinearSVC([penalty, loss, dual, tol, C, ...]) |
svm.LinearSVR(*[, epsilon, tol, C, loss, ...])
```

```
tree.DecisionTreeClassifier
tree.DecisionTreeRegressor
tree.ExtraTreeClassifier
tree.ExtraTreeRegressor
```

```
neighbors.KNeighborsClassifier([...])
neighbors.KNeighborsRegressor([n_neighbors, ...])
```

3. Clustering (Unsupervised)

```
cluster.AffinityPropagation(*[, damping, ...])
cluster.AgglomerativeClustering([...])
cluster.DBSCAN([eps, min_samples, metric, ...])
cluster.FeatureAgglomeration([n_clusters, ...])
cluster.KMeans([n_clusters, init, n_init, ...])
cluster.MiniBatchKMeans([n_clusters, init, ...])
cluster.MeanShift(*[, bandwidth, seeds, ...])
cluster.OPTICS(*[, min_samples, max_eps, ...])
cluster.SpectralClustering([n_clusters, ...])
cluster.SpectralCoclustering([n_clusters, ...])
```

4. Decomposition (Unsupervised)

```
decomposition.DictionaryLearning([...])
decomposition.FactorAnalysis([n_components, ...])
decomposition.FastICA([n_components, ...])
decomposition.IncrementalPCA([n_components, ...])
decomposition.KernelPCA([n_components, ...])
decomposition.LatentDirichletAllocation([...])
decomposition.MiniBatchDictionaryLearning([...])
decomposition.MiniBatchSparsePCA([...])
decomposition.NME([n_components, init, ...])
decomposition.PCA([n_components, copy, ...])
decomposition.SparsePCA([n_components, ...])
decomposition.TruncatedSVD([n_components, ...])
```

scikit-learn machine learning modules: https://scikit-learn.org/stable/modules/classes.html

I. Regression (Supervised)

+

2. Classification (Supervised)

```
LogisticRegression is a
  linear_model.LogisticRegression([penalty, ...])
                                                                    classifier (today)
  linear_model.LogisticRegressionCV(*[, Cs, ...])
  linear_model.PassiveAggressiveClassifier(*)
  linear_model.Perceptron(*[, penalty, alpha, ...])
  linear_model.RidgeClassifier([alpha, ...])
  linear_model.RidgeClassifierCV([alphas, ...])
  linear_model.SGDClassifier([loss, penalty, ...])
                                                                     LinearRegression is a
  linear_model.LinearRegression(*[, ...])
                                                              regressor (learned previously)
   linear_model.Ridge([alpha, fit_intercept, ...])
  linear_model.RidgeCV([alphas, ...])
  linear_model.SGDRegressor([loss, penalty, ...])
  svm.LinearSVC([penalty, loss, dual, tol, C, ...])
  svm.LinearSVR(*[, epsilon, tol, C, loss, ...])
       tree.DecisionTreeClassifier
       tree.DecisionTreeRegressor
       tree.ExtraTreeClassifier
       tree.ExtraTreeRegressor
neighbors.KNeighborsClassifier([...])
neighbors.KNeighborsRegressor([n_neighbors, ...])
```

scikit-learn machine learning modules: https://scikit-learn.org/stable/modules/classes.html