Przedmiot: Sterowanie Procesami Dyskretnymi - laboratorium

Imię i nazwisko: Igor Jewiarz 263478

Termin zajęć: środa 18:55 Data oddania: 17.04.2023

Projekt 4: Algorytm Schrage z i bez podziału zadań

1 Opis problemu

Problem dotycz omawianego już zagadnienia RPQ ($1|r_i,q_i|C_{max}$). Każde zadanie ma trzy parametry: czas dostarczenia, czas trwania oraz czas stygnięcia. Rozwiązaniem problemu jest znalezienie taiej permutacji zadań, dzięki której otrzyma się jak najmniejszy całkowity czas skończenia wszystkich zadań.

$$(r_i, p_i, q_i)$$

- r_i czas dostarczenia
- p_i czas trwania
- \bullet q_i czas stygnięcia

2 Algorytm Schrage

2.1 Bez wywłaszczeń

Algorytm Schrege jest jednym z algorytmów, rozwiązujący problem. Używa on dwóch zbiorów:

- Zbiór N znajdują się w nim nieuszeregowane jeszcze zadania
- zbiór G znajdują się w nim dostarczone (gotowe do realizacji) zadania

Algorytm wyznacza z puli dostępnych zadań te o największym czasie stygnięcia i podaje je na maszynę. Proces powtarza się aż do przejścia wszystkich zadań przez maszynę.

1.
$$t = 0, k = 0, C_{\text{max}} = 0, G = \emptyset, N = \{1, 2, ..., n\},$$

- 2. Dopóki $((G \neq \emptyset) \text{ lub } (N \neq \emptyset))$ wykonaj
- 3. **Dopóki** $((N \neq \emptyset) \text{ oraz } (\min_{j \in N} r_j \leq t))$ wykonaj

4.
$$e = \underset{j \in N}{\operatorname{arg\,min}} r_j, G = G \cup \{e\}, N=N \setminus \{e\}.$$

- 5. Jeżeli $G=\emptyset$ wykonaj
- 6. $t = \min_{j \in N} r_j, \mathbf{id} \mathbf{\acute{z}} \mathbf{do} 3.$
- 7. $e = \underset{j \in G}{\operatorname{arg\,max}} q_j, G = G \setminus \{e\},$
- 8. $k=k+1, \pi(k)=e, t=t+p_e, C_{\max}=\max(C_{\max},t+q_e)$

Rysunek 1: Pseudoko bez wywłaszczeń

Gdzie:

- \bullet π permutacja wykonania zadań na maszynie
- C_{max} całkowity czas trwania zadań
- \bullet t czas
- k pozycja w permutacji π
- N zbiór zadań nieuszeregowanych
- \bullet G zbiór zadań gotowych do realizacji

2.2 Z wywałaszczeniami

Ten wariant algorytmu korzysta z wywałaszczeń. W momencie, w którym pojawia się zadanie gotowe do realizacji z większym czasem stygięcia q_i , zadanie jest przerywane i zwracane do zbioru zadań gotowych z odpowiednio mniejszym czasem wykonywania. Następnie wykonywane jest dostarczone zadanie z większym priorytetem.

1.
$$t = 0$$
, $C_{\text{max}} = 0$, $G = \emptyset$, $N = \{1, 2, ..., n\}$, $l = 0$, $q_0 = \infty$.

- 2. Dopóki $((G \neq \emptyset) \text{ lub } (N \neq \emptyset))$ wykonaj
- 3. **Dopóki** $((N \neq \emptyset) \text{ oraz } (\min_{i \in N} r_j \leq t))$ wykonaj

4.
$$e = \underset{j \in \mathbb{N}}{\operatorname{arg\,min}} r_j, \ G = G \cup \{e\}, \ N=N \setminus \{e\},$$

5. **jeżeli**
$$q_e > q_l$$
 to $p_l = t - r_e$, $t = r_e$, **jeżeli** $p_l > 0$ to $G = G \cup \{l\}$.

7.
$$t = \min_{j \in \mathbb{N}} r_j, \mathbf{id} \mathbf{\acute{z}} \mathbf{do} 3.$$

8.
$$e = \underset{j \in G}{\operatorname{arg\,max}} q_j, G = G \setminus \{e\},$$

9.
$$l=e, t=t+p_e, C_{\max} = \max(C_{\max}, t+q_e).$$

Rysunek 2: Pseudoko z wywłaszczeniami

Gdzie dodatkowo:

- l = 0 zadanie zerowe
- $\bullet \ q_o = \infty$ czas stygnięcia zadania zerowego zapobiega przerwaniu pierwszego zadania przez algorytm

3 Wnioski

- 1. Algorytm Schrage z wywłaszczeniami daje lepsze wyniki niż bez wywłaszczeń.
- 2. Modyfikacja podstawowego Algorytmu Schrage'a w celu dodania podziału zadań nie sprawia większych problemów. Powinna być więc stosowana w przypadkach, w których zadania mogą być przerwane.