Questions de cours.

- 1. Énoncer et démontrer la formule de dérivation d'une composée de deux fonctions dérivables.
- 2. Énoncer et démontrer le théorème de Rolle.
- 3. Énoncer et démontrer la caractérisation des fonctions monotones parmi les fonctions dérivables.

1 Dérivation

Exercice 1.1 (*). Soit $f : \mathbb{R} \to \mathbb{R}$ une application dérivable strictement croissante et bijective. L'application f^{-1} est-elle nécessairement dérivable? Sinon, quelle hypothèse supplémentaire faut-il ajouter?

Exercice 1.2 (*). Étudier la régularité de :

$$f_{\alpha}: x \in \mathbb{R} \longmapsto \begin{cases} x^{\alpha} \sin\left(\frac{1}{x}\right) & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$$

pour $\alpha \in \mathbb{N}$.

Exercice 1.3 (\star). Vrai ou faux?

- 1. Une fonction dérivable strictement décroissante sur \mathbb{R} a une dérivée strictement négative.
- 2. Si une fonction n'est pas dérivable en un point a, alors elle n'est pas continue en a.
- **3.** Si une fonction f définie sur \mathbb{R} présente un extremum local en un point a t.q. f est dérivable en a, alors f'(a) = 0.
- 4. Une fonction dérivable sur un segment est lipschitzienne.

Exercice 1.4 (*). Par application du théorème des accroissements finis à ln sur [n, n+1], montrer que la suite $\left(\sum_{k=1}^{n} \frac{1}{k}\right)_{n \in \mathbb{N}^*}$ tend vers $+\infty$ et donner une estimation du comportement asymptotique de cette suite.

Exercice 1.5 (*). Soit $f:[0,1] \to \mathbb{R}$ continue sur [0,1] et dérivable en 0 t.q. f(0) = 0. Montrer l'existence de $k \in \mathbb{R}_+$ t.q. $\forall x \in [0,1], |f(x)| \leq kx$.

Exercice 1.6 (*). Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ dérivable. On suppose que f' est décroissante.

- 1. Montrer que $\forall x \in]1, +\infty[$, $f(x+1) f(x) \leqslant f'(x) \leqslant f(x) f(x-1)$.
- **2.** Montrer que si f a une limite finie en $+\infty$ alors $f'(x) \xrightarrow[x \to +\infty]{} 0$.
- 3. La réciproque du 2. est-elle vraie?
- **4.** Le **2.** reste-t-il vrai sans l'hypothèse f' décroissante ?

Exercice 1.7 (*). Soit $f:]a, b[\to \mathbb{R}$ une fonction n fois dérivable et s'annulant en (n+1) points de]a, b[. Montrer que $f^{(n)}$ s'annule sur]a, b[.

Exercice 1.8 (*). Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue et dérivable t.q. $\lim_{+\infty} f = f(0)$. Montrer qu'il existe $c \in \mathbb{R}_+^*$ t.q. f'(c) = 0.

Exercice 1.9 (*). Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable t.g. $ff' \ge 0$. Montrer que $f^{-1}(\mathbb{R}^*)$ est un intervalle.

Exercice 1.10 (\star). On considère :

$$f: x \in \mathbb{R} \longmapsto \begin{cases} \exp\left(-\frac{1}{x^2}\right) & si \ x > 0 \\ 0 & si \ x \leqslant 0 \end{cases}.$$

1. Tracer (sommairement) la courbe représentative de f.

2. Montrer que pour tout $n \in \mathbb{N}$, il existe une fonction polynomiale $P_n : \mathbb{R} \to \mathbb{R}$ et un $\alpha_n \in \mathbb{N}$ t.q.

$$\forall x \in \mathbb{R}^*, \ f^{(n)}(x) = \frac{P_n(x)}{x^{\alpha_n}} f(x).$$

3. En déduire que f est C^{∞} sur \mathbb{R} .

Exercice 1.11 (\star) . Soit $f:[a,b] \to \mathbb{R}$ une fonction C^2 . Montrer l'existence de $c \in]a,b[$ t.q.

$$\frac{f(a) + f(b)}{2} = f\left(\frac{a+b}{2}\right) + \frac{(b-a)^2}{8}f''(c).$$

Exercice 1.12 (\star) . Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable t.q. $f^2 + (1+f')^2 \leqslant 1$. Montrer que f = 0.

Exercice 1.13 (\star) . Soit $f: \mathbb{R}_+ \to \mathbb{R}_+^*$ une fonction deux fois dérivable t.q. il existe $\alpha \in \mathbb{R}_+^*$ t.q. $\alpha f \leqslant f''$.

- **1.** Montrer que f' a une limite en $+\infty$ et déterminer cette limite.
- **2.** Montrer que f est décroissante et que $\lim_{+\infty} f = 0$.
- **3.** Soit $g: x \in \mathbb{R}_+ \longmapsto \alpha f^2(x) f'^2(x)$. Montrer que g est croissante et que $\lim_{\infty} g = 0$.
- **4.** En posant $h: x \in \mathbb{R}_+ \longmapsto f(x) \exp(\sqrt{\alpha}x)$, montrer que $\forall x \in \mathbb{R}_+, f(x) \leqslant f(0) \exp(-\sqrt{\alpha}x)$.

Exercice 1.14 (\star) . Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 et vérifiant :

$$\forall x \in \mathbb{R}, \ f(x)f'(x)f''(x) = 0.$$

Exercice 1.15 (Théorème de Darboux, \star). Soit I un intervalle et $f: I \to \mathbb{R}$ une fonction dérivable. On cherche à montrer que pour tout intervalle $J \subset I$, f'(J) est un intervalle.

- 1. Sous l'hypothèse $f C^1$, de quel théorème découle le résultat?
- 2. Montrer le résultat dans le cas général.

Exercice 1.16 (*). Soit I un intervalle de \mathbb{R} , $f:I\to\mathbb{R}$ une fonction dérivable. Montrer l'équivalence des propriétés suivantes :

- (i) f est strictement croissante sur I.
- (ii) L'ensemble $\{x \in I, f'(x) > 0\}$ est dense dans I.