Sequences

Convergence

For $(x_n) \in \mathbb{R}$. $x_n \to a \in \mathbb{R}$ if $\forall \varepsilon > 0$ $\exists N \in \mathbb{N}$ such that

$$n \ge N \implies |x_n - a| < \varepsilon.$$

- Every convergent sequence is bounded.

Cauchy Convergence

 $(x_n) \in \mathbb{R}$ is Cauchy if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ such that

$$|x_n - x_m| < \varepsilon$$
 for all $n, m \ge N$.

Cauchy Theorem

 (x_n) is Cauchy \iff (x_n) is convergent.

Triangle Inequality

$$|x + y| \le |x| + |y|$$

 $|x - y| \ge ||x| - |y||$
 $|x - y| \le |x - z| + |y - z|$

Subsequences

A subsequence of (x_n) is a sequence $(x_{n_k})_{k\in\mathbb{N}}$ which is a selection of some (possibly all) of the x_n 's taken in order.

Bolzano-Weierstrass

Every bounded $(x_n) \in \mathbb{R}$ has a convergent subsequence.

limsup liminf

If $(x_n) \in \mathbb{R}$ is bounded:

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left(\sup_{k \ge n} x_k \right),$$
$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left(\inf_{k > n} x_k \right).$$

also

$$\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = L \implies (x_n) \to L$$

Monotone Convergence Theorem

For $(x_n) \in \mathbb{R}$

monotone increasing and bounded above: $\implies \lim_{n\to\infty} x_n = \sup_{n\geq 1} x_n$ monotone decreasing and bounded below:

Series

Let $S = \sum_{k=1}^{\infty} a_k$, the partial sum is

 $\implies \lim_{n\to\infty} x_n = \inf_{n>1} x_n$

$$s_n = \sum_{k=1}^n a_k.$$

S converges if and only if (s_n) converges where

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n$$

S is absolutely convergent if $\sum_{k=1}^{\infty} |a_k|$ is convergent, otherwise S is just conditionally convergent.

Cauchy criterion for series

Let $S = \sum_{k=1}^{\infty} a_k$.

S is convergent if and only if $\forall \varepsilon > 0, \exists N$

$$m \ge n \ge N \implies \left| \sum_{k=n+1}^{m} a_k \right| < \varepsilon$$

Absolute Convergence

Let $S = \sum_{k=1}^{\infty} a_k$ be absolutely convergent:

- (a) The series S is convergent.
- (b) (Rearrangement) Let $z: \mathbb{N} \to \mathbb{N}$ be a bijection. Then the series $\sum_{k=1}^{\infty} a_{z(k)}$ is convergent and

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_{z(k)}$$

Conditional Convergence

Let $S = \sum_{k=1}^{\infty} a_k$ be conditionally convergent. There exist rearrangements $z : \mathbb{N} \to \mathbb{N}$ (where z is a bijection) such that for $S_z = \sum_{k=1}^{\infty} a_{z(k)}$

- (a) $S_z = r \in \mathbb{R}$ for any r.
- (b) S_z diverges to $+\infty$.
- (c) S_z diverges to $-\infty$.
- (d) The partial sums of S_z oscillate between any two real numbers.

Ratio Test

Let $S = (r_n)$. S converges if and only if

$$\lim_{n \to \infty} |a_{n+1}/a_n| < 1$$

Continuous Functions

Continuity

For $D = dom(f) \subset \mathbb{R}$ let $f : D \to \mathbb{R}$. f is continuous at $a \in D$ if and only if

 $\exists (x_n) \in D \text{ such that }$

$$\lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = f(a)$$

 $\forall \varepsilon > 0, \, \exists \delta > 0 \text{ such that}$

$$|x-a| < \delta \implies |f(x) - f(a)| < \epsilon$$

Uniform Continuity

Let $I \subset \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$. f is uniformly continuous on I if $\forall \epsilon > 0$, $\exists \delta > 0$ such that for $x, y \in I$

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

Prooving Uniform Continuity

- Any f defined on a closed interval is uniformly continuous if it is continuous.
- If I is an open interval, f is differentiable on I and f' is bounded, then f is uniformly continuous.
- If I is any interval, f is uniformly continuous on I if and only if whenever $s_n, t_n \in I$ are such that $|s_n t_n| \to 0$, then $|f(s_n) f(t_n)| \to 0$.

Combining Continuous Functions

Let $f, g: D \to \mathbb{R}$ be continuous on D, and let $\alpha \in \mathbb{R}$ then αf , f + g, fg, $f \circ g$ are continuous on D.

Mean Value Theorem

If f is continuous on [a,b] and differentiable on (a,b), then $\exists c \in (a,b)$ such that

$$(b-a)f'(c) = f(b) - f(a)$$

Intermediate Value Theorem

Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b].

$$f(a)f(b) < 0 \implies \exists c \in (a,b) : f(c) = 0$$

Extreme value theorem

Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b]. f is bounded on [a,b] and $\exists c,d \in [a,b]$ such that

$$f(c) = \inf_{x} f(x)$$

$$f(d) = \sup_{x} f(x)$$

Sequences of Functions

Pointwise Convergence

Let E be a nonempty subset of \mathbb{R} . $f_n: E \to \mathbb{R}$ converges pointwise on E if and only if $\forall \epsilon > 0$, some $x \in E$ and $\exists N \in \mathbb{N}$ such that

$$n \ge N \implies |f_n(x) - f(x)| < \epsilon.$$

The limit function does not have to be the same for all x.

If f_n is continuous/differentiable/integrable the pointwise limit is not necessarily continuous/differentiable/integrable.

Uniform Convergence

Let E be a nonempty subset of \mathbb{R} . $f_n: E \to \mathbb{R}$ converges uniformly on E to a function f if and only if $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that

$$n > N \implies |f_n(x) - f(x)| < \varepsilon$$

for all $x \in E$. f(x) is the same for all x. Equivalently

- $\sup_{x \in E} |f_n(x) f(x)| \to 0$ as $n \to \infty$.
- There exists a sequence $a_n \to 0$ such that $|f_n(x) f(x)| \le a_n$ for all $x \in E$.
- If f is uniformly convergent only for $x \in [a,b]$, we can write $\mathbb{R} = \bigcup_{n=1}^{\infty} [-n,n]$ and we have that f is pointwise convergent on \mathbb{R} .

Unif. Conv. \implies Continuity

If $f_n \to f$ uniformly on E and each f_n is continuous at some $x_0 \in E$, then f is continuous at x_0 .

Unif. Conv. \Longrightarrow Integrable Limits Suppose that $f_n \to f$ uniformly on a closed interval [a, b]. If each f_n is integrable on [a, b], then so is f and

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \left(\lim_{n \to \infty} f_n(x) \right) dx.$$

$$\int_{a}^{x} f_n(t)dt \to \int_{a}^{x} f(t)dt$$

uniformly for $x \in [a, b]$.

Unif. Conv. and Derivative of Limit Let each f_n converge at some $x_0 \in (a, b)$ and be differentiable on (a, b).

If f'_n converges uniformly on (a,b) then f_n converges uniformly on (a, b) and

$$\lim_{n \to \infty} f'_n(x) = \left(\lim_{n \to \infty} f_n(x)\right)'$$

for each $x \in (a, b)$.

Series of Functions

Convergence of Series of Functions

Let f_k be a sequence of real functions defined on some set E

$$s_n(x) = \sum_{k=1}^n f_k(x), \quad x \in E, n \in \mathbb{N}.$$

- 1. The series $\sum_{k=1}^{\infty} f_k$ is said to converge pointwise if and only if the sequence $s_n(x)$ converges pointwise on E
- 2. The series $\sum_{k=1}^{\infty} f_k$ is said to converge uniformly if and only if the sequence $s_n(x)$ converges uniformly on E
- 3. The series $\sum_{k=1}^{\infty} f_k$ is said to converge absolutely (pointwise) on E if and only if $\sum_{k=1}^{\infty} |f_k(x)|$ converges for each $x \in E$.

Continuity of Limits of Series

Suppose that $x_0 \in E$ and that each f_k is continuous at $x_0 \in E$.

If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on E, then f is continuous at $x_0 \in E$.

Term-by-term Integration

If f_k is integrable on a closed interval [a, b]and $f = \sum_{k=1}^{\infty} f_k$ converges uniformly (i.e. is continuous) on [a, b],

then f is integrable on [a, b] and

$$\int_a^b \sum_{k=1}^\infty f_k(x) dx = \sum_{k=1}^\infty \int_a^b f_k(x) dx.$$

Term-by-term Differentiation

Suppose that E is and open interval. If:

- each f_k is differentiable on E.
- $\sum_{k=1}^{\infty} f_k(x_0)$ converges at some $x_0 \in E$, $-g = \sum_{k=1}^{\infty} f'_k$ converges uniformly on E, then $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on E, is differentiable on E, and

$$f'(x) = \left(\sum_{k=1}^{\infty} f_k(x)\right)' = \sum_{k=1}^{\infty} f'_k(x) = g(x)$$

for $x \in E$.

Weierstrass M-Test

Let E be a nonempty subset of \mathbb{R} and $f_k: E \to \mathbb{R}$.

$$\sum_{k=1}^{\infty} M_k < \infty \text{ and } |f_k(x)| \le M_k$$

Then $f = \sum_{k=1}^{\infty} f_k$ converges absolutely and uniformly on E.

Power Series

Let $(a_n) \in \mathbb{R}$ and $c \in \mathbb{R}$.

$$\sum_{n=0}^{\infty} a_n (x-c)^n$$

is a power series.

Often c = 0. The series will always converge to x when x = c.

Radius of Convergence

The radius of convergence, R, determines the interval around c where the power series converges.

Power series converge absolutely within R, but convergence at the boundary points $(c \pm R)$ must be checked separately.

To calculate R:

- Ratio Test:

- Ratio Test:
$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

The radius of convergence is $R = \frac{1}{L}$. If L = 0, the radius is infinite (the series converges everywhere). If $L=\infty$, the radius is zero (it converges only at c).

- Root Test:

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/r}}$$

 $R = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}$ A special case of a power series is the geometric series, where c=0 and $a_n=r^n$. It converges when |r| < 1 and

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

Continuity of Power Series

Let R > 0 and 0 < r < R.

A power series converges uniformly and absolutely on $|x-c| \leq r$ to a continuous function f. Hence

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

Is continuous on (c-R, c+R).

Differentiability of Power Series

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

is infinitely differentiable on |x - c| < R, and for such x,

$$f'(x) = \sum_{n=0}^{\infty} na_n (x-c)^{n-1}$$

The series converges absolutely and uniformly on [c - r, c + r] for any r < R. Moreover

$$a_n = \frac{f^{(n)}(c)}{n!}.$$

f'(x) has the same R as f(x).

Step Functions

 $\phi: \mathbb{R} \to \mathbb{R}$ is a step function if there exist real numbers $x_0 < x_1 < \cdots < x_n$ such that

$$\phi(x) = \sum_{j=1}^{n} c_j \chi_{(x_{j-1}, x_j)}(x)$$

$$\int \phi := \sum_{j=1}^{n} c_j (x_j - x_{j-1}).$$

Lebesgue Integrals

A function $f: I \to \mathbb{R}$ is Lebesgue integrable on an interval I if there exist numbers c_i and bounded intervals such that

$$\sum_{j=1}^{\infty} |c_j| \, \lambda \left(J_j \right) < \infty$$

(i.e. the sum is absolutely convergent)

$$f(x) = \sum_{j=1}^{\infty} c_j \chi_{J_j}(x)$$

for all $x \in I$ at which

$$\sum_{j=1}^{\infty} |c_j| \, \chi_{J_j}(x) < \infty$$

We denote by $\int_I f$ the number

$$\int_{I} f = \sum_{j=1}^{\infty} c_{j} \lambda \left(J_{j} \right)$$

Prooving Integrability

- f is continuous on $[a,b] \implies f$ is integrable on [a, b].
- g is integrable on $[0, \infty)$ if and only if g is integrable on [0,v) for all $v<\infty$ and

$$\sup_{v>0} \int_0^v |g(x)| dx < \infty$$

 \bullet f be a measurable function on I and assume that $|f(x)| \leq g(x)$ for almost every $x \in I$, where g is an integrable function on I. Then f is integrable on I.

Properties of Lebesgue Integral

Suppose f and g are Lebesgue integrable on I and $\alpha, \beta \in \mathbb{R}$

(a) $\alpha f + \beta g$ is integrable on I and

$$\int_{I} (\alpha f + \beta g) = \alpha \int_{I} f + \beta \int_{I} g.$$

- (b) If $f \geq 0$ on I then $\int_I f \geq 0$; if $f \geq g$ on I then $\int_I f \geq \int_I g$.
- (c) |f| is integrable on I and $|\int_I f| \le$
- (d) $\max\{f,g\}$ and $\min\{f,g\}$ are integrable
- (e) If one of the functions is bounded then the product fg is integrable on I.
- (f) If $f \geq 0$ with $\int_I f = 0$ then any function h such that $0 \le h \le f$ on I is integrable on I.

Integration on a Sub-Interval

Let I and J be two intervals such that

(a) If f is integrable on I then f is also

integrable on the subinterval J.

(b) If f is integrable on J and simultaneously f(x) = 0 for all $x \in I \setminus J$ then f is integrable on I and

$$\int_{J} f = \int_{I} f$$

(c) If f is integrable on I and $f(x) \geq 0$ for all $x \in I$ then

$$\int_{J} f \le \int_{I} f.$$

(d) Suppose that I can be written as the union of disjoint intervals $I_n, n =$ $1, 2, 3, \ldots$ and let f be integrable on each of the intervals I_n . Then f is integrable on I if and only if

$$\sum_{n=1}^{\infty} \int_{I_n} |f| < \infty.$$

If this holds then

$$\int_{I} f = \sum_{n=1}^{\infty} \int_{I_n} f.$$

Adding Integrals on a Sub-Interval If any two of these integrals

$$\int_{a}^{b} f, \quad \int_{b}^{c} f, \quad \int_{a}^{c} f,$$

exist then so does the third and

$$\int_{a}^{b} f + \int_{b}^{c} f = \int_{a}^{c} f$$

must hold

Integrating Infinite Series

Suppose that $(f_n)_{n\in\mathbb{N}}$ is a sequence of functions each of which is integrable on I. (a) Assume that

$$\sum_{n=1}^{\infty} \int_{I} |f_n| < \infty.$$

Let f be a function on the interval I such that

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$
 for all $x \in I$

such that $\sum_{n=1}^{\infty} |f_n(x)| < \infty$ Then f is integrable on I and its integral on I equals to

$$\int_{I} f = \sum_{n=1}^{\infty} \int_{I} f_{n}$$

(b) Assume that each $f_n \geq 0$ on I and let $f(x) = \sum_{n=1}^{\infty} f_n(x)$ for all $x \in I$ (we allow for the possibility that at some points this sum is infinite). Then f is integrable on Iif and only if

$$\sum_{n=1}^{\infty} \int_{I} f_n < \infty$$

Monotone Convergence Theorem (Integrals)

Suppose that (f_n) is a monotone nondecreasing sequence of integrable functions on an interval I. That is $f_1(x) \leq f_2(x) \leq$ $f_3(x) \leq \dots$ for all $x \in I$. For all $x \in I$ let

$$f(x) = \lim_{n \to \infty} f_n(x),$$

where we allow for the possibility that at some points this limit is infinite. Then fis integrable on I of and only if

$$\sup_{n\in\mathbb{N}}\int_I f_n = \lim_{n\to\infty}\int_I f_n < \infty$$

Also:

$$\int_{I} f = \lim_{n \to \infty} \int_{I} f_n.$$

Fatoux Lemma

Let (f_n) be a sequence of nonnegative integrable functions on an interval I. Let

$$f(x) = \liminf_{n \to \infty} f_n(x)$$
, for all $x \in I$.

If $\liminf_{n\to\infty} \int_I f_n < \infty$ then f is integrable on I and

$$\int_I f \leq \liminf_{n \to \infty} \int_r.$$

Dominated convergence theorem

Let (f_n) be a sequence of on integrable functions on an interval I and assume that

$$f(x) = \lim_{n \to \infty} f_n(x)$$
, for all $x \in I$.

Assume also that the sequence (f_n) is dominated by some integrable function g, that is

$$|f_n(x)| \le g(x)$$
, for all $x \in I$

and
$$n = 1, 2, \dots, \int_{I} g < \infty.$$

Then the function f is integrable on I and

$$\int_{I} f = \lim_{n \to \infty} \int_{I} f_n.$$

Uniform Convegrence and Integrals

Suppose $f_n:(a,b)\to\mathbb{R}$ are integrable and $f_n \to f$ uniformly. Then f is integrable on (a,b) and

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}$$

Riemann Integrals

Let $f:[a,b]\to\mathbb{R}$. f is Riemann-integrable

• $\forall \epsilon > 0$ there exist step functions ϕ and ψ such that

$$\phi \le f \le \psi$$

and

$$\int \psi - \int \phi < \epsilon.$$

• $\forall \epsilon > 0$ there exist $a = x_0 < \cdots < x_n =$ b and $I_j = (x_{j-1}, x_j)$ such that, if M_j and m_j denote the supremum and infimimum values of f on I_i , then

$$\sum_{j=1}^{n} (M_j - m_j) (x_j - x_{j-1}) < \epsilon.$$

equivelently

$$\sum_{j=1}^{n} \sup_{x,y \in I_{j}} |f(x) - f(y)| \lambda \left(I_{j}\right) < \epsilon$$

Let $g:[a,b]\to\mathbb{R}$ and f(x)=g(x) for $x \in [a, b]$ and f(x) = 0 otherwise.

- If g is continuous on [a, b] or (a, b), then f is Riemann-integrable.
- If g is a monotone function then f is Riemann-integrable.

Riemann and Lebesgue Integrable

Let I = (a, b), if there exists points a = $x_0 < x_1 < \dots x_n = b$ such that $f: I \to \mathbb{R}$ is bounded and continuous on each subinterval (x_i, x_{i+1}) . Then f is both Riemann and Lebesgue integrable.

FTCs

• Let $g: I \to \mathbb{R}$ be integrable on an interval I. For all $x \in I$ and some fixed $x_0 \in I$ define

$$G(x) = \int_{x_0}^x g.$$

Suppose g is continuous at x for some $x \in I$. Then G is differentiable at x and G'(x) = g(x).

• Suppose $f: I \to \mathbb{R}$ has continuous derivative f' on the interval I. Then $\forall a, b \in I$

$$\int_{a}^{b} f' = f(b) - f(a)$$

Fourier Series

Integration on \mathbb{C}

Let f = g + ih where $g, h : [a, b] \to \mathbb{R}$. f is Lebesgue integrable if g and h are Lebesgue integrable and

$$\int_a^b f = \int_a^b g + i \int_a^b h$$

The Space L^2

The space $L^2 = L^2([a, b])$ is the set of measurable functions $f:[a,b]\to\mathbb{C}$ so that the function $x \mapsto |f(x)|^2$ is Lebesgue integrable, i.e.

$$||f||_2^2 := \int_a^b |f(x)|^2 dx < \infty.$$

The quantity $||f||_2$ is called the L^2 -norm of f. If $||f||_2 = 1$, then we say that f is L^2 -normalized.

Inner Product

For two functions $f, g \in L^2([a, b])$ we define their inner product by

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx.$$

Properties:

For $f, g, h \in L^2$ and $\lambda \in \mathbb{C}$:

- Sesquilinearity:

$$\begin{split} \langle f + \lambda g, h \rangle &= \langle f, h \rangle + \lambda \langle g, h \rangle, \\ \langle h, f + \lambda g \rangle &= \langle h, f \rangle + \bar{\lambda} \langle h, g \rangle. \end{split}$$

- Antisymmetry: $\langle f,g\rangle=\overline{\langle g,f\rangle}$
- Positivity: $||f||_2^2 = \langle f, f \rangle \ge 0$ (and > 0 unless f is zero almost everywhere)

Cauchy-Schwarz Inequality

Let $f, g \in L^2([a, b])$. Then the function $x \mapsto f(x)\overline{g(x)}$ is Lebesgue integrable and we have

$$|\langle f, g \rangle| \le ||f||_2 ||g||_2.$$

Minkowski's Inequality

For $f, g \in L^2([a, b])$,

$$||f+g||_2 \le ||f||_2 + ||g||_2.$$

Convergence in L^2

Let $(f_n) \in L^2([a,b])$. $f_n \to f$ in L^2 if

$$||f_n - f||_2 = \left(\int_a^b |f_n(x) - f(x)|^2 dx\right)^{1/2}$$

converges to zero.

Orthonormal Systems

A sequence $(\phi_n)_n$ of L^2 functions on [a, b] is called an orthonormal system on [a, b] if

$$\langle \phi_n, \phi_m \rangle = \int_a^b \phi_n(x) \overline{\phi_m(x)} dx$$
$$= \delta_{nm} = \begin{cases} 0, & \text{if } n \neq m, \\ 1, & \text{if } n = m. \end{cases}$$

Orthogonal Projection

Let $(\phi_n)_n$ be an orthonormal system on [a,b] and $f \in L^2$. Consider

$$s_N(x) = \sum_{n=1}^{N} \langle f, \phi_n \rangle \phi_n(x).$$

Denote the linear span of the functions $(\phi_n)_{n=1,...,N}$ by X_N . Then

$$||f - s_N||_2 \le ||f - g||_2$$

holds for all $g \in X_N$ with equality if and only if $g = s_N$. Hence s_N is the "best L^2 approximation" of f in X_N .

Bessel's Inequality

If $(\phi_n)_n$ is an orthonormal system on [a, b] and $f \in L^2$, then

$$\sum_{n} \left| \langle f, \phi_n \rangle \right|^2 \le \|f\|_2^2$$

Riemann-Lebesgue lemma, L^2 version

Let $(\phi_n)_{n=1,2,...}$ be an orthonormal system and $f \in L^2$, then

$$\lim_{n \to \infty} \langle f, \phi_n \rangle = 0.$$

Complete Orthonormal Systems

An orthonormal system $(\phi_n)_n$ on [a, b] is called complete if

•

$$\sum_{n} \left| \langle f, \phi_n \rangle \right|^2 = \|f\|_2^2$$

for all $f \in L^2$.

• Convergence Characterisation Let $(s_N)_N$ an orthonormal projection. Then $(\phi_n)_n$ is complete if and only if $(s_N)_N$ converges to f in the L^2 -norm for every $f \in L^2$.

Trigonometric Polynomials

A trigonometric polynomial is defined

$$f(x) = \sum_{n=-N}^{N} c_n e^{2\pi i n x} \quad (x \in \mathbb{R}),$$

where $c_n \in \mathbb{C}$. If c_N or c_{-N} is non-zero, then N is called the degree of f. Trigonometric polynomials are continuous functions.

Properties

1-periodicity:
$$f(x) = f(x+1)$$

$$f(x) = a_0 + \sum_{n=1}^{N} (a_n \cos(2\pi nx) + b_n \sin(2\pi nx))$$

Trig.Polynomials and Orthonormla Systems

 $(e^{2\pi inx})_{n\in\mathbb{Z}}$ forms an orthonormal system on [0,1]. In particular,

(i) for all $n \in \mathbb{Z}$,

$$\int_0^1 e^{2\pi i n x} dx = \begin{cases} 0, & \text{if } n \neq 0, \\ 1, & \text{if } n = 0. \end{cases}$$

(ii) if $f(x) = \sum_{n=-N}^{N} c_n e^{2\pi i n x}$ is a trigonometric polynomial, then

$$c_n = \langle f, \phi_n \rangle = \int_0^1 f(t)e^{-2\pi i nt} dt.$$

Fourier Series

For a 1-periodic integrable function f and $n \in \mathbb{Z}$ we define the nth Fourier coefficient by

$$\widehat{f}(n) = \int_0^1 f(t) e^{-2\pi i n t} dt = \langle f, \phi_n \rangle \,.$$

(The integral on the right exists since f is integrable and $|\phi_n| \leq 1$.) The doubly infinite series

$$\sum_{n=-\infty}^{\infty} \widehat{f}(n)e^{2\pi i nx}$$

is called the Fourier series of f.

Doubly Infinite Series

These are series of the form

$$\sum_{n=-\infty}^{\infty} a_n$$

They are convergent if both the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=0}^{\infty} a_{-n}$ are convergent. In the case of convergence, the limit of the doubly infinite series is defined as the sum of the limits of these two series.

$$\sum_{n=-\infty}^{\infty} |\hat{f}(n)|^2 = \hat{f}(0) + 2 \cdot \sum_{n=1}^{\infty} |\hat{f}(n)|^2$$

The series $\sum_{n=-\infty}^{\infty} a_n$ converges in the principal value sense, if the sequence of partial sums $\left(\sum_{n=-N}^{N} a_n\right)_{N=1,2,...}$ converges.

Partial Sum of 1-periodic Functions

For a 1-periodic integrable function f we define the partial sums

$$S_N f(x) = \sum_{n=-N}^{N} \widehat{f}(n) e^{2\pi i n x}.$$

Note that since $(\phi_n)_n$ is an orthonormal system, $S_N f$ is exactly the orthogonal projection of f ont the space of trigonometric polynomials of degree $\leq N$.

Convolutions

For two 1-periodic functions $f, g \in L^2$ we define their convolution by

$$f * g(x) = \int_0^1 f(t)g(x-t)dt.$$

For 1-periodic functions $f, g \in L^2$,

$$f * q = q * f$$
.

Dirichlet Function

$$\mathbf{1}_{\mathbb{Q}}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

Dirichlet Kernel

It turns out that the partial sum $S_N f$ can be written in terms of a convolution:

$$S_N f(x) = \sum_{n=-N}^{N} \int_0^1 f(t) e^{-2\pi i n t} dt e^{2\pi i n x}$$
$$= \int_0^1 f(t) \sum_{n=-N}^{N} e^{2\pi i n (x-t)} dt$$
$$= f * D_N(x).$$

where

$$D_N(x) = \sum_{n=-N}^{N} e^{2\pi i n x}.$$

The sequence of functions $(D_N)_N$ is called Dirichlet kernel and can also be written

$$D_N(x) = \frac{\sin\left(2\pi\left(N + \frac{1}{2}\right)x\right)}{\sin(\pi x)}$$

Fejer Kernel

We define the Fejér kernel by

$$K_N(x) = \frac{1}{N+1} \sum_{n=0}^{N} D_n(x).$$

The intuition here is that the additional average should "smooth things out" so that hopefully $f * K_N$ will have better convergence properties. This turns out to work. We have

$$K_N(x) = \frac{1}{N+1} \left(\frac{\sin(\pi(N+1)x)}{\sin(\pi x)} \right)^2$$

Fejér Theorem

For every 1-periodic continuous function

$$K_N * f \to f$$

uniformly on \mathbb{R} as $N \to \infty$.

Every 1-periodic continuous function can be uniformly approximated by trigonometric polynomials. That is, for every 1-periodic continuous f there exists a sequence $(f_n)_n$ of trigonometric polynomials so that $f_n \to f$ uniformly.

Approximation of Unity

An approximation of unity is a sequence $(k_n)_n$ that approximates unity:

$$\lim_{n \to \infty} k_n * f = f$$

for every continuous, 1-periodic f.

• That is $f * k_n$ converges uniformly to f

$$\sup_{x \in \mathbb{R}} |f * k_n(x) - f(x)| \to 0$$

- There is no unity for the convolution of functions. More precisely, there exists no continuous function k such that k * f = f for all continuous, 1-periodic f.
- Let $(k_n)_n$ be a sequence of 1-periodic integrable functions such that
 - 1. $k_n(x) \ge 0$ for all $x \in \mathbb{R}$.
 - 2. $\int_{-1/2}^{1/2} k_n(t)dt = 1$.
 - 3. For all $1/2 \ge \delta > 0$ we have

as
$$n \to \infty$$
.
$$\int_{-\delta}^{\delta} k_n(t)dt \to 1$$

Then $(k_n)_n$ is an approximation of

The Fejér kernel $(K_N)_N$ is an approximation of unity.

Limit of 1-periodic Fucntions

Let f be a 1-periodic and continuous function. Then

$$\lim_{N \to \infty} \|S_N f - f\|_2 = 0.$$

Assume that f is differentiable at x. Then $S_N f(x) \to f(x) \text{ as } N \to \infty.$

Completenes of the Trigonometric System

For every 1-periodic L^2 function f we have

$$\lim_{N \to \infty} ||S_N f - f||_2 = 0.$$

In other words, the Fourier series of f converges to f in the L^2 sense.

Parseval's Theorem

If f, g are 1 -periodic L^2 functions, then

$$\langle f, g \rangle = \sum_{n = -\infty}^{\infty} \widehat{f}(n) \overline{\widehat{g}(n)}.$$

In particular,

$$\int_{a}^{b} |f(x)|^{2} dx = ||f||_{2}^{2} = \sum_{n=-\infty}^{\infty} |\widehat{f}(n)|^{2}$$

Abel Summation

The series $\sum_{n=0}^{\infty} a_n$ with $a_n \in \mathbb{C}$ is Abel summable to S if the series A(r) = $\sum_{n=0}^{\infty} a_n r^n$ converges for every $r \in (0,1)$ and the limit $\lim_{r\to 1^-} A(r)$ exists and equals S.

Cesaro Summation

Given the sequence a_k , form the partial sums $s_n = \sum_{k=1}^n a_k$ and let

$$\sigma_N = \frac{s_1 + \dots + s_N}{N}.$$

 σ_N is called the Nth Cesàro mean of the sequence s_k or the Nth Cesàro sum of the series $\sum_{k=1}^{\infty} a_k$.

If σ_N converges to a limit S we say that the series $\sum_{k=1}^{\infty} a_k$ is Cesàro summable to

$$|\sigma_N - S| < \epsilon|$$

Misc.

Sup Inf

Supremum (sup)

- 1. $\forall x \in S, x \leq \sup(S)$.
- 2. $\forall \epsilon > 0, \exists x \in S, \sup(S) x < \epsilon.$

Infimum (inf)

- 1. $\forall x \in S, x \ge \inf(S)$.
- 2. $\forall \epsilon > 0, \exists x \in S, x \inf(S) < \epsilon.$

Nested Interval Property

A sequence $(I_n)_{n\in\mathbb{N}}$ of sets nested if

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

If each (I_n) nonempty, closed and bounded

$$E = \bigcap_{n \in \mathbb{N}} I_n = \{ x \in \mathbb{R} : x \in I_n \text{ for all } n \in \mathbb{N} \}$$

is nonempty. If $\lambda(I_n) \to 0$ then E contains exactly one number.

Subcovers

Let E = [a, b] for some real numbers $a \leq b$. Suppose that $(I_{\alpha})_{\alpha \in \mathcal{A}}$ is a collection of open intervals that cover E, that is

$$E \subset \bigcup_{\alpha \in \mathcal{A}} I_{\alpha}.$$

Then there exist a finite set of indices $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \subset A$ such that

$$E \subset I_{\alpha_1} \cup I_{\alpha_2} \cup \cdots \cup I_{\alpha_n}.$$

 $(I_{\alpha_i})_{i=1,2,\ldots,n}$ is a finite subcover of E. Countability

A set E is countable if there exists a bijection $f: E \to \mathbb{N}$.

A countable union of countable sets is countable.

The Exponential Function

$$E(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Notes

- $xy \le \frac{1}{2}(x^2 + y^2)$ for $x, y \ge 0$
- $|z|^2 = z\bar{z}$ for $z \in \mathbb{C}$
- $\int uv \ dx = u \int v \ dx \int (u' \int v \ dx) \ dx$
- $\bullet \int \chi_I := \lambda(I)$
- $|f_n(x) f(x)| < \epsilon$ and $\sup_x f(x) = M$ $\implies \sup_{x} f_n(x) \leq M + \epsilon$
- $\bullet \ e^{\pi i} = -1$
- $\bullet |sin(x)| \leq |x|$
- $\bullet \sum_{i=1}^{\infty} \frac{1}{n(n+1)} = 1 < \infty$
- $\frac{1}{2+x} = \sum_{n=0}^{\infty} (-1)^n \left(\frac{x}{2}\right)^n$
- $\frac{d}{dx}\sin(x) = \cos(x)$

Examples

Show that g is integrable F^2 version Q. Suppose that $f \in L^2([0,1])$. Show that the function $g(x) = f(x)x^{-1/4}\chi_{(0,1]}(x)$ is integrable on [0,1].

A. Let

$$k_n(x) = x^{-1/4} \chi_{(1/n,1]}(x), \quad n = 1, 2, \dots$$

As each k_n is bounded and piece-wise continuous it is measurable and $\int_0^1 k_n^2 < \infty$. It follows that since $k_n \to k$ then k is measurable and k^2 is integrable on [0,1] if and only if

$$\sup_{n} \int_{0}^{1} k_{n}^{2} < \infty$$

which can be verified by a direct calculation via fundamental theorem of calculus.

Find the limit

 $E = \bigcap I_n = \{x \in \mathbb{R} : x \in I_n \text{ for all } n \in \mathbb{N}\}$ Q. Find the limit of some weird function $f_n(x)$

- Guess the limit f(x) using school math assumptions
- Use $f_n(x) f(x) | < \epsilon$ to work out what value we need for N. If we just need "some large N say "We can choose Nsuch that..."
- Show that for $n \geq N$ the limit is f(x).

Is the Convergence Uniform?

Consider the possible values of $f_n(x)$, if it can take a value that the f(x) cannot, then use the value of x that gives this value as a counter example (working backwards).

Is Cesaro Summable?

Q. If $\sum_{k=0}^{\infty} a_k$ converges to L, show that it is Cesáro summable to L

Let $\varepsilon > 0$. Pick $N_1 \in \mathbb{N}$ such that $k \geq N_1$ implies that $|s_k - L| < \frac{\varepsilon}{2}$. Choose $N_2 \in \mathbb{N}$ such that $N_2 > N_1$ and

$$\sum_{k=0}^{N_1} |s_k - L| < \frac{\varepsilon N_2}{2}.$$

If $N > N_2$ then

$$\begin{split} &|\sigma_N - L| \leq \\ &\frac{1}{N+1} \sum_{k=0}^{N_1} |s_k - L| + \frac{1}{N+1} \sum_{k=N_1+1}^N |s_k - L| \\ &\leq \frac{\varepsilon N_2}{2(N+1)} + \frac{\varepsilon}{2} \left(\frac{N-N_1}{N+1} \right) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Hence we have shown the result.

Counter Examples

- For $x \in [0,1)$ we have $nx^n \to 0$ as $n \to \infty$. However $\int_0^1 f_n = n/(n+1) \to 1$ as $n \to \infty$.
- $\sum_{k=0}^{\infty} (-1)^k$ does not converge but its cesaro means do

$$\sigma_N = \begin{cases} \frac{N+2}{2(N+1)} & N \text{ is even} \\ \frac{1}{2} & N \text{ is odd} \end{cases}$$

Trig stuff

Angle Sum and Difference Identities

$$\sin(\theta \pm \phi) = \sin\theta \cos\phi \pm \cos\theta \sin\phi$$
$$\cos(\theta \pm \phi) = \cos\theta \cos\phi \mp \sin\theta \sin\phi$$
$$\tan(\theta \pm \phi) = \frac{\tan\theta \pm \tan\phi}{1 \mp \tan\theta \tan\phi}$$

Double Angle Identities

$$\sin(2\theta) = 2\sin\theta \cdot \cos\theta$$
$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$
$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

Sum to Product of Two Angles

$$\sin \theta + \sin \phi = 2 \sin \left(\frac{\theta + \phi}{2}\right) \cos \left(\frac{\theta - \phi}{2}\right)$$

$$\sin \theta - \sin \phi = 2 \cos \left(\frac{\theta + \phi}{2}\right) \sin \left(\frac{\theta - \phi}{2}\right)$$

$$\cos \theta + \cos \phi = 2 \cos \left(\frac{\theta + \phi}{2}\right) \cos \left(\frac{\theta - \phi}{2}\right)$$

$$\cos \theta - \cos \phi = -2 \sin \left(\frac{\theta + \phi}{2}\right) \sin \left(\frac{\theta - \phi}{2}\right)$$

Product of Angels

$$\sin\theta\sin\phi = \frac{[\cos(\theta - \phi) - \cos(\theta + \phi)]}{2}$$

$$\cos\theta\cos\phi = \frac{[\cos(\theta - \phi) + \cos(\theta + \phi)]}{2}$$

$$\sin\theta\cos\phi = \frac{[\sin(\theta + \phi) + \sin(\theta - \phi)]}{2}$$

$$\cos\theta\sin\phi = \frac{[\sin(\theta + \phi) + \sin(\theta - \phi)]}{2}$$