La loi *a priori* de Jeffreys : application à l'exemple historique

$$f(y|\theta) = \theta^{y} (1 - \theta)^{(1 - y)}$$

$$\pi(\theta) \propto \sqrt{I(\theta)}$$

$$\propto \sqrt{-\mathbb{E}_{Y|\theta} \left[\frac{d^{2} \log(f(y|\theta))}{d\theta^{2}} \right]}$$

$$\propto \dots$$

La loi *a priori* de Jeffreys : application à l'exemple historique

$$f(y|\theta) = \theta^{y} (1 - \theta)^{(1 - y)}$$

$$\pi(\theta) \propto \sqrt{I(\theta)}$$

$$\propto \sqrt{-\mathbb{E}_{Y|\theta} \left[\frac{d^{2} \log(f(y|\theta))}{d\theta^{2}} \right]}$$

$$\propto \sqrt{\mathbb{E}_{Y|\theta} \left[\frac{y}{\theta^{2}} + \frac{1 - y}{(1 - \theta)^{2}} \right]}$$

$$\propto \sqrt{\theta \left(\frac{1}{\theta^{2}} \right) + (1 - \theta) \left(\frac{1}{(1 - \theta)^{2}} \right)}$$

$$\propto \sqrt{\frac{1}{\theta}} + \frac{1}{1 - \theta}$$

 $\propto \frac{1}{\sqrt{\theta(1-\theta)}}$

[Rappel : $I_{(Y_1,...,Y_n)}(\theta) = n \times I_Y(\theta)$ si les Y_i sont iid]

Loi a priori de Jeffreys : illustration dans l'exemple historique

Niveaux hiérarchiques :

- $\mathbf{1} \pi(\theta)$
- $\mathbf{2} f(\mathbf{y}|\theta)$

Niveaux hiérarchiques :

- 1 $\eta \sim h(\eta)$
- $2 \pi(\theta|\eta)$
- 3 $f(\mathbf{y}|\theta)$

Niveaux hiérarchiques :

$$2 \pi(\theta|\eta)$$

$$\mathbf{3} f(\mathbf{y}|\theta)$$

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta, \eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$$

Niveaux hiérarchiques :

- 1 $\eta \sim h(\eta)$
- $2 \pi(\theta|\eta)$
- 3 $f(\mathbf{y}|\theta)$

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\theta)\int \pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$$

NB: 3 niveaux hiérarchiques \Leftrightarrow 2 niveaux avec $\pi(\theta) = \int \pi(\theta|\eta)h(\eta)d\eta$

Niveaux hiérarchiques :

- 1 $\eta \sim h(\eta)$
- $2 \pi(\theta|\eta)$
- 3 $f(\mathbf{y}|\theta)$

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\theta)\int \pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$$

NB: 3 niveaux hiérarchiques \Leftrightarrow 2 niveaux avec $\pi(\theta) = \int \pi(\theta|\eta)h(\eta)d\eta$

⇒ peut faciliter la modélisation & l'élicitation des lois a priori

Utilisation d'hyper-priors dans l'exemple historique

Exemple historique du sexe à la naissance avec un a priori Beta \Rightarrow 2 hyper-priors Gamma pour α et β :

 $\alpha \sim \text{Gamma}(4;0,5)$

 $\beta \sim \mathsf{Gamma}(4;0,5)$

 $\theta | \alpha, \beta \sim \text{Beta}(\alpha; \beta)$

 $Y_i | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$

Élicitation de la loi a priori d'un paramètre d'après sa loi marginale empirique

Élicitation de la loi a priori d'un paramètre d'après sa loi marginale empirique

⇒ nécessite d'estimer cet *a priori* à partir des données

Élicitation de la loi a priori d'un paramètre d'après sa loi marginale empirique

- ⇒ nécessite d'estimer cet *a priori* à partir des données
 - 1 hyper-paramètres η
 - estimés par $\hat{\eta}$ grâce à des méthodes fréquentistes (e.g. Max de Vraisemblance ou Méthode des Moments)
 - 3 injectés dans la loi a priori : $\pi(\theta|\hat{\eta})$
 - $| \mathbf{4} \rangle \Rightarrow | \mathbf{0} | \mathbf{i} | \mathbf{j} | \mathbf$

Élicitation de la loi a priori d'un paramètre d'après sa loi marginale empirique

- ⇒ nécessite d'estimer cet *a priori* à partir des données
 - 1 hyper-paramètres η
 - estimés par $\widehat{\eta}$ grâce à des méthodes fréquentistes (e.g. Max de Vraisemblance ou Méthode des Moments)
 - 3 injectés dans la loi a priori : $\pi(\theta|\hat{\eta})$
 - $| \mathbf{4} \rangle \Rightarrow | \mathbf{0} | \mathbf{i} | \mathbf{j} | \mathbf$
 - Combine les approches bayésienne et fréquentiste
 - Distribution a posteriori concentrée (variance \), mais biais / (données utilisées 2x!)
 - Approximation d'une approche totalement bayésienne

Bayésien empirique : exemple

Pour une loi Beta (α, β) :

- $\frac{\alpha}{\alpha + \beta}$ est la moyenne
- $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$ est la variance

Par **la méthode des moments** on trouve : $\widehat{\alpha}_M = 0,020$ et $\widehat{\beta}_M = 0,021$

puisque
$$\widehat{\theta} = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 0,49$$
 et $\widehat{Var}(\theta) = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2 = 0,24$

$$\theta | \alpha, \beta \sim \mathsf{Beta}(\widehat{\alpha}; \widehat{\beta})$$

$$Y_i | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$$

Bayes séquentiel

Le théorème de Bayes peut être utilisé séquentiellement :

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta)\pi(\theta)$$

Si
$$y = (y_1, y_2)$$
, alors :

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}_2|\theta) f(\mathbf{y}_1|\theta) \pi(\theta) \propto f(\mathbf{y}_2|\theta) p(\theta|\mathbf{y}_1)$$

Bayes séquentiel

Le théorème de Bayes peut être utilisé séquentiellement :

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta)\pi(\theta)$$

Si
$$y = (y_1, y_2)$$
, alors :

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}_2|\theta) f(\mathbf{y}_1|\theta) \pi(\theta) \propto f(\mathbf{y}_2|\theta) p(\theta|\mathbf{y}_1)$$

Bayes séquentiel

Le théorème de Bayes peut être utilisé séquentiellement :

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta)\pi(\theta)$$

Si $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2)$, alors :

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}_2|\theta) f(\mathbf{y}_1|\theta) \pi(\theta) \propto f(\mathbf{y}_2|\theta) p(\theta|\mathbf{y}_1)$$

⇒ mise à jour de la distribution a posteriori au fur et à mesure qu'arrive les observations (online)

Bayes séquentiel : application à l'exemple historique

Imaginons que l'on commence par observer 20 naissances $y_{1:20}$ début 1745, dont 9 filles, et que l'on ait un a priori uniforme sur θ :

$$\theta | \mathbf{y}_{1:20} \sim \dots$$