Andrew Vu - CS156 HW2

March 4, 2022

1 CS156 (Introduction to AI), Spring 2022

2 Homework 2 submission

2.0.1 Roster Name: Andrew Vu

2.0.2 Student ID: 015055911

2.0.3 Email address: andrew.k.vu@sjsu.edu

Any special notes or anything you would like to communicate to me about this homework submission goes in here.

2.1 References and sources

List all your references and sources here. This includes all sites/discussion boards/blogs/posts/etc. where you grabbed some code examples.

From files section of Canvas page:

knn.synthetic data

kmeans.synthetic data

https://machine learning mastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/

https://towardsdatascience.com/how-to-build-knn-from-scratch-in-python-5e22b8920bd2

https://www.askpython.com/python/examples/k-nearest-neighbors-from-scratch

https://medium.com/analytics-vidhya/knn-implementation-from-scratch-96-6-accuracy-python-machine-learning-31ba66958644

https://medium.com/analytics-vidhya/implementing-k-nearest-neighbours-knn-without-using-scikit-learn-3905b4decc3c

2.2 Solution

Load libraries and set random number generator seed

```
[237]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from scipy.spatial import distance
from scipy.stats import mode
from sklearn.metrics import accuracy_score
```

```
[238]: np.random.seed(42)
```

Code the solution

2.2.1 KNN FUNCTION

```
[239]: # newObservation is a point in the test data set
       # referenceData is the training data set
       def knn(newObservation, referenceData, k=3):
           distances_from_newdata = [] # array to store distances
           k_shortest_distances = []
                                       # array for the k shortest distances
           # compute the distance between each point in the reference data and the
        \rightarrow newObservation point
           for i in range(len(referenceData)):
               dist = distance.euclidean(referenceData.iloc[i], newObservation)
               distances_from_newdata.append([dist, i]) # add this computed distance_
        →to the distances from newdata array with its index
           distances_from_newdata.sort()
           k_shortest_distances = (distances_from_newdata)[0:k]
           return k_shortest_distances # returns the array of the k shortest distances_
        →with their respective row number
```

2.2.2 PREDICTIONS FUNCTION

```
[240]: def predictions(X_test, ref_data, Y_train):
          labels = [] # output
          for i in range(len(X_test)):
              modelabels = [] # create a separate array for determining the majority_
       →of the labels
               distance_indexes = knn(X_test.iloc[i], ref_data, k=3)
              for j in range(len(distance_indexes)): # for however many distances⊔
       → there are in the return value of knn
                  modelabels.append(Y_train[distance_indexes[j][1]]) # append that_
        → distance's Y_train label value to a separate array
              lab = mode(modelabels) # returns an array of the majority of the labels
       →as well as the count of how many
               lab = lab.mode[0]
                                    # returns specifically the mode
              labels.append(lab)
                                    # adds this label to the real labels
          return labels
```

2.3 Generate 2D Data

2.3.1 Generate Labels for 2D

```
[242]: 

11 = [0]*int(n/2)

12 = [1]*int(n/2)

labels2D = 11+12
```

2.3.2 Visualize the generated data

```
[243]: dt = pd.DataFrame({'X':X, 'Y':Y}, columns=['X', 'Y']) dt.head()
```

```
[243]: X Y
0 -1.006572 0.324084
1 -2.276529 -0.385082
2 -0.704623 -0.676922
3 1.046060 0.611676
4 -2.468307 1.031000
```

```
X Y
43 -2.602207 -0.327662
62 2.120460 1.158596
3 1.046060 0.611676
71 0.181225 -0.815810
45 -3.439688 -1.463515
... ...
96 -0.473901 -0.883857
67 -0.337356 1.896793
64 1.615278 0.963376
47 0.114244 0.261055
44 -4.957044 -0.392108

[80 rows x 2 columns]
```

2.3.3 ACCURACY FOR 2D

```
[0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Accuracy of the predictions on the 2D test dataset is 0.9
```

2.3.4 ACTUAL VS PREDICTED LABELS VISUALIZATION

2.4 Generate 3-D data

```
[247]: n = 1000 \# n \ data \ points
       # CLASS 0
       XO = np.random.normal(loc = 0, scale = 3, size = int(n/4))
       Y0 = np.random.normal(loc = -3, scale = 1, size = int(n/4))
       Z0 = np.random.normal(loc = -1, scale = 1, size = int(n/4))
       # CLASS 1
       X1 = np.random.normal(loc = 0, scale = 3, size = int(n/4))
       Y1 = np.random.normal(loc = 1, scale = 2, size = int(n/4))
       Z1 = np.random.normal(loc = 1, scale = 1, size = int(n/4))
       # CLASS 2
       X2 = np.random.normal(loc = 0, scale = 3, size = int(n/4))
       Y2 = np.random.normal(loc = 3, scale = 1, size = int(n/4))
       Z2 = np.random.normal(loc = 4, scale = 1, size = int(n/4))
       # CLASS 3
       X3 = np.random.normal(loc = 0, scale = 3, size = int(n/4))
       Y3 = np.random.normal(loc = 5, scale = 3, size = int(n/4))
       Z3 = np.random.normal(loc = -3, scale = 1, size = int(n/4))
       X = np.concatenate((X0, X1, X2, X3), axis = 0)
       Y = np.concatenate((Y0, Y1, Y2, Y3), axis = 0)
```

```
Z = np.concatenate((Z0, Z1, Z2, Z3), axis = 0)
[248]: 11 = [0]*int(n/4)
      12 = [1]*int(n/4)
      13 = [2]*int(n/4)
      14 = [3]*int(n/4)
      labels3D = 11+12+13+14
[249]: | dt = pd.DataFrame({'X':X, 'Y':Y, 'Z':Z}, columns=['X', 'Y', 'Z'])
      dt.head()
[249]:
               Х
                         Y
      0 1.073362 -3.062679 -1.522723
      1 1.682354 -2.044858 0.049009
      2 3.249154 -3.985726 -1.704344
      3 3.161406 -2.495953 -2.408461
      4 -4.133008 -3.530258 -2.556629
[250]: X_train, X_test, Y_train, Y_test = train_test_split(dt, labels3D, test_size=0.
      \leftrightarrow2, random_state=0)
      print(X_train)
                          Y
                                    Z
                 Х
          1.272183 4.549020 3.075767
     687
     500 1.051890 1.226968 5.804348
     332 1.197669 2.416217 1.323168
     979 -0.790345 7.956349 -2.484372
     817 -6.657901 6.364223 -5.832156
     835 -0.885270 3.944236 -2.553127
     192 -3.960700 -3.259591 0.066675
     629 0.056549 2.549811 4.849102
     559 3.944743 3.937570 4.198948
     684 -0.079217 2.645959 4.032797
      [800 rows x 3 columns]
     2.5 ACCURACY FOR 3D
[251]: prediction_results = predictions(X_test, X_train, Y_train)
      print(Y_test)
      print("\n")
      print(prediction results)
      print("Accuracy of the predictions on the 3D test dataset is " +\Box
       →str(accuracy_score(Y_test, prediction_results)))
```

0, 0, 3, 0, 3, 2, 2, 3, 1, 2, 3, 1, 3, 1, 0, 3, 2, 2, 1, 3, 3, 0, 1, 2, 1, 1, 1,

```
1, 3, 2, 1, 1, 3, 1, 2, 2, 0, 0, 1, 0, 1, 2, 1, 2, 2, 1, 2, 0, 3, 1, 1, 3, 2, 2, 1, 1, 1, 3, 3, 2, 0, 2, 1, 3, 1, 1, 3, 1, 2, 1, 2, 0, 1, 2, 3, 3, 0, 3, 1, 2, 2, 3, 3, 0, 0, 2, 1, 2, 1, 1, 2, 1, 1, 2, 3, 3, 0, 3, 0, 3, 1, 1, 3, 2, 1, 2, 2, 2, 3, 2, 1, 0, 2, 3, 0, 2, 2, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 3, 3, 3, 1, 1, 3, 1, 2, 3, 2, 3, 3, 1, 1, 3, 1, 1, 3, 3, 0, 3, 1, 3, 0, 2, 3, 0, 3, 3, 1, 1, 3, 3, 2, 1, 3, 0, 3, 3, 1, 0, 3, 2, 2, 0, 2, 0]

[3, 3, 1, 2, 2, 3, 0, 0, 2, 2, 1, 1, 3, 0, 2, 1, 3, 0, 0, 0, 0, 0, 1, 1, 1, 3, 3, 2, 1, 3, 0, 3, 3, 1, 1, 3, 2, 2, 0, 2, 0]

[3, 3, 1, 2, 2, 3, 0, 0, 2, 2, 1, 1, 3, 0, 2, 1, 3, 0, 0, 0, 0, 0, 1, 1, 1, 3, 3, 2, 1, 1, 3, 2, 1, 1, 3, 2, 2, 2, 0, 0, 1, 0, 1, 2, 1, 2, 2, 1, 2, 0, 3, 1, 1, 3, 2, 2, 1, 1, 3, 2, 2, 2, 0, 1, 1, 3, 1, 0, 3, 1, 2, 2, 2, 3, 3, 0, 0, 2, 1, 2, 1, 1, 2, 1, 1, 2, 3, 3, 0, 3, 0, 3, 1, 1, 3, 2, 1, 2, 2, 2, 3, 2, 1, 0, 2, 3, 0, 2, 2, 0, 1, 2, 1, 0, 0, 0, 1, 0, 1, 3, 3, 3, 1, 1, 3, 3, 1, 1, 3, 2, 3, 3, 0, 2, 3, 1, 1, 3, 3, 0, 3, 1, 1, 3, 3, 0, 2, 3, 0, 3, 0, 3, 1, 1, 3, 3, 2, 1, 3, 1, 3, 3, 1, 0, 3, 2, 2, 0, 2, 0]

Accuracy of the predictions on the 3D test dataset is 0.915
```

2.5.1 ACTUAL VS PREDICTED LABELS VISUALIZATION

