

Part 2 Optoelectronic Components

♦ Optical components and product families

- Active optical components
 - Light sources : light emitting diodes and laser diodes
 - Detectors and optical receivers
 - Optical amplifiers
 - Components for the optical routing

Passive optical components

- The FBG technology
- Components realized using the FBG technology
- The AWG technology and associated components
- Optical connectors

Light sources (1)

- Main characteristics required
 - Semiconductor source (compact and easy to implement)
 - High emitted optical power
 - Low divergence beam for better coupling efficiency to fiber
 - Narrow spectral width for reducing chromatic dispersion and for dense WDM application
 - Possibility of high bit rate modulation

Light sources (2)

- ♦ Two possible candidates
 - LED (light emitting diode)
 - LD (laser diode)
- ♦ The light emitting diode (LED) : not performant enough

- Low emitted power (some tens microwatts μW)
- Too high beam divergence thus bad coupling efficiency to fiber
- Broad spectral width (some tens nm)
- The laser diode (LD): the best appropriate source
 - High emitted power (some tens milliwatts mW)
 - Very low beam divergence (high coupling efficiency to a singlemode fiber)
 - Very narrow spectral width, well matched to WDM systems

Light sources (3)

- ♦ The optical power of a source
 - Explained either in milliwatts (mW), or in dBm (dB reported to 1mW)
 - Power (dBm) = 10 log Power (mW)

Power in mW	Power in dBm
1 mW 2 mW 4 mW 10 mW 100 mW Multiply by 2 Divide by 2 Multiply by 10 Divide by 10	0 dBm + 3 dBm + 6 dBm + 10 dBm + 20 dBm Add 3 dBm Substract 3 dBm Add 10 dBm Substract 10 dBm

Examples:

+ 23 dBm

= +20 dBm +3 dBm

 $= 100 \times 2 = 200 \text{ mW}$

- 26 dBm

= -20 dBm - 6 dBm

 $= 1/100 \times 1/4 \text{ mW}$

 $= 0.01 \times 0.25 \text{ mW}$

= 0.0025 mW

 $= 2.5 \mu W$

Novembre 2018 4

Laser diodes (1)

- ◆ LASER = Light Amplification by Stimulated Emission of Radiation
- Laser = amplifying medium in a resonant cavity (Fabry-Perot)
- Semiconductor laser (or laser diode)
 - Amplifying medium : diode type junction
 - Pumping technique : injection current
 - Resonant cavity: cleaved facets of the laser chip

Novembre 2018 5

Laser diodes (2)

- Two categories of laser diodes (1)
 - FP: Fabry-Perot type laser diode
 - The most simple structure
 - Broad spectrum (multiple rays) => limitation due to chromatic dispersion
 - Used for short distance links
 - Not appropriate for wavelength division multiplexing (WDM)

Laser diodes (3)

Fabry-Perot laser diode spectrum

Active material gain curve

Fabry-Perot cavity spectrum (comb)

Fabry-Perot laser diode spectrum

Laser diodes (4)

- ♦ Two categories of laser diodes (2)
 - DFB: Distributed Feed-Back laser diode
 - More complex structure (integrated diffraction grating)
 - Narrow spectrum (single longitudinal mode) ==> very low chromatic dispersion
 - Well suited to long haul links and to WDM systems

Laser diodes (5)

DFB laser diode spectrum

Fabry-Perot laser diode spectrum

Diffraction grating filtering

DFB laser diode spectrum

Laser diodes manufacturing

From the wafer to the chip-on-carrier (COC)

Laser diodes packaging

♦ Packaging of a transmitter module with an optical isolator

Laser diode modulation

- Modulating an optical source
 - Transforming the electrical signal variation into an optical power variation

Transfer characteristics of a laser diode

♦ Optical power vs electrical current characteristics of a laser diode

Direct modulation of a laser diode

- ◆ Direct modulation (1)
 - The laser diode is directly modulated by an electrical current (injection current)

Direct modulation of a laser diode

- Direct modulation (2)
 - Main problem inherent to direct modulation : the chirp
 - It is the optical frequency variation due to injection current modulation
 - The chirp induces laser diode spectrum broadening, which limits transmission distance due to a higher chromatic dispersion of the fiber

Constant modulating current = CW spectrum => No chirp

Direct modulation = current variation Spectrum broadening due to chirp

External modulation of a laser diode

- ♦ External modulation (1)
 - Modulation method to avoid laser diode chirp
 - Allows to significantly increase transmission distance

External modulation of a laser diode

- External modulation (2)
 - Two technologies of external modulation
 - 1. Use of an external modulator device separated from the laser diode (as Lithium Niobate modulator)
 - The laser diode is not directly modulated and provides a constant optical power entering the external modulator

External modulation of a laser diode

- **♦** External modulation (3)
 - Monolithic integration technology
 - 2. Monolithic integration of the laser diode and the external modulator on the same substrate
 - The external modulator is usually an Electro-Absorption (EA) modulator
 - Its absorption coefficient is depending on the modulation voltage
 - This kind of modulator shows a low chirp limiting transmission distance

Comparison of laser diode modulations

- Comparison of the three technologies
 - Direct modulation by the injection current :
 - Used for bit rates up to 2.5 Gbit/s
 - Maximum transmission distance : 90 km (1800 ps/nm source)
 - External modulation with separated laser diode and LiNbO₃ external modulator:
 - Use for very high bit rates up to 40 Gbit/s
 - Almost illimited transmission distance (transoceanic systems)
 - Integrated laser-modulator (ILM):
 - Used for medium bit rates (2.5 Gbit/s or 10 Gbit/s)
 - Transmission distance limited by the proper chirp of the EA modulator
 - ◆ At 2.5 Gbit/s: from 360 km (7200 ps/nm) to 640 km (12800 ps/nm)
 - ◆ At 10 Gbit/s: from 40 km (800 ps/nm) to 80 km (1600 ps/nm)

Detectors and optical receivers

- The optical receiver transforms the modulated optical power detected into a modulated electrical signal
- It consists of an optical detector (photodiode) followed by electrical circuits processing the detected signal

Optical detectors: photodiodes

- A photodiode transforms the optical power received into an electrical current (photocurrent)
- ♦ This signal is electrically amplified (low noise amplifier) and then processed. This function is realized by the optical receiver (photodiode followed by processing circuits)

Types of photodiodes

♦ Two main types of photodiodes

- PIN photodiode (Positive-Intrinsic-Negative)
 - Simple structure easy to implement
 - Used for very high bit rates (up to 40 Gbit/s)

Avalanche photodiode (APD)

- More complex structure
- Requires a high driving voltage
- Allows to generate a higher detected current
- Better sensitivity for detecting low levels of received optical power (long distance systems)
- Used for bit rates up to around 10 Gbit/s

Optical Fiber Amplifiers (OFA)

- Principle of the Erbium doped fiber amplifier (EDFA)
- ◆ Direct amplification of the optical power by energy transfer from pump wave to signal wave

OFAs for WDM application

- **♦** Specific characteristics of WDM OFAs
 - Requires a good flatness of gain spectrum
 - Need for a double stage structure with mid-stage access for adddrop multiplexing (ADM) application or for inserting a dispersion compensating fiber (DCF)

Components for optical routing

- These components will be used in node equipments of future all optical networks
 - Optical routing requires basic functions as :
 - Optical switching (non-blocking switching matrices)
 - Wavelength conversion
 - These functions can be realized using the following technologies :
 - Semiconductor optical amplifier (SOA) for fast switching
 - Interferometric wavelength converter module (ICM) for wavelength conversion

Semiconductor optical amplifier

♦ SOA = Semiconductor Optical Amplifier

Structure

- Similar structure as for the semiconductor laser diode
- Suppression of the resonant FP cavity through anti-reflection coating and angled cleaving the two facets of the chip

Quaternary amplifying medium : InGaAsP

For amplification in the 1.55 μm range

Optical switching using SOA bars

8 X 8 switching matrixPossible extension up to 64 x 64

- No switching loss due to SOA gain

- High speed switching time (some 10 ps)

Wavelength conversion

Components for very high bit rate applications

- Components dedicated to future 40 Gbit/s applications
 - SDH standard : STM-256 frame
 - SONET standard : OC-768 frame
- ♦ Electroabsorption (EA) modulator
- ♦ Integrated PIN-preamp receiver
- ♦ In the near future : integrated laser-modulator (ILM) source

EA modulator for 40 Gbit/s applications

Passive components (1)

- Passive components do not require any electrical energy for working
- ♦ Two specific technologies allow to realize passive components :
 - FBG (Fiber Bragg Grating) technology
 - Bragg grating made in a silica fiber
 - Used to realize compact optical filters
 - Gain flattening filters for OFAs
 - Wavelength stabilizing filters for pump lasers
 - Band-pass filters for WDM application
 - AWG (Arrayed Waveguide Grating) technology
 - Waveguide gratings made in silica-on-silicon platforms
 - Used for realizing wavelength MUX and DEMUX

Passive components (2)

♦ Example of use of a FBG filter as a band-pass filter

Passive components (3)

Mux/Demux

- ♦ Arrayed Waveguide Grating
- Silica on silicon based
- ◆ 16x100GHz, 40x50GHz or 40x100GHz channels
- ♦ Low input to output loss

Pump stabilizer

- ♦ FBG technology
- 1480 nm or 980 nm pump

Wavelength filters

- ♦ FBG technology
- ♦ Band-pass filters
- ♦ ADM filters
- Gain flattening filters

Optical connectors (1)

- **♦** An optical connector is used for a non-permanent assembly
- It consists in two main parts:

- ♦ Two types of ferules
 - Defined by the quality of the optical polished surface :
 - PC (Physical Contact): hemispheric polishing
 - APC (Angled-PC): angled (around 7°) hemispheric polishing

Optical connectors (2)

Main types of optical connectors

- FC (field connector) with screw and positioning key: the most common
- SC (subscriber connector) : push-pull type with plastic body
- ST (standard connector): with positioning key
- E2000 : European connector with plastic body
- MU : push-pull type miniature connector
- LC (low cost): small connector with plastic body

Main characteristics

- Insertion loss (or assembly loss): < 0.5 dB
- Return loss (or reflection loss): < -50 dB (PC), < -60 dB (APC)

Main types of optical connectors

