Representation Theory IV, Michaelmas Term, Assignment 1 BEN NAPIER

1. (a) Find the matrices of all the elements of S_3 in the permutation representation, with respect to the basis e_1, e_2, e_3 .

Solution: $\begin{pmatrix}
1 & 2 \end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \end{pmatrix} \qquad (1 & 2 & 3) = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \end{pmatrix} \\
(2 & 3) = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \end{pmatrix} \qquad (1 & 3 & 2) = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \end{pmatrix} \\
(1 & 3) = \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \end{pmatrix} \qquad e = I.$

(b) Find another basis such that the matrices all take the form

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & ? & ? \\ 0 & ? & ? \end{pmatrix}$$

and determine the unknown entries for your basis.

Solution: We fix the basis $(e_1+e_2+e_3, e_1-e_2, e_2-e_3)$. Then we get the following matrices.

$$(1 \quad 2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(1 \quad 2 \quad 3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

$$(2 \quad 3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$(1 \quad 3 \quad 2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$(1 \quad 3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$e = I.$$

2. Suppose that V is a representation of G and that W_1 and W_2 are irreducible subrepresentations. Show that either $W_1 = W_2$ or $W_1 \cap W_2 = \{0\}$.

Solution: Let ρ be the homomorphism for the representation V, and ρ_{W_1} and ρ_{W_2} for W_1 and W_2 respectively. We observe that as W_1 and W_2 are subspaces of V, then $W_1 \cap W_2$ is a subspace of V. Thus we have another subrepresentation $(\rho_{W_1 \cap W_2}, W_1 \cap W_2)$. Note that this is a subrepresentation of V, W_1 , and W_2 . But, W_1 and W_2 are irreducible. Thus $W_1 \cap W_2$ must be $W_1 = W_2$ or $\{0\}$.

3. Consider $G = S_n$ with its permutation representation action on \mathbb{C}^n characterized by

$$\pi(g)e_i = e_{g(i)},$$

and let $V \subset \mathbb{C}^n$ be the subspace

$$\left\{ (a_1, \dots, a_n) : \sum_{i=1}^n a_i = 0 \right\}.$$

Mimic the last part of Example 1.16 to show that V is irreducible.

Solution: Let $U \subset V$ be a non-zero subrepresentation. Let $\boldsymbol{a} = (a_1, \dots, a_n) \in U$ be non-zero. We see that

$$\mathbf{b}_{1} = \mathbf{a} - \pi ((1 \quad 2)) \mathbf{a} = (a_{1} - a_{2}, a_{1} - a_{2}, 0, \dots, 0)$$

$$\mathbf{b}_{2} = \mathbf{a} - \pi ((2 \quad 3)) \mathbf{a} = (0, a_{2} - a_{3}, a_{3} - a_{2}, 0 \dots, 0)$$

$$\vdots$$

$$\mathbf{b}_{n-1} = \mathbf{a} - \pi ((n \quad n-1)) \mathbf{a} = (0, \dots, 0, a_{n-1} - a_{n}, a_{n} - a_{n-1}).$$

Clearly, all of these $\{b_1, \ldots, b_{n-1}\}$ are linearly independent and are in V. As

$$\dim V = n - 1 = \dim \left(\langle \boldsymbol{b}_1, \dots, \boldsymbol{b}_{n-1} \rangle \right),\,$$

we must have that U = V.

6. Classify the irreducible representations of D_n when $n \geq 4$ is even. Write out the list explicitly when n = 4.

Solution: Let (ρ, V) be a irreducible complex representation of D_n where $n \mid 4$ and $n \geq 4$. Let $v \in V$ be an eigenvector for $\rho(r)$ with eigenvalue λ . So $\rho(r)v = \lambda v$. We observe that as $(\rho(r))^n = 1$, $(\rho(r))^n v = \lambda^n v$ so λ must be an nth root of unity. We now set $w = \rho(s)v$ and we claim that w is also an eigenvector of $\rho(r)$ we eigenvalue λ^{-1} . Indeed,

$$\rho(r)w = \rho(r)\rho(s)v$$

$$= \rho(rs)v$$

$$= \rho(sr^{-1})v$$

$$= \rho(s)\rho(r^{-1})v$$

$$= \rho(s)(\lambda^{-1}v)$$

$$= \lambda^{-1}w.$$

As v and w are eigenvectors of $\rho(r)$, we have that $\rho(r)v, \rho(r)w \in \langle v, w \rangle$. We further see that $\rho(s)w = v \in \langle v, w \rangle$ and $\rho(s)(v) = w \in \langle v, w \rangle$ and thus $\langle v, w \rangle$ is a subrepresentation V. But V is irreducible, so $V = \langle v, w \rangle$.

(i) Suppose $\lambda \neq \lambda^{-1}$. Thus v and w are distinct eigenvectors of $\rho(r)$ that are linearly independent. Thus dim V=2. Fixing the basis (v,w), we have the representation

$$\rho(r) = \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix},$$
$$\rho(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

As stated before, λ is a *n*th root of unity. We get a unique representation ρ_k for $\lambda = e^{2\pi i k/n}$, $k \in \{1, 2, ..., (n-2)/2\}$. For $e^{2\pi i k/n}$ with $k \in \{1, 2, ..., (n-2)/2\}$ we get the same representations as before (taking basis (w, v)).

(ii) We now suppose $\lambda = \lambda^{-1}$, that is $\lambda \in \{1, -1\}$.

(a) Suppose $\lambda=1$. We consider v+w and v-w, both of which cannot be 0. If $v+w\neq 0$, then we see that

$$\rho(s)(v+w) = w + v \in \langle v+w \rangle$$
$$\rho(r)(v+w) = v + w \in \langle v+w \rangle$$

Thus $\langle v+w\rangle$ is a subrepresentation of V, but as V is irreducible we get $V=\langle v+w\rangle$. We see that in this scenario, we have the trivial representation $(\rho(s)=\rho(r)=1)$. Now we suppose that $v-w\neq 0$, then we see that

$$\rho(r)(v - w) = v - w$$

$$\rho(s)(v - w) = -(v - w)$$

and thus by a similar argument to before $\langle v - w \rangle = V$. Here, we have the sign representation: $\rho(r) = (1)$ and $\rho(s) = (-1)$.

(b) Now suppose $\lambda = -1$. We again consider the vectors v + w and v - w. If $v + w \neq 0$,

$$\rho(r)(v+w) = -(v+w)$$

$$\rho(s)(v+w) = v+w,$$

thus $\langle v+w\rangle$ is a subrepresentation of V and thus $V=\langle v+w\rangle$ since V is irreducible. Here we have the representation $\rho(r)=\left(-1\right),\ \rho(s)=\left(1\right)$. Finally, for $v-w\neq 0$, we have

$$\rho(r)(v - w) = -(v - w)$$

$$\rho(s)(v - w) = -(v - w)$$

thus we get the representation $\rho(r) = \rho(s) (-1)$.

Dimension	$\rho(r)$		$\rho(s)$
2	$\begin{pmatrix} e^{\pi i/2} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ e^{-\pi i/2} \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
1	(1)	,	(1)
1	(1)		(-1)
1	(-1)		(1)
1	(-1)		(-1)