

A Reality Check of Vision-Language Pre-training in Radiology: Have We Progressed Using Text?

Julio Silva-Rodríguez, Jose Dolz and Ismail Ben Ayed ÉTS Montréal

Vision-Language Foundation Models

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford * 1 Jong Wook Kim * 1 Chris Hallacy 1 Aditya Ramesh 1 Gabriel Goh 1 Sandhini Agarwal 1 Girish Sastry 1 Amanda Askell 1 Pamela Mishkin 1 Jack Clark 1 Gretchen Krueger 1 Ilya Sutskever 1

400M image-text pairs

Vision-Language Pre-training in Radiology

There is a large core of literature for Chest X-ray (CXR) image understanding driven by the text report, driven by MIMIC dataset + labels in CheXpert and MIMIC extracted by NLP methods.

Table 1: Frontal Chest X-ray datasets assembly. We compiled open-access datasets for training and evaluation. Green-colored categories indicate novel classes not explicitly used during CheXpert and MIMIC pre-training.

Pre-train	#Images I	Reports	#Labels	Categories
CheXpert (C) [13]	_		14	[NoF, EnlCard, Card, LuLes, LuOp, Edema, Cons,
MIMIC (M) [16] PadChest* (P) [3]	154,595 96,201	×	84	PnMo, Atel, PnThor, PleEffu, PleOth, Fract, Dev] (see Supp. Materials)

☐ CONVIRT (MLHC20)	☐ MGCA (NeurIPS22)
☐ GlorIA (ICCV21)	☐ MedKLIP (ICCV23)
☐ MedCLIP (EMNLP 22)	☐ CXR-CLIP (MICCAI23)
☐ CheXZerp (NatureBioEng22)	☐ KAD (NatureCom23)
☐ BioVIL (ECCV22)	☐ SAT (TMI23)

Sentences	Text Labels
1. Hazy widespread opacity which could be compatible with a coinciding pneumonia.	1. [Lung Opacity]
2. Pulmonary nodules in the left upper lobe are also not completely characterized on this study.	2. [Lung Lesion]
 With exception of mild bibasilar atelectasis, the lungs are normally expanded without focal opacity to suggest pneumonia. 	1. [Atelectasis]
2. Heart size is mildly enlarged. 3. There is no pleural effusion or pneumothorax	 [Cardiomelagy] [No Findings]

Image-Text-Label Alignment

UniCL: Unified Contrastive Learning in Image-Text-Label Space (CVPR22)

CLIP Loss

$$\mathcal{L}_{\text{\tiny CLIP}}^{\text{\tiny i2t}}(\theta, \phi, \tau | \mathcal{B}) = -\sum_{i \in \mathcal{B}} \log \frac{\exp(\mathbf{v}_i^T \mathbf{u}_i / \tau)}{\sum_{j \in \mathcal{B}} \exp(\mathbf{v}_i^T \mathbf{u}_j / \tau))}$$

$$\mathcal{L}_{\text{\tiny CLIP}}^{\text{\tiny t2i}}(\theta, \phi, \tau | \mathcal{B}) = -\sum_{j \in \mathcal{B}} \log \frac{\exp(\mathbf{v}_j^T \mathbf{u}_j / \tau)}{\sum_{i \in \mathcal{B}} \exp(\mathbf{v}_i^T \mathbf{u}_j / \tau))}$$

UniCL Loss

$$\mathcal{L}_{\text{\tiny UniCL}}^{\text{\tiny i2t}}(\theta, \phi, \tau | \mathcal{B}) = -\sum_{i \in \mathcal{B}} \frac{1}{|P_{\text{\tiny i2t}}(i)|} \sum_{i' \in P_{\text{\tiny i2t}}(i)} \log \frac{\exp(\mathbf{u}_i^T \mathbf{v}_{i'} / \tau)}{\sum_{j \in \mathcal{T}_B} \exp(\mathbf{u}_i^T \mathbf{v}_j / \tau)}$$

$$\mathcal{L}_{\text{UniCL}}^{\text{\tiny t2i}}(\theta, \phi, \tau | \mathcal{B}) = -\sum_{j \in \mathcal{B}} \frac{1}{|P_{\text{\tiny t2i}}(j)|} \sum_{j' \in P_{\text{\tiny t2i}}(j)} \log \frac{\exp(\mathbf{u}_{j'}^T \mathbf{v}_j / \tau)}{\sum_{i \in \mathcal{X}_B} \exp(\mathbf{u}_i^T \mathbf{v}_j / \tau)}$$

Samples with same labels

Pitfalls on Existing Pre-training Strategies

DLILP: Disentangled Language-Image-Label Pre-training

$$\mathcal{L}_{\text{\tiny DLILP}} = \mathcal{L}_{\text{\tiny Uni}}(\{\theta_f, \theta_p^{\text{\tiny I-L}}\}, \tau^{\text{\tiny I-L}}, \mathbf{W}|\mathcal{B}) + \lambda \cdot \mathcal{L}_{\text{\tiny CLIP}}(\{\theta_f, \theta_p^{\text{\tiny I-T}}\}, \phi, \tau^{\text{\tiny I-T}}|\mathcal{B})$$

Experimental Setting

Table 1: Frontal Chest X-ray datasets assembly. We compiled open-access datasets for training and evaluation. Green-colored categories indicate novel classes not explicitly used during CheXpert and MIMIC pre-training.

Pre-train	#Images	Reports	#Labels	Categories
CheXpert (C) [13]	191,026		14	[NoF, EnlCard, Card, LuLes, LuOp, Edema, Cons,
MIMIC (M) [16]	154,595	×	14	PnMo, Atel, PnThor, PleEffu, PleOth, Fract, Dev]
PadChest* (P) [3]	96,201		84	(see Supp. Materials)
Evaluation	#Train	#Test	#Labels	Categories
CheXpert _{5×200}	1,000	1,000	5	[Atel, Card, Cons, Edema, PleEffu]
$MIMIC_{5\times200}$	1,000	1,000	5	Atel, Card, Cons, Edema, PleEffu
RSNA [33]	8,400	3,600	2	[NoF, PnMo]
SSIM ³	4800	1200	2	[NoF, PnThor]
COVID [4, 30]	1,200	4,000	4	[Normal, Covid, PnMo, LuOp]
NIH-LT [10, 40]	920	920	20	Atel, Card, PleEffu, Inf, mass, Nod, PnMo, noF,
				PnThor, Cons, Edema, Emph, Fib, PleThi, PnPer, PnMed, SubEm, TorAor, CalAor
VinDr [26]	2,000	2,000	5	[NoF, Bro, BrPn, BrLi, PnMo]

^{*}PadChest is used for additional scalability experiments, only when specified.

Not explicitly labeled on pre-training dataset

1. Pre-training using image-text-label datasets.

A. Image-Label.

"A chest x-ray of [CLS]" / There is [CLS]"

B. Image-Text.

2. Transferability

- A. Zero-shot classification.
- B. Few-shot Linear Probing.
- C. Base/New disentanglement.

Transferability Performance

Fig. 2: Scalability of pre-training methods. Linear Probing results using K=16. M: MIMIC; C: CheXpert; P: PadChest.

Fig. 3: Few-shot transferability results using Linear Probing for baseline and proposed pre-training strategies.

Base/New Categories Evaluation

Table 2: Generalization/Transferability results. Performance of different pre-training strategies disentangling known (\mathcal{B}) and new findings (\mathcal{N}).

Pre-training	CheXp MIMIC		SSIM RI	RNSA	RNSA NIH		H_{LT} Vir			Avg.		
	B	B	B	B	B	N	B	N	\mathcal{B}	N	Avg.	
(a) Zero-shot generalization												
CLIP Loss [29]	51.50	-49.70	77.80	63.04	40.98	29.10	68.66	32.20	$58.\overline{61}$	30.65	44.63	
UniCL Loss [46]	45.40	46.60	75.30	90.86	57.66	9.10	73.16	42.20	64.83	25.65	45.24	
Unimodal	42.80	47.40	77.20	94.60	61.70	=	65.80	-	64.92	-	-	
DLILP	49.50	48.60	77.90	93.50	60.80	29.10	54.20	31.10	64.08	30.10	47.09	
(b) Linear pro	bing tra	ansferab	ility (K = 16	<u>)</u>							
CLIP Loss [29]	$\overline{54.50}$	$-49.\overline{60}$	69.10	93.20	$\overline{46.52}$	32.50	$7\overline{1.68}$	38.20	$-64.\overline{10}$	35.35	49.73	
UniCL Loss [46]	53.10	50.90	65.58	93.78	46.50	27.52	71.32	37.54	63.53	32.53	48.03	
Unimodal	54.20	53.70	67.68	94.36	47.16	33.20	75.34	37.44	65.41	35.32	50.37	
DLILP	55.60	54.50	72.74	93.82	50.66	32.24	71.36	40.76	66.45	36.50	51.48	

No Zero-Shot?

☐ MedCLIP (EMNLP22) and MedKLIP (ICCV23) defend the effectivenes of visión-language models to **generalize to novel categories using the COVID disease prediction**.

Name: [Description]

COVID: ["the presence of patchy or confluent band like ground glass opacity or consolidation"]

Table 3: **Zero-shot on COVID**.

Pre-training	2-cl	ass	4-class			
	Name	Desc.	Name	Desc.		
MedCLIP [43]	74.1	78.8	40.5	42.9		
MedKLIP [29]	51.8	82.9	20.2	32.5		
CLIP Loss [29]	$\overline{69.6}^{-}$	74.2^{-}	$\bar{3}2.7^{-}$	48.8		
UniCL Loss [46]	80.5	83.7	45.5	44.8		
Unimodal	-	85.1	-	51.6		
DLILP	77.0	81.6	36.6	50.0		

SoTA Comparison

Table 4: Available vision-language models transferability. Linear probing results (K = 16) for SoTA pre-trained models.

Method	Data	${\rm CheXp}$	MIMIC	SSIM	RNSA	NIH	VinDR	COVID	Avg.
MedKLIP _{ICCV'23} [44]	M	34.30	32.60	64.82	88.18	14.04	26.34	68.04	46.90
$KED_{Nat.Com.'23}[49]$	\mathbf{M}	42.50	40.20	66.04	92.12	19.40	26.18	73.24	51.38
BioVIL _{ECCV'22} [3]	$_{ m M+Pub}$	46.70	43.80	73.68	94.08	21.22	26.20	62.46	52.59
Unimodal	M	51.80	51.30	68.04	93.42	21.20	27.68	77.40	55.83
DLILP	M	53.30	52.90	69.80	93.78	25.34	26.84	77.62	57.08
GlorIA _{ICCV'21} [12]	С	46.00	41.60	66.30	91.16	18.78	23.02	72.92	51.40
Unimodal	C	52.30	48.20	71.52	93.88	24.20	29.14	79.48	56.96
MedCLIP _{EMNLP'22} [43]	M+C	54.40	50.50	69.48	94.20	20.98	27.80	72.30	55.67
CXR-CLIP _{MICCAI'23} [47]	$\mathbf{M} + \mathbf{C}$	52.20	46.10	69.34	92.00	25.90	26.26	76.82	55.52
Unimodal	M+C	54.20	53.70	67.68	94.36	26.20	30.26	81.62	58.29
DLILP	M+C	55.60	54.50	72.74	93.82	26.72	28.98	81.02	59.05
Unimodal	M+C+P	56.00	55.20	73.84	94.00	26.12	28.48	80.86	59.21
DLILP	M+C+P	56.30	53.00	73.56	94.08	25.72	29.28	81.66	59.09

M: MIMIC; C: CheXpert; P: PadChest; PubMed: PubMed text abstracts.

Take-home messages

- Vision-language pre-training is a powerfull tool to leverage large datasets with text supervision.
- Nevertheless, it does not do magic. The zero-shot performance is highly correlated with the class
 proportion present in the pre-training dataset*. No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines
 Multimodal Model Performance (ICLR24), DPFM Workshop.
- In the medical domain, several challenges limit its usability.
 - Challenging expert, fine-grained concepts.
 - Limited data with text supervision: label information is predominant.
- Simple Supervised pre-training is largely competitive.
- We still need better methods to combine fine-grained labels and weak text supervisión.
 - Let's not cheat ourselves : Base/New evaluation.

A Reality Check of Vision-Language Pre-training in Radiology: Have We Progressed Using Text?

Julio Silva-Rodríguez, Jose Dolz and Ismail Ben Ayed

ÉTS Montreal

