## PDE Notes

# Notes on Inequalities and Embeddings

Kiyuob Jung

(in progress)



Department of Mathematics, Kyungpook National University

# Contents

| 1        | Definitions and notations |                             |   |  |
|----------|---------------------------|-----------------------------|---|--|
|          | 1.1                       | Definitions                 |   |  |
| <b>2</b> | Bas                       | sic properties              | 4 |  |
|          | 2.1                       | Change of variable          | 4 |  |
|          | 2.2                       | Coordinates                 | 4 |  |
|          |                           | 2.2.1 Polar coordinates     | 4 |  |
| 3        | Ine                       | qualities                   | 5 |  |
|          | 3.1                       | Power inequalities          |   |  |
| 4        |                           | beddings                    | 6 |  |
|          | 4.1                       | Sobolev Embedding           | 6 |  |
|          |                           | 4.1.1 The case $1$          | 6 |  |
|          |                           | 4.1.2 The case $p = n$      | 7 |  |
|          |                           | 4.1.3 The case $n $         | 7 |  |
|          |                           | 4.1.4 The case $p = \infty$ | 7 |  |

## Preface

Todo.

### Abbreviation

Since these notes is not for formal research, we almost always employ the following abbreviations:

 $\diamond$  TFAE : The following are equivalent

### Notation

Let a set X. We employ the following notations:

 $\diamond \mathbb{R}^n$ : n-dimensional real Euclidean space,  $\mathbb{R} = \mathbb{R}^1$  $\diamond \mathbb{C}^n$ : n-dimensional complex space,  $\mathbb{C} = \mathbb{C}^1$ 

 $\diamond \mathbb{K}$ : either  $\mathbb{R}$  or  $\mathbb{C}$ .  $\diamond \partial X$ : boundary of X.

 $\diamond \ \forall$  : for all.

## Definitions and notations

In this note, we always denote  $x = (x_1, x_2, \dots, x_n)$  to be a point in  $\mathbb{R}^n$ .

## 1.1 Definitions

Here, we collect definitions for averages of a function.

**Definition 1.1.1.** Let  $f \in L^1(U)$  with an open set  $U \subset \mathbb{R}^n$ .

(a) An average of f over set E is

$$\oint_E f dx := \frac{1}{\text{meas}(E)} \oint_E f(x) dx.$$

(b) An average of f over the ball  $B_r(x_0)$  is

$$\int_{B_r(x_0)} f dx := \frac{1}{\alpha(n)r^n} \int_{B_r(x_0)} f(x) dx.$$

(c) An average of f over the sphere  $\partial B_r(x_0)$  is

$$\int_{\partial B_r(x_0)} f dS := \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B_r(x_0)} f(x) dS.$$

As for integrability, TODO.

**Definition 1.1.2.** Let p > 1 and define  $q \in \mathbb{R}$  by

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Then p and q are called *conjugate exponents*.

Remark 1.1.3. A simple calculation shows the following:

(i) 
$$pq = p + q$$
,

(ii) 
$$1 = \frac{p+q}{pq}$$
,

(iii) 
$$(p-1)(q-1) = 1$$
,

(iv) 
$$q = \frac{p}{p-1}$$
.

# Basic properties

## 2.1 Change of variable

**Proposition 2.1.1.** Let  $f: U \to \mathbb{R}$  with an open set  $U \subset \mathbb{R}^n$ .

(a) 
$$\int_{B_r(x_0)} f(ax+b)dx = \frac{1}{r^n} \int_{B_{ar}(x_0+b)} f(x)dx.$$

(b) 
$$f_{B_r(x_0)} f(ax+b)dx = f_{B_{ar}(x_0+b)} f(x)dx$$
.

Proof. TODO

To show (b), let  $\tilde{x} := ax + b$ . Then  $d\tilde{x} = r^n dx$ . Also, since  $|\tilde{x} - b| = |ax| < |a| r$ , we get  $\tilde{x} \in B_{|a|r}(x_0 + b)$ . Hence,

$$\int_{B_r(x_0)} f(ax+b)dx = \frac{1}{\alpha(n)r^n} \int_{B_r(x_0)} f(x)dx$$

$$= \int_{B_{ar}(x_0+b)} f(\tilde{x})d\tilde{x}$$

$$= \int_{B_{ar}(x_0+b)} f(\tilde{x})d\tilde{x}.$$

Remark 2.1.2. Convolution. TODO

### 2.2 Coordinates

#### 2.2.1 Polar coordinates

**Proposition 2.2.1.** Let  $f: \mathbb{R}^n \to \mathbb{R}$  be continuous and summable. Then

(a) 
$$\int_{\mathbb{R}^n} f(x)dx = \int_0^\infty \left( \int_{\partial B_r(x_0)} f(x)d\mathcal{S} \right) dr \quad \forall x_0 \in \mathbb{R}^n.$$

(b) 
$$\frac{d}{dr} \left( \int_{B_r(x_0)} f(x) dx \right) = \int_{\partial B_r(x_0)} f(x) d\mathcal{S} \quad \forall r > 0.$$

**Proposition 2.2.2.** Let  $f: \mathbb{R}^n \to \mathbb{R}$  be continuous and summable. Then

(a) 
$$\int_{B_{\varepsilon}(0)} f(x)dx = \int_{0}^{\varepsilon} \left( \int_{\partial B_{r}(0)} f(x)d\mathcal{S}(x) \right) dr \quad \forall \varepsilon > 0.$$

# Inequalities

## 3.1 Power inequalities

**Theorem 3.1.1.** The following statements holds.

(a)  $1 + x \le e^x \quad \forall x \in \mathbb{R}$ .

(b) (Cauchy's inequality)

$$xy \le \frac{x^2}{2} + \frac{y^2}{2} \quad \forall x, y \in \mathbb{R}$$

(c) 
$$e^{(x+y)/2} < \frac{e^y - e^x}{y - x} \quad \forall x, y \in \mathbb{R} \text{ with } x \neq y.$$

**Theorem 3.1.2.** The following statements holds.

(a) 
$$\left(\frac{1}{e}\right)^{\frac{1}{e}} \le x^x \quad \forall x > 0.$$

(b) 
$$x \le x^{x^x} \quad \forall x > 0.$$

(c) 
$$1 < x^y + y^x \quad \forall x, y > 0$$

(d) 
$$x^y + y^x \le x^x + y^y \quad \forall x, y > 0$$

(e) 
$$x^{ey} + y^{ex} \le x^{ex} + y^{ey} \quad \forall x, y > 0$$

(f) 
$$\frac{1-\frac{1}{x^y}}{y} \le \ln(x) \le \frac{x^y-1}{y} \quad \forall x,y>0$$
. The upper and lower bounds converge to  $\ln(x)$  as  $y\to 0$ .

5

(g) 
$$2 < (x+y)^z + (x+z)^y + (y+z)^x \quad \forall x, y, z > 0.$$

(h) 
$$x^{2y} + y^{2z} + z^{2x} \le x^{2x} + y^{2y} + z^{2z} \quad \forall x, y, z > 0.$$

(i) 
$$(xyz)^{(x+y+z)/3} \le x^x y^y z^z \quad \forall x, y, z > 0$$

**Theorem 3.1.3.** The following statements holds.

(a) (Cauchy's inequality with  $\varepsilon$ )

$$xy \le \epsilon x^2 + \frac{y^2}{4\varepsilon} \quad \forall x, y > 0 , \forall \varepsilon > 0.$$

**Theorem 3.1.4.** The following statements holds.

(a) 
$$(x+y)^p < x^p + y^p \quad \forall x, y > 0, \forall p \in (0,1).$$

(b) 
$$(x+y)^p \le 2^{p-1} (x^p + y^p) \quad \forall x, y \ge 0, \forall p \in [1, \infty).$$

# **Embeddings**

## 4.1 Sobolev Embedding

In this section, we deal with embeddings of diverse Sobolev spaces into others. Given a Sobolev space, it automatically belongs to certain other space, depending on the relationship between the integrability p and the dimension n.<sup>1</sup> There are three cases:

$$p \in [1, n),$$
  
 $p = n,$   
 $p \in (n, \infty].$ 

In particular, the second case p=n is called the *borderline case*. What are we trying to obtain from the Sobolev embedding theory? Broadly speaking, given a Sobolev space  $W^{k,p}$ , imbeddings of  $W^{k,p}$  target two types of Banach spaces: either another Sobolev space  $W^{j,q}$  or Hölder spaces  $C^{j,\alpha}$  for some constants  $j \leq k$ ,  $q \geq p$ , and  $0 \leq \alpha \leq 1$ .

#### **4.1.1** The case $1 \le p < n$

**Definition 4.1.1.** If  $1 \le p < n$ , the Sobolev conjugate  $p^*$  of p is defined by

$$p^* := \frac{np}{n-p}.$$

**Remark 4.1.2.** A simple calculation shows the following:

- (i)  $p^* > p$ ,
- (ii)  $\frac{1}{p^*} = \frac{1}{p} \frac{1}{n}$ ,
- (iii)  $p^* \to \infty$  as  $p \to n$ .

**Theorem 4.1.3.** (Gagliardo-Nirenberg-Sobolev inequality) If  $1 \le p < n$ , then there exists a constant C, depending only on p and n, such that

$$||u||_{L^{p^*}(\mathbb{R}^n)} \le C||Du||_{L^p(\mathbb{R}^n)},$$

for all  $u \in C_c^1(\mathbb{R}^n)$ .

**Theorem 4.1.4.** (Estimates for  $W^{1,p}$ ,  $1 \le p < n$ ) Let U be a bounded, open subset of  $\mathbb{R}^n$ , and suppose  $\partial U$  is  $C^1$ . Assume  $1 \le p < n$  and  $u \in W^{1,p}(U)$ . Then  $u \in L^{p^*}(U)$ , with the estimate

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)},$$

the constant C depending only on p, n, and U.

<sup>&</sup>lt;sup>1</sup>The regularity of domains also affects the inclusion.

### **4.1.2** The case p = n

## **4.1.3** The case n

For convenience as in the notation for the Sobolev conjugate, we write

$$\gamma := 1 - \frac{n}{p},$$

whenever n .

**Theorem 4.1.5.** (Morrey's inequality) If n , then there exists a constant C, depending only on p and n, such that

$$||u||_{C^{0,\gamma}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(\mathbb{R}^n)}$$

for all  $u \in C^1(\mathbb{R}^n)$ .

**Theorem 4.1.6.** (Estimates for  $W^{1,p}$ , n ) Let <math>U be a bounded, open subset of  $\mathbb{R}^n$ , and suppose  $\partial U$  is  $C^1$ . Assume  $n and <math>u \in W^{1,p}(U)$ . Then u has a version  $u^* \in C^{0,\gamma}(\overline{U})$  with with the estimate

$$||u^*||_{C^{0,\gamma}(\bar{U})} \le C||u||_{W^{1,p}(U)},$$

the constant C depending only on p, n and U.

### **4.1.4** The case $p = \infty$

**Theorem 4.1.7.** (Characterization of  $W^{1,\infty}$ ) Let U be open and bounded, with  $\partial U$  of class  $C^1$ . Then  $u: U \to \mathbb{R}$  is Lipschitz continuous if and only if  $u \in W^{1,\infty}(U)$