Corrigé du partiel

mercredi 7 avril

1 Ensembles et applications

Solution de l'exercice 1.

Les réponses sont dans le cours.

Solution de l'exercice 2.

Les réponses sont également dans le cours.

Solution de l'exercice 3.

- **1.(a)** On suppose que $A \subseteq B$. Montrons que $E \setminus B \subseteq E \setminus A$. Soit $x \in E \setminus B$, i.e. $x \notin B$. Si par l'absurde $x \in A$, alors $x \in B$ car $A \subseteq B$. Ainsi, on a $x \notin A$, i.e $x \in E \setminus A$.
- **1.(b)** On procède par double inclusion. Montrons tout d'abord que $E \setminus (E \setminus A) \subseteq A$. Soit $x \in E \setminus (E \setminus A)$, i.e. $x \notin E \setminus A$. Si par l'absurde $x \notin A$, alors $x \in E \setminus A$, absurde, c'est donc que $x \in A$.

Montrons désormais que $A \subseteq E \setminus (E \setminus A)$. Si $x \in A$, alors $x \notin E \setminus A$ (par l'absurde, $x \in E \setminus A$ serait équivalent à $x \notin A$). Or, ceci équivaut à $x \in E \setminus (E \setminus A)$.

- **1.(c)** Procédons par double inclusion. Soit $x \in E \setminus (A \cup B)$, i.e. $x \notin A \cup B$. Montrons tout d'abord que $x \in E \setminus A$, i.e. $x \notin A$. Si par l'absurde $x \in A$, alors $x \in A \cup B$, absurde. De même, on montre que $x \in E \setminus B$. Ainsi, $x \in E \setminus A$ et $x \in E \setminus B$, i.e. $x \in (E \setminus A) \cap (E \setminus B)$.
- Soit $x \in (E \setminus A) \cap (E \setminus B)$. On a alors $x \notin A$ et $x \notin B$. Si par l'absurde $x \in A \cup B$, alors $x \in A$ ou $x \in B$, absurde. Donc $x \notin A \cup B$, i.e. $x \in E \setminus (A \cup B)$.
- **2.(a).i.** Par définition, f est injective si pour toutes parties $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $A \neq A'$, on a $f(A) \neq f(A')$, i.e. $E \setminus A \neq E \setminus A'$.
- **2.(a).ii.** En prenant la contraposée, f est injective si pour toutes parties $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $E \setminus A = E \setminus A'$, on a A = A'.

^{1.} En fait, il suffit de prendre la contraposée de la phrase $si\ x\in A\ alors\ x\in B$ pour obtenir que $si\ x\not\in B$, $alors\ x\not\in A$, on obtient alors une démonstration plus élégante. Cependant, nous n'avons pas travaillé le passage d'une proposition à sa contraposée, ce n'était donc pas exigible ici, et j'écris la correction en conséquence.

- **2.(a).iii.** Montrons que f est injective. Soient $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $E \setminus A = E \setminus A'$. Montrons qu'alors A = A' par double inclusion. Montrons donc que $A \subseteq A'$. On a que $E \setminus A \subseteq E \setminus A'$ puisque ces deux ensembles sont égaux par hypothèse, donc $E \setminus (E \setminus A) \subseteq E \setminus (E \setminus A')$ par la question 1.(a), i.e. $A \subseteq A'$ par 1.(b). Le cas $A' \subseteq A$ est symétrique.
- **2.(b).i.** Par définition, f est surjective si pour tout $B \in \mathcal{P}(E)$, il existe $A \in \mathcal{P}(E)$ telle que f(A) = B, i.e. $E \setminus A = B$.
- **2.(b).ii.** Montrons que f est surjective. Soit $B \in \mathcal{P}(E)$. On pose $A = E \setminus B$. On a alors par 1.(b) que $f(A) = E \setminus A = E \setminus (E \setminus B)$ et donc f(A) = B par 1.(c).

Solution de l'exercice 4.

- **1.** On a $g(\{1,2,3\}) = \{5,6\}.$
- **2.** Supposons que f(X) = Y. Montrons que f est surjective. Soit $y \in Y$. Alors comme f(X) = Y, on a $y \in f(X)$, i.e. il existe $x \in X$ tel que y = f(x). On a donc bien montré que pour tout $y \in Y$, il existe $x \in X$ tel que y = f(x), i.e. f est surjective.
- **3.(a)** Supposons $A \subseteq B$. Montrons que $f(A) \subseteq f(B)$. Soit $y \in f(A)$. Par définition, il existe $x \in A$ tel que y = f(x). Comme $x \in A$ et $A \subseteq B$, on a que $x \in B$. Il existe donc $x \in B$ tel que y = f(x), i.e. $y \in f(B)$.
- **3.(b)** Soit $y \in f(A \cap B)$. Il existe $x \in A \cap B$ tel que y = f(x). On a que $x \in A$ et $x \in B$. Comme alors $x \in A$ et y = f(x), c'est que $y \in f(A)$. Comme aussi $x \in B$ et y = f(x), c'est que $y \in f(B)$. On a donc que $y \in f(A)$ et $y \in f(B)$, i.e. $x \in f(A) \cap f(B)$.
- **3.(c)** Procédons par double inclusion. Soit $y \in f(A \cup B)$. Il existe $x \in A \cup B$ tel que y = f(x). On a que $x \in A$ ou $x \in B$. Si $x \in A$, alors, puisqu'on a aussi y = f(x), c'est que $y \in f(A)$ et donc $y \in f(A) \cup f(B)$. Le cas $x \in B$ est symétrique. Dans tous les cas, on a bien $x \in f(A) \cup f(B)$.
- Soit maintenant $y \in f(A) \cup f(B)$. Alors $y \in f(A)$ ou $y \in f(B)$. Supposons dans un premier cas que $y \in f(A)$. Il existe alors $x \in A$ tel que y = f(x). Comme $x \in A$, on a aussi $x \in A \cup B$. Ainsi, $y \in f(A \cup B)$. Le cas $y \in f(B)$ est symétrique.
- **3.(d)** Supposons que f est injective. Procédons par double inclusion. Par 3.(b), on a $f(A \cap B) \subseteq f(A) \cap f(B)$. Montrons que $f(A) \cap f(B) \subseteq f(A \cap B)$. Soit $y \in f(A) \cap f(B)$. Comme $x \in f(A)$, il existe $a \in A$ tel que y = f(a). De plus, comme $x \in f(B)$, il existe $b \in B$ tel que y = f(b). Ainsi, y = f(a) = f(b). Comme f est injective, on a donc que a = b. On peut alors poser x = a pour obtenir que $x \in A \cap B$ (car $x = a \in A$ et $x = a = b \in B$) et que y = f(x) car y = f(a). Ainsi, on a bien montré qu'il existe $x \in A \cap B$ tel que y = f(x), i.e. $y \in f(A \cap B)$.

Solution de l'exercice 5.

Les réponses sont dans le cours pour 1., 2. et 3. et dans la feuille d'exercice pour 4.

Solution de l'exercice 6.

- **1.(a)** Soit A > 0. Comme \mathbb{R} est archimédien, il existe $N \in \mathbb{N}$ tel que A < N. Soit $n \ge N$. On $a : n \ge N > A$ donc $u_n = n > A$. On a donc bien montré que pour tout A > 0 il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $u_n > A$, i.e. u tend vers $+\infty$.
- **1.(b)** Supposons par l'absurde que v tend $vers +\infty$. On pose A=2. Alors, il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $u_n > A$. En particulier c'est vrai pour l'indice N, on a $u_N > A$, i.e. 1 > 2, absurde.
- **2.(a)** Soit A > 0. Comme u tend $vers + \infty$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $u_n > A$. Soit $n \ge N$. Comme $v_n \ge u_n > A$, on a $v_n > A$. On a donc bien montré que pour tout A > 0 il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $v_n > A$, i.e. v tend $vers + \infty$.
- **2.(b)** Soit A > 0. Comme A/2 > 0, et u tend vers $+\infty$, il existe $N' \in \mathbb{N}$ tel que pour tout $n \geq N'$, on a $u_n > A/2$. Comme également v tend vers $+\infty$, il existe $N'' \in \mathbb{N}$ tel que pour tout $n \geq N''$, on a $v_n > A/2$. On pose $N = \max(N', N'')$. Soit $n \geq N$. Comme $n \geq N'$ par définition du maximum, on a $u_n > A/2$. Comme $n \geq N''$ par définition du maximum, on a $v_n > A/2$. En additionnant ces deux inégalités, on obtient que $u_n + v_n > A/2 + A/2 = A$.
- **3.** Soit $u : \mathbb{N} \to \mathbb{R}$ croissante et non-majorée. Soit A > 0. Comme u n'est pas majorée, il existe $N \in \mathbb{N}$ tel que $u_N > A$. Soit $n \geq N$. Comme u est croissante, et que $N \leq n$, on a $u_N \leq u_n$. Ainsi, $u_n \geq u_N > A$, donc $u_n > A$. On a donc bien montré que pour tout A > 0 il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $u_n > A$, i.e. u tend $vers +\infty$.
- **4.(a)** On dit qu'une suite réelle u tend vers $-\infty$, et l'on note $u_n \xrightarrow[n \to +\infty]{} -\infty$, si : pour tout A < 0, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $u_n < A$.
- **4.(b)** On peut adapter les questions 2.(a) et 2.(b) ainsi : soient $u : \mathbb{N} \to \mathbb{R}$ et $v : \mathbb{N} \to \mathbb{R}$ deux suites réelles.
 - 1. Si u tend vers $-\infty$ et que pour tout $n \in \mathbb{N}$, on a $v_n \leq u_n$, alors v tend vers $-\infty$.
 - 2. Si u et v tendent vers $-\infty$, alors u + v tend aussi vers $-\infty$.

Les preuves sont similaires à celles des questions 2.(a) et 2.(b).

- **4.(c)** On peut adapter la question 3 ainsi : si $u : \mathbb{N} \to \mathbb{R}$ est décroissante et non-minorée, alors u tend vers $-\infty$. La preuve est similaire. On rappelle les définitions suivantes :
 - (i) On dit que u est décroissante si pour tout $n \in \mathbb{N}$ et $m \in \mathbb{N}$ tels que $n \leq m$, on $a u_n \geq u_m$.
 - (ii) On dit que u est non-minorée si pour tout $M \in \mathbb{R}$, il existe $N \in \mathbb{N}$ tel que $u_N < M$.