MACHINE LEARNING

O1 SUPERVISED MACHINE LEARNING: REGRESSION AND CLASSIFICATION

UNE SÉRIE DE FORMATIONS

PARTIE 1: SUPERVISED MACHINE LEARNING: REGRESSION AND CLASSIFICATION

Introduction to Machine Learning Regression with multiple input Classification PARTIE 2 : ADVANCED LEARNING ALGORITHMS

Neural Networks
Neural Networks training
Advice for applying Machine Learning
Decision Trees

PARTIE 3: UNSUPERVISED LEARNING, RECOMMENDERS, REINFORCEMENT LEARNING

Unsupervised Learning Recommander Systems Reinforcement Learning

O1 SUPERVISED MACHINE LEARNING: REGRESSION AND CLASSIFICATION

SUPERVISED VS. UNSUPERVISED ML

What is Machine Learning?
Supervised Learning
Unsupervised Learning
Jupyter Notebooks
Lab: Python and Jupyter Notebooks

REGRESSION MODEL

Linear regression model

Lab: Model representation

Cost function formula

Cost function intuition

Visualizing the cost function

Visualization examples

Lab: Cost function

TRAIN THE MODEL WITH GRADIENT DESCENT

Gradient descent
Implementing gradient descent
Gradient descent intuition
Learning rate
Gradient descent for linear regression
Running gradient descent
Lab: Gradient descent

SUPERVISED VS. UNSUPERVISED MACHINE LEARNING

1 / SUPERVISED VS. UNSUPERVISED MACHINE LEARNING

MINITEL

1 / SUPERVISED VS. UNSUPERVISED MACHINE LEARNING

Unsupervised Learning

Data only comes with inputs x, but not output labels y Algorithm has to find structure (= something interesting in unlabeled data)

<u>Clustering</u> Group similar data points together.

Anomaly detection Find unusual data points.

<u>Dimensionality reduction</u> Compress data using fewer numbers.

Example: Google News

INTRODUCTION TO PYTHON AND JUPYTER NOTEBOOKS

QUESTIONS? SUR UN CONCEPT? UNE IDÉE? SUR UN DÉTAIL DU CODE? (ENVIE D'UNE PAUSE?)

Linear Regression Model

```
Terminology

n | y

n(1) | y(1)

n(m) | y(m)

(training set)
```

```
n = "input" variable / feature
y = "output" variable / "target" variable
m = number of variables in the training set
 w = weight / b = bips
(x(i), y(i)) = single training example
(x(i), y(i)) = ith training example
```


MINITEL

QUESTIONS? SUR UN CONCEPT? UNE IDÉE? SUR UN DÉTAIL DU CODE? (ENVIE D'UNE PAUSE?)

2 / REGRESSION MODEL

Cost Function

Find (w, b) such as $\hat{y}^{(i)} \approx y^{(i)} \forall (x, y)$

Squared error cost function

goal: to minimize
$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\underbrace{fw,b(n^{(i)})}_{\hat{y}(i)} - y^{(i)} \right)^2$$

2 / REGRESSION MODEL

Cost Function Intuition

2 / REGRESSION MODEL

Visualizing the Cost Function -> 3D Surface Plot vs. Contour Plot

MINITEL

QUESTIONS? SUR UN CONCEPT? UNE IDÉE? SUR UN DÉTAIL DU CODE? (ENVIE D'UNE PAUSE?)

TRAIN THE MODEL WITH GRADIENT DESCENT

Gradient Descent

MINITEL

Gradient Descent Algorithm

Repeat until convergence:

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

Simultaneous update:

$$tmp-w=w-a\frac{\partial}{\partial w}J(w,b)$$

$$tmp-b=b-a\frac{\partial}{\partial b}J(w,b)$$

$$w=tmp-w$$

$$b=tmp-b$$

Batch = each step of gradient descent uses all the training examples

3 / TRAIN THE MODEL WITH GRADIENT DESCENT

If α is too small... Gradient descent may be slow.

If α is too large...

Gradient descent may:

- Overshoot, never reach minimum
- Fail to converge, diverge

MINITEL

GRADIENT DESCENT FOR LINEAR REGRESSION

QUESTIONS?

SUR UN CONCEPT ? UNE IDÉE ? SUR UN DÉTAIL DU CODE ? (ENVIE D'UNE PAUSE ?)

MACHINE LEARNING

O1 SUPERVISED MACHINE LEARNING: REGRESSION AND CLASSIFICATION