11. Alternatif Akımda (AC), Devre Teoremleri

11.1. Toplamsallık Teoremi (süperpozisyon)

Bir lineer devredeki her bir bağımsız kaynağın bir elemanın üzerindeki gerilime (veya içinden akan akıma) ayrı ayrı etkilerinin cebirsel toplamı, bütün bağımsız kaynaklar devrede bulunduğundaki etkiye eşittir.

Örnek 11.1 I5 akımını toplamsallık teoreminden yararlanarak bulunuz.

1. Adım

 $(10-j5)\cdot I1 + j5\cdot I2 = 20$ (1) x 1

 $+ j5 \cdot I1 + (5-j5) \cdot I2 = 0$ (2) x -j5/(5-j5)

 $[10-j5+25/(5-j5)]\cdot I1=20 \Rightarrow \underline{I1=1.57 \angle 11.31^{\circ}A} = \underline{1.54+j0.31} A$

I1 değeri (2) numaralı denklemde yerine yazılır.

 $j5 \cdot 1.57 \angle 11.31^{\circ} + (5-j5) \cdot I2 = 0$

 $I2=(7.84\angle101.31^{\circ})/(7.07\angle-45^{\circ})$

 $12=1.11\angle -33.69^{\circ} A = 0.92-j0.62 A$

 $I51=I1-I2 = 0.62+j0.92 A = 1.11 \angle 56.31^{\circ} A$

 $i51(t)=1.11\cdot\sin(\omega_1\cdot t + 56.31^\circ)A$, f=50Hz

9 Ocak 2007 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri (AC) 5

2.Adım

9 Ocak 2007 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri (AC)

 $\underline{152 = -0.84 + j0.95 \text{ A}} = 1.26 \angle 131.57^{\circ} \text{ A}$ $i52(t) = 1.26 \cdot \sin(\omega_2 \cdot t + 131.57^{\circ}) \text{ A, } f = 25Hz$ $\underline{15 = 151 + 152}$ i5(t) = i51(t) + i52(t) $i5(t) = 1.11 \cdot \sin(\omega_1 \cdot t + 56.31^{\circ}) + 1.26 \cdot \sin(\omega_2 \cdot t + 131.57^{\circ})$

9 Ocak 2007 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri (AC)

.

11.2 Thévenin Teoremi

Thévenin Teoremi

- ❖Bir lineer iki uçlu devre, bir gerilim kaynağı, VTh ve ona seri bir empedanstan, ZTh oluşan eşdeğer bir devre ile gösterilebilir.
 - ❖ V_{Th} = iki uç arasındaki açık devre gerilimidir.
 - ❖ Z_{Th} = bütün bağımsız kaynaklar devre dışı bırakıldığında, iki uç arasındaki eşdeğer empedanstır.

9 Ocak 2007 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri (AC)

Örnek 11.2 Aşağıda verilen devrede I8 akımını Thévenin teoremini kullanarak bulunuz.

9 Ocak 2007 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri (AC)

9 Ocak 2007 Y Doç Dr Tun cay UZUN Elektrik Devreleri - Devre Teoremleri (AC)

13

I8 akımının Thévenin eşdeğer devresi kullanılarak bulunması

$$I8 = \frac{V_{Th}}{Z_{Th} + R8}$$

$$I8 = \frac{5.59 \angle 79.7^{\circ}}{(2.5 + j6.25) + 4}$$

$$I8 = 0.5 + j0.36 \text{ A}$$

$$I8 = 0.62 \angle 35.82^{\circ} \text{ A}$$

9 Ocak 2007 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri (AC)

11.3 Norton Teoremi

Norton Teoremi

- ❖ Bir lineer iki uçlu devre, bir akım kaynağı (IN) ve ona paralel bir empedanstan (ZN) oluşan eşdeğer bir devre ile gösterilebilir.
 - I_N = iki uç arasındaki kısa devre akımıdır.
 - $\stackrel{\bullet}{\mathbf{Z}}_{N} = \mathbf{Z}_{Th} = \text{bütün bağımsız kaynaklar devre dışı bırakıldığında, iki uç arasındaki eşdeğer dirençtir.}$

10.3 Maksimum Güç Transferi Teoremi

ZL yük empedansına transfer edilebilecek maksimum güç:

$$P = \frac{V_{Th}^2}{8 \cdot R_{Th}}$$

Y.Doç.Dr.Tuncay UZUN

Elektrik Devreleri - Devre Teoremleri