

CVEN30008 Risk Analysis

Review

COORDINATOR:

Dr Lihai Zhang

CONTACT:

Department of Infrastructure Engineering (Room B307)

lihzhang@unimelb.edu.au

CVEN30008 Risk Analysis

week	Lecture Program		
		Program	
	Monday	Wednesday	(Student Portal)
	4:15pm-5:15pm	4:15pm-5:15pm	,
	PAR-MSD-B117 (Theatre)	PAR-MSD-B117 (Theatre)	
I) Feb	Introduction to	Assignment 1 briefing	
27 Mon – Mar 3 Fri	risk management principles (Lihai Zhang)	(Peter Bishop)	No Tutorial
2) March 6 Mon –10 Fri	Qualitative Risk Analysis (Peter Bishop)	Qualitative Risk Analysis (Peter Bishop)	Tutorial 1 (Form assignment group and Matlab)
3) March 13 Mon –17 Fri	Qualitative Risk Analysis (Peter Bishop)	Qualitative Risk Analysis (Ferenc Birloni)	Tutorial 2 (Risk identification)
4) March	Qualitative Risk Analysis	Qualitative Risk Analysis	Tutorial 3
20 Mon –24 Fri	(Ferenc Birloni)	(Ferenc Birloni)	(Risk score calculation)
5) March	Qualitative Risk Analysis	Quantitative risk analysis	Tutorial 4
27 Mon –31 Fri	(Ferenc Birloni)	(Probability distributions) (Lihai Zhang)	(Assignment 1 presentation)
6) April	Quantitative risk analysis	Quantitative risk analysis	Tutorial 5
3 Mon –7 Fri	(Probability distributions) (Lihai Zhang)	(Confidence intervals) (Lihai Zhang)	(Continuous distributions)
7) April	Quantitative risk analysis	Quantitative risk analysis	Tutorial 6
10 Mon –14 Fri	(Confidence intervals)	(Hypothesis testing)	(Discrete
	(Lihai Zhang)	(Lihai Zhang)	distributions)
April 17 Mon –21 Fri	Easter Break		
8) April	Quantitative risk analysis	Quantitative risk analysis	Tutorial 7
24 Mon -28 Fri ANZAC Day holiday Tuesday 25 April	(Hypothesis testing) (Lihai Zhang)	(Hypothesis testing) (Lihai Zhang)	(Confidence interval)
9) May	Quantitative risk analysis	Quantitative risk analysis	Tutorial 8
1 Mon –5 Fri	(Power and sample size estimation)	(Simulations & Simple linear	Tutorial 7
	(Lihai Zhang)	regression)	(Hypothesis
		(Lihai Zhang)	testing part 1)
10) May	Quantitative risk analysis	Quantitative risk analysis	Tutorial 9
8 Mon –12 Fri	(Engineering reliability)	(Engineering reliability)	(Hypothesis
33,37	(Lihai Zhang)	(Lihai Zhang)	testing part 2)
11) May	Review	Risk Management in Engineering	Tutorial 10
15 Mon –19 Fri	(Lihai Zhang)	projects (Yew-Chin Koay, VicRoads)	(linear regression)
12) May	Risk Management in Engineering	Risk Management in Construction	Tutorial 11
22 Mon –26 Fri	projects	Engineering	(Engineering
	(Jane Lai, Norman Disney & Young)	(Mathew Jonston, John Holland)	Reliability)

Qualitative Risk Analysis

Quantitative Risk Analysis

Risk Management in Engineering Projects

Course Program

- Lecture Program (continued)
 - Qualitative Risk Analysis
 - Assignment 1 Identification of a project within the City of Melbourne that contains a wide range of technical and/or commercial risks
 - Quantitative Risk Analysis
 - Assignment 2 Balancing the risks between slope failure and excavation cost.
 - Risk Management in Engineering Projects
 - Mr Peter Bishop (Senior Project Manager, Melbourne Water)
 - Dr Ferenc Birloni (Director, MW Engineers)
 - Dr Yew-Chin Koay (Senior Bridge Engineer, VicRoads)
 - Mr Mathew Jonston (Risk Manager, John Holland)
 - Mr John O'Connell (Senior Project Manager, Public Transport Victoria)

 Engineering is to carry out a desired function, using materials we do not fully understand, and interpreting physical phenomena that we cannot fully comprehend.

Engineering Design:

 Trying to utilise "Perceived Reality" for the purpose of defining a system in sufficient detail to permit its Realization.

"Perceived Reality":

 Experience of a person. Dependant on time and place. Need not have true resemblance to Reality.

Reality:

Nature of things independent of perception, time and place.

Crisis:

When the perceived reality does not match the reality.

"Majority opinion need not resemble Reality..."

Reality of Natural Systems...

Laws of Nature:

- When A = C and B = C then A = B.
- 1St Law of Thermodynamics Something cannot be made out of nothing – No output without an input.
- 2nd Law of Thermodynamics Input cannot be totally converted to output. There is always waste.

"No matter what we desire or wish for, these represent the Reality, independent of person, place or time. Engineers must always accept and respect this natural reality."

Explicit knowledge – can be expressed as information

 Implicit knowledge - cannot, or has not yet been expressed as information – Risk Analysis

CVEN30008 Engineering Risk Analysis

CVEN30008 Engineering Risk Analysis

What will happen next?

Example

Example (Solution)

$$\mu_{S} = \mu_{P} \times d_{1}$$

$$\sigma_{S}^{2} = (\sigma_{P} \times d_{1})^{2}$$

$$\mu_{R} = \mu_{W} \times d_{2}$$

$$\sigma_{R}^{2} = (\sigma_{R} \times d_{2})^{2}$$

$$\beta = \frac{\mu_Z}{\sigma_Z} = \frac{\mu_R - \mu_S}{\sqrt{\sigma_R^2 + \sigma_S^2}} \qquad p_f = 1 - \Phi(\beta)$$

Final Exam

- Exam duration 2 hours. Reading time 15 minutes
- Section A (short answers)= 60
 - Risk management concepts
- Section B (numerical / calculation) = 60
 - Quantitative risk analysis by using
 - Probability distributions
 - Confidence Intervals
 - Hypothesis Testing
 - Simple Linear Regression
 - Engineering Reliability Analysis
- Total = 120

Final Exam

- Only electronic calculators approved by the School of Engineering (Casio FX82) can be used. No equivalent models of calculators are permitted.
- Statistical tables and formulae sheet will be given in final exam
- MATLAB codes will <u>not</u> be tested.
- Extra consultation hours
 - June 1 (Thursday), 2:00pm-3:00pm (Engineering D207)

Course Program

- Teaching Program
 - Risk Management Standard (AS/NZS ISO 31000:2009)

Establish the context

Identify the risks

Analyse the risks

Evaluate the risks

Treat the risks

Monitoring and review

Risk Analysis using Distributions

Confidence Interval Estimates for Population μ

 An interval estimate provides more information about a population characteristic than does a point estimate. It provides a confidence level for the estimate. Such interval estimates are called confidence intervals.

Best Point Estimate of population mean *µ* is sample mean

Large-Sample Confidence Intervals for Population μ

• For a large (n > 30) random sample from a population

$$\mu = \overline{X} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}$$

α is the proportion of the distribution in the two tails areas outside the confidence interval

Confidence Interval Estimates for Population μ

The general formula for all confidence intervals is equal to

Population mean

 μ = Sample mean X± (Critical Value) × (Standard Error)

Depending on the sampling distribution

Small-Sample Confidence Intervals for Population μ

• For a small $(n \le 30)$ random sample from a population

$$\mu = \overline{X} \pm t_{n-1, \alpha/2} \frac{S}{\sqrt{n}}$$

where t is the critical value of the t distribution with n-1 degrees of freedom and an area of $\alpha/2$ in each tail.

Small-Sample Confidence Intervals for Population μ

- t distribution is symmetrical around its mean of zero, like Z distribution.
- Compared to Z distribution, a larger portion of the probability areas are in the tails.
- As n increases, the t distribution approached the Z distribution.
- t values depends on the degree of freedom.

The Null Hypothesis, H₀

- Begins with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains the "=" sign
- May or may not be rejected

Calculation of *P*-value

- For a large (e.g. n > 30) sample from a population, the
 P-value is an area under the normal curve.
- For a small (e.g. n ≤ 30) sample from a population, the P-value is an area under the Student's t curve with n-1 degrees of freedom.
- The smaller the P-value, the stronger the evidence is against H₀.
- The larger the P-value, the more plausible H_0 becomes.

Large-Sample Tests for a Population mean

Compute the z-score:
$$z = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$$

Compute the **P-value**:

Null Hypothesis	Alternative Hypothesis	P - value
$H_0: \mu \leq \mu_0$	$H_1: \mu > \mu_0$	Area to the right of z
$H_0: \mu \geq \mu_0$	$H_1: \mu < \mu_0$	Area to the left of z
$H_0: \mu = \mu_0$	$H_1: \mu \neq \mu_0$	Sum of the areas in the tails cut off by z and -z

- If the null hypothesis is rejected, then we accept the alternative hypothesis.
- If the null hypothesis is not rejected, then we do not accept the alternative hypothesis.

Hypothesis Testing for the Difference Between Two Means

Estimation of Sample Size and Power

Limitations of Hypothesis Testing

Hypothesis testing involving a significance level α , has two types of errors:

- •Type I error: H_0 is rejected when it is True.
- •Type II error: H_0 is not rejected when it is <u>False</u>.

Estimation of Power

The **Power** is the probability of **avoiding Type II error**:

Power =
$$1 - P(Type II error)$$

Power ≥ 0.8 is generally considered to be acceptable

$$\mu_0 + Z \frac{\sigma}{\sqrt{n}} = \mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

Probabilistic Approaches

Life-cycle deterioration of infrastructures

Engineering Design Office D207

Take the lift in Block C to 2nd floor

CVEN30008 Engineering Risk Analysis

Feedback

Login to the survey site here:

(use your standard University username and password)

https://subjecteval.unimelb.edu.au

also available on mobile devices

Note that this year, the SES has been incentivised - students submitting their surveys are eligible to win one of two \$500 cash prizes!

