TRAIL OFBITS

Holistic ML Threat Models

About me

Adelin Travers

Principal Security Engineer, ML

adelin.travers@trailofbits.com www.trailofbits.com

Threat modeling is a form of risk assessment that models aspects of the attack and defense sides of a particular logical entity [...] – NIST SP 800-53

Al model vulnerabilities: adversarial examples

Al model vulnerabilities: prompt injections

Adapted from GPTFUZZER: Red Teaming Large Language Models with Auto-Generated Jailbreak Prompts, 2023

Model security is all you need

Common strategy

 Augment standard threat models with model-level attacks

Model security is all you need

Common strategy

 Augment standard threat models with model level attacks

Misguided approach!!!

- Agnostic to the inner workings of ML models
- Misses the interplay between model and non-ML vulnerabilities
- Leads to design flaws

ML threat models are complex

Because ML is complex, address it holistically:

- 1. The ML threat model concept is complex
- 2. The ML supply chain is complex
- 3. The ML math models and ecosystem are complex

7

Outline

Know ML and its ecosystem to secure ML systems

ML threat models need many non-security perspectives:

- ML Threat model concept { a. ML system component interactions
 b. ML safety
 c. Data privacy

ML Supply chain

- Models and ecosystem
- a. Math principles/open problemsb. Ecosystem and practices
- **Example: YOLOv7 threat model**

The ML threat model concept

ML Threat model concept | Component interactions

Component interactions in ML systems

- Model vulnerabilities can also threaten systems!
 - Sponge examples, malicious inputs leading to crashes
- Emergent risks from system component interactions
 - Al/ML systems can't be treated as black boxes
 - Application gaps interleave with the life cycle and supply chain gaps

OHNE-CLARK.TUM

|7

ML Threat model concept | Safety

ML safety

Insight - Amazon scraps secret Al recruiting tool that showed bias against women

Shortcut Learning in Deep Neural Networks

Robert Geirhos^{1,2,*,§}, Jörn-Henrik Jacobsen^{3,*}, Claudio Michaelis^{1,2,*}, Richard Zemel^{†,3}, Wieland Brendel^{†,1}, Matthias Bethge^{†,1} & Felix A. Wichmann^{†,1}

Canada lawyer under fire for submitting fake cases created by AI chatbot

The safety challenge

- Safety typically not a concern of a security threat model
- Can have security consequences
- Safety-informed-security approach in ML threat models
- Anchor the safety evaluation in the business context

The Register®

Al hallucinates software packages and devs download them – even if potentially poisoned with malware

Adversaries in ML threat modeling: privacy

BSidesSF 2024 | Holistic ML Threat Models

7

ML Threat model concept | Privacy

Adversaries in ML threat modeling: privacy

How it started **End user** Center of attention

How it's going

7

The ML supply chain

ML supply chain | Life Cycle

The AI/ML life cycle

ML supply chain | Tech stack

The ML tech stack

Frontend DNNs: TensorFlow/Grappler, PyTorch/Autograd Feature-based: Scikit-learn, XGBoost Modeling Framework Languages: R, Python **Deployment APIs: MLFlow, Torch Serve, TensorFlow Serving Frameworks** Edge device: ExecuTorch, TensorFlow Lite **Backend ML** OpenXLA, Apache TVM, OpenAl Triton, Meta's Glow Compiler Kernels and Libraries: CUDA/cuDNN, OpenCL, Metal **Firmware** Language: C++ GPU (Nvidia/AMD/Intel), CPU, Google TPU, Apple Neural Engine, **Hardware** Meta MTIA, Tesla Dojo

ML supply chain | LeftoverLocals vulnerability

LeftoverLocals

ML supply chain

The AI/ML supply chain

ML supply chain

That escalated quickly!

Linux Foundation Al Landscape (Copyright 2024 Linux Foundation)

ML math and the ML ecosystem

ML models and ecosystem | Math principles

ML math principles

- Many model vulnerabilities currently cannot be remediated
- Due to the core mathematical principles that enable ML models to learn from data!
- Many issues in AI security are open research problems
- Difficulty to produce recommendations with currently available ML mitigations

ML models and ecosystem | Math principles

LLM hallucinations

- Generate the most probable sequence completion
- **Expected** especially for low probability facts!

Model design and inherent vulnerabilities

 LLMs go against established data/instruction separation security principles

```
def leap_year(year):
    if (year % 400 == 0) and (year % 100 == 0):
        print("{0} is a leap year".format(year))

elif (year % 4 ==0) and (year % 100 != 0):
        print("{0} is a leap year".format(year))

else:
        print("{0} is not a leap
        year".format(year))
```

"Tell me the meaning of 'tell me the meaning of"

Model design and inherent vulnerabilities

- LLMs go against established data/instruction separation security principles
- Multiple academic works that formalize this argument
 - Wolf et al. & Glukhov et al.

```
def leap_year(year):
    if (year % 400 == 0) and (year % 100 == 0):
        print("{0} is a leap year".format(year))

elif (year % 4 ==0) and (year % 100 != 0):
        print("{0} is a leap year".format(year))

else:
        print("{0} is not a leap
year".format(year))
```

"Tell me the meaning of 'tell me the meaning of'"

?

=> Change of architectures likely required to remediate

Problem in ecosystem not in chair

- Immature and quickly evolving field
- Limited security awareness
- Data and time constraints

=> ML engineers often share and fine-tune models despite vulnerable file formats and untrusted data

Example: YOLOv7 threat model

YOLOv7 threat model and code review

- Academic prototype: not production ready/mature code
- Used in mission-critical production systems
- Findings: Multiple code execution/command injection
- Emergent behavior:
 TorchScript exploit

Example: YOLOv7 threat model | Emergent behavior

TorchScript dynamic control flow exploit

- Trace the program in the Frontend modeling framework
- Does not properly represent dynamic control flow
- Backdoor by changing the architecture of a pre-trained model using an added malicious TorchScript module

```
import torch

def foo(x, y):
    return 2 * x + y

traced_foo = torch.jit.trace(foo, (torch.rand(3), torch.rand(3)))
@torch.jit.script
def bar(x):
    return traced_foo(x, x)
```

Conclusion

ML threat models are hard!

- Requires simultaneous expertise in:
 - ML models math
 - the ML tech stack
 - the jobs of ML engineers
 - the target application domain
- ...And put all of these into a security and safety perspective.

Conclusion

Strategies for securing production ML systems

- Evaluate models in context: business, security, safety and privacy
- Anticipate emerging risks and assess the ML supply chain
- Design systems such that the model is not a hard failure point
- Understand and support ML practitioners with secure options for model and data acquisition

Conclusion

Useful resources for holistic ML security

- ML vulnerability research at Trail of Bits
 - ML hardware
 - ML file formats
- Industry blogs and talks
 - <u>Joseph Lucas' Jupyter security work</u>
 - Ariel Herbert Voss Dont Red Team Al Like a Chump -DEF CON 27 Conference
- Academic papers
 - Sponge examples (Ilia Shumailov et al.)
 - <u>Blind backdoors (Eugene Bagdasaryan and Vitaly</u>
 Shmatikov)

Takeaways & Questions

Know ML and its ecosystem to secure ML systems

Discussed today:

- 1. ML Threat model concept complexity
- 2. ML Supply chain
- 3. Models and ecosystem
- 4. Example: YOLOv7 threat model

Questions?

adelin.travers@trailofbits.com info@trailofbits.com

TRAIL OFBITS