

半导体一体化指纹模组 TM1026M 系列产品规格书

上海图正信息科技股份有限公司 2018 年 8 月 31 日 Version3.0

目录

1	产品概述	1
2	技术参数	1
	2.1 性能参数	1
	2.2 电气参数	1
3	产品外观及结构尺寸	2
4	通讯接口定义	2
5	低功耗参考设计	3
6	指纹模组工作流程	4
	附录一:指纹模块快速通讯	5
	附录二: 客户使用说明	6

1产品概述

贝尔赛克 TM1026M 系列半导体一体化指纹模组,主要由公司具有自主知识产权的指纹 传感器 TS1026M,指纹芯片 TA0702 和指纹算法等组成。

自主知识产权技术可为客户提供高效、灵活的二次开发支持,充分满足客户需求且无知识产权纠纷。同时集成化芯片也大大减小了指纹模组的体积。产品结构简单,模组化设计,提高了产品的稳定性和一致性。TM1026M 系列半导体指纹模组应用提供了一个可用外部控制部分(上位机)通过串口,按照 TM1026M 系列一体化程序通信协议交互通信,来实现一个指纹处理模组功能的平台。方便进行二次开发。

2 技术参数

2.1 性能参数

像素	160×160
分辨率	508DPI
芯片封装	12mm *12mm *0.6mm
模组封装	33mm *20mm * 6.6mm
比对速度	1:1<4ms/指纹
启动时间	<140ms
采像时间	<150ms
拒真率 (FRR)	<1%
误识率(FAR)	<0.0001%
存储容量	标配 100 枚指纹数据
使用寿命	1,000,000 次

2.2 电气参数

项目	最小	典型	最大	单位
触控供电电压	2.5	3.3	5.5	V
指纹供电电压	2.7	3.3	3.6	V
工作电流	20	30	45	mA
静态功耗	5	7	10	uA
工作温度	-20	-	70	$^{\circ}$
工作湿度 (无凝露)	40		85	%RH
存储温度	-40	-	85	$^{\circ}$
存储湿度 (无凝露)	-	-	85	%RH
ESD 非接触放电	-	-	15K	V
ESD 接触放电	ı	-	8K	V

说明:

工作电流: 指纹模组处于采像状态下的电流, 比如注册过程及比对过程;

静态功耗:指纹模组的指纹供电电压为 0 电平而触控供电电压为 3.3V 状态下的电流;

3产品外观及结构尺寸

图 2.1 产品外观

图 2.2 产品结构尺寸(误差±0.1)

4通讯接口定义

通讯接口:标准 UART TTL 电平

波特率: 默认 115200 bps, 1 起始位, 1 停止位, 3.3V TTL 电平

连接器: MX1.25-6P 卧贴

Pin 脚定义: (线序见图 2.1)

Pin	定义	说明
1	V_TOUCH	3.3V 触摸供电(须一直供电)
2	TOUCH_OUT	唤醒 IRQ (ture:1, flase:0)
3	VCC	指纹模组 VCC
4	TX	UART_TX(指纹模组->MCU)
5	RX	UART_RX(MCU->指纹模组)
6	GND	GND

说明: 串口为 3.3V 的 TTL 电平, 接电脑需要电平转换。V_TOUCH 须一直供电, TOUCH_OUT 为触控输出,TOUCH_OUT 电压与 V_TOUCH 一致,默认的 1 (V_TOUCH) -检测真,0(0 电平)-检测假。当指纹头处于采像状态时,TOUCH_OUT 检测真(此时触控不响应指纹的按压),退出采像状态后,TOUCH_OUT 可响应指纹的按压;比如发送注册指令后,指纹头处于采像状态,TOUCH_OUT 检测真。

5 低功耗参考设计

通过控制指纹模组 VCC 电源工作与否来实现降低模组功耗,电路如下图所示: VIN 为客户端 3.3V 电压,VCC 为指纹模组 VCC,CTRL 为客户端 MCU I/O 控制信号; CTRL 控制指纹模组 VCC 的开、关。

图 5.1 3.3V 电源控制电路

6 指纹模组工作流程

C. 流程: 有两种方式,客户端 MCU 固定延迟 150ms 及"附录一"描述的指纹模块快速启动。

附录

附录一: 指纹模块快速通讯

```
#define TA_FAIL 0x01
#define TA_SUCCESS 0x00
int16 Api_HandShakeFgpModule(uint32 timeov)
    int32
           time;
    int16
           result=TA_FAIL;
    uint8
           cmd_buf[8],data_buf[8];
   time=timeov;
    Make_OneCmd(cmd_buf,0xfe,0,0);
                                 // 在 cmd buf 内生成 0xfe 命令的命令序列
                                  // 规定的时间内没获取到即退出
    while(time>0)
    {
   Api_Send_Data(cmd_buf,8,0); // 串口发送命令,此处是 10ms 循环发送
    result=Api_GetCommand(data_buf,10); // 获取命令反馈,超时 10ms 一次
    if(result==TA_SUCCESS)
        break;
    time-=10;
    }
    if(result!=TA_SUCCESS)
        return -result;
                                       // Oxfe 命令已有返回,清空底层 BUF
    Api_Clr_Buf();
                                       // 生成第二个命令 0xfd
    Make_OneCmd(cmd_buf,0xfd,0,0);
                                       // 发送 0xfd 命令序列
    Api Send Data(cmd buf,8,0);
    time=30;
    while(time--)
    {
        result=Api_GetCommand(data_buf,1); // 每隔 1ms 获取一次命令
    if(result==TA_SUCCESS&&data_buf[1]==0xfd&&data_buf[4]==TA_FAIL)
                                   // 判断命令 0xfd 是否正确返回
        break;
   }
    if(time)
        return TA_SUCCESS;
                                       // 握手成功退出
    else
                                       // 握手失败退出
        return TA_FAIL;
}
```

函数调用机理:

本方法基于以下基本原理: 图正模块对没实现的命令简单返回 TA_FAIL 命令序列 所以,先循环(间隔 10ms) 发送不支持的命令 0xfe (0xf5 0xfe 00 00 00 0xfe

0xf5),那么模块如果当前处在不可响应状态(包括上电未初始化、正在采集图像、算法运行等),因此指纹模块的底层串口缓冲区就会缓冲很多个0xfe命令。而控制方可以设置一个超时连续发送0xfe,并一直等待0xfe的返回,不返回继续发送。

当收到第一个 0xfe 的返回时,证明模块进入了正确的命令响应序列。

正常情况下,后面会收到很多个前面被模块缓冲,但是又没来得及响应的 0xfe 命令返回。

此时,发送一个(仅一个)有别于 0xfe 命令的命令序列 0xfd (0xf5) 0xfd 00 00 00 0xfd 0xf5 0xfd 0xfd

此方法可用在上电初始化握手,也可用在退出当前采集状态的握手,也可在任何时 候不知道指纹模块当前状态时做一次握手的调用。

附录二: 客户使用说明

a. 客户端 MCU 串口使用说明

客户端 MCU 软件统一调整遵循"指纹 VCC 上电后,配置 MCU 串口正常模式;指纹 VCC 掉电前,设置 MCU 串口为输入高阻态,以防止客户端 MCU 馈电给指纹模组(以掉电后指纹 VCC 电压是 0 电平为基准)"。

b. 协议使用说明

指纹头执行采像命令(注册命令、比对命令)过程中,不能对指纹头进行断电操作;若客户端 MCU 因流程要求提前退出采像流程,则使用图正命令打断,打断成功后方可给指纹头掉电。

比如,手指唤醒系统后,系统发送"0x0C"比对命令,检测到 3 秒钟没有指纹输入,给指纹头先发送打断(任一非有效 8byte 标准格式命令,如"0xf5 0xfe 00 00 00 00 0xfe 0xf5")命令,然后给指纹头掉电;不能在没有退出采像流程而直接掉电。

c. 指纹头采用 LDO 单独供电

指纹 VCC 与客户端 MCU 共用一路电压,由于指纹启动电流较大,会将客户端 MCU 的电压 拉低,导致客户端 MCU 复位。

版本历史记录

版本号	更改内容	日期	责任人
V1.0	撰写	2017年6月8日	Lucas
V2.0	修改存储容量	2018年7月4日	Kevin
V3.0	修改产品外观图片	2018年8月31日	Tina