Examen Física 1r Batxillerat

1. (3 pts)

Considereu el sistema de la figura. La massa m_1 = 1,5 kg es troba inicialment en repòs, en contacte amb l'extrem d'una molla ideal de constant recuperadora k = 500 N/m, comprimida 30 cm. La massa m_2 = 1,5 kg també es troba inicialment en repòs, a una distància de 2 m de m_1 , a la part inferior d'una pista semicircular de radi R = 0,25 m. Al tram horitzontal que separa m_1 de m_2 , el coeficient de fregament és ∞ = 0,2, mentre que a la pista semicircular el fregament és negligible.

Quan la molla es deixa anar, es descomprimeix i impulsa la massa m_1 , que se separa de la molla i xoca elàsticament amb m_2 . Calculeu:

- a) La velocitat de m₁ un instant abans d'entrar en contacte amb m₂.
- b) Les velocitats de les dues masses un instant després d'entrar en contacte.
- c) L'acceleració centrípeta de m₂ quan arriba a la part més alta de la pista circular (punt B).

2. (2 pts)

Una massa de 2 kg es deixa anar per un pla inclinat de 30°. Quan ha recorregut una distància de 4 m arriba al final del pla inclinat i xoca amb una molla

sense massa i de constant elàstica 100 N/m. Si el coeficient de fricció entre la massa i el pla inclinat és de 0'2, trobeu:

- a) La compressió màxima de la molla.
- b) Fins a quin punt tornarà a pujar de nou pel pla inclinat, després de deixar la molla? (Suposeu que en el pla horitzontal no hi ha fricció.)

3. (2 pts)

Tenim una molla col·locada verticalment amb un extrem fix a terra. Deixem caure una massa de 2,50 kg des d'una altura d'1 m respecte a l'extrem lliure de la molla, i la molla experimenta una compressió màxima de 15 cm. El fregament amb l'aire és negligible.

- L'energia cinètica amb què la massa impacta contra l'extrem lliure de la molla val:
- 2. La constant elàstica de la molla val: