Introdução a Machine Learning Conceitos, algoritmos e exemplos práticos

Cristopher Freitas Douglas Moura Eduardo Gomes

Laboratório de Computação Científica e Análise Numérica (LaCCAN) Universidade Federal de Alagoas (UFAL)

I Curso de Capacitação do LaCCAN

Conteúdo Programático

- Introdução
- 2 Principal Component Analysis (PCA)
- 3 Support Vector Machine (SVM)
- 4 Decision Tree
- Conclusão

Introdução

Os seguintes pré-requisitos são necessários:

- Python v3.6 ou similar.
- Instalar a biblioteca scikit-learn.

Configurando um ambiente virtual:

- \$ mkdir machine-learning && cd machine-learning
- \$ virtualenv -p python3 .env
- *\$ source .env/bin/activate*
- \$ pip install sklearn

É possível utilizar um interpretador *online*: https://repl.it/languages/python3

Introdução

Conhecendo o primeiro dataset

Figura: Conjunto de dados Iris.

Introdução

```
from sklearn import datasets

iris = datasets.load_iris()

print(list(iris.keys()))
print(iris.data)
print(iris.data.shape)
print(iris.feature_names)
print(iris.target_names)
```

Algoritmo 1: Primeiros passos.

Objetivo desta aula é fornecer o conhecimento teórico e prático para trabalhar com PCA no contexto de *machine learning*.

Ao final desta aula, você será capaz de:

- Realizar uma redução de dimensionalidade com PCA.
- Comprimir e recuperar dados com pouca perda de informações.
- Visualizar dados multivariados.

Principal Component Analysis (PCA) Motivação

- Muitos problemas de machine learning envolvem instâncias contendo milhares ou até milhões de atributos.
- Isso não apenas torna o treinamento extremamente lento, como também torna muito mais difícil encontrar uma boa solução.
- Principal Component Analysis (PCA) é de longe o algoritmo de redução de dimensionalidade mais popular.

Principal Component Analysis (PCA) Motivação

- Criada em 1901 pelo famoso estatístico Karl Pearson.
- Simplificação dos dados com pouca perda de informações.
- ullet Informação o Variância

Principal Component Analysis (PCA) Motivação

 To maximize the variance of the projected data on the certain dimension.

 To minimize the mean squared distance between the data and their projections.

SSE : Sum or squared errors

Figura: Princípios do PCA.

Como calcular o PCA - Pré-processamento dos dados

• Calcula-se a média (μ_j) de cada atributo x_j :

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)} \tag{1}$$

• Centraliza-se os dados na origem¹:

$$x_j = x_j - \mu_j \tag{2}$$

Como calcular o PCA

```
from sklearn import datasets
2 import numpy as np
 import matplotlib.pyplot as plt
4 from sklearn.utils.extmath import svd flip
5
 iris = datasets.load iris()
* # matriz (150 \times 4).
y X = iris data
10
# centraliza os dados na origem.
```

Algoritmo 2: Redução de dimensionalidade.

Como calcular o PCA - Algoritmo

 Após a normalização dos dados, calcula-se a matriz de covariância.

$$\Sigma = \begin{bmatrix} var(x_1) & cov(x_1, x_2) & \dots & cov(x_1, x_n) \\ cov(x_2, x_1) & var(x_2) & \dots & cov(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ cov(x_n, x_1) & cov(x_n, x_2) & \dots & cov(x_n, x_n) \end{bmatrix}$$
(3)

 Covariância (ou variância conjunta) fornece um indicativo de inter-relação entre duas variáveis.

Como calcular o PCA - Algoritmo

A covariância é calculada da seguinte forma:

$$cov(x_i, x_j) = \frac{(x_i - \mu_i) \times (x_j - \mu_j)}{m - 1} \tag{4}$$

A matriz pode ser calculada de forma matricial:

$$\Sigma = \frac{(X^T \cdot X)}{m - 1} \tag{5}$$

Como calcular o PCA

```
# numero de linhas — 1.

m = X_centered.shape[0] — 1

# calcula a matriz de covariancia.

sigma = np.dot(X_centered.T, X_centered) / m

# calculo da matriz de covariancia com numpy.

sigma = np.cov(X_centered.T, rowvar=False)
```

Algoritmo 3: Redução de dimensionalidade.

Como calcular o PCA - Algoritmo

Decomposição da matriz de covariância:

$$[U, S, V] = SDV(\Sigma) \tag{6}$$

- SDV (Singular Value Decomposition) é uma técnica de fatoração que decompõe a matriz em um produto de três matrizes.
- A matriz V^T contém todas as componentes principais.
- Utilizaremos as k primeiras componentes principais.
- Os dados serão projetados no novo espaço \mathbb{R}^k : $Z = X \cdot V^T$

Como calcular o PCA

```
21 # decomposicao em valores singulares.
U, s, V = np.linalg.svd(sigma)
23
24 # correcao da saida do svd.
U, V = svd flip(U, V)
26
27 # projecao dos dados utilizando os autovetores.
Z = np.dot(X centered, V.T[:, 0:2])
29
30 # visualização em 2D.
|D| plt.scatter(Z[:,0], Z[:,1], c=iris.target)
plt.show() # ou plt.savefig("pca.png")
```

Algoritmo 4: Redução de dimensionalidade.

Como calcular o PCA - Algoritmo

Figura: Visualização em 2 dimensões.

Como calcular o PCA - Número de componentes principais

Como escolher o valor de k?

- No geral, 2 ou 3 dimensões em problemas de visualização.
- Em problemas de compressão gostaríamos preservar a variância dos dados.
- O valor é escolhido de acordo com o percentual de variância a ser preservado.

Exemplo: Um valor de k suficiente para preservar 95% da variância do *training set*.

```
from sklearn.decomposition import PCA
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt

digits = load_digits()
X = digits.data

pca = PCA(n_components = .99)

Z = pca.fit_transform(X)
```

Algoritmo 5: Comprimindo dados com o PCA.

```
digits_2 = pca.inverse_transform(Z)

plt.subplot(121)
plt.imshow(digits.images[0], cmap=plt.cm.gray_r)

plt.subplot(122)
restaurado = digits_2[0].reshape(8, 8)
plt.imshow(restaurado, cmap=plt.cm.gray_r)

plt.show()
```

Algoritmo 6: Comprimindo dados com o PCA.

Figura: Voilá!

PCA para compressão de dados

Observe o valor dos seguintes atributos:

- pca.components_.shape
- pca.explained_variance_ratio_
- Tente somar a taxa de variância

Foi possível reduzir 23 atributos e preservar 99% da variância!

```
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('Numero de componentes')
plt.ylabel('Variancia preservada')
plt.ylim(0,1)

plt.show()
```

Algoritmo 7: Variância explicada.

Figura: Variância em função do número de componentes.

PCA para compressão de dados- Exercícios

Exercitando a mente:

- Quais são as principais motivações para reduzir a dimensionalidade de um conjunto de dados? Quais são as principais desvantagens?
- 2 Como você pode avaliar o desempenho de um algoritmo de redução de dimensionalidade no seu conjunto de dados?
- Se Faz algum sentido encadear dois algoritmos de redução de dimensionalidade diferentes?

Objetivo desta aula é explicar o conceito de *Support Vector Machines* e como utilizá-lo para realizar classificações.

Ao final desta aula, você será capaz de:

- Realizar classificações lineares e não-lineares com SVM.
- Ter uma noção básica de como trabalhar com kernels.

Support Vector Machine (SVM) Motivação

- Support Vector Machines (SVM) é um método de aprendizado supervisionado.
- Capaz de executar classificação linear ou não-linear, regressão e detecção de outliers.
- Muito poderoso e amplamente utilizado tanto na indústria quanto na academia:
- Detecção de face, categorização de textos e aplicações em Bioinformática.

Support Vector Machine (SVM) Motivação

Figura: Ideia por trás do Support Vector Machine.

Support Vector Machine (SVM) Motivação

A margem de um classificador é definida como a menor distância entre os exemplos do conjunto de treinamento e o hiperplano utilizado na separação desses dados em classes.

• Qual margem é melhor? Por quê?

Classificação de margem rígida

O modelo de classificação irá predizer a classe de uma nova instância $x^{(i)}$ computando uma função de decisão:

$$\hat{y}^{(i)} = \begin{cases} +1, & \text{se } w^T \cdot x^{(i)} + b \ge +1 \\ -1, & \text{se } w^T \cdot x^{(i)} + b \le -1 \end{cases}$$
 (7)

Que pode ser reescrita como:

$$\hat{y}^{(i)}(w^T \cdot x^{(i)} + b) \ge +1 \tag{8}$$

Classificação de margem rígida

Figura: O tamanho da margem é $2 \cdot \frac{1}{||w||}$.

Classificação de margem rígida

Função Objetivo:

$$\underset{w,b}{\mathsf{Minimize}} \qquad \frac{1}{2} \cdot ||w||^2 \tag{9}$$

Sujeito a

$$\hat{y}(w^T \cdot x^{(i)} + b) \ge 1 \qquad \forall i = 1, ..., m$$
 (10)

Se impusermos estritamente que todas as instâncias estejam fora da margem, isso é chamado de classificação de margem rígida.

Classificação de margem rígida

```
from sklearn import datasets
 from sklearn.svm import SVC
 iris = datasets.load iris()
[X = iris.data[:, (2, 3)]]
7 y = iris.target
9 setosa or versicolor = (y == 0) \mid (y == 1)
X = X[setosa or versicolor]
y = y[setosa or versicolor]
12
svm clf = SVC(kernel="linear", C=float("inf"))
14 svm clf. fit (X, y)
```

Algoritmo 8: SVM com margem rígida.

Classificação de margem rígida

```
# largura e comprimento
x_test = [[2.5, 0.8]]

# vamos predizer o valor de y
h = svm_clf.predict(x_test)

# qual e a classe de x_test
print("Qual e a classe", iris.target\_names[h])
```

Algoritmo 9: SVM com margem rígida.

Classificação de margem rígida

Figura: SVMs são sensíveis a outliers.

Classificação de margem rígida

Figura: SVMs são sensíveis a feature scales.

Classificação de margem suave

Na classificação de **margem suave** o objetivo é encontrar um *trade-off* entre o tamanho da margem e o limite de violações.

Função Objetivo:

$$\underset{w,b,\zeta}{\mathsf{Minimize}} \qquad \frac{1}{2} \cdot ||w||^2 + C \cdot \sum_{j=1}^{m} \zeta^{(i)}$$
 (11)

Sujeito a

$$\hat{y}(w^T \cdot x^{(i)} + b) \ge 1 - \zeta^{(i)} \qquad \forall i = 1, ..., m$$
 (12)

$$\zeta^{(i)} \ge 0 \tag{13}$$

Classificação de margem suave

```
from sklearn import datasets
2 from sklearn.model selection import
     train test split
3 from sklearn.svm import SVC
4 from sklearn metrics import confusion matrix
5 from sklearn metrics import plot confusion matrix
6 import matplotlib.pyplot as plt
8 iris = datasets.load iris()
X = iris.data[:, (2, 3)]
11 y = iris.target
```

Algoritmo 10: SVM com margem suave.

Classificação de margem suave

```
virginica or versicolor = (y = 2) \mid (y = 1)
X = X[virginica or versicolor]
y = y[virginica or versicolor]
15
svm clf = SVC(kernel="linear", C=100)
17
X train, X test, y train, y test = train test split
     (X, y, test size = 0.3, random state = 0)
19
20 svm clf.fit(X train, y train)
21
_{22} h = svm clf.predict(X test)
```

Algoritmo 11: SVM com margem suave.

Classificação de margem suave

Algoritmo 12: SVM com margem suave.

SVM com Kernel

Exemplos de funções Kernels comumente utilizadas:

Linear
$$K(a,b) = aT \cdot b$$

Polinomial $K(a,b) = (\gamma a^T \cdot b + r)^d$
Gaussiano $K(a,b) = \exp(-\gamma ||a-b||^2)$
Sigmoid $K(a,b) = \tanh(\gamma a^T \cdot b + r)$

Outras como string, chi-quadrado, intersecção de histograma etc.

SVM com Kernel

Figura: Funções mais complexas para realizar separações.

Classificação Multiclasse

- O SVM é aplicável diretamente somente para problemas binários (duas classes).
- Estratégias de redução: one-versus-all e one-versus-one.
- Por sorte, bibliotecas, como sklearn, já implementam a classificação multiclasse.

Exercícios

Exercitando a mente:

- Qual é a ideia fundamental por trás do SVM?
- Por quê é importante que os atributos estejam na mesma escala?
- Em quais destes datasets posso utilizar SVM?
 - () Linearmente separáveis.
 - () Não-linearmente separáveis.
 - () Dataset composto de milhões de instâncias.

Objetivo desta aula é apresentar os conceitos fundamentais para trabalhar com o algoritmo *decision tree*.

Ao final desta aula, você será capaz de:

- Treinar, visualizar e realizar classificações utilizando árvores de decisão.
- Realizar tarefas de regressão.

Decision Tree Motivação

- Decision Tree é um modelo hierárquico para aprendizado supervisionado, pode ser usado para classificação e regressão.
- Fornece uma interpretação fácil das regras que levaram à classificação.
- Cada nó folha possui um rótulo de saída, que no caso de classificação é o código da classe e em regressão é um valor númerico.

Treinando e visualizando uma árvore

```
from sklearn datasets import load iris
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.tree import export graphviz
 iris = load iris()
 X = iris.data[:, 2:] # petal length and width
8 y = iris.target
10 tree clf = DecisionTreeClassifier(max depth=2)
11 tree clf. fit (X, y)
```

Algoritmo 13: Criando um classificador.

Treinando e visualizando uma árvore

```
export_graphviz(
    tree_clf,
    out_file="iris_tree.dot",
    feature_names=iris.feature_names[2:],
    class_names=iris.target_names,
    rounded=True,
    filled=True
```

Algoritmo 14: Visualizando a árvore.

Treinando e visualizando uma árvore

- O algoritmo anterior exporta a árvore de decisão para o formato DOT.
- É possível converter para outros formados, como PNG ou PDF.
- Para converter em formato PNG:

Terminal de comandos

\$ dot -Tpng iris_tree.dot -o iris_tree.png

Treinando e visualizando uma árvore

Figura: Árvore de decisão.

Treinando e visualizando uma árvore

Vamos tentar classificar as seguintes flores:

- (a) Petal Length = 4.50 Petal width = 1.50
- (b) Petal Length = 1.50 Petal width = 0.43
- (c) Petal Length = 6.20 Petal width = 2.24

Treinando e visualizando uma árvore

Figura: Limites de decisão da árvore de decisão.

Treinando e visualizando uma árvore

```
print(tree_clf.predict_proba([[4.5, 1.5]]))
print(tree_clf.predict_proba([[1.5, 0.43]]))
print(tree_clf.predict_proba([[6.2, 2.24]]))
```

Algoritmo 15: Estimando probabilidades.

Medidas de Impureza

Calculando o índice Gini:

$$G_i = 1 - \sum_{k=1}^{n} P_{i,k}^2 \tag{14}$$

 $p_{i,k}$ é a taxa de instâncias da classe k nas instâncias de treino do i-ésimo nó.

Por exemplo,

$$1 - (0/54)^2 - (49/54)^2 - (5/54)^2 \approx 0.168.$$
 (15)

Medidas de Impureza

Calculando a entropia:

$$H_{i} = -\sum_{k=1}^{n} p_{i,k} log(P_{i,k}) \qquad \forall p_{i,k} \neq 0$$
 (16)

Por exemplo,

$$-\frac{49}{54}log(\frac{49}{54}) - \frac{5}{54}log(\frac{5}{54}) \approx 0.31$$

Medidas de Impureza

Qual medida de impureza utilizar?

- A impureza de Gini é um pouco mais rápida de se calcular.
- Tende a isolar a classe mais frequente em seu próprio ramo da árvore.
- Por outro lado, a entropia tende a produzir árvores um pouco mais balanceadas.

Medidas de Impureza

- Scikit-Learn implementa o algoritmo CART (classification and regression tree)
- Função de custo:

$$j(k, t_k) = \frac{m_{left}}{m} G_{left} + \frac{m_{right}}{m} G_{right}$$
 (17)

Onde:

 $G_{left/right}$ medida de impureza do subconjunto left/right. $m_{left/right}$ número de instâncias no subconjunto left/right.

Medidas de Impureza

Figura: Overfitting.

Conclusão

Fim!

Conclusão de Concl

Material de referência:

- Leitura recomendada:
 Ethem Alpaydin. Introduction to Machine Learning (2014).
- Tutoriais:

```
https://scikit-learn.org/stable/tutorial
https://github.com/ageron/handson-ml
```

• Curso do Coursera: https://www.coursera.org/learn/machine-learning/