NAME:	SIGNATURE:
P525/1 Chemistry	

MIDLAND HIGH SCHOOL

UGANDA ADVANCED CERTIFICATE OF EDUCATION

MID TERM EXAMINATION

CHEMISTRY

(PRINCIPAL SUBJECT)

PAPER 1

2 HOURS 45 MINUTES

INSTRUCTIONS TO CANDIDATES:

- Answer all questions in section **A** and **six** questions in section **B**.
- ➤ The questions must be answered in the space provided.
- ➤ The periodic table is provided at the back of the paper.
- Mathematical calculators (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.
- > Illustrate your answers with equations where applicable.
- ➤ Where necessary, use:

2³/₄Hours

Gas constant R=8.314J/mol/k, standard pressure= $101325Nm^2 = 760mmHg$, 1 mole of a gas occupies a volume of $22.4dm^3$

						For e	exami	iner's	use	only						
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.

SECTION A (46 MARKS) (Attempt all questions) 1. a) What is meant by the term standard enthalpy of neutralization (01mark) b) Explain why the value for heat of neutralization of a cyanic acid base is not a constant value of around -57kjmol-1. (02marks) c) 250cm³ 0f 0.40M sodium hydroxide solutions were added to 250cm³ of 0.40M hydrochloric acid in a calorimeter of 500g and specific heat capacity of 400jkg-¹k-¹. All the three were initially at 17.05°c and the temperature rose to 19.55°c. (Assuming that the specific heat capacity of the two solutions is 4.2jg-1k-1) calculate the standard enthalpy of neutralization (04marks)

2.	Propanone car	n be prepared	from propan-1-ol	l according the schem	e below.
----	---------------	---------------	------------------	-----------------------	----------

CH₃CH₂CH₂OH \longrightarrow CH₃CH=CH₂ CH_3CHCH_2CI CH₃COCH₃ CH_3COCH_3 $CH_3C = CH$

Identify the reagent A, B, C and D and state the condition(s) for the reaction in each case. (06marks)

	Reagent	Condition(s)
A		
В		
c		
D		

3. An iron chloride contains 34.5% iron and 65.5% chlorine. When 0.6 of the chloride of iron were strongly heated in a sealed tube of volume 200cm³ to a temperature of 600k, the pressure exerted was found to be 4.6x10⁴pa.

a) Calculate the molecular formula of the iron chloride. (03marks)

b) Draw the structure of the chloride in a gaseous phase.

(01mark)

. W	rite equations to show h a) Ethene to propyne	now the following conversions can	n be effected $(02lac{1}{2}\ ext{marks})$
	b) CaO to Benzene		(02½ marks
		e of the central atom in each of t	
		e of the central atom in each of the the name of the complex ion. Oxidation state of the	the following complex (03marks) Name of the complex
	ns and in each case, giv	e the name of the complex ion.	(03marks)
	ns and in each case, giv	Oxidation state of the	(03marks) Name of the complex
	ns and in each case, give	Oxidation state of the	(03marks) Name of the complex

		(01marks
a) State	the two colligative properties.	(01marks
	+CH ₂ -CH-\frac{1}{n} solution of 0.4% polyvinyl chloride, Cl in dioxin has aresure of 65pa at 20°c	
i) 	Calculate the relative formula mass of the polyvinyl chloride	(02marks
ii)	Determine the number of monomer units in the polyvinyl chlor	ride
11)	Determine the number of monomer units in the polyving emon	(02marks

_	_		
7.	Beryll	ium exhibits unique properties from the rest of the group (ii) eleme	ents.
	a)	Explain what is meant by the term anomalous behavior	(01mark)
	b)	What 2 anomalies does beryllium show among group ii elements	(01marks
	c)	Give one properties to show that beryllium is anomalous from the	group ii
		elements.	(01mark)
8.	a) Cor	ncentrated nitric acid reacts with benzene to form a yellow oily liqu	id. State
	the co	ndition under which the reaction occurs and give the IUPAC name	of the
	yellow	oily liquid.	(01mark)
	Co	ndition:	
	IU	PAC name:	
	b)	Outline the mechanism for the reaction between nitric acid and be	nzene in

		c) Show how that yellow oily liquid can be converted to phenol	(02marks
9.	a) :	Explain what is meant by the term isotopes .	(01mark)
	b)	Bromine has relative atomic mass of 79.9 and consists of two isoto	opes $^{79}_{35}Br$ and
	b)	Bromine has relative atomic mass of 79.9 and consists of two isotomes $^{81}_{35}Br$. Determine which of the two isotopes is the most abundant.	
	b)		
	b)		

_		
_		
_		
	SECTION B (54 N	MARKS)
	(Attempt any 6 questions i	
10.Nam	e one reagent that can be used to distinguish be	tween each of the following
	s of compounds. In each case, state what is observ	
is tre	eated with the reagent?	(03 marks each)
(8		,
	Reagent:	
	Observation:	
	Soci vadon.	
_		
	b) But-1-yne and But-2-yne	
•		
	leagent:	
C	Observation:	
_		
_		
(0	e) Propyne and propene	

	_			i betwee	ii acidii	ied pota	ssiuiii d	lichromate	
d pot	assium iod	lide soluti	ion.					(01½1	mar ——
 b) 1	015g of po	atossium (dichrome	nte (vi) v	vere disc		100om	3 and the	
								h distilled	wat
		_						sium iodid	
	_						_	ed required	
	cm³ of soc	-	_					_	
	ulate;		•		•				
(i)	The nur	nber of m	oles of io	dine lib	erated i	n 25 cm	3	(03r	narl

(1	ii)	The concentration in moldm ⁻³ of sodium thiosul	грианс.	(04½marks)
_				
_				
_				
_				
_				
_				
_				
_				
-				
12. Con	nplete	the following equations and in each case outlin	ne a suitable	mechanism
		the following equations and in each case outlin	ue a suitable	mechanism
	he rea			
	he rea	ction.		
	he rea	ction.		
	he rea	ction.		
	he rea	ction.		
	he rea	ction.		
	he rea	ction. CH ₃ CH ₂ C≡CH 2HBr →		(03 m
	a	ction.		(03 m

	c. $C(CH_3)_3Br \xrightarrow{NaOH_{(aq)}/CH_3CH_2OH}$ (03½)
13.A co	mpound R on complete combustion yielded 8.8g of carbon dioxide and 1.8g of
wate	r. 0.1g of R when vaporized at 273°c and 734 mmHg occupied a volume of
	$ imes 10^{-2} \ dm^3$
a) Calculate
	ne empirical formula of R . (02marks)

ii) Determine the molecular formula of R .	(02mar
b) When R was ozonolysed followed hydrolysi	s. Compound S , a ketone was
b) When R was ozonolysed followed hydrolysi formed. Write the structure and IUPAC na	
	me of R (01ma

1. Methane reacts with steam according to the follow	ing equation:
$CH_{4(g)} + 2H_2O_{(l)} \longrightarrow CO_{2(g)} + 4H_{2(g)}$	
The enthalpy of formation of methane, water & car	bon dioxide gas are -76
& -394KJ/mol.	
$C_{(s)} + 2H_{2(g)}$ \longrightarrow $CH_{4(g)}\Delta H_{f}$ $^{-}76KJ/m$ $H_{2(g)} + ^{1}/_{2}O_{2(g)}$ \longrightarrow $H_{2}O_{(l)}\Delta H_{f}$ $^{-}242KJ/m$ $C_{(s)} + O_{2(g)}$ \longrightarrow $CO_{2(g)}\Delta H_{f}$ $^{-}394KJ/m$	ol nol nol
a) Calculate the enthalpy of reaction	(03 mark
$CH_{4(g)} + 2H_2O_{(l)} \longrightarrow CO_{2(g)} + 4$	$H_{2(g)}$

c)	(i) Define	the	order	of	reaction
\sim	(1)	CIIC			

(01 mark)

e) The experimental results in the table were obtained for the reaction between nitrogen monoxide gas and oxygen gas.

$$2NO_{(g)} + O_{2(g)} \longrightarrow 2NO_{2(g)}$$

Initial concentr	ations (mol/dm ³)	Rate of reaction (mol/dm ³ /s)
NO	O_2	
0.03	0.03	2.7 X 10 ⁻⁵
0.03	0.06	5.5 X 10 ⁻⁵
0.06	0.03	10.8 X 10 ⁻⁵

(i)	Determine the order of reaction with respect to:	
	Nitrogen monoxide.	(01 mark)

(ii) Oxygen. (01 mark)

_	i) Write the rate equation for the reaction.	(01 mark)
d) Ca	alculate the:	
i) Ov	erall order of reaction.	(01mark
ii) R a	ate constant for the reaction and state it's S.I unit	(01mark)
State	e the essential conditions and give the IUPAC name for the	product formed
	the essential conditions and give the IUPAC name for the hlorine; $(0 \ \frac{1}{2} \ \text{mark})$	
hen c	hlorine; (0 ½ mark	
hen c	hlorine; (0 ½ mark Is added to benzene	
hen c	hlorine; (0 ½ mark Is added to benzene Conditions;	
i)	Is added to benzene Conditions; Name of the product	
i)	Is added to benzene Conditions; Name of the product Substitutes a hydrogen atom of benzene	

Conditions;
Name of the product
b) Outline the mechanism for the reaction in (03marks
(i) a) ii)
(ii) a) iii)
oiling point of pure water in 100°c at 760mmHg pressure. At the same are, a solution containing 1.576g of potassium chloride in 100g of water boils
$0.11^{0}\mathrm{c}$.
Calculate the boiling point constant, Kb for water

b)	Exp	lain why;
ŕ	(i)	The boiling point of potassium chloride solution is higher that of pure water. (03 n
	(ii)	A 0.1M potassium chloride solution boils at the same tempera a 0.2M glucose solution. (2 $\frac{1}{2}$
	(ii)	

17. The table shows the atomic radius and first ionization energy of some elements in period 3 of the periodic table.

Elements	Na	Mg	Al	Si	P	S	Cl
Atomic radius	0.186	0.160	0.143	0.117	0.110	0.104	0.099
1 st I.E(KJ/mol)	496	738	577	787	1060	1000	1251

(i) St	(i) State how atomic radius of the elements varies across the period. (01										
marl	x)										
(ii)Ex	plain your answe	r in a (i).					(03	3 marks			
b. i)	Explain how atom	ic radius	affects	the ion	zation e	energy.	(02 ma	rks)			

ii) Why the first ionization energy of aluminium is lower than that of								
magnesium.	(03 marks)							

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1																1.0 H	4.0 He 2
6.9 Li 3	9.0 Be											10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	1
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	58.9 Co 27		1			72.6 Ge 32	74.9 As 33	79.0 Se 34	79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89			10	6 4		2 138 13 92	in the							7	2 2 9% 1 113
		7 B	139 La 57	140 Ce 58	141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62		157 Gd 64			165 Ho 67	167 Er 68	169 Tm 69	1	175 Lu 71
		9 90 I.A.	227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95	247 Cm 96	247 Bk 97	251 Cf 98	254 Es 99	Fm	Md	254 No 102	260 Lw 103

END