Homework 2

王一鑫 作业序号 42

2024年12月9日

PROBLEM 1. Weierstrass' calssical counterexample from 1870.

Consider the minimum problem

$$F(u) := \int_{-1}^{1} (xu'(x))^2 dx = \min! \quad u \in C^1[-1, 1] \quad u(-1) = 0 \quad u(1) = 1$$

Use the sequence

$$u_n(x) := \frac{1}{2} + \frac{1}{2} \frac{\arctan nx}{\arctan n}$$
 $n = 1, 2, \cdots$

in order to show that this variational problem has **no solution**. Recall that $C^1[-1,1]$ denotes the space of continuously differentiable functions $u:[-1,1]\to\mathbb{R}$.

SOLUTION. Set $M \equiv \{u \in C^1[-1,1] : u(-1) = 0 \text{ and } u(1) = 1\}$. Then, the problem is equivalent to

$$F(u) = \min! \quad u \in M$$

Since $u_n(-1) = 0$ and $u_n(1) = 1$, we get $u_n \in M$ for all n. We calculate

$$F(u_n) = \int_{-1}^{1} (xu'_n(x))^2 dx \le \int_{-1}^{1} (x^2 + \frac{1}{n^2})(u'_n(x))^2 dx$$

$$= \frac{1}{4(\arctan n)^2} \int_{-1}^{1} \frac{1 + n^2 x^2}{n^2} \cdot \frac{n^2}{(1 + n^2 x^2)^2} dx$$

$$= \frac{1}{4(\arctan n)^2} \int_{-n}^{n} \frac{dy}{1 + y^2}$$

$$= \frac{1}{2n \cdot \arctan n}$$

Hence, $F(u_n) \to 0$ as $n \to \infty$. Since $F(u) \ge 0$ for all $u \in M$, this implies

$$\inf_{u \in M} F(u) = 0$$

Suppose now that u is a solution of the minimum problem. Then

$$F(u) = 0 \quad u \in M$$

and hence

$$xu'(x) = 0$$
 for all $x \in [-1, 1]$

This implies u'(x) = 0 on [-1, 1], i.e., u(x) = const. But this contradicts with the side condition u(-1) = 0 and u(1) = 1.

NOTE OF PROBLEM 1. This example was given by Weierstrass to show that a minimum problem in the calculus of variations need not always have a solution, namely.

The infimum of the functional F on the set M is not attained at some point u of M.

PROBLEM 2. The classical Hilbert space $l_2^{\mathbb{K}}$. By definition, the space $l_2^{\mathbb{K}}$ consists of all the sequences $(u_n)_{n\geq 1}$ with $u_n\in\mathbb{K}$ for all $n\in\mathbb{N}$

and

$$\sum_{n=1}^{\infty} |u_n|^2 < \infty$$

Show that $l_2^{\mathbb{K}}$ is an infinite-dimensional Hilbert space over \mathbb{K} equipped with the inner product

$$\langle u, v \rangle \coloneqq \sum_{n=1}^{\infty} \bar{u}_n v_n$$

where $u := (u_n)$ and $v := (v_n)$.

SOLUTION. We have shown $l_2^{\mathbb{K}}$ is a infinite-dimensional linear space over \mathbb{K} . Step 1: Show that $\langle \ , \ \rangle$ is an inner product.

(1) For any $u \in l_2^{\mathbb{K}}$, we have

$$\langle u, u \rangle = \sum_{n=1}^{\infty} \bar{u}_n u_n = \sum_{n=1}^{\infty} |u_n|^2 \ge 0$$

and $\langle u, u \rangle = 0$ iff $u_n = 0$ for each $n = 1, 2, \dots$, that is, u = 0.

(2) For any $u, v, w \in l_2^{\mathbb{K}}$, and $\alpha, \beta \in \mathbb{K}$, we have

$$\langle u, \alpha v + \beta w \rangle = \sum_{n=1}^{\infty} \bar{u}_n (\alpha v_{n+\beta w_n})$$

$$= \alpha \sum_{n=1}^{\infty} \bar{u}_n v_n + \beta \sum_{n=1}^{\infty} \bar{u}_n w_n$$

$$= \alpha \langle u, v \rangle + \beta \langle u, w \rangle$$

(3) For any $u, v \in l_2^{\mathbb{K}}$

$$\overline{\langle u, v \rangle} = \overline{\sum_{n=1}^{\infty} \overline{u}_n v_n} = \sum_{n=1}^{\infty} \overline{v}_n u_n = \langle v, u \rangle$$

Choose a Cauchy sequence $(u_n^{(k)})$ in $l_2^{\mathbb{K}}$, which means for $\forall \varepsilon > 0$, there exists N > 0, such that $\forall k_1, k_2 \geq N$, we have

$$\begin{aligned} \|(u_n^{(k_1)} - u_n^{(k_2)})\| &= \langle u^{k_1} - u^{k_2}, u^{k_1} - u^{k_2} \rangle^{\frac{1}{2}} \\ &= \left(\sum_{n=1}^{\infty} |u_n^{(k_1)} - u_n^{(k_2)}|^2 \right)^{\frac{1}{2}} < \varepsilon \end{aligned}$$

Since

$$|u_n^{(k_1)} - u_n^{(k_2)}| < ||(u_n^{(k_1)} - u_n^{(k_2)})|| < \varepsilon$$
 for every n

By applying the classical Cauchy convergence theorem, $u_n^{(k)}$ converges to u_n^* and $u^* = (u_n^*)$. It suffices to show that $u^* \in l_2^{\mathbb{K}}$ and $||u^{(k)} - u^*|| \to 0$. Restricting the summation to $n \leq N$ and letting $k_2 \to \infty$, we obtain

$$\left(\sum_{n=1}^{N} |u_n^{(k_1)} - u_n^*|^2\right)^{\frac{1}{2}} < \varepsilon$$

Letting $N \to \infty$, we get

$$||u^{(k_1)} - u^*|| < \varepsilon$$

That is, $||u^{(k)} - u^*|| \to 0$. and

$$||u^*|| \le ||u^* - u^{(k)}|| + ||u^{(k)}|| \in l_2^{\mathbb{K}}$$

PROBLEM 3. The Banach space C[a, b] Let $-\infty < a < b < \infty$. Show that the Banach space C[a, b] equipped with the usual maximum norm

$$||u|| = \max_{a \le x \le b} |u(x)|$$

is not a Hilbert space.

SOLUTION. Suppose it is a Hilbert space, then the **parallelogram identity** holds:

$$2||u||^2 + 2||v||^2 = ||u + v||^2 + ||u - v||^2 \quad \forall u, v \in C[a, b]$$

However

$$\begin{aligned} \|u+v\|^2 + \|u-v\|^2 &= \max_{a \le x \le b} |u(x)+v(x)| + \max_{a \le x \le b} |u(x)-v(x)| \\ &\le 2 \max_{a \le x \le b} |u(x)| + 2 \max_{a \le x \le b} |v(x)| = 2\|u\|^2 + 2\|v\|^2 \end{aligned}$$

Thus the parallelogram identity is violated.

PROBLEM 4. The Ritz method. By Section 2.7.1, the variational problem

$$\int_0^{\pi} (2^{-1}u'^2 - u\cos x) dx = \min!, \quad u \in C^2[0, \pi], \quad u(0) = u(\pi) = 0 \text{ (V)}$$

is equivalent to the boundary-value problem

$$u''(x) + \cos x = 0$$
 on $[0, \pi]$, $u(0) = u(\pi) = 0$, (B)

which has a unique solution u. Explicitly,

$$u(x) = \cos x + 2\pi^{-1}x - 1.$$

Use the Ritz method in order to compute an approximate solution u_{2n} of (V), by making the ansatz

$$u_{2n}(x) = \sum_{k=1}^{2n} c_k \sin kx.$$

Determine the coefficients c_1, \ldots, c_{2n} . Show that (u_{2n}) converges uniformly on $[0, \pi]$ to the solution u of (V).

SOLUTION. The Ritz method yields an approximate solution

$$u_{2n}(x) = \sum_{k=1}^{2n} c_k \sin kx$$

where the unknown coefficients c_k are determined by the minimum problem

$$F(c) := \int_0^{\pi} (2^{-1}u_{2n}^{\prime 2} - u_{2n}\cos x) dx = \min!$$

We compute

$$u_{2n}' = \sum_{k=1}^{2n} kc_k \cos kx$$

and

$$F(c) = \int_0^{\pi} \left(\frac{1}{2} \left(\sum_{k=1}^{2n} k c_k \cos kx \right)^2 - \sum_{k=1}^{2n} c_k \sin kx \cos x \right) dx$$

To solve the minimum problem, we set derivative with respect to each c_k

$$\frac{\partial F}{\partial c_k} = 0$$

So

$$\frac{\partial F}{\partial c_k} = \int_0^\pi \left(\left(\sum_{j=1}^{2n} j c_j \cos j x \right) \cdot k \cos k x - \sin k x \cos x \right) \mathrm{d}x$$

$$= \begin{cases} \int_0^\pi k^2 c_k \cos^2 k x \mathrm{d}x - \frac{2k}{k^2 - 1} & k \text{ even} \\ \int_0^\pi k^2 c_k \cos^2 k x \mathrm{d}x - 0 & k \text{ odd} \end{cases}$$

$$= \begin{cases} \frac{\pi k^2}{2} c_k - \frac{2k}{k^2 - 1} & k \text{ even} \\ \frac{\pi k^2}{2} c_k - 0 & k \text{ odd} \end{cases}$$

Thus we determine the coefficients c_k

$$c_k = \begin{cases} \frac{2}{\pi} \cdot \frac{1}{r(4r^2 - 1)} & k = 2r\\ 0 & k = 2r - 1 \end{cases}$$

That is,

$$u_{2n} = \frac{2}{\pi} \sum_{r=1}^{n} \frac{\sin 2rx}{r(4r^2 - 1)}$$

As $n \to \infty$, this series converges uniformly on $[0, \pi]$ to the exact solution $u(x) = \cos x - 2\pi^{-1}x - 1$ by the convergence of Ritz method.

Before moving on to the next problem, we introduce an important *smoothing technique* first.

Smoothing of functions by using mean values (Friedrichs' mollification). The point of departure is the integral

$$u_{\varepsilon}(x) := \int_{\mathbb{R}^N} \phi_{\varepsilon}(x - y) u(y) \, dy,$$

where $\phi_{\varepsilon}(x) := \varepsilon^{-N} \phi(\varepsilon^{-1} x)$ along with

$$\phi(x) := \begin{cases} ce^{-(1-|x|^2)^{-1}} & \text{if } x \in \mathbb{R}^N \text{ and } |x| < 1, \\ 0 & \text{if } x \in \mathbb{R}^N \text{ and } |x| \ge 1. \end{cases}$$

Then

- (i) $\phi \in C_0^{\infty}(\mathbb{R}^N)$.
- (ii) $\phi \geq 0$ on \mathbb{R}^N .
- (iii) $\int_{\mathbb{R}^N} \phi(x) dx = 1$ for a suitable choice of the constant c > 0.

Hence:

(i*)
$$\phi_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^N)$$
 and $\phi_{\varepsilon}(x) = 0$ if $|x| \ge \varepsilon$ for all $\varepsilon > 0$.

(ii*)
$$\phi_{\varepsilon} \geq 0$$
 on \mathbb{R}^N for all $\varepsilon > 0$.

(iii*)
$$\int_{\mathbb{R}^N} \phi_{\varepsilon}(x) dx = 1$$
 (see Figure 2.17 for $N = 1$).

Let $u \in L_2(G)$, where G is a nonempty open set in \mathbb{R}^N , $N \geq 1$. We set u(x) = 0 outside G. Then

- (α) $u_{\varepsilon} \in C^{\infty}(\mathbb{R}^N)$ for all $\varepsilon > 0$.
- (β) $u_{\varepsilon} \in L_2(G)$ for all $\varepsilon > 0$.
- (γ) $u_{\varepsilon} \to u$ in $L_2(G)$ as $\varepsilon \to +0$.

Now we will use the technique to show the following problems.

PROBLEM 5. **Density** (Proof of Proposition 7 in Section 2.2). Let G be a nonempty open set in \mathbb{R}^N , $N \geq 1$.

- (a) Show that the set $C^{\infty}(G)$ is dense in $L_2(G)$.
- (b) Show that $C_0^{\infty}(G)$ is dense in $L_2(G)$.
- (c) Show that $C(\overline{G})$ is dense in $L_2(G)$.

SOLUTION.

(a) SOLUTION: Step 1: First we show $u_{\varepsilon} \in C^{\infty}(G)$. Consider the ball

$$B := \{ x \in G \subseteq \mathbb{R}^N : |x - x_0| < 1 \}$$

around the given point x_0 , and consider the set

$$B_{\varepsilon} := \{ y \in G : \operatorname{dist}(B, y) \le \varepsilon \}.$$

Since $\phi_{\varepsilon}(x-y) = 0$ for all points $x, y \in \mathbb{R}^N$ with $|x-y| \geq \varepsilon$

$$u_{\varepsilon}(x) = \int_{B_{\varepsilon}} \phi_{\varepsilon}(x - y)u(y) dy$$
 for all $x \in B$.

By the Schwarz inequality, we obtain

$$\int_{B_{\varepsilon}} |u(y)| \, dy = \int_{B_{\varepsilon}} 1 \cdot |u(y)| \, dy \le \left(\int_{B_{\varepsilon}} dy \right)^{\frac{1}{2}} \left(\int_{B_{\varepsilon}} |u(y)|^2 \, dy \right)^{\frac{1}{2}} < \infty,$$

since $\int_{B_{\varepsilon}} dy = |B_{\varepsilon}| < \infty$ and $u \in L_2(G)$ implies $u \in L_2(B_{\varepsilon})$. Thus, $u \in L(B_{\varepsilon})$.

First let N=1. For all $x \in B$, $y \in B_{\varepsilon}$, and $k=0,1,2,..., \varepsilon > 0$, we obtain

$$\left|\phi_{\varepsilon}^{(k)}(x-y)u(y)\right| \le \operatorname{const}(k,\varepsilon)|u(y)|,\tag{114}$$

where $\phi_{\varepsilon}^{(k)}$ denotes the k-th derivative. In this connection, note that the function $\phi_{\varepsilon}^{(k)}$ is continuous on \mathbb{R} , and hence it is bounded on compact sets by the Weierstrass theorem. In particular, $\phi_{\varepsilon}^{(k)}$ is bounded on each ball.

Applying standard theorems on parameter integrals, the continuous derivative $u_{\varepsilon}^{(k)}$ exists on B, where

$$u_{\varepsilon}^{(k)}(x) := \int_{B_{\varepsilon}} \phi_{\varepsilon}^{(k)}(x - y)u(y) dy$$
 for all $x \in B$, $k = 0, 1, \dots$

Since the center x_0 of the ball B is arbitrary, this implies $u_{\varepsilon} \in C^{\infty}(G)$.

Step 2: We show $u_{\varepsilon} \to u$ in $L_2(G)$ as $\varepsilon \to +0$.

Let $B := \{z \in \mathbb{R}^N : |z| < 1\}$. Recall that $\phi = 0$ outside and $\int_B \phi(z) dz = 1$. Set $z = \varepsilon^{-1}(x - y)$, we have

$$u_{\varepsilon}(x) = \int_{B} u(x - \varepsilon z) \phi(z) dz,$$

and hence

$$u_{\varepsilon}(x) - u(x) = \int_{B} (u(x - \varepsilon z) - u(x))\phi(z) dz.$$

The Schwarz inequality yields

$$|u_{\varepsilon}(x) - u(x)|^2 = |\int_B (u(x - \varepsilon z) - u(x))\phi(z) dz|^2$$

$$\leq C \int_B |u(x - \varepsilon z) - u(x)|^2 dz$$

where C is a positive constant. By the p-mean continuity of the Lebesgue integral with p = 2, for each η , there is an $\varepsilon_0 > 0$ such that

$$\int_{G} |u(x - \varepsilon z) - u(x)|^{2} dx < \eta$$

for all $z \in B$ and all $\varepsilon : 0 < \varepsilon \le \varepsilon_0$. Thus, it follows from the Fubini-Tonelli theorem that

$$\int_{G} |u_{\varepsilon}(x) - u(x)|^{2} dx \le C \int_{G} \left(\int_{B} |u(x - \varepsilon z) - u(x)|^{2} dz \right) dx$$

$$= C \left(\int_{B} \int_{G} |u(x - \varepsilon z) - u(x)|^{2} dx \right) dz$$

$$\le C |B| \cdot \eta$$

for all $\varepsilon: 0 < \varepsilon \leq \varepsilon_0$. Hence

$$\int_{G} |u_{\varepsilon}(x) - u(x)|^{2} dx \to 0 \quad \text{as } \varepsilon \to +0.$$

This is $u_{\varepsilon} \to u$ in $L_2(G)$ as $\varepsilon \to +0$.

Therefore, $C^{\infty}(G)$ is dense in $L_2(G)$.

(b) Case A: The nonempty open set G is bounded. Let C be a compact set with $C \subset G$, and let $u \in L_2(G)$. We set

$$v(x) := \begin{cases} u(x) & \text{on } C, \\ 0 & \text{on } G - C. \end{cases}$$

Then

$$\int_{G} |u - v|^{2} dx = \int_{G - C} |u|^{2} dx.$$

By the absolute continuity of the integral, the right-hand integral is arbitrarily small provided the measure of the set G - C is sufficiently small. Thus, for each given η , we can choose the set C in such a way that

$$||u-v|| = \left(\int_G |u-v|^2 dx\right)^{\frac{1}{2}} < \eta.$$

By smoothing technique , there is a function $v_{\varepsilon} \in C^{\infty}(\mathbb{R}^{N})$ such that

$$||v - v_{\varepsilon}|| < \eta$$
 for all $\varepsilon : 0 < \varepsilon \le \varepsilon_0$.

Next, let us show that $v_{\varepsilon} \in C_0^{\infty}(G)$ for sufficiently small ε . In fact, since v=0 on G-C

$$v_{\varepsilon}(x) = \int_{C} \phi_{\varepsilon}(x - y)v(y) dy.$$

Hence $v_{\varepsilon}(x) = 0$ for all $x \in G$ with $\operatorname{dist}(x, C) > \varepsilon$ because $\phi_{\varepsilon}(x - y) = 0$ for $|x - y| \ge \varepsilon$. Since C is a compact subset of the open set G, there is an open set G such that

$$C \subset H \subset \overline{H} \subset G$$

Consequently, if we choose the number ε sufficiently small, then $\mathrm{dist}(x,C)>\varepsilon$ for all $x\in G-\overline{H}$, and hence

$$v_{\varepsilon}(x) = 0$$
 for all $x \in G - \overline{H}$,

i.e., $v_{\varepsilon} \in C_0^{\infty}(G)$. Summarizing,

$$||u - v_{\varepsilon}|| \le ||u - v|| + ||v - v_{\varepsilon}|| < 2\eta,$$

i.e., $C_0^{\infty}(G)$ is dense in $L_2(G)$.

Case B: The open set G is unbounded. Then, for each $\eta > 0$, there is an open ball B such that

$$\int_{G-H} |u|^2 \, dx < \eta^2,$$

where $H := G \cap B$ and $H \neq \emptyset$.

Applying Case A to the nonempty bounded open set H, there is a function $v_{\varepsilon} \in C_0^{\infty}(H)$, and hence $v_{\varepsilon} \in C_0^{\infty}(G)$, such that

$$\int_{H} |u - v_{\varepsilon}|^2 \, dx < \eta^2.$$

Since $v_{\varepsilon} = 0$ on G - H, we get

$$||u - v_{\varepsilon}||^2 = \int_{G-H} |u|^2 dx + \int_{H} |u - v_{\varepsilon}|^2 dx < \eta^2,$$

i.e., $C_0^{\infty}(G)$ is dense in $L_2(G)$.

(c) Since $C_0^{\infty}(G) \subseteq C(\overline{G})$, it follows directly from (b).

PROBLEM 6. Separability (Proof of Corollary 8 in Section 2.2).

- (a) Let G = [a, b] be a bounded open interval in \mathbb{R} . Show that $L_2(G)$ is separable.
- (b) Let G be an *unbounded* open interval in \mathbb{R} , e.g., $G = \mathbb{R}$. Show that $L_2(G)$ is *separable*.

SOLUTION.

(a) Let $u \in L_2(G)$ and $\varepsilon > 0$ be given. Since $C(\overline{G})$ is dense in $L_2(G)$ for any nonempty open set $G \in \mathbb{R}^{\mathbb{N}}$, the set C[a, b] is dense in $L_2(G)$, i.e., there is a function $v \in C[a, b]$ such that

$$||u - v|| = \left(\int_a^b |u - v|^2 dx\right)^{\frac{1}{2}} < \varepsilon.$$

By the Weierstrass approximation theorem, the set of polynomials with real coefficients is dense in the Banach space C[a, b], i.e., there is a real polynomial p such that

$$||v - p||_* := \max_{a \le x \le b} |v(x) - p(x)| < \varepsilon.$$

Let us introduce

 $\mathcal{M} := \text{set of all polynomials with rational coefficients.}$

For each real number a_j and each $\varepsilon > 0$, there is a rational number r_j such that

$$|a_j - r_j| < \varepsilon$$

Thus for each polynomial p, there is a polynomial $q \in \mathcal{M}$ such that

$$||p-q||_* < \sum_{j=0}^n |a_j - r_j| (\max_{a \le x \le b} |x|)^j \le \text{const} \cdot \varepsilon.$$

Hence $||v - q||_* \le ||v - p||_* + ||p - q||_* < 2\varepsilon$. This implies

$$||v - q|| = \left(\int_a^b |v - q|^2 dx\right)^{\frac{1}{2}} \le (b - a)^{\frac{1}{2}} ||v - q||_* < (b - a)^{\frac{1}{2}} 2\varepsilon.$$

Summarizing, for each $\varepsilon > 0$, there is a $q \in \mathcal{M}$ such that

$$||u - q|| \le ||u - v|| + ||v - q|| < \varepsilon + (b - a)^{\frac{1}{2}} 2\varepsilon.$$

That is, the set \mathcal{M} is dense in $L_2(G)$. Since the set \mathcal{M} is countable, the space $L_2(G)$ is *separable*.

(b) There exists a sequence (G_n) of bounded open intervals in G such that $G_1 \subseteq G_2 \subseteq \cdots \subseteq G$ and

$$G = \bigcup_{n=1}^{\infty} G_n.$$

Define

$$\chi_n(x) := \begin{cases} 1 & \text{if } x \in G_n, \\ 0 & \text{if } x \in \mathbb{R} - G_n, \end{cases}$$

and

$$\mathcal{M}_{\infty} := \{ \chi_n q : q \in \mathcal{M} \text{ and } n = 1, 2, \dots \}.$$

Where

$$\chi_n q := \chi_n(x) \cdot q(x) = \begin{cases} q(x) & \text{if } x \in G_n \\ 0 & \text{if } x \in \mathbb{R} - G_n \end{cases}$$

Since \mathcal{M} is countable, it suffices to show \mathcal{M} is dense in $L_2(G)$. Let $u \in L_2(G)$ and $\varepsilon > 0$ be given. There exists a bounded interval J with $J \subseteq G$ and

$$\int_{G-I} |u|^2 \, dx < \varepsilon^2,$$

by a well-known property of the Lebesgue integral. Choose some interval G_n such that $J \subseteq G_n \subseteq G$. Then

$$\int_{G-G_n} |u|^2 dx \le \int_{G-J} |u|^2 dx < \varepsilon^2.$$

By (a), for any bounded set G_n , there is a polynomial $q \in \mathcal{M}$ such that

$$\int_{G_n} |u - q|^2 \, dx < \varepsilon^2.$$

Hence

$$||u - \chi_n q||^2 = \int_{G - G_n} |u|^2 dx + \int_{G_n} |u - q|^2 dx < 2\varepsilon^2.$$

Consequently, the *countable* set \mathcal{M}_{∞} is dense in $L_2(G)$, i.e., $L_2(G)$ is separable.