

Features

- · Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to T_{imax}
- Multiple Package Options
- Lead-Free

Description

This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.

IRFU3710Z-701PbF

HEXFET® Power MOSFET

V _{DSS}	100V
$R_{DS(on)}$	18mΩ
I _D	42A

G	D	S
Gate	Drain	Source

B. J. J.		Standard Pack		Onderselle Bort Namehou	
Base part number	Package Type	Form	Quantity	Orderable Part Number	
IRFU3710ZPbF	I-Pak	Tube	75	IRFU3710ZPbF	
IDEDOZACZDI E	D.D.J.	Tube	75	IRFR3710ZPbF	
IRFR3710ZPbF	D-Pak	Tape and Reel Left	3000	IRFR3710ZTRLPbF	

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	56	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	39	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	42	A
I _{DM}	Pulsed Drain Current ①	220	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	140	W
	Linear Derating Factor	0.95	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy®	150	m l
E _{AS (Tested)}	Single Pulse Avalanche Energy Tested Value®	200	mJ
I _{AR}	Avalanche Current①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy ®		mJ
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ hetaJC}$	Junction-to-Case		1.05	
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount) ⑦		50	°C/W
$R_{ hetaJA}$	Junction-to-Ambient		110	

IRFR/U3710ZPbF & IRFU3710Z-701PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.088		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		15	18	mΩ	V _{GS} = 10V, I _D = 33A ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Trans conductance	39			S	$V_{DS} = 25V, I_{D} = 33A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	V _{DS} = 100V, V _{GS} = 0V
.033	,			250	Jan. 1	$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-200	11/3	V _{GS} = -20V
Q_g	Total Gate Charge		69	100		I _D = 33A
Q_{gs}	Gate-to-Source Charge		15		nC	V _{DS} = 80V
Q_gd	Gate-to-Drain ('Miller') Charge		25			V _{GS} = 10V ③
$t_{d(on)}$	Turn-On Delay Time		14			$V_{DD} = 50V$
t _r	Rise Time		43			I _D = 33A
$t_{d(off)}$	Turn-Off Delay Time		53		ns	$R_G = 6.8\Omega$
t _f	Fall Time		42			V _{GS} = 10V ③
L _D	Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5		nH	from package and center of die contact
C _{iss}	Input Capacitance		2930			$V_{GS} = 0V$
C _{oss}	Output Capacitance		290		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		180			f = 1.0MHz
C _{oss}	Output Capacitance		1200			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		180			$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		430			V_{GS} = 0V, V_{DS} = 0V to 80V

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			56	_	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			220		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 33A, V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		35	53	ns	$T_J = 25^{\circ}C$, $I_F = 33A$, $V_{DS} = 50V$
Q_{rr}	Reverse Recovery Charge		41	62	nC	di/dt = 100A/µs ③
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligibl	e (turn-on is dominated by L _S +L _D)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- \odot starting T_J = 25°C, L = 0.28mH, R_G = 25 Ω , I_{AS} = 33A,V_{GS} =10V. Part not recommended for use above this value.
- ③ Pulse width ≤ 1.0 ms; duty cycle $\leq 2\%$.
- \bullet C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- © Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- ® Refer to D-Pak package for Part Marking, Tape and Reel information

Fig. 1 Typical Output Characteristics

Fig. 2 Typical Output Characteristics

Fig. 3 Typical Transfer Characteristics

Fig. 4 Typical Forward Transconductance vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage vs. Temperature

Fig 15. Typical Avalanche Current vs. Pulse width

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \Delta \text{T} / \text{ Z}_{thJC} \\ I_{av} &= 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Zth]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

IRFR/U3710ZPbF & IRFU3710Z-701PbF

D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A. LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .006 [0.15] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- A- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA

S		DIMEN	ISIONS		N O T	
M B	MILLIM	ETERS	INC	INCHES		
0 L	MIN.	MAX.	MIN.	MAX.	E S	
Α	2.18	2.39	.086	.094		
A1	_	0.13	-	.005		
b	0.64	0.89	.025	.035		
ь1	0.64	0.79	.025	.031	7	
b2	0.76	1,14	.030	.045		
b3	4.95	5.46	.195	.215	4	
С	0.46	0.61	.018	.024		
c1	0.41	0.56	.016	.022	7	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	6	
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	.265	6	
E1	4.32	-	.170	-	4	
е	2.29	BSC	.090	BSC		
Н	9.40	10.41	.370	.410		
L	1.40	1.78	.055	.070		
L1	2.74	BSC	.108	REF.		
L2	0.51	BSC	.020	BSC		
L3	0.89	1.27	.035	.050	4	
L4	-	1.02	-	.040		
L5	1.14	1.52	.045	.060	3	
Ø	0,	10°	0,	10°		
ø1	0,	15°	0,	15°		
ø2	25°	35°	25°	35°		

LEAD ASSIGNMENTS

HEXFET

- 2.- DRAIN 3.- SOURCE 4.- DRAIN

IGBT & CoPAK

- 1.- GATE 2.- COLLECTOR
- 3.- EMITTER
- 4.- COLLECTOR

PART NUMBER

DATE CODE

D-Pak (TO-252AA) Part Marking Information

EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY

LOT CODE 1234

IN THE ASSEMBLY LINE "A"

Note: "P" in assembly line position indicates "Lead-Free"

> "P" in assembly line position indicates "Lead-Free" qualification to the consumer-level

IRFR120

INTERNATIONAL

Notes:

- For an Automotive Qualified version of this part please seehttp://www.infineon.com/product-info/datasheets/data/auirfr3710z.pdf
- For the most current drawing please refer to Infineon website at http://www.infineon.com/package/

I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches)

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- \triangle dimension D & E do not include mold flash. Mold flash shall not exceed .005 [0.13] Per side. These dimensions are measured at the outmost extremes of the plastic body.
- A- THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.
- A- LEAD DIMENSION UNCONTROLLED IN L3.
- ⚠- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- 7.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA (Date 06/02).
- 8.- CONTROLLING DIMENSION: INCHES.

S Y M	DIMENSIONS					
В	MILLIM	ETERS	INC	INCHES		
O L	MIN.	MAX.	MIN.	MAX.	O T E S	
Α	2.18	2.39	.086	.094		
A1	0.89	1.14	.035	.045		
b	0.64	0.89	.025	.035		
ь1	0.65	0.79	.025	.031	6	
b2	0.76	1.14	.030	.045		
ь3	0.76	1.04	.030	.041	6	
b4	4.95	5.46	.195	.215	4	
С	0.46	0.61	.018	.024		
c1	0.41	0.56	.016	.022	6	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	3	
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	.265	3	
E1	4.32	-	.170	-	4	
е	2.29	BSC	.090	BSC		
L	8.89	9.65	.350	.380		
L1	1.91	2.29	.045	.090		
L2	0.89	1.27	.035	.050	4	
L3	0.89	1.52	.035	.060	5	
ø1	0*	15*	0*	15*		
ø2	25°	35°	25*	35*		

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE
- 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information

- 1. For an Automotive Qualified version of this part please seehttp://www.infineon.com/product-info/auto/
 2. For the most current drawing please refer to Infineon website at http://www.infineon.com/package/

I-Pak Leadform Option 701 Package Outline ®

Dimensions are shown in millimeters (inches)

1-. GATE

2-. DRAIN

3-. SOURCE

4-. DRAIN

NOTES:

1.0 CONTROL DIMENSIONS IN INCHES

2.0 PARALLELISM AND ANGULARITY MAX. 0.076 (0.003)

3.0 LEADFORM CRITICAL DIMENSIONS DOUBLE RINGED

D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to Infineon's web site www.infineon.com

IRFR/U3710ZPbF & IRFU3710Z-701PbF

Qualification Information[†]

Qualification Level	Industrial (per JEDEC JESD47F) ††				
Moisture Sensitivity Level	D-Pak	MSL1			
Moisture Sensitivity Level	I-Pak	(per JEDEC J-STD-020D) ^{††}			
RoHS Compliant	Yes				

- † Qualification standards can be found at Infineon's web site www.infineon.com
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments		
5/31/2016	Updated datasheet with corporate template.		
Added disclaimer on last page.			

Trademarks of Infineon Technologies AG

HIVIC™, μΙΡΜ™, μΡΕC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowiR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRsadge™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

 $\textbf{Email:} \ erratum@infineon.com$

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.