Chapitre 2 : Atome, noyau et cortège

TP4: « Familles chimiques »

Objectifs:

- Notion de famille chimique;
- Mettre en évidence l'existence de propriétés communes au sein d'une famille chimique.

1 Les métaux alcalins

On s'intéresse dans cette première partie aux propriétés du sodium $_{11}$ Na et du potassium $_{19}$ K.

Fig. 1 – À gauche un cristal de sodium et à droite un cristal de potassium.

Consignes

Regarder les vidéos concernant le sodium et le potassium. Dans les deux cas on fait réagir les atomes sous forme solides avec de l'eau.

Utilisez le lien suivant : https://www.periodicvideos.com/.

Questions:

- 1. Décrire les expériences réalisées, ainsi que les résultats obtenus.
- 2. Dans laquelle/lesquelles colonnes du tableau périodique sont situés ces deux éléments.

2 Les halogènes

2.1 Généralités

Les éléments de la 17^{ème} colonne du tableau périodique font partie de la famille des halogènes. Explorons les propriétés de cette famille chimique.

Fig. 2 – À gauche une ampoule de chlore et à droite un cristal d'Iode.

À l'aide du tableau périodique dans le manuel scolaire compléter le tableau suivant :

Symbole	Nom	Numéro atomique	Rayon (pm = 10^{-15} m)
			64
			99
			114
			133

2.2 Solubilité des halogènes dans l'eau et dans le cyclohéxane

Les dihalogènes (diiode I₂) sont solubles dans l'eau, ils forment alors une eau halogénée.

Protocole

- 1. Dans un tube à essai, verser 1 mL (environ 1 cm) d'eau iodée;
- 2. ajouter 1 mL de cyclohexane.
- 3. Boucher le tube à l'aide du bouchon, agiter puis laisser reposer.
- 4. Noter vos observatinos sur votre compte-rendu.

Document : Données expérimentales						
	EAU	CYCLOHEXANE	ÉTHANOL			
Miscibilité avec l'eau		Non miscible	Miscible			
Solubilité du diiode et apparence	Peu soluble, couleur jaune	Très soluble, couleur rose-violacée	Très soluble, couleur brune			
Pictogramme			®			

Questions:

- 1. Quelle est la couleur de l'iode dans l'eau?
- 2. Le mélange est homogène ou hétérogène? Justifier votre réponse.
- 3. En utilisant le tableau ci-dessus justifier ce que vous avez observé dans votre tube à essai et compléter le schéma en précisant la position des constituants du mélange.

 ${\bf Fig.~3}$ – Schéma de l'expérience à compléter

3 Réactions avec les ions halogénures, Cl⁻, Br⁻ et I⁻

Les halogènes se trouvent très facilement sous la forme d'anions, les ions halogénures.

Halogène	Nom de l'ion	Formule

Protocole

- 1. Préparer quatre tubes à essais et y verser environ 2 mL des solutions ci-dessous :
 - tube 1 : solution de bromure de potassium (K⁺+Br⁻)
 - tube 2 : solution de chlorure de potassium (K⁺+Cl⁻);
 - tube 3 : solution d'iodure de potassium (K⁺+Cl⁻)
 - tube 4 : solution de nitrate de potassium (K⁺+Cl⁻)
- 2. Ajouter dans les quatre tubes à essais quelques gouttes de nitrate d'argent (Ag⁺+NO₃)

Travail à effectuer :

- 1. Mettre en œuvre le protocole précédent et schématiser les quatre expériences dans votre compte-rendu de TP;
- 2. Interpréter : identifier dans chaque cas l'ion qui réagit avec le nitrate d'argent, et identifier leur position dans le tableau périodique.
- 3. Conclure : Que pouvez-vous affirmer sur des éléments chimiques qui appartiennent à la famille chimique (même colonne du tableau périodique) ?