Problem	Subgruppe	Verfahren	Idee	Vorteile	Nachteile
	Globale Polynom-	Monombasis $g_i(x) = x^i$	Stelle allgemeines LGS aus Stützstellen auf	Intuitiv, Auswertung in $O(n)$	Aufstellen in $O(n^3)$
		Lagrangebasis $g_i(x) = \prod_{j \neq i}^{n} \left(\frac{x - x_j}{x_i - x_j} \right)$	Stützwerte sind Gewichte; Basis erzeugt Diagonalmatrix in LGS	Aufstellen in $O(n)$	Auswerten in $O(n^2)$
	interpolation	Newtonbasis $g_i(x) = \prod_{j=0}^{i-1} (x - x_j)$	Basis erzeugt Dreiecksmatrix in LGS	Auswerten in $O(n)$	Aufstellen in $O(n^2)$
Interpolation $(x_i, y_i) \subseteq f$		Aitken-Neville	In Iteration k: Polynome vom Grad k zwischen den Punkten der Iteration k -1	Direkte Auswertung in $O(n^2)$, kein Aufstellen	Teuer bei vielen Auswertungen
$p(x) = \sum_{i=0}^{n} c_i \cdot g_i(x)$		Lineare Interpolation	Gerade zwischen Stützstellen	Einfach	Nicht Global differenzierbar
sodass $p(x_i) = y_i$	Stückweise Polynom- interpolation	Hermite Ansatz	Benutze Ableitung um stückweise Polynome zu definieren, $p \in C^1$	Näher an f als mit splines wenn f' bekannt	Ableitung benötigt
	$p(x) = \begin{cases} p_1 & \dots \\ p_2 & \dots \end{cases}$	Kubische Splines	$p \in C^{2m}$, stelle LGS mit 2 Randwerten auf um f' zu erhalten	Änderungen stets nur lokale Auswirkung, $O(n)$	Zusätzlicher Overhead durch LGS, Fehler größer als wenn f' gegeben
	Komplexe Trignometrische Polynombasis $g_k = e^{2\pi \cdot ikj}$	DFT/IFFTT	c_i sind Amplituden der DFT (Fourierreihe durch Riemann-Summe)	$\begin{array}{c} \text{IFFT in} \\ O(n\log(n)) \end{array}$	DFT in $O(n^2)$

Problem	Subgruppe	Verfahren	Idee	Vorteile	Nachteile
	Exakte Integration des	Rechtecksregel	Lagrange mit 1 Stützstelle		Genauigkeit 1
		Trapezregel	Lagrange mit 2 Stützstellen	Basis für Trapezsumme	Genauigkeit 1
		Fassregel	Lagrange mit 3 Stützstellen	Genauigkeit 3	
	Lagrange-Interpolant	Trapezsumme	Stückweise Trapezregel	Basis für Romberg, geringere Fehler	Langsame Konvergenz Langsame
Quadratur		Simponsumme	Stückweise Fassregel	Geringerer Fehler	Langsame Konvergenz
$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} g_{i} f(x_{i})$	Extrapolation	Romber-Quadratur	Berechne Trapezsumme für verschiedene h, extrapoliere dann in h = 0	Schnell sinkender Fehler mit wachsenden hs	f muss 2 m stetig differenzierbar sein, mehr als ein Trapezsumme nötig
	Global	Gauß	Interpoliere ein Polynom in $[-1,1]$ exakt mit variablen Stützwerten – und punkten	2 <i>n</i> −1 Genauigkeit	Veränderung von n muss ganzer Interpolant neu berechnet werden
	Hierarchisch	Archimedes	Integriere negative quadratische Funktion durch Dreiecke	Iterativ, kein Ergebnis geht verloren	Nur spezielle f möglich

Problem	Subgruppe	Verfahren	Idee	Vorteile	Nachteile
	Exakt	Gauß	Bringe A in Zeilenstufenform, dann Rückwärtssubstitution	Exakte Lösung, auf alle A anwendbar	Laufzeit $O(n^3)$
		LR-Zerlegung	$A = LR$ wobei $L^{-1}A = R$ Ergebnis der Zeilenstufenform von Gauß	Initial $O(n^3)$, bei anderen b dann $O(n^2)$	Initial $O(n^3)$
		QR-Zerlegung			
Löse LGS		Richardson	M = I	Parallelisierbar	dR langsamer als Gauß
Ax = b	Relaxation/Splitting $\phi(x_k) = x_k + M^{-1}r$	Jacobi	M = diag(A)	Parallelisierbar	idR langsamer als Gauß
	r=b-Ax	Gauß-Seidel	$M\!=\!diag(A)\!+\!L(A)$, wobei $L(A)$ Dreicksmatrix von A ohne Diagonale	IdR schneller als Jacobi	Laufzeit $O(n^3)$ Initial $O(n^3)$ dR langsamer als Gauß idR langsamer als
	Abstiegsverfahren	Steepest Descent	$f(x) = 0.5x^{T} Ax - b^{Tx}$ $\Rightarrow \nabla f = Ax - b$		
Tibsticgsveriali	7103ticg5veritimen	Conjugate Gradient			

Problem	Subgruppe	Verfahren	Idee	Vorteile	Nachteile	
		Bisektion	Such wiederholt in $[c, \frac{c+d}{2}], [\frac{c+d}{2}, d]$ je nach Vorzeichen	Global linear konvergent	Linear konvergent	
			Regula Falsi	Nehme als neuen Endpunkt Schnittpunkt der Geraden durch $(c, f(c)), (d, f(d))$	Global linear konvergent	Langsamere Konvergent als Bisektion möglich
Nullstelle $f(x)=0$, f nicht linear, 1 Dimension		Sekante	2 initiale Approximation; Nächstes x ist Schnittpunkt der Sekante durch $(x^{(i-1)}, f(x^{(i-1)})), (x^{(i)}, f(x^{(i)}))$	Lokal 1.618 konvergent	Nur lokal konvergent	
	Newton (Tangente)	Nächstes x ist Nullstelle der Tangente in x $x^{(i+1)} = x^{(i)} - \frac{k \cdot f(x^{(i)})}{f'(x^{(i)})}$ $k > 1 \in \mathbb{N}$ wenn Vielfachheit der gesuchten Nst bekannt	Lokal quadratisch konvergent wenn k gesetzt, sondt linear	Linear konvergent wenn k nicht bekannt und mehrfache Nst gesucht; Ableitung benötigt; nur lokal konvergent		

Problem	Subgruppe	Verfahren	Idee	Vorteile	Nachteile
	Analytisch	Separation der Variablen	$\int_{t_0}^{t} \frac{y'(x)}{g(y(x))} dx = \int_{t_0}^{t} f(x) dx$ $\Leftrightarrow \int_{y(t_0)}^{y(t)} \frac{1}{g(s)} ds = \int_{t_0}^{t} f(x) dx$	Exakte allgemeine Lösung für $y(t)$	Nur durch symbolische Programmierung lösbar
Differentialgleichungen		Euler	Steigung am aktuellen <i>t</i> gibt nächsten Wert	Einfach, schnell	Diskretisierung- sordnung $p=1$, Stabilität schlecht für steife Probleme
mit separierbare rechter Hälfte		Heun	Mittel der nächsten zwei Steigungen	Diskretisierung-sordnung $p=2$	Stabilität schlecht für steife Probleme
$y'(t)=f(t)g(y(t))$ Anfangswertproblem t_0, y_0 gegeben		Klassisches Runge- Kutta Verfahren	Geeignetes Mittel von 4 Steigungen	Diskretisierung- sordnung $p=4$, sehr genau	Stabilität schlecht für steife Probleme
$y_0 := y(t_0)$	Implizte EV, Approximation durch Rationale Funktion	Euler	Steigung im nächsten Punkt gibt aktuelle Steigung	Gute Stabilität bei steifen Problemen	Gleichung muss gelöst werden
	Mehrschrittverfahren: Benutze mehrere alte Funktionswerte	Adam-Bashforth	$y_{k+1} = y_k + \int_{t_k}^{t_{k+1}} y'(t) dt \approx y_k + \int_{t_k}^{t_{k+1}} p(t) dt$		
		Mittelpunktsregel	$y_{k+1} = y_{k-1} + 2 \cdot \delta t f_k$		Schlechte Stabilität

Problem	Subgruppe	Verfahren	Idee	Vorteile	Nachteile
Eigenwerte $Av = \lambda v$ wobei A symmetrisch	Analytisch	Charakteristische Funktion	$\chi(\lambda) = det(A - \lambda I)$ Bestimme $\chi(\lambda) = 0$ Bestimme Eigenvektoren $(A - \lambda_i I) v_i = 0$	Exakte Lösung	Zerstört gute Kondition durch Nullstellensuche
	Vektor Iteration	Power Iteration	Potenz zur Bestimmung des betragsmäßig größten EW	Quadratische Konvergenz EW λ_k	Lineare Konvergenz EV x_k
		Inverse Iteration	Betragsmäßig kleinster EW	Gleiche Konvergent wie Power Iteration	Lösung LGS benötigt, z.B. mit LR initial in $O(n^3)$ dann $O(n^2)$
		Rayleigh Quotient Iteration	Rayleigh Quotient aktualisiert Approximation	Kubische Konvergenz der EW λ_k	Lineare Konvergenz der EV, hohe Kosten
	Faktorisierungs- methoden: Eigenwerte zu A_k ähnlich zu A	QR Iteration			