▼ Predict Loan Eligibility for Dream Housing Finance company

Dream Housing Finance company deals in all kinds of home loans. They have presence across all urban, semi urban and rural areas. Customer first applies for home loan and after that company validates the customer eligibility for loan.

Company wants to automate the loan eligibility process (real time) based on customer detail provided while filling online application form. These details are Gender, Marital Status, Education, Number of Dependents, Income, Loan Amount, Credit History and others. To automate this process, they have provided a dataset to identify the customers segments that are eligible for loan amount so that they can specifically target these customers.

```
import pandas as pd
import numpy as np
import os,re,datetime
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import time
%matplotlib inline

train=pd.read_csv('train.csv')
```

₽		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
	0	LP001002	Male	No	0	Graduate	No	5849
	1	LP001003	Male	Yes	1	Graduate	No	4583
	2	LP001005	Male	Yes	0	Graduate	Yes	3000
	3	LP001006	Male	Yes	0	Not Graduate	No	2583
	4	I POOTOOR	Male	No	+ Code n	+ Text	No	<u> </u>

(train.isna().sum()/train.shape[0])*100

Loan_ID	0.000000
Gender	2.117264
Married	0.488599
Dependents	2.442997
Education	0.000000
Self_Employed	5.211726
ApplicantIncome	0.000000
CoapplicantIncome	0.000000
LoanAmount	3.583062
Loan_Amount_Term	2.280130
Credit_History	8.143322
Property_Area	0.000000

Loan_Status 0.000000 dtype: float64

As we can see there are many columns with nan values Credit_History having 8% nan values, Self_Employed with 5.2% by dropping nan we might lose around 15% data. We will try to impute values

```
#checking duplicates
train.duplicated().sum()
    0
train.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 614 entries, 0 to 613
    Data columns (total 13 columns):
        Column
                         Non-Null Count Dtype
    ---
                         -----
       Loan ID
                         614 non-null
                                         object
     0
     1 Gender
                         601 non-null object
     2 Married
                         611 non-null object
     3 Dependents
                         599 non-null object
614 non-null object
     4 Education
       Self_Employed 582 non-null object
     5
     6 ApplicantIncome 614 non-null int64
       CoapplicantIncome 614 non-null float64
     7
                          592 non-null float64
        LoanAmount
        Loan_Amount_Term 600 non-null float64
     9
     10 Credit_History 564 non-null float64
     11 Property_Area
                         614 non-null
                                         object
     12 Loan_Status
                          614 non-null
                                         object
    dtypes: float64(4), int64(1), object(8)
    memory usage: 62.5+ KB
train.Gender.unique()
    array(['Male', 'Female', nan], dtype=object)
train.Gender.value_counts()
    Male
             489
             112
    Female
    Name: Gender, dtype: int64
train[train.Gender.isnull()][['Gender','Loan_Status']]
```

```
Gender Loan_Status
      23
             NaN
                             Ν
      126
             NaN
                             Υ
      171
             NaN
                             Υ
      188
             NaN
                             Υ
      314
             NaN
                             Ν
      334
             NaN
                             Υ
      460
             NaN
                             Υ
      467
             NaN
                             Υ
      477
             NaN
                             Ν
      507
             NaN
                             Ν
#Filling missing values
train.Gender.fillna(value=train.Gender.mode()[0],inplace=True)
train.LoanAmount.median(),train.Credit_History.mode()[0]
     (128.0, 1.0)
#Filling missing values
train.Married.fillna(value=train.Married.mode()[0],inplace=True)
train.Dependents.fillna(value=train.Dependents.mode()[0],inplace=True)
train.Self_Employed.fillna(value=train.Self_Employed.mode()[0],inplace=True)
train.LoanAmount.fillna(value=train.LoanAmount.median(),inplace=True)
train.Loan_Amount_Term.fillna(value=train.Loan_Amount_Term.median(),inplace=True)
train.Credit_History.fillna(value=train.Credit_History.mode()[0],inplace=True)
train.isna().sum()
     Loan ID
                          0
     Gender
                          0
     Married
                          0
     Dependents
     Education
                          0
     Self Employed
                          0
     ApplicantIncome
                          0
     CoapplicantIncome
                          0
     LoanAmount
                          0
     Loan Amount Term
                          0
                          0
     Credit_History
     Property Area
                          0
     Loan_Status
                          0
     dtype: int64
plt.figure(figsize=(8,4))
colors = ['r','b','b','b','b']
```

ax=train.Gender.value_counts().plot(kind='bar',color=colors)

nlt title/'Distribution of Gender')

```
plt.vlabel('Count')
plt.show()
train.Gender.value_counts()
```


Male 502 Female 112

Name: Gender, dtype: int64

```
#Married PLOT
plt.figure(figsize=(8,4))
colors = ['r','b','b','b','b']
ax=train.Married.value_counts().plot(kind='bar',color= colors)
plt.title('Distribution of Married')
plt.ylabel('Count')
plt.show()
train.Married.value_counts()
```


Yes 401 No 213

Name: Married, dtype: int64

```
#Dependents PLOT
plt.figure(figsize=(8,4))
colors = ['r','b','g','y','b']
av=train Dependents value counts() plot(kind='ban' colors colors)
```

```
plt.title('Distribution of Dependents')
plt.ylabel('Count')
plt.show()
train.Dependents.value_counts()
```


0 360 1 102 2 101 3+ 51

Name: Dependents, dtype: int64

```
#Self_Employed PLOT
plt.figure(figsize=(8,4))
colors = ['r','b','b','b','b']
ax=train.Self_Employed.value_counts().plot(kind='bar',color= colors)
plt.title('Distribution of Self_Employed')
plt.ylabel('Count')
plt.show()
train.Self_Employed.value_counts()
```


No 532 Yes 82

Name: Self_Employed, dtype: int64

```
#Credit_History PLOT
plt.figure(figsize=(8,4))
```

```
colors = ['r','b','b','b','b']
ax=train.Credit_History.value_counts().plot(kind='bar',color= colors)
plt.title('Distribution of Credit_History')
plt.ylabel('Count')
plt.show()
train.Credit_History.value_counts()
```


Name: Credit_History, dtype: int64

```
#Property_Area PLOT
plt.figure(figsize=(8,4))
colors = ['r','b','g','b','b']
ax=train.Property_Area.value_counts().plot(kind='bar',color= colors)
plt.title('Distribution of Property_Area')
plt.ylabel('Count')
plt.show()
train.Property_Area.value_counts()
```


Semiurban 202 Urban 179 Rural

Name: Property_Area, dtype: int64

```
#Loan_Status PLOT
plt.figure(figsize=(8,4))
colors = ['r','b','g','b','b']
ax=train.Loan_Status.value_counts().plot(kind='bar',color= colors)
plt.title('Distribution of Loan_Status')
plt.ylabel('Count')
plt.show()
train.Loan_Status.value_counts()
```


Name: Loan_Status, dtype: int64

train.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
	D LP001002	Male	No	0	Graduate	No	5849
	1 LP001003	Male	Yes	1	Graduate	No	4583
	2 LP001005	Male	Yes	0	Graduate	Yes	3000
;	3 LP001006	Male	Yes	0	Not Graduate	No	2583
	1 P001008	Male	No	Ω	Graduate	No	6000

train.Loan_Amount_Term.value_counts()

360.0 526 180.0 44 480.0 15 300.0 13 4 84.0 240.0 4 3 120.0 2 36.0 2 60.0 12.0 1

Name: Loan_Amount_Term, dtype: int64

```
#Loan_Amount_Term PLOT
plt.figure(figsize=(10,6))
colors = ['r','b','g','b','b']
ax=train.Loan_Amount_Term.value_counts().plot(kind='bar',color= colors)
plt.title('Distribution of Loan_Amount_Term')
plt.ylabel('Count')
plt.show()
```



```
#pie chart for loan_amount_term
plt.figure(figsize=(20,10))
values=train.Loan_Amount_Term.value_counts()
labels=train.Loan_Amount_Term.value_counts().index
plt.pie(values,labels=labels,autopct='%.2f')
plt.title('loan_amount_term(%) ', weight='bold')
plt.show()
```

loan_amount_term(%)

sns.set_style==('whitegrid');
sns.FacetGrid(train,hue='Loan_Status',size=5).map(sns.distplot,'ApplicantIncome').add_lege
plt.show()


```
plt.figure(figsize=(15,8))
sns.set_style==('whitegrid');
sns.FacetGrid(train,hue='Loan_Status',size=5).map(sns.distplot,'CoapplicantIncome').add_le
plt.show()
```



```
plt.figure(figsize=(15,8))
sns.set_style==('whitegrid');
sns.FacetGrid(train,hue='Loan_Status',size=5).map(sns.distplot,'LoanAmount').add_legend();
plt.show()
```


By looking at the pdf plots of LoanAmount,CoapplicantIncome,ApplicantIncome we can see a lot of overlapping.

```
plt.figure(figsize=(15,8))
sns.set_style==('whitegrid');
sns.FacetGrid(train,hue='Loan_Status',size=5).map(sns.scatterplot,'Credit_History','Coappl
plt.show()
```

<Figure size 1080x576 with 0 Axes>

plt.figure(figsize=(15,8))
sns.set_style==('whitegrid');
sns.FacetGrid(train,hue='Loan_Status',size=5).map(sns.scatterplot,'Credit_History','Applic
plt.show()


```
plt.figure(figsize=(15,8))
sns.set_style==('whitegrid');
sns.FacetGrid(train,hue='Loan_Status',size=5).map(sns.scatterplot,'Credit_History','LoanAm
plt.show()
```



```
plt.figure(figsize = (12,6))
sns.countplot(x=train['Loan_Status'], hue = train['Gender'])
plt.ylabel("Loan_Status for Different Gender")
plt.title("Loan_Status vs Gender",weight = 'bold')
```

Text(0.5, 1.0, 'Loan_Status vs Gender')

Rejection and approval of female applicants are low as compared to male applicants

```
# Scatter plot of ApplicantIncome and LoanAmount
train.plot('LoanAmount','ApplicantIncome', kind ='scatter')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f574c29b4a8>

Cat-Cat plots

0 100 200 200 400 500 500 700

print the cross-tabulation

ct=pd.crosstab(train.Gender,train.Loan_Status,margins=True)
print(ct)

Loan_Status	N	Υ	All
Gender			
Female	37	75	112
Male	155	347	502
All	192	422	614

ct.iloc[:-1,:-1].plot(kind = 'bar', stacked = True, color = ['red','blue'], grid = False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f574c096fd0>

ct=pd.crosstab(train.Married,train.Loan_Status,margins=True)
ct.iloc[:-1,:-1].plot(kind='bar',stacked=True,color=['red','blue'],grid=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f574c0a2160>

ct=pd.crosstab(train.Education,train.Loan_Status,margins=True)
ct.iloc[:-1,:-1].plot(kind='bar',stacked=True,color=['red','blue'],grid=False)
plt.show()

ct=pd.crosstab(train.Self_Employed,train.Loan_Status,margins=True)
ct.iloc[:-1,:-1].plot(kind='bar',stacked=True,color=['red','blue'],grid=False)
plt.show()

ct=pd.crosstab(train.Property_Area,train.Loan_Status,margins=True)
ct.iloc[:-1,:-1].plot(kind='bar',stacked=True,color=['red','blue'],grid=False)
plt.show()

ct=pd.crosstab(train.Credit_History,train.Loan_Status,margins=True)
ct.iloc[:-1,:-1].plot(kind='bar',stacked=True,color=['red','blue'],grid=False)
plt.show()

train.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
0	LP001002	Male	No	0	Graduate	No	5849
1	LP001003	Male	Yes	1	Graduate	No	4583
2	LP001005	Male	Yes	0	Graduate	Yes	3000
3	LP001006	Male	Yes	0	Not Graduate	No	2583
4	I POOTOOR	Male	No	Λ	Graduate	No	6000

▼ Getting new Data Columns

We have two columns named applicant income and co-applicant income. It may be the case that total income might have a great impact on Loan Status. This is just a guess. It may or may not work. Also It may be the case that EMI would have a greater impact on Loan Status as it combines Loan Amount and Loan Amount Term. So I am just using some common sense to find new variables that can impact. Well this concept in short is known as Feature Engineering. (It's not as easy as what is explained here....But to make our model better ..we are approaching this way.....)

train['Total_Income']=train.ApplicantIncome+train.CoapplicantIncome

sns.distplot(train.Total_Income)

train['Total_Income_log']=np.log(train.Total_Income)
sns.distplot(train.Total_Income_log)

<matplotlib.axes._subplots.AxesSubplot at 0x7f574c4ba208>

Applying the log function removes the skewness of data and makes it normal. As total income is skewed i have applied log of that which makes it normal so that many machine learning

Adding one more Feature: EMI

```
A = PxRx(1+R)^N
B = (1+R)^{(N-1)}
EMI = A/B.
ref: <a href="https://www.myloancare.in/home-loan-interest-rates/">https://www.myloancare.in/home-loan-interest-rates/</a> EMI could be a big factor in
determining the approval as high emi amount might lower chances of approval.
train['EMI']=(train.LoanAmount*0.09*(1.09**train.Loan_Amount_Term))/(1.09**(train.Loan_Amo
#pd.get_dummies ==> Convert categorical variable into dummy/indicator variables.(OneHot en
train.Gender=pd.get_dummies(train.Gender,drop_first=True)
train.Married=pd.get_dummies(train.Married,drop_first=True)
train.Dependents=pd.get_dummies(train.Dependents,drop_first=True)
train.Education=pd.get_dummies(train.Education,drop_first=True)
train.Self_Employed=pd.get_dummies(train.Self_Employed,drop_first=True)
train.Property_Area=pd.get_dummies(train.Property_Area,drop_first=True)
train.Loan_Amount_Term=pd.get_dummies(train.Loan_Amount_Term,drop_first=True)
train.drop(['Loan_ID'],axis=1,inplace=True)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(train,train['Loan_Status'],stratify=train
from joblib import dump, load
dump(X_train, 'more_feature_X_train')
dump(X_test, 'more_feature_X_test')
dump(y train, 'more feature y train')
dump(y_test, 'more_feature_y_test')
from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler(feature range=(-1,1))
applicant_income=mms.fit_transform(np.array(X_train.ApplicantIncome).reshape(-1,1))
coapplicant_income=mms.fit_transform(np.array(X_train.CoapplicantIncome).reshape(-1,1))
loan_amount=mms.fit_transform(np.array(X_train.LoanAmount).reshape(-1,1))
emi=mms.fit_transform(np.array(X_train.EMI).reshape(-1,1))
total_amount=mms.fit_transform(np.array(X_train.Total_Income).reshape(-1,1))
```

```
total_amount_log=mms.fit_transform(np.array(X_train.Total_Income_log).reshape(-1,1))
applicant_income=mms.fit_transform(np.array(X_train.ApplicantIncome).reshape(-1,1))
applicant_income1=mms.fit_transform(np.array(X_test.ApplicantIncome).reshape(-1,1))
coapplicant_income1=mms.fit_transform(np.array(X_test.CoapplicantIncome).reshape(-1,1))
loan_amount1=mms.fit_transform(np.array(X_test.LoanAmount).reshape(-1,1))
emi1=mms.fit_transform(np.array(X_test.EMI).reshape(-1,1))
total_amount1=mms.fit_transform(np.array(X_test.Total_Income).reshape(-1,1))
total_amount_log1=mms.fit_transform(np.array(X_test.Total_Income_log).reshape(-1,1))
## combine all 'one-hot' encoded features as Te.
tr =pd.DataFrame(pd.np.column_stack([ applicant_income,coapplicant_income,loan_amount,tota
## CONCAT both dataframe ### ie Te and X_test(original dataframe)
## https://stackoverflow.com/questions/45963799/pandas-concat-resulting-in-nan-rows
13=X_train.values.tolist()
14=tr.values.tolist()
for i in range(len(13)):
    13[i].extend(14[i])
X_train=pd.DataFrame(13,columns=X_train.columns.tolist()+tr.columns.tolist())
X_train.shape
X_train.head()
# after onehot encoding DONE. 'location', 'rest_type', 'cuisines' are redundant features. RE
X_train =X_train.drop(['ApplicantIncome','CoapplicantIncome','LoanAmount','EMI','Total_Inc
## combine all 'one-hot' encoded features as Te.
te =pd.DataFrame(pd.np.column_stack([ applicant_income1,coapplicant_income1,loan_amount1,t
## CONCAT both dataframe ### ie Te and X_test(original dataframe)
## https://stackoverflow.com/questions/45963799/pandas-concat-resulting-in-nan-rows
13=X_test.values.tolist()
14=te.values.tolist()
for i in range(len(13)):
    13[i].extend(14[i])
X test=pd.DataFrame(13,columns=X test.columns.tolist()+te.columns.tolist())
X_test =X_test.drop(['ApplicantIncome','CoapplicantIncome','LoanAmount','EMI','Total_Incom
X_test.shape
```

y_train=X_train['Loan_Status']

```
X_train.drop('Loan_Status',axis=1,inplace=True)
y_train
```

MODELING

```
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV,KFold,StratifiedKFold
from sklearn import metrics
score1=0
i=1
params={'C':[10**i for i in range(-3,3)]}
kf=StratifiedKFold(n_splits=10, shuffle=True, random_state=95)
for tr,te in kf.split(X_train,y_train):
 print('{} of kfold {}'.format(i,kf.n_splits))
 #print(te)
 x1,x2=X_train.loc[tr],X_train.loc[te]
 y1,y2=y_train.loc[tr],y_train.loc[te]
 model2=GridSearchCV(LogisticRegression(random_state=95),param_grid=params,scoring='accur
 model2.fit(x1,y1)
 pred_test=model2.predict(x2)
 score=metrics.accuracy_score(y2,pred_test)
 score1+=score
 print('accuracy_score',score)
 i+=1
     1 of kfold 10
     accuracy_score 0.74
     2 of kfold 10
     accuracy_score 0.8163265306122449
     3 of kfold 10
     accuracy_score 0.8775510204081632
     4 of kfold 10
     accuracy_score 0.7346938775510204
     5 of kfold 10
     accuracy_score 0.8571428571428571
     6 of kfold 10
     accuracy_score 0.8163265306122449
     7 of kfold 10
     accuracy_score 0.7755102040816326
     8 of kfold 10
     accuracy score 0.7959183673469388
     9 of kfold 10
     accuracy_score 0.8571428571428571
     10 of kfold 10
```

Naive bayes

accuracy_score 0.8367346938775511

```
from sklearn.naive bayes import GaussianNB
score2=0
i=1
params={}
kf=StratifiedKFold(n_splits=10,shuffle=True,random_state=95)
for tr,te in kf.split(X_train,y_train):
  print('{} of kfold {}'.format(i,kf.n_splits))
  #print(te)
  x1,x2=X_train.loc[tr],X_train.loc[te]
  y1,y2=y_train.loc[tr],y_train.loc[te]
  model=GridSearchCV(GaussianNB(),param_grid=params,scoring='accuracy')
  model.fit(x1,y1)
  pred_test=model.predict(x2)
  score=metrics.accuracy_score(y2,pred_test)
  score2+=score
  print('accuracy_score',score)
     1 of kfold 10
     accuracy_score 0.72
     2 of kfold 10
     accuracy_score 0.8163265306122449
     3 of kfold 10
     accuracy_score 0.8775510204081632
     4 of kfold 10
     accuracy_score 0.7142857142857143
     5 of kfold 10
     accuracy_score 0.8571428571428571
     6 of kfold 10
     accuracy_score 0.8367346938775511
     7 of kfold 10
     accuracy_score 0.7755102040816326
     8 of kfold 10
     accuracy score 0.7959183673469388
     9 of kfold 10
     accuracy_score 0.8571428571428571
     10 of kfold 10
     accuracy_score 0.8367346938775511
```

test=pd.read_csv('test.csv')
test.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
0	LP001015	Male	Yes	0	Graduate	No	5720
1	LP001022	Male	Yes	1	Graduate	No	3076
2	LP001031	Male	Yes	2	Graduate	No	5000
3	LP001035	Male	Yes	2	Graduate	No	2340
4	LP001051	Male	No	0	Not Graduate	No	3276

test.drop('Loan_ID',axis=1,inplace=True)

```
Gender
                          11
     Married
                           0
                          10
     Dependents
                          0
     Education
     Self Employed
                          23
     ApplicantIncome
                           0
     CoapplicantIncome
                           0
                           5
     LoanAmount
                           6
     Loan Amount Term
     Credit_History
                          29
     Property_Area
     dtype: int64
#Filling missing values
test.Married.fillna(value=test.Married.mode()[0],inplace=True)
test.Dependents.fillna(value=test.Dependents.mode()[0],inplace=True)
test.Self_Employed.fillna(value=test.Self_Employed.mode()[0],inplace=True)
test.LoanAmount.fillna(value=test.LoanAmount.median(),inplace=True)
test.Loan_Amount_Term.fillna(value=test.Loan_Amount_Term.median(),inplace=True)
test.Credit_History.fillna(value=test.Credit_History.mode()[0],inplace=True)
#Filling missing values
test.Gender.fillna(value=test.Gender.mode()[0],inplace=True)
#pd.get_dummies ==> Convert categorical variable into dummy/indicator variables.(OneHot en
test.Gender=pd.get dummies(test.Gender,drop first=True)
test.Married=pd.get_dummies(test.Married,drop_first=True)
test.Dependents=pd.get_dummies(test.Dependents,drop_first=True)
test.Education=pd.get_dummies(test.Education,drop_first=True)
test.Self_Employed=pd.get_dummies(test.Self_Employed,drop_first=True)
test.Property_Area=pd.get_dummies(test.Property_Area,drop_first=True)
test.Loan_Amount_Term=pd.get_dummies(test.Loan_Amount_Term,drop_first=True)
test['EMI']=(test.LoanAmount*0.09*(1.09**test.Loan_Amount_Term))/(1.09**(test.Loan_Amount_
test['Total_Income']=test.ApplicantIncome+test.CoapplicantIncome
test['Total_Income_log']=np.log(test.Total_Income)
coapplicant income=mms.fit transform(np.array(test.CoapplicantIncome).reshape(-1,1))
loan_amount=mms.fit_transform(np.array(test.LoanAmount).reshape(-1,1))
emi=mms.fit_transform(np.array(test.EMI).reshape(-1,1))
total_amount=mms.fit_transform(np.array(test.Total_Income).reshape(-1,1))
total_amount_log=mms.fit_transform(np.array(test.Total_Income_log).reshape(-1,1))
applicant_income=mms.fit_transform(np.array(test.ApplicantIncome).reshape(-1,1))
## combine all 'one-hot' encoded features as Te.
tr =pd.DataFrame(pd.np.column_stack([ applicant_income,coapplicant_income,loan_amount,tota
## CONCAT both dataframe ### ie Te and X_test(original dataframe)
## https://stackoverflow.com/questions/45963799/pandas-concat-resulting-in-nan-rows
13=test.values.tolist()
```

test.isna().sum()

	Gender	Married	Dependents	Education	Self_Employed	Loan_Amount_Term	Credit_H
0	1.0	1.0	0.0	0.0	0.0	0.0	
1	1.0	1.0	1.0	0.0	0.0	0.0	
2	1.0	1.0	0.0	0.0	0.0	0.0	
3	1.0	1.0	0.0	0.0	0.0	0.0	
4	1.0	0.0	0.0	1.0	0.0	0.0	

```
pred_test_sub=model.predict(test)
pred_test_prob=model.predict_proba(test)[:,1]
print('average accuracy',score1/10)
```

average accuracy 0.810734693877551

```
pred_test_sub2=model2.predict(test)
pred_test_prob2=model2.predict_proba(test)[:,1]
print('average accuracy',score2/10)
```

average accuracy 0.808734693877551

pred_test_sub

```
'Υ',
                                            'Υ',
array(['Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'N',
                    'Y', 'Y', 'Y', 'Y', 'Y',
                                            'Y', 'Y', 'Y',
       'N', 'Y', 'Y',
                       , 'Y'
                            ', 'Y', 'Y', 'Y',
                                            'Y', 'N', 'Y'
         , 'Y', 'Y',
                    'Y'
                       , 'Y', 'Y', 'Y'
          'Y'
              , 'Y',
                                             'Υ',
                     'Y'
                                        'Y'
                                                 'Υ',
                                                     'Υ'
                                       'Υ',
                                                      'Υ',
               'Y', 'N', 'Y',
          'Υ',
                              'Y', 'N',
                                             'Y', 'Y',
      'Y', 'N', 'N',
                    'Y', 'N', 'Y', 'Y', 'Y',
                                             'Y', 'Y', 'Y',
         , 'Y', 'N',
                    'Y', 'N', 'Y', 'N', 'Y',
                                             'Y', 'Y', 'Y'
                     'N', 'Y', 'Y', 'Y',
                                        'Υ',
                                             'Υ',
                                                     'N',
                                                  'Y',
               'Y',
                     'Y', 'Y', 'Y', 'Y', 'Y',
      'Y', 'Y',
               'N',
                                             'Y', 'Y',
                     'Y', 'Y', 'Y', 'N', 'N',
                                             'Y', 'N', 'Y',
      'N', 'N', 'N',
               'Υ',
                       , 'Y'
                             'Υ', 'Υ'
                                             'Y', 'Y', 'N',
                     'Y'
                                      , 'Y',
                                                                'N'
         , 'Y'
                     'Υ',
                              'Υ',
                                  'Y',
                                       'Υ',
                                             'Υ',
                                                  'Y',
          'N',
               'Υ',
                         'N',
                                                      'N',
      'Y', 'Y', 'Y',
                    'Y', 'Y', 'N', 'Y', 'Y',
                                            'Y', 'N', 'N',
         , 'Y', 'Y', 'Y', 'N', 'N', 'Y', 'Y',
                                            'Y', 'Y', 'Y',
                                                           'Υ'
               , 'Y',
                                                 'Y', 'N',
                     'Y', 'Y', 'Y',
                                  'Y', 'Y',
                                            'Υ',
           'Y',
                                                           'N',
                                                                'Y'
```

```
', 'N', 'N', 'Y', 'Y', 'Y', 'N', 'Y', 'N', 'Y', 'N', 'Y'
              'Υ', 'Υ',
                    'Υ',
     'Y',
        'N', 'Y',
                       'N',
                         'Υ',
, 'N', 'Y', 'Y', 'Y', 'N', 'Y', 'Y',
                       'Y', 'Y', 'Y',
'Y', 'Y', 'Y',
        , 'Y', 'Y', 'Y', 'Y', 'N',
                       'Υ',
                          'Y', 'Y',
                                'Y',
, 'Y'
          , 'Y', 'Y', 'Y', 'Y', 'Y'
                         , 'Y', 'Y'
 , 'Y'
    , 'Y', 'Y'
              'Y', 'Y', 'Y', 'N', 'Y',
     , 'Y',
'Y', 'Y', 'Y'], dtype=object)
```

submission=pd.read_csv('test.csv')

submission['Loan_Status']=pred_test_sub

subs=submission[['Loan_ID','Loan_Status']]

subs.head()

	Loan_ID	Loan_Status
0	LP001015	Υ
1	LP001022	Υ
2	LP001031	Υ
3	LP001035	Υ
4	LP001051	Υ

```
subs.to_csv('sub_loan.csv',index=False)
```

```
submission2=pd.read_csv('test.csv')
submission2['Loan_Status']=pred_test_sub
```

subs2=submission2[['Loan_ID','Loan_Status']]

subs2.to_csv('sub_loan2.csv',index=False)