Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -1400.000 -1500.000 -1600.000 Radiell fart m/s -1700.000 -1800.000 -1900.000 -2000.000 250 ò 500 750 1000 1250 1500 1750 2000 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 3.00e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er 10 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE B) stjerna fusjonerer helium i kjernen

STJERNE C) Stjerna har en overflatetemperatur på 10000K. Radiusen er betydelig mindre enn solas radius

STJERNE D) stjernas luminositet er 1/10 av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE E) radiusen er 1000 ganger solas radius.

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 6.830e+06 kg/m3̂ og temperatur 29 millioner K.

Kjernen i stjerne B har massetet
thet 5.775e+06 kg/m3̂ og temperatur 27 millioner K.

Kjernen i stjerne C har massetet
thet 9.281e+06 kg/m3 og temperatur 18 millioner K.

Kjernen i stjerne D har massetet
thet 1.439e+06 kg/m3̂ og temperatur 15 millioner K.

Kjernen i stjerne E har massetet
thet 5.762e+06 kg/m3 og temperatur 34 millioner K.

Filen 1K/1K.txt

Påstand 1: den absolutte størrelseklassen (magnitude) med UV filter er betydelig mindre enn den absolutte størrelseklassen i blått filter

Påstand 2: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

Påstand 3: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 1.056e+05 kg/m3̂ og temperatur 35.08 millioner K.

Kjernen i stjerne B har massetet
thet 2.468e+05 kg/m3̂ og temperatur 33.00 millioner K.

Kjernen i stjerne C har massetet
thet $4.848\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 29.14

millioner K.

Kjernen i stjerne D har massetet
thet 2.188e+05 kg/m3̂ og temperatur 27.47 millioner K.

Kjernen i stjerne E har massetet
thet 2.552e+05 kg/m3̂ og temperatur 17.91 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_.png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 1.81 buesekunder i løpet av et millisekund.

42.22

37.53

32.84

28.15

14.07

9.38

4.69

0.00

4.69

9.38

14.07

18.76

23.45

28.15

32.84

37.53

42.22

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Bodø som ligger i en avstand av 1000 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 96.74440 km/t.

Filen 3E.txt

Tog1 veier 90500.00000 kg og tog2 veier 37400.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 520 km/s.

Filen 4E.txt

Massen til gassklumpene er 1300000.00 kg.

Hastigheten til G1 i x-retning er 6600.00 km/s.

Hastigheten til G2 i x-retning er 13860.00 km/s.

Filen 4G.txt

Massen til stjerna er 36.65 solmasser og radien er 1.72 solradier.