Homework 3

Only one randomly chosen question (which is the same for all of you) will be graded!

(1) (a) Let $A = \{1, 2, 3, 4, 5\}, B = \{3, 4, 5\}$ and

$$R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (1,5), (2,3), (2,4), (2,5), (3,5), (4,5)\}.$$

Explain briefly why R is a partial order on A. Find a chain in A containing three elements. Find lower bounds and upper bounds of the set B. Find minimal and maximal elements of B. Find the smallest and the greatest element of B.

- (b) Let (X, \leq) be a nonempty poset such that every chain in it has an upper bound, and let $F: X \to X$ be a function satisfying that $x \leq F(x)$ for all $x \in X$. Does (X, \leq) have a maximal element? Show that there is an $x_0 \in X$ such that $F(x_0) = x_0$.
- (2) (a) Let R be a symmetric relation on a set A and S be the relation on A defined by $S = (A \times A) R$. Prove that S is symmetric.
 - (b) Let T be a symmetric and transitive relation on a set A. Show that T is reflexive if and ony if the domain of T is A.
- (3) (a) Let R be an equivalence relation on a finite set A. Prove that |R| |A| is even.
 - (b) Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4\}$. Let E be the equivalence relation on $\mathcal{P}(A)$ defined for any elements X and Y of $\mathcal{P}(A)$ by

$$(X,Y) \in E$$
 if and only if $X \cap B = Y \cap B$.

Find the equivalence classes and write the quotient set A/E.

(4) Let $f: A \to B$ be a function where A and B are sets. The kernel Kerf of f is the relation on A defined for any elements r and s of A by

$$(r,s) \in \operatorname{Ker} f$$
 if and only if $f(r) = f(s)$.

One may easily see that $\operatorname{Ker} f$ is an equivalence relation on A. Consider the map $F: A/\operatorname{Ker} f \to f(B)$ defined by

$$F([a]) = f(a)$$

for any $[a] \in A/\operatorname{Ker} f$ where [a] denotes the Kerf-equivalence class of $a \in A$ and $A/\operatorname{Ker} f = \{[a] \mid a \in A\}$ denotes the quotient set of A by the equivalence relation $\operatorname{Ker} f$ and f(B) denotes the range of f. Consider also the following maps $\mu: A \to A/\operatorname{Ker} f$ and $\nu: f(B) \to B$ defined by

$$\mu(a) = [a]$$
 and $\nu(x) = x$

for any $a \in A$ and for any $x \in f(B)$.

- (i) Show that F is well defined.
- (ii) Explain why we do not need to justify that μ and ν are well defined.
- (iii) Show that F is bijective.
- (iv) Justify that μ is surjective and ν is injective.
- (v) Justify that $f = \nu \circ F \circ \mu$.
- (vi) Show that any function is a composition of three functions that are, from right to left, a surjection, a bijection and an injection.
- (vii) Suppose that $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{r, s, t, u\}$, and suppose that $f: A \to B$ is given by

$$f(1) = f(3) = f(6) = r$$
, $f(2) = f(5) = t$ and $f(4) = u$.

Write explicitly each of Kerf, f(B), F, μ , ν and check that the previous parts are all true.