ML based eye closure estimation algorithm, as a foundation for Bell's palsy treatment

Tom Mendel 204708812 Oren Shapira 204662449

Outline

- Motivation
- Our Vision
- Research Question
- Project Milestones and Results
- Summary

Motivation

- Bell's palsy the most common facial paralysis
- Symptoms include problems with blinking and closing the eye
- This would leave the cornea dry, which cause pain, infections and even lead to blindness.
- Peak ages are 15 45 years, rapid rehabilitation is crucial!

NO available solutions which are not invasive and effective in advanced stages!

Our Vision

- 1. <u>Detecting blinks</u> from the healthy eye and paralyzed eye
- 2. Applying <u>synchronized</u> and <u>minimal</u> electrical stimulation on the paralyzed eye, accelerating rehabilitation

HOW?

- ☐ Detecting eyes closure **amount**
- □ Once a blink is reached from the healthy eye, check the closure amount of the paralyzed eye and stimulate it to reach a full closure

The Research Question

Does using advanced methods of **machine learning**, applied on a **visual input** from video cameras, apply for a reliable estimation of **human eye closure amount**?

Project Milestones

Eye Detection

Detecting faces using Python's HOG-based detector, implemented in dlib

Gradient Magnitude

Gradient Direction

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.

Project Milestones Eye Detection – cont.

- Once a bounding box is found, it is easier to extract landmarks out of it
- Using a pre-trained facial landmarks detector (created by regression trees)

V. Kazemi and S. Josephine. One millisecond face alignment with an ensemble of regression trees. In CVPR, 2014.

Project Milestones

Feature Extraction

EAR - Eye Aspect Ratio

$$EAR = \frac{\left| |p_2 - p_6| \right| + \left| |p_3 - p_5| \right|}{2 \left| |p_1 - p_4| \right|}$$

Ellipse Area

$$A_{ellipse} = \pi \cdot ma \cdot MA$$

Shoelace Formula

$$A = \frac{1}{2} \left| \sum_{i=1}^{n-1} x_i y_{i+1} + x_n y_1 - \sum_{i=1}^{n-1} x_{i+1} y_i - x_1 y_n \right|$$

- Blink duration: 300-400ms (~10 frames); one blink every 2-10 seconds (source: Wikipedia)
- All features are **normalized** with respect to the scores of the previous frames

Project Milestones

palsy 05 I 25fps: features scores n vs frame number & elapsed time

Feature Extraction – cont.

Project MilestonesTagging Data

- Tagging frames for supervised learning (for Training Classifier)
- Suggest a discrete scale for tagging (5 Levels)

Project Milestones (Tagging Data – cont.)

Build a semi-automatic GUI to make the tagging work easier (subjective tagging)

Project Milestones Training Classifiers

- Using 300-VW dataset for healthy patients and YouTube videos for 'paralyzed' patients
- Each video lasts about 8 to 10 seconds, using 25-30 frames per second
- A total of 436 blinks, using 5-level manual tagging
- A total of 19,182 samples
- A total of 5,115 samples as the final database

Label	0	0.25	0.5	0.75	1
Healthy patients	464	388	419	570	610
Patients	354	351	461	730	768
diagnosed with					
Bell's Palsy					
Total	818	739	880	1300	1378
-					

# Blinks	Men	Women
Healthy patients	107	107
Patients diagnosed	111	111
with Bell's Palsy		

Project MilestonesTraining Classifiers – cont.

08 0.65 - 0.60 -

Model performance vs. number of neighboring frames

- Using features from <u>12</u> neighboring frames (6 before + 6 after)
- Total number of features: 27
- Performance evaluation:
- Accuracy per frame
- Accuracy per blink (the minimum label in the current blink)
- Using 5-fold cross validation with random blink numbers

Using 3-level classification: up to 81.9% (frame-wise) and 91.8% (blink-wise)

Method	Accuracy per frame	Accuracy per blink
Gaussian Naïve Bayes	49.9%	40.9%
K-NN (k=3)	64.5%	70%
SVM; Linear Kernel	54.7%	45.4%
SVM; RBF Kernel	66.7%	73.6%
Random Forest	68.9%	73.6%
SVM RBF + HOG features	52.6%	58.2%
K-NN + HOG features (k=11)	58.5%	70.9%

Project Milestones (Final Integration)

Project Milestones (Final Integration – cont.)

Performance Illustration for Healthy people

Project Milestones (Final Integration – cont.)

Performance Illustration for Palsy people

Summary

- We introduce a novel technique for assessing the paralyzed eye's <u>amount of</u> <u>closure</u>, that can be used for future diagnosis and treatment
- The application is based on basic calculations, <u>making it suitable for real-time</u> <u>applications</u>
- By integration of "fast" and "slow" estimators, we reached ~75% accuracy. This can be further improved by:
 - Using more accurate eye detectors
 - Increasing the database
 - Using higher resolution and frame rate
 - Applying more sophisticated ML methods (e.g. deep learning)

Thank You! Questions?

