OR

- (b) What are the different methods of interpolation for unequal interval? Given $u_3 = 6$, $u_5 = 24$, $u_7 = 58$, $u_9 = 108$, $u_{11} = 104$, find u_{100} . 10 Marks (CO2)
- 5. (a) What are significant figures? What are the different methods to convert an approximate number to significant figures? Explain with examples. If $\pi = \frac{22}{7}$ is approximated as 3.14, find the absolute, relative and percentage error.

10 Marks (CO1)

OR

(b) Solve the equations 27x + 6y - z = 85; x + y + 54z = 110; 6x + 15y + 2z = 72; by Gauss-Seidel method. 10 Marks (CO1)

H

Roll No.

TMA-502

B. TECH. (CSE) (FIFTH SEMESTER) MID SEMESTER EXAMINATION, 2022

COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

Time: 11/2 Hours

Maximum Marks: 50

- Note: (i) Answer all the questions by choosing any *one* of the sub-questions.
 - (ii) Each sub-question carries 10 marks.
- 1. (a) Find the roots of the equation $x^2 + 4 \sin x = 0$ by Newton-Raphson method correct to four decimal places.

10 Marks (CO1)

OR

(b) Find the roots of the equation $x^2 - \log_e x - 12 = 0$ correct to 3 decimal places by Regula-Falsi method.

10 Marks (CO1)

(3)

2. (a) Solve the system of linear equations using Gauss Elimination method:

10 Marks (CO1)

$$6x + 3y + 2z = 6$$

$$6x + 4y + 3z = 0$$

$$20x + 15y + 12z = 0.$$

STATISTICA NO CHNIQUES

- (b) Solve the equations x + y + 2z = 4; 3x + y 3z = -4; 2x 3y 5z = -5; by Gauss-Jordan method. 10 Marks (CO1)
- 3. (a) From the following table, estimate the number of students who obtain marks between 45 and 55: 10 Marks (CO2)

Marks	No. of Students
30—40	31
40—50	out 42 (d)
50—60	SP 2 30 51
60—70	-idages I ve 35° .
70—80	31

(b) Find the cubic polynomial which takes the following values. Hence find f(2.75):

10 Marks (CO2)

X	f(x)
Carp reg. O. Arriver	A In White dignificant
m trevnos 1 of	2
2	15doloo alamaxia pair
3 ± 1 π 3 ± 20 (q)	mae disv mid 10 di

4. (a) The population of a certain town is given below. Find the population in 1955 using central difference formula:

10 Marks (CO2)

Year (X)	Population (Y) (in thousands)
1931	40.62
1941	60.80
1951	79.95
1961	103.56
1971	132.65