Simulasi, Studi Eksperimen dan Analisis Defleksi pada Ujung Bebas Curved Beam Akibat Beban Terkonsentrasi Tunggal

Dewa Ngakan Ketut Putra Negara & Anak Agung Istri Agung Sri Komaladewi

Jurusan Teknik Mesin, Universitas Udayana, Kampus Bukit Jimbaran Badung e-mail: devputranegara@me.unud.ac.id

Abstrak

Defleksi (deflection) sangat penting dipertimbangkan dalam mendesain suatu struktur ataupun komponen mesin disamping perhitungan tegangan (stress). Hal ini disebabkan walaupun tegangan yang terjadi masih lebih kecil daripada tegangan yang diijinkan oleh kekuatan bahan, bisa terjadi besar lenturan akibat beban yang bekerja melebihi batas yang diijinkan. Keadaan demikian dapat menyebabkan kerusakan serius pada bagian-bagian mesin atau struktur karena dapat mengakibatkan komponen menyimpang dari fungsi utamanya. Salah satu tipe elemen yang sering mengalami lenturan adalah beam. Beam banyak digunakan sebagai konstruksi jembatan, gedung, automobile dan struktur pesawat terbang. Pada penelitian ini material yang digunakan adalah baja ASTM 1060, dengan specimen berupa curved beam. Beban yang diberikan dikonsentrasikan pada ujung bebas curved beam dalam arah vertical dengan variasi W = 100, 150, 200, 250, 300, 350, 400, 450, 500, dan 550 gr. Parameter yang diamati adalah pengaruh beban terhadap defleksi, dan defleksi yang trejadi diselesaikan dengan simulasi computer dengan model BEAM3 2D. Hasil simulasi dievaluasi dengan menggunakan data analitis dan data eksperimen. Evaluasi dilakukan dengan uji statistic (uji t). Hasil simulas.ununi dikategorikan baik jika hasil simulasi sama dengan hasil eksperimen dan analitis. Hasil penelitian menunjukkan bahwa pembebanan berpengaruh secara signifikan terhadap defleksi yang terjadi. Pemodelan menggunakan BEAM3 2D memberikan hasil simulasi yang baik. Hal ini ditunjukkan dari uji t yang dilakukan, dimana hasil simulasi yang diperoleh sama dengan hasil dari eksperimen dan kajian analitis. Kelebihan lain yang diperoleh dari simulasi adalah bahwa hasil defleksi yang didapat tidak terbatas hanya pada ujung curved beam, tetapi dapat juga memprediksi defleksi pada setiap node ataupun setiap elemen sesuai yang dikehendaki.

Kata kunci: Simulasi, Defleksi, Beam

Abstract

Simulation, Experimental and Analitical Study of Deflection at End Curved Beam Affected by Single Concentrated Load

Deflection has an important role in order to design structure or machine component, beside consideration of stress calculation. This is due to although stress is still smaller then stress allowed by material strength, but probably happen that deflection exceeds limit allowed. That condition affects serious hazard on machine elements or structure due to it can affect of component deviate from its main function. One of element which is often experience of deflection is beam. Beams play significant roles in many engineering applications, including buildings, bridges, automobiles, and airplane structures. In this research, material to be used was Steel ASTM 1060, with specimen in the form of curved beam. Physical condition of beam was modeled use of BEAM3 2D. Variation of loads to be applied were W = 100, 150, 200, 250, 300, 350, 400, 450, 500, and 550 gr in vertical direction. The result of simulation was verificated by analytical and experimental data. Evaluation was carried out by statistical test (t-test). The result of simulation is categorized to be good if the result of simulation is same with analytical and experimental data. The result of research shows that loading has a significant effect on the deflection. The higher load affect the higher of deflection Modeling use of BEAM3 2D gave good result of deflection. This is showed from t-test have done, where the result of simulation was same with analytical and experimental data. Other advantage of simulation was deflection result obtained was not limited only at the end of beam, but it can predict of deflection at each node or point desired

Key words: Simulation, Deflection, Beam

1. Pendahuluan

Dalam perencanaan suatu bagian mesin atau struktur selain perhitungan tegangan (stress) yang terjadi akibat beban yang bekerja, besarnya lenturan (deflection) seringkali harus diperhitungkan. Hal ini disebabkan walaupun tegangan yang terjadi masih lebih kecil daripada tegangan yang diijinkan oleh kekuatan bahan, bisa terjadi besar lenturan akibat

beban yang bekerja melebihi batas yang diijinkan. Keadaan demikian dapat menyebabkan kerusakan serius pada bagian-bagian mesin atau struktur karena dapat mengakibatkan komponen menyimpang dari fungsi utamanya. Salah satu tipe elemen yang sering mengalami lenturan adalah *beam*.

Beam memegang peranan yang penting dalam banyak aplikasi keteknikan, meliputi

konstruksi bangunan gedung, jembatan, automobile dan struktur pesawat terbang. Sebuah beam didifinisikan sebagai sebuah struktur dimana dimensi-dimensi lintangnya relatif lebih kecil dibandingkan panjangnya [7].

Beam umumnya diperuntukkan mentransfer beban yang mana jenis beban yang dikenakan merupakan beban bending.

Penyelesaian masalah-masalah engingeering termasuk masalah struktur seperti defleksi pada beam bisa dilakukan dengan beberapa metode, seperti metode analitis, metode numerik dan metode dengan mengukur secara langsung melalui eksperiment.

Untuk masalah struktur seperti beam dapat diterapkan metode analitis (seperti metode integrasi, strain energy), metode numerik (Finite Element Analysis) dan pengukuran secara langsung. Metode analisis biasanya sulit diterapkan untuk masalah yang bersifat kompleks dan kesulitan dalam penentuan kondisi batas. Sedangkan metode numerik terbatas penyelesainnya pada titik-titik tertentu saja yang disebut node. Metode eksperiment memberikan hasilhasil real, namun membutuhkan biaya yang cukup besar untuk kasus-kasus tertentu.

Salah satu cara yang telah dan sedang dikembangkan adalah dengan simulasi, dimana penggunaan software simulasi dalam penyelesaian masalah-masalah struktur, dinamik, fluid mekanik maupun dalam pembentukan logam telah meningkat pada tahun-tahun terakhir. Hal ini karena keuntungan-keuntungan pemecahan masalah dan pengoptimalan proses pada computer lebih murah dibandingkan dengan cara coba-coba di lapangan [3].

Hal ini disebabkan karena masalah-masalah dipecahkan dapat dimodelkan dengan pengurangan biaya secara efektif, yang mana permasalahan-permasalahan tersebut beberapa tahun yang lalu hanya dapat dikerjakan secara praktek. Namun demikian akurasi sebuah simulasi ditentukan oleh banyak factor seperti, pemilihan jenis elemen, jenis dan penempatan pembebanan, property material, pembuatan model komponen dan lain-lain. Untuk alasan tersebut hasil-hasil simulasi perlu diverifikasi, salah satu caranya adalah dengan membandingkannya dengan data-data hasil eksperiment atau dengan data dari kajian analitis.

Pada penelitian ini penulis tertarik untuk meneliti pengaruh variasi pembebanan terkonsentrasi di ujung bebas sebuah curved beam terhadap besarnya defleksi yang terjadi di ujung bebas curved beam tersebut.

Besarnya displacement atau defleksi yang terjadi akan diselesaikan dengan tiga metode. Ketiga metode yang digunakan adalah metode analitis, simulasi dan eksperimen. Hasil-hasil dari ketiga metode tersebut akan dibandingkan apakah terdapat perbedaan yang signifikan antara metode yang satu dengan metode yang lainnya. Perbandingan metodemetode tersebut disajikan dalam bentuk grafis dan analisa secara statistik.

2. Tinjauan Pustaka

2.1. Teori defleksi pada curved beam

Lenturan pada suatu batang dapat terjadi akibat adanya beban gaya geser atau momen lentur. Lenturan akibat beban geser umumnya sangat kecil dibandingkan dengan lenturan akibat beban momen terutama untuk batang vang relative panjang (beam). sehingga lenturan akibat gaya geser dapat diabaikan. Besarnya lenturan yang terjadi tergantung dari beberapa factor sebagai berikut:

- 1. Sifat kekakuan batang (*Modulus elasticity*)
- 2. Posisi batang terhadap beban dan dimensi batang, yang biasanya ditunjukkan dalam besaran momen inertia batang.
- 3. Besarnya beban yang diterima Kasus umum *curved beam* ditunjukkan pada Gambar 1. Jika diasumsikan section beam bersifat uniform, maka besarnya defleksi vertical (Δ_W) dan horizontal (Δ_P) adalah:

$$\Delta_{w} = \frac{Wa^{3}}{3EI} + \frac{WR}{EI} \left[\frac{\pi a^{3}}{2} + \frac{\pi R^{2}}{4} + 2aR \right] + \frac{W}{EI} \left[a^{2}b + 2abR + bR^{2} \right]$$
 (1)

$$\Delta_{p} = \frac{WR^{2}}{EI} \left[a \left(\frac{\pi}{2} - 1 \right) + \frac{R}{2} \right] + \frac{W}{EI} \left[abR + bR^{2} + \frac{ab^{2}}{2} + \frac{b^{2}R^{2}}{2} \right]$$
(2)

Untuk kasus lain seperti Gambar 2, besarnya

defleksi adalah

$$\Delta_{w} = \frac{\pi W R^{3}}{4EI} \tag{3}$$

dan

$$\Delta_P = \frac{WR^3}{2EI} \tag{4}$$

Gambar 2. Curved beam with a = 0, b = 0

2.2. Simulasi

Simulasi merupakan salah satu alat untuk menganalisa system baru, meningkatkan system yang telah ada dan perubahan sebuah system.

Gambar 3. Skematik mempelajari sistem

Sebelum simulasi dilakukan, sebuah model harus ditetapkan terlebih dahulu. Sebuah model adalah sebuah representasi sebuah system atau proses vang dapat berupa model fisik atau model matematis [4]. Pada penelitian ini system dimodelkan dalam bentuk model fisik.

3. Metode Penelitian

Penelitian dilakukan dengan tiga metode, yaitu metode simulasi, eksperimen dan secara analitis seperti ditunjukkan pada Gambar 4.

Gambar 4. Skematik Langkah Penelitian

3.1. Eksperimen

A. Material dan alat

Material yang digunakan adalah Bright Mild Steel (ASTM 1060). Baja ini merupakan baja karbon tinggi dengan kandungan karbon 0,6%. Modulus elastisitasnya, E= 2.10⁷ gr/mm², dan kekerasan 300 BHN. Dimensi bahan adalah a = 0 mm, b = 0, R = 150 mm, 1 = 25.4 mm, t = 3.2 mm. Skematik alat penelitian ditunjukkan seperti Gambar 5.

Keterangan Gambar:

- = Clamp, 2 = Speciment, 3 = Block
- = Load hanger, 5,6 = Dial indicator
- = Load

Gambar 5. Skematik alat penelitian

B. Rancangan Penelitian dan Pengamatan

Penelitian ini menggunakan rancangan satu arah, dimana terdapat satu variabel bebas yaitu pembebanan dengan 10 variasi perlakuan yaitu 100, 150, 200, 250, 300, 350, 400, 450, 500, dan 550 gr. Observasi respon dari masing-masing perlakuan merupakan sebuah variabel terikat dilakukan dengan mengukur defleksi di ujung curved beam (\Delta_w dan Δ_P). Untuk setiap perlakuan dilakukan replikasi sebanyak tiga kali, seperti tampak pada table 1.

Tabel 1. Tabel pengambilan data

		OBSERVASI			
		1	2	3	yi.
	100	У11	У12	У13	y ₁₁ + y ₁₂ + y ₁₃
	150	У21	У 22	У23	y ₂₁ + y ₂₂ + y ₂₃
	200	У31	У32	У33	y ₃₁ + y ₃₂ + y ₃₃
Д (9)	250	У41	У42	У43	y ₄₁ + y ₄₂ + y ₄₃
NAI	300	У51	У52	У53	y ₅₁ + y ₅₂ + y ₅₃
EBA	350	У61	У62	У63	y ₆₁ + y ₆₂ + y ₆₃
PEMBEBANAN (gr)	400	У71	y 72	У73	y ₇₁ + y ₇₂ + y ₇₃
	450	Y ₈₁	У82	У83	Y ₈₁ + y ₈₂ y ₈₃
	500	Y91	У92	У93	Y ₉₁₊ y ₉₂ + y ₉₃
	550	Y _{10 1}	У10 2	У103	Y _{10 1} + y _{10 2} + y ₁₀₃
					$y=\sum yi.$

C. Presedur Percobaan

Renggangkan clamp (1) dan tempatkan (2) pada posisi *clam* specimen. Renggangkan block (3) dan posisikan ulang jika diperlukan untuk menyesuaikan dengan specimen yang dipilih. Kunci pada posisi yang disyaratkan. Tempatkan special load hanger (4) pada specimen. Posisikan dial indicator supports sehingga indicators (5) dan (6) membuat kontak dengan load hanger (4). Set indicators pada posisi nol. Bebani specimen dengan menempatkan sebuah beban 100 gr (7) pada pemegang (4) dan pastikan dial indicator terbaca. Tingkatkan beban dengan penambahan beban yang sama (150, 200, 250, 300, 350, 400, 450, 500, dan 550 gr) dan pastikan indicator terbaca untuk masing masing specimen. Lakukan pengulangan sebanyak tiga kali untuk masing-masing beban dan hasilnya ditabelkan pada Tabel 1.

D. Analisa Data

Untuk mengetahui ada tidaknya pengaruh pembebanan terhadap besarnya defleksi digunakan analisa varian.

3.2. Simulasi

Preprocessor

- Dilakukan pemilihan elemen berupa beam
- Dimensi elemen [a = 0, b = 0, R= 150 mm, l = 25,4 mm, t = 3,2 mm.], modulus elastisitas [$E = 2.10^7 \text{ gr/mm}^2$], momen inertia [$I = l t^3/12$].
- Memodelkan perangkat penelitian secara phisik ke dalam model simulasi [seperti Gambar di bawah ini]
- Dilakukan meshi

Solution

- Menerapkan beban [W = 100, 150, 200, 250, 300, 350, 400, 450, 500, dan 550 gr]
- Menentukan constrain pada reaksi tumpuan (DOF).
- Menjalankan simulasi untuk memecahkan permasalahan.

Post Processor

 Melihat hasil simulasi bisa berupa grafik, countour, atau angka.

3.3. Kajian analitis

Secara analitis defleksi vertical Δw diselesaikan dengan persamaan (3) dan defleksi horizontal Δp diselesaikan menggunakan persamaan (4).

Untuk mengetahui ada tidaknya perbedaan antara data hasil eksperimen, simulasi dan kajian analitis digunakan ploting data ke dalam grafik dan dilakukan uji t.

4. Hasil dan Pembahasan

Tabel 2. Data hasil eksperimen

		OBSERVASI					
No	Beban (gr)	Δw (Defleksi vertikal), mm		kal), mm	∆p (Defleksi horisontal), mm		
		∆w1	∆w2	Δw3	Δp1	Δp2	∆р3
1	100	0.18	0.18	0.19	0.122	0.13	0.121
2	150	0.278	0.27	0.275	0.178	0.18	0.175
3	200	0.37	0.38	0.372	0.243	0.24	0.242
4	250	0.48	0.47	0.485	0.32	0.32	0.31
5	300	0.575	0.58	0.57	0.36	0.358	0.362
6	350	0.67	0.68	0.67	0.42	0.43	0.424
7	400	0.78	0.765	0.77	0.48	0.475	0.478
8	450	0.86	0.856	0.862	0.55	0.65	0.62
9	500	0.96	0.98	0.96	0.61	0.624	0.63
10	550	1.25	1.08	1.15	0.69	0.67	0.678

Tabel 3. Data hasil simulasi

		Defleksi		
No	Beban	?w	?р	
1	100	0.175	0.129	
2	150	0.2627	0.1939	
3	200	0.3503	0.2585	
4	250	0.43794	0.3231	
5	300	0.5255	0.3878	
6	350	0.6131	0.4524	
7	400	0.7007	0.517	
8	450	0.7883	0.5817	
9	500	0.8758	0.6463	
10	550	0.9634	0.711	

Gambar 6. Tampilan simulasi elemen, beban 100 gr, garis biru = terdeformasi, garis putih putusputus = sebelum deformasi.

Tabel 4. Tampilan defleksi

(Terlihat besarnya defleksi pada arah vertical (Δw = UY = 0.175 mm, $\Delta p = UX = 0.129$ mm)

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE	UX	UY	UZ	USUM
1	0.0000	0.0000	0.0000	0.0000
2 ·	-0.12927	-0.17518	0.0000	0.21771
3 -	-0.48832E-	03 0.18151E-04	0.0000	0.48866E-03
4 -	-0.19548E-	02-0.22141E-04	0.0000	0.19549E-02
5 -	-0.43877E-	02-0.24845E-03	0.0000	0.43947E-02
6 .	-0.77587E-	02-0.78600E-03	0.0000	0.77984E-02
7 -	-0.12023E-	01-0.17554E-02	0.0000	0.12150E-01
8 -	-0.17119E-	01-0.32705E-02	0.0000	0.17429E-01
9.	-0.22972E-	01-0.54363E-02	0.0000	0.23607E-01
10	-0.29494E-	01-0.83472E-02	0.0000	0.30652E-01
11 -	-0.36582E-	01-0.12085E-01	0.0000	0.38527E-01
12	-0.44127E-	01-0.16719E-01	0.0000	0.47188E-01
13	-0.52010E-	01-0.22300E-01	0.0000	0.56589E-01
14 -	-0 KO103E-1	01_0 28867E_01	0 0000	0 KKK7KE-01

Tabel 5. Data hasil kajian analitis

		Defleksi (mm)			
No	Beban	∆w	Δр		
1	100	0.19099	0.12165		
2	150	0.28649	0.18247		
3	200	0.38198	0.2433		
4	250	0.47748	0.30412		
5	300	0.57297	0.36495		
6	350	0.66847	0.42577		
7	400	0.76396	0.4866		
8	450	0.85946	0.54742		
9	500	0.95495	0.60825		
10	550	1.05045	0.66007		

Analisys of Variance untuk data hasil eksperimen

Dari analisa variance yang dilakukan menunjukkan bahwa variasi pembebanan sangat berpengaruh terhadap besarnya defleksi yang terjadi, baik untuk defleksi horizontal maupun defleksi vertical.

Perbandingan data hasil eksperimen, simulasi dan kajian analitis.

Gambar 6. Grafik hubungan beban dan defleksi vertical tiga jenis data

Gambar 7. Grafik hubungan beban dan defleksi horisontal tiga jenis data

Dan dari Gambar 6 dan 7 terlihat bahwa pengaruh beban terhadap defleksi memiliki trend yang proporsional, yaitu semakin tinggi beban yang diberikan semakin besar pula defleksi yang terjadi. Hal ini disebabkan dengan semakin tingginya beban berarti semakin besar pula gaya yang menekan beam, sehingga semakin besar pula deformasi yang terjadi. Hal ini ditunjukkan dengan semakin besarnya defleksi yang terjadi. Dari data juga terlihat bahwa defleksi vertical (*x-direction*) selalu lebih besar dibandingkan dengan defleksi horizontal (*y-direction*).

Dari Gambar 6 dan 7 terlihat bahwa garis untuk data eksperimen, simulasi dan kajian analitis jaraknya tidak begitu jauh. Bahkan garis untuk data simulasi dan kajian analitis terlihat berimpit. Ini menunjukkan hasil simulasi dan kajian analitis menunjukkan hasil yang sama. Namun untuk data eksperimen dan simulasi harus diuji lagi dengan uji t.

Dari hasil uji t yang dilakukan menunjukkan bahwa tidak terdapat perbedaan yang signifikan antara data hasil eksperimen dengan data hasil simulasi. Hal ini menunjukkan bahwa pemodelan beam, dan penggunaan kondisi batas pada simulasi telah mendekati benar. Hal ini ditunjukkan dengan hasil-hasil yang diperoleh mendekati sama dengan hasil yang deiperoleh dari eksperimen.

Kelebihan lain yang bisa didapatkan dengan simulasi adalah bahwa defleksi yang diperoleh tidak hanya terbatas di ujung curved beam, namun bisa diperoleh pada setiap titik sepanjang curved beam sesuai jumlah node yang kita buat.

5. Kesimpulan

- Pembebanan memiliki pengaruh signifikan terhadap besarnya defleksi yang terjadi. Semakin besar beban semakin besar pula defleksi yang terjadi. Defleksi vertical lebih besar dibandingkan defleksi horizontal.
- 2. Pemodelan beam dengan BEAM3 2D, dan kondisi batas yang dipilih telah sesuai dengan hasil yang diharapkan.
- 3. Hasil yang diperoleh dari simulasi sama dengan hasil yang diperoleh dari eksperimen dan analitis.
- Dengan simulasi dapat diprediksi defleksi pada setiap titik sepanjang beam sesuai node yang dibuat, tidak hanya terbatas di ujung curved beam.

Daftar Pustaka

- [1] A.C. Cilchrist, 1999, Non Linier Finite Element Modelling of Corrugated Board, AMD-Vol. 231/MD-Vol.85, Mechanics of Cellulosic Materials.
- [2] Ali.o. Atahan,2002, Finite Element Simulation of a Strong-Post W-Beam Guardrail System, The Society for Modelling and Simullation International, Vol 78, issued 10, October 2002, 587-599.
- [3] Brian Miller,2002, The Practical Use of Simulation in The Sheet Metal Forming Industry, Wilde and Partner Ltd, Brindly Lodge, Adcroft Street, Stockport, Chesire, SK 1 3HS.
- [4] Barber, J.R., 2001, Intermediate Mechanics of Materials, Mc Graw Hill, New York
- [5] Cokorda Prapti Mahadari,2004, Proceeding Collaboration Workshoop on Energy, Environment, and New Trend in Mechanical Engineering, ISBN 979-8074-01-7, Brawijaya University.
- [6] Douglas C. Montgomery,1976, *Design and Analysis of Exsperiment*, John Wiley & Son, USA.
- [7] Saeed, Moaveni,1999, Finite Element Analysis, Theory and Application with Ansys, Prentice-Hall,Inc,New Jersey,USA