Работа 4.4.2

Изучение фазовой решётки (эшелет)

Балдин Виктор

Цель работы: Знакомство с работой гониометра и определение спектральных характеристик фаховой решётки (эшелета).

В работе используются: Ртутная лампа, гониометр, амплитудная и фазовая дифракционные решетки, плоскопараллельная стеклянная пластинка, призменный уголковый отражатель, щель с микрометрическим винтом.

Теоретическая часть

Дифркационная решётка представляет собой стеклянную или металлическую пластину, на которую через строго одинаковые интервалы нанесены параллельные штрихи. Основные параметры дифракционной решётки — период d (постоянная решётки), число штрихов N. Условие дифракции Фраунгофера — решётка освещается плоской волной, а плоскость наблюдения практически находится в бесконечности.

Распределение интенсивности света при дифракции Фраунгофера на решётке

Согласно принципу Гюйгенса-Френеля распределение интенсивности в дифракционной картине определяется суперпозицией волн; амплитуды всех интерферирующих волн при φ практически одинаковы; фазы составляют арифметическую прогрессию:

$$d\sin\varphi_m = m\lambda$$
,

где $m \in \mathbb{Z}$ — порядок спектра.

Интенсивность I света, распространяющегося под углом φ к нормали:

$$I = I_1(\varphi) \frac{\sin^2(N(dk\sin\varphi)/2)}{\sin^2((dk\sin\varphi)2)},$$

где $k=\frac{2\pi}{\lambda}$ — волновое число. Дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

 $D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}$

Согласно притерию разрешения Релея, линии становятся неразличимыми, когда расстояние между ними меньше, чем растояние от максимума одной линии до её первого минимума:

 $\frac{Nkd}{2}(\sin(\varphi + \Delta\varphi) - \sin\varphi) = \pi,$

где $\Delta \varphi$ — угловая полуширина главного максимума, $\Delta \varphi = \frac{\lambda}{N d \cos \varphi}$ Разрешающая способность спектрального прибора R вычисляется по формуле:

$$R = \frac{\lambda}{\Delta \lambda} = m \cdot N$$

К определению разрешающей способности дифракционной решётки

Дисперсионная область G — предельная ширина спектрального интервала $d\lambda$, при которой спектры соседних порядков перекрываются только своими границами:

$$G = d\lambda = \frac{\lambda}{m}.$$

Обработка результатов экспериментов

При работе с дифракционной решёткой основной задачей является точное измерение углов, при которых наблюдается главные максимум для различных длин волн. Эшелет — отражательная решётка с треугольным профилем штриха, в которой угол Ω между рабочей гранью и плоскостью решётки не превышает 20° Рабочий порядок $m \leq 10$, число штрихов n = 1200 /.

Угол, под которым наблюдается максимум интенсивности функции $I_1(\varphi)$, соответствует зеркальному отражению падающего луча от грани и называется углом блеска φ_6 .

$$\varphi_6 = \psi + 2\Omega,$$

где ψ — угол, под которым падает плоская монохроматическая волна λ .

Разность хода Δ кратна λ :

$$\Delta = d(\sin \varphi_m - \sin \varphi) = m\lambda.$$

Изменяя угол падения, можно добиться того, чтобы угол блеска совпал с углом дифракции спектра одного из порядков; в этом порядке спектр будет наиболее ярким. Этот порядок принять называть рабочим.

Распределение интенсивности в спектре эшелета

Чтобы устранить произвол в выборе угла падения, принято считать, что решётка должна работать в автоколлиматорном режиме. В этом случае условие $d(\sin varphi_m + \sin \varphi) = m\lambda$ принимает вид:

$$2d\sin\Omega = m_p\lambda_p.$$

Для оценки $\Delta \varphi_m$ воспользуемся методом векторных диаграмм:

Векторные диаграммы

Направление на минимум, ближайший к максимуму любого порядка:

$$d(\sin(\varphi_m + \Delta\varphi) + \sin\psi) = m\lambda + \frac{\lambda}{N}$$

Для малой полуширины максимума получим:

$$\Delta \varphi = \frac{\lambda}{Nd\cos\phi_m}$$

Зависимость дисперсии D от параметров эшелета:

$$D = \frac{m}{d\cos\varphi_m} = \frac{m}{\sqrt{d^2 - (m\lambda - d\sin\psi)^2}}$$

Результаты и обработка

$0.1 \quad 1-17$

Произведём юстировку гониометра и установим начало отсчёта, руководствуясь техническим описанием.

Проделаем дополнительную настройку столика с эшелетом; установим $\psi=30^\circ$; подберём ширину входной щели так, чтобы хорошо разрешались линии жёлтого дублета (ширина изображения щели чуть больше промежутка между линиями двойного штриха); установим высоту щели, удобную для измерений.

Для угла $\psi = 45^{\circ}$ измерим угловые координаты спектральных линий ртути в рабочем порядке. Отметим гловую координату каждой из описанных линий:

Полоса	φ	λ, \dot{A}
Фиолетовая	75°36′45″	4047
Синяя	74°23′45″	4358
Голубая	72°15′35″	4916
Зелёная	70°12′35″	5461
Желтая 2	69°3′25″	5770
Жёлтая 1	68°58′35″	5791

Для угла $\psi=30^\circ$ измерим координаты каждой из жёлтых линий во всех наблюдаемых порядках:

	1	89°3′55″
I	2	$88^{0}55'45''$
	1	39°50′55″
I	2	39°55′25″

Повторим измерения для $\psi = 45^{\circ}, 60^{\circ}$:

	1	$68^{0}58'35''$
I	2	69°3′35″
	1	48°32′15″
II	2	48°40′50″

$$\psi = 45^{\circ}$$

	1	92°15′5″
I	2	92°20′15″
	1	70°51′45″
II	2	71°0′35″
	1	50°51′5″
III	2	51°4′45″

$$\psi = 60^{\circ}$$

Зависимость разрешающей силы от ширины пучка:

Натроим зрительную трубу на желтый дублет в рабочем порядке; определим начало отсчёта — момент открытия щели. Крест появляется при $59^o57'20''$; ширина щели — 3 деления.

Откроем щель пошире; уменьшая ширину щели, добьемся предельного разрешения желтого дублета, оценим число штрихов:

$$n \approx 1600 \text{ mtp/mm}; \quad \Delta \lambda = 2\dot{A}.$$

Построим график зависимости $\sin \varphi_m = f(\lambda)$ и по углу наклона определим период эшелета:

Зависимость $\sin \varphi_m$ от λ

Угол наклона графика $k = (6.5 \pm 0.1) \cdot 10^6 \mathrm{m}^{-1}$

Число штрихов $n \approx 650 \pm 10$ штр/мм Период эшелета: $d = \frac{1}{0.65} = 1.53 \pm 0.04$ мм.

Угловая дисперсия в рабочем порядке для жёлтого дублета в угловых секундах на \dot{A} :

$$D = 14.3 \; \frac{\text{угл} \cdot \text{сек}}{\dot{A}}$$

Экспериментальная разрешающая способность:

$$R = \frac{\lambda}{\Delta \lambda} = 2890$$

Вывод

Мы научились работать с гониометром и измерили на немколичественно значения спектральных полос ртутной лампы с большой точностью.