DATA GENIUS: Machine Learning Engineer Test

Ngoc - Tram Nguyen

Developing Product Sales Prediction Model

Test Case Study for ML Engineer: Dr. Thêm Official Store on Shopee

- + *Data Description*: Sales data over a three-week period (10/03/2024 31/03/2022)
- + Issues: Small dataset size, missing information, limited data fields.
- + Requirements: Develop a model that predicts the number of products sold in the upcoming periods.

PREPROCESSING

- Fill missing value (discount)
- Remove features not useful (shopid, shop_location, status, name)
- Adding feature from exist features (revenue)
- Convert to datetime for time feature (Date)

Goal: Clean Data

EDA (Exploratory Data Analysis)

Overview of the distribution of data

	itemid	liked_count	cmt_count	shop_rating	historical_sold	price	rating_count	rcount_with_context	Date
count	3.867000e+03	3867.000000	3867.000000	3867.000000	3867.000000	3.867000e+03	3867.000000	3867.000000	3867
mean	1.466942e+10	12234.599948	2032.896302	4.931021	7035.889061	2.451592e+10	2032.798293	1210.578485	2024-03-20 16:10:47.94 4142592
min	1.985670e+09	0.000000	0.000000	4.930905	0.000000	9.000000e+08	0.000000	0.000000	2024-03-10 00:00:00
25%	5.481377e+09	130.000000	55.000000	4.930969	225.000000	1.125000e+10	55.000000	25.000000	2024-03-15 00:00:00
50%	1.823627e+10	16565.000000	198.000000	4.931027	673.000000	2.050000e+10	198.000000	107.000000	2024-03-21 00:00:00
75%	2.215632e+10	18615.500000	909.500000	4.931054	3643.500000	3.490000e+10	909.500000	494.000000	2024-03-26 00:00:00
max	2.591996e+10	71117.000000	106400.0000 00	4.931238	322223.000000	1.199000e+11	106413.0000 00	64046.000000	2024-03-31 00:00:00
std	8.170483e+09	10035.877379	8781.247212	0.000066	27425.013404	1.760156e+10	8782.279788	5334.233921	NaN

EDA (Exploratory Data Analysis)

EDA (Exploratory Data Analysis)

Top 5 Most Sold Items					Top 5 Least Sold Items			
	items	quantity	price			items	quantity	price
0	2421653980	7043524	9.500000e+09		0	25919955014	0	6.500000e+10
1	5451541710	2724989	1.270000e+10		1	15689885742	0	7.700000e+10
2	10001549800	1576811	1.090000e+10		2	24070912680	0	1.990000e+10
3	23232932577	1318263	6.790000e+09	:	3	25617038549	0	5.000000e+10
4	16870222597	1140525	4.200000e+09		4	24320863474	0	1.990000e+10

PROPOSE MODEL AND EVALUATE

Random Forest Regression

Train RMSE: 28.882367353420427 Test RMSE: 58.13478817586936

Mean Squared Error: 3379.6535962532

Mean Squared Error: 885733717.3245064

Train RMSE: 27729.12107954742 Test RMSE: 29761.27882542191

Train RMSE: 9.717994879822407e-11

Test RMSE: 1.0465745881020919e-10

CHECK OVERFITING

Cross-Validation RMSE Scores: [6.91524811e+02 2.12237437e-10 3.35303403e-11 5.51623611e-11

4.48795140e+02]

Mean RMSE: 228.06399033514867

=> REGULARIZATION TECHNIQUE

Ridge Regression (L2 regularization)	Lasso Regression (L1 regularization)			
RMSE = 0.033	RMSE = 0.030			

CONCLUSION

- Small data should use machine learning models for forecasting is reasonable.
- Perform preprocessing to clean data and EDA to visualize data effectively.
- Among three recommended methods (Random forest Regression, SVR and Linear Regression), Linear Regression has the best forecast results.
- Implement overfitting prevention techniques with regularization technique (Ridge and Lasso Regression).
- Besides, some technique such as feature selection, feature important or add data from review data (26/03/2019-16/04/2024) also can improve model learning performance.

THANK YOU FOR LISTENING