1.7. Finding counterexamples.

1-1. Soln. Let
$$a = b = -1$$
, then $-1 - 1 = -2 < -1 = min(-1, -1)$.

1-2. Soln. Let
$$a = -1$$
 and $b = 2$, then $-1 * 2 = -2 < -1 = min(-1, 2)$.

1-3. Soln. Consider a road network where A, B and C are points. The road A to C is 3[km], C to B is 4[km], and A to B is 5[km]. Suppose the roads AC and CB let you travel 2[km/h] and the road AB lets you travel 1[km/h]. Then $7[km] > 5[km] \iff AC + CB > AB$, so A to B is the shortest route. But $\frac{7[km]}{2[km/h]} = 3.5[h] < 5[h] = \frac{5[km]}{1[km/h]}$, so A to C to B is the fastest route.

1-4. Soln.

Consider the road network above where A, B, C and D are points. Observe that the route A to D to B is 5+10+5=20[km] and has two turns, while the route A to C to B is 4+3+3+4=14[km] and has three turns. Thus the former has fewer turns but the latter is shorter.

1-5. *Soln.*

- (a) Let T = 4 and $S = \{1, 2, 3\}$. The algorithm adds $\{1, 2\}$ to the knapsack, with 1 unit remaining. But the subset $\{1, 3\}$ fills the knapsack completely.
- (b) Let T = 2 and $S = \{1, 2\}$. The algorithm adds $\{1\}$ to the knapsack, with 1 unit remaining. But the subset $\{2\}$ fills the knapsack completely.
- (c) Let T = 4 and $S = \{3, 2, 2\}$. The algorithm adds $\{3\}$ to the knapsack, with 1 unit remaining. But the subset $\{2, 2\}$ fills the knapsack completely.

1-6. Soln. Let $U = \{1, 2, 3, 4, 5, 6\}$ and $S_1 = \{1, 2, 3, 4\}$, $S_2 = \{1, 2, 5\}$ and $S_3 = \{3, 4, 6\}$. The algorithm picks S_1, S_2 and S_3 , but observe that $S_2 \cup S_3 = U$, thus all elements can be covered with fewer subsets.