NumPy

Command	Structure	Example	
Import	import numpy as np		
Array	[array] = np.array([lista])	vetor = np.array([1, 2, 3, 4, 5, 6, 7, 8])	
		matriz = np.array([[1, 2, 3], [4, 5, 6]])	
Matrix	[matriz] = np.matrix([lista])		
Access Item	[array] [[index]]	vetor[2]	
	[array] [[start] : [stop] : [step]]	vetor[1:9:3]	vetor = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] retorna [2, 5, 8]
	[matriz] [[linha] , [coluna]]	matriz [1, 2]	
Replace Item	[array] [[index]] = "[item]"	vetor[2] = 44	
	[matriz] [[linha] , [coluna]] = "[item]"	matriz[1,2] = 66	
Arrange	[array] = np.arange([tamanho])	vetor2 = np.arange(3)	vetor2 = [0, 1, 2]
	[array] = np.arange([start] , [stop] , [step])	vetor2 = np.arange(0, 4.5, 0.5)	vetor2 = [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5]
Zeros	[array] = np.zeros([tamanho])	vetor3 = np.zeros(8)	Cria vetor de zeros com 8 posições
	[array] = np.zeros(([linhas], [colunas]))	matriz3 = np.zeros((2, 3))	Cria matriz de zeros com 2 linhas e 3 colunas
Ones	[array] = np.ones([tamanho])	vetor3 = np.ones(8)	
	[array] = np.ones(([linhas] , [colunas]))	matriz3 = np.ones((2, 3))	
Eye	[matriz] = np.eye([tamanho])	matriz2 = np.eye(3)	Cria matriz quadrada com 1 na diagonal principal
Diag	[matriz] = np.diag([lista])	matriz3 = np.diag([1, 2, 3, 4])	Cria matriz quadrada com a diagonal principal definida
Linspace	[array] = np.linspace([start] , [stop] , [num_elementos])	vetor4 = np.linspace(0, 10, 15)	Cria vetor com 15 valores igualmente distribuídos entre 0 e 10

Methods

Command	Structure		Obs	
Random.Rand	[variable] = np.random.rand([tamanho])	vetor = np.random.rand(5)	Retorna vetor com valores aleatório entre 0 e 1	
	[variable] = np.random.rand(([linhas] , [colunas]))	vetor = np.random.rand(5,4)		
Random.Randn	[variable] = np.random.randn([tamanho])	vetor = np.random.randn(5)	Retorna vetor com valores aleatórios normalizados	
	[variable] = np.random.randn(([linhas] , [colunas]))	vetor = np.random.randn(5,4)		
	[variable] = np.mean([array])	media = np.mean(vetor)	Calcula a media	
Mean	[variable] = [array].mean()	media = vetor.mean()		
	[variable] = [array].mean([eixo])	media = vetor.mean(0)	0 : media de cada coluna 1: media de cada linha	
Median	[variable] = np.median([array])	mediana = np.median(vetor)	Calcula a mediana	
Quantile	[variable] = np.quantile([array], [quantis])	quantis = np.quantile(vetor, [0, 0.25, 0.5, 0.5, 1])	Calcula os quantis	
Std	[variable] = np.std([array])	desvio = np.std(vetor)	Calcula desvio padrao	
Sid	[variable] = [array].std()	desvio = vetor.std()		
Var	[variable] = np.var([array])	variancia = np.var(vetor)	Calcula a variancia	
	[variable] = [array].var()	variancia = vetor.var()		
e	[variable] = np.sum([array])	soma = np.sum(vetor)	Soma os valores do vetor	
Sum	[variable] = [array].sum()	soma = vetor.sum()		
Cumsum	[variable].cusum()	vetor.cusum()	vetor = [1, 2, 3, 4, 5, 6, 7, 8] retorna [1, 3, 6, 10, 15, 21, 28, 36]	
Min	[variable] = [array].min()	minimo = vetor.min()		
Max	[variable] = [array].max()	maximo = vetor.max()		
array_equal	np.array_equal([array1] , [array2])	np.array_equal(vetor1, vetor2)	Compara se 2 vetores sao iguais	
Around	np.around([array] , [num_decimais])	np.around(vetor, 3)	Arredonda valores para 3 casas decimais	
Repeat	np.repeat([lista] , [num_vezes])	np.repeat([1,2,3,4], 3)	Retorna [1,1,1, 2,2,2, 3,3,3, 4,4,4]	
Tile	np.tile([lista] , [num_vezes])	np.tile([1,2,3,4], 3)	Retorna [1,2,3,4, 1,2,3,4, 1,2,3,4]	
Concatenate	np.concatenate(([array1] , [array2]), axis= [num])	np.concatenate((vetor1, vetor2), axis=0)	0 : add linha pra cada coluna 1: add coluna pra cada linha	

Atributos

Command	Structure	Example	Obs
Shape	[variable].shape	print(vetor.shape)	retorna as dimensoes do array
dtype	[variable].dtype	print(vetor.dtype)	retorna o tipo de dado que compoem o array