Dold-Kan 対応

準猫@8n_Cat

2022年3月1日

目次

1	単体的 k 加群	1
2	Dold-Kan 対応	2
3	チェインホモトピー	7

記法

k を単位的可換環とする.

本稿では鎖複体 (chain complex) といえば k 加群と k 線形写像の列

$$\cdots \to \mathcal{C}_{n+1} \xrightarrow{\partial_{n+1}} \mathcal{C}_n \xrightarrow{\partial_n} \mathcal{C}_{n-1} \to \cdots$$

を指すことにする. また任意の負の整数 n に対し $\mathcal{C}_n=0$ を満たす鎖複体のなす充満部分 圏を $\mathrm{Ch}(k)_{\geqslant 0}$ と表記する.

1 単体的 k 加群

k 加群の圏 Mod_k の単体的対象 (simplicial object), すなわち反変函手 $\mathbf{\Delta}^{\mathrm{op}} \to \mathrm{Mod}_k$ を単体的 k 加群 (simplicial k-module) といい, その圏 $[\mathbf{\Delta}^{\mathrm{op}}, \mathrm{Mod}_k]$ を sMod_k と表すことにする.

単体的集合 $X: \Delta^{op} \to Set$ に対し

$$k[X]_m \coloneqq \bigoplus_{\Delta[m] \xrightarrow{x} X} k$$
 $lpha^* \left(\sum_{x \in X_n} a_x e_x \right) \coloneqq \sum_{x \in X_n} a_x e_{lpha^* x}$

と定めることで単体的 k 加群 k[X] を得る. これは忘却函手 $\mathrm{U}:\underline{t}\mathrm{Ab}_{\mathbb{F}}\to\mathrm{sSet}$ の左随伴である.

2 Dold-Kan 対応

M を単体的 k 加群とする. この時

$$C(M)_{p} := \begin{cases} M_{p} & (p \ge 0) \\ 0 & (p < 0) \end{cases}$$
$$\partial_{p} := \begin{cases} \sum_{i=0}^{n} (-1)^{i} d_{i} & (p > 0) \\ 0 & (p \le 0) \end{cases}$$

により k 加群の鎖複体 $C(M) = (C(M)_{\bullet}, \partial_{\bullet})$

$$\cdots \to C(M)_{n+1} \xrightarrow{\partial_{p+1}} C(M)_n \xrightarrow{\partial_p} C(M)_{n-1} \to \cdots \to C(M)_{-1} \to 0 \cdots$$

が定まる.この函手を修正してより良い函手を取り出そう.

まず単体的 k 加群 M に対し

$$N(M)_n := \begin{cases} \bigcap_{i=0}^{n-1} \operatorname{Ker} d_i & (n > 0) \\ M_n & (n = 0, -1) \\ 0 & (n < -1) \end{cases}$$
$$\partial_n := (-1)^n d_n$$

と定める. $x \in N(M)_{n+1}$ $(n \ge 1)$ に対し

$$\partial_n \partial_{n+1}(x) = (-1)^{2n+1} d_n d_{n+1}(x) = -d_n d_n(x) = 0$$

が成り立つので N(M) は鎖複体である. 鎖準同型 f に対し, $N(f) \coloneqq \left\{f_n\mid_{N(M)_n}\right\}$ は明らかに鎖準同型である. そしてこの構成は函手的である. さらに N(M) は C(M) の部分複体である.

 $D(M)_n \subset M_n$ を M の退化 n 単体 (degenerate n-simplex) の生成する部分 k 加群とする. この時 ∂_n の構成より ∂_n : $C(M)_n/D(M)_n \to C(M)_{n-1}/D(M)_{n-1}$ が誘導される. これにより鎖複体 $(C/D)(M) := (C(M)_{\bullet}/D(M)_{\bullet}, \partial_{\bullet})$ を得る.

さらに canonical な射 $i:N(M) \hookrightarrow C(M), \pi:C(M) \rightarrow (C/D)(M)$ を合成して

$$\phi:N(M)\to (C/D)(M)$$

を得る.

命題 **2.1.** $\phi:N(M) \to (C/D)(M)$ は同型射である.

証明. 各 n に関して同型を示す. $n \leq 0$ に関しては明らかなので n > 0 としてよい. $0 \leq j \leq n-1$ に対し

$$N_{j}(M)_{n} := \bigcap_{i=0}^{j} \operatorname{Ker} d_{i}$$

$$D_{j}(M)_{n} := \langle s_{i}(x) | x \in M_{n-1}, 0 \leqslant i \leqslant j \rangle$$

と定め, canonical な射 $N_j(M)_n \hookrightarrow C(M)_n \stackrel{\pi_n^j}{\twoheadrightarrow} C(M)_n/D_j(M)_n$ を ϕ_n^j とする. 明らかに $\phi_n^{n-1} = \phi_n$ である. $n \ge j$ に関する帰納法を用いる.

まず j=0 の時を考える. $x \in C(M)_n/D_0(M)_n$ に対し $x \in x$ をとる.

$$d_0(x - s_0 d_0 x) = d_0 x - d_0 s_0 d_0 x = d_0 x - d_0 x = 0$$

$$\phi_n^0(x - s_0 d_0 x) = \pi_n^0(x) - \pi_n^0(s_0 d_0 x) = \mathbf{x}$$

より ϕ_n^0 は全射である. $x \in \operatorname{Ker} \phi_n^0$ はある $y \in M_{n-1}$ を用いて $x = s_0 y$ とかける. このとき

$$x = s_0 y = s_0 d_0 s_0 y = s_0 d_0 x = 0$$

が成り立つので ϕ_n^0 は単射である.

 $0 \leqslant l < j$ に対し ϕ_n^l が同型であるとする. この時次のような可換図式が考えられる:

$$N_{j}(M)_{n} \xrightarrow{\phi_{n}^{j}} C(M)_{n}/D_{j}(M)_{n}$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$N_{j-1}(M)_{n} \xrightarrow{\simeq} C(M)_{n}/D_{j-1}(M)_{n}$$

 $x \in C(M)_n/D_j(M)_n$ に対し $x \in N_{j-1}(M)_n$ で $x + D_j(M)_n = x$ となるものがとれる. この x に対し

$$d_{i}(x - s_{j}d_{j}x) = \begin{cases} d_{i}x - s_{j-1}d_{j-1}d_{i}x & (0 \leq i < j) \\ d_{j}x - d_{j}x & (i = j) \end{cases}$$

より $x - s_j d_j x \in N_j(M)_n$ が成り立つ. よって ϕ_n^j は全射である.

あとは ϕ_n^j が単射であることを示せばよい. $x \in N_{j-1}(M)_{n-1}, 0 \leqslant i \leqslant j-1$ に対し

$$d_i s_j x = s_{j-1} d_i x = 0$$

より $s_i(N_{i-1}(M)_{n-1}) \subset N_{i-1}(M)_n$ である. また $x \in M_{n-2}$ に対し

$$s_i s_i x = s_i s_{i-1} x$$
 for $0 \le i < j$

より $s_j(D_{j-1}(M)_{n-1}) \subset D_{j-1}(M)_n$ であり、次の可換図式を得る:

$$N_{j-1}(M)_{n-1} \xrightarrow{\simeq} C(M)_{n-1}/D_{j-1}(M)_{n-1}$$

$$\downarrow s_{j} \qquad \qquad \downarrow s_{j}$$

$$N_{j-1}(M)_{n} \xrightarrow{\simeq} C(M)_{n}/D_{j-1}(M)_{n}$$

また次の列は完全である:

$$0 \to C(M)_{n-1}/D_{j-1}(M)_{n-1} \xrightarrow{s_j} C(M)_n/D_{j-1}(M)_n \to C(M)_n/D_j(M)_n \to 0.$$

 $x\in N_j(M)_n$ で $C(M)_n/D_j(M)_n$ において $\phi_n^j(x)=0$ を満たすものをとる. これは準同型

$$N_{i-1}(M)_n \xrightarrow{\simeq} C(M)_n/D_{i-1}(M)_n \to C(M)_n/D_i(M)_n$$

の核に属する. それゆえ $\phi_n^{j-1}(x)\in \mathrm{Ker}(C(M)_n/D_{j-1}(M)_n\to C(M)_n/D_j(M)_n)$ であり, 可換図式と完全列から $y\in N_{j-1}(M)_{n-1}$ で $x=s_jy$ なるものを得る.

$$x = s_j y = s_j d_j s_j y = s_j d_j x = 0$$

より
$$\operatorname{Ker}\phi_n^j=0$$
 が従う.

函手 Γ :s $\mathrm{Mod}_k \to \mathrm{Ch}(k)_{\geqslant 0}$ を構成しよう. まず負の整数 n < 0 に対し $\mathcal{C}_n = 0$ を満たす鎖複体 \mathcal{C} に対し k 加群 $\Gamma(\mathcal{C})_n$ を

$$\Gamma(\mathcal{C})_n := \bigoplus_{[n] \to [p]} \mathcal{C}_p$$

と定める. 次に α : $[m] \to [n]$ に対し α^* : $\Gamma(\mathcal{C})_n \to \Gamma(\mathcal{C})_m$ を以下で定める:

$$\bigoplus_{\substack{[n] \to [p] \\ \text{in}_{\sigma} \\ \mathcal{C}_{p} \\ \mathcal{C}_{p} \\ \mathcal{C}_{p} \\ \mathcal{C}_{q} \\ \mathcal{C}_{q} \\ \mathcal{C}_{q} \\ \mathcal{C}_{q} \\$$

ただしここで δ_{α} は単射, σ_{α} は全射であり, $\sigma\alpha=\delta_{\alpha}\sigma_{\alpha}$ を満たすとする. また単射 δ に対し

$$\delta^* := \begin{cases} (-1)^n \partial_n & (\delta = \delta^n : [n-1] \to [n]) \\ 0 & (\text{others}) \end{cases}$$

と定める. 単調増加関数 $\alpha{:}[l] \to [m], \beta{:}[m] \to [n]$ 及び全射 $\sigma{:}[n] \to [p]$ に対し

$$\sigma\beta\alpha = \delta_{\beta}\sigma_{\beta}\alpha$$
$$= \delta_{\beta}\delta_{\alpha}\sigma_{\alpha}$$
$$\sigma\beta\alpha = \delta_{\beta\alpha}\sigma_{\beta\alpha}$$

を得る. ただしここで δ_{α} , δ_{β} , $\delta_{\beta\alpha}$ は単射, σ_{α} , σ_{β} , $\sigma_{\beta\alpha}$ は全射である. 分解の一意性より $\delta_{\beta}\delta_{\alpha} = \delta_{\beta\alpha}$, $\sigma_{\alpha} = \sigma_{\beta\alpha}$ である. 構成より $\delta_{\alpha}^{*}\delta_{\beta}^{*} = \delta_{\beta\alpha}^{*}$ であり, $(\beta\alpha)^{*} = \alpha^{*}\beta^{*}$ が従う. よって $\Gamma(\mathcal{C})$ は単体的 k 加群である. 直和の普遍性より canonical な方法でこれは函手になる.

定理 2.2 (Dold-Kan correspondence). $N: \operatorname{Mod}_k \to \operatorname{Ch}(k)_{\geq 0}$ は圏同値である.

証明. 単体的 k 加群 M と各 n に対し Ψ_{Mn} : $\Gamma N(M)_n \to M_n$ を以下で定める:

$$\bigoplus_{[n] \to [p]} N(M)_p = \Gamma N(M)_n \xrightarrow{(\Psi_M)_n} M_n$$

$$\downarrow^{\operatorname{in}_{\sigma}} \qquad \qquad \uparrow^{\sigma^*}$$

$$N(M)_p \hookrightarrow M_p \qquad .$$

単調増加関数 $\alpha:[m] \to [n]$ と $x \in N(M)_p \stackrel{\operatorname{in}_{\sigma}}{\longleftrightarrow} \Gamma N(M)_n$ に対し

$$(\Psi_{M})_{m}\alpha^{*}(x) = (\Psi_{M})_{m} \operatorname{in}_{\sigma_{\alpha}} \delta_{\alpha}^{*}(x) \qquad (\delta_{\alpha}\sigma_{\alpha} = \sigma\alpha)$$

$$= \sigma_{\alpha}^{*}\delta_{\alpha}^{*}(x) \qquad (x \in N(M)_{p} \, \, \sharp \, \, \emptyset \, \, M\delta_{\alpha}(x) = \delta_{\alpha}^{*}(x))$$

$$= \alpha^{*}\sigma^{*}(x)$$

$$= \alpha^{*}(\Psi_{M})_{n}(x)$$

が成り立つのでこれは単体的 k 加群の射である. 任意の単体的 k 加群の射 $\varphi:L\to M$ と $x\in N(M)_p\stackrel{\mathrm{in}_\sigma}{\longleftrightarrow} \Gamma N(M)_n$ に対し,

$$(\Psi_L)_n \Gamma N \varphi_n(x) = \Psi_{Ln} \text{in}_{\sigma} \varphi_p(x) = \sigma^* \varphi_p(x) = \varphi_n \sigma^*(x) = \varphi_n(\Psi_M)_n(x)$$

が成り立つので自然変換 Ψ : $\Gamma N \to \mathrm{id}$ を得る. Ψ が同型であることを示そう. 証明は n に関する帰納法による. $n \le 0$ の時は明らかに全単射である.

n>0 とし, p< n に対し $(\Psi_M)_p$ が全単射であるとする. $s_jx\in M_n$ に対しては仮定よりある $y\in \Gamma N(M)_{n-1}$ を用いて $(\Psi_M)_n(s_jy)$ と書くことができる. 任意の $x\in M_n$ に対し

$$x = \phi_n^{-1} \pi_n(x) + (x - \phi_n^{-1} \pi_n(x))$$

$$= \phi_n^{-1} \pi_n(x) + (\Psi_M)_n(y) \qquad (\phi \text{ の構成より } x - \phi_n^{-1} \pi_n(x) \in D(M)_n)$$

$$= (\Psi_M)_n(\phi_n^{-1} \pi_n(x) + y)$$

が成り立つので Ψ_{Mn} は全射である.

 $(x_{\sigma:[n]\to[p]}) \in \operatorname{Ker}(\Psi_M)_n \subset \Gamma N(M)_n$ を任意にとる. p < n に対し全射 σ は切断, すなわち $\sigma \delta = \operatorname{id}$ となる射 $\delta:[p] \to [n]$ をもつ.

$$(\Psi_M)_p \delta^*(x_\sigma) = \delta^* \Psi_{Mn}(x_\sigma) = 0$$

と帰納法の仮定より $\delta^*(x_\sigma)=0$ であり、それゆえ $x_\sigma=0$ である。 $\sigma=\mathrm{id}_{[n]}$ に対しては $(\Psi_M)_n\mathrm{in}_{\mathrm{id}_{[n]}}:N(M)_n\hookrightarrow M_n$ が単射なので

$$(\Psi_M)_n(x_{\mathrm{id}_{[n]}}) = x_{\mathrm{id}_{[n]}}$$

であり, $x_{id} = 0$ が従う. よって $(\Psi_M)_n$ は単射である.

鎖複体 M と $n \in \mathbb{Z}$ に対し得られる合成 Φ_M

$$M_n \stackrel{\mathrm{in_{id}}}{\longleftrightarrow} \bigoplus_{[n] \twoheadrightarrow [p]} M_p \twoheadrightarrow C(\Gamma M)_n / D(\Gamma M)_n \stackrel{\cong}{\to} N\Gamma M_n$$

は明らかに自然同型 $\Phi: \text{id} \xrightarrow{\simeq} N\Gamma$ を与える.

3 チェインホモトピー

単体的集合 $\Delta[1]$ はしばしば "区間 [0,1]" の代わりの役目を果たす. これの k 線形化 $k[\Delta[1]]$ を Dold-Kan 対応で移して得られる鎖複体は命題 2.1 より

$$\cdots 0 \to k \xrightarrow{\begin{pmatrix} 1 \\ -1 \end{pmatrix}} k \otimes k \to 0 \to \cdots$$

である. 鎖複体 \mathcal{C} と $Nk[\Delta[1]]$ をテンソルした $\mathcal{C}\otimes Nk[\Delta[1]]$ は

$$\cdots 0 \to \mathcal{C}_p \oplus \mathcal{C}_{p+1} \oplus \mathcal{C}_{p+1} \xrightarrow{\begin{pmatrix} d_p & 0 & 0 \\ (-1)^p & d_{p+1} & 0 \\ (-1)^{p+1} & 0 & d_{p+1} \end{pmatrix}} \mathcal{C}_{p-1} \oplus \mathcal{C}_p \oplus \mathcal{C}_p \to 0 \to \cdots$$

で与えられる. 鎖準同型 $H:\mathcal{C}\otimes Nk[\Delta[1]]\to\mathcal{D}$ は k 線形写像

$$f_p:\mathcal{C}_p \to \mathcal{D}_p, \qquad \qquad g_p:\mathcal{C}_p \to \mathcal{D}_p, \qquad \qquad h_p:\mathcal{C}_p \to \mathcal{D}_{p+1}$$

の族で

$$d_p f_p = f_{p-1} d_p$$

$$d_p g_p = g_{p-1} d_p$$

$$f_p - g_p = d_p h_{p-1} + h_{p-2} d_{p-1}$$

を満たすものを与える. 逆にこのような族が与えられたとき $H_n := (-1)^{n-1}h_{n-1} \oplus f_n \oplus g_n$ と定めることで鎖準同型 $H: \mathcal{C} \otimes Nk[\Delta[1]] \to \mathcal{D}$ が得られる.

この条件はチェインホモトピーの定義に他ならない. 特に二つの射 δ_{0*}, δ_{1*} : $\Delta[0] \to \Delta[1]$ から得られる鎖準同型 $Nk[\Delta[0]] \to Nk[\Delta[1]]$ で H を制限したときに出てくる鎖準同型がちょうど f,g である.

参考文献

 $[1]\,$ Paul G. Goerss and John F. Jardine, $Simplicial\ Homotopy\ Theory.$