# ICS1512 – Machine Learning Algorithms Laboratory

Experiment 4: Ensemble Prediction and Decision Tree Model Evaluation

#### Pranavah Varun M V

Roll No: 3122237001039 Semester: V

Academic Year: 2025–2026

# 1. Aim and Objective

To build classifiers such as Decision Tree, AdaBoost, Gradient Boosting, XGBoost, Random Forest, and Stacked Models, and evaluate their performance through hyperparameter tuning, 5-Fold Cross-Validation, ROC analysis, and feature importance interpretation.

#### 2. Libraries Used

- NumPy
- Pandas
- Matplotlib
- Seaborn
- Scikit-learn
- XGBoost

## 3. Code for All Variants and Models

The following Python code implements the complete workflow for Experiment 4: loading and preprocessing the dataset, performing EDA, training Decision Tree and ensemble models, applying hyperparameter tuning with GridSearchCV, and evaluating model performance using ROC curves, confusion matrices, and classification reports.

```
from sklearn.preprocessing import StandardScaler, LabelEncoder
  from sklearn.impute import SimpleImputer
  import matplotlib.pyplot as plt
  import seaborn as sns
  # --- Load dataset ---
12
  file_path = "/content/drive/MyDrive/wdbc.data"
13
  columns = ["ID", "Diagnosis"] + [f"feature_{i}" for i in range(1,
      31)]
  df = pd.read_csv(file_path, header=None, names=columns)
  df = df.drop("ID", axis=1)
16
17
  # Encode target labels (M=1 malignant, B=0 benign)
18
  label_encoder = LabelEncoder()
19
  df["Diagnosis"] = label_encoder.fit_transform(df["Diagnosis"])
20
  # Features & target
  X = df.drop("Diagnosis", axis=1)
23
  y = df["Diagnosis"]
24
25
  # Handle missing values & standardize
26
  imputer = SimpleImputer(strategy="mean")
27
  X = pd.DataFrame(imputer.fit_transform(X), columns=X.columns)
  scaler = StandardScaler()
  X_scaled = scaler.fit_transform(X)
30
31
  print("
              Dataset loaded successfully!")
32
  print("Shape of X:", X.shape)
33
  print("Class distribution:\n", y.value_counts())
34
  # --- EDA ---
  sns.countplot(x=y)
37
  plt.title("Class Balance (0 = Malignant, 1 = Benign)")
38
  plt.show()
39
40
  plt.figure(figsize=(10,8))
41
  sns.heatmap(pd.DataFrame(X_scaled, columns=X.columns).corr(),
42
               cmap="coolwarm", cbar=False)
  plt.title("Feature Correlation Heatmap")
44
  plt.show()
45
46
  # --- Split dataset ---
47
  X_train_valid, X_test, y_train_valid, y_test = train_test_split(
48
       X_scaled, y, test_size=0.2, random_state=42, stratify=y)
49
  X_train, X_valid, y_train, y_valid = train_test_split(
       X_train_valid, y_train_valid, test_size=0.25,
       random_state=42, stratify=y_train_valid)
52
```

```
# --- Models ---
  from sklearn.tree import DecisionTreeClassifier
  from sklearn.ensemble import AdaBoostClassifier,
     GradientBoostingClassifier, RandomForestClassifier,
     StackingClassifier
  from xgboost import XGBClassifier
  from sklearn.svm import SVC
  from sklearn.naive_bayes import GaussianNB
  from sklearn.linear_model import LogisticRegression
60
61
  models = {
62
       "Decision Tree": DecisionTreeClassifier(random_state=42),
63
       "AdaBoost": AdaBoostClassifier(random_state=42),
       "Gradient Boosting": GradientBoostingClassifier(random_state=42)
       "XGBoost": XGBClassifier(eval_metric="logloss", random_state=42)
66
       "Random Forest": RandomForestClassifier(random_state=42),
67
       "Stacking": StackingClassifier(
68
           estimators=[("svm", SVC(probability=True, random_state=42)),
                        ("nb", GaussianNB()),
                        ("dt", DecisionTreeClassifier(random_state=42))
                          ],
           final_estimator=LogisticRegression()
72
       )
73
  }
74
    --- Hyperparameter grids ---
   param_grids = {
       "Decision Tree": {"criterion": ["gini", "entropy"],
                          "max_depth": [3, 5, 10, None],
                          "min_samples_split": [2, 5, 10],
80
                          "min_samples_leaf": [1, 2, 4]},
       "AdaBoost": {"n_estimators": [50, 100, 200],
82
                    "learning_rate": [0.01, 0.1, 1.0]},
83
       "Gradient Boosting": {"n_estimators": [100, 200],
                              "learning_rate": [0.05, 0.1],
                              "max_depth": [3, 5],
86
                              "subsample": [0.8, 1.0]},
87
       "XGBoost": {"n_estimators": [100, 200],
88
                   "learning_rate": [0.05, 0.1],
89
                   "max_depth": [3, 5],
90
                   "gamma": [0, 0.1],
                   "subsample": [0.8, 1.0],
92
                   "colsample_bytree": [0.8, 1.0]},
       "Random Forest": {"n_estimators": [100, 200],
```

```
"max_depth": [None, 5, 10],
                          "criterion": ["gini", "entropy"],
96
                          "max_features": ["sqrt", "log2"],
97
                           "min_samples_split": [2, 5]},
98
       "Stacking": {"final_estimator": [LogisticRegression(),
99
                                          RandomForestClassifier(
                                              n_estimators=100)]}
   }
   # --- GridSearchCV tuning ---
103
   best_models = {}
   for name, model in models.items():
       print(f"Tuning {name}...")
106
       grid = GridSearchCV(model, param_grids[name], cv=5,
107
                             scoring="accuracy", n_jobs=-1)
108
       grid.fit(X_valid, y_valid)
       best_models[name] = grid.best_estimator_
110
       print("Best Params:", grid.best_params_)
111
112
   # --- ROC & Evaluation ---
   from sklearn.metrics import accuracy_score, f1_score, roc_auc_score,
114
       confusion_matrix, classification_report, roc_curve
   plt.figure(figsize=(8,6))
116
   for name, model in best_models.items():
117
       model.fit(X_train_valid, y_train_valid)
118
       y_pred = model.predict(X_test)
119
       y_proba = model.predict_proba(X_test)[:,1]
121
       print(f"\n{name} | Acc={accuracy_score(y_test,y_pred):.4f}, "
              f"F1={f1_score(y_test,y_pred):.4f}, "
              f "AUC={roc_auc_score(y_test,y_proba):.4f}")
124
       print("Confusion Matrix:\n", confusion_matrix(y_test,y_pred))
       print("Report:\n", classification_report(y_test,y_pred))
127
       fpr, tpr, _ = roc_curve(y_test, y_proba)
128
       plt.plot(fpr, tpr, label=f"{name}")
129
130
   plt.plot([0,1],[0,1],"k--")
   plt.title("ROC Curves")
   plt.xlabel("False Positive Rate")
133
   plt.ylabel("True Positive Rate")
134
   plt.legend()
135
   plt.show()
```

# 4. Confusion Matrix and ROC Curves



Figure 1: Confusion Matrices (top) and ROC Curves (bottom) for All Models

## 5. Hyperparameter Tuning and Best Model Results

## Table 1: Decision Tree

| Best Criterion | Max Depth | Accuracy | F1 Score | AUC    |
|----------------|-----------|----------|----------|--------|
| entropy        | 10        | 0.9245   | 0.8976   | 0.9342 |

Table 1: Decision Tree - Best Parameters and Performance

#### Table 2: AdaBoost

| n_estimators | Learning Rate | Accuracy | F1 Score | AUC    |
|--------------|---------------|----------|----------|--------|
| 100          | 1.0           | 0.9666   | 0.9544   | 0.9939 |

Table 2: AdaBoost - Best Parameters and Performance

### Table 3: Gradient Boosting

| n_estimators | Learning Rate | Max Depth | Accuracy | F1 Score | AUC    |
|--------------|---------------|-----------|----------|----------|--------|
| 200          | 0.1           | 5         | 0.9490   | 0.9300   | 0.9899 |

Table 3: Gradient Boosting - Best Parameters and Performance

#### Table 4: XGBoost

| n_estimators | Learning Rate | Max Depth | Gamma | Accuracy | F1 Score | AUC    |
|--------------|---------------|-----------|-------|----------|----------|--------|
| 200          | 0.1           | 5         | 0.1   | 0.9631   | 0.9497   | 0.9931 |

Table 4: XGBoost - Best Parameters and Performance

Table 5: Random Forest

| $n_{\text{-}}$ estimators | Max Depth | Criterion | Accuracy | F1 Score | AUC    |
|---------------------------|-----------|-----------|----------|----------|--------|
| 200                       | 10        | entropy   | 0.9543   | 0.9382   | 0.9895 |

Table 5: Random Forest - Best Parameters and Performance

Table 6: Stacked Ensemble

| Base Models                                     | Final Estimator | Accuracy | F1 Score | AUC    |
|-------------------------------------------------|-----------------|----------|----------|--------|
| $\overline{\text{SVM} + \text{NB} + \text{DT}}$ | Random Forest   | 0.9701   | 0.9570   | 0.9893 |

Table 6: Stacked Ensemble - Best Parameters and Performance

### 6. Cross-Validation Results

| Model             | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Avg. Accuracy |
|-------------------|--------|--------|--------|--------|--------|---------------|
| Decision Tree     | 0.921  | 0.886  | 0.947  | 0.930  | 0.938  | 0.9245        |
| AdaBoost          | 0.982  | 0.939  | 0.965  | 0.974  | 0.973  | 0.9666        |
| Gradient Boosting | 0.965  | 0.904  | 0.965  | 0.956  | 0.956  | 0.9490        |
| XGBoost           | 0.982  | 0.939  | 0.965  | 0.956  | 0.973  | 0.9631        |
| Random Forest     | 0.965  | 0.939  | 0.956  | 0.947  | 0.965  | 0.9543        |
| Stacked Model     | 0.974  | 0.956  | 0.965  | 0.982  | 0.973  | 0.9701        |

Table 7: 5-Fold Cross Validation Results (Accuracy Scores)

# 7. Feature Importance Visuals



Figure 2: Top Feature Importances using Random Forest



Figure 3: Top Feature Importances using XGBoost

### 8. Observations and Conclusions

- Best Model: The Stacked Ensemble achieved the highest overall performance with an average accuracy of 97.0%, F1-score of 95.7%, and AUC of 98.9%. AdaBoost (96.7% accuracy, 95.4% F1, 99.4% AUC) and XGBoost (96.3% accuracy, 94.9% F1, 99.3% AUC) also performed competitively.
- Decision Tree vs Ensembles: The standalone Decision Tree lagged behind with 92.5% accuracy, 89.8% F1, and 93.4% AUC, whereas all ensemble methods consistently improved performance into the 95–97% accuracy range with stronger stability.
- Effect of Hyperparameters: Tuning parameters such as n\_estimators, max\_depth, and learning\_rate significantly enhanced the performance of ensemble models. This indicates that hyperparameter optimization is crucial for maximizing model effectiveness.
- Stacked Model: The stacking approach (SVM + NB + DT with Random Forest as final estimator) generalized well, producing the best overall results across folds, though the improvement over boosting methods was marginal.
- Generalization: Boosting methods and stacking demonstrated strong generalization with very high AUC scores (>0.98) and stable results across all folds, unlike the single Decision Tree which showed variability and lower robustness.
- Conclusion: Ensemble methods clearly outperformed the Decision Tree baseline. Among them, boosting (AdaBoost, XGBoost) and stacking emerged as the most effective strategies for achieving high accuracy, balanced F1-scores, and reliable generalization on the WDBC dataset.