Lesson 3		01/14/2022
Last time:		51719822
	01 5 1 C	
- Structure		
- Linear in		
		e systems wheal
distinct	eigenvalues.	
From land time	•	no non how of term
	x'= P(t) x	
superposition:	×1, , ×4 au	re sols ->
		cu xn(+) is a solu.
Linear indep.	x (t), , , xu(+	liu. indep. on interval
		+ - + cu xy CH = 0 on I
		=cu=0.
The mana:		
		(+) are linearly indep.
90(is of the n	P(1) × (1)
		P(+) × (+)
		l I, then any sol'n
01		is of the form
		(+) ++ Ca xy G+1
		- scalars a, -, cn.
"lin. indep.	sols are go	ood building blocks"

How to	check	liveour	inda	pende	исе.
Sup we	have	n vect	or v	aluc 6	fcts,
each nx	vector	valued	,		
	- X11(+)]				(xin(t))
×(4)=	x _e , w	,,	×u	(t) -	7 ₂ n (4)
L	x _{n1} (4)				×nn(t)
Wrouskian	determin	and:			
			X11 (+)		X1, C+1 7
W(x,,,	, xu) (t)	= det	X21 CH)		Neu (4)
	, ,		× (+)		
		7	Xn1 (t)		Xuu (+)]
Criterion:	If x	1, , Kus	are	solu	Hous of
		(t) <u>x</u>			
	fley				
_>	It x	1, Xy	sere l	in ind	ependent on
	they	W(x,	, ×4) (+) = 0	for all
	teI.				
->	lf x,	, Xu	are.	lin. d	ependud
	on I t	then [n(x',	~-, xy)	(+) = 6 for
	all t				

Ex:
$$x' = \begin{bmatrix} 4 \\ -2 \end{bmatrix} x' = e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $x_2 = e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

Chool: find a solin on all of \mathbb{R} , w)

 $x' = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Chool: find a solin on all of \mathbb{R} , w)

 $x' = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Q: Is there such a solin! Is it unique?

Yes, by theorem on existence h

uniqueness of sols.

Find 30(s:

Q: Are the sols x_1 , x_2 lin. independent?

W(x_1 , x_2)(t) = det $\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$

W(x_1 , x_2)(t) = det $\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$

For all x_1 the solin independent?

So any solin is of form

 $x_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Whant: $x_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Upant: $x_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Today: quess that a sol'u to \forall is of form $\chi(t) = e^{\lambda t} \vee$ for λ , ψ that ψ Vector $X(t) = e^{\lambda t} y \Rightarrow X(t) = \lambda e^{\lambda t} y$ $\underline{X}' = \underline{A} \underline{X} \Rightarrow \underline{\lambda} e^{\lambda \xi} \underline{V} = \underline{A} e^{\lambda \xi} \underline{V}$ $\Rightarrow e^{\lambda t} \left(\underbrace{Av - \lambda v} \right) = 0$ $\Rightarrow e^{\lambda} \in (A_{\underline{V}} - \lambda I_{\underline{V}}) = 0$ So: If we can find & such that
there is vector \(\frac{1}{2} = \frac{1} to x' = A x.

-) I to be non-invertible have non-trivial nullspace / be singular. so: det (A- AI) = 0 = Charact nxh scalar nxy scalar A. A & (real, complex, o) for which bet (A- LI) =0 is called an engenialne of A An <u>eigenvector</u> associated to an eigenvalue & is a non-zero vector & so that (A-) = 0 = A = 2 $A = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$ $\det\left(\begin{array}{c} A - \lambda I \\ \end{array}\right) = \det\left(\begin{bmatrix} 4 & 1 \\ -2 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right)$ $\det\left(\begin{bmatrix}4-\lambda & 1 & 7\\ -2 & 1-\lambda\end{bmatrix}\right) = (4-\lambda)(1-\lambda) + 2$ $\lambda^2 - 5\lambda + 6 = 2$ $\lambda^2 - 5\lambda + 6 = 0$

Eigenvalus:
$$\lambda = 2$$
, $\lambda = 3$.

Find: eigenvector(s) assoc. $\omega / \lambda = 2$.

$$\begin{pmatrix} A - 2\underline{r} \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} 4 - 2 & 1 \\ -2 & 1 \\ -2 & -1 \end{pmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 2 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 2 & v_1 + v_2 = 0 \\ -2v_1 - v_2 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} v_2 = -2v_1 \\ v_2 = 0 \end{cases} \text{ is an e-vector for any } v_1 \neq 0 \end{cases}$$

$$\begin{cases} 2 & v_1 = 1 \\ -2v_1 \end{cases} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ is an e-vector, } e^{2t} \end{bmatrix}$$