Technische Universität Berlin

Fakultät II – Institut für Mathematik SS 02 Penn-Karras,Bärwolff,Förster,Unterreiter,Borndörfer 7. Oktober 2002

Oktober – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorna	me:					
MatrNr.:	Studiengang:						
Ich wünsche den Aushang des Klauss unter Angabe meiner Matr.–Nr. (ohr am Schwarzen Brett und im WWW.	-						
Neben einem handbeschriebenen A4 Bl mittel zugelassen.	att mi	t Notiz	en sind	keine	weitere	en Hilfs	_
Die Lösungen sind in Reinschrift au geschriebene Klausuren können nicht g				geben.	Mit	Bleistif	t
Dieser Teil der Klausur umfasst die l vollständigen Rechenweg an.	Rechen	aufgab	en. G	eben S	Sie imr	ner dei	1
Die Bearbeitungszeit beträgt 60 Minu	iten.						
Die Gesamtklausur ist mit 32 von 80 beiden Teile der Klausur mindestens 10							- r
Korrektur							
	1	2	3	4	5	Σ	

1. Aufgabe 3 Punkte

Geben Sie für die Funktion $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) := \begin{cases} \frac{3x^3+y^3}{x^2+y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$ die partielle Ableitung $\frac{\partial f}{\partial y}(x,y)$ an, wo diese existiert.

2. Aufgabe 9 Punkte

Gegeben sei das Gradientenfeld $\vec{v}:D\to\mathbb{R}^3$ mit $D:=\{(x,y,z)^T\in\mathbb{R}^3\mid z>0\}$ und

$$\vec{v}(x,y,z) := \begin{pmatrix} z\cos(xz + yz) \\ z\cos(xz + yz) \\ \frac{1}{z} + (x+y)\cos(xz + yz) \end{pmatrix}.$$

- a) Ermitteln Sie eine globale Stammfunktion von \vec{v} .
- b) Berechnen Sie den Wert des Kurvenintegrals von \vec{v} über die geschlossene Kurve, die durch das Quadrat mit den Eckpunkten $(0,0,\pi),(1,0,\pi),(1,1,\pi)$ und $(0,1,\pi)$ gebildet wird.

3. Aufgabe 14 Punkte

a) Bestimmen Sie alle lokalen Extrema der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) := (x^2 - y^2)^2 + (x^2 - 2)^2 + (y^2 + 2)^2.$$

Hinweis: Es existiert mehr als ein kritischer Punkt!

b) Besitzt die Funktion globale Extrema? Wenn ja, an welchen Punkten?

4. Aufgabe 9 Punkte

Es sei die Menge $B \subset \mathbb{R}^3$ definiert durch

$$B := \{(x, y, z)^T \in \mathbb{R}^3 \mid 0 \le x^2 + y^2 \le 1, \ 0 \le z \le \left(1 - \sqrt{x^2 + y^2}\right)^2\}.$$

Berechnen Sie das Volumen von B,d.h. $\iiint\limits_B 1$ dx dy dz.

Hinweis: Verwenden Sie Zylinderkoordinaten.

5. Aufgabe 5 Punkte

Sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ für $(x,y) \neq (0,0)$ definiert durch $f(x,y) = \frac{e^{(x^2+y^2)}-1}{x^2+y^2}$. Bestimmen Sie den Wert f(0,0) = c so, dass f(x,y) auf ganz \mathbb{R}^2 stetig ist.