Field Effect Transistor

DC JFET Biasing

- □ Just as we learned that the BJT must be biased for proper operation, the JFET also must be biased for operation point (I_D, V_{GS}, V_{DS})
- In most cases the ideal Q-point will be at the middle of the transfer characteristic curve, which is about half of the I_{DSS} .
- □ 3 types of DC JFET biasing configurations :
 - Fixed-bias
 - Self-bias
 - Voltage-Divider Bias

Fixed-bias... 1. Input Loop □ By using KVL at loop 1: V_{GG} + V_{GS} = 0 V_{GS} = - V_{GG} □ For graphical solution, use V_{GS} = - V_{GG} to draw the load line □ For mathematical solution, replace V_{GS} = -V_{GG} in Shockley's Eq. ,therefore: $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(off)}}\right)^2 = I_{DSS} \left(1 + \frac{V_{GG}}{V_{GS(off)}}\right)^2$ 2. Output loop - V_{DD} + I_DR_D + V_{DS} = 0 V_{DS} = V_{DD} - I_DR_D 3. Then, plot transfer characteristic curve by using Shockley's Equation

