Information Flow in Deep Neural Networks

Mohammadamin Kiani Mohammad Mohammadian Diba Hadi

Sharif University of Technology Information Theory, Statistics, and Learning Instructor: Prof. Yassaee Project Mentor: Mr. Hadavi

Sep 4, 2025

Outline

- Introduction & Background
- Proposed Framework: Noisy DNNs
- Mutual Information Estimation
 - Theoretical Guarantees for SP Estimator
- 4 Compression and Clustering Connection
- Conclusions
- 6 Our Work & Empirical Results
 - Theoretical Stability Guarantees
 - Empirical Results
- Empirical Results

Information Plane

- Treat the whole layer T, as a single random variable, characterized by its encoder, P(T|X), and decoder, P(Y|T) distributions.
- The plane of the mutual information values of any other variable with the input variable *X* and the desired output variable *Y*.
- Rational:
 - invariance to invertible re-parameterization $I(X; Y) = I(\psi(X); \psi(y))$
 - data processing inequality $I(X; Y) \ge I(X; Z)$
- Information path: layers are mapped to K monotonic connected points in the plane.
 - $I(X;Y) \geq I(T_1;y) \geq \cdots \geq I(T_k;Y) \geq I(\hat{Y};Y)$
 - $H(X) \geq I(X; T_1) \geq \cdots \geq I(X; T_k) \geq I(X; \hat{Y})$

Motivation: Understanding DNN Internals

- Goal: Characterize information learned in DNN hidden layers.
- Mutual Information (MI) $I(X; T_{\ell})$ as a measure:
 - X: Input, T_{ℓ} : Layer ℓ representation.
 - Principled: Invariant to invertible ops, meaningful units (bits/nats).
- Information Bottleneck (IB) Theory Context:
 - Learn compressed T_{ℓ} of X, informative about target Y.
 - Suggests training phases: Fitting $(I(T_{\ell}; Y) \uparrow)$ and Compression $(I(X; T_{\ell}) \downarrow)$.
 - IB Tradeoff: optimal trade-off between compression of X and prediction of Y
 - $T(X) = \min_{p(t|x), p(y|t), p(t)} I(X; T) \beta I(T; Y)$
 - \bullet β determines the level of relevant information captured by the representation T

The Problem with $I(X; T_{\ell})$ in Deterministic DNNs

- Deterministic DNN: $T_{\ell} = f_{\ell}(\dots f_1(X))$.
- For common continuous nonlinearities:
 - Continuous $P_X \implies I(X; T_\ell) = \infty$.
 - Discrete P_X (e.g., dataset) $\Longrightarrow I(X; T_\ell) = H(X)$ (constant).
- Consequence: True $I(X; T_{\ell})$ is often vacuous for observing "compression dynamics."
- Observed changes in $I(X; Bin(T_{\ell}))$ (binned MI) in prior work likely stem from the binning approximation, not true MI changes.

A Rigorous Framework: Noisy DNNs

- To make $I(X; T_{\ell})$ well-defined & sensitive to parameters, map $X \mapsto T_{\ell}$ must be stochastic.
- Proposed Model: Add i.i.d. Gaussian noise at each hidden layer output.

$$\mathbf{T}_{\ell} = f_{\ell}(\mathbf{T}_{\ell-1}) + \mathbf{Z}_{\ell}, \quad \mathbf{Z}_{\ell} \sim \mathcal{N}(0, \beta^2 \mathbf{I}_{d_{\ell}})$$

- $S_{\ell} = f_{\ell}(T_{\ell-1})$ is the "signal" part before noise.
- $T_{\ell} = S_{\ell} + Z_{\ell}$.
- This makes $I(X; T_{\ell})$ finite and dependent on network weights.
- Data Processing Inequality holds: $X T_1 \cdots T_L$.

Estimating $I(X; T_{\ell})$ in Noisy DNNs

- Definition: $I(X; T_{\ell}) = h(T_{\ell}) \mathbb{E}_{X}[h(T_{\ell}|X=x)].$
- Direct computation of differential entropies $h(\cdot)$ is intractable.
- Sample Propagation (SP) Estimator Idea:
 - PDF of T_{ℓ} : $p_{T_{\ell}}(t) = (p_{S_{\ell}} * \phi_{\beta})(t)$ (convolution).
 - $p_{S_{\ell}}$: PDF of signal S_{ℓ} . ϕ_{β} : PDF of noise Z_{ℓ} .
 - Estimate $h(p_{T_{\ell}})$ via $h(\hat{p}_{S_{\ell}} * \phi_{\beta})$, using empirical $\hat{p}_{S_{\ell}}$ from samples of S_{ℓ} .
 - Similar approach for conditional term $h(p_{T_{\ell}|X=x})$.

The Sample Propagation (SP) Estimator

Given dataset $\mathcal{X} = \{\mathbf{x}_i\}_{i=1}^n$:

- **1 Estimate** $h(T_{\ell})$: Use $h(\hat{p}_{S_{\ell}} * \phi_{\beta})$.
 - Samples $S_{\ell} = \{ \mathbf{s}_{\ell,i} \}_{i=1}^n$ from $f_{\ell}(\dots f_1(\mathbf{x}_i))$.
 - This is entropy of a Gaussian mixture centered at $s_{\ell,i}$.
- **② Estimate** $h(T_{\ell}|X=x)$: Use $h(\hat{p}_{\mathcal{S}_{\ell}^{(x)}}*\phi_{\beta})$.
 - For each x, n_x samples $S_\ell^{(x)}$ by passing x multiple times through $f_\ell(\ldots f_1(\cdot))$.

SP Estimator \hat{l}_{SP} :

$$\hat{I}_{SP} = h(\hat{p}_{\mathcal{S}_{\ell}} * \phi_{\beta}) - \frac{1}{n} \sum_{\mathbf{x} \in \mathcal{X}} h(\hat{p}_{\mathcal{S}_{\ell}^{(\mathbf{x})}} * \phi_{\beta})$$

Entropies of Gaussian mixtures often computed via Monte Carlo Integration.

Theoretical Guarantees: Preliminaries

Focus: Estimating $h(P_S * \phi_\beta)$ from N i.i.d. samples $S_N = \{S_i\}$ from P_S . Estimator: $h(\hat{P}_{S_N} * \phi_\beta)$.

• Minimax Absolute-Error Risk over distribution class \mathcal{F} for S:

$$R^*(N, \beta, \mathcal{F}) = \inf_{\hat{h}} \sup_{P_S \in \mathcal{F}} \mathbb{E} \left| h(P_S * \phi_\beta) - \hat{h}(S_N, \beta) \right|$$

Measures worst-case error for the best possible estimator.

Theoretical Guarantees: Preliminaries

Focus: Estimating $h(P_S * \phi_\beta)$ from N i.i.d. samples $S_N = \{S_i\}$ from P_S . Estimator: $h(\hat{P}_{S_N} * \phi_\beta)$.

• Minimax Absolute-Error Risk over distribution class \mathcal{F} for S:

$$R^*(N, \beta, \mathcal{F}) = \inf_{\hat{h}} \sup_{P_S \in \mathcal{F}} \mathbb{E} \left| h(P_S * \phi_\beta) - \hat{h}(S_N, \beta) \right|$$

Measures worst-case error for the best possible estimator.

- Sample Complexity $N^*(\eta, \beta, \mathcal{F})$: Smallest N for $R^* \leq \eta$. Minimum samples needed to achieve a target accuracy η .
- Classes considered: \mathcal{F}_d (distributions with support in $[-1,1]^d$, e.g., for tanh layers), $\mathcal{F}_{d,\mu,K}^{(SG)}$ (subgaussian distributions, e.g., for ReLU layers with subgaussian inputs).

Guarantee 1: Sample Complexity

Statement (Simplified): For fixed noise $\beta > 0$, large dimension d, target error $\eta < \eta_0(\beta)$:

$$N^*(\eta, \beta, \mathcal{F}_d) \ge \Omega\left(\frac{2^{\gamma(\beta)d}}{d\eta}\right)$$

Guarantee 1: Sample Complexity

Statement (Simplified): For fixed noise $\beta > 0$, large dimension d, target error $\eta < \eta_0(\beta)$:

$$N^*(\eta, \beta, \mathcal{F}_d) \ge \Omega\left(\frac{2^{\gamma(\beta)d}}{d\eta}\right)$$

- Core Implication: Estimating $h(P_S * \phi_\beta)$ is fundamentally hard in high dimensions.
- The required number of samples N^* grows at least exponentially with dimension d.
- The exponent $\gamma(\beta)$ is monotonically decreasing in β .
 - Larger noise variance β^2 (larger β) \Longrightarrow smaller $\gamma(\beta)$ \Longrightarrow (relatively) less severe exponential dependence.
 - More noise "smooths" the distribution, making estimation easier.
- This is a lower bound, applying to any estimator, not just the SP one.

Guarantee 2: Risk of $h(\hat{P}_{S_N} * \phi_{\beta})$

Statement (Simplified): For $P_S \in \mathcal{F}_{d,\mu,K}^{(SG)}$ (or \mathcal{F}_d):

$$\mathbb{E}\left|h(P_{\mathcal{S}}*\phi_{\beta})-h(\hat{P}_{\mathcal{S}_{\mathcal{N}}}*\phi_{\beta})\right|\leq C(d,\mu,\mathcal{K},\beta)\cdot\frac{1}{\sqrt{\mathcal{N}}}$$

Guarantee 2: Risk of $h(\hat{P}_{S_N} * \phi_{\beta})$

Statement (Simplified): For $P_S \in \mathcal{F}_{d,\mu,K}^{(SG)}$ (or \mathcal{F}_d):

$$\mathbb{E}\left|h(P_{S}*\phi_{\beta})-h(\hat{P}_{S_{N}}*\phi_{\beta})\right|\leq C(d,\mu,K,\beta)\cdot\frac{1}{\sqrt{N}}$$

- Core Implication: The specific SP-based estimator $h(\hat{P}_{S_N} * \phi_\beta)$ achieves the parametric rate of convergence $O(1/\sqrt{N})$ with respect to sample size N.
- This is generally the best possible convergence rate for parametric estimation problems.
- However, the constant $C(d, \mu, K, \beta)$ can be (and often is) exponential in dimension d.
 - $C(d, \mu, K, \beta) \approx \left(\frac{1}{\sqrt{2}} + \frac{K}{\beta}\right)^d \times \text{polynomial factors in } d, \mu, K, 1/\beta.$
 - This reflects the curse of dimensionality.

Guarantee 3: MI Estimation Risk

The absolute-error risk of the full SP MI estimator \hat{I}_{SP} (using n samples for unconditional term, and $n_x = n$ for each of n conditional terms):

$$\sup_{P_X} \mathbb{E} \left| I(\boldsymbol{X}; \boldsymbol{T}_{\ell}) - \hat{I}_{SP} \right| \leq 2\Delta_{\beta, d_{\ell}}(n) + \frac{d_{\ell} \log(1 + 1/\beta^2)}{4\sqrt{n}}$$

• $\Delta_{\beta,d_\ell}(n)$ is the risk bound for estimating a single entropy term (i.e., $O(C(d_\ell)/\sqrt{n})$).

Guarantee 3: MI Estimation Risk

The absolute-error risk of the full SP MI estimator \hat{I}_{SP} (using n samples for unconditional term, and $n_x = n$ for each of n conditional terms):

$$\sup_{P_{\boldsymbol{X}}} \mathbb{E} \left| I(\boldsymbol{X}; \boldsymbol{T}_{\ell}) - \hat{I}_{SP} \right| \leq 2\Delta_{\beta, d_{\ell}}(n) + \frac{d_{\ell} \log(1 + 1/\beta^2)}{4\sqrt{n}}$$

- $\Delta_{\beta,d_{\ell}}(n)$ is the risk bound for estimating a single entropy term (i.e., $O(C(d_{\ell})/\sqrt{n})$).
- Core Implication: The overall MI estimation error also converges at the parametric rate $O(1/\sqrt{n})$.
- The bound depends on:
 - Layer dimension d_{ℓ} (through $\Delta_{\beta,d_{\ell}}(n)$ and the second term).
 - Noise variance β^2 (larger β can reduce the bound via both terms).
 - Number of samples n.
- The term $1/\beta^2$ relates to the Signal-to-Noise Ratio (SNR) between the signal S_{ℓ} and noise Z_{ℓ} .

The Link: Compression & Geometric Clustering

- Consider $I(\boldsymbol{X}; \boldsymbol{T}_{\ell}) = I(\boldsymbol{S}_{\ell}; \boldsymbol{S}_{\ell} + \boldsymbol{Z}_{\ell}).$
- This is MI over an AWGN-like channel:
 - "Input symbols": deterministic pre-noise activations $\mathcal{S}_{\ell} = \{ \mathbf{s}_{\ell, \mathbf{x}} \}$.
 - $I(\cdot)$ measures distinguishability of $s_{\ell,x}$ after adding noise Z_{ℓ} .
- Hypothesis: Clustering drives compression.
 - Training \Longrightarrow representations $s_{\ell,x}$ of inputs x from the same class may cluster.
 - Closer points in $\mathcal{S}_\ell \implies$ Gaussian components in $p_{\mathcal{T}_\ell}$ overlap more.
 - More overlap \implies harder to resolve inputs \implies reduction in $I(X; T_{\ell})$.
- Paper argues: "Compression" in deterministic nets via binned MI was tracking this clustering.

Key Conclusions

- $I(X; T_{\ell})$ in *deterministic* DNNs is often ill-defined for studying representation dynamics.
- Noisy DNN framework allows rigorous study of $I(X; T_{\ell})$.
- Sample Propagation (SP) estimator developed for $I(X; T_{\ell})$ in noisy DNNs.
- Detailed theoretical guarantees for SP estimator (risk, sample complexity, bias) show $O(1/\sqrt{N})$ rate but highlight the curse of dimensionality (exponential dependence on d).
- "Compression" (I(X; T_ℓ) ↓) in noisy nets is linked to geometric clustering of representations.

Proposed Work: Input Perturbations

Problem: How does $I(X; T_{\ell})$ react to distributional shift $P_X \to P_{X'}$? **Perturbation model:** Control the shift the input distribution to another one by some metric

Shift metrics:

• Wasserstein $W_p(P_X, P_{X'})$, Total Variation $\mathrm{TV}(P_X, P_{X'})$, $\mathsf{KL}(P_X \| P_{X'})$

Question:

• Q: Robustness of Estimation — how close is the estimated $I(X'; T_{\ell})$ with the real information of original dataset?

Shift Metrics: KL, TV, Wasserstein

KL divergence

$$D_{\mathrm{KL}}(P||Q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$

- Asymmetric; $D_{KL} \ge 0$ with equality iff P = Q.
- Likelihood-sensitive: large when q(x)=0 where p(x)>0.
- Useful for modeling/calibration where densities are available.

Total Variation (TV)

$$TV(P, Q) = \frac{1}{2} \int |p(x) - q(x)| dx = \sup_{A} |P(A) - Q(A)|$$

- Symmetric, bounded: $0 \le TV \le 1$.
- Support-overlap measure; ignores geometry of x.

Wasserstein W_p

$$W_p(P,Q) = \left(\inf_{\gamma \in \Pi(P,Q)} \mathbb{E}_{(X,Y) \sim \gamma} \|X - Y\|^p\right)^{1/p}$$

- Geometry-aware: depends on ground metric $\|\cdot\|$.
- Stable under small input shifts; meaningful even with disjoint supports.

Estimation Error under TV Shift

Theorem: Bounding the Estimator's Deviation under TV Shift

Let \hat{I}_{SP} be the estimator built using n samples from P_X . If the data distribution shifts to $P_{X'}$ such that $\mathrm{TV}(P_X,P_{X'}) \leq \varepsilon$, the expected deviation is bounded by:

$$\begin{split} \mathbb{E}\left|I(\boldsymbol{X}';\,\boldsymbol{\mathcal{T}}_{\ell}) - \hat{I}_{SP}\right| \leq &\underbrace{\left(\varepsilon\log(N_{\ell}-1) + H_{b}(\varepsilon)\right)}_{\text{Shift Error}} \\ &+ \underbrace{\left(\frac{8cd_{\ell} + d_{\ell}\log(1 + 1/\beta^{2})}{4\sqrt{n}}\right)}_{\text{Estimation Error}} \end{split}$$

where the second term is the explicit risk bound from the paper.

Estimation Error under KL Shift

Theorem: Bounding the Estimator's Deviation under KL Shift

Let \hat{I}_{SP} be the estimator built using n samples from P_X . If the data distribution shifts to $P_{X'}$ such that $D_{\mathrm{KL}}(P_{X'}\|P_X) \leq \varepsilon$, the deviation is bounded by:

$$\mathbb{E}\left|I(\boldsymbol{X}'; \boldsymbol{\mathcal{T}}_{\ell}) - \hat{I}_{SP}\right| \leq \underbrace{\left(\sqrt{\frac{\varepsilon}{2}}\log(N_{\ell} - 1) + H_{b}\left(\sqrt{\frac{\varepsilon}{2}}\right)\right)}_{\text{Shift Error}} + \underbrace{\left(\frac{8cd_{\ell} + d_{\ell}\log(1 + 1/\beta^{2})}{4\sqrt{n}}\right)}_{\text{Estimation Error}}$$

L5 Pre-noise Representation S_{L5}

• Pre-noise activations S_{L5} reveal emerging class-wise clusters as training proceeds.

MI under shift — Latest SZT & MNIST

• Each panel: $I(X; T_{\ell})$ vs. perturbation; legend shows layers.

Key References

- Goldfeld, Z., van den Berg, E., Greenewald, K., Melnyk, I., Nguyen, N., Kingsbury, B., & Polyanskiy, Y. (2019).
 Estimating Information Flow in Deep Neural Networks.
- [2] Shwartz-Ziv, R., & Tishby, N. (2017).Opening the black box of Deep Neural Networks via Information.
- [3] Tishby, N., & Zaslavsky, N. (2015).Deep Learning and the Information Bottleneck Principle.
- [4] Saxe, A. M., Bansal, Y., Dapello, J., Advani, M., Lampinen, A., Teh, B. D., & Ganguli, S. (2018).
 On the Information Bottleneck Theory of Deep Learning.
- [5] Goldfeld, Z., Greenewald, K., Polyanskiy, Y., & Weed, J. (2019). Estimating Differential Entropy under Gaussian Convolutions.

Thank You!

Questions?