An Introduction to SCF Theory

Part II

Center for Computational Quantum Chemistry School of Chemical Sciences The University of Georgia Athens, Georgia 30602

Spring, 2008

Suggested procedure for an SCF program

A. Preliminary Processing

- 1) Read in nuclear repulsion energy (E_{nuc}) .
- 2) Read in overlap integrals (S).
- 3) Read in kinetic energy integrals (T).
- 4) Read in potential energy integrals (V).
- 5) Form one electron integral matrix (H).

$$H_{\mu\nu} = T_{\mu\nu} + V_{\mu\nu} \tag{1}$$

6) Read in two-electron repulsion integrals $(\mu\nu|\rho\sigma)$.

Note:

$$(12|34) = (12|43) = (21|34) = (21|43) = (34|12) = (34|21) = (43|12)$$

= $(43|21)$ (2)

$$\mu \geq \nu , \rho \geq \sigma , \text{ and } \mu\nu \geq \rho\sigma$$
 (3)

$$\mu\nu = \mu * (\mu - 1)/2 + \nu \tag{4}$$

$$\rho\sigma = \rho * (\rho - 1)/2 + \sigma \tag{5}$$

$$\mu\nu\rho\sigma = \mu\nu * (\mu\nu - 1)/2 + \rho\sigma \tag{6}$$

- B. Construction of the $S^{-1/2}$ Matrix
- 1) Diagonalize the S Matrix.

$$S L_s = L_s \Lambda_s \tag{7}$$

$$L_s \tilde{L}_s = L_s L_s^{-1} = 1$$
 (8)

2) Form the $S^{-1/2}$ matrix.

$$S^{-1/2} = L_s \Lambda_s^{-1/2} \tilde{L}_s (9)$$

- C. Construction of an Initial Density Matrix
- 1) Form an initial (transformed) F_{o}^{τ} matrix using the H matrix.

$$F_o^{\tau} = \tilde{S}^{-1/2} H S^{-1/2}$$
 (10)

2) Diagonalize the F_o^{τ} matrix using a standard eigenvalue subroutine.

$$F_o^{\tau} C_o^{\tau} = C_o^{\tau} \epsilon \tag{11}$$

$$C_o^{\tau} \tilde{C}_o^{\tau} = C_o^{\tau} C_o^{\tau-1} = 1$$
 (12)

3) Form the SCF eigenvector matrix.

$$C = S^{-1/2} C_o^{\tau} (13)$$

4) Form the first density matrix (D).

$$D_{\mu\nu} = \sum_{m}^{d.o.} C_{\mu}^{m} C_{\nu}^{m} \tag{14}$$

D. The SCF Iteration

1) Form the new Fock matrix (F) including two-electron integrals.

$$F_{\mu\nu} = H_{\mu\nu} + \sum_{\rho\sigma}^{AO} D_{\rho\sigma} \left\{ 2(\mu\nu|\rho\sigma) - (\mu\rho|\nu\sigma) \right\}$$
 (15)

2) Calculate the electronic and total energies.

$$E_{elec} = \sum_{\mu\nu}^{AO} D_{\mu\nu} \Big(H_{\mu\nu} + F_{\mu\nu} \Big)$$
 (16)

$$E_{total} = E_{elec} + E_{nuc} \tag{17}$$

3) Transform the Fock matrix.

$$F^{\tau} = \tilde{S}^{-1/2} F S^{-1/2} \tag{18}$$

4) Diagonalize the Fock matrix.

$$F^{\tau} C^{\tau} = C^{\tau} \epsilon \tag{19}$$

5) Construct the new SCF eigenvector matrix.

$$C = S^{-1/2} C^{\tau} (20)$$

6) Form the new density matrix.

$$D_{\mu\nu} = \sum_{m}^{d.o.} C_{\mu}^{m} C_{\nu}^{m} \tag{21}$$

- 7) Test convergency of density matrix and energy.
- (i) RMS of density matrix elements:

$$rms = \left[\sum_{\mu\nu}^{AO} \left(D_{\mu\nu}^{n} - D_{\mu\nu}^{n-1}\right)^{2}\right]^{1/2} < \delta_{1}$$
 (22)

(ii) Energy difference:

$$\Delta E = E_{SCF}^n - E_{SCF}^{n-1} < \delta_2 \tag{23}$$

8) If SCF is not attained go back to step D-1.