(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-313045

(43)公開日 平成5年(1993)11月26日

(51)Int.Cl.⁵ G02B 6/42 識別記号 庁内整理番号

7132-2K

FΙ

技術表示箇所

審査請求 未請求 請求項の数4(全 3 頁)

(21)出願番号

特願平4-114351

(22)出願日

平成4年(1992)5月7日

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 松原 隆雄

東京都港区芝五丁目7番1号日本電気株式

会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54)【発明の名称】 光結合装置

(57)【要約】

【目的】アレイ状に配置された面発光素子または面受光 素子とアレイ状に配置さされた光ファイバの光軸合わせ のための調整を簡易に行い、かつ、光素子の気密封止が 容易に行える。

【構成】キャビティ7を備えた基板6上に複数の光素子 3をアレイ状に配置し、光索子3と同じ間隔で光ファイ バ1を配置した光ファイバ支持部2を密着させた後に光 軸合わせを行う。キャビティ7は光素子3の厚みより深 11.

【特許請求の範囲】

【請求項1】 複数個の光素子をアレイ状に配列した基 板と、前記各光素子と光軸を一致させてそれぞれ同一の アレイピッチで配列させたアレイ状光ファイバを支持す る光ファイバ支持部とを組み合わせてなる並列型の光結 合装置において、前記基板は前記光素子を実装する部分 に前記光素子の厚みより深いキャビティを備えることを 特徴とする光結合装置。

【請求項2】 前記基板と前記光ファイバ支持部とを密 着させ前記各光素子と前記各光ファイバとの前記光軸が 10 て、前記基板は前記光素子を実装する部分に前記光素子 最も合う位置で前記基板と前記光ファイバ支持部とを接 着してなることを特徴とする請求項1記載の光結合装 置。

【請求項3】 前記光素子は電気・光信号変換を行う面 発光素子であることを特徴とする請求項1または2記載 の光結合装置。

【請求項4】 前記光素子は光・電気信号変換を行う面 受光素子であることを特徴とする請求項1または2記載 の光結合装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は光結合装置に関し、特に アレイ状光ファイバとアレイ状に複数個配列した光素子 とを接続する光結合装置に関する。

[0002]

【従来の技術】図2は従来の光結合装置の一例を示す斜 視図である。本例の並列型光結合装置はアレイ状に複数 個配列した面発光素子または面受光素子の光素子3を有 する基板8と、この各光素子3と光軸を一致させてそれ ぞれ同一のアレイピッチで配列させたアレイ状光ファイ バ1を支持する光ファイバ支持部2と、光ファイバ支持 部2と基板8を固定するためのフレーム9とからなる。 光素子3には電気信号を供給するために基板8との間は ボンディングワイヤラにより接続されている。なお光素 子3が面発光素子または面受光素子かにより発光部また は受光部4を有する。

【0003】次に本例の光結合装置の組立方法について 説明する。基板8上に光素子3をアレイ状に複数個配列 した後に固定する。次に基板8をフレーム9に固定す る。一方、光ファイバ支持部2に光素子3と同じアレイ ピッチで配列した光ファイバ1を固定した後にフレーム 9と光ファイバ支持部2を調整しながら最適の位置で固 定する。この時、調整軸X, Y, Z, $\theta x y$, $\theta y z$, $\theta z x 0 6 軸調整が必要になる。$

[0004]

【発明が解決しようとする課題】この従来の光結合装置 の組立方法では、フレーム9と光ファイバ支持部2の調 整時に $X, Y, Z, \theta x y, \theta y z, \theta z x の 6 軸 の 調$ 整が必要になる。また、フレーム9と光ファイバ支持部 2の間に位置調整のための隙間が必要となるため、位置 50 る。

合わせ後の固定方法が難しいばかりでなく、光素子3を 気密封止する場合に隙間が多いため気密封止が困難とな るという問題点があった。

2

[0005]

【課題を解決するための手段】本発明の光結合装置は、 複数個の光素子をアレイ状に配列した基板と、前記各光 素子と光軸を一致させてそれぞれ同一のアレイピッチで 配列させたアレイ状光ファイバを支持する光ファイバ支 持部とを組み合わせてなる並列型の光結合装置におい の厚みより深いキャビティを備えている。

【0006】そして、前記基板と前記光ファイバ支持部 とを密着させ前記各光素子と前記各光ファイバとの前記 光軸が最も合う位置で前記基板と前記光ファイバ支持部 とを接着してなる。

【0007】また、前記光素子は電気・光信号変換を行 う面発光素子または光・電気信号変換を行う面受光素子 のいずれであってもよい。

[8000]

【実施例】次に、本発明について図面を参照して説明す る。図1は本発明の光結合装置の一実施例を示す並列型 光結合装置の斜視図である。

【0009】本実施例における基板6は光素子3を実装 する部分に光素子3の厚さより深いキャビティ7を有す る。基板6のキャビティ7部分に光素子3を多数個(図 1では3個)配列する。この時、キャビティ7は各光素 子3と基板6の間に信号または電源を供給するボンディ ングワイヤ5がファイバ支持部2に接触しない深さを有 している。一方、光ファイバ1は光ファイバ支持部2中 30 に光素子3の発光部または受光部4と同じ間隔で配置さ れている。

【0010】次に光ファイバ支持部2と基板6を密着さ せた後に光軸の位置合わせを行うが、本実施例では光軸 合わせの調整のための自由度がX, Y, $\theta \times y$ の3軸と なり調整しやすい。そして光軸合わせ後、基板6に光フ ァイバ支持部2を接着して固定する。従って、調整時に 基板6と光ファイバ支持部2が密着しているため固定す るときに隙間が少なく、調整後の接着が容易である。ま た光素子3を囲む空間に隙間が少ないため気密封止が容 40 易になる。

[0011]

【発明の効果】以上説明したように本発明によれば、基 板のキャビティの中に光素子を実装し、各光ファイバの 端面と基板の表面とを密着させるため以下に示す効果が 得られる。

- (1)光ファイバと光素子の光軸を調整するための自由 度が3軸でよいため調整が容易になる.
- (2)調整時に基板と光ファイバ支持部が密着するため 両者を固定するとき、隙間が少なく接着固定が容易にな

2/10/06, EAST Version: 2.0.1.4

3

(3) 光素子を囲む空間に隙間が少ないため、光素子の 気密封止が容易になる。

【図面の簡単な説明】

【図1】本発明の光結合装置の一実施例を示す並列型光 結合装置の斜視図である。

【図2】従来の光結合装置の一例を示す斜視図である。 【符号の説明】

【図1】

光ファイバ

2 光ファイバ支持部

3 光素子

4 発光部または受光部

5 ボンディングワイヤ

基板 6,8

キャビティ 7

フレーム

