Supervised Learning and Visualization:

Exploratory Data Analysis

Gerko Vink Erik-Jan van Kesteren Peter van der Heijden David Goretzko

Department of Methodology and Statistics

Utrecht Applied Data Science

John Tukey (1915–2000) Data Scientist patient zero

Inventor of:

- The boxplot
- The term "exploratory data analysis"
- The Fast Fourier Transform
- "Tukey's test"
- The word "bit"
- So, so much more (Wikipedia)

Today: visualization principles, applicable to EDA

Some data visualization principles

Data visualization

- For exploration, data analysis ←
- For communication
- For entertainment

Graphics for data analysis

- The **human retina** can transfer around 10^6 or 10^7 bits per second to the brain;
- **Reading** transfers about 3 words, so $\sim 10^2$ or 10^3 bits/s;
- Potentially (!) visualization is about 4 orders of magnitude more powerful.

How can we leverage the human visual system to analyze data?

Making pictures that help analyze data

- We'd like to make, not just any kind of picture or graph, but one that transfers some part of the data to our brain
- How do we make sure that the graphs we make transfer
 - The right part of the data, and;
 - 2 As much of it as possible?

This is where the "grammar of graphics" comes in.

Goal is to **specify how data map to picture**, so the correct type and largest amount possible is transferred

Grammar of graphics (Wickham version)

https://r4ds.had.co.nz/data-visualisation.html

Map raw data to following elements:

- Aesthetics (position, shape, color, ...)
- Geometric objects (points, lines, bars, ...)
- Scales (continuous, discrete, ...)
- Facets (small multiples)

Additionally, can apply:

- Statistical transformation (identity, binning, median, ...)
- Coordinate system (Cartesian, polar, parallel, ...)

Grammar of graphics (Wickham version)

In R, grammar of graphics is implemented in ggplot, a function in the ggplot2 package.

Example data set: cars

```
mpg
       A tibble: 234 × 11
#>
       manufacturer model displ
                                                                   trans
                                            year
                                                      cyl
                                                                                      cty
                                                                                               hwy
#>
                 \langle chr \rangle \langle chr \rangle \langle dbl \rangle \langle int \rangle \langle int \rangle
                                                                   <chr> <chr>
                                                                                   \langle int \rangle
                                                                                           \langle int \rangle \langle chr \rangle
#>
                  andi.
                                     1.8
                                            1999
                                                              auto(15)
                                                                                        18
                                                                                                29
#>
                  audi
                                     1.8
                                            1999
                                                        4 manual(m5)
                                                                                                29
                             a4
#>
                  audi
                                     2.0
                                            2008
                                                        4 manual(m6)
                                                                                                31
                             a4
                  audi
                                     2.0
                                            2008
                                                              auto(av)
                                                                                                30
                             a4
                  audi
                                            1999
                                                              auto(15)
                                                                                        16
                                                                                                26
                  audi
                                            1999
                                                        6 manual (m5)
                                                                                        18
                                                                                                26
                                                                                                          p
       ... with 228 more rows. and 1 more variables: class <chr>
```

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class))


```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class))
```


- Aesthetics:
 - x-position mapped to engine displacement
 - y-position mapped to highway miles per gallon
 - color mapped to car type
- Geometric objects: points
- Transformation: identity
- Scales: continuous, cartesian coordinates
- No facets

Facets

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_wrap(~ class, nrow = 2)
```


0.23

0.23

Transformation (stats)

 geom_bar() uses the transformed data to build the plot. cut is mapped to the x axis, count is mapped to the y axis.

How should I visualize my data/ analysis results?

Jacques Bertin (1967) Sémiologie graphique

Color: hue-saturation-brightness (HSB)

0................

Mackinlay's ranking of encodings

Quantitative	Ordinal	Nominal
Position	Position	Position
Length	Density	Color hue
Angle	Color saturation	Texture
Slope	Color hue	Connection
Area	Texture	Containment
Volume	Connection	Density
Density	Containment	Color saturation
Color saturation	Length	Shape
Color hue	Angle	Length
Texture	Slope	Angle
Connection	Area	Slope
Containment	Volume	Area
Shape	Shape	Volume

O---1!----1

Manainal

Some (distilled) principles from Tufte

- Ask how data maps to perception
- Ask which comparisons you want, guide eye to those
- Maximize data-to-ink ratio
- Present more data (but without losing interpretability)
- (Remember narrative)

Low Data/Ink

High Data/Ink

10.4

Tufte wisdom

- Tufte's principles are more oriented to communication and can be taken too far
- Better data/ink → display more information without overload;
- Thinking about perception can help you choose better geoms, aesthetics.

Some practice

Answer these questions:

- What are: aesthetics, geom, scale, facets, transformation, coordinate system
- How is data/ink?
- Is perception considered optimally?
- Can you think of questions you can't answer from this plot which are in the data?

Some diamonds

and their cut quality

Conclusion

Conclusion

- Data visualization is a huge field;
- Sticking to basic principles helps:
 - Map data to aesthetics, geoms, scales, facets;
 - Perception research guides choices;
 - Which comparisons do I want?
 - Maximize data-ink (within reason).
- There is no 'one solution fits all' approach!