	Random Forests Assignment Data Set - Company_Data
In [1]:	1. Import Necessary libraries import pandas as pd import numpy as np from matplotlib import pyplot as plt
	<pre>import pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore')</pre>
In [2]: Out[2]:	2. Import Data company_details = pd.read_csv('Company_Data.csv') company_details Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US
	0 9.50 138 73 11 276 120 Bad 42 17 Yes Yes 1 11.22 111 48 16 260 83 Good 65 10 Yes Yes 2 10.06 113 35 10 269 80 Medium 59 12 Yes Yes 3 7.40 117 100 4 466 97 Medium 55 14 Yes Yes 4 4.15 141 64 3 340 128 Bad 38 13 Yes No
	 399 9.71 134 37 0 27 120 Good 49 16 Yes Yes 400 rows × 11 columns 3. Data Understanding
In [3]: Out[3]:	<pre>company_details.head() Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US 0 9.50 138 73 11 276 120 Bad 42 17 Yes Yes</pre>
In [4]:	1 11.22 111 48 16 260 83 Good 65 10 Yes Yes 2 10.06 113 35 10 269 80 Medium 59 12 Yes Yes 3 7.40 117 100 4 466 97 Medium 55 14 Yes Yes 4 4.15 141 64 3 340 128 Bad 38 13 Yes No company_details.shape
Out[4]: In [5]:	<pre>(400, 11) company_details.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 400 entries, 0 to 399 Data columns (total 11 columns):</class></pre>
	# Column Non-Null Count Dtype O Sales 400 non-null float64 CompPrice 400 non-null int64 Income 400 non-null int64 Advertising 400 non-null int64 Population 400 non-null int64
	5 Price 400 non-null int64 6 ShelveLoc 400 non-null object 7 Age 400 non-null int64 8 Education 400 non-null int64 9 Urban 400 non-null object 10 US 400 non-null object dtypes: float64(1), int64(7), object(3) memory usage: 34.5+ KB
In [6]: Out[6]:	<pre>company_details.isna().sum() Sales 0 CompPrice 0 Income</pre>
In [7]:	ShelveLoc 0 Age 0 Education 0 Urban 0 US 0 dtype: int64 company_details.describe()
Out[7]:	Sales CompPrice Income Advertising Population Price Age Education count 400.000000 400.000000 400.000000 400.000000 400.000000 400.000000 400.000000 400.000000 mean 7.496325 124.975000 68.657500 6.635000 264.840000 115.795000 53.322500 13.900000 std 2.824115 15.334512 27.986037 6.650364 147.376436 23.676664 16.200297 2.620528
	min 0.000000 77.00000 21.000000 10.000000 24.000000 25.00000 10.000000 25% 5.390000 115.000000 42.750000 0.000000 139.000000 100.00000 12.000000 50% 7.490000 125.000000 5.000000 272.000000 117.000000 54.500000 14.000000 75% 9.320000 135.000000 12.000000 398.500000 131.000000 66.000000 16.000000 max 16.270000 175.000000 29.000000 509.000000 191.000000 80.000000 18.000000
In [8]: Out[8]:	company_details.dtypes Sales float64 CompPrice int64 Income int64 Advertising int64 Population int64
	Price int64 ShelveLoc object Age int64 Education int64 Urban object US object dtype: object
In [9]: Out[9]: In [10]:	<pre>company_details.columns Index(['Sales', 'CompPrice', 'Income', 'Advertising', 'Population', 'Price',</pre>
Out[10]:	Medium 219 Bad 96 Good 85 Name: ShelveLoc, dtype: int64 3.1 Correlation Matrix:
In [11]:	<pre>plt.figure(figsize = (12,8)) sns.heatmap(company_details.corr(),annot = True) plt.show()</pre> Sales - 1 0.064 0.15 0.27 0.05 -0.44 -0.23 -0.052 -0.8
	CompPrice - 0.064 1 -0.081 -0.024 -0.095 0.58 -0.1 0.025 Income - 0.15 -0.081 1 0.059 -0.0079 -0.057 -0.0047 -0.057
	Advertising - 0.27
	Age - 40.23
In [12]:	Sales CompPrice Income Advertising Population Price Age Education sns.pairplot(company_details) plt.show() 15.0 - 12.5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	$\frac{8}{8}$
	80
	De 10
	500 d 400 d 100 d 100 d
	175 150 125 125 100 1
	10
In [13]:	Pipip install category_encoders Requirement already satisfied: category_encoders in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (2.5.1.post0) Requirement already satisfied: statsmodels>=0.9.0 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from category_encoders) (0.13.2) Requirement already satisfied: scikit-learn>=0.20.0 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from category_encoders) (1.0.2) Requirement already satisfied: patsy>=0.5 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from category_encoders) (1.4.2) Requirement already satisfied: patsy>=0.5.1 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from category_encoders) (0.5.2) Requirement already satisfied: numpy>=1.14.0 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from category_encoders) (1.21.5)
	Requirement already satisfied: scipy>=1.0.0 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from category_encoders) (1.7.3) Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from pandas>=1.0.5->category_encoders) (2.8.2) Requirement already satisfied: pytz>=2020.1 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from pandas>=1.0.5->category_encoders) (2021.3) Requirement already satisfied: six in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from patsy>=0.5.1->category_encoders) (1.16.0) Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from scikit-learn>=0.20.0->category_encoders) (2.2.0) Requirement already satisfied: poblib>=0.11 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from statsmodels>=0.9.0->category_encoders) (21.3) Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\users\mohammed faisal khan\anaconda3\lib\site-packages (from packaging>=21.3->statsmodels>=0.9.0->category_encoders)
In [14]: In [15]:	<pre>(3.0.4) from category_encoders import OrdinalEncoder from sklearn import preprocessing encoder = OrdinalEncoder(cols = ["ShelveLoc", "Urban", "US"]) sales = encoder.fit_transform(company_details)</pre>
In [16]:	<pre>sale_val = [] for value in company_details['Sales']: if value <= 7.49: sale_val.append("low") else:</pre>
In [17]: Out[17]:	sale_val.append("high") sales['sale_val'] = pd.Series(sale_val) sales Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US sale_val 0 9.50 138 73 11 276 120 1 42 17 1 1 high
	1 11.22 111 48 16 260 83 2 65 10 1 1 high 2 10.06 113 35 10 269 80 3 59 12 1 1 high 3 7.40 117 100 4 466 97 3 55 14 1 1 low 4 4.15 141 64 3 340 128 1 38 13 1 2 low
	$400 \text{ rows} \times 12 \text{ columns}$ 3.3 Splitting in x and y:
In [18]: Out[18]:	<pre>x = sales.drop(['sale_val', 'Sales'], axis = 1) x CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US 0 138 73 11 276 120 1 42 17 1 1 1 111 48 16 260 83 2 65 10 1 1</pre>
	2 113 35 10 269 80 3 59 12 1 1 3 117 100 4 466 97 3 55 14 1 1 4 141 64 3 340 128 1 38 13 1 2
	396
	<pre>y = sales['sale_val'] y high high high high high high</pre>
	3
In [20]:	Name: sale_val, Length: 400, dtype: object 4. Bagged Decision Trees for Classification from sklearn.model_selection import KFold from sklearn.tree import DecisionTreeClassifier
In [21]: In [22]:	<pre>from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import BaggingClassifier from sklearn.model_selection import cross_val_score cart_1 = DecisionTreeClassifier() num_trees_1 = 100</pre>
In [23]: In [24]:	<pre>k_fold_1 = KFold(n_splits = 10, shuffle = True, random_state = 8) model_1 = BaggingClassifier(base_estimator = cart_1, n_estimators = num_trees_1, random_state = 8) results = cross_val_score(model_1, x,y, cv = k_fold_1) print(results.mean())</pre> 0.82
In [25]: In [26]:	5. Random Forest Classification from sklearn.ensemble import RandomForestClassifier cart_2 = RandomForestClassifier()
In [27]:	<pre>cart_2 = RandomForestClassifier() num_trees_2 = 100 max_features = 3 k_fold_2 = KFold(n_splits = 10, shuffle = True , random_state = 8) model_2 = RandomForestClassifier(n_estimators = num_trees_2, max_features)</pre>
In [29]:	results = cross_val_score(model_2, x, y, cv = k_fold_2) print(results.mean()) 6. Boost Classification
In [30]: In [31]: In [32]:	<pre>from sklearn.ensemble import AdaBoostClassifier cart_3 = AdaBoostClassifier() seed = 8</pre>
	<pre>num_trees_3 = 100</pre>
In [35]:	7. Stacking Ensemble for Classification from sklearn.linear_model import LogisticRegression
	from sklearn.svm import SVC from sklearn.ensemble import VotingClassifier k_fold_4 = KFold(n_splits = 10, shuffle = True, random_state = 8) estimators = [] Create the sub models
In [37]: In [38]:	<pre>model_4 = LogisticRegression(max_iter = 100) estimators.append(('logistic', model_4)) model_5 = DecisionTreeClassifier() estimators.append(('cart', model_5))</pre>
In [39]: In [40]:	<pre>model_6 = SVC() estimators.append(('svm', model_6)) Create the ensemble model ensemble = VotingClassifier(estimators) results = cross_val_score(ensemble, x, y, cv = k_fold_4)</pre>
	a) Model Accuracy for Decision Tree Classifier: 0.82 b) Model Accuracy for Random Forest Classifier: 0.8099 c) Model Accuracy for Ada Boost Classifier: 0.8275 d) Model Accuracy for Stacking Ensemble: 0.79