федеральное государственное автономное образовательное учреждение высшего образования

ПЕРВЫЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ имени И.М. СЕЧЕНОВА

Министерства здравоохранения Российской Федерации (Сеченовский Университет)

Кафедра информационных и интернет-технологий ИЦМ

МАЙОРОВА АРИНА АЛЕКСЕЕВНА

студентка 5 курса 801-18 группы

БИОИНФОРМАЦИОННОЕ ИССЛЕДОВАНИЕ ГЕНОВ, АССОЦИИРОВАННЫХ С ГЛИОМОЙ

ДИПЛОМНАЯ РАБОТА

по направлению подготовки (специальности) 90.00.03 Средства программной разработки

Содержание

ВВЕДЕНИЕ	4
ОБЗОР ЛИТЕРАТУРЫ	6
Классификация глиом	6
Клиническая диагностика	7
Роль мутаций в патогенезе глиом	9
Подходы к терапии	14
МАТЕРИАЛЫ И МЕТОДЫ	16
База данных ОМІМ	16
База данных GeneCards	16
Методы	16
PANTHER	16
DAVID	16
g:GOSt	16
STRING-DB	17
MalaCards	17
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ	18
Получение списка генов	
Реконструкция генных сетей	24
ВЫВОДЫ	30
СПИСОК ЛИТЕРАТУРЫ	31
Приложение А	37
Приложение Б	48
Приложение В	59

ВВЕДЕНИЕ

Глиома является наиболее распространенной первичной опухолью головного мозга и прогноз ее развития неблагоприятный. Несмотря на возможность хирургического удаления, глиома все еще склонна к рецидивам, поскольку она быстро пролиферирует, устойчива к химиотерапии и очень агрессивна.

Анализ литературы PubMed показал резкий рост числа публикаций по теме «Glioma» (рис 1). Всего - 119,280 публикаций в период с 1870 по 2023 год, 13,299 из которых — обзоры. Для сравнения, по запросу «Cancer» выдается 4,866,526 результатов в период с 1783 по 2023 год.

Рис. 1. Динамика роста числа публикаций по запросам «Cancer» и «Glioma» (по данным PubMed)

Из представленного графика мы видим, что актуальность данной темы растет с каждым годом, причем количество публикаций, связанных с глиомой, растет пропорционально количеству статьей по раку в принципе.

Согласно последней версии классификации опухолей мозга 2021 года, разработанной Всемирной организацией здравоохранения (WHO), глиомы являются одним опухолями головного мозга. Глиомы происходят из глиальных

клеток, которые поддерживают и защищают нервные клетки в головном и спинном мозге.

По имеющимся данным, частота заболеваемости глиомами составляет около 6:100 000 человек во всем мире ежегодно, заболеваемость, в особенности глиобластомой, значительно ниже в неевропеоидных популяциях. Высокая смертность обусловлена отсутствием эффективных методов лечения и диагностических тестов [1]. Таким образом, несмотря на имеющийся массив данных по глиоме, остается множество неизученных вопросов касательно точного списка генов, участвующих в генезе заболевания, лечения и многого другого.

Далее мы рассмотрим молекулярные механизмы данного заболевания и с помощью инструментов биоинформатики построим сеть генных взаимодействий и структуру основных для данного заболевания белков.

ОБЗОР ЛИТЕРАТУРЫ

Рассмотрим имеющуюся о данном заболевании информацию.

Классификация глиом

Согласно пятой редакции классификации ВОЗ опухолей ЦНС 2021 года выделяют 4 основных типа диффузных глиом [2, 3]:

- 1 Диффузные глиомы, взрослый тип;
- 2 Диффузные глиомы низкой степени злокачественности, детский тип;
- 3 Диффузные глиомы высокой степени злокачественности, детский тип;
- 4 Ограниченные астроцитарные глиомы.

Классификация глиом по степеням злокачественности (grade) в настоящее время производится на основании молекулярных и генетических характеристик опухолей.

Глиомы подразделяются на 4 степени на основании следующих молекулярных и генетических характеристик:

Глиома I степени злокачественности: опухоль с низкой злокачественностью, медленным ростом, является хорошо дифференцированной и имеет низкий показатель пролиферации клеток.

Глиома II степени злокачественности: опухоль с низкой злокачественностью, медленным ростом, имеет низкий показатель пролиферации клеток, но уже не имеет такой хорошей дифференциации как глиома I степени злокачественности.

Глиома III степени злокачественности: опухоль с высокой злокачественностью, быстрее растет и имеет более высокий показатель пролиферации клеток, имеет аномалии в гене TP53 и мутации в генах IDH и ATRX.

Глиома IV степени злокачественности: самая злокачественная опухоль, очень быстро растет и имеет высокий показатель пролиферации клеток, а также сильно измененный геном и мутации в генах IDH, TP53 и ATRX [2].

Развитие неврологических симптомов и признаков позволяет оценить динамику роста глиомы: опухоли, манифестирующие всего за несколько недель до постановки диагноза, характеризуются быстрым ростом, в то время как опухоли,

вызывающие первые симптомы за много лет до постановки диагноза, обычно растут медленно. У большинства людей симптомы и признаки, отмечаемые за год до постановки диагноза, являются неспецифическими (например, усталость или головная боль) [4][5].

Клиническая диагностика

Диагностика глиом обычно включает несколько этапов, общий алгоритм диагностики можно представить следующим образом [1,6]:

- 1. Жалобы и анамнез: у пациентов с опухолями ЦНС осуществляется сбор жалоб и анамнеза, оценка неврологического и соматического статуса, а также функционального статуса по шкале Карновского.
- 2. Физикальное обследование: пациентам рекомендованы тщательный физикальный осмотр, включающий оценку неврологического статуса и интеллектуально-мнестических нарушений. Это может помочь выявить первые симптомы глиом. Глиомы низкой степени злокачественности, медленно растущие опухоли, сопровождаются припадками или более незаметными неврологическими проявлениями. Опухоли высоких степеней, быстро растущие опухоли часто сопровождаются более острыми неврологическими симптомами.
- 3. Лабораторные диагностические исследования: пациентам рекомендуется выполнить биохимический и общетерапевтический анализ крови, анализ свертывающей системы крови, опухолевые маркеры (исследование уровня альфа-фетопротеина (АФП), ХГЧ в сыворотке крови, определение активности ЛДГ). Пациентам с диффузными глиомами для уточнения диагноза дополнительно рекомендовано исследование мутаций в генах IDH1 и IDH2, определение метилирования гена MGMT, а также мутации делеции 1р/19q в биопсийном материале.
- 4. Инструментальные диагностические исследования: рекомендовано проведение МРТ головного и/или спинного мозга без и с контрастированием, функциональной МРТ (фМРТ двигательных зон, речевых зон) и магнитно-резонансных исследований (МР) МР-трактографии, МР-ангиографии, протонной

MP-спектроскопии, MP-перфузии головного мозга, электроэнцефалографии с целью оценки электрофизиологического состояния коры головного мозга и т.д.

5. Дополнительные диагностические исследования: консультации с врачами – эндокринологом, офтальмологом, нейрохирургом, радиотерапевтом.

Подход к диагностике может отличаться в зависимости от особенностей здоровья пациента и практики лечения, которую использует в лечении конкретный медицинский центр. Важно понимать, что глиомы могут иметь различные характеристики, которые влияют на выбор метода диагностики и лечения [7, 8]. Хотя нейровизуализация играет ключевую роль в диагностике глионейрональных опухолей, она все еще не позволяет ответить на такие вопросы, как тип и степень опухоли, псевдо- и истинное прогрессирование, а так же определение метода лечения - хирургическое вмешательство или лучевая терапия. Передовые методы визуализации обещают ответить на эти вопросы, но в настоящее время они слишком сложны и зависят от трактовки лечащих врачей [9].

За последнее столетие появилось множество новых технологий и методов молекулярной диагностики, которые оказали влияние на классификацию опухолей. К ним относятся: световая микроскопия, гистохимическое окрашивание, электронная микроскопия, иммуногистохимия, молекулярная генетика, а в последнее время различные подходы К широкому молекулярному профилированию. Также проявили себя методики, основанные на нуклеиновых кислотах (секвенирование ДНК и РНК, флуоресцентная гибридизация ДНК in situ, профилирование экспрессии РНК), сыгравшие роль в обновлении еще четвертого издания (2016) и в WHO CNS5 [10].

Диагностика глиом может столкнуться с трудностями, обусловленными многими факторами:

1. Недостаток специфичности и чувствительности лабораторных тестов: некоторые маркеры, связанные с глиомами, не являются специфичными для данного типа опухолей, что может привести к ложноотрицательным или ложноположительным результатам.

- 2. Возможность ошибочной интерпретации результатов тестов: анализ ткани может быть затруднен из-за наличия множества подтипов глиом и различных факторов, влияющих на оценку степени злокачественности опухоли.
- 3. Недостаточность современных методов диагностики: на данный момент нет методов диагностики, которые могут дать 100% гарантию правильного определения типа и степени злокачественности глиом.
- 4. Сложность локализации опухоли: некоторые глиомы могут находиться в труднодоступных местах головного мозга, что затрудняет их обнаружение и локализацию [7, 11].

Прогресс в изучении молекулярных характеристик опухолей ЦНС обеспечивает более точную диагностику и прогноз, снижает риск ошибки выборки и облегчает принятие клинических решений. Внедрение данного подхода в клинических испытаниях может позволить разработать более индивидуальные стратегии хирургического и нехирургического лечения в нейроонкологии [12].

Роль мутаций в патогенезе глиом

В патогенезе глиом участвует множество генетических мутаций, которые могут варьировать в зависимости от типа и степени злокачественности опухоли.

Одним из наиболее изученных генетических изменений, связанных с глиомами, является мутация гена IDH1. Она наблюдается у приблизительно 70% инфильтрирующих глиом и может прогнозировать более благоприятный исход для пациентов. Также было показано, что мутации в генах IDH1 и IDH2 могут влиять на ответ опухоли на химиотерапию [13]. IDH-мутировавшие глиомы располагаются преимущественно в лобной, височной доле или мозжечке, редко в промежуточном мозге или стволе головного мозга [14]. На МРТ такие глиомы, как правило, ограничиваются одной долей с большими участками поражений и более четкими границами, чем IDH-глиомы дикого типа [15].

Другим важным генетическим изменением является делеция на хромосоме 1р/19q, которая обнаруживается у приблизительно половины опухолей типа "олигодендроглиома" и является взаимоисключающей для астроцитом (ТР53). Это

изменение связано с более благоприятным прогнозом и может использоваться для выбора подхода к лечению [1, 16].

Кроме того, в генезе глиом могут участвовать мутации в генах, связанных с сигнальными путями роста и пролиферации клеток, таких как гены EGFR, PTEN, TP53, PIK3CA и другие [2]. В очень небольшом количестве случаев в клетках с мутациями в генах IDH1 или IDH2 выявлены также изменения в генах PTEN, EGFR, CDKN2A и CDKN2B. Вместе с этим в образцах с немутантными IDH1 и IDH2 встречаемость мутаций гена TP53 была существенно ниже (18%), в то время как мутации генов PTEN, EGFR, CDKN2A и CDKN2B присутствовали намного чаще (74%) [17].

Помимо известных и долгое время изучаемых генов, формируются новые группы молекулярных маркеров (KDM1A, HIF1A, EGFR, SMO, MSI2), связанных с канцерогенезом и возможных для использования в таргетной терапии глиальных опухолей [18].

Хотя большинство глиом возникает спорадически без сопутствующего семейного заболевания, существует тесная связь между глиомами и несколькими редкими наследственными синдромами; на эти заболевания приходится менее 5% всех глиом. К таким редким синдромам относятся, прежде всего, синдромы факоматоза (нейрофиброматоз 1, тубулярный склероз), синдром Ли-Фраумени (LFS), энхондроматоз, синдром семейной атипичной множественной родинки (FAMMM), синдром Рубинштейна-Тайби [19].

Несмотря на множество исследований, было установлено очень мало негенетических факторов риска развития диффузных глиом у взрослых. Некоторые из них свидетельствуют также о роли окружающей среды, факторов образа жизни и иммунной системы в патогенезе глиом [20]. Однако, по результатам многочисленных исследований, единственно признанным негенетическим фактором риска развития глиом считается лишь влияние ионизирующего излучения [21, 22, 23]. Воздействие ионизирующего излучения, особенно в детском возрасте, остается самым сильным экологическим фактором риска развития

данного заболевания. Излучение является известным канцерогеном, который повреждает ДНК, что может привести к онкогенезу. Это может произойти уже через 7-9 лет после облучения и зависит от дозы. Утверждение справедливо как для облучения низкими дозами, например, для людей, переживших последствия взрыва атомной бомбы, так и для более высокой терапевтической дозы, используемой для лечения детских инфекций и других онкологических заболеваний. Например, было показано, что терапевтическое облучение увеличивает риск развития глиомы в диапазоне от 3 до 7 раз [22]. Но все же не стоит забывать, что на долю облучения приходится небольшое число случаев развития глиом [20].

Таким образом, специфическая этиология большинства диффузных глиом по-прежнему остается неизвестной. Однако, изучение генетических мутаций, связанных с глиомой, может помочь в более глубоком понимании биологических механизмов, лежащих в основе этого заболевания, и, возможно, привести к разработке новых подходов к лечению глиомы.

Одним из ключевых генов, участвующих в трансформации нормальной клетки в опухолевую, является ген-супрессор TP53. Он является важным клиническим маркером глиом и, как известно, играет сложную роль в клетках глиомы. Функциональная роль заключается в поддержании стабильности генома и генетической однородности клеток во всем организме. По мере роста и деления клеток постоянно возникают и накапливаются нарушения структуры ДНК. Это происходит как в результате естественного мутагенеза, так и в результате ошибок в процессе репликации ДНК.

Эволюционно выработалась система устранения данных ошибок, включающая в себя цепь репарационных белков, которые работают лишь в определенных фазах клеточного цикла [24]. Один из них – белок р53, продукт гена ТР53. Данный протеин синтезируется во всех клетках организма и активируется при повреждении ДНК. Экспрессия ТР53 в свою очередь вызывает задержку клеточного цикла для устранения повреждений и репарации ДНК или для

индукции апоптоза. В норме данный механизм поддерживает целостность генома и препятствует приобретению опухолевого фенотипа [25].

Однако, при отсутствии гена ТР53 либо наличии его дефекта, клетка не пересекает G1/S-контрольную точку фазы митоза, в результате чего клетка не вступает в S фазу. Накапливаются популяции клетки с множественными нарушениями структуры ДНК, растет нестабильность генома, появляются все новые клоны поврежденных клеток. В дальнейшем опухолевые клетки участвуют в своеобразном естественном отборе — они становятся все менее чувствительными к действию цитостатиков, с каждым поколением все сильнее нарушается контактное взаимодействие клеток, возникает метастазирование [26].

Мутантный ТР53 обнаруживается уже на ранних стадиях заболевания. Установлено, что его мутации связаны с агрессивным течением онкологического заболевания и устойчивостью опухолевых клеток к химио- и лучевой терапии. Многие авторы отмечают, что высокий уровень экспрессии белка р53 связан с низкой общей выживаемостью пациентов [25]. Кроме того, мутировавший ТР53 усиливает регуляцию МҮС, EGFR, PNCA и снижает регуляцию р21, CD95Fas, PTEN [27].

Важную роль в патогенезе глиомы также играет рецептор эпидермального фактора роста (EGFR).

EGFR (Epidermal Growth Factor Receptor) представляет собой трансмембранный гликопротеин, который семейству принадлежит К тирозинкиназных рецепторов (RTKs) и играет важную роль в процессах роста и развития клеток. Он был открыт в 1960 году как рецептор, способный связываться с эпидермальным фактором роста (EGF), регулирующий рост и деление эпителиальных клеток [28][29].

Семейство тирозинкиназных рецепторов EGFR включает в себя четыре рецептора: ErbB1 (EGFR, HER1), ErbB2 (EGFR2, HER2), ErbB3 (HER3), ErbB4 (HER4). Каждый из них состоит из внеклеточного лигандсвязывающего домена, гидрофобного домена, располагающегося в мембране, и тирозинкиназного

цитоплазматического домена.[30]. EGFR связывается со своим лигандом EGF, фосфорилирует ряд внутриклеточных субстратов и в дальнейшем активирует нижележащие каскады сигнальных систем, таких как Ras/Raf, MAPK и PI3K/AKT, которые могут стимулироваться для управления пролиферацией и выживанием клеток [31]. Таким образом, данные пути подвержены дисрегуляции при различных патологиях.

В опухолевых клетках довольно часто обнаруживается гиперэкспрессия EGFR, что приводит к более агрессивному течению заболевания вследствие быстрого роста опухоли и увеличению её метастатического потенциала. Доказано, что сверхэкспрессия EGFR часто ассоциируется с плохим прогнозом, например, при раке молочной железы [32].

Помимо сверхэкспрессии и амплификации, в гене EGFR могут возникать точечные мутации и структурные перестройки, которые приводят к изменению функциональных характеристик его продукта. Стоит также отметить, что большая часть мутаций EGFR в глиомах, в том числе EGFR vIII, затрагивает внеклеточную часть рецептора, в то время как в неглиомных опухолях мутации, как правило, связаны с внутриклеточным доменом [17]. Кроме того, известно, что мутации гена EGFR чаще встречаются у женщин, нежели у мужчин [33].

Помимо вышеперечисленного, была В последние ГОДЫ также идентифицирована группа микроРНК, участвующих в инициации глиомы путем нацеливания на ген RAS. Ген RAS, который состоит из KRAS, NRAS и HRAS, является одним из наиболее часто активируемых онкогенов при раке человека. KRAS является преобладающим мутантным геном RAS при раке (84% всех миссенс-мутаций RAS), за ним следует NRAS (12%), HRAS мутирует редко (4%). Ras обладает активностью фермента GTP, который может гидролизовать GTP до GTP-протеина [34]. Ген KRAS (гомолог вирусного онкогена саркомы крысы Кирстен 2) представляет собой протоонкоген, который кодирует небольшой белоктрансдуктор GTPase под названием KRas. Уже доказано, что полиморфизм гена KRAS связан с риском развития и прогрессированием глиомы. KRAS влияет на

воспалительный компонент рака, активируя сигнальные пути MAPK и PI3K, что приводит к высвобождению дополнительных цитокинов IL-6/IL-8 и пролиферации раковых клеток [35,36].

Многообещающей мишенью для таргетной терапии глиом представляется РІКЗСА. Каталитическая субъединица альфа фосфатидилинозитол-4,5-бисфосфат-3-киназы (РІКЗСА) была указана как один из наиболее часто мутирующих генов в солидных опухолях [37]. Этот ген кодирует каталитическую субъединицу р110а липидкиназ класса ІА РІЗК, 2 ферментов, которые участвуют в сигнальном пути РІЗК/Акt, регулирующем пролиферацию клеток, ангиогенез, рост, подвижность и выживание [38].

Сегодня проводится множество исследований, касающихся роли РІКЗСА в этиопатогенезе глиомы. В настоящее время известно, что аномальная активация пути РІЗК-Акt запускается главным образом 3 молекулярными событиями: потерей функции или инактивацией PTEN и сверхактивацией EGFR или PIK3CA [39]. Также было выяснено, что мутации в спиральных и киназных доменах РІЗК поразному проявляются у женщин и мужчин [37].

Подходы к терапии

Диффузные глиомы относятся к числу наиболее трудно поддающихся заболеваний. лечению видов онкологических Согласно клиническим рекомендациям и исследованиям для пациентов с глиомами стандарт лечения включает в себя хирургическую резекцию опухоли с последующей лучевой и/или химиотерапией а также использование немногочисленных таргетных методов лечения, если таковые имеются [40]. Значимой проблемой для эффективного является гематоэнцефалический барьер, который препятствует лечения проникновению в головной мозг лекарственных средств с молекулярной массой ниже 400-600 кДа, сводя к минимуму клиническое применение большинства противоопухолевых препаратов для лечения опухолей головного мозга [41].

Существует множество алгоритмов и схем лечения глиом, используются различные препараты в зависимости от морфологического типа, степени

злокачественности опухоли, ее статуса как впервые выявленной или рецидивирующей и т.д. В настоящее время для лечения глиом используются такие препараты как: траметиниб, дабрафениб, лактитол, темозоломид, кармустин, цисплатин и многие другие [42–44]. Также существуют препараты, проходящие клинические испытания в данный момент — это, например, Мехлорэтамин, Мелфалан, Цитрат натрия, Пеметрексед [44].

Широко известен такой таргетный препарат как Эрлотиниб. Он представляет собой ингибитор тирозинкиназы рецепторов эпидермального фактора роста HER1/EGFR, тормозит рост линий опухолевых клеток и/или приводит к их гибели [45]. Также используется Риндопепимут - антитела против мутантной формы рецептора EGFRvIII [46].

Перспективным также является применение онколитических вирусов [47]. К преимуществам их можно отнести высокую терапевтическую эффективность, высокую специфичность к клеткам опухоли, что незначительность побочных эффектов. Также данная группа препаратов способствует активации собственную иммуной системы организма как против первичной опухоли, так и против метастазов. Среди конкретных препаратов можно выделить ParvOryx, созданный на основе парвовируса Н1 [48]. По результатам доклинических испытаний этого препарата до 80% животных с глиомой С6 после лечения полностью выздоравливали. Еще один препарат этого же направления - вирус осповакцины (VACV) [49]. Существует множество штаммов, которые в большей или меньшей степени оказывают онколитический эффект. Самым вирулентным и, как следствие, эффективным для терапии оказывается штамм Western Reserve [50].

Несмотря все на плюсы и преимущества онколитических вирусов, стоит помнить, что использование их в терапевтических целях, в особенности у иммуносупрессированных лиц, может привести к развитию осложнений, связанных с вирусной инфекцией.

МАТЕРИАЛЫ И МЕТОДЫ

Работа была выполнена с помощью персонального компьютера и биоинформатических онлайн-ресурсов, находящихся в открытом доступе. Рассмотрим существующие базы данных и онлайн-ресурсы.

База данных ОМІМ

Для получение списка генов, связанных с наследственной предрасположенностью к заболеванию глиомами использовался интернет-ресурс OMIM (Online Mendelian Inheritance in Man, https://omim.org/) предназначенный для анализа генов менделевского наследования у человека. Полнотекстовые обзоры с ссылками в OMIM содержат информацию обо всех известных менделевских расстройствах и более чем 16 000 генах.

База данных GeneCards

С помощью базы данных GeneCards (https://www.genecards.org/) проведен детальный анализ генов, играющих ключевую роль в развитии заболевания. Всего на ресурсе представлена информация о 328966 генах, из которых 18813 гены заболеваний.

Методы

PANTHER - Protein ANalysis THrough Evolutionary Relationships

Анализ генных онтологий для списка генов был выполнен с помощью ресурса PANTHER (http://pantherdb.org/). Инструмент выполняет анализ белков на основании эволюционных взаимосвязей.

DAVID - The Database for Annotation, Visualization and Integrated Discovery

Для анализа категорий генных онтологий использовался ресурс DAVID (https://david.ncifcrf.gov/summary.jsp).

g:GOSt

Для визуализации генных онтологий был использован онлайн-инструмент g:GOSt (http://biit.cs.ut.ee/gprofiler/gost), позволяющий построить график точечных значений категорий генных онтологий.

STRING-DB

Для реконструкции генной сети взаимодействий генов мультиформной глиобластомы использовался ресурс STRING-DB (https://string-db.org/). Инструмент выполняет анализ функционального взаимодействия сетей белокбелковых взаимосвязей. Взаимодействия включают прямые (физические) и косвенные (функциональные) ассоциации.

MalaCards

Для поиска ассоциированных заболеваний использовался открытый онлайнресурс MalaCards (https://www.malacards.org/). База данных о болезнях и расстройствах MalaCards организована в виде "карточек болезней".

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Получение списка генов, связанных с наследственной предрасположенностью к глиоме

Запрос "glioma" в базе данных ОМІМ дал 176 результатов-наименований генов. Полный список генов с расшифровкой приложен в виде таблицы в приложении А к данной работе.

Для анализа генов предрасположенности к развитию заболеваний используют онлайн инструменты биоинформатики и базы данных медицинской генетики.

Для анализа были выбраны 3 основные группы генных онтологий (Gene Ontology)

GO biological process - биологические процессы;

GO molecular function - молекулярные функции;

GO cellular component - клеточные компартменты.

Список 176 генов был загружен через интерфейс онлайн-ресурса PANTHER (http://pantherdb.org/) для поиска значимых категорий генных онтологий для этой группы генов. В качестве референсного генома выбран геном Homo sapiens. Гены микроРНК не были распознаны программой. Программа производила расчет по 144 идентификаторам. Всего в референсном геноме использовалось 20589 генов. Применена коррекция Бонферрони и сортировка по уменьшению значимости.

Было выполнено три аналогичных анализа для разных групп генных онтологий с ограничением значения с p-value до E-10 для биологических процессов, E-02 для молекулярных функций и E-03 для клеточных компартментов для представления наиболее информативных результатов. Построены таблицы категорий генных онтологий (табл. 1- 4).

Табл. 1. Список категорий генных (GO biological process) онтологий по PANTHER для глиомы

№	Категория генных онтологий	Число генов	p-value (значимость)
1	negative regulation of biological process	89	3.80E-14
2	regulation of programmed cell death	46	2.29E-13
3	negative regulation of cellular process	82	3.24E-13
4	regulation of cell death	48	3.36E-13
5	regulation of apoptotic process	45	4.31E-13
6	negative regulation of metabolic process	63	1.60E-12
7	regulation of cell population proliferation	47	2.13E-12
8	positive regulation of cellular process	87	5.20E-12
9	negative regulation of macromolecule metabolic process	59	1.31E-11
10	regulation of protein metabolic process	55	5.82E-11
11	positive regulation of biological process	91	8.47E-11
12	system development	66	1.28E-10
13	positive regulation of nitrogen compound metabolic process	61	2.80E-10
14	regulation of phosphate metabolic process	39	3.21E-10
15	positive regulation of macromolecule metabolic process	65	3.28E-10
16	regulation of phosphorus metabolic process	39	3.29E-10
17	regulation of protein modification process	41	3.76E-10
18	positive regulation of cellular metabolic process	59	4.33E-10
19	regulation of protein phosphorylation	35	6.22E-10
20	regulation of nitrogen compound metabolic process	84	6.91E-10

21	nervous system development	50	9.05E-10
----	----------------------------	----	----------

Из таблицы 1 видно, что самыми значимыми категориями в этой группе являются: негативная регуляция биологического процесса, регуляция программируемой клеточной гибели, негативная регуляция клеточных процессов, регуляция клеточной гибели. Эти категории относятся к общему клеточному развитию, что связано с нормальным функционированием клеток и тканей.

Табл. 2. Список категорий генных (GO molecular function) онтологий по PANTHER для глиомы

№	Категория генных онтологий	Число генов	p-value (значимость)
1	identical protein binding	39	1.83E-04
2	protein dimerization activity	25	6.57E-04
3	protein homodimerization activity	18	1.66E-02
4	signaling receptor binding	27	3.33E-02

Из таблицы 2 видно, что самыми значимыми категориями в этой группе являются: связывание идентичных белков, активность димеризации белков, активность гомодимеризации белков, связывание сигнальных рецепторов. Эти категории можно отнести к работе путей передачи межклеточных сигналов, что связано с работой нервной системы.

Табл. 3. Список категорий генных (GO cellular component) онтологий по PANTHER для глиомы

№	Категория генных онтологий	Число генов	p-value (значимость)
1	intracellular membrane-bounded organelle	121	6.11E-06
2	organelle	129	2.61E-04
3	intracellular organelle	124	3.85E-04
4	membrane-bounded organelle	123	9.91E-04
5	intracellular anatomical structure	132	1.66E-03
6	cytoplasm	114	7.24E-03

Из таблицы 3 видно, что самыми значимыми категориями являются: внутриклеточная мембранно-ограниченная органелла, органелла, внутриклеточная органелла, мембранно-ограниченная органелла, внутриклеточная анатомическая структура, цитоплазма. Эти категории связаны с анатомическими структурами.

Такой же список генов был загружен через интерфейс DAVID Bioinformatics Resources (https://david.ncifcrf.gov) для поиска значимых категорий генных онтологий. Было идентифицировано 157 генов. Результаты представлены в обобщенной табл. 4. Таблица была отсортирована по уменьшению значимости, часть строк была удалена вручную.

Табл. 4. Список категорий генных онтологий по DAVID для глиомы

Группа онтологий	Категория онтологий	Число генов	p-value (значимость)	Норм. р по Бенджам ини
GO:BP	negative regulation of neuron apoptotic process	13	1,50E-09	2,60E-06
GO:BP	negative regulation of apoptotic process	19	7,10E-08	6,00E-05
GO:BP	cellular response to hypoxia	10	6,30E-07	3,60E-04

GO:BP	regulation of cell cycle	12	5,50E-06	2,40E-03
GO:BP	positive regulation of transcription, DNA-templated	19	7,80E-06	2,70E-03
GO:BP	ovarian follicle development	6	1,30E-05	3,80E-03
GO:BP	neuron apoptotic process	7	2,10E-05	5,10E-03
GO:MF	identical protein binding	30	2,40E-05	6,10E-03
GO:BP	cell aging	5	3,40E-05	7,20E-03
GO:MF	protein homodimerization activity	18	3,70E-05	6,10E-03
GO:BP	negative regulation of cell proliferation	14	4,00E-05	7,40E-03
GO:CC	GO:CC extracellular region		7,00E-05	1,90E-02
GO:CC	GO:CC chromosome, telomeric region		2,40E-04	2,00E-02
GO:CC	membrane	45	2,90E-04	2,00E-02
GO:MF	protein heterodimerization activity	11	5,50E-04	6,10E-02

Из таблицы 4 видно, что самыми значимыми являются следующие категории: негативная регуляция апоптоза нейронов, негативная регуляция апоптотических процессов, клеточный ответ на гипоксию — для биологических процессов; идентичное связывание белка, активность гомодимеризации белка — для молекулярных функций; хромосома, теломерные участки, мембрана, внеклеточная область — для клеточных компартментов. Сравнив результаты, полученные в программах PantherDB и DAVID, можно сделать вывод о том, что рассчитанные категории соответствуют ожидаемым и отражают процессы, происходящие в нервной системе.

Такой же список генов был загружен через интерфейс g:GOSt (http://biit.cs.ut.ee/gprofiler/gost) для поиска значимых категорий генных онтологий и получения графика точечных значений категорий генных онтологий генов глиомы (рис. 2). В качестве референсного генома выбран геном Homo sapiens.

Рис. 2. Распределение категорий генных онтологий (иллюстрация взята с pecypca http://biit.cs.ut.ee/gprofiler/gost).

ID	Source	Term ID	Term Name	p _{adj} (query_1)
1	GO:MF	GO:0042802	identical protein binding	8.152×10 ⁻⁶
2	GO:MF	GO:0046983	protein dimerization activity	1.853×10 ⁻⁴
3	GO:MF	GO:0042803	protein homodimerization activity	8.355×10 ⁻⁴
4	GO:MF	GO:0005515	protein binding	1.781×10 ⁻³
5	GO:BP	GO:0048519	negative regulation of biological process	8.028×10 ⁻¹⁶
6	GO:BP	GO:0043067	regulation of programmed cell death	1.386×10 ⁻¹⁴
7	GO:BP	GO:0010941	regulation of cell death	1.697×10 ⁻¹⁴
8	GO:BP	GO:0008283	cell population proliferation	3.315×10 ⁻¹⁴
9	GO:BP	GO:0042127	regulation of cell population proliferation	3.747×10 ⁻¹⁴
10	GO:BP	GO:0042981	regulation of apoptotic process	3.862×10 ⁻¹⁴
11	GO:BP	GO:0012501	programmed cell death	9.137×10 ⁻¹⁴
12	GO:BP	GO:0009892	negative regulation of metabolic process	1.335×10 ⁻¹³
13	GO:BP	GO:0006915	apoptotic process	1.552×10 ⁻¹³
14	GO:BP	GO:0048523	negative regulation of cellular process	4.870×10 ⁻¹³
15	GO:BP	GO:0008219	cell death	4.896×10 ⁻¹³
16	GO:CC	GO:0005958	DNA-dependent protein kinase-DNA ligase 4 com	3.454×10 ⁻⁴
17	GO:CC	GO:0005737	cytoplasm	1.698×10 ⁻³
18	GO:CC	GO:0012505	endomembrane system	6.498×10 ⁻³
19	GO:CC	GO:0030054	cell junction	

Рис. 3. Распределение категорий генных онтологий (иллюстрация взята с pecypca http://biit.cs.ut.ee/gprofiler/gost).

По полученным данным видно, что самыми значимыми категориями генных онтологий категории, соответствующие являются точкам 1 (связывание белков), 5 идентичных белков), (связывание (негативная регуляция биологического процесса), 6 (регуляция запрограммированной клеточной смерти), 7 (регуляция клеточной смерти), 8 (пролиферация популяции клеток), 17 (цитоплазма).

На основе проведенного анализа, можно отметить связь онкогенеза глиомы с нарушением регуляции клеточного цикла, пролиферации клеток в том числе в тканях мозга, а также нарушением связывания белков.

Реконструкция генных сетей

Генная сеть глиомы была реконструирована с помощью ресурса STRING-DB (https://string-db.org) и собственно разработанной программы по визуализации генных сетей, представленной в приложении Б к данному диплому. Гены микроРНК не были распознаны программой STRING. Граф включал 150 генов. Сеть была перестроена с удалением не связанных генов и заменой нескольких линий связей между узлами сети одной линией с учётом только доказанных взаимодействий со средним уровнем достоверности (рис. 4).

Рис. 4. Генная сеть глиомы (иллюстрация построена с помощью ресурса https://string-db.org).

Статистика сети показывает:

- количество узлов -150;
- количество ребер 590;
- средняя степень связности узла -7.87;
- средний локальный коэффициент кластеризации -0.478;
- ожидаемое количество ребер 237;
- значимость плотности белок-белковых взаимодействий <1,0-Е16.

В самом центре сети можно увидеть белки EGFR и TP53, которые являются известными онкогенами, а также STAT3, KRAS, PIK3CA, IDH1, KDR.

Несмотря на то, что часть объектов сети не контактировали с другими, сеть достаточно связанная, в ней выделяется центральный сильно связанный кластер генов. Это означает, что гены, по крайней мере, частично биологически связаны как группа взаимодействующих макромолекул.

Для более детального анализа сеть была перестроена итеративно с учетом только экспериментально доказанных взаимодействий со среднем уровнем достоверности (рис. 5).

Рис. 5. Итеративно перестроенная генная сеть генов глиомы (иллюстрация построена с помощью ресурса https://string-db.org).

Обновленная статистика сети показывает:

- количество узлов -150;
- количество ребер 59;
- средняя степень связности узла -0.787;
- средний локальный коэффициент кластеризации -0.236;
- ожидаемое количество ребер -22;
- значимость плотности белок-белковых взаимодействий -<6.08е-11.

В сети четко выделяются несколько кластеров. Наибольшее число связей у

генов EGFR, TP53, KRAS, из которых EGFR и TP53 ранее подробно изученные онкогены.

Самый большой кластер включает 7 генов: BCL2, BRCA2, BRE, CHEK2, L3MBTL1, PTEN, TP53. Следующие по количеству вовлеченных узлов кластеры включают гены DNAJA3, DOCK4, EGFR, NF2, PIK3CA, PTPN11 и BRAF, KRAS, LZTR1, NF1 соответственно (рис. 6).

Рис. 6. Наиболее крупные кластеры генной сети глиомы (иллюстрация построена с использованием https://string-db.org).

С помощью ресурса MalaCards были определены заболевания, генноассоциированные с глиомой. Из них 10 наиболее сильно связанных заболеваний представлены на рис. 7 и в табл. 5.

Таблица 5. Заболевания, связанные с глиомой

№	Связанное заболевание	Счет	Гены
1	glioma susceptibility 1	33.7	MIR21 CYTOR CASC2
2	high grade glioma	33.3	PVT1 MIR221 MIR21 MIR17 MEG3 HULC
3	glioblastoma	32.4	MIR34A MIR296 MIR222 MIR221 MIR21 MIR181A2
4	brain cancer	32.3	NTRK3 MIR34A MIR296 MIR222 MIR221 MIR21
5	malignant astrocytoma	32.1	MIR34A MIR296 MIR222 MIR221 MIR21 MIR17
6	neuroblastoma	31.8	NTRK3 MIR34A MIR221 MIR21 MIR184 MIR17
7	central nervous system cancer	31.6	MIR34A MIR296 MIR222 MIR221 MIR21 MIR17
8	meningioma, familial	31.5	MIR34A MIR15B MEG3 H19
9	medulloblastoma	31.3	PVT1 NTRK3 MIR34A MIR221 MIR17 H19
10	osteogenic sarcoma	31.2	PVT1 MEG3 HULC HOXA11-AS H19 GAS5

Copyright © Weizmann Institute of Science - www.malacards.org

Рис. 7. Заболевания, связанные с глиомой (MalaCards).

Из рисунка и таблицы видно, что ассоциированными с глиомой заболеваниями являются: ГЛМ-1, глиома высокой степени злокачественности, глиобластома.

ВЫВОДЫ

- 1. Была изучена актуальная научная литература по заболеванию глиома. Несмотря на то, что глиома занимает небольшую долю от общего числа злокачественных новообразований ЦНС, на сегодняшний день она остается одним из самых агрессивных и тяжелых онкологических заболеваний, которое не поддается эффективному лечению и длительному уходу в ремиссию.
- 2. Получен список генов, ассоциированных с глиомой, с использованием баз данных и онлайн-инструментов биоинформатики.
 - 3. Определены значимые категории генных онтологий.
- 4. Реконструирована генная сеть для заболевания глиома. Выявлены гены PIK3CA, KRAS, которые потенциально могут быть использованы как мишени для таргетной терапии а также как молекулярно-генетические маркеры заболевания.

СПИСОК ЛИТЕРАТУРЫ

- 1. Byun Y.H., Park C.-K. Classification and Diagnosis of Adult Glioma: A Scoping Review // Brain & Neurorehabilitation. Korean Society for Neurorehabilitation, 2022. T. 15, № 3.
- 2. WHO Classification of Tumours Editorial Board. Central Nervous System Tumours / под ред. IARC. IARC, 2021. Т. 1.
- 3. Osborn A.G. и др. The 2021 World Health Organization Classification of Tumors of the Central Nervous System: What Neuroradiologists Need to Know // Am. J. Neuroradiol. American Journal of Neuroradiology, 2022. T. 43, № 7. C. 928–937.
- 4. Peeters M.C.M. и др. Prediagnostic symptoms and signs of adult glioma: the patients' view // J. Neurooncol. Springer, 2020. Т. 146, № 2. С. 293–301.
- 5. Posti J.P. и др. Presenting symptoms of glioma in adults // Acta Neurol. Scand. Acta Neurol Scand, 2015. Т. 131, № 2. С. 88–93.
- 6. "Клинические рекомендации «Первичные опухоли центральной нервной системы» (утв. Минздравом России) \ КонсультантПлюс [Электронный ресурс]. URL: https://www.consultant.ru/document/cons_doc_LAW_325072/ (дата обращения: 14.05.2023).
- 7. Weller M. и др. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood // Nat. Rev. Clin. Oncol. Nature Publishing Group, 2021. T. 18, № 3. C. 170.
- 8. Jiang T. и др. Clinical practice guidelines for the management of adult diffuse gliomas // Cancer Lett. Elsevier, 2021. T. 499. C. 60–72.
- 9. Smits M. Update on neuroimaging in brain tumours // Curr. Opin. Neurol. Lippincott Williams and Wilkins, 2021. T. 34, № 4. C. 497–504.
- 10. Louis D.N. и др. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary // Neuro. Oncol. Neuro Oncol, 2021. Т. 23, № 8. С. 1231–1251.
- 11. Ellison D.W. и др. cIMPACT-NOW update 7: advancing the molecular classification of ependymal tumors // Brain Pathol. Blackwell Publishing Ltd, 2020. T.

- 30, № 5. C. 863–866.
- 12. Torp S.H., Solheim O., Skjulsvik A.J. The WHO 2021 Classification of Central Nervous System tumours: a practical update on what neurosurgeons need to know—a minireview // Acta Neurochir. (Wien). Springer, 2022. T. 164, № 9. C. 2453.
- 13. Chang S., Yim S., Park H. The cancer driver genes IDH1/2, JARID1C/KDM5C, and UTX/KDM6A: crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism // Exp. Mol. Med. Korean Society for Biochemistry and Molecular Biology, 2019. T. 51, № 6.
- 14. Qi S. и др. Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms // Oncol. Lett. Oncol Lett, 2014. T. 7, № 6. C. 1895–1902.
- 15. Carrillo J.A. и др. Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma // AJNR. Am. J. Neuroradiol. AJNR Am J Neuroradiol, 2012. T. 33, № 7. C. 1349–1355.
- 16. Gritsch S., Batchelor T.T., Gonzalez Castro L.N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system // Cancer. John Wiley & Sons, Ltd, 2022. T. 128, № 1. C. 47–58.
- 17. Konovalov N.A. и др. Молекулярные биомаркеры астроцитом головного и спинного мозга // Acta Naturae (русскоязычная версия). Общество с ограниченной ответственностью Парк-медиа, 2019. Т. 11, № 2 (41). С. 17–27.
- 18. А.А. П., Н.Н. Т., Э.Е. Р. Экспрессионный статус 15-ти генов в глиальных опухолях головного мозга // Res. Pract. Med. J. Общество с ограниченной ответственностью «КВАЗАР», 2019. Т. 6, № Спецвыпуск.
- 19. Davis M.E. Epidemiology and Overview of Gliomas // Semin. Oncol. Nurs. W.B. Saunders, 2018. T. 34, № 5. C. 420–429.
- 20. Intracranial Gliomas Part I Surgery / под ред. Chernov Mikhail F. и др. 2018. Т. 30.
 - 21. Mathews C.A., Stern J.S. The First World Congress on Tourette Syndrome

- and Tic Disorders: Controversies and Hot Topics in Etiology and Treatment // Front. Neurosci. Front Neurosci, 2016. T. 10, № JUN.
- 22. Molinaro A.M. и др. Genetic and molecular epidemiology of adult diffuse glioma // Nat. Rev. Neurol. Nat Rev Neurol, 2019. T. 15, № 7. C. 405–417.
- 23. Scarbrough P.M. и др. Exploring the association between melanoma and glioma risks // Ann. Epidemiol. Ann Epidemiol, 2014. T. 24, № 6. C. 469–474.
- 24. Chien J. и др. TP53 mutations, tetraploidy and homologous recombination repair defects in early stage high-grade serous ovarian cancer // Nucleic Acids Res. Oxford Academic, 2015. T. 43, № 14. C. 6945–6958.
- 25. Xu Y. и др. Short-Term Responders of Non–Small Cell Lung Cancer Patients to EGFR Tyrosine Kinase Inhibitors Display High Prevalence of TP53 Mutations and Primary Resistance Mechanisms // Transl. Oncol. Elsevier, 2018. T. 11, № 6. C. 1364–1369.
- 26. В.В. П. ИЗМЕНЕНИЕ ЭКСПРЕССИИ ГЕНА-СУПРЕССОРА ТР53 В ТКАНЯХ КРЫС ПРИ ЭКСПЕРИМЕНТАЛЬНОМ АСКАРИДОЗЕ НА РАЗЛИЧНЫХ СРОКАХ НАБЛЮДЕНИЯ ВО ВРЕМЯ ВОСПРОИЗВЕДЕНИЯ ОПУХОЛЕВОЙ МОДЕЛИ ГЛИОМЫ КРЫС С6 IN SITU // Международный научно-исследовательский журнал. Индивидуальный предприниматель Соколова Марина Владимировна, 2022. № 9 (123).
- 27. Tran P.M.H. и др. Retrospective Validation of a 168-Gene Expression Signature for Glioma Classification on a Single Molecule Counting Platform // Cancers (Basel), 2021. T. 13, № 3. C. 1–14.
- 28. Levi-Montalcini R., Booker B. EXCESSIVE GROWTH OF THE SYMPATHETIC GANGLIA EVOKED BY A PROTEIN ISOLATED FROM MOUSE SALIVARY GLANDS // Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences, 1960. T. 46, № 3. C. 373.
- 29. Cohen S. Isolation of a Mouse Submaxillary Gland Protein Accelerating Incisor Eruption and Eyelid Opening in the New-born Animal* // J. Biol. Chem. 1962. T. 237, № 6. C. 1555–1562.

- 30. Мнихович М.В. и др. Сигнальная система KISS1/KISS1R и ее роль в канцерогенезе // Гены и клетки. Публичное акционерное общество «Институт стволовых клеток человека», 2019. Т. 14, № 3. С. 124–130.
- 31. Voudouri K. и др. Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease // Anal. Cell. Pathol. (Amst). Anal Cell Pathol (Amst), 2015. T. 2015.
- 32. Kamaruzman N.I. и др. Oncogenic Signaling in Tumorigenesis and Applications of siRNA Nanotherapeutics in Breast Cancer // Cancers 2019, Vol. 11, Page 632. Multidisciplinary Digital Publishing Institute, 2019. Т. 11, № 5. С. 632.
- 33. Ali R. и др. Brigatinib for ALK-positive metastatic non-small-cell lung cancer: design, development and place in therapy // Drug Des. Devel. Ther. Dove Press, 2019. T. 13. C. 569.
- 34. Tan S. и др. Comprehensive Characterization of a Novel E3-Related Gene Signature With Implications in Prognosis and Immunotherapy of Low-Grade Gliomas // Front. Genet. Front Genet, 2022. T. 13.
- 35. Wen J., Zhao W., Shu X. A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma // Front. Oncol. Frontiers Media S.A., 2023. T. 12. C. 7545.
- 36. Xie J. и др. Kernel Differential Subgraph Analysis to Reveal the Key Period Affecting Glioblastoma // Biomol. 2020, Vol. 10, Page 318. Multidisciplinary Digital Publishing Institute, 2020. T. 10, № 2. C. 318.
- 37. Claus E.B. и др. Environmental and sex-specific molecular signatures of glioma causation // Neuro. Oncol. Oxford University Press, 2022. T. 24, № 1. C. 29.
- 38. Brito C. и др. PIK3CA Mutations in Diffuse Gliomas: An Update on Molecular Stratification, Prognosis, Recurrence, and Aggressiveness // Clin. Med. Insights Oncol. SAGE Publications Ltd, 2022. T. 16.
- 39. Millis S.Z. и др. Phosphatidylinositol 3-kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities // Cancer. Cancer, 2019. Т. 125, № 7. С. 1185–1199.

- 40. Nicholson J.G., Fine H.A. Diffuse Glioma Heterogeneity and Its Therapeutic Implications // Cancer Discov. American Association for Cancer Research, 2021. T. 11, № 3. C. 575–590.
- 41. Kovalev S.S. и др. Computer Analysis of Gene Alternative Splicing in Glioma Cell Cultures by RNA-seq Data // Vestn. NSU. Ser. Inf. Technol. Novosibirsk State University (NSU), 2018. T. 16, № 3. C. 22–36.
- 42. Trametinib | C26H23FIN5O4 PubChem [Электронный ресурс]. URL: https://pubchem.ncbi.nlm.nih.gov/compound/11707110 (дата обращения: 15.05.2023).
- 43. Бекяшев А. и др. Адьювантная химиотерапия впервые выявленных глиом низкой степени злокачественности // №3-2019 Heal. Russ. Fed. T. 7.
- 44. Glioma disease: Malacards Research Articles, Drugs, Genes, Clinical Trials [Электронный ресурс]. URL: https://www.malacards.org/card/glioma?search=Glioma (дата обращения: 15.05.2023).
- 45. Valiakhmetova E.F. и др. Promises of targeted therapy for low grade gliomas in children // Adv. Mol. Oncol. Publishing House ABV Press, 2019. Т. 6, № 2. С. 28–41.
- 46. Kit O.I. и др. Molecular genetic markers of gliomas // Mol. Genet. Microbiol. Virol. (Russian version). Media Sphere Publishing Group, 2017. Т. 35, № 4. С. 132.
- 47. Tkacheva A. V. и др. Targeted therapy of human glioblastoma combining the oncolytic properties of parvovirus H-1 and attenuated strains of the vaccinia virus // Mol. Genet. Microbiol. Virol. (Russian version). Media Sphere Publishing Group, 2019. T. 37, № 2. C. 83.
- 48. Hajda J. и др. Phase 2 Trial of Oncolytic H-1 Parvovirus Therapy Shows Safety and Signs of Immune System Activation in Patients With Metastatic Pancreatic Ductal Adenocarcinoma // Clin. Cancer Res. Clin Cancer Res, 2021. T. 27, № 20.
- 49. Sun Y. и др. An effective therapeutic regime for treatment of glioma using oncolytic vaccinia virus expressing IL-21 in combination with immune checkpoint inhibition // Mol. Ther. Oncolytics. Elsevier, 2022. T. 26. C. 105–119.

50. Ho T.Y. и др. Deletion of immunomodulatory genes as a novel approach to oncolytic vaccinia virus development // Mol. Ther. Oncolytics. American Society of Gene & Cell Therapy, 2021. T. 22. C. 85.

Приложение А

No	Ген	Расшифровка	
1	ACSL5	ACYL-CoA SYNTHETASE LONG CHAIN FAMILY, MEMBER 5	
2	ADGRB1	ADHESION G PROTEIN-COUPLED RECEPTOR B1	
3	ANGPT2	ANGIOPOIETIN 2	
4	ATF5	ACTIVATING TRANSCRIPTION FACTOR 5	
5	ATP23	ATP23 METALLOPEPTIDASE AND ATP SYNTHASE ASSEMBLY FACTOR HOMOLOG	
6	ATRN	ATTRACTIN	
7	ATRX	ATRX CHROMATIN REMODELER	
8	BAX	BCL2-ASSOCIATED X PROTEIN	
9	BBS	BERLIN BREAKAGE SYNDROME	
10	BCAN	BREVICAN	
11	BCL2	B-CELL CLL/LYMPHOMA 2	
12	BCL2L10	BCL2-LIKE 10	
13	BCL2L12	BCL2-LIKE 12	
14	BCYRN1	BRAIN CYTOPLASMIC RNA 1	
15	BEX1	BRAIN-EXPRESSED X-LINKED GENE 1	
16	BEX2	BRAIN-EXPRESSED X-LINKED GENE 2	

17	BICRA	BRD4-INTERACTING CHROMATIN REMODELING COMPLEX-ASSOCIATED PROTEIN	
18	BICRAL	BRD4-INTERACTING CHROMATIN REMODELING COMPLEX-ASSOCIATED PROTEIN-LIKE	
19	BRAF	B-RAF PROTOONCOGENE, SERINE/THREONINE KINASE	
20	BRE	BRAIN AND REPRODUCTIVE ORGAN-EXPRESSED PROTEIN	
21	BTBD10	BTB/POZ DOMAIN-CONTAINING PROTEIN 10	
22	CADM1	CELL ADHESION MOLECULE 1	
23	CADM3	CELL ADHESION MOLECULE 3	
24	CADM4	CELL ADHESION MOLECULE 4	
25	CCDC26	CCDC26 LONG NONCODING RNA	
26	CD274	CD274 MOLECULE	
27	CDKN2B	CYCLIN-DEPENDENT KINASE INHIBITOR 2B	
28	СЕВРВ	CCAAT/ENHANCER-BINDING PROTEIN, BETA	
29	CFD	COMPLEMENT FACTOR D	
30	СНЕК2	CHECKPOINT KINASE 2	
31	CHST9	CARBOHYDRATE SULFOTRANSFERASE 9	
32	CIZ1	CDKN1A-INTERACTING ZINC FINGER PROTEIN 1	

33	CLMP	COXSACKIEVIRUS- AND ADENOVIRUS RECEPTOR- LIKE MEMBRANE PROTEIN	
34	CNTN2	CONTACTIN 2	
35	CPAMD8	COMPLEMENT COMPONENT 3- AND PREGNANCY ZONE PROTEIN-LIKE ALPHA-2-MACROGLOBULIN DOMAIN-CONTAINING PROTEIN 8	
36	CPEB4	CYTOPLASMIC POLYADENYLATION ELEMENT- BINDING PROTEIN 4	
37	DAAM2	DISHEVELLED-ASSOCIATED ACTIVATOR OF MORPHOGENESIS 2	
38	DDIT4	DNA DAMAGE-INDUCIBLE TRANSCRIPT 4	
39	DKK3	DICKKOPF WNT SIGNALING PATHWAY INHIBITOR 3	
40	DMBT1	DELETED IN MALIGNANT BRAIN TUMORS 1	
41	DNAJA3	DNAJ/HSP40 HOMOLOG, SUBFAMILY A, MEMBER 3	
42	DOCK4	DEDICATOR OF CYTOKINESIS 4	
43	DYRK1A	DUAL-SPECIFICITY TYROSINE PHOSPHORYLATION- REGULATED KINASE 1A	
44	EBF3	EARLY B-CELL FACTOR 3	
45	ECCL	ENCEPHALOCRANIOCUTANEOUS LIPOMATOSIS	
46	EFL1	ELONGATION FACTOR-LIKE GTPase 1	
47	EGFR	EPIDERMAL GROWTH FACTOR RECEPTOR	

48	EMC10	ENDOPLASMIC RETICULUM MEMBRANE PROTEIN COMPLEX, SUBUNIT 10	
49	ETL1	EPILEPSY, FAMILIAL TEMPORAL LOBE, 1	
50	FABP7	FATTY ACID-BINDING PROTEIN 7	
51	FGFR1	FIBROBLAST GROWTH FACTOR RECEPTOR 1	
52	FGFR3	FIBROBLAST GROWTH FACTOR RECEPTOR 3	
53	FOCAD	FOCADHESIN	
54	FSTL1	FOLLISTATIN-LIKE 1	
55	GFAP	GLIAL FIBRILLARY ACIDIC PROTEIN	
56	GJC3	GAP JUNCTION PROTEIN, GAMMA-3	
57	GLDC	GLYCINE DECARBOXYLASE	
58	GLI1	GLI FAMILY ZINC FINGER 1	
59	GLI2	GLI-KRUPPEL FAMILY MEMBER 2	
60	GLIPR1	GLIOMA PATHOGENESIS-RELATED PROTEIN 1	
61	GLIPR2	GLIOMA PATHOGENESIS-RELATED PROTEIN 2	
62	GLM1	GLIOMA SUSCEPTIBILITY 1	
63	GLM2	GLIOMA SUSCEPTIBILITY 2	
64	GLM3	GLIOMA SUSCEPTIBILITY 3	
65	GLM4	GLIOMA SUSCEPTIBILITY 4	

66	GLM5	GLIOMA SUSCEPTIBILITY 5	
67	GLM6	GLIOMA SUSCEPTIBILITY 6	
68	GLM7	GLIOMA SUSCEPTIBILITY 7	
69	GLM8	GLIOMA SUSCEPTIBILITY 8	
70	GLM9	GLIOMA SUSCEPTIBILITY 9	
71	GMFG	GLIA MATURATION FACTOR, GAMMA	
72	GRLF1	GLUCOCORTICOID RECEPTOR DNA-BINDING FACTOR	
73	H3F3A	H3 HISTONE, FAMILY 3A	
74	HGF	HEPATOCYTE GROWTH FACTOR	
75	HIF1A	HYPOXIA-INDUCIBLE FACTOR 1, ALPHA SUBUNIT	
76	HIST1H3B	HISTONE GENE CLUSTER 1, H3 HISTONE FAMILY, MEMBER B	
77	HNRNPA1	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1	
78	HNRNPA2B	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A2/B1	
79	HNRPA2	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A2	
80	HSS1	HEMATOPOIETIC SIGNAL PEPTIDE-CONTAINING SECRETED PROTEIN 1	
81	ID2	INHIBITOR OF DNA BINDING 2	

82	IDH1	ISOCITRATE DEHYDROGENASE 1	
83	IDH2	ISOCITRATE DEHYDROGENASE 2	
84	IFNW1	INTERFERON, OMEGA-1	
85	IFNWP2	INTERFERON, OMEGA-2, PSEUDOGENE	
86	IL12A	INTERLEUKIN 12A	
87	IL12B	INTERLEUKIN 12B	
88	ING4	INHIBITOR OF GROWTH 4	
89	INPP5E	INOSITOL POLYPHOSPHATE-5-PHOSPHATASE, 72-KD	
90	IQSEC3	IQ MOTIF- AND SEC7 DOMAIN-CONTAINING PROTEIN 3	
91	ISLR2	IMMUNOGLOBULIN SUPERFAMILY CONTAINING LEUCINE-RICH REPEAT 2	
92	KAZN	KAZRIN, PERIPLAKIN-INTERACTING PROTEIN	
93	KDELR1	KDEL ENDOPLASMIC RETICULUM PROTEIN RETENTION RECEPTOR 1	
94	KDR	KINASE INSERT DOMAIN RECEPTOR	
95	KIDINS220	KINASE D-INTERACTING SUBSTRATE, 220-KD	
96	KLHDC8A	KELCH DOMAIN-CONTAINING PROTEIN 8A	
97	KRAS	KRAS PROTOONCOGENE, GTPase	
98	KRAS1P	V-KI-RAS1 PSEUDOGENE	

99	L3MBTL1	L3MBTL HISTONE METHYL-LYSINE-BINDING PROTEIN	
100	LGI1	LEUCINE-RICH GENE, GLIOMA-INACTIVATED, 1	
101	LGI2	LEUCINE-RICH GENE, GLIOMA-INACTIVATED, 2	
102	LGI3	LEUCINE-RICH GENE, GLIOMA-INACTIVATED, 3	
103	LGI4	LEUCINE-RICH GENE, GLIOMA-INACTIVATED, 4	
104	LRRN2	LEUCINE-RICH REPEAT PROTEIN, NEURONAL, 2	
105	LZTR1	LEUCINE ZIPPER-LIKE TRANSCRIPTIONAL REGULATOR 1	
106	MAGED4	MELANOMA ANTIGEN, FAMILY D, 4	
107	MDB	MEDULLOBLASTOMA	
108	MGMT	METHYLGUANINE-DNA METHYLTRANSFERASE	
109	MIR15B	MICRO RNA 15B	
110	MIR198	MICRO RNA 198	
111	MIR26A2	MICRO RNA 26A2	
112	MIR30E	MICRO RNA 30E	
113	MIR326	MICRO RNA 326	
114	MIR34A	MICRO RNA 34A	
115	MMP24	MATRIX METALLOPROTEINASE 24	

116	MMRCS1	MISMATCH REPAIR CANCER SYNDROME 1		
117	MMRCS4	MISMATCH REPAIR CANCER SYNDROME 4		
118	MTAP	METHYLTHIOADENOSINE PHOSPHORYLASE		
119	NADSYN1	NAD SYNTHETASE 1		
120	NBEAL1	NEUROBEACHIN-LIKE 1		
121	NBS	NIJMEGEN BREAKAGE SYNDROME		
122	NF1	NEUROFIBROMATOSIS, TYPE I		
123	NF1	NEUROFIBROMIN 1		
124	NF2	NEUROFIBROMATOSIS, TYPE II		
125	NFNS	NEUROFIBROMATOSIS-NOONAN SYNDROME		
126	NGFR	NERVE GROWTH FACTOR RECEPTOR		
127	NLGN3	NEUROLIGIN 3		
128	NMBR	NEUROMEDIN B RECEPTOR		
129	NOP53	RIBOSOME BIOGENESIS FACTOR NOP53		
130	NOS2	NITRIC OXIDE SYNTHASE 2		
131	NOVA2	NOVA ALTERNATIVE SPLICING REGULATOR 2		
132	NS1	NOONAN SYNDROME 1		
133	NTF3	NEUROTROPHIN 3		

134	OLIG2	OLIGODENDROCYTE LINEAGE TRANSCRIPTION FACTOR 2	
135	OPRD1	OPIOID RECEPTOR, DELTA-1	
136	PANTR1	POU3F3-ADJACENT NONCODING TRANSCRIPT 1	
137	PATL1	PAT1 HOMOLOG 1, PROCESSING BODY mRNA DECAY FACTOR	
138	PDCD4	PROGRAMMED CELL DEATH 4	
139	PDGFA	PLATELET-DERIVED GROWTH FACTOR, ALPHA POLYPEPTIDE	
140	PEG3	PATERNALLY EXPRESSED GENE 3	
141	PGAP1	POST-GPI ATTACHMENT TO PROTEINS 1	
142	PHF19	PHD FINGER PROTEIN 19	
143	PHF20	PHD FINGER PROTEIN 20	
144	PHF3	PHD FINGER PROTEIN 3	
145	PIK3CA	PHOSPHATIDYLINOSITOL 3-KINASE, CATALYTIC, ALPHA	
146	PLN	PHOSPHOLAMBAN	
147	POT1	PROTECTION OF TELOMERES 1	
148	POU3F3	POU DOMAIN, CLASS 3, TRANSCRIPTION FACTOR 3	
149	PRAF2	PRA1 DOMAIN FAMILY, MEMBER 2	

150	PRKDC	PROTEIN KINASE, DNA-ACTIVATED, CATALYTIC SUBUNIT	
151	PROM1	PROMININ 1	
152	PTBP1	POLYPYRIMIDINE TRACT-BINDING PROTEIN 1	
153	PTEN	PHOSPHATASE AND TENSIN HOMOLOG	
154	RAC1	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1	
155	SEPT14	SEPTIN 14	
156	SLC37A4	SOLUTE CARRIER FAMILY 37 (GLUCOSE-6- PHOSPHATE TRANSPORTER), MEMBER 4	
157	SLC7A11	SOLUTE CARRIER FAMILY 7 (CATIONIC AMINO ACID TRANSPORTER, y+ SYSTEM), MEMBER 11	
158	SOD1	SUPEROXIDE DISMUTASE 1	
159	SPA17	SPERM AUTOANTIGENIC PROTEIN 17	
160	SPZ1	SPERMATOGENIC LEUCINE ZIPPER PROTEIN 1	
161	SRPRB	SRP RECEPTOR SUBUNIT, BETA	
162	SSMED	SHORT STATURE, MICROCEPHALY, AND ENDOCRINE DYSFUNCTION	
163	STAT3	SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 3	
164	TAX1BP3	TAX1-BINDING PROTEIN 3	
165	TERT	TELOMERASE REVERSE TRANSCRIPTASE	

166	TMEM167A	TRANSMEMBRANE PROTEIN 167A			
167	TMEM18	TRANSMEMBRANE PROTEIN 18			
168	TOMM7	TRANSLOCASE OF OUTER MITOCHONDRIAL MEMBRANE 7			
169	TP53	TUMOR PROTEIN p53			
170	TSPYL2	TSPY-LIKE 2			
171	VEGFA	VASCULAR ENDOTHELIAL GROWTH FACTOR A			
172	VHL	VON HIPPEL-LINDAU TUMOR SUPPRESSOR			
173	WDR73	WD REPEAT-CONTAINING PROTEIN 73			
174	XRCC4	X-RAY REPAIR CROSS COMPLEMENTING 4			
175	YEATS4	YEATS DOMAIN-CONTAINING PROTEIN 4			
176	ZIM2	ZINC FINGER GENE, IMPRINTED, 2			

Приложение Б

В рамках выполнения ВКР была создана утилита для визуализации генных сетей на основе онлайн баз данных STRING (https://string-db.org/), OMIM (https://omim.org/). Разработка программного кода велась в среде РуСharm на языке Python с использованием библиотек NetworkX (https://networkx.org/), Matplotlib (https://matplotlib.org/), Pandas (https://pandas.pydata.org/) и модуля color (https://pypi.org/project/colour/).

Сперва был произведен поиск генов глиомы в ОМІМ. Далее полученный список генов был загружен в STRING для сбора необходимых данных о взаимодействиях между генами и белками, связанными с глиомой. После этого данные в STRING были отфильтрованы по источникам и параметрам отображения сети: для наибольшей достоверности взяты только экспериментально полученные данные; были скрыты несвязанные с сетью узлы.

active interaction sources:					
Textmining	Experiments	Databases	Co-expression		
Neighborhood	Gene Fusion	Co-occurrence			
network display	options:				
Enoble node o	alaring made				
Enable node c	oloring mode				
disable 3D bubble design					
disable structure previews inside network bubbles					
✓ center protein names on nodes					
show your query protein names					
✓ hide disconnec	ted nodes in the ne	twork			
hide protein na	mes				

Следующим шагом полученные данные были экспортированы в виде таблицы распределения связей по узлам, двусторонней таблицы связей – в TSV формате.

Отсортированный список генов по количеству связей представлен ниже (узлы без связей удалены из списка).

Таблица 6. Распределение числа связей по узлам для глиомы.

Узел	Идентификатор	Количество связей
BCL2L10	9606.ENSP00000260442	1
BCL2L12	9606.ENSP00000482218	1
BRAF	9606.ENSP00000288602	1
BRE	9606.ENSP00000343412	1
CADM3	9606.ENSP00000357106	1
CADM4	9606.ENSP00000222374	1
СЕВРВ	9606.ENSP00000305422	1
DNAJA3	9606.ENSP00000262375	1
DOCK4	9606.ENSP00000404179	1
FGFR3	9606.ENSP00000339824	1
IDH1	9606.ENSP00000390265	1
IDH2	9606.ENSP00000331897	1
IL12A	9606.ENSP00000303231	1
IL12B	9606.ENSP00000231228	1
KIDINS220	9606.ENSP00000256707	1
L3MBTL1	9606.ENSP00000398516	1
LZTR1	9606.ENSP00000215739	1
NBN	9606.ENSP00000265433	1
NF1	9606.ENSP00000351015	1
NF2	9606.ENSP00000344666	1
NOS2	9606.ENSP00000327251	1
NTF3	9606.ENSP00000397297	1
POT1	9606.ENSP00000350249	1
PPARG	9606.ENSP00000287820	1
PTEN	9606.ENSP00000361021	1
SOD1	9606.ENSP00000270142	1
XRCC4	9606.ENSP00000421491	1

HNRNPA1	9606.ENSP00000341826	2
KDR	9606.ENSP00000263923	2
NGFR	9606.ENSP00000172229	2
PTBP1	9606.ENSP00000349428	2
RAC1	9606.ENSP00000348461	2
VHL	9606.ENSP00000256474	2
BRCA2	9606.ENSP00000369497	3
CHEK2	9606.ENSP00000372023	3
H3F3A	9606.ENSP00000355778	3
HIST1H3B	9606.ENSP00000484841	3
HNRNPA2B1	9606.ENSP00000346694	3
ING4	9606.ENSP00000380024	3
PIK3CA	9606.ENSP00000263967	3
VEGFA	9606.ENSP00000478570	3
ATRX	9606.ENSP00000362441	4
BAX	9606.ENSP00000293288	4
BCL2	9606.ENSP00000381185	4
PRKDC	9606.ENSP00000313420	4
HIF1A	9606.ENSP00000437955	5
PTPN11	9606.ENSP00000340944	5
STAT3	9606.ENSP00000264657	5
EGFR	9606.ENSP00000275493	7
KRAS	9606.ENSP00000256078	7
TP53	9606.ENSP00000269305	10

Используя двухстороннюю таблицу связей можно создать графическое изображение сети. В данном коде:

1) Импортируются все необходимые модули NetworkX, Matplotlib, Pandas и color из библиотек РуРІ.

```
import networkx as nx
import matplotlib.pyplot as plt
import pandas as pd
from colour import Color
```

2) Создается структура типа DataFrame: df. Импортируется TSV таблица с конвертацией в CSV. Ненужные столбцы опускаются, и данные сортируются по combined_score, преобразуясь в итерируемые.

```
df = pd.read_csv('string_interactions.tsv', sep='\t')
df = df.drop(["node1_string_id", "node2_string_id", "neighborho
df = df.sort_values(by=['combined_score'], ascending=False)
df = df.values.tolist()
```

3) Создается словарь для подсчета количества уникальных связей для каждого белка и итоговый массив.

```
unique = {}
for item in df:
    node1, node2 = item[0], item[1]
    if node1 in unique:
        unique[node1] += 1
    else:
        unique[node1] = 1
    if node2 in unique:
        unique[node2] += 1
    else:
        unique[node2] = 1
    sorted_df = []
```

4) В новый массив записываются и сортируются данные по количеству уникальных связей.

```
for item in df:
    newItem = item
    newItem.append(unique[item[0]])
    sorted_df.append(newItem)
    sorted_df.sort(key=lambda lst:lst[3], reverse=True)
```

5) Определяются параметры вывода и создается заготовка для изображения сети.

```
fig = plt.gcf()
fig.set_size_inches(30, 25, forward=True)
fig.set_dpi(250)

G = nx.Graph()
```

6) В отсортированный массив добавляются связи, создается новый массив с цветами для каждого узла («начальный» – белый, «конечный» - черный).

```
for item in sorted_df:
        G.add_edge(item[0], item[1], weight=item[2])
color_map = []
red = Color("white")
colors = list(red.range_to(Color("black"), len(G.nodes)))

for color in colors:
        color_map.append(color.hex)
```

7) Получается массив с данными о силе связей между узлами, которые графически отражаются в толщине соединяющих линий.

```
weights = nx.get_edge_attributes(G,'weight').values()
```

8) Рисуется изображение сети с заданными параметрами, результат выдается в самой среде а также сохраняется PDF файл.

Итого, на выходе получаем следующее:

Рис. 8. Генная сеть генов глиомы (без сортировки).

В качестве источника для построения данной сети использовалась таблица

Рис. 9. Генная сеть генов глиомы (центральный фрагмент).

На рис. 9 мы видим крупное скопление генов в центре, аналогично рис. 4.

Явно видны гены TP53, PTEN, EGFR. Данная сеть достаточно громоздкая, поэтому необходимо перестроить ее с учетом сортировки в STRING. Для этого оставляем только экспериментальные данные а также убираем несвязанные узлы.

Рис. 10. Генная сеть генов глиомы (с фильтрацией по источникам и параметрам отображения сети).

На рис. 10 уже четко видны гены с наибольшим количеством связей, являющиеся частями разобранных выше кластеров.

Для сравнения построим сеть для глиобластомы, как наиболее опасной разновидности глиом, с аналогичной сортировкой, экспортируем TSV таблицы по связям и количеству связей для узлов:

Рис. 11. Генная сеть генов глиобластомы (с фильтрацией по источникам и параметрам отображения сети).

На рис. 11 мы видим ключевые гены — TP53, EGFR, KRAS, являющиеся общими также для глиомы. Наряду с ними, на лидирующие позиции выходят гены STAT3, AKT1, PIK3R1, что все-таки говорит о необходимости различных подходов к лечению глиом всех типов злокачественности, в особенности таргетной терапии.

Таблица 7. Распределение числа связей по узлам для глиобластомы.

Узел	Идентификатор	Количество связей
BRCA2	9606.ENSP00000369497	1
CNTNAP2	9606.ENSP00000354778	1
DMD	9606.ENSP00000354923	1
EPB41L3	9606.ENSP00000343158	1
FGFR1	9606.ENSP00000393312	1
FGFR3	9606.ENSP00000339824	1
FLNA	9606.ENSP00000358866	1
FRAS1	9606.ENSP00000326330	1
GRIN2A	9606.ENSP00000379818	1
GRIN2B	9606.ENSP00000477455	1
GRIP1	9606.ENSP00000381098	1
IDH1	9606.ENSP00000390265	1
IDH2	9606.ENSP00000331897	1
KSR2	9606.ENSP00000389715	1
LRP1	9606.ENSP00000243077	1
LRRK1	9606.ENSP00000373600	1
LZTR1	9606.ENSP00000215739	1
NEB	9606.ENSP00000484342	1
NF1	9606.ENSP00000351015	1
NOS1	9606.ENSP00000477999	1
PIK3C2B	9606.ENSP00000356155	1
PPARG	9606.ENSP00000287820	1
RIMBP2	9606.ENSP00000261655	1
RIMS2	9606.ENSP00000262231	1
SPTA1	9606.ENSP00000357129	1
TRRAP	9606.ENSP00000352925	1
CASR	9606.ENSP00000420194	2

H3F3B	9606.ENSP00000254810	2
HIST1H3J	9606.ENSP00000352252	2
KDR	9606.ENSP00000263923	2
MET	9606.ENSP00000317272	2
NFKBIA	9606.ENSP00000216797	2
OBSCN	9606.ENSP00000455507	2
PIK3CG	9606.ENSP00000352121	2
RYR1	9606.ENSP00000352608	2
RYR2	9606.ENSP00000355533	2
RYR3	9606.ENSP00000373884	2
ANK1	9606.ENSP00000265709	3
ATRX	9606.ENSP00000362441	3
BRAF	9606.ENSP00000288602	3
CDK4	9606.ENSP00000257904	3
MLH1	9606.ENSP00000231790	3
MSH6	9606.ENSP00000234420	3
PLCG2	9606.ENSP00000482457	3
PMS2	9606.ENSP00000265849	3
PTEN	9606.ENSP00000361021	3
RB1	9606.ENSP00000267163	3
TERT	9606.ENSP00000309572	3
TTN	9606.ENSP00000467141	3
VEGFA	9606.ENSP00000478570	3
CDKN2A	9606.ENSP00000418915	4
PDGFRA	9606.ENSP00000257290	4
PIK3CA	9606.ENSP00000263967	4
ERBB2	9606.ENSP00000269571	5
MSH2	9606.ENSP00000233146	5
MTOR	9606.ENSP00000354558	5

HIF1A	9606.ENSP00000437955	6
MDM2	9606.ENSP00000258149	6
KRAS	9606.ENSP00000256078	7
STAT3	9606.ENSP00000264657	7
AKT1	9606.ENSP00000451828	9
PIK3R1	9606.ENSP00000428056	9
EGFR	9606.ENSP00000275493	12
TP53	9606.ENSP00000269305	12

Исходя из представленного выше, в очередной раз подтверждается значимость ряда генов в генезе глиомы, а также глиобластомы: EGFR, KRAS, TP53. Также в обоих случаях фигурирует ген PIK3CA, который на сегодняшний день не считается этиологическим для глиомы и играет не до конца ясную роль, но является перспективным в изучении.

Публикации и участие в конференциях

Тезисы:

1) Туркина В.А., Майорова А.А., Дергилев А.И., Красильникова А.А., Ланских Д.В., Кумейко В.В., Орлов Ю.Л. Компьютерный анализ структуры генной сети глиобластомы и опухолей мозга // Сборник научных трудов VII Съезда Биофизиков России: в 2 томах, том 1 — Краснодар: Типография ФГБОУ ВО «КубГТУ», 2023, Краснодар. (DOI 10.26297/SbR6.2023.001). Стр. 294-295.

Стендовые доклады:

1) Орлов Ю.Л., Красильникова А.А., Булгакова А.В., Майорова А.А., Соколова А.В., Варакина Э.С., Туркина В.А. Компьютерное исследование ассоциаций заболеваний как обобщение генных сетей на примере опухолей мозга // ТРИДЦАТАЯ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ