

Inteligenta Artificiala

Universitatea Politehnica Bucuresti Anul universitar 2013-2014

Adina Magda Florea curs.cs.pub.ro

Curs 7 Modelul cunostintelor structurate

- Retele semantice
- Unitati
- Web semantic

1. Modelul *RETELELOR SEMANTICE*

- primul model structurat de reprezentare a cunostintelor
- introdus pentru a descrie semantica cuvintelor si a propozitiilor limbajului natural
- folosit ca metoda de reprezentare a cunostintelor in sistemele bazate pe cunostinte

1.1 Baza de cunostinte

- Radu i-a trimis Ioanei o scrisoare.
- Radu este student.
- loana este eleva.
- Adresa lui Radu este Luterana, 15.

- Ocupatie (radu, student)
- Ocupatie (ioana, eleva)
- Trimite (radu, ioana, scrisoare)
- Adresa (radu, luterana 15)

Gruparea in entitati

- Radu
 - Ocupatie (radu, student)
 - Trimite (radu, ioana, scrisoare)
 - Adresa (radu, luterana 15)
- loana
 - Ocupatie (ioana, eleva)
 - Trimite (radu, ioana, scrisoare)

Radu

Ocupatie: student

Adresa: luterana-15

loana

Ocupatie: elev

 $(\exists x)(ISA(x,eveniment - trimitere) \land Expeditor(x,radu) \land$ Destinatar(x,ioana) \land Obiect(x,scrisoare))

Predicatul ISA indica apartenenta

unui obiect la o multime.

 $ISA(t_1, eveniment - trimitere) \land$

Expeditor $(t_1, radu) \land$

Destinatar(t_1 , ioana) \land

Object $(t_1, scrisoare)$

Radu

ISA: Persoana

Ocupatie: student

Adresa: luterana-15

Ioana

ISA: Persoana

Ocupatie: elev

T1

ISA: Eveniment-trimitere

Expeditor: Radu

Destinatar: Ioana

Obiect: scrisoare

Predicatul AKO descrie incluziunea unei multimi intr-o alta multime

 $(\forall x)$ (Eveniment - trimitere $(x) \rightarrow AKO(x, Eveniment)$

 $(\forall x)$ (Persoana $(x) \rightarrow AKO(x, Fiinta)$

Eveniment-trimitere

AKO: Eveniment

Expeditor: Persoana

Destinatar: Persoana

Obiect: ClasaObiect

Persoana

AKO: Fiinta

Ocupatie: (student, elev, inginer)

Adresa: string

Relatie individual-generic, sau instanta-clasa, notata ISA (prescurtare de la ISA).

Relatia generic-generic, sau subclasa-clasa, notata AKO (prescurtare de la A Kind Of).

Obicete particulare / obiecte generice

Sloturi

Inferente specifice

Mostenirea proprietatilor (atributelor):

1) Mostenirii proprietatilor de la clasa la instanta:

Daca un obiect O_1 este o particularizare (legat prin relatia ISA) a unui obiect generic O si obiectul O are un atribut (proprietate) A, atunci si instanta O_1 are atributul A.

2) Aplicarea mostenirii proprietatilor intre o clasa si o superclasa, de-a lungul unei relatii sau a unui lant de relatii AKO

Daca o clasa C_1 este o subclasa a unei clase C (legata prin una sau mai multe relatii AKO) si clasa C are proprietatea A, atunci clasa C_1 are de asemenea proprietatea (atributul) A.

1.2 Retele semantice

Inferente specifice retelelor semantice

Mostenirea valorilor in retele semantice

Algoritm: Mostenirea valorilor atributelor intr-o ierarhie de clase

Algoritmul determina valoarea unui atribut A al unei instante O

DetVal (O, A, V)

- Formeaza o lista L cu nodul O si toate nodurile legate de O prin relatia ISA
- 2. cat timp L != [] executa
 - 2.1. Elimina primul nod, N, din lista L
 - 2.2. daca atributul A al nodului N are valoarea V atunci
 - 2.2.1. Depune V in nodul punctat de atributul A al obiectului O
 - 2.2.3. intoarce SUCCES
 - 2.3. Adauga toate nodurile legate prin relatia AKO de nodul N, la sfirsitul listei L
- 3. **intoarce** INSUCCES **sfarsit**.

Perspective

 Perspectiva - un obiect poate avea sensuri diferite in contexte diferite

Utilizarea perspectivelor in retelele semantice

Fatete

- Caracteristici asociate atributelor din retea
- Modalitati de considerare a valorilor unor atribute
- Fateta valoare valoarea obisnuita a unui atribut
- Fateta valoare implicita caracterizeaza tipic valoarea unui atribut
- Fateta procedura necesara contine o procedura sau o functie care poate calcula valoarea atributului pe baza valorii altor atribute

Mostenirea valorilor implicite in retele semantice si a valorilor procedura necesara

Algoritm: Mostenirea valorilor implicite ale atributelor intr-

o ierarhie de clase

Algoritmul determina valoarea unui atribut A al unei

instante O

DetValImp(O, A, V)

Formeaza o lista L cu nodul O si toate nodurile legate de O prin relatia ISA

2. cat timp L != [] executa

- 2.1. Elimina primul nod, N, din lista L
- 2.2. **daca** atributul A al nodului N are valoarea implicita

atunci

- 2.2.1. Depune V in nodul punctat de atributul A al obiectului O
- 2.2.3. intoarce SUCCES
- 2.3. Adauga toate nodurile legate prin relatia AKO de nodul N, la sfirsitul listei L
- 3. **intoarce** INSUCCES **sfarsit**.

1.3. Strategii de control

 Strategia de control indica ordinea de aplicare a inferentelor si modul de inspectare a retelei

- Doua stategii de control de baza
 - Stategia N
 - Strategia Z

Strategia N

Algoritm: Strategia N de determinare a valorii unui

atribut

Algoritmul determina valoarea unui atribut

A al unei instante O utilizind strategia N.

DetValN (O, A, V)

- daca DetVal (O,A,V) = SUCCES atunci intoarce SUCCES
- 2. daca DetValImp (O,A,V) = SUCCES atunci intoarce SUCCES
- 3. **daca** DetProcNec (O,A,V) = SUCCES **atunci intoarce** SUCCES
- 4. **intoarce** INSUCCES **sfarsit**.

Strategia Z

Algoritm: Strategia Z de determinare a valorii unui

atribut.

Algoritmul determina valoarea unui atribut

A al unei instante O utilizind strategia Z.

DetValZ (O, A, V)

- 1. Formeaza o lista L cu nodul O si toate nodurile legate de O prin relatia ISA
- 2. cat timp L != [] executa
 - 2.1. Elimina primul nod, N, din lista L
 - 2.2. **daca** fateta valoare a atributului A a nodului N este V

atunci

- 2.2.1. Depune V in nodul punctat de atributul A al obiectului O
- 2.2.2. intoarce SUCCES

- 2.3. **daca** fateta valoare implicita a atributului A a nodului N este V **atunci**
 - 2.3.1. Depune V in nodul punctat de atributul A al obiectului O
 - 2.3.2. intoarce SUCCES
- 2.4. **daca** fateta procedura necesara a atributului A a nodului N este proc (A₁,..., A_n,V)

atunci

- 2.4.1. Determina valorile atributelor A₁,..., A_n ale instantei O
- 2.4.2. **daca** s-au gasit valori pentru A₁,..., A_n **atunci**
 - i. **executa** proc $(A_1,..., A_n, V)$
 - ii. Depune V in nodul punctat de atributul A al obiectului O
 - iii. intoarce SUCCES
- 3. **intoarce** INSUCCES **sfarsit**.

2. Modelul Unitatilor

Unitate - colectie de atribute (sloturi), cu valori asociate si posibile restrictii asupra valorilor, ce descriu un obiect al universului problemei

- Unitatile pot desemna
 - obiecte generice
 - instante

2.1 Reprezentarea relatiilor

Retele semantice

Unitati

– AKO

SuperClasses

- SubClasses

- ISA

- MemberOf

Un obiect particular poate fi o instanta care partine mai multor unitati generice, iar o unitate generica poate fi subclasa a mai multor clase

taxonomia de unitati poate fi graf.

Sloturi

Fiecare slot are un nume si una sau mai multe valori

Tipuri de sloturi

- sloturi membru MemberSlot descriu atributele fiecarul membru al clasei
- sloturi proprii OwnSlot descriu atributele ce caracterizeaza clasa ca un intreg

Unit Camion

SuperClasses: Vehicul

SubClasses: CamionMare, CamionMediu, CamionMic

MemberOf: ObiecteFizice

Unit CamionMare

SuperClasses: Camion

SubClasses: CamionMareRosu, CamionMareRemorca

Unit CamionMareRosu

SuperClasses: CamionMare

MemberSlot: Sofer

Value: necunoscut

MemberSlot: Inaltime

Value: necunoscut

MemberSlot: Culoare

Value: rosie

MemberSlot: Pret

Value: necunoscut

OwnSlot: CelMaiMare

Value: CMR10

OwnSlot: CelMaiScump

Value: CMR210

Unit CMR1

MemberOf: CamionMareRosu, ProprietateFirmaX

OwnSlot: Sofer

Value: Paul

OwnSlot: Inaltime

Value: 1.75

OwnSlot: Culoare

Value: rosie

OwnSlot: Pret

Value: 30 000

OwnSlot: Proprietar

Value: X

Unit CMR2

MemberOf: CamionMareRosu

OwnSlot: Sofer

Value: Tudor

OwnSlot: Inaltime

Value: 1.80

OwnSlot: Culoare

Value: rosie

OwnSlot: Pret

Value: 50 000

2.2 Reguli de mostenire

- In urma mostenirii atributelor de la clasa la instanta, sloturile membru ale clasei devin sloturi proprii ale instantei, iar sloturile proprii ale clasei nu se mostenesc la instante.
- Orice slot membru al unei clase este mostenit de subclasele descendente din acea clasa, in urma mostenirii atributelor de la clasa la subclasa

Fatete

- Fatete modalitati de reprezentare a proprietatilor atributelor
- Tipuri de fatete
 - fateta valoare
 - fateta domeniu de valori
 - fatete ce descriu restrictii
 - fateta valoare implicita
 - fateta mostenire
 - fateta valoare activa
 - fateta comentariu

Unit CamionMareRosu

SuperClasses: CamionMare

MemberSlot: Sofer

Value: necunoscut /*fateta valoare */
ValueClass: Persoana /*fateta domeniu de

valori; indica unitatea Persoana */

Cardinality: 2 /*fateta numar de valori;

un camion poate avea doi soferi posibili */

Default: Paul /*fateta valoare implicita*/ **Restrict**: (oneof Paul, Tudor, Gelu, Mihai, Barbu)

/*fateta de descriere a restrictiei */

MemberSlot: Inaltime

Value: necunoscut ValueClass: real Cardinality: 1

Restrict: X.Inaltime > 1.50

MemberSlot: Culoare

Value: rosie

ValueClass: string

Cardinality: 1

Comment: "Culoarea tuturor membrilor unitatii"

/*fateta comentariu */

2.3 Inferente specifice unitatilor

 Forma de inferenta specifica - mostenirea atributelor

 Forma taxonomiei de unitati este un graf orientat aciclic, in care exista o relatie de ordine partiala impusa de relatiile ISA sau MemberOf si AKO sau Subclass/Superclass (relatii ierarhice)

Taxonomie de unitati de tip graf orientat aciclic Probleme

Mosteniri multiple de atribute

Distanta dintre unitati - se foloseste lungimea caii intre unitatea curenta U pentru care se doreste aflarea valorii slotului S si unitatea U' unde s-a gasit aceasta valoare, considerind corecta valoarea slotului din unitatea cea mai apropiata de unitatea U

Probleme

Distanta si distanta inferentiala intre unitati

Mosteniri multiple de atribute

Distanta inferentiala

- Clasa1 este mai aproape de Clasa2 decat de Clasa3 daca si numai daca Clasa1 are o cale inferentiala care trece prin Clasa2 spre Clasa3.
- Clasa1 este mai aproape de Clasa2 decat de Clasa3 daca Clasa2 este intre Clasa1 si Clasa3 de-a lungul unui lant de relatii ierarhice.

Algoritm: Mostenirea atributelor bazata pe distanta inferentiala Algoritmul determina valoarea V a slotului S al unitatii U

- 1. Formeaza o lista L cu unitatea U si toate unitatile legate de U prin relatia MemberOf
- 2. Formeaza o lista de candidati CAND = []
- 3. cat timp L != [] executa
 - 3.1. Elimina prima unitate, X, din lista L
 - 3.2. **daca** slotul S al lui X are valoare **atunci** CAND = CAND $\cup \{X\}$
 - 3.3. **altfel** adauga in lista L toate unitatile legate de X prin relatia SuperClass
- 4. **pentru** fiecare unitate $C \in CAND$ **executa**
 - 4.1. Verifica daca exista un alt element C' ∈ CAND cu o distanta inferentiala fata de U mai mica decat cea a lui C
 - 4.2. **daca** C' exista **atunci** elimina C din CAND

- 5. **daca** card (CAND) = 0 **atunci intoarce** INSUCCES /* nu s-a gasit valoare pentru S */
- 6. **daca** card (CAND) = 1 **atunci**
 - 6.1. Fie C1 unicul element al listei CAND
 - 6.2. Depune valoarea slotului S al lui C1 ca valoare a slotului S al lui U
 - 6.3. **intoarce** SUCCES
- 7. **daca** card (CAND) > 1 /* contradictie, S este monovaloare */ **atunci intoarce** CONTRADICTIE

sfarsit.

2.4 Reprezentari combinate

Baza de cunostinte formata din:

- cunostinte declarative: unitati
- cunostinte procedurale: reguli

```
daca Camion.Inaltime > 2
    si Camion.Culoare = rosu
atunci
    Camion.Pret = 1000
```

Inferente in sistem: specifice unitati si specifice reguli

3. Web semantic

- Astazi avem web sintactic
- Markup se refera la:
 - afisarea informatiei (dim. font, culoare, etc.)
 - Hhyper-linkuri pt a lega continut

Web semantic

- Semantic Web
 - Necesita o reprezentare a continutului
 - Semantica cum reprezentam?
- Adnotari
- Conventii asupra semnificatiei adnotarilor
- Utilizarea ontologiilor pt a specifica adnotarile
 - Vocabular de termeni
 - Noi termeni care se formeaza din cei exsitenti + relatii intre termeni
 - Semantica specificata formal

3.1 Ontologie

- In stiinta calculatoarelor o ontologie este o reprezentare formala a unei multimi de concepte dintr-un anumit domeniu impreuna cu relatiile dintre aceste concepte
- O ontologie contine:
 - o descriere ierarhica a celor mai importante concepte dintr-un domeniu
 - descrie principalele proprietati ale fiecarui concept pe baza unui mecanism de tip atributvaloare
 - indivizii din domeniul de interes sunt asignati unuia sau mai multor concepte in scopul de a le da un tip corespunzator.

Descrierea unei ontologii

- Limbaje bazate pe logica cu predicate –
 CycL, F-logic, OCML, Ontolingua;
- Limbaje bazate pe web DAML+OIL,
 OWL, RDF, RDF Schema, SHOE;
- Limbaje bazate pe logici de descriere: OWL

3.2 RDF

XML

- Specifica un arbore al documentului
- Nu identifica continutul documentului
- RDF incearca sa exprime continutul
- RDF permite descrierea resurselor
- O resursa este un obiect
 - pt care se poate da o descriere
 - este identificat printr-un URI dar sau printr-o descriere abstracta (nu neaparat se mapeaza la o adresa de retea)
 - Ex: docs, imags, videoclips, services, unele in afara web (oameni, obiecte)

Un literal este

- O valoare (string, integer, ..)
- Nu i se poate da o descriere
- Exista literali cu tip: sirul + referinta URI la o XML Schema care descrie tipul

RDF

- RDF se bazeaza pe o gramatica simpla
- Un document RDF este o multime de instructiuni sau triplete
- Fiecare instructione este formata din
 - Subiect: o resursa
 - Obiect: o resursa sau un literal
 - Predicat: o resursa (proprietate rdf:Property)
 - Subiectul este legat de obiect prin predicat (predicate binare)

RDF

Poate fi reprezentat utilizand serializare XML: <Ion,areColeg,Mihai>

RDF Schema

- RDF ofera un formalism pentru adnotarea metadatelor si modul de scriere in XML dar nu ofera semnificatie unor relatii standard cum ar fi subClassOf sau type
 - de ex <Persoana,subClassOf,Animal> nu are os emnifiactei speciala
- RDF Schema defineste o "schema de vocabular" care permite definirea ontologiilor
 - ofera semnificatie unor relatii (predicate) standard din RDF (de ex subClasOf)
 - aceasta semnificatie indica cum trebuie interpretata relatia

RDF Schema

- Exemple din RDF Schema :
 - Class
 - Property
 - type
 - subClassOf
 - range
 - domain
- Acestea reprezinat constructorii din RDF Schema utilizati pentru crearea vocabularului:

```
<Persoana,type,Class>
<areColeg,type,Property>
<Profesor,subClassOf,Persoana>
<Irina,type,Profesor>
<areColeg,range,Persoana>
<areColeg,domain,Persoana>
```

3.3 OWL

- Web Ontological Language
- OWL impune restrictii suplimentare
 - bazat pe RDF dar limiteaza "libertatea" RDF
 - odera os emantica formala
- Bazat de Logici de descriere
- Clase
- Indivizi
- Proprietati

OWL

Clase

```
<owl:Class rdf:ID="Student"/>
<owl:Class rdf:ID="Department"/>
<owl:Class rdf:ID="Course"/>
```

Indivizi

```
<Department rdf:ID="CS"/>
```

Proprietati

```
<owl:ObjectProperty rdf:ID="takes">
  <rdfs:domain rdf:resource="#Student"/>
  <rdfs:range rdf:resource="#Course"/>
  </owl:ObjectProperty>
```

Clase OWL

- Cum se construieste o clasa?
- (a) Prin specificarea unui nume de clasa

```
<owl:Class rdf:ID="Student"/>
```

(b) Prin specificarea nume clasa + descendenta

```
<owl:Class rdf:ID="StudentFemeie">
  <rdfs:subClassOf rdf:resource="#Student"/>
  </owl:Class>
```

- (c) combinatie de operatori logici: owl:IntersectionOf, owl:unionOf, owl:complementOf
 sau enumerare owl:oneOf (enumerare toti indivizii)
- (d) Restrictii asupra proprietatilor

Clase OWL

- Construirea claselor pe baza restrictiilor aplicate proprietatilor
- Obiectele care satisfac restrictia asupra proprietatii formeaza o clasa anonima
- owl:Restriction
- O restrictie poate fi de 2 tipuri
 - owl:ObjectRestriction se aplica pe o proprietate obiect
 - owl:dataRestriction se aplica pe o proprietate tip de date
- Proprietatea asupra careia se aplica restrictia este specificata prin owl:onProperty

Clase OWL

```
<owl:ObjectProperty rdf:ID="urmeaza">
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="#Curs"/>
</owl:ObjectProperty>
<owl><owl>Restriction>
      <owl:onProperty rdf:resource="#urmeaza"/>
      <owl:minCardinality</pre>
       rdf:datatype="&xsd;nonNegativeInteger">1
      </owl:minCardinality>
</owl:Restriction>
```

O clasa anonima in care membrii urmeaza cel putin un curs. Stiind ca domeniul este Student se poate infera ca este o subclasa a Student.

Clasa Student

```
<owl:Class rdf:about="Student">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#urmeaza"/>
      <owl><owl>linecowl:minCardinality
      rdf:datatype="&xsd;nonNegativeInteger">
      </owl:minCardinality>
    </owl>
  </rdfs:subClassOf>
</owl:Class>
```

Clasa StudentBun

```
<owl:Class rdf:ID="StudentBun">
  <owl:IntersectionOf rdf:parseType="Collection">
    <rdfs:Class rdf:about="#Student"/>
    <owl><owl>Restriction>
      <owl:onProperty rdf:resource="#urmeaza"/>
      <owl:minCardinality</pre>
       rdf:datatype="&xsd;nonNegativeInteger">
          3
      </owl:minCardinality>
      <owl:maxCardinality</pre>
       rdf:datatype="&xsd;nonNegativeInteger">
      </owl:maxCardinality>
    </owl:Restriction>
 </owl:IntersectionOf>
</owl:Class>
```

Exemplu de ontologie in Protege

