Dirk Pattinson Jinbo Huang

Theory of Computation

Questions marked (S) are self-test questions with solutions provided at

http://infolab.stanford.edu/~ullman/ialcsols/sols.html

Questions marked (A) are assignment questions.

Exercise 1 \mathcal{NP} -Complete Problems (S)

(Exercise 10.1.3) Suppose that there is an \mathcal{NP} -complete problem that has a deterministic solution that takes time $O(n^{\log_2 n})$. Note that this function lies between the polynomials and the exponentials, and is in neither class of functions. What could we say about the running time of any problem in \mathcal{NP} ?

(Exercise 10.2.1) How many satisfying truth assignments does the following Boolean expression have?

$$x \wedge (y \vee \neg x) \wedge (z \vee \neg y)$$

Exercise 3 Boolean Encodings of Graph Properties (A)

(Exercise 10.2.2b–d) Suppose G is an undirected graph of four nodes: 1, 2, 3, and 4. Let x_{ij} , for $1 \le i < j \le 4$, be a Boolean variable that we interpret as saying "there is an edge between nodes i and j." The expression $x_{12}x_{23}x_{34}x_{14} + x_{13}x_{23}x_{24}x_{14} + x_{13}x_{34}x_{24}x_{12}$, for example, says that the graph G has a Hamilton circuit. In general, a Boolean expression over the x_{ij} variables describes a property of the graph in the sense that a truth assignment to the variables satisfies the expression if and only if it describes a graph having that property. Write expressions for the following properties:

- 1. G contains a clique of size 3 (i.e., a triangle).
- 2. G contains at least one node with no edges.
- 3. *G* is connected.

Exercise 4 Conversion to 3CNF (S)

(Exercise 10.3.1a) Put the following Boolean expression into 3CNF:

$$xy + \overline{x}z$$

Exercise 5 Proving \mathcal{NP} -Completeness (A)

(Exercise 10.4.4d) We know that the Node Cover problem is \mathcal{NP} -complete. Show that the following Dominating Set problem is \mathcal{NP} -complete: Given a graph G and an integer k, does there exist a subset S of at most k nodes of G such that each node is either in S or adjacent to a node of S?

Exercise 6 Proving \mathcal{NP} -Completeness (S)

(Exercise 10.4.4f) We know that it's \mathcal{NP} -complete to determine whether a graph G contains a clique of size k. Show that it's \mathcal{NP} -complete to determine whether a graph G contains a clique of size at least m/2, where m is the number of nodes of G.