α最適化編 #3. 連立1次方程式と掃き出し法1

対策問題

α 玻適対3 (AST3)

学籍番号	氏 名	提出方法(〇 で囲む)	答案枚数	提出(〇 で囲む)						
/w152314	植口陽本在	対面 / 提出用フォルタ / FAX / 郵送	2 枚	新規 / 再提出						

		(T	A 記入)] #	是出	日時					添削日	時	g stig gang in ng mga man in ngan man paggar ying gang milatan kadipa mang njiri ilinda ini.	
/	(,)			担 当		/	()	:		担 当	

次の各問に答えなさい、解答は 枠内に、濃く はっきり と記入 すること.

△ 要説明 の問では、答えを導くための過程を数式や日本語で詳しく説明 すること、答えのみの場合は 添削しない。

1 △要説明 次の連立1次方程式について、拡大係数行列を簡約化して(つまり掃き出し法により)解け、

(1)
$$\begin{cases} x - 2y = 8 \\ 7x - 3y = 1 \end{cases}$$
 (2)
$$\begin{cases} x + y + z - w = 2 \\ x + y - z + w = 4 \\ x - y + z + w = 6 \\ -x + y + z + w = 8 \end{cases}$$

(解答にかかった時間 __3__ 分)

(解答にかかった時間 _/0_ 分)

【解答欄】

$$(1)$$
 (1) (1) (1) (2) (1) (2) (3) (3) (3) (3) (4) (4) (5) (5) (5) (7)

$$\begin{array}{c|cccc}
\hline
O & -2 & 8 \\
\hline
O'' & 0 & 1 & -5
\end{array}$$

$$\int x = -2$$
 $4 = -5$