Учебно-исследовательская работа (УИР 4) «Исследование сетевых моделей массового обслуживания»

1. Цель работы

Исследование свойств системы, моделируемой в виде замкнутых и разомкнутых сетей массового обслуживания (CeMO) с однородным потоком заявок с применением имитационного моделирования при различных предположениях о параметрах структурно-функциональной организации и нагрузки.

2. Содержание работы

Разработка *имитационных моделей* и проведение модельных экспериментов с целью исследования зависимостей характеристик функционирования от параметров и выявления свойств замкнутых и разомкнутых СеМО (РСеМО), а также сравнительный анализ эффективности разомкнутых и замкнутых СеМО (ЗСеМО).

Исследования выполняются с применением имитационного моделирования в среде GPSS или в системе моделирования Any Logic.

При представлении в отчете результатов исследований предпочтение следует отдавать графической форме в виде гистограмм и графиков, наглядно отображающих зависимости основных наиболее важных (с точки зрения исследователя) характеристик исследуемых систем от параметров (таких как загрузка, характер потока поступающих в РСеМО заявок, характер обслуживания заявок в узлах, количество приборов в узлах).

Представление результатов в виде таблиц носит только рекомендательный характер и может быть выполнено, если это необходимо для подтверждения сформулированных выводов.

3. Этапы работы

3.1. Описание моделей замкнутой CeMO (3CeMO) и разомкнутой CeMO (PCeMO)

Описание моделей 3CeMO и PCeMO предполагает изображение моделей в виде **графов CeMO** с указанием следующих параметров:

- количество обслуживающих приборов в узлах CeMO;
- > средние длительности обслуживания заявок в узлах СеМО;
- > вероятности передач (в виде матрицы или на дугах графа СеМО);
- **р**ассчитанные значения *коэффициентов передач* для узлов сети.

Число заявок, циркулирующих в замкнутой CeMO, и **интенсивность входящего потока** заявок, поступающих в разомкнутую CeMO, являются варьируемыми параметрами.

В качестве основных характеристик следует рассматривать прежде всего сетевые характеристики СеМО.

Сравнение характеристик функционирования разомкнутых и замкнутых CeMO следует проводить при условии равенства интенсивности поступления заявок в PCeMO и производительности 3CeMO.

При моделировании необходимо формулировать предположения и допущения, при которых проводится эксперимент.

3.2. Разработка имитационных моделей РСеМО и ЗСеМО

Разработать в среде GPSS и представить в отчете следующие имитационные модели:

- имитационная модель 3CeMO с экспоненциальным распределением длительностей обслуживания заявок в узлах и с неэкспоненциальным распределением (Эрланг 2-го порядка и гиперэкспоненциальное с коэффициентом вариации 2) в одном из узлов, указанном в Таблице 1 (Номер узла);
- имитационная модель PCeMO с экспоненциальным распределением длительностей обслуживания заявок в узлах и простейшим потоком заявок, поступающих в сеть (интенсивность потока заявок должна быть равна производительности 3CeMO) и с тем же неэкспоненциальным распределением (Эрланг 2-го порядка и гиперэкспоненциальным) длительности обслуживания заявок в том же узле, что и в 3CeMO.

ВАЖНО! При защите УИР необходимо предоставить разработанные имитационные модели и проиллюстрировать их работоспособность.

4. Проведение имитационных экспериментов

Имитационные эксперименты направлены на выявление свойств исследуемых систем и выявлению различий между результатами, полученными при различных предположениях о характере процессов поступления и обслуживания заявок в системе, уровне загрузки, количества приборов в узлах и т. п.

Рекомендуется следующий порядок проведения экспериментов.

4.1. Изменяя число заявок M в заданной ЗСеМО, начиная с M=1, определить **критическое число заявок M^***, начиная с которого производительность сети не изменяется с заданной точностью (изменение значения производительности не превосходит 1-2%).

Результаты представляются в графическом виде: зависимость производительности сети от числа циркулирующих в ней заявок.

4.2. При найденном критическом числе заявок **выявить «узкое место»** сети и устранить его путем изменения в этом узле: 1) длительности обслуживания заявок; 2) количества приборов в узле.

Оценить, как изменились сетевые характеристики 3CeMO (производительность сети, время ожидания и пребывания заявок в сети, ...) при устранении «узкого места».

4.3. Преобразовать ЗСеМО в РСеМО, полагая, что **интенсивность поступления** заявок в разомкнутую сеть равна **производительности** замкнутой сети.

Выполнить имитационные эксперименты и сравнить характеристики функционирования экспоненциальной PCeMO с характеристиками 3CeMO.

Определить предельную интенсивность поступления заявок в PCeMO, при которой в сети отсутствуют перегрузки.

Проанализировать сетевые характеристики функционирования PCeMO при изменении интенсивности входящего потока заявок от значения, при котором загрузка «узкого места» составляет 0.8-0.95.

- 4.4. На модели замкнутой сети *с неэкспоненциальным* распределением длительности обслуживания заявок в узлах необходимо:
 - оценить влияние *закона распределения* (коэффициента вариации) длительности обслуживания заявок в заданном узле на характеристики функционирования сети;
 - выполнить анализ влияния количества заявок в замкнутой сети с неэкспоненциальным распределением длительности обслуживания заявок в заданном узле на характеристики функционирования и сравнить с аналогичными характеристиками замкнутой сети с экспоненциальным распределением длительности обслуживания заявок в том же узле.
- 4.5. На модели разомкнутой сети *с неэкспоненциальным* распределением длительностей обслуживания заявок в узлах необходимо:
 - сравнить характеристики PCeMO с характеристиками 3CeMO, *производительность* которой равна *интенсивности потока заявок*, поступающих в PCeMO;
 - оценить влияние характера входного потока заявок (коэффициента вариации интервалов времени между заявками) на характеристики функционирования сети, сравнив результаты, полученные для *детерминированного* и *простейшего* потока заявок, поступающих в разомкнутую сеть.

5. Обработка и анализ результатов моделирования

Обработка полученных результатов заключается в их представлении в форме таблиц и/или графических зависимостей, позволяющих выполнить детальный анализ свойств исследуемой системы.

Результаты, полученные в процессе выполнения имитационных экспериментов, рекомендуется представлять прежде всего в графическом виде, сопровождая подробным анализом, выводами и комментариями.

Результаты (на усмотрение исследователя) могут быть представлены или продублированы в табличном виде, рекомендуемые формы которых представлены ниже.

В процессе анализа свойств системы должны быть:

- выявлены наиболее существенные особенности исследуемой системы;
- сформулированы выводы о характере зависимостей характеристик функционирования системы от значений параметров.

Примерный перечень вопросов, подлежащих проработке, и рекомендуемая последовательность их изложения, приведены ниже.

По результатам моделирования должны быть представлены выводы, включающие в себя, кроме констатации очевидных фактов (типа «характеристика увеличивается» или «характеристика уменьшается»), объяснение характера полученной зависимости; при этом следует ответить на следующие вопросы:

- Чему равно критическое число заявок в 3CeMO и почему при достижении критического числа заявок в 3CeMO не меняется производительность 3CeMO?
- Чем определяется предельная производительность (пропускная способность) 3CeMO? Как ее можно определить, не прибегая к подробным расчетам?
- Как изменяется время пребывания заявок в 3СеМО? Почему эта зависимость имеет именно такой характер?
- Чему равна производительность и пропускная способность РСеМО?
- Как и почему именно так ведет себя зависимость времени пребывания заявок в PCeMO от интенсивности источника? В чем отличие этой зависимости от аналогичной для 3CeMO при изменении числа заявок в 3CeMO?

По результатам оценки влияния **коэффициентов вариации** (КВ) длительностей обслуживания и интервалов между поступающими в разомкнутую CeMO заявками на характеристики функционирования CeMO. При этом необходимо ответить *на следующие вопросы*:

• Каким законом (Эрланга, экспоненциальным, гиперэкспоненциальным) можно аппроксимировать распределение времени пребывания и ожидания заявок в сети и в узлах CeMO (проиллюстрировать на гистограммах, полученных при моделировании в среде GPSS)?

- Как влияют КВ длительностей обслуживания и интервалов между поступающими в разомкнутую СеМО заявками на средние значения и КВ характеристик СеМО (загрузку узлов, времена ожидания и пребывания)?
- Одинаково ли ведут себя характеристики ЗСеМО и РСеМО при изменении КВ длительностей обслуживания заявок?

Ответы на все сформулированные выше вопросы должны сопровождаться подробными пояснениями и обоснованиями.

<u>УКАЗАНИЕ:</u> при выборе объема представляемых в отчете результатов (числа таблиц, графиков и зависимостей на одном графике) следует руководствоваться следующими соображениями:

- 1) для каждой модели результаты должны быть представлены как минимум для 1-2-х сетевых и 1-2-х узловых характеристик СеМО, при этом следует иметь в виду, что основной *сетевой* характеристикой для ЗСеМО является производительность сети, а для РСеМО время пребывания заявок в сети;
- 2) на одном графике рекомендуется представлять не менее 2-х зависимостей (например, времени ожидания и времени пребывания), позволяющих выполнить их сравнительный анализ.

Порядок выполнения работы

- 1. Получить вариант задания и ознакомиться с постановкой задачи.
- 2. Разработать и подготовить имитационные модели в соответствии с полученным вариантом.
- 3. Выполнить модельные эксперименты с использованием системы имитационного моделирования GPSS.
- 4. Обработать полученные экспериментальные результаты и составить отчет по результатам выполненной работы.
 - 5. Защитить работу.

6. Оформление и содержание отчета

- 1. Отчет по УИР должен содержать:
- 1) **Постановку задачи** исследования замкнутых и разомкнутых СеМО и все исходные данные с указанием размерностей.
 - 2) Результаты исследований 3СеМО:
 - граф ЗСеМО с указанием всех параметров (структурных и нагрузочных);
 - имитационная модель 3CeMO (листинг GPSS-программы) с необходимыми комментариями;
 - результаты имитационного моделирования ЗСеМО в виде графиков (таблиц) и выводы на основе анализа этих результатов;
 - анализ результатов устранения «узкого места» в 3CeMO.

3) Результаты исследований РСеМО:

- граф с указанием всех параметров (структурных и нагрузочных) исследуемой РСеМО;
- имитационная модель PCeMO (листинг GPSS-программы) с необходимыми комментариями;
- результаты имитационного моделирования в виде графиков (таблиц) и выводы на основе анализа полученных результатов;
- анализ влияния неэкспоненциального характера интервалов между поступающими в сеть заявками и длительности обслуживания в узлах на характеристики функционирования РСеМО.
- 4) **Результаты сравнительного анализа** (графики, выводы) характеристик **разомкнутых** и **замкнутых** СеМО.

<u>Примечание.</u> При защите УИР необходимо предоставить разработанные имитационные модели и, при необходимости, проиллюстрировать их работоспособность.

7. Варианты заданий

Номер варианта выдается преподавателем в виде двух чисел: А/В, где:

- **А** номер варианта, по которому из **таблицы 1** выбираются основные структурные параметры исследуемой 3CeMO и количество заявок, циркулирующих в 3CeMO; граф модели в соответствии с указанным в задании типом представлен на рисунке (см. **Типы моделей**);
- **В** номер варианта, по которому из **таблицы 2** выбираются вероятности передач и средние длительности обслуживания заявок в узлах.
- В графе «**Номер узла**» указан номер узла, для которого при исследовании *неэкспоненциальной* СеМО экспоненциальный закон распределения длительности обслуживания заменяется на:
 - Эрланг 2-го порядка;
 - гиперэкспоненциальный с коэффициентом вариации 2.

Таблица 1 **Структурные параметры 3СеМО**

Вариант	К-во	Тип					
(A)	узлов		Солич боро:			Но- мер	модели
	n	У1	У2	У3	У4	узла	см.рис.
1	3	1	2	1		1	M1
2	3	3	1	1		2	M1
3	3	1	3	1		3	M1
4	3	1	2	3		1	M1
5	3	4	1	2		2	M1
6	3	1	4	1		3	M1
7	3	1	3	2		1	M1
8	3	2	3	1		2	M1
9	3	3	1	2		3	M1
10	4	1	1	2	1	1	M2
11	4	2	1	2	1	2	M2
12	4	1	1	2	3	3	M2
13	4	3	2	1	2	1	M2
14	4	1	1	1	4	2	M2
15	4	2	1	2	2	3	M2
16	4	1	2	1	3	1	M2
17	4	4	2	1	3	2	M2
18	4	2	1	1	3	3	M2
19	4	4	1	2	1	1	M2
20	4	2	1	1	2	2	M2
21	4	1	3	2	1	3	M2
22	4	1	1	2	2	1	M2
23	4	2	1	2	1	2	M2
24	4	1	1	3	1	3	M2
25	4	3	2	1	1	1	M2
26	4	2	3	1	1	2	M2
27	4	2	1	1	3	3	M2
28	4	1	4	1	2	1	M2
29	4	2	1	2	1	2	M2
30	4	5	1	2	1	3	M2
31	4	3	1	3	1	1	M3
32	4	1	2	1	1	2	M3
33	4	2	1	1	1	3	M3
34	4	1	3	1	3	1	M3
35	4	1	4	1	2	2	M3

<u>НИУ ИТМО</u> факультет ПИ и КТ

Вариант	К-во	K	Солич	еств	Но-	Тип	
(A)	узлов	при	боро	вву	мер	модели	
	n	У1	У2	У3	У4	узла	см.рис.
36	4	2	1	1	2	3	M3
37	4	1	3	2	1	1	M3
38	4	1	1	2	2	2	M3
39	4	2	1	2	1	3	M3
40	4	1	1	3	1	1	M3
41	4	3	2	1	1	2	M3
42	4	2	3	1	1	3	M3
43	4	2	1	1	3	1	M3
44	4	1	4	1	2	2	M3
45	4	2	1	2	1	3	M3
46	4	5	1	2	1	1	M3
47	4	3	1	3	1	2	M3
48	4	1	2	1	1	3	M3
49	4	2	1	1	1	1	M3
50	4	1	3	1	3	2	M3
51	4	2	1	3	1	1	M3
52	4	3	2	1	2	2	M3

Номер узла — это узел, в котором в процессе исследований необходимо экспоненциальное распределение длительности обслуживания изменить на распределение Эрланга 2-го порядка и гиперэкспоненциальное распределение с коэффициентом вариации равным 2.

Таблица 2 Параметры узлов СеМО

Вариант	Вероят	тности п	ередач	Средние длительности					
(B)				обслуживания, с					
	p_{10}	p_{12}	p_{13}	b_1	b_2	b_3	b_4		
1	0,1	0,3	0,3	1	10	4,5	20		
2	0,2	0,4	0,2	2	5,5	10	12		
3	0,25	0,25	0,25	4	2,5	14	5		
4	0,5	0,25	0,1	5	8,5	5	15		
5	0,1	0,5	0,2	10	5	1,5	25		
6	0,2	0,3	0,3	1	15	10	6,4		
7	0,25	0,5	0,1	2	4,5	5	15		
8	0,5	0,3	0,1	4	10	8	9,5		
9	0,1	0,4	0,25	5	25	10,5	15		
10	0,2	0,5	0,1	10	12	15,5	25		

Типы моделей

Примечание: значения вероятностей передач, *отмеченных на графе модели*, выбираются из таблицы 2. Значения остальных вероятностей передач определяются из условия, что все представленные сетевые модели относятся к классу линейных CeMO, т.е. сумма вероятностей должна быть равна 1.

Рекомендуемые формы таблиц

Форма 1

Результаты варьирования параметров

Характеристики	(Критич.число =)			(Предельная инт.=					
CeMO	Число заявок в СеМО			Инт-ть потока в РСеМО					
	1 2 3								
Длина очереди									
Число заявок									
Время ожидания									
Время пребывания									
Производительность									

<u>Примечание:</u> вместо предлагаемой таблицы более предпочтительным является представление результатов в виде графиков с указанием на них численных значений характеристик и варьируемых параметров.

Форма 2 **Результаты имитационного моделирования для ЗСеМО** Длительность моделирования Количество заявок _____

Характе-	3Ce	е-ОМ	кспон	енциал	ьная	ЗСеМО-неэкспоненци				альная
ристики	Узловые				Сете	Узловые				Сете-
CeMO	У1	У2	У3	У4	-	У1	У2	У3	У4	вые
					вые					
Загрузка										
Длина										
очереди										
Производи-										
тельность										
Время										
ожидания										
Время										
пребывания										

Форма 3 **Результаты имитационного моделирования для РСеМО** Длительность моделирования Количество заявок _____

Характе-	PCe	е-ОМ	кспон	енциа	льная	PCeM	альная			
ристики		Узло	овые		Сете-		Узло	вые		Сете-
CeMO	У1	У2	У3	У4	вые	У1	У2	У3	У4	вые
Загрузка										
Длина										
очереди										
Число										
заявок в										
Время										
ожидания										
Время										
пребывания										

Примечания:

- 1) рекомендуемые формы таблиц при желании и необходимости могут быть изменены, заменены или представлены в другом виде;
- 2) вместо таблиц, отражающих зависимости характеристик исследуемых систем от параметров структурно-функциональной организации и параметров нагрузки, более предпочтительными являются графики этих зависимостей с указанием значений характеристик и их размерностей;
- 3) количество таблиц и графиков с результатами и их соотношение на усмотрение автора (авторов) работы.