Recitation: Functions

Discrete Mathematics TAs (plaigarised primarily from the book)

April 15, 2022

Questions

- 1. 10 points Determine whether $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if
 - (a) f(m,n) = 2m n
 - (b) $f(m,n) = m^2 n^2$
 - (c) f(m,n) = m + n + 1
 - (d) f(m,n) = |m| |n|
 - (e) $f(m,n) = m^2 4$
- 2. 5 points if $f: A \to B$ is a one to one function show that there exists a function $g: B \to A$ such that g is onto
- 3. 5 points if $f:A\to B$ is a onto function show that there exists a function $g:B\to A$ such that g is one to one
- 4. 5 points Show that for every one-to-one and onto function $f:A\to B$ it has an inverse function g, such that $\forall a\in A, g(f(a))=a$ and $\forall b\in A, f(g(b))=b$
- 5. 7 points 1. Let I be the set of decimals of the form $0.d_1d_2d_3d_4...$ Construct a one to one function from I to $I \times I$
 - 2. Find either an onto function from I to $I \times I$ or a one to one function from for $I \times I$ to I
 - 3. Do I and $I \times I$ have the same cardinality?
- 6. 5 points Let $f: A \to B$ and $g: B \to C$ If $C_0 \subseteq C$, show that $(g \circ f)^{-1}(C_0) = f^{-1}(g^{-1}(C_0))$
- 7. 5 points Let $f: A \to B$ and $g: B \to C$ If f and g are injective, show that $g \circ f$ is injective.
- 8. 5 points Let $f: A \to B$ and $g: B \to C$ If f and g are surjective, show that $g \circ f$ is surjective.
- 9. $\boxed{5 \text{ points}}$ In mathematics and computer science, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x.

Let g be a function from the set A to the set B. Let S be a subset of B. We define the inverse image of S to be the subset of A whose elements are precisely all pre-images of all elements of S. We denote the inverse image of S by $g^{-1}(S)$, so $g^{-1}(S) = \{a \in A \mid g(a) \in S\}$. (Beware: The notation g^{-1} is used in two different ways. Do not confuse the notation introduced here with the notation $g^{-1}(y)$ for the value at g of the inverse of the invertible function g. Notice also that $g^{-1}(S)$, the inverse image of the set S, makes sense for all functions g, not just invertible functions.)

Let
$$g(x) = |x|$$
. Find

- (a) $g^{-1}(\{0\})$.
- (b) $g^{-1}(\{-1,0,1\})$
- (c) $g^{-1}(\{x \mid 0 < x < 1\}).$
- 10. 5 points Let f be a function from the set A to the set B. Let S be a subset of B. We define the inverse image of S to be the subset of A whose elements are precisely all pre-images of all elements of S. We denote the inverse image of S by $f^{-1}(S)$, so $f^{-1}(S) = \{a \in A \mid f(a) \in S\}$. (Beware: The notation f^{-1} is used in two different ways. Do not confuse the notation introduced here with the notation $f^{-1}(y)$ for the value at g of the inverse of the invertible function g. Notice also that $g^{-1}(S)$, the inverse image of the set g, makes sense for all functions g, not just invertible functions.)

 Let g be a function from g to g. Let g and g be subsets of g. Show that

Recitation: Functions

Let f be a function from A to B. Let S and T be subsets of B. Show that $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$.