

Recall the solution the minimal spanning tree problem for the cable example

• Length of the minimal spanning tree is the sum of lengths of chosen edges 9 + 15 + 12 + 14 + 8 + 14 = 72

- $x_{ij} = indicator \ if \ edge \ (i,j) \ is \ selected$
- $i = \{1, 2, 3, \dots, 6\}$
- $j = \{2, 3, \dots, 7\}$
- *i* < *j*

Objective function

- We want to minimize total distance
- Let d_{ij} represent the distance along (i,j)
- $Z = \sum_{i=1}^{6} \sum_{j=i+1}^{7} d_{ij} x_{ij}$

•
$$x_{12} + x_{14} + x_{13} \ge 1$$

•
$$x_{12} + x_{24} + x_{25} \ge 1$$

•
$$x_{13} + x_{34} + x_{36} \ge 1$$

•
$$x_{14} + x_{24} + x_{34} + x_{45} + x_{46} + x_{47} \ge 1$$

•
$$x_{25} + x_{45} + x_{57} \ge 1$$

•
$$x_{36} + x_{46} + x_{67} \ge 1$$

•
$$x_{47} + x_{57} + x_{67} \ge 1$$

(Node 1)

(Node 2)

(Node 3)

(Node 4)

(Node 5)

(Node 6)

(Node 7)

• Observe the following pattern of spanning trees (possibly minimal)

- Problematic cases that violate pattern
 - Case 1: Looping spanning tree

• Case 2: Disconnected spanning trees

- Constraint to ensure spanning tree identified
 - Cable company needs to connect a network of 7 nodes
 - Exactly 7-1=6 branches need to be selected for a spanning tree

•
$$\sum_{i=1}^{6} \sum_{j=i+1}^{7} x_{ij} = 6$$

Download CableSpanning.xlsx from course website from link Sheet 1

	Α	В	С	D	Е	F	G	Н	1	J
1	Cable Spanning									
2	-									
3	Branch	In	Out	Length	Select		Node	Number	Sign	Value
4	1	1	2	16	0		1	1	>=	1
5	2	1	4	35	0		2	1	>=	1
6	3	1	3	9	1		3	2	>=	1
7	4	2	4	12	1		4	3	>=	1
8	5	2	5	25	0		5	2	>=	1
9	6	4	5	14	1		6	1	>=	1
10	7	4	7	19	0		7	2	>=	1
11	8	4	6	17	0					
12	9	3	4	15	1		Branches	6	=	6
13	10	3	6	22	0					
14	11	5	7	8	1					
15	12	6	7	14	1					
16										
17	Objective	72								

Overview of Network Models

- Three types of problems related to graphs with weighted edges
 - Shortest route
 - Maximal flow
 - Minimal spanning tree
- All three problems had custom algorithms and linear programming formulations
- Shortest route and minimal spanning tree are similar but give different solutions

Network of 7 nodes with undirected edges

- Q: What is the shortest route from node 1 to all other nodes?
- Q: What is the minimal spanning tree of the network?

- Shortest route algorithm
 - Start with permanent set {1}
 - Shortest adjacent node to node 1 is node 2 along edge (1,2)
 - Add node 2 to permanent set
 - Keep track of edge (1,2)

Set	Path	Distance
{1}	1-2	5
	1-3	8

- New permanent set {1,2}
- Shortest node to node 1, not in permanent set, is node 3
- Add node 3 to permanent set
- Keep track of edge (1,3)

Set	Path	Distance
{1}	1-2	5
{1,2}	1-3	8
	1-2-3	11
	1-2-4	12

Set	Path	Distance
{1}	1-2	5
{1,2}	1-3	8
{1,2,3}	1-2-4	12
	1-3-4	18
	1-3-5	14
	1-3-6	18

Set	Path	Distance
{1}	1-2	5
{1,2}	1-3	8
{1,2,3}	1-2-4	12
{1,2,3,4}	1-2-4-5	21
	1-3-5	14
	1-3-6	18
	1-2-4-7	20

Set	Path	Distance
{1}	1-2	5
{1 , 2}	1-3	8
{1,2,3}	1-2-4	12
{1,2,3,4}	1-3-5	14
{1,2,3,4,5}	1-3-6	18
	1-3-5-6	17
	1-2-4-7	20
	1-3-5-7	19

Set	Path	Distance
{1}	1-2	5
{1 , 2}	1-3	8
{1,2,3}	1-2-4	12
{1,2,3,4}	1-3-5	14
{1,2,3,4,5}	1-3-5-6	17
{1,2,3,4,5,6}	1-2-4-7	20
	1-3-5-6-7	23
	1-3-5-7	19

Closest	Path	Distance
2	1-2	5
3	1-3	8
4	1-2-4	12
5	1-3-5	14
6	1-3-5-6	17
7	1-3-5-7	19

• The sum of all the edges from the final spanning tree 5+7+8+6+3+5=34

- Minimal spanning tree algorithm
 - Start with node 1 in spanning set {1}
 - Shortest adjacent node to any node in spanning set is node 2
 - Add node 2 to spanning set
 - Keep track of edge (1,2)

Set	Path	Distance
{1}	1-2	5
	1-3	8

- Minimal spanning tree algorithm
 - Consider spanning set {1,2}
 - Shortest adjacent node to any node in spanning set is node 3
 - Add node 3 to spanning set
 - Keep track of edge (2,3)

Set	Path	Distance
{1}	1-2	5
{1,2}	1-3	8
	2-3	6
	2-4	7

- Consider spanning set {1,2,3}
- Shortest adjacent node to any node in spanning set is node 5
- Add node 5 to spanning set
- Keep track of edge (3-5)

Set	Path	Distance
{1}	1-2	5
{1,2}	2-3	6
{1,2,3}	2-4	7
	3-4	10
	3-5	6
	3-6	10

Set	Path	Distance
{1}	1-2	5
{1,2}	2-3	6
{1,2,3}	3-5	6
{1,2,3,5}	2-4	7
	3-4	10
	5-4	9
	3-6	10
	5-6	3

Set	Path	Distance
{1}	1-2	5
{1 , 2}	2-3	6
{1,2,3}	3-5	6
{1,2,3,5}	5-6	3
{1,2,3,5,6}	2-4	7
	3-4	10
	5-4	9
	5-7	5
	6-7	6

Set	Path	Distance
{1}	1-2	5
{1,2}	2-3	6
{1,2,3}	3-5	6
{1,2,3,5}	5-6	3
{1,2,3,5,6}	5-7	5
{1,2,3,5,6,7}	2-4	7
	3-4	10
	5-4	9
	7-4	8

Added	Path	Distance
2	1-2	5
3	2-3	6
5	3-5	6
6	5-6	3
7	5-7	5
4	2-4	7

• The sum of all the edges from the minimal spanning tree 5 + 7 + 6 + 6 + 3 + 5 = 32

Solution comparison

• Different solutions because algorithms target different goals

The End

