Zepu Wang

Mobile: 1-2157307532 Email: zepu@seas.upenn.edu

Google Scholar: https://scholar.google.com/citations?user=o40_p5sAAAAJ&hl=zh-CN&oi=ao

Website: https://zepuwang.github.io/ (Keep Updating)

Research Interest

- Urban Computing
 - Time Series Prediction
 - Spatial Temporal Graph Neural Networks
 - Uncertainty Quantification
- Intelligent Transportation Systems
 - o Interested in Learning-based Control and Autonomy

Education

University of Pennsylvania

Philadelphia, the US 08/2022 – 08/2024

Master of Science in Engineering in Data Science

• Current GPA: 3.9/4.0

• Relevant courses: Statistics for Data Science, Machine Learning, Deep Learning, Natural Language Processing, Graph Neural Networks

Duke University/Duke Kunshan University

Durham, the US/Kunshan, China

Bachelor of Science in Interdisciplinary Studies (Subplan: Data Science) (by Duke)

08/2018 - 05/2022

Bachelor of Science in Data Science (by Duke Kunshan)

• GPA: 3.94/4.0

- Summa Cum Laude (Undergraduate highest honor); Dean's List (2018, 2019, 2020, 2021, 2022); Merit-based Undergraduate Official Scholarship
- Relevant courses: Statistical Learning, Data Analysis, Algorithms, Stochastic Process, Linear Algebra

Academic Achievement

- Zepu Wang, Yuqi Nie, Peng Sun, Nam H. Nguyen, John Mulvey, H. Vincent Poor. ST-MLP: A Cascaded Spatio-Temporal Linear Framework with Channel-Independence Strategy for Traffic Forecasting, under review by AAAI Conference on Artificial Intelligence 2024
- Gezhi Wang, **Zepu Wang**, Peng Sun, Azzedine Boukerche. SK-SVR-CNN: A Hybrid Approach for Traffic Flow Prediction with Signature PDE Kernel and Convolutional Neural Networks, under review by *IEEE ICC International Conference on Communications* 2024
- **Zepu Wang**, Dingyi Zhuang, Yankai Li, Shenhao Wang, Jinhua Zhao, Peng Sun. ST-GIN: An Uncertainty Quantification Approach in Traffic Data Imputation with Spatio-temporal Graph Attention and Bidirectional Recurrent United Neural Networks, accepted by *IEEE ITSC International Conference on Intelligent Transportation Systems* 2023
- **Zepu Wang**, Yifei Sun, Zhiyu Lei, Xincheng Zhu, Peng Sun. SST: A Simplified Swin Transformer-based Model for Taxi Destination Prediction based on Existing Trajectory, accepted by *IEEE ITSC International Conference on Intelligent Transportation Systems* 2023
- **Zepu Wang**, Peng Sun, Yulin Hu, Azzedine Boukerche. A novel hybrid method for achieving accurate and timeliness vehicular traffic flow prediction in road networks, accepted by *Computer Communications 2023*
- Zepu Wang, Peng Sun, Yulin Hu, Azzedine Boukerche. A Novel Mixed Method of Machine Learning Based Model in Traffic Flow Prediction, accepted by ACM MSWIM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems 2022
- **Zepu Wang**, Peng Sun, Yulin Hu, Azzedine Boukerche. SFL: A High Precise Traffic Flow Predictor for Supporting Intelligent Transportation Systems, accepted by IEEE Globecom Global Communications Conference 2022
- **Zepu Wang**, Peng Sun, Azzedine Boukerche. A Novel Time Efficient Machine Learning-based Traffic Flow Prediction Method for Large Scale Road Network, accepted by IEEE ICC International Conference on Communications 2022

Campus Research Experience

Undergraduate Research Mentor (02/2024 ~ present) Supervisor: Prof. Peng Sun, Ph.D. Duke Kunshan University, Kunshan, China

- Mentor capstone projects for current undergraduate students in traffic flow prediction; Schedule weekly meeting to discuss progress; Assist them in designing deep learning models; Edit final academic paper.
- Applied convolutional neural networks (CNN) to extract trend of traffic flow; Adopted signature PDE kernel to predict the residual of traffic flow; Combined CNN with signature PDE kernel to design a hybrid traffic prediction algorithm.

Online Research Assistant (02/2023 ~ 08/2023)

Massachusetts Institute of Technology, the US

Supervisor: Prof. Jinhua Zhao, Ph.D., Prof. Shenhao Wang, Ph.D.

Project 1: Uncertainty Quantification in Traffic Data Imputation

• Utilized graph attention layers and bidirectional recurrent units to capture spatio-temporal traffic data patterns and predicted uncertainty of traffic data.

Project 2: Mixture Models for Uncertainty Quantification in Sparse Travel Demand Prediction

• Used mixture models (Laplace, Poisson, Gaussian) to approximate complex travel demand distribution, addressing high zero occurrences.

Research Assistant (02/2021 ~ 08/2022)

Duke Kunshan University, Kunshan, China

Supervisor: Prof. Peng Sun, Ph.D., Prof. Azzedine Boukerche, Ph.D.

Project 1: A Velocity-based Model in Traffic Flow Prediction

- Conducted evaluations and comparisons among popular traffic flow prediction models (Linear Regression, SVR, Decision Tree, Random Forest, LSTMs, and GRUs) in a single intersection based on accuracy (*RMSE*, *MAE*, *R*²).
- Increased 2% accuracy (*RMSE*) on average by considering the vehicles' speed in surrounding intersections to adjust the original results.

Project 2: A Hybrid Model in Traffic Flow Prediction

• Combined Long Short-Term Memory (LSTM) neural networks, Wavelet Analysis and Spectral Analysis to design an accurate traffic flow forecasting algorithm.

Project 3: Traffic Flow Prediction using Auto-encoder

- Applied Auto-encoder as a dimension reduction technique for large road networks and increased the time efficiency by 27.4% with sacrifice of only 5% accuracy (*MSE*).
- Provided a comprehensive analysis of trade-off between original data information loss and noises' filtration from the original data while applying dimension reduction technique.

Research Assistant (07/2021 ~ 08/2021)

Westlake University, China

Supervisor: Prof. Stan Z. Li, Ph.D.

Project: Protein-Protein Interactions (PPIs)

- Predicted PPIs based on primary protein structures, using traditional natural language processing (NLP) methods (RNNs) and advanced NLP methods (Transformers).
- Increased accuracy by 2% (MSE) in RNNs methods by using the trick of pad sequences.
- Proposed potential negative influence on the model accuracy by the imbalanced dataset (most samples show no interaction exist) and provided Synthetic Minority Oversampling Technique (SMOTE) as a solution.

Internship Research Experience

Dell EMCBeijing, ChinaResearch Intern06/2021 – 09/2021

• Applied open sources of algorithms and packages to implement Kinect 2, a Windows designed camera in the Ubuntu operating system.

• Extracted depth data from the camera to make original gesture measuring model (OpenPose) more accurate.

TencentData Analysis Intern

Beijing, China
05/2020 – 08/2020

- Applied machine learning methods (Linear Regression, SVR, and Tree-related methods) to analyze the public dataset (>100,000 people in Shanghai with more than 20 characteristics), focusing on the relationship between variable *age* and *frequency* of mobile payments users.
- Evaluated the prevalence of mobile payment in Shanghai based on data mining results and provided potential suggestions for mobile payment companies to play appropriate advertising strategies for specific age groups.

Campus Work Experience

Developing Business Strategies for Master Kong

University of Pennsylvania, Philadelphia, the US

Wharton Analytics Fellow

10/2022 - 12/2022

- Served as a technical lead, led 5 undergraduate students, and cooperated with MBA students to find out potential salable flavors, and potential salable combinations of products.
- Figured out the most appropriate discount rate for Master Kong products based on real sales data from Jingdong.

Additional information

- **Programming/Statistical Skills**: Python, C++, Java, MATLAB, STATA, SQL
- Languages: Mandarin Chinese (Native), English (Fluent, TOFEL iBT MyBest Score 111)
- Miscellaneous Interests: Debate; Bridge (Card Game); Texas Hold'em; Cooking; Fitness; Soccer