

Max Domagk, Jan Meyer, Jako Kilter and Rain Maripuu

Faculty of Electrical and Computer Engineering Institute of Electrical Power Systems and High Voltage Engineering

Use Cases for Power Quality Data Analysis: Case Study for the Estonian Transmission System

ICHQP 2024, October 15-18, Chengdu, China

Agenda

Motivation

Use Cases for Power Quality Data Analysis

Case Study: Estonian Transmission System

- Use case 1: Compliance with limits
- Use case 2: Seasonal variations
- Use case 3: Trend identification

Conclusions

Motivation

- Recent developments (e.g. increase in renewables) can have a significant impact on Power Quality (PQ)
- Increasing number of PQ measurement campaigns to monitor networks
- Resulting in vast amounts of measurement data
- Measurement data contains valuable information that is often underutilized

Power Quality Data Analysis

- Various use cases with potential benefits
- Turning measurement data into actionable information
- Allowing a proactive management to ensure adequate PQ

Power Quality Data Analysis

Overview of use cases

Use case defines measurement requirements:

Measurement locations

- Single-point or multi-point measurements
- Selection of locations

Measurement parameters

- Voltage quality parameters
- Current quality parameters
- Aggregation interval

Measurement duration

- Short-term (days to weeks)
- Medium-term (months to years)
- Long-term (multiple years)

#	Use Case	Minimum measurement duration	SP	MP
1	Events	Short-term	Χ	
2	Anomalies	Short-term	Χ	
3	Compliance with limits	Short-term	Χ	
4	Emission profiles	Short-term	Χ	
5	Correlation and propagation	Short-term		Χ
6	Model parameter identification	Short-term		Χ
7	Disturbance source identification	Short-term		Χ
8	Seasonal variations	Medium-term	Χ	
9	Trend identification	Long-term	Χ	
10 Trend forecasting		Long-term	Χ	

Single-point (SP) Multi-point (MP)

Data set

Measurement campaign

- 15 sites in Estonian transmission system
- Up to 7.5 years of measurement duration
- 27 voltage quality parameters:
 - Unbalance (UNB),
 - Long-term flicker (Uplt),
 - Total harmonic distortion (Uthd) and
 - Harmonic voltages (U02-U25)
- 10 min aggregation interval
- Individual planning levels

Data pre-processing

- 1. Calculation of 95th percentiles per week
- 2. Comparison with planning limits

		N	B. 4	A 11 1 1
	Voltage	Nominal	Measurement	Available
Site	level	voltage in	duration in	data in %
	ievei	kV	weeks	
M01	EHV	330	340	96.2
M02	EHV	330	223	98.9
M03	HV	110	329	99.8
M04	HV	110	290	99.9
M05	HV	110	290	99.9
M06	HV	110	343	99.9
M07	HV	110	348	100
M08	HV	110	343	99.9
M09	HV	110	311	99.8
M10	HV	110	280	99.7
M11	HV	110	311	99.8
M12	HV	110	395	39.2
M13	HV	110	395	39.2
M14	HV	110	51	98.2
M15	HV	110	51	98.3
M12 M13 M14	HV HV HV	110 110 110	395 395 51	39.2 39.2 98.2

Use Case 1: Compliance with limits

 Comparison of weekly 95th percentiles for different parameters using normalized a Power Quality index (PQI)

$$PQI = \left(1 - \frac{\text{value}}{\text{limit}}\right) \cdot 100\%$$

$$50\% < PQI \le 100\%$$

$$25\% < PQI \le 50\%$$

$$0\% < PQI \le 25\%$$

$$POI \le 0\%$$

PQ indices by parameter and site (minimum aggregation of all weeks)

Use Case 2: Seasonal variations

- Quantification of seasonal variations by analysing spectral components of time series
- Component with period of 52 weeks ("fundamental")
 - Amplitude indicates size of variations
 - Phase angle represents calendar weeks with highest levels

Polar plot of seasonal variations

Use Case 3: Trend identification (1)

- Extraction of trend component using time series decomposition
- Quantification of recent trend developments using:
 - Trend gain (increasing/decreasing tendencies)
 - Trend duration (after last turning point)

Overview of trend gain and duration

Use Case 3: Trend identification (2)

- Multivariate analysis of trend components
- Clustering using k-means to group similar developments
 - Clusters 1 to 3 with recent decreasing tendencies
 - Cluster 4 with significant increasing tendencies

Resulting cluster assignments

Conclusions

- PQ measurements are necessary to monitor recent changes in the energy sector
- Use cases are important in the proper design of PQ monitoring campaigns
- PQ data analysis can reveal valuable insights
- Case study of the Estonian transmission system:
 - Compliance with limits most of the time, exceedance only in certain weeks (0.4% of all weeks)
 - Seasonal variations for THD, 5th and 7th harmonic with higher levels observed in summer
 - Recent trend developments show mostly stable or decreasing tendencies,
 though some parameters with recent increases (e.g. lower even harmonic orders for nearly all sites)
- Future work will address:
 - Automated data pre-processing (including data validation, data imputation)
 - Further development of multivariate analysis methods for PQ measurement data

Thank you for your attention!

+49 351 463 35223

maxdomagk.de

