#### Introduciton to R Graphics with ggplot2

Harvard MIT Data Center

May 10, 2013



#### Outline

- Introduction
- 2 Geometric Objects And Aesthetics
- Statistical Transformations
- Scales
- 5 Faceting
- **6** Themes
- The #1 FAQ
- 8 Putting It All Together
- Wrap-up

#### Topic

- Introduction
- Quantities Qua
- Statistical Transformations
- Scales
- 5 Faceting
- 6 Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up



#### Class Files And Administrative Details

- User name: dataclass
- Password: dataclass
- Copy Rgraphics folder from shared drive to your desktop
- Class Structure and Organization
  - Ask questions at any time. Really!
  - Collaboration is encouraged
  - This is your class! Special requests are encouraged
- This is an intermediate R course
  - Assumes working knowledge of R
  - Relatively fast-paced
  - Focus is on ggplot2 graphics—other packages will not be covered

#### Starting A The End

My goal: by the end of the workshop you will be able to reproduce this graphic from the Economist:

#### Corruption and human development



Sources: Transparency International; UN Human Development Report



#### Why ggplot2?

- Advantages of ggplot2
  - Consistent underlying grammar of graphics (Wilkinson, 2005)
  - Plot specification at a high level of abstraction
  - Very flexible
  - Theme system for polishing plot appearance
  - Active maintenance and development-getting better all the time
  - Many users, active mailing list
- Things you cannot do With ggplot2
  - 3-dimensional graphics
  - Graph-theory type graphs (nodes/edges layout)

### What Is The Grammar Of Graphics?

- The basic idea: independently specify plot building blocks
- Anatomy of a plot:
  - data
  - · aesthetic mapping
  - geometric object
  - statistical transformations
  - scales
  - coordinate system
  - position adjustments
  - faceting

#### Example data I: mtcars

```
> print(head(mtcars, 4))

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.62 16.5 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.88 17.0 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.21 19.4 1 0 3 1
```

```
mpg Miles/(US) gallon
cyl Number of cylinders
disp Displacement (cu.in.)
hp Gross horsepower
drat Rear axle ratio
wt Weight (1b/1000)
qsec 1/4 mile time
vs V/S
am Transmission (0 = automatic, 1 = manual)
gear Number of forward gears
carb Number of carburetors
```

## ggplot2 VS Base Graphics

- Compared to base graphics, ggplot2
  - is more verbose for simple / canned graphics
  - is less verbose for complex / custom graphics
  - does not have methods (data should always be in a data.frame)
  - uses a different system for adding plot elements

# ggplot2 VS Base Graphics

Base graphics VS ggplot for simple graphs:





# ggplot2 VS Base Graphics

Base graphics VS ggplot for complex graphs:

```
par(mar = c(4,4,.1,.1))
plot(mpg ~ hp,
     data=subset(mtcars, am==1),
     xlim=c(50, 450), ylim=c(5, 40))
points(mpg ~ hp, col="red",
       data=subset(mtcars, am==0))
legend(350, 40,
       c("1", "0"), title="am",
       col=c("black", "red"),
       pch=c(1, 1))
                         am
                         0 1
                         0 0
         100
              200
                    300
                          400
                  hp
```

```
ggplot(mtcars, aes(x=hp,
                 y=mpg,
                  color=factor(am)))+
geom_point()
                           factor(am)
 B 25 -
   15
   10 -
        100
              200
                     300
```

#### Topic

- Introduction
- 2 Geometric Objects And Aesthetics
- Statistical Transformations
- Scales
- 5 Faceting
- 6 Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up

### Aesthetic Mapping

- In ggplot land aesthetic means "something you can see"
- Examples include:
  - position (i.e., on the x and y axes)
  - color ("outside" color)
  - fill ("inside" color)
  - shape (of points)
  - linetype
  - size
- Each type of geom accepts only a subset of all aesthetics-refer to the geom help pages to see what mappings each geom accepts
- Aesthetic mappings are set with the aes() function

# Geometic Objects (geom)

- Geometric objects are the actual marks we put on a plot
- Examples include:
  - points (geom\_point, for scatter plots, dot plots, etc)
  - lines (geom\_line, for time series, trend lines, etc)
  - boxplot (geom\_boxplot, for, well, boxplots!)
- A plot must have at least one geom; there is no upper limit
- Add a geom to a plot using the + operator

### Points (Scatterplot)

 Now that we know about geometric objects and aesthetic mapping, we can make a ggplot





### Lines (Prediction Line)

- A plot constructed with ggplot can have more than one geom
- Our hp vs mpg plot could use a regression line:

```
mtcars$pred.mpg <- predict(lm(mpg ~ hp, data = mtcars))</pre>
p1 <- ggplot(mtcars, aes(x = hp, y = mpg))
p1 + geom_point(aes(color = wt)) +
  geom_line(aes(y = pred.mpg))
     35
                                                   wt
     30 -
                                                        5
  Bd 20 €
     15 -
     10 -
               100
                           200
                                        300
                           hp
```

#### **Smoothers**

 Not all geometric objects are simple shapes—the smooth geom includes a line and a ribbon



### Text (Label Points)

 Each geom accepts a particular set of mappings—for example geom\_text() accepts a labels mapping



#### Aesthetic Mapping VS Assignment

- Note that variables are mapped to aesthetics with the aes() function, while fixed aesthetics are set outside the aes() call
- This sometimes leads to confusion, as in this example:



### Mapping Variables To Other Aesthetics

• Other aesthetics are mapped in the same way as x and y in the previous example



#### Exercise I

- Create a scatter plot with displacement on the x axis and horse power on the y axis
- Color the points in the previous plot blue
- Olor the points in the previous plot according to miles per gallon
- Exercise I prototype :noexport:

#### Topic

- Introduction
- Quantities Qua
- Statistical Transformations
- Scales
- Faceting
- 6 Themes
- The #1 FAC
- Putting It All Together
- Wrap-up



#### Statistical Transformations

- Some plot types (such as scatterplots) do not require transformations—each point is plotted at x and y coordinates equal to the original value
- Other plots, such as boxplots, histograms, prediction lines etc. require statistical transformations
  - For a boxplot the y values must be transformed to the median and 1.5(IQR)
  - For a smoother smother the y values must be transformed into predicted values
- Each geom has a default statistic, but these can be changed

#### Setting Statistical Transformation Arguments

- Arguments to stat\_ functions are passed through geom\_ functions
- Slightly annoying because in order to change it you have to first determine which stat the geom uses, then determine the arguments to that stat





#### Changing The Statistical Transformation

Sometimes the default statistical transformation is not what you need

```
> ggplot(mtc.sum, aes(x=gear, y=mpg)) +
    geom_bar()
Mapping a variable to y and also
using stat="bin".
Error in pmin(y, 0) : object
'y' not found
```



#### Exercise II

- Create boxplots of mpg by gear
- Overlay points on top of the box plots
- Create a scatter plot of weight vs. horsepower
- Overlay a linear regression line on top of the scatter plot

#### Topic

- Introduction
- 2 Geometric Objects And Aesthetics
- Statistical Transformations
- Scales
- Faceting
- 6 Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up



#### Scales: Controlling Aesthetic Mapping

- In ggplot2 scales include
  - position
  - color and fill
  - size
  - shape
  - line type
- Modified with scale\_<aesthetic>\_<type>

#### Common Scale Arguments

- name: the first argument gives the axis or legend title
- limits: the minimum and maximum of the scale
- breaks: the points along the scale where labels should appear
- labels: the labels that appear at each break

### Scale Modification Examples



#### Scale breaks and labels

```
p7 <- p6 + geom_point(aes(color = wt)) +
  scale_x_discrete("Number of Gears",
                    breaks = c("3", "4", "5"),
                    labels = c("Three", "Four", "Five"))
p7 + scale_color_continuous("Weight",
                          breaks = with(mtcars, c(min(wt), median(wt), max(w
                          labels = c("Light", "Medium", "Heavy"))
    35 -
                                                Weight
    30 -
                                                   Heavy
 6dE 20 -
                                                   Medium
    15 -
                                                    Light
    10 -
            Three
                        Four
                                    Five
                  Number of Gears
```

#### Scale breaks and labels

```
p7 + scale_color_continuous("Weight",
                         breaks = with(mtcars, c(min(wt), median(wt), max(w
                         labels = c("Light", "Medium", "Heavy"),
                         low = "black",
                         high = "gray80")
    35
                                          Weight
    30 -
                                               Heavy
  BdE 20.
                                               Medium
    15 -
                                               Light
    10 -
           Three
                     Four
                               Five
              Number of Gears
```

#### Using different color scales

```
p7 + scale_color_gradient2("Weight",
                                                                                                                                                                                                                            breaks = with(mtcars, c(min(wt), median(wt), max(
                                                                                                                                                                                                                            labels = c("Light", "Medium", "Heavy"),
                                                                                                                                                                                                                           low = "blue",
                                                                                                                                                                                                                            mid = "black",
                                                                                                                                                                                                                            high = "red",
                                                                                                                                                                                                                            midpoint = median(mtcars$wt))
                                       35
                                                                                                                                                                                                                                                                                                                                                            Weight
                                       30 -
                                                                                                                                                                                                                                                                                                                                                                                                   Heavy
                625 mg 25 mg
                                                                                                                                                                                                                                                                                                                                                                                                   Medium
                                       15 -
                                                                                                                                                                                                                                                                                                                                                                                                   Light
                                        10 -
                                                                                                Three
                                                                                                                                                                                    Four
                                                                                                                                                                                                                                                                     Five
                                                                                                                      Number of Gears
```

#### Scale Modification Examples



#### Scale range

```
p8 + geom_point(aes(size = wt)) +
  scale_size_continuous("Weight",
                        range = c(2, 10)
```

#### Available Scales

• Partial combination matrix of available scales

| Scale           | Types      | Examples                |
|-----------------|------------|-------------------------|
| scale_color_    | identity   | scale_fill_continuous   |
| scale_fill_     | manual     | scale_color_discrete    |
| scale_size_     | continuous |                         |
|                 | discrete   | scale_size_discrete     |
| scale shape     | discrete   | scale shape discrete    |
| scale_linetype_ | identity   | scale_shape_manual      |
|                 | manual     | scale_linetype_discrete |
| scale_x_        | continuous | scale_x_continuous      |
| scale_y_        | discrete   | scale_y_discrete        |
|                 | reverse    | scale_x_log             |
|                 | log        | scale_y_reverse         |
|                 | date       | $scale_x_date$          |
|                 | datetime   | scale_y_datetime        |

#### Exercise III

- Experiment with color, size, and shape aesthetics / scales
- What happens when you map more than one aesthetic to a variable?
- Which aesthetics are good for continuous variables? Which work better for discrete variables?

- Introduction
- Quantities Qua
- Statistical Transformations
- Scales
- Faceting
- 6 Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up



#### Faceting,

- Faceting is ggplot2 parlance for small multiples
- The idea is to create separate graphs for subsets of data
- ggplot2 offers two functions for creating small multiples:
  - 1 facet\_wrap(): define subsets as the levels of a single grouping variable
  - ② facet\_grid(): define subsets as the crossing of two grouping variables
- Facilitates comparison among plots, not just of geoms within a plot

# Example Data II: Titanic

| variable  | description                       |
|-----------|-----------------------------------|
| pclass    | Passenger Class                   |
| survival  | Survival                          |
| name      | Name                              |
| sex       | Sex                               |
| age       | Age                               |
| sibsp     | Number of Siblings/Spouses Aboard |
| parch     | Number of Parents/Children Aboard |
| ticket    | Ticket Number                     |
| fare      | Passenger Fare                    |
| cabin     | Cabin                             |
| embarked  | Port of Embarkation               |
| boat      | Lifeboat                          |
| body      | Body Identification Number        |
| home.dest | Home/Destination                  |

Basic scatter plot:



• Why do we have two clusters of points?



Use the techniques we already know (aesthetic mapping):



• Use faceting in one dimension



• Use faceting in two dimensions



- Introduction
- Statistical Transformations
- Scales
- Faceting
- **6** Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up



#### **Themes**

- The ggplot2 theme system handles non-data plot elements such as
  - Axis labels
  - Plot background
  - Facet label backround
  - Legend appearance
- Two built-in themes:
  - theme\_gray() (default)
  - theme\_bw()
  - More available on the wiki:

https://github.com/hadley/ggplot2/wiki/Themes

# Overriding theme defaults

- Specific theme elements can be overridden using theme()
- Example:



• You can see available options by printing theme\_gray() or theme\_bw()

# Creating and saving new themes

• You can create new themes, as in the following example:

```
theme_new <- theme_bw() +</pre>
  theme(text=element_text(size = 12, family = ""),
         axis.text.x = element_text(colour = "red"),
         panel.background = element_rect(fill = "pink"))
p7 + theme_new
    35 -
                                                        wt
    30 -
  Bd 25 −
E 20 −
    15 -
    10 -
             Three
                            Four
                                           Five
                      Number of Gears
```

- Introduction
- Quantities Qua
- Statistical Transformations
- Scales
- Faceting
- 6 Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up



#### Map Aesthetic To Different Columns

The most frequently asked question goes something like this: I have two variables in my data.frame, and I'd like to plot them as separate points, with different color depending on which variable it is. How do I do that?

```
ggplot(mtcars, aes(x=wt)) +
  geom_point(aes(y=disp), color="red") +
                                             library(reshape2)
  geom_point(aes(y=hp), color="blue")
                                              mtc.m <- melt(mtcars,</pre>
                                                              measure.vars=c("mpg'
                                              ggplot(mtc.m,
                                                      aes(x=wt,
                                                          y=value,
                                                          color=variable)) +
                                                geom_point()
     400 -
                                                  300
  ds 300 -
                                                                     variable
                                                200 all value
                                                                        mpa
     100
                  wt
```

- Introduction
- Quantities Qua
- Statistical Transformations
- Scales
- Faceting
- 6 Themes
- The #1 FAQ
- 8 Putting It All Together
- Wrap-up



# Challenge: Recreate This Economist Graph

#### Corruption and human development



Sources: Transparency International; UN Human Development Report

#### Data

The data is available in the EconomistData.csv file. Original sources are http://www.transparency.org/content/download/64476/1031428

Load the data:

```
dat <- read.csv("dataSets/EconomistData.csv")</pre>
```

Create basic scatter plot

```
pc1 <- ggplot(dat, aes(x = CPI, y = HDI, color = Region))</pre>
(pc1 <- pc1 + geom_point(shape = 1))
```

#





#### Add labels

```
label.these <- c("Congo", "Sudan", "Afghanistan", "Greece", "China",
                   "India", "Rwanda", "Spain", "France", "United States",
                   "Japan", "Norway", "Singapore")
(pc2 <- pc1 +
 geom_text(aes(label = Country),
            color = "black", size = 3, hjust = 1.1,
            data = dat[dat$Country %in% label.these, ]))
                                              Region

    Americas

   0.8 -

    Asia Pacific

 무 0.6 -
                                               o EU W. Europe

    Fast FU Cemt Asia

                                               o MFNA
                                                 SSA
           2.5
                      5.0
                                 7.5
                        CPI
```

#### Add smoothing line

```
(pc3 <- pc2 +
  geom_smooth(aes(group = 1),
                  method = "lm",
                  color = "black",
                  formula = y^{\sim} poly(x, 2),
                  se = FALSE)
                                                     Region

    Americas

  0.8 -

    Asia Pacific

무 0.6 -

    EU W. Europe

                                                         East EU Cemt Asia

    MENA

                   Rwandao
  0.4 -n (
                                                        SSA
            2.5
                         5.0
                                     7.5
                          CPI
```

#### Finishing touches

```
(pc4 \leftarrow pc3 + theme_bw() +
  scale_x_continuous("Corruption Perceptions Index, 2011\n(10 = least corru
  scale_y\_continuous("Human Development Index, 2011\n(1 = best)")
  theme(legend.position = "top", legend.direction = "horizontal"))
       Region O Americas O Asia Pacific O EU W. Europe O East EU Cemt Asia O MENA O SSA
 Human Development Index, 2011
                     Greece
     0.8
   = best)
    0.6
                                 Rwanda
     0.4 -stan o
                      0 0
                  2.5
                                     5.0
                           Corruption Perceptions Index, 2011
                                  (10 = least corrupt)
```

- Introduction
- Quantities Qua
- Statistical Transformations
- Scales
- Faceting
- 6 Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up



# Help Us Make This Workshop Even Better!

- Please take a moment to fill out a very short feedback form
- These workshops exist for you tell us what you need!
- http://tinyurl.com/R-graphics-feedback



#### Additional resources

- ggplot2 resources
  - Mailing list: http://groups.google.com/group/ggplot2
  - Wiki: https://github.com/hadley/ggplot2/wiki
  - Website: http://had.co.nz/ggplot2/
  - StackOverflow: http://stackoverflow.com/questions/tagged/ggplot
- IQSS resources
  - Research technology consulting: http://projects.iq.harvard.edu/rtc
  - Workshops: http://projects.iq.harvard.edu/rtc/filter\_by/workshops