Q.M. H.W. #7

From Griffiths: # 11.27

From saxon i

Problem 15 A harmonic oscillator of mass m, charge e and classical frequency ω is in its ground state.

(a) A uniform electric field \mathcal{B} is turned on at t=0 and is then turned off at $t=\tau$. Use first-order time dependent perturbation theory to estimate the probability that the system is excited to its *n*th state.

Front Otlanian'

- Suppose that an electron in a one-dimensional harmonic-oscillator potential $\frac{1}{2}m\omega_0^2x^2$ is subjected to an oscillating electric field $\mathscr{E} = \mathscr{E}(0)$ cos ωt in the x direction.
 - (a) If the electron is initially in the ground state, what is the probability that the electron will be in the nth excited state at time t?
 - (b) If $\omega = \omega_0$, perturbation theory will fail at some time t. What is the critical time?

From D. Ferry:

4. At t < 0, an electron is assumed to be in the n = 3 eigenstate of an infinite square potential well, which extends from -a/2 < x < a/2. At t = 0, an electric field is applied, with the potential V = Ex. The electric field is then removed at time τ . Determine the probability that the electron is in any other state at $t > \tau$.

From Griffiths 1sted.:

Problem 9.18 Justify the following version of the energy-time uncertainty principle (due to Landau): $\Delta E \Delta t \geq \hbar/2$, where Δt is the time it takes to execute a transition involving an energy change ΔE , under the influence of a constant perturbation (see Problem 1210) Explain more precisely what ΔE and Δt mean in this context.

(Δt is the time it takes for P(t) to reach a peak in its oscillation.)