20. Приложения логического языка первого порядка к моделированию математических теорий. Аксиоматические и структурные теории, примеры (не меньше трех), их развитие. Понятие теорем и элементарных теорий

Билет: 12, 26.

В математике можно выделить два способа формирования теорий: аксиоматический подход и структурный подход.

Аксиоматический подход:

Из некоторых соображений выбирается сигнатура $\sigma = < P_1, ..., P_k; f_1, ..., f_s >$, выбираются предложения сигнатуры σ , которые объявляются истинными, то есть аксиомами. Развитие аксиоматической теории состоит в исследовании тех интерпретаций сигнатуры σ , в которых истинны все аксиомы теории, а также в получении следствий из аксиом.

Определение 1: Аксиоматическая теория $Th_{ax} = (\sigma, \Gamma)$, где σ - некоторая сигнатура, $\Gamma \subseteq sent(\sigma)$, где $sent(\sigma)$ - множество предложений сигнатуры σ .

Определение 2: Предложения из Γ называются аксиомами теории Th_{ax}

Определение 3: Теорема теории Th_{ax} - любое логическое следствие из Γ , то есть A - теорема Th_{ax} , если $A \subseteq sent(\sigma)$ и $\Gamma \mid = A$.

Определение 4: Множество теорем теории Th_{ax} называется её замыканием $[Th_{ax}]$, то есть $[Th_{\sigma r}] = \{A \mid A \subseteq sent(\sigma) \ u \ \Gamma \mid = A\}$. Часто под теорией понимают её замыкание.

Определение 5: В общем случае под элементарной теорией будем понимать любое логически замкнутое множество предложений рассматриваемой сигнатуры.

Примеры:

1. Теория групп: $\sigma = \langle =; \, ^{\circ}, \, e \rangle$, где = - предикат равенства, $^{\circ}$ - символ групповой операции, e символ единичного элемента.

Аксиомы теории групп:

- а) $\forall a \forall b \forall c [(a \circ b) \circ c = a \circ (b \circ c)]$ ассоциативность операции °;
- b) $\forall a \ [a \ ^{\circ} e = a]$ существование единичного элемента;
- c) $\forall a \exists b [a \circ b = e]$ существование обратного элемента;

Теорема 1: $\forall a \forall b \exists x \ [\ (a \circ x = b) \& \forall x \ [\ (a \circ x = b) \to (x = x) \]]$ - уравнение $a \circ x = b$ в группе всегда имеет решение, причем единственное.

2. Теория отношений эквивалентности: $\sigma = <=$, R >

Аксиомы теории отношений эквивалентности:

- а) $\forall x[R(x,x)]$ рефлексивность;
- b) $\forall x \forall y [R(x,y) \rightarrow R(y,x)]$ симметричность;
- c) $\forall x \forall y \forall z [R(x,y) \& R(y,z) \rightarrow R(x,z)]$ транзитивность;

Теорема 2 (теорема о факторизации): $\forall x \forall y [R(x,y) \& R(y,x) \lor \overline{R}(x,y) \& \overline{R}(y,x)]$ - эту теорему также называют теоремой теории отношений эквивалентности.

Структурный подход:

Данный способ формирования теории начинается с изучения какой-либо конкретной математической структуры или класса структур и тогда, естественно, возникает вопрос о полной аксиоматизации этого класса, т.е. о выборе множества аксиом так, чтобы множество следствий из этих аксиом совпадало с множеством истинных в рассматриваемом классе структур утверждений.

Заранее задан некоторый конкретный универсум и задана некоторая конкретная структура: $U^{(I)}$, $S^{(I)} = \langle P_1^{(I)}, ..., P_k^{(I)}; f_1^{(I)}, ..., f_s^{(I)} \rangle$ - тем самым, у нас есть множество теорем теории (пусть и

Примеры: Наиболее ярким примером структурной теории является планарная Евклидова геометрия. U - множество точек плоскости, S = <= , B , D > , $\tau = <2$, 3 , 4 > .

B(a,b,c) = "точки плоскости a,b,c лежат на одной прямой", $D(a,b,c,d="\rho(a,b)=\rho(c,d)"$.

А.Тарским была предложена система из 16 аксиом, из которых следует любая теорема планарной Евклидовой геометрии:

- а) $\forall a \forall b [D(a,b,b,a)]$ симметричность;
- b) $\forall a \forall b \forall c [D(a, b, c, c) \rightarrow (a = b)];$
- c) $\forall a \forall b \forall c \forall d [D(a,b,c,d) \& D(a,b,e,f) \rightarrow D(c,d,e,f)]$ транзитивность расстояния;
- d) $\forall a \forall b \forall c \forall d \exists \rho [D(a, c, b, c) \& D(b, c, b, d) \& D(b, d, a, d) \rightarrow D(a, \rho, b, \rho) \& D(c, \rho, d, \rho)$

acbd - ромб, ρ - точка пересечения диагоналей.