BOB BUDOWNICZY

konsultacje w 703 pon 10 ¹⁵-11¹⁵ czw 12⁰⁰-13⁰⁰

AKSJOMATY

ZBIOR i NALEZENIE sa pojeciami pierwotnymi - nie defniujemy ich, ale opisujemy ich wlasnosci

1. AKSOMAT EKSTENSJONALNOSCI - zbior jest jednoznacznie wyznaczony przez swoje elementy $\forall \ x \ \forall \ y \ (x=y \iff \forall \ z \ (z \in x \iff z \in y))$

Od tego momentu zakladamy, ze od tego momentu istnieja wylacznie zbiory. Nie ma nie-zbiorow. Naszym celem jest budowanie uniwersum zbiorow i okazuje sie, ze w tym swiece mozna zinterpretowac cala matematyke.

2.AKSJOMAT ZBIORU PUSTEGO – istnieje zbior pusty Ø $\exists \; x \; \forall \; y \quad \neg y \in x$

Na podstawie tych dwoch aksjomatow mozna udowodnic, ze istnieje dokladnie jeden zbior pusty:

Istnienie - aksjomat zbioru pustego

Jedynosci - niech P_1 , P_2 beda zbiorami pustymi. Wtedy dla dowolnego $z \neg z \in P_1 \land \neg z \in P_2$, czyli $z \in P_1 \iff z \in P_2$. Wobec tego na mocy aksjomatu ekstensjonalnosci mamy $P_1 = P_2$.

Przyjrzyjmy sie nastepujacemu systemowi algebraicznemu:

$$\mathcal{A}_1 = \langle \mathbb{N} \cap [10, +\infty), < \rangle$$

W systemie spelnione sa oba te aksjomaty:

$$\mathcal{A}_1 \models A_1 + A_2$$

Spelnianie bez interpretacji oznacza, ze dla dowolnej interpretacji jest to spelnione.

3. AKSJOMAT PARY - dla dowolnych zbiorow x,y istnieje para $\{x,y\}$ $\forall \, x,y \; \exists \; z \; \forall \; t \quad (t \in z \iff t=x \; \lor \; t=y)$

Para nieuporzadkowana jest wyznaczona jednoznaczenie.

Aksjomat mowi tylko o istnieniu z, a mozna latwo udowodnic, korzystajac z aksjomatu ekstensjonalnosci, ze takie z istnieje tylko jedno.

SINGLETONEM elementu x nazywamy zbior $\{x\} := \{x, x\}$

PARA UPORZADKOWANA (wg.~Kuratowskiego) elementow x i y nazywamy zbior:

$$\langle x, y \rangle := \{ \{x\}, \{x, y\} \}$$

Dla dowolnych elementow a, b, c, d mamy

$$\langle a,b\rangle = \langle c,d\rangle \iff a=c \land b=d$$

dowod jako jedno z cwiczen

4. AKSJOMAT SUMY - dla dowolnego zbioru istnieje jego suma $\forall \ x \ \exists \ y \ \forall \ z \quad (z \in y \iff (\exists \ t \quad t \in x \ \land \ z \in t))$

Poniewaz wszystko w naszym swiecie jest zbiorem, to kazdy zbior mozemy postrzegac jako rodzine zbiorow - jego elementy tez sa zbiorami. W takim razie suma tego zbioru to suma rodziny tego zbioru.

kwantyfikator ograniczony: $\exists t \in x \quad z \in t$

Suma jest okreslona jednoznacznie dowod jako jedno z cwiczen ten jedyny y oznaczamy przez $\bigcup x$

Suma dwoch zbiorow:

$$x \cup y := \bigcup \{x, y\}$$

DOWOD: Ustalmy dowolne z. Wtedy mamy

$$z \in \bigcup \{z,y\} \iff \exists \ t \quad (t \in \{x,y\} \ \land \ z \in t) \iff \exists \ t \quad ((t=x \ \lor \ t=y) \ \land \ z \in t) \iff \iff \exists \ t \quad ((t=x \ \land \ z \in t) \ \lor \ \exists \ t \quad (t=x \ \land \ z \in t) \ \lor \ \exists \ t \quad (t=y \ \land \ z \in t) \implies \implies \exists \ t \quad z \in x \ \lor \ \exists \ t \quad z \in y \iff z \in x \ \lor \ z \in y$$

uffff

5. AKSJOMAT ZBIORU POTEGOWEGO - dla kazdego zbioru istnieje jego zbior potegowy

$$\forall x \exists y \forall z \quad (z \in y \iff \forall t \in z \quad t \in x)$$
$$\forall x \exists y \forall z \quad (z \in y \iff z \subseteq x)$$

Zbior potegowy jest wyznaczony jednoznacznie i oznaczamy go $\mathcal{P}(x)$ dowod na cwiczeniach <3

6. AKSJOMAT WYROZNIANIA (wycinania)

to tak naprawde *schemat aksjomatu*, czyli nieskonczona rodzina aksjomatow

SIMPLIFIED VERSION: niech $\varphi(t)$ bedzie formula jezyka teorii mnogosci. Wtedy dla tej pormuly mamy aksjomat:

$$A_{6arphi}$$
 dla kazdego zbioru x istnieje zbior, ktorego elementu spelniaja te wlasnosc $\{t\in x: arphi(t)\}$ $orall x \; \exists \; y \; orall \; t \; (t\in y \iff t\in x \; \wedge \; arphi(t))$

FULL VERSION: niech $\varphi(t,z_0,...,z_n)$ bedzie formula jezyka teorii mnogosci. Wtedy pozostale zmienne wolne beda parametrami (czasem zamiast $z_0,...,z_n$ pisze sie \overline{z}).

Dla kazdego uklady parametrow i dla kazdego x istnieje y, taki ze dla kazdego $t \in y$ t nalezy do x i t spelnia formule φ

$$\forall \ z_0 \ \forall \ z_1 \ ... \forall \ z_n \ \forall \ x \ \exists \ y \ \forall \ t \quad (t \in y \iff t \in x \ \land \ \varphi(t, z_0, ..., z_n))$$

PRZYKLAD: Wezmy polprosta otwarta: $(0,+\infty)=\{x\in\mathbb{R}:x>0\}$. Druga polprosta $(1,+\infty)=\{x\in\mathbb{R}:x>1\}$ i tak dalej. Czyli ogolna definicja polprostej to: $(a,+\infty)=\{x\in\mathbb{R}:x>a\}$ Dla kazdej z tych polprostych trzeba wziac inna formule. Ale tak naprawde one wszystkie sa zdefiniowane za pomoca jednej formuly:

$$\varphi(x,a) = (x > a),$$

gdzie a funkcjonuje jako parametr.

7. AKSJOMAT ZASTEPOWANIA znowu to tak naprawde schemat a nie aksjomat ostatni z serii aksjomatow konstrukcyjnych

SKROT: istnieje dokladnie jedno x:

$$\exists ! x \quad \varphi(x) \iff \exists x \quad (\varphi(x) \land \forall y \quad (\varphi(y) \implies y = x))$$

SIMPLIFIED VERSION: niech $\varphi(x,y)$ bedzie formula jezyka teorii mnogosci, taka, ze:

$$\forall x \exists ! y \quad \varphi(x,y)$$

 $A_{7\varphi}$ dla kazdego zbioru x istnieje zbior $\{z: \exists t \in x \quad \varphi(t,z)\}$ $\forall \, x\exists \, y \, \forall \, z \quad (z \in y \iff \exists \, t \in x \quad \varphi(t,z))$

Czyli, w skrocie, kazdy zbior mozna opisac za pomoca operacji.

FULL VERSION: niech $\varphi(x,y,p_0,...,p_n)$ bedzie formula jezyka teorii mnogosci.

Miech dla kazdego parametru i dla kazdegu x istnieje dokladnie jedno y, takie, ze jesli formula jest spelniona dla x,y i \overline{p} , to dla kazdego x istnieje y takie, ze dla kazdego z nalezacego y istniaje t nalezace do x takie, ze zachodzi t,z,\overline{p}

$$\forall \ p_0 \ ... \forall \ p_n \quad (\forall \ x \exists \ !y \quad \varphi(x,y,\overline{p}) \implies \forall \ x \ \exists \ y \ \forall \ z \quad (z \in y \iff \exists \ t \in x \quad \varphi(t,z,\overline{p})))$$

KONSTRUKCJE

Niech x, y beda dowolnymi zbiorami. Wtedy:

```
x \cap y = \{t \in x : t \in y\}
x \setminus y = \{t \in x : t \notin y\}
x \times y = \{z \in \mathcal{P}(\mathcal{P}(x \cup y)) : \exists s \in x \exists t \in y \quad z = \langle s, t \rangle\}
```

Formalnie stara definicja iloczynu kartezjanskiego nie działa w nowych warunkach – problemem jest z czego wyrozniamy te pare uporzadkowana. $s,t\in x\cup y$, wiec $\{s\},\{s,t\}\subseteq x\cup y$ a wiec $\{\{s\},\{s,t\}\}\subseteq \mathcal{P}(x\cup y)$, czyli nasza para potegowa jest elementem zbioru potegowego zbioru potegowego sumy zbiorow c:

$$\bigcap x = \{ z \in \bigcup x : \forall y \in x \mid z \in y \} \text{ i wowczas } \bigcap \emptyset = \emptyset$$

RELACJA - definiujemy $\operatorname{rel}(r)$ tak, ze r jest $\operatorname{relacja}$. Mozemy definiowac $\operatorname{relacje}$ jako dowolny zbior par uporzadkowanych:

$$rel(r) := \exists x \exists y \quad r \subseteq x \times y$$

FUNCKJA - bycie funkcja to bycie relacja taka, ze nie ma dwoch par o tym samym poprzedniku i roznych następnikach:

$$\mathtt{fnc}(f) := \mathtt{rel}(f) \land \forall \ x \forall \ y \forall \ z \quad (\langle x,y \rangle \in f \land \langle x,z \rangle \in f \implies y = x)$$

wowczas dziedzine definiujemy:

$$\mathrm{dom}(f) = \{x \in \bigcup \bigcup f \ : \ \exists \ y \quad \langle x,y \rangle \in f\}$$

$$\mathrm{rng}(f) = \{ y \in \bigcup \bigcup f \ : \ \exists \ x \quad \langle x,y \rangle \in f \}$$

bo $\langle x,y\rangle\in f$, wiec $\{\{x\},\{x,y\}\}\in f$. No to wtedy $\{x\},\{x,y\}\in\bigcup f$, czyli golutkie $x,y\in\bigcup\bigcup f$

poki działamy na zbiorach skonczonych, zawsze dostaniemy zbior skonczony - nie moge skonstruowac zbioru nieskonczonego

8. AKSJOMAT NIESKONCZONOSCI

W wersji popularnonaukowej mowi, ze istnieje zbior nieskonczony.

W wersji naukowej wiemy, ze istnieje zbior indkuktywny:

$$\exists x \quad (\emptyset \in x \land \forall y \in x \quad (y \cup \{y\} \in x))$$

Skoro nalezy do naszego x zbior \emptyset , to rowniez $\{\emptyset\}$ do x nalezy. Ale wtedy nalezy tez $\{\emptyset, \{\emptyset\}\}$...

TWIERDZENIE: istnieje najemniejszy zbior induktywny, czyli najmniejszy wzgledem zawierania. Zbior induktywny, ktory zawiera sie w kazdym innym zbiorze induktywnym.

DOWOD: Niech x bedzie zbiorem indukcyjnym, ktory istnieje z aksjomatu. Niech

$$\omega = \bigcap \{y \in \mathcal{P}(x) \ : \ y \ \mathtt{jest \ zbiorem \ indukcyjnym} \}$$

Teraz musze to udowodnic, czyli Ønalezy do ω :

$$\emptyset \in \omega \iff \emptyset \in y$$
 dla kazdego zb. induk. $y \subseteq x$

Wtedy dla dowolnego $t \in \omega$ chce pokazac $t \cup \{t\} \in \omega$. Wtedy dla kazdego zbioru induktywnego $y \subseteq x$ mamy $t \in y$. Ale wtedy z definicji zbioru induktywnego, skoro $t \in y$, a y jest induktywny, to $t \cup \{t\} \in y$. Zatem z definicji przekroju $t \cup \{t\} \in \bigcap \{y \in \mathcal{P}(x) : y \text{ jest zbiorem induktywnym}\} = \omega$

 ω jest najmniejszym zbiorem induktywny, Niech z bedzie dowolnym zbiorem induktywnym. Wtedy $z\cap x$ jest zbiorem induktywnym i $z\cap x\subseteq x$. Czyli z jest jednym z elementow rodziny, ktorej przekroj daje $\omega\colon z\cap x\supseteq\{y\in\mathcal{P}(x)\,:\,y\text{ zb. ind}\}=\omega$

Kazdy element \emptyset , $\{\emptyset\}$, $\{\emptyset, \{\emptyset\}\}$... mozemy utozszamic z kolejnymi liczbami naturalnymi. W takim razie ten najmniejszy zbior induktywny bedziemy utozsamiany ze zbiorem liczb naturalnych, a jego elementy z kolejnymi liczbami naturalnymi.

Konsekwencja tego jest zasada indukcji matematycznej:

Niech $\varphi(x)$ bedzie formula o zakresie zmiennej $x\in\mathbb{N}$, takiej, ze zachodzi $\varphi(0)$ i

$$\forall\;n\in\mathbb{N}\quad (\varphi(n)\implies \varphi(n+1)).$$
 Wowczas

$$\forall n \in \mathbb{N} \quad \varphi(n)$$

DOWOD: Niech $A=\{n\in\mathbb{N}: \varphi(n)\}$. Wtedy $A\in\mathbb{N}$ oraz A jest induktywny. Kolejne zbiory nalezace do zbioru induktywnego utozsamialismy z $n\in\mathbb{N}$, wiec skoro dla $\varphi(n)$ nalezy do tego zbioru induktywnego, to rowniez $\varphi(n+1)$ nalezy do A. Skoro A jest zbiorem induktywnym, to $\mathbb{N}\subseteq A$, wiec $A=\mathbb{N}$.

9. AKSJOMAT REGULARNOSCI (unfundowania)

Mielismy aksjomaty o istnieniu i serie aksjomatow konstrukcyjnych. Aksjomat regularnosci nie jest rzadnym z nich.

W kazdym niepustym zbiorze istnieje element ε -minimalny:

$$\forall x \ (x \neq \emptyset \implies (\exists y \in x \forall z \in x \ \neg z \in y))$$
 eliminuje patologie: $x \in x$, $x \in y \in x$, ...

Antynomia Russella $\{x:x\notin x\}$ moglby byc zbiorem wszystkich zbiorow, ale jest eliminowany przez aksjomat regularnosci.

10. AKSJOMAT WYBORU [AC]

Dla kazdej rozlacznej rodziny parami rozlacznych zbiorow niepustych istnieje selektor: $\forall \; x \; ((\forall \; y,z \in x \quad y \neq \emptyset \; \land \; (y \neq z \implies y \cap z = \emptyset)) \implies \exists \; s \; \forall \; y \in x \; \exists \; !t \quad t \in s \cap y)$

Problemem nie jest znalezienie tych punktow, ale znalezienie zbioru, ktory je wszystkie zawiera dla nieskonczonego x.

Rownowaznosc ciaglosci w sensie Cauchyego i Heinego - dowod potrzebuje skorzystac z aksjomatu wyboru.

PARADOKS BANACHA-TARSKIEGO - jezeli mamy kule, to mozemy ja rozlozyc na 5 kawalkow i poprzesuwac je izometrycznie tak, zeby zlozyc z nich dwie identyczne kule jakie mielismy na poczatku. Kawalki na ktore dzielimy sa niemiezalne, nie maja objetosci, i sa maksymalnie patologiczne. Dzieje sie dlatego, ze aksjomat wyboru mowi o istnieniu selektora, ale nie jak on wyglada.

FUNKCJA WYBORU - niech $\mathcal A$ bedzie rodzina zbiorow niepustych. Funckja wyboru dla rodziny $\mathcal A$ nazywamy wtedy dowolna funckje f

$$f: \mathcal{A} \to \bigcup \mathcal{A} \quad \forall \ A \in \mathcal{A} \quad f(A) \in A$$

Aksjomat wyboru jest rownowazny z tym, ze dla kazdej takiej rodziny istnieje funckja wyboru. Czyli istnienie selektora utozsamiamy z istnieniem funkcji wyboru.