

موقع الرياضيات بالثانوي الإعدادي .⊙ΕΝ +:⊙Ι.Ω+ Ο .⊙≤Ι.Ι :⊙ΕΛ ξ www.anissmaths.net

__وى: الثالثة ثانوي إعدادي

من إعداد الأستاذ: المهـــدي عنيــس

+.XNX\$+ | NE.4O\$0 +.C.U.O+ | :OXE € .I.C:O 1°N3XX° 4N3O3 V

الأكاديمية الجهوية للتربية والتكوين جهة الدار البيضاء الكبرى نيابة المحمدية

 $B(3;y_B)$ و نقطتین من المستقیم $B(3;y_B)$ و $A(1;y_A)$

$$y_A = -3 \times 1 + 6$$

$$y_B = -3 \times 3 + 6$$

$$y_B = -3x_B + 6$$

$$y_B = -3x_B + 6$$

$$y_B = -3x_B + 6$$

$$A(1;3)$$
 $B(3;-3)$
 $\begin{cases} g & \text{if } y_A = 3 \\ y_B = -3 \end{cases}$

E(-1;9) انتحقق من أن النقطة E(-1;9) تنتمي إلى المستقيم (2

$$-3x_E + 6 = -3 \times (-1) + 6 = 3 + 6 = 9$$
 : لحينا

 $y_E = -3x_E + 6$: فإن $y_E = 9$: وبما أن و

و بالتالي فإن
$$E(-1;9) \in (D)$$
 : و بالتالي فإن

 $F(a;-1)\in(D)$ انحدد a لکی تکون (3

$$-1=-3 imes a+6$$
 : رأي ، $y_F=-3x_F+6$: ريا يعني $F\left(a\,;-1
ight)\in\left(D
ight)$: لدينا

و منح فإن :

$$a = \frac{7}{3}$$
: الأحن

$$3a = 6 + 1$$
$$3a = 7$$

$$3a = 7$$

$$a = \frac{7}{3}$$

1) - الشكل :

 $F(-1; y_F)$ نقطة من (Δ)

$$\cdot \frac{y_E - y_F}{x_E - x_F} = -4$$
 : يعني أن $\cdot = -4$ هو $\cdot = -4$ هو الدينا الدينا $\cdot = -4$

$$1 - y_F = 4$$
 : يعني أن $\frac{1 - y_F}{-2 + 1} = -4$: ومنه فإن

$$y_F = -3 : g^{\dagger} \quad , \quad y_F = -4 + 1 : \text{ oin } q$$

$$F(-1;-3)$$
 : إذن

 (Δ) – لنحدد المعادلة المختصرة للمستقيم (Δ

. (Δ) : y=-4x+p : الدينا المعادلة المختصرة للمستقيم (Δ) على شكـل

: p لنحدد /*

$$y_E = -\,4x_E + p$$
 : يعني أن $E\left(-\,2\,;1
ight)$ يمر من النقطة (Δ) : لدينا

$$1 = 8 + p$$
 : و منه فإل $1 = -4 \times (-2) + p$: ح

$$-7 = p$$
 : إذن $1 - 8 = p$

$$\Delta$$
: $y=-4x-7$: هي (Δ) و بالتالي فإن مالمعادلة المختصرة للمستقيم (Δ) و بالتالي فإن مالمعادلة المختصرة المستقيم

③ الصريان⑥ الصريان

(AC) انحدد معادلة مختصرة للمستقيم(1

$$(AC)$$
 : $y=mx+p$: المعادلة المختصرة لمستقيم (AC) على شكل : المعادلة المختصرة المستقيم

: *m* لنحدد /*

$$m = \frac{y_A - y_C}{x_A - x_C} = \frac{3 - 5}{2 - 1} = -2$$
 : Let

$$(AC) : y = -2x + p : \frac{1}{2}$$

: p النحدد /*

$$3=-2 imes2+p$$
 : لاينا $y_A=-2x_A+p$: يعني أن $A(2\,;3)\in(AC)$ لدينا

و منص فإن :

$$3 = -4 + p$$

$$3 + 4 = p$$

$$7 = p$$

و بالتالي فإن المعادلة المختصرة للمستقيم
$$(AC)$$
 هي $y=-2x+7$ و بالتالي فإن المعادلة المختصرة للمستقيم

.
$$(AB): y = \frac{5}{3}x - \frac{1}{3}$$
 . هي (AB) هي المعادلة المختصرة للمستقيم (2B)

.
$$(AB)$$
 : $y=mx+p$: المعادلة المختصرة لمستقيم (AB) على شكـل : المعادلة المختصرة المستقيم

: *m* لنحدد *

$$m = \frac{y_A - y_B}{x_A - x_B} = \frac{3+2}{2+1} = \frac{5}{3}$$
 : لدينا

$$(AB)$$
 : $y = \frac{5}{3}x + p$: إذن

: p لنحدد /*

$$3 = \frac{10}{3} + p$$
 : يعني أن $y_A = \frac{5}{3}x_A + p$: يعني أن $A(2;3) \in (AB)$: لدينا $A(2;3) = 0$

$$\frac{-1}{3} = p$$
 : $\frac{9}{3} - \frac{10}{3} = p$: $\frac{10}{3} = p$

$$(AB): y = \frac{5}{3}x - \frac{1}{3}:$$
 هي التالي فإن المحادلة المختصرة للمستقيم (AB) هي و بالتالي فإن

. لنبين أن النقط A و B و مستقيمين -(3)

الدينا :

$$\frac{5}{3}x_E - \frac{1}{3} = \frac{5}{3} \times 1 - \frac{1}{3}$$
$$= \frac{5}{3} - \frac{1}{3}$$
$$= \frac{4}{3}$$

$$E\in \left(AB
ight)$$
 : و منه غإلى و $y_E=rac{5}{3}x_E-rac{1}{3}$: غإلى و $y_E=rac{4}{3}$: و منه غإلى و $y_E=rac{4}{3}$: و منه غإلى و و بالتالى غإلى و و A و بالتالى غإلى و و A مستقيمية .

. (AB) والعمودي على المستقيم (D) المار من (D) المار من (D) على المستقيم (D) على شكل D على شكل D0 المستقيم (D0 على شكل المعادلة المختصرة للمستقيم (D0 على شكل المعادلة المختصرة المستقيم (D0 على شكل المعادلة المحتصرة المحتصر

: *m* لنحدد *

$$m \times \frac{5}{3} = -1$$
 : وأي نعني أن $m \times m_{(AB)} = -1$: وأي نعني أن $(D) \perp (AB)$: لدينا

.
$$m=-\frac{3}{5}$$
 : منت فإل

: p لنحدد /*

. (AC) و الموازي للمستقيم (Δ) المار من N(1;1) و الموازي للمستقيم (Δ) . (Δ) : y=mx+p على شكل (Δ) على شكل المعادلة المختصرة للمستقيم (Δ)

: m لنحدد /*

$$.\,m=m_{(AC)}\,\,:\,\,$$
لدينا $(AC)\,//\left(\Delta\right)\,$ يعني أن $(AC)\,//\left(\Delta\right)\,$

$$m=-2$$
 : فإن $m_{(AC)}=-2$: و بمأ أن

$$(\Delta): y = -2x + p :$$
إذن

: p لنحدد /*

$$1\!=\!-2+p$$
 لحينا $1\!=\!-2\!\times\!1+p$ يعني أن $y_N\!=\!-2x_N+p$: يعني أن $N\!\left(1;1\right)\!\in\!\left(\Delta\right)$ الحينا $N\!\left(1;1\right)\!\in\!\left(\Delta\right)$

$$3 = p$$
 : ريا $1 + 2 = p$: الذي $1 + 2 = p$

$$(\Delta)$$
 : $y = -2x + 3$: و بالتالي فإن

. [BC] وإسط القطعة (L) . واسط القطعة (6

$$[BC]$$
 يعني أن $[BC]$ واسط $[BC]$ يمر من منتصف $[BC]$ واسط $[BC]$ يعني أن $[BC]$

L(L): y=mx+p: لدينا المعادلة المختصرة للمستقيم (L) على شكل

: m لنحدد /*

$$:$$
 الحينا $m \times m_{(BC)} = -1$ $:$ الحينا $(L) \perp (BC)$ $:$ لحينا

$$m \times \frac{y_B - y_C}{x_B - x_C} = -1$$

$$m \times \frac{-2 - 1}{1 + 1} = -1$$

$$m \times \frac{-3}{2} = -1$$

$$m = \frac{-1}{\frac{-3}{2}}$$

$$m = \frac{2}{3}$$

$$(L) : y = \frac{2}{3}x + p : إذن$$

: p لنحدد /*

$$0=rac{2}{3} imesrac{3}{2}+p$$
 : يحني أن $y_K=rac{2}{3}x_K+p$: يحني أن $K\in (L)$ $-1=p$

.
$$(L) : y = \frac{2}{3}x - 1$$
 : و بالتالي فإل

⊕ لصريك ⊕:

$$.(AB)\bot(CD)$$
 : الثبت أن $-(f-(1$

$$m_{(AB)} \times m_{(CD)} = \frac{y_A - y_B}{x_A - x_B} \times \frac{y_C - y_D}{x_C - x_D}$$
 : لدينا
$$= \frac{3+1}{3-7} \times \frac{4+2}{8-2}$$

$$= \frac{4}{-4} \times \frac{6}{6}$$

$$= -1 \times 1$$

$$= -1$$

$$(AB) \perp (CD)$$
 : و بالتالي فإن

$$m_{(BD)} = \frac{y_B - y_B}{x_B - x_D}$$
 9 $m_{(AC)} = \frac{y_A - y_C}{x_A - x_C}$
= $\frac{-1 + 2}{7 - 2}$ = $\frac{3 - 4}{3 - 8}$
= $\frac{1}{5}$

$$.\left(BD
ight)$$
 // $\left(AC
ight)$: و بالتالي فإل $m_{\left(AC
ight)}=m_{\left(BD
ight)}$: إذن

$$\frac{y_A - y_E}{x_A - x_E} = \frac{y_B - y_C}{x_B - x_C}$$
 : وين من وابي من وابي $m_{(AE)} = m_{(BC)}$: يعني أل : $-5(3-a) = 5$: يعني أل : $-5(3-a) = 5$: يعني أل : $-5(3-a) = 5$: وين وابي من وابي من وابي $-5(3-a) = 5$: وين وابي $-5(3-a) = 5$: وي

$$[a=4]$$
 : نام

$$b=2$$
 : إذن

: © المرايان (B):

. E لنحدد إحداثيتي -(1

$$\begin{aligned} y_E &= 2x_E - 4 \\ y_E &= 0 \end{aligned} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} E \in (D) \\ E \in (OI) \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} E \in (D) \\ E \in (OI) \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \text{oliminates of } \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C = 2x_E - 4 \\ Y_E &= 0 \end{array} \ \ \, q \quad : \quad \begin{array}{l} C =$$

 \overline{F} النحدد إحداثيتي \overline{F}

$$egin{array}{lll} y_F = 2x_F - 4 \ x_F = 0 \end{array}
ight\}$$
 محور الأراتيب يعني أن $F \in (D)$ محور الأراتيب يعني أن $F \in (OJ)$

$$\left\{ egin{array}{lll} F\left(0\,;-4
ight) \end{array}
ight\} = 0 \end{array}
ight\}$$
 ومنه فإن $\left\{ egin{array}{lll} y_F = -4 \ x_F = 0 \end{array}
ight\}$ ومنه فإن $\left\{ egin{array}{lll} y_F = 2 imes 0 - 4 \ x_F = 0 \end{array}
ight\}$

.(D) لنشئ إلمستقيم-(3)

$$.(D) = (EF)$$
 : لدينا

@ تَصريك (19)

. (AB) : y = 2x - 17 هي المحادلة المختصرة للمستقيم (AB) هي المحادلة المختصرة للمستقيم (AB).

$$\begin{cases} y_A = 2x_A - 17 \\ y_B = 2x_B - 17 \end{cases} : \begin{cases} y_A = -1 \\ y_B = -3 \end{cases} : \begin{cases} y_A = -1 \\ y_B = -3 \end{cases} : \begin{cases} 2x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} 2x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -3 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -1 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -1 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -1 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 2 \times 7 - 17 = 14 - 17 = -1 \end{cases} : \begin{cases} x_A - 17 = 2 \times 8 - 17 = 16 - 17 = -1 \\ 2x_B - 17 = 17 = 17 = -$$

.
$$(AB)$$
 : $y=2x-17$: هي (AB) هي التالي مإلى المحادلة المختصرة للمستقيم

 $(\Delta) \perp (AB)$: أن $(\Delta) \perp (2B)$

$$y=rac{-1}{2}x+rac{7}{2}$$
 : و منه فإن $2y=-x+7$: يعني أن $(\Delta):x+2y-7=0$: لدينا $(\Delta)\pm(AB):$ و بالتالي فإن $m_{(\Delta)}\times m_{(AB)}=rac{-1}{2}\times 2=-1$: إذن

: *a* قيمة - (3

$$rac{a-1}{3}=2$$
 : و منه فإن و منه منه وإيان يعني أن يعني أن