LaPIS Diagnostic Test Workbook - Mathematics

Name : Harinipriya S

Class: 7

Section : C

School : AKV Public School

Login ID : AKV190

Harinipriya S's Performance Report

Score: 18/40 Percentage: 45.0%

Harinipriya S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
				ipal Signature	

Basic arithmetic

Topics to be Improved			
Types of angles			
LCM	Finding LCM		

......

Hi, here in this video you will learn **Types of Angles**

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures _____°.

Question: 2

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 3

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is _____°

The measurement of right angle is $___$ °.

Straight angle + Right angle = $___$ + $___$

It is called as _____ angle.

Hi, here in this video you will learn **LCM**

Question: 4

Fill the hexagon with factors and multiples of 10.

.....

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

	1 14 1 440
Therefore, factors of 10 are	and multiples of 10 are
$\underline{\textit{Question: 5}} \hspace{1cm} \dots \dots \dots$	
Find the LCM of 50, 100.	
Answer:	
Complete the division using least commo	on multiple.
	50 , 100
	, 100
The LCM of 50, 100 is 2 x 2 x x	·
Question: 6	
Every number is the multiple of	
Answer:	
Let's find the first ten multiple of random	n numbers,
Multip	ple of $1 = \underline{\hspace{1cm}}$
	ple of $2 = \underline{\hspace{1cm}}$
	le of 13 =
Multipl	le of $20 = $
Here, is the common factor of ex	very number.

Data handling

	T	opics to b	oe Imp	roved		
Arithmetic mean, mode and median	Mean,	Median an	ıd Mode			
Hi, here in this video you	ı will le	earn Me a	an, M	edian, N	lode	
Question: 7						
Find the mode of the following	data: 5	, 15, 23, 5,	32, 44,	72, 55, 6, 3	, 5, 65, 45, 6	7, 24, 19 and 98.
Answer:						
Mode is the number that occur Arranging the data in ascending occurs most no	g order:					
Question: 8						
1	_	5		6	9	
Answer: Median is the(ascending or descending order. Arrange the given data in asce. Central value of the given data	nding or	der :				
Question: 9						
Marks score	d	100	90	80	70	
Number of s	tudents	4	5	2	1	

 $Mean = \underline{\hspace{1cm}} , \, Median = \underline{\hspace{1cm}} \text{ and } Mode = \underline{\hspace{1cm}} .$

Answer:

Mean = ______ of all observation ______, number of observation = ______, number of observation = ______, number of observation = ______.

Therefore, mean = ______, mode = ______.

Here, median = ______, mode = _____.

Geometry

Topics to be Improved		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Lines of symmetry for regular polygons	Identification of lines of symmetry	
Angle sum property of triangle	Angle sum property of triangle	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Related angles	Complementary angles, Basic of angles	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Transversal angle made by transversal	Basics of Transversal angle	
Types of triangle	Basics of types of triangle (sides)	

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 10

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

 $Side AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______

Question: 11 (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side. Answer: There are ______ sides in a triangle. The sum of the two sides of a triangle is ______ than the other side of the triangle. The difference of the two sides of a triangle is ______ than the other side of the triangle. Example: In triangle XYZ, Χ 70m $30 \mathrm{m}$ YZ - XY XZ (<, >, =)60m Question: 12 The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall? Answer: 1. The sum of the two sides of a triangle is _____ than the third side of the triangle. Therefore, the third side should be _____(less/greater) than sum of other two sides. Here, sum of the two sides = ______ + ____ = _____ Therefore, the length of the third side is less than _____ 2. The difference of the two sides of a triangle is _____ than the third side of the triangle. Therefore, the third side should be _____(less/greater) than sum of other two sides. Here, difference of the two sides = _____ - ___ = ____ Therefore, the length of the third side is greater than _____ Therefore, length of the third side is greater than _____ but less than ____ Hi, here in this video you will learn **Symmerty** Line of symmetry is divides any shape into _____ (one / two) ____ (identical / non

www.learnbasics.fun

identical) halves.

Answer:

-	a line that divides any shape into	, - ,
-	nave (identical / non identical) metry is dividing the shape into	
•	· · · · · · · · · · · · · · · · · · ·	
How many lines of sy	mmetry does square have?	
Answer:		
Square have		
All sides of square ar	re and all angles are	·
	Mark the lines of symmetry.	
Therefore square has	s lines of symmetry.	
Therefore, square has	s intes of symmetry.	
0		
Question: 15		
v	g based on the symmetry.	
Letter S,	scalene triangle, Letter K, Rhombus, Number 8	s, and circle.
$\underline{Answer:}$		
	a line that divides the shape into	
The letter S is symmetry.	(symmetrical / asymmetrical) and ha	nve lines of
· ·	(symmetrical / asymmetrical) and	l havelines of
symmetry.		
	(symmetrical / asymmetrical) and h	ave lines of
symmetry. Rhombus is	(symmetrical / asymmetrical) and have	lines of
symmetry.	(Symmetrical / asymmetrical) and have	inics of
· ·	_ (symmetrical / asymmetrical) and have	lines of symmetry.
Stars is	$\underline{\hspace{0.5cm}}$ (symmetrical / asymmetrical) and have $\underline{\hspace{0.5cm}}$	lines of symmetry.
Hi here in this y	video you will learn Angle sum prope	rty 133
	Tidoo you win louin ringle buili prope	
Question: 16		
· ·	triangle is	
Answer:		

$$\angle A + \angle B + \angle C = \underline{\qquad}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 17

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is ____

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

In $\triangle PQR$, Sum of the angles = _____ = ___ = ___

In $\triangle KLM$, Sum of the angles = ____ = ___ = ___

In $\triangle XYZ$, Sum of the angles = ____ = __ = ___

Therefore, the triangles that satisfy the angle sum property are = $_$

Question: 18

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is ___

Let's consider the angles of triangle be 8x, ___ and ___

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Hi, here in this video you will learn Pythagoras property

Question: 19

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____(hypotenuse/ legs).

Pythagoras theorem states that _____

......

Question: 20

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

Therefore, hypotenuse of the triangle is _____.

Question: 21

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the $\underline{\hspace{1cm}}$ = sum of the squares on
Is Pythagoras theorem applicable in rectangle? (yes/ no). Given: breadth =, length of diagonal =
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ $= +)^2$
Therefore, diagonal of the rectangle is
Hi, here in this video you will learn Basics of 3D model
Question: 22
A point at which two or more lines segments meet is called(Vertex/ edges/ faces).
Answer:
has two end point (line/line segment/ray). A is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

Question: 23

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.	
Question: 24	
How many vertices, edges and faces does dices have?	
Answer:	
The shape of dice is	
Dices have vertices, edges and faces.	
Hi, here in this video you will learn Related Angles	
Question: 25	
1. Two angles are complementary if their sum is equal to	
2. Two angles are supplementary if their sum is equal to	
Answer:	
1. When sum of the two angles is equal to 90°, they are called as Example: 45° and 45°,, and	angle.
2. When sum of the two angles is equal to 180°, they are called as Example: 90° and 90°,, and	angle.

Question: 26

Shade the complementary angles.

......

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

$$85^{\circ}+95^{\circ}=$$
 _____ and this is _____ (a / not a) complementary angles.

$$45^{\circ}+45^{\circ}=$$
 and this is _____ angles.

$$6^{\circ} + 84^{\circ} =$$
 and this is _____ angles.

$$73^{\circ} + 107^{\circ} =$$
 and this is angles.

$$36^{\circ} + 64^{\circ} =$$
 _____ and this is ____ angles.

$$90^{\circ} + 90^{\circ} =$$
 _____ and this is ____ angles.

Question: 27

Find the complement and supplement of 15° and 90°

Answer:

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180°.

Complement of
$$15^{\circ} = \underline{\hspace{1cm}}$$
,

Supplement of
$$15^{\circ} = \underline{\hspace{1cm}}$$
,

Complement of
$$90^{\circ} =$$
_____.
Supplement of $90^{\circ} =$ _____.

Hi, here in this video you will learn Criteria of congruence

Question: 28

Circle the groups that contain congruent images.

......

Answer:

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

......

Question: 30

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____

The side P	R is equal to the side in	ΔLNM
Therefore	length of side PR -	

Hi, here in this video you will learn Basics of Transversal angle

Question: 31

......

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 32

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
\angle a and \angle g, \angle b and \angle h,	\angle a and \angle e, \angle b and \angle f,

Question:	33
-----------	----

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Types of triangle	Hi,	here in	n this	video	you	will	learn	Types	of	triangl	\mathbf{e}
--	-----	---------	--------	-------	-----	------	-------	-------	----	---------	--------------

Question: 34

Polygon with three sides is called as _____.

Answer:

A polygon is a simple _____ (open / closed) curve made up of only line segments.

Polygon with three sides is called ______.

Draw a diagram of polygon with three sides :

.....

Question: 35

Identify the types of triangles.

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called ______ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 36

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft, then the possible length of third side of park can be ______.

......

Answer:

The shape of the park is ______.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is _____.

The possible length of third side is ______

Hi, here in this video you will learn **Related Angles**

Question: 37

(i) When two rays of an angle are perpendicular, then the angle formed between them is a _____ angle .

.....

(ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A _____ (line segment /ray) begins from one point and travels endlessly in a direction.

(i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.

(ii) If two rays starting at same point moves in opposite direction, they form a _____ (straight / perpendicular) line. The measure of the angle formed is ____ and it is called ____ angles.

Question: 38

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 39

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to _____.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Number system

Topics to be Improved					
Integers	Basics of integers				
Law of Exponents	Law of Exponents				
Positive and negative rational numbers	Identification of positive rational numbers				
Decimals	Multiplication and division of decimals				

Hi, here in this video you will learn Basics of integers

Question: 40

Highlight the ring that contains whole numbers.

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

......

Question: 41

Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

Naturals numbers

<u>Answer:</u>		
Whole number consists of 0,1,2,3,4,	. Negative number consists of	
Natural numbers consists of	. Integers consists of	
Now, 1, 4, -10 are in		
Question: 42		
State whether the statement is true of Every positive number is an int		
Answer:		
Positive numbers are	Integers consists of	<u> </u>
Therefore, positive numbers are		
Hi, here in this video you will	learn Law of exponents	
Question: 43		
$(x)^0$ is equal to		
Answer:		
	l l	
to get the desired result.	ls us how many times a number sh	ould be multiplied by itself
	In $(x)^0$ base =	
	Power =	
Any number or variable with power z. Therefore, $(x)^0$ equal to	-	
Question: 44		
i. $a^m \times a^n = \underline{\hspace{1cm}}$ ii. $a^m \div a^n = \underline{\hspace{1cm}}$		
Answer:		
Multiplication of two numbers with sa (added/ subtracted)	ame base with different power, their	r exponents are
Division of two numbers with same be (added/ subtracted).	ase with different power, their expo	onents are
Question: 45		
Circle the result of the expression (a^0)		
	ab + mn + xy 0 anx	b+m+y
Answer:		

Any number with power zero is equal to______(One/ Zero). Any number with power one is equal to ______ (same/ different) number.

$$(a^{0} \times b^{1}) + (m^{1} \times n^{0}) + (x^{0} \times y^{1}) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{0} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}}$$

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 46

Segregate positive and negative rational number.

......

Answer:

- If both the numerator and the denominator of a rational number are _____ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

Question: 47

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \boxed{}$ and this _____ rational number.

Ques	ion: 48	
	oduct of a positive rational number and a negative rational number isl number. (Positive/ Negative/ neither positive nor negative)	
Ansi		
Exam Positi	les for positive rational numbers: les for negative rational numbers: e rational number × Negative rational number = × = and this is rational number	
	ere in this video you will learn Basics of decimals	
	ion: 49	•
Snade	0.4 part of the given shape.	
Ansv	e r:	
0.4 ca This	boxes. be expressed as in fraction action represents parts out ofequal parts. need to shade boxes out ofboxes.	
Ques	<u>ion: 50</u>	
Solve	he following.	
(i)	$.4 \times 1.2$	
(ii)	$.48 \times 1.2$	
\underline{Ansv}	e <u>r:</u>	
()	4×1.2 : Multiplication of 0.4×1.2 assuming there is no decimal point is The number of digits after decimal point in 0.4 is and 1.2 is Total digits after decimal point in the product of two numbers is Sount that digits from the right towards left and place the decimal point, the result is	
\ /	.48 \times 1.2: Multiplication of 0.48 \times 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is	

(Positive / Negative / Neither positive nor negative rational number)

Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is
Question:~51
One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?
Answer:
One box contains chocolates. The cost of one box is Then cost of one chocolate = ÷ =
(i) Total digits after decimal point in decimal number =
(ii) Divide the two numbers assuming there is no decimal point.
$\frac{2010}{15} = \underline{\hspace{1cm}}$
(iii) Place the decimal point after digits counting from the right in the quotient after division.
Then the cost of one chocolate is The cost of 15 chocolates = cost of one chocolate × = x =

Comparing Quantities

	Topics to be Improved	
Percentage	Basic of percentage	
Hi, here in this video you	will learn Basics of percentage	
Question: 52		
2% can be written as		
$\underline{Answer:}$		
Percentages are numerators of f	fractions with denominator $2\% = \frac{\Box}{\Box}$	
Question: 53		
Arun attended the LaPIS test f Arun?	for 100 marks and got 75% marks. What is t	the mark scored by
$\underline{Answer:}$		
Arun attended LaPIS test for $_$	marks. He got	marks.
75~% can be written in fraction	form	
Then the mark scored by Arun	$= \text{Total mark} \times 75\% = \underline{\qquad} \times \underline{\qquad}$	<u> </u>
Question: 54		
	in which 10 of them are rotten. Find the pe	
$\underline{Answer:}$		
There are apples in a b Number of rotten apples are		

Fraction form of rotten apples	s in a basket $=$ \square
Convert it into a percent=	x% =

Algebra

Topics to be Improved						
Monomials, binomials, trinomials and polynomials	Types of algebraic expression					
Basics of simple equation	Solving of simple equation					
Addition and subtraction of algebraic expressions	Like terms and Unlike terms					
Terms of an expression	Identification of terms in an expression					

Hi,	here	in	this	video	you	will	learn	Types	of	expression
-----	------	----	------	-------	-----	------	-------	-------	----	------------

Q^{\cdot}	uestion:	55

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.

......

......

The terms in the expression are $____$, $____$, and $____$.

Therefore, there are _____ terms in the expression.

Question: 56

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 57 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial) Answer: The terms in expression $5m^2 + m + 0$ are ____ Here, the expression has ______ terms and it is called a _____ expression. Hi, here in this video you will learn Solving an equation Question: 58 If @=5, then 5 @+5 =Answer:The value of the given smiley ② is _____. Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$. Question: 59 Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, +3 = -47 | Answer: The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle, 7× ____+3= ____ $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$ $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$ $7 \times _{---} + 3 = _{---}$ 7× ____+3 = ____ Therefore, ______ is the number that can be placed in a box to make the equation correct. Question: 60 Arrange the terms in the descending order when the value of x is 2. $5x \times 1$ x + 3 2x - 4 $\frac{1}{2}x$ 2x

Answer:

The given expression are _____.

The value of x is _____.

substituting value of \mathbf{x}

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order:,,, Their respective algebraic terms are,,					
Hi, here in this video you v	vill lea	arn Additi	on on exp	ression	
Question: 61					
Shade the like terms.					
$3a$ $3a^2$	3b	6a	3c	33a	9a
Answer: Given terms are Two or more term have Here, like terms are			rent) variable	s is called like	terms.
Question: 62					
Complete the expression $7r^2 + r^2$. 🗆 _	2 = _	\r^2		
Answer:					
(Like / Unlike) terms can be added or subtracted.					
7r²+ r □ _	2] = (7 -	+ 2)	$r^2 = $	
Question: 63					
Sam have 3a chocolates and 9y ic	ecream	. Ram have 7	a chocolates	and 5y icecrea:	m.
(i) Total chocolates Ram and S	Sam ha	ve :			
(ii) How many icecreams Sam h	ave mo	ore than Ram	:		
Answer:					
		Chocolates	Icecream		
	Sam				
	Dom		1		

(i) Total chocolates Ram and Sam have :	
Pam's shocolate + Sam's shocolates -	_

(ii) How many icecreams Sam have more than Ram :

icocroam	100000000		
rcecream	$1cecream = \underline{\hspace{1cm}}$	_	=
1000100111	1000100111		

......

Hi, here in this video you will learn Terms of an expression

Question: 64

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

_____.

Terms	Constants	Variables

.....

Question: 65

Mark the expression that contains two terms.

$$3x+5 \quad 12a \quad 4xy \quad 12a+b+1 \quad 7m+0$$

Answer:

The terms in the expression 3x + 5 is/are _____

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are _____.

The terms in the expression 12a + b + 1 is/are _____

The terms in the expression 7m + 0 is/are _____.

Question: 66

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

Answer:	
In algebraic expression,of addition.	(variables/ terms) are connected together with operations
	, are the terms of the given expression.