Objective: This project aims to Build a decision tree classifier to predict whether a customer will purchase a product or service based on their demographic and behavioral data. Use a dataset such as the Bank Marketing dataset from the UCI Machine Learning Repository.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')

#Importing the file and looking at the sample data
df = pd.read_csv("/content/bank11.csv")
df.sample(7)
```

	age	job	marital	education	default	balance	housing	loan	contact	da
3263	35	management	married	tertiary	no	24	yes	no	cellular	
4157	55	retired	married	secondary	no	159	no	no	cellular	2
4353	30	admin.	married	tertiary	no	400	yes	no	cellular	
4140	54	self- employed	divorced	primary	no	4382	yes	no	telephone	1
3411	57	management	married	tertiary	no	0	no	no	cellular	1
4286	39	admin.	married	tertiary	no	722	no	no	telephone	2
4										•

#Statistical Summary of the dataframe
df.describe()

	age	balance	day	duration	campaign	pdays	pr
count	4521.000000	4521.000000	4521.000000	4521.000000	4521.000000	4521.000000	4521.
mean	41.170095	1422.657819	15.915284	263.961292	2.793630	39.766645	0.
std	10.576211	3009.638142	8.247667	259.856633	3.109807	100.121124	1.
min	19.000000	-3313.000000	1.000000	4.000000	1.000000	-1.000000	0.
25%	33.000000	69.000000	9.000000	104.000000	1.000000	-1.000000	0.
50%	39.000000	444.000000	16.000000	185.000000	2.000000	-1.000000	0.
75%	49.000000	1480.000000	21.000000	329.000000	3.000000	-1.000000	0.
max	87.000000	71188.000000	31.000000	3025.000000	50.000000	871.000000	25
4							•

df.isnull().sum()
#dataset has no null values.

0 age job 0 marital 0 education 0 default 0 balance 0 housing 0 loan 0 contact 0 day 0 month duration 0 campaign 0 pdays 0 previous 0 0 poutcome dtype: int64

df.info()
df.columns
df.shape

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4521 entries, 0 to 4520
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	age	4521 non-null	int64
1	job	4521 non-null	object
2	marital	4521 non-null	object
3	education	4521 non-null	object
4	default	4521 non-null	object

```
5
     balance
                4521 non-null
                                  int64
 6
     housing
                4521 non-null
                                 object
 7
     loan
                 4521 non-null
                                 object
 8
                4521 non-null
                                 object
     contact
 9
     day
                4521 non-null
                                 int64
 10
     month
                4521 non-null
                                 object
 11
     duration
                4521 non-null
                                  int64
 12
     campaign
                4521 non-null
                                  int64
 13
     pdays
                 4521 non-null
                                  int64
 14
     previous
                4521 non-null
                                  int64
 15
     poutcome
                4521 non-null
                                 object
16 y
                4521 non-null
                                 object
dtypes: int64(7), object(10)
memory usage: 600.6+ KB
(4521, 17)
```

```
fig,axes = plt.subplots(2,3)
sns.histplot(data = df, x = 'age', ax = axes[0,0])
sns.histplot(data = df, x = 'balance', ax = axes[0,1])
sns.histplot(data = df, x = 'day', ax = axes[0,2])
sns.histplot(data = df, x = 'campaign', ax = axes[1,0])
sns.histplot(data = df, x = 'pdays', ax = axes[1,1])
sns.histplot(data = df, x = 'previous', ax = axes[1,2])
```



```
fig,axes = plt.subplots(2,3)
sns.boxplot(data = df, x = 'age', ax = axes[0,0])
sns.boxplot(data = df, x = 'balance', ax = axes[0,1])
sns.boxplot(data = df, x = 'day', ax = axes[0,2])
sns.boxplot(data = df, x = 'campaign', ax = axes[1,0])
sns.boxplot(data = df, x = 'pdays', ax = axes[1,1])
sns.boxplot(data = df, x = 'previous', ax = axes[1,2])
```

<Axes: xlabel='previous'>

df.y.value_counts()

no 4000 yes 521

Name: y, dtype: int64

```
x1 = sns.countplot(x = 'y', data = df, palette='Set2')
plt.title('Bank Deposits')
plt.show()
```


Bank deposit products or service subscribed by 521 people out of 4521 people.

Bank deposit products or service not subscribed by 4000 people out of 4521 people.

```
plt.figure(figsize = (30,12))
sns.countplot(x = 'age', data = df)
plt.title('Age Distribution',fontsize = 30)
plt.xlabel('Age',fontsize = 30)
plt.ylabel('Count',fontsize = 30)
plt.show()
```



```
plt.figure(figsize = (15,10))
sns.countplot(x ='job', data = df, palette="Set2")
plt.title('Job Distribution',fontsize = 10)
plt.xlabel('Job',fontsize = 20)
plt.ylabel('Count',fontsize = 20)
plt.show()
```



```
plt.figure(figsize = (5,6))
sns.countplot(x = 'marital', data = df, palette='Set2')
plt.title('Marital Distribution',fontsize = 10)
plt.xlabel('Marital',fontsize = 10)
plt.ylabel('Count',fontsize = 10)
plt.show()
```



```
plt.figure(figsize = (5,5))
sns.countplot(x = 'default', data = df, palette= "Set2")
plt.title('Default Distribution',fontsize = 15)
plt.xlabel('Default',fontsize = 15)
plt.ylabel('Count',fontsize = 15)
plt.show()
```



```
plt.figure(figsize = (5,6))
sns.countplot(x = 'housing', data = df,palette= "Set2")
plt.title('Housing Distribution',fontsize = 10)
plt.xlabel('Housing',fontsize = 10)
plt.ylabel('Count',fontsize = 10)
plt.show()
```



```
print('Housing:\n No Housing:' , df[df['housing']=='no'] ['age'].count(),
    '\n Yes Housing:' , df[df['housing']=='yes'] ['age'].count())
    Housing:
```

No Housing: 1962 Yes Housing: 2559

The clients having housing loan is 597 more then clients who did not opted for housing loan.

```
plt.figure(figsize = (5,6))
sns.countplot(x = 'loan', data = df, palette = 'Set2')
plt.title('Loan Distribution',fontsize = 10)
plt.xlabel('Loan',fontsize = 10)
plt.ylabel('Count',fontsize = 10)
plt.show()
```



```
print('Loan:\n No Personal Loan:' , df[df['loan']=='no'] ['age'].count(),
    '\n Yes Personal Loan:' , df[df['loan']=='yes'] ['age'].count())

Loan:
    No Personal Loan: 3830
    Yes Personal Loan: 691
```

The clients having personal loan is 3139 less then clients who did not opted for personal loan.

```
plt.figure(figsize = (5,5))
sns.countplot(x ='contact', data = df, palette ='Set2')
plt.title('Contact Distribution',fontsize = 10)
plt.xlabel('Contact',fontsize = 10)
plt.ylabel('Count',fontsize = 10)
plt.show()
```

