Di-electron Widths of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$

Jim Pivarski

The 3.5 Fundamental Interactions

	Electro-	-Weak	Strong Nuclear	Gravity
mediated by	photon (γ)	W^{\pm} , Z^0	gluons (g)	curved space
sources	all charged particles	all known particles	quarks, gluons	mass

Strong Nuclear force:

- quarks have red, green, or blue charges
- anti-quarks have anti-colors
- gluons have color/anti-color

This is the force that holds protons up down and neutrons up down together.

Fringe fields bind protons and neutrons into nuclei

Color-charged gluons can self-interact:

In Quantum Electrodynamics (QED), each graph contributes $\mathcal{O}(\alpha^N)$ to the amplitude $\alpha=1/137$ and N= number of vertices in graph

In Quantum Chromodynamics (QCD) at large distances (\gtrsim 0.2 fm = 1 GeV $^{-1}$), $\alpha_s \sim 1$

Complicated graphs cannot be ignored

is not suppressed relative to

Large-distance QCD is very difficult to calculate

Alternative method: Lattice QCD

General problem is to compute amplitude
$$=\sum_f S[f]$$

- f is a function of quark and gluon field values w.r.t. space-time
- S is the action (fundamental theory, in this case QCD)

Rather than partitioning $\{f\}$ by topology, simulate random paths with a computer

- 1. Discretize space-time
- 2. Throw random paths f
- 3. Interpolate with short-distance QCD
- 4. Calculate S(f) and integrate
- 5. Take continuum limit from several simulations

Computationally intensive, particularly because of $\underbrace{}_{u, d, s}^{u, d, s}$

Symanzik-improved staggered-quark formalism (1999) makes u, d, s quark loops feasible

Di-electron width
$$(\Gamma_{ee})$$
 of $\Upsilon(nS)$ is the rate of $\Upsilon(\mathsf{nS})$ $\{$

 Γ_{ee} can be calculated to high-precision using improved Lattice QCD ($\sim 10\%$ for $\Gamma_{ee}(nS)$ and few percent for $\Gamma_{ee}(nS)/\Gamma_{ee}(mS)$)

This calculation shares some aspects of f_B , and is an extremely non-relativistic test case

We experimentally measured Γ_{ee} for $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$

- 50× largest previous $\Upsilon(1S)$ dataset, many times more for $\Upsilon(2S)$, $\Upsilon(3S)$
- Total (statistical + systematic) uncertainties of 1.5%, 1.8%, and 1.8%
- Three states in one study allow for significant uncertainty cancellation in ratios

Determine $\Upsilon \to e^+e^-$ decay rate by measuring $e^+e^- \to \Upsilon$ cross-section

$$\mathcal{A}\left(\Upsilon(\mathsf{nS})\left\{\begin{array}{|c|c|c} b & \gamma & e^-\\\hline\hline b & & \\\hline\hline b & & e^+\\\end{array}\right) = \mathcal{A}\left(\begin{array}{|c|c|c} e^- & \gamma & b\\\hline\hline e^+ & & \\\hline\hline b & & \\\end{array}\right)\Upsilon(\mathsf{nS})\right)$$

$$\Gamma_{ee} = \frac{M\gamma^2}{6\pi^2} \int \sigma(e^+e^- \to \Upsilon) dE$$

- 1. Collide e^+ and e^- at different energies ${\cal E}$
- 2. Measure cross-section $\sigma(e^+e^- \to \Upsilon)$
- 3. Integrate!

To measure $\sigma(e^+e^- \to \Upsilon)$, count Υ events

$$\sigma = \frac{N_{\rm obs} - N_{\rm back}}{\epsilon \, \mathcal{L}}$$

 $N_{
m obs} = {
m count}$

 $N_{
m back} = {
m backgrounds}$

 $\epsilon = \text{efficiency}$

 $\mathcal{L} = Iuminosity$

Υ decay modes

- leptonic: total of $3\mathcal{B}_{\mu\mu}=7.5\%$, well-measured
 - $-\,e^+e^-$, $\,\mu^+\mu^-$, $\,\tau^+\tau^-$: hard to distinguish from background, easy to simulate
- hadronic: total of $1-3\mathcal{B}_{\mu\mu}$, hard to simulate
 - -ggg, $gg\gamma$, $q\bar{q} \rightarrow$ lots of particles
 - $-\Upsilon(2S)$ and $\Upsilon(3S)$ decay into lower-energy $b\bar{b}$ states, e.g. $\Upsilon(2S)\to\pi^+\pi^-\Upsilon(1S)$
 - unknown modes?

backgrounds

- $\bullet e^+e^- \to X$
 - $-e^{+}e^{-}$, $\mu^{+}\mu^{-}$, $\tau^{+}\tau^{-}$, $q\bar{q}$
 - two-photon fusion: $e^+e^- \rightarrow e^+e^- X$
 - $-e^+e^- \to \gamma \Upsilon((n-1)S)$
- beam-gas, beam-wall
- cosmic rays

Select $hadronic \Upsilon$ decays, later correct with $(1 - 3\mathcal{B}_{\mu\mu})$

solid are data dashed are simulated Υ decays all cuts applied except the one shown

Select events near collision point (< 7.5 cm along beam axis, < 5 mm perpendicular)

blue points are event vertices (determined from track intersections) beam-beam collision region is suppressed

Subtracting Cosmic Rays

solid histogram are beam-beam data points with errorbars are no-beam data

Efficiency: what fraction of hadronic Υ decays are missing from our count?

Hadronic modes are difficult to simulate, and our definition includes unknown modes

- We have a large sample (1.3 fb $^{-1}$) of $\Upsilon(2S)$ decays
- Select $\Upsilon(2S) \to \pi^+\pi^- \ \Upsilon(1S)$ by $\pi^+\pi^-$ recoil mass

Technical detail: two-track trigger satisfied by $\pi^+\pi^-$ is prescaled by a factor of 19

To get a statistically-precise result, we divide problem into two parts:

- define $\Upsilon(1S)$ decay to be visible if it generates one AXIAL track and maybe one CBLO cluster in the trigger (the CBLO may be due to $\pi^+\pi^-$)
- define $\epsilon_{\text{vis}} = \text{probability that } \Upsilon(1S)$ is visible
- define $\epsilon_{\text{cuts}} = \text{probability that a visible } \Upsilon(1S)$ decay passes cuts

determine ϵ_{vis} with a fit yield from two-track trigger

determine ϵ_{cuts} with a background-subtracted count from hadron trigger

Our efficiency study only applies to $\Upsilon(1S)$

For $\Upsilon(2S)$ and $\Upsilon(3S)$, we extrapolate using Monte Carlo simulations

We assume that $\Upsilon(2S)$ and $\Upsilon(3S)$ decay like $\Upsilon(1S)$, but at higher energy and with transitions to lower $b\bar{b}$ states

solid is Monte Carlo, shaded is $\mu^+\mu^-$, open is $X\mu^+\mu^-$ points with errorbars are data

Reminder: cross-section $\sigma=(N_{\rm obs}-N_{\rm back})/(\epsilon\,\mathcal{L})$ where \mathcal{L} is time-integrated luminosity.

Instantaneous luminosity is the intensity and degree of overlap of e^+e^- beams

Instantaneous luminosity is hard to measure and fluctuates with beam conditions

Apply above equation for a process with a known cross-section

 $\sigma(e^+e^- \to e^+e^-) \times \epsilon(e^+e^-)$ may be calculated from QED and detector simulations

Measure integrated luminosity three ways, consistent overall scale

BUT, we observe a difference in $e^+e^- \to \gamma\gamma$ as a function of e^+e^- energy

Unexplained: add to systematic uncertainty

So far, we have only considered vertical uncertainties (uncertainties in cross-section)

Now we turn to the horizontal: beam energy

Beam energy is determined by magnetic field measurements in storage ring magnets

 $E_{\mathsf{beam}} = \mathsf{electron} \ \mathsf{charge} \times \mathsf{magnetic} \ \mathsf{field} \times \mathsf{storage} \ \mathsf{ring} \ \mathsf{radius}$

With corrections for

- RF frequency shifts
- steering and focusing magnets
- electrostatic separators

Magnetic field probe is subject to shifts: E_{beam} calibration may shift

 M_{Υ} is known: use Υ peaks as calibrating markers in beam energy

 e^+e^- energy measurement drifts about 0.5 MeV/month

We limit acceptable scan data to 48-hour windows

- Measurements alternated above and below resonance peak
- Point of high slope repeated (1 & 5): convert cross-section reproducibility into beam energy reproducibility

• \Rightarrow 0.07 MeV uncertainty in e^+e^- energy, 0.2% in Γ_{ee}

Statistical Systematic

$$\Gamma_{ee}(1S) = 1.354 \pm 0.004 \pm 0.020 \text{ keV} \quad 0.3\% \quad 1.5\%$$

$$\Gamma_{ee}(2S) = 0.619 \pm 0.004 \pm 0.010 \text{ keV} \quad 0.7\% \quad 1.6\%$$

$$\Gamma_{ee}(3S) = 0.446 \pm 0.004 \pm 0.007 ext{ keV} \qquad 1.0\% \qquad \qquad 1.5\%$$

 $\chi^2/N_{
m dof} = 240/187 = 1.3$, confidence level = 0.5%

 $\chi^2/N_{\mathsf{dof}} = 107/66 = 1.6$, confidence level = 0.1%

 $\chi^2/N_{
m dof} = 155/159 = 1.0$, confidence level = 59%

Need to consider interference between $e^+e^- \to \Upsilon \to q\bar{q}$ and $e^+e^- \to q\bar{q}$

Resonance and continuum amplitudes add, not cross-sections

 $(\sigma \propto \mathcal{A}^2)$

Phase difference cycles through resonance: destructive interference below resonance, constructive above

red: no interference

blue: exaggerated interference

Does $q\bar{q} \rightarrow$ hadronic interfere with $ggg \rightarrow$ hadronic?

Exclusive final states known to interfere ("hadronic" $=\pi^+\pi^-$, K^+K^-)

Do they interfere inclusively (sum over all final states)? or do phases wash out?

Our fits provide first constraints, as a function of $q\bar{q}-ggg$ phase difference

We assume no $q\bar{q}/ggg$ interference in our Γ_{ee} fits

Summary of All Uncertainties

*Common to all resonances

Contribution to Γ_{ee}	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
Correction for leptonic modes	0.2%	0.2%	0.3%
Hadronic efficiency*	0.5%	0.5%	0.5%
Xe^+e^- , $X\mu^+\mu^-$ correction	0	0.15%	0.13%
Overall luminosity scale*	1.3%	1.3%	1.3%
Bhabha $/\gamma\gamma$ inconsistency	0.4%	0.4%	0.4%
Beam energy measurement drift	0.2%	0.2%	0.2%
Fit function shape	0.1%	0.1%	0.1%
χ^2 inconsistency	0.2%	0.6%	0
Total systematic uncertainty	1.5%	1.6%	1.5%
Statistical uncertainty	0.3%	0.7%	1.0%
Total	1.5%	1.8%	1.8%

Results!

$$\Gamma_{ee}(1S) = 1.354 \pm 0.004 \pm 0.020 \text{ keV}$$
 1.5%

 $\Gamma_{ee}(2S) = 0.619 \pm 0.004 \pm 0.010 \text{ keV}$ 1.8%

 $\Gamma_{ee}(3S) = 0.446 \pm 0.004 \pm 0.007 \text{ keV}$ 1.8%

 $\Gamma_{ee}(2S)/\Gamma_{ee}(1S) = 0.457 \pm 0.004 \pm 0.004 \text{ keV}$ 1.2%

 $\Gamma_{ee}(3S)/\Gamma_{ee}(1S) = 0.329 \pm 0.003 \pm 0.003 \text{ keV}$ 1.3%

 $\Gamma_{ee}(3S)/\Gamma_{ee}(2S) = 0.720 \pm 0.009 \pm 0.007 \text{ keV}$ 1.6%

 $\Gamma(1S) = 54.4 \pm 0.2 \pm 0.8 \pm 1.6 \text{ keV}$ 3.3%

 $\Gamma(2S) = 30.5 \pm 0.2 \pm 0.5 \pm 1.3 \text{ keV}$ 4.6%

 $\Gamma(3S) = 18.6 \pm 0.2 \pm 0.3 \pm 0.9 \text{ keV}$ 5.2%

- Lattice QCD results are preliminary
- Final results will have few percent precision in $\Gamma_{ee}(nS)/\Gamma_{ee}(mS)$ and $\sim 10\%$ in $\Gamma_{ee}(nS)$

A. Gray et al. [HPQCD Collaboration], Phys. Rev. D 72, 094507 (2005)