Unit I PART-A

Q.No	Question	Text	Blooms	CLO
		Book	Taxonomy	
			level	
1.	1. The format is usually used to store			
	data.			
	a) BCD			
	b) Decimal			
	c) Hexadecimal			
	d) Octal			
2.	A source program is usually in			
	a) Assembly language			
	b) Machine level language			
	c) High-level language			
	d) Natural language			
3.	The small extremely fast, RAM's are called as			
	a) Cache			
	b) Heaps			
	c) Accumulators			
	d) Stacks			
4.	bus structure is usually used to			
	connect I/O devices.			
	a) Single bus			
	b) Multiple bus			
	c) Star bus			
	d) Rambus			
5.	The Input devices can send information to the			
	processor.			
	a) When the SIN status flag is set			
	b) When the data arrives regardless of the SIN			
	flag			
	c) Neither of the cases			
	d) Either of the cases			

6.	The decoded instruction is stored in		
	a) IR		
	b) PC		
	c) Registers		
	d) MDR		
7.	Which of the register/s of the processor is/are		
	connected to Memory Bus?		
	a) PC		
	b) MAR		
	c) IR		
	d) Both PC and MAR		
8.	ISP stands for		
	a) Instruction Set Processor		
	b) Information Standard Processing		
	c) Interchange Standard Protocol		
	d) Interrupt Service Procedure		
9.	The internal components of the processor are		
	connected by		
	a) Processor intra-connectivity circuitry		
	b) Processor bus		
	c) Memory bus		
	d) Rambus		
10.	The registers, ALU and the interconnection		
	between them are collectively called as		
	a) process route		
	b) information trail		
	c) information path		
	d) data path		
11.	An optimizing Compiler does		
	a) Better compilation of the given piece of code		
	b) Takes advantage of the type of processor		
	and reduces its process time		
	c) Does better memory management		
	d) None of the mentioned		

12.	. When Performing a looping operation, the		
	instruction gets stored in the		
	a) Registers		
	b) Cache		
	c) System Heap		
	d) System stack		
13.	To reduce the memory access time we		
	generally make use of		
	a) Heaps		
	b) Higher capacity RAM's		
	c) SDRAM's		
	d) Cache's		
14.	The time delay between two successive		
	initiations of memory operation		
	a) Memory access time		
	b) Memory search time		
	c) Memory cycle time		
	d) Instruction delay		
15.	During the execution of a program which gets		
	initialized first?		
	a) MDR		
	b) IR		
	c) PC		
	d) MAR		
16.	The internal components of the processor are		
	connected by		
	a)Processor intra-connectivity circuitry		
	b)Processor bus		
	c)Memory bus		
	d) Rambus		

17.	In multiple Bus organisation, the registers		
	are collectively placed and referred as		
	a) Set registers		
	b) Register file		
	c) Register Block		
	d) Map registers		
18.	he ISA standard Buses are used to connect		
	a) RAM and processor		
	b) GPU and processor		
	c) Harddisk and Processor		
	d) CD/DVD drives and Processor		
19.	An optimizing Compiler does		
	a) Better compilation of the given piece of code		
	b) Takes advantage of the type of processor		
	and reduces its process time		
	c) Does better memory management		
	d) None of the mentioned		
20.	When Performing a looping operation, the		
	instruction gets stored in the		
	a) Registers		
	b) Cache		
	c) System Heap		
	d) System stack		
21.	The circuit used to store one bit of data is		
	called		
	a) Registers		
	b) Encoder		
	c) Decoder		
	d) Flip flop		

22.	The average time required to reach a storage
	location in memory and obtain its content is
	a) Turnaround time
	b) Access time
	c) Seek time
	d) Transfer time
23.	The addressing mode used in the instruction
	ADD X,Y is
	a) Direct
	b) Indirect
	c) Absolute
	d) index
24.	A stack organised computer uses instruction
	of
	a) Zero addressing
	b) One addressing
	c) Two addressing
	d) Three addressing
25.	An n-bit microprocessor has
	a) n-bit program counter
	b) n-bit instruction register
	c) n-bit stack pointer
	d) n-bit address register
26.	The register that keeps track of the
	instructions of a program in the memory
	a) Instruction Register
	b) Program Counter
	c) Index Register
	d) Accumulator

27.	The BSA instruction is		
	a) Branch and store accumulator		
	b) Branch and save return address		
	c) Branch and shift address		
	d) Branch and show accumulator		
28.	The load instruction is used to designate a		
	transfer from memory to a processor register		
	known as		
	a) Accumulator		
	b) Instruction register		
	c) Program counter		
	d) Index register		
29.	Status bit is also called as		
	a) Binary bit		
	b) Flag bit		
	c) Signed bit		
	d) Unsigned bit		
30.	What is the content of Stack Pointer(SP)?		
	a) Address of current instruction		
	b) Address of next instruction		
	c) Address of top element of stack		
	d) Size of stack		
31.	In assembly language programming, the		
	minimum number of operands required for an		
	instruction is/are		
	a) Zero		
	b) One		
	c) Two		
	d) Three		

32.	In which addressing mode the operand is		
	given explicitly in the instruction		
	a) Immediate		
	b) Register		
	c) Direct		
	d) Indirect		
33.	The ALU makes use of to store the		
	intermediate results.		
	a) Accumulators		
	b) Registers		
	c) Heap		
	d) Stack		
34.	The control unit controls other units by		
	generating		
	a) Control signals		
	b) Timing signals		
	c) Transfer signals		
	d) Command Signals		
35.	The instruction -> Add LOCA, R0 does		
	a) Adds the value of LOCA to R0 and stores in		
	the temp register		
	b) Adds the value of R0 to the address of		
	LOCA		
	c) Adds the values of both LOCA and RO		
	and stores it in R0		
	d) Adds the value of LOCA with a value in		
	accumulator and stores it in R0		
36.	The bus used to connect the monitor to the		
	CPU is		
	a) PCI bus		
	b) SCSI bus		
	c) Memory bus		
	d) Rambus		

37. Add #45, when this instruction is executed the following happen/s				
a) The processor raises an error and requests for one more operand b) The value stored in memory location 45 is retrieved and one more operand is requested c) The value 45 gets added to the value on the stack and is pushed onto the stack d) None of the mentioned 38. In the following indexed addressing mode instruction, MOV 5(R1), LOC the effective address is a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 248 d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian	37.	Add #45, when this instruction is executed		
for one more operand b) The value stored in memory location 45 is retrieved and one more operand is requested c) The value 45 gets added to the value on the stack and is pushed onto the stack d) None of the mentioned 38. In the following indexed addressing mode instruction, MOV 5(R1), LOC the effective address is a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		the following happen/s		
b) The value stored in memory location 45 is retrieved and one more operand is requested c) The value 45 gets added to the value on the stack and is pushed onto the stack d) None of the mentioned 38. In the following indexed addressing mode instruction, MOV 5(R1), LOC the effective address is a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		a) The processor raises an error and requests		
is retrieved and one more operand is requested c) The value 45 gets added to the value on the stack and is pushed onto the stack d) None of the mentioned 38. In the following indexed addressing mode instruction, MOV 5(R1), LOC the effective address is a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2** d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		for one more operand		
requested c) The value 45 gets added to the value on the stack and is pushed onto the stack d) None of the mentioned 38. In the following indexed addressing mode instruction, MOV 5(R1), LOC the effective address is		b) The value stored in memory location 45		
c) The value 45 gets added to the value on the stack and is pushed onto the stack d) None of the mentioned 38. In the following indexed addressing mode instruction, MOV 5(R1), LOC the effective address is a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		is retrieved and one more operand is		
stack and is pushed onto the stack d) None of the mentioned 38. In the following indexed addressing mode instruction, MOV 5(R1), LOC the effective address is a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 248 d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		requested		
d) None of the mentioned 38. In the following indexed addressing mode instruction, MOV 5(R1), LOC the effective address is a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		c) The value 45 gets added to the value on the		
38. In the following indexed addressing mode instruction, MOV 5(R1), LOC the effective address is a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 248 d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		stack and is pushed onto the stack		
instruction, MOV 5(R1), LOC the effective address is a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		d) None of the mentioned		
address is a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 248 d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian	38.	In the following indexed addressing mode		
a) EA = 5+R1 b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 248 d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		instruction, MOV 5(R1), LOC the effective		
b) EA = R1 c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		address is		
c) EA = [R1] d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		a) $EA = 5 + R1$		
d) EA = 5+[R1] 39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		b) EA = R1		
39. The effective address of the following instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		c) EA = [R1]		
instruction is MUL 5(R1,R2). a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		d) $EA = 5+[R1]$		
a) 5+R1+R2 b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian	39.	The effective address of the following		
b) 5+(R1*R2) c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		instruction is MUL 5(R1,R2).		
c) 5+[R1]+[R2] d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		a) 5+R1+R2		
d) 5*([R1]+[R2]) 40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		b) 5+(R1*R2)		
40. An 24 bit address generates an address space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		c) 5+[R1]+[R2]		
space of locations. a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		d) 5*([R1]+[R2])		
a) 1024 b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian	40.	An 24 bit address generates an address		
b) 4096 c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		space of locations.		
c) 2 ⁴⁸ d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		a) 1024		
d) 16,777,216 41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		b) 4096		
41. The type of memory assignment used in Intel processors is a) Little Endian b) Big Endian c) Medium Endian		c) 2 ⁴⁸		
processors is a) Little Endian b) Big Endian c) Medium Endian		d) 16,777,216		
a) Little Endian b) Big Endian c) Medium Endian	41.	The type of memory assignment used in Intel		
b) Big Endian c) Medium Endian		processors is		
c) Medium Endian		a) Little Endian		
		b) Big Endian		
d) None of the mentioned		c) Medium Endian		
		d) None of the mentioned	 	

42.	RTN stands for		
	a) Register Transfer Notation		
	b) Register Transmission Notation		
	c) Regular Transmission Notation		
	d) Regular Transfer Notation		
43.	The instruction, Add R1,R2,R3 in RTN is		
	a) R3=R1+R2+R3		
	b) R3<-[R1]+[R2]+[R3]		
	c) R3=[R1]+[R2]		
	d) R3<-[R1]+[R2]		
44.	The two phases of executing an instruction		
	are		
	a) Instruction decoding and storage		
	b) Instruction fetch and instruction		
	execution		
	c) Instruction execution and storage		
	d) Instruction fetch and Instruction		
	processing		
45.	When using Branching, the usual sequencing		
	of the PC is altered. A new instruction is		
	loaded which is called as		
	a) Branch target		
	b) Loop target		
	c) Forward target		
	d) Jump instruction		
46.	converts the programs written in		
	assembly language into machine instructions.		
	a) Machine compiler		
	b) Interpreter		
	c) Assembler		
	d) Converter		

47.	The alternate way of writing the instruction,		
	ADD #5,R1 is		
	a) ADD [5],[R1];		
	b) ADDI 5,R1;		
	c) ADDIME 5,[R1];		
	d) There is no other way		
48.	the most suitable data structure used to		
	store the return addresses in the case of		
	nested subroutines.		
	a) Heap		
	b) Stack		
	c) Queue		
	d) List		
49.	The system is notified of a read or write		
	operation by		
	a) Appending an extra bit of the address		
	b) Enabling the read or write bits of the		
	devices		
	c) Raising an appropriate interrupt signal		
	d) Sending a special signal along the BUS		
50.	The method of synchronising the processor		
	with the I/O device in which the device sends		
	a signal when it is ready is?		
	a) Exceptions		
	b) Signal handling		
	b) Signal handling c) Interrupts		

PART-B

Q.No	Question	Text	Blooms	CLO
		book	Taxonomy	
			Level	

Explain the various functional units of a computer.			
Explain the various types of Memory System.			
Explain the role of registers – PC, IR, MAR and MDR in processor.			
What is a Bus? Explain Single and Multiple Bus Structure.			
Explain Register Transfer Notation with examples.			
Explain Assembly Language Notation with examples.			
What are the different types of Instruction Format? Explain each with an example.			
Differentiate RISC and CISC.			
What are Assembler Directives? Give an example.			
Explain various Processor and CPU cores in ARM processor.			
	Explain the various types of Memory System. Explain the role of registers – PC, IR, MAR and MDR in processor. What is a Bus? Explain Single and Multiple Bus Structure. Explain Register Transfer Notation with examples. Explain Assembly Language Notation with examples. What are the different types of Instruction Format? Explain each with an example. Differentiate RISC and CISC. What are Assembler Directives? Give an example. Explain various Processor and CPU cores in	Explain the various types of Memory System. Explain the role of registers – PC, IR, MAR and MDR in processor. What is a Bus? Explain Single and Multiple Bus Structure. Explain Register Transfer Notation with examples. Explain Assembly Language Notation with examples. What are the different types of Instruction Format? Explain each with an example. Differentiate RISC and CISC. What are Assembler Directives? Give an example. Explain various Processor and CPU cores in	Explain the various types of Memory System. Explain the role of registers – PC, IR, MAR and MDR in processor. What is a Bus? Explain Single and Multiple Bus Structure. Explain Register Transfer Notation with examples. Explain Assembly Language Notation with examples. What are the different types of Instruction Format? Explain each with an example. Differentiate RISC and CISC. What are Assembler Directives? Give an example. Explain various Processor and CPU cores in

PART-C

Q.No	Question	Text	Blooms	CLO
		book	Taxonomy	
			Level	

1.	Explain Instruction Execution in Straight Line Sequencing and Branching.		
2.	Describe various Addressing Modes with suitable examples.		
3.	Explain basic I/O operations in detail.		
4.	Explain Memory location, memory addresses and memory operation in detail.		
5.	Define Microprocessor. Explain the evolution of Microprocessors in detail.		
6.	Explain Assembly Language Program with an example.		
7.	Explain ARM processor and Thumb instruction set in detail.		
8.	Explain Instruction encoding format for Load and Store instructions in ARM processor.		