

| Α | В | Sum | Carry |
|---|---|-----|-------|
| 0 | 0 | 0   | 0     |
| 0 | 1 | 1   | 0     |
| 1 | 0 | 1   | 0     |
| 1 | 1 | 0   | 1     |

Half Adder



| Inputs |   |      | Outputs |         |
|--------|---|------|---------|---------|
| A      | В | C-IN | Sum     | C - Out |
| 0      | 0 | 0    | 0       | 0       |
| 0      | 0 | 1    | 1       | 0       |
| 0      | 1 | 0    | 1       | 0       |
| 0      | 1 | 1    | 0       | 1       |
| 1      | 0 | 0    | 1       | 0       |
| 1      | 0 | 1    | 0       | 1       |
| 1      | 1 | 0    | 0       | 1       |
| 1      | 1 | 1    | 1       | 1       |

Logical Expression for SUM: = A' B' C-IN + A' B C-IN' + A B' C-IN' + A B C-IN = C-IN (A' B' + A B) + C-IN' (A' B + A B') = C-IN XOR (A XOR B) = (1,2,4,7)

Logical Expression for C-OUT: = A' B C-IN + A B' C-IN + A B C-IN' + A B C-IN = A B + B C-IN + A C-IN = (3,5,6,7)

Another form in which C-OUT can be implemented: = A B + A C-IN + B C-IN (A + A') = A B C-IN + A B + A C-IN + A' B C-IN = A B (1 + C-IN) + A C-IN + A' B C-IN = A B + A C-IN + A' B C-IN = A B + A C-IN + A' B C-IN = A B + A C-IN + A' B C-IN = A B C-IN + A B + A B' C-IN + A' B C-IN = A B C-IN + A' B C-IN + A' B C-IN = A B C-IN + A' B C-IN + A' B C-IN = A B C-IN + A' B C-IN + A' B C-IN = A B C-IN + A' B

Therefore COUT = AB + C-IN (A EX – OR B)



Figure 3 - Logic Diagram of Full Adder using Half Adder

Full Adder



 $\mathbf{B}_0$ B<sub>2</sub>  $\mathbf{B}_{1}$ **B**<sub>3</sub> - M  $A_1$ Ao Cin Cout Cin Cout Cin Cout Cout Full Full Full Full Adder Adder Adder Adder  $\dot{S}_1$ S<sub>3</sub> S2  $S_0$ 

Adder + Subtractor