Mathematics 227

Exam 1 Review

1. Describe the solution space to the linear system:

$$2x_1 - x_2 + 3x_4 = 6$$

$$x_1 + 3x_3 - x_4 = 6$$

$$2x_1 + x_3 + 3x_4 = 7$$

Describe the solution space to the vector equation

$$\begin{bmatrix} 2 & -1 & 0 & 3 \\ 1 & 0 & 3 & -1 \\ 2 & 0 & 1 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 6 \\ 6 \\ 7 \end{bmatrix}.$$

Suppose that

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 6 \\ 6 \\ 7 \end{bmatrix}.$$

Can b be written as a linear combination of v_1 , v_2 , v_3 , and v_4 ? If so, find one set of weights.

4. Determine if the following matrix is in reduced row echelon form. If not, perform a sequence of row operations to put it in reduced row echelon form (without using any computational device). Then give a description of the solution space of the associated linear system.

$$\left[\begin{array}{ccc|ccc|c}
0 & 0 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 & -2
\end{array} \right]$$

5. Suppose that $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Sketch the vectors \mathbf{v} , \mathbf{w} , $2\mathbf{v}$, and $\mathbf{v} + \mathbf{w}$.

Sketch all vectors of the form $t\mathbf{v}$ where t is any scalar.

Sketch all vectors of the form $\mathbf{w} + t\mathbf{v}$ where t is any scalar.

6. Consider the 2-dimensional vectors v and w shown below.

Sketch the linear combination $a\mathbf{v} + b\mathbf{w}$ with weights a = -3 and b = 2.

Can the vector $\begin{bmatrix} 3 \\ -3 \end{bmatrix}$ be written as a linear combination of v and w? If so, how?

Describe the solution space to the equation

$$\left[\begin{array}{cc} \mathbf{v} & \mathbf{w} \end{array}\right] \mathbf{x} = \left[\begin{array}{c} 2\\5 \end{array}\right].$$

- 7. Determine whether the following statements are true or false including a justification for your response.
 - (a) If \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 and \mathbf{v}_4 are vectors in \mathbb{R}^3 , then their span is \mathbb{R}^3 .
 - (b) Suppose that the span of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{27}$ is \mathbb{R}^{27} . Then every vector in \mathbb{R}^{27} can be written as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{27}$ is \mathbb{R}^{27} in exactly one way.

(c) Is b is a linear combination of the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , then the equation

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} \mathbf{x} = \mathbf{b}$$

is consistent.