Corrigé du contrôle continu

Амрні В

Exercice 1

- (a) Voir cours.
- (b) $[0,1] = [0,1] \cup \{1\}$ est l'union de deux boréliens ([0,1] est ouvert et $\{1\}$ est fermé) et est donc dans la tribu borélienne. De même

$$\mathbb{Q}=\bigcup_{q\in\mathbb{Q}}\{q\}$$

est l'union dénombrable de boréliens ($\{q\}$ est fermé pour tout $q \in \mathbb{Q}$) et est donc borélien.

(c) Par définition de la tribu engendrée, $\sigma(\mathcal{B})$ est une tribu qui contient \mathcal{B} et donc \mathcal{A} car $\mathcal{A} \subset \mathcal{B}$. Or $\sigma(\mathcal{A})$ est la "plus petite tribu" contenant \mathcal{A} , on a donc $\sigma(\mathcal{A}) \subset \sigma(\mathcal{B})$.

Exercice 2

On vérifie point par point la définition d'une mesure.

- $E \in \mathcal{B}$ car $E \in \mathcal{A}$ et $\mu(E) = 1$.
- Soit $A \in \mathcal{B}$. $A^c \in \mathcal{A}$ car $A \in \mathcal{A}$ et \mathcal{A} est une tribu. $A \subset E$ et $\mu(E) < \infty$ donc $\mu(A^c) = 1 \mu(A) \in \{0, 1\}$ $\operatorname{car} \mu(A) \in \{0,1\}$. D'où $A^c \in \mathcal{B}$.
- Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{B}^{\mathbb{N}}$. Remarquons que $\cup_n A_n\in\mathcal{A}$. On distingue 2 cas: Cas 1: $\forall n \in \mathbb{N}, \ \mu(A_n) = 0$. Par sous-additivité on a

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\in\mathbb{N}}\mu(A_n)=0.$$

d'où $\cup_n A_n \in \mathcal{B}$.

Cas 2: il existe $n_0 \in \mathbb{N}$ tel que $\mu(A_{n_0}) = 1$. $A_{n_0} \subset \bigcup_n A_n \subset E$ donc

$$1 = \mu(A_{n_0}) \le \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) \le \mu(E) = 1.$$

D'où $\cup_n A_n \in \mathcal{B}$.

 \mathcal{B} est donc une tribu sur E.

Exercice 3

- (a) On vérifie les points de la définition d'une mesure:
 - On a évidemment $\nu: \mathcal{A} \to [0, +\infty]$, où \mathcal{A} est une tribu.
 - $\nu(\emptyset) = \sum_n a_n \mu_n(\emptyset) = \sum_n 0 = 0$, car les μ_n sont des mesures et donc $\mu_n(\emptyset) = 0$ pour tout $n \in \mathbb{N}$.
 - Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{A} , deux-à-deux disjoints. Pour tout $i\in\mathbb{N}$, μ_i est une mesure donc $\mu_i(\cup_n A_n) = \sum_n \mu_i(A_n)$. On a donc

$$\nu\left(\bigcup_{n\in\mathbb{N}} A_n\right) = \sum_{i=0}^{+\infty} \sum_{n=0}^{+\infty} a_i \mu_i(A_n) = \sum_{n=0}^{+\infty} \sum_{i=0}^{+\infty} a_i \mu_i(A_n) = \sum_{n=0}^{+\infty} \nu(A_n),$$

où on a le droit d'échanger les sommes car il s'agit de sommes de termes positifs.

(b) On a les équivalences suivantes:

$$\nu$$
 est une mesure de probabilité $\Leftrightarrow \nu(E) = 1 \Leftrightarrow \sum_{n=0}^{+\infty} a_n \mu_n(E) = 1 \Leftrightarrow \sum_{n=0}^{+\infty} a_n = 1$

car pour tout $n \in \mathbb{N}$, $\mu_n(E) = 1$.

Exercice 4

Soit $(u_n) \in \mathbb{N}^{\mathbb{N}}$. Si il existe $k \geq 1$ tel que $\forall n \in \mathbb{N}, u_{n+k} = u_n$, on dit que (u_n) est k-périodique. On note P_k l'ensemble des suites de $\mathbb{N}^{\mathbb{N}}$ qui sont k-périodiques. On a, par définition de \mathcal{S} :

$$\mathcal{S} = \bigcup_{k \in \mathbb{N}^*} P_k \,.$$

Il reste donc à montrer que P_k est dénombrable pour tout $k \geq 1$. Pour cela, il suffit de remarquer qu'une suite k-périodique est entièrement déterminée par ses k premiers coefficients (les coefficients suivant s'obtiennent ensuite par périodicité). On définit donc

$$\varphi: \left| \begin{array}{ccc} P_k & \to & \mathbb{N}^k \\ (u_n) & \mapsto & (u_0, \dots, u_{k-1}) \end{array} \right..$$

Il faut maintenant montrer que φ est bijective. Pour $n \in \mathbb{N}$ on définit $[n]_k \in \{0, \dots, k-1\}$ comme étant le reste de la division euclidienne de n par k. Soient maintenant $y = (y_0, \dots, y_{k-1}) \in \mathbb{N}^k$ et $(u_n) \in P_k$. On résout par équivalences

$$\varphi((u_n)) = y \Leftrightarrow \forall n \in \{0, \dots, k-1\}, \ u_n = y_n \Leftrightarrow \forall n \in \mathbb{N}, u_n = y_{[n]_k}$$

où la dernière équivalence est due au fait que (u_n) est k-périodique. L'équation $\varphi(u) = y$ admet donc une unique solution dans P_k pour tout $y \in \mathbb{N}^k$: φ est bijective. \mathbb{N}^k est dénombrable, P_k est donc dénombrable, ce qui termine la preuve.

