

"JÚLIO DE MESQUITA FILHO"

CAMPUS UNIVERSITÁRIO DE BAURU
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

Trabalho de Conclusão da Disciplina de Microcontroladores

Professor Perea

Amanda Gonçalves Dias

unesp

"JÚLIO DE MESQUITA FILHO" CAMPUS UNIVERSITÁRIO DE BAURU FACULDADE DE CIÊNCIAS DEPARTAMENTO DE COMPUTAÇÃO

Introdução

A ideia deste trabalho de conclusão de disciplina é estabelecer uma comunicação bluetooth entre um PIC e um dispositivo móvel.

A proposta é fazer um sistema que meça a temperatura do ambiente e, a partir de um comando enviado por um dispositivo móvel (com o sistema operacional Android), o sistema envie a temperatura atual através de um módulo bluetooth que poderá ser vista na tela do dispositivo.

Material

Para realizar este trabalho utilizei:

- 1 PIC 16F873A
- 1 Módulo Bluetooth JY-MCU
- 1 celular com sistema operacional Android
- 1 sensor LM35
- 1 resistor de 220 ohms
- 1 resistor de 330 ohms
- 1 protoboard
- 1 fonte de alimentação

Procedimentos

Montagem do hardware

A comunicação será feita da seguinte forma: O celular deve enviar um sinal para o módulo bluetooth. Este repassará a mensagem para o PIC que por sua vez executará as funções necessárias e retornará um novo valor ao módulo bluetooth, que será enviado para o celular.

O módulo bluetooth possui quatro pinos: RX, TX, GND e VCC. O RX é o responsável por receber um valor, o TX é responsável por enviar um valor. Já o GND e o VCC são o terra e a alimentação do sensor respectivamente.

"JÚLIO DE MESQUITA FILHO" CAMPUS UNIVERSITÁRIO DE BAURU FACULDADE DE CIÊNCIAS DEPARTAMENTO DE COMPUTAÇÃO

Logo, a ligação será TX (módulo bluetooth) com RX (PIC) e RX (módulo bluetooth) com TX (PIC).

Esta ligação poderia ser feita diretamente se não fosse por uma especificação deste módulo bluetooth: Os pinos de sinal (RX e TX) trabalham com até 3.3V. Como o PIC trabalha com 5V é necessário uma forma de diminuir a voltagem quando um sinal do pic é passado para o módulo, ou seja, na ligação TX (PIC) com RX (módulo) para que o módulo não seja danificado.

Esta forma é dividir a tensão através de resistores. Utilizei um resistor de 220 ohms e um de 330 ohms que fizeram com que a tensão proveniente do PIC caísse para aproximadamente 3V.

O GND e o VCC foram ligados diretamente no PIC através do protoboard.

Feita a ligação do módulo bluetooth com o pic, agora só falta conectar o sensor de temperatura. Utilizei a porta ANO (2º pino) para a entrada de sinal do LM35 e conectei o GND e o VCC da mesma forma que o módulo bluetooth.

O resultado desta montagem se encontra na figura 1.

Figura 1

unesp

"JÚLIO DE MESQUITA FILHO"
CAMPUS UNIVERSITÁRIO DE BAURU
FACULDADE DE CIÊNCIAS
DEPARTAMENTO DE COMPUTAÇÃO

Programação do PIC

A programação do PIC consiste em esperar receber o valor 1 do pino RX. Ao receber, pega o valor do sensor de temperatura. Este valor está dividido em dois registradores: o ADRESH e o ADRESL e ambos são enviados através da porta TX para o módulo bluetooth que irá repassar esses valores (um de cada vez – serial) para o celular. Feito isso, o PIC volta para o início esperando receber o valor 1.

Teste do hardware

Para verificar se a montagem do hardware estava correta utilizei um software disponibilizado pelo professor denominado comunica.exe (em anexo). Este software estabelece uma comunicação serial entre o PC e um dispositivo.

Através do PC, procurou-se os dispositivos bluetooth disponíveis (Figura 2) e assim que encontrado o módulo foi feito o pareamento. Feito isso, é possível verificar a porta em que se encontra o módulo através do gerenciador de dispositivos do PC (Figura 3) e selecionar esta porta no software de comunicação para realizar a conexão (Figura 4).

Neste caso, duas portas são responsáveis para dispositivos conectados via bluetooth, logo testei as duas para ver em qual delas o módulo estava conectado (COM6).

Para terminar, envio o valor 1 através do software comunica.exe e o PIC deverá devolver os valores do AD.

"JÚLIO DE MESQUITA FILHO" CAMPUS UNIVERSITÁRIO DE BAURU FACULDADE DE CIÊNCIAS DEPARTAMENTO DE COMPUTAÇÃO

Figura 2

Figura 3

"JÚLIO DE MESQUITA FILHO" CAMPUS UNIVERSITÁRIO DE BAURU FACULDADE DE CIÊNCIAS DEPARTAMENTO DE COMPUTAÇÃO

Figura 4

Desenvolvimento do aplicativo

Para o desenvolvimento do aplicativo utilizei o ambiente Eclipse para a programação e contei com a documentação oficial do Android para aprender como é feita a comunicação via bluetooth.

Como o celular já possui uma função de procurar dispositivos bluetooth, utilizei a mesma para encontrar o módulo e realizar o pareamento. Feito isso, o aplicativo desenvolvido deve ser capaz de encontrar o módulo entre os dispositivos pareados e realizar a conexão.

Feita a conexão, o PIC espera receber o valor 1 para pegar o valor do sensor de temperatura. Este valor pode ser enviado de duas formas: O usuário pressiona um botão ou dá-se o tempo de 1 minuto (uma thread roda junto com o aplicativo e a cada 1 minuto envia o valor para o pic atualizando automaticamente a temperatura).

"JÚLIO DE MESQUITA FILHO" CAMPUS UNIVERSITÁRIO DE BAURU FACULDADE DE CIÊNCIAS DEPARTAMENTO DE COMPUTAÇÃO

A interface final do aplicativo pode ser visualizada na figura 5:

Figura 5

Conclusão

A comunicação bluetooth possibilitou o controle a distância de um sistema utilizando micro controladores e incorporou a praticidade dos dispositivos móveis.

É possível desenvolver diversas aplicações a partir desta comunicação que podem ser aplicadas à diversas áreas e ainda contar com um baixo custo de desenvolvimento.

Referências

http://ww1.microchip.com/downloads/en/DeviceDoc/30292C.pdf

"JÚLIO DE MESOUITA FILHO"
CAMPUS UNIVERSITÁRIO DE BAURU
FACULDADE DE CIÊNCIAS
DEPARTAMENTO DE COMPUTAÇÃO

http://developer.android.com/guide/topics/connectivity/bluetooth.html

http://www.arduinoecia.com.br/2014/01/enviando-dados-do-arduino-para-o.html