

AD-A040 626

NAVAL SURFACE WEAPONS CENTER DAHLGREN LAB VA
AGGREGATION ERRORS OF CELL-AVERAGED GEOID HEIGHT.(U)
MAY 77 B ZONDEK

UNCLASSIFIED

| OF |
ADA
040626

NSWC/DL-TR-3608

F/G 8/5

NL

END

DATE
FILMED
7-77

ADA 040626

NSWC/DL TR-3608

12-8

AGGREGATION ERRORS OF CELL-AVERAGED GEOID HEIGHT

by

B. ZONDEK

Warfare Analysis Department

MAY 1977

Approved for public release; distribution unlimited.

NU NO. _____
006 FILE COPY

NAVAL SURFACE WEAPONS CENTER

DAHlgREN LABORATORY
Dahlgren, Virginia 22446

WHITE OAK LABORATORY
Silver Spring, Maryland 20910

NAVY
REPRODUCTION
SECTION

REPROD.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER TR-3608	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 6) AGGREGATION ERRORS OF CELL-AVERAGED GEOID HEIGHT		5. TYPE OF REPORT & PERIOD COVERED Final <i>rept.</i>
7. AUTHOR(s) (10) B./Zondek		6. PERFORMING ORG. REPORT NUMBER (14) NSWC/DL-TR-3608
8. CONTRACT OR GRANT NUMBER(s)		9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (DK-11) Dahlgren Laboratory Dahlgren, Virginia 22448
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS (11) 1259 P.		11. CONTROLLING OFFICE NAME AND ADDRESS
		12. REPORT DATE May 1977
		13. NUMBER OF PAGES 61
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE JUN 15 1977
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Satellite altimetry Geoid height data		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The earth's surface is divided into approximately equal cells bounded by lines of constant longitude and latitude. The geoid height is averaged over each of these cells. The mean degree variance of the error thus committed in the geoid height is calculated. Mean degree variances higher than of the 45 th degree are found to be in error by over 100% for 5° X 5° cells. The error committed by calculating the cell-averaged geoid height from discrete altimetry ground tracks is also estimated. It is found to be less than 10 cm for more than 3 tracks for 5° X 5° square sizes.		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

391 598 mt

FOREWORD

Satellite altimetry yields geoid height data along the ground tracks. These data are averaged over cells into which the earth's surface is divided. This report contains an investigation of:

1. The error committed by aggregation,
2. The error in the cell average due to sampling.

Dr. Edwin D. Ball has kindly agreed to review this report.

Released by:

RALPH A. NIEMANN, Head
Warfare Analysis Department

ACCESSION NO.		White Section <input checked="" type="checkbox"/>
RTIS	DOC	Bull Section <input type="checkbox"/>
QUARANTINE		
JOURNAL		
DISTRIBUTION/AVAILABILITY CODES		
DISP.	AVAIL. AND OF SPECIAL	

A

TABLE OF CONTENTS

	<u>Page</u>
FOREWORD	i
INTRODUCTION	1
THE MATHEMATICAL MODEL	1
AVERAGING OVER CELLS	2
NUMERICAL RESULTS	4
DESCRIPTION OF TABLE 1	5
DESCRIPTION OF THE GRAPHS	8
SAMPLING ERRORS DUE TO TRACK SPACING	9
REFERENCES	11
DISTRIBUTION	

INTRODUCTION

Satellite altimetry will soon yield extensive geoid height data over the oceans. One may divide the surface of the earth into approximately square cells of about equal area and average the geoid height within each cell. That would be a method of data aggregation. It leads to an imprecision in the determination of the anomalous field from geoid height. In order to make an a priori investigation of this effect, one may make the following hypothesis: The geoid height, without the J_2 term, is an homogeneous and isotropic random field over a spherical earth.^{1,2} Its degree variances obey Kaula's rule.³ Random quantities are underlined in this report.

THE MATHEMATICAL MODEL

The harmonic expansion of the geoid height is written

$$\underline{N}(\lambda, \phi) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} \underline{Z}(m, \ell) U(m, \ell; \lambda, \phi)$$

where

λ is latitude
 ϕ is longitude

The functions $U(m, \ell; \lambda, \phi)$ are surface harmonics defined by

$$U(m, \ell; \lambda, \phi) = \sqrt{(2\ell + 1) \frac{(\ell - |m|)!}{(\ell + |m|)!}} P_{\ell}^{(|m|)}(\sin \lambda) e^{im\phi}$$

for

$$\begin{aligned} \ell &= 0, 1, \dots \\ m &= -\ell, -\ell + 1, \dots, \ell \end{aligned}$$

These harmonics satisfy the following orthonormality relations,

$$\iint U(m', \ell', \lambda, \phi)^* U(m, \ell; \lambda, \phi) d\Omega = 4\pi \delta(m, m'; \ell, \ell')$$

They have been defined so that their mean square over the sphere is unity.

The coefficients in the expansion of the geoid height are random variables satisfying the relations,

$$E\{\underline{Z}(m, \ell)\} = 0$$

$$E\{\underline{Z}(m, \ell) \underline{Z}(m', \ell')^*\} = \frac{10^{-10} R^2}{\ell^4} \delta(m, m'; \ell, \ell')$$

according to Kaula's rule (R is the nominal radius of the earth). A discussion of different degree variance attenuation laws can be found in Rapp.⁴ The assumed homogeneity and isotropy of the random function $\underline{N}(\lambda, \phi)$ defined over the sphere, implies that the harmonic coefficients $\underline{Z}(m, \ell)$ are uncorrelated as indicated.

It may be noted, although we shall make no use of it, that the geoid height autocorrelation function based on our hypothesis is given by

$$E\{\underline{N}(\lambda, \phi) \underline{N}(\lambda', \phi')\} = 10^{-10} R^2 \sum_{\ell=2}^{\infty} \frac{2\ell+1}{\ell^4} P_{\ell}(\cos \psi)$$

where

ψ is the arc length between the rays (λ, ϕ) and (λ', ϕ') .

AVERAGING OVER CELLS

The earth's surface is divided into zones bounded by lines of constant latitude at equal intervals. The zones are divided into equal cells along lines of constant longitude. A simple consideration shows that the harmonic expansion of the error geoid height corresponding to these cells is

$$\underline{\Delta N} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \underline{L}(m, \ell) U(m, \ell; \lambda, \phi)$$

where

$$\underline{L}(m, \ell) = \sum_{\ell'=2}^{\infty} \sum_{m'=-\ell'}^{\ell'} Z(m', \ell') \left\{ \sum_I \sum_J \frac{4\pi}{AA(I)} K(I, J; m', \ell')^* K(I, J; m, \ell) - \delta(m, m'; \ell, \ell') \right\}$$

I and J denote the zones and cells within a zone, respectively. AA(I) is the solid angle subtended by a cell in zone I at the centre of the earth.

The quantities $K(I, J; m, \ell)$ are defined by

$$K(I, J; m, \ell) = \frac{1}{4\pi} \iint_{Cell(I, J)} U(m, \ell; \lambda, \phi)^* d\Omega$$

It follows that the error anomalous potential is given by (using Bruns' equation),

$$\underline{\Delta T} = \gamma \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \left(\frac{R}{r} \right)^{\ell+1} \underline{L}(m, \ell) U(m, \ell; \lambda, \phi),$$

where r is the radial distance and γ is the acceleration of gravity on the earth.

The radial error gravity disturbance is

$$\underline{\delta \Delta g_r} = - \frac{\partial \underline{\Delta T}}{\partial r} = \frac{\gamma}{R} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} (\ell + 1) \left(\frac{R}{r} \right)^{\ell+2} \underline{L}(m, \ell) U(m, \ell; \lambda, \phi)$$

The random field $\underline{\Delta N}$ defined on the sphere is not homogeneous and isotropic. Nevertheless, in view of the orthogonality of the harmonic functions, one obtains a simple expression for its mean variance, namely

$$E \left\{ \frac{1}{4\pi} \iint_{sphere} \underline{\Delta N}^2 d\Omega \right\} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} E \left\{ |\underline{L}(m, \ell)|^2 \right\}$$

The expressions

$$\sigma^2(\ell; \Delta N) = \sum_{m=-\ell}^{\ell} E \left\{ |\underline{L}(m, \ell)|^2 \right\}$$

are the mean degree variances.

Similarly, one obtains for the mean degree variances of the radial error gravity disturbance, the expression

$$\sigma^2(\ell; H, \Delta \delta g_r) = \frac{\gamma^2}{R^2} (\ell + 1)^2 \left(\frac{R}{r} \right)^{2\ell+4} \sum_{m=-\ell}^{\ell} E \left\{ |\underline{L}(m, \ell)|^2 \right\}$$

where $r = R + H$.

The mean degree variances of ΔN are a measure – within our model – of the violence done to the anomalous field by the operation of cell averaging.

NUMERICAL RESULTS

Calculations have been made for a $5^\circ \times 5^\circ$ partitioning of the earth's surface considering harmonics up to degree 60. For comparison, the corresponding quantities pertaining to the Kaula field have also been calculated. A recursive algorithm for the integrals of the associated Legendre functions needed for the calculation of the quantities $K(I, J; m, \ell)$, was devised by A. R. DiDonato.⁵

In Table 1 we present the degree variances and accumulated degree variances of the error geoid height and the nominal Kaula geoid height. The factor γ ($\gamma = 978 \text{ cm} \times \text{s}^{-2}$) has been included to convert these into potential units. The units are cgs.

The graphs located on pages 12 through 44 of this report present the logarithm of the error potential and nominal potential at the surface of the earth cumulatively as a function of harmonic degree. The corresponding logarithm of the radial gravity disturbance at different altitudes is also plotted.

One observes that the low degree variances, of ΔN are small. The reason is that the low degree harmonics are little affected by the $5^\circ \times 5^\circ$ cell averaging. For higher degrees they become larger and finally exceed the nominal Kaula values. The corresponding harmonics are represented with an error exceeding their magnitude. However, the sum of the degree variances of ΔN is less than that of N ($\sim 40^2 \text{ m}^2$). Asymptotically, the mean degree variances of ΔN attenuate like const/n^2 . Those of N like const/n^3 .

As to the gravity disturbance, one observes that, for example, at an altitude of 500 km it is represented to a relative precision of about 1/20. At low altitudes the low degree mean variances are well represented, the high degree ones, poorly — as one would expect.

DESCRIPTION OF TABLE 1

- Column 1 The degree ℓ
- Column 2 Mean degree variance of error potential in units of cm^4/s^4 . The harmonics are so normed that the integral of their square over the unit sphere is 4π .
- Column 3 Progressive sum of column 1.
- Column 4 Degree variance according to Kaula's attenuation law.
- Column 5 Progressive sum of column 4.
 $\gamma = 978 \text{ cm/s}^2$

Table 1. Degree Variance of $5^\circ \times 5^\circ$ Cell-Averaged Potential and of the Nominal Kaula Potential

<u>ℓ</u>	<u>$\chi^2 \sigma^2(\ell; \Delta N) \times 10^{-9}$</u>	<u>Σ</u>	<u>$\chi^2 \sigma^2(\ell; N) \times 10^{-9}$</u>	<u>Σ</u>
0				
1	.199 $\times 10^{-6}$			
2	.175	9703		
3	.193	2875		
4	.217	1213		
5	.243	.828	621	14412
6	.270		359	
7	.296		226	
8	.323		152	
9	.349		106	
10	.374	2.439	77.6	15333
11	.398		58.3	
12	.422		44.9	
13	.445		35.3	
14	.467		28.3	
15	.487	4.658	23.0	15523
16	.507		19.0	
17	.526		15.8	
18	.544		13.3	
19	.561		11.3	
20	.576	7.372	9.70	15591.8
21	.591		8.38	
22	.605		7.29	
23	.618		6.38	
24	.630		5.62	
25	.642	10.457	4.97	15624.5
26	.652		4.42	
27	.662		3.94	
28	.671		3.54	
29	.681		3.18	
30	.689	13.813	2.87	15642.41
31	.698	14.512	2.61	
32	.706		2.37	
33	.715		2.16	
34	.723		1.97	

Table 1. Degree Variance of $5^\circ \times 5^\circ$ Cell-Averaged Potential and of the Nominal Kaula Potential (Continued)

ℓ	$\chi^2 \sigma^2(\ell; \Delta N) \times 10^{-9}$	Σ	$\chi^2 \sigma^2(\ell; N) \times 10^{-9}$	Σ
35	.732	17.388	1.81	15653.33
36	.741		1.66	
37	.752		1.53	
38	.761		1.41	
39	.773		1.31	
40	.784	21.199	1.21	15660.47
41	.800		1.13	
42	.813		1.05	
43	.831		.976	
44	.848		.911	
45	.871	25.361	.852	15665.38
46	.891		.797	
47	.919		.748	
48	.945		.702	
49	.980		.660	
50	1.013	30.109	.621	15668.907
51	1.055		.585	
52	1.097		.552	
53	1.150		.521	
54	1.203		.493	
55	1.271	35.886	.467	15671.525
56	1.340		.442	
57	1.426		.419	
58	1.519		.398	
59	1.633		.378	
60	1.764	43.569	.359	15673.521

DESCRIPTION OF THE GRAPHS*

The units of all quantities are cgs, except that height above the earth is reckoned in km. The degree variances correspond to harmonics normed, so that their mean square over the sphere is unity. The nominal field is assumed to obey Kaula's attenuation law.

Notation:

<u>N</u>	Geoid height
<u>ΔN</u>	Error in geoid height due to $5^\circ \times 5^\circ$ aggregation
<u>δg_r</u>	Radial gravity disturbance
<u>Δδg_r</u>	Error in radial gravity disturbance due to aggregation
H	Height above Earth
L, ℓ	Maximal and running degrees of harmonics
$\sigma^2(\ell; \Delta N)$	Mean degree variance of <u>ΔN</u> of degree ℓ
$\sigma^2(\ell; N)$	Mean degree variance of <u>N</u> of degree ℓ
$\sigma^2(\ell; H, \Delta \delta g_r)$	Mean degree variance of <u>Δδg_r</u> of degree ℓ
$\sigma^2(\ell; H, \delta g_r)$	Mean degree variance of <u>δg_r</u> of degree ℓ
$\gamma = 978$	cm/s ²

The following logarithmic cumulative degree variances are plotted:

1. $\log \gamma^2 \sigma^2(L; \Delta N) = \log \left\{ \gamma^2 \sum_{\ell=0}^L \sigma^2(\ell; \Delta N) \right\}$ as a function of degree L.
2. $\log \gamma^2 \sigma^2(L; N) = \log \left\{ \gamma^2 \sum_{\ell=0}^L \sigma^2(\ell; N) \right\}$ as a function of degree L.

*Graphs start on page 12.

3. $\log \sigma^2(L, H; \Delta g_r) = \log \left\{ \sum_{\ell=0}^L \sigma^2(\ell; H, \Delta g_r) \right\}$ as a function of degree L and height H .

4. $\log \sigma^2(L, H; \delta g_r) = \log \left\{ \sum_{\ell=0}^L \sigma^2(\ell; H, \delta g_r) \right\}$ as a function of degree L and height H .

SAMPLING ERRORS DUE TO TRACK SPACING

Altimetry yields geoid height data along the ground tracks of the vehicle. We may consider the following simplified problem. A cell on the earth, bounded by latitude and longitude lines, is covered by a number of evenly spaced ground tracks parallel to one of the boundaries. Along these tracks geoid height is given. We estimate the mean geoid height over the cell by averaging these data. What is the variance of the resulting estimate of the mean?

Let the cell be defined by

$$-\alpha \leq \phi \leq \alpha \quad (\text{longitude})$$

$$-\alpha \leq \lambda \leq \alpha \quad (\text{latitude})$$

and let there be k tracks parallel to the meridian and equally spaced.

The mean geoid height over the cell is

$$\bar{N} = \frac{1}{A} \sum_{\ell} \sum_m Z(m, \ell) \int_{-\alpha}^{\alpha} \int_{-\alpha}^{\alpha} U(m, \ell; \lambda, \phi) \cos \lambda d\lambda d\phi$$

where

A is the solid angle subtended by the cell at the centre of the earth. The average over the track values is

$$\hat{N} = \frac{1}{A} \sum_{\ell} \sum_m Z(m, \ell) \sum_{r=1}^k \Delta \int_{-\alpha}^{\alpha} U(m, \ell; \lambda - \alpha + (r - \frac{1}{2})\Delta, \phi) \cos \lambda d\lambda$$

where

$$\Delta = 2\alpha/k$$

One obtains after a few steps the following expression for the error variance

$$E\{(\bar{N} - \hat{\bar{N}})^2\} = \frac{10^{-10} R^2}{A^2} \left\{ \sum_{\ell=1}^{\infty} \frac{4}{(2\ell)^4} \sum_{s=0}^{\ell} \left[N(2s, 2\ell) \int_0^{\alpha} P_{2s}^{2\ell} (\sin \lambda) \cos \lambda d\lambda \right]^2 f(\alpha, k, 2s)^2 \right. \\ \left. + \sum_{\ell=1}^{\infty} \frac{4}{(2\ell+1)^4} \sum_{s=0}^{\ell} \left[N(2s+1, 2\ell+1) \int_0^{\alpha} P_{2s+1}^{2\ell+1} (\sin \lambda) \cos \lambda d\lambda \right]^2 f(\alpha, k, 2s+1)^2 \right\}$$

where

$$N(0, \ell) = \sqrt{2\ell + 1}$$

$$N(m, \ell) = \sqrt{2(2\ell+1)} \frac{(\ell-m)!}{(\ell+m)!}$$

$$f(\alpha, k, m) = \begin{cases} \frac{2 \sin m\alpha}{m} - \frac{2\alpha}{k} \frac{\sin m\alpha}{\sin \frac{m\alpha}{k}} & \text{for } \frac{m\alpha}{k} \text{ not a multiple of } \pi \\ \frac{2 \sin m\alpha}{m} - 2\alpha(-1)^{r(1-k)} & \text{for } m \neq 0, \frac{m\alpha}{k} = r\pi \\ 0 & \text{for } m = 0 \end{cases}$$

where

r is any integer

One may easily establish that $E\{\tilde{N}^2\}$ is obtained by replacing the function f by

$$g(\alpha, k, m) = \begin{cases} \frac{2 \sin m\alpha}{m} & \text{for } m \neq 0 \\ 2\alpha & \text{for } m = 0 \end{cases}$$

The results calculating with a $5^\circ \times 5^\circ$ square are in the following table

Number of Tracks	$\sigma(\tilde{N} - \hat{N})$ in cm
1	66
2	18
3	6.1
4	2.7
5	1.7
6	1.14
7	.84
10	.41
20	.10

The standard deviation of \tilde{N} comes out to be 38 m, which is almost the full Kaula value, because of the relative smallness of the cell. We see that a small number of well placed tracks leads to a negligible sampling error. The principal sources of error remain the uncertainty in the satellite ephemeris and the sea state.

REFERENCES

1. A. M. Obukhov, *Statistically Homogeneous Random Fields on a Sphere*, Uspchi Mat. Nauk, **2**, No. 2 (1947), pp. 196-198.
2. A. M. Yaglom, *Second-Order Homogeneous Random Fields*, Proc. of the 4th Berkeley Symposium on Mathematical Statistics and Probability, **2**, pp. 593-622, Berkeley, U. of California Press (1961).
3. W. M. Kaula, *Theory of Satellite Geodesy*, Blaisdell (1966).
4. Richard H. Rapp, *Geopotential Coefficient Behaviour to High Degree and Geoid Information by Wavelength*, Ohio State University, Department of Geodetic Science, Rpt. No. 180 (August 1972).
5. A. R. DiDonato, *Recurrence Relations for the Indefinite Integrals of the Associated Legendre Functions*, NSWC/DL Technical Memo No. 5/77 (Publication Pending).

DISTRIBUTION

Oceanographer of the Navy
Hoffman Building 11
200 Stovall Street
Alexandria, VA 22332

Director
Defense Mapping Agency Headquarters
Building 56, Naval Observatory
Washington, DC 20305

Director
Defense Mapping Agency, Aerospace Center
St. Louis, MO 63118

Director
Defense Mapping Agency, Hydrographic Center
Hydrographic Center
Washington, DC 20315

Director
Defense Mapping Agency, Topographic Center
6500 Brook Lane
Washington, DC 20315

Director
Naval Research Laboratory
Washington, DC 20360
ATTN: H. Rabin
A. Shapiro

Naval Oceanographic Office
Washington, DC 20390
ATTN: T. Davis
J. Hankins

Engineering Topographic Laboratory
Research Institute
Fort Belvoir, VA 22060

Air Force Geophysics Laboratory
L. G. Hanscomb Field
Bedford, MA 01730
ATTN: G. Hadgigeorge

The Analytic Sciences Corporation
6 Jacob Way
Reading, MA 01867
ATTN: S. K. Jordan

Naval Oceanic and Atmospheric Administration
National Ocean Survey
Rockville, MD 20852
ATTN: B. H. Chovitz
J. R. Apel

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

(12)

Defense Printing Service
Washington Navy Yard
Washington, DC 20374

Library of Congress
Washington, DC 20540
ATTN: Gift and Exchange Division

(4)

Local:

DK-01 (C. J. Cohen)
DK-05D (A. R. DiDonato)
DK-10 (R. J. Anderle) (5)
DK-11 (Zondek) (35)
DK-12 (P. Ugincius)
DK-50 (Alexander)
DK-50 (E. D. Ball)
DK-50 (A. G. Evans)
DK-50 (R. H. Hughey) (5)
DK-504 (O. T. Schultz)
DK-55 (J. V. Robinson)
DX-21 (2)
DX-222 (6)
DX-40
DX-43 (Aids)
DX-43 (Elliott)