এইস এস সি পদার্থবিজ্ঞান

অধ্যায়-৮: আধুনিক পদার্থবিজ্ঞানের সূচনা

প্রম ►১ ধর, 370 আলোক বর্ষ দূরে অবস্থিত প্রাণীর বসবাস উপযোগী একটি গ্রহের সন্ধান পেয়ে নাসার বিজ্ঞানীরা 50 বছর বয়সী একটি কাছিমকে 0.7c বেগে চলমান নভোষানে করে ঐ গ্রহের উদ্দেশ্যে পাঠায়। কাছিমের ভর 30kg এবং গড় আয়ু 450 বছর। । আলোক বর্ষ = 9.46 × 10¹⁵m।

ক, ফোটন কী?

খ. মহাশূন্যে নভোচারীরা আকাশ কি রকম দেখবে? ব্যাখ্যা করো। ২

গ. চলন্ত অবস্থায় কাছিমের শক্তি নির্ণয় করো।

 কাছিমাটি জীবিত অবস্থায় ঐ গ্রহে পৌছতে সক্ষম হবে কিনা যাচাই করো।

১ নং প্রশ্নের উত্তর

ক প্ল্যান্ডের কোয়ান্টাম তত্ত্বানুসারে শক্তির বিকিরণ নিরবচ্ছিন্নভাবে না হয়ে বিচ্ছিন্নভাবে কতপুলো শক্তি প্যাকেট আকারে ঘটে। শক্তির এই সর্বনিম্ন প্যাকেটকে ফোটন বা তেজকণা বলে।

মহাশূন্যে নভোচারীরা আকাশ কালো দেখবে। পৃথিবীতে দিনের বেলা আমরা আকাশ নীল দেখি। এর কারণ সূর্য থেকে আলো পৃথিবীতে আসার সময় বায়ুমন্ডল তথা ধূলিকণা দ্বারা নীলসহ অন্য সব বর্ণের আলো বিচ্ছুরিত হয় এবং নীল আলোর তরজাদৈর্ঘ্য সর্বনিদ্ধ হওয়ায় বিচ্ছুরণ সর্বাধিক হয় এবং আমাদের চোখে এসে ধরা দেয়। কিন্তু মহাশূন্যে বায়ুমন্ডল না থাকায় আলো বিচ্ছুরিত বা প্রতিফলিত হয় না। তাই মহাশূন্যে নভোচারীরা আকাশ কালো দেখে। তবে পৃথিবীর রাতের আকাশের মত সেখানেও আকাশে তারকা মন্ডল দেখা যাবে।

গ দেওয়া আছে,

কাছিমের নিশ্চল ভর, m_o = 30 kg বেগ, v = 0.7 c

জানা আছে, আলোর বেগ, $c=3\times 10^8 {\rm ms}^{-1}$ বের করতে হবে, চলন্ত অবস্থায় কাছিমের শক্তি, E=?আমরা জানি,

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$= \frac{30}{\sqrt{1 - (0.7)^2}}$$

$$= 42 \text{ kg}$$

∴ চলন্ত অবস্থায় কাছিমের মোট শক্তি, E = mc²

= $42 \times (3 \times 10^8)^2$ = 3.78×10^{-8} J (Ans.)

1 আলোক বর্ষ = 9.46 × 10¹⁵ m
 ∴ 370 আলোক বর্ষ = 370 × 9.46 × 10¹⁵ = 3.5 × 10¹⁸ m
 v = 0.7 c বেগে চললে 370 আলোক বর্ষ যেতে পৃথিবীর হিসেব অনুযায়ী সময় লাগবে,

$$t = \frac{s}{v}$$
=\frac{3.5 \times 10^{18}}{0.7 \times 3 \times 10^{8}}
= 1.67 \times 10^{10} \text{ sec}
= 528.5 \text{ year}

আমরা জানি,

সূতরাং, ঐ গ্রহে পৌছালে কাছিমের বয়স = 50 + 377.42

= 427.42 year

অৰ্থাৎ, কাছিমটি জীবিত অবস্থায় ঐ গ্ৰহে পৌছতে সক্ষম হবে।

প্রমা ►২ ফটো তড়িৎ ক্রিয়া পরীক্ষণে দেখা গেল পটাসিয়াম ধাতুর উপর 4400Å তরজাদৈর্ঘ্যের আলো আপতিত হলে শুধু ইলেকট্রন নির্গত হয় কিন্তু গতিশক্তি প্রাপ্ত হয় না। যদি 1500Å তরজাদৈর্ঘ্যের আলো আপতিত হয় তবে ইলেকট্রন নিঃসরিত হয় এবং গতিশক্তি প্রাপ্ত হয়।

/जा. त्या. २०.

ক, কৃষ্ণ গছার কাকে বলে?

খ. P টাইপ অর্থ-পরিবাহী তড়িৎ নিরপেক্ষ কি না --- ব্যাখ্যা কর।২

গ্র পটাসিয়ামের কার্যাপেক্ষক নির্ণয় কর।

ঘ. উদ্দীপকে নিঃসরিত ইলেকট্রনের গতিশক্তি প্রাপ্ত হওয়া না হওয়ার কারণ কী? গাণিতিক বিশ্লেষণসহ মতামত দাও। 8

২ নং প্রশ্নের উত্তর

ক্র প্রচন্ড মহাকষীয় বলের জন্য মহাকাশে এমন কিছু বস্তু বা জায়গা আছে যা থেকে আলো বা কোন কিছু বেরিয়ে আসতে পারে না। এর্প বস্তু বা জায়গাকে কৃষ্ণগহরর বলে।

বিশুন্থ অর্ধপরিবাহীতে প্রোটন ও ইলেকট্রন সংখ্যা সমান। এর মধ্যে যে ত্রিযোজী পদার্থের পরমাণুসমূহ যোগ করা হয় সেগুলোতেও প্রোটন ও ইলেকট্রন সংখ্যা সমান। p-টাইপ অর্ধপরিবাহীতে হোলসমূহ ইলেকট্রন গ্রহণ করে এবং যে পরমাণু হতে এই ইলেকট্রন সংগ্রহ করে সেটিতে হোলের সৃষ্টি হয় অর্থাৎ সেটি ধনাত্মক আয়ন গ্রন্থ হয়। সুতরাং গ্রহীতা ইলেকট্রন গ্রহণ করে ঝণাত্মক চার্জগ্রন্থ হয়। অতএব p-টাইপ কেলাসে ধনাত্মক চার্জ ও ঝণাত্মক চার্জের মান সমান হয়। তাই p-টাইপ অর্ধপরিবাহী তড়িৎ নিরপেক।

বা দেওয়া আছে,

পটাশিয়ামের সূচন তরজাদৈর্ঘ্য, $\lambda_0=4400 \mathring{A}=4400 \times 10^{-10} m$ প্ল্যান্ডেকর ধ্বক, $h=6.63 \times 10^{-34} J.s$

বের করতে হবে, কার্যাপেক্ষক, W₀ = ?

আমরা জানি, $W_0 = h \frac{c}{\lambda_0} = 6.63 \times 10^{-34} \text{J.s} \times \frac{3 \times 10^8 \text{ ms}^{-1}}{4400 \times 10^{-10} \text{m}}$ = 4.52 × 10⁻¹⁹ J = 2.825 eV (Ans.)

ইলেকট্রনসমূহ কক্ষপথে নির্দিষ্ট পরিমাণ শক্তি নিয়ে ঘূর্ণায়মান থাকে। তাই এদেরকে কক্ষপথ হতে বিচ্যুত করে মুক্ত ইলেকট্রন হিসেবে পেতে হলে এতে ন্যুনতম মানের শক্তি প্রদান করতে হবে। এই শক্তি পাওয়া যেতে পারে ফোটন হতে। ফোটনের শক্তি এর কম্পাঙ্কের সমানুপাতিক এবং তরজাদৈর্ঘ্যের বাস্তানুপাতিক। তাই ইলেকট্রন অবমুক্ত করতে হলে ফোটনের তরজাদৈর্ঘ্য, একটি সর্বোচ্চ মানের চেয়ে বেশি হতে পারে না। এ মানকে সূচন তরজাদৈর্ঘ্য বলে। উদ্দীপকের ক্ষেত্রে, সূচন তরজাদৈর্ঘ্য 4400Å। তবে এর চেয়ে কম তরজাদৈর্ঘ্যের ফোটন আপতিত হলে অবমুক্ত ইলেকট্রন গতিশক্তিপ্রাপ্ত হবে।

নং সমীকরণ অনুসারে, আপতিত ফোটনের শক্তি E কার্যাপেক্ষক Wo
 এর সমান হলে ইলেকট্রন গতিশক্তি প্রাপ্ত হয় না।

আবার, আপতিত ফোটনের শক্তি E, কার্যাপেক্ষক W, তার চেয়ে বেশি হলে ইলেকট্রন গতিশক্তি প্রাপ্ত হবে।

উদ্দীপকের ২য় ক্ষেত্রে, আপতিত ফোটনের শক্তি E > কার্যাপেক্ষক W₀। তাই নিঃসরিত ইলেকট্রন গতিশক্তি প্রাপ্ত হয়।

প্রায় ≥৩ করিম ও তার বন্ধু রহিমের সাথে আপেক্ষিক তত্ত্বের বিভিন্ন বিষয় নিয়ে আলোচনা করল। করিম বলল একজন মহাশূন্যচারী 30 বছর বয়সে 2.5 × 108ms⁻¹ বেগে একটি রকেটে চড়ে নতুন গ্রহের অনুসন্ধানে গেল। পৃথিবীতে রকেটের দৈর্ঘ্য ছিল 80 m। /বা বেছ ২০১৭/

ক, সুপারনোভা কী?

গ. পৃথিবী থেকে পরিমাপকৃত গতিশীল রকেটের দৈর্ঘ্য কত হবে? ৩

ঘ. অনুসন্ধান শেষে উক্ত নভোচারী পৃথিবীর হিসাবে 50 বছর পর ফিরে আসলে আপেন্দিক তত্ত্ব অনুসারে তার বয়স পৃথিবীর ক্যালেন্ডার অনুযায়ী একই হবে কিনা— ব্যাখ্যা করে। 8 ৩ নং প্রশ্নের উত্তর

বা যে সকল নক্ষত্রের ভর 1.4 সৌর ভরের বেশি তাদের জ্বালানী হাইড্রোজেন শেষ হয়ে গেলে মূল বস্তু সংকুচিত হতে থাকে কিন্তু বহিঃস্থ অংশ তথনও প্রসারিত হতে থাকে এবং এক পর্যায়ে বহিঃস্থ আবরণ ছুড়ে ফেলে। এ সময় নক্ষত্রকে অত্যন্ত উজ্জ্বল দেখায়। নক্ষত্রের এ ঘটনাকে সুপার নোভা বলে।

ব কাল বা সময় আপেন্ধিক গতি দ্বারা প্রভাবিত হয়। আপেন্ধিক তত্ত্ব অনুসারে পর্যাবেক্ষকের সাপেক্ষে স্থির কোনো ঘটনা ঘটার সময় to এবং পর্যবেক্ষকের সাপেক্ষে সমবেগে গতিশীল উক্ত ঘটনা ঘটার সময় t হলে

 $t = \frac{t_0}{\sqrt{1 - v^2/c^2}}$

সমবেগে গতিশীল কোনো বস্তুর জন্য $\sqrt{1-v^2/c^2}$ রাশিটি সব সময় । এর চেয়ে ছোট। একারণে ।, সব সময়ই । এর চেয়ে ছোট। তাই সমবেগে গতিশীল কাঠামোতে ঘড়ি ধীরে চলে।

্যা উদ্দীপক হতে পাই,

পৃথিবীতে রকেটের দৈর্ঘ্য, $L_0 = 80 \text{m}$ রকেটের বেগ, $v = 2.5 \times 10^8 \text{ ms}^{-1}$ আলোর বেগ, $c = 3 \times 10^8 \text{ ms}^{-1}$ গতিশীল রকেটের দৈর্ঘ্য, L = ?

আমরা জানি.

$$L = L_0 \sqrt{1 - v^2/c^2}$$

$$\forall I, L = 80 \sqrt{1 - \left(\frac{2.5 \times 10^8}{3 \times 10^8}\right)^2}$$

$$= 44.22 \text{ m (Ans.)}$$

দেওয়া আছে, ভূ-পৃষ্ঠ থেকে নিপীত সময় ব্যবধান, t = 50yআলোর দুতি, $c = 3 \times 10^8 \text{ ms}^{-1}$ রকেটের বেগ, $v = 2.5 \times 10^8 \text{ ms}^{-1}$ রকেটে মহাশূন্যচারীর বয়স বৃদ্ধি, $t_0 = ?$ আমরা জানি,

$$t = \frac{t_0}{\sqrt{1 - v^2/c^2}}$$

$$= 1, t_0 = t\sqrt{1 - v^2/c^2}$$

$$= 50\sqrt{1 - \left(\frac{2.5 \times 10^8}{3 \times 10^8}\right)^2} = 27.64y$$

এখন পৃথিবীর হিসাবে মহাশূন্যচারীর বর্তমান বয়স = 30 + 50 = 80y. আপেন্দিক তত্ত্ব অনুসারে মহাশূন্যচারীর বর্তমান বয়স = (30 + 27.64) = 57.64y.

অতএব, আপেন্দিক তত্ত্ব অনুসারে মহাশূন্যচারীর বয়স পৃথিবীর ক্যালেন্ডার অনুযায়ী বয়স অপেক্ষা কম হবে।

প্রদা ≥ ৪ করিম তার বন্ধু রহিমের সাথে আপেক্ষিক তত্ত্বের বিভিন্ন বিষয় নিয়ে আলোচনা করল। করিম বলল একজন মহাশূন্যচারী 40 বছর বয়সে 2.62 × 108ms⁻¹ বেণে একটি রকেটে চড়ে একটি নতুন গ্রহের অনুসন্ধানে গেল। পৃথিবীতে রকেটের দৈর্ঘ্য ছিল 75m। /ছি বো ২০১৭/

ক, কাল দীর্ঘায়ন কী?

ফটোতড়িং ক্রিয়া ব্যাখ্যায় প্লাভেকর তত্ত্বের প্রয়োজন কেন?
 ব্যাখ্যা করো।

গ. পৃথিবী থেকে পরিমাপকৃত গতিশীল রকেটের দৈর্ঘ্য কত? 🛚 ৩

 অনুসন্ধান শেষে উক্ত নভোচারী পৃথিবীর হিসাবে 45 বছর পর ফিরে আসলে আপেক্ষিক তত্ত্ব অনুসারে পৃথিবীর ক্যালেভার অনুযায়ী তাদের বয়স একই হবে কিনা
 ব্যাখ্যা করো।

৪নং প্রশ্নের উত্তর

ক কোনো পর্যবেক্ষকের সাপেকে গতিশীল অবস্থায় সংঘটিত দুটি ঘটনার মধ্যবর্তী কাল ব্যবধান পর্যবেক্ষকের সাপেক্ষে নিশ্চল অবস্থায় সংঘটিত ঐ একই ঘটনাম্বয়ের মধ্যবর্তী কাল ব্যবধানের চেয়ে বেশি হয়, এই প্রভাবকে কাল দীর্ঘায়ন বলে।

ফটোতড়িৎ ক্রিয়ার বিভিন্ন ফলাফল চিরায়ত পদার্থবিজ্ঞানের সাহায্যে
ব্যাখ্যা করা যায় না। এসব ফলাফল ব্যাখ্যার জন্য প্লাডেকর কোয়ান্টাম
তত্ত্বের প্রয়োজন হয় যেমন,

(i) ফটোতড়িং ক্রিয়া একটি তাৎক্ষণিক ঘটনা। কিন্তু তরজা তত্ত্ব অনুসারে ইলেকট্রন নির্গমনের জন্য কিছু সময়ের প্রয়োজন।

(ii) ফটো-ইলেকট্রনের গতিশক্তি নির্ভর করে আপতিত আলোকরশ্যির কম্পাঙ্কের ওপর। কিন্তু তরজা তত্ত্ব অনুসারে ফটো-ইলেকট্রনের গতিশক্তি নির্ভর করবে আপতিত আলোর তীব্রতার ওপর।

(iii) একটি ধাতব পদার্থের জন্য একটি নির্দিষ্ট কম্পান্তক অপেক্ষা কম কম্পান্তেক আলোকরশ্যি যত বেশি আপতিত হোক না কেন তা থেকে কোনো ইলেকট্রন নির্গত হয় না। কিন্তু তরজা তত্ত্ব অনুসারে যেকোনো কম্পান্তেকর আলোকরশ্যি ধাতব-পৃষ্ঠে আপতিত হলে তা থেকে ইলেকট্রন নির্গত হবে।

অর্থাৎ এ সব ঘটনা তরজা তত্ত্বের সাহায্যে ব্যাখ্যা করা যায় না, শুধু কোয়ান্টাম তত্ত্বের সাহায্যে ব্যাখ্যা করা যায়।

গ্র ৩(গ)নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। **উত্তর:** 36.53 m

ঘ দেওয়া আছে, রকেটের দুতি, v = 2.62 × 10⁸ ms⁻¹
আলোর দুতি, c = 3 × 10⁸ ms⁻¹
পৃথিবী থেকে নির্ণীত সময় ব্যবধান, t = 45y
রকেটে মহাশূন্যচারীর বয়স বৃদ্ধি, t₀ = ?

জানা আছে.

পৃথিবীর হিসাবে মহাশূন্যচারীর বর্তমান বয়স = 40 + 45 = 85y আপেক্ষিক তত্ত্ব অনুসারে মহাশূন্যচারীর বর্তমান বয়স = (40 + 21.92) = 61.92y

অতএব, আপেঞ্চিক তত্ত্ব অনুসারে মহাশূন্যচারীর বয়স পৃথিবীর ক্যালেন্ডার অনুযায়ী বয়স অপেক্ষা কম হবে।

প্রর ▶৫ ভূ-পৃষ্ঠে একটি রকেট এর দৈর্ঘ্য 10 m এবং ভর 5000 kg এটি ভূ-পৃষ্ঠের কোনো স্থির পর্যবেক্ষকের সাপেক্ষে 3 × 10⁷ ms⁻¹ বেগে চলতে শুরু করল। /দি. লো. ২০১৬/

ক, এক্স-রে কী?

খ, নিউক্লিয়ার ফিশান বিক্রিয়ায় উৎপন্ন শক্তির কারণ কী?

গ্র উদ্দীপকের আলোকে রকেট এর চলমান দৈর্ঘ্য নির্ণয় কর।

ঘ. উদ্দীপকে রকেটটির বেগ ছিগুণ করা হলে এর ভরের কির্প পরিবর্তন হবে— গাণিতিক বিশ্লেষণসহ ব্যাখ্যা কর। 8

৫ নং প্রশ্নের উত্তর

ত্ব দুতগতি সম্পন্ন ইলেকট্রন কোন ধাতুকে আঘাত করলে তা থেকে উচ্চ ভেদন ক্ষমতাসম্পন্ন অজানা প্রকৃতির এক প্রকার বিকিরণ উৎপন্ন হয়, এ বিকিরণকে এক্স-রে বলে।

আমরা জানি $^{235}_{92}$ U কে নিউট্রন 1_0 n দ্বারা আঘাত করলে নিউক্লিয় ফিশন ঘটে। এতে $^{235}_{92}$ U নিউক্লিয়াসের বিভাজিত হয়ে কম ভরের দুটি নিউক্লিয়াস সৃষ্টি হয় এবং দুটি বা তিনটি নিউট্রন 1_0 n নিগত হয়। বিক্রিয়ায় অংশগ্রহণকারী 1_0 n ও $^{235}_{92}$ U এর মোট ভর অপেক্ষা উৎপন্ন নিউক্লিয়াসন্থ ও নিউট্রনগুলির মোট ভর সামান্য কম হয়। অর্থাৎ নিউক্লিয় ফিশনে কিছু ভর অদৃশ্য হয়। আইনস্টাইনের ভরশক্তি সমীকরণ $E = mc^2$ অনুসারে এই অদৃশ ভর শক্তিতে রূপান্তরিত হয়। ইহাই নিউক্লিয় ফিশন বিক্রিয়ায় শক্তি উৎপন্নের কারণ।

গ্ৰ এখানে.

ভূ–পৃষ্ঠে রকেটের দৈর্ঘ্য, $L_o=10~\text{m}$ ভূ–পৃষ্ঠে স্থির পর্যবেক্ষকের সাপেক্ষে রকেটের বেগ, $v=3\times10^7~\text{ms}^{-1}$ রকেটের চলমান দৈর্ঘ্য, L=? আলোর বেগ, $c=3\times10^8~\text{ms}^{-1}$

আমরা জানি.

L=
$$L_0 \sqrt{1 - \frac{v^2}{c^2}} = 10 \sqrt{1 - \frac{(3 \times 10^7)^2}{(3 \times 10^8)^2}} = 9.9498 \text{ m}$$

অতএব, রকেটের চলমান দৈর্ঘ্য হবে 9.9498 m (An.s)

ন্ত এখানে,

ভূ-পৃষ্ঠে রকেটের ভর, $m_0 = 5000 \text{ Kg}$ প্রথম ক্ষেত্রে, রকেটের বেগ, $v_1 = 3 \times 10^7 \text{ ms}^{-1}$ দ্বিতীয় ক্ষেত্রে, রকেটের বেগ, $v_2 = 2v_1 = 2 \times 3 \times 10^7 \text{ ms}^{-1}$ = $6 \times 10^7 \text{ ms}^{-1}$

আলোর বেগ, $c = 3 \times 10^8 \text{ ms}^{-1}$ প্রথম ক্ষেত্রে রকেটের চলমান ভর m_1 হলে আমরা জানি,

$$m_1 = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{5000 \text{ kg}}{\sqrt{1 - \frac{(3 \times 10^7 \text{ms}^{-1})^2}{(3 \times 10^8 \text{ms}^{-1})^2}}} = 5025.189 \text{ kg}$$

আবার, দ্বিতীয় ক্ষেত্রে রকেটের চলমান ভর m2 হলে,

$$m_2 = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{5000 \text{ kg}}{\sqrt{1 - \frac{(6 \times 10^7 \text{ms}^{-1})^2}{(3 \times 10^8 \text{ms}^{-1})^2}}} = 5103.103 \text{ kg}$$

যেহেতু, m2 > m1 অতএব, উদ্দীপকে রকেটের বেগ দ্বিগুণ করা হলে এর ভর বেড়ে যাবে। প্রা ১৬ 4000Å তরজাদৈর্ঘ্যের আলো Na পৃষ্ঠে আপতিত হলে ফটো ইলেকট্রন নির্গত হয়। ফটোইলেকট্রনের সর্বোচ্চ গতিশক্তি পাওয়া যায় 0.4 eV।

/দি. বে. ২০১৫/

ক, ভর-ত্রটি কী?

मृि विन्मूत विख्व পार्थका 10V वनराठ की वृकाग्र?

গ্রন্ধীপকের নির্ণত ইলেকট্রন থামাতে হলে Na পাতে কত
মানের নিবৃত্তি বিভব প্রয়োগ করতে হবে?

ঘ. যুক্তি দিয়ে বুঝিয়ে দাও য়ে, একটি নির্দিষ্ট মানের চেয়ে কম মানের কম্পাংকের আলো Na পাতে পড়লে তা থেকে ইলেকট্রন নির্গত হবে না।

৬নং প্রশ্নের উত্তর

ক নিউক্লিয়াসের ভর, নিউক্লিয়াসের অভ্যন্তরে অবস্থিত নিউক্লিয়নগুলোর মৃক্তাবস্থার ভরের সমষ্টির চেয়ে কিছু কম থাকে। ভরের এ পার্থক্যকে ভর ত্রুটি বলে।

ব্য দুটি বিন্দুর বিভব পার্থক্য 10V বলতে বুঝায়, বিন্দুদ্বয়ের মধ্যে 1C চার্জ স্থানান্তরে 10J কাজ সম্পন্ন হয়।

দেওয়া আছে, ফটো ইলেকট্রনের সর্বোচ্চ গতিশক্তি, $K_{max}=0.4eV$ ইলেকট্রনের চার্জ, $e=1.6\times 10^{-19}C$ বের করতে হবে, নিবৃত্তি বিভব, $V_S=?$ আমরা জানি, $eV_S=K_{max}$

$$V_S = \frac{K_{max}}{e} = \frac{0.4 \times 1.6 \times 10^{-19} \text{J}}{1.6 \times 10^{-19} \text{C}} = 0.4 \text{ Volt (Ans.)}$$

য দেওয়া আছে, আপতিত ফোটনের তরজ্গদৈর্ঘ্য, $\lambda = 4000 {\rm \AA}$ $= 4 \times 10^{-7} {\rm m}$

সর্বোচ্চ গতিশক্তি, $K_{max} = 0.4eV$ = $6.4 \times 10^{-20} J$

সূচন কম্পাংক f_0 হলে কার্যাপেক্ষক

$$\phi_0 + K_{\text{max}} = \frac{\lambda c}{\lambda}$$

$$41, hf_0 = \frac{\lambda c}{\lambda} - K_{\text{max}}$$

 f_0 এর চেয়ে ক্ষুদ্রতর কম্পাংকের তরজোর জন্য শক্তি, $E=hf < hf_0$ বা, $E < \phi_0$, অর্থাৎ সেক্ষেত্রে ধাতব বন্ধন পৃথক করা সম্ভব নয়। তাই, $6.535 \times 10^{14}~{\rm Hz}$ এর চেয়ে কম কম্পাংকের আলো Na পাতে পড়লে কোন ইলেকট্রন নির্গত হবে না।

প্রদা > ৭ একটি তড়িং করণ নলে X-ray উৎপাদন এর জন্য 12.4kV এবং আরেকবার 24.8kV বিভব পার্থক্য সরবরাহ করা হলো। এই যন্তে ইলেকট্রনের গতিশক্তির 0.3% X-ray উৎপাদন করে। /ছ বো. ২০১৭/

ক. সূচন কম্পাড়ক কী?

খ. P টাইপ অর্ধ পরিবাহীর আধান বাহক হোল— ব্যাখ্যা করো। ২

গ. ১ম ক্ষেত্রে ইলেকট্রনের সর্বোচ্চ বেগ নির্ণয় করো।

 উদ্দীপকে উৎপাদিত দুই ধরনের X-ray এর ক্ষেত্রে কোনটির ভেদনযোগ্যতা বেশি হবে? গাণিতিক বিশ্লেষণের মাধ্যমে দেখাও।
 ৪

৭নং প্রশ্নের উত্তর

ক কোনো ধাতব পদার্থে সর্বনিম্ন যে কম্পাঙ্কের রশ্মি আপতিত হলে থেকে ফটো ইলেকট্রন নির্গত হয় তাকে ঐ ধাতব পদার্থের সূচন কম্পাঙ্ক বলে। p-টাইপ অর্ধ-পরিবাহী তৈরি করা হয় বিশুন্ধ অর্থ-পরিবাহী কেলাসের মধ্যে, বহিঃন্থ কক্ষপথে তিনটি ইলেকট্রন আছে এমন পরমাণু, অতি সামান্য পরিমাণ ভেজাল দিয়ে। এতে ভেজাল পরমাণু তার চারপার্থন্থ চারটি মূল পরমাণুর সাথে সমযোজী বন্ধন সৃষ্টি করতে একটি ইলেকট্রনের ঘাটতি হয়। ফলে ভেজাল পরমাণুর বহিঃন্থ কক্ষপথে ইলেকট্রনের সংখ্যা হয় সাত, অর্থাৎ যোজন ব্যাভে একটি হোল সৃষ্টি হয়।

p-টাইপ অর্ধ-পরিবাহীতে বিভব প্রয়োগ করা হলে হোল তার পার্শ্ববর্তী পরমাণু থেকে একটি ইলেকট্রন গ্রহণ করে ফলে পার্শ্ববর্তী পরমাণুতে হোল সৃষ্টি হয়। এভাবে হোল পরমাণু থেকে পরমাণুতে সঞ্চালিত হয়ে তড়িৎ প্রবাহের সৃষ্টি করে। তাই বলা যায় p টাইপ অর্থ পরিবাহীর আধান বাহক হোল।

গ দেয়া আছে,

প্রদত্ত বিভব, V=12.4kV= 12.4×10^3V ইলেকট্রনের চার্জ, $e=1.60\times10^{-19}C$ ইলেকট্রনের ভর, $m=9.1\times10^{-31}kg$ সর্বোচ্চ বেগ, $v_m=?$

জানা আছে,

ঘ উদ্দীপক অনুযায়ী ১ম ক্ষেত্রে প্রদত্ত বিভব,

$$V_1 = 12.4kV$$

= $12.4 \times 10^3 V$

২য় ক্ষেত্রে প্রদত্ত বিভব, $V_2 = 24.8 kV$

$$=24.8 \times 10^{3} \text{V}$$

মনে করি, ১ম ক্ষেত্রে উৎপন্ন এক্সরের কম্পান্তক f_1 এবং দ্বিতীয় ক্ষেত্রে f_2 আবার, ইলেকট্রনের গতিশক্তির 0.3% X-ray উৎপন্ন করে।

$$\therefore \frac{0.3}{100} \times \text{eV}_1 = \text{h} f_1$$

$$\therefore f_1 = \frac{0.3 \times 10^{-2} \times 1.6 \times 10^{-19} \times 12.4 \times 10^3}{6.63 \times 10^{-34}}$$

$$= 8.98 \times 10^{15} \text{ Hz}$$

$$= 9.3 \times 10^{15} \text{ Hz}$$

$$= 1.795 \times 10^{16} \text{Hz}$$

$$= 1.795 \times 10^{16} \text{Hz}$$

যেহেড, f₃>f₁

অতএব, দ্বিতীয় ক্ষেত্রে উৎপন্ন এক্সরের ভেদন ক্ষমতা বেশি হবে।

প্রম ►৮ নিলয় সিজিয়াম ধাতুর পাতে $4 \times 10^{-7} \mathrm{m}$ তরজ্ঞাদৈর্ঘ্যের আলো আপতিত করে ফটো তড়িৎ ক্রিয়ার পরীক্ষণ পরিচালনা করছে। সে নিবৃত্তি বিভবের মান পেল 2V. পরবর্তীতে সে 6.8 × $10^{-7} \mathrm{m}$ তরজ্ঞাদৈর্ঘ্যের লাল আলো ব্যবহার করে। ইলেকট্রনের ভর 9.1×10^{-31} kg]

- ক. প্রবাহ বিবর্ধক গুণক কাকে বলে?
- খ, তাপমাত্রা বৃদ্ধিতে অর্ধপরিবাহীর পরিবাহীতা বৃদ্ধি পায় কেন? ২
- গ. উদ্দীপক অনুসারে ফটোইলেকট্রনের সর্বোচ্চ গতিবেগ নির্ণয় কর। ৩
- ষ, লাল আলো ব্যবহার করায় ফটোতড়িৎ প্রবাহ ঘটবে কিনা—ব্যাখ্যা কর।

৮ নং প্রশ্নের উত্তর

ক সাধারণ পীঠ বিন্যাসের ক্ষেত্রে কোনো ট্রানজিস্টরের নিঃসরক প্রবাহের পরিবর্তনের সাপেক্ষে সংগ্রাহক প্রবাহের পরিবর্তনের হার $\frac{\Delta i_c}{\Delta i_c}$ কে প্রবাহ বিবর্ধন গুণক বলে।

আর্থ পরিবাহীতে যোজন ব্যাভ পূর্ণ এবং পরিবহন ব্যাভে কোনো ইলেক্ট্রন থাকে না, কিন্তু যোজন ব্যাভ ও পরিবহন ব্যাভের মধ্যে শক্তি ব্যবধান খুব কম থাকে। সাধারণ তাপমাত্রায় যোজন ব্যাভের কিছু ইলেকট্রন যোজনী বন্ধন ভেজো পরিবহন ব্যাভে চলে যায় ফলে এরা সামান্য পরিবাহী হয়। তাপমাত্রা বৃদ্ধির সাথে সাথে একটি নির্দিষ্ট তাপমাত্রা পর্যন্ত পরিবহন ব্যাভে ইলেকট্রন সংখ্যা বৃদ্ধি পায় তাই তাপমাত্রা বৃদ্ধিতে অর্ধ পরিবাহীর পরিবাহিতা বৃদ্ধি পায় এবং রোধ দ্রাস পায়।

্র এখানে, নিবৃত্তি বিভব, V₀ = 2V ইলেকট্রনের ভর, m = 9.1 × 10⁻³¹ kg ইলেকট্রনের সর্বোচ্চ বেগ, v_{max} = ?

আমরা জানি, $\frac{1}{2}$ m $v_{max}^2 = eV_0$

বা, $v_{max}^2 = 7.0329 \times 10^{11} \text{ m}^2/\text{s}^2$ ∴ $v_{max} = 8.386 \times 10^5 \text{ m/s}$

অতএব, ফটোইলেকট্রনের সর্বোচ্চ গতিবেগ = 8.386 × 105 m/s (Ans.)

ৰ এখানে.

আপতিত ফোটনের তরজাদৈর্ঘ্য, $\lambda=4\times10^{-7} \mathrm{m}$ নিবৃত্তি বিভব, $V_0=2V$ প্ল্যান্ডেকর ধ্বুবক, $h=6.63\times10^{-34} \mathrm{Js}$ আলোর বেগ, $c=3\times10^8$ m/s লাল আলোর তরজাদৈর্ঘ্য, $\lambda_R=6.8\times10^{-7} \mathrm{m}$ আমরা জানি,

আপতিত ফোটনের শক্তি, $E = h^{\frac{C}{\lambda}}$

$$= (6.63 \times 10^{-34} \text{Js}) \times \frac{3 \times 10^8 \text{m/s}}{4 \times 10^{-7} \text{m}}$$
$$= 4.973 \times 10^{-19} \text{J}$$

এখন, কার্যাপেক্ষক, $W = E - eV_0$

=
$$4.973 \times 10^{-19}$$
J - $(1.6 \times 10^{-19}$ C × 2V)
= 1.773×10^{-19} J

লাল বর্ণের ফোটনের শক্তি, $E_R = h \frac{c}{\lambda}$

=
$$(6.63 \times 10^{-34} \text{ Js}) \times \frac{3 \times 10^8 \text{ m/s}}{6.8 \times 10^{-7} \text{m}}$$

= $2.925 \times 10^{-19} \text{J}$

যেহেতু, E_R > W

সূতরাং, লাল আলো ব্যবহার করলে ফটোতড়িৎ প্রবাহ ঘটবে।

প্রশ্ন ▶ বিজ্ঞান উৎসুক মেধাবী ছাত্রী হুমায়রা তার বাবার সাথে ঢাকা বিশ্ববিদ্যালয়ের পদার্থবিজ্ঞান বিভাগের গবেষণাগারে গিয়ে একটি পরীক্ষণ দেখতে পায়। উক্ত পরীক্ষায় 0.4Å তরক্ষাদৈর্ঘ্যের একটি ফোটন কণা একটি স্থির ইলেকট্রনকে আঘাত করে 55° কোণে বিক্ষিপ্ত হয়ে যায়। [গবেষণাগারের তালিকা থেকে জানা যায় যে, ইলেকট্রনের ভর = 9.1 × 10⁻³¹ kg, আলোর বেণ = 3 × 10⁸ ms⁻¹ এবং প্ল্যাংকের প্রবক = 6.63 × 10⁻³⁴ Js.]

- ক. আলোক তড়িৎ ক্রিয়া কাকে বলে?
- খ, বিভব পার্থক্যের S.I. একক kgm²A⁻¹s⁻³ ব্যাখ্যা কর।
- গ. উদ্দীপকের আপতিত ফোটনের শক্তি কত?
- ঘ. উদ্দীপকের আলোকে বিক্ষেপণের পূর্বে ও পরে ফোটনের তরজ্ঞাদৈর্য্যের তুলনামূলক বিশ্লেষণ কর।

৯ নং প্ররোর উত্তর

ক কোনো ধাতব পৃষ্ঠের ওপর যথেষ্ট উচ্চ কম্পাডেকর আলোক রশ্যি বা অন্য কোনো তড়িৎচুম্বকীয় তরজা আপতিত হলে উক্ত ধাতু থেকে ইলেকট্রন নিঃসূত হয়। এ ঘটনাকে আলোক তড়িৎ ক্রিয়া বলে।

ব্র আমরা জানি,

$$P_s = VI$$

$$\therefore V = \frac{P}{I} = \frac{W}{I} = \frac{W}{It} = \frac{F \times s}{It} = \frac{m \times a \times s}{It}$$

∴ V এর একক =
$$\frac{\text{তরের একক} \times \text{ gরপের একক} \times \text{ সরপের একক}}{\text{তিড়িৎ প্রবাহের একক} \times \text{ সময়ের একক}}$$

$$= \frac{\text{kg} \times \text{ms}^{-2} \times \text{m}}{\text{A} \times \text{S}}$$

$$= \text{kgm}^2 \text{A}^{-1} \text{s}^{-3}$$

ক্র দেওয়া আছে, আপতিত ফোটনের তরজ্ঞাদৈর্ঘ্য, $\lambda = 0.4 \times 10^{-10} \mathrm{m}$ খ্যাংকের ধ্বক, $h = 6.63 \times 10^{-34} J.s$ আলোর মুতি, c = 3 × 108 ms⁻¹

বের করতে হবে, আপতিত ফোটনের শক্তি, E = ?

আমরা জানি, E =
$$\frac{hc}{\lambda}$$
 = $\frac{6.63 \times 10^{-34} J.s \times 3 \times 10^8 ms^{-1}}{0.4 \times 10^{-10} m}$
= $4.9725 \times 10^{-15} J$ (Ans.)

ৰ দেওয়া আছে,

আপতিত রশার তরজাদৈর্ঘ্য, $\lambda = 0.4 \text{\AA} = 0.4 \times 10^{-10} \text{m}$ ম্পির ইলেকট্রনের ভর, $m_0 = 9.1 \times 10^{-31} \text{ kg}$ আলোর বেগ, c = 3 × 10⁸ ms⁻¹ গ্লাংকের ধ্বক, $h = 6.63 \times 10^{-34} J.s$ বিক্ষেপণ কোণ, 0 = 55°

আমরা জানি, বিক্ষেপিত ফোটনের তরজাদৈর্ঘ্য,

$$\lambda' = \lambda + \frac{h}{m_0 c} (1 - \cos \theta)$$
6.63 × 10⁻³⁴J.s

=
$$0.4 \times 10^{-10}$$
m + $\frac{6.63 \times 10^{-34} \text{J.s}}{9.1 \times 10^{-31} \text{ kg} \times 3 \times 10^8 \text{ ms}^{-1}} (1 - \cos 55^\circ)$
= 4.10356×10^{-11} m > 0.4×10^{-10} m (= λ)

সূতরাং গাণিতিক বিশ্লেষণে দেখা যাচ্ছে যে,

বিক্ষেপণের পূর্বে ফোটনের তরজ্ঞাদৈর্ঘ্য, বিক্ষেপণের পরের তরজ্ঞাদৈর্ঘ্য অপেকা কম।

প্রস, ১০ দুটি ইলেকট্রন যথাক্রমে 0.866c এবং 0.99c বেগে গতিশীল। ইলেকট্রনের নিশ্চল ভর $9.1 \times 10^{-31} {
m kg}$ । 15. CAT. 2039/

ক্ কার্যাপেক্ষক কাকে বলে?

- খ. একই বেগে গতিসম্পন্ন প্রোটন ও ইলেকট্রনের মধ্যে ইলেকট্রন ডি' ব্রগলী তরজ্ঞাদৈর্ঘ্য বেশি কেন?
- প্রথম ইলেকট্রনের গতিশীল ভর নির্ণয় কর।
- প্রথম ইলেকট্রনের আপেক্ষিকতার গতিশক্তি দ্বিতীয় ইলেকট্রনের চেয়ে কম— গাণিতিক বিশ্লেষণের মাধ্যমে প্রমাণ কর ।

১০নং প্রশ্নের উত্তর

ক্র কোন ধাতুর পৃষ্ঠ থেকে একটি ইলেকট্রন মুক্ত করতে যে ন্যুনতম পরিমাণ শক্তি সরবরাহ করতে হয়, তাকে ঐ ধাতুর কার্যাপেক্ষক বলে।

বি ডি-ব্রগলী মতবাদ অনুসারে পদার্থের m ভরের একটি ক্ষুদ্র কণার (ইলেকট্রন অথবা প্রোটন) তরজাদৈর্ঘ্য হবে

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

এখানে, v = কণার বেগ

এই সমীকরণটি ডি-ব্রগলীয় সমীকরণ নামে পরিচিত। সমীকরণ থেকে দেখা যায়, একই বেগে গতিশীল কণার ভর বেশি হলে তরজাদৈর্ঘ্য ছোট হবে। যেহেতু, প্রোটনের ভর ইলেকট্রনের ভর অপেক্ষা ইলেকট্রনের বেশি সেহেতু একই বেগে গতিসম্পন্ন প্রোটন অপেকা ইলেকট্রনের তরজ্ঞাদৈর্ঘ্য বেশি হবে।

ত্ত্ব দেওয়া আছে,

১ম ইলেকট্রনের বেগ, v = 0.866c ১ম ইলেকট্রনের নিশ্চল ভর, $m_o = 9.1 \times 10^{-31} \text{ kg}$ অপেক্ষিকতার শর্ত অনুসারে,

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$= \frac{9.1 \times 10^{-31}}{\sqrt{1 - (0.866)^2}}$$

$$= \frac{9.1 \times 10^{-31}}{0.5}$$

$$= 1.82 \times 10^{-30} \text{ kg (Ans.)}$$

ঘ 'গ' অংশ হতে পাই,

১ম ইলেকট্রনের গতিশীল ভর, m = 1.82 × 10⁻³⁰ kg উদ্দীপক হতে পাই.

২য় ইলেকট্রনের বেগ, v_i = 0.99 c

২য় ইলেকট্রনের নিশ্চল ভর, m_o = 9.1 × 10⁻³¹ kg

হয় ইলেকট্রনের গতিশীল ভর, m' =
$$\frac{m_0}{\sqrt{(1-v^2_1/c^2)}}$$

= $\frac{9.1\times10^{-31}}{\sqrt{1-(0.99)^2}}$
= $\frac{9.1\times10^{-31}}{0.141}$
= $6.45\times10^{-30}\,\mathrm{kg}$

১ম ইলেকট্রনের গতিশক্তি, k, এবং ২য় ইলেকট্রনের গতিশক্তি, k2 এর অনুপাত,

$$\begin{split} \frac{k_1}{k_2} &= \frac{(m-m_0)c^2}{(m'-m_0)c^2} \\ &= 1, \frac{k_1}{k_2} = \left(\frac{1.82 \times 10^{-30} - 9.1 \times 10^{-31}}{6.45 \times 10^{-30} - 9.1 \times 10^{-31}}\right) \end{split}$$

বা, $k_2 = 6.1 \times k_1$.

0

অতএব, ১ম ইলেকট্রনের আপেক্ষিকতার গতিশক্তি ২য় ইলেকট্রনের চেয়ে কম।

প্রনা ১১১ আকমলের ভর 55kg এবং বয়স 40 বছর। সে 2.4 × 10⁸ ms⁻¹ বেশে গতিশীল মহাশূন্যযানে চড়ে ছায়াপথ অনুসন্ধানে গেল। তার যমজ ডাই ডাজমলের বয়স যখন ৪০ বছর হলো তখন সে পৃথিবীতে ফিরে এলো। 15. CAT. 2030/

- ক. জেনার ভোন্টেজ কাকে বলে?
- খ, অবতল লেন্সে গঠিত প্রতিবিদ্ব পর্দায় উৎপন্ন হয় কি-না? ব্যাখ্যা
- ণ্. মহাশূন্যথানে আকমলের ভর নির্ণয় কর।
- ঘ, উদ্দীপকে দু'ভাইয়ের বর্তমান বয়স সমান থাকবে কিনা -গাণিতিক বিশ্লেষণসহ মতামত দাও।

১১ নং প্রশ্নের উত্তর

p-n জাংশনে বিমুখী ঝোঁকে ভোল্টেজ বাড়াতে থাকলে শেষে এক সময় ষঠাৎ করে বিপুল পরিমাণ তড়িৎ প্রবাহ পাওয়া যায়। যেন মনে হয় p-n জংশনের বিভব বাধা একেবারে বিলুপ্ত হয়ে গেছে। বিমুখী ঝোঁকের ক্ষেত্রে যে ভোল্টেজের জন্য এর্প ঘটে তাকে জেনার ভোল্টেজ বা জেনার বিভব (Zener Voltage) বলে।

আ অবতল লেন্সের সামনে একটি লক্ষ্যবস্তু রাখলে লেন্সের সামনে একটি প্রতিবিদ্ব গঠিত হয়। এই গঠিত প্রতিবিদ্ব অবাস্তব, সোজা এবং আকারে লক্ষ্যবস্তুর চেয়ে ছোট হয় এবং এই প্রতিবিদ্ধকে চোখে দেখা যায়, কিন্তু পর্দায় ফেলা যায় না।

🛂 ১০(গ)নং সূজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 91.67 বছর।

যা ৩(ঘ)নং সৃজনশীল প্রশ্নোতরের অনুরূপ।

প্রশা >>> নিম্নে একটি ব্যবস্থা দেখানো হল যেখানে কুলিজ নল থেকে উৎপন্ন X রশ্মি ধাতুর পাশ দিয়ে যাওয়ার সময় 60° কোণে বিক্ষিপ্ত হচ্ছে। এখানে $m_0 = 9.1 \times 10^{-31} \mathrm{kg}$, $h = 6.63 \times 10^{-34} \mathrm{J}$ -S

15 car 5039)

ক. পারমাণবিক ভর একক বলতে কী বুঝ?

২. ১০ দৈর্ঘ্যের কোনো বস্তুকে আলোর বেগে মহাশূন্যে পাঠালে
 এর দৈর্ঘ্যের কির্প পরিবর্তন হবে?

গ্র কুলিজ নল থেকে নির্গত ফোটনের তরজ্ঞাদৈর্ঘ্য নির্ণয় কর। ৩

বিক্ষিপ্ত ফোটন ও প্রক্ষিপ্ত ইলেকট্রনের ভরবেণের তুলনা
 কর।
 ৪

১২নং প্রশ্নের উত্তর

া $^{12}_{6}$ 12

 $1 \text{ a.m.u} = 1.66057 \times 10^{-27} \text{ kg}$ আমরা জানি, আপেক্ষিক দৈর্ঘ্য, $L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$

এখানে, L, = বস্তুর নিশ্চল দৈর্ঘ্য

v = বস্তুর বেগ

c = আলোর বেগ

তখন বস্তুটি আলোর বেগে চললে, v = c

সেকেরে,
$$L = L_0 \sqrt{1 - \frac{V^2}{c^2}}$$

= $L_0 \sqrt{1 - 1}$
= 0 ms^{-1}

সূতরাং L দৈর্ঘ্যের কোনো বস্তুকে আলোর বেগে মহাশূন্যে পাঠালে এর আপেক্ষিক দৈর্ঘ্য শূন্য হয়ে যাবে।

্বা দেওয়া আছে, বিভব পার্থক্য, V = 30 kV = 30 × 10³V প্লাভেকর ধ্রুবক, h = 6.63 × 10⁻³⁴J-s জানা আছে.

ফোটনের চার্জ, e = 1.6 × 10⁻¹⁹C আলোর বেগ, c = 3 × 10⁸ ms⁻¹ বের করতে হবে, ফোটনের তরজাদৈর্ঘা, λ = ? আমরা জানি,

eV =
$$\frac{hc}{\lambda}$$

 $\exists 1, \lambda = \frac{hc}{eV}$
= $\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19} \times 30 \times 10^{3}}$
= 0.414 Å(Ans.)

য় চিত্রানুসারে

'গ' অংশ হতে পাই আপতিত ফোটনের তরজা দৈর্ঘ্য, $\lambda = 0.414 \mbox{\AA}$ = $0.414 \times 10^{-10} \mbox{m}$

 \therefore আপতিত ফোটনের কম্পাঙক, $f = \frac{c}{\lambda} = 7.25 \times 10^{18} \, \mathrm{Hz}$ উদ্দীপক অনুসারে.

ইলেকট্রনের ভর, m_o = 9.1×10^{-31} kg প্ল্যান্ডেকর ধ্রবক, h = 6.63×10^{-34} Js

বিক্ষিপ্ত ফোটনের তরজাদৈর্ঘ্য ১' হলে,

$$\lambda' = \frac{h}{m_0 c} (1 - \cos\phi) + \lambda$$

$$= \frac{6.63 \times 10^{-34}}{9.1 \times 10^{-31} \times 3 \times 10^8} (1 - \cos 60) + 0.414 \times 10^{-10}$$

$$= 4.26 \times 10^{-11} \text{ m}$$

অনুভূমিক ও উলম্ব বরাবর ভরবেণের সংরক্ষণশীলতা নীতি প্রয়োগ করে পাই

$$P_{\lambda} = P_{\lambda'} \cos \phi + P_e \cos \theta$$

 $P_e \cos \theta = P_{\lambda} - P_{\lambda'} \cos \phi \dots (i)$

আবার.

$$P_{\lambda'}\sin\phi - P_{c}\sin\theta = 0$$

 $\therefore P_e \sin\theta = P_{\lambda'} \sin\varphi$

(i) ও (ii) নং কে বর্গ করে যোগ করে পাই,

$$\begin{split} P_{e}^{2} &= P_{\lambda}^{2} + P_{\lambda'}^{2} - 2P_{\lambda}P_{\lambda'}\cos\phi \\ \forall I, \left(\frac{P_{e}}{P_{\lambda'}}\right)^{2} &= \left(\frac{P_{\lambda}}{P_{\lambda'}}\right)^{2} - 2\left(\frac{P_{\lambda}}{P_{\lambda'}}\right)\cos\phi + 1 \\ \forall I, \frac{P_{\lambda'}}{P_{e}} &= \frac{1}{\left\{\left(\frac{P_{\lambda}}{P_{\lambda'}}\right)^{2} - 2\left(\frac{\lambda}{\lambda'}\right)\cos\phi + 1\right\}^{\frac{1}{2}}} \\ \forall I, \frac{P_{\lambda'}}{P_{e}} &= \frac{1}{\left\{\left(\frac{\lambda'}{\lambda}\right)^{2} - 2\left(\frac{\lambda'}{\lambda}\right)\cos\phi + 1\right\}^{\frac{1}{2}}} \\ &= \frac{1}{\left\{\left(\frac{4\cdot26}{4\cdot14}\right)^{2} - 2\left(\frac{4\cdot26}{4\cdot14}\right)\cos60^{\circ} + 1\right\}^{\frac{1}{2}}} \end{split}$$

 $\therefore \frac{P_{\lambda'}}{P_{c}} = 0.985$ অর্থাৎ বিক্ষিপ্ত ফোটনের ভয়বেগ প্রক্ষিপ্ত ইলেকট্রনের ভরবেগের 0.985

গুণ ৷

আবার,

$$\tan\theta = \frac{P_{\lambda'} \sin\phi}{P_{\lambda} - P_{\lambda'} \cos\phi}$$

$$= \frac{\frac{h}{\lambda'} \sin\phi}{\frac{h}{\lambda} - \frac{h}{\lambda'} \cos\phi}$$

$$= \frac{\sin\phi}{\frac{\lambda'}{\lambda} - \cos\phi}$$

$$= \frac{\sin 60^{\circ}}{\frac{4.26}{4.14} - \cos 60^{\circ}}$$

$$= 1.637$$

$$\therefore \theta = 58.58^{\circ}$$

অতএব, ইলেকট্রন 90° কোণে নয় বরং 58.58° কোণে প্রক্রিপ্ত হবে এবং বিক্ষিপ্ত কোণের ভরবেগ প্রক্রিপ্ত ইলেকট্রনের ভরবেগের 0.985 গুণ।

প্রায় > ১০ হাইড্রোজেন পরমাণুর প্রথম কক্ষের ব্যাসার্ধ ও শক্তি যথাক্রমে
0.53Å এবং −13.6eV । 2.46 × 10¹⁵ Hz কম্পাংকের ফোটন দ্বারা উক্ত পরমাণুর প্রথম কক্ষের ইলেকট্রনকে আঘাত করা হল । প্লাংকের ধ্রুবক h
= 6.63 × 10⁻³⁴ Js ।

|সি. বেল ২০১৬|

ক, অধায়ু কাকে বলে?

খ. X-ray চৌম্বক ক্ষেত্র দ্বারা বিক্ষিপ্ত হয় না– ব্যাখ্যা কর।

গ, উদ্দীপকের পরমাণুর তৃতীয় কক্ষপথের ব্যাসার্ধ নির্ণয় কর।

ঘ, আঘাতপ্রাপ্ত ইলেকট্রনটির কী পরিণতি হয়েছিল গাণিতিক বিশ্লেষণের সাহায্যে মতামত দাও। 8

১৩ নং প্রশ্নের উত্তর

ক্র কোনো তেজস্ক্রিয় নমুনায় পরমাণু সংখ্যা যে সময়ে ভেজো অর্ধেকে পরিণত হয় সে সময়কে ঐ তেজস্ক্রিয় মৌলের অর্ধায়ু বলে।

X-ray কোন আহিত কণা নয়। এটি একটি তড়িং চুম্বকীয় তরজা। বেহেতু X-ray এর ভিতর কোন চার্জ নেই তাই X-ray চৌয়ক ক্ষেত্র ও তড়িৎক্ষেত্র য়ারা বিচ্যুত হয় না।

ণ এখানে,

১ম কক্ষের ব্যাসার্ধ, r₁ = 0.53Å কক্ষপথ, n = 3.

n তম কক্ষপথের ব্যসার্ধ, r_n = ?

আমরা জানি,

$$r_n = n^2 \cdot r_1$$

= $3^2 \times 0.53 \text{ Å}$
= 4.77 Å

অর্থাৎ ৩য় কক্ষপথের ব্যাসার্ধ = 4.77Å (Ans.)

ন্ত্র আপতিত ফোটনের শক্তি,

E = hf
=
$$6.63 \times 10^{-34}$$
Js $\times 2.46 \times 10^{15}$ Hz
= 1.631×10^{-18} J = 10.2 eV

হাইড্রোজেনের প্রথম কক্ষপথে ইলেকট্রনের শক্তি, $E_1 = -13.6 \, \mathrm{eV}$

∴ দ্বিতীয় কক্ষপথে ইলেকট্রনের শক্তি, $E_2 = \frac{-13.6}{2^2} eV$

সূতরাং প্রথম কক্ষপথ থেকে ২য় কক্ষপথে ইলেকট্রন যেতে প্রয়োজনীয় শক্তি,

$$E = E_2 - E_1$$

= -3.4 eV - (-13.6 eV)
= 10.2 eV

∴ আপতিত ফোটনের শক্তি = ইলেকট্রনটি প্রথম কক্ষপথ থেকে দ্বিতীয় কক্ষপথে যেতে প্রয়োজনীয় শক্তি সূতরাং ইলেকট্রনটি দ্বিতীয় কক্ষপথে গমন করবে।

প্রা ► ১৪ পদার্থবিজ্ঞান পরীক্ষাগারে হাসান সাহেব 1m দৈর্ঘ্যের ধাতব বন্ধুর ঘনত্ব নির্ণয় করলেন 19.3 × 10³ kgm³। অন্যদিকে পাবনী বন্ধুটির দৈর্ঘ্য বরাবর 0.9c বেগে গতিশীল কাঠামো হতে বন্ধুটির ঘনত্ব নির্ণয় করলেন।

ক, বন্ধন শক্তি কাকে বলে?

খ, সূর্য কৃষ্ণণহ্বরে পরিণত হলে পৃথিবী কি সূর্যের চারিদিকে ঘুরবে? ব্যাখ্যা কর।

গ, গতিশীল কাঠামোতে ধাতব বস্তুটির দৈর্ঘ্য নির্ণয় কর। 🔻 ও

ঘ. খাসান সাহেব ও পাবনী ধাতব বস্তুটির ঘনত্ব একই পাবে কি?
 গাণিতিকভাবে বিশ্লেষণ কর।

১৪ নং প্রশ্নের উত্তর

প্রোটন ও নিউট্রনগুলোকে নিউক্লিয়াসে একত্রে বেধে রাখতে যে শন্তির প্রয়োজন তাকে নিউক্লিয়াসের বন্ধন শন্তি বলে।

শুর্য কৃষ্ণ বিবরে পরিণত হলে এর আকার অত্যন্ত ছোট হবে কিন্তু ভরের কোনরূপ পরিবর্তন হবে না এবং সূর্যের ভরকেন্দ্র থেকে পৃথিবীর দূরত্ত্বের কোনো পরিবর্তন হবে না। এতে সূর্য ও পৃথিবীর আকর্ষণ বলের ও কোনো পরিবর্তন হবে না। ফলে পৃথিবী সূর্যের চারদিকে ঘুরতে থাকবে।

ব্য ৩(গ)নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 0.44 M

যেহেতু দহুটিকে পাবনী দৈর্ঘ্য বরাবর গতিশীল করেন অতএব দৈর্ঘ্য বরাবরই শুধু সংকোচন হবে।

ধরি, দন্ডের প্রস্থাক্ষেদের ক্ষেত্রফল = A

আমরা জানি,
$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

কিব্ৰু m = pV

২

ৰা,
$$\rho = \frac{m}{v}$$

ৰা,
$$\rho = \frac{m}{AL}$$

ৰা,
$$\rho = \frac{\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}}{AL_0\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\overline{A}, \rho = \frac{\frac{m_0}{AL_0}}{1 - \frac{v^2}{c^2}}$$

ৰা,
$$\rho = \frac{\rho_0}{1 - \frac{V}{2}}$$

$$\sqrt{1000} = \frac{19.3 \times 10^3}{1 - (0.9)^2}$$

 $\rho = 10.15 \times 10^4 \, \text{kgm}^{-3}$

অর্থাৎ, $ho >
ho_a$, সুতরাং পাবনীর বস্তুটির ঘনত্ব হাসান অপেক্ষা বেশি পাবে।

প্ররা ১৫ একটি ধাতুর উপর 2500Å এবং 3500Å তরজা দৈর্ঘ্যবিশিষ্ট দৃটি তড়িংচুম্বকীয় তরজা আলাদাভাবে ফেলা হলো। ফলে দুটি ক্ষেত্রেই ধাতবপৃষ্ঠ হতে ইলেকট্রন নির্গত হলো। ধাতুটির সূচন কম্পাভক 5.5 × 10¹⁴ Hz.

- ক. আলোক তড়িং ক্রিয়া কাকে বলে?
- খ. কোনো গতিশীল কণার বেগের সাথে তরজ্ঞাদৈর্ঘ্যের সম্পর্ক কিরুপ?২
- গ, ধাতৃটির কার্য অপেক্ষক নির্ণয় কর।
- ঘ. উদ্দীপকে আপতিত আলোর তরজাদৈর্ঘ্যের জন্য উভয়ক্ষেত্রে নিবৃত্তি বিভবের তুলনামূলক গাণিতিক বিশ্লেষণ কর।

১৫ নং প্রশ্নের উত্তর

🚳 কোনো ধাতব পৃষ্ঠের ওপর যথেষ্ট উচ্চ কম্পাংকের আলোকরশ্যি বা অন্য কোনো তড়িৎকুম্বকীয় তরজা আপতিত হলে উক্ত ধাতৃ থেকে ইলেকট্রন নিঃসৃত হওয়ার ঘটনাকে আলোক তড়িৎ ক্রিয়া বলে

🖥 কোনো গতিশীল কণার বেগের (v) সাথে এর তরজ্ঞাদৈর্ঘ্যের সম্পর্ক নিম্নোক্ত সমীকরণের সাহায্যে প্রকাশ করা যায় :

$$\lambda = \frac{h}{mv}$$

অর্থাৎ বেগ যত বেশি হবে, তরজ্ঞাদৈর্ঘ্য তত ক্ষুদ্র হবে। ওপরোক্ত সমীকরণটিকে ডি-ব্রগলী সমীকরণ বলে।

ত দেওয়া আছে,

ধাতুর সূচন কম্পাডক, $f_n = 5.5 \times 10^{14} \; \mathrm{Hz}$ জানা আছে, প্লাংকের ধ্রক, h = 6.63 × 10⁻³⁴J.s বের করতে হবে, কার্যপেক্ষক, W_o = ?

আমরা জানি, $W_0 = hf_0$ $= 6.63 \times 10^{-34} \text{ J.s} \times 5.5 \times 10^{14} \text{ Hz}$ $= 3.6465 \times 10^{-19} \text{ J}$

 $= \frac{3.6465 \times 10^{-19}}{1.6 \times 10^{-19}} \text{ eV} = 2.28 \text{ eV (Ans.)}$

য প্রথম ক্ষেত্র নিবৃত্তি বিভব V_{St} হলে,

 $eV_{S1} = K_{max} = hf_1 - hf_0 = h\frac{c}{\lambda_1} - hf_0$

λ, হলো প্রথম ক্ষেত্রে তরজাদৈর্ঘ্য।

$$V_{S1} = \frac{h\frac{c}{\lambda_1} - hf_o}{e}$$

$$= \frac{6.63 \times 10^{-34} \text{ J.S} \times \frac{3 \times 10^8 \text{ ms}^{-1}}{2500 \times 10^{-10} \text{m}} - 3.6465 \times 10^{-19} \text{J}}{1.6 \times 10^{-19} \text{C}}$$

$$= 2.69 \text{ Volt}$$

$$V_{S2} = \frac{h\frac{c}{\lambda_2} - hf_o}{e}.$$

$$= \frac{6.63 \times 10^{-34} \text{ J.s} \times \frac{3 \times 10^8 \text{ ms}^{-1}}{3500 \times 10^{-10} \text{m}} - 3.6465 \times 10^{-19} \text{J}}{1.6 \times 10^{-19} \text{C}}$$

= 1.273 volt

সূতরাং যে ক্ষেত্রে আলোর তরজাদৈর্ঘ্য ক্ষুদ্রতর মানের হবে সেক্ষেত্রে নিবৃত্তি বিভব বেশি মানের হবে।

প্রনা>১৬ 50 বছর বয়সে একজন মহাশূন্যচারী মহাশূন্যথানে চড়ে মহাকাশ অভিযানে গেলেন এবং 30 বছর পর পৃথিবীতে ফিরে এলেন। মহাশুন্যথানের ভর = 720 kg মহাশুন্যথানের বেগ = $3.72 \times 10^5 \text{ms}^{-1}$, আলোর গতি = $3 \times 10^8 \text{ms}^{-1}$. 14. CAT. 2039/

ক, নিউক্লিয়ন কী?

- কোনো বন্ধু আলোর সমান বেগে চলতে পারে না—ব্যাখ্যা কর।
- প. পৃথিবীতে মহাশূন্যচারীর বয়স নির্ণয় কর।
- 9 ঘ, মহাশূন্যথানের মূল ভরের পরিবর্তন কীর্প হবে? গাণিতিক ব্যাখ্যা দাও।

১৬ নং প্রশ্নের উত্তর

ক যে সকল কণার সমন্ত্রয়ে (মূলত প্রোটন ও নিউট্রন) পরমাণুর নিউক্লিয়াস গঠিত, তাদেরকে নিউক্লিয়ন বলে।

বা ভরের আপেক্ষিকতা হতে আমরা জানি যে, mo স্থির ভরের কোন বস্তু v বেগে চললে তার গতিশীল ভর m হবে।

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

v = c হলে, $m = \frac{m_0}{\sqrt{1-1}} = \infty$, অর্থাৎ বস্তুটিকে c বেগে গতিশীল করতে সরবরাহকৃত শক্তির পরিমাণ = (m − m₀) e^2 = ∞ যা অসম্ভব। তাই কোন বস্তু আলোর বেগে চলতে পারে না।

থা দেওয়া আছে,

ভূপৃষ্ঠ থেকে নিণীত সময় ব্যবধান, t = 30y মহাশূন্যযানের বেগ, $v = 3.72 \times 10^5 \text{ ms}^{-1}$ আলোর বেগ, c = 3 × 108 ms⁻¹ মহাশূন্যথানে মহাশূন্যচারীর বয়স, to = ?

আমরা জানি,

$$t_0 = t \sqrt{1 - \frac{v^2}{c^2}}$$

$$= 30 \sqrt{1 - \left(\frac{3.72 \times 10^5}{3 \times 10^8}\right)^2}$$

$$= 29.99 v$$

অর্থাৎ পৃথিবীতে মহাপূন্যচারীর বয়স = t₀ + 50 = 29.99 + 50= 79.99y (Ans.)

্র উদ্দীপক হতে পাই,

भश्रभुनायात्नत निष्ठल छत्र, mo = 720 kg মহাশূন্যযানের বেগ, $v = 3.72 \times 10^5 \text{ ms}^{-1}$ আলোর বেগ, $c = 3 \times 10^8 \text{ ms}^{-1}$

পতিশীল ভর, m হলে,

m =
$$\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

= $\frac{720}{\sqrt{1 - \left(\frac{3.72 \times 10^5}{3 \times 10^8}\right)^2}}$
= 720.00055 kg

অর্থাৎ গতিশীল অবস্থায় মহাশূন্যযানের মূল ভর বৃন্ধি পাবে।

প্রশা>১৭ কোনো ধাতব পাত হতে ইলেকট্রন নিঃসরণের জন্য এর উপর 2500Å তরজাদৈর্য্যের আলো ফেলা হল। ধাতুটির কার্যাপেক্ষক 2.3 eV । প্ল্যাডেকর ধ্বক h = 6.63 × 10⁻³⁴ J − s ।

ক. ডোপিং কাকে বলে? খ. পরমাণুর নিউক্লিয়াসে ইলেকট্রন থাকতে পারে না কেন? ব্যাখ্যা

গ. উদ্দীপকে নিঃসৃত ফটোইলেকট্রনের সর্বোচ্চ গতিবেগ কড হবে? বের কর।

ঘ. উদ্দীপকে বর্ণিত ধাতুর উপর 5897Å তরজ্ঞাদৈর্ঘ্যের আলো পতিত হলে ইলেকট্রন মুক্ত হবে কী? গাণিতিকভাবে বিশ্লেষণ করে মতামত দাও।

১৭ নং প্রশ্নের উত্তর

ক্ত পরিবাহীতা বৃদ্ধির উদ্দেশ্যে অর্ধপরিবাহীতে সামান্য পরিমাণ সুবিধাজনক নির্দিষ্ট মৌলিক পদার্থ ভেজাল দেয়া হয়। ভেজাল পদার্থের বাচ্প উত্তপ্ত অবস্থায় বিশুন্ধ অর্ধপরিবাহীর মধ্য দিয়ে চালনা করে ভেজাল দেয়ার পন্ধতিকে ডোপিং বলা হয়।

হা হাইজেনবার্গের অনিশ্চয়তা নীতির সূত্র $\left(\Delta x \Delta P \geq \frac{h}{2\pi}\right)$ ব্যবহার করে নির্দিষ্ট গাণিতিক বিশ্লেষণে পাওয়া যায় যে, ইলেকট্রনের নিউক্লিয়াসের অভ্যন্তরে থাকতে হলে একে 37.6 MeV শক্তির অধিকারী হতে হবে। কিন্তু পরীক্ষালব্ধ ফলাফল থেকে দেখা যায় যে, ইলেকট্রনের শক্তি 4 MeV এর অধিক হয় না। সূতরাং নিউক্লিয়াসের অভ্যন্তরে ইলেকট্রন থাকতে পারে না।

গ এখানে,

আপতিত আলোর তরজাদৈর্ঘ্য,
$$\lambda = 2500~{
m A}^{\circ}$$
 = $2500 \times 10^{-10}~{
m m}$

আলোর দুতি, $c = 3 \times 10^8 \, \text{ms}^{-1}$ প্ল্যাঙ্ক ধুবক, $h = 6.63 \times 10^{-34} \, \text{Js}$ ফটোইলেকট্রনের সর্বোচ্চ গতিবেগ, $v_{\text{max}} = ?$ ইলেকট্রনের ভর, $m = 9.1 \times 10^{-31} \, \text{kg}$

আমরা জানি.

$$hf = K_{max} + \phi$$

$$\overline{d}, hf = \frac{1}{2} m(v_{max})^2 + \phi$$

$$\overline{d}, \frac{1}{2} m(v_{max})^2 = hf - \phi$$

$$\overline{d}, \frac{1}{2} m(v_{max})^2 = \frac{hc}{\lambda} - \phi$$

$$\overline{\text{41}}, \frac{1}{2} \, \text{m}(v_{\text{max}})^2 = \frac{(6.63 \times 10^{-34} \, \text{Js}) \times (3 \times 10^5 \text{ms}^{-1})}{(2500 \times 10^{-10} \text{m})} - (3.68 \times 10^{-19} \, \text{J})$$

$$\overline{\text{41}}, \frac{1}{2} \, \text{m}(v_{\text{max}})^2 = 4.28 \times 10^{-19} \, \text{J}$$

$$\frac{2}{m}, v_{\text{max}} = \sqrt{\frac{2 \times (4.28 \times 10^{-19} \text{J})}{m}}$$

$$= \sqrt{\frac{2 \times 4.28 \times 10^{-19} \text{J}}{9.1 \times 10^{-31} \text{ kg}}}$$

$$= 9.7 \times 10^5 \text{ ms}^{-1} \text{ (Ans.)}$$

য দেওয়া আছে,

কার্যাপেক্ষা, $\phi_0 = 2.3 \text{eV}$ আপতিত ফোটনের তরজ্ঞাদৈর্ঘ্য, $\lambda = 5897 \text{Å}$... সূচন তরজ্ঞাদৈর্ঘ্য λ_0 হলে,

$$\frac{hc}{\lambda_0} = \phi_0$$

$$\boxed{1, \lambda_0 = \frac{hc}{\phi_0}}$$

$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{2.3 \times 1.6 \times 10^{-19}} \text{ m}$$

$$= 5.40168 \times 10^{-7} \text{m}$$

$$= 5401.68 \text{ Å}$$

 $\lambda > \lambda_0$, অর্থাৎ এক্ষেত্রে কোন ফটো ইলেকট্রন নির্গত হবে না।

প্রশ্ন > ১৮ 0.2500nm তরজাদৈর্ঘ্যের এক্স-রশ্মি কোনো লক্ষ্যবস্তুতে আঘাত হেনে 60° কোণে বিক্ষিপ্ত হল। যেখানে ইলেকট্রনের নিশ্চল ভর 9.1 × 10⁻³¹ kg এবং প্ল্যান্ডেকর ধ্রবক 6.63 × 10⁻³⁴ Js. /ম. বল. ২০১৫/

ক, অধায়ু কাকে বলে?

খ নিউক্লিয় ফিউশন ব্যাখ্যা কর।

গ্র বিক্ষিপ্ত এক্স-রশ্যিটির তরজ্ঞাদৈর্ঘ্য নির্ণয় কর।

ঘ় বিক্লিপ্ত এক্স-রশ্যিটির শক্তি, আপতিত রশ্যিটির চেয়ে অতি সামান্য কম— গাণিতিকভাবে বিশ্লেষণের মাধ্যমে এর সত্যতা যাচাই কর।

১৮ নং প্রশ্নের উত্তর

কোনো তেজক্ষিয় মৌলের পরমাণু সংখ্যা যে সময়ে অর্ধেকে পরিণত হয় সে সময়কে ঐ তেজক্ষিয় মৌলের অর্ধায় বলে।

ব একাধিক হালকা পরমাণুর নিউক্লিয়াসের সংযুক্তির ফলে একটি অপেক্ষাকৃত ভারী নিউক্লিয়াস গঠিত হয় এবং প্রচুর পরিমাণে নিউক্লিয় শক্তি উৎপন্ন হয়। নিউক্লিয়াসের এই সংযোগকে নিউক্লীয় ফিউশন বলা হয়। যেমন

 $_1H^2 + _1H^2 \longrightarrow _2He^3 + _{0R}^1 + শক্তি$ এক্ষেত্রে দৃটি ভিওটেরনের সংযোগের ফলে একটি হিলিয়াম $_2He^3$ নিউক্লিয়াস উৎপন্ন হয়। নিউক্লীয় ফিউশনের ক্ষেত্রে উৎপন্ন নিউট্রন ও
নিউক্লিয়াসটির মোট ভর বিক্রিয়ক নিউক্লিয়াসগুলোর মোট ভর অপেক্ষা
কিছু কম হয়। এই হ্রাসকৃত ভর শক্তিতে রূপান্তরিত হয়।

 ধরি, বিক্ষিপ্ত এক্স রশ্যির তরজ্ঞাদৈঘ্য = λ' উদ্দীপক হতে পাই.

বিক্ষেপ কোণ, φ = 60°

ইলেকট্রনের ভর, $m_0 = 9.1 \times 10^{-31} \text{kg}$

প্লাডেকর ধ্বক, h = 6.63 × 10⁻³⁴ Js

আলোর বেগ, $c = 3 \times 10^8 \text{ms}^{-1}$

আপতিত এক্স রশ্মি তরজাদৈর্ঘ্য, $\lambda = 0.2500 \mathrm{m}$

 $= 0.2500 \times 10^{-9}$ n

আমরা জানি, $\lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \phi)$

$$= 0.2500 \times 10^{-10} \text{ m} + \frac{6.63 \times 10^{-34}}{9.1 \times 10^{-31} \times 3 \times 10^{8}} (1 - \cos 60^{\circ})$$

$$= 0.2500 \times 10^{-9} \text{m} + 0.001214 \times 10^{-9} \text{m}$$

$$= 0.2500 \text{nm} + 0.001214 \text{nm}$$

$$= 0.252114 \text{nm}$$

অতএব, বিক্ষিপ্ত এক্স রশ্মিটির তরজাদৈর্ঘ্য 0.25124nm। (Ans.)

ঘ এখানে,

প্লাভেকর ধুবক, $h = 6.63 \times 10^{-34} J-s$

আলোর বেগ, $c = 3 \times 10^8 \text{ms}^{-1}$

তরজাদৈর্ঘ্য, $\lambda = 0.2500 \mathrm{nm} = 0.2500 \times 10^{-9} \mathrm{m}$

বিক্ষিপ্ত এক্স রশার তরজা দৈর্ঘা, $\lambda' = 0.251214$ nm

= 0.251214 × 10⁻⁹m ['গ' নং থেকে প্রাপ্ত]

আপতিত এক্স রশ্মির শক্তি,
$$E_1=\frac{hc}{\lambda}$$

$$=\frac{6.63\times 10^{-34}\times 3\times 10^8}{0.2500\times 10^{-9}}$$

$$=79.176\times 10^{-17}J$$
 $\Delta E=E_1-E_2$
$$=0.384\times 10^{-17}J~(যা অতি সামান্য)$$

∴ উক্তিটির তথ্য সঠিক।

۵

2

প্রসা>১৯ কোনো ধাতৃর উপর 2500Å তরজাদৈর্য্যের অতিবেগুণী রশ্মি ফেলা হল। ধাতৃর কার্য অপেক্ষক 2.3eV। /ব. বের. ২০১৭/

ক, লেঞ্জ এর সূত্রটি লিখ।

সূচন তরজাদৈর্ঘ্য অপেকা বেশি তরজাদৈর্ঘ্যের আলো ধাতব

 পৃষ্ঠে আপতিত হলে ইলেকট্রন নির্গত হয় না কেন?

 ২

প. নিঃসৃত ফটো ইলেকট্রনের সর্বোচ্চ বেগ কত?

ঘ় উদ্দীপকের তথ্য হতে আপতিত ফোটনের কম্পাঙ্ক বনাম গতিশক্তির লেখচিত্র অংকনপূর্বক লেখটি কম্পাঙ্ক অক্ষকে ছেদ করার কারণ ব্যাখ্যা কর।

১৯ নং প্রশ্নের উত্তর

ক কুণ্ডলীতে আবিষ্ট তড়িচ্চালক বল বা তড়িং প্রবাহের দিক এমন হবে যেন তা যে কারণে সৃষ্টি হয়েছে সে কারণকেই বাধা দেয়।

আমরা জানি কোনো ধাতু থেকে ইলেকট্রন মুক্ত করতে ন্যুনতম একটি শক্তির প্রয়োজন। এ ন্যুনতম শক্তিকে উক্ত ধাতুর কার্যাপেক্ষক বলে। কোয়ান্টাম তত্ত্ব থেকে আমরা জনি, কম্পাংকের একটি ফোটনের শক্তি E = hf। এখন আপতিত ফোটনের শক্তি কমপক্ষে কার্যাপেক্ষকের সমান হলে ইলেকট্রন নির্গত হবে। এর্প ফোটনের কম্পাঙ্ক হচ্ছে সূচন কম্পাঙ্ক এবং তরজাদৈর্ঘ্য হচ্ছে সূচন তরজাদৈর্ঘ্য। এখন যদি এর থেকে কম কম্পাঙ্কের ফোটন আপতিত হয় তবে ফোটনের শক্তি কম হবে ফলে ইলেকট্রন নির্গত হবে না। কম্পাঙ্ক কম হব্যার অর্থ হচ্ছে তরজাদৈর্ঘ্য বড় হব্যা। তাই সূচন তরজাদৈর্ঘ্য অপেক্ষা বড় তরজাদৈর্ঘ্যের আলো ধাতব পৃষ্ঠে আপতিত হলে ইলেকট্রন নির্গত হয় না।

্যা দেওয়া আছে, ধাতুর কার্যাপেক্ষক, $W_0 = 2.3 \text{ eV} = 3.68 \times 10^{-19} \text{ J}$ আপতিত আলোর তরজ্ঞাদৈর্ঘ্য, $\lambda = 2500 \text{ Å} = 2500 \times 10^{-10} \text{ m}$ সূতরাং আপতিত আলোর কম্পাঙ্ক, $f = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ m·s}^{-1}}{2500 \times 10^{-10} \text{ m}} = 1.2 \times 10^{15} \text{ Hz}$

ইলেকট্রনের ভর, $m = 9.1 \times 10^{-31} \text{ kg}$ ইলেকট্রনের সর্বোচ্চ গতিবেগ, $\nu_{\text{max}} = ?$ আমরা জানি,

বা,
$$K_{\text{max}} = hf - W_0$$

= 6.63 × 10⁻³⁴ J·s × 1.2 × 10¹⁵ Hz − 3.68 × 10⁻¹⁹ J
= 7.956 × 10⁻¹⁹ J − 3.68 × 10⁻¹⁹ J
= 4.276 × 10⁻¹⁹ J
বা, $\frac{1}{2}mv_{\text{max}}^2 = 4.276 \times 10^{-19}$ J
বা, $v_{\text{max}}^2 = \frac{2 \times 4.276 \times 10^{-19}}{9.1 \times 10^{-31}}$ kg = 93978021978 m²·s⁻²
∴ $v_{\text{max}} = 9.7 \times 10^5$ m·s⁻¹ (Ans.)

্ব উদ্দীপকের তথ্যানুসারে,

ধাতুর কার্যাপেক্ষক, $W_0 = 2.3 \text{ eV} = 3.68 \times 10^{-19} \text{ J}$

 \therefore সূচন কম্পাংক f_0 হলে, $hf_0=W_0$

$$\therefore f_0 = \frac{W_0}{h} = \frac{2.3 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} \text{ Hz}$$
$$= 5.55 \times 10^{14} \text{ Hz}$$

'গ' হতে পাই, আপতিত ফোটনের কম্পাঙ্ক, $f=1.2\times 10^{15}~{\rm Hz}$ এবং ইলেকট্রনের সর্বোচ্চ গতিশক্তি,

$$K_{\text{max}} = 4.276 \times 10^{-19} \text{ J} = 2.67 \text{ eV}$$
 $f = f_0$ এর জন্য,

 $K_{\text{max}} = h(f_0 - f_0) = 0$

অতএব, K_{max} বনাম f লেখটি (5.55 \times 10^{14} , 0) এবং (1.2 \times 10^{15} , 2.67) বিন্দু দিয়ে গমন করে।

সূতরাং K_{max} বনাম ƒ লেখটি হবে নিুরূপ :

আলোক তড়িং ক্রিয়ায় ধাতুর সূচন কম্পাংকের সমান কম্পাংকের জন্য ধাতু থেকে ইলেকট্রন কেবল মুক্ত হয় কিন্তু কোনো গতিশক্তি লাভ করে না। তাই গতিশক্তি বনাম কম্পাংক লেখে কম্পাংক অক্ষ থেকে সূচন কম্পাংক নির্দেশকারী অংশ ছেদ করে। প্ররা > ২০ ফটো-তড়িং প্রক্রিয়া পর্যবেক্ষণের জন্য মিথিলা পটাশিয়াম ধাতুর উপর উপযুক্ত কম্পাঙ্কের একটি আলো আপতিত করল। পটাশিয়াম পৃষ্ঠ হতে যে ইলেকট্রন নির্গত হল তার গতিশক্তি 1.4eV। পটাশিয়ামের কার্যাপেক্ষক হল 2.0eV। নাবিলা 10KV বিভব পার্থক্য একটি ইলেকট্রনকে গতিশীল করল।

/ব. বে: ২০১৬/

ক. কৃষ্ণ শহরর কী?

খ. ঘূর্ণনশীল কাঠামো জড় প্রসক্তা কাঠামো নয়-ব্যাখ্যা কর ৷

উদ্দীপকের পটাশিয়ামের উপর আপতিত আলোর তরজাদৈর্ঘ্য
কত ছিল?

ঘ, উদ্দীপকের উভয় ইলেকট্রনের গতিবেগ একই ছিল কী?—গাণিতিক বিশ্লেষণসহ তোমার মতামত দাও। ৪ ২০ নং প্রশ্লের উত্তর

কি তিন সৌর ভরের সমান বা বেশি ভরের নক্ষত্রের সুপার নোভা বিস্ফোরণের পর এর অন্তর্বন্তু অনিদ্দিউভাবে সংকুচিত হতে থাকে। সংকোচনের কারণে আয়তন প্রায় শূন্য এবং ঘনত্ব অসীম হওয়ায় মহাকর্ষ ক্ষেত্র এমন প্রবল হয় যে, এ জাতীয় বন্তু থেকে এর মহাকর্ষকে কাটিয়ে কোন প্রকার আলো এমনকি সংকেতও বেরিয়ে আসতে পারে না। তাই বন্তুটিকে আর দেখা যায় না। নক্ষত্রের এই অবস্থাকে বলা হয় কৃষ্ণ গহরর।

পরস্পরের সাপেক্ষে ধ্ববেণে গতিশীল যে সকল প্রসঞ্জা কাঠামোতে নিউটনের গতিসূত্র অর্জন করা যায় তাদেরকে জড় প্রসঞ্জা কাঠামো বলে। ঘূর্ণনশীল বন্তুর বেগ প্রতিনিয়ত বৃদ্ধি পায় বলে এটি ধ্ববেণে গতিশীল নয় অর্থাৎ ঘূর্ণনশীল বন্তুর ত্বরণ থাকে। আমরা জানি যে সকল প্রসঞ্জা কাঠামোর ত্বরণ থাকে তাদেরকে অজড় প্রসঞ্জা কাঠামো বলে। এ কারণে ঘূর্ণনশীল কাঠামো জড় প্রসঞ্জা কাঠামো নয়। বরং এটি অজড় প্রসঞ্জা কাঠামো।

য় উদ্দীপক হতে পাই.

জানা আছে, প্লাংকের ধ্রুবক, $h = 6.63 \times 10^{-34} \text{ J.s}$ আলোর বেগ, $c = 3 \times 10^8 \text{ ms}^{-1}$ আপতিত আলোর তরজা দৈর্ঘ্য, $\lambda = ?$

আমরা জানি, $E = K_{max} + \phi$

বা,
$$\frac{hc}{\lambda} = K_{max} + \phi$$

$$\overline{4}$$
, $\frac{hc}{\lambda} = 1.4 \times 1.6 \times 10^{-19} + 2.0 \times 1.6 \times 10^{-19}$

$$\overline{\lambda} = 5.44 \times 10^{-19}$$

ৰা,
$$\lambda = \frac{hc}{5.44 \times 10^{-19}}$$

ৰা, $\lambda = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{5.44 \times 10^{-19}}$

 $\lambda = 3.656 \times 10^{-7} \text{ m (Ans.)}$

ত্ব উদ্দীপক হতে পাই.

মিথিলার ইলেকট্রনের গতিশক্তি, $K_{max} = 1.4 \text{ eV}$ = $1.4 \times 1.6 \times 10^{-19} \text{ J}$

নাবিলার ইলেকট্রনের বিভব পার্থক্য, V_o= 10 KV

ধরি, মিথিলার ইলেকট্রনের গতিবেগ = v_m এবং নাবিলার ইলেকট্রনের গতিবেগ = v_n

জানা আছে, ইলেকট্রনের ভর, m = 9.1 × 10⁻³¹ Kg ইলেকট্রনের আধান, e = 1.6 × 10⁻¹⁹ C মিথিলার ইলেকট্রনের গতিশক্তি,

$$K_{max} = \frac{1}{2} m v_m^2$$
 $\forall 1, v_m = \sqrt{\frac{2 K_{max}}{m}}$
 $= \sqrt{\frac{2 \times 1.4 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}}$
 $= 701.64 \times 10^3 \text{ ms}^{-1}$

আবার, নাবিলার ইলেকট্রনের গতিশক্তি,

$$K_{max} = eV_o$$

 $\overline{1}$, $\frac{1}{2} mv_n^2 = eV_o$

$$41, v_n = \sqrt{\frac{2 \text{ eV}_0}{\text{m}}} = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 10 \times 10^3}{9.1 \times 10^{-31}}}$$

$$= 59.3 \times 10^6 \text{ ms}^{-1}$$

অতএব, উদ্দীপকের উভয় ইলেকট্রনের গতিবেগ একই ছিল না। নাবিলার ইলেকট্রনের গতিবেগ মিথিলার ইলেকট্রনের গতিবেগ অপেক্ষা বেশি ছিল।

প্রশা>২১ 20 kg ভরের ও 10m দৈর্ঘ্যের কোনো একটি বন্তু স্থিরাবস্থা থেকে 0.5c বেপে চলা আরম্ভ করলো। /ব. বে. ২০১৫/

क. कान मीघायन की?

ভর শক্তিতে রূপান্তরিত হয়, ব্যাখ্যা কর।

গ. বস্তুটির পতিশীল অবস্থায় দৈর্ঘ্য কত?

 নিউটনীয় বলবিদ্যা হতে প্রাপ্ত গতিশক্তি ও আপেক্ষিক তত্ত্ব অনুসারে গতিশক্তি এক নয় — উদ্দীপকে প্রদত্ত তথ্যের আলোকে বিশ্লেষণ কর।

২১ নং প্রশ্নের উত্তর

ক কোনো পর্যবেক্ষকের সাপেক্ষে গতিশীল অবস্থায় সংঘটিত দুটি ঘটনার মধ্যবর্তী কাল ব্যবধান ঐ পর্যবেক্ষকের সাপেক্ষে নিশ্চল অবস্থায় সংঘটিত ঐ একই ঘটনাশ্বয়ের মধ্যবর্তী কাল ব্যবধানের চেয়ে বেশি হয়, এই প্রভাবকে কাল দীর্ঘায়ন বলে।

E = mc² সূত্রানুসারে ভর (m) ও শক্তি (E) পরক্ষার রূপান্তরযোগ্য। ভর ও শক্তি মূলত একই সন্তার দুটি ভিন্নরূপ নিউক্লিয় ফিশন বা ফিউশন বিক্রিয়ায় সময় ভর শক্তিতে রূপান্তরিত হয়। ঠিক তেমনি শক্তিকে ভরে রূপান্তর করা সম্ভব। এ পন্ধতিতেই পজিট্রন এবং হিণস-বোসন কণা আবিষ্কৃত হয়েছে।

র্থা ৩(গ)নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: ৪.66 M

্য নিউটনীয় বলবিদ্যা হতে প্রাপ্ত গতিশক্তি, $E = \frac{1}{2} m_0 v^2 = \frac{1}{2} \times 20 \text{ kg}$ $\times (0.5 \times 3 \times 10^8 \text{ ms}^{-1})^2 = 2.25 \times 10^{17} \text{J}$ আপেন্দিক তত্ত্বানুসারে গতিশক্তি, $E' = (m - m_0)c$

$$= \left(\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} - m_0\right) c^2$$

$$= \left(\frac{20 \text{ kg}}{\sqrt{1 - \left(\frac{0.5c}{c}\right)^2}} - 20 \text{ kg}\right) \times (3 \times 10^8 \text{ ms}^{-1})^2$$

$$= (23.094 \text{ kg} - 20 \text{ kg}) \times 9 \times 10^{16} \text{ m}^2 \text{s}^{-2}$$

$$= 2.7846 \times 10^{17} \text{J}$$

= 2.7846 × 10°′J

থেকেডু 2.25 × 10¹⁷J ≠ 2.7846 × 10¹⁷J

অর্থাৎ E ≠ E'

সুতরাং নিউটনীয় বলবিদ্যা হতে প্রাপ্ত গতিশক্তি ও আপেক্ষিক তত্ত্ব অনুসারে প্রাপ্ত গতিশক্তি এক নয়।

প্রশ্ন ▶২২ দুটি ইলেকট্রন যথাক্রমে 0.866 C এবং 0.99 c দুতিতে চলছে। ইলেকট্রনের স্থির ভর = 9.1 × 10⁻³¹ kg। নিচের প্রশ্নপুলোর উত্তর দাও: ক, কার্যাপেক্ষক কী?

 ব. সমদূতিতে চলমান ইলেকট্রন ও প্রোটনের মধ্যে ইলেকট্রনের ডি-ব্রগলী তরজাদৈর্ঘ্য বেশি

 বাখ্যা করে।
 ২

গ্রপ্রথমে ইলেকট্রনটির গতিশীল ভর নির্ণয় করো।

ঘ. প্রথম ইলেকট্রনটির আপেক্ষিক গতিশক্তি, দ্বিতীয় ইলেকট্রনটির আপেক্ষিক গতিশক্তি অপেক্ষা কম— গাণিতিকভাবে বিশ্লেষণ করো।

২২ নং প্রশ্নের উত্তর

১০ নং সৃজনশীল প্রশ্নোত্তর দ্রন্টব্য।

প্রর >২০ ফাহিম এবং তাসমিন দুই বন্ধু। তাদের উভয়ের বয়স ৩৫ বছর। তাসমিন নাসার একজন বিজ্ঞানী। সে একটি মহাশূন্যথানে করে 2.5 × 108ms⁻¹ বেগে মহাশূন্যে গেল। পৃথিবীতে তাসমিনের ভর ছিল 60 কেজি। পৃথিবীর হিসেবে সে 10 বছর পর ফিরে আসলো।

(बाजगारी कारकों करनक)

ক, কার্যাপেক্ষক কী?

কেন বিশুম্ব অর্ধপরিবাহী ইলেকট্রনিক যন্ত্রপাতিতে ব্যবহারোপযোগী
নয়?

গ্র মহাশুন্যে তাসমিনের ভর নির্ণয় করো।

ঘ. তাসমিন 10 বছর পরে ফেরার পর তাদের বয়য়য় একই ছিল না
উদ্দীপকের আলোকে গাণিতিক বিশ্লেষণের মাধ্যমে উক্তিটির
যথার্থতা যাচাই করো।

২৩ নং প্রশ্নের উত্তর

ক কোনো ধাতুখভের ওপর ন্যুনতম যে শক্তির ফোটন আপতিত হলে এটি হতে ইলেকট্রন নিঃসৃত হবার উপক্রম হয় তাকে ঐ ধাতুখভের কার্যাপেক্ষক বলে।

বিশুন্ধ অর্ধপরিবাহীতে কেবল নগণ্য পরিমাণ ইলেকট্রন ও হোল থাকে যা তাপমাত্রার সাথে বৃদ্ধি পায় কিন্তু কক্ষ তাপমাত্রায় আধান বহনকারী ইলেকট্রন ও হোলের সংখ্যা খুব কম থাকে বলে এর মধ্য দিয়ে প্রবাহ খুবই নগন্য হয়। ইলেকট্রনিক যন্ত্রপাতি চালানোর জন্য যে পরিমাণ তড়িৎ প্রবাহ প্রয়োজন, তা এ নগন্য তড়িৎপ্রবাহ অপেক্ষা অনেক বেশি। তাই বিশুন্ধ অর্ধপরিবাহীকে ইলেকট্রনিক যন্ত্রপাতি তৈরিতে ব্যবহৃত হয় না।

🗿 ১১ (গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

উত্তর : 108.54 kg.

য ৩(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: একই ছিলো না।

প্রা ▶২৪ 4.3×10¹⁴Hz, 6.5×10¹⁴Hz এবং 5.6×10¹⁴Hz কম্পান্তক বিশিষ্ট যথাক্রমে লাল, নীল ও সবুজ আলো একটি ধাতুর উপর আপতিত হয়। ধাতুটির কার্যাপেক্ষক 2.4 eV.

क. करों। ইलिक्किक क्रिया की?

উদ্দীপক হতে ধাতৃটির সূচন কম্পাভক বের করো।

গ্র ফটো ইলেক্ট্রনের সর্বোচ্চ বেগ নির্ণয় করো।

উদ্দীপকে উল্লিখিত তথ্য ব্যবহার করে গাণিতিকভাবে বিশ্লেষণ
করে দেখাও যে— কম্পাভক বৃদ্ধির সাথে সাথে নিবৃত্তি বিভবও
বৃদ্ধি পায়।

8

২৪ নং প্রশ্নের উত্তর

কানো ধাতব পৃষ্ঠের ওপর যথেক উচ্চ কম্পাঙ্কের আলোক রশ্মি বা অন্য কোনো তড়িৎচুম্বকীয় তরজা আপতিত হলে উক্ত ধাতু থেকে ইলেকট্রন নিঃসৃত হওয়ার ঘটনাকে আলোক তড়িৎ ক্রিয়া বা ফটো ইলেকট্রিক ক্রিয়া বলে।

ষা ধাতৃটির সূচন কম্পান্তক f_0 হলে, $\phi = hf_0, \ h = প্লাংকের প্রবক$ দেওয়া আছে, $\vdots \ f_0 = \frac{\phi}{h}$ = $\frac{2.4 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}}$ = $5.79 \times 10^{14} \ Hz$ (Ans.)

বা যেহেতু কেবলমাত্র নীল আলোর কম্পাঙ্কই ধাতুটির সূচন কম্পাঙ্ক অপেক্ষা বেশি, তাই শুধুমাত্র নীল আলোই ফটো ইলেকট্রন নির্গত করতে পারবে। নির্গত ইলেকট্রনের ভর = m এবং সর্বোচ্চ বেগ = v_m হলে,

$$hf_B = \frac{1}{2} mv_m^2 + hf_0$$

$$\Rightarrow V_m = \sqrt{\frac{2h(f_B - f_0)}{m}}$$

$$= \sqrt{\frac{2 \times 6.63 \times 10^{-34} \times (6.5 - 5.79) \times 10^{14}}{9.11 \times 10^{-31}}}$$

$$= 3.21 \times 10^5 \text{ m/s. (Ans.)}$$

'খ' হতে পাই, ধাতৃটির সূচন কম্পাভক, $f_0 = 5.79 \times 10^{14} \ {\rm Hz}$ দেওয়া আছে, লাল আলোর কম্পাভক $f_R = 4.3 \times 10^{14} {\rm Hz}$ নীল আলোর কম্পাভক, $f_B = 6.5 \times 10^{14} {\rm Hz}$ সবুজ আলোর কম্পাভক, $f_G = 5.6 \times 10^{14} {\rm Hz}$

আমরা জানি, নিবৃত্তি বিভব হলো একটি ফটো ইলেকট্রনকে নির্গত হওয়া থেকে বিরত রাখতে যে বিভবের প্রয়োজন হয় তা। উদ্দীপকে যে তিনটি কম্পান্তক দেয়া আছে তাদের মধ্যে শুধুমাত্র নীল আলোর কম্পান্তক ধাতুটির সূচন কম্পান্তক অপেক্ষা বেশি ('খ' হতে)। অতএব উদ্দীপকের তথ্য ব্যবহার করে গাণিতিক বিশ্লেষণের মাধ্যমে এটা দেখানো সম্ভব নয় যে কম্পান্তক বৃদ্ধির সাথে সাথে নিবৃত্তি বিভবও বৃদ্ধি পায়। যদি উদ্দীপকে ধাতুটির সূচন কম্পান্তক অপেক্ষা বেশি একাধিক কম্পান্তক (যেমন— অতিবেগুনী, X-ray ইত্যাদি) দেয়া থাকত তবে তা হতে প্রাপ্ত নিবৃত্তি বিভব নির্ণয় করে লেখচিত্র অন্তকনের মাধ্যমে উন্তিটির সত্যতা যাচাই সম্ভব হতো।

প্রশ় ▶২৫ একটি রকেটের ভর 200 kg এবং দৈর্ঘ্য 10m। এটি 0.5 c বেগ নিয়ে পৃথিবী থেকে চলা শুরু করল। /বংগুর জাডেট কলেজ/

- ক. সময়ের আপেক্ষিকতা কি?
- খ. কৃষ্ণ বিবরকে কেন ঘটনা দিগন্ত বলা হয়? ব্যাখ্যা করো।
- গ, গতিশীল অবস্থায় রকেটের দৈর্ঘ্য বের করো।
- ঘ. এখানে কি রকেটের নিউটনীয়ান গতিশক্তি এবং আইনস্টানীয় গতিশক্তির মধ্যে পার্থক্য আছে? গাণিতিকভাবে ব্যাখ্যা করো। 8

২৫ নং প্রশ্নের উত্তর

ক পর্যবেক্ষক এবং যা পর্যবেক্ষণ করা হচ্ছে তার মধ্যে আপেন্দিক গতি থাকার কারণে সময় পরিমাপে যে ভিন্নতা পরিলক্ষিত হয় তাকে বলা হয় সময়ের আপেন্দিকতা।

 কৃষ্ণবিবরের চারপাশে যে অঞ্চলের মধ্যে কোনো ঘটনা বাইরের কোনো পর্যবেক্ষণ দেখতে পায়না, সে অঞ্চলকে কৃষ্ণ বিবরের ঘটনা দিগন্ত বলে।

- 🚰 ২১(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 8.66m
- য ২১(ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রফীব্য।

প্রদা ১২৬ ইলেকট্রনের সাথে সংঘর্ষের ফলে 10⁻¹²m তরজাদৈর্ঘ্যের আপতিত ফোটন 55° কোণে বিক্ষিপ্ত হয় যা নিচের চিত্রে দেখানো হলো:

12000

ক, কাল দীর্ঘায়ন কাকে বলে?

থ. ফটো তড়িৎ ক্রিয়া ব্যাখ্যা করো।

গ্র বিক্ষিপ্ত ফোটনের শক্তি নির্ণয় করো।

ঘ, কী শর্তে দৃটি তরজাদৈর্ঘ্যের পার্থক্য 0.024m হবে— গাণিতিকভাবে বিশ্লেষণ করো। 8

২৬ নং প্রশ্নের উত্তর

ক ধ্রবেগে গতিশীল কাঠামোতে পরিমাপকৃত সময় ব্যবধানের তুলনায় স্থির কাঠামোতে পরিমাপকৃত সময় ব্যবধান বেশি। এ বিষয়টি কাল দীর্ঘায়ন নামে পরিচিত।

বি একটি নির্দিষ্ট কম্পান্তেকর আলোক রশ্মি যখন কোনো ধাতব পৃষ্ঠে আপতিত হয় তখন ধাতব পৃষ্ঠের ইলেকট্রন আলোক রশ্মি থেকে শক্তি গ্রহণ করে। যখনই ইলেকট্রন দ্বারা গৃহীত শক্তি ধাতব পৃষ্ঠে তার বন্ধন শক্তির চেয়ে বেশি হয়, তখনই ইলেকট্রন ধাতব পৃষ্ঠ থেকে বেরিয়ে আসে। আলোকের প্রভাবে ইলেকট্রন নির্গত হয় বলে এ ঘটনাকে আলোক তড়িৎ ক্রিয়া বলে।

বিক্ষিপ্ত ফোটনের তরজাদৈর্ঘ্য, $\lambda' = \lambda + \frac{h}{m_e} (1 - \cos \theta)$ $= 10^{-12} + \frac{6.63 \times 10^{-34} (1 - \cos 55^\circ)}{9.11 \times 10^{-31} \times 3 \times 10^8}$ $= 2.034 \times 10^{-12} \text{m}$

এখানে, আপতিত ফোটনের তরজ্ঞাদৈর্য্য, λ = 10⁻¹²m বিক্ষেপণ কোণ, θ = 55° বিক্ষিপ্ত ফোটনের শক্তি, E' = ?

∴ বিকিপ্ত ফোটনের শক্তি,

$$E' = \frac{hc}{\lambda'}$$

$$\forall I, E' = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{2.034 \times 10^{-12}} J$$

$$= 9.776 \times 10^{-14} J$$

$$= 611 \text{ KeV (Ans.)}$$

ঘ কম্পটন বিক্ষেপণে তরজাদৈর্ঘ্যের ব্যবধান,

$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta);$$

সর্বোচ্চ ব্যবধানের ক্ষেত্রে,

$$\frac{d}{d\theta} (\Delta \lambda) = \frac{h}{m_0 c} (\sin \theta) = 0$$

$$\Rightarrow 1, \sin \theta = 0$$

$$\Rightarrow \theta = 0, 180^{\circ}$$

$$\Delta \lambda_{max} = \frac{h}{m_0 c} (1 - \cos 180^{\circ})$$

$$= \frac{2h}{m_0 c}$$

$$\Delta \lambda_{min} = \frac{h}{m_0 c} (1 - \cos 0)$$

$$\Delta \lambda_{\text{max}} = \frac{2 \times 6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3 \times 10^{8}}$$
$$= 4.85 \times 10^{-12} \text{m}$$
$$= 0.0485 \text{Å} < < 0.024 \text{m}$$

অতএব, কোন শর্তেই দুটি তরজাদৈর্ঘ্যের পার্থক্য 0.024m হতে পারে না।

প্রশা ▶ ২৭ X এবং Y দৃটি জড়প্রসঞ্জা কাঠামো। 100kg ভরের একজন নভোচারী 30 বছর বয়সে ছায়াপথ অনুসন্ধানের জন্য মহাশূণ্যতরীতে করে X প্রসঞ্জা কাঠামোর সাপেক্ষে 2.4 × 108ms⁻¹ বেগ ভ্রমণ করে এবং এই কাঠামো অনুযায়ী 50 বছর পর ফিরে আসে।

(स्मोक्षमात्रशांटे क्यारकांटे करमका, ठाउँधाय/

জড়প্রসজা কাঠামো কাকে বলে?

খ. লরেন্টজ র্পান্তরকে কিভাবে গ্যালিলিয়ান রূপান্তরে পরিণত করা যায়? ব্যাখ্যা করো।

গ্রমহাশূন্য ভ্রমণের পর মহাকাশচারীর বয়স কত হবে?

ছ. উপরের উদ্দীপকের ভর এবং সময়ের পার্থক্য কি একই হবে?
 গাণিতিক বিশ্লেষণের সাহায্যে তোমার যুক্তি দাও।

২৭ নং প্রশ্নের উত্তর

পরস্পরের সাপেক্ষে ধ্রুব বেগে গতিশীল যে সকল প্রসঞ্জা কাঠামোতে নিউটনের গতি সূত্রগুলো অর্জন করা যায়, তাদেরকে জড় প্রসঞ্জা কাঠামো বলে।

য় যখন v < < c তখন $\frac{v}{c} \approx 0$

এবং লরেন্টজ রূপান্তরের সমীকরণগুলো দাঁড়ায়

$$x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{x - vt}{\sqrt{1 - 0}} = x - vt$$

এবং y' = y z' = z

:=:

এটি গ্যালিলিও রূপান্তরের সমীকরণ।

গা ১৬(গ)নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 60 y।

ব উদ্দীপক হতে পাই.

মহাশূন্যচারীর স্থির অবস্থায় ভর, m, = 100 kg

মহাশুনাযানের বেগ, $v = 2.4 \times 10^8 \text{ ms}^{-1}$

'গ' অংশ হতে পাই,

সময়ের পরিবর্তন, $\Delta t = t - t_0$

= 50 - 30 = 20 বছর।

গতিশীল অবস্থায় ভর m হলে,

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$= \frac{100}{\sqrt{1 - \left(\frac{2.4 \times 10^8}{3 \times 10^8}\right)^2}}$$

$$= 277.77 \text{kg}$$

∴ ভরের পরিবর্তন = (277.77 – 100) kg = 177.77 kg

नक्तुकति, 20 ≠ 177.77

অতএব, উদ্দীপকে ভর ও সময়ের পরিবর্তন একই হবে না।

প্রশ্ন ১২৮ একজন মহাশূন্যচারী 100m দৈর্ঘ্য এবং ২ টন ওজন বিশিষ্ট একটি মহাশূন্যথানে চড়ে মহাশূন্যে দ্রমণ করেন। তিনি তাঁর হিসের মতে । দিন পর ফেরত আসেন। কিন্তু পৃথিবীর হিসেব মতে তিনি ৪ দিন পরে আসেন।

(বিনাইদহ আচেট ক্ষেত্র) ক. ভরের আপেঞ্চিকতা কী?

খ, আপেক্ষিক তত্ত্বের স্বীকার্যগুলি লিখো।

গ, মহাপুন্যে মহাশূন্য যানটির বেগ নির্ণয় করো।

ঘ. মহাশূন্যযানটির দৈর্ঘ্য ও ভরের কীরূপ পরিবর্তন হয়েছিলো। বিশ্লেষণ করো।

২৮ নং প্রশ্নের উত্তর

ক পর্যবেক্ষক এবং বস্তুর মধ্যে আপেক্ষিক গতি থাকার কারণে বস্তুর ভর পরিমাপে যে ভিন্নতা পরিলক্ষিত হয় তাকে ভরের আপেক্ষিকতা বলে।

য বিশেষ আপেক্ষিক তত্ত্বের স্বীকার্য দৃটি নিমনুপ :

- পরস্পরের সাপেক্ষে ধ্ববেগে ধাবমান সকল প্রসঞ্চা কাঠামোতে অর্থাৎ জড় প্রসঞ্চা কাঠামোগুলোতে পদার্থবিজ্ঞানের যেকোনো সূত্র একই রকম সমীকরণ দ্বারা প্রকাশ করা যায়।
- শূন্যস্থানে বা বায়ু মাধ্যমে আলোর বেগ ধ্রুব এবং এ বেগ আলোর উৎস ও পর্যবেক্ষকের আপেক্ষিক বেগের ওপর নির্ভরশীল নয়।

গ উদ্দীপক মতে,

স্থির কাঠামোতে অতিবাহিত সময়, t = 8 day গতিশীল কাঠামোতে অতিবাহিত সময়, t₀ = 1 day জানা আছে, শূন্য মাধ্যমে আলোর বেগ, c = 3 × 10⁸ms⁻¹ বের করতে হবে, মহাশূন্যযানের বেগ, v = ?

আমরা জানি,
$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

বা, $\sqrt{1 - \frac{v^2}{c^2}} = \frac{t_0}{t}$
বা, $1 - \frac{v^2}{c^2} = \left(\frac{t_0}{t}\right)^2$ বা, $\frac{v^2}{c^2} = 1 - \left(\frac{t_0}{t}\right)^2$
বা, $v^2 = c^2 \left\{1 - \left(\frac{t_0}{t}\right)^2\right\}$
 $\therefore v = c \sqrt{1 - \left(\frac{t_0}{t}\right)^2} = 3 \times 10^8 \text{ ms}^{-1} \times \sqrt{1 - \left(\frac{1 \text{ day}}{8 \text{ day}}\right)^2}$
 $= 2.9765 \times 10^8 \text{ms}^{-1}$ (Ans.)

ব দেওয়া আছে,

নিশ্চল অবস্থায় মহাশূন্যটির দৈর্ঘ্য, La = 100m

'গ' অংশ হতে পাই.

মহাশূন্যানের গতিবেগ, v = 2.9765 × 10⁸ms⁻¹ জানা আছে, শূন্যস্থানে আলোর গতিবেগ, c = 3 × 10⁸ms⁻¹

সূতরাং চলমান অবস্থায় মহাশুন্যযানটির দৈর্ঘ্য,

$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}} = 100 \text{m} \times \sqrt{1 - \left(\frac{2.9765 \times 10^8 \text{ms}^{-1}}{3 \times 10^8 \text{ ms}^{-1}}\right)^2}$$

= 12.5 m

এবং ভর,
$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{2 \text{ ton}}{\sqrt{1 - \left(\frac{2.9765 \times 10^8 \text{ms}^{-1}}{3 \times 10^8 \text{ms}^{-1}}\right)^2}}$$

$$= \frac{2 \text{ ton}}{0.125} = 16 \text{ ton}$$

লক্ষ্য করি,
$$\frac{5 \text{ लगान দৈর্ঘ্য}}{\text{নিশ্চল দৈর্ঘ্য}} = \frac{12.5 \text{ m}}{100 \text{ m}} = \frac{1}{8}$$

এবং
$$\frac{\text{beauty beauty}}{\text{Reserved}} = \frac{16 \text{ ton}}{2 \text{ ton}} = 8$$

সূতরাং, মহাশূন্যযানটির দৈর্ঘ্য এর নিশ্চল দৈর্ঘ্যের $\frac{1}{8}$ অংশে নেমে এসেছিল এবং এর চলমান অবস্থার ভর স্থির অবস্থায় ভরের ৪ গুণ হয়েছিল।

প্রমা ২৯ ফটো তড়িৎ পরীক্ষায় 4400Å তরজাদৈর্ঘ্যের আলো পটাশিয়ামের উপর আপতিত হলে ইলেকট্রন শুধু নির্গত হয়। কিন্ত 1500Å তরজাদৈর্ঘ্যের আলো আপতিত হলে ইলেকট্রন নির্গত হয়ে কিছু পরিমাণ গতিশক্তি লাভ করে। /विनारेमर काएकडे करमज/

ক, কৃষ্ণ বিবর কী?

খ. n-type অর্ধপরিবাহী কী ঋণাত্মক চার্জে চার্জিত— ব্যাখ্যা করে। ২

পটাশিয়ামের কার্যাপেক্ষক নির্ণয় করে।

ঘু ইলেকট্রনের গতিশক্তি লাভের কারণ গাণিতিকভাবে বিশ্লেষণ করো ।

২৯ নং প্রশ্নের উত্তর

ক 3.2 সৌর ভরের সমান বা বেশি ভরের নক্ষত্রের সুপার নোডা বিস্ফোরণের পর এর অন্তর্বস্তু অনির্দিষ্টভাবে সংকৃচিত হতে থাকে। সংকোচনের কারণে আয়তন প্রায় শূন্য এবং ঘনত্ব অসীম হওয়ায় মহাকর্ষ क्किन अपन क्षेत्रन दश (य. এ जाजीय वस्तु थ्यंक अत प्रशंकर्यक काणिया কোন প্রকার আলো এমনকি সংকেতও বেরিয়ে আসতে পারে না। তাই বস্তুটিকে আর দেখা যায় না। নক্ষত্রের এই অবস্থাকে বলা হয় কৃষ্ণবিবর।

ব্য বিশুন্ধ সিলিকন বা জার্মেনিয়াম অর্ধপরিবাহীর সাথে পাঁচটি ইলেকট্রন আছে এমন পরমাণু অতি সামান্য পরিমাণ ভেজাল দেওয়া হলে তা n-টাইপ অর্ধ পরিবাহীতে পরিণত হয়। n-টাইপ অর্ধপরিবাহী তড়িৎ নিরপেক্ষ। কারণ ভেজাল পরমাণুর চারটি ইলেকট্রন চারটি জার্মেনিয়াম বা সিলিকন পরমাণুর সাথে বন্ধন সৃষ্টি করলেও পঞ্চম ইলেকট্রনটি মুক্ত ইলেকট্রন হিসেবে পরিবহন ব্যাক্তে অবস্থান করে। যা কেলাসের পরিবাহিতা বৃদ্ধি করে। কিন্তু প্রকৃতপক্ষে কেলাসের মধ্যে মোট ইলেকট্রন ও প্রোটন সংখ্যা সমান থাকে। ফলে অর্ধপরিবাহী স্ফটিকে কোন নীট চার্জ থাকে না। অর্থাৎ n-টাইপ অর্ধপরিবাহী ভড়িৎ নিরপেক্ষ, ঝণাত্মক চার্জে চার্জিত নয়।

র্বা ২(গ)নং সূজনশীল প্রশ্নেত্তরের দ্রফীব্য।

য ২(ঘ)নং সূজনশীল প্রশ্নোত্তরের দুইব্য।

প্রা ▶ ৩০ একটি হকি মাঠের দৈর্ঘ্য 100m এবং প্রস্থ 60m। দুই বন্ধু দুটি কাল্পনিক রকেটে করে 0.7c বেগে ১ম বন্ধু দৈর্ঘ্য বরাবর ও দ্বিতীয় জন প্রস্থ বরাবর মাঠ অতিক্রম করল। গতিশীল অবস্থায় দুই বন্ধু মাঠের ক্ষেত্রফল নির্ণয় করল। প্রতিটি রকেটের স্থির ভর 10 টন।

[मिंगेंड (क्य करमान, छाका)

ক, তেজন্কিয় ধ্ৰক কী?

- খ. হাইড্রোজেন পরমাণুর কক্ষপথে ইলেকট্রনের স্থানান্তরের জন্য কখনোই X-রশ্মি নির্গত হয় না ব্যাখ্যা করো। 2
- ণ, গতিশীল অবস্থায় রকেটের ভর নির্ণয় করো।
- ঘ. উদ্দীপকের দুই বন্ধু কর্তৃক নিণীত মাঠের ক্ষেত্রফল সমান হবে কি? গাণিতিকভাবে বিশ্লেষণ করো।

৩০ নং প্রশ্নের উত্তর

ব কোনো তেজস্ক্রীয় পদার্থের একটি পরমাণুর একক সময়ে ভেঙে যাওয়ার সম্ভাব্যতাকে ঐ পদার্থের তেজস্ক্রিয় ক্ষয় ধ্রুবক বলে।

🖼 উচ্চ গতিসম্পন্ন ইলেকট্রন কোণ শক্ত ধাতুকে আঘাত করলে তার গতিশক্তির একটি অংশ উচ্চ কম্পাংক বিশিষ্ট X- রশ্মি হিসেবে পাওয়া যায়। এই রশ্মিটির তরজাদৈর্ঘ্য খুবই ক্ষুদ্র, প্রায় 10⁻¹⁰ বা 1A মানের। H-পরমাণুর শক্তি স্তরসমূহের মধ্যবর্তী শক্তি ব্যবধান যে পাল্লার, তার থেকে এত উচ্চ শক্তির বিকিরণ সম্ভব নয়। উদাহরণশ্বরপ বলা যায় যে, H পরমাণুর ভূমি স্তরের শক্তি E₁ = - 13.6 eV। অতএব, কোন মৃক্ত ইলেকট্রনকে H পরমাণুতে আবন্ধ করতে বিমৃক্ত শক্তিই H পরমাণুর ইলেকট্রন স্থানান্তরে প্রাপ্ত সর্বোচ্চ শক্তির বিকিরণ। এই বিকিরণের তরজাদৈর্ঘ্য ম_{min} হলে,

$$\begin{split} \frac{\lambda c}{\lambda_{min}} &= [0 - (-13.6)] \text{ eV} \\ \hline \blacktriangleleft 1, \frac{hc}{\lambda_{min}} &= 13.6 \times 1.6 \times 10^{-19} \text{ J} \\ \hline \blacktriangleleft 1, \lambda_{min} &= \frac{hc}{13.6 \times 1.6 \times 10^{-19} \text{ m}} \\ &= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{13.6 \times 1.6 \times 10^{-19}} \text{ m} \\ &= 9.14 \times 10^{-8} \text{ m} \\ &= 914.0625 \text{ Å} >> 1 \text{ Å} \end{split}$$

তাই, হাইদ্রোজেন পরমাণুর কক্ষপথে ইলেকট্রন স্থানান্তরের কখনোই α-রশ্মি নির্গত হয় না।

🗿 ১০(গ) নং সুজনশীল প্রশ্নোতরের অনুরূপ। উত্তর: 14 টন।

হা উদ্দীপক অনুসারে,

মাঠের নিশ্চল দৈর্ঘ্য, Lo = 100m

নিকল প্রস্থ, Do = 60m

রকেটের বেগ, v = 0.7c

যে দিক বরাবর রকেট গতিশীল সেই দৈর্ঘ্য বরাবর দৈর্ঘ্য সংকোচন হবে। ১ম বন্ধর সাপেক্ষে মাঠের দৈর্ঘ্য পরিমাপ করবে,

$$L_0 = \sqrt{1 - \left(\frac{y}{c}\right)^2}$$

= 100 \sqrt{1 - (0.7)^2}
= 71.414 m

২য় বস্তুর সাপেকে মাঠের প্রস্থ পরিমাপ করবে.

$$D = D_0 \sqrt{1 - \left(\frac{v}{c}\right)}$$
$$= 42.848 \text{ m}$$

্র প্রথম বন্ধু কর্তৃক নিণীত মাঠের ক্ষেত্রফল, A: = L × Do

 $= 71.414 \times 60$ $= 4284.84 \text{ m}^2$

২য় বন্ধু কর্তৃক নির্ণীত মাঠের ক্ষেত্রফল, $A_2 = L_0 imes D$

 $= 100 \times 42.8484$

 $= 4284.84 \text{ m}^2$

য়েহেতু $A_1 = A_2$ সুতরাং দুই বন্ধু কর্তৃক নিণীত মাঠের ক্ষেত্রফল সমান হবে।

31 > 02

ক, আলোর সমবর্তন কাকে বলে?

খ্ অর্ধ পরিবাহী ডায়োডের ক্ষেত্রে J-V লেখচিত্র ব্যাখ্যা করো। ২

গ্র বিন্দিপ্ত ইলেকট্রনের ভর নির্ণয় করো।

ঘ্র সংঘর্ষটি স্থিতিস্থাপক কী না গাণিতিকভাবে বিশ্লেষণ করে। ৪

৩১ নং প্রশ্নের উত্তর

荐 যে প্রক্রিয়ায় বিভিন্ন তলে কম্পমান আলোক তরজাকে একটি নির্দিষ্ট তল বরাবর কম্পনক্ষম করা যায় তাকে আলোকের সমবর্তন বলে।

বা পাশে ভায়োভের I – V লেখ দেখানো হলো। ভায়োভের ক্ষত্রে সাধারণত শৃধুমাত্র সদ্মুখ বাতাসে তড়িৎপ্রবাহ হয় এবং ডায়োডের cut in voltage অতিক্রম করার পর ধীরে ধীরে তড়িৎ প্রবাহ বিভবপার্থক্য বৃন্ধির সাথে সাথে বাড়তে থাকে। আবার ডায়োডের বিমুখী ঝোঁকে বিভব পার্থক্য প্রয়োগে কোনো তড়িৎ প্রবাহ পাওয়া যায় না।

শেখচিত্র থেকে দেখা যায়, সমুখী বায়াসে তড়িং প্রবাহ বিমুখী বায়াসে তড়িং প্রবাহ অপেক্ষা অনেক বেশি এবং সমুখী বায়াসে অল্প বিভব পার্থক্য বৃদ্ধিতে তড়িং প্রবাহের বৃদ্ধি অনেক বেশি হয় কিন্তু বিমুখী বায়াসের ক্ষেত্রে বিভব পার্থক্যের বৃদ্ধিতে প্রবাহের তেমন বৃদ্ধি হয় না। তবে বিমুখী বায়াসে বিভব ধীরে ধীরে বৃদ্ধি করতে থাকলে এক সময় দেখা যায় তড়িং প্রবাহ হঠাং করে উল্লেখযোগ্যভাবে বৃদ্ধি পায়। এ অবস্থায় তড়িং প্রবাহ অনেক বৃদ্ধি করা হলেও ভায়োভের দুই প্রান্তের বিভব পার্থক্যের কোনো পরিবর্তন ঘটে না। জংশনের বিভব বাধা ভেজো যাওয়া বা বিলুপ্ত হওয়ার কারণে এর্প ঘটে। এ ঘটনা বিজ্ঞানী জেনার (Zener) ১৯৩৪ সালে প্রথম প্রত্যক্ষ করেন বলে একে ভায়োভের ক্ষেনার ক্রিয়া (Zener effect) বলে। বিমুখী বায়াসের যে বিভবের জন্য জংশনের বিভব প্রাচীর ভেজো যায় তাকে ভাজান বিভব (breakdown voltage) বা জেনার বিভব (Zener voltage) বলে।

 $E_k = (m - m_0)c^2$ $\Rightarrow 147.4 \times 1.6 \times 10^{-19} \, (m - 9.11 \times 10^{-31}) \times (3 \times 10^8)^2$ $\therefore m = 9.1126 \times 10^{-31} \, kg \, (Ans.)$ (দেওয়া আছে, গতিপত্তি, $E_* = 147.4 \, eV$ $\Rightarrow 147.4 \times 1.6 \times 10^{-31} \, kg \, (Ans.)$ $\Rightarrow 147.4 \times 1.6 \times 10^{-31} \, kg \, (Ans.)$ $\Rightarrow 147.4 \times 1.6 \times 10^{-31} \, kg \, (Ans.)$

$$\frac{hc}{\lambda} + m_0c^2 = \frac{hc}{\lambda'} + mc^2$$

$$\Rightarrow \frac{hc}{\lambda} - \frac{hc}{\lambda'} = (m - m_0)c^2 = E_k$$

$$\Rightarrow \left(\frac{1}{\lambda} - \frac{1}{\lambda'}\right) = \frac{147.4 \text{ eV}}{hc}$$

$$\therefore \frac{1}{\lambda} - \frac{1}{1.012 \times 10^{-10}} = \frac{147.4 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-3} \times 3 \times 10^8}$$

$$\therefore \lambda = 1.00 \times 10^{-10}$$

অর্থাৎ আপতিত আলোক রশ্মির তরজাদৈর্ঘ্য যদি 1.00 × 10⁻¹⁰ হয় তবেই সংঘর্ষটি স্থিতিস্থাপক হবে। যেহেতু উদ্দীপকে আপতিত আলোকরশ্মির তরজাদৈর্ঘ্য দেয়া নেই, তাই প্রদন্ত উদ্দীপক হতে সংঘর্ষটি স্থিতিস্থাপক কিনা বলা সম্ভব নয়।

অথবা, উদ্দীপকে যদি ইলেকট্রনের বিক্ষেপণ কোণ দেয়া থাকত তবে ভরবেগের সংরক্ষণ সূত্র ব্যবহার করে আপতিত আলোর তরজাদৈর্য্য বের করা সম্ভব হতো এবং পরবর্তীতে তা শন্তির সংরক্ষণশীলতা সূত্র মেনে চলে কিনা তা নির্ণয় করা যেত। যেহেতু ইলেকট্রনের বিক্ষেপণ কোণও জানা নেই, তাই প্রদন্ত উদ্দীপক হতে এটি নির্ণয় করা সম্ভব নয়।

প্রা >৩১ মি. X ও মি. Y দুই জমজ ভাইয়ের বয়স ২৫ বছর। মি. Y পৃথিবীর অবস্থান করছে। মি. X অতি উচ্চগতি সম্পন্ন 0.85c বেগ সম্পন্ন একটি রকেটে করে মহাশূন্যে ভ্রমণ শুরু করন।

(बाबाहेक ऐंडवा घटडम करमक, छाका)

- ক টানজিস্টর কী?
- খ, সমাুখ ফোঁক কি ব্যাখ্যা করো।
- মি. X এর ভর পৃথিবীতে 50 kg হলে মহাশূন্যবানে তার ভর কত?
- घ. 10 বছর পর রকেট পৃথিবীতে ফিরে আসলে তাদের বয়সের কোন পার্থকা হবে কিং যদি সে রকম ঘটে তাহলে কে বয়সে বড় হবেং গাণিতিকভাবে ব্যাখ্যা করে।

৩২ নং প্রশ্নের উত্তর

ক্র দৃটি একই ধরনের অর্ধপরিবাহীর মধ্যস্থলে এদের বিপরীত ধরনের অর্ধপরিবাহী বিশেষ প্রক্রিয়ায় পরস্পরের সাথে যুক্ত করে যে যন্ত্র তৈরি করা হয় তাকে ট্রানজিস্টর বলে।

☑ p-n জংশনে যদি কোন বহিঃস্থ ভোল্টেজ বা বিভব পার্থক্য প্রয়োগ
করা হয় তাহলে তড়িং প্রবাহ ঘটে। ভোল্টেজ যদি এমন ভাবে প্রয়োগ
করা হয় যে কোষের ধনাত্মক প্রান্ত p টাইপ বস্তুর সাথে এবং ঝণাত্মক
প্রান্ত n-টাইপ বস্তুর সাথে সংযুক্ত হয় তাহলে তাকে সমূখী ঝোঁক বলে।

্রা দেওয়া আছে,

মি. X এর বেগ, v = 0.85c নিশ্চল ভর, m₀ = 50 kg

বের করতে হবে, মহাপুনায়ানে ভর, m = ?

আমরা জানি, m =
$$\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
= $\frac{50}{\sqrt{1 - \left(\frac{0.85c}{c}\right)^2}}$
= 94.915 kg (Ans.)

্য উদ্দীপক অনুসারে মি. X ও মি. Y এর উভয়ের বয়স = 25 year পৃথিবী থেকে নিণীত সময় ব্যবধান, t = 10 year মহাশূন্যথানের বেগ, v = 0.85c ধরা যাক, মহাশূন্যথানে মি. X এর বয়স বৃশ্ধি = to

আমরা জানি,
$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

বা, $t_0 = t\sqrt{1 - \frac{v^2}{c^2}} = 10\sqrt{1 - (0.85)^2}$
∴ $t_0 = 5.27 \text{ year}$

.. আপেন্দিক তত্ত্ব অনুসারে মি. X এর 10 year পর বয়স = (25 + 5.27) = 30.27 year

এবং মি. Y এর 10 year পর বয়স = (25 + 10) = 35 year সূতরাং, মি. X ও মি. Y এর 10 year পর বয়সের পার্থক্য = (35 – 30.27) = 4.72 year

অর্থাৎ মি, Y মি, X এর চেয়ে 4.72 year এর বড় হবে।

প্রদা ১০০ একটি তভিংকরণ নলে X-ray উৎপাদন করার জন্য 13.6kV এবং 60 kV বিভব পার্থক্য সরবরাহ করায় 0.2900 nm তরজা দৈর্ঘ্যের X-ray কোনো ইলেকট্রনকে আঘাত করে 60° কোণে বিক্ষিপ্ত হলো।

✓ বাইডিয়াল স্কুল এক কলেল, ঢাকা/

ক, জেনার ভোন্টেজ কাকে বলে?

- থ. একটি তারকা কিভাবে ব্ল্যাক হোলে পরিণত হয়?—ব্যাখ্যা করো।
- গ. উদ্দীপকের উৎপাদিত দুই ধরনের X-ray এর ক্ষেত্রে ইলেকট্রনের গতিবেগ নির্ণয় করো। ৩
- ঘ. বিক্ষিপ্ত X-ray এর শক্তি আপতিত X-ray এর শক্তি ভিন্ন হবে কি না— গাণিতিকভাবে যাচাই করো।

৩৩ নং প্রশ্নের উত্তর

p-n জাংশনে বিমুখী ঝোঁকে ভোন্টেজ বাড়াতে থাকলে শেষে এক সময় ষঠাৎ করে বিপুল পরিমাণ তড়িৎ প্রবাহ পাওয়া যায়। যেন মনে হয় p-n জংশনের বিভব বাধা একেবারে বিলুপ্ত হয়ে গেছে। বিমুখী ঝোঁকের ক্লেক্রে যে ভোন্টেজের জন্য এর্প ঘটে তাকে জেনার ভোন্টেজ বা জেনার বিভব (Zener Voltage) বলে।

যখন তিন বা ততোধিক সৌরভরের নক্ষত্র তার অপ্তিম দশায় তার বাইরের খোলস ফেলে বিক্ষোরণের মাধ্যমে সুপারনোভায় পরিণত হয়। আর ভিতরের অংশ এরপর ক্রমাগত সংকৃচিত হতে থাকে। সংকৃচিত হতে হতে এটি এমন ঘনত্বের বস্তুতে পরিণত হয় যে এটির মহাকর্ষ বলের কারণে এটি থেকে আলোও বের হতে পারে না। এভাবে নক্ষত্রটি ব্যাকহোলে পরিণত হয়।

41

প্রথম ক্ষেত্রে,
$$\frac{1}{2} m v_1^2 = e V_1$$

$$\Rightarrow \frac{1}{2} \times 9.11 \times 10^{-31} \times v_1^2$$

$$= 1.6 \times 10^{-19} \times 13.6 \times 10^3$$

$$\therefore v_1 = 6.91 \times 10^6 \text{ m/s (Ans.)}$$
খিতীয় ক্ষেত্রে,

দেওয়া আছে, প্রথম ক্ষেত্রে, বিভব পার্থক্য, $V_1 = 13.6 \text{ kV}$ দ্বিতীয় ক্ষেত্রে, বিভব পার্থক্য, $V_2 = 60 \text{ kV}$ তরজা দৈর্ঘ্য, $\lambda = 0.29 \times 10^{-9} \text{m}$

$$\frac{1}{2} \text{ mv}_1^2 = \text{eV}_2$$

$$\Rightarrow \frac{1}{2} \times 9.11 \times 10^{-31} \times \text{v}_2^2$$

$$= 1.6 \times 10^{-19} \times 60 \times 10^3$$

$$\therefore \text{v}_2 = 1.45 \times 10^{-8} \text{ m/s}$$

ত্ব কম্পটন প্রভাব থেকে আমরা জানি,

$$\Delta\lambda = \frac{h}{mc} (1 - \cos\phi)$$
 দেওয়া আছে, বিক্ষেপণ কোণ, $Q = 60^\circ$ আদি তরজা দৈর্ঘ্য, $\lambda = 0.29$ nm $\Rightarrow \lambda = \lambda + \frac{h}{mc} (1 - \cos\phi)$ $= 0.29 \times 10^{-9} + \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3 \times 10^8} (1 - \cos 60)$ $= 0.2912 \times 10^{-9}$ m ∴ আদিশক্তি, $E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{0.29 \times 10^{-9}}$ $= 4287 \text{ eV}$

শেষ শক্তি, E' =
$$\frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{0.2912 \times 10^{-9}}$$

= 4269 eV

∴ শক্তির পার্থক্য = (4287 – 4269) eV = 18 eV (Ans.)

2141 ▶ 08

|डिकादुमनित्रा नुन स्कुम এक करमण, ठाका|

- ক. হাইজেন বার্ণের অনিশ্চয়তা তত্ত্বটা লেখ।
- খ. De Broglie তরজা দৈর্ঘ্যের সমীকরণ লিখ এবং এটা দ্বারা ফোটনের কোন ধর্ম ব্যাখ্যা করা যায়?

- লেখচিত্র ব্যবহার করে নিঃসৃত ইলেকট্রনের সর্বোচ্চ গতিশক্তি
 নির্ণয় করো।
- ছ. ইলেকট্রনের গতিশক্তি কখনই 4 MeV এর বেশি হতে পারে না ব্যাখ্যা কর গাণিতিক সমীকরণের সাহায্যে।

৩৪ নং প্রশ্নের উত্তর

 $\Delta x \Delta p \ge \frac{\hbar}{2}$

De Broglie তরজাদৈর্ঘ্যের সমীকরণ হলো–

$$\lambda = \frac{h}{P}$$
, $\lambda =$ বস্তুকণার তরজাদৈর্ঘ্য $P =$ বস্তুকণার ভরবেগ

h = প্লাডেকর ধ্বক

এ সূত্র হতে বুঝতে পারা যায় যে ফোটন তরঞ্চা এবং কণা উভয় ধর্মই । প্রদর্শন করতে পারে।

্রা লেখচিত্র হতে, সূচন কম্পাংক, v₀ = 5.55 × 10¹⁴ Hz সর্বোচ্চ গতিশক্তি অবস্থায় কম্পাক্তক, v = 1.25 × 10¹⁵ Hz = 12.5 × 10¹⁴ Hz

লেখচিত্রের ঢাল,
$$S = \frac{T_{max} - 0}{v - v_0}$$
 T_{max}

আবার, আইনস্টাইন সমীকরণ ব্যবহার করে পাই,

$$hv = T_{max} + hv_0$$

ৰা,
$$\frac{T_{\text{max}}}{v - v_0} = h$$

বা,
$$T_{max} = h(v - v_0)$$

= $6.63 \times 10^{-34} (12.5 - 5.55) \times 10^{14} J$
= 2.88 eV (Ans.)

আ আমরা জানি, ইলেকট্রন সর্বনিম্ন থাকতে পারে হাইড্রোজেন নিউক্লিয়াসে, যেখান থেকে β রশ্মির হিসেবে নির্গত হয় এবং β রশ্মির সর্বোচ্চ বেগ 0.98 c।

∴ এই বেগে ইলেকট্রনের মোট শক্তি,

$$E = mc^2$$

$$=\frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}c$$

$$= \frac{m_0}{\sqrt{1 - (0.98)^2}} \times (3 \times 10^8)^2$$

= 2.5 MeV < 4 MeV

ইলেকট্রনের বেগ 4 MeV এর বেশি হতে পারে না।

প্রসা>০৫ A এবং B ধাতুর কার্যঅপেক্ষক যথাক্রমে 4.5eV এবং 2.5eV। A ধাতুকে 3500A° তরজা দৈর্ঘ্যের আলো দ্বারা এবং B ধাতুকে 4500A° তরজা দৈর্ঘ্যের আলো দ্বারা আলোকিত করা হলো।

[ঢাকা রেসিডেনসিয়াল মডেল কলেজ, ঢাকা]

খ, নিউক্লিয়াসের অভ্যন্তরে ইলেকট্রন থাকতে পারে না কেন-ব্যাখ্যা করো।

গ. A ধাতুর সূচন কম্পাঙ্ক নির্ণয় করো।

উভয় ধাতৃ হতে ফটো ইলেকট্রন নির্গত হবে কী? গাণিতিক
বিশ্লেষণসহ মতামত দাও।

 ৪

৩৫ নং প্রশ্নের উত্তর

ক কোনো একটি শক্তিশালী ফোটনের সাথে মৃক্ত ইলেকট্রনের সংঘর্ষ ঘটলে ফোটনটি ইলেকট্রনটিকে কিছু শক্তি প্রদান করে। এতে বিক্ষিপ্ত ফোটনের তরজ্ঞাদৈর্ঘ্য আপতিত ফোটনের তরজ্ঞাদৈর্ঘ্যের চেয়ে বেশি হওয়াকেই কম্পটন ক্রিয়া বলে। হাইজেনবার্ণের অনিশ্চয়তা নীতির সূত্র $\left(\Delta x \Delta P \geq \frac{h}{4\pi}\right)$ ব্যবহার করে নির্দিষ্ট গাণিতিক বিশ্লেষণে পাওয়া যায় যে, ইলেকট্রনের নিউক্লিয়াসের অভ্যন্তরে থাকতে হলে একে 37.6 MeV শক্তির অধিকারী হতে হবে। কিন্তু পরীক্ষালম্ব ফলাফল থেকে দেখা যায় যে, ইলেকট্রনের শক্তি 4 MeV এর অধিক হয় না। সুতরাং নিউক্লিয়াসের অভ্যন্তরে ইলেকট্রন থাকতে পারে না।

কার্যাপেক্ষক, $\phi=hf_0$ এখানে, $d_1, f_0=\frac{\phi}{h}$ ক ম্পাংক, d_2 ক ম্পাংক, d_3 কার্যাপেক্ষক, $\frac{7.2\times 10^{-19}}{6.63\times 10^{-34}}$ ক ম্পাংকর প্রবক, d_3 কার্যাপেক্ষক, $\phi_4=4.5 \text{eV} = 4.5\times 1.6\times 10^{-19}$ $= 7.2\times 10^{-19} \text{J}$ প্লাংকের প্রবক, d_3 কার্যাপেকর মুবক, d_3

ব ব্যবহৃত আলোক তরজোর শক্তি যদি প্রতিক্ষেত্রে A ও B ধাতুর কার্যাপেক্ষক অপেক্ষা বেশি হয়, তবে ধাতু হতে ইলেকট্রন নির্গত হবে। A ধাতুর ক্ষেত্রে ব্যবহৃত আলোর শক্তি, E_A হলে,

 $E_A = hf_A$ $= \frac{hc}{\lambda_A}$ $= \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{3500 \times 10^{-10}}$ $= 5.68 \times 10^{-19} J$ = 3.55 eV

আলোর, তরজাদৈর্ঘ্য, $\lambda_A = 3500 \text{Å}$ = $3500 \times 10^{-10} \text{m}$

কিন্তু A ধাতুর কার্যাপেক্ষক $φ_A = 4.5 ev$ $E_A < φ_A$ অর্থাৎ A ধাতু হতে ইলেক্ট্রন নির্গত হবে না।
আবার, B ধাতুর ক্ষেত্রে ব্যবহৃত আলোর শক্তি E_B হলে

 $E_B = hf_B$ $= \frac{hc}{\lambda_B}$ $= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{4500 \times 10^{-10}}$ $= 4.42 \times 10^{-19} J$ $\Delta = 4500 \times 10^{-10} m$

B ধাতুর কার্যাপেক্ষক, φ_B = 2.5 eV

= 2.76 eV

∴ E_B > φ_B অর্থাৎ B ধাতু হতে ইলেক্ট্রন নির্গত হবে অতএব, A ধাতু হতে ফটো ইলেক্ট্রন নির্গত না হলেও B ধাতু হতে হবে।

প্রাচ্ছ S ও S' দুটি জড় প্রসজা কাঠামো। S এর সাপেক্ষে S' কাঠামো সব সময় C.9c সুমরেণে ধনাত্মক X অক্ষের দিকে গতিশীল। S

কাঠামো সব সময় C.9c সমবেগে ধনাত্মক X অক্ষের দিকে গাতশাল। S কাঠামোর একজন বিজ্ঞানী ঐ কাঠামোতে রাখা একটি ধাতব দভের দৈর্ঘ্য ও ঘনতু পরিমাপ করলেন যথাক্রমে 1m ও 19 3 × 10³ kgm⁻³।

ক, কাল দীর্ঘায়ন কাকে বলে?

খ. সূর্য ব্লাক হোলে পরিণত হলে পৃথিবী কী সূর্যকে কেন্দ্র করে ঘুরবে? ব্যাখ্যা করো।

গ্. ১' কাঠামোর পর্যবেক্ষকের নিকট দত্তের দৈর্ঘ্য কত মনে হবে?৩

S ও S' এর পর্যবেক্ষকের নিকট দন্তের ঘনত কি একই মনে

 হবে? গাণিতিকভাবে বিশ্লেষণ করো।

 8

৩৬ নং প্রশ্নের উত্তর

ক ধ্রুববেশে গতিশীল কাঠামোতে পরিমাপকৃত সময় ব্যবধানের তুলনায় স্থির কাঠামোতে পরিমাপকৃত সময় ব্যবধান বেশি। এ বিষয়টিকে কাল দীর্ঘায়ন বলে।

সূর্য ব্লাক হোলে পরিণত হলে এর আকার অত্যন্ত ছোট হবে কিতৃ ভরের কোনরূপ পরিবর্তন হবে না এবং সূর্যের ভরকেন্দ্র থেকে পৃথিবীর দূরত্বের কোনো পরিবর্তন হবে না। এতে সূর্য ও পৃথিবীর আকর্ষণ বলের ও কোনো পরিবর্তন হবে না। তাছাড়া সূর্য যদি ব্লাকহোলে পরিণত হয় তবে সূর্যের ঘটনা দিগন্তের ব্যাসার্ধ পৃথিবী হতে সূর্যের দূরত্বের থেকে অনেক কম ফলে এদের আকর্ষণের কোনো পরিবর্তন হবে না। ফলে পৃথিবী সূর্যের চারদিকে ঘুরতে থাকবে।

গ S' কাঠামোর ব্যক্তির নিকট দৈর্ঘ্য, $L = \frac{L_{10}}{\gamma}$ দেওয়া আছে, $L_{0} = 1m$ S' কাঠামোর বেগ, v = 0.9 c $\therefore \gamma = \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ $= \frac{1}{\sqrt{1-0.9^{2}}}$ = 2.29

য় নিশ্চল অবস্থায় ঘনত, $\rho_0 = \frac{m_0}{V_0} = 19.3 \times 10^3 kg/m^3$

S' কাঠামোতে ঘনতা, $\rho = \frac{m}{V}$ $= \frac{m}{LA}$ $= \frac{m_0 \gamma}{\frac{L_0}{\gamma} A}, \quad \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ $= \frac{m_0}{L_0 A} \gamma^2$ $= \frac{m_0}{V_0} \gamma^2$ $= \rho_0 \gamma^2 = 19.3 \times 10^3 \times 2.29^2$

= 101.2 × 10³ kgm⁻³ মা হতে বেশি মনে হবে। (Ans.)

অতএৰ, ঘনত s' কাঠামো হতে বেশি মনে হবে। (Ans.)

প্রশ্ন ১৩৭ একজন নভোচারী এমনভাবে গতিশীল যাহাতে

 $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = 30$. পৃথিবী থেকে কাছের স্টার সিস্টেম [Alpha centauri]

এর দূরত্ব 4.3 light year.

/शनि क्रम करभन्न, छाका,

('গ' হতে y = 2.29]

ক, অপবর্তন কাকে বলে?

খ, আলো কণা না তরজা ধমী ব্যাখ্যা করো।

প. গতিশীল অবস্থায় নভোচারীর কাঙ্কে পৃথিবী থেকে Alpha Centauri এর দূরত্ব কিলোমিটারে নির্ণয় করো। ৩

ঘ. নভোচারীর বেগ (corrected up to 5 significant digit) নির্ণয় করো। - 8

৩৭ নং প্রশ্নের উত্তর

ক তীক্ষ ধার ঘেঁষে যাবার সময় বা সরু ছিদ্র দিয়ে যাবার সময় আলো কিছুটা বেঁকে যাওয়ার ধর্মকে অপবর্তন বলে।

আলো একই সাথে কণা এবং তরজাধর্মী। আলোর তরজাতত্ত্ব প্রতিফলন, প্রতিসরণ, অপবর্তন, ব্যতিচার ধর্মের ব্যাখ্যা দিতে পারে কিন্তু আলোর ফটোইলেক্ট্রিক ক্রিয়ার কোনো ব্যাখ্যা দিতে পারে না। পরবর্তিতে ম্যাক্স প্ল্যান্ডক কোয়ান্টাম তত্ত্বের সাহায্যে ফটোইলেক্ট্রিক ক্রিয়ার ব্যাখ্যা দিতে সমর্থ হন। আলোর কোয়ান্টাম তত্ত্ব অনুসারে আলো নিরবিচ্ছিল বিকিরণ নয়, বরং কতক শক্তি প্যাকেট বা পুচ্ছ, যাকে বলা হয় কোয়ান্টা। এই তত্ত্ব থেকেই প্রথম আলোর দৈতস্বত্তার ধারণা মেলে।

 $= 0.1433 \times 3 \times 10^{8} \times 365 \times 86400$

 $= 1.356 \times 10^{12} \text{ km (Ans.)}$

দেওয়া আছে,
$$\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} = 30$$
 আলোর বেগ, $c=3\times 10^8\,\mathrm{ms}^{-1}$

$$v = \sqrt{\frac{899}{900}} c$$

$$= \sqrt{\frac{899}{900}} \times 3 \times 10^8 \text{ m/s}$$

$$= 2.99833 \times 10^8 \text{ m/s}$$

অতএব, নভোচারীর বেগ 2.99833 × 108 ms-1।

প্রসা>৩৮ তিনটি আলোক সংবেদী ধাতুর ক্ষেত্রে 1/2 – ∨ [নিবৃত্তি বিভব]

এর লেখচিত্র দেখানো হলো।

(शमि क्रम करनकः, जाका)

ক. । বেকরেল কাকে বলে?

- খ. PNP ট্রানজিস্টর এর ক্ষেত্রে সাধারণ পীঠ এবং সাধারণ সংগ্রাহক বর্ডনী অংকন করো।
- তিনটি ধাতুর কার্য অপেক্ষকের অনুপাত নির্ণয় করো।
- ষ. Violet Color [400 nm] এর আলো কোন ধাতব পাত থেকে Photo electron সরাতে পারবে যথাযথভাবে ব্যাখ্যা করো। ৪

৩৮ নং প্রয়ের উত্তর

ক্র কোন তেজস্ক্রিয় বস্তুর প্রতি সেকেন্ডে একটি পরমাণুর তেজিস্ক্রয় ভাঙন বা ক্ষয়কে এক বেকরেল বলৈ। তেজস্ক্রিয়তার এস.আই.একক হলো বেকরেল (Bq)।

চিত্র: সাধারণ সংগ্রাহক বর্তনী (pnp) চিত্র: সাধারণ সংগ্রাহক বর্তনী (pnp)

ৰ কাৰ্যাপেক্ষক,

 $\varphi = hf_0$ \therefore প্রথম ধাতুর জন্য, $\phi_1=hf_{0_1}$

প্রথম ধাতুর ক্ষেত্রে, $\frac{1}{\lambda_1} = 0.001 \text{ nm}^{-1}$ দ্বিতীয় ধাতুর জন্য, $\phi_2 = h f_{0_2}$ দ্বিতীয় ধাতুর ক্ষেত্রে, $\frac{1}{\lambda_0} = 0.002 \text{ nm}^{-1}$ ভূতীয় ধাতুর জন্য, $\phi_3={
m h} f_{0_3}$ ভূতীয় ধাতুর ক্ষেত্রে, ${1\over\lambda_3}=0.004~{
m nm}^{-1}$

এখন, $\varphi_1 \circ \varphi_2 \circ \varphi_3 = hf_{0_1} \circ hf_{0_2} \circ hf_{0_3}$ $= \frac{hc}{\lambda_1} * \frac{hc}{\lambda_2} * \frac{hc}{\lambda_3}$

থা ধাতব পাত থেকে ইলেকট্রন সরানোর শর্ত হচ্ছে আপতিত আলোর শক্তি > ঐ ধাতুর কার্যাপেক্ষক।

১ম ধাতুর পাতের কার্যাপেক্ষক, φ1 = hf0,

$$= h \frac{c}{\lambda_1}$$

এখানে, প্লাডেকর ধ্বক $h = 6.63 \times 10^{-34} \text{ Js}$ $c = 3 \times 10^8 \text{ ms}^{-1}$

ভরজাদৈষ্য,
$$\lambda_1 = \frac{1}{0.001} \text{ nm}$$

$$= 1000 \text{ nm}$$

$$= 1000 \times 10^{-9} \text{m}$$

$$\therefore \phi_1 = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{1000 \times 10^{-9}}$$

$$= 1.989 \times 10^{-19}$$

$$= 1.243 \text{ eV}$$

একইভাবে, দ্বিতীয় ধাতব পাতের কার্যাপেক্ষক,

$$\phi_2 = \frac{hc}{\lambda_2}$$
= $\frac{6.63 \times 10^{-34} \times 3 \times 10^8}{500 \times 10^{-9}}$
= $\frac{0.63 \times 10^{-34} \times 3 \times 10^8}{500 \times 10^{-9}}$

$$= \frac{1}{0.002} \text{ nm}$$
= $500 \times 10^{-9} \text{ m}$

তৃতীয় ধাতৰ পাতের জন্য, $\lambda_3 = \frac{1}{0.004}$ nm.

$$\phi_3 = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{250 \times 10^{-9}}$$

$$= 4.97 \text{ eV}$$

আপতিত আলোর শস্তি,
$$E=\frac{hc}{\lambda}$$

$$=\frac{6.63\times 10^{-34}\times 3\times 10^8}{400\times 10^{-9}}$$
 = 3.1 eV

যা প্রথম ও দ্বিতীয় ধাতব পাত থেকে বেশি অর্থাৎ— প্রথম ও দ্বিতীয় পাত থেকে ইলেকট্রন বের হবে।

প্রনা >৩৯ বাংলাদেশের দুই কোটির বেশি মানুষ সৌর বিদ্যুৎ ব্যবহার করে বিশ্বে দৃষ্টান্ত স্থাপন করছে। স্বল্প খরচে দেশে সৌর প্যানেল তৈরির লক্ষ্যে রিজন ও সুমন ভিন্ন দৃটি ধাতব পদার্থ নেয়। তাদের ব্যবহৃত পদার্থের কার্যাপেক্ষক যথাক্রমে 2.30 eV ও 4.74 eV। উভয় পদার্থের উপর 2500Å তরজাদৈর্ঘ্যের আলো আপতিত করা হলো। রিজন বলল আমার ব্যবহৃত পদার্থ হতে নির্গত ইলেকট্রনের গতিশক্তি বেশি।

ক, নিবৃত্তি বিভব কাকে বলে?

খ, ফটোইলেকট্রনের বেগ, আপতিত আলোর তীব্রতার উপর নির্ভরশীল নয়- ব্যাখ্যা করো।

গ্রপতিত ফোটনের ভরবেগ নির্ণয় করো।

ঘু রিজনের বক্তব্যটি সঠিক ছিল কী? গাণিতিকভাবে বিশ্লেষণ করে।।

৩৯ নং প্রশ্নের উত্তর

ক্ট ফটোতড়িৎ ক্রিয়ার যান্ত্রিক ব্যবস্থায় ক্যাথোড প্লেটের সাপেক্ষে অ্যানোড প্লেটে যে ন্যুনতম ধনাত্মক বিভব দিলে আলোক তড়িৎ প্রবাহমাত্রা তাৎক্ষণিকভাবে বন্ধ হয়ে যায়, সেই বিভবকে নিবৃত্তি বিভব বলা হয়।

ব্র কোয়ান্টাম তত্ত্ব অনুসারে f কম্পাঙ্কের আলোর প্রতিটি ফোটনের শক্তি hf। আলোর তীব্রতা বৃদ্ধি পেলে আপতিত ফোটনের সংখ্যা বৃদ্ধি পায় এবং সেই সাথে নির্গত ইলেকট্রনের সংখ্যাও বৃদ্ধি পায়। তাই আপতিত আলোর তীব্রতা বৃদ্ধি পেলে আলোক তড়িং প্রবাহ বৃদ্ধি পায়। কিন্তু আলোর কম্পান্ডক অপরিবর্তিত থাকায় ফোটনের গতিশক্তি বৃদ্ধি পায় না। ফলে নির্গত ইলেকট্রনের সর্বোচ্চ বেগ তথা গতিশক্তি অপরিবর্তিত থাকে।

আপতিত ফোটনের ভরবেগ P হলে,

$$P = \frac{h}{\lambda}$$

$$= \frac{6.63 \times 10^{-34}}{2500 \times 10^{-10}}$$

$$= 2.652 \times 10^{-27} \text{ kg ms}^{-1}$$
. (Ans.)

য় আপতিত ফোটনের শক্তি E হলে,

$$E = \frac{hc}{\lambda}$$
= $\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{2500 \times 10^{-10}}$
= $7.956 \times 10^{-19} \text{ J}$
= 4.9725 eV .

রিজনের ব্যবহৃত পদার্থ হতে নির্গত ইলেকট্রনের গতিশক্তি K_{max_1} হলে,

আবার, সুমনের ব্যবহৃত পদার্থ হতে নির্গত ইলেকট্রনের গতিশক্তি. K_{max2} হলে,

$$K_{max_2} = E - W_{o2}$$
 $= 4.9725 - 4.74$
 $= 0.2325$
 $W_{o2} = 4.74 \text{ eV}$

অর্থাৎ রিজনের ব্যবহৃত পদার্থ হতে নির্গত ইলেকট্রনের শক্তি সুমনের ব্যবহৃত পদার্থ হতে বেশি।

অতএব, রিজনের বস্তব্য সঠিক ছিল।

প্রস ▶৪০ চিত্রে আলোক তড়িৎ প্রদর্শনের লেখচিত্র দেখানো হল :

/आममाणी कार्यिनरमचे करमण, जका।

۷

২

- ক. সূচন কম্পাংক কাকে বলে?
- থ, ট্রান্সফরমার DC লাইনে কাজ করে না কেন?
- গ, উদ্দীপক হতে কার্য অপেক্ষকের মান বের করো।
- 9 ঘ, আপতিত কম্পাংক দ্বিগুণ করলে নিবৃত্তি বিভবের কি পরিবর্তন হবে- গাণিতিক বিশ্লেণের সাহায্যে মতামত দাও।

৪০ নং প্রশ্নের উত্তর

ক প্রত্যেক ধাতুর ক্ষেত্রে একটি ন্যুনতম কম্পান্ডক আছে যার চেয়ে কম কম্পাড়ক বিশিষ্ট কোনো আলো ঐ ধাতু থেকে ইলেকট্রন নির্গত করতে পারে না। ঐ ন্যূনতম কম্পান্তককে ঐ ধাতুর সূচন কম্পান্তক বলে।

য় ট্রান্সফরমারের কার্যনীতি পারস্পরিক আবেশের নীতির উপর প্রতিষ্ঠিত। যেখানে মুখ্য কুন্ডলীতে পরিবর্তী প্রবাহ প্রয়োগ করার ফলে চৌম্বক ফ্লাক্স পরিবর্তিত হয় এবং গৌণ কুন্ডলীতে তড়িচ্চালক শক্তি আবিষ্ট হয়। মুখ্য কুণ্ডলীতে ডিসি ভোল্টেজ বা প্রবাহ প্রয়োগ করলে ট্রান্সফর্মারের মজ্জার মধ্য দিয়ে ধ্রবমানের চৌম্বক ফ্লাক্স গমন করে। এ ধ্বমানের চৌম্বক ফ্লাক্স $E=-N\frac{d\phi}{dt}$ সূত্রানুসারে গৌণ কুগুলীতে কোনো তভিচ্চালক বল আবিষ্ট করতে পারে না, কারণ dq/dt = 0 হয়। ফলে ইনপুট ভিসি ভোন্টেজের মান যাই হোক না কেন, আউটপুট তথা গৌণ কুগুলীর ভোন্টেজ সর্বদাই শৃন্য হয়। তাই ট্রান্সফর্মার কেবল এসি প্রবাহে কাজ করে, ডিসি প্রবাহে কাজ করে না।

া A বিন্দুর অবস্থান সূচন অবস্থাকে বুঝায় অর্থাৎ সূচন কম্পান্তক, $v_0 = 2 \times 10^{14} \, \text{Hz}$

জানা আছে,

প্ল্যাংকের ধ্রক, $h = 6.63 \times 10^{-34}$ Js

বের করতে হবে, কার্য অপেক্ষক, W,, =?

আমরা জানি, W_p = hv_o = 6.63 × 10⁻³⁴ Js × 2 × 10¹⁴ Hz

 $= 1.326 \times 10^{-19} J$

= 0.82875 eV (Ans.)

ত্র প্রশ্নমতে, $2 \times 10^{15} \; \mathrm{Hz}$ কম্পাঙ্কের আলো আপতিত হলে নিঃসরিত ইলেকট্রনের সর্বোচ্চ গতিশক্তি, K_{max} = 6 eV

এক্ষেত্ৰে নিবৃত্তি বিভব = 6V

আপতিত কম্পাভক দ্বিগুণ করলে, $v = 2 \times 2 \times 10^{15} \, \mathrm{Hz}$

$$= 4 \times 10^{15} \, Hz$$

এক্ষেত্রে নিঃসরিত ইলেকট্রনের সর্বোচ্চ গতিশক্তি,

$$K_{\text{max}} = hv - W_0 = 6.63 \times 10^{-34} \text{ Js} \times 4 \times 10^{15} \text{ Hz} - 0.82875 \text{ eV}$$

 $= 2.652 \times 10^{-18} \text{ J} - 0.82875 \text{ eV}$

= 16.575 eV - 0.82875 eV

= 15.746 eV

এক্ষেত্ৰে নিবৃত্তি বিভব = 15.746 V

লক্ষ করি,
$$\frac{15.746 \text{ V}}{6 \text{V}} = 2.624 > 2$$

সুতরাং, আপতিত কম্পাঙক দ্বিগুণ করলে নিবৃত্তি বিভব দ্বিগুণেরও বেশি বৃদ্ধি পাবে।

প্ররা ১৪১ নিপুন তার ভাই সবুজকে আকাশে উড়ন্ত একটি রকেট দেখাচ্ছিল। পৃথিবীতে সে পর্যবেক্ষণ করেছিল যে, রকেটটির ভর 3 টন ও দৈর্ঘ্য $100 \mathrm{m}$ । নিপুন তার ভাইকে বলল যে, রকেটটি $4.2 \times 10^7 \mathrm{\,ms^{-1}}$ বেগে চলছে। কিন্তু তার ভাই বলল যে, রকেটটি আলোর বেগে চলছে।

' । प्रक्रियम परकम श्रुम क्षत्र करमञ्जू पाका,

ক, কম্পটন ক্রিয়া কাকে বলে?

খ, গোলাকার পরিবাহীর ব্যাসার্ধ বাড়ালে ধারকত্ব বৃদ্ধি পায় (417

গ্রকেটটির চলমান ভর কত হবে?

ঘ. নিপুনের ভাইয়ের পর্যবেক্ষণ যথার্থ কি-না, গাণিতিক বিশ্লেষণের মাধ্যমে ব্যাখ্যা করো।

৪১ নং প্রশ্নের উত্তর

ক কোনো একটি শক্তিশালী ফোটনের সাথে মুক্ত ইলেকট্রনের সংঘর্ষ ঘটলে ফোটনটি ইলেকট্রনটিকে কিছু শক্তি প্রদান করে। এতে বিক্ষিপ্ত ফোটনের তরজাদৈর্ঘ্য আপতিত ফোটনের তরজাদৈর্ঘ্যের চেয়ে বেশি হওয়াকেই কম্পটন ক্রিয়া বলে।

ব্ব গোলাকার পরিবাহীর ধারকত্ব, C = 4π∈r অর্থাৎ C « r, ধারকত্ব ব্যাসার্ধের সমানুপাতিক।

চার্জ গোলকের বাইরের পৃষ্ঠে অবস্থান করে। ব্যাসার্ধ বেশি হলে, গোলকের পৃষ্ঠের ক্ষেত্রফল বেশি হয়। তাই গোলাকার পরিবাহীর ব্যাসার্ধ বাড়লে ধারকত্ব বৃদ্ধি পায়।

ধ্ব রকেটটির চলমান ভর, m হলে,

$$m = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 এখানে,

 $m = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$ এখানে,

 $m = \frac{3}{\sqrt{1 - \left(\frac{4.27 \times 10^3}{3 \times 10^8}\right)^2}}$
 $m = \frac{3}{\sqrt{1 - \left(\frac{4.27 \times 10^3}{3 \times 10^8}\right)^2}}$
 $m = \frac{3}{\sqrt{1 - \left(\frac{4.27 \times 10^3}{3 \times 10^8}\right)^2}}$
 $m = \frac{3}{\sqrt{1 - \left(\frac{4.27 \times 10^3}{3 \times 10^8}\right)^2}}$
 $m = \frac{3}{\sqrt{1 - \left(\frac{4.27 \times 10^3}{3 \times 10^8}\right)^2}}$

য় আলোর বেগে চলমান অবস্থায় কোনো রকেটের দৈর্ঘ্য L হলে,

$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$

$$= L_0 \sqrt{1 - \frac{c^2}{c^2}}$$

$$= 0$$

আলোর বেগে চলমান কোন রকেটের চলমান দৈর্ঘ্য শূন্য, ফলে এটি দেখা সম্ভব নয়। কিন্তু নিপুন এবং তার ভাই রকেটটিকে দেখতে পারছিল (পর্যবেক্ষণ করছিল), সূতরাং এটি নিশ্চয়ই আলোর বেগে চলছিল না।

আবার, চলমান কোনো রকেটের ভর m হলে,

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
$$= \frac{m_0}{\sqrt{1 - \frac{c^2}{c^2}}}$$

অর্থাৎ, আলোর বেগে চলমান কোনো বস্তুর ভর অসীম। কিন্তু কোনো বস্তুর ভর অসীম হওয়ার জন্য অসীম শক্তির প্রয়োজন, যা অসম্ভব। অতএব, উপরিউক্ত আলোচনা হতে বলা যায় নিপুনের ভাইয়ের পর্যবেক্ষণ সঠিক নয়।

প্রসা⊅8২ কামালের ভর 55 kg এবং বয়স 40 বছর। সে 2.4 × 108 ms⁻¹ বেগে গতিশীল মহাশূন্যযানে চড়ে ছায়াপথ অনুসন্ধানে গেল। তার যমজ ভাই নাফিস এর বয়স যখন ৪০ বছর হলো তখন সে পৃথিবীতে **किरत** এला। (आवमुन कामित स्थाता शिप्ति कानक, स्वशिश्मी)

ক, নিবৃতি বিভব কী?

খ. সমবেগে গতিশীল কাঠামোতে ঘড়ি ধীরে চলে কেন? ব্যাখ্যা করে।।

ণ. উদ্দীপক অনুসারে মহাশূন্যস্থানে কামালের ভর নির্ণয় করো। ৩

ঘ. উদ্দীপকে দুই ভাই এর বর্তমান বয়স সমান থাকবে কি না-গাণিতিক বিশ্লেষণসহ মতামত দাও।

৪২ নং প্রশ্নের উত্তর

ক ফটোতড়িৎ ক্রিয়ার যান্ত্রিক ব্যবস্থায় ক্যাথোড প্লেটের সাপেক্ষে আনোড প্লেটে যে ন্যুনতম ধনাত্মক বিভব দিলে আলোক তড়িৎ প্রবাহমাত্রা তাৎক্ষণিকভাবে বন্ধ হয়ে যায়, সেই বিভবকে নিবৃত্তি বিভব বলা হয়।

শ্ব সময়ের আপেক্ষিকতা থেকে আমরা জানি.

$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
....(i)

কোনো গতিশীল বস্তুর জন্য $\sqrt{1-\frac{V}{C^2}}$ রাশিটি সব সময় 1 এর চেয়ে ছোট, তাই । সব সময়ই ।, এর চেয়ে বড় । ।, কে বলা হয় যথোপযুক্ত বা প্রকৃত সময় এবং ৷ হচ্ছে গতিশীল কাঠামোর সাপেক্ষে সময় ব্যবধান (i)নং সমীকরণ অনাযায়ী t > t,...

এ কারণে সমবেগে গতিশীল কাঠামোতে ঘড়ি স্থির কাঠামোর ঘড়

অপেক্ষা ধীরে চলে।

বা ১১(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 91.67 kg

য ১১(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

উত্তর : কামালের বয়স হবে 4৪ বছর।

প্রন্ন ▶80 একটি কাল্পনিক চলমান ট্রেনে একটি বস্তুর ভর 100 kg এবং দৈর্ঘ্য নিশ্চল দৈর্ঘ্যের 50%। /मतकाति वतगङ्गा करनकः, पुणिगश्च/

ক. কাৰ্য অপেক্ষক কী?

থ, "জরুরি প্রয়োজন ছাড়া আমাদের এক্সরে করা উচিৎ নয়"-ব্যাখ্যা করো।

গ্র কাল্পনিক ট্রেনটির গতিবেগ নির্ণয় করো।

ঘ. ট্রেনটি থেমে গেলে বস্তুর ভরের কোনো পরিবর্তন হবে কী? গাণিতিকভাবে বিশ্লেষণ করো।

৪৩ নং প্রশ্নের উত্তর

ক কোনো ধাতুখন্ডের ওপর ন্যুনতম যে শক্তির ফোটন আপতিত হলে এটি হতে ইলেকট্রন নিঃসৃত হবার উপক্রম হয় তাকে ঐ ধাতৃখন্ডের কার্যাপেক্ষক বলে।

বা এক্সরে এক প্রকার তাড়িত চৌদ্বক বিকিরণ। এর কম্পান্তক (f) উচ্চ। তাই E = hf সূত্রানুসারে এর শক্তি ও উচ্চমানের। দেহের কোনো অংশে এক্সরে করানো হলে তার যথেষ্ট পার্শ্বপ্রতিক্রিয়া আছে। এটি অনেকটা রেভিওথেরাপির মতো কাজ করে। ফলে বহুসংখ্যক সুস্থকোষ বিনষ্ট করে। পরপর কয়েকবার দেহের একই অজোর এক্সরে করালে ঐ অজ্যের প্রভূত ক্ষতি হয়, এমনকি তা বিকলাঙ্গা হয়ে যেতে পারে। অল্প কিছুদিনের ব্যবধানে মুখমগুলের এক্সরে করানো হলে দাঁত ও চুল পড়ে যেতে পারে। গর্ভাবস্থায় বিশেষ প্রয়োজন ছাড়া এক্সরে করানো উচিত নয়। প্রতিবার এক্সরেতে নবজাতকের দেহের বেশ কিছু ক্ষতিসাধন হয়। সূতরাং, জরুরি প্রয়োজন ছাড়া আমাদের এক্সরে করা উচিত নয়।

া দৈর্ঘ্য সংকোচনের সূত্রানুযায়ী,

$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$
 দৈওয়া আছে, $L_0 = L_0$ গতিশীল দৈর্ঘ্য, $L_0 = L_0$ গতিশীল দৈর্ঘ্য, $L = 0.5L_0$ ট্রেনের বেগ, $v = ?$ আলোর বেগ, $c = 3 \times 10^8 \, \text{ms}^{-1}$ $\Rightarrow 1 - \frac{v^2}{c^2} = \frac{1}{4}$ $\Rightarrow \frac{v^2}{c^2} = \frac{3}{4}$ $\therefore v = \frac{\sqrt{3}}{2} \times 3 \times 10^8 \, \text{m/s}$ $= 2.598 \times 10^8 \, \text{m/s}$ (Ans.)

য 'গ' হতে, ট্রেনের বেগ,
$$v=\frac{\sqrt{3}}{2}c$$
 দেওয়া আছে, গতিশীল অবস্থায় ভর,
$$\Rightarrow \frac{v}{c}=\frac{\sqrt{3}}{2}$$
 v^2 3

ভরের আপেক্ষিকতার সূত্রানুযায়ী,

$$\therefore m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\Rightarrow m_0 = m\sqrt{1 - \frac{v^2}{c^2}}$$

$$= m\sqrt{1 - \frac{3}{4}} = \frac{m}{2} = \frac{100}{2} = 50 \text{ kg}$$

অতএব, ট্রেনটি থেমে গেলে এর ভরের পরিবর্তন হবে।

প্রশা>88 পটাশিয়াম ধাতুর কার্যাপেক্ষক 2.5eV। জাবেদ উক্ত ধাতুর উপর পর্যায়ক্রমে 6000Å এবং 5000Å তরজা দৈর্ঘ্যের আলো আপতিত করল।

/ক্ষান্টনমেট গাবলিক ফুল এক কলেজ, মোমেনগারী/

- ক. আলোক তড়িৎ ক্রিয়ার সংজ্ঞা দাও।
- থ, কোনো বন্ধুর বেগ আলোর বেগের সমান হতে পারে না কেন? ব্যাখ্যা করো।
- গ. ধাতৃটির সূচন তরজা দৈর্ঘ্য A এককে নির্ণয় করো।
- ঘ. উদ্দীপকে জাবেদ এর আপতিত তরজ্ঞা ধাতব পাত থেকে
 ইলেকট্রন নিঃসরণ করতে পারবে কি পারবে না তা গাণিতিকভাবে
 বিশ্লেষণ করো।

৪৪ নং প্রশ্নের উত্তর

কোনো ধাতব পৃষ্ঠের ওপর যথেষ্ট উচ্চ কম্পাড়েকর আলোক রশ্মি বা অন্য কোনো তড়িৎচুম্বকীয় তরজা আপতিত হলে উত্ত ধাতু থেকে ইলেকট্রন নিঃসৃত হওয়ার ঘটনাকে আলোক তড়িৎ ক্রিয়া বলে।

ভরের আপেঞ্চিকতা অনুসারে, $m=\frac{m_0}{\sqrt{1-\frac{V}{c^2}}}$ । বস্তুর বেগ আলোর

বেণের সমান হলে অর্থাৎ v = c হলে,

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{m_0}{\sqrt{1 - 1}} = \frac{m_0}{0} = \infty$$

কিন্তু বস্তুর ভর কখনো অসীম হতে পারে না। তাই বস্তুর বেগ আলোর বেগের সমান হয় না, সর্বদা আলোর বেগ অপেক্ষা কম হয়।

প্রতিশিয়াম ধাতুর সূচন কম্পাংক f_0 হলে,

কার্যাপেক্ষক,
$$\phi_0 = hf_0$$

$$= \frac{hc}{\lambda_0}$$
বা, $\lambda_0 = \frac{hc}{\phi_0}$

$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{4 \times 10^{-19}}$$

$$= 4972.5 \text{Å (Ans.)}$$

ৰ এখানে,

জাবেদ কর্তৃক আপতিত আলোর তরজাদৈর্ঘ্য,

 $\lambda_1 = 6000\text{\AA}$ $\lambda_2 = 5000\text{\AA}$

'গ' হতে পাই,

ধাতুর সূচন তরজা, $\lambda_0 = 4972.5 \text{Å}$ । যেহেতু $\lambda_1 > \lambda_0$ এবং $\lambda_2 > \lambda_0$ ।

জানা আছে, কোনো ধাতু হতে ইলেকট্রন নিঃসৃত করতে চাইলে ঐ ধাতুর সুচন তরজ্ঞাদৈর্ঘ্যের কম তরজ্ঞাদৈর্ঘ্যের আলো ফেলতে অর্থাৎ জাবেদ এর আপতিত তরজাসমূহ ধাতব পাত থেকে ইলেকট্রন নিঃসরণ করতে পারবে না। প্রহা ► ৪৫ 9.1 × 10⁻³¹ kg. স্থির ভরের একটি ইপেকট্রন ().99 C গতিবেগে চলছে। /রাজগানী সরকামি মহিনা কলের, রাজগানী/

ক, কার্যাপেক্ষক কী?

খ, ইলেকট্রন দিয়ে ফোটন ও ফোটন দিয়ে ইলেকট্রন উৎপাদন সম্ভব কিনা ব্যাখ্যা করো।

গ, উদ্দীপকের আলোকে ইলেকট্রনটির মোট শক্তি নির্ণয় করো। ৩

ছ. ইলেকট্রনটির নিউটনীয় এবং আপেক্ষিকতা ভিত্তিক গতিশন্তি
তুলনা করো।

৪৫ নং প্রয়ের উত্তর

ক কোনো ধাতৃখন্ডের ওপর ন্যুনতম যে শক্তির ফোটন আপতিত হলে এটি হতে ইলেকট্রন নিঃসৃত হবার উপক্রম হয় তাকে ঐ ধাতৃখন্ডের . কার্যাপেক্ষক বলে।

LED (Light Emitting Diode) বিদ্যুৎ প্রবাহের তথা ইলেকট্রন প্রবাহের দ্বারা আলো (ফোটন) পাওয়া যায়। আবার, সৌরকোষে ফোটন আপতিত হলে সেখান হতে ইলেক্ট্রন অবমুক্তির মাধ্যমে বিদ্যুৎপ্রবাহের সৃষ্টি হয়। তাই ইলেকট্রন দিয়ে ফোটন ও কোটন দিয়ে ইলেকট্রন উৎপাদন সম্ভব।

্বা দেওয়া আছে,

ইলেকট্রনের ডর, m₀ = 9.1 × 10⁻³¹ kg বেগ, v = 0.99°C

আমরা জানি,

$$m = \frac{m_0}{\sqrt{1 - \left(\frac{V}{c}\right)^2}}$$

$$= \frac{9.1 \times 10^{-31}}{\sqrt{1 - \left(\frac{0.99C}{C}\right)^2}}$$

$$= 6.45 \times 10^{-30} \text{ kg}$$

$$= 6.45 \times 10^{-30} \text{ kg}$$

∴ ইলেকট্রনটির মোট শক্তি, E = mc²

=
$$6.45 \times 10^{-30} \times (3 \times 10^{8})^{2}$$

= 5.8×10^{-13} J (Ans.)

য়া উদ্দীপক অনুসারে,

ইলেকট্রনটির নিশ্চল ভর, ma = 9.1 × 10⁻³¹ kg

বেগ, v = 0.99C

"গ" অংশ হতে পাই,

ইলেকট্রনটির গতিশীল ভর, m = 6.45 × 10-30 kg

∴ ইলেকট্রনটির নিউটনীয় গতিশক্তি, $E_{k_0} = \frac{1}{2} m_0 v^2$

=
$$\frac{1}{2} \times 9.1 \times 10^{-31} \times (0.99c)^2$$

= $4.01 \times 10^{-14} \text{ J}$
= 0.250625 MeV

আবার, আপেক্ষিকতার তত্ত্ব থেকে প্রাপ্ত গতিশক্তি,

$$\begin{split} E_k &= (m - m_0) c^2 \\ &= \left[\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} - m_0 \right] c^2 \\ &= \left[\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} - 1 \right] m_0 c^2 \\ &= \left[\frac{1}{\sqrt{1 - (0.99)^2}} - 1 \right] \times 9.1 \times 10^{-31} \times (3 \times 10^8)^2 J \\ &= 4.98 \times 10^{-13} J \\ &= 3.1125 \text{ MeV} \end{split}$$

লক্ষ্য করি, E_k > E_{ko} অতএব, আপেক্ষিকতা ভিত্তিক গতিশক্তি, নিউটনের গতিশক্তি অপেক্ষা বুহস্তর হবে। ক. জড় প্রসজা কাঠামো কাকে বলে?

 গ্যালিলীয় রূপান্তর ও বেগ রূপান্তর উভয়ই আপেক্ষিকতার বিশেষ তত্ত্বের স্বীকার্যের পরিপক্ষী কেন?

গ, আলোক তড়িৎক্রিয়া পরীক্ষায় সর্বোচ্চ গতিশক্তি প্রাপ্ত ইলেকট্রনটির বেগ নির্ণয় করো। ৩

 ঘ. উদ্দীপকে লালরশিয় কি আলোক তড়িৎ প্রবাহ সৃষ্টি করতে পারে?

৪৬ নং প্রশ্নের উত্তর

ক পরস্পরের সাপেক্ষে ধ্রুব বেগে গতিশীল যে সকল প্রসঞ্চা কাঠামোতে নিউটনের গতি সূত্রগুলো অর্জন করা যায়, তাদেরকে জড় প্রসঞ্চা কাঠামো বলে।

পালিলীয় রূপান্তর আপেন্দিকতার বিশেষ তত্ত্বের শ্বীকার্য দুটোকে লজ্ঞন করে নিম্নের দুটি কারণে:

- প্রথম স্বীকার্য অনুসারে S এবং S' কাঠামোতে পদার্থবিজ্ঞানের
 সূত্রগুলোকে একই প্রকার সমীকরণ দ্বারা প্রকাশ করা উচিত। কিন্তু
 তড়িৎবিজ্ঞান ও চৌম্বকত্বের বেলায় এক কাঠামোর জন্য প্রযোজ্য
 সমীকরণগুলো অন্য কাঠামোর জন্য লিখতে গেলে তা পৃথক
 আকারের হয় য়া প্রথম স্বীকার্যের লক্ষন।
- দ্বিতীয় স্বীকার্য অনুসারে আলোর দুতি c, S এবং S' এই উভয় কাঠামোতে একই হবে। কিন্তু গ্যালিলীয় রূপান্তর থেকে আমরা পাই যে, আলোর দুতি পর্যবেক্ষকের দুতির উপর নির্ভরশীল। এটি দ্বিতীয় স্বীকার্যের লঙ্খন।

$$T_{max} = eV$$
বা, $\frac{1}{2} mv^2_{max} = eV$
বা, $v_{max} = \sqrt{\frac{2eV}{m}}$
 $v_{max} = \sqrt{\frac{2eV}{m}}$
 $v_{max} = \sqrt{\frac{2\times 1.6\times 10^{-19}\times 1.5}{9.11\times 10^{-31}}} ms^{-1}$
 $v_{max} = \sqrt{\frac{2\times 1.6\times 10^{-19}\times 1.5}{9.11\times 10^{-31}}} ms^{-1}$
 $v_{max} = \sqrt{\frac{2\times 1.6\times 10^{-19}\times 1.5}{9.11\times 10^{-31}}} ms^{-1}$

গু আমরা জানি,

লাল আলোর তরজা দৈর্ঘ্য, $\lambda = 7 \times 10^{-7} \text{ m}$

∴ লাল আলোর ভরজা শক্তি,
$$E = \frac{hc}{\lambda}$$

$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{7 \times 10^{-7}}$$
= 1.78 eV

সূতরাং, যদি উদ্দীপকে উল্লিখিত সোডিয়াম ধাতুর কার্যপেক্ষক এই শক্তি অপেক্ষা কম হয় তবেই লাল আলো আলোক তড়িৎ প্রবাহ তৈরি করতে পারবে। যেহেতু এখানে সোডিয়ামের কার্যাপেক্ষক দেয়া নাই। তাই এক্ষেত্রে তড়িৎ প্রবাহ হবে কিনা তা নির্ণয় করা সম্ভব নয়।

211 ▶89

ক, ভরের আপেক্ষিকতা কী?

খ্র নিউক্লিয়াসের অভ্যন্তরে ইলেকট্রন থাকতে পারে না কেন?

গ, গতিশীল ইলেকট্রনের ভর কত?

ঘ. উদ্দীপকের ঘটনা শক্তির সংরক্ষণশীলতা সমর্থন করে জিনা—
 গাণিতিকভাবে সাচাই করে।

৪৭ নং প্রশ্নের উত্তর

ক বন্ধুর ভর পর্যবেক্ষকের সাপেক্ষে এর আপেক্ষিক গতির ওপর নির্ভরশীল। বন্ধুর গতির পরিবর্তনে এর ভরের পরিবর্তন ঘটে। একে ভরের আপেক্ষিকতা বলে।

একটি ইলেকট্রনকে নিউক্লিয়াসের ভিতরে অবস্থান করতে হলে এর গতিশক্তি হতে হবে কমপক্ষে 10 MeV। যা ভরবেগের অনিশ্চয়তা সূত্র থেকে প্রমাণিত। কিন্তু তেজস্ক্রিয় নিউক্লিয়াস থেকে যেসব ইলেকট্রন নির্গত হয় তার গতিশক্তি 10 MeV অপেক্ষা অনেক কম। সূতরাং বলা যায়, গতিশক্তি তুলনামূলকভাবে অনেক কম হওয়ার কারণে ইলেকট্রন নিউক্লিয়াসের ভিতরে অবস্থান করতে পারে না।

্যা দেওয়া আছে, ণতিশীল ইলেকট্রনটির গতি শক্তি, T = 147.4 eV = 2.358 × 10⁻¹⁷

জানা আছে, ইলেকট্রনের স্থির ভর, $m_0=9.1\times 10^{-31}~{\rm kg}$ এবং আলোর বেগ, $c=3\times 10^8~{\rm ms}^{-1}$

গতিশীল্ ইলেকট্রনটির ভর m হলে আমরা জানি

E = mc²

Al, T + m₀c² = mc²

$$\therefore m = \frac{T + m_0c^2}{c^2}$$

$$= \frac{2.358 \times 10^{-17} + 9.1 \times 10^{-31} \times (3 \times 10^8)^2}{(3 \times 10^8)^2}$$

$$= 9.10262 \times 10^{-31} \text{ kg (Ans.)}$$

 $h = 6.625 \times 10^{-34} \text{ J.s}$ $m_0 = 9.1 \times 10^{-31} \text{ kg}$

$$m_0 = 9.1 \times 10^{-3} \text{ kg}$$

 $c = 3 \times 10^8 \text{ ms}^{-1}$
 $\lambda = 1 \text{A}^\circ = 10^{-10} \text{ m}$

$$\lambda' = 1.012 \text{A}^{\circ} = 1.012 \times 10^{-10} \text{m}$$

উদ্দীপক হতে সংঘর্ষের পূর্বে মোট শক্তি

$$K_1 = hf + m_0c^2$$
$$= h\frac{c}{\lambda} + m_0c^3$$

$$= \frac{6.625 \times 10^{-34} \times 3 \times 10^{8}}{10^{-10}} + [9.1 \times 10^{-31} \times (3 \times 10^{8})^{2}]$$

 $= 1.9875 \times 10^{-15} + 8.19 \times 10^{-14}$

 $K_1 = 8.38 \times 10^{-14} \text{J}$

সংঘর্ষের পরে মোট শক্তি

$$K_{2} = hf' + \sqrt{m_{0}^{2}c^{4} + p^{2}c^{2}}$$

$$= h\frac{c}{\lambda'} + \sqrt{m_{0}^{2}c^{4} + \left(\frac{hf}{c}\right)^{2}c^{2}}$$

$$= h\frac{c}{\lambda'} + \sqrt{m_{0}^{2}c^{4} + (hf')^{2}}$$

$$= h\frac{c}{\lambda'} + \sqrt{m_{0}^{2}c^{4} + (hf')^{2}}$$

$$= h\frac{c}{\lambda'} + \sqrt{m_{0}^{2}c^{4} + \left(\frac{h}{\lambda'}\right)^{2}}$$

$$= \frac{6.625 \times 10^{-34} \times 3 \times 10^{8}}{1.012 \times 10^{-10}} + \frac{6.625 \times 10^{-34} \times 3 \times 10^{8}}{1.012 \times 10^{-10}}$$

$$\sqrt{\left[(9.1 \times 10^{-31})^2 \times (3 \times 10^8)^4 + \left(\frac{6.625 \times 10^{-34} \times 3 \times 10^8}{1.012 \times 10^{-10}}\right)^2\right]}$$

$$= 1.96 \times 10^{-15} + \sqrt{6.71 \times 10^{-27} + 3.84 \times 10^{-30}}$$

$$= 1.96 \times 10^{-15} + 8.19 \times 10^{-14}$$

$$\therefore K_2 = 8.38 \times 10^{-14} \text{ J}$$

সূতরাং দেখা যাচেহ যে, K₁ = K₂

অর্থাৎ উদ্দীপকের ঘটনা শক্তির সংরক্ষণশীলতা সমর্থন করে।

থ্য ১৪৮ সরকারি শহীদ বুলবুল কলেজের বিজ্ঞান বিভাগের সকল শিক্ষার্থী মিলে একটি 10m দৈর্ঘ্যে সিলিন্ডার আকৃতির মহাশূন্যযানের মডেল তৈরি করল যার ভর 2000kg এবং এটি 260000 kmh⁻¹ বেণে গতিশীল হতে সক্ষম। মহাশুন্যযানের আয়তন 31.4m³।

/अत्रकाति भशीम तुनतुन करमञ, भावना/

क अख त की?

খ. কোন বন্ধু আলোর বেণের চেয়ে বেশি বেণে চলতে পারে না ব্যাখ্যা করো।

 গতিশীল অবস্থায় মহাশৃন্যযানের ভর নির্ণয় করে। 9

ঘ, গতিশীল অবস্থায় এর ক্ষেত্রফলের কোনো পরিবর্তন হবে কিনা- গাণিতিকভাবে বিশ্লেষণ করো।

৪৮ নং প্রয়ের উত্তর

🚰 দূতগতি সম্পন্ন ইলেকট্রন কোন ধাতুকে আঘাত করলে তা থেকে উচ্চ ডেদন ক্ষমতাসম্পন্ন অজানা প্রকৃতির এক প্রকার বিকিরণ উৎপন্ন হয়, এ বিকিরণকে এক্স-রে বলে।

তা ভরের আপেক্ষিকতা হতে আমরা জানি যে,

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

এখানে, m_o = স্থির বস্তুর ভর m = গতিশীল অবস্থায় বস্তুর ভর c = আলোর বেগ

v = বস্তুর বেগ

এখানে, v>c হলে m অবাস্তব হয় এবং v=c হলে $m=\infty$ হয়, যা

তাই কোন বস্তুকে আলোর বেগের চেয়ে বেশি বেগে চালানো সম্ভব নয়।

্রী ১০(গ) নং সূজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 4008.9 kg

ঘ এখানে.

মহাকাশ্যানের স্থির দৈর্ঘ্য, lo = 10 m মহাকাশযানের স্থির আয়তন, V = 31.4m³ মহাকাশ্যানের বেগ. $v = 2.6 \times 10^8$ m/s

$$=\frac{2.6}{3}$$
C

অতএব, মহাকাশ্যানের ব্যাসার্ধ, r হলে,

$$\pi r^2 l_0 = 31.4$$

$$41, r = \sqrt{\frac{31.4}{\pi l_0}} = \sqrt{\frac{31.4}{3.14 \times 10}}$$

যেহেতু r বরাবর কোনো আপেক্ষিক বেগ নেই। সেহেতু গতিশীল অবস্থায় ব্যাসার্ধের কোনো পরিবর্তন হয় না। তাই ভূমির ক্ষেত্রফলেরও

কোন পরিবর্তন হবে না। গতিশীল দৈর্ঘ্য, $l=l_0$

স্থির অবস্থায় সম্পূর্ণ পৃষ্টের ক্ষেত্রফল,

$$A_0 = 2\pi r (r + l_0)$$

গতিশীল অবস্থায় সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল,

 $A = 2\pi r (r + 1)$

অতএব, ক্ষেত্রফলের শতকরা পরিবর্তন =
$$\frac{A_0 - A}{A_0} \times 100\%$$

$$= \frac{2\pi r (r + l_0 - r - l)}{2\pi r (r + l_0)} \times 100\%$$

$$= \frac{l_0 - l}{r + l_0} \times 100\%$$

$$= \frac{l_0 \left\{1 - \sqrt{1 - \frac{v^2}{c^2}}\right\}}{r + l_0} \times 100\%$$

$$= \frac{10\left\{1 - \sqrt{1 - \left(\frac{2.6}{3}\right)^2}\right\}}{1 + 10} \times 100\%$$

$$= 45.55\%$$

অতএব, গতিশীল অবস্থার মহাকাশযানের সম্পূর্ণ পৃষ্ঠের ক্ষেত্রফল 45.55% দ্রাস পাবে।

বি ১৯৯ ক্যান্টনমেন্ট পাবলিক স্কুল ও কলেজের পদার্থ বিজ্ঞান . বিভাগের প্রভাষক মি. ফারুক আহাম্মেদ ধাতুর উপর বিভিন্ন তরজা দৈর্ঘ্যের রশ্মি ফেলে পরীক্ষা করার সময় লক্ষ করেন যে, একটি ধাতুর উপর 3000Å তরজা দৈর্ঘ্যের অতিবেগুণী রশ্মি ফেলা হলে ঐ ধাতুর পৃষ্ঠ হতে ইলেকট্রন নির্গত হয়। ধাতৃটির সূচন কম্পাংক $6.8 imes 10^{14} \, \mathrm{Hz}$ ।

/कारिमारमप्त भावनिक म्कुम ७ करमण, तः भूत/

ক, এক হেনরি এর সংজ্ঞা দাও।

থ. X-ray চৌম্বক ক্ষেত্রদ্বারা বিক্ষিপ্ত হয় না- ব্যাখ্যা করো।

গ, উদ্দীপকে উল্লিখিত ধাতৃ হতে নির্গত ইলেকট্রনের সর্বোচ্চ ণতিবেগ কত?

ঘ, উক্ত ধাতুর উপর 3800Å তরজা দৈর্ঘ্যের আলোকরশ্মি আপতিত হলে নিবৃত্তি বিভবের কোন পরিবর্তন হবে কি না-গাণিতিক বিশ্লেষণ করে মতামত দাও।

৪৯ নং প্রয়ের উত্তর

ক্র কোনো কুণ্ডলীতে 1 As⁻¹ হারে তড়িৎপ্রবাহমাত্রার পরিবর্তন করলে যদি 1V তড়িজ্ঞালক বল আবিষ্ট হয়, তাহলে ঐ কুণ্ডলীর স্বকীয় আবেশ গুণাঙ্ককে এক হেনরী বলে।

X-ray কোন আহিত কণা নয়। এটি একটি তড়িৎ চুম্বকীয় তরজা। যেহেতু X-ray এর ডিতর কোন চার্জ নেই তাই X-ray চৌম্বক ক্ষেত্র ও তড়িৎক্ষেত্র দ্বারা বিচ্যুত হয় না।

🚮 এখানে, আপতিত আলোর তরজাদৈর্ঘ্য, λ = 3000 Å $= 3000 \times 10^{-10} \text{ m}$

ধাতুর সূচন কম্পাঙ্ক, f_o = 6.8 × 10¹⁴ Hz প্লাডক এর ধ্বক, h = 6.63 × 10-34 Js ইলেকট্রনের ভর, m = 9.1 × 10⁻³¹ kg ইলেকট্রনের সর্বোচ্চ গাতিবেগ, v_{mix} = ? আমরা জানি, hf = wo + Kmax

:.
$$K_{max} = 2.122 \times 10^{-19} \text{ J}$$

$$\overline{4}$$
1, $\frac{1}{2}$ m $v_{\text{max}}^2 = 2.122 \times 10^{-19}$

व धर्यात,

আপতিত আলোর তন্ত্রকা দৈর্ঘ্য, $\lambda = 3800 \text{Å}$

ইলেকট্রনের চার্জ, $e = 1.6 \times 10^{-19} \, \text{J}$

আমরা জানি, hf = W_o + K_{max}

এখন, নিৰৃত্তি বিভব 🗸 হলে-

 $K_{max} = eV$

বা,
$$V = \frac{K_{max}}{c}$$

$$41, V = \frac{7.258 \times 10^{-20}}{1.6 \times 10^{-19}}$$

বা, V = 0.454V

আবার, 'গ' হতে, .

 $K'_{max} = 2.122 \times 10^{-19} \text{ J}$

নিবৃত্তি বিভৰ ∨' হলে

$$K'_{max} = eV'$$

∴ নিবৃত্তি বিভবের পরিবর্তন = 1.3226 V – 0.454 V = 0.869 V

∴ উত্ত ধাতৃর উপর 3800Å তরজা দৈর্ঘ্যের আলোক রশ্মি আপতিত হলে নিবৃত্তি বিভৰ 0.869 V কমে যাবে।

ক. দা-ব্ৰণ্মী তরজাদৈর্ঘ্য কাকে বলে?

কোনো বন্ধুর বেগ আলোর বেগের সমান হতে পারে কি?

গ. পর্যবেক্ষকের কাছে বস্তুটির দৈর্ঘ্য 0.5 m বলে মনে হলে পর্ববেক্ষকের সাপেক্ষে বস্তুর বেগ নির্ণয় করো। ৩

ঘ. পর্যবেক্ষকের কাছে বস্তুর গতিশীল অবস্থায় ঘনত স্থির অবস্থার ঘনতের বেশি হবে কি-না মতামত দাও?

৫০ নং প্রশ্নের উত্তর

বৰ প্ৰত্যেক চলমান কপাৰ সাথে একটি তরজা যুক্ত থাকে। এ তরজাকে ডি-ব্ৰপনীৰ জৱজা বলৈ।

ভারের আপেঞ্চিক তত্ত্ব অনুসারে আমরা জানি, $m=\frac{m_0}{\sqrt{1-\frac{v}{c^2}}}$ ।

यनि
$$v = c$$
 यह जावत्स, $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{m_0}{\sqrt{1 - \frac{c^2}{c^2}}}$

= $\sqrt{1-1} = \frac{m_0}{0} = \infty$ হয় যা অসম্ভব। তাই বস্তুর বেগ আলোর বেগের সমান বা বেশি হছে পান্ধেনা।

বৈ দৈর্ঘ্য সংকোচনের সূত্রানুযায়ী—

$$a = a_0 \sqrt{1 - \frac{v^2}{c^2}}$$

$$\boxed{1, 1 - \frac{v^2}{c^2} = \left(\frac{a}{a_0}\right)^2}$$

$$\boxed{1, \frac{v^2}{c^2} = 1 - \left(\frac{a}{a_0}\right)^2}$$

$$\boxed{1, v = \sqrt{1 - \left(\frac{a}{a_0}\right)^2} \text{ c}}$$

$$\boxed{1 - \left(\frac{0.5}{1}\right)^2} \frac{1}{2} \times 3 \times 10^8$$

এখানে,
বস্তুটির স্থির ভর, m₀ = 10 kg
স্থির ঘনত, ρ₀ = 10 kgm⁻³
অতএব এর দৈর্ঘ্য, a₀ হলে,
a₀³ = m₀/ρ₀ = 10/10 m³
∴ a₀ = 1m
গতিশীল দৈর্ঘ্য, a = 0.5 m
∴ বেগ, v = ?

যা ঘনাকার বস্তুটি তার দৈর্ঘ্য বরাবর গতিশীল। তাই ঐ দৈর্ঘ্য বরাবর এর সংকোচন ঘটে। ক্ষেত্রফল বরাবর কোনো সংকোচন হয় না। অতএব, গতিশীল আয়তন, V = a² a

ৰা,
$$V = a_0^3 \sqrt{1 - \frac{v^2}{c^2}}$$

ৰা, $V = V_0 \sqrt{1 - \frac{v^2}{c^2}}$

গতিশীল ভর, m =
$$\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

∴ পতিশীল ঘনতু, $\rho = \frac{m}{V}$

$$= \frac{\frac{m_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}}{V_0 \left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$= \frac{\frac{m_0}{V_0}}{1 - \frac{v^2}{c^2}}$$

$$= \frac{\rho_0}{0.25}$$

∴ ρ : ρ₀ = 4 : 1
অতএব, গতিশীল অবস্থায় বস্তুটির ঘনত স্থিরাবস্থার তুলনায় 4 গুণ
হবে ৷

প্রশ্ন ►৫১ A ও B দুই ব্যক্তি 25 বছর বয়সে যথাক্রমে 0.866c ও 0.99c বেণে গতিশীল দুটি মহাশূন্যযানে করে মহাকাশ ভ্রমণে গেলেন এবং পৃথিবীর হিসাবে 15 বছর পর পৃথিবীতে ফিরে আসেন। A ও B উভয় ব্যক্তির ভর 50 কেজি।

/কান্টনমেন্ট গাবাদিক ক্ষুল ও কলেজ, রংপুর/

ক. তড়িৎ দ্বি-মেরু কাকে বলে?

খ. গতিশীল চার্জ বাহ্যিক বল অনুভব করে— ব্যাখ্যা করো।

উদ্দীপকের আলোকে পৃথিবীতে ফিরে আসার পর দুই ব্যক্তির

 বয়সের ব্যবধান কত হবে?

ষ. A ব্যক্তির আইনস্টাইনের গতিশক্তি B ব্যক্তির চেয়ে কম না
. বেশি— উদ্দীপকের আলোকে গাণিতিক ব্যাখ্যা দাও। 8

৫১ নং প্রশ্নের উত্তর

ক্র দৃটি বিপরীতধর্মী কিন্তু সমমানের আধান খুব কাছাকাছি অবস্থান করলে এদেরকে একত্রে তড়িৎ শ্বিমেরু বলে। পতিশীল আধান নিজম্ব চৌম্বক ক্ষেত্র উৎপন্ন করে। উৎপন্ন এ চৌম্বক ক্ষেত্রের বলরেখাসমূহ পূর্ব হতেই বিদ্যমান চৌম্বক ক্ষেত্রের বলরেখাসমূহের সাথে মিথক্জিয়া বিকর্ষণ সম্পন্ন করে। বলরেখাসমূহের মধ্যকার বিকর্ষণের দরুণ একটি লব্দি চৌম্বক ক্ষেত্রের উদ্ভব হয় এবং গতিশীল আধানটি এর গতিপথ পরিবর্তন করার তাগিদে একটি বল অনুভব করে, যা চৌম্বক বল নামে পরিচিত। এসকল কারণেই গতিশীল আধান চৌম্বকক্ষেত্রে বল অনুভব করে।

পা দেওয়া আছে,

A ব্যক্তির বেগ, $v_A = 0.866 c$ B ব্যক্তির বেগ, $v_B = 0.99 c$ ভূ-পৃষ্ঠ থেকে নিগীত সময়, t = 15 yমহাশূন্যযানে A এর বয়স $t_{OA} = ?$ এবং B এর বয়স $t_{OB} = ?$

আমরা জানি, $t_0 = t \sqrt{1 - \frac{v^2}{c^2}}$

A এর কেত্রে.

$$t_{OA} = t \sqrt{1 - \frac{v_A^2}{c^2}}$$

$$= 15 \sqrt{1 - \frac{(0.866c)^2}{c^2}}$$

$$= 15 \sqrt{1 - 0.74995}$$

$$= 7.5 \text{ y}$$

∴ A ব্যক্তির বয়ৢস = (25 + 7.5) বছর = 32.5 বছর

B-এর ক্ষেত্রে,

$$t_{OB} = t \sqrt{1 - \frac{v_B^2}{c^2}}$$

= $15 \sqrt{1 - \frac{(0.99c)^2}{c^2}} = 15 \sqrt{1 - 0.9801} = 2.116 \text{ y}$

B ব্যক্তির বয়স = (25 + 2,116) বছর

= 27.116 বছর

∴ A ও B ব্যক্তির বয়সের ব্যবধান = (32.5 – 27.11 c) বছর = 5.384 বছর (Ans.)

য় এখানে,

A ব্যক্তির স্থির অবস্থায় ভর, m_{OA} = 25 kg

B ব্যক্তির স্থির অবস্থায় ভর, m_{OB} = 25 kg

A ব্যক্তির বেগ, v_A = 0.866 c

B ব্যক্তির বেগ, v_B = 0.99 c

A ও B এর গতিশীল ভর যথাক্রমে m_A ও m_B হলে এদের আইনস্টাইনীয় গতিশক্তি—

$$K_A = (m_A - m_{oA}) c^2$$

$$= m_{oA} c^{2} \left\{ \frac{1}{\sqrt{1 - \frac{v_{A}^{2}}{c^{2}}}} - 1 \right\} J$$

$$= 25 \times (3 \times 10^{8})^{2} \left[\frac{1}{\sqrt{1 - (0.866)^{2}}} - 1 \right] J$$

$$= 2.25 \times 10^9 \,\text{GJ}$$

$$K_{B} = (m_{B} - m_{OB})c^{2}$$

$$= \left\{ \frac{1}{\sqrt{1 - \left(\frac{v_{B}}{c}\right)^{2}}} - 1 \right\} m_{OB}c^{2}$$

$$= \left\{ \frac{1}{\sqrt{1 - (0.99)^{2}}} - 1 \right\} \times 25 \times (3 \times 10^{8})^{2}$$

$$= 7.97 \times 10^{9} \text{ GJ}$$

অতএব, $K_B > K_A$, অর্থাৎ A বস্তুর আইনস্টাইনীয় গতিশক্তি B এর তুলনায় কম হবে।

প্রস় ▶৫২ ফটোতড়িৎ ক্রিয়ায় ব্যবহৃত ধাতুর সূচনশক্তি 6.31eV। এতে 2000Å তরজাদৈর্ঘ্যের ফোটন আপতিত হলো।

/हें ञ्लाकानी भारतिक स्कृत ७ करमज, दुनिशा/

ক, কাল দীৰ্ঘায়ন কাকে বলে?

খ. হাইজেনবার্গের অনিশ্চয়তা নীতিটি লিখো।
 গ. ধাতুটির সূচন কম্পাজ্জ কত?

 ঘ. উদ্দীপকের বর্ণনা অনুসারে কোনো ইলেকট্রন নির্গত হবে কিনা? গাণিতিকভাবে ব্যাখ্যা করো।

৫২ নং প্রশ্নের উত্তর

ক্র ধুববেণে গতিশীল কাঠামোতে পরিমাপকৃত সময় ব্যবধানের তুলনায় স্থির কাঠামোতে পরিমাপকৃত সময় ব্যবধান বেশি। এ বিষয়টি কাল দীর্ঘায়ন নামে পরিচিত।

য হাইজেনবার্গের অনিশ্চয়তা নীতি হলো— কোনো কণার অবস্থান ও ভরবেগ নির্ভুলভাবে যুগপৎ পরিমাপ করা যায় না।

নিম্নোক্ত সম্পর্ক দ্বারা সীমাবন্ধ নির্ভুলতাসহ এ রাশিগুলোর মান নির্ণয় করা যেতে পারে—

$$\Delta x \Delta p \ge \frac{1}{2} \frac{h}{2\pi}$$

$$\exists f$$
, $\Delta x \Delta p \ge \frac{\hbar}{2} \left(\because \hbar = \frac{h}{2\pi} \right)$

এখানে Δx এবং Δp যথাক্রমে অবস্থান ও ভরবেগ নির্ণয়ে অনিশ্য়তার পরিমাণ। সম্পর্কটি থেকে বোঝা যায়, বস্তুর অবস্থান যতো বেশি নির্ভুলভাবে নির্ণয় করা যায় তার ভরবেগ তত কম নির্ভুলভাবে নির্ণয় করা যাবে। আবার, বেশি নির্ভুলভাবে ভরবেগ নির্ণয় করতে হলে কম নির্ভুলভাবে অবস্থান নির্ণয় করতে হবে।

গ ধাতৃটির সূচন কম্পাংক f, হলে,

$$\overline{W} = hf_0$$
বা, $f_0 = \frac{W}{h}$

$$= \frac{1.011 \times 10^{-18}}{6.63 \times 10^{-34}}$$

$$= 1.52 \times 10^{15} \text{ Hz (Ans.)}$$
 \mathfrak{Q} আনে,
$$\mathfrak{A} = 6.31 \times 1.602 \times 10^{-19} \text{ J}$$

$$= 1.011 \times 10^{-18} \text{ J}$$

য ১৭ (ঘ) নং সৃজনশীল প্রশ্নোত্তর দুইব্য।

প্রসা ➤ ৫৩ একজন মহাশূন্যচারী 25 বছর বয়সে 1.8 × 108 ms⁻¹ বেগে গতিশীল 2000kg ভরের একটি মহাশূন্যযানে চড়ে মহাকাশ ভ্রমণে গেলেন। পৃথিবীর হিসেবে তিনি 30 বছর মহাকাশে কাটিয়ে এলেন।

/कृषिक्षा मतकाति पश्चिमा करनका

ক, নিবৃত্তি বিভব কী?

ক. ।নপৃত ।বতৰ কা? খ. বিশেষ আপেক্ষিক তত্ত্বের স্বীকার্যগুলো লিখ।

A. THE IN MICHAN OCER STATES CONTRACT

 মহাশূন্যচারী প্রকৃত বয়স কত হবে?
 পৃথিবীতে এবং মহাশূন্যযানে অবস্থানরত দুইজন পর্যবেক্ষকের নিকট মহাশূন্যযানের মোট শক্তি একই হবে কী

 লাগিতিকভাবে ব্যাখ্যা করো।

৫৩ নং প্রশ্নের উত্তর

কটোতড়িং ক্রিয়ার যান্ত্রিক ব্যবস্থায় ক্যাথোড প্লেটের সাপেক্ষে অ্যানোড প্লেটে যে ন্যুনতম ধনাত্মক বিভব দিলে আলোক তড়িং প্রবাহমাত্রা তাংক্ষণিকভাবে বন্ধ হয়ে যায়, সেই বিভবকে নিবৃত্তি বিভব বলা হয়।

য বিশেষ আপেক্ষিক তত্ত্বের স্বীকার্য দুটি নিমন্ত্রপ:

- পরস্পরের সাপেক্ষে ধ্রুববেণে ধারমান সকল প্রসজা কাঠামোতে অর্থাৎ জড় প্রসজা কাঠামোগুলোতে পদার্থবিজ্ঞানের যেকোনো সূত্র একই রকম সমীকরণ ছারা প্রকাশ করা যায়।
- শূন্যস্থানে বা বায়ু মাধ্যমে আলোর বেগ ধ্রুব এবং এ বেগ আলোর উৎস ও পর্যবেক্ষকের আপেক্ষিক বেগের ওপর নির্ভরশীল নয়।

📆 ৩(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। **উত্তর:** 49 years

ঘ উদ্দীপক অনুসারে,

পৃথিবীতে মহাশূন্য যানের ভর, $m_0 = 2000 \text{ kg}$ বেগ, $v = 1.8 \times 10^8 \text{ ms}^{-1}$

জানা আছে, আলোর বেগ, c = $3 \times 10^8 \, \mathrm{ms}^{-1}$ ধরা যাক, মহাশুন্যযানের গতিশীল অবস্থায় ভর, m

আমরা জানি,

পৃথিবীতে অবস্থানরত পর্যবেক্ষক ভর পরিমাপ করবেন,

$$m = \frac{m_0}{\sqrt{1 - \left(\frac{V}{c}\right)^2}}$$

$$= \frac{2000}{\sqrt{1 - \left(\frac{1.8 \times 10^8}{3 \times 10^8}\right)^2}}$$

$$= 2500 \text{ kg}$$

মহাশূন্যযানে অবস্থানরত পর্যবেক্ষক অনুযায়ী মহাশূন্য থানের মোট শক্তি,

$$E_0 = m_0 c^2$$

= 2000 × (3 × 10⁸)²
= 1.8 × 10²⁰ J

এবং পৃথিবীতে অবস্থানরত পর্যবেক্ষক অনুসারে মহাশূন্য যানের মোট শক্তি,

$$E = mC^{2}$$
= 2500 × (3 × 10⁸)
= 2.25 × 10²⁰ J

যেহেতু, E₀ ≠ E

সূতরাং পৃথিবী ও মহাশূন্যযানে অবস্থানরত দুইজন পর্যবেক্ষকের নিকট মহাশূন্য যানের মোট শক্তি এক হবে না।

প্রা ► ৫৪ পদার্থবিজ্ঞানের একজন শিক্ষক কলেজ পরীক্ষাগারে আলোক-তড়িৎ প্রদর্শনের জন্য ব্যবস্থা গ্রহণ করলেন। 1g পর্যবেক্ষণে তিনি সোডিয়াম পাতের উপর 300nm তরজ্ঞাদৈর্ঘ্যের একবণী আলো ফেলে পরীক্ষাটি সম্পন্ন করলেন এবং সম্পূর্ণ পরীক্ষাটি ছাত্র/ছাত্রীদের বুঝিয়ে দিলেন। পরীক্ষাটি পুনর্বার করতে গিয়ে তিনি ধীরে ধীরে আপতিত আলোর তরজ্ঞাদৈর্ঘ্য ক্রমশ বৃদ্ধি করে দেখলেন যে, নির্গত ইলেকট্রনের গতিশক্তি কমে যায়, এবং 505nm তরজ্ঞাদৈর্ঘ্যের আলো সোডিয়াম পাতের উপর আপতিত হলে নির্গত ইলেকট্রনের কোনো গতিশক্তি থাকে না।

ক্ কার্যপেক্ষক কাকে বলে?

- কান নির্দিষ্ট একটি ধাতব পাতের জন্য ছোট-নাকি বড়
 তরজাদৈর্ঘ্যের আলো দ্বারা সহজে আলোক তড়িৎ ক্রিয়া প্রদর্শন
 সহজ হবে?
- গ. সোডিয়াম পাতের কার্যাপেক্ষক কত ছিল?
- ঘ. আপতিত আলোক রশ্মির তরজাদৈর্ঘ্যের বৃদ্ধির সাথে সাথে নির্গত ইলেকট্রনের গতিশক্তি কেনো কমছিল তার থথাযথ ব্যাখ্যা দাও এবং এর মাধ্যমে তুমি আলোর প্রকৃতি সম্পর্কে কী ধারণা পাও?

৫৪ নং প্রশ্নের উত্তর

ক কোনো ধাতৃখন্ডের ওপর ন্যূনতম যে শক্তির ফোটন আপতিত হলে এটি হতে ইলেকট্রন নিঃসৃত হবার উপক্রম হয় তাকে ঐ ধাতৃখন্ডের কার্যাপেক্ষক বলে।

আলোর তরজাদৈর্ঘ্য কম হলে $E=h\frac{c}{\lambda}$ সূত্রানুসারে সংশ্লিষ্ট ফোটনের শক্তি বেশি হবে। সেক্ষেত্রে ঐ ফোটনের শক্তি ধাতুর কার্যাপেক্ষক অপেক্ষা বৃহত্তর বা সমান হলে তা ইলেকট্রন নিঃসরণে সক্ষম হবে। সূতরাং কোনো নির্দিষ্ট ধাতব পাতের জন্য ছোট তরজাদৈর্ঘ্যের আলো ছারা সহজে আলোক তড়িং ক্রিয়া প্রদর্শন সহজতর হবে।

কার্যাপেক্ষক,
$$\phi = hf_0$$
 দুচন তরজাদৈর্ঘ্য, $\lambda_0 = 505 \mathrm{nm}$ $= \frac{hc}{\lambda_0}$ $= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{505 \times 10^{-9}}$ $= 3.939 \times 10^{-19} \, \mathrm{J}$ $= 2.46 \, \mathrm{eV}$ (Ans.)

থা আমরা জানি, একটি আলোক কণার শক্তি, $E = \frac{hc}{\lambda}$

$$\therefore E \propto \frac{1}{\lambda}$$

অর্থাৎ, আলোর তরজ্ঞাদৈর্ঘ্য বাড়ানো হলে আলোর শক্তি কমে যায়, আবার, আমরা জানি,

গতিশক্তি,
$$E_k = \frac{1}{2} \text{ mv}^2$$

 $\therefore E_k \propto v^2$

অর্থাৎ, গতিশক্তি কমে গেলে কোনো বন্ধুর বেগও প্রাস পায়। তাই
শিক্ষক আলোর তরজা দৈর্ঘ্য বৃদ্ধি করায় আলোর শক্তি কমে গিয়েছিল
এবং আলোর শক্তি কমে যাওয়ায় নির্গত ইলেকট্রনের গতিশক্তি কম ছিল।
এখানে, উল্লেখ্য যে, একটি নির্দিষ্ট তরজা দৈর্ঘ্যের পরে আর কোনো
তরজা দৈর্ঘ্যের জন্যেই ইলেকট্রন নির্গত হয় না এবং উদ্দীপকের ধাতুর
জন্য এই তরজা দৈর্ঘ্য 505 nm।

উপরোক্ত পরীক্ষণ থেকে ধারণা পাওয়া যায় যে, আলো এক ধরনের কণা যার শক্তি তার তরজাদৈর্ঘ্য তথা কম্পাচক তথা রঙের উপর নির্ভরশীল।

প্রম ► ৫৫ 1.5 × 10¹⁹ Hz কম্পাংকের একটি ফোটন একটি স্থির ইলেকট্রনকে আঘাত করে। এতে ফোটনটি 45° কোণে বিক্ষিপ্ত হয় এবং ইলেকট্রনটি আলোকদুতির 90% দুতিতে গতিশীল হয়।

/बारमारमण भोवाधिनी करनक, ४क्रेशय/

ক. অজড় প্ৰসংগ কাঠামো কাকে বলে?

খ, আলোর দুতিকে সার্বজনীন ধুবক বলার কারণ কি? ব্যাখ্যা করো।

গ. বিক্ষিপ্ত ফোটনের তরজা দৈর্ঘ্য কত?

ঘ. উদ্দীপকের উল্লিখিত ঘটনা শক্তির সংরক্ষণশীলতা নীতি সমর্থন করে কিনা যাচাই করো।

৫৫ নং প্রশ্নের উত্তর

ক যে সকল প্রসজ্যে কাঠামো পরস্পরের সাথে ধ্রুব বেগে গতিশীল নয় অর্থাৎ যে সকল প্রসজ্য কাঠামোর ত্বরণ থাকে তাদেরকে অজভ প্রসজ্য কাঠামো বলে।

যা আলোর দুতি ধ্রুবতার নীতিটি হচ্ছে—শূন্য স্থানে সকল জড় প্রসজা কাঠামোতে আলোর দুতিতে c এর মান একই।

ব্যাখ্যা: ধরি, তিন জন পর্যবেক্ষক O_1,O_2,O_3 ; S_1 , S_2 , S_3 কাঠামোতে আছেন যেখানে S_2 , S_1 থেকে $^c/_4$ দুতিতে দূরে সরে যাচ্ছে এবং S_3 , S_1 এর দিকে $^c/_4$ দুতিতে এগিয়ে আসছে। O_1 যদি কোনো আলো নিঃসরণ করেন, তাহলে O_2 তার দুতি পরিমাপ করার কথা $c-^c/_4=\frac{3c}{4}$ এবং O_3

এর পরিমাপ করার কথা $c + {}^c/_4 = \frac{5c}{4}$ । কিন্তু সকলেই আলোর দুতি পরিমাপ করেন c. ইহাই আলোর দুতি ধুবতার নীতি।

ক
$$\Delta\lambda = \frac{h}{m_0c}(1-\cos\phi)$$
 দিওয়া আছে, আদি কম্পাভক, $f=1.5\times 10^{19} {\rm Hz}$ বিক্ষেপণ কোণ, $\phi=45^\circ$ $=\frac{6.634\times 10^{-34}}{9.11\times 10^{-31}\times 3\times 10^8}(1-\cos 45)$

$$\Rightarrow \lambda' - \lambda = 7.1 \times 10^{-13}$$

$$\Rightarrow \lambda' = \lambda + 7.1 \times 10^{-13}$$

$$= \frac{c}{f} + 7.1 \times 10^{-13}$$

$$= \frac{3 \times 10^8}{1.5 \times 10^{19}} + 7.1 \times 10^{-13}$$

$$= 2.07 \times 10^{-11}$$

$$= 0.207 \text{Å (Ans.)}$$

ঘ সংঘর্ষের পূর্বে মোট শক্তি, $E_i = hf + m_0c^2$

$$=6.63\times10^{-34}\times1.5\times10^{19}+9.11\times10^{-31}\times(3\times10^8)^2$$

$$= 9.2 \times 10^{-14} \text{ J}$$

= 0.575 MeV

সংঘর্ষের পরে মোট শক্তি, $E_f = hf' + mc^2$

$$= \frac{hc}{\lambda'} + \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}c^2$$

$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{2.07 \times 10^{-11}} + \frac{9.11 \times 10^{-31} \times (3 \times 10^8)^2}{\sqrt{1 - (0.9)^2}}$$

$$= 1.977 \times 10^{-13} J$$

$$= 1.235 \text{ MeV}$$

E, ≠ E, অতএব, উদ্দীপকে ঘটনাটি শক্তির সংরক্ষণশীলতা নীতি অনুসরণ করে না।

প্রশ্ন ▶৫৬ নিম্নের চিত্রটি লক্ষ্য কর–

বায়ুশূন্য কাঁচ পাত্রটির উপর ও নীচের পাতদ্বয় তামার তৈরী। একটি 500 gm ভরের প্লাটিনামের গোলককে উপর থেকে ফেলে দেওয়া হলো। গোলকটি মাঝ বরাবর আসলে একটি আলোর উৎস হতে 7.5 × 10¹⁵Hz কম্পাংকের আলো দিয়ে স্লাত করার ব্যবস্থা আছে। উল্লেখ্য এই প্রক্রিয়ায় 6 × 10¹⁹টি ফটো ইলেকট্রন নির্গত হয়।

/मतकाति शाबी प्रशासन पश्मिन करनल, ४व्रेशाम/

- ক. ঘটনা দিগন্ত কি?
- খ, ফটো তড়িৎ ক্রিয়ার ব্যাখ্যায় চিরায়িত বলবিজ্ঞানের ব্যর্থতা লিখ।
- গ, প্লাটিনামের কার্যাপেক্ষক 5.65eV হলে নির্গত ফটো ইলেকট্রনের বেগ নির্ণয় করো। ৩
- ঘ. গোলকটি নিচে পড়বে, উপরের দিকে উঠে যাবে নাকি স্থির থাকবে- গাণিতিক যুক্তিসহ উপস্থাপন করো। 8

৫৬ নং প্রশ্নের উত্তর

- ক কৃষ্ণ বিবর অঞ্চলের সীমাকে ঘটনা দিগন্ত বলে।
- চিরায়ত পদার্থবিজ্ঞান অনুসারে আলোকশন্তি সমগ্র তরজা মুখে ব্যাপ্ত থাকে। ধাতব পৃষ্ঠে অবস্থিত এক একটি অণুর উপর তরজাণুলার খুবই ক্ষুদ্র অংশ আপতিত হয়। ফলে প্রতিটি ইলেকট্রন সেকেন্ডে যৎসামান্য শক্তি আহরণ করে। মুক্ত হওয়ার জন্য প্রয়োজনীয় শক্তি আহরণে অনেক সময় লাগার কথা। কিন্তু বাস্তবে আলোক তড়িং ক্রিয়া একটি তাৎক্ষণিক ঘটনা। এক্ষেত্রে চিরায়ত পদার্থবিজ্ঞান দ্বারা কম্পাঙ্কের ওপর ইলেকট্রনের গতিশক্তির নির্ভরশীলতা ব্যাখ্যা করা যায় না। সূচন কম্পাঙ্কের অন্তিত্ত্ব ব্যাখ্যা করা যায় না। তাছাড়া চিরায়ত পদার্থ বিজ্ঞানানুসারে ইলেকট্রনের গতিশক্তি তীব্রতার ওপর নির্ভরশীল হওয়ার কথা কিন্তু বাস্তবে তা নয়।

h
$$f = \varphi + \frac{1}{2} \text{ mv}^2$$

$$\Rightarrow \frac{1}{2} \text{ mv}^2 = \text{h}f - \varphi$$

$$\Rightarrow \frac{1}{2} \times 9.11 \times 10^{-31} \times \text{v}^2 = 6.63 \times 10^{-34}$$

$$\times 7.5 \times 10^{15} - 5.65 \times 1.6 \times 10^{-19}$$

$$\therefore \text{v} = 2.98 \times 10^6 \text{ m/s (Ans.)}$$
(দেয়া আছে, কার্যাপেকক, $\varphi = 5.65 \text{ eV}$

$$= 5.65 \times 1.6 \times 10^{-19} \text{ J}$$
আলোর কম্পাংক, $f = 7.5 \times 10^{15} \text{ Hz}$

তা 6×10^{19} টি ফটো ইলেকট্রন বের হয়ে যাওয়ার পর বলটির চার্জ, $q = 6 \times 10^{19} \times 1.6 \times 10^{-19}$ = 9.6 C

= 100 N/C

এখানে,
$$V = 30V$$
, $d = 30cm = 0.3m$
এবং পাত্রটির ভিতরে তড়িংক্ষেত্র, $E = \frac{V}{d}$

$$= \frac{30}{0.3}$$

[দেয়া আছে, ভর, m = 0.5 kg]

় বলটির ওজন অপেক্ষা তড়িৎবল বেশি। অতএব, বলটি উপরের দিকে উঠবে। (Ans.)

প্রশা ►ে জাফর স্যার আপেক্ষিকতার বিশেষ তত্ত্ব সম্পর্কে ধারণা দেয়ার জন্য তার ছাত্রদের একটি সায়েন্স ফিকশন সিমেনা দেখাচ্ছিলেন। সিনেমার দুটি দৃশ্য নিমন্ত্রপ:

একটি গোলাকৃতির স্পেস শিপকে পৃথিবী

মহাকাশ স্টেশন থেকে গতিশীল স্পেস শিপ পর্যবেক্ষণ।

থেকে মহাকাশে উৎক্ষেপণ মুহূৰ্ত

/त्राक्षांगाणि मतकाति करमज/

- ক. আপেক্ষিক তত্ত্বের দ্বিতীয় স্বীকার্য লিখ।
- খ, কোন ক্ষেত্রে গ্যালিলিও রূপান্তর কার্যকর?
- গ.মহাকাশ স্টেশন সাপেক্ষে স্পেস শিপটির বেগ কত? ৩
- মহাকাশ স্টেশন সাপেক্ষে স্পেস শিপটির দৃশ্যমান আকার কারণ উদঘাটন করো।

৫৭ নং প্রশ্নের উত্তর

- ত্র আপেক্ষিক তত্ত্বের দ্বিতীয় স্বীকার্য শূন্যস্থানে সকল জড় প্রসজা কাঠামোতে আলোর বেগ c একই থাকে।
- প্রসঞ্চা কাঠামোছয়ের আপেন্ধিক দুতি v, আলোর দুতি c এর তুলনায় অত্যন্ত কম হলে, সেক্ষেত্রে গ্যালিলিও রূপান্তর কার্যকর হয়।
- ী দেওয়া আছে,

স্পেস শিপের নিশ্চল দৈর্ঘ্য, L₀ = 10 m গতিশীল দৈর্ঘ্য, L = 9m

জানা আছে, আলোর বেগ,
$$c = 3 \times 10^8 \text{ms}^{-1}$$
 আমরা জানি, $L = L_0 \sqrt{1 - \left(\frac{v}{c}\right)^2}$ বা, $1 - \left(\frac{v}{c}\right)^2 = \left(\frac{L}{L_0}\right)^2$ বা, $\left(\frac{v}{c}\right)^2 = 1 - \left(\frac{L}{L_0}\right)^2$ বা, $v = c \sqrt{1 - \left(\frac{L}{L_0}\right)^2}$ $= 3 \times 10^8 \times \sqrt{1 - \left(\frac{9}{10}\right)^2}$ $= 1.308 \times 10^8 \, \text{m}^{-1}$ (Ans.)

ঘ "ণ" অংশ হতে পাই,

স্পেস শিপের বেগ, v = 1.308 × 10⁸ ms⁻¹

= 0.44c

মহাকাশ স্পেশন থেকে যখন 0.44c বেগে পতিশীল স্পেস শিপটিকে পর্যবেক্ষণ করা হয় তখন আপেক্ষিকতা তত্ত্ব অনুসারে গতির দিক বরাবর এর ব্যাস সংকোচন লক্ষ করা যায়। কিন্তু গতির সাথে লম্ব বরাবর ব্যাস পূর্বের মতই থাকে ফলে গোলাকার স্পেস শিপটিকে পর্যবেক্ষকের দৃষ্টিতে উপবৃত্তাকার মনে হবে।

প্রা ► ৫৮ একটি ধাতুর উপর দুই বন্ধু যথাক্রমে 3000Å এবং 2500 Å তরজাদৈর্ঘ্যের আলোর আপতন ঘটালো। লক্ষ্য করা পেল যে উভয় ক্ষেত্রেই ধাতু থেকে ইলেকট্রন নিঃসৃত হলেও প্রথম বন্ধুর আলোর আপতনের কারণে ইলেকট্রন কোনো গতিশক্তি অর্জন করে নি।

(बागज़ाइज़ि अवकाति व्यनकः, बागज़ाइज़ि)

ক. আলোর অপবর্তন কাকে বলে?

থ, "আলোক তড়িং ক্রিয়া একটি তাৎক্ষণিক ঘটনা"—উক্তিটির যথার্থতা ব্যাখ্যা করো।

গ্ৰাতটিতে ইলেকট্ৰন কত eV বন্ধন শক্তিতে আবন্ধ ছিল?

 ছিতীয় বন্ধু ঐ ধাতুর উপর আপতিত আলোর কম্পাংক 10%
 কমালে নিঃসৃত ইলেকট্রনের বেগ কতটুকু প্রাস পাবে ব্যাখ্যা করো।

৫৮ নং প্রশ্নের উত্তর

ক তীক্ষ ধার ঘেঁষে যাবার সময় বা সরু ছিদ্র দিয়ে যাবার সময় আলো কিছুটা বেঁকে যাওয়ার ধর্মকে অপবর্তন বলে।

কায়ান্টাম তত্ত্বানুষায়ী একটি কোটনের সাথে কেবলমাত্র একটি ইলেকট্রনের সংঘর্ষ হয় এবং ইলেকট্রন তার গৃহীত শক্তির ভাগ অন্যান্য ইলেকট্রনকে দেয় না। সুতরাং এই সংঘর্ষে শক্তি সংরক্ষিত থাকে এবং একে স্থিতিস্থাপক সংঘর্ষ বলে। স্থিতিস্থাপক সংঘর্ষে শক্তির তাৎক্ষণিক হস্তান্তর হয় বলে আলোক রশ্যির আপতন ও ইলেকট্রন নির্গমন এই দুইয়ের মাঝে কোনো কাল বিলম্বন ঘটে না। সুতরাং ফটোতড়িৎ প্রক্রিয়া একটি তাৎক্ষণিক ঘটনা।

্বা যেহেতু প্রথম বন্ধুর আলো দ্বারা ইলেকট্রন কোনো রকমে নিঃসৃত হয়,

:. ইলেকট্রন বন্ধনশক্তি = আলোর শক্তি দেওয়া আছে, প্রথম বন্ধুর, প্রথম বন্ধুর, আলোর তরজা দৈর্ঘ্য, $\lambda = 3000~{\rm \AA}$

 $= \frac{6.634 \times 10^{-34} \times 3 \times 10^{8}}{3000 \times 10^{-10}}$ $= 6.634 \times 10^{-19} \text{ J}$ = 4.146 eV. (Ans.)

$$\frac{1}{\sqrt{2}} mv^{2} = hf - \varphi$$

$$\frac{1}{\sqrt{2}} (hf - \varphi)$$

$$= \sqrt{\frac{2}{m}} (hf - \varphi)$$

$$= \sqrt{\frac{2}{m}} (\frac{hc}{\lambda} - \varphi)$$

$$= \sqrt{\frac{2}{9.11 \times 10^{-31}}} \times (\frac{6.634 \times 10^{-34} \times 3 \times 10^{8}}{2500 \times 10^{-10}} - 6.634 \times 10^{-19})$$

$$= 5.4 \times 10^{5} ms^{-1}$$

যদি কম্পাংক 10% কমে তবে নতুন কম্পাংক, 1' = 0.9 f

:. $0.9 \text{ hf} = \frac{1}{2} \text{ mv}^{2} + \varphi$

বা, $0.9 \frac{hc}{\lambda} = \frac{1}{2} \text{ mv}^2 + \varphi$

(গ) হতে পাই, φ = 6.634 × 10⁻¹⁹ J

 $0.9 \times \frac{6.634 \times 10^{-34} \times 3 \times 10^{8}}{2500 \times 10^{-10}} = \frac{1}{2} \times 9.11 \times 10^{-31} \times \sqrt{2} + 6.634 \times 10^{-19}$

 $v' = 3.4 \times 10^5 \text{ m/s}$

অতএব, কম্পাংক 10% হ্রাস করলে ইলেকট্রনের বেগ (5.4 - 3.4) imes $10^5~{
m ms}^{-1}$ বা $2 imes 10^5~{
m ms}^{-1}$ হ্রাস পায়।

প্রশ >৫৯ নিচের চিত্রে S এবং S' দুটি প্রসঞ্জা কাঠামো। S' কাঠামোটি

X অক্ষের অভিমুখে S কাঠামোর সাপেক্ষে v বেগে গতিশীল।
কাঠামোগুলোতে অবস্থিত দুইজন পর্যবেক্ষক দুটি কণা A ও B এর
স্থিতিস্থাপক সংঘর্ষ পর্যবেক্ষণ করছেন।

(७४,त्रि. এकारक्रमी मरकम स्कूम ७ व्यनक, शामाभगक, त्रिरनर्छ)

ক্ ভরের আপেক্ষিকতা কী?

গুণ।

ব. আপেক্ষিকতার বিশেষ তত্ত্বের মৌলিক স্বীকার্যগুলো লিখ।

গ. একটি ইলেকট্রন 0.93% c দুতিতে গতিশীল হলে এর চলমান ভর কত?

ঘ. দেখাও যে, উদ্দীপকের একজন পর্যবেক্ষকের সাপেক্ষে v বেগে গতিশীল অবস্থায় একটি বস্তুর ভর নিশ্চল ভরের $\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}$

৫৯ নং প্রশ্নের উত্তর

ক পর্যবেক্ষক এবং বস্তুর মধ্যে আপেক্ষিক গতি থাকার কারণে বস্তুর ভর পরিমাপে যে ভিন্নতা পরিলক্ষিত হয় তাকে ভরের আপেক্ষিকতা বলে।

বিশেষ আপেক্ষিক তত্ত্বের স্বীকার্য দুটি নিমনুপ :

- পরস্পরের সাপেক্ষে ধ্রুববেণে ধাবমান সকল প্রসঞ্চা কাঠামোতে অর্থাৎ জড় প্রসঞ্চা কাঠামোগুলোতে পদার্থবিজ্ঞানের যেকোনো সূত্র একই রকম সমীকরণ দ্বারা প্রকাশ করা যায়।
- শূন্যস্থানে বা বায়ু মাধ্যমে আলোর বেগ ধ্বুব এবং এ বেগ আলোর উৎস ও পর্যবেক্ষকের আপেক্ষিক বেগের ওপর নির্ভরশীল নয়।

্র একটি ইলেকট্রনের চলমান ভর m হলে,

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$= \frac{9.11 \times 10^{-31}}{\sqrt{1 - (9.3 \times 10^{-3})^2}} \text{ kg}$$

$$= 9.1104 \times 10^{-31} \text{ kg (Ans.)}$$

$$= 9.3 \times 10^{-3} \text{ c}$$

য গতিবৃদ্ধির সাথে বস্তুর ভর বৃদ্ধি আমরা নিম্নাক্ত উপায়ে দেখাতে পারি। মনে করি, S এবং S' দুটি জড় প্রসজা কাঠামো। S' কাঠামোটি X অক্ষের অভিমুখে S কাঠামোর সাপেক্ষে v সুষম বেগে গতিশীল। এ কাঠামোগুলোতে অবস্থিত দু'জন পর্যবেক্ষক দুটি কণা A ও B এর স্থিতিস্থাপক সংঘর্ষ পর্যবেক্ষণ করছেন। কণা দুটির ভর সমান। যে প্রসজা কাঠামোতে A এবং B স্থির সে প্রসজা কাঠামোতে তাদের ধর্ম অভিন্ন।

মনি করি, সংঘর্ষের পূর্বে A কণাটি S কাঠামোতে এবং B কণাটি S' কাঠামোতে স্থির রয়েছে। একই মুহূর্তে A কণাটিকে v_A বেণে + y অক্ষের দিকে এবং B কণাটিকে v_B' বেণে -y' অক্ষের দিকে নিক্ষেপ করা হলো। এখানে $v_A = v_B'$.

সূতরাং S'কাঠামো থেকে দেখা A এর ধর্ম এবং S' কাঠামো থেকে দেখা B-এর ধর্ম সম্পূর্ণভাবে অভিন্ন হবে। সংঘর্ষের পর A, -y অক্ষের দিকে v_A রেগে এবং B+y' অক্ষের দিকে v_B' বেগে ফিরে আসে। কণাগুলো যদি Y দূরত্ব থেকে নিক্ষেপ করা হয় তাহলে উভয় পর্যবেক্ষক পর্যবেক্ষণ করবে যে সংঘর্ষটি $\frac{1}{2}$ Y দূরত্বে সংঘটিত হচ্ছে। সূতরাং S কাঠামোতে A এর দ্রমণকাল বা গতিকাল হবে,

$$T_o = \frac{Y}{V_A} ... (i)$$

 S' কঠিমোতে B এর ভ্রমণকাল একই থাকবে।

অতএব.

$$T_0 = \frac{Y}{V'_B}$$

S কাঠামোতে ভরবেণে যদি সংরক্ষিত থাকে এবং কাঠামোটিতে m_A ও m_B , এবং v_A ও v_B যথাক্রমে A ও B এর ভর এবং বেগ হয় তাহলে ভরবেণের সংরক্ষণ নীতি থেকে পাওয়া যায়.

 $m_A v_A = m_B v_B \dots (ii)$

এখন, S কাঠামোতে B এর ভ্রমণকাল যদি T হয়, তবে,

$$v_B = \frac{Y}{T} \dots (iii)$$

এখন S' কাঠামোতে B এর ভ্রমণকাল T_o । কালদীর্ঘায়ন থেকে আমরা জানি, T এবং T_o এর মধ্যে সম্পর্ক হলো,

$$T = \frac{T_0}{\sqrt{1 - v^2/c^2}}$$

(ii) নং সমীকরণে এর মান বসিয়ে আমরা পাই,

$$V_B = \frac{Y \sqrt{1 - v^2/c^2}}{T_a}$$

এবং (i) সমীকরণ থেকে $V_A = \frac{Y}{T_a}$

(ii) নং সমীকরণে VA এবং VB এর মান বসালে, সমীকরণটি দাঁড়ায়,

$$m_A \frac{Y}{T_o} = m_B \frac{Y \sqrt{1 - v^2/c^2}}{T_o}$$
 \overline{A} , $m_A = m_B \sqrt{1 - v^2/c^2}$
 \overline{A} , $m_B = \frac{m_A}{\sqrt{1 - v^2/c^2}}$... (iv)

উপরিউক্ত উদাহরণে A ও B উভয়েই S কাঠামোতে গতিশীল। বেশ v_A এবং v_B খুব কম হলে S কাঠামোর একজন পর্যবেক্ষক দেখবেন যে, A স্থির রয়েছে এবং B, A এর অভিমুখে v বেগে অগ্রসর হয়ে বক্রভাবে সংঘর্ষের পর চলতে শুরু করেছে। অতএব S কাঠামোতে,

 $m_A = m_o$

এবং m_B = m

এখন (iv) নং সমীকরণে ma ও ma এর নতুন মান বসিয়ে আমরা পাই,

$$m = \frac{m_o}{\sqrt{1 - v^2/c^2}}$$

সূতরাং কোনো পর্যবেক্ষকের সাপেক্ষে আপেক্ষিক বেগে গতিশীল কোনো বস্তুর ভর, ঐ বস্তুর নিশ্চল ভরের চেয়ে বেশি।

প্রসা>৬০ একজন নভোচারীর ভর 60kg এবং বয়স 35 বছর। তিনি একই বয়সের এক বন্ধুকে পৃথিবীতে রেখে মহাকাশের উদ্দেশ্যে আলোর বেগের 80% বেগে মহাকাশ ভ্রমণে বের হলো। 20 বছর ভ্রমণ শেষে পৃথিবীতে ফিরে জানলো ঐ দিনই বন্ধুটি মারা গেছে।

/सिरगर्छे सतकाति करमन, सिरगर्छे,

ক. ফার্মাটের নীতি কী?

খ. সরল অণুবীক্ষণ যন্ত্রের ফোকাসের সাথে বিবর্ষণ ক্ষমতার সম্পর্কটি ব্যাখ্যা করো।

গ, গতিশীল অবস্থায় নভোচারীর ভর নির্ণয় করো।

ঘ. নভোচারীর বন্ধুটি 55 বছর বয়সেই মারা যাবে কিনা যাচাই করো।

৬০ নং প্রশ্নের উত্তর

আলোক রশ্মি এক বিন্দু হতে অপর এক বিন্দুতে যাওয়ার সময় সম্ভাব্য সকল পথের মধ্যে যে পথে সময় সব থেকে কম লাগে সেই পথ অনুসরণ করে।

ব্য সরল অণুবীক্ষণ যন্ত্রের ফোকাসের সাথে বিবর্ধন ক্ষমতার সম্পর্ক নিম্নরূপ—

$$M = 1 + \frac{D}{f}$$

যেখানে, বিবর্ধন ক্ষমতা, M ফোকাস দূরত্ব, f চোখের নিকটতম দূরত্ব, D

সম্পর্কটি হতে দেখা যাছে ফোকাস দূরত্ব যতই কম হবে চোথের নিকট বিন্দুতে ততই বিবর্ধিত আকারের বিশ্ব তৈরি হবে এবং লক্ষ্যবস্থু অধিক স্পষ্টতর দেখা যাবে।

পী গতিশীল অবস্থায় নভোচারীর ভর, m হলে,

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$= \frac{60}{\sqrt{1 - \left(\frac{0.8c}{c}\right)^2}}$$
= 100 kg (Ans.)

এখানে,
নভোচারীর স্থির ভর, $m_0 = 60$ kg
নভোচারীর বেগ, $v = c$ এর 80%
= $0.8c$

🔃 নডোচারীর 20 বছর ভ্রমণের সময় পৃথিবীতে 🛭 সময় অতিক্রান্ত হলে নভোচারীর ভ্রমণে অতিক্রান্ত সময়, $t_0 = 20y$ নভোচারীর বেগ, v = 0.8c

অর্থাৎ, নভোচারীর বন্ধুর বয়স হবে 35 + 33.33 = 68.33y অতএব, নভোচারীর বন্ধুটি 55 বছর বয়সে মারা যাবে না, বরং 68.33

বহর বয়সে মারা যাবে। প্রমা>৬১ কেনেডি স্পেস স্টেশন থেকে 2000kg ভরের ও 10m দৈর্ঘ্যের একটি স্পেসশিপকে 0.44C বেগে উৎক্ষেপপণ করা হলো।

ক. পূর্ব অভ্যন্তরীণ প্রতিফলনের শর্ত কী?

খ. লেন্সের চারিপার্শ্বের মাধ্যম পরিবর্তন করলে উহার ফোকাস দূরত্ব পরিবর্তন হয় কেন?

|विश्वनाथ करमण, मिल्कि|

মহাকাশ স্টেশনের পর্যবেক্ষনে স্পেসশিপের ভর কত?

ঘ্ মহাকাশ স্টেশন থেকে পর্যবেক্ষণের আকারের পরিবর্তন আলোচনা করো।

৬১ নং প্রয়ের উত্তর

ক্র পূর্ণ অভ্যন্তরীণ প্রতিফলনের শর্ত:

- আলোক রশ্মি ঘন মাধ্যম থেকে ঘন ও হালকা মাধ্যমের বিভেদ তলে আপতিত হবে।
- ii. আপতন কোণ সংকট কোণের চেয়ে বড় হবে।

বা লেন্সের চারিপার্শ্বস্থ মাধ্যম পরিবর্তন করলে এর উপাদানের আপেন্ধিক প্রতিসরণাংক পরিবর্তিত হয়ে যায়। তখন লেন্সের অভিসারী ৰা অপসারী ক্ষমতাও পরিবর্তন ঘটে বলে $P = \frac{1}{f} = (\mu - 1)(\frac{1}{r_1})$ সূত্রানুসারে এর ফোকাস দূরত্বের পরিবর্তন ঘটে।

তা ১০(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ। **উত্তর:** 2227 17 kg।

য় উদ্দীপক অনুসারে,

স্পেস শিপের নিশ্চল দৈর্ঘ্য, Lo = 10 m স্পেস শিপের বেগ, v = 0.44C স্পেস শিপের গতিশীল দৈর্ঘ্য L হলে.

$$L = L_0 \sqrt{1 - \left(\frac{v}{c}\right)^2}$$

$$= 10 \sqrt{1 - \left(\frac{0.44c}{c}\right)^2}$$

 মহাকাশ স্টেশন থেকে পর্যবেক্ষিত স্পেসশিপের আকারের পরিবর্তন, $\Delta L = L_0 - L$

= 10 - 8.98

= 1.02 m

অতএব, স্পেসশিপটিকে 1.02m ছোট মনে হবে।

প্রনা>৬২ একটি অতি কুদ্র বস্তুকণার ভর 9 × 10⁻³²kg উক্ত কনাটি 0.98c বেগে গতিশীল। /शापुता भतकाति गरिना करनक/

ক. আপেক্ষিকতার দ্বিতীয় স্বীকার্যটি লিখ।

খ্ আলোর বেগে গতিশীল কণার নিশ্চল ভর কত- ব্যাখ্যা করো। ২

গ. বস্তু কণাটির মোট শক্তি কত?

ঘ্ উদ্দীপকের বস্তু কণাটির নিউটনীয় গতিশক্তি ও আইনস্টাইনের আপেক্ষিকতার গতিশক্তির মধ্যে কোনটি বেশি হবে গাণিতিক বিশ্লেষণের মাধ্যমে ব্যাখ্যা করো।

৬২ নং প্রশ্নের উত্তর

🔯 আপেন্দিকতার দ্বিতীয় শ্বীকার্য : শূন্য স্থানে সকল জড় প্রসঙ্গা কাঠামোতে আলোর দ্রুতি C একই থাকে।

্বা আইনস্টাইনের ভর-শন্তি ভরবেগ সমীকরণ ব্যবহার করে পাই, E² = P²C² + m²0c²; যেখানে m0 নিশ্চয় ভর। আবার, ডি-ব্রগলীর তরজা সমীকরণ ব্যবহার করে পাই, $P = \frac{\Lambda}{\lambda}$; যেখানে $\lambda = \frac{V}{V}$; বস্তু আলোর বেগ চললে $\lambda = \frac{c}{v} = \frac{c}{\underline{E}} = \frac{hc}{E}$

ৰা, $P = \frac{n}{\frac{hc}{c}} = \frac{E}{c}$; P এর এই মান উপরের সমীকরণে ব্যবহার করে পাই,

 $E^2 = \frac{E^2}{c^2}$, $e^2 + m_0^2 c^4$; \overline{q} , $E^2 = E^2 + m_0^2 C^4$

 2 C⁴ = 0 ∴ m_0 = 0

অতএব, আলোর বেগে গতিশীল কণার স্থির বা নিকল ভর অবশাই मुना ।

🗿 রাজশাহী সরকারি মহিলা কলেজ-২য় পত্র; প্রশ্ন ৬ এর (গ) এর অনুরূপ। উত্তর: 4.07 × 10⁻¹³J বা, 2.544 MeV

য়া রাজশাহী সরকারি মহিলা কলেজ-২য় পত্র; প্রশ্ন ৬ এর (ঘ) এর অনুরূপ।

প্রমা ১৬০ ফটোতড়িং ক্রিয়ার পরীক্ষায় একটি ধাতুর উপর 5500Å তরজ্ঞাদৈর্ঘ্যের আলো আপাতিত হলে শুধুমাত্র ইলেকট্রন নির্গত হয়, গতি শক্তি প্রাপ্ত হয় না। যদি 3500Å তরজাদৈর্ঘ্যের আলো আপতিত হয়, তবে ইলেকট্রন নির্গত হয়। [वि এ এक भारीन करनक, वरभात]

ক. ফটো ইলেকট্রন কাকে বলে?

- इ. इन्छ द्वित्तद आनामा नित्रा भाषद काल मिल, दित दमा যাত্রী ও রাস্তার পাশে দাড়ানো যাত্রীর নিকট পাথরের গতি কেমন বলে মনে হবে?
- নিঃসরিত ইলেকট্রনের গতিশক্তি নির্ণয় করো।
- ষ, উক্ত ধাতুর উপর 2500Å ও 2000Å ফোটন আপতিত করলে নিবৃতি বিভব বনাম তরজাদৈর্ঘ্য লেখচিত্র অংকন করা সম্ভব কীনা- তা গাণিতিক বিশ্লেষণ সহ মতামত দাও।

৬৩ নং প্রশ্নের উত্তর

ক যথোপযুক্ত উচ্চ কম্পাভক বিশিষ্ট আলোক রশ্মি কোন ধাতব পৃষ্ঠে আপতিত হলে ফটোতড়িৎ ক্রিয়ার ফলে তা থেকে নিঃসৃত ইলেকট্রনকে ফটো ইলেকট্রন বলে।

ব চলন্ত ট্রেনের জানালা দিয়ে পাথর ফেলে দিলে ট্রেনে বসা যাত্রীর নিকট মনে হবে পাথরটি বোধ হয় মুক্তভাবে পড়ন্ত বস্তুর ন্যায় কেবল নিচে পরে গেল। অর্থাৎ সে পাথরটিতে একমাত্রিক গতি লক্ষ করবে। কিন্তু রাস্তার পাশে দাড়ানো যাত্রী পাথরের মধ্যে দ্বিমাত্রিক গতি লক্ষ করবে, অর্থাৎ পাথরটিকে সে একটি প্রাস আকারে দেখবে। এর কারণ হলো পাথরটি ফেলে দেয়ার মৃহর্তে এটি সম্মুখ বরাবর একটি ধ্রুব বেগও অর্জন করে।

গ প্রশ্নমতে,

সূচন তরজা দৈর্ঘ্য, $\lambda_o = 5500 \text{Å} = 5.5 \times 10^{-7} \text{ m}$ আপতিত আলোর তরজাদৈর্ঘ্য, $\lambda = 3500 \text{ Å} = 3.5 \times 10^{-7} \text{ m}$ জানা আছে, শুন্যুস্থান বা বায়ুতে আলোর বেগ, $c = 3 \times 10^8 \text{ ms}^{-1}$ প্ল্যাংকের ধ্রক, $h = 6.63 \times 10^{-34} \text{ Js}$

বের করতে হবে, নিঃসরিত ইলেকট্রনের গতিশক্তি, Ekmas = ? আমরা জানি, hv = hvo + Ekmax

বা,
$$h \frac{c}{\lambda} = h \frac{c}{\lambda_0} + E_{kmax}$$

$$\therefore E_{kmax} = h \frac{c}{\lambda} - h \frac{c}{\lambda_0} = hc \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right)$$

$$= 6.63 \times 10^{-34} \times 3 \times 10^8 \times \left(\frac{1}{3.5 \times 10^{-7}} - \frac{1}{5.5 \times 10^{-7}} \right)$$

$$= 2.0665 \times 10^{-19} \text{ J}$$

য় λ = 3500 Å এর জন্য নিঃসরিত ইলেকট্রনের গতিশক্তি

 $E_{kmux} = 2.0665 \times 10^{-19} \text{ J} = 1.29 \text{ eV}$

এক্ষেত্রে নিবৃত্তি বিভব = 1.29 V

λ = 2500 Å এর ফোটনের ক্ষেত্রে

$$\begin{split} E_{kmax} &= hc \left(\frac{1}{\lambda} - \frac{1}{\lambda_o} \right) \\ &= 6.63 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ ms}^{-1} \times \left(\frac{1}{2.5 \times 10^{-7} \text{ m}} - \frac{1}{5.5 \times 10^{-7} \text{ m}} \right) \end{split}$$

= 4.34 × 10⁻¹⁹ J = 2.71 eV এক্ষেত্ৰে নিবৃত্তি বিভব = 2.71 V

λ = 2000Å ফোটনের ক্বেত্রে

$$E_{kmax} = hc \left(\frac{1}{\lambda} - \frac{1}{\lambda_o}\right)$$

$$= 6.63 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ ms}^{-1} \times \left(\frac{1}{2 \times 10^{-7} \text{ m}} - \frac{1}{5.5 \times 10^{-7} \text{ m}}\right)$$

$$= 6.33 \times 10^{-19} \text{ J} = 3.956 \text{ eV}$$

∴ এক্ষেত্রে নিবৃত্তি বিভব = 3.956 V

যেহেতু তিনটি বিন্দু পাওয়া গেছে নিবৃত্তি বিভব বনাম তরজা দৈর্ঘ্য লেখচিত্র আঁকা সম্ভব এবং তা নিমন্ত্প:

প্রা ► ৬৪ একটি কুলিজ নলে X-ray উৎপাদনের জন্য অ্যানোড ও ক্যাথোডের মধ্যে 50 kV বিভব পার্থক্য প্রয়োগ করা হলো। উৎপন্ন X-ray ধাতুর একটি ইলেকট্রনের সাথে সংঘর্ষ ঘটিয়ে 60° কোণে বিক্ষিপ্ত হলো। ইলেকট্রনটি 90° কোণে বিক্ষিপ্ত হলো।

ক. সচন কম্পাংক কাকে বলে?

খ, ফটোতড়িৎ ক্রিয়া একটি তাৎক্ষণিক ঘটনা ব্যাখ্যা করো।

গ. উৎপন্ন X-ray এর তরজা দৈর্ঘ্য নির্ণয় করো।

ঘ, বিক্ষিপ্ত ফোর্টন ও প্রক্ষিপ্ত ইলেকট্রনের ভরবেগের তুলনা করো। ৪

৬৪ নং প্রয়ের উত্তর

ক্র প্রত্যেক ধাতুর ক্ষেত্রে একটি ন্যূনতম কম্পান্ডক আছে যার চেয়ে কম কম্পান্ডক বিশিন্ট কোনো আলো ঐ ধাতু থেকে ইলেকট্রন নির্গত করতে পারে না। ঐ ন্যূনতম কম্পান্ডককে ঐ ধাতুর সূচন কম্পান্ডক বলে।

ব্র কোয়ান্টাম তত্ত্বানুযায়ী একটি ফোটনের সাথে কেবলমাত্র একটি ইলেকট্রনের সংঘর্ষ হয় এবং ইলেকট্রন তার গৃহীত শক্তির ভাগ অন্যান্য ইলেকট্রনকে দেয় না। সূতরাং এই সংঘর্ষে শক্তি সংরক্ষিত থাকে এবং একে স্থিতিস্থাপক সংঘর্ষ বলে। স্থিতিস্থাপক সংঘর্ষ শক্তির তাৎক্ষণিক হস্তান্তর হয় বলে আলোক রশ্মির আপতন ও ইলেকট্রন নির্গমন এই দুইয়ের মাঝে কোন কাল বিলম্বন ঘটে না। সুতরাং ফটোতড়িং প্রক্রিয়া একটি তাৎক্ষণিক ঘটনা।

ত্র ১২(গ) নং সূজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 0.248Å

১২(ঘ) নং সূজনশীল প্রশ্নোত্তরের অনুরূপ।

প্রশ্ন ▶৬৫ আদির যখন 27 বছর বয়স তখন তার বাবা নাসার একজন মহাকাশ গবেষক ছায়া পথের অনুসন্ধানে 52 বছর বয়সে 15m দৈর্ঘ্যের একটি মহাকাশ যানে করে মহাকাশ ভ্রমণে যান। নাসার হেড অফিস থেকে গতিশীল অবস্থায় মহাকাশযানটির দৈর্ঘ্য 6.5m পরিমাপ করা হয় এবং সময় গণনা করা হয়।

ক. ডোপিং কী?

৩°C তাপমাত্রায় সেমিকভায়র অপরিবাহীর ন্যায় আচরণ করে
কেন? ব্যাখ্যা করো।

ণ, মহাকাশযানটির বেগ নির্ণয় করো।

42 বছর পর মহাকাশ ফেরত বাবা ও ছেলের বয়সের তুলনা

গাণিতিক ভাবে বিশ্লেষণ করো।

 8

৬৫ নং প্রয়ের উত্তর

ক তড়িৎ পরিবাহিতা বৃদ্ধির উদ্দেশ্যে চতুর্যোজী অর্ধপরিবাহীর মধ্যে পঞ্জযোজী বা ত্রিযোজী পদার্থের পরমাণু ভেজাল হিসেবে মেশানোর প্রক্রিয়াকে ডোপিং বলে।

পরমশূন্য তাপমাত্রায় (OK) অর্ধপরিবাহীতে ইলেকট্রনগুলো পরমাণুতে দৃঢ়ভাবে আবন্ধ থাকে। এ তাপমাত্রায় সমযোজী অণুবন্ধনগুলো খুবই সরল হয় এবং সবগুলো যোজন ইলেকট্রনই সমযোজী অণুবন্ধন তৈরিতে ব্যস্ত থাকে। ফলে কোনো মুক্ত ইলেকট্রন থাকে না এবং অর্ধ-পরিবাহীতে কেলাস এ অবস্থায় যোজন ব্যাভ পূর্ণ থাকে এবং যোজন ব্যাভ ও পরিবহন ব্যাভের মাঝে শক্তির ব্যবধান বিরাট হয় ফলে কোনো যোজন ইলেকট্রন পরিবহন ব্যাভে এসে মুক্ত ইলেকট্রনে পরিণত হতে পারে না। ফলে মুক্ত ইলেকট্রন না থাকার কারণে পরমশূন্য তাপমাত্রায় অর্ধপরিবাহী পদার্থ অন্তরকের ন্যায় আচরণ করে।

া দেওয়া আছে,

স্থির অবস্থায় দৈর্ঘ্য, L_o = 15 m গতিশীল অবস্থায় দৈর্ঘ্য, L = 6.5 m

জানা আছে, শূন্যস্থানে আলোর বেগ, $c = 3 \times 10^8 \text{ ms}^{-1}$

বের করতে হবে, মহাকাশ যানটির বেগ, v = ?

আমরা জানি,
$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$

বা, $1 - \frac{v^2}{c^2} = \left(\frac{L}{L_0}\right)^2$

বা,
$$\frac{v^2}{c^2} = 1 - \left(\frac{L}{L_o}\right)^2$$

ঘ স্থির কাঠামোতে পরিমাপিত সময়, t = 42 y

পতিশীল কাঠামোতে পরিমাপিত সময়,

$$t_o = t \sqrt{1 - \frac{v^2}{c^2}} = 42y \times \sqrt{1 - \left(\frac{2.7 \times 10^8 \text{ ms}^{-1}}{3 \times 10^8 \text{ ms}^{-1}}\right)^2}$$

= 18.3 y

ফেরত আসার মুহূর্তে ছেলের বয়স

= 27y + 42y = 69y

এবং বাবার বয়স = 52 + 18.3 = 70.3 y

সূতরাং মহাকাশ ফেরতের সময় বাবা ও ছেলের বয়স প্রায় সমান হবে।

/সরকারি সৈয়দ হাতেম আশী কলেজ, বরিশাল/

- ক. কম্পটন তরজ্ঞাদৈর্ঘ্য কাকে বলে?
- ফটোতড়িৎ ক্রিয়া একটি তাৎক্ষণিক ঘটনা
 ব্যাখ্যা করে।
- ইলেকট্রনটির সূচন কম্পাংক বের করো।
- ঘ, ইলেকট্রনটির পরমাণুর কোন শক্তিস্তরে অবস্থান করছে? উদ্দীপকের আলোকে বিশ্লেষণ করে।।

৬৬ নং প্রশ্নের উত্তর

থা কোয়ান্টাম তত্ত্বানুষায়ী একটি ফোটনের সাথে কেবলমাত্র একটি ইলেকট্রনের সংঘর্ষ হয় এবং ইলেকট্রন তার গৃহীত শক্তির ভাগ অন্যান্য ইলেকট্রনকে দেয় না। সুতরাং এই সংঘর্ষে শক্তি সংরক্ষিত থাকে এবং একে স্থিতিস্থাপক সংঘর্ষ বলে। স্থিতিস্থাপক সংঘর্ষে শক্তির তাৎক্ষণিক হস্তাত্তর হয় বলে আলোক রশার আপতন ও ইলেকট্রন निर्गमन এই দুইয়ের মাঝে কোন কাল বিলম্বন ঘটে না। সুতরাং ফটোতড়িৎ প্রক্রিয়া একটি তাৎক্ষণিক ঘটনা।

া আইনস্টাইনের সূত্র হতে,
$$12 \mathrm{eV} = \mathrm{h} f - \mathrm{h} f_0$$
 বা, $\mathrm{h} f_0 = \mathrm{h} f - 12 \mathrm{eV}$ বা, $f_0 = f - \frac{12 \mathrm{eV}}{\mathrm{h}}$ বা, $f_0 = f - \frac{12 \mathrm{eV}}{\mathrm{h}}$ বা, $f_0 = 4 \times 10^{15} - \frac{12 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}}$ $f_0 = 1.104 \times 10^{15}$ Hz (Ans.)

য় ইলেকট্রনের শস্তি,
$$E = -\frac{me^4}{8n^2h^2\varepsilon_0^2}$$
 বা, $|E| = \frac{me^4}{8n^2h^2\varepsilon_0^2}$ বা, $|E| = \frac{me^4}{8n^2h^2\varepsilon_0^2}$

ৰা,
$$|E| = \frac{1}{n^2} \times 13.6 \text{ eV}$$

$$41, n^2 = \frac{13.6 \text{ eV}}{12 \text{ eV}}$$

ৰা,
$$n^2 = 1.13$$

বা, n = 1

ইলেকট্রন প্রথম শক্তিস্তরে রয়েছে।

প্ররা⊅৬৭ A ও B ধাড়ুছয়ের কার্য অপেক্ষক যথাক্রমে 5eV ও 3.5eV। ধাতুদ্বয়ের পৃষ্ঠের উপর আলাদাভাবে যথাক্রমে 2250Å 3 4000Å তরঙ্গা দৈর্ঘ্যের আলো আপতিত হয়। (जका इंभाभितियान करनल, जका)

- ক. কম্পটন ক্রিয়া কাকে বলে?
- থ. যে কোনো কম্পাডেকর আলো ফটো তড়িং ক্রিয়া সৃষ্টি করতে পারে কী? ব্যাখ্যা করো।
- গ. A ধাতুর নির্ণত ইলেকট্রনের শক্তি নির্ণয় করো।
- ঘ, উভয় ধাতুর ক্ষেত্রে নিবৃত্তি বিভবের মান এক হবে কী? গাণিতিক বিশ্লেষণ দাও।

৬৭ নং প্রশ্নের উত্তর

ক কোনো একটি শক্তিশালী ফোটনের সাথে মুক্ত ইলেকট্রনের সংঘর্ষ ঘটলে ফোটনটি ইলেকট্রনটিকে কিছু শক্তি প্রদান করে। এতে বিক্ষিপ্ত

ফোটনের তরজ্ঞাদৈর্ঘ্য আপতিত ফোটনের তরজ্ঞাদৈর্ঘ্যের চেয়ে বেশি হওয়াকেই কম্পটন ক্রিয়া বলে।

য়া যেকোনো কম্পাডেকর আলো ফটো তড়িং ক্রিয়া সৃষ্টি হতে পারে না। আলো বা যেকোনো তড়িচ্চুম্বকীয় বিকিরণের শক্তি এর কম্পাডেকর সমানুপাতিক। ধাতব পৃষ্ঠে আপতিত হয়ে ইলেকট্রন অবমুক্ত করতে হলে সংশ্লিষ্ট আলো বা বিকিরণের ন্যুনতম একটি কম্পাঙ্ক বা শক্তি থাকতে হবে। এই কম্পান্তককে সূচন কম্পান্তক বলে। এর চেয়ে কম কম্পান্তক বিশিষ্ট ফোটন আপতিত হলে কোনো ইলেকট্রনই অবমুক্ত হবে না। আর এর চেয়ে বেশি কম্পাডেকর ফোটন আপতিত হলে অতিরিক্ত শক্তি মুক্ত ইলেকট্রনের গতিশক্তি হিসেবে দেখা দিবে।

্ব দেওয়া আছে.

A ধাতুর কার্য অপেক্ষক, $W_0 = 5 \mathrm{eV} = 5 \times 1.6 \times 10^{-19}$ J এর ওপর আপতিত বিকিরণের তরজাদৈর্ঘ্য, λ = 2250Å = 2250 × 10⁻¹⁰m জানা আছে, প্লাংকের ধুবক, $h = 6.63 \times 10^{-34} \text{ Js}$

বের করতে হবে, Λ ধাতুর নির্গত ইলেকট্রনের শক্তি, $\frac{1}{2} \text{ mv}^2_{\text{max}} = ?$ ফটোতড়িৎ ক্রিয়া সম্পর্কিত আইনস্টাইনের সমীকরণ হতে

$$h = \frac{c}{\lambda} = W_0 + \frac{1}{2} mv^2_{max}$$

$$\therefore \frac{1}{2} \, \text{mv}^2_{\text{max}} = h \, \frac{c}{\lambda} - W_0$$

=
$$6.63 \times 10^{-34} \text{ Js} \times \frac{3 \times 10^8 \text{ ms}^{-1}}{2250 \times 10^{-10} \text{m}} - 5 \times 1.6 \times 10^{-19} \text{ J}$$

$$= 8.4 \times 10^{-20}$$
 J $= \frac{8.4 \times 10^{-20}}{1.6 \times 10^{-19}}$ eV

$$= 0.525 \text{ eV}$$
 (Ans.)

য় A ধাতুর ক্ষেত্রে নিবৃত্তি বিভব, V_A হলে, $eV_A = \frac{1}{2} \text{ mv}^2_{\text{max}}$

বা,
$$V_A = \frac{0.525 \text{ eV}}{\text{e}}$$

B ধাতুর ক্ষেত্রে অবমুক্ত ইলেকট্রনের সর্বোচ্চ গতিশস্তি.

$$\frac{1}{2}$$
 mv² max

$$h \frac{c}{\lambda} - W_0$$
 এখানে, $W_0 = 3.5 \text{ eV}$

=
$$h \frac{c}{\lambda} - W_0$$
 | $A = 3.5 \text{ eV}$
= $6.63 \times 10^{-34} \times \frac{3 \times 10^8}{4000 \times 10^{-10}} - 3.5 \times 1.6 \times 10^{-19}$

$$= -6.275 \times 10^{-20} \text{ J}$$

 $\frac{1}{2} \text{ mv}^2_{\text{max}}$ এর এই ঝণাত্মক মান এটাই নির্দেশ করে যে, B ধাতুর

ক্ষেত্রে কোনো ইলেকট্রন অবমুক্ত হবে না।

অর্থাৎ B ধাতুর নিবৃত্তি বিভব = 0V

সূতরাং, উভয় ধাতুর ক্ষেত্রে নিবৃত্তি বিভবের মান এক হবে না।

প্রমা ১৬৮ একটি কাল্পনিক চলমান গাড়ীর ভর 100kg এবং দৈর্ঘ্য নিশ্চল দৈর্ঘ্যের 25%। /नाराम म्कून এङ करमज, तर १३/

- খ. অর্ধায়ু ও ক্ষয় ধ্রুবকের মধ্যে সম্পর্ক প্রতিষ্ঠা করো।
- গ্রন্থীপক হতে কাল্পনিক গাড়িটির বেগ নির্ণয় কর?
- ঘ. গাড়িটি থেমে গেলে বস্তুটির ভরের কোনো পরিবর্তন হবে কি? গাণিতিকভাবে বিশ্লেষণ করো।

৬৮ নং প্রশ্নের উত্তর

ক যে যত্নের সাহায়্যে এসি তড়িৎপ্রবাহকে ডিসি তড়িৎপ্রবাহে পরিণত করা যায় অর্থাৎ তড়িৎপ্রবাহ একমুখী করা যায়, তাকে রেফটিফায়ার বলে ৷

বি কোনো তেজস্ক্রিয় মৌলের পরমাণু সংখ্যা যে সময়ে অর্ধেকে পরিণত হয় সে সময়কে ঐ তেজস্ক্রিয় মৌলের অর্ধায়ু বলে। আমরা জানি, $N=N_0e^{-\lambda t}$

যদি অধায়ু T হয় তাহলে t = T সময় পর, $N = \frac{N_0}{2}$

$$\therefore \frac{N_0}{2} = N_0 e^{-\lambda t} \, \overline{\blacktriangleleft l}, \, \frac{1}{2} = e^{-\lambda T}$$

ৰা,
$$\log_e\left(\frac{1}{2}\right) = -\lambda T$$
 ৰা, $\log_e 1 - \log_e 2 = -\lambda T$

$$\sqrt{1 - \log_e 2} = -\lambda T$$
 [: $\log_e 1 = 0$]

$$\therefore T = \frac{\log_e 2}{\lambda} = \frac{0.693}{\lambda}$$

প্র দেওয়া আছে,

নিশ্চল দৈর্ঘ্য $L_{\rm o}$ হলে গতিশীল দৈর্ঘ্য, $L=L_{\rm o}\times 25\%=\frac{L_{\rm o}}{4}$ জানা আছে, শূন্যস্থানে আলোর গতিবেগ , $c=3\times 10^8~{\rm ms}^{-1}$ বের করতে হবে, কাল্পনিক ট্রেনটির গতিবেগ , v=?

আমরা জানি,
$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$
 বা, $1 - \frac{v^2}{c^2} = \left(\frac{L}{L_0}\right)^2$ বা, $\frac{v^2}{c^2} = 1 - \left(\frac{L}{L_0}\right)^2$ বা, $v = c \sqrt{1 - \left(\frac{L}{L_0}\right)^2}$ $\therefore v = 3 \times 10^8 \text{ ms}^{-1} \times \sqrt{1 - \left(\frac{L_0}{L_0}\right)^2} = 2.90 \times 10^8 \text{ ms}^{-1}$ (Ans.)

উদ্দীপকমতে, বস্তুটির চলমান ভর, m = 100 kg
এবং 'গ' অংশ হতে, গাড়িটির তথা ঐ বস্তুর গতিবেগ,
v = 2.90 × 108 ms⁻¹

∴ বস্তুটির নিশ্চল ভর
$$m_o$$
 হলে । $m = \frac{m_o}{\sqrt{1-\frac{v^2}{c^2}}}$

$$\therefore m_0 = m \sqrt{1 - \frac{v^2}{c^2}}$$
= 100 kg \times \sqrt{1 - \left(\frac{2.90 \times 10^8}{3 \times 10^8}\right)^2}
= 25.60 kg

.. m_o ≠ m

অর্থাৎ নিশ্চল ভর ≠ চলমান ভর

সূতরাং, গাড়িটি থেমে গেলে বস্তুটির ভদ্নের পরিবর্তন ঘটবে এবং দ্রাস পাবে।

প্রায় ১৬৯ একটি ইলেকট্রন 0.80c বেগে গতিশীল প্রির ইলেকট্রনের ভর 9.1 × 10⁻³¹kg। *বি এ এফ গাহীন কলেজ, শমসেরনগর*।

क. कान मीधायन की?

ফটো তড়িৎ ক্রিয়া আলোচনা করো।

গ. উদ্দীপকের ইলেকট্রনের শক্তি কড?

ঘ. উদ্দীপকের ইলেকট্রনের বেগ 0.90c হলে মোট শক্তি স্থিতিশক্তির দ্বিগুণ হবে কিনা? গাণিতিকভাবে বিশ্লেষণ করো।

৬৯ নং প্রশ্নের উত্তর

ক্র ধ্ববেশে গতিশীল কাঠামোতে পরিমাপকৃত সময় ব্যবধানের তুলনায় স্থির কাঠামোতে পরিমাপকৃত সময় ব্যবধান বেশি। এ বিষয়টি কাল দীর্ঘায়ন নামে পরিচিত।

একটি নির্দিষ্ট তরজাদৈর্ঘ্যের আলোক রশ্মি যখন কোনো ধাতব পৃষ্ঠে আপতিত হয় তখন ধাতব পৃষ্ঠের ইলেকট্রন আলোক রশ্মি থেকে শক্তি গ্রহণ করে। যখনই ইলেকট্রন দ্বারা গৃহীত শক্তি ধাতব পৃষ্ঠে তার বন্ধন শক্তির চেয়ে বেশি হয়, তখনই ইলেকট্রন ধাতব পৃষ্ঠ থেকে বেরিয়ে আসে। আলোকের প্রভাবে ইলেকট্রন নির্গত হয় বলে এ ঘটনাকে ফটোতড়িৎ ক্রিয়া বলে। া ইলেক্ট্রনের নিশ্চল ভর, $m_0 = 9.11 \times 10^{-31} \text{ kg}$

∴ ইলেকট্রনের শক্তি, E = ?

ইলেকট্রনের বেগ, v = 0.8c এবং এই বেগে ইলেকট্রনের পরিমাপকৃত ভর m হলে,

$$E = mc^{2}$$

$$= \frac{m_{0}c^{2}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$= \frac{9.11 \times 10^{-31} \times (3 \times 10^{8})^{2}}{\sqrt{1 - \left(\frac{0.8c}{c}\right)^{2}}}$$

 $E = 1.3665 \times 10^{-13} J$ = $8.54 \times 10^{5} \text{ eV} = 0.854 \text{ MeV (Ans.)}$

ইলেকট্রনের নিশ্চল শক্তি E_0 এবং বেগ v'=0.9c অবস্থায় শক্তি E' হলে.

$$E_0 = m_0 c^2$$

এবং E' =
$$\frac{m_0 e^2}{\sqrt{1 - \frac{{v'}^2}{e^2}}}$$

$$\frac{E'}{E_0} = \frac{1}{\sqrt{1 - \frac{v'^2}{c^2}}}$$

$$= \frac{1}{\sqrt{1 - (0.9)^2}}$$

$$= 2.3$$

 $\therefore E' = 2.3 E_0$

অতএব, ইলেকট্রনের বেগ 0.9c করা হলে এর মোট শক্তি নিশ্চল শক্তির 2 গুলেরও বেশি হবে।

প্রবা ৭০ একটি ইলেকট্রনের পরমাণুর অভ্যন্তরে অবস্থানের অনিশ্চয়তা 0.0100 nm। /আলকার্টি সরকারি কলেজ, আলকার্টি।

ক. আপেক্ষিকতা তত্ত্বের দ্বিতীয় স্থীকার্যটি কি?

থ. একই গতিশক্তি সম্পন্ন প্রোটন ও ইলেকট্রনের মধ্যে ইলেকট্রনের ডি-ব্রগলী তরজা দৈর্ঘ্যে বেশী কেন? ২

গ, অবস্থানের এই অনিকয়তার জন্য ইলেকট্রনের ডি-ব্রগলী তরজা দৈর্ঘ্যের মান কত?

ঘ় অবস্থানের এই অনিশ্চয়তার জন্য ইলেকট্রনের গতিশক্তি নির্ণয় করা সম্ভব কি? গাণিতিকভাবে যাচাই করো।

৭০ নং প্রশ্নের উত্তর

ক্র শৃন্যস্থানে সকল জড় প্রসজা কাঠামোতে আলোর দ্রুতি c এর মান একই।

মনে করি, প্রোটন ও ইলেকট্রনের বেগ যথাক্রমে v_1 ও v_2 এবং এদের ভর যথাক্রমে m_1 ও m_2 ($m_1 >> m_2$)

তাহলে এদের গতিশক্তি যথাক্রমে, $E_{k1} = \frac{1}{2} m_1 v_1^2$ এবং

$$E_{k2} = \frac{1}{2} m_2 v_2^2$$
.

প্রশ্নতে, $E_{k_1} = E_{k_2}$ বা, $\frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_2 v_2^2$.

বা,
$$\frac{m_1}{m_2} = \left(\frac{v_2}{v_1}\right)^2$$

$$\overline{q}$$
, $\frac{V_2}{V_1} = \sqrt{\frac{m_1}{m_2}}$

তাহলে এদের ভরবেগের অনুপাত $\frac{p_1}{p_2} = \frac{m_1 v_1}{m_2 v_2} = \frac{m_1}{m_2} \sqrt{\frac{m_2}{m_1}}$ $= \sqrt{\frac{m_1}{m_2}} > 1 \quad (\because m_2 << m_1)$ বা, $p_1 > p_2$; অর্থাৎ প্রোটনের ভরবেগ ইলেকট্রনের ভরবেগের তুলনায়

বা, $p_1 > p_2$; অর্থাৎ প্রোটনের ভরবেগ ইলেকট্রনের ভরবেগের তুলনায় বেশি। আবার ডিব্রগলী তরজাদৈর্ঘ্য, $\lambda_d = \frac{h}{p}$; এ সূত্রানুসারে ইলেকট্রনের ভরবেগ কম হওয়ায় এর ডিব্রগলী তরজা দৈর্ঘ্য বেশি।

ৰ দেওয়া আছে,

ইলেকট্রনের অবস্থানের অনিশ্চয়তা, $\Delta x = 0.0100 \text{ nm} = 1 \times 10^{-11} \text{m}$ অনিশ্চয়তার নীতি অনুসারে, $\Delta x \Delta p \ge \frac{1}{2} \times \hbar$

এখানে, $\Delta p = mv = 5.28 \times 10^{-24} \text{ kgms}^{-1}$ এখানে.

ইলেকট্রনের ডি-ব্রগলি তরঞ্জ দৈর্ঘ্য, $\lambda = \frac{h}{\Delta n}$ $= \frac{6.63 \times 10^{-34} \text{ Js}}{5.28 \times 10^{-24} \text{ kgms}^{-1}}$ $= 1.255 \times 10^{-10} \text{ m}$

 অবস্থানের এই অনিশ্বয়তার জন্য ইলেকট্রনের ডি- বর্গলি তরজা দৈৰ্ঘ্য = 1.255 × 10⁻¹⁰ m

ব দেওয়া আছে,

ইলেকট্রনের অবস্থানের অনিশ্চয়তা, $\Delta x = 0.0100 \; \mathrm{nm}$

$$= 1 \times 10^{-11} \text{m}$$

অনিশ্চয়তার নীতি অনুসারে, $\Delta x \Delta p \ge \frac{n}{2}$

বা,
$$\Delta x \Delta p \ge \frac{1}{2} \times \frac{h}{2\pi}$$

বা, $\Delta p \ge \frac{h}{4\pi \Delta x}$

$$= \frac{6.63 \times 10^{-34} \text{ Js}}{4 \times 3.1416 \times 1 \times 10^{-11} \text{m}} = 5.28 \times 10^{-24} \text{kg ms}^{-1}$$

এখানে.

$$\Delta p = mv = 5.28 \times 10^{-24} \text{ kgms}^{-1}$$

$$\forall v = \frac{5.28 \times 10^{-24}}{9.1 \times 10^{-31}} \text{ ms}^{-1}$$

$$= 5.8 \times 10^6 \text{ ms}^{-1}$$

∴ ইলেকট্রনের গতিশক্তি, E_k = ½ mv² $=\frac{1}{2}\times9.1\times10^{-31}\times(5.8\times10^6)^2$ $= 1.53 \times 10^{-17} \text{ J}$

অতএব, অবস্থানের এই অনিশ্চয়তার জন্য ইলেকট্রনের গতিশন্তি নির্ণয় সম্ভব ৷

প্রদা > ৭১ সমত্বরণে গতিশীল 100m দৈর্ঘ্যের একটি মহাকাশ্যান পৃথিবীর থেকে মজাল গ্রহের দিকে যাচ্ছিল। পৃথিবী থেকে কোনো এক মুহুর্তে মহাকাশযানটির দৈর্ঘ্য পরিমাপ করে 90m পাওয়া গেল।

/कृष्टिशाय भवकाति करमणः कृष्टिशाय/

- ক. amu বলতে কী বোঝ?
- থ, আলোর বেগে গতিশীল কণার নিশ্চল ভর কত-ব্যাখ্যা করো। ২
- গ, উদ্দীপকের তথ্যাণুসারে দৈর্ঘ্য পরিমাপের সময় মহাকাশযানটির বেগ নির্ণয় করো।
- ঘ্যাপেক্ষিকতা তত্ত্বাণুসারে যানটির ভরের পরিবর্তন গাণিতিকভাবে বিশ্লেষণ করো।

৭১ নং প্রশ্নের উত্তর

ক কার্বন-12 আইসোটোপ এর পরমাণুর ভরের $\frac{1}{12}$ অংশকে এক পারমাণবিক ভর (atomic mass unit বা a. m. u) ধরা হয়। $amu = 1.66057 \times 10^{-27} \text{ kg}$

ল_o নিশ্চল ভরবিশিই কোন বস্তুর গতিশীল অবস্থায় মোট শক্তি. $E = \sqrt{P^2c^2 + m_0^2c^4}$ $\therefore E^2 = m_0^2c^4 + P^2c^2$

আবার, দ্য ব্রগলীর কণা-তুরজ্ঞা সমীকরণ থেকে পাই, $P = \frac{h}{\lambda}$, $\lambda = \frac{v_p}{v}$, যেখানে v_p হলো তরজা বেগ এবং v হলো কম্পাংক। আলোর ক্ষেত্রে $\lambda = \frac{c}{c}$

$$\therefore P = \frac{hv}{c} = \frac{E}{c}$$

$$\therefore E^2 = m_0^2 c^4 + \frac{E^2}{c^2} \cdot c^2$$

অতএব, আলোর বেগে গতিশীল কোন কণার নিশ্চল ভর অবশ্যই শূন্য হৰে।

প্র এখানে

নিশ্চল দৈৰ্ঘ্য, L₀ = 100m চলমান দৈৰ্ঘ্য, L = 90m আলার বেগ, $C = 3 \times 10^8 \text{ms}^{-1}$ মহাকাশযানটির বেগ, v = ?

আমরা জানি

য় মনে করি.

যানটির নিশ্চল ভর = mo চলমান জর = m যানটির বেগ, $v = 1.31 \times 10^8 \text{ ms}^{-1}$ গি থেকে প্রাপ্ত আমরা জানি.

$$m=\frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}$$
 বা, $\frac{m_0}{m}=\sqrt{1-\frac{v^2}{c^2}}=\sqrt{1-\left(\frac{1.31\times 10^8}{3\times 10^8}\right)^2}$ বা, $\frac{m_0}{m}=0.9$ বা, $\frac{m}{m_0}=\frac{1}{0.9}$ বা, $\frac{m-m_0}{m_0}\times 100\%=\frac{1-0.9}{1}\times 10\%=10\%$ অতএব, গতিশীল অবস্থায় বস্তুটির ভর 10% বৃদ্ধি পাবে।

পদার্থবিজ্ঞান

অফ সূচন	-	মধ্যায় : আধু	নিক	পদার্থবিজ্ঞানের		২৫৭. স্থিরাবস্থায় একটি বন্ধু কণার ভর 10 ⁻²⁴ kg কণাটি 18×10 ⁷ ms ⁻¹ বেগে গতিশীল ধাকলে ও অবস্থায় এর ভর কত? (প্রয়োগ)	
२ 8४.	আ	পক্ষিক তত্ত্ব প্রদান		কোন বিজ্ঞানী? (জ্ঞান)		3 1.25 × 10 ⁻²⁴ kg 1 1.25 × 10 ²⁴ kg	_
	(3)	ম্যাক্স প্র্যাভক		আলবার্ট আইনস্টাইন		① 1.25 × 10 ⁻¹⁴ kg ③ 1.25 × 10 ⁻¹⁵ kg	•
4	1	গ্যালিলিও গ্যালিনি	न 🕲	আইজ্যাক নিউটন	0	২৫৮. কোনো বস্তুকণার মোট শক্তি স্থিতাবস্থায	
২৪৯.	ডৱ-	-শক্তি সম্পর্কে বে	সূত্র	প্রদান করেন? (জ্ঞান)		শক্তির কতগুণ হলে এর দুতি 2.24×108ms	
	(3)	ম্যাক্স প্ল্যাডক				रत्र (अस्त्रान)	
	1	আলবার্ট আইনই				. 🔞 0.67 পুল 🌒 1.5 পুল	0
		গ্যালিলিও গ্যালি				৩ 2,67 গুল৩ 3.67 গুল	
		আইজ্যাক নিউট		= .	0	২৫৯. 🚾 গতিবেগের একটি প্রোটনের গতিশক্তি =	
200.	আ	লাক বর্ষ কীসের	একক	? (6/14)		√2 0.414m ₀ c² এর ভরবেগ কত? (প্রয়োগ)	
	(1)	দ্রুতির	(1)	<u> পূরত্বের</u>		⊕ m _o c	
	(1)	সময়ের	(3)	কম্পাংকের	0	⊕ √3 m _o c	a
203.	नाद	জে রূপান্তরের ফরে	म रख्	র কোনটির পরিবর্তন		২৬০, দুর্বল নিউক্লীয় বলের পাল্লা কত? (জান)	_
	र ग्न	ना? (कान)					
	(4)	বেগের	1	মাত্রার		⑦ 10 ⁻¹⁶ m ③ 10 ⁻¹⁷ m	0
	1	তুরনের	(8)	ভরের	0	২৬১, কোন বিজ্ঞানী বিকীর্ণ বর্ণালীর শক্তি বন্টন	ī
202.	গ্যা	লিলীয় রূপান্তরে	কয়টি	সমীকরণ বিদ্যমান?		সম্পর্কে একটি সূত্র প্রদান করেন? (আন)	7.
25.90	(3)		102	6 H		 বাদার ফোর্ড	
	®	1	(1)	2	_	 গু হাইজেনবার্গ গু জীন 	0
	-	3	(1)	4	0	২৬২. h কী নামে পরিচিত? আইভিয়াল স্কুল এছ	~
২৫৩.				আয়ু 3×10 ⁻⁸ ms ⁻¹		কলেজ, মতিঝিল, ঢাকা] (ভান)	
				ল হলে এর গড় আয়ু		 ভিরাক ধ্বক প্রান্তক ধ্বক 	3
	10000	A STATE OF THE PARTY OF THE PAR	মো	লা কলেজ, নরসিংদী]		 কম্পটন ধ্রুবক ডি ব্রগলি ধ্রুবক 	0
	(80	nn) 6,32×10 ⁸ sec	(90)	6.02-10-8-00		২৬৩. প্ল্যাডেকর ধ্বকের মান কড়া (প্রয়োগ)	92
					G	⑥ 6.36 × 10 ⁻¹⁷ J-sec® 6.36 × 10 ⁻¹⁴ J-sec	_
140		5.62×10 ⁻⁴ sec		3.02×10 sec - ৪০m দৈর্ঘ্যের একটি	(4)	⑤ 6.66 × 10 ⁻³⁷ J-sec⑤ 6.63 × 10 ⁻³⁴ J-sec	0
५५७.						২৬৪. একটি ফোটনের শক্তি 1.77 eV. ফোটনের	
	প্লাটকর্ম অতিক্রম করে গেলে ট্রেনের যাত্রীর কাছে প্লাটকর্মের দৈর্ঘ্য কত মনে হবে? আপুল					তরজ্ঞাদৈর্ঘ্য নির্ণয় কর। [যেখানে, প্লাডেকর ধুবৰ	•
		न्द्र सावपटनत्र एव नद्र साम्रा भिप्ति करन				= 6.63 × 10 ⁻³⁴ J-Sec] (প্রয়োগ)	
		200 m		250 m		③ 7.02 Å ④ 7.02 × 10 ⁻⁷ cm	
	15/15/16	160 m		300 m	0	⑦ 7.02 × 10 ⁻⁷ m ③ 3.5 × 10 ⁻¹⁰ cm	0
200.	এক	টি সেকেড দো	লক (1.7c বেগে গতিশীল		২৬৫. এক আলোক বর্ষে কত কিলোমিটার? (বসুড়	
	অৰম্পায় রাখা আছে। পৃথিবীতে অবস্থিত					ক্যান্টনমেন্ট পাৰলিক স্ফুল ও কলেজ, ৰগুড়া; আৰুস কাদের মোচা সিটি কলেজ, নরসিংশী। (জ্ঞান)	K .
	পর্যা	বেক্ষকের নিকট	वे ८	দালকের দোলনকাল		9.4 × 10 ¹⁵ km	
	1900	? (প্রয়োগ)	case in	27924041		® 9.4 × 109 km ® 9.4 × 108 km	0
		2.0sec		2.5sec		২৬৬, সোডিয়ামের সূচন তরজা দৈর্ঘ্য 6800Å এর কার্য	f
		2.7sec		2.8sec	U	অপেক্ষক কতা (প্রয়োগ)	
२०७.	ভূপ্	ন্ত থেকে 100m	। (मा	র্য্যের একটি রকেট		⊕ 1.6 × 10 ⁻¹⁹ J ⊕ 2.93 × 10 ⁻¹⁹ J	
				তিশীল থাকলে, এ —-	N-	® 3.92 × 10 ⁻¹⁹ J ® 3.6 × 10 ⁻¹⁹ J	0
		স্থায় রকেটের দৈ				২৬৭. E = bu সূত্রটি প্রদান করেন— (জ্ঞান)	_
	953	78.47m		76.74m	F	জি ফ্যারাডে জি আইনস্টাইন	
	0	75.55m	(9)	74.53m	0		200

২৬৮.			তে— (অনুধাৰন)		(17)	iii B ii	(Ti i i i i ii	@
Н.	i.	স্থির বস্তু স্থির	পাকে		২৭৪. X-ray হলো— (অনুধানন)			
		বাহ্যিক বল অনু	মবেণে গতিশীল থাকে		i. তড়িৎ চৌঘলীয় তরজা			
		বাহ্যক বল অনু চর কোনটি সঠিব			m 20	The second second second	^{ম ৩রত।} ই 10 ^{-র} সীমার তরজাদৈ	wite.
		i e ii	® i Siii	20	110	বিশিষ্ট তরজা		20
			⊕ i, ii S iii	0	***		নায় নিঃসরিত হয়	
545		17 1-17 1-17	সমান বেগে গতিশীল হতে	-	নিচের কোনটি সঠিক?			
100			র সাপেক্ষে তার— (অনুধাবন)			i e ii	€ ii € iii	
	11	ভর অসীম হবে	ii. দৈর্ঘ্য অসীম হবে	58	- 12	(Nowelland	See Windowskins	-
		গময় অসীম হ			0		® i, ii € iii	40
1 3		চর কোনটি সঠিব			২৭৫. এক্সরে প্রতিপ্রভা সৃষ্টি করে— (১৯৩র দছতা)			
		í ଓ íi	(ii v iii		i.	জিডক সালফাই		
. 1		i ii ii ii ii	(1) i, ii v iii	@	ű.			
90.	2000		টি নভোষান 55 kg ভরের	1		বেরিয়াম প্লাটি		
10/25			ণে মহাকাশে গতিশীল হলে		1,500	তের কোনটি সঠি		
		(উচ্চতর দক্ষতা)			S33	i B'i	® i o iii	
		নভোযানে ঘড়ি	আন্তে চলবে		•	iii & ii	® i, ii ⊗ iii	. 3
			यात्नत्र रेनर्चा मत्न 43,59 m श्दर	1	উদ্দীপকৃটি	न भएंड़ २१७ ७ २	ং৭৭ নং প্রশ্নের উত্তর দাও	Í
			ভর 126 kg হবে		তোমার বন্ধুর ভর 🗴 কেজি। তুমি ভূপৃষ্ঠে অবস্থানকালে			
	निटा	চর কোনটি সঠিব	F7 =		তার ভর তোনার কাছে 101 কেজি মনে হয়, যখন সে			
•	3	i G ii					াযানে উঠে চলছে।	
	1	ii e iii	® i, ii ଓ iii	0	296. x=	= ? (द्रद्यान)	7. m.	
۱۹۵.			ক্তি — (অনুধাৰন)		@	100	101	
	i.		2.		•	102	103	0
	11.	2.8125×10^{30} 2.8125×10^{27}	MaV		২৭৭. তে	ামার বন্ধুর ভর-	— (অনুধাৰন)	
	निटा	র কোনটি সঠিব	59		i. তোমার দৃষ্টিতে বেড়ে গেছে			
		® i 4 ii € ii € ii €			ii. তার দৃষ্টিতে স্বাভাবিক রয়ে গেছে			
		6.0		9	iii.	উভয়ের দৃষ্টিত		
) i ও iii			নিচের কোনটি সঠিক?			
44.						រែ ខ រ៉េ	ii v iii	
			নের মধ্যে বিদ্যমান		- 37	ii 3 iii	(9 i, ii (8 iii	0
10		মাঝারি ধরনের			-			•
		অসীম পর্যক্ত বি			অনুচ্ছেদটি পড়ে ২৭৮ ও ২৭৯ নং প্রশ্নের উত্তর দাও : 4000A তরজাদৈর্ঘ্যের আলো কোন ধাতব পৃষ্ঠে			
		তর কোনটি সঠিব	Olement and the second		আপতিত হলে যে ইলেকট্রন নির্গত হয় তার সর্বোচ্চ			
	.5.	i e ii	(ii 9 iii			यान 0.4 eV.	11-10-41 019 -1(410)	
		ii & iii	(1) i, ii (8 iii	0		- Part 14	আপতিত ফোটনের শ	Der
90.	कृष	বস্তুর তাপমাত্রা	ধীরে ধীরে বৃদ্ধি করতে				গুরেছা সরকারি কলেজ, কুমি	
	থাব	বে—(অনুধাৰন)				आन) अह (निट्यान क्लाबर	गुरम्या नवस्थात्र स्थलन, सूथ्य	HU
	i, .	850K তাপমাত্র	ায় লাল বর্ণ ধারণ করে		300	V () () () ()	® 3.1 × 10 ⁻⁴ eV	
20	ii.	3000 K তাপমা	তায় সাদা বর্ণ ধারণ করে			$3.1 \times 10^{-2} \text{ eV}$		0
- 6	iii.		কম তাপমাত্রায় হলুদ বর্ণ		and the second s		ক্ক কতা নিজ্ঞাৰ ফল্যালুত	100
		ধারণ করে	The second secon		সরকারি কপেতা, কুমিয়া (প্রয়োগ)			
	निद	ন্ম কোনটি সঠিব	57-	3		2,708 eV	③ 3.7078 eV	
		i G ii .	(i is iii	_	•	3.9078 eV	③ 4.3078 eV	0
					100			