10

15

20

CLAIMS

1. A compound of formula (XII)

$$R^{10}$$
 R^{10}
 R^{10}

wherein R^7 is H, alkyl, heteroalkyl, aryl, or -CH₂-C₆H₄OR¹⁴;

R8 is H, alkyl, heteroalkyl, or aryl;

 R^9 is H, alkyl, heteroalkyl, aryl, or $-C_6H_4OR^{15}$;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are independently enzyme-removable groups; with the proviso that R¹¹, R¹⁴, and R¹⁵ are not all acetyl groups.

2. The compound of claim 1, wherein $R^7 \text{ is -CH}_2\text{-}C_6H_5, \text{ naphthyl, -CH}_2\text{-}C_6H_4OH, -CH}_2\text{-}C_6H_4F, \text{ or -CH}_2\text{-}C_6H_4OR^{14};}$

 R^8 is $-CH_2C_6H_5$, $-CH_2C_6H_{11}$, $-CH_2C_5H_9$, or $-(CH_2)_3NHC(=NH)NH_2$; and

 R^9 is phenyl, indolyl, -C₆H₄OH, -C₆H₄NH₂, -C₆H₄F, or -C₆H₄OR $^{15}.$

- 3. The compound of claim 1, wherein R^{11} , R^{14} , and R^{15} are esters.
- 4. The compound of claim 1, wherein R¹¹ is acetyl; and R¹⁴ and R¹⁵ are independently butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.
- 5. The compound of claim 1, wherein R¹¹ is butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl; and

R¹⁴ and R¹⁵ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.

6. A compound of formula (XII)

$$R^{10}$$
 R^{10}
 R

wherein

wherein R^7 is H, alkyl, heteroalkyl, aryl, or -CH2-C6H4OR¹⁴;

R⁸ is H, alkyl, heteroalkyl, or aryl;

R⁹ is H, alkyl, heteroalkyl, aryl, or -C₆H₄OR¹⁵;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are independently enzyme-removable groups;

10 and

5

15

20

wherein the concentration of the compound in a mixture comprising F12 medium and 10% fetal bovine serum at 22°C is reduced by less than 50% after 45 minutes.

7. The compound of claim 6, wherein $R^7 \text{ is -CH}_2\text{-C}_6H_5, \text{ naphthyl, -CH}_2\text{-C}_6H_4OH, -CH}_2\text{-C}_6H_4F, \text{ or -CH}_2\text{-}$ $C_6H_4OR^{14};$

 R^8 is -CH₂C₆H₅, -CH₂C₆H₁₁, -CH₂C₅H₉, or –

(CH₂)₃NHC(=NH)NH₂; and

 R^9 is phenyl, indolyl, $-C_6H_4OH$, $-C_6H_4NH_2$, $-C_6H_4F$, or $-C_6H_4OR^{15}$.

8. The compound of claim 6, wherein R^{11} , R^{14} , and R^{15} are esters.

9. The compound of claim 6, wherein R¹¹, R¹⁴, and R¹⁵ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.

10

15

10. A compound of formula (XII)

wherein R^7 is H, alkyl, heteroalkyl, aryl, or -CH₂-C₆H₄OR¹⁴;

R⁸ is H, alkyl, heteroalkyl, or aryl;

R⁹ is H, alkyl, heteroalkyl, aryl, or -C₆H₄OR¹⁵;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are independently enzyme-removable groups;

and

wherein the removal of at least one enzyme-removable group provides a parent compound; and

wherein the time necessary for the concentration of the compound in a mixture comprising F12 medium and 10% fetal bovine serum at 22°C to be reduced by 50% is greater than the time necessary for the concentration of the parent compound in a mixture comprising F12 medium and 10% fetal bovine serum at 22°C to be reduced by 50%.

- 11. The compound of claim 10, wherein the removal of at least two enzyme-removable groups provides the parent compound.
- 12. The compound of claim 10, wherein the removal of all enzymeremovable groups provides the parent compound.

20 13. The compound of claim 10, wherein $R^7 \text{ is -CH}_2\text{-}C_6H_5, \text{ naphthyl, -CH}_2\text{-}C_6H_4OH, -CH}_2\text{-}C_6H_4F, \text{ or -CH}_2\text{-}C_6H_4OR^{14};}$

 $R^8 \ is \ -CH_2C_6H_5, \ -CH_2C_6H_{11}, \ -CH_2C_5H_9, \ or \ (CH_2)_3NHC(=NH)NH_2; \ and$

 R^9 is phenyl, indolyl, $-C_6H_4OH$, $-C_6H_4NH_2$, $-C_6H_4F$, or $-C_6H_4OR^{15}$.

- 14. The compound of claim 10, wherein R¹¹, R¹⁴, and R¹⁵ are esters.
- 15. The compound of claim 10, wherein R¹¹, R¹⁴, and R¹⁵ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.
 - 16. A compound of formula (XIII) or (XIV)

$$R^{13}$$
 R^{12}
 R^{14}
 R^{15}
 R

wherein R⁷ is H, alkyl, heteroalkyl, aryl, or -CH₂-C₆H₄OR¹⁴; R⁸ is H, alkyl, heteroalkyl, or aryl;

 $\ensuremath{\mathsf{R}}^{12}$ and $\ensuremath{\mathsf{R}}^{13}$ are independently -H, -OH, alkyl, heteroalkyl, aryl,

or -OR¹⁶;

n is 0, 1, or 2; and

 R^{11} , R^{14} , and R^{16} are independently enzyme-removable groups.

10

- 17. The compound of claim 16, wherein $R^7 \text{ is -CH}_2\text{-C}_6H_5, \text{ naphthyl, -CH}_2\text{-C}_6H_4\text{OH, -CH}_2\text{-C}_6H_4\text{F, or -CH}_2\text{-}C_6H_4\text{OR}^{14}; \text{ and} \\ R^8 \text{ is -CH}_2\text{C}_6H_5, \text{-CH}_2\text{C}_6H_{11}, \text{-CH}_2\text{C}_5H_9, \text{ or --} \\ (\text{CH}_2)_3\text{NHC}(=\text{NH})\text{NH}_2.$
 - 18. The compound of claim 16, wherein R¹¹, R¹⁴, and R¹⁶ are esters.
- 19. The compound of claim 16, wherein R¹¹, R¹⁴, and R¹⁶ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.

10

5

- 20. The compound of claim 16, wherein n is 1.
- 21. A composition, comprising:the compound of claim 1 in solution.
- 22. The composition of claim 21, wherein the solution is an aqueous solution.

23. The composition of claim 21, wherein the solution comprises DMSO or alcohol.

- 24. A composition, comprising: the compound of claim 6, in solution.
- 25. The composition of claim 24, wherein the solution is an aqueous solution.
 - 26. The composition of claim 24, wherein the solution comprises DMSO or alcohol.
 - 27. A composition, comprising:the compound of claim 10, irr solution.

10

15

20

25

- 28. The composition of claim 27, wherein the solution is an aqueous solution.
- 29. The composition of claim 27, wherein the solution comprises DMSO or alcohol.
- 30. A composition, comprising:the compound of claim 16, in solution.
 - 31. The composition of claim 30, wherein the solution is an aqueous solution.
 - 32. The composition of claim 30, wherein the solution comprises DMSO or alcohol.
 - A protected luminophore, which is a modified coelenterazine;

wherein the enol group has been converted to an ester or an ether comprising an enzyme-removable group; the removal of said enzyme-removable group providing a parent coelenterazine; and

wherein the time necessary for the concentration of the modified coelenterazine in a mixture comprising F12 medium and 10% fetal bovine serum at 22°C to be reduced by 50% is greater than the time necessary for the concentration of the parent coelenterazine in a mixture comprising F12 medium and 10% fetal bovine serum at 22°C to be reduced by 50%.

- 34. A kit, comprising:a protected luminophore; anda luminogenic protein.
- 35. The kit of claim 34, further comprising a deprotecting enzyme separate from the luminophore.
 - 36. The kit of claim 34, wherein the protected luminophore and the luminogenic protein are in separate containers.

- 37. The kit of claim 34, wherein the protected luminophore and the luminogenic protein are in the same container.
 - 38. A kit, comprising:
 - a protected luminophore; and
 - a deprotecting enzyme;

wherein the luminophore and the deprotecting enzyme are in separate containers.

39. A method of measuring the enzymatic activity of a luminogenic protein comprising:

contacting a luminogenic protein, a deprotecting enzyme, and a protected luminophore in solution to form a composition; and detecting light produced from the composition.

- 40. The method of claim 39, wherein the luminogenic protein is *Renilla* luciferase.
- 41. The method of claim 39, wherein the protected luminophore is a compound of formula (XII)

$$R^{10}$$
 R^{10}
 R

wherein $\ensuremath{\mbox{R}^{7}}$ is H, alkyl, heteroalkyl, aryl, or -CH2-C6H4OR $^{14};$

R⁸ is H, alkyl, heteroalkyl, or aryl;

 R^9 is H, alkyl, heteroalkyl, aryl, or -C6H4OR $^{15};$

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are independently enzyme-removable groups.

10

5

15

10

42. The method of claim 41, wherein $R^7 \text{ is -CH}_2\text{-}C_6H_5\text{, naphthyl, -CH}_2\text{-}C_6H_4\text{OH, -CH}_2\text{-}C_6H_4\text{F, or -CH}_2\text{-}C_6H_4\text{OR}^{14}\text{;}}$

 R^8 is $-CH_2C_6H_5$, $-CH_2C_6H_{11}$, $-CH_2C_5H_9$, or -

(CH₂)₃NHC(=NH)NH₂; and

 R^9 is phenyl, indolyl, $-C_6H_4OH$, $-C_6H_4NH_2$, $-C_6H_4F$, or $-C_6H_4OR^{15}$.

- 43. The method of claim 41, wherein R¹¹, R¹⁴, and R¹⁵ are esters.
- 44. The method of claim 41, wherein R¹¹, R¹⁴, and R¹⁵ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.
- 45. The method of claim 39, wherein the protected luminophore is a compound of formula (XIII) or (XIV)

$$R^{13}$$
 R^{12}
 $R^{11}O$
 R^{7}
 $R^{11}O$
 R^{7}
 R^{13}
 R^{12}
 R^{12}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{14}
 R^{15}
 R

wherein R⁷ is H, alkyl, heteroalkyl, aryl, or -CH₂-C₆H₄OR¹⁴;

 R^8 is H, alkyl, heteroalkyl, or aryl; $R^{12} \mbox{ and } R^{13} \mbox{ are independently -H, -OH, alkyl, heteroalkyl, aryl,} \\ \mbox{ or -OR16;}$

n is 0, 1, or 2; and

R¹¹, R¹⁴, and R¹⁶ are independently enzyme-removable groups.

46. The method of claim 45, wherein $R^7 \text{ is -CH}_2\text{-}C_6H_5\text{, naphthyl, -CH}_2\text{-}C_6H_4OH\text{, -CH}_2\text{-}C_6H_4F\text{, or -CH}_2\text{-}C_6H_4OR^{14}\text{; and}$

 $R^8 \text{ is -CH}_2C_6H_5, \text{-CH}_2C_6H_{11}, \text{-CH}_2C_5H_9, \text{ or } (CH_2)_3NHC(=NH)NH_2.$

- 47. The method of claim 45, wherein R¹¹, R¹⁴, and R¹⁶ are esters.
- 48. The method of claim 45, wherein R¹¹, R¹⁴, and R¹⁶ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.

49. The method of claim 45, wherein n is 1.

- 50. The method of claim 39, wherein the composition comprises a cell.
- 51. The method of claim 39, wherein the composition comprises a cell which contains the deprotecting enzyme.
- 52. The method of claim 51, wherein detecting light produced from the composition indicates the location of the deprotecting enzyme in a cell.
- 53. The method of claim 39, wherein the composition comprises a cell lysate.
- 54. The method of claim 39, wherein the deprotecting enzyme is an esterase.

15

5

10

20

- 55. The method of claim 39, wherein the solution is an aqueous solution.
 - 56. The method of claim 39, wherein the solution comprises DMSO.
- 57. The method of claim 39, wherein the protected luminophore is a modified coelenterazine;

wherein the enol group has been converted to an ester or an ether comprising an enzyme-removable group.

58. A method of generating luminescence in a living cell comprising a luciferase, the method comprising:

contacting the cell in solution with a protected luminophore.

59. The method of claim 58, wherein the protected luminophore is a modified coelenterazine;

wherein the enol group has been converted to an ester or an ether comprising an enzyme-removable group.

60. The method of claim 58, wherein the protected luminophore is a compound of formula (XII)

$$R^{10}$$
 R^{10}
 R^{10}

wherein R^7 is H, alkyl, heteroalkyl, aryl, or -CH₂-C₆H₄OR¹⁴;

R⁸ is H, alkyl, heteroalkyl, or aryl;

 R^9 is H, alkyl, heteroalkyl, aryl, or -C₆H₄OR¹⁵;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are independently enzyme-removable groups.

15

5

10

61. The method of claim 58, wherein the protected luminophore is a compound of formula (XIII) or (XIV)

$$R^{11}O$$
 $R^{11}O$
 R^{13}
 R^{13}
 $R^{14}O$
 $R^{15}O$
 R^{7}
 $R^{14}O$
 R^{7}
 $R^{14}O$
 R^{7}
 $R^{15}O$
 R^{7}
 $R^{15}O$
 R^{7}
 $R^{15}O$
 R^{15}

wherein R^7 is H, alkyl, heteroalkyl, aryl, or -CH₂-C₆H₄OR¹⁴; R^8 is H, alkyl, heteroalkyl, or aryl;

(XIV);

R¹² and R¹³ are independently -H, -OH, alkyl, heteroalkyl, aryl,

n is 0, 1, or 2; and

R¹¹, R¹⁴, and R¹⁶ are independently enzyme-removable groups.

62. A method of measuring the enzymatic activity of a non-luminogenic enzyme, comprising:

contacting a non-luminogenic enzyme with a liquid mixture comprising a luminogenic protein and a protected luminophore to form a composition; and

detecting light produced from the composition.

10

or -OR16;

5

63. The method of claim 62, wherein the protected luminophore is a modified coelenterazine;

wherein the enol group has been converted to an ester or an ether comprising an group that is removable by the non-luminogenic enzyme.

64. The method of claim 62, wherein the protected luminophore is a compound of formula (XII)

wherein R^7 is H, alkyl, heteroalkyl, aryl, or $-CH_2-C_6H_4OR^{14}$;

R⁸ is H, alkyl, heteroalkyl, or aryl;

R⁹ is H, alkyl, heteroalkyl, aryl, or -C₆H₄OR¹⁵;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are independently enzyme-removable groups that are removable by the non-luminogenic enzyme.

65. The method of claim 62, wherein the protected luminophore is a compound of formula (XIII) or (XIV)

(XIII);

10

15

(XIV);

wherein \mbox{R}^{7} is H, alkyl, heteroalkyl, aryl, or -CH2-C6H4OR $^{14};$

R⁸ is H, alkyl, heteroalkyl, or aryl;

R¹² and R¹³ are independently -H, -OH, alkyl, heteroalkyl, aryl,

or -OR¹⁶;

5

n is 0, 1, or 2; and

 ${\sf R^{11}},\,{\sf R^{14}},\,{\sf and}\,\,{\sf R^{16}}$ are independently enzyme-removable groups that are removable by the non-luminogenic enzyme.