Name1, Name2

Brandon LIN

October 12, 2023

Contents

Chapter 1	Nombre Complexe	Page 2
1	.1 Parties réelle, imaginaire, Conjugaison	2
Chapter 2	Fonctions d'une variable réelle à valeurs réelles	Page 3
2	.1 Propriétés globales des fonctions continues TVI — 3 • Fonction continue sur un segment — 4 • Fonctions uniformément continues — 4 la bijection — 4	3 • Théorème de
Chapter 3	Intégration	Page 5
3	.1 Fonctions en escaliers Subdivision d'un segment — 5 • Fonctions en escaliers — 5 • Intégrale d'une fonction en Propriétés de l'intégrale d'une fonction en escaliers — 6	$\begin{array}{c} 5 \\ \text{escalier} - 5 \end{array} \bullet$
3	Fonctions continues par morceaux Définitions et propriétés — 6 • Approximation des fonctions par morceaux par les fonctions en escalier — 7 • Intégrale d'une fonction continue par morceaux — 8 • Propriétés de l'intégrale — 9 • Majorations fondamentales — 9	
3	.3 Primitive et intégrale d'une fonction continue Définitions — $11 \cdot \text{TFA} - 11$	11
3	.4 Calcul de primitives et d'intégrales IPP — 13 • Changement de variable — 13	13
3	5 Formules de Taylor Formule de Taylor avec reste intégral — 13 • Inégalité de Taylor-Lagrange — 14 • Formule — 14 • Utilisation des trois formules de Taylor — 14	13 de Taylor-Young
3	.6 Méthode des rectangles, Sommes de Riemann	14
Chapter 4	Variables aléatoires discrètes	Page 16
4	.1 Définition	16
4	.2 Lois	17
1	Loi uniforme — 17 • Loi de Bernoulli — 17 • Loi binomiale — 17 .3 Couples de variables aléatoires discrètes	17
	4 Indépendance de variable aléatoires	17
	.5 Espérance	17
	.6 Variance	18
	.7 Variables aléatoires à valeurs naturelles	18

Nombre Complexe

1.1 Parties réelle, imaginaire, Conjugaison

Definition 1.1.1

Pour $z \in \mathbb{C}$, il existe un unique couple $(a, b) \in \mathbb{R}^2$ tels que z = a + ib.

- Forme algébrique de z: a + ib
- Partie réelle de z noté Re(z)
- Partie imaginaire de z noté Im(z)

Proposition 1.1.1

$$a + ib = 0 \iff a = 0, b = 0 \tag{1.1}$$

Fonctions d'une variable réelle à valeurs réelles

2.1 Propriétés globales des fonctions continues

2.1.1 TVI

Theorem 2.1.1 Théorème des valeurs intermédiaires (TVI)

Soient I un intervalle de \mathbb{R} , $f: I \to \mathbb{R}$. Soient $(a,b) \in I^2$ tel que a < b. Si

- f continue sur I
- $f(a) \le 0$ et $f(b) \ge 0$

Donc, $\exists c \in [a, b], f(c) = 0$

Remarque:

- Résultat est faux si I n'est pas un intervalle.
- TVI permet de montrer l'existence d'objets.

Theorem 2.1.2 Recherche d'un zéro par dichotomie

Theorem 2.1.3 TVI (deuxième forme)

Soit f continue sur [a,b], alors f(x) prend toutes les valeurs intermédiaires enttre f(a) et f(b) quand x parcourt [a,b].

Autrement dit, si $y_0 \in [f(a), f(b)], \exists x_0 \in [a, b], f(x_0) = y_0.$

Proof: Pour tout $f(a) \le y_0 \le f(b)$, contruisons la fonction $g: x \mapsto f(x) - y_0$.

Corollary 2.1.1 Image d'un intervalle par une application continue

Image d'un intervalle par une application continue est encore un intervalle.

2.1.2 Fonction continue sur un segment

Theorem 2.1.4 Théorème du maximum

Soit $f:[a,b] \to \mathbb{R}$ continue sur un segment. Alors, la fonction f est

- bornée
- atteint ses bornes, c'est-à-dire $\exists (c_1, c_2) \in [a, b]^2$, $f(c_1) = \sup f(x)$ et $f(c_2) = \inf f(x)$

Remarque : En d'autre termes, une fonction continue sur un segment possède un maximum et un minimum : sup $f(x) = \max f(x) = f(c_1)$, inf $f(x) = \min f(x) = f(c_2)$

Corollary 2.1.2 Image d'un segment par une application continue

L'image d'un segment [a,b] par une application continue est encore un segment. De plus, $f([a,b]) = [\inf f, \sup f]$

2.1.3 Fonctions uniformément continues

Definition 2.1.1: Fonction uniformément continue

Soit $f: I \to \mathbb{R}$, f est uniformément continue lorsque

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall (x, y) \in I^2, \ |x - y| \le \eta \implies |f(x) - f(y)| \le \varepsilon \tag{2.1}$$

Proposition 2.1.1 Lipschitz, uniformément continue, continue

Soit $f:I\to\mathbb{R}$, donc : f lipschitizenne $\Longrightarrow f$ uniformément continue $\Longrightarrow f$ continue.

Theorem 2.1.5 Théorème de Heine

Une fonction continue sur un segment est uniformément continue sur ce segment.

2.1.4 Théorème de la bijection

Theorem 2.1.6 Théorème de la bijection

Soit $f: I \to \mathbb{R}$, si f est

- continue sur I
- \bullet strictement monotone sur I

Alors,

- f(I) est un intervalle (déjà vu)
- f réalise une bijection de I vers I
- $f^{-1}: f(I) \to I$ est une fonction (1) continue, (2) strictement monotone de même sens que f sur f(I)

Intégration

- 3.1 Fonctions en escaliers
- 3.1.1 Subdivision d'un segment
- 3.1.2 Fonctions en escaliers
- 3.1.3 Intégrale d'une fonction en escalier

Definition 3.1.1: Intégrale d'une fonction en escaliers

$$\int_{[a,b]} \varphi = \sum_{k=0}^{n-1} c_k (x_{k+1} - x_k)$$
(3.1)

3.1.4 Propriétés de l'intégrale d'une fonction en escaliers

3.2 Fonctions continues par morceaux

3.2.1 Définitions et propriétés

Definition 3.2.1: Fonction continue par morceaux sur un segment

Soit [a,b] un segment. $\varphi:[a,b]\to\mathbb{R}$ est **continue par morceaux** sur [a,b] lorsqu'il existe une subdivision τ du segment telle que

- $\forall k \in [0, n-1], \varphi|_{]x_k, x_{k+1}[}$ est continue
- $\varphi|_{]x_k,x_{k+1}[}$ est prolongeable par continuité sur $]x_k,x_{k+1}[$.

Une telle subdivision est dite adaptée ou subordonnée à φ .

Figure 3.1: Fonction continue par morceaux sur un segment

Toute fonction en escalier sur [a, b] est **continue par morceaux** sur [a, b].

Proposition 3.2.1 Bornée d'une fonction continue par morceaux

Soit φ est une fonction **continue par morceaux** sur [a,b] donc elle est bornée.

Proof: Soit f fonction continue, pour chaque $i \in [0, k-1]$, \bar{f}_i la fonction <u>continue</u> prolongé défini sur <u>un segment</u> $[x_i, x_{i+1}]$ pour chaque petit intervalle. Donc elle est bornée.

Proposition 3.2.2

L'ensemble des fonctions réelles **continues par morceaux** sur [a,b] est un <u>sous-espace vectoriel</u> de $\mathcal{F}([a,b],\mathbb{R})$

3.2.2 Approximation des fonctions par morceaux par les fonctions en escalier

Theorem 3.2.1 Approximation d'une fonction continue par une fonction en escalier

Soit f une fonction continue sur le segment [a,b] et $\varepsilon > 0$. Donc, il existe une fonction en escalier φ telle que

$$\|f-\varphi\|_{\infty} = \sup_{x \in [a,b]} |f(x)-\varphi(x)| \leq \varepsilon$$

Figure 3.2: Approximation d'une fonction continue

Proof: f est continue sur le segment, donc uniformément continue. (Théorème de Heine 2.1.3) Dans l'écriture $\varepsilon - \eta$, prenons $h = (b - a)/n \le \varepsilon$, construisons :

$$x_i = a + ih, \ \forall x \in [x_i, x_{i+1}], \ \varphi(x) = f(x_i), \ \varphi(b) = f(b)$$
 (3.2)

(2)

Lenma 3.2.1 Décomposition d'une fonction continue par morceaux

Soit f une fonction continue par morceaux sur le gement [a,b]. Il existe

- une fonction g continue sur [a, b]
- une fonction ψ en escalier sur [a,b]

telles que $f = g + \psi$

Figure 3.3: Décomposition d'une fonction continue par morceaux

Corollary 3.2.1 Approximation uniforme d'une fonction continue par morceaux par une fonction en escalier Soit f une fonction continue par morceaux sur le segment [a,b] et $\varepsilon > 0$. Il existe φ en escalier sur [a,b] telle que $||f - \varphi||_{\infty} \le \varepsilon$.

Proof: Soit
$$f = g + \psi$$
, $\exists \xi$ telle que $\|g - \xi\|_{\infty} \le \varepsilon$, notons $\varphi = \psi + \xi$, $\|f - \varphi\|_{\infty} = \|g - \xi\|_{\infty} \le \varepsilon$

Corollary 3.2.2 Encadrement d'une fonction continue par morceaux par deux fonctions en escalier Soit f une fonction continue par morceaux sur le segment [a,b] et $\varepsilon > 0$. $\exists \varphi, \psi \in \mathcal{E}([a,b],\mathbb{R})$ vérifiant :

- $\varphi \leq f \leq \psi$
- $\|\psi \varphi\|_{\infty} \le \varepsilon$

3.2.3 Intégrale d'une fonction continue par morceaux

Proposition 3.2.3 Intégrale de Riemann d'une fonction continue par morceaux Soit f continue par morceaux sur [a,b]. Les ensembles

$$I_{\leq f} = \left\{ \int_{[a,b]} \varphi, \ \varphi \in \mathcal{E}([a,b], \mathbb{R}), \ \varphi \leq f \right\}$$
 (3.3)

$$I_{>f} = \left\{ \int_{[a,b]} \varphi, \ \varphi \in \mathcal{E}([a,b], \mathbb{R}), \ \varphi \ge f \right\}$$
 (3.4)

On a

- $I_{\leq f}$ admet une borne supérieur
- $I_{>f}$ admet une borne inférieur
- $\sup I_{< f} = \inf I_{> f}$

Definition 3.2.2: Intégrale de Riemann

L'intégrale de Riemann de la fonction continue par morceaux f sur [a,b] par :

$$\int_{[a,b]} f = \sup I_{< f} = \inf I_{> f} \tag{3.5}$$

Note:-

Pour montrer qu'une fonction f est **intégrable sur un segment**, il suffit de montrer que f est continue par morceaux sur ce segment.

3.2.4 Propriétés de l'intégrale

Theorem 3.2.2 Forme linéaire

L'intégrale est une forme linéaire sur l'espace vectoriel des fonctions continues par morceaux.

Proposition 3.2.4 L'intégrale d'une fonction continue par morceaux positive

Soit φ continue par morceaux sur [a,b]. Alors,

$$\forall x \in [a, b], \ \varphi(x) \ge 0 \implies \int_{[a, b]} \varphi_1 \ge 0 \tag{3.6}$$

Corollary 3.2.3

$$\varphi_1 \le \varphi_2 \implies \int_{[a,b]} \varphi_1 \le \int_{[a,b]} \varphi_2 \tag{3.7}$$

Proposition 3.2.5 Relation de Chasles

3.2.5 Majorations fondamentales

Theorem 3.2.3

Soient f une fonction réelle continue par morceaux sur le segment [a,b]. Donc, il existe $(m,M) \in \mathbb{R}^2$ tels que $\forall x \in [a,b], m \leq f(x) \leq M$. donc,

$$\left| m(b-a) \le \int_{[a,b]} f(x) \mathrm{d}x \le M(b-a) \right| \tag{3.8}$$

Figure 3.4: Encadrement d'une intégrale

Theorem 3.2.4

Soit f une fonction continue par morceaux sur le segment [a,b]. Donc, f est bornée sur [a,b] et

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx \le (b - a) \sup_{[a,b]} |f|$$
(3.9)

Proof:
$$-|f| \le f \le |f|| \implies -\int |f| \le \int f \le \int |f|$$
.

Theorem 3.2.5 Inégalité de la moyenne

Soient f, g continues par morceaux sur [a, b]. Alors,

$$\left| \int_{[a,b]} f g \right| \le \sup_{[a,b]} |f| \int_{[a,b]} |g| \tag{3.10}$$

(3)

Theorem 3.2.6 Inégalité de Cauchy-Schwarz

Soient f et g continues sur le segment [a,b]. Notons $||f||_2 = \sqrt{\int_{[a,b]} f^2(x) dx}$, on obtient

$$\langle fg \rangle \le \|f\|_2 \|g\|_2 \implies \left| \int_{[a,b]} fg \right| \le \sqrt{\int_{[a,b]} f^2} \sqrt{\int_{[a,b]} g^2}$$
 (3.11)

Proof: D'après la positivité de

$$P = \int_{[a,b]} (f + \alpha g)^2 \tag{3.12}$$

Theorem 3.2.7 Inégalité de Minkowski

Soient f et g continues sur le segment [a,b]. Notons $||f||_2 = \sqrt{\int_{[a,b]} f^2(x) dx}$, on obtient

$$||f + g||_2 \le ||f||_2 + ||g||_2 \tag{3.13}$$

(2)

3.3 Primitive et intégrale d'une fonction continue

3.3.1 Définitions

Definition 3.3.1: Primitive

Soit $f:I\to\mathbb{R}$ définie sur un intervalle $I.\ F:I\to\mathbb{R}$ est **primitive** de f sur I si et seulement si :

- \bullet F dérivable sur I
- et $\forall x \in I$, F'(x) = f(x)

Proposition 3.3.1 Deux primitives d'une même fonction

Les primitives d'une même fonction diffèrent d'une constante. Soit F, G primitives de $f: I \to \mathbb{R}$. Alors, $\exists c \in \mathbb{R}$, F = G + c

Lenma 3.3.1 Continuité de la primitive

Si $f:I\to\mathbb{R}$ continue par morceaux, alors F continue sur I.

Proof: Comme f continue par morceaux sur un intervalle, donc elle est bornée. Soient $(x, y) \in I^2$, alors

$$|F(y) - F(x)| = \left| \int_{a}^{y} f(t) dt - \int_{a}^{x} f(t) dt \right| \le \int_{x}^{y} |f(t)| dt \le \sup_{x \in [a,b]} |f(x)| |y - x|$$
 (3.14)

donc lipschitizenne, donc continue.

3.3.2 TFA

Theorem 3.3.1 Théorème fondamental de l'analyse (TFA)

Soit f continue sur un intervalle I de \mathbb{R} , soit $a \in I$.

Alors, la fonction $F: I \to \mathbb{R}$

$$F: x \mapsto \int_{a}^{x} f(t) dt \tag{3.15}$$

est de classe \mathcal{C}^1 sur I et est la seule primitive de f qui s'annule en a :

$$F' = f, \quad F(a) = 0$$
 (3.16)

Corollary 3.3.1

Une fonction continue sur un intervalle de \mathbb{R} possède une primitive sur I.

Corollary 3.3.2 Calcul d'intégrale

Soit $f: I \to \mathbb{R}$ continue sur le <u>segment</u> $[a,b] \subset I$. Soit G une primitive de f (c'est-à-dire, $G_c = F + c$). Alors l'**intégrale** de F sur [a,b] est :

$$\int_{a}^{b} f(t)dt = G(b) - G(a)$$
 (3.17)

Theorem 3.3.2 TFA (deuxième forme)

Soit f une fonction de classe C^1 sur I de $\mathbb{R},$ soit $(a,b)\in I^2,$ on a :

$$f(b) - f(a) = \int_a^b f'(t)dt \tag{3.18}$$

Note:-

Quand on a une hypothèse sur f', et je souhaite de svaoir f.

Example 3.3.1 (L'inégalité de Poincaré)

Soit $E = \{ f \in C^1([a,b], \mathbb{R}), f(a) = 0 \}. \exists C \ge 0 \text{ telle que}$

$$\forall f \in E, \ \|f\|_2 \le C \|f'\|_2 \tag{3.19}$$

Proof:

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt = \int_{a}^{x} f'(t)dt$$
 (3.20)

$$f^{2}(x) \le \int_{a}^{x} 1^{2} dt \int_{a}^{x} f^{2}(t) dt \le (x - a) \int_{a}^{b} f^{2}(t) dt$$
 (3.21)

$$\int_{a}^{b} f^{2}(t)dt \int_{a}^{b} (x-a)dx = \frac{b-a}{2} \int_{a}^{b} f^{2}(t)dt \implies C = \frac{b-a}{\sqrt{2}}$$
(3.22)

(2)

Theorem 3.3.3 Dérivée d'une fonction définie par une integrale

Soit f continue sur I, u, $v: J \to I$ dérivables sur J. Alors, $G: J \to \mathbb{R}$ définie au-dessous est dérivable sur J:

$$G: x \mapsto \int_{u(x)}^{v(x)} f(t) dt, \quad G'(x) = v'(x) f[v(x)] - u'(x) f[u(x)]$$
 (3.23)

Proof:

$$G(x) = \int_{a}^{v(x)} f(t)d(t) - \int_{a}^{u(x)} f(t)d(t) = F(v(x)) - F(u(x)) \implies G = F \circ v - F \circ u$$
 (3.24)

(2)

Example 3.3.2

Variations de la fonction : $g:]1,+\infty[\to \mathbb{R}:$

$$g: x \mapsto \int_{x}^{x^2} \frac{\mathrm{d}t}{t^2 - 1} \tag{3.25}$$

Proof:

$$g'(x) = 2xf(x^2) - f(x) \text{ avec } f: x \mapsto \frac{1}{x^2 - 1}$$
 (3.26)

Donc s'annule en $x_0=1+\sqrt{2}$, croissante sur $]1,x_0]$ et décorissante sur $[x_0,+\infty[$

3.4 Calcul de primitives et d'intégrales

3.4.1 IPP

Proposition 3.4.1 Méthode d'intégration par partie (IPP)

Soit u et v des fonctions de classe C^1 sur intervalle I de \mathbb{R} , donc :

$$\int_{a}^{b} u'(t)v(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t)dt$$
(3.27)

3.4.2 Changement de variable

Proposition 3.4.2 Changement de variable

$$\int_{\varphi(a)}^{\varphi(b)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du = \int_{\alpha}^{\beta} f(\varphi(u)) d(\varphi(u))$$
(3.28)

3.5 Formules de Taylor

3.5.1 Formule de Taylor avec reste intégral

Theorem 3.5.1 Formule de Taylor avec reste intégral

Soit f une fonction de classe \mathcal{C}^{n+1} sur un intervalle I de \mathbb{R} .

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + \int_a^x \frac{(x - t)^n}{n!} f^{(n+1)}(t) dt$$
 (3.29)

• Polynôme de Taylor de f de degré n:

$$T_n(x) = f(a) + \frac{x-a}{1!}f'(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a)$$
 (3.30)

• Reste intégral :

$$R_n(x) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$
 (3.31)

Note:-

L'idée principal:

- TFA(2)
- IPP

Proof: Si la fonction f de classe \mathcal{C}^1 , on sait que

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt$$
(3.32)

Faisons une IPP à la dernière terme, et supposons que f de classe \mathscr{C}^2 . Donc, en admettant que

$$f(x) = f(a) + [tf'(t)]_a^x - \int_a^x tf''(x)dt = f(a) + xf'(x) - af'(a) - \int_a^x tf''(t)dt$$
 (3.33)

On ne sait pas f'(x). Maintenant, considérons la primitive de $g:t\mapsto 1$ s'annule en x

$$f(x) = f(a) + [-(x-t)f'(t)]_a^x + \int_a^x (x-t)f''(t)dt = f(a) + (x-a)f'(a) + \int_a^x (x-t)f''(t)dt$$
(3.34)

Ensuite, une simple récurrence.

3.5.2 Inégalité de Taylor-Lagrange

Theorem 3.5.2 Inégalité de Taylor-Lagrange

Dans la formule 3.5.1, on a $f = T_n + R_n$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + \int_a^x \frac{(x - t)^n}{n!} f^{(n+1)}(t) dt$$
 (3.35)

On a alors,

$$|R_n(x)| \le \frac{|x-a|^{n+1}}{(n+1)!} \sup_{t \in [a,x]} |f^{(n+1)}(t)| \tag{3.36}$$

Proof: Utiliser les téchniques dans 3.2.5

3.5.3 Formule de Taylor-Young

Theorem 3.5.3 Formule de Taylor-Young

Soient f de classe \mathscr{C}^n . Dans la formule 3.5.1, on a $f = T_n + R_n$. Il existe une fonction $\varepsilon(x) \xrightarrow[x \to a]{} 0$ telle que

$$\forall x \in I, \ f(x) = T_n(x) + (x - a)^n \varepsilon(x)$$
(3.37)

Proof: • Si f de classe \mathcal{C}^{n+1} , d'après le théorème 3.5.2, on trouve $\frac{|R_n(x)|}{|x-a|^n} \to 0$.

3.5.4 Utilisation des trois formules de Taylor

- La formule de Taylor-intégrale est la plus précise, et les deux autres formules en sont une conséquence.
- Formule de Taylor-Young donne une approximation locale au voisinage d'un point a.
- Inégalité de Taylor-Lagrange fournit une majoration globale du reste R_n de cette approximation sur un segment [a, x].

3.6 Méthode des rectangles, Sommes de Riemann

Theorem 3.6.1 Méthode des rectangles

- Approximation d'intégrale. Soit f de classe \mathcal{C}^1 sur [a,b].
 - On effectue une subdivison du segment [a,b] de pas constant h=(b-a)/n.
 - On pose pour chaque $k \in [0, n], x_k = a + kh$.

- Posons

$$R_n = h.(f(x_1) + \dots + f(x_n)) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(x_k)$$
 (3.38)

- Majoration de l'erreur. Suposons que I l'intégrale de la fonction f .

$$|I - R_n| \le \frac{(b-a)^2}{2n} ||f'||_{\infty}$$
 (3.39)

Proof: Pour chaque segment, l'erreur :

$$\varepsilon_{n,k} = \left| \int_{x_k}^{x_{k+1}} f(t) dt - \frac{b-a}{n} f(x_k) \right| \le \int_{x_k}^{x_{k+1}} |f(t) - f(x_k)| dt$$
 (3.40)

$$|f(t) - f(x_k)| = \left| \int_{x_k}^t f'(t) dt \right| \le \sup_{[x \in [a,b]]} |f'(x)| (t - x_k)$$
(3.41)

$$|\varepsilon_{n,k}| \le ||f'||_{\infty} \frac{(x_{k+1} - x_k)^2}{2} = ||f'||_{\infty} \frac{(b-a)^2}{2n^2}$$
 (3.42)

Theorem 3.6.2 Convergence d'une somme de Riemann

Soit f continue sur le segment [0,1], on a

$$R_n = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \underset{n \to +\infty}{\longrightarrow} \int_0^1 f(x) dx$$
 (3.43)

$$T_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \underset{n \to +\infty}{\longrightarrow} \int_0^1 f(x) \mathrm{d}x \tag{3.44}$$

Plus généralement, si f une fonction continue sur le segment [a,b], et si $\xi_k \in [a+kh,a+(k+1)h]$, on a

$$u_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f(\xi_k) \underset{n \to +\infty}{\longrightarrow} \int_a^b f(x) dx$$
 (3.45)

Proof: • Si $f \in \mathcal{C}^1$, d'après le théorème précédante.

- Si f est uniquement continue.
 - Montrons que $||f \varphi_n||_{\infty} \xrightarrow[n \to \infty]{} 0$ (Théorème de Heine Importance d'un segment !!)
 - Donc,

$$|I - R_n| \le \int_0^1 |f(t) - \varphi_n(t)| dt \le ||f - \varphi_n||_{\infty} \underset{n \to \infty}{\longrightarrow} 0$$
(3.46)

(2)

Example 3.6.1

Limite de suite

$$u_n = \sum_{p=n}^{2n-1} \frac{1}{2p+1} \xrightarrow[n \to +\infty]{} \frac{\ln(2)}{2}$$
 (3.47)

Variables aléatoires discrètes

4.1 Définition

Definition 4.1.1: Variable aléatoire discrète

On appelle variable aléatoire discrète sur l'espace probabilisé Ω et à valeurs dans E toute application $X:\Omega\to E$ vérifiant

- $\{X(\Omega)\}$ est fini ou dénombrable
- $\forall x \in X(\Omega), X^{-1}(\{x\})$ est élément de la tribu \mathcal{A} .

Note:-

Une variable aléatoire discrète est une $\underline{\text{fonction}}$ parfaitement déterminée. Ce sont les valeurs de X qui vont varier.

 $X : \text{Événement} \to \text{Résultat}$

Definition 4.1.2: Événements valeurs

Soit $X:\Omega \to E$.

On note pour tout $x \in E$,

$$(X = x) = X^{-1}(\{x\}) = \{\omega \in \Omega, \ X(\omega) = x\}$$
(4.1)

Pour tout partie A de E,

$$(X \in A) = X^{-1}(A) = \{\omega \in \Omega, \ X(\omega) \in A\}$$

$$(4.2)$$

Il s'agit d'un événement, et l'on peut en calculer la probabilité : P(X = x)

Proposition 4.1.1

$$(X \in A) = \bigcup_{x \in X(\omega) \cap A} (X = x) \tag{4.3}$$

Definition 4.1.3

Si X une variable aléatoire discrète réelle, $a \in \mathbb{R}$,

$$(X \le a) = X^{-1}(] - \infty, a]) = \{\omega \in \Omega, \ X(\omega) \le a\}$$

$$(4.4)$$

4.2 Lois

Definition 4.2.1: Loi d'une variable aléatoire discrète

Loi de la variable $X:\Omega \to E$:

$$\forall A \in X(\Omega), \ P_X(A) = P(X \in A) \tag{4.5}$$

Corollary 4.2.1

La loi est entièrement déterminée par les valeurs

$$\forall x \in P(\Omega), \ p_x = P_X(x) = P(X = x) \tag{4.6}$$

et

$$\sum_{x \in X(\omega)} p_x = 1 \tag{4.7}$$

- 4.2.1 Loi uniforme
- 4.2.2 Loi de Bernoulli
- 4.2.3 Loi binomiale

Definition 4.2.2: Loi binomiale

$$X \sim \mathcal{B}(n,p) = \left\{ X(\omega) = [[0,n]], \ \forall k \in [[0,n]], \ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \right\} \tag{4.8}$$

- 4.3 Couples de variables aléatoires discrètes
- 4.4 Indépendance de variable aléatoires
- 4.5 Espérance

Definition 4.5.1: Espérance

On dit que X admet une **espérance** si la famille $(xP(X=x))_{x\in\Omega}$ est <u>sommable</u>. L'**espérance** vaut :

$$E(X) = \sum_{x \in X(\Omega)} x P(X = x) \tag{4.9}$$

ne dépend que la loi de la variable X.

Example 4.5.1

Si $X \sim \mathcal{B}(n, p)$,

$$E(X) = \sum_{k=0}^{n} k {n \choose k} p^k (1-p)^{(n-k)} = np$$
 (4.10)

- 4.6 Variance
- 4.7 Variables aléatoires à valeurs naturelles