INTRODUCTION TO CRYPTOGRAPHY – QUIZ 7

B.Tech. Computer Science and Engineering (Cybersecurity)

Name: Anish Sudhan Nair	Roll No.: K041
Batch: K2/A2	Date of submission: 22/02/2022

Quiz

1. (4 points) Let S_1 and S_2 be the standard Vigenére and Permutation ciphers, respectively, with $P = (Z_{26})^5$ (so the block length of each is m = 5). Consider the product cipher $S_1 \times S_2$. Consider the keycode k_1 = latex in Vigenére Cipher, and the key k_2 in Permutation Cipher given by

1	2	3	4	5
4	5	2	1	3

Find the decryption $d_{(k_1,k_2)}$ (IEAEDURMZXALZTM) in $S_1 \times S_2$. Write your plaintext with spaces.

→ m=5 k₁=latex k₂-1:

INZ I									
1	2	3	4	5					
4	3	5	1	2					

 $d_{(k_1,k_2)}$ (IEAEDURMZXALZTM)

(Cyclic after sequency of 5)

I	Е	A	E	D	U	R	M	Z	X	A	L	Z	T	M
 E	A	D	I	Е	Z	М	X	U	R	Т	Z	M	Α	L
L	A	T	Ē	X	L	A		Ē		Ĺ	Ā	T	E	X
4	0	3	8	4	25	12	23	20	17	19	25	12	0	11
- 11	0	- 19	4	23	- 11	0	- 19	4	23	- 11	0	- 19	4	- 23
19	0	10	4	7	14	12	4	16	20	8	25	19	22	14
T	A	K	E	Н	0	M	Е	Q	U	I	Z	T	W	0

Plaintext: take home quiz two

2. (3 points) Find a Vigenére keycode $k_1^{'}$ such that $d_{(k_2,k_1^{'})}$ (IEAEDURMZXALZTM) in $S_2 \times S_1$ is the same plaintext you obtained in previous problem.

 \rightarrow k₁=latex

K ₂	2:			
1	2	3	4	5
4	5	2	1	3

 $k_1'=k_2(k_1)$

$$k2(LATEX) = EXALT$$

Therefore, k₁'=exalt

3. (4 points) Let M be the Multiplicative Cipher and S be the Shift Cipher. For the encryption rule $e_{(9,15)}(x)$ in M × S, find the corresponding encryption rule $e_{(c,d)}(x)$ in S × M. In other words, find the value of c and d such that $e_{(c,d)}(x)$ in S × M is equal to $e_{(9,15)}(x)$ in M × S

→
$$e_{(9,15)}(x) = e^{S}_{(9)}(e^{M}_{(15)}(x)) = e^{S}_{(15)}(9x) = 9x + 15 \mod 26$$

 $e_{(c,d)}(x) = e^{M}_{(d)}(e^{S}_{(c)}(x)) = e^{M}_{(d)}(x+c) = (x+c)d \mod 26$

 $9x + 15 = dx + cd \mod 26$

Therefore, d=9

15=c9 mod 26

9x19=171 is equivalent to 15 in mod 26, therefore, c=19

Therefore, (c,d)=(19,9)

4. (9 points) Find the solution for problem 4 of the problem set 5. You should also write the intermediate results (i.e., the rows A, B, D, E, F, G, H, and J from Figure 1).

→

(K1, K2, K3, K4) = (010101, 001011, 111000, 111110).

plaintext=100101

w0 = 1	0	0	1	0	1	Plaintext
k1 = 0	1	0	1	0	1	Key 1
u1 = 1	1	0	0	0	0	A
v1 = 1	1	1	1	1	0	В
w1 = 1	1	1	1	1	0	D
k2 = 0	0	1	0	1	1	Key 2
u2 = 1	1	0	1	0	1	Е
v2 = 1	1	1	0	1	0	F
w2 = 1	0	1	1	1	0	G
k3 = 1	1	1	0	0	0	Key 3
u3 = 0	1	0	1	1	0	Н

v3 = 0 0 1 1 1 1 J k4 = 1 1 1 1 0 Key 4

u4 = 1 1 0 0 1 Ciphertext