

# Physics of Advanced Materials

Lecture 7: Nanomaterials

#### In this lecture...

- Fundamentals:
  - Quantum confinement in nanostructures
  - Surface and interface phenomena
  - Nanophotonics
  - Nanomagnetism and spintronics
- Types and structures of nanomaterials
- Synthesis techniques
- Applications
- Challenges and opportunities

# Fundamentals and properties

Basic principles and unique properties that emerge at the nanoscale

# f

#### Bottom-up approach: Splitting of orbital energies

- **start from:** atoms and molecules and build up to larger structures: clusters and bulk
- **focus**: how individual atomic orbitals combine to form molecular orbitals and then energy bands
- as you increase the number of atoms in a cluster, molecular orbitals split into more energy levels and into quasi-continuous bands

# Top-down approach: Quantum confinement of bulk material

- start from: the bulk material and reduce size
- focus: how quantum confinement alters electronic structure when material dimensions approach de Broglie wavelength of electrons
- as dimensions decrease, electron motion is confined which leads to quantization of energy levels: the energy bands begin to split

PHAS0058, Lecture 8

#### Metals and seminconductors and nanoscale



#### Quantum Confinement in Nanostructures



T. Edvinsson, R. Soc. open sci. 5: 180387, <a href="https://doi.org/10.1098/rsos.180387">https://doi.org/10.1098/rsos.180387</a>

## DoS vs. dimensionality

| degrees of<br>freedom | dispersion (kinetic energy)                        | density of states (close to the conduction band)                                           | effective density of states (at the conduction band)                                      |
|-----------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 3D (bulk)             | $E = \frac{\hbar^2}{2m^*} (k_x^2 + k_y^2 + k_z^2)$ | $ ho_{3D} = rac{1}{2\pi^2} \left( rac{2m*}{\hbar^2}  ight)^{rac{3}{2}} (E - E_c)^{1/2}$ | $N_{\rm c}^{\rm 3D} = \frac{1}{\sqrt{2}} \left[ \frac{m^* kT}{\pi \hbar^2} \right]^{3/2}$ |
| 2D (film)             | $E=\frac{\hbar^2}{2m^*}(k_x^2+k_y^2)$              | $ ho_{	exttt{2D}} = \sum_{i=1}^n rac{m^*}{\pi \hbar^2} 	ext{H}(E-E_{	exttt{c}})$          | $N_{\rm c}^{\rm 2D} = \frac{m^*kT}{\pi\hbar^2}$                                           |
| 1D (wire)             | $E=\frac{\hbar^2}{2m^*}(k_x^2)$                    | $\rho_{1D} = \frac{1}{m^* \pi \hbar} \left( \frac{m^*}{2(E - E_c)} \right)^{1/2}$          | $N_{\rm c}^{\rm 1D} = \sqrt{rac{m^*kT}{2\pi\hbar^2}}$                                    |
| OD (dot)              | a                                                  | $ ho_{	exttt{0D}} = 2\delta(E - E_{	exttt{c}})$                                            | $N_{\rm c}^{\rm 0D}=2$                                                                    |

<sup>&</sup>lt;sup>a</sup>The dispersion is formally not defined in a 0D (3D confined) system as there is no periodicity in any direction.

#### 1D well – bandgap shift

solution to the Schrödinger equation for a particle confined in a one-dimensional potential well with infinite barriers:

$$E_n = \frac{\hbar^2 n^2 \pi^2}{2mL^2}$$

2D shift in energy bandgap

$$\Delta E_e = \frac{\hbar^2 n^2 \pi^2}{2m_e^* d^2}$$

$$\Delta E_h = \frac{\hbar^2 n^2 \pi^2}{2m_h^* d^2}$$

For the first energy state (n=1):

$$\Delta E = \Delta E_e + \Delta E_h$$

Use the particle-in-a-box model:

$$\Delta E = \frac{\hbar^2 \pi^2}{2} \left( \frac{1}{m_e^*} + \frac{1}{m_h^*} \right) \frac{1}{d^2}$$

T. Edvinsson, R. Soc. open sci. 5: 180387, <a href="https://doi.org/10.1098/rsos.180387">https://doi.org/10.1098/rsos.180387</a>

#### 2D well – bandgap shift

Total energy for a particle in a 2D box:

$$E_{n_e,n_h} = \frac{\hbar^2 \pi^2}{2m} \left( \frac{n_x^2}{d_x^2} + \frac{n_y^2}{d_y^2} \right)$$

 $n_x$  and  $n_v$  – quantum numbers in the x- and y-directions  $d_x$  and  $d_y$  – confinement dimensions in the x- and y-directions

For a symmetric well  $(d_x=d_y=d)$ :

$$\Delta E_e = \frac{\hbar^2 \pi^2}{2m_e^*} \left( \frac{n_x^2}{d^2} + \frac{n_y^2}{d^2} \right)$$

$$\Delta E_e = \frac{\hbar^2 \pi^2}{2m_e^*} \left( \frac{n_x^2}{d^2} + \frac{n_y^2}{d^2} \right) \qquad \Delta E_h = \frac{\hbar^2 \pi^2}{2m_h^*} \left( \frac{n_x^2}{d^2} + \frac{n_y^2}{d^2} \right)$$

For the lowest eergy state  $(n_x=n_y=1)$ :

$$\Delta E_e = \frac{\hbar^2 \pi^2}{m_e^* d^2} \ \Delta E_h = \frac{\hbar^2 \pi^2}{m_h^* d^2}$$

The total energy shift for the lowest quantum state in a 2D quantum well:

$$\Delta E = \Delta E_e + \Delta E_h = \frac{\hbar^2 \pi^2}{d^2} \left( \frac{1}{m_e^*} + \frac{1}{m_h^*} \right)$$

#### 3D well – bandgap shift

Total energy for a particle in a spherical 3D box:

$$E_{n,l} = \frac{\hbar^2 k_{n,l}^2}{2m} = \frac{\hbar^2 x_{n,l}^2}{2mR^2}$$

$$x_{1,0} = \pi \rightarrow E_{0,1} = \frac{\hbar^2 \pi^2}{2m^* R^2}$$

n - quantum number

h – Planck's constant

m - effective mass of the

particle

R – radius of the QD

x – root of the Bessel function

Effective bandgap:

$$E_g^{eff} = E_g^{bulk} + \frac{\hbar^2 \pi^2}{2R^2} \left( \frac{1}{m_e^*} + \frac{1}{m_h^*} \right)$$

## Bandgap shifts

Effective bandgap:

$$E_g^{eff} = E_g^{bulk} + \Delta E_g$$

$$\Delta E_g^{0D} = \frac{\hbar^2 \pi^2}{2R^2} \left( \frac{1}{m_e^*} + \frac{1}{m_h^*} \right)$$

$$\Delta E_g^{1D} = \frac{\hbar^2 \pi^2}{2} \left( \frac{1}{m_e^*} + \frac{1}{m_h^*} \right) \left( \frac{1}{L_\chi^2} + \frac{1}{L_y^2} \right)$$

$$\Delta E_g^{2D} = \frac{\hbar^2 \pi^2}{2L_Z^2} \left( \frac{1}{m_e^*} + \frac{1}{m_h^*} \right)$$

n - quantum number

h – Planck's constant

m – effective mass of the

particle

R – radius of the QD

x – root of the Bessel function

#### Bandgap shift with confined dimensions:

• 0D (quantum dots):  $\Delta E_g \propto \frac{1}{R^2}$ 

• 1D (nanowires):  $\Delta E_g \propto \frac{1}{L_\chi^2} + \frac{1}{L_y^2}$ 

• 2D (quantum wells):  $\Delta E_g \propto \frac{1}{L_z^2}$ 

#### Surface to volume ratio



Su, E. & J. et al. (2018, Bone & Joint Journal. 100-B. 9-16. 10.1302/0301-620X.100B1.BJJ-2017-0551.R1

## Surface and interface phenomena

| origin                                                                                                       | result                                                                       | implications                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| surface atoms have fewer neighboring atoms compared to bulk atoms, leading to unsatisfied or dangling bonds. | higher surface energy (higher no. of active surface sites)                   | <ul> <li>enhanced chemical activity</li> <li>altered thermodynamic stability (sintering, coalescence, etc.)</li> <li>significantly lower melting T than bulk</li> </ul> |
|                                                                                                              | surface plasmon resonance (metals only)                                      | altered optical absorption and scattering                                                                                                                               |
| imbalance of forces at the surface (bonding vs. repulsive electron cloud interactions)                       | surface stress and reconstruction                                            | <ul> <li>altered mechanical properties (hardness, elasticity, etc.)</li> <li>lower surface energy facets exposed in adopted shapes of nanoparticles</li> </ul>          |
| lattice mismatch at interfaces                                                                               | strain<br>scattering of electrons and<br>phonons at interfaces               | <ul> <li>enhanced mechanical strength</li> <li>reduced thermal and electrical conductivity</li> </ul>                                                                   |
|                                                                                                              | higher surface free energy                                                   | <ul><li>increased solubility and reactivity</li><li>altered phase diagrams</li></ul>                                                                                    |
| surface tension can lead to significant capillary forces                                                     | strong adhesion due to van der<br>Waals forces and capillary<br>condensation | <ul><li>self-assembly of nanoparticles driven by capillary forces</li><li>stiction (static friction)</li></ul>                                                          |

#### Nanophotonics

- **Diffraction Limit**: beyond the classical optics limits focusing light (approximately half the wavelength  $(\lambda/2)$ ).
- Near-Field Optics: evanescent waves containing high spatial frequency information exist only within a distance d  $<< \lambda$  from the surface. These non-propagating fields contain subwavelength information.
- **Light-Matter Coupling**: the strength of interaction between light and matter increases dramatically, enabling phenomena like:
  - Enhanced absorption and emission rates
  - Strong and ultrastrong coupling regimes
  - Purcell effect (enhanced spontaneous emission)
- Dielectric Confinement: Light can be confined in high-index dielectric nanostructures through total internal reflection, creating resonant modes with enhanced field strengths.
- Local Density of Optical States (LDOS): Describes available electromagnetic modes for photon emission at a specific position and frequency, directly affecting spontaneous emission rates.
- **Photonic Bandgaps**: Periodic nanostructures (photonic crystals) can create frequency ranges where light propagation is forbidden, analogous to electronic bandgaps in semiconductors.
- Optical Nonlinearities

## Plasmonics – self study material

plasmons—collective oscillations of free electrons in metals (quasiparticles)

**surface plasmon polariton (SPP)** - a hybridized excitation arising from the coupling between photons and collective oscillations of free electron gas at metal-dielectric interfaces



- subwavelength confinement
- support high frequencies
- typically metals or metal-like materials that exhibit negative real permittivity

#### Nanomagnetism

#### Critical single-domain radius:

$$R_{sd} = \frac{36\sqrt{A|K_1|}}{\mu_0 M_s^2}$$

A – exchange stiffness

K – anisotropy constant

 $\mu_0$  - vacuum permeability

M<sub>s</sub> – saturation magnetisation

- Single-domain particles exhibit different magnetic reversal mechanisms (coherent rotation rather than domain wall motion), which directly impacts coercivity and switching behavior in spintronic devices.
- Just below the single-domain threshold, particles often display maximum coercivity (resistance to demagnetization)
- As particles approach and drop below this size, they become increasingly susceptible to thermal fluctuations, eventually leading to superparamagnetic behavior (where magnetization randomly flips direction due to thermal energy).

## Types and structures

Various forms of nanomaterials

#### Nanowires and nanorods



*Nature Photonics* volume 3, pages 569–576 (2009)

## Core/shell structure



Advances in Colloid and Interface Science, 256 (2018), 352-372, https://doi.org/10.1016/j.cis.2018.02.003

#### Carbon-based nanomaterials

#### **CARBON:**

- uniquely forms stable nanomaterials in all dimensionalities
- can be functionalized with a wide range of chemical groups
- shows good compatibility with biological systems
- abundant and potentially more sustainable
- dramatically different properties from the same element



#### Quasi 1D van der Waals structures

-- quasi-one-dimensional chains or fibrous units held together by van der Waals forces in the perpendicular directions



## Photonic crystals

- photonic crystals a material that has a nanostructure that affects the motion of electromagnetic energy
- quantum dots/nanometer-sized devices that can efficiently control and manipulate light (slow down, enhance, produce, etc.)
- metamaterials engineered

   nanostructures with optical properties
   not found in nature, including negative
   refractive index



J. Mater. Chem. C, 2015, 3, 6109-6143

#### Interfaces







npj 2D Mater Appl **7**, 61 (2023).https://doi.org/10.1038/s41699-023-00425-w

# Synthesis

How to make a nanomaterial?

## Two approaches



#### **Top-Down Methods**

- 1.Mechanical Milling/Ball Milling
- 2.Lithographic Techniques
- 3. Etching Processes

#### **Bottom-Up Methods**

- 1. Chemical Synthesis
- 2. Vapor Phase Methods
- 3. Biological and Biomimetic Approaches
- 4.Self-Assembly
- 5.Template-Directed Synthesis

# Applications and challenges

Where are they used?

#### Practical uses of nanomaterials

| Quantum Dots (QDs)       | Display technology    Biomedical imaging        Photovoltaics                                                  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Nanowires                | <ul> <li>Nanoelectronics • Sensors • Energy harvesting •</li> <li>Optoelectronics • Thermoelectrics</li> </ul> |  |
| Nanoparticles            | Catalysis                                                                                                      |  |
| 2D Materials             | Flexible electronics • Optoelectronics • Barrier materials • Energy storage • Sensing                          |  |
| Carbon Nanotubes         | • Structural composites • Conductive additives • Field emission displays • Sensors • Hydrogen storage          |  |
| Core-Shell Structures    | Catalysis    Controlled drug release    Multimodal imaging                                                     |  |
| Plasmonic Nanostructures | Sensing                                                                                                        |  |

#### Environmental and health impacts



#### A serious threat:

- unique hazard profile
- potential bioaccumulation in food chains
- multiple exposure routes

#### Safe-by-Design approaches:

Surface functionalization to reduce toxicity

- Biodegradable nanomaterials
- Encapsulation strategies
- Life cycle assessment implementation

#### Future directions of research

- Sustainable and Green Nanomaterials
- Quantum Nanomaterials
- Biologically Interfaced Nanomaterials
- Energy Conversion and Storage
- Hierarchical Nanomaterials
- Extreme Environment Nanomaterials



#### Summary

- Quantum confinement in nanomaterials causes size-dependent properties
- Bandgaps increase as dimensions decrease
- Surface phenomena dominate at nanoscale due to high surface-tovolume ratio

Environmental concerns arise from nanomaterials' unique hazard profiles

2D materials