TI3 Übung 5

1.a)

First-Fit:

Eingehende Anforderung	Freier Speicherplatz 1	Freier Speicherplatz 2	Freier Speicherplatz 3
-	1024	512	2048
384	640	512	2048
640	0	512	2048
512	0	0	2048
2048	0	0	0

Rotating-First-Fit:

Eingehende Anforderung	Freier Speicherplatz 1	Freier Speicherplatz 2	Freier Speicherplatz 3
-	1024	512	2048
384	640	512	2048
640	0	512	2048
512	0	0	2048
2048	0	0	0

Best-Fit:

Eingehende Anforderung	Freier Speicherplatz 1	Freier Speicherplatz 2	Freier Speicherplatz 3
-	1024	512	2048
384	1024	128	2048
640	384	128	2048
512	384	128	1536
2048	384	128	1536

Die Anforderung 2048 kann in diesem Verfahren keinen genügend großen Speicher finden

Worst-Fit:

Eingehende Anforderung	Freier Speicherplatz 1	Freier Speicherplatz 2	Freier Speicherplatz 3
-	1024	512	2048
384	1024	512	1664
640	1024	512	1024
512	512	512	1024
2048	512	512	1024

Da bei gleich großen freien Speicherplätzen keinen speziellen Angaben gemacht wurden, wird zur Lösung der Aufgabe davon ausgegangen, dass der erste Speicher belegt wird. Die Anforderung 2048 kann in diesem Verfahren keinen genügend großen Speicher finden.

b)

First Fit:

Sobald First-Fit eine Möglichkeit hat die Anforderungen abzudecken, kann automatisch auch Rotating-First-Fit den Anforderungen gerecht werden, daher gibt es keine Spezifische Möglichkeit, die nur First-Fit lösen kann.

TI3 Übung 5

1.b)

Rotating-First-Fit:

Eingehende Anforderung	Freier Speicherplatz 1	Freier Speicherplatz 2	Freier Speicherplatz 3
-	2048	512	1024
2048	0	512	1024
640	0	512	384
384	0	512	0
512	0	0	0

Best-Fit:

Eingehende Anforderung	Freier Speicherplatz 1	Freier Speicherplatz 2	Freier Speicherplatz 3
-	1024	512	2048
2048	1024	512	0
640	384	512	0
384	0	512	0
512	0	0	0

Worst-Fit:

für Worst-Fit gibt es keine Möglichkeit, die die anderen Methoden nicht auch abdecken könnten.

3.a)

Die Anzahl der Speicherworte entsteht aus der Länge aller Segmente zusammengenommen. In diesem Fall ist die Länge in Speicherworten angegeben, daher ist die Anzahl der Speicherworte gleich der Gesamtlänge.

365+70+120+515+150 = 1220

Es stehen 1220 Speicherworte zur Verfügung.

b)

Die physikalische Adresse ergibt sich aus Basis + Offset, da jedoch kein Offset gegeben ist entspricht die physikalische Adresse der Basis.

Das kleinste Segment hat die Länge 70 und die dazugehörige Adresse ist 400.

das größte Segment hat die Länge 515 und die dazugehörige Adresse ist 1145.

c)

(erscheint viel zu leicht, jedoch ist dies der einzige logische Ansatz):

Die logische Adresse ergibt sich aus der Segmentnummer, dem Anfangspunkt des physikalischen Speichers und des Offsets. Da kein Offset gegeben, besteht die logische Adresse nur aus Segmentnummer und physikalischem Speicher. (Die 0 hilft dabei die Zahlen auf eine genormte Länge zu bringen)

1. 10762

2. 21145

3. 30146

4.40485