Fórmulas do Triedro de Frenet

Paulo Roberto Rodrigues da Silva Filho 2022-10-01

Tabela de Fórmulas Considere o comprimento de arco $s(t) = \int\limits_{t_0}^t \left\| \frac{d\vec{r}}{du} \right\| du$

Conceito	Parametrização	
	Variável Qualquer	Comprimento de Curva
Curva	$r = \vec{r}(t)$	$r = \vec{r}(s)$
Derivada	$\frac{dr}{dt}(t) = \dot{r}(t)$	$r = \vec{r}(s)$ $\frac{dr}{ds}(s) = r'(s)$ $\vec{T}(s) = \vec{r'}(s)$
Tangente	$rac{dr}{dt}(t) = \dot{r}(t)$ $ec{T}(t) = rac{ec{r}(t)}{\ ec{r}(t)\ }$	$\vec{T}(s) = \vec{r'}(s)$
Normal	$ec{N}(t) = rac{ec{T}(t)}{\ ec{T}(t)\ }$	$\vec{N}(s) = \frac{\vec{T}'(s)}{\ \vec{T}'(s)\ } = \frac{\vec{r}''(s)}{\ \vec{r}''(s)\ }$
Binormal	$ec{B} = ec{T} imes ec{N} = rac{ec{r}(t) imes ec{r}(t)}{\left\ ec{r}(t) imes ec{r}(t) ight\ }$	$ec{B} = ec{T} imes ec{N} = rac{ec{r'}(s) imes ec{r''}(s)}{\left\ ec{r''}(s) ight\ }$
Curvatura	$\kappa = \frac{\left\ \vec{T}(t)\right\ }{\left\ \vec{\vec{r}}(t)\right\ } = \frac{\left\ \vec{\vec{r}}(t) \times \vec{\vec{r}}(t)\right\ }{\left\ \vec{\vec{r}}(t)\right\ ^3}$	$\kappa = \left\ \frac{d\vec{T}}{ds}(s) \right\ = \left\ \vec{r''}(s) \right\ $ Interpretação em curva plana (\mathbb{R}^2, o plano Osculatório): Seja $\phi(s) = \angle(\vec{T}(s), 0x), \kappa(s) = \left\ \frac{d\phi}{ds} \right\ $
Raio de Curvatura	$\rho(t) = \frac{1}{\kappa(t)}$	$\rho(s) = \frac{1}{\kappa(s)}$
Torção	$\tau(t) = \frac{(\vec{r}(t), \vec{r}(t), \vec{r}(t))}{\ \vec{r}(t) \times \vec{r}(t)\ ^2} = \frac{[\vec{r}(t) \times \vec{r}(t)] \cdot \vec{r}(t)}{\ \vec{r}(t) \times \vec{r}(t)\ ^2}$	$\tau(s) = \vec{B}(s) \cdot \vec{N'}(s) = -\vec{B'}(s) \cdot \vec{N}(s)$ Formula por comprimento: $\tau(s) = \frac{(\vec{r'}(s), \vec{r''}(s), \vec{r''}(s))}{\ \vec{r''}(s)\ ^2} = \frac{[\vec{r'}(s) \times \vec{r''}(s)] \cdot \vec{r''}(s)}{\ \vec{r''}(s)\ ^2}$ $\frac{d\vec{T}}{ds}(s) = \kappa \vec{N}(s)$
Equações de Frenet		$\frac{\frac{d\vec{T}}{ds}(s) = \kappa \vec{N}(s)}{\frac{\vec{N}}{ds}(s) = -\kappa \vec{T}(s) + \tau \vec{B}(s)}$ $\frac{\frac{d\vec{B}}{ds}(s) = -\tau \vec{N}(s)}{\frac{d\vec{B}}{ds}(s) = -\tau \vec{N}(s)}$
Curvatura com Sinal	$\kappa_s(t) = rac{ec{T}(t)}{\ ec{r}(t)\ } \cdot ec{N}(t)$	$\kappa_s(s) = \vec{T'}(s) \cdot \vec{N}(s)$
Evoluta Se a curva for regular (ou seja, κ_s nunca é zero):	$ec{E}(t) = ec{r}(t) + ho(t) ec{N}(t)$ $= ec{r}(t) + rac{1}{\kappa(t)} ec{N}(t)$	$ec{E}(s) = ec{r}(s) + ho(s) ec{N}(s)$ $= ec{r}(s) + rac{1}{\kappa(s)} ec{N}(s)$ Obs.: essa fórmula é igualmente vália para s e para t , porque s pode ser, também, considerada apenas uma parametrização.
Velocidade	$\vec{v}(t) = \frac{d\vec{r}}{dt}(t) = \vec{\dot{r}}(t)$	$\vec{a}(t) = \frac{ds}{dt}(t)\vec{T}(s(t))$ $\vec{a}(t) = \frac{d^2s}{dt^2}(t)\vec{T}(s(t)) + \left(\frac{ds}{dt}(t)\right)^2 \kappa \vec{N}(t)$
Aceleração	$\vec{a}(t) = rac{d\vec{v}}{dt}(t) = \vec{v}(t) = rac{d^2\vec{r}}{dt^2}(t) = \vec{r}(t)$	$\vec{a}(t) = \frac{d^2s}{dt^2}(t)\vec{T}(s(t)) + \left(\frac{ds}{dt}(t)\right)^2 \kappa \vec{N}(t)$ Onde: Aceleração Tangencial: $a_t(t) = \frac{d^2s}{dt^2}(t)$ Aceleração Centrípeta: $a_c(t) = \kappa \left(\frac{ds}{dt}(t)\right)^2 = \frac{\left(\frac{ds}{dt}(t)\right)^2}{\rho(t)}$
Rapidez	$R = \ \vec{v}(t)\ $	$R = \frac{ds}{dt}(t)$