CH5650: Molecular Data Science and Informatics Term Project Report

Shrivarshan K, MM20B058

Introduction:

In this work the review and regeneration of some results are done from the paper "Combining Group-Contribution Concept and Graph Neural Networks Toward Interpretable Molecular Property Models" by Adem R. N. Aouichaoui, Fan Fan, Seyed Soheil Mansouri, Jens Abildskov, and Gürkan Sin. In their work they attempted to develop two interpretable Graph Neural Networks (GNNs) named as GroupGAT and Attentive Group Contribution Model (AGC) by combining the basic working of few benchmark GNNs such as AFP, FraGAT and the Group Contribution concept. The newly developed GNNs are used to predict the property values of various molecules such as aqueous solubility, melting temperature, enthalpy of fusion, enthalpy of combustion and enthalpy of formation using their structure information in the form of smiles string and the respective property values of the groups/atoms present in the molecule as input. As a part of regeneration of results the working of AGC model is reviewed and compared with the results generated using the model in the paper.

Datasets:

The presented models are tested on a variety of property data:

- Two publicly available data sets consisting of the Delaney aqueous solubility data of small organic compounds (ESOL) and double plus good (highly curated and validated) melting point data set.
- Three proprietary data sets collected from the database constructed by the Design Institute for Physical Properties under the American Institute of Chemical Engineers (AIChE DIPPR) consisting of the enthalpies of formation, fusion, and combustion.

A general description of the data set can be found in Table 1. Summary statistics of the data can be found in Table 2, while the distribution of the data can be seen in Figure 1.

An overview of the various type of molecules included in the study can be seen in Table 3.

Data set	Symbol	Unit	Size	Description				
Delaney small aqueous solubility data set (ESOL)	Aq. sol.	Log ₁₀ (mol/L)	1128	Water solubility data for small organic molecules at ambient conditions				
Bradley double plus good melting points	T_{m}	°C	3035	Temperature at which a compound transitions from the solid to the liquid phase at 1				
Enthalpy of formation	$\Delta H_{ m for}$	kJ/kmol	741	hange in enthalpy associated with the formation reaction of the compound in the ideal gas state from its constituent elements at the standard state at 298.15 K and 1 atm				
Enthalpy of fusion	ΔH_{fus}	kJ/kmol	730	hange in molar enthalpy associated with the isothermal transition of a solid into liquid at its melting point and $1\mathrm{atm}$				
Enthalpy of combustion	$\Delta H_{\rm comb}$	kJ/kmol	847	Increase in enthalpy when a compound undergoes oxidation at 298.15 K and 1 atm				

Table 1: Description of Datasets used

Data set	Unit	Mean	Std	Min	25%	50%	75%	Max
Aq. sol.	Log ₁₀ (mol/L)	-3.02	2.10	-11.60	-4.28	-2.80	-1.58	1.58
T_{m}	°C	63.10	95.88	-188.00	5.00	64.00	130.00	438.00
$\Delta H_{ m for}$	kJ/mol	-190.95	306.98	-3385.40	-316.83	-150.63	-14.41	397.80
ΔH_{fus}	kJ/mol	17.54	18.57	0.02	7.90	12.32	20.75	195.77
$\Delta H_{\rm comb}$	kJ/mol	-4304.99	3107.97	-40000.00	-5240.00	-3730.00	-2550.00	-164.00

Table 2: Summary Statistics of used Data sets

Class	Aq. sol.	T_{m}	$\Delta H_{ m for}$	$\Delta H_{ m fus}$	ΔH_{comb}
Hydrocarbons	155	325	224	253	288
Oxygenated	285	777	199	212	290
Nitrogenated	48	233	60	56	85
Chlorinated	92	87	40	30	11
Fluorinated	4	23	24	18	4
Brominated	26	73	11	13	6
Iodinated	9	21	5	2	1
Phosphorus containing	0	5	1	1	0
Sulfonated	12	44	41	43	42
Silicon containing	0	6	0	0	0
Multifunctional	497	1441	116	102	120
Total	1128	3035	741	730	847

Table 3: Chemical Diversity Analysis of Data Set Used

As a part of this work, ESOL dataset considered to test the predictive power of developed AGC model. The dataset contains the name of each molecule, smiles string and the aqueous solubility corresponding to each molecule. A part of dataset and distribution of the dataset is shown in Figure 1 and 2.

	Name	Const_Value	ESOL_Value	SMILES
0	Amigdalin	-0.77	-0.974	OCC3OC(OCC2OC(OC(C#N)c1ccccc1)C(O)C(O)C2O)C(O)
1	Fenfuram	-3.30	-2.885	Cc1occc1C(=O)Nc2cccc2
2	citral	-2.06	-2.579	CC(C)=CCCC(C)=CC(=O)
3	Picene	-7.87	-6.618	c1ccc2c(c1)ccc3c2ccc4c5cccc5ccc43
4	Thiophene	-1.33	-2.232	c1ccsc1
5	benzothiazole	-1.50	-2.733	c2ccc1scnc1c2
6	2,2,4,6,6'-PCB	-7.32	-6.545	Clc1cc(Cl)c(c(Cl)c1)c2c(Cl)cccc2Cl
7	Estradiol	-5.03	-4.138	CC12CCC3C(CCc4cc(O)ccc34)C2CCC1O
8	Dieldrin	-6.29	-4.533	CIC4=C(CI)C5(CI)C3C1CC(C2OC12)C3C4(CI)C5(CI)CI
9	Rotenone	-4.42	-5.246	COc5cc4OCC3Oc2c1CC(Oc1ccc2C(=O)C3c4cc5OC)C(C)=C

Figure 1: First 10 datapoints of ESOL dataset

Figure 2: Distribution of ESOL dataset

Methods and Procedures:

Molecular Graph Features:

The molecule with N atoms and M bonds is considered as a graph $G = \{V, E, X_{atom}, X_{bond}\}$ where $V = \{v_1, v_2, \dots, v_N\}$ is a set of vertices or atoms, $E = \{e_1, e_2, \dots, e_M\}$ are the edges or bonds connecting the atoms. $X_{atom} = \{x_1^{atom}, x_2^{atom}, \dots, x_N^{atom}\}$ is the atom feature matrix with dimension of $N \times F_v$ where F_v denotes the size of the atom features. $X_{bond} = \{x_1^{bond}, x_2^{bond}, \dots, x_M^{bond}\}$ is the bond feature matrix with dimension of $M \times F_e$ where F_e denotes the size of the bond features. The features are listed in the Figure 3.

Table 1. Node (Atom) Features

Feature	Description	Size				
Atom type	type of atom (C, N, O, S, F, Cl, Br, I, P) (one-hot encoding)	9				
No. of bonds	number of bonds attached to the atom (0, 1, 2, 3, 4) (one-hot encoding)					
No. of Hs	number of hydrogens attached to the atom (0, 1, 2, 3, 4) (one-hot encoding)	5				
Explicit valency	explicit valency (0, 1, 2, 3, 4, 5) (one-hot encoding)					
Hybridization	hybridization (sp, sp2, sp3, sp3d, sp3d2) (one-hot encoding)	5				
Aromaticity	whether the atom is part of an aromatic system $(0, 1)$	1				
Chirality center	whether the atom is a center of chirality (0, 1)	1				
Chirality type	type of chirality the atom is involved in (R, S)	2				
Formal charge	charge assigned to individual atoms in a molecule (int)	1				

Table 2. Edge (Bond) Features

Feature	Description	Size
Bond type	bond type (single, double, triple, aromatic) (one-hot encoding)	4
Conjugation	whether the bond is conjugated (0, 1)	1
Ring	whether the bond is part of a ring (0, 1)	1
Bond stereo	bond stereochemistry (none, any, Z/E, cis/trans) (one-hot encoding)	6

Figure 3: Atom and Bond Features

All these features are generated using RDKit and the molecular graphs are generated using DGL Framework. The relevant codes used for generating features using the rdkit library are available in the "GC-GNN\src\feature".

```
import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem, rdMolDescriptors
from rdkit.Chem.EState import EState
import torch
ATOM_VOCAB = ['C', 'N', '0', 'S', 'F', 'P', 'C1', 'Br', 'I']
def one_of_k_encoding_unk(x, allowable_set):
   # one-hot features converter
   if x not in allowable_set:
       x = allowable_set[-1]
   return list(map(lambda s: float(x == s), allowable set))
def chirality_type(x, allowable_set):
   # atom's chirality type
   if x.HasProp('_CIPCode'):
       return one_of_k_encoding_unk(str(x.GetProp('_CIPCode')), allowable_set)
   else:
       return [0, 0]
```

Figure 4: Sample code showing working of featurizer

Model Building:

Attentive Group Contribution Model (AGC):

The working of the model is shown in the figure below.

Figure 6: Working of AGC Model

The whole molecular graph is fragmented using the function JT_SubGraph function from "utils\junctiontree_encoder" folder. The scheme used for fragmentation is given in MG_plus_reference dataset. The dataset contains the information of each first order groups with its priority value and SMARTs string. A part of dataset is shown below.

First-Order Group	Priority	SMARTs
CH3	17	[CH3;!\$(*c)]
CH2	17	[CH2;!R;!\$(*c)]
СН	17	[CH1;!R;!\$(*c)]
С	17	[CH0;!R;!\$(*c)]
CH2=CH	2	[CH2;!R]=[CH1;!R;!\$(*c)]
CH=CH	2	[CH1;!R;!\$(*c)]=[CH1;!R;!\$(*c)]
CH2=C	2	[CH2;!R]=[CH0;!R;!\$(*c)]
CH=C	2	[CH1;!R]=[CH0;!R]
C=C	2	[CH0;!R]=[CH0;!R]
CH2=C=CH	1	[CH2;!R]=[CH0;!R]=[CH1;!R]
CH2=C=C	1	[CH2;!R]=[CH0;!R]=[CH0;!R]
CH=C=CH	1	[CH1;!R]=[CH0;!R]=[CH1;!R]
CH#C	1	[CH1]#[CH0]
C#C	1	[CH0]#[CH0]
ACH	14	[cH1]
AC fused with aromatic ring	2	[cH0;R2;!\$(*C)]
AC fused with non-aromatic ring	2	[cH0;R2;\$(*C)]

Figure 7: Sample data from MG_plus_reference dataset

Training and optimization:

The data was split randomly with a split ratio of 80%–10%–10% for training, validation, and testing, respectively. The split was the same for each property across the models. The split is done using **Splitter** function from the "utils\splitter" folder.

To avoid the way splitting to influence the results the training procedure is done 500 times each with different split. But due to unavailability of computationally efficient system in this work I ran it 10 times and chose the best model for prediction.

All models were developed using DGL for the graph-learning framework with Pytorch (v1.12.0) as the backend deep-learning framework.

Hyperparameter tuning:

- The model hyperparameters were determined using Bayesian optimization (BO) by minimizing the validation loss.
- Throughout all training instances, early stopping was employed to retain the best performing models with respect to the validation set and to avoid overfitting.
- The maximum number of epochs was set to 300. The dropout rate, weight decay, and learning rate reduction factors were all considered hyperparameters.
- For the MLP part of the GNN models, only two layers were considered for which the number of neurons in the first layer was considered hyperparameter subjected to the optimization, while the number of neurons in the second layer was considered half of that of the first layer.

The search space used for hyperparameter tuning is given in the following table.

Model	Hidden dimensions	Initial learning rate	Learning rate reduction factor	Weight decay	Dropout rate	Node-level embedding layers, T	Graph-level embedding, L
MPNN	[16, 256]	1e-[1, 5]	[0.4, 0.95]	[0, 0.1]	[0, 0.5]	int([1, 6])	=
D-MPNN	[16, 256]	le-[1, 5]	[0.4, 0.95]	[0, 0.1]	[0, 0.5]	int([1, 6])	
AFP	[16, 256]	1e-[1, 5]	[0.4, 0.95]	[0, 0.1]	[0, 0.5]	int([1, 6])	int([1, 6])
FraGAT	[16, 256]	1e-[1, 5]	[0.4, 0.95]	[0, 0.1]	[0, 0.9]	int([1, 6])	int([1, 6])
AGC	[16, 256]	le-[1, 5]	[0.4, 0.95]	[0, 0.1]	[0, 0.9]	int([1, 6])	int([1, 6])
GroupGAT	[16, 256]	1e-[1, 5]	[0.4, 0.95]	[0, 0.1]	[0, 0.9]	int([1, 6])	int([1, 6])

Table 4: Hyperparameter search space

The code used for hyperparameter tuning is there in GC-GNN\new_frag_optimization.py

Though as a part of this work I skipped the optimization part as the optimized hyperparameters is attached with the paper which is shown below.

Table S 2: Optimal hyperparameters for various models applied on Aq. sol.

Model	Hidden Dimensions	Initial learning rate	Learning rate reduction factor	Weight decay	Dropout rate	Nr. node level embedding layers, T	Nr. of graph level embedding, L
MPNN	118	1e-3.9	0.9	0	0.00	6	N.A
D-MPNN	47	1e-2.4	0.4	0	0.25	1	N.A
AFP	111	1e-2.4	0.5	0	0.15	1	1
FraGAT	122	1e-3.5	0.4	1e-05	0.10	1	2
AGC	36	1e-2.3	0.8	0	0.20	1	1
GC-GAT	226	1e-3.0	0.8	1e-06	0.00	1	1

Table 5: Optimal hyperparameters for ESOL dataset

The hyperparameters given for AGC model is directly used as initial parameters and the model is trained.

Results and Comparison:

Various metrics are used in the paper to test the predictive power of the model. In this work, MAE, RMSE, R2 score of training, validation, test and overall datasets and parity plot are used as metrics to test the predictive power of the model.

Predictions:

The predicted aqueous solubility values and actual solubility of few datapoints from train, test and validation dataset are shown below.

897	4 400								
	-1.460	-1.382201	10	7 -4.150	-3.773423	10	09	-9.150001	
898	-2.360	-2.493675	10	8 -0.830	-1.277600	11	10	-5.720000	
899	-2.878	-2.987362	10	9 -3.290	-3.300147	11	11	1.120000	
00	-3.660	-3.748746	11	0 -4.800	-4.484435	11	12	-3.760000	
901	-3.953	-3.863875	11	1 -2.154	-2.674221	11	13	-6.637000	-

MAE, RMSE, R2 score:

As discussed to avoid the influence of splitting in the model's predictive power the training is done 10 times. The scores of each iteration is given below with the seed value.

seed		train_R2	val_R2	test_R2	all_R2	train_MAE	val_MAE	test_MAE	all_MAE	train_RMSE	val_RMSE	test_RMSE	all_RMSE
0	1457	0.914794	0.873454	0.879117	0.907464	0.46333411	0.517151	0.6088092	0.48338	0.609457499	0.68707544	0.786074088	0.6374481
1	134	0.922168	0.884983	0.868492	0.912672	0.43263254	0.528904	0.642114	0.463362	0.581067612	0.68668302	0.812157669	0.6192516
2	1342	0.941709	0.938861	0.887431	0.936654	0.38043219	0.420458	0.487184	0.395195	0.504228799	0.55399707	0.662696758	0.5274132
3	4508	0.917156	0.914909	0.883396	0.913714	0.45323446	0.402382	0.531656	0.456111	0.606515435	0.56330999	0.725758097	0.6155468
4	4314	0.941019	0.897438	0.899673	0.931604	0.37494072	0.492509	0.5017156	0.399427	0.501065995	0.6674406	0.740003082	0.5480324
5	2055	0.926217	0.918604	0.904964	0.923159	0.42031035	0.49805	0.5164942	0.43775	0.558248907	0.66365633	0.663477988	0.5808814
6	2504	0.943149	0.88636	0.902459	0.934917	0.37666598	0.502156	0.4603339	0.397582	0.507640575	0.66109601	0.599552289	0.5345945
7	2832	0.932613	0.861907	0.830164	0.917083	0.42010337	0.582419	0.6251151	0.456939	0.550093309	0.74891533	0.810801712	0.6034101
8	3581	0.965363	0.917602	0.922253	0.954866	0.2792733	0.485452	0.4909396	0.321137	0.380120563	0.62380746	0.659909038	0.4451864
9	731	0.942649	0.893729	0.893737	0.933627	0.38558283	0.462116	0.5632725	0.41114	0.503237406	0.61812448	0.710453581	0.5398673

Table 6: Metrics of AGC model on ESOL dataset

The model with **maximum R2 score** is with seed value = 3581 with **test_R2 = 0.922** and **overall_R2 = 0.955**.

The average R2 score of all the 10 models is test_R2 = 0.887 and overall_R2 = 0.926.

The metrics of the model developed in the paper is shown below.

			N	IAE	R.Y	MSE	R ₂	
Data set	Model	Nr. parameters	Test	Overall	Test	Overall	Test	Overall
Aq. sol.	GC ¹³	70	-	0.73	-	-	+	0.78
	AGC	60,017	0.44	0.39	0.61	0.53	0.92	0.94
	GroupGAT	3,185,025	0.36	0.32	0.51	0.43	0.94	0.96

Table 7: Metrics of AGC Model developed in the paper

The model developed by the author gave test_R2 = 0.92 and overall_R2 = 0.94

Though the model is run only for 10 times the R2_scores are pretty close to the R2_scores developed by the author.

Parity plot:

The parity plots developed by me and developed on the paper is shown below.

Figure 8: Parity plot developed in this work

Figure 9: Parity plot developed on the paper

The parity plots look very similar as the R2 scores of the model developed in this work and on the paper are close to each other.

Conclusion:

Apart from the predictions, there are also attention weights obtained for each molecular fragment which can be viewed as a visualization using the tools in the plottools folder of GC-GNN. All the codes used are from the github folder https://github.com/gsi-lab/GC-GNN. The folder is also cloned into the system and I submit the folder for further verification.

All the other sources used such as MG_plus_reference dataset and tuned hyperparameters are attached with the paper.