CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 21 · Solutions

Posted Wednesday 19 February 2014. Due 1pm Friday 28 February 2014.

21. [25 points]

Let the inner product $(\cdot,\cdot): C[-1,1] \times C[-1,1] \to \mathbb{R}$ be defined by

$$(u,v) = \int_{-1}^{1} u(x)v(x) dx.$$

Let the linear operator $P_e: C[-1,1] \to C[-1,1]$ be defined by

$$(P_e f)(x) = \frac{1}{2} (f(x) + f(-x))$$

and let the linear operator $P_o: C[-1,1] \to C[-1,1]$ be defined by

$$(P_o f)(x) = \frac{1}{2} (f(x) - f(-x)).$$

Note that P_e and P_o project functions onto their even and odd parts, respectively.

- (a) Verify that P_e and P_o are projections.
- (b) For all $f \in C[-1,1]$, verify that $P_e f$ and $P_o f$ are orthogonal with respect to the inner product (\cdot,\cdot) .
- (c) Is $P_e + P_o$ a projection? Note that $P_e + P_o$: $C[-1,1] \rightarrow C[-1,1]$ is defined by

$$(P_e + P_o)f = P_e f + P_o f.$$

(d) Let $a, b \in \mathbb{R}$ be such that a < b. Let $\phi \in C[a, b]$ be defined by $\phi(x) = 1$ and let the inner product $B(\cdot, \cdot) : C[a, b] \times C[a, b] \to \mathbb{R}$ be defined by

$$B(u,v) = \int_{a}^{b} u(x)v(x) dx.$$

Let the linear operator $P: C[a,b] \to C[a,b]$ be defined by

$$Pf = \frac{1}{b-a}B(f,\phi)\phi.$$

Determine whether or not P is a projection.

Solution.

(a) [6 points] If $f \in C[-1,1]$ then

$$(P_e f)(x) = \frac{1}{2} (f(x) + f(-x))$$

and so

$$(P_e(P_ef))(x) = \frac{1}{2} ((P_ef)(x) + (P_ef)(-x))$$

$$= \frac{1}{2} \left(\frac{1}{2} (f(x) + f(-x)) + \frac{1}{2} (f(-x) + f(-(-x))) \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} f(x) + \frac{1}{2} f(-x) + \frac{1}{2} f(-x) + \frac{1}{2} f(x) \right)$$

$$= \frac{1}{2} (f(x) + f(-x))$$

$$= (P_ef)(x).$$

Thus we conclude that $P_e(P_e f) = P_e f$ for all $f \in C[-1, 1]$ which means that P_e is a projection. In the same way, if $f \in C[-1, 1]$ then

$$(P_o f)(x) = \frac{1}{2} (f(x) - f(-x))$$

and so

$$(P_o(P_of))(x) = \frac{1}{2} ((P_of)(x) - (P_of)(-x))$$

$$= \frac{1}{2} \left(\frac{1}{2} (f(x) - f(-x)) - \frac{1}{2} (f(-x) - f(-(-x))) \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} f(x) - \frac{1}{2} f(-x) - \frac{1}{2} f(-x) + \frac{1}{2} f(x) \right)$$

$$= \frac{1}{2} (f(x) - f(-x))$$

$$= (P_of)(x).$$

Thus we conclude that $P_o(P_o f) = P_o f$ for all $f \in C[-1, 1]$, which means that P_o is a also projection.

(b) [6 points] If $f \in C[-1,1]$ then

$$(P_{e}f, P_{o}f) = \int_{-1}^{1} (P_{e}f)(x)(P_{o}f)(x) dx$$

$$= \int_{-1}^{1} \frac{1}{4} (f(x) + f(-x)) (f(x) - f(-x)) dx$$

$$= \frac{1}{4} \int_{-1}^{1} ((f(x))^{2} - f(x)f(-x) + f(x)f(-x) - (f(-x))^{2}) dx$$

$$= \frac{1}{4} \int_{-1}^{1} ((f(x))^{2} - (f(-x))^{2}) dx$$

$$= \frac{1}{4} \left(\int_{-1}^{1} (f(x))^{2} dx - \int_{-1}^{1} (f(-x))^{2} dx \right)$$

$$= \frac{1}{4} \left(\int_{-1}^{1} (f(x))^{2} dx + \int_{-(-1)}^{-1} (f(y))^{2} dy \right)$$

$$= \frac{1}{4} \left(\int_{-1}^{1} (f(x))^{2} dx - \int_{-1}^{1} (f(y))^{2} dy \right)$$

$$= \frac{1}{4} \left(\int_{-1}^{1} (f(x))^{2} dx - \int_{-1}^{1} (f(y))^{2} dy \right)$$

$$= 0$$

where we let y = -x.

(c) [6 points] If $f \in C[-1,1]$ then

$$((P_e + P_o)f)(x) = (P_e f)(x) + (P_o f)(x) = \frac{1}{2}(f(x) + f(-x)) + \frac{1}{2}(f(x) - f(-x)) = f(x),$$

and so

$$((P_e + P_o)((P_e + P_o)f))(x) = ((P_e + P_o)f)(x).$$

Hence, $(P_e + P_o)((P_e + P_o)f) = (P_e + P_o)f$ for all $f \in C[-1, 1]$ and so $P_e + P_o$ is a projection.

(d) [7 points] If $f \in C[a, b]$ then

$$Pf = \frac{1}{b-a}B(f,\phi)\phi$$

and so

$$P(Pf) = \frac{1}{b-a}B(Pf,\phi)\phi.$$

Now,

$$B(Pf,\phi) = \int_{a}^{b} \frac{1}{b-a} B(f,\phi)\phi(x)\phi(x) dx$$

$$= \int_{a}^{b} \frac{1}{b-a} B(f,\phi) dx$$

$$= B(f,\phi) \int_{a}^{b} \frac{1}{b-a} dx$$

$$= B(f,\phi) \left[\frac{x}{b-a} \right]_{a}^{b}$$

$$= B(f,\phi) \left(\frac{b}{b-a} - \frac{a}{b-a} \right)$$

$$= B(f,\phi) \frac{b-a}{b-a}$$

$$= B(f,\phi).$$

Consequently,

$$P(Pf) = \frac{1}{b-a}B(Pf,\phi)\phi$$
$$= \frac{1}{b-a}B(f,\phi)\phi$$
$$= Pf.$$

Hence, P(Pf) = Pf for all $f \in C[a, b]$ and so P is a projection.