Bounded Linear Maps

Definition: Bounded

Let $L: E_1 \to E_2$ be a linear map of normed spaces. To say that L is bounded means $\exists M > 0$ such that $\forall \vec{x} \in E_1$:

$$||L\vec{x}|| \le M \, ||\vec{x}||$$

Theorem

Let L be a linear map on a normed, finite dimensional space E:

L is bounded.

Proof

Assume $\dim E = n < \infty$.

Assume $\vec{e}_1, \dots, \vec{e}_n$ is an orthonormal basis for E.

Assume $\vec{x} \in E_1$.

$$||L\vec{x}|| = \left\| L\sum_{k=1}^{n} x_k \vec{e}_k \right\| = \left\| \sum_{k=1}^{n} x_k L\vec{e}_k \right\| \le \sum_{k=1}^{n} |x_k| \, ||L\vec{e}_k|| \le \max_{1 \le k \le n} |x_i| \sum_{k=1}^{n} ||L\vec{e}_k||$$

Let
$$M = \sum_{k=1}^n \|L\vec{e_k}\| < \infty$$
.

Also note that $\max_{1 \le k \le n} |x_i| \le ||\vec{x}||$.

And so $||L\vec{x}|| \leq M ||\vec{x}||$.

Therefore *L* is bounded.

Theorem

Let $L: E_1 \to E_2$ be a linear map of normed spaces:

L is bounded iff L is bounded on the unit sphere.

Proof

$$\begin{split} \vec{x} \in E_1 &\iff \frac{\vec{x}}{\|\vec{x}\|} \in S_1(\vec{0},1) \\ L \text{ is bounded} &\iff \exists \, M > 0, \forall \, \vec{x} \in E_1, \|L\vec{x}\| < M \, \|\vec{x}\| \\ &\iff \frac{1}{\|\vec{x}\|} \, \|L\vec{x}\| < \frac{1}{\|\vec{x}\|} M \, \|\vec{x}\| \\ &\iff \left\| L \frac{\vec{x}}{\|\vec{x}\|} \right\| < M \end{split}$$

Examples

1).
$$f_a: \mathbb{R}^N \to \mathbb{R}$$
 where $a \in \mathbb{R}^N$ and $f_a(x) = a \cdot x = \sum_{k=1}^N a_k x_k$.

$$f_a(\alpha x + \mathcal{B}y) = f_a\left(\sum_{k=1}^N (\alpha x_k + \mathcal{B}x_k)\right)$$

$$= \sum_{k=1}^N a_k(\alpha x_k + \mathcal{B}y_k)$$

$$= \alpha \sum_{k=1}^N a_k x_k + \mathcal{B} \sum_{k=1}^N a_k y_k$$

$$= \alpha f_a(x) + \mathcal{B}f_a(y)$$

Therefore, f_a is linear.

Assume $x \in \mathbb{R}^N$:

$$|f_a(x)| = |a \cdot x| \le ||a|| \, ||x|| = M \, ||x||$$

with M = ||a||.

2).
$$\Phi: \mathcal{C}[0,1] \to \mathbb{R}$$
 where $\Phi(f) = \int_0^1 f(t)dt$

 Φ is linear due to linearity of the integral.

Assume $f \in \mathcal{C}[0,1]$:

$$|\Phi(f)| = \left| \int_0^1 f(t)dt \right| \le \int_0^1 |f(t)| \, dt \le \int_0^1 \max_{t \in [0,1]} |f(t)| \, dt = \int_0^1 \|f\| \, dt = \|f\|$$

with M=1.

3). Differentiation is an unbounded linear map.

Let
$$D: \mathcal{C}^1[-1,1] \to \mathcal{C}[-1,1]$$
 where $D(f) = f'$.

D is linear due to linearity of differentiation.

WTS:
$$\forall M > 0, \exists f \in C^1[-1, 1], ||Df|| > M ||f||$$

Let
$$f_n = \sin(nx)$$
 for $n \ge 2$.

$$f_n'(x) = n\cos(nx)$$

$$f_n'(x) = n\cos(nx)$$

$$||D(f_n)|| = \max_{x \in [-1,1]} |n\cos(nx)| = n \text{ which occurs at } x = 0.$$

$$||f_n|| = \max_{x \in [-1,1]} |\sin(nx)| = 1$$
 which occurs at $x \in \frac{\pi}{2n}$.

Assume M > 0.

Let
$$n = \lceil M \rceil + 1$$
.

Let
$$f = \sin(nx)$$
.

$$||D(f)|| = n > M.$$

Therefore, D is unbounded.

Notation

Let E_1 and E_2 be normed spaces:

$$\mathcal{B}(E_1, E_2) = \{T : E_1 \to E_2 \mid T \text{ is linear and bounded}\}\$$

Definition

Let E_1 and E_2 be normed spaces and $T \in \mathcal{B}(E_1, E_2)$:

$$||T|| = \sup_{||\vec{x}||=1} ||T\vec{x}||$$

This is a measure of the distortion of the unit sphere by T.

Theorem

Let E_1 and E_2 be normed spaces and $T \in \mathcal{B}(E_1, E_2)$:

$$M = \|T\|$$
 is the tightest bound.

Proof

Assume $\vec{x} \in E_1$.

$$||T|| = \sup_{x \in E_1 - \{\vec{0}\}} ||T\frac{\vec{x}}{||\vec{x}||}||$$

And so:

$$\|T\| \, \|\vec{x}\| = \sup_{x \in E_1 - \{\vec{0}\}} \|T\vec{x}\|$$

Thus:

$$||T\vec{x}|| \le ||T|| \, ||\vec{x}||$$
 with equality at $\vec{x} = \vec{0}$ and $M = ||T||$.

Theorem

Let E_1 and E_2 be normed spaces over a field \mathbb{F} :

$$\mathcal{B}(E_1, E_2)$$
 is a normed space.

Proof

Assume $A, B \in \mathcal{B}(E_1, E_2), \lambda \in \mathbb{F}$, and $\vec{x} \in E_1$:

$$||(\lambda A + \mu B)(\vec{x})|| = |\lambda| ||A\vec{x}|| + |\mu| ||B\vec{x}||$$

$$\leq |\lambda| M_A ||\vec{x}|| + |\mu| M_B ||\vec{x}||$$

$$\leq (|\lambda| M_A + |\mu| M_B) ||\vec{x}||$$

Let
$$M = (|\lambda| M_A + |\mu| M_B) > 0$$
.
 $||(\lambda A + \mu B)(\vec{x})|| \le M ||\vec{x}||$.

Thus $\lambda A + \mu B$ is bounded and so $\lambda A + \mu B \in \mathcal{B}(E_1, E_2)$.

Therefore, $\mathcal{B}(E_1, E_2)$ is a vector space.

Assume $L \in \mathcal{B}(E_1, E_2)$.

$$\|L\| = 0 \iff \sup_{\|\vec{x}\| = 1} \|L\vec{x}\| = 0 \iff L\vec{x} = 0 \iff L = 0$$

$$\|\lambda L\| = \sup_{\|\vec{x}\|=1} \|\lambda L\vec{x}\| = |\lambda| \sup_{\|\vec{x}\|=1} \|L\vec{x}\| = |\lambda| \, \|L\|$$

Assume $L_1, L_2 \in \mathcal{B}(E_1, E_2)$.

$$||L_{1} + L_{2}|| = \sup_{\|\vec{x}\|=1} ||(L_{1} + L_{2})\vec{x}||$$

$$= \sup_{\|\vec{x}\|=1} ||L_{1}\vec{x} + L_{2}\vec{x}||$$

$$\leq \sup_{\|\vec{x}\|=1} (||L_{1}\vec{x}|| + ||L_{2}\vec{x}||)$$

$$\leq \sup_{\|\vec{x}\|=1} (||L_{1}|| ||\vec{x}|| + ||L_{2}|| ||\vec{x}||)$$

$$= ||L_{1}|| + ||L_{2}||$$

Thus, ||L|| is a proper norm on $B(E_1, E_2)$.

Therefore $\mathcal{B}(E_1, E_2)$ is a normed space.

Theorem

Let E_1 and E_2 be normed spaces over a field \mathbb{F} :

$$E_2$$
 is Banach $\Longrightarrow \mathcal{B}(E_1, E_2)$ is Banach.

Proof

Assume (L_n) is a Cauchy sequence in $\mathcal{B}(E_1, E_2)$. Assume $\vec{x} \in E_1$:

$$||L_n \vec{x} - L_m \vec{x}|| = ||(L_n - L_m)\vec{x}|| \le ||L_n - L_m|| \, ||\vec{x}|| \to 0$$

Therefore, $(L_n\vec{x})$ is Cauchy in E_2 .

But E_2 is Banach (complete), and so $\exists L\vec{x} \in E_2$ such that $L_n\vec{x} \to L\vec{x}$.

Assume $\vec{x}, \vec{y} \in E_1$ and $\alpha, \mathcal{B} \in \mathbb{F}$:

$$L(\alpha \vec{x} + \mathcal{B}\vec{y}) = \lim_{n \to \infty} L_n(\alpha \vec{x} + \mathcal{B}\vec{y})$$

$$= \lim_{n \to \infty} (\alpha L_n \vec{x} + \mathcal{B}L_n \vec{y})$$

$$= \alpha \lim_{n \to \infty} L_n \vec{x} + \mathcal{B} \lim_{n \to \infty} L_n \vec{y}$$

$$= \alpha L_n \vec{x} + \mathcal{B}L_n \vec{y}$$

Therefore L linear.

Now, since all Cauchy sequences are bounded, $\exists M > 0$ such that $||L_n|| \leq M$:

$$||L\vec{x}|| = \left\| \lim_{n \to \infty} L_n \vec{x} \right\| = \lim_{n \to \infty} ||L_n \vec{x}|| \le \lim_{n \to \infty} ||L_n|| \, ||\vec{x}|| \le M \, ||\vec{x}||$$

Therefore, L is linear and bounded and thus $L \in B(E_1, B_2)$.

Assume $\epsilon > 0$.

$$\exists N > 0, m, n > N \implies ||L_n - L_m|| < \epsilon$$

Assume $\vec{x} \in E_1$ such that $||\vec{x}|| = 1$.

Assume m, n > N:

$$||L_n \vec{x} - L_m \vec{x}|| = ||(L_n - L_m)\vec{x}|| \le ||L_n - L_m|| \, ||\vec{x}|| = ||L_n - L_m|| < \epsilon$$

Now, let $m \to \infty$:

$$||L_n \vec{x} - L \vec{x}|| = ||(L_n - L)\vec{x}|| \le ||L_n - L|| \, ||\vec{x}|| = ||L_n - L|| < \epsilon$$

Therefore $L_n \to L \in \mathcal{B}(E_1, E_2)$ and so $\mathcal{B}(E_1, E_2)$ is complete (Banach).

Definition: Dual Space

Let E be a normed space. The *dual space* for E, denoted E' or E^* , is given by:

$$E' = \mathcal{B}(E, \mathbb{C})$$

Note that E' is always Banach because $\mathbb C$ is Banach.