Открытая студенческая олимпиада по математике Казахстанского филиала МГУ $8~de\kappa a 6 ps.~2018$

- 1. (Васильев А.Н.) Для произвольного $b \in B(x)$ построим $a \in N(x)$ как дополнение до S, то есть $a = S \setminus b$. Действительно, $x \in b$ тогда и только тогда, когда $x \notin a$. Значит, |B(x)| = |N(x)|.
- 2. (Абдикалыков А.К.) Это утверждение не верно. Условию удовлетворяет любая функция вида f(x) = g(x) + h(x), где g(x) возрастающая, h(x) периодическая, например, не являющиеся возрастающими $f_1(x) = x + \{x\}$ и $f_2(x) = x + 2\sin x$.
- 3. (Баев А.Ж.) Свойство 1. Если XY = E, то YX = E.

Свойство 2. Если XYZ=E, то ZXY=E и YZX=E.

Преобразуем условие

$$(E - A^2)(B + E) = E.$$

Заметим, что (E - A)(E + A) = (E + A)(E - A).

Получаем, что

$$\begin{cases} (E-A^2)(B+E)=E\\ (B+E)(E-A^2)=E \end{cases} \Leftrightarrow \begin{cases} (E-A)(E+A)(B+E)=E\\ (B+E)(E+A)(E-A)=E \end{cases}$$

$$\begin{cases} (E+A)(B+E)(E-A)=E\\ (E-A)(B+E)(E+A)=E \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} -A^2B-A^2+AB-BA+B=0\\ -A^2B-A^2+BA-AB+B=0 \end{cases}$$

4. (Абдикалыков А.К.) Заметим, что 1001 делится на 13. Значит, для любого k можно составить кратное 13 число с суммой цифр 2k-10011001...1001 (k раз подряд записанная последовательность цифр 1001). Заметим, что и число 10101 также делится на 13. Значит, можно получить число с суммой цифр 2k+3, кратное 13-10011001...100110101 (k раз подряд 1001, затем 10101 в конце).

Остается проверить n=1. Если число имеет сумму цифр 1, то это степень десятки — не делится на 13.

Ответ: все n > 1.

- 5. (Абдикалыков А.К.) Пусть M' матрица, полученная из «особенной» матрицы M увеличением на 1 двух элементов на позициях (i,j_1) и (i,j_2) . Тогда по свойствам определителей $|M'| = |M| + A_{ij_1} + A_{ij_2}$, из чего следует, что алгебраические дополнения любых двух элементов одной строки должны быть противоположны. Аналогично выводится то, что противоположны алгебраические дополнения любых двух элементов одного столбца.
 - (a) Для случая n=2 это означает просто, что все элементы матрицы равны друг другу. Осталось теперь подобрать такой x, что

$$\begin{vmatrix} x & x \\ x & x \end{vmatrix} = \begin{vmatrix} x+1 & x \\ x & x+1 \end{vmatrix} = \begin{vmatrix} x & x+1 \\ x+1 & x \end{vmatrix}.$$

Получаем, что единственной «особенной» матрицей порядка 2 является матрица

$$\begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Если n>2, то это означает, что $A_{ij}=0$ для всех элементов матрицы. Пусть теперь M'- матрица, полученная из M увеличением на 1 двух элементов на позициях (i_1,j_1) и (i_2,j_2) . Тогда

 $|M'|=|M|+A_{ij_1}+A_{ij_2}+A_{i_1i_2}^{j_1j_2}$; таким образом, $A_{i_1i_2}^{j_1j_2}=0$ для любых i_1,i_2,j_1,j_2 , следовательно, гу $M\leqslant n-3$.

- (b) Для случая n=3 это означает, что M может быть только нулевой. Нетрудно проверить, что нулевая матрица порядка 3 является «особенной», причём, она является единственной «особенной» матрицей порядка 3.
- (c) Для случая n=4 подходящей ненулевой матрицей может быть только матрица ранга 1. Возьмём, например, матрицу

При изменении любых двух её элементов останутся как минимум две одинаковые строки, и значит, её определитель останется равным нулю.

- 6. (Васильев А.Н.)
 - (a) Неверно, например, $a_n = \frac{1}{n(n+1)}$. Ряд из $\{a_n\}_{n=1}^{+\infty}$ сходится к 1, так как

$$a_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1}.$$

Тогда ряд из $\{r_n\}_{n=1}^{+\infty}$ расходится:

$$r_n = 1 - \sum_{k=1}^n \frac{1}{k(k+1)} = 1 - \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = \frac{1}{n+1}.$$

- (b) Верно, так как $|a_n| = |r_{n-1} r_n| \le |r_{n-1}| + |r_n|$.
- 7. (Баев А.Ж.) Заметим, что

$$\int_{0}^{1} \left(f'(x) - x \right)^{2} dx \ge 0 \Leftrightarrow \int_{0}^{1} \left((f'(x))^{2} - 2xf'(x) \right) dx + \frac{1}{3} \ge 0.$$

После интегрирования по частям $\int\limits_0^1 2x f'(x) dx = \frac{4}{3} - \int\limits_0^1 2f(x) dx$ получаем требуемое. Равенство будет достигаться, если f'(x) = x, значит, единственной подходящей функцией является $f(x) = \frac{3x^2+1}{6}$.