Задача:

При нагревании без доступа воздуха соль X, состоящая из трех элементов, может разлагаться с образованием разных продуктов при разных температурах. Реакция, описанная Густавом Магнусом в 1825 году, протекает по схеме:

Х = Ү (твердый продукт, металл) + А (газ) (реакция 1).

Другое направление реакции обнаружил Юстус Либих в 1855 году, оно описывается схемой:

X = Z (твердый продукт) + A (газ) + B (газ) (реакция 2).

В большинстве случаев процесс протекает параллельно по обоим направлениям, образуя смесь продуктов реакций 1 и 2. При проведении реакций разложения X в определенных условиях были получены следующие результаты.

Направление реакции	Масса исходного вещества, г	Масса твердого остатка, г	Объем газа, мл (н.у)
реакция (1)	1,000	0,389	311,1
реакция (2)	1,000	0,500	311,1
реакции (1) + (2)	1,000	0,444	311,1

Пользуясь количественными данными, приведенными в таблице, определите:

- 1) вещество X, продукты Y и Z, газобразные продукты A и B
- 2) количественный состав твердого остатка (соотношение продуктов Y и Z) для случая параллельного протекания реакций. Приведите необходимые рассуждения и расчеты.

Решение:

1) В реакции (1) получается индивидуальный газ А. Его масса 0,611 г, а объем (н.у.) 311,1 мл. Отсюда молекулярная масса газа A=44, скорее всего это CO_2 (N_2O вряд ли получится при разложении соли металла) Аналогичным образом, пользуясь данными из второй строки таблицы, получаем молярную массу газообразных продуктов, равную 36. Так как один из газов, CO_2 , то B=CO. Определим металл по первой строке таблицы. При разложении соли образуется 0,139 моль газа. Количество металла может быть 0,0139, 0,00695 или 0,00463 моль (для соотношений 1:1, 1:2 и 1:3). Молярные массы металла для этих случаев составляют 28, 56 и 84. Подходит только железо при соотношении 1 : 2. Y=Fe

$$X = Fe + 2CO_2$$

Х = оксалат железа, Fe

Реакция (1) $FeC_2O_4 = Fe + 2 CO_2$

Реакция (2) $FeC_2O_4 = FeO + CO_2 + CO$ (молярная масса Z действительно составляет 72), что можно подтвердить расчетом по второй строке таблицы.

Таким образом, $X = FeC_2O_4$, Y = Fe, Z = FeO, $A = CO_2$, B = CO.

2) Масса газовой смеси составляет 0,556, таким образом средняя молярная масса 40. Рассмотрим 1 моль оксалата, пусть по реакции (1) разложилось x моль, а по реакции (2) — (1-x) моль. По реакции

(1) получено 2x моль CO_2 , а по реакции (2) получено (1-x) моль CO_2 и столько же CO

В газовой смеси (x + 1) моль CO_2 и (1 - x) моль CO, общее количество смеси = 2 моль. Тогда среднюю молекулярную массу газа можно записать как $44(x + 1) + 28(1 - x) = 40 \times 2$

Отсюда выходит x = 0.5, y = 0.5 реакции идут в соотношении 1:1, твердый продукт Fe и FeO в мольном отношении 1:1.