C	Contents					
1	Misc	1				
	1.1	Debug List				
	1.2 1.3	Makefile				
	1.4	Random				
	1.5	Changing Stack Size				
	1.6	Bit Twiddling				
	1.7	Floating Point Comparison 2				
	1.8	Floating Point Binary Search 2				
	1.9	Mo's Algorithm on Tree				
	1.10	Longest Increasing Subsequence				
	1.11	Aliens Trick				
2		Structures 2				
	2.1	GNU PBDS				
	2.2	Segment Tree				
	2.3	Link-cut Tree				
	2.4	neavy-Light Decomposition				
3	Math	4				
	3.1	Number Theory 4				
		3.1.1 Modular				
		3.1.2 Extended GCD				
		3.1.4 Sieve				
		3.1.5 Miller-Rabin				
		3.1.6 Pollard's Rho 4				
		3.1.7 Tonelli-Shanks 5				
		3.1.8 Baby-Step Giant-Step 5				
		3.1.9 Multiplicative Function Sum 5				
	3.2	Combinatorics				
		3.2.1 De Brujin Sequence				
	3.3	3.2.2 Multinomial				
	3.3	3.3.1 Kirchhoff's Theorem 5				
		3.3.2 Tutte's Matrix 5				
		3.3.3 Cayley's Formula 5				
		3.3.4 Erdős-Gallai Theorem 5				
4	Nume	-i E				
4	4.1	ric 5 long long Multiplication 5				
	4.2	Barrett Reduction				
	4.3	Polynomial Interpolation 6				
	4.4	Fast Fourier Transform 6				
	4.5	Fast Walsh-Hadamard Transform 6				
	4.6	FFT Convolution 6				
	4.7	Linear Recurrence				
		4.7.1 Calculation				
		4.7.2 Berlekamp-Massey				
	4.8	Matrix Determinant				
	4.9	Matrix Inverse				
	4.10					
		Simplex 8				
_						
5	Grapl 5.1					
	5.2	Modeling				
	3.2	5.2.1 Dinic				
		5.2.2 Gomory-Hu Tree				
		5.2.3 Global Minimum Cut 10				
		5.2.4 Min Cost Max Flow				
	5.3	Matching				
		5.3.1 Kuhn-Munkres				
		5.3.2 Bipartite Minimum Vertex Cover 11 5.3.3 Maximum General Matching 11				
		5.3.4 Min Weight Perfect Matching				
		5.3.5 Stable Marriage				
	5.4	Centroid Decomposition				
	5.5	Minimum Mean Cycle				
	5.6	Bellman-Ford				
	5.7	Directed Minimum Spanning Tree				
	5.8	Maximum Clique				
	5.9 5.10	Tarjan				
	5.10	0,				
	5.12					
	5.13	2-SAT				
	5.14					
	5.15	Dominator Tree				
	5.16					
	5.17	Edge BCC				
	2.18	Manhattan MST				

	5.19	Notes	16	
6	Geometry			
	6.1	Basic 2D	16	
	6.2	Angle	17	
	6.3	Closest Pair	17	
	6.4	Minimum Enclosing Circle	17	
	6.5	Half Plane Intersection	17	
	6.6	Delaunay Triangulation	18	
	6.7	Spherical Coordinates	18	
	6.8	Quaternion	18	
	6.9	3D Convex Hull	19	
7	Strings			
	7.1	Z-value	19	
	7.2	Manacher	19	
	7.3	Minimum Rotation	19	
	7.4	Aho-Corasick	19	
	7.5	Suffix Array	20	

1 Misc

1.1 Debug List

```
- Pre-submit:
  - Did you made a typo when copying from codebook?
  - Test more cases if unsure.
     · Write a naive solution and check small cases.
  - Submit the correct file.
- General Debugging:
  - Read the whole problem again.
  - Have a teammate read the problem.
  - Have a teammate read your code.
    - Explain you solution to them (or a rubber duck).
  - Print the code and its output / debug output.
  - Go to the toilet.
- Wrong Answer:
  - Any possible overflows?
    - long long
- Try `-ftrapv` or `#pragma GCC optimize("trapv")`
  - Did you forget to sort or unique?
  - Generate large and worst "corner" cases.
- Check your `m` / `n`, `i` / `j` and `x` / `y`.
  - Are everything initialized or reset properly?
  - Are you sure about the STL thing you are using?
    - Read cppreference (should be available).

    Print everything and run it on pen and paper.

- Time Limit Exceeded:
  - Calculate your time complexity again.
  - Does the program actually end?
    - Check for `while(v.size())` etc.
  - Test the largest cases locally
  - Did you copy unnecessary stuff?
    - e.g. pass vectors by value
  - Is your constant factor reasonable?
- Runtime Error:
  - Check memory usage.
    - Forget to clear or destroy stuff?
  - Stack overflow?
    - Infinite recursion?
  - Bad pointer / array access?
     - Try `-fsanitize=address` and `-fstack-protector`
  - Divide / mod by zero?
```

1.2 Makefile

```
.PRECIOUS: ./p%
%: p%
   ulimit -s unlimited && ./$<
p%: p%.cpp
   g++ -o $@ $< -std=gnu++17 -Wall -Wextra -Wshadow \
   -fsanitize=address -fsanitize=undefined
init:
   for i in a b c d e f g h; do \
        cp default.cpp "p$$i.cpp"; \
   done</pre>
```

1.3 SplitMix64

```
using ull = unsigned long long;
inline ull splitmix64(ull x) {
   // static ull x = seed;
   ull z = (x += 0x9E3779B97F4A7C15);
   z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9;
   z = (z ^ (z >> 27)) * 0x94D049BB133111EB;
   return z ^ (z >> 31);
}
```

1.4 Random

```
#include <random>
#include <chrono>

using namespace std;

// most judges and contest environments run linux
// but we should not trust anyone
#ifdef __unix__
random_device rd;
mt19937_64 RNG(rd());
#else
```

1.5 Changing Stack Size

```
constexpr size_t size = 200 << 20; // 200MiB
int main() {
  register char* rsp asm("rsp");
  char* buf = new char[size];
  asm("movq %0, %%rsp\n"::"r"(buf + size));
  // do stuff
  asm("movq %0, %%rsp\n"::"r"(rsp));
}</pre>
```

1.6 Bit Twiddling

```
ull next_permutation(ull x) {
  ull c = __builtin_ctzll(x), r = x + (1 << c);
  return (r ^ x) >> (c + 2) | r;
}
// iterate over all (proper) subsets of bitset s
void subsets(ull s) {
  for (ull x = s; x; ) { --x &= s; /* do stuff */ }
}
```

1.7 Floating Point Comparison

```
long long rc(double x) { return *(long long*)&x; }
// relative error: 2^-28 ~ 3.7e-9
// absolute error: 1e-8
bool is_equal(double a, double b) {
  return abs(rc(a) - rc(b)) < (1LL << (52 - 24)) ||
  abs(a - b) < 1e-8;
}</pre>
```

1.8 Floating Point Binary Search

```
union di { double d; ull i; };
bool check(double);
// binary search in [L, R) with relative error 2^-eps
double binary_search(double L, double R, int eps) {
    di l = {L}, r = {R}, m;
    while (r.i - l.i > 1LL << (52 - eps)) {
        m.i = (l.i + r.i) >> 1;
        if (check(m.d)) r = m;
        else l = m;
    }
    return l.d;
}
```

1.9 Mo's Algorithm on Tree

```
void MoAlgoOnTree() {
  Dfs(0, -1);
  vector<int> euler(tk);
  for (int i = 0; i < n; ++i) {
  euler[tin[i]] = i;</pre>
    euler[tout[i]] = i;
  vector<int> l(q), r(q), qr(q), sp(q, -1);
  for (int i = 0; i < q; ++i) {
  if (tin[u[i]] > tin[v[i]]) swap(u[i], v[i]);
    int z = GetLCA(u[i], v[i]);
    sp[i] = z[i];
    if (z == u) l[i] = tin[u[i]], r[i] = tin[v[i]];
    else l[i] = tout[u[i]], r[i] = tin[v[i]];
    qr[i] = i;
  sort(qr.begin(), qr.end(), [δ](int i, int j) {
  if (l[i] / kB == l[j] / kB) return r[i] < r[j];</pre>
    return l[i] / kB < l[j] / kB;
  vector<bool> used(n);
  // Add(v): add/remove v to/from the path based on used[v]
  for (int i = 0, tl = 0, tr = -1; i < q; ++i) {
```

```
while (tl < l[qr[i]]) Add(euler[tl++]);
while (tl > l[qr[i]]) Add(euler[--tl]);
while (tr > r[qr[i]]) Add(euler[tr--]);
while (tr < r[qr[i]]) Add(euler[++tr]);
// add/remove LCA(u, v) if necessary
}
}</pre>
```

1.10 Longest Increasing Subsequence

```
// source: KACTL
if (S.empty()) return {};
 vi prev(sz(S));
 typedef pair<I, int> p;
 vector res;
 rep(i,0,sz(S)) {
   // change 0 -> i for longest non-decreasing subsequence
   auto it = lower_bound(all(res), p{S[i], 0});
   if (it == res.end()) res.emplace_back(), it =
   \rightarrow res.end()-1;
   *it = {S[i], i};
   prev[i] = it == res.begin() ? 0 : (it-1)->second;
 int L = sz(res), cur = res.back().second;
 vi ans(L);
 while (L--) ans[L] = cur, cur = prev[cur];
 return ans;
```

1.11 Aliens Trick

```
// min dp[i] value and its i (smallest one)
pll get_dp(int n);
ll aliens(int n) {
   int l = 0, r = 1000000;
   while (l!= r) {
      int m = (l + r) / 2;
      pll res = get_dp(m);
      if (res.S == n) return res.F - m * n;
      if (res.S < n) r = m;
      else l = m + 1;
   }
l--;
   return get_dp(l).F - l * n;
}</pre>
```

2 Data Structures

2.1 GNU PBDS

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/rope>
using namespace __gnu_pbds;
// most of std::map + order_of_key, find_by_order
template<typename T, typename U = null_type>
using ordered_map = tree<T, U, std::less<T>;
rb_tree_tag, tree_order_statistics_node_update>;
// rb_tree_tag can be changed to splay_tree_tag
template<typename T> struct myhash {
 size_t operator()(T x) const; // splitmix64, etc.
// mostly the same as std::unordered_map
template<typename T, typename U = null_type>
using hash_table = gp_hash_table<T, U, myhash<T>>;
// most of std::priority_queue + merge
using heap = priority_queue<int, std::less<int>>;
// the third template parameter is tag, useful ones are
// pairing_heap_tag, binary_heap_tag, binomial_heap_tag
// similar to treap, has insert/delete range, merge, etc.
using __gnu_cxx::rope;
```

2.2 Segment Tree

```
template<typename T> struct tree {
   static const T ID; // identity element
```

```
T f(T, T); // associative operator
  int n;
  vector<T> v;
  tree(vector<T> \delta a) : n(a.size()), v(2 * n, ID) {
    copy_n(a.begin(), n, v.begin() + n);
    for(int i = n - 1; i > 0; i--)
       v[i] = f(v[i << 1], v[i << 1 | 1]);
  void update(int pos, T val) {
  for(v[pos += n] = val; pos >> 1; pos >>= 1)
       v[pos >> 1] = f(v[pos & -2], v[(pos & -2) ^ 1]);
  T query(int l, int r) {
    T tl = ID, tr = ID;
for(l += n, r += n; l < r; l >>= 1, r >>= 1) {
      if(l & 1) tl = f(tl, v[l++]);
      if(r \delta 1) tr = f(v[--r], tr);
    return f(tl, tr);
  }
};
```

2.3 Link-cut Tree

```
// source: bcw codebook
const int MXN = 100005;
const int MEM = 100005:
struct Splay {
  static Splay nil, mem[MEM], *pmem;
  Splay *ch[2], *f;
  int val, rev, size;
Splay () : val(-1), rev(0), size(0) {
    f = ch[0] = ch[1] = \delta nil;
  Splay (int _val) : val(_val), rev(0), size(1) {
   f = ch[0] = ch[1] = &nil;
  bool isr() {
    return f->ch[0] != this δδ f->ch[1] != this;
  int dir() {
    return f->ch[0] == this ? 0 : 1;
  void setCh(Splay *c, int d) {
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void push() {
    if (rev) {
      swap(ch[0], ch[1]);
if (ch[0] != &nil) ch[0]->rev ^= 1;
      if (ch[1] != &nil) ch[1]->rev ^= 1;
      rev=0;
    }
  }
  void pull() {
    size = ch[0] -> size + ch[1] -> size + 1;
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil, Splay::mem[MEM], *Splay::pmem = Splay::mem;
Splay *nil = &Splay::nil;
void rotate(Splay *x) {
 Splay *p = x->f;
int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
  p->setCh(x->ch[!d], d);
  x->setCh(p, !d);
  p->pull(); x->pull();
vector<Splay*> splayVec;
void splay(Splay *x) {
  splayVec.clear();
  for (Splay *q=x;; q=q->f) {
    splayVec.push_back(q);
    if (q->isr()) break;
  reverse(begin(splayVec), end(splayVec));
  for (auto it : splayVec) it->push();
```

```
while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir()==x->f->dir()) rotate(x->f),rotate(x);
    else rotate(x),rotate(x);
}
Splay* access(Splay *x) {
  Splay *q = nil;
for (;x!=nil;x=x->f) {
    splay(x);
    x->setCh(q, 1);
    q = x;
  }
  return q;
}
void evert(Splay *x) {
  access(x);
 splay(x);
x->rev ^= 1;
  x->push(); x->pull();
void link(Splay *x, Splay *y) {
// evert(x);
  access(x):
  splay(x);
  evert(y);
  x->setCh(y, 1);
void cut(Splay *x, Splay *y) {
// evert(x);
  access(y);
  splay(y);
  v->push();
  y->ch[0] = y->ch[0]->f = nil;
int N, Q;
Splay *vt[MXN];
int ask(Splay *x, Splay *y) {
  access(x);
  access(y);
  splay(x);
  int res = x->f->val;
  if (res == -1) res=x->val;
  return res;
int main(int argc, char** argv) {
  scanf("%d%d", &N, &Q);
  for (int i=1; i<=N; i++)
    vt[i] = new (Splay::pmem++) Splay(i);
  while (Q--) {
    char cmd[105];
    int u, v;
scanf("%s", cmd);
    if (cmd[1] == 'i') {
      scanf("%d%d", &u, &v);
link(vt[v], vt[u]);
    } else if (cmd[0] ==
                           'c') {
      scanf("%d", &v);
      cut(vt[1], vt[v]);
    } else {
      scanf("%d%d", &u, &v);
      int res=ask(vt[u], vt[v]);
      printf("%d\n", res);
 }
```

Heavy-Light Decomposition

```
// source: KACTL
template <bool VALS_EDGES> struct HLD {
 int N, tim = 0;
 vector<vi> adj;
 vi par, siz, depth, rt, pos;
 Node *tree;
 HLD(vector<vi> adj_)
    : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1),
    → depth(N),
      rt(N),pos(N),tree(new Node(0, N)){ dfsSz(0);
        dfsHld(0); }
```

```
void dfsSz(int v) {
    if (par[v] != -1) adj[v].erase(find(all(adj[v]),
       par[v]));
    for (int& u : adj[v]) {
      par[u] = v, depth[u] = depth[v] + 1;
      dfsSz(u);
      siz[v] += siz[u];
      if (siz[u] > siz[adj[v][\theta]]) swap(u, adj[v][\theta]);
    }
  void dfsHld(int v) {
    pos[v] = tim++;
    for (int u : adj[v]) {
      rt[u] = (u == adj[v][0] ? rt[v] : u);
      dfsHld(u):
   }
  template <class B> void process(int u, int v, B op) {
    for (; rt[u] != rt[v]; v = par[rt[v]]) {
      if (depth[rt[u]] > depth[rt[v]]) swap(u, v);
      op(pos[rt[v]], pos[v] + 1);
    if (depth[u] > depth[v]) swap(u, v);
    op(pos[u] + VALS_EDGES, pos[v] + 1);
  void modifyPath(int u, int v, int val) {
    process(u, v, [8](int l, int r) { tree->add(l, r, val);
  int queryPath(int u, int v) { // Modify depending on
  \hookrightarrow problem
   int res = -1e9;
    process(u, v, [δ](int l, int r) {
        res = max(res, tree->query(l, r));
    }):
    return res;
  int querySubtree(int v) { // modifySubtree is similar
    return tree->query(pos[v] + VALS_EDGES, pos[v] + siz[v]);
};
```

3 Math

3.1 Number Theory

3.1.1 Modular

```
template<typename T> struct M {
  static T MOD;
  Tv;
  M() : v(0) \{ \}
  M(T x) {
    v = (-MOD \le x \&\& x \le MOD) ? x : x \% MOD;
    if (v < 0) v += MOD;
  explicit operator T() const { return v; }
  bool operator==(const M& b) const { return v == b.v; }
  bool operator!=(const M8 b) const { return v != b.v; }
  M operator-() { return M(-v); }
  M operator+(M b) { return M(v + b.v); }
  M operator-(M b) { return M(v - b.v); }
M operator*(M b) { return M((__int128)v * b.v % MOD); }
  M operator/(M b) { return *this * (b ^ (MOD - 2)); }
  friend M operator^(M a, ll b) {
    M ans(1);
    for (; b; b >>= 1, a *= a) if (b & 1) ans *= a;
    return ans;
  friend M& operator+=(M& a, M b) { return a = a + b; }
  friend M& operator-=(M& a, M b) { return a = a - b; }
  friend M& operator*=(M& a, M b) { return a = a * b;
  friend M\delta operator/=(M\delta a, M b) { return a = a / b; }
using Mod = M<ll>;
template<>ll Mod::MOD = 10000000007;
11 &MOD = Mod::MOD;
/* Safe primes
 * 21673, 26497, 22621, 21817, 28393, 26821, 30181, 22093
 * 977680993, 971939533, 970479637, 910870273, 1041012121
 * 741266610070171837, 1110995545625882557
                         | p - 1
 * NTT prime
                                       | primitive root
                         (2^16)
 * 65537
```

* 998244353

l (2²³)*119

```
x = f(x, n);
 * 2748779069441
                          (2^39)*5
                                       1 3
                                                                              res = \_gcd(abs(x - y), n);
 * 1945555039024054273 | (2<sup>56</sup>)*27
                                                                            y = x;
3.1.2 Extended GCD
                                                                          if (res != 0 && res != n) return res;
tuple<ll, ll, ll> extgcd(ll a, ll b) {
  if (b == 0) return { 1, 0, a };
  else {
   auto [p, q, g] = extgcd(b, a % b);
return { q, p - q * (a / b), g };
                                                                      3.1.7 Tonelli-Shanks
                                                                      int legendre(Mod a) {
                                                                        if (a == 0) return 0;
                                                                        return (a ^ ((MOD - 1) / 2)) == 1 ? 1 : -1;
3.1.3 Chinese Remainder
                                                                      Mod sqrt(Mod a) {
                                                                        assert(legendre(a) != -1); // no solution
ll crt(ll a, ll m, ll b, ll n) {
                                                                        ll p = MOD, s = p - 1;
  if (n > m) swap(a, b), swap(m, n);
                                                                        if (a == 0) return 0;
  auto [x, y, g] = extgcd(m, n);
assert((a - b) % g == 0); // no solution
                                                                        if (p == 2) return 1;
                                                                        if (p % 4 == 3) return a ^ ((p + 1) / 4);
 x = ((b - a) / g * x) % (n / g) * m + a;
  return x < 0 ? x + m / g * n : x;
                                                                        int r, m;
                                                                        for (r = 0; !(s & 1); r++) s >>= 1;
                                                                        Mod n = 2;
                                                                        while (legendre(n) !=-1) n += 1;
3.1.4 Sieve
                                                                        Mod x = a^{(s+1)} / 2, b = a^{s}, g = n^{s};
                                                                        while (b != 1) {
const ll MAXN = 1000000:
                                                                          Mod t = b;
bitset<MAXN> is_prime;
                                                                          for (m = 0; t != 1; m++) t *= t;
Mod gs = g ^ (1LL << (r - m - 1));</pre>
vector<ll> primes;
ll mpf[MAXN];
                                                                          g = gs * gs, x *= gs, b *= g, r = m;
ll phi[MAXN];
                                                                        }
ll mu[MAXN];
                                                                        return x;
void sieve() {
  is_prime.set();
                                                                      3.1.8 Baby-Step Giant-Step
  is_prime[1] = 0;
  mu[1] = phi[1] = 1;
                                                                      // returns x such that a ^x = b where x in [l, r)
  for(ll i = 2; i < MAXN; i++) {</pre>
                                                                      ll bsgs(Mod a, Mod b, ll l = 0, ll r = MOD - 1) {
    if(is_prime[i]) {
                                                                        int m = sqrt(r - l) + 1, i;
      mpf[i] = i;
                                                                        unordered_map<ll, ll> tb;
      primes.push_back(i);
                                                                        Mod d = (a ^ l) / b;

for (i = 0, d = (a ^ l) / b; i < m; i++, d *= a)

if (d == 1) return l + i;
      phi[i] = i - 1;
      mu[i] = -1;
                                                                        else tb[(ll)d] = l + i;
Mod c = Mod(1) / (a ^ m);
    for(ll p : primes) {
      if(p > mpf[i] \mid \mid i * p >= MAXN) break;
                                                                        for (i = 0, d = 1; i < m; i++, d *= c)
      is_prime[i * p] = 0;
                                                                          if (auto j = tb.find((ll)d); j != tb.end())
      mpf[i * p] = p;
                                                                            return j->second + i * m;
      mu[i * p] = -mu[i];
                                                                        return assert(0), -1; // no solution
      if(i % p == 0)
        phi[i*p] = phi[i] * p, mu[i*p] = 0;
      else
                                                                      3.1.9 Multiplicative Function Sum
        phi[i*p] = phi[i] * (p - 1);
                                                                      const ll N = 1000000;
 }
                                                                      ll presum_g(ll n);
                                                                      ll presum_h(ll n);
                                                                      // preprocessed prefix sum of f
3.1.5 Miller-Rabin
                                                                      ll presum_f[N];
                                                                      // djs: prefix sum of multiplicative function f
// checks if Mod::MOD is prime
                                                                      ll djs_f(ll n) {
bool is_prime() {
                                                                        static unordered_map<ll,ll> m;
  if (MOD <= 1 || MOD % 2 == 0) return MOD == 2;</pre>
                                                                        if(n<N) return presum_f[n];</pre>
  // \text{ Mod A[]} = \{2, 7, 61\};
                                                                        if(m.find(n)!=m.end()) return m[n];
  Mod A[] = { 2,325,9375,28178,450775,9780504,1795265022 };
                                                                        ll ans=presum_h(n);
  int s = __builtin_ctzll(MOD - 1), i;
for (Mod a : A) {
   Mod x = a ^ (MOD >> s);
                                                                        for(ll l=2,r; l<=n; l=r+1) {</pre>
                                                                          r=n/(n/l);
                                                                          ans-=(presum_g(r)-presum_g(l-1))*djs_f(n/l);
    for (i = 0; i < s \&\& ll(x + 1) > 2; i++, x *= x);
    if (i && x != -1) return 0;
                                                                        return m[n]=ans;
  }
  return 1;
}
                                                                      3.2 Combinatorics
3.1.6 Pollard's Rho
                                                                      3.2.1 De Brujin Sequence
ll f(ll x, ll mod) {
                                                                      int res[kN], aux[kN], a[kN], sz;
  return (x * x + 1) % mod;
                                                                      void Rec(int t, int p, int n, int k) {
                                                                        if (t > n) {
// n should be composite
                                                                          if (n % p == 0)
ll pollard_rho(ll n) {
                                                                            for (int i = 1; i <= p; ++i) res[sz++] = aux[i];</pre>
  if (!(n & 1)) return 2;
                                                                        } else {
  while (1) {
                                                                          aux[t] = aux[t - p];
    ll y = 2, x = RNG() % (n - 1) + 1, res = 1;
                                                                          Rec(t + 1, p, n, k);
    for (int sz = 2; res == 1; sz *= 2) {
                                                                          for (aux[t] = aux[t - p] + 1; aux[t] < k; ++aux[t])
      for (int i = 0; i < sz && res <= 1; i++) {
                                                                           \rightarrow Rec(t + 1, t, n, k);
```

3.3 Theorems

return c;

Source: waynedisonitau123

3.3.1 Kirchhoff's Theorem

for(int j = θ; i < v[i]; j++)
 c = c * ++m / (j+1);</pre>

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G , where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G .

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.

3.3.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

3.3.3 Cayley's Formula

- Given a degree sequence d_1,d_2,\ldots,d_n for each labeled vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
 Let $T_{n,k}$ be the number of labeled forests on n vertices with
- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

3.3.4 Erdős-Gallai Theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

holds for all $1 \leq k \leq n$.

4 Numeric

4.1 long long Multiplication

```
using ull = unsigned long long;
using ll = long long;
using ld = long double;
// returns a * b % M where a, b < M < 2**63
ull mult(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(ld(a) * ld(b) / ld(M));
    return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
```

4.2 Barrett Reduction

```
using ull = unsigned long long;
using uL = __uint128_t;
// very fast calculation of a % m
struct reduction {
  const ull m, d;
  reduction(ull m) : m(m), d(((uL)1 << 64) / m) {}
  inline ull operator()(ull a) const {
    ull q = (ull)(((uL)d * a) >> 64);
    return (a -= q * m) >= m ? a - m : a;
  }
};
```

4.3 Polynomial Interpolation

```
// source: KACTL

typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
    vd res(n), temp(n);
    rep(k,0,n-1) rep(i,k+1,n)
        y[i] = (y[i] - y[k]) / (x[i] - x[k]);
    double last = 0; temp[0] = 1;
    rep(k,0,n) rep(i,0,n) {
        res[i] += y[k] * temp[i];
        swap(last, temp[i]);
        temp[i] -= last * x[k];
    }
    return res;
}
```

4.4 Fast Fourier Transform

```
template<typename T>
void work(int n, vector<T>& a, vector<T>& rt, bool inv) {
 for (int i = 1, r = 0; i < n; i++) {
    for (int bit = n; !(r & bit); bit >>= 1, r ^= bit);
    if (r > i) swap(a[i], a[r]);
  for (int len = 2; len <= n; len <<= 1)</pre>
    for (int i = 0; i < n; i += len)</pre>
      for (int j = 0; j < len / 2; j++) {
  int pos = n / len * (inv ? len - j : j);</pre>
        T u = a[i + j], v = a[i + j + len / 2] * rt[pos];
a[i + j] = u + v, a[i + j + len / 2] = u - v;
 if (inv) {
    T minv = T(1) / T(n);
    for (T& x : a) x *= minv;
void FFT(vector<complex<double>>& a, bool inv) {
 int n = a.size();
  vector<complex<double>> rt(n + 1);
  double arg = acos(-1) * 2 / n;
  for (int i = 0; i <= n; i++)
   rt[i] = { cos(arg * i), sin(arg * i) };
 work(n, a, rt, inv);
void NTT(vector<Mod>& a, bool inv, Mod p_root) {
 int n = a.size();
 Mod root = p_root ^ (MOD - 1) / n;
 vector<Mod> rt(n + 1, 1);
 for (int i = 0; i < n; i++) rt[i + 1] = rt[i] * root;
  work(n, a, rt, inv);
```

4.5 Fast Walsh-Hadamard Transform

```
// source: waynedisonitau123
void xorfwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  for (int i = l, j = m; i < m; ++i, ++j) {
   int x = v[i] + v[j];
}</pre>
    v[j] = v[i] - v[j], v[i] = x;
  }
void xorifwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  for (int i = l, j = m; i < m; ++i, ++j) {
  int x = (v[i] + v[j]) / 2;</pre>
    v[j] = (v[i] - v[j]) / 2, v[i] = x;
  xorifwt(v, l, m), xorifwt(v, m, r);
void andfwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  andfwt(v, l, m), andfwt(v, m, r);
for (int i = l, j = m; i < m; ++i, ++j) v[i] += v[j];
```

```
void andifwt(int v[], int l, int r) {
    if (r - l == 1) return;
    int m = l + r >> 1;
    andifwt(v, l, m), andifwt(v, m, r);
    for (int i = l, j = m; i < m; **i, **j) v[i] -= v[j];
}

void orfwt(int v[], int l, int r) {
    if (r - l == 1) return;
    int m = l + r >> 1;
    orfwt(v, l, m), orfwt(v, m, r);
    for (int i = l, j = m; i < m; **i, **j) v[j] *= v[i];
}

void orifwt(int v[], int l, int r) {
    if (r - l == 1) return;
    int m = l + r >> 1;
    orifwt(v, l, m), orifwt(v, m, r);
    for (int i = l, j = m; i < m; **i, **j) v[j] -= v[i];
}</pre>
```

4.6 FFT Convolution

```
// source: waynedisonitau123
vector<long long> convolution(const vector<int> &a, const

  vector<int> δb) {
  // Should be able to handle N <= 10^5, C <= 10^4
  int sz = 1;
  while (sz < a.size() + b.size() - 1) sz <<= 1;
  vector<cplx> v(sz);
  for (int i = 0; i < sz; ++i) {
    double re = i < a.size() ? a[i] : 0;
    double im = i < b.size() ? b[i] : 0;
    v[i] = cplx(re, im);
  fft(v, sz);
  for (int i = 0; i <= sz / 2; ++i) {
  int j = (sz - i) δ (sz - 1);
    cplx x = (v[i] + v[j].conj()) * (v[i] - v[j].conj()) *
      → cplx(0, -0.25);
    if (j != i) v[j] = (v[j] + v[i].conj()) * (v[j] -

→ v[i].conj()) * cplx(0, -0.25);
    v[i] = x;
  ifft(v, sz);
  vector<long long> c(sz);
  for (int i = 0; i < sz; ++i) c[i] = round(v[i].re);
  return c;
vector<int> convolution_mod(const vector<int> &a, const
→ vector<int> &b, int p) {
  int sz = 1;
  while (sz < (int)a.size() + (int)b.size() - 1) sz <<= 1;
  vector<cplx> fa(sz), fb(sz);
  for (int i = 0; i < (int)a.size(); ++i)</pre>
    fa[i] = cplx(a[i] & ((1 << 15) - 1), a[i] >> 15);
  for (int i = 0; i < (int)b.size(); ++i)</pre>
    fb[i] = cplx(b[i] & ((1 << 15) - 1), b[i] >> 15);
  fft(fa, sz), fft(fb, sz);
  double r = 0.25 / sz;
  cplx r2(0, -1), r3(r, 0), r4(0, -r), r5(0, 1);

for (int i = 0; i <= (sz >> 1); ++i) {

  int j = (sz - i) & (sz - 1);
    cplx a1 = (fa[i] + fa[j].conj());
cplx a2 = (fa[i] - fa[j].conj()) * r2;
    cplx b1 = (fb[i] + fb[j].conj()) * r3;
cplx b2 = (fb[i] - fb[j].conj()) * r4;
    if (i != j) {
      cplx c1 = (fa[j] + fa[i].conj());
      cplx c2 = (fa[j] - fa[i].conj()) * r2;
      cplx d1 = (fb[j] + fb[i].conj()) * r3;
      cplx d2 = (fb[j] - fb[i].conj()) * r4;
      fa[i] = c1 * d1 + c2 * d2 * r5;
      fb[i] = c1 * d2 + c2 * d1;
    fa[j] = a1 * b1 + a2 * b2 * r5;
    fb[j] = a1 * b2 + a2 * b1;
  fft(fa, sz), fft(fb, sz);
  vector<int> res(sz);
  for (int i = 0; i < sz; ++i) {
    long long a = round(fa[i].re);
    long long b = round(fb[i].re);
    long long c = round(fa[i].im);
```

```
res[i] = (a + ((b % p) << 15) + ((c % p) << 30)) % p;
}
return res;
}}</pre>
```

4.7 Linear Recurrence

4.7.1 Calculation

```
template<typename T> struct lin_rec {
  using poly = vector<T>;
  poly mul(poly a, poly b, poly m) {
    int n = m.size();
    poly r(n);
    for (int i = n - 1; i >= 0; i--) {
     r.insert(r.begin(), 0), r.pop_back();
      T c = r[n - 1] + a[n - 1] * b[i];
      // c /= m[n - 1]; if m is not monic
      for (int j = 0; j < n; j++)
        r[j] += a[j] * b[i] - c * m[j];
   }
   return r;
  poly pow(poly p, ll k, poly m) {
   poly r(m.size()); r[0] = 1;
for (; k; k >>= 1, p = mul(p, p, m))
     if (k & 1) r = mul(r, p, m);
    return r;
  T calc(poly t, poly r, ll k) {
    int n = r.size();
    poly p(n); p[1] = 1;
    poly q = pow(p, k, r);
    T ans = 0;
    for (int i = 0; i < n; i++) ans += t[i] * q[i];
    return ans;
 }
```

4.7.2 Berlekamp-Massey

```
template<typename T>
vector<T> berlekamp_massey(const vector<T>& s) {
    int n = s.size(), l = 0, m = 1;
    vector<T> r(n), p(n); r[0] = p[0] = 1;
    T b = 1, d = 0;
    for (int i = 0; i < n; i++, m++, d = 0) {
        for (int j = 0; j <= l; j++) d += r[j] * s[i - j];
        if ((d /= b) == 0) continue; // change if T is float
        auto t = r;
        for (int j = m; j < n; j++) r[j] -= d * p[j - m];
        if (l * 2 <= i) l = i + 1 - l, b *= d, m = 0, p = t;
    }
    return r.resize(l + 1), reverse(r.begin(), r.end()), r;
}</pre>
```

4.7.3 Composite Modulus Recurrence

```
// source: min-25
using i64 = long long;
using Matrix = vector< vector<int> >;
vector<int> linear_recurrence_mod(const vector<int>& terms,

→ const int mod) {
  const int N = terms.size() / 2;
  Matrix A(N, vector<int>(N + 1));
  for (int y = 0; y < N; ++y)
for (int x = 0; x < N + 1; ++x)
       if ((A[y][x] = terms[x + y] \% mod) < 0) A[y][x] += mod;
  for (int x = 0; x < N; ++x, ++r) {
  for (int y = x + 1; y < N; ++y) {</pre>
       while (A[y][x] > 0) {
          if (A[y][x] < A[x][x] || A[x][x] == 0) {
            for (int x2 = x; x2 < N + 1; ++x2) swap(A[x][x2],
            \hookrightarrow A[y][x2]);
         int mq = mod - A[y][x] / A[x][x];
for (int x2 = x; x2 < N + 1; ++x2) A[y][x2] =</pre>
             (A[y][x2] + i64(mq) * A[x][x2]) % mod;
     if (A[x][x] == 0) break;
```

4.8 Matrix Determinant

```
Mod det(vector<vector<Mod>> a) {
  int n = a.size();
 Mod ans = 1;
  for(int i = 0; i < n; i++) {
    int b = i;
    for(int j = i + 1; j < n; j++)</pre>
      if(a[j][i] != 0) {
        b = j:
        break:
    if(i != b) swap(a[i], a[b]), ans = -ans;
    ans *= a[i][i];
    if(ans == 0) return 0;
    for(int j = i + 1; j < n; j++) {
      Mod v = a[j][i] / a[i][i];
      if(v != 0)
        for(int k = i + 1; k < n; k++)</pre>
          a[j][k] -= v * a[i][k];
   }
  }
  return ans;
double det(vector<vector<double>> a) {
 int n = a.size();
  double ans = 1;
  for(int i = 0; i < n; i++) {</pre>
    int b = i;
    for(int j = i + 1; j < n; j++)
      if(fabs(a[j][i]) > fabs(a[b][i]))
        b = j;
    if(i != b) swap(a[i], a[b]), ans = -ans;
    ans *= a[i][i];
    if(ans == 0) return 0;
for(int j = i + 1; j < n; j++) {</pre>
      double v = a[j][i] / a[i][i];
      if(v != 0)
        for(int k = i + 1; k < n; k++)
          a[j][k] = v * a[i][k];
    }
  return ans;
```

4.9 Matrix Inverse

```
// source: KACTL
// Result is stored in A unless singular (rank < n).
// For prime powers, repeatedly set
A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}
// where A^{-1} starts as the inverse of A mod p, and
// k is doubled in each step.
int matInv(vector<vector<double>>& A) {
  int n = sz(A); vi col(n);
  vector<vector<double>> tmp(n, vector<double>(n));
  rep(i,0,n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n)
      if (fabs(A[j][k]) > fabs(A[r][c]))
    r = j, c = k;
if (fabs(A[r][c]) < 1e-12) return i;
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
      swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
```

```
rep(j,i+1,n) {
      double f = A[j][i] / v;
      A[j][i] = 0;
      rep(k,i+1,n) A[j][k] -= f*A[i][k];
      rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
   rep(j,i+1,n) A[i][j] /= v;
   rep(j,0,n) tmp[i][j] /= v;
   A[i][i] = 1;
  /// forget A at this point, just eliminate tmp backward
  for (int i = n-1; i > 0; --i) rep(j,0,i) {
   double v = A[j][i];
   rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
 rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
 return n;
int matInv_mod(vector<vector<ll>>% A) {
 int n = sz(A); vi col(n);
  vector<vector<ll>>> tmp(n, vector<ll>(n));
 rep(i,0,n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
   int r = i, c = i;
    rep(j,i,n) rep(k,i,n) if (A[j][k]) {
     r = j; c = k; goto found;
   }
   return i;
   A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i],

→ tmp[j][c]);

    swap(col[i], col[c]);
    ll v = modpow(A[i][i], mod - 2);
    rep(j,i+1,n) {
      ll f = A[j][i] * v % mod;
      A[j][i] = 0;
      rep(k,i+1,n) A[j][k] = (A[j][k] - f*A[i][k]) % mod;
     rep(k,0,n) tmp[j][k] = (tmp[j][k] - f*tmp[i][k]) % mod;
   rep(j,i+1,n) A[i][j] = A[i][j] * v % mod;
   rep(j,0,n) tmp[i][j] = tmp[i][j] * v % mod;
    A[i][i] = 1;
 for (int i = n-1; i > 0; --i) rep(j,0,i) {
   ll v = A[j][i];
   rep(k,0,n) tmp[j][k] = (tmp[j][k] - v*tmp[i][k]) % mod;
 rep(i,0,n) rep(j,0,n)
   A[col[i]][col[j]] = tmp[i][j] \% mod + (tmp[i][j] < 0 ?
    \rightarrow mod : 0);
 return n;
```

4.10 Linear Equations

```
// source: KACTL
typedef vector<double> vd;
const double eps = 1e-12;
// solves for x: A * x = b
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
 if (n) assert(sz(A[0]) == m);
 vi col(m); iota(all(col), 0);
 rep(i,0,n) {
    double v, bv = 0;
    rep(r,i,n) rep(c,i,m)
      if ((v = fabs(A[r][c])) > bv)
        br = r, bc = c, bv = v;
    if (bv <= eps) {
      rep(j,i,n) if (fabs(b[j]) > eps) return -1;
      break;
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
```

```
rep(j,0,n) swap(A[j][i], A[j][bc]);
bv = 1/A[i][i];
rep(j,i+1,n) {
    double fac = A[j][i] * bv;
    b[j] -= fac * b[i];
    rep(k,i+1,m) A[j][k] -= fac*A[i][k];
}
rank++;
}

x.assign(m, 0);
for (int i = rank; i--;) {
    b[i] /= A[i][i];
    x[col[i]] = b[i];
    rep(j,0,i) b[j] -= A[j][i] * b[i];
}
return rank; // (multiple solutions if rank < m)</pre>
```

```
4.11
        Simplex
// Two-phase simplex algorithm for solving linear programs
   of the form
//
//
       maximize
                     c^T x
       subject to
                    Ax <= b
11
                     x >= 0
//
// INPUT: A -- an m x n matrix
//
        b -- an m-dimensional vector
//
          c -- an n-dimensional vector
          x -- a vector where the optimal solution will be
   stored
//
// OUTPUT: value of the optimal solution (infinity if
   unbounded
//
           above, nan if infeasible)
//
// To use this code, create an LPSolver object with A, b,
   and c as
// arguments. Then, call Solve(x).
typedef long double ld;
typedef vector<ld> vd;
typedef vector<vd> vvd;
typedef vector<int> vi;
const ld EPS = 1e-9:
struct LPSolver {
  int m, n;
  vi B, N;
  vvd D:
  LPSolver(const vvd &A, const vd &b, const vd &c):
    m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, vd(n)
     → + 2)) {
    for (int i = 0; i < m; i++) for (int j = 0; j < n; j++)
    \rightarrow D[i][j] = A[i][j];
    for (int i = 0; i < m; i++) { B[i] = n + i; D[i][n] =
     → -1; D[i][n + 1] = b[i]; }
    for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j];
    N[n] = -1; D[m + 1][n] = 1;
  void Pivot(int r, int s) {
  double inv = 1.0 / D[r][s];
    for (int i = 0; i < m + 2; i++) if (i != r)
  for (int j = 0; j < n + 2; j++) if (j != s)</pre>
        D[i][j] -= D[r][j] * D[i][s] * inv;
    for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *=
     → inv;
    for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] *=
    swap(B[r], N[s]);
  bool Simplex(int phase) {
    int x = phase == 1 ? m + 1 : m;
    while (true) {
      int s = -1;
      for (int j = 0; j <= n; j++) {
        if (phase == 2 && N[j] == -1) continue;
```

```
if (s == -1 || D[x][j] < D[x][s] || D[x][j] ==
         \hookrightarrow D[x][s] && N[j] < N[s]) s = j;
      if (D[x][s] > -EPS) return true;
      int r = -1;
       for (int i = 0; i < m; i++) {
         if (D[i][s] < EPS) continue;</pre>
         if (r == -1 \mid \mid D[i][n + 1] / D[i][s] < D[r][n + 1] /

    → D[r][s] ||
    (D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s])
           \hookrightarrow 88 B[i] < B[r]) r = i;
      if (r == -1) return false;
      Pivot(r, s);
    }
  }
  ld Solve(vd &x) {
    int r = 0:
    for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n +
        1]) r = i;
    if (D[r][n + 1] < -EPS) {
       Pivot(r, n);
       if (!Simplex(1) || D[m + 1][n + 1] < -EPS) return</pre>
           -numeric_limits<ld>::infinity();
       for (int i = 0; i < m; i++) if (B[i] == -1) {
         int s = -1;
         for (int j = 0; j <= n; j++)
  if (s == -1 || D[i][j] < D[i][s] || D[i][j] ==</pre>
           \hookrightarrow \quad D[i][s] \ \delta\delta \ N[j] \ < \ N[s]) \ s \ = \ j;
         Pivot(i, s);
      }
    if (!Simplex(2)) return numeric_limits<ld>::infinity();
    x = vd(n):
    for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] =
    \hookrightarrow D[i][n + 1];
    return D[m][n + 1];
  }
};
int main() {
  const int m = 4;
  const int n = 3:
  ld _A[m][n] = {
    \{ 6, -1, 0 \}
    \{-1, -5, 0\},\
    { 1, 5, 1 },
    \{ -1, -5, -1 \}
  };
  ld _b[m] = { 10, -4, 5, -5 };
  ld _c[n] = { 1, -1, 0 };
  vvd A(m);
  vd b(_b, _b + m);
  vd c(_c, _c + n);
  for (int i = 0; i < m; i++) A[i] = vd(_A[i], _A[i] + n);
  LPSolver solver(A, b, c);
  vd x;
  ld value = solver.Solve(x);
  cerr << "VALUE: " << value << endl; // VALUE: 1.29032</pre>
  cerr << "SOLUTION:"; // SOLUTION: 1.74194 0.451613 1</pre>
  for (size_t i = 0; i < x.size(); i++) cerr << " " << x[i];
  cerr << endl;</pre>
  return 0;
```

5 Graph

5.1 Modeling

Source: waynedisonitau123

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.
 - 2. For each edge (x,y,l,u), connect $x \to y$ with capacity
 - 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.

```
4. If in(v)>0, connect S\to v with capacity in(v), oth-
   erwise, connect v 	o T with capacity -in(v).
```

- To maximize, connect t
 ightarrow s with capacity ∞ (skip this in circulation problem), and let \boldsymbol{f} be the maximum flow from S to T. If $f \neq$ $\sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer. – To minimize, let f be the maximum flow from S to
- T. Connect t o s with capacity ∞ and let the flow from S to T be f'. If $f+f'
 eq \sum_{v \in V, in(v)>0} in(v)$, there's no solution. Otherwise, f^\prime is the answer.
- 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge e on the graph.
- Construct minimum vertex cover from maximum matching ${\it M}$ on bipartite graph (X, Y)
 - 1. Redirect every edge: $y \rightarrow x$ if $(x,y) \in M$, $x \rightarrow y$ otherwise.
 - 2. DFS from unmatched vertices in X.
 - 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- · Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer
 - 2. Construct a max flow model, let K be the sum of all weights
 - 3. Connect source $s \to v$, $v \in G$ with capacity K
 - 4. For each edge (u,v,w) in G, connect $u \to v$ and $v \to u$ with capacity \boldsymbol{w}
 - 5. For $v \in G$, connect it with sink $v \to t$ with capacity $K + 2T (\sum_{e \in E(v)} w(e)) 2w(v)$
 - 6. T is a valid answer if the maximum flow f < K|V|
- Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect u' o v'with weight w(u,v). 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the
 - cost of the cheapest edge incident to $\boldsymbol{\mathit{v}}$.
 - 3. Find the minimum weight perfect matching on G'.
- Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge (v,t) with capacity $-p_v$.
 - 2. Create edge (u,v) with capacity w with w being the cost of choosing \boldsymbol{u} without choosing \boldsymbol{v} .
 - 3. The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x}x + \sum_{y} c_{y}\bar{y} + \sum_{xy} c_{xy}x\bar{y} + \sum_{xyx'y'} c_{xyx'y'}(x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y)with capacity \boldsymbol{c}_y .
- 2. Create edge (x,y) with capacity c_{xy} .
- 3. Create edge (x,y) and edge (x^\prime,y^\prime) with capacity $c_{xyx^\prime y^\prime}$.

5.2 Flow

5.2.1 Dinic

```
struct Dinic {
  struct edge { int to, cap, flow, rev; };
  static constexpr int MAXN = 1000, MAXF = 1e9;
 vector<edge> v[MAXN];
 int top[MAXN], deep[MAXN], side[MAXN], s, t;
 void make_edge(int s, int t, int cap) {
    v[s].push_back({t, cap, 0, (int)v[t].size()});
    v[t].push_back({s, 0, 0, (int)}v[s].size() - 1});
 int dfs(int a, int flow) {
   if (a == t || !flow) return flow;
    for (int &i = top[a]; i < v[a].size(); i++) {</pre>
      edge \&e = v[a][i];
      if (deep[a] + 1 == deep[e.to] \&\& e.cap - e.flow) {
        int x = dfs(e.to, min(e.cap - e.flow, flow));
        if (x) {
          e.flow += x, v[e.to][e.rev].flow -= x;
          return x;
     }
    deep[a] = -1;
```

```
return 0;
bool bfs() {
  queue<int> q;
  fill_n(deep, MAXN, 0);
  q.push(s), deep[s] = 1;
  int tmp;
  while (!q.empty()) {
    tmp = q.front(), q.pop();
for (edge e : v[tmp])
      if (!deep[e.to] && e.cap != e.flow)
        deep[e.to] = deep[tmp] + 1, q.push(e.to);
  return deep[t]:
int max_flow(int _s, int _t) {
  s = _s, t = _t;
  int flow = 0, tflow;
  while (bfs()) {
    fill_n(top, MAXN, 0);
    while ((tflow = dfs(s, MAXF)))
      flow += tflow;
  return flow;
void reset() {
  fill_n(side, MAXN, 0);
  for (auto &i : v) i.clear();
```

5.2.2 Gomory-Hu Tree

```
int e[MAXN][MAXN];
int p[MAXN];
Dinic D; // original graph
void gomory_hu() {
  fill(p, p+n, 0);
  fill(e[0], e[n], INF);
  for ( int s = 1 ; s < n ; s++ ) {
    int t = p[s];
    Dinic F = D;
    int tmp = F.max_flow(s, t);
    for ( int i = 1 ; i < s ; i++ )
      e[s][i] = e[i][s] = min(tmp, e[t][i]);
    for ( int i = s+1 ; i <= n ; i++ )
      if ( p[i] == t δδ F.side[i] ) p[i] = s;
}
```

5.2.3 Global Minimum Cut

```
// source: wavnedisonitau123
int w[kN][kN], g[kN], del[kN], v[kN];
void AddEdge(int x, int y, int c) {
 w[x][y] += c;
 w[y][x] += c;
pair<int, int> Phase(int n) {
  fill(v, v + n, \theta), fill(g, g + n, \theta);
  int s = -1, t = -1;
 while (true) {
    int c = -1;
    for (int i = 0; i < n; ++i) {
      if (del[i] || v[i]) continue;
      if (c == -1 || g[i] > g[c]) c = i;
    if (c == -1) break;
    v[c] = 1, s = t, t = c;
for (int i = 0; i < n; ++i) {
   if (del[i] || v[i]) continue;</pre>
      g[i] += w[c][i];
    }
 return make_pair(s, t);
int GlobalMinCut(int n) {
 int cut = kInf;
  fill(del, 0, sizeof(del));
  for (int i = 0; i < n - 1; ++i) {
    int s, t; tie(s, t) = Phase(n);
    del[t] = 1, cut = min(cut, g[t]);
    for (int j = 0; j < n; ++j) {
      w[s][j] += w[t][j];
```

rep(i,0,N) if (pi[i] != INF)

```
w[j][s] += w[j][t];
                                                                             for (int to : ed[i]) if (cap[i][to])
    }
                                                                               if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
                                                                                 pi[to] = v, ch = 1;
                                                                         assert(it >= 0); // negative cost cycle
 return cut;
                                                                     };
5.2.4 Min Cost Max Flow
                                                                             Matching
                                                                     5.3
// source: KACTL
                                                                     5.3.1 Kuhn-Munkres
const ll INF = numeric_limits<ll>::max() / 4;
                                                                     // Maximum Weight Perfect Bipartite Matching
typedef vector<ll> VL;
                                                                     // Detect non-perfect-matching:
                                                                     // 1. set all edge[i][j] as INF
struct MCMF {
                                                                     // 2. if solve() >= INF, it is not perfect matching.
  int N;
  vector<vi> ed, red;
                                                                     typedef long long ll;
  vector<VL> cap, flow, cost;
                                                                     struct KM {
  vi seen;
                                                                       static const int MAXN = 1050;
  VL dist, pi;
                                                                       static const ll INF = 1LL<<60;</pre>
  vector<pii> par;
                                                                       int n, match[MAXN], vx[MAXN], vy[MAXN];
                                                                       ll edge[MAXN][MAXN], lx[MAXN], ly[MAXN], slack[MAXN];
  MCMF(int N)
                                                                       void init(int _n) {
    N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
                                                                         for ( int i = 0 ; i < n ; i++ )</pre>
    seen(N), dist(N), pi(N), par(N) {}
                                                                           for ( int j = 0; j < n; j++ )
  void addEdge(int from, int to, ll cap, ll cost) {
    this->cap[from][to] = cap;
                                                                             edge[i][j] = 0;
    this->cost[from][to] = cost;
                                                                       void add_edge(int x, int y, ll w) {
    ed[from].push_back(to);
    red[to].push_back(from);
                                                                         edge[x][y] = w;
                                                                       bool DFS(int x) {
                                                                         vx[x] = 1;
  void path(int s) {
                                                                         for ( int y = 0 ; y < n ; y++ ) {
    fill(all(seen), 0);
                                                                           if ( vy[y] ) continue;
if ( lx[x] + ly[y] > edge[x][y] ) {
    fill(all(dist), INF);
    dist[s] = 0; ll di;
                                                                             slack[y] = min(slack[y], lx[x] + ly[y] - edge[x][y]);
                                                                           } else {
      vy[y] = 1;
    vector<decltype(q)::point_iterator> its(N);
                                                                             if ( match[y] == -1 \mid \mid DFS(match[y]) ) {
    q.push({0, s});
                                                                               match[y] = x;
    auto relax = [8](int i, ll cap, ll cost, int dir) {
  ll val = di - pi[i] + cost;
  is (are see and a distribute);
                                                                               return true;
      if (cap \delta\delta val < dist[i]) {
                                                                           }
        dist[i] = val;
        par[i] = {s, dir};
                                                                         return false;
        if (its[i] == q.end()) its[i] = q.push({-dist[i],
                                                                       ll solve() {

→ i { ):

                                                                         fill(match, match + n, -1);
        else q.modify(its[i], {-dist[i], i});
                                                                         fill(lx, lx + n, -INF);
fill(ly, ly + n, 0);
                                                                         for ( int i = 0; i < n; i + + )
    while (!q.empty()) {
                                                                           for ( int j = 0; j < n; j++ )
                                                                             lx[i] = max(lx[i], edge[i][j]);
      s = q.top().second; q.pop();
                                                                         for ( int i = 0 ; i < n; i++ ) {
      seen[s] = 1; di = dist[s] + pi[s];
                                                                           fill(slack, slack + n, INF);
      for (int i : ed[s]) if (!seen[i])
        relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
                                                                           while (true) {
                                                                             fill(vx, vx + n, \theta);
      for (int i : red[s]) if (!seen[i])
                                                                             fill(vy, vy + n, \theta);
        relax(i, flow[i][s], -cost[i][s], 0);
                                                                             if ( DFS(i) ) break;
                                                                             ll d = INF:
    rep(i,0,N) pi[i] = min(pi[i] + dist[i], INF);
                                                                             for ( int j = 0 ; j < n ; j + + )
                                                                               if ( !vy[j] ) d = min(d, slack[j]);
                                                                             for (int j = 0; j < n; j++) {
  pair<ll, ll> maxflow(int s, int t) {
                                                                               if (vx[j]) lx[j] -= d;
if (vy[j]) ly[j] += d;
    ll totflow = 0, totcost = 0;
    while (path(s), seen[t]) {
                                                                               else slack[j] -= d;
      ll fl = INF;
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
        fl = min(fl, r ? cap[p][x] - flow[p][x] :
                                                                           }
        \hookrightarrow flow[x][p]);
                                                                         ll res = 0;
      totflow += fl;
                                                                         for ( int i = 0 ; i < n ; i++ ) {
      for (int p,r,x = t; tie(p,r) = par[x], x = s; x = p)
        if (r) flow[p][x] += fl;
                                                                           res += edge[ match[i] ][i];
        else flow[x][p] -= fl;
                                                                         return res;
                                                                       }
    rep(i,0,N) rep(j,0,N) totcost += cost[i][j] * flow[i][j];
                                                                     } graph;
    return {totflow, totcost};
                                                                     5.3.2 Bipartite Minimum Vertex Cover
  // If some costs can be negative, call this before maxflow:
  void setpi(int s) { // (otherwise, leave this out)
                                                                     // maximum independent set = all vertices not covered
    fill(all(pi), INF); pi[s] = 0;
                                                                     // include Dinic, x : [0, n), y : [0, m]
    int it = N, ch = 1; ll v; while (ch-- && it--)
                                                                     struct Bipartite_vertex_cover {
```

Dinic D;

int n, m, s, t, x[maxn], y[maxn];

queue<int>q;

q.push(u);

```
void make_edge(int x, int y) {D.make_edge(x, y + n, 1);}
                                                                          S[u] = 0;
  int matching() {
                                                                          while (!q.empty()) {
                                                                           u = q.front(); q.pop();
for (int i = 0; i < (int)G[u].size(); i++) {</pre>
    int re = D.max_flow(s, t);
    for(int i = 0; i < n; i++)
      for(Dinic::edge 8e : D.v[i])
                                                                              int v = G[u][i];
        if(e.to != s && e.flow == 1) {
                                                                              if (S[v] == -1) {
          x[i] = e.to - n, y[e.to - n] = i;
                                                                                pa[v] = u;
                                                                                S[v] = 1;
          break;
                                                                                if (!match[v]) {
  for (int lst; u; v = lst, u = pa[v]) {
        ļ
    return re;
  }
                                                                                    lst = match[u];
  // init() and matching() before use
                                                                                    match[u] = v;
  void solve(vector<int> &vx, vector<int> &vy) {
                                                                                    match[v] = u;
    bitset<maxn * 2 + 10> vis;
    queue<int> q;
                                                                                  return 1;
                                                                                }
    for(int i = 0; i < n; i ++)
      if(x[i] == -1)
                                                                                q.push(match[v]);
        q.push(i), vis[i] = 1;
                                                                                S[match[v]] = 0;
    while(!q.empty()) {
                                                                              } else if (!S[v] && st[v] != st[u]) {
                                                                                int l = lca(st[v], st[u]);
      int now = q.front();
      q.pop();
                                                                                flower(v, u, l, q);
      if(now < n) {
                                                                                flower(u, v, l, q);
        for(Dinic::edge &e : D.v[now])
          if(e.to != s && e.to - n != x[now] && !vis[e.to])
                                                                           }
            vis[e.to] = 1, q.push(e.to);
      } else {
                                                                         return 0;
        if(!vis[y[now - n]])
          vis[y[now - n]] = 1, q.push(y[now - n]);
                                                                        int solve(){
                                                                         memset(pa, 0, sizeof(pa));
                                                                          memset(match, 0, sizeof(match));
    for(int i = 0; i < n; i++)</pre>
                                                                          int ans = 0;
      if(!vis[i])
                                                                          for (int i = 1; i <= n; i++)
                                                                            if (!match[i] && bfs(i)) ans++;
        vx.pb(i);
    for(int i = 0; i < m; i++)</pre>
                                                                          return ans;
      if(vis[i + n])
                                                                     } graph;
        vy.pb(i);
  void init(int _n, int _m) {
                                                                      5.3.4 Min Weight Perfect Matching
   n = _n, m = _m, s = n + m,
for(int i = 0; i < n; i++)
                                                                      struct Graph {
      x[i] = -1, D.make_edge(s, i, 1);
                                                                       static const int MAXN = 105;
    for(int i = 0; i < m; i++)</pre>
                                                                       int n, e[MAXN][MAXN];
      y[i] = -1, D.make_edge(i + n, t, 1);
                                                                       int match[MAXN], d[MAXN], onstk[MAXN];
                                                                       vector<int> stk:
                                                                       void init(int _n) {
                                                                         n = _n;
                                                                          for( int i = 0 ; i < n ; i ++ )</pre>
5.3.3 Maximum General Matching
                                                                            for( int j = 0 ; j < n ; j ++ )</pre>
struct Graph {
                                                                              // change to appropriate infinity
  vector<int> G[MAXN]:
                                                                              // if not complete graph
  int pa[MAXN], match[MAXN], st[MAXN], S[MAXN], vis[MAXN];
                                                                              e[i][j] = 0;
  int t, n;
                                                                       void add_edge(int u, int v, int w) {
  void init(int _n) {
                                                                         e[u][v] = e[v][u] = w;
   n = _n;
for (int i = 1; i <= n; i++) G[i].clear();</pre>
                                                                       bool SPFA(int u){
                                                                          if (onstk[u]) return true;
  void add_edge(int u, int v) {
                                                                          stk.push_back(u);
   G[u].push_back(v);
                                                                          onstk[u] = 1;
                                                                          for ( int v = 0 ; v < n ; v++ ) {
    G[v].push_back(u);
                                                                            if (u != v && match[u] != v && !onstk[v] ) {
                                                                              int m = match[v];
  int lca(int u, int v){
    for (++t; ; swap(u, v)) {
  if (u == 0) continue;
                                                                              if ( d[m] > d[u] - e[v][m] + e[u][v] ) {
                                                                                d[m] = d[u] - e[v][m] + e[u][v];
      if (vis[u] == t) return u;
                                                                                onstk[v] = 1;
                                                                                stk.push_back(v);
      vis[u] = t;
      u = st[pa[match[u]]];
                                                                                if (SPFA(m)) return true;
                                                                                stk.pop_back();
                                                                                onstk[v] = 0;
  }
  void flower(int u, int v, int l, queue<int> \theta q) {
                                                                              }
    while (st[u] != l) {
                                                                            }
      pa[u] = v;
      if (S[v = match[u]] == 1) {
                                                                         onstk[u] = 0;
                                                                         stk.pop_back();
        q.push(v);
        S[v] = 0;
                                                                         return false;
      st[u] = st[v] = l;
                                                                       int solve() {
      u = pa[v];
                                                                          for ( int i = 0 ; i < n ; i += 2 ) {
                                                                           match[i] = i+1;
   }
                                                                            match[i+1] = i;
  bool bfs(int u){
                                                                          while (true){
    for (int i = 1; i <= n; i++) st[i] = i;
                                                                            int found = 0;
    memset(S, -1, sizeof(S));
```

for (int i = 0 ; i < n ; i + +)

onstk[i] = d[i] = θ ;

}

```
for ( int i = 0 ; i < n ; i++ ) {
                                                                         string p, t;
        stk.clear();
                                                                         cin >> p;
                                                                         male[p] = i;
        if ( !onstk[i] && SPFA(i) ) {
                                                                         bname[i] = p;
          found = 1;
          while ( stk.size() >= 2 ) {
                                                                         for ( int j = 0 ; j < n ; j++ ) {
            int u = stk.back(); stk.pop_back();
                                                                            cin >> t;
                                                                            if ( !female.count(t) ) {
            int v = stk.back(); stk.pop_back();
            match[u] = v;
                                                                              gname[fit] = t;
            match[v] = u;
                                                                              female[t] = fit++;
        }
                                                                            favor[i][j] = female[t];
      if (!found) break;
    }
                                                                       for ( int i = \theta ; i < n ; i++ ) {
    int ret = 0;
    for ( int i = 0 ; i < n ; i++ )
                                                                         string p, t;
     ret += e[i][match[i]];
                                                                         cin >> p;
    ret /= 2;
                                                                         for ( int j = 0 ; j < n ; j++ ) {
    return ret:
                                                                           cin >> t:
                                                                            order[female[p]][male[t]] = j;
} graph;
                                                                         }
5.3.5 Stable Marriage
                                                                       initialize();
                                                                       stable_marriage();
// normal stable marriage problem
/* input:
                                                                       for ( int i = 0 ; i < n ; i + + ) {
                                                                         cout << bname[i] << "</pre>
Albert Laura Nancy Marcy
                                                                               << gname[favor[i][current[i] - 1]] << endl;</pre>
Brad Marcy Nancy Laura
Chuck Laura Marcy Nancy
Laura Chuck Albert Brad
                                                                     }
Marcy Albert Chuck Brad
Nancy Brad Albert Chuck
                                                                             Centroid Decomposition
                                                                     void get_center(int now) {
#include<bits/stdc++.h>
                                                                       v[now] = true; vtx.push_back(now);
sz[now] = 1; mx[now] = 0;
using namespace std;
const int MAXN = 505:
                                                                       for (int u : G[now]) if (!v[u]) {
                                                                         get_center(u);
                                                                         mx[now] = max(mx[now], sz[u]);
int favor[MAXN][MAXN]; // favor[boy_id][rank] = girl_id;
                                                                         sz[now] += sz[u];
int order[MAXN][MAXN]; // order[girl_id][boy_id] = rank;
int current[MAXN]; // current[boy_id] = rank;
// boy_id will pursue current[boy_id] girl.
                                                                     void get_dis(int now, int d, int len) {
int girl_current[MAXN]; // girl[girl_id] = boy_id;
                                                                       dis[d][now] = cnt;
void initialize() {
                                                                       v[now] = true;
                                                                       for (auto u : G[now]) if (!v[u.first]) {
  for ( int i = 0 ; i < n ; i++ ) {
    current[i] = 0;
                                                                         get_dis(u, d, len + u.second);
    girl_current[i] = n;
    order[i][n] = n;
                                                                     void dfs(int now, int fa, int d) {
                                                                       get_center(now);
                                                                       int c = -1;
                                                                       for (int i : vtx) {
map<string, int> male, female;
                                                                         if (max(mx[i], (int)vtx.size() - sz[i]) <=</pre>
string bname[MAXN], gname[MAXN];
                                                                             (int)vtx.size() / 2) c = i;
int fit = 0;
                                                                         v[i] = false;
void stable_marriage() {
                                                                       get_dis(c, d, 0);
for (int i : vtx) v[i] = false;
  queue<int> que;
  for ( int i = 0 ; i < n ; i++ ) que.push(i);
                                                                       v[c] = true; vtx.clear();
                                                                       dep[c] = d; p[c] = fa;
  while ( !que.empty() ) {
                                                                       for (auto u : G[c]) if (u.first != fa && !v[u.first]) {
    int boy_id = que.front();
                                                                         dfs(u.first, c, d + 1);
    que.pop();
                                                                     }
    int girl_id = favor[boy_id][current[boy_id]];
    current[boy_id] ++;
                                                                             Minimum Mean Cycle
    if (order[girl_id][boy_id] <</pre>
        order[girl_id][girl_current[girl_id]]) {
                                                                     // source: waynedisonitau123
      if ( girl_current[girl_id] < n )</pre>
        que.push(girl_current[girl_id]);
                                                                     // d[i][j] == 0 if {i,j} !in E
                                                                     long long d[1003][1003],dp[1003][1003];
      girl_current[girl_id] = boy_id;
    } else {
      que.push(boy_id);
                                                                     pair<long long,long long> MMWC(){
                                                                       memset(dp,0x3f,sizeof(dp));
                                                                       for(int i=1;i<=n;++i)dp[0][i]=0;</pre>
                                                                       for(int i=1;i<=n;++i){</pre>
                                                                          for(int j=1;j<=n;++j){</pre>
                                                                            for(int k=1;k<=n;++k){</pre>
int main() {
                                                                              dp[i][k]=min(dp[i-1][j]+d[j][k],dp[i][k]);
  cin >> n;
                                                                         }
  for ( int i = 0 ; i < n; i++ ) {
```

5.6 Bellman-Ford

```
// source: KACTL
const ll inf = LLONG_MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};</pre>
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int

→ s) {
 nodes[s].dist = 0:
  sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });</pre>
  int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled

→ vertices

 rep(i,0,lim) for (Ed ed : eds) {
  Node cur = nodes[ed.a], &dest = nodes[ed.b];
    if (abs(cur.dist) == inf) continue;
    ll d = cur.dist + ed.w;
    if (d < dest.dist) {</pre>
      dest.prev = ed.a;
      dest.dist = (i < lim-1 ? d : -inf);</pre>
  rep(i,0,lim) for (Ed e : eds) {
    if (nodes[e.a].dist == -inf)
      nodes[e.b].dist = -inf;
```

5.7 Directed Minimum Spanning Tree

```
template <typename T> struct DMST {
 T g[maxn][maxn], fw[maxn];
 int n, fr[maxn];
 bool vis[maxn], inc[maxn];
 void clear() {
   for(int i = 0; i < maxn; ++i) {
      for(int j = 0; j < maxn; ++j) g[i][j] = inf;</pre>
      vis[i] = inc[i] = false;
 }
 void addedge(int u, int v, T w) {
   g[u][v] = min(g[u][v], w);
 T operator()(int root, int _n) {
   n = n;
   if (dfs(root) != n) return -1;
    T ans = 0;
    while (true) {
      for (int i = 1; i <= n; ++i) fw[i] = inf, fr[i] = i;
      for (int i = 1; i <= n; ++i) if (!inc[i]) {
        for (int j = 1; j <= n; ++j) {</pre>
          if (!inc[j] && i != j && g[j][i] < fw[i]) {</pre>
            fw[i] = g[j][i];
            fr[i] = j;
          }
       }
      int x = -1;
      for (int i = 1; i <= n; ++i) if (i != root && !inc[i])
       int j = i, c = 0;
        while (j != root && fr[j] != i && c <= n) ++c, j =
        if (j == root || c > n) continue;
        else { x = i; break; }
      if (!~x) {
```

```
for (int i = 1; i <= n; ++i) if (i != root δδ
            !inc[i]) ans += fw[i];
        return ans:
      int y = x;
      for (int i = 1; i <= n; ++i) vis[i] = false;</pre>
      do { ans += fw[y]; y = fr[y]; vis[y] = inc[y] = true;
          } while (y != x);
      inc[x] = false;
      for (int k = 1; k <= n; ++k) if (vis[k]) {</pre>
        for (int j = 1; j <= n; ++j) if (!vis[j]) {</pre>
          if (g[x][j] > g[k][j]) g[x][j] = g[k][j];
           if (g[j][k] < \inf \delta \delta g[j][k] - fw[k] < g[j][x])
          \rightarrow g[j][x] = g[j][k] - fw[k];
        }
      }
    }
    return ans;
  int dfs(int now) {
    int r = 1;
    vis[now] = true;
    for (int i = 1; i \le n; ++i) if (g[now][i] < inf &&
        !vis[i]) r += dfs(i);
    return r;
  }
};
```

5.8 Maximum Clique

```
// source: KACTL
typedef vector<br/>bitset<200>> vb;
struct Maxclique {
  double limit=0.025, pk=0;
  struct Vertex { int i, d=0; };
  typedef vector<Vertex> vv;
 vb e;
  vv V;
  vector<vi> C;
  vi qmax, q, S, old;
  void init(vv8 r) {
    for (auto \delta v : r) v.d = 0;
    for (auto \delta v : r) for (auto j : r) v.d += e[v.i][j.i];
    sort(all(r), [](auto a, auto b) { return a.d > b.d; });
    int mxD = r[0].d;
    rep(i,0,sz(r)) r[i].d = min(i, mxD) + 1;
  void expand(vv& R, int lev = 1) {
    S[lev] += S[lev - 1] - old[lev];
    old[lev] = S[lev - 1];
    while (sz(R)) {
      if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
      q.push_back(R.back().i);
      for(auto v:R) if (e[R.back().i][v.i])
          T.push_back({v.i});
      if (sz(T)) {
        if (S[lev]++ / ++pk < limit) init(T);</pre>
        int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1,
           1);
        C[1].clear(), C[2].clear();
        for (auto v : T) {
          int k = 1
          auto f = [δ](int i) { return e[v.i][i]; };
          while (any_of(all(C[k]), f)) k++;
          if (k > mxk) mxk = k, C[mxk + 1].clear();
if (k < mnk) T[j++].i = v.i;</pre>
          C[k].push_back(v.i);
        if (j > 0) T[j - 1].d = 0;
        rep(k,mnk,mxk + 1) for (int i : C[k])
          T[j].i = i, T[j++].d = k;
        expand(T, lev + 1);
      } else if (sz(q) > sz(qmax)) qmax = q;
      q.pop_back(), R.pop_back();
   }
  vi maxClique() { init(V), expand(V); return qmax; }
  Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S)
    rep(i,0,sz(e)) V.push_back({i});
};
```

5.9 Tarjan

5.10 Strongly Connected Components

```
struct Tarjan {
  static const int MAXN = 1000006;
  // 0-based
  int n, dfn[MAXN], low[MAXN], scc[MAXN], scn, count;
  vector<int> G[MAXN];
  stack<int> stk;
  bool ins[MAXN];
  void tarjan(int u) {
    dfn[u] = low[u] = ++count;
    stk.push(u);
    ins[u] = true;
    for(auto v : G[u]) {
      if(!dfn[v]) {
        tarjan(v);
        low[u] = min(low[u], low[v]);
      } else if(ins[v])
        low[u] = min(low[u], dfn[v]);
    }
    if(dfn[u] == low[u]){
      int v;
      do {
        v = stk.top();
        stk.pop();
        scc[v] = scn;
ins[v] = false;
      } while(v != u);
      scn++;
  }
  void getSCC() {
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(ins,0,sizeof(ins));
    memset(scc,0,sizeof(scc));
    count = scn = 0;
    for (int i = 0; i < n; i++) {
      if(!dfn[i]) tarjan(i);
} scc;
```

5.11 Articulation Point

5.12 Bridge

st.push(x);

void dfs(int x, int p) {

tin[x] = low[x] = ++t;

if (tin[u.first]) {

for (auto u: g[x]) if (u.first != p) {

```
void dfs(int x, int p) {
 tin[x] = low[x] = ++t;
 int ch = 0;
 for (auto u : g[x]) if (u.first != p) {
   if (!ins[u.second]) st.push(u.second), ins[u.second] =
        true:
   if (tin[u.first]) {
      low[x] = min(low[x], tin[u.first]);
      continue;
   }
    ++ch:
   dfs(u.first, x);
   low[x] = min(low[x], low[u.first]);
   if (low[u.first] >= tin[x]) {
      cut[x] = true;
      ++SZ;
     while (true) {
        int e = st.top(); st.pop();
        bcc[e] = sz;
        if (e == u.second) break;
   }
 if (ch == 1 \delta \delta p == -1) cut[x] = false;
```

#define MXN 100005 #define PB push_back #define FZ(s) memset(s,0,sizeof(s))

```
struct Scc{
  int n, nScc, vst[MXN], bln[MXN];
  vector<int> E[MXN], rE[MXN], vec;
  void init(int _n){
    n = _n;
    for (int i=0; i<MXN; i++){
        E[i].clear();
        rE[i].clear();
    }
}
void add_edge(int u, int v){
    E[u].PB(v);</pre>
```

5.13 2-SAT

const int MAXN = 2020;

}

}

}

continue;

dfs(u.first, x);

if (tin[x] == low[x]) {

++Sz;
while (st.size()) {

if (u == x) break;

bcc[u] = sz;

```
struct TwoSAT{
  static const int MAXv = 2*MAXN;
  vector<int> GO[MAXv],BK[MAXv],stk;
  bool vis[MAXv];
  int SC[MAXv];
  void imply(int u,int v){ // u imply v
    GO[u].push_back(v);
    BK[v].push_back(u);
  int dfs(int u,vector<int>*G,int sc){
    vis[u]=1, SC[u]=sc;
    for (int v:G[u])if (!vis[v])
      dfs(v,G,sc);
    if (G==G0)stk.push_back(u);
  int scc(int n=MAXv){
    memset(vis,0,sizeof(vis));
    for (int i=0; i<n; i++)if (!vis[i])</pre>
      dfs(i,G0,-1);
    memset(vis,0,sizeof(vis));
    int sc=0;
    while (!stk.empty()){
      if (!vis[stk.back()])
       dfs(stk.back(),BK,sc++);
      stk.pop_back();
    }
}SAT;
int main(){
  SAT.scc(2*n);
  bool ok=1;
  for (int i=0; i<n; i++){</pre>
    if (SAT.SC[2*i]==SAT.SC[2*i+1])ok=0;
  if (ok){
    for (int i=0; i<n; i++){</pre>
      if (SAT.SC[2*i]>SAT.SC[2*i+1]){
        cout << i << endl;</pre>
      }
   }
  else puts("NO");
5.14
         Kosaraju SCC
```

low[x] = min(low[x], tin[u.first]);

if (low[u.first] == tin[u.first]) br[u.second] = true;

low[x] = min(low[x], low[u.first]);

int u = st.top(); st.pop();

```
rE[v].PB(u);
}
void DFS(int u){
  vst[u]=1;
  for (auto v : E[u])
    if (!vst[v]) DFS(v);
  vec.PB(u);
void rDFS(int u){
  vst[u] = 1;
  bln[u] = nScc;
  for (auto v : rE[u])
    if (!vst[v]) rDFS(v);
void solve(){
  nScc = 0;
  vec.clear();
  FZ(vst);
  for (int i=0; i<n; i++)</pre>
   if (!vst[i]) DFS(i);
  reverse(vec.begin(),vec.end());
  FZ(vst);
  for (auto v : vec){
    if (!vst[v]){
      rDFS(v);
      nScc++;
  }
}
```

5.15 Dominator Tree

cov[i].clear();

```
// idom[n] is the unique node that strictly dominates n but
// not strictly dominate any other node that strictly
   dominates n.
// idom[n] = 0 if n is entry or the entry cannot reach n.
struct DominatorTree{
  static const int MAXN = 200010;
  int n,s;
  vector<int> g[MAXN],pred[MAXN];
  vector<int> cov[MAXN];
 int dfn[MAXN],nfd[MAXN],ts;
  int par[MAXN];
  int sdom[MAXN],idom[MAXN];
  int mom[MAXN],mn[MAXN];
  inline bool cmp(int u,int v) { return dfn[u] < dfn[v]; }</pre>
  int eval(int u) {
    if(mom[u] == u) return u;
    int res = eval(mom[u]);
    if(cmp(sdom[mn[mom[u]]),sdom[mn[u]]))
      mn[u] = mn[mom[u]];
    return mom[u] = res;
  void init(int _n, int _s) {
   n = _n;
s = _s;
    REP1(i,1,n) {
      g[i].clear();
      pred[i].clear();
      idom[i] = 0;
    }
  void add_edge(int u, int v) {
   g[u].push_back(v);
    pred[v].push_back(u);
  void DFS(int u) {
    ts++;
    dfn[u] = ts;
    nfd[ts] = u;
    for(int v:g[u]) if(dfn[v] == 0) {
      par[v] = u;
      DFS(v):
   }
  void build() {
    ts = 0;
    REP1(i,1,n) {
      dfn[i] = nfd[i] = 0;
```

```
mom[i] = mn[i] = sdom[i] = i;
    DFS(s);
    for (int i=ts; i>=2; i--) {
      int u = nfd[i];
      if(u == 0) continue
      for(int v:pred[u]) if(dfn[v]) {
        eval(v);
        if(cmp(sdom[mn[v]],sdom[u]) sdom[u] = sdom[mn[v]];
      cov[sdom[u]].push_back(u);
      mom[u] = par[u];
      for(int w:cov[par[u]]) {
        eval(w):
        if(cmp(sdom[mn[w]],par[u])) idom[w] = mn[w];
        else idom[w] = par[u];
      cov[par[u]].clear();
   REP1(i,2,ts) {
      int u = nfd[i];
      if(u == 0) continue
      if(idom[u] != sdom[u]) idom[u] = idom[idom[u]];
 }
}dom;
```

5.16 Biconnected Components

```
// source: KACTL
vi num, st;
vector<vector<pii>> ed;
int Time;
template<class F>
int dfs(int at, int par, F& f) {
  int me = num[at] = ++Time, e, y, top = me;
  for (auto pa : ed[at]) if (pa.second != par) {
    tie(y, e) = pa;
    if (num[y]) {
      top = min(top, num[y]);
      if (num[y] < me)</pre>
        st.push_back(e);
    } else {
      int si = sz(st);
      int up = dfs(y, e, f);
      top = min(top, up);
      if (up == me) {
        st.push_back(e);
        f(vi(st.begin() + si, st.end()));
        st.resize(si);
      }
      else if (up < me) st.push_back(e);</pre>
      else { /* e is a bridge */ }
  }
  return top;
}
template<class F>
void bicomps(F f) {
 num.assign(sz(ed), \theta);
rep(i,\theta,sz(ed)) if (!num[i]) dfs(i, -1, f);
```

5.17 Edge BCC

```
struct BccEdge {
    static const int MXN = 100005;
    struct Edge { int v,eid; };
    int n,m,step,par[MXN],dfn[MXN],low[MXN];
    vector<Edge> E[MXN];
    DisjointSet djs;
    void init(int _n) {
        n = _n; m = 0;
        for (int i=0; i<n; i++) E[i].clear();
        djs.init(n);
    }
    void add_edge(int u, int v) {
        E[u].PB({v, m});
        E[v].PB({u, m});
        m++;
    }
    void DFS(int u, int f, int f_eid) {
        par[u] = f;
    }
}</pre>
```

```
dfn[u] = low[u] = step++;
    for (auto it:E[u]) {
      if (it.eid == f_eid) continue;
      int v = it.v;
      if (dfn[v] == -1) {
        DFS(v, u, it.eid);
        low[u] = min(low[u], low[v]);
      } else {
        low[u] = min(low[u], dfn[v]);
   }
  }
  void solve() {
   step = 0:
    memset(dfn, -1, sizeof(int)*n);
    for (int i=0; i<n; i++) {
     if (dfn[i] == -1) DFS(i, i, -1);
    djs.init(n);
    for (int i=0; i<n; i++) {</pre>
      if (low[i] < dfn[i]) djs.uni(i, par[i]);</pre>
}graph;
```

5.18 Manhattan MST

```
// source: KACTL
// returns [(dist, from, to), ...]
// then do normal mst afterwards
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
 vi id(sz(ps));
 iota(all(id), 0);
 vector<array<int, 3>> edges;
 rep(k,0,4) {
    sort(all(id), [8](int i, int j) {
         return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});</pre>
    map<int, int> sweep;
    for (int i : id) {
      for (auto it = sweep.lower_bound(-ps[i].y);
                it != sweep.end(); sweep.erase(it++)) {
        int j = it->second;
        P d = ps[i] - ps[j];
        if (d.y > d.x) break;
        edges.push_back({d.y + d.x, i, j});
      sweep[-ps[i].y] = i;
   for (P\& p : ps) if (k \& 1) p.x = -p.x; else swap(p.x)
 return edges;
```

5.19 Notes

```
Maximum Independent Set
General: [NPC] maximum clique of complement of G
Tree: [P] Greedy
Bipartite Graph: [P] Maximum Cardinality Bipartite Matching
Minimum Dominating Set
General: [NPC]
Tree: [P] DP
Bipartite Graph: [NPC]
Minimum Vertex Cover
General: [NPC] (?)maximum clique of complement of G
Tree: [P] Greedy, from leaf to root
Bipartite Graph: [P] Maximum Cardinality Bipartite Matching
Minimum Edge Cover
General: [P] V - Maximum Matching
Bipartite Graph: [P] Greedy, strategy: cover small degree
   node first.
(Min/Max)Weighted: [P]: Minimum/Minimum Weight Matching
```

6 Geometry

6.1 Basic 2D

```
template<typename T> struct pt {
  T x, y;
```

```
pt operator+(const pt8 a) const {return {x+a.x, y+a.y}; }
  pt operator-(const pt8 a) const {return {x-a.x, y-a.y}; } pt operator*(const T8 t) const {return {x*t, y*t}; }
  friend T abs2(pt a) { return a.x * a.x + a.y * a.y; }
  friend T len(pt a) { return sqrt(abs2(a)); }
  friend T dot(pt a, pt b){ return a.x * b.x + a.y * b.y; }
  friend T cross(pt a, pt b){return a.x * b.y - b.x * a.y;}
  friend T cross(pt a, pt b, pt o){return cross(a-o, b-o);}
};
// if segment AB and CD intersects
bool intersects(point a, point b, point c, point d) {
  if(cross(b, c, a) * cross(b, d, a) > 0) return false;
  if(cross(d, a, c) * cross(d, b, c) > 0) return false;
  return true;
// the intersect point of lines AB and CD
point intersect(point a, point b, point c, point d) {
  T x = cross(b, c, a), y = cross(b, d, a);
  if(x == y) {
  // if(abs(x, y) < 1e-8) {
   // is parallel
  } else {
    return d * (x/(x-y)) - c * (y/(x-y));
```

6.2 Angle

```
// source: KACTL
struct Angle {
  int x, y;
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return {x-b.x, y-b.y, t};
  int half() const {
   assert(x || y);
    return y < 0 || (y == 0 && x < 0);
  Angle t90() const { return \{-y, x, t + (half() \&\& x >= \}\}
  Angle t180() const { return {-x, -y, t + half()}; }
  Angle t360() const { return \{x, y, t + 1\}; }
bool operator<(Angle a, Angle b) {</pre>
  // add a.dist2() and b.dist2() to also compare distances
  return make_tuple(a.t, a.half(), a.y * (ll)b.x) <</pre>
         make_tuple(b.t, b.half(), a.x * (ll)b.y);
}
// Given two points, this calculates the smallest angle
\hookrightarrow between
// them, i.e., the angle that covers the defined line
   segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point a + vector b
  Angle r(a.x + b.x, a.y + b.y, a.t); if (a.t180() < r) r.t--;
  return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle b - angle a
  int tu = b.t - a.t; a.t = b.t;
  return {a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b <
  \rightarrow a)};
```

6.3 Closest Pair

```
vector<pll> p;  // sort by x first!
bool cmpy(const pll& a, const pll& b) const {
  return a.y < b.y;
}
ll solve(int l, int r) {
  if (r - l <= 1) return 1e18;
  int m = (l + r) / 2;
  ll mid = p[m].x, d = min(solve(l, m), solve(m, r));
  auto pb = p.begin();</pre>
```

```
inplace_merge(pb + l, pb + m, pb + r, cmpy);
vector<pll> s;
for (int i = l; i < r; i++)
   if (sq(p[i].x - mid) < d)
      s.push_back(p[i]);
for (int i = 0; i < s.size(); i++)
   for (int j = i + 1; j < s.size() &&
      sq(s[j].y - s[i].y) < d; j++)
      d = min(d, dis(s[i], s[j]));
return d;</pre>
```

6.4 Minimum Enclosing Circle

```
// source: waynedisonitau123
pt center(const pt &a, const pt &b, const pt &c) {
  pt p0 = b - a, p1 = c - a;
  double c1 = abs2(p0) * 0.5, c2 = abs2(p1) * 0.5;
 double d = cross(p0, p1);
double x = a.x + (c1 * p1.y - c2 * p0.y) / d;
double y = a.y + (c2 * p0.x - c1 * p1.x) / d;
  return pt(x, y);
pair<double, double> solve(vector<pt> δp) {
  shuffle(p.begin(), p.end(), RNG);
  double r = 0.0;
  pt cent;
  for (int i = 0; i < p.size(); ++i) {</pre>
    if (abs2(cent - p[i]) \le r) continue;
    cent = p[i];
    r = 0.0;
    for (int j = 0; j < i; ++j) {
      if (abs2(cent - p[j]) <= r) continue;</pre>
      cent = (p[i] + p[j]) / 2;
r = abs2(p[j] - cent);
       for (int k = 0; k < j; ++k) {
         if (abs2(cent - p[k]) <= r) continue;</pre>
         cent = center(p[i], p[j], p[k]);
         r = abs2(p[k] - cent);
    }
  return {cent, sqrt(r)};
```

6.5 Half Plane Intersection

```
// source: waynedisonitau123
bool jizz(L l1,L l2,L l3){
  P p=Intersect(l2,l3);
  return ((l1.pb-l1.pa)^(p-l1.pa))<-eps;</pre>
bool cmp(const L &a,const L &b){
  return
     same(a.o,b.o)?(((b.pb-b.pa)^(a.pb-b.pa))>eps):a.o<b.o;</pre>
// availble area for L l is (l.pb-l.pa)^(p-l.pa)>0
vector<P> HPI(vector<L> &ls){
  sort(ls.begin(),ls.end(),cmp);
  vector<L> pls(1,ls[0]);
  for(int i=0;i<(int)ls.size();++i)if(!same(ls[i].o,pls.back | )</pre>
   → ().o))pls.push_back(ls[i]);
  deque<int> dq; dq.push_back(0); dq.push_back(1);
#define meow(a,b,c) while(dq.size()>1u &&

→ jizz(pls[a],pls[b],pls[c]))
  for(int i=2;i<(int)pls.size();++i){</pre>
    meow(i,dq.back(),dq[dq.size()-2])dq.pop_back();
    meow(i,dq[0],dq[1])dq.pop_front();
    dq.push_back(i);
  meow(dq.front(),dq.back(),dq[dq.size()-2])dq.pop_back();
  meow(dq.back(),dq[0],dq[1])dq.pop_front();
  if(dq.size()<3u)return vector<P>(); // no solution or
      solution is not a convex
  vector<P> rt;
  for(int i=0;i<(int)dq.size();++i)rt.push_back(Intersect(pl |</pre>
     s[dq[i]],pls[dq[(i+1)%dq.size()]]));
  return rt;
}
```

6.6 Delaunay Triangulation

```
// source: KACTL
typedef Point<ll> P;
typedef struct Quad* Q;
typedef __int128_t lll; // (can be ll if coords are < 2e4)</pre>
P arb(LLONG_MAX,LLONG_MAX); // not equal to any other point
  bool mark; Q o, rot; P p;
  P F() { return r()->p; }
  Q r() { return rot->rot; }
  Q prev() { return rot->o->rot;
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  lll p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b)*C + p.cross(b,c)*A + p.cross(c,a)*B >
}
Q makeEdge(P orig, P dest) {
  Q q[] = {new Quad{0,0,0,orig}, new Quad{0,0,0,arb},
           new Quad{0,0,0,dest}, new Quad{0,0,0,arb}};
  rep(i,0,4)
    q[i]->o = q[-i \& 3], q[i]->rot = q[(i+1) \& 3];
  return *q;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
  Q q = makeEdge(a->F(), b->p);
  splice(q, a->next());
  splice(q->r(), b);
  return q;
pair<Q,Q> rec(const vector<P>& s) {
  if (sz(s) <= 3) {
    Q a = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[0].cross(s[1], s[2]);
    Q c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
  Q A, B, ra, rb;
int half = sz(s) / 2;
  tie(ra, A) = rec({all(s) - half});
tie(B, rb) = rec({sz(s) - half + all(s)});
  while ((B->p.cross(H(A)) < 0 && (A = A->next())) | |
         (A->p.cross(H(B)) > 0 & (B = B->r()->o)));
  Q base = connect(B->r(), A);
  if (A->p == ra->p) ra = base->r();
  if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (circ(e->dir->F(), H(base), e->F())) \{ \ \ \ \ \ \ \ \}
      Q t = e->dir; \
      splice(e, e->prev()); \
      splice(e->r(), e->r()->prev()); \
      e = t; \
  for (;;) {
    DEL(LC, base->r(), o); DEL(RC, base, prev());
    if (!valid(LC) && !valid(RC)) break;
    if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
      base = connect(RC, base->r());
    else
      base = connect(base->r(), LC->r());
  return { ra, rb };
// returns [A_0, B_0, C_0, A_1, B_1, ...]
// where A_i, B_i, C_i are counter-clockwise triangles
vector<P> triangulate(vector<P> pts) {
  sort(all(pts)); assert(unique(all(pts)) == pts.end());
  if (sz(pts) < 2) return {};
```

```
Q e = rec(pts).first;
vector<Q> q = {e};
int qi = 0;
while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1;

→ pts.push_back(c->p); \
 q.push_back(c->r()); c = c->next(); } while (c != e); }
ADD; pts.clear();
while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
return pts;
}
```

6.7 Spherical Coordinates

```
struct car_p { double x, y, z; };
struct sph_p { double r, theta, phi; };

sph_p conv(car_p p) {
    double r = sqrt(p.x*p.x + p.y*p.y + p.z*p.z);
    double theta = asin(p.y / r);
    double phi = atan2(p.y, p.x);
    return { r, theta, phi };
}

car_p conv(sph_p p) {
    double x = p.r * cos(p.theta) * sin(p.phi);
    double y = p.r * cos(p.theta) * cos(p.phi);
    double z = p.r * sin(p.theta);
    return { x, y, z };
}
```

6.8 Quaternion

```
struct 0 {
  using T = double;
  T x, y, z, r;
  Q(T r = 0) : x(0), y(0), z(0), r(r) {}
Q(T x, T y, T z, T r = 0) : x(x), y(y), z(z), r(r){}
  friend bool operator==(const Q\delta a, const Q\delta b) {
    return (a - b).abs2() <= 1e-8; }</pre>
  friend bool operator!=(const Q∂ a, const Q∂ b) {
    return !(a == b); }
  Q operator-() { return Q(-x, -y, -z, -r); } Q operator+(const Q8 b) const {
    return Q(x + b.x, y + b.y, z + b.z, r + b.r); }
  Q operator-(const Q∂ b) const {
    return Q(x - b.x, y - b.y, z - b.z, r - b.r); }
  Q operator*(const T& t) const {
    return Q(x * t, y * t, z * t, r * t); }
  Q operator*(const Q8 b) const {
    return Q(
      r * b.x + x * b.r + y * b.z - z * b.y,
      r * b.y - x * b.z + y * b.r + z * b.x,
      r * b.z + x * b.y - y * b.x + z * b.r,
      r * b.r - x * b.x - y * b.y - z * b.z
    );
  Q operator/(const Q\delta b) const {
    return *this * b.inv(); }
  T abs2() const {
    return r * r + x * x + y * y + z * z; }
  T len() const { return sqrt(abs2()); }
 Q conj() const { return Q(-x, -y, -z, r); }
Q unit() const { return *this * (1.0 / len()); }
Q inv() const { return conj() * (1.0 / abs2()); }
  friend T dot(Q a, Q b) {
    return a.x * b.x + a.y * b.y + a.z * b.z; }
  friend Q cross(Q a, Q b) {
    return Q(
      a.y * b.z - a.z * b.y,
      a.z * b.x - a.x * b.z,
      a.x * b.y - a.y * b.x
    );
  friend Q rotation_around(Q axis, T angle) {
    return axis.unit() * sin(angle / 2) + cos(angle / 2);
  Q rotated_around(Q axis, T angle) {
    Q u = rotation_around(axis, angle);
    return u * *this / u;
  friend Q rotation_between(Q a, Q b) {
    a = a.unit(), b = b.unit();
    if(a == -b) {
      // degenerate case
      Q ortho;
```

```
if(abs(a.y) > 1e-8) ortho = cross(a, Q(1, 0, 0));
    else ortho = cross(a, Q(0, 1, 0));
    return rotation_around(ortho, pi);
} else {
    return (a * (a + b)).conj();
}
}
};
```

6.9 3D Convex Hull

```
// source: KACTL
typedef Point3D<double> P3;
struct PR {
  void ins(int x) { (a == -1 ? a : b) = x; }
  void rem(int x) { (a == x ? a : b) = -1; }
  int cnt() { return (a != -1) + (b != -1); }
  int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
  assert(sz(A) >= 4);
  vector<vector<PR>>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS;
  auto mf = [8](int i, int j, int k, int l) {
    P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
    if (q.dot(A[l]) > q.dot(A[i]))
      q = q * -1;
    F f{q, i, j, k};
E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
    FS.push_back(f);
  rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
    mf(i, j, k, 6 - i - j - k);
  rep(i,4,sz(A))
    rep(j,0,sz(FS)) {
      F f = FS[j];
      if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
        E(a,b).rem(f.c);
        E(a,c).rem(f.b);
        E(b,c).rem(f.a)
        swap(FS[j--], FS.back());
        FS.pop_back();
    }
    int nw = sz(FS);
    rep(j,0,nw) {
      F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i,
→ f.c):
      C(a, b, c); C(a, c, b); C(b, c, a);
    }
  for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
    A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);
  return FS;
```

7 Strings

7.1 Z-value

```
int z[n];
void zval(string s) {
    // z[i] => longest common prefix of s and s[i:], i > 0
    int n = s.size();
    z[0] = 0;
    for (int b = 0, i = 1; i < n; i++) {
        if (z[b] + b <= i) z[i] = 0;
        else z[i] = min(z[i - b], z[b] + b - i);
        while (s[i + z[i]] == s[z[i]]) z[i]++;
        if (i + z[i] > b + z[b]) b = i;
    }
}
```

7.2 Manacher

```
int z[n];
void zval_pal(string s) {
```

```
// z[i] => longest odd palindrome centered at i is
// s[i - z[i] ... i + z[i]]
// to get all palindromes (including even length),
// insert a '#' between each s[i] and s[i + 1]
int n = s.size();
z[0] = 0;
for (int b = 0, i = 1; i < n; i++) {
   if (z[b] + b >= i)
        z[i] = min(z[2 * b - i], b + z[b] - i);
   else z[i] = 0;
   while (i + z[i] + 1 < n && i - z[i] - 1 >= 0 &&
        s[i + z[i] + 1] == s[i - z[i] - 1]) z[i]++;
   if (z[i] + i > z[b] + b) b = i;
}
```

7.3 Minimum Rotation

```
int min_rotation(string s) {
  int a = 0, n = s.size();
  s += s;
  for(int b = 0; b < n; b++) {
    for(int k = 0; k < n; k++) {
      if (a + k == b || s[a + k] < s[b + k]) {
        b += max(0, k - 1); break;
    }
    if (s[a + k] > s[b + k]) {
        a = b; break;
    }
  }
}
return a;
}
```

7.4 Aho-Corasick

```
struct Aho Corasick {
  const static int cha=26;
  struct NODES {
    int Next[cha],fail,ans;
 };
  static const int character=26,maxn=1e5;
  NODES trie[maxn];
  int top,que_top,que[maxn];
  int get_node(const int &fail) {
    memset(trie[top].Next,0,sizeof(trie[top].Next));
    trie[top].fail=fail,trie[top].ans=0;
    return top++;
  int insert(const string &s) {
    int ptr=1;
    for(int i=0;i<s.size();i++) {</pre>
      if(trie[ptr].Next[s[i]-'a']==0)
  trie[ptr].Next[s[i]-'a']=get_node(ptr);
      ptr=trie[ptr].Next[s[i]-'a'];
    }
    return ptr;
  }//return ans_last_place
  void build_fail(int ptr) {
    int tmp;
    for(int i=0;i<cha;i++)</pre>
      if(trie[ptr].Next[i]) {
        tmp=trie[ptr].fail;
        while(tmp!=1&&!trie[tmp].Next[i])
          tmp=trie[tmp].fail;
        if(trie[tmp].Next[i]^trie[ptr].Next[i]&&trie[tmp].Ne
        tmp=trie[tmp].Next[i];
        trie[trie[ptr].Next[i]].fail=tmp;
        que[que_top++]=trie[ptr].Next[i];
  void AC auto(const string &s) {
   int ptr=1;
    for(int i=0;i<s.size();++i){</pre>
      while(ptr!=188!trie[ptr].Next[s[i]-'a'])
        ptr=trie[ptr].fail;
      if(trie[ptr].Next[s[i]-'a'])
        ptr=trie[ptr].Next[s[i]-'a'],trie[ptr].ans++;
    }
  void Solve(string s) {
    for(int i=0;i<que_top;i++)</pre>
      build_fail(que[i]);
    AC_auto(s);
```

```
for(int i=que_top-1;i>-1;i--)
      trie[trie[que[i]].fail].ans+=trie[que[i]].ans;
  void reset() {
    que_top=top=1,que[0]=1,get_node(1);
} AC;
// usage example
string s,S;
int n,t,ans_place[50000];
int main() {
  cin>>t;
  while(t--) {
    AC.reset():
    cin>>S>>n:
    for(int i=0;i<n;i++)</pre>
      cin>>s,ans_place[i]=AC.insert(s);
    AC.Solve(S);
    for(int i=0;i<n;i++)</pre>
      cout << AC.trie[ans_place[i]].ans<<'\n';</pre>
}
```

7.5 Suffix Array

```
// source: KACTL
struct SuffixArray {
  vi sa, lcp;
  SuffixArray(string& s, int lim=256) { // or

→ basic_string<int>

     int n = sz(s) + 1, k = 0, a, b;
     vi x(all(s)+1), y(n), ws(max(n, lim)), rank(n);
    sa = lcp = y, iota(all(sa), \theta);
for (int j = \theta, p = \theta; p < n; j = max(1, j * 2), lim =
     → p) {
       p = j, iota(all(y), n - j);
       rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
       fill(all(ws), 0);
       rep(i,0,n) ws[x[i]]++;
       rep(i,1,lim) ws[i] += ws[i - 1];
       for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
       swap(x, y), p = 1, x[sa[\theta]] = \theta;

rep(i,1,n) = sa[i-1], b = sa[i], x[b] = sa[i]
          (y[a] == y[b] \delta \delta y[a + j] == y[b + j]) ? p - 1 : p++;
     rep(i,1,n) rank[sa[i]] = i;
     for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)
for (k && k--, j = sa[rank[i] - 1];
            s[i + k] == s[j + k]; k++);
};
```