Ren rulling på krumt underlag – energibevarelse

Energibevarelse er slagkraftige saker. Med kjennskap til baneformen y(x) og den 1. og 2. deriverte, hhv y' = dy/dx og $y'' = d^2y/dx^2$, kan vi enkelt bestemme diverse størrelser for et objekt som ruller på den krumme banen. Objektet har et treghetsmoment $I_0 = cMR^2$ mhp rotasjonsaksen, som går gjennom massesenteret (CM). Her er M objektets masse, og R er objektets radius, dvs avstanden mellom CM og kontaktpunktet mellom objekt og bane. Vi antar her at objektet er ei kompakt kule med uniform massefordeling, slik at c = 2/5. I praksis bruker vi kuler med masse M = 31 g og radius R = 11 mm. La oss videre anta at banens krumningsradius overalt er mye større enn kulas radius R, slik at vi med god tilnærmelse kan anta at CM følger samme kurve som banen y(x).

Kula starter med null hastighet i høyde $y(0) = y_0$. Da er total mekanisk energi $E = U_0 = Mgy_0$ når vi velger U = 0 for y = 0. Total kinetisk energi K er summen av translasjonsenergien $Mv^2/2$ og rotasjonsenergien $cMv^2/2$, i det vi antar at kula ruller rent, dvs uten å gli. Dvs, $K = (1+c)Mv^2/2$ når farten er v. Energibevarelse gir da en hastighet

$$v(y) = \sqrt{\frac{2g(y_0 - y)}{1 + c}}\tag{1}$$

når kula er et sted på banen der høyden er y. Siden vi kjenner baneformen y(x), kan vi gjerne oppfatte farten som en funksjon av horisontal posisjon x:

$$v(x) = \sqrt{\frac{2g(y_0 - y(x))}{1 + c}}. (2)$$

Det samme vil selvsagt gjelde for alle størrelser i fortsettelsen. Banens krumning κ , dvs den inverse krumningsradien, er

$$\kappa = \frac{y''}{[1 + (y')^2]^{3/2}}. (3)$$

Da er sentripetalakselerasjonen umiddelbart gitt som

$$a_{\perp} = v^2 \kappa = \frac{2g(y_0 - y)}{1 + c} \cdot \frac{y''}{[1 + (y')^2]^{3/2}}.$$
 (4)

Her vil κ være positiv der banen krummer oppover og negativ der den krummer nedover. Tilsvarende fortegn vil gjelde for a_{\perp} . Dette er konsistent med positiv y-retning oppover: Når banen krummer oppover, har vektoren a_{\perp} også retning oppover, dvs den har en positiv y-komponent. Med c=2/5 blir hastigheten

$$v = \sqrt{\frac{10g(y_0 - y)}{7}}. (5)$$

Vi ser i neste omgang på Newtons 2. lov normalt på banen. La oss velge fortegn slik at tyngdens komponent $Mg\cos\beta$ peker i negativ retning mens normalkraften N virker i positiv retning. Her er β banens helningsvinkel. Da har vi

$$N - Mq\cos\beta = Ma_{\perp},\tag{6}$$

enten banen krummer opp eller ned, slik at

$$N = M(q\cos\beta + a_{\perp}). \tag{7}$$

Hvis banen krummer opp, peker $a_{\perp} > 0$ i samme retning som N (dvs oppover), og N blir større enn $Mg \cos \beta$. Hvis banen krummer ned, peker $a_{\perp} < 0$ i motsatt retning av N (dvs nedover), og N blir mindre enn $Mg \cos \beta$.

Figur 1. Krefter på ei kule som ruller på et krumt underlag.

Det gjenstår å finne (den statiske) friksjonskraften f fra banen på den rullende kula. La oss velge helningsvinkelens fortegn slik at $\beta < 0$ når kula ruller nedover og $\beta > 0$ når den ruller oppover. Da har stigningstallet riktig fortegn:

$$y' = dy/dx = \tan \beta. \tag{8}$$

Kreftene som virker tangentielt til banen er f og tyngdens tangentialkomponent $-Mg\sin\beta$. Hvis banen heller nedover, er $\beta < 0$, f < 0 (dvs f har retning mot venstre) og a = dv/dt > 0 (kula får større fart). N2 blir da

$$-Mg\sin\beta + f = Ma. \tag{9}$$

Og hvis det er oppoverbakke: $\beta>0,\,f>0$ (dv
sfhar retning mot høyre) og a=dv/dt<0 (kula får mindre fart). N
2 blir da

$$f - Mg\sin\beta = Ma. \tag{10}$$

Med andre ord, samme ligning, enten det er nedover- eller oppoverbakke. Vi trenger dessuten N2 for rotasjon om CM ("spinnsatsen"):

$$fR = -I_0 d\omega/dt, \tag{11}$$

som med $\omega = v/R$ og uttrykket ovenfor for I_0 gir

$$f = -cMdv/dt = -cMa. (12)$$

Her blir det riktig med minustegnet inkludert: Utforbakke betyr a > 0 og dermed f < 0, dvs mot venstre. Og omvendt med oppoverbakke. Vi setter f = -cMa inn i N2 for translasjon:

$$-cMa - Mg\sin\beta = Ma, (13)$$

som gir

$$a = -\frac{g\sin\beta}{1+c},\tag{14}$$

og endelig

$$f = \frac{cMg\sin\beta}{1+c}. (15)$$

Vi ser at fortegnsvalget for helningsvinkelen β gir riktig fortegn for a og f i disse uttrykkene: Utforbakke betyr $\beta < 0$, sin $\beta < 0$ og dermed a > 0 og f < 0. Med kompakt kule og c = 2/5:

$$a = -\frac{5g\sin\beta}{7} \tag{16}$$

og

$$f = \frac{2Mg\sin\beta}{7}. (17)$$

Vi har her forutsatt at kula ruller rent, dvs uten å gli (slure) mot underlaget. Den beregnede statiske friksjonskraften f kan imidlertid ikke overstige en maksimale verdi uten at kula starter å gli. Denne maksimale verdien er gitt ved den statiske friksjonskoeffisient mellom kule og bane, μ_s , som $|f_{\text{max}}| = \mu_s |N|$. Overflaten på de svarte datamus-kulene er en slags gummi. Banen er en type hard plast, trolig polyetylen eller polypropylen. Det er vel rimelig å anta at verdien av μ_s vil være minst 0.4 eller deromkring. For en gitt baneform kan en plotte størrelsen |f/N| (evt skrive ut maksimumsverdien av |f/N|) og sjekke at antagelsen om ren rulling er oppfylt.

Tidsutviklingen

Når prinsippet om bevaring av mekanisk energi utledes fra Newtons 2. lov, forsvinner tidsaspektet på magisk vis. Dvs, tiden t inngår ikke lenger i ligninger og uttrykk. Dermed må vi som regel tilbake til Newtons 2. lov dersom vi ønsker å bestemme tidsutviklingen, dvs kulas posisjon (og eventuelt andre størrelser som hastigheten og kreftene som virker på kula) som funksjon av t. Vi skal skissere hvordan dette kan gjøres numerisk, med en enkel og lettfattelig metode ("forward Euler"). I vårt konkrete problem, der kula er tvunget til å rulle på en bane med en bestemt form y(x), er det en enda enklere måte å bestemme tidsutviklingen på: Energibevarelse gir oss hastigheten v uttrykt som en funksjon av høyden v0, og dermed som en funksjon av kulas horisontale posisjon v2, via baneformen v3. Da er tiden v4 som kula bruker på en liten horisontal forflytning v5 definerv6 som v7 definerv8 som v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 direkte gitt som v8 en liten horisontal forflytning v8 en liten hori

Metode 1: Newtons 2. lov og forward Euler (med fast tidssteg dt)

Vi tok utgangspunkt i Newtons 2. lov og fant at kulas baneakselerasjon er $a=-(5g/7)\sin\beta$ når banens helningsvinkel er β . Banens form y(x) og stigningstallet $dy/dx=\tan\beta$ er kjente størrelser. Med andre ord, vi kjenner $\beta=\arctan(dy/dx)$ og dermed a langs hele banen. Ideen i Eulermetoden er da slik: Anta at kula starter i posisjon (x_0,y_0) med starthastighet $v_0=0$ ved tidspunktet $t_0=0$. Siden a=dv/dt, vil kula i løpet av et lite tidssteg dt endre sin hastighet med $dv=a\,dt$. Og siden v=ds/dt, vil kula i løpet av tiden dt endre sin posisjon (langs banen) med $ds=v\,dt$. Med de aktuelle startbetingelsene gir dette mellom $t_0=0$ og $t_1=dt$ en forflytning $v_0\,dt=0$ og en hastighetsendring $-(5g/7)\sin\beta_0\,dt$, slik at $x_1=x_0$, $y_1=y_0$ og $v_1=-(5g/7)\sin\beta_0\,dt$. Siden kula ikke flyttet seg i det første tidssteget, har vi selvsagt fremdeles samme helningsvinkel, dvs $\beta_1=\beta_0$. I tidssteg nr 2 blir forflytningen langs banen $ds_2=v_1\,dt$, forflytningen horisontalt $dx_2=ds_2\cos\beta_1$, og ny horisontal posisjon blir $x_2=x_1+dx_2=x_1-(5g/7)\sin\beta_1\cos\beta_1(dt)^2$. Ny vertikal posisjon kan fastlegges fra baneformen: $y_2=y(x_2)$. Litt mer generelt: Når posisjonen (x_n,y_n) og hastighetens horisontale komponent $v_{x,n}$ ved tidspunktet $t_n=n\,dt$ er kjent, har vi

$$x_{n+1} = x_n + v_{x,n}dt ag{18a}$$

$$y_{n+1} = y(x_{n+1}) (18b)$$

$$v_{n+1} = v_n + a_n dt \tag{18c}$$

$$t_{n+1} = (n+1)dt (18d)$$

ved neste tidspunkt t_{n+1} . Dette gjentar vi inntil vi når ønsket maksimale horisontale posisjon.

Metode 2: Energibevarelse og $dt = dx/v_x$ (med fast romlig steg dx)

Programmet cubicspline.py beregner y(x) for 1401 jevnt fordelte x-verdier, dvs for hver hele mm, fra og med $x_0 = 0$ til og med $x_{1400} = 1.400$ m. Hastigheten v_n og helningsvinkelen β_n i posisjon (x_n, y_n) er kjente størrelser. Da kan vi regne ut hvor lang tid Δt_n kula har brukt på intervallet mellom x_{n-1} og x_n (n = 1, 2, ..., 1400). Horisontal komponent av hastigheten i posisjon x_n er $v_{x,n} = v_n \cos \beta_n$. Gjennomsnittlig horisontalkomponent av hastigheten på intervall nr n er da (med god tilnærmelse)

$$\langle v_x \rangle_n = \frac{1}{2} (v_{x,n-1} + v_{x,n}).$$
 (19)

Fra den grunnleggende definisjonen $\langle v_x \rangle_n = \Delta x_n/\Delta t_n$ har vi dermed

$$\Delta t_n = \frac{\Delta x_n}{\langle v_x \rangle_n} = \frac{2\Delta x_n}{v_{x,n-1} + v_{x,n}},\tag{20}$$

med konstant romlig steg $\Delta x_n = x_n - x_{n-1} = 1$ mm. Kula (dvs kulas massesenter) starter i posisjon (x_0, y_0) med starthastighet $v_0 = 0$ ved tidspunktet $t_0 = 0$ og passerer posisjonene (x_n, y_n) med hastigheter v_n ved tidspunktene

$$t_n = \sum_{j=1}^n \Delta t_j \quad ; \quad n = 1, \dots, 1400.$$
 (21)

Velg selv om dere vil bruke den ene eller den andre metoden for å bestemme tidsutviklingen.

Eksempel

En bane y(x) kan se slik ut:

Her er starthøyden $y_0=350$ mm. Laveste festepunkt, ved x=1.2 m, er i høyden y=168 mm. Banens helningsvinkel β overstiger ikke 22.4° i absoluttverdi:

Banens krumning ligger mellom -1.6 og +4.1 pr m, slik at minste krumningsradius er ca 24 cm:

Med ei kompakt kule (c=2/5) blir fartsgrafen v(x) slik:

Maksimal hastighet oppnås som ventet i banens bunnpunkt, ved x i overkant av 1.2 m.

Grafen for normalkraften N(x) (her i enheter av kulas tyngde Mg) ligner kvalitativt på grafen for banens krumning:

Forholdet mellom friksjonskraften f og normalkraften N overstiger ikke verdien 0.14:

Dersom statisk friksjonskoeffisient er større enn 0.14, vil kula rulle rent uten å gli.

Neste figur viser horisontal posisjon x som funksjon av tiden t:

Vi ser at hele reisen tok ca 1.75 sekunder.

Siste figur viser hastigheten v som funksjon av tiden t:

Grafen er som ventet ganske lik grafen for v(x). Banens bunnpunkt nås etter ca 1.65 sekunder.

31.01.2021

J. A. Støvneng