Model Development Phase

Date	16 June 2025
TeamID	LTVIP2025TMID41362
ProjectTitle	RevolutionizingLiverCare:PredictingLiver CirrhosisUsingAdvancedMachineLearning Techniques.
MaximumMarks	

ModelSelectionReport

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

ModelSelectionReport:

Model	Description	Hyperparameters	Performance Metric (e.g., Accuracy,F1 Score)
Logistic Regression	Alinearmodelforbinaryclassification, effective for datasets where classes are linearly separable.	-	79.47 %

Logistic Regression CV	Logisticregressionwithbuilt-incross-validation, optimizes regularization parameter.	cv=5	86.49%
Naive Bayes	Aprobabilistic classifier based on Bayes' theorem, assumes feature independence.	-	35.79%
XGBoost	Gradientboostingwithtrees, optimizes predictive performance, handles complex relationships.	-	35.79%
Ridge Classifier	LinearclassifierwithL2regularization, helps to prevent overfitting.	-	84.21%
Random Forest	Ensemble of decision trees, robust, handlescomplexrelationships, reduces overfitting, provides feature importance.	-	38.21%
Support Vector Classifier	Classifierusinghyperplanestoseparate classes, effective for high-dimensional spaces.	-	35.79%
K-Nearest Neighbors (KNN)	Classifiesbasedonnearestneighbors, adapts well to data patterns, effective for local variations.	n_neighbors= <best_param></best_param>	86.32%