BioCro Equations

Canopy Radiation

$$\delta = -23.5 \cdot \cos\left(\frac{360(D_j + 10)}{365}\right) \tag{1}$$

$$\cos(\theta) = \sin(\Omega)\sin(\delta) + \cos(\Omega)\cos(\delta)\cos(15 \cdot (t - t_{sn})) \tag{2}$$

$$I_{dir} = I_s \alpha^{\frac{(P/P_o)}{\cos(\theta)}} \tag{3}$$

$$I_{diff} = 0.5 \cdot I_s \cdot (1 - \alpha^{(P/P_o)/\cos(\theta)}) \cos(\theta)$$
(4)

$$\frac{1}{2}\cos((15 \cdot t_{len}) = -\tan(\lambda)\tan(\delta) \tag{5}$$

$$t_{\rm len} = \frac{2\cos^{-1}(-\tan(\Omega)\tan(\delta))}{15} \tag{6}$$

what is the relevance of equation 5? Steve H's thesis contains the original, below

 λ is defined as "specific heat of vaporization"; not sure what it is here. The original eqn. used Ω

Weather Downscaling

$$Mean = T_1 + T_2 \cdot \sin\left(2\pi \frac{D_j - D_{\text{start}}}{365}\right) \tag{7}$$

Range =
$$T_3 + (T_4 - T_3) \cdot \sin\left(2\pi \frac{D_j - D_{\text{start}}}{365}\right)$$
 (8)

Excursion =
$$\sin\left(2\pi\frac{h_r - 10}{24}\right)$$
 (9)

$$T_{air} = \text{Mean} + \text{Range} \cdot \text{Excursion}$$
 (10)

Canopy Radiation

combine or use clearly distinguished titles for different sections on canopy radiation; energy balance, etc

$$q = \frac{n_r}{n} \tag{11}$$

$$q = \frac{n_r}{n}$$

$$N_{\text{eff}} = \frac{\frac{(1-q)}{q}}{C_{ov}^2}$$

$$r^{\sim} = \frac{m_r}{n}$$

$$h = \frac{r^{\sim}}{q}$$

$$(11)$$

$$(12)$$

$$r^{\sim} = \frac{m_r}{n} \tag{13}$$

$$h = \frac{r^{\sim}}{q} \tag{14}$$

C4 Photosynthesis

$$V_{\text{max}} = V_{\text{max},o} \cdot Kt(E_{V_{\text{max}}}) \tag{15}$$

$$R_d = R_o \cdot Kt(E_{Rd}) \tag{16}$$

$$M = \min \frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}})\theta_{\text{curve}}}}{2\theta_{\text{curve}}}$$
(17)

$$M = \min \frac{\frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}})\theta_{\text{curve}}}}{2\theta_{\text{curve}}}$$

$$A_{\text{gross}} = \min \frac{\left(M + k_t \cdot \frac{c_i}{P}\right) \pm \sqrt{\left(M + k_t \cdot \frac{c_i}{P}\right)^2 - \left(4 \cdot M \cdot k_t \cdot \frac{c_i}{P} \cdot \beta\right)}}{2 \cdot \beta}$$

$$(18)$$

$$A_n = A_{\text{gross}} - R_d \tag{19}$$

what are k_t and K_t in equations 15

C3 Photosynthesis

From Appendix 2 in Bernacchi et al 2003 Plant, Cell and Environment 26, 14191430 doi: 10.1046/j.0016-8025.2003.01050.x

$$A = (1 - \Gamma^*/c_i) \tag{20}$$

$$w_c = \frac{V_{cmax}c_i}{c_i + K_c(1 + O_a/K_0)} \tag{21}$$

$$w_j = \frac{Jc_i}{4.5c_i + 10.5\Gamma^*} \tag{22}$$

$$\Gamma^* = exp(19.02 - 37.83/(R(T_{\text{leaf}} + 273.15))) \tag{23}$$

$$K_c = exp(38.05 - 36.38/R(T_{leaf} + 273.15))$$
 (24)

$$K_0 = exp(20.30 - 36.38/R(T_{\text{leaf}} + 273.15))$$
 (25)

$$V_{c,\text{max}} = V_{c,\text{max}@25C} \cdot \exp(26.35 - 65.33/R(T_{\text{leaf}} + 273.15))$$
(26)

$$J = \frac{Q_2 + J_{\text{max},T} - \sqrt{(Q_2 + J_{\text{max},T})^2 - 4\Theta_{PSII}Q_2J_{\text{max},T}}}{2\Theta_{PSII}}$$
(27)

$$J_{\text{max},T} = J_{\text{max}@25C} \exp(17.57 - 43.54/(R(T_{\text{leaf}} + 273.15)))$$
(28)

$$\Theta_{\text{PSII}} = 0.76 + 0.018T_{\text{leaf}} - 3.7 \cdot 10^{-4}T_{\text{leaf}}^2$$
(29)

$$Q_2 = Q \cdot k \cdot \Phi_{\text{PSII,max}} \cdot \beta_{\Phi} \tag{30}$$

$$\Phi_{\text{PSII,max}} = 0.352 + 0.022T_{\text{leaf}} - 3.4 \cdot 10^{-4} T_{\text{leaf}}^2$$
(31)

renamed β as to β_{Φ} ; is this an appropriate naming?

From Appendix 1, Equations 7-9 in Long 1991 Plant, Cell and Environment 14, 729-739. doi:10.1111/j.1365-3040.1991.tb01439.x

$$c_i = 0.7c_a \left(\frac{1.6740 - 6.1294 \cdot 10^{-2} T_{\text{leaf}} + 1.1688 \cdot 10^{-3} T_{\text{leaf}}^2 - 8.8741 \cdot 10^{-6} T_{\text{leaf}}^3}{0.73547} \right)$$
(32)

$$c_i = 0.7c_a @25^{\circ}C \tag{33}$$

$$O_i = 210 \left(\frac{4.7000 \cdot 10^{-2} - 1.3087 \cdot 10^{-3} T_{\text{leaf}} + 2.5603 \cdot 10^{-5} T_{\text{leaf}}^2 - 2.1441 \cdot 10^{-7} T_{\text{leaf}}^3}{2.6934 \cdot 10^{-2}} \right)$$
(34)

$$O_i = O_a @25^{\circ}C \tag{35}$$

$$\phi = \frac{A_{I=50} - A_{I=25}}{25f} \tag{36}$$

is there a reason not to divide by the denominator when it is constant?

Leaf Water Potential

$$h_s = \frac{e_l - \rho_{va}}{e_l} \cdot 100 \tag{37}$$

$$g_s = g_0 + g_1 \cdot A_{\text{gross}} \cdot \frac{h_s}{c_a} \tag{38}$$

$$A_{\text{net, water stress}} = A_{\text{net}} \cdot h_s \tag{39}$$

$$A_{\text{net, water stress}} = A_n \cdot g_{ws}$$
 (40) g_{ws} is undefined

should there be only one equation for Anet(?) is either correct? The first seems strange in that it implies water limited Anet equals Anet times humidity

Canopy Light Transfer

$$J_a = 2 \cdot I_{\text{abs}} \cdot \left(\frac{1 - r - \tau}{1 - \tau}\right) \cdot \ell \tag{41}$$

$$L_b = (2.126 \cdot 10^{-5} + 1.48 \cdot 10^{-7} \cdot T_{\text{air}}) / 0.004 \cdot \sqrt{L_w / u_{\text{layer}}}$$
(42)

$$u_a = \frac{u \cdot 0.41}{\log((u-d)/z_0)}$$
 (43) I can not reconcile units

$$g_a = \frac{(u_a^2/u_{\text{layer}}) \cdot L_b}{(u_a^2/u_{\text{layer}}) + L_b}$$
(44) I can not reconcile units

$$\rho_v' = 610.78 \cdot \exp\left(\left(17.269 \cdot \frac{T_a}{T_a + 237.3}\right)\right) \tag{45}$$

$$\Delta \rho_{va} = \rho_v' \cdot \left(1 - \frac{h_s}{100}\right) \tag{46}$$

$$\gamma = \frac{\rho \cdot c_p}{\lambda} \tag{47}$$

$$s = 18 \cdot (2501 - 2.373 \cdot T_a) \cdot \left(\frac{\rho_v'}{8.314 \cdot (T_a + 273)^2} \right)$$
(48)

$$R_{lc} = 4\sigma \cdot (273 + T_{air})^3 \cdot \Delta T \tag{49}$$

$$\Phi_N = J_a - R_{lc} \tag{50}$$

$$\Delta T = T_{\text{leaf}} - T_{\text{air}} = \frac{\Phi_n \left(\frac{1}{g_a} + \frac{1}{g_c}\right)}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]} - \frac{\lambda \Delta \rho_{va}}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]}$$
(51) should thermal conductivity be in this equation?

$$E = \frac{s \cdot \Phi_N + \lambda \cdot g_a \cdot \Delta \rho_{va}}{\lambda \cdot [s + \lambda \cdot (1 + g_a/g_c)]}$$
(52)

$$\mathbf{E_c} = \sum_{\text{layer}N}^{\text{layer}1} (\mathbf{E_{\text{sun}}} \cdot l_{\text{sun}}) + (\mathbf{E_{\text{shade}}} \cdot l_{\text{shade}})$$
 (53)

$$\mathbf{E}_{\text{tot}} = \int_{0}^{365 \text{days}} \int_{0}^{24 \text{hours}} \mathbf{E}_{\mathbf{c}}$$
 (54) why use \int instead of Σ ?

Sun / Shade Canopy

$$k = \frac{\sqrt{\chi^2 + \tan^2(\theta)} \cdot \cos(\theta)}{\chi + 1.744 \cdot [\chi + 1.183]^{-0.733}}$$
 (55)

$$F_{\text{sun}} = \frac{1 - e^{(-k \cdot F_{\text{canopy}} / \cos(\theta))} \cdot \cos(\theta)}{k}$$

$$(56)$$

$$F_{\text{shade}} = F_{\text{canopy}} - F_{\text{sun}} \tag{57}$$

$$F_{\text{canopy}} = F_{\text{sun}} + F_{\text{shade}} \tag{58}$$

$$I_{\text{sun}} = I_{dir} \cdot k / \cos(\theta) + I_{\text{shade}} \tag{59}$$

$$I_{\text{shade}} = I_{\text{diff}} \cdot e^{(-0.5 \cdot F_{\text{canopy}}^{0.7})} + I_{\text{scat}}$$
 (60)

$$I_{\text{scat}} = 0.07 \cdot I_{\text{dir}} \cdot (1.1 - 0.1 \cdot f) \cdot \exp(-\cos(\theta))$$

$$I_{\text{total}} = I_{\text{dir}} + I_{\text{dif}}$$
(61) is this the same f as Long
(62) 1991 "fraction of light not

Total Canopy Assimilation

$$A_c = (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
(63)

$$F_{\text{sun}} = \sum_{\text{layer}N}^{\text{layer}1} l_{\text{sun}}; \ l_{\text{sun}} = \frac{1 - e^{(-k \cdot F_{\text{sun}})}}{k}$$

$$(64)$$

$$F_{\text{shade}} = \sum_{\text{layer }N}^{\text{layer }1} \ell_{\text{shade}}; \ \ell_{\text{shade}} = F_{\text{sun}} - \ell_{\text{sun}}$$

$$\tag{65}$$

$$F_{\rm canopy} = F_{\rm sun} + F_{\rm shade} \tag{66}$$

$$I_d = I_{\text{diff}} \cdot e^{(-k \cdot F_{sun})} \tag{67}$$

$$I_{\ell,d} = k \cdot I_d \tag{68}$$

$$I_{\ell,s} = k \cdot I_{\text{dir}} + I_{\ell,d} \tag{69}$$

$$A_c = \sum_{\text{layer }N}^{layer 1} (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$

$$(70)$$

$$A_{c} = \sum_{\text{layer }N}^{layer 1} (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$

$$A_{c,\text{tot}} = \int_{0}^{365 \text{days}} \int_{0}^{24 \text{hours}} A_{c}$$

$$(70)$$

$$g_c = \sum_{\text{layer1}}^{\text{layerN}} (g_{s,\text{sun}} \cdot l_{\text{sun}}) + (g_{s,\text{shade}} \cdot l_{\text{shade}})$$
(72)

$$g_{c,\text{tot}} = \int_0^{365 \text{days}} \int_0^{24 \text{hours}} g_c \tag{73}$$

is $\ell_{\text{sun}} \equiv l_{\text{sun}}$? neither is defined

switch use of \int over hr/yr to \sum ?

Allocation

$$A_{\text{storage}} = |\omega_{\text{storage}} \cdot k_{\text{storage}}; k_{\text{storage}} < 0 \tag{74}$$

$$A_{\text{total}} = A_{\text{leaf}} + A_{\text{stem}} + A_{\text{root}} + A_{\text{storage}} \tag{75}$$

$$\omega_{\text{leaf}} = \omega_{\text{leaf}} + (A_{\text{total}} \cdot k_{\text{leaf}}) \tag{76}$$

$$\omega_{\text{stem}} = \omega_{\text{stem}} + (A_{\text{total}} \cdot k_{\text{stem}}) \tag{77}$$

$$\omega_{\text{stroot}} = \omega_{\text{storage}} + (A_{\text{total}} \cdot k_{\text{storage}}) \tag{78}$$

$$\omega_{\text{root}} = \omega_{\text{root}} + (A_{\text{total}} \cdot k_{\text{root}}) \tag{79}$$

$$\Psi_{\text{adl}} < \Psi_{\text{pt}} \tag{80}$$

$$k_{\text{leaf}} = k_{\text{leaf}} \cdot k_{\text{mod}} \tag{81}$$

$$k_{\text{stem}} = k_{\text{stem}} \cdot k_{\text{mod}} \tag{82}$$

$$k_{\text{storage}} = k_{\text{storage}} \cdot k_{\text{mod}} \tag{83}$$

$$k_{\text{mod}} = (\Psi_{\text{adl}} - \Psi_{\text{pt}}) \cdot \Psi_{g}; 0 \le k_{\text{mod}} \le 1 \tag{84}$$

$$\Delta F_{\text{canopy}} = \frac{\omega_{\text{leaf}}}{Sp_{\text{leaf}}} \tag{85}$$

$$\Delta L_{\text{stem}} = \frac{\omega_{\text{stem}}}{Sp_{\text{stem}}} \tag{86}$$

$$\Delta L_{\text{storage}} = \frac{\omega_{\text{storage}}}{Sp_{\text{storage}}}$$

$$\Delta L_{\text{storage}} = \frac{\omega_{\text{storage}}}{Sp_{\text{storage}}} \tag{88}$$

$$\text{Stem}_{\text{coppice}} = 0.95 - \omega_{\text{stem}} \tag{89}$$

should restrictions on values of k in equations 74 and 84 be moved to the parameter definitions?

would it make sense to subscript values of ω with t, t+1 when updating them to avoid confusion?

 Δt is the timescale for updating biomass.; need to define ΔT for both daily and hourly

Soil Evaporation

$$E_{\text{soil}} = \sum \frac{(\Psi_{\text{si}} - g \cdot z_i - \Psi_x)}{R_{\text{si}} + R_{\text{ri}}}$$

$$(90)$$

$$R_{\rm ri} = R_r \cdot \frac{\sum L_i}{L_i} \tag{91}$$

$$\Psi_x = \sum \frac{(\Psi_{si} - q_w \cdot z_i)}{R_{si} + R_{ri}} / \sum \frac{1}{R_{si} + R_{ri}}$$
(92)

$$\Psi_L = \Psi_x - E \cdot R_L \tag{93}$$

$$E_{d} = \begin{cases} E_{p}, & \theta^{*} \geq \theta_{1} \\ E_{p} \left(\frac{\theta - \theta_{2}}{\theta_{1} - \theta_{2}} \right), & \theta_{2} < \theta^{*} < \theta_{1} \\ 0, & \theta^{*} \leq \theta_{2} \end{cases}$$

$$(94)$$

$$\theta_{i+1} = \theta_i - \frac{E_i \cdot \theta_i}{\rho_w \cdot d_s} \tag{95}$$

$$g_{a,\text{soil}} = \frac{(2.126 \cdot 10^{-5}) + (1.48 \cdot 10^{-7}) \cdot T_{\text{soil}}}{\left(0.004 \cdot \sqrt{\frac{S_{size}}{u_{\text{soil}}}}\right)}$$
(96)

$$R_{lc,\text{soil}} = ((4\sigma) \cdot (273 + T_{\text{soil}})^3 \cdot \Delta T) \tag{97}$$

$$J_{a,\text{soil}} = 2 \cdot I_{\text{soil}} \cdot \left(\frac{1 - S_r - S_\tau}{1 - S_\tau}\right) \tag{98}$$

$$\Phi_{N,soil} = J_{a,soil} - R_{lc,soil} \tag{99}$$

$$E_{\text{soil}} = \frac{s \cdot \Phi_{N,soil} + \lambda \cdot g_{a,soil} \cdot \Delta \rho_{va}}{\lambda \cdot [s + \gamma]}$$
(100) is "soil" subscript correct?

Respiration

$$R_{\text{total}} = (a \cdot A_n) + (b_{\text{stem}} \cdot \omega_{\text{stem}}) + (b_{\text{root}} \cdot \omega_{\text{root}})$$
(101)

Energy Balance

$$HS_{\text{soil}} = HO_{\text{soil}} \cdot exp \left[\frac{h_{\text{soil}}}{46.97 \cdot (T_{\text{soil}} + 273.16)} \right]$$

$$(102)$$

$$HO_{\text{soil}} = 1.323 \cdot exp \left[\frac{17.27 \cdot T_{\text{soil}}}{273.3 + T_{\text{soil}}} \right] / T_{\text{soil}} + 273.16$$
 (103)

$$G_{\text{soil}} = -\lambda_{\text{soil}} \frac{\delta T}{\delta x} \tag{104}$$

$$G_{\text{soil}} = -\lambda_{\text{soil}} \cdot \left[\frac{T_2 - T_{\text{soil}}}{\Delta z} \right] + (T_{\text{soil}} - T_l) \cdot C \cdot \frac{\Delta z}{(2 \cdot \Delta t)}$$
(105)

should denominator in equation 104 be δz ?

what is t_1 ?

C in from equation 105 is undefined - is this the specific heat of soil?

Definition of Terms

Term	Units	Definition	Value	
$A_{\rm gross}$	$\mu mol mol^{-1}$	Gross rate of CO ₂ uptake per unit leaf area	-	
A_{net}	$\mu mol mol^{-1}$	Net rate of CO ₂ uptake per unit leaf area	-	
$A_{net, water stress}$	$\mu mol mol^{-1}$	$A_{\rm net}$ under water stress		
A_c	$\mu mol mol^{-1}$	Net canopy rate of CO ₂ uptake per unit ground area	-	
$A_{c,\mathrm{tot}}$	$g m^{-2} yr^{-1}$	A_c integrated over the course of a year	-	
$A_{c,\mathrm{sun}}$	$mol mol^{-1}$	Net rate of CO ₂ uptake per unit area sunlit leaves	-	
$A_{c,\mathrm{shade}}$	$mol m^{-2} s^{-1}$	Net rate of CO ₂ uptake per unit area shaded leaves	-	
A	$\mu mol mol^{-1}$	Predicted rate of CO ₂ uptake	-	
c_a	$\mu mol mol^{-1}$	Atmospheric CO ₂ concentration	378	
a	Dimensionless	Coefficient for growth respiration	0.2	
α	dimensionless	Atmospheric transmittance	0.85	
$lpha_{ m slope}$	mol mol ⁻¹	The quantum yield of CO_2 uptake determined by the initial slope of the response of A versus I_{abs}	0.04	
$b_{ m leaf}$	Dimensionless	Coefficient for maintenance respiration for leaf	0.03	
$b_{ m stem}$	Dimensionless	Coefficient for maintenance respiration for stem	0.015	
$b_{ m root}$	Dimensionless	Coefficient for maintenance respiration for root	0.01	
β	œ	C ₄ curvature parameter	0.93	
eta_Φ	%	Fraction of absorbed quanta reaching PSII		
c_i	$\mu mol \ mol^{-1}$	Intercellular concentration of O_2 in air corrected for solubility relative to $25^{\circ}C$		
c_p	$J kg^{-1} K-1$	Specific heat capacity of dry air	1010	
C_{ov}	Dimensionless	Coefficient of Variation for probability of rain in each month	-	
d_s	m	Soil depth	-	
D_j	d	day of year	-	
$D_{ m start}$	d	Day of year on which the sinusoidal temperature func- tion is assumed to start	45	
d	dimensionless	Zero plane displacement	0.77	
δ	degrees	Solar declination	-	
e_l	kPa	Saturated water VPD in the leaf	-	is "saturated VPD" an
E	$J mol^{-1}$	Activation energy	$R_d = 66405$	oxymoron?
			$V_{\rm max} =$	
			6800	
$E_d \\ E_i$				undefined from equation 94 undefined from equation 95
E_c	$mmolm^{-2}s^{-1}$	Instantaneous canopy evapo/transpiration rate	_	1
E_d	$g m^{-2} s^{-1}$	Potential soil evaporation	_	
E_l	$mmol m^{-2} s^{-1}$	Evapo/transpiration rate at sunlit/shaded leaves in a canopy layer	-	
E_p	$g m^{-2} s^{-1}$	Actual soil evaporation	_	
E_{R_d}	$J \text{ mol}^{-1}$	Activation energy of R_d	_	
$E_{ m tot}$	$mmol m^{-2} yr^{-1}$	E_c integrated over the course of a year	-	
$E_{V_{ m max}}$	$\mathrm{J} \; \mathrm{mol}^{-1}$	Activation energy of V_{cmax}	-	
f		fraction of light not absorbed by photosynthesis	0.23	
$F_{\rm canopy}$	$m^2 m^{-2}$	Canopy leaf area index	9	
$F_{ m shade}$	$m^2 m^{-2}$	Canopy shaded leaf area index	-	
$F_{ m sun}$	$m^2 m^{-2}$	Canopy sunlit leaf area index	-	
$F_{ m sum}$	$m^2 m^{-2}$	Summed leaf area index from top of canopy to layer considered in calculation	-	
$G_{ m soil}$	$W m^{-2}$	Soil heat flux	-	
g	$m s^{-2}$	Gravitional constant	9.8	
g_a	$mmol m^{-2} s^{-1}$	Leaf boundary layer conductance	-	
g_c	$mmolm^{-2}s^{-1}$	Canopy conductance of CO_2	-	
$g_{\rm c, \ root}$. 0 1			undefined
g_s	$mmol m^{-2} s^{-1}$	Leaf stomatal conductance	-	

Table 1 – continued from previous page

Term	Units	Definition Definition	Value	
$g_{ m ws}$				undefined, modifies Anet during
g_0	dimensionless	Stomatal slope factor	3	water stress
g_1	dimensionless	Stomatal intercept factor	0.08	
$g_{s,\mathrm{sun}}$	$mmol m^{-2} s^{-1}$	The sum of stomatal conductance of sunlit leaves	-	
$g_{s,\mathrm{shade}}$	$mmol m^{-2} s^{-1}$	The sum of stomatal conductance of shaded leaves	_	
$g_{ m ws}$	dimensionless	Species-specific water stress sensitivity factor		
$g_{ m wmod}$	1	water stress stomatal conductance factor		distinct from g_{ws} ?
γ	$Pa K^{-1}$	psychrometer constant	=	
Γ^*	$\mu \text{mol mol}^{-1}$	CO ₂ compensation point in the absence of dark respiration		
h_r	h	Hour of day	_	
h_s	%	Relative humidity	_	
$h_{ m canopy}$	m	Height of canopy	5	
h_{ms}	m	Wind speed measurement height	2	
$h_{ m layer}$	m	Height of canopy layer above ground	_	
I	$\mu mol m^{-2} s^{-1}$	Photon flux	_	
h	$mmday^{-1}$	The amount of water received on a given rainy day	-	
$h_{ m soil}$	m	Water pressure head	_	
$HO_{ m soil}$	kgm^{-3}	Saturated humidity of the air at the soil surface	-	
$HS_{ m soil}$	Kgm^{-3}	Humidity of the air at the soil surface	-	
$I_{ m abs}$	$\mu mol m^{-2} s^{-1}$	Photon flux absorbed by either sunlit or shaded leaves	-	
	•	within a canopy layer		
$I_{ m dir}$	$\mu mol m^{-2} s^{-1}$	Photon flux in direct solar beam	-	
$I_{ m diff}$	$\mu mol m^{-2} s^{-1}$	Photon flux in diffuse radiation	-	
$I_{ m total}$	$\mu mol m^{-2} s^{-1}$	Total photon flux incident on canopy	_	
I_s	$\mu mol m^{-2} s^{-1}$	Solar constant, photon flux in a plane perpedicular to the solar beam above the atmosphere	2600	
I_d				undefined
$I_{\ell,d}$				undefined
$I_{ m short}$	$\mu mol m^{-2} s^{-1}$	Short wave radiation component of incident light	-	
$I_{ m soil}$	$\mu mol m^{-2} s^{-1}$	Solar radiation incident upon soil surface	-	
$I_{ m soil}$	$W m^{-2}$	Solar radiation on soil	-	which units for I_{soil} are correct?
$I_{ m sun}$	$\mu mol m^{-2} s^{-1}$	Mean I for leaves which receive direct solar radiation, i.e. are sunlit	-	
$I_{ m shade}$	$\mu mol m^{-2} s^{-1}$	Mean I for leaves shaded from direct solar radiation	_	
$I_{ m scat}$	$\mu mol m^{-2} s^{-1}$	Direct beam radiation scattered by surfaces within the canopy	-	
$J_{ m a}$	$\mu mol m^{-2} s^{-1}$	Total solar radiation absorbed by either sunlit or	-	
<i>1</i>	$\mu molm^{-2}s^{-1}$	shaded leaves within a canopy layer Total solar radiation absorbed by soil		
$J_{ m a, \ soil} \ k$	dimensionless	Foliar absorption coefficient (α_{ℓ} in Bernacchi 2003)	-	
K_c	$\mu mol \ mol^{-1}$	Michaelis Menton constant for the carboxylation of	460	
	•	RuBISCO		
$K_{\rm CO_2}$	$mol m^{-2} s^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7	
Kt K_o	$mmolmol^{-1}$	C ₄ slope factor Michaelis Menton constant for oxygenation of Ru-	330	
		BISCO		
k_{slope}	Dimensionless	Initial slope of photosynthetic light response	0.04	
LN	gm^{-2}	Leaf nitrogen concentration	-	
k_{leaf}	Dimensionless	Partitioning coefficient for leaf	-	
k_{stem}	Dimensionless	Partitioning coefficient for stem	-	
$k_{ m sroot}$	Dimensionless	Partitioning coefficient for storage root	-	
$k_{ m froot}$	Dimensionless	Partitioning coefficient for fine root	-	
$k_{ m stroot}$	Dimensionless	Partitioning coefficient for structural root	-	
ℓ				undefined from Ja: equation 41
$\ell_{ m sun}$				undefined from equation 69
l_{sun}	-3	D 1		undefined from equation 64
L_i	$cm cm^{-3}$	Root density of ith zone	_	

Table 1 – continued from previous page

Term	Units	Definition previous page	Value	
L_w	m	Leaf width in the direction of the wind	0.04	
$\Delta L_{ m stem}$	111	Dear width in the direction of the wind	0.01	undefined
$\Delta L_{ m sroot}$				undefined
λ	MJ/Kg	Latent heat of vapourisation	_	andomed
$\lambda_{ m soil}$	$W/(m^{\circ}C)$	Thermal conductivity for the soil surface	_	
M	<i>'' (110 °C)</i>	Thermal conductivity for the bon buriace	17	what is M ?
m_r	${\rm mm\ month^{-1}}$	monthly precipitation rate		W100 1517 1
$N_{ m eff}$	days/mo	effective length of rainy period		check units with equation 12
n	day	The number of days in a month	29, 30,	encen amos with equation 12
	aay	The hamber of days in a month	or 31	
nr	day	The number of rainy days in a month	-	
O_a	$mmol mol^{-1}$	Atmospheric O ₂ concentration	210	is this corected to 25C like O_i ?
O_i	$mmol m^{-2} s^{-1}$	Intercellular concentration of O_2 in air corrected for	-	
o v		solubility relative to 25°C		
$\omega_{ ext{leaf}}$	g	Leaf biomass	_	
$\omega_{ m stem}$	g	Stem biomass	_	
$\omega_{ m sroot}$	g	Biomass of storage root	_	
$\omega_{ m froot}$	g	Biomass of fine root	_	
$\omega_{ m stroot}$	g	Biomass of structural root	_	
$\omega_{ m storage}$	g	Biomass of storage	_	
$\Omega_{ m storage}$	degrees	Latitude		
$\stackrel{\circ}{P}$	kPa	Atmospheric pressure		
P_o	kPa	Standard atmospheric pressure at sea level	101.324	
P_s	kPa	Leaf surface partial pressure of CO ₂	101.024	
$\Psi_{ m g}$	KI a	Lear surface partial pressure of OO2	_	undefined
$\Psi_l^{ m g}$	MPa	Leaf water potential		undermed
$\Psi_{ m L}$	MIF a	Lear water potential	-	undefined
Ψ_t	MPa	Threshold leaf water potential for decreasing gs		undermed
$\Phi_{ ext{N}}$	$\mathrm{W m}^{-2}$	Net radiation	-	
	$^{\mathrm{W}}$ $^{\mathrm{m}}$	Net radiation Net radiation at soil surface	-	
$\Phi_{N,soil}$	MPa		-	
$\Psi_{ m adl}$	MPa	Average daily plant water potential Threshold water potential	-	
$\Psi_{ m pt}$	MPa	Soil water potential of the ith layer	-	
$\Psi_{ m si}$	MPa	xylem water potential	-	
Ψ_x	Dimensionless	The probability that there is no rainfall	-	during a month?
q	kg s ⁻¹	Flux of water	-	during a month:
q_w	dimensionless	Is the proportional rise in a parameter for a 10°C in-	2	
Q_{10}	dimensionless	crease in temperature	2	
	dimensionless	Leaf reflection coefficient for total solar radiation	0.2	
$r \sim$	$mm day^{-1}$		0.2	
$r^\sim R$	$J k^{-1} mol^{-1}$	Mean daily rainfall in each month Real gas constant	8.314	
R_L	$m^3 kg^{-1} s^{-1}$	Leaf resistance	0.314	
$R_{ m si}$	$m^{3}kg^{-1}s^{-1}$	Soil resistance of the ith zone	-	
$R_{ m ri}$	$M^{3}kg^{-1}s^{-1}$	root resistance of the ith zone	-	
R_o	$mol m^{-2} s^{-1}$	Dark respiration rate at $25^{\circ}C$	3	
R_d	$mol m^{-2} s^{-1}$	Dark respiration at a given temperature	5	
$R_{ m lc}$	$mol m^{-2} s^{-1}$	Longwave radiation	-	
	$mol m^{-2} s^{-1}$	Soil longwave radiation	-	
$R_{lc, \text{soil}}$	$kg m^{-3}$	Density of water	1000	
$ ho_w$	kPa		1000	is this distinct from A a 2
$ ho_a$	кга	vapor pressure deficit in air		is this distinct from $\Delta \rho_{\rm va}$? undefined from equation 46
$ ho_a'$	$\mathrm{kPa}~\mathrm{K}^{-1}$	Clara of activisted water war or pressure sharps with		
s	кга К	Slope of saturated water vapor pressure change with	-	also defined by equation 48; is
_	Ji 1	respect to temperature (look up table)		one correct?
s_p	dimensionless	Spectral imbalance	-	
S_{size}	m D:	Average size of soil particles	0.04	
S_r	Dimensionless	Soil reflectance	0.2	
$S_{ au}$	Dimensionless -2	Soil transmission	0.01	
Sp_{leaf}	${\rm gram} {\rm m}^{-2}$	Specific leaf area	50	

Table 1 – continued from previous page

Term	Units	Definition previous page	Value	
Sp_{stem}	gram m ⁻¹	Specific stem elongation factor	60	
Sp_{froot}	${\rm gram~m^{-1}}$	Specific fine root elongation factor	10	
$Sp_{ m stroot}$	${\rm gram~m}^{-1}$	Specific structural root elongation factor	60	
σ	$\mathrm{Wm^{-2}K^{-4}}$	Stefan-Boltzmann constant	5.67 ·	
			10^{-8}	
t	h	Time of day	-	
$t_{ m len}$	h	day length	-	is this a constant, 24?
$t_{ m sn}$	h	Time of solar noon	12	,
$T_{ m leaf}$	$^{\circ}\mathrm{C}$	Leaf temperature	-	
$T_{ m air}$	$^{\circ}\mathrm{C}$	Ambient air temperature	-	
$T_{ m soil}$	$^{\circ}\mathrm{C}$	Soil surface temperature	-	
T_1	$^{\circ}\mathrm{C}$	Annual mean air temperature	18	
T_2	$^{\circ}\mathrm{C}$	Annual range in air temperature	2	
T_3	$^{\circ}\mathrm{C}$	Average daily range in air temperature	7	
T_4	$^{\circ}\mathrm{C}$	Maximum daily range in air temperature	7	
ΔT	$^{\circ}\mathrm{C}$	Temperature difference between (leaf or soil) and air		
au	Dimensionless	Leaf transmittance coefficient		
Θ_{curve}	dimensionless	Curvature parameter	-	
Θ^*	kgm^{-3}	Actual volumetric water content	-	
Θ_1	kgm^{-3}	The volumetric water content for maximizing Evapo-		
		ration		
Θ_2	kgm^{-3}	The volumetric water content for wilting point	-	
Θ_i	kgm^{-3}	The volumetric water content of the ith day	-	
Θ	degrees	Solar zenith angle	-	
u	${ m m~s^{-1}}$	Measured wind speed at known height (2m)	2	
u_{layer}	$\mathrm{m~s}^{-1}$	Wind speed in a given canopy layer	-	
$u_{ m soil}$	${ m m~s^{-1}}$	Wind speed at soil surface	-	
w_c	$mol m^{-2} s^{-1}$	RuBISCO limited rate of photosynthesis		units?
w_c	$mol m^{-2} s^{-1}$	RuBP limited rate of photosynthesis		units?
v		Saturated water vapour concentration	-	
$V_{ m max}$	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at a	-	
		given temperature		
V_{c,\max_o}	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at $25^{\circ}C$	39	
VPD	kPa	Leaf-air water vapour pressure deficit	-	
z_o	m	Roughness length	0.234	
χ	dimensionless	The ratio of horizontal:vertical projected area of leaves	1	
. •		in the canopy segment		
slope	$mol m^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7	
curve	dimensionless	Curvature parameter	0.83	
Z	m	Thickness of a soil layer	-	
		·		