KYLIONYF DECISIONS

CHAPTER 16

Outline

- ♦ Rational preferences
- s∍iJilities
- ♦ Money
- ⇔ Multiattribute utilities
- ♦ Decision networks
- of information of information ♦

Preferences

with uncertain prizes An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations

Lottery $L=[B,A;\ (I-1),B]$

:noitatoN

 $A \rightarrow B$ breferred to $A \rightarrow A$

A bns A nəəwtəd əsnərəflibni $A \sim A$

 $B \cong V$

A of berred to A

Rational preferences

Idea: preferences of a rational agent must obey constraints. Rational preferences \Rightarrow

behavior describable as maximization of expected utility

Constraints:
$$\begin{array}{c} \text{Orderability} \\ \text{Orderability} \\ (A \succ B) \lor (B \succ A) \lor (A \sim B) \\ \hline \text{Transitivity} \\ \text{Continuity} \\ A \succ B \succ C \Rightarrow \exists p \ [p,A;\ 1-p,C] \sim B \\ \text{Substitutability} \\ \text{Monotonicity} \\ A \succ B \Rightarrow (p \geq q \Leftrightarrow [p,A;\ 1-p,B] \succsim [q,A;\ 1-q,B]) \\ \hline \end{array}$$

Rational preferences contd.

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give away all its money

If $B \succ C$, then an agent who has C

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C

Maximizing expected utility

Theorem (Ramsey, 1931; von Meumann and Morgenstern, 1944): Given preferences satisfying the constraints there exists a real-valued function \overline{U} such that

$$\mathcal{A} \lesssim A \Leftrightarrow (\mathcal{A}) \cup \mathcal{A} \leq (A) \cup \mathcal{A}$$
$$(iS) \cup_{i} q_i = ([_{n} S_{,n} q_i : \dots :_{l} S_{,l} q_l)) \cup \mathcal{A}$$

MEU principle: Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities: compare a given state A to a standard lottery L_p that has "best possible prize" u_{\perp} with probability p "worst possible catastrophe" u_{\perp} with probability (1-p) adjust lottery probability p until $A \sim L_p$

Utility scales

Normalized utilities: $0.0 = \pm u$, $0.1 = \mp u$ is seitlifu besilemyon

Micromorts: one-millionth chance of death useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation

$$V(x)=k_1U(x)+k_2$$
 where $k_1>0$

With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

VanolVI

Money does $\operatorname{\mathbf{not}}$ behave as a utility function

Given a lottery L with expected monetary value EMV(L), usually U(L)< U(EMV(L)), i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x and a lottery $[p,\$M;\ (1-p),\$0]$ for large M?

Typical empirical data, extrapolated with risk-prone behavior:

Student group utility

For each x, adjust p until half the class votes for lottery (M=10,000)

Decision networks

Add action nodes and utility nodes to belief networks to enable rational decision making

:mdtinoglA

For each value of action node compute expected value of utility node given action, evidence Return MEU action

Willitu ətudirtteiiluM

How can we handle utility functions of many variables $X_1\dots X_n$? E.g., what is U(Deaths,Noise,Cost)?

How can complex utility functions be assessed from preference behaviour?

Idea 1: identify conditions under which decisions can be made without complete identification of $U(x_1,\dots,x_n)$

Idea 2: identify various types of $\mathbf{independence}$ in preferences and derive consequent canonical forms for $U(x_1,\dots,x_n)$

Strict dominance

Typically define attributes such that U is monotonic in each

If A solions solution dominates choice B strictly dominates choice A iff A (A) A in A in A (A) A in A in

Strict dominance seldom holds in practice

Stochastic dominance

Distribution p_1 stochastically dominates distribution p_2 iff t > 0 t > 0 t > 0 iff t > 0 t > 0 t > 0 iff

If U is monotonic in x, then A_1 with outcome distribution p_1 stochastically dominates A_2 with outcome distribution p_2 :

Stochastic dominance contd.

Stochastic dominance can often be determined without exact distributions using qualitative reasoning

E.g., construction cost increases with distance from city $S_1 \text{ is closer to the city than } S_2$ is closer to the city than S_2 on cost S_1 stochastically dominates S_2 on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information: $X \stackrel{+}{\longrightarrow} Y$ (X positively influences Y) means that For every value \mathbf{z} of Y's other parents \mathbf{Z} $\forall x_1, x_2, x_1 \geq x_2 \Rightarrow \mathbf{P}(Y|x_1, \mathbf{z})$ stochastically dominates $\mathbf{P}(Y|x_2, \mathbf{z})$

Preference structure: Deterministic

```
and X_2 preferentially independent of X_3 iff preference between \langle x_1,x_2,x_3\rangle and \langle x_1',x_2',x_3\rangle does not depend on x_3
```

```
E.g., \langle Noise, Cost, Safety \rangle: \langle 20,000 \text{ suffer, $4.6 billion, 0.06 deaths/mpm} \rangle vs. \langle 20,000 \text{ suffer, $4.5 billion, 0.06 deaths/mpm} \rangle
```

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement: mutual plement, then every subset of attributes is P.I of its complement: mutual P.I..

Theorem (Debreu, 1960): mutual P.I. \Rightarrow additive value function:

$$((S)_i X)_i Y_i Z = (S) Y$$

Hence assess n single-attribute functions; often a good approximation

Preference structure: Stochastic

Need to consider preferences over lotteries: X is utility-independent of Y iff preferences over lotteries in X do not depend on y

Mutual U.I.: each subset is U.I of its complement $\Rightarrow \exists \text{ multiplicative utility function:} \\ U = k_1 U_1 + k_2 U_2 + k_3 U_3 \\ + k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1 \\$

 $+ k_1 k_2 k_3 U_1 U_2 U_3$

Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

Value of information

Idea: compute value of acquiring each possible piece of evidence Can be done directly from decision network

Example: buying oil drilling rights Two blocks A and B, exactly one has oil, worth k Prior probabilities 0.5 each, mutually exclusive Current price of each block is k/2 Consultant" offers accurate survey of A. Fair price?

General formula

Current evidence E, current best action α Possible action outcomes S_i , potential new evidence E_j

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_{i}) \ P(S_{i}|E, a)$$

Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

$$EU(\alpha_{e_jk}|E, E_j = e_{jk}) = \max_a \sum_i U(S_i) P(S_i|E, a, E_j = e_{jk})$$

 E_j is a random variable whose value is currently unknown \Rightarrow must compute expected gain over all possible values:

$$VPI_{E}(E_{j}) = \left(\sum_{k} P(E_{j} = e_{jk} | E) EU(\alpha_{e_{jk}} | E, E_{j} = e_{jk}) \right) - EU(\alpha | E)$$

(noisemsofni toerfect information)

ITV do seitregor

Nonnegative—in expectation, not post hoc

$$A^{j}$$
, $E \ VPI_{E}(E_{j}) \geq 0$

Nonadditive—consider, e.g., obtaining $\mathbb{E}_{\hat{l}}$ twice

$$\Lambda DI^{E}(E^{\underline{i}}, E^{\underline{k}}) \neq \Lambda DI^{E}(E^{\underline{i}}) + \Lambda DI^{E}(E^{\underline{k}})$$

Order-independent

$$\Lambda PI_{E}(E_{j},E_{k}) = VPI_{E}(E_{j}) + VPI_{E,E_{j}}(E_{k}) = VPI_{E}(E_{k}) + VPI_{E,E_{k}}(E_{j})$$

Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal \Rightarrow evidence-gathering becomes a **sequential** decision problem

Sualitative behaviors

a) Choice is obvious, information worth little b) Choice is nonobvious, information worth a lot c) Choice is nonobvious, information worth little c)

