THE UNIVERSITY OF SYDNEY MATH1901/06 DIFFERENTIAL CALCULUS (ADVANCED)

Semester 1 Short answers to exam questions

2011

- 1. (a) Circle and its interior, centre 3-2i, radius 2, touching positive real axis.
 - (b) Factorisation: $P(z) = (z^2 6z + 10)(z^2 + z + 1)$.
 - (c) $f'(x) = (x \cos x \sin x)/x^2$. Negative on $(0, \pi/2]$ according to the given inequality. Negative on $[\pi/2, \pi]$ because both terms are negative or zero.
- **2**. (a) (i). $f(x,y) = \ln(4x^2 + y^2)$, $\nabla f = \frac{8x \, \mathbf{i} + 2y \, \mathbf{j}}{4x^2 + y^2}$, $\nabla f(1,2) = \mathbf{i} + \frac{1}{2} \mathbf{j}$. Directional derivative at P: $D_{\mathbf{u}} f(1,2) = \nabla f \cdot \hat{\mathbf{u}} = 2/\sqrt{13}$.
 - (ii). $\hat{\mathbf{v}} = \nabla f/|\nabla f||_P = (2\mathbf{i} + \mathbf{j})/\sqrt{5}, \ \partial f/\partial n = |\nabla f| = \sqrt{5}/2.$
 - (iii). Tangent plane: $z = x + \frac{1}{2}y + 3\ln 2 2$.
 - (b) Put $x \to 2x$ in standard exp series: $e^{2x} = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + \frac{2}{3}x^4 + \dots$ Put $x \to 3x$ in standard cosine series: $\cos 3x = 1 - \frac{9}{2}x^2 + \frac{27}{8}x^4 - \dots$ Multiply and stop at x^4 . $T_4(x)$ for $e^{2x}\cos 3x$ is $1 + 2x - \frac{5}{2}x^2 - \frac{23}{3}x^3 - \frac{119}{24}x^4$.
- 3. (a) $g(1) = \ln 2 \ln(1 + \sqrt{2}) < 0$, $g(10) = \ln 20 \ln(1 + \sqrt{101}) > 0$. Sign change and continuity imply at least one zero on [1, 10] by IVT. Zero is unique because $g'(x) = 1/x x/(\sqrt{1+x^2}+1+x^2) > 1/x x/(1+x^2) > 0$. Alternatively, solve g(x) = 0 directly and get x = 4/3 (unique).
 - (b) (i). Limit is 10/9. (Cancel fraction to $\frac{x+7}{x+6}$ or use l'Hôpital's rule twice.)
 - (ii). Limit is $e^{1/6}$. $\left(\lim_{x\to 0} (1+x^2/6+\dots)^{1/x^2} = \lim_{n\to\infty} (1+1/(6n))^n = e^{1/6}\right)$.
 - (iii). No limit. (Let y = 0 and y = x, limit depends on path.)
- **4**. (a) $T_3(x) = x x^3/6$, $R_3(x) = (\sin c)x^4/24 > 0$ because $0 < c < \pi$ when $x \in (0, \pi]$.
 - (b) $T_3(3) = -3/2$ and $T_3(x)$ decreasing for $x \ge 3$ imply $\sin x \ge -1 > T_3(x)$ on $[3, \infty)$. Part (a) covers (0, 3]. $x \sin x$ is increasing, so positive on $(0, \infty)$.
 - (c) $x \alpha x^3 < \sin x < x x^3/6 + x^5/120$ implies $\alpha > 1/6 x^2/120$. Small x forces $\alpha \ge 1/6$.
 - (d) $\left| \frac{\sin x}{x} 1 \right| = 1 \frac{\sin x}{x} < 1 \frac{T_3(x)}{x} = \frac{x^2}{6}$. The given inequality holds on $(0, \delta)$ when $\delta^2/6 \le \epsilon$. In particular, it holds when $\delta = \sqrt{6\epsilon}$. The coefficient $A = \sqrt{6}$ is largest possible by (c). If the power of ϵ could be lowered, then A in $A\epsilon^{1/2}$ could be raised indefinitely. So $A = \sqrt{6}$ and b = 1/2. (Of course, $\sqrt{6\epsilon}$ is not the largest possible δ , just the largest of the form $A\epsilon^b$.)