

Matemática Aplicada à Informática

Unidade 3.0 – Sistemas numéricos

QI ESCOLAS E FACULDADES
Curso Técnico em Informática
Aline Maciel Zenker

SUMÁRIO

SUMÁRIO	. 2
CONVERSÃO DE BASE NUMÉRICA	. 3
1 DECIMAL X BINÁRIO	. 3
1.1 Onde aplicaremos a conversão Binária	. 3
1.1.1 Exemplo	.3
1.2 Convertendo decimais para binários	. 3
1.2.1 Passo a passo	3
2 BINÁRIO X DECIMAL	. 4
2.1 Convertendo binários para decimais	. 4
2.1.1 Passo a passo	. 4
3 BINÁRIO X HEXADECIMAL	. 5
3.1 Convertendo Binários para Hexadecimal	. 5
3.1.1 Passo a Passo	. 5
4 HEXADECIMAL X BINÁRIO	. 6
4.1 Convertendo Hexadecimais para Binários	. 6
4.1.1 Passo a Passo	. 6
5 BINÁRIO X OCTAL	. 7
5.1 Convertendo Binários para Octais	. 7
5.1.1 Passo a Passo	. 7
6 OCTAL X BINÁRIO	. 8
6.1 Convertendo Octais para Binários	. 8
6.1.1 Passo a Passo	. 8
DEFEDÊNCIAS	Q

CONVERSÃO DE BASE NUMÉRICA

A conversão de base numérica é passar um valor de uma base para outra, mantendo o valor quantitativo, porém alterando a simbologia.

1 DECIMAL X BINÁRIO

Um número decimal é aquele cuja a base é 10. **Ex.:** 40₁₀

Um número binário é aquele cuja a base é 2. Ex.: 101000₂

Um **binário** é um sistema no qual se utiliza apenas dois algarismos para sua representação **(0 e 1)**, enquanto **decimal** utiliza 10 algarismos **(0 até 9)**.

1.1 Onde aplicaremos a conversão Binária

Endereço de IP são representados por números decimais, isso para facilitar o uso e entendimento, porém para configuração da rede utilizamos o mesmo de forma binária.

1.1.1 Exemplo

IPV41: $192.168.1.15_{10} \rightarrow 11000000 \ 10101000 \ 00000001 \ 00001111_2$

Saber fazer essa conversão é muito importante para evitar desperdício de número IP e aumentar a velocidade da rede.

Outra utilização dos binários é na representação de chaves, relé ou transistor. Como o binário é representado com 1 ou 0, podemos dizer que o relé está desativado quando o bit estiver 0 e ativado quando estiver em 1. Isto torna simples a implementação de sistemas digitais mecânicos, eletromecânicos ou eletrônicos.

1.2 Convertendo decimais para binários

Para converter de decimal para binário, utilizaremos a técnica de efetuar sucessivas divisões pela base a ser convertida, neste caso 2 (dois), até o último quociente possível.

1.2.1 Passo a passo

1º PASSO: Pegamos um número decimal e dividimos pelo número 2.

 $20_{10} \rightarrow ?_2$

¹ Quarta revisão do Protocolo de Internet.

2º PASSO: O resultado da divisão iremos dividir novamente pelo número 2 e isso sucessivamente até chegar a um resultado **0** ou **1**, o qual não poderemos dividir por dois.

3º PASSO: O número binário será a sobra de todas as divisões, lidas de trás para frente.

Portanto, 20_{10} equivale à 10100_2

2 BINÁRIO X DECIMAL

2.1 Convertendo binários para decimais

Para converter um número binário para decimal utilizamos a multiplicação de cada bit pelo número decimal dois e sua respectiva potência.

2.1.1 Passo a passo

1º PASSO: Colocamos o número binário um abaixo do outro em ordem.

10100₂ → ?₂

1 0

1

0

Λ

2º PASSO: Multiplicamos os bits de baixo para cima pelo número 2 e sua respectiva potência iniciando pela potência com expoente 0.

$$1 \times 2^4 = 16$$

$$0 \times 2^3 = 0$$

$$1 \times 2^2 = 4$$

$$0 \times 2^1 = 0$$

$$0 \times 2^0 = 0$$

3º PASSO: Somamos todos os resultados obtidos.

$$0 + 0 + 4 + 0 + 16 = 20$$

Portanto, 101002 equivale à 2010

3 BINÁRIO X HEXADECIMAL

Como os números binários muitas vezes ficam longos para serem representados, houve a necessidade de introduzir uma nova base, a hexadecimal.

Um número hexadecimal é aquele cuja base é 16. Ele é representado por números de 0 a 15, porém a partir de 10 utilizamos letras.

3.1 Convertendo Binários para Hexadecimal

Para convertermos um número binário para hexadecimal, agrupamos o mesmo em 4 bits iniciando o agrupamento com os últimos quatro bits e após convertemos em ordem cada grupo para decimal.

3.1.1 Passo a Passo

1º PASSO: Agrupamos de quatro em quatro bits.

11010101101

Perceba que às vezes os primeiros bits não formatarão um grupo de 4bits.

2º PASSO: Convertemos cada grupo em um número decimal:

110 → 6

1010 **→** 10

1101 **→** 13

3º PASSO: Montamos o número hexadecimal, para isto pesquisamos na tabela qual a letra representa aqueles números de 10 à 15:

- 10 = A
- 11 = B
- 12 = C
- 13 = D
- 14 = E
- 15 = F

Portanto, 110101011012 equivale à 6AD16

4 HEXADECIMAL X BINÁRIO

4.1 Convertendo Hexadecimais para Binários

Isola-se cada dígito e se converte para binário.

4.1.1 Passo a Passo

1º PASSO: Separamos o número hexadecimal em dígitos.

3F5₁₆ → ?₂

3

F

5

2º PASSO: Convertemos cada um para binário contendo 4 bits, lembrando que se for uma letra, primeiro pesquisamos que número ela significa.

$$A = 10$$
; $B = 11$; $C = 12$; $D = 13$; $E = 14$; $F = 15$

$$F = 15 = 1111$$

5 = 101, porém como deve conter quatro bits: **0101**

3° PASSO: Em ordem unimos os bits.

Portanto, **3F5**₁₆ equivale à **01111110101**₂ ou simplesmente **1111110101**₂

5 BINÁRIO X OCTAL

Um número octal é aquele cuja base é 8. Ele é representado por algarismos arábicos de 0 a 7.

5.1 Convertendo Binários para Octais

Para convertermos um número binário para octal, agrupamos o mesmo em 3 bits iniciando o agrupamento com os últimos três bits e após convertemos em ordem cada grupo para decimal.

5.1.1 Passo a Passo

1º PASSO: Agrupamos de três em três bits.

10101001₂ → ?₈

10101001

Perceba que às vezes os primeiros bits não formatarão um grupo de 3 bits.

2º PASSO: Convertemos cada grupo em um número decimal:

 $10 \rightarrow 2$

 $101 \rightarrow 5$

001 → **1**

3º PASSO: Montamos o número octal:

Portanto, **10101001₂** equivale à **251₈**

6 OCTAL X BINÁRIO

6.1 Convertendo Octais para Binários

Isola-se cada dígito e se converte para binário.

6.1.1 Passo a Passo

1º PASSO: Separamos o número octal em dígitos.

341₈ → ?₂

3

4

1

2º PASSO: Convertemos cada um para binário contendo 3 bits.

3 = 11, porém como deve conter três bits: **011**

4 = **100**

1 = 1, porém como deve conter três bits: **001**

3º PASSO: Em ordem unimos os bits.

Por tanto, **341**₈ equivale à **011100001**₂ ou simplesmente: **11100001**₂

REFERÊNCIAS

Kioskea.net, 2014. Disponível em http://pt.kioskea.net/contents/56-a-codificacao-binaria#conversoes