Теореми про прискорення

Андрій Фесенко

Теореми про прискорення

- теореми про лінійне прискорення (linear speedup)
- теорема Блюма про прискорення (Blum speedup)

Теореми про прискорення

- теореми про лінійне прискорення (linear speedup) Якщо можна розпізнати мову (обчислити функцію) з використанням f(n) ресурсів (час, пам'ять), то це можна зробити з використанням cf(n) ресурсів для довільного значення c>0.
- теорема Блюма про прискорення (Blum speedup)
 Існує мова (функція), для якої не існує "оптимального"
 алгоритму розпізнавання (обчислення) для будь-якого
 алгоритму завжди існує такий, що використовує менше ресурсів.

Теорема (про лінійне покращення пам'ятті)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, яка використовує пам'ять $s\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0$, $\varepsilon\in\mathbb{R}^+$, існує k стрічкова машина Тюрінга \tilde{M} , яка використовує пам'ять $\tilde{s}\colon\mathbb{N}\to\mathbb{N},\ \tilde{s}(n)\leq\lceil\varepsilon s(n)\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

Теорема (про лінійне покращення пам'ятті)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, яка використовує пам'ять $s\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0$, $\varepsilon\in\mathbb{R}^+$, існує k стрічкова машина Тюрінга \tilde{M} , яка використовує пам'ять $\tilde{s}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{s}(n)\leq\lceil\varepsilon s(n)\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

Доведення.

ullet якщо arepsilon < 1, то $c = \left\lceil rac{1}{arepsilon}
ight
ceil$

Теорема (про лінійне покращення пам'ятті)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, яка використовує пам'ять $s\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0$, $\varepsilon\in\mathbb{R}^+$, існує k стрічкова машина Тюрінга \tilde{M} , яка використовує пам'ять $\tilde{s}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{s}(n)\leq\lceil\varepsilon s(n)\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

- ullet якщо arepsilon < 1, то $c = \left\lceil rac{1}{arepsilon}
 ight
 ceil$
- $\bullet \ \tilde{\Gamma} = \left(\Gamma \cup \hat{\Gamma}\right)^c \cup \Sigma \cup \{\#\}$

Теорема (про лінійне покращення пам'ятті)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, яка використовує пам'ять $s\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0$, $\varepsilon\in\mathbb{R}^+$, існує k стрічкова машина Тюрінга \tilde{M} , яка використовує пам'ять $\tilde{s}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{s}(n)\leq\lceil\varepsilon s(n)\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

Доведення.

- ullet якщо arepsilon < 1, то $c = \left\lceil rac{1}{arepsilon}
 ight
 ceil$
- $\bullet \ \tilde{\Gamma} = \left(\Gamma \cup \hat{\Gamma}\right)^c \cup \Sigma \cup \{\#\}$
- ullet один блок з c комірками машини Тюрінга $M \leftrightarrow$ одна комірка машини Тюрінга $\tilde{M}, \hat{}$ положення зчитувальних пристроїв M

Теорема (про лінійне покращення пам'ятті)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, яка використовує пам'ять $s\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0$, $\varepsilon\in\mathbb{R}^+$, існує k стрічкова машина Тюрінга \tilde{M} , яка використовує пам'ять $\tilde{s}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{s}(n)\leq\lceil\varepsilon s(n)\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

- ullet якщо arepsilon < 1, то $c = \left\lceil rac{1}{arepsilon}
 ight
 ceil$
- $\bullet \ \tilde{\Gamma} = \left(\Gamma \cup \hat{\Gamma}\right)^{c} \cup \Sigma \cup \{\#\}$
- ullet один блок з c комірками машини Тюрінга $M \leftrightarrow$ одна комірка машини Тюрінга $ilde{M}, \hat{}$ положення зчитувальних пристроїв M
- якщо переміщення M в межах блоку, то змістити символ $\hat{}$

Теорема (про лінійне покращення пам'ятті)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, яка використовує пам'ять $s\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0$, $\varepsilon\in\mathbb{R}^+$, існує k стрічкова машина Тюрінга \tilde{M} , яка використовує пам'ять $\tilde{s}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{s}(n)\leq\lceil\varepsilon s(n)\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

Доведення.

- ullet якщо arepsilon < 1, то $c = \left\lceil rac{1}{arepsilon}
 ight
 ceil$
- $\bullet \ \tilde{\Gamma} = \left(\Gamma \cup \hat{\Gamma}\right)^c \cup \Sigma \cup \{\#\}$
- ullet один блок з c комірками машини Тюрінга $M \leftrightarrow$ одна комірка машини Тюрінга $\tilde{M}, \hat{}$ положення зчитувальних пристроїв M
- ullet якщо переміщення M в межах блоку, то змістити символ $\hat{\ }$
- ullet машина Тюрінга $ilde{M}$ використовує $\left\lceil rac{{
 m s}(n)}{c}
 ight
 ceil \leq \left\lceil arepsilon {
 m s}(n)
 ight
 ceil$ комірок

Теорема (про лінійне покращення пам'ятті)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, яка використовує пам'ять $s\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0$, $\varepsilon\in\mathbb{R}^+$, існує k стрічкова машина Тюрінга \tilde{M} , яка використовує пам'ять $\tilde{s}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{s}(n)\leq\lceil\varepsilon s(n)\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

Доведення.

- ullet якщо arepsilon < 1, то $c = \left\lceil rac{1}{arepsilon}
 ight
 ceil$
- $\bullet \ \tilde{\Gamma} = \left(\Gamma \cup \hat{\Gamma}\right)^{c} \cup \Sigma \cup \{\#\}$
- ullet один блок з c комірками машини Тюрінга $M \leftrightarrow$ одна комірка машини Тюрінга $ilde{M}, \hat{}$ положення зчитувальних пристроїв M
- ullet якщо переміщення M в межах блоку, то змістити символ $\hat{\ }$
- ullet машина Тюрінга $ilde{M}$ використовує $\left\lceil rac{s(n)}{c}
 ight
 ceil \leq \left\lceil arepsilon s(n)
 ight
 ceil$ комірок
- метод стиснення стрічки (tape compression)

Для однострічкової машини Тюрінга $\tilde{s}(n)-n \leq \lceil \varepsilon(s(n)-n) \rceil$ для всіх чисел $n \in \mathbb{N}$.

Для однострічкової машини Тюрінга $\widetilde{s}(n)-n \leq \lceil \varepsilon(s(n)-n) \rceil$ для всіх чисел $n \in \mathbb{N}$.

Існує машина Тюрінга \tilde{M} з однією робочою стрічкою.

Теорема (про лінійне прискорення)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, час роботи якої є $t\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0,\ \varepsilon\in\mathbb{R}^+$, існує k+1 стрічкова машина Тюрінга \tilde{M} , час роботи якої $\tilde{t}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{t}(n)\leq\lceil\varepsilon t(n)+n+2\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

Теорема (про лінійне прискорення)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, час роботи якої ϵ $t\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0,\ \varepsilon\in\mathbb{R}^+$, існує k+1 стрічкова машина Тюрінга \tilde{M} , час роботи якої $\tilde{t}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{t}(n)\leq\lceil\varepsilon t(n)+n+2\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

Доведення.

ullet метод стиснення стрічки в m разів

Теорема (про лінійне прискорення)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, час роботи якої ϵ $t\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0,\ \varepsilon\in\mathbb{R}^+$, існує k+1 стрічкова машина Тюрінга \tilde{M} , час роботи якої $\tilde{t}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{t}(n)\leq\lceil\varepsilon t(n)+n+2\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

- ullet метод стиснення стрічки в m разів
- 4 такти (L, R, R, L) зчитати вміст сусідніх комірок

Теорема (про лінійне прискорення)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, час роботи якої є $t\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0,\ \varepsilon\in\mathbb{R}^+$, існує k+1 стрічкова машина Тюрінга \tilde{M} , час роботи якої $\tilde{t}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{t}(n)\leq\lceil\varepsilon t(n)+n+2\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

- метод стиснення стрічки в m разів
- ullet 4 такти (L,R,R,L) зчитати вміст сусідніх комірок
- ullet ullet вся інформація для m тактів машини Тюрінга M

Теорема (про лінійне прискорення)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, час роботи якої ϵ $t\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0,\ \varepsilon\in\mathbb{R}^+$, існує k+1 стрічкова машина Тюрінга \tilde{M} , час роботи якої $\tilde{t}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{t}(n)\leq\lceil\varepsilon t(n)+n+2\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

- ullet метод стиснення стрічки в m разів
- ullet 4 такти (L,R,R,L) зчитати вміст сусідніх комірок
- ullet є вся інформація для m тактів машини Тюрінга M
- ullet 2 такти на оновлення комірок $ilde{M}$ та переміщення

Теорема (про лінійне прискорення)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, час роботи якої є $t\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0,\ \varepsilon\in\mathbb{R}^+$, існує k+1 стрічкова машина Тюрінга \tilde{M} , час роботи якої $\tilde{t}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{t}(n)\leq\lceil\varepsilon t(n)+n+2\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

Доведення.

- метод стиснення стрічки в m разів
- ullet 4 такти (L,R,R,L) зчитати вміст сусідніх комірок
- ullet є вся інформація для m тактів машини Тюрінга M
- ullet 2 такти на оновлення комірок $ilde{M}$ та переміщення
- щонайбільше $6\frac{t(n)}{m}$ тактів і $n + \frac{n}{m} + 2$ на копіювання вхідного слова

Теорема (про лінійне прискорення)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, час роботи якої є $t\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0,\ \varepsilon\in\mathbb{R}^+$, існує k+1 стрічкова машина Тюрінга \tilde{M} , час роботи якої $\tilde{t}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{t}(n)\leq\lceil\varepsilon t(n)+n+2\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

Доведення.

- метод стиснення стрічки в m разів
- ullet 4 такти (L,R,R,L) зчитати вміст сусідніх комірок
- ullet є вся інформація для m тактів машини Тюрінга M
- ullet 2 такти на оновлення комірок $ilde{M}$ та переміщення
- ullet щонайбільше $6 \frac{t(n)}{m}$ тактів і $n + \frac{n}{m} + 2$ на копіювання вхідного слова
- ullet якщо $m=rac{6}{arepsilon}$, то загальна кількість тактів $-arepsilon t(n)+n+nrac{arepsilon}{6}+2$

Теорема (про лінійне прискорення)

Для будь-якої k стрічкової машини Тюрінга $M,\ k>1,\ k\in\mathbb{N}$, час роботи якої є $t\colon\mathbb{N}\to\mathbb{N}$, та довільного значення $\varepsilon>0,\ \varepsilon\in\mathbb{R}^+$, існує k+1 стрічкова машина Тюрінга \tilde{M} , час роботи якої $\tilde{t}\colon\mathbb{N}\to\mathbb{N}$, $\tilde{t}(n)\leq\lceil\varepsilon t(n)+n+2\rceil$ для всіх чисел $n\in\mathbb{N}$, при цьому $M\simeq\tilde{M}$.

- метод стиснення стрічки в m разів
- ullet 4 такти (L,R,R,L) зчитати вміст сусідніх комірок
- ullet є вся інформація для m тактів машини Тюрінга M
- ullet 2 такти на оновлення комірок $ilde{M}$ та переміщення
- щонайбільше $6\frac{t(n)}{m}$ тактів і $n + \frac{n}{m} + 2$ на копіювання вхідного слова
- ullet якщо $m=rac{6}{arepsilon}$, то загальна кількість тактів $-arepsilon t(n)+n+nrac{arepsilon}{6}+2$
- $\varepsilon t(n) + n + 2$

Доведення.

- прискорення в 2 рази
- стиснення вмісту стрічок в 3 рази з перекриттям на 1 комірку

- прискорення в 2 рази
- стиснення вмісту стрічок в 3 рази з перекриттям на 1 комірку
- зчитувальний пристрій тільки в центрі трійки

Доведення.

- прискорення в 2 рази
- стиснення вмісту стрічок в 3 рази з перекриттям на 1 комірку
- зчитувальний пристрій тільки в центрі трійки
- мінімум 2 такти, щоб перейти в нову комірку

- прискорення в 2 рази
- стиснення вмісту стрічок в 3 рази з перекриттям на 1 комірку
- зчитувальний пристрій тільки в центрі трійки
- мінімум 2 такти, щоб перейти в нову комірку
- зберігати значення комірки з перекриття

- прискорення в 2 рази
- стиснення вмісту стрічок в 3 рази з перекриттям на 1 комірку
- зчитувальний пристрій тільки в центрі трійки
- мінімум 2 такти, щоб перейти в нову комірку
- зберігати значення комірки з перекриття
- ullet загальна кількість тактів $-rac{t(n)}{2} + n + rac{n}{2} + 2$

- прискорення в 2 рази
- стиснення вмісту стрічок в 3 рази з перекриттям на 1 комірку
- зчитувальний пристрій тільки в центрі трійки
- мінімум 2 такти, щоб перейти в нову комірку
- зберігати значення комірки з перекриття
- ullet загальна кількість тактів $-rac{t(n)}{2} + n + rac{n}{2} + 2$
- для прискорення різні значення стиснення та перекриття

Доведення.

- прискорення в 2 рази
- стиснення вмісту стрічок в 3 рази з перекриттям на 1 комірку
- зчитувальний пристрій тільки в центрі трійки
- мінімум 2 такти, щоб перейти в нову комірку
- зберігати значення комірки з перекриття
- ullet загальна кількість тактів $-\frac{t(n)}{2} + n + \frac{n}{2} + 2$
- для прискорення різні значення стиснення та перекриття

Є застосовним і для обчислення функцій

Доведення.

- прискорення в 2 рази
- стиснення вмісту стрічок в 3 рази з перекриттям на 1 комірку
- зчитувальний пристрій тільки в центрі трійки
- мінімум 2 такти, щоб перейти в нову комірку
- зберігати значення комірки з перекриття
- загальна кількість тактів $-\frac{t(n)}{2} + n + \frac{n}{2} + 2$
- для прискорення різні значення стиснення та перекриття

Є застосовним і для обчислення функцій

використання $\mathcal O$ нотації, майже всі обчислення можна прискорити

Аксіоми Блюма

Означення

Аксіомами Блюма називають твердження, що

- f O області визначення функцій $m arphi_i$ та $m O_i$ збігаються;
- **②** характеристична функція множини $\{(i,x,t)\in\mathbb{N}^3\mid \Phi_i(x)\simeq t\}$ є обчислювальною;

для довільної нумерації Геделя φ множини всіх унарних часткових обчислювальних функцій $\mathcal{P}^{(1)}$ та довільної обчислювальної функції Φ виду $\mathbb{N} \to \mathcal{P}^{(1)}$, де $\varphi_i, i \in \mathbb{N}$, позначає i-ту унарну часткову обчислювальну функцію з множини $\mathcal{P}^{(1)}$, а $\Phi_i, i \in \mathbb{N}$, позначає унарну часткову обчислювальну функцію, яка є значенням $\Phi(i)$. Нумерація Геделя φ множини всіх унарних часткових обчислювальних функцій $\mathcal{P}^{(1)}$ та обчислювальна функція Φ виду $\mathbb{N} \to \mathcal{P}^{(1)}$ задовольняють аксіоми Блюма, якщо обидва твердження для них є правильними, та не задовольняють аксіоми Блюма в інших випадках.

Означення

Мірою (обчислювальної) складності (Блюма) називають впорядковану пару (φ, Φ) , де φ є нумерацією Геделя множини всіх унарних часткових обчислювальних функцій $\mathcal{P}^{(1)}$, а Φ є обчислювальною функцією виду $\mathbb{N} \to \mathcal{P}^{(1)}$, які задовольняють аксіоми Блюма.

Означення

Мірою (обчислювальної) складності (Блюма) називають впорядковану пару (φ,Φ) , де φ є нумерацією Геделя множини всіх унарних часткових обчислювальних функцій $\mathcal{P}^{(1)}$, а Φ є обчислювальною функцією виду $\mathbb{N} \to \mathcal{P}^{(1)}$, які задовольняють аксіоми Блюма.

Теорема Блюма

Для заданої міри обчислювальної складності Блюма (φ, Φ) та заданої всюди визначеної обчислювальної функції f арності 2 існує всюди визначена функція g арності 2 з множиною значень $\{0,1\}$ така, що для будь-якого алгоритму i обчислення функції g існує алгоритм j обчислення функції g такий, що $f(x, \Phi_j(x)) \leq \Phi_i(x)$. Таку функцію f називають **функцією прискорення**.

- **①** $\Phi(M,x)$ ϵ скінченним значенням $\Leftrightarrow M(x) \neq \bot$
- **2** мова $\{(M, x, t) \mid \Phi(M, x) = t\}$ є вирішуваною

Час роботи та пам'ять машини Тюрінга є мірами обчислювальної складності Блюма.

- **①** $\Phi(M,x)$ ϵ скінченним значенням $\Leftrightarrow M(x) \neq \bot$
- ullet мова $\{(M, x, t) \mid \Phi(M, x) = t\}$ є вирішуваною

Час роботи та пам'ять машини Тюрінга є мірами обчислювальної складності Блюма.

Наслідок

Існує мова така, що для довільної машини Тюрінга, яка вирішує цю мову за час t(n), існує машина Тюрінга, яка вирішує цю мову за час $\mathcal{O}(\log t(n))$.

- **②** $\Phi(M,x)$ є скінченним значенням $\Leftrightarrow M(x) \neq \bot$
- ullet мова $\{(M, x, t) \mid \Phi(M, x) = t\}$ ϵ вирішуваною

Час роботи та пам'ять машини Тюрінга є мірами обчислювальної складності Блюма.

Наслідок

Існує мова така, що для довільної машини Тюрінга, яка вирішує цю мову за час t(n), існує машина Тюрінга, яка вирішує цю мову за час $\mathcal{O}(\log t(n))$.

Наслідок

Не існує оптимального алгоритму.

Висновки

- найбільш цікавими мір складності Блюма є тільки час та пам'ять
- функції та мови, які є результатами застосування тверджень з використанням мір Блюма є достатньо громіздкими і штучними
- більшість мір складності цікавих зараз не задовольняють аксіомам Блюма

Висновки

- найбільш цікавими мір складності Блюма є тільки час та пам'ять
- функції та мови, які є результатами застосування тверджень з використанням мір Блюма є достатньо громіздкими і штучними
- більшість мір складності цікавих зараз не задовольняють аксіомам Блюма

Копперсміт та Віноград довели, що завжди існує кращий алгоритм множення матриць, для деякого класу алгоритмів множення. Наразі існує припущення, що це є правильним для всіх алгоритмів множення матриць.