Лабораторная работа № 2

Имитационное моделирование

Королёв Иван Андреевич

Содержание

1				5 6	
2					
3				7	
4	Упр	Упражнение			
5	Teo	ретиче	ское введение	9	
6	Про	токол	тср	10	
7	Мон	итори	нг очередей	11	
8	Выполнение лабораторной работы				
	8.1	Прим	ер с дисциплиной RED	13	
		8.1.1	Реализация модели	13	
		8.1.2	График изменения TCP-окна. Тип TCP-агента: Reno	15	
		8.1.3	График изменения длины очереди и средней длины очереди.		
			Тип TCP-агента: Reno	16	
	8.2	Упрах	кнение	17	
		8.2.1	Изменить в модели на узле s1 тип протокола TCP с Reno на		
			NewReno	17	
		8.2.2	График изменения TCP-окна. Тип TCP-агента: NewReno	18	
		8.2.3	График изменения длины очереди и средней длины очереди.		
			Тип TCP-агента: NewReno	19	
		8.2.4	Изменить в модели на узле s1 тип протокола TCP с Reno на		
			Vegas	19	
			График изменения TCP-окна. Тип TCP-агента: Vegas	20	
		8.2.6	График изменения длины очереди и средней длины очереди.		
			Тип TCP-агента: Vegas	21	
		8.2.7	Сравнение Newreno и Vegas	21	
		8.2.8	Внесите изменения при отображении окон с графиками (из-		
			мените цвет фона, цвет траекторий, подписи к осям, подпись		
			траектории в легенде)	22	
9	Выв	воды		25	
Сг	Список литературы				

Список иллюстраций

8.1	Реализация модели	14
8.2	Реализация модели	15
8.3	График изменения TCP-окна. Тип TCP-агента: Reno	16
8.4	График изменения длины очереди и средней длины очереди. Тип	
	ТСР-агента: Reno	17
8.5	Модель. Изменили на другой тип протокола	17
8.6	График изменения TCP-окна. Тип TCP-агента: NewReno	18
8.7	График изменения длины очереди и средней длины очереди. Тип	
	TCP-агента: NewReno	19
8.8	Модель. Изменили на другой тип протокола	20
8.9	График изменения TCP-окна. Тип TCP-агента: Vegas	20
8.10	График изменения длины очереди и средней длины очереди. Тип	
	TCP-агента: Vegas	21
8.11	Цвет фона и подписи к осям	22
8.12	Цвет траектории и подписи траектории в легенде	22
8.13	Реализация	23
8.14	Реализация	24

Список таблиц

1 Цель работы

Более подробно познакомится с протоколом ТСР и мониторингом очередей.

2 Задание

3 Пример с дисциплиной RED

- сеть состоит из 6 узлов;
- между всеми узлами установлено дуплексное соединение с различными пропускной способностью и задержкой 10 мс (см. рис. 2.4);
- узел r1 использует очередь с дисциплиной RED для накопления пакетов, максимальный размер которой составляет 25;
- TCP-источники на узлах s1 и s2 подключаются к TCP-приёмнику на узле s3;
- генераторы трафика FTP прикреплены к TCP-агентам. На рис. 2.4 приведена схема моделируемой сети.

4 Упражнение

- Измените в модели на узле s1 тип протокола TCP c Reno на NewReno, затем на Vegas. Сравните и поясните результаты.
- Внесите изменения при отображении окон с графиками (измените цвет фона, цвет траекторий, подписи к осям, подпись траектории в легенде).

5 Теоретическое введение

6 Протокол ТСР

Протокол управления передачей (Transmission Control Protocol, **TCP**) имеет средства управления потоком и коррекции ошибок, ориентирован на установление соединения.

В ns-2 поддерживает следующие TCP-агенты односторонней передачи: * Agent/TCP * Agent/TCP/Reno * Agent/TCP/Newreno * Agent/TCP/Sack1 — TCP с выборочным повтором (RFC2018) * Agent/TCP/Vegas * Agent/TCP/Fack — Reno TCP с «последующим подтверждением» * Agent/TCP/Linux — TCP-передатчик с поддержкой SACK, который использует TCP с перезагрузкой контрольных модулей из ядра Linux Односторонние агенты приёма: * Agent/TCPSink * Agent/TCPSink/DelAck * Agent/TCPSink/Sack1 * Agent/TCPSink/Sack1/DelAck Двунаправленный агент: * Agent/TCP/FullTcp

7 Мониторинг очередей

Объект мониторинга очереди оповещает диспетчера очереди о поступлении пакета. Диспетчер очереди осуществляет мониторинг очереди.

Объекты очереди: * qlim — максимально разрешённое число пакетов в очереди; * limit_ – размер очереди в пакетах; * blocked_ – принимает значение true, если очередь заблокирована; * unblock_on_resume_ — принимает значение true, указывая, что очередь должна быть разблокирована после отправки последнего пакета; * bytes_ — принимает значение true, если используется режим передачи в байтах, а не в пакетах; * queue-in-bytes_ — принимает значение true, если используется режим измерения среднего размера очереди в байтах, а не пакетах; * thresh_ — минимальный порог среднего размера очереди (в пакетах); * maxthresh — максимальный порог среднего размера очереди (в пакетах); * mean pktsize — грубая оценка среднего размера пакета (в байтах); * q weight вес очереди (используется при расчёте экспоненциальновзвешенного скользящего среднего размера очереди; * wait — интервал времени между сброшенными пакетами. Объекты мониторинга очереди: * size_ — размер мгновенной длины очереди (в байтах); * pkts_ – размер мгновенной длины очереди (в пакетах); * parrivals_ - промежуточная сумма поступивших пакетов; * barrivals_ - промежуточная сумма байт в поступивших пакетах * pdepartures_ – промежуточная сумма обслуженных пакетов (не отброшенных); * bdepartures_ — промежуточная сумма байт обслуженных пакетов (не отброшенных); * pdrops — общая сумма отброшенных пакетов; * bdrops_ - общая сумма байт отброшенных пакетов; * bytesInt — заполненность очереди в байтах; * pktsInt — заполненность очереди

в пакетах; * epdrops_ — число сброшенных по алгоритму RED пакетов; * ebdrops_ — число байт в сброшенных по алгоритму RED пакетах; * enable_in_ — устанавливается значение true, если требуется мониторинг потока на входе; * enable_out_ — устанавливается значение true, если требуется мониторинг потока на выходе; * enable_drop_ — устанавливается значение true, если требуется мониторинг сброшенных из потока пакетов; * enable_edrop_ — устанавливается значение true, если требуется мониторинг сброшенных из потока пакетов по алгоритму RED; * src_ — адрес источника пакетов, принадлежащих потоку; * dst_ — адрес получателя пакетов, принадлежащих потоку; * flowid_ — идентификатор потока.

8 Выполнение лабораторной работы

8.1 Пример с дисциплиной RED

8.1.1 Реализация модели

Реализация модели. Описываются узлы сети, соединения, агенты и приложения, мониторинг размера окна, мониторинг очереди, добавление at-событий и формирование файла с данными о размере окна TCP. (рис. 8.1).

```
set N 5
for {set i 1} {$i < $N} {incr i} {</pre>
set node (s$i) [$ns node]
set node (r1) [$ns node]
set node (r2) [$ns node]
$ns duplex-link $node_(s1) $node_(r1) 10Mb 2ms DropTail
$ns duplex-link $node_(s2) $node_(r1) 10Mb 3ms DropTail
$ns duplex-link $node_(r1) $node_(r2) 1.5Mb 20ms RED
$ns queue-limit $node_(r1) $node_(r2) 25
$ns queue-limit $node_(r2) $node_(r1) 25
$ns duplex-link $node_(s3) $node_(r2) 10Mb 4ms DropTail
$ns duplex-link $node_(s4) $node_(r2) 10Mb 5ms DropTail
set tcp1 [$ns create-connection TCP/Reno $node_(s1) TCPSink $node_(s3) 0]
$tcp1 set window 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
set windowVsTime [open WindowVsTimeReno w]
set qmon [$ns monitor-queue $node_(r1) $node_(r2) [open qm.out w] 0.1];
[$ns link $node_(r1) $node_(r2)] queue-sample-timeout;
set redq [[$ns link $node_(r1) $node_(r2)] queue]
set tchan_ [open all.q w]
$redq trace curq_
$redq trace ave
$redq attach $tchan
$ns at 0.0 "$ftp1 start"
$ns at 1.1 "plotWindow $tcp1 $windowVsTime"
$ns at 3.0 "$ftp2 start"
$ns at 10 "finish"
proc plotWindow {tcpSource file} {
global ns
set time 0.01
set now [$ns now]
set cwnd [$tcpSource set cwnd_]
puts $file "$now $cwnd"
$ns at [expr $now+$time] "plotWindow $tcpSource $file"
```

Рис. 8.1: Реализация модели

Реализация модели. Добавление процедуры finish. Подключение кода AWK. Открытие файла f на запись. Выполнение кода AWK, подпись траекторий в легенде. Запуск xgraph c графиками окна TCP и очереди. (рис. 8.2).

```
proc finish {} {
        global tchan
        set awkCode {
                         if ($1 == "Q" && NF>2) {
                                  print $2, $3 >> "temp.q";
                                  set end $2
                         else if ($1 == "a" && NF>2)
print $2, $3 >> "temp.a";
        set f [open temp.queue w]
        puts $f "TitleText: red'
        puts $f "Device: Postscript"
        if { [info exists tchan_] } {
                 close $tchan_
        exec rm -f temp.q temp.a
        exec touch temp.a temp.q
        exec awk $awkCode all.q
        puts $f \"queue
exec cat temp.q >@ $f
        puts $f \n\"ave queue
        exec cat temp.a >@ $f
        close $f
        exec xgraph -bb -tk -x time -t "TCPRenoCWND" WindowVsTimeReno &
        exec xgraph -bb -tk -x time -y queue temp.queue &
```

Рис. 8.2: Реализация модели

8.1.2 График изменения TCP-окна. Тип TCP-агента: Reno

В начале соединения окно перегрузки быстро растет, что характерно для фазы медленного старта. Примерно на 2 секундах происходит резкое уменьшение окна, что свидетельствует о потери пакетов. После первого спада окно перегрузки начинает увеличиваться, но с периодическими падениями, что указывает на Reno. Максимальное значение окна примерно 33, минимальное значение окна около 1. (рис. 8.3).

Рис. 8.3: График изменения ТСР-окна. Тип ТСР-агента: Reno

8.1.3 График изменения длины очереди и средней длины очереди. Тип TCP-агента: Reno

Текущий размер очереди показывает высокие колебания. Средняя очередь постепенно растет и остается на стабильном уровне, что говорит о настройке RED. Максимальное значение примерно 13.5, минимальное значение окна около 0. (рис. 8.4).

Рис. 8.4: График изменения длины очереди и средней длины очереди. Тип TCPагента: Reno

8.2 Упражнение.

8.2.1 Изменить в модели на узле s1 тип протокола TCP с Reno на NewReno.

Изменяем тип протокола на NewReno.(рис. 8.5).

```
set tcp1 [$ns create-connection TCP/Newreno $node_(s1) TCPSink $node_(s3) 0]
$tcp1 set window_ 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
```

Рис. 8.5: Модель. Изменили на другой тип протокола.

8.2.2 График изменения TCP-окна. Тип TCP-агента: NewReno

В начале соединения окно перегрузки быстро растет, что характерно для фазы медленного старта. Примерно на 3 секундах происходит резкое уменьшение окна, что свидетельствует о потери пакетов. После первого спада окно перегрузки начинает увеличиваться, но с периодическими падениями, что указывает на Reno. Максимальное значение окна примерно 33, минимальное значение окна около 4. (рис. 8.6).

Рис. 8.6: График изменения TCP-окна. Тип TCP-агента: NewReno

8.2.3 График изменения длины очереди и средней длины очереди.

Тип TCP-агента: NewReno

Текущий размер очереди показывает довольно высокие колебания, но более маленькие, чем у Reno. Средняя очередь постепенно растет и остается на стабильном уровне, что говорит о настройке RED. Максимальное значение примерно 13.5, минимальное значение окна около 0. (рис. 8.7).

Рис. 8.7: График изменения длины очереди и средней длины очереди. Тип TCPагента: NewReno

8.2.4 Изменить в модели на узле s1 тип протокола TCP с Reno на Vegas

Изменяем тип протокола на Vegas.(рис. 8.8).

```
set tcp1 [$ns create-connection TCP/Vegas $node_(s1) TCPSink $node_(s3) 0]
$tcp1 set window_ 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
```

Рис. 8.8: Модель. Изменили на другой тип протокола.

8.2.5 График изменения TCP-окна. Тип TCP-агента: Vegas

В начале соединения окно перегрузки сохраняет значение. При Vegas максимальный размер окна составляет 20, а не 34, как в NewReno. Vegas обнаруживает перегрузки сети до того, как произойдет потеря, поэтому можно сказать он не теряет пакеты. (рис. 8.9).

Рис. 8.9: График изменения TCP-окна. Тип TCP-агента: Vegas

8.2.6 График изменения длины очереди и средней длины очереди. Тип TCP-агента: Vegas

С нуля до примерно двух секунд, происходит скачок и плавное изменение значения в текущем размере очереди. Текущий размер очереди показывает довольно высокие колебания. Средняя очередь постепенно растет и остается на стабильном уровне, что говорит о настройке RED. Максимальное значение примерно 13.5, минимальное значение окна около 5. (рис. 8.10).

Рис. 8.10: График изменения длины очереди и средней длины очереди. Тип TCPагента: Vegas

8.2.7 Сравнение Newreno и Vegas

- Newreno лучше для сетей с высокой потерей пакетов.
- Vegas эффективнее в условиях высокой задержки.

Если сеть имеет переменную задержку и много конкурирующих соединений, то лучше выбрать Newreno. Если же сеть стабильна и перегруженность предсказуема, то Vegas.

8.2.8 Внесите изменения при отображении окон с графиками (измените цвет фона, цвет траекторий, подписи к осям, подпись траектории в легенде).

Сначала изменяю цвет фона и подписи к осям. После, добавляю новые подписи траекторий в легенде и цвет траекторий. (рис. 8.11), (рис. 8.12)

Рис. 8.11: Цвет фона и подписи к осям

Рис. 8.12: Цвет траектории и подписи траектории в легенде

Измененный код реализации модели. (рис. 8.13), (рис. 8.14)

```
set N 5
for {set i 1} {$i < $N} {incr i} {
set node_(s$i) [$ns node]</pre>
set node_(r1) [$ns node]
set node_(r2) [$ns node]
$ns duplex-link $node_(s1) $node_(r1) 10Mb 2ms DropTail
$ns duplex-link $node_(s2) $node_(r1) 10Mb 3ms DropTail
$ns duplex-link $node_(r1) $node_(r2) 1.5Mb 20ms RED
$ns queue-limit $node_(r1) $node_(r2) 25
$ns queue-limit $node_(r2) $node_(r1) 25
$ns duplex-link $node_(s3) $node_(r2) 10Mb 4ms DropTail
$ns duplex-link $node_(s4) $node_(r2) 10Mb 5ms DropTail
 set tcp1 [$ns create-connection TCP/Vegas $node_(s1) TCPSink $node_(s3) 0]
 $tcp1 set window_ 15
set window_ 15
set ttp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
 set windowVsTime [open WindowVsTimeReno w]
puts $windowVsTime "0.Color: White"
set qmon [$ns monitor-queue $node_(r1) $node_(r2) [open qm.out w] 0.1];
[$ns link $node_(r1) $node_(r2)] queue-sample-timeout;
set redq [[$ns link $node_(r1) $node_(r2)] queue]
set tchan_ [open all.q w]
 $redq trace curq_
$redq trace ave_
$redq attach $tchan_
$ns at 0.0 "$ftp1 start"
$ns at 1.1 "plotWindow $tcp1 $windowVsTime"
$ns at 3.0 "$ftp2 start"
$ns at 10 "finish"
proc plotWindow {tcpSource file} {
global ns
set time 0.01
set now [$ns now]
set cwnd [$tcpSource set cwnd_]
puts $file "$now $cwnd"
```

Рис. 8.13: Реализация

Рис. 8.14: Реализация

9 Выводы

Более подробно познакомился с протоколом ТСР и мониторингом очередей.

Список литературы