Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. However, readability is more than just programming style. Integrated development environments (IDEs) aim to integrate all such help. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. Many applications use a mix of several languages in their construction and use. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Use of a static code analysis tool can help detect some possible problems.