Информативные векторные представления в машинном обучении

Радослав Нейчев Выпускник и преподаватель ШАД и МФТИ, руководитель группы ML-разработки в Яндексе, сооснователь girafe-ai

Содержание

Правдоподобие / Likelihood

Векторное представление текста

О З Информативные векторные представления – эмбеддинги

Построение эмбеддингов для слов word2vec

Правдоподобие / Likelihood

Правдоподобие / Likelihood

Пусть задана выборка X,Y и модель с параметрами heta.

Правдоподобием будем называть

$$L(heta|X,Y) = P(X,Y| heta)
ightarrow \max_{ heta}$$

помним про i.i.d.

$$P(X,Y| heta) = \prod_i P(x_i,y_i| heta)$$

$$\log L(heta|X,Y) = \log P(X,Y| heta) = \sum_i \log P(x_i,y_i| heta)$$

Векторные представления для текста

Токенизация

Токен – атомарный элемент последовательности.

Токеном может быть как слово, так и символ, и морфема — это вопрос договоренности в каждой задаче.

Мешок слов — Bag-of-Words

Как-то раз купил мужик шляпу – а она ему как раз

день	как	то	раз	купил	мужик	шляпу	а	она	ему	кот	гав
0	2	1	2	1	1	1	1	1	1	0	0

Минусы:

- Теряем информацию о порядке слов
- Векторы высокой размерности
- Векторы крайне разреженные
- Разные формы слов воспринимаются как разные слова

WordNet

Чем предобрабатывать тексты?

NLTK

- nltk.stem.SnowballStemmer
- nltk.stem.PorterStemmer
- nltk.stem.WordNetLemmatizer
- nltk.corpus.stopwords
- BeautifulSoup (for parsing HTML)
- Regular Expressions (import re)
- Pymorphy2

• Term Frequency (tf): gives us the frequency of the word in each document in the corpus.

$$tf(t,d) = f_{t,d}$$

• Inverse Document Frequency (idf): used to calculate the weight of rare words across all documents in the corpus. The words that occur rarely in the corpus have a high IDF score.

$$\operatorname{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$

N: total number of documents in the corpus N=|D| $|\{d\in D:t\in d\}|$: number of documents where the term t

- Sentence A: The car is driven on the road.
- Sentence B: The truck is driven on the highway.

(each sentence is a separate document)

Word	Т	·F	IDF	TF * IDF		
	Α	В		A	В	
The	1/7	1/7				
Car	1/7	0				
Truck	0	1/7				
Is	1/7	1/7				
Driven	1/7	1/7				
On	1/7	1/7				
The	1/7	1/7				
Road	1/7	0				
Highway	0	1/7				

Word	TF		IDF	TF * IDF		
	Α	В		A	В	
The	1/7	1/7	log(2/2)=0			
Car	1/7	0	log(2/1)=0.3			
Truck	0	1/7	log(2/1)=0.3			
Is	1/7	1/7	log(2/2)=0			
Driven	1/7	1/7	log(2/2)=0			
On	1/7	1/7	log(2/2)=0			
The	1/7	1/7	log(2/2)=0			
Road	1/7	0	log(2/1)=0.3			
Highway	0	1/7	log(2/1)=0.3			

Word	TF		IDF	TF * IDF		
	Α	В		Α	В	
The	1/7	1/7	log(2/2)=0	0	0	
Car	1/7	0	log(2/1)=0.3	0.043	0	
Truck	0	1/7	log(2/1)=0.3	0	0.043	
Is	1/7	1/7	log(2/2)=0	0	0	
Driven	1/7	1/7	log(2/2)=0	0	0	
On	1/7	1/7	log(2/2)=0	0	0	
The	1/7	1/7	log(2/2)=0	0	0	
Road	1/7	0	log(2/1)=0.3	0.043	0	
Highway	0	1/7	log(2/1)=0.3	0	0.043	

Информативные векторные представления — эмбеддинги

Простейший вариант – one-hot

Проблемы с one-hot:

- Высокая размерность
- Разреженность
- Все векторы взаимно ортогональны

One-hot vectors:

```
Rome Paris word V

Rome = [1, 0, 0, 0, 0, 0, ..., 0]

Paris = [0, 1, 0, 0, 0, 0, ..., 0]

Italy = [0, 0, 1, 0, 0, 0, ..., 0]

France = [0, 0, 0, 1, 0, 0, ..., 0]
```

Как определить значение слов, если нельзя пользоваться словами?

"You shall know a word by the company it keeps"

J. R. Firth, 1957: 11

18

```
...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...
```

Вспомним матричные разложения

Построение эмбеддингов для слов word2vec

word2vec – метод построения информативных векторных представлений слов, представлен в работе 2013 за авторством Thomas Mikolov и его коллег

Source Text

Training Samples

(quick, fox)

The quick brown fox jumps over the lazy dog. \Longrightarrow (the, quick) (the, brown) The quick brown fox jumps over the lazy dog. -(quick, the) (quick, brown)

The quick brown fox jumps over the lazy dog. -(brown, the) (brown, quick) (brown, fox)

The quick brown fox jumps over the lazy dog. -(fox, quick) (fox, brown) (fox, jumps)

(fox, over)

(brown, jumps)

YOUNG & YANDEX

23

YOUNG & YANDEX

24

Максимизируемый функционал: (логарифм правдоподобия)

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

Максимизируемый функционал: (логарифм правдоподобия)

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

Оценка вероятности через softmax: (очевидный способ)

$$p(w_O|w_I) = rac{\exp\left(v_{w_O}^{\prime} ^{ op} v_{w_I}
ight)}{\sum_{w=1}^{W} \exp\left(v_w^{\prime} ^{ op} v_{w_I}
ight)}$$

Hidden Layer Weight Matrix

Word Vector Lookup Table!

word2vec: subsampling

Часто встречающиеся слова чаще выступают в роли объектов — будем пропускать их случайным образом в зависимости от частоты слова $z(w_i)$

 $P(w_i)$ – вероятность использовать пару в обучении

$$P(w_i) = (\sqrt{rac{z(w_i)}{0.001}} + 1) \cdot rac{0.001}{z(w_i)}$$

word2vec: negative sampling

Имеет смысл не только "сближать" похожие (близкие по контексту) слова, но и "отдалять" непохожие. Для этого воспользуемся механизмом negative sampling.

Чем чаще встречается слово в обучающем корпусе, тем больше вероятность использовать его в качестве negative sample.

$$P(w_i) = rac{f(w_i)}{\sum_{j=0}^n ig(f(w_j)ig)}$$

YOUNG 272 YANDEX

word2vec: negative sampling

Имеет смысл не только "сближать" похожие (близкие по контексту) слова, но и "отдалять" непохожие. Для этого воспользуемся механизмом negative sampling.

Чем чаще встречается слово в обучающем корпусе, тем больше вероятность использовать его в качестве negative sample.

$$P(w_i) = rac{f(w_i)}{\sum_{j=0}^n ig(f(w_j)ig)} \hspace{1cm} \longrightarrow P(w_i) = rac{f(w_i)^{3/4}}{\sum_{j=0}^n ig(f(w_j)^{3/4}ig)}$$

Обновленный оптимизируемый функционал: рассматриваем лишь **положительный** пример и **несколько отрицательных**:

$$\left[\log \sigma(v_{w_O}^{\prime}^{\top}v_{w_I})\right] + \sum_{i=1}^{k} \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v_{w_i}^{\prime}^{\top}v_{w_I})\right]$$

Перед нами один из многих примеров контрастного обучения – contrastive learning. В дальнейшем мы еще не раз столкнемся с ним.

Country and Capital Vectors Projected by PCA

Спасибо за внимание

