ЛАБОРАТОРНА РОБОТА № 2 ПОРІВНЯННЯ МЕТОДІВ КЛАСИФІКАЦІЇ ДАНИХ

Mema poботи: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідити різні методи класифікації даних та навчитися їх порівнювати.

Хід роботи:

Завдання 2.1. Класифікація за допомогою машин опорних векторів (SVM)

Опис ознак

Значення bachelors 13 state-gov 39 never-married adm-clerical male white not-in-family 77516 united-states 2174 0 40	workclass age marital-status occupation sex race relationship fnlwgt native-country capital-gain capital-loss	Опис освіта найвищий рівень освіти тип зайнятості вік сімейний стан професія стать раса відносини final weight країна капітал збитки кількість годин роботи за	Вид категорія число категорія число категорія категорія категорія відносини число категорія число число число
<=50k	label	тиждень мітка заробітку більше 50 тисяч	число

```
scaller = preprocessing.MinMaxScaler(feature_range=(0, 1))
X = scaller.fit_transform(X)
classifier = OneVsOneClassifier(LinearSVC(random_state=0, max_iter=1000))
classifier.fit(X=X, y=Y)
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=5)
X_train = scaller.fit_transform(X_train)
classifier.fit(X=X_train, y=y_train)
y_test_pred = classifier.predict(X_test)
f1 = cross_val_score(classifier, X, Y, scoring="f1_weighted", cv=3)
accuracy_values = cross_val_score(classifier, X, Y, scoring='accuracy', cv=3)
print("Accuracy: " + str(round(100 * accuracy_values.mean(), 2)) + "%")
precision_values = cross_val_score(classifier, X, Y, scoring='precision_weighted', cv=3)
print("Precision: " + str(round(100 * precision_values.mean(), 2)) + "%")
recall_values = cross_val_score(classifier, X, Y, scoring='recall_weighted', cv=3)
print("Recall: " + str(round(100 * recall_values.mean(), 2)) + "%")
```

Рис. 1. Неповне відображення коду програми.

					ЖИТОМИРСЬКА ПОЛІТЕХНІКА.23.125.08.000 - Лр2				
3м	Арк.	№ докум.	Підпис	Дата	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Розр	юб.	Куліш М.В.				Літ.	Арк.	Акрушів	
Перс	евір.	Пулеко І.В.			Звіт з лабораторної		1	<i>15</i>	
Реце	ЭНЗ.								
Н. Контр.					роботи №2	ФІКТ, гр. КБм-22-1			
Зав.н	каф.					· · · · · · , • /• · · · · · · · · · · · · · · ·			

Отже за результатами на рис.2. людина буде мати заробітню плату більше 50 тисяч доларів.

```
Accuracy: 81.95%
Precision: 80.94%
Recall: 81.95%
F1: 80.13%
F1 score: 80.13%
>50K

Process finished with exit code 0
```

Рис. 2. Результат показників якості класифікації та результат прогнозу.

Завдання 2.2. Порівняння якості класифікаторів SVM з нелінійними ядрами

```
scaller = preprocessing.MinMaxScaler(feature_range=(0, 1))
X = scaller.fit_transform(X)
classifier = SVC(kernel='poly', degree=6)
classifier.fit(X=X, y=Y)
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=5)
scaller = preprocessing.MinMaxScaler(feature_range=(0, 1))
X_train = scaller.fit_transform(X_train)
classifier.fit(X=X_train, y=y_train)
y_test_pred = classifier.predict(X_test)
f1 = cross_val_score(classifier, X, Y, scoring="f1_weighted", cv=3)
accuracy_values = cross_val_score(classifier, X, Y, scoring='accuracy', cv=3)
print("Accuracy: " + str(round(100 * accuracy_values.mean(), 2)) + "%")
precision_values = cross_val_score(classifier, X, Y, scoring='precision_weighted', cv=3)
print("Precision: " + str(round(100 * precision_values.mean(), 2)) + "%")
```

Рис. З. Неповний код програми з використанням поліноміального ядра.

```
/usr/bin/python3.10 /home/xtr99/labs/ai/lab02/LR_2_task_2_1.py
Accuracy: 84.22%
Precision: 83.47%
Recall: 84.22%
F1: 83.35%
F1 score: 83.35%
<=50K
```

Рис. 4. Результат виконання програми з використанням поліноміального ядра.

		Куліш М.В.				Арк.
		Пулеко І.В.			ЖИТОМИРСЬКА ПОЛІТЕХНІКА.23.125.08.000 – Лр2	7
Змн.	Арк.	№ докум.	Підпис	Дата		

```
X_encoded[:, i] = X[:, i]

z else:

label_encoder.append(preprocessing.LabelEncoder())

X_encoded[:, i] = label_encoder[-1].fit_transform(X[:, i])

X = X_encoded[:, :-1].astype(int)

x = X_encoded[:, -1].astype(int)

scaller = preprocessing.MinMaxScaler(feature_range=(0, 1))

X = scaller.fit_transform(X)

classifier = SVC(kernel='rbf')

classifier.fit(X=X, y=Y)

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=5)

scaller = preprocessing.MinMaxScaler(feature_range=(0, 1))

X_train = scaller.fit_transform(X_train)

classifier.fit(X=X_train, y=y_train)

y_test_pred = classifier.predict(X_test)

f1 = cross_val_score(classifier, X, Y, scoring="f1_weighted", cv=3)

accuracy_values = cross_val_score(classifier, X, Y, scoring='accuracy', cv=3)
```

Рис. 5. Неповний код програми з використанням гаусове ядро.

```
/usr/bin/python3.10 /home/xtr99/labs/ai/lab02/LR_2_task_2_2.py
Accuracy: 83.96%
Precision: 83.18%
Recall: 83.96%
F1: 82.95%
F1 score: 82.95%
<=50K
```

Рис. 6. Результат виконання програми з гаусова ядра.

```
Y = X_encoded[:, -1].astype(int)
scaller = preprocessing.MinMaxScaler(feature_range=(0, 1))
X = scaller.fit_transform(X)
classifier = SVC(kernel='sigmoid')
classifier.fit(X=X, y=Y)
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=5)
sealler = preprocessing.MinMaxScaler(feature_range=(0, 1))
X_train = scaller.fit_transform(X_train)
classifier.fit(X=X_train, y=y_train)
y_test_pred = classifier.predict(X_test)
f1 = cross_val_score(classifier, X, Y, scoring="f1_weighted", cv=3)
accuracy_values = cross_val_score(classifier, X, Y, scoring='accuracy', cv=3)
print("Accuracy: " + str(round(100 * accuracy_values.mean(), 2)) + "%")
precision_values = cross_val_score(classifier, X, Y, scoring='precision_weighted', cv=3)
```

Рис. 7. Неповний код програми з використанням сигмоїдальне ядро.

		Куліш М.В.				Αp
		Пулеко І.В.			ЖИТОМИРСЬКА ПОЛІТЕХНІКА.23.125.08.000 – Лр2	_
Змн.	Арк.	№ докум.	Підпис	Дата		ت

```
/usr/bin/python3.10 /home/xtr99/labs/ai/lab02/LR_2_task_2_3.py
Accuracy: 57.26%
Precision: 57.1%
Recall: 57.26%
F1: 57.18%
F1 score: 57.18%
<=50K
```

Рис. 8. Неповний код програми з використанням сигмоїдальне ядро.

Отже за результатами найкраще використання з Гаусовим ядром, насправді мають добру точність та швидкість виконання. Поліноміальне ядро має гарну точність але довгий процес виконання, а сигмоїдальне ядро з поганою точністю та процесом з тривалим виконанням.

Завдання 2.3. Порівняння якості класифікаторів на прикладі класифікації сортів ірисів.

```
iris_dataset = load_iris()
print("Knowi iris dataset : \n{}".format(iris_dataset.keys()))
print(iris_dataset["DESCR"][:193] + "\n...")
print("Hassu bignosineŭ: {}".format(iris_dataset["target_names"]))

print("Hassu oзнак: \n{}".format(iris_dataset["feature_names"]))

print("Hassu osnak: \n{}".format(iris_dataset["feature_names"]))
print("Tun macusy date: {}".format(type(iris_dataset["data"].)))
print("Bignosini:\n{}".format(iris_dataset["data"].shape))
print("Bignosini:\n{}".format(iris_dataset['target'])))

print("Bignosini:\n{}".format(iris_dataset['target'])))

url = "https://raw.qithubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']

dataset = read_csv(url, names=names)

# shape
print(dataset.shape)

# Jajia gaanux head
print(dataset.head(20))

# Tractmunt saenenna Metodom describe
print(dataset.describe())

# Poanoin sa arpubytom class
print(dataset.groupby('class').size())

# Alarpama posmaxy
dataset.plot(kind='box', subplots=True, layout=(2, 2), sharex=False, sharey=False)
pyplot.show()

# Alarpama posnodiny arpubytis garaceta
dataset.hist()
pyplot.show()

# Matpung alarpam poscimbahha
scatter_matrix(dataset)
pyplot.show()

# Poandinehna garacety на мавчальну та контрольну вибірки
array = dataset.values
```

Рис. 9. Неповний код програми.

Арк. 4

		Куліш М.В.			
		Пулеко І.В.			ЖИТОМИРСЬКА ПОЛІТЕХНІКА.23.125.08.000 – Лр2
Змн.	Арк.	№ докум.	Підпис	Дата	

Рис. 10. Діаграма розмаху.

Рис. 11. Діаграми розподілу атрибутів.

		Куліш М.В.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 12. Діаграми розсіювання.

Рис. 13. Графік порівняння алгоритмів.

		Куліш М.В.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 14. Результат виконання програми.

```
dtype: int64
LR: 0.941667 (0.065085)
LDA: 0.975000 (0.038188)
KNN: 0.958333 (0.041667)
CART: 0.950000 (0.040825)
NB: 0.950000 (0.055277)
SVM: 0.983333 (0.0333333)
```

Рис. 15. Результат оцінки моделей.

		Куліш М.В.			
		Пулеко І.В.			ЖИТОМИРО
Змн.	Арк.	№ докум.	Підпис	Дата	

```
Прогноз: ['Iris-setosa']
0.966666666666667
[[11 0 0]
[ 0 12 1]
[0 0 6]]
               precision
                            recall f1-score
                                              support
   Iris-setosa
                    1.00
                              1.00
                                       1.00
                                                   11
Iris-versicolor
                    1.00
                              0.92
                                       0.96
                                                   13
Iris-virginica
                    0.86
                              1.00
                                       0.92
                                        0.97
                                                   30
      accuracy
     macro avg
                    0.95
                              0.97
                                        0.96
                                                   30
  weighted avg
                    0.97
                              0.97
                                        0.97
```

Рис. 16. Результат показників якості та прогноз.

Модель SVM (Support Vector Machine) має найвищу показник точності, що становить 0.983333, зі стандартним відхиленням 0.033333. Це означає, що SVM правильно класифікує 98.33% випадків. Тому, на основі результатів можна зробити висновок, що модель SVM є найкращою з точки зору точності класифікації. Вона має високу точність і стабільність, що робить її привабливим вибором для багатьох задач класифікації. Квітка з кроку 8 належить до класу Ігіssetosa.

Завдання 2.4. Порівняння якості класифікаторів для набору даних завдання 2.1

		Куліш М.В.		
		Пулеко І.В.		
Змн	. Арк.	№ докум.	Підпис	Дата

```
X_train, X_validation, Y_train, Y_validation = train_test_split(X, Y, test_size=0.20, random_state=1)
models = [('LR', LogisticRegression(solver='liblinear', multi_class='ovr')),
          ('LDA', LinearDiscriminantAnalysis()),
          ('KNN', KNeighborsClassifier()),
          ('CART', DecisionTreeClassifier()),
          ('NB', GaussianNB()),
results = []
for name, model in models:
    kfold = StratifiedKFold(n_splits=10, random_state=1, shuffle=True)
    cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring='accuracy')
    results.append(cv_results)
    names.append(name)
    print('%s: %f (%f)' % (name, cv_results.mean(), cv_results.std()))
pyplot.boxplot(results, labels=names)
pyplot.title('Algorithm Comparison')
pyplot.show()
model = SVC(gamma='auto')
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print('SVC')
print(classification_report(Y_validation, predictions))
model = GaussianNB()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print('Gaussian')
print(classification_report(Y_validation, predictions))
model = DecisionTreeClassifier()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
```

Рис. 17. Неповний код програми.

```
LR: 0.818849 (0.004427)
LDA: 0.812176 (0.003802)
KNN: 0.817606 (0.003760)
CART: 0.804509 (0.006445)
NB: 0.799080 (0.005377)
SVM: 0.824112 (0.005380)
```

Рис. 18. Результат оцінки моделей.

		Куліш М.В.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

векторів				
precision	recall	f1-score	support	
0.84	0.95	0.89	4483	
0.78	0.45	0.57	1550	
		0.83	6033	
0.81	0.70	0.73	6033	
0.82	0.83	0.81	6033	
	0.84 0.78 0.81	precision recall 0.84 0.95 0.78 0.45 0.81 0.70	precision recall f1-score 0.84 0.95 0.89 0.78 0.45 0.57 0.83 0.81 0.70 0.73	precision recall f1-score support 0.84 0.95 0.89 4483 0.78 0.45 0.57 1550 0.83 6033 0.81 0.70 0.73 6033

Рис. 19. Результат показників якості для SVM.

Наївний баєсо	вський клас precision	ифікатор recall	f1-score	support
0	0.81	0.95	0.87	4483
1	0.71	0.35	0.47	1550
accuracy			0.80	6033
macro avg	0.76	0.65	0.67	6033
weighted avg	0.78	0.80	0.77	6033

Рис. 20. Результат показників якості для NB.

Класифікація	та регресія precision		гою дерев f1-score	support
0	0.87	0.87	0.87	4483
1	0.61	0.61	0.61	1550
accuracy			0.80	6033
macro avg	0.74	0.74	0.74	6033
weighted avg	0.80	0.80	0.80	6033

Рис. 21. Результат показників якості для CART.

10

		Куліш М.В.				1
		Пулеко І.В.			ЖИТОМИРСЬКА ПОЛІТЕХНІКА.23.125.08.000 – Лр2	
Змн.	Арк.	№ докум.	Підпис	Дата		ı

Метод k-найближчих сусіді								
	precision	recall	f1-score	support				
100								
0	0.86	0.91	0.88	4483				
1	0.68	0.57	0.62	1550				
				10000				
accuracy			0.82	6033				
macro avg	0.77	0.74	0.75	6033				
weighted avg	0.81	0.82	0.82	6033				

Рис. 22. Результат показників якості для KNN.

Лінійний диск	римінантний precision		f1-score	support
0	0.82	0.94	0.88	4483
1	0.71	0.42	0.52	1550
			0.01	4077
accuracy			0.81	6033
macro avg	0.76	0.68	0.70	6033
weighted avg	0.79	0.81	0.79	6033

Рис. 23. Результат показників якості для LDA.

Логістична		я ision	recall	f1-score	support
	0 1	0.83 0.72	0.94 0.45	0.88 0.56	4483 1550
accurac macro av weighted av	g	0.78 0.80	0.70 0.81	0.81 0.72 0.80	6033 6033 6033

Арк. 11

Рис. 24. Результат показників якості для LR.

		Куліш М.В.			
		Пулеко І.В.			ЖИТОМИРСЬКА ПОЛІТЕХНІКА.23.125.08.000 - Лр2
Змн.	Арк.	№ докум.	Підпис	Дата	

Рис. 25. Графік порівняння алгоритмів.

За основними показниками точності, модель SVM демонструє найвищу точність з результатом 0.83. Це означає, що SVM класифікує дані з високою точністю, і має низьку варіабельність в результаті. SVM часто є потужним інструментом для класифікації, оскільки воно може побудувати оптимальний гіперплощину для розділення класів, особливо в задачах з нелінійними залежностями. В даних результатів, SVM показує високу точність та стабільність, що свідчить про його ефективність у цій конкретній задачі класифікації. Враховуючи це, модель SVM може бути вважається найкращою для цієї задачі класифікації, оскільки вона досягає найвищих показників точності та має найнижчу варіабельність у порівнянні з іншими моделями.

Завдання 2.5. Класифікація даних лінійним класифікатором Ridge.

		Куліш М.В.		
		Пулеко І.В.		
Змн	Арк.	№ докум.	Підпис	Дата

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from io import BytesIO
import matplotlib.pyplot as plt
from sklearn import metrics
sns.set()
iris = load_iris()
X, y = iris.data, iris.target
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, random_state=0)
clf = RidgeClassifier(tol=1e-2, solver="sag")
ypred = clf.predict(Xtest)
print('Accuracy:', np.round(metrics.accuracy_score(ytest, ypred), 4))
print('Precision:', np.round(metrics.precision_score(ytest, ypred, average='weighted'), 4))
print('Recall:', np.round(metrics.recall_score(ytest, ypred, average='weighted'), 4))
print('F1 Score:', np.round(metrics.f1_score(ytest, ypred, average='weighted'), 4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, ypred), 4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, ypred), 4))
print('\t\Classification Report:\n',metrics.classification_report(ypred, ytest))
mat = confusion_matrix(ytest, ypred)
plt.xlabel('true label')
pat.ylabel('predicted label')
plt.savefig("Confusion.jpg")
f = BytesIO()
plt.savefig(f, format="svg")
```

Рис. 26.Код програми.

```
/usr/bin/python3.10 /home/xtr99/labs/ai/lab02/LR_2_task_5.py
Accuracy: 0.7556
Precision: 0.8333
Recall: 0.7556
F1 Score: 0.7503
Cohen Kappa Score: 0.6431
Matthews Corrcoef: 0.6831
       Classification Report:
             precision recall f1-score support
                1.00
                         1.00
                                  1.00
               0.44
                          0.89
                                   0.59
                 0.91
                          0.50
                                   0.65
                                   0.76
  macro avg
                 0.78
                          0.80
                                   0.75
                          0.76
                                   0.76
weighted avg
               0.85
Process finished with exit code 0
```

Рис. 27. Результат виконання.

		Куліш М.В.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 28. Матриця невідповідності.

Матриця невідповідності є спеціальною таблицею, яка дозволяє візуалізувати ефективність алгоритму. Кожен рядок матриці представляє прогнозовані класи, тоді як кожен стовпець представляє справжні класи.

Коефіцієнт Коена - це статистика, яка використовується для оцінки надійності між експертами у якісних аспектах.

Кореляція Метьюза - це метрика, яка використовується в машинному навчанні для вимірювання якості бінарних або мультикласових класифікацій. Вона враховує частину правильно класифікованих екземплярів, а також частину неправильно класифікованих екземплярів, що дозволяє оцінити якість класифікаційної моделі.

Покликання на github: https://github.com/mrkulish/ai-labs/tree/master/lab02

Висновок: при виконанні лабораторної роботи навчилися використовувати спеціалізовані бібліотеки та мову програмування Python дослідили різні методи класифікації даних та навчилися їх порівнювати.

		Куліш М.В.			
		Пулеко І.В.			ЖИТОМИРСЬКА ПОЛІТЕХНІКА.23.125.08.000 – Лр2
Змн.	Арк.	№ докум.	Підпис	Дата	