Towards Structured Use of Bayesian Sequential Monitoring in Clinical Trials

Evan Kwiatkowski[†], Eugenio Andraca-Carrera[‡], Mat Soukup[‡], Matthew A. Psioda^{†*}

† Department of Biostatistics, University of North Carolina, McGavran-Greenberg Hall, CB#7420, Chapel Hill, North Carolina, U.S.A.

‡ Division of Biometrics VII, Office of Biostatistics Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA

June 19, 2019

Abstract

The text of your abstract. 200 or fewer words.

Keywords: 3 to 6 keywords, that do not appear in the title

 $^{{}^* \}text{The authors gratefully acknowledge } \textit{please remember to list all relevant funding sources in the unblinded } \textit{version}$

1 Introduction

Things to discuss:

- 21st Century Cures Act (MATT)
- PDUFA VI reauthorization (MATT)
- Expansive work already done on sequential monitoring (EVAN draft on 6/21)
- Our majors contribution (EVAN as early as possible in introduction without having the flow appear weird draft on 6/21)
- Outline for the remaining section of the paper (EVAN draft on 6/21)

2 Methods

As you introduce ideas that come from or extend other ideas in the literature, cite the relevant literature.

2.1 Monitoring versus Estimation Priors (EVAN – draft on 6/21)

- Define generally in terms of $\boldsymbol{\theta} = (\gamma, \boldsymbol{\psi})$ where γ is a parameter of interest and $\boldsymbol{\psi}$ is a nuisance parameter (possible vector valued).
- Define *Monitoring* Priors and *Inference* Priors.
- Make connection between Inference priors and two-part mixture prior and BMA.
- Define Skeptical and Enthusiastic monitoring priors and how each would be used.

• I would have a generic graphic to illustrate the types of priors and the mixture.

Suppose the parameter space is Θ and consider testing the hypothesis $H_0: \theta \in \Theta_{H_0}$ versus $H_1: \theta \in \Theta_{H_1}$, where $\Theta = \Theta_{H_0} \cup \Theta_{H_0}$ and $\Theta_{H_0} \cap \Theta_{H_0} = \emptyset$. Let D denote the data collected in the experiment, let $\pi \equiv \pi(\theta)$ denote a prior distribution for θ , and let $p(\theta|D,\pi)$ denote the posterior distribution of θ given a particular prior distribution.

Before any data is collected, define the skeptical viewpoint as being "all but convinced" that $\theta \in \Theta_{H_0}$ and similarly the enthuastic viewpoint as being "all but convinced" that $\theta \in \Theta_{H_0}$. These viewpoints can be made rigorous by associating them with priors $\pi_{Skeptical}$ and $\pi_{Enthuastic}$ such that $P(\theta \in \Theta_0 | \pi_{Skeptical})$ and $P(\theta \in \Theta_1 | \pi_{Enthuastic})$ are sufficiently close to 1. Although these viewpoints are highly certain, we require that $\pi(\theta) > 0$ for all $\theta \in \Theta$.

These viewpoints can be used in monitoring the trial once data is collected. It is reasonable to The efficacy critiera is $P(\theta \in \Theta_1 | D, \pi_{Skeptical}) \geq c_1$, and the futility criteria is $P(\theta \in \Theta_0 | D, \pi_{Enthuastic}) \geq c_2$, where c_1 and c_2 are the thresholds reflecting strong belief in the skeptical and enthuastic viewpoints respectively.

A standard Bayesian decision rule would reject H_0 when $P(\theta \in \Theta_1 | D) \ge 0.95$.

For example, consider testing the hypothesis $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ where θ is a treatment effect of interest. A standard Bayesian decision rule would reject H_0 when $P(\theta > \theta_0|D) \geq 0.95$.

Let $p(H_0)$ and $p(H_1)$ denote the prior probabilities for H_0 and H_1 , where $p(H_0)+p(H_1)=1$. Let D denote the data collected in the experiment. Let $\pi=\pi(\theta)$ denote a prior distribution for θ and define $p(D|\pi)=\int_{\theta}L(\theta|D)\pi(\theta)d\theta$ be the marginal likelihood for the data given the prior π .

For example, consider testing the hypothesis $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ where θ is a treatment effect of interest. Suppose an effect $\theta_1 > \theta_0$ is thought to be highly clinically

relevant and plausible given what limited data is available. Consider a clinical trial with a single analysis and fixed sample size chosen that there is a high probability of proving H_1 when $\theta = \theta_1$. A standard Bayesian decision rule would reject H_0 when $P(\theta > \theta_0 | D) \ge 0.95$ which will result in a type one error rate of 0.05 (approximately) if $\theta = \theta_0$ when the analysis prior is non-informative (a so-called reference or flat prior).

2.2 Futility Monitoring Using Probability of Success (EVAN – draft on 6/21)

- Futility monitoring using POS is about stopping early when their is a high likelihood of a study being inconclusive at the end of the study.
- Since the final analysis uses the *Inference* prior, POS should be based on the inference prior.
- Develop the framework for POS and show how it is a weighted average POS based on the skeptical and enthusiastic priors.

- 3 Examples (EVAN)
- 3.1 Single-Arm Oncology Proof-of-Activity Trial w/ Binary Endpoint
- 3.2 Parallel Two-Group Superiority Trial /w Continuous Binary Endpoint
- ${\bf 3.3} \quad {\bf Three-Arm, Placebo~Controlled~Non-Inferiority~Trial~w/~Continuous~Endpoint}$
- 4 Discussion (MATT/EVAN)

SUPPLEMENTARY MATERIAL

5 BibTeX

References