

Tema 7. Combinación de clasificadores

Percepción (PER)

Curso 2020/2021

Departamento de Sistemas Informáticos y Computación

- 1 Introducción ▷ 3
- 2 Bagging ▷ 9
- 3 Boosting ▷ 13

- 1 Introducción ▷ 3
 - 2 Bagging ▷ 9
 - 3 Boosting ▷ 13

Introducción

- Las fuentes de error de un clasificador son:
 - **Bias** (sesgo): asunciones erróneas, error en la selección del tipo de clasificador.
 - Relacionado con la capacidad de ajuste del clasificador elegido a los datos
 - Variance (varianza): dependencia de los datos de entrenamiento.
 - Relacionado con la bondad del aprendizaje del clasificador en función de la cantidad de datos disponibles
 - Noise (ruido): ruido inherente en los datos
- Compromiso entre bias y variance para el diseño de un buen clasificador
- Caracterización de bias y variance de los distintos clasificadores

Caracterización del error

Clasificador G como regresor (aprendido en entrenamiento): $G(x): E \to \mathbb{R}$

Valor verdadero y: $y = F(x) + \epsilon$

- F(x): función verdadera
- \bullet : ruido inherente de los datos

Representación del error como el valor esperado del error cuadrático:

$$\mathbb{E}[(y - G(x))^2]$$

Definiendo $\overline{G(x)} = \mathbb{E}[G(x)]$, finalmente se tiene:

$$\mathbb{E}\left[\left(y-G(x)\right)^2\right] = \mathbb{E}\left[\left(G(x)-\overline{G(x)}\right)^2\right] + \left(\overline{G(x)}-F(x)\right)^2 + \mathbb{E}\left[\left(y-F(x)\right)^2\right]$$
 Variance Bias Noise

Detalles de los calculos en documento en PoliformaT

Caracterización del error

- Variance: variación de G(x) según datos de entrenamiento
- **Bias**: error del clasificador promedio, capacidad de adaptarse al entrenamiento
- *Noise*: ruido presente en los datos

Tipos de clasificadores

- Clasificadores con bias alto y variance bajo: (p.ej., clasificador lineal)
 - Poco flexibles
 - Pocos parámetros
 - Bajo requerimiento de datos de entrenamiento
 - Clasificadores débiles (weak learners): apenas mejores que el aleatorio
- Clasificadores con *bias* bajo y *variance* alto: (p.ej., k-NN)
 - Muy flexibles (aprenden cualquier frontera de decisión)
 - Muchos parámetros
 - Alto requerimiento de datos de entrenamiento
 - Clasificadores fuertes (strong learners): arbitrariamente precisos
- El Variance aumenta al escoger clasificadores más fuertes.
- El Bias es menor en clasificadores más fuertes.
- El Bias se reduce empleando Boosting.
- El Bias aumenta al escoger clasificadores más débiles

Combinación de clasificadores

Ensemble learning: combinación de clasificadores

Bagging quiere reducir el *variance*.

• Bagging: Se combinan el mismo clasificador sobre diferentes conjuntos de aprendizaje combinación de clasificadores fuertes modificando el entrenamiento

Boosting:

construcción de clasificadores fuertes a partir de clasificadores débiles

En boosting se combinan diferentes clasificadores sobre el mismo conjunto de aprendizaje.

- 1 Introducción ▷ 3
- 2 Bagging ▷ 9
 - 3 Boosting ▷ 13

Bagging

Bagging: Bootstrap Agregating

Clasificadores G_i a partir de variación de los datos de entrenamiento X

- Obtener X_i por bootstrapping desde X
- Bootstrapping: muestreo aleatorio con reemplazamiento
- Entrenar G_i con X_i

Combinación de clasificadores G_i por suma no ponderada

Bagging

Algoritmo Bagging:

Entrenamiento:

For
$$i = 1 \cdots M$$

Obtener X_i a partir de X
Entrenar G_i con X_i

End

Clasificación:

$$G(x) = \frac{1}{M} \sum_{i=1}^{M} G_i(x)$$

Bagging se emplea en clasificadores binarios, con $\hat{c}(x) = \operatorname{sgn}(G(x))$

Propiedades de Bagging

• Variance:

$$\mathbb{E}\left[\left(G(x)-\overline{G(x)}\right)^2\right]$$
 $G(x)=\frac{1}{M}\sum_{i=1}^M G_i(x)$, variance se reduce

■ Bias:

$$\left(\overline{G(x)} - F(x)\right)^2$$
 $\overline{G(x)}$ no cambia, y *bias* no cambia

- El error del clasificador generado mediante Bagging se reduce
- Bagging adecuado para combinar clasificadores fuertes (flexibles, bias bajo)

- 1 Introducción ▷ 3
- 2 Bagging ▷ 9
- \circ 3 Boosting \triangleright 13

Boosting

- Combinación de clasificadores débiles ponderando los datos de entrenamiento
- Se dispone de un conjunto de L clasificadores débiles: $\mathcal{G} = \{G_1, \dots, G_L\}$
- Se asumen clasificadores débiles binarios: $G_l(x) \in \{-1,1\}$
- Conjunto de entrenamiento: $\mathcal{X} = \{(x_1, y_1), \dots, (x_N, y_N)\}$ con $y_n \in \{-1, 1\}$
- lacksquare En cada iteración, toma $C_i \in \mathcal{G}$ de menor error sobre \mathcal{X} ponderado por $w^{(i)}$
- G(x) es la combinación lineal de los seleccionados hasta iteración m:

$$G(x) = G^{(m)}(x) = \sum_{i=1}^{m} \alpha_i C_i(x) \text{ donde } C_i \in \mathcal{G}$$

Boosting

En la iteración m seleccionamos un clasificador C_m junto con su peso α_m

$$G^{(m)}(x) = G^{(m-1)}(x) + \alpha_m C_m(x)$$

El criterio de error E a minimizar es la pérdida exponencial en cada dato

$$E = \sum_{n=1}^{N} \exp(-y_n G^{(m)}(x_n)) = \sum_{i=n}^{N} \exp(-y_n G^{(m-1)}(x_n) - y_n \alpha_m C_m(x_n))$$

Definiendo el peso de x_n para la iteración $m\left(w_n^{(m)}\right)$ por su pérdida exponencial:

$$w_n^{(m)} = \exp(-y_n G^{(m-1)}(x_n)) \longrightarrow E = \sum_{n=1}^N w_n^{(m)} \exp(-y_n \alpha_m C_m(x_n))$$

Se buscan C_m y α_m que minimicen E

Boosting

- lacktriangle Minimización respecto a C_m
 - $E \approx \sum_{y_n \neq C_m(x_n)} w_n^{(m)}$
 - Por tanto, se selecciona el clasificador $C_m \in \mathcal{G}$ que minimice el error de clasificación sobre los datos ponderados
- Minimización respecto a α_m : por derivación e igualación a cero
 - Error en iteración m:

$$\epsilon_m = \frac{\sum_{y_n \neq C_m(x_n)} w_n^{(m)}}{\sum_{n=1}^N w_n^{(m)}}$$

muestras mal clasificadas

todas las muestras

• Valor de α_m :

$$\alpha_m = \frac{1}{2} \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right)$$

Detalles de los cálculos en documento en PoliformaT

Algoritmo AdaBoost

Entrada:

- Conjunto de entrenamiento $\mathcal{X} = \{(x_1, y_1) \dots (x_N, y_N)\}$
- Conjunto clasificadores débiles (binarios) $\mathcal{G} = \{G_1, \dots, G_L\}$

Proceso:

1.
$$w_n^{(1)} = \frac{1}{N}$$
 $n = 1, \dots, N$

2. Para m = 1 ... M

2.1.
$$C_m = \operatorname{argmin}_{g \in \mathcal{G}} \sum_{y_n \neq g(x_n)} w_n^{(m)}$$

2.2.
$$\epsilon_m = \min_{g \in \mathcal{G}} \sum_{y_n \neq g(x_n)} w_n^{(m)}$$

2.3. Si $\epsilon_m > 0.5$ fin

2.4.
$$\alpha_m = \frac{1}{2} \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right)$$

2.5.
$$w_n^{(m+1)} = \frac{w_n^{(m)} \exp(-y_n \alpha_m C_m(x_n))}{\sum_{n'=1}^N w_{n'}^{(m)} \exp(-y_{n'} \alpha_m C_m(x_{n'}))}$$

Salida:
$$G(x) = \sum_{m=1}^{M} \alpha_m C_m(x)$$

Propiedades de AdaBoost

Boosting:

- Aprovecha el bajo variance de los clasificadores (débiles) combinados
- Reduce el bias
- Es más sensible a datos ruidosos
- En comparación con Bagging, puede comportarse peor según los datos

