Quiz 5

The following information may or may not be of use:

Electron current: $i=nA\overline{v}$ Conventional current: $I=|q|\,i$ Bio-Savart: $\Delta \vec{B}=\frac{\mu_0}{4\pi}\frac{I\Delta\vec{l}\times\hat{r}}{r^2}$ Straight Wire: $\left|\vec{B}\right|=\frac{\mu_0}{4\pi}\frac{LI}{r\sqrt{r^2+(L/2)^2}}$ Very long straight wire: $\left|\vec{B}\right|\approx\frac{\mu_0}{4\pi}\frac{2I}{r}$ Center of loop of current: $\left|\vec{B}\right|=\frac{\mu_0}{4\pi}\frac{2\pi R^2I}{(z^2+R^2)^{3/2}}$

A very long wire carrying a current I is kinked in the middle so that it forms a small loop of radius R. What is the magnetic field (both magnitude and direction) at the center of the loop? Express your answer in terms of μ_0 , I, and R. Use a coordinate system where +x points to the right (\rightarrow) and +y points up (\uparrow) .

