

HW architecture

Corso di

Programmazione di Dispositivi Mobili prof. Ignazio Gallo

Evoluzione storica

All'inizio della storia dell'informatica, per facilitare il lavoro dei programmatori e anche perchè la RAM costava tanto, i progettisti dei processori decisero di inserire istruzioni anche molto complesse in modo da simulare le funzioni ad alto livello dei linguaggi di programmazione direttamente nei processori.

push ebp, esp ecx, [ebp+arg_0] ebp MOVZX dx, cl eax, [edx+edx] eax, edx eax. 2 eax. E cl. al cl. 1 al, cl al, 5 eax, al BOVZX retn

Gli studi dimostrarono che molte istruzioni assemply esotiche venivano utilizzate molto raramente e a volte erano più lente del codice scritto con le istruzioni generiche.

L'obiettivo di ridurre le istruzioni portò all'ideazione del nome *reduced* instruction set computing

HW: ARM architecture

- **ARM** = Advanced RISC Machines (opposed to x86)
- **RISC** = Reduced Instruction Set Computer
- ARM is a family of instruction set architectures based on a RISC architecture developed by British company ARM Holding.
- Partners:
 - Apple, IBM, Texas Instruments, Samsung, ST-Ericsson ...
- ARM develops the instruction set and architecture for ARM-based products but does not manufacture products.
- Products are manufactured by licensees
- ARM is one of the most popular architectures used in embedded Linux systems

HW: ARM architecture

- **RISC** = Reduced Instruction Set Computing
- Processors require significantly fewer transistors than
 CISC (Complex Instruction Set Computing) processors.
 - This reduces costs, heat and power use.
 - <u>Desirable traits for light, portable, battery-powered devices</u>
 - A simpler design facilitates more efficient multicore CPUs and higher core counts at lower cost.
- ARM designs CPU cores
 - instruction sets, caches memory management unit (MMU) and sells the design to licensees.

HW: CISC vs RISC

- Let we take an example of multiplying two numbers.
 - A = A * B; // this is C statement
- The **CISC** Approach:
 - complete a task in as few lines of assembly as possible

```
• MULT A, B # this is assembly statement
```

- The **RISC** Approach:
 - only use simple instructions that can be executed within one clock cycle

```
LOAD R1, A # this is assembly statement
LOAD R2, B # this is assembly statement
PROD A, B # this is assembly statement
STORE R3, A # this is assembly statement
```

HW: CISC vs RISC

- Let we take an example of
- multiplying two numbers.
 - A = A * B; // this is C statement
- CISC Advantages:
 - Compiler must do very little work to translate a high-level language statement into assembly
 - Length of the code is relatively short
 - Very little RAM is required to store instructions
 - The emphasis is put on building complex instructions directly into the hardware.

• **RISC** Advantages:

- Each instruction requires only one clock cycle to execute, the entire program will execute in approximately the same amount of time as the multi-cycle "MULT" command.
- These RISC "reduced instructions" require less transistors of hardware space than the complex instructions, leaving more room for general purpose registers. Because all of the instructions execute in a uniform amount of time (i.e. one clock)

Laptop vs Mobile

SoC: System on Chip

- La maggior parte dei componenti che possiamo vedere in una scheda madre di un laptop o desktop, sono integrate all'interno di un singolo chip nello smartphone.
- ARM progetta il SoC e vende le license per poterli costruire
- Il sistema operativo di uno smartphone è ottimizzato per poter sfuttare questa tecnologia

Video di approfondimento:

https://youtu.be/NKfW8ijmRQ4

SW architecture

Corso di

Programmazione di Dispositivi Mobili prof. Ignazio Gallo

Platform for mobile development

- Android is an ecosystem made up of:
- A free, open-source Linux-based OS for embedded devices
- An open-source development platform for creating applications (SDK)
- Devices
 (mobile phones, tablets,) that run
 the Android operating system and
 the applications created for it

Linux versions

Androi	ld Version	API Level	Linux Version	in AOSP		Header Vers
1.5	Cupcake	3	(2.6.27)			
1.6	Donut	4	(2.6.29)			2.6.18
2.0/1	Eclair	5-7	(2.6.29)			2.6.18
2.2.x	Froyo	8	(2.6.32)			2.6.18
2.3.x	Gingerbread	9, 10	(2.6.35)			2.6.18
3.x.x	Honeycomb	11-13	(2.6.36)			2.6.18
4.0.x	Ice Cream San	14, 15	(3.0.1)			2.6.18
4.1.x	Jelly Bean	16	(3.0.31)			2.6.18
4.2.x	Jelly Bean	17	(3.4.0)			2.6.18
4.3	Jelly Bean	18	(3.4.39)			2.6.18
4.4	Kit Kat	19, 20	(3.10)			2.6.18
5.x	Lollipop	21, 22	(3.16.1)			3.14.0
6.0	Marshmallow	23	(3.18.10)			3.18.10
7.0	Nougat	24	3.18.48 4.4.0	9		4.4.1
7.1	Nougat	25	?			4.4.1
8.0	0reo	26	3.18.72 4.4.8	83 4.9.44		4.10.0
8.1	0reo	27	3.18.70 4.4.8	88 4.9.56		4.10.0
9.0	Pie	28	4.4.1	146 4.9.118	4.14.61	4.15.0
10.0	Q	29	I	4.9.191	4.14.142 4.19.71	5.0.3

APPLICATION FRAMEWORK

LIBRARIES

Freetype	LIBC	Media Framework	ART	
OpenGL	SGL	Surface Manager	Android Runtime	or Dalvik
SQLite DB	SSL	WebKit		Virtual Machine

The Android Operating System

LINUX KERNEL

Audio	DRIVER	Bluetooth	DRIVER
Camera	DRIVER	Display	DRIVER
Flash Memory	DRIVER	IPC	DRIVER
Keypad	DRIVER	Power	MANAGEMENT
USB	DRIVER	WiFi	DRIVER

(Novel)

Key points

- HW architecture
- CISC vs RISC
- SW architecture