Лабораторна робота №1:

«Системи числення»

Мета роботи: Повторити і закріпити знання учнів по способам представлення чисел в позиційних системах числення, переведення чисел з десяткової системи числення в будь-яку іншу і назад.

Загальні відомості з теорії

1. Поняття і види систем числення

Під системою числення (СЧ) розуміється спосіб представлення будьякого числа за допомогою алфавіту символів, званих цифрами.

За кількістю символів, використовуваних для запису числа, системи числення підрозділяються на позиційні і непозиційної.

Якщо для запису числа використовується безліч символів і значення цифри не залежить від її положення в ряду чисел, що зображують число, то система числення називається непозиційні.

Прикладом непозиційні системи числення може служити римська СЧ. Цифри в римській системі позначаються різними знаками: 1 - I; 3 - III; 5 - V; 10 - X; 50 - L; 100 - C; 500 - D; 1000 - M.

Позиційні системи числення для запису чисел використовують обмежений набір символів, званих цифрами, і величина числа залежить не тільки від набору цифр, але і від того, в якій послідовності записані цифри, тобто від позиції, яку займає цифрою, наприклад, 125 і 215. Кількість цифр, використовуваних для запису числа, називається підставою системи числення, в подальшому його позначимо q.

У повсякденному житті ми користуємося десятковою позиційною системою числення, q = 10, тобто використовується 10 цифр: 0123456 789.

У ЕОМ застосовують позиційні СЧ з недесяткових підставою: двійкову, вісімкову, шістнадцяткову і ін.

У двійковій СЧ використовується дві цифри: 0 і 1; восьмерична СЧ має вісім цифр: 01234567, шістнадцяткова - шістнадцять, причому перші 10 цифр збігаються з написання з цифрами десяткової системи числення, а для позначення решти шести цифр застосовуються великі латинські літери, тобто для шістнадцятковій системи числення отримаємо набір цифр:

0123456789ABCDEF.

Табл. 1. Відповідність записи чисел в десятковій, вісімковій і шістнадцятковій системах числення.

	Система числення										
Десятична	Двійкова	Вісімкова	шістнадцятковій								
0	0000	0	0								
1	0001	1	1								
2	0010	2	2								
3	0011	3	3								
4	0100	4	4								
5	0101	5	5								
6	0110	6	6								
7	0111	7	7								
8	1000	10	8								
9	1001	11	9								
10	1010	12	A								
11	1011	13	В								
12	1100	14	C								
13	1101	15	D								
14	1110	16	Е								
15	1111	17	F								

Число в позиційній системі числення з основою q може бути представлено у вигляді полінома за ступенями q. Наприклад, у десятковій системі ми маємо число

 $123,45 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^\circ + 4 \cdot 10^{-1} + 5 \cdot 10^{-2}$, а в загальному вигляді це правило запишеться так:

$$X_{(q)} = x_{n-1}q^{n-1} + x_{n-2}q^{n-2} + ... + x_1q^1 + x_0q^0 + x_{-1}q^{-1} + x_{-2}q^{-2} + ... + x_{-m}q^{-m}.$$

Тут X (q) - запис числа в системі числення з основою q; хі - натуральні числа менше q, тобто цифри; n - число розрядів цілої частини; m - число розрядів дробової частини.

Записуючи зліва направо цифри числа, ми отримаємо закодовану запис числа в q-ковою системі числення:

$$X_{(q)} = X_{n-1}X_{n-2}X_1X_0, X_{-1}X_{-2}X_{-m}.$$

Кома відділяє цілу частину числа від дробової частини. В ВТ найчастіше для відділення цілої частини числа від дробової частини використовують точку. Позиції цифр, відлічувані від точки, називають розрядами. У позиційній СЧ вага кожного розряду відрізняється від ваги сусіднього розряду в число разів, рівна основи СЧ. В десяткової СЧ цифри 1-го розряду - одиниці, 2-го - десятки, 3-го - сотні і т. Д.

В ВТ застосовують позиційні СЧ з недесяткових підставою: двійкову, вісімкову, шістнадцяткову системи і ін. Для позначення використовуваної

СЧ числа укладають в дужки і індексом вказують підставу СЧ:

$$(15)_{10}$$
; $(1011)_2$; $(735)_8$;

Іноді дужки опускають і залишають тільки індекс: 15_{10} ; 1011_2 ; 735_8 ;

Є ще один спосіб позначення СЧ: за допомогою латинських літер, що додаються після числа. Наприклад, 15D; 1011B; 735Q; 1EA9FH.

Двійкова ПСЧ набула найширшого застосування в ЕОМ завдяки таким достоїнств:

1. Числова інформація в ЕОМ ототожнюється зі станом використовуваних довічних фізичних елементів.

Історичний розвиток ВТ склалося на базі таким чином, що цифрові ЕОМ будуються на базі двійкових цифрових пристроїв (тригерів, регістрів, лічильників і т.п.) Наприклад, транзистор може бути у відкритому чи

закритому стані, а отже, мати на виході високий або низький напруга, лампочка включена або виключена, отвори на перфокарте пробиті чи ні. Очевидно, що реалізація елементів, які повинні розрізняти одне з двох станів (0 або 1), виявляється простіше і надійніше, ніж реалізація елементів, які повинні розрізняти одне з 10 станів.

2. Арифметичні операції виконуються найбільш просто.

У той же час громіздкість записи чисел в двійковій ПСЧ і труднощі їх сприйняття людиною призводить до необхідності переведення вихідних даних (чисел) з десяткової системи числення в двійкову, а результатів - з двійковій в десяткову. Ці переклади здійснюються в ЕОМ автоматично за певними програмами.

2. Правила перекладу чисел з однієї СЧ в іншу

Переклад з десяткової системи числення в двійкову, шестнадцатеричную і восьмеричну СЧ:

- 1. Початкове ціле число ділиться на підставу системи числення, в яку переводиться (на 2 при перекладі в двійкову СЧ, на 16 при перекладі в шістнадцяткову СЧ, на 8- в вісімкову СЧ); виходить приватне і залишок, 2. Отримані приватні ділити на основу нової СЧ до тих пір, поки приватне не стане менше підстави системи числення, в яку виконується переклад.
- 3. Всі отримані залишки і останнє приватне перетворюються у відповідності з таблицею перерахунку в цифри тієї системи числення, в яку виконується переклад;
- 4. Формується результуюче число: молодший розряд якого перший залишок від ділення, а старший останнє приватне.

Приклад 1. Виконати переклад десяткового числа 37 в двійкову СЧ:

ТИ Переклад десяткового числа з
мзр →
$$\frac{\frac{-37}{36}}{1} \frac{\frac{2}{18}}{\frac{18}{0}} \frac{\frac{2}{9}}{\frac{8}{1}} \frac{\frac{2}{4}}{\frac{4}{0}} \frac{\frac{2}{2}}{\frac{2}{0}} \frac{\frac{2}{1}}{1} \leftarrow C3P$$

Результат перекладу: $(37)_{10} = (100101)_2$.

Приклад 2. Виконати переклад десяткового числа 123 в шістнадцяткову СЧ:

Тут залишок 11 перетворений в шістнадцяткову цифру В (див. Таблицю) і після цього дана цифра увійшла в число. Таким чином, $123 = 7B_{16}$.

Переклад з двійковій, шістнадцятковій і вісімковій систем числення в десяткову: для перекладу двійкового, вісімкового, шістнадцятирічного числа в десяткову СЧ досить уявити число у вигляді полінома, підставити в нього відомі коефіцієнти і обчислити суму.

Приклад 3. Перевести число 10011 з двійковій СЧ в десяткову СЧ. $100112 = 1 * 2^4 + 0 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 = 16 + 0 + 0 + 2 + 1 = 19.$

Результат перекладу: $10011_2 = 19$.

Приклад 4. Перевести число 11011.11 з двійковій в десяткову СЧ.

$$(11011.11)_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} =$$

= 16 + 8 + 0 + 2 + 1 + 0.5 + 0.25 = (27.75)₁₀.

Приклад 5. Перевести шістнадцяткове число 2Е5.А в десяткову СЧ.

$$(2E5.A)_{16} = 2 \cdot 16^2 + 14 \cdot 16^1 + 5 \cdot 16^0 + 10 \cdot 16^{-1} = (741.625)_{10}.$$

Переклад з двійкової системи числення в вісімкову, шістнадцяткову СЧ:

Початкове двійкове число розбивають на групи по три (чотири) цифри, починаючи з молодших розрядів (зліва направо). При цьому доповнюються при необхідності нулями крайні ліву і праву групи. Потім кожну групу з трьох (чотирьох) цифр замінюють відповідної вісімковій

(Шестнадцатеричной) цифрою.

Приклад 5. Перевести число 10011 з двійковій в шістнадцяткову СЧ. Оскільки в початковому довічним числі кількість цифр не кратно 4, доповнюємо його зліва незначущими нулями до досягнення кратності 4 числа цифр. маємо:

Відповідно до таблиці $0001_2=1_2=1_{16},\ 0011_2=11_2=3_{16}.$ Результат перекладу: $10011_2=13_{16}.$

Якщо дріб: рухаючись від точки спочатку вліво, а потім вправо, розбивають двійкове число на групи по три (чотири) розряду, доповнюючи при необхідності нулями крайні ліву і праву групи. Потім кожну групу з трьох (чотирьох) розрядів замінюють відповідної вісімковій (Шестнадцатеричной) цифрою.

Приклад 6. Перевести число 111001100.001 з двійковій в вісімкову СЧ.

Приклад 7. Перевести число 10111110001.001 з двійковій вшестнадцатеричную СЧ

Переклад з вісімковій, шістнадцятковій системи числення в двійкову СЧ:

Для перекладу вісімкового (шістнадцятирічного) числа в двійкову СЧ досить замінити кожну цифру восьмеричного (шістнадцятирічного) числа відповідним Трехразрядное (чотирирозрядний) двійковим числом. Потім

необхідно видалити крайні нулі зліва, а при наявності точки - і крайні нулі справа.

Приклад 8. Виконати переклад шістнадцятирічного числа 13 в двійкову СЧ:

По таблиці маємо:

 $1_{16}=1_2$ і після доповнення незначущими нулями двійкового числа $1_2=0001_2;$

 $3_{16} = 11_2$ і після доповнення незначущими нулями двійкового числа $11_2 = 0011_2$.

Тоді $13_{16} = 00010011_2$. Після видалення незначних нулів маємо $13_{16} = 100112$.

Приклад 9. Перевести число 305.4 з вісімковій в двійкову СЧ

Решение.

Зазначені символами «↑» нулі слід відкинути. Двійкові числа взяті з табл. 1.

Приклад 10. Перевести число 7D2.Е з шістнадцятковій в двійкову СЧ.

Решение.

3. Переклад змішаних чисел

Переклад правильних дробів з десяткової системи числення в двійкову і шістнадцяткову:

Правильна дріб має нульову цілу частину, тобто у неї чисельник менше знаменника. Результат перекладу правильної дробу завжди правильний дріб.

- а) вихідна дріб множиться на підставу системи числення, в яку переводиться (2 або 16);
- б) в отриманому творі ціла частина перетворюється відповідно до таблицею в цифру потрібної системи числення і відкидається вона є старшою цифрою одержуваної дробу;
- в) залишилася дрібна частина (це правильна дріб) знову множиться на потрібне підстава системи числення з подальшою обробкою отриманого твори відповідно до кроками а) і б);
- г) процедура множення триває до тих пір, поки ні буде отримано нульовий результат в дробової частини твору або ні буде досягнуто необхідну кількість цифр в результаті;
- д) формується шукане число: послідовно відкинуті за крок б) цифри складають дробову частину результату, причому в порядку зменшення старшинства.

Приклад 12. Виконати переклад числа 0,847 в двійкову систему числення. Переклад виконати до чотирьох значущих цифр після коми.

Приклад 13. Виконати переклад числа 0,847 в шістнадцяткову систему числення. Переклад виконати до трьох значущих цифр.

Переклад неправильних дробів з десяткової системи числення в двійкову і шістнадцяткову:

Неправильна дріб має ненульову дробову частину, тобто у неї чисельник більше знаменника. Результат перекладу неправильного дробу завжди неправильна дріб.

При перекладі окремо перекладається ціла частина числа, окремо - дрібна. Результати складаються.

Приклад 14. Виконати переклад з десяткової системи числення в шістнадцяткову числа 19,847. Переклад виконувати до трьох значущих цифр після коми. Уявімо вихідне число як суму цілого числа і правильного дробу: 19,847 = 19 + 0,847.

 $19 = 13_{16}$, а відповідно до прикладу 13 - 0.847 = 0, $D8D_{16}$.

Тоді маємо:

$$19 + 0.847 = 13_{16} + 0$$
, $D8D_{16} = 13$, $D8D_{16}$.

Таким чином, 19,847 = 13, $D8D_{16}$.

4. Арифметичні операції в позиційних системах числення

Арифметичні операції в розглянутих позиційних системах числення виконуються за законами, відомим з десятковою маються на арифметики. Двійкова система числення має підставу 2, і для запису чисел

використовуються лише дві цифри 0 і 1 на відміну від десяти цифр десяткової системи числення.

Розглянемо складання однорозрядних чисел: 0+0=0, 0+1=1, 1+0=0. Ці рівності справедливі як для двійкової системи, так і для десяткової системи. Чому ж дорівнює 1+1? У десятковій системі це 2. Але в двійковій системі немає цифри 2! Відомо, що при десятковому складення 9+1 відбувається перенос 1 в старший розряд, так як старше 9 цифри немає. Тобто 9+1=10. У двійковій системі старшої цифрою є 1. Отже, в двійковій системі 1+1=10, так як при складанні двох одиниць відбувається переповнення розряду і проводиться перенесення в старший розряд. Переповнення розряду настає тоді, коли значення числа в ньому стає рівним або більшим підстави. Для двійкової системи це число дорівнює 2 ($10_2=2_{10}$).

Продовжуючи додавати одиниці, зауважимо: $10_2 + 1 = 11_2$, $11_2 + 1 = 100_2$ - відбулася "ланцюгова реакція", коли перенесення одиниці в один розряд викликає перенесення в наступний розряд.

Додавання багаторозрядних чисел відбувається за цими ж правилами з урахуванням можливості переносів з молодших розрядів в старші.

Віднімання багаторозрядних двійкових чисел проводиться з урахуванням можливих заемов з старших розрядів. Дії множення і ділення чисел в двійковій арифметиці можна виконувати за загальноприйнятими для позиційних систем правилами.

В основі правил арифметики будь позиційної системи лежать таблиці додавання і множення однорозрядних чисел.

Для двійкової системи числення:

+	0	1
0	0	1
1	1	10

*	0	1
0	0	0
1	0	1

Для вісімковій системи числення:

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	10
2	2	3	4	5	6	7	10	11
3	3	4	5	6	7	10	11	12
4	4	5	6	7	10	11	12	13
5	5	6	7	10	11	12	13	14
6	6	7	10	11	12	13	14	15
7	7	10	11	12	13	14	15	16

×	0	1	2	3	4	5	6	7	
0	0	0	0	0	0	0	0	0	
1	0	1	2	3	4	5	6	7	
2	0	2	4	6	10	12	14	16	1
3	0	3	6	11	14	17	22	25	1
4	0	4	10	14	20	24	30	34	1
5	0	5	12	17	24	31	36	43	
6	0	6	14	22	30	36	44	52	
7	0	7	16	25	34	43	52	61	١

Для шестнадцатеричной системи числення:

+	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
1	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	10
2	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	10	11
3	3	4	5	6	7	8	9	Α	В	С	D	E	F	10	11	12
4	4	5	6	7	8	9	A	В	С	D	E	F	10	11	12	13
5	5	6	7	8	9	Α	В	C	D	E	F	10	11	12	13	14
6	6	7	8	9	Α	В	C	D	E	F	10	11	12	13	14	15
7	7	8	9	Α	В	С	D	E	F	10	11	12	13	14	15	16
8	8	9	Α	В	C	D	E	F	10	11	12	13	14	15	16	17
9	9	Α	В	С	D	E	F	10	11	12	13	14	15	16	17	18
Α	Α	В	С	D	E	F	10	11	12	13	14	15	16	17	18	19
В	В	С	D	E	F	10	11	12	13	14	15	16	17	18	19	1A
C	C	D	E	F	10	11	12	13	14	15	16	17	18	19	1A	1B
D	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
E	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
F	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E

×	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
2	0	2	4	6	8	Α	C	E	10	12	14	16	18	1A	1C	1E
3	0	3	6	9	С	F	12	15	18	1B	1E	21	24	27	2A	2D
4	0	4	8	С	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	0	5	Α	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	0	6	C	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	0	7	E	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
Α	0	Α	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
С	0	C	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A9	В6	C3
Е	0	E	1C	2A	38	46	54	62	70	7E	8C	9A	A8	В6	C4	D2
F	0	F	1E	2D	3C	4B	5A	69	78	87	96	A5	B4	C3	D2	E1

Аналогічні таблиці складаються для будь-якої позиційної системи числення. Користуючись такими таблицями, можна виконувати дії над багатозначними числами.

Приклад 4. Скласти числа:

- a) $10000000100_{(2)} + 111000010_{(2)} = 10111000110_{(2)}$;
- 6) $223.2_{(8)} + 427.54_{(8)} = 652.74_{(8)}$;
- B) 3B3, $6_{(16)} + 38B$, $4_{(16)} = 73E$, $A_{(16)}$.

Приклад 5. Виконати множення:

- a) $100111_{(2)} \times 1000111_{(2)} = 101011010001_{(2)}$;
- 6) $1170,64_{(8)} \times 46,3_{(8)} = 57334,134_{(8)}$;
- B) 61, $A_{(16)}$ x 40, $D_{(16)} = 18B7,52_{(16)}$.

Завдання до лабораторної роботи

Відповідно до виданого варіантом завдання викладачем виконати:

- 1. Переведіть дане число з десяткової системи числення в двійкову, вісімкову і шістнадцяткову системи числення.
 - 2. Переведіть дане число в десяткову систему числення.
 - 3. Складіть числа.
 - 4. Виконайте віднімання.
 - 5. Виконайте множення.

Примітка: У завданнях 3 - 5 перевірте правильність обчислень перекладом вихідних даних і результатів в десяткову систему числення. У завданні 1 д) отримаєте п'ять знаків після коми в двійковому поданні.

Варіант 1

- 1. a) $860_{(10)}$; 6) $785_{(10)}$; B) $149,375_{(10)}$; r) $953,25_{(10)}$; д) $228,79_{(10)}$.
- 2. a) $1001010_{(2)}$; 6) $1100111_{(2)}$; B) $110101101,00011_{(2)}$;

- r) $111111100,0001_{(2)}$; π) $775,11_{(8)}$; e) $294,3_{(16)}$. 3. a) $1101100000_{(2)} + 10110110_{(2)}$; 6) $101110111_{(2)} + 1000100001_{(2)}$; B) $1001000111,01_{(2)} + 100001101,101_{(2)}$; r) $271,34_{(8)} + 1566,2_{(8)}$; д) $65,2_{(16)} + 3CA,8_{(16)}$.
- 4. a) $1011001001_{(2)} 1000111011_{(2)}$; 6) $1110000110_{(2)} 101111101_{(2)}$; B) $101010000, 10111_{(2)} - 11001100, 01_{(2)}$; r) $731, 6_{(8)} - 622, 6_{(8)}$;

д) $22D,1_{(16)} - 123,8_{(16)}$. 5. a) $1011001_{(2)} \cdot 1011011_{(2)}$; 6) $723,1_{(8)} \cdot 50,2_{(8)}$; в) $69,4_{(16)} \cdot A,B_{(16)}$.

Варіант 2

- 1. a) $250_{(10)}$; b) $757_{(10)}$; b) $711,25_{(10)}$; r) $914,625_{(10)}$; д) $261,78_{(10)}$.
- 2. a) $1111000_{(2)}$; б) $1111000000_{(2)}$; в) $111101100,01101_{(2)}$;

Γ) $100111100,1101_{(2)}$; д) $1233,5_{(8)}$; e) $2B3,F4_{(16)}$. 3. a) $1010101_{(2)} + 10000101_{(2)}$; 6) $1111011101_{(2)} + 101101000_{(2)}$;

B) $100100111,001_{(2)} + 100111010,101_{(2)}$; r) $607,54_{(8)} + 1620,2_{(8)}$;

д) $3BF,A_{(16)} + 313,A_{(16)}$.

4. a) $1001000011_{(2)} - 10110111_{(2)}$; 6) $111011100_{(2)} - 10010100_{(2)}$; B) $1100110110,0011_{(2)} - 111111110,01_{(2)}$; r) $1360,14_{(8)} - 1216,4_{(8)}$;

д) $33B_{,6_{(16)}} - 11B_{,4_{(16)}}$.

5. a) $11001_{(2)} \cdot 1011100_{(2)}$; 6) $451,2_{(8)} \cdot 5,24_{(8)}$; B) $2B,A_{(16)} \cdot 36,6_{(16)}$.

Варіант 3

- 1. a) $216_{(10)}$; б) $336_{(10)}$; в) $741,125_{(10)}$; г) $712,375_{(10)}$; д) $184,14_{(10)}$.
- 2. a) $1100000110_{(2)}$; б) $1100010_{(2)}$; в) $1011010,001_{(2)}$; г) $.1010100010,001_{(2)}$;

д) $1537,22_{(8)}$; e) $2D9,8_{(16)}$. 3. a) $1011111111_{(2)} + 1101110011_{(2)}$; б) $101111110_{(2)} + 100011100_{(2)}$;

B) $1101100011,0111_{(2)} + 1100011,01_{(2)}$; r) $666,2_{(8)} + 1234,24_{(8)}$;

- д) $346,4_{(16)} + 3F2,6_{(16)}$. 4. a) $1010101101_{(2)} 1100111110_{(2)}$; б) $1010001111_{(2)} 10010011110_{(2)}$;
 - B) $1111100100,11011_{(2)} 101110111,011_{(2)}$; r) $1437,24_{(8)} 473,4_{(8)}$;

 $_{\rm II}$) 24A,4₍₁₆₎ - B3,8₍₁₆₎.

5. a) $101011_{(2)} \cdot 100111_{(2)}$; 6) $1732, 4_{(8)} \cdot 34, 5_{(8)}$; B) $36, 4_{(16)} \cdot A, A_{(16)}$.

Варіант 4

- 1. a) $530_{(10)}$; 6) $265_{(10)}$; B) $597,25_{(10)}$; r) $300,375_{(10)}$; д) $75,57_{(10)}$.
- 2. a) 101000111₍₂₎; 6) 110001001₍₂₎; B) 1001101010,01₍₂₎;
 - г) $1011110100,01_{(2)}$; д) $1317,75_{(8)}$; е) $2F4,0C_{(16)}$.
- 3. a) $1100011010_{(2)} + 11101100_{(2)}$; 6) $10111010_{(2)} + 1010110100_{(2)}$;
 - в) 1000110111,011₍₂₎ + 1110001111,001₍₂₎;
- г) $1745,5_{(8)} + 1473,2_{(8)}$; д) $24D,5_{(16)} + 141,4_{(16)}$. 4. a) $1100101010_{(2)} 110110010_{(2)}$; б) $110110100_{(2)} 110010100_{(2)}$;
 - B) $110111111111, 1_{(2)} 11001111110, 1011_{(2)};$
 - г) $1431,26_{(8)} 1040,3_{(8)}$; д) $22C,6_{(16)} 54,2_{(16)}$.
- 5. a) $1001001_{(2)} \cdot 11001_{(2)}$; 6) $245,04_{(8)} \cdot 112,2_{(8)}$; B) $4B,2_{(16)} \cdot 3C,3_{(16)}$.

Варіант 5

- 1. a) $945_{(10)}$; б) $85_{(10)}$; в) $444,125_{(10)}$; г) $989,375_{(10)}$; д) $237,73_{(10)}$.
- 2. a) $1100011111_{(2)}$; б) $111010001_{(2)}$; в) $100110101,1001_{(2)}$;
 - r) 1000010,01011₍₂₎; д) 176,5₍₈₎; e) 3D2,04₍₁₆₎.
- 3. a) $1000011101_{(2)} + 101000010_{(2)}$; 6) $100000001_{(2)} + 1000101001_{(2)}$;
 - B) $101111011,01_{(2)} + 1000100,101_{(2)}$; r) $1532,14_{(8)} + 730,16_{(8)}$;
 - д) BB, $4_{(16)}$ + 2F0, $6_{(16)}$.
- 4. a) $10001011110_{(2)}-11111111_{(2)};$ 6) $1011101000_{(2)}-1001000000_{(2)};$ B) $1000101001,1_{(2)}-1111101,1_{(2)};$ r) $1265,2_{(8)}-610,2_{(8)};$ π) $409,D_{(16)}-270,4_{(16)}.$
- 5. a) $111010_{(2)} \cdot 11000000_{(2)}$; 6) $1005, 5_{(8)} \cdot 63, 3_{(8)}$; B) $4A, 3_{(16)} \cdot F, 6_{(16)}$.

Варіант 6

- 1. a) $287_{(10)}$; б) $220_{(10)}$; в) $332,1875_{(10)}$; г) $652,625_{(10)}$; д) $315,21_{(10)}$.
- 2. a) 10101000₍₂₎; б) 1101100₍₂₎; в) 10000010000,01001₍₂₎;
- r) $1110010100,001_{(2)}$; π) $1714,2_{(8)}$; e) $DD,3_{(16)}$. 3. a) $1100110_{(2)} + 1011000110_{(2)}$; 6) $1000110_{(2)} + 1001101111_{(2)}$;
 - B) $101001100,101_{(2)} + 1001001100,01_{(2)}$; r) $275,2_{(8)} + 724,2_{(8)}$;
 - д) $165,6_{(16)} + 3E,B_{(16)}$.
- 4. a) $10111111111_{(2)} 100000011_{(2)}$; 6) $1110001110_{(2)} 100001011_{(2)}$; B) $110010100,01_{(2)} 1001110,1011_{(2)}$; r) $1330,2_{(8)} 1112,2_{(8)}$;

 - \mathbf{A}) $\mathbf{A}\mathbf{B}, \mathbf{2}_{(16)} 3\mathbf{E}, \mathbf{2}_{(16)}$.
- 5. a) $110000_{(2)} \cdot 1101100_{(2)}$; 6) $1560, 2_{(8)} \cdot 101, 2_{(8)}$; B) $6, 3_{(16)} \cdot 53, A_{(16)}$.

Контрольні питання:

- 1. Що називається системою числення?
- 2. На які два типи можна розділити всі системи числення?
- 3. Які системи числення застосовуються в обчислювальній техніці: позиційні або непозиційної? Чому?
- 4. Що називається підставою системи числення?

- 5. Охарактеризуйте двійкову, вісімкову, шістнадцяткову системи числення: алфавіт, основа системи числення, запис числа.
- 6. За якими правилами виконується складання двох позитивних цілих чисел?
- 7. Які правила виконання арифметичних операцій у двійковій системі числення?
- 8. Для чого використовується переклад чисел з однієї системи числення в іншу?
- 9. Сформулюйте правила переведення чисел із системи числення з основою р в десяткову систему числення і зворотного перекладу: з десяткової системи числення в систему числення з основою р. Наведіть приклади.
- 10. Як виконати переклад чисел із двійкової СЧ в вісімкову і зворотний переклад? З двійковій СЧ в шістнадцяткову і назад? Наведіть приклади. Чому ці правила такі прості?
- 11. За якими правилами виконується переклад з вісімковій в шістнадцяткову СЧ і навпаки? Наведіть приклади.
- 12. Чому рівні ваги розрядів зліва від точки, що розділяє цілу і дробову частини, в двійковій системі числення (восьмеричної, шістнадцятковій)?
- 13. Чому рівні ваги розрядів праворуч від точки, що розділяє цілу і дробову частини, в двійковій системі числення (восьмеричної, шістнадцятковій)?