SOLUTIONS TO 3/4 UNIT TRIAL HSC, 1998

(1)(a)
$$\binom{x_1 y_1}{(5,2)}$$
 $\binom{x_2 y_2}{(-1,8)}$
2:1
$$P = \left(\frac{-2+5}{3}, \frac{16+2}{3}\right)$$
= (1,6)

(b)
$$\frac{d}{dx} (\cos^{-1} 3x) = \frac{-1}{\sqrt{1-(3x)^2}} \cdot 3$$

$$= \frac{-3}{\sqrt{1-9x^2}}$$

(c)(i)
$$\tan^{-1}\frac{x}{2} + c$$

(ii) $\log_e(4+x^2) + c$
(no penalty for omission of c)

$$(d) \frac{2\sin x \cos x}{\cos^2 x - \sin^2 x} = \frac{\sin 2x}{\cos 2x}$$

$$= \tan 2x$$

(e)
$$T_{r+1} = {}^{5}C_{r} \cdot 2^{5-r} \cdot x^{r}$$

The coefficient of x^{3} is

 ${}^{5}C_{3} \cdot 2^{2} = 40$.

(f)
$$\cos^2 x = \frac{1}{2} + \frac{1}{2} \cos 2x$$
.
So $\int \cos^2 x \, dx = \frac{1}{2} x + \frac{1}{4} \sin 2x + c$.

(i) Solving simultaneously,

$$\frac{6}{x} = x + 1$$

$$x^2 + x - 6 = 0$$

$$(x+3)(x-2) = 0$$

$$x = -3 \text{ or } x = 2$$

When x=-3, y=-2. When x=2, y=3. So the points of intersection are (-3,-2) and (2,3).

b) When
$$n=1$$
,
LHS = $1(5) = 5$,
RHS = $\frac{1}{6}(1)(2)(15)$
= 5.

So the result is true for n=1.

Assume the result is true
for n=k, where k is a positive
integer.

i.e. assume that

$$\times 5 + 2 \times 6 + \dots + k(k+4) = \frac{1}{6} k(k+1)(2k+13)$$

Prove the result is true for n=k+l
if it is true for n=k.
i.e. prove that

$$1 \times 5 + 2 \times 6 + \dots + k(k+4) + (k+1)(k+5)$$

= $\frac{1}{6}(k+1)(k+2)(2k+15)$

$$LHS = \frac{1}{6}k(k+1)(2k+13) + (k+1)(k+5)$$

$$= \frac{1}{6}(k+1)\left\{k(2k+13) + 6(k+5)\right\}$$

$$= \frac{1}{6}(k+1)(2k^2+19k+30)$$

$$= \frac{1}{6}(k+1)(k+2)(2k+15)$$

= RHS.

So the result is true for n= k+ ||
if it is true for n= k.

But it is true for n=1,50, by induction, it is true for all positive integer values of n.)

$$(c)(i) P(-2) = (-2)^3 - (-2)^2 - (-2) + 10$$

= $-8 - 4 + 2 + 10$
= 0.

So -2 is a zero of P(x). (ii) Sum of zeros = $-\frac{b}{a}$. So -2 + α + β = 1. So α + β = 3.

Product of zeros = $-\frac{d}{a}$. So $-2\alpha\beta = -10$.

So $\alpha\beta = 5$.

(iii) Solving the equations in

(ii) simultaneously,

$$\alpha(3-\alpha) = 5$$

$$\alpha^{2} - 3\alpha + 5 = 0$$

$$\Delta = -11 < 0$$

So a is not real.

Similarly, B2-3B+5-7,
and so B is not real effor

$$du = dx$$

$$x | 1 | 2$$

$$u | 2 | 3$$

$$\int_{1}^{2} \frac{1-x}{(1+x)^{3}} dx = \int_{2}^{3} \frac{2-u}{u^{3}} du$$

$$= \int_{2}^{3} (2u^{3} - u^{-2}) du$$

$$= \left[\frac{2u^{-2}}{-2} - \frac{u^{-1}}{-1} \right]_{2}^{3}$$

$$= \left[-\frac{1}{u^{2}} + \frac{1}{u} \right]_{2}^{3}$$

$$= \left(-\frac{1}{9} + \frac{1}{3} \right) - \left(-\frac{1}{4} + \frac{1}{2} \right)$$

$$= -\frac{1}{36}$$

Join BA and BD.

So LBPA =
$$x - y$$
 (exterior angle)

(ii) See above.

(iii) Let
$$f(x) = x^2 + e^{-\frac{1}{2}x}$$

 $f(-2) = e - 1 > 0$
and $f(-1) = e^{\frac{1}{2}} - 4 < 0$

It follows that -2< < <-1, since f(x) is continuous for all x.

(iv)
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

= -2 - $\frac{e-1}{f'(-2)}$

Now, $f'(x) = 2x - \frac{1}{2}e^{-\frac{1}{2}x}$ So $f'(-2) = -4 - \frac{1}{2}e$

So
$$x_2 = -2 - \frac{e-1}{-4 - \frac{1}{2}e} \cdot \frac{2}{2}$$

$$= -2 - \frac{2e-2}{-8-e}$$

$$= -2 + \frac{2e-2}{e+8}$$

$$= -2(e+8) + 2e-2$$

$$= \frac{-18}{e+8}$$

Now,
$$\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$$
,

so $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$,

so $\frac{dA}{dt} = C \cdot 18$

So when $C = 30 \text{ cm}$,

the area is increasing at

 $30 \times 18 = 540 \text{ cm}^2/\text{s}$

(b) (i) $\dot{x} = -2C\sin 2t + 2D\cos 2t$
 $\dot{x} = -4C\cos 2t - 4D\sin 2t$
 $= -4x$.

So \dot{x} has the form $-n^2x$,

where $n = 2$.

So the motion is SHM.

(ii) When $t = \frac{\pi}{3}$, $x = \frac{\sqrt{3}}{2}$.

So $\frac{\sqrt{3}}{2} = C\cos \frac{2\pi}{3} + D\sin \frac{2\pi}{3}$
 $= C(-\frac{1}{2}) + D(\frac{\sqrt{3}}{2})$.

So $-C + \sqrt{3}D = \sqrt{3}$ 1

when $t = \frac{\pi}{3}$, $\dot{x} = -5$.

 $(iii) x = \sqrt{3} \cos 2t + 2 \sin 2t$ $= A \cos(2t - \theta),$ where $A = \sqrt{(\sqrt{3})^2 + 2^2}$ $=\sqrt{7}$. So the amplitude is J7 cm. (c)(i) a+b=-1 (1) / a+d+ba=-2(2) $a+2d+ba^{2}=6(3)$ From \bigcirc , b = -1 - a. (b)(i) sc = -2Csin2t +2Dcos2t Sub. into 2): a+d+a(-1-a)=-2. $= -4\left(C\cos 2t + D\sin 2t\right)$ so a+d-a-a2=-2, $50 d = a^2 - 2$. So (3) becomes $a + 2(a^2 - 2) + a^2(-1-a) = 6$ $a + 2a^2 - 4 - a^2 - a^3 = 6$ i.e. $a^3 - a^2 - a + 10 = 0$. (ii) From (2)(c)(i), a=-2" (iii) a=-2, b=1, d=2. $T_n = a + (n-1)d + ba^{n-1}$ $=-2+2(n-1)+1(-2)^{n-1}$ $60 - 5 = -2c\left(\frac{\sqrt{3}}{2}\right) + 2D\left(-\frac{1}{2}\right).$ $=2n-4+(-2)^{n-1}$ io J3C + D = 5 (2) $D \times \sqrt{3} : -\sqrt{3}C + 3D = 3$ (1) + (2) : 4D = 8So $C = \sqrt{3}$, D = 2. One for the equation

$$\frac{dx}{dt} = kAe^{-kt}$$

$$= k(A-x).$$

(iii) when
$$x = \frac{3}{4}A$$
,
$$\frac{3}{4} = 1 - e^{-kt}$$

$$e^{-kt} = \frac{1}{4}$$

$$-kt = \ln 2^{-2}$$

$$kt = 2\ln 2$$

$$t = \frac{2}{k}\ln 2$$

(b)(i)
$$\frac{d(\frac{1}{2}v^2)}{dx} = 4x - 2$$

 $\frac{1}{2}v^2 = 2x^2 - 2x + c,$
When $x = 0, v = 1,$
So $c_1 = \frac{1}{2}$.
So $v^2 = 4x^2 - 4x + 1,$

 $S_0 \quad v^2 = (1 - 2x)^2$

(ii)
$$\ddot{x} = 4x - 2$$

= -2(1-2x) \\
= -2v.

(iii)
$$v = 1 - 2x$$

$$\frac{dx}{dt} = 1 - 2x$$

$$\frac{dt}{dx} = \frac{1}{1 - 2x}$$

$$t = -\frac{1}{2} \ln(1 - 2x) + c_2$$
When $t = 0$, $x = 0$.
$$So \quad c_2 = 0$$
.

So
$$c_2 = 0$$
.
So $t = -\frac{1}{2}ln(1-2x)$,
so $e^{-2t} = 1-2x$,
so $x = \frac{1}{2}(1-e^{-2t})$
and $v = e^{-2t}$.

(iv) As
$$t \to \infty$$
, $e^{-2t} \to 0$.
So as $t \to \infty$, $\alpha \to \frac{1}{2}$
and $v \to 0^+$.

So the particle approaches, but never reaches, $x = \frac{1}{2}$.

$$\int_{0}^{1} \frac{dy}{dx} = \frac{\frac{y}{dt}}{\frac{dx}{dt}}$$

$$= \frac{6t}{6}$$

$$= t.$$

So at P, gradient = p.)

So equation of tangent is $y - 3p^2 = p(x - 6p)$ $y - 3p^2 = px - 6p^2$ $y = px - 3p^2$.

(ii) The tangent at \emptyset has equation $y = (1-p)x - 3(1-p)^2$ Solving simultaneously, $(px-3p^2 = (1-p)x - 3(1-p)^2$ (2p-1)x = -3+6p (2p-1)x = 3(2p-1) $p \neq \frac{1}{2}, \text{ since } P, \emptyset \text{ distinct,}$ so x = 3 and $y = 3p - 3p^2$.
So T is the point $(3,3p-3p^2)$.

(iii) The point T can only lie outside the parabola.

When x = 3, $t = \frac{3}{6}$ $= \frac{1}{2}$,
and so $y = 3(\frac{1}{2})^2$ $= \frac{3}{2}$

So the locus of T is $\sqrt{3}$ specified by x=3 and $y < \frac{3}{4}$. (iv) When $p=\frac{1}{2}$, the points Pand Q coincide, in which case T is not uniquely $\sqrt{2}$ defined. (b)(i) The heights of P_1 and P_2 at time t are given by $-\frac{1}{2}gt^2 + V_1tsin\theta_1$ and $-\frac{1}{2}gt^2 + V_2tsin\theta_2.$

If the particles collide when t = T, their heights are equal at this time.

So $-\frac{1}{2}g T^2 + v_1 T sin\theta_1 = -\frac{1}{2}g T^2 + v_2 T sin\theta_2$ and so $v_1 sin\theta_1 = v_2 sin\theta_2$.

(ji)(α) $v_1 sin \theta_1 = v_2 sin \theta_2$. So $30\left(\frac{4}{5}\right) = v_2\left(\frac{3}{5}\right)$,

so $120 = 3v_2$,

so $v_2 = 40 \text{ m/s}$.

(B) At the instant they collide, sum of horizontal displacements is 200m.

So $V_1 T \cos \theta_1 + V_2 T \cos \theta_2 = 200$, so $30 T \left(\frac{3}{5}\right) + 40 T \left(\frac{4}{5}\right) = 200$, so 18T + 32T = 200, so 50T = 200, so T = 4 seconds.

(8) Height = $-\frac{1}{2}gT^2 + v_1 T_{5in}\theta_1$ = $-\frac{1}{2}(10)(16) + 30(4)(\frac{4}{5})$ = -80 + 96= 16 metres.

(8) when t = 4: For P_1 : For P_2 : $\dot{x} = 30(\frac{3}{5}) = 18$ $\dot{x} = 40(\frac{4}{5}) = 32$

 $\dot{y} = -10(4) + 30(\frac{4}{5}) \begin{vmatrix} \dot{y} = -10(4) + 40(\frac{3}{5}) \\ = -16 \end{vmatrix}$

The required angle is approximately 112.