Algoritmi paraleli și distribuiți Sisteme de ecuații liniare

Mitică Craus

Universitatea Tehnică "Gheorghe Asachi" din Iași

O O O O O O O

Cuprins

Introducere
Sistem de ecuații liniare
Descriere
Pseudocod
Implementare
Complexitatea
Comentarii bibliografice

Introducere

- Sistemele de ecuții liniare pot fi rezolvate prin tehnici de calcul paralel datorită multiplelor operații independente una de alta.
- Vom studia în această lecție metoda lui Gauss de rezolvare a sistemelor de ecuații liniare.

Rezolvarea sistemelor de ecuații liniare prin metoda lui Gauss

• Se consideră un sistem format din *n* ecuatii liniare cu *n* necunoscute:

$$a_{0,0}x_0 + a_{0,1}x_1 + \dots + a_{0,n-1}x_{n-1} = b_0$$

$$a_{1,0}x_0 + a_{1,1}x_1 + \dots + a_{1,n-1}x_{n-1} = b_1$$

$$\dots$$

$$a_{n-1,0}x_0 + a_{n-1,1}x_1 + \dots + a_{n-1,n-1}x_{n-1} = b_{n-1}$$

Metoda lui Gauss constă în reducerea sistemului la forma triunghiulară

$$x_0 + a'_{0,1}x_1 + \dots + a'_{0,n-1}x_{n-1} = b'_0$$

 $x_1 + \dots + a'_{1,n-1}x_{n-1} = b'_1$
 \dots
 $x_{n-1} = b'_{n-1}$

 și rezolvarea ecuațiilor în ordine inversă (întâi ultima, apoi penultima și la sfârșit prima ecuație din sistem)

Algoritmul eliminării Gaussiene - varianta secvențială

- Notatii:
 - A[0..n-1,0..n-1] este un tablou bidimensional, de dimensiune $n \times n$.
 - B[0..n-1] este un tablou unidimensional, de dimensiune n.
- Premise:
 - Coeficienții inițiali $a_{i,j}, i,j = 0,1,...,n-1$ sunt memorați în tabloul A.
 - Coeficienții $a'_{i,j}, i,j = 0,1,...,n-1$ vor fi memorați tot în tabloul A.
 - Tabloul B va memora coeficienții inițiali $b_i, i = 0, 1, \dots, n-1$ și soluția sistemului.

```
ELIMINARE_GAUSSIANA(A, B, n)
      for k \leftarrow 0 to n-1 / * bucla exterioară */
  2
      do
           for i \leftarrow k+1 to n-1
           do A[k,j] \leftarrow \frac{A[k,j]}{A[k,k]} / * pasul de impărțire cu A[k,k] * /
  4
           B[k] \leftarrow \frac{B[k]}{\Delta[k,k]}
           A[k,k] \leftarrow 1
  6
           for i \leftarrow k+1 to n-1
  8
           do for i \leftarrow k+1 to n-1
                do A[i,j] \leftarrow A[i,j] - A[i,k] \times A[k,j] / * pasul de eliminare */
  9
10
                B[i] \leftarrow B[i] - A[i,k] \times B[k]
                A[i,k] \leftarrow 0
11
```

Algoritmul eliminării Gaussiene - varianta paralelă

- Notații:
 - A[0..n-1,0..n-1] este un tablou bidimensional, de dimensiune $n \times n$.
 - B[0..n-1] este un tablou unidimensional, de dimensiune n.
- Premise:
 - Coeficienții inițiali $a_{i,i}, i, j = 0, 1, \dots, n-1$ sunt memorați în tabloul A.
 - Coeficienții $a'_{i,j}$, $i,j=0,1,\ldots,n-1$ vor fi memorați tot în tabloul A.
 - Tabloul B va memora coeficienții inițiali b_i , i = 0, 1, ..., n-1 și soluția sistemului.

```
ELIMINARE_GAUSSIANA_PARALELA(A, B, n)
      for k \leftarrow 0 to n-1 / * bucla exterioară * /
  2
      do
  3
           for i \leftarrow k+1 to n-1
           do A[k,j] \leftarrow \frac{A[k,j]}{A[k,k]} / * pasul de impărțire cu A[k,k] * /
  4
           B[k] \leftarrow \frac{B[k]}{A[k,k]}
  6
           A[k,k] \leftarrow 1
           for i \leftarrow k+1 to n-1
  8
           do in parallel
  9
               for i \leftarrow k+1 to n-1
               do A[i,j] \leftarrow A[i,j] - A[i,k] \times A[k,j] / * pasul de eliminare */
10
11
               B[i] \leftarrow B[i] - A[i,k] \times B[k]
               A[i,k] \leftarrow 0
12
```


Implementare pe un sistem cu *n* unități de procesare

- Se consideră un sistem format din n unități de procesare, $p_0, p_1, \ldots, p_{n-1}$.
- Fiecare unitate de procesare $p_i, i \in \{0, 1, \dots, n-1\}$, dispune, în memoria locală, de coeficienții ecuatiei a-i-a (linia i a tabloului A plus B[i]).
- În prima fază, unitatea de procesare p_0 execută pasul de imparțirea cu A[0,0]: $A[0,j] = \frac{A[0,j]}{A[0,0]}, j=0,\ldots,n-1. \text{ Apoi trimite } A[0,j], j=0,1,\ldots,n-1 \text{ celorlalte unități de procesare, după care, fiecare unitate de procesare } p_i, i=1\ldots,n-1 \text{ execută pasul de eliminare: } A[i,j] = A[i,j] A[i,0] \times A[0,j], i,j=1,\ldots,n-1 \text{ și } A[i,0] = 0, i=1\ldots,n-1.$
- În faza a doua, p_1 preia rolul lui p_0 și execută imparțirea cu A[1,1]: $A[1,j] = \frac{A[1,j]}{A[1,1]}, j = 1 \dots, n-1. \text{ Apoi trimite } A[1,j], j = 1 \dots, n-1 \text{ unităților de procesare } p_2, \dots, p_{n-1}, \text{ după care, fiecare unitate de procesare } p_i, i = 2 \dots, n-1 \text{ execută pasul de eliminare: } A[i,j] = A[i,j] A[i,1] \times A[1,j], i,j = 2, \dots, n-1 \text{ și } A[i,1] = 0, i = 2, \dots, n-1.$
- În faza k, p_k execută imparțirea cu A[k,k]: $A[k,j] = \frac{A[k,j]}{A[k,k]}, j = k \dots, n-1$. Apoi trimite $A[k,j], j = k \dots, n-1$ unităților de procesare p_{k+1}, \dots, p_{n-1} , după care, fiecare unitate de procesare $p_i, i = k+1 \dots, n-1$ execută pasul de eliminare: $A[i,j] = A[i,j] A[i,k] \times A[k,j], i,j = k+1, \dots, n-1$ și $A[i,k] = 0, i = k+1, \dots, n-1$.

Exemplu de implementare pe un sistem cu 8 unități de procesare

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_1	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P_2	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P_3	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
P_4	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P_5	0	o	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

Figura 1: Pasul de imparțire cu A[3,3]:

$$A[3,j] = \frac{A[3,j]}{A[3,3]}, j = 4,...7, \text{ si } A[3,3] = 1$$

Exemplu de implementare pe un sistem cu 8 unități de procesare - continuare

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_1	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P_2	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P_3	0	0	0	1 [(3,4)	(3,5)	(3,6)	(3,7)
P_4	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P_5	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P_6	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	¥ (7,4)	(7,5)	(7,6)	7(7,7)

Figura 2: Broadcast linia 3: A[3,j], j = 4,...,7

Exemplu de implementare pe un sistem cu 8 unități de procesare - continuare

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_1	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P_2	0	o	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P_3	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P_4	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P_6	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P_7	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

Figura 3: Pasul de eliminare:

$$A[i,j] = A[i,j] - A[i,3] \times A[3,j], i,j = 4,...,7,$$
si
 $A[i,3] = 0, i = 4,...,7$

Complexitatea timp a implementării algoritmului eliminării Gaussiene pe un lanț de n unități de procesare

Teorema (1)

Complexitatea timp a implementării algoritmului eliminării Gaussiene pe un lanț de n unități de procesare este $\Theta(n^2)$.

Demonstrație.

Timpul consumat în iterația
$$k$$
 este $\Theta(n-k-1)$. Timpul total este $\sum_{k=0}^{k=n-1} \Theta(n-k-1) = \Theta(n-1) + \Theta(n-1) + \cdots + \Theta(0) = \Theta(n^2)$.

Comentarii bibliografice

- Capitolul Sisteme de ecuații liniare are la bază cartea
 V. Kumar, A. Grama A. Gupta & G Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms, Addison Wesley, 2003 și ediția mai veche
 - V. Kumar, A. Grama A. Gupta & G Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms, Benjamin-Cummings, 1994