汇编复习整理

- 计算机基本知识
- 8086系统结构
- 指令系统
- 汇编程序设计
- 外设通信
- 可编程接口芯片
- 中断

计算机基本知识

• 微型计算机的组成

名称	功能
CPU(运算器+控制器)	取指令,简单逻辑运算,程序控制
存储器	存储程序和数据
外部设备(I/O接口)	外设与CPU之间的信息协调
总线	数据信息,地址信息,控制信息的通道

8086系统结构

CPU内部结构

- 指令执行部件 EU 从BIU的指令队列中取指令,执行指令
- 总线接口部件 BIU 负责与外部存储器或I/O打交道

寄存器结构

• 通用寄存器(EU内)

寄存器	功能
AX	存放参加运算的结果和数据,I/O
BX	数据寄存器,内存偏移地址,基址寄存器
CX	数据寄存器,循环计数
DX	数据寄存器
SI	源变址寄存器,内存逻辑偏移地址,存数
DI	目标变址寄存器
ВР	内存逻辑偏移地址
SP	栈顶逻辑偏移地址

• 段寄存器(BIU内)

寄存器	功能
DS	数据段寄存器
SS	堆栈段寄存器
ES	扩展段寄存器
CS	代码段寄存器

逻辑段: 64KB 寻址范围不超过64KB 因为8086所有寄存器都是**16**位寄存器

• 标志寄存器(EU内)

标志寄存器	功能
CF(进位)	最高位有进位或借位
PF(奇偶)	
AF(辅助进位)	
ZF(零)	ZF=1表示本次运算结果为0
SF(符号)	最高位为1, SF=0
OF(溢出)	运算结果溢出
IF (中断)	
DF(方向)	
TF(单步)	

指令系统

• 寻址方式

MOV 目的操作数,源操作数

操作数分为:存储器操作数,寄存器操作数,立即数

寻址方式	例子
立即寻址	MOV AX,34EAH
寄存器寻址	MOV BP,SP MOV AX,1234H
直接寻址	MOV AX,[3E4CH] MOV ES:[1234H],BL
寄存器间接寻址	MOV SI,61A8H MOV DX,[SI]
基址/变址寻址	MOV CX,36H[BX]
基址+变址寻址	
I/O端口寻址	IN AL,25H

• 常考指令

- o 传送
 - MOV
 - PUSH POP
 - XCHG
 - IN OUT
 - LEA
- o 算术
 - ADD INC DAA
 - SUB DEC DAS INC DEC 不影响标志位
 - CMP
- o 位操作
 - NOT 取反
 - AND
 - OR
 - XOR
 - SHL SAL 左移位
 - SHR SAR 右移位
 - ROL ROR 循环移位
- o 程序转移
 - JE/JZ JNE/JNZ ZF标志位 一般判断cmp之后是不是相等
 - JG JGE

判断是否大于

■ JL JLE 判断是否小干

汇编程序设计

显示字符串

DOS功能调用:

调用号送至AH寄存器

中断指令 INT 21H

功能	调用号
单个字符输出	2号
多个字符输出	9号
过程终止	4ch号
单字符输入	1号 AL=ASCII码

• 屏幕显示一行字符串(重点)

```
;DS:DX指向欲显示字符串的首址
DATA SEGEMENT
BUFF DB 'HELLOWORLD!$';必须以$结尾
DATA ENDS
CODE SEGMENT
    ASSUME DS: DATA , CS: CODE
START:
    MOV AX, DATA
    MOV DS, AX
   LEA DX, BUFF ;获得有效地址
    MOV DX, OFFSET BUFF; 取标号或变量的距段首址的偏移量
    MOV AH, 9
   INT 21H
   MOV AH, 4CH
   INT 21H
CODE ENDS
    END START
;OFFSET只能取得用"数据定义伪指令"定义的变量的有效地址,不能取得一般操作数的有效地址
```

• 显示字符

```
# 光标显示
MOV DL, 'A'
MOV AH, 2
INT 21H
#####
# 键盘输入
MOV AH, 1
INT 21H
MOV [2000H], AL
```

• 显示数据

```
# 以23为例 即00100011

MOV DL,BL

MOV AL,4

SHR DL,AL #00000010

ADD DL.30H #32H, 先显示高四位

MOV AH,02H

INT 21H

MOV DL,BL

AND DL,0FH#00000011

OR DL,30H#33H

MOV AH,02H

INT 21H
```

循环操作

• 数据段的定义

```
MOV AX,BUFF = MOV AX,[0000]
MOV BX,BUFF+2 = MOV BX,[0002]
SUM DW ?,? ;保留四个字节内存单元
MAX DB 0,0,0,0,0 = MAX DB 5 DUP (0)
```

• 冒泡排序

```
DATA SEGEMENT
BUFF DB 5,3,-7,-9,2,23,55,88

DATA ENDS

CODE SEGEMENT

ASSUME CS:CODE ,DS:DATA

START:

MOV AX,DATA

MOV DS,AX

MOV CX,7

LOOP1:
```

```
MOV DX,CX
MOV SI,0

LOOP2:

MOV AL.BUFF[SI]

CMP AL,BUFF[SI+1]

JLE CONTINUE;从小到大 从大到小改成 JGE

XCHG AL,BUFF[SI+1]

CONTINUE:

INC SI

LOOP LOOP2

MOV CX,DX

LOOP LOOP1

MOV AH,4CH

INT 21H
```

• 最大值

```
#求数组里的最大值
DATA SEGMENT
BUFF DB 60 DUP(?)
MAX DB ?
DATA ENDS
CODE SEGMENT
   ASSUME DS:DATA, CS:CODE
START:
   MOV AX, DATA
   MOV DS, AX
   MOV SI ,OFFSET BUFF ;取数组第一个数的地址
   MOV CX.60
   MOV AX, [SI]
L00P1:
   CMP AX, [SI]
   JGE CONTINUE
   MOV AX, [SI]
CONTINUE:
   INC SI
   L00P L00P1
   MOV MAX, AX
   MOV AX,4C00H
   INT 21H
CODE ENDS
  END START
```

• 累加

```
#大于等于60的数
DATA SEGMENT
BUFF DB 10 DUP(?)
SUM DB ?
DATA ENDS
```

```
CODE SEGMENT
   ASSUME DS:DATA, CS:CODE
START:
   MOV AX, DATA
   MOV DS, AX
   MOV SI, OFFSET BUFF
   MOV CX, 10
   MOV AX, 60
   MOV DX,0;个数
L00P1:
   CMP [SI], AX;
   JL CONTINUE;小于60
   INC DX
CONTINUE:
   INC SI
   L00P L00P1
   MOV SUM, DX
   MOV AX, 4C00H
   INT 21H
CODE ENDS
  END START
```

画方框

```
CODE SEGMENT
  ASSUME DS:DATA, CS:CODE
START:
  MOV AL,13H;分辨率
  MOV AH, 0; 设定模式
  INT 10H
  MOV CX, 10; X起始坐标
  MOV DX,10;Y坐标
  MOV BX, 200;终点坐标
  MOV AL,0010B
  MOV AH, OCH
HENG:
  INT 10H
  INC CX
  CMP CX, BX
  JNE HENG
  MOV CX, 10
  MOV DX, 10
  MOV BX, 200;终点坐标
SHU:
  INT 10H
  INC DX
  JNE SHU
```

可编程接口芯片

• 初始化

```
# 8255
MOV DX,CTRL_PORT
MOV AL,10010000B;a口输入b口输出
MOV AL,10000000B;ab口都是输出
OUT DX,AL
# 8254
MOV DX,CTRL_PORT
MOV AL,00110111;通道00,读写格式11,工作方式011,计数码1
MOV AX,0000;计数初值
OUT DX,AL
MOV AL,AH;先输出低八位再输出高八位
OUT DX,AL
```

计数初值的设定:

n=f*t t是一个周期时间, f是脉冲波频率

外设通信

接口

接口是每个外设或每种外设与微处理器相连时使用的电路,接口上可以包含唯一的端口,也可以包含几个端口。

数码管

供阳极低电平有效

CPU与外设数据传送的方式

- 1. 程序控制方式
- 无条件传送方式:
 - o 优点:程序设计简单
 - o 缺点:只能用于CPU与外设同步时,易出错
- 查询传送方式
 - o 优点:接口电路简单
 - o 缺点: CPU需和外设串行工作, 效率不高
- 2. 中断传送方式
 - 优点:相对提高了CPU利用率与实时性 缺点:接口电路较复杂,增加负载
- 3. DMA方式(直接存储器存取方式)
 - o 优点:传输数据不经过CPU,速度最快
 - o 缺点: 硬件复杂

io接口作用

1.数据寄存与缓冲 2.设备选择 3.信号转换 4.外设检查与控制 5.中断或dma管理 6.可编程

中断

- 中断处理的基本过程
 - o 中断请求

CPU设有两个中断请求输入引脚:可屏蔽中断请求输入引脚和不可屏蔽中断请求输入引脚。

o 中断判优

CPU必须找出中断优先级最高的中断源

- 软件方法
- 硬件方法
- o 中断响应
- o 中断服务
- o 中断返回
- 中断的功能
 - o 故障处理
 - o 实时处理
 - o 分时处理

AD转换的三种方式

- 计数式,速度慢,比较次数多
- 双积分,速度慢,精度高,抗干扰
- 逐次逼近,速度快,最常用