1 Перестановки. Их свойства. Четная и нечетная перестановка. Транспозиция.

NOTE:

field: Перестановки

field: Пусть Ω — множество, $|\Omega| = n$. Занумеровав эти элементы, считаем $\Omega = \{1, 2, \dots, n\}$. Тогда перестановки — биекции $\sigma : \Omega \to \Omega$.

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix}$$

 S_n — множество всех перестановок из n элементов. Произведение перестановок — $(\sigma \tau) = \sigma(\tau(i))$.

NOTE:

field: Свойства перестановок

field:

- 1. $\sigma \tau \neq \tau \sigma$
- 2. $(\sigma \tau)\pi = \sigma(\tau \pi)$ (т.к. это отображения)
- 3. существует e и σ^{-1}

NOTE:

field: Четная и нечетная перестановка

field: A_n — множество четных перестановок.

 $(-1)^m$ — четность перестановки, где m это количество транспозиций в разложении.

Четность перестановки совпадает с четностью количества циклов четной длины.

field: Транспозиция

field: Транспозиция — цикл длины 2.

2 Разложение перестановки в произведение циклов. Представление перестановки в виде произведения транспозиций. Представление четной перестановки в виде произведения циклов длины 3.

NOTE:

field: Разложение перестановки в произведение циклов

field: $\sigma \in S_n$. $i_1 \in \Omega$. $i_2 = \sigma(i_1)$, $i_3 = \sigma(i_2)$, Т.к. $|\Omega| = n$ и σ — биекция, $\exists i_k : i_1 = \sigma(i_k)$.

$$(i_1i_2\ldots i_k)$$

Далее из биекции находим остальные непересекающиеся циклы.

NOTE:

field: Представление перестановки в виде произведения транспозиций.

field: Достаточно для одного цикла.

$$(i_1i_2\cdots i_k)=(i_1i_2)(i_2i_3)\cdots(i_{k-1}i_k)$$

NOTE:

field: Представление четной перестановки в виде произведения циклов длины 3.

field: $\sigma \in A_n \Leftrightarrow \sigma 3$.

3 Группы. Их свойства. Примеры. Подгруппы.

NOTE:

field: Группы

field: (G, \circ)

- 1. ассоциативность
- $2. \exists e$
- 3. $\forall a \in G \quad \exists a^{-1} \in G$

Абелева ⇔ ∘ коммутативно

|G| — порядок

 $a \in G, ord(a) = k$, если $a^k = e$ и k — минимально.

G-p-группа $\Leftrightarrow p$ — простое и $|G|=p^n$.

NOTE:

field: Свойства групп

field:

- 1. e едиственна
- 2. a^{-1} единственнен

NOTE:

field: Примеры групп

- 1. $(\mathbb{Z},+)$
- 2. (GL_n, \cdot) невырожденные матрицы
- 3. (S_n, \cdot)
- 4. (A_n,\cdot)

NOTE:

field: Подгруппы

field: (G, \circ) . $H \subset G$ — подгруппа $\Leftrightarrow e \in H, H$ — группа относительно \circ .

 $aH = \{ah : \forall h \in H\}$ — левый смежный класс. Любая группа распадается на непересекающиеся смежные классы.

(Теорема Лагранжа): $|G|=n, H\subset G$ — подгруппа, |H|=k. Тогда n=k(G:H), где (G:H) — число смежных классов по H.

Циклическая — порождается одним элементом.

 $\exists g: a = g^{-1}bg - a, b$ сопряженные

G распадается на непересекающиеся классы сопряженности.

4 Действия групп на множествах. Орбиты и стабилизаторы. Их свойства. Формула Бернсайда.

NOTE:

field: Дествия групп на множествах

field: G — группа, M — множество. Отбражение $G \times M \to M$:

- 1. $em = m \quad \forall m \in M$
- 2. $g_1(g_2m) = (g_1g_2)m$

field: Орбиты и стабилизаторы

field:
$$St(m) = \{g \in G : gm = m\} \subset G$$
, подгруппа G $Orb(m) = \{gm : g \in G\} \subset M$.

NOTE:

field: Свойства орбит и стабилизаторов

field: Имеется биекция
$$Orb(m) \mapsto \{gSt(m) : g \in G\}$$
 $|G| = |Orb(m)| \cdot |St(m)|$ $m_1, m_2 \in Orb(m) \Rightarrow St(m_1), St(m_2)$ — сопряжены.

NOTE:

field: Формула Бернсайда

field:
$$|G|=n, |M|=m.$$
 $M^g=\{m\in M:gm=m\}.$ Тогда $N=\frac{1}{|G|}\sum_{g\ inG}|M^g|,$ где N — число орбит.

5 Нормальные подгруппы. Гомоморфизмы групп. Ядро и факторгруппа. Первая теорема о гомоморфизме.

NOTE:

field: Нормальные подгруппы

field:
$$H \lhd G \Leftrightarrow g^{-1}Hg \subset H \quad \forall g \in G$$
 (Или $gH = Hg \quad \forall g \in G$)

NOTE:

field: Гомоморфизмы групп, ядро и факторгруппа

field: $f: G \to G'$: $f(ab) = f(a)f(b) \quad \forall a, b \in G$

 $\ker(f) = \{e\} \Leftrightarrow$ инъективный гомоморфизм

 $\forall g' \in G': \exists g \in G, f(g) = g' \Leftrightarrow$ сюръективный гомоморфизм

Сюръективный и инъективный гомоморфизм это изоморфизм ($G\cong G'$)

 $\ker(f) = \{a \in G | f(a) = e\}$

Если f — гомоморфизм:

- 1. f(e) = e'
- 2. $f(a)^{-1} = f(a^{-1})$
- 3. $\ker(f) \triangleleft G$

G/H — факторгруппа $\Leftrightarrow G/H = \{gH \mid \forall g \in G, H \vartriangleleft G\}.$ $aH \circ bH \mapsto abH$

NOTE:

field: 1-ая теорема о гомоморфизме групп

field:

Th 1 (1-ая теорема о гомоморфизме). f- сюр \overline{z} ективный гомоморфизм $\Rightarrow \exists G/\ker(f)\cong G'$

 $H \lhd G \Rightarrow \exists \varphi : G \to G/H : \varphi - c \circ p \circ z e \kappa u u s, \ker(\varphi) = H$

6 Вторая и третья теоремы о гомоморфизме. Теорема Кели.

NOTE:

field: 2-ая теорема о гомоморфизме групп

Th 2 (2-ая теорема о гомоморфизме групп). $H \subset G, K \lhd G \Rightarrow$

- 1. HK = KH
- 2. $HK \subset G$
- 3. $HK/K \cong H/(H \cap K)$

NOTE:

field: 3-ая теорема о гомоморфизме групп

field: $H \triangleleft G, K \triangleleft G, K \subset H \Rightarrow G/H \cong (G/K)/(H/K)$

NOTE:

field: Теорема Кели

field:

Th 3 (Теорема Кели). $|G| = n \Rightarrow \exists f : G \to S_n, n - u$ нъективный гомоморфизм (вложение).

7 Конечные абелевы группы. Их классификация.

NOTE:

field: Конечные абелевы группы

field: В абелевой группе любая подгруппа нормальная.

Th 4 (Лемма). G — абелева группа, $\forall a \in G : ord(a) = p^k$, для какого-то $k \Rightarrow |G| = p^n$

Th 5. G — абелева группа, $G = m = p_1^{s_1} \cdot p_2^{s_2} \dots p_n^{s_n} \Rightarrow G \cong A_{p_1} \oplus \dots \oplus A_{p_n}$, где A_{p_i} — абелева группа и $|A_{P_i} = p_i^{s_i}|$

Th 6. G — абелева p-группа $\Rightarrow G \cong \mathbb{Z}_{p_{s_1}} \oplus \cdots \oplus \mathbb{Z}_{p_{s_n}}$

Th 7. G — абелева группа \Rightarrow G разлагается в прямую сумму циклических p-групп единственным образом.

8 Свободные абелевы группы. Их базис. Классификация конечно порождённых абелевых групп.

NOTE:

field: Свободные абелевы группы

field: Без кручений \Leftrightarrow $\nexists a \in A : na = 0$

Конечно порожденная абелева группа A без кручений называется свободной абелевой группой. Количество элементов в базисе — ранг этой группы. Обозн. $F_n^{ab} = \mathbb{Z} + \dots + \mathbb{Z} \ n$ раз.

NOTE:

field: Базис свободной абелевой группы

field: Система $a_1, a_2, ..., a_k \in A$ — независимая $\Leftrightarrow (n_1 a_1 + n_2 a_2 + ... + n_k a_k = 0, n_i \in \mathbb{Z} \Rightarrow n_1 = n_2 = ... = n_k = 0)$

A — абелева без кручений.

Система a_k — базис $A \Leftrightarrow a_k$ — независимы и порождают A.

Любая конечно порожденная абелева группа без кручений обладает базисом, притом все ее базисы равномощны.

field: Классификация конечно порожденных абелевых групп

field: A — конечно порожденная абелева группа $Rightarrow A \cong F_n^{ab} \oplus B$, где B — конечная абелева группа.

9 Свободные группы. Задание группы образующими и соотношениями. Примеры.

NOTE:

field: Свободные группы

field: $X = \{x_i\}$ — множество символов (алфавит)

F(X) — множество классов эквивалентных слов, где слово — пустая или конечная последовательность символов из $X \cup X^{-1}$, а два слова эквивалентны, если после редукции (вычеркивание $x_i x_i^{-1}$ и $x_i^{-1} x_i$), получаем одинаковые слова. Класс эквивалентных слов обозн. [u].

На F(X) введем операцию [u][v]=[uv]. Тогда F(X) — свободная группа. Если X — конечно, то конечно порожденная свободная группа. |X| — степень свободы.

NOTE:

field: Задание группы образующими и соотношениями. Примеры

field: G — группа, порожденная g_1, g_2, \ldots, g_n . X — алфавит: x_1, x_2, \ldots, x_n . $\Rightarrow f: X \to M, \ f(x_i) = g_i$ единственным образом продолжается до гомоморфизма групп $\overline{f}: F(X) \to G$:

Элементы $\ker \overline{f}$ — соотношения группы G в алфавите X. Если множество соотношений H' такого, что минимальная нормальная подгруппа в F(X) содержащая H', совпадает с H, то H' — определяющее множество соотношений

 $H' = \{x_i x_j x_i^{-1} x_j^{-1} | 1 \le i < j \le n \}$ определяют свободную абелеву группу.

10 Кольца. Определение и основные свойства. Примеры.

NOTE:

field: Кольца

field: $(A, +, \cdot)$ — кольцо, если:

- 1. (A, +) абелева группа
- 2. a(bc) = (ab)c и $\exists e$
- 3. (x+y)z = xz + yz и z(x+y) = zx + zy

 $ab = ba \Rightarrow$ коммутативное

 $\exists a^{-1} \Rightarrow$ тело

тело, где ab = ba это поле

NOTE:

field: Свойства кольца

- 1. $a \cdot 0 = 0 \cdot a = 0$
- 2. (-a)b = a(-b) = -(ab)
- 3. (-a)(-b) = ab

NOTE:

field: Примеры колец

field: \mathbb{Z} — коммутативное кольцо

 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ — поля

 $M_{n \times m}$ некоммутативное кольцо

 $Z_m = \{0, 1, \dots, m-1\}$ — множество остатков при делении на m, коммутативное кольцо.

11 Идеалы. Факторкольца. Гомоморфизмы колец. Теорема о гомоморфизме для колец. Прямое произведение колец. Группа единиц.

NOTE:

field: Идеалы

field: $\mathbf{a} \subset A$ — левый идеал кольца $A \Leftrightarrow \mathbf{a}$ — подгруппа относительно сложения и $ax \in \mathbf{a} \forall a \in A, x \in \mathbf{a}$ (т.е. $A\mathbf{a} \subset \mathbf{a}$)

(Двусторонний) *идеал* — левый и правый идеал.

$$\mathbf{a}, \mathbf{b}$$
 — идеалы $\Rightarrow \mathbf{a} \cap \mathbf{b}$ — тоже идеал

NOTE:

field: Факторкольца

field: A/\mathbf{a} , элементы — смежные классы $x + \mathbf{a}$. $(x + \mathbf{a}) + (y + \mathbf{a}) = (x + y) + \mathbf{a}$, $(x + \mathbf{a})(y + \mathbf{a}) = xy + \mathbf{a}$

NOTE:

field: Гомоморфизмы колец

field: $f: A \rightarrow B$:

- f(a+b) = f(a) + f(b)
- f(ab) = f(a)f(b)

$$\ker(f) = \{a | f(a) = 0\}$$

NOTE:

field: Теорема о гомоморфизме для колец

Th 8 (Теорема о гомоморфизме для колец). $f: A \to B - cюръективный гомоморфизм колец <math>\Rightarrow \exists !A/\ker(f) \cong B$.

 ${f a}\subset A$ — идеал кольца $A\Rightarrow$ $\exists ! \varphi:a\to A/{f a}:\varphi$ — сюръекция, $\ker(\varphi)={f a}$

NOTE:

field: Прямое произведение колец

field: $A \times B = \{(a, b) | a \in A, b \in B\}$:

- $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$
- $(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2)$
- ноль -(0,0), e-(1,1)

NOTE:

field: Группа единиц

field: $U \subset A$ — множество обратимых элементов, называется группой единиц, а ее элементы — единицами кольца A.

12 Коммутативные кольца. Максимальные и простые идеалы. Их свойства. Критерий того, что факторкольцо является полем.

NOTE:

field: Максимальный и простой идеал

field: A — коммутативное кольцо Идеал $\mathbf{p} \subset A$ — простой $\Leftrightarrow (xy \in \mathbf{p} \Rightarrow x \in \mathbf{p})$ либо $y \in \mathbf{p}$) \mathbf{p} — максимальный $\Leftrightarrow \nexists \mathbf{a} \neq A : \mathbf{ma}$ и $\mathbf{m} \neq \mathbf{a}$

field: Свойства максимального и простого идеала

field:

- 1. $\mathbf{p} \subset A$ простой $\Leftrightarrow A/\mathbf{p}$ целостно
- 2. всякий максимальный идеал простой
- 3. $f:A\to B$ гомоморфизм, \mathbf{p}' простой идеал кольца $B\Rightarrow \mathbf{p}=f^{-1}(\mathbf{p}')$ простой идеал кольца A

NOTE:

field: Критерий того, что факторкольцо является полем

field: A/\mathbf{m} — поле \Leftrightarrow \mathbf{m} — максимальный идеал кольца A

13 Китайская теорема об остатках. Ее следствия.

NOTE:

field: Китайская теорема об остатках

field: A — коммутативное кольцо, $\mathbf{a_1}, \mathbf{a_2}, \ldots, \mathbf{a_n}$ — идеалы A, $\mathbf{a_i} + \mathbf{a_j} = A \forall i \neq j \Rightarrow \forall$ семейства $x_1, x_2, \ldots, x_n \in A \exists x \in A : x \equiv x_i \pmod{\mathbf{a_i}} \forall i$ $x \equiv y \pmod{\mathbf{a}} \Leftrightarrow x - y \in \mathbf{a}$

NOTE:

field: Следствия из китайской теоремы об остатках

Th 9 (Следствие). $A - \kappa$ оммутативное кольцо, $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n} - u$ деалы A, $\mathbf{a_i} + \mathbf{a_j} = A \forall i \neq j$, $f: A \to (A/\mathbf{a_1}) \ times(A/\mathbf{a_2}) \times \dots \times (A/\mathbf{a_n}) - o$ тображение, индуцированное каноническими отображениями A в $A/\mathbf{a_i}$ для кажедого множителя $\Rightarrow \ker f = \mathbf{a_1} \cap \mathbf{a_2} \cap \dots \cap \mathbf{a_n} \ u \ A/(\mathbf{a_1} \cap \mathbf{a_2} \cap \dots \cap \mathbf{a_n}) \cong (A/\mathbf{a_1}) \times (A/\mathbf{a_2}) \times \dots \times (A/\mathbf{a_n})$

Th 10 (Для целых чисел). $m_1, m_2, \ldots, m_n - nonapho$ взаимно простые целые числа $\Rightarrow \forall x_1, x_2, \ldots, x_n \exists x \in \mathbb{Z} : x \equiv x_i \pmod{m_i} \forall i$

14 Главные идеалы. Кольцо главных идеалов. Примеры. Целостные и факториальные кольца.

NOTE:

field: Главный идеал

field: а — главный $\Leftrightarrow \exists a \in A : \mathbf{a} = aA$ Обозн. $\exists a \in A : \mathbf{a} = aA$ (m) — идеал $\mathbb{Z} \Rightarrow \mathbb{Z}/(m) = /mathbbZ_m$ и существует естественное отображение $f: \mathbb{Z} \to \mathbb{Z}_m$

NOTE:

field: Кольцо главных идеалов

field: Кольцо главных идеалов \Leftrightarrow все идеалы главные \mathbb{Z} — кольцо главных идеалов

NOTE:

field: Целостное кольцо

field: целостное кольцо $\Leftrightarrow \nexists a, b : ab = 0$ (или кольцо без делителей нуля)

NOTE:

field: Факториальное кольцо

field: A — факториальное \Leftrightarrow целостное и всякий элемент имеет однозначное разложение на неприводимые.

 $a \neq 0, a \in A(), (a)$ — простой главный идеал $\Leftrightarrow a$ — неприводим.

 $\forall a \in A, a \neq 0$ обладает однозначным разложением на неприводимые, если: $\exists u$ — единица и неприводимые элементы p_1, p_2, \ldots, p_k такие, что $a = up_1p_2\cdots p_k$. Причем для двух таких разложений $a = up_1p_2\cdots p_k = u'q_1q_2\cdots q_m, m=k$ и, с точностью до перестановки, $q_i = u_ip_i$, где u_i — единицы в A.

15 НОД. Теорема о том, что любое кольцо главных идеалов факториально. Примеры.

NOTE:

field: НОД

field: a делит $b \Leftrightarrow \exists c \in A : b = ac$. d - HOД a и $b \Leftrightarrow$ любой c, делящий a и b, делит также d.

NOTE:

field: Теорема о том, что любое кольцо главных идеалов факториально.

field: Всякое целостное кольцо главных идеалов факториально.

Пример: \mathbb{Z} , группа единиц состоит из 1 и -1. Неприводимые — простые числа.

 $\mathbb{R}[x], \mathbb{Q}[x]$

16 Локализация. Ее свойства. Примеры.

NOTE:

field: Локализация

field: A — коммутативное кольцо, $S \subset A$ — мультипликативное подмножество, если $1 \in S$ и $x, y \in S \Rightarrow xy \in S$.

 $(a,s)\equiv (a',s')\Leftrightarrow \exists s''\in S: s''(as'-sa')=0$ — отношение эквивалентности.

 $S^{-1}A$ — множество классов эквивалентности (кольцо). Эл-ты: $\frac{a}{s},\,\frac{s}{s}$ — единица.

NOTE:

field: Свойства локализации

field: $\varphi_S A \to S^{-1} A$, $\varphi_S(a) = \frac{a}{1}$

a — целостное кольцо, S — мультипликативное множество, не содержащее нуля. $\Rightarrow \varphi_S$ — инъективный гомоморфизм

 $S \subset S^{-1}A$ обратимо

NOTE:

field: Примеры локализации

field: A — целостное кольцо, S состоит из обратимых элементов \Rightarrow $S^{-1}A = A$

A — целостное кольцо, S — множество его ненулевых элементов $\Rightarrow S$ — мультипликативное множество, $S^{-1}A$ — поле (назыв. *полем частных* кольца A).

Например, \mathbb{Q} — поле частных кольца \mathbb{Z}

17 Многочлены. Определения свойства. Трансцендентные и алгебраические элементы.

NOTE:

field: Многочлены

```
field: A — коммутативное кольцо. Построим кольцо B, эл-ты: f = (a_0, a_1, \ldots, a_n, \ldots), a_i \in A, где конечное число a_i \neq 0 f+g=(a_0, \ldots, a_n, \ldots)+(b_0, \ldots, b_n, \ldots)=(a_0+b_0, \ldots, a_n+b_n, \ldots) f \cdot g=(a_0, \ldots, a_n, \ldots)+(b_0, \ldots, b_n, \ldots)=(h_0, \ldots, h_n, \ldots), где h_m=\sum_{i+j=m}a_ib_j \varphi A \to B — инъективный гомоморфизм, \varphi(a)=(a,0,0,\ldots). А значит A \subset B x=(0,1,0,0,0,\ldots) x^2=(0,0,1,0,0,\ldots) x^3=(0,0,0,1,0,\ldots) a\cdot x^n=a\cdot (0,0,\ldots,0,1,0,\ldots)=(0,0,\ldots,0,a,0,\ldots) f(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n Кольцо B — кольцо многочленов от одной переменной. Обозн. A[x]. a_0,\ldots — коэффициенты f(x). \deg(f) — максимальное n, для которого a_n \neq 0
```

NOTE:

field: Свойства многочленов

field: A — целостное кольцо $\Rightarrow \deg(f+g) \leq \max(\deg(f),\deg(g)), \deg(fg) = \deg(f) + \deg(g)$

A — целостное кольцо \Rightarrow A[x] — тоже целостное

A — подкольцо коммутативного кольца $K, \alpha \in K \Rightarrow \exists !$ гомоморфизм $\varphi_{\alpha}: A[x] \to K, \ \varphi_{\alpha}(a) = a \forall a \in A, \ \varphi_{\alpha}(x) = \alpha$

NOTE:

field: Алгебраические и трансцендентные элементы

field: α — алгебраический над $A \Leftrightarrow \exists f \in A[x] : \varphi_{\alpha}(f) = 0$ Если φ_{α} — инъективно, то трансцендентным. $\varphi_{\alpha}(f) = 0$ значит α корень f. Обозн. $f(\alpha) = 0$.

18 Алгоритм Евклида. Евклидовы кольца.

NOTE:

field: Евклидовы кольца

field: A- евклидово кольцо $\Leftrightarrow A-$ целостное кольцо, $\delta:A \ 0 \to \mathbb{N} \cup 0$

19 Теорема о том, что любое евклидово кольцо является кольцом главных идеалов. Лемма Гаусса.

NOTE:

field: Теорема о том, что любое евклидово кольцо является кольцом главных идеалов.

field: Всякое евклидово кольцо является кольцом главных идеалов Всякое евклидово кольцо является факториальным

field: Лемма Гаусса

field: f(x), g(x) — многочлены с целыми коэффициентами. $a = \gcd(a_i), b = \gcd(b_i), c = \gcd(c_i),$ где c_i — коэффициенты $f(x)g(x). \Rightarrow c = ba$

20 Неприводимые многочлены. Расширение полей. Алгебраически замкнутые поля.

NOTE:

field: Неприводимые многочлены

field: $f \in K[x], \deg(f) \neq 0$ — nenpusodumый над полем $K \Leftrightarrow \nexists g \in K[x], 1 \leq \deg(g) < \deg(f), f$ делится на g

NOTE:

field: Расширение полей

field: Поле K[x]/(f) называется расширением поля K, где f — неприводимый многочлен над K TODO дописать?

NOTE:

field: Алгебраически замкнутые поля

field: Поле K — алгебраически замкнутое $\Leftrightarrow \forall f(x) \in K[x]$ имеет корень

21 Основная теорема алгебры (алгебраическая замкнутость поля комплексных чисел).

NOTE:

field: Основная теорема алгебры

field: Поле $\mathbb C$ алгебраически замкнуто TODO леммы

22 Модули. Определение и примеры. Основные свойства. Векторное пространство, как модуль.

NOTE:

field: Модули

field: A — кольцо. $\mathit{Левый}$ $\mathit{модуль}$ (модуль) над A — абелева группа M с действием A на M, если:

$$1. \ (a+b)x = ax + bx$$

2.
$$a(x + y) = ax + ay$$

3.
$$(ab)x = a(bx)$$

4.
$$1 \cdot x = x$$

 $a,b\in A; x,y\in M$ Подгруппа $N\subset M$ — подмодуль $\Leftrightarrow AN\subset N$

NOTE:

field: Примеры модулей

- любой левый идеал
- любая коммутативная группа есть Z-модуль
- A[x] есть A-модуль

NOTE:

field: Векторное пространство, как модуль.

field: Модуль M над полем называется векторным пространством. M конечно порожден $\Leftrightarrow M$ — конечномерное векторное пространство.

23 Теоремы о гомоморфизме для модулей. Аннулятор.

NOTE:

field: 1-я теорема о гомоморфизме для модулей

field: $f:M\to M'$ — сюръективный гомоморфизм модулей $\Rightarrow \exists$ естественный изоморфизм $M/\ker(f)\cong M'$

NOTE:

field: 2-я теорема о гомоморфизме для модулей

field: N, N' — подмодули $M \Rightarrow (N + N')/N' \cong N/(N \cap N')$

NOTE:

field: 3-я теорема о гомоморфизме для модулей

field: N, N' — подмодули $M, N' \subset N \Rightarrow M/N \cong (M/N')/(N/N')$

NOTE:

field: Аннулятор

field:
$$\mathsf{Ann}(M) = \{a | a \in A, ax = 0, \forall x \in M\}$$
 Модуль M — точный $\Leftrightarrow \mathsf{Ann}(M) = 0$ $\mathsf{Ann}(M)$ — двусторонний идеал кольца A

24 Алгебры. Определения и примеры. Аналог теоремы Кели для алгебр.

NOTE:

field: Алгебры

field: A — алгебра над полем K (или K-алгебра) \Leftrightarrow A — векторное пространство над K и на A есть умножение:

$$1. \ x(y+z) = xy + xz$$

$$2. (x+y)z = xz + yz$$

$$3. (ax)y = x(ay) = a(xy)$$

$$\forall x,y\in A, a\in K$$

Ассоциативная алгебра, Алгебра с единицей

NOTE:

field: Примеры алгебр

field:
$$\mathbb{C}$$
 — алгебра над \mathbb{R} K — поле $\Rightarrow K[x] - K$ -алгебра $M_n(K)$ — кольцо матриц

field: Аналог теоремы Кели для алгебр.

field: A-n-мерная алгебра над полем $K\Rightarrow A$ изоморфна некоторой подалгебре в $M_n(K)$

25 Конечномерные алгебры. Минимальный многочлен элемента. Алгебры с делением. Обратимость элемента, не являющегося делителем нуля.

NOTE:

field: Конечномерные алгебры

field: Алгебра A над полем K — конечномерная \Leftrightarrow конечномерно векторное пространство A над K.

Алгебра A над полем K — конечно порожденная \Leftrightarrow существует конечное множество элементов пораждающих A

NOTE:

field: Минимальный многочлен элемента

field: Многочлен $f(x) \in K[x]$ для которого f(a) = 0 называется аннулирующим элемент a

A — конечномерная алгебра над полем $K, a \in A \Rightarrow f(x)$ аннулирующий a, степень которого минимальна и старший коэффициент равен 1, называется минимальным многочленом элемента a над K

NOTE:

field: Алгебры с делением

field: K-алгебра $A, 1 \in A$, любой элемент обратим $\Rightarrow A$ — алгебра с делением

Th 11. A — конечномерная ассоциативная коммутативная алгебра c делением над полем \mathbb{R} $(m.e.\ A-none) \Rightarrow либо\ A = \mathbb{R}$, либо $A = \mathbb{C}$

NOTE:

field: Обратимость элемента, не являющегося делителем нуля

field:

Th 12. A — конечномерная алгебра над полем K. $\Rightarrow \forall a \in A, a$ либо обратим, либо является делителем нуля.

26 Задание алгебры. Тело кватернионов. Теорема Фробениуса (б/д).

NOTE:

field: Задание алгебры

field: A — конечномерная алгебра над полем K и e_1, e_2, \ldots, e_n — базис A над K. \Rightarrow Соотношения $e_i e_j = \sum_{k=1}^n g_{ij}^k e_k$ задают структуру K-алгебры на A.

$$a = a_1 e_1 + a_2 e_2 + \dots + a_n e_n, \ b = b_1 e_1 + b_2 e_2 + \dots + b_n e_n \Rightarrow ab = (\sum_{i=1}^n a_i e_i) \left(\sum_{j=1}^n b_j e_j\right) = \sum_{i=1}^n \sum_{j=1}^n a_i b_j e_i e_j = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n a_i b_j g_{ij}^k e_k$$

NOTE:

field: Теорема Фробениуса

field:

Th 13 (Фробениус). $A - \kappa$ онечномерная ассоциативная алгебра с делением над полем \mathbb{R} . \Rightarrow либо $A = \mathbb{R}$, либо $A = \mathbb{C}$, либо $A = \mathbb{H}$

27 Алгебры с делением над полем комплексных чисел. Теорема Фробениуса (коммутативный случай). Групповая алгебра. Дифференцирование алгебр.

NOTE:

field: Теорема Фробениуса (коммутативный случай)

field:

Th 14 (Фробениус (коммутативный случай)). A — конечномерная ассоциативная коммутативная алгебра c делением над полем \mathbb{R} ($m.e.\ A$ — none). \Rightarrow либо $A = \mathbb{R}$, либо $A = \mathbb{C}$.

NOTE:

field: Дифференцирование алгебр

field: A — алгебра над полем K. Дифференциерование алгебры это $d:A\to A,$ если:

- 1. d(ax) = adx
- $2. \ d(x+y) = dx + dy$
- $3. \ d(xy) = (dx)y + x(dy)$

$$\forall x,y\in A, a\in K$$