Assignment 7

EX1 EX2 EX3.

Complete the code of class Stack from SKELETONS.

EX6

Complete the code of class Stokes Vector and Muller Matrix.

EX7.2

For the gamma distribution, if we choose $\alpha=2$, $\beta=1$, we have $\rho(x)\mathrm{d} x=xe^{-x}\mathrm{d} x$. And we can set $2\tau/m=1$, so that the velocity distribution becomes $\rho(v)\mathrm{d} v=4/\sqrt{\pi}\,v^2e^{-v^2}\mathrm{d} v$. So we have $\rho(v)=\rho(x)\mathrm{d} x/\mathrm{d} v=\rho(x)2v\mathrm{d} v$. Here we let $x=v^2$. Therefore we can sampling the velocity distribution with the help of gamma distribution. The sampling result are showed in follow:

EX7.5 We have the normal distribution $\rho_n(x) dx = 1/\sqrt{8\pi}e^{-x^2/8} dx$ and the exponential distribution $\rho_e(x) dx = 3e^{-3x} dx$. Therefore we have the convolution:

$$\rho(u) = \int_{-\infty}^{\infty} \frac{3}{\sqrt{8\pi}} e^{-(u-v)^2/8} e^{-3v} dv$$

$$= \int_0^\infty \frac{3}{\sqrt{8\pi}} e^{-(u-v)^2/8} e^{-3v} dv = \int_0^\infty \frac{3}{\sqrt{8\pi}} e^{-u^2/8} e^{-v^2/8 + uv/4 - 3v} dv$$
$$= \frac{3}{\sqrt{8\pi}} e^{-u^2/8} \left(e^{2(u/4 - 3)^2} (1 + \operatorname{Erf}(\sqrt{2}(u/4 - 3))) \right)$$

I plot the analytic convolution result and sum of two two variables below.

And we can also generate the distribution by using the rejection method. The result is showed below.

Χ

EX7.6 I generate the data by using the rejection method.

EX7.12 A) $f(x) = 10^x \Rightarrow x = \ln(f)/\ln 10 \Rightarrow \rho(x) = 1/(x \ln 10)$

B) In this question I set $M = \Gamma = 1$.

$$f(x) = \sqrt{1 + \tan(x)} \Rightarrow x = \arctan(f - 1) \Rightarrow \rho(x) = \frac{2x}{1 + (x^2 - 1)^2}$$

Distribution Density

Χ