CENTRAAL EXAMEN NATUURKUNDE: WVO

2016		2017		2018		2019		2021			2022		
tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 3	tijdvak 1	tijdvak 2	tijdvak 3
Gekleurde LED's $R = \frac{U_{R}}{I}$	Onderzoek naar geluid in een fles $f = \frac{1}{T}$	Zonvolgsysteem $U_{\rm AB} = U_{\rm AC}$	Rookmelder $^{238}_{92}U+^{1}_{0}n \rightarrow ^{239}_{92}U$	Uitrijden van een auto $s = v_{\text{gem}}t$	Mechanische doping $E = Pt \qquad \rho = \frac{m}{V}$	Dafne Schippers tegen Ireen Wüst $v_{\text{gem}} = \frac{\Delta x}{\Delta t}$	Pariser Kanone	Planck	Looping $mgh = \frac{1}{2}mv^2$	Kayak-jumping $\frac{1}{2}mv^2 = mg\Delta h$	Vrije worp bij basketbal $v_{y} = \left(\frac{\Delta y}{\Delta y}\right)$	Massa meten in de ruimte	Schakeling van LED`s
	$v = f\lambda$	U = IR	$A = \frac{\ln 2}{t_{\frac{1}{2}}}N \qquad m = N \cdot 241 \cdot \mathbf{u}$	$[\mathbf{k}] = \frac{[F]}{[v^2]} F_{\mathbf{w},\mathbf{l}} = \frac{1}{2} \rho C_{\mathbf{w}} A v^2.$	$\lambda_{\max} T = k_{\mathrm{W}}$	$a = \frac{\Delta v}{\Delta t}$	$F_{\rm res} = ma$ $a = \frac{\Delta v}{\Delta t}$		$F_{\rm z} = mg$ en $F_{\rm mpz} = \frac{mv^2}{r}$	$F_{\text{z }} = mg \sin \alpha$ $F_{\text{res}} = F_{\text{z }} - F_{\text{w}}$ $a = \frac{\Delta v}{\Delta t}$	$W = Fs$ $E_{k} = \frac{1}{2}mv^{2}$ $F_{res} = ma$	$F_{\rm res} = F_{\rm R} - F_{\rm L} = Cu_0 - Cu_0$	$E = \frac{hc}{\lambda} P = UI \eta = \frac{P_{\text{licht}}}{P_{\text{elek}}}$
		$U_{\rm BC} + U_{{\rm LDR}_1} + U_{{\rm LDR}_2} = 0.$			$R = \rho \frac{\ell}{A} A = \frac{1}{4}\pi d^2 I = \frac{U}{R} t = \frac{C}{I}$		$\eta = \frac{E_{\rm k}}{E_{\rm ch}} E_{\rm ch} = r_{\rm m} m \qquad E_{\rm k} = \frac{1}{2} m v^2$			$F_z = mg$	2 m	$T = 2\pi \sqrt{\frac{m}{C}}$	$R = \frac{U}{I}$
$E_{\rm f} = \frac{hc}{\lambda} P_{\rm el} = UI$	$\left[V^{-rac{1}{2}} ight]$:	Cessna $F_{\rm z} = mg P = F_{\rm m} v$					$A = \pi r^2$:	$F_{\text{mpz}} = \frac{mv^2}{r} \text{ en } F = m a v = \frac{2\pi r}{T}$	$\left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}} \qquad v = \sqrt{v_x^2 + v_y^2} :$			$v_{\text{max}} = \frac{2\pi A}{T}$	
Ruimtelift $m\frac{v^2}{r} = G\frac{mM}{r^2}, v = \frac{2\pi r}{T}$		$\frac{\left [F_{\text{lift}} \right]}{\left [\rho \right] \cdot \left [A_{\text{vleugel}} \right] \cdot \left [v \right]^2}$	U = IR	$F_{\rm res} = ma$ $a = \frac{\Delta v}{\Delta t}$ $P = Fv$									Parkeren in de ruimte $mv^2 = 2\pi r$
$r = R_A + h$		$F_{\text{lift}} = \frac{1}{2} \rho A_{\text{vleugel}} C_{\text{lift}} v^2$	X-stream	Water uit de ruimte $E_{\rm k} = \frac{1}{2} m v^2 \qquad E_{\rm g} = -G \frac{m M}{r}$		$\Sigma W = \Delta E_{\mathbf{k}}$			$W_{\mathrm{w}} = E_{\mathrm{k,in}} - E_{\mathrm{k,uit}}$ $W_{\mathrm{w}} = F_{\mathrm{w}} s -$		Qled-tv		$F_{\text{mpz}} = \frac{mv}{r} \text{en } v = \frac{2\pi r}{T}$ $F_{\text{mpz}} = \frac{4\pi^2 mr}{T^2}$
	Thalliumscintigrafie $^{201}_{82} \text{Pb} \rightarrow ^{201}_{81} \text{Tl} + ^{0}_{1} \text{e} (+ \nu_{\text{e}}).$		P = Fv	L _k 2 m L _g – G	Gravitron	PET samen met CLI ${}^{18}_{9}\text{F} \rightarrow {}^{18}_{8}\text{O} + {}^{0}_{+1}\text{e} \ (+\text{v}_e) \ (+\gamma)$		$T = \frac{k_{\rm W}}{\lambda_{\rm max}}$	Beker van Lycurgus			$P = F_{\rm w} v$	$F_{\sigma} = G \frac{mM}{2}.$
	82 81 1 4 67		$Fw = k \cdot m \cdot g \cdot cos(hoek)$		$F_z = mg$	y 6 T1 (E7 (17	Elektrische gitaar	Cirkelgolf		AA-Batterijen	$\lambda_{\rm B} = \frac{h}{p} \cdot E_{\rm k} = \frac{p^2}{2m}$	ECG in MRI $f = \frac{1}{T}$	$T = \frac{k_{\mathrm{W}}}{2}$
$a = \frac{\Delta v}{\Delta t} \qquad F_{\text{res}} = ma$	$A = \frac{\ln 2}{t_{\frac{1}{2}}}N$			$\lambda = \frac{h}{\sqrt{2\pi m k_{\rm B} T}}$				$v = f\lambda$	$[k] = \frac{[f_{\text{res}}]}{\sqrt{\frac{ne^2 f}{\pi m}}}$		$E_n = \frac{n^2 h^2}{8mL^2}$	$\sum_{i} \hat{U_{i}} = 0$	max
$h = v_{\text{gem}}t$			$Fw = (Fw +) k2 \cdot v^2 \text{ eindals}$		$v = \frac{2\pi r}{T} \qquad F_{\rm mpz} = \frac{mv^2}{r}$		$m = \rho V V = \frac{1}{4}\pi d^2 \ell \begin{cases} \ell = \frac{1}{2}\lambda \\ v = \lambda f \end{cases}$		$n = \frac{\rho}{m_{at}} \qquad m_{at} = A \cdot u$	$R = \rho \frac{l}{A} \qquad A = \frac{1}{4}\pi d^2$	$E_{\mathrm{f}} = \frac{hc}{\lambda}$		Radon in de kelder
Vliegen $\begin{bmatrix} \frac{d}{x} \end{bmatrix}$	$I = I_0 \left(\frac{1}{2}\right)^{\frac{d}{d_1}} \qquad I = \frac{P_{\text{bron}}}{4\pi r^2}$	Sirius B als Quantumsysteem $\lambda_{\max} T = k_{\mathrm{W}}$			Kleurstoflaser		$f = \frac{1}{T}$		$c = f \lambda$	$P = UI I = \frac{U}{R} \qquad P = \frac{U^2}{R}$	Practicum warmtestraling $A = \frac{1}{4}\pi d^2 \ R = \rho \frac{\ell}{4} \ P = \frac{U^2}{R}$		
$x = \frac{v}{f}$	Jupiter fly-by		het viriaal-theorema $E_{\rm g} = -G \frac{mM}{r} \text{ en } E_{\rm k} = \frac{1}{2} m v^2.$		$\Delta E = \frac{hc}{\lambda}$.		$U_{\mathrm{ind}} \propto \frac{\mathrm{d} \Phi}{\mathrm{d} t}$		SPECT-scan bij parkinson		$\frac{A - \frac{1}{4} \kappa \alpha^{2} R - \frac{1}{4} R}{1 + \alpha (T - T_{0})}$	$A = \frac{1}{4}\pi d_{\text{aorta}}^2$	
$v = \frac{x}{T}$:	$F_{\rm g} = G \frac{mM}{r^2} \qquad F_{\rm mpz} = \frac{mv^2}{r}$	$V = N_{\rm e}d^3$	$r = R + h$ $G\frac{mM}{r} = \frac{mv^2}{r}$	Elektrische tandenborstel $F_z = mg$	$\Delta E = \frac{hc}{\lambda} \qquad E_n = \frac{n^2 h^2}{8mL^2}$		G.		${}^{123}_{52}\text{Te} + {}^{1}_{1}\text{p} \rightarrow {}^{123}_{53}\text{I} + {}^{1}_{0}\text{n}$ $N = N_{0} \left(\frac{1}{2}\right)^{\frac{t}{t_{1}}}$	GPS $I = \frac{P_{\text{bron}}}{4\pi r^2}$	$P = \sigma A T^4$	Adelaarsnevel $E_{\rm f} = \frac{hc}{2} E_n = -\frac{13,6 \rm eV}{2}$	
		$L = n\frac{1}{2}\lambda$	$r^2 - r$			In de zon $\frac{I_1}{I_2}$:		Alfanuclidetherapie $[E]$	$E_{\rm f} = \frac{hc}{\lambda}$	$P_{\text{stral}} = IA \eta = \frac{P_{\text{el}}}{P_{\text{stral}}}$	$\lambda_{\max} T = k_{\mathrm{W}}.$	$\frac{E_{\rm f} - \overline{\lambda}}{\lambda} E_n = -\overline{n^2}$	
	$\Delta E_k = \frac{1}{2}M(v_{j,na}^2 - v_{j,voor}^2).$	$E_n = n^2 \frac{h^2}{8mL^2}$		$v = \lambda f$ $v = \sqrt{\frac{F}{\rho_{\ell}}}$	Ontspannen lopen		Elektronendiffractie $\lambda = \frac{h}{p} = \frac{h}{mv} \qquad \frac{1}{2}mv^2 = eU$			$F_{\rm mpz} = F_{\rm G} \Rightarrow \frac{mv^2}{r} = G\frac{mM}{r^2}$	$\frac{I_1}{I_2} = \left(\frac{x_2}{x_1}\right)^2.$		Parasailing
Trillingen binnen een molecuul $f = \frac{1}{2\pi} \sqrt{\frac{C}{m}} \qquad T = 2\pi \sqrt{\frac{m}{C}}.$		Protonenweegschaal $\ell = \frac{1}{2}\lambda \qquad v = \lambda f$			P = Fv	E = Pt	$p mv \qquad 2$ $\lambda = \frac{h}{\sqrt{2emU}}$		$D = \frac{E}{m}$	$c = \lambda f$	Om het hoekje ${}^{90}_{38}\mathrm{Sr} \rightarrow {}^{90}_{39}\mathrm{Y} + {}^{0}_{-1}\beta$	$\lambda_{\max} T = k_{\mathrm{W}}$	$a = \left(\frac{\Delta v}{\Delta t}\right)_{\text{raaklijn}}$
$2\pi \sqrt{m}$ $E_{t} = \frac{1}{2}CA^{2}$			Speeldoosje	MRI			$\Delta s = 2d \sin \alpha$.				38 ^{S1} 7 39 1 7 -1P	$P = \sigma A T^4$ $A = 4\pi R^2$	$F_{\rm z}$ = mg
$\Delta E = h f_{\rm A}$			$v = \lambda f$	$hf = \gamma h B_{\text{MRI}}.$ $\Delta E = hf$	$S = \frac{v}{f}$	$E = \frac{hc}{\lambda}$	$2d\sin\alpha=n\lambda$.	$E_{k} = \frac{1}{2}mv^{2} p = m\sqrt{\frac{2E_{k}}{m}} = \sqrt{2E_{k}m}$ $p = mv$	Joystick met Hall-sensor $\rho = \frac{RA}{\ell}. \ A = \frac{1}{4}\pi d^2$	SIRT 90 7			Compton $E_{\rm f} = \frac{hc}{2} \qquad p = \frac{h}{2}$
	$E_{\rm k} = \frac{1}{2}mv^2 \qquad E_{\rm g} = -G\frac{mM}{r}$				Wijnfraude opsporen	Ruiken		$A = \frac{\ln 2}{t_{\frac{1}{2}}}N$	<i>e</i> + 4 ····	$^{90}_{39}Y \rightarrow ^{90}_{40}Zr + ^{0}_{-1}\beta + \gamma + (\overline{\nu}_e)$	$F_{\text{mpz}} = \frac{mv^2}{r}$ $v = \frac{Bqr}{m}$	$I = \frac{P}{4\pi r^2}$	$\Delta \lambda = \lambda' - \lambda = \frac{h}{mc} (1 - \cos \varphi)$
			Elektronen uit metaal 'stoken'							$A = A_0 \left(\frac{1}{2}\right)^{\frac{t}{t_1}}$	$v = \frac{Bqr}{m}$	LEO-satelliet $F_{\text{mpz}} = \frac{mv^2}{r} \text{ en } F_{\text{g}} = G\frac{mM}{r^2}$	$\frac{[h]}{[m][c]}$
Onderzoek van bot met calcium-47	Buiging bij een enkelspleet	Inwendige bestraling ${}^{124}_{54}\mathrm{Xe} + {}^{1}_{0}\mathrm{n} \rightarrow {}^{125}_{54}\mathrm{Xe} \ (+ {}^{0}_{0}\gamma)$			$^{137}_{55}\text{Cs} \rightarrow ^{137}_{56}\text{Ba} + ^{0}_{-1}\text{e} + ^{0}_{0}\gamma(+\nu_e)$		Gamma-chirurgie	Zonnepanelen $P = U \cdot I$	$F_{\rm L} = Bqv \ {\rm en} \ F_{\rm el} = qE \ E = \frac{U}{\Delta x}$			$r = \sqrt{\frac{GM}{r}}$ $v = \sqrt{\frac{GM}{r}}$ $r = R_{\text{aarde}} + h$	h
$A = \frac{\ln 2}{t_{\frac{1}{2}}} N \qquad m = N m_{\text{atoom}}$	$\sin \alpha = \frac{p_x}{p} \qquad \lambda = \frac{h}{p}$	$A = \frac{\ln 2}{t_{\frac{1}{2}}} N m = N_0 \cdot M$	$T = \frac{k_{\rm W}}{\lambda_{\rm max}}$	Energievoorziening voor een weerstation $P = UI$ $nC = It$	$\lambda = \frac{hc}{E_{\rm f}}:$		$E = \frac{hc}{\lambda}$			Wortel en mango $E_{\epsilon} = \frac{hc}{a}$		P = Fv	Viool $f = \frac{1}{T}$
$I = I_0 \left(\frac{1}{2}\right)^{\frac{d}{d_1}}$	$\Delta x \Delta p \ge \frac{h}{4\pi}$			E = UIt = UC $E = Pt$ $P = UI$	$A = A_0 \left(\frac{1}{2}\right)^{\frac{t}{t_1}}$	$T = 2\pi \sqrt{\frac{m}{C}}$	$A = \frac{\ln 2}{t_{\frac{1}{2}}} N m = N m_{\text{at}}$			$E_n = n^2 \frac{h^2}{8mL^2}.$	Speciale fluit $v = f\lambda$	$F_{\rm w} = \frac{1}{2} \rho c_{\rm w} A v^2$ $\frac{dE_{\rm t}}{dt} = \frac{1}{2} GmMr^{-2}$	$v = f\lambda$
	Draadbreuk						$D = \frac{E}{m} : m = \rho V \qquad V = \frac{4}{3}\pi r^3$	$E_{\mathrm{f}} = \frac{hc}{\lambda}$	EIND EXAMEN	EIND EXAMEN		$v = \frac{2\pi r}{\pi}$	$f = \frac{v}{\lambda}$, $\ell = n \cdot \frac{1}{2} \lambda$ $f_{\text{grondtoon}} = \frac{v}{2\ell}$
	$R = \frac{\rho \ell}{A} : \qquad U = IR$				EIND EXAMEN	Aardlekschakelaar $R = \rho \frac{\ell}{4}: U = IR A = \frac{1}{4}\pi d^2$		EIND EXAMEN			$v = \lambda f$	$v = \sqrt{\frac{GM}{r}}$	$f_{\rm n} = n \cdot f_{\rm grondtoon}$
EIND EXAMEN		EIND EXAMEN	EIND EXAMEN			U = IR	EIND EXAMEN				EIND EXAMEN	EIND EXAMEN	EIND EXAMEN
				EIND EXAMEN									
	EIND EXAMEN					$U_{\rm ind} \propto \frac{d\Phi}{dt}$							
						EIND EXAMEN							
Gekleurde LED's Ruimtelift Vliegen Trillingen binnen een molecuul Onderzoek van bot met calcium-47	Onderzoek naar geluid in een f Thalliumscintigrafie Jupiter fly-by Buiging bij een enkelspleet	Cessna Sirius B als Quantumsysteem Protonenweegschaal	Rookmelder X-stream De kracht van het viriaal-theorem Speeldoosje	Uitrijden van een auto Water uit de ruimte na Elektrische tandenborstel MRI (Magnetic Resonance Imagin Energievoorziening voor een wee		Dafne Schippers tegen Ireen V PET samen met CLI In de zon Ruiken Aardlekschakelaar	Wüst Pariser Kanone Elektrische gitaar Elektronendiffractie Gamma-chirurgie	Planck Cirkelgolf Alfanuclidetherapie Zonnepanelen	Looping Beker van Lycurgus SPECT-scan bij parkinso Joystick met Hall-senso		Vrije worp bij basketba Qled-tv Practicum warmtestrali Om het hoekje Speciale fluit	ECG in MRI	mte Schakeling van LED`s Parkeren in de ruimte Radon in de kelder Parasailing Compton