2002 年计算机数学基础

 \equiv

1.

(1) $A/R_1 = \{\{a, b, e\}, \{c\}, \{d\}\}.$

2.

(1) 每个顶点都偶数度的, 所以 G 是欧拉图。

(2) G 不是哈密顿图。理由如下:对 G 中顶点进行标号(见下图),反设存在哈密顿圈 Γ ,因为顶点 a 的度为 2,所以它在 Γ 中必与它仅有的两个顶点相邻,也即, g 与 a 在 Γ 中相邻。同理, g 与 b, c 也在 Γ 中相邻。但 g 在 Γ 中只能出现一次,从而至多只能与两个顶点相邻,矛盾。

(3) G 是可平面的。右图是 G 的一个平面嵌入。

3.

(1)

证明: 若不然,则有多于 $\frac{n}{2}$ 个顶点的度数大于 $\frac{4m}{n}$,从而总度数大于 $\frac{4mn}{2n}=2m$,与图论基本定理矛盾。

(2)

证明:按如下方式构造点独立集 V^* :任取一个度数不超过 $\frac{4m}{n}$ 的顶点 v_1 加入 V^* 。若 $V(G)-V^*$ 中仍存在度数不超过 $\frac{4m}{n}$ 且与 V^* 中任何顶点都不相邻的顶点 v_i ,则将 v_i 加入 V^* 。重复这一过程直至 G 中不再存在这样的顶点。设 $|V^*|=k$,下面证明 $k\geq \frac{n/2}{1+4m/n}$ 。

考虑 $N_g(V^*) = \{v \mid v \in V(G) \land \exists u(u \in V^* \land (u,v) \in E(G))\}$ 。由于 V^* 中每一个顶点的度