

Learning to Restore ssTEM Images from Deformation and Corruption

Wei Huang, Chang Chen, Zhiwei Xiong^(⊠), Yueyi Zhang, Dong Liu, and Feng Wu

University of Science and Technology of China zwxiong@ustc.edu.cn

> Scanning EM (SEM) & Transmission EM (TEM)

> Full Adult Fly Brain (FAFB)

Main artifacts in FAFB

Miss sections (MS, 4.4%)

Staining Precipitates (SP, 2.6%)

- ➤ The characteristic of Support Film Folds (SFF) degradation
 - Deformation
 - Corruption

A cartoon image as an intuitive example to demonstrate SFF degradation.

Three consecutive ssTEM images where the middle one is with SFF artifacts.

- > The influence of SFF degradation
 - Image quality
 - Subsequent tasks: alignment, segmentation and so on

One ssTEM image with SFF degradation

Related Work

- ➤ EM image restoration
 - Denoising [1]
 - Axial deformation [2]
 - Axial slice thickness artifacts [3]

- [1]. Roels, J., et al. An overview of state-of-the-art image restoration in electron microscopy. Journal of Microscopy 2018.
- [2]. Saalfeld, S., et al. Elastic volume reconstruction from series of ultra-thin microscopy sections. Nature Methods 2012.
- [3]. Hanslovsky, P., et al. Image-based correction of continuous and discontinuous non-planar axial distortion in serial section microscopy. Bioinformatics 2017.

Related Work

- > EM image restoration
 - Denoising [1]
 - Axial deformation [2]
 - Axial slice thickness artifacts [3]
- Image inpainting
 - Partial Convolution (PC) [4]

- [1]. Roels, J., et al. An overview of state-of-the-art image restoration in electron microscopy. Journal of Microscopy 2018.
- [2]. Saalfeld, S., et al. Elastic volume reconstruction from series of ultra-thin microscopy sections. Nature Methods 2012.
- [3]. Hanslovsky, P., et al. Image-based correction of continuous and discontinuous non-planar axial distortion in serial section microscopy. Bioinformatics 2017.
- [4]. Liu, G., et al. Image inpainting for irregular holes using partial convolutions. ECCV 2018.

Related Work

- > EM image restoration
 - Denoising [1]
 - Axial deformation [2]
 - Axial slice thickness artifacts [3]
- Image inpainting
 - Partial Convolution (PC) [4]
- > Substitution/Interpolation
 - Substitution [5]
 - Video frame interpolation [6]
- [1]. Roels, J., et al. An overview of state-of-the-art image restoration in electron microscopy. Journal of Microscopy 2018.
- [2]. Saalfeld, S., et al. Elastic volume reconstruction from series of ultra-thin microscopy sections. Nature Methods 2012.
- [3]. Hanslovsky, P., et al. Image-based correction of continuous and discontinuous non-planar axial distortion in serial section microscopy. Bioinformatics 2017.
- [4]. Liu, G., et al. Image inpainting for irregular holes using partial convolutions. ECCV 2018.
- [5]. Li, P.H., et al. Automated reconstruction of a serial-section em drosophila brain with flood-filling networks and local realignment. bioRxiv 2019.
- [6]. Niklaus, S., et al. Video frame interpolation via adaptive separable convolution. ICCV 2017.

Contributions

- Challenges
 - SFF exhibits drastically different characteristics
 - There is no corresponding groundtruth for the degraded ssTEM image

Contributions

- Challenges
 - SFF exhibits drastically different characteristics
 - There is no corresponding groundtruth for the degraded ssTEM image
- Motivation
 - SFF modeling
 - Deep restoration network

Contributions

- Challenges
 - SFF exhibits drastically different characteristics
 - There is no corresponding groundtruth for the degraded ssTEM image
- Motivation
 - SFF modeling
 - Deep restoration network
- Contributions
 - Comprehensive analysis on the statistics of SFF
 - Synthesis algorithm to generate degraded/groundtruth image pairs
 - The first learning-based framework for ssTEM image restoration from SFF artifacts
 - Experiments on both image restoration quality and neuron segmentation accuracy

SFF Modeling

- Statistical analysis
 - Slope
 - Amplitude

SFF Modeling

- > SFF simulation
 - Deformation
 - Corruption

> Artifacts detection

- Interpolation
- Unfolding
- Fusion

Experiments

- Data preparation
 - Full Adult Fly Brain (FAFB) [1]
 - CREMI Challenge [2]

Experiments

- > Data preparation
 - Full Adult Fly Brain (FAFB) [1]
 - CREMI Challenge [2]
- > Implementation details
 - Training: 512×512, 4000 samples selected from FAFB
 - Test: 2048× 2048, synthetic data on CREMI and real data on FAFB

Experiments

- > Data preparation
 - Full Adult Fly Brain (FAFB) [1]
 - CREMI Challenge [2]
- > Implementation details
 - Training: 512×512, 4000 samples selected from FAFB
 - Test: 2048× 2048, synthetic data on CREMI and real data on FAFB
- > Evaluation metric
 - Fidelity metric: PSNR and SSIM
 - Perceptual metric: Frechet Inception Distance (FID)
 - Segmentation metric:
 - Variation of Information (VOI)
 - Adapted Rand Error (ARAND)

Synthetic data results

CREMI	Method Metric	d SFF	Sub. [16]	PC [17]	PC-unfold	Interp [22	l] Ours
A	$\mathrm{PSNR}\uparrow$	15.57	19.57	16.35	18.01	22.70	26.20
	$SSIM \uparrow$	0.5615	0.4353	0.5665	0.7517	0.6595	0.8261
	$\mathrm{FID}\downarrow$	229.71	33.30	36.83	62.44	144.69	27.80
	$VOI\downarrow$	2.6780	1.2505	2.6440	0.9507	0.8967	0.7833
	$ARAND \downarrow$	0.4971	0.2881	0.4783	0.1442	0.1518	0.0968
В	PSNR ↑	15.11	18.16	16.43	18.17	22.22	26.81
	SSIM \uparrow	0.5842	0.3586	0.6161	0.7532	0.6041	0.8202
	$\mathrm{FID}\downarrow$	260.27	50.54	41.78	53.57	175.26	38.17
	VOI ↓	4.0629	3.8864	3.7147	3.4817	3.1898	3.0957
	$ARAND\downarrow$	0.5806	0.5855	0.3931	0.4355	0.3680	0.3517
С	PSNR ↑	14.52	17.74	15.09	16.97	21.96	25.74
	SSIM \uparrow	0.4988	0.3066	0.5037	0.7257	0.5766	0.7957
	$\mathrm{FID}\downarrow$	335.38	42.70	44.60	73.33	168.13	42.26
	VOI ↓	4.5572	3.6755	4.5789	3.4882	3.1606	3.0825
	$ARAND \downarrow$	0.4244	0.4280	0.4308	0.3309	0.2835	0.2789
Inference time (s)		*	*	0.1235	0.5130	0.0075	0.4251

Synthetic data results

Synthetic data results

Real data results

Real data results

Segmentation results

Ablation Study

> Function of module

Ablation results for each module in the proposed restoration framework.

Interpolation	Unfolding	Fusion	PSNR	SSIM	FID	VOI	Rand
√						0.8967	
\checkmark	\checkmark		1			0.9416	
\checkmark		\checkmark				0.8301	
	\checkmark	\checkmark	25.94	0.8058	39.96	0.8534	0.1259
✓	✓	✓	26.20	0.8261	27.80	0.7833	0.0968

Ablation Study

Regularization of corruption

Conclusions

- > Analysis and modeling of SFF degradation
- ➤ The first learning-based restoration framework
- > The superiority of performance on both synthetic and real data
- > Benefit for the future research of neuron morphology and connectomics

Thanks for your listening!

