Material auxiliar: Solo una calculadora no programable. Tiempo: 2 horas.

Deben realizarse todos los problemas aunque se haya seguido la evaluación continua.

CUESTIÓN.

Hasta 1 punto. La respuesta ha de ser razonada: no se puntuará si no se explica la contestación.

Si la amplitud del movimiento de un oscilador armónico simple se triplica, ¿Por qué factor aumentará su energía?

Solución:

Solución: la energía aumenta con el cuadrado de la amplitud por lo que incrementará 9 veces.

PROBLEMAS. Puntuación hasta 3 puntos cada uno

No es suficiente con escribir ecuaciones; debe desarrollar las soluciones, justificar hipótesis y explicar en detalle los pasos. Cuide dimensiones y unidades, y los órdenes de magnitud de los resultados que obtenga.

- 1.— Un bloque de masa M_1 se encuentra en reposo sobre un plano inclinado $\alpha = 30^{\circ}$ de altura H. El bloque se encuentra atado a una cuerda que pasa por una polea y el otro extremo de la cuerda está atado a otro bloque M_2 , que tiene la misma masa. La longitud total de la cuerda permite que ambas masas estén a la misma altura en H/2. Ambos bloques están en reposo y se sueltan en el instante t=0, de manera que el bloque de masa M_1 comienza a deslizarse por el plano inclinado.
 - (a) Calcule la aceleración del bloque M_2 en el instante t=0.
 - (b) ¿Cuál de las masas irá hacia abajo? Calcule el instante en que alcanzará el suelo.
- (c) Cuando la masa que va hacia abajo (según se obtiene en el apartado anterior) llega al suelo y se para, la masa que estaba subiendo seguirá subiendo hacia arriba ¿llegará hasta la polea? En caso de que no llegue hasta la polea calcule la distancia vertical al suelo que alcanza al pararse.

Considere que la masa de la cuerda es despreciable y también los tamaños de la polea y de los bloques. Datos: $M_1 = M_2 = 1 \,\mathrm{kg}, \, H = 1 \,\mathrm{m}, \, g = 9.8 \,\mathrm{m\,s^{-2}}$

Solución:

Consideramos en principio que la masa M_2 iría hacia abajo, las ecuaciones del movimiento de ambas masas es:

$$M_1 a = T - M_1 g \operatorname{sen} \alpha,$$

$$M_2 a = M_2 g - T,$$

$$a = \frac{g(M_2 - M_1 \operatorname{sen} \alpha)}{M_1 + M_2}$$

Como $M_1 = M_2$ y sen $\pi/3 = 1/2$ se obtiene:

$$a = \frac{g}{4} = 2.5 \,\mathrm{m \, s}^{-2}$$

(b) Hemos obtenido a > 0, por tanto el bloque M_2 irá hacia abajo como supusimos en principio. El tiempo que tarda el bloque M_2 en alcanzar el suelo es

$$H/2 = at^2/2,$$

 $t = \sqrt{\frac{H}{a}} = \sqrt{\frac{4H}{g}} = 0.64 \,\mathrm{s}$

(c) Como la aceleración de ambas masas es la misma desde el inicio hasta el momento del choque de la masa M_2 contra el suelo, la masa M_1 recorrerá una distancia igual sobre el plano inclinado $s = at^2/2 = H/2$. La velocidad de la masa M_2 es la misma que la de M_1 y se puede obtener a partir de la fórmula

$$v_f^2 = v_0^2 + 2as = aH,$$

 $v_f = \sqrt{\frac{gH}{4}} = 1.6 \,\mathrm{m \, s}^{-2}$

Para calcular el espacio recorrido utilizamos que, una vez golpea el suelo la masa M_2 , la aceleración de la masa M_1 es ahora $a_1 = g \operatorname{sen} \alpha = g/2$. El espacio que recorre cuando golpea el suelo se obtiene por la fórmula $0 = v_f^2 - 2a_1s$, entonces

$$s_1 = \frac{v_f^2}{2a_1} = \frac{gH}{4} \frac{1}{2(q/2)} = \frac{H}{4} = 0.25 \,\mathrm{m}$$

El espacio recorrido total d es la suma d=H/2+H/4=3H/4. La altura $d=h \sec \alpha = h/2 = 3H/8$

$$h = \frac{3H}{8} = 0.38 \,\mathrm{m}$$

- 2.— La aceleración de la gravedad en la superficie de un planeta desconocido de radio 3×10^3 km es 6.0 m s⁻². Un satélite, cuya masa es 2.0×10^2 kg, situado a una altura h del planeta describe una órbita circular con una aceleración de 5.92 m s⁻².
 - (a) Determinar la densidad del planeta.
 - (b) ¿Cuál es la altura de la orbita del satélite?
 - (c) ¿Qué energía será necesario aportar al satélite para que pueda escapar de la gravedad del planeta?

Datos: $G = 6.67 \times 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2}$.

Solución: (a) A partir del valor del campo gravitatorio en la superficie del planeta se puede determinar la masa del mismo:

$$g_P = G \frac{M_P}{R_P^2} \longrightarrow M_P = \frac{g_p R_P^2}{G} = 8.1 \times 10^{23} \,\mathrm{kg}$$

y la densidad del planeta es

$$\rho = \frac{M_P}{V_P} = \frac{M_P}{\frac{4}{3}\pi R_P^3} = 7.16 \times 10^3 \,\mathrm{kg} \,\mathrm{m}^{-3}$$

(b) Aplicando la segunda ley de Newton tenemos

$$m_s a_s = \frac{Gm_s M_P}{r^2} \longrightarrow r = \sqrt{\frac{GM_P}{a_s}} = 3.02 \times 10^6 \,\mathrm{m}$$

donde R es la distancia a la que se encuentra el satélite medida desde el centro del planeta. Por tanto,

$$h = r - R_P = 2.1 \times 10^4 \,\mathrm{m}$$

(c) En primer lugar es necesario conocer la velocidad del satélite en su órbita circular. Aplicando de nuevo la segunda ley de Newton

$$\frac{Gm_sM_P}{r^2} = m\frac{v_s^2}{r} \longrightarrow v_s = \sqrt{\frac{GM_P}{r}}$$

Aplicando la conservación de la energía mecánica y teniendo en cuenta que velocidad de escape corresponde a una energía total nula tenemos

$$E_i = E_F \longrightarrow \frac{1}{2} m_s v_s^2 - G \frac{M_P m_s}{r} + E = 0 \longrightarrow E = G \frac{M_P m_s}{2r} = 1,79 \times 10^9 \,\mathrm{J}$$

siendo E la energía que hay que aportar al satélite para que escape de la gravedad del planeta.

- 3.— Un sistema formado por un gas ideal monoatómico se encuentra en un estado inicial A, a una temperatura de 300 K y una presión de 1 atmósfera ocupando 60 litros de volumen. Experimenta una serie de transformaciones que conforman proceso cíclico A-B-C-D-A, que es un motor térmico:
 - $1.A \longrightarrow B$ Compresión adiabática hasta la mitad de su volumen inicial.
- 2. $B \longrightarrow C$ Proceso isóbaro: Expansión a presión constante hasta un volumen que es 1,5 veces el volumen del estado B.
 - 3. $C \longrightarrow D$ Expansión adiabática hasta el volumen inicial.
 - 4. $D \longrightarrow A$ Proceso isócoro: Proceso a volumen constante hasta el estado A inicial.

AYUDA: Para que pueda resolver el ciclo, calcule primero las variables de estado (p, V, T) en cada estado del diagrama. Haga una tabla en la que figuren todas recogidas. Dibuje el ciclo termodinámico.

- a) Estudie en cada uno de los procesos el calor, el trabajo y el cambio en energía interna. Haga una tabla con los resultados.
- b) Calcule el rendimiento del ciclo termodinámico η y el que tendría un ciclo de Carnot trabajando entre las temperaturas mayor y menor de este ciclo. Halle la proporción entre el rendimiento obtenido y el que teóricamente tendría un ciclo de Carnot operando entre las mismas temperaturas extremas, η/η_{Carnot} .

Datos: R = 0.082 atm L mol⁻¹ K⁻¹ = 8.314 J mol⁻¹ K⁻¹

1 atm=101300 Pa**Solución:**

En primer lugar determinamos el número de moles del gas

$$n = \frac{p_A V_A}{RT_A} = 2{,}43902$$
moles.

Hallamos las variables del ciclo, generalmente conocemos una que estará relacionada con la del estado anterior por el tipo de transformación y otra que es un dato del problema, la tercera la calculamos gracias a la ecuación de estado de los gases ideales. Procedemos en cada uno de los pasos

$$A \longrightarrow B$$

$$V_B = V_B/2 = 30$$
L $p_B = p_A \left(\frac{V_A}{V_B}\right)^{\gamma} = 3,1748$ atm $T_B = \frac{p_B V_B}{nR} = 476,22$ K

$$B \longrightarrow C$$

$$V_C = 1.5V_A = 45L$$
 $p_C = p_B = 3.1748atm$ $T_C = \frac{p_C V_C}{nR} = 714.33K$

$$C \longrightarrow D$$

$$V_D = V_A = 60$$
L $p_D = p_C \left(\frac{V_C}{V_D}\right)^{\gamma} = 1,96556$ atm $T_D = \frac{p_C V_C}{nR} = 589,667$ K

En las tablas se recogen los valores de las variables de estado que definen el ciclo.

Estado	Volumen V	Presión P	Temeperatura T
Α	60	1	300
В	30	3.1748	476.22
С	45.	3.1748	714.33
D	60	1.96556	589.667

Cantidad	Α	В	С	D
Volumen V	60	30	45.	60
Presión P	1	3.1748	3.1748	1.96556
Temeperatura T	300	476.22	714.33	589.667

En la figura se muestra representado el ciclo termodinámico.

(a) A continuación se recogen las expresiones de los calores, trabajos y cambios en la energía interna de un estado inicial A a otro estado final B en función del proceso termodinámico que esté teniendo lugar. En cada proceso del problema es necesario tener en cuenta el tipo de transformación y cuales son los estado inicial y final.

Utilizamos el primer principio de la termodinámica con el criterio de signos empleado en el texto base de Tipler-Mosca

$$\Delta U = W + Q$$

así el calor es positivo cuando este es agregado al sistema y el trabajo es positivo cuando es realizado sobre el sistema. De este modo si el sistema realiza trabajo sobre el exterior -como en una expansión- el trabajo es negativo.

El trabajo en un **proceso isóbaro** puede calcularse como

$$W_{A\longrightarrow B} = \int_A^B dW = -\int_A^B pdV = -p\int_A^B dV = -p_A (V_B - V_A).$$

El cambio en la energía interna puede calcularse fácilmente como

$$\Delta U_{A\longrightarrow B} = nC_v (T_B - T_A)$$
.

El calor lo calculamos haciendo uso del primer principio de la termodinámica

$$Q_{A\longrightarrow B} = \Delta U_{A\longrightarrow B} - W_{A\longrightarrow B}$$
.

El trabajo en un **proceso isotermo** puede calcularse como

$$W_{A\longrightarrow B} = \int_A^B dW = -\int_A^B pdV = -\int_A^B \frac{nRT}{V}dV = -nRT_A \ln\left(\frac{V_B}{V_A}\right).$$

El cambio en la energía interna puede saberse fácilmente que es cero

$$\Delta U_{A\longrightarrow B} = nC_v (T_A - T_B) = 0.$$

El calor lo calculamos de nuevo haciendo uso del primer principio de la termodinámica

$$Q_{A\longrightarrow B} = -W_{A\longrightarrow B}$$

El trabajo en un **proceso isócoro** el trabajo es cero ya que no hay variación de volumen

$$W_{A\longrightarrow B} = \int_{A}^{B} dW = -\int_{A}^{B} pdV = 0.$$

El cambio en la energía interna puede calcularse fácilmente como

$$\Delta U_{A \longrightarrow B} = nC_v (T_B - T_A)$$
.

El calor lo calculamos haciendo uso del primer principio de la termodinámica

$$Q_{A\longrightarrow B}=\Delta U_{A\longrightarrow B}.$$

El calor en un proceso adiabático es cero por su propia definición

$$Q_{A\longrightarrow B}=0$$

El cambio en la energía interna puede calcularse fácilmente como

$$\Delta U_{A\longrightarrow B} = nC_v (T_B - T_A)$$
.

El trabajo lo calculamos haciendo uso del primer principio de la termodinámica

$$W_{A\longrightarrow B} = \Delta U_{A\longrightarrow B}.$$

 $1.A \longrightarrow B$ Compresión adiabática hasta la mitad de su volumen.

El calor en el primer proceso es

$$Q_{A\longrightarrow B}=0$$
J.

mientras que el cambio en la energía interna es

$$\Delta U_{A \longrightarrow B} = nC_v (T_B - T_A) = 5360,11$$
J

lo que nos arroja por el principio de conservación de la energía que el trabajo es

$$W_{A \longrightarrow B} = \Delta U_{A \longrightarrow B} - Q_{A \longrightarrow B} = 5360,11$$
J

2. $B \longrightarrow C$ Proceso **isóbaro** hasta un volumen que es 1.5 veces el volumen del estado B. El trabajo en el segundo proceso es

$$W_{B \longrightarrow C} = -p_B (V_C - V_B) = -4824,11 \text{J}.$$

mientras que el cambio en la energía interna es

$$\Delta U_{B \longrightarrow C} = nC_v (T_C - T_B) = 7242,61 \text{J}$$

lo que nos arroja por el principio de conservación de la energía que el calor es

$$Q_{B\longrightarrow C} = \Delta U_{B\longrightarrow C} - W_{B\longrightarrow C} = 12066,7J$$

3. $C \longrightarrow D$ Expansión adiabática hasta el volumen inicial.

El calor en el primer proceso es

$$Q_{C \longrightarrow D} = 0$$
J.

mientras que el cambio en la energía interna es

$$\Delta U_{C\longrightarrow D} = nC_v (T_D - T_C) = -3791.9J$$

lo que nos arroja por el principio de conservación de la energía que el trabajo es

$$W_{C \longrightarrow D} = \Delta U_{C \longrightarrow D} - Q_{C \longrightarrow D} = -3791,9J$$

4. $D \longrightarrow A$ Proceso **isócoro** hasta el estado A inicial.

El trabajo es cero ya que no hay variación de volumen

$$W_{D\longrightarrow A} = \int_{D}^{A} dW = -\int_{D}^{A} pdV = 0.$$

El cambio en la energía interna puede calcularse fácilmente como

$$\Delta U_{D \to A} = nC_v (T_D - T_A) = -8810,82 \text{J}.$$

El calor lo calculamos haciendo uso del primer principio de la termodinámica

$$Q_{D\longrightarrow A} = \Delta U_{D\longrightarrow A} = -8810,82J.$$

A continuación se muestra toda la información calculada en forma de tablas.

Proceso	Trabajo	Calor	Energía
AB	5360.11	0	5360.11
BC	-4824.11	12 066.7	7242.61
CD	-3791.9	0	-3791.9
DA	0	-8810.82	-8810.82

Cantidad	AB	BC	CD	DA
Trabajo W	5360.11	-4824.11	-3791.9	0
Calor Q	0	12 066.7	0	-8810.82
Energía	5360.11	7242.61	-3791.9	-8810.82

(b) El trabajo realizado por el sistema es igual al área encerrada bajo la curva y es la suma de los trabajos de los cuatro procesos realizados

$$W_T = W_{A \longrightarrow B} + W_{B \longrightarrow C} + W_{C \longrightarrow D} + W_{D \longrightarrow A} = -3255,91$$
J

que sale negativo ya que es un trabajo que el sistema ha realizado sobre el exterior.

El calor absorbido es la suma de los calores positivos del proceso, ya que los negativos son cedidos al exterior:

$$Q_{abs} = 12066,7J.$$

El rendimiento del ciclo termodinámico es

$$\eta = \frac{|W_T|}{Q_{abs}} = 0.269825.$$

mientras que el rendimiento de un ciclo de Carnot trabajando a temperaturas equivalentes es

$$\eta = 1 - \frac{T_A}{T_C} = 0,580026,$$

y el ratio pedido es

$$\eta/\eta_{Carnot} = 0.465195.$$