Data analysis

MD

1/24/23

First import, tidy, ...

```
library(tidyverse)
-- Attaching packages ----- tidyverse 1.3.2 --
v ggplot2 3.4.0 v purrr 1.0.1
v tibble 3.1.8 v dplyr 1.0.10
v tidyr 1.2.1
                 v stringr 1.5.0
v readr 2.1.3
                 v forcats 0.5.2
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
  filename1 <- "exp_april_2022_RESULTS_2022-05-02-0622.csv"
  filename2 <- "exp_april_2022_RESULTS_2022-05-09-0636.csv"
  data1 <- read_csv2(filename1)</pre>
i Using "','" as decimal and "'.'" as grouping mark. Use `read_delim()` for more control.
Rows: 2273 Columns: 9-- Column specification ------
Delimiter: ";"
chr (4): materials, is_test_trial, condition, content
dbl (5): participant, item, position, question order, rating1
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

data2 <- read_csv2(filename2)</pre>

summary(data1)

materials	participant	is_test_trial	item
Length:2273	Min. : 4.00	Length:2273	Min. : 1.000
Class :character	1st Qu.:15.00	Class :character	1st Qu.: 3.000
Mode :character	Median :27.00	Mode :character	Median : 5.000
	Mean :26.65		Mean : 6.101
	3rd Qu.:39.00		3rd Qu.: 8.000
	Max. :48.00		Max. :18.000
condition	position	question order	rating1
Length:2273	Min. : 1.00	Min. :1 Min	1. :1.000
Class :character	1st Qu.:16.00	1st Qu.:1 1st	Qu.:1.000
Mode :character	Median :32.00	Median :1 Med	lian :4.000
	Mean :32.11	Mean :1 Mea	ın :3.996
	3rd Qu.:48.00	3rd Qu.:1 3rd	l Qu.:7.000
	Max. :64.00	Max. :1 Max	:. :7.000

content
Length: 2273
Class: charac

Class :character
Mode :character

max(data1\$participant)

[1] 48

summary(data2)

```
materials
                                  is_test_trial
                   participant
                                                          item
                                                     Min.
Length:4162
                  Min.
                        : 1.00
                                  Length:4162
                                                            : 1.000
Class :character
                   1st Qu.:22.00
                                  Class :character
                                                     1st Qu.: 3.000
Mode :character
                  Median :40.00
                                  Mode :character
                                                     Median : 5.000
                  Mean
                        :41.85
                                                     Mean : 6.107
                   3rd Qu.:62.00
                                                     3rd Qu.: 8.000
                  Max.
                                                     Max.
                                                            :18.000
                         :84.00
                     position
                                                    rating1
 condition
                                  question order
Length:4162
                  Min.
                         : 1.00
                                  Min.
                                         :1
                                                 Min.
                                                        :1.000
Class : character
                   1st Qu.:16.00
                                  1st Qu.:1
                                                 1st Qu.:1.000
Mode : character
                  Median :32.00
                                  Median :1
                                                 Median :3.000
                   Mean
                         :32.49
                                  Mean :1
                                                 Mean
                                                        :3.862
                   3rd Qu.:48.00
                                  3rd Qu.:1
                                                 3rd Qu.:7.000
                                  Max. :1
                   Max.
                         :64.00
                                                 Max.
                                                        :7.000
```

content Length:4162

Class :character
Mode :character

```
data2.tmp <- data2 %>%
  mutate(data2, participant = participant + max(data1$participant))
data2 <- data2.tmp
summary(data1)</pre>
```

materials	participant	is_test_trial	item		
Length:2273	Min. : 4.00	Length:2273	Min. : 1.000		
Class :character	1st Qu.:15.00	Class :character	1st Qu.: 3.000		
Mode :character	Median :27.00	Mode :character	Median : 5.000		
	Mean :26.65		Mean : 6.101		
	3rd Qu.:39.00		3rd Qu.: 8.000		
	Max. :48.00		Max. :18.000		
condition	position	question order	rating1		
Length:2273	Min. : 1.00	Min. :1 Min	. :1.000		

Class : character 1st Qu.:16.00 1st Qu.:1.000 1st Qu.:1 Mode :character Median: 32.00 Median: 1 Median :4.000 Mean :32.11 Mean :1 Mean :3.996 3rd Qu.:48.00 3rd Qu.:1 3rd Qu.:7.000 Max. :64.00 Max. :7.000 Max. :1

content
Length:2273
Class :character
Mode :character

summary(data2)

materials	participant	is_test_trial	item
Length:4162	Min. : 49.00	Length: 4162	Min. : 1.000
Class :character	1st Qu.: 70.00	Class :character	1st Qu.: 3.000
Mode :character	Median : 88.00	Mode :character	Median : 5.000
	Mean : 89.85		Mean : 6.107
	3rd Qu.:110.00		3rd Qu.: 8.000
	Max. :132.00		Max. :18.000
condition	position	question order	rating1
Length:4162	Min. : 1.00	Min. :1 Mi	in. :1.000
Class :character	1st Qu.:16.00	1st Qu.:1 1s	st Qu.:1.000
Mode :character	Median :32.00	Median :1 Me	edian :3.000
	Mean :32.49	Mean :1 Me	ean :3.862
	3rd Qu.:48.00	3rd Qu.:1 3r	d Qu.:7.000
	Max. :64.00	Max. :1 Ma	ax. :7.000

content
Length:4162
Class :character
Mode :character

data2\$demographic1 <- as.numeric(data2\$demographic1)</pre>

data3 <- bind_rows(data1, data2)</pre>

```
data3.tmp$participant <- as.factor(data3.tmp$participant)

levels(data3.tmp$participant) <- paste(1:length(levels(data3.tmp$participant)), sep="")

data3 <- data3.tmp

summary(data3)</pre>
```

mater	rials	parti	cip	ant	is_tes	st_trial		it	em
Length	n:6435	1	:	64	Length	n:6435		Min.	: 1.000
Class	:character	3	:	64	Class	:characte	r	1st Qu.	: 3.000
Mode	:character	4	:	64	Mode	:characte	r	Median	: 5.000
		5	:	64				Mean	: 6.105
		6	:	64				3rd Qu.	: 8.000
		7	:	64				Max.	:18.000
		(Other):6	051					
condi	ition	pos	iti	on	quest	cion order		rating1	
Length	n:6435	Min.	:	1.00	Min.	:1	Miı	n. :1.	00
Class	:character	1st Qu	.:1	6.00	1st (Qu.:1	1st	t Qu.:1.	00
Mode	:character	Median	:3	2.00	Media	an :1	Med	dian :4.	00
		Mean	:3	2.35	Mean	:1	Mea	an :3.	91
		3rd Qu	.:4	8.00	3rd 0	Qu.:1	3rd	d Qu.:7.	00
		Max.	:6	4.00	Max.	:1	Max	x. :7.	00

content
Length:6435
Class :character
Mode :character

```
write_csv2(data3, "merged_results.csv")
data <- data3</pre>
```

- ullet now we add demographics
- TODO: some graphs, etc.

i Using "','" as decimal and "'.'" as grouping mark. Use `read_delim()` for more control.

Rows: 88 Columns: 14

-- Column specification ------

Delimiter: ";"

chr (4): demographic2, demographic4, demographic5, demographic6 dbl (4): participant, time taken sec, demographic1, demographic3

lgl (4): id, region_Morava, age_under_27, reading_time_over_60_minutes

dttm (2): trial start utc, trial end utc

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

summary(data_demographics)

participant	id	trial start utc
Min. : 1.00 Mo	de:logical	Min. :2022-04-28 11:52:48
1st Qu.:22.75 NA	's:88	1st Qu.:2022-04-29 15:05:01
Median :44.50		Median :2022-05-02 08:47:37
Mean :44.50		Mean :2022-05-01 12:19:56
3rd Qu.:66.25		3rd Qu.:2022-05-02 18:32:05
Max. :88.00		Max. :2022-05-04 07:28:26
trial end utc		time taken sec demographic1
Min. :2022-04-28	12:00:07	Min. : 269 Min. :19.00
1st Qu.:2022-04-29	15:21:27	1st Qu.: 780 1st Qu.:21.00
Median :2022-05-02	09:00:52	Median : 1005 Median :23.00
Mean :2022-05-01	13:00:20	Mean : 2423 Mean :25.59
3rd Qu.:2022-05-02	18:50:27	3rd Qu.: 1614 3rd Qu.:25.00
Max. :2022-05-04	07:41:37	Max. :72552 Max. :71.00
		NA's :1
demographic2	demograph	nic3 demographic4 demographic5
Length:88	Min. : 0	0.000 Length:88 Length:88
Class :character	1st Qu.: 1	1.000 Class:character Class:character
Mode :character	Median : 1	1.000 Mode :character Mode :character
	Mean : 1	1.425
	3rd Qu.: 2	2.000
	Max. :10	0.000

demographic6 region_Morava age_under_27
Length:88 Mode :logical Mode :logical

Class :character FALSE:59 FALSE:16 Mode :character TRUE :29 TRUE :72

reading_time_over_60_minutes

Mode :logical FALSE:46 TRUE :42

```
data_demographics$participant <- as.factor(data_demographics$participant)

data_demographics2 <- data_demographics %>%
    select(participant, region_Morava, age_under_27, reading_time_over_60_minutes, demographics.tmp <- data %>%
    left_join(data_demographics2, by = "participant")

summary(data.tmp)
```

materials	parti	cipant	is_test_trial	item
Length:6435	1	: 64	Length:6435	Min. : 1.000
Class :character	3	: 64	Class : characte	r 1st Qu.: 3.000
Mode :character	4	: 64	Mode :characte	r Median: 5.000
	5	: 64		Mean : 6.105
	6	: 64		3rd Qu.: 8.000
	7	: 64		Max. :18.000
	(Other):6051		
condition	pos	ition	question order	rating1
Length:6435	Min.	: 1.00	Min. :1	Min. :1.00
Class :character	1st Qu	.:16.00	1st Qu.:1	1st Qu.:1.00
Mode :character	Median	:32.00	Median :1	Median :4.00
	Mean	:32.35	Mean :1	Mean :3.91

```
3rd Qu.:48.00 3rd Qu.:1 3rd Qu.:7.00 Max. :64.00 Max. :1 Max. :7.00
```

content region_Morava age_under_27
Length:6435 Mode :logical Mode :logical
Class :character FALSE:3714 FALSE:972
Mode :character TRUE :1633 TRUE :4375
NA's :1088 NA's :1088

reading_time_over_60_minutes demographic1
Mode :logical Min. :19.00
FALSE:2831 1st Qu.:21.00
TRUE :2516 Median :22.00
NA's :1088 Mean :25.34
3rd Qu.:25.00
Max. :71.00
NA's :1152

data <- data.tmp

• here we continue with filtering

```
items <- filter(data, grepl("^Accept", materials))
practice <- filter(data, grepl("^Practice", materials))

fillers_good <- filter(data, grepl("^Filler.*Good", materials))
fillers_bad <- filter(data, grepl("^Filler.*Bad", materials))

fillers <- filter(data, grepl("^Filler.*Bad", materials) | grepl("^Filler.*Good", material)

nrow(fillers_good) + nrow (fillers_bad) == nrow (fillers)</pre>
```

[1] TRUE

```
nrow(items) + nrow(practice) + nrow(fillers) == nrow(data)
```

[1] TRUE

• fillers

```
group_by(fillers, condition) %>%
       summarise(mean(rating1), median = median(rating1))
# A tibble: 2 x 3
  condition `mean(rating1)` median
                        <dbl> <dbl>
  <chr>
1 bad
                         2.06
                         5.92
                                     7
2 good
  by_participant_and_condition <- group_by(fillers, participant, condition)</pre>
  diff_fillers <- summarise(by_participant_and_condition, mean = mean(rating1, na.rm=TRUE),</pre>
`summarise()` has grouped output by 'participant'. You can override using the
 .groups` argument.
  diff_fillers.tmp <- summarise(diff_fillers, difference = mean[2]-mean[1])</pre>
  ggplot(data = diff_fillers.tmp) +
    geom_point(mapping = aes(x = participant, y = difference))
     difference
        0 -
       -2 -
          1234567891011245875222222222223333535362042255255353620426535535355355355355355355567552455755535553555555556
                                         participant
```

• erase all under the difference =< 2vector_for_removing <- filter(diff_fillers.tmp, difference <= 3)</pre> vector_for_removing\$participant [1] 1 10 14 41 42 44 45 48 57 58 61 69 70 72 73 85 87 89 [20] 101 104 105 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 105 clean items <- filter(items, !(participant %in% vector for removing\$participant))</pre> clean_fillers <- filter(fillers, !(participant %in% vector_for_removing\$participant))</pre> • check ((select(items, participant) %>% unique %>% nrow)-(select(clean_items, participant) %>% nrow) == nrow(vector_for_removing)) [1] TRUE • all clean items <- clean_items</pre> fillers <- clean_fillers items <- group_by(items, participant, condition)</pre> items # A tibble: 2,406 x 13 participant, condition [804] mater~1 parti~2 is_te~3 item condi~4 posit~5 quest~6 rating1 content regio~7 <chr> <fct> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <chr> 1 Accept~ 3 1 ATop 43 1 "*Kont~ TRUE no 2 Accept~ 3 2 ZBott 45 1 1 "*Kont~ TRUE no

47

61

51

55

1

1

1

1

3 ZTop

4 ABott

5 ATop

6 ZBott

3 Accept~ 3

4 Accept~ 3

5 Accept~ 3

6 Accept~ 3

no

no

no

no

1 "*Kont~ TRUE

1 "*Kont~ TRUE

7 "*Kont~ TRUE

1 "*Kont~ TRUE

```
7 Accept~ 3
                               7 ZTop
                                               41
                                                        1
                                                                 1 "*Kont~ TRUE
                   no
8 Accept~ 3
                               8 ABott
                                               53
                                                                 7 "*Kont~ TRUE
                   no
                                                        1
9 Accept~ 3
                               9 ATop
                                               63
                                                        1
                                                                 3 "*Kont~ TRUE
                   no
10 Accept~ 3
                              10 ZBott
                                               59
                                                        1
                                                                 2 "*Kont~ TRUE
                   no
# ... with 2,396 more rows, 3 more variables: age_under_27 <1gl>,
   reading_time_over_60_minutes <lgl>, demographic1 <dbl>, and abbreviated
   variable names 1: materials, 2: participant, 3: is_test_trial,
   4: condition, 5: position, 6: `question order`, 7: region_Morava
  summarise(items, mean_cond_accept = mean(rating1))
`summarise()` has grouped output by 'participant'. You can override using the
`.groups` argument.
# A tibble: 804 x 3
# Groups:
            participant [82]
  participant condition mean_cond_accept
  <fct>
               <chr>
                                     <dbl>
1 3
               ABott
                                      4.33
2 3
               ATop
                                      3.67
3 3
               basA
                                      6.67
4 3
               basZ
                                      5.33
5 3
               EqA
                                      1
                                      7
6 3
               EqZ
7 3
               NRA
                                      3
8 3
               NRZ
                                      1
9 3
               ZBott
                                      1.33
10 3
                                      1.33
               ZTop
# ... with 794 more rows
  items <- group_by(items, condition)</pre>
  summarise(items, mean_cond_accept = mean(rating1), median_cond_accept = median(rating1), s
# A tibble: 10 x 4
  condition mean_cond_accept median_cond_accept sd_cond_accept
                        <dbl>
                                            <dbl>
  <chr>
                                                            <dbl>
1 ABott
                         3.12
                                                2
                                                            2.22
                                                            2.30
2 ATop
                         4.33
                                                5
3 basA
                         6.68
                                                7
                                                            0.931
```

```
4 basZ
                           6.45
                                                  7
                                                               1.16
5 EqA
                           3.39
                                                  3
                                                              2.11
6 EqZ
                           5.40
                                                              1.89
                                                  6
7 NRA
                           3.09
                                                  3
                                                              1.97
8 NRZ
                                                  2
                           2.37
                                                              1.59
9 ZBott
                           1.95
                                                   1
                                                              1.50
10 ZTop
                           2.7
                                                  2
                                                              1.97
```

```
ggplot(items, aes(x = condition, y = rating1)) +
geom_boxplot()
```


• better graph

Warning: The `fun.y` argument of `stat_summary()` is deprecated as of ggplot2 3.3.0. i Please use the `fun` argument instead.

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.


```
ggsave("error_bar.png", p)
```

Saving 5.5 x 3.5 in image

And some models

• first main effects

```
items$condition <- as.factor(items$condition)</pre>
  levels(items$condition)
 [1] "ABott" "ATop" "basA" "basZ" "EqA"
                                              "EqZ"
                                                       "NRA"
                                                               "NRZ"
                                                                       "ZBott"
[10] "ZTop"
  library("lmerTest")
Loading required package: lme4
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
    expand, pack, unpack
Attaching package: 'lmerTest'
The following object is masked from 'package:lme4':
    lmer
The following object is masked from 'package:stats':
    step
  items$condition <- relevel(items$condition, ref="basZ")</pre>
  m1 <- lmer(as.numeric(rating1) ~ condition + (1|participant) + (1|item), data=items)</pre>
  summary(m1)
```

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method [ lmerModLmerTest]
```

Formula: as.numeric(rating1) ~ condition + (1 | participant) + (1 | item)

Data: items

REML criterion at convergence: 9607.9

Scaled residuals:

Min 1Q Median 3Q Max -3.0810 -0.7028 -0.0378 0.5735 3.0915

Random effects:

Groups Name Variance Std.Dev.
participant (Intercept) 0.27127 0.5208
item (Intercept) 0.03288 0.1813
Residual 3.00284 1.7329

Number of obs: 2406, groups: participant, 82; item, 18

Fixed effects:

	Estimate	Std. Error	df	t value	Pr(> t)	
(Intercept)	6.4574	0.1332	350.7494	48.493	< 2e-16	***
${\tt conditionABott}$	-3.3131	0.1598	2278.0524	-20.732	< 2e-16	***
${\tt conditionATop}$	-2.0934	0.1598	2278.3344	-13.100	< 2e-16	***
${\tt conditionbasA}$	0.2222	0.1581	2308.1992	1.405	0.16	
${\tt conditionEqA}$	-3.0587	0.1584	2305.6950	-19.313	< 2e-16	***
${\tt conditionEqZ}$	-1.0522	0.1579	2309.1970	-6.662	3.37e-11	***
${\tt conditionNRA}$	-3.3679	0.1581	2300.1125	-21.309	< 2e-16	***
${\tt conditionNRZ}$	-4.0815	0.1584	2305.6949	-25.772	< 2e-16	***
${\tt conditionZBott}$	-4.4740	0.1598	2278.0829	-27.996	< 2e-16	***
${\tt conditionZTop}$	-3.7350	0.1598	2278.2993	-23.372	< 2e-16	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

conditinZTp -0.589 0.510 0.509 0.496 0.495 0.497 0.496 0.496 0.510

- better base model: with interactions
- let's start with the part without probability

summary(items)

mater	ials]	partici	pant	is_tes	st_trial	item
Length	:2406	3	:	30	Length	n:2406	Min. : 1.000
Class	:charact	ter 4	:	30	Class	:character	1st Qu.: 4.000
Mode	:charact	ter 5	:	30	Mode	:character	Median : 8.000
		6	:	30			Mean : 8.307
		7	:	30			3rd Qu.:12.000
		8	:	30			Max. :18.000
		((Other):	2226			
cond	ition	pos	ition	qu	estion o	order ra	ting1
EqZ	:243	Min.	: 5.00	Mi	n. :1	Min.	:1.000
basA	:242	1st Qu	.:19.00	1s ⁻	t Qu.:1	1st Q	u.:2.000
NRA	:241	${\tt Median}$:34.00	Me	dian :1	Media	n :4.000
basZ	:240	Mean	:34.44	Me	an :1	Mean	:3.953
ABott	:240	3rd Qu	.:49.00	3r	d Qu.:1	3rd Q	u.:7.000
ATop	:240	Max.	:64.00	Ma	x. :1	Max.	:7.000

(Other):960

content region_Morava age_under_27
Length:2406 Mode:logical Mode:logical
Class:character FALSE:1290 FALSE:390
Mode:character TRUE:696 TRUE:1596
NA's:420 NA's:420

reading_time_over_60_minutes demographic1 classNExpr:19.00 Mode :logical Min. Length:2406 FALSE:960 1st Qu.:21.00 Class :character TRUE :1026 Median :23.00 Mode :character NA's :420 Mean :25.89 3rd Qu.:25.00 Max. :71.00 NA's :450

(2406/10)*6

[1] 1443.6

```
items_without_probability <- items %>%
      filter((condition != "ABott" & condition != "ATop" & condition != "ZBott" & condition
      group_by(participant)
  items_without_probability$condition <- as.factor(items_without_probability$condition)
  items_without_probability$classNExpr <- as.factor(items_without_probability$classNExpr)</pre>
  levels(items_without_probability$condition)
                                              "EqZ"
 [1] "basZ"
             "ABott" "ATop" "basA" "EqA"
                                                      "NRA"
                                                              "NRZ"
                                                                       "ZBott"
[10] "ZTop"
  items_without_probability$condition <- relevel(items_without_probability$condition, ref="b
  items_without_probability$condition2 <- "NA"</pre>
  items_without_probability$condition2[items_without_probability$condition == "basA" | items
  items_without_probability$condition2[items_without_probability$condition == "NRA" | items_
  items_without_probability$condition2[items_without_probability$condition == "EqA" | items_
  items_without_probability$condition <- items_without_probability$condition2</pre>
  items_without_probability <- select(items_without_probability, -condition2)
  m1 <- lmer(as.numeric(rating1) ~ condition * classNExpr + (1|participant) + (1|item), data
  summary(m1)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: as.numeric(rating1) ~ condition * classNExpr + (1 | participant) +
    (1 | item)
   Data: items_without_probability
```

REML criterion at convergence: 5487.5

Scaled residuals:

Min 1Q Median ЗQ Max -3.8249 -0.6080 0.0416 0.5281 3.4818

Random effects:

Groups Name Variance Std.Dev. participant (Intercept) 0.31155 0.5582 (Intercept) 0.09736 0.3120 2.37733 1.5419 Residual

Number of obs: 1446, groups: participant, 82; item, 18

Fixed effects:

	Estimate St	td. Error	df	t value	Pr(> t)
(Intercept)	6.6674	0.1383	109.1613	48.226	< 2e-16 ***
conditionEq	-3.2603	0.1409	1347.5412	-23.147	< 2e-16 ***
conditionNR	-3.5707	0.1407	1346.7314	-25.379	< 2e-16 ***
classNExprZ	-0.1964	0.1409	1347.6423	-1.394	0.16355
conditionEq:classNExprZ	2.1833	0.1994	1350.9627	10.949	< 2e-16 ***
conditionNR:classNExprZ	-0.5255	0.1995	1348.0250	-2.634	0.00853 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) cndtnE cndtNR clsNEZ cE:NEZ

conditionEq -0.507

conditionNR -0.508 0.499

classNExprZ -0.507 0.498 0.501

cndtnEq:NEZ 0.359 -0.708 -0.356 -0.709

cndtnNR:NEZ 0.358 -0.350 -0.707 -0.708 0.500

• now let's do the Bayesian analysis on the data without probability

library(rstanarm)

Loading required package: Rcpp

This is rstanarm version 2.21.3

- See https://mc-stan.org/rstanarm/articles/priors for changes to default priors!

- Default priors may change, so it's safest to specify priors, even if equivalent to the defa
- For execution on a local, multicore CPU with excess RAM we recommend calling

```
options(mc.cores = parallel::detectCores())
```

```
library(bayestestR)
  # m1 <- lmer(as.numeric(rating1) ~ condition * classNExpr + (1|participant) + (1|item), da</pre>
  items_without_probability$item <- as.factor(items_without_probability$item)</pre>
  items_without_probability$condition <- as.factor(items_without_probability$condition)
  items_without_probability$condition <- relevel(items_without_probability$condition, ref="b</pre>
  items_without_probability$classNExpr <- relevel(items_without_probability$classNExpr, ref=
  # m1 <- lmer(as.numeric(rating1) ~ condition * classNExpr + (1|participant) + (1|item), da
  # full random effects:
  # model_bayes <- stan_glmer(as.numeric(rating1) ~ condition * classNExpr + (1 + participan
  # partial random effects
  # model_bayes <- stan_glmer(as.numeric(rating1) ~ condition * classNExpr + (1|item) + (1|p
  model_bayes <- stan_glmer(as.numeric(rating1) ~ condition * classNExpr + (1|item) + (1|par
SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.001147 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 11.47 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration:
                      1 / 2000 [ 0%]
                                        (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%]
                                        (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%]
                                        (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%]
                                        (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%]
                                        (Warmup)
```

```
Chain 1: Iteration: 1000 / 2000 [ 50%]
                                         (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]
                                         (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]
                                         (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]
                                         (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]
                                         (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]
                                         (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]
                                         (Sampling)
Chain 1:
Chain 1: Elapsed Time: 20.8581 seconds (Warm-up)
Chain 1:
                        7.1482 seconds (Sampling)
                        28.0063 seconds (Total)
Chain 1:
Chain 1:
SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 0.000205 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 2.05 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%]
                                         (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%]
                                         (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%]
                                         (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%]
                                         (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%]
                                         (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]
                                         (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]
                                         (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]
                                         (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]
                                         (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]
                                         (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]
                                         (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]
                                         (Sampling)
Chain 2:
Chain 2: Elapsed Time: 17.8535 seconds (Warm-up)
Chain 2:
                        6.67252 seconds (Sampling)
Chain 2:
                        24.526 seconds (Total)
Chain 2:
SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
Chain 3:
Chain 3: Gradient evaluation took 0.00021 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 2.1 seconds.
Chain 3: Adjust your expectations accordingly!
```

```
Chain 3:
Chain 3:
Chain 3: Iteration:
                       1 / 2000 [ 0%]
                                         (Warmup)
Chain 3: Iteration: 200 / 2000 [ 10%]
                                         (Warmup)
Chain 3: Iteration: 400 / 2000 [ 20%]
                                         (Warmup)
Chain 3: Iteration: 600 / 2000 [ 30%]
                                         (Warmup)
Chain 3: Iteration: 800 / 2000 [ 40%]
                                         (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]
                                         (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]
                                         (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]
                                         (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]
                                         (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]
                                         (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]
                                         (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]
                                         (Sampling)
Chain 3:
Chain 3:
          Elapsed Time: 21.8002 seconds (Warm-up)
Chain 3:
                        6.77625 seconds (Sampling)
Chain 3:
                        28.5765 seconds (Total)
Chain 3:
SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
Chain 4:
Chain 4: Gradient evaluation took 0.000263 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 2.63 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4:
Chain 4:
Chain 4: Iteration:
                       1 / 2000 [ 0%]
                                         (Warmup)
Chain 4: Iteration:
                     200 / 2000 [ 10%]
                                         (Warmup)
Chain 4: Iteration: 400 / 2000 [ 20%]
                                         (Warmup)
Chain 4: Iteration: 600 / 2000 [ 30%]
                                         (Warmup)
Chain 4: Iteration:
                     800 / 2000 [ 40%]
                                         (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]
                                         (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]
                                         (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]
                                         (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]
                                         (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]
                                         (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]
                                         (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]
                                         (Sampling)
Chain 4:
Chain 4: Elapsed Time: 17.8366 seconds (Warm-up)
Chain 4:
                        4.43728 seconds (Sampling)
Chain 4:
                        22.2739 seconds (Total)
```

```
Chain 4:
```

```
print(model_bayes, digits = 3)
stan_glmer
family:
              gaussian [identity]
formula:
              as.numeric(rating1) ~ condition * classNExpr + (1 | item) + (1 |
      participant)
observations: 1446
                       Median MAD_SD
(Intercept)
                        6.669 0.145
conditionEq
                       -3.266 0.137
conditionNR
                       -3.573 0.140
classNExprZ
                       -0.197 0.142
conditionEq:classNExprZ 2.184 0.199
conditionNR:classNExprZ -0.527 0.202
Auxiliary parameter(s):
     Median MAD_SD
sigma 1.543 0.029
Error terms:
Groups
          Name
                        Std.Dev.
participant (Intercept) 0.5666
           (Intercept) 0.3454
item
Residual
                         1.5429
Num. levels: participant 82, item 18
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg
  describe_posterior(model_bayes)
```

${\tt Summary\ of\ Posterior\ Distribution}$

Parameter	1	Median	95% CI	pd	ROPE % in	ROPE	Rha
(Intercept)		6.67 [6.38,	6.95]	100% [-0.10,	0.10]	 0%	1.00

```
      conditionEq
      | -3.27 | [-3.53, -3.00] | 100% | [-0.10, 0.10] | 0% | 1.00

      conditionNR
      | -3.57 | [-3.86, -3.30] | 100% | [-0.10, 0.10] | 0% | 1.00

      classNExprZ
      | -0.20 | [-0.47, 0.08] | 92.30% | [-0.10, 0.10] | 23.08% | 1.00

      conditionEq:classNExprZ | 2.18 | [1.81, 2.58] | 100% | [-0.10, 0.10] | 0% | 1.00

      conditionNR:classNExprZ | -0.53 | [-0.91, -0.14] | 99.67% | [-0.10, 0.10] | 0% | 1.00
```

```
bfactors <- bayesfactor(model_bayes)</pre>
```

Sampling priors, please wait...

Warning: Bayes factors might not be precise. For precise Bayes factors, sampling at least 40,000 posterior samples is recommended.

```
print(bfactors, digits=3)
```

Bayes Factor (Savage-Dickey density ratio)

Parameter		BF
(Intercept)		1.14e+42
conditionEq		1.32e+20
conditionNR		4.20e+21
classNExprZ		0.033
conditionEq:classNExprZ		5.95e+08
conditionNR:classNExprZ	1	0.540

* Evidence Against The Null: 0

library(easystats)

```
# Attaching packages: easystats 0.6.0 \checkmark correlation 0.8.3 \checkmark datawizard 0.6.5 \checkmark effectsize 0.8.2 \checkmark insight 0.18.8 \checkmark modelbased 0.8.6 \checkmark performance 0.10.2 \checkmark parameters 0.20.1 \checkmark report 0.5.5 \checkmark see 0.7.4
```

exp(bfactors\$log_BF) [1] 1.137489e+42 1.315427e+20 4.196189e+21 3.298754e-02 5.952184e+08 [6] 5.404608e-01 interpret_bf(exp(bfactors\$log_BF), include_value = TRUE) [1] "extreme evidence (BF = 1.14e+42) in favour of" [2] "extreme evidence (BF = 1.32e+20) in favour of" [3] "extreme evidence (BF = 4.20e+21) in favour of" [4] "very strong evidence (BF = 1/30.31) against" [5] "extreme evidence (BF = 5.95e+08) in favour of" [6] "anecdotal evidence (BF = 1/1.85) against" (Rules: jeffreys1961) result <- rope(model_bayes, ci = c(0.95))</pre>

Possible multicollinearity between condition NR: class NExprZ and condition NR (r = 0.72), conditio

plot(result)


```
p <- plot(result)</pre>
p \leftarrow p + ggplot2::labs(x = "Posterior distribution", y = "Condition")
```



```
#ggsave("rope_final_graph.png")
library(bayestestR)
equivalence_test(model_bayes)
```

Possible multicollinearity between conditionNR:classNExprZ and conditionNR (r = 0.72), conditionNR

Test for Practical Equivalence

ROPE: [-0.24 0.24]

Parameter	1	но І	inside ROPE		95% HDI
(Intercept)		Rejected	0.00 %		[6.38 6.95]
conditionEq		Rejected	0.00 %	1	[-3.53 -3.00]
conditionNR		Rejected	0.00 %	Τ	[-3.86 -3.30]

```
      classNExprZ
      | Undecided |
      60.76 % | [-0.47 0.08]

      conditionEq:classNExprZ | Rejected |
      0.00 % | [1.81 2.58]

      conditionNR:classNExprZ | Undecided |
      5.71 % | [-0.91 -0.14]
```

```
plot(equivalence_test(model_bayes))
```

Possible multicollinearity between conditionNR:classNExprZ and conditionNR (r = 0.72), conditionNR

Picking joint bandwidth of 0.0247

Warning: Removed 1000 rows containing non-finite values (`stat_density_ridges()`).


```
# library(emmeans)
# model_bayes.em.s <- emmeans(model_bayes, c("GrouppedCondition","Age"))
# pairs(model_bayes.em.s)
# equivalence_test(pairs(model_bayes.em.s))</pre>
```

- here we look at demographics
- first region

- and check the Bayesian version too
- nothing
- then age
- only strange interaction effect: condition Prob:age_under_27TRUE 0.84099 0.41727 1494.67832 2.015 0.044 *
- also try z-transformation and linear regression for years
- first z-transformation
- finally reading time:
- again maybe interesting observation: people with higher reading time seem to accept NR more generally (conditionNR:reading_time_over_60_minutesTRUE 0.6803 0.3317 1497.0754 2.051 0.0405 *)
- end of demographics
- in the part without probability everything works as it should
- now adding step by step probability
- first bottom (more expected)
- adding clmm package
- now top
- adding clmm package
- now let's try to remove outliers who treat ani as neg-word
- it seems it doesn't help
- graphs for all

Correlations

- z-transformation
- but first better descriptive stats
- NR vs. baseline
- now by subject
- graphs
- graph for all conditions

- subjects consistently rating NR high but nothing like that hapens with baseline
- no subject ranks baseline bad (consistently or not)
- great variation between speakers but only in some environments
- but it's not general acceptance of ani
- adding equatives (graph only for ani)
- because people who accept ani with equative are different people than those who accept ani with NRs
- only 3 subjects appear in both groups
- now correlations
- first z-transformation
- correlations
- first equatives with NR
- next ATop and NR
- checking against baseline

old analysis follows

- not run
- next pairwise comparison

```
"'{r}{r eval=FALSE, include=FALSE} library(emmeans)
emmeans(m1, list(pairwise ~ condition), adjust = "tukey")
"'
```

• probability part