Hub Labeling Algorithms

Andrew V. Goldberg

Microsoft Research - Silicon Valley

Hub Labeling Algorithms

Andrew V. Goldberg

Microsoft Research Silicon Valley

Job Seeker

Science of Algorithmics

Iteration of

- algorithm design
- algorithm analysis
- algorithm engineering
- experimental evaluation
- analysis of the results

Science of Algorithmics

Iteration of

- algorithm design
- algorithm analysis
- algorithm engineering
- experimental evaluation
- analysis of the results

Goal: Practical and theoretically justified algorithms

- fundamental algorithm
 - discovered in the 1950's [B 58, F 56, M 57]
 - taught to CS and OR undergraduates
 - poor practical performance

- fundamental algorithm
 - discovered in the 1950's [B 58, F 56, M 57]
 - taught to CS and OR undergraduates
 - poor practical performance
- claimed practical improvements
 - ► Pape [P 74], threshold [DGKK 79], Pallatino [P 84], ...
 - not robust, time bounds worse than those for BF

- fundamental algorithm
 - discovered in the 1950's [B 58, F 56, M 57]
 - taught to CS and OR undergraduates
 - poor practical performance
- claimed practical improvements
 - ▶ Pape [P 74], threshold [DGKK 79], Pallatino [P 84], ...
 - not robust, time bounds worse than those for BF
- BF with subtree disassambly
 - ▶ introduced by Tarjan [T 81] to amortize negative cycle detection over BF computation
 - unnoticed for 15 years

- fundamental algorithm
 - discovered in the 1950's [B 58, F 56, M 57]
 - taught to CS and OR undergraduates
 - poor practical performance
- claimed practical improvements
 - ► Pape [P 74], threshold [DGKK 79], Pallatino [P 84], ...
 - not robust, time bounds worse than those for BF
- BF with subtree disassambly
 - ▶ introduced by Tarjan [T 81] to amortize negative cycle detection over BF computation
 - unnoticed for 15 years
 - greatly improves practical performance [CG 96]

- fundamental algorithm
 - discovered in the 1950's [B 58, F 56, M 57]
 - taught to CS and OR undergraduates
 - poor practical performance
- claimed practical improvements
 - ► Pape [P 74], threshold [DGKK 79], Pallatino [P 84], ...
 - not robust, time bounds worse than those for BF
- BF with subtree disassambly
 - introduced by Tarjan [T 81] to amortize negative cycle detection over BF computation
 - unnoticed for 15 years
 - greatly improves practical performance [CG 96]
 - ... while integrating negative cycle detection
 - now in a textbook [KT 05]

Outline

- Introduction
- 2 Hub Labeling Algorithm
- Theory: Approximating Optimal Labels
- 4 Hierarchical Labels
- Concluding Remarks

Motivation

Shortest path applications

- driving directions in road networks
- indoor and terrain navigation
- routing in communication/sensor networks
- moving agents on game maps
- proximity in social/collaboration networks

Challenges

- massive networks of varying structure
- real-time queries

6/40

Need a fast and robust approach

Single Pair Shortest Paths Problem

Input

- Graph G = (V, E)
- Length function ℓ
- Assume G is undirected (simpler notation)
- HL algorithm works for directed graphs

Query (multiple for the same network)

 Given origin s and destination t, find an optimal path from s to t

SP Algorithms with Preprocessing

Motivating application: driving directions

- preprocessing to speed up queries
 - may take much longer than a query
 - can use a more powerful machine
- queries are fast (e.g., real-time)

Outline

- Introduction
- 2 Hub Labeling Algorithm
- Theory: Approximating Optimal Labels
- 4 Hierarchical Labels
- Concluding Remarks

Labeling Algorithms

Labeling Algorithm [P 99]

- precompute labels L(v) for all $v \in V$
- answer s, t query using L(s) and L(t) only
- G used only for preprocessing

Labeling Algorithms

Labeling Algorithm [P 99]

- precompute labels L(v) for all $v \in V$
- answer s, t query using L(s) and L(t) only
- G used only for preprocessing

Label Sizes

- some networks have small labels, some do not [GPPR 04]
 - ▶ trees: $O(\log n)$ -size labels
 - ▶ planar graphs: $O^*(\sqrt{n})$, $\Omega^*(n^{1/3})$
 - general graphs: $\Omega^*(n)$
- graphs of highway dimension h: $O(h \log(h) \log(D))$ [ADFGW 11]

Hub Labeling

• $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v

0

 $\bullet t$

Hub Labeling

- $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the cover property: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

Hub Labeling

- $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the cover property: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

s-t query

• Find vertex $w \in L(s) \cap L(t) \dots$

Hub Labeling

- $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the cover property: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

s-t query

- Find vertex $w \in L(s) \cap L(t) \dots$
- ... that minimizes dist(s, v) + dist(v, t)

Hub Labeling

- $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the cover property: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

S

12/01/2014

11 / 40

s-t query

- Find vertex $w \in L(s) \cap L(t) \dots$
- ... that minimizes dist(s, v) + dist(v, t)

Queries are efficient if labels are small

Example: Star Graph

Example: Star Graph

Another Example

Another Example

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s) \ 2 \ 3 \ 6 \ 35 \ 37 \ 102 \ 155 \ 172$$

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume
$$|L(s)| \leq |L(t)|$$

•
$$O(|L(s)| + |L(t)|) = O(M)$$
; good locality

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume
$$|L(s)| \leq |L(t)|$$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume
$$|L(s)| \leq |L(t)|$$

•
$$O(|L(s)| + |L(t)|) = O(M)$$
; good locality

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s) \ 2 \ 3 \ 6 \ 35 \ 37 \ 102 \ 155 \ 172$$

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume
$$|L(s)| \leq |L(t)|$$

•
$$O(|L(s)| + |L(t)|) = O(M)$$
; good locality

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s) \ 2 \ 3 \ 6 \ 35 \ 37 \ 102 \ 155 \ 172$$

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume
$$|L(s)| \leq |L(t)|$$

•
$$O(|L(s)| + |L(t)|) = O(M)$$
; good locality

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t) \ 2 \ 6 \ 8 \ 43 \ 45 \ 85$$

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

• O(|L(s)| + |L(t)|) = O(M); good locality

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s) \ 2 \ 3 \ 6 \ 35 \ 37 \ 102 \ 155 \ 172$$

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

• O(|L(s)| + |L(t)|) = O(M); good locality

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t) \ 2 \ | 6 \ | 8 \ | 43 \ | 45 \ | 85 \ |$$

Time estimate assuming memory-bound queries:

•
$$|L(s)| = |L(t)| = 100$$

- 4 byte IDs and dist
- 128 byte cache lines
- 50ns latency
- $2 \cdot \lceil 100 \cdot 8/128 \rceil \cdot 50 = 700$ ns

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

• O(|L(s)| + |L(t)|) = O(M); good locality

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

Time estimate assuming memory-bound queries:

•
$$|L(s)| = |L(t)| = 100$$

- 4 byte IDs and dist
- 128 byte cache lines
- 50ns latency
- $2 \cdot [100 \cdot 8/128] \cdot 50 = 700$ ns

14 / 40

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

- O(|L(s)| + |L(t)|) = O(M); good locality
- O(|L(s)|) [ST 07]

Performance on Road Networks

Fast HL implementations

- implementation motivated by better query bounds [ADFGW 11]
- surprisingly small labels
- fastest distance oracles for road networks

Performance on Road Networks

Fast HL implementations

- implementation motivated by better query bounds [ADFGW 11]
- surprisingly small labels
- fastest distance oracles for road networks

Western Europe, n = 18M, m = 24M

variant	prep (h:m)	L /n	GB	[ns]
HL	0:03	98	22.5	700
HL-15	0:05	78	18.8	556
HL-17	0:25	75	18.0	546
HL-R	5:43	69	17.7	508

15/40

Beyond Road Networks: RXL Implementation

instance	n(K)	m/n	prep (h:m)	L /n	MB	$[\mu s]$
fla-t	1 070	2.5	0:02	41	261	0.5
buddha	544	6.0	0:02	92	180	0.9
buddha-w	544	6.0	0:11	336	953	2.9
rgg20	1 049	13.1	0:16	220	807	2.0
rgg20-w	1 049	13.1	1:00	589	3 154	4.9
WikiTalk	2394	2.0	0:17	60	626	0.5
Indo	1 383	12.0	0:04	27	218	0.4
Skitter-u	1 696	13.1	0:47	274	1 075	2.3
MetrcS	2 2 5 0	19.2	0:38	117	593	8.0
eur-t	18010	2.3	2:19	82	17 203	8.0
Hollywood	1 140	98.9	17:04	2114	5 934	13.9
Indochin	7415	25.8	4:07	66	3917	0.7

Outline

- Introduction
- 2 Hub Labeling Algorithm
- Theory: Approximating Optimal Labels
- 4 Hierarchical Labels
- Concluding Remarks

Approximating Optimal Labels

Theoretical results

- optimizing |L|:
 - ▶ poly-time O(log n) approximation [CHKZ 03]
 - $ightharpoonup O(n^5)$ time
 - ► $O(n^3 \log n)$ time improvement [DGSW 14]
 - ▶ NP-hard [BGKSW 14]
- optimizing *M*:
 - ▶ poly-time O(log n) approximation [BGGN 13]
 - $\triangleright O(n^5)$ time
 - ► $O(n^3 \log^2 n)$ time improvement [DGSW 14]

Cohen at al. Algorithm (log-HL)

- for a (partial) labeling L, a pair u, w is covered if $L(u) \cap L(w)$ contains a vertex on u–w SP
- v covers u, w if there is a u–w SP through v

Cohen at al. Algorithm (log-HL)

- for a (partial) labeling L, a pair u, w is covered if $L(u) \cap L(w)$ contains a vertex on u–w SP
- v covers u, w if there is a u-w SP through v

log-HL algorithm sketch

- start with an empty L, U containing all vertex pairs

- 3 remove covered pairs from U
- 4 if $U = \emptyset$ halt, otherwise go to 2

Cohen at al. Algorithm (log-HL)

- for a (partial) labeling L, a pair u, w is covered if $L(u) \cap L(w)$ contains a vertex on u–w SP
- ullet v covers u, w if there is a u–w SP through v

log-HL algorithm sketch

- start with an empty L, U containing all vertex pairs
- 2 add a vertex v to the labels of a set of vertices S Pick v and S as follows:

$$v, S = \underset{v \in V}{\operatorname{argmax}} \max_{v \in V} \frac{\text{\# pairs covered if we add } v \text{ to } S}{|S|}$$

- \odot remove covered pairs from U
- 4 if $U = \emptyset$ halt, otherwise go to 2

Center Graphs and MDS

Center graph

 $G_v = (V, E_v)$ where $(u, w) \in E_v$ if $u, w \in U$ and v covers u, w

- graph density: (#edges)/(#vertices)
- MDS problem: find a maximum density vertex-induced subgraph

Center Graphs and MDS

Center graph

```
G_v = (V, E_v) where (u, w) \in E_v if u, w \in U and v covers u, w
```

- graph density: (#edges)/(#vertices)
- MDS problem: find a maximum density vertex-induced subgraph

MDS for G_v

$$\max_{S \subseteq V} \frac{\text{\# pairs covered if we add } v \text{ to } S}{|S|}$$

Step (2): maximize MDS over all G_v

MDS complexity

- polynomial using parametric flows
- linear time 2-approximation [KP 94] (2-MDS)

2-Approximate MDS

- density = $\frac{\sum_{V} \operatorname{deg}(v)}{2|V|}$
- if for all $v \deg(v) \ge \mu$, then density $\ge \mu/2$
- if μ is the MDS value and $deg(v) < \mu$, then v is not in an MDS

2-Approximate MDS

- density = $\frac{\sum_{V} \operatorname{deg}(v)}{2|V|}$
- if for all $v \deg(v) \ge \mu$, then density $\ge \mu/2$
- if μ is the MDS value and $deg(v) < \mu$, then v is not in an MDS

2-MDS Algorithm

- while more that one vertex remains
- delete a minimum degree vertex
- update degrees
- goto (1)
- return the densest graph seen

Eager-Lazy Algorithm [DGSW 14]

α -eager evaluation (suggested by a heuristic)

- μ is an upper bound on MDS value of G, $\alpha > 1$
- while MDS value of $G < \mu/(2\alpha)$ delete min degree vertex
- G': remaining graph; G G' has MDS value $\leq \mu/\alpha$

Eager-Lazy Algorithm [DGSW 14]

α -eager evaluation (suggested by a heuristic)

- μ is an upper bound on MDS value of G, $\alpha > 1$
- while MDS value of $G < \mu/(2\alpha)$ delete min degree vertex
- G': remaining graph; G G' has MDS value $\leq \mu/\alpha$

Center graph densities are monotone

Eager-lazy algorithm

- start with empty L, $U = V \times V$
- ullet compute upper bounds μ_v on MDS values of G_v
- while $U \neq \emptyset$
- $v = \operatorname{argmax}(\mu_v)$; apply α -eager evaluation to G_v
- add v to the vertices of G', G = G G', update U

•
$$\mu_v = \mu_v / \alpha$$

Eager-Lazy Algorithm Analysis

- each iteration is $O(n^2)$ (vs. $O(n^3)$)
- ullet decreases μ_v by a constant factor
- each v chosen $O(\log n)$ times (vs. $O(n^2)$)
- $O(n^3 \log n)$ bound (vs. $O(n^5)$)
- $O(n^2)$ space if center graphs maintained implicitly (vs. $O(n^3)$)

Eager-Lazy Algorithm Analysis

- each iteration is $O(n^2)$ (vs. $O(n^3)$)
- ullet decreases μ_v by a constant factor
- each v chosen $O(\log n)$ times (vs. $O(n^2)$)
- $O(n^3 \log n)$ bound (vs. $O(n^5)$)
- $O(n^2)$ space if center graphs maintained implicitly (vs. $O(n^3)$)

From practice to theory

- log-HL picks same v consecutively
- use second-densest subgraph seen

Eager-Lazy Algorithm Analysis

- each iteration is $O(n^2)$ (vs. $O(n^3)$)
- ullet decreases μ_v by a constant factor
- each v chosen $O(\log n)$ times (vs. $O(n^2)$)
- $O(n^3 \log n)$ bound (vs. $O(n^5)$)
- $O(n^2)$ space if center graphs maintained implicitly (vs. $O(n^3)$)

From practice to theory

- log-HL picks same v consecutively
- use second-densest subgraph seen
- use α -eager evaluation
- prove the new bound

Experimental Results: Eager-Lazy

- G1.0: efficient implementation of log-HL
- G1.1: eager-lazy implementation with $\alpha = 1.1$
- G1.1 labels are not much bigger
- G1.1 is faster but still does not scale well

		time (s)		L /n	
instance	n	G1.0	G1.1	G1.0	G1.1
email	1133	109	47	30.0	30.4
polblogs	1222	376	145	25.2	25.5
venus	2838	978	558	27.3	28.0
alue5067	3524	2971	2486	23.4	24.5
ksw-64	4096	2319	901	81.4	82.3
hep-th	5835	6375	1479	38.7	39.2
berlin	10370	16027	8649	20.5	21.3
PGPgiant	10680	19114	3339	19.1	19.4

Outline

- Introduction
- 2 Hub Labeling Algorithm
- Theory: Approximating Optimal Labels
- 4 Hierarchical Labels
- Concluding Remarks

Hierarchical Labels

Hierarchical Hub Labels (HHL) [ADGW 12]

 $v \lesssim w$ if w is a hub of v (w more important) L is hierarchical if \lesssim is a partial order

- special class of HL
- can be polynomially larger [GPS 13] than HL
- in practice, HHL are often small
- in practice, HHL can be computed faster than HL

Canonical HHL

- *L* respects a total order of vertices, r, if \lesssim is consistent with r
- P_{uw} is the set of vertices on shortest paths from u to w

Canonical Labeling

- start with an empty labeling
- $\forall u, w, \text{ let } v = \operatorname{argmax}_{v \in P_{nm}} r(x)$
- add v to L(u) and L(w)

Canonical HHL

- *L* respects a total order of vertices, r, if \lesssim is consistent with r
- P_{uw} is the set of vertices on shortest paths from u to w

Canonical Labeling

- start with an empty labeling
- $\forall u, w, \text{ let } v = \operatorname{argmax}_{v \in P_{uv}} r(x)$
- add v to L(u) and L(w)

Validity and minimality

- cover property: v covers [u, w]
- v must be in L(u) to cover [u, v]
- similarly v must be in L(w)
- in fact, all minimal HHL are canonical

Pruned Labeling (PL) Algorithm

[AIY 13]: compute canonical labeling form an order r

PL algorithm

- start with an empty L
- process vertices v in the order of importance
- run Dijkstra's search from v
 - before scanning w check the following condition
 - ▶ is $d(w) \ge$ (estimate given by current labels)?
 - ightharpoonup if yes, prune w (do not scan)
- ullet add v to the labels of all w scanned by Dijkstra

Pruned Labeling (PL) Algorithm

[AIY 13]: compute canonical labeling form an order r

PL algorithm

- start with an empty L
- process vertices v in the order of importance
- run Dijkstra's search from v
 - before scanning w check the following condition
 - is $d(w) \ge$ (estimate given by current labels)?
 - ightharpoonup if yes, prune w (do not scan)
- add v to the labels of all w scanned by Dijkstra

Fact: PL computes canonical HHL

PL (cont.)

Approximate PL complexity

- every scanned vertex is added to L
- $\bullet \approx O(|L|\frac{|L|}{n})$
- efficient if |L|/n is small

PL (cont.)

Approximate PL complexity

- every scanned vertex is added to L
- $\bullet \approx O(|L|\frac{|L|}{n})$
- efficient if |L|/n is small

Can separate vertex ordering and label generation

HHL Vertex Ordering

Requirements

- label quality (small size)
- efficiency

HHL Vertex Ordering

Requirements

- label quality (small size)
- efficiency

HHL orderings

- bottom up [ADFGW 11]: works well for road networks, but not robust
- by degree [AIY 13]: very fast, works on some networks but not robust
- greedy [ADGW 12]: slow but robust
 - can be made faster by sampling [DGPW 14]

process vertices from least to most important

- process vertices from least to most important
- ullet temporarily remove the next vertex v from the graph

- process vertices from least to most important
- temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)

- process vertices from least to most important
- temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)

- process vertices from least to most important
- ullet temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)
- recursively compute labels on smaller graph

- process vertices from least to most important
- ullet temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)
- recursively compute labels on smaller graph
- reinsert v and build label from its neighbors

- process vertices from least to most important
- temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)
- recursively compute labels on smaller graph
- reinsert v and build label from its neighbors

- process vertices from least to most important
- temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)
- recursively compute labels on smaller graph
- reinsert v and build label from its neighbors
 - works because any path from v must go through a neighbor

Greedy Ordering [ADGW 12]

Greedy ordering (most to least important)

[Abraham at al. 12]

- \bullet $U = V \times V$
- while there are unprocessed vertices
- pick a vertex v that covers most pairs in U as the next highest in the ordering
- update U by deleting the pairs that v covers

Greedy Ordering [ADGW 12]

Greedy ordering (most to least important)

[Abraham at al. 12]

- \bullet $U = V \times V$
- while there are unprocessed vertices
- pick a vertex v that covers most pairs in U as the next highest in the ordering
- ullet update U by deleting the pairs that v covers
- next we describe data structures
- for simplicity assume that shortest paths are unique

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i

- build shortest path trees from each vertex
 - lacktriangle tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u

- build shortest path trees from each vertex
 - lacktriangle tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order

- build shortest path trees from each vertex
 - ightharpoonup tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order
- delete subtrees rooted at u and update descendant counts

- build shortest path trees from each vertex
 - ightharpoonup tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order
- delete subtrees rooted at u and update descendant counts
- the trees represent *U*

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order
- delete subtrees rooted at u and update descendant counts
- the trees represent U
- complexity O(nDij(n,m)) time, $O(n^2)$ space

- build shortest path trees from each vertex
 - ightharpoonup tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order
- delete subtrees rooted at u and update descendant counts
- the trees represent U
- complexity O(nDij(n,m)) time, $O(n^2)$ space
- use sampling to reduce time and space requirements

• maintain a sample of $\ll n$ trees (within tree node budget)

• maintain a sample of $\ll n$ trees (within tree node budget)

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex u with the highest coverage estimate

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex u with the highest coverage estimate
- remove descendants of u in sampled trees

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex u with the highest coverage estimate
- remove descendants of *u* in sampled trees
- add new (pruned using PL) trees as the budget permits

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex u with the highest coverage estimate
- remove descendants of *u* in sampled trees
- add new (pruned using PL) trees as the budget permits
- sample size can be adjusted to trade time/space for quality

Degree vs. RXL

			degree		RXL	
instance	n(K)	m/n	prep (h:m)	L /n	prep (h:m)	L /n
fla-t	1 070	2.5	0:22	172	0:02	41
buddha	544	6.0	0:02	290	0:02	92
buddha-w	544	6.0	0:24	1 165	0:11	336
rgg20	1 049	13.1	0:47	1 136	0:16	220
rgg20-w	1 049	13.1	14:43	5 603	1:00	589
WikiTalk	2394	2.0	0:05	68	0:17	60
Indo	1 383	12.0	0:04	172	0:04	27
Skitter-u	1 696	13.1	0:32	457	0:47	274
MetrcS	2 2 5 0	19.2	0:06	132	0:38	117
eur-t	18010	2.3	_	_	2:19	82
Hollywood	1 140	98.9	10:40	2921	17:04	2114
Indochin	7415	25.8	3:20	540	4:07	66

Performance on Road Networks (Revisited)

Western Europe, n = 18M, m = 24M

variant	prep (h:m)	L /n	GB	[ns]
HL	0:03	98	22.5	700
HL-15	0:05	78	18.8	556
HL-17	0:25	75	18.0	546
HL-R	5:43	69	17.7	508

Bottom-up ordering, plus

- greedy reordering of 2¹⁵ (HL-15) or 2¹⁷ (HL-17) top vertices
- range optimization (reordering of overlapping intervals)

From Practice to Theory

Recent results on HHL [BGKSW 14]

- computing optimal HHL is NP-hard
- greedy algorithm approximation ratio
 - $O(n^{1/2} \log n)$ upper bound
 - $\Omega(n^{1/2})$ lower bound

- $ightharpoonup O(n^{1/2} \log n)$ upper bound
- $\Omega(n^{1/3})$ lower bound

From Practice to Theory

Recent results on HHL [BGKSW 14]

- computing optimal HHL is NP-hard
- greedy algorithm approximation ratio
 - $ightharpoonup O(n^{1/2}\log n)$ upper bound
 - $ightharpoonup \Omega(n^{1/2})$ lower bound

- $ightharpoonup O(n^{1/2} \log n)$ upper bound
- $ightharpoonup \Omega(n^{1/3})$ lower bound
- distance greedy algorithm

 - ► $M = O(h \log n \log D)$ (h: highway dimension; D: diameter) ► $O(n^{1/2} \log n \log D)$ upper and $\Omega(n^{1/2})$ lower bounds on approx ratio

From Practice to Theory

Recent results on HHL [BGKSW 14]

- computing optimal HHL is NP-hard
- greedy algorithm approximation ratio
 - $ightharpoonup O(n^{1/2} \log n)$ upper bound
 - $ightharpoonup \Omega(n^{1/2})$ lower bound

- $ightharpoonup O(n^{1/2}\log n)$ upper bound
- $ightharpoonup \Omega(n^{1/3})$ lower bound
- distance greedy algorithm
 - ► $M = O(h \log n \log D)$ (h: highway dimension; D: diameter) ► $O(n^{1/2} \log n \log D)$ upper and $\Omega(n^{1/2})$ lower bounds on approx ratio

Great open problem

Is there an $O(\log n)$ -approximation algorithm for optimal HHL?

Concluding Remarks

Remarks

- label compression: trades query speed for memory footprint
- HL in external memory and data bases
- many technical details omitted to simplify presentation
- recent results on HL
 - theoretical work
 - experimental work
 - impact beyond mainstream algorithms community
- active area, open problems remain

Other Work

Recent

- social networks
- learning from GPS traces
- maximum flows, including vision applications
- minimum cost flows
- other routing and location-based services algorithms

Not so recent

- mechanism design
- combinatorial optimization
- distributed systems (e.g., intermemory)

Thank You!

Joint work with

Ittai Abraham, Maxim Babenko, Daniel Delling, Haim Kaplan, Thomas Pajor, Ruslan Savchenko, Mathis Weller, Renato Werneck