richardwu.ca

STAT 333 COURSE NOTES

APPLIED PROBABILITY

Steve Drekic • Winter 2018 • University of Waterloo

Last Revision: January 18, 2018

Table of Contents

1	January 4, 2018								
	1.1	Example 1.1 Solution	1						
	1.2	Example 1.2 Solution]						
2	Jan	January 9, 2018							
	2.1	Example 1.3 Solution	1						
	2.2	Example 1.4 Solution	2						
	2.3	Example 1.5 Solution	3						
	2.4	Exercise 1.3	3						
3	January 11, 2018								
	3.1	Theorem 2.1 - conditional variance	4						
	3.2	Example 2.1	4						
	3.3	Example 2.2	5						
4	Tutorial 1								
	4.1	Exercise 1: MGF of Erlang	6						
	4.2	Exercise 2: MGF of Uniform	7						
	4.3	Exercise 3: Moments from PGF	8						
	4.4	Exercise 4: PGF of Poisson	S						
5	Jan	uary 16, 2018	10						
	5.1	Example 2.3 Solution	10						
	5.2	Example 2.4 Solution	11						
	5.3	Example 2.5 Solution	12						
6	January 18, 2018								
	6.1	Example 2.6 Solution	13						
	6.2	Example 2.7 Solution	14						
	6.3	Theorem 2.2 (law of total expectation)	15						

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an organized manner. If you spot any errors or would like to contribute, please contact me directly.

1 January 4, 2018

1.1 Example 1.1 Solution

What is the probability that we roll a number less than 4 given that we know it's odd?

Solution. Let $A = \{1, 2, 3\}$ (less than 4) and $B = \{1, 3, 5\}$ (odd). We want to find $P(A \mid B)$. Note that $A \cap B = \{1, 3\}$ and there are six elements in the sample space S thus

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3}$$

1.2 Example 1.2 Solution

Show that $Bin(n, p) \sim Pois(\lambda)$ when $\lambda = np$ for n large and p small.

Solution. Let $\lambda = np$. Note that $p = \frac{\lambda}{n}$ n > 0. From the pmf for $X \sim Bin(n, p)$

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \frac{n(n-1)...(n-x+1)}{x!} (\frac{\lambda}{n})^x (1-\frac{\lambda}{n})^{n-x}$$

$$= \frac{n(n-1)...(n-x+1)}{n^x} \cdot \frac{\lambda^x}{x!} \frac{(1-\frac{\lambda}{n})^n}{(1-\frac{\lambda}{n})^x}$$

Recall $\lim_{n\to\infty} (1-\frac{\lambda}{n})^n = e^{-\lambda}$ so

$$\lim_{n \to \infty} p(x) = \frac{\lambda^x \cdot e^{-\lambda}}{x!}$$

2 January 9, 2018

2.1 Example 1.3 Solution

Find the mgf of Bin(n, p) and use that to find E[X] and Var(X).

Solution. Recall the binomial series is

$$(a+b)^m = \sum_{x=0}^m \binom{m}{x} a^x b^{m-x} \quad a, b \in \mathbb{R}, m \in \mathbb{N}$$

Let $x \sim Bin(n, p)$ and so

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 $x = 0, 1, \dots, n$

Taking the mgf $E[e^{tX}]$

$$\Phi_X(t) = E[e^{tX}] = \sum_{x=0}^n e^{tx} \binom{n}{x} p^x (1-p)^{n-x}$$
$$= \sum_{x=0}^n \binom{n}{x} (pe^t)^x (1-p)^{n-x}$$

from the binomial series we have

$$\Phi_x(t) = (pe^t + 1 - p)^n \quad t \in \mathbb{R}$$

We can take the first and second derivatives for the first and second moment

$$\Phi'_X(t) = n(pe^t + 1 - p)^{n-1}pe^t$$

$$\Phi''_X(t) = np[(pe^t + 1 - p)^{n-1}e^t + e^t(n-1)(pe^t + 1 - p)^{n-2}pe^t]$$

So $E[X] = \Phi_X(t) |_{t=0} = np$.

For the variance, we need the second moment

$$E[X^{2}] = \Phi_{X}(t) \mid_{t=0}$$

$$= np[1 + (n-1)p]$$

$$= np + (np)^{2} - np^{2}$$

So

$$Var(X) = E[X^{2}] - E[X]^{2}$$

= $np + (np)^{2} - np^{2} - (np)^{2}$
= $np(1-p)$

2.2 Example 1.4 Solution

Show that $Cov(X,Y) = 0 \implies$ independence.

Solution. We show this using a counter example

$$\begin{array}{c|ccccc} & & y & & \\ p(x,y) & 0 & 1 & p_X(x) \\ \hline 0 & 0.2 & 0 & 0.2 \\ x & 1 & 0 & 0.6 & 0.6 \\ 2 & 0.2 & 0 & 0.2 \\ \hline p_Y(y) & 0.4 & 0.6 & 1 \\ \hline \end{array}$$

Note that

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

where

$$E[XY] = \sum_{x=0}^{2} \sum_{y=0}^{1} xyp(x,y) = (1)(1)(0.6) = 0.6$$

$$E[X] = \sum_{x=0}^{2} xp_X(x) = (1)(0.6) + (2)(0.2) = 0.6 + 0.4 = 1$$

$$E[Y] = \sum_{y=0}^{1} yp_Y(y) = (1)(0.6) = 0.6$$

So Cov(X,Y) = 0.6 - (1)(0.6) = 0. However, $p(2,0) = 0.2 \neq p_X(2)p_Y(0) = (0.2)(0.4) = 0.08$, thus X and Y are not independent (they are dependent).

2.3 Example 1.5 Solution

Given X_1, \ldots, X_n are independent r.v's where $\Phi_X(t)$ is the mgf of X_i , show that $T = \sum_{i=1}^n X_i$ has mgf $\Phi_T(t) = \prod_{i=1}^n \Phi_{X_i}(t)$.

Solution. We take the definition of the mgf of T

$$\Phi_T(t) = E[e^{tT}]$$

$$= E[e^{t(X_1 + \dots + X_n)}]$$

$$= E[e^{tX_1} \cdot \dots \cdot e^{tX_n}]$$

$$= E[e^{tX_1}] \cdot \dots \cdot E[e^{tX_n}]$$
 independence
$$= \prod_{i=1}^n \Phi_{X_i}(t)$$

2.4 Exercise 1.3

If $X_i \sim Pois(\lambda_i)$ show that $T = \sum X_i \sim Pois(\sum \lambda_i)$.

Solution. Recall that $Pois(\lambda_i) \sim Bin(n_i, p)$ where $\lambda_i = n_i p$ and

$$\Phi_{X_i}(t) = (pe^t + 1 - p)^{n_i} \quad \forall t \in \mathbb{R}$$

where $X_i \sim Bin(n_i, p)$ i = 1, ..., m.

Therefore

$$\Phi_T(t) = \prod_{i=1}^m (pe^t + 1 - p)^{n_i}$$

$$= (pe^t + 1 - p)^{n_1} \cdot \dots \cdot (pe^t + 1 - p)^{n_m}$$

$$= (pe^t + 1 - p)^{\sum n_i} \quad t \in \mathbb{R}$$

By the mgf uniqueness property, we have

$$T = \sum_{i=1}^{m} X_i \sim Bin(\sum_{i=1}^{m} n_i, p)$$

3 January 11, 2018

3.1 Theorem 2.1 - conditional variance

Theorem 3.1.

$$Var(X_1 \mid X_2 = x_2) = E[X_1^2 \mid X_2 = x_2] - E[X_1 \mid X_2 = x_2]^2$$

Proof.

$$Var(X_1 \mid X_2 = x_2) = E[(X_1 - E[X_1 \mid X_2 = x_2])^2 \mid X_2 = x_2]$$

$$= E[(X_1^2 - 2E[X_1 \mid X_2 = x_2]X_1 + E[X_1 \mid X_2 = x_2]^2) \mid X_2 = x_2]$$

$$= E[X_1^2 \mid X_2 = x_2] - 2E[X_1 \mid X_2 = x_2]E[X_1 \mid X_2 = x_2] + E[X_1 \mid X_2 = x_2]^2$$

$$= E[X_1^2 \mid X_2 = x_2] - E[X_1 \mid X_2 = x_2]^2$$

3.2 Example 2.1

Suppose that X and Y are discrete random variables having join pmf of the form

$$p(x,y) = \begin{cases} 1/5 & \text{, if } x = 1 \text{ and } y = 0, \\ 2/15 & \text{, if } x = 0 \text{ and } y = 1, \\ 1/15 & \text{, if } x = 1 \text{ and } y = 2, \\ 1/5 & \text{, if } x = 2 \text{ and } y = 0, \\ 2/5 & \text{, if } x = 1 \text{ and } y = 1, \\ 0 & \text{, otherwise.} \end{cases}$$

Find the conditional probability of $X \mid (Y = 1)$. Also calculate $E[X \mid Y = 1]$ and $Var(X \mid Y = 1)$.

Solution. Note: for problems of this nature, construct a table.

			y		
	p(x,y)	0	1	2	$p_X(x)$
	0	0	2/15	0	2/15
X	1	1/5	2/5	1/15	2/3
	2	1/5	0	0	1/5
	$p_Y(y)$	2/5	8/15	1/15	1

Then we have

$$p(0 \mid 1) = P(X = 0 \mid Y = 1) = \frac{2/15}{8/15} = \frac{1}{4}$$

$$p(1 \mid 1) = P(X = 1 \mid Y = 1) = \frac{2/5}{8/15} = \frac{3}{4}$$

$$p(2 \mid 1) = P(X = 2 \mid Y = 1) = \frac{0}{8/15} = 0$$

The conditional pmf of $X \mid (Y = 1)$ can be represented as follows

$$\begin{array}{c|cccc} x & 0 & 1 \\ \hline p(x \mid 1) & 1/4 & 3/4 \end{array}$$

We observe $X \mid (Y = 1) \sim Bern(3/4)$. We can take the known E[X] = p and Var(X)p(1-p) for $X \sim Bern(p)$, thus

$$E[X \mid (Y = 1)] = 3/4$$

 $Var(X \mid (Y = 1)) = 3/4(1 - 3/4) = 3/16$

3.3 Example 2.2

For i = 1, 2 suppose that $X_i \sim Bin(n_i, p)$ where X_1, X_2 are independent (but not identically distributed). Find conditional distribution of X_1 given $X_1 + X_2 = n$.

Solution. We want to find conditional pmf of $X \mid (X_1 + X_2 = n)$. Let this conditional pmf be denoted by

$$p(x_1 \mid n) = P(X_1 = x_1 \mid X_1 + X_2 = n)$$
$$= \frac{P(X_1 = x_1, X_1 + X_2 = n)}{P(X_1 + X_2 = n)}$$

Recall: $X_1 + X_2 \sim Bin(n_1 + n_2, p)$ so

$$P(X_1 + X_2 = n) = \binom{n_1 + n_2}{n} p^n (1 - p)^{n_1 + n_2 - n}$$

Next, consider

$$\begin{split} P(X_1 = x_1, X_1 + X_2 = n) &= P(X_1 = x_1, x_1 + X_2 = n) \\ &= P(X_1 = x_1, X_2 = n - x_1) \\ &= P(X_1 = x_1) P(X_2 = n - x_1) \\ &= \binom{n_1}{x_1} p^{x_1} (1 - p)^{n_1 - x_1} \cdot \binom{n_2}{n - x_1} p^{n - x_1} (1 - p)^{n_2 - (n - x_1)} \end{split}$$
 independence

provided that $0 \le x_1 \le n_1$ and

$$0 \le n - x_1 \le n_2$$
$$-n_2 \le x_1 - n \le 0$$
$$n - n_2 \le x_1 \le n$$

(from the binomial coefficients). Therefore our domain for x_1 is

$$x_1 = \max\{0, n - n_2\}, \dots, \min\{n_1, n\}$$

Thus we have

$$p(x_1 \mid n) = \frac{P(X_1 = x, X_1 + x_2 = n)}{P(X_1 + X_2 = n)}$$

$$= \frac{\binom{n_1}{x_1} p^{x_1} (1 - p)^{n_1 - x_1} \cdot \binom{n_2}{n - x_1} p^{n - x_1} (1 - p)^{n_2 - (n - x_1)}}{\binom{n_1 + n_2}{n} p^n (1 - p)^{n_1 + n_2 - n}}$$

$$= \frac{\binom{n_1}{x_1} \binom{n_2}{n - x_1}}{\binom{n_1 + n_2}{n}}$$

for $x_1 = \max\{0, n - n_2\}, \dots, \min\{n_1, n\}.$

Recall: A HG(N, r, n) (hypergeometric) distribution has pmf

$$\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{x}} \quad x = \max\{0, n-N+r\}, \dots, \min\{n, r\}$$

So this is precisely $HG(n_1 + n_2, x_1, n)$.

If you think about it: we are choosing x_1 successes from n_1 trials from the first set X_1 and choosing the remaining $n - x_1$ successes from n_2 trials from X_2 .

4 Tutorial 1

4.1 Exercise 1: MGF of Erlang

Find the mgf of $X \sim Erlang(\lambda)$ and use it to find E[X], Var(X). Note that the Erlang's pdf is for $n \in \mathbb{Z}^+$ and $\lambda > 0$

$$f(x) = \frac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!} \quad x > 0$$

Solution.

$$\Phi_X(t) = E[e^{tX}] = \int_0^\infty e^{tx} \frac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!} dx$$
$$= \int_0^\infty \frac{\lambda^n x^{n-1} e^{-(\lambda - t)x}}{(n-1)!} dx$$

Note that the term in the integral is similar to the pdf of Erlang but for $\lambda = \lambda - t$. So we try to fix it so the integral is this pdf of Erlang

$$\begin{split} \Phi_X(t) &= \int_0^\infty \frac{\lambda^n x^{n-1} e^{-(\lambda - t)x}}{(n-1)!} dx \\ &= (\frac{\lambda}{\lambda - t})^n \int_0^\infty \frac{(\lambda - t)^n x^{n-1} e^{-(\lambda - t)x}}{(n-1)!} dx \\ &= (\frac{\lambda}{\lambda - t})^n \end{split}$$

$$t < \lambda$$

since the integral over the positive real line of the pdf of an $Erlang(n, \lambda - t)$ is 1 and $t < \lambda$ must hold so the rate parameter $\lambda - t$ is positive.

Differentiating,

$$\Phi_X^{(1)}(t) = \frac{d}{dt} \left(\frac{\lambda}{(\lambda - t)^n}\right)$$

$$= \frac{n\lambda^n}{(\lambda - t)^{n+1}}$$

$$\Phi_X^{(2)}(t) = \frac{d}{dt} \left(\frac{n\lambda^n}{(\lambda - t)^{n+1}}\right)$$

$$= \frac{n(n+1)\lambda^n}{(\lambda - t)^{n+2}}$$

Thus we have

$$\begin{split} E[X] &= \Phi_X^{(1)}(0) = \frac{n\lambda^n}{(\lambda - t)^{n+1}} \bigg|_{t=0} = \frac{n}{\lambda} \\ E[X^2] &= \Phi_X^{(2)}(0) = \frac{n(n+1)\lambda^n}{(\lambda - t)^{n+2}} \bigg|_{t=0} = \frac{n(n+1)}{\lambda^2} \\ Var(X) &= E[X^2] - E[X]^2 = \frac{n(n+1)}{\lambda^2} - \frac{n}{\lambda} = \frac{n}{\lambda^2} \end{split}$$

Remark 4.1. To solve any of these mgfs, it is useful to see if one can reduce the integral into a pdf of a known distribution (possibly itself).

4.2 Exercise 2: MGF of Uniform

Find the mgf of the uniform distribution on (0,1) and find E[X] and Var(X).

Solution. Let $X \sim U(0,1)$ so that f(x) = 1 $0 \le x \le 1$. We have

$$\Phi_X(t) = E[e^{tX}] = \int_0^1 e^{tx}(1)dx$$

$$= \frac{1}{t}e^{tx}\Big|_{x=0}^{x=1}$$

$$= t^{-1}(e^t - 1) \quad t \neq 0$$

Differentiating

$$\begin{split} \Phi_X^{(1)}(t) &= \frac{d}{dt}(t^{-1}(e^t - 1)) \\ &= t^{-1}e^t - t^{-2}(e^t - 1) \\ &= \frac{te^t - e^t + 1}{t^2} \\ \Phi_X^{(2)}(t) &= \frac{d}{dt}(\frac{te^t - e^t + 1}{t^2}) \\ &= \frac{t^2(te^t + e^t - e^t) - 2t(te^t - e^t + 1)}{t^4} \\ &= \frac{t^2e^t - 2te^t + 2e^t - 2}{t^3} \end{split}$$

We may calculate the first two moments by applying L'Hopital's rule to calculate the limits

$$E[X] = \Phi_X^{(1)}(t) \Big|_{t=0} = \lim_{t \to \infty} \frac{te^t - e^t + 1}{t^2}$$
$$= \lim_{t \to \infty} \frac{te^t + e^t - e^t}{2t}$$
$$= \lim_{t \to \infty} \frac{e^t}{2} = \frac{1}{2}$$

Similarly

$$E[X^{2}] = \Phi_{X}^{(2)}(t) \Big|_{t=0} = \lim_{t \to \infty} \frac{t^{2}e^{t} - 2te^{t} + 2e^{t} - 2}{t^{3}}$$

$$= \lim_{t \to \infty} \frac{t^{2}e^{t} + 2te^{t} - 2te^{t} - 2e^{t} + 2e^{t}}{3t^{2}}$$

$$= \lim_{t \to \infty} \frac{e^{t}}{3} = \frac{1}{3}$$

So we have

$$Var(X) = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

4.3 Exercise 3: Moments from PGF

Suppose X is a discrete r.v. on \mathbb{N} with pmf p(x). Show how to find the first two moments of X from its pgf. **Solution.** By definition, the pgf of X is $\Psi_X(z) = E[z^X] = \sum_{x=0}^{\infty} z^x p(x)$. If we let z=1, then the sum equals 1. However, if we take its derivative with respect to z just once

$$\Psi_X^{(1)}(z) = \frac{d}{dz} \sum_{x=0}^{\infty} z^x p(x) = \sum_{x=1}^{\infty} x z^{x-1} p(x)$$

Letting z = 1 we can find the first moment

$$\Psi_X^{(1)}(1) = \lim_{z \to 1} \sum_{x=1}^{\infty} xz^{x-1} p(x)$$

$$= \sum_{x=1}^{\infty} xp(x)$$

$$= \sum_{x=0}^{\infty} xp(x)$$

$$= E[X]$$

when x = 0 the term is 0 anyways

For the second moment, we consider the second derivative

$$\Psi_X^{(1)}(z) = \frac{d^2}{dz^2} \sum_{x=0}^{\infty} z^x p(x)$$
$$= \sum_{x=2}^{\infty} x(x-1)z^{x-2} p(x)$$

Letting z = 1

$$\Psi_X^{(2)}(1) = \lim_{z \to 1} \sum_{x=2}^{\infty} x(x-1)z^{x-2}p(x)$$

$$= \sum_{x=2}^{\infty} x(x-1)p(x)$$

$$= \sum_{x=0}^{\infty} x(x-1)p(x)$$

$$= E[X(X-1)]$$

$$= E[X^2] - E[X]$$

So we have $E[X^2] = \Psi_X^{(2)}(1) + \Psi_X^{(1)}(1)$. To find the variance

$$Var(X) = \Psi_X^{(2)}(1) + \Psi_X^{(1)}(1) - (\Psi_X^{(1)}(1))^2$$

4.4 Exercise 4: PGF of Poisson

Suppose $X \sim Pois(\lambda)$. Find the pgf of X and use it to find E[X] and Var(X). The pmf of $Pois(\lambda)$ for $\lambda > 0$

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!} \quad x = 0, 1, 2, \dots$$

Solution.

$$\Psi_X(z) = E[z^X] = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(z\lambda)^x}{x!}$$
$$= e^{-\lambda} \cdot e^{z\lambda}$$
$$= e^{\lambda(z-1)}$$

where the second equality holds since the summation is the Taylor expansion of $e^{z\lambda}$. Differentiating

$$\Psi_X^{(1)}(z) = \frac{d}{dz} e^{\lambda(z-1)}$$
$$= \lambda e^{\lambda(z-1)}$$
$$\Psi_X^{(2)}(z) = \frac{d}{dz} \lambda e^{\lambda(z-1)}$$
$$= \lambda^2 e^{\lambda(z-1)}$$

The moments are thus

$$\begin{split} E[X] &= \Phi_X^{(1)}(1) = \lambda e^{\lambda(1-1)} = \lambda \\ E[X(X-1)] &= \Phi_X^{(2)}(1) = \lambda^2 e^{\lambda(1-1)} = \lambda^2 \\ E[X^2] &= E[X(X-1)] + E[X] = \lambda^2 + \lambda \\ Var(X) &= E[X^2] - E[X]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda \end{split}$$

5 January 16, 2018

5.1 Example 2.3 Solution

Let X_1, \ldots, X_m be independent r.v.'s where $X_i \sim Pois(\lambda_i)$. Define $Y = \sum_{i=1}^m X_i$. Find the conditional distribution $X_i \mid (Y = n)$.

Solution. We set out to find

$$p(x_{j} | n) = p(X_{j} = x_{j} | Y = n) = \frac{P(X_{j} = x_{j}, Y = n)}{P(Y = n)}$$

$$= \frac{P(X_{j} = x_{j}, \sum_{i=1}^{m} X_{i} = n)}{P(Y = n)}$$

$$= \frac{P(X_{j} = x_{j}, X_{j} + \sum_{i=1, i \neq j}^{m} X_{i} = n)}{P(Y = n)}$$

$$= \frac{P(X_{j} = x_{j}, \sum_{i=1, i \neq j}^{m} X_{i} = n - x_{j})}{P(Y = n)}$$

$$= \frac{P(X_{j} = x_{j}) P(\sum_{i=1, i \neq j}^{m} X_{i} = n - x_{j})}{P(Y = n)}$$

independence of X_i

Remember that if $X_i \sim Pois(\lambda_i)$, then

$$Y = \sum_{i=1}^{m} X_i \sim Pois(\sum_{i=1}^{m} \lambda_i)$$

which can be derived from mgfs (Exercise 1.3). Therefore

$$\sum_{i=1, i \neq j}^{m} X_i \sim Pois(\sum_{i=1, i \neq j}^{m} \lambda_i)$$

Expanding out $p(x_i \mid n)$ with the pdfs

$$p(x_j \mid n) = \frac{\frac{e^{-\lambda_j \lambda_j^{x_j}}}{x_j!} \cdot \frac{e^{-\sum_{i=1, i \neq j} \lambda_i (\sum_{i=1, i \neq j} \lambda_i)^{n-x_j}}{(n-x_j)!}}{\frac{e^{-\sum_{i=1}^m \lambda_i \cdot (\sum_{i=1}^m \lambda_i)^n}}{n!}}$$

where $x_j \ge 0$ and $n - x_j \ge 0 \Rightarrow 0 \le x_j \le n$ (from the factorials).

Cancelling out the e^{λ} terms and let $\lambda_Y = \sum_{i=1}^m \lambda_i$

$$p(x_j \mid n) = \frac{n!}{(n-x_j)!x_j!} \frac{\lambda_j^{x_j}}{\lambda_Y^{x_j}} \frac{(\lambda_Y - \lambda_j)^{n-x_j}}{\lambda_Y^{n-x_j}}$$
$$= \binom{n}{x_j} (\frac{\lambda_j}{\lambda_Y})^{x_j} (1 - \frac{\lambda_j}{\lambda_Y})^{n-x_j}$$

This is the binomial distribution, so we have

$$X_j \mid Y = n \sim Bin(n, \frac{\lambda_i}{\lambda_V})$$

5.2 Example 2.4 Solution

Suppose $X \sim Pois(\lambda)$ and $Y \mid (X = x) \sim Bin(x, p)$. Find the conditional distribution $X \mid Y = y$. (Note: range of y depends on x (that is $y \leq x$). Graphically, we have integral points on and below the y = x line starting from 0 for both x and y).

Solution. We wish to find the conditional pmf given by $X \mid Y = y$ or

$$p(x \mid y) = P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Note that also

$$P(Y = y \mid X = x) = \frac{P(Y = y, X = x)}{P(X = x)}$$

$$\Rightarrow P(X = x, Y = y) = P(X = x)P(Y = y \mid X = x)$$

$$= \frac{e^{-\lambda} \lambda^x}{x!} \cdot \binom{x}{y} p^y (1 - p)^{x - y}$$

for $x = 0, 1, 2, \dots$ and $y = 0, 1, 2, \dots, x$ (range of y depends on x). To find the marginal marginal pmf of Y, we use

$$p_Y(y) = \sum_x p(x, y)$$

To find the support for x, note that from the graphical region, we realize that $x = 0, 1, 2, \ldots$ and $y = 0, 1, 2, \ldots, x$ is equivalent to $y = 0, 1, 2, \ldots$ and $x = y, y + 1, y + 2, \ldots$

So

$$p_Y(y) = \sum_{x=y}^{\infty} \frac{e^{-\lambda} \lambda^x}{x!} \frac{x!}{(x-y)!y!} p^y (1-p)^{x-y}$$

$$= \frac{\lambda^y e^{-\lambda} p^y}{y!} \sum_{x=y}^{\infty} \frac{\lambda^{x-y} (1-p)^{x-y}}{(x-y)!}$$

$$= \frac{e^{-\lambda} (\lambda p)^y}{y!} \sum_{x=y}^{\infty} \frac{[\lambda (1-p)]^{x-y}}{(x-y)!}$$

$$= \frac{e^{-\lambda} (\lambda p)^y}{y!} e^{\lambda (1-p)}$$

$$= \frac{e^{-\lambda p} (\lambda p)^y}{y!}$$

$$= y = 0, 1, 2, \dots$$

Note that $p_Y(y) \sim Pois(\lambda p)$.

Thus

$$p(x \mid y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

$$= \frac{\frac{e^{-\lambda}\lambda^x}{x!} \cdot \frac{x!}{(x-y)!y!} p^y (1-p)^{x-y}}{\frac{e^{-\lambda p}(\lambda p)^y}{y!}}$$

$$= \frac{e^{-\lambda + \lambda p} [\lambda (1-p)]^{x-y}}{(x-y)!}$$

$$= \frac{e^{-\lambda (1-p)} [\lambda (1-p)]^{x-y}}{(x-y)!}$$

$$x = y, y+1, y+2, \dots$$

This resembles the Poisson distribution with $\lambda = \lambda(1-p)$ but with a slightly modified domain. So we see that

$$W \mid (Y = y) \sim W + y$$

where $W \sim Pois(\lambda(1-p))$. This is the **shifted Poisson pmf** y units to the right (note that W and y are random variables).

We can easily find the conditional expectations and variance e.g.

$$E[X \mid Y = y] = E[W + y] = E[W] + y$$

5.3 Example 2.5 Solution

Suppose the joint pdf of X and Y is

$$f(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & , 0 < x < 1, 0 < y < 1, \\ 0 & , \text{ elsewhere} \end{cases}$$

Determine the conditional distribution of X given Y = y where 0 < y < 1. Also calculate the mean of $X \mid (Y = y)$. (Note: the graphical region is a unit square box where the bottom left corner is at 0,0: the inside of the box is the support).

Solution. Using our theory, we wish to find the conditional pdf of $X \mid (Y = y)$ given by

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}$$

For 0 < y < 1

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

$$= \int_0^1 \frac{12}{5} x (2 - x - y) dx$$

$$= \frac{12}{5} \int_0^1 (2x - x^2 - xy) dx$$

$$= \frac{12}{5} (x^2 - \frac{x^3}{3} - \frac{x^2 y}{2}) \Big|_0^1$$

$$= \frac{12}{5} (1 - \frac{1}{3} - \frac{y}{2})$$

$$= \frac{2}{5} (4 - 3y)$$

So we have

$$f_{X|Y}(x \mid y) = \frac{\frac{12}{5}x(2 - x - y)}{\frac{2}{5}(4 - 3y)}$$
$$= \frac{6x(2 - x - y)}{4 - 3y}$$

Thus we have

$$E[X \mid Y] = \int_0^1 x \cdot f_{X|Y}(x \mid y) dx$$
$$= \frac{5 - 4y}{2(4 - 3y)}$$

6 January 18, 2018

6.1 Example 2.6 Solution

Suppose the joint pdf of X and Y is

$$f(x,y) = \begin{cases} 5e^{-3x-y} & , 0 < 2x < y < \infty, \\ 0 & , \text{ otherwise} \end{cases}$$

Find the conditional distribution of $Y \mid (X = x)$ where $0 < x < \infty$.

Note the region of support is a "flag" (upright triangle with downward point) where the slanted part is the line y = 2x.

Solution. We wish to find

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$$

For $0 < x < \infty$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$= \int_{2x}^{\infty} 5e^{-3x-y} dy$$

$$= 5e^{-3x} \int_{2x}^{\infty} 5e^{-y} dy$$

$$= 5e^{-3x} (-e^{-y}) \Big|_{2x}^{\infty}$$

$$= 5e^{-3x} e^{-2x}$$

$$= 5e^{-5x}$$

so we have $f_X(x) \sim Exp(5)$.

Remark 6.1. The bounds on the integral are in terms of y: it is dependent on x in our f(x,y) definition.

Now

$$f_{Y|X}(y \mid x) = \frac{5e^{-3x-y}}{5e^{-5x}}$$

= e^{-y+2x} $y > 2x$

Note: recognize the conditional pdf of $Y \mid (X = x)$ as that of a shifted exponential distribution (2x units to the right). Specifically, we have

$$Y \mid (X = x) \sim W + 2x$$

where $W \sim Exp(1)$. Thus $E[Y \mid (X = x)] = E(W) + 2x$ and $Var[Y \mid (X = x)] = Var(W)$.

6.2 Example 2.7 Solution

Suppose $X \sim U(0,1)$ and $Y \mid (X=x) \sim Bern(x)$. Find the conditional distribution $X \mid (Y=y)$. Note: X is continuous and $Y \mid (X=x)$ is discrete.

Solution. We wish to find

$$f_{X|Y}(x \mid y) = \frac{p(y \mid x)f_X(x)}{p_Y(y)}$$

From the given information, we have $f_X(x) = 1$ for 0 < x < 1 Furthermore $p(y \mid x) = Bern(x) = x^y(1-x)^{1-y}$ for y = 0, 1.

For y = 0, 1 note that (from $\int f(x \mid y) dx = 1$)

$$p_Y(y) = \int_{-\infty}^{\infty} p(y \mid x) f_X(x) dx$$
$$p_Y(y) = \int_{0}^{1} x^y (1 - x)^{1 - y} dx$$

To compute this integral, let's check $p_Y(0)$ and $p_Y(1)$

$$p_Y(0) = \int_0^1 x^0 (1 - x)^{1 - 0} dx$$
$$= \int_0^1 1 - x dx$$
$$= x - \frac{x^2}{2} \Big|_0^1$$
$$= \frac{1}{2}$$

Similarly, take y = 1 where $p_Y(1) = \frac{1}{2}$. In other words, we have that $p_Y(y) = \frac{1}{2}$ y = 0, 1 so

$$Y \sim Bern\left(\frac{1}{2}\right)$$

So

$$f(x \mid y) = \frac{p(y \mid x) f_X(x)}{p_Y(y)}$$

$$= \frac{x^y (1 - x)^{1 - y} \cdot 1}{\frac{1}{2}}$$

$$= 2x^y (1 - x)^{1 - y} \quad 0 < x < 1$$

6.3 Theorem 2.2 (law of total expectation)

Prove that for random variables X and Y, $E[X] = E[E[X \mid Y]]$.

Proof. WLOG assume X,Y are jointly continuous random variables. We note

$$E[E[X \mid Y]] = \int_{-\infty}^{\infty} E[X \mid Y = y] f_Y(y) dy$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) dx \right] f_Y(y) dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \frac{f(x, y)}{f_Y(y)} \cdot f_Y(y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} x \left[\int_{-\infty}^{\infty} f(x, y) dy \right] dx$$

$$= \int_{-\infty}^{\infty} x f_X(x) dx$$

$$= E[X]$$

6.4 Example 2.8 Solution

Suppose $X \sim Geo(p)$ with pmf $p_X(x) = (1-p)^{x-1}p$ where $x = 1, 2, 3, \ldots$ Calculate E[X] and Var(X) using the law of total expectation.

Solution. Recall $E[X] = \frac{1}{p}$ and $Var(X) = \frac{1-p}{p^2}$ where X models the number of (independent) trials necessary to obtain the first success.

Remember: we could manually solve $E[X] = \sum_{x=1}^{\infty} (1-p)^{x-1}p$ and similarly $Var(X) = E[X^2] - E[X]$, or take the derivatives of the mgf $\Phi_X(t) = E[e^{tX}]$. This is tedious in general.