Photon-number and timing resolution of a near-IR continuous-wave source with a transition edge sensor IPS 2017

Jianwei Lee*, Lijiong Shen, Brenda Chng, Alessandro Cere, Christian Kurtsiefer

Motivation

Measure 2nd-order correlation function with a single detector

Avoids spatial multiplexing of Hanbury-Brown-Twiss Applicable to Satellites

Outline

Transition-Edge Sensor & Setup
Photon-Number Resolution
Time-of-Arrival Estimation
2nd-Order Correlation of Continuous Source

Transition-Edge Sensor

Photon-Number Resolving Near unit Efficiency Long Recovery Time ($\approx 2 \mu s$) limits flux detection rates

Transition-Edge Sensor

 $\mbox{Photon absorbed} \rightarrow \mbox{Temperature increases} \rightarrow \mbox{Resistance increases}$

Photon Number Discrimination

Light source: Pulsed Laser Diode Pulse Area ∝ Photon Number

Pulse Identification for Continuous Source

Discard Incomplete Pulses at Edges Limit Background Noise

Photon Number Resolution (Continuous Source)

Time-of-Arrival Estimation

Model:
$$A_1S(t-t_1) + A_2S(t-t_2)$$

- Select 2-photon signals (pulse area)
- Detect Pulse edges (filter + differentiate)
- 3. 2 Edges
 - Initialise using Pulse Edges Timings
 - · Least Squares Fit
- 4. 1 Edge
 - Initialise using Pulse Region
 - Monte-Carlo Markov Chain Fit

Single-Photon Detection Model

Select 5000 single-photon pulses Correct for Vertical & Horizontal Offset

Self-Correlation $G^{(2)}$

Self-Correlation $G^{(2)}$

Self-Correlation $G^{(2)}$ Fit Accuracy

Light Source: Laser Diode Pulse Pairs

Conclusion

Timing Resolution $\approx 250 \ ns$ Photon Number Resolution

- n = 0, 1 misidentification negigible
- 1-photon event misidentified as 2-photon event: 0.8%

Applications

- Correlation measurements without spatial-mode multiplexing
- · Increased Photon Flux