ERDE SAPÉRIURE DE CHIMIE PHYSIQUE ÉLECTRONIQUE DE LYON

Parties II à IV

Date: 19 novembre 2015

Contrôle de : Traitement des Signaux Aléatoires

Partie II: FILTRAGE

Soit un signal aléatoire X(t) gaussien, à valeurs réelles, stationnaire du $2^{\text{ième}}$ ordre.

Soit $\widetilde{X}(t) = X(t) - \mathbb{E}\{X(t)\}\$ le signal centré (on utilisera dans la suite la notation $m_X = \mathbb{E}\{X(t)\}\$).

1) Donner l'expression de la fonction d'autocorrélation $\gamma_X(\tau)$ de X(t) en fonction de celle du signal centré, $\gamma_{\widetilde{X}}(\tau)$, et de m_X . En déduire l'expression de la densité spectrale de puissance moyenne $\Gamma_X(\nu)$ en fonction de $\Gamma_{\widetilde{Y}}(\nu)$ et de m_X .

On s'intéresse maintenant au signal aléatoire $\widetilde{X}(t)$ gaussien, <u>centré</u>, à valeurs réelles, stationnaire du $2^{\text{ième}}$ ordre, dont la densité spectrale de puissance moyenne est donnée par : $\Gamma_{\widetilde{X}}(v) = \Gamma_0 \Pi_{2B}(v)$.

On rappelle que
$$\frac{\sin(\pi 2Bt)}{\pi t} \Longrightarrow \Pi_{2B}(v)$$
.

On met en œuvre la chaîne de traitement suivante :

$$\widetilde{X}(t) \longrightarrow \underbrace{\left(\right)^2 } Y(t) \underbrace{\frac{1}{T} \int_{t-T}^t Y(u) du} \longrightarrow Z(t)$$

Le bloc fonctionnel $\frac{1}{T} \int_{t-T}^{t} Y(u) du$ correspond au filtrage de Y(t) par un filtre linéaire de réponse impulsionnelle $h(t) = \frac{1}{T} \Pi_T(t-T/2) \Longrightarrow H(v) = \frac{\sin(\pi v T)}{\pi v T} e^{-i\pi v T}$

- 2) Exprimer la valeur moyenne statistique du signal de sortie Z(t) en fonction de la valeur moyenne du signal Y(t), puis en fonction des caractéristiques de $\widetilde{X}(t)$.
- 3) Exprimer la puissance moyenne de Z(t) en fonction de H(v) et des caractéristiques de Y(t).
- 4) Exprimer la densité spectrale de puissance moyenne de Y(t) en fonction de la puissance moyenne de $\widetilde{X}(t)$, de Γ_0 et de B.

On utilisera les résultats suivants :

- $\gamma_Y(\tau) = \gamma_{\widetilde{X}}^2(0) + 2\gamma_{\widetilde{X}}^2(\tau)$ pour $Y(t) = \widetilde{X}^2(t)$ avec $\widetilde{X}(t)$ gaussien et centré
- $\Pi_{2B}(u) * \Pi_{2B}(u) = \Lambda_{2B}(v) = 2B \left(1 \frac{|v|}{2B}\right)$ pour $|v| \le 2B$ et nulle ailleurs
- 5) Donner l'expression de la variance de Z(t) en fonction Γ_0 , de B et de T. On introduira ensuite la puissance moyenne de $\widetilde{X}(t)$, $P_{\widetilde{X}}$, dans cette expression.

On fera l'hypothèse que $T >> \frac{1}{B}$ pour simplifier les calculs et on utilisera le résultat suivant :

$$\int_{R} |H(\mathbf{v})|^2 d\mathbf{v} = \frac{1}{T}.$$

6) Si B = 500 Hz, quelle durée d'intégration T minimale faut-il pour obtenir une précision de 1% sur l'estimation de la valeur de la puissance moyenne de $\widetilde{X}(t)$, c'est-à-dire pour que $\frac{\sigma_Z}{\mathrm{E}\{Z(t)\}} \le 1\%$?

Partie III: FILTRAGE A REPONSE IMPULSIONNELLE FINIE

Nous nous intéressons à un signal aléatoire échantillonné $\{S_n\}$ stationnaire à valeurs réelles dont la fonction d'autocorrélation est donnée par :

$$\gamma_S(k) = E\{S_n S_{n-k}\} = a^{|k|}$$
 avec $0 < a < 1$

Nous avons accès au signal aléatoire échantillonné $\{X_n\}$ correspondant à la superposition du signal aléatoire $\{S_n\}$ stationnaire et d'un bruit blanc $\{B_n\}$ centré, stationnaire à l'ordre 2, de variance σ_B^2 . $\{S_n\}$ et $\{B_n\}$ ne sont pas corrélés.

$$X_n = S_n + B_n$$

On souhaite estimer le signal d'intérêt $\{S_n\}$ à partir de l'observation $\{X_n\}$ en utilisant un filtre FIR (ou R.I.F.) à deux coefficients $\underline{h} = [h_0, h_1]^T$.

7) On note S_{1n} et B_{1n} les composantes signal et bruit de Y_n .

Calculer les rapport signaux à bruit en entrée $\left[\frac{S}{B}\right]_0 = \frac{\mathrm{E}\left\{S_n^2\right\}}{\mathrm{E}\left\{B_n^2\right\}}$ et en sortie $\left[\frac{S}{B}\right]_1 = \frac{\mathrm{E}\left\{S_{1n}^2\right\}}{\mathrm{E}\left\{B_{1n}^2\right\}}$ du filtre

FIR en fonction de a, σ_B^2 , h_0 et h_1 .

On propose de déterminer le filtre FIR qui minimise la puissance de l'erreur $\{\varepsilon_n\}$ (Filtre de Wiener)

- 8) Calculer $E\{\varepsilon_n X_n\}$ et $E\{\varepsilon_n X_{n-1}\}$ en fonction de a, σ_B^2, h_0 et h_1 .
- 9) A partir des résultats obtenus à la question 12 et en utilisant le principe d'orthogonalité entre l'erreur d'estimation $\{\varepsilon_n\}$ et le signal $\{X_n\}$, proposer un système linéaire de deux équations qui permettront de calculer les valeurs des 2 coefficients du filtre de Wiener h_0 et h_1 .

En résolvant ce système linéaire, on obtient $h_0 = \frac{1 + \sigma_B^2 - a^2}{(1 + \sigma_B^2)^2 - a^2}$ et $h_1 = \frac{a^2 \sigma_B^2}{(1 + \sigma_B^2)^2 - a^2}$

10) On s'intéresse aux filtres FIR de Wiener d'ordre 2 pour des processus AR $\{S_n\}$ très faiblement et très fortement corrélés.

Vers quels filtres tendent ces filtres lorsque la corrélation entre 2 échantillons successifs du processus AR tend vers 0 ou vers 1 ?

Expliquer les propriétés des filtres FIR de Wiener obtenus pour ces deux cas limites.

En vous appuyant sur les résultats obtenus à la question 11), évaluer le gain en rapport signal à bruit pour chacun des 2 cas limites précédents.

Partie IV: Estimation

On veut évaluer la surface d'une pièce circulaire à partir de la mesure de son rayon. On rappelle que $S = \pi r^2$ où r est le rayon de la pièce.

On sera capable d'opérer deux mesures <u>indépendantes</u> de ce rayon, mesures que l'on notera r_1 et r_2 . Ces mesures sont non-biaisées mais leur dispersion est chiffrée par un écart-type σ .

On propose trois méthodes de calcul de la surface :

$$S_1 = \pi \left(\frac{r_1 + r_2}{2}\right)^2 \qquad S_2 = \pi \frac{\left(r_1^2 + r_2^2\right)}{2} \qquad S_3 = \pi r_1 r_2$$

- 1. Exprimer $E\{r_k\}$ et $E\{r_k^2\}$ pour k=1,2 en fonction de r et σ .
- 2. Calculer le biais associé à chacune des trois méthodes de calcul de S.
- 3. Parmi les trois estimateurs proposés, on ne s'intéresse plus qu'aux estimateurs non-biaisés de S. Calculer leur variance en fonction de r et σ .
- 4. Pour les estimateurs non-biaisés, chiffrer la précision d'estimation associée, dans le cas où r = 1 cm et $\sigma = 0.1$ cm.