南京工业大学_《概率论》期末__试题 (A)卷 (闭)

2019--2020 学年第 二 学期 使用班级: 2018 级各相关专业

班级		学号								
题号	_	1 1	111	四	五	六	七	八	总分	
得分										
一、填空题(共5题,每空3分,计30分)										
1.若 <i>P</i> (<i>A</i>) = 0.8, <i>P</i> (<i>B</i>) = 0.7; 则当时, <i>P</i> (<i>AB</i>)取得最小值,此时, <i>P</i> (<i>AB</i>)=										
2.一只盒子装有3只白球,5只红球。现从中随机抽取三次,每次取一只。令 A 表示取到的3										
球均为红球。若采用不放回方式, $P(A) =;$ 若采用有放回方式, $P(A) =$ 。										
3. 已知随机变量 X 的分布律为 $P\{X = m\} = \frac{k}{1 - k}$, $(m = 1, 2, 3)$; 则 $k = 1, 2, 3$,										
					4 – r	n				
4. 设随机变量 X 的概率分布密度函数为 $f(x) = \begin{cases} a + bx^2 & 0 \le x \le 1; \\ 0 & 其它 \end{cases}$,又若 $EX = \frac{2}{3}$;则										
	=									
5. 若	随机变量	x 服从二	二项分布	$B\left(8,\frac{1}{2}\right)$, <i>Y</i> 服从	泊松分布	$\pi(3)$,	且 <i>X , Y</i> 相	互独立;	则
Ε	(X-2Y)	-3)=		; D(X - 2Y -	-3)=		o		
6. 设	:随机变量	X 的数	字特征 <i>EX</i>	$C = \mu$	$DX = \sigma$	2;则按证	刃比雪夫	不等式,	有	
P	$ X - \mu $	≥ 3 \(\sigma\) ≤ _			_0					

二. (本题10分)

某商店库存 100 台同型号的冰箱待售。其中有 60 台是甲厂生产的, 25 台是乙厂生产的, 15 台是丙厂生产的。已知这三个厂家生产该型冰箱的次品率分别是 0.1, 0.4, 0.2。有人从该商店随机挑选了一台冰箱。问: 1) 这台冰箱不合格的概率是多少? 2) 若已知这台冰箱不合格,则它最有可能是哪个厂家生产的?

三.(本题共10分)

有一只不透明的口袋里装有编号为 1,2,3,4,5 的 5 只乒乓球。现从中任意取出 3 只。若 X 表示取出的 3 只乒乓球中的最大编号;试求:

1) X 的分布律; 2) X 的分布函数。

四.(本题共10分)

设随机变量 X 的概率密度函数为 $f(x) = ae^{-|x|}$ 。 $(-\infty < x < +\infty)$ 试求:

1) 常数 a; 2) X 的分布函数 F(x); 3) $P\{-1 < X < 2\}$

五.(本题共10分)

已知随机变量 X 服从区间 [1,2]上的均匀分布, 求:

1) $Y = e^{2x}$ 的概率密度函数; 2) EY 。

六.(本题共12分)

设随机向量(X,Y)的联合概率密度函数为 $f(x,y) = \begin{cases} k(6-x-y), & 0 < x < 2,2 < y < 4 \\ 0 & 其它 \end{cases}$

求: 1)常数k; 2) $P\{X < 1, Y < 3\}$; 3) X, Y 各自的边际概率密度; 4) X 与 Y 是否独立?

七.(本题共10分)

已知(X,Y)的联合分布律为

X Y	0	1
0	0.10	0.15
1	0.25	0.20
2	0.15	0.15

求:1)
$$X+Y$$
 的分布律;2) 若 $Z=\sin\frac{X+Y}{2}\pi$,求 EZ ;3) 求 X , Y 的相关系数 ρ_{xy} 。

八、(本题共8分)

某探测仪一小时内先后接收到 108 组相互独立的干扰信号,每组干扰信号持续的时长(单位:秒) *X*,均服从[0,10]上的均匀分布。试求一小时内,探测仪收到干扰的总时长超过 570 秒的概率。

($\Phi(0) = 0.5000$; $\Phi(1) = 0.8413$; $\Phi(1.6) = 0.9452$)