Math 69: Logic Winter '23

Homework assigned January 30, 2023

Prof. Marcia Groszek Student: Amittai Siavava

Problem 5.

Show that the formula

$$x = y \rightarrow Pzfx \rightarrow Pzfy$$

(where f is a one-place function symbol and P is a two-place predicate symbol) is valid.

Suppose the formula is not valid. Then there exists some structure $\mathfrak A$ and some variable assignment s such that $\not\models_{\mathfrak A} x = y \to Pzfx \to Pzfy$, meaning:

$$\models_{\mathfrak{A}} (x = y)[s] \tag{5.1}$$

$$\models_{\mathfrak{A}} Pzfx[s] \tag{5.2}$$

$$\neq_{\mathfrak{A}} Pzfy[s]$$
(5.3)

Since $\models_{\mathfrak{A}} (x = y)[s]$, we have that $\overline{s}(x) = \overline{s}(y)$.

However, since $\overline{s}(x) = \overline{s}(y)$, we have that $\overline{s}(fx) = \overline{s}(fy)$:

$$\overline{s}(fx) = f^{\mathfrak{A}}(\overline{s}(x)) = f^{\mathfrak{A}}(\overline{s}(y)) = \overline{s}(fy).$$

Therefore, Pzfx[s] and Pzfy[s] are logically equivalent, so 5.2 and 5.3 are a contradiction, meaning that the formula is valid and any structure which does not satisfy the formula is inconsistent.

Amittai, S Math 69: Logic

Problem 26.

(a) Consider a fixed structure $\mathfrak A$ and define its *elementary type* to be the class of structures elementarily equivalent to $\mathfrak A$. Show that this class is EC_{Δ} .

Hint: Show that it is Mod Thm A

By definition, two structures $\mathfrak A$ and $\mathfrak B$ are elementarily equivalent if whenever $\models_{\mathfrak A} \varphi$, we also have that $\models_{\mathfrak B} \varphi$. That is, whenever φ is tautologically implied by $\mathfrak A$ then it is also tautologically implied by $\mathfrak B$.

Let $[\mathfrak{A}]$ be the class of all structures elementarily equivalent to \mathfrak{A} , and let Thm \mathfrak{A} be the set of all consequences of \mathfrak{A} . Then every structure \mathfrak{B} in $[\mathfrak{A}]$ is a model of Thm \mathfrak{A} , since it must satisfy all the consequences of \mathfrak{A} . Therefore, $[\mathfrak{A}] = \text{Mod Thm } \mathfrak{A}$, so it is EC_{Δ} .

(b) Call a class K of structures *elementarily closed* or ECL if whenever a structure belongs to K then all elementarily equivalent structures also belong. Show that any such class is a union of EC $_{\Delta}$ classes. (A class that is a union of EC $_{\Delta}$ classes is said to be an EC $_{\Delta\Sigma}$ class; this notation is derived from topology.)

Let K be an ECL class, and $\mathfrak A$ be a structure in K. Since $\mathfrak A \in K$, K satisfies all the consequences of $\mathfrak A$, i.e. Mod Thm $\mathfrak A \subseteq K$.

Let $\mathfrak B$ be an elementarily equivalent structure to $\mathfrak A$. This means that $\mathfrak B$ is a model of Thm $\mathfrak A$. However, K is elementarily closed, so $\mathfrak B$ must also be in K, meaning Mod Thm $\mathfrak B \subseteq K$.

By extension, every other structure \mathfrak{D}_i that is elementarily equivalent to some structure \mathfrak{D} that belongs in K must also belong in K. Therefore;

 $\mathfrak{K} = \operatorname{Mod} \operatorname{Thm} \mathfrak{A} \cup \operatorname{Mod} \operatorname{Thm} \mathfrak{B} \cup \operatorname{Mod} \operatorname{Thm} \mathfrak{D}_1 \cup \operatorname{Mod} \operatorname{Thm} \mathfrak{D}_2 \cup \dots$

for every other structure \mathfrak{D}_i in K, so it is $\mathrm{EC}_{\Delta\Sigma}$.

(c) Conversely show that any class that is the union of EC_{Δ} classes is ECL.

Let K be a class that is $EC_{\Delta\Sigma}$. Then

$$K = \bigcup_{\mathfrak{A} \text{ belongs in } K} \operatorname{Mod} \operatorname{Thm} \mathfrak{A}.$$

Consequently, whenever a structure ${\mathfrak A}$ belongs in $K,\operatorname{Mod}\nolimits$ Thm ${\mathfrak A}\subseteq K.$

Take any structure $\mathfrak B$ that is elementarily equivalent to $\mathfrak A$, then $\mathfrak B$ tautologically implies the same set of consequences as $\mathfrak A$, i.e. Mod Thm $\mathfrak B = \operatorname{Mod}$ Thm $\mathfrak A$. Therefore, Mod Thm $\mathfrak B \subseteq K$ so $\mathfrak B$ also belongs in K. Therefore, K is ECL.

Amittai, S Math 69: Logic

Problem 27.

Let \mathcal{L} be the language for first-order logic with two-place predicate symbols E and P and one-place function symbol f. (We are not assuming that \mathcal{L} has the equality symbol. On the other hand, we are not ruling out the possibility that \mathcal{L} has the equality symbol and/or any number of parameter symbols in addition to \forall , E, P, and f. Other symbols are not relevant to this question.)

Suppose $\mathfrak A$ is a structure for $\mathcal L$ that is a model of the sentence

$$\forall x E x x$$

and of every sentence of the form

$$\forall x \forall y \forall z_1 \forall z_2 \dots \forall z_n (Exy \to (\alpha \to \alpha')).$$

where α is an atomic formula with variables included among $\{x, y, z_1, z_2, \dots, z_n\}$, and α' is obtained from α by replacing some (possibly none, possibly some but not all, possibly all) occurrences of x by y. Examples of sentences of this form are

$$\forall x \forall y (Exy \rightarrow (Exx \rightarrow Eyx)) \text{ and } \forall x \forall y \forall z (Exy \rightarrow (Ezfx \rightarrow Ezfy)).$$

An example of a sentence *not* of this form is

$$\forall x \forall y \forall z (Exy \rightarrow (Ezfy \rightarrow Ezfx)).$$

Show that $E^{\mathfrak{A}}$ is an equivalence relation on the universe $|\mathfrak{A}|$, that $P^{\mathfrak{A}}$ induces a well-defined relation on equivalence classes, and that $f^{\mathfrak{A}}$ induces a well-defined function on equivalence classes.

Let s be a variable assignment satisfying the conditions as stated. Then:

- (a) $E^{\mathfrak{A}}$ is an equivalence relation on the universe $|\mathfrak{A}|$.
 - (i) E is reflexive: This follows from the sentence $\forall x Exx$.
 - (ii) E is symmetric: Suppose $\models_{\mathfrak{A}} Exy[s]$. Take the following sentence, which is valid in \mathfrak{A} :

$$\forall x \forall y (Exy \rightarrow (Exx \rightarrow Eyx)).$$

Since we have that $\forall x E x x$, for any such x, y pair we have that:

- $\overline{s}(Exy) = T$
- $\overline{s}(Exx) = T$

we can deduce Eyx as follows:

$$Exy$$
 (from choice of x and y) (27.1)

$$\forall x \forall y (Exy \to (Exx \to Eyx)) \tag{27.2}$$

$$(Exx \rightarrow Eyx)$$
 (modus ponens on 27.1 and 27.2) (27.3)

$$Exx$$
 (from the first sentence in the model) (27.4)

$$Eyx$$
 (modus ponens on 27.3 and 27.4) (27.5)

(iii) Transitive: the following sentence is valid in \mathfrak{A} :

$$\forall x \forall y \forall z (Exy \to (Ezfx \to Ezfy)) \tag{27.6}$$

Let $\models_{\mathfrak{A}} Exy[s]$ and take $z \in |\mathfrak{A}|$ such that $\models_{\mathfrak{A}} Ezx$. Define a one-place function $f: |\mathfrak{A}| \to |\mathfrak{A}|$ by

$$f(a) = a$$

Then, sentence 27.6 is equivalent to

$$\forall x \forall y \forall z (Exy \rightarrow (Ezx \rightarrow Ezy)).$$

Since E is symmetric, this means whenever $\models_{\mathfrak{A}} Eyx$ and $\models_{\mathfrak{A}} Exz$, then $\models_{\mathfrak{A}} Eyz$, so E is transitive.

(b) $P^{\mathfrak{A}}$ is a well-defined relation on equivalence classes.

Let $x, y \in |\mathfrak{A}|$ such that $\models_{\mathfrak{A}} Exy[s]$. We show that $P^{\mathfrak{A}}xa = P^{\mathfrak{A}}ya$ for all $a \in |\mathfrak{A}|$.

Suppose not, then there exists some $z \in |\mathfrak{A}|$ such that $\models_{\mathfrak{A}} Pxa[s]$ and $\not\models_{\mathfrak{A}} Pya[s]$.

Define a function $f: |\mathfrak{A}| \to |\mathfrak{A}|$ by

$$f(n) = Ean$$
,

then clearly f(x) = T and f(y) = F, so $f(x) \neq f(y)$.

However, we have the sentence

$$\forall x \forall y \forall z (Exy \rightarrow (Ezfx \rightarrow Ezfy)),$$

which does not hold when

(c) $f^{\mathfrak{A}}$ is a well-defined function on equivalence classes.

Let $x, y \in |\mathfrak{A}|$ be such that $\models_{\mathfrak{A}} Exy$. First, $E^{\mathfrak{A}}$ is symmetric, so $E^{\mathfrak{A}}xy \leftrightarrow E^{\mathfrak{A}}yx$.

We also have the sentence $\forall x \forall y \forall z (Exy \rightarrow (Ezfx \rightarrow Ezfy))$ as a valid axiom. But since $E^{\mathfrak{A}}xy \leftrightarrow E^{\mathfrak{A}}yx$, whenever the above formula is valid the same for Eyx is also valid, i.e. $\forall x \forall y \forall z (Eyx \rightarrow (Ezfy \rightarrow Ezfx))$.

This means $\overline{s}(Ezfx) = \overline{s}(Ezfy)$ whenever $\overline{s}(Exy) = T$. Since $E^{\mathfrak{A}}$ is transitive, this means E(fx)(fy) = T, therefore f(x) and f(y) are in the same equivalence class whenever x and y are in the same equivalence class so $f^{\mathfrak{A}}$ is well-defined.