6. Sequences of Functions

6.1 Pointwise and uniform convergence

For every $n \in \mathbb{N}$, let $f_n : S \to \mathbb{R}$. The sequence $\{f_n\}_{n=1}^{\infty}$ converges pointwise to $f : S \to \mathbb{R}$ if for every $x \in S$, we have

 $\lim_{n o\infty}f_n(x)=f(x)$

- Limit of $\{f_n\}_{n=1}^{\infty}$ converges, so f is unique.
- If $f_n:S o\mathbb{R}$ converges to f on $T\subset S$ for some $f:T o\mathbb{R}$, we say $\{f_n\}$ converges to T.

Example. $f_n:(-1,1)\to\mathbb{R}$, $f_n=\frac{1-x^n}{1-x}$, $f(x)=\frac{1}{1-x}$. $\{f_n\}$ converges pointwise to f on (-1,1) since $\lim_{n\to\infty}\frac{1-x^n}{1-x}=\frac{1}{1-x}=f(x)$.

Let $f_n:S o\mathbb{R}$, $f:S o\mathbb{R}$. The sequence $\{f_n\}_{n=1}^\infty$ converges uniformly to $f:S o\mathbb{R}$ if for every $\epsilon>0$, there exists an $M\in\mathbb{N}$ such that for all $n\geq M$ and $x\in S$, we have

$$|f_n(x) - f(x)| < \epsilon$$

Example.
$$f_n:[0,1] o\mathbb{R}$$
, $f_n(x)=x^n$, $f(x)=egin{cases} 1 & x=1 \ 0 & x
eq 1 \end{cases}$

It converges pointwise to f but not uniformly since

$$\exists M \in \mathbb{N}: orall x \in [0,1], \, orall n \geq M, \, |f_n(x)-f(x)| < \epsilon = rac{1}{2} o orall x \in [0,1), \, |x^M-0| < rac{1}{2}.$$

Let $\{x_k\}$ be a sequence s.t. $x_k\in[0,1)$, $x_k\to 1$ as $k\to\infty$ (such as $x_k=1-\frac1k$). Then $\lim_{k\to\infty}|x_k^M|=1^M=1>\frac12$ \to contradiction

Let $f_n:S o\mathbb{R}$ be bounded functions. Define

$$||f||_u = \sup\{|f(x)| : x \in S\}$$

 $||\cdot||_u$ is called the uniform norm.

Prop. converge uniformly $\iff \lim_{n \to \infty} ||f_n - f||_u = 0$

Let $f_n:S\to\mathbb{R}$ be bounded functions. The sequence is Cauchy in the uniform norm or uniformly Cauchy if for every $\epsilon>0$, there exists an $M\in\mathbb{N}$ such that for all $n,k\geq M$,

$$||f_n - f_k|| < \epsilon$$

Remark. Definition of convergence needs f to be given, but Cauchy doesn't need f to be given.

Prop. $\{f_n\}$ is Cauchy in the uniform norm \iff converges uniformly to some f

Pf. If Cauchy ightarrow fix x, $f_n(x)$ is Cauchy ightarrow $f_n(x)$ converges, defines $f=\lim_{n o\infty}f_n(x)$ ightarrow

Given $\epsilon>0$, find N s.t. for all $n,k\geq N$, $||f_n-f_k||_u<\frac{\epsilon}{2}$, which means for any x, $||f_n(x)-f_k(x)||_u<\frac{\epsilon}{2}$ $\to \lim_{k\to\infty}||f_n(x)-f_k(x)||=||f_n(x)-f(x)||\leq \frac{\epsilon}{2}<\epsilon$

If converges uniformly, given $\epsilon>0$, find N s.t. $\forall n\geq N, x\in S, |f_n(x)-f(x)|<\frac{\epsilon}{4}\to \forall n,k\geq N, |f_n(x)-f_k(x)|=|f_n(x)-f(x)+f(x)-f_k(x)|\leq \frac{\epsilon}{4}+\frac{\epsilon}{4}\to N$

take supremum over all x to obtain $||f_m - f_k||_u \leq \frac{\epsilon}{2} < \epsilon$

Summary: $f_n o f$

Cauchy in $||\cdot||_u \iff$ convergence in $||\cdot||_u \iff$ uniform convergence \to pointwise

6.2 Interchange of limits

Thm. (uniform convergence preserves continuity) Let $\{f_n\}$ be a sequence of continuous functions $f_n:S\to\mathbb{R}$ converging uniformly to $f:S\to R$. Then f is continuous.

Pf. Let $\{x_n\}$ be a sequence in S converging to x.

Let $\epsilon>0$ be given. As $f_n o f$ uniformly and f_n is continous,

$$\exists M \in \mathbb{N}: orall n \geq M, \, orall y \in S, \, |f_n(y) - f(y)| < rac{\epsilon}{3}$$

$$\exists k \in \mathbb{N}: orall k \in K, |f_M(x_k) - f_M(x)| < rac{\epsilon}{3}$$

Thus
$$orall k \geq K$$
, $|f(x_k) - f(x)| \leq |f(x_k) - f_M(x_k)| + |f_M(x_k) - f_M(x)| + |f_M(x) - f(x)| < rac{\epsilon}{3} + rac{\epsilon}{3} + rac{\epsilon}{3} = \epsilon$

 $_{
ightarrow} \lim_{k
ightarrow \infty} f(x_k) = f(x) \, _{
ightarrow} f$ is continuous at $x \, _{
ightarrow}$ as x is arbitrary, f is continuous

Thm. (uniform convergence preserves Riemann integrability) Let $\{f_n\}$ be a sequence of Riemann integrable functions $f_n:S\to\mathbb{R}$ converging uniformly to $f:S\to R$. Then f is Riemann integrable and

$$\lim_{n o\infty}\int_a^b f_n=\int_a^b f$$

Pf. Let $\epsilon>0$ be given. As f_n is Riemann integrable,

$$\exists M \in \mathbb{N}: \forall n \geq M, \, \forall x \in [a,b], \, |f_n(x)-f(x)| \leq rac{\epsilon}{2(b-a)}$$

 $|f(x)| \leq rac{\epsilon}{2(b-a)} + |f_n(x)|, \, orall x \in [a,b],$ since f_n is bounded, f is bounded

$$egin{aligned} \overline{\int_a^b} f - \underline{\int_a^b} f &= \overline{\int_a^b} (f(x) - f_n(x) + f_n(x)) dx - \underline{\int_a^b} (f(x) - f_n(x) + f_n(x)) dx \\ &\leq \overline{\int_a^b} (f(x) - f_n(x)) dx + \overline{\int_a^b} f_n(x) dx - \underline{\int_a^b} (f(x) - f_n(x)) dx - \underline{\int_a^b} f_n(x) dx \\ &= \overline{\int_a^b} (f(x) - f_n(x)) dx - \underline{\int_a^b} (f(x) - f_n(x)) dx \\ &\leq \frac{\epsilon}{2(b-a)} (b-a) + \frac{\epsilon}{2(b-a)} (b-a) \\ &= \epsilon \end{aligned}$$

$$orall n \geq M$$
 , $|\int_a^b f - \int_a^b f_n| = |\int_a^b (f(x) - f_n(x)) dx| \leq rac{\epsilon}{2(b-a)} (b-a) < \epsilon$

Thm. (uniform convergence preserves differentiability) Let I be a bounded interbal and $f_n:I\to\mathbb{R}$ be continously differentiable functions. Suppose $\{f'_n\}$ converges uniformly to $g:I\to\mathbb{R}$, and $\{f_n(c)\}$ is a convergent sequence for some $c\in I$. Then $\{f_n\}$ converges uniformly to a continously differentiable function $f:I\to\mathbb{R}$, and f'=g.

Pf. Define $f(c) = \lim_{n o \infty} f_n(c)$.

As f_n' are continous and hence Riemann integrable, by FTC, $orall x \in I$, $f_n(x) = f_n(c) + \int_c^x f_n'$.

Since $f'(n) \to g$ uniformly, $\lim_{n \to \infty} f_n(x) = f(c) + \lim_{n \to \infty} f'_n = f(c) + \int_c^x g$. Define this to be f(x), so $f_n(x) \to f(x)$, and by 2nd form of FTC, f'(x) = g(x).

Let ϵ be given.

$$\exists M \in \mathbb{N}: orall n \geq M, \ |f(c) - f_n(c)| < rac{\epsilon}{2} \quad ext{since } f_n(c)
ightarrow f(c) \ |f_n'(x) - g(x)| < rac{\epsilon}{2(b-a)} \quad ext{since } f_n'
ightarrow g ext{ uniformly} \ |f_n(x) - f(x)| = |f_n(c) + \int_c^x f_n' - f(c) - \int_c^x g| \ \leq |f_n(c) - f(c)| + |\int_c^x f_n' - \int_c^x g| \ < rac{\epsilon}{2} + |\int_c^x (f_n' - g)| \leq rac{\epsilon}{2} + rac{\epsilon}{2(b-a)} (b-a) \ = \epsilon$$

6.3 Picard's theorem

Limit characterization of continuity in two variables. Let $U\subset\mathbb{R}^2$ be a set, let $F:U\to\mathbb{R},\,(x,y)\in U$. We say F is continuous at (x,y) if for every sequence $\{x_n,y_n\}_{n=1}^\infty\in U$ such that $x_n\to x$ and $y_n\to y$ as $n\to\infty$, we have

$$\lim_{n o \infty} F(x_n, y_n) = F(\lim_{n o \infty} x_n, \lim_{n o \infty} y_n) = F(x, y)$$

We say F is continous if it is continous at every point $(x,y) \in U$.

Picard's theorem. (Existence and uniqueness of first order ODEs) Let $I,J\in\mathbb{R}$ be closed and bounded intervals, let I°,J° be their interiors, and $(x_0,y_0)\in I^\circ\times J^\circ$. Suppose $F:I\times J\to\mathbb{R}$ is continuous and Lipschitz in the second variable, that is, $\exists L\in\mathbb{R}$: $\forall y,z\in J,\, \forall x\in I,\, |F(x,y)-F(x,z)|\leq L|y-z|$.

Then there exists an h>0 and a unique differentiable function $f:[x_0-h,x_0+h]\to J\subset\mathbb{R}$ such that f'(x)=F(x,f(x)) and $f(x_0)=y_0$.

Idea of proof:

- ullet Construct Picards iterates a sequence of functions $\{f_n\}$ that approximate solutions to the ODE
 - $\circ \ \ {\rm Find} \ h>0$
 - lacksquare F is bounded since it is continuous on I imes J
 - lacksquare Take $M\in\mathbb{R}$ s.t. $|F(x,y)|\leq M$, $orall (x,y)\in I imes J$
 - ullet Take lpha>0 s.t. $[x_0-lpha,x_0+lpha]\subset I$, $[y_0-lpha,y_0+lpha]\subset J$
 - Define $h=\min\{lpha, rac{lpha}{M+Llpha}\}$, note that $[x_0-h, x_0+h]\subset I$
 - \circ Define sequence $\{f_n\}$ inductively
 - Let $f_0(x) = y_0$
 - Induction step: assume $f_{k-1}([x_0-h,x_0+h])\subset [y_0-\alpha,y_0+\alpha],$ f_{k-1} is continous, then $F(t,f_{k-1}(t))$ is well defined and continuous

- ullet So $f_k(x)=y_0+\int_0^x F(t,f_{k-1}(t))$ is well-defined, and continuous by FTC
- $lacksquare ext{Show } f_k([x_0-h,x_0+h])\subset [y_0-lpha,y_0+lpha]$
- Show $\{f_n\}$ is convergent
 - $\text{ Since F is Lipschitz, for all $x \in [x_0-h,x_0+h]$, } \\ |f_n(x)-f_k(x)| = |\int_{x_0}^x F(t,f_{n-1}(t))dt \int_{x_0}^x F(t,f_{k-1}(t))dt| \leq L||f_{n-1}-f_{k-1}||_u \cdot |x-t||_{L^2(x_0)} |f_{n-1}-f_{k-1}||_u |f_{n-1}-f_{$

$$\circ~$$
 Let $C=rac{Llpha}{M+Llpha}<1$, then $||f_n-f_k||_u\leq C^k||f_{n-k}-f_0||_u\leq C^klpha$

- $\circ \lim_{k \to \infty} C^k \alpha = 0$, so $\{f_n\}$ is Cauchy in the uniform norm, and therefore converges uniformly to a function $f: [x_0 h, x_0 + h]$
- ullet Take the limit of $\{f_n\}$ to define f, then show f solves the ODE
 - $\circ \ F(t,f_k(t))$ converges uniformly to F(t,f(t)) since

•
$$|F(t, f_k(t)) - F(t, f(t))| \le L|f_k(t) - f(t)| \le L||f_k - f||_u$$

•
$$\lim_{k o \infty} L||f_k - f||_u = 0$$
 $\Rightarrow \lim_{k o \infty} ||F(t, f_k(t)) - F(t, f(t))||_u = 0$

 \circ For $x \in [x_0 - h, x_0 + h]$,

$$egin{aligned} f(x)&=\lim_{k o\infty}f_{k+1}(x)=f(x)=\lim_{k o\infty}(y_0+\int_0^xF(t,f_k(t))dt)\ &=y_0+\int_0^xF(t,\lim_{k o\infty}f_k(t))dt\ &=y_0+\int_0^xF(t,f(t))dt \end{aligned}$$

- $\circ~$ By FTC, f is differentiable, f'(x) = F(x,f(x)) and $f(x_0) = y_0$
- Show f is unique
 - $\text{Suppose } g:[x_0-h,x_0+h]\to J\subset\mathbb{R} \text{ is another solution} \\ |f(x)-g(x)|=|\int_{x_0}^x F(t,f(t))dt-\int_{x_0}^x F(t,g(t))dt|\leq L||f-g||_u\cdot|x-x_0|\leq \frac{L\alpha}{M+L\alpha}||f_{n-1}-f_{k-1}||_u$
 - $\circ~$ Let $C=rac{Llpha}{M+Llpha}<1$, then $||f_n-f_k||_u\leq C||f_n-f_k||_u$
 - $\circ~$ Can only be true if $||f-g||_u=0~{\scriptscriptstyle \rightarrow}~f=g$