Problema 806.

Sean un triángulo ABC con AB> AC, la recta (Δ) tangente en A a su círculo circunscrito, I el centro del círculo inscrito y J el centro del excirculo en el sector BAC. Sea el punto D dentro del lado AB tal que AD = AC. Las rectas DI y DJ encuentran la recta (Δ) a los puntos P y Q. Demostrar que A es el medio de PQ.

Solution proposée par Philippe Fondanaiche

Nous allons démontrer que AP = AQ = AD = AC..

1°) Le triangle ADP est isocèle de sommet A

Le point D étant le symétrique de C par rapport à la bissectrice AIJ de l'angle \angle BAC, on a \angle ACI = \angle ADI. (\triangle) étant tangente en A au cercle circonscrit au triangle ABC,on a (AB,(\triangle)) = \angle BCA = $2 \angle$ ACI. Comme (AB,(\triangle)) = \angle ADI + \angle APD, il en résulte \angle APD = $2 \angle$ ACI - \angle ADI = \angle ACI = \angle ADI = \angle ADI. D'où AP = AD. Cqfd.

2°) Le triangle ADQ est isocèle de sommet A

Les points C et D étant symétriques par rapport à la bissectrice ACJ, on a \angle AJD = \angle AJC.

Or \angle ADQ = \angle AJD + \angle DAI = \angle AJC + \angle CAI = $(\pi/2 - \angle$ CIJ) + \angle CAI car les bissectrices intérieure et extérieure de l'angle \angle sont perpendiculaires entre elles.

D'où $\angle ADQ = \pi/2 - \angle CAI - \angle ACI + \angle CAI = \pi/2 - \angle ACI$

(Δ) étant tangente en A au cercle circonscrit au triangle ABC on a : \angle DAQ = \angle BCA = 2 \angle ACI.

Il en résulte $\angle AQD = \pi - 2 \angle ACI - (\pi/2 - \angle ACI) = \pi/2 - \angle ACI = \pi/2 - \angle ACI = \angle ADQ$.

D'où AQ = AD. Cqfd.