

# KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI

### UNIVERSITAS PADJADJARAN

#### FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

#### PROGRAM STUDI S-1 TEKNIK INFORMATIKA

Jl. Raya Bandung-Sumedang Km. 21 Jatinangor 45363 Telp./Fax. 022 7794696 http://informatika.unpad.ac.id, e-mail: informatika@unpad.ac.id

## **QUIS 2 SEMESTER GANJIL 2022/2023**

Mata kuliah : Metoda Numerik

Dosen : Drs. Ino Suryana, M.Kom. Hari, Tanggal : Jumat, 18 November 2022

Waktu : 80 Menit

Sifat Quis : ON-LINE (Live.Unpad, Gmeet)

Nama: Prames Ray Lapian; Quis Mata Kuliah: Metoda Numerik NPM: 140810210059; Tanggal: 18 November 2022

I. Data ini menunjukkan hubungan antara kecepatan dan jarak yang diperlukan untuk sebuah kendaraan sampai berhenti.

| Kecepatan<br>(mil/jam) | 20 | 30 | 40 | 50 | 60  |
|------------------------|----|----|----|----|-----|
| Jarak<br>Henti (feet)  | 21 | 46 | 65 | 90 | 111 |

Hitung jarak henti untuk kenda-raan yang melaju:

- a. 35 mil/jam menggunakan metoda Lagrange, dan Newton orde 2!
  - i. Metode Lagrange

$$x = 35; x_0 = 20; x_1 = 30; x_2 = 40$$
  
 $y_0 = 21; y_1 = 46; y_2 = 65$ 

$$\begin{split} P_2(x) &= \left(\frac{x-x_1}{x_0-x_1}\right) \left(\frac{x-x_2}{x_0-x_2}\right) y_0 + \left(\frac{x-x_0}{x_1-x_0}\right) \left(\frac{x-x_2}{x_1-x_2}\right) y_1 + \left(\frac{x-x_0}{x_2-x_0}\right) \left(\frac{x-x_1}{x_2-x_1}\right) y_2 \\ P_2(x) &= \left(\frac{35-30}{20-30}\right) \left(\frac{35-40}{20-40}\right) 21 + \left(\frac{35-20}{30-20}\right) \left(\frac{35-40}{30-40}\right) 46 + \left(\frac{35-20}{40-20}\right) \left(\frac{35-30}{40-30}\right) 65 \\ P_2(x) &= \left(\frac{5}{-10}\right) \left(\frac{-5}{-20}\right) 21 + \left(\frac{15}{10}\right) \left(\frac{-5}{-10}\right) 46 + \left(\frac{15}{20}\right) \left(\frac{5}{10}\right) 65 \\ P_2(x) &= \left(-\frac{1}{3}\right) 21 + \left(\frac{3}{4}\right) 46 + \left(\frac{3}{8}\right) 65 \\ P_2(x) &= -2,625 + 34,5 + 24,375 \\ P_2(x) &= 56,25 \end{split}$$

ii. Metode Newton

| SOAL | i | х  | f(x) | a1  | a2 | a3 |
|------|---|----|------|-----|----|----|
| 35   | 0 | 20 | 21   | -   | -  | -  |
|      | 1 | 30 | 46   | 2,5 | -  | -  |

|  | 2 | 40 | 65  | 1,9 | -0,03 | -            | p2(x) | 56,25 |
|--|---|----|-----|-----|-------|--------------|-------|-------|
|  | 3 | 50 | 90  | 2,5 | 0,03  | 0,002        |       |       |
|  | 4 | 60 | 111 | 2,1 | -0,02 | -0,001666667 |       |       |

b. 56 mil/jam menggunakan orde 3 metoda Newton saja!

| SOAL | i | Х  | f(x) | a1  | a2    | a3           |              |
|------|---|----|------|-----|-------|--------------|--------------|
| 56   | 0 | 30 | 46   | •   | -     | -            |              |
|      | 1 | 40 | 65   | 1,9 | -     | -            | p1(x) 95,4   |
|      | 2 | 50 | 90   | 2,5 | 0,03  | -            | p2(x) 107,88 |
|      | 3 | 60 | 111  | 2,1 | -0,02 | -0,001666667 | p3(x) 103,72 |

II. Hitung luas daerah f(x) yang tertera pada Tabel soal No. II!

| х    | 0  | 0,1 | 0,2 | 0,4 | 0,7 |
|------|----|-----|-----|-----|-----|
| f(x) | 10 | 8   | 6   | 5   | 4,5 |

- a. Hitung nilai f'(0,4) mengguna-kan metoda beda maju, beda mundur!
  - i. Metode Beda Maju

$$x_0 = 0.4; f_0 = 5; f_1 = 4.5; h = 0.3$$

ii. Metode Beda Mundur

$$x_0 = 0.4; f_0 = 5; f_{-1} = 6; h = 0.2$$

$$f'(x) = \frac{f_0 - f_{-1}}{h}$$
$$f'(x) = \frac{5 - 6}{0.2}$$
$$f'(x) = \frac{-1}{0.2} = -5$$

b. Bisakah nilai f'(0,4) dihitung menggunakan beda pusat! Apa alasanya?

Bisa, karena terdapat data yang dibutuhkan untuk mengoperasikan rumus Metode Beda Pusat.  $x-1=0.2 \rightarrow y-1=6$  dan  $x1=0.7 \rightarrow y1=4.5$ 

- c. Hitung nilai f''(0), dan f "(0,2)!
  - i. f''(0) dengan Metode Beda Maju

$$x_0 = 0; f_0 = 10; f_1 = 8; f_2 = 6; h = 0.1$$

$$f''(x) = \frac{f_2 - 2f_1 + f_0}{h^2}$$
$$f''(x) = \frac{6 - 16 + 10}{(0,1)^2}$$

$$f''(x) = \frac{0}{0,01} = 0$$

## ii. f''(0,2) dengan Metode Beda Mundur

$$x_0 = 0.2; f_0 = 6; f_{-1} = 8; f_{-2} = 10; h = 0.1$$

$$f''(x) = \frac{f_{-2} - 2f_{-1} + f_0}{h^2}$$
$$f''(x) = \frac{10 - 16 + 6}{(0,1)^2}$$
$$f''(x) = \frac{0}{0,1} = 0$$

#### III. Hitung luas daerah f(x) yang tertera pada Tabel soal No. II!

Daerah 1 (
$$h = 0,1$$
)

$$y_0 = 10; y_1 = 8; y_2 = 6;$$

$$L = h(y_0 + y_1 + y_2)$$

$$L = 0.1(10 + 8 + 6)$$

$$L = 2,4$$

Daerah 2 (h = 
$$0,2$$
)

$$y_0 = 6; y_1 = 5$$

$$L = h(y_0 + y_1)$$

$$L = 0.2(6 + 5)$$

$$L = 2,2$$

Daerah 3 (h = 
$$0.3$$
)

$$y_0 = 5; y_1 = 4,5$$

$$L = h(y_0 + y_1)$$

$$L = 0.3(5 + 4.5)$$

$$L = 2.8$$

Total Luas = 
$$7,4$$