Assignment 1 2021-March Session-03-16-2021-shift-1:1-15

EE24BTECH11049 Patnam Shariq Faraz Muhammed

1) Consider three observations a, b and c such that b = a + c. If the standard deviation of a + 2, b + 2, c + 2 is d, then which of the following is true?

a)
$$b^2 = a^2 + c^2 + 3d^2$$

c)
$$b^2 = 3(a^2 + c^2) + 9d^2$$

a)
$$b^2 = a^2 + c^2 + 3a^2$$

b) $b^2 = 3(a^2 + c^2) - 9d2$

c)
$$b^2 = 3(a^2 + c^2) + 9d^2$$

d) $b^2 = 3(a^2 + c^2 + d^2)$

2) Let a vector $\alpha \hat{\mathbf{i}} + \beta \hat{\mathbf{j}}$ be obtained by rotating the vector $\sqrt{3}\hat{\mathbf{i}} + \hat{\mathbf{j}}$ by an angle 45° about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices (α, β) , $(0, \beta)$ and (0, 0) is equal to:

b) $\frac{1}{2}$

- c) $\frac{1}{\sqrt{2}}$
- d) $2\sqrt{2}$

- 3) If for a > 0, the feet of perpendiculars from the points $\mathbf{A}(a, -2a, 3)$ and $\mathbf{B}(0, 4, 5)$ on the plane lx + my + nz = 0 are points C(0, -a, -1) and **D** respectively, then the length of line segment **CD** is equal to:
 - a) $\sqrt{41}$
- b) $\sqrt{55}$
- c) $\sqrt{31}$
- d) $\sqrt{66}$

4) The range of $a \in R$ for which the function

$$f(x) = (4a - 3)(x + \log_e 5) + (a - 7)\cot(\frac{x}{2})\sin^2(\frac{x}{2}),$$

 $x \neq 2n\pi$, $n \in \mathbb{N}$ has critical points, is

- a) $\left[-\frac{4}{3}, 2 \right]$
- b) $[1, \infty)$ c) $(-\infty, -1]$ d) (-3, 1)
- 5) Let the functions $f : \mathbf{R} \mapsto \mathbf{R}$ and $g : \mathbf{R} \mapsto \mathbf{R}$ be defined as: $f(x) = \begin{cases} x + 2, & x \le 0 \\ x^2, & x \ge 0 \end{cases}$ and $g(x) = \begin{cases} x^3, & x < 1 \\ 3x - 2, & x \ge 1 \end{cases}$ Then, the number of points in R where $(f \circ g)(x)$ is
 - a) 1

b) 2

c) 3

- d) 0
- 6) Let a complex number z, $|z| \neq 1$, satisfy $\log_{\frac{1}{\sqrt{2}}} \left[\frac{(|z|+11)}{(|z|-1)^2} \right] \leq 2$. Then, the largest value of |z| is equal to

a) 5

b) 8

c) 6

d) 7

7) A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade is:

a) $\frac{3}{4}$

- b) $\frac{52}{867}$
- c) $\frac{39}{50}$

d) $\frac{22}{425}$

8) If *n* is the number of irrational terms in the expansion of $\left[3^{\frac{1}{4}} + 5^{\frac{1}{8}}\right]^{60}$, then (n-1) is divisible by

a) 8

b) 26

c) 7

d) 30

9) Let the position vectors of two points \mathbf{P} and \mathbf{Q} be $3\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ respectively. Let \mathbf{R} and \mathbf{S} be two points such that the direction ratios of lines \mathbf{PR} and \mathbf{QS} are (4, -1, 2) and (-2, 1, -2) respectively. Let lines \mathbf{PR} and \mathbf{QS} intersect at \mathbf{T} . If the vector \mathbf{TA} is perpendicular to both \mathbf{PR} and \mathbf{QS} and the length of vector \mathbf{TA} is $\sqrt{5}$ units, then the modulus of a position vector of \mathbf{A} is:

- a) $\sqrt{5}$
- b) $\sqrt{171}$
- c) $\sqrt{227}$
- d) $\sqrt{482}$

10) If the three normals drawn to the parabola, $y^2 = 2x$ pass through the point (a, 0) $a \ne 0$, then 'a' must be greater than

a) 1

- b) $\frac{1}{2}$
- c) $-\frac{1}{2}$
- d) -1

11) let

$$S_K = \sum_{r=1}^k \tan^{-1} \left[\frac{(6^r)}{(2^{r+1} + 3^{2r+1})} \right]$$
. Then $\lim_{k \to \infty} S_k =$

a) $\tan^{-1}\left(\frac{3}{2}\right)$	b) $\cot^{-1}\left(\frac{3}{2}\right)$	c) $\frac{\pi}{2}$	d) $tan^{-1}(3)$
12) The number of roo is equal to :	ots of the equation, (8	$(81)^{\sin^2 x} + (81)^{\cos^2 x} = 3$	30 in the interval $[0, \pi]$
a) 3	b) 2	c) 4	d) 8
13) If $y = y(x)$ is the solution of the differential equation,			
$\frac{dy}{dx} + 2y \tan x = \sin x, y\left(\frac{\pi}{3}\right) = 0$			
, then the maximum value of the function $y(x)$ over R is equal to :			
a) 8	b) $\frac{1}{2}$	c) $-\frac{15}{4}$	d) $\frac{1}{8}$
14) Which of the following Boolean expression is a tautology?			
a) $(p \land q) \land (p \rightarrow q)$ b) $(p \land q) \lor (p \lor q)$		c) $(p \land q) \lor (p \rightarrow q)$ d) $(p \land q) \rightarrow (p \rightarrow q)$	
15) let $A = \begin{pmatrix} \iota & -\iota \\ -\iota & \iota \end{pmatrix}$. Then, the system of linear equations $A^8 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ 64 \end{pmatrix}$ has			
a) No solutionb) Exactly two solutions		c) A unique solutiond) Infinitely many solutions	
b) Exactly two soli	utions	d) infinitely many s	SOTUTIONS