

Figura 2.4.5 El vector $\mathbf{d}(t)$ apunta desde el centro de la rueda, $\mathbf{C}(t)$, a la posici ón $\mathbf{c}(t)$ de un punto de la rueda y gira en el sentido horario mientras que la rueda se mueve hacia la derecha.

para un ángulo inicial θ . Dado que $\mathbf{d}(0) = -r\mathbf{j}$, tenemos que $\cos \theta = 0$ y sen $\theta = -1$, por tanto $\theta = -\pi/2$, y entonces

$$\mathbf{d}(t) = r \left(\cos \left[-\frac{v}{R} t - \frac{\pi}{2} \right] \mathbf{i} + \sin \left[-\frac{v}{R} t - \frac{\pi}{2} \right] \mathbf{j} \right).$$

Utilizando $\cos(\varphi - \pi/2) = \operatorname{sen} \varphi \operatorname{y} \operatorname{sen} (\varphi - \pi/2) = -\cos\varphi$, junto $\cos(-\varphi) = \cos\varphi \operatorname{y} \operatorname{sen} (-\varphi) = -\operatorname{sen} \varphi$, obtenemos

$$\mathbf{d}(t) = r \left(-\operatorname{sen} \frac{vt}{R} \mathbf{i} - \cos \frac{vt}{R} \mathbf{j} \right).$$

Por último, la trayectoria $\mathbf{c}(t)$ se obtiene sumando las componentes de la función vectorial $\mathbf{d}(t)$ a las coordenadas de la trayectoria $\mathbf{C}(t)$; el resultado es

$$\mathbf{c}(t) = \left(vt - r \operatorname{sen} \frac{vt}{R}, R - r \operatorname{cos} \frac{vt}{R}\right).$$

En el caso especial v=R=r=1, obtenemos $\mathbf{c}(t)=(t-\sin t,1-\cos t)$. La curva imagen C de esta trayectoria \mathbf{c} se muestra en la Figura 2.4.6 y se denomina *cicloide*.

Figura 2.4.6 La curva trazada por un punto que se mueve por el borde de una circunferencia que rueda se llama cicloide.