第二章 控制系统的动态数学模型

线性微分方程

- 1. 未知函数的各阶导数都是一次;
- 2. 各阶导数的系数可以是常数或是自变量的已知函数;

$$\begin{split} \frac{d^2\theta(t)}{dt^2} + 2\frac{d\theta(t)}{dt} &= 1\\ \frac{d^2\theta(t)}{dt^2} + 2\theta(t)\frac{d\theta(t)}{dt} &= 1\\ t\frac{d^2\theta(t)}{dt^2} + 2e^{3t}\frac{d\theta(t)}{dt} &= \cos(4t) + 1\\ \frac{d^2\theta(t)}{dt^2} + 2\left(\frac{d\theta(t)}{dt}\right)^2 &= \cos(4t) + 1 \end{split}$$

从上至下为 线性、非线性、线性、非线性

拉普拉斯变换

对于指数级函数x(t),有 $\int_0^\infty x(t)e^{-\sigma t}dt<\infty$,则可定义x(t)的拉氏变换X(s):

$$X(s) = L[x(t)] riangleq \int_0^\infty x(t) e^{-st} dt$$

式中,称X(s)为象函数,x(t)为原函数。s为复变数,其量纲为时间的倒数,即频率。象函数X(s)的量纲为x(t)的量纲与时间量纲的乘积。

常用的拉氏变换和反变换

时间函数	象函数 (Laplace)
单位脉冲函数 $\delta(t) = \begin{cases} \lim_{t_0 o 0} rac{1}{t_0}, & 0 < t < t_0 \ 0, & t \geq t_0 \end{cases}$	1
单位阶跃函数 $1(t) = egin{cases} 0, & t < 0 \ 1, & t \geq 0 \end{cases}$	$\frac{1}{s}$
$t^n\ (n\geq 0)$	$\frac{n!}{s^{n+1}}$
$\sin(\omega t)$	$rac{\omega}{s^2+\omega^2}$
$\cos(\omega t)$	$rac{s}{s^2+\omega^2}$
e^{at} (t<0时函数值为0)	$\frac{1}{s-a}$
常数倍 $ax(t)$	a X(s)
叠加定理 $ax_1(t)+bx_2(t)$	$aX_1(s)+bX_2(s)$
微分 $\frac{d}{dt}x(t)$	$sX(s)-x(0^+)$
积分 $\int_0^t x(\tau) d\tau$	$\frac{X(s)}{s}+\frac{x^{-1}(0^+)}{s}$
衰减定理 $e^{-at}x(t)$	X(s+a)
延时定理 $x(t-a) \cdot u(t-a)$	$e^{-as}X(s)$

信号的截取与时移

拉氏变换的常用基本性质

叠加原理

若
$$L[f_1(t)] = F_1(s)$$
, $L[f_2(t)] = F_2(s)$,则有

$$L[af_1(t) + bf_2(t)] = aF_1(s) + bF_2(s)$$

微分定理

$$L\left[rac{df(t)}{dt}
ight] = sF(s) - f(0)$$

根据数学归纳法不难推出

$$L\left[rac{d^n}{dt^n}f(t)
ight] = s^nF(s) - s^{n-1}f(0) - s^{n-2}\dot{f}(0) - \cdots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

若
$$f(0)=\dot{f}(0)=\cdots=f^{(n-2)}(0)=f^{(n-1)}(0)=0$$
,则有

$$L\left[rac{d^n}{dt^n}f(t)
ight]=s^nF(s)$$

积分定理

这里
$$f^{-1}(t) riangleq \int f(t) dt$$

$$L\left[\int f(t)dt
ight]=rac{F(s)}{s}+rac{f^{-1}(0)}{s}$$

$$L\left[\underbrace{\int \cdots \int}_{s} f(t) (dt)^n
ight] = rac{F(s)}{s^n} + rac{f^{-1}(0)}{s^n} + rac{f^{-2}(0)}{s^{n-1}} + \cdots + rac{f^{-n}(0)}{s}$$

若 $f^{-1}(0) = f^{-2}(0) = \cdots = f^{-n}(0) = 0$,则有

$$L\left[\underbrace{\int \cdots \int}_{n} f(t)(dt)^{n}\right] = \frac{F(s)}{s^{n}}$$

衰减定理

$$L[e^{-at}f(t)] = F(s+a)$$

延时定理

$$L\left[f(t-a)\cdot 1(t-a)\right] = e^{-as}F(s)$$

初值定理

$$\lim_{t o 0} f(t) = \lim_{s o \infty} s F(s)$$

终值定理

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

拉氏反变换

直接积分求拉氏反变换通常较繁,对于一般的问题,都可以避免积分,而通过将象函数转化为拉氏变换表中包含的形式(一般是分式)。

例题

求
$$F(s)=rac{s+1}{s^2+5s+6}$$
的反拉氏变换

易知
$$F(s)=rac{2}{s+3}-rac{1}{s+2}$$

查表可得

$$f(t) = 2e^{-3t} - e^{-2t}$$

传递函数

传递函数为在零起始条件下,线性定常系统输出象函数 $X_o(s)$ 与输入象函数 $X_i(s)$ 之比

$$G(s) riangleq rac{X_o(s)}{X_i(s)}$$

具体地说,设线性定常系统的微分方程为:

$$a_0x_o^{(n)}(t) + a_1x_o^{(n-1)}(t) + \dots + a_{n-1}\dot{x}_o(t) + a_nx_o(t) = b_0x_i^{(m)}(t) + b_1x_i^{(m-1)}(t) + \dots + b_{m-1}\dot{x}_i(t) + b_mx_i(t) \quad (n \geq m)$$

设系统的输入输出函数及其各阶导数**初始值均为零**,将上式拉氏变换,由微分定理推论:

$$\left(a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n\right) X_o(s) = \left(b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m\right) X_i(s)$$

传递函数为

$$G(s) = rac{X_o(s)}{X_i(s)} = rac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

传递函数的特性

- 1. 传递函数是系统的固有特性,与输入情况无关。
- 2. 零点: 传递函数分子为零时的s值

典型环节的传递函数

环节	时间函数	相函数	传递函数	例子
比例环节	$x_o(t)=kx_i(t)$	$X_o(s)=kX_i(s)$	G(s) = k	运算放大器、 齿轮传动副
积分环节	$x_o(t) = \int_0^t x_i(t)dt$	$X_o(s) = \frac{1}{s} X_i(s)$	$G(s) = \frac{1}{s}$	RC 有源积分网络
微分环节	$x_o(t)=rac{d}{dt}x_i(t)$	$X_o(s)=sX_i(s)$	G(s)=s	永磁式直流测速机、 阻尼器
一阶惯性环节 (机械系统)	$Trac{dx_o(t)}{dt}+x_o(t)=x_i(t)$	$X_o(s) = \frac{1}{Ts+1} X_i(s)$	$G(s) = rac{1}{Ts+1}$	弹簧-阻尼系统
一阶惯性环节 (滤波电路)	$egin{cases} u_i(t) = i(t)R + rac{1}{C}\int i(t)dt \ u_o(t) = rac{1}{C}\int i(t)dt \end{cases}$	$egin{cases} U_i(s) = \left(R + rac{1}{Cs} ight)I(s) = rac{RCs+1}{Cs}I(s) \ U_o(s) = rac{1}{Cs}I(s) \ \Rightarrow U_o(s) = rac{1}{RCs+1}U_i(s) \end{cases}$	$rac{G(s)=}{1}{RCs+1}$	RC 低通滤波电路 (无源)
二阶振荡环节	$T^2rac{d^2x_o(t)}{dt^2}+2\zeta Trac{dx_o(t)}{dt}+\ x_o(t)=x_i(t)$	$X_o(s) = rac{1}{T^2s^2 + 2\zeta Ts + 1}X_i(s)$	$G(s) = rac{1}{T^2s^2 + 2\zeta Ts + 1}$	满足 $0<\zeta<1$ 时为振荡系统 (弹簧-质量-阻尼、 二阶滤波器)
近似微分环节	$Trac{dx_o(t)}{dt}+x_o(t)=rac{dx_i(t)}{dt}$	$X_o(s) = rac{s}{Ts+1} X_i(s)$	$G(s) = rac{s}{Ts+1}$	无源微分网络

方块图

组成部分

组成部分	描述	图示
基本单元	图中指向方块的箭头表示输入,从方块出来的箭头表示输出, $G(s)$ 表示其传递函数。	$X_1(s)$ $X_2(s)$
比较点	代表两个或两个以上的输入信号进行相加或相减的元件	$X_1(s) \xrightarrow{+} E(s) = X_1(s) - X_2(s)$ $X_2(s)$
引出点	它表示信号引出和测量的位置,同一位置引出的几个信号, 其大小和性质完全一样。	$X_{\rm a}(s)$

环节连接方式

变换法则

- 1. 各前向通路传递函数的乘积保持不变;
- 2. 各反馈回路传递函数的乘积保持不变

如上图,前向通路指的就是"主干道" $G_1G_2G_3G_4$,反馈回路指的就是 $G_2G_3G_5$ 这样的环,上图将 $G_2G_3G_5$ 回路的引入点D调至E则得到下图

为了使前向通路传递函数和反馈回路传递函数的乘积保持不变,在反馈回路中加入 $\dfrac{1}{G_4}$ 的环节即可。

方块图简化简单来说就是从小圈到大圈依次用上面"反馈"环节的公式进行化简知道最后得到传递函数。

第三章 时域瞬态响应分析

机电控制系统里的典型输入信号函数

单位脉冲函数

 $1/t_0$

单位阶跃函数 l(t)

单位斜坡函数

单位加速度函数

$$x_i(t) = \frac{1}{2}t^2$$

$$X_i(s) = \frac{1}{s^3}$$

$$x_i(t) = \delta(t)$$

$$x_i(t) = 1(t)$$

$$x_i(t) = t$$

$$X_i(s) = 1$$

$$X_i(s) = \frac{1}{s}$$

$$X_i(s) = \frac{1}{s^2}$$

一阶系统的瞬态响应

能够用一阶微分方程(只含有未知函数的一阶导数的微分方程)描述的系统。它的典型形式是**一阶惯性环节**。

$$X_i(s)
ightarrow \overline{egin{array}{c} 1 \ Ts+1 \end{array}}
ightarrow X_o(s)$$

单位脉冲响应

$$egin{aligned} x_i(t) &= \delta(t) \Rightarrow X_i(s) = 1 \ X_o(s) &= rac{1}{Ts+1} = rac{rac{1}{T}}{s+rac{1}{T}} \Rightarrow x_o(t) = (rac{1}{T}e^{-rac{1}{T}t}) \cdot 1(t) \end{aligned}$$

图 3-10 一阶惯性环节的单位脉冲响应曲线

单位阶跃响应

$$egin{split} x_i(t) &= 1(t) \Rightarrow X_i(s) = rac{1}{s} \ X_o(s) &= rac{1}{Ts+1} X_i(s) = rac{1}{s(Ts+1)} = rac{1}{s} - rac{1}{s+rac{1}{T}} \Rightarrow x_o(t) = (1-e^{-rac{1}{T}t}) \cdot 1(t) \end{split}$$

- 1. 一阶惯性系统总是稳定的,无振荡;
- 2. 经过时间T曲线上升到0.632的高度,据此用实验的方法测出响应曲线达到稳态 值的63.2%高度点所用的时间,即是惯性环节的时间常数T:
- 3. 经过时间 $(3\sim4)T$,响应曲线已达稳态值的95%~98%,可以认为其调整过程已经 基本完成·故一般取调整时间为 $(3 \sim 4)T$;
- 4. 在t=0处,响应曲线的切线斜率为一;

图 3-7 一阶惯性环节的单位阶跃响应曲线

单位斜坡响应

$$X_{
m o}(s) = rac{X_{
m o}(s)}{X_{
m i}(s)} X_{
m i}(s) = rac{1}{Ts+1} rac{1}{s^2} = rac{1}{s^2} - rac{T}{s} + rac{T}{s+rac{1}{T}}$$

图 3-9 一阶惯性环节的单位斜坡响应曲线