

DSA SERIES

- Learn Coding

Topic to be Covered today

Bit Manipulation

LETS START TODAY'S LECTURE

Bit Manipulation

-

T shift

ILecture - 37

Bit Manipulation

1) How to convert a decimal number into binary format.

→ Binary matrab 0 and 1.

(Decimal) (Binary)2

This indicates the format of

There are different format of numbers:
Octal Number (8)

- · Hexadecimal (16) (0 to 3 & A-F)
- · Decimal (10)
- · Binary (2)

(J6) 10 =
$$\frac{2 \cdot 16}{2 \cdot 8}$$
 0 $\frac{2 \cdot 1}{2 \cdot 9}$ 2 $\frac{2 \cdot 1}{2 \cdot 9}$ 0 $\frac{2 \cdot 1}{2 \cdot$

1n - 1010

Code for converting Decimal to Binary String func (int n) of res = " ". while (modes 1) of if (n%2 ==1) res+=1; else res+ = '0'; n= n/2; reverse (res): return ses: Code for converting Binary to decimal int funci(string x) } int len = x. langth(); for (i=1en-1 -10) } 4-1-1 iA (2013 = = = = =) num = num xp int on = x. length(); int res = 0: for (int i=0; icn; i++)f) ('1' = = ['] x) +i res += pow (2, m-1-1); zreturn rei;

1's Complement.

Just flip the bits.

5 = 0101

= 7777

signed > positive
Negative

most significant sit = 0

MIR = 1.

unsigned -> only non-negative number.

2's complement.

otaking 1's complement

Adding 1 to the result.

Suppose. :- We need to store - 10 int b. 8 bit - binay.

11110110 +1

So. -10 in 2's complement is 11110110

Computer do not directly store negative sourcer.

They store them in 2's complement form.

Operators en Bit manipulation. Addition Rus. i) AND (4) (1) OR (1) iii) XOR (A) 1+1 = 0 (carry more to next higher (~) TON (vi v) left shift (<<) vi) Right shift (>>) 1) And. (2) 7 7 7 1 Results I if both bits are 1, else o. 10000 0110 0011 0010 (i) OR (1) - Results 1 if at least one bit is 1. 0011 0111 (fil) XOR (N) Exclusive OR.: Result 1 if bits are different, else o. Pouring A'-rel' & eta wifer!

(iv) NOT (~)

 $\sim M = -(M+1)$

 $0 \rightarrow 7$

(v) Left shift. (<<)

4) shifting all bits to the left empty with o.

Li Equivalent to multiplying 210.

5 - 0101

01010 => 5x 21

10100 Sx2

(vi) Right shift (>>)

Is shift all bits to night

> Equivalent to dividing by 2k

16. 1/10000

00100

16 - 16 CM

Basic Questions.

(1) Smap two number

(i) Earlier me used a third variable to do so,

(i)a = a + b b = a - b d = a - b a = a - b a = a - b a = a - b a = a - b a = a - b a = a - b a = a - b a = a - b a = a - b a = a - b a = a - b

2) check if ith bit is set or @ Not.

0011 → check 0th bit is set or not.

20001 → 1 << i ← Make a mask.

20001 => 1 << 0

[(N&(1<<ii))!=0) -> It means that particular bit is set.

3) Set the ith bit

N=8, i=2

OR. 0100

1000

N 1 (1 < < i)

(5) Toggle the ith bit Is we need to simply the provence the bit value from there.

Franch Count the number of setbits in a given number.

int count SetBit (int n) {

cht = 0;

while (n > 1) {

if (m! = 1) cht ++; n = m/2;

if (m = 1) cht ++;

return cht;

The last bit of odd number is always 1.

To check this

(N&1) = = 1 => N is odd

else N is even.

Second Method.

cnt = 0; While (N! = 0) f N = N + (N-1); ent + +;

Learn coding

THANK YOU