2010 and 2017 CBP Apprehensions Analysis

Janie Briglio, Ben Gaudiosi, Kayla Ippongi 2/14/2018

Bar Graph Comparison of Border Partol Apprehensions

entering the data for 2010 and making a column and row for the total for the locations and the months

```
data1 <- read.csv("BP apprehensions 2010.csv", header = TRUE, stringsAsFactors = FALSE)
rownames(data1) <- data1[,1]
x <- subset(data1, select= -c(Sector))
x <- rbind(x, colSums(x))
rownames(x) <- c(rownames(x)[-length(rownames(x))], "Total")
x <- cbind(x,rowSums(x))
colnames(x) <- c(colnames(x)[-length(colnames(x))], "Total")</pre>
```

bar graph of the totals for for each location

2010 Border Patrol Apprehensions by Sector

the data for 2017 and making a column and row for the total for the locations and the months

```
data2 <- read.csv("PB Apprehensions 2017.csv", header = TRUE, stringsAsFactors = FALSE)
data2 = head(data2[1:13],-1)
rownames(data2) <- data2[,1]
y <- subset(data2, select= -c(Sector))
y <- rbind(y, colSums(y))
rownames(y) <- c(rownames(y)[-length(rownames(y))], "Total")
y <- cbind(y, rowSums(y))
colnames(y) <- c(colnames(y)[-length(colnames(y))], "Total")</pre>
```

bar graph for the totals of each location

2017 Border Patrol Apprehensions by Sector

Big Bend Comparison

Del Rio Comparison

El Centrio Comparison

El Paso Comparison

Laredo Comparison

Rio Grande Valley Comparison

San Diego Comparison

Tuscon Comparison

Yuma Comparison

Time Series

This time series graph represents the total yearly apprehensions from 2000-2017. The trend shows the total apprhensions slowly decreasing as the years move towards 2017.

```
PBSum <- read.csv("PB monthly summaries.csv")</pre>
ts.plot(ts(as.vector(rev(t(rev(PBSum[-1])))), start = c(2000,10), frequency=12),
      ts(as.vector( t( rev(rep(c(rowMeans(PBSum[18,-1])),each=12)
                                                                              )), start = c(2000, 10), frequen
                      t(
                          rev(rep(c(rowMeans(PBSum[17,-1])),each=12)
                                                                          )
                                                                             )), start = c(2001, 10), frequen
      ts(as.vector(
                      t(
                          rev(rep(c(rowMeans(PBSum[16,-1])),each=12)
                                                                          )
                                                                             )), start = c(2002, 10), frequen
                          rev(rep(c(rowMeans(PBSum[15,-1])),each=12)
                                                                              )), start = c(2003,10), frequen
                          rev(rep(c(rowMeans(PBSum[14,-1])),each=12)
      ts(as.vector(
                                                                             )), start = c(2004,10), frequen
                      t(
      ts(as.vector(
                          rev(rep(c(rowMeans(PBSum[13,-1])),each=12)
                                                                              )), start = c(2005, 10), frequen
      ts(as.vector(
                          rev(rep(c(rowMeans(PBSum[12,-1])),each=12)
                                                                              )), start = c(2006, 10), frequen
      ts(as.vector(
                           rev(rep(c(rowMeans(PBSum[11,-1])),each=12)
                                                                              )), start = c(2007, 10), frequen
      ts(as.vector(
                          rev(rep(c(rowMeans(PBSum[10,-1])),each=12)
                                                                             )), start = c(2008,10), frequen
                      t(
                          rev(rep(c(rowMeans(PBSum[9,-1])),each=12)
      ts(as.vector(
                      t(
                                                                         )
                                                                            )), start = c(2009,10), frequency
                          rev(rep(c(rowMeans(PBSum[8,-1])),each=12)
                                                                            )), start = c(2010,10), frequence
      ts(as.vector(
                                                                         )
                      t(
                          rev(rep(c(rowMeans(PBSum[7,-1])),each=12)
                                                                            )), start = c(2011, 10), frequence
      ts(as.vector(
                      t(
                                                                            )), start = c(2012, 10), frequence
      ts(as.vector(
                      t(
                          rev(rep(c(rowMeans(PBSum[6,-1])),each=12)
                                                                         )
      ts(as.vector(
                      t(
                          rev(rep(c(rowMeans(PBSum[5,-1])),each=12)
                                                                         )
                                                                            )), start = c(2013,10), frequence
                          rev(rep(c(rowMeans(PBSum[4,-1])),each=12)
                                                                         )
                                                                            )), start = c(2014,10), frequence
                          rev(rep(c(rowMeans(PBSum[3,-1])),each=12)
                                                                         )
                                                                            )), start = c(2015, 10), frequence
      ts(as.vector(
                      t(
                          rev(rep(c(rowMeans(PBSum[2,-1])),each=12)
                      t(
                                                                         )
                                                                            )), start = c(2016, 10), frequence
                                                                            )), start = c(2017, 10), frequence
                          rev(rep(c(rowMeans(PBSum[1,-1])),each=12)
      ts(as.vector( t(
                                                                         )
      gpars=list(xlab="Year", ylab="Apprehensions", lty=1, col=c('blue',rep(c('red'),times=18), ltw=2))
                           );text(rev(PBSum[,1])+1,rev(c(rowMeans(PBSum[-1])))+4000,labels=paste(rev(PBSum[,1])+1,rev(c(rowMeans(PBSum[,1]))+4000,labels=paste(rev(PBSum[,1])+1,rev(c(rowMeans(,1]))+1,rev(,1]))
```


TTests

By looking at the resulting T-test values, March April and May have the highest T-test values which matches the 2010 CBP total apprehensions data - as March, April and May have the highest total apprensions in 2010 but the lowest in 2017. Comparatively, October November and December have the lowest T-test values, going into the negative range. This 3 month period has the highest total apprensions in 2017 but is not too different from it's 2010 data, which is why the t-test values are closer to zero.

entering data as a matrix and removing non numerical data

```
data1 <- read.csv("BP apprehensions 2010.csv", header = TRUE, stringsAsFactors = FALSE)
data2 <- read.csv("PB Apprehensions 2017.csv", header = TRUE, stringsAsFactors = FALSE)
data2 <- head(data2[1:13],-1)

x <- subset(data1, select= -c(Sector))
y <- subset(data2, select= -c(Sector))</pre>
```

running comparisons between the months for each location ##October Comparison:

```
t.test(data1$0ctober, data2$0ctober, paired=TRUE)
```

November Comparison:

```
t.test(data1$November, data2$November, paired=TRUE)

##
## Paired t-test
##
## data: data1$November and data2$November
## t = -0.57437, df = 8, p-value = 0.5815
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8021.535 4822.424
## sample estimates:
## mean of the differences
## mean of the differences
## mean of the differences
```

December Comparison:

```
t.test(data1$December, data2$December, paired=TRUE)

##
## Paired t-test
##
data: data1$December and data2$December
## t = -0.81876, df = 8, p-value = 0.4366
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7724.951 3676.729
## sample estimates:
## mean of the differences
## mean of the differences
```

January Comparison:

```
t.test(data1$January, data2$January, paired=TRUE)

##
## Paired t-test
##
## data: data1$January and data2$January
## t = 0.16907, df = 8, p-value = 0.8699
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4505.171 5218.060
## sample estimates:
## mean of the differences
## 356.4444
```

Feburary Comparison:

```
t.test(data1$February, data2$February, paired=TRUE)

##
## Paired t-test
##
## data: data1$February and data2$February
## t = 1.2559, df = 8, p-value = 0.2446
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2233.163 7574.497
## sample estimates:
## mean of the differences
## mean of the differences
```

March Comparison:

```
t.test(data1$March, data2$March, paired=TRUE)

##
## Paired t-test
##
## data: data1$March and data2$March
## t = 1.793, df = 8, p-value = 0.1107
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1563.07 12488.85
## sample estimates:
## mean of the differences
## 5462.889
```

April Comparison:

```
t.test(data1$April, data2$April, paired=TRUE)

##
## Paired t-test
##
## data: data1$April and data2$April
## t = 1.7273, df = 8, p-value = 0.1224
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1642.025 11444.247
## sample estimates:
## mean of the differences
## 4901.111
```

May Comparison:

```
##
## Paired t-test
##
## data: data1$May and data2$May
## t = 1.6862, df = 8, p-value = 0.1303
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1328.549 8556.549
## sample estimates:
## mean of the differences
## 3614
```

June Comparison:

```
t.test(data1$June, data2$June, paired=TRUE)

##
## Paired t-test
##
## data: data1$June and data2$June
## t = 1.6274, df = 8, p-value = 0.1423
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -781.4508 4529.8953
## sample estimates:
## mean of the differences
## 1874.222
```

July Comparison:

```
t.test(data1$July, data2$July, paired=TRUE)

##
## Paired t-test
##
## data: data1$July and data2$July
## t = 0.7663, df = 8, p-value = 0.4655
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1656.988 3306.321
## sample estimates:
## mean of the differences
## 824.6667
```

August Comparison:

```
t.test(data1$August, data2$August, paired=TRUE)
##
## Paired t-test
##
## data: data1$August and data2$August
## t = 0.51189, df = 8, p-value = 0.6226
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1607.187 2524.298
## sample estimates:
## mean of the differences
##
                  458.5556
September Comparison:
t.test(data1$September, data2$September, paired=TRUE)
##
##
  Paired t-test
## data: data1$September and data2$September
## t = 0.031118, df = 8, p-value = 0.9759
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2103.832 2161.387
## sample estimates:
## mean of the differences
                  28.77778
running a comparison between the totals of each location in both years
total2010<- rowSums(x[1:12])
total2017 <- rowSums(y[1:12])
t.test(total2010, total2017, paired=TRUE)
##
##
  Paired t-test
## data: total2010 and total2017
## t = 0.71295, df = 8, p-value = 0.4961
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -35705.54 67664.43
## sample estimates:
## mean of the differences
                  15979.44
```