5 Estudo analítico de retas e planos

5.1 Equações de reta

Definição (Vetor diretor de uma reta): Qualquer vetor não-nulo paralelo a uma reta chama-se vetor diretor dessa reta.

5.1.1 Equação vetorial da reta

Sejam \vec{u} um vetor diretor de uma reta r e A um ponto de r.

Um ponto X pertence a r se, e somente se, \overrightarrow{AX} e \overrightarrow{u} são paralelos, ou seja, se, e somente se, existe um número real λ tal que $\overrightarrow{AX} = \lambda \overrightarrow{u}$. Isso equivale a

$$X = A + \lambda \vec{u}$$

Assim, a cada número real λ fica associado um ponto X de r e, reciprocamente, se X é um ponto de r, existe λ satisfazendo a equação. Esta equação se chama equação vetorial da reta r, ou equação vetorial da reta r na forma vetorial.

5.1.2 Equações paramétricas da reta

Suponhamos que $X=(x,y,z), A=(x_0,y_0,z_0)$ e $\vec{u}=(a,b,c)$. Escrevendo a equação vetorial em coordenadas, obtemos

$$(x, y, z) = (x_0, y_0, z_0) + \lambda(a, b, c) = (x_0 + \lambda a, y_0 + \lambda b, z_0 + \lambda c)$$

ou seja,

$$\begin{cases} x = x_0 + \lambda a \\ y = y_0 + \lambda b \\ z = z_0 + \lambda c \end{cases}$$

Este sistema de equações é chamado sistema de equações paramétricas da reta r, ou sistema de equações da reta r na forma paramétrica.

5.1.3 Equações simétricas da reta

Se nenhuma das coordenadas do vetor diretor de r é nula, podemos isolar λ no primeiro membro de cada uma das equações do sistema de equações paramétricas.

$$\lambda = \frac{x - x_0}{a}$$
 $\lambda = \frac{y - y_0}{b}$ $\lambda = \frac{z - z_0}{c}$

Portanto,

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Este sistema de equações é chamado sistema de equações da reta r na forma simétrica.

5.1.4 Equações reduzidas da reta

Às equações simétricas da reta

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

pode-se dar outra forma, isolando duas variáveis e expressando-as em função da terceira. Isolando y e z em função de x, temos:

$$\begin{cases} y = mx + n \\ z = px + q \end{cases}$$

que são chamadas equações reduzidas da reta r (na variável x). Podemos, ainda, dizer que esta é a equação de uma reta que passa por um ponto A' = (0, n, p) e tem a direção do vetor $\vec{u}' = (1, m, p)$.

Isolando x e z em função de y, temos

$$\begin{cases} x = my + n \\ z = py + q \end{cases}$$

que são as equações reduzidas da reta r (na variável y). Podemos dizer que esta é a equação de uma reta que passa por um ponto A' = (n, 0, p) e tem a direção do vetor $\vec{u}' = (m, 1, p)$.

Isolando x e y em função de z, temos

$$\begin{cases} x = mz + n \\ y = pz + q \end{cases}$$

que são as equações reduzidas da reta r (na variável z). Podemos dizer que esta é a equação de uma reta que passa por um ponto A' = (n, p, 0) e tem a direção do vetor $\vec{u}' = (m, p, 1)$.

Exercício 5.1: Seja r a reta determinada pelos pontos A = (1,0,1) e B = (3,-2,3).

a) Obtenha equações de r nas formas vetorial, paramétrica e simétrica.

b) Verifique se o ponto P = (-9, 10, -9) pertence a r.

c) Obtenha dois vetores diretores de r e dois pontos de r, distintos de A e B.

Exercício 5.2: Mostre que as equações

$$\frac{2x-1}{3} = \frac{1-y}{2} = z+1$$

descrevem uma reta, escrevendo-as de modo que possam ser reconhecidas como equações na forma simétrica. Exiba um ponto e um vetor diretor da reta.

$$\lambda = \frac{2 \times -1}{3} \implies \lambda = \frac{1+3\lambda}{2} \qquad \text{if } \lambda = (\frac{1}{2} + \frac{1}{2} - 1) + \lambda (\frac{3}{2} - 2, 2)$$

$$\lambda = \frac{1-y}{2} \implies \lambda = (-2\lambda)$$

$$\lambda = \frac{1-y}{2} \implies \lambda = \frac{1}{2} + \lambda$$

$$\lambda = (\frac{1}{2} + \frac{1}{2} - 1) + \lambda (\frac{3}{2} - 2, 2)$$

$$\lambda = \frac{1-y}{2} \implies \lambda = \frac{1}{2} + \lambda$$

$$\lambda = (\frac{1}{2} + \frac{1}{2} - 1) + \lambda (\frac{3}{2} - 2, 2)$$

$$\lambda = \frac{1-y}{2} \implies \lambda = \frac{1}{2} + \lambda$$

$$\lambda = (\frac{1}{2} + \frac{1}{2} - 1) + \lambda (\frac{3}{2} - 2, 2)$$

$$\lambda = \frac{1-y}{2} \implies \lambda = \frac{1}{2} + \lambda$$

$$\lambda = (\frac{1}{2} + \frac{1}{2} - 1) + \lambda (\frac{3}{2} - 2, 2)$$

$$\lambda = \frac{1-y}{2} \implies \lambda = \frac{1}{2} + \lambda$$

$$\lambda = \frac{1-y}{2} \implies \lambda = \frac{1}{2} + \lambda$$

$$\lambda = \frac{1-y}{2} \implies \lambda = \frac{1}{2} + \lambda$$

$$\lambda = \frac{1-y}{2} \implies \lambda = \frac{1}{2} + \lambda$$

$$\lambda = \frac{1-y}{2} \implies \lambda = \frac{1}{2} + \lambda$$

$$\lambda = \frac{1-y}{2} \implies \lambda = \frac{1}{2} + \lambda$$

Exercício 5.3: São dados os pontos A=(0,1,8) e B=(-3,0,9), e a reta $r:X=(1,2,0)+\lambda(1,1,-3)$. Determine o ponto C de r tal que A, B e C sejam vértices de um triângulo retângulo.

5.1.5 Retas paralelas aos planos e aos eixos coordenados

Se uma ou mais coordenadas do vetor \vec{u} forem nulas, temos casos particulares de retas paralelas aos planos ou aos eixos coordenados:

1°) Uma só das componentes de $\vec{u} = (a, b, c)$ é nula

Neste caso, o vetor \vec{u} é ortogonal a um dos eixos coordenados e, portanto, a reta r é paralela ao plano dos outros eixos. Assim:

a) Se $a=0, \vec{u}=(0,b,c)\bot Ox$, então $r\parallel yOz$

b) Se b = 0, $\vec{u} = (a, 0, c) \perp Oy$, então $r \parallel xOz$

c) Se $c=0, \vec{u}=(a,b,0)\bot Oz$, então $r\parallel xOy$

2°) Duas das componentes de $\vec{u} = (a, b, c)$ são nulas

Neste caso, o vetor \vec{u} tem a direção de um dos vetores $\vec{i}=(1,0,0),\ \vec{j}=(0,1,0)$ ou $\vec{k}=(0,0,1)$ e, portanto, a reta r é paralela ao eixo que tem a direção de \vec{i} ou de \vec{j} ou de \vec{k} . Assim:

a) Se $a=b=0,\, \vec{u}=(0,0,c) \parallel \vec{k},$ então $r \parallel Oz$

b) Se $a=c=0, \ \vec{u}=(0,b,0) \parallel \vec{j}, \ {\rm ent \ \~ao} \ r \parallel Oy$

c) Se $b=c=0,\; \vec{u}=(a,0,0) \parallel \vec{i},$ então $r \parallel Ox$

Observação: Os eixos Ox, Oy e Oz são retas particulares.

Eixo Ox: Reta que passa pela origem O e tem a direção do vetor \vec{i} .

Eixo Oy : Reta que passa pela origem O e tem a direção do vetor \vec{j} .

Eixo Oz: Reta que passa pela origem O e tem a direção do vetor \vec{k} .

5.2 Equações de plano

Assim como um vetor não-nulo determina a direção de uma reta, um par de vetores não paralelos determina a direção de um plano. Estes vetores são chamados vetores diretores do plano.

Definição (Par de vetores diretores de um plano): Se \vec{u} e \vec{v} são não-nulos e não paralelos, e são paralelos a um plano π , o par (\vec{u}, \vec{v}) é chamado par de vetores diretores de π .

5.2.1 Equação vetorial do plano

Sejam A um ponto do plano π e (\vec{u}, \vec{v}) um par de vetores diretores de π .

Um ponto X pertence a π se, e somente se, \vec{u} , \vec{v} e \overrightarrow{AX} são paralelos ao plano π , ou seja, existem números reais λ e μ tais que

$$\overrightarrow{AX} = \lambda \vec{u} + \mu \vec{v}$$

Isso equivale a

$$X = A + \lambda \vec{u} + \mu \vec{v}$$

Por meio desta igualdade fica associado, a cada par (λ, μ) de números reais, um ponto X do plano π . Reciprocamente, se X pertence a π , existem λ e μ satisfazendo a equação. Esta equação é chamada equação vetorial do plano π , ou equação do plano π na forma vetorial.

5.2.2 Equações paramétricas do plano

Suponhamos que $X=(x,y,z),\ A=(x_0,y_0,z_0),\ \vec{u}=(a,b,c)$ e $\vec{v}=(m,n,p)$. A equação vetorial do plano fica

$$(x, y, z) = (x_0, y_0, z_0) + \lambda(a, b, c) + \mu(m, n, p)$$

ou seja,

$$\begin{cases} x = x_0 + \lambda a + \mu m \\ y = y_0 + \lambda b + \mu n \\ z = z_0 + \lambda c + \mu p \end{cases}$$

Este sistema de equações é chamado sistema de equações paramétricas do plano π , ou sistema de equações do plano pi na forma paramétrica.

Exercício 5.4: Seja π o plano que contém o ponto A=(3,7,1) e é paralelo a $\vec{u}=(1,1,1)$ e $\vec{v}=(1,1,0)$.

a) Obtenha duas equações vetoriais de $\pi.$

b) Obtenha equações paramétricas de π .

c) Verifique se o ponto (1,2,2) pertence a π .

d) Verifique se o vetor $\vec{w}=(2,2,5)$ é paralelo a $\pi.$

Exercício 5.5:

a) Escreva uma equação vetorial do plano que tem equações paramétricas

$$\begin{cases} x = 6 + \lambda + \mu \\ y = 1 + 7\lambda + 4\mu \\ z = 4 + 5\lambda + 5\mu \end{cases}$$

b) Obtenha três pontos não-colineares desse plano.

5.2.3 Equação geral do plano

Vamos apresentar agora uma forma de equação de plano que não depende de parâmetros: ela estabelece, diretamente, relações entre as coordenadas x, y e z dos pontos do plano, sem recorrer às variáveis auxiliares λ e μ .

Conhecendo um ponto e um par de vetores diretores do plano

Seja π o plano que contém o ponto $A(x_0, y_0, z_0)$ e tem vetores diretores $\vec{u} = (r, \underline{s}, t)$ e $\vec{u} = (m, n, p)$. Sabemos que um ponto X = (x, y, z) pertence a π se, e somente se, \overrightarrow{AX} , \vec{u} e \vec{v} são paralelos a um mesmo plano, ou seja,

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ r & s & t \\ m & n & p \end{vmatrix} = 0$$

Desenvolvendo este determinante pelos elementos da primeira linha, obtemos

$$\begin{vmatrix} s & t \\ n & p \end{vmatrix} (x - x_0) - \begin{vmatrix} r & t \\ m & p \end{vmatrix} (y - y_0) + \begin{vmatrix} r & s \\ m & n \end{vmatrix} (z - z_0)$$

e, introduzindo a notação

$$\begin{vmatrix} s & t \\ n & p \end{vmatrix} = a \qquad - \begin{vmatrix} r & t \\ m & p \end{vmatrix} = b \qquad \begin{vmatrix} r & s \\ m & n \end{vmatrix} = c \qquad -ax_0 - by_0 - cz_0 = d$$

podemos escrever aquela igualdade sob a forma

$$ax + by + cz + d = 0$$

Um ponto X pertence a π se, e somente se, suas coordenadas satisfazem a esta equação, chamada equação geral do plano π , ou equação do plano π na forma geral.

Naturalmente, se ax+by+cz+d=0 é equação geral de um plano, qualquer equação equivalente a ela também pode ser usada para descrever esse plano.

Exercício 5.6: Obtenha uma equação geral do plano π descrito em cada caso.

a) π contém o ponto A = (9, -1, 10) e é paralelo aos vetores $\vec{u} = (0, 1, 0)$ e $\vec{v} = (1, 1, 1)$.

b) π contém os pontos A = (1,0,1), B = (-1,0,1) e C = (2,1,2).

Exercício 5.7: Obtenha uma equação geral do plano que tem equações paramétricas

$$\begin{cases} x = -1 + 2\lambda - 3\mu \\ y = 1 + \lambda + \mu \\ z = \lambda - \mu \end{cases}$$

Exercício 5.8: Obtenha equações paramétricas do plano $\pi: x+2y-z-1=0.$

Conhecendo um ponto e um vetor normal ao plano

Definição (Vetor normal a um plano): Dado um plano π , qualquer vetor não-nulo ortogonal a π é um vetor normal a π .

Seja $A=(x_0,y_0,z_0)$ um ponto pertence a um plano π , e $\vec{n}=(a,b,c), \ \vec{n}\neq \vec{0}$ um vetor normal ao plano.

O ponto X=(x,y,z) pertence a π se, e somente se, \overrightarrow{AX} é ortogonal a \overrightarrow{n} , isto é,

$$\vec{n} \cdot \overrightarrow{AX} = 0$$

$$(a, b, c) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax - ax_0 + by - by_0 + cz - cz_0 = 0$$

$$ax + by + cz - ax_0 - by_0 - cz_0 = 0$$

Se indicarmos por d a expressão $-ax_0 - by_0 - cz_0$, esta igualdade fica

$$ax + by + cz + d = 0$$

Esta é a equação geral do plano π .

Exercício 5.9: Obtenha uma equação geral do plano π que contém o ponto A=(1,0,2), sabendo que $\vec{n}=(1,1,4$ é um vetor normal a π .

Exercício 5.10: Obtenha uma equação geral do plano π que contém o ponto A = (9, -1, 0) e é paralelo aos vetores $\vec{u} = (0, 1, 0)$ e $\vec{v} = (1, 1, 1)$.

5.2.4 Planos Paralelos aos Eixos e aos Planos Coordenados

Quando uma ou duas componentes de \vec{n} são nulas, ou quando d=0, está-se em presença de casos particulares.

Planos que passam pela origem (d = 0)

$$ax + by + cz = 0$$

Planos paralelos aos eixos coordenados

Se apenas uma das componentes do vetor $\vec{n} = (a, b, c)$ é nula, o vetor é ortogonal a um dos eixos coordenados, e, portanto, o plano π é paralelo ao mesmo eixo:

a) se
$$a = 0$$
, $\vec{n} = (0, b, c) \perp Ox \Rightarrow \pi \parallel Ox$

b) se
$$b = 0$$
, $\vec{n} = (a, 0, c) \perp Oy \Rightarrow \pi \parallel Oy$

c) se
$$c = 0$$
, $\vec{n} = (a, b, 0) \perp Oz \Rightarrow \pi \parallel Oz$

Planos paralelos aos planos coordenados

Se duas das componentes do vetor $\vec{n}=(a,b,c)$ é nula, \vec{n} é paralelo a um dos vetores \vec{i} ou \vec{j} ou \vec{k} , e, portanto, o plano π é paralelo ao plano dos outros determinado pela origem e pelos outros dois vetores:

a) se
$$a=b=0,\, \vec{n}=(0,0,c)=c\vec{k}\Rightarrow \pi\parallel xOy$$

b) se
$$a = c = 0, \vec{n} = (0, b, 0) = b\vec{y} \Rightarrow \pi \parallel xOz$$

c) se
$$b = c = 0$$
, $\vec{n} = (a, 0, 0) = a\vec{i} \Rightarrow \pi \parallel yOz$

Observação: Os planos coordenados são planos particulares

Plano xOy: Plano que passa pela origem O e tem a direção dos vetores \vec{i} e \vec{j} ($\vec{n} = \vec{k}$).

Plano xOz: Plano que passa pela origem O e tem a direção dos vetores \vec{i} e \vec{k} ($\vec{n} = \vec{j}$).

Plano yOz: Plano que passa pela origem O e tem a direção dos vetores \vec{j} e \vec{k} ($\vec{n} = \vec{i}$).

5.3 Interseção de retas e planos

5.3.1 Interseção de duas retas

Exercício 5.11: Dados os pontos A=(1,2,1) e B=(3,0,-1), verifique se são concorrentes as retas AB e $r:X=(3,0,-1)+\lambda(1,1,1)$. Se forem, obtenha o ponto de interseção.

Exercício 5.12: Verifique se as retas r e s são concorrentes e, se forem obtenha o ponto de interseção.

a)
$$r: \begin{cases} x=4+\lambda \\ y=1-\lambda \\ z=1+\lambda \end{cases}$$
 $s: \begin{cases} x=9+4\lambda \\ y=2+\lambda \\ z=2-2\lambda \end{cases}$

b)
$$r:$$

$$\begin{cases} x=-4\lambda \\ y=1+8\lambda \\ z=1-2\lambda \end{cases}$$
 $s:x-1=y-4=z$

c)
$$r: \frac{x-2}{2} = \frac{y-3}{3} = z$$
 $s: x = \frac{y}{3} = \frac{1+z}{2}$

d)
$$r: X = (3, -1, 2) + \lambda(-2, 3, 1)$$
 $s: X = (9, -10, -1) + \lambda(4, -6, -2)$

Exercício 5.13: Duas partículas realizam movimentos descritos pelas equações $X = (0,0,0) + \lambda(1,2,4)$ e $X = (1,0,-2) + \lambda(-1,-1,-1)$, $t \in \mathbb{R}$. As trajetórias são concorrentes? Pode haver colisão das partículas em algum instante?

5.3.2 Interseção de reta e plano

Exercício 5.14: Obtenha a interseção da reta r com o plano π .

a)
$$r: X = (1,0,1) + \lambda(2,1,3)$$
 $\pi: x + y + z = 20$

b)
$$r: X = (0,1,1) + \lambda(2,1,-3)$$
 $\pi: X = (1,0,0) + \lambda(1,0,0) + \mu(0,1,1)$

c)
$$r: \frac{x}{3} = \frac{y-1}{2} = \frac{z-3}{8}$$
 $\pi: 2x + y - z - 6 = 0$

d)
$$r: X = (2,3,1) + \lambda(1,-1,4)$$
 $\pi: X = (-4,-6,2) + \lambda(2,1,3) + \mu(3,3,2)$

5.3.3 Interseção de dois planos

Exercício 5.15: Determine a interseção dos planos π_1 e π_2 :

a)
$$\pi_1: x + 2y + 3z - 1 = 0$$
 $\pi_2: x - y + 2z = 0$

b)
$$\pi_1: x + y + z - 1 = 0$$
 $\pi_2: x + y - z = 0$

c)
$$\pi_1: x + y + z - 1 = 0$$
 $\pi_2: 2x + 2y + 2z - 1 = 0$

d)
$$\pi_1: x + y + z - 1 = 0$$
 $\pi_2: 3x + 3y + 3z - 3 = 0$

Exercício 5.16: Sendo $\pi_1: X = (1,0,0) + \lambda(1,1,1) + \mu(-1,0,2)$ e $\pi_2: X = (2,0,-1) + \lambda(1,2,1) + \mu(0,1,1)$, mostre que $\pi_1 \cap \pi + 2$ é uma reta e obtenha uma equação vetorial para ela.

5.4 Posição relativa de retas e planos

5.4.1 Posição relativa de retas

São quatro as possibilidades para duas retas r e s do espaço: serem reversas, concorrentes, paralelas distintas ou paralelas coincidentes. Sejam A um ponto e \vec{r} um vetor diretor da reta r, e B um ponto e \vec{s} um vetor diretor da reta s. As retas r e s podem ser:

- Coplanares: situadas no mesmo plano. Neste caso, podem ser:
 - Paralelas (distintas ou coincidentes): \vec{r} e \vec{s} são paralelos.

- Concorrentes: \vec{r} , \vec{s} e \overrightarrow{AB} são coplanares e \vec{r} e \vec{s} não são paralelos.

• Reversas: não situadas no mesmo plano. Nesse caso, \vec{r} , \vec{s} e \overrightarrow{AB} não são coplanares.

Podemos estabelecer o seguinte roteiro para estudar a posição relativa de r e s.

- Se \vec{r} e \vec{s} são paralelos, r e s são paralelas. Para constatar se são distintas ou coincidentes, basta verificar se A pertence a s.
- Se \vec{r} e \vec{s} não são paralelos, as retas não são paralelas, podendo ser concorrentes ou reversas. Se \vec{r} , \vec{s} e \overrightarrow{AB} são coplanares, r e s são concorrentes; se \vec{r} , \vec{s} e \overrightarrow{AB} não são coplanares, r e s são reversas.

Alternativamente, podemos basear-nos na interseção de r e s, que se obtém resolvendo o sistema formado pelas equações dessas retas. Se houver uma única solução, as retas são concorrentes. Se o sistema for indeterminado, então r=s. Se for incompatível, r e s paralelas distintas ou reversas, conforme os vetores diretores sejam paralelos ou não.

Exercício 5.17: Estude a posição relativa das retas $r: X = (1, 2, 3) + \lambda(0, 1, 3)$ e s, nos casos:

a)
$$s: X = (0,1,0) + \lambda(1,1,1)$$

b)
$$x: X = (1,3,6) + \lambda(0,2,6)$$

5.4.2 Posição relativa de reta e plano

Para uma reta r e um plano π , são três as possibilidades:

• Reta contida no plano: Para que r esteja contida em π é suficiente que dois de seus pontos, distintos, pertençam a π $(r \cap \pi = r)$.

• Reta paralela ao plano: Uma reta e um plano são paralelos quando não têm pontos comuns $(r \cap \pi = \emptyset)$.

• Reta transversal ao plano: A interseção de r e π reduz-se a um único ponto $(r \cap \pi = P)$.

Para estudar a posição relativa de r e π , utilizaremos o seguinte fato básico: r é transversal a π se, e somente se, seu vetor diretor \vec{r} não é paralelo a π . Equivalentemente, r é paralela a π (ou está contida em π) se, e somente se, \vec{r} é paralelo a π .

Conhecendo os vetores diretores do plano

Se (\vec{u}, \vec{v}) é um par de vetores diretores de π , podemos estudar a posição relativad de r e π seguindo o roteiro:

- Se \vec{u} , \vec{v} e \vec{r} não são coplanares, r e π são transversais.
- Se \vec{u} , \vec{v} e \vec{r} são coplanares, r e π não são transversais. Saberemos se r está contida em π ou se r e π são paralelos verificando se um ponto escolhido em r pertence ou não a π .

Conhecendo um vetor normal ao plano

Dados $\vec{r} = (m, n, p)$ e $\pi : ax + by + cz + d = 0$ $(\vec{n} = (a, b, c))$ podemos adotar um roteiro alternativo:

- Se $\vec{r} \cdot \vec{n} \neq 0$, $r \in \pi$ são transversais.
- Se $\vec{r} \cdot \vec{n} = 0$, $r \in \pi$ não são transversais. Para esclarecer se r está contida em π ou é paralela a π , basta escolher um ponto de A de r e verificar se ele pertence a π .

Há também o método da interseção, que consiste em determinar $r \cap \pi$ e interpretar os resultados obtidos sob o ponto de vista da posição relativa.

Exercício 5.18: Estude a posição relativa de $r \in \pi$:

a)
$$r:$$

$$\begin{cases} x=1+\lambda \\ y=1-\lambda \\ z=\lambda \end{cases} \qquad \pi: x+y-z+2=0$$

b)
$$r: X = (1, 1, 0) + \lambda(1, -1, 1)$$
 $\pi: x + y - 2 = 0$

Exercício 5.19: Estude a posição relativa de $r \in \pi$.

a)
$$r: X = (1, 1, 1) + \lambda(3, 2, 1)$$
 $\pi: X = (1, 1, 3) + \lambda(1, -1, 1) + \mu(0, 1, 3)$

b)
$$r: X = (2, 2, 1) + \lambda(3, 3, 0)$$
 $\pi: X = (1, 0, 1) + \lambda(1, 1, 1) + \mu(0, 0, 3)$

5.4.3 Posição relativa de planos

Sejam $\pi_1: a_1x+b_1y+c_1z+d_1=0$ e $\pi_2: a_2x+b_2y+c_2z+d_2=0$ dois planos quaisquer. Os vetores normais a π_1 e π_2 são, respectivamente, \vec{n}_1 e \vec{n}_2 . Os planos π_1 e π_2 podem ser:

- Paralelos: π_1 e π_2 são paralelos se, e somente se, \vec{n}_1 e \vec{n}_2 são paralelos. Nestas condições a_1, b_1, c_1 e a_2, b_2, c_2 são proporcionais. Neste caso, π_1 e π_2 podem ser ainda:
 - Paralelos Coincidentes: Se d_1 e d_2 também seguem a mesma proporção. Neste caso, $\pi_1 = \pi_2$

— Paralelos distintos: Se d_1 e d_2 não seguem a mesma proporção. Neste caso, $\pi_1 \cap \pi_2 = \emptyset$.

• Transversais: Se \vec{n}_1 e \vec{n}_2 não são paralelos. Neste caso, $\pi_1 \cap \pi_2 = r$.

Exercício 5.20: Estude a posição relativa dos planos π_1 e π_2 :

a)
$$\pi_1: 2x - y + z - 1 = 0$$
 $\pi_2: 4x - 2y + 2z - 9 = 0$

b)
$$\pi_1: x + 10y - z - 4 = 0$$
 $\pi_2: 4x + 40y - 4z - 16 = 0$

Exercício 5.21: Estude a posição relativa dos planos

$$\pi_1: X = (0,0,0) + \lambda(1,0,1) + \mu(-1,0,3)$$
 $\pi_2: X = (1,0,1) + \lambda(1,1,1) + \mu(0,1,0)$

5.5 Perpendicularidade e ortogonalidade

5.5.1 Perpendicularidade e ortogonalidade entre retas

A diferença entre os termos retas ortogonais e retas perpendiculares é que duas retas ortogonais podem ser concorrentes ou reversas e duas retas perpendiculares são obrigatoriamente concorrentes. Assim, o segundo é um caso particular do primeiro. Naturalmente, duas retas são ortogonais se, se somente se, cada vetor diretor de uma é ortogonal a qualquer vetor de outra.

Exercício 5.22: Verifique se as retas $r: X = (1,1,1) + \lambda(2,1,-3)$ e $s: X = (0,1,0) + \lambda(-1,2,0)$ são ortogonais. Caso sejam, verifique se são perpendiculares.

Exercício 5.23: Obtenha equações paramétricas da reta s que contém o ponto P=(-1,3,1) e é perpendicular a $r:\frac{x-1}{2}=\frac{y-1}{3}=z$.

5.5.2 Perpendicularidade entre reta e plano

Se \vec{n} é um vetor normal ao plano π e \vec{r} é um vetor diretor da reta r, então r e π são perpendiculares se, e somente se, \vec{r} e \vec{n} são paralelos.

Exercício 5.24: Verifique se a reta r e o plano π são perpendiculares.

$$r: X = (0,1,0) + \lambda(1,1,3)$$
 $\pi: X = (3,4,5) + \lambda(6,7,8) + \mu(0,10,11)$

Exercício 5.25:

a) Obtenha equações na forma simétrica da reta r que contém o ponto P=(-1,3,5) e é perpendicular ao plano $\pi:x-y+2z-1=0.$

b) Escreva uma equação geral do plano π que contém a origem e é perpendicular à reta $r: X = (1,1,0) + \lambda(2,3,7)$.

5.5.3 Perpendicularidade entre planos

Se \vec{n}_1 e \vec{n}_2 são vetores normais aos planos π_1 e π_2 , então os planos são perpendiculares se, e somente se, \vec{n}_1 e \vec{n}_2 são ortogonais, isto é, $\vec{n}_1 \cdot \vec{n}_2 = 0$.

Exercício 5.26: Verifique se $\pi_1: X = (0,0,1) + \lambda(1,0,1) + \mu(-1,-1,1)$ e $\pi_2: 2x - 7y + 16z - 40 = 0$ são perpendiculares.

5.6 Medida angular

5.6.1 Medida angular entre retas

Sejam r e s duas retas, \vec{r} um vetor diretor de r e \vec{s} um vetor diretor de s. A medida angular entre r e s é a medida angular entre os vetores \vec{r} e \vec{s} , se esta pertence ao intervalo $\left[0, \frac{\pi}{2}\right]$, e é a medida angular entre \vec{r} e $-\vec{s}$ se pertence a $\left[\frac{\pi}{2}, \pi\right]$. Indica-se por ang(r, s).

Pela definição, sendo θ a medida angular entre as retas r e s e sendo φ a medida angular entre os vetores \vec{r} e \vec{s} , temos

$$\cos \theta = |\cos \varphi| = \frac{|\vec{r} \cdot \vec{s}|}{\|\vec{r}\| \|\vec{s}\|}$$

Exercício 5.27: O lado BC de um triângulo equilátero está contido na reta $r: X = (0,0,0) + \lambda(0,1,-1)$, e seu vértice oposto é A = (1,1,0). Determine $B \in C$.

5.6.2 Medida angular entre reta e plano

Sejam r uma reta e π um plano. A medida angular entre r e π é $\frac{\pi}{2} - \text{ang}(r, s)$, sendo s uma reta qualquer, perpendicular a π . Indica-se pelo símbolo $\text{ang}(r, \pi)$.

Sejam \vec{r} um vetor diretor de r, \vec{n} um vetor normal a π , $\varphi = \arg(r, s)$ e $\theta = \arg(r, \pi)$. Lembrando que \vec{n} é um vetor diretor de s, podemos escrever

$$\cos \varphi = \frac{|\vec{n} \cdot \vec{r}|}{\|\vec{n}\| \|\vec{r}\|}$$

Pela definição, $\theta=\frac{\pi}{2}-\varphi;$ logo, $\cos\varphi=\sin\theta$ e, portanto,

$$\operatorname{sen} \theta = \frac{|\vec{n} \cdot \vec{r}|}{\|\vec{n}\| \|\vec{r}\|}$$

Exercício 5.28: Obtenha a medida angular entre a reta $r: X = (0, 1, 0) + \lambda(-1, -1, 0)$ e o plano $\pi: y + z - 10 = 0$.

5.6.3 Medida angular entre planos

A medida angular entre os planos π_1 e π_2 , indicada por ang (π_1, π_2) , é a medida angular θ entre duas retas quaisquer r_1 e r_2 , respectivamente perpendiculares a π_1 e π_2 .

Se \vec{n}_1 e \vec{n}_2 são, respectivamente, vetores normais a π_1 e π_2 respectivamente, então \vec{n}_1 é um vetor diretor de r_1 e \vec{n}_2 é um vetor diretor de r_2 :

$$\cos \theta = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{\|\vec{n}_1\| \|\vec{n}_2\|}$$

Exercício 5.29: Sendo $\pi_1: x-y+z=20$ e $\pi_2: X=(1,1,-2)+\lambda(0,-1,1)+\mu(1,-3,2)$, calcule ang (π_1,π_2) .

5.7 Distância

5.7.1 Distância entre pontos

Sejam $A=(x_1,y_1,z_1)$ e $B=(x_2,y_2,z_2)$. A distância d(A,B) entre A e B é $\left\|\overrightarrow{BA}\right\|$, ou seja, $d(A,B)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2+}$

Exercício 5.30: Calcular a distância entre os pontos $P_1 = (7,3,4)$ e $P_2 = (1,0,6)$.

5.7.2 Distância de ponto a reta

Sejam A e B dois pontos quaisquer de r, distintos.

A área do triângulo ABP é $\frac{\|\overrightarrow{AP} \wedge \overrightarrow{AB}\|}{2}$; logo, se h é a altura relativa ao vértice P, então $\frac{\|\overrightarrow{AB}\|h}{2} = \frac{\|\overrightarrow{AP} \wedge \overrightarrow{AB}\|}{2}$ e, como h = d(P, r),

$$d(P,r) = \frac{\left\| \overrightarrow{AP} \wedge \overrightarrow{AB} \right\|}{\left\| \overrightarrow{AB} \right\|}$$

Indicando por \vec{r} o vetor \overrightarrow{AB} , que é um vetor diretor de r, obtemos

$$d(P,r) = \frac{\left\| \overrightarrow{AP} \wedge \overrightarrow{r} \right\|}{\left\| \overrightarrow{r} \right\|}$$

em que \vec{r} é um vetor diretor e A é um ponto de r, ambos escolhidos arbitrariamente.

Exercício 5.31: Calcule a distância de P=(1,1,-1) à interseção de $\pi_1:x-y=1$ e $\pi_2:x+y-z=0.$

5.7.3 Distância de ponto a plano

Para calcular a distância $d(P,\pi)$ do ponto P ao plano π , basta escolher um ponto A de π e um vetor \vec{n} , normal a π , e calcular a norma da projeção ortogonal de \overrightarrow{AP} sobre \vec{n} .

$$\left\|\operatorname{proj}_{\vec{n}}\overrightarrow{AP}\right\| = \frac{\left|\overrightarrow{AP}\cdot\vec{n}\right|}{\|\vec{n}\|}$$

Logo,

$$d(P,\pi) = \frac{\left|\overrightarrow{AP} \cdot \overrightarrow{n}\right|}{\|\overrightarrow{n}\|}$$

Suponhamos que $P=(x_0,y_0,z_0), A=(x_1,y_1,z_1)$ e $\pi:ax+by+cz+d=0$. Então, $\vec{n}=(a,b,c)$ é um vetor normal a π , e vale a relação $ax_1+by_1+cz_1=-d$, pois A pertence a π . Portanto,

$$\overrightarrow{AP} \cdot \overrightarrow{n} = a(x_0 - x_1) + b(y_0 - y_1) + c(z_0 - z_1)$$

$$\overrightarrow{AP} \cdot \overrightarrow{n} = ax_0 + by_0 + cz_0 - (ax_1 + by_1 + cz_1)$$

$$\overrightarrow{AP} \cdot \overrightarrow{n} = ax_0 + by_0 + cz_0 + d$$

Desse modo, a distância do ponto P ao plano π fica

$$d(P,\pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Exercício 5.32: Calcule a distância do ponto P ao plano π .

a)
$$P = (1, 2, -1)$$
 $\pi : 3x - 4y - 5z + 1 = 0$

b)
$$P = (1,3,4)$$
 $\pi: X = (1,0,0) + \lambda(1,0,0) + \mu(-1,0,3)$

5.7.4 Distância entre retas

Para calcular a distância d(r, s) entre as retas r e s, vamos considerar separadamente três casos:

• Retas Paralelas: Neste caso, escolhemos um ponto qualquer de uma das retas e calculamos a sua distância à outra reta.

- Retas Concorrentes: Neste caso, d(r,s) = 0, pois $r \cap s = \emptyset$. No entanto, vale para as retas concorrentes a fórmula para distância de retas reversas dada abaixo.
- Retas Reversas: Observe a figura:

Existe um único plano π que contém r e é paralelo a s; se B é um ponto qualquer de s, então $d(r,s)=d(B,\pi)$.

Um vetor normal a π é $\vec{r} \wedge \vec{s}$; escolhendo um ponto A qualquer de r e aplicando a fórmula da distância de ponto a plano para calcular $d(B,\pi)$, obtemos

$$d(r,s) = \frac{\left| \overrightarrow{AB} \cdot r \wedge \overrightarrow{s} \right|}{\left\| \overrightarrow{r} \wedge \overrightarrow{s} \right\|}$$

Observação: Não é necessário estudar a posição relativa das retas r e s antes de calcular sua distância. Para aplicar a fórmula acima é necessário, de qualquer modo, calcular $\vec{r} \wedge \vec{s}$. Se $\vec{r} \wedge \vec{s} \neq \vec{0}$, podemos aplicar a fórmula acima; caso contrário, se $\vec{r} \wedge \vec{s} = \vec{0}$, as retas são paralelas, e então calculamos a distância de um ponto qualquer de uma delas à outra.

Exercício 5.33: Calcular a distância entre as retas

$$r: \left\{ \begin{array}{l} y = -2x + 3 \\ z = 2x \end{array} \right. \qquad s: \left\{ \begin{array}{l} x = -1 - 2\lambda \\ y = 1 + 4\lambda \\ z = -3 - 4\lambda \end{array} \right.$$

5.7.5 Distância entre reta e plano

Para calcular a distância entre uma reta r e um plano π , escolhemos um vetor diretor \vec{r} da reta e um vetor normal \vec{n} ao plano, calculamos $\vec{r} \cdot \vec{n}$, e então:

- Se $\vec{r} \cdot \vec{n} \neq 0$, r é transversal a π e, portanto, $r \cap \pi = \emptyset$. Neste caso, $d(r, \pi) = 0$.
- Se $\vec{r} \cdot \vec{n} = 0$, podemos ter
 - -r está contida em π , e $d(r,\pi)=0$.
 - -r é paralela a π e $d(r,\pi)$ é a distância de um ponto qualquer de r ao plano.

5.7.6 Distância entre planos

Para calcular a distância entre dois planos π_1 e π_2 , analisamos inicialmente o paralelismo entre seus vetores normais \vec{n}_1 e \vec{n}_2 .

- Se (\vec{n}_1, \vec{n}_2) não são paralelos, então π_1 e π_2 são transversais e sua interseção é nãovazia. Logo, $d(\pi_1, \pi_2) = 0$.
- Se (\vec{n}_1, \vec{n}_2) são paralelos, então π_1 e π_2 são paralelos e $d(\pi_1, \pi_2)$ é a distância de um ponto qualquer de um deles ao outro.

Exercício 5.34: Calcular a distância entre os planos

$$\pi_1: 2x - 2y + z - 5 = 0$$
 e $\pi_2: 4x - 4y + 2z + 14 = 0$

Referências

CAMARGO, I.; BOULOS, P. **Geometria Analítica**: um tratamento vetorial. São Paulo: Prentice Hall, 2005.

STEINBRUCH, A; WINTERLE, P. **Geometria Analítica**. São Paulo: Pearson Education do Brasil, 1987.