Optimisation de la reconstruction d'image scanner

AINTENANT que nous avons un modèle EDP qui reproduit bien les aspects constatés en clinique, interrogeons nous sur la manière de reconstruire une image en niveau de gris (image scanner) à partir des résultats numériques *i.e.* de l'évolution des densités N(t,x), P(t,x) et S(t,x) (toutes comprises entre 0 et 1). On tentera, dans ce chapitre, d'optimiser les niveaux de gris τ_N, τ_P et τ_S de l'interpolation EQREF afin de rapprocher au maximum la visualisation des résultas numériques de la visualisation des scanners médicaux.

egref

1.1 Présentation de l'approche

Pour un patient donné, on considère n instants auxquels on possède des scanners (aux temps $t_i, i \in \{1, ..., n\}$). Sur ces n images, on propose d'optimiser les coefficients de l'interpolation $\tau_N N + \tau_P P + \tau_S S$:

$$\frac{1}{\mathcal{A}(Z_{1}(t_{i}))} \left(\tau_{N} \int_{Z_{1}(t_{i})} N(t_{i}, x) \, dx + \tau_{P} \int_{Z_{1}(t_{i})} P(t_{i}, x) \, dx + \tau_{S} \int_{Z_{1}(t_{i})} S(t_{i}, x) \, dx \right)
= \frac{1}{\mathcal{A}(Z_{2}(t_{i}))} \int_{Z_{2}(t_{i})} s(t_{i}, x, z_{0}) \, dx \qquad i \in \{1, ..., n\}$$
(1.1)

où:

- $-\mathcal{A}(Z)$ est l'aire de la zone Z.
- $-Z_1(t_i)$ est la zone correspondant à la tumeur dans les simulations numériques au temps t_i . Elle est définie par un seuillage sur S.
- $-Z_2(t_i)$ est la zone tumorale sur le scanner réalisé au temps t_i . Cette zone a été définie par contourage manuel à l'aide du logiciel OsiriX.
- $-z_0$ est la coupe que l'on choisie d'étudier dans les scanners. Cette coupe est approximativement la même au cours du temps.

specifier le seuillage?

 $-s(t_i, x, z_0)$ est la valeur du niveaux de gris du pixel en position x sur la coupe z_0 du scanner effectué au temps t_i .

En utilisant la discrétisation, aussi bien sur les simulations numériques que sur les scanners, on obtient :

$$\frac{1}{\mathcal{N}(Z_{1}(t_{i}))} \left(\tau_{N} \sum_{x \in Z_{1}(t_{i})} N(t_{i}, x) + \tau_{P} \sum_{x \in Z_{1}(t_{i})} P(t_{i}, x) + \tau_{S} \sum_{x \in Z_{1}(t_{i})} S(t_{i}, x) \right)
= \frac{1}{\mathcal{N}(Z_{2}(t_{i}))} \sum_{x \in Z_{2}(t_{i})} s(t_{i}, x, z_{0}) \qquad i \in \{1, ..., n\}$$
(1.2)

où $\mathcal{N}(Z)$ désigne le nombre de pixel contenu dans la zone Z. On a donc un système linéaire de 3 inconnues à n équations que l'on peut réécrire :

$$A\tau = B, (1.3)$$

avec $\tau = {}^t(\tau_N, \tau_P, \tau_S)$, A matrice de taille $n \times 3$ et B vecteur colonne de taille n.

Pour ne pas se limiter au cas n=3 qui clos le système, on le résoud par la minimisation suivante :

$$\min_{\tau} \left(\frac{\|A\tau - B\|_{\ell^2}^2}{\|B\|_{\ell^2}^2} + \mathcal{P}(\tau) \right), \tag{1.4}$$

où la pénalisation \mathcal{P} permet d'assurer que les optima respectent les bornes 0 à 255 :

$$\mathcal{P}(\tau) = 1e7 \times (\tau \notin [0; 255]^3). \tag{1.5}$$

1.2 Optimisation sur 3 paramètres

La résolution de l'équation (1.4) fournit donc le τ optimal. Examinons les différences lorsque l'on fait varier :

- le nombre d'images considérées
- les moments considérés
- l'algorithme d'optimisation lui-même
- la fonction coût utilisée

Dans tous les cas, on ne considèrera pas le premier scanner (numéro 0) car la condition initiale numérique EQREF n'est pas prise de sorte à respecter la répartition des niveaux de gris du scanner. Evitons donc d'inclure dans l'optimisation une erreur de base qui serait incompressible.

La Table 1.1 synthétise l'ensemble des résultats d'optimisation obtenus sur les différents tests qui ont été réalisés. On remarque que plus le nombre d'image considérées est grand, plus l'erreur à convergence est grande. Ce comportement est attendu et ne pose pas de problème tant que l'erreur reste acceptable (de l'ordre de quelques pourcents). Augmenter le nombre d'images

EQREF

Presenter numerotation des scans

GC Neldear-Mead $7N$, $7P$, $1P$	Scanners		Algorithme	Algorithme d'optimisation	
70. 78 70. 77 78 70.	choisis pour	SLSQP	25	Neldear-Mead	BFGS
Section	l'optimisation	$\tau_N, \qquad \tau_P, \qquad \tau_S$	$ au_N, au_P, au_S$	$ au_N, au_P, au_S$	$ au_N, \qquad au_P, \qquad au_S$
Err: 7.0e-07 Err ² : 2.7e-11 Err: 1.2e-09 28.29, 147.54, 190.53 Err: 2.7e-03 Err: 2.1c-03 Err:	[1, 2]	39.08, 145.73, 195.76	39.08, 145.73, 195.76	37.34, 145.08, 200.62	39.08, 145.73, 195.76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Err: 7.0e-07	$\mathrm{Err}^2:2.7\mathrm{e}{-11}$	Err: 5.5e-09	$\mathrm{Err}^2:2.6\mathrm{e}{-10}$
28.29, 147.54, 190.53 Err: 2.0e-02 Err: 2.2e-03 Err: 2.2e-03 Err: 2.2e-03 Err: 2.2e-03 Err: 2.2e-03 Err: 2.2e-03 Brr: 2.3e-01 Brr: 2.2e-03 Brr: 2.3e-02 Brr: 2.2e-03 Brr: 2.3e-02 Brr: 2.2e-03 Brr: 2.3e-02 Brr: 2.2e-03 Brr: 2.3e-02 Brr: 3.2e-02 Brr: 1.1e-10 Brr: 2.4e-03 Brr: 3.2e-02 Brr: 3.2e-03 Brr: 3.3e-02 Brr: 3.3e-02 Brr: 3.3e-02 Brr: 3.3e-02 Brr: 3.3e-02 Brr: 3.3e-02 Brr: 3.3e-03 Brr: 3.	[1, 2, 3]	29.87, 148.26, 192.23	$54.09, 151.32, 153.71$ $Err^2 : 1.2e - 09$	54.09, 151.32, 153.71 Frr: $2.66-08$	$54.09, 151.32, 153.71$ $Err^2 : 8.56-11$
Err: 2.06-02 Err: 4.0e-03 Err: 4.0e-03 Err: 2.0e-02 Err: 2.40e-03 Err: 2.0e-02 Err: 2.2e-03 Err: 2.2e-04 Err: 2.2e-04 Err: 2.2e-05 Err: 2.2e-06 Err: 2.2e-06 Err: 2.2e-07 Err: 2.2e-08 Err: 2.3e-07 Err: 2.2e-08 Err: 2.3e-08 Err: 2.3e-08 Err: 2.3e-08 Err: 2.3e-02 Err: 2.3e-08 Err: 2.3e-02 Err: 2.3e-08 Err: 2.3e-02 Err: 2.3e-03 Err	5	28.29, 147.54, 190.53	61.29, 153.52, 136.77	61.58, 153.57, 136.3	61.58, 153.57, 136.3
5	[1, 2, 3, 4]	Err: 2.0e-02	Err: 4.0e-03	Err: 4.0e-03	
Err : 2.7e-02 Err : 5.2e-03 Err : 5.2e-03 30.72, 146.69, 192.06 30.74, 145.7, 191.96 35.66, 147.67, 183.96 Err : 1.0e-06 Err 2.5e-09 Err 2.2e-09 Err : 2.5e-07 Err 2.3e-11 Err : 2.9e-08 Err : 2.5e-02 Err 2.3e-11 Err : 2.9e-08 Err : 2.5e-02 Err 2.3e-11 Err : 2.9e-08 Err : 2.5e-02 Err 2.3e-11 Err : 2.9e-08 Err : 2.6e-02 Err 2.5e-01 Err : 2.9e-08 Err : 3.6e-13 Err : 2.9e-08 Err 2.3e-09 Err : 2.6e-02 Err 2.1e-10 Err : 2.9e-08 Err : 2.6e-02 Err 2.1e-10 Err : 3.4e-09 Err : 3.6e-13 Err : 3.4e-09 Err 2.3e-01 Err : 3.4e-09 Err : 2.4e-02 Err 2.7e-11 Err : 3.4e-09 Err : 2.4e-02 Err 2.7e-11 Err : 3.4e-09 Err : 3.2e-02 Err : 4.9e-03 Err : 4.9e-03 Err : 3.2e-02 Err : 1.2e-03 Err : 3.8e-08 Err : 3.2e-02 Err : 3.9e-11 Err : 3.8e-08 Err : 3.6e-10 Err : 3.9e-11 Err : 3.8e-08 Err : 3.6e-10 Err : 3.9e-11 Err : 3.6e-06 Err : 3.6e-10 Err : 3.6e-10 Err : 3.6e-06 Err : 3.6e-10 Err : 4.2e-11 Err : 5.6e-03 Err : 3.6e-10 Err : 3.6e-11 Err : 5.6e-03 Err : 3.6e-10 Err : 3.6e-11 Err : 5.6e-03 Err : 3.6e-10 Err : 3.6e-11 Err : 5.6e-03 Err : 3.6e-10 Err : 3.6e-11 Err : 5.6e-03 Err : 3.6e-10 Err : 3.6e-11 Err : 5.6e-03 Err : 3.6e-10 Err : 3.6e-11 Err : 5.6e-03 Err : 3.6e-10 Err : 3.6e-11 Err : 5.6e-03 Err : 3.6e-10 Err : 3.6e-10 Err : 7.6e-03 Err : 3.6e-10 Err : 3.6e-10 Err : 7.6e-03 Err : 3.6e-10 Err : 3.6e-10 Err : 3.6e-10 Err : 3.6e-10 Err : 3.6e-10 Err : 3.6e-10 Err : 3.6e-03 Err : 3.6e-10 Err : 3.6e-10 Err : 3.6e-03 Err : 3.6e-03 Err : 3.6e-10 Err : 3.6e-10 Err : 3.6e-03	[1 0 0 4 E]	27.06, 146.73, 188.18	56.18, 152.31, 146.43	56.35, 152.32, 146.23	56.35, 152.32, 146.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 2, 0, 4, 0]	Err: 2.7e-02	Err: 5.2e-03	Err: 5.2e-03	Err:5.2e-03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3	30.72, 146.69, 192.06	30.74, 145.7, 191.96	35.66, 147.67, 183.96	30.72, 146.69, 192.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[۲, ۵]	Err: 1.0e-06	$Err^2: 5.0e-03$	Err: 2.2e-09	$Err^2: 7.5e-11$
Enr. 5.4e-07 Enr² : 3.6e-11 Enr : 2.9e-08 28.36, 145.23, 188.1 58.7 , 152.23, 146.13 58.7 , 152.23, 146.13 21.25, 156.88, 151.94 71.43, 154.76, 125.23 71.43, 154.76, 125.23 21.25, 156.88, 151.94 71.43, 154.76, 125.23 71.43, 154.76, 125.23 26.50, 152.04, 191.17 35.77 , 163.3, 152.67 42.91 , 158.63, 153.07 Err : 1.1e-02 Err^2 : 7.4e-11 Err : 3.4e-09 25.3, 150.49, 188.98 39.24 , 168.0, 135.44 0.0, 193.74, 133.11 Err : 2.4e-02 $Err : 2.4e-03$ $Err : 3.8e-03$ Err : 3.3e-02 $Err : 1.52-03$ $Err : 3.8e-03$ Err : 3.2e-02 $Err : 1.52.07$, 148.06 $Err : 8.7e-03$ Err : 3.2e-02 Err^2 : 3.9e-11 $Err : 8.7e-03$ Err : 3.5e-02 Err^2 : 3.2e-11 $Err : 3.2e-02$ Err : 3.5e-02 Err^2 : 3.2e-11 $Err : 3.8e-08$ 66.95, 156.11, 117.68 66.95 , 156.11, 117.68 66.95 , 156.11, 117.68 Err : 3.7e-02 Err^2 : 3.9e-11 $Err : 5.7e-03$ Err : 3.6-06 Err^2 : 3.9e-11 $Err : 5.7e-03$ Err : 3.6-07	<u>.</u>	19.74, 149.77, 175.09	19.74, 149.77, 175.09	41.34, 151.14, 159.03	19.74, 149.77, 175.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[-, 0]	$\operatorname{Err}:5.4\mathrm{e} ext{-}07$	$\mathrm{Err}^2:3.6\mathrm{e}\text{-}11$	Err: 2.9e-08	$Err^2: 4.4e-11$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ر د ر	28.36, 145.23, 188.1	58.7, 152.23, 146.13	58.7, 152.23, 146.13	58.7, 152.23, 146.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 0, 0]	Err: 2.5e-02	$\mathrm{Err}^2:5.2\mathrm{e-}11$	Err: 2.9e-08	$Err^2: 2.4e-11$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1 2 7]	21.25, 156.88, 151.94	71.43, 154.76, 125.23	71.43, 154.76, 125.23	71.43, 154.76, 125.23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 0, 1]	Err: 3.9e-02	$\mathrm{Err}^2:1.1\mathrm{e} ext{-}10$	Err: 5.4e-08	$Err^2: 3.5e-11$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[2, 3]	26.59, 152.64, 191.17	35.77,163.3,152.67	42.91, 158.63, 153.07	$35.77,\ 163.3,\ 152.67$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>į</u>	$\mathrm{Err}: 1.1\mathrm{e} ext{-}02$	$\mathrm{Err}^2: 7.4\mathrm{e} ext{-}11$	Err: 3.4e-09	$Err^2: 3.1e-10$
24.95, 150.0, 186.75 24.95, 150.0, 186.75 24.95, 150.0, 186.75 Err: 3.3e-02 Err: 3.3e-02 Err: 3.3e-02 Err: 3.3e-01 Err: 3.3e-02 Err: 3.3e-01 Err: 3.3e-02 Err: 3.3e-01 Err: 3.3e-02 Err: 3.3e-01 Err: 3.3e-02 Err: 3.3e-11 Err: 3.4e-08 Err: 3.4e-08 Err: 3.4e-01 Err: 3.4e-08 Err: 3.4e-01 Err: 3.4e-08 Err: 3.4e-01 Err: 3.4e-01 Err: 3.4e-08 Err: 3.4e-01 Err: 3.4e-01 Err: 3.4e-09 Err: 3.4e-01 Err: 3.4e-01 Err: 3.4e-01 Err: 3.4e-01 Err: 3.4e-01 Err: 3.4e-01 Err: 3.4e-02 Err: 3.4e-03 Err: 1.4e-10 Err: 1.7e-03 Err: 1.4e-10 Err: 1.1e-06 Err: 1.1e-06 Err: 1.1e-06 Err: 1.1e-06 Err: 1.1e-06 Err: 1.1e-02 Err: 1.3e-02 Err: 1.3e-03 Err: 1.3e-03 Err: 1.3e-02 Err: 1.3e-03 Err: 1.3e-03 Err: 1.3e-03 Err: 1.3e-03 Err: 1.3e-03 Err: 1.3e-04 Err: 1.3e-06-08	[2, 3, 4]	25.3, 150.49, 188.98	39.24, 168.0, 135.44	0.0, 193.74, 133.11	39.45, 168.0, 135.16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		54 0F 1F0 0 106 7F	2F 9F 16F 7F 147 F7	0.00 100 15 147 14	25 35 16 60 147 60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		24.39, 190.0, 190.79 Frr 3-30.09	55.25, 105.75, 147.57 Fra. 1 35.03	U.U, 166.19, 147.14 Em. · 8 30 04	55.55, 105.03, 147.50 $E_{\rm rrr}$. 1.50.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		90 04 146 16 160 06	11. 1.20-03 17. 17. 07 14. 00	111 . 0.30-04	11. 1.20-03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 2, 5]	28.84, 140.19, 189.00 Frr · 3.2e-02	50.1, 152.07, 148.00 $\text{Frr}^2 \cdot 3.96-11$	50.1, 152.07, 148.00 Frr · 4 46-08	$50.1,152.07,148.00$ $\mathrm{Frr}^2\cdot 35e$ -11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		24 16 158 41 147 01	62.98 154.63 128.79	62 98 154 63 128 79	62.98 154.63 128.79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 2, 7]	Err: 3.7e-02	$Err^2: 4.2e-11$	Err: 3.8e-08	$Err^2: 3.2e-11$
Err: 3.6e-06 Err ² : 3.1e-11 Err: 5.7e-08 15.19, 153.63, 148.95 Err: 1.7e-03 Err: 1.4e-10 Err: 7.6e-09 Err: 8.7e-03 Err: 8.7e-03 Frr: 1.1e-06 Frr: 1.1e-06 Frr: 1.1e-06 Err ² : 1.9e-11 Err: 1.3e-02 Err: 1.3e-02 Err: 1.3e-02 Err: 1.3e-02 Err: 1.6e-02 Err: 1.23, 129.17, 125.36 Err: 2.0e-08	[1 9 0]	66.95, 156.11, 117.68	66.95, 156.11, 117.68	66.95, 156.11, 117.68	66.95, 156.11, 117.68
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1, 4, 3]	Err: 3.6e-06	$Err^2: 3.1e-11$	Err: 5.7e-08	$Err^2: 3.5e-11$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1 7 11]	15.19, 153.63, 148.95	28.18, 154.12, 143.44	28.18, 154.12, 143.44	28.18, 154.12, 143.44
11] Err: 8.7e-03 Err: 8.7e-03 Err: 8.5e-03 Err: 8.5e-03 Err: 8.7e-03 Err: 8.7e-03 Err: 8.7e-03 Err: 8.7e-03 Err: 8.7e-03 Err: 8.7e-03 Err: 8.5e-03 Err: 8.7e-03 Err: 1.1e-06 Err: 1.1e-06 Err ² : 1.9e-11 Err: 4.3e-08 Err: 6.1e-02 Err: 1.3e-02 Err: 1.3e-02 Err: 1.3e-02 Err: 1.3e-02 Err: 1.3e-02 Err: 1.6e-02 Err: 1.8e-02 Err: 2.0e-08	[+, ', '+]	$\mathrm{Err}: 1.7\mathrm{e} ext{-}03$	$\mathrm{Err}^2:1.4\mathrm{e} ext{-}10$	Err: 7.6e-09	$\mathrm{Err}^2:3.7\mathrm{e} ext{-}11$
Err: 8.7e-03 Err: 8.7e-03 Err: 8.5e-03 11] 70.32, 160.4, 115.39 70.32, 160.4, 115.39 Err: 1.1e-06 Err ² : 1.9e-11 Err: 4.3e-08 7] 21.44, 144.29, 173.47 41.24, 175.3, 126.62 Err: 1.3e-02 Err: 6.1e-02 Err: 1.3e-02 Err: 1.3e-02 9] 57.64, 171.15, 114.34 112.23, 129.17, 125.36 Err: 1.6e-02 Err ² : 8.5e-12 Err: 2.0e-08	[1 0 11]	28.31, 159.08, 120.72	28.33, 159.08, 120.75	255.0, 150.81, 101.75	28.31, 159.09, 120.73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1, 0, 11]	Err: 8.7e-03	Err: 8.7e-03	Err: 8.5e-03	Err: 8.7e-03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[3 0 11]	70.32, 160.4, 115.39	70.32, 160.4, 115.39	70.32, 160.4, 115.39	70.32, 160.4, 115.39
$ \begin{bmatrix} 21.44, 144.29, 173.47 & 41.24, 175.3, 126.62 & 255.0, 41.26, 127.12 \\ & Err: 6.1e-02 & Err: 1.3e-02 & Err: 1.3e-02 \\ & 57.64, 171.15, 114.34 & 112.23, 129.17, 125.36 \\ & Err: 1.6e-02 & Err^2: 8.5e-12 & Err: 2.0e-08 \\ \end{bmatrix} $	[9, 9, 11]	Err: 1.1e-06	$\mathrm{Err}^2:1.9\mathrm{e-}11$	$\mathrm{Err}:4.3\mathrm{e}\text{-}08$	$Err^2: 3.6e-12$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[3, 5, 7]	21.44, 144.29, 173.47	41.24, 175.3, 126.62	255.0, 41.26, 127.12	41.18, 175.46, 126.49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. / _ / _ 1	Err: 6.1e-0.2	$\mathrm{Err}: 1.3\mathrm{e} ext{-}02$	$\mathrm{Err}:1.3\mathrm{e} ext{-}02$	Err: 1.3e-0.2
	[3, 7, 9]	57.64, 171.15, 114.34 Err: $1.6e-02$	$112.23,129.17,125.36$ $\mathrm{Err}^2:8.5\mathrm{e} ext{-}12$	$112.23,\ 129.17,\ 125.36$ Err: $2.0e-08$	$112.23, 129.17, 125.36$ $Err^2: 3.7e-11$

Table 1.1 – Tableau récapitulatif des optimisations pour les 3 niveaux de gris

considérées s'avère utile pour rendre les optima moins sensibles aux perturbations éventuelles qu'il y a sur les données (bruit, marge d'erreur de segmentation manuelle, etc ...).

On peut de plus remarquer que selon les images choisies et selon les algorithmes choisis les résultats sont assez variables. Les moyennes des optima trouvés selon l'algorithme sont présentés sur la dernière ligne de la Table 1.1. Seul l'algorithme SLSQP se démarque des autres qui ont une valeur moyenne de τ_P non seulement proche de τ_S - ce qui ne facilite pas du tout le contraste du tissu proliférant avec le tissu sain - mais aussi supérieur à τ_S alors qu'on s'attendrait plutôt à l'inverse... De plus, des images ont été reconstituées avec des valeurs de τ_S aux alentours de 140 et 150. Il apparaît que la couleur du tissu sain n'est pas bonne : il est beaucoup trop foncé.

Pour expliquer l'erreur commise sur τ_S , on aurait pu penser à une large variabilité permise sur ce paramètre dûe à la présence très minoritaire de tissu sain dans la tumeur. Ainsi τ_S serait très peu influent dans le calcul de l'erreur (1.4). Cependant après avoir examiné de plus près les valeurs des intégrales de l'équation (1.1), il y a toujours au moins 10% de cellules saines. La plupart du temps, elles sont réparties sur le pourtour de la tumeur, dans la zone de transition sur laquelle il y a un mélange de tissu sain et de tissu tumoral. Ceci écarte donc l'hypothèse avancée. On pourrait alors avancer des variations dans les données (bruit dans les images, erreur sur le contourage, variation du temps d'acquisition du scanner qui impacte sur les niveaux de gris, ...) pour justifier cela, mais les impacts sont difficiles à mesurer. Il n'en reste pas moins que le niveau de gris τ_S est mal estimé. Pour palier à cela, nous allons le fixer dans la section suivante.

On note également que la combinaison [1, 9, 11] ne semble pas pertinente pour calculer les niveaux de gris puisque les optima tendent vers les bornes autorisées ([0, 255]).

1.3 Optimisation sur 2 paramètres, τ_S fixé

Pour essayer de palier aux problèmes rencontrés dans la section précédentes, nous allons fixer τ_S à une valeur de 197 (sur l'échelle des niveaux de gris de 0 à 255). Cette valeur a été fixée en réalisant un contourage d'une zone en tissu sain dans OsiriX (cf. Figure ??). La moyenne de ce contourage est de 134.5 HU. Le niveau de gris étant échelonné linéairement entre -135 et 215, on peut ainsi faire correspondre cette quantité en HU à un niveau de gris compris entre 0 et 255 (cf. Figure ??). Ainsi, selon l'échelle considérée ici, 134.5 HU équivaut à un gris de 77% soit un gris de niveau 197.

L'ensemble des résultats d'optimisation de τ_N et de τ_P avec τ_S fixé à 197 est fourni dans la Table ??. Ici les niveaux de gris moyen fournis sont conformes aux attentes dans le sens où l'on a $\tau_N < \tau_P < \tau_S$.

Titre figure ?? à revoir ...

```
-135 -100 -65 -30
                         40
                             75
                                 110 145 180 215
                                                    HU
      0.1
               0,3 0,4 0,5 0,6 0,7
          0.2
                                      0.8
                                          0.9
                                                    \% gris
                   103 128 154 179 205 230 255
       26
           51
                7,7
                                                    niveaux de gris
```

FIGURE 1.1 – Correspondance des niveaux de gris

FIGURE 1.2 – Contourage d'une zone saine réalisée à l'aide du logicielle OsiriX – Moyenne de la valeur des pixels dans ce périmètre : $134.5~{\rm HU}$ (avec une échelle HU de -135 à 215).

Scanners		Algorithme	d'optimisation	
choisis pour	SLSQP	GC	Neldear-Mead	BFGS
l'optimisation	$ au_N, au_P$	$ au_N, \qquad au_P$	$ au_N, \qquad au_P$	$ \hspace{.05cm} au_N, \hspace{.05cm} au_P \hspace{.05cm} $
[1 9]	38.64, 145.56	38.64, 145.56	38.64, 145.56	38.64, 145.56
[1, 2]	Err : 8.0e-07	$Err^2 : 2.7e-11$	Err: 8.6e-08	$Err^2: 3.4e-11$
[1 0 0]	33.65, 145.78	33.6, 145.8	33.63, 145.79	33.67, 145.78
[1, 2, 3]	Err : 1.3e-02	Err : 1.3e-02	Err : 1.3e-02	Err : 1.3e-02
[1 9 9 4]	27.62, 145.69	26.63, 146.05	26.53, 146.08	26.51, 146.08
[1, 2, 3, 4]	Err: 3.2e-02	Err: 3.2e-02	Err: 3.2e-02	Err: 3.2e-02
[1 9 9 4 5]	25.93, 144.01	19.97, 146.34	19.82, 146.4	19.77, 146.42
[1, 2, 3, 4, 5]	Err : 5.1e-02	Err: 4.9e-02	Err: 4.9e-02	Err: 4.9e-02
[1, 3]	27.72, 146.09	27.42, 146.12	27.72, 146.09	27.72, 146.09
[1, 0]	Err : 5.5e-07	$Err^2 : 5.3e-04$	Err : 1.9e-08	$Err^2 : 2.3e-11$
[1, 5]	0.0, 146.31	-0.33, 146.4	0.0, 146.41	2.55, 150.67
[1, 0]	Err : 1.5e-02	$Err^2 : 1.1e + 06$	Err : 1.5e-02	$Err^2: 3.7e-02$
[1, 3, 5]	27.55, 142.69	12.47, 146.8	12.35, 146.84	12.34, 146.84
[1, 0, 0]	Err : 5.0e-02	Err: 4.2e-02	Err: 4.2e-02	Err: 4.2e-02
[1, 3, 7]	25.43, 138.48	-0.08, 145.05	0.0, 145.25	0.02, 149.99
[1, 0, 1]	Err : 1.5e-01	$Err^2 : 5.8e + 04$	Err : 1.3e-01	$Err^2 : 1.4e-01$
[2, 3]	25.49, 150.89	31.85, 146.9	255.0, 6.31	226.63, 22.8
[2, 9]	Err : 1.9e-02	$Err^1 : 1.9e-02$	Err: 1.4e-02	$Err^2 : 1.6e-02$
[2, 3, 4]	23.64, 147.84	32.94, 142.01	255.0, 2.76	220.28, 27.1
[2, 3, 4]	Err: 4.4e-02	$Err^1 : 4.3e-02$	Err : 3.6e-02	$Err^2 : 4.0e-02$
[2, 3, 5]	22.75, 146.5	27.06, 143.79	255.0, 0.39	223.15, 18.18
[2, 5, 5]	Err: 6.9e-02	$Err^1 : 6.9e-02$	Err: 6.6e-02	$Err^2: 6.7e-02$
[1, 2, 5]	28.23, 144.23	20.87, 146.33	20.71, 146.38	20.68, 146.39
[1, 2, 0]	Err : 5.6e-02	Err : 5.4e-02	Err : 5.4e-02	Err: 5.4e-02
[1, 2, 7]	26.24, 140.32	0.83, 147.14	0.41, 147.25	0.22, 147.3
[1, 2, 1]	Err : 1.5e-01	Err: 1.4e-01	Err: 1.4e-01	Err: 1.4e-01
[1, 2, 9]	28.58, 134.69	34.13, 133.49	35.21, 133.25	35.33, 133.23
[1, 2, 0]	Err: 2.9e-01	Err: 2.9e-01	Err: 2.9e-01	Err: 2.9e-01
[1, 7, 11]	0.0, 139.22	0.3, 139.4	0.0, 139.65	0.11, 131.97
[-, -,]	Err: 1.1e-01	$Err^2 : 1.1e-01$	Err: 1.0e-01	$Err^2 : 1.2e-01$
[1, 9, 11]	31.17, 131.88	-0.01, 134.01	0.0, 134.11	2.14, 140.56
$[1, \vartheta, 11]$	Err: 2.7e-01	$Err^2: 3.3e+02$	Err: 2.6e-01	$Err^2 : 2.7e-01$
[3, 9, 11]	26.19, 124.95	44.64, 120.53	45.75, 120.26	46.21, 120.17
[-,-,-]	Err: 3.3e-01	Err: 3.3e-01	Err: 3.3e-01	Err: 3.3e-01
[3, 5, 7]	13.92, 132.24	14.03, 132.18	225.52, 0.0	13.91, 132.23
[/ - / -]	Err: 1.9e-01	Err: 1.9e-01	Err: 1.9e-01	Err: 1.9e-01
[3, 7, 9]	206.89, 0.0	207.26, 0.1	217.26, -0.0	148.92, 3.07
[,,,,-]	Err: 3.0e-01	$Err^2 : 3.0e-01$	Err: 3.0e-01	$Err^2 : 4.1e-01$
Moyenne:	33.66, 134.07	30.12, 134.42	77.29, 105.2	57.83, 115.81

Table 1.2 – Tableau récapitulatif des optimisations réalisées sur 2 niveaux de gris, τ_S fixé à 197.

Scanners		Algorithme	d'optimisation	
choisis pour	SLSQP	GC	Neldear-Mead	BFGS
l'optimisation	$ au_N, au_P$	$ au_N, \qquad au_P$	$ au_N, au_P $	$\mid au_N, au_P \mid$
[1 9]	38.64, 145.56	38.64, 145.56	38.64, 145.56	38.64, 145.56
[1, 2]	Err : 8.0e-07	$Err^2 : 2.7e-11$	Err: 8.6e-08	$Err^2: 3.4e-11$
[1 0 9]	33.65, 145.78	33.6, 145.8	33.63, 145.79	33.67, 145.78
[1, 2, 3]	Err : 1.3e-02	Err : 1.3e-02	Err : 1.3e-02	Err: 1.3e-02
[1, 2, 3, 4]	27.62, 145.69	26.63, 146.05	26.53, 146.08	26.51, 146.08
[1, 2, 3, 4]	Err : 3.2e-02	Err: 3.2e-02	Err : 3.2e-02	Err : 3.2e-02
[1, 2, 3, 4, 5]	25.93, 144.01	19.97, 146.34	19.82, 146.4	19.77, 146.42
[1, 2, 3, 4, 5]	Err : 5.1e-02	Err: 4.9e-02	Err: 4.9e-02	Err: 4.9e-02
[1, 3]	27.72, 146.09	27.42, 146.12	27.72, 146.09	27.72, 146.09
[1, 0]	Err : 5.5e-07	$Err^2 : 5.3e-04$	Err : 1.9e-08	$Err^2 : 2.3e-11$
[1, 5]	1.5, 146.06	1.19, 146.15	1.5, 146.19	2.55, 150.67
[1, 0]	Err : 1.7e-02	$Err^2: 7.8e+01$	Err : 1.7e-02	$Err^2: 3.7e-02$
[1, 3, 5]	27.55, 142.69	12.47, 146.8	12.35, 146.84	12.34, 146.84
[1, 0, 0]	Err : 5.0e-02	Err: 4.2e-02	Err: 4.2e-02	Err : 4.2e-02
[1, 3, 7]	25.43, 138.48	1.48, 144.66	1.5, 144.88	1.88, 149.71
[1, 0, 1]	Err : 1.5e-01	$Err^2: 4.8e+00$	Err : 1.3e-01	$Err^2 : 1.4e-01$
[2, 3]	25.49, 150.89	31.85, 146.9	253.5, 7.25	243.58, 12.08
[2, 0]	Err : 1.9e-02	$Err^1 : 1.9e-02$	Err : 1.4e-02	$Err^2 : 1.6e-02$
[2, 3, 4]	23.64, 147.84	32.94, 142.01	253.5, 3.7	251.64, 7.61
[2, 5, 4]	Err: 4.4e-02	$Err^1 : 4.3e-02$	Err : 3.6e-02	$Err^2 : 4.0e-02$
[2, 3, 5]	22.75, 146.5	27.06, 143.79	253.3, 1.5	223.15, 18.18
[2, 0, 0]	Err : 6.9e-02	$Err^1 : 6.9e-02$	Err: 6.6e-02	$Err^2 : 6.7e-02$
[1, 2, 5]	28.23, 144.23	20.87, 146.33	20.71, 146.38	20.68, 146.39
[1, 2, 0]	Err: 5.6e-02	Err : 5.4e-02	Err : 5.4e-02	Err: 5.4e-02
[1, 2, 7]	26.24, 140.32	1.51, 146.96	1.5, 146.99	1.51, 149.19
[+, -, •]	Err: 1.5e-01	$Err^2 : 1.4e-01$	Err: 1.4e-01	$Err^2 : 1.4e-01$
[1, 2, 9]	28.58, 134.69	34.13, 133.49	35.21, 133.25	35.33, 133.23
[-, -, -]	Err: 2.9e-01	Err: 2.9e-01	Err: 2.9e-01	Err: 2.9e-01
[1, 7, 11]	1.5, 139.07	1.37, 139.29	1.5, 139.51	6.14, 132.04
[, , , ,]	Err: 1.1e-01	$Err^2: 3.3e+01$	Err: 1.1e-01	$Err^2 : 1.2e-01$
[1, 9, 11]	31.17, 131.88	1.53, 133.91	1.5, 134.01	2.14, 140.56
L / / J	Err: 2.7e-01	$Err^2: 2.6e-01$	Err: 2.6e-01	$Err^2: 2.7e-01$
[3, 9, 11]	26.19, 124.95	44.64, 120.53	45.75, 120.26	46.21, 120.17
L , , , ,	Err: 3.3e-01	Err: 3.3e-01	Err: 3.3e-01	Err: 3.3e-01
[3, 5, 7]	13.92, 132.24	14.03, 132.18	223.42, 1.5	13.91, 132.23
	Err: 1.9e-01	Err: 1.9e-01	Err: 1.9e-01	Err: 1.9e-01
[3, 7, 9]	204.16, 1.5	204.67, 1.53	214.72, 1.5	144.11, 4.46
L / / J	Err: 3.0e-01	$Err^2 : 3.0e-01$	Err: 3.0e-01	$Err^2 : 4.2e-01$
Moyenne:	33.68, 134.13	30.31, 134.44	77.17, 105.46	60.6, 114.38

Table 1.3 – Tableau récapitulatif des optimisations réalisées sur 2 niveaux de gris, τ_S fixé à 197, avec pénalisation quadratique (??).

CHAPITRE 1. OPTIMISATION DE LA RECONSTRUCTION D'IMAGE SCANNER8

Scanners		Algorithme	d'optimisation	
choisis pour	SLSQP	GC	Neldear-Mead	BFGS
l'optimisation	$ au_N, au_P$	$ au_N, au_P$	$ au_N, au_P$	$ au_N, au_P$
	38.64, 145.56	38.64, 145.56	38.64, 145.56	38.64, 145.56
[1, 2]	Err: 8.0e-07	$Err^2 : 2.7e-11$	Err: 8.6e-08	$Err^2: 3.4e-11$
[1 9 9]	33.65, 145.78	33.6, 145.8	33.63, 145.79	33.67, 145.78
[1, 2, 3]	Err : 1.3e-02	Err : 1.3e-02	Err: 1.3e-02	Err : 1.3e-02
[1, 2, 3, 4]	27.62, 145.69	26.63, 146.05	26.53, 146.08	26.51, 146.08
[1, 2, 0, 4]	Err: 3.2e-02	Err: 3.2e-02	Err: 3.2e-02	Err: 3.2e-02
[1, 2, 3, 4, 5]	25.93, 144.01	19.97, 146.34	19.82, 146.4	19.77, 146.42
[-, -, -, -, -]	Err: 5.1e-02	Err: 4.9e-02	Err: 4.9e-02	Err: 4.9e-02
[1, 3]	27.72, 146.09	27.42, 146.12	27.72, 146.09	27.72, 146.09
. , ,	Err: 5.5e-07	Err ² : 5.3e-04	Err: 1.9e-08	$Err^2: 2.3e-11$
[1, 5]	1.5, 146.06	$1.19, 146.15$ $Err^2: 4.9e-01$	1.5, 146.19	1.5, 146.19
	Err: 1.7e-02 27.55, 142.69	12.47, 146.8	Err: 1.7e-02 12.35, 146.84	Err: 1.7e-02 12.34, 146.84
[1, 3, 5]	Err: 5.0e-02	Err: 4.2e-02	Err: 4.2e-02	Err: 4.2e-02
	25.43, 138.48	1.48, 144.66	1.5, 144.88	1.5, 144.88
[1, 3, 7]	Err: 1.5e-01	$Err^2 : 1.3e-01$	Err : 1.3e-01	Err: 1.3e-01
fa a2	25.49, 150.89	31.85, 146.9	253.5, 7.25	250.64, 7.62
[2, 3]	Err: 1.9e-02	$Err^1 : 1.9e-02$	Err: 1.4e-02	$Err^2 : 1.6e-02$
[0, 0, 4]	23.64, 147.84	32.94, 142.01	253.5, 3.7	219.06, 27.85
[2, 3, 4]	Err: 4.4e-02	$Err^{1}: 4.3e-02$	Err: 3.6e-02	$Err^2: 4.0e-02$
[0, 2, 7]	22.75, 146.5	27.06, 143.79	253.3, 1.5	223.15, 18.18
[2, 3, 5]	Err: 6.9e-02	$Err^{1}: 6.9e-02$	Err: 6.6e-02	$Err^2 : 6.7e-02$
[2, 3, 4, 5]	21.9, 145.05	27.6, 141.48	250.96, 1.5	218.18, 24.41
[2, 3, 4, 3]	Err: 6.5e-02	$Err^{1}: 6.5e-02$	Err: 6.0e-02	$Err^2 : 6.3e-02$
[1, 2, 5]	28.23, 144.23	20.87, 146.33	20.71, 146.38	20.68, 146.39
[1, 2, 0]	Err: 5.6e-02	Err: 5.4e-02	Err: 5.4e-02	Err : 5.4e-02
[1, 2, 3, 4]	27.62, 145.69	26.63, 146.05	26.53, 146.08	26.51, 146.08
[/ / -/]	Err: 3.2e-02	Err: 3.2e-02	Err: 3.2e-02	Err: 3.2e-02
[1, 2, 3, 5]	27.26, 144.83	23.32, 146.22	23.17, 146.27	23.16, 146.27
	Err: 5.0e-02 25.65, 141.8	Err: 5.0e-02 11.26, 146.64	Err: 5.0e-02 10.86, 146.77	Err: 5.0e-02 10.78, 146.81
[1, 2, 3, 7]	Err: 1.3e-01	Err: 1.3e-01	Err: 1.3e-01	Err: 1.3e-01
	28.58, 134.69	34.13, 133.49	35.21, 133.25	35.33, 133.23
[1, 2, 9]	Err : 2.9e-01	Err : 2.9e-01	Err : 2.9e-01	Err : 2.9e-01
[4 = 44]	1.5, 139.48	1.37, 139.29	1.5, 139.5	6.14, 132.04
[1, 7, 11]	Err: 1.1e-01	$Err^2 : 1.9e-01$	Err: 1.1e-01	$Err^2 : 1.2e-01$
[1 0 11]	31.17, 131.88	1.5, 134.0	1.5, 134.01	2.14, 140.56
[1, 9, 11]	Err: 2.7e-01	Err: 2.6e-01	Err : 2.6e-01	$Err^2 : 2.7e-01$
[1, 2, 7, 11]	28.41, 138.98	6.75, 143.27	6.3, 143.36	6.13, 143.4
[1, 2, 1, 11]	Err: 1.3e-01	Err: 1.2e-01	Err: 1.2e-01	Err: 1.2e-01
[1, 2, 9, 11]	30.05, 135.21	31.71, 134.94	32.86, 134.75	33.07, 134.76
[, , -,]	Err: 2.4e-01	Err: 2.4e-01	Err: 2.4e-01	Err: 2.4e-01
[1, 3, 7, 11]	27.94, 137.75	1.44, 142.73	1.5, 142.8	1.5, 142.8
,	Err: 1.2e-01	$Err^2 : 1.3e-01$	Err: 1.1e-01	Err: 1.1e-01
[1, 3, 9, 11]	29.62, 133.93 Err : 2.5e-01	19.26, 135.52 Err : 2.5e-01	17.99, 135.72 Err: 2.5e-01	17.55, 135.83 Err: 2.5e-01
	26.19, 124.95	44.64, 120.53	45.75, 120.26	46.21, 120.17
[3, 9, 11]	Err: 3.3e-01	Err: 3.3e-01	Err: 3.3e-01	Err: 3.3e-01
[0]	13.92, 132.24	14.03, 132.18	223.42, 1.5	13.91, 132.23
[3, 5, 7]	Err : 1.9e-01	Err: 1.9e-01	Err : 1.9e-01	Err: 1.9e-01
[2 7 0]	214.69, 1.5	212.1, 1.5	214.72, 1.5	214.77, 1.5
[3, 7, 9]	Err: 3.0e-01	$Err^2: 3.0e-01$	Err: 3.0e-01	Err: 3.0e-01
[1 2 5 7]	23.41, 137.16	1.33, 144.12	1.5, 144.36	3.0, 148.52
[1, 3, 5, 7]	Err: 1.4e-01	$Err^2 : 2.7e-01$	Err: 1.2e-01	$Err^2 : 1.3e-01$
[1, 3, 7, 9]	23.32, 127.71	1.46, 133.22	1.5, 133.39	1.5, 133.39
[1, 0, 1, 0]	Err: 3.2e-01	$Err^2 : 3.2e-01$	Err: 3.1e-01	Err: 3.1e-01
Moyenne:	31.76, 135.6	26.17, 136.49	65.64, 111.85	54.82, 118.92
1.10, 511110 .	315, 190.0		1 00.01, 111.00	01.02, 110.02

Table 1.4 – Tableau récapitulatif des optimisations réalisées sur 2 niveaux de gris, τ_S fixé à 197, avec pénalisation quadratique régularisée.

FIGURE 1.3 – Pénalisation via une parabole tronquée (cf. Eq. (??)).

Il reste un petit bémol : on notera que dans certaines configurations, les algorithmes tendent vers un jeu de paramètres optimal qui s'approche du bord 0 ou du bord 255, voire même qui est négatif (i.e. non convergence de l'algorithme d'optimisation). Ce phénomène peut être dû notamment au fait que la pénalisation choisie (1.5) présente une discontinuité. Les algorithmes de descente fonctionnant sur une approximation du gradient peuvent ainsi être perturbé par cette discontinuité. Essayons alors une autre pénalisation :

$$\mathcal{P}(\tau) = \left[\left(E(\tau) - 127.5 \right)^2 - 126^2 \right]^+, \tag{1.6}$$

où $[.]^+ = \max(0,.)$ désigne la partie positive et où $E(\tau)$ est la composante de τ la plus éloignée du centre de l'intervalle autorisé (127.5 milieu de [0;255]):

$$E(\tau) = \arg\max_{i=1,2,3} (|\tau_i - 127.5|). \tag{1.7}$$

L'aspect de cette pénalisation est présenté sur la Figure ??. Il s'agit d'une parabole dont on ignore la partie négative. Ici la pénalisation intervient sur un intervalle un peu plus court que [0;255], car de toute façon les valeurs de τ n'ont pas à s'approcher de ces bornes. Les résultats des optimisations faites avec la pénalisation (??) sont présenté dans la Table ??. Ici plus de valeur négative, cependant la borne 1.5 est atteinte à plusieurs reprises. La pénalisation considéré ici n'est que \mathcal{C}^0 car il y a 2 points anguleux. Peut-être que cette régularité n'est pas suffisante encore.

Essayons donc une troisième fonction de pénalisation qui est la régularisation de Moreau-Yosida de la pénalisation précédente.

Blabla sur la transformée de Moreau Yosida

FIGURE 1.4 – Pénalisation via la régularisation de Moreau-Yosida d'une parabole tronquée (cf. Eq. (??)).

La fonction de pénalisation régularisée est alors donnée par :

$$\mathcal{P}(\tau) = \begin{cases} 0 \text{ si } & E(\tau) - 127.5 \in [1.5; 253.5] \\ \frac{1}{2c} (126 - E(\tau))^2 \text{ si } & E(\tau) \in [-126(2c+1); -126[\cup]126; 126(2c+1)] \\ \frac{(E(\tau))^2}{1 + 2c} - 126^2 \text{ si } & 127.5 < \frac{E(\tau)}{2c+1} \\ & (1.8) \end{cases}$$

et est représentée sur la Figure ??. Les niveaux de gris optimaux obtenus avec cette pénalisation sont présentés dans la Table ??.

Visiblement rien ne semble y faire : il y a toujours des valeurs de τ_N qui s'approche de 0 et les cas où l'on considère les images [3,5,7] et [3,7,9] fournissent $\tau_N >> \tau_S$ ce qui est aberrant. En ce qui concerne l'aberration, cela peut venir du fait que les images 5,7 et 9 sont petites, et donc le bruit est très important et l'image numéro 3, de taille moyenne n'arrive pas à rattraper ce bruit. Il faut donc éviter de prendre en compte les images où la tumeur est trop petite, et si l'on en prend il faut que ces images soient minoritaires devant les autres.

formulation de la penalisation a revoir