Sistemas Distribuídos

Tendências, Enfoque no compartilhamento de recursos e Desafios

Tendências em Sistemas Distribuídos

- Tecnologia de redes pervasivas
- Computação móvel e ubíqua
- Serviços multimídia
- SD como um serviço público

Rede pervasiva

Internet moderna

- Recurso pervasivo
- Permite que usuários façam uso de serviços:
 WWW, e-mail e transferência de arquivos.
- ❖ O conj. de serviços é aberto adição de computadores servidores e novos tipos de serviço.
- Soluções práticas para os problemas de SD

Intranet

Computação móvel e ubíqua

Computação Móvel

- * Execução de tarefas enquanto o usuário está se deslocando.
- Miniaturização de dispositivos
- Interligação de redes sem fio
- Podem acessar a Internet, os recursos da intranet

Computação móvel e ubíqua

Computação Ubíqua

- Dispositivos computacionais pequenos e baratos presentes nos ambientes físicos dos usuários
- Acesso a serviços de computação em qualquer lugar.
- * Ex. controlar a máquina de lavar, geladeira, som de um único dispositivo de controle remoto.

Computação móvel e ubíqua

Sistemas multimídia distribuídos

- Capacidade suportar diversos tipos de mídia de maneira integrada.
- Diversas vantagens: TV ao vivo, vídeo sob demanda, bibliotecas de músicas, teleconferências, telefonia IP
- Webcasting
 - Suporte a uma variedade de formato de codificação e criptografia
 - Garantir a qualidade de serviço
 - Estratégia de gerenciamento de recursos
 - * Estratégia de adaptação em que QoS não pode ser mantida

Computação distribuída com serviço público

- Analogia entre os recursos distribuídos e outros serviços públicos
- Recursos físicos disponíveis
- Serviços de software
- Computação em nuvem: clusters

Computação em nuvem

Enfoque no compartilhamento de recursos

- Compartilhamento de hardware
- Compartilhamento de informações
- Acesso através de serviços
 - Clientes
 - * servidor

desafios

- Heterogenidade
- Sistemas abertos
- Segurança
- Escalabilidade
- Tratamento de falhas
- Concorrência
- Transparência

Heterogeneidade

- Variedade e diferença
- Internet: conj. heterogêneo de computadores em rede.
- *A heterogeneidade se aplica aos seguintes aspectos:
 - Rede
 - Hardware de computadores
 - Sistemas operacionais
 - Linguagens de programação
 - Implementações de diferentes desenvolvedores

Heterogeneidade

*****Rede

- Protocolos de internet mascara as diferenças
- Cada tipo de rede tem sua implementação dos protocolos de internet

*Hardware: exemplo tipos de dados

- *Representados de diversas maneiras em diferentes tipos de hardware.
- *Deve ser levado em consideração se programas trocam mensagens desses tipo.

Heterogeneidade

Sist. Operacionais

- Diferença nas interfaces de programação de aplicativos
- *As chamadas de troca de mensagens do Unix e do Windows são diferentes.

Linguagem de Programação

- Programas em diferentes linguagens podem se comunicar.
- Utilizar padrões comuns.

Heterogeneidade - middleware

- Camada de software que fornece uma abstração de programação.
- Solução do problema de heterogeneidade
- As diferenças são tratadas em nível de SO e HW
 - Corba, Java RMI e DCOM
- *Sua implementação oculta o fato de que as mensagens passam por uma rede.

Sistemas Abertos

- Novos serviços podem ser adicionados e disponibilizados.
- As interfaces devem ser publicadas
 - Requests for Comments (RFCs)
 - Documentos técnicos
- Mecanismo de comunicação uniforme
- Independência de fornecedores

Segurança

- Valor da informação.
- Nos SDs os clientes enviam pedidos para acessar dados de um servidor
 - Médico dados de pacientes
 - No comércio eletrônico e bancos num. do cartão
- Ocultar o conteúdo das mensagens mas também a identidade do usuário.
 - Solução: criptografia

Segurança

- Dois problemas ainda não foram resolvidos totalmente
 - * DoS
 - Segurança de código móvel. Exemplo recepção de um programa executável via e-mail.

Escalabilidade - desafios

Controlar o custo dos recursos físicos

- Demanda por recurso aumenta, amplia-se o sistema
- Evitar gargalos. P. Ex. adicionar servidores de arquivos
- * Parece ser óbvio, não é necessariamente fácil.
- Controlar a perda de desempenho
 - * Ex. DNS algoritmo hierárquicos para busca

Escalabilidade - desafios

- Impedir que os recursos de SW se esgotem
 - ❖ Ex. endereços IP (32 bits) (128 bits) implica em modificações de componentes de SW
- Evitar gargalos de desempenho
 - Em geral algortimos descentralizados. Ex.
 predecessor do DNS era arquivo central feito por download

Tratamento de falhas

- *Falha de HW ou SW podem causar resultados incorretos ou parar antes de ter concluído
- Em SDs as falhas são parciais
- O tratamento é particularmente difícil
 - ❖ Detecção de falhas soma de verificação
 - ❖ Mascaramento de falhas ocultação
 - ❖ Tolerância a falhas usuário decide
 - Recuperação de falhas
 - Redundância

Concorrência

- Vários pedidos processados concorrentemente
 - Recurso encapsulado threads
- Garantir que opere corretamente o recurso
 - Não assuma resultados inconsistentes
- Utilização de técnicas padrão
 - Semáforos

Transparência

- Transparência: ocultação do usuário final ou programador de aplicativos
 - Acesso: local ou remoto em operações idênticas
 - Localização: recurso acessados sem conhecimento de sua localização física
 - Concorrência: uso concorrente sem interferência do outro.
 - Replicação: aumentar a confiabilidade e o desempenho sem o conhecimento do usuário

Transparência

- Falhas: possibilidade de concluirem suas tarefas
- Mobilidade: movimentação de recursos sem afetar a operação
- Desempenho: reconfigurar o sistema a medida que as cargas variam.
- Escalabilidade: expansão sem alterar a estrutura ou algoritmos.

