Automatika

Klasszikus szabályozás elmélet

VIII.

Kompenzálás az eredő szakasz átmeneti függvénye alapján

Óbudai Egyetem

Dr. Neszveda József

Az átmeneti függvény elemzése

Méréssel felvett vagy mért értékekből identifikált esetben is alkalmazható.

 Meg kell állapítani, hogy az eredő szakasz arányos vagy integráló jellegű.

Tart-e egy új állandósult állapot felé vagy egyenletesen változik az amplitúdó.

 Meg kell állapítani az eredő szakasz közelítő modelljének az időállandóit.

Ez szerkesztéssel lehetséges.

Önbeálló eredő szakasz PI vagy PIDT1 kompenzálás

Európai struktúra

Önbeálló eredő szakasz

Önbeálló jelleg esetén a PI a leggyakrabban alkalmazott kompenzáló struktúra, sok és/vagy egymáshoz közeli időállandó esetén PIDT1. Nagyon-nagy holtidő esetén I.

A sok időállandót, a nagyobb látszólagos holtidő jelzi. Az integrál kritérium felhasználásával, analitikus optimum számítás módszerével, előre megadott célfüggvényhez lehet kompenzáló tag paramétereket keresni. Az eredményeket táblázatosan megadva kész a beállítási javaslat az üzembehelyező mérnökök számára.

A kompenzáló tag átviteli függvényei

PI

$$G_{C}(s) = G_{PI}(s) = K_{C} \left\{ 1 + \frac{1}{sT_{I}} \right\}$$

PIDT1

$$G_{C}(s) = G_{PIDT}(s) = K_{C} \left\{ 1 + \frac{1}{sT_{I}} + \frac{sT_{D}}{sT+1} \right\}$$

PIDT1 kompenzáló tag esetén négy változó van. Ennyi független paramétert nem tudunk kiolvasni az átmeneti függvényből, ezért a differenciáló egytárolós csatorna T időállandóját az A_D érték megválasztásával kell definiálni!

PI kompenzálás menete

- Ábrázolni kell a átmeneti függvényét.
- A válaszjel és a gerjesztő jel állandósult amplitúdó változásának aránya a K_P.
- Meg kell keresni az átmeneti függvény inflexiós pontját.
- Meg kell szerkeszteni az inflexiós ponton átfektetett érintő metszéspontjait az átmeneti függvény kiindulási és végértékeivel.
- A metszéspontok segítségével definiálható a látszólagos holtidő T_u és a látszólagos egytárolós tag T_g időállandói.

HPT1 model1

a zárt szabályozási kör átmeneti függvényéből

A mért értékekből szerkesztet paraméterek

A K_P, T_u és a T_g meghatározása

Az előbbi ábrák a Matlab programmal készültek. A Matlab program step parancsa, amit az ábrához használtunk úgy ábrázol, mintha a munkapontban lenne az origó és egységnyi a gerjesztő jel. A leolvasott $K_P = 0.72$.

A T_g és a T_u meghatározása szerkesztéssel elég pontatlan. Ha a mért értékeket Matlab programmal rajzoltatjuk ki, akkor a plot parancsot alkalmazhatjuk.

A Piwinger ajánlás:

Chien-Hrones-Reswick

	K _c	T _i	T _d
Р	$0.3 \frac{1}{K_p} \frac{T_g}{T_u}$		
PI	$0.3 \frac{1}{K_p} \frac{T_g}{T_u}$	$1.2T_g$	
PID	$0.6 \frac{1}{K_p} \frac{T_g}{T_u}$	T_{g}	$0.5T_u$

A paraméter optimalizálás kiindulási feltételei:

Az eredő szakasz ideális HPT1;

A célfüggvény leggyorsabb aperiodikus beállás alapjel követéskor; Az optimalizálás a négyzetes integrál kritérium alapján.

A K_C, és a T_I meghatározása

A leolvasott $K_P = 0.72$, $T_g = 10.6$ sec., és $T_u = 0.9$ sec. Az időállandók aránya 11.8, és így PI kompenzálás javasolt. Az előbbi táblázat felhasználásával:

$$K_C = 0.3 \frac{1}{K_p} \frac{T_g}{T_u} = 0.3 \frac{1}{0.72} \frac{10.6}{0.9} = 4.9$$

$$T_I = 1.2T_g = 1.2*10.6 = 12.7 \text{ sec.}$$

A PI kompenzáló tag:

$$G_{PI}(s) = K_C \left(1 + \frac{1}{sT_I} \right) = \frac{62.2s + 4.9}{12.7s}$$

A szabályozási kör átmeneti függvénye

Fontos: Ez nem optimális paraméter választás.

Chien-Hrones-Reswick

	K _c	T _i	T _d
Р	$0.7 \frac{1}{K_p} \frac{T_g}{T_u}$		
PI	$0.6 \frac{1}{K_p} \frac{T_g}{T_u}$	T_{g}	
PID	$0.95 \frac{1}{K_p} \frac{T_g}{T_u}$	1.35T _g	$0.47T_u$

A paraméter optimalizálás kiindulási feltételei:

Az eredő szakasz ideális HPT1;

A célfüggvény leggyorsabb aperiodikus, legfeljebb 20% túllövés; Az optimalizálás a négyzetes integrál kritérium alapján.

A K_C, és a T_I meghatározása

A leolvasott $K_P = 0.72$, $T_g = 10.6$ sec., és $T_u = 0.9$ sec. Az időállandók aránya 11.8, és így PI kompenzálás javasolt. Az előbbi táblázat felhasználásával:

$$K_C = 0.6 \frac{1}{K_p} \frac{T_g}{T_u} = 0.6 \frac{1}{0.72} \frac{10.6}{0.9} = 9.8$$

$$T_I = T_g = 10.6 \text{ sec.}$$

A PI kompenzáló tag:

$$G_{PI}(s) = K_C \left(1 + \frac{1}{sT_I} \right) = \frac{103.9s + 9.8}{10.6s}$$

A szabályozási kör átmeneti függvénye

Látható, hogy a szakasz közelítés miatt, nem teljesül a célfüggvény.

N darab egytárolós taggal (PTn) modellezés

Determination of system parameters

Az időállandók számának meghatározása						
N	1	2	3	4	5	6
$\frac{t_{10}}{t_{30}}$	0.30	0.48	0.58	0.63	0.87	0.70
$\frac{t_{10}}{t_{70}}$	0.09	0.22	0.31	0.37	0.42	0.45

$$\text{Időállandó} \quad T = \frac{T_1 + T_2}{2}$$

$\frac{t_{30}}{T_1}$	0.36	1.10	1.91	2.76	3.63	5.52
$\frac{t_{70}}{T_2}$	1.20	2.44	3.62	4.76	5.89	7.01

Az eredő szakasz átmeneti függvénye

Az n, és a T meghatározása

A leolvasott $t_{10}=1.95{\rm sec},\ t_{30}=4{\rm sec}.$, és $t_{70}=10.1{\rm sec}.$ A szakasz erősítés $K_{\rm p}=0.72$

$$\frac{t_{10}}{t_{30}} = \frac{1.95}{4} = 0.49$$

$$\frac{t_{10}}{t_{70}} = \frac{1.95}{10.1} = 0.19$$

A táblázat alapján legközelebb a PT2 közelítés van: n = 2.

$$T_1 = \frac{t_{30}}{1.1} = \frac{4}{1.1} = 3.64 \,\text{sec.}$$
 $T_2 = \frac{t_{70}}{2.44} = \frac{10.1}{2.44} = 4.14 \,\text{sec.}$ $T = \frac{T_1 + T_2}{2} = \frac{3.64 + 4.14}{2} = 3.9 \,\text{sec.}$

Javasolt paraméterek PTn modellhez

Leggyorsabb beállás, legfeljebb 20% túllövés, alapjel követés.

	Kc	Tı	T _D
P n=1	$\frac{20}{\mathrm{K_P}}$		
PI n=1	$\frac{3}{K_{P}}$	$\frac{\mathrm{T}}{2}$	
PI n=2,3	$\frac{1}{K_{P}}$	$\frac{2n}{n+2}T$	
PID n=4,5	$\frac{3}{K_{P}} \frac{n}{n+2}$	$\frac{2n}{n+1}T$	$\frac{\mathrm{T}}{5}$
l n=6		2nT	

Mivel n = 2, ezért PI.

$$K_C = \frac{1}{K_P} = \frac{1}{0.72} = 1.4$$
 $T_I = \frac{2n}{n+2}T = \frac{4}{4}3$

A szabályozási kör átmeneti függvénye

Összehasonlítva, ha nincs valódi holtidő a PTn modell jobb szakaszközelítést ad túllendülést megengedő esetben.

Integráló eredő szakasz P vagy PDT1 kompenzálás

Európai struktúra

Integráló eredő szakasz

Integráló jelleg esetén a P vagy ha kellően tiszta a válaszjel a PDT1 a leggyakrabban alkalmazott kompenzáló struktúra, de ez esetben alkalmazható a PIDT1 is.

Az integrál kritérium felhasználásával analitikus optimum számítás módszerével, előre megadott célfüggvényhez lehet kompenzáló tag paramétereket keresni. Az eredményeket táblázatosan megadva kész a beállítási javaslat az üzembehelyező mérnökök számára.

IT1 model1

Az eredő szakasz átmeneti függvényből

Friedlich javaslata IT1 szakaszokra

Típus	$K_{\mathbb{C}}$	T_{I}	T_{D}
Р			
PDT1			Tg
PIDT1		3.2Tg	0.8Tg

Az eredő szakasz ideális IT1;

A célfüggvény leggyorsabb aperiodikus, legfeljebb 20% túllövés; Az optimalizálás a négyzetes integrál kritérium alapján.

Az eredő szakasz átmeneti függvénye

A kompenzáló tag típusa és a T_I és T_g aránya között nincs kapcsolat.

A P, PDT1, és a PIDT1 kompenzáló tag paraméterei

P

Lehet más A_D érték is

PDT

PIDT
$$K_C = 0.4 \frac{T_I}{T_g} = 3.15$$
 $T_I = 3.2 T_g = 4 \sec$ $T_D = 0.8 T_g = 1 \sec$ $T = \frac{1}{9} T_g = 0.11 \sec$

A P kompenzálás eredménye

A maradó szabályozási eltérés 0; a szabályozási idő 11.4 sec.; a túllövés 6.1%

A PDT1 kompenzálás eredménye

A maradó szabályozási eltérés 0; a szabályozási idő 10.1 sec.; nincs túllövés.

A PIDT1 kompenzálás eredménye

Nagyon rossz. Célszerű a közelítő modell és a kompenzáló tag alkotta hurok átviteli függvény vizsgálatával ellenőrizni.

A PIDT1 és az eredő szakasz soros eredője ($G_0(s)$)

Látható, hogy a kompenzáló tag 3.15 értékű erősítését 5.6*3.15=17.4 értékűre növelve jobb fázistartalék értéket kapunk.

A PIDT1 új kompenzálás eredménye

Jobb, de nem jó értékek. Paraméter változás csak ront rajta. Kettes típusú egyhurkos szabályozási kört nem alkalmazunk.

A PDT1 kompenzálás javítása

A K_C az 2.8-szorosára növelhető csekély pm csökkenés mellett. A 85° fázistartalék majdnem mindig elég az aperiodikus beálláshoz!

A PDT1 kompenzálás javítása

Nincs maradó hiba és túllövés, és ötödére csökkent a szabályozási idő.