

Loss functions, optimizers and tricks to train a NN

Komal Teru Mila, McGill University

Topics to cover today

- Review of MLP
- More types of optimizers and loss functions
- Tricks to train an MLP

Key ingredients of ML pipeline

- <u>Data</u>: image, text, speech, graph etc.
- Model: MLP, CNN, RNN, etc.
- Loss function : MSE, cross-entropy, etc.
- Optimization algorithm (optimizer): SGD, Adam, Adagrad, etc.

Multi layer perceptron for regression

Data

$$X \in \mathbb{R}$$
 $Y \in \mathbb{R}$

$$D = (X, Y)$$

Multi layer perceptron for regression

$$h' = f(x_i w_i + b_i)$$
 $h' = f(x_i w_i + b_i)$
 $f' = f(x_i w_i + b_i)$

Loss function: mean squared error Optimizer: SGD

Multi layer perceptron for regression

Key points:

- The final layer doesn't have activation function. (why?)
- Bias is necessary to adjust any offset in the data.
- Activation function is necessary to fit to non-linear data.

SGD algorithm

Algorithm 1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ϵ_k .

Require: Initial parameter θ

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{h}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Apply update: $\theta \leftarrow \theta - \epsilon h$

Momentum method

Algorithm 1 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ϵ , momentum parameter α .

Require: Initial parameter θ , initial velocity v.

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{h}$

Apply update: $\theta \leftarrow \theta + v$

Adagrad algorithm

Algorithm 1 The AdaGrad algorithm

Require: Global learning rate ϵ

Require: Initial parameter θ

Require: Small constant δ , perhaps 10^{-7} , for numerical stability Initialize gradient accumulation variable r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$

with corresponding targets $\boldsymbol{y}^{(i)}$.

Compute gradient: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Accumulate squared gradient: $\mathbf{r} \leftarrow \mathbf{r} + \mathbf{h} \odot \mathbf{h}$ Compute update: $\Delta \boldsymbol{\theta} \leftarrow -\frac{\epsilon}{\delta + \sqrt{\mathbf{r}}} \odot \mathbf{h}$. (Division and square root applied

element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$

RMSProp method

Algorithm 1 The RMSProp algorithm

Require: Global learning rate ϵ , decay rate ρ .

Require: Initial parameter θ

Require: Small constant δ , usually 10^{-6} , used to stabilize division by small numbers.

Initialize accumulation variables r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.

Compute gradient: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Accumulate squared gradient: $r \leftarrow \rho r + (1 - \rho)h \odot h$

Compute parameter update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta + r}} \odot h$. $(\frac{1}{\sqrt{\delta + r}} \text{ applied elem-wise})$

Apply update: $\theta \leftarrow \theta + \Delta \theta$

Adam method

```
Algorithm 1 The Adam algorithm
Require: Step size \epsilon (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, \rho_1 and \rho_2 in [0,1).
   (Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant \delta used for numerical stabilization. (Suggestion: 10^{-8})
Require: Initial parameters \theta
   Initialize 1st and 2nd moment variables s = 0, r = 0
  Initialize time step t=0
  while stopping criterion not met do
      Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\}
      with corresponding targets y^{(i)}.
      Compute gradient: \boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
      t \leftarrow t + 1
      Update biased first moment estimate: s \leftarrow \rho_1 s + (1 - \rho_1) h
      Update biased second moment estimate: \mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{h} \odot \mathbf{h}
      Correct bias in first moment: \hat{s} \leftarrow \frac{s}{1-\rho_t^t}
      Correct bias in second moment: \hat{r} \leftarrow \frac{\hat{r}}{1-\rho_0^4}
      Compute update: \Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta} (operations applied element-wise)
      Apply update: \theta \leftarrow \theta + \Delta \theta
  end while
```

Xavier/Glorot Initialization

Initialization of weights is key to the training dynamics.

Xavier/Glorot Initialization

These initializations put you in a better position to start your optimization

Xavier uniform initialization

$$\Theta \sim \mathcal{U}(-\alpha, \alpha)$$

$$\alpha = \sqrt{\frac{6}{f_{in} + f_{out}}} \approx \sqrt{\frac{3}{f_{in}}}$$

Xavier normal initialization

$$\Theta = N(0, \sigma^2)$$

$$\sigma = \sqrt{\frac{2}{f_{in} + f_{ont}}} \approx \sqrt{\frac{1}{f_{in}}}$$

In class exercise

We feed a 4 dimensional data to a 1 hidden layer MLP with 30 nodes/perceptrons. The output has a dimension of 4. How many trainable parameters does the model have?

L2 Regularization

$$L(x,y) \equiv \sum_{i=1}^{n} (y_i - h_{\theta}(x_i))^2 + \lambda \sum_{i=1}^{n} \theta_i^2$$
weight penalty

L2 regularization limits the models capacity by limiting the range of values it's parameters can take.

Data

$$X_i \in \mathbb{R}$$
, $O_i \in \{0, 1, 2\}$
and $Y_{i-hop} \in \mathbb{B}^3$ where $\mathbb{B} = \{0, 1\}$

Eg: If
$$0_{i} = 0 \Rightarrow y_{i}^{i+d} = [1, 0, 0]$$

 $0_{i} = 1 \Rightarrow y_{i}^{i+d} = [0, 1, 0]$
 $0_{i} = 2 \Rightarrow y_{i}^{i+d} = [0, 0, 1]$

Model

Loss function: cross-entropy Optimizer: SGD

Softmax function

Ref: http://neuralnetworksanddeeplearning.com/chap3.html#softmax

Cross-entropy

$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} -\log \hat{y}(0i)$$

