

UNIT - III Artificial Intelligence

III / II CSE, R 16 - JNTUK

Dr. T. K. Rao VVIT

Dr. T. K. Rao - VVIT

Contents

Logic concepts:

- Propositional calculus
- Proportional logic
- Natural deduction system
- Axiomatic system
- Semantic tableau system in proportional logic
- Resolution refutation in proportional logic
- Predicate logic

Propositional Calculus

- A set of rules are used to combine simple propositions to form compound propositions
- Few logical operators are used, which are known as connectives
- E.g. not(~), and(∧), or(∀), implies(->), etc.
- A well formed formula is defined as a symbol or a string of symbols generated by the formal grammar of a formal language

Truth table

- A Truth Table is used to provide operational definitions of important logical operators
- The logical constants in PC are true and false,
 these are represented as T and F
- The truth values of well formed formulae are calculated by using the truth table approach

A	В	~A	AAB	AVB	$A \rightarrow B$	A +> B
T .	T	F	T	Т	T	η
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F.	T	F	F	T	T

Equivalence laws

- Equivalence laws are used to reduce or simplify given well formed formula
- Or to derive a new formula from the existing formula
- These laws can be verified using the truth table approach

Table 4.3 Equivalence Laws

Name of Relation	Equivalence Relations	
Commutative Law	$A \vee B \equiv B \vee A$ $A \wedge B \equiv B \wedge A$	
Associative Law	$A \lor (B \lor C) \cong (A \lor B) \lor C$ $A \land (B \land C) \cong (A \land B) \land C$	
Double Negation	-(-A)≡A	
Distributive Laws	$A \lor (B \land C) \cong (A \lor B) \land (A \lor C)$ $A \land (B \lor C) \cong (A \land B) \lor (A \land C)$	
De Morgan's Laws	$-(A \lor B) \cong -A \land -B$ $-(A \land B) \cong -A \lor -B$	

Table 4.3 (Contd.)

	P.L.
Name of Relation	Equivalence Relations
Absorption Laws	$A \vee (A \wedge B) \cong A$
	$A \wedge (A \vee B) \cong A$
	$A \vee (-A \wedge B) \cong A \vee B$
	$A \wedge (-A \vee B) \equiv A \wedge B$
Idempotence	$A \vee A \cong A$
	$A \wedge A \cong A$
Excluded Middle Law	$A \vee \neg A \cong T \text{ (True)}$
Contradiction Law	$A \wedge \neg A \equiv F \text{ (False)}$.
Commonly used equivalence relations	$A \vee F \equiv A$
	$A \lor T \cong T$
	$A \wedge T = A$
	$A \wedge F \cong F$
	$A \rightarrow B \equiv -A \vee B$
	$A \leftrightarrow B \equiv (A \to B) \land (B \to A)$
	$\cong (A \land B) \lor (\neg A \land \neg B)$

Proportional logic

- It deals with the validity, satisfiability (also known as consistency), and unsatisfiability of a formula and the derivation of a new formula using equivalence laws
- A formula α is said to be tautology iff the value of α is true for all its interpretations
- The validity, satisfiability, and unsatisfiability of a formula may be determined as follows:

- A formula α is said to be valid iff it is tautology
- A formula α is said to be satisfiable if there exists at least one interpretation for which α is true
- A formula α is said to be unsatisfiable if the value of α is false under all interpretations
- E.g. if it is humid then it will rain and since it is humid today it will rain

Solution:

- A: It is humid

- B: It will rain

• The formula α corresponding to the given sentence is α : $[(A->B)^A]->B$

A	В	$A \rightarrow B = (X)$	$X \Lambda A = (Y)$	$Y \rightarrow B$
T	T	T	- T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	P	1

- Truth table approach is easy for evaluating consistency, validity, etc. of a formula
- But the size of truth table grows exponentially
- If a formula contains n atoms, then the truth table will contain 2ⁿ entries
- Some other methods are concerned are:
 - Natural deduction system
 - Axiomatic system
 - Semantic tagleu method
 - Resolution refutation method

Natural deduction system

- It mimics the pattern of natural reasoning
- The system is based on a set of deductive inference rules
- Assuming that A_1 , A_2 ,... A_k , where 1<=k<=n, are set of atoms and α_j , where 1<=j<=m, and β are well formed formula
- The inference rules may be stated as in table

Table 4.6 NDS Rules Table

Rule Name	Symbol	Rule	Description
Introducing A	(I:Λ)	If A_1, \dots, A_n then $A_1 \wedge \dots \wedge A_n$	If $A_1,, A_n$ are true, then their conjunction $A_1 \wedge \wedge A_n$ is also true.
Eliminating A	(E:Λ)	If $A_1 \wedge \wedge A_n$ then $A_i (1 \le i \le n)$	If $A_1 \wedge \wedge A_n$ is true, then any A_i is also true.
Introducing V	(I:V)	If any A_i $(1 \le i \le n)$ then $A_1 \lor \lor A_n$	If any A_i $(1 \le i \le n)$ is true, then $A_1 \lor \lor A_n$ is also true.
Eliminating V	(E:V)	If $A_1 \vee \vee A_m, A_1 \rightarrow A$, , $A_n \rightarrow A$ then A	If $A_1 \vee \vee A_m A_1 \rightarrow A$, $A_2 \rightarrow A$,, and $A_n \rightarrow A$ are true, then A is true.
Introducing →	$(I: \rightarrow)$	If from $\alpha_1,, \alpha_n$ infer β is proved then $\alpha_1 \wedge \wedge \alpha_n \rightarrow \beta$ is proved	If given that $\alpha_1, \alpha_2,,$ and α_n are true and from these we deduce β then $\alpha_1 \wedge \wedge \alpha_n \to \beta$ is also true.

Table 4.6 (Contd.)

Rule Name	Symbol	Rule	Description
Eliminating →	(E: →)	If $A_1 \rightarrow A$, A_1 , then A	If $A_1 \rightarrow A$ and A_1 are true then A is also true. This is called <i>Modus Ponen</i> rule.
Introducing ↔	(1: ↔)	If $A_1 \rightarrow A_2$, $A_2 \rightarrow A_1$ then $A_1 \leftrightarrow A_2$	If $A_1 \rightarrow A_2$ and $A_2 \rightarrow A_1$ are true then $A_1 \leftrightarrow A_2$ is also true.
Elimination ↔	(<i>E</i> : ↔)	If $A_1 \leftrightarrow A_2$ then $A_1 \to A_2, A_2 \to A_1$	If $A_1 \leftrightarrow A_2$ is true then $A_1 \rightarrow A_2$ and $A_2 \rightarrow A_1$ are true
Introducing ~	Thomas Cimento and		If from A (which is true), a contradiction is proved then truth of ~A is also proved
Eliminating ~	(E: ~)	If from $\sim A$ infer $A_1 \land \sim A_1$ is proved then A is proved	If from -A, a contradiction is proved then truth of A is also proved

- A theorem in NDS written as, from $\alpha 1,...$ $\alpha 2$ infer β leads to the interpretation that β is deduced from a set of hypotheses $\{\alpha 1,...$ $\alpha 2\}$ are assumed to be true in a given context
- Therefore the theorem β is also true in the same context
- Thus we can conclude that β is consistent
- A theorem that is written as infer β implies that there are no hypotheses and β is true under all interpretations, i.e. β is a tautology

- E.g. prove that A \wedge (B $^{\vee}$ C) is deduced from A $^{\wedge}$ B
- Solution: The theorem in NDS can be written as from A^hB infer $A^h(B^hC)$ in NDS

Table 4.7 Proof of the Theorem for Example 4.3				
Description	Formula	Comments		
Theorem	from A A B infer A A (B V C)	To be proved		
Hypothesis (given)	ΑΛΒ	1		
E: Λ (1)	A	2		
E: Λ (1)	В	3		
I: V (3)	BVC	4		
I: Λ (2, 4)	AΛ(B V C)	Proved		

Axiomatic system

- It is based on a set of three axioms and one rule of deduction
- It is as powerful as Truth table & NDS approach
- In this, a guess is required in selection of appropriate axiom(s)
- In this, only two logical operators, not(~) and implication(->) are allowed to forma a formula
- Any formula can be written using the ~ and ->

- E.g.
 - $-A^{A}B \equiv (^{A}A^{A}B) \equiv (^{A}-^{B})$
 - $-A^{\vee}B \equiv {}^{\sim}A > B$
 - $A < -> B \equiv (A -> B)^{\land}(B -> A) \equiv \sim [(A -> B) -> \sim (B -> A)]$
- In axiomatic system, there are three axioms, which are always true(or valid), one rule is called Modus Ponen (MP) as follows:
 - Axiom1: A->(B->A)
 - Axiom2: [A->(B->C)]-> [(A->B)->(A->C)]
 - $Axiom3: (^A->^B)->(B->A)$