Álgebra Lineal Computacional - Segundo Parcial

Primer cuatrimestre de 2021 (6/7/2020)

Nombre y Apellido	1	2	3	Nota

Justificar todas las respuestas y escribir prolijo. Duración 4 horas.

- 1. Los puntos A, B, C y D del gráfico representan cuatro páginas de Internet. Las flechas indican los enlaces existentes en las páginas:
 - Desde la página A, hay enlaces a las páginas B, C y D.
 - Desde la página B, hay solo un enlace a la página A.
 - Desde la página C, hay enlaces a las páginas A, B y D.
 - Desde la página D, hay enlaces a las páginas A y C.

Cada minuto, los visitantes de una página pasan a otra página siguiendo alguno de los enlaces en la página en la que se encuentran. Pueden elegir cualquiera de los enlaces de la página con la misma probabilidad.

- (a) Escribir la matriz de transición P.
- (b) Si inicialmente hay 2700 visitantes en cada página, ¿cuántos visitantes habrá luego de 1 minuto en cada página? ¿Cuántos visitantes habrá luego de 3 minutos del momento inicial en cada página?
- (c) Indicar si el estado inicial $v_0 = (\frac{1}{2}, 0, \frac{1}{2}, 0)$ tiene estado límite y en tal caso calcularlo. Decidir si dado cualquier estado inicial v_0 habrá un estado límite.
- (d) Decidir si existe P^{∞} . Si existe, calcularla.
- 2. Dada una matriz A, notamos A=D+L+U, donde D es diagonal, L triangular inferior estricta y U triangular superior estricta.
 - (a) Probar que x es solución de Ax = b si y sólo si x satisface:

$$(I + \frac{1}{2}L)x = -(D - I + \frac{1}{2}L + U)x + b$$

(b) Considerar el método iterativo derivado de la formulación anterior:

$$x_{n+1} = Bx_n + c,$$

donde $B = -\left(I + \frac{1}{2}L\right)^{-1} \left(D - I + \frac{1}{2}L + U\right)$ y $c = \left(I + \frac{1}{2}L\right)^{-1}b$. Probar que λ es un autovalor de B si y sólo si λ es raíz de la ecuación:

$$\det\left(D - I + \frac{1}{2}L + U + \lambda\left(I + \frac{1}{2}L\right)\right) = 0.$$

(c) Sea:

$$A = \begin{pmatrix} 1 & a & 0 \\ a & 1 + a^2 & a \\ 0 & a & 1 \end{pmatrix}.$$

Probar que el método anterior converge si y sólo si |a| < 1.

- (d) Probar que para que el método de Jacobi converja se debe cumplir la misma condición. ¿Qué método es preferible para la matriz A?
- 3. En un estudio de una especie de roedores en peligro de extinción, se cuenta la cantidad de estos roedores que se detectan en un punto de observación a lo largo de 2 años, obteniéndose los valores que figuran en la tabla.

	0.		I								
y	200.	192.	170.	139.	105.	73.	47.	28.	15.	8.	4.

- (a) Hallar los valores de a, b y c que se obtienen al ajustar los datos con una función del tipo $f(x) = ax^2 + bx + c$ utilizando cuadrados mínimos. Calcular el error $E = \sum_i (y_i f(x_i))^2$.
- (b) Hallar los valores de k y d que se obtienen al ajustar los datos con una función del tipo $g(x) = ke^{dx^2}$ utilizando cuadrados mínimos. Calcular el error $E = \sum_i (y_i g(x_i))^2$.
- (c) A partir de los ajustes obtenidos, ¿cuántos roedores se podrían observar en t=0.3 según la estimación polinomial? ¿Cuántos roedores se podrían observar en t=0.3 según la estimación exponencial?
- (d) Graficar conjuntamente los datos y los dos ajustes.