Mariokart An autonomous go-kart

Henry Jenkins

Department of Computer and Electrical Engineering, University of Canterbury, Christchurch, New Zealand

September 26, 2011

Overview

The Original Goal

- Make department Go-kart drive autonomously
- Select actuators, motion and distance sensors
- Development of a navigation system
- Interface to the existing control system
- Have GO-kart drive itself around university

Our Goal

- Sub-goal of of drive-by-wire go-kart
- Make a robust platform for future projects

The Go-Kart

Hardware Layout

Block diagram of PCB

Hardware Layout PCB Block Diagram

Block diagram of PCB

Hardware Layout

How it all communicates

CAN Bus

- Inter-Board Communications
- Expandable if someone wants to add more nodes

USART

- Two on each Board
- One used for debugging

SPI

- Two on each Board
- One 5v level logic

USB

- Fast communication with computer

Conclusion

The end...

- All Hardware working
 - ► Only 3 minor mistakes on Boards
 - ► Nice hardware platform for future years
- Project almost stuck to time plan
 - Although we cut the goal down, we came close to achieving our stepping stone goal.
- Project well documented
 - ► Wiki for documentation
 - ▶ Group coding standard adhered to
- Most of all
 - ▶ I learnt a lot
 - ► Had a heap of fun

Project time line

Why use Atmel SAM7s

- Required Peripherals
 - ► CAN Controller
 - USB
- Familiarity
 - ► Have used SAM7s Before
 - ► Large Library for Atmel
- Expansible
 - ▶ Spare GPIO
 - ► Can do some signal processing

Board Design

Dreaming about Altium

- 1. Select major components
 - ► MCU
 - ► Voltage regulators
 - ▶ etc...
- 2. Select headers and connectors
- 3. layout schematics
 - Use sheets to modularise!
- 4. Connect sheets
- 5. Layout schematics

Main Schematic

