張委員廖萬堅、陳委員秀寶、吳委員思瑤等於 2020 年 3 月 18 日立法院第 10 屆第 1 會期教育及文化委員會第 4 次會議,就我國基礎研究預算比例過低之口頭質詢,科技部答復如下:

一、基礎科學研究的重要性

(一) 基礎研究是驅動創新的關鍵

基礎研究是未來新興技術的種子,是國家科研能量的基磐,亦是促進產業發展的動力,強化基礎研究有助於厚實國家未來競爭力。2016年,美國39位企業領袖聯合呼籲美國政府應重視基礎研究,認為政府對基礎研究的資助是對經濟繁榮、國家安全與人民福祉的投資(孫以翰,2019)¹。2018年諾貝爾經濟獎得主 Paul Romer 亦指出:「技術變革的發動,是植基於對知識資本(基礎研究)的投資,是由創意點子和創新所帶動的良性循環。」突顯基礎研究是創新的動力及應用研究的基石,雖然其不易立即產生經濟效益與商業利潤,卻是創造科技價值與驅動創新的關鍵。

(二) 基礎研究是許多國家的科研政策重點

正因前述的原因,重要的科研國家皆積極投入於基礎研究,透過基礎科研帶動關鍵技術發展,擁有技術自主的能力,讓自己能在國際競爭場域中取得競爭優勢。鄰近國家如日本,其在 2016 提出的「第五期科學技術基本計畫 (2016-2020)」中,將「強化基礎研究能力,提升科學技術創新實力」列為重要政策,並積極推動相關措施,包括:穩定科研活動的補助經費,推動財政資源多樣化,強化學研單位的合作網絡;鼓勵基礎研究的跨域合作,促進科學研究及發現;依據國家戰略強化基礎研究,加強政府機關與補助機構之合作及協調,促進資源有效運用。韓國在 2018 年提出的「第四次科學技術基本計畫 (2018-2022)」中,亦將推廣科學知識,加強支

¹孫以瀚(2019),基礎研究是政府對經濟實力的長期投資,科學人雜誌,204期, https://sa.ylib.com/MagArticle.aspx?Unit=featurearticles&id=4259。

持基礎學科,以及擴大投資基礎研究及研究人員,鼓勵自由探索型與原創性研究等措施列為重點。美國國家科學基金會(National Science Foundation, NSF)為鞏固美國在科學及工程之全球領導地位,並持續發掘新機會,在2017年針對未來科技計畫的補助重點公布10大構想,其中的「面向2026創新」,即鼓勵各界大膽投入創新及基礎研究問題,及鼓勵社群長期參與研究計畫,打破傳統科學框架及標準作業程序,確保在前沿及高風險領域持續進行探索。創新小國如荷蘭為提高科學影響力,在2014年發布「科學願景2025」,積極加強基礎研究與應用科學的鏈結,建立跨界合作環境,以及透過大學治理架構,推動各領域之基礎研究發展,並鼓勵區域聯盟,提高基礎研究的價值及應用性。從各國不但高度重視基礎科學研究,且均以具體行動積極推動的現象可以得知,基礎研究對國家長期的經濟與社會發展至關重要,因為藉由前端原創性研究的投入,才能讓後端產業在基礎科學研究成果的基礎上,進行技術發展與加值,從而帶動產業創新與升級轉型。

二、我國基礎科學研究投入現況

(一) 我國基礎科學預算佔比相對較低

臺灣為一小國,不僅沒有豐富的天然資源,市場規模亦極為有限,因此,要能在全球激烈競爭中勝出,依賴的就是人力資源,包括知識、技能與創意。然而,知識的創造與累積,乃至於基礎科研人才的培育,皆需長期深耕才能看到成果,基礎研究的原創性和多元性即是孕育創新的搖籃,除能有效促進知識基底 (knowledge base)的擴展,亦是創新生態系統能永續發展的源頭。然而,從 OECD的統計資料可以發現,我國整體基礎研究投入占全國研發經費比例,長年落後於多數先進國及主要競爭國家。圖 1 顯示,先進大國如美國,基礎科研佔總體研發經費約 17%~18%,創新小國如荷蘭與新加坡,這個比例更高,荷蘭近年皆在 26%~29%之間,新加坡則從17%一路提昇至 23.8%。鄰近的日本,則在 12%~14%左右,韓國亦

在 17%~18%之譜。反觀我國,近十年的基礎研究投入佔全國研發經費比例,自 2008 至 2012 年以前約佔 10.2%,2013 年以來均低於10%,2018 年更創下新低,僅 7.3%。若與其他國家 2017 年的資料相比,較瑞士 41.7%、荷蘭 25.1%、新加坡 23.8%等國明顯投入不足,甚至僅約韓國 2017 年時(14.5%)的一半。

圖 1 各國基礎科學經費占比 資料來源: OECD, 2020/02 擷取。國研院科政中心繪製。

科技生命週期越來越短,但研發經費從投入到產生效益的時間 不確定,必須要長期穩定挹注。但近年來,政府研發經費常受政治 環境變化、國家預算往往被國會統一刪減的影響,難以獲得穩定保 障。由於基礎研究不具立竿見影之效,基礎科研計畫是否能依照原訂規劃執行,往往須視研發經費充裕與否而定。當經費不足時,基礎科學研究計畫常無法持續,不僅造成科研能量與成果無法累積、高端研發設備與儀器無法維護而錯失前瞻科研發展先機外,亦將削減經濟再造之動能,此種發展趨勢不但不利於培育基礎科研人才,無法積累創新競爭能量,亦使產業無法進行轉型升級,未來更將造成國家長期競爭力逐漸衰退。

(二)我國基礎科研經費多來自政府預算

另一方面,我國歷年全國研發經費,來自企業的總金額與佔比 均逐年上升。就金額而言,企業部門的研發投入從 2009 年時的 2,565 億快速成長至 2018 年的 4,949 億,同時期政府的研發投入則 從 1,059 億增加至 1,157 億 (參見圖 2)。就比例來說,來自企業的 研發經費佔全國研發經費的比例近年已達約8成,其餘約2成則來 自政府部門(參見表 1)。另外,從研發活動來看,我國企業著重於 技術發展,占其總研發活動的8成,另外2成則投入應用研究,投 入基礎研究的比重相當低,不到1%(參見圖3)。從前述統計數據 可以看出,儘管我國企業每年的總研發經費以6%~7%的速度成長, 佔我國總研發經費的比例已從 2009 年的 69.9%提高到 2018 年的 80.3%,10年來上升了近10個百分點,但由於我國企業投入基礎 研究的比例相當低,故在基礎研究上,政府扮演相當重要的角色。 如若政府缺乏長期穩定甚至逐步提高經費來支持前沿科技研究和 科研人才培育,或是透過政策鼓勵企業共同投入具產業應用潛力的 基礎研發,長期下來我國自行研發的能力必將受到影響。台灣位居 全球高階 IT 與 IC 製造與服務業之中心位置,擁有完整的 ICT 產 業價值鏈及產業群聚,具備完整服務體系之 IC 產業生態系。為使 既有優勢產業能在未來人工智慧發展趨勢下能持續在全球領先,並 在國際供應鏈中扮演不可或缺的角色,有必要積極掌握關鍵核心技 術以及自行發展先進高端技術,而基礎研究即是獲取關鍵核心技術

的重要管道。

圖 2 近十年我國政府與企業的研發投入經費(單位:新台幣億元) 資料來源:2019 年版科學技術統計要覽;國研院科政中心繪製

表 1 我國近年研發經費之來源佔比(單位:%)

	2014	2015	2016	2017	2018
企業部門	77.0	77.7	77.6	79.2	80.3
政府部門	21.9	21.2	21.4	19.8	18.8
高教部門	0.8	0.8	0.7	0.7	0.7
私人非營利部門	0.1	0.1	0.1	0.1	0.1
國外	0.2	0.2	0.2	0.2	0.1
總計	100.0	100.0	100.0	100.0	100.0

資料來源:2019年版科學技術統計要覽,國研院科政中心整理

圖 3 我國企業部門各類研發活動佔比(單位:%)

資料來源:2019 年版科學技術統計要覽

三、未來基礎科研發展策略

(一)基礎研究的發展目標與作法

科技發展日新月異,為掌握新興關鍵技術,基礎研究對一國長期的發展至關重要,藉由前端原創性研究的投入,讓後端產業發展技術能進行加值,才能有效帶動產業創新與升級轉型。但如同前述,基礎科研需要足夠且長期穩定的經費支持,加上我國基礎科研經費比例落後於許多先進與競爭國家,因此基礎研究的研發經費應逐年有一定的成長比例,以維持甚至增強我國創新的動能。希望能在未來10年內,在兼顧各學門領域發展平衡的前提下,將我國基礎科研經費佔比提升至日韓現階段的水準(約13.8%²),經費約以每年6%~7%的速度增加。同時,在選取研究課題時,將以前瞻思維預想未來社會面臨的問題和需求,並藉由掌握國內外的科技脈動和趨勢發展,盤點我國科研創新成果、產業聚落發展概況等,從市場需求面了解未來需求變化,透過整合產官學研民的視角與觀點,從中聚焦我國具備潛力的科研發展領域。同時從「以人為本、化研為用」

² 基礎科研佔比目標採日韓 2017 年佔比之平均值。

的思維鼓勵學科多樣性發展,佐以環境永續與人文關懷精神,投入 突破性研究,不受既有框架限制,培養研究人員大膽嘗試、勇於創 新的精神,容忍失敗可能性,並尊重學術社群之專業自主性,秉持 「科研為創新之本」、「創新為國家前途所繫」的信念,發展基礎研究。

(二) 長期策略性支持基礎研究之預期效益

1. 提升技術自主能力

透過長期且策略性的支持基礎研究,將科研經費投入於關鍵技術與前沿技術的發展,擴大自身的知識基底,其目的除了使我國既有優勢產業能持續在全球獨占鰲頭,以及在國際供應鏈中扮演不可或缺的角色外,更重要的目標是要帶動國內技術的生根與發展,使我國長期存在高技術貿易逆差的現象能有效改善,讓我國具備自行研發重要核心技術的能力,才能超越現有為他國大廠作嫁的代工生產模式,讓經濟與產業發展能隨需求變化進行轉型調整,進一步提升我國優質人才的專業知識與創造價值的能力,為下一波經濟轉型動能提前扎下根基。

2. 導引企業研發經費投入基礎研究

藉由基礎研究投入所帶動的知識外溢,可望提高我國企業參與基礎研究意願,使企業研發經費可部分導引至基礎研究,透過公私部門以及國際研發的合作,共同進行產業共通核心技術的研發,加速科研成果轉化,並對產業發展有所貢獻。同時協助孕育未來我國各領域所需的高質量高階人才,同時完善創新生態體系,活絡創新活動和創新商業模式的發展,以有效吸引國外資金和人才的投入,讓我國成為國際和區域間重要的產業與人才聚落。

3. 強化對複雜問題分析的能力,成為全球合作夥伴

複雜的社會議題,往往需要結合跨領域知識才能找到解決方案,

而強化各領域自身知識能量,乃是促進跨域合作的根基。因此,有 效維持穩定及獨立編列的基礎科研經費,並兼顧各學門領域平衡發 展,設計激勵機制來鼓勵與培養跨領域研究團隊和研究人員,可以 刺激新研究方法與新工具的發展、強化對複雜問題分析的能力與新 政策與法案的研擬,提升對國內特殊性議題的解決能力,使基礎研 究能有效回應社會的各種挑戰。同時,亦可提昇我國科研實力與論 文影響力,提高國家科研的全球競爭力,使我國成為具備吸引力的 合作夥伴,與世界各國共同解決區域甚至全球的問題。