Lab3: recursion and Array test

1) Lab3-1: FIBONACCI (recursion test): (3점)

```
Fibo( n ) {
    If n=0, return 0
    Else if n = 1, return 1
    Else return (fibo (n-1) + fibo(n-2))
}
```

• Condition: 1) Get any number from keyboard 2) Write the result

Ex) Enter any number: 8

fibinacci(8) = fibinacci(7) + fibinacci(6) = 21

- 2) Lab3-2: Sparse Matrix Transpose (7 점)
 - Read 'Matrix A' from datafile (filename: lab3.dat) and store into array
 - Transpose 'Matrix A' into 'Matrix B' and store into array.
 - Printout 'Matrix B' from the array

(Matrix A) row col value

6	6	8
0	0	15
0	3	22
0	5	-15
1	1	11
1	2	3
2	3	-6
4	0	91
5	2	28

(Matrix B) row col value

6	6	8	
0	0	15	
0	4	91	
1	1	11	
2	1	3	
2	5	28	
3	0	22	
3	2	-6	
5	0	-15	

• Algorithm (lecture note)

```
 \begin{array}{ll} if \ (valueS>0) & \{\ /^*if \ not \ 0\ */\\ currentb=0; \\ for \ (i=0; \ i=colS; \ i++)\ /^* \ transpose \ from \ matrix \ A & */\\ for \ (j=0; \ j<valueS; \ j++) & if \ (SMarray[j].col==i \ \{ \\ b.SMarray[currentb].row=i; \\ b.SMarray[currentb].col=SMarray[j].row; \\ b.SMarray[currentb].value=SMarray[i].value; \\ currentb++; \\ \} \\ \} \\ return \ b; \end{array}
```