Noninformative Priors

Aleksandar Dogandžić

2017-03-11

Contents

Preliminaries 1

Reparameterizing the variability parameter of a Gaussian distribution 2

Jeffreys' Priors 4

Estimating the variance of a Gaussian distribution with known mean

Estimating the mean of a Gaussian distribution with known variance

READING: [Gelman et al. 2014, §2.8].

Preliminaries

THE highest posterior density (HPD) approach is *not* invariant to parameter transformations.

***** Example. Suppose that $0 < \theta < 1$ is a parameter of interest, but that we are equally interested in

$$\gamma = \frac{1}{1 - \theta}.$$

If the posterior probability density function (pdf) $f_{\Theta|X}(\theta \mid x)$ is, say,

$$f_{\Theta|X}(\theta \mid x) = \begin{cases} 2\theta, & 0 < \theta < 1 \\ 0, & \text{otherwise} \end{cases}$$
$$= 2\theta \mathbb{1}_{(0,1)}(\theta)$$

the corresponding cumulative distribution function (cdf) is

$$F_{\Theta|X}(\theta \mid \mathbf{x}) = \begin{cases} 0, & \theta < 0 \\ \theta^2, & 0 < \theta < 1 \\ 1, & \theta > 1 \end{cases}$$

and a 95 % HPD credible set for θ is ($\sqrt{0.05}$, 1). Now, despite the fact that

$$\gamma = \frac{1}{1 - \theta}$$

is a monotonic function of θ , the interval

$$\left(\frac{1}{1-\sqrt{0.05}}, +\infty\right) \tag{1}$$

is not an HPD credible set for γ . Clearly, (1) is a 95 % credible set for γ , but it is not HPD. To see this, we find the cdf $F_{\Gamma|X}(\gamma|x)$: for $t \ge 1$,

$$F_{\Gamma|X}(t \mid x) = \Pr_{\Gamma|X} \left\{ \Gamma \le t \mid X = x \right\}$$

$$= \Pr_{\Theta|X} \left(\frac{1}{1 - \Theta} \le t \mid X = x \right)$$

$$= \Pr_{\Theta|X} \left(\Theta \le 1 - \frac{1}{t} \mid x = x \right)$$

$$= \left(1 - \frac{1}{t} \right)^{2}.$$

Therefore, $\{\Gamma \mid x = x\}$ has the pdf

$$f_{\Gamma|X}(\gamma \mid x) = \begin{cases} 2(1 - 1/\gamma)/\gamma^2, & \gamma \ge 1\\ 0, & \text{otherwise} \end{cases}$$

with $f_{\Gamma|X}(1|x) = 0$ and, consequently, HPD intervals for $\{\Gamma \mid X = x\}$ must be two-sided, which is in contrast with (1).

IF we switch perspective and think of prior distributions rather than posteriors, this kind of thinking raises concerns about the whole idea of a "flat prior". What is "flat" for one parameterization will not be "flat" for another.

Suppose

$$f_{\Theta}(\theta) = \mathrm{U}(\theta \mid 0, 1).$$

Then,

$$\gamma = \frac{1}{1 - \theta}$$

has pdf

$$f_{\Gamma}(\gamma) = \frac{1}{\nu^2} \mathbb{1}_{[1,+\infty)}(\gamma).$$

Notions of shape of priors and posteriors are *not independent* of the choice of parameterization.

Reparameterizing the variability parameter of a Gaussian distribution

Although it may seem that picking a noninformative prior distribution is easy, e.g., just use a uniform pdf or probability mass function (pmf), it is not straightforward.

* EXAMPLE. Estimating the standard deviation and variance of a Gaussian distribution with known mean.

Consider now N conditionally independent, identically distributed (i.i.d.) observations $(X[n])_{n=0}^{N-1}$ given the standard deviation σ , where

$$\{X[n] \mid \sigma\} \sim \mathcal{N}(0, \sigma^2) \tag{2a}$$

$$f_{\sigma}(\sigma) \propto \mathbb{1}_{[0,\infty)}(\sigma)$$
 (2b)

i.e., we assume a uniform prior (from zero to infinity) for the standard deviation σ .

QUESTION: What is the equivalent prior for the variance σ^2 ?

We now apply the change-of-variables formula to our problem: $h(\sigma^2) = \sqrt{\sigma^2}, h'(\sigma) = 0.5(\sigma^2)^{-0.5}$, yielding

$$f_{\sigma^2}(\sigma^2) \propto \frac{1}{2\sqrt{\sigma^2}} \mathbb{1}_{[0,\infty)}(\sigma^2)$$
 (3)

which is not uniform. Therefore, (2b) implies (3), which means that our prior belief is that the variance σ^2 is small.

Similarly, for the uniform prior on the variance σ^2 :

$$f_{\sigma^2}(\sigma^2) \propto \mathbb{1}_{[0,\infty)}(\sigma^2)$$

the equivalent prior on the standard deviation σ is

$$f_{\sigma}(\sigma) \propto 2\sigma \, \mathbb{1}_{[0,\infty)}(\sigma)$$

implying that we believe that the standard deviation σ is large.

A way to visualize the observed phenomenon observed is to look at what happens to intervals of equal measure.

In the case of σ^2 being uniform, an interval [a, a + 0.1] must have the same prior measure as the interval [0.1, 0.2]. When we transform to σ , the corresponding prior measure must have intervals $[\sqrt{a}, \sqrt{a+0.1}]$ having equal measure. But, the length of $[\sqrt{a}, \sqrt{a+0.1}]$ is a decreasing function of a, which agrees with the increasing density in σ .

Therefore, when talking about non-informative priors, we need to think about scale.

Recall transformation of random variables:

$$f_Y(y) = f_X(h(y))|h'(y)|$$

where x = h(y); see handout revprob.

Figure 1: $\sigma = \sqrt{\sigma^2}$ as a function of σ^2 .

Jeffreys' Priors

CAN we pick a prior where the scale of the parameter does not matter?

Jeffreys' general principle states that any rule for determining the prior density $f_{\Theta}(\theta)$ for parameter θ should yield an equivalent result if applied to the transformed parameter ϕ , where $\theta(\phi)$ is a one-to-one transform. Therefore, applying the prior

$$f_{\Phi}(\phi) = f_{\Theta}(\theta(\phi)) |\theta'(\phi)|$$

for Φ should give the same answer as dealing directly with the transformed model,

$$f_{X,\Phi}(x,\phi) = f_{\Phi}(\phi) f_{X|\Phi}(x|\phi).$$

JEFFREYS' prior:

$$f_{\Theta}(\theta) \propto \sqrt{\mathcal{I}_{\Theta}(\theta)}$$
 (4)

where $\mathcal{I}_{\Theta}(\theta)$ is the Fisher information for θ . Now, the transformed prior for Φ is

$$f_{\Phi}(\phi) = \underbrace{f_{\Theta}(\theta(\phi))}_{\propto \sqrt{\mathcal{I}(\theta(\phi))}} |\theta'(\phi)|$$
$$\propto \sqrt{\mathcal{I}_{\Phi}(\phi)}$$

because $\sqrt{\mathcal{I}_{\Phi}(\phi)} = \sqrt{\mathcal{I}_{\Theta}(\theta(\phi))} |\theta'(\phi)|$.

If we make a one-to-one transform $\phi = \phi(\theta)$, then the Jeffreys' prior for the transformed model is

$$f_{\Phi}(\phi) \propto \sqrt{\mathcal{I}_{\Phi}(\phi)}.$$
 (5)

Estimating the variance of a Gaussian distribution with known mean

The Fisher information for variance σ^2 of i.i.d. Gaussian measurements is1:

$$\mathcal{I}_{\sigma^2}(\sigma^2) = \frac{N}{2(\sigma^2)^2}.$$

Therefore, the Jeffreys' prior for σ^2 is

$$f_{\sigma^2}(\sigma^2) \propto \frac{1}{\sigma^2} \mathbb{1}_{[0,+\infty)}(\sigma^2).$$
 (6)

Alternative descriptions under different parameterizations for the variance parameter are (for $\sigma > 0$)

Recall the change-of-variables formula for Cramér-Rao bound (CRB) derived in

$$\mathcal{I}_{\Phi}(\phi) = \mathcal{I}_{\Theta}(\theta(\phi)) \left| \theta'(\phi) \right|^2$$

implying

$$\sqrt{\mathcal{I}_{\Phi}(\phi)} = \sqrt{\mathcal{I}_{\Theta}(\theta(\phi))} \left| \theta'(\phi) \right|.$$

1 see eq. (??) in handout multipar_gauss_crb

uniform on $(-\infty, +\infty)$

$$f_{\sigma}(\sigma) \propto \frac{1}{\sigma} \mathbb{1}_{[0,+\infty)}(\sigma), \qquad f_{\ln \sigma^2}(\ln \sigma^2) \propto 1.$$
 (7)

Here, $f_{\ln \sigma^2}(\ln \sigma^2) \propto 1$ means that

$$f_O(q) \propto 1$$
 $U(-\infty, +\infty)$

where $Q = \ln \sigma^2$.

Estimating the mean of a Gaussian distribution with known variance

Consider *N* i.i.d. observations $(X[n])_{n=0}^{N-1}$ given $\Theta = \theta$, following

$$\{X[n] \mid \Theta = \theta\} \sim \mathcal{N}(\theta, \sigma^2)$$

where σ^2 is a known constant. Here

$$\mathcal{I}(\theta) = \frac{N}{\sigma^2} = \text{const}$$

and, therefore, the clearly improper Jeffreys' prior for θ is

$$f(\theta) \propto 1.$$
 $U(-\infty, +\infty)$

References

Gelman, A., J. B. Carlin, H. S. Stern, David B. Dunson, Aki Vehtari, and D. B. Rubin (2014). Bayesian Data Analysis. 3rd ed. Boca Raton, FL: Taylor & Francis (cit. on p. 1).