Exercícios selecionados:

1, 5-22, 25, 26, 29-31, 33, 36-41

Exercícios

- Suponha que $\lim_{(x, y) \to (3, 1)} f(x, y) = 6$. O que podemos dizer do valor de f(3, 1)? E se a função f for contínua?
- Explique por que cada função é contínua ou descontínua.
 - (a) A temperatura externa como função da latitude, da longitude e do tempo.
 - (b) A altura acima do nível do mar como função da longitude, da latitude e do tempo.
 - (c) O custo da tarifa do táxi como função da distância percorrida e do tempo gasto.
- 3-4 Utilize uma tabela de valores numéricos de f(x, y) para (x, y)perto da origem para conjecturar sobre o limite de f(x, y) quando $(x, y) \rightarrow (0, 0)$. Em seguida, explique por que sua conjectura está

3.
$$f(x,y) = \frac{x^2y^3 + x^3y^2 - 5}{2 - xy}$$
 4. $f(x,y) = \frac{2xy}{x^2 + 2y^2}$

5-22 Determine o limite, se existir, ou mostre que o limite não

5.
$$\lim_{(x,y)\to(1,2)} (5x^3-x^2y^2)$$

$$\lim_{(x,y)\to(1,2)} (5x^3 - x^2y^2) \qquad \qquad \textbf{6.} \quad \lim_{(x,y)\to(1,-1)} e^{-xy} \cos(x+y)$$

7.
$$\lim_{(x,y)\to(2,1)} \frac{4-xy}{x^2+3y^2}$$

$$\lim_{(x,y)\to(2.1)} \frac{4-xy}{x^2+3y^2}$$
8.
$$\lim_{(x,y)\to(1.0)} \ln\left(\frac{1+y^2}{x^2+xy}\right)$$

9.
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - {}^4y^4}{x^2 + 2y^2}$$

9.
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - {}^4y^4}{x^2 + 2y^2}$$
10. $\lim_{(x,y)\to(0,0)} \frac{x^2 + \sin^2 y}{2x^2 + y^2}$
11. $\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{3x^2 + y^2}$
12. $\lim_{(x,y)\to(1,0)} \frac{xy - y}{(x-1)^2 + y^2}$

11.
$$\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{3x^2+y^2}$$

12.
$$\lim_{(x,y)\to(1,0)} \frac{xy-y}{(x-1)^2+y^2}$$

13.
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$
 14. $\lim_{(x,y)\to(0,0)} \frac{x^4-y^4}{x^2+y^2}$ **15.** $\lim_{(x,y)\to(0,0)} \frac{x^2ye^y}{x^4+4y^2}$ **16.** $\lim_{(x,y)\to(0,0)} \frac{x^2\operatorname{sen}^2y}{x^2+2y^2}$

14.
$$\lim_{(x,y)\to(0,0)} \frac{x^4-y^4}{x^2+y^2}$$

15.
$$\lim_{(x,y)\to(0,0)} \frac{x^2ye^y}{x^4+4y^2}$$

16.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 \sin^2 y}{x^2 + 2y^2}$$

17.
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$$
 18.
$$\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2+y^8}$$

- **18.**
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^8}$$

$$19. \qquad \lim_{z \to 0} e^{y^2} \operatorname{tg}(xz)$$

19.
$$\lim_{(x, y, z) \to (\pi, \theta, 1)} e^{y^2} \operatorname{tg}(xz)$$
 20. $\lim_{(x, y, z) \to (0, 0, 0)} \frac{xy + yz}{x^2 + y^2 + z^2}$

21.
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz^2+xz^2}{x^2+y^2+z^4}$$
 22. $\lim_{(x,y,z)\to(0,0,0)} \frac{yz}{x^2+4y^2+9z^2}$

$$-\frac{2}{1} 22. \lim_{(x,y,z)\to(0,0,0)} \frac{yz}{x^2 + 4y^2 + 9z^2}$$

23-24 Utilize um gráfico feito por computador para explicar por que

23.
$$\lim_{(x,y)\to(0,0)} \frac{2x^2+3xy+4y^2}{3x^2+5y^2}$$
 24. $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^6}$

- É necessário usar uma calculadora gráfica ou computador
- 1. As Homework Hints estão disponíveis em www.stewartcalculus.com

811

25.
$$g(t) = t^2 + \sqrt{t}$$
, $f(x, y) = 2x + 3y - 6$

26.
$$g(t) = t + \ln t$$
, $f(x, y) = \frac{1 - xy}{1 + x^2y^2}$

27-28 Trace o gráfico da função e observe onde ela é descontínua. Em seguida, utilize a fórmula para explicar o que você observou.

27.
$$f(x, y) = e^{1/(x-y)}$$

28.
$$f(x, y) = \frac{1}{1 - x^2 - y^2}$$

29-38 Determine o maior conjunto no qual a função é contínua.

29.
$$F(x, y) = \frac{xy}{1 + e^{x-y}}$$

30.
$$F(x, y) = \cos \sqrt{1 + x - y}$$

31.
$$F(x, y) = \frac{1 + x^2 + y^2}{1 - x^2 - y^2}$$
 32. $H(x, y) = \frac{e^x + e^y}{e^{xy} - 1}$

32.
$$H(x, y) = \frac{e^x + e^y}{e^{xy} - 1}$$

33.
$$G(x, y) = \ln(x^2 + y^2 - 4)$$

34.
$$G(x, y) = tg^{-1}((x + y)^{-2})$$

35.
$$f(x, y, z) = \arcsin(x^2 + y^2 + z^2)$$

36.
$$f(x, y, z) = \sqrt{y - x^2} \ln z$$

37.
$$f(x, y) = \begin{cases} \frac{x^2 y^3}{2x^2 + y^2} & \text{se } (x, y) \neq (0, 0) \\ 1 & \text{se } (x, y) = (0, 0) \end{cases}$$

38.
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + xy + y^2} & \text{se } (x, y) \neq (0, 0) \\ 0 & \text{se } (x, y) = (0, 0) \end{cases}$$

39-41 Utilize coordenadas polares para determinar o limite. [Se (r, θ) são as coordenadas polares do ponto (x, y) com $r \ge 0$, observe que $r \rightarrow 0^+$ quando $(x, y) \rightarrow (0, 0)$.]

39.
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$

40.
$$\lim_{(x,y)\to(0,0)} (x^2+y^2) \ln(x^2+y^2)$$

41.
$$\lim_{(x,y)\to(0,0)} \frac{e^{-x^2-y^2}-1}{x^2+y^2}$$

$$f(x, y) = \frac{\text{sen}(x^2 + y^2)}{x^2 + y^2}$$

e conjecturamos que $f(x, y) \rightarrow 1$ quando $(x, y) \rightarrow (0, 0)$ com base em evidências numéricas. Utilize coordenadas polares para comprovar o valor do limite. Em seguida, faça o gráfico da função.

43. Trace o gráfico e analise a continuidade da função

$$f(x, y) = \begin{cases} \frac{\sin xy}{xy} & \text{se } xy \neq 0\\ 1 & \text{se } xy = 0 \end{cases}$$

44. Seja

A

$$f(x, y) = \begin{cases} 0 & \text{se } y \le 0 \text{ or } y \ge x^4 \\ 1 & \text{se } 0 < y < x^4 \end{cases}$$

- (a) Mostre que $f(x, y) \rightarrow 0$ quando $(x, y) \rightarrow (0, 0)$ por qualquer caminho da forma $y = mx^a$ passando por (0, 0) com a < 4.
- (b) Independentemente do item (a), mostre que f é descontínua
- (c) Mostre que f é descontínua em duas curvas inteiras.
- Mostre que a função f dada por $f(\mathbf{x}) = |\mathbf{x}|$ é contínua em \mathbb{R}^n . [Dica: Considere $|\mathbf{x} - \mathbf{a}|^2 = (\mathbf{x} - \mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$.]
- Se $\mathbf{c} \in V_n$, mostre que a função f dada por $f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$ é contínua em \mathbb{R}^n .

EXERCÍCIOS 14.2

- **1.** Nada; Se f for contínua, f(3, 1) = 6 **3.** $-\frac{5}{2}$
- 7. $\frac{2}{7}$ 9. Não existe 11. Não existe
- **13.** 0 15. Não existe **17.** 2
- **19.** $\sqrt{3}$ 21. Não existe
- 23. O gráfico mostra que a função se aproxima de números diferentes ao longo de retas diferentes.
- **25.** $h(x, y) = (2x + 3y 6)^2 + \sqrt{2x + 3y 6}$; $\{(x, y) | 2x + 3y \ge 6\}$
- **27.** Ao longo da reta y = x**29.** \mathbb{R}^2 **31.** $\{(x, y) | x^2 + y^2 \neq 1\}$
- **33.** $\{(x, y) | x^2 + y^2 > 4\}$ **35.** $\{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$
- **37.** $\{(x, y) | (x, y) \neq (0, 0)\}$ **39.** 0
- **41.** -1

f é contínua em \mathbb{R}^2