Church's λ -calculus

1 Syntax

Assume we have a countable set of (variable) names, which we shall denote by (possibly indexed) small letters - $a, b, c, ..., x, y, z, a_0, a_1, a_2, ...$

Conventions

- 1. Function application (3rd line) is left-associative, so $(((A_1A_2)A_3)...A_k)$
- 2. Nested abstractions (2nd line) $(\lambda x_1.(\lambda x_2.(...\lambda x_k.A)...))$ can be abbreviated as $\lambda x_1x_2...x_k.A$

2 Free and Bound Variables

Free variables:

- 1. < name > is free in < name >
- 2. < name > is free in $\lambda < name' >$. < term > if $< name > \neq < name' >$ and < name > is free in < term >
- 3. < name > is free in < term'' > if < name > is free in < term'' > or < name > is free in < term'' >

Bound variables

- 1. < name > is bound in λ < name' > . < term > if < name > = < name' > or < name > is bound in < term >
- 2. < name > is bound in < term' >< term'' > if < name > is bound in < term' > or < name > is bound in < term'' >

3 Reductions

Denote by T[x := R] the term in which for every free occurrence of x is replaced by E

 α -conversion: Bound variables can be renamed: $\lambda x.F \equiv \lambda t.F[x:=t]$ provided t is not free in F and t is not bound by λ in F whenever it replaces an x. Example: $\lambda x.yx(\lambda x.xx)zx \equiv \lambda t.yt(\lambda x.xx)zt$.

β-reduction: Applying a function to the argument $(\lambda x.F)A \equiv F[x := A]$ provided all free occurrences in A remain free in F[x := A]

Definition: Normal Form

A λ -term is in normal form if no β reduction can be applied to it

Theorem If a λ -term has a normal form then the formal for is unique (up to renaming of bound variables)

Computing the normal form: Keep on replacing the leftmost bound variable by the actual argument until no further reduction is possible. This does not terminate iff the initial term has no normal form.

4 Church Numerals

The Church Numerals C_0 , C_1 , C_2 , ... are defined as follows

$$C_0 \equiv \lambda sz.z$$

$$C_1 \equiv \lambda sz.s(z)$$

$$C_2 \equiv \lambda sz.s(s(z))$$
...

The successor can be defined as

$$S = \lambda uvw.v(uvw)$$

Lemma. For every two terms in F and A, $C_nFA = F^{(n)}A$ **Corollary**. Doing addition in λ -calculus: $C_nSC_m = C_{n+m}$

5 Predecessor is hard

Define true and false by

$$T \equiv \lambda x y. x$$
$$F \equiv \lambda x y. y$$

and represent a pair (a, b) by $\lambda z.zab$ Define

$$\Phi \equiv \lambda pz.z(S(pT))(pT)$$

And finally the predecessor is defined as

$$P \equiv \lambda n.n\Phi \left(\lambda z.zC_0C_0\right)F$$