University of Toronto
Department of Civil Engineering
Faculty of Applied Science and
Engineering

Final Examination December 11, 2001

Civ261F Engineering Mathematics I Examiner: B. E. Sleep

Type C: Aid sheet allowed, calculators must be non-programmable

Name:	
Student Number:	

Question	Possible	Earned
Number	Marks_	Marks
1	10	
2	15	
3	15	
4	15	
5	10	
6	10	
7	10	
8	15	
Total	100	

Instructions:

Attempt all 8 questions.

Answers are to be submitted on the question sheets. The backs of pages may be used if necessary, but question numbers must be clearly indicated.

All work must be **neat and legible**, any formulae used must be given, and **all steps** in calculations must be shown.

T 1 £0

1. Use a double integral to find the volume of the object created by rotating the area bounded by $x=y^2$, x=2, y=0, $y \ge 0$ about the line y=6. (10 marks)

n nfo

Name:			

2. Find the second moment of the area bounded by $y=(x-2)^2$ and y=x about the y-axis. (15 marks)

3. a) Determine dz/dt and ∂z/∂t for z(u,v,t) = u² +2v³ +t³, u (x,y,t) = 2xe⁻¹.
v (x,y,t) = xy, x(t) = sint, y(t) = cost. (8 marks)
b) For h(x,y) = ye⁻x +3x²y³, determine the magnitude and direction (given as a bearing) of the steepest slope at (x,y) = (1,1), and determine the slope in the northwest direction (7 marks).

Name:

4. Show that the following integral is independent of path and evaluate the integral:

$$\int_C xye^x dx + (xe^x - e^x) dy$$
, C is the region bounded by $x = y^2$, $x = 3$,

and y = 0. (15 marks)

5 00

Name:	

5. Using two-point Gaussian Legendre evaluate:

a)
$$\int_0^2 \frac{dx}{1+x} (5 \text{ marks})$$

b)
$$\int_{-1}^{1} \int_{-1}^{1} xy dx dy$$
 (5 marks)

The following may be useful:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b+a}{2} + \frac{b-a}{2}z\right) dz$$

$$I = f\left(\frac{-1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

Name:		_	

6. Using two iterations (not counting initial guesses) of the secant method with initial guesses of x = -3 and x = -2, estimate the root of: $f(x) = x^3 + e^{-x} + 3$. (10 marks)

Name:		

7. Approximate f(0.25) given the following data and the first, second and third order Newton divided difference formulae:

х	0.0	0.1	0.3	0.5
f(x)	0.5	0.75	1.1	1.5

(10 marks)

Name	

8. The following data were thought to be described by y = a/(b+x). Use linear regression to determine the best fit values of a and b. Present your intermediate calculations in a table with the appropriate columns.

Х	1.0	2.0	3	4
<u>y</u>	0.52	0.39	0.37	0.26

(15 marks)

D C CC