

Amendments to the Specification

Please replace the paragraph beginning on page 2, line 23 and ending on page 3, line 6 with the following amended paragraph:

As shown therein, the node includes: a duplexing control unit 234 for controlling redundancy duplexing; a node control unit 233 operated according to the control of the duplexing control unit 234 and for performing message relay function by interfacing by means of a processor and a ~~U-LPK~~ U-LINK and interfacing by means of the switching unit 210 and the D-BUS; a receiving buffer (RX buffer) 232 for buffering a message to be transmitted from the processor to the switching unit 210 according to the control of the node control unit 233; and a transmission buffer (TX buffer) 231 for buffering a message to be transmitted from the switching unit 210 to the processor according to the control of the node control unit 233.

Please replace the paragraph beginning on page 3, line 10 and ending on page 3, line 19 with the following amended paragraph:

The node control unit 223 includes: and U-LINK interface having an U-LINK transmission interface (UTX interface) 233a for transmitting a message to a processor by means of an U-LINK interface and a U-LINK receiving interface (~~UTX~~ URX interface) 233a for receiving a message from the processor by means of the U-LINK interface, according to the control of the duplexing control unit 234; and a D-BUS interface having a D-BUS receiving interface (DRX interface) 233c for receiving a message from a switching unit 210 by means of a

D-BUS interface and a D-Bus transmission interface (DTX interface) 223d for transmitting a message to the switching unit 210 by means of the D-BUS interface, according to the control of the duplexing control unit 234.

Please replace the paragraphs beginning on page 4, line 2 and ending on page 4, line 16 with the following amended paragraph:

When the switching device 200 switches a HDCL HDLC message between processors, the duplex node performs the function of relaying the HDCL HDLC message. The message inputted into the switching device 200 is formed in a HDCL HDLC frame, said HDCL HDLC frame is formed to have a predetermined time period between frames. In other words, the node selects a transmission node in which other frames are note received for a predetermined time after receiving one frame, when it receives a HDCL HDLC message through the U-LINK or through the D-BUS. In addition, since the HDCL HDLC frame has a start flag and a complete flag (end flag) in its structure, the node can know the start and end of the message.

If the node A 230A is in the active node, and the node B ~~23-B~~ B 230B is in the standby node, the node A-230A performs the function of receiving a message from the processor through the U-LINK to transmit the same to the switching unit 210 through the D-BUS, and transmitting a message from the switching unit 210 through the D-BUS to thus transmitting the same processor through the U-LINK. The node B230B becomes the standby state.

Please replace the paragraph beginning on page 5, line 3 and ending on page 5, line 6 with the following amended paragraph:

On the contrary, when a ~~HDCL~~ HDLC message is received from the D-BUS, the duplexing control unit 233c outputs a signal(TX_START) informing that there is a message to be transmitted to the corresponding processor to the TX buffer 231, and stores the message received through the D-BUS in the TX buffer.

Please replace the paragraph beginning on page 11, line 12 and ending on page 11, line 16 with the following amended paragraph:

The exchange preparation unit 350 is a device operated only at the standby node, which generates a standby node receiving control signal (~~SSDRX_ENABLE~~ SDRX_ENABLE and ~~SURX_ENABLE~~) for controlling the standby node to receive a message, when exchange start signal (XRX_PREPARE and XTX_PREPARE) are applied from the active node, for thereby preparing exchange.

Please replace the paragraph beginning on page 13, line 9 and ending on page 13, line 19 with the following amended paragraph:

At the same time, the exchange unit 320 turns off the active node receiving control signals (ADRX_ENABLE and AURX_ENABLE) so as not to receive a message any more. Thus, the operation control unit 360 disables the DRX interface 233c and URX interface 233b

of the node A 230A upon receipt of the active node receiving control signal of the off state, and keeps the DTX interface 233d and UTX interface 233a of the node A 230A in the previous state in S14. Thus, the node A 230A turns into the state where message receiving is stopped, and message transmission is maintained in S14, for thereby making the message stored in the TX buffer 231 and [[rX]] RX buffer 232 of the node A 230A to be transmitted to a processor or switching unit.

Please replace the paragraph beginning on page 15, line 20 and ending on page 15, line 26 with the following amended paragraph:

Meanwhile, the node B 230B having received the XNODE_ACT signal (NODE_ACT signal of the off state outputted from the node A 230A) acquires the active right in S25. Then, the exchange reporting unit of the node [[V]] B 230B outputs an ADRX_ENABLE signal and an AURX_ENABLE signal in the on state so that the node B 230B can transmit and receive a message. Thus, the operation control unit enables message transmission and receiving by activating the node control unit of the node B 230B, thereby completing the exchange in S26.

Please replace the paragraph beginning on page 16, line 3 and ending on page 16, line 6 with the following amended paragraph:

At the active node, TX_PREPARE is OFF, RX_PREPARE is [[OfF]] OFF NODE_ACT is ON, XNODE_ACT is OFF, XRX_PREPARE is OFF, XTX_PREPARE is OFF, NODE_FAIL is OFF, and the signals of TX_START, RX_START, TX_EMPTLY, and RX_EMPTY are unknown.