

ACR38 Smart Card Reader

PC/SC Memory Card Access

Table of Contents

1.0.	Introduction	. 5
1.1.	Supported Memory Cards	5
2.0.	Memory Card Type Selection	. 6
2.1.		6
2.2.	Memory Card Type Selection for Firmware 1.10	
2.2. 2.2	-, -, -, -, -, -, -, -, -, -, -, -, -, -	
2.2	, ,	
3.0.	ACR38 Firmware 1.12c Memory Card Command Set	
3.1.	Recollection card – 1, 2, 4, 8 and 18 Kbit I2C Card	
3.1.		
3.1. 3.1.		
3.1.		
3.2.	Memory Card – 32, 64, 128, 256, 512, and 1024 Kbit I2C Card	
3.2.		
3.2		
3.2		
3.2		
3.3.	Memory Card – ATMEL AT88SC153	
3.3	·	
3.3	_	
3.3		
3.3		
3.3		
3.3		
3.4.	Memory Card – ATMEL AT88C1608	
3.4	·	
3.4		
3.4	-	
3.4	-	
3.4		
3.4		
3.5.	Memory Card – SLE 4418 / SLE 4428 / SLE 5518 / SLE 5528	
3.5	,	
3.5		
3.5	.3. READ_PRESENTATION_ERROR_COUNTER_MEMORY_CARD (SLE 4428 a	ınc
SLE	E 5528) 20	
3.5	.4. READ_PROTECTION_BIT	21
3.5	.5. WRITE_MEMORY_CARD	22
3.5	.6. WRITE_PROTECTION_MEMORY_CARD	22
3.5		
3.6.	Memory Card – SLE 4432 / SLE 4442 / SLE 5532 / SLE 5542	
3.6		
3.6		
3.6	.3. READ_PRESENTATION_ERROR_COUNTER_MEMORY_CARD (SLE 4442 a	ınc
SLE	E 5542) 24	
3.6	.4. READ_PROTECTION_BITS	25
3.6		
3.6		
3.6		
3.6		
3.7.	Memory Card – SLE 4406 / SLE 4436 / SLE 5536 / SLE 6636	
3.7	.1. SELECT_CARD_TYPE	27

3.7.2.		27
3.7.3.		
3.7.4.		
3.7.5.		29
3.8.	Memory Card – SLE 4404	30
3.8.1.	SELECT_CARD_TYPE	30
3.8.2.	READ_MEMORY_CARD	31
3.8.3.	WRITE_MEMORY_CARD	31
3.8.4.		
3.8.5.		
3.8.6.		
3.9.	Memory Card – AT88SC101 / AT88SC102 / AT88SC1003	
3.9.1.	•	
3.9.2.		
3.9.3.		
3.9.4.		35
3.9.5.		
3.9.6.		
3.9.7.		
3.9.8.		
3.3.0.	Other Commands Access via PC_to_RDR_XfrBlock	
3.10. ² 3.11.		
	Supported Card Types	
3.12.	Response Error Codes	40
4.0. A	CR38 Firmware 1.10 Memory Card Command Set	41
4.1.	Memory Card – 1, 2, 4, 8, and 16 Kbit I2C Card	41
4.1.1.		41 11
4.1.2.		
4.1.3.		
4.1.3.	Memory Card – 32, 64, 128, 256, 512, and 1024 Kbit I2C Card	
4.2.1.		
4.2.1.		
4.2.2.		
4.2.3.	Memory Card – ATMEL AT88SC153	
4.3.1.		
4.3.1.		
	-	
4.3.3.	INITIALIZE AUTHENTICATION	
4.3.4. 4.3.5.		
4.3.3.	Memory Card – ATMEL AT88SC1608	
4.4.1. 4.4.2.		
	— — · · · — · · · — · · · · · · · · · ·	
4.4.3.	-	
4.4.4.		
4.4.5.		
4.5.	Memory Card – SLE 4418 / SLE 4428 / SLE 5518 / SLE5528	
4.5.1.		48
4.5.2.		
4.5.3.		
4.5.4.		
4.5.5.	,	
4.5.6.	,	8 and
	5528) 51	
4.6.	Memory Card – SLE 4432 / SLE 4442 / SLE 5532 / SLE 5542	
4.6.1.		
4.6.2.		
4.6.3.		53
4.6.4.		
465	READ PRESENTATION FRROR COUNTER MEMORY CARD (SLE 444	

SLE 5	542) 54	
4.6.6.	CHANGE_CODE_MEMORY_CARD (SLE 4442 and SLE 5542)	54
4.7.	Memory Card - SLE 4406 / SLE 4436 / SLE 5536 / SLE 6636	55
4.7.1.	READ_MEMORY_CARD	55
4.7.2.	WRITE_ONE_BYTE_MEMORY_CARD	55
4.7.3.	PRESENT_CODE_MEMORY_CARD	56
4.7.4.	AUTHENTICATE_MEMORY_CARD (SLE 4436, SLE 5536 and SLE 663	6)57
Figure	es ·	
Figure 1:	ACR38 Reader Setting Property Sheet	7

1.0. Introduction

The ACR38 PC-Linked Reader acts as an interface for the communication between a computer and a smart card. Different types of smart cards have different commands and different communication protocols that in most cases, prevents a direct communication between a smart card and a computer. The ACR38 reader establishes a uniform interface from the computer to the smart card for a wide variety of cards. By taking care of the card's specific particulars, it releases the computer software programmer from getting involved with the technical details of the smart card operation which are in many cases, not relevant in the implementation of a smart card system.

This document contains the PC/SC Memory Card Command set for ACR38 Firmware 1.12c and 1.10. The ACR38 Firmware 1.12c is backward compatible with the ACR38 Firmware 1.10 with minor changes to the Memory Card Command Set. In this document, we will refer to the ACR38 with firmware 1.12c as ACR38 FW1.12c while ACR38 with firmware 1.10 will be referred to ACR38 FW1.10.

1.1. Supported Memory Cards

The ACR38 Series supports the following memory cards:

	Types of Memory Cards	Firmware 1.10	Firmware 1.12c
1.	Cards following the I2Cbus protocol (free memory cards) with maximum 128 bytes page with capability, including: Atmel: AT24C01/02/04/08/16/32/64/128/256/512/1024 SGS-Thomson: ST14C02C, ST14C04C Gemplus: GFM1K, GFM2K, GFM4K, GFM8K	✓	✓
2.	Cards with secure memory IC with password and authentication, including: Atmel: AT88SC153 and AT88SC1608	√	√
3.	Cards with intelligent 1k bytes EEPROM with write-protect function, including: Infineon: SLE4418, SLE4428, SLE5518 and SLE5528	√	√
4.	Cards with intelligent 256 bytes EEPROM with write- protect function, including: Infineon: SLE4432, SLE4442, SLE5532 and SLE5542	√	√
5.	Cards with '104' type EEPROM non-reloadable token counter cards, including: Infineon: SLE4406, SLE4436, SLE5536 and SLE6636	√	√
6.	Cards with Intelligent 416-Bit EEPROM with internal PIN check, including: Infineon: SLE4404	×	√
7.	Cards with Security Logic with Application Zone(s), including: Atmel: AT88SC101, AT88SC102 and AT88SC1003	×	✓

2.0. Memory Card Type Selection

2.1. Memory Card Type Selection for Firmware 1.12c

2.1.1. By Programmatic Method

The SELECT_CARD_TYPE command must be executed first before other memory card commands. This command powers down and up the selected card inserted in the card reader and performs a card reset. This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of ScardConnect() API, please refer to PC/SC specification. For the Memory Card Command Set for ACR38 FW1.12c, please refer to Section 3.0.

A code snippet for the program flow is given below to demonstrate how to select the memory card type in ACR38 FW1.12c:

```
SCARDCONTEXT hContext;
SCARDHANDLE hCard;
unsigned long dwActProtocol;
SCARD_IO_REQUEST ioRequest;
DWORD size = 64, SendLen = 6, RecvLen = 255, retCode;
byte cardType;
//Establish PC/SC Connection
retCode = SCardEstablishContext (SCARD_SCOPE_USER, NULL, NULL, &hContext);
//List all readers in the system
retCode = SCardListReaders (hContext, NULL, readerName, &size);
//Connect to the reader
retCode = SCardConnect(hContext, readerName, SCARD_SHARE_SHARED,
SCARD_PROTOCOL_T0, &hCard, &dwActProtocol);
//Select Card Type
unsigned char SendBuff[] = {0xFF,0xA4,0x00,0x00,0x01,cardType};
retCode = SCardTransmit( hCard, &ioRequest, SendBuff, SendLen, NULL,
RecvBuff, &RecvLen);
//Disconnect from the reader
retCode = SCardDisconnect(hCard, SCARD_UNPOWER_CARD);
//End the established context
retCode = SCardReleaseContext(hContext);
```

2.2. Memory Card Type Selection for Firmware 1.10

2.2.1. By Property Sheet

User could invoke the reader setting property sheet by selecting "property" of "ACR38 Smart Card Reader" device under the Device Manager. Figure 1 shows the reader setting property sheet.

Figure 1: ACR38 Reader Setting Property Sheet

The reader needs to be removed, and then reconnected to the computer in order for the change to take effect.

2.2.2. By Programmatic Method

The card type can also be changed at program run-time using Vendor Specific extension API of PC/SC.

Application programs are required to include the following MACRO in one of the source header file.

```
#define IOCTL_SMARTCARD_SET_CARD_TYPE SCARD_CTL_CODE(2060)
```

Applications should connect to PC/SC using a SCARD_SHARE_DIRECT protocol. After which, invoke the SCardControl() and use IOCTL_SMARTCARD_SET_CARD_TYPE for the dwControlCode parameter to inform the driver of new card type. The input buffer will be a LONG variable storing the desired card type. The return value is either SCARD_S_SUCCESS or a WIN32 Error (ERROR_INSUFFICIENT_BUFFER).

Example:

```
rv = SCardEstablishContext(SCARD_SCOPE_SYSTEM,NULL,NULL,&hctx);
      if (rv != SCARD_S_SUCCESS)
           return rv;
      rv = SCardConnect(
           hctx,
           "ACS ACR38U 0",
           {\tt SCARD\_SHARE\_DIRECT}, // This allows apps to connect to
                                   // PC/SC even without card inserted
           0,
           &hsc,
           &dwActiveProtocol);
      if (rv != SCARD_S_SUCCESS)
           // error handling ...
           return rv;
      }
     rv = SCardControl(hsc, IOCTL_SMARTCARD_SET_CARD_TYPE,
      &nCardType, sizeof(nCardType), cbOutBuffer, 10,
      &dwBytesRet);
      if ( rv == SCARD_S_SUCCESS && cbOutBuffer[0] == 0x90 &&
      cbOutBuffer[1] == 0x00)
      // OK
      }
      else . . . // other error handling
}
```


2.2.3. Logical Flow of Memory Card Functions

3.0. ACR38 Firmware 1.12c Memory Card Command Set

This section contains the Memory Card Command Set for ACR38 FW1.12c.

3.1. Recollection card - 1, 2, 4, 8 and 18 Kbit I2C Card

3.1.1. SELECT_CARD_TYPE

This command powers down and up the selected card inserted in the card reader and performs a card reset.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of ScardConnect() API, please refer to PC/SC specification.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU							
CLA	INS	P1	P2	Lc	Card Type		
FF H	А4 н	00 н	00 н	01 н	01 н		

Response Data Format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2 = 90 H 00 H if no error

3.1.2. SELECT_PAGE_SIZE

This command will choose the page size to read the smart card. The default value is 8-byte page write. It will reset to default value whenever the card is removed or the reader is powered off.

Command Format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA	INS	P1	P2	Lc	Page Size			
FF H	01 н	00 н	00 н	01 н				

Page size = 03 H for 8-byte page write

= 04 H for 16-byte page write

= 05 H for 32-byte page write

= 06 H for 64-byte page write

= 07 H for 128-byte page write

SW1	SW2

SW1, SW2

= 90 H 00 H if no error

3.1.3. READ_MEMORY_CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU					
CLA	INS	Byte Address		MEM_L	
		MSB	LSB		
FF H	в0 н				

MEM_L

Length of data to be read from the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

BYTE 1	 	BYTE N	SW1	SW2

BYTE x

Data read from memory card

SW1, SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

3.1.4. WRITE_MEMORY_CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU								
CLA	INS	Byte A	ddress	MEM_L	Byte 1			Byte n	
		MSB	LSB						
FF H	D0 _H								

Byte Address

Memory address location of the memory card.

MEM_L

Length of data to be written to the memory card.

Byte x

Data to be written to the memory card.

SW1	SW2

SW1, SW2

= 90 + 00 + if no error

3.2. Memory Card - 32, 64, 128, 256, 512, and 1024 Kbit I2C Card

3.2.1. SELECT_CARD_TYPE

This command powers down and up the selected card inserted in the card reader and performs a card reset.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of ScardConnect() API, please refer to PC/SC specification.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU						
CLA INS P1 P2 Lc Card Type						
FF H A4 H 00 H 00 H 01 H 02 H						

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2	

SW1, SW2

= 90 + 00 + if no error

3.2.2. SELECT_PAGE_SIZE

This command will choose the page size to read the smart card. The default value is 8-byte page write. It will reset to default value whenever the card is removed or the reader is powered off.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU						
CLA INS P1 P2 Lc Page size						
FF H 01 H 00 H 00 H 01 H						

Data

TPDU to be sent to the card

Page size

= 03 _H for 8-byte page write

= 04 H for 16-byte page write

= 05 H for 32-byte page write

= 06 H for 64-byte page write

= 07 _H for 128-byte page write

SW1	SW2

SW1, SW2 =

= 90 H 00 H if no error

3.2.3. READ_MEMORY_CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU					
CLA	INS	Byte Address MEM_L			
		MSB			
FF H					

INS

= B0 _H for 32,64,128,256,512kbit iic card

= $1011\ 000^*\ b$ for 1024kbit iic card,

where * is the MSB of the 17 bit addressing

Byte Address

Memory address location of the memory card.

MEM_L

Length of data to be read from the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

BYTE 1	 	BYTE N	SW1	SW2

BYTE x

Data read from memory card

SW1, SW2

= 90 H 00 H if no error

3.2.4. WRITE_MEMORY_CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU							
CLA	INS	Byte Address		MEM_L	Byte 1			Byte n
		MSB	LSB		_			
FF _H								

INS

= D0 _H for 32,64,128,256,512kbit iic card

= 1101 000* b for 1024kbit iic card,

where * is the MSB of the 17 bit addressing

Byte Address Memory address location of the memory card.

MEM_L Length of data to be written to the memory card.

Byte x Data to be written to the memory card.

SW1	SW2

SW1, SW2

= 90 H 00 H if no error

3.3. Memory Card – ATMEL AT88SC153

3.3.1. SELECT_CARD_TYPE

This command powers down and up the selected card inserted in the card reader and performs a card reset. It will also select the page size to be 8-byte page write.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of ScardConnect() API, please refer to PC/SC specification.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU						
CLA INS P1 P2 Lc Card Type						
FF _H A4 _H 00 _H 00 _H 01 _H 03 _H						

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 + 00 + if no error

3.3.2. READ MEMORY CARD

Command Format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU					
CLA INS P1 Byte Address MEM_L					
FF H		00 н			

INS

= B0 $_{\mbox{\scriptsize H}}$ for reading zone 00 $_{\mbox{\scriptsize b}}$

= B1 $_{\rm H}$ for reading zone 01 $_{\rm b}$

= B2 $_{\mbox{\scriptsize H}}$ for reading zone 10 $_{\mbox{\scriptsize b}}$

= B3 $_{\rm H}$ for reading zone 11 $_{\rm b}$

= B4 $_{\rm H}$ for reading fuse

Byte Address Memory address location of the memory card.

MEM_L Length of data to be read from the memory card.

BYTE 1	 	BYTE N	SW1	SW2

BYTE x Data read from memory card

SW1, SW2 = 90 H 00 H if no error

3.3.3. WRITE_MEMORY_CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA INS P1 Byte Address MEM_L Byte 1 Byt						Byte n		
FF H		00 н						

INS = D0 $_{\rm H}$ for writing zone 00 $_{\rm b}$

= D1 $_{\rm H}$ for writing zone 01 $_{\rm b}$

= D2 $_{\rm H}$ for writing zone 10 $_{\rm b}$

= D3 $_{\rm H}$ for writing zone 11 $_{\rm b}$

= D4 H for writing fuse

Byte Address Memory address location of the memory card.

MEM_L Length of data to be written to the memory card.

MEM_D Data to be written to the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2			

SW1, SW2 = 90 H 00 H if no error

3.3.4. VERIFY_PASSWORD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU							
CLA INS P1 P2 Lc Pw(0) Pw(1) Pw(2)						Pw(2)	
FF H	20 н	00 н		03 _H			

Pw(0),Pw(1),Pw(2) Passwords to be sent to memory card.

P2 = 0000 00rp b

where the two bits "rp" indicate the password to compare

r = 0: Write password,

r = 1: Read password,

p: Password set number,

rp = 01 for the secure code.

SW1	SW2
	ErrorCnt
90 н	

SW1 = 90 _H

SW2 (ErrorCnt) = Error Counter. FF_H indicates the verification is correct. 00_H indicates the password is locked (exceed maximum number of retries). Other values indicate the current verification is failed.

3.3.5. INITIALIZE_AUTHENTICATION

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA	INS	P1	P2	Lc	Q(0)	Q(1)		Q(7)
FF _H	84 _H	00 н	00 н	08 н				

Q(0),Q(1)...Q(7)

Host random number, 8 bytes.

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 + 00 + if no error

3.3.6. VERIFY_AUTHENTICATION

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU							
CLA	INS	P1	P2	Lc	Ch(0)	Ch(1)		Ch(7)
FF _H	82 _H	00 н	00 н	08 н				

Ch(0),Ch(1)...Ch(7)

Host challenge, 8 bytes.

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 H 00 H if no error

3.4. Memory Card - ATMEL AT88C1608

3.4.1. SELECT_CARD_TYPE

This command powers down and up the selected card inserted in the card reader and performs a card reset. It will also select the page size to be 16-byte page write.

Note: This command can only be used after the logical smart card reader communication has been

established using the ${\tt SCardConnect}($) API. For details of ${\tt ScardConnect}($) API, please refer to PC/SC specification.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU							
CLA INS P1			P2	Lc	Card Type		
FF H	А4 н	00 н	00 н	01 н	04 н		

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2 = 90 H 00 H if no error

3.4.2. READ MEMORY CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU						
CLA	INS	Zone Address	Byte Address MEM_			
FF _H						

INS = B0 H for reading user zone

= B1 _H for reading configuration zone or reading fuse

Zone Address = $0000 \ 0A_{10}A_9A_8$ b, where A_{10} is the MSB of zone address

= don't care for reading fuse

Byte Address = $A_7A_6A_5A_4$ $A_3A_2A_1A_0$ b is the memory address location of the memory card.

= $1000\ 0000\ b$ for reading fuse

MEM_L Length of data to be read from the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

BYTE 1	 	BYTE N	SW1	SW2

BYTE x Data read from memory card

SW1, SW2 = 90 H 00 H if no error

3.4.3. WRITE_MEMORY_CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA INS Zone Address Byte Address MEM_L Byte 1 Byte r						Byte n		
FF H								

INS = D0 H for writing user zone

= D1 _H for writing configuration zone or writing fuse

= 0000 $0A_{10}A_9A_8$ b, where A_{10} is the MSB of zone address Zone Address

= don't care for writing fuse

Byte Address = $A_7A_6A_5A_4$ $A_3A_2A_1A_0$ b is the memory address location of the memory card.

= $1000\ 0000\ b$ for writing fuse

MEM_L Length of data to be written to the memory card.

Byte x Data to be written to the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 H 00 H if no error

3.4.4. VERIFY_PASSWORD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA	INS	P1	P2	Lc	Data			
FF H	20 _H	00 н	00 н	04 н	RP	Pw(0)	Pw(1)	Pw(2)

Pw(0),Pw(1),Pw(2) Passwords to be sent to memory card.

RP $= 0000 \text{ rp}_2 \text{p}_1 \text{p}_0 \text{ b}$

where the four bits " $rp_2p_1p_0$ " indicate the password to compare:

r = 0: Write password, r = 1: Read password,

 $p_2p_1p_0$: Password set number.

 $(rp_2p_1p_0 = 0111)$ for the secure code).

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2 ErrorCnt
90 н	

SW2 (ErrorCnt) = Error Counter. FFH indicates the verification is correct. 00 H indicates the

password is locked (exceed maximum number of retries). Other values indicate the current verification is failed.

3.4.5. INITIALIZE_AUTHENTICATION

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA INS P1 P2 Lc Q(0) Q(1) Q(7							Q(7)	
FF _H	84 н	00 н	00 н	08 н				

Byte Address

Memory address location of the memory card.

Q(0),Q(1)...Q(7)

Host random number, 8 bytes.

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 + 00 + if no error

3.4.6. VERIFY_AUTHENTICATION

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA INS P1 P2 Lc Q1(0) Q1(1) Q1(7)							Q1(7)	
FF _H	82 _H	00 н	00 н	08 н				

Byte Address

Memory address location of the memory card.

Q1(0),Q1(1)...Q1(7)

Host challenge, 8 bytes.

Response data format (abData field in the RDR to PC DataBlock)

SW1	SW2

SW1, SW2 = 90 + 00 + if no error

Memory Card – SLE 4418 / SLE 4428 / SLE 5518 / SLE 5528

3.5.1. **SELECT CARD TYPE**

This command powers down and up the selected card inserted in the card reader and performs a card reset.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of ScardConnect() API, please refer to PC/SC specification

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU							
CLA	INS	P1	P2	Lc	Card Type		
FF _H	А4 н	00 н	00 н	01 н	05 н		

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 + 00 + if no error

3.5.2. READ_MEMORY_CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA	INS	Byte A	MEM_L					
		MSB	LSB					
FF _H	В0 н							

MSB Byte Address

= 0000 00 A_9A_8 b is the memory address location of the memory

card.

LSB Byte Address

= $A_7A_6A_5A_4$ $A_3A_2A_1A_0$ b is the memory address location of the

memory card.

MEM_L

Length of data to be read from the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

BYTE 1	 	BYTE N	SW1	SW2

BYTE x

Data read from memory card

SW1, SW2

= 90 H 00 H if no error

3.5.3. READ_PRESENTATION_ERROR_COUNTER_MEMORY_CARD (SLE 4428 and SLE 5528)

To read the presentation error counter for the secret code.

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU									
CLA	INS P1 P2 ME									
FF _H	В1 н	00 н	00 н	03 н						

Response data format (abData field in the RDR_to_PC_DataBlock)

ERRCNT	DUMMY 1	DUMMY 2	SW1	SW2

ERRCNT The value of the presentation error counter. FF_H indicates the last

verification is correct. 00_H indicates the password is locked (exceed maximum number of retries). Other values indicate the last verification is

failed.

DUMMY Two bytes dummy data read from the card.

SW1, SW2 = 90 H 00 H if no error

3.5.4. READ_PROTECTION_BIT

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU									
CLA	INS	Byte A	ddress	MEM_L					
		MSB	LSB						
FF _H	В2 н								

MSB Byte Address = $0000 \ 00A_9A_8$ b is the memory address location of the memory

card.

LSB Byte Address = $A_7A_6A_5A_4$ $A_3A_2A_1A_0$ b is the memory address location of the

memory card.

MEM_L Length of protection bits to be read from the card, in multiples of 8

bits. Maximum value is 32.

 $MEM_L = 1 + INT((number of bits-1)/8)$

For example, to read eight protection bits starting from memory 0x0010, the following pseudo-APDU should be issued:

0xFF 0xB2 0x00 0x10 0x01

Response data format (abData field in the RDR_to_PC_DataBlock)

PROT 1	 	PROT L	SW1	SW2

PROT y Bytes containing the protection bits

SW1,SW2 = 90 H 00 H if no error

The arrangement of the protection bits in the PROT bytes is as follows:

			PRO	OT 1					PROT 2														
P8	P7	P6	P5	P4	Р3	P2	P1	P16	P15	P14	P13	P12	P11	P10	P9			:	;			P18	P17

Px is the protection bit of BYTE x in the response data

'0' byte is write protected

'1' byte can be written

3.5.5. WRITE_MEMORY_CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU										
CLA	INS	Byte A	ddress	MEM_L	Byte 1			Byte N			
		MSB	LSB								
FF _H	D0 н										

MSB Byte Address = $0000 \ 00A_9A_8$ b is the memory address location of the memory

card.

LSB Byte Address = $A_7A_6A_5A_4$ $A_3A_2A_1A_0$ b is the memory address location of the

memory card.

MEM_L Length of data to be written to the memory card.

Byte x Data to be written to the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2				

SW1, SW2 = 90 H 00 H if no error

3.5.6. WRITE_PROTECTION_MEMORY_CARD

Each of the bytes specified in the command is internally in the card compared with the byte stored at the specified address and if the data match, the corresponding protection bit is irreversibly programmed to '0'.

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU										
CLA	CLA INS		ddress	NATNA I	Ryte 1			Buto N			
CLA	IINO	MSB	LSB	MEM_L	Byte 1	••••		Byte N			
FF _H	D1 _H										

MSB Byte Address = $0000 \ 00A_9A_8$ b is the memory address location of the memory

card.

LSB Byte Address = $A_7A_6A_5A_4$ $A_3A_2A_1A_0$ b is the memory address location of the

memory card.

MEM_L Length of data to be written to the memory card.

Byte x Byte values to be compared with the data in the card starting at

Byte Address. BYTE 1 is compared with the data at Byte Address;

BYTE N is compared with the data at (Byte Address+N-1).

SW1	SW2

SW1, SW2

= 90 H 00 H if no error

3.5.7. PRESENT_CODE_MEMORY_CARD (SLE 4428 and SLE 5528)

To submit the secret code to the memory card to enable the write operation with the SLE 4428 and SLE 5528 card, the following actions are executed:

- 1. Search a '1' bit in the presentation error counter and write the bit to '0'
- 2. Present the specified code to the card
- 3. Try to erase the presentation error counter

Command format (abData field in the PC to RDR XfrBlock)

Pseudo-APDU										
CLA	INS	P1	P2	MEM_L	С	ODE				
CLA	INS	PI	P2	IVIEIVI_L	Byte 1	Byte 2				
FF _H	20 _H	00 н	00 н	02 н						

CODE Two bytes secret code (PIN)

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2
	ErrorCnt
90 н	

SW1

= 90 H

SW2 (ErrorCnt) = Error Counter. FF_H indicates the verification is correct. 00_H indicates the password is locked (exceed maximum number of retries). Other values indicate the current verification is failed.

Memory Card – SLE 4432 / SLE 4442 / SLE 5532 / SLE 5542 3.6.

3.6.1. SELECT CARD TYPE

This command powers down and up the selected card inserted in the card reader and performs a card reset.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of ScardConnect() API, please refer to PC/SC specification.

Command format (abData field in the PC to RDR XfrBlock)

	Pseudo-APDU									
CLA	INS P1 P2 Lc Card Ty									
FF _H	A4 _H	00 н	00 н	01 н	06 н					

SW1	SW2

SW1, SW2

= 90 + 00 + if no error

3.6.2. READ_MEMORY_CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU									
CLA	INS	P1	Byte Address	MEM_L						
FF _H	В0 н	00 н								

Byte Address

= A7A6A5A4 A3A2A1A0 b is the memory address location of the memory

card.

MEM L

Length of data to be read from the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

BYTE 1	 	BYTE N	SW1	SW2

BYTE x

Data read from memory card

SW1, SW2

= 90 H 00 H if no error

3.6.3. READ_PRESENTATION_ERROR_COUNTER_MEMORY_CARD (SLE 4442 and SLE 5542)

This command is used to read the presentation error counter for the secret code.

Command format (abData field in the PC to RDR XfrBlock)

Pseudo-APDU								
CLA	INS	INS P1 P2 MEM_L						
FF _H	В1 н	00 н	00 н	04 _H				

Response data format (abData field in the RDR_to_PC_DataBlock)

ERRCNT	DUMMY 1	DUMMY 2	DUMMY 3	SW1	SW2

ERRCNT

The value of the presentation error counter. 07 $_{\rm H}$ indicates the last verification is correct. 00 $_{\rm H}$ indicates the password is locked (exceed maximum number of retries). Other values indicate the last verification is

failed.

DUMMY

Three bytes dummy data read from the card.

SW1, SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

3.6.4. READ_PROTECTION_BITS

To read the protection bits for the first 32 bytes.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA	INS P1 P2 MEM_L							
FF _H	В2 н	00 н	00 н	04 н				

Response data format (abData field in the RDR_to_PC_DataBlock)

PROT 1	PROT 2	PROT3	PROT 4	SW1	SW2

PROT y Bytes containing the protection bits from protection memory

SW1, SW2 = 90 + 00 + if no error

The arrangement of the protection bits in the PROT bytes is as follows:

			PRO	OT 1					PROT 2				'ROT 2										
P8	P7	P6	P5	P4	P3	P2	P1	P16	P15	P14	P13	P12	P11	P10	P9					;		P18	P17

Px is the protection bit of BYTE x in the response data

'0' byte is write protected

'1' byte can be written

3.6.5. WRITE_MEMORY_CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU								
CLA	INS	P1	P1 Byte Address MEM_L Byte 1 Byte N						
FF _H	D0 _н	00 н							

Byte Address = A7A6A5A4 A3A2A1A0 _b is the memory address location of the memory

card.

MEM_L Length of data to be written to the memory card.

Byte x Data to be written to the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2 = $90 \pm 00 \, \text{H}$ if no error

3.6.6. WRITE PROTECTION MEMORY CARD

Each of the bytes specified in the command is internally in the card compared with the byte stored at the specified address and if the data match, the corresponding protection bit is irreversibly programmed to '0'.

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU								
CLA	CLA INS P1 Byte Address MEM_L Byte 1 Byte N						Byte N		
FF _H	D1 _H	00 н							

Byte Address = 000A4 A3A2A1A0 b (00 H to 1F H) is the protection memory address

location of the memory card.

MEM_L Length of data to be written to the memory card.

Byte x Byte values to be compared with the data in the card starting at Byte

Address. BYTE 1 is compared with the data at Byte Address; BYTE

N is compared with the data at (Byte Address+N-1).

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2 = 90 H 00 H if no error

3.6.7. PRESENT_CODE_MEMORY_CARD (SLE 4442 and SLE 5542)

To submit the secret code to the memory card to enable the write operation with the SLE 4442 and SLE 5542 card, the following actions are executed:

- 1. Search a '1' bit in the presentation error counter and write the bit to '0'
- 2. Present the specified code to the card
- 3. Try to erase the presentation error counter

Command format (abData field in the PC to RDR XfrBlock)

Pseudo-APDU								
CLA	INS	P1	P2	DO MEM I		CODE		
CLA	INS	FI	F2	MEM_L	Byte 1	Byte 2	Byte 3	
FF _H	20 н	00 н	00 н	03 н				

CODE

Three bytes secret code (PIN)

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2
	ErrorCnt
90 н	

SW1

= 90 H

SW2 (ErrorCnt)

= Error Counter. $07_{\rm H}$ indicates the verification is correct. $00_{\rm H}$ indicates the password is locked (exceed maximum number of retries). Other values indicate the current verification is failed.

3.6.8. CHANGE_CODE_MEMORY_CARD (SLE 4442 and SLE 5542)

This command is used to write the specified data as new secret code in the card.

The current secret code must have been presented to the card with the PRESENT_CODE command prior to the execution of this command.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU							
CLA	INS	P1	P2	MEM_L		CODE	
CLA	INS	FI	F2	IVIEIVI_L	Byte 1	Byte 2	Byte 3
FF _H	D2 _H	00 н	01 н	03 н			

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2 = 90 H 00 H if no error

3.7. Memory Card - SLE 4406 / SLE 4436 / SLE 5536 / SLE 6636

3.7.1. SELECT_CARD_TYPE

This command powers down and up the selected card inserted in the card reader and performs a card reset.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of ScardConnect() API, please refer to PC/SC specification.

Command format (abData field in the PC_to_RDR_XfrBlock)

		Pseu	do-APDL	J	
CLA	INS	P1	P2	Lc	Card Type
FF _H	А4 н	00 н	00 н	01 н	07 н

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 H 00 H if no error

3.7.2. READ MEMORY CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU					
CLA	INS	P1	Byte Address	MEM_L	
FF _H	В0 н	00 н			

Byte Address

= Memory address location of the memory card.

MEM_L

Length of data to be read from the memory card.

BYTE 1	 	BYTE N	SW1	SW2

BYTE x

Data read from memory card

SW1, SW2

= 90 + 00 + if no error

3.7.3. WRITE_ONE_BYTE_MEMORY_CARD

To write one byte to the specified address of the inserted card. The byte is written to the card with LSB first, i.e., the bit at card address 0 is regarded as the LSB of byte 0.

Four different WRITE modes are available for this card type, which are distinguished by a flag in the command data field:

a) Write

The byte value specified in the command is written to the specified address. This command can be used for writing personalization data and counter values to the card.

b) Write with carry

The byte value specified in the command is written to the specified address and the command is sent to the card to erase the next lower counter stage. This write mode can therefore only be used for updating the counter value in the card.

c) Write with backup enabled (SLE 4436, SLE 5536 and SLE 6636 only)

The byte value specified in the command is written to the specified address. This command can be used for writing personalization data and counter values to the card. Backup bit is enabled to prevent data loss when card tearing occurs.

d) Write with carry and backup enabled (SLE 4436, SLE 5536 and SLE 6636 only)

The byte value specified in the command is written to the specified address and the command is sent to the card to erase the next lower counter stage. This write mode can therefore only be used for updating the counter value in the card. Backup bit is enabled to prevent data loss when card tearing occurs.

With all write modes, the byte at the specified card address is not erased prior to the write operation and, hence, memory bits can only be programmed from '1' to '0'.

The backup mode available in the SLE 4436 and SLE 5536 card can be enabled or disabled in the write operation.

Command format (abData field in the PC to RDR XfrBlock)

			Pseudo-APDU			
CLA	INS	P1	Byte Address	MEM_L	MODE	BYTE
FF _H	D0 н	00 н		02 н		

Byte Address

= Memory address location of the memory card.

MODE

Specifies the write mode and backup option

00_H: write

01_H: write with carry

02 H: write with backup enabled (SLE 4436, SLE 5536 and SLE 6636 only)

03 H: write with carry and with backup enabled (SLE 4436, SLE 5536 and

SLE 6636 only)

BYTE

Byte value to be written to the card

SW1	SW2

SW1, SW2

= 90 + 00 + if no error

3.7.4. PRESENT_CODE_MEMORY_CARD

To submit the secret code to the memory card to enable the card personalization mode, the following actions are executed:

- 1. Search a '1' bit in the presentation counter and write the bit to '0'
- Present the specified code to the card

The ACR38 does not try to erase the presentation counter after the code submission! This must be done by the application software through a separate 'Write with carry' command.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA	INS	P1	P2	MEM_L		CO	DE	
CLA	IIVO	FI	F2	IVIEIVI_L	ADDR	Byte 1	Byte 2	Byte 3
FF _H	20 н	00 н	00 н	04 н	09 н			

ADDR

Byte address of the presentation counter in the card

CODE

Three bytes secret code (PIN)

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 + 00 + if no error

3.7.5. AUTHENTICATE_MEMORY_CARD (SLE 4436, SLE 5536 and SLE 6636)

To read a card authentication certificate from a SLE 5536 or SLE 6636 card, the following actions are executed by the ACR38:

- 1. Select Key 1 or Key 2 in the card as specified in the command
- 2. Present the challenge data specified in the command to the card
- 3. Generate the specified number of CLK pulses for each bit of authentication data computed by the card
- 4. Read 16 bits of authentication data from the card
- Reset the card to normal operation mode

The authentication has to be performed in two steps. The first step is to send the Authentication Certificate to the card. The second step is to get back two bytes of authentication data calculated by the card.

Step 1: Send Authentication Certificate to the Card

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU									
CLA	INS	P1	P2	MEMI			(CODE		
CLA	INS	FI	F2	MEM_L	KEY	CLK_CNT	Byte 1	Byte 2	 Byte 5	Byte 6
FF _H	84 _H	00 н	00 н	08 н						

KEY Key to be used for the computation of the authentication certificate:

 00_{H} : key 1 with no cipher block chaining 01_{H} : key 2 with no cipher block chaining

80 H: key 1 with cipher block chaining (SLE 5536 and SLE 6636 only)

81_H: key 2 with cipher block chaining (SLE 5536 and SLE 6636 only)

CLK_CNT Number of CLK pulses to be supplied to the card for the computation of each

bit of the authentication certificate. Typical value is 160 clocks (A0 $_{\scriptsize H}$)

BYTE 1...6 Card challenge data

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2
61 н	02 н

SW1. SW2

= $61 \, \text{H}$ 02 H if no error, meaning two bytes of authentication data are ready. The authentication data can be retrieved by "Get Response" command.

Step 2: Get back the Authentication Data (Get_Response)

Command format (abData field in the PC to RDR XfrBlock)

	Pseudo-APDU					
CLA	INS	P1	P2	MEM_L		
FF _H	С0 н	00 н	00 н	02 н		

Response data format (abData field in the RDR_to_PC_DataBlock)

CERT	SW1	SW2

CERT

16 bits of authentication data computed by the card. The LSB of BYTE 1 is

the first authentication bit read from the card.

SW1, SW2 = 90 H 00 H if no error

3.8. **Memory Card – SLE 4404**

3.8.1. SELECT_CARD_TYPE

This command powers down and up the selected card inserted in the card reader and performs a card reset.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of ScardConnect() API, please refer to PC/SC specification.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU						
CLA INS P1 P2 Lc Card Type						
FF _H	А4 н	00 н	00 н	01 н	08 н	

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2 = $90 \times 00 \times 10^{10}$ if no error

3.8.2. READ MEMORY CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU						
CLA	INS	P1	Byte Address	MEM_L		
FF _H	В0 н	00 н				

Byte Address = Memory address location of the memory card.

MEM_L Length of data to be read from the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

BYTE 1	 	BYTE N	SW1	SW2

BYTE x Data read from memory card

SW1, SW2 = $90 \pm 00 \pm if$ no error

3.8.3. WRITE_MEMORY_CARD

This command is used to write data to the specified address of the inserted card. The byte is written to the card with LSB first, i.e., the bit at card address 0 is regarded as the LSB of byte 0.

The byte at the specified card address is not erased prior to the write operation and, hence, memory bits can only be programmed from '1' to '0'.

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU							
CLA	INS	P1 Byte Address MEM_L Byte 1 Byte N						
FF _H	D0 _н	00 н						

Byte Address = Memory address location of the memory card.

MEM_L Length of data to be written to the memory card.

BYTE Byte value to be written to the card

SW1	SW2

SW1, SW2

= 90 H 00 H if no error

3.8.4. ERASE_SCRATCH_PAD_MEMORY_CARD

This command is used to erase the data of the scratch pad memory of the inserted card. All memory bits inside the scratch pad memory will be programmed to the state of '1'.

To erase error counter or user area, please use the VERIFY_USER_CODE command as specified in the Section 3.8.5.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU					
CLA	INS	P1	Byte Address	MEM_L	
FF _H	D2 _н	00 н		00 н	

Byte Address

= Memory byte address location of the scratch pad.

Typical value is 0x02.

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 H 00 H if no error

3.8.5. VERIFY_USER_CODE

This command is used to submit User Code (2 bytes) to the inserted card. User Code is to enable the memory access of the card.

The following actions are executed:

- 1. Present the specified code to the card
- 2. Search a '1' bit in the presentation error counter and write the bit to '0'
- 3. Erase the presentation error counter. The User Error Counter can be erased when the submitted code is correct.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU						
CLA	INS	Error	Byte	MEM_L	C	DDE
CLA	INO	Counter LEN	Address	s WEW_E	Byte 1	Byte 2
FF _H	20 н	04 н	08 н	02 н		

Error Counter LEN

Length of presentation error counter in bits.

Byte Address

Byte address of the key in the card.

CODE

2 bytes User Code

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 + 00 + if no error.

= 63 _H 00 _H if there is no more retry chance

Note: After SW1SW2 = 0×9000 has been received, read back the User Error Counter can check whether the VERIFY_USER_CODE is correct. If User Error Counter is erased and equals to " $0 \times FF$ ", the previous verification is success.

3.8.6. VERIFY_MEMORY_CODE

This command is used to submit Memory Code (4 bytes) to the inserted card. Memory Code is used to authorize the reloading of the user memory, together with the User Code.

The following actions are executed:

- 1. Present the specified code to the card
- 2. Search a '1' bit in the presentation error counter and write the bit to '0'
- 3. Erase the presentation error counter. Please note that Memory Error Counter cannot be erased.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA	INS	Error Counter	Byte	MEM L		СО	DE	
CLA	1110	LEN	Address	IVIEIVI_L	Byte 1	Byte 2	Byte 3	Byte 4
FF _H	20 _H	40 _H	28 _H	04 н				

Error Counter LEN

Length of presentation error counter in bits.

Byte Address

Byte address of the key in the card.

CODE

4 bytes Memory Code

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

= 63 $_{\rm H}$ 00 $_{\rm H}$ if there is no more retry chance

Note: After SW1SW2 = 0x9000 has been received, read back the Application Area can check whether the $VERIFY_MEMORY_CODE$ is correct. If all data in Application Area is erased and equals to "0xFF", the previous verification is success.

3.9. Memory Card - AT88SC101 / AT88SC102 / AT88SC1003

3.9.1. SELECT CARD TYPE

This command powers down and up the selected card inserted in the card reader and performs a card reset.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of ScardConnect() API, please refer to PC/SC specification.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU						
CLA	INS P1 P2 Lc Card Type				Card Type	
FF _H	А4 н	00 н	00 н	01 н	09 н	

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2 = 90 + 00 + if no error

3.9.2. READ MEMORY CARD

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU						
CLA INS P1 Byte Address MEM_L						
FF _H	В0 н	00 н				

Byte Address = Memory address location of the memory card.

MEM_L Length of data to be read from the memory card.

Response data format (abData field in the RDR_to_PC_DataBlock)

BYTE 1	 	BYTE N	SW1	SW2

BYTE x Data read from memory card

SW1, SW2 = 90 H 00 H if no error

3.9.3. WRITE_MEMORY_CARD

This command is used to write data to the specified address of the inserted card. The byte is written to the card with LSB first, i.e., the bit at card address 0 is regarded as the LSB of byte 0.

The byte at the specified card address is not erased prior to the write operation and, hence, memory bits can only be programmed from '1' to '0'.

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU						
CLA	INS	P1	Byte Address	MEM_L	Byte 1		 Byte N
FF _H	D0 _H	00 н					

Byte Address = Memory address location of the memory card.

MEM_L Length of data to be written to the memory card.

BYTE Byte value to be written to the card

SW1	SW2

SW1, SW2

= 90 + 00 + if no error

3.9.4. ERASE_NON_APPLICATION_ZONE

This command is used to erase the data in Non-Application Zones. The EEPROM memory is organized into 16 bit words. Although erases are performed on single bits the ERASE operation clears an entire word in the memory. Therefore, performing an ERASE on any bit in the word will clear ALL 16 bits of that word to the state of '1'.

To erase Error Counter or the data in Application Zones, please refer to:

- 1. ERASE_APPLICATION_ZONE_WITH_ERASE command as specified in Section 3.9.5
- 2. ERASE_APPLICATION_ZONE_WITH_WRITE_AND_ERASE command as specified in Section 3.9.6
- 3. VERIFY SECURITY CODE commands as specified in Section 3.9.7

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU					
CLA	INS	P1	Byte Address	MEM_L		
FF _H	D2 _H	00 н		00 н		

Byte Address = Memory byte address location of the word to be erased.

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

3.9.5. ERASE APPLICATION ZONE WITH ERASE

This command can be used in the following cases:

- 1. AT88SC101: To erase the data in Application Zone with EC Function Disabled
- 2. AT88SC102: To erase the data in Application Zone 1
- 3. AT88SC102: To erase the data in Application Zone 2 with EC2 Function Disabled
- 4. AT88SC1003: To erase the data in Application Zone 1
- 5. AT88SC1003: To erase the data in Application Zone 2 with EC2 Function Disabled
- 6. AT88SC1003: To erase the data in Application Zone 3

The following actions are executed for this command:

- 1. Present the specified code to the card
- Erase the presentation error counter. The data in corresponding Application Zone can be erased when the submitted code is correct.

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU										
	LA	INS	Error Counter	Byte Address	MEM_L	CODE					
)LA	IINO	LEN	Address		Byte 1	Byte 2			Byte N	
FI	Fн	20 н	00 н								

Error Counter LEN Length of presentation error counter in bits. The value should be

0x00 always.

Byte Address Byte address of the Application Zone Key in the card. Please refer

to the table below for the correct value.

	Byte Address	LEN
AT88SC101: Erase Application Zone with EC function disabled	96 _H	04 _H
AT88SC102: Erase Application Zone 1	56 _н	06 _H
AT88SC102: Erase Application Zone 2 with EC2 function disabled	9C _H	04 _H
AT88SC1003: Erase Application Zone 1	36 _H	06 _H
AT88SC1003: Erase Application Zone 2 with EC2 function disabled	5С _н	04 _H
AT88SC1003: Erase Application Zone 3	С0 н	06 _H

MEM_L Length of the Erase Key. Please refer to the table above for the

correct value.

CODE N bytes of Erase Key

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2 = 90 H 00 H if no error.

Note: After SW1SW2 = 0x9000 has been received, read back the data in Application Zone can check whether the ERASE_APPLICATION_ZONE_WITH_ERASE is correct. If all data in Application Zone is erased and equals to "0xFF", the previous verification is success.

3.9.6. ERASE_APPLICATION_ZONE_WITH_WRITE_AND_ERASE

This command can be used in the following cases:

- 1. AT88SC101: To erase the data in Application Zone with EC Function Enabled
- 2. AT88SC102: To erase the data in Application Zone 2 with EC2 Function Enabled
- 3. AT88SC1003: To erase the data in Application Zone 2 with EC2 Function Enabled

With EC or EC2 Function Enabled (that is, ECEN or EC2EN Fuse is unblown and in "1" state), the following actions are executed:

- 1. Present the specified code to the card
- 2. Search a '1' bit in the presentation error counter and write the bit to '0'
- 3. Erase the presentation error counter. The data in corresponding Application Zone can be erased when the submitted code is correct.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU									
CLA	INS	Error Counter	Byte	MEM L	CODE				
CLA	INS	LEN	Address	IVILIVI_L	Byte 1	Byte 2	Byte 3	Byte 4	
FF _H	20 н	80 н		04 н					

Error Counter LEN

Length of presentation error counter in bits. The value should be 0x80 always.

Byte Address

Byte address of the Application Zone Key in the card.

	Byte Address
AT88SC101	96 _H
AT88SC102	9C _H
AT88SC1003	5С _н

CODE

4 bytes Erase Key

Response data format (abData field in the RDR to PC DataBlock)

SW1	SW2

SW1. SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error.

= 63 $_{\rm H}$ 00 $_{\rm H}$ if there is no more retry chance

Note: After SW1SW2 = 0×9000 has been received, read back the data in Application Zone can check whether the ERASE_APPLICATION_ZONE_WITH_WRITE_AND_ERASE is correct. If all data in Application Zone is erased and equals to " $0 \times FF$ ", the previous verification is success.

3.9.7. VERIFY_SECURITY_CODE

This command is used to submit Security Code (2 bytes) to the inserted card. Security Code is to enable the memory access of the card.

The following actions are executed:

- 1. Present the specified code to the card
- 2. Search a '1' bit in the presentation error counter and write the bit to '0'
- 3. Erase the presentation error counter. The Security Code Attempts Counter can be erased when the submitted code is correct.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU								
CLA	INS	Error Counter	Byte	MEM_L	CODE			
CLA	IINO	LEN	Address	IVIEIVI_L	Byte 1	Byte 2		
FF _H	20 н	08 н	0А н	02 н				

Error Counter LEN

Length of presentation error counter in bits.

Byte Address

Byte address of the key in the card.

CODE

2 bytes Security Code

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2 = 90 H 00 H if no error.

= 63 $_{\rm H}$ 00 $_{\rm H}$ if there is no more retry chance

Note: After SW1SW2 = 0x9000 has been received, read back the Security Code Attempts Counter (SCAC) can check whether the VERIFY_USER_CODE is correct. If SCAC is erased and equals to "0xFF", the previous verification is success.

3.9.8. BLOWN_FUSE

This command is used to blow the fuse of the inserted card. The fuse can be EC_EN Fuse, EC2EN Fuse, Issuer Fuse or Manufacturer's Fuse.

Note: The blowing of Fuse is an irreversible process.

Command format (abData field in the PC_to_RDR_XfrBlock)

	Pseudo-APDU									
		Error	Byte	MEM	CODE					
CLA	CLA INS Cou		Addre ss	L	Fjuse Bit Addr (High)	Fuse Bit Addr (Low)	State of FUS Pin	State of RST Pin		
FF _H	05 н	00 н	00 н	04 н			01 н	00 _н or 01 _н		

Fuse Bit Addr (2 bytes) Bit address of the fuse. Please refer to the table below for

the correct value.

State of FUS Pin State of the FUS pin. Should always be 0x01.

State of RST Pin State of the RST pin. Please refer to below table for the correct value.

		Fuse Bit Addr (High)	Fuse Bit Addr (Low)	State of RST Pin
AT88SC101	Manufacturer Fuse	05 _H	80 _H	01 _H
	EC_EN Fuse	05 _H	С9 н	01 _H
	Issuer Fuse	05 _H	E0 _H	01 _H
AT88SC102	Manufacturer Fuse	05 _H	В0 н	01 _H
	EC2EN Fuse	05 _H	F9 _H	01 _H
	Issuer Fuse	06 _H	10 _H	01 _H
AT88SC1003	Manufacturer Fuse	03 н	F8 _H	00 н
	EC2EN Fuse	03 н	FC _H	00 н
	Issuer Fuse	03 н	Е0 н	00 н

Response data format (abData field in the RDR_to_PC_DataBlock)

SW1	SW2

SW1, SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

3.10. Other Commands Access via PC_to_RDR_XfrBlock

3.10.1. GET_READER_INFORMATION

This command returns relevant information about the particular ACR38 Firmware 1.12c model and the current operating status, such as, the firmware revision number, the maximum data length of a command and response, the supported card types, and whether a card is inserted and powered up.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of ScardConnect() API, please refer to PC/SC specification.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU							
CLA	INS	P1	P2	Lc			
FF _H	09 н	00 н	00 н	10 н			

Response data format (abData field in the RDR_to_PC_DataBlock)

FIRMWARE					MAX_C	MAX_R	C_T	YPE	C_SEL	C_STAT			
_					-	-							

FIRMWARE 10 bytes data for firmware version

MAX_C The maximum number of command data bytes.

MAX_R The maximum number of data bytes that can be requested to be transmitted

in a response.

C_TYPE The card types supported by the ACR38U-112c. This data field is a bitmap

with each bit representing a particular card type. A bit set to '1' means the corresponding card type is supported by the reader and can be selected with the SELECT_CARD_TYPE command. The bit assignment is as follows:

Byte 1 2

card type F E D C B A 9 8 7 6 5 4 3 2 1 0

Refer to the next section for the correspondence between these bits and the respective card types.

C_SEL The currently selected card type. A value of 00H means that no card type

has been selected.

C_STAT Indicates whether a card is physically inserted in the reader and whether the

card is powered up:

00 H: no card inserted

 $01_{\,\mathrm{H}}$: card inserted, not powered up

03 H: card powered up

3.11. Supported Card Types

The following table summarizes the card type returned by <code>GET_READER_INFORMATION</code> correspond with the respective card type.

Byte	Card Type
00 _H	Auto-select T=0 or T=1 communication protocol
01н	I2C memory card (1k, 2k, 4k, 8k and 16k bits)
02 _H	I2C memory card (32k, 64k, 128k, 256k, 512k and 1024k bits)
03 _н	Atmel AT88SC153 secure memory card
04 _H	Atmel AT88SC1608 secure memory card
05 _H	Infineon SLE 4418 and SLE 4428
06 _н	Infineon SLE 4432 and SLE 4442
07 _H	Infineon SLE 4406, SLE 4436 and SLE 5536
08н	Infineon SLE 4404
09 _н	Atmel AT88SC101, AT88SC102 and AT88SC1003
0Сн	MCU-based cards with T=0 communication protocol
0D _H	MCU-based cards with T=1 communication protocol

3.12. Response Error Codes

The following table summarizes the possible error code returned by the ACR38 (FW 1.12c)

Error Code	Status
$\mathtt{FF_h}$	SLOTERROR_CMD_ABORTED
$\mathtt{FE}_{\mathtt{h}}$	SLOTERROR_ICC_MUTE
$\mathtt{FD}_{\mathtt{h}}$	SLOTERROR_XFR_PARITY_ERROR
FC_h	SLOTERROR_XFR_OVERRUN
$\mathtt{FB}_{\mathtt{h}}$	SLOTERROR_HW_ERROR
F8 _h	SLOTERROR_BAD_ATR_TS
F7 _h	SLOTERROR_BAD_ATR_TCK
F6 _h	SLOTERROR_ICC_PROTOCOL_NOT_SUPPORTED
F5 _h	SLOTERROR_ICC_CLASS_NOT_SUPPORTED
${ t F4}_{ t h}$	SLOTERROR_PROCEDURE_BYTE_CONFLICE
F3 _h	SLOTERROR_DEACTIVATED_PROTOCOL
F2 _h	SLOTERROR_BUSY_WITH_AUTO_SEQUENCE
E0 _h	SLOTERROR_CMD_SLOT_BUSY

4.0. ACR38 Firmware 1.10 Memory Card Command Set

4.1. Memory Card – 1, 2, 4, 8, and 16 Kbit I2C Card

4.1.1. SELECT PAGE SIZE

This command will choose the page size to read the smart card. The default value is 8-byte page write. It will reset to default value whenever the card is removed or the reader is powered off.

Send Buffer Format

SCardTransmit Send Buffer						
CLA INS P1 P2 Lc (P3) Page size					Page size	
FF H	01 н	00 н	00 н	01 н		

Page size =

= 03 _H for 8-byte page write

= 04 _H for 16-byte page write

= 05 _H for 32-byte page write

= 06 _H for 64-byte page write

= 07 _H for 128-byte page write

Response Buffer Format

SCardTransmit Receive Buffer			
SW1	SW2		

SW1,SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

4.1.2. READ_MEMORY_CARD

Send Buffer Format

SCardTransmit Send Buffer						
CLA	INS	Byte Address MEM_L (P3)				
		MSB (P1)	LSB (P2)			
FF H	В0 н					

Byte Address

Memory address location of the memory card.

MEM_L

Length of data to be read from the memory card.

Response data Format

SCardTransmit Receive Buffer					
BYTE 1			BYTE N	SW1	SW2

BYTE x

Data read from memory card

SW1,SW2 = 90 H 00 H if no error

4.1.3. WRITE_MEMORY_CARD

Send Buffer Format

SCardTransmit Send Buffer							
CLA	INS	Byte Address		MEM_L (P3)	Byte 1		 Byte n
		MSB (P1)	LSB (P2)				
FF _H	D0 н						

Byte Address Memory address location of the memory card.

MEM_L Length of data to be written to the memory card.

Byte x Data to be written to the memory card.

Response Buffer Format

SCardTransmit	SCardTransmit Receive Buffer			
SW1	SW2			

SW1,SW2 = 90 H 00 H if no error

4.2. Memory Card – 32, 64, 128, 256, 512, and 1024 Kbit I2C Card

4.2.1. SELECT_PAGE_SIZE

This command will choose the page size to read the smart card. The default value is 8-byte page write. It will reset to default value whenever the card is removed or the reader is powered off.

Send Buffer Format

SCardTransmit Send Buffer						
CLA	CLA INS P1 P2 Lc (P3) Page size					
FF _H 01 _H 00 _H 00 _H 01 _H						

Data TPDU to be sent to the card

Page size = 0.3 H for 8-byte page write

= 04 H for 16-byte page write

= 05 _H for 32-byte page write

= 06 _H for 64-byte page write

= 07 H for 128-byte page write

Response Buffer Format

SCardTransmit Receive Buffer			
SW1	SW2		

SW1, SW2 = 90 H 00 H if no error

4.2.2. READ_MEMORY_CARD

Send Buffer Format

SCardTransmit Send Buffer						
CLA	INS	Byte A	Byte Address MEM_L (P3)			
		MSB (P1)	LSB (P2)			
FF _H						

INS = $B0_H$ for 32,64,128,256,512kbit iic card

= 1011 000 * $_{\text{b}}$ for 1024kbit iic card, where * is the MSB of the 17 bit

addressing

Byte Address Memory address location of the memory card.

MEM_L Length of data to be read from the memory card.

Response Buffer Format

SCardTransmit Receive Buffer					
BYTE 1 BYTE N SW1 SW2					SW2

BYTE x Data read from memory card

SW1,SW2 = 90 H 00 H if no error

4.2.3. WRITE_MEMORY_CARD

Send Buffer Format

SCardTransmit Send Buffer								
CLA	INS	Byte Address		MEM_L (P3)	Byte 1			Byte n
		MSB (P1)	LSB (P2)					
FF _H								

INS = $D0_H$ for 32,64,128,256,512kbit iic card

= 1101 000 * $_{b}$ for 1024kbit iic card, where * is the MSB of the 17 bit

addressing

Byte Address Memory address location of the memory card.

MEM_L Length of data to be written to the memory card.

Byte x Data to be written to the memory card.

Response Buffer Format

SCardTransmit	SCardTransmit Receive Buffer			
SW1	SW2			

SW1,SW2 = 90 H 00 H if no error

4.3. Memory Card – ATMEL AT88SC153

4.3.1. READ_MEMORY_CARD

Send Buffer Format

SCardTransmit Send Buffer					
CLA INS P1 Byte Address (P2) MEM_L (P3)					
FF _H		00 н			

INS = $B0_H$ for reading zone 00 b

= B1 _H for reading zone 01 b

= B2 $_{\rm H}$ for reading zone 10 b

= B3 H for reading zone 11 b

= B4 _H for reading fuse

Byte Address Memory address location of the memory card.

MEM_L Length of data to be read from the memory card.

Response Buffer Format

SCardTransmit Receive Buffer							
BYTE 1	E 1 BYTE N SW1 SW2						

BYTE x Data read from memory card

SW1,SW2 = 90 H 00 H if no error

4.3.2. WRITE_MEMORY_CARD

Send Buffer Format

SCardTransmit Send Buffer									
CLA INS P1 Bye Address (P2) MEM_L (P3) Byte 1 Byte							Byte n		
FF _H		00 н							

INS = D0 H for writing zone 00 b

= D1 $_{\rm H}$ for writing zone 01 b

= D2 $_{\rm H}$ for writing zone 10 b

= D3 _H for writing zone 11 b

= D4 H for writing fuse

Byte Address Memory address location of the memory card.

MEM_L Length of data to be written to the memory card.

MEM_D Data to be written to the memory card.

SCardTransmit Receive Buffer				
SW1	SW2			

SW1,SW2 = 90 H 00 H if no error

4.3.3. VERIFY_PASSWORD

Send Buffer Format

SCardTransmit Send Buffer								
CLA INS P1 P2 Lc (P3) Pw(0) Pw(1) Pw(2)								
FF _H	20 н	00 н		03 н				

Pw(0),Pw(1),Pw(2)

Passwords to be sent to memory card.

P2

= 0000 00rp b

where the two bits "rp" indicate the password to compare

r = 0: Write password,

r = 1: Read password,

p: Password set number,

rp = 01 for the secure code.

Response Buffer Format

SCardTransmit Receive Buffer				
SW1	SW2			

SW1,SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

4.3.4. INITIALIZE AUTHENTICATION

Send Buffer Format

SCardTransmit Send Buffer								
CLA	INS	P1	P2	Lc (P3)	Q(0)	Q(1)		Q(7)
FF _H	84 _H	00 _H	00 н	08 _H				

Q(0),Q(1)...Q(7)

Host random number, 8 bytes.

Response Buffer Format

SCardTransmi	SCardTransmit Receive Buffer			
SW1	SW2			

SW1,SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

4.3.5. VERIFY_AUTHENTICATION

Send Buffer Format

SCardTransmit Send Buffer								
CLA INS P1 P2 Lc (p3) Ch(0) Ch(1) Ch(7)						Ch(7)		
FF _H	82 _H	00 н	00 н	08 н				

Ch(0),Ch(1)...Ch(7)

Host challenge, 8 bytes.

Response Buffer Format

SCardTransmit Receive Buffer				
SW1	SW2			

SW1,SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

4.4. Memory Card – ATMEL AT88SC1608

4.4.1. READ_MEMORY_CARD

Send Buffer Format

	SCardTransmit Send Buffer							
CLA INS Zone Address (P1) Byte Address (P2) MEM_L (P3)								
FF _H								

INS = B0

= B0 H for reading user zone

= B1 $_{\mbox{\scriptsize H}}$ for reading configuration zone or reading fuse

Zone Address

= 0000 0A10A9A8 $_{\mbox{\scriptsize b}},$ where A10 is the MSB of zone address

= don't care for reading fuse

Byte Address

= A7A6A5A4 A3A2A1A0 _b is the memory address location of the memory

card

= 1000 0000 b for reading fuse

MEM_L

Length of data to be read from the memory card.

Response Buffer Format

SCardTransmit Receive Buffer							
BYTE 1	BYTE N SW1 SW2						

BYTE x

Data read from memory card

SW1,SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

4.4.2. WRITE_MEMORY_CARD

Send Buffer Format

	SCardTransmit Send Buffer										
CLA	CLA INS Zone Address (P1) Byte Address (P2) MEM_L (P3) Byte 1 Byte n										
FF _H											

INS = $D0_H$ for writing user zone

= D1 _H for writing configuration zone or writing fuse

Zone Address = 0000 0A10A9A8 b, where A10 is the MSB of zone address

= don't care for writing fuse

Byte Address = A7A6A5A4 A3A2A1A0 b is the memory address location of the memory

card.

= $1000\ 0000\ b$ for writing fuse

MEM_L Length of data to be written to the memory card.

Byte x Data to be written to the memory card.

Response Buffer Format

SCardTransmit Receive Buffer									
SW1	SW2								

SW1,SW2 = 90 H 00 H if no error

4.4.3. VERIFY_PASSWORD

Send Buffer Format

SCardTransmit Send Buffer										
CLA	CLA INS P1 P2 Lc (P3) Data									
FF _H	FF _H 20 _H 00 _H 00 _H 04 _H RP Pw(0) Pw(1) Pw(2)									

Pw(0),Pw(1),Pw(2) Passwords to be sent to memory card.

RP = 0000 rp2p1p0_{b}

where the four bits "rp2p1p0" indicate the password to compare:

r = 0: Write passwordr = 1: Read password

p2p1p0: Password set number

(rp2p1p0 = 0111 for the secure code).

Response Buffer Format

SCardTransmit Receive Buffer									
SW1	SW2								

SW1,SW2 = 90 + 00 + if no error

4.4.4. INITIALIZE_AUTHENTICATION

Send Buffer Format

SCardTransmit Send Buffer										
CLA	CLA INS P1 P2 Lc (P3) Q(0) Q(1) Q(7)									
FF _H 84 _H 00 _H 00 _H 08 _H										

Byte Address

Memory address location of the memory card.

Q(0),Q(1)...Q(7)

Host random number, 8 bytes.

Response Buffer Format

SCardTransmit Receive Buffer									
SW1	SW2								

SW1,SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

4.4.5. VERIFY_AUTHENTICATION

Send Buffer Format

SCardTi	SCardTransmit Send Buffer											
CLA	INS	P1	P2	Lc (P3)	Q1(0)	Q1(1)		Q1(7)				
FF _H	82 н	00 н	00 н	08 н								

Byte Address

Memory address location of the memory card.

Q1(0),Q1(1)...Q1(7)

Host challenge, 8 bytes.

Response Buffer Format

SCardTransmit Receive Buffer								
SW1	SW2							

SW1,SW2

= 90 $_{\rm H}$ 00 $_{\rm H}$ if no error

4.5. Memory Card – SLE 4418 / SLE 4428 / SLE 5518 / SLE5528

4.5.1. READ_MEMORY_WITH_PROTECT_BIT_CARD

Send Buffer Format

SCardTransmit Send Buffer										
CLA	INS	Byte A	MEM_L (P3)							
		MSB (P1)	LSB (P2)							
FF _H	В0 н									

MSB Byte Address

= 0000 00A9A8 $_{\mbox{\scriptsize b}}$ is the memory address location of the memory

card.

LSB Byte Address = A7A6A5A4 A3A2A1A0 b is the memory address location of the

memory card.

MEM_L Length of data to be read from the memory card. (Max. allowable

size is EC _H.)

Response Buffer Format

SCardTransmit Receive Buffer										
BYTE 1	BYTE 1 BYTE N PROT 1 PROT L SW1 SW2									

BYTE x Data read from memory card

PROT y Bytes containing the protection bits of the data bytes read

SW1,SW2 = $90 \pm 00 \pm if$ no error

The number L of protection bytes returned in the response is determined by the number N of data bytes read from the card as follows:

L = 1 + INT(N/8)

The arrangement of the protection bits in the PROT bytes is as follows:

	PROT 1 PROT 2																			
P8	P7	P6	P5	P4	P3	P2	P1	P16	P15	P14	P13	P12	P11	P10	P9	 	 		P18	P17

Px is the protection bit of BYTE x in the response data

'0' byte is write protected

'1' byte can be written

4.5.2. READ_MEMORY_WITHOUT_PROTECT_BIT_CARD

Send Buffer Format

	SCardTransmit Send Buffer										
CLA	INS	Byte A	MEM_L (P3)								
		MSB (P1)	LSB (P2)								
FF _H	В2 н										

MSB Byte Address = 0000 00A9A8 b is the memory address location of the memory

card.

LSB Byte Address = A7A6A5A4 A3A2A1A0 _b is the memory address location of the

memory card.

MEM_L Length of data to be read from the memory card.

Response Buffer Format

SCardTransmit Receive Buffer											
BYTE 1			BYTE N	SW2							

BYTE x Data read from memory card

SW1,SW2 = 90 H 00 H if no error

4.5.3. WRITE_MEMORY_CARD

Send Buffer Format

	SCardTransmit Send Buffer													
CLA	INS	Byte A	ddress	MEM_L (P3)	Byte 1			Byte N						
		MSB (P1) LSB (P2)												
FF _H	D0 _н													

MSB Byte Address = 0000 00A9A8 b is the memory address location of the memory

card.

LSB Byte Address = A7A6A5A4 A3A2A1A0 b is the memory address location of the

memory card.

MEM_L Length of data to be written to the memory card.

Byte x Data to be written to the memory card.

Response Buffer Format

SCardTransmit Receive Buffer										
SW1	SW2									

SW1,SW2 = 90 H 00 H if no error

4.5.4. WRITE_PROTECTION_MEMORY_CARD

Each of the bytes specified in the command is internally in the card compared with the byte stored at the specified address and if the data matches, the corresponding protection bit is irreversibly programmed to '0'.

Send Buffer Format

	SCardTransmit Send Buffer												
CLA	INS	Byte Ad	ddress	MEM_L (P3)	Byte 1			Byte N					
		MSB (P1)	LSB (P2)										
FF _H	D1 н												

MSB Byte Address = 0000 00A9A8 b is the memory address location of the memory

card.

LSB Byte Address = A7A6A5A4 A3A2A1A0 b is the memory address location of the

memory card.

MEM_L Length of data to be written to the memory card.

Byte x Byte values to be compared with the data in the card starting at

Byte Address. BYTE 1 is compared with the data at Byte Address;

BYTE N is compared with the data at (Byte Address+N-1).

SCardTransmit	Receive Buffer
SW1	SW2

SW1,SW2 = 90 H 00 H if no error

4.5.5. PRESENT_CODE_MEMORY_CARD (SLE 4428 and SLE 5528)

To submit the secret code to the memory card to enable the write operation with the SLE 4428 card. The following actions are executed:

- 1. Search a '1' bit in the presentation error counter and write the bit to '0'
- 2. Present the specified code to the card
- 3. Try to erase the presentation error counter

Send Buffer Format

	SCardTransmit Send Buffer												
CLA	INS	P1	CODE										
					Byte 1	Byte 2							
FF _H	20 _H	00 н	00 н	02 _H									

CODE

Two bytes secret code (PIN)

Response Buffer Format

ERRCNT	СО	DE	SW1	SW2
	Byte 1	Byte 2		

ERRCNT The value of the presentation error counter after the code presentation.

CODE The two bytes secret code read from the card.

SW1,SW2 = 90 H 00 H if no error

If the correct code has been presented to the card, the value of ERRCNT is FF_H and the value of CODE is identical to the code data specified in the command.

4.5.6. READ_PRESENTATION_ERROR_COUNTER_MEMORY_CARD (SLE 4428 and SLE 5528)

To read the presentation error counter for the secret code.

Send Buffer Format

	SCa	rdTransm	nit Send E	Buffer				
CLA	INS	P1	P2	MEM_L (P3)				
FF _H	В1 н	00 н	00 н	00 н				

SCardTransmit Receive Buffer											
ERRCNT	CNT DUMMY 1 DUMMY 2 SW1 SW										

The value of the presentation error counter.

DUMMY

Three bytes dummy data read from the card.

SW1,SW2 = 90 H 00 H if no error

4.6. Memory Card - SLE 4432 / SLE 4442 / SLE 5532 / SLE 5542

4.6.1. READ_MEMORY_CARD

Send Buffer Format

SCardTransmit Send Buffer											
CLA	INS	P1	Byte Address (P2)	MEM_L (P3)							
FF _H	В0 н	00 н									

Byte Address = A7A6A5A4 A3A2A1A0 b is the memory address location of the memory

card.

MEM_L Length of data to be read from the memory card.

Response Buffer Format

	SCardTransmit Send Buffer														
BYTE 1		BYTE N PROT 1 PROT 2 PROT 3 PROT 4 SW1 SV													

BYTE x Data read from memory card

PROT y Bytes containing the protection bits from protection memory

SW1,SW2 = 90 H 00 H if no error

The arrangement of the protection bits in the PROT bytes is as follows:

	PROT 1							PROT 2																
Р	8	P7	P6	P5	P4	P3	P2	P1	P16	P15	P14	P13	P12	P11	P10	P9							P18	P17

Px is the protection bit of BYTE x in the response data

'0' byte is write protected

'1' byte can be written

4.6.2. WRITE_MEMORY_CARD

Send Buffer Format

SCardTransmit Send Buffer									
CLA	INS	P1	Byte Address (P2)	MEM_L (P3)	Byte 1			Byte N	
FF _H	D0 _H	00 н							

Byte Address = A7A6A5A4 A3A2A1A0 _b is the memory address location of the memory

card.

MEM_L Length of data to be written to the memory card.

Byte x Data to be written to the memory card.

Response Buffer Format

SCardTransmit	SCardTransmit Receive Buffer					
SW1	SW2					

SW1,SW2 = 90 H 00 H if no error

4.6.3. WRITE_PROTECTION_MEMORY_CARD

Each of the bytes specified in the command is internally in the card compared with the byte stored at the specified address and if the data match, the corresponding protection bit is irreversibly programmed to '0'.

Send Buffer Format

SCardTransmit Send Buffer									
CLA	INS	P1	Byte Address (P2)	MEM_L (P3)	Byte 1			Byte N	
FF _H	D1 _H	00 н							

Byte Address = 000A4 A3A2A1A0 _b (00 _H to 1F _H) is the protection memory address

location of the memory card.

MEM_L Length of data to be written to the memory card.

Byte x Byte values to be compared with the data in the card starting at Byte

Address. BYTE 1 is compared with the data at Byte Address; BYTE N is

compared with the data at (Byte Address+N-1).

Response Buffer Format

SCardTransmit Receive Buffer						
SW1	SW2					

SW1,SW2 = $90 \times 00 \times 100 \times$

4.6.4. PRESENT_CODE_MEMORY_CARD (SLE 4442 and SLE 5542)

This command is used to submit the secret code to the memory card to enable the write operation with the SLE 4442 and SLE 5542 card. The following actions are executed:

- 1. Search a '1' bit in the presentation error counter
- 2. Write the bit to '0' present the specified code to the card try to erase the presentation error counter

Send Buffer Format

SCardTransmit Send Buffer								
CLA	INS	P1	P2	MEM_L (P3)		CODE		
					Byte 1	Byte 2	Byte 3	
FF _H	20 н	00 н	00 н	03 н				

CODE

Three bytes secret code (PIN)

ERRCNT		CODE	SW1	SW2	
	Byte 1	Byte 2	Byte 3		

ERRCNT The value of the presentation error counter after the code presentation.

CODE The three bytes secret code read from the card.

SW1,SW2 = 90 H 00 H if no error

If the correct code has been presented to the card, the value of ERRCNT is 07_{H} and the value of CODE is identical to the code data specified in the command.

4.6.5. READ_PRESENTATION_ERROR_COUNTER_MEMORY_CARD (SLE 4442 and SLE 5542)

To read the presentation error counter for the secret code.

Send Buffer Format

SCardTransmit Send Buffer							
CLA	INS P1 P2 MEM_L (P3						
FF _H	В1 н	00 н	00 н	00 н			

Response Buffer Format

SCardTransmit Receive Buffer								
ERRCNT	DUMMY 1	DUMMY 2	DUMMY 2 DUMMY 3					

The value of the presentation error counter.

DUMMY

Three bytes dummy data read from the card.

SW1,SW2 = 90 H 00 H if no error

4.6.6. CHANGE_CODE_MEMORY_CARD (SLE 4442 and SLE 5542)

This command is used to write the specified data as new secret code in the card.

The current secret code must have been presented to the card with the PRESENT_CODE command prior to the execution of this command.

Send Buffer Format

SCardTransmit Send Buffer									
CLA	INS	P1	P2	MEM_L (P3)		CODE			
					Byte 1	Byte 2	Byte 3		
FF _H	D2 _H	00 н	01 н	03 н			·		

SCardTransmit Receive Buffer						
SW1	SW2					

SW1,SW2 = 90 H 00 H if no error

4.7. Memory Card – SLE 4406 / SLE 4436 / SLE 5536 / SLE 6636

4.7.1. READ_MEMORY_CARD

Send Buffer Format

SCardTransmit Send Buffer							
CLA	INS	P1	Byte Address (P2)	MEM_L (P3)			
FF _H	В0 н	00 н					

Byte Address = Memory address location of the memory card.

MEM_L Length of data to be read from the memory card.

Response Buffer Format

SCardTransmit Receive Buffer							
BYTE 1			BYTE N	SW1	SW2		

BYTE x

Data read from memory card

SW1,SW2

= 90 _H 00 _H if no error

4.7.2. WRITE_ONE_BYTE_MEMORY_CARD

This command is used to write one byte to the specific address of the inserted card. The byte is written to the card with LSB first, i.e. the bit at card address 0 is regarded as the LSB of byte 0.

Four different WRITE modes are available for this card type, which are distinguished by a flag in the command data field:

a) Write

The byte value specified in the command is written to the specified address. This command can be used for writing personalization data and counter values to the card.

b) Write with carry

The byte value specified in the command is written to the specified address and the command is sent to the card to erase the next lower counter stage. This write mode can therefore only be used for updating the counter value in the card.

c) Write with backup enabled (SLE 4436, SLE 5536 and SLE 6636 only)

The byte value specified in the command is written to the specified address. This command can be used for writing personalization data and counter values to the card. Backup bit is enabled to prevent data loss when card tearing occurs.

d) Write with carry and backup enabled (SLE 4436, SLE 5536 and SLE 6636 only)

The byte value specified in the command is written to the specified address and the command is sent to the card to erase the next lower counter stage. This write mode can therefore only be

used for updating the counter value in the card. Backup bit is enabled to prevent data loss when card tearing occurs.

With all write modes, the byte at the specified card address is not erased prior to the write operation and, hence, memory bits can only be programmed from '1' to '0'.

The backup mode available in the SLE 4436 and SLE 5536 card can be enabled or disabled in the write operation.

Command format

SCardTransmit SendBuffer									
CLA	INS	P1	Byte Address	MEM_L	MODE	BYTE			
FF _H	D0 _н	00 н		02 _H					

Byte Address = Memory address location of the memory card.

LEN = $5 + MEM_L$

MODE Specifies the write mode and backup option

00_H: write

01_H: write with carry

 $02_{\rm H}$: write with backup enabled (SLE 4436, SLE 5536 and SLE 6636 only)

03 H: write with carry and with backup enabled (SLE 4436, SLE 5536 and

SLE 6636 only)

BYTE Byte value to be written to the card

Response data format

SCardTransmit Receive Buffer						
SW1	SW2					

SW1, SW2 = 90 H 00 H if no error

4.7.3. PRESENT_CODE_MEMORY_CARD

This command is used to submit the secret code to the memory card to enable the card personalization mode. The following actions are executed:

- 1. Search a '1' bit in the presentation counter and write the bit to '0'
- 2. Present the specified code to the card

The ACR38 does not try to erase the presentation counter after the code submission! This must be done by the application software through a separate 'Write with carry' command.

Command format

SCardTransmit Send Buffer									
CLA	INS	P1	P2	MEM_L	CODE				
CLA					ADDR	Byte 1	Byte 2	Byte 3	
FF _H	20 н	00 н	00 н	04 н					

ADDR Byte address of the presentation counter in the card

CODE Three bytes secret code (PIN)

Response data format

SCardTransmit Receive Buffer						
SW1	SW2					

SW1, SW2 = 90 H 00 H if no error

4.7.4. AUTHENTICATE_MEMORY_CARD (SLE 4436, SLE 5536 and SLE 6636)

This command is used to read a card authentication certificate from an SLE 5536 or SLE 6636 card. The following actions are executed by the ACR38:

Select Key 1 or Key 2 in the card as specified in the command present the challenge data specified in the command to the card generate the specified number of CLK pulses for each bit of authentication data computed by the card read 16 bits of authentication data from the card reset the card to normal operation mode

The ACR38 returns the 16 bits of authentication data calculated by the card in the response.

Command format

SCardTransmit Send Buffer											
CLA	CLA INC D4		P1 P2	MEM_L	CODE						
CLA INS P	FI			KEY	CLK_CNT	Byte1	Byte 2		Byte 5	Byte 6	
FF _H	84 _H	00 н	00 н	08 н							

KEY Key to be used for the computation of the authentication certificate:

 $0\,0_{\,\text{H}}$: key 1 with no cipher block chaining

 $01_{\,\text{H}}$: key 2 with no cipher block chaining

 $80\,\mbox{\tiny H}$: key 1 with cipher block chaining (SLE 5536 and SLE 6636 only)

81 H: key 2 with cipher block chaining (SLE 5536 and SLE 6636 only)

CLK_CNT Number of CLK pulses to be supplied to the card for the computation of each

bit of the authentication certificate.

BYTE 1...6 Card challenge data

Response data format

SCardTransmit Receive Buffer							
CERT		SW1	SW2				

CERT 16 bits of authentication data computed by the card. The LSB of BYTE 1 is

the first authentication bit read from the card.

SW1, SW2 = 90 H 00 H if no error