AArch64 Instructions Index by Encoding

External Registers

TCR2_EL2, Extended Translation Control Register (EL2)

The TCR2 EL2 characteristics are:

Purpose

The control register for stage 1 of the EL2&0 translation regime.

Configuration

This register is present only when FEAT_TCR2 is implemented. Otherwise, direct accesses to TCR2 EL2 are undefined.

Attributes

TCR2 EL2 is a 64-bit register.

Field descriptions

When HCR EL2.E2H == 0:

636261605958575655545352515049484746	45	44	43	42	41403938	37	36	35	34	33	32
		RES0									
RES0	AMEC1	AMEC0	HAFT	PTTWI	RES0	D128	AIE	POE	RES0	PIE	PnCH
313029282726252423222120191817161514	13	12	11	10	9 8 7 6	5	4	3	2	1	0

Unless stated otherwise, all the bits in <u>TCR2_EL2</u>, when they have the value 1, are permitted to be cached in a TLB.

Bits [63:14]

Reserved, res0.

AMEC1, bit [13]

When FEAT MEC is implemented and FEAT VHE is implemented:

This field controls the enabling of the Alternate MECID translations for the EL2&0 TTBR1 translation regime.

TCR2_EL2.AMEC1 is provided to enable the safe update of $\underline{\text{TTBR_EL2}}$ and $\underline{\text{MECID_A_EL2}}$, by disabling access and speculation to AMEC == 1 Block or Page descriptors during the update.

AMEC1	Meaning

000	Use of a Block or Page descriptor containing AMEC == 1 generates a Translation fault.
0b1	Accesses translated by a Block or Page descriptor containing AMEC == 1 are associated with the MECID configured in MECID_A1_EL2.

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- When IsCurrentSecurityState(SS_Secure), access to this field is **RESO**.
- When IsCurrentSecurityState(SS_NonSecure), access to this field is **RESO**.
- When SCTLR2_EL2.EMEC != 0, access to this field is **RES1**.

Otherwise:

Reserved, res0.

AMECO, bit [12] When FEAT_MEC is implemented:

This field controls the enabling of the Alternate MECID translations for the EL2 and EL2&0 TTBR0 translation regimes.

TCR2_EL2.AMEC0 is provided to enable the safe update of <a href="https://doi.org/10.1001/jtm2.10

AMEC0	Meaning
0d0	Use of a Block or Page descriptor containing AMEC
	== 1 generates a Translation
01.4	fault.
0b1	Accesses translated by a Block or Page descriptor containing AMEC == 1 are associated
	with the MECID configured in
	MECID_A0_EL2.

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- When IsCurrentSecurityState(SS_Secure), access to this field is RESO.
- When IsCurrentSecurityState(SS_NonSecure), access to this field is **RESO**.
- When SCTLR2_EL2.EMEC != 0, access to this field is **RES1**.

Otherwise:

Reserved, res0.

HAFT, bit [11] When FEAT_HAFT is implemented:

Hardware managed Access Flag for Tables.

Enables the Hardware managed Access Flag for Tables.

HAFT	Meaning
0b0	Hardware managed Access Flag
	for Tables is disabled.
0b1	Hardware managed Access Flag for Tables is enabled.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PTTWI, bit [10] When FEAT_THE is implemented:

Permit Translation table walk Incoherence.

Permits RCWS instructions to have Reduced Coherence property.

PTTWI	Meaning
0b0	Write accesses generated by
	RCWS at EL2 or EL2&0 do not
	have the Reduced Coherence
	property.
0b1	Write accesses generated by
	RCWS at EL2 or EL2&0 have
	the Reduced Coherence
	property.

This bit is permitted to be built as a read-only bit with a fixed value of 0.

This field is ignored by the PE and treated as zero when $\underline{SCR\ EL3}$. $\underline{TCR2En} == 0$.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - \circ Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [9:6]

Reserved, res0.

D128, bit [5] When FEAT_D128 is implemented:

Enable 128-bit Page Table Descriptors.

Enables VMSAv9-128 translation system for the Stage 1 EL2 Translation Process.

D128	Meaning
0b0	Translation system follows
	VMSA-64 translation process.
0b1	Translation system follows
	VMSAv9-128 translation process.

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.

 Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AIE, bit [4] When FEAT AIE is implemented:

Enable Attribute Indexing Extension. Control for Attribute Indexing Extension for Stage 1 EL2 Translation Process.

AIE	Meaning
0d0	Attribute Indexing Extension Disabled.
0b1	Attribute Indexing Extension Enabled.

This field is res1 when TCR2 EL2.D128 is set.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

POE, bit [3] When FEAT_S1POE is implemented:

POE. Controls setting of permission overlay for EL2 accesses in stage 1 of the EL2 translation regime.

POE	Meaning
0b0	Permission overlay disabled for
	EL2 access in stage 1 of EL2
	translation regime.
0b1	Permission overlay enabled for
	EL2 access in stage 1 of EL2
	translation regime.

This bit is not permitted to be cached in a TLB.

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [2]

Reserved, res0.

PIE, bit [1]

When FEAT_S1PIE is implemented:

Select Permission Model. Controls setting of indirect permission model in Stage 1 EL2 Translation Process.

PIE	Meaning
0b0	Direct permission model.
0b1	Indirect permission model.

This field is res1 when TCR2 EL2.D128 is set.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PnCH, bit [0]

When FEAT_THE is implemented:

Protected attribute enable. Indicates use of bit[52] of the stage 1 translation table entry.

PnCH	Meaning
0d0	Bit[52] of each stage 1 translation table entry does not
	indicate protected attribute.

0b1	Bit[52] of each stage 1
	translation table entry indicates
	protected attribute.

This field is res0 when TCR2 EL2.D128 is set.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

When HCR EL2.E2H == 1:

63626160595857565554535251504948	47	46	45	44	43	42	41 40	39 38	37	36	35	3
			R	ES0								
RES0	DisCH1	DisCH0	RES0	AMEC0	HAFT	PTTWI	SKL1	SKL0	D128	ΑIΕ	POE	E0
31302928272625242322212019181716	15	14	13	12	11	10	9 8	7 6	5	4	3	

Unless stated otherwise, all the bits in <u>TCR2_EL2</u>, when they have the value 1, are permitted to be cached in a TLB.

Bits [63:16]

Reserved, res0.

DisCH1, bit [15] When FEAT D128 is implemented and TCR2 EL2.D128 == 1:

Disable Contiguous Hint for Start Table for VARange 1.

DisCH1	Meaning
0b0	Contiguous Hint of Block or
	Page descriptors of the Start
	Table for VARange 1 are not
	affected by this field.
0b1	Contiguous Hint of Block or
	Page descriptors of the Start
	Table for VARange 1 are
	disabled.

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.

 Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

DisCH0, bit [14] When FEAT D128 is implemented and TCR2 EL2.D128 == 1:

Disable Contiguous Hint for Start Table for VARange 0.

DisCH0	Meaning
0b0	Contiguous Hint of Block or
	Page descriptors of the Start
	Table for VARange 0 are not
	affected by this field.
0b1	Contiguous Hint of Block or
	Page descriptors of the Start
	Table for VARange 0 are
	disabled.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [13]

Reserved, res0.

AMECO, bit [12] When FEAT MEC is implemented:

This field controls the enabling of the Alternate MECID translations for the EL2 and EL2&0 TTBR0 translation regimes.

TCR2_EL2.AMEC0 is provided to enable the safe update of TTBR_EL2 and MECID_A_EL2, by disabling access and speculation to AMEC=1 Block or Page descriptors during the update.

AMEC0	Meaning	

0b0	Use of a Block or Page descriptor containing AMEC == 1 generates a Translation fault.
0b1	Accesses translated by a Block or Page descriptor containing AMEC == 1 are associated with the MECID configured in MECID AO EL2.

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- When IsCurrentSecurityState(SS_Secure), access to this field is **RESO**.
- When IsCurrentSecurityState(SS_NonSecure), access to this field is **RESO**.
- When SCTLR2 EL2.EMEC != 0, access to this field is **RES1**.

Otherwise:

Reserved, res0.

HAFT, bit [11] When FEAT_HAFT is implemented:

Hardware managed Access Flag for Tables.

Enables the Hardware managed Access Flag for Tables.

HAFT	Meaning
0b0	Hardware managed Access Flag
	for Tables is disabled.
0b1	Hardware managed Access Flag
	for Tables is enabled.

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PTTWI, bit [10] When FEAT THE is implemented:

Permit Translation table walk Incoherence.

Permits RCWS instructions to have Reduced Coherence property.

PTTWI	Meaning
0b0	Write accesses generated by
	RCWS do not have the Reduced
	Coherence property.
0b1	Write accesses generated by
	RCWS have the Reduced
	Coherence property.

This bit is permitted to be built as a read-only bit with a fixed value of 0.

This field is ignored by the PE and treated as zero when SCR EL3.TCR2En == 0.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

SKL1, bits [9:8] When FEAT_D128 is implemented:

Skip Level associated with translation table walks using TTBR1 EL2.

This determines the number of levels to be skipped in the regular start level of the Stage 1 EL2&0 translation table walks using <a href="https://doi.org/10.2016/j.jcha.2016/

SKL1	Meaning
0b00	Skip 0 level in the regular start
	level.
0b01	Skip 1 level in the regular start
	level.

0b10	Skip 2 levels in the regular start level.
0b11	Skip 3 levels in the regular start
0211	level.

This field is IGNORED when TCR2 EL2.D128 is 0.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

SKL0, bits [7:6] When FEAT D128 is implemented:

Skip Level associated with translation table walks using TTBRO EL2.

This determines the number of levels to be skipped in the regular start level of the Stage 1 EL2&0 translation table walks using TTBR0 EL2.

SKL0	Meaning
0b00	Skip 0 level in the regular start level.
0b01	Skip 1 level in the regular start level.
0b10	Skip 2 levels in the regular start level.
0b11	Skip 3 levels in the regular start level.

This field is IGNORED when TCR2 EL2.D128 is 0.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

D128, bit [5]

When FEAT D128 is implemented:

Enable 128-bit Page Table Descriptors.

Enables VMSAv9-128 translation system for the Stage 1 EL2&0 Translation Process.

D128	Meaning
0d0	Translation system follows
	VMSA-64 translation process.
0b1	Translation system follows
	VMSAv9-128 translation process.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AIE, bit [4] When FEAT AIE is implemented:

Enable Attribute Indexing Extension. Control for Attribute Indexing Extension for Stage 1 EL2&0 Translation Process.

AIE	Meaning
0b0	Attribute Indexing Extension Disabled.
0b1	Attribute Indexing Extension Enabled.

This field is res1 when TCR2 EL2.D128 is set.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

POE, bit [3]

When FEAT S1POE is implemented:

POE. Controls setting of permission overlay for EL2 accesses in stage 1 of the EL2&0 translation regime.

POE	Meaning		
0b0	Permission overlay disabled for		
	EL2 access in stage 1 of EL2&0		
	translation regime.		
0b1	Permission overlay enabled for		
	EL2 access in stage 1 of EL2&0		
	translation regime.		

This bit is not permitted to be cached in a TLB.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

E0POE, bit [2]

When FEAT_S1POE is implemented:

EL0 POE. controls setting of permission overlay in stage 1 of the EL2 translation regime.

E0POE	Meaning
0b0	Permission overlay disabled for
	EL0 access in stage 1 of EL2&0
	translation regime.
0b1	Permission overlay enabled for
	EL0 access in stage 1 of EL2&0
	translation regime.

This bit is not permitted to be cached in a TLB.

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PIE, bit [1] When FEAT S1PIE is implemented:

Select Permission Model. Controls setting of indirect permission model in Stage 1 EL2 Translation Process.

PIE	Meaning		
0b0	Direct permission model.		
0b1	Indirect permission model.		

This field is res1 when TCR2 EL2.D128 is set.

The reset behavior of this field is:

- On a Warm reset:
 - \circ When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PnCH, bit [0] When FEAT_THE is implemented:

Protected attribute enable. Indicates use of bit[52] of the stage 1 translation table entry.

PnCH	Meaning		
0b0	Bit[52] of each stage 1		
	translation table entry does not		
	indicate protected attribute.		
0b1	Bit[52] of each stage 1		
	translation table entry indicate		
	protected attribute.		

This field is res1 when TCR2_EL2.D128 is set.

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Accessing TCR2_EL2

When FEAT_VHE is implemented, and HCR_EL2. E2H is 1, without explicit synchronization, accesses from EL2 using the register name TCR2_EL2 or TCR2_EL1 are not guaranteed to be ordered with respect to accesses using the other register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR2 EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0010	0b0000	0b011

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.TCR2En == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = TCR2\_EL2;
elsif PSTATE.EL == EL3 then
    X[t, 64] = TCR2\_EL2;
```

MSR TCR2_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0010	0b0000	0b011

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.TCR2En == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR EL3.TCR2En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TCR2\_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    TCR2\_EL2 = X[t, 64];
```

MRS <Xt>, TCR2_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0010	0b0000	0b011

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TCR2En == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TCR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!IsHCRXEL2Enabled() |
HCRX_EL2.TCR2En == '0') then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x270];
```

```
else
        X[t, 64] = TCR2 EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.TCR2En == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR EL2.E2H == '1' then
        X[t, 64] = TCR2\_EL2;
    else
        X[t, 64] = TCR2\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = TCR2\_EL1;
```

MSR TCR2_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0010	0b0000	0b011

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.TCR2En == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3)
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TCR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!IsHCRXEL2Enabled() |
HCRX_EL2.TCR2En == '0') then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
        NVMem[0x270] = X[t, 64];
        TCR2\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64
Instructions

Index by Encoding External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.