Sınıflandırma Problemleri

(İktisatçılar İçin) Makine Öğrenmesi (TEK-ES-2020)

Hüseyin Taştan Yıldız Teknik Üniversitesi

Plan

- Sınıflandırma problemleri
- Lojistik regresyon
- Doğrusal Diskriminant Analizi (LDA)
- Karesel Diskriminant Analizi (QDA)
- Sınıflandırma performansının ölçümü
- ROC eğrisi ve AUC

Sınıflandırma Problemi

- Regresyon analizinde Y tepki değişkeni niceldir.
- Y kategorik bir değişken = sınıflandırma problemi
- ullet Sınıflandırıcı: verilmiş bir X değişken seti için Y'nin kategorisini kestiren yöntem.
- İkili ya da çoklu olabilir.
- ödeyememe olasılığını hesaplamak isteyebilir. Kişinin sınıflandırıldığı gruba göre • Örnek: bir banka kredi başvuru sahibinin özelliklerinden hareketle kişinin geri başvurusu red ya da kabul edilir.
- Veri seti: default (Yes/No), X değişkenleri: kredi kartı bakiyesi (balance), gelir (income), öğrenci kuklası (student)

Sınıflandırma: Örnek

Mavi: Default=NO, Kavuniçi: Default=YES (ISLR Fig-4.1, p.129)

Regresyon kullanabilir miyiz?

 Standart regresyon analizi ile gözlemleri sınıflandırabilir miyiz? Burada iki sınıf olduğunu varsayıyoruz. Orneğin

$$default = \beta_0 + \beta_1 income + \beta_2 balance + \epsilon$$

Burada default ikili (0/1) değerler almaktadır.

- Sınıflandırma kuralı: OLS tahmin değeri 0.5'den büyükse default=YES (1) grubuna değilse default=NO (0) grubuna sınıflandırma yapabiliriz.
- Ancak kestirim değerlerinin 0 ile 1 arasında olmasının garantisi yoktur. Herhangi bir değeri alabilirler hatta negatif olabilirler.
- Ayrıca doğrusal olasılık modelinde hata terimi sabit varyanslı değildir.
- Tepki değişkeni ikiden fazla gruba sahipse uygulanamaz.

Lojistik Regresyon

 Doğrudan tepki değişkenini modellemek yerine sınıflandırma olasılığını modelleyebiliriz.

$$p(X) = \beta_0 + \beta_1 X$$

Burada p(X) = Pr(Y = 1|X) tepki değişkeninin grup=1 olarak sınıflandırılma (koşullu) olasılığıdır.

• Tanım gereği $0 \le p(X) \le 1$. Örneğin, lojistik fonksiyon

$$p(X) = \frac{e^{\beta_0+\beta_1 X}}{1+e^{\beta_0+\beta_1 X}}$$

Logit modeli

$$\log\!\left(rac{p(X)}{1-p(X)}
ight)=eta_0+eta_1 X$$

Lojistik vs. Doğrusal Olasılık Modeli

Sol: doğrusal regresyon ile tahmin edilen koşullu olasılıklar, Sağ: Lojistik regresyon ile tahmin edilen koşullu olasılıklar (ISLR Fig-4.2, p.131)

Lojistik Regresyonun Tahmini

- Modelin tahmininde OLS kullanılamaz.
- En Yüksek Olabilirlik (Maximum Likelihood) yöntemi tutarlı ve etkin tahminciler verir.
- Katsayılar hesaplandıktan sonra koşullu olasılıklar hesaplanabilir.
- Sınıflandırma işlemi koşullu olasılık tahminlerine göre yapılabilir.

Çoklu Lojistik Regresyon

• Çok sayıda nicel ya da nitel kestirim değişkeni için model kolayca genelleştirilebilir:

$$p(X) = rac{e^{eta_0 + eta_1 X_1 + \ldots + eta_p X_p}}{1 + e^{eta_0 + eta_1 X_1 + \ldots + eta_p X_p}}$$

- Modelin doğrusal olmayan yapısından dolayı katsayılar koşullu olasılıklardaki değişim olarak yorumlanamaz. Ancak işaretleri yorumlanabilir.
- β_i lar bulunduktan sonra X_j değerleri birlikte yukarıdaki denklemde yerlerine yazılarak koşullu olasılıklar tahmin edilir.

Doğrusal Diskriminant Analizi

- Doğrusal diskriminant analizinde (LDA Linear Discriminant Analysis) her grup için ayrı ayrı olmak üzere X değişkenlerinin dağılımı modellenir.
- Daha sonra Bayes Teoremi'nden hareketle asıl ilgilendiğimiz Pr(Y=k|X=x)olasılıkları tahmin edilir.
- Sınıfların birbirinden çok ayrık olduğu durumlarda lojistik regresyon istikrarsız olabilir. LDA'nde böyle bir problem yoktur.
- ullet n küçük olsa da değişkenler yaklaşık olarak normal dağılıyorsa LDA daha istikrarlı.
- LDA ikiden daha fazla grup olduğunda da uygulanabilir.

Siniflandirmada Bayes Teoreminin Kullanımı

- ullet Gözlemleri $K \geq 2$ sınıfa ayırmak istediğimizi düşünelim. Çıktı değişkeni $Y_i=k,\;k=1,2,\ldots,K$ değerlerini almaktadır (sıralama önemsiz)
- Önsel olasılık (prior): π_k , rassal çekilmiş bir gözlemin k sınıfına ait olma olasılığı
- k sınıfı için X değişkeninin yoğunluk fonksiyonu: $f_k(x) \equiv Pr(X=x|Y=k)$ (basitlik için X'in kesikli bir değişken olduğunu varsaydık)
- ullet $f_k(x)$ 'in yorumu: X'in k sınıfından çekilme olasılığı yükseldikçe daha büyük değerler
- Şimdi Bayes teoremini uygulayabiliriz:

$$p_k(X) \equiv \Pr(Y = k \mid X = x) = rac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

• $p_k(X)$ 'i doğrudan tahmin etmek yerine bileşenleri tahmin edebiliriz.

Simiflandirmada Bayes Teoreminin Kullanımı

Ardıl (posterior) olasılık dağılımı:

$$p_k(X) \equiv \Pr(Y = k \mid X = x) = rac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

- π_k verilerden kolayca tahmin edilebilir. k grubunun örneklemdeki oranını hesaplamak yeterli.
- Ancak $f_k(x)$ 'in tahmini daha zor. Dağılımsal varsayımlar yapmamız gerekir.
- ullet LDA: normal dağılım. Örneğin, p=1 için

$$f_k(x) = rac{1}{\sqrt{2\pi}\sigma_k} \mathrm{exp}igg(-rac{1}{2\sigma_k^2}(x-\mu_k)^2igg)$$

Normal Dağılım

Farklı ortalamalar, varyans aynı

Farklı varyanslar, ortalama aynı

LDA, p=1 için koşullu olasılıklar

• Tek kestirim değişkeni p=1 için normal dağılım ve her grup için aynı varyans (σ^2) varsayımları altında koşullu olasılıklar

$$egin{aligned} \pi_k rac{1}{\sqrt{2\pi\sigma}} & \exp\left(-rac{1}{2\sigma^2}(x-\mu_k)^2
ight) \ \sum_{l=1}^K \pi_l rac{1}{\sqrt{2\pi\sigma}} & \exp\left(-rac{1}{2\sigma^2}(x-\mu_l)^2
ight) \end{aligned}$$

- Bayes sınıflandırıcısı verilmiş bir X=x gözlemini $p_k(x)$ 'in en yüksek olduğu gruba
- $p_k(x)$ 'in doğal logaritmasını alırsak **diskriminant** fonksiyonunu elde ederiz: $\delta_k(x) = x \cdot rac{\mu_k}{\sigma^2} - rac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$

kategori kestirimlerini en yüksek $\delta_k(x)$ değerine göre yapabiliriz.

LDA katsayılarının tahmini

$$\hat{
ho}_k = rac{1}{n_k} \sum_{i: y_i = k} x_i$$
 $\hat{\sigma}^2 = rac{1}{n-K} \sum_{k=1}^K \sum_{i: y_i = k} (x_i - \hat{\mu}_k)^2$

Bu tahminleri diskriminant fonksiyonu içine yazarsak:

 $\hat{\pi}_k = n_k/n$

$$\hat{\delta}_k(x) = x \cdot rac{\hat{\mu}_k}{\hat{\sigma}^2} - rac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

LDA: Örnek

İki grup için farklı normal dağılım yoğunluk fonksiyonları (sol) ve verilerden hareketle oluşturulan histogramlar:

biliniyor), (sağ) Dikey çizgi eğitim verisiyle tahmin edilen LDA karar sınırıdır. (ISLR, Fig. Not: (Sol) dikey kesikli çizgi Bayes karar sınırıdır (simülasyonla oluşturulduğu için 4.4, p.140)

Çok değişkenli LDA

- Kestirim değişkenleri: $\mathbf{X} = (X_1, X_2, \dots, X_p)$
- Dağılımsal varsayım (Çok değişkenli Normal Gaussian dağılım): $\mathbf{X} \sim N(\mu, \, \boldsymbol{\Sigma})$

Sol: X_1 ve X_2 ilişkisiz, Sağ: ilişkili, kovaryans = 0.7

Çok değişkenli LDA

Çoklu Gaussian yoğunluk fonksiyonu.

$$f(x) = rac{1}{(2\pi)^{p/2}|\mathbf{\Sigma}|^{1/2}} \mathrm{exp}igg(-rac{1}{2}(x-\mu)^T\mathbf{\Sigma}^{-1}(x-\mu)igg)$$

p=1 durumundakine benzer adımları takip ederek sınıflandırmada kullanacağımız diskriminant fonksiyonunu elde ederiz:

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - rac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

Verilmiş bir x gözlemi $\delta_k(x)$ 'in en büyük olduğu gruba atanır.

Örnek

- 2 kestirim değişkeni X_1, X_2
- Grup sayısı K=3
- Her gruptaki gözlem sayısı 20
- Kesikli çizgiler LDA sınıflandırma sınırları
- Düz çizgiler Bayes sınırları
- LDA hata oranı = 0.0770
- Bayes hat oran = 0.0746

Örnek: Borç ödememe (default) verileri

1 No No 729,52650 44361,625 2 No Yes 817,18041 12106,135 3 No 1073,54916 31767,139 4 No No 529,25060 35704,494 5 No No 785,65588 38463,496 6 No Yes 919,58853 7491,559 8 No Yes 808,66750 17600,451 9 No No 1161,05785 37468,529 10 No Yes 0.00000 29275,268 11 No Yes 0.00000 21871,073	4	default 🗼	student 💠	balance	income
No Yes 817.18041 No 1073.54916 No 1073.54916 No 785.65588 No 785.65588 No 785.65588 No 825.51333 No 825.51333 No No No 1161.05785 No 0.000000 No Yes No 0.000000 No Yes	-	No	No	729,52650	44361.625
No 1073,54916 No 529,25060 No 785,65588 No 785,65588 No 825,51333 No No No No No 1161,05785 No No No 0.000000	2	No	Yes	817.18041	12106.135
No No 529,25060 3 No No 785,65588 3 No Yes 919,58853 2 No No 825,51333 2 No Yes 808,66750 1 No No 0,000000 2 No Yes 0,000000 2 No Yes 0,000000 2	8	No	No	1073.54916	31767.139
No Nes 919,58853 3 No Yes 919,58853 2 No No 825,51333 2 No Yes 808,66750 1 No No 1161,05785 3 No Yes 0,000000 2 No Yes 0,000000 2	4	No	No	529,25060	35704,494
No Yes 919,58853 No 825,51333 2 No Yes 808,66750 1 No No 1161,05785 3 No No 0,000000 2 No Yes 0,000000 2	5	No	No	785.65588	38463,496
No No 825,51333 No Yes 808.66750 No 1161.05785 No 0.000000 No Yes	9	No	Yes	919,58853	7491.559
No Yes 808.66750 No 1161.05785 No 0.000000 No Yes No 0.000000	7	No	No	825,51333	24905.227
No 1161.05785 No 0.000000 No Yes 0.000000	00	No	Yes	808,66750	17600,451
No No 0.000000 No Yes 0.000000	6	No	No	1161.05785	37468,529
No Yes 0.00000	10	No	No	0.00000	29275.268
	11	No	Yes	0,00000	21871.073

- n=10000
- Balance = kredi kartı bakiyesi
- income = gelir düzeyi
- Student = öğrenci kuklası
- default = borç ödeyememe ikili
 değişken (Yes=borçlu, No= borçlu
 değil)

Örnek

- Kredi kartı bakiyesi ve öğrenci kuklası değişkenleri ile LDA tahmin ettiğimizde eğitim seti hata oranı %2.75. Bu oldukça düşük bir hata oranı gibi görünüyor.
- Verilerde borcunu ödeyemeyenlerin oranı (default=YES) %3.33. Bir gözlemi kredi kartı (default=NO) diye sınıflandırsak (null classifier) yapacağımız hata oranı %3.33 olur. bakiyesinden ve öğrenci olup olmadığından bağımsız olarak "borçlu değil"
- Bu açıdan baktığımızda LDA hata oranı aslında çok da başarılı değil.

Sınıflandırma Performansının Ölçümü

Hata Matrisi (Confusion Matrix)

Tablo hücreleri gözlem sayılarıdır	Toplam A = Doğru tahmin edilen gerçek	A + B negatif sayısı	 D = Doğru tahmın edilen gerçek Dozitif savısı 	A + B• C = Yanlış pozitif sayısı + C +• B = Yanlış negatif sayısı D
•	Toplam A	A + B	C + D	A + B C + C + B D
GERÇEK	+	В	D	$\mathbf{B} + \mathbf{D}$
GERÇEK GERÇEK	l	A	C	
		I	+	Toplam A+C
		TAHMİN	TAHMİN	

• Yanlış pozitif oranı (false positive rate): FP = C/(A+C)

• Doğru pozitif oranı. TP = D/(B+D) (duyarlılık - sensitivity)

• Doğru negatif oranı. A/(A+C) (özgüllük - specificity)

• Pozitif kestirimsel değer: PP = D/(C+D), Negatif kestirimsel değer: NP = A/(A+B)

Sınıflandırma Performansının Ölçümü

Hata Matrisi (Confusion Matrix)

		True	True default	status
		No	Yes	Total
Predicted	No	9,644	252	968,6
default status	Yes	23	81	104
	Total	9,667	333	10,000

- Default = YES (Pozitif grup borcunu ödemeyenler)
- Default = NO (Negatif grup borcunu zamanında ödeyenler)
- Bu örnekte Doğru tahmin edilen gözlem sayısı 9644+81=9725'dir. Toplamdaki payı ise %97.25'dir.
- Yanlış sınıflanan gözlem sayısı ise 252+23=275. Yanlış sınıflama oranı ya da hata oranı % 2.75'dir.
- Gerçekte borçlu olmadığı halde yanlışlıkla borçlu olarak sınıflandırılanların oranı 23/9667 = 0.00238, yani %0.238 gibi çok küçük bir orandır.
- Ancak Gerçekte borçlu olanlar içinde %75.7'si yanlışlıkla borçlu değil grubundadır (252/333)

Sınıflandırma Performansının Ölçümü

Hata Matrisi (Confusion Matrix)

		True	$True\ default$	status
		$N_{\rm o}$	Yes	Total
Predicted	No	9,644		9,896
default status	Yes	23	81	104
	Total	9,667	333	10,000

- Default = YES (Pozitif grup borcunu ödemeyenler)
- Default = NO (Negatif grup borcunu zamanında ödeyenler)
- Özgüllük (specificity): $(1-23/9667) \times 100 = \%$ 99.8
- Genel hata oranı düşük olsa da Default (YES) grubu içindeki hata oranı çok yüksek.
- Doğru pozitif oranı ya da duyarlılık (sensitivity) % 24.3 $(=100 \times 81/333)$
- Yanlış negatif oranı $=\%75.7=100\times252/333=1-duyarlılık$. Yüksek risk grubundaki bireyleri tahmin etmek isteyen bir banka için bu oldukça yüksek.
- Yukarıdaki sınıflamada 0.5 eşik değerini kullandık. Yani koşullu olasılık 0.5'den büyükse default = YES grubuna atandı.

Farklı Eşik Değeri

$$Pr(default=YES|X)>0.2$$

		True	$True\ default$	states
		N_{0}	Yes	Total
Predicted	No	9,432	138	9,570
default status	Yes	235	195	430
	Total	9,667	333	10,000

%58.6
195/333
195
X
100
arlılık
<u> </u>
_
u
П
•

- Yanlış pozitif oranı ise $\%41.44=100\times138/333$ (=1-duyarlılık)
- Duyarlılık beklendiği gibi yükseldi ancak Borçlu olmadıkları halde yanlışlıkla borçlu olarak sınıflandırılanların oranı da yükseldi, $\%2.43=100\times235/9667.$
- Genel hata oranı: %3.73
- Borcunu ödemeyecek müşterileri öngörmek isteyen bir banka 0.5 yerine yukarıdaki gibi daha düşük bir eşik değeri kullanabilir.
- Eşik değerini artırınca duyarlılık yükseldi (yanlış negatif oranı düştü) ancak genel hata oranı arttı. Bu ikisi arasındaki ödünüm izleyen grafikte verilmiştir.

Eşik değeri ve hata oranı

- Yandaki grafikte yatay eksende sınıflamada kullanılan eşik değeri
- Dikey eksen, siyah: genel hata oranı, kavuniçi nokta: yanlış pozitif oranı
- Mavi kesikli çizgi: Yanlış negatif oranı
 (bocunu ödemedikleri halde yanlışlıkla
 "borçlu değil" olarak sınıflandırma
 oranı)
- Eşik değeri 0.5 alındığında genel hata oranı en düşüktür. Ancak yanlış negatif oranı da en yüksektir.
- Eşik değeri azaldıkça, borcunu ödemeyenler içinde yanlış sınıflananların oranı (yanlış negatif oranı) azalmaktadır.
- Diğer taraftan, borcunu ödeyenler içinde yanlış sınıflananların oranı da artmaktadır.
- Hangi eşik değerini kullanacağımıza nasıl karar verebiliriz?

ROC Eğrisi

Bu amaçla literatürde ROC eğrisi olarak bilinen "Karar Değerlendirme Eğrisi" kullanılabilir.

- Yatay eksen: yanlış pozitif oranı
- Dikey eksen: doğru pozitif oranı
- Tüm eşik değerleri için bu oranlar hesaplanıp grafik çizilir.
- Genel performans ölçütü = AUC
- AUC = Area Under the Curve (Eğrinin altındaki alan)
- Maks. AUC = 1, yüksek AUC tercih edilir.
- Default verileri için AUC = 0.95

Hata Matrisi: Özet

	Toplam	ji	Z		ji	Ь		N+P=N*+P*
EDİLEN	+	Yanlış Pozit	(YP)	Tip I Hata	Doğru Pozit	(DP)		*d
TAHMİN EDİLEN	_	Doğru Negatif Yanlış Pozitif	(DN)		Yanlış Negatif Doğru Pozitif	(YN)	Tip II Hata	*N
			I	GERÇEK	DURUM	+		Toplam

\sim
\overline{c}
\leq
$\boldsymbol{\sim}$
=
Ö
St
ä
\simeq
$\stackrel{\sim}{}$
1
0
H

 H_a : + (hastalık var)

Yanlış Pozitif Oranı = YP/N = Tip I hata Oranı = 1 – Özgüllük (specificity)

Doğru Pozitif Oranı = DP/P = Duyarlılık (sensitivity) = 1 – Tip II Hata Oranı

 $\operatorname{Tip} I$ Hata: H0 Doğru iken RED (gerçekte hasta olmadıkları halde hasta olarak sınıflandırma)

Tip II Hata: H0 Yanlış iken KABUL (gerçekte hasta oldukları halde "hasta değil" diye sınıflandırma

Karesel Diskriminant Analizi (QDA)

- LDA her grupta varyansın aynı olduğu varsayımını yapıyordu.
- Ancak bu varsayım sağlanmıyorsa LDA performansı kötüleşebilir.
- benzer. Ortak varyans varsayımı yerine grup varyanslarının farklı QDA (quadratic discriminant analysis) yöntemi LDA yöntemine olduğu varsayımını yapar.
- Farklı varyans varsayımı altında ortaya çıkan diskriminant fonksiyonu doğrusal değil kareseldir.
- Varyansların çok farklı olduğu verilerde QDA daha iyi bir başarıma sahip olabilir. Ancak her grupta yeterli gözlemlerin olması gerekir.
- Grup varyansları aynı ise LDA tercih edilebilir.

LDA vs. QDA

QDA (yeşil) yöntemine göre daha başarılı (mor kesikli: Bayes sınırı); Sağ: Grup varyansları Sol: gerçek modelde varyans-kovaryans matrisi her iki grup için aynı. LDA (siyah kesikli) farklı, QDA daha başarılı (kaynak: James et al., ISLR, Fig-4.9, p.150)