Applications of $S(\kappa)$ BEST 2015 - San Francisco State University

Steven Clontz http://stevenclontz.com

Auburn, AL

June 16, 2016

Definition

A topological space X is Menger if for every sequence $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ of open covers of X there exists a sequence $\langle \mathcal{F}_0, \mathcal{F}_1, \ldots \rangle$ such that $\mathcal{F}_n \in [\mathcal{U}_n]^{<\omega}$ and $\bigcup_{n<\omega} \mathcal{F}_n$ is a cover of X.

Proposition

X is σ -relatively-compact \Rightarrow *X* is Menger \Rightarrow *X* is Lindelöf.

Game

Let $Men_{C,F}(X)$ denote the $Menger\ game$ with players \mathscr{C} , \mathscr{F} . In round n, \mathscr{C} chooses an open cover \mathcal{C}_n , followed by \mathscr{F} choosing $\mathcal{F}_n \in [\mathcal{C}_n]^{<\omega}$.

 \mathscr{F} wins the game if $\bigcup_{n<\omega} \mathcal{F}_n$ is a cover for the space X, and \mathscr{C} wins otherwise.

Theorem (Hurewicz 1926)

X is Menger if and only if $\mathscr{C} \not \upharpoonright Men_{C,F}(X)$.

Theorem (Telgarsky 1984, Scheepers 1995)

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Theorem (Fremlin, Miller 1988)

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

Assume κ is an uncountable cardinal.

Example

Let $\kappa^\dagger = \kappa \cup \{\infty\}$, with κ discrete and neighborhoods of ∞ being co-countable. Then $\mathscr{F} \uparrow \mathit{Men}_{C,F} \left(\kappa^\dagger\right)$ but κ^\dagger is not σ -compact.

Definition

A perfect information strategy uses full information of the previous moves of the opponent. ($\mathscr{A} \uparrow G$)

Definition

A k-tactical strategy only uses the last k previous moves of the opponent. ($\mathscr{A} \uparrow G$)

Definition

A k-Markov strategy only uses the last k previous moves of the opponent and the round number. ($\mathscr{A} \ \uparrow \ G$)

If omitted, assume k = 1.

Considering such strategies allows us to factor out Scheeper's proof characterizing σ -compact metrizable spaces with the Menger game.

Lemma

 $\mathscr{F} \uparrow \underset{mark}{\mathsf{Men}_{C,F}}(X)$ if and only if X is σ -relatively-compact.

Lemma

Let X be second-countable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if

$$\mathscr{F} \uparrow \underset{mark}{\uparrow} Men_{C,F}(X)$$

The result follows since metrizable + Lindelöf \Leftrightarrow regular + second countable.

Example

$$\mathscr{F}\uparrow \mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right)$$
, but $\mathscr{F}\underset{\mathsf{mark}}{\not\uparrow} \mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right)$.

Proposition

$$\mathscr{F} \underset{(k+2)\text{-mark}}{\uparrow} Men_{C,F}(X)$$
 if and only if $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Men_{C,F}(X)$.

Example

$$\mathscr{F} \underset{\text{2-mark}}{\uparrow} \textit{Men}_{C,F} \left(\omega_{\mathbf{1}}^{\dagger} \right)$$

What about for $\kappa > \omega_1$? As we'll see, this question is not answerable in *ZFC*.