Sztuczna Inteligencja

Soma Dutta

Wydział Matematyki i Informatyki, UWM w Olsztynie soma.dutta@matman.uwm.edu.pl

Wykład - 1: Wprowadzenie

Semestr letni 2022

Sztuczna inteligencja, początkowe podejście Alana Turinga

Alan Turing (1950): Computing machinery and intelligence

- Czy maszyny mogą myśleć? Czy maszyny mogą zachowywać się inteligentnie?
- Turing test (https://mfiles.pl/pl/index.php/Test_Turinga): Turing zdefiniował, że maszyna jest inteligentna o ile jest w stanie przejść następujący test:
 - Osoba A siedzi w zamkniętym pokoju z dwoma terminalami komputerowymi.
 - Jeden terminal jest podłączony do maszyny, a drugi do osoby B. Osoba A nie wie, który jej terminal jest podłączony do maszyny, a który do osoby B.
 - Osoba A może zadawać pytania na obu terminalach. Zadanie osoby A polega na podjęciu decyzji, który terminal należy do maszyny.
- Maszyna jest inteligentna jeśli osoba A nie jest w stanie odróżnić (w określonym czasie) maszyny od osoby B.

- Obecnie istnieje wiele chatterbotów pracujących online, które zwykle nie są w stanie ukryć swojej sztuczności co okazuje się już po krótkim czasie.
- (Zobacz: https://www.spidersweb.pl/2018/06/atom2vec-sztucznainteligencja.html)

Co to oznacza sztuczna inteligencja

Obejmuje różne aspekty: wiedza, wnioskowanie, język, rozumienie, uczenie - to główne wśród nich.

- Zrozumienie różnych aspektów inteligencji
- Próby przedstawiania tego w jakiś matematyczny sposób
- Budowanie systemów, np. modelowanych w postaci agentów, które mogą zachowywać się inteligentnie jak ludzie.

Z raportu Unii Europejskiej

Brussels, 19.2.2020 COM(2020) 65 final

WHITE PAPER

On Artificial Intelligence - A European approach to excellence and trust

Sztuczna inteligencja odnosi się do systemów, które wykazują inteligentne zachowanie poprzez analizowanie ich środowiska i podejmowanie akcji, do pewnego stopnia w sposób autonomiczny, w celu uzyskania specyficznych celów.

Z jednnego artykułu napisanego przez znanych autorów

- ► The Mathematics of Learning: Dealing with Data: Tomaso Poggio and Steve Smale
- Systemy sztucznej inteligencji to systemy oprogramowania (mogą to być również systemy sprzętowe) zaprojektowane przez ludzi, które mając do zrealizowania złożony cel, działają w wymiarze fizycznym i cyfrowym przez postrzeganie swego środowiska, poprzez pozyskiwanie danych, interpretowanie strukturalnych i niestrukturalnych danych, wnioskowanie o wiedzy lub przetwarzanie informacji wywodzonych z danych i decydowanie o wyborze najlepszych akcji do wykonania w celu osiągnięcia celu. Systemy sztucznej inteligencji mogą używać reguł symbolicznych lub wyuczać się modeli numerycznych, mogá również adaptować swe zachowanie przez analizę wyniku ich poprzedniego oddziaływania na środowisko.

Trochę historii: Rozwój różnych aspektów sztucznej inteligencji

Okres	Rozwój								
1930-1950	(1930) Kurt Gödel: Udowodniono pewne twierdzenia dotyczące wnioskowania								
	logicznego, znane jako 'twierdzenie o kompletności logiki pierwszego rzędu',								
	(1936) Alan Turing: 'problemu stopu programu'								
	(1950) Newel, Simon: (Na podstawie twierdzenia Goedle) pierwszy								
	automatyczny system dowodzenia twierdzeń								
	(1940) McCulloh, Pitts: Przedstawiono pierwszy model matematyczny								
	dla sieci neuronowych								
	(1950) Artykuł Turinga: Computing Machinery and Intelligence								
1956	Spotkanie w Dartmouth: powstaje termin 'Sztuczna Inteligencja'								
	McCarthy: Wprowadzono LISP, język, który może przetwarzać struktury symboliczne								
1960 - 1990	(1965) Lotfi A. Zadeh: Zbior rozmyte								
	(1970) PROLOG, Język programowania został wprowadzony								
	Wykazano, że sieci neuronowe są w stanie uczyć się na przykładach treningowych								
	Nettalk, system, który był w stanie nauczyć się mowy z przykładowych tekstów								
	(w oparciu o rozpoznawanie wzorców)								
	System hybrydowy łączący sieć neuronową i logikę rozmytą								
	(1982) Teoria zbiorów przybliżonych, Z. Pawlak								
1990 - dotychczas	Eksploracja danych, Data science - ma na celu pozyskiwanie informacji z dużych								
	zbiorów danych i bazy-wiedzy								
	Rozproszone autonomiczne agenty, których celem jest rozwiązywanie problemów								
	we współpracy wielu agentów								

Co rozumiemy przez agenta

- Agent to obiekt, który może postrzegać swoje środowisko za pomocą sensorów i oddziaływać na to środowisko za pomocą aktuatorów.
- ► Na przykład:
 - Agent ludzki (Human agent) ma oczy, uszy i inne narządy zmysłów jako sensory i dłonie, nogi, drogi głosowe jako aktuatory.
 - Agent robota (Robotic agent) ma kamerę, dalmierze na podczerwień jako sensory i różne silniki jako aktuatory.
 - Agent oprogramowania (Software agent) za pomocą naciśnięć klawiszy, zawartości plików, pakietów sieciowych realizuje zadania sensorów i przez wyświetlanie na ekranie, tworzenie zapisów plików, wysyłanie pakietów sieciowych realizuje zadania aktuatorów.

Postrzeganie środowiska przez agenta

Duża dziedzina: Nauki kognitywny (Cognitive Science)

- Percept: Odnosi się to do danych percepcyjnych agenta w danym momencie. Jest to wejście, które agent postrzega w danym momencie.
- Sekwencja percepcji: Oznacza pełną historię postrzeganą przez agenta.

Działanie agenta

- Wybór działania przez agenta zależy od całej dotychczas obserwowanej sekwencji percepcji.
- Matematycznie opisuje to funkcja agenta, która przypisuje akcję do zadanej sekwencji percepcji.
- Funkcję tę można również przedstawić jako tabelę ze wszystkimi możliwymi sekwencjami percepcji (o skończonej długości) i odpowiednimi działaniami podejmowanymi przez agenta.

Pierwszy krok do zaprojektowania inteligentnego agenta

► Task environment (Środowisko zadań): Opis środowiska zadań według PEAS (Performance (Wydajność), Environment (Środowisko), Actuators (Aktuatory), Sensors (Sensory)).

Przykład: inteligentny agent

Świat odkurzacza (Vaccum cleaner world):

- Załóżmy, że ma dwie lokalizacje: kwadrat A i kwadrat B.
- Odkurzacz rozpoznaje, w którym kwadracie znajduje się i czy na tym miejscu jest brud.
- Może wybrać ruch w lewo, ruch w prawo, wyssać brud lub nie robić nic.
- Prosta funkcja agenta: jeśli bieżący kwadrat jest brudny, to ssać; w przeciwnym razie przejdź na drugi kwadrat.

Odkurzacz można modelować jak poniżej

Akcja		
W prawo		
Ssać		
W Lewo		
Ssać		
W prawo		
Ssać		
:		

Czego więcej potrzebujemy do modelowania inteligentnego agenta

- Racjonalność agenta: Dla każdej możliwej sekwencji percepcji racjonalny agent powinien wybrać działanie, które maksymalizuje miarę jego wydajności, biorąc pod uwagę argumenty dostarczone przez sekwencję percepcji i bazę wiedzy agenta.
- Więc racjonalność zależy od:
 - (i) miary wydajności
 - (ii) wcześniejszej wiedzy agenta na temat środowiska
 - (iii) działań, które agent może wykonać
 - (iv) dotychczasowej sekwencji percepcji agenta

Różne rodzaje inteligentnych agentów

- ► Task environment: Podział z uwagi na działanie na środowisko zadań
 - W pełni obserwowalny (Fully observable): Jeśli sensory agenta dają pełny stan środowiska (np. krzyżówka)
 - Częściowo obserwowalne (Partially observable): Jeśli brakuje niektórych warunków środowiska z powodu szumu lub niedokładności sensora (np. prowadzenie taksówki)
 - Nieobserwowalny (Unobservable): Agent może nie mieć sensora
- Podział z uwagi na działanie na podstawie wiedzy o kolejnym stanie środowiska:
 - Deterministyczny (Deterministic): Jeśli następny stan środowiska jest całkowicie określony przez aktualny stan i można zaplanować działanie agenta (np. krzyżówka)
 - Niedeterministyczny (Non-deterministic): Gdy niepewność środowiska można opisać jedynie możliwymi wynikami (np. kółko i krzyżyk)
 - Stochastyczny (Stochastic): Gdy niepewność środowiska jest opisana poprzez przypisanie prawdopodobieństwa do możliwych wyników (np. diagnoza medyczna)

W		s		R1: city
			0	C5: animal

WARSAW O L

DETERMINISTIC

Różne rodzaje inteligentnych agentów

- Single agent vs. multiagent: Klasyfikacja na podstawie działania innych agentów
 - Model konkurencji (Competitive): Gdy jeden agent próbuje zmaksymalizować swoją miarę wydajności w oparciu o zachowanie innego agenta (np. gry w szachy)
 - Model współpracy (Cooperative): Gdy współpraca między agentami poprawia wydajność każdego z nich (np. Interaktywny nauczyciel języka angielskiego)
- ► Klasyfikacja agentów na podstawie warunków akcji
 - Epizodyczny (Episodic): Gdy doświadczenie agenta jest podzielone na epizody atomowe (odcinki), a działanie w bieżącym odcinku nie zależy od działań w poprzednich odcinkach. (np. analiza obrazu)
 - Sekwencyjny (Sequential): Gdy działanie w bieżącym odcinku zależy od działań w poprzednim odcinku (np. gry w szachy)
 - Statyczny vs. dynamiczney (Static vs. dynamic): Jeśli środowisko może się zmienić, gdy agent rozważa/wykonuje akcję, to agent jest dynamiczny (np. jazda taksówka); w przeciwnym razie jest statyczny (np. krzyżówka)

W		s		R1: city
			0	C5: animal

WARSAW O L

DETERMINISTIC SINGLE-AGENT

NON-DETERMINISTIC
MULTIAGENT-COMPETITIVE

STOCHASTIC

MUTLIAGENT-COOPERATIVE

Part-picking robot

FULLY OBSERVABLE
EPISODIC
STATIC

Przykłady środowisk zadań

Task environment	Observable	Deterministic	Agent	Episodic	Static
Crossword puzzle (Krzyżówka)	Fully	Deterministic	Single	Sequential	Static
Chess with a clock (Szachy)	Fully	Deterministic	Multi	Sequential	Semi
Poker	Partially	Deterministic Multi		Sequential	Static
Backgammon (Trik-trak)	Fully	Deterministic	Multi	Sequential	Static
Taxi driving (Jazda taksówką)	Partially	Stochastic	Multi	Sequential	Dynamic
Medical diagnosis (Diagnoza medyczna)	Partially	Stochastic	Single	Sequential	Dynamic
Image analysis (Analiza obrazu)	Fully	Deterministic	Single	Episodic	Semi
Part-picking robot	Partially	Stochastic	Single	Episodic	Dynamic
(Robot do pobierania części)					
Refinery controller	Partially	Stochastic	Single	Sequential	Dynamic
(Kontroler rafinerii)					
Interactive English tutor (Interaktywny	Partially	Stochastic	Multi	Sequential	Dynamic
nauczyciel języka angielskiego)					

Funkcja agenta kontra program agenta

- Funkcja agenta opisana jest regułami w tabeli i Program agenta implementuje tę funkcję agenta
- Program agenta jest więc związany z fazą budowy inteligentnego agenta
- Program agenta możemy przedstawić w następujący sposób

```
function TABLE-DRIVEN-AGENT(percept) returns an action persistent: percepts, a sequence, initially empty table, a table of actions, indexed by percept sequences, initially fully specified append percept to the end of percepts action → LOOKUP(percept, table) return action
```

Składniki programu agenta

Składniki umożliwiają odpowiedzi na następujące pytania:

- ▶ Jak teraz wygląda świat? (Obecne środowisko)
- Jakie działanie należy wybrać? (Wybór akcji)
- Co będzie wynikiem działania? (Wpływ działania)

W oparciu o te składniki program agenta może być trzech typów:

- (i) Reprezentacja atomowa (Atomic representation)
- (ii) Reprezentacja rozproszona (Factored representation)
- (iii) Reprezentacja ustrukturyzowana (Structured representation)

Reprezentacja atomowa

- Każdy stan świata jest niepodzielny i nie ma wewnętrznej struktury
- Na przykład, znalezienie trasy dojazdu z jednego miejsca do drugiego
- W szczególności potrzebujemy
 - ► algorytmów wyszukiwania (Searching algorithms),
 - strategii gier (Game strategies)

Sformułowanie problemu:

- stan początkowy: początkowy stan przed rozwiązaniem problemu
- cel: stan docelowy lub formuła oceniająca, czy dany stan spełnia cel
- rozwiązanie: ciąg akcji prowadzący od stanu początkowego do celu
- koszt rozwiązania: funkcja oceny kosztu rozwiązania równa sumie kosztów poszczególnych akcji występujących w rozwiązaniu

Rozwiązania o niższym koszcie są lepsze niż rozwiązania o wyższym koszcie.

Reprezentacja rozproszona

- W tym kontekście, poza samą lokalizacją miasta, skupimy się również na czynnikach, takich jak koszt dotarcia tam - z uwzględnieniem pieniędzy, odległości, czasu.
- Tak więc każdy stan zawiera zestaw zmiennych lub atrybutów, z których każdy może mieć określoną wartość
- ► Tutaj warto wymienić i poznać:
 - Algorytmy spełniające więzy (Constrained satisfaction algorithms)
 - Rachunek zdań (Propositional logic)
 - ► Planowanie (Planning)
 - Sieci bayesowskie (Bayesian network)
 - Algorytmy uczenia maszynowego (Machine learning algorithms)

Reprezentacja ustrukturyzowana

- W tym kontekście mamy do czynienia z sytuacjami, w których oprócz indywidualnych informacji o różnych stanach, mamy różne relacje między stanami
- ► Tutaj warto wymienić i poznać:
 - ► Rachunek pierwszego rzędu (First order logic)
 - Uczenie się oparte na wiedzy (Knowledge-based learning)
 - Przetwarzanie języka naturalnego (Processing of natural language)

Łącząc różne aspekty, skoncentrujemy się na następujących tematach

- 1. Algorytmy wyszukiwania (w tym heurystyczne)
- 2. Strategie w grach
- 3. Wnioskowanie w logice
- 4. Sieci neuronowe
- 5. Zbiory rozmyte
- Systemy decyzyjne i uczące się: Zbiory przybliżone, reguły decyzyjne
- 7. Sieci bayesowskie

Bibliografia

- Artificial Intelligence: A Modern Approach Stuart Russell and Peter Norvig
- ► Machine Learning Tom M. Mitchell
- Wstęp do Sztucznej Inteligencji Mariusz Flasiński

Metoda oceny

- W ćwiczeniach będzie pięć zestawów zadań. Za każdy zestaw można uzyskać 2 punkty.
- Rozwiązania każdego zestawu zadań będzie można złożyć w ciągu trzech tygodni. Dwie osoby mogą utworzyć grupę, aby pracować nad zestawami zadań i przedstawiać swoje rozwiązania jako grupa. Za opóżnienia w przesłaniu rozwiązań zadań i kopiowanie ich z innych prac będą odejmowane punkty.
- Na niektórych ćwiczeniach będą przyprowadzane krótkie testy.
 Szczegóły dotyczące testów zostaną podane na tydzień przed testem.
- Ocena za ćwiczenia będzie wystawiona na podstawie średniej z wszystkich uzyskanych punktów.
- Ta uzyskana ocenia za ćwiczenia będzie proponowana również jako ocena za wykład.
- Do zaliczenia przedmiotu wymagane jest uzyskanie pozytywnej oceny. Jeśli ktoś nie zaliczy przedmiotu na podstawie powyższych kryteriów lub zechce poprawiać ocenę, to może zdawać egzamin pisemny.

Dziękuję za uwagę