Lecture 8: Conditional Expectation & Covariance

24 March, 2018

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Example 8.1 Let X, Y be continuous random variables with joint pdf given by

$$f(x,y) = \begin{cases} 6(y-x) & ; & 0 \le x \le y \le 1 \\ 0 & ; & otherwise \end{cases}$$

Find E[Y|X=x] and hence calculate EY.

Solution: In order to calculate E[Y|X=x] we need to find $f_{Y|X}$, which is by definition equal to $\frac{f(x,y)}{f_X(x)}$.

Note that

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$= \begin{cases} \int_{x}^{1} f(x, y) dy &; 0 \le x \le 1\\ 0 &; \text{ otherwise} \end{cases}$$

$$= \int_{x}^{1} 6(y - x) dy$$

$$= 6 \left[\frac{y^2}{2} - xy \right]_{x}^{1}$$

$$= 6 \left[\frac{x^2}{2} - x + \frac{1}{2} \right]$$

$$= \begin{cases} 3(x - 1)^2 &; 0 \le x \le 1\\ 0 &; \text{ otherwise} \end{cases}$$

This implies that

$$f_{Y|X}(y|x) = \begin{cases} \frac{2(y-x)}{(x-1)^2} & ; & 0 \le x \le y < 1\\ 0 & ; & \text{otherwise} \end{cases}$$

Hence E[Y|X=x] would be non-zero only if $0 \le x < 1$.

$$E[Y|X = x] = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$$

$$= \int_{x}^{1} y \frac{2(y-x)}{(x-1)^{2}} dy$$

$$= \frac{2}{(x-1)^{2}} \int_{x}^{1} (y^{2} - xy) dy$$

$$= \frac{2}{(x-1)^{2}} \left[\frac{y^{3}}{3} - x \frac{y^{2}}{2} \right]_{x}^{1}$$

$$= \frac{2}{(x-1)^{2}} \left[\frac{1}{3} - \frac{x}{2} + \frac{x^{3}}{6} \right]$$

$$= \frac{2(x^{3} - 3x + 2)}{6(x-1)^{2}}$$

$$= \frac{x^{2} + x - 2}{3(x-1)}$$

Therefore

$$EY = \int_{-\infty}^{\infty} E[Y|X=x] f_X(x) dx$$

$$= \int_{0}^{1} \frac{x^2 + x - 2}{3(x-1)} \times 3(x-1)^2 dx$$

$$= \int_{0}^{1} (x^2 + x - 2)(x-1) dx$$

$$= \int_{0}^{1} (x^3 - 3x + 2) dx$$

$$= \frac{3}{4}$$

Theorem 8.2 1. Let X and Y be discrete random variables with joint pmf f. If g is a function then

$$E[g(X)|Y = y] = \sum_{x} g(x) f_{X|Y}(x|y),$$

provided
$$\sum_{x} |g(x)| f_{X|Y}(x|y) < \infty$$
.

2. Let X and Y be random variables with joint pdf f. If $g : \mathbb{R} \to \mathbb{R}$ is a Borel function then

$$E[g(X)|Y=y] = \int_{-\infty}^{\infty} g(x)f_{X|Y}(x|y)dx,$$

provided
$$\int_{-\infty}^{\infty} |g(x)| f_{X|Y}(x|y) dx < \infty$$
.

Covariance

Definition 8.3 The covariance of two random variables X and Y, denoted by cov(X,Y) is defined by

$$cov(X,Y) = E[(X - EX)(Y - EY)]$$

When cov(X, Y) = 0, we say that X and Y are uncorrelated.

The covariance gives information about how random variable X and Y are linearly related. Intuitively, the covariance between X and Y indicates how the values of X and Y move relative to each other. If large values of X tend to happen with large values of Y, then the covariance is positive (or small values of X tend to happen with small values of Y) and we

say X and Y are positively correlated. On the other hand, if X tends to be small when Y is large (or vice-versa), then the covariance is negative and we say X and Y are negatively correlated.

By appealing to the linearity of the expectation,

$$cov(X,Y) = E[XY - XEY + YEX - EXEY]$$
$$= E[XY] - EXEY + EYEX - EXEY$$
$$= E[XY] - E[X]E[Y].$$

If X and Y are independent then E[XY] = EXEY, therefore cov(X,Y) = 0. But converse is not true in general.

Example 8.4 Let the joint probabilities of random variables X and Y are given by the following table.

X	-1	0	1
-1	0	$\frac{1}{4}$	0
0	$\frac{1}{4}$	0	$\frac{1}{4}$
1	0	$\frac{1}{4}$	0

Then we have seen that X and Y are identically distributed and

$$P(X = -1) = P(X = 1) = \frac{1}{4}$$
 and $P(X = 0) = \frac{1}{2}$

Also, it is easy to see that E[X] = E[Y] = 0. Furthermore, random variable XY takes values $\{-1, 0, 1\}$ with the pmf

$$P(XY = 1) = 0 = P(XY = -1)$$
 and $P(XY = 0) = 1$.

Therefore, E[XY] = 0, which in turn implies cov(X,Y) = 0. However, X and Y are not independent since

$$P(X = -1, Y = -1) = 0 \neq \frac{1}{16} = P(X = -1)P(Y = -1)$$

Proposition 8.5 For any random variable X, Y and Z, and any $a, b \in \mathbb{R}$,

- 1. cov(X, X) = var(X).
- 2. cov(X, Y) = var(Y, X).
- 3. cov(X, aY + b) = a cov(X, Y).

4.
$$cov(X, Y + Z) = cov(X, Y) + cov(X, Z)$$
.

Proof: All the proof follows from definition of covariance and linearity of expectation.

1.

$$cov(X, X) = E[X^2] - EX EX = var(X)$$

- 2. immediate from definition.
- 3.

$$cov(X, aY + b) = E[X(aY + b)] - EXE[aY + b] = E[aXY + bX] - EX[aEY + b]$$

= $aE[XY] + bEX - aEXEY - bEX = a[E[XY] - EXEY] = cov(X, Y)$

4.

$$cov(X, Y + Z) = E[X(Y + Z)] - EXE(Y + Z) = E[XY + XZ] - EX[EY + EZ]$$

= $E[XY] + E[XZ] - EXEY - EXEZ = cov(X, Y) + cov(X, Z)$

Example 8.6 Let X and Y be two independent N(0,1) random variables and $Z = 1 + X + XY^2$, W = 1 + X. Find cov(Z, W).

Solution:

$$\begin{split} \operatorname{cov}(Z,W) &= \operatorname{cov}(1+X+XY^2,1+X) \\ &= \operatorname{cov}(X+XY^2,X) \ \ (\because \text{ adding a constant to any rv does not affect the covariance}) \\ &= \operatorname{cov}(X,X) + \operatorname{cov}(XY^2,X) \\ &= \operatorname{var}(X) + E[XY^2X] - E[XY^2]EX = 1 + E[X^2]E[Y^2] = 2 \end{split}$$

Example 8.7 For any random variables X, Y, show that

$$var(X + Y) = var(X) + var(Y) + 2cov(X, Y).$$

Solution:

$$var(X + Y) = cov(X + Y, X + Y) = cov(X + Y, X) + cov(X + Y, Y)$$

= cov(X, X) + cov(Y, X) + cov(X, Y) + cov(Y, Y)
= var(X) + var(Y) + 2cov(X, Y).