PR. MIDTERM

20240A2 1002

Court AGHTSHEK JANAZO

Given

$$X = 2, 4, 6, 8$$
 $Y = 8, 9, 10, 12$

La = 5

La = 10

Cou (X,Y) = $\frac{1}{n}$ \mathcal{E} , (X-Mx) (Y-My)

 \mathcal{E}
 \mathcal{E}

b) variance tells how spreadout the data points around uts mean.

High variance.

data points are more speadout around its mean, result in more Complex decision boundry

Low vorian e

other variable of class is low data points are clustered around ets mean result in clear and simple decision boundry

$$p(c_1) = 0.6$$

$$p(C_2) = 0.9$$

$$p(F) = p(F|C_1) *P(I) + p(F|C_2) *P(C_2)$$

0.57

 $P(c_{\lambda}|F) = P(F|c_{\lambda}) P(c_{\lambda})$

$$P(F|C_1) = 0.85 - 0.1 = 0.75$$

$$P(F|C_2) = 0.15 + 0.1 = 0.25$$

$$0.75 + 0.25 = 1$$

$$P(F) = P(F|C_1) \cdot P(C_1) + P(F|C_2) \cdot P(C_2)$$

$$= (0.75 \times 0.6) + (0.25 \times 0.4)$$

$$= (0.75 \times 0.6) + (0.25 \times 0.4)$$

$$= 0.55$$

$$= P(F(G)) \times P(G) = P(G) + 0.00$$

75	<u> </u>	
	= / 0 · 75 x	0.6) + (0.25 x 0.4)
		2000
	P(F) = 0.55	
	- 00	2
Co	3.5	
ه ر د	1/F) = P(F(C1) * P(C1)	P(Ca F) = P(F Ca) + P(
	$\rho(F)$	P(F)
	= 0.75 x 0.6	
	0.55	E 0.25 x 0.6
Call	2 20 0100	0.55
-a/1) z 0.0102	P(C1) = 0.1818
	(1) 9 (1) 9	0.1010
	(476	
) 1	

$$P(C_1) = 0.75$$
 $P(C_1) = 0.25$

Ever cost
$$(C_1 \rightarrow C_2) = (3)$$

ever cost $(C_2 \rightarrow C_1) = 1$

Expected Coss = P(C1) & Exercor(C1) +

P(C2) & Error (C2)

Expected loss = 1.5