1 Tensor-Product Basis

The tensor-product basis is

$$\phi_{(i,j)}(\alpha,\beta) = \tilde{\phi}_{(i)}(\alpha)\tilde{\phi}_{(j)}(\beta),\tag{1}$$

where $\tilde{\phi}_{(i)}(x)$ denotes the usual 1D GLL basis function at node $i \in (0, ..., n_p)$. For vector fields, the components of the covariant vector field are given by the tensor-product basis (1).

2 Hyperviscosity

2.1 Vector Hyperviscosity

Fourth-order vector hyperviscosity is implemented using a two stage procedure:

$$\mathbf{f} = -\mathcal{H}(1, 1)\mathbf{u}^n,\tag{2}$$

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \mathcal{H}(\nu_d, \nu_v) \mathbf{f}. \tag{3}$$

The hyperdiffusion operator is defined implicitly via

$$\mathbf{f} = \mathcal{H}(\nu_d, \nu_v)\mathbf{u}^{\mathbf{n}} \iff \iint \mathbf{f} \cdot \boldsymbol{\phi} dA = \iint \nu_d(\nabla \cdot \boldsymbol{\phi})(\nabla \cdot \mathbf{u}^n) + \nu_v(\nabla \times \boldsymbol{\phi})^r (\nabla \times \mathbf{u}^n)_r dA, \tag{4}$$

where $dA = Jd\alpha d\beta$ and

$$(\nabla \cdot \boldsymbol{\phi}) = g^{pq} \nabla_p \phi_q = \frac{1}{J} \frac{\partial}{\partial \alpha} \left(J g^{\alpha \alpha} \phi_\alpha + J g^{\alpha \beta} \phi_\beta \right) + \frac{1}{J} \frac{\partial}{\partial \beta} \left(J g^{\beta \alpha} \phi_\alpha + J g^{\beta \beta} \phi_\beta \right), \tag{5}$$

$$(\nabla \times \boldsymbol{\phi})^r = \epsilon^{rpq} \nabla_p \phi_q = \epsilon^{rpq} \left[\frac{\partial \phi_q}{\partial x^p} - \Gamma^k_{pq} \phi_k \right] = \frac{1}{J} \left[\frac{\partial \phi_\beta}{\partial \alpha} - \frac{\partial \phi_\alpha}{\partial \beta} \right]. \tag{6}$$

Here we assume that $(\nabla \cdot \mathbf{u})$ and $(\nabla \times \mathbf{u})_r$ (covariant radial component of curl) have already been computed.

2.1.1 Vector basis with zero β component

If $\phi_{(i,j)\alpha} = \tilde{\phi}_{(i)}(\alpha)\tilde{\phi}_{(j)}(\beta)$ and $\phi_{(i,j)\beta} = 0$ then

$$\iint \mathbf{f} \cdot \phi dA = \iint f^{\alpha} \tilde{\phi}_{(i)}(\alpha) \tilde{\phi}_{(j)}(\beta) dA = f^{\alpha}_{(i,j)} w_i w_j J \Delta \alpha \Delta \beta \tag{7}$$

The divergent term is defined by

$$(\nabla \cdot \phi_{(i,j)}) = \frac{1}{J} \frac{\partial}{\partial \alpha} \left(J g^{\alpha \alpha} \phi_{(i,j)\alpha} \right) + \frac{1}{J} \frac{\partial}{\partial \beta} \left(J g^{\beta \alpha} \phi_{(i,j)\alpha} \right)$$
(8)

$$=\frac{\tilde{\phi}_{(j)}(\beta)}{J}\frac{\partial}{\partial\alpha}\left(Jg^{\alpha\alpha}\tilde{\phi}_{(i)}(\alpha)\right) + \frac{\tilde{\phi}_{(i)}(\alpha)}{J}\frac{\partial}{\partial\beta}\left(Jg^{\beta\alpha}\tilde{\phi}_{(j)}(\beta)\right),\tag{9}$$

and

$$\iint (\nabla \cdot \boldsymbol{\phi}_{(i,j)})(\nabla \cdot \mathbf{u})dA \\
= \Delta \alpha \Delta \beta \sum_{m=0}^{n_p-1} \sum_{n=0}^{n_p-1} \left[\frac{\tilde{\phi}_{(j)}(\beta_n)}{J} \frac{\partial}{\partial \alpha} \left(J g^{\alpha \alpha} \tilde{\phi}_{(i)}(\alpha) \right) + \frac{\tilde{\phi}_{(i)}(\alpha_m)}{J} \frac{\partial}{\partial \beta} \left(J g^{\beta \alpha} \tilde{\phi}_{(j)}(\beta) \right) \right] (\nabla \cdot \mathbf{u}) J w_m w_n \quad (10)$$

$$= \Delta \alpha \Delta \beta w_j \sum_{m=0}^{n_p-1} \frac{\partial}{\partial \alpha} \left(J g^{\alpha \alpha} \tilde{\phi}_{(i)}(\alpha) \right) (\nabla \cdot \mathbf{u}) w_m \Big|_{\alpha = \alpha_m, \beta = \beta_j}$$

$$+ \Delta \alpha \Delta \beta w_i \sum_{n=0}^{n_p-1} \frac{\partial}{\partial \beta} \left(J g^{\beta \alpha} \tilde{\phi}_{(j)}(\beta) \right) (\nabla \cdot \mathbf{u}) w_n \Big|_{\alpha = \alpha_i, \beta = \beta_n}$$

$$= \Delta \alpha \Delta \beta w_j \sum_{m=0}^{n_p-1} J g^{\alpha \alpha} \frac{\partial \tilde{\phi}_{(i)}}{\partial \alpha} (\nabla \cdot \mathbf{u}) w_m \Big|_{\alpha = \alpha_m, \beta = \beta_j}$$

$$+ \Delta \alpha \Delta \beta w_i \sum_{n=0}^{n_p-1} J g^{\beta \alpha} \frac{\partial \tilde{\phi}_{(j)}}{\partial \beta} (\nabla \cdot \mathbf{u}) w_n \Big|_{\alpha = \alpha_i, \beta = \beta_n}$$

$$(12)$$

Further, the vortical term is defined by

$$(\nabla \times \phi_{(i,j)})^r = -\frac{1}{J} \frac{\partial \phi_{(i,j)\alpha}}{\partial \beta} = -\frac{\tilde{\phi}_{(i)}}{J} \frac{\partial \tilde{\phi}_{(j)}}{\partial \beta}$$
(13)

and so

$$\iint (\nabla \times \boldsymbol{\phi}_{(i,j)})^r (\nabla \times \mathbf{u})_r dA$$

$$= \Delta \alpha \Delta \beta \sum_{m=0}^{n_p-1} \sum_{n=0}^{n_p-1} \left[-\frac{\tilde{\boldsymbol{\phi}}_{(i)}(\alpha_m)}{J} \frac{\partial \tilde{\boldsymbol{\phi}}_{(j)}}{\partial \beta} \right] (\nabla \times \mathbf{u})_r J w_m w_n \bigg|_{\alpha = \alpha_m, \beta = \beta_n}$$

$$= -\Delta \alpha \Delta \beta w_i \sum_{n=0}^{n_p-1} \frac{\partial \tilde{\boldsymbol{\phi}}_{(j)}}{\partial \beta} (\nabla \times \mathbf{u})_r w_n \bigg|_{\alpha = \alpha_m, \beta = \beta_n}$$
(15)

Combining (7), (12) and (15) then gives

$$f_{(i,j)}^{\alpha} = \frac{\nu_d}{J(\alpha_i, \beta_j) w_i} \sum_{m=0}^{n_p - 1} J g^{\alpha \alpha} \frac{\partial \tilde{\phi}_{(i)}}{\partial \alpha} (\nabla \cdot \mathbf{u}) w_m \bigg|_{\alpha = \alpha_m, \beta = \beta_j}$$

$$+ \frac{\nu_d}{J(\alpha_i, \beta_j) w_j} \sum_{n=0}^{n_p - 1} J g^{\beta \alpha} \frac{\partial \tilde{\phi}_{(j)}}{\partial \beta} (\nabla \cdot \mathbf{u}) w_n \bigg|_{\alpha = \alpha_i, \beta = \beta_n}$$

$$- \frac{\nu_v}{J(\alpha_i, \beta_j) w_j} \sum_{n=0}^{n_p - 1} \frac{\partial \tilde{\phi}_{(j)}}{\partial \beta} (\nabla \times \mathbf{u})_r w_n \bigg|_{\alpha = \alpha_j, \beta = \beta_n}$$

$$(16)$$

2.1.2 Vector basis with zero α component

If $\phi_{(i,j)\alpha} = 0$ and $\phi_{(i,j)\beta} = \tilde{\phi}_{(j)}(\alpha)\tilde{\phi}_{(j)}(\beta)$ then

$$\iint \mathbf{f} \cdot \phi dA = \iint f^{\beta} \tilde{\phi}_{(i)}(\alpha) \tilde{\phi}_{(j)}(\beta) dA = f^{\beta}_{(i,j)} w_i w_j J \Delta \alpha \Delta \beta \tag{17}$$

The divergent term is defined by

$$(\nabla \cdot \phi_{(i,j)}) = \frac{1}{J} \frac{\partial}{\partial \alpha} \left(J g^{\alpha \beta} \phi_{(i,j)\beta} \right) + \frac{1}{J} \frac{\partial}{\partial \beta} \left(J g^{\beta \beta} \phi_{(i,j)\beta} \right)$$
(18)

$$= \frac{\tilde{\phi}_{(j)}(\beta)}{J} \frac{\partial}{\partial \alpha} \left(J g^{\alpha \beta} \tilde{\phi}_{(i)} \right) + \frac{\tilde{\phi}_{(i)}(\alpha)}{J} \frac{\partial}{\partial \beta} \left(J g^{\beta \beta} \tilde{\phi}_{(j)} \right), \tag{19}$$

and

$$\iint (\nabla \cdot \phi_{(i,j)})(\nabla \cdot \mathbf{u}) dA
= \Delta \alpha \Delta \beta \sum_{m=0}^{n_p-1} \sum_{n=0}^{n_p-1} \left[\frac{\tilde{\phi}_{(j)}(\beta_n)}{J} \frac{\partial}{\partial \alpha} \left(J g^{\alpha \beta} \tilde{\phi}_{(i)} \right) + \frac{\tilde{\phi}_{(i)}(\alpha_m)}{J} \frac{\partial}{\partial \beta} \left(J g^{\beta \beta} \tilde{\phi}_{(j)} \right) \right] (\nabla \cdot \mathbf{u}) J w_m w_n \tag{20}$$

$$= \Delta \alpha \Delta \beta w_j \sum_{m=0}^{n_p-1} \frac{\partial}{\partial \alpha} \left(J g^{\alpha \beta} \tilde{\phi}_{(i)}(\alpha) \right) (\nabla \cdot \mathbf{u}) w_m \Big|_{\alpha = \alpha_m, \beta = \beta_j}
+ \Delta \alpha \Delta \beta w_i \sum_{n=0}^{n_p-1} \frac{\partial}{\partial \beta} \left(J g^{\beta \beta} \tilde{\phi}_{(j)}(\beta) \right) (\nabla \cdot \mathbf{u}) w_n \Big|_{\alpha = \alpha_i, \beta = \beta_n} \tag{21}$$

$$= \Delta \alpha \Delta \beta w_j \sum_{m=0}^{n_p-1} J g^{\alpha \beta} \frac{\partial \tilde{\phi}_{(i)}}{\partial \alpha} (\nabla \cdot \mathbf{u}) w_m \Big|_{\alpha = \alpha_m, \beta = \beta_j}
+ \Delta \alpha \Delta \beta w_i \sum_{n=0}^{n_p-1} J g^{\beta \beta} \frac{\partial \tilde{\phi}_{(j)}}{\partial \beta} (\nabla \cdot \mathbf{u}) w_n \Big|_{\alpha = \alpha_i, \beta = \beta_n} \tag{22}$$

Further, the vortical term is defined by

$$(\nabla \times \phi_{(i,j)})^r = \frac{1}{J} \frac{\partial \phi_{(i,j)\beta}}{\partial \alpha} = \frac{\tilde{\phi}_{(j)}}{J} \frac{\partial \tilde{\phi}_{(i)}}{\partial \alpha}$$
(23)

and so

$$\iint (\nabla \times \phi_{(i,j)})^r (\nabla \times \mathbf{u})_r dA$$

$$= \Delta \alpha \Delta \beta \sum_{m=0}^{n_p-1} \sum_{n=0}^{n_p-1} \left[\frac{\tilde{\phi}_{(j)}(\beta_n)}{J} \frac{\partial \tilde{\phi}_{(i)}}{\partial \alpha} \right] (\nabla \times \mathbf{u})_r J w_m w_n \Big|_{\alpha = \alpha_m, \beta = \beta_n}$$

$$= \Delta \alpha \Delta \beta w_j \sum_{m=0}^{n_p-1} \frac{\partial \tilde{\phi}_{(i)}}{\partial \alpha} (\nabla \times \mathbf{u})_r w_m \Big|_{\alpha = \alpha_m, \beta = \beta_n}$$
(24)

Combining (17), (22) and (25) then gives

$$f_{(i,j)}^{\beta} = \frac{\nu_d}{J(\alpha_i, \beta_j)w_i} \sum_{m=0}^{n_p-1} Jg^{\alpha\beta} \frac{\partial \tilde{\phi}_{(i)}}{\partial \alpha} (\nabla \cdot \mathbf{u}) w_m \bigg|_{\alpha = \alpha_m, \beta = \beta_j}$$

$$+ \frac{\nu_d}{J(\alpha_i, \beta_j)w_j} \sum_{n=0}^{n_p-1} Jg^{\beta\beta} \frac{\partial \tilde{\phi}_{(j)}}{\partial \beta} (\nabla \cdot \mathbf{u}) w_n \bigg|_{\alpha = \alpha_i, \beta = \beta_n}$$

$$+ \frac{\nu_v}{J(\alpha_i, \beta_j)w_i} \sum_{m=0}^{n_p-1} \frac{\partial \tilde{\phi}_{(i)}}{\partial \alpha} (\nabla \times \mathbf{u})_r w_m \bigg|_{\alpha = \alpha_m, \beta = \beta_j}$$

$$(26)$$