МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система стандартов автоматизированных систем управления

НАДЕЖНОСТЬ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ

ГОСТ 24.701—86

Основные положения

Unified system of standards of computer control systems. Dependability of computer control systems. General positions

ОКСТУ 0024

Постановлением Государственного комитета СССР по стандартам от 31.03.86 № 850 дата введения установлена

01.07.87

Настоящий стандарт распространяется на вновь разрабатываемые или модернизируемые автоматизированные системы управления (АСУ) всех видов и уровней управления, кроме общегосударственного.

Стандарт устанавливает основные положения по надежности АСУ, номенклатуру основных показателей надежности АСУ, порядок установления требований к надежности АСУ, общий порядок оценки надежности АСУ, состав и порядок проведения работ по обеспечению надежности АСУ.

В приложении 1 приведены термины, применяемые в стандарте, и пояснения к ним.

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Обеспечение необходимого уровня надежности требует проведения специального комплекса работ, выполняемых на разных стадиях создания и эксплуатации АСУ.
- 1.2. При решении вопросов, связанных с обеспечением требуемого уровня надежности АСУ, необходимо учитывать следующие особенности АСУ:
- каждая АСУ является многофункциональной системой, функции которой имеют существенно различную значимость и, соответственно, характеризуются разным уровнем требований к надежности их выполнения;
- во многих АСУ возможно возникновение некоторых исключительных (аварийных, критических) ситуаций, представляющих сочетание отказов или ошибок функционирования системы и способных привести к значительным нарушениям функционирования объекта управления (авариям);
- в функционировании АСУ участвуют различные виды ее обеспечения и персонал АСУ, которые могут в той или иной степени влиять на уровень надежности АСУ;
- в состав каждой АСУ входит большое количество разнородных элементов: технических, программных, эргатических и др., при этом в выполнении одной функции АСУ обычно участвуют несколько различных элементов, а один и тот же элемент может участвовать в выполнении нескольких функций системы.
- 1.3. При решении вопросов надежности АСУ количественное описание, анализ, оценка и обеспечение надежности проводят по каждой функции АСУ в отдельности. В необходимых случаях используют также анализ возможности возникновения в системе аварийных ситуаций, ведущих к значительным техническим, экономическим или социальным потерям вследствие аварии объекта управления (или автоматизированного комплекса в целом).

- 1.3.1. Функции АСУ подразделяют на простые и составные. Для некоторых АСУ возможно построение составной функции наиболее общего вида, отображающей функционирование АСУ в целом.
- 1.3.2. Перечень функций и видов их отказов, по которым задаются требования к надежности конкретной АСУ, а также критерии этих отказов устанавливает заказчик АСУ по согласованию с разработчиком АСУ и вносит в техническое задание на АСУ (ТЗ на АСУ).

Для установления критериев отказов составляют перечень признаков или параметров, по которым может быть обнаружен факт возникновения каждого отказа, а при необходимости — количественные (критериальные) значения этих параметров.

- 1.3.3. Если для некоторой функции АСУ определено несколько видов отказов, существенно различающихся по причинам возникновения или по вызываемым ими последствиям, то безотказность и ремонтопригодность по этой функции задают отдельно по каждому виду отказов. При этом критерии отказов устанавливают по каждому виду отказов.
- 1.3.4. Перечень рассматриваемых аварийных ситуаций, по которым задают требования к надежности, составляет заказчик АСУ по согласованию с разработчиком АСУ и вносит в техническое задание на АСУ с указанием, при каких условиях эксплуатации АСУ рассматривают возникновение каждой из приведенных аварийных ситуаций.

 Π р и м е ч а н и е. Аварийные ситуации в системе могут возникать в условиях нормального ее функционирования и вследствие воздействия на систему внешнего экстремального фактора (отключения питания, крупных метеорологических аномалий и пр.).

- 1.4. Уровень надежности АСУ зависит от надежности и других свойств ее технического обеспечения (комплекса технических средств), программного обеспечения и персонала, участвующего в функционировании АСУ.
 - 1.5. Уровень надежности АСУ зависит от следующих основных факторов:
- состава и уровня надежности используемых технических средств, их взаимосвязи в надежностной структуре комплекса технических средств АСУ (КТС АСУ);
- состава и уровня надежности используемых программных средств, их содержания (возможностей) и взаимосвязи в структуре программного обеспечения АСУ (ПО АСУ);
- уровня квалификации персонала, организации работы и уровня надежности действий персонала ACУ;
- рациональности распределения задач, решаемых системой, между КТС АСУ, ПО АСУ и персоналом АСУ:
 - режимов, параметров и организационных форм технической эксплуатации КТС АСУ;
- степени использования различных видов резервирования (структурного, информационного, временного, алгоритмического, функционального);
 - степени использования методов и средств технической диагностики;
 - реальных условий функционирования АСУ.

П р и м е ч а н и е. Свойства информационного, математического, лингвистического, метрологического, организационного, правового обеспечений АСУ влияют на надежность АСУ только косвенно, через функционирование технических и программных средств и персонала АСУ и поэтому при решении вопросов, связанных с надежностью АСУ, отдельно не учитываются.

1.6. Совокупность технических, программных и эргатических элементов АСУ (технических и программных средств и части персонала АСУ), выделяемая из всего состава АСУ по признаку участия в выполнении некоторой (i-й) функции системы, образует i-ю функциональную подсистему АСУ ($\Phi\Pi$ АСУ).

П р и м е ч а н и е. Если для АСУ сформулирована составная функция наиболеее общего вида, то соответствующая ей функциональная подсистема совпадает с системой в целом.

- 1.6.1. Анализ надежности АСУ в реализации ее функций проводят по каждой $\Phi\Pi$ АСУ в отдельности с учетом уровня надежности и других свойств, входящих в нее технических, программных и эргатических элементов.
- 1.6.2. При анализе надежности АСУ необходимо учитывать, что элементы, входящие в $\Phi\Pi$ АСУ решают задачи взаимной компенсации некоторых нарушений нормальной работы, предотвращая переход этих нарушений в отказы в выполнении соответствующей функции, либо минимизируя их неблагоприятные последствия.

С. 3 ГОСТ 24.701—80

 Π р и м е ч а н и е. Программное обеспечение функциональной подсистемы АСУ (ПО АСУ) может предотвращать возникновение отказов в выполнении функции АСУ при отказах технических средств функциональной подсистемы (ТС $\Phi\Pi$) и ошибках персонала, участвующих в выполнении этой функции (входящих в эту $\Phi\Pi$ АСУ), либо может обеспечить перевод отказов $\Phi\Pi$, ведущих к большим потерям, в отказы другого вида, сопряженные с меньшими потерями. Технические средства $\Phi\Pi$ могут не допускать перехода определенных нарушений в работе Π 0 $\Phi\Pi$ 0 и персонала $\Phi\Pi$ 1 в отказ выполнения функции АСУ, либо могут минимизировать последствия отказа. Персонал $\Phi\Pi$ 1 может эффективно принимать меры к недопущению отказов $\Phi\Pi$ 4 АСУ при отказах ТС $\Phi\Pi$ 1 или проявлении ошибок в Π 0 $\Phi\Pi$ 1, либо к снижению потерь от таких отказов (ошибок).

1.7. Выбор состава показателей надежности АСУ производят на основе установленных техническим заданием перечня функций системы, перечня видов их отказов и перечня аварийных ситуаций, по которым регламентируют требования к надежности.

Указания по выбору показателей надежности АСУ по отдельным функциям и по аварийным ситуациям приведены в разд. 2.

1.8. Требуемые числовые значения выбранных показателей надежности АСУ (требования к надежности) устанавливают по определенным критериям на основе анализа влияния отказов АСУ в выполнении ее функций и аварийных ситуаций на эффективность функционирования автоматизированного комплекса (АСУ и объект управления) в целом, а также затрат, связанных с обеспечением надежности.

 Π р и м е ч а н и е. Требования к надежности АСУ вносят в техническое задание на АСУ в соответствии с π . 3.5.

- 1.9. Оценку надежности АСУ проводят на различных стадиях создания и эксплуатации АСУ.
- 1.9.1. При разработке АСУ проводят проектную (априорную) оценку надежности системы.

При опытной и промышленной эксплуатации АСУ проводят экспериментальную (апостериорную) оценку надежности системы.

1.9.2. Оценку надежности АСУ производят с учетом надежности КТС АСУ и, при необходимости, с учетом надежности ПО АСУ и действий персонала АСУ.

Необходимость учета надежности ПО АСУ и действий персонала АСУ при оценке надежности АСУ на разных стадиях создания и эксплуатации устанавливают техническим заданием на АСУ.

1.10. Комплекс работ, направленных на обеспечение требуемого уровня надежности конкретной разрабатываемой (модернизируемой) АСУ, определяют при разработке технического задания на АСУ и оформляют в виде «Программы обеспечения надежности АСУ».

Примерный перечень и последовательность выполнения указанных работ приведены в приложении 2.

1.11. Данные о надежности АСУ вносят в техническую документацию согласно стандартам Единой системы стандартов автоматизированных систем управления.

2. ПОКАЗАТЕЛИ НАДЕЖНОСТИ АСУ

- 2.1. В качестве показателей надежности АСУ используют показатели, характеризующие:
- надежность реализации функций системы;
- опасность возникновения в системе аварийных ситуаций.
- 2.2. Описание надежности АСУ по функциям (по ФП АСУ) осуществляют:
- по отдельным составляющим надежности единичными показателями;
- по нескольким составляющим надежности совместно комплексным показателям надежности.

Для описания надежности АСУ по непрерывно-выполняемым функциям (Н-функции) и по дискретно-выполняемым функциям (Д-функции) используют различные показатели.

- 2.3. Описание безотказности и ремонтопригодности АСУ по Н-функциям осуществляют с помощью единичных или комплексных показателей надежности.
 - 2.3.1. Основными единичными показателями безотказности являются:
- средняя наработка системы на отказ в выполнении \emph{i} -й функции (средняя наработка на отказ \emph{i} -й ФП АСУ) $\overline{T}_{\sigma_{\emph{i}}}$;
- вероятность безотказного выполнения системой i-й функции (вероятность безотказной работы i-й $\Phi\Pi$ ACУ) в течение заданного времени $\tau-P_{\sigma_i}$ (τ).

Допускается использовать следующие показатели:

- среднюю наработку системы до отказа в выполнении і-й функции (средняя наработка до отказа *i*-й $\Phi\Pi$ АСУ) — \overline{T}_i ;
- параметр потока отказов системы в выполнении i-й функции (параметр потока отказов i-й ΦΠ ACY) - Ω_i;
- интенсивность отказов системы в выполнении i-й функции (интенсивность отказов i-й $\Phi\Pi$ AСУ) — λ_i .
 - 2.3.2. Основными единичными показателями ремонтопригодности являются:
- среднее время восстановления способности системы к выполнению і-й функции после отказа (среднее время восстановления i-й $\Phi\Pi$ АСУ) — $\overline{T}_{\scriptscriptstyle \mathrm{B}_i}$;
- вероятность восстановления в течение заданного времени т способности системы к выполнению i-й функции после отказа (вероятность восстановления i-й ФП АСУ за время τ) — $F_{_{\rm B}}$ (τ).
 - 2.3.3. Комплексными показателями безотказности и ремонтопригодности являются:
- коэффициент готовности системы к выполнению і-й функции (коэффициент готовности і-й Φ П АСУ) — K_r ;
- коэффициент технического использования системы по i-й функции (коэффициент техничес-
- кого использования i-й $\Phi\Pi$ АСУ) $K_{_{\text{Т.И}_{i}}}$; коэффициент сохранения эффективности системы по i-й функции (коэффициент сохранения эффективности *i*-й ФП АСУ) — $K_{_{_{3}}}$.
 2.4. Описание безотказности и ремонтопригодности АСУ по Д-функциям осуществляют с по-
- мощью комплексных показателей надежности.
- 2.4.1. Основным комплексным показателем безотказности и ремонтопригодности системы в отношении выполнения ею і-й Д-функции является вероятность успешного выполнения системой заданной процедуры при поступлении запроса (вероятность успешного выполнения заданной процедуры i-й функциональной подсистемой ACУ) — L_i ;
- П р и м е ч а н и е. В ряде случаев показатель L_i может принимать вид коэффициента оперативной готовности системы к выполнению i-й функции (коэффициента оперативной готовности i-й функции (коэффициента оперативной готовности i-й ФП АСУ) $K_{\text{о.г}_i}$ (см. приложение 3).
- 2.4.2. Дополнительным комплексным показателем безотказности и ремонтопригодности системы в отношении выполнения ею i-й Д-функции является вероятность успешного выполнения nпоследовательно поступающих запросов L_{i} (n).
- 2.5. Описание надежности АСУ по аварийным ситуациям осуществляют с помощью комплексных показателей надежности.
- 2.5.1. Показателями надежности АСУ по аварийным ситуациям являются показатели, характеризующие:
- опасность возникновения аварийной ситуации в течение некоторого заданного интервала времени нормального функционирования системы;
- опасность возникновения аварийной ситуации в результате воздействия на систему внешнего экстремального фактора.
- 2.5.2. Для описания надежности АСУ по аварийным ситуациям могут быть использованы следующие показатели:
- средняя наработка системы до возникновения в ней *j*-й аварийной ситуации при нормальных условиях функционирования АСУ — \overline{T}_{aB_i} ;
- вероятность возникновения в системе ј-й аварийной ситуации в течение заданного времени τ при нормальных условиях функционирования АСУ — $Q_i(\tau)$;
- вероятность возникновения в системе j-й аварийной ситуации в результате воздействия s-го экстремального воздействующего фактора $\phi_s - Q_i \{\phi_s\}$.

Допускается также использование следующих показателей:

- вероятность отсутствия (невозникновения) в системе ј-й аварийной ситуации в течение заданного времени τ при нормальных условиях функционирования ACУ — $P_i(\tau)$;
- вероятность отсутствия (невозникновения) в системе *j*-й аварийной ситуации в результате воздействия s-го экстремального воздействующего фактора $\phi_s - P_j \{\phi_s\}$. 2.6. Описание долговечности АСУ осуществляют по АСУ в целом или, при необходимости, по
- отдельным ее подсистемам с помощью единичных показателей надежности.

С. 5 ГОСТ 24.701—86

Основными показателями долговечности являются:

- средний ресурс i-й подсистемы АСУ (АСУ в целом) $T_{
 m p_i}$;
- средний срок службы i-й подсистемы АСУ (АСУ в целом) $T_{\rm c.c.}$. Допускается также использовать следующие показатели:
- гамма-процентный ресурс i-й подсистемы ACУ (ACУ в целом) $T_{j_{p_i}}$.
- гамма-процентный срок службы i-й подсистемы АСУ (АСУ в целом) $T_{j_{\text{c.c.}}}$.
- 2.7. В обоснованных случаях, кроме показателей надежности АСУ, приведенных в настоящем стандарте, допускается использовать показатели, установленные ГОСТ 27.002, ГОСТ 27.003, ГОСТ 27.410, РД 50—690, ГОСТ 21623.

3. ПОРЯДОК УСТАНОВЛЕНИЯ ТРЕБОВАНИЙ К НАДЕЖНОСТИ АСУ

- 3.1. Установление требований к надежности конкретной разрабатываемой АСУ состоит в выборе состава (номенклатуры) показателей, используемых для количественного описания надежностных свойств системы, и определении требуемых числовых значений (норм) этих показателей.
- 3.2. Показатели надежности вводят по каждой функции системы и по каждому виду их отказов, а также по установленным для рассматриваемой системы аварийным ситуациям.

Состав показателей надежности определяют на основе включенных в ТЗ на АСУ перечней функций, видов их отказов и тех аварийных ситуаций, для которых следует устанавливать требования к надежности.

- 3.2.1. Для каждой из указанных в ТЗ на АСУ функций и по видам их отказов вводят показатели безотказности и ремонтопригодности.
 - 3.2.2. Для каждой из указанных аварийных ситуаций вводят показатели надежности.
- 3.2.3. Показатели долговечности вводят, при необходимости, для АСУ в целом либо для отдельных ее подсистем в случаях, если по условиям функционирования системы или по иным причинам ремонт или замена некоторых технических средств, необходимых для выполнения функций системы и отказавших или выработавших свой ресурс либо срок службы, невозможна без капитального или среднего ремонта или без реконструкции системы.

Необходимость установления показателей долговечности указывают в ТЗ на АСУ.

- 3.3. Определение требуемых числовых значений введенных показателей надежности АСУ осуществляют по заданным критериям.
- 3.3.1. Исходными данными для определения обоснованных требований к надежности АСУ являются:
 - виды и критерии отказов по всем рассматриваемым функциям системы;
- уровень эффективности по всем функциям системы и величины ущербов по всем видам отказов (ориентировочно);
- состав технических, программных и эргатических элементов, участвующих в выполнении каждой функции системы (ориентировочно);
- возможные пути повышения надежности для каждой $\Phi\Pi$ АСУ и связанные с ними затраты (ориентировочно);
- величины ущербов, связанных с возникновением возможных в АСУ аварийных ситуаций (ориентировочно);
- возможные пути снижения опасности возникновения аварийных ситуаций и связанные с ними затраты (ориентировочно).
- 3.3.2. Требования к надежности АСУ определяют в основном путем сопоставления потерь, связанных с отказами АСУ в выполнении функций и возникновением аварийных ситуаций, и затрат, связанных с обеспечением и повышением надежности АСУ (включая удорожание обслуживания).
- 3.4. Требования к надежности АСУ устанавливают по согласованию между разработчиком и заказчиком АСУ при разработке ТЗ на АСУ.
- 3.5. Требования к надежности АСУ вносят в ТЗ на АСУ. Уточнение и изменения требований по надежности должны быть оформлены дополнением к ТЗ на АСУ в соответствии с ГОСТ 34.602.

4. ОБЩИЙ ПОРЯДОК ОЦЕНКИ НАДЕЖНОСТИ АСУ

- 4.1. Оценку надежности АСУ (по функциям и по аварийным ситуациям) проводят:
- при разработке системы с целью прогноза ожидаемого уровня надежности АСУ (проектная, априорная оценка);
- при вводе системы в эксплуатацию и в процессе ее функционирования с целью определения фактически достигнутого уровня надежности АСУ и проверки его соответствия требованиям к надежности, установленным в ТЗ на АСУ (экспериментальная, апостериорная оценка).
- 4.2. Проектную оценку надежности АСУ в зависимости от особенностей системы и стадии ее создания проводят с учетом свойств:

только комплекса технических средств АСУ;

КТС АСУ и программного обеспечения АСУ;

КТС АСУ и персонала АСУ;

КТС АСУ, ПО АСУ и персонала АСУ.

- 4.2.1. Проектная оценка надежности АСУ с учетом только КТС АСУ, проводимая на начальных этапах разработки системы, является ориентировочной и ее используют для предварительного определения состава и структуры КТС АСУ.
- 4.2.2. Проектная оценка надежности АСУ с учетом КТС АСУ и персонала АСУ, проводимая при разработке эскизного проекта системы, является ориентировочной и ее используют для определения целесообразного уровня автоматизации управления объектом, распределения задач между техническими средствами и персоналом АСУ в выполнении функций системы.
- 4.2.3. Проектную оценку надежности АСУ с учетом КТС АСУ и ПО АСУ проводят при разработке технического проекта и используют для уточнения состава и структуры КТС АСУ, определения требований к надежности, а также выбора способов повышения надежности функционирования технического и программного обеспечения системы.
- 4.2.4. Проектная оценка надежности АСУ с учетом КТС АСУ, ПО АСУ и персонала АСУ, проводимая при разработке рабочего проекта системы, является более полной и ее используют для уточнения состава и структуры КТС АСУ, состава и структуры ПО АСУ, состава и структуры задач персонала АСУ, а также для уточнения взаимодействия КТС, ПО АСУ и персонала АСУ (компонентов АСУ) в реализации функций системы.
 - 4.3. Проектную оценку надежности АСУ допускается проводить следующими методами:
 - аналитическими;
 - вероятностного моделирования;
- комбинированными, представляющими собой сочетание аналитических методов и методов моделирования;
 - экспертными.
- 4.4. Экспериментальная оценка надежности АСУ учитывает совместное (результирующее) воздействие на уровень надежности системы КТС АСУ, ПО АСУ и действий персонала АСУ, а также всех реально воздействующих факторов условий внешней среды, режимов и параметров технической эксплуатации, режимов функционирования системы, внешних помех.
 - 4.5. Экспериментальную оценку надежности АСУ допускается проводить:
 - путем организации и проведения специальных испытаний на надежность;
- путем сбора и обработки статистических данных о надежности АСУ в условиях ее опытного и промышленного функционирования;
 - комбинированными методами, использующими оба эти направления;
 - расчетно-экспериментальными методами.
- 4.6. Необходимость проведения оценок надежности АСУ на различных стадиях ее создания и функционирования, методы получения таких оценок, а также состав оцениваемых при этом показателей надежности АСУ в ТЗ на АСУ.

Методы проектной и экспериментальной оценок надежности АСУ на разных стадиях создания и эксплуатации системы выбирают с учетом особенностей конкретной разрабатываемой (модернизируемой) АСУ и конкретных условий ее разработки (наличия инженерных методик, алгоритмов и программ решения задач оценки надежности, наличия необходимых исходных данных для использования определенного метода; наличия возможности проведения испытаний необходимого объема и пр.).

C. 7 FOCT 24.701—86

- 4.7. При проведении проектной и экспериментальной (расчетно-экспериментальными методами) оценок надежности АСУ следует использовать данные по надежности элементов АСУ, приведенные в документации их изготовителей и разработчиков, в официальных отчетах об эксплуатации элементов АСУ, а также в справочниках.
- 4.8. При проведении оценки надежности АСУ используют методы и методики, утвержденные в установленном порядке.

5. ОБЕСПЕЧЕНИЕ НАДЕЖНОСТИ РАЗРАБАТЫВАЕМОЙ (МОДЕРНИЗИРУЕМОЙ) АСУ

- 5.1. Необходимый уровень надежности конкретной АСУ обеспечивают специальным комплексом работ, проводимых на всех стадиях создания и функционирования АСУ.
- 5.2. К обязательным работам по обеспечению надежности АСУ, которые следует выполнять в процессе создания любой АСУ, относят:
- анализ состава и содержания функций разрабатываемой (модернизируемой) АСУ, определение конкретного содержания понятия «отказ» и критериев отказа по каждому виду отказов для всех функций системы; анализ, при необходимости, аварийных ситуаций в АСУ, определение конкретного содержания понятия «аварийная ситуация» для данной АСУ и критериев аварийной ситуации по каждой из рассматриваемых ситуаций;
- выбор состава показателей надежности по всем функциям АСУ, указанным в Т3 на АСУ и, при необходимости, по всем аварийным ситуациям и определение требований к уровню их значений;
- выбор методов оценки надежности АСУ на различных стадиях ее создания и функционирования;
- проведение проектной оценки надежности ACУ при разработке технического проекта системы;
 - определение режимов и параметров технической эксплуатации АСУ.
- 5.3. Состав, содержание и последовательность выполнения работ по обеспечению надежности системы устанавливают в «Программе обеспечения надежности АСУ», которую составляют для каждой вновь разрабатываемой или модернизируемой АСУ с учетом специфики системы и условий ее функционирования, важности выполняемых ею функций, требуемого уровня надежности, общего объема затрат на создание, а также особенностей ее создания (наличия необходимых исходных данных, сведений о надежности систем-аналогов и применяемых элементов и пр.).
- 5.4. Программу обеспечения надежности конкретной АСУ составляют при разработке ТЗ на АСУ и оформляют в виде отдельного организационно-распорядительного документа, являющегося приложением к ТЗ на АСУ.
- В обоснованных случаях допускают работы по обеспечению надежности АСУ включать в соответствующие разделы ТЗ на АСУ, не составляя отдельной «Программы обеспечения надежности АСУ».
- 5.5. В «Программе обеспечения надежности АСУ» необходимо указывать стадии создания АСУ, на которых выполняют работы по обеспечению надежности системы, перечень этих работ, форму представления результатов работы, сроки выполнения, исполнителей.
- 5.6. «Программу обеспечения надежности АСУ» составляет организация головной исполнитель работ по созданию конкретной АСУ и согласует ее со всеми организациями (предприятиями), участвующими в реализации программы. Утверждает программу руководство организации головного исполнителя.
- 5.7. Работы, включаемые в «Программу обеспечения надежности АСУ», проводят: организация головной исполнитель и организации-соисполнители (разработчики), организация заказчик АСУ, а также предприятие, применяющее АСУ (потребитель).

Результаты выполнения основных работ по обеспечению надежности системы вносят в соответствующую техническую документацию на АСУ.

5.8. Для АСУ специального назначения на всех обязательных стадиях создания и эксплуатации, указанных в ТЗ на АСУ, результаты реализации «Программы обеспечения надежности АСУ» оформляют в виде отчета, который представляют заказчику АСУ. На основе отчета о реализации, при необходимости, разрабатывают изменения (дополнения) к «Программе обеспечения надежности АСУ», которые согласовывают и утверждают в порядке, установленном ГОСТ 34.602 для технического задания на АСУ.

ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В СТАНДАРТЕ, И ПОЯСНЕНИЯ К НИМ

Термин	Пояснение
Надежность АСУ	Свойство системы сохранять во времени в установленных пределах значения всех параметров, характеризующих способность системы выполнять требуемые функции в заданных режимах и условиях эксплуатации. Надежность АСУ включает свойства безотказности, ремонтопригодности, а в некоторых случаях, и долговечности
Автоматизированный комплекс (АК) Элемент АСУ	Совокупность совместно функционирующих автоматизированной системы управления и объекта управления Отдельная, относительно самостоятельная часть системы, участвующая в реализации одной или нескольких функций АСУ и рассматриваемая при решении задач надежности как неразложимая на составляющие*
Отказ АСУ в выполнении функции (отказ функции АСУ)	Событие, заключающееся в нарушении хотя бы одного из требований к качеству выполнения данной функции, установленных в нормативно-технической и (или) конструкторской документации на систему
Критерий отказа функции АСУ	Признак или совокупность признаков, установленных в нормативно-технической и (или) конструкторской документации и позволяющих определить наличие отказа в выполнении некоторой функции АСУ
Аварийная ситуация в АСУ	Некоторое исключительное состояние системы, представляющее собой определенное сочетание отказов и (или) ошибок функционирования ее элементов (технических, программных, эргатических) и способное привести к нарушениям функционирования объекта управления (либо АК в целом), сопряженным с особо значительными техническими, экономическими или социальными потерями (т. е. к авариям). Примечания и е. Аварийные ситуации в системе могут возникать в нормальных условиях ее функционирования и в результате воздействия на систему некоторого внешнего экстремального фактора (отключение питания, авария соседнего объекта управления либо АК, стихийное бедствие и пр.)
Функциональная подсистема АСУ (ФП АСУ)	Подсистема АСУ, выделенная по функциональному признаку и представляющая собой совокупность элементов АСУ (технических, программных, эргатических), участвующих в выполнении некоторой функции системы
Заданная процедура выполнения Д-функции АСУ	Выполняемая согласно точному предписанию и преследующая достижение конкретного результата определенная последовательность заранее заданных операций (действий), которая начинает выполняться при поступлении заранее обусловленного для данной Д-функции АСУ сигнала (запроса)
Вероятность успешного выполнения заданной процедуры Надежность программного обеспечения АСУ	Вероятность L_i того, что при возникновении запроса будет успешно выполнена совокупность операций, составляющая i -ю процедуру Количественное свойство ПО АСУ, представляющее собой совокупность свойств ПО АСУ, проявляющихся в процессе его функционирования в составе АСУ и оказывающих влияние на надежность АСУ
Надежность действий персонала АСУ	Комплексное свойство персонала АСУ, представляющее собой совокупность свойств персонала АСУ, проявляющихся в процессе его участия в функционировании АСУ и оказывающих влияние на надежность АСУ, и зависящее от его квалификации, а также от регламента и условий его работы.

^{*} В качестве элементов АСУ рассматривают отдельные технические средства (и их комплексы, в том числе вычислительные комплексы), отдельные программные средства (и их комплексы), эргатические элементы, т. е. действия лиц, входящих в состав персонала АСУ (и их группы). При решении задач надежности

С. 9 ГОСТ 24.701-86

АСУ однородные элементы системы, т. е. элементы, анализ надежности которых проводят по общей для них методологии (например все технические средства, или все программные средства, или все эргатические элементы системы), объединяют в одну группу. При этом АСУ или любую ее функциональную подсистему рассматривают как состоящую из трех основных компонентов (групп однородных элементов) — комплекса технических средств (КТС), программного обеспечения (ПО), персонала.

Персонал АСУ в соответствии с ролью, выполняемой им в процессе функционирования системы, делится на две группы: оперативный персонал и эксплуатационный. К оперативному персоналу относятся лица, непосредственно участвующие в принятии решений по процессу управления и в выполнении функций системы (в АСУ ТП это — операторы и операторы-технологи, в АСУП, ИАСУ, ОАСУ и др. — это операторы и лица, принимающие решения). К эксплуатационному персоналу относятся лица, обеспечивающие нормальные условия функционирования АСУ в соответствии с Инструкцией по эксплуатации (выполняющие работу по техническому обслуживанию системы). Помимо персонала АСУ, работу АСУ обеспечивает также ремонтный персонал, непосредственно в функционировании АСУ не участвующий и выполняющий ремонт отказавших технических средств и устранение ошибок программного обеспечения АСУ.

ПРИЛОЖЕНИЕ 2 Рекомендуемое

ПЕРЕЧЕНЬ РАБОТ, ВКЛЮЧАЕМЫХ В «ПРОГРАММУ ОБЕСПЕЧЕНИЯ НАДЕЖНОСТИ АСУ»

1. Работы по определению требуемого уровня надежности АСУ

- 1.1. Сбор данных о режимах и условиях работы объекта управления, о существующей системе технического обслуживания и ремонтов на объекте управления, о составе и организации работы персонала, обеспечивающего ремонт и эксплуатацию КТС АСУ и ПО АСУ, о надежности объекта управления; получение сведений о надежности технических средств, которые предполагают использовать в АСУ.
 - 1.2. Анализ полученных данных и определение предварительных требований к надежности АСУ.
- 1.3. Анализ функций разрабатываемой (модернизируемой) АСУ, составление перечня тех функций и видов их отказов, а также, при необходимости, перечня тех аварийных ситуаций в АСУ, для которых будут нормироваться требования к надежности; выбор критериев отказов для указанных функций и видов их отказов, выбор показателей надежности, предварительная оценка надежности АСУ.
- 1.4. Определение требований к надежности АСУ, вносимых в техническое задание на АСУ; выбор методов оценки надежности АСУ на дальнейших стадиях ее создания; утверждение программы обеспечения надежности разрабатываемых (модернизируемых) АСУ.

2. Работы по достижению требуемого уровня надежности АСУ

- 2.1. Стадия «Технический проект»
- 2.1.1. Анализ надежности свойств различных вариантов построения АСУ (предполагаемых составов комплекса технических средств, программного обеспечения и персонала АСУ), ориентировочная проектная оценка надежности перспективных вариантов АСУ.
- 2.1.2. Сравнение вариантов АСУ и выбор предпочтительного варианта по критерию надежности; проектная оценка надежности АСУ с учетом надежностных свойств КТС, ПО и персонала АСУ по выбранному варианту АСУ.
- 2.1.3. Подготовка исходных данных и проведение предварительных расчетов параметров технического обслуживания (ТО), одиночного комплекта запасных элементов (ЗИП), состава и квалификации персонала, обеспечивающего ремонт и эксплуатацию КТС АСУ и ПО АСУ.
- 2.1.4. Анализ влияния уровня надежности различных вариантов АСУ на показатели технико-экономической эффективности системы.
- 2.1.5. Разработка требований к надежности новых (модернизируемых) технических и программных средств и оперативно-диспетчерского оборудования, разрабатываемых специально для данной системы.
- 2.1.6. Выбор окончательного варианта АСУ с учетом надежности, разработка требований к надежности комплекса технических средств и программного обеспечения АСУ.
 - 2.2. Стадия «Рабочий проект»
- 2.2.1. Уточнение данных о надежности технических средств, выбранных для окончательного варианта АСУ; уточненная проектная оценка надежности КТС АСУ для окончательного варианта системы.

- 2.2.2. Уточненный расчет одиночного комплекта ЗИП АСУ, параметров ТО АСУ, численности и состава персонала, обеспечивающего ремонт и эксплуатацию КТС АСУ и ПО АСУ; разработка требований к надежности персонала АСУ, составление правил и инструкций для персонала АСУ.
- 2.2.3. Уточненная проектная оценка надежности АСУ с учетом надежности КТС АСУ, ПО АСУ и персонала АСУ, режимов и параметров технической эксплуатации АСУ.

3. Работы по исследованию и повышению надежности АСУ в условиях ее опытной и промышленной эксплуатации

- 3.1. Уточнение (разработка) методик и форм сбора и обработки информации о надежности АСУ при проведении испытаний и в условиях функционирования АСУ применительно к особенностям конкретной системы; сбор статистической информации о надежности АСУ в условиях опытного функционирования, ее обработка и анализ, оценка надежности АСУ по полученной информации (экспериментальная оценка).
- 3.2. Уточнение (при необходимости) параметров технической эксплуатации АСУ, состава ЗИП, состава и функций персонала АСУ, коррекция эксплуатационной документации.
 - 3.3. Планирование и проведение приемосдаточных испытаний АСУ на надежность (при необходимости).
- 3.4. Сбор статистической информации о надежности АСУ в условиях промышленного функционирования, ее обработка и анализ; уточненная оценка надежности АСУ по полученной информации; анализ влияния надежности АСУ на эффективность ее функционирования.
- 3.5. Разработка и реализация рекомендаций по повышению надежности данной АСУ, по разработке типовых проектных решений.

ПРИЛОЖЕНИЕ 3 Рекомендуемое

РЕКОМЕНДАЦИИ ПО ОПРЕДЕЛЕНИЮ ВЕРОЯТНОСТИ УСПЕШНОГО ВЫПОЛНЕНИЯ ЗАДАННОЙ ПРОЦЕДУРЫ

Понятие успешности выполнения заданной процедуры определяют для каждой Д-функции отдельно с учетом установленных для процедуры условий и параметров.

Статистически L_i можно определить как отношение числа успешных реализаций заданной для i-й Д-функции АСУ процедуры к общему числу запросов на выполнение этой процедуры, поступивших за некоторый интервал времени в реальных условиях функционирования системы.

В общем случае вероятность L_i определяют надежностными свойствами элементов (ТС, ПО и персонала) i-й $\Phi\Pi$ АСУ, выполняющей i-ю Д-функцию системы. В предположении, что успешное функционирование ТС $\Phi\Pi$, ПО $\Phi\Pi$ и персонала $\Phi\Pi$ при выполнении заданной процедуры — события независимые, L_i определяют выражением

$$L_i = L_{\text{TC}_i} \cdot L_{\Pi O_i} \cdot L_{\Pi \Pi_i}$$
.

Если же можно пренебречь ненадобностью ПО $\Phi\Pi$ и персонала $\Phi\Pi$ *i*-й $\Phi\Pi$ АСУ, то вероятность L_i сводят к вероятности L_{TC_i} , которая (в зависимости от определения понятия «успешное выполнение процедуры» и условий, предъявляемых к ТС $\Phi\Pi$ вследствие этого определения) может выражаться через различные показатели и характеристики надежности ТС $\Phi\Pi$.

Если в понятие успешного выполнения процедуры входит условие работоспособности ТС $\Phi\Pi$ в момент поступления запроса и непрерывное сохранение этого состояния в течение интервала времени Δt , то

$$L_{\mathrm{TC}_i} = K_{\mathrm{o.r}_i}$$
.

Если же интервал времени Δt очень мал, и вероятностью отказа ТС $\Phi\Pi$ в этом интервале можно пренебречь, то

$$L_{TC_i} = K_{\Gamma_i}$$

или

$$L_{\mathrm{T}_i} = K_{\mathrm{T.W}_i}$$
.

С. 11 ГОСТ 24.701-86

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН Министерством приборостроения, средств автоматизации и систем управления
- 2. ВНЕСЕН Министерством приборостроения, средств автоматизации и систем управления
- 3. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 31.03.86 № 850
- 4. B3AMEH ΓΟCT 24.701-83

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 27.002—83	2.7
ГОСТ 27.003—90	2.7
ГОСТ 24.410—87	2.7
ГОСТ 34.602—89	3.5, 5.8
ГОСТ 21623—76	2.7
РД 50—690—89	2.7

6. ПЕРЕИЗДАНИЕ