

Universidad Tecnológica Nacional Facultad Regional Buenos Aires

Bases De Datos 2025

Curso: K3522 Turno: Mañana

Trabajo Practico Bases De Datos GD2C2025

GRUPO N°6 - DROP_DATABASE		
Nombre y Apellido	Legajo	
Alvaro Federico Gianola Otamendi	209.536-1	
Mariano Amir Luna	209.061-2	
Oscar Mercado Ruiz Diaz	208.301-2	
Eliseo Gerard Paniagua Muriel	202.748-3	

FECHA DE PRESENTACIÓN:	31/10/2025
FECHA DE DEVOLUCIÓN:	
CALIFICACIÓN:	
FIRMA PROFESOR:	

TPGD2C2025 Grupo: DROP_DATABASE

Índice

Estra	Estrategia General	
		3
Decis	siones de Diseño del DER	3
•	Curso y días de cursado	3
•	Módulos y cursos	3
•	Evaluaciones y módulos	3
•	Encuestas	3
•	Factura y detalle de factura	3
~		4
Cons	straints	4
•	PK	4
•	FK	4
•	Check constraints	4
		4
Trigg	=	4
•	trg_validarRangoFechasCurso:	4
•	trg_fecha_cambio_estado_inscripcion:	4
•	trg_asignarInstanciaParcial:	4
•	trg_unicaInscripcion:	4
,		4
Índic	ces	4
		4
Valor	res Predeterminados	4
		5
Cons	sideraciones de Integridad y Rendimiento	5
		5
Conc	elusión	5

Bases De Datos	
TPGD2C2025	Grupo: DROP DATABASE

Estrategias

Estrategia General

El modelo de datos fue diseñado con el objetivo de garantizar integridad, coherencia y eficiencia. Se implementó en un esquema propio (DROP_DATABASE) para aislar las tablas del resto de los trabajos y evitar conflictos.

Se aplicaron principios de normalización hasta 3FN, reduciendo la redundancia y asegurando una estructura fácilmente mantenible.

Decisiones de Diseño del DER

Durante el paso del modelo conceptual al relacional, se tomaron varias decisiones para mejorar la representación de los datos y ajustarse a los requerimientos funcionales del enunciado:

· Curso y días de cursado

En el DER inicial, la entidad Día_Semana estaba relacionada directamente con Curso. Esto impedía que un curso tuviera más de un día de cursado.

Para resolverlo, se incorporó una entidad intermedia Día_Cursado, que permite la relación 1 curso → N días, respetando la multiplicidad real del negocio.

Módulos y cursos

Se estableció una relación muchos a muchos entre Curso y Módulo mediante la tabla intermedia Modulo_x_Curso, dado que un módulo puede formar parte de varios cursos y un curso puede tener múltiples módulos.

Evaluaciones y módulos

Para poder registrar qué módulos fueron evaluados en una instancia específica, se creó la tabla Modulo_de_curso_tomado_en_evaluacion, que relaciona Evaluacion con Modulo_x_Curso. Esto permite mayor trazabilidad sobre los contenidos evaluados y facilita consultas posteriores.

Encuestas

Las encuestas se modelaron separando las entidades Encuesta, Pregunta, Encuesta_Respondida y Detalle Encuesta Respondida, de modo que:

- o cada curso tenga su encuesta,
- o cada encuesta contenga 4 preguntas numeradas,
- y cada respuesta se registre individualmente.
 Esta estructura permite almacenar los resultados históricos sin perder consistencia ni duplicar información.

Factura y detalle de factura

Se decidió implementar una tabla Periodo independiente para reflejar el año y mes del ciclo facturado, evitando el uso de fechas duplicadas y facilitando agrupamientos y reportes por período.

Estas decisiones fueron tomadas priorizando la representación fiel del dominio y la facilidad para migrar y consultar los datos provenientes de la tabla Maestra.

Bases De Datos	
TPGD2C2025	Grupo: DROP_DATABASE

Constraints

Se definieron Primary Keys, Foreign Keys y Check Constraints en todas las tablas:

- **PK**: garantizan unicidad de cada registro.
- **FK**: aseguran integridad referencial (por ejemplo, un Curso no puede existir sin una Sede, y una **Inscripcion_Curso** debe tener un Alumno válido).
- Check constraints: controlan reglas de negocio simples, como:
 - o nota BETWEEN 1 AND 10
 - \circ precioMensual ≥ 0
 - o nroPregunta BETWEEN 1 AND 4

Esto evita inconsistencias y asegura que los datos cumplan con las restricciones del dominio.

Triggers

Se implementaron triggers automáticos para reforzar reglas de negocio y mantener la coherencia:

- trg_validarRangoFechasCurso: evita que la fecha de inicio sea posterior a la de fin.
- **trg_fecha_cambio_estado_inscripcion:** actualiza automáticamente la fecha de respuesta al modificarse el estado.
- **trg_asignarInstanciaParcial:** calcula automáticamente el número de intento de un alumno según sus evaluaciones previas.
- trg_unicalnscripcion: impide que un alumno se inscriba dos veces al mismo curso.

De esta forma, el sistema mantiene coherencia temporal y lógica sin intervención manual.

Índices

Se crearon índices en columnas con alta frecuencia de búsqueda o de unión (JOIN):

- IX_Inscripcion_Curso_Alumno (por legajoAlumno)
- IX Inscripcion Curso Curso (por codigoCurso)
- IX TP Alumno Curso (por curso)
- IX Factura Alumno (por legajoAlumno)
- IX Pago Factura (por id)

Estos índices optimizan las consultas en reportes, inscripciones, pagos y facturación.

Valores Predeterminados

Se asignaron valores por defecto a campos que se completan automáticamente:

• fechaInscription, fechaRegistro → SYSDATETIME()

Bases De Datos	
TPGD2C2025	Grupo: DROP DATABASE

- estado de inscripción → 'pendiente'
- periodoAnio, periodoMes → año y mes actuales del sistema

Esto evita nulos innecesarios y garantiza consistencia temporal.

Consideraciones de Integridad y Rendimiento

- Se evitó el borrado en cascada, priorizando la trazabilidad histórica.
- Los cálculos derivados, como la duración del curso, se definieron como columnas calculadas persistentes, optimizando rendimiento sin comprometer integridad.
- Todas las relaciones críticas están respaldadas por constraints e índices, lo que permite mantener equilibrio entre seguridad de datos y eficiencia en las consultas.

Conclusión

El modelo combina reglas de negocio implementadas en el servidor (triggers y constraints) con un diseño relacional normalizado e indexado.

Las decisiones tomadas en el DER y su traducción al modelo físico garantizan una base consistente, escalable y alineada con los requerimientos funcionales del enunciado.

