Теоретическая информатика - 1

Теория графов — деревья, планарные графы

Дерево

Лес — граф без циклов.

Дерево — связный граф без циклов.

Ориентированное дерево — орграф без циклов, в котором только одна вершина имеет нулевую степень захода, а все остальные вершины имеют степень захода 1.

Вершина с нулевой степенью захода — *корен*ь дерева, вершины с нулевой степенью исхода — *листья*.

Мосты

Мост — ребро, удаление которого увеличивает число компонент связности.

Теорема 1 (Теорема о мостах)

Ребро является мостом тогда и только тогда, когда оно не принадлежит ни одному циклу.

Мосты

Мост — ребро, удаление которого увеличивает число компонент связности.

Теорема 1 (Теорема о мостах)

Ребро является мостом тогда и только тогда, когда оно не принадлежит ни одному циклу.

Доказательство.

Необходимость. Предположим, что оно принадлежит некоторому циклу e, e_1, \ldots, e_k . Рассмотрим две произвольные вершины u, v из одной компоненты связности в G, т.е. они соединены некоторым путем в G. Если *е* не принадлежит этому пути, то они им соединены и в $G \setminus e$. Если e принадлежит этому пути, то заменив в нем ребро e на последовательность ребер e_1, \ldots, e_k , получим, что они соединены путем в $G \setminus e$. Следовательно, после удаления е компоненты связности не меняются, то есть е не является мостом по определению. 4日 > 4日 > 4日 > 4日 > 4日 > 4日 >

Теорема о мостах — доказательство

Достаточность.

Пусть ребро e = (x, y) не содержится ни в одном из циклов графа G.

Вершины x и y связаны, то есть лежат в одной компоненте связности G_1 графа G.

Если в графе $G \setminus e$ вершины x и y соединены путем, то прибавив к нему e, получим цикл, что невозможно по условию.

Следовательно, вершины x и y находятся в разных компонентах связности графа $G \setminus e$.

Таким образом, после удаления ребра e из G компонента G_1 распалась как минимум на две компоненты связности, то есть число компонент связности увеличилось и e — мост по определению.

Теорема о деревьях

Теорема 2 (Теорема о деревьях)

Для простого графа G следующие условия эквивалентны:

- 1. G дерево;
- 2. любые две различные вершины в G соединены ровно одним простым путем;
- 3. G не содержит циклов, но если любую пару несмежных в G вершин соединить ребром, то в полученном графе будет ровно один цикл;
- 4. G cвязный граф и |V| = |E| + 1;
- 5. G не содержит циклов и |V| = |E| + 1;
- 6. G— связный граф, и всякое ребро в G является мостом.

Простой граф — неориентированный без петель и кратных ребер.

Доказательство: упражнение (рекомендуемая последовательность $(1) \Rightarrow (2)$ –(6) и (2)– $(6) \Rightarrow (1)$ — но можно как угодно).

Доказательство. Вначале предположим, что G — дерево и докажем условия (2)–(5).

2. Дерево — связный граф, а значит, любые две вершины соединены путем.

Предположим, что вершины u и v соединены в G не менее чем двумя цепями. Пусть

$$u = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k = v \text{ M}$$

 $u = v'_0 \rightarrow v'_1 \rightarrow \cdots \rightarrow v'_l = v$

различные простые пути из u в v.

Поскольку первые вершины в этих цепях совпадают, существует число i такое, что $v_0=v_0',\dots,v_i=v_i'$, но $v_{i+1}\neq v_{i+1}'$.

Пусть j — наименьшее из чисел, больших i, такое, что вершина v_j принадлежит второй цепи (такое j существует, поскольку в рассматриваемых цепях совпадают и последние вершины).

Тогда путь $v_i \to \Delta \dots v_j = v'_r \to \dots v'_i = v_i$ не содержит повторяющихся ребер, а значит, является циклом в G, противоречие.

3. При добавлении к простому пути из u в v ребра (u,v), очевидно, возникает цикл. Таким образом, из связности G следует, что цикл возникает при добавлении любого ребра. Если при добавлении ребра (u,v) возникло более одного цикла, значит, вершины u и v соединены более чем одной цепью, что невозможно, так как условие (2) мы уже доказали.

4,5. Индукция по числу вершин в графе. Базис: |V| = 1, тогда |E| = 0, равенство верно. Пусть $|V| \geq 2$. Сперва покажем, что в графе есть вершина степени 1. Вершин степени 0 нет, потому что граф связный. Если каждая вершина имеет степень 2 и более, то можно построить цикл, двигаясь из вершины в вершину (используя конечность графа). Следовательно, есть вершина ν степени 1. Если удалить эту вершину и инцидентное ей ребро, получится дерево с |V|-1 вершинами и |E|-1 ребрами. По предположению индукции для него верно $|V|-1=|{\cal E}|-1+1$, и отсюда |V| = |E| + 1.

4,5. Индукция по числу вершин в графе. Базис: |V| = 1, тогда |E| = 0, равенство верно. Пусть $|V| \ge 2$. Сперва покажем, что в графе есть вершина степени 1. Вершин степени 0 нет, потому что граф связный. Если каждая вершина имеет степень 2 и более, то можно построить цикл, двигаясь из вершины в вершину (используя конечность графа). Следовательно, есть вершина ν степени 1. Если удалить эту вершину и инцидентное ей ребро, получится дерево с |V|-1 вершинами и |E|-1 ребрами. По предположению индукции для него верно $|V|-1=|{\cal E}|-1+1$, и отсюда |V| = |E| + 1.

6. По теореме о мостах.

Теперь покажем, что каждое из условий (2)–(6) влечет что G — дерево.

2. Поскольку две любые вершины соединены простым путем, G связен, а так как цепь единственна, то в G нет циклов (две вершины, находящиеся в цикле, соединены по крайней мере двумя цепями — фрагментами этого цикла).

Теперь покажем, что каждое из условий (2)–(6) влечет что G — дерево.

- 2. Поскольку две любые вершины соединены простым путем, G связен, а так как цепь единственна, то в G нет циклов (две вершины, находящиеся в цикле, соединены по крайней мере двумя цепями фрагментами этого цикла).
- 3. Циклов в G нет по условию. Предположим, что в G более одной компоненты связности. Соединим ребром две вершины из разных компонент. В полученном графе новое ребро будет мостом по определению. По теореме о мостах оно не лежит ни в каком цикле, т. е. при его добавлении цикл не образовался, противоречие.

4. Вначале докажем, что в связном графе $|V| \geq |E|-1$. Возьмем граф без ребер с n вершинами и будем добавлять ребра по одному.

Если добавленное ребро в новом графе оказалось мостом, то новый граф содержит ровно на одну компоненту связности меньше, чем старый.

Если же добавленное ребро — не мост, то число компонент связности не изменилось.

Поскольку в исходном графе n компонент связности, необходимо как минимум n-1 ребер, чтобы сделать его связным.

Граф G связен по условию. Если в нем есть цикл, удалим из него ребро и получим связный граф, у которого ребер на 2 меньше, чем вершин, что невозможно, как мы только что доказали.

5. Так как G не содержит циклов, каждая из его компонент связности является деревом, а значит, по доказанному ранее, число ребер в ней на единицу меньше числа вершин. Поскольку это же условие выполняется и для всего графа, компонента связности может быть только одна.

- 5. Так как G не содержит циклов, каждая из его компонент связности является деревом, а значит, по доказанному ранее, число ребер в ней на единицу меньше числа вершин. Поскольку это же условие выполняется и для всего графа, компонента связности может быть только одна.
- 6. Связность G дана по условию, а отсутствие циклов прямо следует из теоремы о мостах.

Доказательство теоремы завершено.

H — остовный подграф G, если V(H) = V(G). Остовное дерево — остовный подграф, который является деревом.

H — остовный подграф G, если V(H) = V(G). Остовное дерево — остовный подграф, который является деревом.

Утверждение 1

Всякий связный граф содержит остовное дерево.

H — остовный подграф G, если V(H) = V(G). Остовное дерево — остовный подграф, который является деревом.

Утверждение 1

Всякий связный граф содержит остовное дерево.

Доказательство. Если связный граф G не содержит циклов, то он сам является своим остовным деревом.

В противном случае выберем произвольное ребро e графа G, входящее в цикл, и удалим его из G — связность сохраняется. Будем повторять процедуру удаления ребра из цикла, пока не получим связный граф без циклов.

H — остовный подграф G, если V(H) = V(G). Остовное дерево — остовный подграф, который является деревом.

Утверждение 1

Всякий связный граф содержит остовное дерево.

Доказательство. Если связный граф G не содержит циклов, то он сам является своим остовным деревом.

В противном случае выберем произвольное ребро e графа G, входящее в цикл, и удалим его из G — связность сохраняется. Будем повторять процедуру удаления ребра из цикла, пока не получим связный граф без циклов.

Следствие 1

В связном графе с n вершинами хотя бы n-1 ребро.

Изоморфные графы

Графы $G_1=\langle V_1,E_1\rangle$ и $G_2=\langle V_2,E_2\rangle$ изоморфны, если существует биекция $f:V_1\to V_2$ такая, что любых двух вершин $u,v\in V_1$ они смежны тогда и только тогда, когда f(u) и f(v) смежны.

$$f: a \rightarrow e, b \rightarrow f, c \rightarrow g, d \rightarrow h$$

Изоморфные графы

Графы $G_1=\langle V_1,E_1\rangle$ и $G_2=\langle V_2,E_2\rangle$ изоморфны, если существует биекция $f:V_1\to V_2$ такая, что любых двух вершин $u,v\in V_1$ они смежны тогда и только тогда, когда f(u) и f(v) смежны.

$$f: a \rightarrow e, b \rightarrow f, c \rightarrow g, d \rightarrow h$$

Утверждение 2

Два графа изоморфны ⇔ вершины одного из них можно перенумеровать так, чтобы матрица смежности этого графа совпала с матрицей смежности второго графа.

Граф называется плоским, если его можно изобразить в виде геометрической фигуры на плоскости без пересечения ребер, так что его вершины — это точки плоскости, а ребра — непересекающиеся кривые на ней, соединяющие смежные вершины ("укладка" графа на плоскости).

Граф называется плоским, если его можно изобразить в виде геометрической фигуры на плоскости без пересечения ребер, так что его вершины — это точки плоскости, а ребра — непересекающиеся кривые на ней, соединяющие смежные вершины ("укладка" графа на плоскости).

Более формально, ребра можно изображать ломаными с конечным числом звеньев.

Граф называется плоским, если его можно изобразить в виде геометрической фигуры на плоскости без пересечения ребер, так что его вершины — это точки плоскости, а ребра — непересекающиеся кривые на ней, соединяющие смежные вершины ("укладка" графа на плоскости).

Более формально, ребра можно изображать ломаными с конечным числом звеньев.

Области, на которые граф разбивает плоскость, называются его гранями. Неограниченная часть плоскости — тоже грань ("внешняя грань").

Граф называется плоским, если его можно изобразить в виде геометрической фигуры на плоскости без пересечения ребер, так что его вершины — это точки плоскости, а ребра — непересекающиеся кривые на ней, соединяющие смежные вершины ("укладка" графа на плоскости).

Более формально, ребра можно изображать ломаными с конечным числом звеньев.

Области, на которые граф разбивает плоскость, называются его гранями. Неограниченная часть плоскости — тоже грань ("внешняя грань").

Множество граней: F. Плоский граф: G = (V, E, F).

Граф называется плоским, если его можно изобразить в виде геометрической фигуры на плоскости без пересечения ребер, так что его вершины — это точки плоскости, а ребра — непересекающиеся кривые на ней, соединяющие смежные вершины ("укладка" графа на плоскости).

Более формально, ребра можно изображать ломаными с конечным числом звеньев.

Области, на которые граф разбивает плоскость, называются его гранями. Неограниченная часть плоскости — тоже грань ("внешняя грань").

Множество граней: F. Плоский граф: G = (V, E, F).

Планарный граф: изоморфный плоскому.

Граф называется плоским, если его можно изобразить в виде геометрической фигуры на плоскости без пересечения ребер, так что его вершины — это точки плоскости, а ребра — непересекающиеся кривые на ней, соединяющие смежные вершины ("укладка" графа на плоскости).

Более формально, ребра можно изображать ломаными с конечным числом звеньев.

Области, на которые граф разбивает плоскость, называются его гранями. Неограниченная часть плоскости — тоже грань ("внешняя грань").

Множество граней: F. Плоский граф: G = (V, E, F).

Планарный граф: изоморфный плоскому.

Теорема Фари (докажем позже): Любой планарный граф можно изобразить так, что его ребра — отрезки.

Изображение на сфере

Плоский граф = существует укладка на сфере.

Доказательство — через стереографическую проекцию:

Граф, двойственный данному

G = (V, E, F) плоский связный мультиграф

Граф G^* , двойственный G: каждая грань становится вершиной, и каждое ребро исходного графа, служившее границей между двумя гранями, переходит в ребро, соединяющее соответствующие вершины.

Утверждение 3

Для всякого плоского графа G граф G^* тоже плоский, и $(G^*)^* = G$.

Граф, двойственный данному

Двойственность — соответствие между укладками, а не между графами! Для разных укладок одного и того же графа двойственные ему графы могут быть неизоморфными.

Формула Эйлера

Теорема 3 (Формула Эйлера, 1758)

Во всяком связном плоском графе выполняется равенство |V|-|E|+|F|=2.

Следствие 2

Число граней в планарном графе не зависит от его укладки.

Сферы с ручками

Тор = сфера с ручкой:

Сферы с ручками

Тор = сфера с ручкой: много ручек

Сферы с ручками

Тор = сфера с ручкой: много ручек

Теорема 4 (Обобщение формулы Эйлера)

Для графа, укладываемого на тор с k ручками, выполняется |V| - |E| + |F| = 2 - 2k.

В укладке граф связный, каждая грань является областью, т.е. гомеоморфна диску.

Без доказательства и без формальных определений.

Неориентируемые поверхности

Бутылка Кляйна:

$$|V| - |E| + |F| = 0$$

Доказательство формулы Эйлера

Доказательство. Индукция по числу граней.

Базис: |F|=1 — это дерево, равенство |V|-|E|=1 выполняется по теореме о деревьях.

Доказательство формулы Эйлера

Доказательство. Индукция по числу граней.

Базис: |F|=1 — это дерево, равенство |V|-|E|=1 выполняется по теореме о деревьях.

Пусть $|F| \ge 2$. Удаляем одно ребро, входящее в цикл; оно разделяло две грани.

Получается граф, в котором |V| вершин, |E|-1 ребер, |F|-1 граней.

Доказательство формулы Эйлера

Доказательство. Индукция по числу граней.

Базис: |F|=1 — это дерево, равенство |V|-|E|=1 выполняется по теореме о деревьях.

Пусть $|F| \ge 2$. Удаляем одно ребро, входящее в цикл; оно разделяло две грани.

Получается граф, в котором |V| вершин, |E|-1 ребер, |F|-1 граней.

Для него, по предположению индукции, выполняется |V|-(|E|-1)+(|F|-1)=2, откуда следует |V|-|E|+|F|=2.

Границы

Теорема 5

Во всяком планарном графе G=(V,E) без петель и кратных ребер, где $|V|\geq 3$, выполняется неравенство $|E|\leq 3|V|-6$.

Если, кроме того, всякий цикл в графе имеет длину не менее чем I, то $|E| \leq \frac{1}{I-2}(|V|-2)$.

Утверждение: Длина границы каждой грани не менее чем 3.

Если длина границы 2, то имеем цикл длины 2, т.е., кратное ребро — а по условию их нет. Если длина границы 1, то имеем петлю.

Утверждение: Длина границы каждой грани не менее чем 3.

Если длина границы 2, то имеем цикл длины 2, т.е., кратное ребро — а по условию их нет. Если длина границы 1, то имеем петлю.

Грани соответствует как минимум три ребра, а ребру соответствует не более двух граней, получаем $3|F| \leq 2|E|$.

Утверждение: Длина границы каждой грани не менее чем 3.

Если длина границы 2, то имеем цикл длины 2, т.е., кратное ребро — а по условию их нет. Если длина границы 1, то имеем петлю.

Грани соответствует как минимум три ребра, а ребру соответствует не более двух граней, получаем $3|F| \leq 2|E|$. Подставим в формулу Эйлера |V| - |E| + |F| = 2:

$$3|V| - 3|E| + 2|E| \ge 3|V| - 3|E| + 3|F| = 6$$

$$\Rightarrow |E| \le 3|V| - 6.$$

Утверждение: Длина границы каждой грани не менее чем 3.

Если длина границы 2, то имеем цикл длины 2, т.е., кратное ребро — а по условию их нет. Если длина границы 1, то имеем петлю.

Грани соответствует как минимум три ребра, а ребру соответствует не более двух граней, получаем $3|F| \leq 2|E|$. Подставим в формулу Эйлера |V| - |E| + |F| = 2:

$$3|V| - 3|E| + 2|E| \ge 3|V| - 3|E| + 3|F| = 6$$

$$\Rightarrow |E| \le 3|V| - 6.$$

Вторая часть: здесь $I|F| \le 2|E|$, и далее из формулы Эйлера $I|V| - I|E| + 2|E| \ge I|V| - I|E| + I|F| = 2I$, откуда следует требуемое неравенство.

Следствие 3

Во всяком планарном графе G = (V, E) без петель и кратных ребер есть вершина степени не более чем 5.

Следствие 3

Во всяком планарном графе G = (V, E) без петель и кратных ребер есть вершина степени не более чем 5.

Доказательство. Пусть все вершины имеют степень 6 и более. Тогда

$$\sum_{v \in V} \mathsf{deg} v \geq 6|V|.$$

Следствие 3

Во всяком планарном графе G = (V, E) без петель и кратных ребер есть вершина степени не более чем 5.

Доказательство. Пусть все вершины имеют степень 6 и более. Тогда

$$\sum_{v \in V} \deg v \ge 6|V|.$$

С другой стороны,

$$\sum_{v\in V} \deg v = 2|E|.$$

Отсюда вытекает, что $|E| \geq 3|V|$. Противоречие с частью 1 теоремы.

Непланарность K_5 и $K_{3,3}$

Непланарность K_5 и $K_{3,3}$

Лемма 1

Граф K_5 непланарен.

 $\emph{Доказательство}\colon \mathsf{B}$ нем |V|=5 и |E|=10; противоречие с частью 1 теоремы.

Непланарность K_5 и $K_{3,3}$

Лемма 1

 Γ раф K_5 непланарен.

 $\emph{Доказательство}$: В нем |V|=5 и |E|=10; противоречие с частью 1 теоремы.

Лемма 2

Граф К_{3,3} непланарен.

Доказательство: В нем |V|=6 и |E|=9, всякий цикл имеет длину не менее чем 4; противоречие с частью 2 теоремы.

Гомеоморфизм графов

Операция разбиения ребра: добавить вершину в середине ребра $(u,v) \to (u,w), (w,v)$, где w — новая вершина.

Графы G_1 и G_2 гомеоморфны, если, применяя к каждому из них операцию разбиения ребер, можно привести их к двум изоморфным графам.

Критерий планарности графа

Теорема Понтрягина-Куратовского, 1930

Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K_5 и $K_{3,3}$.

Критерий планарности графа

Теорема Понтрягина-Куратовского, 1930

Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K_5 и $K_{3,3}$.

Доказательство.

 \Rightarrow Пусть граф G планарен, но содержит подграф G_1 , гомеоморфный K_5 или $K_{3,3}$. Тогда, имея укладку G, из нее извлекаем укладку G_1 , из которой в свою очередь можно получить укладку K_5 или $K_{3,3}$.

← Не разбираем на курсе.

Теорема о художественной галерее

Сколько сторожей надо расставить в углах произвольного *п*-угольника, чтобы каждую внутреннюю точку видел кто-то из них?

Теорема о художественной галерее

Сколько сторожей надо расставить в углах произвольного *п*-угольника, чтобы каждую внутреннюю точку видел кто-то из них?

Теорема 6 (Хватал, 1975)

Для всякого $n \geq 3$ в любом n-угольнике достаточно $\lfloor \frac{n}{3} \rfloor$ сторожей, расставленных в вершинах.

Существует n-угольник, для которого необходимо не менее $\lfloor \frac{n}{3} \rfloor$ сторожей, даже если разрешить их расстановку в произвольных точках.

Нижняя оценка — гребенка Хватала: n = 3k, минимум k сторожей.

Лемма 3

Всякий многоугольник можно диагоналями разбить на треугольники, причем полученный граф раскрашивается в 3 цвета.

Доказательство. Индукция по числу сторон n.

Базис: n = 3, треугольник — уже разбит. Раскрашивается.

Переход: находим угол меньше 180° , он есть.

- Если отрезок между соседними с ним вершинами лежит внутри многоугольника:
 - Отрезаем треугольник.
 - По индукции, все остальное разбивается и раскрашивается.
 - Отрезанная вершина раскрашивается в свободный цвет.

- ▶ Если этот отрезок пересекает какие-то другие отрезки:
 - Проводим отрезок из вершины угла к концу одного из мешающих отрезков (можно выбрать, например, вершину внутри угла, лежащую на прямой, параллельной АВ, и ближайшей к вершине), разбиваем многоугольник на два.
 - Каждая половина разбивается и раскрашивается
 - Цвета в одной из половин переименовываются, чтобы на общем отрезке были те же два цвета.

Лемма доказана.

Доказательство теоремы о художественной галерее

Доказательство теоремы.

По лемме строим разбиение на треугольники так, что полученный граф раскрашивается в три цвета.

Доказательство теоремы о художественной галерее

Доказательство теоремы.

По лемме строим разбиение на треугольники так, что полученный граф раскрашивается в три цвета.

Из этих цветов выбираем тот, который используется не чаще других; им раскрашено вершин $\lfloor \frac{n}{3} \rfloor$.

Доказательство теоремы о художественной галерее

Доказательство теоремы.

По лемме строим разбиение на треугольники так, что полученный граф раскрашивается в три цвета.

Из этих цветов выбираем тот, который используется не чаще других; им раскрашено вершин $\lfloor \frac{n}{3} \rfloor$.

Расставляем сторожей в вершинах, раскрашенных этим цветом.

Для всякого планарного графа без кратных ребер и без петель существует укладка, в которой все ребра представлены отрезками.

Для всякого планарного графа без кратных ребер и без петель существует укладка, в которой все ребра представлены отрезками.

Доказательство. Граф можно предполагать связным.

Для всякого планарного графа без кратных ребер и без петель существует укладка, в которой все ребра представлены отрезками.

Доказательство. Граф можно предполагать связным.

Рассмотрим произвольную укладку графа, и докажем, что ее можно преобразовать в прямолинейную укладку с сохранением множества граней.

Для всякого планарного графа без кратных ребер и без петель существует укладка, в которой все ребра представлены отрезками.

Доказательство. Граф можно предполагать связным.

Рассмотрим произвольную укладку графа, и докажем, что ее можно преобразовать в прямолинейную укладку с сохранением множества граней.

Сперва добавим в граф лишние ребра, чтобы сделать каждую его грань, включая внешнюю, треугольником (триангуляция). После построения укладки эти ребра удалим.

Пусть G — плоский граф без петель, причём в границе каждой грани не менее трёх вершин. Тогда существует триангуляция T, остовным подграфом которой является G.

Пусть G — плоский граф без петель, причём в границе каждой грани не менее трёх вершин. Тогда существует триангуляция T, остовным подграфом которой является G.

Доказательство. Пусть f — грань, граница которой не треугольник.

Случай 1: граница связна.

Внутреннее ребро грани $f=\mathsf{c}$ обеих сторон грань f

Пусть G — плоский граф без петель, причём в границе каждой грани не менее трёх вершин. Тогда существует триангуляция T, остовным подграфом которой является G.

Доказательство. Пусть f — грань, граница которой не треугольник.

Случай 1: граница связна.

Внутреннее ребро грани f = c обеих сторон грань f

Раздвоим каждое внутреннее ребро грани $f\Rightarrow$ граница превращается в цикл Z, проходящий каждое граничное ребро f ровно один раз и каждое внутреннее ребро ровно два раза (Z может не быть простым, но он реберно-простой). Грань f — внутренняя область цикла Z. Триангулировать f = триангулировать внутренность цикла Z.

Вспомогательное утверждение:

Пусть Z цикл с ≥ 3 вершинами, вершины Z покрашены в ≥ 3 цветов т.ч. любые две соседние вершины покрашены в разные цвета. Тогда можно триангулировать внутреннюю область Z т.ч. все проведённые диагонали цикла соединяют вершины разных цветов.

Вспомогательное утверждение:

Пусть Z цикл с ≥ 3 вершинами, вершины Z покрашены в ≥ 3 цветов т.ч. любые две соседние вершины покрашены в разные цвета. Тогда можно триангулировать внутреннюю область Z т.ч. все проведённые диагонали цикла соединяют вершины разных цветов.

Доказательство. Индукция по числу вершин.

База для цикла из трёх вершин очевидна, докажем переход.

Пусть $Z = v_1 v_2 \dots v_k$, $k \geq 4$.

Вспомогательное утверждение:

Пусть Z цикл с ≥ 3 вершинами, вершины Z покрашены в ≥ 3 цветов т.ч. любые две соседние вершины покрашены в разные цвета. Тогда можно триангулировать внутреннюю область Z т.ч. все проведённые диагонали цикла соединяют вершины разных цветов.

Доказательство. Индукция по числу вершин.

База для цикла из трёх вершин очевидна, докажем переход.

Пусть $Z = v_1 v_2 \dots v_k$, $k \ge 4$.

Очевидно, найдётся диагональ $a_i a_{i+2}$, соединяющая две вершины разных цветов.

Эта диагональ разрезает цикл Z на треугольник $a_i a_{i+1} a_{i+2}$ и меньший цикл Z'.

Если в $Z' \geq 3$ цветов, то применим к Z' индукционное предположение и все доказано.

Если в $Z' \geq 3$ цветов, то применим к Z' индукционное предположение и все доказано.

Если в Z' два цвета, то пусть вершина a_{i+1} покрашена в цвет 3, а вершины Z' покрашены в цвета 1 и 2.

Если в $Z' \geq 3$ цветов, то применим к Z' индукционное предположение и все доказано.

Если в Z' два цвета, то пусть вершина a_{i+1} покрашена в цвет 3, а вершины Z' покрашены в цвета 1 и 2.

Тогда цвета вершин Z' чередуются \Rightarrow число вершин в Z' чётно, то есть \geq 4.

 \Rightarrow в Z единственная вершина a_{i+1} цвета 3 и хотя бы по две вершины цветов 1 и 2.

Лемма о триангуляции

Если в $Z' \geq 3$ цветов, то применим к Z' индукционное предположение и все доказано.

Если в Z' два цвета, то пусть вершина a_{i+1} покрашена в цвет 3, а вершины Z' покрашены в цвета 1 и 2.

Тогда цвета вершин Z' чередуются \Rightarrow число вершин в Z' чётно, то есть ≥ 4 .

 \Rightarrow в Z единственная вершина a_{i+1} цвета 3 и хотя бы по две вершины цветов 1 и 2.

Тогда отрежем треугольник диагональю $a_{i+1}a_{i+3}$ и получим меньший цикл Z'' с 3 цветами.

Применим к Z'' предположение индукции \Rightarrow триангулируем внутренность цикла Z''. Утв. доказано.

Доказательство леммы о триангуляции

Покрасим вершины цикла Z цветами, соответствующими вершинам грани (их \geq 3), т.ч. в один цвет были покрашены одинаковые вершины.

Тогда любые две соседние вершины разноцветны.

Вспомогательное утверждение \Rightarrow можем триангулировать внутренность цикла Z так, чтобы проведённые рёбра имели разноцветные концы, то есть, не были петлями, что и требовалось доказать.

Доказательство леммы о триангуляции

Случай 2: граница f несвязна.

Пусть x и y — две вершины из разных компонент связности. Проведём ребро xy внутри грани f. Это ребро будет внутренним для грани f, поэтому длина границы f увеличится на 2. Будем действовать таким образом, пока граница грани не окажется связной.

Индукция по количеству вершин.

Базис: |V| = 3 — представляется треугольником.

Индукция по количеству вершин.

Базис: |V| = 3 — представляется треугольником.

Шаг индукции. Следствие $\ref{eq:constraint}$ \Rightarrow есть вершина v: $\deg v \leq 5$. Докажем, что существует такая вершина, не лежащая на границе внешней грани.

Индукция по количеству вершин.

Базис: |V| = 3 — представляется треугольником.

Шаг индукции. Следствие $\ref{eq:constraint}$ \Rightarrow есть вершина v: $\deg v \leq 5$. Докажем, что существует такая вершина, не лежащая на границе внешней грани.

Пусть у всех вершин не на границе внешней грани $\deg \geq 6$.

Индукция по количеству вершин.

Базис: |V| = 3 — представляется треугольником.

Шаг индукции. Следствие $\ref{eq:constraint}$ есть вершина v: $\deg v \leq 5$. Докажем, что существует такая вершина, не лежащая на границе внешней грани.

Пусть у всех вершин не на границе внешней грани $deg \ge 6$.

На границе внешней грани ровно три вершины, степень каждой из них не менее чем 2, и должна быть хотя бы одна вершина степени не менее чем 3, потому что иначе весь граф — треугольник.

Индукция по количеству вершин.

Базис: |V| = 3 — представляется треугольником.

Шаг индукции. Следствие $\ref{eq:constraint}$ есть вершина v: $\deg v \leq 5$. Докажем, что существует такая вершина, не лежащая на границе внешней грани.

Пусть у всех вершин не на границе внешней грани $deg \ge 6$.

На границе внешней грани ровно три вершины, степень каждой из них не менее чем 2, и должна быть хотя бы одна вершина степени не менее чем 3, потому что иначе весь граф — треугольник. Тогда

$$\sum_{\nu \in V} \mathsf{deg} \nu \geq 6(|V|-3) + 3 + 2 + 2 = 6|V| - 11,$$

то есть

$$2|E| \ge 6|V| - 11.$$

Индукция по количеству вершин.

Базис: |V| = 3 — представляется треугольником.

Шаг индукции. Следствие $\ref{eq:constraints} \Rightarrow$ есть вершина v: $\deg v \leq 5$. Докажем, что существует такая вершина, не лежащая на границе внешней грани.

Пусть у всех вершин не на границе внешней грани $deg \ge 6$.

На границе внешней грани ровно три вершины, степень каждой из них не менее чем 2, и должна быть хотя бы одна вершина степени не менее чем 3, потому что иначе весь граф — треугольник. Тогда

$$\sum_{\nu \in V} \mathsf{deg} \nu \geq 6(|V|-3) + 3 + 2 + 2 = 6|V| - 11,$$

то есть

$$2|E| \ge 6|V| - 11.$$

Теорема $\ref{eq:constraints} \Rightarrow 2|E| \leq 6|V|-12$. Противоречие.

Ребра, примыкающие к v, принадлежат граням-треугольникам.

Ребра, примыкающие к v, принадлежат граням-треугольникам.

Удаляем v, на ее месте остается грань. К этой грани применяем триангуляцию.

Ребра, примыкающие к v, принадлежат граням-треугольникам.

Удаляем v, на ее месте остается грань. К этой грани применяем триангуляцию.

По предположению индукции, для полученного графа есть прямолинейная укладка с сохранением набора граней. Удаляя диагонали, получаем опять большую грань, граница которой — многоугольник с \leq 5 сторонами.

По теореме о художественной галерее всю эту грань может обозревать один сторож. Там, где стоит этот сторож, размещаем вершину v; из нее можно провести отрезки во все пять углов. Если сторож стоит в одной из вершин многоугольника, то вершину v можно разместить на небольшом расстоянии от нее.

Теорема Фари

Раскраски графов

G=(V,E), C — множество цветов. Раскраска — это всякая функция $c:V\to C$. Раскраска правильная, если для всякого ребра (v,u) верно $c(v)\neq c(u)$.

Примеры:

- ightharpoonup Двудольный граф: если раскрашивается в два цвета. Например, $K_{3,3}$.
- ightharpoons Граф K_n не раскрашивается менее чем в n цветов.

Теорема 8 (Хивуд)

Всякий планарный граф раскрашивается в 5 цветов.

Доказательство. Индукция по числу вершин.

Базис |V|=1: раскрашивается.

Доказательство. Индукция по числу вершин.

Базис |V|=1: раскрашивается.

Шаг индукции. По следствию $\ref{eq:condition}$, есть вершина v степени ≤ 5 .

Доказательство. Индукция по числу вершин. Базис |V|=1: раскрашивается.

Шаг индукции. По следствию $\ref{eq:condition}$, есть вершина v степени ≤ 5 .

Если $\deg(v) \leq 4$, то удаляем ее, остаток раскрашиваем по предположению индукции, а затем возвращаем и раскрашиваем в свободный цвет.

Доказательство. Индукция по числу вершин. Базис |V|=1: раскрашивается.

Шаг индукции. По следствию $\ref{eq:condition}$, есть вершина v степени ≤ 5 .

Если $\deg(v) \leq 4$, то удаляем ее, остаток раскрашиваем по предположению индукции, а затем возвращаем и раскрашиваем в свободный цвет.

Если $\deg(v)=5$, то рассмотрим ее соседей v_0,v_1,v_2,v_3,v_4 в порядке их укладки на плоскости. Если какого-то из ребер (v_i,v_{i+1}) нет, добавим его.

Доказательство. Индукция по числу вершин. Базис |V|=1: раскрашивается.

Шаг индукции. По следствию $\ref{eq:condition}$, есть вершина v степени ≤ 5 .

Если $\deg(v) \leq 4$, то удаляем ее, остаток раскрашиваем по предположению индукции, а затем возвращаем и раскрашиваем в свободный цвет.

Если $\deg(v)=5$, то рассмотрим ее соседей v_0, v_1, v_2, v_3, v_4 в порядке их укладки на плоскости. Если какого-то из ребер (v_i, v_{i+1}) нет, добавим его.

Хотя бы одной из диагоналей (v_i, v_{i+2}) нет, иначе был бы подграф K_5 .

Доказательство. Индукция по числу вершин.

Базис |V|=1: раскрашивается.

Шаг индукции. По следствию $\ref{eq:condition}$, есть вершина v степени ≤ 5 .

Если $\deg(v) \leq 4$, то удаляем ее, остаток раскрашиваем по предположению индукции, а затем возвращаем и раскрашиваем в свободный цвет.

Если $\deg(v) = 5$, то рассмотрим ее соседей v_0, v_1, v_2, v_3, v_4 в порядке их укладки на плоскости. Если какого-то из ребер (v_i, v_{i+1}) нет, добавим его.

Хотя бы одной из диагоналей (v_i, v_{i+2}) нет, иначе был бы подграф K_5 .

Склеим вершины v_i , v_{i+2} и v — получим планарный граф меньшего размера, который раскрашивается в 5 цветов по предположению индукции. Тогда в исходном графе v_i и v_{i+2} покрасим тот же цвет, что и склеенную вершину, а v — в свободный пятый цвет.

Раскраски графов

Теорема 9 (Аппель, Хакен, 1977)

Всякий планарный граф раскрашивается в 4 цвета.

Доказательство — компьютерный перебор (первое в истории доказательство такого рода).