Op-Down Decade Counten using JK-FlipFlops

Rahul Manna 001910501060

BESE-II

Hondware Design Lab.

Design an op and down (as selected by a control line) decade counter using JK-FlipFlop.

The up-down decade counter has 10 states. If a Slipslops are needed, then qn z10.

in = 4, i.e. 4 T-K Slipslops are needed.

Now, when the input/control signal is 0, the counter counts up, and when input is 1, the counter counts down.

State Diagram :

4 Stipstops can hande 2ª=16 states. So there will be 6 invalid states in the state tabe. Excitation Table:

, ,															
control	P	NS				1	Flip - Slop								
C	939	29	,90	9	\$ 92	19;	190+	J_3			K2	J	, K,	J	Ko
0	00	0	. 0	0	0	0	1	0	Y	0	K	0	Y	1	X
0	00	0	1	0	0	•	0	0	r	0	×	1	X	4	1
0	00	1	0	0	0	1	1	0	×	0	×	X	0	1	*
0	0	0 1	1	0		0	0	0	Y	1	X	4	1	X	1
0	0 1	0	0	0	1	0	1	0	. K .	X	0	0	K	1	X
0	0 1	0	10	0	. /	- 1	0	0	×	X	0	1	×	X	1
0	0 1	. 1	0	0	-1	1	1	0	×	Y	0	Y	0	1	Y
0	0 1	1	. 1	,	0	0	0	I	K	×	1	Y	1	X	1
0	1 0	0	0	1	0	. 0	1.	X	0	0	K	0	K	1	x
6	1,0	0	1	0	0	0	0	×	1	0	K	0	×	×	1
•	0 0	0	0	1	0	6	1	1	X .	0	У	0	Y	1	Y
4	0	5 0	1.	0	0	0	O	0	X	0	×	0	X	x	1
4	0	9 1	0	0	0	0	P	0		0	X	YO	1	*	X
1	0	3 1	1	0	0	,	8	0	K	0	Y	K	0	×	1
7	0	0	0	0	0	1		0	IV	K	1	1	X	F	Y
4	0	, 0	1	8	1	0	0	0	X	X'	0	0	×	×	
9	0	, ,	0	0	1	0	/i'	0	Y	K'	0	X	1	1.01	x
2	0	1 1	1	0	1	1	0	0	×	X	0	Y	0	X	1
9	1 0	0	0	0	1 -	,	11	K	,	1	K	1	x	1	X
1	10	0	,	8	9	0	0.	×	0	0	×	0	X	K	1
			4.6		1	1		92	400				179		
Minie		tion	97 6											511	
Fon	929,	2 0	00	oc) /	01	10	0	110	011	, ,	10	1	100	

 $J_o = 1$

Fogs K.	9:9A.	000	001	011	010	110	101	101	100	
2 93		(×	1	1	×	×	1	1	V)	
	01	X	1	×	×	×	×	×	*	
	11	×	- 1	×	×	×			*	
	10	X	- 1	1	×	×	K	K	X	
									*	
			Ko =	1.						

FOR
$$J_1$$
 $Q_2Q_2Q_2$
 $Q_3Q_2Q_2$
 Q_3Q_2
 Q_3Q_2

Fon K3

Eapressions:

$$T_{0} = 1$$
 $K_{0} = 1$
 $T_{1} = \overline{Cq_{3}} q_{0} + Cq_{2} \overline{q}_{0} + Cq_{3} \overline{q}_{0}$
 $K_{1} = \overline{Cq_{0}} + C\overline{q}_{0}$
 $K_{2} = \overline{Cq_{1}} q_{0} + C\overline{q}_{0} \overline{q}_{0}$
 $K_{3} = \overline{Cq_{2}} q_{1} q_{0} + C\overline{q}_{0}$
 $K_{3} = \overline{Cq_{0}} + C\overline{q}_{0}$

Up-Down Decade Counter Using JK FlipFlops