Dual-Axis Tilting Quadrotor Aircraft

An investigation into the overactuatedness thereof

Nicholas Von Klemperer

Department of Electrical Engineering University of Cape Town Rondebosch, Cape Town South Africa

August 2016

MSc thesis submitted in fulfilment of the requirements for the degree of Masters of Science in the Department of Electrical Engineering at the University of Cape Town

Keywords: Control, Allocation, Non-linear, Autopilot

Declaration

I, Nicholas Von Klemperer, hereby:

1. grant the University of Cape Town free license to reproduce the above thesis in whole or in part, for the purpose of research;

2. declare that:

- (a) this thesis is my own unaided work, both in concept and execution, and apart from the normal guidance from my supervisor, I have received no assistance except as stated below:
- (b) neither the substance nor any part of the above thesis has been submitted in the past, or is being, or is to be submitted for a degree at this University or at any other university, except as stated below.
- (c) unless otherwise stated, any and all illustrations or diagrams demonstrated in this work are productions of my own.

Nicholas Von Klemperer Department of Electrical Engineering University of Cape Town Monday 29th August, 2016

Abstract

Dual-Axis Tilting Quadrotor Aircraft

Nicholas Von Klemperer

Monday 29th August, 2016

The aim of this project is to design, simulate and control a novel quadrotor platform which can articulate all 6 Degrees of Freedom by vectoring the propellers' directional thrust. To achieve this the strucuret of the air-frame must redirect those thrust vectors to any desired orientation. This means it has to transform its configuration during flight, redirecting lift actuators whilst still maintaining stable attitude & position control in spite of such relative motion. In view of this required articulation the proposal is to add 2 axes of extra actuation to each propeller. The effect of which is that each lift propeller can then be pitched or rolled relative to the body frame. This change, to what is an otherwise well understood and highly researched platform, produces an over-actuated control problem. Actuator allocation is the primary contribution of this paper with novel elements of non-linear (state-space) attitude control.

The structure of the dissertation first presents the design which the subsequent dynamics and control are derived with respect to. Following that the kinematics associated with rigid bodies are derived. Any unique effects that could apply to the design like gyroscopic, inertial and aerodynamic responses are investigated and then incorporated into the dynamics. Possible position and control algorithms are simulated and compared based on the plants' dynamics (which include discretization effects on the system). The relative performance of the controllers are evaluated but regular performance metrics for attitude and position control are ill-suited for such a system. Some time is spent discussing the consequence of this and how the controllers are actually evaluated. Finally the design is built and tested using readily available RC components and conclusions drawn on the success or failure of the design.

The purpose of the investigation is the practicality and feasibility of such a design, most importantly whether the added complexity of the mechanical system is a decent compromised for the added degrees of control actuation. The outcome of the build is ascertain if it's both economically (cost and control effort) feasible and practical to build such a prototype. The design and control treatment presented here are by no means optimal or the most exhaustive solutions, focus is placed on the system as a whole and not just one aspect of it.

Acknowledgements

Contents

ט	ecıar	ation]
A	bstra	ıct		i
\mathbf{A}	ckno	wledge	ements	iii
1	Intr	roduct	ion	1
	1.1	Forew	ord	1
		1.1.1	A Brief Background to the Study	1
		1.1.2	Research Questions & Hypotheses	2
		1.1.3	Significance of Study	2
		1.1.4	Scope and Limitations	3
	1.2	Litera	ture Review	5
		1.2.1	Existing & Related Work	5
		1.2.2	Notable Quadrotor Control Implementations	8
2	Pro	totype	e Design	12
	2.1	Conve	entions Used	12
		2.1.1	Reference Frames Convention	12
		2.1.2	Motor Axis Layout	14
	2.2	Design	n	16
		2.2.1	Gimbal Articulation	16
		2.2.2	Inertial Matrix Function	16
		2.2.3	Overall Aspects	16
	2.3	System	n Layout	16
3	Kin	emati	cs \$ Dynamics	17

CONTENTS

	3.1	Rigid	Body Dynamics	17
		3.1.1	Lagrange Derivation	17
		3.1.2	Rotation Matrix Peculiarities	17
		3.1.3	Quaternion Dynamics	17
		3.1.4	The Unwinding Problem	17
	3.2	Non-li	nearities	17
		3.2.1	Gyroscopic Torques	17
		3.2.2	Coriolis Acceleration	17
		3.2.3	Inertial Matrix	17
	3.3	Aerod	ynamics	17
		3.3.1	Thrust Forces & Propeller Torques	17
		3.3.2	Drag	17
		3.3.3	Conning & Flapping	17
		3.3.4	Vortex Ring State	17
	3.4	Conso	lidated Model	17
4	Con	itrol T	reatment	18
4	Con 4.1		reatment	18
4				
4		Attitu	de Control	19
4		Attitu 4.1.1	de Control	19 19
4		Attitu 4.1.1 4.1.2 4.1.3	de Control	19 19 19
4	4.1	Attitu 4.1.1 4.1.2 4.1.3	de Control	19 19 19
4	4.1	Attitu 4.1.1 4.1.2 4.1.3 Positio 4.2.1	de Control	19 19 19 19
4	4.1	Attitu 4.1.1 4.1.2 4.1.3 Positio 4.2.1	de Control The Attitude Control Problem Quaternion Based Controllers Non-linear Controllers on Control Backstepping Position Controller	19 19 19 19 19
4	4.1	Attitu 4.1.1 4.1.2 4.1.3 Positio 4.2.1 Contro	de Control The Attitude Control Problem Quaternion Based Controllers Non-linear Controllers on Control Backstepping Position Controller oller Allocation	19 19 19 19 19 19
4	4.1	Attitu 4.1.1 4.1.2 4.1.3 Positio 4.2.1 Contro 4.3.1	de Control The Attitude Control Problem Quaternion Based Controllers Non-linear Controllers on Control Backstepping Position Controller oller Allocation Non-linear Plant Control Allocation	19 19 19 19 19 19 19
4	4.1	Attitu 4.1.1 4.1.2 4.1.3 Positio 4.2.1 Contro 4.3.1 4.3.2	de Control The Attitude Control Problem Quaternion Based Controllers Non-linear Controllers on Control Backstepping Position Controller oller Allocation Non-linear Plant Control Allocation Pseudo Inverse Allocator	19 19 19 19 19 19 19 19
4	4.1	Attitu 4.1.1 4.1.2 4.1.3 Positio 4.2.1 Contro 4.3.1 4.3.2 4.3.3	de Control The Attitude Control Problem Quaternion Based Controllers Non-linear Controllers on Control Backstepping Position Controller oller Allocation Non-linear Plant Control Allocation Pseudo Inverse Allocator Weighted Pseudo Inverse Allocator	19 19 19 19 19 19 19 19 19
4	4.2	Attitu 4.1.1 4.1.2 4.1.3 Positio 4.2.1 Contro 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	de Control The Attitude Control Problem Quaternion Based Controllers Non-linear Controllers on Control Backstepping Position Controller oller Allocation Non-linear Plant Control Allocation Pseudo Inverse Allocator Weighted Pseudo Inverse Allocator Priority Norm Inverse Allocator	19 19 19 19 19 19 19 19 19 19 19

CONTENTS	V
----------	---

\mathbf{A}	Star	ndard	Quadrotor Dynamics	21
		5.3.3	Autopilot Outcome	20
		5.3.2	Attitude Control Results	20
		5.3.1	Allocator Performance	20
	5.3	Optim	nized Controller Comparisons	20
	5.2	Simula	ation Block	20
		5.1.4	Fmincon Differences	20
		5.1.3	Global & Local Minima	20
		5.1.2	Performance Metric	20
		5.1.1	Partical Swarm Based Optimization	20

List of Figures

1.1	General Structure for Opposed Tilting Platform
1.2	DJI Inspire 1
1.3	
1.4	Dual-axis tilt-rotor mechanism
1.5	ArduCopter PI Euler Angle Attitude Control loop
2.1	Inertial and Body Reference Frames
2.2	Aligned Motor Frame Axes
2.3	Intermediate Motor Frames
2.4	Body Frame Axes Layout

List of Tables

1.1	A Breakdown of common	Attitude Controllers.	5	Ć
-----	-----------------------	-----------------------	---	---

Introduction

1.1 Foreword

1.1.1 A Brief Background to the Study

A popular topic for current control and automation research is that of quadrotor UAVs. Attitude control of a quadrotor poses a unique 6-DOF control problem, to be solved with an under-actuated 4-DOF system. As a result the ϕ pitch and θ roll plants aren't controllable. The attitude plant is often simplified around a stable operating point. The trimmed operation region is always at the inertial frames' origin; resulting in a zero-set point tracking problem. The highly coupled non-linear dynamics of a rigid body's translational and angular motions arise from gyroscopic torques [Section: 3.2.1] and Coriolis accelerations [Section: 3.2.2]. These effects are negligible around the origin¹, hence the origin trim point removes the systems' non-linear complexities. The control system can then reduce each state variable, $\vec{X}_b = \begin{bmatrix} \phi & \theta & \psi & x & y & z \end{bmatrix}^T$, to an isolated SISO plant.

As almost every recent quadrotor research paper will mention, the latest interest in the platform is because of recent emergences in availability of MEMS systems and low-cost microprocessors. Such advancements allow for real time state estimation and on-board control loop processing, all at a relatively low cost. Developmental progress in quadrotor and, to a lesser extent, the general UAV field has led to rapidly growing enthusiast community. Companies like HobbyKing [26] are now synonymous with providing custom made DIY hobbyist quadrotor kits, not just ready to fly commercial products like the DJI Phantom [16].

The avenues for potential application of both fixed wing and VTOL UAVs is expansive, supporting civil [50], agricultural [52] and security [34] industries. Quadrotor configurations provide a mechanically simple and low cost platform on which to test advanced aerospace control algorithms. Commercial drone use in industry is already a prolific emerging sector; especially in Southern Africa. Subsequently following the 8^{th} amendment of civil aviation laws [54], use of UAVs for commercial application has now been legalized. Any research into a non-trivial aspect of the field is going to extremely valuable.

Larger scale quadrotor, hexrotor and even octorotor UAVs are a popular intermediate choice for aerial cinematography due to their high payload capacity. Whilst still expensive, the cost of a commercial drone like the SteadiDrone Maverik [39] is far less than chartering a helicopter to achieve the same panoramic aerial scenes or on-site inspections. Another interesting application for UAVs is in the agricultural and cartography surveying sectors. One foreseeable issue which may hinder commercial drone sector progress is the inertial effects associated with large aerial bodies. When scaling up any vehicle, its performance is adversely affected if actuation rates aren't proportionately scaled.

¹Expanded upon in Appendix:A

1.1.2 Research Questions & Hypotheses

The difficulty with control of a quadrotor is that fundamentally it's unstable and under-actuated, which is empirically proven later with Layupanov Theorem in Chapter:4. The quadrotor has only four controllable inputs, namely propeller rotational speeds $\omega_{1,2,3,4}$ which are then abstracted² to virtual control inputs net torque, $\vec{\tau}_{net} = [\tau_{\phi} \ \tau_{\theta} \ \tau_{\psi}]^T$, and a perpendicular heave thrust $\vec{T}_{net} = \sum_{i=1}^4 T(\omega_i)$. Those four inputs have to affect both the linear X-Y-Z positions and angular pitch, roll and yaw angles, $\vec{\Upsilon} = [\phi \ \theta \ \psi]^T$. As a result of the under-actuation the attitude control problem becomes a zero set point problem as any other attempt to track attitude cannot be achieved.

The aim of this project is to implement quadrotor attitude and position set point tracking by solving the problem of its inherent under-actuation. Inspired by Boeing/Bell Helicopters' V22 Osprey and the tilting articulation of its propellers, the prototype design proposed here introduces two additional actuators for each of the quadrotors' lift propellers. Specifically, adding rotations about the X and Y axes for each motor/propeller pair. The result is a vectored 3 dimensional thrust force rather than a bound perpendicular lift force. The control problem is then posed as the design of net forces, $\vec{F}_{net} = [F_x \ F_y \ F_z]^T$, and torques, $\vec{\tau}_{net} = [\tau_\phi \ \tau_\theta \ \tau_\psi]^T$, such that for any given trajectory, $X_d = [x \ y \ z \ \psi \ \theta \ \phi]^T$, the error state $X_e = X_d - X_b$ asymptotically tends to $\vec{0}$.

$$\lim_{t \to \infty} X_e = \vec{0} \quad \forall X \in \mathbb{R}^n$$
 (1.1)

Where n is the degrees of freedom. The over-actuation brings about the need for a control allocation scheme which distributes the 6 commanded system inputs (net torques and forces) among the actuator set (12 actuators) in order to optimize some objective function secondary to that of Eq:1.1.

Part of the control research question is the multivariable treatment of the system without making any simplifications to the non-linear dynamics involved in the quadrotors motion or making any assumptions about its operational conditions. Standard linearisations applied to the quadrotors' control plant don't hold true for the more aggressive manoeuvres; they're dependent on small angle approximation. Stable control law design will require expansion and simulation of existing kinematic models describing an aerial body and applying them to a quadrotor motion. Thereafter, design, development and control of this new actuator suite which is to be implemented on a quadrotor platform. The final key outcomes for the project are the simulation analysis and prototype construction of the proposed design.

Introducing relative motion within an unconstrained body will produce a lot of unwanted dynamics like inertial and gyroscopic responses, amongst others. A rotating propeller will respond to pitching much like a Control Moment Gyroscope [69] or a flywheel. A less trivial result is the aerodynamic torque produced from the propellers' aerofoil profile. Such induced responses occur in planes perpendicular to whatever the propellers' rotation exists in. These aspects are normally canceled out due to a basic quadrotors' co-planar propeller rotation. It's anticipated that a plant dependent control solution will have to compensate for these dynamics, which if left unaccounted for could potentially cause instability.

1.1.3 Significance of Study

Due to the huge popularity of quadrotor platforms as research tools, any work that improves the UAV & quadrotor general body of knowledge will prove to be valuable. With that being said, there is already a vast amount of existing research on linear and non-linear control techniques for regular quadrotor platforms. The attitude loop is the most common topic for control research, requiring an under-actuated solution and mostly linearised around the origin (See Appendix:A). Far less common is the application of optimal flight path and trajectory planning to quadrotor control. The uniqueness and difficulty of the quadrotor attitude control does not hold true for its position control, so standard

²The abstraction of which is explored in Appendix:A

techniques can be used for way point planning and the like once the attitude control problem has been answered.

The most significant aspect of this project is the attitude control, discussed later in Section:4.1. The over-actuation of the proposed design and, more critically, the manner in which the controllers' (virtual) output is distributed among those control effectors would appear to be the first of its kind. Otherwise known as control allocation, the requirements of the distribution algorithm(s) are outlined in Section:4.3. Dynamic set point attitude control for aerospace vehicles is not a subject heavily researched outside the satellite attitude control field. Even papers which propose similarly complex mechanical over-actuation (expanded upon in next in the literature review, Section:1.2) hardly broach the topic of attitude set points away from the origin.

Whilst the control plant (developed in Chapter:4) does indeed close both the position and attitude control loops, there is no consideration of trajectory generation nor flight path planning. Such topics are well discussed elsewhere in a far more concise and deliberate way than this project could ever hope to achieve. Once closed loop position and attitude controls have been achieved, the control algorithms can be adjusted to account for higher order state derivative tracking needed for nodal way point planning. The heuristics involved with flight path planning are well documented elsewhere and implementation of them is an academic task.

Where possible the system identification and control (design and allocation) for this project is kept both modular and generically applicable. The intention here is that pertinence falls not only with the UAV field but to any aerospace or free body attitude control. Hopefully the investigation here can be expanded upon with more in-depth research on one of the subsystems without compromising the functionality of the remainder of the whole plant.

A possible improvement which the investigation could yield is a higher actuator bandwidth and thus a faster control response for larger aerospace bodies. A standard quadrotor uses differential thrust to develop a torque about its body which suffers a slow inertial deceleration when changes speeds. Prioritizing pitching the propellers principle plane of rotation away rather than changes the propellers speed could improve response. This depends on what or how the allocator block is prioritized (presented in Section:4.3).

1.1.4 Scope and Limitations

Scope

This project includes the conceptualized design and implementation of a novel actuation suite to be used on a quadrotor platform. The express purpose of which is to apply set point attitude tracking control to the body. Stemming from this is an investigation of the associated kinematics which are influenced by the design and its relative motions. In order to apply control theory to achieve the attitude tracking goal, a sound model of the plant dynamics is first needed so that the plants' response can be analysed.

Aspects of the mechanical design are covered in Section 2.2 but, beyond the cursory investigation, there is no scope for materials analysis or stress testing of the design. To the detriment of the project, the design will either produce an over-engineered or catastrophically under-engineered solution. The focus is rather on the control application and embedded systems design, not the structural integrity of a proposed frame. The only physical measurements made are ones which pertain to the critical kinematics like inertial measurements for the second order gyroscopic and inertial dynamic responses.

As mentioned in the antecedent, Section: 1.1.3, trajectory & flight path planning are not ubiquitous with this investigation. The kinematic derivation for a 6-DOF body is wholly applicable to any dynamic (rigid or otherwise) aerospace body, although some particular standards are used [sic ZYX]

Euler Aerospace Sequence, 2.1]. Similarly the control treatment of the plant is that of a non-linear multivariate control, aided and justified by Lyupanov theorem. Whilst alternative solutions through Model Predictive Control or Quantitative Feedback Theory could provide a more refined or effective controller, they aren't presented and remain open to further investigation. The standard approach for quadrotor attitude control is feedback linearisation of the plant around a trim point to decouple the non-linear dynamics and apply SISO techniques. A derivation of such a linearisation is presented in A but there are no further discussions beyond that. Comparison between attitude set point tracking proposed here and normal zero-set point attitude control of fixed rotor quads' is difficult as the fundamental objectives are in stark contrast with each other.

Arguably the most important and indeed novel aspect of this project is the control allocation. Seeing as the system has 12 controllable inputs and 6 possible responses to that input, hence the system is classified as over-actuated. Ergo, there needs to be some logical process as to how those 12 inputs are articulated to achieve the desired 6 movements. Appropriate techniques are first investigated in Section:4.3 and compared before a final solution is implemented in Chapter:5. It is by no means a comprehensive investigation of every solution possible but rather an analysis of the sub-set of problems and design of what is regarded as a logical and pertinent approach.

With regards to the actual prototype design, in Section 2.2, it's assumed that certain aspects are a given certainty. Particularly the state estimation, updated through a 4-camera positioning system fused with a 6-axis IMU through Kalman Filtering, is assumed to precise and readily disposable at a consistent 50 Hz. Hence state estimation is presented but is bereft of intricate detail, this is another topic which has been well documented elsewhere.

Limitations

By far the biggest constraint of the design is the net weight of the assembled frame. The lift required to keep the body aloft is obviously dependent on the all up weight. Thrust forces disposable to the controller then need to be such that there is clear headroom below actuator saturation during hover flight. The controller effort increases with the magnitude of change for desired state, so steady state actuation conditions must be just a fraction of the maximum actuator outputs. Conversely the all up weight is mostly dependent on the lift motors, being the heaviest part of the vehicle, and their associated power electronics. A trade-off between these two factors makes designing the prototype a balancing act of compromise; added actuation is needed to produce the desired thrust vectoring. That added actuation is going to increase the weight which then requires more thrust force to ensure the vehicle remains airborne. Bigger motors then need stronger actuators to effect the relative motion and overcome the bodies inertial response. It's a compromise between the weight of the body and the strength/quality of the actuation.

To forego the deliberation detailed above, a self imposed limitation applied to the design is to only make use of a particular predetermined motor, namely a set of four Turnigy DST-700 motors. The Department of Electrical Engineering at University of Cape Town has a surplus of these from previous projects so it saves on new motor costs. A direct consequence of this decision is that the net thrust disposable for actuation is limited to around 700g, ≈ 6.9 N, per motor (see Section: 3.3.1, later in Chapter 3). This means that all other aspects of the prototype need to adhere to this weight limitation. It is crucial to ensure the control algorithm doesn't induce over-saturation of the motor actuations, so the frame weight needs to be around 40-50% of the maximum available thrust. These saturation conditions are expanded upon later in Section: 4.3 in more detail.

Another aspect of the design limitations resulting from decisions taken, mainly to reduce the costs of construction and complexity, is the use of 180° rotatable servos. The servos are for the individual motors' pitch and roll actuation and act in lieu of continuous rotation DC (brushless or stepper) motors. Any rotation beyond 360°would require both closed loop position control of the actuator,

unlike a servo, and slip rings for power transmission so that no wiring would impede the bodies relative rotation. However the logistics of implementing such a design whilst maintaining an acceptable weight is almost impossible without dramatically scaling up the size of the prototype to accommodate for weight increases. Commercial camera stabilizing gimbals already make use of similar configurations but the I/O requirements from the flight controller μ C already constricts the amount of expansion at hand.

Some of the discretionary elements for the whole system will limit performance but are mitigated where possible. For example analogue servos have an associated 1 ms deadband from their 20 Hz refresh rate which can be addressed by using faster, albeit more expensive, digital servos which sample at 333 Hz. The on-board flight control system, see 2.3, needs to apply PWM outputs to 12 different actuators as well as receiving command updates from a ground control station so the I/O capability of most embedded systems are going to be at capacity. Sub-systems will have to be divided and relative inter-communications adopted for various comms and on-board data logging. All of these things are addressed in the following Chapter 2.

1.2 Literature Review

1.2.1 Existing & Related Work

The field of transformable aerospace frames is not necessarily a new one, with many commercial examples having seen a lot of success over their operational life span. The most notable tilting-rotor application is that of the Boeing/Bell V22 Osprey aircraft. First introduced in the field in 2007, the Osprey has the ability to pitch its two lift propellers forward to aid in translational flight after a VTOL manoeuvre has been completed. In addition to this there have been a handful of papers published on similar tilting bi-rotor UAVs' (Fig: 1.1³) for research purposes.

Figure 1.1: General Structure for Opposed Tilting Platform

Birotors

Research into birotor vehicles (Fig. 1.1) with ancilliary lift propeller actuation is often termed Opposed Active Tilting, *OAT*. Such a rotorcrafts' mechanical design applies either a single *oblique* 45° tilting axis relative to the body; [7, 23, 30], or a *lateral* tilting axis, adjacent to the body; [13, 31, 51, 63].

³Image used from G. Gress: [22]

Leading research is currently focussed on applying doubly actuated tilting axes to birotor UAVs. Dual axis Opposed Active Tilting or dOAT introduces vectored thrust with propeller pitch and roll motions to further expand the actuation suite, [2,22]. A birotor is sometimes considered preferable to the multirotor platform due to its reduced controller effort. However the controller plant abstraction often detracts from the quality and effectiveness of its treatment as a result of its' underactuation.

Birotor attitude control incorporates the typical plant independent PD [7] and PID [51] controller schemes but often more computationally exhaustive and plant dependent Ideal and Adaptive back-stepping controllers are investigated, presented in [30,63] and [31] respectively. The coupling of a birotor vehicles' attitude system is more prominent than a quadrotors', derived in Section: 3.2, and so feedback linearisation is almost always used. In an interesting progression from the norm, Lee et al, [36], proposed a PID co-efficient selection algorithm using a Particle Swarm Optimization techinque, similar to [71]. However their performance metric criterion was a basic ITAE term and not anything more unique involving effects specific to flight. *PSO* algorithms iteratively search for a globally optimized solution and offer independent, derivative free optimization. This project report also exploits PSO optimization for non-linear controller coefficient selection, shown in Section:??.

Quadrotors

Expanding on multirotor vehicles, the quadrotor UAV is a popular and well covered research platform due to its relative mechanical simplicity. What would appear to be one of the first quadrotor research implementations, in 2002, is the X4-Flyer quadrotor helicopter, [25, 56]. Subsequently alternative iterations like the Microraptor, [58], and STARMAC, [27], quadcopters have been built and tested. A plethora of literature exists around basic quadrotor kinematics & control [4,9,14,40,57], however dedicated 6-DOF rigid body dynamic papers [42,53] provide better insight into the appropriate kinematics. Often the dynamics are simplified around a trim point and thus assumed to decompose into 6 SISO plants for each degree of freedom, see Section: 3.1 and Appendix: A. More recent research projects have incorporated advanced aerodynamic effects like drag and propeller blade-element momentum theory into the dynamics; [11,27,60]. Although commonly neglected due to their inconsequence under standard opperating conditions, the higher fidelity models are more precise without trim point linearisations & better modelled thrust calculations; [5,27].

Figure 1.2: DJI Inspire 1

The only commercial example of a transforming quadrotor is the DJI Inspire [17], made by Shenzen DJI Technologies (who are more commonly known for the popular DJI Phantom drone). The Inspire can articulate its supporting arms up and down as shown in Fig:1.2 4 . The purpose of such movements

⁴Both images were sourced from the drones' patent, held by SZ DJI Tech Co [70]

is to both alter the center of gravity and further expose a belly mounted camera gimbal to achieve panoramic sequences. This transformation changes the moment of inertia about the bodies center of gravity which then changes the inertial torque response induced by angular movements, an otherwise detrimental effect which makes researchers apprehensive of transformable aerospace frames. The range of "transformation" the frame can undergo is just limited to articulating the arms up and down.

In a similar fashion to the progression seen in birotor state-of-the-art, quadrotor research is broaching the topic of single and dual axis tilting articulation. The concept was first conceptualized and implemented on a prototype related to an ongoing project covered in two reports, [61,62]. The authors M. Ryll et al.(2012, 2013) modified and tested a QuadroXL four rotor helicopter, propduced by MikroKopter [20], to actuate a single axis of tilt aligned with the frames arms (Fig:1.3a⁵). Their proposed control solution, discussed in detail next in Sub-section:1.2.2, assumes no nominal linearised conditions around hover flight unlike a similar single axis tilting quadrotor prototype designed by Nemati, et al. (2012) [48]. The latter remains simulated but as yet untested.

- (a) Single rotation axis aligned with the frames arm
- (b) Cyclic-pitch & swashplate mechanism

Figure 1.3

One approach to improving quadrotor flight operation is to alter the manner in which the thrust is actuated. Drawing from helicopter technology, a paper by Napsholm, (2013) [47], has designed a prototype quadrotor UAV which uses co-axial swashplates for varying the propeller pitch. His aim was a design which didn't rely power electronics to change the BLDC motors' speed for thrust actuation, hoping to eventually replace the BLDC motors with petrol combustion engines. Furthermore, the design applied a single axis of tilting actuation to each of the four motor modules. Whilst mechanically complex, Napsholm made use of existing RC helicopter components to design a rotor actuation bracket (Fig:1.3b). The cyclic-pitch swashplate actuation [49] can apply pitching and roll torques, τ_{ϕ} and τ_{θ} , about the propellers' principle axis of rotation. The bandwidth of such an actuator is far greater than that of a differential torque produced rolling/pitching motion.

Regardless of his strong initial theoretical grounding in the early stages of his project, it would appear that Napsholms research suffered due to time constraints. The introductory derivation on aero-dynamical effects and deliberation over the design provide clear insight into the projects goals. However the control solution and system architecture, electronic and software, are left wanting. An introductory proposal of an MPC attitude control system detracted from the comprehensive dynamics discussed. The project obviously ended before testing, simulation and results could be achieved. Unfortunately, despite the novel and over-actuated design, there was no discussion given on how the allocation would be performed.

⁵Image sourced from Modelling and Control of a Quadrotor UAV with tilting propellers, [61]

Finally, the most crucial research to mention is that of a project completed by Pau Segui Gasco [19], which was a dual presented MSc project with Yazan Al-Rihani [1]. At the time of writing, this would appear to be the only project published pertaining to over-actuation in aerospace bodies implemented on a quadrotor platform. The research was split between the two authors who completed the control/electronic design and the mechanical platform design for their respective dissertations. Shown in Fig:1.4⁶, the dual-axis articulation is achieved using an RC helicopter tail bracket and push-rod mechanism; reducing the mass of the articulated component but limiting the range of actuation. Considering the spinning propellers and their induced gyroscopic torque as an actuator plant, the commanded virtual control is then distributed by weighted inversion amongst the actuator set. The whole projects justifies the extra actuation as redundancy but doesn't necessarily prove how such a redundancy could be beneficial.

Figure 1.4: Dual-axis tilt-rotor mechanism

1.2.2 Notable Quadrotor Control Implementations

Quadcopter Attitude Control

Attitude control of a 6-DOF body is a well understood topic, best described by *The Attitude Control Problem* [66], whereby a rigid body currently has an attitude state E_s and a desired state E_d . The problem is to then find a torque control law:

$$\tau = f(E_s, E_d, \omega_s, \omega_d) \tag{1.2}$$

Such that $\lim_{t\to\infty} E_s \to E_d$ asymptotically as $t\to 0$ and $\omega_s \to \omega_d$ similarly. Depending on how the attitude is posed; with rotation matrices [33,42,53], quaternions [18,21,24,33] or otherwise (Direct Cosine Matrix etc...) the dependent error sate $E^7 = E_d - E_s$ could then differ. Simulation and modelling papers often rely on Euler angle based rotation matrices for attitude representation, [?,9,41,46,48,59] without addressing the inherent singularity associated with such an attitude representation [sic Gimbal Lock, [64], Section:3.1.2]. The alternative quaternion attitude representation, first implemented on a quadrotor UAV in 2006 [65], often used in lieu of rotation matrices has its own caveat of unwinding, (Section:3.1.4), as a result of quaternions dual-coverage [44].

Quadrotor plant dynamics, as mentioned before, are often linearised; especially when represented with a 3-variable Euler angle set, $E = [\phi \ \theta \ \psi]^T$. The coupled gyroscopic and Coriolis responses are both neglected when the angular velocity rate is small, $\vec{\Omega} \approx 0$, and the inertial matrix is diagonal, $rk(\mathbb{I}_b) = x$ for $\in \mathbb{R}^x$. The consequence of which is the ineffectual deterioration of both the gyroscopic term,

⁶Development of a Dual Axis Tilt Rotorcraft UAV: Modelling, Simulation and Control [19]

⁷ The Attitude Control [66] describes these conventionally different error states

 $\tau_{gyro} = \vec{\Omega} \times \mathbb{I}_b \vec{\Omega} \approx 0$ and the Coriolis force term, $F_{cor} = -\vec{\Omega} \times \vec{a_b} \approx 0$ in the bodies dynamics [Chapter:3 for context]. Once the cross-product coupled terms are no longer of consequence, each of the 6 degrees of freedom, $[X \ Y \ Z]^T$, $[\phi \ \theta \ \psi]^T$, can be treated as an individual SISO plant with appropriate techniques used. Quaternion represented attitude plants cannot easily be decomposed into individual SISO controllable plants [Quaternion dynamics in Section:3.1.3]. So a quaternion (combined four variable attitude state vector) is then used, $Q_b = [q_0 \ \vec{q}\]^T$ for the abstracted major loop plant.

Figure 1.5: ArduCopter PI Euler Angle Attitude Control loop

Commercial flight controllers (Arducopter [3], Openpilot [37]⁸ etc...) for custom fabricated UAV platforms all apply their own structured attitude controllers and state estimation algorithms, based on onboard hardware sensor fusion. The article Build Your Own Quadrotor [38] summarizes the control structures implemented on a range of common flight controllers. The most popular of which, the Arducopter, implements a feed-forward PI compensation controller (Fig:1.5⁹). PI, PD and PID controllers are all easy and effective independent control solutions for general attitude plants once the systems have been linearised. Table:1.1 collectively lists the common attitude control blocks (not exclusively quadrotors UAVs but MAVs too) and which projects they've been implemented in, after which a critique on the more unique adaptations is given.

Controller Type	Independent	Dependent	Total
PI	[66]	[66]	PI
PD	[1,40]	[18, 48]	PD
PID	[?,10,57,61,66]	[27, 59, 66]	PID
Lead	[14, 56]	lead	lead
IBC	$[41, 63]^{10}$	[41]	IBC
ABC	[6, 15, 31, 45]		ABC
LQR	[10]	LQR	LQR

Table 1.1: A Breakdown of common Attitude Controllers

In a collection of papers, written by Bouabdallah et al... (2003,2004,2007) arguably the most prolific early quadrotor authors, a range of different control implementations are derived and reviewed. Their last paper (2007) [9] derived and pratically tested an Integral Backstepping attitude controller on an OS4 quadrotor. It builds on their research from an earlier paper (2003) [10] wherein an analysis of PID vs LQR attitude controllers in the context of quadrotors is posed. LQR controllers aim to optimize the controller effort (that being $||\mathbb{U}||$ or the L_2 norm of the plant input) and although, in theory, solving the assocaited Ricatti cost function may produce an optimially stable and efficient control law it needs exact plant matching. In practice, direct plant identification is difficult to achieve for a quadcopter or any aerospace body for that matter. The resultant controller in [10] achieved asymptotic stability but had poor steady state performance due to low fidelity of actuator dynamics and poor confidence inertial measurements.

⁸NOTE: OpenPilot's firmware branch is now maintained by LibrePilot

⁹Image sourced from Build your own Quadrotor [38]

Adaptive Backstepping Control [68] (any of the examples in Table:1.1) expands on nominal IBC fundamentals by introducing an added estimated disturbance state term in the LCF used for the backstepping iteration. The caveat with this form of Backstepping approach is that, from the Lyupanov control theorem, a time derivative for the estimated disturbance (or an update law) is needed. Disturbance approximation has been investigated thoroughly but, for a signal without any apriori information, some heuristic needs to be adopted with the approximation. In one example, [15], the authors implemented a statistical proj(.) operator based technique. When used in adaptive control the projection operator [12], proj(.), ensures a derivative based estimator is bounded for adaptive regression approxmation [55].

Although the control implementation isn't backstepping based, in [72], a sliding mode controller was used to compensate for the disturbances in an Unmanned Submersible Vehicle attitude plant. The underwater current disturbances are approximated using a fuzzy logic system, specifically a zero-order TSK fuzzy controller. The TSK system has been proven to act in the same way as an Artificial Neural Network approximator [43]; where the TSK system is more comprehensible than the latter. Statistical analysis and investigation of approximators without a priori knowledge of a system are well beyond the scope of what this project hopes to achieve but are worth mentioning.

Single/Dual Axis Control & Allocation

The extra actuation introduced with single and dual axis articulation provides room for extra control goals to be achieved as the system actuation increases. Of the few papers published on tilting-axis quadrotors, PD (Nemati et al. [2014] [48] and again in Gasco & Rihani [1, 19]) and PID (Ryll et al. [2012,2013] [61,62]) are the norm for control blocks. For both of these systems there needs to be an allocation rule to distribute a commanded input amongst the actuator set. In [29], Johansen et al. [2012] describes the control allocation problem for a dynamic plant:

$$\dot{x} = f(x,t) + g(x,t)\tau \tag{1.3a}$$

$$y = l(x, t) \tag{1.3b}$$

Note in state space Equation:1.3a, it's assumed the plant input, τ , has a multiplicative relationship with the response, $q(x,t)\tau$.

with a state $x \in \mathbb{R}^n$ and f(x,t) & g(x,t) being the plants' dynamic and input responses respectively. In set point tracking, the output is then tracking the state y=x, and hence $y\in\mathbb{R}^n$. In an ideal well posed system the number of actuator inputs equals the number of controllable variable outputs; $dim(x) = dim(\tau) \in \mathbb{R}^n$. In the case where the input $\tau \in \mathbb{R}^m$, m > n the problem is overactuated and a level of abstraction is needed; a virtual control input ν_d is designed by a control law $\nu_d = h(x_e, t)$ to effect dynamics. The objective is to then find a function that maps $\mathbb{R}^m \to \mathbb{R}^n$ for an actuator matrix $u \in \mathbb{U}^m$.

$$\dot{x} = f(x,t) + g(x,t)\nu_d, \ \nu_d \in \mathbb{R}^n
\nu_d = B(x,t,u) \approx B(x,t)u, \ u \in \mathbb{U}
y = x$$
(1.4a)
(1.4b)

$$\nu_d = B(x, t, u) \approx B(x, t)u, \ u \in \mathbb{U}$$
(1.4b)

$$y = x \tag{1.4c}$$

B(x,t,u) is the allocation rule and can, if the plant permits it, be abstracted to a multiplicative relationship B(x,t)u such that; $B(x,t) \in \mathbb{R}^{n \times m}$. If the primary objective is setpoint tracking, then the control law will design ν_d which will achieve well that goal, the allocation rule then has to find u for ν_d :

$$\min_{u \in \mathbb{R}^m, s \in \mathbb{R}^n} \|Q_s\| \text{ subject to } \nu_c - h(x_e, t) = \nu_c - \nu_d = s, u \in \mathbb{U}$$
(1.5)

Which ensures the commanded input ν_c tracks the control designed input ν_d ; $\nu_c \to \nu_d$. In an overactuated system it then follows that for an unique actuator solution (rather than a family solution set) to Eq:1.5 a secondary objective function is needed, J(x,t,u). Eq:1.5 then becomes:

$$\min_{u \in \mathbb{R}^m, s \in \mathbb{R}^n} (\|Q_s\| + J(x, t, u)) \text{ subject to } \nu_c - h(x_e, t) = s, u \in \mathbb{U}$$
(1.6)

Over-actuation is not something often applied to quadrotors and as a result rather than providing a comprehensive literature review of associated papers here (which is mostly theoretical derivation), the contextual application and solutions to the above posed problems are expanded later in Section: 4.3.1. The only overactuated quadrotor (birotor dual-axis tilting makes the system critically actuated and so requires no allocation) literature which covers allocation of the given actuators is [1,19], where the authors apply a weighted pseudo inverse (sic Moore Penrose Inverse [35]) allocation rule.

Satellite Attitude Control

Unconstrained attitude set-point tracking for 6-DOF bodies, quaternion based or otherwise, is a topic well covered in the field of satellite attitude control; [28, 32, 67]. The *status quo* for recent research is on non-linear adaptive attitude back-stepping control systems, wherein the adaptive update rule is the novel focus. Often plant uncertainty affects the inertia tensor of a satellite. In [28], the authors Wang Jia, et al. [2010], proposed applying adaptive back-stepping to compensate for steady state (asymmetric) inertial estimation errors. Alternatively, in lieu of deliberating on an costly non-orbital prelaunch inertial measurements, [8] developed an algorithm for estimating the inertia tensor based on single axis controlled perturbations.

Satellite actuator sets tend to include additional redundant effectors, to ensure fault tollerance and reliability, and hence require control allocation. Seen in the paper [32]; the authors, Kristiansen et al. [2005], address the over-actuation with direct and well-matched inversion before applying quaternion based back-stepping for attitude control.

$$u = B^{\dagger} (\tau_a{}^b - D\omega_{ib}{}^b) \tag{1.7a}$$

$$B^{\dagger} = B^T (BB^T)^{-1} \tag{1.7b}$$

Where B is the control effectiveness matrix and B^{\dagger} is such that $BB^{\dagger} = \mathbb{I}$. Specifically B^{\dagger} is the general pseudo inverse of B (more on inversions in Sec:4.3). It's assumed there's a multiplicative relationship between the input, $u \in \mathbb{U}$, and the input effectiveness matrix. The controller designed actuator torque τ_a^b then dictates the input u as in Eq:1.7a. Much like the over-actuation previously discussed W.R.T quadcopters; the pseudo inversion method of control distribution applies quadratic optimization to the allocation slack cost function, Eq:1.5.

Prototype Design

2.1 Conventions Used

The attitude conventions used for the systems' dynamic derivations in the following Chapter:3 are first briefly discussed here. Often these aspects are omitted or assumed to be known already. It's important to clearly and unambiguously define a standard set of framing conventions to avoid uncertainty later. Rotation matrices are included but focus remains on the *contrast* between a rotation and transformation operation. Both [24] and [53] provide an in depth and thorough explanation of rotation matrices and DCM attitude representation if such concepts are unfamiliar to the reader.

2.1.1 Reference Frames Convention

Figure 2.1: Inertial and Body Reference Frames

Euler (aerospace) frames are used for principle inertial and body directions (Fig:2.1). The inertial frame, \mathcal{F}^i , is aligned such that the \vec{X}_i axis is in the \hat{N} orth direction, \vec{Y}_i is in the \hat{E} ast direction and \vec{Z}_i is in the \hat{D} ownward direction. The body frame, \mathcal{F}^b , then has both \vec{X}_b and \vec{Y}_b aligned with two perpendicular arms of the quadrotors' body and the \vec{Z}_b axis in the body's normal direction. The body frames' axes and their relation to the prototype design are highlighted next in Section:2.1.2. Frame

¹In orbital sequences this would be toward the Earths' center. Sometimes referred to as the NED convention

superscripts i and b represent inertial and body frames respectively whilst vector subscripts imply the reference frame in which the vectors' coordinates exists in.

Relative angular displacement between two frames is commonly measured by the three angle Euler set. The Euler set $[\phi \ \theta \ \psi]^T$ represents rotations about the \vec{X}, \vec{Y} and \vec{Z} axes respectively. Depending on how the rotation sequence is formulated, those angles can be used to construct rotation matrices which give relation to vectors or can transform coordinates. The generic equation to rotate a vector \vec{v} about a (normalized) axis \hat{n} by some angle μ is given by²:

$$\vec{v}' = (1 - \cos(\mu))(\vec{v} \cdot \hat{n})\hat{n} + \cos(\mu)\vec{v} + \sin(\mu)(\hat{n} \times \vec{v})$$
(2.1)

Which, when \hat{n} is either \vec{X}, \vec{Y} or \vec{Z} axes, can be simplified to produce the common rotation matrices $\mathbb{R}_x(\phi), \mathbb{R}_y(\theta)$ and $\mathbb{R}_z(\psi)$. Multiplication by a rotation matrix $\mathbb{R}(\cdot)$ applies a rotation operator, the resultant vector still exists in the same reference frame, for a vector $\vec{v} \in \mathcal{F}^1$;

$$\vec{v}' = \mathbb{R}_x(\phi)\vec{v} \tag{2.2a}$$

$$\vec{v}', \vec{v} \in \mathcal{F}^1$$
 (2.2b)

No subscripts are used in Eq. 2.2 to indicate reference frame ownership because all vectors are in the same frame

A transformation changes the vectors reference frame. The transformation is a rotation by an angle which is the difference between the resulting and principle reference frames. A transformation from frame \mathcal{F}^1 to \mathcal{F}^2 by an angle of ϕ about the \vec{X} axis is then:

$$\vec{v}_2 = \mathbb{R}_x(-\phi)\vec{v}_1 \tag{2.3a}$$

$$\vec{v}_2 \in \mathcal{F}^2 \text{ and } \vec{v}_1 \in \mathcal{F}^1$$
 (2.3b)

The distinction between Eq:2.2 and Eq:2.3 is the sense of the angular operand, and hence the effect it has on the argument vector. The transformation of a vector from \mathcal{F}^i to \mathcal{F}^b is the product of three sequential operations about each of the axes. Because each subsequent rotation is applied relative to a new intermediate frame, the sequence of axial rotations will effect the Euler set. Any consequences of that chosen order is something well documented in *Quaternions and Rotation Sequence*, [33]. In this dissertation the ZYX sequence is used. Hence a transformation of a vector \vec{v} from the inertial to the body frame is applied by:

$$\vec{v}_b = \mathbb{R}_i^b(\psi, \theta, \phi)\vec{v}_i \tag{2.4a}$$

$$\mathbb{R}_{i}^{b} \triangleq \mathbb{R}_{z}(-\psi)\mathbb{R}_{y}(-\theta)\mathbb{R}_{x}(-\phi) \tag{2.4b}$$

$$\mathbb{R}_z(-\psi)\mathbb{R}_y(-\theta)\mathbb{R}_x(-\phi) \iff \mathbb{R}_x(\phi)\mathbb{R}_y(\theta)\mathbb{R}_z(\psi)$$
 (2.4c)

The relation in Eq:2.4c is as an inversion of the rotation matrix. A rotation matrix's inverse can be used interchangeably to maintain a positive sense of the rotational angle. To ensure clarity it's adopted that a negative angular sense implies a transformation to a different reference frame. Where applicable, the order of rotation will indicate the sequence direction and an angular sign differentiates a rotation or transformation operation.

An inherent singularity does exists with such attitude representations. Indeed Quaternions are used later in Sec: 3.1.3 in lieu of Euler angles. Euler angular attitude representation is, however, easily understood and well suited to the conventional distinctions made here. Quaternion operations are similarly sequenced in the ZYX order:

$$\mathbb{R}_i^b \iff Q_b^* \otimes (.) \otimes Q_b \tag{2.5a}$$

$$Q_b^* \triangleq Q_x^* Q_y^* Q_x^* \text{ and } Q_b \triangleq Q_x Q_y Q_z$$
 (2.5b)

With \otimes being the Hamilton product (or quaternion operator). Each quaternion, Q_i , is a unit quaternion about that \hat{i}^{th} axis. The operator and subsequent quaternion kinematics are defined later in Sec. 3.1.3.

²Derived in [57]

2.1.2 Motor Axis Layout

Fundamentally the whole structure, although treated as rigid in the kinematics, consists of multiple relative bodies. Each propeller and motor pair is actuated by two servos. If the propeller rotates about the motors' \vec{Z} axis, then two servos are aligned with \vec{Y} and \vec{X} axes to pitch and roll the propeller away from its principle axis of rotation. Each of the four motors' have their own reference frame, \mathcal{F}^{M_i} , aligned as in Fig:2.2.

Figure 2.2: Aligned Motor Frame Axes

The motor frames, numbered 1-4, transform to the body frame first by an angle of λ_i about the \vec{X}_{M_i} axis. Then by η_i about the $\vec{Y}_{M'_i}$ axis in an intermediate M'_i frame. The second servo actuates η_i to produce a second intermediate axis M''_i , the servo is fixed in the M'_i frame. Finally there is a relative \vec{Z} rotation between \mathcal{F}^b and $\mathcal{F}^{M''_i}$. The layout of all four motor modules are such that the \vec{Z} axis transformation between intermediate frame $\mathcal{F}^{M''_i}$ and \mathcal{F}^b are all constants; 0, 90°, 180° or 270°.

Figure 2.3: Intermediate Motor Frames

The four motor modules are aligned relative to the body's XYZ axes as show in Fig:2.4. Modules 1 and 3 have their X-axes in the positive and negative X direction of the body frame. Similarly Modules 2 and 4 have their X-axes in the positive and negative Y directions of the body frame. Transformation relationships from each of the motor frames to the body can be characterized as:

$$\vec{v}_b = \mathbb{R}_z(-\sigma_i)\mathbb{R}_y(-\eta_i)\mathbb{R}_z(-\lambda_i)\vec{v}_{M_i}, \ \sigma_i \in [0, 90^\circ, 180^\circ, 270^\circ]$$
 (2.6)

The actuator space, including propeller speed ω_i [rps], is then $\in \mathbb{R}^{12}$ 3, or rather $\mathbb{U} \in \mathbb{R}^{12}$. The actuator set $u \in \mathbb{U}$ is then structured as:

$$u_{\in \mathbb{U}} = \left[\omega_1 \ \lambda_1 \ \eta_1 \ \dots \ \omega_4 \ \lambda_4 \ \eta_4\right]^T \tag{2.7}$$

Figure 2.4: Body Frame Axes Layout

 $^{^3}$ Disambiguation: An omission of axial subscript on the $\mathbb R$ symbol implies a real space of the superscript dimension.

- 2.2 Design
- 2.2.1 Gimbal Articulation
- 2.2.2 Inertial Matrix Function
- 2.2.3 Overall Aspects

Vibration Damping

Landing Skids

Motors & ESCs

2.3 System Layout

Kinematics \$ Dynamics

3.1	Rigid Body Dynamics
3.1.1	Lagrange Derivation
3.1.2	Rotation Matrix Peculiarities
3.1.3	Quaternion Dynamics
3.1.4	The Unwinding Problem
3.2	Non-linearities
3.2.1	Gyroscopic Torques
3.2.2	Coriolis Acceleration
3.2.3	Inertial Matrix
3.3	Aerodynamics
3.3.1	Thrust Forces & Propeller Torques
3.3.2	Drag
3.3.3	Conning & Flapping
3.3.4	Vortex Ring State

3.4 Consolidated Model

Control Treatment

Control	Dlant	Q, I	Dicon	ecion
Control	Plant	<i>N</i> . I	DISCU	ission

Control Plant Inputs

Model Dependent & Independent Controllers

4.1 Attitude Control

- 4.1.1 The Attitude Control Problem
- 4.1.2 Quaternion Based Controllers

PD Controller

Auxilliary Plant Controller

PID Controller

4.1.3 Non-linear Controllers

Ideal Back-stepping Controller

Adaptive Back-stepping Controller

Lyupanov Derived Ideal Controller

- 4.2 Position Control
- 4.2.1 Backstepping Position Controller
- 4.3 Controller Allocation
- 4.3.1 Non-linear Plant Control Allocation
- 4.3.2 Pseudo Inverse Allocator

Simulations & Results

5.1	$\operatorname{Controller}$	Tuning
5.1	Controller	Tuning

- 5.1.1 Partical Swarm Based Optimization
- 5.1.2 Performance Metric
- 5.1.3 Global & Local Minima
- 5.1.4 Fmincon Differences
- 5.2 Simulation Block
- 5.3 Optimized Controller Comparisons
- 5.3.1 Allocator Performance
- 5.3.2 Attitude Control Results
- 5.3.3 Autopilot Outcome

Appendix A

Standard Quadrotor Dynamics

Bibliography

- [1] Yazan Al-Rihani. Development of a dual axis tilt rotorcraft uav: Design, prototyping and control., volume 1. Cranfield University: School of Engineering, 2012.
- [2] N. Amiri, A. Ramirez-Serrano, and Davies R. Modelling of opposed lateral and longitudinal tilting dual-fan unmanned aerial vehicle. *International Federation of Automatic Control*, pages 2054–2059, September 2011.
- [3] APMCopter. Arducopter main page. Website: http://www.arducopter.co.uk/, 6 2016. Arducopter (APM) Official Website.
- [4] E. Balasubramanian and R. Vasantharaj. Dynamic modelling and control of quadrotor. *International Journal of Engineering and Technology*, pages 63–39, February 2013.
- [5] M. Bangura and R. Mahony. Non-linear dynamic modelling for high performance control of a quadrotor. In *Australasian Conference on Robotics and Automation, Victoria University of Wellington*. Victoria University of Wellington, 12 2012. Published in Conference Proceedings.
- [6] Mohd Ariffanan Basri, Abdul R. Husain, and Kumeresan A. Danapalasingam. Intelligent adaptive backstepping control for mimo uncertain non-linear quadrotor helicopter systems. *Institute of Measurement Control Transactions*, pages 1–17, 2014.
- [7] Charles Blouin and Eric Lanteigne. Pitch control on an oblique active tilting bi-rotor. *International Conference on Unmanned Aircraft Systems*, pages 791–799, May 2014.
- [8] R. Bodrany, W. Steyn, and M. Crawford. In-orbit estimation of the inertia matrix and thruster parameters of uosat-12. In *Conference on Small Satellites*, volume 14, pages 1–11. American Institute of Aeronautics and Astronautics, 2000.
- [9] S. Bouabdallah and R. Siegwart. Full control of a quadrotor. *IEEE International Conference on Intelligent Robots and Systems*, pages 153–158, 11 2007. Written for Autonomous Systems Lab at Swiss Federal Institute of Technology.
- [10] Samir Bouabdallah, Andre Noth, and Roland Siegward. Pid vs lq control technques applies to an indoor micro quadrotor. *IEEE International Conference on Intelligent Robots and Systems*, pages 2451–2456, 9 2004.
- [11] J. Brandt and M. Selig. Propeller performance data at low reynolds numbers. American Institude of Aeronautics and Astronautics Sciences Meeting, 49th, pages 1–18, January 2011.
- [12] Jian Chen, Aman Behal, and Darren M. Dawson. Adaptive output feedback control for a class of mimo nonlinear systems. In *Proceedings of the American Control Conference*, pages 5300–5306, Minnesota, US, 6 2006. American Control Conference.
- [13] Arindam B. Chowdhury, Anil Kulhare, and Guarav Raina. A generalized control method for tilt-rotor uav stabilization. *IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems*, pages 309–314, May 2012.

[14] R.F. de Olivera, F.T. de Salvi, and E.M. Belo. Dynamic modelling, simulation and control of an autonomous quadcopter aircraft. *International Congress of Mechanical Engineering*, pages 1–9, November 2009.

- [15] Chen Diao, Bin Xian, Qiang Yin, Wei Zeng, Haotao Li, and Yungao Yang. A nonlinear adaptive control approach for quadrotor uavs. In *Asian Control Conference Proceedings*, volume 8, pages 223–228, Kaohsiung, Taiwan, 5 2011. Asian Control Conference.
- [16] DJI Drones. Dji inspire one, 2016.
- [17] DJI Drones. Dji phantom, 2016.
- [18] Emil Fresk and George Nikolakopoulos. Full quaternion based attitude control for a quadrotor. European Control Conference, pages 3864–3869, 6 2013.
- [19] Pau. S Gasco. Development of a Dual Axis Tilt Rotorcraft UAV: Modelling, Simulation and Control, volume 1. Cranfield University: School of Engineering, 2012.
- [20] HiSystems GmbH. Mikrokopter quadroxl, 2016.
- [21] Basile Graf. Quaternions and dynamics. Publication for Mathematics Dynamical Systems, 2 2007.
- [22] Gary R. Gress. Lift fans as gyroscopes for controlling compact vtol air vehicles: Overview and development status of oblique active tilting. In *American Helicopter Society Annual Forum*, volume 63, Virginia Beach, 5 2007. American Helicopter Society, American Helicopter Society Inc. Forum Proceedings.
- [23] Gary R. Gress. Passive Stabilization of VTOL Aircraft Having Obliquely Tilting Propellers. University of Calgary, Department of Mechanical Engineering, Calgary, Alberta, 2014.
- [24] Karsten Groekatthfer and Zizung Yoon. Introduction into quaternions for spacecraft attitude representation. *Technical University of Berlin: Department of Astronautics and Aeronatuics*, pages 1–16, May 2012.
- [25] N. Guenard, T. Hamel, and V. Moreau. Dynamic modelling and control strategy for an x4-flyer. *International Conference on Control and Automation*, pages 141–146, June 2005.
- [26] HobbyKing.com. Hobby king: The ultimate hobby experience, 2016.
- [27] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin. Quadrotor helicopter flight dynamics and control: Theory and experiment. In *Guidance, Navigation and Control Conference and Exhibit*, pages 1–19, Hilton Head, South Carolina, 8 2010. American Institute of Aeronautics and Astronautics, American Institute of Aeronautics and Astronautics. Derivation of advanced aerodynamic affects on STARMAC Quadrotor Prototype.
- [28] W. Jia, Z. Ming, Y. Zhiwei, and L. Bin. Adaptive back-stepping lpv control of satellite attitude maneuvers with sum of squares. In *World Congress on Intelligent Control and Automation*, volume 8, pages 1747–1752. IEEE, 7 2010.
- [29] Tor A. Johansen and Thor I. Fossen. Control allocation a survery. Automatica, 45:10871103, 11 2012. Prepared for: Department of Engineering Cybernetics Norwegian University of Science and Technology.
- [30] Farid Kendoul, Isabelle Fantoni, and Rogelio Lozano. Modeling and control of a small autonomous aircraft having two tilting rotors. *IEEE Conference on Decision and Control*, pages 8144–8149, December 2005.

[31] P. Krishnamurthy and F. Khorrami. Adaptive backstepping and theta-d based controllers for a tilt-rotor aircraft. *Mediterranean Conference on Control and Automation*, pages 540–545, June 2011.

- [32] Raymond Kristiansen and Per J. Nicklasson. Satellite attitude control by quaternion-based backstepping. *American Control Coference*, N/A:907–912, 6 2005. Published by Department of Computer Science, Electrical Engineering and Space Technology; Narvik University College.
- [33] Jack B. Kuipers. Quaternions and Rotation Sequences: A Prier with Aplication to Orbital Aerospace and Virtual Reality, pages 127–143. Princeton University Press, September 2002. Used for Quaternion and Rotation Matrix reference.
- [34] Peter Lambert. Nakazawa, banton and jin, bai x. Technical Report N/A, Computer and Electrical Engineering: University of Victoria, Victoria, Canada, 12 2013.
- [35] Prof Allan J. Laub. The moore-penrose pseudo inverse. UCLA Math33A Course Content, UCLA, Los Angeles, 3 2008. Course Notes cited from http://www.math.ucla.edu/~laub/33a.2. 12s/mppseudoinverse.pdf.
- [36] Jang-Ho Lee, Byoung-Mun Min, and Eung-Tai Kim. Autopilot design of tilt-rotor uav using particle swarm optimization method. *International Conference on Control, Automation and Systems*, pages 1629–1633, October 2007.
- [37] LibrePilot. Openpilot/librepilot wiki. Website: http://opwiki.readthedocs.io/en/latest/index.html, 5 2016. Information wiki page for LibrePilot/OpenPilot firmware.
- [38] Hyon Lim, Jaemann Park, Daewon Lee, and H.J. Kim. Build your own quadrotor. *IEEE ROBOTICS & AUTOMATION MAGAZINE*, pages 33–45, 9 2012. Publication on Opensource Autopilot systems.
- [39] SteadiDrone PTY LTD. Steadidrone home, 2016.
- [40] Teppo Luukkonen. Modelling and control of a quadcopter. Master's thesis, Aalto University: School of Science, Eepso, Finland, 8 2011. Independent research project in applied mathematics.
- [41] Tarek Madani and Abdelaziz Benallegue. Backstepping control for a quadrotor helicopter. *International Conference on Intelligent Robots and Systems*, pages 3255–3260, October 2006.
- [42] I. Mandre. Rigid body dynamics using euler's equations, rungekutta and quaternions, 2 2006.
- [43] Carlos J. Mantas and Jose M. Puche. Artificial neural networks are zero-order tsk fuzzy systems. In *IEE Transactions on Fuzzy Systems*, volume 16, pages 630–644, 6 2008.
- [44] Christopher G. Mayhew, Ricardo G. Sanfelice, and Andrew R. Teel. On quaternion based attitude control and the unwinding phenomenon. *American Control Conference*, pages 299–304, June 2011.
- [45] Ashfaq A. Mian and Wang Daoboo. Modelling and backstepping-based nonlinear control of a 6dof quadrotor helicopter. *Chinese Journal of Aeronautics*, 21:261–268, 3 2008. Simulated Backstepping Control.
- [46] N/A. Quadcopter dynamics, simulation and control. Report, N/A, N/A.
- [47] Svein Rivli Napsholm. Prototype of a tiltrotor helicopter. Master's thesis, Norwegian University of Science and Technology: Department of Engineering Cybernetics, Norway, 1 2013.
- [48] A. Nemati and M. Kumar. Modeling and control of a single axis tilting quadcopter. *American Control Conference*, pages 3077–3082, June 2014.
- [49] Kenzo Nonami, Farid Kendoul, Satoshi Suzuki, Wei Wang, and Daisuke Nakazawa. Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles, chapter 2, pages 44–48. Springer Japan, 1 edition, 2010. References to Cyclic-Pitch Control relevant subsections.

[50] Gustavo P. Oliveira. Quadcopter civil applications. Master's thesis, Informatics and Computer Engineering: University of Portugal, Portugal, 2 2014.

- [51] Christos Papachristos, Kostas Alexis, and Anthony Tzes. Design and experimental attitude control of an unmanned tilt-rotor aerial vehicle. *International Conference on Advanced Robotics*, pages 465–470, June 2011.
- [52] Parth N. Patel, Malav A. Patel, Rahul M. Faldu, and Yash R. Dave. Quadcopter for agricultural surveilance. In *Advance in Electronic and Electrical Engineering*, volume 3, India, 2013.
- [53] J. Peraire and S. Widnall. 3d rigid body dynamics: Euler angles. Lecture notes for Dynamics Course, 2009. Dynamics course notes, fall 2007.
- [54] D. Peters. Eight amendment of the civil aviation regulations. Government Gazette Notice, 5 2015. In Amendment to the Civil Aviation Act, 2009 (Act No.13 of 2009).
- [55] Jean-Baptiste Pomet and Laurent Praly. Adaptive nonlinear regulation: Estimation from the lyupanov equation. In *IEEE Transactions on Automatic Control*, volume 37, pages 729–740. IEEE, 6 1992.
- [56] P. Pounds, R. Mahony, P. Hynes, and J. Roberts. Design of a four-rotor aerial robot. *Australasian Conference on Robotics and Automation*, pages 145–150, November 2002.
- [57] Beard Randal. Quadrotor dynamics and control. Report, Brigham Young University, 2 2008. Part of the Electrical and Computer Engineering Commons.
- [58] O. Rawashdeh, H.C. Yang, R. AbouSleiman, and B. Sababha. Microraptor: A low cost autonomous quadrotor system. *International Design Engineering Technical Conferences & Computers and Information in Engineering Conference*, pages 1–8, August 2009.
- [59] Anastasia Razinkove, Igor Gaponov, and Hyun-Chan Cho. Adaptive control over quadcopter uav under disturbances. *International Conference on Control, Automation and Systems*, pages 386–390, October 2014.
- [60] M.K. Rwigema. Propeller blade element momentum theory with vortex wake deflection. *International Congress of the Aeronautical Sciences*, 27th, pages 1–9, January 2010.
- [61] M. Ryll, H. Bulthoff, and P. Robuffo Giordano. Modelling and control of a quadrotor uav with tilting propellers. *IEEE International Conference on Robotics and Automation*, pages 4606–4613, May 2012.
- [62] M. Ryll, H. Bulthoff, and P. Robuffo Giordano. First flight tests of a quadrotor uav with tilting propellers. IEEE International Conference on Robotics and Automation, pages 295–302, May 2013.
- [63] A. Sanchez, J. Escareo, O. Garcia, and R. Lozano. Autonomous hovering of a noncyclic tiltrotor uav: Modeling, control and implementation. *The International Federation of Automatic Control*, pages 803–808, July 2008.
- [64] Puneet Singla, Daniele Mortari, and John L. Junkins. How to avoid singularity when using euler angles? Advances in the Astronautical Sciences, pages 1409–1426, January 2005.
- [65] Abdelhamid Tayebi and Stephen McGilvray. Attitude stabilization of a vtol quadrotor aircraft. *IEEE Transactions on Control Systems Technology*, pages 562–571, May 2006.
- [66] John Ting-Yung Wen and Kenneth Kreutz-Delgado. The attitude control problem. *IEEE Transactions on Automatic Control*, pages 1148–1162, October 1991.

[67] P. Tsiotras, M. Corless, and J.m Longuski. A novel approach to the attitude control of axisymmetric spacecraft. Automatica, 31:1099–1112, 3 1995. Control Automatica, Printed in Great Britan.

- [68] E. van Kampen and M. M. van Paassen. Ae4301: Automatic flight control system design. Delft Centre for Systems and Control; MSc Notes, 1 2008. Course Notes cited from: http://aerostudents.com/master/advancedFlightControl.php.
- [69] Ronny Votel and Doug Sinclair. Comparison of control moment gyros and reaction wheels for small earth-observing satellites. In *Conference on Small Satellites*, volume 26, pages 1–7. Utah State University, 8 2012. Open access on AIAA conference website.
- [70] Tao Wang, Tao Zhao, Du Hao, and Mingxi Wang. Transformable aerial vehicle, 09 2014.
- [71] X. Xiaozhu, L. Zaozhen, and C. Weining. Intelligent adaptive backstepping controller design based on the adaptive particle swarm optimization. *Chinese Control and Decision Conference*, pages 13–17, September 2009.
- [72] Song Xin and Zou Zaojian. A fuzzy sliding mode controller with adaptive disturance approximation for an underwater robot. In *International Asia Conference on Informatics in Control*, *Automation and Robotics*, volume 2, pages 50–53, 10 2010.