COMP9418: Advanced Topics in Statistical Machine Learning

As Gardes iane Madel 181p

https://tutorcs.com

WeChat: cstutorcs

Instructor: Gustavo Batista

University of New South Wales

Introduction

- This lecture discusses Graphical Models with continuous variables
 - We will focus on Gaussian distributions and formalise a Gaussian Bayesian network
 - Our findings can be adapted to other models such as Markov networks
 Assignment Project Exam Help
- We will see that our existing knowledge about probabilities applies to continuous variables
 - Independence, conditional independence; cstutorcs
 - Bayes conditioning, product rule, chain rule, case analysis, Bayes rule, etc.
- We will develop a representation for Gaussian Factors
 - Including operations such as join, marginalisation and reduction (observation of evidence)
 - We will use these operations to illustrate how Kalman Filters works

Introduction

- Let's now see how we can incorporate continuous variables in our models
 - Some variables are best modelled in the continuous space, such as temperature, humidity Approximente Bridgiect Exam Help
 - We cannot use tables anymore, unless we discretise the variables
- Discretisation is a common approach tutorcs.com
 - We can approximate a variable voistribution by its histogram
 - But it is hardly the answer for all models
- Imagine the problem of robot navigation
 - A large environment and a resolution of 15 x 15 cm would lead to millions of values
 - Such large CPTs would be too expensive to make inference
 - Besides, we lose the notion of distance between values

Introduction

- First, everything we know about probabilities holds for continuous distributions
 - Bayes conditioning and product rule
 - Chain rule

Assignment Project Exam Help

- Case analysis and marginalisation https://tutorcs.com

- However, our operations over tables will not work for continuous variables
 - We need to represent the distribution using a *probability density* function (PDF)
 - A common PDF for continuous variables is the Gaussian distribution

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

$$P(A,B) = P(A|B)P(B)$$

$$P(A_1, ..., A_n) = \prod_i P(A_i | A_{i-1}, ..., A_1)$$

$$P(A) = \int_{B} P(A, B) dB$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Gaussian Bayesian Networks

Gaussian Bayesian networks

All variables are continuous and modelled by Gaussian densities

Gaussians are often good Approximate of the Fragorite F-x am Help world distributions

https://tutorcs.com

Modelling decisions

- Root nodes use univariate distributions
- We need to represent the CPD P(X|U), where U are the parents of X
- A common solution is a linear Gaussian model

Linear Gaussian Model

- Let X be a continuous variable with continuous parents U_1, \ldots, U_k
 - X has a linear Gaussian model with parameters eta_0 , ..., eta_k and σ^2 iff Assignment Project Exam Help $\mathcal{N}(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{u}; \sigma^2)$
 - $P(X|u_1,...,u_k) = \mathcal{N}(\beta_0 + \beta_1 u_1 + \cdots + \beta_k u_k; \sigma^2)$

- Yet, we can understand X as a linear function of U_1, \dots, U_k with a Gaussian noise with mean 0 and variance O

$$X = \beta_0 + \beta_1 u_1 + \dots + \beta_k u_k + \epsilon$$

- The linear model assumes the variance does not depend on the parents \boldsymbol{U}
 - We can easily extend it to have mean and variance of X depend on parents
 - However, linear Gaussian model is a useful approximation in many practical problems.
 - It also provides an alternative representation for multivariable Gaussian distributions

Gaussian Distribution: 1 Dimension

- Univariate Gaussian distribution has two parameters
 - Mean μ and
 - Variance σ^2 or standard deviation σ

Assignment Project Exam Help:

•
$$\mu = \mathbb{E}[X]$$

•
$$\sigma = \sqrt{\mathbb{E}[(X - \mu)^2]}$$

•
$$X \sim \mathcal{N}(\mu; \sigma^2)$$

Gaussian Distribution: 2 Dimensions

• Let's suppose we have two independent variables X_1 and X_2

$$p(x_{1}, x_{2}) = \frac{1}{\sigma_{1}\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}} \underbrace{A_{\substack{SSignarise}}^{-\frac{1}{2}\left(\frac{x_{2}-\mu_{2}}{\sigma_{1}}\right)^{2}}_{\substack{SSignarise}} \underbrace{Project Exam Help}_{\substack{Project Exam Help}}$$

$$= \frac{1}{\sigma_{1}\sqrt{2\pi}\sigma_{2}\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-\frac{1}{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{2}}\right)^{2}}\underbrace{A_{\substack{Project Exam Help}\\ \text{of }}}_{\substack{Project Exam Help}\\ \text{otherwise}}_{\substack{Project Exam Help}\\ \text{otherwise}}_{\substack$$

$$p(x_1, x_2) = p(x_1)p(x_2)$$

$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$$

$$\Sigma^{-1} = \begin{pmatrix} 1/\sigma_1^2 & 0 \\ 0 & 1/\sigma_2^2 \end{pmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

Gaussian Distribution: n Dimensions

- Multivariate Gaussian distribution is characterised by
 - n-dimensional $mean\ vector\ \mu$ and
 - Symmetric $n \times n$ covariance matrix Σ
 - Quadratic number of parameters number Project Exam Help
- Covariance matrix for 2 dimensions
 - $cov(X_1, X_2) = \mathbb{E}[(x_1 \mu_1)(x_2)]$

• Covariance matrix is symmetric since $cov(X_1, X_2) = cov(X_2, X_1)$

Gaussian Distribution: Example

• Consider a joint distribution $p(X_1, X_2, X_3)$ over three variables

$$\mu = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$$

Assignment Project Exam Help

$$\Sigma = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & -5 \\ -2 & -5 & 8 \end{pmatrix}$$

https://tutorcs.com

- We can observe that
 - X_1 is positively correlated with X_2
 - X_1 is negatively correlated with X_3
 - X_2 is negatively correlated with X_3

Gaussian Distribution: Independencies

- We can identify independence assumptions directly from the Gaussian distribution parameters
 - X_i and X_j are independent iff and only if $\Sigma_{i,j} = 0$ Assignment Project Exam Help
- Let $J = \Sigma^{-1}$ be the *information of the information of the info*
 - $X_i \perp X_j \mid X \{X_i, X_j\}$ iff $J_{i,j} = 0$ WeChat: cstutorcs
- Example

 $\blacksquare X_1 \perp X_3 \mid X_2$

Gaussian Bayesian Networks

- A Gaussian Bayesian network has
 - All variables are continuous
 - All CPDs are linear Gaussian models

Gaussian Bayesian networks are simple to https://tutorcs.com understand

- If we compare to multivariate with the compare to the compar distributions
- Yet, we can transform one representation into another

GBN and Multivariate Gaussian 1

- A linear Gaussian network defines a joint multivariate Gaussian distribution
 - Y is a linear Gaussian with parents X_1, \dots, X_k
 - $P(Y|x) = \mathcal{N}(\beta_0 + \beta^T x; Assignment Project Exam Help$
 - $X_1, ..., X_k$ are jointly Gaussian with $\mathcal{N}(\mu; \Sigma)$ https://tutorcs.com
- Then, Y distribution is normally (Chat: $N \leq tutor^2$), where
 - $\mu_Y = \beta_0 + \boldsymbol{\beta}^T \boldsymbol{\mu}$
- The joint distribution over $\{X, Y\}$ is normal with
 - $\quad \quad Cov[X_i; Y] = \sum_{j=1}^k \beta_j \sum_{i,j}$

GBN and Multivariate Gaussian 2

- A joint multivariate Gaussian distribution defines a linear Gaussian network
 - Given a set of variables $\{X, Y\}$ in the form of a joint normal distribution
 - $p(Y|X) = \mathcal{N}(\beta_0 + \beta^T X; \Delta s)$ signment Project Exam Help

$$\Sigma = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & -5 \\ -2 & -5 & 8 \end{pmatrix}$$

- Then,

 - $\bullet \quad \boldsymbol{\beta} = \boldsymbol{\Sigma}_{XX}^{-1} \boldsymbol{\Sigma}_{XY}$

https://tutorcs.com

$$\mu = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$$

Gaussian Bayesian Networks

- Given our knowledge about inference, we need the following operations
 - Multiply factors
 - Marginalise out variables Assignment Project Exam Help
- Multiplication

- https://tutorcs.com

 We do not have a universal representation, as we have for discrete distributions
- Multiplication of factors of different families is thifficults
- Multiplication of factors in the same family may lead to results in a different family
- Marginalisation
 - Not all functions are integrable
 - If they are, not all have a closed-form integral

Canonical Form

- We need to adopt a representation that allow us perform inference operations in closed form
 - A simple option is the *canonical form*
 - Factor product, reduction Andigunal Projects Exam Help
- We can define a data structure that stores factors in the canonical form
 WeChat: cstutorcs
 - The canonical form can represent multidimensional Gaussian distributions and linear Gaussian CPDs
 - Adapt inference algorithms, such as VE, to operate over this new factor

Canonical Form

The canonical form C(X; K, h, g) is defined as

$$C(X; K, \boldsymbol{h}, g) = \exp\left(-\frac{1}{2}X^{T}KX + \boldsymbol{h}^{T}X + g\right)$$

- Thus, $\mathcal{N}(\mu; \Sigma) = \mathcal{C}(K, h, g)$, where Assignment Project Exam Help
 - $K = \Sigma^{-1}$

https://tutorcs.com $g = -\frac{1}{2} \mu^T \Sigma^{-1} \mu - \log \left((2\pi)^{n/2} |\Sigma|^{1/2} \right)$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$
$$= \exp\left(-\frac{1}{2} \mathbf{x}^T \Sigma^{-1} \mathbf{x} + \boldsymbol{\mu}^T \Sigma^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}^T \Sigma^{-1} \boldsymbol{\mu} - \log\left((2\pi)^{n/2} |\Sigma|^{1/2}\right)\right)$$

Canonical Form: Join

- The product of two canonical form factors over scope X is
 - If the factors have different scopes, we extend the scopes to make them match
 - The extension of scope is Airpig and logate Prentices to Kand Help
- Let us compute $\phi_1(X,Y) \cdot \phi_2(Y,Z)$ https://tutorcs.com
 - $\phi_1(A, B) = \mathcal{C}\left(A, B; \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \right)$ cstutorcs

$$C(K_1, \mathbf{h}_1, g_1) \cdot C(K_2, \mathbf{h}_2, g_2)$$

= $C(K_1 + K_2, \mathbf{h}_1 + \mathbf{h}_2, g_1 + g_2)$

Canonical Form: Marginalisation

 $K' = K_{XX} - K_{XY}K_{YY}^{-1}K_{YX}$

 $g' = g + \frac{1}{2} (\log |2\pi K_{YY}^{-1}| + h_Y^T K_{YY}^{-1} h_Y)$

 $\mathbf{h}' = \mathbf{h}_{\mathbf{X}} - K_{\mathbf{X}\mathbf{Y}}K_{\mathbf{Y}\mathbf{Y}}^{-1}\mathbf{h}_{\mathbf{Y}}$

- The marginalisation of **Y** for a canonical form $\mathcal{C}(X,Y;K_1,h_1,g_1)$ over scope $\{X,Y\}$ is

• $K = \begin{vmatrix} K_{XX} & K_{XY} \\ K_{VV} & K_{VV} \end{vmatrix}$ Assignment Project Exam Help

$$h = \begin{pmatrix} h_X \\ h_Y \end{pmatrix}$$

https://tutorcs.com

• Let us compute $\int C(A, B, C; K_{\mathbf{W}}, \mathbf{e}_{\mathbf{C}}) dC$: cstutorcs

•
$$C\left(A, B, C; \begin{bmatrix} 1 & -1 & 0 \\ -1 & 4 & -2 \\ 0 & -2 & 4 \end{bmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix}, -2 \right)$$

Canonical Form: Reduction

The reduction of a canonical form $\mathcal{C}(X,Y;K_1,h_1,g_1)$ by setting evidence Y=y is

$$K' = K_{XX}$$

$$h' = h_X - K_{XY}y$$

$$g' = g + h_Y^T y - \frac{1}{2} y^T K_{YY}y$$

$$K = \begin{bmatrix} K_{XX} & K_{XY} \\ K_{YX} & K_{YY} \end{bmatrix}$$

• $K = \begin{bmatrix} K_{XX} & K_{XY} \\ K_{VY} & K_{VV} \end{bmatrix}$ Assignment Project Exam Help

$$h = \begin{pmatrix} h_X \\ h_Y \end{pmatrix}$$

https://tutorcs.com

• Let us set C = 2 for C(A, B, C; K, h, g). cstutores

•
$$C\left(A, B, C; \begin{bmatrix} 1 & -1 & 0 \\ -1 & 4 & -2 \\ 0 & -2 & 4 \end{bmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix}, -2 \right)$$

Canonical Form: Linear Model

- The linear Gaussian model
 - $Y \sim \mathcal{N}(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{X}; \sigma^2)$

del
$$K_{Y|X} = \begin{bmatrix} \frac{1}{\sigma^2} & -\frac{1}{\sigma^2} \boldsymbol{\beta}^T \\ -\frac{1}{\sigma^2} \boldsymbol{\beta} & \frac{1}{\sigma^2} \boldsymbol{\beta} \boldsymbol{\beta}^T \end{bmatrix}$$
Assignment Project Exam Help
$$\mathbf{H}_{Y|X} = \begin{pmatrix} \frac{1}{\sigma^2} \beta_0 \\ -\frac{1}{\sigma^2} \beta_0 \boldsymbol{\beta} \end{pmatrix}$$

$$g_{Y|X} = -\frac{1}{2} \left(\frac{\beta_0^2}{\sigma^2} \right) - \frac{1}{2} \log(2\pi\sigma^2)$$

https://tutorcs.com

Variable Elimination and Gaussian Models

```
Input: Bayesian network N, query variables \mathbf{Q}, variable ordering \pi, evidence \mathbf{e}

Output: joint marginal P(\mathbf{Q}, \mathbf{e})

1: \mathbf{S} \leftarrow \{f^{\mathbf{e}}, f \text{ is a CPDs of network } N\}

2: for i=1 to length of order \pi do

3: f \leftarrow \prod_k f_k where f_k belongs to f_k and mentions variable f_k is f_k belongs to f_k and mentions variable f_k replace all weeks from f_k for f_k replace all weeks from f_k for f_k for f_k so f_k replace all weeks from f_k for f_k for
```

A Kalman Filter is a Hidden Markov Model with continuous variables

- Let's start with a Markov chaiweChat: cstutorcs
 - Instead of tracking discrete states such as sun and rain
 - We will track a continuous variable such as temperature

- A Kalman Filter is a Hidden Markov Model with continuous variables
 - Root nodes are modelled with Gaussian distributions
 - Internal nodes are linear dessignments Project Example 1

$$\mu_{T_1} = 23^{\circ}\text{C}$$

$$\sigma_{T_1} = 5$$
°C

$$\mu_{T_{t+1}} = T_t$$

$$\sigma_{T} = 1^{\circ}$$

- A Kalman Filter is a Hidden Markov Model with continuous variables
 - Root nodes are modelled with Gaussian distributions
 - Internal nodes are linear dessignments Project Exam Help 5.1°C 5.2°C 5.3°C 5.4°C

 μ : 23°C

$$p(T_{t+1}) = \int_{T_t} p(T_{t+1}|T_t)p(T_t)dT_t$$

23°C

23°C

23°C

23°C

- A Kalman Filter is a Hidden Markov Model with continuous variables
 - Root nodes are modelled with Gaussian distributions
 - Internal nodes are linear dessignments Project Exam Help

$$p(T_{t+1}) = \int_{T_t} p(T_{t+1}|T_t)p(T_t)dT_t$$

$$p(T_{t+1}|s_{t+1}) \propto p(s_{t+1}|T_{t+1})p(T_{t+1})$$

We must renormalise the results

- Let's simulate this algorithm with the following evidence:
 - e = [20, 20.5, 22, 21.5, 21, 23, 22, 20.5, 21, 22]Assignment Project Exam Help

Kalman Filter: GPS

- A Kalman Filter is the core algorithm of GPS systems
 - Example of data fusion algorithm
 - We can have additional observations that the phone accelerometer
 https://tutorcs.com

Kalman filters are often applied to quidance and navigations systems

- Initially applied to trajectory estimation for the Apollo program
- Currently used in missiles and spacecraft navigation systems, including the International Space Station

Conclusion

- This lecture discussed Graphical Models with continuous variables
 - We used the normal distribution for root variables and the linear Gaussian model for CPDs
 - The canonical representation allows efficient implementation of operations
 - Generally, the use of differentiantments literists to Example lenging
- There are several possible extensions https://tutorcs.com
 - Hybrid networks mix continuous and Gaussian variables
 - Nonlinear models such as Extended and the linear Gaussian model is not appropriated
- The material of this lecture is spread in multiple chapters of Koller & Friedman
 - Continuous variables 5.5, pg. 185-190
 - Gaussian Networks 7.1 & 7.2, pgs. 247-253
 - Variable Elimination in Gaussian Networks, 14.1 & 14.2, pgs. 605-614