

SUPERVISED FINE-TUNING

STRUCTURE DU COURS

4 RLHF

5 ANNEXES

Récapitulatifs des éléments importants

- **Tâches prétextes** qui déterminent différent modèles. Next-token prediction/masked language modeling.
- La notion d'embedding d'un token/mot/phrase : uni/bi directionnel.
- LLM et foundation model.
- LLM et entraînement auto-supervisé (self-supervised).
- Processus de génération (sampling, température, top-k).
- Tokénisation.

Récapitulatifs des éléments importants

- Context window et coût quadratique.
- Zero-shot/few-shot learning
- CPU/GPU
- Quantization
- Les LLMs génératifs ne sont pas la solution à tout.
- Il y a de nombreux LLMs différents.

Objectifs d'aujourd'hui

 Mieux comprendre les différentes catégories de LLMs à travers des cas pratiques.

• Maîtriser le Retrieval Augmented Generation de A à Z.

Les différentes méthodes d'adaptation

Adapter les LLMs

- **Foundation Model** = possibilité d'utiliser modèles existants pour des tâches sur lesquelles ils n'ont pas été entraînés.
- Mais on veut aller plus loin que le zero-shot learning/few-shot learning. Il existe de nombreuses approches (complémentaires):
 - Retrieval Augmented Generation RAG.
 - Chain-of-thought reasoning
 - Supervised fine-tuning.
 - Unsupervised fine-tuning: très proche du pretraining mais prudemment.
 - o RLHF: Reinforcement Learning Human Feedback.
 - Et de nombreuses autres méthodes...

Adapter les LLMs

Mais avant de faire beaucoup d'efforts, il faut aussi savoir choisir parmi tous les modèles déjà disponibles. Par exemple, pour du Q&A, vaut-il mieux faire du fine-tuning d'un decoder-only ou utiliser un encoder-decoder ?

- BERT ? RoBERTA?
- BART?
- GPT-3 ou Mixtral ?
- Version quantized existe-t-elle déjà ?
- etc..

Retrieval Augmented Generation

- RAG = Retrieval Augmented Generation.
- C'est une façon d'aller chercher automatiquement du texte qui est similaire à un prompt afin d'enrichir (augmented) ce prompt.
- C'est une première façon d'adapter un LLM à une tâche spécifique avec plusieurs cas d'usages
 - Faire du prompt-engineering de façon automatique
 - Chercher des informations que le LLM ne connaît pas
 - Chercher de la donnée actualisée
 - Rendre LLM plus robuste aux hallucinations
 - Raisonnement plus transparent

Retrieval Augmented Generation

• En particulier, pour un RAG, il n'y a pas besoin d'entraîner/fine-tuner un réseau de neurones.

 C'est de toute façon la première étape dans l'adaptation d'un LLM à un cas d'usage particulier.

Supervised Fine-Tuning

```
training params = TrainingArguments(
    output dir="./results",
    num train epochs=1,
    per device train batch size=4,
    gradient accumulation steps=1,
    optim="paged adamw 32bit",
    save steps=25,
    logging steps=25,
    learning rate=2e-4,
    weight decay=0.001,
    fp16=False,
    bf16=False,
    max grad norm=0.3,
    max steps=-1,
    warmup ratio=0.03,
    group by length=True,
    lr scheduler type="constant",
    report to="tensorboard"
```

- Beaucoup de détails sont complètement cachés.
- En revanche il y a de nombreux paramètres à comprendre.
- Il faut donc expliquer comment fonctionne l'entraînement d'un réseau de neurones en général.

Pratique: Retrieval Augmented Generation

Code pour RAG assez compact

```
DOC PATH = "test data/arxiv example.pdf"
CHROMA PATH = "database RAG/db arxiv example"
loader = PyPDFLoader(DOC PATH)
pages = loader.load()
text splitter = RecursiveCharacterTextSplitter(chunk size=500, chunk overlap=50)
chunks = text splitter.split documents(pages)
embeddings = OpenAIEmbeddings(openai api key=OPENAI API KEY)
db chroma = Chroma.from documents(chunks, embeddings, persist directory=CHROMA PATH)
query = 'Does this article has many authors ? Does this article talk about climate change ?'
docs chroma = db chroma.similarity search with score(query, k=5)
context text = "\n\n".join([doc.page content for doc, score in docs chroma])
PROMPT TEMPLATE = """
Answer the question based only on the following context:
{context}
Answer the question based on the above context: {question}.
prompt template = ChatPromptTemplate.from template(PROMPT TEMPLATE)
prompt = prompt template.format(context=context text, question=query)
```

Les étapes du RAG

- 1. Préparer une base de documents.
- Indexer cette base de documents dans une base vectorielle en associant un embedding a chaque text chunks.
- 3. Trouver les chunks similaires à la question (Pour Q&A LLM).
- 4. Intégrer ces chunks dans le contexte de la question.

Remarques générales

- Pas de difficulté structurelle : un bon RAG c'est avant tout une bonne exécution.
- Indexer cette base de documents dans une base vectorielle en associant un embedding à chaque chunk de texte.
- Trouver les chunks similaires à la question (Pour Q&A LLM).
- Intégrer ces chunks dans le contexte de la question.

Différents packages pour extraire du texte

- De nombreuses méthodes d'OCR : Optical Character Recognition.
- **NOUGAT**: en local mais pas usage commercial. Meta.
- MARKER: en local mais pas usage commercial.
- Mathpix : en API
- Et bien d'autres

Extraire des images de PDFs

```
DOC PATH = "test data/arxiv example.pdf"
doc = fitz.open(DOC PATH)
image count = 0
image dir = 'extracted images'
if not os.path.exists(image dir):
    os.makedirs(image dir)
for i in range(len(doc)):
    for img in doc.get page images(i):
        xref = imq[0]
        base image = doc.extract image(xref)
        image bytes = base image["image"]
        image = Image.open(io.BytesIO(image bytes))
        image.save(f"{image dir}/image {image count}.png")
        image count += 1
print(f"Extracted {image count} images")
Extracted 18 images
```

Extraire les équations : utilisation de marker

```
from marker.convert import convert single pdf
from marker.models import load all models
model lst = load all models()
DOC PATH EQUATION = 'fausse equation CEPE.pdf'
# Attention la numerotation de pages commence a zero
full text, images, out meta = convert single pdf(
    DOC PATH EQUATION, model lst, max pages=10,
    langs=None, batch multiplier=2, start page=0)
Detecting bboxes: 100%
                                                    1/1 [00:00<00:00, 11.94it/s]
Detecting bboxes: 100%
                                                    1/1 [00:00<00:00, 11.89it/s]
Finding reading order: 100%|
                                                    1/1 [00:00<00:00, 18.40it/s]
```

Extraire les équations : utilisation de marker

Extraire les équations

- Il y a plein de LLMs open-source, par contre des solutions performantes de traitement de PDF peuvent être encore compliquées à mettre en oeuvre!
- La question du **temps de processing** peut être importante, notamment lorsqu'il s'agit de faire du RAG sur de très grandes bases de données d'archives
- Encore de l'effort pour avoir en open-source des outils pour lire parfaitement les PDFs, ou scans de livres

Sentence embedding

```
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("all-MiniLM-L6-v2")
texts = [
    "Paris is hosting Olympic games",
    "There is no blue dog."]

text_embeddings = model.encode(texts)
```

- Embedding des documents sans appel à des calls API.
- Attention de faire les embeddings des documents et de la query avec le même modèle.
- **Sentence embedding** = on travaille directement au niveau de la phrase plutôt que du token.
- all-MiniLM-L6-v2 produit de petits embeddings de dimension 384

Le choix du sentence embedding

Il y a de **nombreux types d'embeddings disponibles**, et on va regarder plusieurs critères comme :

- La **taille de l'embedding** (et donc du modèle associé). Par exemple, si passage à l'échelle/real-time est un aspect critique,
- Sur quel type de données l'embedding a été entraîné pour que ca soit le plus proche possible du genre de document que nous allons embedder.
- Le **type de langage** utilisé.
- Le type de tâches que l'on va effectuer (semantic search, clusterisation ou classification)

Exemples de sentence embedding

Exemples de sentence embedding

- msmarco-distilbert-base-v4 : entraîné sur MSMARCO, avec knowledge distillation.
- **nli-bert-large-cls-token** : modèle de type **BERT** fine-tuned sur des **NLI** datasets
- paraphrase-distilroberta-base-v1 : model distillé à partir de RoBERTa et fine-tuné sur des tâches de paraphrasing.
- xlm-r-100langs-bert-base-nli-stsb-mean-tokens : XLM model entraîné sur des tâches type NLI et STS ...
- Et bien d'autres...

Un peu de vocabulaire supplémentaire

Les modèles contiennent donc des informations sur 1) le type d'architecture, 2) le type de tâche d'entraînement/fine-tuning ou 3) le type de méthode d'entraînement. Exemple d vocabulaire à connaître / savoir reconnaître :

- **Distillation** : entraîner un petit modèle à reproduire le comportement d'un gros modèle (Knowledge Distillation).
- NLI (Natural Language Inference) : des datasets pour juger/améliorer les capacités de logique d'un modèle.
- STS (Semantic Textual Similarity) : déterminer le degré de similarité entre phrases.
- **RoBERTa** : entraîner BERT de façon plus robuste.
- **CLS token**: un token spécial (voir plus tard)

Natural Language Inference

tring · lengths	hypothesis string · lengths	<pre>abel class label</pre>
402	1 295	3 classes
person on a horse jumps over a broken down airplane.	A person is training his horse for a competition.	1 neutral
person on a horse jumps over a broken down airplane.	A person is at a diner, ordering an omelette.	2 contradiction
person on a horse jumps over a broken down airplane.	A person is outdoors, on a horse.	0 entailment
hildren smiling and waving at camera	They are smiling at their parents	1 neutral
hildren smiling and waving at camera	There are children present	0 entailment
hildren smiling and waving at camera	The kids are frowning	2 contradiction
boy is jumping on skateboard in the middle of a rederidge.	The boy skates down the sidewalk.	2 contradiction
boy is jumping on skateboard in the middle of a red	The boy does a skateboarding trick.	0 entailment

Base de données vectorielles

Semantic Search with Open-Source ChromaDB

FAISS Scalable Search With Facebook AI

Les bases de données vectorielles permettent de chercher de façon efficace des vecteurs similaires.

- Algorithmes approximés pour résoudre cette tâche efficacement
- Fonctionnement différent des bases de données relationnelles.
- Utile pour le RAG ou juste la semantic search.
 Omniprésent en pratique, au coeur de plein de cas d'usages.

De nombreux frameworks

Il y a de **nombreux frameworks** de bases de données vectorielles proposées par les différents acteurs, optimisés pour différent types de hardware, pour différents cas d'usages ou utilisant des algorithmes de recherche approximée différents :

- FAISS (Facebook AI Similarity Search): Meta
- **Annoy** (Approximate Nearest Neighbors Oh Yeah) : Spotify
- HNSW (Hierarchical Navigable Small World)
- Et bien d'autres...

La fonction d'embedding

```
from chromadb.utils import embedding_functions
embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(
    model_name=EMBED_MODEL
    )

collection = client.create_collection(
    name=COLLECTION_NAME,
    embedding_function=embedding_func)
```

- Attention, la DB stocke le texte et non pas les embeddings, c'est pour cela qu'il faut préciser la fonction d'embedding.
- Très bonne interopérabilité avec SentenceTransformer de HuggingFace.

Approximate k-nn

```
# Exemple de question
query = 'Does this article has many authors ? Does this article talk about climate change ?'
# On recupere les 5 chunks les plus proches de la question
# (Par defaut Langchain utilise la cosine distance metric)
docs_chroma = db_chroma.similarity_search_with_score(query, k=5)
```


Ajouter des métadonnées

```
documents = |
    "The latest iPhone model comes with impressive features and a powerful camera.",
    "Exploring the beautiful beaches and vibrant culture of Bali is a dream for many travelers.",
    "Einstein's theory of relativity revolutionized our understanding of space and time."
genres = [
    "technology",
   "travel",
    "science"]
embedding func = embedding functions.SentenceTransformerEmbeddingFunction(
   model name=EMBED MODEL
collection = client.create collection(
   name='db with meta',
   embedding function=embedding func)
collection.add(
   documents=documents,
   ids=[f"id{i}" for i in range(len(documents))],
   metadatas=[{"genre": g} for g in genres])
```

Query Hybride

```
collection.query(
   query_texts=["Teach me about music history"],
   where={"genre": {"$eq": "music"}},
   n_results=1)
```

```
collection.query(
   query_texts=["Teach me about music history"],
   where={"genre": {"$in": ["music", "history"]}},
   n_results=1)
```

- Prendre le temps de construire un base de données vectorielles avec des métadonnées.
- Cela permet ensuite de faire des recherches hybrides. Intéressant pour faire un moteur de recherche sur données privées.

Cas d'usages

- Les RAGs
- Les systèmes de recommandation (Spotify a même son propre framework de base de données vectorielle!)
- Semantic search (text, image, etc...): avec applications sur données perso

Mise en oeuvre opérationnelle

Service-based :

- LLM-as-a-service, fourni par cloud provider/entreprise spécialisée
- Les + : rapide, facile, peu coûteux (initialement)
- Les : vendor lock-in, pas de contrôle sur l'architecture ou les données, latence

In-house:

- Faire tourner le modèle sur ses serveurs
- Les + : contrôle total, customisation, optimisation, cost-effective (long terme)
- Les : expertise technique, ressources, mises à jour complexes

Hybride :

- Mix service/in-house ; calls API sur une fraction des données
- Exemple: RAG hybride avec embedding en local, calls API sur contexte

TP: Mettre en place son propre RAG.

Fine-tuned RAGs!

```
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration, Trainer, TrainingArguments
# Load pre-trained RAG model and tokenizer
tokenizer = RagTokenizer.from pretrained("facebook/rag-sequence-base")
retriever = RagRetriever.from pretrained("facebook/rag-sequence-base", index name="exact")
model = RagSequenceForGeneration.from pretrained("facebook/rag-sequence-base", retriever=retriever)
# Define training arguments
training args = TrainingArguments(
    output dir="./results",
    evaluation strategy="epoch",
    learning rate=5e-5,
    per device train batch size=2,
    per device eval batch size=2,
    num train epochs=3,
   weight decay=0.01,
```

Trucs et astuces (1)

- LLMs à grande context window peuvent surpasser un RAG (donner tout le document !), mais : (1) très gourmand en ressources et (2) pas de focus sur l'info vraiment importante.
- Tester la remontée des chunks pertinents en les classant par ordre d'apparition dans le document (au lieu d'ordre décroissant de score de similarité) peut améliorer considérablement la qualité des réponses.

In Defense of RAG in the Era of Long-Context Language Models

Tan Yu NVIDIA Santa Clara, California United States tayu@nvidia.com Anbang Xu
NVIDIA
Santa Clara, California
United States
anbangx@nvidia.com

Rama Akkiraju NVIDIA Santa Clara, California United States rakkiraju@nvidia.com

Trucs et astuces (2)

• Si la base de connaissances est trop volumineuse par rapport au nombre de chunks maximum à remonter, on peut la réduire ou la diviser en plusieurs bases pour créer plusieurs RAGs spécialisés performants, plutôt qu'un seul RAG.

Le nombre de chunks pertinents à remonter et leur longueur doivent être adaptés au nombre de paramètres du LLM choisi, ou inversement.

Au-delà du simple RAG

- RAGChecker
- <u>EfficientRAG</u>
- <u>FlashRAG</u>
- Agentic RAGs
- GraphRAG

GraphRAG

• Améliore la capacité à prendre en compte des informations/contextes différents.

Indexing stage :

- Découper en chunks (unités de texte)
- Entity extraction (noms, localisations, dates, organisations, etc.)
- Clustering hiérarchique sur la base des entités pour construire un graphe
- Générer des résumés de chaque cluster du graphe (entités, relations, propriétés, etc.)

Query stage :

- Global/local search dans les clusters en fonction de la question
- Aller chercher du contexte à l'échelle du sous-cluster (communauté), du cluster, ou de plusieurs clusters
- Agréger les contextes pour obtenir une réponse

Les différents packages

Les paramètres pour fine-tuner un LLM

```
training params = TrainingArguments(
    output dir="./results",
    num train epochs=1,
    per device train batch size=4,
    gradient accumulation steps=1,
    optim="paged adamw 32bit",
    save steps=25,
    logging steps=25,
    learning rate=2e-4,
    weight decay=0.001,
    fp16=False,
    bf16=False,
    max grad norm=0.3,
    max steps=-1,
    warmup ratio=0.03,
    group by length=True,
    lr scheduler type="constant",
    report to="tensorboard"
```

- La plupart des détails d'entraînement sont **sous le capot**.
- Certains paramètres sont liés a l'optimisation : batch, optim, gradient_accumulation_steps, weight_decay, learning_rate
- Souvent on gardera les valeurs par défaut, mais il faut être capable d'interpréter les résultats en fonction du learning rate par exemple.

Objectif

Break-down ce code typique d'entrainement d'un réseau de neurones.

- enumerate(training_loader): on visite progressivement tous les exemples de la base de données d'entraînement. A comprendre.
- **optimizer.zero_grad()** : c'est juste une fonction pour remettre à zéro les **gradients**.
- loss.backward(): on calcule les gradients. A comprendre.
- **optimizer.step()**: on fait un pas de **gradient**. A comprendre.

```
import torch # pytorch
for i, data in enumerate(training loader):
    inputs, labels = data
    # Zero your gradients for every batch!
   optimizer.zero grad()
    # Make predictions for this batch
   outputs = model(inputs)
    # Compute the loss and its gradients
    loss = loss fn(outputs, labels)
    loss.backward()
    # Adjust learning weights
   optimizer.step()
```

```
# clf = classifier
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X_train, y_train)
```

Pourquoi parler d'optimisation?

On utilise **9** pour noter l'ensemble des paramètres d'un réseau de neurone.

Que l'on fasse de la régression ou classification on cherche les **0** de qui minimisent le risque empirique

$$\min_{\theta} J(\theta) = \sum_{i=1}^{n} \underbrace{L(f_{\theta}(x_i), y_i)}_{:=J_i(\theta)}.$$

C'est un problème d'optimisation difficile parce que

- n peut être très grand
- Avec un réseau de neurone, les J_i(0) sont déjà très complexes (beaucoup de dimension et non-convexe)

```
>>> Trom sklearn import linear_model
>>> reg = linear_model.lasso(alpha=0.1)
>>> reg.fit([[0, 0], [1, 1]], [0, 1])
Lasso(alpha=0.1)
>>> reg.predict([[1, 1]])
array([0.8])
```

Un .fit() ca ne suffit plus!

L'optimisation en boite noire?

On doit résoudre ce problème de minimisation de risque, mais pourquoi ne pas le faire sous le capot?

$$\min_{\theta} J(\theta) = \sum_{i=1}^{n} \underbrace{L(f_{\theta}(x_i), y_i)}_{:=J_i(\theta)}.$$

- Il n'y a pas de solution simple que l'on peut automatiser
- Bien optimiser = bien apprendre
- Beaucoup de concepts d'optimisation dans le code classique
- Lien direct avec le hardware (batch, GPU)

```
import torch # pytorch
for i, data in enumerate(training loader):
    inputs, labels = data
    # Zero your gradients for
                              every batch!
    optimizer.zero grad()
    # Make predictions for this batch
    outputs = model(inputs)
    # Compute the loss and its gradients
    loss = loss fn(outputs, labels)
    loss.backward()
    # Adjust learning weights
    optimizer.step()
```

Qu'est-ce que le gradient?

Intuitivement: le gradient (la dérivée) c'est la direction à suivre pour descendre le plus rapidement possible dans la pente.

Formellement: le gradient permet d'approximer linéairement une fonction $F: \mathbb{R}^d \to \mathbb{R}$, pour **h** petit

$$F(w+h) \approx F(w) + \langle \nabla F(w); h \rangle.$$

La descente de gradient

Et donc si en partant d'un point w_t , pour trouver un point w_{-} {t+1} tel que $F(w_{t+1})$ soit plus petit que $F(w_t)$, il suffit **d'aller un peu dans la direction du gradient**:

$$w_{t+1} = w_t - \lambda_t \nabla F(w_t) .$$

C'est la stratégie que l'on prendrait naturellement pour descendre une montagne dans le brouillard!

- Comment calculer le gradient?
- Comment choisir 'de combien on suit le gradient'?
- Pour nous, **w** ce sera les poids du réseau de neurone

Deux difficultés: non-convexité et dimension

Il y a deux premières difficultés pour minimiser le risque empirique via une descente de gradient:

- La dimension des données (de **0**) parce que pour l'instant on n'imagine minimiser qu'avec **une ou deux dimensions**.
- La non-convexité de la fonction **J(0)**.

$$\min_{\theta} J(\theta) = \sum_{i=1}^{n} \underbrace{L(f_{\theta}(x_i), y_i)}_{:=J_i(\theta)}.$$

C'est précisément à cause de cette non-convexité que le monde du deep learning est un domaine empirique.

- Côté alchimiste/mécano: donc il faut comprendre les détails
- Globalement, nous n'avons pas de certitude mathématiques sur comment ca fonctionne.

Les difficultés: non-convexité et dimension

Descente de gradient pour minimiser le risque empirique?

Troisième difficulté = calculer le gradient $\nabla J(\Theta)$ pour minimiser le risque empirique

$$\min_{\theta} J(\theta) = \sum_{i=1}^{n} \underbrace{L(f_{\theta}(x_i), y_i)}_{:=J_i(\theta)}.$$

$$\nabla J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} L(f_{\theta}(x_i), y_i).$$

A chaque itération de la descente de gradient il va falloir

- Calculer chacun des gradients à l'intérieur de la somme ?
- En faire la somme même quand n est très grand?

La différentiation automatique

La **différentiation automatique** = PyTorch permet de automatiquement faire le calcul du gradient:

$$\nabla_{\theta} L(f_{\theta}(x_i), y_i)$$

- Considérer cela comme une boîte noire
- En anglais on appelle cela la **backpropagation** et faire le calcul des gradients une **backward pass**.
- Le gradient calculé couche par couche en partant de la fin, c'est juste une généralisation de

$$(f \circ g)' = g' \cdot f' \circ g$$

 Cela a un coût computationnel important, on veut en faire le moins possible

```
import torch # pytorch
for i, data in enumerate(training loader):
   inputs, labels = data
    # Zero your gradients for every batch!
   optimizer.zero grad()
    # Make predictions for this batch
    outputs = model(inputs)
    # Compute the loss and its gradients
    loss = loss fn(outputs, labels)
    loss.backward(
    # Adjust learning weights
    optimizer.step()
```

Descente de gradient stochastique

Pour implémenter la descente de gradient classique il faudrait donc faire **n** backward pass à chaque itérations, même lorsque **n** est très grand?

$$\nabla J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} L(f_{\theta}(x_i), y_i).$$

Solution : la descente de gradient stochastique (= aléatoire). On tire aléatoirement B (avec B << n) éléments de la base de données et on considère l'approximation

$$\frac{1}{B} \sum_{j \in (i_1, \dots, i_B)}^{B} \nabla L(f_{\theta_t}(x_j), y_j) \approx \frac{1}{n} \sum_{i=1}^{n} \nabla L(f_{\theta_t}(x_i), y_i)$$

La descente de gradient stochastique ressemble alors à

$$\theta_{t+1} = \theta_t - \lambda_t \frac{1}{B} \sum_{j \in (i_1, \dots, i_B)}^B \nabla L(f_{\theta_t}(x_j), y_j) .$$

Descente de gradient en pytorch

```
model = ClassifierMultiCouche(28*28, 100, 50, 10)
# SGD = Stochastic Gradient Descent.
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```

L'optimizer va se charger de tous les détails d'optimisation pour nous

- Il faut spécifier les paramètres qui vont être modifiées
- optimiser.step() fera un pas de descente de gradient
- Chaque pas modifie TOUT les paramètres (mais très légèrement)
- le paramètre lr = learning-rate. Super important.
- momentum = pousser la bille

La question du learning rate

Trois learning rate différents: un trop grand, un trop petit et un bon. Qui est qui?


```
model = ClassifierMultiCouche(28*28, 100, 50, 10)
# SGD = Stochastic Gradient Descent.
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```

Plein de méthodes possibles

On n'a parlé que de la descente de gradient stochastique, mais il y a de nombreux autres exemples de d'algorithmes de descente de gradient

- Adam: Ada pour adaptive.
- AdaGrad: mais en pratique le choix de l'optimiser c'est du deuxième ordre..
- RMSProp

Il y a aussi de nombreux paramètres à varier et méthodes (pas besoin de rentrer dans ce détail)

- Momentum : lancer la bille
- Learning rate schedule: faire varier la taille du learning rate pendant l'entrainement
- gamma : le facteur multiplicatif pour décroître le learning rate.

Pratique: le pytorch.DataLoader

Deux objets importants: le dataset et le DataLoader

Le dataset c'est un objet python de base qui permet d'indexer les datapoints.

```
import torchvision
import torchvision.transforms as transforms

training_set = torchvision.datasets.MNIST("./", train=True, transform=transforms.ToTensor(), download=True)

print(len(training_set))
60000
```

Le paramètre transform est très important. On en discutera en détail au moment des réseaux convolutionnels.

```
data, label = training_set[5]
print(data.shape)
print(label)

torch.Size([1, 28, 28])
2
```

Pratique: le pytorch.DataLoader

Le DataLoader est une façon de penser l'entraînement des réseaux de neurones

Analogie de l'enfant qui apprend au fur et à mesure en feuilletant les pages d'un livre.

C'est un objet optimisé pour l'efficacité du chargement des données

```
import torch
import torchvision # contient les datasets
import torchvision.transforms as transforms # permet de facilement faire des operations

training_set = torchvision.datasets.MNIST("./", train=True, transform=transforms.ToTensor(), download=True)
training_loader = torch.utils.data.DataLoader(training_set, batch_size=4, shuffle=True)

for i, data in enumerate(training_loader):
    X,y = data
    print(X.shape)
    print(y.shape)

torch.Size([4, 1, 28, 28])
torch.Size([4, 1, 28, 28])
```

Descente de gradient stochastique

- A chaque itération, le pytorch.DataLoader va échantillonner au hasard B éléments de la base de donnée
- La backward pass calcule le gradient pour chacun de ces échantillons
- On retient que le nombre B s'appelle le batch-size
- Pour entraîner on va faire de nombreuses itérations

```
import torch # pytorch
for i data in enumerate(training loader):
   inputs, labels = data
    # Zero your gradients for every batch!
    optimizer.zero grad()
    # Make predictions for this batch
    outputs = model(inputs)
    # Compute the loss and its gradients
    loss = loss fn(outputs, labels)
    loss.backward()
    # Adjust learning weights
    optimizer.step()
```

Nombre d'itérations et choix du batch-size

On utilise le concept d'époques (**epoch**) pour avoir une idée du nombre d'itérations nécessaires afin d'avoir de bonnes performances

- Une epoch = quand on a vu au moins une fois tous les éléments de la base de donnée
- On entraîne sur de nombreuses epoch mais il n'y a pas de règle a priori (hyper-paramètre!)
- Analogie : un écolier a besoin de lire un livre plusieurs fois pour l'avoir bien compris. Trop souvent = surapprentissage!

Choix du batch-size = en première approximation c'est surtout une question de mémoire RAM disponible dans le GPU.

Récapitulatif sur le snippet d'entraînement

- Chaque itération va changer tous les poids du réseau de neurone mais un tout petit peu.
- Apprentissage et optimization sont intriqués et il faut comprendre les différentes subtilités.
- Est-ce que toutes les lignes de code sont plus ou moins claires?

```
import torch # pytorch
for i, data in enumerate(training loader):
   inputs, labels = data
   # Zero your gradients for every batch!
   optimizer.zero grad()
   # Make predictions for this batch
   outputs = model(inputs)
   # Compute the loss and its gradients
   loss = loss fn(outputs, labels)
   loss.backward()
   # Adjust learning weights
   optimizer.step()
```

Vocabulaire à maîtriser

- **Epoch**: visiter une fois toutes les éléments de la base de donnée.
- batch-size : le nombre de données que le réseau considère à chaque itération.
- **Ir**: le learning rate = de combien l'alpiniste suit le gradient.
- Backward pass : façon de calculer en interne le gradient pour l'optimisation. Ca s'appelle aussi backpropagation.
- **Forward pass**: juste calculer f(x), c.a.d. de l'inférence
- Et surement d'autres mots!

La question du device

Avec pytorch, on peut très facilement indiquer dans le code dans **quel espace mémoire nous voulons placer les tenseurs**. Il va y avoir deux tenseurs :

- Les tenseurs des données
- Les tenseurs associés aux paramètres du réseau de neurone

Quand on a accès à une GPU, on va vouloir faire toutes nos opérations sur ce GPU (dans la limite évidemment de la mémoire disponible)

```
[7]: # On demande a python a quel device on a acces (on a par defaut
# toujours acces au CPU)

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)

cuda
```


Stratégies

Full Fine-Tuning 16-bit precision

☑ Best performanceX Very high VRAM usage

LoRA16-bit precision

✓ Quick training X Still costly

QLoRA4-bit precision

Low VRAM usageDegrades performance

Low Rank Adaptation Training (LoRA)

Quantized LoRA (QLora)

Code super simple

```
peft_params = LoraConfig(
    lora_alpha=16,
    lora_dropout=0.1,
    r=64,
    bias="none",
    task_type="CAUSAL_LM",
)
```

RLHF pour adapter LLM

Quelques limitations

- Ressources de calcul/inférence
- Coût environnemental
- Hallucinations
- Performance statistique

Quelques blogs/ressources

https://huyenchip.com/blog/

https://www.rungalileo.io/blog

https://lightning.ai/pages/llm-learning-lab/

https://mlabonne.github.io/blog/

https://www.llmwatch.com/

https://huggingface.co/docs

https://www.llamaindex.ai/blog

https://superlinked.com/vectorhub

https://qdrant.tech/articles/

https://eugeneyan.com/writing/

