Autoevaluación 2

Apellido, nombre y carrera:

Si no se especifica lo contrario, cuando se considera el espacio vectorial \mathbb{R}^n , se lo hace con las operaciones usuales.

- 1. Sea (V, \oplus, \odot) el espacio vectorial sobre $\mathbb R$ donde V es el conjunto de números reales positivos y, para todo $x, y \in V$ y todo $c \in \mathbb R$, $x \oplus y = xy$ y $c \odot x = x^c$.
 - *a*) El opuesto del neutro de \oplus es:
 - (A) -1.
 - **(B)** 0.
 - (C) 1.
 - (D) Ninguna de las anteriores.
 - b) El producto \odot entre el neutro de la suma en \mathbb{R} y cualquier vector $x \in V$ resulta igual a:
 - (A) El neutro de la suma en \mathbb{R} .
 - (B) El neutro de \oplus .
 - (C) 0.
 - (D) Ninguna de las anteriores.
- 2. Sean los siguientes subespacios de \mathbb{R}^4 : $W_1 = \{(x,y,z,w) \in \mathbb{R}^4 : x-y=0, z+w=0\}$ y $W_2 = \langle \{(1,1,-2,2),(1,0,-1,0)\} \rangle$. Entonces:
 - (A) $W_1 \cap W_2$ es un subespacio vectorial no nulo de \mathbb{R}^4 .
 - (B) $W_1 \cap W_2$ es el subespacio vectorial nulo de \mathbb{R}^4 .
 - (C) $W_1 \cap W_2$ no es un subespacio vectorial de \mathbb{R}^4 .
 - (D) $W_1 \cup W_2$ es un subespacio vectorial no nulo de \mathbb{R}^4 .

3. Sea
$$A = \begin{bmatrix} 4 \\ 2 \\ 1 \\ 0 \\ 4 \end{bmatrix}$$

Entonces:

- (A) La dimensión de C(A) es 1 y la dimensión de N(A) = 4.
- (B) La dimensión de C(A) es 1 y la dimensión de N(A) = 1.
- (C) La dimensión de C(A) es 1 y la dimensión de N(A) = 0.
- (D) La dimensión de C(A) es 4 y la dimensión de N(A) = 1.
- 4. Sean A una matriz $m \times n$ de rango 1, tal que $A_1^1 = 0$ y $A_2^2 \neq 0$. Sean $u \in \mathbb{R}^m$ y $v \in \mathbb{R}^n$ tales que $A = uv^T$ con $u_1 = u_2 = 1$. Sea U la forma escalonada de A y e^1 el primer vector canónico de \mathbb{R}^m o \mathbb{R}^n , según corresponda. Entonces,
 - a) (A) La primer fila de U es nula.
 - (B) La primer columna de U es nula.
 - (C) La primera fila y la primera columna de U son nulas.
 - (D) Ninguna de las afirmaciones anteriores es verdadera.
 - b) (A) U es de rango 1 y $U = e^1 v^T$.
 - (B) U es de rango 1 y $U = u(e^1)^T$.
 - (C) U es de rango 1 y $U = (v_1 e^1)(e^1)^T$.
 - (D) Ninguna de las afirmaciones anteriores es verdadera.

5. La solución general del sistema Ax = b es

$$x = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \alpha_1 \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad \alpha_1, \alpha_2 \in \mathbb{R}.$$

- a) Si A es una matriz de tamaño $m \times n$ y rango r, entonces:
 - (A) $n = 2, r = 4 \text{ y } m \ge 2.$

(C) $n = 4, r = 2 \text{ y } m \ge 2.$

(B) n = r = 2 y m > 2.

- (D) $m = r = 2 \text{ y } n \ge 2.$
- b) Si $b = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, una posible matriz A es:

(A)
$$A = \begin{bmatrix} 1 & -1 & 0 & -1 \\ 2 & -2 & 0 & -2 \\ 3 & -3 & 0 & -3 \end{bmatrix}$$
.
(B) $A = \begin{bmatrix} 1 & -1 & 0 & -1 \\ 2 & 2 & 1 & -2 \\ 1 & 1 & 0 & -1 \end{bmatrix}$.

(C)
$$A = \begin{bmatrix} 1 & -1 & 0 & -1 \\ 1 & 0 & 1 & -2 \\ 1 & -1 & 0 & -1 \end{bmatrix}$$

(B)
$$A = \begin{bmatrix} 1 & -1 & 0 & -1 \\ 2 & 2 & 1 & -2 \\ 1 & 1 & 0 & -1 \end{bmatrix}$$

(C)
$$A = \begin{bmatrix} 1 & -1 & 0 & -1 \\ 1 & 0 & 1 & -2 \\ 1 & -1 & 0 & -1 \end{bmatrix}$$
.
(D) $A = \begin{bmatrix} 1 & -1 & 0 & -1 \\ 1 & 0 & 1 & -2 \\ 1 & 2 & 1 & -1 \end{bmatrix}$.

- 6. Sea A una matriz $m \times n$, con m = n + p, $p \ge 1$. Sea B la submatriz por filas de A correspondiente a las p primeras filas de A y C, la correspondiente a las n filas restantes igual a la matriz identidad. Esto es, . Entonces:
 - (A) Si las columnas de B son l.i. entonces las columnas de A son l.i..
 - (B) Si las filas de B son l.i. entonces las filas de A son l.i..
 - (C) Si las columnas de A son l.i. entonces las columnas de B son l.i..
 - (D) Ninguna de las respuestas anteriores es correcta.
- 7. Consideramos el espacio vectorial $\mathbb{R}_3[x]$ de los polinomios a coeficientes reales de grado a lo sumo 3. Sea $S = \{1 + x^2 - x^3, 1 - 5x^2 + 4x^3, 2 - 4x^2 + 3x^3, 4 - 2x^2 + x^3\}$ y U el espacio vectorial generado por S.
 - - (A) $\{1+x^2-x^3, 1-5x^2+4x^3, 2-4x^2+3x^3, 4-2x^2+x^3\}$ es un conjunto de vectores l.i..
 - (B) $\{2-4x^2+3x^3, 4-2x^2+x^3\}$ es un conjunto de vectores que genera a U.
 - (C) $\{1-5x^2+4x^3, 2-4x^2+3x^3, 4-2x^2+x^3\}$ es un conjunto de vectores l.i..
 - (D) Ninguna de las respuestas anteriores es correcta.
 - b) Las coordenadas del polinomio $p(x)=2+8x^2-7x^3$ en la base $\mathcal{B}_U=\{1+x^2-x^3,1-5x^2+4x^3\}$

$$(A) [p]_{\mathcal{B}_U} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$$

(C)
$$[p]_{\mathcal{B}_U} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$
.

(B)
$$[p]_{\mathcal{B}_U} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
.

(D)
$$[p]_{\mathcal{B}_U} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
.

- 8. Sea $F = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 x_2 = x_3 x_4 = a\}$
 - a) F es un subespacio vectorial de \mathbb{R}^4 si:

(A)
$$a = 1$$
.

(B)
$$a = -1$$
.

(C)
$$a = 0$$
.

(D)
$$a = 2$$
.

b) Sea a tal que F es un subespacio vectorial de \mathbb{R}^4 . Entonces, una base de F es:

$$(A) \ \mathcal{B}_{F} = \left\{ \begin{bmatrix} 2\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\2\\2 \end{bmatrix} \right\}.$$

$$(C) \ \mathcal{B}_{F} = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}.$$

$$(B) \ \mathcal{B}_{F} = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}.$$

$$(D) \ \mathcal{B}_{F} = \left\{ \begin{bmatrix} 2\\0\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\2\\2\\0 \end{bmatrix} \right\}.$$

9. Dada la matriz

$$A = \left[\begin{array}{ccccc} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{array} \right] :$$

a) El sistema $Ax = \left[\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right]$ tiene solución si:

(A)
$$b_3 - b_2 + b_1 = 0$$
.

(C)
$$-b_3 - b_2 + b_1 = 0$$

(B)
$$b_3 + b_2 - b_1 = 0$$
.

$$(D) -b_3 - b_2 - b_1 = 0$$

b) N(A) es generado por los vectores columna de la siguiente matriz:

(A)
$$\begin{bmatrix} -2 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & -2 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
(B)
$$\begin{bmatrix} -2 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -2 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
(C)
$$\begin{bmatrix} -2 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -2 & -3 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
(D)
$$\begin{bmatrix} -2 & 0 & -4 \\ 1 & 0 & 2 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

c) El conjunto solución del sistema $Ax = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ está formado por los vectores:

$$\text{(A) } x = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + r \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ -3 \\ 0 \\ 1 \end{bmatrix}, \quad r, s, t \in \mathbb{R}.$$

(B)
$$x = r \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ -3 \\ 0 \\ 1 \end{bmatrix}, \quad r, s, t \in \mathbb{R}.$$

$$(C) x = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

(D) El sistema no tiene solución.