



| gns1     | Equation of dicioion boundary is guin by the eqn:                  |
|----------|--------------------------------------------------------------------|
| 1000011  | [x-y] = [x-y] = [x-y2]                                             |
| 10 3     | THE I SHARE THE WAS ALCOHOLD BY BE ASSESSED TO                     |
| (1)      | 121=1 E2=1 13I 1 14 14 14 14 14 14 14 14 14 14 14 14 1             |
| jin lj   |                                                                    |
| 16       | = [n-3 4-3][n-2] = [n-1 4-7][n-7]                                  |
| Louda    |                                                                    |
| <u> </u> | $=$ $(\chi - 3)^2 + (\chi - 3)^2 = (\chi - 1)^2 + (\chi - 1)^2$    |
| 0 01     | =) 9-6 x +9-6y = 49-14x +49-14y                                    |
| 4        | => 18-67-64 - 98-147-144                                           |
| 00000    | => 8 x x 8 y = 80 La rullang much land (1)                         |
|          | => x+y=10                                                          |
| 1.0      | +> Anay - 1- x +100 pool = 100, a lander and in                    |
|          | NUTERIAL SE SAMED LOTTE MUNEY                                      |
|          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$              |
| column   |                                                                    |
| LAN      | 3 1 [x-3, y-3] [3-1] [x-3] * LNS                                   |
| Lua      | => EMS = 1 [ 2-7, 4-7] [ 7-2] [ N-1] = RMS                         |
| 14777    | on solving us get:<br>y=[(-1216 x2 - 4408x +58433)2 +30 x - 29] 46 |
| 100      | when we plat these decision boundaries, we see that                |
|          | the boundaires superate the classes.                               |
|          | Hydron forthough bong and grown where                              |
|          |                                                                    |



| BM 29)     | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                |
|------------|-------------------------------------------------------|
|            | of zomato, vere one only 35 different types of        |
|            | of zomato, were one only 35 different types of        |
|            | furnity that send they wild to institute hand in      |
|            | with pool preferences. So we can assume used all      |
| ,          | Juldren belong to 35 classes only with slight         |
|            | variations a honce practical rank of D is 35. Af      |
|            | definition of Dis is changed, more categories may get |
|            | introduced from each class & rank would increase.     |
|            | Thus rank would become anything from 35-100.          |
|            | so wing awing sparing 35 100.                         |
| b) i       | Brush down o matrice with simple matrice using        |
|            | SVD.                                                  |
| (ii        | Reconstruct o, by zerveing insignificant eigen        |
|            | values, to get a reante 36 p matrixe.                 |
| (iii       | Now from the 1 month data construct but vector        |
|            | ber each of the new 100 students.                     |
| iy)        | Apply knn a find a neighbour which resembles          |
| 1.7 0      | student                                               |
| <b>v</b> ) | Assign that student to its neighbours class.          |
| wi)        | Using nightion. I bit wicker, we would get a list     |
| 2663       | of all-those restauaunts from which the new student   |
|            | might order                                           |
| Vii)       |                                                       |
| IPS 1      | restaraints of the given student                      |
|            | - and so of the final account                         |
| ()         | This is similar to the precubic one. Yet us define a  |
|            | restaraunt as d'x1 meter mense it has d' types of     |
|            | disher. Using SVD, bind practical rank of the         |
|            |                                                       |

|       | mature & say we have categories of restaraunts.  Based on transaction history, we can fund how many students are ortholy to buy grown a restaraunt would be associated with witain students. Now apply KNN & fund neighbour of new restaraunt.  Then we can recommend this restaraunt to each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | of the student who is t associated with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | rughlism's restaurant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IAMS3 | 0= 1 & (x:-x)(xi-x)T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | N 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | where $\chi_i = (\chi_{i1}, \chi_{i2}, )^T$ as $N = N0.00$ samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Fol a nom sika u ERX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | For a non zero y e Rx:  y Tay = y T ( ) = (n:- n \ ni - n) y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | = 1 ( \(\frac{1}{2} \q^T (\chi \cdot |
|       | ~」 (※ (タロンガ) Ty) T (タロンガ) Ty))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | = 1 \( \langle |
|       | Since & y Tay >0 0 les a symmetric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | matture, a is a PSD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |