This is my presentation A template for presentations

Markus Tripp March 7, 2024

Overview

- Notations and Definitions
- 2 Results
 - ♠ Orbit-Stabilizer Theorem
 - Burnside Lemma

Definition: Group action

Let G be a group and X a set. A mapping $\alpha: G \times X \to X$ that satisfies

Definition: Group action

Let G be a group and X a set. A mapping $\alpha: G \times X \to X$ that satisfies

(A1)
$$\alpha(e, x) = x$$
,

Definition: Group action

Let G be a group and X a set. A mapping $\alpha: G \times X \to X$ that satisfies

(A1)
$$\alpha(e, x) = x$$
,
(A2) $\alpha(g, \alpha(h, x)) = \alpha(gh, x)$

Definition: Group action

Let G be a group and X a set. A mapping $\alpha: G \times X \to X$ that satisfies

(A1)
$$\alpha(e, x) = x$$
,

(A2)
$$\alpha(g, \alpha(h, x)) = \alpha(gh, x)$$

all $g, h \in G$ and $x \in X$ is called a group action of G on X.

Definition: Group action

Let G be a group and X a set. A mapping $\alpha: G \times X \to X$ that satisfies reads as ... $e \cdot x = x$

(A1)
$$\alpha(e, x) = x$$
, $g \cdot (h \cdot x) = (gh) \cdot x$
(A2) $\alpha(g, \alpha(h, x)) = \alpha(gh, x)$ reads as ...

(A2)
$$\alpha(g, \alpha(h, x)) = \alpha(gh, x)$$

all $q, h \in G$ and $x \in X$ is called a group action of G on X.

Improvements?

Improvements?

Feel free to adapt/polish this template in any way you like. I am happy to discuss ideas and suggestions for general improvement of this template!

