Kapitel 2. Sensorik

- 1. Zum Einstieg: Worum geht es?
- 2. Sensorik
- 3. Sensordatenvera
- 4. Fortbewegung
- 6. Kartierung
- 7. Navigation

- 2.1 Allgemeines
- 2.2 Bewegungsmessung
- 2.3 Ausrichtungsmessung
- 5. Lokalisierung in 1 2.4 Globale Positionsbestimmung
 - 2.5 Entfernungsmessung
 - 2.6 Kameras und Kameramodelle
- 8. Umgebungsdateninterpretation
- 9. Roboterkontrollarchitekturen Ausblick

2.1 Allgemeines

"Nihil est in intellectu quod non prius fuerit in sensu."

John Locke (u.a.,

- "Robotik"in dieser Vorlesung betont die algorithmische, KI- und symbol-orientierte Seite von AMRn
- Auch wenn das der Schwerpunkt ist Wissen über Sensoren, Aktuatoren, Prozessoren, Systemprogrammierung ist erforderlich!
- Ceterum censeo: So einfach wie Locke dachte, ist es auch nicht!

"Roboter gibt es nur am Stück!"

Rolf Pfeiffer

Grobklassifikation

- propriozeptiv vs. exterozeptiv ("nach innen"–"nach außen")
 - propriozeptiv: Miss Aspekte des Roboterzustands
 - z.B. Batterieladung, Gelenkwinkel, Radumdrehungen
 - exterozeptiv: Miss Aspekte der Umgebung oder des Verhältnisses Roboter/Umgebung
 - z.B. Außentemperatur, Fahrgeschwindigkeit, Wandabstand
 - keine scharfe Unterscheidung
 - z.B. Radumdrehung/s x Radumfang ~ Fahrgeschwindigkeit
- aktiv vs. passiv
 - aktiv: Miss Umgebungsantwort auf gesendete "Energie"
 - z.B. Laserscanner, Ultraschallsensoren
 - passiv: Miss Signale/Werte, die "von allein" kommen
 - z.B. Kamera, Mikrofon
 - praktisch ebenfalls unscharfe Unterscheidung
 - z.B. "Anregung" der Umgebung durch Blitzlicht

Sensorklassen

Sensor	propriozeptive (P) vs. exterozeptive (E)	aktive (A) vs. passive (P)	
Kontaktsensor	E	P	
Inkrementalgeber	P	P	
Gyroskop	P	P	
Kompass	\mathbf{E}	P	
G_{PS}	\mathbf{E}	P	
Sonar	\mathbf{E}	A	
Infrarotsensoren	\mathbf{E}	A	
Laserscanner	\mathbf{E}	A	
Kamera	\mathbf{E}	P	

Bspl.1: Utraschallsensor (Baumer UNDK 30U6103)

Anschlussbild				
	BN (1)	+Vs		
Analog	7	output		
_	BU (3)	0 V		
Analoger Spannungsausgang 0 - 10 V				

Joachim He Robotik WS 2012/13

Technische Daten
Erfassungsbereich Sd
Auflösung
Ausgangsschaltung
Bauform
Breite / Durchmesser
Höhe
Tiefe
Gehäusematerial
Anschlussart
Erfassungsbereich Startwert Sdc (Teach-in
Erfassungsbereich Endwert Sde (Teach-in)
Öffnungswinkel typ.
Schallfrequenz
Betriebsspannungsbereich +Vs
Restwelligkeit
Stromaufnahme
max. Laststrom
Ausgang
Lastwiderstand +Vs>15V
Lastwiderstand +Vs>24V
kurzschlussfest
verpolungsfest
Reaktionszeit ton / toff
Linearität L
Wiederholgenauigkeit
Temperaturdrift
Arbeitstemperaturbereich
Schutzklasse
Empfangsanzeige
Einstellung
Einstellhilfe
Anschlussoption
mögl. Kabeldosen

100 - 1000 mm					
0,3 mm					
Analog Spannungsausgang					
quaderförmig					
30 mm					
65 mm					
31 mm					
Polyester / Zink Druckguss					
Stecker					
100 - 1000 mm					
100 - 1000 mm					
10 °					
240 kHz					
15 - 30 VDC					
< 10 % Vs					
< 35 mA					
< 20 mA					
0 - 10 V/ 10 - 0 V					
-					
-					
ja					
ja					
< 80 ms					
-					
< 0,5 mm					
< 2% von Objektdistanz So					
-10 +60 °C					
IP 67					
LED gelb/ LED rot					
Teach-in					
Objektanzeige blinkt					
-					
ESW 33, ESG 34					

LMS 200-30106 / Lasermesssysteme, Indoor

SICK .aserscanner

(SICK LMS 200)

SICK

Bspl.2:

LMS 200-30106 Typ:

Bestell-Nr.: 1015850

Technische Daten

180° Öffnungswinkel:

1 ... 0,25 ° Winkelauflösung:

Ansprechzeit: 13 53 ms

Auflösung: 10 mm

Systematischer Fehler: +/- 15 mm

Statistischer Fehler (1

Sigma):

5 mm

Laserklasse: 1

IP 65 Schutzart:

0 °C ... +50 °C Betriebstemperatur:

Reichweite: 80 m

7 7 7

Datenschnittstelle: RS-232, RS-422

Datenübertragungsrate: 9,6 / 19,2 / 38,4 / 500 kBaud

Schaltausgänge: 3 x PNP

Versorgungsspannung: 24 V DC +/- 15%

Leistungsaufnahme: 20 W

-30 °C ... +70 °C Lagertemperatur:

Gewicht: 4,5 kg

156 x 155 x 210 mm Abmessungen (L x B x H):

Joachim Hertzberg

Robotik

WS 2012/13

2. Sensorik

2.1 Allgemeines

Sensoreigenschaften nach Datenblatt (1/3)

Messbereich (range)

Untere und obere Grenze valider Messwerte

• z.B. Entfernungsmessung: Baumer US: 100-1000mm; SICK 5cm-80m

Dynamik (dynamic range)

Verhältnis von Ober- zu Untergrenze des Messwerts

• z.B. Baumer US: 10; SICK: 1600

Zuweilen in logarithmischer Form als dB (relativ) angegeben, z.B. $10\log_{10}\left(\frac{\text{Obergrenze}}{\text{Untergrenze}}\right) = \text{Dynamik}[dB]$

z.B Baumer US 10, SICK ~32

Sensoreigenschaften nach Datenblatt (2/3)

Auflösung (resolution)

Eigentlich: Minimalunterschied zweier Messwerte.

• z.B. (lt. Datenblatt): Baumer US: 0,3mm; SICK 10mm;

Webcams 640x480 Pixel

Manchmal: Aufl. = Untergrenze des Messbereichs

Manchmal: Aufl. = Diskretisierungsfehler bei A/D-Wandlung

z.B. Spannungsmesser 0-5V 8-bit → 5V/255=19,6mV

Linearität (linearity)

Abhängigkeit von tatsächlicher Messgröße und Messwert. Bei vorverarbeiteten Messwerten meist "mit gekauft"

z.B. Abstandssensoren

<u>Aber</u>: Je nach Messprinzip nichtlineare Überlagerungen durch systematische Fehler!

z.B. Schall-/Laserstrahl-"Keulen"

Sensoreigenschaften nach Datenblatt (3/3)

Frequenz/Zyklus-/Ansprechzeit (frequency/cycle time)

Zahl valider Messungen pro Zeiteinheit/Sekunde [Hz] In der Regel abhängig von Messprinzip, ggf. von Datenraten

z.B. Baumer US ~13 Hz (80ms);
 SICK ~77–19 Hz (13–53ms, abh. v. Winkelauflösung&Ü-Protokoll);
 Webcam 30 Hz (fps)

... und dann sind da noch

- Baugröße
- Gewicht
- Spannungsversorgung
- Leistungsaufnahme
- Kosten
- Verarbeitungsaufwand
- •

Sensorfehler (1/2)

- z.B. Elektromagnetischer (Flux-Gate) Kompass: Auflösung 0,1°–0,5° erzielbar (empfindlich!)
 Messfehler durch Umgebung (Stahlkonstruktionen, Roboter-Motorströme) praktisch unbegrenzt (störanfällig!)
- z.B. Laserscanner relativ stör-unanfällig, da Messung monochromatischen Lichts

Sensorfehler (2/2)

Messfehler/Genauigkeit (error/accuracy)

v: tatsächlicher Wert

m: gemessener Wert

Systematische Messfehler (systematic errors)

ist deterministischer Messfehler, d.h. im Prinzip modellierbar und daher behandelbar (auch wenn praktisch toleriert)

z.B. Temperaturdrift in US-Sensoren (s. Baumer); Linsenverzerrung;
 SICK-Datenblatt: "Syst. Fehler ±15mm")

Zufällige M.-Fehler (random errors), Reproduzierbarkeit

Rauschen – tritt in allen technischen Sensoren auf!

Modelliert durch Gaußverteilung (μ , σ).

Dann gilt (precision) Reproduzierbarkeit = $\frac{Messbereich}{\sigma}$

z.B. SICK-Datenblatt: "Stat. Fehler σ: 5mm"

Leben mit Sensorfehlern

Aus Sicht des Roboters

- Systematische und zufällige Fehler oft ununterscheidbar
 - arbeite mit 1 Fehlermodell!
- Dieses Fehlermodell ist i.d.R. monomodal und symmetrisch (~Gaußverteilung, genauer: Normalverteilung um v); die tatsächlichen Fehler sind multimodal und asymmetrisch (Bewegung vs. Stillstand, Reflexionen, Übersprechen, ...)
 - Sensorfehler sind praktisch unvermeidbar!

Reduziere Sensorfehler so gut wie technisch möglich!

Die Roboterprogrammierung muss aber dennoch davon ausgehen, dass die Sensordaten fehlerbehaftet sind!

2.2 Bewegungsmessung

Grundidee: Mit den Achsen rotieren Messscheiben, die optisch ausgelesen werden. Typische Auflösung: Mobile Robotik ~2000 CPR; Industrieroboter ~10.000 CPR (*counts per revolution*).

Viele Ablesepunkte phasenversetzt (höhere Auflösung, Drehrichtung)

Inkrementalgeber

Nachteil: Absolute Gelenkstellung nicht messbar

→ Beim Einschalten erst "Räkeln" bis zu einer Absolut-Marke

Absolutgeber

... erlauben direktes Ablesen des Gelenkwinkels (auch bei Stillstand)

Binärer Absolutgeber (3 Bit)

Graycode-Absolutgeber (3 Bit) robuster gegen Ablesefehler bei Sektorübergang

Radumdrehungsmessung auf KURT2

- Umdrehungsmessung an den <u>Motor</u>achsen!
- Vorteil: Einfach und robust: Umdrehungsmessung wird mit dem Motor eingekauft
- Nachteil: Zwischen Motor und Rad ist noch eine Übersetzung (Getriebe, Zahnriemen), die Fehler verursacht (z.B. Durchrutschen des Zahnriemens)
- CPR-Werte bei KURT2: ~5.500–20.000 je nach Getriebe

Beschleunigungssensoren

Zuweilen mit Bewegungssensoren identifiziert, da Richtung und Betrag über Integral der Beschleunigungen ermittelbar.

- Richtung, Geschwindigkeit: eher exterozeptiv;
 Beschleunigung: eher propriozeptiv!
- Dreh- und Linearbeschleunigung messbar

Accelerometer/Linearbeschleunigungsmesser

Idee: Nutze Massenträgheit aus, um Beschleunigung in definierten Richtungen in direkt messbare Größen (z.B. Druck, Kapazitätsänderung, Magnetfeldänderung) zu messen.

Sensitivity

Vorsicht systematischer Fehler!

Um *g* rauszurechnen, muss Winkel zur Gravitationsachse recht genau bekannt sein!

Schwingstab-

Aufnehmer

www.rotoview.com/ accelerometer_ schematic.jpg

axis	aufnehmer	riigurigaaurieriirier	Aditionine	gungsaumenmer
Messbereich	± 2000 g	± 500 g	± 70 g	± 25 g
Auflösung	0,1 g	0,01 g	10 μg	< 1 µg
Bandbreite	05.000 Hz	110.000 Hz	0400 Hz	0800 Hz
Linearitätsfehler	< 1 %	< 1 %	< 175 ppm ¹⁾	< 60-125 ppm ¹⁾
Bias	<50 g		< 2 mg ¹⁾	< 10-100 µg¹)
Schock	10.000 g	5.000 g	250 g	150 g
Gesamt-Masse	1 gr	25 gr	10 gr	80 gr

Aktiver Beschleu-

nigungsaufnehmer

Servo-Beschleuni-

gungsaufnehmer

Gyroskope/Gyrometer/Gyros

- ... gibt es mechanisch, elektromechanisch oder optisch:
- Miss Beschleunigung relativ zu Drehachse
- Auflösung preisabhängig bis <0,01°; kontinuierliche Messung; verfügbar in vielen Bauvarianten; Preis 50-50.000€
- © Energiesparend, beliebig hohe Messfrequenz, erlaubt Bewegung quasi propriozeptiv zu messen
- Gute Gyroskope sind teuer
- Achtung Drift durch Erdrotation (s. Foucaultsches Pendel)
- Viele von Ihnen haben ein ordentliches Gyro in der Tasche (normalerweise telefonieren und simsen Sie damit)

Prinzip des mechanischen Gyroskops

τ: *torque* (Drehmoment)

I: inertia (Trägheit)

 ω : Drehgeschwindigkeit

Ω: Präzession

Präzession: Lageveränderung der Achse eines rotierenden Kreisels, wenn äußere Kräfte auf ihn einwirken.

$$\tau = I\omega\Omega$$

Gyros auf bezahlbaren Robotern:

MEMS (Micro Electronic Mechanical Systems) oder piezoelektrisch

Faseroptische Gyroskope ersetzen Messung d. mechanischen Auslenkung durch Messung d. Phasendifferenz v. Laserstrahlen

Koordinatensysteme

Miss Roboterbewegung relativ zu externem Bezugssystem

Bezugssysteme für Roboterposen (Position + Orientierung)

Abhängig von Anwendung.

Grundsätzlich in dieser Vorlesung: ein

"linkshändiges Koordinatensystem"

• 3D: (x, z, θ_y) : Pose auf Ebene (z.B. planer Fußboden)

• 6D: $(x, y, z, \theta_x, \theta_y, \theta_z)$

Euler-Winkel θ_x , θ_y , θ_z : Nick-, Gier-, Rollw.

- 31/5xz Modell der 5. Etage Geb. 31 (Nullpunkt Flurmitte, *x*=Flurachse)
- Luftfahrt NED (North, East, Down)
- Industrie oft ENU (East, North, Up)

Vorsicht Falle!

Andere Benennungen in der Literatur (z.B. S/N $z \rightarrow y$)

Vorsicht Falle, Teil 2!!!

ROS (s. Übungen) verwendet ein rechtshändiges Koordinatensystem!

Englische Terminologie

