

Coupling a moving-mesh to a fixed grid

Einar Olason (NERSC)

Pierre Rampal (MERSC/IGE),

Laurent Brodeau (Ocean Next),

Camille Lique, Claude Talandier (Ifremer)

- What do we want from the sea-ice model?
 - What is neXtSIM?
 - Why a Lagrangian moving mesh?
- The coupling problem
 - Dynamic mesh and domain decomposition
 - Conservative remapping
- The road ahead

- What do we want from the sea-ice model?
 - What is neXtSIM?
 - Why a Lagrangian moving mesh?
- The coupling problem
 - Dynamic mesh and domain decomposition
 - Conservative remapping
- The road ahead

Pack-ice is a fracturing solid

"LKF: Heterogeneous and intermittent"

"Piecewise rigid motion"

Pack-ice is a fracturing solid

"LKF: Heterogeneous and intermittent"

sea ice deformation rate (Data: SAR - Radarsat)

"Piecewise rigid motion"

- What do we want from the sea-ice model?
 - What is neXtSIM?
 - Why a Lagrangian moving mesh

Bouillon and Rampal, 2015 Rampal et al., 2016 Samaké et al., 2017 Dansereau et al., 2017 Rampal et al., 2019

Maxwell-elasto-brittle rheology

- Long-range elastic interaction
- Memory of ice damage

Lagrangian moving mesh

- Finite-Element discretisation
- Adaptive remeshing

The road ahead

- What do we want from the sea-ice model?

 - Why a Lagrangian moving mesh?
- The coupling problem 1.
 - Dynamic mesh and c2. Localisation3. Localisation
- Localisation

 - Conservative remapping

Localisation is neXtSIM's key feature

5th Workshop on Coupling Technologies for Earth System Models (CW2020)

- What do we want from the sea-ice model?
 - What is neXtSIM?
 - Why a Lagrangian moving mesh?
- The coupling problem
 - Dynamic mesh and domain decomposition
 - Conservative remapping
- The road ahead

Coupling moving mesh is hard

- When the mesh is too deformed we remesh:
 - 1. Gather all fields to the root processor
 - 2. Generate new mesh and domain decomposition
 - 3. Scatter the new fields to the compute nodes
- Mesh and domain decomposition are dynamic
- Coupler should recompute weights and communication paths ... but nobody does that!

Solution: Coupling exchange grid

- What do we want from the sea-ice model?
 - What is neXtSIM?
 - Why a Lagrangian moving mesh?
- The coupling problem
 - Dynamic mesh and domain decomposition
 - Conservative remapping
- The road ahead

Need conservative remapping A

Fluxes between ice and ocean must be conserved!

- Use weighted averages of overlapping areas of grid cells and triangles
- Interpolation weights are calculated on the root when remeshing
- Interpolation is done in parallel

NERSC NERSC

Conservative remapping algorithm

Atl

- For each grid cell find the triangle covering its centre point (quadtree).
- Do three checks (recursive):
 - 1. Check & record which vertexes are inside the cell=> If inside: Call self for surrounding triangles
 - 2. Check & record which of the grid cell corners are inside the triangle
 - 3. Look for & record intersections between the triangle and cell => If intersecting: Call self for other triangle
- We now know all corner and intersection points => also know all areas.

Conservative remapping algorithm

For each grid cell find the triangle covering its centre point (quadtree).

Do three checks (recursive).

- Chec "Easy" because: insid
 - We know mesh connectivity
 - trian We have a quick (tree) search Ched
 - corn Mesh and grid land boundary coincide Look
- 3. All fields are constant on the cell and element betw

=> If

triangle

We now know all corner and intersection points => also know all areas.

X Figure 1

View Insert Tools Desktop Window

- What do we want from the sea-ice model?
 - What is neXtSIM?
 - Why a Lagrangian moving mesh?
- The coupling problem
 - Dynamic mesh and domain decomposition
 - Conservative remapping
- The road ahead

What's the future for a Lagrangian mesh?

Future remeshing

- Remeshing on the root is a bottle neck.
- All remeshing and interpolation should be done in parallel
- This requires a complete re-write of the remeshing algorithm

Future coupling

- Doing coupling through the root is a bottle neck
- For parallel coupling we need either:
 - A new coupler which can reorganise communication paths at runtime
 - A new remeshing scheme with static domain splitting

We need to do all interpolation (including weight calculation) in parallel