内存数据存储@sina

@启盼cobain

@文章同學 🗸 😘

致#周一见#

条.....该说有种还是该说有药好么...

3月31日 00:04 来自WeicoNote. 纹章笔记

△(863519) | 转发(1230687) | 评论(1922250)

豆花妹的衣橱 (3月31日 01:24)

△(43774) | 回复

数据化管理 V ⑩: 【新浪微博转发量最大三条娱乐微博分析】文章同学这条微博仅用了14个小时就突破100万转发|300万互动量(转评赞) ❶女人的围观推动了娱乐圈,三条微博女性转发远高于男性,王力宏最有女人缘,79%女人转发❷王菲和文章微博情感值中性偏负能量❷转发关键词:文章"真的"|"出轨",王菲是"有时候"|"永垂不朽"

难以预测得热点!

更难以预测得热点…

我们在做什么?

目录

- 内存存储重要性
- 内存存储规模介绍
- Memcache应用实践
- Redis应用实践
- 未来计划

内存储重要性

e.g. 微博内容

- MultiGet(3590157841987041,3319873918468286,...)
- SQL: SELECT * FROM content WHERE mid IN (3417982485336166,3319873918468286,...)

内存储重要性

内存储重要性

请求分布

规模

Memcache

6160 (Z + Get /day

760亿+ Set /day

15TB+ Memory in 5 IDC

500+ Servers, 1500+instances

Redis

3675亿+ commands /day

65001∠+ Read/day

757亿+ Set /day

18TB+ Memory in 6 IDC

500+ Servers, 3000+instances

1,500,000,000,000

占结构化数据访问得99%

硬件演化

	2012 Q2	2012 Q4	2013 Q2	2013 Q4	2014 Q2	Future
RAM	48G	64G	96G	I28G	I28G	?
CPU	Intel(R) Xeon(R) CPU E5620 @ 2.40GHz *8	Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz*12	Intel(R) Xeon(R) CPU E5620 @ 2.40GHz *8	Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz*12	Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz*12	?
Disk	SAS 300G*2 RAID10	SAS 300G*2 RAID10	SAS 300G*4 RAID5	SAS 300G*4 RAID5	SAS 300G*4 Raid5 + SSD *4 RAID5	?
NET	千兆	千兆	千兆	千兆	千兆	?

硬件演化

Memcache应用实践

- 一致性Hash应用得局限性
 - Multiget-hole
 - 命中率震荡
 - 无法应对超级热点

Memcache应用实践

- 易扩展
- 高可用
- 解决超级热点
- 易维护

LI Layer

- 容量较小
- 解决超级热点
- 易扩展

Storage Layer

- 容量较大
- 决定整体缓存层命中率
- Master-Backup保证 高可用

可扩展性

- Get&Plant
- Set

高可用性

应对超级热点(e.g.)

进阶

缓存服务化

- 配置中心
- CacheService(base twemproxy)
- HA

异地缓存更新

What's More?

存储与缓存一致性问题?!

存储层写入太慢?!

一个星期还没上线?!

Redis Helps!

计数特点

- 数据很小
- 热点更新
- 需要持久化

改造Redis后

- 更高SLA
- · TCO得节省
- 再不用担心缓存宕机
- KISS

反向cache

在一些场景替代Memcache

- 更丰富得数据结构
- 更好的内存管理
- 灵活数据迁移等特性

- Top列表(sorted set)
- 关系列表(hashset)
- 队列(list)

• • • • • •

Redis高可用性

Redis改造优化

- Replication改造
- 动态升级
- 内存使用优化(Rediscouter)
- Lua Script优化(C固化)
- 新的数据结构(LongSet)
- 历史数据分层至SSD(CounterService)

为什么一直是Redis?

未来计划

- 基于Flash降低TCO
- 一体化存储
- 深入网络优化

欢迎加入! qipan#staff.sina.com.cn

谢谢!