

Universidad Nacional de Colombia

FACULTAD DE INGENIERÍA

ÁREA CURRICULAR DE INGENIERÍA MECÁNICA Y MECATRÓNICA

2023-1

Tarea No. 2: Navegación por planeación

FUNDAMENTOS DE ROBÓTICA MÓVIL

Prof. Ricardo E. Ramírez Heredia Prof. Pedro F. Cárdenas Herrera

Objetivos

Ejecutar las etapas necesarias para crear una ruta óptima en una misión de robot con ruedas por el método de navegación por planeación.

Asignación

En el cuadro 1 se le asigna un robot con ruedas, la resolución del mapa, un punto de inicio y un punto objetivo. En los archivos adjuntos encuentra el archivo *tarea2.mat* que contiene la información de la ocupación binaria de celdas para construir el mapa. Donde requiera las dimensiones, usar los datos correspondientes a los modelos de los robots disponibles en CoppeliaSim.

Apellido estudiante	Robot	Resolución del mapa (celdas/m)	Entrada (**)	Salida
Caicedo	Robotnik XL14	3	Inf-Izq	Sup-Der
Dávila	e-puck	4	Sup-Izq	Inf-Der
Daza	Khepera3	16	Sup-Der	Inf-Izq
González	Pioneer p3dx	4	Inf-Izq	Inf-Der
Hernández	Dr20	8	Inf-Der	Sup-Izq
Narváez	BubbleRob	9	Inf-Der	Inf-Izq

** d1 = a/14; d2 = 26*a/28 donde a = ancho del mapa (m).

Cuadro 1: Asignación de robots

Procedimiento

Siga el siguiente procedimiento para el desarrollo de la tarea:

1. Modelo del robot

• Crear el modelo cinemático del robot en MATLAB.

2. Mapas

- 2.1. Crear el mapa con la resolución indicada, informar el nombre del mapa y presentarlo en una figura 1.
- 2.2. De acuerdo con el robot asignado, calcule e informe el valor de inflado adecuado, haga el inflado de los obstáculos y presente el mapa inflado en una figura 2. Informe el nombre del mapa inflado.

3. Planeación PRM

- 3.1. Ejecute el método de planeación PRM.
- 3.2. Informe los valores de los parámetros usados MaxNumNodes y MaxConnectionDistance para obtener la ruta.
- 3.3. Encuentre la ruta óptima entre el punto de inicio y el punto objetivo y presentarla en una tabla.
- 3.4. Presentar en una figura 3 el mapa sin inflar, el grafo solución del algoritmo y la ruta óptima.
- 3.5. Informe cuál es la función de costo usada y su valor para la ruta óptima.

4. Planeación RRT

 Hacer las mismas actividades realizadas para el algoritmo PRM. En este caso informar los valores de los parámetros MinIterations y ConnectionDistance.

5. Simulación en CoppeliaSim

- 5.1. Abra la escena de CoppeliaSim *mapa2.ttt* adjunta.
- 5.2. Si el ancho o alto de su mapa es mayor a 5 m, elimine el piso por defecto, de la carpeta infrastructure → floors del Model Browser cargue un resizable floor de acuerdo con el tamaño requerido por su mapa. En caso contrario deje el piso por defecto.
- 5.3. Abra la ventana de propiedades del objeto paredes, seleccione View/modify geometry y escale las dimensiones x, y y z para que correspondan a su mapa y a una altura adecuada para presentación de su robot dentro de la escena. Mueva las paredes para que la posición en la escena corresponda con la posición en el mapa.
- 5.4. Adicione uno o más Force Sensor y úselos como medio de fijación de las paredes al piso.

Figura 1

Marcar con una cinta o similar la línea que une P1 y P2.

- 5.5. Adicione el robot asignado en la pose inicial usada en su planeación de rutas.
- 5.6. Adicione los archivos y scripts necesarios para que se pueda conectar la escena con MATLAB.
- 5.7. Presente una imagen de la escena donde sean visibles las dimensiones de las paredes y el robot.

6. Simulación MATLAB Y COPPELIASIM

- 6.1. Seleccione a su gusto una de las dos rutas obtenidas (PRM o RRT).
- 6.2. Realice un algoritmo en Matlab para aplicar el controlador *PurePursuit* al robot y realice la ruta planeada. Ajuste los parámetros de control que correspondan. Repasar el algoritmo *Path Following for a Differential Drive Robot*.
- 6.3. Modifique el algoritmo de forma adecuada de manera que el valor de velocidad de ruedas dado por el controlador sea transmitido a CoppeliaSim y el robot cumpla con la trayectoria del punto de inicio al punto objetivo.
- 6.4. Capture la simulación con un vídeo y anéxelo a su informe.

7. Conclusiones

■ En su informe presente todos los resultados solicitados y una sección de conclusiones respecto a los resultados y dificultades en el logro de la tarea.

Haga un archivo comprimido que contenga el informe, copia de ellos algoritmos, imágenes y vídeos adjuntos. Cargue el archivo en Moodle.