Package 'PbIso'

May 17, 2021

Title Common calculations for Pb isotope of	lata
---	------

Version 0.0.0.9000

Description Calculates commonly used Pb isotope values such as model age, model source mu, time-integrated kappa, initial Pb isotope ratios. Includes functions for generating model curve data.

License `use_gpl3_license()`

Encoding UTF-8

LazyData true

Index

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

R topics documented:

Calc64	 	 	 2
Calc64in	 	 	 2
Calc74	 	 	 3
Calc74in	 	 	 4
Calc84	 	 	 5
Calc84in	 	 	 5
CalcKa	 	 	 6
CalcModAge	 	 	 7
$CalcMu \ \dots \ \dots \ .$	 	 	 8
geochron76slope	 	 	 8
geochron76yint	 	 	 9
geochron86slope	 	 	 10
geochron86yint	 	 	 10
$model curve \ \dots \dots .$			
mslope	 	 	 12
			13

2 Calc64in

Сa	l c64

Calculate the 206Pb/204Pb ratio

Description

This function calculates the 206Pb/204Pb ratio for a given time, either by using Stacey & Kramers (1975) 2nd stage model parameters as default, or by setting optional arguments.

Usage

```
# Basic usage accepting default model parameters for Stacey & Kramers (1975) 2nd stage model. Calc64(t, ...)
```

Advanced usage with optional arguments
 Calc64(t, T1, X1, Mu1, L8)

Arguments

t	sample age or time (Ma)
•••	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Mu1	238U/204Pb model. Default is 9.74
L8	238U decay constant. Default is 1.55125 * 10^-10

Examples

- # Example of basic method using a hypothetical sample age of 2700 Ma Calc64(2700)
- # Example of using optional arguments based on Stacey & Kramers (1975) 1st stage model Calc64(2700, T1 = 4570, X1 = 9.307, Mu1 = 7.19)
- # Example of using the optional argument for Mu1 = 8 only, and accepting the other defaults Calc64(2700, Mu1 = 8)

Calc64in

Calculate the initial 206Pb/204Pb ratio

Description

This function calculates the initial 206Pb/204Pb for a sample with a known age (t), measured 206Pb/204Pb (x) and measured 207Pb/204Pb (y) ratios

Usage

- # Basic usage accepting default model parameters for Stacey & Kramers (1975) 2nd stage model Calc64in(t, x, y, \dots)
- # Advanced usage with optional arguments
 Calc64in(t, x, y, T1, X1, Y1, U8U5, L5, L8)

Calc74

Arguments

t	sample age or time (Ma)
x	sample 206Pb/204Pb ratio
У	sample 207Pb/204Pb ratio
	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Y1	207Pb/204Pb model starting composition. Default is 12.998
U8U5	Present-day 238U/235U ratio. Default is 137.88
L5	235U decay constant. Default is 9.8485 * 10^-10
L8	238U decay constant. Default is 1.55125 * 10^-10

Examples

```
# Example of basic method using a hypothetical sample age of 2700 Ma, measured # 206Pb/204Pb = 13.5 and 207Pb/204Pb = 14.5 Calc64in(2700, 13.5, 14.5)
```

Example of using additional optional arguments based on Stacey & Kramers (1975) 1st stage model Calc64in(2700, 13.5, 14.5, T1 = 4570, X1 = 9.307, Y1 = 10.294)

Calc74

Calculate the 207Pb/204Pb ratio

Description

This function calculates the 207Pb/204Pb ratio for a given time, either by using Stacey & Kramers (1975) 2nd stage model parameters as default, or by setting optional arguments.

Usage

```
# Basic usage accepting default model parameters for Stacey & Kramers (1975) 2nd stage model Calc74(t, \dots)
```

Advanced usage with optional arguments
 Calc74(t, T1, Y1, Mu1, L5)

t	sample age or time (Ma)
	optional arguments
T1	model start time (Ma). Default is 3700
Y1	207Pb/204Pb model starting composition. Default is 12.998
Mu1	238U/204Pb model. Default is 9.74
U8U5	Present-day 238U/235U ratio. Default is 137.88
L5	235U decay constant. Default is 9.8485 * 10^-10

4 Calc74in

Examples

- # Example of basic method using a hypothetical sample age of 2700 Ma Calc74(2700)
- # Example of using optional arguments based on Stacey & Kramers (1975) 1st stage model Calc74(2700, T1 = 4570, Y1 = 10.294, Mu1 = 7.19)
- # Example of using the optional argument for Mu1 = 8 only, and accepting the other defaults Calc74(2700, Mu1 = 8)

Calc74in

Calculate the initial 207Pb/204Pb ratio

Description

This function calculates the initial 207Pb/204Pb for a sample with a known age (t), measured 206Pb/204Pb (x) and measured 207Pb/204Pb (y) ratios

Usage

```
# Basic usage accepting default model parameters for Stacey & Kramers (1975) 2nd stage model Calc74in(t, x, y, ...)
```

```
# Advanced usage with optional arguments
  Calc74in(t, x, y, T1, X1, Y1, U8U5, L5, L8)
```

Arguments

t	sample age or time (Ma)
x	sample 206Pb/204Pb ratio
У	sample 207Pb/204Pb ratio
	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Y1	207Pb/204Pb model starting composition. Default is 12.998
U8U5	Present-day 238U/235U ratio. Default is 137.88
L5	235U decay constant. Default is 9.8485 * 10^-10
L8	238U decay constant. Default is 1.55125 * 10^-10

Examples

```
# Example of basic method using a hypothetical sample age of 2700 Ma, measured # 206Pb/204Pb = 13.5 and 207Pb/204Pb = 14.5 Calc74in(2700, 13.5, 14.5)
```

[#] Example of using additional optional arguments based on Stacey & Kramers (1975) 1st stage model Calc74in(2700, 13.5, 14.5, T1 = 4570, X1 = 9.307, Y1 = 10.294)

Calc84 5

Calc84	Calculate the 208Pb/204Pb ratio

Description

This function calculates the 208Pb/204Pb ratio for a given time, either by using Stacey & Kramers (1975) 2nd stage model parameters as default, or by setting optional arguments.

Usage

```
\# Basic usage accepting default model parameters for Stacey & Kramers (1975) 2nd stage model Calc84(t, ...)
```

```
# Advanced usage with optional arguments
  Calc84(t, T1, Z1, W1, L2)
```

Arguments

t	sample age or time (Ma)
• • •	optional arguments
T1	model start time (Ma). Default is 3700
Z1	208Pb/204Pb model starting composition. Default is 31.23
W1	232Th/204Pb model. Default is 36.84
L2	232Th decay constant. Default is 0.49475 * 10^-10

Examples

- # Example of basic method using a hypothetical sample age of 2700 Ma Calc84(2700)
- # Example of using optional arguments based on Stacey & Kramers (1975) 1st stage model Calc84(2700, T1 = 4570, Z1 = 29.487, W1 = 32.21)
- # Example of using the optional argument for W1 = 30 only, and accepting the other defaults Calc84(2700, W1 = 30)

Calc84in

Calculate the initial 208Pb/204Pb ratio

Description

This function calculates the initial 208Pb/204Pb for a sample with a known age (t), measured 206Pb/204Pb (x), measured 207Pb/204Pb (y) and measured 208Pb/204Pb ratios.

Usage

- # Basic usage accepting default model parameters for Stacey & Kramers (1975) 2nd stage model Calc84in(t, x, y, z, ...)
- # Advanced usage with optional arguments
 Calc84in(t, x, y, z, T1, X1, Y1, Z1, U8U5, L5, L8, L2)

6 CalcKa

Arguments

t	sample age or time (Ma)
X	sample 206Pb/204Pb ratio
у	sample 207Pb/204Pb ratio
z	sample 208Pb/204Pb ratio
	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Y1	207Pb/204Pb model starting composition. Default is 12.998
Z1	208Pb/204Pb model starting composition. Default is 31.23
U8U5	Present-day 238U/235U ratio. Default is 137.88
L2	232Th decay constant. Default is 0.49475 * 10^-10
L5	235U decay constant. Default is 9.8485 * 10^-10
L8	238U decay constant. Default is 1.55125 * 10^-10

Examples

```
# Example of basic method using a hypothetical sample age of 2700 Ma, measured # 206Pb/204Pb = 13.5, measured 207Pb/204Pb = 14.5 and measured 208Pb/204Pb = 33 Calc84in(2700, 13.5, 14.5, 33)
```

Example of using additional optional arguments based on Stacey & Kramers (1975) 1st stage model Calc84in(2700, 13.5, 14.5, 33, T1 = 4570, X1 = 9.307, Y1 = 10.294, Z1 = 31.23)

CalcKa

Calculate the time-integrated kappa

Description

This function calculates the time-integrated kappa

Usage

```
# Basic usage accepting default model parameters for Stacey & Kramers (1975) 2nd stage model CalcKa(t, z, x, \dots)
```

```
# Advanced usage with optional arguments
  CalcKa(t, z, x, T1, X1, Z1, L2, L8)
```

	optional arguments
Х	sample 206Pb/204Pb ratio
Z	sample 208Pb/204Pb ratio
t	sample age or time (Ma)

CalcModAge 7

T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Z1	208Pb/204Pb model starting composition. Default is 31.23
L2	232Th decay constant. Default is 0.49475 * 10^-10
L8	238U decay constant. Default is 1.55125 * 10^-10

Examples

```
# Example of basic method using a hypothetical sample age of 2700 Ma, measured
# 208Pb/204Pb = 33 and measured 206Pb/204Pb = 13.5
CalcKa(2700, 33, 13.5)
```

Example of using optional arguments based on Stacey & Kramers (1975) 1st stage model CalcKa(2700, 33, 13.5, T1 = 4570, X1 = 9.307, Z1 = 31.23)

CalcModAge

Calculates the model age

Description

This function calculates the model age for given 206Pb/204Pb and 207Pb/204Pb ratios

Usage

```
\# Basic usage accepting default model parameters for Stacey & Kramers (1975) 2nd stage model CalcModAge(x, y, ...)
```

```
# Advanced usage with optional arguments
  CalcModAge(x, y, T1, X1, Y1, U8U5, L5, L8)
```

Arguments

X	sample 206Pb/204Pb ratio
У	sample 207Pb/204Pb ratio
	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Y1	207Pb/204Pb model starting composition. Default is 12.998
U8U5	Present-day 238U/235U ratio. Default is 137.88
L5	235U decay constant. Default is 9.8485 * 10^-10
L8	238U decay constant. Default is 1.55125 * 10^-10

Examples

CalcModAge(13.5, 14.5)

```
\# Example of basic method using a hypothetical sample with measured 206Pb/204Pb = 13.5 \# and 207Pb/204Pb = 14.5
```

```
# Example of using optional arguments based on Stacey & Kramers (1975) 1st stage model
```

CalcModAge(13.5, 14.5, T1 = 4570, X1 = 9.307, Y1 = 10.294)

geochron76slope

Calculates the model source mu	
--------------------------------	--

Description

This function calculates the model source Mu

Usage

```
# Basic usage accepting default model parameters for Stacey & Kramers (1975) 2nd stage model CalcMu(t, x, y, ...)
```

```
# Advanced usage with optional arguments
  CalcMu(t, x, y, T1, X1, Y1, U8U5, L5, L8)
```

Arguments

t	sample age or time (Ma)
X	sample 206Pb/204Pb ratio
У	sample 207Pb/204Pb ratio
	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Y1	207Pb/204Pb model starting composition. Default is 12.998
U8U5	Present-day 238U/235U ratio. Default is 137.88
L5	235U decay constant. Default is 9.8485 * 10^-10
L8	238U decay constant. Default is 1.55125 * 10^-10

Examples

```
# Example of basic method using a hypothetical sample age of 2700 Ma, measured
# 206Pb/204Pb = 13.5 and 207Pb/204Pb = 14.5
CalcMu(2700, 13.5, 14.5)
```

```
\# Example of using optional arguments based on Stacey & Kramers (1975) 1st stage model CalcMu(2700, 33, 13.5, T1 = 4570, X1 = 9.307, Z1 = 31.23)
```

geochron76slope Slope of a geochron line on a 206Pb/204Pb vs 207Pb/204Pb plot for time (t)

Description

This function calculates the geochron slope on a 206Pb/204Pb vs 207Pb/204Pb plot for a given time (t)

geochron76yint 9

Usage

Calculate the geochron on a 206Pb/204Pb vs 207Pb/204Pb plot for time = 2700 Ma geochron76slope(2700)

Arguments

t	sample age or time (Ma)
	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Y1	207Pb/204Pb model starting composition. Default is 12.998
Mu1	238U/204Pb model. Default is 9.74
U8U5	Present-day 238U/235U ratio. Default is 137.88
L5	235U decay constant. Default is 9.8485 * 10^-10
L8	238U decay constant. Default is 1.55125 * 10^-10

Examples

Calculate the geochron on a 206Pb/204Pb vs 207Pb/204Pb plot for time = 2700 Ma geochron76slope(2700)

geochron76yint	Y-intercept of a geochron line on a 206Pb/204Pb vs 207Pb/204Pb plot
	for time (t)

Description

This function calculates the y-intercept of a geochron line on a 206Pb/204Pb vs 207Pb/204Pb plot for a given time (t)

Usage

Calculate the geochron on a 206Pb/204Pb vs 207Pb/204Pb plot for time = 2700 Ma geochron76slope(2700)

t	sample age or time (Ma)
	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Y1	207Pb/204Pb model starting composition. Default is 12.998
Mu1	238U/204Pb model. Default is 9.74
U8U5	Present-day 238U/235U ratio. Default is 137.88
L5	235U decay constant. Default is 9.8485 * 10^-10
L8	238U decay constant. Default is 1.55125 * 10^-10

10 geochron86yint

Examples

Calculate the geochron on a 206Pb/204Pb vs 207Pb/204Pb plot for time = 2700 Ma geochron76slope(2700)

geochron86slope	Slope of a geochron line on a 206Pb/204Pb vs 208Pb/204Pb plot for time (t)
-----------------	--

Description

This function calculates the geochron slope on a 206Pb/204Pb vs 208Pb/204Pb plot for a given time (t)

Usage

Calculate the geochron on a 206Pb/204Pb vs 207Pb/204Pb plot for time = 2700 Ma geochron86slope(2700)

Arguments

t	sample age or time (Ma)
• • •	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Z1	208Pb/204Pb model starting composition. Default is 31.23
Mu1	238U/204Pb model. Default is 9.74
W1	232Th/204Pb model. Default is 36.84
L8	238U decay constant. Default is 1.55125 * 10^-10
L2	232Th decay constant. Default is 0.49475 * 10^-10

Examples

Calculate the geochron on a 206Pb/204Pb vs 207Pb/204Pb plot for time = 2700 Ma geochron86slope(2700)

geochron86yint	Y-intercept of a geochron line on a 206Pb/204Pb vs 208Pb/204Pb plot for time (t)
----------------	--

Description

This function calculates the y-intercept of a geochron line on a 206Pb/204Pb vs 208Pb/204Pb plot for a given time (t)

Usage

Calculate the geochron on a 206Pb/204Pb vs 207Pb/204Pb plot for time = 2700 Ma geochron76slope(2700) modelcurve 11

Arguments

t	sample age or time (Ma)
• • •	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Z1	208Pb/204Pb model starting composition. Default is 31.23
Mu1	238U/204Pb model. Default is 9.74
W1	232Th/204Pb model. Default is 36.84
L8	238U decay constant. Default is 1.55125 * 10^-10
L2	232Th decay constant. Default is 0.49475 * 10^-10

Examples

Calculate the geochron on a 206Pb/204Pb vs 207Pb/204Pb plot for time = 2700 Ma geochron76slope(2700)

mode	lcurve

Create a dataframe with values to produce model curves

Description

This function creates a dataframe with four columns (time, 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios). These can be used for plotting model curves.

Usage

```
# Basic method accepting default model parameters for Stacey & Kramers (1975) # 2nd stage model modelcurve(t, ...)
```

Advanced method using other values for optional parameters
modelcurve(t, T1, X1, Y1, Z1, Mu1, W1, U8U5, L5, L8, L2)

t	sample age or time (Ma)
	optional arguments
T1	model start time (Ma). Default is 3700
X1	206Pb/204Pb model starting composition. Default is 11.152
Y1	207Pb/204Pb model starting composition. Default is 12.998
Z1	208Pb/204Pb model starting composition. Default is 31.23
Mu1	238U/204Pb model. Default is 9.74
W1	232Th/204Pb model. Default is 36.84
U8U5	Present-day 238U/235U ratio. Default is 137.88
L5	235U decay constant. Default is 9.8485 * 10^-10
L8	238U decay constant. Default is 1.55125 * 10^-10
L2	232Th decay constant. Default is 0.49475 * 10^-10

mslope mslope

Examples

```
# Create a dataframe 'df' with the default Stacey & Kramers (1975) 2nd stage values
# for the time period 3700-0 Ma; which can then be used to plot a model curve
    df <- modelcurve(0:3700)

# Create a dataframe 'df' with the Stacey & Kramers (1975) 1st stage model values
# over the time period 3700-0 Ma.
    df <- modelcurve(0:3700, T1 = 4570, X1 = 9.307, Mu1 = 7.19)

# Create a dataframe 'df' for a model source Mu value of 8, over the time period
# 3700-0 Ma.
    df <- modelcurve(0:3700, Mu1 = 8)</pre>
```

mslope

Calculate the slope for a given sample age (t)

Description

This function calculates the slope of a line from which samples of the same age (t) will fall along

Usage

```
mslope(t, ..., U8U5 = 137.88, L5 = 9.8485 * 10^-10, L8 = 1.55125 * 10^-10)
```

Arguments

t	sample age or time (Ma)
	optional arguments
U8U5	Present-day 238U/235U ratio. Default is 137.88
L5	235U decay constant. Default is 9.8485 * 10^-10
L8	238U decay constant. Default is 1.55125 * 10^-10

Examples

Example of basic method using a hypothetical sample age of 2700 Ma mslope(2700)

Index

```
Calc64, 2
Calc64in, 2
Calc74, 3
Calc74in, 4
Calc84, 5
Calc84in, 5
CalcKa, 6
CalcModAge, 7
CalcMu, 8
geochron76slope, 8
geochron76yint, 9
geochron86slope, 10
geochron86yint, 10
modelcurve, 11
mslope, 12
```