Удельная проводимость от температуры

А. Андреев, К. Каня, А. Тихонова, Д. Яковлев $21~{\rm декабр} \ 2019~{\rm r}.$

Поскольку в исходной модели 3 константы оставляют одну лишнию степень избыточны, мы привели модель к следующему виду, сократив число констант до двух:

$$\mu = \frac{a}{T^{3/2} + b(N_d^+ + N_a^-)\frac{1}{T^{3/2}}} \tag{1}$$

Далее мы воспользовались минимизацией функции потерь в нелинейной модели наименьших квадратов (non-linear least squares). Были получены следующие результаты:

Material	Charge carrier	a	b
Si	electron	$6.43 \cdot 10^6$	$7.13 \cdot 10^{-12}$
	hole	$1.8 \cdot 10^{6}$	$1.04 \cdot 10^{-12}$
Ge	electron	$18.7 \cdot 10^6$	$30.6 \cdot 10^{-12}$
	hole	$8.02 \cdot 10^6$	$21.3 \cdot 10^{-12}$
GaAs	electron	$53.5 \cdot 10^{6}$	$14.8 \cdot 10^{-12}$
	hole	$1.8 \cdot 10^{6}$	$2.38 \cdot 10^{-12}$