

Lecture 4: Interval Estimation & Goodness of Estimation

STA261 − Probability & Statistics II

Ofir Harari

Department of Statistical Sciences

University of Toronto

Outline

Interval Estimation

Confidence Intervals
Asymptotic Confidence Intervals

Goodness of Estimation

Bias and the Mean Squared Error Efficiency and the Cramér-Rao Lower Bound

point estimation does not reveal uncertainty Confidence Intervals

- The last couple of lectures dealt with *point estimation*: finding an estimator $\widehat{\theta}$ with good properties (e.g. consistency) that will hopefully land "in the ballpark" of θ .
- But we will inevitably err –

$$\mathbb{P}(\hat{\theta} = \theta) = 0$$
 (for continuous data)

- and then what...? because MLE estimator has normal distribution (continuous)
- We have learned about the notion of standard error (SE) of an estimator
 - Could report the point estimate along with its SE a good start
 - Is that what the "margin of error: ±4 percentage points" in the newspapers is all about?
 - Somewhat misleading if the sampling distribution of the estimator is asymmetrical

Confidence Intervals (cont.)

• The idea of confidence intervals is to provide a range of plausible values for θ , rather then a single number.

Definition

Let $X_1, \ldots, X_n \sim f_\theta$. A $100(1-\alpha)\%$ confidence interval for θ is a pair of statistics $L = L(X_1, \ldots, X_n)$ and $U = U(X_1, \ldots, X_n)$ such that

$$\mathbb{P}(L \le \theta \le U) = 1 - \alpha.$$

We call $100(1-\alpha)\%$ the confidence level.

note theta is fixed, L and U are random

Example: Normal mean with known variance

Example

- 1. Let $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\underline{\sigma^2}$ is assumed to be known. Find a $100(1-\alpha)\%$ confidence interval for μ .
- 2. Assuming $\sigma = 5$, find a 95% confidence interval for μ , if n = 16 and $\overline{X} = 175$.

Solution:

1. Recall that $\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$, or, equivalently: $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$.

Think of a pair of numbers, a and b, that satisfy –

$$\mathbb{P}\left(a \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le b\right) = 1 - \alpha$$

– infinitely many options, but a natural choice would be $a=z_{\alpha/2}$ and $b=z_{1-\alpha/2}$ – the quantiles of the standard Normal distribution.

the symmetric range over normal curve

Normal mean with known variance (cont.)

$$\begin{split} 1-\alpha &= \mathbb{P}\left(-z_{1-\alpha/2} \leq \frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \leq z_{1-\alpha/2}\right) \\ &= \mathbb{P}\left(\overline{X} - \frac{\sigma}{\sqrt{n}}z_{1-\alpha/2} \leq \mu \leq \overline{X} + \frac{\sigma}{\sqrt{n}}z_{1-\alpha/2}\right) \end{split}$$

Normal mean with known variance (cont.)

We have shown that
$$\mathbb{P}\left(\overline{X} - \frac{\sigma}{\sqrt{n}}z_{1-\alpha/2} \leq \mu \leq \overline{X} + \frac{\sigma}{\sqrt{n}}z_{1-\alpha/2}\right) = 1 - \alpha,$$
 hence
$$\left[\overline{X} - \frac{\sigma}{\sqrt{n}}z_{1-\alpha/2} , \ \overline{X} + \frac{\sigma}{\sqrt{n}}z_{1-\alpha/2}\right]$$

is a $100(1-\alpha)\%$ confidence interval for μ .

2. Here
$$\alpha = 0.05 \Longrightarrow 1 - \frac{\alpha}{2} = 0.975$$
. Substitute

$$\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} = 175 \pm \frac{5}{\sqrt{16}} z_{0.975} = 175 \pm 1.25 \times 1.96$$

$$\implies \left\{ \begin{array}{l} U = 177.45, \\ L = 172.55, \end{array} \right.$$

thus [172.55, 177.45] is a 95% confidence interval for μ in this case.

idea is find a pivot that approximates parameter in this case the pivot is the standardization of sample mean

the true population mean is always the center of sampling distribution Understanding confidence intervals

- $\bullet\,$ So, [172.55, 177.45] is a 95% confidence interval for $\mu\,$
- Surely that means " μ has a 95% chance of lying between 172.55 and 177.45"...?
 - An outrageous statement! μ is a fixed scalar (albeit an unknown one)
 - What is the chance of 5 lying between 4 and 6? Between 3 and 4?
- In the construction of confidence intervals, it is the interval itself that is random
- A 95% Confidence level suggests that if we had infinitely many random samples and calculated the confidence limits for each, 95% of the resultant intervals would include the true parameter value
- Can only hope that the one we have is a good one...

R simulation

```
> N_Samples <- 100 #No. of random samples
>
> x <- matrix(rnorm(16*N_Samples, mean=175, sd=5), ncol=16) #100 samples of size 16
> x & - matrix(rnorm(16*N_Samples, mean=175, sd=5), ncol=16) #100 samples of size 16
> x & - apply(x, 1, mean) #vector of sample means
> U <- xBar + qnorm(.975)*sigma/4 #upper interval limits
> L <- xBar - qnorm(.975)*sigma/4 #lower interval limits
> uncovered <- which((L>175)|(U<175)) #locating "bad" intervals
> plot(c(1:N_Samples), rep(175, N_Samples), type='1', lty=2, col=4, lwd=2)
> segments(1:N_Samples, L, 1:N_Samples, U, lwd=2)
> segments(uncovered. Lfuncovered]. uncovered. Ufuncovered]. lwd=4, col=2)
```


The pivotal method

Definition

A pivotal quantity (or simply "a pivot") is a function $g(X_1, ..., X_n; \theta)$ of the <u>data</u> and parameter of interest, whose distribution does not depend on any unknown parameter.

- In the last example, $\overline{X} \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$ served as a pivot
- The pivotal method for confidence interval goes as follows:
 - 1. Find a pivot $g(X_1, \ldots, X_n; \theta)$ and identify its distribution
 - 2. Find a and b such that $\mathbb{P}(a \leq g(X_1, \dots, X_n; \theta) \leq b) = 1 \alpha$
 - 3. Find L and U such that $\mathbb{P}(L \leq \theta \leq U) = 1 \alpha$

Example: Normal mean with unknown variance

Example

Repeat the last example, this time with σ^2 unknown, and assuming $S^2=25$.

- This time $\overline{X} \mu$ is no longer a pivot because σ^2 is unknown.
- However, in the first lecture we verified that $\frac{\overline{X} \mu}{S/\sqrt{n}} \sim t_{n-1}$, and is therefore a pivot.

 note no population param in pivot
- Now if we look for a and b to satisfy

$$\mathbb{P}\left(a \le \frac{\overline{X} - \mu}{S/\sqrt{n}} \le b\right) = 1 - \alpha,$$

we can choose $a=t_{n-1,\alpha/2}$ and $b=t_{n-1,1-\alpha/2}$ – the quantiles of the t_{n-1} distribution!

note n-1 d.f.

Normal mean with unknown variance (cont.)

$$\begin{split} 1 - \alpha &= \mathbb{P}\left(-t_{n-1,1-\alpha/2} \leq \frac{\overline{X} - \mu}{S/\sqrt{n}} \leq t_{n-1,-\alpha/2}\right) \\ &= \mathbb{P}\left(\overline{X} - \frac{S}{\sqrt{n}}t_{n-1,1-\alpha/2} \leq \mu \leq \overline{X} + \frac{S}{\sqrt{n}}t_{n-1,-\alpha/2}\right) \end{split}$$

Normal mean with unknown variance (cont.)

We just showed that

$$\left[\overline{X} - \frac{S}{\sqrt{n}} t_{n-1,1-\alpha/2} \;,\; \overline{X} + \frac{S}{\sqrt{n}} t_{n-1,1-\alpha/2} \right]$$

is a $100(1-\alpha)\%$ confidence interval for μ .

For our data

$$\begin{split} \overline{X} \pm \frac{S}{\sqrt{n}} \, t_{n-1,1-\alpha/2} &= 175 \pm \frac{5}{\sqrt{16}} \, t_{15,0.975} = 175 \pm 1.25 \times 2.131 \\ \\ \Longrightarrow \left\{ \begin{array}{l} U = 177.66, \\ L = 172.34, \end{array} \right. \end{split}$$

• Interval of length 5.32 compared to 4.9 when σ^2 was assumed to be known Cl gets larger compared to if sigma^2 is known.

Example: CI for Normal variance

Example

Find a $100(1-\alpha)\%$ confidence interval for σ^2 , based on $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$.

Solution:

- Recall that $\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i \bar{X}}{\sigma}\right)^2 \sim \chi_{n-1}^2$ (a pivot).
- We need to find a and b such that $\mathbb{P}\left(a \leq \frac{(n-1)S^2}{\sigma^2} \leq b\right) = 1 \alpha$ problem chi squared not symmetric
- Ideally, choose them such that the length of the eventual CI is minimized
- A hard optimization problem not always worth the trouble
- Simply choose $a=\chi^2_{n-1,\alpha/2}$ and $b=\chi^2_{n-1,1-\alpha/2}$, then a $(1-\alpha)100\%$ CI for σ^2 will be

$$\left[\frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}\right]$$

The χ^2 quantiles

$$1 - \alpha = \mathbb{P}\left(\chi_{n-1,\alpha/2}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{n-1,1-\alpha/2}^2\right)$$
$$= \mathbb{P}\left(\frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}\right).$$

Asymptotic confidence intervals

• When pivots are hard to find, one can invoke large sample theory, namely:

$$\widehat{\theta}_{ ext{MLE}} \sim ANig(heta, \mathcal{I}^{-1}(\widehat{ heta}_{ ext{MLE}})ig)$$
 plugging in

• Can be taken advantage of to construct $100(1-\alpha)\%$ asymptotic confidence interval of the form this is CI for normal 's mean

$$\left[\widehat{\theta}_{\mathrm{MLE}} - \frac{z_{1-\alpha/2}}{\sqrt{\mathcal{I}(\widehat{\theta}_{\mathrm{MLE}})}} \,,\, \widehat{\theta}_{\mathrm{MLE}} + \frac{z_{1-\alpha/2}}{\sqrt{\mathcal{I}(\widehat{\theta}_{\mathrm{MLE}})}}\right].$$

• For example, for $X_1,\ldots,X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Exp}(\lambda)$ we calculated $\widehat{\lambda}_{\mathrm{MLE}} = 1/\overline{X}$ and $\mathcal{I}(\lambda) = n/\lambda^2$. A $100(1-\alpha)\%$ confidence interval for θ would then be substitute mle estimator for true param by plugin principle

$$\left[\frac{1}{\overline{X}} - \frac{z_{1-\alpha/2}}{\overline{X}\sqrt{n}} , \frac{1}{\overline{X}} + \frac{z_{1-\alpha/2}}{\overline{X}\sqrt{n}} \right].$$

Comparing different estimators

- So far we have covered two methods of parameter estimation: the Method of Moments and the Maximum Likelihood principle
- Various other methods exist: Bayesian estimation, Least-Squares estimation etc.
- How do we choose between the different types of estimators then?
- Consider the following loss function:

$$\mathcal{L}(\hat{\theta}, \theta) = (\theta - \widehat{\theta})^2$$
 (the squared error loss)

- Inflicts harsh penalties on large deviations from the true parameter value
- Forgiving when it comes to small deviations
- Overall a good candidate for a measure of estimation accuracy except that... it's a random variable!

The Mean Squared Error

Definition

The Mean Squared Error of an estimator $\widehat{\theta}$ of a parameter θ is

$$MSE(\hat{\theta}, \theta) = \mathbb{E}\left\{(\hat{\theta} - \theta)^2\right\}.$$

By and large, we use the MSE to assess goodness-of-estimation out of mathematical convenience

 MSE assesses quality of an estimation of an estimation

MSE assesses quality of an estimator

- It could be argued that a more appropriate measure would be the *Mean Absolute Error* $\mathbb{E}\left\{|\theta-\widehat{\theta}|\right\}$, but the latter is not differentiable at the origin
- It does not have the following lovely property either –

The Bias-Variance decomposition

Proposition

Let $\widehat{\theta}$ be an estimator of a parameter θ , and denote

$$b(\hat{\theta}, \theta) = \mathbb{E}[\hat{\theta}] - \theta$$
 (the bias of $\hat{\theta}$).

Then

$$MSE(\hat{\theta}, \theta) = b^2(\hat{\theta}, \theta) + Var[\hat{\theta}].$$

Proof:

note \hat{\theta} is the RV here, \theta is just a constant

$$\begin{split} \operatorname{MSE}(\hat{\theta}, \theta) &= \mathbb{E}\left\{ (\hat{\theta} - \theta)^2 \right\} = \mathbb{E}\left\{ \left(\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta \right)^2 \right\} \\ &= \mathbb{E}\left\{ \left(\hat{\theta} - \mathbb{E}[\hat{\theta}] \right)^2 \right\} + \mathbb{E}\left\{ \left(\mathbb{E}[\hat{\theta}] - \theta \right)^2 \right\} + 2\mathbb{E}\left\{ \left(\hat{\theta} - \mathbb{E}[\hat{\theta}] \right) \left(\mathbb{E}[\hat{\theta}] - \theta \right) \right\} \\ &= b^2(\hat{\theta}, \theta) + \operatorname{Var}[\hat{\theta}] + 2b(\hat{\theta}, \theta) \mathbb{E}\left\{ \left(\hat{\theta} - \mathbb{E}[\hat{\theta}] \right) \right\} = b^2(\hat{\theta}, \theta) + \operatorname{Var}[\hat{\theta}]. \end{split}$$

Note estimator is a constant, so cancel out

Making sense of the Bias-Variance decomp.

• Think of an Olympic shooter, trying to earn her bread at a competition

sportskeeda.com

The Bias-Variance decomposition (cont.)

• A shaky hand will not win her any medals

• This is the variance!

The Bias-Variance decomposition (cont.)

• But if her rifle is out of whack, not even the steadiest of hands will save her

• This is the bias!

The Bias-Variance decomposition (cont.)

• High accuracy requires both a steady hand and zeroed sights

• This is the MSE!

Example: Bernoulli trials

Example

Suppose that we observe a series of Bernoulli trials $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Binom}(1, p)$. Compare the following estimators of p (in terms of their MSE):

- 1. $\widehat{p}_1 = \overline{X}$ (MME and MLE)
- 2. $\hat{p}_2 = \frac{\sum_{i=1}^n X_i + 1}{n+2}$ (Bayesian estimator)
- 3. $\hat{p}_3 = X_1$

Solution:

1. As always with the sample mean, $\mathbb{E}[\hat{p}_1] = \mathbb{E}[\bar{X}] = \mathbb{E}[X] = p$. The MSE thus reduces to the variance (why?):

$$MSE(\hat{p}_1, p) = \underline{Var[\hat{p}_1]} = \underline{Var[\bar{X}]} = \frac{Var[X]}{n} = \frac{p(1-p)}{n}.$$

Bernoulli trials (cont.)

Solution (cont.):

2. First, let us calculate

$$\mathbb{E}[\hat{p}_2] = \mathbb{E}\left[\frac{\sum_{i=1}^n X_i + 1}{n+2}\right] = \frac{\sum_{i=1}^n \mathbb{E}\left[X_i\right] + 1}{n+2} = \frac{np+1}{n+2},$$

and so the bias is $b(\hat{p}_2, p) = \frac{np+1}{n+2} - p = \frac{1-2p}{n+2}$. As for the variance,

$$\operatorname{Var}[\hat{p}_2] = \operatorname{Var}\left[\frac{\sum_{i=1}^n X_i + 1}{n+2}\right] = \frac{\sum_{i=1}^n \operatorname{Var}[X_i]}{(n+2)^2} = \frac{np(1-p)}{(n+2)^2},$$

and finally

$$MSE(\hat{p}_2, p) = b^2(\hat{p}_2, p) + Var[\hat{p}_2] = \frac{(1 - 2p)^2 + np(1 - p)}{(n + 2)^2}.$$

3. Trivially, $\mathbb{E}[\hat{p}_3] = p$, therefore $\mathrm{MSE}(\hat{p}_3, p) = \mathrm{Var}[\hat{p}_3] = p(1-p)$.

Bernoulli trials (cont.)

Example: variance of a Normal population

Example

For $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, Compare the following estimators of σ^2 :

- 1. $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$ (the sample variance)
- 2. $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ (MME and MLE)

Solution: 1. easy to calculate because we find a pivot for S^2

1. Recall that
$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi_{n-1}^2$$
, therefore

$$\mathbb{E}\left[S^2\right] = \frac{\sigma^2}{n-1} \mathbb{E}\left[\chi^2_{n-1}\right] = \frac{\sigma^2}{n-1} \cdot (n-1) = \sigma^2, \quad \text{note S^2 is unbiased}$$

hence since chi squared with n d.f. is gamma(n/2, 1/2) with mean n and variance 2n

$$MSE(S^{2}, \sigma^{2}) = Var\left[S^{2}\right] = \frac{\sigma^{4}}{(n-1)^{2}} Var\left[\chi_{n-1}^{2}\right] = \frac{\sigma^{4} \cdot 2(n-1)}{(n-1)^{2}} = \frac{2\sigma^{4}}{n-1}.$$

Variance of a Normal population (cont.)

use the fact that this estimator is a transformation of S^2 Solution (cont.):

2. Clearly
$$\widehat{\sigma}^2 = \frac{(n-1)S^2}{n}$$
,

2. Clearly
$$\widehat{\sigma}^2 = \frac{(n-1)S^2}{n}$$
, thus so mme and mle are biased

 $\mathbb{E}\left[\hat{\sigma}^2\right] = \frac{n-1}{n} \mathbb{E}\left[S^2\right] = \frac{(n-1)\sigma^2}{n},$ the asymptotic normality still holds n-> infinity $b(\widehat{\sigma}^2, \sigma^2) = \frac{(n-1)\sigma^2}{n} - \sigma^2 = -\frac{\sigma^2}{n}.$

$$\operatorname{Var}\left[\widehat{\sigma}^{2}\right] = \frac{(n-1)^{2}}{2} \operatorname{Var}\left[S^{2}\right] = \frac{(n-1)^{2}}{2} \cdot \frac{2\sigma^{4}}{2} = \frac{2(n-1)\sigma^{4}}{2},$$

and finally

$$MSE(\widehat{\sigma}^2, \sigma^2) = b^2(\widehat{\sigma}^2, \sigma^2) + Var[\widehat{\sigma}^2]$$

$$= \frac{(2n-1)\sigma^4}{n^2} < \frac{2\sigma^4}{n-1} = MSE(S^2, \sigma^2) \text{ for any } n \ge 2.$$

o mme and mle estimator is more accurate: bias not necessarily bad

Unbiased estimators

Definition

We say that $\hat{\theta}$ is an *unbiased* estimator of θ if $\mathbb{E}[\hat{\theta}] = \theta$ (i.e. $b(\hat{\theta}, \theta) = 0$).

- \overline{X} is always an unbiased estimator of $\mu = \mathbb{E}[X]$ by LLN
- S^2 is always an unbiased estimator of $\sigma^2 = \text{Var}[X]$ (Practice Problem Set 1)
- Can always correct bias by scaling or shifting not always beneficial in terms of the MSE
- Unbiased estimators are not necessarily superior to biased ones yet we love them. Mostly because
 - 1. For an unbiased $\widehat{\theta}$,

$$\mathrm{MSE}(\hat{\theta},\theta) = \mathrm{Var}[\hat{\theta}]$$

- compact!
- 2. We have some seriously nice theory for unbiased estimators

The Cramér-Rao lower bound

Harald Cramér, 1893-1985 Source: insurancehalloffame.org

Calyampudi R. Rao, 1920– Source: isical.ac.in

The Cramér–Rao lower bound (cont.)

Theorem

Let $X_1, \ldots, X_n \sim f_{\theta}$, and let $\widehat{\theta}$ be an unbiased estimator of θ . Under some regularity conditions

$$\operatorname{Var}[\hat{\theta}] \ge \mathcal{I}^{-1}(\theta),$$

where $\mathcal{I}(\theta)$ is the Fisher Information.

variane for mle are as good as it gets **Proof:** for unbiased estimator asymptotically Denoting $\underline{x} = (x_1, \dots, x_n)$, we have

where $u(\theta)$ is the Score statistic. Now, since $\hat{\theta}$ is unbiased, we know that

$$\underline{\theta = \mathbb{E}[\hat{\theta}]} = \int \hat{\theta}(\underline{x}) f(\underline{x}|\theta) d\underline{x},$$

uses the fact that theta is unbiased here

The Cramér-Rao lower bound (cont.)

Proof (cont.): theta hat is not a function of theta, so skip...

Having established that

$$\theta = \mathbb{E}[\hat{\theta}] = \int \hat{\theta}(\underline{x}) f(\underline{x}|\theta) d\underline{x},$$

we can differentiate to obtain

$$1 = \frac{\partial \theta}{\partial \theta} = \frac{\partial}{\partial \theta} \int \hat{\theta}(\underline{x}) f(\underline{x}|\theta) d\underline{x} = \int \hat{\theta}(\underline{x}) \frac{\partial f(\underline{x}|\theta)}{\partial \theta} d\underline{x}$$

Cov(X,Y) = E[XY] - E[X]E[Y]

XJE[Y] by previously
$$= \int \hat{\theta}(\underline{x}) u(\theta) f(\underline{x} | \theta) d\underline{x} = \mathbb{E}[\hat{\theta} \cdot u(\theta)] = \text{Cov}\left(\hat{\theta}, u(\theta)\right) \quad \text{(why)}$$

$$\leq \sqrt{\operatorname{Var}[\hat{ heta}]} \cdot \sqrt{\operatorname{Var}[u(heta)]} = \sqrt{\operatorname{Var}[\hat{ heta}]} \cdot \sqrt{\mathcal{I}(heta)},$$

+ E[theta]E[u(theta)], which is 0 because E[u(theta)] = 0

since we proved last week that $Var[\theta] = \mathcal{I}(\theta)$, which completes the proof.

this is true by the fact that Corr(X,Y)= $Cov(X,Y)/sqrt{Var{X}Var{Y}} <= 1$ i.e. correlation is between -1 and 1

Note Var[u(theta)] = I(theta)

Example: the Poisson distribution

• For $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Pois}(\lambda)$ we have already calculated the log-likelihood

$$\ell(\lambda) = n\overline{X}\log\lambda - n\lambda + \text{const}$$

and concluded that the MLE of λ was $\widehat{\lambda}_{\text{MLE}} = \overline{X}$. In particular, it is unbiased.

• Further calculations yield

$$\ell'(\lambda) = \frac{n\overline{X}}{\lambda} - n$$
 and $\ell''(\lambda) = -\frac{n\overline{X}}{\lambda^2}$

- Note that $n\overline{X} = \sum_{i=1}^{n} X_i \sim \operatorname{Pois}(n\lambda)$, thus $\mathbb{E}[n\overline{X}] = \operatorname{Var}[n\overline{X}] = n\lambda$.
- The Fisher Information is therefore

$$\mathcal{I}(\lambda) = -\mathbb{E}[\ell''(\lambda)] = \mathbb{E}\left[\frac{n\overline{X}}{\lambda^2}\right] = \frac{n\lambda}{\lambda^2} = \frac{n}{\lambda}.$$

Example: Poisson distribution (cont.)

- We have calculated $\mathcal{I}(\lambda) = \frac{n}{\lambda}$
- The CR bound guarantees that for any unbiased estimator $\hat{\lambda}$ of λ

$$\operatorname{Var}[\hat{\lambda}] \ge \mathcal{I}^{-1}(\lambda) = \frac{\lambda}{n}.$$

unbiased

• However, for $\widehat{\lambda}_{\text{MLE}} = \overline{X}$ we have

$$\mathrm{Var}[\hat{\lambda}_{\mathrm{MLE}}] = \mathrm{Var}[\bar{X}] = \frac{\mathrm{Var}[X]}{n} = \frac{\lambda}{n}.$$

- The MLE achieves the CR bound in this case!
- We know for sure then that no unbiased estimator of λ outperforms \overline{X} .

achieves CR bound: allows to prove optimality of unbiase estimators

Example: Normal distribution

• For $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$ we have already calculated the log-likelihood

$$\ell(\mu, \sigma^2) = -\frac{n}{2}\log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 + \text{const.}$$

•
$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i - \mu)^2$$
.

•
$$\frac{\partial^2 \ell}{\partial (\sigma^2)^2} = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^n (X_i - \mu)^2 = \frac{n}{2\sigma^4} - \frac{1}{\sigma^4} \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} \right)^2$$

• Recall that $\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2$, then easier to find expected value...

$$\begin{split} \mathcal{I}(\sigma^2) &= -\mathbb{E}\left\{\frac{\partial^2 \ell}{\partial (\sigma^2)^2}\right\} = -\frac{n}{2\sigma^4} + \frac{1}{\sigma^4}\mathbb{E}\left\{\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2\right\} \\ &= -\frac{n}{2\sigma^4} + \frac{n}{\sigma^4} = \frac{n}{2\sigma^4}. \end{split}$$

sigma^2 is the unit of differentiation

Example: Normal distribution (cont.)

- We just calculated: $\mathcal{I}(\sigma^2) = \frac{n}{2\sigma^4}$
- The CR bound for any unbiased estimator $\hat{\sigma}^2$ of σ^2 is thus

$$\operatorname{Var}[\hat{\sigma}^2] \ge \mathcal{I}^{-1}(\sigma^2) = \frac{2\sigma^4}{n}$$

• The sample variance S^2 is unbiased, and we calculated

$$\operatorname{Var}[S^2] = \frac{2\sigma^4}{n-1} \Longrightarrow$$
 does not achieve the CR bound.

• However, $\lim_{n\to\infty} \frac{\operatorname{Var}[S^2]}{\mathcal{I}^{-1}(\sigma^2)} = 1.$

note, S^2 does not achieve CR bound but its negligible. We say S^2 is asymptotically efficient

Efficiency

Definition

1. We say that an unbiased estimator $\widehat{\theta}$ of a parameter θ is finite sample efficient (or simply "efficient") if

$$\operatorname{Var}[\hat{\theta}] = \mathcal{I}^{-1}(\theta).$$

(i.e. it achieves the CR lower bound).

2. We say that $\widehat{\theta}$ is asymptotically efficient if

$$\lim_{n \to \infty} \frac{\operatorname{Var}[\hat{\theta}]}{\mathcal{I}^{-1}(\theta)} = 1.$$

3. The Relative Efficiency of an unbiased estimator $\hat{\theta}_1$ of θ with respect to another unbiased estimator $\hat{\theta}_2$ is

$$\mathrm{eff}(\widehat{\theta}_1,\widehat{\theta}_2) = \frac{\mathrm{Var}[\widehat{\theta}_2]}{\mathrm{Var}[\widehat{\theta}_1]}.$$

Efficiency (cont.)

- In the Poisson example, $\widehat{\lambda}_{\text{MLE}} = \overline{X}$ achieved the CR lower bound, hence it is efficient.
- In the Normal example

$$\lim_{n \to \infty} \frac{\operatorname{Var}[S^2]}{\mathcal{I}^{-1}(\sigma^2)} = 1,$$

thus S^2 is asymptotically efficient. note S^2 is not an MLE, but still asymptotically efficient

 When we learned about large sample properties of Maximum Likelihood Estimators, we proved that (under some conditions)

$$\widehat{\theta}_{\text{MLE}} \sim AN(\theta, \mathcal{I}^{-1}(\theta)),$$

therefore MLEs are asymptotically unbiased and asymptotically efficient.

doesnt imply that finite sample of MLE is efficient still have to check

Muon decay example

• X was the cosine of the angle at which electrons are released, with pdf

$$f(x|\alpha) = \frac{1+\alpha x}{2}, -1 \le x \le 1, -1 \le \alpha \le 1.$$

• We calculated $\mathbb{E}[X] = \frac{\alpha}{3}$. Similarly,

$$\mathbb{E}[X^2] = \int_{-1}^1 x^2 \frac{1 + \alpha x}{2} dx = \frac{1}{3} \qquad \text{question from HW}$$

$$\Longrightarrow \boxed{\operatorname{Var}[X]} = \mathbb{E}[X^2] - \{\mathbb{E}[X]\}^2 = \frac{1}{3} - \frac{\alpha^2}{9} = \frac{3 - \alpha^2}{9}.$$

method of moments estimator

• The Method of Moments estimator was found to be $\widehat{\alpha}_{\mathrm{MME}} = 3\overline{X}$, with

and
$$\mathbb{E}[\hat{\alpha}_{\mathrm{MME}}] = 3\mathbb{E}[\bar{X}] = 3\mathbb{E}[X] = \alpha \Longrightarrow \text{ unbiased,}$$

$$\mathrm{Var}[\hat{\alpha}_{\mathrm{MME}}] = 9\mathrm{Var}[\bar{X}] = \frac{9\mathrm{Var}[X]}{n} = \frac{3-\alpha^2}{n}.$$

Muon decay example (cont.) remember we used newton raphson previously

- The Maximum Likelihood estimator, $\widehat{\alpha}_{\text{MLE}}$, is not given in a closed form: cannot calculate its exact sampling distribution.
- We do know that for large samples, $\widehat{\alpha}_{\text{MLE}} \sim \mathcal{N}(\alpha, \mathcal{I}^{-1}(\alpha))$ (approximately).
- Calculate

by asymptotic normality

$$\mathcal{I}(\alpha) = n\mathcal{I}^*(\alpha) = -n\mathbb{E}\left[\frac{\partial^2 \log f(x|\alpha)}{\partial \alpha^2}\right] = -n\int \frac{\partial^2 \log f(x|\alpha)}{\partial \alpha^2} f(x|\alpha) dx$$

$$= n\int_{-1}^1 \frac{x^2}{(1+\alpha x)^2} \frac{1+\alpha x}{2} dx = \begin{cases} \frac{n\left(\log \frac{1+\alpha}{1-\alpha} - 2\alpha\right)}{2\alpha^3}, & \alpha \neq 0, \\ \frac{n}{3}, & \alpha = 0. \end{cases}$$

can also calculate fisher info with I*

Muon decay example (cont.)

• The asymptotic relative efficiency is thus

$$\mathrm{eff}(\hat{\alpha}_{\mathrm{MME}},\hat{\alpha}_{\mathrm{MLE}}) = \frac{\mathrm{Var}[\hat{\alpha}_{\mathrm{MLE}}]}{\mathrm{Var}[\hat{\alpha}_{\mathrm{MME}}]} = \frac{2\alpha^3}{3-\alpha^2} \left(\log\frac{1+\alpha}{1-\alpha} - 2\alpha\right)^{-1} \ (\alpha \neq 0).$$

 Note how much efficiency the MME loses (relative to the MLE) close to the boundary of the parameter space!