תרגיל בית 1 – דו"ח הגשה

תוכן עניינים

מבוא
ניתוח וחקירת נתונים
תיאור הפיצ'רים ובדיקת התפלגויות
5-6וקורלציות וקשרים
ערכים חסרים והטיפול בהם
חוסר איזון בנתונים
הנדסת פיצ'רים
בחירת פיצ'רים עבור המודל
-10
-14
-12 XGBOOST
2-13 Fully Connected Neural Network
-14 Random Forest
סיכום
ביבליוגרפיה
נספחים

1. מבוא

- חקרנו את הנתונים מכל ההיבטים סטטיסטיקה תיאורית, התפלגויות, קורלציות חשובות בין פיצ'רים שונים או בין הפיצ'רים ללייבל, פילוח של חולים/לא חולים בתתי-קבוצות למיניהן.
 - טיפלנו בערכים החסרים בצורה מאוד יצירתית, המתחשבת בין היתר בהתפלגות הערכים הקיימים ובאחוזי ה- outliers של כל פיצ'ר, וגם בחוסר האיזון שיש בדאטה בין כמות החולים לבין כמות הבריאים.
- קראנו מאמרים מרתקים על אלח דם ועל האופן שבו מתמודדים עימו בעולם, ובמסגרת הקריאה מצאנו מספר מדדים שקשורים למחלה gSOFA ,SOFA ,SIRS מה שהוביל אותנו לבצע טרנספורמציות שקשורים למחלה gSOFA ,SOFA ,SIRS מה שהוביל אותנו לבצע טרנספורמציות ויצירת פיצ'רים חדשים, אשר קיבלו ציון גבוה במדד ה-feature importance של המודלים. כמו כן, עשינו מבחן השערות על אחד מהפיצ'רים הנ"ל.
 - ניסינו מגוון מודלים ואלגוריתמי למידה מבוססי עצים, boosting ומבוססי רשתות נוירונים ולמידה עמוקה, וחקרנו
 איזה פיצ'רים והיפר-פרמטרים מניבים את תוצאות החיזוי האופטימאליות. יתרה מזאת, הערכנו את הביצועים של
 המודלים על סמך מספר מדדים ואף ניתחנו את תהליך קבלת ההחלטות והשיקולים שלפיהם סיווגו את הדאטה.

2. ניתוח וחקירת נתונים

2.1. תיאור הפיצ'רים ובדיקת התפלגויות:

להלן תיאור ותרשימי התפלגויות רק של הפיצ'רים שבחרנו בהם עבור המודל, כפי שיפורט בסעיף 3.1. ניתן למצוא בנספחים 1 ו-7 את תרשימי ההתפלגויות של כלל הפיצ'רים ואת הטבלה המלאה (בהתאמה).

סטטיסטיקה תיאורית	תיאור	טיפוס	שם פיצ'ר	סוג פיצ'ר
מינימום: 20, מקסימום: 280	כמות פעימות הלב בדקה	Float	HR (Heart Rate)	
84 ממוצע: 84.66, חציון:	בנווול בע נווולותב בו קוו	11000	Till (Ficult Rate)	
מינימום: 20, מקסימום: 100	ריוויון חמצן בדם	Float	O2Sat	
98 ממוצע: 97.19, חציון:	2.2 [2.3.1] 1	1.000	02000	
מינימום:20.9, מקסימום: 50	טמפרטורת הגוף (צלזיוס)	Float	Temp	סימנים
ממוצע: 36.9, חציון: 36.5	(0)			חיוניים
מינימום: 20, מקסימום: 299	לחץ הדם בעת כיווץ שריר הלב	Float	SBP	
ממוצע: 123.51, חציון: 80	·			
מינימום: 20, מקסימום: 300	ממוצע משוקלל של לחצי הדם לאורך	Float	MAP	
80 ממוצע: 82.29, חציון:	מחזור קרדיאלי אחד			
מינימום: 32-, מקסימום: 49.5	מדד לעודף הביקרבונאט	Float	BaseExcess	
0 ממוצע: 0.74-, חציון:	5			
מינימום: 0, מקסימום: 55	כמות הביקרבונאט	Float	нсоз	
24 ממוצע: 24.08, חציון:	5			
מינימום: 50-, מקסימום: 4000	אחוז החמצן הנצרך	Float	FiO2	
ממוצע: 0.58, חציון: 0.5	' '		_	
מינימום: 6.62, מקסימום: 7.78	רמת החומציות	Float	рН	
ממוצע: 7.37, חציון: 7.38			I ⁻	
מינימום: 10, מקסימום: 100	הלחץ של פחמן דו-חמצני בדם	Float	PaCO2	
ממוצע: 41.16, חציון: 40				ערכי
מינימום: 23, מקסימום: 100	ריווי החמצן בדם העורקי	Float	SaO2	מעבדה
92.51 ממוצע: 92.51, חציון:	' '			
מינימום: 5, מקסימום: 9961	ריכוז האנזים AST בדם	Float	AST	
ממוצע: 264.5, חציון: 40	-		_	
מינימום: 1, מקסימום: 268	ריכוז האוריאה בדם	Float	BUN	
ממוצע: 23.55, חציון: 17			-	
מינימום: 7, מקסימום: 2528	מדד לאנזים הכבד	Float	Alkalinephos	
ממוצע: 101.3, חציון: 73				
מינימום: 1, מקסימום: 27.9	כמות הסידן בדם	Float	Calcium	
ממוצע: 7.54, חציון: 8.25	'			

מינימום: 0.2, מקסימום: 31	במות הלקטוז בדם במות הלקטוז בדם	Float	Lactate	
ממוצע: 82.68, חציון: 1.88	'			
מינימום: 0.6, מקסימום: 9.8	כמות המגנזיום בדם כמות המגנזיום בדם	Float	Magnesium	
ממוצע: 2.04, חציון: 2	בנווולוונוגנו ום בו ם	Hout	iviagnesiam	
מינימום: 0.3, מקסימום: 17.6	כמות הפוספט בדם	Float	Phosphate	
ממוצע: 3.54, חציון: 3.3	בנווול וובוסבט בו ם	Hout	Thosphate	
מינימום: 1.3, מקסימום: 27.5	כמות הפוטסיום בדם	Float	Potassium	
ממוצע: 4.13, חציון: 4.1	כמוונ וופוססיום בו ם	rioat	rotassium	
מינימום: 0.1, מקסימום: 49.6	כמות הבילירובין הכוללת בדם	Float	Bilirubin_total	
ממוצע: 1.98, חציון: 0.8	כמוול ווביליו ובין ווכוללול בו ם	rioat	biii dbiii_totai	
מינימום: 8.8, מקסימום: 71.7	כמות תאי הדם האדומים בדם	Float	Hct	
ממוצע: 30.81, חציון: 30.3	כמוול ולאי ווום וואו ומים בום	Hoat	TICL	
מינימום: 2.6, מקסימום: 25	כמות ההמוגלובין בדם	Float	Hgb	
ממוצע: 10.43, חציון: 10.3	בנווו וווונווגאובין בום	Hoat	rigo	
מינימום: 17.1, מקסימום: 250	הזמן בשניות עד להיווצרות כריש דם	Float	PTT	
ממוצע: 41.3, חציון: 32.4	ווומן בשניוונעו לוויוובו וונכו יש ום	Tioat	7 1 1	
מינימום: 0.1, מקסימום: 440	מספר כדוריות דם לבנות	Float	WBC	
ממוצע: 11.45, חציון: 10.3	מספו בווו וונום לבנוונ	Tioat	WBC	
ערך שביח- 0, שביחות-50.6%	אגף לטיפולים רפואיים במחלקת	בינארי) int	Unit1	
עון שביווי ט, שביוווניייסטט	הטיפול הנמרץ	(קטגוריאלי	Office	
מינ': 5366.8 <i>-,</i> מקס': 17.34	הפרש השעות בין זמן הרישום בבי"ח	Float	HospAdmTime	נתונים
-5.95 ממוצע: 50.95-, חציון:	לזמן הרישום בטיפול הנמרץ	Tioat	HospAdiffille	דמוגרפיים
מינימום: 1, מקסימום: 336	משך השהייה בטיפול הנמרץ	int	ICULOS	
ממוצע: 26.57, חציון: 21	נופן וופווייוו בסיפול וונניו ז	(שלם חיובי)	ICULUS	
ערך שביח- 1, שביחות-98.2%	האם המטופל סובל מאלח דם	בינארי) int Sonsist abol	SepsisLabel	תוצאה
עון שביוו- ד, שביוווונ-75.20	וואם וונוטופי טובי נואיוו ום	(קטגוריאלי	Sepsistabel	

ההתפלגויות של הפיצ'רים הרציפים חושבו על סמך כל הרשומות, בעוד שהפיצ'רים הקטגוריאליים – מגדר ו-UNIT1 – חושבו פר מטופל, מפני שמדובר בערכים קבועים לכל מטופל. באשר ללייבל, רצינו לבדוק מה היחס בין כמות המטופלים שאובחנו כחולים לבין כמות המטופלים הבריאים, ולכן גם יחס זה חושב פר מטופל ולא לפי כמות רשומות.

ניתן לראות כי חלק מהפיצ'רים מתפלגים (בקירוב) נורמאלית או חי-בריבוע, וניתן אף לשים לב לחוסר האיזון המובהק בדאטה בין המטופלים החולים לבין המטופלים הלא חולים בתרשים העוגה הרלוונטי.

2.2. קורלציות וקשרים:

חקרנו ולמדנו תופעות מדעיות-ביולוגיות מעניינות וקשרים שעשויים להיות בין הפיצ'רים השונים (שהם מדדים ביולוגיים של מטופל). בהתחשב בכך שערכי הפיצ'רים הינם רציפים, ביצענו מבחן פירסון לקורלציות וקיבלנו את התוצאות הבאות:

התוצאות שקיבלנו הגיוניות, הרי שישנם קשרים מדעיים מובהקים בין חלק מהפיצ'רים. כך למשל – MAP, SBP ו-MAP, SBP קשורים ללחץ הדם של המטופל ובמאמר [1] אף מציגים נוסחה לאמידת MAP על ידי SBP ו-BBR מספקים מדד לתפקודי (מה שיכול גם להעיד על ייתורם עבור למידת המודל. כמו כן, PH, HCO3 ו-BaseExcess מספקים מדד לתפקודי

הכליות. בנוסף, Bilirubin_direct הינו אחד המרכיבים של Bilirubin_total (סכום של Bilirubin_direct), ולפי מאמר (HGB), קיים קשר ישיר בין השניים.

זאת ועוד, ניתן לראות בגרפים תופעה מעניינת נוספת שאינה קשורה לקורלציות דווקא, והיא אופן פיזור התצפיות של מטופלים אשר אובחנו עם אלח דם – קל לראות שבכל הגרפים הפיזור של התצפיות הנ"ל הינו מאוד מזערי וכי רוב התצפיות מקובצות באזור יחיד, מה שעשוי להעיד על קיומם של מאפיינים וערכים ספציפיים המצביעים על היווצרותו של אלח דם.

בנוסף לכך, בעקבות זיהוי התופעה המתוארת קודם לכן בתרשימים של הקורלציות, בדקנו האם קיימת קורלציה בין הפיצ'רים (כל אחד לכשעצמו) לבין קיומו של אלח דם, אולם קיבלנו קורלציות נמוכות מאוד, כאשר הגבוהה ביותר עמדה על 12.5 אחוזים. להלן התרשים –

חקרנו גם את פילוח אוכלוסיית החולים והלא חולים על סמך נתונים דמוגרפיים, כגון מגדר. מצורף תרשים שבו ציר X מתבסס על עמודה שיצרנו, המכילה 1 אם המטופל חלה באלח דם (קרי, לפחות רשומה אחת מכילה לייבל 1) ו-0 אחרת, ובהתאם לכך התרשים מציג נתונים ללא כפילויות, אלא ככמות המטופלים. כמו כן, בציר Y עשינו סקאלת לוג על מנת

ניתן לראות בבירור כי פילוח האוכלוסייה של החולים והלא חולים שונה – בקרב הלא חולים ישנו רוב משמעותי של נשים לעומת גברים, ואילו באוכלוסיית החולים בדיוק ההפך.

2.3. ערכים חסרים והטיפול בהם:

בדקנו תחילה את אחוזי החסרות של כל אחד מהפיצ'רים בדאטה, כלומר, בכמה רשומות מתוך כלל הרשומות ערך הפיצ'ר חסר, וקיבלנו את התרשים הבא –

בגלל אחוזי החסרות הגבוהים בערכים של חלק מהפיצ'רים, ובמטרה לבצע השלמת נתונים חסרים עם ערכים פחות "רועשים", אימצנו תחילה את השיטה שתוארה במאמר [3] להתמודדות עם הנתונים החסרים והשגויים שהושארו במאגר – השמטת מטופלים עם פחות מ-36 רשומות, ששקולות ל-3 משמרות באורך 12 שעות למשמרת של מדידות; מדובר בהשמטה שנעשתה לשם השלמה עם ערכים "מהימנים" יותר בלבד, כלומר, מטופלים אלה כן מחזרו בשלב האימון של המודל. לאחר מכן, ובהתחשב בכך שהרשומות של כל מטופל מסודרות לפי רצף כרונולוגי, יישמנו את שיטת ההשלמה backward/forward כשהתאפשר (כלומר, כאשר הערך של הפיצ'ר לא היה חסר ברשומה אחת לפני/אחרי). בהקשר הזה, הפעלנו תחילה את שיטת ה-back ורק אז את שיטת ה-forward מכיוון שהיה משמעות לסדר יישום שתי השיטות הנ"ל, ובסדר הזה הצלחנו להשלים יותר רשומות מאשר באופן הפוך. בהמשך לכך, עבור הרשומות שלא התאפשר להשלים בשיטה הנ"ל, השלמנו עם הממוצע או החציון לפי כלל ההשלמה הבא – אם אחוז ה-outliers בפיצ'ר מסוים היה קטן מ-5%, השלמנו עם הממוצע, אחרת השלמנו עם החציון (שאינו רגיש ל-outliers).

ניתן למצוא בנספח 4 טבלה המציגה את אחוז ה-outliers בכל אחד מהפיצ'רים שנבחרו עבור מודל החיזוי.

.2.4 חוסר איזון בנתונים:

במסגרת העבודה עם הנתונים וחקירתם, הבחנו בכך שמאגר הנתונים אינו מאוזן וכי כמות המטופלים שאובחנו עם אלח דם קטנה באופן משמעותי לעומת כמות המטופלים הבריאים – יחס מקורב של 13 מטופלים בריאים למטופל אחד עם אלח דם. כפתרון לסוגיה הזו, ניסינו קודם לבצע גם Under-sampling של מטופלים בריאים, שזה להגדיל באופן אקראי רשומות של מטופלים בריאים וגם Over-sampling של מטופלים שאובחנו עם אלח דם, שזה להגדיל את כמות הרשומות של מטופלים שאובחנו עם אלח דם בצורה מלאכותית – הן ע"י יצירת רשומות סינתטיות על

סמך הרשומות הקיימות במאגר הנתונים והן ע"י דגימה מחדש. בדיעבד, לאחר שמצאנו כי ה-Over-sampling פוגע בחיזויים של המודל במקום לסייע, ביצענו רק Under-sampling וצמצמנו את היחס בין כמות המטופלים הבריאים לבין כמות המטופלים שאובחנו עם אלח דם מ-13:1 ל-5:1.

3. **הנדסת פיצ'רים**

3.1. בחירת פיצ'רים עבור המודל

בחלק הקודם בחנו את כל הדאטה והפיצ'רים שעומדים לרשותנו בצורה סטטיסטית וכללית. כעת, נרצה לחקור לעומק ולמצוא את הפיצ'רים הרלוונטיים ומעניינים (על סמך מאפיינים ביולוגיים ומדעיים שעשויים להצביע על התהוותו של אלח דם) עבור החיזויים של המודל. במסגרת הדברים, קראנו את מאמר [4] שדן בהרחבה על המדדים SOFA ו-SOFA (ראשי של Systemic Inflammatory Response Syndrome)

ו-Sequential [Sepsis-related] Organ Failure Assessment, בהתאמה) – מדדים שנועדו לנסות לסייע באבחון מוקדם , SIRS של אלח דם. במשך שנים רבות נעשה שימוש במדד SIRS מתוך אמונה שאלח דם נבע מתגובת SIRS לזיהום בגוף, של אלח דם. במשך שנים רבות נעשה שימוש במדד SIRS מתוך אמונה שאלח דם נבע מתגובת WBC. בהתאם לכך, ראינו וקביעת ערך המדד עבור מטופל התבססה על הפיצ'רים הבאים: PaCO2 ,Resp ,HR ,Temp ובמעלה הדרך, ומתוך הבנה כי מדד SIRS לא היה אינדיקטור בפיצ'רים הנ"ל כמועמדים רלוונטיים עבור מודל החיזוי. במעלה הדרך, ומתוך הבנה כי מדד SOFA לא היה אינדיקטור מספיק טוב, נוצר מדד SOFA – מדד שהעלייה בו נמצאה קשורה לסבירות גבוהה יותר של תמותה, ובפרט, מהוות אינדיקציה טובה יותר להיווצרותו של אלח דם. על כן, הפיצ'רים שמרכיבים את המדד הנ"ל מועמדים גם הם להיות רלוונטיים עבור המודל – FIO2 ,Creatinine ,Bilirubin ,Platelets ו-MAP.

על מנת לבסס את בחירת הפיצ'רים שלנו ככל שניתן ולמצוא את הפיצ'רים החשובים ביותר עבור המודל, ביצענו feature importance על סמך מודל החיזוי XGBOOST (המודל שנבחר בסוף) וקיבלנו את התוצאה הבאה –

בהתבסס על כל הממצאים לעיל ומעט ניסוי וטעיה, בחרנו ב-29 הפיצ'רים המובילים במדד ה-feature importance, כלומר, מ-ICULOS ועד Resp כולל, מכיוון שקיבלנו את התוצאות הכי טובות איתם.

3.2. טרנספורמציות על פיצ'רים

הוספת מדד של היחס BUN/CREATININE, שלפי מאמר [5], עשוי להצביע על מחלה/נזק בכליות, דימום במעיים – שהם סימפטומים <u>שעלולים להופיע</u> גם בעת התהוותו של אלח דם – ובעיות מערכתיות נוספות.
 במאמר הנ"ל, צוין כי הטווח התקין של המדד הינו בין 5 לבין 20, כך שמדדים מתחת ל-5 או מעל 20 מצביעים על היתכנותה של מחלה או אי-תקינות מערכתית בלתי נראית לעין. בהתאם לכך, בדקנו את פילוח החולים

על אף שהמדד הנ"ל לא מצביע באופן ישיר על התהוותו של אלח דם, אלא כאמור מצביע על איזושהי אי-תקינות מערכתית <u>שאולי</u> קשורה לאלח דם, ניתן עדיין לראות בתרשים לעיל הלימה חלקית בין טווחי המדדים לבין אחוז החולים באלח דם בקרב המטופלים שנמצאים באותו הטווח.

→ מבחן השערות: נשער כי תוחלת המדד הנ"ל בקרב המטופלים הבריאים שונה מהתוחלת של המטופלים החולים, כאשר השערת האפס היא שהתוחלות שוות. כלומר, שערכי המדד אינם תלויים בקיומו או אי-קיומו של אלח הדם. על מנת לבחון את השערתנו, השתמשנו ב-T-test דו-צדדי, רק לאחר שווידאנו כי התנאים להפעלתו מתקיימים. תחילה, ברור כי אין תלות בין מטופלים שונים. לאחר מכן, הסתכלנו על התפלגות לוג הערכים ב-QQ וקיבלנו כי הם מתפלגים נורמאלית (ראה תרשים בנספח 6), ומכיוון שמדובר בטרנספורמציה חד-חד ערכית ומונוטונית עולה ממש, הרי שתוצאות המבחן על לוג הערכים חלות גם על הערכים ללא הלוג.

תוצאות המבחן: דוחים את השערת האפס ברמת מובהקות 95%.

. בלומר, ההשערה שלנו מתקיימת, אר - $P-Value=1.84512\cdot e^{-17}pprox 0$

הוספת מדד SIRS כפי שכבר תואר בסעיף 3.1, שחושב ע"פ הקריטריונים שבנספח 2, כאשר פציינט מקבל 1
 אם מתקיימים לפחות שניים מהקריטריונים הנ"ל. בדומה למדד הקודם, גם כאן בדקנו את כמות החולים

הוספת מדד qSOFA שלפי מאמר [4], מהווה תחליף ל-SOFA ונועד לספק תוצאות מהר יותר (ומכאן השם qSOFA), אם כי מדויקות פחות בדרך כלל. המדד חושב לפי הקריטריונים שבנספח 5, כאשר פציינט מקבל
 1 אם הוא מקיים את שני הקריטריונים הנומריים. בדקנו גם עבור מדד זה את התפלגות המטופלים החולים

והבריאים בכל אחת מהקבוצות וקיבלנו את התרשים הבא –

גם כאן, הממצאים דומים לממצאים של מדד ה-SIRS, אולם פחות טובים בהתחשב בכך שאחוז גדול יותר של feature - חולים סווג כלא חולים ע"פ המדד הזה. לא השתמשנו במדד זה בסוף לאור הציון הנמוך שקיבל ב-importance.

בחלק מניסיונותנו לחלץ ולזקק את הנתונים והערכים האקספלנביליים ביותר במטרה לסייע למודל בחיזוי ולמזער את הרעש, ניסינו עבור כל מטופל להחליף את העמודות של הפיצ'רים בעמודות שמכילות את הממוצע ואת השיפוע של ישר הרגרסיה על סמך 6 השעות האחרונות. כלומר, בכל רשומה יופיע עבור כל פיצ'ר שיפוע וממוצע שחושב לפי 6 הרשומות שלפניו. הבחירה ספציפית ב-6 שעות הייתה בהתאם לדרישת המשימה שהמודל יחזה התהוותו של אלח דם 6 שעות לפני. אולם, טרנספורמציה זו לא הניבה תוצאות מספקות, לצערנו, ולכן לא המשכנו איתה.

4. <u>חיזויים</u>

- ביצענו אגרגציה על הרשומות כך שכל מטופל יוצג ע"י רשומה אחת בלבד. ספציפית, בדאטה של האימון השארנו לכל מטופל את הרשומה הראשונה שהייתה עם לייבל 1 במידה והייתה כזו, אחרת את הרשומה האחרונה. לעומת זאת, בדאטה של הטסט השארנו את הרשומה האחרונה.
- ב-Post Analysis של 3 האלגוריתמים, הרצנו את המודלים על 4 תתי-הקבוצות הבאות: גברים, נשים, מטופלים עד גיל 50 ומטופלים מגיל 50.
 - במטריצות הבלבול שמצורפות בהמשך, ציר Y הוא ציר הלייבל האמיתי וציר X הוא ציר החיזוי.
 - מצורפים מטה שלושת המודלים שהניבו את מדדי החיזוי הטובים ביותר, זאת לאחר שניסינו מודלים נוספים, כגון
 Decision Tree ,Bagging ,Adaboost).

i. The Algorithm: XGBOOST

ii. **Hyperparameters & Regularization:**

- n estimators = 200 $- max_depth = 50$

- eta = 0.05-gamma = 0.1

- reg lambda = 0.8- min child weight = 2

iii. **Training & Validation Results:**

Training Results:

- F1 Score: 0.9996 - Recall: 0.9993

- Precision: 1.0 - AUC-ROC: 0.9996

Test Results:

- F1 Score: 0.7181 - Recall: 0.6721

- Precision: 0.7709 - AUC-ROC: 0.828

Conf. Matrix on Train

Conf. Matrix on Validation

iv. Post Analysis:

- **F1 Score on Women:** 0.7148 - F1 Score on men: 0.7203

- F1 Score on Above 50 Y.O: 0.7195

- F1 Score on Less or Equal 50 Y.O: 0.7134

- Model's Interpretability:

The picture above portrays how the model predicts a patient's label – the table on the right consists of the patient's measurements' values; The line in the middle shows the threshold values for each feature and the weight it contributes to the model in deciding the patient's label; The bars on the left are the probabilities of this patient getting 0 or 1 as label. For example, we can see that the model is 100% sure that this patient's label is 0.

4.2. <u>אלגוריתם 2</u>

i. The Algorithm: Fully Connected Neural Network

ii. <u>Hyperparameters & Regularization</u>:

- Input Layer $\in \mathbb{R}^{29 \times 58}$ - Two Hidden Layers $\in \mathbb{R}^{58 \times 116}$

- Output Layer $\in \mathbb{R}^{116 \times 2}$ - Activation Function: ReLU

- Loss Function: Cross Entropy - Optimizer: ADAM

iii. <u>Training & Validation Results</u>:

Training Results:

- F1 Score: 0.6658 - Recall: 0.5597

- Precision: 0.8216 - AUC-ROC: 0.7677

Validation Results:

- F1 Score: 0.6111 - Recall: 0.6532

- Precision: 0.5741 - AUC-ROC: 0.8072

The results above were obtained after 2 EPOCHS.

iv. Post Analysis:

- **F1 Score on Women:** 0.6021 - **F1 Score on men:** 0.6105

- **F1 Score on Above 50 Y.O:** 0.6169

- F1 Score on Less or Equal 50 Y.O: 0.5765

- **Model's Interpretability:** Based on what we've learned in ML2 and upon what is widely known, there are no scientific-based explanations nor proofs about neural networks' learning process; All we know is that it improves its predictions' results by updating weights

and minimizing gradients iteratively according to a given loss function. Thus, the model's interpretability is rather vague and unexplainable.

4.3. אלגוריתם

- i. <u>The Algorithm</u>: Random Forest
- ii. <u>Hyperparameters & Regularization</u>:
 - n estimators = 200
- max depth = 25
- min samples leaf = 5

iii. Training & Validation Results:

Training Results:

- F1 Score: 0.8603
- Recall: 0.7618
- Precision: 0.988
- AUC-ROC: 0.88

Validation Results:

- F1 Score: 0.7068
- Recall: 0.61
- Precision: 0.8401
- AUC-ROC: 0.8003

Conf. Matrix on Train

Conf. Matrix on Validation

iv. Post Analysis:

- **F1 Score on Women:** 0.7031
- **F1 Score on men:** 0.7093
- F1 Score on Above 50 Y.O: 0.7049
- F1 Score on Less or Equal 50 Y.O: 0.7129
- Model's Interpretability:

Feature	Value
ICULOS	20.00
PaCO2	40.00
FiO2	0.50
Temp	37.28
pH	7.39
BUN	9.00
Bilirubin_total	0.90
AST	42.00

The same explanation about XGBOOST's interpretability applies here as well. Nevertheless, we can notice here that in the example above the model is 97% sure that the patient's label is 0 and 3% that the label is 1.

NOTE:

- We didn't use the accuracy measure, because in an imbalanced data set, assessing and improving a learning model based upon accuracy will lead the model to classify all data with the majority's label, guaranteeing a high accuracy score (that is equal to the percentage of data that is labeled with the majority's label).
- Although XGBOOST has a higher type I error score on the validation set in comparison
 with Random Forest, it has a lower type II error score, which explains XGBOOST's higher
 F1 score. We chose XGBOOST and were willing to tolerate such tradeoff at the price of a
 higher F1 score.

5. **סיבום**

במסגרת העבודה שלנו, קיבלנו תוצאות המצביעות על קשר חזק בין משך השהייה במחלקת הטיפול הנמרץ לבין אלח דם, וגם בין מדד SIRS לבין המחלה. כמו כן, נראה שמודלי למידה מבוססי עצים התמודדו טוב יותר עם משימת הסיווג בהשוואה לשאר סוגי המודלים (הן רשתות עמוקות והן Boosting), ובמיוחד, המודל הסופי שבחרנו בו – XGBOOST – אשר הגיע לתוצאות דיוק טובות, באופן יחסי.

יתרה מזאת, חוסר האיזון בדאטה, אחוזי החסרות הגבוהים בפיצ'רים והמחסור במדדים נוספים שהיו צריכים להילקח מהמטופלים (כגון הקריטריון השלישי הנדרש לחישוב מדד ה-SOFA בצורה מדויקת) היוו מגבלות למחקר שלנו, וסביר להניח כי אילולא מגבלות אלו, יכולנו לקבל תוצאות טובות ומהימנות יותר.

לאור כל הנאמר לעיל, נמליץ כצעדי המשך על מחקר נוסף שיתבסס על דאטה שלם יותר ומגוון יותר (למשל, תחת ההנחה שהדאטה שקיבלנו מגיע מבית חולים אחד, רצוי לאסוף דאטה ממספר בתי חולים), לאסוף מדדים נוספים מהמטופלים ולהתמקד בעיקר במודלים מבוססי עצים.

ביבליוגרפיה

- [1] Sun J, Yuan J, Li B. SBP Is Superior to MAP to Reflect Tissue Perfusion and Hemodynamic Abnormality Perioperatively. Front Physiol. 2021
- [2] WHAT IS THE CONNECTION BETWEEN HEMOGLOBIN AND HEMATOCRIT? (Hyperlink)
- [3] Cruz, M.F., Ono, N., Huang, M. et al. Kinematics approach with neural networks for early detection of sepsis (KANNEDS). BMC Med Inform Decis Mak 21, 163 (2021).
- [4] Singer, Mervyn, et al. "The third international consensus definitions for sepsis and septic shock (Sepsis-3)." Jama 315.8 (2016): 801-810
- [5] BUN/Creatinine Ratio: High & Low Levels + Normal Range (Hyperlink)

נספחים

[1]

Two or more of:

Temperature >38°C or <36°C

Heart rate >90/min

Respiratory rate >20/min or $PaCO_2$ <32 mm Hg (4.3 kPa) White blood cell count >12 $000/mm^3$ or <4000/mm³ or >10% immature bands

$MAP = DBP + 1/3 \times (SBP - DBP)$

[3]

(Outliers %	0	utliers %
FiO2	21.98	WBC	3.31
HospAdmTime	13.91	pH	2.62
Creatinine	12.02	Temp	1.90
PTT	10.53	SepsisLabel	1.76
BUN	7.35	MAP	1.67
Lactate	6.81	Hct	0.91
Calcium	5.66	HR	0.87
PaCO2	5.47	Hgb	0.76
Glucose	5.32	Age	0.16
ICULOS	4.27	Unit1	0.00
Phosphate	3.94	Gender	0.00
Platelets	3.40	patient id	0.00

[4]

Box 4. qSOFA (Quick SOFA) Criteria

Respiratory rate ≥22/min

Altered mentation

Systolic blood pressure ≥100 mm Hg

[5]

סטטיסטיקה תיאורית	תיאור	טיפוס	שם פיצ'ר	סוג פיצ'ר
מינימום: 20, מקסימום: 280 ממוצע: 84.66, חציון: 84	כמות פעימות הלב בדקה	Float	HR (Heart Rate)	
מינימום: 20, מקסימום: 100 ממוצע: 97.19, חציון: 98	ריוויון חמצן בדם	Float	O2Sat	
מינימום:20.9, מקסימום: 50 ממוצע: 36.9, חציון: 36.5	טמפרטורת הגוף (צלזיוס)	Float	Temp	
מינימום: 20, מקסימום: 299 ממוצע: 123.51, חציון: 80	לחץ הדם בעת כיווץ שריר הלב	Float	SBP	סימנים
מינימום: 20, מקסימום: 300 ממוצע: 82.29, חציון: 80	ממוצע משוקלל של לחצי הדם לאורך מחזור קרדיאלי אחד	Float	МАР	חיוניים
מינימום: 20, מקסימום: 300 ממוצע: 63.78, חציון: 62	לחץ הדם בעת הרפיית שריר הלב	Float	DBP	
מינימום: 1, מקסימום: 100 ממוצע: 18.75, חציון: 18	מספר הנשימות בדקה	Float	Resp	
מינימום: 10, מקסימום: 100 ממוצע: 33.03, חציון: 33	כמות הפחמן הדו-חמצני הנפלט	Float	EtCO2	
מינימום: 32-, מקסימום: 49.5 ממוצע: 0.74-, חציון: 0	מדד לעודף הביקרבונאט	Float	BaseExcess	
מינימום: 0, מקסימום: 55 ממוצע: 24.08, חציון: 24	כמות הביקרבונאט	Float	НСО3	
מינימום: 50-, מקסימום: 4000 ממוצע: 0.58, חציון: 0.5	אחוז החמצן הנצרך	Float	FiO2	
מינימום: 6.62, מקסימום: 7.78 ממוצע: 7.37, חציון: 7.38	רמת החומציות	Float	рН	
מינימום: 10, מקסימום: 100 ממוצע: 41.16, חציון: 40	הלחץ של פחמן דו-חמצני בדם	Float	PaCO2	ערכי מעבדה
מינימום: 23, מקסימום: 100 ממוצע: 92.51, חציון: 97	ריווי החמצן בדם העורקי	Float	SaO2	
מינימום: 5, מקסימום: 9961 ממוצע: 264.5, חציון: 40	ריכוז האנזים AST בדם	Float	AST	
מינימום: 1, מקסימום: 268 ממוצע: 23.55, חציון: 17	ריכוז האוריאה בדם	Float	BUN	
מינימום: 7, מקסימום: 2528 ממוצע: 101.3, חציון: 73	מדד לאנזים הכבד	Float	Alkalinephos	

מינימום: 1, מקסימום: 27.9 ממוצע: 7.54, חציון: 8.25	כמות הסידן בדם	Float	Calcium	
מינימום: 74, מקסימום: 145 ממוצע: 105.88, חציון: 106	כמות הכלוריד בדם	Float	Chloride	-
מינימום: 0.1, מקסימום: 41.9	במות הקריאטינין בדם במות הקריאטינין בדם	Float	Creatinine	-
ממוצע: 1.49, חציון: 0.92 מינימום: 0.01, מקסימום: 35		Float	Bilirubin_direct	_
ממוצע: 1.58, חציון: 0.42 מוצע: 10. מכקומו: 053	2.2.0 (2.17 2532	liout		
מינימום: 10, מקסימום: 952 ממוצע: 137.07, חציון: 127	כמות הגלוקוז בדם	Float	Glucose	
מינימום: 0.2, מקסימום: 31 ממוצע: 82.68, חציון: 1.88	כמות הלקטוז בדם	Float	Lactate	
מינימום: 0.6, מקסימום: 9.8 ממוצע: 2.04, חציון: 2	כמות המגנזיום בדם	Float	Magnesium	-
מינימום: 0.3, מקסימום: 17.6 ממוצע: 3.54, חציון: 3.3	כמות הפוספט בדם	Float	Phosphate	-
מינימום: 1.3, מקסימום: 27.5 ממוצע: 4.13, חציון: 4.1	כמות הפוטסיום בדם	Float	Potassium	1
מינימום: 0.1, מקסימום: 49.6 ממוצע: 1.98, חציון: 0.8	כמות הבילירובין הכוללת בדם	Float	Bilirubin_total	1
מינימום: 0.01, מקסימום: 440 ממוצע: 8.34, חציון: 0.3	כמות הטרופונין בדם	Float	Troponinl	-
מינימום: 8.8, מקסימום: 71.7 ממוצע: 30.81, חציון: 30.3	כמות תאי הדם האדומים בדם	Float	Hct	-
מינימום: 2.6, מקסימום: 25 ממוצע: 10.43, חציון: 10.3	כמות ההמוגלובין בדם	Float	Hgb	-
מינימום: 17.1, מקסימום: 250 ממוצע: 41.3, חציון: 32.4	הזמן בשניות עד להיווצרות כריש דם	Float	PTT	-
מינימום: 0.1, מקסימום: 440 ממוצע: 11.45, חציון: 10.3	מספר כדוריות דם לבנות	Float	WBC	-
מינימום: 35, מקסימום: 1760 ממוצע: 6285.69, חציון: 248	חלבון כרישה המיוצר בכבד	Float	Fibrinogen	-
מינימום: 2, מקסימום: 2322 ממוצע: 196.72, חציון: 182	במות טסיות הדם	Float	Platelets	-
מינימום: 15, מקסימום: 100 ממוצע: 61.66, חציון: 63.31	גיל המטופל	Float	Age	
אחוז נשים: 44.5, אחוז גברים: 55.5	מגדר (0 לאישה ו-1 לגבר)	וnt (בינארי קטגוריאלי)	Gender	1
ערך שביח- 0, שביחות-50.6%	אגף לטיפולים רפואיים במחלקת הטיפול הנמרץ	וnt (בינארי קטגוריאלי)	Unit1	נתונים
ערך שביח- 1, שביחות-50.6%	אגף לטיפולים כירורגיים במחלקת הטיפול הנמרץ	וnt (בינארי קטגוריאלי)	Unit2	דמוגרפיים
מינ': 5366.8-, מקס': 17.34 ממוצע: 50.95-, חציון: 5.95	הפרש השעות בין זמן הרישום בבי"ח לזמן הרישום בטיפול הנמרץ	Float	HospAdmTime	1
מינימום: 1, מקסימום: 336 ממוצע: 26.57, חציון: 21	משך השהייה בטיפול הנמרץ	int (שלם חיובי)	ICULOS	1
ערך שכיח- 1, שכיחות-98.2%	האם המטופל סובל מאלח דם	בינארי) int קטגוריאלי)	SepsisLabel	תוצאה
		ון טאוו אין		l