

Chapter 5 Thermochemistry

Energy

- Energy is the ability to do work or transfer heat.
 - Energy used to cause an object that has mass to move is called work (w).
 - Energy used to cause the <u>temperature</u> of an object to <u>rise</u> is called **heat** (q).

w and q are associated with changes or processes!

Work

Usually in an open container the only work done is by a gas pushing on the surroundings (or by the surroundings pushing on the gas).

Work

We can measure the work done by the gas if the reaction is done in a vessel that has been fitted with a piston: External pressure

$$W = -P_{\text{ext}}\Delta V$$

© 2012 Pearson Education, Inc.

Units of Energy

The SI unit of energy is the joule (J):

$$1 J = 1 \frac{kg m^2}{s^2}$$

 An older, non-SI unit is still in widespread use: the calorie (cal):

$$1 \text{ cal} = 4.184 \text{ J}$$

Zeroth Law of Thermodynamics

Thermal Equilibrium

Same Temperature

Equilibrium – unchanged with time

Zeroth Law of Thermodynamics

That's the principle of thermometer

System and Surroundings

Energy can enter or leave system as heat or as work done on piston

- The system includes the molecules we want to study (here, the hydrogen and oxygen molecules).
- The surroundings are everything else (here, the cylinder and piston).

System and Surroundings

We take the system's point of view.

Exchange of Heat between System and Surroundings

 When heat is absorbed by the system from the surroundings, the process is endothermic.

Exchange of Heat between System and Surroundings

- When heat is absorbed by the system from the surroundings, the process is endothermic.
- When heat is released by the system into the surroundings, the process is exothermic.

- Energy is neither created nor destroyed.
- In other words, the total energy of the universe is a constant; if the system loses energy, it must be gained by the surroundings, and vice versa.

$$E_{\text{system}} + E_{\text{surrounding}} = E_{\text{universe}} = \text{constant}$$

Energy may exist in a form of which we are not aware yet!

- Energy is neither created nor destroyed.
- In other words, the total energy of the universe is a constant; if the system loses energy, it must be gained by the surroundings, and vice versa.

$$E_{\text{system}} + E_{\text{surrounding}} = \text{constant}$$

- Energy is neither created nor destroyed.
- In other words, the total energy of the universe is a constant; if the system loses energy, it must be gained by the surroundings, and vice versa.

$$\Delta E_{sys} > 0$$

$$\Delta E_{sur} < 0$$

$$energy = heat + work$$

$$\Delta E = q + w$$

$$E_{\text{system}} + E_{\text{surrounding}} = \text{constant}$$

E(system) + E(surrounding) = constant

$$E = mc^2$$

E(system) + E(surrounding) = constant

Energy is an abstract thing, we don't know exactly what energy is!

State Variables

State variables:

P, *V*, *T*, etc.

Experimental observables

State functions:

$$E = \frac{3}{2}RT$$

Energy of monatomic ideal gas

The internal energy of a system is the sum of all kinetic and potential energies of all components of the system; we call it E.

Usually we have no way of knowing the internal energy of a system in condensed phase; finding that value is simply too complex a problem.

- However, we do know that the internal energy of a system is independent of the path by which the system achieved that state.
 - In the system depicted in the following figure, the water could have reached room temperature from either direction.

© 2012 Pearson Education, Inc.

- Therefore, internal energy is a state function.
- It depends only on the present state of the system, not on the path by which the system arrived at that state.
- And so, ΔE depends only on E_{initial} and E_{final} .

By definition, the change in internal energy, ΔE , is the final energy of the system minus the initial energy of the system: $\Delta E = E_{\text{final}} - E_{\text{initial}}$

 $E_{\rm initial}$ greater than $E_{\rm final}$, energy released from system to surroundings during reaction, $\Delta E < 0$

 When energy is exchanged between the system and the surroundings, it is exchanged as either heat (q) or work (w).

$$\Delta E = q + w$$

ΔE , q, w, and Their Signs

For q + means system gains heat - means system loses heat + means work done on system - means work done by system For ΔE + means net gain of energy by system - means net loss of energy by system

© 2012 Pearson Education, Inc.

From the system's point of view

Heat and Work Are Not State Functions

- By definition, q and w are not state functions.
- Whether the battery is shorted out or is discharged by running the fan, its ∆E is the same.
 - But q and w are different in the two cases.

State Functions and Path Functions

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved.

Potential energy of hiker 1 and hiker 2 is the same although they took different paths.

Potential energy (*U*), pressure (*P*), volume (*V*), and temperature (*T*) are state functions.

$$\Delta U = U_{\text{final}} - U_{\text{initial}}$$
 $\Delta P = P_{\text{final}} - P_{\text{initial}}$
 $\Delta V = V_{\text{final}} - V_{\text{initial}}$
 $\Delta T = T_{\text{final}} - T_{\text{initial}}$

Work (w) and heat (q) are **path functions**. They depend on the path to achieve that condition.

- For most chemical reactions, we only need to consider the work done due to volume expansion or contraction, i.e. $w = -P_{\text{ext}} \Delta V$
- Under the condition of <u>constant system</u> pressure, we have

$$W = -P_{\text{ext}} \Delta V = -P_{\text{sys}} \Delta V \equiv -P\Delta V$$

- First law of thermodynamics
 - $\Delta E = q + w = q_P P \Delta V$
 - $q_P = \Delta E + P\Delta V = \Delta E + \Delta (PV) = \Delta (E + PV)$

$$q_P = \Delta(E + PV)$$

The heat change under constant pressure is independent of path!

 Enthalpy is defined as the internal energy plus the product of pressure and volume:

$$H = E + PV$$

At constant system pressure, ΔH is the <u>heat</u> gained or lost of the system.

- If a process takes place at constant pressure (as the majority of processes we study do) and the only work done is this pressure-volume work, we can account for heat flow during the process by measuring the enthalpy of the system.
- Enthalpy is the internal energy plus the product of pressure and volume:

$$H = E + PV$$

 When the system changes at constant pressure, the change in enthalpy, ΔH, is

$$\Delta H = \Delta (E + PV)$$

This can be written

$$\Delta H = \Delta E + P \Delta V$$

• Since $\Delta E = q + w$ and $w = -P\Delta V$, we can substitute these into the enthalpy expression:

$$\Delta H = \Delta E + P \Delta V$$
$$\Delta H = (q + w) - w$$
$$\Delta H = q$$

 So, at constant pressure, the change in enthalpy is the heat gained or lost.

$$\Delta H = q_p$$

Enthalpy of Reaction

The *change* in enthalpy, ΔH , is the enthalpy of the products minus the enthalpy of the reactants:

$$\Delta H = H_{\text{products}} - H_{\text{reactants}}$$

 ΔH < 0, exothermic; ΔH > 0, endothermic

Enthalpy of Reaction

This quantity, ΔH , is called the **enthalpy of reaction**, or the **heat of reaction**.

32

More about Enthalpy

Enthalpy is an extensive property.

Enthalpy of reaction (Heat of combustion)

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$
 $\Delta H = -191.3 \text{ kcal/mol}$

Don't forget to specify the amount because enthalpy is an <u>extensive</u> property.

More about Enthalpy

 ΔH for a reaction in the forward direction is equal in size, but opposite in sign, to ΔH for the reverse reaction.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

$$\Delta H = -191.3 \text{ kcal/mol}$$

$$CO_2(g) + 2H_2O(g) \rightarrow CH_4(g) + 2O_2(g)$$

 $\Delta H = 191.3 \text{ kcal/mol}$

More about Enthalpy

 ∆H for a reaction depends on the state of the products and the state of the reactants.

At different T and P, ΔH will be different!

Standard conditions:

1 atm, 1 M, temperature of interest (usually 298 K)

Heat Capacity and Specific Heat

- The amount of energy required to raise the temperature of a substance by 1 K (1°C) is its heat capacity.
- If the heat capacity is given <u>per gram</u> of substance, it is called **specific heat** with the unit of J K⁻¹ g⁻¹ or J °C⁻¹ g⁻¹. It is the energy required to raise the temperature of 1 g of a substance by 1°C.
- If the heat capacity is given <u>per mole</u> of the substance, it is called molar heat capacity. It has the unit of J K⁻¹ mol⁻¹ or J °C⁻¹ mol⁻¹.

Elements		Compounds	
Substance	Specific Heat (J/g-K)	Substance	Specific Heat (J/g-K)
$N_2(g)$	1.04	$H_2O(l)$	4.18
Al(s)	0.90	$CH_4(g)$	2.20
Fe(s)	0.45	$CO_2(g)$	0.84
Hg(l)	0.14	$CaCO_3(s)$	0.82

For an ideal gas,

$$(KE)_{avg} = \frac{3}{2}RT$$

• Energy required to change the energy of 1 mole of an ideal gas by ΔT is

Energy ("heat") required =
$$\frac{3}{2}R\Delta T$$

 The molar heat capacity of a substance is defined as the energy required to raise the temperature of 1 mole of that substance by 1 K. Thus we may conclude that the molar heat capacity of an ideal gas is 3/2 R.

Heating an Ideal Gas at Constant Volume

$$C_{\rm v} = \frac{3}{2}R =$$
 "heat" required to change the temperature of 1 mol of gas by 1 K at constant volume

Heating an Ideal Gas at Constant Pressure

Energy required = "heat" =
$$\begin{cases} \text{energy needed} \\ \text{to change the} \\ \text{translational energy} \end{cases}$$
 + $\begin{cases} \text{energy needed to} \\ \text{do the } PV \text{ work} \end{cases}$

$$P\Delta V = nR\Delta T = R\Delta T$$
 (per mole)

Heat required to increase the temperature of 1 mol of gas by 1 K (constant P) $= \frac{3}{2}R + R = \frac{5}{2}R$

$$= C_{\rm v} + R = C_{\rm p}$$

Heating a Gas: Energy and Enthalpy

$$E = \frac{3}{2}RT \qquad \text{(per mole)}$$

$$\Delta E = \frac{3}{2}R\Delta T \qquad \text{(per mole)}$$

$$\Delta E = C_{\text{v}}\Delta T \qquad \text{(per mole)}$$

$$\Delta E = nC_{\text{v}}\Delta T \qquad \text{(n moles)}$$
"Heat" required = $q_{\text{p}} = nC_{\text{p}}\Delta T$

$$= n(C_{\text{v}} + R)\Delta T$$

$$= nC_{\text{v}}\Delta T + nR\Delta T$$

$$\Delta E \qquad P\Delta V = \text{work required}$$

$$H = E + PV$$

$$\Delta H = \Delta E + \Delta (PV)$$

$$\Delta H = \Delta E + \Delta (nRT) = \Delta E + nR\Delta T$$

$$\Delta H = nC_{v}\Delta T + nR\Delta T$$

$$= n(C_{v} + R)\Delta T = nC_{p}\Delta T$$

$$E \propto T \quad \text{and} \quad H \propto T$$

$$q = nC\Delta T$$

Thermodynamic Properties of an Ideal Gas

Expression	Application
$C_{\rm v} = \frac{3}{2}R$	Monatomic ideal gas
$C_{\rm v} > \frac{3}{2}R$	Polyatomic ideal gas (value must be measured experimentally)
$C_{\rm p} = C_{\rm v} + R$	All ideal gases
$C_{\rm p} = \frac{5}{2}R = \frac{3}{2}R + R$	Monatomic ideal gas
$C_{\rm p} > \frac{5}{2}R$	Polyatomic ideal gas (specific value depends on the value of C _v)
$\Delta E = nC_{\rm v}\Delta T$	All ideal gases
$\Delta H = nC_{\rm p}\Delta T$	All ideal gases

Heat Capacity and Specific Heat

Liquid N₂

Iced water

Metal block with water cooling

Microscopic Origin of Heat Capacity

Energy can be absorbed by a substance in various forms:

- 1. Translational kinetic energy
- 2. Vibrational energy
- 3. Rotational energy
- 4. Intermolecular bonding breaking

For most situations, translational kinetic energy is directly proportional to temperature.

The more the forms (degree of freedom), the larger the heat capacity.

Constant Pressure Calorimetry

By carrying out a reaction in aqueous solution in a simple calorimeter such as this one, one can indirectly measure the heat change for the system by measuring the heat change for the water in the calorimeter.

Constant Pressure Calorimetry

Because the specific heat for water is well known (4.184 J/g·K), we can measure ΔH for the reaction with this equation:

$$q = m \times s \times \Delta T$$

Bomb Calorimetry

- Reactions can be carried out in a sealed "bomb" such as this one.
- The heat absorbed (or released) by the water is a very good approximation of the enthalpy change for the reaction.

Bomb Calorimetry

- Because the volume in the bomb calorimeter is constant, what is measured is really the change in internal energy, ΔE, not ΔH.
- For most reactions, the difference is very small.

Hess's Law

Which one is more important, process or result?

Process doesn't matter!Only the starting and finishing conditions are important!

Any process carried out in several steps, the overall ΔH is equal to the sum of the enthalpy changes (signed) for the individual steps.

Hess's Law

Because ΔH is a state function, the total enthalpy change depends only on the initial state of the reactants and the final state of the products.

Formation of an Ionic Solid

50

Enthalpies of Formation

Standard heat of formation, $\Delta H_{\rm f}^{0}$

Elements at standard states → Compound at standard states

Standard states are the thermodynamically most stable form of a substance at the particular temperature of interest at 1 atm

Carbon — graphite

Oxygen — $O_2(g)$

Water — $H_2O(l)$

ΔH of Formation

C (graphite) +
$$2H_2(g) \rightarrow CH_4(g)$$

$$\Delta H_{\rm f}^{0} = ?$$

$$\Delta H_{\rm f}^{0}({\rm CO}_{2}) = -93.963 \text{ kcal/mol}$$

$$\Delta H_{\rm f}^{0}({\rm H_{2}O}) = -68.317 \text{ kcal/mol}$$

$$\Delta H_{\rm c}^{0}$$
 (CH₄) = -210.8 kcal/mol

ΔH of Formation

$$CH_{4}(g) + 2O_{2}(g) \xrightarrow{\Delta H_{c}^{0}(CH_{4})} CO_{2}(g) + 2H_{2}O(l)$$

$$\uparrow \Delta H_{f}^{0} \uparrow \qquad \uparrow \Delta H_{f}^{0}(H_{2}O)$$

$$C(s) + 2H_{2}(g) + 2O_{2}(g) \xrightarrow{\Delta H_{f}^{0}(CO_{2})} CO_{2}(g) + 2H_{2}(g) + O_{2}(g)$$

$$\Delta H_{f}^{0}(CO_{2}) = -93.963 \text{ kcal/mol}$$

$$\Delta H_{f}^{0} + (-210.8) = (-93.963) + (-68.317) \times 2$$

$$\Delta H_{f}^{0}(CH_{4}) = -210.8 \text{ kcal/mol}$$

Hess' Law:

$$\Delta H_{\rm f}^{\rm o}$$
 (CH₄) = 210.8 – 93.963 + 2 × (– 68.317)
= -19.797 kcal/mol
= -19.8 kcal/mol

ΔH of Formation

$$\Delta H_{\text{reaction}}^{0} = \sum \Delta H_{f}^{0} \left(\text{products} \right) - \sum \Delta H_{f}^{0} \left(\text{reactants} \right)$$

$$\Delta H_f^0$$
 (elements) = 0

$$\Delta H_f^0$$
 (diamond) $\neq 0$

-1.88 kJ/mol ?

Standard Enthalpies of Formation

Standard enthalpies of formation, ΔH_f° , are measured under standard conditions (1 atm) and typically 25°C.

TABLE 5.3 • Standard Enthalpies of Formation, ΔH_f° , at 298 K							
Substance	Formula	ΔH_f° (kJ/mol)	Substance	Formula	ΔH_f° (kJ/mol)		
Acetylene	$C_2H_2(g)$	226.7	Hydrogen chloride	HCl(g)	-92.30		
Ammonia	$NH_3(g)$	-46.19	Hydrogen fluoride	HF(g)	-268.60		
Benzene	$C_6H_6(l)$	49.0	Hydrogen iodide	HI(g)	25.9		
Calcium carbonate	$CaCO_3(s)$	-1207.1	Methane	$CH_4(g)$	-74.80		
Calcium oxide	CaO(s)	-635.5	Methanol	$CH_3OH(l)$	-238.6		
Carbon dioxide	$CO_2(g)$	-393.5	Propane	$C_3H_8(g)$	-103.85		
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCl(s)	-127.0		
Diamond	C(s)	1.88	Sodium bicarbonate	$NaHCO_3(s)$	-947.7		
Ethane	$C_2H_6(g)$	-84.68	Sodium carbonate	$Na_2CO_3(s)$	-1130.9		
Ethanol	$C_2H_5OH(l)$	-277.7	Sodium chloride	NaCl(s)	-410.9		
Ethylene	$C_2H_4(g)$	52.30	Sucrose	$C_{12}H_{22}O_{11}(s)$	-2221		
Glucose	$C_6H_{12}O_6(s)$	-1273	Water	$H_2O(l)$	-285.8		
Hydrogen bromide	HBr(g)	-36.23	Water vapor	$H_2O(g)$	-241.8		

^{© 2012} Pearson Education, Inc.

Energy in Foods

Most of the fuel in the food we eat comes from carbohydrates and fats.

TABLE 5.4 • Compositions and Fuel Values of Some Common Foods

	Approximate Composition (% by mass)			Fuel Value	
	Carbohydrate	Fat	Protein	kJ/g	kcal/g (Cal/g)
Carbohydrate	100	_	_	17	4
Fat	:	100	1	38	9
Protein	9 	() ()	100	17	4
Apples	13	0.5	0.4	2.5	0.59
Beer [†]	1.2	_	0.3	1.8	0.42
Bread	52	3	9	12	2.8
Cheese	4	37	28	20	4.7
Eggs	0.7	10	13	6.0	1.4
Fudge	81	11	2	18	4.4
Green beans	7.0		1.9	1.5	0.38
Hamburger	3	30	22	15	3.6
Milk (whole)	5.0	4.0	3.3	3.0	0.74
Peanuts	22	39	26	23	5.5

[†]Beer typically contains 3.5% ethanol, which has fuel value.

^{*}Although fuel values represent the heat *released* in a combustion reaction, fuel values are reported as positive numbers.

© 2012 Pearson Education, Inc.

05 - Thermochemistry

Fuels

Current worldwide energy consumption rate:

$$\sim 15 \text{ TW}$$
 (1 W = 1 J/s)

$$(1 W = 1 J/s)$$

Ref: R. E. Blankenship et al. Science 2011, 332, 805

NASA Earth Observatory image by Robert Simmon (took in 2012)

Possible options for meeting the 15 TW-Challenge

Current worldwide energy sources

Fossil fuel

Oil price is rapidly increasing, many kind of undesired pollutions are produced (air, water, green house).

Nuclear power

There are now over 430 commercial nuclear power reactors operating in 31 countries, with 0.4 TW of total capacity.

Sources of Energy in Taiwan

Renewable Energy Sources

If 1 day of solar irradiation is captured to generate energy (assume 5% efficiency), how long will it support the energy we are consuming?

Ans:
$$\frac{1.2 \times 10^5 \text{ TW x } 5\% \text{ x } 1 \text{day}}{15 \text{ TW x } 1 \text{ day}} = 400 \text{ (day)} = 1.1 \text{ year !!}$$