

Substituted Ethanes. IV. The Rotational Isomers of 1,1,2,2Tetrachloroethane: Assignments to the Normal Vibrations

James P. Zietlow, Forrest F. Cleveland, and Arnold G. Meister

Citation: The Journal of Chemical Physics 24, 142 (1956); doi: 10.1063/1.1700816

View online: http://dx.doi.org/10.1063/1.1700816

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/24/1?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Molecular Acoustic and Spectroscopic Studies on the Internal Rotation in 1Fluoro1,1,2,2tetrachloroethane J. Chem. Phys. **49**, 5349 (1968); 10.1063/1.1670056

Internal Rotation in Liquid 1Fluoro1,1,2,2Tetrachloroethane

J. Chem. Phys. 47, 3130 (1967); 10.1063/1.1712364

Rotational Isomerism in 1Fluoro1,1,2,2Tetrachloroethane

J. Chem. Phys. 29, 680 (1958); 10.1063/1.1744568

Infrared and Raman Spectra of 1,1,2,2Tetrachloroethane; Calculation of Normal Vibrations

J. Chem. Phys. 23, 1907 (1955); 10.1063/1.1740602

Spectroscopic Studies of Rotational Isomerism in Fluorinated Ethanes. I. 1,2Difluoro1,1,2,2 Tetrachloroethane

J. Chem. Phys. 23, 113 (1955); 10.1063/1.1740507

TABLE VI. Vibrational frequencies of ozone and isotopic ozone.

	O ₃ 16 Observed frequency* (cm ⁻¹)	O16O18O16 Calculated frequency ^b (cm ⁻¹)	O16O16O18 Calculated frequency ^b (cm ⁻¹)
v ₁	1110	1080	1095
ν_2	705	697	688
ν3	1043	1008	1029

Measured by Badger and Wilson.
Calculated using force constants in last column of Table II.

possible unambiguous assignment of rotational transitions of other isotopic ozone molecules.

Infrared data on isotopic ozone can also be used to check the calculated force constants. Unfortunately, no such data have been reported to date. Nevertheless, the vibration frequencies of O¹⁶O¹⁶O¹⁸ and O¹⁶O¹⁸O¹⁶ have been calculated and are listed in Table VI.

It must be emphasized that the ultimate accuracy of the potential function is limited by a number of factors. These include neglect of anharmonicity, use of "effective" instead of equilibrium moments of inertia, the accuracy of infrared measurements which are used to obtain interrelations among the force constants, and neglect of the inertia defect in obtaining relations among the seven nonvanishing τ 's.

ACKNOWLEDGMENTS

The author wishes to thank Professor E. Bright Wilson, Jr., for suggesting this problem and for many helpful discussions.

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 24, NUMBER 1

JANUARY, 1956

Substituted Ethanes. IV. The Rotational Isomers of 1,1,2,2-Tetrachloroethane: Assignments to the Normal Vibrations

JAMES P. ZIETLOW,* FORREST F. CLEVELAND, AND ARNOLD G. MEISTER Spectroscopy Laboratory, † Department of Physics, Illinois Institute of Technology, Chicago 16, Illinois (Received March 30, 1955)

The wave numbers of the normal vibrations of trans 1,1,2,2-tetrachloroethane and some of the fundamentals of the deuterated molecule were calculated by the Wilson FG matrix method. The infrared spectrum of 1,1,2,2-tetrachloroethane has been obtained from 530 to $4000 \text{ K } (\text{K} = \text{kayser} = \text{cm}^{-1})$. Complete assignments of all the observed Raman and infrared bands have been made and some unobserved fundamentals have been computed.

INTRODUCTION

KAGARISE and Rank¹ (KR) determined the rotational isomers of 1,1,2,2-tetrachloroethane to be trans (C_{2h}) and gauche (C_2) . Complete assignment of the observed Raman and infrared wave numbers to the various symmetry types could not be made by KR because of the incompleteness of their infrared spectrum in the KBr region, the lack of data showing the temperature dependence of the intensities of the infrared bands, and their observance of a smaller number of Raman lines than are allowed by the selection rules.

The difficulties encountered in attempts^{1,2} to obtain satisfactory infrared intensity-temperature measurements for 1,1,2,2-tetrachloroethane make it unlikely that this information will be available soon. In this work the wave numbers of the normal vibrations of the trans-isomer were computed in an effort to complete the assignment of the observed Raman displacements and infrared bands.

EXPERIMENTAL DATA

With the exception of the Raman displacements in brackets or parentheses, all the Raman data in Table I³ for 1,1,2,2-tetrachloroethane was obtained by KR.1 The 4 values in brackets were reported by Langseth and Bernstein⁴ (LB) who also published the Raman data for the deuterated molecules. These bracketed Raman displacements were not verified in any of 9 other investigations,1,5-11 including the present one. The 2 Raman displacements in parentheses were reported in 3 separate investigations.8,10,11 In the first column, + means that the Raman line intensity increases with a decrease in temperature and hence belongs to the more stable

^{*} Present address: Research and Development Laboratories, The Pure Oil Company, Crystal Lake, Illinois.

[†] Publication No. 114. ¹ R. E. Kagarise and D. H. Rank, Trans. Faraday Soc. 48, 394

<sup>(1952).
&</sup>lt;sup>2</sup> F. E. Malherbe and H. J. Bernstein, J. Am. Chem. Soc. 74, 1859 (1952).

³ In accord with the recommendation of the Joint Commission for Spectroscopy, σ is used as the symbol for wave number and **K** (kayser) is used for the wave number unit. See J. Opt. Soc. Am.

⁽Rayser) is used for the wave number unit. See J. Opt. Soc. Am. 43, 410 (1953); Spec. Mol. 3, 67 (1954).

4 A. Langseth and H. J. Bernstein, J. Chem. Phys. 8, 410 (1940).

6 P. Pringsheim and B. Rosen, Z. Physik 50, 741 (1928).

6 V. N. Thatte and S. Shahane, Indian J. Phys. 6, 155 (1931).

7 W. Hanle, Ann. Physik 15, 345 (1932).

8 K. W. F. Kohlrausch and G. P. Ypsilanti, Z. physik. Chem.

B29, 274 (1935).

B. Trumpy, Z. Physik 93, 624 (1935). ¹⁰ Mizushima, Morino, and Kozima, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 29, 111 (1936).

¹¹ R. Ananthakrishnan, Proc. Indian Acad. Sci. 5A, 285 (1937).

Table I. Raman and infrared spectral data and assignments for liquid 1,1,2,2-tetrachloroethane.⁸

Temp.	Cl ₂ HC – CHCl ₂ Raman			Infrared		Cl ₂ L	C -CD	Cl ₂		Assignment	
depend.	$\Delta\sigma$	ρ	I		σε	Δσ	Raman I	σο	σ	type	Isomer
_ _	91	D	5			88.2	6		σ_{10}	a	gauche
+	175	0.73	2.5		116	172,6	3		σ ₉	a_u a	trans gauche
7		0.75	4.5						$\begin{cases} 2\sigma_{10} \end{cases}$	$\stackrel{a}{A}_{o}$	trans
	[183.6]	0.50			404	180.4	1	404	$2\sigma_{10}$	\boldsymbol{A}	gauch e
_ +	224 240	0.52 0.78	1.2 3		186	226.2 239.8	2 5	186	σ ₆	a_g	trans
-	240	0.78	3		281	239.0	3		σ_8 σ_{18}	$egin{aligned} a \ b_u \end{aligned}$	gauche trans
+	287	0.86	4	290		287.1	5		σ ₁₈	b	gauche
	298	P?	0.8	226	286	295.1	2	284	σ_{13}	b_{g}	trans
+	(325) 353	0.22	10	326 352		350.2	7		$\sigma_{17} \ \sigma_{7}$	a b	gauche gauche
•				00-	359				σ_{17}	\tilde{b}_u	trans
_	366	0.13	4.5		368	362.1	3	367	σ_5	a_g	trans
+	(399) 546	0.86	2	545		531.2	2		$\sigma_{16} \\ \sigma_{15}$	$_{b}^{b}$	gauche gauche
Т	340	0.00	-	580		301.2	-		$\int \sigma_7 + \sigma_8$	$\stackrel{\it J}{A}$	gauche
	440		_			620.0	_		$2\sigma_{18}$	\boldsymbol{A}	gauche
+	648	0.03	6	651 71 4		628.0	7		σ ₆	$\overset{a}{B}$	gauche
				738	720				$\sigma_9 + \sigma_{15} \\ \sigma_{16}$	b_u	gauch e trans
				754					$\sigma_8 + \sigma_{15}$	B	gauche
-	765	0.17	2.5		792	703.1	2	698	σ_4	a_{g}	trans
+	801	0.58	6.5	795.		741.0	8		σ_5	\boldsymbol{a}	gauch e
				170.	803				σ_8	a_u	trans
	811	0.58	2		822	758.1	2	763	σ_{12}	b_{g}	trans
									$\int \sigma_4 + \sigma_9$	A_u	trans
				873					$\begin{cases} \sigma_6 + \sigma_8 \\ \sigma_5 + \sigma_{10} \end{cases}$	$rac{A}{A}$	gauche gauche
									$\sigma_{15} + \sigma_{17}$	Ä	gauche
				006					$\int \sigma_9 + \sigma_{12}$	B_u	trans
				906					$\sigma_{10}+\sigma_{12}$	B_u Impurity?	trans
									$\int \sigma_{15} + \sigma_{16}$	A	gauche
				929					$\sigma_6+\sigma_{18}$	\overline{B}	gauche
					961	772.1	1	794	σ_3	a_{g}	trans
				973					$\begin{cases} \sigma_{14} \\ \sigma_5 + \sigma_9 \end{cases}$	b_A	gauche gauche
									$\sigma_6 + \sigma_{17}$	\ddot{B}	gauche
+	1018	0.28	0.4	1017		829.8	2		σ_4	a	gauche
	[1028.1]			1087					$\frac{\sigma_6+\sigma_{12}}{2\sigma_{15}}$	$_{A}^{B_{g}}$	trans . gauche
	[1118]			1109		886.3	1		2015 σ ₁₃	$\overset{A}{b}$	gauche
	[1171]			1188	1194				σ_{15}	b_u	trans
	1204	0.06	0.4	1201	1207 1211	938.0	1	936	σ_7	a_u	trans
-	1204 1216	0.86 0.86	0.4 1.2	1215	1411	950.6	1 2	930	$oldsymbol{\sigma_{11}}{\sigma_{12}}$	b_{a}	trans gauche
÷	1242	0.56	0.4	1242		1006.6	2 1		σ_3	a	gauche
- + + +	1279	0.867	0.2	1278	1264	1100.0	1	1065	σ_2	\boldsymbol{a}	gauche
_	1306	0.28	0.4		1364			1265	σ_2	$\overset{a_{\sigma}}{B}$	trans gauche
				1306					$\left\{\begin{array}{l}\sigma_4+\sigma_{18}\\\sigma_9+\sigma_{11}\end{array}\right.$	$\stackrel{D}{B}_{u}$	trans
				1336					$\sigma_5 + \sigma_{15}$	\boldsymbol{B}	gauche
				1447					$\sigma_2 + \sigma_9$	A_{\perp}	gauche
				1598					$\left\{ egin{array}{l} 2\sigma_{5} \ \sigma_{8}+\sigma_{12} \end{array} ight.$	$\stackrel{A}{B}_{m{u}}$	gauche trans
									$2\sigma_4$	$\stackrel{\mathcal{D}u}{A}$	gauche
				2031					$\begin{cases} \sigma_3 + \sigma_5 \end{cases}$	\boldsymbol{A}	gauche
									$\sigma_2 + \sigma_{16}$	$_{A}^{B_{f u}}$	trans gauche
				2071					$\begin{cases} \sigma_2 + \sigma_5 \\ \sigma_{13} + \sigma_{14} \end{cases}$	$\stackrel{A}{A}$	gauche
				2387					$\int \sigma_2 + \sigma_{13}$	B	gauche
									$\sigma_{7} + \sigma_{11}$	$B_{\boldsymbol{u}}$	trans
				2423					$\left\{\begin{array}{c}2\sigma_{12}\\\sigma_3+\sigma_{12}\end{array}\right.$	$\stackrel{A}{B}$	gauche gauche
									$\begin{cases} 2\sigma_3 \end{cases}$	\boldsymbol{A}	gauche
				2473					$\langle \sigma_2 + \sigma_{12} \rangle$	$B_{\mathbf{p}}$	gauche
				2511					$\begin{array}{c} \left(\begin{array}{c} \sigma_2 + \sigma_{15} \\ \sigma_2 + \sigma_7 \end{array} \right)$	${\stackrel{\scriptstyle B_u}{A_u}}$	trans trans
				2551					$2\sigma_2$	$\stackrel{A}{A}^{u}$	gauche
									-02		0-110.00

^{*} $\Delta \sigma$ = Raman displacement in K (kaysers, cm⁻¹); I = relative intensity; ρ = depolarization factor (P = polarized, D = depolarized); σ = infrared wave number at point of maximum absorption; σ_c = calculated wave number; and temp. depend. = temperature dependence (see text).

	_			_
TABLE	т	Cant		J
IAKLE	1	1 . (mu	UTLLERA	L.

Temp.		Cl ₂ HC - CHCl ₂ Raman		Infrared		Cl2DC – CDCl2 Raman			Assignment _		
depend.	Δσ	ρ		σ	σο	Δσ	. 1	σο	σ	type	Isomer
	2986	0,20	4	2980	3003 3002	2233.1	2	2244	σ ₁ σ ₁₄	$a_g \\ b_u$	trans trans
土	2900	0.20	4	2900	ĺ	2240.9	6		$\left\{egin{array}{l} \pmb{\sigma}_1 \ \pmb{\sigma}_{11} \end{array}\right.$	$_{b}^{a}$	gauche gauche
				3513					$\begin{cases} \sigma_{11} + \sigma_{15} \\ \sigma_1 + \sigma_{15} \end{cases}$	$\stackrel{A}{B}$	gauche gauche
				3609					$\left\{\begin{array}{l}\sigma_1 + \sigma_6 \\ \sigma_6 + \sigma_{11}\end{array}\right.$	$\stackrel{A}{B}$	gauche gauche
				3659 3747					$\begin{cases} \sigma_1 + \sigma_{16} \\ \sigma_1 + \sigma_5 \\ \sigma_5 + \sigma_{11} \end{cases}$	$egin{array}{c} B_{m{u}} \ A \ B \end{array}$	trans gauche gauche

isomer (gauche), while — indicates a line of the transisomer, i.e., the Raman line decreases in intensity as the temperature is lowered. This intensity-temperature dependence given by KR¹ is confirmed in general by the Raman spectrum of the solid reported by Mizushima et al.,¹⁰ as well as by the measurements of LB⁴ on the liquid.

The infrared spectral data given in Table I was obtained in the present study, except for 290, 326, and 352 K which are from Plyler.¹² Figures 1 and 2 show the infrared spectrum as obtained with Beckman IR-2 (KBr) and Perkin-Elmer Model 21 (NaCl) spectrophotometers, respectively. This spectrum differs somewhat from that reported by the University of California group.¹³

CALCULATION OF FUNDAMENTALS

Potential energy constants from earlier work on methyl chloroform¹⁴ (H_3C-CCl_3) and trichloromethanes¹⁵ were used in a general quadratic potential function to compute (Wilson FG matrix method) the 6 a_g , 5 b_u , 3 b_g , and 3 of the 4 a_u fundamentals of the transisomer. The a_u torsional fundamental was not computed. The a_g and b_g fundamentals for the deuterated molecule also were computed. Except for f_{mh} all the constants

Fig. 1. Infrared spectrum of 1,1,2,2-tetrachloroethane, Beckman IR-2 (KBr), cell length ca 0.15 mm.

E. K. Plyler, J. Chem. Phys. 17, 218 (1949).
 American Petroleum Institute Infrared Spectrogram No. 1171-1172, University of California.

¹⁴ El-Sabban, Meister, and Cleveland, J. Chem. Phys. 19, 855 (1951).

16 Zietlow, Cleveland, and Meister, J. Chem. Phys. 18, 1076 (1950).

given in Table II were transferred unchanged. In the present listing the bond length multipliers of the angle constants are not carried as separate factors. The potential constants are expressed in the descriptive notation introduced by Davis *et al.*¹⁶ The atomic masses and bond lengths are those given earlier, ¹⁵ plus C-C = 1.54 A. Decius' Tables¹⁷ were used to compute the inverse kinetic energy matrix elements, and all angles were assumed to be tetrahedral. The symmetry coordinates are:

$$a_{g} \colon R_{1} = \Delta m,$$

$$R_{2} = (1/2)(\Delta c_{1} + \Delta c_{2} + \Delta c_{3} + \Delta c_{4}),$$

$$R_{3} = (\sqrt{2}/2)(\Delta h_{1} + \Delta h_{2}),$$

$$R_{4} = (\sqrt{3}/6)(2\Delta c_{1}c_{2} + 2\Delta c_{3}c_{4})$$

$$-\Delta c_{3}h_{2} - \Delta c_{1}h_{1} - \Delta c_{4}h_{2} - \Delta c_{2}h_{1}),$$

$$R_{5} = (\sqrt{3}/6)(2\Delta mh_{1} + 2\Delta mh_{2})$$

$$-\Delta mc_{1} - \Delta mc_{2} - \Delta mc_{3} - \Delta mc_{4}),$$

$$R_{6} = (\sqrt{3}/6)(\Delta mh_{1} + \Delta mh_{2} + \Delta mc_{1} + \Delta mc_{2})$$

$$+\Delta mc_{3} + \Delta mc_{4} - \Delta c_{1}c_{2} - \Delta c_{3}c_{4}$$

$$-\Delta c_{3}h_{2} - \Delta c_{1}h_{1} - \Delta c_{4}h_{2} - \Delta c_{2}h_{1}),$$

$$R_{7} = (\sqrt{3}/6)(\Delta mh_{1} + \Delta mh_{2} + \Delta mc_{1} + \Delta mc_{2})$$

$$+\Delta mc_{3} + \Delta mc_{4} + \Delta c_{1}c_{2} + \Delta c_{3}c_{4}$$

$$+\Delta c_{3}h_{2} + \Delta c_{1}h_{1} + \Delta c_{4}h_{2} + \Delta c_{2}h_{1}) \equiv 0.$$

$$b_{g} \colon R_{1} = (1/2)(\Delta c_{1} + \Delta c_{4} - \Delta c_{2} - \Delta c_{3}),$$

$$R_{2} = (1/2)(\Delta mc_{1} - \Delta mc_{2} - \Delta mc_{3} + \Delta mc_{4}),$$

$$R_{3} = (1/2)(\Delta c_{3}h_{2} + \Delta c_{2}h_{1} - \Delta c_{1}h_{1} - \Delta c_{4}h_{2}).$$

$$a_{u} \colon R_{1} = (1/2)(\Delta c_{1} - \Delta c_{2} + \Delta c_{3} - \Delta c_{4}),$$

$$R_{2} = (1/2)(\Delta mc_{1} - \Delta mc_{2} + \Delta mc_{3} - \Delta mc_{4}),$$

$$R_{3} = (1/2)(\Delta c_{3}h_{2} + \Delta c_{1}h_{1} - \Delta c_{4}h_{2} - \Delta c_{2}h_{1}),$$

$$R_{4} = \Delta \tau.$$

$$b_{u} \colon R_{1} = (1/2)(\Delta c_{1} + \Delta c_{2} - \Delta c_{3} - \Delta c_{4}),$$

$$R_{2} = (\sqrt{2}/2)(\Delta h_{1} - \Delta h_{2}),$$

$$R_{3} = (\sqrt{3}/6)(2\Delta c_{1}c_{2} - 2\Delta c_{3}c_{4}),$$

$$-\Delta mc_{1} - \Delta mc_{2} + \Delta mc_{3} + \Delta mc_{4}),$$

$$R_{4} = (\sqrt{3}/6)(2\Delta mh_{1} - 2\Delta mh_{2}),$$

$$R_{3} = (\sqrt{3}/6)(2\Delta mh_{1} - 2\Delta mh_{2}),$$

$$-\Delta mc_{1} - \Delta mc_{2} + \Delta mc_{3} + \Delta mc_{4}),$$

$$R_{4} = (\sqrt{3}/6)(2\Delta mh_{1} - 2\Delta mh_{2}),$$

$$+\Delta c_{3}h_{2} - \Delta c_{1}h_{1} + \Delta c_{4}h_{2} - \Delta c_{2}h_{1}),$$

$$R_{4} = (\sqrt{3}/6)(2\Delta mh_{1} - 2\Delta mh_{2}),$$

$$+\Delta c_{3}h_{2} - \Delta c_{1}h_{1} + \Delta c_{4}h_{2} - \Delta c_{2}h_{1}),$$

$$R_{4} = (\sqrt{3}/6)(2\Delta mh_{1} - 2\Delta mh_{2}),$$

$$+\Delta c_{3}h_{2} - \Delta c_{1}h_{1} + \Delta c_{4}h_{2} - \Delta c_{2}h_{1}),$$

$$R_{4} = (\sqrt{3}/6)(2\Delta mh_{1} - 2\Delta mh_{2}),$$

$$+\Delta c_{3}h_{2} - \Delta c_{1}h_{1} + \Delta c_{4}h_{2} - \Delta c_{2}h_{1}),$$

$$R_{5} = (1/2)(2\Delta mh_{1} - 2\Delta mh_{2}),$$

$$R_{5} = (1/2)(2\Delta mh_{1} - 2\Delta mh_{2}),$$

$$R_{7} = (1/2)(2\Delta mh_{1} - 2\Delta mh_{2}),$$

$$R_{8} = (1/2)(2\Delta mh_{1} - 2\Delta mh_{2}),$$

$$R_{8} = (1/2)(2\Delta mh_{1} - 2\Delta mh$$

Fig. 2. Infrared spectrum of 1,1,2,2-tetrachloroethane, Perkin-Elmer 21 (NaCl), cell length 0.11 mm.

$$\begin{split} R_{5} &= (\sqrt{3}/6)(\Delta c_{3}h_{2} - \Delta c_{1}h_{1} + \Delta c_{4}h_{2} - \Delta c_{2}h_{1} \\ &+ \Delta c_{1}c_{2} - \Delta c_{3}c_{4} + \Delta mc_{1} + \Delta mc_{2} \\ &- \Delta mc_{3} - \Delta mc_{4} - \Delta mh_{1} + \Delta mh_{2}), \\ R_{6} &= (\sqrt{3}/6)(\Delta c_{3}h_{2} - \Delta c_{1}h_{1} + \Delta c_{4}h_{2} - \Delta c_{2}h_{1} \\ &- \Delta c_{1}c_{2} + \Delta c_{3}c_{4} - \Delta mc_{1} - \Delta mc_{2} \\ &+ \Delta mc_{3} + \Delta mc_{4} - \Delta mh_{1} + \Delta mh_{2}) \equiv 0. \end{split}$$

DISCUSSION

The calculation indicates that the 811 K Raman line is b_g . The observed depolarization factor (0.58) may be in error because of the close proximity of the strong 801 K Raman line. The most serious disagreement between calculated and observed values is for 224 K (a_g) . By varying potential constants, one can obtain closer agreement between this observed value (224 K) and the computed value (186 K), but only at the expense of the agreement between the observed and calculated values of the 366 and 765 fundamentals. The calculated value of 186 K is close to the 183.6 line, found only by LB,⁴ whose intensity-temperature measurements place it among the lines of the less stable isomer. However, alternative explanations for the appearance of the 224 K

TABLE II. Potential constants used in the computation of the fundamentals of the trans-isomers.

:	md/A	/A md/rad			md A/rad²		
fc fc fc fm fm fh fmc fc	3.4580 ^b 0.30760 4.5000 4.8002 0.37576 0.08800	fecc fhcc fhch fhmh fcmc fe,mc fe,ch fcch	0.36434 0.31922 -0.31922 0.13180 0.37059 -0.18529 -0.16400 0.18601	fcc fcch fmh fmc fmcmc fmccc fch fch	1.1621 0.028235 0.30785 1.1998 0.34002 0.12785 0.92126 0.27305		

md/A = millidyne/angstrom; rad = radian.
 This number of significant figures was required in earlier work (reference
 to secure the best fit of calculated wave numbers.

line are not convincing. There is no evidence to indicate that it is due to an impurity and the possibility that it is $2\sigma_9$ (trans) is unlikely since its relative intensity is higher than is usually the case for an overtone in the Raman spectrum.

The infrared band at 973 K is assigned as a fundamental of the gauche-molecule. This band was selected rather than the 873 or 929 K bands because the latter are relatively very weak. All or part of the absorption at 906 K may be due to an impurity (decomposition product?) since there were significant relative intensity differences between two "purified" samples. However, the 906 band is numerically a more attractive choice for a C—Cl stretching vibration than is 973 K, and hence cannot be conclusively excluded as a fundamental.

Table III. The wave numbers of the fundamental vibrations of trans and gauche, deuterated and nondeuterated, 1,1,2,2-tetrachloroethane.^a

	Tra (CH	2ns Cl ₂) 2	(CDC	(12)2		Gauche (CHCl2)2	(CDCl ₂);
Type	Obs	Calc	Obs	Ćalc	Type	Obs	Obs
a_{σ} : σ_1	2986	3003	2233.1	2244	a: σ ₁	2983	2240.9
σ_2	1306	1364		1265	σ_2	1279	1100.0
σ3		961	772.1	794	σ4	1018	829.8
σ_4	765	792	703.1	698	σε	650	628.0
σ_5	366	368	362.1	367	σ_7	353	350.2
σ6	224	186	226.2	186	σ_8	240	239.8
$a_u : \sigma_7$	1201	1207			σ3	1242	1006.6
σ_8	795	803			σ ₅	798	741.0
σ9		116			σ9	175	172.6
σ_{10}					σ_{10}	91	88.2
b_g : σ_{11}	1204	1211	938.0	936	$b: \sigma_{12}$	1216	950.6
σ_{12}	811	822	758.1	763	σ14	973	,,,,,,
σ_{13}	298	286	295.1	284	σ_{17}	326	
bu: σ14	2980	3002			σ_{11}	2983	2240.9
σ ₁₅	1188	1194			σ13	1109	886.3
σ_{16}	738	720			σ ₁₅	546	531.2
σ ₁₇	352	359			σ ₁₆	399	001.2
σ_{18}	290	281			σ ₁₈	289	287.1

 $^{\mathtt{a}}$ Refer to Table I for sources of observed data. Wave numbers are in kaysers. Obs=observed, Calc=calculated,

Teller-Redlich product rule tests of the a and b_{g} assignments given in Table III are satisfactory, since these ratios are less than the theoretical values by only ca 1.5%. For the a_{g} deuterated and nondeuterated wave numbers this low 1.5% discrepancy is obtained if the 1265 calculated value (C-C-D bending) is reduced to 1205 K. That this calculated value is too high is not unexpected when one considers the calculated (1364 K) and observed (1306 K) wave numbers for the C-C-H bending vibration.

For the nondeuterated molecules, the sum rule for rotational isomers¹⁸ gives

$$\sum \sigma_i^2(gauche) = 2.759 \cdot 10^7$$

and

$$\sum \sigma_i^2(trans) = 2.765 \cdot 10^7$$
,

so that the assignments are not inconsistent with this check. The wave numbers used to obtain the above sums are: gauche, a (91, 175, 240, 353, 650, 798, 1018, 1242, 1279, 2983), b (289, 326, 399, 546, 973, 1109, 1216, 2983); trans, a_g (224, 366, 765, 961, 1306, 2986), a_u (91,

116, 795, 1201), b_v (298, 811, 1204), b_u (290, 352, 738, 1188, 2980). When 906 is used instead of 973 as a b fundamental, the sum of the squared wave numbers is $2.747 \cdot 10^7$.

The sum rule of Bernstein and Pullin, 19 which appears to have some empirical validity, yields

$$\sum \sigma_i(gauche) = 16670$$

and

$$\sum \sigma_i(trans) = 16 672.$$

ACKNOWLEDGMENTS

This work was part of a research program which has been aided by grants from the Research Corporation and the Rumford Fund of the American Academy of Arts and Sciences. One of the samples was kindly furnished by Dr. Sidney I. Miller of our Chemistry Department. The infrared records with the NaCl optics were kindly obtained by Dr. Fred L. Voelz. The authors are grateful for this assistance.

¹⁸ Mizushima, Shimanouchi, Nakagawa, and Miyake, J. Chem. Phys. 21, 215 (1953).

¹⁹ H. J. Bernstein and A. D. E. Pullin, J. Chem. Phys. 21, 2188 (1953).