Evaluacion final - Escenario 8

Fecha de entrega 18 de oct en 23:55

Puntos 125

Preguntas 13

Disponible 15 de oct en 0:00 - 18 de oct en 23:55

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE, quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenientes:

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- 3. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- 4. Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- **5.** Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- Solo puedes recurrir al segundo intento en caso de un problema tecnológico.
- **8.** Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 9. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando siempre imágenes de evidencia, con fecha y hora, para que Soporte Tecnológico pueda brindarte una respuesta lo antes posible.
- Podrás verificar la solución de tu examen únicamente durante las 24 horas siguientes al cierre.
- 11. Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades evaluativas.
- 12. Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto.

Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica! ¿Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

Volver a realizar el examen

1 de 11 16/10/2022, 3:24 p. m.

Historial de intentos

	Intento	Hora	Puntaje
MÁS RECIENTE	Intento 1	24 minutos	125 de 125

Las respuestas correctas ya no están disponibles.

Puntaje para este intento: 125 de 125

Entregado el 16 de oct en 15:23

Este intento tuvo una duración de 24 minutos.

Pregunta 1	10 / 10 pts
Si	
$A=\{2x:1\leq x\leq 10 \land x\in \mathbb{N}\}$	
у	
$B=\{6x: 1\leq x\leq 10 \land x\in \mathbb{N}\},$	
entonces es correcto afirmar:	
$left{igoroup} A\cap B =3$	
$\bigcirc \ A \cup B = 20$	
$\bigcirc A-B =8$	
$\bigcirc \ \mathcal{P}(B) = 2048$	

2 de 11 16/10/2022, 3:24 p. m.

10 / 10 pts
l

Si

$$A=\{x:x mod 2=1 \land x \in \mathbb{Z}\},$$

entonces es correcto afirmar que:

$$\bigcirc \ (2,2) \in A imes A$$

$$@ \ (-1,-5) \in A \times A$$

$$\bigcirc A \times A = A$$

$$\bigcirc$$
 $(0,1) \in A \times A$

Pregunta 3 10 / 10 pts

Para determinar si un número

n

es primo se debe:

Pregunta 4	10 / 10 pts
Al calcular	

Pregunta 5	10 / 10 pts
Si se sabe que	
mcd(a,b)=7	
con	
a>0	
, entonces es correcto afirmar:	
$ \ \boldsymbol{\bigcirc} \ \boldsymbol{7} \mid mcm(a,b)$	
$\bigcirc a < 7$	
$\bigcirc 7 \mid (3a + b + 9)$	

5 de 11

Si		
$d \mid a$		
У		
$d \overset{\bullet}{ ext{-}} b$		
, entonces		
$\bigcirc d > 7$		

Pregunta 6	10 / 10 pts		
Solucionar el módulo usando el Teorema de Fermat.			
¿Cuál es resultado de	¿Cuál es resultado de		
$351^{61} \hspace{-0.1cm} \mod \hspace{0.1cm} 13$			
?			
0			
O 13			
O 351			
O 1			

Pregunta 7	10 / 10 pts

6 de 11 16/10/2022, 3:24 p. m.

10 / 10 pts

$$\bigcirc \ 2x+1 \equiv 7x-1 \mod 13$$

Pregunta 10	10 / 10 pts
Sobre la solución de la congruencia lineal	
$3x \equiv 5 \mod 14$	

Pregunta 11	10 / 10 pts
Si	
$7a\equiv 3 \mod 12$	
es correcto afirmar:	
$\bigcirc 7a+12\equiv 15 \mod 12$	
$\bigcirc 9a \equiv 15 \mod 60$	
$\bigcirc \ a^2+1\equiv 9 \mod 12$	

Pregunta 12 10 / 10 pts

Si se sabe que

$$11 \equiv x \mod 12$$

, entonces es correcto afirmar:

$$\bigcirc \ x^2 \equiv 0 \mod 12$$

$$\bigcirc 3x - 1 \equiv 7 \mod 12$$

$$\bigcirc (x+1)^2 \equiv x \mod 12$$

Pregunta 13 5 / 5 pts

Sobre la función inversa de la función

$$f=\{(x,x^2):x\in R\}$$

se puede afirmar que

No existe

$$f^{-1}(x) = x$$

$$f^{-1}(x) = x^{1/2}$$

$$f^{-1}(x) = \sqrt{x}$$

Puntaje del examen: **125** de 125

×