An Analysis of two Post-Hoc Interpretability Methods in light of Faithfulness

Raziye Sari

28.02.2023

University of Heidelberg Institute for Computational Linguistics BA-Thesis Presentation

Table of Contents

Introduction

Post-hoc Interpretability Methods

Approach

Experiments

Evaluating interpretability methods

Comprehensiveness

Sufficiency

Conclusion & Lookout

Introduction

Dr. Rajiv Raman (Retina Surgeon at Sankara Nethralaya)

Figure 1: Retinal fundus image¹

 $^{^{1}}$ Axiomatic Attribution for Deep Networks, Sundarajan et al., 2017

Dr. Rajiv Raman (Retina Surgeon at Sankara Nethralaya)

Figure 1: Retinal fundus image¹

Automated Retinal Disease Assessment (ARDA)

Figure 2: ARDA attributions for prediction¹

 $^{^{1}}$ Axiomatic Attribution for Deep Networks, Sundarajan et al., 2017

Explainable AI (XAI): Why did the model produce this output?

The problem "Black box" neural systems aren't easily interpretable

Explainable AI (XAI): Why did the model produce this output?

The problem "Black box" neural systems aren't easily interpretable

Need for Diverse interpretability methods

Danilevsky et al.¹ differentiate between explanations:

Global vs. Local Explaining the model as a whole predictor **vs.** single predictions

¹A Survey of the State of Explainable AI for Natural Language Processing, 2020

Danilevsky et al.¹ differentiate between explanations:

Global vs. Local Explaining the model as a whole predictor **vs.** single predictions

Self-explaining vs. Post-hoc Using the model as an explainer for itself **vs.** Utilizing additional methods

¹A Survey of the State of Explainable AI for Natural Language Processing, 2020

Post-hoc Interpretability Methods

Introduced¹ as a follow-up on previous method:

Gradients Given a baseline (all-zero vector) and the input feature, calculate the gradients of the feature vector at the given input.

¹Sundarajan et al., 2017

Introduced¹ as a follow-up on previous method:

Gradients Given a baseline (all-zero vector) and the input feature, calculate the gradients of the feature vector at the given input.

$$M(x) = 1 - max(0, 1 - x)$$
 $G(M, x) = max(0, sign(1 - x)) \cdot x$
 $G(M, 0) = 1 \cdot 0 = 0$
 $G(M, 2) = 0 \cdot 2 = 0$

Sundarajan et al., 2017

Integrated Gradients Given a baseline and the input feature, accumulate the gradients along steps of the straight-line-path.

$$IG_i(M, x, x') = (x_i - x_i') \cdot \sum_{k=1}^m \frac{\partial M(x' + \frac{k}{m} \cdot (x - x'))}{\partial x_i} \cdot \frac{1}{m}$$

 $^{^{1}{\}tt https://www.tensorflow.org/tutorials/interpretability/integrated_gradients}$

Integrated Gradients Given a baseline and the input feature, accumulate the gradients along steps of the straight-line-path.

$$IG_i(M, x, x') = (x_i - x_i') \cdot \sum_{k=1}^m \frac{\partial M(x' + \frac{k}{m} \cdot (x - x'))}{\partial x_i} \cdot \frac{1}{m}$$

$$(2-0) \cdot \sum \begin{pmatrix} max(0, sign(1-0.0)) \\ max(0, sign(1-0.2)) \\ max(0, sign(1-0.4)) \\ \vdots \\ max(0, sign(1-2.0)) \end{pmatrix} \cdot \frac{1}{m}$$

$$IG(M, 2, 0) \approx 1$$

Integrated Gradients Intutition¹

 $^{^{1}}_{\rm https://www.tensorflow.org/tutorials/interpretability/integrated_gradients}$

Introduced by Lunderg et al.¹ as SHapley Additive exPlanations and based on:

Shapley values Given a coalition c of members $m \in c$ that produce final value v. **How much** did each m contribute to v?

¹A Unified Approach to Interpreting Model Predictions, 2017

Introduced by Lunderg et al.¹ as SHapley Additive exPlanations and based on:

Shapley values Given a coalition c of members $m \in c$ that produce final value v. **How much** did each m contribute to v?

1. Sample all coalition pairs $c_{i_m}, c_{j_{\setminus m}} \quad \forall i, j \in C$ such that only member of interest is missing

¹A Unified Approach to Interpreting Model Predictions, 2017

Introduced by Lunderg et al.¹ as SHapley Additive exPlanations and based on:

Shapley values Given a coalition c of members $m \in c$ that produce final value v. **How much** did each m contribute to v?

- 1. Sample all coalition pairs $c_{i_m}, c_{j_{i_m}} \quad \forall i, j \in C$ such that only member of interest is missing
- 2. Calculate all marginal contributions of m as $v_i v_j$ $\forall i, j \in V(C)$

¹A Unified Approach to Interpreting Model Predictions, 2017

Introduced by Lunderg et al.¹ as SHapley Additive exPlanations and based on:

Shapley values Given a coalition c of members $m \in c$ that produce final value v. **How much** did each m contribute to v?

- 1. Sample all coalition pairs $c_{i_m}, c_{j_{\setminus m}} \quad \forall i, j \in C$ such that only member of interest is missing
- 2. Calculate all marginal contributions of m as $v_i v_j$ $\forall i, j \in V(C)$
- 3. Average over all marginal contributions of m is the final Shapley value

¹A Unified Approach to Interpreting Model Predictions, 2017

SHapley Additive exPlanations

Reformulates Shapley values as a linear regression problem:

$$g(z') = \phi_0 + \sum_{j=1}^{M} \phi_j z_j'$$

where $z' \in \{0,1\}^M$ and $\phi_j \in \mathbb{R}$ and $M = \mathsf{maximum}$ coalition size

9

SHapley Additive exPlanations

Reformulates Shapley values as a linear regression problem:

$$g(z') = \phi_0 + \sum_{j=1}^{M} \phi_j z_j'$$

where $z' \in \{0,1\}^M$ and $\phi_j \in \mathbb{R}$ and M = maximum coalition size

Problem 4 features \rightarrow 64 coalitions 32 features \rightarrow 17.1B coalitions

Solution SHAP Kernel: Approximates Shapley values through permutated samples and weighted linear regression

- 1. For a given datapoint z: Sample coalitions of type: $z' \in \{0,1\}^M$ and permutate 0's from Background data B
- 2. Take average of model output y over all synthetic datapoints of z as: $\bar{y} = \mathbb{E}[y_{f_1,f_2,f_i,...,f_M}] \ \forall i \in B$

 $^{^{1} {\}it https://christophm.github.io/interpretable-ml-book/shap.html}$

- 1. For a given datapoint z: Sample coalitions of type: $z' \in \{0,1\}^M$ and permutate 0's from Background data B
- 2. Take average of model output y over all synthetic datapoints of z as: $\bar{y} = \mathbb{E}[y_{f_1,f_2,f_3,\dots,f_M}] \ \forall i \in B$

Shapley value estimation¹

 $^{^{1}}_{\rm https://christophm.github.io/interpretable-ml-book/shap.html}$

- 1. For a given datapoint z: Sample coalitions of type: $z' \in \{0,1\}^M$ and permutate 0's from Background data B
- 2. Take average of model output y over all synthetic datapoints of z as: $\bar{y} = \mathbb{E}[y_{f_1,f_2,f_3,...,f_M}] \ \forall i \in B$

• Coalitions z': [1,1,0], [1,0,0], [0,1,0] ...

Shapley value estimation¹

¹ https://christophm.github.io/interpretable-ml-book/shap.html

- 1. For a given datapoint z: Sample coalitions of type: $z' \in \{0,1\}^M$ and permutate 0's from Background data B
- 2. Take average of model output y over all synthetic datapoints of z as: $\bar{y} = \mathbb{E}[y_{f_1,f_2,f_i,...,f_M}] \ \forall i \in B$

Instance X with absent features

Shapley value estimation¹

- Coalitions z': [1,1,0], [1,0,0], [0,1,0] ...
- Weigh each z':

$$\pi_z(z') = rac{(M-1)}{inom{M}{|z'|}|z'|(M-|z'|)}$$

¹ https://christophm.github.io/interpretable-ml-book/shap.html

Approach

Setup

Task Sequence classification

• Input tokens as features

Data CardioDE corpus from Dieterich Lab (Heidelberg)

- Unit of 500 doctoral letters from the cardiology department
- Each section of the letter belongs to one of 11 labels: Anrede, Diagnosen,
 AllergienUnverträglichkeitenRisiken, Anamnese,
 Medikation, KUBefunde, Befunde, EchoBefunde,
 Zusammenfassung, Mix, Abschluss

Details

Model BertForSequenceClassification¹

Deployment Fine-tuned on 400 letters

- Split into 90% train & 10% development set
- Trained for 2 epochs

Results Tested on 100 held-out letters

- Overall accuracy: 93%
- Best performing labels: Anrede, Medikation, KUBefunde (98% and above)
- Worst performing labels: Mix, EchoBefunde (79% and below)

¹ https://huggingface.co/bert-base-german-cased

Experiments

Explanations

ferret¹ unifies state-of-the-art local post-hoc interpretability methods under a benchmarking suite.

Feature importance attributions for:

SHAP are the coefficients of weighted linear regression model.

IG are the accumulated gradients along straight-line-path.

¹ https://github.com/g8a9/ferret

Explanations

ferret¹ unifies state-of-the-art local post-hoc interpretability methods under a benchmarking suite.

Feature importance attributions for:

SHAP are the coefficients of weighted linear regression model.

IG are the accumulated gradients along straight-line-path.

Figure 3: ferret explanations for a sample sentence from KUBefunde

¹ https://github.com/g8a9/ferret

Evaluating interpretability methods

"Measures how accurate the explanation reflects the inner-workings of the model" ⁰

 $^{^{0}}$ Towards Faithfully Interpretable NLP Systems: How should we define and evaluate faithfulness?, Jacovi and Goldberg, 2020

"Measures how accurate the explanation reflects the inner-workings of the model" ⁰

Selects most important tokens (r) per explanation and measures:

- 1. Comprehensiveness $f(x)_j f(x \setminus r_j)_j$
- 2. Sufficiency $f(x)_j f(r_j)_j$

 $^{^{0}}$ Towards Faithfully Interpretable NLP Systems: How should we define and evaluate faithfulness?, Jacovi and Goldberg, 2020

"Measures how accurate the explanation reflects the inner-workings of the model" $^{\rm 0}$

Selects most important tokens (r) per explanation and measures:

- 1. Comprehensiveness $f(x)_j f(x \setminus r_j)_j$
- 2. Sufficiency $f(x)_j f(r_j)_j$
- ightarrow Records change in prediction once sentence omits¹/only keeps² tokens in r

 $^{^{0}}$ Towards Faithfully Interpretable NLP Systems: How should we define and evaluate faithfulness?, Jacovi and Goldberg, 2020

Process of measuring Faithfulness:

1. Filter out tokens with negative contribution to prediction

Process of measuring Faithfulness:

- 1. Filter out tokens with negative contribution to prediction
- 2. With steps of 10: Choose k % highest contributing tokens

Faithfulness

Process of measuring Faithfulness:

- 1. Filter out tokens with negative contribution to prediction
- 2. With steps of 10: Choose k % highest contributing tokens
- 3. For each step: Calculate Comprehensiveness/Sufficiency score

Faithfulness

Process of measuring Faithfulness:

- 1. Filter out tokens with negative contribution to prediction
- 2. With steps of 10: Choose k % highest contributing tokens
- 3. For each step: Calculate Comprehensiveness/Sufficiency score
- 4. Finally: Take the mean of the 10 scores

Faithfulness

Process of measuring Faithfulness:

- 1. Filter out tokens with negative contribution to prediction
- 2. With steps of 10: Choose k % highest contributing tokens
- 3. For each step: Calculate Comprehensiveness/Sufficiency score
- 4. Finally: Take the mean of the 10 scores

Specific to *ferret*:

 When omitting tokens ∈ r from the sentence, they prefer deleting (instead of masking out)

SHAP's best-scoring label: Anrede = j"über Ihren Patienten B-SALUTE B-PER I-PER geboren am $\langle [Pseudo] \ 24/06/1977 \rangle$ wohnhaft in B-PLZ B-LOC I-ADDR I-ADDR
der sich vom bis in unserer stationären Behandlung befand."

SHAP's best-scoring label: Anrede = j "über Ihren Patienten B-SALUTE B-PER I-PER geboren am $\langle [Pseudo] \ 24/06/1977 \rangle$ wohnhaft in B-PLZ B-LOC I-ADDR I-ADDR der sich vom bis in unserer stationären Behandlung befand."

$$Compr = f(x)_j - f(x \setminus r_j)_j = 1.0$$

SHAP's best-scoring label: Anrede = j"über Ihren Patienten B-SALUTE B-PER I-PER geboren am $\langle [Pseudo] \ 24/06/1977 \rangle$ wohnhaft in B-PLZ B-LOC I-ADDR I-ADDR
der sich vom bis in unserer stationären Behandlung befand."

$$Compr = f(x)_j - f(x \setminus r_j)_j = 1.0$$

$$Compr_{k=10}^{SHAP} = 1.0 - 0.02 = \underline{0.98}$$

where $r_k = [\ddot{\text{uber}}_{0.27}, \text{Ihren}_{0.16}, \text{Patienten}_{0.09}, \text{wohn}_{0.03}, \\ \text{unserer}_{0.04}, \text{befand}_{0.04}]$

SHAP's best-scoring label: Anrede = j "über Ihren Patienten B-SALUTE B-PER I-PER geboren am $\langle [Pseudo] \ 24/06/1977 \rangle$ wohnhaft in B-PLZ B-LOC I-ADDR I-ADDR der sich vom bis in unserer stationären Behandlung befand."

$$Compr = f(x)_j - f(x \setminus r_j)_j = 1.0$$

$$Compr_{k=10}^{SHAP} = 1.0 - 0.02 = 0.98$$

where $r_k = [\ddot{u}ber_{0.27}, Ihren_{0.16}, Patienten_{0.09}, wohn_{0.03}, unserer_{0.04}, befand_{0.04}]$

$$Compr_{k=10}^{IG} = 1.0 - 0.82 = 0.18$$

where $r_k = ["uber_{0.37}", Ihren_{0.04}"]$

Comprehensiveness - Results

Mean Comprehensiveness scores over 10 samples per label:

	Mean Scores		
Label	SHAP	IG	F1-Score
Anrede	1.0	0.4	1.0
Mix	0.86	0.64	0.79
AllergienUnverträglichkeitenRisiken	0.85	0.31	0.96
KUBefunde	0.77	0.3	0.98
Diagnosen	0.75	0.31	0.96
Zusammenfassung	0.75	0.14	0.9
Befunde	0.67	0.2	0.9
EchoBefunde	0.66	0.25	0.73
Anamnese	0.64	0.02	0.85
Medikation	0.64	0.13	0.98
Abschluss	0.61	0.3	0.96

Table 1: Comprehensiveness mean scores for SHAP & IG with F1-scores per label

SHAP's worst-scoring label: Abschluss = j "I-PER / I."

$$Compr = f(x)_j - f(x \setminus r_j)_j = 0.86$$

```
SHAP's worst-scoring label: Abschluss = i
"I-PER / I."
                    Compr = f(x)_i - f(x \setminus r_i)_i = 0.86
Compr_{k-20}^{SHAP} = 1.0 - 0.7 = 0.3 where r_k = [P]
Compr_{k-30}^{SHAP} = 1.0 - 0.0 = 1.0 where r_k = [P, I]
Compr_{k-100}^{SHAP} = 1.0 - 0.0 = \underline{1.0} where r_k = [I_{0.26}, -0.03, P_{0.44},
```

 $I_{0.07}, .0.04$

SHAP's worst-scoring label: Abschluss = j "I-PER / I."

$$Compr = f(x)_j - f(x \setminus r_j)_j = 0.86$$

$$Compr_{k=20}^{\mathbf{SHAP}} = 1.0 - \mathbf{0.7} = 0.3$$
 where $r_k = [P]$ $Compr_{k=30}^{\mathbf{SHAP}} = 1.0 - \mathbf{0.0} = \underline{1.0}$ where $r_k = [P, I]$ \vdots $Compr_{k=100}^{\mathbf{SHAP}} = 1.0 - \mathbf{0.0} = \underline{1.0}$ where $r_k = [I_{0.26}, -_{0.03}, P_{0.44}, I_{0.07}, ._{0.04}]$

Important note:

1. *ferret* leaves out scores that do not contain any changes to prior state of r, e.g.: k = 10, 40, 50, 80, 90

"I-PER / I."

$$Compr = f(x)_j - f(x \setminus r_j)_j = 0.06$$

$$Compr_{k=20}^{IG} = 1.0 - 0.99 = 0.01 \text{ where } r_k = [ER]$$

"I-PER / I."

$$Compr = f(x)_j - f(x \setminus r_j)_j = 0.06$$

$$Compr_{k=20}^{IG} = 1.0 - 0.99 = 0.01 \text{ where } r_k = [ER]$$
:

 $Compr_{k=20}^{IG} = 1.0 - 0.88 = 0.12 \text{ where } r_k = [Page FRage Factor Frage Fra$

$$Compr_{k=100}^{\mathbf{IG}} = 1.0 - \mathbf{0.88} = 0.12 \text{ where } r_k = \text{[P}_{0.04}, \text{ ER}_{0.52}, \text{ I}_{0.09} \text{]}$$

"I-PER / I."

$$Compr = f(x)_j - f(x \setminus r_j)_j = 0.06$$

:
$$Compr_{k=100}^{IG} = 1.0 - 0.88 = 0.12$$
 where $r_k = [P_{0.04}, ER_{0.52}, I_{0.09}]$

 $Compr_{k-20}^{IG} = 1.0 - 0.99 = 0.01$ where $r_k = [ER]$

While **SHAP** ascribed negative attribution to **ER**, **IG** quite contrarily marks it as most important. Coincidence ?

Interim Conclusion

We saw throughout, that ...

- SHAP's choice of tokens effected sentence score more than IG's choice.
 - What about same size *r* of tokens ?

Interim Conclusion

We saw throughout, that ...

- SHAP's choice of tokens effected sentence score more than IG's choice.
 - What about same size *r* of tokens ?
- IG may attribute highest importance to a token, which received negative attribution with SHAP.
 - Also in Sufficiency the case ?

IG's best-scoring label: EchoBefunde = j

"Untersuchung am Bett auf Kardio-Intensiv. Vorbekannt deutlich reduzierte Schallbedingungen, v.a. von parasternal."

$$Suff = f(x)_j - f(r_j)_j = 0.14_{SHAP}|0.34_{IG}|$$

IG's best-scoring label: EchoBefunde = j

"Untersuchung am Bett auf Kardio-Intensiv. Vorbekannt deutlich reduzierte Schallbedingungen, v.a. von parasternal."

$$Suff = f(x)_j - f(r_j)_j = 0.14_{SHAP}|0.34_{IG}|$$

$$Suff_{k=10}^{IG} = 0.98 - 0.05 = 0.93$$
 where $r_k = [Untersuchung]$

$$Suff_{k=10}^{SHAP} = 0.98 - 0.25 = 0.73$$
 where $r_k = [am, Schall]$

IG's best-scoring label: EchoBefunde = j

"Untersuchung am Bett auf Kardio-Intensiv. Vorbekannt deutlich reduzierte Schallbedingungen, v.a. von parasternal."

$$Suff = f(x)_j - f(r_j)_j = 0.14_{SHAP}|0.34_{IG}|$$

$$Suff_{k=10}^{1G} = 0.98 - 0.05 = 0.93$$
 where $r_k = [Untersuchung]$

$$Suff_{k=10}^{SHAP} = 0.98 - 0.25 = 0.73$$
 where $r_k = [am, Schall]$

What about **equal length** r_k ?

$$Suff_{k=30}^{1G}=0.98-0.57=0.41$$
 where $r_k=$ [Untersuchung_{0.09}, Bett_{0.09}, auf_{0.05}, von_{0.05}]

IG's best-scoring label: EchoBefunde = j

"Untersuchung am Bett auf Kardio-Intensiv. Vorbekannt deutlich reduzierte Schallbedingungen, v.a. von parasternal."

$$Suff = f(x)_j - f(r_j)_j = 0.14_{SHAP}|0.34_{IG}|$$

$$Suff_{k=10}^{IG} = 0.98 - 0.05 = 0.93$$
 where $r_k = [Untersuchung]$

$$Suff_{k=10}^{SHAP} = 0.98 - 0.25 = 0.73$$
 where $r_k = [am, Schall]$

What about **equal length** r_k ?

$$Suff_{k=30}^{IG}=0.98-0.57=0.41$$
 where $r_k=$ [Untersuchung_{0.09}, Bett_{0.09}, auf_{0.05}, von_{0.05}]

$$Suff_{k=20}^{SHAP} = 0.98 - 0.69 = 0.29$$
 where $r_k = [am_{0.19}, Bett_{0.17}, Schall_{0.20}, bedingungen_{0.17}]$

Sufficiency - Results

Mean Sufficiency scores over 10 samples per label:

	Mean Scores		
Label	SHAP	IG	F1-Score
Zusammenfassung	0.0	0.44	0.9
Befunde	0.02	0.41	0.9
Anamnese	0.03	0.46	0.85
EchoBefunde	0.04	0.37	0.73
AllergienUnverträglichkeitenRisiken	0.06	0.6	0.96
Medikation	0.07	0.44	0.98
Anrede	0.1	0.71	1.0
Abschluss	0.15	0.45	0.96
Diagnosen	0.19	0.66	0.96
KUBefunde	0.25	0.77	0.98
Mix	0.37	0.8	0.79

Table 2: Sufficiency Mean scores for SHAP & IG with overall F1-scores for each label

SHAP & IG's worst-scoring label: Mix = j "- **Kost**aufbau nach **Ernährungskonsil**"

$$f(x)_j - f(r_j)_j = 0.58_{SHAP}|0.93_{IG}|$$

SHAP & IG's worst-scoring label: Mix = j "- **Kost**aufbau nach **Ernährungskonsil**"

$$f(x)_j - f(r_j)_j = 0.58_{SHAP}|0.93_{IG}|$$

$$Suff_{k=60}^{\sf SHAP} = 0.94 - {\bf 0.03} = 0.91$$
 $r_k = [{\tt Kost, Ern\"{a}hrung, skon, il}]$

SHAP & IG's worst-scoring label: Mix = j"- **Kost**aufbau nach **Ernährungskonsil**"

$$f(x)_j - f(r_j)_j = 0.58_{SHAP}|0.93_{IG}|$$

$$Suff_{k=60}^{\mathbf{SHAP}} = 0.94 - \mathbf{0.03} = 0.91$$
 $r_k = [\text{Kost, Ernährung, skon, il}]$ $Suff_{k=70}^{\mathbf{SHAP}} = 0.94 - \mathbf{0.71} = \underline{0.23}$ $r_k = [-0.09, \text{Kost}_{0.41}, \text{Ernährung}_{0.36}, \text{skon}_{0.05}, \text{il}_{0.1}]$

23

SHAP & IG's worst-scoring label: Mix = j"- Kostaufbau nach Ernährungskonsil"

Ernährung_{0.02}, skon_{0.17}, s_{0.2}, il_{0.0}]

$$f(x)_j - f(r_j)_j = 0.58_{SHAP} | 0.93_{IG}$$

$$Suff_{k=60}^{\mathbf{SHAP}} = 0.94 - \mathbf{0.03} = 0.91 \quad r_k = [\text{Kost, Ernährung, skon, il}]$$

$$Suff_{k=70}^{\mathbf{SHAP}} = 0.94 - \mathbf{0.71} = \underline{0.23} \quad r_k = [-0.09, \text{Kost}_{0.41}, \text{Ernährung}_{0.36}, \text{skon}_{0.05}, \text{il}_{0.1}]$$

$$Suff_{k=100}^{\mathbf{IG}} = 0.98 - \mathbf{0.05} = 0.93 \quad r_k = [\text{Kost}_{0.28}, \text{ aufbau}_{0.03},$$

Data Statistics

Figure 4: Token Size and Vocabulary Proportion per Label in Training Data

SHAP's best-scoring label: Zusammenfassung = j "Röntgenologisch wurde der V.a. eine Stauungspneumonie gestellt."

$$f(x)_j - f(r_j)_j = \mathbf{0.0}_{SHAP} | \mathbf{0.99}_{IG}$$

SHAP's best-scoring label: Zusammenfassung = j

"Röntgenologisch wurde der V.a. eine Stauungspneumonie gestellt."

$$f(x)_j - f(r_j)_j = \mathbf{0.0}_{SHAP} | \mathbf{0.99}_{IG}$$

$$Suff_{k=10}^{SHAP} = 1.0 - 1.0 = \underline{0.0}$$
 $r_k = [wurde_{0.44}]$

SHAP's best-scoring label: Zusammenfassung = j "Röntgenologisch wurde der V.a. eine Stauungspneumonie gestellt."

$$f(x)_j - f(r_j)_j = \mathbf{0.0}_{SHAP} | \mathbf{0.99}_{IG} |$$

$$Suff_{k=10}^{SHAP} = 1.0 - 1.0 = \underline{0.0}$$
 $r_k = [wurde_{0.44}]$

$$Suff_{k=10}^{IG} = 1.0 - 0.01 = 0.99$$
 $r_k = [R"ontgen]$

SHAP's best-scoring label: Zusammenfassung = j "Röntgenologisch wurde der V.a. eine Stauungspneumonie gestellt."

$$f(x)_j - f(r_j)_j = \mathbf{0.0}_{SHAP} | 0.99_{IG}$$

$$Suff_{k=10}^{\mathbf{SHAP}} = 1.0 - \mathbf{1.0} = \underline{0.0} \quad r_k = [\mathtt{wurde}_{0.44}]$$

$$Suff_{k=10}^{\mathbf{IG}} = 1.0 - \mathbf{0.01} = 0.99 \quad r_k = [\mathtt{R\"{o}ntgen}]$$

$$\vdots$$

$$Suff_{k=100}^{\mathbf{IG}} = 1.0 - \mathbf{0.01} = 0.99 \quad r_k = [\mathtt{R\"{o}ntgen}_{0.13}, \ \mathtt{a}_{0.04}, \ \cdot_{0.01}, \ \mathtt{Stau}_{0.03}, \ \mathtt{p}_{0.01}, \ \mathtt{ne}_{0.01}, \ \mathtt{onie}_{0.04}]$$

Sufficiency - Conclusion

- Comprehensiveness & Sufficiency reflect model preference of specific labels in their overall scoring.
- IG's tendency to disregard *most important* tokens also apparent here.

Conclusion & Lookout

Conclusion & Remarks

• ferret's preference of deleting tokens *r* over masking them out is questionable.

Conclusion & Remarks

- ferret's preference of deleting tokens *r* over masking them out is questionable.
- Sufficiency or Comprehensiveness should not be deployed without the other.
 - Contrasting results in Comprehensiveness & Sufficiency are a good sign of model bias.

Conclusion & Remarks

- ferret's preference of deleting tokens *r* over masking them out is questionable.
- Sufficiency or Comprehensiveness should not be deployed without the other.
 - Contrasting results in Comprehensiveness & Sufficiency are a good sign of model bias.
- ferret's Faithfulness measures the alignment of the explanation with the actual inner-workings of the model (to some degree) well.

Lookout

- Since IG tends to ascribe negative values to seemingly important tokens, find out why. Moreover, analyze if choice of baseline¹ has an impact.
- Experiment with inclusion of negative attribution tokens from IG into r.

¹ https://distill.pub/2020/attribution-baselines/