

Week #04

- 1. Express the following numbers in decimal (Show Your Steps)
 - a. $(10110.0101)_2$
 - 22.3125
 - b. (16.5)₁₆
 - 22.3125
 - c. $(26.24)_8$
 - 22.3125
 - d. (DADA.B)₁₆
 - 56026.6875
 - e. (1010.1101)₂
 - 10.8125
- 2. Perform subtraction on the given unsigned binary numbers using the 2's complement of the subtrahend. Where the result should be negative, find its 2's complement and affix a minus sign.
 - a. 10011-10010 = 00001
 - b. 100010-100110 = -(000100)
 - c. 1001-110101 = -(101100)
 - d. 101000-10101 = 10011
- 3. Simplify the following Boolean expressions to a minimum
 - a. xy + xy' = x
 - b. $(x + y)(x + y^*) = x$
 - c. $xyz + x^y + xyz^ = y$
 - d. $(A + B)^(A^ + B^)^ = 0$
 - e. (a + b + c)(ab + c) = ac + bc + cab
 - f. a'bc + abc' + abc+ a'bc' = b

Week #05

1. Draw the logic diagrams of the following circuits using CircuitVerse and establish their truth tables.

a)

Α	В	С	Υ
0	0	0	0
0 0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

b)

X	Υ	F
0	0	0
1	0	0
0	1	0
1	1	1

- 2. Simplify the following Boolean expressions to a minimum:
 - a) (A+B')(AB'+C)C = CA + CB
 - b) (A+B')C+(AB'+C).C = C
 - c) ((AB)'+(CD)')' = ABCD
- 3. Use the Karnaugh table to simplify the following logic equation:

Draw its logic diagram circuit using CircuitVerse before and after simplification

$$X = A'BD + ACD + ABD'$$

Original circuit

Simplified circuit

Week #06 Lab

1. Minimize the following Boolean function using K-map

$$F(A, B, C, D) = \Sigma m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$$

 $F(A, B, C, D) = BD + C'D + B'D'$

2. Minimize the following Boolean function:

$$F(A, B, C) = \Sigma m(0, 1, 6, 7) + \Sigma d(3, 4, 5)$$

 $F = A + B'$

- 3. Minimize the following Boolean function and represent it as
 - a. SOP
 - b. POS

$$F(A, B, C, D) = \Sigma m(0, 2, 8, 10, 14) + \Sigma d(5, 15)$$

SOP POS
$$F = A + BC$$

$$F' = A'(B' + C')$$

4. Derive the circuits for a three-bit parity and four-bit parity generator using an odd parity bit.

Week #07 Lab

- 1. Solve the following questions:
 - A. Derive the function from the truth table.
 - B. Simplify the resulted function and draw the logical diagram.
 - C. Finally, convert the diagram to All NAND gates

С	В	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Y = C'A + CB

Logical diagram after simplification

Logical diagram after converting all to NAND gates

2. Consider the combinational circuit

- A. Derive the Boolean expressions for T1 through T4. Evaluate the outputs F1 and F2 as a function of the four inputs.
- B. List the truth table with 16 binary combinations of the four input variables. Then list the binary values for T1 through T4 and outputs F1 and F2 in the table.
- C. Plot the output Boolean functions obtained in part (b) on maps and show that the simplified Boolean expressions are equivalent to the ones obtained in part (a).

$$F1 = A + B'C + BD' + B'D$$
$$F2 = A'B + D'$$

3. Design a combinational circuit with three inputs and one output. (a)* The output is 1 when the binary value of the inputs is less than 3. The output is 0 otherwise. (b) The output is 1 when the binary value of the inputs is an even number.

You need to follow the design process:

- a) naming variables.
- b) deriving the truth table based on the relationship between the variables.
- c) simplifying the expression of the function by using k-map (or other methods).
- d) drawing the logic diagram.
- e) test with different inputs from the truth table and compare the output you got from the logic diagram

