

Database Management Systems

(1+B)

Each row of data in a table is uniquely identified by a primary key (PK).

You can logically relate data from multiple tables using foreign keys (FK).

Table Name: EMPLOYEES

Primary key

Foreign key

Primary key

Table Name: DEPARTMENTS

Marketing 300 50 Shooing 80 Executive 90 Contracting

Activate Windows

2

Functional Dependencies

Functional Dependencies (FD):- Generalizes the concept of a key. It can also be thought of as a constraint between two sets of attributes. In other words, FD is a constraint that is to be satisfied by every desirable relation instance.

STUDENT

- 1 AMIT 1 AMIT
- 2 SUMIT 1 AMIT

- 1 AMIT 1 AMIT
- 1 SUMIT 2 AMIT

Let r be a relations schema and let X and Y be non-empty sets of attributes in r. We say that for a relation instance R of the schema r has a Functional Dependency $X \rightarrow Y$ if the following conditions holds for every pairs of tuples t1 and t2 in R.

By considering $X \rightarrow Y$, we say that X functionally determines Y, or Y is functionally dependent on X.

To illustrate the concept of FD, let us consider the example. Let – X = {Managerid, Manager Name} and Y = {ManagerAge}

Tuple t1 and t2 having same Managerid value and same Manager Name, we must have same Manager Age. Else the data is inconsistent. Thus we can say that –

{Managerid, ManagerName} → {ManagerAge}

A	В	C	D
a1	b1	c1	d1
a1	b2	c1	d2
a2	b2	c2	d2
a2	b3	c2	d3
а3	b3	c2	d4

BOX

Figure: Sample relation r.

Inference Rules for FDs

•The following are the inference rules to generate new FDs from a given set of FDs. For the rules described below, we assume X, Y and Z are the subset of attributes in the schema r.

- **1. Reflexive Rule** If $X \supseteq Y$, then $X \rightarrow Y$
- **2. Augmentation** If $X \rightarrow Y$ then $XZ \rightarrow YZ$
- 3. Transitive Rule If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- **4. Decomposition** If $X \rightarrow YZ$ then $X \rightarrow Y$, and $X \rightarrow Z$
- 5. Union If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$