ST EDNÍ PR MYSLOVÁ ŠKOLA SD LOVACÍ TECHNIKY

110 00 Praha 1, Panská 856/3

221 002 111, **2**21 002 666

e-Mail: sekretariat@panska.cz

URL: www.panska.cz

MATURITNÍ ZKOUŠKA

PRAKTICKÁ ZKOUŠKA Z ODBORNÝCH P EDM T

Hardwarový Omega Server

26-45-M/004

Studijní obor:

Digitální telekomunika ní technika

T ída: Jan Kapic, Václav Koša

Školní rok: 2006/2007 jméno a p íjmení autora

1 ANOTACE:

Cílem naší práce bylo nahradit program Xapi server, ur ený pro vzdálené programovaní úst edny Ateus Omega p es sí Internet, modulem, který bude zabudován p ímo v úst edn , ímž odstraníme problém závislosti na zapnutém po íta i. V podstat se jedná o jednoduchou pasivní sí ovou kartu, p i emž tato karta dále komunikuje s úst ednou (Sériový port).

2 ANNOTATION:

The aim of our work has ordered us to substitute the Xapi server application by a HW module, directly built in the phone exchange, which removes the problem of the dependence on switched PC. The Xapi server is designated for distant programming of the phone exchange Ateus Omega via Internet network. It goes in general about a simple passive network card while this card communicates further with the phone exchange (Serial port).

"Prohlašujeme, že jsme tuto práci vyprac	ovali samostatn a	a použili j	isme literárních pram	nen a
informací, které citujeme a uvádíme v sezna	amu použité literat	tury a zdr	oj informací."	
V Praze, dne	• • • • • • • • • • • • • • • • • • • •	•••••	••••	
		Podpi	S	

1	ÚVOD	- 5 -
2	MONITOROVÁNÍ PROTOKOL	- 7 <u>-</u>
2.1	SÉRIOVÝ P ENOS DAT	-8-
2.1.		-8-
2.1.2	2 SÉRIOVÁ KOMUNIKACE S ÚST EDNOU ATEUS-OMEGA	- 9 -
2.1.3	3 ROZEBRÁNÍ PAKETU	- 12 -
2.2	SPI ROZHRANÍ	- 12 -
2.2.	1 ROZD LENÍ ZA ÍZENÍ NA SÉRIOVÉ SPI SB RNICI	- 12 -
2.3	TCP/IP	- 14 -
2.3.	1 PROTOKOLY TCP/IP	- 14 -
2.3.	2 Data v paketech	- 18 -
2.3.	3 CRC KÓDY	- 19 -
<u>3</u>	INTEGROVANÝ OBVOD ENC28J60	- 22 -
3.1	ZÁKLADNÍ PARAMETRY ENC28J60	- 22 -
3.1.	1 PAM ENC28J60:	- 24 -
3.1.2	2 P ÍSTUP K ENC28J60 SPI ROZHRANÍM:	- 28 -
3.1.	3 ZAPOJENÍ ENC2860:	- 29 -
3.1.4	4 KALKULACE KONTROLNÍHO SOU TU V ENC28J60:	- 30 -
3.1.	5 ZAPSÁNÍ DO PHY REGISTRU (WRITE2PHYSICAL PODPROGRAM)	- 31 -
3.2	INICIALIZACE ZA ÍZENÍ	- 32 -
3.3	VYSLÁNÍ PAKETU	- 35 -
3.4	P IJÍMÁNÍ PAKET	- 36 -
3.4.	1 UVOL OVÁNÍ MÍSTA V P IJÍMACÍ PAM TI	- 37 -
4	PROGRAM V DSPIC30F3013	- 39 -
4.1	ZÁKLADNÍ PODPROGRAMY:	- 39 -
4.2	START PROGRAMU	- 40 -
4.3	B H PROGRAMU	- 40 -
4.4	HALF/FULL DUPLEX JUMPER	- 41 -
4.5	RESET IP	- 41 -
4.6	IDENTIFIKACE P ÍCHOZÍHO PAKETU	- 42 -
4.7	P ERUŠENÍ	- 43 -

4.7.1 INICIALIZACE UARTU	- 43 -
4.7.2 P ERUŠENÍ .GLOBAL PRIJEM	- 43 -
4.7.3 P ERUŠENÍ .GLOBAL VYSILANI	- 43 -
4.7.4 Po ÍTÁNÍ CRC32	- 44 -
<u>5</u> <u>WEBOVÉ ROZHRANÍ</u>	- 45 -
5.1 ZM NA IP ADRESY	- 45 -
6 TVORBA PLOŠNÉHO SPOJE	- 47 -
6.1 TRAINING BOARD	- 47 -
6.2 MEDEA MODUL VERZE 1.1	- 48 -
6.3 POPIS WSL 14G	- 49 -
6.4 NAPÁJENÍ 5V NA 3,3V	- 50 -
6.5 LF1S022	- 50 -
7 ZÁV R	- 51 -
8 ODKAZY A CITACE:	- 52 -
9 POUŽITÝ SOFTWARE	- 52 -
10 P ÍLOHY	- 53 -
10.1 FOTKY MEDEA MODULU	- 53 -
10.2 SCHÉMATA A NÁVRHY DESEK	- 55 -
10.2.1 SCHÉMA – TRAINING BOARD	- 55 -
10.2.2 SCHÉMA – MEDEA MODUL	- 56 -
10.2.3 PLOŠNÉ SPOJE – TRAINING BOARD	- 57 -
10.2.4 PLOŠNÉ SPOJE – MEDEA MODUL	- 58 -

3 Úvod

Cílem naší dlouhodobé maturitní práce bylo navrhnout a sestavit "hardwarový Xapi server". Xapi server je softwarová utilita, která umož uje komunikaci úst edny s ostatními po íta i v síti Internet. Nevýhoda tohoto zp sobu se skrývá v podstat celého ešení problému- Xapi server je program a tudíž je závislý na b žícím po íta i. My jsme se pokusili tuto nevýhodu odstranit nahrazením Xapi serveru za náš modul, který bude zabudován p ímo do úst edny. Základními otázkami celé práce byly:

- 1. Jak propojit DsPIC s Ethernetem a jak pracovat s jeho protokoly?
- 2. Jak propojit DsPIC s úst ednou sériovým portem (zapojení konektoru, nap ové úrovn) ?
- 3. K jakým zm nám v datech dochází p i p echodu Ethernet Sériový port?

 První otázku jsme vy ešili použitím integrovaného obvodu ENC28J60, který pracuje jako Ethernetový adi operující na 1. a 2. vrstv OSI modelu, nastudováním p íslušné problematiky a sestavením balíku program pro DsPIC schopných zpracovávat data vyšších protokol . Což bylo programov a asov náro né, avšak s kompletní dokumentací do budoucna možné.

Druhou otázku jsme ešili m ením na konektoru úst edny pro komunika ní moduly a p ekreslením zapojení stávajícího modulu pro komunikaci po RS232.

T etí problém byl oproti ostatním výrazn komplikovan jší. Pokusili jsme se odposlouchávat komunikaci Xapi serveru s ob mi rozhraními, ale výstupních datech jsme nebyli schopni rozpoznat v tší návaznosti. Teprve porovnáním dat v TCP paketech p i programování pomocí Xapi serveru a dat vysílaných po íta em p i "normálním" programování úst edny p ímo použitím Omega programu se jsme za ali objevovat souvislosti. Bohužel to nesta ilo, proto jsme byli nuceni požádat o originální dokumentaci k sériové komunikaci úst edny od výrobce- firmy 2N. Se získanými katalogovými listy už jsme mohli kone n rozpracovávat první myšlenky celého ešení. Otázkou však stále z stávalo po ítání CRC32.

Následovala již postup v hardwarové a programové konstrukci. Díky cvi né desce jsme uskute nili první spojení DsPIC – ENC. Vznikli první programy pro sériovou komunikaci. Problém s CRC32 byl vy ešen t sn p ed vznikem výsledného plošného spoje (MEDEA MODUL) a to p edevším díky velkého nasazení pana profesora Kubalíka (více o CRC32 v p íslušné kapitole). Bohužel p estože program pro komunikaci p es TCP/IP byl

tém kompletní, byli jsme nuceni z d vodu asové tísn zvolit jednodušší variantu, a proto je úst edna programovatelná jen p es UDP.

P esto Médea modul svojí funkci plní – naše práce byla tudíž úsp šná, a to v plném zn ní zadání.

Použití úst edny v síti Ethernet

4 Monitorování protokol

Na obrázku pod textem je vid t prost ednictvím jakých protokol jednotlivé ásti modulu komunikují se svým okolím.

Stru ný nákres komunika ních protokol

Omega program umož uje t i zp soby komunikace s úst ednou: po sériové lince (COM), po UDP a TCP/IP. Nás zajímají poslední dva zp soby realizované na síti TCP/IP.

Náhled konfigura ního okna v Omega programu

4.1 Sériový p enos dat

Jako sériový p enos ozna ujeme takový, kdy se signálové prvky téhož datového proudu p edávají za sebou - sériov . Naopak p i paralelním p enosu se ur itý po et signálových prvk (nap . bit) p enáší sou asn .

4.1.1 Synchronní a asynchronní sériový p enos

P i p enosu informace (sériovém i paralelním) musíme zabezpe it, aby p ijíma správn vyhodnotil okamžiky platnosti jednotlivých zna ek generovaných vysíla em. Vysíla a p ijíma proto spolu musí být n jakým zp sobem asov synchronizovány. Práv podle druhu synchronizace rozlišujeme sériový p enos na synchronní a asynchronní.

Synchronní p enos se d je pomocí izochronního signálu, tedy takového, kde odstup dvou libovolných charakteristických okamžik (nap . za átk a konc jednotlivých zna ek) je celistvým násobkem ur itého (apriorn daného) jednotkového intervalu. Komunika ní kanál je tedy taktován spole ným hodinovým signálem (vedeným zvláš nebo obsaženém v datovém signálu), který vymezuje intervaly platnosti jednotlivých zna ek. Synchronní p enos se nej ast ji používá u bitov orientovaných protokol , kde se informace seskupuje do rámc . V datových komunikacích se používá zejména pro p enos v tších objem dat.

Asynchronní (správn ji arytmický) p enos - vysíla a p ijíma nemají spole ný hodinový signál, který by vymezoval intervaly platnosti zna ek. Namísto toho mají ob strany své vlastní hodiny, dostate n p esné, aby se po fázovém zasynchronizování mohly po n kolik zna kových interval považovat za izochronní. Jelikož je t eba hodiny pravideln synchronizovat, používá se tento zp sob nej ast ji pro p enos krátkých bitových posloupností, znak (5,6,7 nebo 8 bit). Synchronizace probíhá p ed každým znakem,i kdy p ed prvním významovým bitem vždy p edchází tzv. startbit, jenž je reprezentován opa nou hodnotou signálu, než je klidová úrove na lince i a trvá stejnou dobu jako následující bitové intervaly. Arytmický p enos ze své podstaty vhodný nap . pro komunikaci s po íta em prost ednictvím terminálu.

Úst edna komunikuje pomocí asynchronního sériového p enosu!!!

4.1.2 Sériová komunikace s úst ednou ATEUS-Omega

Sériová komunikace je použita pro diagnostiku stavu úst edny a jejích ástí, programování parametr , p enos ú tovacích dat, a áste n i pro ízení provozu úst edny. Spojení s úst ednou je možné po standardní sériové lince rychlostmi od 9k6 do 57k6 s autodetekcí ze strany úst edny. Komunikace probíhá pomocí poloduplexního posílání paket .

Hardwarové spojení

Fyzické spojení s úst ednou je realizováno pomocí galvanicky odd leného sériového portu, a to s využitím 4-žilového kabelu se signály Rx,Tx,GND. Tok dat není hardwarov ízen, aplikace na PC tedy musí být schopna p ijímat odpov di od úst edny bez p erušení na zvolené komunika ní rychlosti.

Parametry p enosu

Nastavení komunika ního obvodu je vždy 8N1 (bez parity). P enosová rychlost je úst ednou nastavena p i p íjmu znaku PREFIX automaticky v rozsahu 9600-57600bps. Na po íta ích s obvodem 16550 (UART s FIFO) lze použít vyšší rychlosti.

Protokol sériové komunikace

V úst ednách ATEUS Omega je implementován nový protokol sériové komunikace. Tímto protokolem lze komunikovat po sériové lince i s pomocí modemu. Jedná se o zabezpe ený poloduplexní paketový p enos UDP. Úst edna je v každém okamžiku pasivním ú astníkem komunikace, tj. nikdy neza ne samovoln vysílat. Komunikace je iniciována aplikací, která vyšle povelový paket a úst edna odpoví po jeho korektním p íjmu paketem odpov dním, ve kterém zachová hodnotu identifikátoru NUM. Úst edna ne eká na kladné potvrzení p íjmu paketu aplikací, pokud aplikace nedostane odpov , nebo je odpov p enosem znehodnocena m že poslat nový dotaz. Doba reakce úst edny je závislá na provozním zatížení a pohybuje se v mezích 5-300ms. B hem reak ní doby úst edna ignoruje jakýkoli další p íjem. B hem následného vysílání odpov di je libovolný p íjem považován za STOP a ruší vysílání. Ke zrychlení ošet ení chyb komunika ního

kanálu jsou zavedeny pln duplexní nepaketové odpov di (NAK) o délce 1byte, které úst edna vysílá po p íjmu každého byte, který nezapadá do protokolu.

A. Struktura paketu UDP:

PF	REFIX	START	LEN_L	LEN _H	NUM	DATA	CRC32
1	Byte	1 Byte	1 Byte	1 Byte	1 Byte	max. 509 Byte	4 Byte

PREFIX	znak EEh
START	znak 23h
LEN	délka NUM + DATA
NUM	identifikátor paketů (párování povel/odpověď)
DATA	posílaná data (viz formát povelů ústředny)
CRC-32	zabezpečení podle tabulky CRC32 (big endian).

Pozn.:

- 1) Pokud se kdekoli za znakem START vyskytuje znak EEh (PREFIX) je nahrazen **dv ma** znaky EEh. Na p ijímací stran je jeden ze znak vypušt n a není samoz ejm ani zapo ítán do CRC.
- 2) CRC zajiš uje NUM a DATA a posílá se ve form big endian (LSB první).
- 3) Délka pole DATA je závislá na velikosti alokované pam ti v úst edn a m že se v budoucích verzích zv tšit. Hodnota 509B je volena kv li kompatibilit se staršími verzemi a umož uje posílání všech dosud používaných struktur i nových dat pro upgrade SW.

B. Asynchronní odpov di:

Pro urychlení zotavení z chyby komunikace jsou nov zavedeny asynchronní 1bytové odpov di. Porušení protokolu m že nastat v následujících p ípadech:

Stav rozhranní	Chybný příjem	Reakce	Pozn.
KLID	znak<>PREFIX	NAK	vždy na 57600 bps
PŘÍJEM	PREFIX+START	-	restart příjmu bez odpovědi
PŘÍJEM	PREFIX bez opakování	NAK+KLID	na rychlosti PC
PŘÍJEM	přetečení délky	NAK+KLID	
PŘÍJEM	chybný CRC	NAK+KLID	CRC je porovnáván po bytech
PŘÍJEM	-	-	nedostatečný počet přijatých znaků
REAKCE	cokoli	-	příjem je ignorován
VYSİLÄNİ	cokoli	KLID	příjem ruší vysílání (data ztracena)

Stav komunika ního rozhranní úst edny:

KLID o ekávání p íjmu 1.znaku (PREFIX)

P IJEM pokra ující p íjem po p íjmu nejmén 1 znaku

REAKCE doba ur ená pro zpracování bezchybn p ijatého

VYSÍLÁNÍ stav kdy je odesílán odpov dní paket

P i p íjmu nedostate ného po tu znak (nap . p i p erušení kabelu uprost ed p íjmu) z stává úst edna ve stavu P ÍJEM po neomezen dlouhou dobu, což však není na škodu, neb aplikace po vlastním asovém dohledu posílá opakovaný povel a úst edna je schopna restartovat p íjem kdykoli po p íjmu sekvence PREFIX+START. Pokud mezitím aplikace zm ní komunika ní rychlost, je 1. paket p ijat jako neplatný a úst edna odpoví vysláním NAK na p edchozí rychlosti. Opakovaný paket je však již p ijat korektn .

Odpov **NAK** = **0E0h** je ur ena pro urychlení zotavení z chyby komunikace a pro detekci pr chodnosti kanálu. Znak NAK je volen tak, aby byl detekovatelný aplikací na všech p ípustných rychlostech p íjmu i v p ípad , že dojde ke zkomolení 1. znaku paketu (PREFIX) a úst edna v tomto p ípad pošle NAK na rychlosti 57600 bps. Aplikace tedy pouze testuje p íjem b hem svého vysílání a p i p íjmu libovolného byte m že vysílání ihned restartovat.

Nastane-li chyba p i vysílání z aplikace, úst edna okamžit odpoví NAK a aplikace by m la být schopna okamžit restartovat vysílání. Detekuje-li chybu aplikace p i p íjmu, m že zastavit vysílání vysláním STOP (libovolný znak) a po vypláchnutí svého p ijímacího bufferu okamžit opakovat vyslání žádosti (pozor na Windows a 16550). Nastane-li chyba ztrátou znak na lince, nebo výpadkem jednoho ze sm r komunikace, musí aplikace reagovat asovým dohledem a opakováním žádosti. Nezda í-li se n kolikrát opakovaná žádost, je t eba zobrazit p í inu a p ípadn zahájit detekci pr chodnosti kanálu, t.j. cyklicky vysílat korektní paket (nap . INFO) až se do ká korektní paketové odpov di. P í inou se rozumí bu žádná odpov od úst edny (zkontrolujte stav kabelu a výb r COM), nebo p íjem znak NAK (chybující kanál, snižte komunika ní rychlost).

C. Zm na komunika ní rychlosti:

Úst edna je schopna p epnout se na rychlost zvolenou aplikací na PC b hem p íjmu 1. znaku paketu (PREFIX). Pokud je tento znak zkomolen, odpoví na n j úst edna vysláním NAK na rychlosti 57600 bps. Vzhledem k volb NAK je i p i p íjmové rychlosti PC 9600 bps tento znak p ijat jalo **0FFh** a aplikace m že okamžit opakovat vysílání. Úst edna detekuje rychlost b hem každého 1. znaku paketu a pokud je to PREFIX pokra uje v p íjmu na zvolené rychlosti a také na této rychlosti odpoví. Po odvysílání odpov di se vždy p epne na 57600 bps a o ekává další paket.

4.1.3 Rozebrání paketu

Ukázka odchycených paket b hem programování.

```
PREFIX+START DÉLKA DAT

Terminal log file
Date: 8.11.2006 - 16:36:51

EE 23 09 00 BF 00 01 93 0E 02
04 00 00 8D AA 61 5E EE 23 12 00 C0 00 07 01 01
00 00 00 01 01 00 00 00 00 00 00 00 00 A5 7A 72
BE EE 23 FF 00 C1 00 27 00 FF 00 00 00 00 00

NUM+DATA CRC
```

Log z programu Terminal

4.2 SPI rozhraní

SPI je sériové periferní rozhraní. Používá se pro komunikaci mezi ídícími mikroprocesory a ostatními integrovanými obvody (EEPROM, A/D p evodníky, displeje...).

4.2.1 Rozd lení za ízení na sériové SPI sb rnici

Master

- ídí komunikaci pomocí hodinového signálu
- ur uje se kterým za ízením na sb rnici bude komunikovat pomocí SS-Slave Select(n kdy CS-Chip Select)

Slave

vysílá podle hodinového signálu, pokud je aktivován pomocí SS/CS

Komunikace:

Pro komunikaci Master nastaví log.0 na **SS** za ízení, se kterým chce komunikovat.

Pak za ne generovat hodinový signál na **SCLK** a v té chvíli vyšlou ob za ízení svoje data, p i emž **MISO** je vždy Master výstup, Slave vstup a **MOSI** je Master Vstup, Slave výstup. Jakmile jsou data vyslána muže komunikace dále pokra ovat: *Master dále dodává hodinový signál, hodnota SS se nem ní* nebo m že být ukon ena: *Master p estane vysílat hodinový signál a nastaví SS do log.1*.

Délka vyslaných dat je bu 8bit (Byte) a nebo 16bit (Word).

Polarita a fáze hodinového signálu

Vztah mezi hodinovým signálem a daty se ur uje dv ma konfigura ními bity:CPOL a CPHA.

CPOL= 0; klidová úrove hodinového signálu log.0

CPOL = 1; klidová úrove hod.sig. je log.1

CPHA = **0**; hodnota je tena p i vzestupné hran

CPHA = 1; hodnota je tena p i sestupné hran

4.3 **TCP/IP**

(Komunikace Medea modul => User)

4.3.1 Protokoly TCP/IP

(Stru ný popis zam ený k ásti použité v naší práci)

P irovnání k referen nímu modelu OSI

(Za azení protokol do jednotlivých vrstev. Zvýrazn né protokoly jsou obsaženy v naší práci)

7	Application	HTTP, SMTP, SNMP, FTP, Telnet, ECHO, SIP, SSH, NFS, RTSP, XMPP, Whois, ENRP	
6	Presentation	XDR, ASN.1, SMB, AFP, NCP	
5	Session	ASAP, TLS, SSL, ISO 8327 / CCITT X.225, RPC, NetBIOS, ASP	
4	Transport	TCP, UDP, RTP, SCTP, SPX, ATP, IL	
3	Network	IP, ICMP, ARP, IGMP, IPX, OSPF, RIP, IGRP, EIGRP, RARP, X.25	
2	Data Link	Ethernet , Token ring, HDLC, Frame relay, ISDN, ATM, 802.11 WiFi, FDDI, PPP	
1	Physical	10BASE-T , 100BASE-T, 1000BASE-T, SONET/SDH, G.709, T-carrier/E-carrier, various 802.11 physical layers	

P íklad stavby rámce

Ethernetový Rámec (Frame)

Adresování: MAC adresa; ochranný kód (Frame check seq.) CRC32 (ty bajtový cyklický redundantní kód); max. délka 1518 bajt

Obsahem dat rámce m že být ARP paket, nebo IP záhlaví.

ARP paket

Užívá se v tšinou k zjišt ní MAC adresy cílového po íta e za p edpokladu, že známe jeho IP adresu. Pole Operace zpravidla obsahuje bity pozna ující paket bu jako otázku na MAC (v tom p ípad se paket vysílá broadcast tj. všem) a nebo jako odpov s vypln nou požadovanou MAC (pak se paket vysílá unicast, tj. jen tazateli)

+	Bits 0 - 7	8 - 15	16 - 31		
0	Typ hardwarového potokolu (HTYPE)		Typ protokolu (PTYPE)		
32	Délka hardwarové Délka protokolové adresy (HLEN) adresy (PLEN)		Operace (OPER)		
64	Zdrojová Hardwarová adresa (zpravidla MAC)				
?	Zdrojová protokolová adresa (zpravidla IP)				
?	Cílová Hardwarová adresa (zpravidla MAC)				
?	Zdrojová protokolová adresa (zpravidla IP)				

IP záhlaví

Adresování: IP adresa, záhlaví má prom nou délku díky poli Options; ochranný prvek: kontrolní sou et záhlaví viz: Kapitola ENC28J60-Po ítání kontrolního sou tu

+	Bits 0-3	4–7	8–15	16–18	19–31		
0	Verse	Délka záhlaví	Typ služby	Úplná délka paketu			
32	Identification			Flags	Fragment Offset		
64	Time t	o Live	Protocol		Kontrolní sou et záhlaví		
96	Zdrojová IP adresa						
128		Cílová IP adresa					
160		Options					
160							
or		Data					
192+							

Obsahem dat po IP záhlaví m že být ada r zných protokol zmíním se jen o ICMP, TCP, UDP.

ICMP protokol

ICMP je protokol ur ený pro chybové a ídící zprávy. (Echo, Destination Unreachable, Redirect atd.) Typ zprávy "Echo" se používán programem ping.

0			31
Typ zprávy	Kód	Kontrolní sou et zprávy	
Ide	ntifier	Sequence Number	
	Da	ta :::	

UDP protokol

Protokol UDP poskytuje nespojovou a nespolehlivou službu p enosu zpráv.

Adresování: Porty; ochrana: Kontrolní sou et v etn Pseoudo záhlaví.

+	Bits 0 - 15	16 - 31
0	Zdrojový Port	Cílový Port
32	Délka	Kontrolní sou et
64	Da	ata

TCP protokol

Protokol TCP poskytuje spojovou a nespolehlivou službu p enosu zpráv.

Adresování: Porty; ochrana: Kontrolní sou et v etn Pseoudo záhlaví.

Spojení se vytvá í synchronizací sekven ních ísel (Three-way handshake)

<u>Sekven ní íslo</u> vždy obsahuje offset prvního datového bajtu tohoto segmentu vzhledem k celé sekvenci dat ur ených k vysílání

<u>Potvrzovací íslo</u> obsahuje, pokud je nastaven flag ACK, sekven ní íslo následujícího bajtu, který je p ijíma p ipraven p ijmout.

+	Bits 0–3 4–7	8–15	16–31		
0	Zdrojo	ový Port	Cílový Port		
32		Sekven ní (Se	quence) íslo		
64		Potvrzovací (Ackno	owledgment) íslo		
96	Data Offset Reserved	Flags	Okno		
128	Kontrolní sou et Urgent Pointer				
160	Options (optional)				
160/192+	Data				

4.3.2 Data v paketech

P i monitorování se zjistilo, že UDP pakety mají jiný obsah dat, než pakety TCP. TCP pakety neobsahovaly znaky PREFIX, START a CRC (viz. 4.1.2), proto se data musí p ed odesíláním doplnit. Také chybí nahrazení znaku EE dv ma znaky EE. Je nutné testovat data a když se kdekoliv za znakem START vyskytne znak EE, je zdvojen. Data v UDP jsou kompletní a mají všechny náležitosti.

<u>Pozn:</u> XAPI server neumí komunikovat po UDP.

4.3.3 CRC kódy

CRC neboli Cyclic Redundance Check je speciální hašovací funkce, používaná k detekci chyb b hem p enosu i ukládání dat. CRC je vypo ten p ed operací, u níž jsou p edpokládány chyby. Je odeslán i uložen spolu s daty. Po p evzetí dat je z nich nezávisle spo ítán znovu. Pokud vyjde r zný CRC, je p enos prohlášen za chybový. V ur itých p ípadech je možné chybu pomocí CRC opravit. Celý proces je svázán s tzv. generujícím polynomem, který je klí k celému procesu.

Generující polynom (GP) je obecn n-bitové íslo, kde n je z praktických d vod mocnina 2. Zásadn tedy po ítáme CRC-16bit, CRC-32bit; CRC-64bit nebo CRC-128bit, apod. .

ím je CRC "více-bitové", tím je šance rozpoznání chyby v tší. GP si v tšinou sami nevymýšlíme, ale používáme již zavedené polynomy s ohledem na typ p enosu a hloubku zabezpe ení.

P íklad GP vidíte zde:

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$$

Tento p ípad je ukázka GP pro CRC-32bit. Používá se podle IEEE 802 pro Ethernet a ne náhodou i pro naší úst ednu.

Hlavní operací, kterou budete p i po ítání CRC pot ebovat, je XOR:

Pro p ipomenutí:

0 xor 1 = 1

 $1 \times 0 = 1$

 $0 \times 0 = 0$

 $1 \times 1 = 0$

Vysv tlení výpo tu osv tlím na praktickém p íkladu:

Posíláme data z bodu A do bodu B:

Volím data: $x^7 + x^6 + x^3 + x^0 => 11001001$

Volím GP: $x^3 + x^2 + x^0 => 1101$

BOD A

Máme tedy data 11001001, která zabezpe íme polynomem 1101. První krok je "p idání" nul na konec dat. Po et nul závisí na nejvyšším lenu GP, v našem p ípad jsou to nuly 3 (x³). Dalším krokem bude d lení (upozor uji, že se nejedná o oby ejné d lení, ale o již výše zmín ný XOR!). D ležité je taky to, že po "vyd lení" nás zajímá nikoliv výsledek, ale zbytek, proto si výsledku nebudeme všímat. A te už istý výpo et.

Postup výpo tu:

$$\begin{array}{c}
11001001000 : 1101 = 10010010 \\
\underline{1101} \\
0001\mathbf{100} \\
\underline{1101} \\
0001\mathbf{1} \\
\underline{1101} \\
1110 \\
\underline{1101} \\
0011\mathbf{00} \\
\underline{1101} \\
0001\mathbf{0}
\end{array}$$

11001001000 : 1101 = 10010010, zbytek = **010**

Poté, co nám vyjde zbytek, nahradíme námi p idané nuly za n ho.

A to už jsou naše zabezpe ená data p ipravena k vyslání.

BOD B

Na p ijímací stran se data vyd lí stejným GP a když vyjde zbytek nulový, došli data do bodu B nepoškozeny.

$$11001001010 : 1101 = 10010100
\underline{1101} \\
0001\mathbf{100} \\
\underline{1101} \\
0001\mathbf{101} \\
\underline{1101} \\
0000$$

V p ípad , že zbytek nevyjde nulový, již víme, že n co není v po ádku. Máme n kolik možností. Jedna z nich je poslat požadavek o zopakování poslední zprávy, nebo pouze dát na v domí vysílací stran , že data nedošla správn . Na špatné CRC, reaguje úst edna odpov dí NAK pro chybné CRC.

5 Integrovaný obvod ENC28J60

Tato ást je p ekladem výb ru n kterých ástí z katalogových list od výrobce.

5.1 Základní parametry ENC28J60

- ENC28J60(dále v textu pod zkratkou ENC) je integrovaný obvod kompatibilní s pr myslovými standardy IEEE 802.3 a Ethernet operující na první a druhé vrstv OSI modelu. Je ur en pro technologii 10BASE-T, což je standard používající kabeláž UTP a STP (Kroucená dvojlinka) kategorie 3 a konektory RJ45 ur ené pro hv zdicovou topologii sít, jejímiž základními sí ovými prvky jsou Rozbo ova (HUB) a P epína (Switch). Maximální délka segmentu 100m (328feet). Maximální p enosová rychlost je 10 Mbps. Max. impedance:100.
 - ENC má ...
 - jeden IEEE 802.3 port disponující automatickou detekcí polarity a její následnou korekcí
 - o SPI rozhraní pro komunikaci s ídícím mikro-procesorem.
 - o vestavenou cyklickou 8KB pam (Buffer) programovateln rozd lenou na Vysílací(Transmit) a P ijímací(Recieve) ást.
 - implementovaný polynom a mechanismus na po ítání 16bit kontrolní sou et pro IP protokoly.
- Podporuje oba typy p ístupu k médiu; Pln -Duplexní i Polo-Duplexní. Typ p ístupu je t eba nastavit ru n . ENC samostatn nedokáže detekovat o který typ se v daném spojení jedná. P i zapnutém Polo-Duplexním typu muže být ENC nastaven tak, aby p i vzniklé kolizi automaticky sám vysílal rámec znovu, dokud se ho nepoda í odeslat, nebo dokud nep esáhne po et kolizí kritický limit.

_

- ENC je schopné také samo p idávat do rámce Padding(vycpávku) a CRC32, který automaticky generuje. Dále obsahuje adu programovatelných p ijímacích filtr (Unicast, Multicast, Broadcast, CRC ok, Huge Frame (P íliš velký rámec), Pattermatch (Shoda obsahu), Magic Packet a Hash Table Filtr (CRC na cílovou MAC adresu p íchozího paketu, kontrola kriteria)
 - Elektrické parametry:
 - Napájení: 3.1 3,6 [V]

o 5V TTL vstupy, výstupy 3,3V logika

5.1.1 Pam ENC28J60:

Veškerá pam ENC je realizovaná jako statická RAM. Rozd luje se do t i typ.

Kontrolní registry(Control reg:

- -registry používané pro konfiguraci a zjiš ování stavu ENC.
- -jsou rozd lují se do 4 stránek
- -p istupuje se k nim p ímo p es SPI rozhraní
 - -p íkazy Write/Read Control reg.

Ethernet Buffer 8KB

- -je vysílací i p ijímací pam , s jednotlivým p ístupem
- -rozd lení pam ti je programovatelné ty mi kontrolními registry
- -zápis tení p es p ímo SPI(Write/Read Buffer mem.)
- -zm na automaticky inkrementujících pointer (write/read) p es Kontrolní reg.

PHY registry

- -registry používané pro konfiguraci, kontrolu stavu, kontrolu Fyzické stavu vrstvy
- -p ístup zápisem p es Kontrolní registry

FIGURE 3-1: ENC28J60 MEMORY ORGANIZATION

TABLE 3-	1: ENC28J6	0 CONTR	OL REGISTER I	MAP			
Bank 0		Bank 1		Bank 2		Bank 3	
Address	Name	Address	Name	Address	Name	Address	Name
00h	ERDPTL	00h	EHTO	00h	MACON1	00h	MAADR5
01h	ERDPTH	01h	EHT1	01h	Reserved	01h	MAADR6
02h	EWRPTL	02h	EHT2	02h	MACON3	02h	MAADR3
03h	EWRPTH	03h	EHТз	03h	MACON4	03h	MAADR4
04h	ETXSTL	04h	EHT4	04h	MABBIPG	04h	MAADR1
05h	ETXSTH	05h	EHT5	05h	_	05h	MAADR2
06h	ETXNDL	06h	EHT6	06h	MAIPGL	06h	EBSTSD
07h	ETXNDH	07h	EHT7	07h	MAIPGH	07h	EBSTCON
08h	ERXSTL	08h	EPMMo	08h	MACLCON1	08h	EBSTCSL
09h	ERXSTH	09h	EPMM1	09h	MACLCON2	09h	EBSTCSH
0Ah	ERXNDL	0Ah	EPMM2	0Ah	MAMXFLL	0Ah	MISTAT
0Bh	ERXNDH	0Bh	ЕРММЗ	0Bh	MAMXFLH	0Bh	_
0Ch	ERXRDPTL	0Ch	EPMM4	0Ch	Reserved	0Ch	_
0Dh	ERXRDPTH	0Dh	EPMM5	0Dh	Reserved	0Dh	_
0Eh	ERXWRPTL	0Eh	EPMM6	0Eh	Reserved	0Eh	_
0Fh	ERXWRPTH	0Fh	EPMM7	0Fh	_	0Fh	_
10h	EDMASTL	10h	EPMCSL	10h	Reserved	10h	_
11h	EDMASTH	11h	EPMCSH	11h	Reserved	11h	_
12h	EDMANDL	12h	_	12h	MICMD	12h	EREVID
13h	EDMANDH	13h	_	13h	_	13h	_
14h	EDMADSTL	14h	EPMOL	14h	MIREGADR	14h	_
15h	EDMADSTH	15h	EPMOH	15h	Reserved	15h	ECOCON
16h	EDMACSL	16h	Reserved	16h	MIWRL	16h	Reserved
17h	EDMACSH	17h	Reserved	17h	MIWRH	17h	EFLOCON
18h	_	18h	ERXFCON	18h	MIRDL	18h	EPAUSL
19h	_	19h	EPKTCNT	19h	MIRDH	19h	EPAUSH
1Ah	Reserved	1Ah	Reserved	1Ah	Reserved	1Ah	Reserved
1Bh	EIE	1Bh	EIE	1Bh	EIE	1Bh	EIE
1Ch	EIR	1Ch	EIR	1Ch	EIR	1Ch	EIR
1Dh	ESTAT	1Dh	ESTAT	1Dh	ESTAT	1Dh	ESTAT
1Eh	ECON2	1Eh	ECON2	1Eh	ECON2	1Eh	ECON2
1Fh	ECON1	1Fh	ECON1	1Fh	ECON1	1Fh	ECON1

Souhrn všech Kontrolních registr , jejich jednotlivé bity a hodnoty po resetu

ENC28,I60 CONTROL REGISTER SUMMARY

TABLE 3-2:	ENC2	8J60 CON	ITROL RI	EGISTER	SUMMAR	RY				
Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Value on Reset	Details on Page
EIE	INTIE	PKTIE	DMAIE	LINKIE	TXIE	г	TXERIE	RXERIE	0000 0000	65
EIR	_	PKTIF	DMAIF	LINKIF	TXIF	г	TXERIF	RXERIF	-000 0000	66
ESTAT	INT	BUFER	r	LATECOL	_	RXBUSY	TXABRT	CLKRDY ⁽¹⁾	0000 -000	64
ECON2	AUTOING	PKTDEC	PWRSV	г	VRPS	_	_	_	1000 0	16
ECON1	TXRST	RXRST	DMAST	CSUMEN	TXRTS	RXEN	BSEL1	BSELO	0000 0000	15
ERDPTL	Read Pointer	Low Byte ER	DPT<7:0>)	-					1111 1010	17
ERDPTH	_	_	_	Read Pointer	r High Byte (El	RDPT<12:8>)			0 0101	. 17
EWRPTL	Write Pointer	Low Byte (EV	VRPT<7:0>)	-					0000 0000	17
EWRPTH	_	_	_	Write Pointer	High Byte (E	WRPT<12:8>)			0 0000	17
ETXSTL	TX Start Low	Byte (ETXST	<7:0>)						0000 0000	17
ETXSTH	_	_	_	TX Start High	n Byte (ETXST	<12:8>)			0 0000	17
ETXNDL	TX End Low I	Byte (ETXND-	<7:0>)						0000 0000	_
ETXNDH	_	ř –	_	TX End High	Byte (ETXND	<12:8>)			0 0000	17
ERXSTL	RX Start Low	Byte (ERXST	<7:0>)		-				1111 1010	17
ERXSTH	_	_	_	RX Start High	n Byte (ERXS)	Γ<12:8>)			0 0101	_
ERXNDL	RX End Low	L Byte (ERXND	<7:0>)		,				1111 1111	_
ERXNDH	_	_	_	RX End High	Byte (ERXND)<12:8>)			1 1111	_
ERXRDPTL	BX BD Points	er Low Byte (B	RXRDPT<7:0		_,,	,			1111 1010	
ERXRDPTH	_	_	_	'	er High Byte (ERXRDPT<12	:8>1		0 0101	+
ERXWRPTL	RX WR Point	ter Low Byte (I	L ERXWRPT<7:		arragir by to y				0000 0000	_
ERXWRPTH	_		_	'	ter High Byte (EBXWBPT<1:	2.851		0 0000	+
EDMASTL	BX WR Pointer High Byte (ERXWRPT<12:8>) DMA Start Low Byte (EDMAST<7:0>)								0000 0000	_
EDMASTH	_	_	_	DMA Start Hi	gh Byte (EDM	AST<12:8>\			0 0000	+
EDMANDL	DMA End Lo	w Byte (EDMA	ND<7:0>)	Division in	gire jie jeen				0000 0000	+
EDMANDH	_	_	_	DMA End Hid	gh Byte (EDM:	AND<12:8>)			0 0000	+
EDMADSTL	DMA Destina	tion Low Byte	/EDMADST<		,,,				0000 0000	-
EDMADSTH	_	_	_		tion High Byte	(EDMADST<	12:8>)		0 0000	_
EDMACSL	DMA Checks	um Low Byte	(EDMAGS<7:			,	,		0000 0000	+
EDMACSH		um High Byte							0000 0000	_
EHTO		lyte 0 (EHT<7							0000 0000	_
EHT1		yte 1 (EHT<1:							0000 0000	52
EHT2		lyte 2 (EHT<2							0000 0000	_
ЕНТЗ	_	yte 3 (EHT<3							0000 0000	-
EHT4		lyte 4 (EHT<3	<u> </u>						0000 0000	_
EHT5		yte 5 (EHT<4							0000 0000	+
EHT6	Hash Table Byte 6 (EHT<55:48>)									52
EHT7	Hash Table Byte 7 (EHT<63:56>)									52
EPMMo	Pattern Match Mask Byte 0 (EPMM<7:0>)									51
EPMM1	Pattern Match Mask Byte 1 (EPMM<15:8>)									51
EPMM2	Pattern Match Mask Byte 2 (EPMM<23:16>)									51
EPMM3	Pattern Match Mask Byte 3 (EPMM<31:24>)									_
EPMM4	Pattern Match Mask Byte 3 (EPMM<31:24>) oc Pattern Match Mask Byte 4 (EPMM<39:32>) oc									+
EPMM5										+
EPMM6										_
EPMM7		h Mask Byte 7							0000 0000	_
MINT	. acentiwater	aon byte 7	LEI MINISCOS.O						3000 0000	1 31

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved, do not modify.

Note 1: CLKRDY resets to 'o' on Power-on Reset but is unaffected on all other Resets.

^{2:} EREVID is a read-only register.

^{3:} ECOCON resets to '---- -100' on Power-on Reset and '---- -uuu' on all other Resets.

TABLE 3-2: ENC28.160 CONTROL REGISTER SHMMARY (CONTINUED)

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Reset	Details on Page
EPMCSL	Pattern Matc	0000 0000	51							
EPMCSH	Pattern Matc	h Checksum F	ligh Byte (EPI	MCS<15:0>)					0000 0000	51
EPMOL	Pattern Matc	h Offset Low B	Syte (EPMO<7	·(<0:)					0000 0000	51
EPMOH	_	_	_	Pattern Match	n Offset High	Byte (EPMO<1	12:8>)		0 0000	51
ERXFCON	UCEN	ANDOR	CRCEN	PMEN	MPEN	HTEN	MCEN	BCEN	1010 0001	48
EPKTCNT	Ethernet Pac	ket Count	•	•	•			•	0000 0000	43
MACON1	_	_	_	r	TXPAUS	RXPAUS	PASSALL	MARXEN	0 0000	34
MACON3	PADCFG2	PADCFG1	PADCFG0	TXCRCEN	PHDREN	HFRMEN	FRMLNEN	FULDPX	0000 0000	35
MACON4	_	DEFER	BPEN	NOBKOFF	_	_	r	r	-00000	36
MABBIPG	_	Back-to-Back	Inter-Packet	Gap (BBIPG<	6:0>)				-000 0000	36
MAIPGL	_	Non-Back-to-	Back Inter-Pa	cket Gap Low	Byte (MAIPG	L<6:0>)			-000 0000	34
MAIPGH	_	Non-Back-to-	Back Inter-Pa	cket Gap High	Byte (MAIPG	H<6:0>)			-000 0000	34
MACLCON1	_	_	_	_	Retransmissi	ion Maximum (RETMAX<3:0)>)	1111	34
MACLCON2	_	_	Collision Win	dow (COLWIN	(<5:0>)				11 0111	34
MAMXFLL	Maximum Fra	ame Length Lo	w Byte (MAM	IXFL<7:0>)					0000 0000	34
MAMXFLH	Maximum Fra	ame Length Hi	igh Byte (MAN	MXFL<15:8>)					0000 0110	34
MICMD	_	_	_	_	_	_	MIISCAN	MIIRD	00	21
MIREGADR	_	_	_	MII Register.	Address (MIR	EGADR<4:0>)			0 0000	19
MIWRL	MII Write Dat	a Low Byte (N	IIWR<7:0>)						0000 0000	19
MIWRH	MII Write Dat	a High Byte (N	/IWR<15:8>)						0000 0000	19
MIRDL	MII Read Dat	a Low Byte (N	MRD<7:0>)						0000 0000	19
MIRDH	MII Read Dat	a High Byte(N	IIRD<15:8>)						0000 0000	19
MAADR5	MAC Address	s Byte 5 (MAA	.DR<15:8>)						0000 0000	34
MAADR6	MAC Address	s Byte 6 (MAA	DR<7:0>)						0000 0000	34
MAADR3	MAC Address	s Byte 3 (MAA	DR<31:24>),	OUI Byte 3					0000 0000	34
MAADR4	MAC Address	s Byte 4 (MAA	DR<23:16>)						0000 0000	34
MAADR1	MAC Address	s Byte 1 (MAA	.DR<47:40>),	OUI Byte 1					0000 0000	34
MAADR2	MAC Address	s Byte 2 (MAA	.DR<39:32>),	OUI Byte 2					0000 0000	34
EBSTSD	Built-in Self-T	est Fill Seed (EBSTSD<7:0:	>)					0000 0000	76
EBSTCON	PSV2	PSV1	PSV0	PSEL	TMSEL1	TMSEL0	TME	BISTST	0000 0000	75
EBSTCSL	Built-in Self-T	est Checksum	Low Byte (El	BSTCS<7:0>)					0000 0000	76
EBSTCSH	Built-in Self-T	est Checksum	High Byte (E	BSTCS<15:8:)				0000 0000	76
MISTAT	_	_	_	_	r	NVALID	SCAN	BUSY	0000	21
EREVID ⁽²⁾	_	_	_	Ethernet Rev	ision ID (ERE	VID<4:0>)			q qqqq	22
ECOCON(3)	_	_	_	_	_	COCON2	COCON1	COCON0	100	6
EFLOCON	_	_	_	_	_	FULDPXS	FCEN1	FCEN0	000	56
EPAUSL	Pause Timer Value Low Byte (EPAUS<7:0>) 00									
EPAUSH	Pause Timer	Value High By	te (EPAUS<1	5:8>)					0001 0000	57

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved, do not modify.

Note 1: CLKRDY resets to '0' on Power-on Reset but is unaffected on all other Resets.

2: EREVID is a read-only register.

3: ECOCON resets to '---- - 100' on Power-on Reset and '---- - -unu' on all other Resets.

5.1.2 P ístup k ENC28J60 SPI rozhraním:

ENC podporuje 8bitový SPI 0,0 slave mód s hodinami v logické nule p i klidovém stavu Vyslaní bajtu po SPI je zahájeno nastavením logické 0 na CS pin ENC (DsPIC PortD8), ímž se uvede ENC strana do stavu o ekávání p íkazu. Nyní m že následovat odeslaní bajtu p íkazu/adresy/dat podle tabulky p íkazu. Dojde k aktivaci hodin na SPI a vyslání a zárove p ijmutí bajtu. Po skon ení vysílání/p ijímání vrací se CS pin zp t do logické 1-do klidového stavu

SPI p íkazy:

Funkce ENC28J60 je úpln závislá na pokynech vyslaných z ovládacího za ízení(DsPIC) p es SPI rozhraní. Pokyny jsou vysílány ve form jedno i více bajtových instrukcí používaných k p ístupu k Kontrolní pam ti a k Ethernet Bufferu. Instrukce se skládá z nejmén 3bitového opera ního kódu(Opcode) následovaného 5ti bitovým argumentem obsahujícím bu adresu registru nebo datovou konstantu. Zapisovací a BitSet instrukce jsou následovány ješt jedno i více bajty dat.

Tabulka instrukcí:

TABLE 4-1: SPI INSTRUCTION SET FOR THE ENC28J60

Instruction		Byte 0								Byte 1 and Following						
Name and Mnemonic	Opcode			Argument				Data								
Read Control Register (RCR)	0	0	0	a	a	a	a	a				N	/A			
Read Buffer Memory (RBM)	0	0	1	1	1	0	1	0				N	/A			
Write Control Register (WCR)	0	1	0	a	a	a	a	a	d	d	d	d	d	d	d	d
Write Buffer Memory (WBM)	0	1	1	1	1	0	1	0	d	d	d	d	d	d	d	d
Bit Field Set (BFS)	1	0	0	a	a	a	a	a	d	d	d	d	d	d	d	d
Bit Field Clear (BFC)	1	0	1	a	a	a	a	a	d	d	d	d	d	d	d	d
System Reset Command (Soft Reset) (SRC)	1	1	1	1	1	1	1	1				N	/Α			

Legend: a = control register address, d = data payload.

5.1.3 Zapojení ENC2860:

Oscilátor:

ENC konstruováno na frekvenci 25 MHz. To je možné realizovat p ipojením bu krystalu s na piny OSC1 a OSC2, nebo použitím externího zdroje hodin a jeho p ipojením na OSC1.

Po Power-On a Power-down restartu je t eba po kat až se oscilátor stabilizuje. Když se tak stane nastaví se bit CLKRDY v ESTAT (Kontrolní registr v ENC) do log1. *Vn jší spoje:*

Aby ENC správn fungovalo je t eba ho zapojit podle katalogových list:

FIGURE 2-4: **ENC28J60 ETHERNET TERMINATION AND EXTERNAL CONNECTIONS** RJ-45 ENC28J60 MCU TPOUT-1 ľO cs 49.90.1% Bead^(1,3) SCK SCK 2 SDO SI -0.1 μF⁽³⁾ SDI SO 3 TPOUT TPIN+ 4 Level Logic⁽²⁾ 5 49.9Ω, 1% = 0.1 μF INTO ĪNT 1:1 CT TPIN RBIAS 7 LEDA LEDB VCAF 2.32 kΩ. 1% 10 μF nF, 2 kV⁽³⁾ Ferrite Bead should be rated for at least 80 mA. Required only if the microcontroller is operating at 5V. See Section 2.5 "I/O Levels" for more information. These components are installed for EMI reduction purposes

Modul fyzické vrstvy pot ebuje rezistor 2,32K proti zemi na pin RBIAS. Tento Odpor ovliv uje aplitudu výstupního signálu na pinech TPOUT+/-. Doporu uje se, aby to byl typ pro povrchovou montáž a kv li rušení byl p ipojen, co nejkratším spojem na zem.

ENC je napájeno 3,3V, kdežto DsPIC použitý v tomto projektu jako ovládací kontroler je napájen 5V. Nap ový rozdíl je t eba kompenzovat. Vstupy ENC(CS, SCK, SI, RESET) jsou 5V tolerantní, ale výstupy(SO, INT, CLKOUT) nejsou v TTL úrovních, p estože by pravd podobn DsPIC rozpoznal úrovn správn (3,3 je stále ješt v toleranci) je pro jistotu t eba použít úrov ový zdvih, který je možný realizovat nap . pomocí logického integrovaného CMOS obvodu AND (74HCT08), jehož jeden vstup p ipojíme do log1. viz obr. 2-5.

K ENC je také možné p ipojit 2 diody, které m žeme mimo jiné nastavit na indikaci Link(kabel p ipojen k jinému za ízení) a Recieve(p íchozí paket) stavu. Zapojením LED diody B je možné hardwarov nastavit Full/Half duplex p ístup k médiu. Viz obr. 2-7

FIGURE 2-5: LEVEL SHIFTING USING AND GATES MCU ENC28J60 CS I/O SCK SCK SI SO SI CLKOUT OSC1 ĪNT INTo

5.1.4 Kalkulace kontrolního sou tu v ENC28J60:

ENC disponuje funkcí pro kalkulaci kontrolního sou tu (checksum). Dv ma pointery (rozdeluje se na spod. a hor. bajt, EDMAST-pointer na první bajt dat pro checksum, EDMAND-pointer na poslední bajt zahrnuty do checksum) definujeme oblast v cyklickém Ethernet Bufferu, pro kterou má ENC spo ítat kontrolní sou et. Pak aktivujeme startovacími bity operaci(ECON1.CSUMEN;ECON1.DMAST). Když výpo et skon í nastavi se EIR.DMAIF, který m že generovat p erušení. Výsledek je v Kontrolních registrech EDMACS (H a L-horní a spodní bajt).

Kontrolní sou et pracuje s ozna eným obsahem Ethernet Bufferu jako s jednotlivými 16ti bitovými ísly(pokud jde o lichý po et p idá se vycpávka 00h, na dopln ní do 16bit). Tyto 16bit. ísla se te (Carry bit se u každého jednotlivého sou tu automaticky se te s daným výsledkem) a dopln k celkového výsledku do max. hodnoty(0xFFFFh) je výsledný 16bit. kontrolní sou et.

P íklad:

hodnoty v pam ti pro kon.sou .:{89h, ABh, CDh}

sou et: 89ABh + CD00h = 156ABh

p esun carry bitu: 56ABh + 0001h = 56ACh

dopln k: FFFFh - 56ACh = A953h

kontrolní sou et tedy je A953h

Této metody se užívá u protokol IP, TCP, UDP, ICMP atd.

Nastavení stránky (SetPage podprogram)

íslo aktuální stránky uvádí dva nejspodn jší bity(BSEL0,1) ECON1 kontrolního registru.

REGISTER 3-1: ECON1: ETHERNET CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXRST	RXRST	DMAST	CSUMEN	TXRTS	RXEN	BSEL1	BSEL0
bit 7							bit 0

Zm na stránky se musí provést pomocí BitSet(ne write2control) instrukcí, pon vadž zm na stránky nesmí ovlivnit ostatní bity v registru!

5.1.5 Zapsání do PHY registru (Write2Physical podprogram)

Do PHY registr se nedá zapisovat p ímo n jakou SPI instrukcí. Musí se tak u init zapsáním do specielních Kontrolních registr . Uvádím postup zapisovaní:

- zápis adresy PHY registru do Kontrolního registru MIREGADR
- zápis spodních 8 bit dat do Kontrolního reg. MIWRL
- zápis horních 8 bit dat do Kontrolního reg. MIWRH
- po kat až bit MISTAT.BUSY spadne zp t do 0, nebo vy kat p esn 10,24us, nebo pokra ovat dál, ale nezapisovat a ne íst z PHY pam ti po danou dobu.

5.2 Inicializace za ízení

(viz 6.0 INITIALIZATION)

P ed správnou funkcí za ízení je ho nejprve t eba nastavit. To provedeme zapsáním série hodnot do n kterých Kontrolních registr . Pokud se jedná o registry rozd lené na horních a spodních 8 bit , je nutno vždy nejprve zapsat do hodnotu do spodních 8mi. Doporu uje se dodržovat daný postup.

Rozd lení Ethernet Bufferu na p ijímací a vysílací ást

Provedeme zapsáním po áte ní a koncové adresy p ijímací ásti. Buffer má 8K. Nejvyšší možná adresa je 1FFFh. Pokud budeme chtít rozd lit pam p esn na polovinu nastavíme P ijímací(Recieve) ást uložením

0FFEh do ERXST(16bit reg. ukazuje na za átek p ij. ásti, musí být sudá adresa)

1FFFh do ERXND(16bit reg. ukazuje na konec p ij. ásti)

Veškerá ostatní pam je považována za vysílací ást.

ERXRDPT je nutno nastavit na stejnou hodnotu jako ERXST

Nastavení P ijímacích filtr (viz Recieve Filters)

P ijímací filtry se nastavují registrem ERXFCON. Sérií povolovacích bit . Pro v tšinu aplikací má smysl uvažovat o nastavení UCEN(Unicast), CRCEN(CRC ok), BCEN(Broadcast), ANDOR(logika procházení filtrem). Pro b žné aplikace je vhodné ponechat defaultní hodnotu. (UCEN,CRCEN,BCEN=1; zbytek 0)

REGISTER 8-1: ERXFCON: ETHERNET RECEIVE FILTER CONTROL REGISTER

R/W-1	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1		
UCEN	ANDOR	CRCEN	PMEN	MPEN	HTEN	MCEN	BCEN		
bit 7									

- UCEN propustí rámce s MAC adresou shodou s adresou uloženou v Kontrolních registrech MAADR1-6. Ty se nastavují až pozd ji.
- CRCEN propustí rámce u kterých nedetekuje chybu použitím CRC32, nevztahuje se na n j ANDOR bit
- BCEN propustí všechny broadcast rámce(MAC= ff:ff:ff: ff:ff:ff). Takové rámce se používají nap . u ARP protokolu, tudíž jsou nezbytné pro analýzu a odpov .

- ANDOR (viz obr 8-1 Recieve Filtering using OR logic)
 - o Log 1- rámec musí projít všemi filtry
 - o Log 0- rámec musí projít alespo jedním filtrem

A je hodnota v ANDOR jakákoli musí paket zárove splnit CRCEN filtr, pokud je aktivován.

Paket, který neprojde definovanými filtry bude odmítnut. Uživatel odmítnutý rámec nebude schopný nijak zaregistrovat.

Zapsáním 00h do ERXCON p epne za ízení do promiskuitního mód (všechny p íchozí pakety budou p ijmuty)

ekání na Oscillator Start-up Timer (viz Wainting For OST)

Než bude možno pokra ovat v inicializaci, je t eba po kat až se stabilizuje oscilátor vždy po Power-on Resetu. Indikátor stabilizace je bit ESTAT.CLKRDY. Jakmile se nastaví do 1 m žeme pokra ovat. (Nyní je možno nastavovat MAC a PHY registry)

MAC inicializace

Následuje sled nastavení, který je pochopitelný jen po hlubším porozum ní problematiky. Rad ji se ídím originální katalogovým listem- jeho doporu eným nastavení.

Do n kterých registr je nutno zapsat jiné hodnoty pro Plno a pro Polo-

Duplexní(Half/Full-Duplex) typ mnohonásobného p ístupu k médiu. Uvádím nastavení, které bude v obou p ípadech nezávislé na vn jším zapojením LED diody B, kterou je možné zp sobem zapojením typ spojení hardwarov nastavit. (Viz Vn jší spoje; LED polarity)

Ve všech p ípadech následujících zápis se jedná o registry na stránce 2.

Full Duplex	Half Duplex
0Dh do MACCON1	01h do MACCON1
B3h do MACCON3	B2h do MACCON3
40h do MACCON4	40h do MACCON4
EEh do MAMFLL	EEh do MAMFLL
05h do MAMFLH	05h do MAMFLH
15h do MABBIPG	12h do MABBIPG
12h do MAIPGL	12h do MAIPGL
0100h do PHY.PHCON1	0C do MAIPGH
	0000h do PHY.PHCON1
	0100h do PHY.PHCON2

Nastavení MAC adresy:

Pro správnou funkci Unicast filtru je nutné do ENC uložit vlastní MAC adresu, ta není dodávána s IO. Unikátní MAC adresa se dá nap íklad p evzít od starých nebo rozbitých sí ových karet a které je pak možno zlikvidovat, abychom se vyhnuli problém m s kolizemi dvou totožných MAC v síti. MAC adresa se zapisuje do kont. reg. na stránce 3 MAADR1-6, p i emž do MAADR6 se zapisuje první bajt(LSB).

P erušení p i p ijímání paket :

ENC m že generovat p erušení p i každém p íchozím paketu, který projde Filtry, pokud nastavíme povolovací bity EIE.PKTIE a EIE.INTIE nebo pokud chceme, aby generoval p erušení p i každém zahozeném paketu z d vodu p epln nosti Bufferu, je t eba nulovat EIR.RXERIF a nastavit bity EIE.RXERIE a EIE.INTIE.

Povolení p ijímání paket:

Po nastavení RXEN bitu nem 1 by se m nit Duplexní mód, pointer ozna ujicí za átek a konec p ijímacího bufferu a pro p edcházení p ijmutí nevhodných paket je doporu eno p ed zm nou filtr ERXFCON a MAC adresy do asn nuloval RXEN. Jakmile bude p ijímání povoleno, všechny pakety vyhovující filtr m budou zapsány do pam ti p ijímacího bufferu. Odmítnuté budou odmítnuty a uživatel nebude mít možnost to zjistit.

Pro povolení p ijímání Je nutno nastavit ECON1, RXEN

5.3 Vyslání paketu

Pokud je ENC správn inicializován generuje automaticky Preambuli, Start-of-frame, vycpávku(60B nebo 64B) a CRC32. Toto nastavení se dá m nit i jen pro jednotlivý paket použitím Per-Packet-Control bajtu(viz. 7.1 datasheet). Uvádím doporu ený katalogový postup pro odeslání v paketu:

- 1. Nastavit ETXST pointer na <u>sudou</u> nepoužívanou(Ne-p ijímací) ást pam ti, tam kde bude paket za ínat. *Pokud program nepot ebuje chrlit hodn dat najednou a nem že ekat až se pakety odešlou, posta í nastavit tento pointer vždy na stejnou adresu.*
- 2. Zapsat do bufferu pod hodnotu v ETXST, Per-Packet-Control bajt (pro v tšinu aplikaci 00h)
- 3. Zapsat DATA (mac cílov. adresa, mac zdrojova adresa, type/lenght, data rámce)
- 4. Nastavit ETXND pointer na poslední bajt dat <u>zahrnutý</u> do paketu
- 5. Nulovat bit EIR.TXIF, nastavit EIE.INTIE pro povolení p erušení
- 6. Vyslat paket nastavením ECON1.TXRTS

Paket bude odeslán jakmile to bude možné- jakmile skon í p ípadná DMA operace (nap . Checksum kalkulace). Stejn tak DMA operace by po kala pokud by se vysílal paket.

Jakmile bude paket odeslán nebo pokud bude jeho vysílání zrušeno TXRTS bude vynulován a sedmibajtový *Status Vektor*(viz. kapitola) bude zapsán za vysílaný paket. Pokud bude ESTAT.TXARB v 1, paket se neodeslal správn . ESTAT.LATECOL ur uje, že kolize nastala po odvysílání 64bajt . (tzv. pozdní kolize, viz. Half-duplex problematika, ale tento problém by nem 1 být p íliš astý a ve v tšin p ípad není t eba ho ošet ovat)

FIGURE 7-2: SAMPLE TRANSMIT PACKET LAYOUT **Buffer Pointers** Address Memory Description PHUGEEN, PPADN ETXST = 0120h 0120h 0Eh Control PCRCEN and POVERRIDE data[1] 0121h data[2] 0122h Destination Address. Data Packet Source Address Type/Length and Data ETXND = 0156h 0156h data[m] 0157h tsv[7:0] 0158h tsv[15:8] 0159h tsv[23:16] Status Vector 016Ah tsv[31:24] Status Vector Written by the Hardware 016Bh tsv[39:32] tsv[47:40] 016Ch tsv[55:48] 016Dh 016Eh Start of the Next Packet

5.4 P ijímání paket

Jakmile bude p ijímání v inicializaci povoleno, všechny pakety vyhovující filtr m budou zapsány do pam ti p ijímacího bufferu. Odmítnuté budou smazány a uživatel nebude mít možnost to nijakým zp sobem zjistit.

Jakmile je paket kompletn p ijmut a zapsán v bufferu registr EPKCNT inkrementuje, EIR.PKTIF (ur uje, že v pam ti je jeden nebo více nezpracovaných paket) se nastaví do 1 a bude vyvoláno p erušení, pokud je povoleno a Hardwarový Write Pointer (ukazuje na adresu kam bude zapisován následující paket; softwarov je nezapisovatelný) automaticky inkrementuje o 1. EIR.PKTIF nuluje <u>hardware</u> po uvoln ní místa paketu *viz. kapitola Uvol ování místa v p ijímací pam ti*.

P ijmutý paket (viz. obr 7-3) zapsaný v bufferu má p ed azených 6 informa ních bajt .

 První dva ur ují tzv. Next Paket Pointer. (tj. adresa prvního bajtu následujícího paketu) Hodnota Next Paket Pointer je velice d ležitá pro b h celého p ijímacího programu - doporu uji ji zálohovat do ídícího procesoru (DsPIC).

- 2. Následuje 4 bajtový Status vektor (viz kapitola)
- 3. Za 6ti informa ními bity jsou v pam ti data rámce(cílová mac. ad., zdrojová mac. ad., type/length, data, pading a CRC32 rámce)

Na konci ješt m že být p idán vycpávkový bit tak, aby první adresa následujícího paketu(next paket pointer) byla sudá.

5.4.1 Uvol ování místa v p ijímací pam ti

Uvol ování cyklické pam ti(buffer)

Poté, co uživatel zpracuje paket (nebo jeho ást) a chce uvolnit místo zapln né zpracovanými daty, musí zvýšit hodnotu Recieve Buffer Read Pointeru (ERXRDPT). ENC bude zapisovat cyklicky do Bufferu pokud hodnota Hardware Write Pointeru bude jiná než hodnota ERXRDPT, tudíž všechna data pod a na adrese v bufferu na kterou ukazuje ERXRDPT pointer jsou chrán na proti p epsání daty novými. Když se ENC pokusí p epsat bu ku chrán nou ERXRDPT, zápis se zruší, hodnota v bu ce z stane a pokud je povoleno p erušení vyvolá se. (nastaví se EIR.RXERIF, p erušení se povoluje EIE.RXERIE). Všechny p íchozí pakety budou do uvoln ní pam ti zrušeny.

Zm na pointeru bude provedena po zapsaní nejprve spodního a teprve pak horního bajtu.Pokud uživatel zpracuje veškerá data v ur itém paketu a chce uvolnit jeho místo, musí zvýšit hodnotu ERXRDPT, tak aby ukazoval za zpracovaný paket (pozor pam je cyklická, nejlepší nastavit hodnotu z Next Paket Pointeru), pak je nutno nastavit bit ECON2.PKTDEC. Když toto uživatel provede hodnota v EPKTCNT (registr obsahující hodnotu nezpracovaných paket) dekrementuje o 1. Pokud EPKTCNT dosáhne nuly hardware vynuluje bit EIR.PKIF (ur uje, že v pam ti je jeden, nebo více nezpracovaných paket).

Ur ení velikosti volného místa v cyklické pam ti

Ode tením hodnot registr ERXRDPT a ERXWRPT(Hardware Write Pointer) získá uživatel po et volných bajt , p ipravených k zapsaní nových paket .

6 Program v dsPIC30F3013

Tato ást shrnuje nejd ležit jší funkce programu použitého v projektu Médea.

6.1 Základní podprogramy:

Pro z zjednodušení, urychlení a zp ehledn ní programu jsme pro nej ast ji používané skupiny instrukcí vytvo ily podprogramy. N které z nich mají vstupní parametry a n které také vrací hodnotu. Pro zadávání vstupní a vracení výstupních hodnot používáme wregistry, kterých je v našem DsPICovi použitelných celkem 15 (0-14). Pro vstupní/výstupní hodnoty používáme pov tšinou W registry 1-3, zbytek je ur en pro pracovní výpo ty.

Podprogramy SPISendW1, SPISendW2:

Jsou v hierarchii nejníže položené podprogramy ur ené pro p ímou komunikaci s SPI rozhraním. Vyšlou spodních 8bit z W1 nebo W2 a zárove p ijmou 8bit vyslaných z cílového za ízení (ENC2860).

Podprogramy p ímo užívající SPISend, nastavující CS pin

Podprogram Write2Control:

Tento podprogram je ur ený pro ukládání hodnoty ve W2 do Kontrolního registru v ENC na adrese uložené ve W1 na sou asné stránce. Vysílá kompletní p íkaz write control register. M že být p edcházen prodprog. SetPage pro nastavení stránky.

<u>Podprogram ReadControl:</u>

Je ur en ke tení z Kontrolních registru. Velmi se podobá Write2Control. Má variantu pro tení Kontrolních reg. typu MAC

Podprogram BitSet/Clear

Nastavují vybranou hodnotu maskováním hodnotou ve W2 Kontrolního registru na adrese ve W1.

Podprogramy Write2Buffer/ReadBuffer

Jsou ur eny pro tení a zápis z Ethernet Bufferu. Vysílají kompletní p íkazy write/read buffer mem. Vysílají/Vrací hodnoty ve W1. M že ho p echázet podprogram SetWrite/ReadPointer nastavující pointer na vybranou hodnotu.

Podprogram SoftReset

Tento podprogram vyvolá "m kký" reset ENC vysláním p íkazu po SPI.

Podprogramy p ímo užívající n které z výše uvedených podprogram

Podprogramy SetPage, Write2Physical, SetWrite/ReadPointer, atd...

6.2 Start programu

Start programu probíhá ve 3 fázích:

- Nastavení procesoru DsPIC (Porty, SPI, Uart, ..)
- Reset ENC28J60 (Hardware reset, detekce stavu p epína e Half/Full Duplex)
- Inicializace ENC28J60 (Na tení IP z EEPROM, Inicializace, spušt ní Ethernet rozhraní)

Tím se uvede Médea modul do stavu o ekávání, je to pasivní za ízení (nikdy neza ne vysílat jako první). Program v DsPIC je uveden do cyklu o ekávající zm nu, bu stisknutí n kterého s tla ítek a nebo p ijetí paketu.

6.3 B h programu

Po startu se program uvede do stavu o ekávání (jde o pasivní za ízení) bu p íchozího paketu zm ny stavu na jumperu Half/Full Duplex, zm ny stavu tla ítka Reset IP.

- Po p íchodu paketu odsko í program do podprogramu a paket zpracovává, p ípadn poté odešle vhodnou odpov . (více v kapitole Identifikace p íchozího paketu)
- Jakmile je detekována zm na stavu na jumperu Half/Full Duplex program se resetuje.
 P i emž m že dojít ke ztrát n kterých p íchozích paket , které práv mohou být
 p ijímány obvodem ENC28J60, proto je nutné provád t zm nu duplexu jen v klidovém stavu za ízení, nejlépe p i úplném vypnutí.

• Stiskem tla ítka Reset IP zp sobíme na tení základního nastavení IP adresy (192.168.1.5) Jestliže mají být ješt p ijmuty n které pakety na p vodní IP, prove te Reset IP až po jejich zpracování.

6.4 Half/Full Duplex jumper

ENC28J60 nedisponuje funkcí autonegotiation (automatické nastavení duplexního provozu používající synchroniza ní impulsy) a tedy je duplexní provoz nastavit ru n pomocí jumperu p i emž máme dv možnosti:

- Half-Duplex za ízení je p ipojeno k HUBu, nebo k routeru nepodporujícím Full duplex
 - jumper je zapojen uzav en
- Full-Duplex za ízení je p ipojeno ke Switchi nebo k routeru podporujícím Full duplex
 - jumper není zapojen

Duplexní zm nu provád jte jen v klidovém stavu za ízení.

6.5 Reset IP

Za normálních okolností je p i každém startu programu na tena z pam ti EEPROM poslední nastavená IP adresa, jejíž zm na se provádí pomocí webového rozhraní (viz. kapitola Webové rozhraní) Pokud však uživatel z n jakého d vodu tuto adresu nezná a tudíž ani nemá p ístup k webové stránce, musí provést Reset IP, ímž se adresa zp t nastaví na základní 192.168.10.111 a poté ji m že zm nit na požadovanou hodnotou.

6.6 Identifikace p íchozího paketu

(pr chod vrstvami referen ního modelu OSI)

Jakmile je p ijat paket Médea modul ho za ne zpracovávat. Nejprve je t eba zjistit o jaký druh paketu se jedná – za íná proces t íd ní, proces tení dat, které paket bu vy adí jako nežádoucí/nepodporovaný a nebo ho identifikuje jako žádost o ur itou službu a dále ho zpracuje a odešle odpov .

6.7 P erušení

Používáme p erušení UARTu jak pro vysílání, tak pro p íjem, umožní to zrychlení programu.

6.7.1 Inicializace UARTu

Inicializace UARTu se provádí podprogramem _UartInit. Tedy call _UartInit.

- Zápis do U1BRG. Rychlost 57600, po ítá se s osminásobným fázovým záv sem.
- Zápis do U1MODE íslo 0x8400, tzn. 8 bitu data, parita zadna, 1 stop bit
- Aktivace UARTu => v registru U1STA nastavení bitu UTXEN do 1. Ostatní bity registru z stávají v nule.

6.7.2 P erušení .global prijem

Uložení dat do pam ti se d je v p erušení .global p íjem

- Pro UDP: P ijetí a uložení do pam ti
- Pro TCP: Od íznutí hlavi ky EE 23, od íznutí CRC

6.7.3 P erušení .global vysilani

Vysílání dat z pam ti do úst edny se d je v p erušení .global vysilani

- Pro UDP: P eposlání UDP paketu do úst edny
- Pro TCP: P idání hlavi ky, zdvojování znaku EE za znakem START = 23, po ítání CRC

6.7.4 Po ítání CRC32

Pro TCP pakety je nutno po ítat CRC. Podprogram pro CRC se volá p íkazem call CRC32. Postup pro užití podprogramu je takový:

- Vložit adresu za átku dat do registru w13 a délku dat do bu ky data_length
- Na íst data z pam ti, vložit do W0 a zavolat podprogram call crc32_update
- Po posledním bajtu dat pokra uje program na crc_end a následn dostáváme výsledek v bu kách crc32_H a crc32_L

Pozn.: Vznikly dva programy, jeden po ítá CRC podle zp sobu uvedeného v 4.3.3, tento zp sob však p i implementaci na data z úst edny, nevycházel. Vznikl tedy program druhý, a to p episem programu pro po ítaní CRC32 z jazyka C. Program vytvo il pan profesor Tomáš Kubalík, vedoucí naší práce. Bohužel jsme nep išli na to, jak a pro první zp sob nefunguje.

7 Webové rozhraní

7.1 Zm na IP adresy

Zm na IP adresy se provádí pomocí webového rozhraní – pomocí libovolného webového prohlíže e. Nejprve se mezi prohlíže em a

MEDEA modul

Na této IP adrese běží Medea modul pro komunikaci s ústřednou Omega. Změnu IP adresy modulu provedete vyplněním nové (dle příkladu) a kliknutím na tlačítko Změnit IP adresu.

192.168.10.1

Změnit IP adresu

autoň: Košař, Kapic

Médea modulem vytvo í TCP/IP spojení na portu 80 (http protokol). Jakmile obdrží Médea modul požadavek na ur itou akci pomocí parametr http p íkazu GET odešle vhodnou html odpov a p ípadn zm ní IP adresu v pam ti DsPIC-EEPROM.

Princip:

- Data TCP segmentu obsahují ASCII text GET / http
 - Médea modul odešle zp t standardní webovou stránku, k vypln ní pole pro zm nu IP adresy použije uložený ascii podobu
- Data TCP segmentu obsahují ASCII text GET /?IP= za kterým následuje správn zadaná IP v ASCII podob
 - na te se ascii podoba IP
 - p evede se na ty i hexadecimální ísla
 - ob varianty vyjád ení IP se uloží do EEPROM
 - odešle se odpov "IP adresa byla úsp šn uložena"
 - provede se zm na IP adresy v RAM
 - program dále reaguje jen na novou IP adresu
- Data TCP segmentu obsahují ASCII text GET /?IP= za kterým následuje nesprávn zadaná IP v ASCII podob
 - Médea modul odešle standardní webovou stránku s upozorn ním "Chybná IP!"

P evod ASCII IP -> HEX IP

B žn se IP adresa zapisuje v decimálním tvaru, p i emž jednotlivé íslice jsou odd leny te kou. Díky vynechávání nul má nepevnou délku. Tak tomu je i když je IP adresa vyjád ena v ASCII znacích. V této podob je snadno itelná a zapamatovatelná pro lov ka. Avšak v paketech, které analyzujeme a vysíláme, se vyjad uje IP adresa ty mi hexadecimálními, ni ím neodd lenými íslicemi.

8 Tvorba plošného spoje

Celkem vznikly desky dv . První byla zam ena ist na tréninkové ú ely => Training board. A druhá je již p ipravena na použití v úst edn .

8.1 Training board

Rozmíst ní sou ástek na desce v 3D

Na této desce jsme si ov ovali komunikaci SPI mezi PICem a ENC, dále UART a všechno pot ebné k realizaci naší desky v sítích TCP/IP. Jsou zde zavedeny lámací lišty pro obvyklé "kde m že být chyba". Prost ednictvím lámací lišty se také programuje. Pod PICem (nalevo) jsou vývody pro p ipojení Tomášova p evodníku, pod ENC vývody pro p ipojení trafa a konektoru RJ-45. Vývody napájení jsou zde ešeny pomocí svorkovnic, jedna na 5V a druhá na 3,3V (ENC vyžaduje), zem jsou spojeny. Tla ítko resetuje ENC. Jsou použity krystaly 25 MHz (ENC) a 7,3728 MHz (dsPIC). Dále CMOS hradlo 74HCT08 na p evod úrovní mezi PICem a ENC.

8.2 Medea modul verze 1.1

Druhý z výrobk jsme nazvali Medea modul. Výrobek je již p ipraven k použití v úst edn , pro upevn ní je vybaven montážními otvory. Modul napájí úst edna, z které leze 5V, napájení 3,3V je vy ešeno Zenerovou diodou (zapojení níže). Lišta pod PICem dole je ur ena na programovaní. Deska má dv tla ítka, tla ítko umíst né nejvýše je RESET (reset PICa – vede na MCLR) a tla ítko umíst né pod ním RESET IP (nastavuje defaultní IP adresu modulu 192.168.10.111). Pro lepší orientaci b hem p enosu informací jsou tu 3 diody, dv posazené ve sloupku nad sebou vedle konektoru RJ-45 a jedna nad tla ítky. Modul komunikuje s úst ednou prost ednictvím 14-pinového konektoru WSL 14G (úpln naho e-popis níže). Posledním d ležitým prvkem je jumper (vedle WSL 14G), nastavuje half-duplex a full-duplex.

Zapojení jumperu: HALF = JUMPER CLOSED, FULL = WITHOUT JUMPER

Medea modul verze 1.1

P i realizaci desky došlo k chyb . **Byly prohozeny piny RX a TX** u 14-pinového konektoru. Chyba je opravena redukcí, která je sou ástí modulu. Popis konektoru viz. níže.

Hned po odhalení chyby vznikl další návrh desky, verze 1.2, kde je vše opraveno.

8.3 Popis WSL 14G

Modul je spojen s úst ednou pomocí 14-žilového kabelu. Na obrázku dole je vid t konektor na našem modulu z pohledu sou ástek.

Náhled na WSL 14G zasazeného na desce z pohledu sou ástky

PIN	POPIS
1	GND
2	+5V
5	RX dsPIC, RX úst edna
7	TX dsPIC, TX úst edna
11	GND

Pozn.:

- 1) Pin 1, tedy GND, je spojen s pinem 11.
- 2) V tabulce je vid t, že nedošlo ke k ížení cest, jak m lo (tzn. TX dsPIC, RX úst edna). Redukce to eší prohozením drát . Tzn. RX na TX.

8.4 Napájení 5V na 3,3V

8.5 LF1S022

P i výb ru trafa a konektoru, jsme se rozhodli pro integritu a zvolili LF1S022, odd lovací signálové trafo pro ethernet 10Base-T v konektoru RJ-45.

Vnit ní schéma zapojení

9 Záv r

Výsledkem naší dlouhodobé maturitní práce je pln funk ní hardwarový modul do úst edny Ateus Omega. Zkonstruováním tohoto výrobku jsme se zdokonalili v ad dovedností, mezi které pat í: programováni v Assembleru, zhotovování plošných spoj , monitorování a aplikování paketových komunika ních protokol v praxi, spolupráce v týmu. Nau ili jsme se ešit problémy spojené s realizací produktu. Do budoucna by možným vylepšením mohlo být snížení energetických ztrát stabilizátoru nap tí. Na záv r bychom cht li pod kovat panu profesorovi Ing. T. Kubalíkovi za jeho podporu a pomoc v dobách, kdy se situace zdála ne ešitelná.

10 Odkazy a citace:

Literatura:

Šmrha, P. – Rudolf, V.: Internetworking pomocí TCP/IP vydání eské Bud jovice, Kopp 1997, 126 s.

Katalogové listy-pdf:

obvody: DSP30F3013, ENC28J60 Microchip

LF1S022

Sériová komunikace s úst ednou Ateus Omega 2N

Odkazy Internet:

http://cs.wikipedia.org/wiki/TCP/IP TCP/IP protokoly

http://www.cs.vsb.cz/grygarek/LAN/sem/sercomm.html sériový p enos

http://cs.wikipedia.org/wiki/Cyklick%C3%BD_redundantn%C3%ADsou%C4%8Det CRC

11 Použitý software

MPLAB IDE v. 7.42

ASIX UP v. 2.7

EAGLE 4.16 Professional

EAGLE 3D ulp modul do EAGLE 4.16 Professional

POV-Ray v. 3.6

Visual Basic 6

Wireshark

Terminal

IrfanView

Balík program firmy microsoft => Word, Visio, PowerPoint

12 P ílohy

12.1 Fotky MEDEA MODULU

Redukce k MEDEA MODULU

12.2 Schémata a návrhy desek

12.2.1 SCHÉMA – TRAINING BOARD

12.2.2 SCHÉMA – MEDEA MODUL

12.2.3 PLOŠNÉ SPOJE – TRAINING BOARD

Náhled plošného spoje na vrstvu BOTTOM Training Board

Rozmíst ní sou ástek na desce Training Board

12.2.4 PLOŠNÉ SPOJE – MEDEA MODUL

Náhled plošného spoje na vrstvu TOP Medea modulu(z pohledu sou ástek)

Náhled plošného spoje na vrstvu BOTTOM Medea modulu (z pohledu sou ástek)

Náhled plošného spoje na vrstvu TOP i BOTTOM zárove (z pohledu séu ástek)

Rozložení sou ástek na desce MEDEA MODUL