ANALYSIS QUALIFYING EXAMINATION

August 1998

Instructions:

- (1) Write your solutions on only one side of your paper.
- (2) Start each problem on a separate page.
- (3) There are 8 problems on this exam; each problem is worth 10 points.

Notation/Conventions:

- (1) \mathbb{R} is the set of real numbers and \mathbb{C} is the set of complex numbers.
- (2) (X, \mathcal{F}, μ) is an arbitrary (complete) measure space and:

$$L_0(X, \mathcal{F}, \mu) = \{ f \colon X \to \mathbb{R} \mid f \text{ is } \mathcal{F}\text{-measurable} \}$$

$$L_p(X, \mathcal{F}, \mu) = \{ f \in L_0(X, \mathcal{F}, \mu) \mid ||f||_p < \infty \}.$$

So we are only considering finite-valued functions.

- (3) \mathcal{B} is the collection of Borel subsets of \mathbb{R} .
- 1) Let (X_i, ρ_i) be metric spaces and $f: X_1 \to X_2$ be a continuous map. Let $Y_1 \subset X_1$ and $Y_2 = f(Y_1)$.
- 1a) Show that a continuous image of a compact set is compact. Namely, show that if Y_1 is compact, then Y_2 is compact.
- 1b) Prove or give a counterexample to the following converse: If Y_2 is compact, then Y_1 is compact.
 - 2) Let $f \in L_{\infty}(X, \mathcal{F}, \mu)$ with $||f||_{\infty} = M$. Consider the property (*):

$$\lim_{p\to\infty}\|f\|_p\stackrel{(*)}{=}\|f\|_\infty\ .$$

- 2a) If $\mu(X) = 1$, does (*) necessessarily hold? Prove or give a counterexample.
- 2b) If $0 < \mu(X) < \infty$, does (*) necessessarily hold? Prove or give a counterexample.
- 2c) If $\mu(X) = \infty$, does (*) necessarily hold? Prove or give a counterexample.
 - 3) Let $(\mathbb{R}, \mathcal{M}, m)$ be the Lebesgue measure space on \mathbb{R} . Establish the Riemann–Lebesgue Theorem: If $f \in L_1(\mathbb{R}, \mathcal{M}, m)$, then $\lim_{n\to\infty} \int_{\mathbb{R}} f(x) \cos(nx) dm = 0$.

Let $([0,1], \mathcal{M}, m)$ be the Lebesgue measure space on [0,1] and $\varepsilon > 0$. Consider a Lebesgue measurable subset E of [0,1] with the property:

$$m(E \cap [a,b]) \stackrel{(\star)}{\geqslant} \varepsilon m([a,b])$$

for each $0\leqslant a\leqslant b\leqslant 1$. Show that m(E)=1.

You may use, without proving, Lebesgue's Differentiation Theorem.

- 5) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that f^{-1} of a Borel set is again a Borel set.
- 6) Consider a sequence $\{f_n\}_{n=1}^{\infty}$ of functions in $L_1(X, \mathcal{F}, \mu)$ along with some function $f: X \to \mathbb{R}$. Assume that:
 - (1) $f_n \to f$ almost everywhere,
 - (2) for each $\varepsilon > 0$ there is a set $A_{\varepsilon} \in \mathcal{F}$ with $m(A_{\varepsilon}) < \infty$ such that

$$\int_{X \setminus A_{\varepsilon}} |f_n| \ d\mu < \varepsilon$$

for each $n \in \mathbb{N}$,

(3) for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $E \in \mathcal{F}$ and $m(E) < \delta$ then

$$\int_{E} |f_{n}| d\mu < \varepsilon$$

for each $n \in \mathbb{N}$.

Show that $f_n \to f$ in $L_1(X, \mathcal{F}, \mu)$, ie. show that $\lim_n \int_X |f - f_n| d\mu = 0$.

- 7) Let G be an open connected subset of \mathbb{C} . Let f be a continuous function on G such that e^f is constant on G, say $e^{f(z)} = c$ for each $z \in G$ for some $c \in \mathbb{C}$. Show that f is constant on G.
- Show Liouville's Theorem: If f is an holomorphic bounded function on \mathbb{C} , then f is constant on \mathbb{C} . HINT: it suffices to show that f' is zero on \mathbb{C} .