BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI I SEMESTER 2012-2013

ES C233 - Logic in Computer Science

08th October, 2012

Mid-semester Test (closed book)

1. Without using the natural laws of deduction, determine whether the sequent given below is valid or not.

$$(p \to q) \land (r \to \neg p) \land r \vdash \neg q$$

[3]

Weightage: 25%

p	q	r	p o q	\bar{p}	$r ightarrow ar{p}$	$(p ightarrow q) \wedge (r ightarrow ar{p}) \wedge r$	$ar{q}$	$((p ightarrow r) \wedge (r ightarrow ar{p}) \wedge r) ightarrow ar{q}$
T	T	T	T	F	F	F	F	T
T	T	F	T	F	T	F	F	T
T	F	T	F	F	F	F	T	T
T	F	F	F	F	T	F	T	T
F	T	T	T	T	T	T	F	F
F	T	F	T	T	T	F	F	T
F	F	T	T	T	T	T	T	T
F	F	F	T	T	T	F	T	T

As it follows from the truth table, $((p \to q) \land (r \to \bar{p}) \land r) \to \bar{q}$ is not a tautology, so the argument $(p \to q) \land (r \to \bar{p}) \land r \vdash \bar{q}$ is not valid. In particular a counter example for it is when p, q and r are false, true and true correspondently.

2. Find a conjunctive normal form (CNF) equivalent to the formula

$$((p \to q) \land \neg q) \to \neg p$$

Determine, without using truth table, whether the formula in CNF is a tautology or not.

[3]

$$((p \to q) \land \neg q) \to \neg p$$

$$\leadsto \neg ((\neg p \lor q) \land \neg q) \lor \neg p$$

$$\leadsto (p \land \neg q) \lor q \lor \neg p$$

$$\leadsto (p \lor q \lor \neg p) \land (\neg q \lor q \lor \neg p)$$

Yes, the formula is a tautology since both disjunctions include a pair $x, \neg x$.

3. Show that

$$(p\to q) \leftrightarrow (\neg q\to \neg p)$$
 is a tautology, where $p\leftrightarrow q$ means $(p\to q) \land (q\to p)$

[3]

p	q	$ar{q}$	\bar{p}	$p \rightarrow q$	$ar{q} ightarrow ar{p}$	$(p o q) \leftrightarrow (\bar{q} o \bar{p})$
T	T	F	F	T	T	T
T	F	T	F	F	F	T
F	T	F	T	T	T	T
F	F	T	T	T	T	T

All truth values of $(p \to q) \leftrightarrow (\bar{q} \to \bar{p})$ in the truth table are true no matter what the truth values of its simple components. So this proposition is a tautology by definition.

4. Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff $\neg \phi$ is not valid.

Explain the usefulness of the above result and give proper justifications for your answer.

We need a decision process for only one of the concepts (Validity or Satisfiability). [2 marks]

Give flow charts for converting a decision process to check Validity into a decision process for Satisfiability and vice-versa [1.5+1.5]. Refer to class notes, date 03rd September, 2012.

[5]

5. Show that every HORN formula can be converted into CNF. Horn formulas are already of the form $\psi_1 \wedge \psi_2 \wedge \psi_3 \dots \wedge \psi_n$, where each ψ_i is of the form $p_1 \wedge p_2 \wedge p_3 \dots \wedge p_{i_k} \rightarrow q_i$, which is equivalent to $\neg (p_1 \wedge p_2 \wedge p_3 \dots \wedge p_{i_k}) \vee q_i$, which in turn is equivalent to $\neg p_1 \vee \neg p_2 \vee \neg p_3 \dots \vee \neg p_{i_k} \vee q_i$. Thus we may convert any Horn formula into a CNF where each conjunction clause has at most one positive literal in it.

[3]

- 6. Translate the following into symbolic form using Predicate Logic:
 - (i) Somebody cried out for help and called the police
 - (ii) Nobody can ignore her

Clearly define the predicate and function symbols you plan to use. UoD = all human beings.

 $(\exists x)[H(x) \land P(x)]$, where H(x) - x cried out for help and P(x) - x called the police $(\exists x)I(x)$ or $(\forall x)[\sim I(x)]$, where I(x) - x can ignore her

[2]

7. Give one example each for function symbols with arity 2 & 3. Grade (student, course)
Temperature (longitude, latitude, time)

[2]

8. Consider the following predicates:

$$P(x; y) : x > y$$

 $Q(x; y) : x \le y$
 $R(x) : x - 7 = 2$
 $S(x) : x > 9$

PTO →

If the universe of discourse is the real numbers, give the truth value of each of the following:

```
\begin{array}{l} (\mathrm{i})(\exists x)R(x) \\ (\mathrm{ii})(\forall y)[\sim S(y)] \\ (\mathrm{iii})(\forall x)(\exists y)P(x,y) \\ (\mathrm{iv})(\exists y)(\forall x)Q(x,y) \\ (\mathrm{v})(\forall x)(\forall y)[P(x,y)\vee Q(x,y)] \\ (\mathrm{vi})(\exists x)S(x)\wedge\sim(\forall x)R(x) \\ (\mathrm{vii})(\exists y)(\forall x)[S(y)\wedge Q(x,y)] \\ (\mathrm{vii})(\forall x)(\forall y)[\{R(x)\wedge S(y)\}\rightarrow Q(x,y)] \end{array}
```

Give proper reasons for your answer. Just writing T or F will not fetch you any marks.

- (i) T, $\exists x, x = 9$, that R(x) is true
- (ii) F, counter example y = 10
- (iii) T, for any real number always exists another real number that is less then it.
- (iv) F, there is no such real number that is grater or equal to all other real numbers.
- (v) T, any two real numbers x and y are either x > y or $x \le y$.
- (vi) T, there exist real numbers that are grater than 9, and not all real numbers are equal to 9
- (vii) F, there is no such real number that is grater or equal to all other real numbers, even if this number is grater than 9.
- (viii) T, this follows from the fact that $(\forall x)R(x)$ is false. Therefore $(\forall x)(\forall y)[R(x) \land S(y)]$ is also false, so $(\forall x)(\forall y)[\{R(x) \land S(y)\} \rightarrow Q(x,y)]$ is true.