

CAPSTONE PROJECT 1 REPORT

HOUSE PRICE PREDICTION

SPRINGBOARD JUNE, 2019

Prepared by:

Mehreteab Kidane

Mentor

Kenneth Gil-Pasquel

OBJECTIVES OF THIS PROJECT

- * To determine the causes of increase in housing price
- To predict the price of housing price in the future
- To identify the effect of increase in housing price

DATA OVERVIEW

- Original dataset found from Kaggle website
- * Kings County ,Seattle ,Washington
- * House sold between May 2014 and May 2015
- 21613 observations and 20 features

WHO IS THE AUDIENCE ...

- * Housing Developers
- Individuals who will purchase house in the future
- *Real estate company and brokers
- It can help the government estimate the price of housing in the future

EXPLORATORY DATA ANALYSIS

- ▶ I tried to use a diverse set of data visualization tools
- □ Histogram plots
- □ Boxplots
- □ Scatterplot

Histogram Plot

Correlations b/n features vs price

Data is cleaned and outliers were dropped

Boxplot: correlation Bedrooms and Floors

Boxplot: correlation b/n Bathrooms & Bedrooms

Scatter plot for Sqft_living15

Correlation b/n features and price

Features	CORRCOEFF	
sqft_lot15	-0.107535	Weak negative
sqft_lot	-0.089069	Weak negative
waterfront	0.055702	Very Weak positive
condition	0.078840	Very Weak positive
view	0.218874	Weak positive
bedrooms	0.235083	Weak positive
floors	0.238493	Weak positive
sqft_basement	0.239227	Weak positive
bathrooms	0.360725	Strong positive
sqft_above	0.403418	Strong positive
sqft_living15	0.439548	Strong positive
sqft_living	0.524052	Strong positive
grade	0.546210	Strong positive

MACHINE LEARNING MODELS

- ► Linear Regression
- ► Random Forest Regression
- ► Gradient Boosting Regressor
- **▶ Decision TreeRegressor**

METRICS USED TO EVALUATE

- ► Root Mean Squared Error (RMSE)
- ► Mean squared error (MSE)
- ► Mean absolute error (MAE)
- ► R-squared

METRICS ... CONTINUED

- ► Accuracy score
- ► Variance score

CONCLUSION

- Gradient Boosting model better model
- Accuracy score of 88.84%
- R-squared of 0.828

And all the metrics suggests that Gradient Boosting model has better performance. Therefore, it is inferred that **Gradient Boosting** is the suitable model for this dataset.