# Topological Data Analysis

Lecture 7

Higher-order Laplacian

### Graph

G = (V, E), where  $E \subseteq V \times V$ .

#### **Adjacency matrix**

**A** is  $|V| \times |V|$  matrix.

$$\mathbf{A}_{ij} = \begin{cases} 1, & v_i \sim v_j, \\ 0, & \text{otherwise} . \end{cases}$$

#### **Incidence matrix**

**B** is  $|V| \times |E|$  matrix.

$$\mathbf{B}_{ij} = \begin{cases} 1, & v_i \sim v_j, v_i > v_j, \\ -1, & v_i \sim v_j, v_i < v_j, \\ 0, & \text{otherwise}. \end{cases}$$



### Graph

G = (V, E), where  $E \subseteq V \times V$ .

### **Laplacian matrix**

**L** is  $|V| \times |V|$  matrix.

$$\mathbf{L}_{ij} = \begin{cases} d(v_i), & i = j, \\ -1, & i \neq j \text{ and } v_i \sim v_j, \\ 0, & \text{otherwise}. \end{cases}$$

|   | 1 | 2  | 3  | 4  | 5  | 6  | 7  |
|---|---|----|----|----|----|----|----|
| 1 | 0 |    |    |    |    |    |    |
| 2 |   | 1  | -1 |    |    |    |    |
| 3 |   | -1 | 1  |    |    |    |    |
| 4 |   |    |    | 2  | -1 | -1 |    |
| 5 |   |    |    | -1 | 3  | -1 | -1 |
| 6 |   |    |    | -1 | -1 | 3  | -1 |
| 7 |   |    |    |    | -1 | -1 | 2  |



### Laplacian via adjacency

$$L = D - A$$

### Laplacian via incidence

$$\mathbf{L} = \mathbf{B}\mathbf{B}^T$$

$$(BB^T)_{ij} = \sum_{k=1}^n B_{ik} B_{jk}$$

$$B_{ik}B_{jk} = \begin{cases} 1, & i = j, (i,j) \in E, \\ -1, & i \neq j, (j,i) \in E, \\ 0, & \text{overwise}. \end{cases}$$
  $(BB^T)_{ij} = \begin{cases} \sum_{k|i \in E_k} 1, & i = j, \\ -1, & i \neq j, \\ 0, & \text{overwise}. \end{cases}$ 

$$\sum_{k|i\in E_k} 1 = \deg(v_i) \quad \text{is the degree of } i\text{-th vertex, therefore} \quad \mathbf{B}\mathbf{B}^T = \mathbf{D} - \mathbf{A}$$

### Properties

- real symmetric
- rows/columns sums to 0
- positive-semidefinite, all eigenvalues >=0, eigenvalues are real
- $\lambda_0 = 0$ , as  $\mathbf{v}_0 = (1, 1, ..., 1)^T$  satisfies  $\mathbf{L}\mathbf{v}_0 = 0$
- the number of connected components of G is the dimension of the nullspace (kernel) of L

#### Simplicial complex

$$K = \left(\Sigma_0, \Sigma_1, \dots, \Sigma_{\dim(K)}\right)$$

### **Boundary operator**

$$\partial_k : C_k \to C_{k-1}$$

$$\partial_k([v_0, ..., v_k]) = \sum_{i=0}^k (-1)^i [v_0, ..., \hat{v}_i, ..., v_k]$$

#### **Chain space**

$$C_k = \left\{ a\sigma_k \mid a \in \mathbb{F}, \sigma_k \in \Sigma_k \right\}$$

$$\partial_1([2,3]) = 3 - 2$$

$$\partial_2([4,5,6]) = [5,6] - [4,6] + [4,5]$$





Simplicial complex K

Chain complex of K

$$\ldots \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

$$\partial_k \circ \partial_{k+1} = 0$$

**Higher-order Laplacian operator** 

$$L_k = \partial_k^* \partial_k + \partial_{k+1} \partial_{k+1}^*$$

The multiplicity of zero eigenvalue of  $L_k$  equals the rank of the k-th homology group  $H_k$  of K.

$$\dim \ker(\mathbf{L}_k) = H_k(K)$$



Simplicial complex K

### Generalized higher-order Laplacian

#### Generalized chain complex of K



#### **Generalized boundary operator**

$$\partial_{k,p}: C_k \to C_{k-p}$$

$$\partial_{k,p}([v_{\eta(0)}, ..., v_{\eta(k)}]) = \sum_{j_1, ..., j_p} \operatorname{sgn}(\eta) \operatorname{sgn}(\varepsilon_{j_1...j_p})[v_0, ..., \hat{v}_{j_1}, ..., \hat{v}_{j_p}, ..., v_k]$$

Given the (k-p)-face  $\tau$  of k-simplex  $\sigma = [v_0, ..., \hat{v}_{j_1}, ..., \hat{v}_{j_p}, ..., v_k]$  denote the permutation

$$\varepsilon_{j_1\dots j_p} = \begin{pmatrix} 0 & \dots & p-1 & k & \dots & k \\ j_1 & \dots & j_h & 1 & \dots & 1 \end{pmatrix}$$

## Generalized higher-order Laplacian

#### Generalized chain complex of K



### **Generalized Laplacian operator**

$$L_{k,p,q} = \partial_{k,p}^* \partial_{k,p} + \partial_{k+q,q} \partial_{k+q,q}^*$$

### Spectrum

#### **Higher-order Laplacian operator**

$$C_2 \xrightarrow[\partial_2^*]{\partial_2} C_1 \xrightarrow[\partial_1^*]{\partial_1} C_0$$

$$L_k = \partial_k^* \partial_k + \partial_k \partial_k^*$$

#### **Generalized Laplacian operator**



$$L_{k,p,q} = \partial_{k,p}^* \partial_{k,p} + \partial_{k+q,q} \partial_{k+q,q}^*$$

### Watts-Strogatz model G(n, m, p)

n = 35, m = 15,  $p = \{0.01, 0.1, 0.4\}$ , 500 graphs of each class





| LO           | L1           | L012         |  |
|--------------|--------------|--------------|--|
| 73.91 ± 0.86 | 78.37 ± 0.62 | 84.08 ± 0.49 |  |

Classification accuracy, % for 5-fold cross-validation averaged over 10 runs.

 $\dim \ker(\mathbf{L}) = \# \operatorname{connected components}(G)$ 

 $(0, (1,1,...,1)^T)$  is eigenpair of L.

(0, (1,1,...,1)) Is eigenpair of L
$$\mathbf{L1} = 0 \qquad m_i = \sum_{j=1}^n \ell_{ij}$$

 $m_i$  is 0 for all i, at rows of L sum to 0. Therefore 0 is the eigenvalue of *L*.

$$0 \le \lambda_1 \le \lambda_2 \le \dots \lambda_n$$

$$\mathbf{z}^{T}\mathbf{L}\mathbf{z} = \mathbf{z} \cdot 0 = 0 \qquad \mathbf{z}^{T}\mathbf{L}\mathbf{z} = \sum_{(u,v)\in E} (z_{u} - z_{v})^{2} = 0$$