

Tratamiento de Señales

Version 2022-I

Transformada Discreta de Cosenos (DCT)

[Capítulo 4]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

La Transformada Discreta de Cosenos está definida como:

$$D(m,n) = \alpha_m \alpha_n \sum_{i=1}^N \sum_{k=1}^N X(i,k) \cos\left(\frac{\pi(2i-1)(m-1)}{2N}\right) \cos\left(\frac{\pi(2k-1)(n-1)}{2N}\right)$$

$$\alpha_1 = 1/\sqrt{N}$$

$$\alpha_m = \sqrt{2/N}$$
 para $m=2,\dots N$

A diferencia de la DFT, esta transformada no presenta números complejos, sólo reales.

Funciones Base: (para imágenes de 20x20 pixels)

X: Input Image

20 x 20 pixels

D = DCT2(X)

1245	-20	-53	44	-34	58	-23	-31	19	15	-19	52	-81	7	46	-26	13	-6	-19	20
61	-15	-19	29	-34	-22	6	46	-29	0	-5	-30	63	-9	-43	17	-9	10	9	-1
31	7	-13	4	21	7	-8	-2	-8	19	15	-32	-8	-6	8	14	-13	-4	3	-:
0	12	5	-29	5	10	-1	1	6	-22	7	23	-3	-2	-2	-2	0	6	1	-:
-50	-18	11	9	-4	-16	2	-6	26	-9	-12	4	-6	3	2	-5	6	-1	-4	-:
-39	-4	-4	-5	6	-4	10	-22	2	9	3	1	-7	5	-1	-1	-2	-6	-1	-
-44	7	13	-10	10	-15	13	4	-13	-8	-3	3	7	-4	1	5	3	-2	-3	-,
-101	-32	17	-17	16	-16	-21	11	11	4	0	-1	4	1	-1	0	-2	-4	-4	2
-81	-18	29	-22	12	26	-3	-3	-5	-8	4	2	1	7	10	-2	-5	2	4	-:
-28	8	34	1	-21	-4	8	-11	11	-1	1	-1	-2	2	3	-3	5	-3	-4	(
2	-10	-16	23	13	-9	10	-9	3	1	-11	2	2	1	3	1	1	2	1	3
68	44	-38	-8	5	-8	12	-5	-7	6	3	-2	-1	-3	-1	0	-1	-1	1	-
11	38	15	-2	2	-10	7	1	0	-2	2	-1	-1	-1	0	-2	4	1	0	
-122	-79	-1	-14	-1	1	-1	1	5	-2	1	2	4	-3	-6	-1	-1	1	0	į
-22	13	32	-6	0	9	1	0	-1	-1	0	0	2	-5	-1	-2	3	2	0	-
6	9	-2	-9	-5	-6	-2	9	1	2	5	-1	-2	-5	1	-1	-1	2	-1	-
14	-8	-13	5	7	-5	4	2	-6	-3	1	-4	-5	-2	-5	-1	-3	-3	1	(
9	10	1	1	-3	-5	3	6	-4	-2	1	0	4	-2	-2	-1	4	3	-2	
-6	2	-3	-4	0	3	-1	-6	-2	-2	4	1	-2	-4	0	1	-5	-1	-1	
-17	-12	1	-5	-2	6	-6	-1	-1	-2	-1	1	6	1	-1	-2	0	1	5	

20 x 20 pixels

Transformada DCT2 de X

1245	-20	-53	44	-34	58	-23	-31	19	15	-19	52	-81	7	46	-26	13	-6	-19	20
61	-15	-19	29	-34	-22	6	46	-29	0	-5	-30	63	-9	-43	17	-9	10	9	-14
31	7	-13	4	21	7	-8	-2	-8	19	15	-32	-8	-6	8	14	-13	-4	3	-1
0	12	5	-29	5	10	-1	1	6	-22	7	23	-3	-2	-2	-2	0	6	1	-1
-50	-18	11	9	-4	-16	2	-6	26	-9	-12	4	-6	3	2	-5	6	-1	-4	-1
-39	-4	-4	-5	6	-4	10	-22	2	9	3	1	-7	5	-1	-1	-2	-6	-1	-1
-44	7	13	-10	10	-15	13	4	-13	-8	-3	3	7	-4	1	5	3	-2	-3	-5
-101	-32	17	-17	16	-16	-21	11	11	4	0	-1	4	1	-1	0	-2	-4	-4	2
-81	-18	29	-22	12	26	-3	-3	-5	-8	4	2	1	7	10	-2	-5	2	4	-3
-28	8	34	1	-21	-4	8	-11	11	-1	1	-1	-2	2	3	-3	5	-3	-4	0
2	-10	-16	23	13	-9	10	-9	3	1	-11	2	2	1	3	1	1	2	1	3
68	44	-38	-8	5	-8	12	-5	-7	6	3	-2	-1	-3	-1	0	-1	-1	1	-1
11	38	15	-2	2	-10	7	1	0	-2	2	-1	-1	-1	0	-2	4	1	0	-3
-122	-79	-1	-14	-1	1	-1	1	5	-2	1	2	4	-3	-6	-1	-1	1	0	5
-22	13	32	-6	0	9	1	0	-1	-1	0	0	2	-5	-1	-2	3	2	0	-1
6	9	-2	-9	-5	-6	-2	9	1	2	5	-1	-2	-5	1	-1	-1	2	-1	-1
14	-8	-13	5	7	-5	4	2	-6	-3	1	-4	-5	-2	-5	-1	-3	-3	1	0
9	10	1	1	-3	-5	3	6	-4	-2	1	0	4	-2	-2	-1	4	3	-2	1
-6	2	-3	-4	0	3	-1	-6	-2	-2	4	1	-2	-4	0	1	-5	-1	-1	2
-17	-12	1	-5	-2	6	-6	-1	-1	-2	-1	1	6	1	-1	-2	0	1	5	-1

Funciones Base: (para imágenes de 20x20 pixels)

Transformada DCT2 de X

1245	-20	-53	44	-34	58	-23	-31	19	15	-19	52	-81	7	46	-26	13	-6	-19	20
61	-15	-19	29	-34	-22	6	46	-29	0	-5	-30	63	-9	-43	17	-9	10	9	-14
31	7	-13	4	21	7	-8	-2	-8	19	15	-32	-8	-6	8	14	-13	-4	3	-1
0	12	5	-29	5	10	-1	1	6	-22	7	23	-3	-2	-2	-2	0	6	1	-1
-50	-18	11	9	-4	-16	2	-6	26	-9	-12	4	-6	3	2	-5	6	-1	-4	-1
-39	-4	-4	-5	6	-4	10	-22	2	9	3	1	-7	5	-1	-1	-2	-6	-1	-1
-44	7	13	-10	10	-15	13	4	-13	-8	-3	3	7	-4	1	5	3	-2	-3	-5
-101	-32	17	-17	16	-16	-21	11	11	4	0	-1	4	1	-1	0	-2	-4	-4	2
-81	-18	29	-22	12	26	-3	-3	-5	-8	4	2	1	7	10	-2	-5	2	4	-3
-28	8	34	1	-21	-4	8	-11	11	-1	1	-1	-2	2	3	-3	5	-3	-4	0
2	-10	-16	23	13	-9	10	-9	3	1	-11	2	2	1	3	1	1	2	1	3
68	44	-38	-8	5	-8	12	-5	-7	6	3	-2	-1	-3	-1	0	-1	-1	1	-1
11	38	15	-2	2	-10	7	1	0	-2	2	-1	-1	-1	0	-2	4	1	0	-3
-122	-79	-1	-14	-1	1	-1	1	5	-2	1	2	4	-3	-6	-1	-1	1	0	5
-22	13	32	-6	0	9	1	0	-1	-1	0	0	2	-5	-1	-2	3	2	0	-1
6	9	-2	-9	-5	-6	-2	9	1	2	5	-1	-2	-5	1	-1	-1	2	-1	-1
14	-8	-13	5	7	-5	4	2	-6	-3	1	-4	-5	-2	-5	-1	-3	-3	1	0
9	10	1	1	-3	-5	3	6	-4	-2	1	0	4	-2	-2	-1	4	3	-2	1
-6	2	-3	-4	0	3	-1	-6	-2	-2	4	1	-2	-4	0	1	-5	-1	-1	2
-17	-12	1	-5	-2	6	-6	-1	-1	-2	-1	1	6	1	-1	-2	0	1	5	-1

X Input Image _____

	40.45	20			24														10	
	1245	-20	-53	44	-34	58	- 2 3	-31	19	15	-19	52	-81	7	46	-26	13	-6	-19	20
	61	-15	-19	29	-34	-22	6	46	- 2 9	0	-5	-30	63	-9	-43	17	-9	10	9	-14
50	31	7	-13	4	21	7	-8	-2	-8	19	15	-32	-8	-6	8	14	-13	-4	3	-1
	0	12	5	-29	5	10	-1	1	6	-22	7	23	-3	-2	-2	-2	0	6	1	-1
100 _	-50	-18	11	9	-4	-16	2	-6	26	-9	-12	4	-6	3	2	-5	6	-1	-4	-1
	-39	-4	-4	-5	6	-4	10	-22	2	9	3	1	-7	5	-1	-1	-2	-6	-1	-1
	-44	7	13	-10	10	-15	13	4	-13	-8	-3	3	7	-4	1	5	3	-2	-3	-5
150	-101	-32	17	-17	16	-16	-21	11	11	4	0	-1	4	1	-1	0	-2	-4	-4	2
	-81	-18	29	-22	12	26	-3	-3	-5	-8	4	2	1	7	10	-2	-5	2	4	-3
200 =	-28	8	34	1	-21	-4	8	-11	11	-1	1	-1	-2	2	3	-3	5	-3	-4	0
	2	-10	-16	23	13	-9	10	-9	3	1	-11	2	2	1	3	1	1	2	1	3
	68	44	-38	-8	5	-8	12	-5	-7	6	3	-2	-1	-3	-1	0	-1	-1	1	-1
250	11	38	15	-2	2	-10	7	1	0	-2	2	-1	-1	-1	0	-2	4	1	0	-3
	-122	-79	-1	-14	-1	1	-1	1	5	-2	1	2	4	-3	-6	-1	-1	1	0	5
300 —	-22	13	32	-6	0	9	1	0	-1	-1	0	0	2	-5	-1	-2	3	2	0	-1
	6	9	-2	-9	-5	-6	-2	9	1	2	5	-1	-2	-5	1	-1	-1	2	-1	-1
	14	-8	-13	-5	7	-5	4	2	-6	-3	1	-4	-5	-2	-5	-1	-3	-3	1	0
350 -	9	10	1	1	-3	-5	3	6	-4	-2	1	0	4	-2	-2	-1	4	3	-2	1
	-6	2	-3	-4	0	3	-1	-6	-2	-2	4	1	-2	-4	0	1	-5	-1	-1	2
400 —	-17	-12	1	-5	-2	6	-6	-1	-1	-2	-1	1	6	1	-1	-2	0	1	5	-1
.50			50		10	00		150		20	10		250		30	10		350		400

Input Image

Aplicación: Compresión JPEG

1. Subdivisión en ventanas de 8 x 8

2. DCT2 para cada ventana normalizada

3. División por la 'Tabla de Cuantización'

4. Vectorización en zig-zag

-9	-3 2	9	-4	6	1	0	-1
24	-10	-11	6	-1	1	0	0
-1	3	-1	-3	1	0	0	0
-4	1	2	0	0	0	0	1
-2	1	0	0	-1	0	0	0
1	1	-1	0	0	0	0	0
0	0	0	0	0	0	0	0
-1	0	0	0	0	0	0	0

4. Vectorización en zig-zag

-9	-3 2	9	4	6	1	0	-1
24	-10	-11	8	-1	1	0	0
-1	3	-1	-3	1	0	0	0
-4	1	2	0	0	0	0	1
-2	1	0	0	-1	0	0	0
1	1	-1	0	0	0	0	0
0	0	0	0	0	0	0	0
-1	0	0	0	0	0	0	0

^{-9, -32, 24, -1, -10, -9, -4, -11, 3, -4, -2, 1, -1, 6, 6,}

4. Vectorización en zig-zag

-9, -32, 24, -1, -10, -9, -4, -11, 3, -4, -2, 1, -1, 6, 6, 1, -1, -3, 2, 1, 1, 0, 1, 0, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, ...

Codificación sin Perdida que asigna un menor número de bits a las términos más frecuentes

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Frecuencias: A : 6

B : 3

C : 2

0:2

- :1

T :1

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Frecuencias: A : 6

B : 3

C : 2

0 : 2

- :1 - 2

T : 1

Combinar las dos menos frecuentes

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Frecuencias: A : 6

B : 3

C : 2

0 :2 — 4

- :1 - 2

T : 1

Combinar las dos menos frecuentes

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Frecuencias: A : 6

B :3 — 5

C : 2

0 :2 ______4

- :1 - 2

T :1

Combinar las dos menos frecuentes

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Construir código de cada caracter

A:0

B:100

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Construir código de cada caracter

A:0

B:100

C: 101

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Construir código de cada caracter

A:0

B:100

C:101

0:110

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

de cada caracter A:0 B:100 C:101 0:110

Construir código

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Construir código de cada caracter

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Construir código de cada caracter

A:0

B:100

C:101

0:110

-:1110

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Construir código de cada caracter

A:0

B:100

C: 101

0:110

-:1110

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Construir código de cada caracter

A:0

B: 100

C: 101

0:110

-:1110

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

0100

Construir código de cada caracter

A:0

B:100

C: 101

0:110

-:1110

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

010000

Construir código de cada caracter

A:0

B: 100

C: 101

0:110

-:1110

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

010000100

Construir código de cada caracter

A:0

B:100

C: 101

O:110

-:1110

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

010000100101

Construir código de cada caracter

A:0

B: 100

C:101

0:110

-:1110

Ejemplo: Codificar las palabras mágicas ABAABCO-ATAABCO

Construir código de cada caracter

A:0

010000100101110111001111001001011110

C: 101

B: 100

0:110

-:1110

Resultados

