Supplementary Material

This document servers as the supplementary material of OOPSLA 2019 publication titled "BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-program Path Sampling and Per-path Abstract Interpretation" [1].

1 Basic Information of Binaries under Evaluation

To assess BDA's effectiveness and efficiency, we compare it with other dependence analysis techniques on the SPECINT2000 [2] benchmark. Table 1 presents the statistics of the SPECINT2000 binaries, including their size, number of instructions, basic blocks, and functions.

We also apply BDA in several downstream analyses, one of them is to identify hidden malicious behaviors of a set of 12 recent malware samples provided by VirtualTotal [3]. We present Table 2 to show malware ids, size, and report date.

Table 1: SPECINT2000 programs.

Program	Size	# Insn	# Block	# Func
164.gzip	143,760	7,650	707	61
175.vpr	$435,\!888$	32,218	2,845	255
176.gcc	4,709,664	$378,\!261$	36,931	1,899
181.mcf	62,968	2,977	213	24
186.crafty	517,952	42,084	4,433	104
197.parser	367,384	24,584	2,911	297
252.eon	$3,\!423,\!984$	40,119	7,963	615
253.perlbmk	1,904,632	133,755	12,933	717
254.gap	1,702,848	91,608	9,020	458
255.vortex	1,793,360	109,739	16,970	624
256.bzip2	$108,\!872$	6,859	577	63
300.twolf	$753,\!544$	57,460	4,280	167

Table 2: Malware samples.

	-	
Malware	Size	Report Date
1a0b96488c4be390ce2072735ffb0e49	1,806,356	2018-03-10
3fb857173602653861b4d0547a49b395	5 163,099	2018-07-17
49c178976c50cf77db3f6234efce5eeb	116,385	2018-03-12
5e890cb3f6cba8168d078fdede090996	18,112	2018-03-14
6dc1f557eac7093ee9e5807385dbcb05	88,520	2018-07-09
72afccb455faa4bc1e5f16ee67c6f915	729,816	2017-05-17
74124dae8fdbb903bece57d5be31246b	21,804	2018-10-09
912bca5947944fdcd09e9620d7aa8c4a	124,366	2018-10-09
a664df72a34b863fc0a6e04c96866d4c	200,976	2018-07-17
c38d08b904d5e1c7c798e840f1d8f1ee	178,781	2017-02-24
c63cef04d931d8171d0c40b7521855e9	88,436	2018-03-14
dc4db38f6d3c1e751dcf06bea072ba9c	124,154	2018-07-17

2 Proof of Theorem 4.1

Theorem 4.1. Using Algorithm 2, the probability \tilde{p} of any whole-program path being sampled satisfies equation 1, in which n is the total number of whole-program paths and L is the length of the longest path, which can be considered as O(x) with x the number of nodes in iCFG.

$$\left(\frac{2^{63}}{2^{63}+1}\right)^{2L} \cdot \frac{1}{n} \le \tilde{p} \le \left(\frac{2^{63}+1}{2^{63}}\right)^{2L} \cdot \frac{1}{n} \tag{1}$$

Proof. First, for any weight w_v , we prove that $\widetilde{w_v}$ follows $\frac{2^{63}}{2^{63}+1} \cdot w_v \leq \widetilde{w_v} \leq w_v$.

$$\begin{cases} exp = \max(\lfloor \log w_v \rfloor, 63) - 63\\ sig = \lfloor w_v / 2^{exp} \rfloor \end{cases}$$
 (2)

According to equation 2, if $w_v < 2^{64}$, $\widetilde{w_v} = w_v$. Otherwise, $sig \le w_v/2^{exp} < sig + 1$, and hence $sig \times 2^{exp} \le w_v < (sig + 1) \times 2^{exp}$. As $sig \ge 2^{63}$ when $w_v \ge 2^{64}$, we have $\widetilde{w_v} \le w_v < \frac{2^{63} + 1}{2^{63}} \cdot \widetilde{w_v}$. Thus, $\frac{2^{63}}{2^{63} + 1} \cdot w_v \le \widetilde{w_v} \le w_v$. As a result, the following holds.

$$\frac{2^{63}}{2^{63}+1} \cdot \frac{w_1}{w_1+w_0} \le \frac{\widetilde{w_1}}{\widetilde{w_1}+\widetilde{w_0}} \le \frac{2^{63}+1}{2^{63}} \cdot \frac{w_1}{w_1+w_0} \tag{3}$$

Let $p_1 = \frac{w_1}{w_1 + w_0}$ be the accurate probability of choosing branch 1, the lighter-weight branch. $p_0 = \frac{w_0}{w_1 + w_0}$ choosing the other. Thus, we can derive the following 4 from inequality 3.

$$\frac{2^{63}}{2^{63}+1} \cdot p_l \le \frac{\widetilde{w}_1}{\widetilde{w}_1 + \widetilde{w}_0} \le \frac{2^{63}+1}{2^{63}} \cdot p_l \tag{4}$$

Next, we derive the bounds of $\widetilde{p_1}$, the probability of Algorithm ?? choosing branch 1. There are two cases.

(a) If n < 64, we directly have $\widetilde{p}_l = \widetilde{w}_1/(\widetilde{w}_1 + \widetilde{w}_0)$. According to inequality 4, we have the following.

$$\frac{2^{63}}{2^{63}+1} \cdot p_l \le \tilde{p}_l \le \frac{2^{63}+1}{2^{63}} \cdot p_l \tag{5}$$

(b) If $n \geq 64$, $\widetilde{p_1} = \frac{\widetilde{w_1}.sig}{\widetilde{w_0}.sig \times 2^n}$. Note that $\frac{\widetilde{w_1}}{\widetilde{w_0}+\widetilde{w_1}} = \frac{\widetilde{w_1}.sig}{\widetilde{w_0}.sig \times 2^n+\widetilde{w_1}.sig}$. Thus, we have $\widetilde{p_1} \geq \frac{\widetilde{w_1}}{\widetilde{w_0}+\widetilde{w_0}}$. Combining with inequality 4, we can have $\widetilde{p_1} \geq \frac{2^{63}}{2^{63}+1} \cdot p_l$. On the other hand, $\widetilde{p_1} = \frac{\widetilde{w_1}}{\widetilde{w_0}+\widetilde{w_1}} \cdot \frac{\widetilde{w_0}.sig \times 2^n+\widetilde{w_1}.sig}{\widetilde{w_0}.sig \times 2^n}$. Because $\widetilde{w_1}.sig < 2^{64} \leq 2 \cdot \widetilde{w_0}.sig$, we can have $\frac{\widetilde{w_0}.sig \times 2^n+\widetilde{w_1}.sig}{\widetilde{w_0}.sig \times 2^n} < \frac{\widetilde{w_0}.sig \times 2^n+\widetilde{w_1}.sig}{\widetilde{w_0}.sig \times 2^n} = \frac{2^{n-1}+1}{2^{n-1}}$. As $n \geq 64$ here, we can have $\widetilde{p_1} = \frac{\widetilde{w_1}}{\widetilde{w_0}+\widetilde{w_1}} \cdot \frac{\widetilde{w_0}.sig \times 2^n+\widetilde{w_1}.sig}{\widetilde{w_0}.sig \times 2^n} < \frac{\widetilde{w_1}}{\widetilde{w_0}+\widetilde{w_1}} \cdot \frac{2^{63}+1}{2^{63}}$. Combining with inequality 4, we can have $\widetilde{p_1} < (\frac{2^{63}+1}{2^{63}})^2 \cdot p_l$. Thus,

$$\frac{2^{63}}{2^{63}+1} \cdot p_1 \le \widetilde{p_1} \le \left(\frac{2^{63}+1}{2^{63}}\right)^2 \cdot p_1 \tag{6}$$

From inequality 5 and 6, the following is true.

$$\left(\frac{2^{63}}{2^{63}+1}\right)^2 \cdot p_1 \le \widetilde{p_1} \le \left(\frac{2^{63}+1}{2^{63}}\right)^2 \cdot p_1 \tag{7}$$

Similarly, we can prove the bound for $\widetilde{p_0}$.

3 Algorithms in Posterior Analysis

After the abstract interpretation of all sampled paths, the posterior analysis is performed to complete dependence analysis, via aggregating the abstract values collected from individual path samples in a flow-sensitive, context-sensitive, and path-insensitive fashion. This section will present detailed algorithms of **Per-sample Analysis** and **Handle Memory Read** which are elided in [1].

Per-sample Analysis Algorithm 1 traverses each instruction iaddr and the abstract address maddr accessed by the instruction and updates I2M (line 4). If iaddr is a memory write, the previous definition of maddr is killed by iaddr (line 6) and iaddr becomes the latest definition (line 7). If it is a read, a dependence is identified between iaddr and the lastest definition and added to DEP (line 9).

Algorithm 1 Per-sample Analysis

```
INPUT:
             MOS:
                         MemOpSeq

▷ memory operation sequence

OUTPUT:
             I2M:
                         Address \rightarrow \{AbstractValue\}
                                                                ▷ map an instruction to abstract addresses accessed by it
              DEP:
                         Address \rightarrow \{Address\}
                                                                  ▷ map an instruction to the instructions it depends on
             KILL:
                         Address \rightarrow \{Address\}
                                                                      ▶ map an instruction to reaching definitions it kills
 LOCAL:
             DEF:
                         {\tt AbstractValue} \to {\tt Address}
                                                                        ▶ map an abstract address to its latest definition
```

```
1: function PerSampleAnalysis(MOS)
        while \neg MOS.empty() do
3:
            \langle iaddr, maddr \rangle \leftarrow MOS. \texttt{dequeue}()
                                                                  ▷ acquire an instruction instance and the accessed address
            I2M [iaddr] \leftarrow I2M [iaddr] \cup \{maddr\}
4:
            if is_memory_write (iaddr) then
5:
6:
                KILL[iaddr] \leftarrow KILL[iaddr] \cup \{DEF[maddr]\} > previous definition of maddr is killed by iaddr
7:
                DEF[maddr] \leftarrow iaddr
                                                                                     \triangleright iaddr is the new definition of maddr
8:
            else if is memory read (iaddr) then
                DEP[iaddr] \leftarrow DEP[iaddr] \cup \{DEF[maddr]\}
9:

▷ detect a new dependence

10:
            end if
11:
        end while
        return \langle I2M, DEP, KILL \rangle
13: end function
```

Handle Memory Read Similar to handling memory writes in [1], Algorithm 2 specially addresses strong updates, which lead to single dependence (lines 4-5). Otherwise in lines 7-11, for each maddr ever accessed by iaddr in some sample, dependences are introduced between iaddr to all the live definitions of maddr in M2I.

Algorithm 2 Handle Memory Read

```
INPUT:
                iaddr:
                              Address
                                                                                                                 \triangleright the current instruction
                DIP:
                              \mathtt{Address} \times \mathtt{Address}
                                                                                                                             ▶ dependences
                M2I:
                              AbstractValue \rightarrow \{Address\}
                                                                                                      \,\triangleright\, map an address to its definitions
                GI2M:
                              Address \rightarrow \{AbstractValue\}
                                                                                        ▶ map an instruction to its accessed addresses
                GDEP:
                              Address \rightarrow \{Address\}
                                                                                  ▶ map an instruction to its dependences in samples
                DIP':
OUTPUT:
                              \mathtt{Address} \times \mathtt{Address}
                                                                                                                  \triangleright updated dependences
```

```
1: function HandleMemoryRead(iaddr, DIP, M2I, GI2M, GDEP)
        if capacity (GDEP[iaddr]) \equiv 1 then
2:
                                                                                                   \trianglerightstrong dependence
3:
            for def in GDEP[iaddr] do
               DIP' \leftarrow DIP' \cup \{\langle iaddr, def \rangle\}
4:
            end for
5:
6:
        else
7:
            for maddr in GI2M [iaddr] do
               for def in M2I[maddr] do
8:
                   DIP' \leftarrow DIP' \cup \{\langle iaddr, def \rangle\}
9:
                end for
10:
            end for
11:
        end if
12:
        return DIP'
13:
14: end function
```

References

- [1] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang. Bda: Practical dependence analysis for binary executables by unbiased whole-program path sampling and per-path abstract interpretation. In *Proceedings of the ACM on Programming Languages archive Volume 3 Issue OOPSLA*, 2019.
- [2] Standard Performance Evaluation Corporation. Specint 2000 benchmark. https://www.spec.org/cpu2000/CINT2000/, 2003.
- [3] VirusTotal. Virustotal. https://www.virustotal.com/, 2018.