Introduction to Parsing

Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures

Parsing (Syntactic Structure)

INPUT:

Boeing is located in Seattle.

OUTPUT:

Data for Parsing Experiments

- ▶ Penn WSJ Treebank = 50,000 sentences with associated trees
- ▶ Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

The Information Conveyed by Parse Trees

(1) Part of speech for each word (N = noun, V = verb, DT = determiner)

The Information Conveyed by Parse Trees (continued)

(2) Phrases

Noun Phrases (NP): "the burglar", "the apartment"

Verb Phrases (VP): "robbed the apartment"

Sentences (S): "the burglar robbed the apartment"

The Information Conveyed by Parse Trees (continued)

(3) Useful Relationships

⇒ "the burglar" is the subject of "robbed"

An Example Application: Machine Translation

- ► English word order is subject verb object
- ▶ Japanese word order is subject object verb

English: IBM bought Lotus

Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday

Japanese: Sources yesterday IBM Lotus bought that said

Context-Free Grammars

Hopcroft and Ullman, 1979

A context free grammar $G = (N, \Sigma, R, S)$ where:

- ightharpoonup N is a set of non-terminal symbols
- $ightharpoonup \Sigma$ is a set of terminal symbols
- ▶ R is a set of rules of the form $X \to Y_1 Y_2 \dots Y_n$ for $n \ge 0$, $X \in N$, $Y_i \in (N \cup \Sigma)$
- $ightharpoonup S \in N$ is a distinguished start symbol

A Context-Free Grammar for English

```
\begin{split} N &= \{ \text{S, NP, VP, PP, DT, Vi, Vt, NN, IN} \} \\ S &= \text{S} \\ \Sigma &= \{ \text{sleeps, saw, man, woman, telescope, the, with, in} \} \end{split}
```

	S	\rightarrow	NP	VP
	VP	\rightarrow	Vi	
	VP	\rightarrow	Vt	NP
R =	VP	\rightarrow	VP	PP
	NP	\rightarrow	DT	NN
	NP	\rightarrow	NP	PP
	PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Left-Most Derivations

A left-most derivation is a sequence of strings $s_1 \dots s_n$, where

- $ightharpoonup s_1 = S$, the start symbol
- $> s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
- ▶ Each s_i for $i=2\dots n$ is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \to \beta$ is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], [the man Vi], [the man sleeps]

Representation of a derivation as a tree:

An Example

DERIVATION

S

NP VP

DT N VP

the N VP

the dog VP

the dog VB

the dog laughs

RULES USED

 $S \rightarrow NP VP$

 $NP \rightarrow DT N$

 $\mathsf{DT} \to \mathsf{the}$

 $N \to dog$

 $VP \rightarrow VB$

 $VB \rightarrow laughs$

Properties of CFGs

- A CFG defines a set of possible derivations
- A string $s \in \Sigma^*$ is in the *language* defined by the CFG if there is at least one derivation that yields s
- Each string in the language generated by the CFG may have more than one derivation ("ambiguity")

An Example of Ambiguity

An Example of Ambiguity (continued)

The Problem with Parsing: Ambiguity

INPUT:

She announced a program to promote safety in trucks and vans

POSSIBLE OUTPUTS:

And there are more...

A Brief Overview of English Syntax

Parts of Speech (tags from the Brown corpus):

Nouns
 NN = singular noun e.g., man, dog, park
 NNS = plural noun e.g., telescopes, houses, buildings
 NNP = proper noun e.g., Smith, Gates, IBM

Determiners
 DT = determiner e.g., the, a, some, every

Adjectives
 JJ = adjective e.g., red, green, large, idealistic

A Fragment of a Noun Phrase Grammar

```
ar{N} \Rightarrow NN
ar{N} \Rightarrow NN \quad ar{N}
ar{N} \Rightarrow JJ \quad ar{N}
ar{N} \Rightarrow ar{N} \quad ar{N}
ar{N} \Rightarrow ar{N} \quad ar{N}
NP \Rightarrow DT \quad ar{N}
```

```
\begin{array}{ccc} \mathsf{NN} & \Rightarrow & \mathsf{box} \\ \mathsf{NN} & \Rightarrow & \mathsf{car} \\ \mathsf{NN} & \Rightarrow & \mathsf{mechanic} \\ \mathsf{NN} & \Rightarrow & \mathsf{pigeon} \\ \mathsf{DT} & \Rightarrow & \mathsf{the} \\ \mathsf{DT} & \Rightarrow & \mathsf{a} \end{array}
```

```
\begin{array}{ccc} \mathsf{JJ} & \Rightarrow & \mathsf{fast} \\ \mathsf{JJ} & \Rightarrow & \mathsf{metal} \\ \mathsf{JJ} & \Rightarrow & \mathsf{idealistic} \\ \mathsf{JJ} & \Rightarrow & \mathsf{clay} \end{array}
```

Prepositions, and Prepositional Phrases

Prepositions
 IN = preposition e.g., of, in, out, beside, as

An Extended Grammar

							JJ	\Rightarrow	Tast	
\bar{N}		NINI	1				JJ	\Rightarrow	metal	
N	\Rightarrow	NN	N	NN	\Rightarrow	box	JJ	\Rightarrow	idealistic	
N N	\Rightarrow	NN	_	NN	\Rightarrow	car	JJ	\Rightarrow	clay	
	\Rightarrow	IJ	N	NN	\Rightarrow	mechanic				
N	\Rightarrow	N	N	NN	\Rightarrow	pigeon	IN	\Rightarrow	in	
NP	\Rightarrow	DT	N			. 0	IN	\Rightarrow	under	
D.D.			NID	DT	\Rightarrow	the	IN	\Rightarrow	of	
PP	\Rightarrow	IN -	NP	DT DT	\Rightarrow	а	IN	\Rightarrow	on	
\bar{N}	\Rightarrow	\bar{N}	PP	I		ı	IN	\Rightarrow	with	
							IN	\Rightarrow	as	
							1			l l

Generates:

in a box, under the box, the fast car mechanic under the pigeon in the box, . . .

Verbs, Verb Phrases, and Sentences

Basic Verb Types
 Vi = Intransitive verb
 Vt = Transitive verb
 Vd = Ditransitive verb
 e.g., sleeps, walks, laughs
 e.g., sees, saw, likes
 vd = Ditransitive verb
 e.g., gave

▶ Basic S Rule
S → NP VP

Examples of VP:

sleeps, walks, likes the mechanic, gave the mechanic the fast car

Examples of S:

the man sleeps, the dog walks, the dog gave the mechanic the fast car

PPs Modifying Verb Phrases

A new rule: $VP \rightarrow VP PP$

New examples of VP:

sleeps in the car, walks like the mechanic, gave the mechanic the fast car on Tuesday, . . .

Complementizers, and SBARs

- Complementizers
 COMP = complementizer e.g., that
- ► SBAR \rightarrow COMP S

Examples:

that the man sleeps, that the mechanic saw the dog . . .

More Verbs

New Verb Types
 V[5] e.g., said, reported
 V[6] e.g., told, informed
 V[7] e.g., bet

New VP Rules VP \rightarrow V[5] SBAR VP \rightarrow V[6] NP SBAR VP \rightarrow V[7] NP NP SBAR

Examples of New VPs:

said that the man sleeps told the dog that the mechanic likes the pigeon bet the pigeon \$50 that the mechanic owns a fast car

Coordination

A New Part-of-Speech:
 CC = Coordinator e.g., and, or, but

New Rules $\begin{array}{ccccccc} NP & \to & NP & CC & NP \\ \hline NP & \to & NP & CC & NP \\ \hline NP & \to & NP & CC & NP \\ \hline NP & \to & VP & CC & VP \\ \hline NP & \to & SP & CC & S$

We've Only Scratched the Surface...

Agreement
 The dogs laugh vs. The dog laughs

► Wh-movement

The dog that the cat liked ____

Active vs. passive
 The dog saw the cat vs.
 The cat was seen by the dog

▶ If you're interested in reading more:

Syntactic Theory: A Formal Introduction, 2nd Edition. Ivan A. Sag, Thomas Wasow, and Emily M. Bender.

Sources of Ambiguity

Part-of-Speech ambiguity

 $NN \rightarrow duck$

 $Vi \rightarrow duck$

Sources of Ambiguity: Noun Premodifiers

Noun premodifiers:

Overview

- Probabilistic Context-Free Grammars (PCFGs)
- ► The CKY Algorithm for parsing with PCFGs

A Probabilistic Context-Free Grammar (PCFG)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$$

is $p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$ where $q(\alpha \to \beta)$ is the probability for rule $\alpha \to \beta$.

DERIVATION

S

NP VP

DT NN VP

the NN VP

the dog VP

the dog Vi

the dog laughs

RULES USED

 $S \rightarrow NP VP$

 $NP \rightarrow DT NN$

 $\mathsf{DT} \to \mathsf{the}$

 $NN \rightarrow dog$

 $\mathsf{VP} \to \mathsf{Vi}$

 $Vi \rightarrow laughs$

PROBABILITY

1.0

0.3

1.0

0.1

0.4

0.5

Properties of PCFGs

- Assigns a probability to each left-most derivation, or parse-tree, allowed by the underlying CFG
- Say we have a sentence s, set of derivations for that sentence is $\mathcal{T}(s)$. Then a PCFG assigns a probability p(t) to each member of $\mathcal{T}(s)$. i.e., we now have a ranking in order of probability.
- ightharpoonup The most likely parse tree for a sentence s is

$$\arg\max_{t\in\mathcal{T}(s)}p(t)$$

Data for Parsing Experiments: Treebanks

- ► Penn WSJ Treebank = 50,000 sentences with associated trees
- ▶ Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Deriving a PCFG from a Treebank

- Given a set of example trees (a treebank), the underlying
 CFG can simply be all rules seen in the corpus
- Maximum Likelihood estimates:

$$q_{ML}(\alpha \to \beta) = \frac{\mathsf{Count}(\alpha \to \beta)}{\mathsf{Count}(\alpha)}$$

where the counts are taken from a training set of example trees.

If the training data is generated by a PCFG, then as the training data size goes to infinity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

Parsing with a PCFG

- Given a PCFG and a sentence s, define T(s) to be the set of trees with s as the yield.
- Given a PCFG and a sentence s, how do we find

$$\arg\max_{t\in\mathcal{T}(s)}p(t)$$

Chomsky Normal Form

A context free grammar $G = (N, \Sigma, R, S)$ in Chomsky Normal Form is as follows

- ightharpoonup N is a set of non-terminal symbols
- $ightharpoonup \Sigma$ is a set of terminal symbols
- ightharpoonup R is a set of rules which take one of two forms:
 - ▶ $X \to Y_1Y_2$ for $X \in N$, and $Y_1, Y_2 \in N$
 - $X \to Y$ for $X \in N$, and $Y \in \Sigma$
- ullet $S \in N$ is a distinguished start symbol

How to covert rule in CNF

 $A \rightarrow BCD$

CNF

- $A \rightarrow X D$
- $X \rightarrow BC$

A Dynamic Programming Algorithm

Given a PCFG and a sentence s, how do we find

$$\max_{t \in \mathcal{T}(s)} p(t)$$

Notation:

n= number of words in the sentence $w_i=i$ 'th word in the sentence N= the set of non-terminals in the grammar S= the start symbol in the grammar

Define a dynamic programming table

 $\pi[i,j,X]=\max$ maximum probability of a constituent with non-terminal X spanning words $i\ldots j$ inclusive

▶ Our goal is to calculate $\max_{t \in \mathcal{T}(s)} p(t) = \pi[1, n, S]$

An Example

the dog saw the man with the telescope

Iteration 0, i = j, span length is 1 word

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Iteration 1, j = i+1, span length is 2 words

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Iteration 2, j = i+2, span length is 3 words

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Iteration 3, j = i+3, span length is 4 words

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Iteration 4, j = i+4, span length is 5 words

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Iteration 5, j = i+5, span length is 6 words

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Iteration 6, j = i+6, span length is 7 words

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Iteration 7, j = i+7, span length is 8 words

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

 $VP \rightarrow Vt NP$

Iteration 4, j = i+4, span length is 5 words The boundary for the 2 right hand side non terminals has various options

A Dynamic Programming Algorithm for the Sum

Given a PCFG and a sentence s, how do we find

$$\sum_{t \in \mathcal{T}(s)} p(t)$$

Notation:

n= number of words in the sentence $w_i=i$ 'th word in the sentence N= the set of non-terminals in the grammar S= the start symbol in the grammar

▶ Define a dynamic programming table

 $\pi[i,j,X]=\sup$ sum of probabilities for constituent with non-terminal X spanning words $i\ldots j$ inclusive

▶ Our goal is to calculate $\sum_{t \in \mathcal{T}(s)} p(t) = \pi[1, n, S]$

A Dynamic Programming Algorithm

▶ Base case definition: for all $i = 1 \dots n$, for $X \in N$

$$\pi[i, i, X] = q(X \to w_i)$$

(note: define $q(X \to w_i) = 0$ if $X \to w_i$ is not in the grammar)

▶ Recursive definition: for all i = 1 ... n, j = (i + 1) ... n, $X \in N$,

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

An Example

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

the dog saw the man with the telescope

The Full Dynamic Programming Algorithm

Input: a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$. **Initialization:**

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:

- ▶ For $l = 1 \dots (n-1)$
 - ▶ For $i = 1 \dots (n l)$
 - ▶ Set j = i + l
 - ▶ For all $X \in N$, calculate

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

and

$$bp(i,j,X) = \arg\max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

Summary

- PCFGs augments CFGs by including a probability for each rule in the grammar.
- The probability for a parse tree is the product of probabilities for the rules in the tree
- ► To build a PCFG-parsed parser:
 - 1. Learn a PCFG from a treebank
 - Given a test data sentence, use the CKY algorithm to compute the highest probability tree for the sentence under the PCFG

Input String:

b a a b a

• $S \rightarrow AB \quad 0.3 \quad B$

• S \rightarrow BC 0.7

• $A \rightarrow BA \quad 0.4$

• A \rightarrow a 0.6

 $B \rightarrow CC \quad 0.4$

 $B \rightarrow b$ 0.6

 $C \rightarrow AB \quad 0.5$

 $C \rightarrow a \quad 0.5$

Initialization:

$$\pi [1,1,S] = 0,$$
 $\pi [1,1,A] = 0,$ $\pi [1,1,B] = 0.6,$ $\pi [1,1,C] = 0$

$$\pi [2,2,S] = 0,$$
 $\pi [2,2,A] = 0.6,$ $\pi [2,2,B] = 0,$ $\pi [2,2,C] = 0.5$

$$\pi [3,3,S] = 0$$
, $\pi [3,3,A] = 0.6$, $\pi [3,3,B] = 0$, $\pi [3,3,C] = 0.5$

$$\pi [4,4,S] = 0,$$
 $\pi [4,4,A] = 0,$ $\pi [4,4,B] = 0.6,$ $\pi [4,4,C] = 0$

$$\pi$$
 [5,5,S] = 0, π [5,5,A] = 0.6, π [5,5,B] = 0, π [5,5,C] = 0.5

Input String:

b a a b a

• S
$$\rightarrow$$
 AB 0.3 B \rightarrow CC 0.4

• S
$$\rightarrow$$
 BC 0.7 B \rightarrow b 0.6

• A
$$\rightarrow$$
 BA 0.4 $C \rightarrow$ AB 0.5

• A
$$\rightarrow$$
 a 0.6 $c \rightarrow a$ 0.5

First Iteration (I = 1, i = 1):

$$\pi \ [1,2,S] = \text{Max} \left[q \ (S \to AB) * \pi \ [1,1,A] * \pi \ [2,2,B] = 0.3*0*0 = 0 \right]$$

$$q \ (S \to BC) * \pi \ [1,1,B] * \pi \ [2,2,C] = 0.7*0.6*0.5 = 0.21$$

$$\pi [1,2,A] = q (A \rightarrow BA) * \pi [1,1,B] * \pi [2,2,A] = 0.4*0.6*0.6 = 0.144$$

$$\pi [1,2,B] = q (B \rightarrow CC) * \pi [1,1,C] * \pi [2,2,C] = 0.4*0*0.5 = 0$$

$$\pi [1,2,C] = q (C \rightarrow AB) * \pi [1,1,A] * \pi [2,2,B] = 0.5*0*0 = 0$$

Input String:

b a a b a

• S
$$\rightarrow$$
 AB 0.3 B \rightarrow CC 0.4

• S
$$\rightarrow$$
 BC 0.7 B \rightarrow b 0.6

• A
$$\rightarrow$$
 BA 0.4 $C \rightarrow AB$ 0.5

• A
$$\rightarrow$$
 a 0.6 $C \rightarrow a$ 0.5

First Iteration (I = 1, i = 2):

$$\pi [2,3,S] = Max \left[q (S \rightarrow AB) * \pi [2,2,A] * \pi [3,3,B] = 0.3*0.6*0 = 0 \right]$$

$$q (S \rightarrow BC) * \pi [2,2,B] * \pi [3,3,C] = 0.7*0*0.5 = 0$$

$$\pi [2,3,A] = q (A \rightarrow BA) * \pi [2,2,B] * \pi [3,3,A] = 0.4*0*0.6 = 0$$

$$\pi [2,3,B] = q (B \rightarrow CC) * \pi [2,2,C] * \pi [3,3,C] = 0.4*0.5*0.5 = 0.1$$

$$\pi [2,3,C] = q (C \rightarrow AB) * \pi [2,2,A] * \pi [3,3,B] = 0.5*0.6*0 = 0$$

Input String:

b a a b a

• S
$$\rightarrow$$
 AB 0.3 B \rightarrow CC 0.4

• S
$$\rightarrow$$
 BC 0.7 B \rightarrow b 0.6

• A
$$\rightarrow$$
 BA 0.4 $C \rightarrow AB$ 0.5

• A
$$\rightarrow$$
 a 0.6 $C \rightarrow a$ 0.5

First Iteration (I = 1, i = 3):

$$\pi [3,4,S] = Max \left[q (S \rightarrow AB) * \pi [3,3,A] * \pi [4,4,B] = 0.3*0.6*0 = 0 \right]$$

$$q (S \rightarrow BC) * \pi [3,3,B] * \pi [4,4,C] = 0.7*0*0.5 = 0$$

$$\pi [3,4,A] = q (A \rightarrow BA) * \pi [3,3,B] * \pi [4,4,A] = 0.4*0*0.4 = 0$$

$$\pi [3,4,B] = q (B \rightarrow CC) * \pi [3,3,C] * \pi [4,4,C] = 0.4*0.5*0.5 = 0.1$$

$$\pi [3,4,C] = q (C \rightarrow AB) * \pi [3,3,A] * \pi [4,4,B] = 0.5*0.6*0 = 0$$

Input String:

b a a b a

• S
$$\rightarrow$$
 AB 0.3 B \rightarrow CC 0.4

• S
$$\rightarrow$$
 BC 0.7 B \rightarrow b 0.6

• A
$$\rightarrow$$
 BA 0.4 $C \rightarrow$ AB 0.5

• A
$$\rightarrow$$
 a 0.6 $C \rightarrow a$ 0.5

First Iteration (I = 1, i = 4):

$$\pi \ [4,5,S] = \text{Max} \left[q \ (S \to AB) * \pi \ [4,4,A] * \pi \ [5,5,B] = 0.3*0.4*0 = 0 \right]$$

$$q \ (S \to BC) * \pi \ [4,4,B] * \pi \ [5,5,C] = 0.7*0*0.5 = 0$$

$$\pi [4,5,A] = q (A \rightarrow BA) * \pi [4,4,B] * \pi [5,5,A] = 0.4*0.6*0.6 = 0.144$$

$$\pi [4,5,B] = q (B \rightarrow CC) * \pi [4,4,C] * \pi [5,5,C] = 0.4*0*0.5 = 0$$

$$\pi [4,5,C] = q (C \rightarrow AB) * \pi [4,4,A] * \pi [5,5,B] = 0.5*0*0 = 0$$

```
Input String:
```

•
$$S \rightarrow AB \quad 0.3$$

$$B \rightarrow CC \quad 0.4$$

• S
$$\rightarrow$$
 BC 0.7 B \rightarrow b 0.6

$$B \rightarrow b$$
 0.6

•
$$A \rightarrow BA \quad 0.4$$

$$C \rightarrow AB \quad 0.5$$

• A
$$\rightarrow$$
 a 0.6

$$C \rightarrow a \quad 0.5$$

Second Iteration (I = 2, i = 1):

$$\pi [1,3,S] = \text{Max} \left[q (S \to AB) * \pi [1,1,A] * \pi [2,3,B] = q (S \to AB) * \pi [1,2,A] * \pi [3,3,B] = q (S \to BC) * \pi [1,1,B] * \pi [2,3,C] = q (S \to BC) * \pi [1,2,B] * \pi [3,2,B] * q (S \to BC) * T [2,2,B] * T [2,2,B$$

```
Input String:
```

- $S \rightarrow AB = 0.3$
- $B \rightarrow CC \quad 0.4$

b

- S \rightarrow BC 0.7 B \rightarrow b 0.6
- $A \rightarrow BA \quad 0.4$
- $C \rightarrow AB \quad 0.5$
- A \rightarrow a 0.6
- $C \rightarrow a$ 0.5

Second Iteration (I = 2, i = 2):

$$\pi [2,4,S] = \text{Max} \left[q (S \to AB) * \pi [2,2,A] * \pi [3,4,B] = q (S \to AB) * \pi [2,3,A] * \pi [4,4,B] = q (S \to BC) * \pi [2,2,B] * \pi [3,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * \pi [2,3,B] * \pi [4,4,C] = q (S \to BC) * T [4,4,4,C] * T [4,4,4,C$$

$$π [2,4,A] = Max$$

$$\begin{cases}
q (A \rightarrow BA) * π [2,2,B] * π [3,4,A] = \\
q (A \rightarrow BA) * π [2,3,B] * π [4,4,A] =
\end{cases}$$

$$\pi$$
 [2,4,B] = Max [q (B \rightarrow CC) * π [2,2,C] * π [3,4,C] = q (B \rightarrow CC) * π [2,3,C] * π [4,4,C] =

$$\pi [2,4,C] = Max$$
 $\begin{cases} q (C \rightarrow AB) * \pi [2,2,A] * \pi [3,4,B] = \\ q (C \rightarrow AB) * \pi [2,3,A] * \pi [4,4,B] = \end{cases}$

```
Input String:
```

•
$$S \rightarrow AB \quad 0.3$$

$$B \rightarrow CC \quad 0.4$$

• S
$$\rightarrow$$
 BC 0.7 B \rightarrow b 0.6

$$B \rightarrow b \quad 0.6$$

•
$$A \rightarrow BA \quad 0.4$$

$$C \rightarrow AB \quad 0.5$$

• A
$$\rightarrow$$
 a 0.6

$$C \rightarrow a \quad 0.5$$

Second Iteration (I = 2, i = 3):

$$\pi [3,5,S] = \text{Max} \left[q (S \to AB) * \pi [3,3,A] * \pi [4,5,B] = q (S \to AB) * \pi [3,4,A] * \pi [5,5,B] = q (S \to BC) * \pi [3,3,B] * \pi [4,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * \pi [3,4,B] * \pi [5,5,C] = q (S \to BC) * T [5,5,$$

Input String:

• S \rightarrow AB 0.3 B \rightarrow CC 0.4

b

• S \rightarrow BC 0.7 B \rightarrow b 0.6

• A \rightarrow BA 0.4 C \rightarrow AB 0.5

• A \rightarrow a 0.6

 $C \rightarrow a \quad 0.5$

Third Iteration (I = 3, i = 1):

$$\pi [1,4,S] = \text{Max} \left[q (S \to AB) * \pi [1,1,A] * \pi [2,4,B] \right]$$

$$q (S \to AB) * \pi [1,2,A] * \pi [3,4,B]$$

$$q (S \to AB) * \pi [1,3,A] * \pi [4,4,B]$$

$$q (S \to BC) * \pi [1,1,B] * \pi [2,4,C]$$

$$q (S \to BC) * \pi [1,2,B] * \pi [3,4,C]$$

$$q (S \to BC) * \pi [1,3,B] * \pi [4,4,C]$$

q (S
$$\rightarrow$$
 AB) * π [1,2,A] * π [3,4,B]

q (S
$$\rightarrow$$
 AB) * π [1,3,A] * π [4,4,B]

q (S
$$\rightarrow$$
 BC) * π [1,1,B] * π [2,4,C]

q (S
$$\rightarrow$$
 BC) * π [1,2,B] * π [3,4,C]

q (S
$$\rightarrow$$
 BC) * π [1,3,B] * π [4,4,C

```
B \rightarrow CC \quad 0.4
  Input String:
                                                                • S \rightarrow AB \quad 0.3
                                                                • S \rightarrow BC 0.7 B \rightarrow b 0.6
  b
                                                                • A \rightarrow BA \quad 0.4
                                                                                               C \rightarrow AB \quad 0.5
                                                                 • A \rightarrow a 0.6
                                                                                                                     0.5
   Third Iteration (I = 3, i = 1):
\pi [1,4,A] = \text{Max} \begin{cases} q (A \to BA) * \pi [1,1,B] * \pi [2,4,A] \\ q (A \to BA) * \pi [1,2,B] * \pi [3,4,A] \\ q (A \to BA) * \pi [1,3,B] * \pi [4,4,A] \end{cases}
```

Input String:

• S \rightarrow AB 0.3 B \rightarrow CC 0.4

• S \rightarrow BC 0.7 B \rightarrow b 0.6

• A \rightarrow BA 0.4 C \rightarrow AB 0.5

• A \rightarrow a 0.6

 $C \rightarrow a \quad 0.5$

Third Iteration (I = 3, i = 2):

q (S
$$\rightarrow$$
 AB) * π [2,3,A] * π [4,5,B]

q (S
$$\rightarrow$$
 AB) * π [2,4,A] * π [5,5,B]

q (S
$$\rightarrow$$
 BC) * π [2,2,B] * π [3,5,C]

q (S
$$\rightarrow$$
 BC) * π [2,3,B] * π [4,5,C]

q (S
$$\rightarrow$$
 BC) * π [2,4,B] * π [5,5,C]

```
Input String: \bullet S \rightarrow AB 0.3 B \rightarrow CC 0.4 \bullet S \rightarrow BC 0.7 B \rightarrow b 0.6 \bullet A \rightarrow BA 0.4 C \rightarrow AB 0.5 \bullet A \rightarrow a 0.6 C \rightarrow a 0.5 Third Iteration (I = 3, i = 2): \pi [2,5,A] = Max \Gamma q (A \rightarrow BA) * \pi [2,2,B] * \pi [3,5,A] =
```

$$\pi [2,5,A] = \text{Max} \left[q (A \to BA) * \pi [2,2,B] * \pi [3,5,A] = q (A \to BA) * \pi [2,3,B] * \pi [4,5,A] = q (A \to BA) * \pi [2,4,B] * \pi [5,5,A] = q (A \to BA) * \pi [2,4,B] * \pi [5,5,A] = \pi [2,5,B] = \text{Max} \left[q (B \to CC) * \pi [2,2,C] * \pi [3,5,C] = q (B \to CC) * \pi [2,3,C] * \pi [4,5,C] = q (B \to CC) * \pi [2,4,C] * \pi [5,5,C] = q (B \to CC) * \pi [2,4,C] * \pi [5,5,C] = q (C \to AB) * \pi [2,2,A] * \pi [3,5,B] = q (C \to AB) * \pi [2,3,A] * \pi [4,5,B] = q (C \to AB) * \pi [2,4,A] * \pi [5,5,B] = q (C \to AB) * \pi [2,4,A] * \pi [4,5,B] * q (C \to AB) * q$$

Input String:

• S \rightarrow AB 0.3 B \rightarrow CC 0.4

• S \rightarrow BC 0.7 B \rightarrow b 0.6

• A \rightarrow BA 0.4 C \rightarrow AB 0.5

• A \rightarrow a 0.6

 $C \rightarrow a \quad 0.5$

Fourth Iteration (I = 4, i = 1):

$$\pi$$
 [1,5,S] = Max

q (S
$$\rightarrow$$
 AB) * π [1,1,A] * π [2,5,B] =

$$\pi$$
 [1,5,S] = Max $\begin{bmatrix} q (S \rightarrow AB) * \pi [1,1,A] * \pi [2,5,B] = \\ q (S \rightarrow AB) * \pi [1,2,A] * \pi [3,5,B] = \\ q (S \rightarrow AB) * \pi [1,3,A] * \pi [4,5,B] = \\ q (S \rightarrow AB) * \pi [1,4,A] * \pi [5,5,B] = \\ q (S \rightarrow BC) * \pi [1,1,B] * \pi [2,5,C] = \\ q (S \rightarrow BC) * \pi [1,2,B] * \pi [3,5,C] = \\ q (S \rightarrow BC) * \pi [1,3,B] * \pi [4,5,C] = \\ q (S \rightarrow BC) * \pi [1,4,B] * \pi [5,5,C] = \end{cases}$

q (S
$$\rightarrow$$
 AB) * π [1,3,A] * π [4,5,B] =

q (S
$$\rightarrow$$
 AB) * π [1,4,A] * π [5,5,B] =

q (S
$$\rightarrow$$
 BC) * π [1,1,B] * π [2,5,C] =

$$g(S \rightarrow BC) * \pi [1,2,B] * \pi [3,5,C] =$$

q (S
$$\rightarrow$$
 BC) * π [1,3,B] * π [4,5,C] =

q (S
$$\rightarrow$$
 BC) * π [1,4,B] * π [5,5,C] =

Reading

- Chapter 13 and 14 for Speech and Language Processing Third Edition
- https://web.stanford.edu/~jurafsky/slp3/13.pdf
- https://web.stanford.edu/~jurafsky/slp3/14.pdf