7.2.8 Solved Problems

Problem 1

Let X_1 , X_2 , X_3 , \cdots be a sequence of random variables such that

$$X_n \sim Geometric\left(rac{\lambda}{n}
ight), \qquad ext{for } n=1,2,3,\cdots,$$

where $\lambda>0$ is a constant. Define a new sequence Y_n as

$$Y_n=rac{1}{n}X_n, \qquad ext{for } n=1,2,3,\cdots.$$

Show that Y_n converges in distribution to $Exponential(\lambda)$.

Solution

Note that if $W \sim Geometric(p)$, then for any positive integer l, we have

$$P(W \le l) = \sum_{k=1}^{l} (1-p)^{k-1} p$$

$$= p \sum_{k=1}^{l} (1-p)^{k-1}$$

$$= p \cdot \frac{1 - (1-p)^{l}}{1 - (1-p)}$$

$$= 1 - (1-p)^{l}.$$

Now, since $Y_n = \frac{1}{n}X_n$, for any positive real number, we can write

$$egin{aligned} P(Y_n \leq y) &= P(X_n \leq ny) \ &= 1 - \left(1 - rac{\lambda}{n}
ight)^{\lfloor ny
floor}, \end{aligned}$$

where |ny| is the largest integer less than or equal to ny. We then write

$$egin{aligned} \lim_{n o\infty}F_{Y_n}(y)&=\lim_{n o\infty}1-\left(1-rac{\lambda}{n}
ight)^{\lfloor ny
floor}\ &=1-\lim_{n o\infty}\left(1-rac{\lambda}{n}
ight)^{\lfloor ny
floor}\ &=1-e^{-\lambda y}. \end{aligned}$$

The last equality holds because $ny - 1 \le \lfloor ny \rfloor \le ny$, and

$$\lim_{n\to\infty}\left(1-\frac{\lambda}{n}\right)^{ny}=e^{-\lambda y}.$$

Problem 2

Let X_1, X_2, X_3, \cdots be a sequence of i.i.d. Uniform(0,1) random variables. Define the sequence Y_n as

$$Y_n = \min(X_1, X_2, \cdots, X_n).$$

Prove the following convergence results independently (i.e, do not conclude the weaker convergence modes from the stronger ones).

- a. $Y_n \stackrel{d}{ o} 0$.
- b. $Y_n \stackrel{p}{ o} 0$.
- c. $Y_n \stackrel{L^r}{\longrightarrow} 0$, for all $r \geq 1$.
- d. $Y_n \stackrel{a.s}{\longrightarrow} 0$.

Solution

a. $Y_n \stackrel{d}{\rightarrow} 0$: Note that

$$F_{X_n}(x) = egin{cases} 0 & & x < 0 \ x & & 0 \leq x \leq 1 \ 1 & & x > 1 \end{cases}$$

Also, note that $R_{Y_n}=[0,1].$ For $0 \le y \le 1$, we can write

$$egin{aligned} F_{Y_n}(y) &= P(Y_n \leq y) \ &= 1 - P(Y_n > y) \ &= 1 - P(X_1 > y, X_2 > y, \cdots, X_n > y) \ &= 1 - P(X_1 > y) P(X_2 > y) \cdots P(X_n > y) \quad ext{(since X_i's are independent)} \ &= 1 - (1 - F_{X_1}(y))(1 - F_{X_2}(y)) \cdots (1 - F_{X_n}(y)) \ &= 1 - (1 - y)^n. \end{aligned}$$

Therefore, we conclude

$$\lim_{n o\infty}F_{Y_n}(y)=\left\{egin{array}{ll} 0 & & y\leq 0\ 1 & & y>0 \end{array}
ight.$$

Therefore, $Y_n \stackrel{d}{
ightarrow} 0.$

b. $Y_n \stackrel{p}{\to} 0$: Note that as we found in part (a)

$$F_{Y_n}(y) = egin{cases} 0 & y < 0 \ 1 - (1 - y)^n & 0 \leq y \leq 1 \ 1 & y > 1 \end{cases}$$

In particular, note that Y_n is a continuous random variable. To show $Y_n \overset{p}{\to} 0$, we need to show that

$$\lim_{n o\infty}Pig(|Y_n|\geq\epsilonig)=0, \qquad ext{ for all }\epsilon>0.$$

Since $Y_n \ge 0$, it suffices to show that

$$\lim_{n \to \infty} P \big(Y_n \geq \epsilon \big) = 0, \qquad ext{ for all } \epsilon > 0.$$

For $\epsilon \in (0,1)$, we have

$$P(Y_n \ge \epsilon) = 1 - P(Y_n < \epsilon)$$

= $1 - P(Y_n \le \epsilon)$ (since Y_n is a continuous random variable)
= $1 - F_{Y_n}(\epsilon)$
= $(1 - \epsilon)^n$.

Therefore,

$$egin{aligned} \lim_{n o\infty} Pig(|Y_n| \geq \epsilonig) &= \lim_{n o\infty} (1-\epsilon)^n \ &= 0, \qquad ext{for all } \epsilon \in (0,1]. \end{aligned}$$

c. $Y_n \stackrel{L^r}{\longrightarrow} 0$, for all $r \geq 1$: By differentiating $F_{Y_n}(y)$, we obtain

$$f_{Y_n}(y) = \left\{ egin{array}{ll} n(1-y)^{n-1} & & 0 \leq y \leq 1 \ 0 & & ext{otherwise} \end{array}
ight.$$

Thus, for $r \geq 1$, we can write

$$egin{align} \left.E|Y_n
ight|^r &= \int_0^1 ny^r (1-y)^{n-1} dy \ &\leq \int_0^1 ny (1-y)^{n-1} dy \qquad ext{(since } r \geq 1) \ &= \left[-y (1-y)^n
ight]_0^1 + \int_0^1 (1-y)^n dy \qquad ext{(integration by parts)} \ &= rac{1}{n+1}. \end{aligned}$$

Therefore

$$\lim_{n o\infty}E\left(\leftert Y_{n}
ightert ^{r}
ight) =0.$$

d. $Y_n \stackrel{a.s}{\longrightarrow} 0$: We will prove

$$\sum_{n=1}^{\infty} P(|Y_n| > \epsilon) < \infty,$$

which implies $Y_n \stackrel{a.s}{\longrightarrow} 0$. By our discussion in part (b),

$$\sum_{n=1}^{\infty} P(|Y_n| > \epsilon) = \sum_{n=1}^{\infty} (1 - \epsilon)^n$$

$$= \frac{1 - \epsilon}{\epsilon} < \infty \qquad \text{(geometric series)}.$$

Problem 3

Let $X_n \sim N(0, \frac{1}{n})$. Show that $X_n \stackrel{a.s.}{\longrightarrow} 0$. Hint: You may decide to use the inequality given in Equation 4.7 , which is

$$1 - \Phi(x) \le \frac{1}{\sqrt{2\pi}} \frac{1}{x} e^{-\frac{x^2}{2}}.$$

Solution

$$\sum_{n=1}^{\infty} P(|X_n| > \epsilon) < \infty,$$

which implies $X_n \stackrel{a.s}{\longrightarrow} 0.$ In particular,

$$egin{align} Pig(|X_n| > \epsilonig) &= 2ig(1 - \Phi(\epsilon n)ig) & (ext{since } X_n \sim N(0, rac{1}{n})) \ &\leq rac{1}{\sqrt{2\pi}} rac{2}{\epsilon n} e^{-rac{\epsilon^2 n^2}{2}} \ &\leq rac{1}{\sqrt{2\pi}} rac{2}{\epsilon} e^{-rac{\epsilon^2 n^2}{2}} \ &\leq rac{1}{\sqrt{2\pi}} rac{2}{\epsilon} e^{-rac{\epsilon^2 n^2}{2}}. \end{split}$$

Therefore,

$$\sum_{n=1}^{\infty} P(|X_n| > \epsilon) \le \sum_{n=1}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{2}{\epsilon} e^{-\frac{\epsilon^2 n}{2}}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{2}{\epsilon} \sum_{n=1}^{\infty} e^{-\frac{\epsilon^2 n}{2}}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{2}{\epsilon} \frac{e^{-\frac{\epsilon^2 n}{2}}}{1 - e^{-\frac{\epsilon^2 n}{2}}} < \infty \qquad \text{(geometric series)}.$$

Problem 4

Consider the sample space S = [0,1] with uniform probability distribution, i.e.,

$$P([a,b]) = b - a,$$
 for all $0 \le a \le b \le 1$.

Define the sequence $\left\{X_n, n=1,2,\cdots\right\}$ as $X_n(s)=\frac{n}{n+1}s+(1-s)^n$. Also, define the random variable X on this sample space as X(s)=s. Show that $X_n \stackrel{a.s.}{\longrightarrow} X$.

Solution

For any $s \in (0,1]$, we have

$$\lim_{n \to \infty} X_n(s) = \lim_{n \to \infty} \left[\frac{n}{n+1} s + (1-s)^n \right]$$

= $s = X(s)$.

However, if s = 0, then

$$\lim_{n \to \infty} X_n(0) = \lim_{n \to \infty} \left[\frac{n}{n+1} \cdot 0 + (1-0)^n \right]$$

$$= 1.$$

Thus, we conclude

$$\lim_{n o\infty} X_n(s) = X(s), \qquad ext{ for all } s\in (0,1].$$

Since Pig((0,1]ig)=1, we conclude $X_n \stackrel{a.s.}{\longrightarrow} X.$

Problem 5

Let $\{X_n, n=1,2,\cdots\}$ and $\{Y_n, n=1,2,\cdots\}$ be two sequences of random variables, defined on the sample space S. Suppose that we know

$$X_n \stackrel{a.s.}{\longrightarrow} X, \ Y_n \stackrel{a.s.}{\longrightarrow} Y.$$

Prove that $X_n + Y_n \stackrel{a.s.}{\longrightarrow} X + Y$.

Solution

Define the sets *A* and *B* as follows:

$$A = \left\{ s \in S : \lim_{n o \infty} X_n(s) = X(s)
ight\}, \ B = \left\{ s \in S : \lim_{n o \infty} Y_n(s) = Y(s)
ight\}.$$

By definition of almost sure convergence, we conclude P(A)=P(B)=1. Therefore, $P(A^c)=P(B^c)=0$. We conclude

$$P(A \cap B) = 1 - P(A^c \cup B^c)$$

$$\geq 1 - P(A^c) - P(B^c)$$

$$= 1.$$

Thus, $P(A \cap B) = 1$. Now, consider the sequence $\{Z_n, n = 1, 2, \dots\}$, where $Z_n = X_n + Y_n$, and define the set C as

$$C = \left\{ s \in S : \lim_{n o \infty} Z_n(s) = X(s) + Y(s)
ight\}.$$

We claim $A \cap B \subset C$. Specifically, if $s \in A \cap B$, then we have

$$\lim_{n o\infty} X_n(s) = X(s), \qquad \lim_{n o\infty} Y_n(s) = Y(s).$$

Therefore,

$$egin{aligned} \lim_{n o\infty} Z_n(s) &= \lim_{n o\infty} \left[X_n(s) + Y_n(s)
ight] \ &= \lim_{n o\infty} X_n(s) + \lim_{n o\infty} Y_n(s) \ &= X(s) + Y(s). \end{aligned}$$

Thus, $s \in C$. We conclude $A \cap B \subset C$. Thus,

$$P(C) \geq P(A \cap B) = 1$$
,

which implies P(C)=1. This means that $Z_n \stackrel{a.s.}{\longrightarrow} X+Y.$

Problem 6

Let $\{X_n, n=1,2,\cdots\}$ and $\{Y_n, n=1,2,\cdots\}$ be two sequences of random variables, defined on the sample space S. Suppose that we know

$$egin{array}{ll} X_n & \stackrel{p}{
ightarrow} & X, \ Y_n & \stackrel{p}{
ightarrow} & Y. \end{array}$$

Prove that $X_n + Y_n \stackrel{p}{\rightarrow} X + Y$.

Solution

For $n \in \mathbb{N}$, define the following events

$$A_n = igg\{ |X_n - X| < rac{\epsilon}{2} igg\},$$
 $B_n = igg\{ |Y_n - Y| < rac{\epsilon}{2} igg\}.$

Since $X_n \stackrel{p}{ o} X$ and $Y_n \stackrel{p}{ o} Y$, we have for all $\epsilon > 0$

$$\lim_{n\to\infty}P\big(A_n\big)=1,$$

$$\lim_{n o \infty} Pig(B_nig) = 1.$$

We can also write

$$P(A_n \cap B_n) = P(A_n) + P(B_n) - P(A_n \cup B_n)$$

 $\geq P(A_n) + P(B_n) - 1.$

Therefore,

$$\lim_{n o \infty} P(A_n \cap B_n) = 1.$$

Now, let us define the events C_n and D_n as follows:

$$C_n = \left\{ |X_n - X| + |Y_n - Y| < \epsilon
ight\},$$
 $D_n = \left\{ |X_n + Y_n - X - Y| < \epsilon
ight\}.$

Now, note that $(A_n \cap B_n) \subset C_n$, thus $P(A_n \cap B_n) \leq P(C_n)$. Also, by the triangle inequality for absolute values, we have

$$|(X_n - X) + (Y_n - Y)| \le |X_n - X| + |Y_n - Y|.$$

Therefore, $C_n \subset D_n$, which implies

$$P(C_n) \leq P(D_n)$$
.

We conclude

$$P(A_n \cap B_n) \leq P(C_n) \leq P(D_n).$$

Since $\lim_{n\to\infty}P(A_n\cap B_n)=1$, we conclude $\lim_{n\to\infty}P(D_n)=1$. This by definition means that $X_n+Y_n\stackrel{p}{\to}X+Y$.