Fast Volume Segmentation with Sparse Level Sets Mike Roberts

What do I mean by segmentation?

What do I mean by segmentation?

What do I mean by segmentation?

Synergy Between Segmentation and Visualization

Synergy Between Segmentation and Visualization

Goals: fast, interactive, accurate

Why Level Sets?

Good: interactive [Lefohn et al. 2004]

accurate [Cates et al. 2004]

Why Level Sets?

Good: interactive [Lefohn et al. 2004]

accurate [Cates et al. 2004]

Bad: slow (even on the GPU)

Before:

 $\alpha \approx$ smoothness

$$\alpha = 0.4$$

$$\alpha = 0.0$$

Previous Work

CPU:

Narrow Band [Adalsteinson and Sethian 1995]

Sparse Field [Whitaker 1998] [Peng et al. 1999]

Sparse Block Grid [Bridson et al. 2003]

Dynamic Tubular Grid [Nielson and Museth 2006]

Hierarchical Run-Length Encoded Sorted Tile List [Houston et al. 2006]

[van der Laan et al. 2010]

GPU:

GPU Narrow Band [Lefohn et al. 2003] [Lefohn et al. 2004] [Jeong et al. 2009]

Previous Work

Common theme: leverage spatial coherence to reduce computational workload

Our Approach

Our Approach

Also leverage **temporal coherence** to reduce computational workload

Necessary Conditions for Voxel to Change Value

Spatial Coherence: close to the level set surface

Temporal Coherence: local neighborhood changing over time

[Roberts et al. 2010]

spatial coherence only

spatial and temporal coherence

spatial coherence only

spatial and temporal coherence

spatial coherence only

spatial and temporal coherence

spatial coherence only

spatial and temporal coherence

Demo

Initialize level set field and active computational domain

Initialize level set field and active computational domain

Update level set field at active voxels

Initialize level set field and active computational domain

Update level set field at active voxels

Voxels changing in space and time form the new active computational domain

Initialize level set field and active computational domain

Update level set field at active voxels

Voxels changing in space and time form the new active computational domain

Update the level set field at active voxels

Update the level set field at active voxels

old level set field

Update the level set field at active voxels

Voxels changing in space and time form the new active computational domain

current level set field

current level set field

previous level set field

Find the voxels that are changing in *space* and *time*

neighbors of voxels changing in time

voxels changing in space

Find the voxels that are changing in *space* and *time*

Find the voxels that are changing in *space* and *time*

Intuition: efficiently maintain a dense list of active coordinates

- 1. Initialize level set field
- 2. Initialize dense list of active voxels

Initialize level set field and dense list of active voxels

Initialize level set field and dense list of active voxels

Initialize level set field and dense list of active voxels

Interpret scratchpad as 1D

Compact the scratchpad

active coordinates

 coordinate buffer
 0,0
 0,1
 0,2
 0,3
 1,0
 1,1
 1,2
 1,3
 2,0
 2,1
 2,2
 2,3
 3,0
 3,1
 3,2
 3,3

coordinate buffer 0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3 3,0 3,1 3,2 3,3

---- global synchronization

not previously tagged → tag in scratchpad

---- global synchronization

not previously tagged → tag in scratchpad

previously tagged \rightarrow remove from auxiliary

---- global synchronization

not previously tagged → tag in scratchpad

previously tagged \rightarrow remove from auxiliary

global synchronization

not previously tagged → tag in scratchpad

previously tagged \rightarrow remove from auxiliary

---- global synchronization

not previously tagged → tag in scratchpad

---- global synchronization

not previously tagged → tag in scratchpad

---- global synchronization

not previously tagged → tag in scratchpad

---- global synchronization

not previously tagged → tag in scratchpad

---- global synchronization

not previously tagged → tag in scratchpad

Compact the auxiliary buffers

Compact the auxiliary buffers

Asymptotic Complexity

Previous methods: O(n) steps per level set update

Asymptotic Complexity

Our method:

 $O(\log n)$ steps per level set update

Experimental Methodology

256³ head MRI

Our algorithm is slightly more accurate

SNR = Signal-to-noise Ratio

D = Dice Coefficient

TCF = Total Correct Fraction of Labeled Voxels

Our algorithm performs 16× less GPU work

Our algorithm is 14× faster

Linear relationship between computation time and GPU work

Most time is spent updating our sparse data structure

Results

256×256×272 abdominal CT

Goals: fast, interactive, accurate

Goals: fast, interactive, accurate

Goals: fast, interactive, accurate

Goals: fast, interactive, accurate, compact

"overall memory consumption proportional to the area of the geometric surface"

Hierarchical RLE Level Set: A Compact and Versatile Deformable Surface
Representation
[Houston et al. 2006]

"overall memory consumption proportional to the area of the geometric surface" "fast sequential traversal with O(1) access time to elements"

Hierarchical RLE Level Set: A Compact and Versatile Deformable Surface
Representation
[Houston et al. 2006]

[Losasso et al. 2008]

[Zhao et al. 2001]

[Darbon and Sigelle 2006]

A Work-Efficient GPU Algorithm for Level Set Segmentation
Mike Roberts, Jeff Packer, Mario Costa Sousa, Joseph Ross Mitchell
High Performance Graphics 2010

Bonus Slides

What do I mean by work-efficient?

What do I mean by work-efficient?

O(parallel work) = O(sequential work)