基礎数学I

1

開区間 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上の関数 $y = \tan x$ の逆関数を $y = \arctan x$ と書く. $f(x) = \arctan x$ は \mathbb{R} 上の実解析的関数である. 以下の問いに答えよ.

(i) 自然数 $n \ge 1$ に対して,

$$(1+x^2)f^{(n+2)}(x) + 2(n+1)xf^{(n+1)}(x) + n(n+1)f^{(n)}(x) = 0$$

が成り立つことを示せ. ただし, $f^{(n)}(x)$ は f(x) の n 階導関数である.

- (ii) f(x) の x = 0 を中心としたテイラー展開を求めよ.
- (iii) (ii) で求めたテイラー展開の収束半径を求めよ.
- (iv) 次式を示せ.

$$\pi = \sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{2n-1}$$

Basic Mathematics I

1

Let $y = \arctan x$ denote the inverse function of $y = \tan x$ defined on the open interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. The function $f(x) = \arctan x$ is real analytic on \mathbb{R} . Answer the following questions.

(i) Show that for any integer $n \ge 1$,

$$(1+x^2)f^{(n+2)}(x) + 2(n+1)xf^{(n+1)}(x) + n(n+1)f^{(n)}(x) = 0,$$

where $f^{(n)}(x)$ is the *n*th derivative of f(x).

- (ii) Obtain the Taylor series for f(x) at x = 0.
- (iii) Find the convergence radius of the Taylor series obtained in (ii).
- (iv) Show that

$$\pi = \sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{2n-1}.$$

アルゴリズム基礎

2

G = (V, E) を点集合 V,枝集合 E から成る単純有向グラフとする。R(u; G) を G において点 u から有向路で到達できる点の集合と定め, $\operatorname{dist}(u, v; G)$ を点 u から点 v へ至る G の 有向路の最短の長さとする。 $v \notin R(u; G)$ のときは $\operatorname{dist}(u, v; G) \triangleq |V|$ と定める。有向グラフ G から有向枝 $e \in E$ を削除した有向グラフを G - e と記す。s, t を V の二点とする。G は隣接リストにより貯えられているとする。以下の問いに答えよ。

- (i) $t \in \mathbf{R}(s;G)$ と仮定する. 点 s から点 t へ至る有向路で最短のものを求める O(|V|+|E|) 時間アルゴリズムを与えよ.
- (ii) $\operatorname{dist}(s,t;G-e)>\operatorname{dist}(s,t;G)$ を満たす有向枝 $e\in E$ が存在するかどうかを判定する O(|V|+|E|) 時間アルゴリズムを与えよ.
- (iii) $\operatorname{dist}(s,t;G) = \operatorname{dist}(t,s;G) = 3 < \operatorname{dist}(s,t;G-e) = \operatorname{dist}(t,s;G-e)$ である二点 $s,t\in V$,有向枝 $e\in E$ をもつ有向グラフ G=(V,E) の例を作成せよ.

Data Structures and Algorithms

2

Let G = (V, E) be a simple directed graph with a vertex set V and an edge set E. Let R(u; G) denote the set of vertices reachable from a vertex u by a directed path in G and dist(u, v; G) denote the shortest length of a path from a vertex u to a vertex v in G, where we set $dist(u, v; G) \triangleq |V|$ if $v \notin R(u; G)$. Let G - e denote the directed graph obtained from G by removing a directed edge $e \in E$. Let s and t be two vertices in V. Assume that G is stored in adjacency lists. Answer the following questions.

- (i) Assume that $t \in R(s; G)$. Give an O(|V| + |E|)-time algorithm that computes a directed path with the shortest length from s to t.
- (ii) Give an O(|V| + |E|)-time algorithm that tests whether there exists a directed edge $e \in E$ such that $\operatorname{dist}(s, t; G e) > \operatorname{dist}(s, t; G)$.
- (iii) Construct an example of a directed graph G = (V, E) that contains two vertices $s, t \in V$ and a directed edge $e \in E$ such that $\operatorname{dist}(s, t; G) = \operatorname{dist}(t, s; G) = 3 < \operatorname{dist}(s, t; G e) = \operatorname{dist}(t, s; G e)$.

線形計画

3

 $m{A}$ と $m{B}$ を $m \times n$ 行列とする. さらに $m{A}$ の第 (i,j) 成分を $A_{i,j} = -i - j$ $(i = 1, \dots, m, j = 1, \dots, n)$ とする.

以下のパラメータ $u \in \mathbb{R}^m$ をもつ線形計画問題 P(u) とパラメータ $v \in \mathbb{R}^n$ をもつ線形計画問題 Q(v) を考える.

P(
$$\boldsymbol{u}$$
): Minimize $\boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{x}$
subject to $\sum_{i=1}^{n} x_i \leq 1$
 $\boldsymbol{x} \geq \boldsymbol{0}$

Q(
$$\boldsymbol{v}$$
): Minimize $\boldsymbol{v}^{\top} \boldsymbol{B}^{\top} \boldsymbol{y}$ subject to $\sum_{i=1}^{m} y_{i} \leq 1$ $\boldsymbol{y} \geq \mathbf{0}$

ただし、 $P(\boldsymbol{u})$ の決定変数は $\boldsymbol{x} = (x_1, x_2, \dots, x_n)^{\top} \in \mathbb{R}^n$ であり、 $Q(\boldsymbol{v})$ の決定変数は $\boldsymbol{y} = (y_1, y_2, \dots, y_m)^{\top} \in \mathbb{R}^m$ である。また、 $^{\top}$ は転置記号を表す。

問題 P(u) のすべての最適解の集合を $S_P(u)$ とし、問題 Q(v) のすべての最適解の集合を $S_Q(v)$ とする. さらに、 $X = \{(\boldsymbol{x}^*, \boldsymbol{y}^*) \in \mathbb{R}^n \times \mathbb{R}^m \mid \boldsymbol{x}^* \in S_P(\boldsymbol{y}^*), \ \boldsymbol{y}^* \in S_Q(\boldsymbol{x}^*)\}$ とする. 以下の問いに答えよ.

- (i) 問題 P(u) の双対問題を書け.
- (ii) $\boldsymbol{u} = (u_1, u_2, \dots, u_m)^{\mathsf{T}}$ を $u_i \leq 0$ $(i = 1, \dots, m)$ であるベクトルとする. このとき, $\boldsymbol{0} \in S_{\mathsf{P}}(\boldsymbol{u})$ であることを示せ.
- (iii) $\boldsymbol{B} = -\boldsymbol{A}$ とする. このとき、すべての $(\boldsymbol{x}^*, \boldsymbol{y}^*) \in X$ に対して $(\boldsymbol{y}^*)^{\top} \boldsymbol{A} \boldsymbol{x}^* = 0$ となることを示せ.
- (iv) $u \in \mathbb{R}^m$ を $u \ge 0$ かつ $u \ne 0$ であるベクトルとする. このとき, $S_P(u)$ を求めよ.
- (v) B = A とする. このとき, X を求めよ.

Linear Programming

3

Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ matrices. Suppose that the (i,j)th entry of \boldsymbol{A} is given by $A_{i,j} = -i - j \ (i = 1, \dots, m, j = 1, \dots, n)$.

Consider the following linear programming problems P(u) and Q(v) with vectors of parameters $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, respectively.

P(
$$\boldsymbol{u}$$
): Minimize $\boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{x}$
subject to $\sum_{i=1}^{n} x_i \leq 1$
 $\boldsymbol{x} \geq \boldsymbol{0}$,

Q(
$$\boldsymbol{v}$$
): Minimize $\boldsymbol{v}^{\top} \boldsymbol{B}^{\top} \boldsymbol{y}$
subject to $\sum_{i=1}^{m} y_{i} \leq 1$
 $\boldsymbol{y} \geq \mathbf{0}$,

where the decision variables of $P(\boldsymbol{u})$ and $Q(\boldsymbol{v})$ are $\boldsymbol{x} = (x_1, x_2, \dots, x_n)^{\top} \in \mathbb{R}^n$ and $\boldsymbol{y} = (y_1, y_2, \dots, y_m)^{\top} \in \mathbb{R}^m$, respectively. Here the superscript $^{\top}$ denotes transposition.

Let $S_{P}(\boldsymbol{u})$ and $S_{Q}(\boldsymbol{v})$ denote the sets of all optimal solutions of problems $P(\boldsymbol{u})$ and $Q(\boldsymbol{v})$, respectively. Moreover, let $X = \{(\boldsymbol{x}^*, \boldsymbol{y}^*) \in \mathbb{R}^n \times \mathbb{R}^m \mid \boldsymbol{x}^* \in S_{P}(\boldsymbol{y}^*), \ \boldsymbol{y}^* \in S_{Q}(\boldsymbol{x}^*)\}$. Answer the following questions.

- (i) Write out a dual problem of problem P(u).
- (ii) Let $\mathbf{u} = (u_1, u_2, \dots, u_m)^{\top}$ be a vector such that $u_i \leq 0$ $(i = 1, \dots, m)$. Show that $\mathbf{0} \in S_{\mathbf{P}}(\mathbf{u})$.
- (iii) Suppose that $\mathbf{B} = -\mathbf{A}$. Then show that $(\mathbf{y}^*)^{\top} \mathbf{A} \mathbf{x}^* = 0$ for all $(\mathbf{x}^*, \mathbf{y}^*) \in X$.
- (iv) Let $u \in \mathbb{R}^m$ be a vector such that $u \geq 0$ and $u \neq 0$. Obtain $S_P(u)$.
- (v) Suppose that $\mathbf{B} = \mathbf{A}$. Obtain X.

線形制御理論

4

図 1 はフィードバック制御系を示す.ここで P(s) は制御対象,k はフィードバックゲイン,r は参照入力,e は偏差,g は出力である.制御対象 P(s) は

$$P(s) = \frac{cs+1}{s^2 + as + b}$$

で与えられるとする. ただし $a>0,\,b>0$ ならびに c は実定数である. 以下の問いに答えよ.

- (i) フィードバック制御系を安定化するゲイン k の集合を求めよ.
- (ii) r を単位階段関数とする. 出力 y の定常値が存在するゲイン k の集合を求め、各 k に対する出力定常値を求めよ.
- (iii) r を単位階段関数とする. ゲイン k は出力 y の定常値が存在するように選ばれているとする. ある $t_0 > 0$ が存在して, $0 < t < t_0$ において y(t) が y の定常値と異符号になるような定数 c の集合を求めよ.
- (iv) ゲイン k はフィードバック制御系が安定になるように選ばれているとする. p を実定数として $r(t)=e^{pt}$ となる参照入力を加えるとき,出力 y が有界となる p の集合を求めよ.

図1フィードバック制御系

Linear Control Theory

4

A feedback control system is shown in Figure 1, where P(s) is a plant, k is a feedback gain, r is a reference input, e is an error, and y is an output. The plant P(s) is given by

$$P(s) = \frac{cs+1}{s^2 + as + b},$$

where a > 0, b > 0, and c are real constants. Answer the following questions.

- (i) Find the set of the gain k for which the feedback control system is stable.
- (ii) Let the reference input r be the unit step signal. Find the set of the gain k for which the steady-state output exists. Moreover, calculate the steady-state output for each k in the set obtained in (ii).
- (iii) Let the reference input r be the unit step signal and the gain k be chosen in such a way that the steady-state output exists. Find the set of the constant c for which there exists $t_0 > 0$ such that y(t) and the steady-state output have opposite signs on $0 < t < t_0$.
- (iv) Suppose that the gain k is chosen in such a way that the feedback control system is stable. Let the reference input r be written as $r(t) = e^{pt}$, where p is a real constant. Find the set of p for which the output p is bounded.

Figure 1 Feedback control system

基礎力学

5

質量 M, 半径 R_S の密度一様な球 A の中心から r ($\geq R_S$) の距離にある質量 m の質点の運動を考える. 万有引力定数を G とする. 以下の問いに答えよ.

- (i) $r \ge R_S$ のときの球 A によって生じる万有引力のポテンシャルを計算せよ.
- (ii) 質点が球 A の表面上から速さ V_E で脱出可能 (無限遠点 $(r=\infty)$ に到達可能) とする. 速さ V_E の最小値を求めよ.
- (iii) (ii) の速度 V_E が光の速度 c で与えられるとする. そのときの球 A の半径 R_S を c, M を用いて求めよ.

Basic Mechanics

5

Consider the motion of a particle of mass m at a distance $r (\geq R_S)$ from the center of a spherical body A with mass M of uniform density and radius R_S . Let Newton's gravitational constant be denoted by G. Answer the following questions.

- (i) Compute the gravitational potential at $r \geq R_S$ affected by the spherical body A.
- (ii) Obtain the minimum speed V_E such that the particle can be attained at $r = \infty$, where V_E is a speed at a point of the surface of the spherical body A.
- (iii) Consider that V_E obtained in (ii) is equal to the speed of light c. Obtain the radius R_S of the spherical body A in terms of c and M.

基礎数学II

6

A を次に定める $n \times n$ 行列とする.

$$A = \begin{pmatrix} -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} & -a_n \\ 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \ddots & 0 & 0 & 0 \\ \vdots & & \ddots & & & \vdots \\ 0 & 0 & & 1 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

また、p(x)を次に定めるxの多項式とする

$$p(x) = \det(xI_n - A)$$

ここで, I_n は n 次単位行列を表す. $k=1,2,\ldots,n-1$ に対して, $n\times n$ 行列 A_k をブロック対角行列

$$A_k = \begin{pmatrix} I_{k-1} & 0_{k-1,2} & 0_{k-1,n-k-1} \\ 0_{2,k-1} & C_k & 0_{2,n-k-1} \\ 0_{n-k-1,k-1} & 0_{n-k-1,2} & I_{n-k-1} \end{pmatrix}$$

とする. ただし、 $0_{\ell,m}$ は $\ell \times m$ 零行列、 C_k は 2×2 行列

$$C_k = \left(\begin{array}{cc} -a_k & 1\\ 1 & 0 \end{array}\right)$$

を表す. $n \times n$ 行列 A_n を対角行列 $A_n = \operatorname{diag}(1, \ldots, 1, -a_n)$ とする. 以下の問いに答えよ.

- (i) 多項式 p(x) を、定数 a と非負整数 r による ax^r の形の項の和によって表わせ.
- (ii) $A = A_1 A_2 \cdots A_{n-1} A_n$ が成り立つことを示せ.
- (iii) |j-k| > 1 において, $A_k A_j = A_j A_k$ が成り立つことを示せ.
- (iv) n を奇数とする. このとき,

$$p(x) = \det(xI_n - A_1A_3 \cdots A_n A_2A_4 \cdots A_{n-1})$$

が成り立つことを示せ.

(v) n を奇数とする. p(x)=0 の根は、 $n\times n$ の対称三重対角行列で定まる方程式

$$\det \begin{pmatrix} a_1 + x & -1 & & & & & \\ -1 & 0 & x & & & & \\ & x & a_3 + a_2 x & -1 & & & \\ & & -1 & 0 & \ddots & & \\ & & & \ddots & \ddots & x \\ & & & x & a_n + a_{n-1} x \end{pmatrix} = 0$$

の根と一致することを示せ.

Basic Mathematics II

6

Let A be an $n \times n$ matrix defined as

$$A = \begin{pmatrix} -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} & -a_n \\ 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \ddots & 0 & 0 & 0 \\ \vdots & & \ddots & & & \vdots \\ 0 & 0 & & 1 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix},$$

and let p(x) be a polynomial in x defined as $p(x) = \det(xI_n - A)$, where I_n is the identity matrix of order n. For k = 1, 2, ..., n - 1, let us define the $n \times n$ matrix A_k by the block diagonal matrix

$$A_k = \begin{pmatrix} I_{k-1} & 0_{k-1,2} & 0_{k-1,n-k-1} \\ 0_{2,k-1} & C_k & 0_{2,n-k-1} \\ 0_{n-k-1,k-1} & 0_{n-k-1,2} & I_{n-k-1} \end{pmatrix},$$

where $0_{\ell,m}$ is the $\ell \times m$ zero matrix and C_k is the 2 \times 2 matrix

$$C_k = \left(\begin{array}{cc} -a_k & 1\\ 1 & 0 \end{array}\right).$$

Define the $n \times n$ matrix A_n by the diagonal matrix $A_n = \text{diag}(1, \dots, 1, -a_n)$.

Answer the following questions.

- (i) Express the polynomial p(x) as a sum of terms of the form ax^r , where a is a constant and r is a non-negative integer.
- (ii) Show that $A = A_1 A_2 \cdots A_{n-1} A_n$.
- (iii) Show that $A_k A_j = A_j A_k$ for |j k| > 1.
- (iv) Let n be an odd integer. Show that $p(x) = \det(xI_n A_1A_3 \cdots A_n A_2A_4 \cdots A_{n-1})$.
- (v) Let n be an odd integer. Show that the roots of p(x) = 0 coincide with the roots of the equation

$$\det \begin{pmatrix} a_1 + x & -1 & & & & \\ -1 & 0 & x & & & & \\ & x & a_3 + a_2 x & -1 & & & \\ & & -1 & 0 & \ddots & & \\ & & & \ddots & \ddots & x \\ & & & x & a_n + a_{n-1} x \end{pmatrix} = 0,$$

determined by an $n \times n$ symmetric tridiagonal matrix.