Elementi di Bioinformatica

Gianluca Della Vedova

Univ. Milano-Bicocca https://gianluca.dellavedova.org

20 ottobre 2022

Allineamento

■ Input: 2 sequenze s₁ e s₂

- Input: 2 sequenze s₁ e s₂
- Aggiunta di indel in s₁ e s₂

- Input: 2 sequenze s₁ e s₂
- Aggiunta di indel in s₁ e s₂
 - sequenze estese = stessa lunghezza

- Input: 2 sequenze s₁ e s₂
- Aggiunta di indel in s₁ e s₂
- sequenze estese = stessa lunghezza
- NO colonne di indel

Input

ABRACADABRA

BANANA

Input

ABRACADABRA

BANANA

sequenze allineate 1

ABRACADABRA

-B-ANA-NA

Input

ABRACADABRA

BANANA

sequenze allineate 1

ABRACADABRA

-B-ANA-NA

sequenze allineate 2

ABR-AC-ADABRA

-B-ANA-NA

Input

ABRACADABRA BANANA

sequenze allineate 1

ABRACADABRA

-B-ANA-NA

sequenze allineate 2

ABR-AC-ADABRA

-B-ANA-NA

sequenze allineate

ABRACADABRA

-RANA--NA

Problema di ottimizzazione

■ Istanza: insieme infinito di casi

- Istanza: insieme infinito di casi
- Soluzioni ammissibili: ammissibilità verificabile in tempo polinomiale

- Istanza: insieme infinito di casi
- Soluzioni ammissibili: ammissibilità verificabile in tempo polinomiale
- Funzione obiettivo: soluzione ammissibile $\mapsto \mathbb{Q}$

- Istanza: insieme infinito di casi
- Soluzioni ammissibili: ammissibilità verificabile in tempo polinomiale
- Funzione obiettivo: soluzione ammissibile $\mapsto \mathbb{Q}$
- Massimizzazione o minimizzazione

Problema di ottimizzazione

- Istanza: insieme infinito di casi
- Soluzioni ammissibili: ammissibilità verificabile in tempo polinomiale
- Funzione obiettivo: soluzione ammissibile $\mapsto \mathbb{Q}$
- Massimizzazione o minimizzazione

costo o valore?

Problema di ottimizzazione

- Istanza: insieme infinito di casi
- Soluzioni ammissibili: ammissibilità verificabile in tempo polinomiale
- Funzione obiettivo: soluzione ammissibile $\mapsto \mathbb{Q}$
- Massimizzazione o minimizzazione

costo o valore?

Costo da minimizzare

Problema di ottimizzazione

- Istanza: insieme infinito di casi
- Soluzioni ammissibili: ammissibilità verificabile in tempo polinomiale
- Funzione obiettivo: soluzione ammissibile $\mapsto \mathbb{Q}$
- Massimizzazione o minimizzazione

costo o valore?

- Costo da minimizzare
- Valore da massimizzare

Valore di un allineamento

Valore di un allineamento

Somma dei valori delle singole colonne

Valore di un allineamento

- Somma dei valori delle singole colonne
- Valore di una colonna =

Valore di un allineamento

- Somma dei valori delle singole colonne
- Valore di una colonna =
- valore in ingresso

Valore di un allineamento

- Somma dei valori delle singole colonne
- Valore di una colonna =
- valore in ingresso

Istanza

Valore di un allineamento

- Somma dei valori delle singole colonne
- Valore di una colonna =
- valore in ingresso

Istanza

due sequenze s₁ e s₂

Valore di un allineamento

- Somma dei valori delle singole colonne
- Valore di una colonna =
- valore in ingresso

Istanza

- due sequenze s₁ e s₂
- matrice di score d : $(\Sigma \cup \{-\}) \times (\Sigma \cup \{-\}) \mapsto \mathbb{Q}$ (normalmente interi)

Valore di un allineamento

- Somma dei valori delle singole colonne
- Valore di una colonna =
- valore in ingresso

Istanza

- due sequenze s₁ e s₂
- matrice di score d : $(\Sigma \cup \{-\}) \times (\Sigma \cup \{-\}) \mapsto \mathbb{Q}$ (normalmente interi)
- problema di massimizzazione = massima omologia

Definizione

$$M[i,j] = \text{ottimo su } s_1[:i], s_2[:j]$$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i], s_2[j]) \\ M[i,j-1] + d(-, s_2[j]) \\ M[i-1,j] + d(s_1[i], -) \end{cases}$$

Definizione

$$M[i, j] = \text{ottimo su } s_1[: i], s_2[: j]$$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i],s_2[j]) \\ M[i,j-1] + d(-,s_2[j]) \\ M[i-1,j] + d(s_1[i],-) \end{cases}$$

Definizione

$$M[i,j] = \text{ottimo su } s_1[:i], s_2[:j]$$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i],s_2[j]) \\ M[i,j-1] + d(-,s_2[j]) \\ M[i-1,j] + d(s_1[i],-) \end{cases}$$

$$M[0,0] = 0$$

Definizione

$$M[i,j] = \text{ottimo su } s_1[:i], s_2[:j]$$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i],s_2[j]) \\ M[i,j-1] + d(-,s_2[j]) \\ M[i-1,j] + d(s_1[i],-) \end{cases}$$

- M[0,0] = 0
- $M[i, 0] = M[i 1, 0] + d(s_1[i], -)$

Definizione

$$M[i, j] = \text{ottimo su } s_1[: i], s_2[: j]$$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i], s_2[j]) \\ M[i,j-1] + d(-, s_2[j]) \\ M[i-1,j] + d(s_1[i], -) \end{cases}$$

- M[0,0] = 0
- $M[i, 0] = M[i 1, 0] + d(s_1[i], -)$
- $M[0,j] = M[0,j-1+d(-,s_2[j])$

Allineamento globale

Si allineano le sequenze intere

Allineamento globale

Si allineano le sequenze intere

Allineamento locale

Allineamento globale

Si allineano le sequenze intere

Allineamento locale

Input: s_1 , s_2 , matrice di score d

Allineamento globale

Si allineano le sequenze intere

Allineamento locale

- 1 Input: s₁, s₂, matrice di score d
- 2 Individuare sottostringhe t_1 di s_1 e t_2 di s_2 tale che

Allineamento globale

Si allineano le sequenze intere

Allineamento locale

- Input: s_1 , s_2 , matrice di score d
- Individuare sottostringhe t_1 di s_1 e t_2 di s_2 tale che
- 3 All $[t_1, t_2] \ge All[u_1, u_2]$ per ogni coppia di sottostringhe u_1, u_2 di s_1, s_2 .

Allineamento locale

Allineamento globale

Si allineano le sequenze intere

Allineamento locale

- Input: s_1 , s_2 , matrice di score d
- Individuare sottostringhe t_1 di s_1 e t_2 di s_2 tale che
- 3 All $[t_1, t_2] \ge All[u_1, u_2]$ per ogni coppia di sottostringhe u_1, u_2 di s_1, s_2 .
- 4 Algoritmo banale: calcolo tutte le sottostringhe di s_1 , s_2 e ne calcolo allineamento globale

Allineamento locale

Allineamento globale

Si allineano le sequenze intere

Allineamento locale

- Input: s_1 , s_2 , matrice di score d
- Individuare sottostringhe t_1 di s_1 e t_2 di s_2 tale che
- 3 All $[t_1, t_2] \ge All[u_1, u_2]$ per ogni coppia di sottostringhe u_1, u_2 di s_1, s_2 .
- 4 Algoritmo banale: calcolo tutte le sottostringhe di s_1 , s_2 e ne calcolo allineamento globale
- 5 Tempo $O(n^3m^3)$

Osservazione

Osservazione 1

 ${\color{red} 1}{\color{black} 1}$ Matrice M[i, j] memorizza allineamento di tutte le coppie di profissi di $s_1,\,s_2$

Osservazione 1

- 1 Matrice M[i,j] memorizza allineamento di tutte le coppie di prefissi di s_1, s_2
- 2 Allineamento massimo fra coppie di prefissi = valore massimo in M

Osservazione 1

- 1 Matrice M[i,j] memorizza allineamento di tutte le coppie di prefissi di s_1, s_2
- 2 Allineamento massimo fra coppie di prefissi = valore massimo in M

Osservazione 2

Osservazione 1

- 1 Matrice M[i,j] memorizza allineamento di tutte le coppie di profissi di s_1, s_2
- 2 Allineamento massimo fra coppie di prefissi = valore massimo in M

Osservazione 2

M[0,0] = 0

Osservazione 1

- 1 Matrice M[i,j] memorizza allineamento di tutte le coppie di prefissi di s_1, s_2
- 2 Allineamento massimo fra coppie di prefissi = valore massimo in M

Osservazione 2

- M[0,0] = 0
- 2 quindi non si prendono sottostringhe con allineamento negativo

Definizione

 $M[i,j] = \text{ottimo fra tutte le stringhe } s_1[k:i], s_2[h:j]$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i],s_2[j]) \\ M[i,j-1] + d(-,s_2[j]) \\ M[i-1,j] + d(s_1[i],-) \\ 0 \end{cases}$$

Definizione

M[i,j] = ottimo fra tutte le stringhe $s_1[k:i]$, $s_2[h:j]$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i], s_2[j]) \\ M[i,j-1] + d(-, s_2[j]) \\ M[i-1,j] + d(s_1[i], -) \\ 0 \end{cases}$$

Definizione

M[i,j] = ottimo fra tutte le stringhe $s_1[k:i]$, $s_2[h:j]$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i], s_2[j]) \\ M[i,j-1] + d(-, s_2[j]) \\ M[i-1,j] + d(s_1[i], -) \\ 0 \end{cases}$$

$$M[0,0] = M[i,0] = M[0,j] = 0$$

Definizione

M[i,j] = ottimo fra tutte le stringhe $s_1[k:i]$, $s_2[h:j]$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i],s_2[j]) \\ M[i,j-1] + d(-,s_2[j]) \\ M[i-1,j] + d(s_1[i],-) \\ 0 \end{cases}$$

- M[0,0] = M[i,0] = M[0,j] = 0
- punto finale = valore massimo

Definizione

M[i,j] = ottimo fra tutte le stringhe $s_1[k:i]$, $s_2[h:j]$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i], s_2[j]) \\ M[i,j-1] + d(-, s_2[j]) \\ M[i-1,j] + d(s_1[i], -) \\ 0 \end{cases}$$

- M[0,0] = M[i,0] = M[0,j] = 0
- punto finale = valore massimo
- si risale nell'allineamento fino a uno 0.

Definizione

M[i,j] = ottimo fra tutte le stringhe $s_1[k:i]$, $s_2[h:j]$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i],s_2[j]) \\ M[i,j-1] + d(-,s_2[j]) \\ M[i-1,j] + d(s_1[i],-) \\ 0 \end{cases}$$

- M[0,0] = M[i,0] = M[0,j] = 0
- punto finale = valore massimo
- si risale nell'allineamento fino a uno 0.
- Tempo (nm)

Definizione

Definizione

1 Sequenza contigua di indel in un alimeamento

Definizione

1 Sequenza contigua di indel in un allineamento

Esempio

ABR-AC-ADABRA: 2 gap

-В-ANA-NA: 3 gap

Definizione

1 Sequenza contigua di indel in un allineamento

Esempio

ABR-AC-ADABRA: 2 gap

B ANA NA: 3 gap

Osservazione

Definizione

1 Sequenza contigua di indel in un allincamento

Esempio

ABR-AC-ADABRA: 2 gap

B ANA NA: 3 gap

Osservazion ϵ

1 Un gap sposta il frame di lettura

Definizione

1 Sequenza contigua di indel in un allincamento

Esempio

ABR AC ADABRA: 2 gap

B ANA NA: 3 gap

Osservazione

- 1 Un gap sposta il frame di lettura
- 2 no indel \neq 1 indel item 1 indel \approx 2 indel

costo gap lungo l: P(l)

- costo gap lungo l: P(l)
- Come descrivo l'allineamento ottimo?

- costo gap lungo l: P(l)
- Come descrivo l'allineamento ottimo?
- Come è fatta l'ultima colonna?

- costo gap lungo l: P(l)
- Come descrivo l'allineamento ottimo?
- Come è fatta l'ultima colonna?
- Come è fatto l'ultimo gap?

Definizione

$$M[i,j] = \text{ottimo su } s_1[:i], s_2[:j]$$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i],s_2[j]) \\ \max_{l>0} M[i,j-l] + P(l) \\ \max_{l>0} M[i-l,j] + P(l) \end{cases}$$

Definizione

$$M[i, j] = \text{ottimo su } s_1[:i], s_2[:j]$$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i],s_2[j]) \text{ no gap} \\ \max_{l>0} M[i,j-l] + P(l) \text{ gap in } s_1 \\ \max_{l>0} M[i-l,j] + P(l) \text{ gap in } s_2 \end{cases}$$

Definizione

$$M[i, j] = \text{ottimo su } s_1[: i], s_2[: j]$$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i],s_2[j]) \\ \max_{l>0} M[i,j-l] + P(l) \\ \max_{l>0} M[i-l,j] + P(l) \end{cases}$$

Condizione al contorno

M[0,0] = 0

Definizione

$$M[i, j] = \text{ottimo su } s_1[:i], s_2[:j]$$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i], s_2[j]) \\ \max_{l>0} M[i,j-l] + P(l) \\ \max_{l>0} M[i-l,j] + P(l) \end{cases}$$

- M[0,0] = 0
- M[i, 0] = P(i), M[0, j] = P(j)

Definizione

$$M[i,j] = \text{ottimo su } s_1[:i], s_2[:j]$$

$$M[i,j] = \max \begin{cases} M[i-1,j-1] + d(s_1[i],s_2[j]) \\ \max_{l>0} M[i,j-l] + P(l) \\ \max_{l>0} M[i-l,j] + P(l) \end{cases}$$

- M[0,0] = 0
- M[i, 0] = P(i), M[0, j] = P(j)
- Tempo O(nm(n + m))

costo gap lungo l: P_o + lP_e

- □ costo gap lungo l: P_o + lP_e
- P_o: costo apertura gap

- □ costo gap lungo l: P_o + lP_e
- P_o: costo apertura gap
- P_e: costo estensione gap

- □ costo gap lungo l: P_o + lP_e
- P_o: costo apertura gap
- P_e: costo estensione gap
- $P_e, P_o > 0$

- □ costo gap lungo l: P_o + lP_e
- P_o: costo apertura gap
- P_e: costo estensione gap
- $P_e, P_o > 0$
- Come descrivo l'allineamento ottimo?

- □ costo gap lungo l: P_o + lP_e
- P_o: costo apertura gap
- P_e: costo estensione gap
- $P_e, P_o > 0$
- Come descrivo l'allineamento ottimo?
- Come è fatta l'ultima colonna?

- □ costo gap lungo l: P_o + lP_e
- P_o: costo apertura gap
- P_e: costo estensione gap
- $P_e, P_o > 0$
- Come descrivo l'allineamento ottimo?
- Come è fatta l'ultima colonna?
- Come è fatto l'ultimo gap?

Definizione

ianluca Della Vedova 👚

Definizione

■ M[i,j] = ottimo su $s_1[:i]$, $s_2[:j]$

- $M[i, j] = \text{ottimo su } s_1[: i], s_2[: j]$
- $E_1[i,j] = \text{ottimo su } s_1[:i], s_2[:j], \text{ con estensione di gap finale in } s_1[:i]$

- M[i,j] = ottimo su $s_1[:i]$, $s_2[:j]$
- $E_1[i,j] = \text{ottimo su } s_1[:i], s_2[:j], \text{ con estensione di gap finale in } s_1[:i]$
- $E_2[i,j] = \text{ottimo su } s_1[:i], s_2[:j], \text{ con estensione di gap finale in } s_2[:i]$

- $M[i, j] = \text{ottimo su } s_1[: i], s_2[: j]$
- $E_1[i,j] = \text{ottimo su } s_1[:i], s_2[:j], \text{ con estensione di gap finale in } s_1[:i]$
- $E_2[i,j] = \text{ottimo su } s_1[:i], s_2[:j], \text{ con estensione di gap finale in } s_2[:i]$
- N₁[i, j] = ottimo su s₁[: i], s₂[: j], con apertura di gap alla fine di s₁

- M[i,j] = ottimo su $s_1[:i]$, $s_2[:j]$
- $\mathbf{E}_1[\mathbf{i}, \mathbf{j}] = \text{ottimo su } \mathbf{s}_1[: \mathbf{i}], \, \mathbf{s}_2[: \mathbf{j}], \, \text{con estensione di gap finale in } \mathbf{s}_1[: \mathbf{i}], \, \mathbf{s}_2[: \mathbf{j}], \, \mathbf{s}_3[: \mathbf{$
- $E_2[i,j] = \text{ottimo su } s_1[:i], s_2[:j], \text{ con estensione di gap finale in } s_2[:i]$
- $N_1[i, j] = \text{ottimo su } s_1[: i], s_2[: j], \text{ con apertura di gap alla fine di } s_1[: i]$
- $N_2[i, j] = \text{ottimo su } s_1[: i], s_2[: j], \text{ con apertura di gap alla fine di } s_2[: j]$

$$\begin{split} M[i,j] &= \max \left\{ \begin{array}{l} M[i-1,j-1] + d(s_1[i],s_2[j]) \\ E_1[i,j],E_2[i,j] \\ N_1[i,j],N_2[i,j] \end{array} \right. \\ E_1[i,j] &= \max \left\{ \begin{array}{l} E_1[i,j-1] + P_e \\ N_1[i,j-1] + P_e \end{array} \right. \\ E_2[i,j] &= \max \left\{ \begin{array}{l} E_2[i-1,j] + P_e \\ N_2[i-1,j] + P_e \end{array} \right. \\ N_1[i,j] &= M[i,j-1] + P_o + P_e, \quad N_2[i,j] = M[i-1,j] + P_o + P_e \end{split}$$

k sequenze

■ Input: insieme di sequenze $\{s_1, ..., s_k\}$

- Input: insieme di sequenze $\{s_1, \ldots, s_k\}$
- Aggiunta di indel nelle sequenze

- Input: insieme di sequenze $\{s_1, \ldots, s_k\}$
- Aggiunta di indel nelle sequenze
- sequenze estese = tutte stessa lunghezza

- Input: insieme di sequenze $\{s_1, \ldots, s_k\}$
- Aggiunta di indel nelle sequenze
- sequenze estese = tutte stessa lunghezza
- NO colonne di indel

SP: sum of pairs

SP: sum of pairs

 $\{s_1,\ldots,s_k\}\mapsto \{s_1^*,\ldots,s_k^*\}$ allineate

SP: sum of pairs

- $\{s_1,\ldots,s_k\}\mapsto \{s_1^*,\ldots,s_k^*\}$ allineate
- Valore $\{s_1^*[h], ..., s_k^*[h]\}$

SP: sum of pairs

- $\{s_1,\ldots,s_k\}\mapsto\{s_1^*,\ldots,s_k^*\}$ allineate
- Valore $\{s_1^*[h], ..., s_k^*[h]\}$

SP: sum of pairs

- $\{s_1,\ldots,s_k\}\mapsto\{s_1^*,\ldots,s_k^*\}$ allineate
- Valore $\{s_1^*[h], ..., s_k^*[h]\}$

Complessità

SP: sum of pairs

- $\{s_1,\ldots,s_k\}\mapsto \{s_1^*,\ldots,s_k^*\}$ allineate
- Valore $\{s_1^*[h], ..., s_k^*[h]\}$

Complessità

se k è arbitrario \Rightarrow NP-completo

SP: sum of pairs

- $\{s_1,\ldots,s_k\}\mapsto\{s_1^*,\ldots,s_k^*\}$ allineate
- Valore $\{s_1^*[h], ..., s_k^*[h]\}$
- $\sum_{i < j} d(s_1^*[i], s_k^*[j])$

Complessità

- se k è arbitrario \Rightarrow NP-completo
- se k è fissato \Rightarrow tempo $O(n^k)$

1 Utilizzate per valutare un allineamento

- 1 Utilizzate per valutare un allineamento
- 2 Implicitamente probabilità di transizione

- 1 Utilizzate per valutare un allineamento
- 2 Implicitamente probabilità di transizione
- 3 Mutazioni ricorrenti

- Utilizzate per valutare un allineamento
- 2 Implicitamente probabilità di transizione
- 3 Mutazioni ricorrenti
- 4 Allineamenti di proteine

1 PAM: point/percent accepted mutation

- 1 PAM: point/percent accepted mutation
- 2 due sequenze s_1 e s_2 : quanto sono distanti?

- 1 PAM: point/percent accepted mutation
- due sequenze s_1 e s_2 : quanto sono distanti?
- 3 distanza 1PAM ⇒ numero mutazioni = $\frac{1}{100}$ |s₁|

- 1 PAM: point/percent accepted mutation
- due sequenze s_1 e s_2 : quanto sono distanti?
- 3 distanza 1PAM ⇒ numero mutazioni = $\frac{1}{100}$ |s₁|
- 4 semplice in assenza di indel

- 1 PAM: point/percent accepted mutation
- due sequenze s_1 e s_2 : quanto sono distanti?
- 3 distanza 1PAM ⇒ numero mutazioni = $\frac{1}{100}$ |s₁|
- 4 semplice in assenza di indel
- 5 Mutazioni ricorrenti ⇒ misura affidabile solo per piccoli valori

- PAM: point/percent accepted mutation
- 2 due sequenze s₁ e s₂: quanto sono distanti?
- 3 distanza 1PAM ⇒ numero mutazioni = $\frac{1}{100}|s_1|$
- 4 semplice in assenza di indel
- 5 Mutazioni ricorrenti ⇒ misura affidabile solo per piccoli valori
- s_1 e s_2 distanti 100 PAM \Rightarrow una singola base ha 36% di probabilità di non essere mutata

1 dipende dalla distanza attesa

- 1 dipende dalla distanza attesa
- 2 PAM250, PAM200, PAM1

- 1 dipende dalla distanza attesa
- 2 PAM250, PAM200, PAM1

- 1 dipende dalla distanza attesa
- 2 PAM250, PAM200, PAM1

Calcolo PAMk

1 Costruzione PAMk

- dipende dalla distanza attesa
- 2 PAM250, PAM200, PAM1

- 1 Costruzione PAMk
- 2 Si prendono varie sequenze distanti kPAM

- dipende dalla distanza attesa
- 2 PAM250, PAM200, PAM1

- 1 Costruzione PAMk
- 2 Si prendono varie sequenze distanti kPAM
- 3 si allineano le sequenze

- 💶 dipende dalla distanza attesa
- 2 PAM250, PAM200, PAM1

- 1 Costruzione PAMk
- 2 Si prendono varie sequenze distanti kPAM
- 3 si allineano le sequenze
- $\mathbf{4}$ si calcolano le frequenze f(i), f(i,j) di tutti i singoli caratteri e le coppie di caratteri

- 💶 dipende dalla distanza attesa
- 2 PAM250, PAM200, PAM1

Calcolo PAMk

- 1 Costruzione PAMk
- 2 Si prendono varie sequenze distanti kPAM
- 3 si allineano le sequenze
- $\mathbf{4}$ si calcolano le frequenze f(i), f(i,j) di tutti i singoli caratteri e le coppie di caratteri
- PAMk(i, j) = $\log \frac{f(i,j)}{f(i)f(j)}$

Odds ratio

 $\frac{p}{1-p}$, p è la probabilità dell'evento interessante (target)

- $\frac{p}{1-p}$, p è la probabilità dell'evento interessante (target)
- $\frac{f(i,j)}{f(i)f(j)}$

- $\frac{p}{1-p}$, p è la probabilità dell'evento interessante (target)
- $2 \quad \frac{f(i,j)}{f(i)f(j)}$
- f(i, j): frequenza della mutazione misurata

- $\frac{p}{1-p}$, p è la probabilità dell'evento interessante (target)
- $2 \quad \frac{f(i,j)}{f(i)f(j)}$
- f(i, j): frequenza della mutazione misurata
- 4 f(i)f(j): ipotesi nulla (caratteri indipendenti)

Calcolo PAMk nella realtà

■ Problema: come allineare se non si conosce la matrice

- Problema: come allineare se non si conosce la matrice
- Allineate sequenze molto simili

- Problema: come allineare se non si conosce la matrice
- Allineate sequenze molto simili
- no indel

- Problema: come allineare se non si conosce la matrice
- Allineate sequenze molto simili
- no indel

$$\label{eq:mass_mass_mass_mass_mass} \begin{tabular}{l} \blacksquare & M_k(\mathfrak{i},\mathfrak{j}) = \log \frac{f(\mathfrak{i})M_1^k(\mathfrak{i},\mathfrak{j})}{f(\mathfrak{i})f(\mathfrak{j})} = \log \frac{M_1^k(\mathfrak{i},\mathfrak{j})}{f(\mathfrak{j})} \\ \end{tabular}$$

- Problema: come allineare se non si conosce la matrice
- Allineate sequenze molto simili
- no indel
- $M_k(i,j) = \log \frac{f(i)M_1^k(i,j)}{f(i)f(j)} = \log \frac{M_1^k(i,j)}{f(j)}$
- valori moltiplicati per 10

- Problema: come allineare se non si conosce la matrice
- Allineate sequenze molto simili
- no indel

$$M_k(i,j) = \log \frac{f(i)M_1^k(i,j)}{f(i)f(j)} = \log \frac{M_1^k(i,j)}{f(j)}$$

- valori moltiplicati per 10
- arrotondati all'intero più vicino

- Problema: come allineare se non si conosce la matrice
- Allineate sequenze molto simili
- no indel

$$M_k(i,j) = \log \frac{f(i)M_1^k(i,j)}{f(i)f(j)} = \log \frac{M_1^k(i,j)}{f(j)}$$

- valori moltiplicati per 10
- arrotondati all'intero più vicino
- si somma un intero a tutti i valori

Confronto con PAM

Confronto con PAM

PAM allinea sequenze vicine

Confronto con PAM

- PAM allinea sequenze vicine
- ma viene usata per allineare sequenze lontane

Confronto con PAM

- PAM allinea sequenze vicine
- ma viene usata per allineare sequenze lontane
- regioni conservate e non conservate hanno stessa importanza

Confronto con PAM

- PAM allinea sequenze vicine
- ma viene usata per allineare sequenze lontane
- regioni conservate e non conservate hanno stessa importanza

BLOCKS

Confronto con PAM

- PAM allinea sequenze vicine
- ma viene usata per allineare sequenze lontane
- regioni conservate e non conservate hanno stessa importanza

BLOCKS

blocchi di regioni conservate

Confronto con PAM

- PAM allinea sequenze vicine
- ma viene usata per allineare sequenze lontane
- regioni conservate e non conservate hanno stessa importanza

BLOCKS

- blocchi di regioni conservate
- scelte "a mano"

Confronto con PAM

- PAM allinea sequenze vicine
- ma viene usata per allineare sequenze lontane
- regioni conservate e non conservate hanno stessa importanza

BLOCKS

- blocchi di regioni conservate
- scelte "a mano"
- $\overline{B(i,j)} = \log \frac{f(i,j)}{f(i)f(j)}$

BLOSUMx

 \blacksquare le sequenze che sono simili più di x% vengono clusterizzate

- le sequenze che sono simili più di x% vengono clusterizzate
- cluster = rimuovere tutte tranne una

- le sequenze che sono simili più di x% vengono clusterizzate
- cluster = rimuovere tutte tranne una
- scopo: evitare di sovrapesare parti sovrarappresentate nel campione

- le sequenze che sono simili più di x% vengono clusterizzate
- cluster = rimuovere tutte tranne una
- scopo: evitare di sovrapesare parti sovrarappresentate nel campione
- BLOSUM62: più usata per gli allineamenti

Ricerca in un database

Punteggio positivo possibile

- Punteggio positivo possibile
- Punteggio medio negativo

- Punteggio positivo possibile
- Punteggio medio negativo
- Simboli indipendenti e equiprobabili

- Punteggio positivo possibile
- Punteggio medio negativo
- Simboli indipendenti e equiprobabili
- Sequenze infinitamente lunghe

- Punteggio positivo possibile
- Punteggio medio negativo
- Simboli indipendenti e equiprobabili
- Sequenze infinitamente lunghe
- Allineamenti senza gap

$$E = kmne^{-\lambda S}$$

E: numero allineamenti

$$E = kmne^{-\lambda S}$$

- E: numero allineamenti
- k: costante

$$E = kmne^{-\lambda S}$$

- E: numero allineamenti
- k: costante
- n: numero caratteri in database

$$E = kmne^{-\lambda S}$$

- E: numero allineamenti
- k: costante
- n: numero caratteri in database
- m: lunghezza stringa query

$$E = kmne^{-\lambda S}$$

- E: numero allineamenti
- k: costante
- n: numero caratteri in database
- m: lunghezza stringa query
- λS: punteggio normalizzato

Basic Local Alignment Search Tool

Ricerca seed

- Ricerca seed
- seed = pattern matching con sottostringa di lunghezza 3

- Ricerca seed
- seed = pattern matching con sottostringa di lunghezza 3
- Costruzione high-scoring segment pair (HSP) = estensione seed

- Ricerca seed
- seed = pattern matching con sottostringa di lunghezza 3
- Costruzione high-scoring segment pair (HSP) = estensione seed
- Filtro seed tenuti solo HSP con alta significatività

- Ricerca seed
- seed = pattern matching con sottostringa di lunghezza 3
- Costruzione high-scoring segment pair (HSP) = estensione seed
- Filtro seed tenuti solo HSP con alta significatività
- Fusione HSP vicine

- Ricerca seed
- seed = pattern matching con sottostringa di lunghezza 3
- Costruzione high-scoring segment pair (HSP) = estensione seed
- Filtro seed tenuti solo HSP con alta significatività
- Fusione HSP vicine
- Smith-Waterman sulle regioni

Licenza d'uso

Quest'opera è soggetta alla licenza Creative Commons: Attribuzione-Condividi allo stesso modo 4.0. (https://creativecommons.org/licenses/by-sa/4.0/). Sei libero di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire, recitare e modificare quest'opera alle seguenti condizioni:

Attribuzione — Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.