Ćwiczenie nr 35: Elektroliza

1 Wprowadzenie

1.1 Cel doświadczenia

Celem doświadczenia było wyznaczenie równoważnika elektrochemicznego miedzi, stałej Faradaya oraz wartości ładunku elementarnego korzystając z pomiaru różnicy mas elektrod przed i po elektrolizie.

1.2 Opis stanowiska

W skład stanowiska weszły: zasilacz napięcia stałego, amperomierz, regulowany rezystor, naczynie wypełnione siarczanem miedzi (CuSO₄), trzy elektrody (dwie anody, jedna katoda) w postaci niewielkich miedzianych płytek, waga elektroniczna, woda destylowana oraz suszarka potrzebna do osuszenia płytek z cieczy.

2 Sposób wykonania doświadczenia

Doświadczenie rozpoczęliśmy od zapoznania się ze sprzętem wchodzącym w skład stanowiska, wyczyszczenia wszystkich trzech elektrod papierem ściernym, przemycia ich wodą destylowaną, wysuszenia oraz zważenia każdej z nich. Umieściliśmy je następnie w uchwycie i zanurzyliśmy w elektrolicie. Włączyliśmy stoper i ustawiliśmy natężenie prądu równe 0,6A. W trakcie trwania elektrolizy, co jakiś czas kontrolowaliśmy czy wskazywane natężenie pozostaje bez zmian oraz czy płytki są dobrze zanurzone w roztworze. Po upływie 26 minut zatrzymaliśmy przepływ prądu oraz wyjęliśmy elektrody z elektrolitu i osuszyliśmy je delikatnym strumieniem suszarki. Na koniec dokonaliśmy ponownego zważenia katody i anod w celu wyznaczenia wartości zmiany masy potrzebnej do wykonania obliczeń.

3 Wyniki pomiarów

	Masa przed elektrolizą	Masa po elektrolizie	Zmiana masy
Katoda	126,207 g	126,531g	0,324 g
Anody	136,370 g	136,096 g	0,274 g

Tabela 1: Pomiar masy elektrod

Natężenie prądu I = 0,6 A Klasa amperomierza: 0,5 Zakres amperomierza: 0,75 A

Czas trwania elektrolizy t = 26 min = 1560 s

Ze względu na to, iż w procesie elektrolizy winno działać prawo zachowania masy, do obliczeń przyjmujemy średnią ze zmian masy katody i anod: $\Delta m = (0.324g + 0.274g)/2 = 0.299 g$.

Teoretyczna zmiana masy, jaką powinniśmy otrzymać, aby uzyskać wartość tablicową równoważnika elektrochemicznego miedzi k = 0,3294mg/C ^[1] wynosi na podstawie pierwszego prawa elektrolizy Faradaya:

$$\Delta m_{teor.} = kIt = 0.3294 \frac{mg}{C} \cdot 0.6 A \cdot 1560 s \approx 308 mg = 0.308 g$$

4 Opracowanie wyników pomiarów

4.1 Niepewności pomiarowe typu B

Źródłami niepewności typu B w doświadczeniu były:

- niepewność pomiaru czasu
- niepewność pomiaru wagi elektrod
- niepewność pomiaru natężenia w obwodzie

Na dokładność pomiaru czasu wpłynął przede wszystkim czas ustawiania odpowiedniego natężenia oraz wyłączania zasilania, a więc czas reakcji człowieka. Jako niepewność pomiaru czasu przyjmujemy:

$$u(t) = 24 s$$

Waga elektroniczna wykorzystywana w doświadczeniu miała dokładność 0.001g. Ze względu na to, że ważone płytki mogły być niedokładnie wyczyszczone oraz wysuszone przyjmujemy niepewność równą:

$$u(m) = 0.015 \ q$$

Używany amperomierz był klasy 0,5, a jego zakres ustawiliśmy na 0,75A, zatem:

$$u(I) = \frac{\Delta I}{\sqrt{3}} = \frac{\frac{\text{klasa} \cdot \text{zakres}}{100}}{\frac{1}{\sqrt{3}}} = \frac{0.5 \cdot 0.75 \text{ A}}{100\sqrt{3}} \approx 0.0022 \text{ A}$$

4.2 Wyznaczanie równoważnika elektrochemicznego miedzi

Wartość równoważnika elektrochemicznego miedzi wyliczamy, wykorzystując dokonany pomiar zmiany masy elektrod Δm, wartości natężenia prądu I oraz czasu t.

Przekształcamy wzór z I prawa elektrolizy Faradaya

$$\Delta m = kIt$$

otrzymując

$$k = \frac{\Delta m}{It}$$

Wstawiając uzyskane wartości pomiarów:

$$k = \frac{\Delta m}{It} = \frac{0,299 \ g}{0,6 \ A \cdot 1560 \ s} \approx 0,000319444 \ \frac{g}{C} \approx 0,319 \frac{mg}{C}$$

Rachunek jednostek:

$$[k] = \frac{kg}{A \cdot s} = \frac{kg}{C}$$

Z prawa przenoszenia niepewności względnej:

$$\frac{\mathrm{u(k)}}{k} = \sqrt{\left(\frac{u(\Delta m)}{\Delta m}\right)^2 + \left(\frac{-u(I)}{I}\right)^2 + \left(\frac{-u(t)}{t}\right)^2}$$

Zatem

$$u(k) = k \sqrt{\left(\frac{u(\Delta m)}{\Delta m}\right)^2 + \left(\frac{-u(I)}{I}\right)^2 + \left(\frac{-u(t)}{t}\right)^2} =$$

$$= 0.319 \frac{\text{mg}}{C} \sqrt{\left(\frac{0.015 \text{ g}}{0.299 \text{ g}}\right)^2 + \left(\frac{-0.0022 \text{ A}}{0.6000 \text{ A}}\right)^2 + \left(\frac{-24s}{1560 \text{ s}}\right)^2} \approx 0.017 \frac{\text{mg}}{C}$$

Wartość tabelaryczna równoważnika elektrochemicznego miedzi k_{tab} wynosi 0,3294 mg/C [1]

$$|k - k_{tab}| = |0,319 \frac{\text{mg}}{c} - 0,3294 \frac{\text{mg}}{c}| = 0,0104 \frac{\text{mg}}{c} < \text{u(k)}$$

Zatem obliczona wartość równoważnika elektrochemicznego miedzi jest zgodna z wartością tabelaryczną w zakresie niepewności pomiarowej i nie jest konieczne stosowanie niepewności rozszerzonej.

4.3 Wyznaczanie stałej Faradaya

Korzystając z zależności z II prawa elektrolizy Faradaya

$$k = \frac{\mu}{weN_A} = \frac{\mu}{wF}$$

otrzymujemy:

$$F = \frac{\mu}{kw}$$

gdzie μ – masa molowa substancji, w – wartościowość, k – równoważnik elektrochemiczny

Wstawiając dane tablicowe dla miedzi [1]

$$\mu = 63,58 \frac{g}{mol} \quad , \quad w = 2$$

oraz wyliczoną wartość równoważnika elektrochemicznego k, dostajemy:

$$F = \frac{\mu}{kw} = \frac{63,58 \cdot 10^{-3} \frac{kg}{mol}}{0,319 \cdot 10^{-6} \frac{kg}{C} \cdot 2} \approx 99655 \frac{C}{mol} \approx 99700 \frac{C}{mol}$$

Z zasady przenoszenia niepewności względnej (μ oraz w traktujemy jako stałe):

$$\frac{u(F)}{F} = \sqrt{\left(\frac{-u(k)}{k}\right)^2} = \frac{u(k)}{k}$$

stad:

$$u(F) = F \cdot \frac{u(k)}{k} = 99700 \frac{C}{mol} \cdot \frac{0,017 \frac{mg}{C}}{0,319 \frac{mg}{C}} \approx 5400 \frac{C}{mol}$$

Wartość tabelaryczna stałej Faradaya wynosi F_{tab} = eN_A = 96 500 C $^{[1]}$

$$|F - F_{tab}| = |99\ 700\ \frac{c}{mol} - 96\ 500\frac{c}{mol}| = 3\ 200\frac{c}{mol} < u(F)$$

Wyliczona wartość stałej Faradaya jest więc zgodna z wartością tabelaryczną w zakresie niepewności pomiarowej i nie jest konieczne stosowanie niepewności rozszerzonej.

4.4 Wyznaczenie wartości ładunku elementarnego

Po przekształceniu wzoru $F = eN_A$ otrzymujemy:

$$e = \frac{F}{N_A}$$

Przyjmując $N_A = 6,022 \cdot 10^{23}$ 1/mol [1] oraz uwzględniając wyliczoną wartość F = 99 700 C/mol:

$$e = \frac{F}{N_A} = \frac{99700 \frac{C}{mol}}{6,022 \cdot 10^{23} \frac{1}{mol}} \approx 1,656 \cdot 10^{-19} C$$

Z prawa przenoszenia niepewności:

$$u(e) = e \cdot \frac{u(F)}{F} = 1,656 \cdot 10^{-19} C \cdot \frac{5400 \frac{C}{mol}}{99700 \frac{C}{mol}} \approx 0,090 \cdot 10^{-19} C$$

Wartość tabelaryczna ładunku elementarnego wynosi $e_{tab} = 1,602 \cdot 10^{-19} \, C^{[1]}$

$$|e - e_{tab}| = |1,656 \cdot 10^{-19}C - 1,602 \cdot 10^{-19}C| = 0,054 \text{ C} < \text{u(e)}$$

Wyliczona wartość ładunku elementarnego jest więc zgodna z wartością tabelaryczną w zakresie niepewności pomiarowej.

5 Wnioski

Otrzymane wartości równoważnika elektrochemicznego miedzi, stałej Faradaya oraz ładunku elementarnego są zgodne z wartościami tabelarycznymi w zakresie niepewności pomiarowej. Niepewności pomiarowe w doświadczeniu wynikały przede wszystkim z czasu reakcji (pomiar czasu), dokładności czyszczenia i suszenia oraz możliwych osadów obecnych na płytce po wyjęciu z elektrolitu (pomiar masy). Mniejszy wpływ miała także klasa urządzeń pomiarowych (amperomierz, waga elektroniczna). Różnica między zmianą masy na katodzie i zmianą masy na anodach sugeruje, że to właśnie niepewność pomiaru masy stanowi najbardziej znaczące źródło niepewności.

6 Źródła

[1] https://pf.agh.edu.pl/home/wfiis/pracfiz/Opisy_cwiczen/35-opis.pdf, data dostępu 13.11.2024

Załącznik: wyniki pomiarów przesłane po zajęciach 12.11.2024

m1	126,207	g			
m2	74,723	g	masa katody	126,207	g
m3	61,647	g	masa anod	136,37	g
u(t)	24	s			
t	26	min			
1	0,6	A			
zakres amperomierza	0,75	Α			
klasa amperomierza	0,5				
ΔΙ	0,00375	A			
u(I)	0,0022	Α			
dokładność wagi	0,001	g			
	مر مالم با ميييم ما				

wartość tal	blicowa k dla miedzi					
	0,3294	mg/C				
zmiana masy ja	ką powinniśmy otrzyr	nać				
$\Delta m = k*I*t$	0,3083184	g				
masa katody po elektrolizie			zmiana masy	katody	0,324	g
	126,531	g				
masa anod po elektrolizie			zmiana masy	anod	0,274	g
	136,096	g				
			średnia zmiana masy			
			Δ=	0,299	g	