

Application of Transformer Models

THE TOKENIZERS LIBRARY

- Quiz
- Open Discussion
- Dataset Characteristics
- Baseline Models

QUIZ

https://forms.office.com/e/SyHkdRWsHq

OPEN DISCUSSION

 Can you think of a model task in which it is important to have a reversible tokenization – making, for example, sure that all spaces are considered?

 Can you think of possible applications of BPE, WordPiece, or unigram tokenization outside of NLP?

DATASET CHARACTERISTICS

- Is your collection of samples possibly biased?
- How must the data be collected to be used with your model?
- Can you think of different groups/ types of input sequences?
 - Create corresponding filter variables for the later evaluation of your results.
- Does the dataset include outliers?
- For classification problems:
 - Is your sample balanced across all classes?
 - If not, how will you deal with it?
- For generation problems:
 - Define a set of prompts and investigate the completions according to their bias.

FEEDBACK GROUPS

Group 1:

- Jonathan/Julian: Arguments Mining / NER Task on data already collected
- Max: Q&A model
- Khan: Classification of activity descriptions according to keywords

Group 2:

- Saif/ Emmanuel/ Kristian/ Atul: Time Series Prediction Financial/Climate
- Manpreet: Unsupervised training of log data to predict user behavior
- Laura/ Janosch/ Valentin: Training a model to produce text written in different authors' style

Group 3:

- Benjamin/ Malte/ T.-Niklas: Speech to speech models including translation
- Jeremy/ Veit/ Christian: Transcribing and summarizing Podcasts

SHORTCOMINGS OF LANGUAGE MODELING

- Human Reporting bias (<u>Gordon and Van Durme, 2013</u>):
 - Not stating the obvious
 - Common sense isn't written down
- Facts about named entities
- No grounding to other modalities

Possible Solutions:

- Incorporate structured knowledge (e.g. databases; Zhang et. A. 2019)
- Multimodal learning (e.g. visual representations; Sun et al. 2019)

PROJECT MILESTONES

- 16.11. Form project groups
- 23.11. Literature review
- 30.11. Dataset characteristics
- 04.01. Baseline model
- 11.01. Project presentations

CHARACTERISTICS OF BASELINE MODELS

 Should be simple to setup, with a reasonable chance of providing decent results, and very unlikely to overfit.

 Should be interpretable, which can help your understanding of the data and guide your feature engineering.

POSSIBLE TYPES OF BASELINE MODELS

For continuous variables:

- Linear Regression
- Gradient Boosted Trees

Classification of Structured Data or Natural Language:

- Logistic Regression
- Support Vector Machines
- Gradient Boosted Trees

Classification of Images

- Simple Convolutional Architectures
- Fine tuning VGG or re-training some variant of a U-net is usually a great start for most image classification, detection, or segmentation problems.

POSSIBLE TYPES OF BASELINE MODELS

Text Summarization:

 the lead-3 baseline: take the first three sentences of the input sequence

IF THERE IS NO EFFECTIVE BASELINE

Instead of simplifying the model, simplify the data.

 Try to get your complex model to overfit to a very small subset of your data.

BASELINE MODEL RESULTS

Help you understand your data:

- Which classes are harder to separate?
- What type of signal picks your model up on? How is your model making decisions?
- What signal is your model missing?
 Is it possible to engineer an additional feature?

TODOS UNTIL NEXT WEEK

Complete at least two sections from <u>chapter 7</u>
 (Main NLP Tasks) of the Hugging Face course

Calibrate a First Baseline Model