GANDHINAGAR INSTITUTE OF TECHNOLGY

Information Technology Department

Data Mining & Business Intelligence (2170715)

HDFS

Prepared By:

Patel Maulik Satishkumar (150124116006)

Guided By: Prof. Rahul A. Vaghela

Content

- Introduction to Big Data Hadoop
- What is HDFS?
- Features of HDFS
- HDFS Architecture
- Elements of HDFS
- Goals of HDFS
- HDFS Operations
- Reference

Introduction to Big Data - Hadoop

What is Big Data?

- ✓ Big Data is a collection of large datasets that cannot be processed using traditional computing techniques.
- ✓ Big data involves the data produced by different devices and applications. The data in it will be of three types.
 - Structured data: Relational data.
 - Semi Structured data: XML data.
 - Unstructured data: Word, PDF, Text, Media Logs.

What is Hadoop?

✓ Hadoop is an Apache open source framework written in java that allows distributed processing of large datasets across clusters of computers using simple programming models.

Introduction to Big Data - Hadoop

Hadoop Architecture

Hadoop MapReduce:

- This is YARN-based system for parallel processing of large data sets.

HDFS:

- A distributed file system that provides high throughput access to application data.

Hadoop YARN:

- This is a framework for job scheduling and cluster resource management.

Hadoop Common:

- These are Java libraries and utilities required by other Hadoop modules.

What is **HDFS**?

- HDFS stands for Hadoop Distributed File System.
- Hadoop File system was developed using distributed file system design.
- It is run on commodity hardware. HDFS is highly fault-tolerant and designed using low-cost hardware.
- HDFS holds very large amount of data and provides easier access.
- To store such huge data, the files are stored across multiple machines.
- These files are stored in redundant fashion to rescue the system from possible data losses in case of failure.
- HDFS also makes applications available to parallel processing.

Features of HDFS

- It is suitable for the distributed storage and processing.
- Hadoop provides a command interface to interact with HDFS.
- The built-in servers of namenode and datanode help users to easily check the status of cluster.
- Streaming access to file system data.
- HDFS provides file permissions and authentication.
- Hadoop HDFS is Master-Slave architecture, so the processing speed is very high & system failure rate is very low.

HDFS Architecture (master-slave architecture)

Elements of HDFS

1) Namenode:

- The namenode is the commodity hardware that contains the GNU/Linux operating system and the namenode software.
- It is a software that can be run on commodity hardware.
- The system having the namenode acts as the master server and it does the following tasks:
 - ✓ Manages the file system namespace.
 - ✓ Regulates client's access to files.
 - ✓ It also executes file system operations such as renaming, closing, and opening files and directories.

Elements of HDFS

2) Datanode:

- The datanode is a commodity hardware having the GNU/Linux operating system and datanode software.
- For every node Commodity hardware/System in a cluster, there will be a datanode. These nodes manage the data storage of their system.
 - ✓ Datanodes perform read-write operations on the file systems, as per client request.
 - ✓ They also perform operations such as block creation, deletion , and replication according to the instructions of the namenode.

Elements of HDFS

3) Block:

- Generally the user data is stored in the files of HDFS.
- The file in a file system will be divided into one or more segments and/or stored in individual data nodes. These file segments are called as blocks.
- In other words, the minimum amount of data that HDFS can read or write is called a Block.
- The default block size is 64MB, but it can be increased as per the need to change in HDFS configuration.

Goals of HDFS

- <u>Fault detection and recovery</u>: Since HDFS includes a large number of commodity hardware, failure of components is frequent. Therefore HDFS should have mechanism for quick and automatic fault detection and recovery.
- **Huge datasets:** HDFS should have hundreds of nodes per cluster to manage the applications having huge datasets.
- <u>Hardware at data</u>: A requested task can be done efficiently, when the computation takes place near the data. Especially where huge datasets are involved, it reduces the network traffic and increases the throughput.

HDFS Operations

Starting HDFS

Listing files in HDFS

```
$ $ HADOOP_HOME/bin/hadoop fs -ls <args>
```

Inserting Data into HDFS

```
$ $ HADOOP_HOME/bin/hadoop fs -mkdir /user/dir_name
$ $ HADOOP_HOME/bin/hadoop fs -put /home/file.txt /user/dir_name
$ $ HADOOP_HOME/bin/hadoop fs -ls /user/dir_name
```

HDFS Operations (Commands)

Retrieving Data from HDFS

```
$ $ HADOOP_HOME/bin/hadoop fs -cat /user/dir_name/file
$ $ HADOOP_HOME/bin/hadoop fs -get /user/output/ /home/hadoop_tp/
```

Shutting Down the HDFS

Reference

- Accessed [05/08/2018]. Available : https://www.tutorialspoint.com
- Accessed [05/08/2018]. Available: https://www.youtube.com
- Also Available on my github site:

maulikpatel295.github.io/ALA/2160715_150124116006.pdf

