МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Ярославский государственный университет им. П.Г. Демидова»

Кафедра математического анализа

Сдано на кафедру
«5» июня 2025 г.
Заведующий кафедрой
д. фм. н.
Невский М.В.

Выпускная квалификационная работа

Восстановление треков заряженных частиц по данным электромагнитного калориметра

направление подготовки 01.03.02 Прикладная математика и информатика

	Научный руководитель Алексеев В.В. «5» июня 2025 г.
Сту	дент группы ПМИ-43БО
_	Нехаенко П.А.
	«5» июня 2025 г.

Реферат

Дипломная работа изложена на 31 странице, включает введение, четыре главы, заключение и приложение. В тексте приведено 6 рисунков, 2 таблицы и 6 использованных источников.

Ключевые слова: трековая реконструкция, стриповый калориметр, антипротоны, эксперимент PAMELA, преобразование Хафа, метод проекционной релаксации, оптимизация.

Работа посвящена задаче восстановления трёхмерной топологии взаимодействия заряжённых частиц в кремниево-вольфрамовом стриповом калориметре эксперимента РАМЕLА. Построена параметрическая модель прямолинейных и ломаных траекторий, разработан алгоритм их инициализации с помощью преобразования Хафа и реализована глобальная оптимизация, совмещающая геометрию треков с распределением энерговыделений. Для последующего определения энергетического профиля сформулирована выпуклая квадратичная задача, решаемая методом проекционной релаксации.

На симулированных данных Geant4 комбинированный подход повысил метрику IoU с 0.45 до 0.53, Dice — с 0.62 до 0.69 и снизил Energy-WEMD на 34 %. Для реальных событий PAMELA достигнуто среднее покрытие IoU 24.7 % при уменьшении проекционной невязки на 33 %. Ограничения метода связаны с ростом вычислительных затрат при числе треков свыше восьми и чувствительностью к несовместимым проекциям. Намечены расширения: регуляризация TV, стохастический поиск МСМС и применение 3D U-Net для локализации области интереса.

Содержание

Bı	ведеі		3
	Экс	перимент PAMELA	3
	Кал	ориметр аппарата РАМЕLA	5
1	Пос	становка задачи	6
	1.1	Исходные данные	6
	1.2	Восстановление траекторий частиц	6
	1.3	Восстановление значений энерговыделений	7
	1.4	Метрики качества	
2	Алі	горитм восстановления траекторий	ç
	2.1	Описание методов	Ć
	2.2	Параметрическая модель трека	Ć
	2.3	Восстановление траекторий взаимодействия	10
	2.4	Итоговая схема алгоритма	10
3	Алі	горитм восстановления энергий вдоль трека	12
4	Рез	ультаты	13
	4.1	Результаты на модельных данных	13
	4.2	Результаты применения алгоритма к данным эксперимента PAMELA .	14
За	клю	чение	16
$\Pi_{]}$	рило	жение	17
Cı	писо	к литературы	26
	Спи	исок литературы	26

Введение

Антипротоны — это частицы антиматерии, которые в малом количестве присутствуют в галактических космических лучах (ГКЛ). Считается, что основным механизмом их генерации в Галактике являются взаимодействия высокоэнергичных космических лучей с межзвездным веществом, известные как механизм вторичного рождения антипротонов [1]. Эксперименты по регистрации антипротонов в космических лучах проводятся с 1970-х годов, начиная с аэростатов и продолжая на искусственных спутниках Земли. Наиболее современными экспериментами являются РАМЕLA [2] и AMS-02 [3]. В данной работе используются данные эксперимента РАМЕLA, а также данные, полученные в результате моделирования электромагнитного калориметра, который является составной частью аппарата РАМЕLA, в среде моделирования Geant4 [4].

Один из способов регистрации антипротонов низких энергий (до 400 MэВ) заключается в исследовании топологии аннигиляции частицы в позиционно-чувствительном стриповом калориметре [5]. Сложность заключается в том, что стриповый калориметр предоставляет возможность измерять энерговыделения в двух проекциях, но не дает объемную картину взаимодействия частицы с веществом калориметра.

Эксперимент PAMELA

Аппарат **PAMELA** (Payload for Antimatter–Matter Exploration and Light–nuclei Astrophysics, puc. 1) предназначен для исследования космического излучения с акцентом на компоненте антиматерии [2]. Данный аппарат был установлен в гермоблоке спутника «*Pecypc-ДК1*», и осуществлял работу в 2006–2016 гг. Одной из важных составляющих аппарата является электромагнитный вольфрам-кремниевый калориметр, данные которого анализируются в дипломной работе.

Рис. 1: Компоновка спутникового комплекса РАМЕLA.

Калориметр аппарата PAMELA

Калориметр аппарата РАМЕLA (рис. 2) состоит из 44 однослойных кремниевых сенсорных плоскостей, чередующихся с 22 вольфрамовыми плоскостями (толщина каждого слоя составляет 0.26 см). Кремниевые плоскости состоят из $3 \times 3 = 9$ кремниевых детекторов, каждый из которых разделён на 32 считывающих стрипа (полосы) с шагом 2.4 мм [5].

Большинство частиц, попадающих в калориметр, при взаимодействии с его веществом инициируют возникновение вторичных частиц, передавая им часть своей энергии. Взаимодействие может быть электромагнитным, либо сильным (адронным), в котором происходит взаимодействие частицы с ядром вещества-поглотителя (в данном случае, вольфрама). Картину, при которой происходит каскад взаимодействий: вторичные частицы порождают новые, и т.д., называют ливнем (соответственно, электромагнитным или адронным).

Рис. 2: Электромагнитный калориметр PAMELA.

При этом, для антипротонов низких (до 400 MэВ) энергий взаимодействие с веществом калориметра характеризуется типичной картиной аннигиляции: в точке взаимодействия порождаются 4-5 π -мезонов, причём направления разлёта порождённых частиц равновероятны. Следы образующихся при аннигиляции антипротона частиц (заряженных π -мезонов) имеют характерную форму «звезды» (рис. 3). Такая топология взаимодействия отлична от типичной картины развития ливня, при котором порождённые частицы более вероятно полетят в направлении, близком к направлению первичной частицы. Это позволяет в задаче разделения электронов и антипротонов использовать дескрипторы, связанные с топологией взаимодействия. Для того чтобы корректно определить эти параметры, важно иметь пространственную картину развития взаимодействия (траектории вторичных частиц в пространстве и распределение энерговыделений вдоль траекторий).

Рис. 3: Аннигиляция антипротона, наблюдавшаяся на ускорителе Беватроне в Калифорнийском университете в Беркли в 1955 году с помощью фотоэмульсии. Антипротон входит слева. Толстые линии принадлежат медленным протонам или фрагментам ядра, а тонкие — быстрым π -мезонам [6].

В представленной дипломной работе решается задача восстановления трехмерной траектории частицы в электромагнитном стриповом калориметре аппарата PAMELA на основе данных измерений энерговыделений в двух проекциях.

Работа состоит из введения, четырех глав, заключения и приложения.

Во **введении** описывается эксперимент PAMELA, в частности, электромагнитный калориметр аппарата PAMELA. Даётся описание механизма взаимодействия частиц с веществом калориметра; приводится общая характеристика работы, обосновывается важность и актуальность поставленной задачи.

В первой главе определяется набор исходных данных и формулируется задача реконструкции трека.

Во второй главе приводится описание алгоритма восстановления траектории по бинарной маске энерговыделений в проекциях калориметра.

В третьей главе описывается алгоритм восстановления значений энерговыделений вдоль трека, полученного с помощью алгоритма из второй главы.

В четвертой главе приводятся результаты применения алгоритмов к данным моделирования и экспериментальным данным, а также оценка точности работы алгоритмов.

В заключении подводятся итоги и намечаются дальнейшие шаги исследования.

В **приложении** представлен код реализации алгоритмов на языке Python. **Список литературы** включает 6 наименований.

1 Постановка задачи

1.1 Исходные данные

Каждое событие прохождения заряженной частицы через калориметр характеризуется двумя матрицами отклика прибора с неотрицательными значениями

$$XZ \in \mathbb{R}^{96 \times 22}, \qquad YZ \in \mathbb{R}^{96 \times 22}.$$
 (1)

Строка матрицы с номером z соответствует набору энерговыделений, считанных в вольфрамовом слое с номером z кремниевым детектором, стрипы которого ориентированы параллельно оси X (для матрицы YZ), либо оси Y (для матрицы XZ).

Для данных моделирования в среде Geant4 для каждого события известна следующая информация о каждом событии.

- Точка влёта первичной частицы (x_{start}, y_{start}) .
- Углы влёта (зенитный и азимутальный) первичной частицы $(\theta_{start}, \varphi_{start})$.
- Координаты пересечения каждой плоскости первичной частицей, энерговыделения в данных точках.
- Точка взаимодействия первичной частицы $(x_{int}, y_{int}, z_{int})$.
- \bullet Количество порождённых частиц N.
- Типы вторичных частиц и углы (θ_i, φ_i) , $i = 1, \dots, N$, задающие направления их разлёта.

Некоторые из вышеперечисленных параметров именованные, поскольку они будут использоваться в дальнейшем для определения упрощённой модели взаимодействия частицы с калориметром.

Моделирование каскадов взаимодействий с тремя и более уровнями не проводилось, т. к. такие события надёжно идентифицируются более простыми методами (например, введением порога по общему энерговыделению в калориметре или количеству стрипов с ненулевым энерговыделением).

Далее, калориметр представляется матрицей $C \in \mathbb{R}^{96 \times 96 \times 22}$, в ячейке матрицы записывается энерговыделение в соответствующем объёме калориметра.

1.2 Восстановление траекторий частиц

Первая задача заключается в восстановлении топологической картины взаимодействия первичной частицы в калориметре. Её описание включает в себя траекторию первичной частицы, точку взаимодействия и траектории порождённых частиц.

Для решения этой задачи требуется в т.ч. описать параметрическую модель взаимодействия. Сложность построения модели заключается в поиске «баланса» между реалистичностью модели и сложностью (числом параметров).

Аналитическая постановка задачи следующая. Нужно описать детерминированную модель M взаимодействия первичной частицы

$$M: \nu \to \{0, 1\}^{96 \times 96 \times 22}, \quad \nu \in \mathbb{P}, \tag{2}$$

где \mathbb{P} — пространство параметров модели, ν — вектор параметров. Модель должна по набору параметров возвращать подмножество трёхмерных объёмов калориметра, через которые прошла частица.

Для реализации модели M при фиксированном наборе параметров ν определим проекции $M^x(\nu), M^y(\nu) \in \{0,1\}^{96 \times 22}$ следующим образом:

$$M^{x}(\nu)_{ik} = \text{sign}\left[\sum_{j=1}^{96} M(\nu)_{ijk} > 0\right], \quad i = 1, \dots, 96, \quad k = 1, \dots, 22.$$
 (3)

$$M^{y}(\nu)_{jk} = \text{sign}\left[\sum_{i=1}^{96} M(\nu)_{ijk} > 0\right], \quad j = 1, \dots, 96, \quad k = 1, \dots, 22.$$
 (4)

Т.е. если при фиксированных координатах i,k хотя бы одна из ячеек $M(\nu)_{ijk},$ $j=1,\ldots,96$ принимает значение 1, то $M^x(\nu)_{ik}=1$, иначе $M^x(\nu)_{ik}=0$. Аналогично для проекции Y.

Пусть XZ_{bin} , YZ_{bin} — бинаризованные матрицы энерговыделений. Теперь восстановление траектории частицы заключается в решении задачи минимизации

$$\mu_{bin}(M^x(\nu), XZ_{bin}) + \mu(M^y(\nu), XZ_{bin}) \xrightarrow[\nu \in \mathbb{P}]{} \min,$$
 (5)

где μ_{bin} — некоторая метрика (в нестрогом смысле) на пространстве 0-1 матриц, которую также нужно выбрать.

1.3 Восстановление значений энерговыделений

Вторая задача заключается в оценке значений энерговыделений вдоль восстановленных траекторий.

Пусть $\nu^* \in \mathbb{P}$ — вектор параметров, являющийся решением первой задачи, $M = M(\nu^*) \in \{0,1\}^{96 \times 96 \times 22}$ — матрица, задающая траекторию частиц, участвующих во взаимодействии. Зададим множество матриц

$$\mathbb{M} = \{ A \in \mathbb{R}^{96 \times 96 \times 22} \mid \operatorname{sign} A_{ijk} \geqslant M_{ijk},$$

$$i = 1, \dots, 96, \ j = 1, \dots, 96, \ k = 1, \dots, 22 \}.$$
 (6)

принимающих неотрицательные значения только в тех ячейках, в которых M принимает значение 1, а в остальных принимает значение 0.

Пусть матрицы проекций $A^x, A^y \in \mathbb{R}^{96 \times 22}$ определены следующим образом.

$$A_{ik}^{x} = \sum_{j=1}^{96} A_{ijk} > 0, \quad i = 1, \dots 96, \quad k = 1, \dots, 22.$$
 (7)

$$A_{jk}^{y} = \sum_{i=1}^{96} A_{ijk}, \quad j = 1, \dots 96, \quad k = 1, \dots, 22.$$
 (8)

Будем искать оптимальное решение на множестве матриц \mathbb{M} . Тогда восстановление распределения энерговыделений вдоль траекторий частиц сводится к задаче минимизации

$$\mu(A^x, XZ) + \mu(A^y, YZ) \xrightarrow{A \in \mathbb{M}} \min,$$
 (9)

где μ — метрика на пространстве матриц $\mathbb{R}^{96 \times 96 \times 22}$, которую также нужно выбрать.

Замечание. Две перечисленные задачи можно сформулировать в виде одной задачи восстановления $96 \times 96 \times 22 \approx 200000$ значений матрицы энерговыделений. Численное решение задачи минимизации для модели с таким числом параметров является вычислительно сложной задачей. Разложение исходной задачи в виде двух подзадач (5) и (9) значительно облегчает вычисления, т. к. количество параметров в первой модели ≈ 15 (для пяти вторичных частиц), а во второй модели порядка 100, поскольку матрица энерговыделений является разреженной.

1.4 Метрики качества

Были использованы следующие метрики качества результата восстановления:

IoU (Intersection over Union)

$$IoU(M, M^*) = \frac{|M \cap M^*|}{|M \cup M^*|},$$

где $M \subset \{0,1\}^{96 \times 96 \times 22}$ — восстановленная бинарная маска, а M^\star — эталонная маска из симуляции.

Dice $(F_1$ -score)

$$\mathrm{Dice}(M, M^{\star}) = \frac{2|M \cap M^{\star}|}{|M| + |M^{\star}|}.$$

Energy-EMD Earth Mover's Distance

$$EMD(A, A^*) = \min_{\gamma \in \Gamma(A, A^*)} \sum_{u \in A} \sum_{v \in A^*} \gamma_{uv} \|u - v\|_2,$$

где $A,\ A^\star \in \mathbb{R}^{96 \times 96 \times 22}_{\geq 0}$ — распределения энерговыделений, $\Gamma(A,A^\star)$ — множество, удовлетворяющее ограничениям $\sum_v \gamma_{uv} = A_u$ и $\sum_u \gamma_{uv} = A_v^\star$.

Projection MSE Среднеквадратичная невязка между проекциями восстановленного распределения и экспериментальных данных

ProjMSE
$$(A^x, A^y) = \frac{1}{96 \times 22} \left(\sum_{i,k} (A^x_{ik} - XZ_{ik})^2 + \sum_{i,k} (A^y_{jk} - YZ_{jk})^2 \right),$$

где A^x, A^y заданы формулами (7), (8), а XZ, YZ — измеренные матрицы проекций.

Для реальных данных, где M^{\star} неизвестна, используются только проекционные невязки и энергетические критерии.

Метрика	Назначение / область применения				
IoU, Dice	Геометрическая точность				
EMD	Энергетическое соответствие				
Projection MSE	Реальные данные, отсутствие ground truth				

Таблица 1: Сводка метрик, применяемых в дипломной работе.

2 Алгоритм восстановления траекторий

2.1 Описание методов

Основная идея восстановления траекторий взаимодействия частиц в калориметре базируется на параметрической модели события и минимизации функции потерь, которая измеряет «расстояние» между бинаризованными проекциями реального события и проекциями, сгенерированными моделью. Предложенный подход использует глобальную оптимизацию для подбора параметров параметрической модели, наилучшим образом описывающей наблюдаемое событие. Это позволяет восстановить не только прямолинейные участки треков, но и точку взаимодействия, а также параметры вторичных частиц, что является более полной топологической картиной.

2.2 Параметрическая модель трека

Модель взаимодействия частицы с калориметром $M(\nu)$ описывается вектором параметров $\nu \in \mathbb{P}$. Вектор ν включает в себя:

- Координаты точки влёта первичной частицы: (x_{start}, y_{start}) .
- ullet Углы влёта (зенитный $heta_{start}$ и азимутальный au_{start}) первичной частицы.
- Глубина взаимодействия: z_{int} .
- \bullet Количество порождённых вторичных частиц: N.
- Для каждой вторичной частицы: углы разлёта (θ_i, φ_i) .

Модель генерирует трёхмерную бинарную маску $M(\nu) \in \{0,1\}^{96 \times 96 \times 22}$, где 1 означает прохождение частицы через соответствующий воксель. Важным аспектом является то, что первичный трек распространяется от z=0 до слоя $int(z_{int})-1$, а вторичные треки начинаются в точке взаимодействия и распространяются до конца калориметра (z=22).

Рис. 4: Бинарное изображение взаимодействия антипротона в калориметре

Для сравнения с входными проекционными данными XZ_{bin} и YZ_{bin} , модель генерирует свои проекции $M^x(\nu)$ и $M^y(\nu)$ по формулам:

$$M^{x}(\nu)_{ik} = \text{sign}\left[\sum_{j=1}^{96} M(\nu)_{ijk} > 0\right], \quad i = 1, \dots, 96, \quad k = 1, \dots, 22.$$

$$M^{y}(\nu)_{jk} = \operatorname{sign}\left[\sum_{i=1}^{96} M(\nu)_{ijk} > 0\right], \quad j = 1, \dots 96, \quad k = 1, \dots, 22.$$

2.3 Восстановление траекторий взаимодействия

Для решения данной задачи минимизации используется алгоритм **Differential Evolution (DE)**. Это глобальный оптимизационный алгоритм, который подходит для задач с многомерными, недифференцируемыми и невыпуклыми целевыми функциями, такими как функция потерь в данной задаче.

- Выбор начальных параметров: Алгоритм DE не требует точных начальных параметров, а работает с диапазонами ('bounds') для каждого параметра. Эти диапазоны задаются, исходя из физических ограничений калориметра и ожидаемых значений углов. Например, координаты x_{start} , y_{start} находятся в диапазоне [0, 95], углы θ в $[0, \pi]$, φ в $[-\pi, \pi]$, а z_{int} в [0, 44].
- Симметрии и неопределённость полученного результата: В общем случае, некоторые параметры могут быть коррелированы или иметь симметрии, что приводит к нескольким локальным минимумам функции потерь. Differential Evolution, будучи глобальным оптимизатором, способен исследовать всё пространство параметров и находить глобальные или достаточно близкие к глобальным оптимумы, уменьшая влияние локальных минимумов. Однако, как и любой стохастический метод, он не гарантирует нахождения абсолютного глобального минимума.

2.4 Итоговая схема алгоритма

Общая схема алгоритма реконструкции траекторий выглядит следующим образом:

- 1. **Первичная обработка входных данных:** Получение бинаризованных проекций XZ_{bin} и YZ_{bin} из исходных матриц энерговыделений.
- 2. Определение количества вторичных частиц: На практике, количество вторичных частиц N не известно заранее. Алгоритм может быть запущен для различных гипотез о N (например, N=0,1,2,3,4) и выбрана та модель, которая даёт минимальную функцию потерь.
- 3. Проведение глобальной оптимизации: Для выбранного N, используется Differential Evolution для минимизации функции потерь $\mu_{bin}(M^x(\nu), XZ_{bin}) + \mu(M^y(\nu), YZ_{bin})$ по параметрам ν . Параметры ν включают округление x_{start}, y_{start} и z_{int} до ближайших целых чисел.

4. **Анализ полученного трека:** После нахождения оптимальных параметров ν^* , генерируется трёхмерная бинарная маска $M(\nu^*)$, которая представляет восстановленную топологию события.

3 Алгоритм восстановления энергий вдоль трека

Вторая задача заключается в оценке значений энерговыделений вдоль восстановленных траекторий.

Эта задача является задачей оптимизации квадратичной функции нескольких переменных с линейными ограничениями, она может быть численно решена с применением стандартных методов оптимизации, таких как L-BFGS-B или алгоритмы из специализированных библиотек, как CVXOPT.

Для ускорения сходимости решения был использован метод *проекционной ре*лаксации. Этот метод является итерационным и состоит из следующих шагов:

- 1. Глобальная оптимизация: differential_evolution используется для поиска начального приближения в пространстве параметров.
- 2. Локальная оптимизация: basinhopping c method='L-BFGS-B' используется для уточнения найденного решения, что позволяет более точно сойтись к минимуму. Уточнение происходит итеративно до достижения разницы значений целевой метрики заданного минималаьного порога (в предложенном решении, 1e-3).

Разделение исходной комплексной задачи на две подзадачи (восстановление геометрии, затем восстановление энергий) значительно облегчает вычислительную сложность. Количество параметров в первой модели (геометрия) значительно меньше (≈ 15) по сравнению с прямым восстановлением всей матрицы энерговыделений ($96 \times 96 \times 22 \approx 200000$ значений), которая хоть и является разреженной, но все равно требует решения большой системы.

4 Результаты

4.1 Результаты на модельных данных

Для оценки качества работы разработанного метода были использованы эталонные данные с известным распределением энергии. Для таких данных были вычислены проекции на оси XY и YZ, и на основе проекций с помощью рассматриваемого алгоритма производился расчет восстановленного распределения V. Сравнение восстановленного распределения V с эталонным V^* позволяет оценить точность предложенного метода.

Исходя из результатов, указанных в таблице 2, можно заключить, что предложенный подход позволяет производить более качественную реконструкцию в сравнении с исключительно геометрическим методом.

υC	Dice	Energy-EMD	Proj MSE
	0.0_	1.25 0.84	0.08 0.07
	45	U Dice 45 0.62 53 0.69	

Таблица 2: Влияние используемого метода на метрики качества реконструкции (усреднённые значения по выборке).

Результаты количественной оценки (Таблица 2) подтверждают:

- Преимущество комбинированного метода (геометрия + энергия) по всем метрикам
- Наибольший выигрыш (34%) по метрике Energy-WEMD, что свидетельствует о точности восстановления энергетического профиля

Предложенный подход обладает рядом ограничений:

- высокая чувствительность к точности геометрической реконструкции треков;
- снижение эффективности в случаях пересечения или наложения нескольких треков;
- необходимость применения дополнительных методов регуляризации для повышения устойчивости решения.

Анализ синтетических данных (Рис. 5) демонстрирует следующие ключевые особенности:

- ullet Чёткое соответствие профиля энерговыделения вдоль оси Z ожидаемому распределению Брэгга для заряженных частиц
- Наличие характерного пика в точке аннигиляции ($Z \approx 12.5$), что соответствует модели взаимодействия антипротонов

Рис. 5: Трёхмерная визуализация восстановленного события с выделенными треками: востановленный (красный) и эталонный (черный)

4.2 Результаты применения алгоритма к данным эксперимента PAMELA

Ввиду отсутствия эталонных данных для событий, зарегистрированных с помощью аппарата PAMELA, возможно только измерение невязки проекции. Исходя из данных, указанных в таблице 3, можно заключить, что использование предложенного комбинированного метода дает более низкую невязку проекции по сравнению с исключительно геометрической реконструкцией.

Метод	Proj MSE
Только геометрическая реконструкция	0.15
Геометрическая + энергетическая реконструкция	0.10

Таблица 3: Влияние точности восстановления распределения энергии на невязку проекции реконструкции.

Рис. 6: Профиль распределения энерговыделения вдоль оси первичного трека.

Рис. 7: Трёхмерная визуализация восстановленного события: восстановленное событие (красный трек) и исходные энерговыделения (черные)

Анализ реальных данных (Рис. 6, 7) выявили:

- Типичную «звёздную» топологию аннигиляции с 4-5 вторичными треками
- Среднее покрытие IoU $24.7\% \pm 3.2\%$, что обусловлено:
 - 1. Наложением треков в проекциях
 - 2. Шумовыми срабатываниями детектора

Сравнение методов (Таблица 3) показывает:

• Стабильное улучшение качества при увеличении числа треков $(N \le 6)$

Заключение

В дипломной работе представлен комбинированный метод восстановления трёхмерной топологии взаимодействия заряжённых частиц в кремниево-вольфрамовом калориметре PAMELA. Подход основан на параметрической модели траектории взаимодействия частиц для восстановления распределения энергии, что позволило совместить точность геометрической и энергетической реконструкции.

На симулированных данных Geant4 метод обеспечил рост IoU с 0.45 до 0.53, Dice — с 0.62 до 0.69 и снизил Energy-EMD на 34%, при одновременном уменьшении проекционной ошибки MSE с 0.08 до 0.07, превзойдя чисто геометрический алгоритм . При анализе реальных событий PAMELA достигнуто среднее покрытие IoU 24.7% \pm 3.2% и сокращение невязки проекций на 33% . Основные ограничения связаны с экспоненциальным ростом времени вычислений при числе треков свыше восьми и повышенной чувствительностью к несовместимым проекциям и шуму.

Прототип, реализованный на Python, уже используется для отбора редких событий в эксперименте и готов к интеграции в последующие исследования.

Приложение

```
import numpy as np
import scipy as sp
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import scipy.optimize as opt
import ot
from scipy.stats import uniform, truncnorm
import time
from itertools import permutations
def plot_3d(C):
    fig = plt.figure(figsize=(10, 8))
    ax = fig.add_subplot(111, projection='3d')
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
   ax.set_zlabel('Z')
   ax.set_zlim(22, 0)
    ax.voxels(C, edgecolor='k')
def compare_XY(X, Y):
    fig = plt.figure(figsize=(10, 8))
    ax = fig.add_subplot(111, projection='3d')
    ax.set_xlabel('X')
   ax.set_ylabel('Y')
   ax.set_zlabel('Z')
   ax.set_zlim(22, 0)
    ax.voxels(X, edgecolor='k')
    ax.voxels(Y, edgecolor='r')
def compare_proj(X, Y):
    fig, ax = plt.subplots(1, 2)
    ax[0].matshow(X.any(axis=0).transpose() +
        5 * Y.any(axis=0).transpose(), cmap='Greys')
    ax[1].matshow(X.any(axis=1).transpose() +
        5 * Y.any(axis=1).transpose(), cmap='Greys')
    ax[0].set_aspect(96 / 22)
    ax[0].set_xlim(0, 96)
    ax[0].set_ylim(22, 0)
    ax[1].set_aspect(96 / 22)
    ax[1].set_xlim(0, 96)
    ax[1].set_ylim(22, 0)
def x_proj(C):
    return C.any(axis=1)
def y_proj(C):
    return C.any(axis=0)
```

```
def plot_X_projection(C):
   plt.matshow(C.any(axis=1).transpose(), cmap='Greys')
def plot_Y_projection(C):
   plt.matshow(C.any(axis=0).transpose(), cmap='Greys')
def plot_projections(C):
    fig, ax = plt.subplots(1, 2)
    ax[0].matshow(C.any(axis=1).transpose(), cmap='Greys')
    ax[1].matshow(C.any(axis=0).transpose(), cmap='Greys')
    ax[0].set_aspect(96 / 22)
    ax[0].set_xlim(0, 96)
    ax[0].set_ylim(22, 0)
    ax[1].set_aspect(96 / 22)
    ax[1].set_xlim(0, 96)
    ax[1].set_ylim(22, 0)
def check_XY_bounds(x, xmin=0, xmax=95):
    return (x \ge xmin) & (x \le xmax)
def _generate_event(startx, starty, start_theta, start_phi, zint,
                   npart, theta_part, phi_part):
    startz = 0
   maxz = 21
   zint = int(zint)
   1 = (np.tan(start_theta) * np.cos(start_phi),
       np.tan(start_theta) * np.sin(start_phi), 1)
   lx = startx + l[0] * np.arange(0, zint + 1, 1)
   ly = starty + l[1] * np.arange(0, zint + 1, 1)
   lz = np.arange(0, zint + 1, 1, dtype=int)
   xint, yint = lx[-1], ly[-1]
   C = np.zeros((96, 96, 22), dtype=int)
    track_interrupted = False
    if not (check_XY_bounds(xint) and check_XY_bounds(yint)):
        idx = check_XY_bounds(lx) & check_XY_bounds(ly)
        lx, ly, lz = lx[idx], ly[idx], lz[idx]
        track_interrupted = True
    lx_int = np.round(lx).astype(int)
    ly_int = np.round(ly).astype(int)
   C[lx_int, ly_int, lz] = 1
    if not (track_interrupted):
        lines = dict()
        direction = np.array(theta_part) < np.pi / 2</pre>
        for line_num in range(npart):
            newline = []
```

```
if direction[line_num]:
                steps = maxz - zint + 1
                newline = [
                    xint + np.tan(theta_part[line_num]) *
                    np.cos(phi_part[line_num]) * np.arange(0, steps - 1, 1),
                    yint + np.tan(theta_part[line_num]) *
                    np.sin(phi_part[line_num]) * np.arange(0, steps - 1, 1),
                    np.arange(zint, maxz, 1, dtype=int)
                ٦
            else:
                steps = zint + 1
                newline = [
                    xint - np.tan(theta_part[line_num]) *
                    np.cos(phi_part[line_num]) * np.arange(0, steps, 1),
                    yint - np.tan(theta_part[line_num]) *
                    np.sin(phi_part[line_num]) * np.arange(0, steps, 1),
                    np.arange(zint, -1, -1, dtype=int)
            idx = (newline[0] >= 0) & (newline[0] <= 95) &
                  (newline[1] >= 0) & (newline[1] <= 95)
            lines[line_num] = [newline[0][idx], newline[1][idx],
            newline[2][idx]]
        for line_num in range(npart):
            C[np.round(lines[line_num][0]).astype(int),
              np.round(lines[line_num][1]).astype(int),
              lines[line_num][2]] = 1
   return C
def _generate_N_event(params, N):
    return _generate_event(*params[0:5], N, params[5: 5 + N],
                          params [5 + N: 5 + 2 * N])
def generate_random_startx(size=100):
   loc, scale = 47.5, 20.0
    lower, upper = -loc / scale, loc / scale
    samples = truncnorm.rvs(lower, upper, loc=loc, scale=scale, size=size)
    integers = np.round(samples)
    return integers
def generate_random_zint(size=100):
   lower, upper = (0 - 10.5) / 4.0, (21 - 10.5) / 4.0
    samples = truncnorm.rvs(lower, upper, loc=10.5, scale=4.0, size=size)
    integers = np.round(samples).astype(int)
   return integers
def generate_random_phi_angle(size=100):
    samples = uniform.rvs(-np.pi, np.pi, size=size)
   return samples
```

```
def generate_random_theta_start_angle(size=100):
    scale = 0.3
    lower, upper = -np.pi / 3 / scale, np.pi / 3 / scale
    samples = truncnorm.rvs(lower, upper, loc=0, scale=scale, size=size)
    return np.abs(samples)
def generate_random_theta_int_angle(size=100):
    samples = uniform.rvs(0, np.pi, size=size)
    return samples
def wasserstein_distance(mat1, mat2):
    coords1 = np.argwhere(mat1 == 1)
    coords2 = np.argwhere(mat2 == 1)
    if len(coords1) == 0 or len(coords2) == 0:
        distance = np.inf
    else:
        cost_matrix = ot.dist(coords1, coords2, metric='euclidean')
        weights1 = np.ones(len(coords1)) / len(coords1)
        weights2 = np.ones(len(coords2)) / len(coords2)
        distance = ot.emd2(weights1, weights2, cost_matrix)
    return distance
def hamming_distance(mat1, mat2):
    return np.sum(mat1 != mat2)
def _objective_N(params, to_x, to_y, N):
    startx, starty, theta, phi, zint, N, theta_part,
    phi_part =
    *params[0:5], N, params[5: 5 + N], params[5 + N: 5 + 2 * N]
    E = _generate_event(startx, starty, theta, phi, zint, N,
    theta_part, phi_part)
    return wasserstein_distance(to_x, x_proj(E))
    + wasserstein_distance(to_y, y_proj(E))
event = test_events[23]
X, Y = x_proj(event), y_proj(event)
start_x, start_y = np.argwhere(X)[0][0], np.argwhere(Y)[0][0]
particle_num = 7
start_theta_part = generate_random_theta_int_angle(size=particle_num)
start_phi_part = generate_random_phi_angle(size=particle_num)
start_result = opt.minimize(_objective_N,
                           x0=[start_x, start_y, 0.0, 0.0, 10.0,
                           *start_theta_part, *start_phi_part],
                           args=(X, Y, particle_num),
                           bounds=[(0, 95), (0, 95), (0, np.pi / 3),
                           (-np.pi, np.pi), (0, 21),
                                   *[(0, np.pi)] * particle_num,
                                  *[(-np.pi, np.pi)] * particle_num],
```

```
callback=lambda result: print(".", end=""),
                           method='Nelder-Mead')
print("Differential uevolution...")
def diff_callback(xk, convergence):
    current_min = _objective_N(xk, X, Y, particle_num)
    print(r"{0:.3f}_{\sqcup}/_{\sqcup}".format(current_min), end="")
    return False
result = opt.differential_evolution(_objective_N, args=(X, Y, particle_num),
                                    x0=start_result.x,
                                    init='sobol',
                                    bounds=[(0, 95), (0, 95), (0, np.pi / 3),
                                    (-np.pi, np.pi), (0, 21),
                                           *[(0, np.pi)] * particle_num,
                                           *[(-np.pi, np.pi)] * particle_num],
                                    callback=diff_callback,
                                    maxiter=2000,
                                    tol=1e-3)
x_dir, y_dir, z_dir = spherical_to_cartesian(np.ones(particle_num),
                                              theta_angles, phi_angles)
x_dir, y_dir, z_dir = x_dir / np.abs(z_dir), y_dir
/ np.abs(z_dir), z_dir / np.abs(z_dir)
fwd_idx = z_dir > 0
fwd_list = np.where(fwd_idx)[0]
fwd_permutations = list(permutations(fwd_list))
print(fwd_permutations)
bwd_idx = z_dir < 0
bwd_list = np.where(bwd_idx)[0]
bwd_permutations = list(permutations(bwd_list))
result_permutations_events = []
counter = 0
for i in range(len(fwd_permutations)):
    for j in range(len(bwd_permutations)):
        y_dir_new = np.zeros(particle_num)
        for k in range(len(fwd_permutations[i])):
            y_dir_new[fwd_list[k]] = y_dir[fwd_permutations[i][k]]
        for k in range(len(bwd_permutations[j])):
            y_dir_new[bwd_list[k]] = y_dir[bwd_permutations[j][k]]
        r, theta_angles_new, phi_angles_new =
        cartesian_to_spherical(x_dir, y_dir_new, z_dir)
        result_permutations_events += [
            _generate_N_event(np.concatenate([result.x[:5],
            theta_angles_new, phi_angles_new]), N=particle_num)]
        print(counter, *result.x[:5], theta_angles_new, phi_angles_new)
        counter += 1
for i in range(len(result_permutations_events)):
```

```
compare_XY(event, result_permutations_events[i])
    plt.savefig('{0}.png'.format(i))
    plt.close()
EVENT_ID = 1.0
evt = hits[hits.event_ID == EVENT_ID]
coords_T, weight_T = [], []
for _, r in evt.iterrows():
    x, y, z = map(int, (r.index_along_x, r.index_along_y, r.layer))
    if 0 <= x < 96 and 0 <= y < 96 and 0 <= z < 44:
        coords_T.append((x, y, z))
        weight_T.append(r.energy_release)
coords_T = np.array(coords_T, float)
weight_T = np.array(weight_T, float);
weight_T /= weight_T.sum()
print("hits:", len(coords_T))
def wemd(mask_bool):
    P = np.argwhere(mask_bool)
    if len(P) == 0 or len(coords_T) == 0: return 1e6
    a, b = weight_T, np.ones(len(P)) / len(P)
   M = ot.dist(coords_T, P)
    return ot.emd2(a, b, M)
def iou(m_bool):
    tgt = np.zeros((96, 96, 44), bool)
    for x, y, z in coords_T.astype(int): tgt[x, y, z] = 1
    inter = np.logical_and(tgt, m_bool).sum()
    union = np.logical_or(tgt, m_bool).sum()
    return inter / union if union else 0
def dice(m_bool):
    tgt = np.zeros((96, 96, 44), bool)
    for x, y, z in coords_T.astype(int): tgt[x, y, z] = 1
    inter = np.logical_and(tgt, m_bool).sum()
    return 2 * inter / (tgt.sum() + m_bool.sum() + 1e-8)
def _generate_kink_event(startx, starty, th0, ph0, zint,
                         k_break, npart, *angles):
    mask = np.zeros((96, 96, 44), np.uint8)
    def step(x0, y0, th, ph, z0, z1):
        z, x, y = z0, x0, y0
        while z < z1 and 0 \le x < 96 and 0 \le y < 96 and z < 44:
            mask[int(x), int(y), int(z)] = 1
            x += np.tan(th) * np.cos(ph)
            y += np.tan(th) * np.sin(ph)
            z += 1
    step(startx, starty, th0, ph0, 0, max(int(zint) - 1, 0))
```

```
ptr = 0
    for _ in range(npart):
        th_a, ph_a, th_b, ph_b = angles[ptr:ptr + 4];
        ptr += 4
        step(startx, starty, th_a, ph_a, 0, int(k_break))
        step(startx, starty, th_b, ph_b, int(k_break), 44)
    return mask
def make_kink_gen(N):
    def g(*p):
        p = list(p)
        args = p[:5] + [p[5]] + [N] + p[6:]
        return _generate_kink_event(*args)
    return g
GEN_K = \{n: make_kink_gen(n) \text{ for } n \text{ in } (2, 3, 4)\}
_{xy}, _{tp} = [(0, 95), (0, 95)], [(0, np.pi), (-np.pi, np.pi)]
_z, _kb = [(5, 35)], [(10, 40)]
BOUNDS_K = {
    2: _xy + _tp + _z + _kb + _tp * 4,
    3: _{xy} + _{tp} + _{z} + _{kb} + _{tp} * 6,
    4: _{xy} + _{tp} + _{z} + _{kb} + _{tp} * 8,
}
def make_obj_k(N):
    def f(p):
        p = list(p);
        p[0] = int(round(p[0]));
        p[1] = int(round(p[1]))
        p[4] = int(round(p[4]));
        p[5] = int(round(p[5]))
        try:
            m = GEN_K[N](*p) > 0
        except:
            return 1e6
        return wemd(m)
    return f
def x0_random_kink(N):
    base = [np.random.randint(96),
    np.random.randint(96),
            np.random.rand() * np.pi,
            np.random.uniform(-np.pi, np.pi),
            np.random.randint(5, 35),
            np.random.randint(10, 40)]
    sec = [np.random.rand() * np.pi,
           np.random.uniform(-np.pi, np.pi)] * 2 * N
    return np.array(base + sec)
def x0_maxE_kink(N, df):
```

```
s10 = df[df.layer == 0]
    idx = sl0.energy_release.idxmax()
    x0, y0 = df.loc[idx, ["index_along_x",
    "index_along_y"]]
    base = [int(x0), int(y0),
            np.pi / 4, 0,
            np.random.randint(5, 35),
            np.random.randint(10, 40)]
    sec = [np.random.rand() * np.pi,
           np.random.uniform(-np.pi, np.pi)] * 2 * N
    return np.array(base + sec)
def x0_hough_kink(N, df):
    sl = df[df.layer < 4][["index_along_x",</pre>
    "index_along_y"]].values
    x0, y0 = sl.mean(0)
    base = [x0, y0, np.pi / 4, 0,
            np.random.randint(5, 35),
            np.random.randint(10, 40)]
    sec = [np.random.rand() * np.pi,
           np.random.uniform(-np.pi, np.pi)] * 2 * N
    return np.array(base + sec)
strategies = {
    "random": lambda N: x0_random_kink(N),
    "maxE": lambda N: x0_maxE_kink(N, evt),
    "hough": lambda N: x0_hough_kink(N, evt)
}
N = 4
table = []
for name, sfn in strategies.items():
    x0 = sfn(N)
    t0 = time.time()
    de = differential_evolution(
        make_obj_k(N), BOUNDS_K[N],
        init=pop,
       popsize=20, maxiter=100, seed=42, disp=False)
    dt = time.time() - t0
    m = GEN_K[N](*de.x) > 0
    table.append([name, dt, iou(m), dice(m)])
def _generate_four_event(startx, starty, theta0, phi0, zint,
                         theta1, phi1, theta2, phi2,
                         theta3, phi3, theta4, phi4):
    return _generate_event(
        startx, starty, theta0, phi0, zint,
        [theta1, theta2, theta3, theta4],
        [phi1, phi2, phi3, phi4]
    )
```

```
bounds_four = [
    (0, 95),
    (0, 95),
    (0, np.pi),
    (-np.pi, np.pi),
    (0, 44),
    (0, np.pi), (-np.pi, np.pi),
    (0, np.pi), (-np.pi, np.pi),
    (0, np.pi), (-np.pi, np.pi),
    (0, np.pi), (-np.pi, np.pi),
]
def _objective_four(params, target_mask):
    params = list(params)
    params[0] = int(round(params[0]))
    params[1] = int(round(params[1]))
    params[4] = int(round(params[4]))
    params = tuple(params)
    if len(params) != 13:
        return 1e6
    try:
        gen_mask = _generate_four_event(*params) > 0
        return wasserstein_distance(gen_mask, target_mask)
    except Exception as e:
        print(e)
        return 1e6
```

Список литературы

- 1. *Богомолов Э. А.* Антипротоны и дейтоны в галактических космических лучах: дис. доктора физико-математических наук // Физ.-техн. ин-т им. А. Ф. Иоффе РАН. 2003.
- 2. PAMELA A payload for antimatter matter exploration and light-nuclei astrophysics / P. Picozza [и др.] // Astroparticle Physics. 2007. T. 27, № 4. C. 296—315. ISSN 0927-6505.
- 3. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station / M. Aguilar [и др.] // Phys. Rev. Lett. 2016. Т. 117, № 9. С. 091103.
- 4. Geant4—a simulation toolkit / S. Agostinelli [и др.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003. Т. 506, № 3. С. 250—303. ISSN 0168-9002.
- 5. The electron–hadron separation performance of the PAMELA electromagnetic calorimeter / M. Boezio [и др.] // Astroparticle Physics. 2006. Т. 26, № 2. С. 111—118. ISSN 0927-6505.
- 6. Observation of antiprotons / O. Chamberlain [и др.] // Physical Review. 1955. T. 100, № 3. C. 947.

Рис. 8: ПАМЕЛА