Gruppi di Lie

Corso di Laurea in Matematica A.A. 2024-2025

Docente: Andrea Loi

- 1. Sia $\pi: \mathbb{R}^2 \to S^1 \times S^1$, $(t,s) \mapsto (e^{2\pi it}, e^{2\pi is})$, $L = \{(t,\alpha t) \mid \alpha \in \mathbb{R} \setminus \mathbb{Q}\}$ e $f = \pi_{|L}: L \to S^1 \times S^1$. Sia τ_f la topologia indotta da f su $H = \pi(L)$ e τ_s quella indotta dall'inclusione $H \subset S^1 \times S^1$. Dimostrare che $\tau_s \subset \tau_f$. (Suggerimento: si usi il fatto che f(L) è denso in $S^1 \times S^1$).
- 2. Sia $F: H \to G$ un omomorfismo iniettivo tra gruppi di Lie. Dimostrare che F è un'immersione (e quindi F(H) è un sottogruppo di Lie di G). (Suggerimento: si usi il fatto che un omomorfismo tra gruppi di Lie ha rango costante e il Teorema del rango costante).
- 3. Sia $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Dimostrare che $e^X = \begin{pmatrix} \cosh 1 & \sinh 1 \\ \sinh 1 & \cosh 1 \end{pmatrix}$.
- 4. Trovare due matrici A e B tali che $e^{A+B} \neq e^A e^B$.
- 5. Dimostrare che (teorema della forma canonica ortogonale) data $A \in O(n)$ allora esiste $P \in O(n)$, p,q naturali tali che

$$P^{-1}AP = P^{t}AP = \begin{pmatrix} I_{p} & 0 & 0 & 0 & 0\\ 0 & -I_{q} & 0 & 0 & 0\\ \hline 0 & 0 & P_{1} & 0 & 0\\ 0 & 0 & & \ddots & \\ 0 & 0 & 0 & & P_{n-p-q} \end{pmatrix}$$

$$\tag{1}$$

dove $P_j = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \cos \theta_j & \cos \theta_j \end{pmatrix}$, $\theta_j \in \mathbb{R}$, $\theta_j \neq s\pi$, $\forall s \in \mathbb{Z}$, $j = 1, \dots, \frac{n-p-q}{2}$, I_p (risp. I_q) è la matrice identità di ordine p (risp. q). (Suggerimento: la dimostrazione si ottiene attraverso i seguenti passi.

- a) esistono $p \ge 0$ autovalori di A uguali a 1, $q \ge 1$ autovalori di A uguali a -1, e $2h \ge 0$ autovalori complessi $e^{i\theta_1}, e^{-i\theta_1}, \dots, e^{i\theta_h}, e^{-i\theta_h}$ di A.
- b) esiste una base ortonormale di autovettori reali w_1, \ldots, w_p di V_1 e una base ortonormale di autovettori reali t_1, \ldots, t_q di V_{-1} tali che $< w_j, t_k > = 0, \forall j = 1, \ldots, p$ e $\forall k = 1, \ldots, q$.
- c) sia m_ℓ la molteplicità algebrica di $e^{i\theta_\ell}$, $\ell=1,\ldots h$. Allora esiste una base ortonormale $u_1^\ell+iv_1^\ell,\ldots,u_{m_\ell}^\ell+iv_{m_\ell}^\ell$ di $V_{e^{i\theta_\ell}}$ e $u_1^\ell-iv_1^\ell,\ldots,u_{m_\ell}^\ell-iv_{m_\ell}^\ell$ base ortonormale di $V_{e^{-i\theta_\ell}}$ tali che $< u_{j_\ell}^\ell+iv_{j_\ell}^\ell,u_{k_\ell}^\ell-iv_{k_\ell}^\ell>=0,\,\forall j_\ell,k_\ell=1,\ldots,m_\ell.$
- d) sia $\ell=1,\ldots,h$ fissato, dedurre dal punto precedente che $\forall j_\ell.k_\ell=1,\ldots,m_\ell, \forall j=1,\ldots,p$ e $\forall k=1,\ldots q$

$$\begin{split} \|u_{j_{\ell}}^{\ell}\| &= \|u_{j_{\ell}}^{\ell}\| = 1, \ < u_{j_{\ell}}^{\ell}, u_{k_{\ell}}^{\ell} > = < v_{j_{\ell}}^{\ell}, v_{k_{\ell}}^{\ell} > = 0 \\ &< w_{j}, u_{j_{\ell}}^{\ell} > = < w_{j}, v_{j_{\ell}}^{\ell} > = < t_{k}, u_{j_{\ell}}^{\ell} > = < t_{k}, v_{j_{\ell}}^{\ell} > = 0. \end{split}$$

e) per ogni $\ell=1,\ldots,h,$ siano $u_{j_\ell}^{(\ell)}:=\frac{u_{j_\ell}^\ell}{\|u_{j_\ell}^\ell\|}$ e $v_{j_\ell}^{(\ell)}:=\frac{v_{j_\ell}^\ell}{\|v_{j_\ell}^\ell\|}.$ Dedurre che

$$A(u_{j_{\ell}}^{(\ell)} + v_{j_{\ell}}^{(\ell)}) = e^{i\theta_{\ell}} (u_{j_{\ell}}^{(\ell)} + v_{j_{\ell}}^{(\ell)}).$$

e che $Au_{j_{\ell}}^{(\ell)} = \cos \theta_{\ell} \ u_{j_{\ell}}^{(\ell)} - \sin \theta_{\ell} \ v_{j_{\ell}}^{(\ell)}$ e $Av_{j_{\ell}}^{(\ell)} = \sin \theta_{\ell} \ u_{j_{\ell}}^{(\ell)} + \cos \theta_{\ell} \ v_{j_{\ell}}^{(\ell)}, \ \forall j_{\ell} = 1, \dots, m_{\ell}.$

1

f) dedurre dai punti precedenti che i vettori

$$w_1, \dots w_p, t_1, \dots, t_q, u_1^{(1)}, v_1^{(1)}, \dots, u_{m_1}^{(1)}, v_{m_1}^{(1)}, \dots, u_1^{(h)}, v_1^{(h)}, \dots, u_{m_h}^{(h)}, v_{m_h}^{(h)}$$

sono una base ortonormale di vettori di \mathbb{R}^n e che se $P \in O(n)$ è la matrice associata a questa base (cioè la matrice che ha come colonne tali vettori) si ottiene la (1).

- 6. Sia G un gruppi di Lie e sia G_0 la componente connessa di G che contiene e (elemento neutro di G). Se μ e i denotano la moltiplicazione e l'inversione in G, provare che
 - 1. $\mu(\lbrace x \rbrace \times G_0) \subset G_0, \forall x \in G_0;$
 - 2. $i(G_0) \subset G_0$;
 - 3. G_0 é un sottoinsieme aperto di G
 - 4, G_0 é un sottogruppo di Lie di G.
- 7. Sia G un gruppo di Lie e $\mu: G \times G \to G$ la moltiplicazione. Dimostrare che

$$\mu_{*(a,b)}(X_a, Y_b) = (R_b)_{*a}(X_a) + (L_a)_{*b}(Y_b), \ \forall (a,b) \in G \times G, \ \forall X_a \in T_aG, \ \forall Y_b \in T_bG,$$

dove L_a (risp. R_b) denota la traslazione a sinistra (risp. a destra) associata ad a (risp. b).

8. Sia G un gruppo di Lie con inversione $i: G \to G, a \mapsto i(a) = a^{-1}$. Dimostrare che

$$i_{*a}(Y_a) = -(R_{a^{-1}})_{*e}(L_{a^{-1}})_{*a}(Y_a), \ \forall a \in G, \ \forall Y_a \in T_aG.$$

9. Dimostrare che ogni gruppo di Lie é parallelizzabile.