Integer Arithmetic IP Cores User Guide

Contents

1-1
1-2
2-1
2-1
2-2
2-2
2-3
2-3
2-4
3-1
3-2
3-2
3-2
3-3
3-3
4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-8
4-8
4-9
4-9
4-9
4-10
4-11
E 1
5-1
5-1
5-2
5-2

Ports	5-3
Parameters	5-4
LPM_COMPARE (Comparator)	
Features	6-1
Verilog HDL Prototype	6-2
VHDL Component Declaration	6-2
VHDL LIBRARY_USE Declaration	6-2
Ports	6-3
Parameters	6-3
ALTEROOVE OUT OF ENDING	 4
ALTECC (Error Correction Code: Encoder/Decoder) IP Core.	
ALTECC Encoder Features	
Verilog HDL Prototype (ALTECC_ENCODER)	
Verilog HDL Prototype (ALTECC_DECODER)	
VHDL Component Declaration (ALTECC_ENCODER)	
VHDL Component Declaration (ALTECC_DECODER)	7-4
VHDL LIBRARY_USE Declaration	
Encoder Ports	7-5
Decoder Ports	7-5
Encoder Parameters	
Decoder Parameters	
ALTERA_MULT_ADD (Multiply-Adder) IP Core	8-1
ALTERA_MULT_ADD (Multiply-Adder) IP Core	
_ ·	8-2
FeaturesPre-adder	
Features	
Features Pre-adder Systolic Delay Register Pre-load Constant	
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator.	
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator Verilog HDL Prototype	
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator Verilog HDL Prototype VHDL Component Declaration	8-2 8-5 8-8 8-8 8-9
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator Verilog HDL Prototype VHDL Component Declaration VHDL LIBRARY_USE Declaration	
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator Verilog HDL Prototype VHDL Component Declaration VHDL LIBRARY_USE Declaration Ports	8-2 8-2 8-5 8-8 8-8 8-8 8-9 8-9
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator Verilog HDL Prototype VHDL Component Declaration VHDL LIBRARY_USE Declaration. Ports Parameters.	8-2 8-2 8-5 8-8 8-8 8-9 8-9 8-9 8-9 8-9
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator. Verilog HDL Prototype VHDL Component Declaration VHDL LIBRARY_USE Declaration Ports Parameters General Tab	8-2 8-2 8-5 8-8 8-8 8-9 8-9 8-9 8-9 8-9 8-11
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator Verilog HDL Prototype VHDL Component Declaration VHDL LIBRARY_USE Declaration Ports Parameters General Tab Extra Modes Tab	8-2 8-2 8-5 8-8 8-8 8-8 8-9 8-9 8-9 8-11 8-18
Features	8-2 8-2 8-5 8-8 8-8 8-8 8-9 8-9 8-9 8-11 8-18 8-19
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator. Verilog HDL Prototype VHDL Component Declaration VHDL LIBRARY_USE Declaration. Ports Parameters. General Tab Extra Modes Tab Multipliers Tab Preadder Tab	8-2 8-2 8-5 8-8 8-8 8-9 8-9 8-9 8-11 8-18 8-19 8-22
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator. Verilog HDL Prototype VHDL Component Declaration. VHDL LIBRARY_USE Declaration. Ports Parameters. General Tab Extra Modes Tab Multipliers Tab Preadder Tab Preadder Tab Accumulator Tab	8-2 8-2 8-5 8-8 8-8 8-8 8-9 8-9 8-9 8-11 8-18 8-18
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator. Verilog HDL Prototype VHDL Component Declaration. VHDL LIBRARY_USE Declaration. Ports Parameters General Tab Extra Modes Tab Multipliers Tab Preadder Tab Preadder Tab Systolic/Chainout Tab	8-2 8-2 8-5 8-8 8-8 8-8 8-9 8-9 8-9 8-11 8-18 8-19 8-22 8-26 8-29
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator. Verilog HDL Prototype VHDL Component Declaration. VHDL LIBRARY_USE Declaration. Ports Parameters. General Tab Extra Modes Tab Multipliers Tab Preadder Tab Preadder Tab Accumulator Tab	8-2 8-2 8-5 8-8 8-8 8-8 8-9 8-9 8-9 8-11 8-18 8-19 8-22 8-26 8-29
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator. Verilog HDL Prototype VHDL Component Declaration. VHDL LIBRARY_USE Declaration. Ports Parameters General Tab Extra Modes Tab Multipliers Tab Preadder Tab Preadder Tab Systolic/Chainout Tab	8-2 8-2 8-5 8-8 8-8 8-8 8-9 8-9 8-9 8-11 8-18 8-19 8-22 8-26 8-29
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator Verilog HDL Prototype VHDL Component Declaration. VHDL LIBRARY_USE Declaration. Ports Parameters General Tab Extra Modes Tab Multipliers Tab Preadder Tab Accumulator Tab Systolic/Chainout Tab Pipelining Tab Pipelining Tab	8-2 8-2 8-5 8-8 8-8 8-9 8-9 8-9 8-11 8-18 8-19 8-22 8-26 8-32 8-34
Features Pre-adder Systolic Delay Register Pre-load Constant Double Accumulator. Verilog HDL Prototype VHDL Component Declaration. VHDL LIBRARY_USE Declaration. Ports Parameters General Tab Extra Modes Tab Multipliers Tab Preadder Tab Preadder Tab Systolic/Chainout Tab	8-2 8-2 8-5 8-8 8-8 8-9 8-9 8-9 8-11 8-18 8-19 8-22 8-26 8-32 8-34

	Verilog HDL Prototype	9-2
	VHDL Component Declaration	9-2
	Ports	9-3
	Parameters	9-4
ΑI	LTMULT_ACCUM (Multiply-Accumulate) IP Core	10-1
	Features	
	Verilog HDL Prototype	10-2
	VHDL Component Declaration	10-3
	VHDL LIBRARY_USE Declaration	10-3
	Ports	10-3
	Parameters	10-4
A T	TAMILE ADD (M14.1. A 11) ID C	11 1
AJ	LTMULT_ADD (Multiply-Adder) IP Core	
	FeaturesVerilog HDL Prototype	
	VHDL Component Declaration	
	VHDL LIBRARY_USE Declaration	
	Ports	
	Parameters	
	1 drameters	11-3
ΑI	LTMULT_COMPLEX (Complex Multiplier) IP Core	12-1
	Complex Multiplication	
	Canonical Representation	
	Conventional Representation	
	Features	
	Verilog HDL Prototype	
	VHDL Component Declaration	
	VHDL LIBRARY_USE Declaration	
	Ports	
	Parameters	
ΑI	LTSQRT (Integer Square Root) IP Core	
	Features	
	Verilog HDL Prototype	
	VHDL Component Declaration	
	VHDL LIBRARY_USE Declaration	
	Ports	
	Parameters	13-3
p 4	ARALLEL_ADD (Parallel Adder) IP Core	1.4_1
ıΓ	Feature	
	Verilog HDL Prototype	
	VHDL Component Declaration	
	VHDL LIBRARY_USE Declaration	
	Y TIDE EIDIMINI _OOL DOGIANOII	14-3

Ports Parameters	
Integer Arithmetic IP Cores User Guide Document Archiv	vesA-1
Document Revision History	B-1

Integer Arithmetic IP Cores

2016.06.10

UG-01063

You can use Altera® integer IP cores to perform mathematical operations in your design.

These functions offer more efficient logic synthesis and device implementation than coding your own functions. You can customize the IP cores to accommodate your design requirements.

Altera integer arithmetic IP cores are divided into the following two categories:

- Library of parameterized modules (LPM) IP cores
- Altera-specific (ALT) IP cores

The following table lists the integer arithmetic IP cores.

Table 1-1: List of IP Cores

IP Cores	Function Overview	Supported Device
LPM IP cores		
LPM_COUNTER (Counter) IP Core	Counter	All device families
LPM_DIVIDE (Divider) IP Core	Divider	All device families
LPM_MULT (Multiplier) IP Core	Multiplier	All device families
LPM_ADD_SUB (Adder/ Subtractor)	Adder or subtractor	Arria II GX, Arria II GZ, Arria V, Cyclone IV E, Cyclone IV GX, Cyclone V, MAX 10, MAX II, MAX V, Stratix IV, Stratix V
LPM_COMPARE (Comparator)	Comparator	Arria II GX, Arria II GZ, Arria V, Cyclone IV E, Cyclone IV GX, Cyclone V, MAX 10, MAX II, MAX V, Stratix IV, Stratix V
Altera-specific (ALT) IP cores		
ALTECC (Error Correction Code: Encoder/Decoder) IP Core	ECC Encoder/Decoder	All device families
ALTERA_MULT_ADD (Multiply-Adder) IP Core	Multiplier-Adder	Arria V, Arria V GZ, Stratix V, Cyclone V, Arria 10

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

IP Cores	Function Overview	Supported Device
ALTMEMMULT (Memory-based Constant Coefficient Multiplier) IP Core	Memory-based Constant Coefficient Multiplier	All device families
ALTMULT_ACCUM (Multiply-Accumulate) IP Core	Multiplier-Accumulator	Arria II GX, Arria II GZ, Cyclone IV E, Cyclone IV GX, MAX 10, MAX II, MAX V
ALTMULT_ADD (Multiply-Adder) IP Core	Multiplier-Adder	Arria II GX, Arria II GZ, Cyclone IV E, Cyclone IV GX, MAX 10, MAX II, MAX V
ALTMULT_COMPLEX (Complex Multiplier) IP Core	Complex Multiplier	Arria II GX, Arria II GZ, Arria 10, Arria V, Arria V GZ, Cyclone IV E, Cyclone IV GX, Cyclone V, MAX 10, Stratix V
ALTSQRT (Integer Square Root) IP Core	Integer Square-Root	All device families
PARALLEL_ADD (Parallel Adder) IP Core	Parallel Adder	All device families

Related Information

- Altera IP Release Notes
- Introduction to Altera IP Cores
 Provides more information on Altera IP Cores.
- Floating Point IP Cores User Guide
 Provides more information about Altera Floating-Point IP cores.
- Introduction to Altera IP Cores

 Provides general information about all Altera IP cores, including parameterizing, generating, upgrading, and simulating IP.
- Creating Version-Independent IP and Qsys Simulation Scripts

 Create simulation scripts that do not require manual updates for software or IP version upgrades.
- Project Management Best Practices
 Guidelines for efficient management and portability of your project and IP files.
- Integer Arithmetic IP Cores User Guide Document Archives on page 15-1 Provides a list of user guides for previous versions of the Integer Arithmetic IP cores.

Design Example Files

Altera provides design example files that are simulated in the ModelSim[®]-Altera software to generate a waveform display of the device behavior.

You should be familiar with the ModelSim-Altera software before using the design examples. To get started with the ModelSim-Altera software, refer to the **ModelSim-Altera Software Support** page on the Altera website. The support page includes links to such topics as installation, usage, and troubleshooting. For more details about the design example for a specific IP core, refer to the "Design Example" section for that megafunction.

Altera Corporation Integer Arithmetic IP Cores

Design examples are provided only for some IP cores in this user guide.

Integer Arithmetic IP Cores Altera Corporation

LPM_COUNTER (Counter) IP Core

2

2016.06.10

UG-01063

Subscribe

The LPM_COUNTER IP core is a binary counter that creates up counters, down counters and up or down counters with outputs of up to 256 bits wide.

The following figure shows the ports for the LPM_COUNTER IP core.

Figure 2-1: LPM_COUNTER Ports

Features

The LPM_COUNTER IP core offers the following features:

- Generates up, down, and up/down counters
- Generates the following counter types:
 - Plain binary— the counter increments starting from zero or decrements starting from 255
 - Modulus—the counter increments to or decrements from the modulus value specified by the user and repeats
- Supports optional synchronous clear, load, and set input ports
- Supports optional asynchronous clear, load, and set input ports
- Supports optional count enable and clock enable input ports
- Supports optional carry-in and carry-out ports

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Verilog HDL Prototype

The following Verilog HDL prototype is located in the Verilog Design File (.v) lpm.v in the <Quartus® Prime installation directory>\eda\synthesis directory.

```
module lpm_counter ( q, data, clock, cin, cout, clk_en, cnt_en, updown,
aset, aclr, aload, sset, sclr, sload, eq );
parameter lpm_type = "lpm_counter";
parameter lpm_width = 1;
parameter lpm_modulus = 0;
parameter lpm_direction = "UNUSED";
parameter lpm_avalue = "UNUSED";
parameter lpm_svalue = "UNUSED";
parameter lpm_pvalue = "UNUSED";
parameter lpm_port_updown = "PORT_CONNECTIVITY";
parameter lpm_hint = "UNUSED";
output [lpm_width-1:0] q;
output cout;
output [15:0] eq;
input cin;
input [lpm_width-1:0] data;
input
      clock, clk_en, cnt_en, updown;
      aset, aclr, aload;
input sset, sclr, sload;
endmodule
```

VHDL Component Declaration

The VHDL component declaration is located in the VHDL Design File (.vhd) LPM_PACK.vhd in the <Quartus Prime installation directory>\libraries\vhdl\lpm directory.

```
component LPM_COUNTER
           generic ( LPM_WIDTH : natural;
                      LPM_MODULUS : natural := 0;
                      LPM_DIRECTION : string := "UNUSED";
                      LPM_AVALUE : string := "UNUSED";
                      LPM_SVALUE : string := "UNUSED";
                      LPM_PORT_UPDOWN : string := "PORT_CONNECTIVITY";
                      LPM_PVALUE : string := "UNUSED";
                      LPM_TYPE : string := L_COUNTER;
                      LPM_HINT : string := "UNUSED");
            port (DATA : in std_logic_vector(LPM_WIDTH-1 downto 0):= (OTHERS =>
'0');
                  CLOCK : in std_logic ;
                  CLK_EN : in std_logic := '1';
                  CNT_EN : in std_logic := '1';
                  UPDOWN : in std_logic := '1';
                  SLOAD : in std_logic := '0';
                  SSET : in std_logic := '0';
                  SCLR : in std_logic := '0';
                  ALOAD : in std_logic := '0';
                  ASET : in std_logic := '0';
                  ACLR : in std_logic := '0';
                  CIN : in std_logic := '1';
                  COUT : out std_logic := '0';
                  Q : out std_logic_vector(LPM_WIDTH-1 downto 0);
                  EQ : out std_logic_vector(15 downto 0));
        end component;
```

Altera Corporation LPM_COUNTER (Counter) IP Core

VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY lpm;
USE lpm.lpm_components.all;
```

Ports

The following tables list the input and output ports for the LPM_COUNTER IP core.

Table 2-1: LPM_COUNTER Input Ports

Port Name	Required	Description
data[]	No	Parallel data input to the counter. The size of the input port depends on the LPM_WIDTH parameter value.
clock	Yes	Positive-edge-triggered clock input.
clk_en	No	Clock enable input to enable all synchronous activities. If omitted, the default value is 1.
cnt_en	No	Count enable input to disable the count when asserted low without affecting sload, sset, or sclr. If omitted, the default value is 1.
updown	No	Controls the direction of the count. When asserted high (1), the count direction is up, and when asserted low (0), the count direction is down. If the LPM_DIRECTION parameter is used, the updown port cannot be connected. If LPM_DIRECTION is not used, the updown port is optional. If omitted, the default value is up (1).
cin	No	Carry-in to the low-order bit. For up counters, the behavior of the cin input is identical to the behavior of the cnt_en input. If omitted, the default value is 1 (VCC).
aclr	No	Asynchronous clear input. If both aset and aclr are used and asserted, aclr overrides aset. If omitted, the default value is 0 (disabled).
aset	No	Asynchronous set input. Specifies the q[] outputs as all 1s, or to the value specified by the LPM_AVALUE parameter. If both the aset and aclr ports are used and asserted, the value of the aclr port overrides the value of the aset port. If omitted, the default value is 0, disabled.
aload	No	Asynchronous load input that asynchronously loads the counter with the value on the data input. When the aload port is used, the data[] port must be connected. If omitted, the default value is 0, disabled.

Port Name	Required	Description
sclr	No	Synchronous clear input that clears the counter on the next active clock edge. If both the sset and sclr ports are used and asserted, the value of the sclr port overrides the value of the sset port. If omitted, the default value is 0, disabled.
sset	No	Synchronous set input that sets the counter on the next active clock edge. Specifies the value of the q outputs as all 1s, or to the value specified by the LPM_SVALUE parameter. If both the sset and sclr ports are used and asserted, the value of the sclr port overrides the value of the sset port. If omitted, the default value is 0 (disabled).
sload	No	Synchronous load input that loads the counter with data[] on the next active clock edge. When the sload port is used, the data[] port must be connected. If omitted, the default value is 0 (disabled).

Table 2-2: LPM_COUNTER Output Ports

Port Name	Required	Description
d[]	No	Data output from the counter. The size of the output port depends on the LPM_WIDTH parameter value. Either q[] or at least one of the eq[150] ports must be connected.
eq[150]	No	Counter decode output. The eq[150] port is not accessible in the parameter editor because the parameter only supports AHDL.
		Either the <code>q[]</code> port or <code>eq[]</code> port must be connected. Up to <code>c</code> eq ports can be used ($0 <= c <= 15$). Only the 16 lowest count values are decoded. When the count value is <code>c</code> , the <code>eqc</code> output is asserted high (1). For example, when the count is 0 , <code>eq0 = 1</code> , when the count is 1 , <code>eq1 = 1</code> , and when the count is 15 , <code>eq 15 = 1</code> . Decoded output for count values of 16 or greater require external decoding. The <code>eq[150]</code> outputs are asynchronous to the <code>q[]</code> output.
cout	No	Carry-out port of the counter's MSB bit. It can be used to connect to another counter to create a larger counter.

Parameters

The following table lists the parameters for the LPM_COUNTER IP core.

Table 2-3: LPM_COUNTER Parameters

Parameter Name	Туре	Required	Description
LPM_WIDTH	Integer		Specifies the widths of the data[] and q[] ports, if they are used.

Altera Corporation LPM_COUNTER (Counter) IP Core

Parameter Name	Туре	Required	Description
LPM_DIRECTION	String	No	Values are UP, DOWN, and UNUSED. If the LPM_DIRECTION parameter is used, the updown port cannot be connected. When the updown port is not connected, the LPM_DIRECTION parameter default value is UP.
LPM_MODULUS	Integer	No	The maximum count, plus one. Number of unique states in the counter's cycle. If the load value is larger than the LPM_MODULUS parameter, the behavior of the counter is not specified.
LPM_AVALUE	Integer/ String	No	Constant value that is loaded when aset is asserted high. If the value specified is larger than or equal to <modulus>, the behavior of the counter is an undefined (X) logic level, where <modulus> is LPM_MODULUS, if present, or 2 ^ LPM_WIDTH. Altera recommends that you specify this value as a decimal number for AHDL designs.</modulus></modulus>
LPM_SVALUE	Integer/ String	No	Constant value that is loaded on the rising edge of the clock port when the sset port is asserted high. Altera recommends that you specify this value as a decimal number for AHDL designs.
LPM_HINT	String	No	When you instantiate a library of parameterized modules (LPM) function in a VHDL Design File (.vhd), you must use the LPM_HINT parameter to specify an Alteraspecific parameter. For example: LPM_HINT = "CHAIN_SIZE = 8, ONE_INPUT_IS_CONSTANT = YES" The default value is UNUSED.
LPM_TYPE	String	No	Identifies the library of parameterized modules (LPM) entity name in VHDL design files.
INTENDED_DEVICE_FAMILY	String	No	This parameter is used for modeling and behavioral simulation purposes. This parameter is used for modeling and behavioral simulation purposes. The parameter editor calculates the value for this parameter.

Parameter Name	Туре	Required	Description
CARRY_CNT_EN	String	No	Altera-specific parameter. You must use the LPM_HINT parameter to specify the CARRY_CNT_EN parameter in VHDL design files. Values are SMART, ON, OFF, and UNUSED. Enables the LPM_COUNTER function to propagate the cnt_en signal through the carry chain. In some cases, the CARRY_CNT_EN parameter setting might have a slight impact on the speed, so you might want to turn it off. The default value is SMART, which provides the best trade-off between size and speed.
LABWIDE_SCLR	String	No	Altera-specific parameter. You must use the LPM_HINT parameter to specify the LABWIDE_SCLR parameter in VHDL design files. Values are ON, OFF, OR UNUSED. The default value is ON. Allows you to disable the use of the LAB-wide sclr feature found in obsoleted device families. Turning this option off increases the chances of fully using the partially filled LABs, and thus may allow higher logic density when SCLR does not apply to a complete LAB. This parameter is available for backward compatibility, and Altera recommends you not to use this parameter.
LPM_PORT_UPDOWN	String	No	Specifies the usage of the updown input port. If omitted the default value is PORT_ CONNECTIVITY. When the port value is set to PORT_USED, the port is treated as used. When the port value is set to PORT_UNUSED, the port is treated as unused. When the port value is set to PORT_CONNECTIVITY, the port usage is determined by checking the port connectivity.

Altera Corporation LPM_COUNTER (Counter) IP Core

LPM_DIVIDE (Divider) IP Core

2016.06.10

UG-01063

Subscribe

The LPM_DIVIDE IP core implements a divider to divide a numerator input value by a denominator input value to produce a quotient and a remainder.

The following figure shows the ports for the LPM_DIVIDE IP core.

Figure 3-1: LPM_DIVIDE Ports

Features

The LPM_DIVIDE IP core offers the following features:

- Generates a divider that divides a numerator input value by a denominator input value to produce a quotient and a remainder.
- Supports data width of 1–256 bits.
- Supports signed and unsigned data representation format for both the numerator and denominator values.
- Supports area or speed optimization.
- Provides an option to specify a positive remainder output.
- Supports pipelining configurable output latency.
- Supports optional asynchronous clear and clock enable ports.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Verilog HDL Prototype

The following Verilog HDL prototype is located in the Verilog Design File (.v) lpm.v in the **Quartus** Prime installation directory>\eda\synthesis directory.

```
module lpm_divide ( quotient, remain, numer, denom, clock, clken, aclr);
parameter lpm_type = "lpm_divide";
parameter lpm_widthn = 1;
parameter lpm_widthd = 1;
parameter lpm_nrepresentation = "UNSIGNED";
parameter lpm_drepresentation = "UNSIGNED";
parameter lpm_remainderpositive = "TRUE";
parameter lpm_pipeline = 0;
parameter lpm_hint = "UNUSED";
input clock;
input clken;
input aclr;
input
       [lpm_widthn-1:0] numer;
input [lpm_widthd-1:0] denom;
output [lpm_widthn-1:0] quotient;
output [lpm_widthd-1:0] remain;
endmodule
```

VHDL Component Declaration

The VHDL component declaration is located in the VHDL Design File (.vhd) LPM_PACK.vhd in the <Quartus Prime installation directory>\libraries\vhdl\lpm directory.

```
component LPM_DIVIDE
        generic (LPM_WIDTHN : natural;
                 LPM_WIDTHD : natural;
LPM_NREPRESENTATION : string := "UNSIGNED";
LPM_DREPRESENTATION : string := "UNSIGNED";
LPM_PIPELINE : natural := 0;
LPM_TYPE : string := L_DIVIDE;
LPM_HINT : string := "UNUSED");
port (NUMER : in std_logic_vector(LPM_WIDTHN-1 downto 0);
DENOM : in std_logic_vector(LPM_WIDTHD-1 downto 0);
ACLR : in std_logic := '0';
CLOCK : in std_logic := '0';
CLKEN : in std_logic := '1';
QUOTIENT : out std_logic_vector(LPM_WIDTHN-1 downto 0);
REMAIN : out std_logic_vector(LPM_WIDTHD-1 downto 0));
end component;
```

VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY lpm;
USE lpm.lpm_components.all;
```

Altera Corporation LPM_DIVIDE (Divider) IP Core

Ports

Ports

The following tables list the input and output ports for the LPM_DIVIDE IP core.

Table 3-1: LPM_DIVIDE Input Ports

Port Name	Required	Description
numer[]	Yes	Numerator data input. The size of the input port depends on the LPM_WIDTHN parameter value.
denom[]	Yes	Denominator data input. The size of the input port depends on the LPM_WIDTHD parameter value.
clock	No	Clock input for pipelined usage. For LPM_PIPELINE values other than 0 (default), the clock port must be enabled.
clken	No	Clock enable pipelined usage. When the clken port is asserted high, the division operation takes place. When the signal is low, no operation occurs. If omitted, the default value is 1.
aclr	No	Asynchronous clear port used at any time to reset the pipeline to all '0's asynchronously to the clock input.

Table 3-2: LPM_DIVIDE Output Ports

Port Name	Required	Description
quotient[]	Yes	Data output. The size of the output port depends on the LPM_WIDTHN parameter value.
remain[]	Yes	Data output. The size of the output port depends on the LPM_WIDTHD parameter value.

Parameters

The following table lists the parameters for the LPM_DIVIDE IP core.

Parameter Name	Туре	Required	Description
LPM_WIDTHN	Integer	Yes	Specifies the widths of the numer[] and quotient[] ports. Values are 1 to 64.
LPM_WIDTHD	Integer	Yes	Specifies the widths of the denom[] and remain[] ports. Values are 1 to 64.

LPM_DIVIDE (Divider) IP Core

Parameter Name	Туре	Required	Description
LPM_NREPRESENTATION	String	No	Sign representation of the numerator input. Values are SIGNED and UNSIGNED. When this parameter is set to SIGNED, the divider interprets the numer[] input as signed two's complement.
LPM_DREPRESENTATION	String	No	Sign representation of the denominator input. Values are SIGNED and UNSIGNED. When this parameter is set to SIGNED, the divider interprets the denom[] input as signed two's complement.
LPM_TYPE	String	No	Identifies the library of parameterized modules (LPM) entity name in VHDL design files (.vhd).
LPM_HINT	String	No	When you instantiate a library of parameterized modules (LPM) function in a VHDL Design File (.vhd), you must use the LPM_HINT parameter to specify an Altera-specific parameter. For example: LPM_HINT = "CHAIN_SIZE = 8, ONE_INPUT_IS_CONSTANT = YES" The default value is UNUSED.
LPM_REMAINDERPOSITIVE	String	No	Altera-specific parameter. You must use the LPM_HINT parameter to specify the LPM_REMAINDERPOSITIVE parameter in VHDL design files. Values are TRUE or FALSE. If this parameter is set to TRUE, then the value of the remain[] port must be greater than or equal to zero. If this parameter is set to TRUE, then the value of the remain[] port is either zero, or the value is the same sign, either positive or negative, as the value of the numer port. In order to reduce area and improve speed, Altera recommends setting this parameter to TRUE in operations where the remainder must be positive or where the remainder is unimportant.

Altera Corporation LPM_DIVIDE (Divider) IP Core

Parameter Name	Туре	Required	Description
MAXIMIZE_SPEED	Integer	No	Altera-specific parameter. You must use the LPM_HINT parameter to specify the MAXIMIZE_SPEED parameter in VHDL design files. Values are [09]. If used, the Quartus Prime software attempts to optimize a specific instance of the LPM_DIVIDE function for speed rather than routability, and overrides the setting of the Optimization Technique logic option. If MAXIMIZE_SPEED is unused, the value of the Optimization Technique option is used instead. If the value of MAXIMIZE_SPEED is 6 or higher, the Compiler optimizes the LPM_DIVIDE IP core for higher speed by using carry chains; if the value is 5 or less, the compiler implements the design without carry chains.
LPM_PIPELINE	Integer	No	Specifies the number of clock cycles of latency associated with the quotient[] and remain[] outputs. A value of zero (0) indicates that no latency exists, and that a purely combinational function is instantiated. If omitted, the default value is 0 (non-pipelined). You cannot specify a value for the LPM_PIPELINE parameter that is higher than LPM_WIDTHN.
INTENDED_DEVICE_FAMILY	String	No	This parameter is used for modeling and behavioral simulation purposes. The parameter editor calculates the value for this parameter.
SKIP_BITS	Integer	No	Allows for more efficient fractional bit division to optimize logic on the leading bits by providing the number of leading GND to the LPM_DIVIDE IP core. Specify the number of leading GND on the quotient output to this parameter.

LPM_MULT (Multiplier) IP Core

4

2016.06.10

UG-01063

Subscribe

The LPM_MULT IP core implements a multiplier to multiply two input data values to produce a product as an output.

The following figure shows the ports for the LPM_MULT IP core.

Figure 4-1: LPM_Mult Ports

Related Information

Features on page 11-3

Features

The LPM_MULT IP core offers the following features:

- Generates a multiplier that multiplies two input data values
- Supports data width of 1–256 bits
- Supports signed and unsigned data representation format
- Supports area or speed optimization
- Supports pipelining with configurable output latency
- Provides an option for implementation in dedicated digital signal processing (DSP) block circuitry or logic elements (LEs)

Note: When building multipliers larger than the natively supported size there may/will be a performance impact resulting from the cascading of the DSP blocks.

- Supports optional asynchronous clear and clock enable input ports
- Supports optional synchronous clear for Arria 10 devices

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Verilog HDL Prototype

The following Verilog HDL prototype is located in the Verilog Design File (.v) lpm.v in the <Quartus Prime installation directory>\eda\synthesis directory.

```
module lpm_mult ( result, dataa, datab, sum, clock, clken, aclr )
parameter lpm_type = "lpm_mult";
parameter lpm_widtha = 1;
parameter lpm_widthb = 1;
parameter lpm_widths = 1;
parameter lpm_widthp = 1;
parameter lpm_representation
                             = "UNSIGNED";
parameter lpm_pipeline = 0;
parameter lpm_hint = "UNUSED";
input clock;
input clken;
input aclr;
input
      [lpm_widtha-1:0] dataa;
input [lpm_widthb-1:0] datab;
input [lpm_widths-1:0] sum;
output [lpm_widthp-1:0] result;
endmodule
```

VHDL Component Declaration

The VHDL component declaration is located in the VHDL Design File (.vhd) LPM_PACK.vhd in the <Quartus Prime installation directory>\libraries\vhdl\lpm directory.

```
component LPM_MULT
        generic ( LPM_WIDTHA : natural;
                 LPM_WIDTHB : natural;
                 LPM_WIDTHS : natural := 1;
                 LPM_WIDTHP : natural;
LPM_REPRESENTATION : string := "UNSIGNED";
LPM_PIPELINE : natural := 0;
LPM_TYPE: string := L_MULT;
LPM_HINT : string := "UNUSED");
port ( DATAA : in std_logic_vector(LPM_WIDTHA-1 downto 0);
DATAB : in std_logic_vector(LPM_WIDTHB-1 downto 0);
ACLR : in std_logic := '0';
CLOCK : in std_logic := '0';
CLKEN : in std_logic := '1';
SUM : in std_logic_vector(LPM_WIDTHS-1 downto 0) := (OTHERS => '0');
RESULT : out std_logic_vector(LPM_WIDTHP-1 downto 0));
end component;
```

VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY lpm;
USE lpm.lpm_components.all;
```

LPM_MULT (Multiplier) IP Core

Ports

Table 4-1: LPM_MULT Input Ports

Port Name	Required	Description
dataa[]	Yes	Data input.
		The size of the input port depends on the LPM_WIDTHA parameter value.
datab[]	Yes	Data input.
		The size of the input port depends on the LPM_WIDTHB parameter value.
clock	No	Clock input for pipelined usage.
		For LPM_PIPELINE values other than 0 (default), the clock port must be enabled.
clken	No	Clock enable for pipelined usage. When the clken port is asserted high, the adder/subtractor operation takes place. When the signal is low, no operation occurs. If omitted, the default value is 1.
aclr	No	Asynchronous clear port used at any time to reset the pipeline to all 0s, asynchronously to the clock signal. The pipeline initializes to an undefined (X) logic level. The outputs are a consistent, but non-zero value.
sclr	No	Synchronous clear port used at any time to reset the pipeline to all 0s, synchronously to the clock signal. The pipeline initializes to an undefined (X) logic level. The outputs are a consistent, but non-zero value.

Table 4-2: LPM_MULT Output Ports

Port Name	Required	Description
result[]	Yes	Data output.
		For Stratix V, Arria V and Cyclone V, the size of the output port depends on the LPM_WIDTHP parameter value. If LPM_WIDTHP < max (LPM_WIDTHA + LPM_WIDTHB, LPM_WIDTHS) or (LPM_WIDTHA + LPM_WIDTHS), only the LPM_WIDTHP MSBs are present.

Parameters for Stratix V, Arria V and Cyclone V Devices

The following table lists the parameters for the LPM_MULT IP core.

Table 4-3: LPM_MULT Parameters

Parameter Name	Туре	Required	Description
LPM_WIDTHA	Integer	Yes	Specifies the width of the dataa[] port.
LPM_WIDTHB	Integer	Yes	Specifies the width of the datab[] port.
LPM_WIDTHP	Integer	Yes	Specifies the width of the result[] port.
LPM_REPRESENTATION	String	No	Specifies the type of multiplication performed. Values are SIGNED and UNSIGNED. If omitted, the default value is UNSIGNED. When this parameter value is set to SIGNED, the multiplier interprets the data input as signed two's complement.
LPM_PIPELINE	String	No	Specifies the number of latency clock cycles associated with the result[] output. A value of zero (0) indicates that no latency exists, and that a purely combinational function will be instantiated. For Stratix and Stratix GX devices, if the design uses DSP blocks, you can increase the performance of the design when the value of the LPM_PIPELINE parameter is 3 or less.
INPUT_A_IS_CONSTANT	String	No	You must use the LPM_HINT parameter to specify the INPUT_A_IS_CONSTANT parameter in VHDL design files. Values are YES, NO, and UNUSED. If dataa [] is connected to a constant value, setting INPUT_A_IS_CONSTANT to YES optimizes the multiplier for resource usage and speed. If omitted, the default value is NO.
INPUT_B_IS_CONSTANT	String	No	You must use the LPM_HINT parameter to specify the INPUT_B_IS_CONSTANT parameter in VHDL design files. Values are YES, NO, and UNUSED. If datab[] is connected to a constant value, setting INPUT_B_IS_CONSTANT to YES optimizes the multiplier for resource usage and speed. The default value is NO.

Altera Corporation LPM_MULT (Multiplier) IP Core

Parameter Name	Туре	Required	Description
USE_EAB	String	No	Specifies RAM block usage. Values are on and off. Setting the USE_EAB parameter to on allows the Quartus Prime software to use embedded array blocks (EABs) to implement 4 x 4 or (8 x const value) building blocks in some obsolete devices. Altera recommends that you set USE_EAB to on only when LCELLS are in short supply. This parameter is not available for simulation with other EDA simulators. If you wish to use this parameter when you instantiate the function in a Block Design File (.bdf), you must specify it by entering the parameter name and value manually with the Parameters tab in the Symbol Properties dialog box or in the Block Properties dialog box. You can also use this parameter name in a Text Design File (.tdf) or a Verilog Design File (.v). You must use the LPM_HINT parameter to specify the USE_EAB parameter in VHDL design files.

Parameter Name	Туре	Required	Description
MAXIMIZE_SPEED	Integer	No	Altera-specific parameter. You must use the LPM_HINT parameter to specify the MAXIMIZE_SPEED parameter in VHDL design files. You can specify a value between 0 and 10. If used, the Quartus Prime software attempts to optimize a specific instance of the LPM_MULT function for speed rather than area, and overrides the setting of the Optimization Technique logic option. If MAXIMIZE_SPEED is unused, the value of the Optimization Technique option is used instead. For a SIGNED multiplier with no inputs being a constant, if the setting for MAXIMIZE_SPEED is 9-10, the Compiler optimizes the LPM_MULT IP core for larger area. These settings are for backward compatibility only. If the setting is between 6-8, the Compiler optimizes for larger area and higher speed. If the setting is between 1-5, the Compiler optimizes for smaller area and high speed. If the setting is 0, the smallest and, generally, slowest design results. For designs with LPM_WIDTHB parameters that are non-power-of-2, the default setting is 1-5. For designs with LPM_WIDTHB parameters that are a power-of-2, the default value is 6-8. For an UNSIGNED multiplier with no inputs being a constant, if the setting for MAXIMIZE_SPEED is 6 or higher, the Compiler optimizes for larger area and higher speed. If the setting is 0 up to 5, which is the default value, the Compiler optimizes for smaller area. Note that specifying a value for MAXIMIZE_SPEED has an effect only if LPM_REPRESENTATION is set to SIGNED.
DEDICATED_MULTIPLIER_CIRCUITRY	String	No	Specifies whether to use the default dedicated multiplier circuitry implementation. Values are AUTO, YES, NO, and FIRM. If omitted, the default value is AUTO. For Stratix and Stratix GX devices, the value of AUTO specifies that the Quartus Prime software determines whether to use the dedicated multiplier circuitry based on the multiplier width. If a device does not have dedicated multiplier circuitry, the DEDICATED_MULTIPLIER_CIRCUITRY parameter has no effect and the value defaults to NO.

Altera Corporation LPM_MULT (Multiplier) IP Core

Parameter Name	Туре	Required	Description
DEDICATED_MULTIPLIER_ MIN_INPUT_WIDTH_FOR_AUTO	Integer	No	Altera-specific parameter. You must use the LPM_HINT parameter to specify the DEDICATED_MULTIPLIER_MIN_
			INPUT_WIDTH_FOR_AUTO parameter in VHDL design files. If the DEDICATED_ MULTIPLIER_CIRCUITRY parameter setting is AUTO, this parameter specifies the minimum value of the sum of the LPM_ WIDTHA and LPM_WIDTHB parameters in order for the multiplier to be built using dedicated circuitry.
DSP_BLOCK_BALANCING	String	No	Specifies whether to use a dedicated multiplier circuitry implementation. Values are unused, auto, dsp blocks, and logic elements. If omitted, the default value is unused. This parameter is available for all Altera devices except Cyclone, HardCopy, MAX II, MAX 3000, and MAX 7000 devices.
LOGIC_ELEMENTS	String	No	Specifies whether to use a logic element implementation based on the selected device family. When implemented in LEs, the LPM_MULT IP core uses a variation on the Booth algorithm for all device families. Values are OFF, SIMPLE 18-BIT MULTIPLIERS, SIMPLE MULTIPLIERS, WIDTH 18-BIT MULTIPLIERS, and LOGIC ELEMENTS.
INPUT_A_IS_CONSTANT	String	No	Specifies the value for the dataa[] port. This parameter is used when the INPUT_A_ IS_CONSTANT parameter is set to FIXED. For example, to pass a four bit value of 3 to the dataa[] port, the INPUT_A_FIXED_ VALUE parameter must be set to B0011.
INPUT_B_IS_CONSTANT	String	No	Specifies the value for the datab[] port. This parameter is used when the INPUT_B_ IS_CONSTANT parameter is set to FIXED. For example, to pass a four bit value of 3 to the datab[] port, the INPUT_B_FIXED_ VALUE parameter must be set to B0011.

General Tab

Table 4-4: General Tab

Parameter	Value	Default Value	Description
Multiplier Configura- tion	Multiply 'dataa' input by 'datab' input Multiply 'dataa' input by itself (squaring operation)	Multiply 'dataa' input by 'datab' input	Select the desired configuration for the multiplier.
How wide should the 'dataa' input be?	1 - 256 bits	8 bits	Specify the width of the dataa[] port.
How wide should the 'datab' input be?	1 - 256 bits	8 bits	Specify the width of the datab[] port.
How should the width of the 'result' output be determined?	Automatically calculate the width Restrict the width	Automaticall y calculate the width	Select the desired method to determine the width of the result[] port.
Restrict the width	1 - 512 bits	16 bits	Specify the width of the result[] port.
			This value will only be effective if you select Restrict the width in the Type parameter.

General 2 Tab

Table 4-5: General 2 Tab

Parameter	Value	Default Value	Description
Datab Input			
Does the 'datab' input bus have a constant value?	No Yes	No	Select Yes to specify the constant value of the 'datab' input bus, if any.
Multiplication Type			
Which type of multiplication do you want?	Unsigned Signed	Unsigned	Specify the representation format for both dataa[] and datab[] inputs.
Implementation			

Send Feedback

Parameter	Value	Default Value	Description
Which multiplier implementation should be used?	Use the default implementation Use the dedicated multiplier circuitry (Not available for all families) Use logic elements	Use the default implementat ion	Select the desired method to determine the width of the result[] port.

Pipelining Tab

Table 4-6: Pipelining Tab

Parameter	Value	Default Value	Description
Do you want to pipeline the function?	No Yes	No	Select Yes to enable pipeline register to the multiplier's output and specify the desired output latency in clock cycle. Enabling the pipeline register adds extra latency to the output.
Create an 'aclr' asynchronous clear port	_	Unchecked	Select this option to enable aclr port to use asynchronous clear for the pipeline register.
Create a 'clken' clock enable clock	_	Unchecked	Specifies active high clock enable for the clock port of the pipeline register
Optimization			
What type of optimiza- tion do you want?	Default Speed Area	Default	Specify the desired optimization for the IP core. Select Default to let Quartus Prime software to determine the best optimization for the IP core.

Parameters for Arria 10 Devices

General Tab

Table 4-7: General Tab

Parameter	Value	Default Value	Description
Multiplier Configuration			

Parameter	Value	Default Value	Description
Туре	Multiply 'dataa' input by 'datab' input Multiply 'dataa' input by itself (squaring operation)	Multiply 'dataa' input by 'datab' input	Select the desired configuration for the multiplier.
Data Port Widths			
Dataa width	1 - 256 bits	8 bits	Specify the width of the dataa[] port.
Datab width	1 - 256 bits	8 bits	Specify the width of the datab[] port.
How should the width of	the 'result' output be d	letermined?	
Туре	Automatically calculate the width Restrict the width	Automaticall y calculate the width	Select the desired method to determine the width of the result[] port.
Value	1 - 512 bits	16 bits	Specify the width of the result[] port. This value will only be effective if you select Restrict the width in the Type parameter.
Result width	1 - 512 bits	_	Displays the effective width of the result[] port.

General 2 Tab

Table 4-8: General 2 Tab

Parameter	Value	Default Value	Description
Datab Input			
Does the 'datab' input bus have a constant value?	No Yes	No	Select Yes to specify the constant value of the 'datab' input bus, if any.
Value	Any value greater than 0	0	Specify the constant value of datab[] port.
Multiplication Type			
Which type of multiplication do you want?	Unsigned Signed	Unsigned	Specify the representation format for both dataa[] and datab[] inputs.
Implementation Style			

Parameter	Value	Default Value	Description
Which multiplier implementation should be used?	Use the default implementation Use the dedicated multiplier circuitry (Not available for all families) Use logic elements	Use the default implementat ion	Select the desired method to determine the width of the result[] port.

Pipelining

Table 4-9: Pipelining Tab

Parameter	Value	Default Value	Description
Do you want to pipeline	the function?		
Pipeline	No Yes	No	Select Yes to enable pipeline register to the multiplier's output. Enabling the pipeline register adds extra latency to the output.
Latency	Any value greater than 0.	1	Specify the desired output latency in clock cycle.
Clear Signal Type	NONE ACLR	NONE	Specify the type of reset for the pipeline register.
	SCLR		Select NONE if you do not use any pipeline register.
			Select ACLR to use asynchronous clear for the pipeline register. This will generate ACLR port.
			Select SCLR to use synchronous clear for the pipeline register. This will generate SCLR port.
Create a 'clken' clock enable clock	_	_	Specifies active high clock enable for the clock port of the pipeline register
What type of optimizati	ion do you want?	·	
Туре	Delaut	Default	Specify the desired optimization for the IP core.
	Speed Area		Select Default to let Quartus Prime software to determine the best optiomization for the IP core.

LPM_ADD_SUB (Adder/Subtractor)

5

2016.06.10

UG-01063-4.0

The LPM_ADD_SUB IP core lets you implement an adder or a subtractor to add or subtract sets of data to produce an output containing the sum or difference of the input values.

The following figure shows the ports for the LPM_ADD_SUB IP core.

Figure 5-1: LPM_ADD_SUB Ports

Features

The LPM_ADD_SUB IP core offers the following features:

- Generates adder, subtractor, and dynamically configurable adder/subtractor functions.
- Supports data width of 1–256 bits.
- Supports data representation format such as signed and unsigned.
- Supports optional carry-in (borrow-out), asynchronous clear, and clock enable input ports.
- Supports optional carry-out (borrow-in) and overflow output ports.
- Assigns either one of the input data buses to a constant.
- Supports pipelining with configurable output latency.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Verilog HDL Prototype

The following Verilog HDL prototype is located in the Verilog Design File (.v) lpm.v in the **Quartus Prime installation directory>\eda\synthesis** directory.

```
module lpm_add_sub ( result, cout, overflow,add_sub, cin, dataa, datab, clock,
clken, aclr );
parameter lpm_type = "lpm_add_sub";
parameter lpm_width = 1;
parameter lpm_direction = "UNUSED";
parameter lpm_representation = "SIGNED";
parameter lpm_pipeline = 0;
parameter lpm_hint = "UNUSED";
input [lpm_width-1:0] dataa, datab;
input add_sub, cin;
input clock;
input clken;
input
      aclr;
output [lpm_width-1:0] result;
output cout, overflow;
endmodule
```

VHDL Component Declaration

The VHDL component declaration is located in the VHDL Design File (.vhd) LPM_PACK.vhd in the <Quartus Prime installation directory>\libraries\vhdl\lpm directory.

```
component LPM_ADD_SUB
        generic (LPM_WIDTH : natural;
LPM_DIRECTION : string := "UNUSED";
LPM_REPRESENTATION: string := "SIGNED";
LPM_PIPELINE : natural := 0;
LPM_TYPE : string := L_ADD_SUB;
LPM_HINT : string := "UNUSED");
port (DATAA : in std_logic_vector(LPM_WIDTH-1 downto 0);
DATAB : in std_logic_vector(LPM_WIDTH-1 downto 0);
ACLR : in std_logic := '0';
CLOCK : in std_logic := '0';
CLKEN : in std_logic := '1';
CIN : in std_logic := 'Z';
ADD_SUB : in std_logic := '1';
RESULT : out std_logic_vector(LPM_WIDTH-1 downto 0);
COUT : out std_logic;
OVERFLOW : out std_logic);
end component;
```

VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY lpm;
USE lpm.lpm_components.all;
```


Ports

The following tables list the input and output ports for the LPM_ADD_SUB IP core.

Table 5-1: LPM_ADD_SUB IP Core Input Ports

Port Name	Required	Description
cin	No	Carry-in to the low-order bit. For addition operations, the default value is 0. For subtraction operations, the default value is 1.
dataa[]	Yes	Data input. The size of the input port depends on the LPM_WIDTH parameter value.
datab[]	Yes	Data input. The size of the input port depends on the LPM_WIDTH parameter value.
add_sub	No	Optional input port to enable dynamic switching between the adder and subtractor functions. If the LPM_DIRECTION parameter is used, add_sub cannot be used. If omitted, the default value is ADD. Altera recommends that you use the LPM_DIRECTION parameter to specify the operation of the LPM_ADD_SUB function, rather than assigning a constant to the add_sub port.
clock	No	Input for pipelined usage. The clock port provides the clock input for a pipelined operation. For LPM_PIPELINE values other than 0 (default), the clock port must be enabled.
clken	No	Clock enable for pipelined usage. When the clken port is asserted high, the adder/subtractor operation takes place. When the signal is low, no operation occurs. If omitted, the default value is 1.
aclr	No	Asynchronous clear for pipelined usage. The pipeline initializes to an undefined (X) logic level. The aclr port can be used at any time to reset the pipeline to all 0s, asynchronously to the clock signal.

Table 5-2: LPM_ADD_SUB IP Core Output Ports

Port Name	Required	Description
result[]	Yes	Data output. The size of the output port depends on the LPM_WIDTH parameter value.
cout	No	Carry-out (borrow-in) of the most significant bit (MSB). The cout port has a physical interpretation as the carry-out (borrow-in) of the MSB. The cout port detects overflow in UNSIGNED operations. The cout port operates in the same manner for SIGNED and UNSIGNED operations.
overflow	No	Optional overflow exception output. The overflow port has a physical interpretation as the XOR of the carry-in to the MSB with the carry-out of the MSB. The overflow port asserts when results exceed the available precision, and is used only when the LPM_REPRESENTATION parameter value is SIGNED.

LPM_ADD_SUB (Adder/Subtractor)

Parameters

The following table lists the LPM_ADD_SUB IP core parameters.

Table 5-3: LPM_ADD_SUB IP Core Parameters

Parameter Name	Туре	Required	Description
LPM_WIDTH	Integer	Yes	Specifies the widths of the dataa[], datab[], and result[] ports.
LPM_DIRECTION	String	No	Values are ADD, SUB, and UNUSED. If omitted, the default value is DEFAULT, which directs the parameter to take its value from the add_sub port. The add_sub port cannot be used if LPM_DIRECTION is used. Altera recommends that you use the LPM_DIRECTION parameter to specify the operation of the LPM_ADD_SUB function, rather than assigning a constant to the add_sub port.
LPM_REPRESENTATION	String	No	Specifies the type of addition performed. Values are SIGNED and UNSIGNED. If omitted, the default value is SIGNED. When this parameter is set to SIGNED, the adder/subtractor interprets the data input as signed two's complement.
LPM_PIPELINE	Integer	No	Specifies the number of latency clock cycles associated with the result[] output. A value of zero (0) indicates that no latency exists, and that a purely combinational function will be instantiated. If omitted, the default value is 0 (non-pipelined).
LPM_HINT	String	No	Allows you to specify Altera-specific parameters in VHDL design files (.vhd). The default value is UNUSED.
LPM_TYPE	String	No	Identifies the library of parameterized modules (LPM) entity name in VHDL design files.
ONE_INPUT_IS_ CONSTANT	String	No	Altera-specific parameter. You must use the LPM_HINT parameter to specify the ONE_INPUT_IS_CONSTANT parameter in VHDL design files. Values are YES, NO, and UNUSED. Provides greater optimization if one input is constant. If omitted, the default value is NO.

Parameter Name	Type	Required	Description
MAXIMIZE_SPEED	Integer	No	Altera-specific parameter. You must use the LPM_HINT parameter to specify the MAXIMIZE_SPEED parameter in VHDL design files. You can specify a value between 0 and 10. If used, the Quartus Prime software attempts to optimize a specific instance of the LPM_ADD_SUB function for speed rather than routability, and overrides the setting of the Optimization Technique logic option. If MAXIMIZE_SPEED is unused, the value of the Optimization Technique option is used instead. If the setting for MAXIMIZE_SPEED is 6 or higher, the Compiler optimizes the LPM_ADD_SUB IP core for higher speed using carry chains; if the setting is 5 or less, the Compiler implements the design without carry chains. This parameter must be specified for Cyclone, Stratix, and Stratix GX devices only when the add_sub port is not used.
INTENDED_DEVICE_ FAMILY	String	No	This parameter is used for modeling and behavioral simulation purposes. The parameter editor calculates the value for this parameter.

LPM_COMPARE (Comparator)

6

2016.06.10

UG-01063-4.0

Subscribe

The LPM_COMPARE IP core compares the value of two sets of data to determine the relationship between them. In its simplest form, you can use an exclusive-OR gate to determine whether two bits of data are equal.

The following figure shows the ports for the LPM_COMPARE IP core.

Figure 6-1: LPM_COMPARE Ports

Features

The LPM_COMPARE IP core offers the following features:

- Generates a comparator function to compare two sets of data
- Supports data width of 1–256 bits
- Supports data representation format such as signed and unsigned
- Produces the following output types:
 - alb (input A is less than input B)
 - aeb (input A is equal to input B)
 - agb (input A is greater than input B)
 - ageb (input A is greater than or equal to input B)
 - aneb (input A is not equal to input B)
 - aleb (input A is less than or equal to input B)

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

- Supports optional asynchronous clear and clock enable input ports
- Assigns the datab[] input to a constant
- Supports pipelining with configurable output latency

Verilog HDL Prototype

The following Verilog HDL prototype is located in the Verilog Design File (.v) lpm.v in the **Quartus** Prime installation directory>\eda\synthesis directory.

```
module lpm_compare ( alb, aeb, agb, aleb, aneb, ageb, dataa, datab,
clock, clken, aclr );
parameter lpm_type = "lpm_compare";
parameter lpm_width = 1;
parameter lpm_representation = "UNSIGNED";
parameter lpm_pipeline = 0;
parameter lpm_hint = "UNUSED";
input [lpm_width-1:0] dataa, datab;
input clock;
input clken;
input aclr;
output alb, aeb, agb, aleb, aneb, ageb;
endmodule
```

VHDL Component Declaration

The VHDL component declaration is located in the VHDL Design File (.vhd) LPM_PACK.vhd in the <Quartus Prime installation directory>\libraries\vhdl\lpm directory.

```
component LPM_COMPARE
       generic (LPM_WIDTH : natural;
LPM_REPRESENTATION : string := "UNSIGNED";
LPM_PIPELINE : natural := 0;
LPM_TYPE: string := L_COMPARE;
LPM_HINT : string := "UNUSED");
port (DATAA : in std_logic_vector(LPM_WIDTH-1 downto 0);
DATAB : in std_logic_vector(LPM_WIDTH-1 downto 0);
ACLR : in std_logic := '0';
CLOCK : in std_logic := '0';
CLKEN : in std_logic := '1';
AGB : out std_logic;
AGEB : out std_logic;
AEB : out std_logic;
ANEB : out std_logic;
ALB : out std_logic;
ALEB : out std_logic);
end component;
```

VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY lpm;
USE lpm.lpm_components.all;
```

Altera Corporation LPM_COMPARE (Comparator)

Ports

The following tables list the input and output ports for the LMP_COMPARE IP core.

Table 6-1: LPM_COMPARE IP core Input Ports

Port Name	Require d	Description			
dataa[]	Yes	Data input. The size of the input port depends on the LPM_WIDTH parameter value.			
datab[]	Yes	Data input. The size of the input port depends on the LPM_WIDTH parameter value.			
clock	No	Clock input for pipelined usage. The clock port provides the clock input for a pipelined operation. For LPM_PIPELINE values other than 0 (default), the clock port must be enabled.			
clken	No	Clock enable for pipelined usage. When the clken port is asserted high, the comparison operation takes place. When the signal is low, no operation occurs. If omitted, the default value is 1.			
aclr	No	Asynchronous clear for pipelined usage. The pipeline initializes to an undefined (X) logic level. The aclr port can be used at any time to reset the pipeline to all 0s, asynchronously to the clock signal.			

Table 6-2: LPM_COMPARE IP core Output Ports

Port Name	Required	Description
alb	No	Output port for the comparator. Asserted if input A is less than input B.
aeb	No	Output port for the comparator. Asserted if input A is equal to input B.
agb	No	Output port for the comparator. Asserted if input A is greater than input B.
ageb	No	Output port for the comparator. Asserted if input A is greater than or equal to input B.
aneb	No	Output port for the comparator. Asserted if input A is not equal to input B.
aleb	No	Output port for the comparator. Asserted if input A is less than or equal to input B.

Parameters

The following table lists the parameters for the LPM_COMPARE IP core.

LPM_COMPARE (Comparator)

Table 6-3: LPM_COMPARE IP core Parameters

Parameter Name	Туре	Required	Description
LPM_WIDTH	Integer	Yes	Specifies the widths of the dataa[] and datab[] ports.
LPM_REPRESENTATION	String	No	Specifies the type of comparison performed. Values are SIGNED and UNSIGNED. If omitted, the default value is UNSIGNED. When this parameter value is set to SIGNED, the comparator interprets the data input as signed two's complement.
LPM_PIPELINE	Integer	No	Specifies the number of clock cycles of latency associated with the alb, aeb, agb, ageb, aleb, or aneb output. A value of zero (0) indicates that no latency exists, and that a purely combinational function will be instantiated. If omitted, the default value is 0 (non-pipelined).
LPM_HINT	String	No	Allows you to specify Altera-specific parameters in VHDL design files (.vhd) . The default value is UNUSED.
LPM_TYPE	String	No	Identifies the library of parameterized modules (LPM) entity name in VHDL design files.
INTENDED_DEVICE_ FAMILY	String	No	This parameter is used for modeling and behavioral simulation purposes. The parameter editor calculates the value for this parameter.
ONE_INPUT_IS_CONSTANT	String	No	Altera-specific parameter. You must use the LPM_HINT parameter to specify the ONE_INPUT_IS_CONSTANT parameter in VHDL design files. Values are YES, NO, or UNUSED. Provides greater optimization if an input is constant. If omitted, the default value is NO.

Altera Corporation LPM_COMPARE (Comparator)

ALTECC (Error Correction Code: Encoder/ Decoder) IP Core

7

2016.06.10

UG-01063

Altera provides the ALTECC IP core to implement the ECC functionality. ECC detects corrupted data that occurs at the receiver side during data transmission. This error correction method is best suited for situations where errors occur at random rather than in bursts.

The ECC detects errors through the process of data encoding and decoding. For example, when the ECC is applied in a transmission application, data read from the source are encoded before being sent to the receiver. The output (code word) from the encoder consists of the raw data appended with the number of parity bits. The exact number of parity bits appended depends on the number of bits in the input data. The generated code word is then transmitted to the destination.

The receiver receives the code word and decodes it. Information obtained by the decoder determines whether an error is detected. The decoder detects single-bit and double-bit errors, but can only fix single-bit errors in the corrupted data. This type of ECC is single error correction double error detection (SECDED).

You can configure encoder and decoder functions of the ALTECC IP core. The data input to the encoder is encoded to generate a code word that is a combination of the data input and the generated parity bits. The generated code word is transmitted to the decoder module for decoding just before reaching its destination block. The decoder generates a syndrome vector to determine if there is any error in the received code word. The decoder corrects the data only if the single-bit error is from the data bits. No signal is flagged if the single-bit error is from the parity bits. The decoder also has flag signals to show the status of the data received and the action taken by the decoder, if any.

The following figures show the ports for the ALTECC IP core.

Figure 7-1: ALTECC Encoder Ports

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Figure 7-2: ALTECC Decoder Ports

ALTECC Encoder Features

The ALTECC encoder IP core offers the following features:

- Performs data encoding using the Hamming Coding scheme
- Supports data width of 2–64 bits
- Supports signed and unsigned data representation format
- Support pipelining with output latency of either one or two clock cycles
- Supports optional asynchronous clear and clock enable ports

The ALTECC encoder IP core takes in and encodes the data using the Hamming Coding scheme. The Hamming Coding scheme derives the parity bits and appends them to the original data to produce the output code word. The number of parity bits appended depends on the width of the data.

The following table lists the number of parity bits appended for different ranges of data widths. The **Total Bits** column represents the total number of input data bits and appended parity bits.

Table 7-1: Number of Parity Bits and Code Word According to Data Width

Data Width	Number of Parity Bits	Total Bits (Code Word)
2-4	3+1	6-8
5-11	4+1	10-16
12-26	5+1	18-32
27-57	6+1	34-64
58-64	7+1	66-72

The parity bit derivation uses an even-parity checking. The additional 1 bit (shown in the table as +1) is appended to the parity bits as the MSB of the code word. This ensures that the code word has an even number of 1's. For example, if the data width is 4 bits, 4 parity bits are appended to the data to become a code word with a total of 8 bits. If 7 bits from the LSB of the 8-bit code word have an odd number of 1's, the 8th bit (MSB) of the code word is 1 making the total number of 1's in the code word even.

The following figure shows the generated code word and the arrangement of the parity bits and data bits in an 8-bit data input.

Figure 7-3: Parity Bits and Data Bits Arrangement in an 8-Bit Generated Code Word

The ALTECC encoder IP core accepts only input widths of 2 to 64 bits at one time. Input widths of 12 bits, 29 bits, and 64 bits, which are ideally suited to Altera devices, generate outputs of 18 bits, 36 bits, and 72 bits respectively. You can control the bit-selection limitation in the parameter editor.

Verilog HDL Prototype (ALTECC_ENCODER)

The following Verilog HDL prototype is located in the Verilog Design File (.v) lpm.v in the **Quartus** Prime installation directory>\eda\synthesis directory.

```
module altecc_encoder
#( parameter intended_device_family = "unused",
parameter lpm_pipeline = 0,
parameter width_codeword = 8,
parameter width_dataword = 8,
parameter lpm_type = "altecc_encoder",
parameter lpm_hint = "unused")
( input wire aclr,
input wire clock,
input wire clocken,
input wire [width_dataword-1:0] data,
output wire [width_codeword-1:0] q);
endmodule
```

Verilog HDL Prototype (ALTECC_DECODER)

The following Verilog HDL prototype is located in the Verilog Design File (.v) lpm.v in the **Quartus** Prime installation directory>\eda\synthesis directory.

```
module altecc_decoder
#( parameter intended_device_family = "unused",
parameter lpm_pipeline = 0,
parameter width_codeword = 8,
parameter width_dataword = 8,
parameter lpm_type = "altecc_decoder",
parameter lpm_hint = "unused")
( input wire aclr,
input wire clock,
input wire clocken,
input wire [width_codeword-1:0] data,
output wire err_corrected,
output wire err_detected,
outut wire err_fatal,
output wire [width_dataword-1:0] q);
endmodule
```

VHDL Component Declaration (ALTECC_ENCODER)

The VHDL component declaration is located in the VHDL Design File (.vhd) altera_mf_components.vhd in the <Quartus Prime installation directory>\libraries\vhdl\altera_mf directory.

```
component altecc_encoder
generic (
intended_device_family:string := "unused";
lpm_pipeline:natural := 0;
width_codeword:natural := 8;
width_dataword:natural := 8;
lpm_hint:string := "UNUSED";
lpm_type:string := "altecc_encoder");
port(
aclr:in std_logic := '0';
clock:in std_logic := '0';
clocken:in std_logic := '1';
data:in std_logic_vector(width_dataword-1 downto 0);
q:out std_logic_vector(width_codeword-1 downto 0));
end component;
```

VHDL Component Declaration (ALTECC_DECODER)

The VHDL component declaration is located in the VHDL Design File (.vhd) altera_mf_components.vhd in the <Quartus Prime installation directory>\libraries\vhdl\altera_mf directory.

```
component altecc_decoder
generic (
intended_device_family:string := "unused";
lpm_pipeline:natural := 0;
width_codeword:natural := 8;
width_dataword:natural := 8;
lpm_hint:string := "UNUSED";
lpm_type:string := "altecc_decoder");
port(
aclr:in std_logic := '0';
clock:in std_logic := '0';
clocken:in std_logic := '1';
data:in std_logic_vector(width_codeword-1 downto 0);
err_corrected :
                     out std_logic;
              :
err_detected
                    out std_logic;
q:out std_logic_vector(width_dataword-1 downto 0);
syn_e
      :
            out std_logic);
end component;
```

VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;
```


Encoder Ports

The following tables list the input and output ports for the ALTECC encoder IP core.

Table 7-2: ALTECC Encoder Input Ports

Port Name	Required	Description	
data[]	Yes	Data input port. The size of the input port depends on the width_dataword parameter value. The data[] port contains the raw data to be encoded.	
clock	Yes	Clock input port that provides the clock signal to synchronize the encoding operation. The clock port is required when the LPM_PIPELINE value is greater than 0.	
clocken	No	Clock enable. If omitted, the default value is 1.	
aclr	No	Asynchronous clear input. The active high aclr signal can be used at any time to asynchronously clear the registers.	

Table 7-3: ALTECC Encoder Output Ports

Port Name	Required	Description		
d[]	Yes	Encoded data output port. The size of the output port depends on the width_codeword parameter value.		

Decoder Ports

The following tables list the input and output ports for the ALTECC decoder IP core.

Table 7-4: ALTECC Decoder Input Ports

Port Name	Required	Description
data[]	Yes	Data input port. The size of the input port depends on the width_codeword parameter value.
clock	Yes	Clock input port that provides the clock signal to synchronize the encoding operation. The clock port is required when the LPM_PIPELINE value is greater than 0.
clocken	No	Clock enable. If omitted, the default value is 1.
aclr	No	Asynchronous clear input. The active high aclr signal can be used at any time to asynchronously clear the registers.

Table 7-5: ALTECC Decoder Output Ports

Port Name	Required	Description
d[]	Yes	Decoded data output port. The size of the output port depends on the width_dataword parameter value.

Port Name	Required	Description
err_detected	Yes	Flag signal to reflect the status of data received and specifies any errors found.
err_corrected	Yes	Flag signal to reflect the status of data received. Denotes single-bit error found and corrected. You can use the data because it has already been corrected.
err_fatal	Yes	Flag signal to reflect the status of data received. Denotes double-bit error found, but not corrected. You must not use the data if this signal is asserted.
syn_e	No	An output signal which will go high whenever a single-bit error is detected on the parity bits.

Encoder Parameters

The following table lists the parameters for the ALTECC encoder IP core.

Table 7-6: ALTECC Encoder Parameters

Parameter Name	Туре	Required	Description
WIDTH_DATAWORD	Integer	Yes	Specifies the width of the raw data. Values are from 2 to 64. If omitted, the default value is 8.
WIDTH_CODEWORD	Integer	Yes	Specifies the width of the corresponding code word. Valid values are from 6 to 72, excluding 9, 17, 33, and 65. If omitted, the default value is 13.
LPM_PIPELINE	Integer	No	Specifies the pipeline for the circuit. Values are from 0 to 2. If the value is 0, the ports are not registered. If the value is 1, the output ports are registered. If the value is 2, the input and output ports are registered. If omitted, the default value is 0.

Decoder Parameters

The following table lists the ALTECC decoder IP core parameters.

Table 7-7: ALTECC Decoder Parameters

Parameter Name	Туре	Required	Description
WIDTH_DATAWORD	Integer	Yes	Specifies the width of the raw data. Values are 2 to 64. The default value is 8.
WIDTH_CODEWORD	Integer	Yes	Specifies the width of the corresponding code word. Values are 6 to 72, excluding 9, 17, 33, and 65. If omitted, the default value is 13.

Parameter Name	Type	Required	Description
LPM_PIPELINE	Integer	No	Specifies the register of the circuit. Values are from 0 to 2. If the value is 0, no register is implemented. If the value is 1, the output is registered. If the value is 2, both the input and the output are registered. If the value is greater than 2, additional registers are implemented at the output for the additional latencies. If omitted, the default value is 0.
Create a 'syn_e' port	Integer	No	Turn on this parameter to create a syn_e port.

ALTERA_MULT_ADD (Multiply-Adder) IP Core

8

2016.06.10

UG-01063

Subscribe

The ALTERA_MULT_ADD IP core allows you to implement a multiplier-adder.

The following figure shows the ports for the ALTERA_MULT_ADD IP core.

Figure 8-1: ALTERA_MULT_ADD Ports

A multiplier-adder accepts pairs of inputs, multiplies the values together and then adds to or subtracts from the products of all other pairs.

If all of the input data widths are 9-bits wide or smaller, the function uses the 9 x 9 bit input multiplier configuration in the DSP block for devices which support 9 x 9 configuration. If not, the DSP block uses 18×18 -bit input multipliers to process data with widths between 10 bits and 18 bits. If multiple

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

ALTERA_MULT_ADD IP cores occur in a design, the functions are distributed to as many different DSP blocks as possible so that routing to these blocks is more flexible. Fewer multipliers per DSP block allow more routing choices into the block by minimizing paths to the rest of the device.

The registers and extra pipeline registers for the following signals are also placed inside the DSP block:

- Data input
- Signed or unsigned select
- Add or subtract select
- Products of multipliers

In the case of the output result, the first register is placed in the DSP block. However the extra latency registers are placed in logic elements outside the block. Peripheral to the DSP block, including data inputs to the multiplier, control signal inputs, and outputs of the adder, use regular routing to communicate with the rest of the device. All connections in the function use dedicated routing inside the DSP block. This dedicated routing includes the shift register chains when you select the option to shift a multiplier's registered input data from one multiplier to an adjacent multiplier.

For more information about DSP blocks in any of the Stratix V, and Arria V device series, refer to the DSP Blocks chapter of the respective handbooks on the **Literature and Technical Documentation** page.

Related Information

AN306: Implementing Multipliers in FPGA Devices

Provides more information about implementing multipliers using DSP and memory blocks in Altera devices.

Features

The ALTERA_MULT_ADD IP core offers the following features:

Generates a multiplier to perform multiplication operations of two complex numbers

Note: When building multipliers larger than the natively supported size there may/will be a performance impact resulting from the cascading of the DSP blocks.

- Supports data widths of 1–256 bits
- Supports signed and unsigned data representation format
- Supports pipelining with configurable input latency
- Provides an option to dynamically switch between signed and unsigned data support
- Provides an option to dynamically switch between add and subtract operation
- Supports optional asynchronous and synchronous clear and clock enable input ports
- Supports systolic delay register mode
- Supports pre-adder with 8 pre-load coefficients per multiplier
- Supports pre-load constant to complement accumulator feedback

Pre-adder

With pre-adder, additions or subtractions are done prior to feeding the multiplier.

There are five pre-adder modes:

- Simple mode
- · Coefficient mode
- Input mode
- Square mode
- · Constant mode

Note: When pre-adder is used (pre-adder coefficient/input/square mode), all data inputs to the multiplier must have the same clock setting.

Pre-adder Simple Mode

In this mode, both operands derive from the input ports and pre-adder is not used or bypassed. This is the default mode.

Figure 8-2: Pre-adder Simple Mode

Pre-adder Coefficient Mode

In this mode, one multiplier operand derives from the pre-adder, and the other operand derives from the internal coefficient storage. The coefficient storage allows up to 8 preset constants. The coefficient selection signals are coefsel[0..3].

This mode is expressed in the following equation.

$$result = \sum_{n=0}^{k-1} (a_n + b_n) \times coef_n$$
 where $k = \text{number of multipliers}$

The following shows the pre-adder coefficient mode of a multiplier.

Figure 8-3: Pre-adder Coefficient Mode

Pre-adder Input Mode

In this mode, one multiplier operand derives from the pre-adder, and the other operand derives from the datac[] input port.

This mode is expressed in the following equation.

$$result = \sum_{n=0}^{k-1} (a_n + b_n) \times c_n$$
 where $k = \text{number of multipliers}$

The following shows the pre-adder input mode of a multiplier.

Figure 8-4: Pre-adder Input Mode

Pre-adder Square Mode

This mode is expressed in the following equation.

$$result = \sum_{n=0}^{k-1} (a_n + b_n)^2$$
 where $k = \text{number of multipliers}$

The following shows the pre-adder square mode of two multipliers.

Figure 8-5: Pre-adder Square Mode

Pre-adder Constant Mode

In this mode, one multiplier operand derives from the input port, and the other operand derives from the internal coefficient storage. The coefficient storage allows up to 8 preset constants. The coefficient selection signals are coefsel[0..3].

This mode is expressed in the following equation.

$$result = \sum_{n=0}^{k-1} a_0 \times coef$$
 where $k = number of multipliers$

The following figure shows the pre-adder constant mode of a multiplier.

Figure 8-6: Pre-adder Constant Mode

Systolic Delay Register

In a systolic architecture, the input data is fed into a cascade of registers acting as a data buffer. Each register delivers an input sample to a multiplier where it is multiplied by the respective coefficient. The chain adder stores the gradually combined results from the multiplier and the previously registered result from the chainin[] input port to form the final result. Each multiply-add element must be delayed by a single cycle so that the results synchronize appropriately when added together. Each successive delay is used to address both the coefficient memory and the data buffer of their respective multiply-add elements. For example, a single delay for the second multiply add element, two delays for the third multiply-add element, and so on.

Figure 8-7: Systolic Registers

x(t) represents the results from a continuous stream of input samples and y(t) represents the summation of a set of input samples, and in time, multiplied by their respective coefficients. Both the input and output results flow from left to right. The c(0) to c(N-1) denotes the coefficients. The systolic delay registers are denoted by S⁻¹, whereas the ⁻¹ represents a single clock delay. Systolic delay registers are

added at the inputs and outputs for pipelining in a way that ensures the results from the multiplier operand and the accumulated sums stay in synch. This processing element is replicated to form a circuit that computes the filtering function. This function is expressed in the following equation.

$$y(t) = \sum_{i=0}^{N-1} B(i)A(t-i)$$

N represents the number of cycles of data that has entered into the accumulator, y(t) represents the output at time t, A(t) represents the input at time t, and B(i) are the coefficients. The t and i in the equation correspond to a particular instant in time, so to compute the output sample y(t) at time t, a group of input samples at N different points in time, or A(n), A(n-1), A(n-2), ... A(n-N+1) is required. The group of N input samples are multiplied by N coefficients and summed together to form the final result y.

The systolic register architecture is available only for sum-of-2 and sum-of-4 modes.

The following figure shows the systolic delay register implementation of 2 multipliers.

Figure 8-8: Systolic Delay Register Implementation of 2 Multipliers

The sum of two multipliers is expressed in the following equation.

$$result = [a1(t) \times b1(t)] + [a0(t-1) \times b0(t-1)]$$

The following figure shows the systolic delay register implementation of 4 multipliers.

Figure 8-9: Systolic Delay Register Implementation of 4 Multipliers

The sum of four multipliers is expressed in the following equation.

Figure 8-10: Sum of 4 Multipliers

$$result = [a3(t) \times b3(t)] + [a2(t-1) \times b2(t-1)] + [a1(t-2) \times b1(t-2)] + [a0(t-3) \times b0(t-3)]$$

The following lists the advantages of systolic register implementation:

- Reduces DSP resource usage
- Enables efficient mapping in the DSP block using the chain adder structure

ALTERA_MULT_ADD (Multiply-Adder) IP Core

Altera Corporation

Pre-load Constant

The pre-load constant controls the accumulator operand and complements the accumulator feedback. The valid LOADCONST_VALUE ranges from 0-64. The constant value is equal to 2^N , where N= LOADCONST_VALUE. When the LOADCONST_VALUE is set to 64, the constant value is equal to 0. This function can be used as biased rounding.

The following figure shows the pre-load constant implementation.

Figure 8-11: Pre-load Constant

Refer to the following megafunctions in this user guide for other multiplier implementations:

- ALTMULT_ACCUM (Multiply-Accumulate) IP Core
- ALTMEMMULT (Memory-based Constant Coefficient Multiplier) IP Core
- LPM_MULT (Multiplier) IP Core

Double Accumulator

The double accumulator feature adds an additional register in the accumulator feedback path. The double accumulator register follows the output register, which includes the clock, clock enable, and aclr. The additional accumulator register returns result with a one-cycle delay. This feature enables you to have two accumulator channels with the same resource count.

The following figure shows the double accumulator implementation.

Figure 8-12: Double Accumulator

Verilog HDL Prototype

You can find the ALTERA_MULT_ADD Verilog HDL prototype file (altera_mult_add_rtl.v) in the **<Quartus Prime installation directory>\libraries\megafunctions** directory.

VHDL Component Declaration

The VHDL component declaration is located in the altera_lnsim_components.vhd in the **<Quartus Prime** installation directory>\libraries\vhdl\altera_lnsim directory.

VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;
```

Ports

The following tables list the input and output ports of the ALTERA_MULT_ADD IP core.

Table 8-1: ALTERA_MULT_ADD Input Ports

Port name	Required	Description
dataa []	Yes	Data input to the multiplier. Input port [NUMBER_OF_MULTIPLIERS * WIDTH_A - 1 0] wide
datab []	Yes	Data input to the multiplier. Input port [NUMBER_OF_MULTIPLIERS * WIDTH_B - 1 0] wide

Altera Corporation

Port name	Required	Description			
datac []	No	Data input to the multiplier. Input port [NUMBER_OF_MULTIPLIERS * WIDTH_C - 1 0] wide			
clock []	No	Clock input port [0 2] to the corresponding register. This port can be used by any register in the IP core.			
aclr []	No	Input port [0 1]. Asynchronous clear input to the corresponding register.			
sclr	No	Input port [0 1]. Synchronous clear input to the corresponding register.			
ena []	No	Input port [0 2]. Enable signal input to the corresponding register.			
signa	No	Specifies the numerical representation of the multiplier input A. If the signa port is high, the multiplier treats the multiplier input A port as a signed number. If the signa port is low, the multiplier treats the multiplier input A port as an unsigned number.			
signb	No	Specifies the numerical representation of the multiplier input B port. If the signb port is high, the multiplier treats the multiplier input B port as a signed two's complement number. If the signb port is low, the multiplier treats the multiplier input B port as an unsigned number.			
scanina[]	No	Input for scan chain A. Input port [WIDTH_A - 1 0] wide. When the INPUT_SOURCE_A parameter has a value of SCANA, the scanina[] port is required.			
accum_sload	No	Dynamically specifies whether the accumulator value is constant. If the accum_sload port is high, then the multiplier output is loaded into the accumulator. Do not use accum_sload and sload_accum simultaneously.			
sload_accum	No	Dynamically specifies whether the accumulator value is constant. If the sload_accum port is low, then the multiplier output is loaded into the accumulator. Do not use accum_sload and sload_accum simultaneously.			
chainin []	No	Adder result input bus from the preceding stage. Input port [WIDTH_CHAININ - 1 0] wide.			
addnsub1	No	Perform addition or subtraction to the outputs from the first pair of multipliers. Input 1 to addnsub1 port to add the outputs from the first pair of multipliers. Input 0 to addnsub1 port to subtract the outputs from the first pair of multipliers.			
addnsub3	No	Perform addition or subtraction to the outputs from the first pair of multipliers. Input 1 to addnsub3 port to add the outputs from the second pair of multipliers. Input 0 to addnsub3 port to subtract the outputs from the first pair of multipliers.			
coefsel0 []	No	Coefficient input port[03] to the first multiplier.			
coefsel1 []	No	Coefficient input port[03]to the second multiplier.			

Port name	Required	Description
coefsel2 []	No	Coefficient input port[03]to the third multiplier.
coefsel3 []	No	Coefficient input port [03] to the fourth multiplier.

Table 8-2: ALTERA_MULT_ADD Output Ports

Port Name	Required	Description
result []	Yes	Multiplier output port. Output port [WIDTH_RESULT - 1 0] wide
scanouta []	No	Output of scan chain A. Output port [WIDTH_A - 10] wide.

Parameters

The following table lists the parameters for the ALTERA_MULT_ADD IP core.

Table 8-3: ALTERA_MULT_ADD Parameters

Parameter Name	Туре	Required	Description
NUMBER_OF_MULTIPLIERS	Integer	Yes	Number of multipliers to be added together. Values are 1 up to 4.
WIDTH_A	Integer	Yes Width of the dataa[] port.	
WIDTH_B	Integer	Yes	Width of the datab[] port.
WIDTH_RESULT	Integer	Yes	Width of the result[] port.
GUI_ASSOCIATED_CLOCK_ ENABLE			
INPUT_REGISTER_A[03]	String	No	Specifies the clock port for the dataa[] operand of the multiplier. Values are UNREGISTERED, CLOCKO, CLOCK1, and CLOCK2. If omitted, the default value is UNREGISTERED. INPUT_REGISTER_A[1 3] must have similar values with INPUT_REGISTER_A0.
INPUT_REGISTER_B[03]	String	No	Specifies the clock port for the datab[] operand of the multiplier. Values are UNREGISTERED, CLOCKO, CLOCKI, and CLOCK2. If omitted, the default value is UNREGISTERED. INPUT_REGISTER_B[1 3] must have similar values with INPUT_REGISTER_BO.
INPUT_ACLR_A[03]	String	No	Specifies the asynchronous clear for the dataa[] operand of the multiplier. Values are NONE, ACLRO, ACLRO. If omitted, the default value is NONE. The INPUT_ACLR_A[1 3] value must be set similar to the value of INPUT_ACLR_AO.

Parameter Name	Type	Required	Description
INPUT_ACLR_B[03]	String	No	Specifies the asynchronous clear for the datab[] operand of the multiplier. Values are NONE, ACLRO, ACLR1. If omitted, the default value is NONE. The INPUT_ACLR_B [1 3] value must be set similar to the value of INPUT_ACLR_BO.
INPUT_SOURCE_A[03]	String	No	Specifies the data source to the first multiplier. Values are DATAA and SCANA. If this parameter is set to DATAA, the adder uses the values from the dataa[] port. If this parameter is set to SCANA, the adder uses values from the scanina[]. If omitted, the default value is DATAA.
REPRESENTATION_A	String	No	Specifies the numerical representation of the multiplier input A. Values are unsigned and signed. When this parameter is set to signed, the adder interprets the multiplier input A as a signed number. When this parameter is set to unsigned, the adder interprets the multiplier input A as an unsigned number. If omitted, the default value is unsigned. If the corresponding port_signa value is used, this parameter is ignored. Use the parameter port_signa to access the signa input port for dynamic control of the representation through the signa input port.
REPRESENTATION_B	String	No	Specifies the numerical representation of the multiplier input B. Values are UNSIGNED and SIGNED. When this parameter is set to SIGNED, the adder interprets the multiplier input B as a signed number. When this parameter is set to UNSIGNED, the adder interprets the multiplier input B as an unsigned number. If omitted, the default value is UNSIGNED. If the corresponding PORT_SIGNE value is USED, this parameter is ignored. Use the parameter PORT_SIGNB to access the signb input port for dynamic control of the representation through the signb input port.

String

No

OUTPUT_REGISTER

subtracts its value from the previous sum. Values are ADD and SUB. If omitted, the

Specifies the clock signal for the output

register. Values are UNREGISTERED, CLOCKO, CLOCK1 and CLOCK2. If omitted, the default

default value is ADD.

value is unregistered.

Parameter Name	Туре	Required	Description
OUTPUT_ACLR	String	No	Specifies the asynchronous clear signal for the second adder register. Values are NONE, ACLRO, and ACLRO. If omitted, the default value is NONE.
PORT_SIGN[]	String	No	Parameter [A, B]. Specifies the corresponding sign[a,b] input port usage. Values are PORT_USED and PORT_UNUSED. If omitted, the default value is PORT_UNUSED.
ADDNSUB_MULTIPLIER_REGISTER[]	String	No	Parameter [1, 3]. Specifies the clock signal for the register on the corresponding addnsub[] input. Values are unregistered, CLOCKO, CLOCK1and CLOCK2. If the corresponding addnsub[] port is unused, this parameter is ignored. If omitted, the default value is unregistered.
ADDNSUB_MULTIPLIER_ACLR[]	String	No	Parameter [1, 3]. Specifies the asynchronous clear signal for the first register on the corresponding addnsub[] input. Values are NONE, ACLRO and ACLR1. If the corresponding addnsub[] port value is UNUSED, this parameter is ignored. If omitted, the default value is NONE.
PORT_ADDNSUB[]	String	No	Parameter [1, 3]. Specifies the usage of the corresponding addnsub[] input port. Values are PORT_USED and PORT_UNUSED. If omitted, the default value is PORT_UNUSED.
CHAINOUT_ADDER	String	No	Specifies the chainout mode of the final adder stage. Values are YES and NO. If omitted, the default value is NO.
WIDTH_CHAININ	Integer	No	Width of the chainin[] port. WIDTH_ CHAININ equals WIDTH_RESULT if chainin port is used. If omitted, the default value is 1.
ACCUM_SLOAD_REGISTER	String	No	Specifies the clock source for the first register on the accum_sload or sload_accum input. Values are UNREGISTERED, CLOCKO, CLOCK1 and CLOCK2. If omitted, the default value is UNREGISTERED.
ACCUM_SLOAD_ACLR	String	No	Specifies the asynchronous clear source for the first register on the accum_sload or sload_accum input. Values are NONE, ACLRO and ACLR1. If omitted, the default value is NONE.
SCANOUTA_REGISTER	String	No	Specifies the clock source for the scanouta data bus registers. Values are UNREGISTERED, CLOCKO, CLOCK1 and CLOCK2. If omitted, the default value is UNREGISTERED.

Parameter Name	Туре	Required	Description
SCANOUTA_ACLR	String	No	Specifies the asynchronous clear source for the scanouta data bus registers. Values are NONE, ACLRO, ACLRO and ACLRO. If omitted, the default value is NONE.
WIDTH_C	Integer	No	Width of the datac[] port.
WIDTH_COEF	Integer	No	Specifies the width of the constant value stored.
INPUT_REGISTER_C[03]	String	No	Specifies the clock port for the datac[] operand of the multiplier. Values are UNREGISTERED, CLOCKO, CLOCKI, and CLOCK2. If omitted, the default value is UNREGISTERED. INPUT_REGISTER_C [1 3] must have similar values with INPUT_REGISTER_C [0].
INPUT_ACLR_C[03]	String	No	Specifies the asynchronous clear for the datac[] operand of the multiplier. Values are NONE, ACLRO, ACLRO. If omitted, the default value is NONE. The INPUT_ACLR_C [1 3] value must be set similar to the value of INPUT_ACLR_CO.
LOADCONST_VALUE	Integer	No	Preload constant value to complement accumulator mode. Values are 2^N where 0 < N < 64.
PREADDER_MODE	String	No	Specifies the mode of pre-adder settings to be used. Values are SIMPLE, COEF, INPUT, SQUARE, and CONSTANT. The default value is SIMPLE
PREADDER_DIRECTION_[]	String	No	Parameter [03]. Specifies whether the preadder of the corresponding multiplier adds or subtracts its value from the sum. Values are ADD and SUB. If omitted, the default value is ADD.
COEFSEL[]_REGISTER	String	No	Parameter [03]. Specifies the clock source for the coefficient inputs of the corresponding multiplier. Values are UNREGISTERED, CLOCKO, CLOCKI, and CLOCK2. The value must be set similar to the value of INPUT_REGISTER_AO or set as UNREGISTERED.
COEFSEL[]_ACLR	String	No	Specifies the asynchronous clear source for the coefficient inputs to the first multiplier. Values are None, ACLR0 and ACLR1. If omitted, the default value is None. The value must be set similar to the value of INPUT_ACLR_A0.

Parameter Name	Туре	Required	Description
SYSTOLIC_DELAY1	String	No	Specifies the clock source for the systolic register inputs of the first multiplier. Values are UNREGISTERED, CLOCKO, CLOCK1, and CLOCK2. The value must be set similar to the value of OUTPUT_REGISTER or set as UNREGISTERED.
SYSTOLIC_DELAY3	String	No	Specifies the clock source for the systolic register inputs of the third multiplier. Values are UNREGISTERED, CLOCKO, CLOCKI, and CLOCK2. The value must be set similar to the value of OUTPUT_REGISTER or set as UNREGISTERED.
SYSTOLIC_ACLR1	String	No	Specifies the asynchronous clear source for the systolic register inputs of the first multiplier. Values are NONE, ACLRO and ACLRO. If omitted, the default value is NONE. The value must be set similar to the value of OUTPUT_ACLR.
SYSTOLIC_ACLR3	String	No	Specifies the asynchronous clear source for the systolic register inputs of the third multiplier. Values are NONE, ACLRO and ACLRI. If omitted, the default value is NONE. The value must be set similar to the value of OUTPUT_ACLR.
COEFO_[]	Integer	No	Specifies the coefficient value [07] for the inputs of the first multiplier. The number of coefficient bits must be set similar to the value of WIDTH_COEF.
COEF1_[]	Integer	No	Specifies the coefficient value [07] for the inputs of the second multiplier. The number of coefficient bits must be set similar to the value of width_coef.
COEF2_[]	Integer	No	Specifies the coefficient value [07] for the inputs of the third multiplier. The number of coefficient bits must be set similar to the value of width_coef.
COEF3_[]	Integer	No	Specifies the coefficient value [07] for the inputs of the fourth multiplier. The number of coefficient bits must be set similar to the value of WIDTH_COEF.
DOUBLE_ACCUM	String	No	Enables the double accumulator register. Values are YES and NO. This parameter is only available for family Arria V.

Parameter Name	Туре	Required	Description
INPUT_A[03]_LATENCY_CLOCK	String	No	Specifies the clock signal for the pipeline register on the corresponding dataa[] port. Values are UNREGISTERED, CLOCKO, CLOCK1, and CLOCK2. If omitted, the default value is UNREGISTERED.
INPUT_A[03]_LATENCY_ACLR	String	No	Specifies the asynchronous clear signal for the pipeline register on the corresponding dataa[] port. Values are NONE, ACLRO, ACLRO, the default value is NONE.
INPUT_B[0 3]_LATENCY_CLOCK	String	No	Specifies the clock signal for the pipeline register on the corresponding datab[] port. Values are UNREGISTERED, CLOCKO, CLOCK1, and CLOCK2. If omitted, the default value is UNREGISTERED.
INPUT_B[03]_LATENCY_ACLR	String	No	Specifies the asynchronous clear signal for the pipeline register on the corresponding datab[] port. Values are NONE, ACLRO, ACLRO, the default value is NONE.
INPUT_C[0 3]_LATENCY_CLOCK	String	No	Specifies the clock signal for the pipeline register on the corresponding datac[] port. Values are UNREGISTERED, CLOCKO, CLOCK1, and CLOCK2. If omitted, the default value is UNREGISTERED.
INPUT_C[03]_LATENCY_ACLR	String	No	Specifies the asynchronous clear signal for the pipeline register on the corresponding datac[] port. Values are NONE, ACLRO, ACLRO, the default value is NONE.
COEFSEL[03]_LATENCY_CLOCK	String	No	Specifies the clock signal for the pipeline register on the corresponding coefficient inputs. Values are UNREGISTERED, CLOCKO, CLOCK1, and CLOCK2.
COEFSEL[03]_LATENCY_ACLR	String	No	Specifies the asynchronous clear signal for the pipeline register on the corresponding coefficient inputs. Values are NONE, ACLRO and ACLR1. If omitted, the default value is NONE.
SIGNED_LATENCY_CLOCK_[]	String	No	Parameter [A, B]. Specifies the clock signal for the pipeline register on the corresponding sign[] port. Values are UNREGISTERED, CLOCKO, CLOCKI, and CLOCK2. If omitted, the default value is UNREGISTERED.
SIGNED_LATENCY_ACLR_[]	String	No	Parameter [A, B]. Specifies the asynchronous clear signal for the pipeline register on the corresponding sign[] port. Values are NONE, ACLRO, and ACLRO. If omitted the default value is NONE.

Parameter Name	Туре	Required	Description
ADDNSUB_MULTIPLIER_LATENCY_ CLOCK[]	String	No	Parameter [1, 3]. Specifies the clock signal for the pipeline register on the corresponding addnsub[] input. Values are UNREGISTERED, CLOCKO, CLOCK1 and CLOCK2. If omitted, the default value is UNREGISTERED.
ADDNSUB_MULTIPLIER_LATENCY_ ACLR[]	String	No	Parameter [1, 3]. Specifies the asynchronous clear signal for the pipeline register on the corresponding addnsub[] input. Values are NONE, ACLRO and ACLR1. If omitted, the default value is NONE.
ACCUM_SLOAD_LATENCY_CLOCK	String	No	Specifies the clock signal for the pipeline register on the corresponding accum_sload or sload_accum input. Values are UNREGISTERED, CLOCKO, CLOCK1 and CLOCK2. If omitted, the default value is UNREGISTERED.
ACCUM_SLOAD_LATENCY_ACLR	String	No	Specifies the asynchronous clear signal for the pipeline register on the corresponding accum_sload or sload_accum input. Values are NONE, ACLRO and ACLRO. If omitted, the default value is NONE.

General Tab

Table 8-4: General Tab

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the number of multipliers?	number_of_ multipliers	1 - 4	1	Number of multipliers to be added together. Values are 1 up to 4.
How wide should the A input buses be?	width_a	1 - 256	16	Specify the width of the dataa[] port.
How wide should the B input buses be?	width_b	1 - 256	16	Specify the width of the datab[] port.
How wide should the 'result' output bus be?	width_result	1 - 256	32	Specify the width of the result[] port.
Create an associated clock enable for each clock	gui_ associated_ clock_enable	_	Unchecked	Select this option to create clock enable for each clock.

Extra Modes Tab

Table 8-5: Extra Modes Tab

Parameter	IP Generated Parameter	Value	Default Value	Description
Outputs Configuration	n			
Register output of the adder unit	gui_output_ register	_	Unchecked	Select this option to enable output register of the adder module.
What is the source for clock input?	gui_output_ register_ clock	Clock0 Clock1 Clock2	Clock0	Select Clock0, Clock1 or Clock2 to enable and specify the clock source for output registers. You must select Register output of the adder unit to enable this parameter.
What is the source for asynchronous clear input?	gui_output_ register_aclr	NONE ACLR0 ACLR1	NONE	Specifies the asynchronous clear source for the adder output register. You must select Register output of the adder unit to enable this parameter.
What is the source for synchronous clear input?	gui_output_ register_sclr	NONE SCLR0 SCLR1	NONE	Specifies the synchronous clear source for the adder output register. You must select Register output of the adder unit to enable this parameter.
Adder Operation				

Parameter	IP Generated Parameter	Value	Default Value	Description
What operation should be performed on outputs of the first pair of multipliers?	gui_ multiplier1_ direction	ADD, SUB, VARIABLE	ADD	Select addition or subtraction operation to perform for the outputs between the first and second multipliers. • Select ADD to perform addition operation. • Select SUB to perform subtraction operation. • Select VARIABLE to use addnsub1 port for dynamic addition/subtraction control. When VARIABLE value is selected: • Drive addnsub1 signal to high for addition operation. • Drive addnsub1 signal to low for subtraction operation. You must select more than two multipliers to enable this parameter.
Register 'addnsub1' input	gui_ addnsub_ multiplier_ register1		Unchecked	Select this option to enable input register for addnsub1 port. You must select VARIABLE for What operation should be performed on outputs of the first pair of multipliers to enable this parameter.
What is the source for clock input?	gui_ addnsub_ multiplier_ register1_ clock	Clock0 Clock1 Clock2	Clock0	Select Clock0, Clock1 or Clock2 to specify the input clock signal for addnsub1 register. You must select Register 'addnsub1' input to enable this parameter.
What is the source for asynchronous clear input?	gui_ addnsub_ multiplier_ aclr1	NONE ACLR0 ACLR1	NONE	Specifies the asynchronous clear source for the addnsub1 register. You must select Register 'addnsub1' input to enable this parameter.

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the source for synchronous clear input?	gui_ addnsub_ multiplier_ sclr1	NONE SCLR0 SCLR1	NONE	Specifies the synchronous clear source for the addnsub1 register. You must select Register 'addnsub1' input to enable this parameter.
What operation should be performed on outputs of the second pair of multipliers?	gui_ multiplier3_ direction	ADD, SUB, VARIABLE	ADD	Select addition or subtraction operation to perform for the outputs between the third and fourth multipliers. • Select ADD to perform addition operation. • Select SUB to perform subtraction operation. • Select VARIABLE to use addnsub1 port for dynamic addition/subtraction control. When VARIABLE value is selected: • Drive addnsub1 signal to high for addition operation. • Drive addnsub1 signal to low for subtraction operation. You must select the value 4 for What is the number of multipliers? to enable this parameter.
Register 'addnsub3' input	gui_ addnsub_ multiplier_ register3		Unchecked	Select this option to enable input register for addnsub3 signal. You must select VARIABLE for What operation should be performed on outputs of the second pair of multipliers to enable this parameter.
What is the source for clock input?	gui_ addnsub_ multiplier_ register3_ clock	Clock0 Clock1 Clock2	Clock0	Select Clock0, Clock1 or Clock2 to specify the input clock signal for addnsub3 register. You must select Register 'addnsub3' input to enable this parameter.

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the source for asynchronous clear input?	gui_ addnsub_ multiplier_ aclr3	NONE ACLR0 ACLR1	NONE	Specifies the asynchronous clear source for the addnsub3 register. You must select Register 'addnsub3' input to enable this parameter.
What is the source for synchronous clear input?	gui_ addnsub_ multiplier_ sclr3	NONE SCLR0 SCLR1	NONE	Specifies the synchronous clear source for the addnsub3 register. You must select Register 'addnsub3' input to enable this parameter.
Polarity				
Enable 'use_subadd'	gui_use_ subnadd	_	Unchecked	Select this option to reverse the function of addnsub input port. Drive addnsub to high for subtraction operation. Drive addnsub to low for addition operation.

Multipliers Tab

Table 8-6: Multipliers Tab

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the representation format for Multipliers A inputs?	gui_ representatio n_a	SIGNED, UNSIGNED, VARIABLE	UNSIGNE D	Specify the representation format for the multiplier A input.
Register 'signa' input	gui_register_ signa	_	Unchecked	Select this option to enable signa register. You must select VARIABLE value for What is the representation format for Multipliers A inputs? parameter to enable this option.

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the source for clock input?	gui_register_ signa_clock	Clock0 Clock1 Clock2	Clock0	Select Clock0, Clock1 or Clock2 to enable and specify the input clock signal for signa register. You must select Register 'signa' input to enable this parameter.
What is the source for asynchronous clear input?	gui_register_ signa_aclr	NONE ACLR0 ACLR1	NONE	Specifies the asynchronous clear source for the signa register. You must select Register 'signa' input to enable this parameter.
What is the source for synchronous clear input?	gui_register_ signa_sclr	NONE SCLR0 SCLR1	NONE	Specifies the synchronous clear source for the signa register. You must select Register 'signa' input to enable this parameter.
What is the representation format for Multipliers B inputs?	gui_ representatio n_b	SIGNED, UNSIGNED, VARIABLE	UNSIGNE D	Specify the representation format for the multiplier B input.
Register 'signb' input	gui_register_ signb	_	Unchecked	Select this option to enable signb register. You must select VARIABLE value for What is the representation format for Multipliers B inputs? parameter to enable this option.
What is the source for clock input?	gui_register_ signb_clock	Clock0 Clock1 Clock2	Clock0	Select Clock0, Clock1 or Clock2 to enable and specify the input clock signal for signb register. You must select Register 'signb' input to enable this parameter.
What is the source for asynchronous clear input?	gui_register_ signb_aclr	NONE ACLR0 ACLR1	NONE	Specifies the asynchronous clear source for the signb register. You must select Register 'signb' input to enable this parameter.
What is the source for synchronous clear input?	gui_register_ signb_sclr	NONE SCLR0 SCLR1	NONE	Specifies the synchronous clear source for the signb register. You must select Register 'signb' input to enable this parameter.

Parameter	IP Generated Parameter	Value	Default Value	Description
Input Configuration				
Register input A of the multiplier	gui_input_ register_a	_	Unchecked	Select this option to enable input register for dataa input bus.
What is the source for clock input?	gui_input_ register_a_ clock	Clock0 Clock1 Clock2	Clock0	Select Clock0, Clock1 or Clock2 to enable and specify the register input clock signal for dataa input bus. You must select Register input A of the multiplier to enable this parameter.
What is the source for asynchronous clear input?	gui_input_ register_a_ aclr	NONE ACLR0 ACLR1	NONE	Specifies the register asynchronous clear source for the dataa input bus. You must select Register input A of the multiplier to enable this parameter.
What is the source for synchronous clear input?	gui_input_ register_a_ sclr	NONE SCLR0 SCLR1	NONE	Specifies the register synchronous clear source for the dataa input bus. You must select Register input A of the multiplier to enable this parameter.
Register input B of the multiplier	gui_input_ register_b	_	Unchecked	Select this option to enable input register for datab input bus.
What is the source for clock input?	gui_input_ register_b_ clock	Clock0 Clock1 Clock2	Clock0	Select Clock0, Clock1 or Clock2 to enable and specify the register input clock signal for datab input bus. You must select Register input B of the multiplier to enable this parameter.
What is the source for asynchronous clear input?	gui_input_ register_b_ aclr	NONE ACLR0 ACLR1	NONE	Specifies the register asynchronous clear source for the datab input bus. You must select Register input B of the multiplier to enable this parameter.

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the source for synchronous clear input?	gui_input_ register_b_ sclr	NONE SCLR0 SCLR1	NONE	Specifies the register synchronous clear source for the datab input bus. You must select Register input B of the multiplier to enable this parameter.
What is the input A of the multiplier connected to?	gui_ multiplier_a_ input	Multiplier input Scan chain input	Multiplier input	Select the input source for input A of the multiplier. Select Multiplier input to use dataa input bus as the source to the multiplier. Select Scan chain input to use scanin input bus as the source to the multiplier and enable the scanout output bus. This parameter is available when you select 2, 3 or 4 for What is the number of multipliers? parameter.

Scanout A Register Configuration

Register output of the scan chain	gui_ scanouta_ register	_	Unchecked	Select this option to enable output register for scanouta output bus. You must select Scan chain input for What is the input A of the multiplier connected to? parameter to enable this option.
What is the source for clock input?	gui_ scanouta_ register_ clock	Clock0 Clock1 Clock2	Clock0	Select Clock0, Clock1 or Clock2 to enable and specify the register input clock signal for scanouta output bus. You must turn on Register output of the scan chain parameter to enable this option.

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the source for asynchronous clear input?	gui_ scanouta_ register_aclr	NONE ACLR0 ACLR1	NONE	Specifies the register asynchronous clear source for the scanouta output bus. You must turn on Register output of the scan chain parameter to enable this option.
What is the source for synchronous clear input?	gui_ scanouta_ register_sclr	NONE SCLR0 SCLR1	NONE	Specifies the register synchronous clear source for the scanouta output bus. You must select Register output of the scan chain parameter to enable this option.

Preadder Tab

Table 8-7: Preadder Tab

Parameter	IP Generated Parameter	Value	Default Value	Description
Select preadder mode	preadder_ mode	SIMPLE, COEF, INPUT, SQUARE, CONSTANT	SIMPLE	Specifies the operation mode for preadder module. SIMPLE: This mode bypass the preadder. This is the default mode. COEF: This mode uses the output of the preadder and coefsel input bus as the inputs to the multiplier. INPUT: This mode uses the output of the preadder and datac input bus as the inputs to the multiplier. SQUARE: This mode uses the output of the preadder as both the inputs to the multiplier. CONSTANT: This mode uses dataa input bus with preadder bypassed and coefsel input bus as the inputs to the multiplier.

Parameter	IP Generated Parameter	Value	Default Value	Description
Select preadder direction	gui_ preadder_ direction	ADD, SUB	ADD	Specifies the operation of the preadder. To enable this parameter, select the following for Select preadder mode: COEF INPUT SQUARE or CONSTANT
How wide should the C input buses be?	width_c	1 - 256	16	Specifies the number of bits for C input bus. You must select INPUT for Select preadder mode to enable this parameter.
Data C Input Register	Configuration			
Register datac input	gui_datac_ input_ register		Checked	Select this option to enable input register for datac input bus. You must set INPUT to Select preadder mode parameter to enable this option.
What is the source for clock input?	gui_datac_ input_ register_ clock	Clock0 Clock1 Clock2	Clock0	Select Clock0, Clock1 or Clock2 to specify the input clock signal for datac input register. You must select Register datac input to enable this parameter.
What is the source for asynchronous clear input?	gui_datac_ input_ register_aclr	NONE ACLR0 ACLR1	NONE	Specifies the asynchronous clear source for the datac input register. You must select Register datac input to enable this parameter.
What is the source for synchronous clear input?	gui_datac_ input_ register_sclr	NONE SCLR0 SCLR1	NONE	Specifies the synchronous clear source for the datac input register. You must select Register datac input to enable this parameter.

Coefficients

Parameter	IP Generated Parameter	Value	Default Value	Description
How wide should the coef width be?	width_coef	1 - 27	18	Specifies the number of bits for coefsel input bus.
				You must select COEF or CONSTANT for preadder mode to enable this parameter.
Coef Register Configu	ration			
Register the coefsel input	gui_coef_ register	_	Checked	Select this option to enable input register for coefsel input bus. You must select COEF or
				CONSTANT for preadder mode to enable this parameter.
What is the source for clock input?	gui_coef_ register_ clock	Clock0 Clock1	Clock0	Select Clock0, Clock1 or Clock2 to specify the input clock signal for coefsel input register.
		Clock2		You must select Register the coefsel input to enable this parameter.
What is the source for asynchronous clear input?	gui_coef_ register_aclr	NONE ACLR0	NONE	Specifies the asynchronous clear source for the coefsel input register.
		ACLR1		You must select Register the coefsel input to enable this parameter.
What is the source for synchronous clear input	gui_coef_ register_sclr	NONE SCLR0	NONE	Specifies the synchronous clear source for the coefsel input register.
		SCLR1		You must select Register the coefsel input to enable this parameter.
Coefficient_0 Configuration	coef0_0 to coef0_7	0x00000 – 0xFFFFFF	0x0000000 0	Specifies the coefficient values for this first multiplier.
				The number of bits must be the same as specified in How wide should the coef width be? parameter.
				You must select COEF or CONSTANT for preadder mode to enable this parameter.

Parameter	IP Generated Parameter	Value	Default Value	Description
Coefficient_1 Configuration	coef1_0 to coef1_7	0x00000 – 0xFFFFFF	0x0000000 0	Specifies the coefficient values for this second multiplier.
				The number of bits must be the same as specified in How wide should the coef width be? parameter. You must select COEF or CONSTANT for preadder mode to enable this parameter.
Coefficient_2 Configuration	coef2_0 to coef2_7	0x00000 – 0xFFFFFF	0x0000000 0	Specifies the coefficient values for this third multiplier. The number of bits must be the same as specified in How wide should the coef width be? parameter. You must select COEF or CONSTANT for preadder mode to enable this parameter.
Coefficient_3 Configuration	coef3_0 to coef3_7	0x00000 – 0xFFFFFF	0x0000000 0	Specifies the coefficient values for this fourth multiplier. The number of bits must be the same as specified in How wide should the coef width be? parameter. You must select COEF or CONSTANT for preadder mode to enable this parameter.

Accumulator Tab

Table 8-8: Accumulator Tab

Parameter	IP Generated Parameter	Value	Default Value	Description
Enable accumulator?	accumulator	YES, NO	NO	Select YES to enable the accumulator. You must select Register output of adder unit when using accumulator feature.

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the accumulator operation type?	accum_ direction	ADD, SUB	ADD	Specifies the operation of the accumulator: • ADD for addition operation • SUB for subtraction operation. You must select YES for Enable accumulator? parameter to enable this option.
Preload Constant			TT 1 1 1	p 11 d
Enable preload constant	gui_ena_ preload_ const		Unchecked	Enable the accum_sload signal register input and dynamically select the input to the accumulator. When accum_sload is high, the multiplier output is feed into the accumulator. When accum_sload is low, a user specified preload constant is feed into the accumulator.
				into the accumulator. You must select YES for Enable accumulator? parameter to enable this option.
What is the input of accumulate port	gui_ accumulate_	ACCUM_ SLOAD,	ACCUM_ SLOAD	Specifies the behavior of accum_sload/sload_accum signal.
connected to?	port_select	SLOAD_ ACCUM		ACCUM_SLOAD: Drive accum_sload high to load the multiplier output to the accumulator.
				SLOAD_ACCUM: Drive sload_accum low to load the multiplier output to the accumulator.
				You must select Enable preload constant option to enable this parameter.

Parameter	IP Generated Parameter	Value	Default Value	Description
Select value for preload constant	loadconst_ value	0 - 64	64	Specify the preset constant value. This value can be 2 ^N where N is the preset constant value. When N=64, it represents a constant zero. You must select Enable preload constant option to enable this parameter.
What is the source for clock input?	gui_accum_ sload_ register_ clock	Clock0 Clock1 Clock2	Clock0	Select Clock0, Clock1 or Clock2 to specify the input clock signal for accum_sload/sload_accum register. You must select Enable preload constant option to enable this parameter.
What is the source for asynchronous clear input?	gui_accum_ sload_ register_aclr	NONE ACLR0 ACLR1	NONE	Specifies the asynchronous clear source for the accum_sload/sload_accum register. You must select Enable preload constant option to enable this parameter.
What is the source for synchronous clear input?	gui_accum_ sload_ register_sclr	NONE SCLR0 SCLR1	NONE	Specifies the synchronous clear source for the accum_sload/sload_accum register. You must select Enable preload constant option to enable this parameter.
Enable double accumulator	gui_double_ accum		Unchecked	Enables the double accumulator register. This parameter is only available for Arria V and Cyclone V devices.

Systolic/Chainout Tab

Table 8-9: Systolic/Chainout Adder Tab

Parameter	IP Generated Parameter	Value	Default Value	Description
Enable chainout adder	chainout_ adder	YES, NO	NO	Select YES to enable chainout adder module.
What is the chainout adder operation type?	chainout_ adder_ direction	ADD, SUB	ADD	Specifies the chainout adder operation. For subtraction operation, SIGNED must be selected for What is the representation format for Multipliers A inputs? and What is the representation format for Multipliers B inputs? in the Multipliers Tab.
Enable 'negate' input for chainout adder?	Port_negate	PORT_USED, PORT_UNUSED	PORT_ UNUSED	Select PORT_USED to enable negate input signal. This parameter is invalid when chainout adder is disabled.
Register 'negate' input?	negate_ register	UNREGISTERED, CLOCK0, CLOCK1, CLOCK2, CLOCK3	UNREGIS TERED	To enable the input register for negate input signal and specifies the input clock signal for negate register. Select UNREGISTERED if the negate input register to is not needed This parameter is invalid when you select: NO for Enable chainout adder or PORT_UNUSED for Enable 'negate' input for chainout adder? parameter or

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the source for asynchronous clear input?	negate_aclr	NONE ACLR0 ACLR1	NONE	Specifies the asynchronous clear source for the negate register. This parameter is invalid when you select: NO for Enable chainout adder or PORT_UNUSED for Enable 'negate' input for chainout adder? parameter or
What is the source for synchronous clear input?	negate_sclr	NONE SCLR0 SCLR1	NONE	Specifies the synchronous clear source for the negate register. This parameter is invalid when you select: NO for Enable chainout adder or PORT_UNUSED for Enable 'negate' input for chainout adder? parameter or
Enable systolic delay registers	gui_systolic_ delay	_	Unchecked	Select this option to enable systolic mode. This parameter is available when you select 2, or 4 for What is the number of multipliers? parameter.
What is the source for clock input?	gui_systolic_ delay_clock	CLOCK0, CLOCK1, CLOCK2,	CLOCK0	You must enable the Register output of the adder unit to use the systolic delay registers. Specifies the input clock signal for systolic delay register. You must select enable systolic delay registers to enable this option.

ALTERA_MULT_ADD (Multiply-Adder) IP Core

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the source for asynchronous clear input?	gui_systolic_ delay_aclr	NONE ACLR0 ACLR1	NONE	Specifies the asynchronous clear source for the systolic delay register. You must select enable systolic delay registers to enable this option.
What is the source for synchronous clear input?	gui_systolic_ delay_sclr	NONE SCLR0 SCLR1	NONE	Specifies the synchronous clear source for the systolic delay register. You must select enable systolic delay registers to enable this option.

Pipelining Tab

Table 8-10: Pipelining Tab

Parameter	IP Generated Parameter	Value	Default Value	Description
Pipelining Configurati	ion			
Do you want to add pipeline register to the input?	gui_ pipelining	No, Yes	No	Select Yes to enable an additional level of pipeline register to the input signals. You must specify a value greater than 0 for Please specify the number of latency clock cycles parameter.
Please specify the number of latency clock cycles	latency	Any value greater than 0	0	Specifies the desired latency in clock cycles. One level of pipeline register = 1 latency in clock cycle. You must select YES for Do you want to add pipeline register to the input? to enable this option.

Parameter	IP Generated Parameter	Value	Default Value	Description
What is the source for clock input?	gui_input_ latency_clock	CLOCK0, CLOCK1, CLOCK2	CLOCK0	Select Clock0, Clock1 or Clock2 to enable and specify the pipeline register input clock signal. You must select YES for Do you want to add pipeline register to the input? to enable this option.
What is the source for asynchronous clear input?	gui_input_ latency_aclr	NONE ACLR0 ACLR1	NONE	Specifies the register asynchronous clear source for the additional pipeline register. You must select YES for Do you want to add pipeline register to the input? to enable this option.
What is the source for synchronous clear input?	gui_input_ latency_sclr	NONE SCLR0 SCLR1	NONE	Specifies the register synchronous clear source for the additional pipeline register. You must select YES for Do you want to add pipeline register to the input? to enable this option.

ALTMEMMULT (Memory-based Constant Coefficient Multiplier) IP Core

9

2016.06.10

UG-01063

The ALTMEMMULT IP core is used to create memory-based multipliers using the on-chip memory blocks found in Altera FPGAs (with M512, M4K, M9K, and MLAB memory blocks). This IP core is useful if you do not have sufficient resources to implement the multipliers in logic elements (LEs) or dedicated multiplier resources.

The ALTMEMMULT IP core is a synchronous function that requires a clock. The ALTMEMMULT IP core implements a multiplier with the smallest throughput and latency possible for a given set of parameters and specifications.

The following figure shows the ports for the ALTMEMMULT IP core.

Figure 9-1: ALTMEMMULT Ports

Related Information

Features on page 11-3

Features

The ALTMEMMULT IP core offers the following features:

- Creates only memory-based multipliers using on-chip memory blocks found in Altera FPGAs
- Supports data width of 1–512 bits
- Supports signed and unsigned data representation format
- Supports pipelining with fixed output latency

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

- Stores multiples constants in random-access memory (RAM)
- Provides an option to select the RAM block type
- Supports optional synchronous clear and load-control input ports

Verilog HDL Prototype

The following Verilog HDL prototype is located in the Verilog Design File (.v) altera_mf.v in the < Quartus Prime installation directory>\eda\synthesis directory.

```
module altmemmult
#( parameter coeff_representation = "SIGNED",
parameter coefficient0 = "UNUSED",
parameter data_representation = "SIGNED",
parameter intended_device_family = "unused",
parameter max_clock_cycles_per_result = 1,
parameter number_of_coefficients = 1,
parameter ram_block_type = "AUTO",
parameter total_latency = 1,
parameter width_c = 1,
parameter width_d = 1,
parameter width_r = 1,
parameter width_s = 1,
parameter lpm_type = "altmemmult",
parameter lpm_hint = "unused")
( input wire clock,
input wire [width_c-1:0]coeff_in,
input wire [width_d-1:0] data_in,
output wire load_done,
output wire [width_r-1:0] result,
output wire result_valid,
input wire sclr,
input wire [width_s-1:0] sel,
input wire sload_coeff,
input wire sload_data)/* synthesis syn_black_box=1 */;
endmodule
```

VHDL Component Declaration

The VHDL component declaration is located in the VHDL Design File (.vhd) altera_mf_components.vhd in the <Quartus Prime installation directory>\libraries\vhdl\altera_mf directory.

```
component altmemmult
coeff_representation:string := "SIGNED";
coefficient0:string := "UNUSED";
data_representation:string := "SIGNED";
intended_device_family:string := "unused";
max_clock_cycles_per_result:natural := 1;
number_of_coefficients:natural := 1;
ram_block_type:string := "AUTO";
total_latency:natural;
width_c:natural;
width_d:natural;
width_r:natural;
width_s:natural := 1;
lpm_hint:string := "UNUSED";
lpm_type:string := "altmemmult");
port(
```



```
clock:in std_logic;
coeff_in:in std_logic_vector(width_c-1 downto 0) := (others => '0');
data_in:in std_logic_vector(width_d-1 downto 0);
load_done:out std_logic;
result:out std_logic_vector(width_r-1 downto 0);
result_valid:out std_logic;
sclr:in std_logic := '0';
sel:in std_logic_vector(width_s-1 downto 0) := (others => '0');
sload_coeff:in std_logic := '0';
sload_data:in std_logic := '0');
end component;
```

Ports

The following tables list the input and output ports for the ALTMEMMULT IP core.

Table 9-1: ALTMEMMULT Input Ports

Port Name	Required	Description
clock	Yes	Clock input to the multiplier.
coeff_in[]	No	Coefficient input port for the multiplier. The size of the input port depends on the widthcomparameter value.
data_in[]	Yes	Data input port to the multiplier. The size of the input port depends on the WIDTH_D parameter value.
sclr	No	Synchronous clear input. If unused, the default value is active high.
sel[]	No	Fixed coefficient selection. The size of the input port depends on the widths parameter value.
sload_coeff	No	Synchronous load coefficient input port. Replaces the current selected coefficient value with the value specified in the coeff_in input.
sload_data	No	Synchronous load data input port. Signal that specifies new multiplication operation and cancels any existing multiplication operation. If the MAX_CLOCK_CYCLES_PER_RESULT parameter has a value of 1, the sload_data input port is ignored.

Table 9-2: ALTMEMMULT Output Ports

Port Name	Required	Description
result[]	Yes	Multiplier output port. The size of the input port depends on the width parameter value.
result_valid	Yes	Indicates when the output is the valid result of a complete multiplication. If the MAX_CLOCK_CYCLES_PER_RESULT parameter has a value of 1, the result_valid output port is not used.
load_done	No	Indicates when the new coefficient has finished loading. The load_done signal asserts when a new coefficient has finished loading. Unless the load_done signal is high, no other coefficient value can be loaded into the memory.

Parameters

The following table lists the parameters for the ALTMEMMULT IP core.

Table 9-3: ALTMEMMULT Parameters

Parameter Name	Туре	Required	Description
WIDTH_D	Integer	Yes	Specifies the width of the data_in[] port.
WIDTH_C	Integer	Yes	Specifies the width of the coeff_in[] port.
WIDTH_R	Integer	Yes	Specifies the width of the result[] port.
WIDTH_S	Integer	No	Specifies the width of the sel[] port.
COEFFICIENTO	Integer	Yes	Specifies value of the first fixed coefficient.
TOTAL_LATENCY	Integer	Yes	Specifies the total number of clock cycles from the start of a multiplication to the time the result is available at the output.
DATA_REPRESENTATION	String	No	Specifies whether the data_in[] input port and the pre-loaded coefficients are signed or unsigned.
COEFF_REPRESENTATION	String	No	Specifies whether the <code>coeff_in[]</code> input port and the pre-loaded coefficients are signed or unsigned.
INTENDED_DEVICE_FAMILY	String	No	This parameter is used for modeling and behavioral simulation purposes.
LPM_HINT	String	No	When you instantiate a library of parameterized modules (LPM) function in a VHDL Design File (.vhd), you must use the LPM_HINT parameter to specify an Alteraspecific parameter. For example: LPM_HINT = "CHAIN_SIZE = 8, ONE_INPUT_IS_CONSTANT = YES"
			The default value is unused.
LPM_TYPE	String	No	Identifies the library of parameterized modules (LPM) entity name in VHDL design files.
MAX_CLOCK_CYCLES_PER_RESULT	Integer	No	Specifies the number of clock cycles per result.
NUMBER_OF_COEFFICIENTS	Integer	No	Specifies the number of coefficients that are stored in the lookup table.

Parameter Name	Type	Required	Description
RAM_BLOCK_TYPE	String	No	Specifies the ram block type. Values are AUTO, SMALL, MEDIUM, M512, and M4K. If omitted, the default value is AUTO.

ALTMULT_ACCUM (Multiply-Accumulate) IP Core

2016.06.10

UG-01063

The ALTMULT_ACCUM IP core allows you to implement a multiplier-adder.

Note: This IP core is not supported in Stratix V, Arria V, Cyclone V, Arria V GZ, and Arria 10 devices and will be replaced by ALTERA_MULT_ADD IP core.

The following figure shows the ports for the ALTMULT_ACCUM IP core.

Figure 10-1: ALTMULT_ACCUM Ports

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

A multiplier-accumulator accepts a pair of inputs, multiplies the two inputs together, and feeds their result into an accumulator to be added to or subtracted from its previous registered result. This function is expressed in the following equation.

$$y = \sum_{i=0}^{N-1} (\pm 1) \times A_i \times B_i$$

Where *N* is the number of cycles of data that has been entered into the accumulator.

Related Information

Features on page 11-3

Features

The ALTMULT_ACCUM IP core offers the following features:

- Generates a multiplier-accumulator
- Supports data widths of 1-256 bits
- Supports signed and unsigned data representation format
- Supports pipelining with configurable output latency
- Provides a choice of implementation in dedicated DSP block circuitry or logic elements (LEs)

Note: When building multipliers larger than the natively supported size there may/will be a performance impact resulting from the cascading of the DSP blocks.

- Provides an option to dynamically switch between add and subtract operations in the accumulator
- Provides an option to dynamically switch between signed and unsigned data support
- Provides an option to set up data shift register chains
- Supports optional asynchronous clear and clock enable input ports

Related Information

- ALTERA_MULT_ADD (Multiply-Adder) IP Core on page 8-1
- ALTMEMMULT (Memory-based Constant Coefficient Multiplier) IP Core on page 9-1
- LPM_MULT (Multiplier) IP Core on page 4-1

Verilog HDL Prototype

To view the Verilog HDL prototype for the IP core, refer to the Verilog Design File (.v) altera_mf.v in the <Quartus Prime installation directory>\eda\synthesis directory.

VHDL Component Declaration

To view the VHDL component declaration for the IP core, refer to the VHDL Design File (.vhd) altera_mf_components.vhd in the <Quartus Prime installation directory>\libraries\vhdl\altera_mf directory.

VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;
```

Ports

The following tables list the input and output ports for the ALTMULT_ACCUM IP core.

Table 10-1: ALTMULT_ACCUM Input Ports

Port Name	Required	Description
accum_sload	No	Causes the value on the accumulator feedback path to go to zero (0) or to accum_sload_upper_data when concatenated with 0. If the accumulator is adding and the accum_sload port is high, then the multiplier output is loaded into the accumulator. If the accumulator is subtracting, then the opposite (negative value) of the multiplier output is loaded into the accumulator.
aclr0	No	The first asynchronous clear input. The aclr0 port is active high.
aclr1	No	The second asynchronous clear input. The aclr1 port is active high.
aclr2	No	The third asynchronous clear input. The aclr2 port is active high.
aclr3	No	The fourth asynchronous clear input. The aclr3 port is active high.
addnsub	No	Controls the functionality of the adder. If the addnsub port is high, the adder performs an add function; if the addnsub port is low, the adder performs a subtract function.
clock0	No	Specifies the first clock input, usable by any register in the IP core.
clock1	No	Specifies the second clock input, usable by any register in the IP core.
clock2	No	Specifies the third clock input, usable by any register in the IP core.

Port Name	Required	Description
clock3	No	Specifies the fourth clock input, usable by any register in the IP core.
dataa[]	Yes	Data input to the multiplier. The size of the input port depends on the WIDTH_A parameter value.
datab[]	Yes	Data input to the multiplier. The size of the input port depends on the WIDTH_B parameter value.
ena0	No	Clock enable for the clock0 port.
enal	No	Clock enable for the clock1 port.
ena2	No	Clock enable for the clock2 port.
ena3	No	Clock enable for the clock3 port.
signa	No	Specifies the numerical representation of the dataa[] port. If the signa port is high, the multiplier treats the dataa[] port as signed two's complement. If the signa port is low, the multiplier treats the dataa[] port as an unsigned number.
signb	No	Specifies the numerical representation of the datab[] port. If the signb port is high, the multiplier treats the datab[] port as signed two's complement. If the signb port is low, the multiplier treats the datab[] port as an unsigned number.

Table 10-2: ALTMULT_ACCUM Output Ports

Port Name	Required	Description
overflow	No	Overflow port for the accumulator.
result[]	Yes	Accumulator output port. The size of the output port depends on the WIDTH_RESULT parameter value.
scanouta[]	No	Output of the first shift register. The size of the output port depends on the WIDTH_A parameter value. The parameter editor renames the scanouta[] port to shiftouta port.
scanoutb[]	No	Output of the second shift register. The size of the input port depends on the WIDTH_B parameter value. The parameter editor renames the scanoutb[] port to shiftoutb port.

Parameters

The following table lists the parameters for the ALTMULT_ACCUM IP core.

Table 10-3: ALTMULT_ACCUM Parameters

Parameter Name	Туре	Required	Description
ACCUM_DIRECTION	String	No	Specifies whether the accumulator performs an add or subtract function. Values are ADD and SUB. When this parameter is set to ADD, the accumulator adds the product to the current accumulator value. When this parameter is set to SUB, the accumulator subtracts the product from the current accumulator value. If omitted the default value is ADD. This parameter is ignored if the addnsub port is used.
ACCUM_SLOAD_ACLR	String	No	Specifies the asynchronous clear signal for the accum_sload port. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted the default value is ACLR3. This parameter is ignored if the accum_sload port is unused.
ACCUM_SLOAD_PIPELINE_ACLR	String	No	Specifies the asynchronous clear signal for the second register on the accum_sload port. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted the default value is ACLR3. This parameter is ignored if the accum_sload port is unused.
ACCUM_SLOAD_PIPELINE_REG	String	No	Specifies the clock signal for the second register on the accum_sload port. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO. This parameter is ignored if the accum_sload port is unused.
ACCUM_SLOAD_REG	String	No	Specifies the clock signal for the accum_sload port. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCK0. This parameter is ignored if the accum_sload port is unused.
ADDNSUB_ACLR	String	No	Specifies the asynchronous clear for the addnsub port. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted the default value is ACLRO. This parameter is ignored if the addnsub port is unused.
ADDNSUB_PIPELINE_ACLR	String	No	Specifies the asynchronous clear for the second register on the addnsub port. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted the default value is ACLRO. This parameter is ignored if the addnsub port is unused.

Parameter Name	Туре	Required	Description
ADDNSUB_PIPELINE_REG	String	No	Specifies the clock for the second register on the addnsub port. Values are UNREGISTERED, CLOCKO, CLOCKI, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO. This parameter is ignored if the addnsub port is unused.
ADDNSUB_REG	String	No	Specifies the clock for the addnsub port. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCK0. This parameter is ignored if the addnsub port is unused.
DSP_BLOCK_BALANCING	String	No	Specifies whether to use DSP block balancing. Values are UNUSED, Auto, DSP blocks, Logic Elements, Off, Simple 18-bit Multipliers, Simple Multipliers, and Width 18-bit Multipliers.
EXTRA_ACCUMULATOR_LATENCY	String	No	Adds the number of clock cycles of latency specified by the OUTPUT_REG parameter to the accumulator portion of the DSP block.
EXTRA_MULTIPLIER_LATENCY	Intege r	No	Specifies the number of clock cycles of latency for the multiplier portion of the DSP block. If the MULTIPLIER_REG parameter is specified, then the specified clock port is used to add the latency. If the MULTIPLIER_REG parameter is set to UNREGISTERED, then the clock0 port is used to add the latency.
INPUT_ACLR_A	String	No	Specifies the asynchronous clear port for the dataa[] port. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted the default value is ACLR3.
INPUT_ACLR_B	String	No	Specifies the asynchronous clear port for the datab[] port. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted the default value is ACLR3.
INPUT_REG_A	String	No	Specifies the clock port for the dataa[] port. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
INPUT_REG_B	String	No	Specifies the clock port for the datab[] port. Values are UNREGISTERED, CLOCKO, CLOCK1, and CLOCK2. If omitted, the default value is CLOCKO.
INTENDED_DEVICE_FAMILY	String	No	This parameter is used for modeling and behavioral simulation purposes. The parameter editor calculates the value for this parameter.

Parameter Name	Туре	Required	Description
LPM_HINT	String	No	When you instantiate a library of parameterized modules (LPM) function in a VHDL Design File (.vhd), you must use the LPM_HINT parameter to specify an Altera-specific parameter. For example: LPM_HINT = "CHAIN_SIZE = 8, ONE_INPUT_IS_CONSTANT = YES"
			The default value is UNUSED.
LPM_TYPE	String	No	Identifies the library of parameterized modules (LPM) entity name in VHDL design files.
MULTIPLIER_ACLR	String	No	Specifies the asynchronous clear signal for the register immediately following the multiplier. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted the default value is ACLR3.
MULTIPLIER_REG	String	No	Specifies the clock signal for the register that immediately follows the multiplier. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCK0.
OUTPUT_ACLR	String	No	Specifies the asynchronous clear signal for the registers on the outputs. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted the default value is ACLR3.
OUTPUT_REG	String	No	Specifies the clock signal for the registers on the outputs. Values are CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted the default value is CLOCKO. You must enable the output registers in order to use accumulator.
PORT_ADDNSUB	String	No	Specifies the usage of the addnsub input port. Values are: PORT_USED, PORT_UNUSED, and PORT_CONNECTIVITY (port usage is determined by checking the port connectivity.) If omitted the default value is PORT_CONNECTIVITY.
PORT_SIGNA	String	No	Specifies the usage of the signa input port. Values are PORT_USED, PORT_UNUSED, and PORT_CONNECTIVITY. If omitted the default value is PORT_CONNECTIVITY.
PORT_SIGNB	String	No	Specifies the usage of the signb input port. Values are PORT_USED, PORT_UNUSED, and PORT_CONNECTIVITY. If omitted the default value is PORT_CONNECTIVITY.

Parameter Name	Туре	Required	Description
REPRESENTATION_[]	String	No	Parameter [A,B]. Specifies the numerical representation of the corresponding data[] port. Values are UNSIGNED and SIGNED. When this parameter is set to SIGNED, the accumulator interprets the dataa input as signed two's complement. If omitted, the default value is UNSIGNED. This parameter is ignored if the signa port is used.
SIGN_ACLR_[]	String	No	Parameter [A,B]. Specifies the asynchronous clear signal for the first register on the corresponding sign[] port. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted the default value is ACLR3. This parameter is ignored if the corresponding sign[] port is unused.
SIGN_PIPELINE_ACLR_[]	String	No	Parameter [A,B]. Specifies the asynchronous clear signal for the second register on the corresponding sign[] port. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted the default value is ACLR3. This parameter is ignored if the corresponding sign[] port is unused.
SIGN_PIPELINE_REG_[]	String	No	Parameter [A,B]. Specifies the clock signal for the second register on the corresponding sign[] port. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO. This parameter is ignored if the corresponding sign[] port is unused.
SIGN_REG_[]	String	No	Parameter [A,B]. Specifies the clock signal for the first register on the corresponding sign[] port. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCK0. This parameter is ignored if the corresponding sign[] port is unused.
WIDTH_A	Intege r	Yes	Specifies the width of the dataa[] port.
WIDTH_B	Intege r	Yes	Specifies the width of the datab[] port.
WIDTH_RESULT	Intege r	No	Specifies the width of the result[] port.

ALTMULT_ADD (Multiply-Adder) IP Core 1 1

2016.06.10

UG-01063

The ALTMULT_ADD IP core allows you to implement a multiplier-adder.

Note: This IP core is not supported in Arria V, Stratix V, Cyclone V and Arria 10 devices. For the mentioned devices, refer to ALTERA_MULT_ADD (Multiply-Adder) IP core.

The following figure shows the ports for the ALTMULT_ADD IP core.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Figure 11-1: ALTMULT_ADD Ports

A multiplier-adder accepts pairs of inputs, multiplies the values together and then adds to or subtracts from the products of all other pairs.

The ALTMULT_ADD IP core also offers many variations in dedicated DSP block circuitry. Because the DSP blocks allow for one or two levels of 2-input add or subtract operations on the product, this function creates up to four multipliers.

The registers and extra pipeline registers for the following signals are also placed inside the DSP block:

- · Data input
- Signed or unsigned select
- · Add or subtract select
- Products of multipliers

In the case of the output result, the first register is placed in the DSP block. However the extra latency registers are placed in logic elements outside the block. Peripheral to the DSP block, including data inputs to the multiplier, control signal inputs, and outputs of the adder, use regular routing to communicate with the rest of the device. All connections in the function use dedicated routing inside the DSP block. This dedicated routing includes the shift register chains when you select the option to shift a multiplier's registered input data from one multiplier to an adjacent multiplier.

Features

The ALTMULT ADD IP core offers the following features:

- Generates a multiplier to perform multiplication operations of two complex numbers
- Supports data widths of 1–256 bits
- Supports signed and unsigned data representation format
- Supports pipelining with configurable output latency
- Provides a choice of implementation in dedicated DSP block circuitry or logic elements (LEs)

Note: When building multipliers larger than the natively supported size there may/will be a performance impact resulting from the cascading of the DSP blocks.

- Provides an option to dynamically switch between signed and unsigned data support
- Provides an option to dynamically switch between add and subtract operation
- Provides an option to set up data shifting register chains
- Supports hardware saturation and rounding (for selected device families only)
- Supports optional asynchronous clear and clock enable input ports

Related Information

- ALTMULT_ACCUM (Multiply-Accumulate) IP Core on page 10-1
- ALTMEMMULT (Memory-based Constant Coefficient Multiplier) IP Core on page 9-1
- LPM_MULT (Multiplier) IP Core on page 4-1

Verilog HDL Prototype

To view the Verilog HDL prototype for the IP core, refer to the Verilog Design File (.v) **altera_mf.v** in the **<Quartus Prime installation directory>\eda\synthesis** directory.

VHDL Component Declaration

To view the VHDL component declaration for the IP core, refer to the VHDL Design File (.vhd) altera_mf_components.vhd in the <Quartus Prime installation directory>\libraries\vhdl\altera_mf directory.

Send Feedback

VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;
```

Ports

The following tables list the input and output ports for the ALTMULT_ADD IP core.

Table 11-1: ALTMULT_ADD Input Ports

Port Name	Required	Description
dataa[]	Yes	Data input to the multiplier. Input port [NUMBER_OF_MULTIPLIERS * WIDTH_A - 10] wide.
datab[]	Yes	Data input to the multiplier. Input port [NUMBER_OF_MULTIPLIERS * WIDTH_B - 10] wide.
clock[]	No	Clock input port [03] to the corresponding register. This port can be used by any register in the IP core.
aclr[]	No	Input port [03]. Asynchronous clear input to the corresponding register.
ena[]	No	Input port [03]. Clock enable for the corresponding clock[] port.
signa	No	Specifies the numerical representation of the dataa[] port. If the signa port is high, the multiplier treats the dataa[] port as a signed two's complement number. If the signa port is low, the multiplier treats the dataa[] port as an unsigned number.
signb	No	Specifies the numerical representation of the datab[] port. If the signb port is high, the multiplier treats the datab[] port as a signed two's complement number. If the signb port is low, the multiplier treats the datab[] port as an unsigned number.

Table 11-2: ALTMULT_ADD Output Ports

Port Name	Required	Description
result[]	Yes	Multiplier output port. Output port [WIDTH_RESULT - 10] wide.
overflow	No	Overflow flag. If output_saturation is enabled, overflow flag is set.
scanouta[]	No	Output of scan chain A. Output port [WIDTH_A - 10] wide. Do not use scanina[] and scaninb[] simultaneously.
scanoutb[]	No	Output of scan chain B. Output port [WIDTH_B - 10] wide. Do not use scanina[] and scaninb[] simultaneously.

Parameters

The following table lists the parameters for the ALTMULT_ADD IP core.

Note: For Stratix IV and Arria II GX devices, when the output result is > 36 bits (for example, when you set width_a=18 and width_b=18), the option for rounding and saturation is disabled. This is because additional logic is used to generate the MSB.

Table 11-3: ALTMULT_ADD Parameters

Parameter Name	Туре	Requi red	Description
NUMBER_OF_MULTIPLIERS	Integer	Yes	Number of multipliers to be added together. Values are 1 up to 4.
WIDTH_A	Integer	Yes	Width of the dataa[] port.
WIDTH_B	Integer	Yes	Width of the datab[] port.
WIDTH_RESULT	Integer	Yes	Width of the result[] port. Value includes all bits before rounding and saturation.
INPUT_REGISTER_A[0 3]	String	No	Specifies the clock port for the dataa[] operand of the multiplier. Values are CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
INPUT_REGISTER_B[0 3]	String	No	Specifies the clock port for the datab[] operand of the first multiplier. Values are CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
INPUT_ACLR_A[0 3]	String	No	Specifies the asynchronous clear for the dataa[] operand of the first multiplier. Values are ACLRO, ACLR1, ACLR2, ACLR3, and NONE. If omitted, the default value is NONE. The INPUT_ACLR_A[1 3] values must be set similar to the value of INPUT_ACLR_AO.
INPUT_ACLR_B[0 3]	String	No	Specifies the asynchronous clear for the datab[] operand of the first multiplier. Values are ACLRO, ACLR1, ACLR2, ACLR3, and NONE. If omitted, the default value is NONE. The INPUT_ACLR_B[1 3] values must be set similar to the value of INPUT_ACLR_BO.

Parameter Name	Туре	Requi red	Description
INPUT_SOURCE_A[0 3]	String	No	Specifies the data source to the first multiplier. Values are DATAA and SCANA. If this parameter is set to DATAA, the adder uses the values from the dataa[] port. If this parameter is set to SCANA, the adder uses values from the scan chain. If omitted, the default value is DATAA.
INPUT_SOURCE_B0	String	No	Specifies the data source of the first multiplier. Values are DATAB and SCANB. If this parameter is set to DATAB, then the adder uses the values from the datab[] port. If this parameter is set to SCANB, then the adder uses values from the scan chain. If omitted, the default value is DATAB.
INPUT_SOURCE_B1	String	No	Specifies the data source of the second multiplier. Values are datab and scanb. If this parameter is set to datab, then the adder uses the values from the datab[] port. If this parameter is set to scanb, then the adder uses values from the scan chain. If omitted, the default value is datab.
INPUT_SOURCE_B2	String	No	Specifies the data source of the third multiplier. Values are DATAB and SCANB. If this parameter is set to DATAB, then the adder uses the values from the datab[] port. If this parameter is set to SCANB, then the adder uses values from the scan chain. If omitted, the default value is DATAB.
INPUT_SOURCE_B3	String	No	Specifies the data source of the fourth and corresponding multiplier. Values are DATAB and SCANB. If this parameter is set to DATAB, then the adder uses the values from the datab[] port. If this parameter is set to SCANB, then the adder uses values from the scan chain. If omitted, the default value is DATAB.

Parameter Name	Туре	Requi red	Description
REPRESENTATION_A	String	No	Specifies the numerical representation of the multiplier input A. Values are UNSIGNED, SIGNED and VARIABLE. When this parameter is set to SIGNED, the adder interprets the multiplier input A as a signed two's complement number. When this parameter is set to UNSIGNED, the adder interprets the multiplier input A as an unsigned number. If omitted, the default value is UNSIGNED. Use the VARIABLE setting to access the SIGNED_REGISTER_A and the SIGNED_PIPELINE_REGISTER_A parameter options for the signa input port.
REPRESENTATIONS_B	String	No	Specifies the numerical representation of the multiplier input B port. Values are UNSIGNED, SIGNED, and VARIABLE. When this parameter is set to UNSIGNED, the adder interprets the multiplier input B as an unsigned number. When this parameter is set to SIGNED, the adder interprets the multiplier input B as a signed two's complement number. If omitted, the default value is UNSIGNED. Use the VARIABLE setting to access the SIGNED_REGISTER_B and the SIGNED_PIPELINE_REGISTER_B parameter options for the signb input port.
SIGNED_REGISTER_[]	String	No	Parameter [A,B]. Specifies the clock signal for the first register on the corresponding sign[] port. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If the corresponding sign[] port value is UNUSED, this parameter is ignored. If omitted, the default value is CLOCKO.

Parameter Name	Туре	Requi red	Description
SIGNED_PIPELINE_REGISTER_[]	String	No	Parameter [A,B]. Specifies the clock signal for the second register on the corresponding sign[] port. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If the corresponding sign[] port value is UNUSED, this parameter is ignored. If omitted, the default value is CLOCKO.
SIGNED_ACLR_[]	String	No	Parameter [A,B]. Specifies the asynchronous clear signal for the first register on the corresponding sign[] port. Values are NONE, ACLRO, ACLR1, ACLR2, and ACLR3. If omitted and corresponding SIGNED_ REGISTER_[] is used, the default value is ACLR3.
SIGNED_PIPELINE_ACLR_[]	String	No	Parameter [A,B]. Specifies the asynchronous clear signal for the second register on the corresponding sign[] port. Values are NONE, ACLRO, ACLRI, ACLR2, and ACLR3. If omitted and the corresponding SIGNED_ PIPELINE_REGISTER_[] is used, the default value is ACLR3.
MULTIPLIER_REGISTER[]	String	No	Parameter [03]. Specifies the clock source of the register that follows the corresponding multiplier. Values are UNREGISTERED, CLOCKO, CLOCKI, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
MULTIPLIER_ACLR[]	String	No	Parameter [03]. Specifies the asynchronous clear signal of the register that follows the corresponding multiplier. Values are NONE, ACLRO, ACLRO, ACLRO, and ACLRO. If omitted and corresponding MULTIPLIER_REGISTER[] is used, the default value is ACLRO.

Parameter Name	Туре	Requi red	Description
MUTIPLIER1_DIRECTION	String	No	Specifies whether the second multiplier adds or subtracts its value from the sum. Values are ADD and SUB. If the addnsub1 port is used, this parameter is ignored. If omitted, the default value is ADD.
MUTIPLIER3_DIRECTION	String	No	Specifies whether the fourth and all subsequent odd-numbered multipliers add or subtract their results from the total. Values are ADD and SUB. If the addnsub3 port is used, this parameter is ignored. If omitted, the default value is ADD.
ACCUM_DIRECTION	String	No	Specifies whether to use the accumulator and whether the accumulator adds or subtracts its value from the sum. Values are ADD and SUB. If omitted, the default value is ADD.
OUTPUT_REGISTER	String	No	Specifies the clock signal for the second adder register. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCK0.
OUTPUT_ACLR	String	No	Specifies the asynchronous clear signal for the second adder register. Values are NONE, ACLRO, ACLR1, ACLR2, and ACLR3. If omitted, the default value is ACLR3.
PORT_SIGN[]	String	No	Parameter [A,B]. Specifies the corresponding sign[] input port usage. Values are PORT_USED, PORT_UNUSED, and PORT_CONNECTIVITY. If omitted, the default value is PORT_CONNECTIVITY.
CHAINOUT_ROUND_TYPE	String	No	Specifies the rounding mode at the chainout stage. Values are BIASED and UNBIASED. A value of BIASED specifies round-to-nearest-integer. A value of UNBIASED specifies round-to-nearest-even.

Parameter Name	Туре	Requi red	Description
EXTRA_LATENCY	String	No	Specifies the number of clock cycles of latency.
LPM_HINT	String	No	Allows you to specify Alteraspecific parameters in VHDL design files (.vhd). The default value is UNUSED.
LPM_TYPE	String	No	Identifies the library of parameterized modules (LPM) entity name in VHDL design files.
INTENDED_DEVICE_FAMILY	String	No	This parameter is used for modeling and behavioral simulation purposes. Create the ALTMULT_ADD megafunction with the MegaWizard Plug-in Manager to calculate the value for this parameter.
DSP_BLOCK_BALANCING	String	No	If omitted, the default value is AUTO.
DEDICATED_MULTIPLIER_CIRCUITRY	String	No	Specifies whether to use the DSP block to implement the circuit. Values are YES, NO, and AUTO. The circuit is implemented using the DSP block when the value is set to YES. If omitted, the default value is AUTO.

Table 11-4: ALTMULT_ADD Parameters (Stratix IV Devices Only)

Parameter Name	Туре	Requi red	Description
OUTPUT_SATURATE_TYPE	String	No	Specifies the saturation mode. Values are Symmetric and ASYMMETRIC. A value of Symmetric specifies the absolute value of the maximum negative number equal to the maximum positive number. A value of ASYMMETRIC specifies the maximum negative number is larger than the maximum positive number. If omitted, the default value is ASYMMETRIC.

Parameter Name	Туре	Requi red	Description
WIDTH_SATURATE_SIGN	String	No	Specifies the saturation position. The value is determined by counting the bits that become the sign bits after saturation. Values are calculated according to the following modes- width, width, and width, result. Value must be an unsigned integer. If a positive number is unavailable, no saturation is allowed in your input/output width and mode setting. If omitted, the default value is 1.
CHAINOUT_ADDER	String	No	Specifies the chainout mode of the final adder stage. Values are YES and NO. If omitted, the default value is NO.
ACCUMULATOR	String	No	Specifies the accumulator mode of the final adder stage. Values are YES and NO. If omitted, the default value is NO. When value is set to YES, rounding is dynamic and you must initialize the accumulator while rounded data is acquired.
WIDTH_CHAININ	Integer	No	Width of the chainin[] port. WIDTH_CHAININ equals WIDTH_ RESULT if port chainin is used. If omitted, the default value is 1.
OUTPUT_ROUNDING	String	No	Enables rounding handling at second adder stage. Values are YES, NO, and VARIABLE. A value of YES or NO specifies saturation handling setting permanently to on or off. A value of VARIABLE allows dynamically controlled saturation handling.
OUTPUT_ROUND_TYPE	String	No	Specifies the rounding mode. Values are NEAREST_EVEN and NEAREST_INTEGER. A value of NEAREST_EVEN specifies round- to-nearest-even. A value of NEAREST_INTEGER specifies round-to-nearest-integer. If omitted, the default value is NEAREST_INTEGER.

Parameter Name	Туре	Requi red	Description
OUTPUT_ROUND_REGISTER	String	No	Specifies the clock source for the first register on the output_round input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
OUTPUT_ROUND_ACLR	String	No	Specifies the asynchronous clear source for the first register on the output_round input. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted and OUTPUT_ROUND_REGISTER is used, the default value is ACLR3.
OUTPUT_ROUND_PIPELINE_REGISTER	String	No	Specifies the clock source for the second register on the output_round input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
OUTPUT_ROUND_PIPELINE_ACLR	String	No	Specifies the asynchronous clear source for the second register on the output_round input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and OUTPUT_ROUND_PIPELINE_REGISTER is used, the default value is ACLR3.
OUTPUT_SATURATION	String	No	Enables saturation handling at second adder stage. Values are YES, NO, and VARIABLE. A value of YES or NO specifies saturation handling setting permanently to on or off. A value of VARIABLE allows dynamically controlled saturation handling. If omitted, the default value is NO.
OUTPUT_SATURATE_REGISTER	String	No	Specifies the clock source for the first register on the output_ saturate input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is UNREGISTERED.

Parameter Name	Туре	Requi red	Description
OUTPUT_SATURATE_ACLR	String	No	Specifies the asynchronous clear source for the first register on the output_saturate input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and OUTPUT_ SATURATE_REGISTER is used, the default value is ACLR3.
OUTPUT_SATURATE_PIPELINE_REGISTER	String	No	Specifies the clock source for the second register on the output_ saturate input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
OUTPUT_SATURATE_PIPELINE_ACLR	String	No	Specifies the asynchronous clear source for the second register on the output_saturate input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and OUTPUT_SATURATE_ PIPELINE_ REGISTER is used, the default value is ACLR3.
CHAINOUT_ROUNDING	String	No	Enables rounding handling at the chainout stage. Values are YES, NO, and VARIABLE. A value of YES or NO specifies saturation handling setting permanently to on or off. A value of VARIABLE allows dynamically controlled saturation handling.
			If the value of CHAINOUT_ROUNDING is YES, the symmetric saturation at the second adder output stage is not allowed. If omitted, the default value is NO.
CHAINOUT_ROUND_REGISTER	String	No	Specifies the clock source for the first register on the chainout_round input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
CHAINOUT_ROUND_ACLR	String	No	Specifies the asynchronous clear source for the first register on the chainout_round input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and CHAINOUT_ROUND_REGISTER is used, the default value is ACLR3.

Parameter Name	Туре	Requi red	Description
CHAINOUT_ROUND_PIPELINE_REGISTER	String	No	Specifies the clock source for the second register on the chainout_round input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
CHAINOUT_ROUND_PIPELINE_ACLR	String	No	Specifies the asynchronous clear source for the second register on the chainout_round input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and CHAINOUT_ROUND_ PIPELINE_ REGISTER is used, the default value is ACLR3.
CHAINOUT_ROUND_OUTPUT_REGISTER	String	No	Specifies the clock source for the third register on the chainout_round input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
CHAINOUT_ROUND_OUTPUT_ACLR	String	No	Specifies the asynchronous clear source for the third register on the chainout_round input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and CHAINOUT_ROUND_ OUTPUT_ REGISTER is used, the default value is ACLR3.
CHAINOUT_SATURATION	String	No	Enables saturation handling at the chainout stage. Values are YES, NO, and VARIABLE. A value of YES or NO specifies saturation handling setting permanently to on or off. A value of VARIABLE allows dynamically controlled saturation handling. If omitted, the default value is NO.
CHAINOUT_SATURATE_REGISTER	String	No	Specifies the clock source for the first register on the chainout_ saturate input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.

Parameter Name	Туре	Requi red	Description
CHAINOUT_SATURATE_ACLR	String	No	Specifies the asynchronous clear source for the first register on the chainout_saturate input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and CHAINOUT_SATURATE_REGISTER is used, the default value is ACLR3.
CHAINOUT_SATURATE_PIPELINE_REGISTER	String	No	Specifies the clock source for the second register on the chainout_saturate input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
CHAINOUT_SATURATE_OUTPUT_REGISTER	String	No	Specifies the clock source for the third register on the chainout_saturate input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
CHAINOUT_SATURATE_OUTPUT_ACLR	String	No	Specifies the asynchronous clear source for the third register on the chainout_saturate input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and CHAINOUT_SATURATE_ OUTPUT_ REGISTER is used, the default value is ACLR3.
ZERO_CHAINOUT_OUTPUT_REGISTER	String	No	Specifies the clock source for the first register on the zero_ chainout input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
ZERO_CHAINOUT_OUTPUT_ACLR	String	No	Specifies the asynchronous clear source for the first register on the zero_chainout input. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted and ZERO_CHAINOUT_OUTPUT_ REGISTER is used, the default value is ACLR3.
ZERO_LOOPBACK_REGISTER	String	No	Specifies the clock source for the first register on the zero_ loopback input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.

Parameter Name	Туре	Requi red	Description
ZERO_LOOPBACK_ACLR	String	No	Specifies the asynchronous clear source for the first register on the zero_loopback input. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted and ZERO_LOOPBACK_PIPELINE_REGISTER is used, the default value is ACLR3.
ZERO_LOOPBACK_PIPELINE_REGISTER	String	No	Specifies the clock source for the second register on the zero_ loopback input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
ZERO_LOOPBACK_PIPELINE_ACLR	String	No	Specifies the asynchronous clear source for the second register on the zero_loopback input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and ZERO_LOOPBACK_ PIPELINE_REGISTER is used, the default value is ACLR3.
ZERO_LOOPBACK_OUTPUT_REGISTER	String	No	Specifies the clock source for the third register on the zero_ loopback input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
ZERO_LOOPBACK_OUTPUT_ACLR	String	No	Specifies the asynchronous clear source for the third register on the zero_loopback input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and ZERO_LOOPBACK_OUTPUT_ REGISTER is used, the default value is ACLR3.
ACCUM_SLOAD_REGISTER	String	No	Specifies the clock source for the first register on the accum_sload input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
ACCUM_SLOAD_ACLR	String	No	Specifies the asynchronous clear source for the first register on the accum_sload input. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted and ACCUM_SLOAD_ REGISTER is used, the default value is ACLR3.

Parameter Name	Туре	Requi red	Description
ACCUM_SLOAD_PIPELINE_REGISTER	String	No	Specifies the clock source for the second register on the accum_sload input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
ACCUM_SLOAD_PIPELINE_ACLR	String	No	Specifies the asynchronous clear source for the second register on the accum_sload input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and ACCUM_SLOAD_PIPELINE_ REGISTER is used, the default value is ACLR3.
SHIFT_MODE	String	No	Specifies the shift mode. Values are NO, LEFT, RIGHT, ROTATION, and VARIABLE. If VARIABLE is selected, rotate and shift_right are used to specify shift left, shift right, or rotation. If omitted, the default value is NO. Note that this parameter is supported only when inputs equal 32 bits each, output equals 32 bits, and the number of multipliers equals 1.
ROTATE_REGISTER	String	No	Specifies the clock source for the first register on the rotate input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCK0.
ROTATE_ACLR	String	No	Specifies the asynchronous clear source for the first register on the rotate input. Values are ACLRO, ACLR1, ACLR2, and ACLR3. If omitted and ROTATE_REGISTER is used, the default value is ACLR3.
ROTATE_PIPELINE_REGISTER	String	No	Specifies the clock source for the second register on the rotate input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.

Parameter Name	Туре	Requi red	Description
ROTATE_PIPELINE_ACLR	String	No	Specifies the asynchronous clear source for the second register on the rotate input. Values are ACLRO, ACLRI, ACLR2, and ACLR3. If omitted and ROTATE_ PIPELINE_REGISTER is used, the default value is ACLR3.
ROTATE_OUTPUT_REGISTER	String	No	Specifies the clock source for the third register on the rotate input. Values are UNREGISTERED, CLOCKO, CLOCKI, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
ROTATE_OUTPUT_ACLR	String	No	Specifies the asynchronous clear source for the third register on the rotate input. Values are ACLRO, ACLRI, ACLR2, and ACLR3. If omitted and ROTATE_OUTPUT_ REGISTER is used, the default value is ACLR3.
SHIFT_RIGHT_REGISTER	String	No	Specifies the clock source for the first register on the shift_right input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
SHIFT_RIGHT_ACLR	String	No	Specifies the asynchronous clear source for the first register on the shift_right input. Values are NONE, ACLRO, A
SHIFT_RIGHT_PIPELINE_REGISTER	String	No	Specifies the clock source for the second register on the shift_right input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
SHIFT_RIGHT_PIPELINE_ACLR	String	No	Specifies the asynchronous clear source for the second register on the shift_right input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and SHIFT_RIGHT_PIPELINE_REGISTER is used, the default value is ACLR3.

Parameter Name	Туре	Requi red	Description
SHIFT_RIGHT_OUTPUT_REGISTER	String	No	Specifies the clock source for the third register on the shift_right input. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.
SHIFT_RIGHT_OUTPUT_ACLR	String	No	Specifies the asynchronous clear source for the third register on the shift_right input. Values are ACLR0, ACLR1, ACLR2, and ACLR3. If omitted and SHIFT_RIGHT_OUTPUT_REGISTER is used, the default value is ACLR3.
PORT_OUTPUT_IS_OVERFLOW	String	No	Specifies port usage. Values are PORT_UNUSED and PORT_USED. When the value is set to PORT_USED, output pin overflow is added. If omitted, the default value is PORT_UNUSED.
PORT_CHAINOUT_SAT_IS_OVERFLOW	String	No	Specifies port usage. Values are PORT_UNUSED and PORT_USED. When the value is set to PORT_USED, output pin chainout_sat_overflow is added. If omitted, the default value is PORT_UNUSED.
SCANOUTA_REGISTER	String	No	Specifies the clock source for the scanouta data bus registers. Values are UNREGISTERED, CLOCKO, CLOCKI, CLOCK2, and CLOCK3. If omitted, the default value is UNREGISTERED.
SCANOUTA_ACLR	String	No	Specifies the asynchronous clear source for the scanouta data bus registers. Values are NONE, ACLRO, ACLR1, ACLR2, and ACLR3. If omitted and SCANOUTA_REGISTER is used, the default value is ACLR3.
CHAINOUT_REGISTER	String	No	Specifies the clock source for the chainout mode result register. This is an additional stage after the second adder. Values are UNREGISTERED, CLOCKO, CLOCK1, CLOCK2, and CLOCK3. If omitted, the default value is CLOCKO.

Parameter Name	Туре	Requi red	Description
CHAINOUT_ACLR	String	No	Specifies the asynchronous clear for the chainout mode result register. This is an additional stage after the second adder. Values are None, ACLRO, ACLR1, ACLR2, and ACLR3. If omitted and CHAINOUT_REGISTER is used, the default value is ACLR3.

ALTMULT_ADD (Multiply-Adder) IP Core

ALTMULT_COMPLEX (Complex Multiplier) IP Core 12

2016.06.10

UG-01063

The ALTMULT_COMPLEX IP core implements the multiplication of two complex numbers and offers the following two implementation modes:

Canonical

You can use the canonical representation for the following:

- All supported Altera devices prior to Stratix III devices. The canonical representation is no longer supported for Stratix III, Stratix IV, Cyclone IV, Arria V, Stratix V, Cyclone V, MAX 10, and Arria 10 devices.
- Input data widths of less than 18 bits
- Conventional

You can use the ALTMULT_ADD IP core to implement the complex multiplier by instantiating two multipliers.

The following figure shows the ports for the ALTMULT_COMPLEX IP core.

Figure 12-1: ALTMULT_COMPLEX Ports

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Complex Multiplication

Complex numbers are numbers in the form of the following equation:

a + ib

Where:

- a and b are real numbers
- i is an imaginary unit that equals the square root of $-1:\sqrt{-1}$

Two complex numbers, x = a + ib and y = c + id are multiplied, as shown in the following equations.

Figure 12-2: Equation for Two Complex Numbers Multiplication

$$x * y = (a + ib)(c + id)$$

= $ac + ibc + iad - bd$
= $(ac - bd) + i(ad + bc)$

Related Information

Canonical Representation on page 12-2

Canonical Representation

From Complex Multiplication equation in **Figure 12-2**, the multiplication of two complex numbers can be represented in two parts: real and imaginary.

The following equation shows that the *xy_real* variable represents real representation.

Figure 12-3: Real Representation

```
xy_{real} = ac - bd
= ac - bd + (ad - bc) - (ad - bc)
= (ac - ad + bc - bd) + (ad - bc)
= ((a + b)(c - d)) + (ad - bc)
```

xy_real represents the real part

The following equation shows that the *xy_imaginary* variable represents imaginary representation.

Figure 12-4: Imaginary Representation

```
xy\_imaginary = ad + bc
```

xy_imaginary represents imaginary

Both equations derived from Complex Multiplication equation.

Note: The canonical representation is available for all supported Altera devices prior to Stratix III devices.

Related Information

Complex Multiplication on page 12-2

Conventional Representation

The multiplication of two complex numbers can be represented in two parts, real and imaginary. The *xy_real* variable in the following equation represents the real part:

```
xy_real = ac - bd
```

The *xy_imaginary* variable in the following equation represents the imaginary part.

```
xy_imaginary = ad + bc
```

Features

The ALTMULT_COMPLEX IP core offers the following features:

Generates a multiplier to perform multiplication operations of two complex numbers

Note: When building multipliers larger than the natively supported size there may/will be a performance impact resulting from the cascading of the DSP blocks.

- Supports data width of 1–256 bits
- Supports signed and unsigned data representation format
- Supports canonical and conventional implementation modes
- Supports pipelining with configurable output latency
- Supports optional asynchronous clear and clock enable input ports
- Supports optional synchronous clear for Arria 10 devices
- Provides an option to dynamically switch between 36 × 36 normal mode and 18 × 18 complex mode (for Stratix V devices only)

Verilog HDL Prototype

The following Verilog HDL prototype is located in the Verilog Design File (.v) altera_mf.v in the <Quartus Prime installation directory>\eda\synthesis directory.

```
module altmult_complex
# (parameter intended_device_family = "unused",
parameter implementation_style = "AUTO",
parameter pipeline = 4,
parameter representation_a = "SIGNED",
parameter representation_b = "SIGNED",
parameter width_a = 1,
parameter width_b = 1,
parameter width_result = 1,
parameter lpm_type = "altmult_complex",
parameter lpm_hint = "unused")
(input wire aclr,
input wire clock,
input wire complex,
```

```
input wire [width_a-1:0] dataa_imag,
input wire [width_a-1:0] dataa_real,
input wire [width_b-1:0] datab_imag,
input wire [width_b-1:0] datab_real,
input wire ena,
output wire [width_result-1:0] result_imag,
output wire [width_result-1:0] result_real;
endmodule
```

VHDL Component Declaration

The VHDL component declaration is located in the VHDL Design File (.vhd) altera_mf_components.vhd in the <Quartus Prime installation directory>\libraries\vhdl\altera_mf directory.

```
component altmult_complex
generic (
intended_device_family:string := "unused";
implementation_style:string := "AUTO";
pipeline:natural := 4;
representation_a:string := "SIGNED";
representation_b:string := "SIGNED";
width_a:natural;
width_b:natural;
width_result:natural;
lpm_hint:string := "UNUSED";
lpm_type:string := "altmult_complex");
port(
aclr:in std_logic := '0';
clock:in std_logic := '0';
complex:in std_logic := '1';
dataa_imag:in std_logic_vector(width_a-1 downto 0);
dataa_real:in std_logic_vector(width_a-1 downto 0);
datab_imag:in std_logic_vector(width_b-1 downto 0);
datab_real:in std_logic_vector(width_b-1 downto 0);
ena:in std_logic := '1';
result_imag:out std_logic_vector(width_result-1 downto 0);
result_real:out std_logic_vector(width_result-1 downto 0));
end component;
```

VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;
```

Ports

Table 12-1: ALTMULT_COMPLEX Input Ports

Port Name	Required	Description
aclr	No	Asynchronous clear for the complex multiplier. When the aclr port is asserted high, the function is asynchronously cleared.

Port Name	Required	Description
sclr	No	Synchronous clear for the complex multiplier. When the sclr port is asserted high, the function is asynchronously cleared.
clock	Yes	Clock input to the ALTMULT_COMPLEX function.
dataa_imag[]	Yes	Imaginary input value for the data A port of the complex multiplier. The size of the input port depends on the WIDTH_A parameter value.
dataa_real[]	Yes	Real input value for the data A port of the complex multiplier. The size of the input port depends on the WIDTH_A parameter value.
datab_imag[]	Yes	Imaginary input value for the data B port of the complex multiplier. The size of the input port depends on the WIDTH_B parameter value.
datab_real[]	Yes	Real input value for the data B port of the complex multiplier. The size of the input port depends on the WIDTH_B parameter value.
ena	No	Active high clock enable for the clock port of the complex multiplier.
complex	No	Optional input to enable dynamic switching between 36×36 normal model and 18×18 complex mode.
		This input is only available in Stratix V devices. In the GUI, this parameter is referred as Dynamic Complex Mode.

Table 12-2: ALTMULT_COMPLEX Output Ports

Port Name	Required	Description
result_imag	Yes	Imaginary output value of the multiplier. The size of the output port depends on the WIDTH_RESULT parameter value.
result_real	Yes	Real output value of the multiplier. The size of the output port depends on the WIDTH_RESULT parameter value.

Parameters

The following table lists the parameters for the ALTMULT_COMPLEX IP core.

Table 12-3: ALTMULT_COMPLEX Parameters

Parameter	IP Generated Parameter	Value	Default Value	Description
General				
How wide should the A input buses be?	WIDTH_A	1–256	18	Specifies the number of bits for A input buses.

Parameter	IP Generated Parameter	Value	Default Value	Description	
How wide should the B input buses be?	WIDTH_B	1–256	18	Specifies the number of bits for B input buses.	
How wide should the 'result' output bus be?	WIDTH_ RESULT	1–256	36	Specifies the number of bits for 'result' output bus.	
Input Representation	L				
What is the representation format for A inputs?	REPRESENTA- TION_A	Signed, Unsigned	Signed	Specifies the representation format for A inputs. Stratix V, Arria V, Cyclone V, and Arria 10 devices support only signed input representation format.	
What is the representation format for B inputs?	REPRESENTA- TION_B	Signed, Unsigned	Signed	Specifies the representation format for B inputs. Stratix V, Arria V, Cyclone V, and Arria 10 devices support only signed input representation format.	
Complex Multiplier (Option				
Dynamic Complex Mode	GUI_ DYNAMIC_ COMPLEX	_	Unchecke d	Enable dynamic switching between 36 x 36 normal mode and 18 x 18 complex mode. Available only in Stratix V devices.	
Implementation Style	<u> </u>				
Which implementation style should be used?	IMPLEMENTA-TION_STYLE	Automatically select a style for best trade-off for the current settings Canonical. (Minimize the number of simple multipliers) Conventional. (Minimize the use of logic cells)	Automatically select a style for best tradeoff for the current settings	l	
Pipelining (Only avai	Pipelining (Only available for Arria 10 devices)				

Parameter	IP Generated Parameter	Value	Default Value	Description
Output latency	PIPELINE	0 - 11	4	Specifies the number of clock cycles for output latency. Available only in Arria 10 devices.
Create a Clear input?	CLEAR_TYPE	NONE ACLR SCLR	NONE	Select this option to create aclr or sclr signal for the complex multiplier. Available only in Arria 10 devices.
Create a Clock Enable input?	GUI_USE_ CLKEN	_	Unchecke d	Select this option to create ena signal for the complex multiplier clock. Available only in Arria 10 devices.

Table 12-4: ALTMULT_COMPLEX Parameters

Parameter Name	Туре	Required	Description
IMPLEMENTATION_STYLE	String	Yes	Specifies the representation algorithm and the number of bits per channel. Values are AUTO, CANONICAL, and CONVENTIONAL. If omitted, the default value is AUTO. When set to AUTO, the Quartus Prime software determines the best implementation based on the selected device family and input width. A value of CANONICAL is available for input widths that are less than 18 bits and for all supported devices. A value of CONVENTIONAL is available for all supported device families for all input ranges (1 to 256 bits).
PIPELINE	Integer	Yes	Specifies the amount of latency, in clock cycles, needed to produce the result. Values are [014]. If omitted, the default value is 4. If the value of IMPLEMENTATION_STYLE is CANONICAL, the maximum value of PIPELINE is 14, and if the value of the IMPLEMENTATION_STYLE parameter is CONVENTIONAL, the maximum value of PIPELINE is 11.

Parameter Name	Туре	Required	Description
REPRESENTATION_A	String	Yes	Specifies the number representation of data A. Values are UNSIGNED and SIGNED.
			If unspecified, the default value is UNSIGNED. If value is set to SIGNED, data A inputs are interpreted as two's complement numbers.
			If value is set to UNSIGNED, data A inputs are interpreted as unsigned numbers.
			Stratix V, Arria V, Cyclone V, and Arria 10 devices support only signed input representation format.
REPRESENTATION_B	String	Yes	Specifies the number representation of data B. Values are UNSIGNED and SIGNED.
			If unspecified, the default value is UNSIGNED. If value is set to SIGNED, data B inputs are interpreted as two's complement numbers.
			If value is set to UNSIGNED, data B inputs are interpreted as unsigned numbers.
			Stratix V, Arria V, Cyclone V, and Arria 10 devices support only signed input representation format.
WIDTH_A	Integer	Yes	Specifies the width of the dataa_real[] and dataa_imag[] ports. Value must be 256 bits or less. If omitted, the default value is 18.
WIDTH_B	Integer	Yes	Specifies the width of the datab_real[] and datab_imag[] ports. Value must be 256 bits or less. If omitted, the default value is 18.
WIDTH_RESULT	Integer	Yes	Specifies the width of the result_real[] and result_imag[] ports. Value must be 256 bits or less. If omitted, the default value is 36.
INTENDED_DEVICE_FAMILY	String	No	This parameter is used for modeling and behavioral simulation purposes. The parameter editor calculates this value.

Related Information

Does the ALTMULT_COMPLEX IP support unsigned operation in V-series and 10-series device families?

Solution to enable V-series and 10-series devices to support signed operation.

ALTSQRT (Integer Square Root) IP Core 13

2016.06.10

UG-01063

Subscribe

The ALTSQRT IP core implements a square root function that calculates the square root and remainder of an input.

The following figure shows the ports for the ALTSQRT IP core.

Figure 13-1: ALTSQRT Ports

Features

The ALTSQRT IP core offers the following features:

- Calculates the square root and the remainder of an input
- Supports data width of 1-256 bits
- Supports pipelining with configurable output latency
- Supports optional asynchronous clear and clock enable input ports

Verilog HDL Prototype

The following Verilog HDL prototype is located in the Verilog Design File (.v) altera_mf.v in the <Quartus Prime installation directory>\eda\synthesis directory.

```
module altsqrt
# (parameter lpm_hint = "UNUSED",
parameter lpm_type = "altsqrt",
parameter pipeline = 0,
parameter q_port_width = 1,
parameter r_port_width = 1,
parameter width = 1)
(input wire aclr,
```

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.


```
input wire clk,
input wire ena,
output wire [q_port_width-1:0] q,
input wire [width-1:0] radical,
output wire [r_port_width-1:0] remainder);
endmodule
```

VHDL Component Declaration

The VHDL component declaration is located in the VHDL Design File (.vhd) altera_mf_components.vhd in the <Quartus Prime installation directory>\libraries\vhdl\altera_mf directory.

```
component altsqrt
generic (
lpm_hint:string := "UNUSED";
lpm_type:string := "altsqrt";
pipeline:natural := 0;
q_port_width:natural := 1;
r port width:natural := 1;
width:natural);
port(
aclr:in std_logic := '0';
clk:in std_logic := '1';
ena:in std_logic := '1';
q:out std_logic_vector(Q_PORT_WIDTH-1 downto 0);
radical:in std_logic_vector(WIDTH-1 downto 0);
remainder:out std_logic_vector(R_PORT_WIDTH-1 downto 0));
end component;
```

VHDL LIBRARY USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;
```

Ports

The following tables list the input and output ports for the ALTSQRT IP core.

Table 13-1: ALTSQRT Input Ports

Port Name	Required	Description
radical[]	Yes	Data input port. The size of the input port depends on the WIDTH parameter value.
ena	No	Active high clock enable input port.
clk	No	Clock input port that provides pipelined operation for the ALTSQRT IP core. For the values of PIPELINE parameter other than 0 (default value), the clock port must be connected.

Port Name	Required	Description
aclr	No	Asynchronous clear input port. that can be used at any time to reset the pipeline to all 0s, asynchronously to the clock signal.

Table 13-2: ALTSQRT Output Ports

Port Name	Required	Description
remainder[]	Yes	The square root of the radical. The size of the remainder[] port depends on the R_PORT_WIDTH parameter value.
d[]	Yes	Data output. The size of the q[] port depends on the Q_PORT_WIDTH parameter value.

Parameters

The following table lists the parameters for the ALTSQRT IP core.

Parameter Name	Туре	Required	Description
WIDTH	Integer	Yes	Specifies the widths of the radical[] input port.
Q_PORT_WIDTH	Integer	Yes	Specifies the width of the q[] output port.
R_PORT_WIDTH	Integer	Yes	Specifies the width of the remainder[] output port.
PIPELINE	Integer	No	Specifies the number of clock cycles of latency to add.
LPM_HINT	String	No	When you instantiate a library of parameterized modules (LPM) function in a VHDL Design File (.vhd), you must use the LPM_HINT parameter to specify an Altera-specific parameter. For example: LPM_HINT = "CHAIN_SIZE = 8, ONE_INPUT_IS_CONSTANT = YES" The default value is UNUSED.
LPM_TYPE	String	No	Identifies the library of parameterized modules (LPM) entity name in VHDL design files.

PARALLEL_ADD (Parallel Adder) IP Core 14

2016.06.10

UG-01063

The PARALLEL_ADD IP core performs add or subtract operations on a selected number of inputs to produce a single sum result. You can add or subtract more than two operands and automatically shift the input operands upon entering the function. The method of shifting input operands is useful for serial FIR filter structures requiring a shift-and-accumulate of the partial products.

The following figure shows the ports for the PARALLEL_ADD IP core.

Figure 14-1: PARALLEL_ADD Ports

Feature

The PARALLEL_ADD IP core offers the following features:

- Performs add or subtract operations on a number of inputs to produce a single sum result
- Supports data width of 8–128 bits
- Supports signed and unsigned data representation format
- Supports pipelining with configurable output latency
- Supports shifting data vectors
- Supports addition or subtraction of the most-significant input operands
- Supports optional asynchronous clear and clock enable ports

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Verilog HDL Prototype

The following Verilog HDL prototype is located in the Verilog Design File (.v) altera_mf.v in the <Quartus Prime installation directory>\eda\synthesis directory.

```
module parallel_add (
    data,
    clock,
   aclr,
    clken,
    result);
    parameter width = 4;
    parameter size = 2;
    parameter widthr = 4;
    parameter shift = 0;
    parameter msw_subtract = "NO"; // or "YES"
    parameter representation = "UNSIGNED";
    parameter pipeline = 0;
    parameter result_alignment = "LSB"; // or "MSB"
    parameter lpm_type = "parallel_add";
    input [width*size-1:0] data;
    input clock;
    input aclr;
    input clken;
    output [widthr-1:0] result;
endmodule
```

VHDL Component Declaration

The VHDL component declaration is located in the VHDL Design File (.vhd) altera_mf_components.vhd in the <Quartus Prime installation directory>\libraries\vhdl\altera_mf directory.

```
component parallel_add
  generic (
     width : natural := 4;
     size : natural := 2;
     widthr : natural := 4;
     shift : natural := 0;
                            := "NO";
     msw_subtract : string
     representation : string := "UNSIGNED";
     pipeline : natural := 0;
     result_alignment : string := "LSB";
      lpm_hint: string := "UNUSED";
      lpm_type : string := "parallel_add");
  port (
     data:in altera_mf_logic_2D(size - 1 downto 0, width- 1 downto 0);
      clock : in std_logic := '1';
     aclr : in std_logic := '0';
      clken : in std_logic := '1';
     result : out std_logic_vector(widthr - 1 downto 0));
end component;
```


VHDL LIBRARY_USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

```
LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;
```

Ports

The following tables list the input and output ports of the PARALLEL_ADD IP core.

Table 14-1: PARALLEL_ADD Input Ports

Port Name	Required	Description
data[]	Yes	Data input to the parallel adder. Input port [SIZE - 1 DOWNTO 0, WIDTH- 1 DOWNTO 0] wide.
clock	No	Clock input to the parallel adder. This port is required if the PIPELINE parameter has a value of greater than 0.
clken	No	Clock enable to the parallel adder. If omitted, the default value is 1.
aclr	No	Active high asynchronous clear input to the parallel adder.

Table 14-2: PARALLEL_ADD Output Ports

Port Name	Required	Description
result[]	Yes	Adder output port. The size of the output port depends on the WIDTHR parameter value.

Parameters

The following table lists the parameters for the PARALLEL_ADD IP core.

Table 14-3: PARALLEL_ADD Parameters

Parameter Name	Туре	Required	Description
WIDTH	Integer	Yes	Specifies the width of the data[] input port.
SIZE	Integer	Yes	Specifies the number of inputs to add.
WIDTHR	Integer	Yes	Specifies the width of the result[] output port.
SHIFT	Integer	Yes	Specifies the relative shift of the data vectors.
NEW_SUBTRACT	String	No	Specifies whether to add or subtract the most significant input word bit. Values are NO or YES. If omitted, the default value is NO.

Send Feedback

Parameter Name	Туре	Required	Description
REPRESENTATION	String	No	Specifies whether the input is signed or unsigned. Values are unsigned or signed. If omitted, the default value is unsigned.
PIPELINE	Integer	No	Specifies the value, in clock cycles, of the output latency.
RESULT_ALIGNMENT	String	No	Specifies the alignment of the result port. Values are MSB or LSB. If omitted, the default value is LSB.
INTENDED_DEVICE_FAMILY	String	No	This parameter is used for modeling and behavioral simulation purposes. The parameter editor calculates this value.
LPM_HINT	String	No	When you instantiate a library of parameterized modules (LPM) function in a VHDL Design File (.vhd), you must use the LPM_HINT parameter to specify an Altera-specific parameter. For example: LPM_HINT = "CHAIN_SIZE = 8, ONE_INPUT_IS_CONSTANT = YES"
			The default value is UNUSED.
LPM_TYPE	String	No	Identifies the library of parameterized modules (LPM) entity name in VHDL design files.

Integer Arithmetic IP Cores User Guide Document Archives

2016.06.10

UG-01063	Subscribe	Send Feedback

If an IP core version is not listed, the user guide for the previous IP core version applies.

IP Core Version	User Guide
15.1	Integer Arithmetic IP Cores User Guide
14.1	Integer Arithmetic IP Cores User Guide

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Document Revision History

B

2016.06.10

UG-01063

Subscribe

The following table lists the revision history for this document.

Table B-1: Document Revision History

Date	Version	Changes
June 2016	2016.06.10	 Added separate parameters table for Arria 10 devices. Replaced ip-generated parameter names with GUI parameter names for LPM_MULT, ALTERA_MULT_ADD, ALTMULT_COMPLEX IP cores. Added synchronous clear support for input, pipeline, and output registers LPM_MULT in Arria 10 devices, ALTERA_MULT_ADD for all devices and ALTMULT_COMPLEX for Arria 10 devices. Added new parameters in LPM_MULT and ALTMULT_COMPLEX IP cores (Arria 10 devices) and ALTERA_MULT_ADD (for all devices) to enable users to select synchronous clear feature. Removed resource tables for all Integer Arithmetic IP cores.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Date	Version	Changes
November 2015	2015.11.18	 Corrected LPM_COUNTER VHDL component declaration. Added device support list to List of IP Cores table. Removed Stratix V, Arria V and Cyclone V devices support for ALTMULT_ACCUM and ALTMULT_ADD IP cores. Removed Cyclone II, Cyclone III, Stratix II, and Stratix III because these devices are no longer supported for all the integer arithmetic IP cores. Change COEFFSEL[]_REGISTER parameter name to COEFSEL[]_REGISTER and COEFFSEL[]_ACLR parameter name to COEFSEL[]_ACLR. Added description in REPRESENTATION_A and REPRESENTATION_B parameters to clarify only signed input representation is supported for Stratix V, Arria V, Cyclone V, and Arria 10 devices. Added LPM_ADD_SUB and LPM_COMPARE IP cores information. Added links to Introduction to Altera IP Cores, Creating Version-Independent IP and Qsys Simulation Scripts, and Project Management Best Practices. Changed instances of Quartus II to Quartus Prime.
December, 2014	2014.12.19	 Removed the LPM_ADD_SUB and LPM_COMPARE IPs because these IPs are no longer supported. Added a note to clarify that when building multipliers larger than the natively supported size there may be a performance impact resulting from the cascading of the DSP blocks in LPM_MULT, ALTERA_MULT_ADD, ALTMULT_ACCUM, ALTMULT_ADD, and ALTMULT_COMPLEX IP cores. Added information about the Create a 'sync_e' port parameter and the sync_e signal for ALTECC_DECODER IP core. Removed sconst port information as the port is no longer available for LPM_COUNTER IP core. Provided an example to use the LPM_HINT parameter.
August, 2014	2014.08.18	 Updated parameterization steps for legacy and latest parameter editors. Added note for IP cores that do not support Arria 10 designs. Added device migration information.
June 2014	5.0	 Replaced MegaWizard Plug-In Manager information with IP Catalog. Added standard information about upgrading IP cores. Added standard installation and licensing information. Removed outdated device support level information. IP core device support is now available in IP Catalog and parameter editor.

Altera Corporation Document Revision History

Date	Version	Changes
June 2013	4.0	 Added ALTERA_MULT_ADD (Multiply-Adder) IP Core on page 8-1 section. Removed the following obsoleted megafunctions: LPM_ABS, ALTACCUMULATE, ALTMULT_ACCUM, ALTMULT_ADD. Updated ALTMULT_ACCUM (Multiply-Accumulate) on page 10-1 to include an obsolescence note and remove Arria V, Cyclone V, and Stratix V devices information. Updated ALTMULT_ADD (Multiply-Adder) on page 11-1 to include an obsolescence note and remove Arria V, Cyclone V, and Stratix V devices information.
February 2013	3.1	 Updated Table 52 on page 63 to include Stratix V information for accum_sload port. Updated Table 54 on page 65 to include Stratix V information for PORT_SIGNA and PORT_SIGNB parameters.
February 2012	3.0	 Added Arria V and Cyclone V device support. Updated the parameter description for the following section: ALTMULT_ACCUM (Multiply-Accumulate) ALTMULT_ADD (Multiply-Add) Added the Double Accumulator section.
July 2010	2.0	 Updated architecture information for the following sections: ALTMULT_ACCUM (Multiply-Accumulate) ALTMULT_ADD (Multiply-Add) ALTMULT_COMPLEX (Complex Multiplier) Added specification information for all megafunctions
November 2009	1.0	Initial release.

Document Revision History

Altera Corporation

