Propiedades de relaciones

Clase 12

IIC 1253

Prof. Cristian Riveros

Recordatorio: Pares ordenados

Definición

Para dos elementos a y b, se define el par ordenado (a,b) como:

$$(a,b) = \{ \{a\}, \{a,b\} \}$$

Proposición

$$(a,b) = (c,d)$$
 si, y solo si, $a = c$ y $b = d$

Recordatorio: Producto cartesiano

Definición

■ Para dos conjuntos A y B se define el **producto cartesiano** como:

$$A \times B = \{ (a, b) \mid a \in A \land b \in B \}$$

Para conjuntos A_1, \ldots, A_n se define el **producto cartesiano generalizado**:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i\}$$

Recordatorio: Relaciones

Definición

Dado un conjunto A y B, R es una relación binaria sobre A y B si:

$$R \subseteq A \times B$$

Si B = A decimos que R es una relación binaria sobre A.

Ejemplos

- = n = m
- *n* < *m*
- $a \mid b$ (a divide $b \text{ ssi } \exists k \in \mathbb{N}. \ a \cdot k = b$)

Outline

Propiedades

Caracterizaciones

Outline

Propiedades

Caracterizaciones

Propiedades de relaciones binarias

- 1. Refleja
- 2. Irrefleja
- 3. Simétrica
- 4. Asimétrica
- 5. Antisimétrica
- 6. Transitiva
- 7. Conexa

Relaciones reflejas e irreflejas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

1. R es una relación refleja si para cada $a \in A$ se tiene $(a, a) \in R$.

$$\forall a \in A. (a, a) \in R$$

2. R es una relación irrefleja si para cada $a \in A$ se tiene $(a, a) \notin R$.

$$\forall a \in A. (a, a) \notin R$$

Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

NO es refleja ni irrefleja

Relaciones reflejas e irreflejas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

1. R es una relación refleja si para cada $a \in A$ se tiene $(a, a) \in R$.

$$\forall a \in A. (a, a) \in R$$

2. R es una relación irrefleja si para cada $a \in A$ se tiene $(a, a) \notin R$.

$$\forall a \in A. (a, a) \notin R$$

Ejemplo

$$R = \{ (a,b), (a,a), (b,b), (c,b), \\ (c,c), (c,d), (d,a), (d,d) \}$$

$$Refleja$$

Ejemplo de relaciones reflejas e irreflejas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Irrefleja: $\forall a \in A. (a, a) \notin R.$

¿cuáles relaciones son reflejas o irreflejas?

- n = m
- *n* < *m*
- **a** $\mid b \mid (a \text{ divide } b \text{ ssi } \exists k \in \mathbb{N}. \ a \cdot k = b)$

Si R NO es refleja, entonces ¿es R irrefleja?

Relaciones simétricas y asimétricas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

3. R es simétrica si para cada $a, b \in A$, si $(a, b) \in R$, entonces $(b, a) \in R$.

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \in R$$

4. R es asimétrica si para cada $a, b \in A$, si $(a, b) \in R$, entonces $(b, a) \notin R$.

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \notin R$$

Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

NO es simétrica ni asimétrica

Relaciones simétricas y asimétricas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

3. R es simétrica si para cada $a, b \in A$, si $(a, b) \in R$, entonces $(b, a) \in R$.

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \in R$$

4. R es asimétrica si para cada $a, b \in A$, si $(a, b) \in R$, entonces $(b, a) \notin R$.

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \notin R$$

Ejemplo

$$R = \{ (a,b), (a,c), (b,a), \\ (b,b), (b,d), (c,a), (d,b) \}$$
Relación simétrica

Relaciones antisimétricas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

5. R es antisimétrica si para cada $a, b \in A$, si $(a, b) \in R$ y $(b, a) \in R$, entonces a = b.

$$\forall a, b \in A. \ ((a, b) \in R \land (b, a) \in R) \rightarrow a = b$$

Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

Relación antisimétrica

Ejemplo de relaciones (a, anti)simétricas

Definiciones

- 3. Simétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \in R$.
- 4. Asimétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \notin R$.
- 5. Antisimétrica: $\forall a, b \in A$. $((a, b) \in R \land (b, a) \in R) \rightarrow a = b$.

```
¿cuáles relaciones son (a, anti)simétricas?
```

- n = m
- n < m
- **a** $\mid b \mid (a \text{ divide } b \text{ ssi } \exists k \in \mathbb{N}. \ a \cdot k = b)$

Ejemplo de relaciones (a, anti)simétricas

Definiciones

- 3. Simétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \in R$.
- 4. Asimétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \notin R$.
- 5. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.

Encuentre un ejemplo para cada intersección.

Relaciones transitivas y conexas

Definición

6. R es transitiva si para cada $a,b,c\in A$, si $(a,b)\in R$ y $(b,c)\in R$, entonces $(a,c)\in R$.

$$\forall a, b, c \in A. \ \left((a, b) \in R \land (b, c) \in R \right) \rightarrow (a, c) \in R$$

7. R es conexa si para cada $a, b \in A$, $(a, b) \in R$ o $(b, a) \in R$.

$$\forall a, b \in A. (a, b) \in R \lor (b, a) \in R$$

Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

NO es transitiva ni conexa

Relaciones transitivas y conexas

Definición

6. R es transitiva si para cada $a, b, c \in A$, si $(a, b) \in R$ y $(b, c) \in R$, entonces $(a, c) \in R$.

$$\forall a, b, c \in A. \ \left((a, b) \in R \ \land \ (b, c) \in R \right) \rightarrow (a, c) \in R$$

7. R es conexa si para cada $a, b \in A$, $(a, b) \in R$ o $(b, a) \in R$.

$$\forall a, b \in A. (a, b) \in R \lor (b, a) \in R$$

Ejemplo

$$R = \{ (a,b), (b,a), (b,b), (c,a), (c,b) \}$$

No es conexa ni transitiva

Relaciones transitivas y conexas

Definición

6. R es transitiva si para cada $a, b, c \in A$, si $(a, b) \in R$ y $(b, c) \in R$, entonces $(a, c) \in R$.

$$\forall a, b, c \in A. \ \left((a, b) \in R \ \land \ (b, c) \in R \right) \rightarrow (a, c) \in R$$

7. R es conexa si para cada $a, b \in A$, $(a, b) \in R$ o $(b, a) \in R$.

$$\forall a, b \in A. (a, b) \in R \lor (b, a) \in R$$

Ejemplo

$$R = \{ (a,b), (b,b), (c,a), (c,b), (c,d), (d,b), (d,d) \}$$

Relación transitiva no conexa

Ejemplo de relaciones transitivas y conexas

Definiciones

- 6. Transitiva: $\forall a, b, c \in A$. $((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$.
- 7. Conexa: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

```
¿cuáles relaciones son transitivas o conexas?
```

- n = m
 - n < m
 - **a** $\mid b \mid (a \text{ divide } b \text{ ssi } \exists k \in \mathbb{N}. \ a \cdot k = b)$

Outline

Propiedades

Caracterizaciones

Tipos de relaciones (resumen)

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Irrefleja: $\forall a \in A$. $(a, a) \notin R$.
- 3. Simétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \in R$.
- 4. Asimétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \notin R$.
- 5. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.
- 6. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.
- 7. Conexa: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

¿es posible **caracterizar** cada propiedad en termino de operaciones entre relaciones?

Caracterización de propiedades en termino de operaciones

Teorema

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

- 1. R es refleja ssi $I_A \subseteq R$.
- 2. R es irrefleja ssi $R \cap I_A = \emptyset$.
- 3. R es simétrica ssi $R = R^{-1}$.
- 4. R es asimétrica ssi $R \cap R^{-1} = \emptyset$.
- 5. R es antisimétrica ssi $R \cap R^{-1} \subseteq I_A$.
- 6. R es transitiva ssi $R \circ R \subseteq R$.
- 7. R es conexa ssi $R \cup R^{-1} = A \times A$.

Demostración: ejercicio.