Modeling Growth with the von Bertalanffy Model

Dr. Derek H. Ogle

Northland College

Wisconsin Age & Growth Workshop Stevens Point, WI 14&15 January 2014

1 Data Requirements

Data Requirements

2 Different Versions of the von Bertalanffy Model

- Data Requirements
- 2 Different Versions of the von Bertalanffy Model
- General Model Fitting

- Data Requirements
- 2 Different Versions of the von Bertalanffy Model
- 3 General Model Fitting
- Typical Model Fitting Problems

- Data Requirements
- 2 Different Versions of the von Bertalanffy Model
- 3 General Model Fitting
- Typical Model Fitting Problems
- Example Output

- Data Requirements
- 2 Different Versions of the von Bertalanffy Model
- General Model Fitting
- 4 Typical Model Fitting Problems
- 5 Example Output

• Length- and age-at-capture.

age	tl	sex
1	248	М
2	210	М
2	240	Μ
2	270	Μ
4	270	Μ
5	332	Μ
7	372	Μ
9	335	Μ
10	327	М

Raw observations.

• Mean lengths-at-age.

• von Bertalanffy model representation of mean lengths-at-age.

Back-calculated lengths and age.

id	agecap	prvAge	bcTL
4	4	1	4.84
4	4	2	9.38
4	4	3	15.32
4	4	4	14.11
7	6	1	5.32
7	6	2	11.13
7	6	3	13.75
7	6	4	15.37
7	6	5	16.29
7	6	6	20.05

• Back-calculated lengths and age.

• Length at time of marking and recapture.

Lrecap	Lmark	yrsAtLarge
413	336	0.91
420	353	0.32
428	427	0.16
400	397	0.21
442	430	0.14
249	239	0.17
450	258	1.29
345	269	0.82
512	485	1.09
394	394	0.10
		-

- "At-capture" data.
- "Back-calculated" data (i.e., longitudinal).
- "Mark-recapture" data.

- Data Requirements
- 2 Different Versions of the von Bertalanffy Model
- General Model Fitting
- 4 Typical Model Fitting Problems
- 5 Example Output

Different Parameterizations of the von Bertalanffy Model

- Typical (due to Beverton (1954) and Beverton and Holt (1957)).
- Original (by von Bertalanffy).
- Gallucci and Quinn II (1979).
- Mooij et al. 1999.
- Francis (1988).

$$E[L|t] = L_{\infty} \left(1 - e^{-K(t-t_0)} \right)$$

where

• E[L|t] is the expected (i.e., average) length at time (or age) t,

$$E[L|t] = L_{\infty} \left(1 - e^{-K(t-t_0)} \right)$$

where

- E[L|t] is the expected (i.e., average) length at time (or age) t,
- ullet L_{∞} is the asymptotic average length,
- K is the Brody growth rate coefficient (units are yr^{-1}), and
- t_0 is a modeling artifact.

- L_{∞} is the asymptotic average length.
- t_0 is a modeling artifact.

Which population exhibits faster growth?

- K=0.2
- K=0.125

• K is NOT the growth rate (units are yr^{-1}).

- K is NOT the growth rate (units are yr^{-1}).
- K does represent how fast L approaches L_{∞} .

- K is NOT the growth rate (units are yr^{-1}).
- K does represent how fast L approaches L_{∞} .
 - $\frac{\log(2)}{K}$ is "half-life" (time to reach $\frac{L_{\infty}}{2}$).

von Bertalanffy Model - Original

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0) e^{-Kt}$$

where

- ullet L_{∞} is the asymptotic average length,
- K is the Brody growth rate coefficient (units are yr^{-1}), and
- L_0 is the mean length at time zero (i.e., birth).

von Bertalanffy Model – Original

- L_{∞} is the asymptotic average length,
- L₀ is the mean length at time zero (i.e., birth).

$$E[L|t] = \frac{\omega}{K} \left(1 - e^{-K(t-t_0)} \right)$$

where

- ω is a contrived parameter (i.e., $= KL_{\infty}$) that is representative of the instantaneous growth rate near t_0 ,
- K is the Brody growth rate coefficient (units are yr^{-1}), and
- t_0 is a modeling artifact.

• ω is representative of the instantaneous growth rate near t_0 .

• What is ω for the two situations below?

• What is ω for the two situations below?

• ω represents "instantaneous growth" near t_0 – i.e., growth very early in life.

• What is ω for the two situations below?

- ω represents "instantaneous growth" near t₀ – i.e., growth very early in life.
- It is NOT a useful metric of overall "growth."

• What is ω for the two situations below?

- ω represents "instantaneous growth" near t₀ – i.e., growth very early in life.
- It is NOT a useful metric of overall "growth."
- It is NOT useful, by itself, for comparing among groups.

von Bertalanffy Model – Mooij et al. (1999)

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0) e^{-\frac{\omega}{L_{\infty}}t}$$

where

- ω is a contrived parameter (i.e., $= KL_{\infty}$) that is representative of the instantaneous growth rate near t_0 ,
- ullet L_{∞} is the asymptotic average length, and
- L_0 is the mean length at time zero (i.e., birth).

von Bertalanffy Model – Mooij et al. (1999)

- ω is representative of the instantaneous growth rate near t_0 .
- L_{∞} is the asymptotic average length.
- L_0 is the mean length at time zero (i.e., birth).

von Bertalanffy Model – Francis (1988)

$$E[L|t] = L_1 + (L_3 - L_1) \frac{1 - r^2 \frac{t - t_1}{t_3 - t_1}}{1 - r^2}$$

where

$$r=\frac{L_3-L_2}{L_2-L_1}$$

and

- t_1 is a user chosen "young" age,
- t₃ is a user chosen "old" age,
- L_1 is the modeled mean length at t_1 ,
- L_2 is the modeled mean length at $\frac{t_1+t_3}{2}$, and
- L_3 is the modeled mean length at t_3 .

von Bertalanffy Model – Francis (1988)

- L_1 is the modeled mean length at t_1 ,
- L_2 is the modeled mean length at $\frac{t_1+t_3}{2}$, and
- L_3 is the modeled mean length at t_3 .

Different Parameterizations, Same Fit

Model	RSS	SE	Iterations	Linf	K	omega
Typical	123974	33.42	4	366.4	0.31	-
Original	123974	33.42	4	366.4	0.31	-
Gallucci Quinn	123974	33.42	4	-	0.31	115.3
Mooij	123974	33.42	4	366.4	-	115.3
Francis	123974	33.42	4	-	-	-

Different Parameterizations, Same Fit

Model	RSS	SE	Iterations	Linf	K	omega
Typical	123974	33.42	4	366.4	0.31	-
Original	123974	33.42	4	366.4	0.31	-
Gallucci Quinn	123974	33.42	4	-	0.31	115.3
Mooij	123974	33.42	4	366.4	-	115.3
Francis	123974	33.42	4	-	-	-

Different Parameterizations, Different Correlations

Typical Parameterization

	K	t0
Linf	-0.951	-0.871
K		0.972

Francis Parameterization

L2	L3
-0.026	0.033
	-0.080

Different Parameterizations, Different Correlations

Typical Parameterization

	K	t0
Linf	-0.951	-0.871
K		0.972

Francis Parameterization

L2	L3
-0.026	0.033
	-0.080

• Correlation (absolute value) summaries from each model

Model	Mean	Max
Typical	0.931	0.972
Original	0.889	0.951
Gallucci Quinn	0.983	0.999
Mooij	0.888	0.935
Francis	0.046	0.080

Model Parameterizations - Recommendations for Use

• "Typical" Parameterization

- ✓ Need parameters for further modeling (e.g., yield models).
- ✓ Following historical precedence.

Model Parameterizations – Recommendations for Use

"Typical" Parameterization

- ✓ Need parameters for further modeling (e.g., yield models).
- √ Following historical precedence.

"Original" Parameterization

- ✓ Interest in L_0 .
- ✓ Lack small fish, but can set L_0 .
- ✓ Examining chondrichthyans.

Model Parameterizations – Recommendations for Use

"Typical" Parameterization

- ✓ Need parameters for further modeling (e.g., yield models).
- √ Following historical precedence.

"Original" Parameterization

- ✓ Interest in L_0 .
- ✓ Lack small fish, but can set L_0 .
- √ Examining chondrichthyans.

Mooij Parameterization

- ✓ Comparing "growth" among groups (using both ω and L_{∞}).
- ✓ Lack small fish, but can set L_0 .

Model Parameterizations – Recommendations for Use

"Typical" Parameterization

- ✓ Need parameters for further modeling (e.g., yield models).
- ✓ Following historical precedence.

"Original" Parameterization

- ✓ Interest in L_0 .
- ✓ Lack small fish, but can set L_0 .
- ✓ Examining chondrichthyans.

Mooij Parameterization

- ✓ Comparing "growth" among groups (using both ω and L_{∞}).
- ✓ Lack small fish, but can set L_0 .

Francis Parameterization

- ✓ Interest is in mean length at specific ages.
- ✓ Comparing "growth" among groups (using mean length-at-age).
- ✓ Trouble fitting other models because of correlated parameters (*later*).

Objectives

- Data Requirements
- 2 Different Versions of the von Bertalanffy Model
- 3 General Model Fitting
- 4 Typical Model Fitting Problems
- 5 Example Output

 von Bertalanffy growth model is non-linear.

- von Bertalanffy growth model is non-linear.
- Non-linear least-squares methods minimize RSS.

RSS Surface (side view)

RSS Surface (top view)

• No closed-form solution as in linear least-squares.

RSS Surface (top view)

- No closed-form solution as in linear least-squares.
- Non-linear algorithms iteratively "search" for the minimum RSS.

RSS Surface (top view)

- No closed-form solution as in linear least-squares.
- Non-linear algorithms iteratively "search" for the minimum RSS.
- Non-linear algorithms require starting values for model parameters.

RSS Surface (top view)

- No closed-form solution as in linear least-squares.
- Non-linear algorithms iteratively "search" for the minimum RSS.
- Non-linear algorithms require starting values for model parameters.

Error Structures

Additive Errors

$$L_i = L_{\infty} \left(1 - e^{-K(t_i - t_0)}
ight) + \epsilon_i$$
 where $\epsilon \sim \mathcal{N}(0, \sigma)$

Error Structures

Additive Errors

$$L_i = L_{\infty} \left(1 - e^{-K(t_i - t_0)}
ight) + \epsilon_i$$
 where $\epsilon \sim N(0, \sigma)$

Multiplicative Errors

$$L_i = L_{\infty} \left(1 - \mathrm{e}^{-K(t_i - t_0)}
ight) \mathrm{e}^{\epsilon_i}$$
 where $\epsilon \sim N(0, \sigma)$

$$log(L_i) = log(L_{\infty}(1 - e^{-K(t_i - t_0)})) + \epsilon_i$$

$$log(L_i) = log\left(L_{\infty}\left(1 - e^{-K(t_i - t_0)}\right)\right) + \epsilon_i$$

 Multiplicative errors are likely more realistic.

$$log(L_i) = log(L_{\infty}(1 - e^{-K(t_i - t_0)})) + \epsilon_i$$

- Multiplicative errors are likely more realistic.
- Seldom makes a practical difference.

$$log(L_i) = log(L_{\infty}(1 - e^{-K(t_i - t_0)})) + \epsilon_i$$

- Multiplicative errors are likely more realistic.
- Seldom makes a practical difference.

Fit to Mean Lengths-at-Age?

 \bullet Point estimates can be made with weights proportional to n_i .

Fit to Mean Lengths-at-Age?

- Point estimates can be made with weights proportional to n_i .
- Variability and interval estimates can NOT be made.

 Sampling distribution of parameter estimates tend NOT to be normally distributed.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.
- Alternative #2 Bootstrapping.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.
- Alternative #2 Bootstrapping.
 - Construct a random sample (with replacement) of n "cases" of observed data.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.
- Alternative #2 Bootstrapping.
 - Construct a random sample (with replacement) of n "cases" of observed data.
 - Extract parameters from model fit to this (re)sample.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.
- Alternative #2 Bootstrapping.
 - Construct a random sample (with replacement) of n "cases" of observed data.
 - 2 Extract parameters from model fit to this (re)sample.
 - **3** Repeat first two steps *B* times.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.
- Alternative #2 Bootstrapping.
 - Construct a random sample (with replacement) of n "cases" of observed data.
 - 2 Extract parameters from model fit to this (re)sample.
 - Repeat first two steps B times.
 - **4** 95% CI is values of ordered parameter estimates with 2.5% of values lesser and 2.5% of values greater.

Objectives

- Data Requirements
- 2 Different Versions of the von Bertalanffy Model
- General Model Fitting
- Typical Model Fitting Problems
- **5** Example Output

Typical Model Fitting Problems

• Model does not converge.

Typical Model Fitting Problems

- Model does not converge.
- Model values fail at an iteration.

Typical Model Fitting Problems

- Model does not converge.
- Model values fail at an iteration.
- Best-fit values are unrealistic.

• Failure to converge – RSS surface is flat

• Failure to converge – RSS surface is flat

- Often occurs with highly variable data.
- Often occurs with highly correlated parameters.

• Failure to converge – RSS surface is flat

- Often occurs with highly variable data.
- Often occurs with highly correlated parameters.
- √ Fitting multiplicative errors (if appropariate) may help.
- ✓ Try the Francis parameterization.

• Parameters produce negative or infinite values during iterations

- Parameters produce negative or infinite values during iterations
 - Often occurs with highly variable data.

- Parameters produce negative or infinite values during iterations
 - Often occurs with highly variable data.
 - May occur with poor starting values.

- Parameters produce negative or infinite values during iterations
 - Often occurs with highly variable data.
 - May occur with poor starting values.
 - Often occurs with fairly linear data.

- Parameters produce negative or infinite values during iterations
 - Often occurs with highly variable data.
 - May occur with poor starting values.
 - Often occurs with fairly linear data.
 - Often occurs with narrow age ranges.

- Parameters produce negative or infinite values during iterations
 - Often occurs with highly variable data.
 - May occur with poor starting values.
 - Often occurs with fairly linear data.
 - Often occurs with narrow age ranges.

- ✓ Fitting multiplicative errors (if appropariate) may help.
- ✓ Try different starting values.
- ✓ Use an algorithm that allows parameter constraints.
- ✓ Work hard to sample all ages.

Best-Fit Values are Unrealistic – Possible Reasons

• Often occurs with highly variable data.

Best-Fit Values are Unrealistic – Possible Reasons

- Often occurs with highly variable data.
- Often occurs with fairly linear data.

Best-Fit Values are Unrealistic – Possible Reasons

- Often occurs with highly variable data.
- Often occurs with fairly linear data.
- May occur with "poor" starting values.

Objectives

- Data Requirements
- 2 Different Versions of the von Bertalanffy Model
- General Model Fitting
- 4 Typical Model Fitting Problems
- Example Output

Declare the model parameterization (e.g., Mooij)

```
> ## returns predicted length given age and values for parameters
> vb <- function(age,Linf,omega,L0)</pre>
```

Linf-(Linf-L0)*exp(-(omega/Linf)*age)

Declare the model parameterization (e.g., Mooij)

```
> ## returns predicted length given age and values for parameters
> vb <- function(age,Linf,omega,L0)
    Linf-(Linf-L0)*exp(-(omega/Linf)*age)</pre>
```

Declare starting values for each parameter

```
> ## from examination of the plot and using K=0.3ish
> stvals <- list(Linf=380,omega=0.3*380,L0=150)</pre>
```

1 Declare the model parameterization (e.g., Mooij)

```
> ## returns predicted length given age and values for parameters
> vb <- function(age,Linf,omega,L0)
    Linf-(Linf-L0)*exp(-(omega/Linf)*age)</pre>
```

② Declare starting values for each parameter

```
> ## from examination of the plot and using K=0.3ish
> stvals <- list(Linf=380,omega=0.3*380,L0=150)</pre>
```

3 Run default non-linear algorithm

Examine coefficients

```
> ## Best-fit parameter estimates
> (cf <- coef(fit) )
Linf omega LO
366.4 115.3 152.8
> ## profile LH CIs for parameters
> confint(fit)
       2.5% 97.5%
Linf 345.09 440.7
omega 54.51 188.7
L0 54.51 212.5
> ## Correlations among parameter estimates
> summary(fit,correlation=TRUE)$correlation
        Linf omega LO
Linf 1.0000 -0.9348 0.7962
omega -0.9348 1.0000 -0.9321
L0 0.7962 -0.9321 1.0000
```

Examine fit

Onstruct bootstrap samples

```
> bres <- nlsBoot(fit,niter=200)</pre>
> head(bres$coefboot,n=10)
       Linf omega LO
 [1,] 371.3 107.81 149.4
 [2.] 378.6 85.41 198.4
 [3.] 357.8 109.19 190.0
 [4,] 370.4 139.35 113.4
 [5.] 413.1 66.39 202.4
 [6.] 362.0 104.62 177.9
 [7,] 363.7 128.56 159.5
 [8,] 379.5 87.99 177.7
 [9,] 354.3 142.30 121.7
[10,] 372.2 103.39 164.1
```

Examine bootstrap distributions and confidence intervals

```
> confint(bres,plot=TRUE)
```

```
95% LCI 95% UCI
Linf 345.17 423.2
omega 64.91 187.6
L0 53.90 203.3
```


References

- Beverton, R. J. H. 1954. Notes on the use of theoretical models in the study of the dynamics of exploited fish populations. Miscellaneous Contribution 2, United States Fishery Laboratory, Beaufort, North Carolina.
- Beverton, R. J. H. and S. J. Holt. 1957. On the dynamics of exploited fish populations, *Fisheries Investigations (Series 2)*, volume 19. United Kingdom Ministry of Agriculture and Fisheries, 533 pp.
- Francis, R. 1988. Are growth parameters estimated from tagging and age-length data comparable? Canadian Journal of Fisheries and Aquatic Sciences 45:936–942.
- Gallucci, V. F. and T. Quinn II. 1979. Reparameterizing, fitting, and testing a simple growth model. Transactions of the American Fisheries Society 108:14–25.
- von Bertalanffy, L. 1934. Untersuchungen ueber die gesetzlichkeity des wachstums. Wilhelm Roux' Arch Entwick Organ 131:613–652.
- von Bertalanffy, L. 1938. A quantitative theory of organic growth (inquiries on growth laws ii). Human Biology 10:181–213.