Signals & Systems

Homework 2

ECE 315 - Fall 2020

Joshua R. Horejs

Portland State University

Maseeh College of Engineering and Computer Science

Problem 1

 $Graph\ x[n],$

Equation 1, plot parts a-d by hand

Equation 1

$$x[n] = \begin{cases} x[n], & -5 \le n \le 6 \\ 0, & -5 \ge n \ge 6 \end{cases}$$

Figure 1) Graph for problem 1,

Equation 1.

Part (a)

Figure 2

Part (b)

 $\frac{1}{2}x[3n]$

Figure 3

Part (c)

Figure 4

Part (d) plot the even and odd parts of x[n]

Problem 2 MATLAB

Part (a)

(i) Compute and plot; Equation 2 Equation 3, and their backward differences:

Equation 2

$$x_1[n] = \begin{cases} 20n - n^2, & 0 \le n \le 20 \\ 0, & else \end{cases}$$

Equation 3

$$x_2[n] = \begin{cases} 1 + 20n - n^2, & 0 \le n \le 20 \\ & 1, & else \end{cases}$$

Figure 6 stem plot of backward differences for x1 and x2

Figure 5 responses of x1 and x2

(ii) How do the backward differences in Equation 2 and Equation 3 relate?

Figure 7

The backward and forward differences in Equation 2 and Equation 3 are identical.

Part (b)

(i) Compute and plot Equation 4 and its backward difference.

Equation 4

$$x_3[n] = \begin{cases} 1 + 20n - n^2, & 0 \le n \le 20 \\ 0, & else \end{cases}$$

Figure 8 a plot of Equation 4

Figure 9 plotted backward difference of Equation 4

(ii) How does the backward difference of signal Equation 4 compare to that of signal Equation 2?

Figure 10 comparison of the Equation 2and Equation 44

The backward difference of equation 2 and equation 4 are all the same.

Part (c)

(i) With Equation 5 compute and plot the accumulation of the backward difference of Equation 3.

Equation 5
$$x[n] = \sum_{m=-\infty}^{n} y[m]$$

Figure 11 graphs the accumulation of the backward difference of, $x_2[n]$, $y[m] = X_2[n]$.

(ii) Which of the three: Equation 2, Equation 3, Equation 4 does Equation 5 match? The accumulation of the backward difference of x_2 closely resembles the original function Equation 3 or x_2 .

Problem 3

Determine whether the following signals are periodic and plot them using MATLAB.

Part (a)

$$x[n] = \underbrace{2\sin\left(\frac{3}{10}n + \frac{\pi}{2}\right)}_{Real}$$

$$= 2\sin\left(\frac{3}{10}(\pi(n+T))\right)_{periodicity} + \frac{\pi}{2}$$

$$T_0 = \frac{20\pi}{3}s$$
, $f_0 = \frac{3}{20\pi}Hz$, $\omega_0 = 2\pi \cdot \frac{3}{20\pi}\frac{rad}{s}$

 T_0 is not an integer $\therefore x[n]$ cant be periodic

This signal is purely **real and a-periodic**.

Part (b)

$$x[n] = \underbrace{2\sin\left(\frac{\pi n}{10} + \frac{\pi}{2}\right)}_{Real},$$

$$T_0 = 20s = N,$$
 $f_0 = \frac{1}{20}Hz,$ $\omega_0 = \frac{\pi}{10}\frac{rad}{s}$

$$P_a = \frac{1}{2N} \sum_{n=20} |x[n]|^2 = \frac{1}{2 \cdot 20} \sum_{n=20} |x[n]|^2 = 2.1W$$

Part (c)

$$[n] = 4e^{i\left(\frac{\pi n}{25} - \frac{\pi}{5}\right)}$$

$$= |4| \left(\underbrace{\cos\left(\frac{\pi n}{25} - \frac{\pi}{5}\right)}_{real} - \underbrace{jsin\left(\frac{\pi n}{25} - \frac{\pi}{5}\right)}_{imaginary}\right)$$

$$T_0 = 50s$$
, $f_0 = \frac{1}{50}Hz$, $\omega_0 = \frac{\pi}{25}\frac{rad}{s}$

$$P_a = 16.16W$$

Part (d)

$$x[n] = 4e^{i\left(\frac{3n}{25} - \frac{\pi}{5}\right)}, \quad a-periodic$$

Part (e)

$$x[n] = 4e^{\left(-\frac{1}{4} + \frac{j\pi n}{25}\right)}$$

$$= \left|4e^{-\frac{1}{4}}\right| \left(\underbrace{\cos\left(\frac{\pi n}{25}\right)}_{R} + \underbrace{j\sin\left(\frac{\pi n}{25}\right)}_{Im}\right)$$

$$T_{0} = 50s, \qquad f_{0} = \frac{1}{50}Hz, \qquad \omega_{0} = \frac{\pi}{25}\frac{rad}{s},$$

$$P_{a} = 4.949W$$

Problem 4

Plot

Equation 7 and Error! Reference source

Equation 7

1

$$x_2[n] = 2\cos\left(-\frac{13\pi n}{7} - \frac{\pi}{4}\right)$$

not found.:

Equation 6

$$x_1[n] = 2\cos\left(\frac{\pi n}{7} - \frac{\pi}{4}\right)$$

Part 1:

MATLAB plots

Figure 12) graph of Equation 6 and Equation 7 with the same sample rate

Figure 13) Graph of Error! Reference source not found. and Equation 7 with an increased sample rate for Equation 7.

Part 2:

Describe how the two, Error! Reference source not found. and

Equation 7, have one key difference, their frequencies:

$$T_{0_{x_1}} = 14s, f_{x_1} = \frac{1}{14}Hz,$$
 &, $T_{0_{x_2}} = \frac{14}{13}s, f_{x_2} = -\frac{13}{14}Hz$

When sampled at the same rate the two functions are identical. Only when increasing the sample rates do the two functions differentiate themselves.

Problem 5

For each equation, determine whether it has the listed properties:

- a) Linearity properties:
 - i) Additive: y(ab) = y(a) + y(b), f(1) = 0
 - ii) Homogeneity(scaling of degree 1): $y(at) = a \cdot y(t)$, for all a
- b) Time invariance:
 - i) y(t) = x(t), $y(t t_0) = x(t t_0)$
- c) BIBO stable has a finite signal integral or sum.
- d) Memoryless: a present system output depends only on the present input.
 - i) x(t) is memoryless
 - ii) $x(t-t_0)$ has memory
- e) Causal system response only depends on values of the input at current time and occasionally past time.
- f) Invertible if unique excitations produce unique zero state responses

Part (a)

$$y[n] = |x[n]|$$

Properties	Yes/No
a) Linear?:	No
i) Additive: no	
$x_0 + x_1 = y(t_0 t_1), \qquad 1 + 2 \neq 1 \cdot 2$	
ii) Homogeneous: yes	
$y[an] = a \bullet x[n] $	
b) Time invariant?:	Yes
i) Invariant under time reversal	
$(1) \ y[n] = x[n - n_0] $	
c) BIBO stable?:	No
i) $\sum_{n=-\infty}^{\infty} x[n] \ll \infty$	
d) Memoryless?: present system output depends only on the present input	Yes
i) $y[n]$ does not depend on the past or future.	
e) Causal?:	Yes
i) $y[n]$ does not depend on the future.	
-) V[-] not sopone on the returne.	
f) Invertible?: for $y[n]$, $n = -5.5 = 5$ which is not unique	No
i) If invertible, find its inverse	110
i) in invertible, find its inverse	

Part(b)

$$y(t) = 2x(t) + 2$$

Properties	Yes/No
a) Linear?:	No
i) Additive: $y(ab) = 2x(a) + 2 + 2x(b) + 2$, $y(0 \cdot 2) \neq 2 + 6$, No	
b) Time invariant?:	Yes
i) $y(t) = 2x(t) + 2 = 2x(t - t_0) + 2$	
c) BIBO stabile?: time t is unbounded therefore possibly infinite.	No
i) $y(t) = \int_{-\infty}^{\infty} 2x(t) + 2 \lessdot \infty$	
d) Memoryless?: Yes	Yes
i) present system output depends only on the present input	
e) Causal?:	Yes
i) The system response only depends on values of input at current or past time.	
f) Invertibility: for $y(-5) \neq y(5)$	yes
i) Iff invertible, find its inverse	
$y(t)^{-} = \frac{x(t) - 2}{2}$	
2	

Part(c)

$$y[n] = x[n+1] - x[n-1]$$

Properties	Yes/No
a) Linear?: Yes i) Additive?: $y_1 + y_2 = (x[n+1] - x[n-1])_1 + (x[n+1] - x[n-1])_2$ ii) Homogeneous?:yes	yes
b) Time invariant?: i) $y[n-n_0] \neq x[n-n_0+1] - x[n-n_0-1]$	No
c) BIBO stability?: i) $y[n] = \sum_{n=-\infty}^{\infty} x[n] < \infty$	Yes
d) Memoryless?: present system output depends only on the present input, no. i) $y[0]$ depends on past time.	No
 e) Causal?: The system response only depends on values of input at current or past time. i) y[0] depends on future time. 	no
f) Invertible?: $(x[-4] - x[-6])_{n=-5} = (x[6] - x[4])_{n=5}$ i) Iff invertible, find its inverse	no

HOMEWORK 2

Part(d)

$$y(t) = \int_0^t x(\tau) d\tau = \frac{t^2}{2}$$

	Properties	Yes/No
a)	Linear: yes by definition integrals are additive and homogeneous.	yes
b)	Time invariant?: i) $y(t-t_0) = \int_0^{t-t_0} x(\tau) d\tau$	Yes
c)	BIBO stable?: The system is bounded by undefined time t which is not defined as ∞ . i) $y(t) = \int_0^t x(\tau) d\tau < \infty$	Yes
d)	Memoryless: Has memory i) present system output depends only on the present input	No
e)	Causal: i) The system response only depends on values of input at current or past time.	yes
f)	Invertibility: $t < 0$, $\therefore y(t)$ is invertable i) Iff invertible, find its inverse ii) $\frac{dy(t)}{d\tau} = \frac{d}{d\tau} \left(\int_0^t x(\tau) d\tau \right)$	yes

Part(e)

$$y[n] = \frac{n^2+2}{n^2+3}x[n]$$

Properties	Yes/No
a) Linear?: i) Additive: $y_1[n] + y_2[n] = \left(\frac{n^2+2}{n^2+3}x[n]\right)_1 + \left(\frac{n^2+2}{n^2+3}x[n]\right)_2$ ii) Homogeneous: $a \cdot y[n] = a \cdot \left(\frac{n^2+2}{n^2+3}x[n]\right) = \frac{n^2+2}{n^2+3}(a \cdot x[n])$	Yes
b) Time invariant?: i) $y[n-n_0] = \frac{n^2+2}{n^2+3}x[n] \neq \frac{(n-n_0)^2+2}{(n-n_0)^2+3}x[n-n_0]$	No
c) BIBO stabile?: y is an unbounded system therefore it is unstable. i) $\sum_{n=-\infty}^{\infty} y[n] \ll \infty$	No
d) Memoryless?: i) Only depends on current time.	yes
e) Causal?: i) The system response only depends on values of input at current or past time.	yes
 f) Invertible?: Yes, all n values are unique. i) Iff invertible, find its inverse ii) n²⁺³/(n²⁺²) x[n] 	yes

Part(f)

$$y(t) = t \, x(t) \frac{d}{dt}$$

Properties	Yes/No
a) Linear?: i) Additive: $y_1 + y_2 = tx_1(t) \frac{d}{dt} + tx_2(t) \frac{d}{dt} = t \left(\frac{d}{dt} (x_1 + x_2) \right)$	yes
ii) Homogeneous: $a \cdot y(t) = a\left(t x(t) \frac{d}{dt}\right)$	
b) Time invariant?: i) $y(t) = t x(t) \frac{d}{dt} \neq (t - t_0)x(t) \frac{d}{dt}$	No
c) BIBO stabile?: i) $\sum_{n=-\infty}^{\infty} x[n] < \infty$	No
d) Memoryless?:i) present system output depends only on the present input	yes
e) Causal?:i) The system response only depends on values of input at current or past time.	yes
f) Invertible?: Integral would require a unknown constanti) Iff invertible, find its inverse	No