

Question 3 Test html table conversion to tex

	weight	width	length		
sys1	1 kg	$0.35 \mathrm{m}$	1 m		
$\operatorname{sys}2$	2 kg	-	$1.5 \mathrm{m}$		
table legend					

table le

an other table, more simple

Firstname	Lastname	Age
Jill	Smith	50
Eve	$_{ m Jackson}$	94

wrong answer

the good answer is obviously a weird table

stuff1	l stuff2	
$\overline{x^2}$	bold text	

Question 4 Provide a **description** of a problem that can be common to several questions. It is useful to define notation, pictures, equations $\int_0^1 x dx = 0...$

Question 5 Find x such 2x - 300 = 0? Here x is an integer, test for exact match, only.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Question 6 Give an approximated value for π up to 3 digits?

$egin{bmatrix} \cdot & & & & \\ \square 0 & \square 1 & \square 2 & \square 3 & \square 4 & \square 5 & \square 6 & \square 7 & \square 8 & \square 9 \end{bmatrix}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Question 7 Let z = 3 + 2i. What is the imaginary part?

$\Box 0 \Box 1$	$\square_2 \ \square_3$	$\Box 4 \ \Box 5$	□ 6 □ 7	8 🔲 9
-----------------	-------------------------	-------------------	-----------------------	-------

Question 8 Give an approximated value for $\sqrt{2}$ up to 3 digits?

Pour votre examen, imprimez de préférence les documents compilés à l'aide de auto-multiple-choice.