Бескоалиционные игры

Виктор Васильевич Лепин

• Бескоалиционной игрой (в стратегической форме) n игроков называется тройка $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}),$

• Бескоалиционной игрой (в стратегической форме) n игроков называется тройка $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}),$ где

• $N = \{1, ..., n\}$ есть множество игроков,

• Бескоалиционной игрой (в стратегической форме) n игроков называется тройка $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}).$

$$\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}),$$
 где

- $N = \{1, ..., n\}$ есть множество игроков,
- S_i множество стратегий игрока i,

• Eескоалиционной игрой (в стратегической форме) n игроков называется тройка

$$\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}),$$
 где

- $N = \{1, ..., n\}$ есть множество игроков,
- S_i множество стратегий игрока i,
- \bullet а ϕ_i функция выигрышей $i\text{-}\mathrm{ro}$ игрока.

$$\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}),$$
 где

- $N = \{1, ..., n\}$ есть множество игроков,
- S_i множество стратегий игрока i,
- ullet а ϕ_i функция выигрышей i-го игрока.
- Набор стратегий игроков $s = (s_1, s_2, \dots, s_n), s_i \in S_i,$ $i = 1, \dots, n$, называется ситуацией или партией.

• Eескоалиционной игрой (в стратегической форме) n игроков называется тройка

$$\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}),$$
где

- $N = \{1, \dots, n\}$ есть множество игроков,
- S_i множество стратегий игрока i,
- ullet а ϕ_i функция выигрышей i-го игрока.
- Набор стратегий игроков $s = (s_1, s_2, \dots, s_n), s_i \in S_i,$ $i = 1, \dots, n$, называется ситуацией или партией.
- Функции ϕ_i выигрышей игроков определены на множестве ситуаций $S = S_1 \times \cdots \times S_n$.

• Бескоалиционной игрой (в стратегической форме) n игроков называется тройка

$$\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}),$$
 где

- $N = \{1, \dots, n\}$ есть множество игроков,
- S_i множество стратегий игрока i,
- ullet а ϕ_i функция выигрышей i-го игрока.
- Набор стратегий игроков $s = (s_1, s_2, \dots, s_n), s_i \in S_i,$ $i = 1, \dots, n$, называется ситуацией или партией.
- Функции ϕ_i выигрышей игроков определены на множестве ситуаций $S = S_1 \times \cdots \times S_n$.
- Игроки одновременно объявляют свои стратегии $s_1 \in S_1, \dots, s_n \in S_n,$

- Бескоалиционной игрой (в стратегической форме) n игроков называется тройка $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}),$ где
 - $N = \{1, \dots, n\}$ есть множество игроков,
 - S_i множество стратегий игрока i,
 - а ϕ_i функция выигрышей i-го игрока.
- Набор стратегий игроков $s = (s_1, s_2, \dots, s_n), s_i \in S_i,$ $i = 1, \dots, n$, называется ситуацией или партией.
- Функции ϕ_i выигрышей игроков определены на множестве ситуаций $S = S_1 \times \cdots \times S_n$.
- Игроки одновременно объявляют свои стратегии $s_1 \in S_1, \dots, s_n \in S_n,$
- и в сложившейся ситуации $s = (s_1, ..., s_n)$ игрок i выиграет $\phi_i(s), i = 1, ..., n$.

Полезные обозначения

• Рассмотрим ситуацию $s = (s_1, \dots, s_{i-1}, s_i, s_{i+1}, \dots, s_n) \in S.$

Полезные обозначения

- Рассмотрим ситуацию $s = (s_1, \dots, s_{i-1}, s_i, s_{i+1}, \dots, s_n) \in S.$
- Набор $(s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)$ стратегий оппонентов игрока i обозначают через s_{-i} .

Полезные обозначения

- Рассмотрим ситуацию $s = (s_1, \dots, s_{i-1}, s_i, s_{i+1}, \dots, s_n) \in S.$
- Набор $(s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)$ стратегий оппонентов игрока i обозначают через s_{-i} .
- Ситуация $(s_1, \ldots, s_{i-1}, \bar{s}_i, s_{i+1}, \ldots, s_n)$, которая получается из ситуации s заменой стратегии s_i игрока i на стратегию \bar{s}_i , обозначается через (\bar{s}_i, s_{-i}) .

Определение

Ситуация s называется cumyauueŭ равновесия (Hэuа) в бескоалиционной игре γ , если выполняется следующее условие:

$$\phi_i(s) \ge \phi_i(\bar{s}_i, s_{-i})$$
 для всех $\bar{s}_i \in S_i, i \in N$. (1)

Содержательно, неравенства (1) означают, что

в ситуации равновесия ни одному игроку в отдельности не выгодно менять свою стратегию.

• Переписав условие

$$\phi_i(s) \ge \phi_i(\bar{s}_i, s_{-i})$$
 для всех $\bar{s}_i \in S_i, i \in N$. (1)

• Переписав условие

$$\phi_i(s) \ge \phi_i(\bar{s}_i, s_{-i})$$
 для всех $\bar{s}_i \in S_i, i \in N$. (1)

• в следующем эквивалентном виде

$$s_i \in \arg\max_{\bar{s}_i \in S_i} \phi_i(\bar{s}_i, s_{-i})$$
 для всех $i \in N$. (2)

• Переписав условие

$$\phi_i(s) \ge \phi_i(\bar{s}_i, s_{-i})$$
 для всех $\bar{s}_i \in S_i, i \in N$. (1)

• в следующем эквивалентном виде $s_i \in \arg\max_{\bar{s}_i \in S_i} \phi_i(\bar{s}_i, s_{-i})$ для всех $i \in N$. (2)

• мы можем сказать, что

в ситуации равновесия стратегия каждого игрока является его оптимальным ответом на стратегии других игроков.

Примеры бескоалиционных игр

ПРИМЕР 1: КОНЕЧНАЯ БЕСКОАЛИЦИОННАЯ ИГРА

Каждый из трех игроков имеет две стратегии, а платежи определяются по правилу:

Игрок 1 выбирает стратегию 1:

	mpok 3						
		1	2				
2	1	(1,6,3)	(2,0,5)				
	2	(1, 8, 1)	(3, 6, 2)				

Игрок 2

Игрок 1 выбирает стратегию 2:

Игрок 2

In pok 5					
	1	2			
1	(1, 5, 5)	(2,1,0)			
2	(2,0,1)	(4, 1, 1)			

Здесь $N = \{1, 2, 3\}$, $S_1 = S_2 = S_3 = \{1, 2\}$. В ситуации s = (2, 1, 2), игрок 1 выбирает табл. 2, игрок 2 — строку 1, а игрок 3 — столбец 2. Выигрыши игроков: $\phi_1(2, 1, 2) = 2$, $\phi_2(2, 1, 2) = 1$, $\phi_3(2, 1, 2) = 0$.

ПРИМЕР 1: СИТУАЦИИ РАВНОВЕСИЯ

Игрок 1 выбирает стратегию 1:

	игрок 3		
		1	2
Игрок 2	1	(1,6,3)	(2,0,5)
	2	(1, 8, 1)	(3, 6, 2)

Игрок 1 выбирает стратегию 2: Игрок 3

Игрок 2 1 2 1 (1,5,5) (2,1,0) 2 (2,0,1) (4,1,1)

Ситуация	Игрок, которому выгодно менять стратегию
(1, 1, 1)	3
(1, 1, 2)	2
(1, 2, 1)	1
(1, 2, 2)	1
(2,1,1)	
(2,1,2)	3
(2,2,1)	2
(2, 2, 2)	_

Ответ: две ситуации равновесия $s^1 = (2, 1, 1)$ и $s^2 = (2, 2, 2)$.

Пример 2: весконечное число ситуаций равновесия

Азартная пгра Нэша

• Два игрока делят сумму денег d.

- ullet Два игрока делят сумму денег d.
- Игрок 1 хочет получить долю $x, (0 \le x \le d),$

- Два игрока делят сумму денег d.
- Игрок 1 хочет получить долю $x, (0 \le x \le d),$
- а игрок 2 долю y, $(0 \le y \le d)$,

- Два игрока делят сумму денег d.
- Игрок 1 хочет получить долю x, $(0 \le x \le d)$,
- а игрок 2 долю y, $(0 \le y \le d)$,
- Если $x + y \le d$, то игрок 1 получит x, а игрок 2 y.

- Два игрока делят сумму денег d.
- Игрок 1 хочет получить долю x, $(0 \le x \le d)$,
- а игрок 2 долю y, $(0 \le y \le d)$,
- Если $x + y \le d$, то игрок 1 получит x, а игрок 2 y.
- ullet Когда x+y>d, оба игрока ничего не получат.

- Два игрока делят сумму денег d.
- Игрок 1 хочет получить долю $x, (0 \le x \le d),$
- а игрок 2 долю y, $(0 \le y \le d)$,
- Если $x + y \le d$, то игрок 1 получит x, а игрок 2 y.
- Когда x + y > d, оба игрока ничего не получат.
- Нужно записать стратегическую форму для данной бескоалиционной игры и найти все ситуации равновесия.

Пример 2: весконечное число ситуаций равновесия

- Два игрока делят сумму денег d.
- Игрок 1 хочет получить долю x, $(0 \le x \le d)$,
- а игрок 2 долю y, $(0 \le y \le d)$,
- Если $x + y \le d$, то игрок 1 получит x, а игрок 2 y.
- Когда x + y > d, оба игрока ничего не получат.
- Нужно записать стратегическую форму для данной бескоалиционной игры и найти все ситуации равновесия.

Здесь
$$N=1,2$$
 и $S_1=S_2=[0,d].$

Пример 2: Бесконечное число ситуаций равновесия

Азартная пгра Нэша

- Два игрока делят сумму денег d.
- Игрок 1 хочет получить долю x, $(0 \le x \le d)$,
- а игрок 2 долю y, $(0 \le y \le d)$,
- Если $x + y \le d$, то игрок 1 получит x, а игрок 2 y.
- ullet Когда x+y>d, оба игрока ничего не получат.
- Нужно записать стратегическую форму для данной бескоалиционной игры и найти все ситуации равновесия.

Здесь N = 1, 2 и $S_1 = S_2 = [0, d]$.

В ситуации $(x,y) \in [0,d]^2$ выигрыши игроков определяются по формулам:

Азартная пгра Нэша

- Два игрока делят сумму денег d.
- Игрок 1 хочет получить долю x, $(0 \le x \le d)$,
- а игрок 2 долю y, $(0 \le y \le d)$,
- Если $x + y \le d$, то игрок 1 получит x, а игрок 2 y.
- Когда x + y > d, оба игрока ничего не получат.
- Нужно записать стратегическую форму для данной бескоалиционной игры и найти все ситуации равновесия.

Здесь N = 1, 2 и $S_1 = S_2 = [0, d]$.

В ситуации $(x,y) \in [0,d]^2$ выигрыши игроков определяются по формулам:

$$\phi_1(x,y) = \begin{cases} x, \text{ если } x + y \le d, \\ 0, \text{ если, } x + y > d, \end{cases} \quad \phi_2(x,y) = \begin{cases} y, \text{ если } x + y \le d, \\ 0, \text{ если, } x + y > d, \end{cases}$$

$$\phi_2(x,y) = \begin{cases} y, \text{ если } x + y \le d, \\ 0, \text{ если, } x + y > d, \end{cases}$$

ПРИМЕР 2: СИТУАЦИИ РАВНОВЕСИЯ В АЗАРТНОЙ ИГРЕ НЭША

$$N = 1, 2, \ S_1 = S_2 = [0, d].$$

$$\phi_1(x, y) = \begin{cases} x, \text{ если } x + y \leq d, \\ 0, \text{ если, } x + y > d, \end{cases} \quad \phi_2(x, y) = \begin{cases} y, \text{ если } x + y \leq d, \\ 0, \text{ если, } x + y > d, \end{cases}$$

Пример 2: Ситуации равновесия в азартной игре Нэша

$$N=1,2,\ S_1=S_2=[0,d].$$

$$\phi_1(x,y)=\begin{cases} x,\ \text{если}\ x+y\leq d,\\ 0,\ \text{если},\ x+y>d,\end{cases} \qquad \phi_2(x,y)=\begin{cases} y,\ \text{если}\ x+y\leq d,\\ 0,\ \text{если},\ x+y>d,\end{cases}$$
 В данной игре— много ситуаций равновесия.

Пример 2: Ситуации равновесия в азартной игре Нэша

$$N=1,2,\ S_1=S_2=[0,d].$$

$$\phi_1(x,y)=\begin{cases} x,\ \text{если}\ x+y\leq d,\\ 0,\ \text{если},\ x+y>d,\end{cases} \qquad \phi_2(x,y)=\begin{cases} y,\ \text{если}\ x+y\leq d,\\ 0,\ \text{если},\ x+y>d,\end{cases}$$
 В данной игре— много ситуаций равновесия.

• Все ситуации (x,y), такие, что x+y=d. Если любой из игроков увеличит свою долю, то оба игрока ничего не получат. Если кто-то из игроков уменьшит свою долю, то его выигрыш уменьшится.

ПРИМЕР 2: СИТУАЦИИ РАВНОВЕСИЯ В АЗАРТНОЙ ИГРЕ НЭША

$$N=1,2,\ S_1=S_2=[0,d].$$

$$\phi_1(x,y)=\begin{cases} x,\ \text{если}\ x+y\leq d,\\ 0,\ \text{если},\ x+y>d,\end{cases} \qquad \phi_2(x,y)=\begin{cases} y,\ \text{если}\ x+y\leq d,\\ 0,\ \text{если},\ x+y>d,\end{cases}$$
 В данной игре— много ситуаций равновесия.

- Все ситуации (x,y), такие, что x+y=d. Если любой из игроков увеличит свою долю, то оба игрока ничего не получат. Если кто-то из игроков уменьшит свою долю, то его выигрыш уменьшится.
- ullet Ситуация (d,d), когда каждый из игроков хочет получить всю сумму денег. В этой ситуации выигрыши игроков равны нулю. Если один из игроков требует всю сумму денег, то его оппонент ничего не получит.

ПРИМЕР 2: СИТУАЦИИ РАВНОВЕСИЯ В АЗАРТНОЙ ИГРЕ НЭША

$$N=1,2,\ S_1=S_2=[0,d].$$

$$\phi_1(x,y)=\begin{cases} x,\ \text{если}\ x+y\leq d,\\ 0,\ \text{если}\ x+y>d, \end{cases} \quad \phi_2(x,y)=\begin{cases} y,\ \text{если}\ x+y\leq d,\\ 0,\ \text{если}\ x+y>d, \end{cases}$$
 В данной игре — много ситуаций равновесия.

- Все ситуации (x,y), такие, что x+y=d. Если любой из игроков увеличит свою долю, то оба игрока ничего не получат. Если кто-то из игроков уменьшит свою долю, то его выигрыш уменьшится.
- Ситуация (d, d), когда каждый из игроков хочет получить всю сумму денег. В этой ситуации выигрыши игроков равны нулю. Если один из игроков требует всю сумму денег, то его оппонент ничего не получит.
- Докажите, что в данной игре нет других ситуаций равновесия.

ПРИМЕР 3: "ИГРА ЦЕН" (БЕЗ СИТУАЦИЙ РАВНОВЕСИЯ)

• Имеется 2 продавца одинак. продукта и 3 покупателя.

ПРИМЕР 3: "ИГРА ЦЕН" (БЕЗ СИТУАЦИЙ РАВНОВЕСИЯ)

- Имеется 2 продавца одинак. продукта и 3 покупателя.
- Покупатель 1 знаком только с продавцом 1, покупатель 2 — только с продавцом 2, а покупатель 3 знает обоих продавцов.

ПРИМЕР 3: "ИГРА ЦЕН" (БЕЗ СИТУАЦИЙ РАВНОВЕСИЯ)

- Имеется 2 продавца одинак. продукта и 3 покупателя.
- Покупатель 1 знаком только с продавцом 1, покупатель 2 — только с продавцом 2, а покупатель 3 знает обоих продавцов.
- Каждому покупателю нужна только одна единица продукта, за которую он готов заплатить максимум 1.

Пример 3: "игра цен" (без ситуаций равновесия)

- Имеется 2 продавца одинак. продукта и 3 покупателя.
- Покупатель 1 знаком только с продавцом 1, покупатель 2 — только с продавцом 2, а покупатель 3 знает обоих продавцов.
- Каждому покупателю нужна только одна единица продукта, за которую он готов заплатить максимум 1.
- Продавец $i \in \{1,2\}$ назначает цену $p_i \in [0,1]$.

Пример 3: "игра цен" (без ситуаций равновесия)

- Имеется 2 продавца одинак. продукта и 3 покупателя.
- Покупатель 1 знаком только с продавцом 1, покупатель 2 — только с продавцом 2, а покупатель 3 знает обоих продавцов.
- Каждому покупателю нужна только одна единица продукта, за которую он готов заплатить максимум 1.
- Продавец $i \in \{1,2\}$ назначает цену $p_i \in [0,1]$.
- После этого покупатель 1 покупает единицу продукта продавца 1, покупатель 2 у продавца 2, а покупатель 3 покупает единицу продукта у того продавца, у которого цена наименьшая. В случае равенства цен, покупатель 3 покупает у продавца 1.

Пример 3: "игра цен" (без ситуаций равновесия)

- Имеется 2 продавца одинак. продукта и 3 покупателя.
- Покупатель 1 знаком только с продавцом 1, покупатель 2 — только с продавцом 2, а покупатель 3 знает обоих продавцов.
- Каждому покупателю нужна только одна единица продукта, за которую он готов заплатить максимум 1.
- Продавец $i \in \{1,2\}$ назначает цену $p_i \in [0,1]$.
- После этого покупатель 1 покупает единицу продукта продавца 1, покупатель 2 у продавца 2, а покупатель 3 покупает единицу продукта у того продавца, у которого цена наименьшая. В случае равенства цен, покупатель 3 покупает у продавца 1.
- Прибыль (выигрыш) продавца равен сумме, полученной от продажи продукта.

ПРИМЕР 3: "ИГРА ЦЕН" (БЕЗ СИТУАЦИЙ РАВНОВЕСИЯ)

- Имеется 2 продавца одинак. продукта и 3 покупателя.
- Покупатель 1 знаком только с продавцом 1, покупатель 2 — только с продавцом 2, а покупатель 3 знает обоих продавцов.
- Каждому покупателю нужна только одна единица продукта, за которую он готов заплатить максимум 1.
- Продавец $i \in \{1,2\}$ назначает цену $p_i \in [0,1]$.
- После этого покупатель 1 покупает единицу продукта продавца 1, покупатель 2 у продавца 2, а покупатель 3 покупает единицу продукта у того продавца, у которого цена наименьшая. В случае равенства цен, покупатель 3 покупает у продавца 1.
- Прибыль (выигрыш) продавца равен сумме, полученной от продажи продукта.
- Нужно доказать, что в бескоалиционной игре двух лиц (продавцов) нет ситуаций равновесия.

• Здесь $N = 1, 2, S_1 = S_2 = [0, 1].$

- Здесь $N = 1, 2, S_1 = S_2 = [0, 1].$
- В ситуации $p = (p_1, p_2) \in [0, 1]^2$ выигрыши игроков определяются по правилу:

- Здесь $N = 1, 2, S_1 = S_2 = [0, 1].$
- В ситуации $p = (p_1, p_2) \in [0, 1]^2$ выигрыши игроков определяются по правилу:

$$\phi_1(p_1,p_2) = egin{cases} 2p_1, & ext{если } p_1 \leq p_2, \ p_1, & ext{если } p_1 > p_2, \end{cases}$$

- Здесь $N = 1, 2, S_1 = S_2 = [0, 1].$
- В ситуации $p = (p_1, p_2) \in [0, 1]^2$ выигрыши игроков определяются по правилу:

$$\phi_1(p_1, p_2) = \begin{cases} 2p_1, & \text{если } p_1 \leq p_2, \\ p_1, & \text{если } p_1 > p_2, \end{cases}$$

$$\phi_2(p_1, p_2) = \begin{cases} 2p_2, & \text{если } p_1 > p_2, \\ p_2, & \text{если, } p_1 \leq p_2. \end{cases}$$

- Здесь $N = 1, 2, S_1 = S_2 = [0, 1].$
- В ситуации $p = (p_1, p_2) \in [0, 1]^2$ выигрыши игроков определяются по правилу:

$$\phi_1(p_1, p_2) = \begin{cases} 2p_1, & \text{если } p_1 \leq p_2, \\ p_1, & \text{если } p_1 > p_2, \end{cases}$$

$$\phi_2(p_1, p_2) = \begin{cases} 2p_2, & \text{если } p_1 > p_2, \\ p_2, & \text{если, } p_1 \leq p_2. \end{cases}$$

• Если $p_1 \le 1/2$, то наилучшим ответом игрока 2 будет цена $p_2 = 1$. Тогда игроку 1 также нужно назначить цену 1, чтобы увеличить свой выигрыш с $2p_1 \le 1$ до 2.

- Здесь $N = 1, 2, S_1 = S_2 = [0, 1].$
- В ситуации $p = (p_1, p_2) \in [0, 1]^2$ выигрыши игроков определяются по правилу:

$$\phi_1(p_1, p_2) = \begin{cases} 2p_1, & \text{если } p_1 \leq p_2, \\ p_1, & \text{если } p_1 > p_2, \end{cases}$$

$$\phi_2(p_1, p_2) = \begin{cases} 2p_2, & \text{если } p_1 > p_2, \\ p_2, & \text{если, } p_1 \leq p_2. \end{cases}$$

- Если $p_1 \le 1/2$, то наилучшим ответом игрока 2 будет цена $p_2 = 1$. Тогда игроку 1 также нужно назначить цену 1, чтобы увеличить свой выигрыш с $2p_1 \le 1$ до 2.
- Если же $p_1 > 1/2$, то игрок 2 должен назначит цену p_2 , "чуть меньшую" p_1 , т. е. $1/2 < p_2 < p_1$. Но тогда игрок 1, назначая цену $\bar{p}_1 = p_2$, увеличит свой выигрыш: $\phi_1(\bar{p}_1, p_2) = 2\bar{p}_1 = 2p_2 > 1 \ge p_1 = \phi_1(p_1, p_2)$.

Доминирование

Доминирующие стратегии

• Стратегия $\bar{s}_i \in S_i$ доминирует стратегию $\hat{s}_i \in S_i$ игрока i, если $\phi_i(\bar{s}_i, s_{-i}) \ge \phi_i(\hat{s}_i, s_{-i})$ для всех $s_{-i} \in S_{-i}$,

Доминирующие стратегии

- Стратегия $\bar{s}_i \in S_i$ доминирует стратегию $\hat{s}_i \in S_i$ игрока i, если $\phi_i(\bar{s}_i,s_{-i}) \geq \phi_i(\hat{s}_i,s_{-i})$ для всех $s_{-i} \in S_{-i},$
- Стратегия $\hat{s}_i \in S_i$ называется доминируемой, если существует стратегия $\bar{s}_i \in S_i$, которая доминирует \hat{s}_i .

ДОМИНИРУЮЩИЕ СТРАТЕГИИ

- Стратегия $\bar{s}_i \in S_i$ доминирует стратегию $\hat{s}_i \in S_i$ игрока i, если $\phi_i(\bar{s}_i, s_{-i}) \ge \phi_i(\hat{s}_i, s_{-i})$ для всех $s_{-i} \in S_{-i}$,
- Стратегия $\hat{s}_i \in S_i$ называется доминируемой, если существует стратегия $\bar{s}_i \in S_i$, которая доминирует \hat{s}_i .
- Стратегия $\bar{s}_i \in S_i$ является доминирующей стратегией игрока i, если она доминирует все его стратегии: $\phi_i(\bar{s}_i, s_{-i}) \ge \phi_i(\hat{s}_i, s_{-i})$ для всех $\hat{s}_i \in S_i$, $s_{-i} \in S_{-i}$.

ДОМИНИРУЮЩИЕ СТРАТЕГИИ

- Стратегия $\bar{s}_i \in S_i$ доминирует стратегию $\hat{s}_i \in S_i$ игрока i, если $\phi_i(\bar{s}_i,s_{-i}) \geq \phi_i(\hat{s}_i,s_{-i})$ для всех $s_{-i} \in S_{-i},$
- Стратегия $\hat{s}_i \in S_i$ называется доминируемой, если существует стратегия $\bar{s}_i \in S_i$, которая доминирует \hat{s}_i .
- Стратегия $\bar{s}_i \in S_i$ является доминирующей стратегией игрока i, если она доминирует все его стратегии: $\phi_i(\bar{s}_i, s_{-i}) \geq \phi_i(\hat{s}_i, s_{-i})$ для всех $\hat{s}_i \in S_i$, $s_{-i} \in S_{-i}$.
- Если в игре у каждого игрока есть доминирующая стратегия, то ситуация, составленная из этих доминирующих стратегий, называется доминирующим равновесием.

Доминирующие стратегии

- Стратегия $\bar{s}_i \in S_i$ доминирует стратегию $\hat{s}_i \in S_i$ игрока i, если $\phi_i(\bar{s}_i,s_{-i}) \geq \phi_i(\hat{s}_i,s_{-i})$ для всех $s_{-i} \in S_{-i},$
- Стратегия $\hat{s}_i \in S_i$ называется доминируемой, если существует стратегия $\bar{s}_i \in S_i$, которая доминирует \hat{s}_i .
- Стратегия $\bar{s}_i \in S_i$ является доминирующей стратегией игрока i, если она доминирует все его стратегии: $\phi_i(\bar{s}_i, s_{-i}) \ge \phi_i(\hat{s}_i, s_{-i})$ для всех $\hat{s}_i \in S_i$, $s_{-i} \in S_{-i}$.
- Если в игре у каждого игрока есть доминирующая стратегия, то ситуация, составленная из этих доминирующих стратегий, называется доминирующим равновесием.
- По определению, доминирующее равновесие является ситуацией равновесия Нэша, но обратное в общем случае не верно.

• Игры, в которых имеется доминирующее равновесие, встречаются не часто.

- Игры, в которых имеется доминирующее равновесие, встречаются не часто.
- Но концепцию доминирования можно также использовать для упрощения решаемой игры.

- Игры, в которых имеется доминирующее равновесие, встречаются не часто.
- Но концепцию доминирования можно также использовать для упрощения решаемой игры.
- В любой ситуации s игрок i ничего не потеряет (а может даже и выиграет), переходя от доминируемой стратегии s_i к стратегии \bar{s}_i , доминирующей s_i .

- Игры, в которых имеется доминирующее равновесие, встречаются не часто.
- Но концепцию доминирования можно также использовать для упрощения решаемой игры.
- В любой ситуации s игрок i ничего не потеряет (а может даже и выиграет), переходя от доминируемой стратегии s_i к стратегии \bar{s}_i , доминирующей s_i .
- Поэтому если каждый игрок удалит из своего множества стратегий все доминируемые стратегие, то в результате получится эквивалентная усеченная игра.

- Игры, в которых имеется доминирующее равновесие, встречаются не часто.
- Но концепцию доминирования можно также использовать для упрощения решаемой игры.
- В любой ситуации s игрок i ничего не потеряет (а может даже и выиграет), переходя от доминируемой стратегии s_i к стратегии \bar{s}_i , доминирующей s_i .
- Поэтому если каждый игрок удалит из своего множества стратегий все доминируемые стратегие, то в результате получится эквивалентная усеченная игра.
- Для этой усеченной игры снова можно построить новую усеченную игру.

- Игры, в которых имеется доминирующее равновесие, встречаются не часто.
- Но концепцию доминирования можно также использовать для упрощения решаемой игры.
- В любой ситуации s игрок i ничего не потеряет (а может даже и выиграет), переходя от доминируемой стратегии s_i к стратегии \bar{s}_i , доминирующей s_i .
- Поэтому если каждый игрок удалит из своего множества стратегий все доминируемые стратегие, то в результате получится эквивалентная усеченная игра.
- Для этой усеченной игры снова можно построить новую усеченную игру.
- И этот итерационный процесс можно продолжать до тех пор, пока ни у одного из игроков не будет доминируемых стратегий.

Игрок 1 выбирает стратегию 1:

игрок 3		
	1	2
1	(1,6,3)	(2,0,5)
2	(1, 8, 1)	(3,6,2)

Игрок 1 выбирает стратегию 2: Игрок 3

Игрок 2

1		
	1	2
1	(1, 5, 5)	(2,1,0)
2	(2,0,1)	(4, 1, 1)

- В каждой тройке чисел табл. 1 первое число не превосходит первого числа в соотв. тройке чисел табл. 2.
- Стратегия 2 игрока 1 доминирует его стратегию 1.
- После удаления страт. 1 игрока 1 мы получим усеченную игру

Пример 1: продолжение

Игрок 3		
	1	2
1	(5,5)	(1,0)
2	(0, 1)	(1, 1)

- В каждой тройке чисел табл. 1 первое число не превосходит первого числа в соотв. тройке чисел табл. 2.
- Стратегия 2 игрока 1 доминирует его стратегию 1.
- После удаления страт. 1 игрока 1 мы получим усеченную игру игроков 2 и 3.

Пример 1: продолжение

Игрок 2

игрок з		
	1	2
1	(5,5)	(1,0)
2	(0, 1)	(1, 1)

IIImore 2

- В усеченной игре, стратегия 1 у каждого из игроков доминирует его стратегию 2.
- Поэтому (1,1) есть доминирующая ситуация равновесия для усеченной игры.
- Следовательно, (2, 1, 1) есть ситуация равновесия в исходной игре.

Пример 1: продолжение

Игрок 2

Игрок 3		
	1	2
1	(5,5)	(1,0)
2	(0, 1)	(1, 1)

- В усеченной игре, стратегия 1 у каждого из игроков доминирует его стратегию 2.
- Поэтому (1,1) есть доминирующая ситуация равновесия для усеченной игры.
- Следовательно, (2, 1, 1) есть ситуация равновесия в исходной игре.

Игрок 3		
	1	2
1	(5,5)	(1,0)
2	(0, 1)	(1, 1)

- В усеченной игре, стратегия 1 у каждого из игроков доминирует его стратегию 2.
- Поэтому (1,1) есть доминирующая ситуация равновесия для усеченной игры.
- Следовательно, (2, 1, 1) есть ситуация равновесия в исходной игре.

Игрок 1 выбирает стратегию 1: Игрок 3

1 2 1 (1,6,3) (2,0,5) 2 (1,8,1) (3,6,2)

Игрок 2

Игрок 1 выбирает стратегию 2: Игрок 3

	1	2
1	(1, 5, 5)	(2,1,0)
2	(2,0,1)	(4, 1, 1)

- Заметим, что ситуация (2, 1, 1) не является доминирующим равновесием в исходной игре,
- поскольку стратегия 1 не является доминирующей для игрока 2.

Игрок 1 выбирает стратегию 1: Игрок 3

Игрок 2 1 (1,6,3) (2,0,5) 2 (1,8,1) (3,6,2)

Игрок 1 выбирает стратегию 2: Игрок 3

1		
	1	2
1	(1,5,5)	(2,1,0)
2	(2,0,1)	(4, 1, 1)

- Заметим, что ситуация (2, 1, 1) не является доминирующим равновесием в исходной игре,
- поскольку стратегия 1 не является доминирующей для игрока 2.

Определение

Бескоалиционная игра $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$ называется выпуклой игрой, если для всех $i \in N = \{1, \dots, n\}$ выполняются условия:

Определение

Бескоалиционная игра $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$ называется выпуклой игрой, если для всех $i \in N = \{1, \dots, n\}$ выполняются условия:

 \bullet S_i — выпуклый компакт в \mathbb{R}^{n_i} ;

Определение

Бескоалиционная игра $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$ называется выпуклой игрой, если для всех $i \in N = \{1, \dots, n\}$ выполняются условия:

- \bullet S_i выпуклый компакт в \mathbb{R}^{n_i} ;
- $oldsymbol{\phi}_i(s)$ непрерывная на $S=\prod_{i=1}^n S_i$ функция;

Определение

Бескоалиционная игра $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$ называется выпуклой игрой, если для всех $i \in N = \{1, \dots, n\}$ выполняются условия:

- \bullet S_i выпуклый компакт в \mathbb{R}^{n_i} ;
- ullet для всех фиксированных $s_{-i} \in S_{-i}$ функция $\phi_i(s_i, s_{-i})$ квазивогнута по переменной s_i .

Теорема Нэша

Теорема о существовании равновесия

Теорема (Нэша)

Любая выпуклая игра имеет хотя бы одну ситуацию равновесия.

"ПРОКЛЯТИЕ ОБЩЕГО"

Пример

• Предположим, что n (n > 4) интернет провайдеров (в дальнейшем игроков) безконтрольно делят общий внешний канал выхода в интернет емкости 1.

ПРИМЕР

- Предположим, что n (n > 4) интернет провайдеров (в дальнейшем игроков) безконтрольно делят общий внешний канал выхода в интернет емкости 1.
- Игрок $i \in N = \{1, ..., n\}$ выбирает свою стратегию $x_i \in S_i = [0, 1],$

Пример

- Предположим, что n (n > 4) интернет провайдеров (в дальнейшем игроков) безконтрольно делят общий внешний канал выхода в интернет емкости 1.
- Игрок $i \in N = \{1, \dots, n\}$ выбирает свою стратегию $x_i \in S_i = [0, 1],$
- и в ситуации $x = (x_1, \dots, x_n)$ игрок i выигрывает $\phi_i(x) = x_i \left(1 \sum_{j=1}^n x_j\right)$.

Пример

- Предположим, что n (n > 4) интернет провайдеров (в дальнейшем игроков) безконтрольно делят общий внешний канал выхода в интернет емкости 1.
- Игрок $i \in N = \{1, \dots, n\}$ выбирает свою стратегию $x_i \in S_i = [0, 1],$
- и в ситуации $x = (x_1, \dots, x_n)$ игрок i выигрывает $\phi_i(x) = x_i \left(1 \sum_{j=1}^n x_j\right)$.
- Нужно найти ситуацию равновесия

Пример

- Предположим, что n (n > 4) интернет провайдеров (в дальнейшем игроков) безконтрольно делят общий внешний канал выхода в интернет емкости 1.
- Игрок $i \in N = \{1, ..., n\}$ выбирает свою стратегию $x_i \in S_i = [0, 1],$
- и в ситуации $x = (x_1, \dots, x_n)$ игрок i выигрывает $\phi_i(x) = x_i \left(1 \sum_{j=1}^n x_j\right)$.
- Нужно найти ситуацию равновесия
- и сравнить выигрыши игроков в ситуации равновесия с теми, которые игроки могут получить, если договорятся пропорционально разделить половину емкости канала.

• Мы видим, что выигрыш $\phi_i(x) = x_i \left(1 - \sum_{j=1}^n x_j\right)$ игрока i увеличивается с ростом его доли x_i

- Мы видим, что выигрыш $\phi_i(x) = x_i \left(1 \sum_{j=1}^n x_j\right)$ игрока i увеличивается с ростом его доли x_i
- и убывает с ростом общей загрузки канала $\sum_{j=1}^{n} x_{j}$.

- Мы видим, что выигрыш $\phi_i(x) = x_i \left(1 \sum_{j=1}^n x_j\right)$ игрока i увеличивается с ростом его доли x_i
- и убывает с ростом общей загрузки канала $\sum_{j=1}^{n} x_{j}$.
- Представив $\phi_i(x)$ в следующем виде $\phi_i(x) = -x_i^2 + x_i \left(1 \sum_{j \in N \setminus \{i\}} x_j\right),$

- Мы видим, что выигрыш $\phi_i(x) = x_i \left(1 \sum_{j=1}^n x_j\right)$ игрока i увеличивается с ростом его доли x_i
- и убывает с ростом общей загрузки канала $\sum_{j=1}^{n} x_{j}$.
- Представив $\phi_i(x)$ в следующем виде $\phi_i(x) = -x_i^2 + x_i \left(1 \sum_{j \in N \setminus \{i\}} x_j\right),$
- мы видим, что функция $\phi_i(x)$ вогнута по x_i при фиксированных значения $x_j, j \in N \setminus \{i\}.$

- Мы видим, что выигрыш $\phi_i(x) = x_i \left(1 \sum_{j=1}^n x_j\right)$ игрока i увеличивается с ростом его доли x_i
- и убывает с ростом общей загрузки канала $\sum_{j=1}^{n} x_{j}$.
- Представив $\phi_i(x)$ в следующем виде $\phi_i(x) = -x_i^2 + x_i \left(1 \sum_{j \in N \setminus \{i\}} x_j\right),$
- мы видим, что функция $\phi_i(x)$ вогнута по x_i при фиксированных значения $x_j, j \in N \setminus \{i\}$.
- Поэтому игра $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$ выпуклая, и по теореме Нэша она имеет ситуацию равновесия.

• При известных стратегиях $x_j, j \in N \setminus \{i\}$, игрок $i \in N$ найдет свою стратегию x_i , решая задачу $\max \left\{ \phi_i(x) = -x_i^2 + x_i \left(1 - \sum_{j \in N \setminus \{i\}} x_j\right) : \ x_i \in [0,1] \right\}. \quad (*)$

- При известных стратегиях $x_j, j \in N \setminus \{i\}$, игрок $i \in N$ найдет свою стратегию x_i , решая задачу $\max \left\{ \phi_i(x) = -x_i^2 + x_i \left(1 \sum_{j \in N \setminus \{i\}} x_j\right) : \ x_i \in [0,1] \right\}. \quad (*)$
- При граничных значениях $x_i = 0$ или $x_i = 1$ выигрыш игрока i неположителен.

- При известных стратегиях $x_j, j \in N \setminus \{i\}$, игрок $i \in N$ найдет свою стратегию x_i , решая задачу $\max \left\{ \phi_i(x) = -x_i^2 + x_i \left(1 \sum_{j \in N \setminus \{i\}} x_j\right) : \ x_i \in [0,1] \right\}. \quad (*)$
- При граничных значениях $x_i = 0$ или $x_i = 1$ выигрыш игрока i неположителен.
- Поэтому предположим, что все игроки не используют свои граничные стратегии.

- При известных стратегиях $x_j, j \in N \setminus \{i\}$, игрок $i \in N$ найдет свою стратегию x_i , решая задачу $\max \left\{ \phi_i(x) = -x_i^2 + x_i \left(1 \sum_{j \in N \setminus \{i\}} x_j \right) : x_i \in [0, 1] \right\}.$ (*)
- При граничных значениях $x_i = 0$ или $x_i = 1$ выигрыш игрока i неположителен.
- Поэтому предположим, что все игроки не используют свои граничные стратегии.
- Тогда решение задачи (*) должно удовлетворять условию оптимальности первого порядка: $\frac{\partial \phi_i}{\partial x_i}(x) = -2x_i + 1 \sum_{j \in N \setminus \{i\}} x_j = 0.$

- При известных стратегиях $x_j, j \in N \setminus \{i\}$, игрок $i \in N$ найдет свою стратегию x_i , решая задачу $\max \left\{ \phi_i(x) = -x_i^2 + x_i \left(1 \sum_{j \in N \setminus \{i\}} x_j\right) : x_i \in [0,1] \right\}$. (*)
- При граничных значениях $x_i = 0$ или $x_i = 1$ выигрыш игрока i неположителен.
- Поэтому предположим, что все игроки не используют свои граничные стратегии.
- Тогда решение задачи (*) должно удовлетворять условию оптимальности первого порядка: $\frac{\partial \phi_i}{\partial x_i}(x) = -2x_i + 1 \sum_{j \in N \setminus \{i\}} x_j = 0.$
- Решая систему линейных уравнений $2x_i + \sum_{j \in N \setminus \{i\}} x_j = 1, \quad i = 1, \dots, n,$

- При известных стратегиях $x_j, j \in N \setminus \{i\}$, игрок $i \in N$ найдет свою стратегию x_i , решая задачу $\max \left\{ \phi_i(x) = -x_i^2 + x_i \left(1 \sum_{j \in N \setminus \{i\}} x_j\right) : x_i \in [0,1] \right\}$. (*)
- При граничных значениях $x_i = 0$ или $x_i = 1$ выигрыш игрока i неположителен.
- Поэтому предположим, что все игроки не используют свои граничные стратегии.
- Тогда решение задачи (*) должно удовлетворять условию оптимальности первого порядка: $\frac{\partial \phi_i}{\partial x_i}(x) = -2x_i + 1 \sum_{j \in N \setminus \{i\}} x_j = 0.$
- Решая систему линейных уравнений $2x_i + \sum_{j \in N \setminus \{i\}} x_j = 1, \quad i = 1, \dots, n,$
- найдем единственную ситуацию равновесния $x^0 = (1/(n+1), \dots, 1/(n+1)).$

$$\phi_i(x^0) = \frac{1}{n+1} \cdot \left(1 - \frac{n}{n+1}\right) = \frac{1}{(n+1)^2}.$$

$$\phi_i(x^0) = \frac{1}{n+1} \cdot \left(1 - \frac{n}{n+1}\right) = \frac{1}{(n+1)^2}.$$

• При этом, общая загрузка канала равна $\sum_{i=1}^n x_i^0 = n/(n+1)$ и при больших n близка к стопроцентной;

$$\phi_i(x^0) = \frac{1}{n+1} \cdot \left(1 - \frac{n}{n+1}\right) = \frac{1}{(n+1)^2}.$$

- При этом, общая загрузка канала равна $\sum_{i=1}^n x_i^0 = n/(n+1)$ и при больших n близка к стопроцентной;
- С точки зрения клиентов "интернет работает медленно", поэтому выигрыши игроков мизерные.

$$\phi_i(x^0) = \frac{1}{n+1} \cdot \left(1 - \frac{n}{n+1}\right) = \frac{1}{(n+1)^2}.$$

- При этом, общая загрузка канала равна $\sum_{i=1}^n x_i^0 = n/(n+1)$ и при больших n близка к стопроцентной;
- С точки зрения клиентов "интернет работает медленно", поэтому выигрыши игроков мизерные.
- Если бы игроки смогли договориться пропорционально разделить половину емкости канала,

$$\phi_i(x^0) = \frac{1}{n+1} \cdot \left(1 - \frac{n}{n+1}\right) = \frac{1}{(n+1)^2}.$$

- При этом, общая загрузка канала равна $\sum_{i=1}^n x_i^0 = n/(n+1)$ и при больших n близка к стопроцентной;
- С точки зрения клиентов "интернет работает медленно", поэтому выигрыши игроков мизерные.
- Если бы игроки смогли договориться пропорционально разделить половину емкости канала,
- то в ситуации $x^1 = (1/2n, \dots, 1/2n)$ выигрыш каждого игрока $i \in N$ составил бы $\phi_i(x^1) = 1/4n$,

$$\phi_i(x^0) = \frac{1}{n+1} \cdot \left(1 - \frac{n}{n+1}\right) = \frac{1}{(n+1)^2}.$$

- При этом, общая загрузка канала равна $\sum_{i=1}^n x_i^0 = n/(n+1)$ и при больших n близка к стопроцентной;
- С точки зрения клиентов "интернет работает медленно", поэтому выигрыши игроков мизерные.
- Если бы игроки смогли договориться пропорционально разделить половину емкости канала,
- то в ситуации $x^1 = (1/2n, \dots, 1/2n)$ выигрыш каждого игрока $i \in N$ составил бы $\phi_i(x^1) = 1/4n$,
- что более чем в n/4 раза превышает выигрыш в ситуации равновесия.

• Теорема Нэша гарантирует сушествование решения для выпуклых игр, но не указывает способа их решения.

- Теорема Нэша гарантирует сушествование решения для выпуклых игр, но не указывает способа их решения.
- Рассмотрим теперь итерационный алгоритм решения выпуклой игры $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_i \in N)$, где $N = \{1, \dots, n\}$.

- Теорема Нэша гарантирует сушествование решения для выпуклых игр, но не указывает способа их решения.
- Рассмотрим теперь итерационный алгоритм решения выпуклой игры $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_i \in N)$, где $N = \{1, \dots, n\}$.
- Итерации процесса естественно интерпретировать как последовательность партий, разыгрываемых игроками.

• Игроки начинают с некот. начальной ситуации $s^0 \in S$.

- Игроки начинают с некот. начальной ситуации $s^0 \in S$.
- На шаге $k=1,2,\ldots$ разыгрывается партия $s^k \in S$

- Игроки начинают с некот. начальной ситуации $s^0 \in S$.
- На шаге $k=1,2,\ldots$ разыгрывается партия $s^k\in S$
- как результат одновременного предъявления всеми игроками своих стратегий s^k , т. е. $s^k = (s_1^k, \dots, s_n^k)$.

- Игроки начинают с некот. начальной ситуации $s^0 \in S$.
- На шаге $k=1,2,\ldots$ разыгрывается партия $s^k \in S$
- как результат одновременного предъявления всеми игроками своих стратегий s^k , т. е. $s^k = (s_1^k, \ldots, s_n^k)$.
- ullet Игроки анализируют сложившуюся после партии k-1ситуацию s^{k-1} и находят свои оптимальные ответы (стратегии) \bar{s}_{i}^{k-1} , которые им нужно было применять, если бы они предвидели заранее ситуацию s^{k-1} , т. е. $\bar{s}_i^{k-1} \in \arg\max_{s_i \in S_i} \phi_i(s_i, s_{-i}^{k-1}), i = 1, \dots, n.$

$$\bar{s}_i^{\kappa-1} \in \arg\max_{s_i \in S_i} \phi_i(s_i, s_{-i}^{\kappa-1}), i = 1, \dots, n.$$

- Игроки начинают с некот. начальной ситуации $s^0 \in S$.
- На шаге $k=1,2,\ldots$ разыгрывается партия $s^k\in S$
- как результат одновременного предъявления всеми игроками своих стратегий s^k , т. е. $s^k = (s_1^k, \dots, s_n^k)$.
- Игроки анализируют сложившуюся после партии k-1 ситуацию s^{k-1} и находят свои оптимальные ответы (стратегии) \bar{s}_i^{k-1} , которые им нужно было применять, если бы они предвидели заранее ситуацию s^{k-1} , т. е. $\bar{s}_i^{k-1} \in \arg\max_{s_i \in S_i} \phi_i(s_i, s_{-i}^{k-1}), i = 1, \ldots, n.$
- Игроки корректируют использованные в предыдушей партии стратегии, вычисляя свои новые стратегии s_i^k для применения в k-й партии:

$$s_i^k = (1 - \lambda_k)s_i^{k-1} + \lambda_k \bar{s}_i^{k-1}, i = 1, \dots, n.$$

• Параметр λ_k в формуле $s_i^k = (1 - \lambda_k) s_i^{k-1} + \lambda_k \bar{s}_i^{k-1}$ интерпрет. как степень доверия новой информации после опыта, накопленного в ранее сыгранных партиях.

- Параметр λ_k в формуле $s_i^k = (1 \lambda_k) s_i^{k-1} + \lambda_k \bar{s}_i^{k-1}$ интерпрет. как степень доверия новой информации после опыта, накопленного в ранее сыгранных партиях.
- Сходится ли послед. $s^0, s^1, \ldots, s^k, \ldots$ и, если сходится, то является ли $s^* = \lim_{k \to \infty} s^k$ ситуацией равновесия?

- Параметр λ_k в формуле $s_i^k = (1 \lambda_k) s_i^{k-1} + \lambda_k \bar{s}_i^{k-1}$ интерпрет. как степень доверия новой информации после опыта, накопленного в ранее сыгранных партиях.
- Сходится ли послед. $s^0, s^1, \ldots, s^k, \ldots$ и, если сходится, то является ли $s^* = \lim_{k \to \infty} s^k$ ситуацией равновесия?
- Если придерживаться слишком консервативной политики, когда $\sum_{k=0}^{\infty} \lambda_k < \infty$, то процес сойдется, но он может и не дойти до ситуации равновесия s^* .

- Параметр λ_k в формуле $s_i^k = (1 \lambda_k) s_i^{k-1} + \lambda_k \bar{s}_i^{k-1}$ интерпрет. как степень доверия новой информации после опыта, накопленного в ранее сыгранных партиях.
- Сходится ли послед. $s^0, s^1, \ldots, s^k, \ldots$ и, если сходится, то является ли $s^* = \lim_{k \to \infty} s^k$ ситуацией равновесия?
- Если придерживаться слишком консервативной политики, когда $\sum_{k=0}^{\infty} \lambda_k < \infty$, то процес сойдется, но он может и не дойти до ситуации равновесия s^* .
- Если проявлять чрезмерную склонность к переменам, когда λ_k не стремится к нулю, то это может привести к тому, что устойчивое состояние так и не будет найдено.

- Параметр λ_k в формуле $s_i^k = (1 \lambda_k) s_i^{k-1} + \lambda_k \bar{s}_i^{k-1}$ интерпрет. как степень доверия новой информации после опыта, накопленного в ранее сыгранных партиях.
- Сходится ли послед. $s^0, s^1, \ldots, s^k, \ldots$ и, если сходится, то является ли $s^* = \lim_{k \to \infty} s^k$ ситуацией равновесия?
- Если придерживаться слишком консервативной политики, когда $\sum_{k=0}^{\infty} \lambda_k < \infty$, то процес сойдется, но он может и не дойти до ситуации равновесия s^* .
- Если проявлять чрезмерную склонность к переменам, когда λ_k не стремится к нулю, то это может привести к тому, что устойчивое состояние так и не будет найдено.
- Найболее простой и естественной политикой при выборе шагов λ_k является политика равного доверия ко всем возникающим в процессе игры оптимальным ответам:

$$\frac{\lambda_k}{1 - \lambda_k} = \frac{1}{k} \quad \Rightarrow \quad \lambda_k = \frac{1}{k+1}.$$

Конечные бескоалиционные игры

• Пусть в бескоалиционной игре n лиц $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$

- Пусть в бескоалиционной игре n лиц $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$
- каждый игрок i имеет конечное число стратегий n_i .

- Пусть в бескоалиционной игре n лиц $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$
- ullet каждый игрок i имеет конечное число стратегий n_i .
- Для простоты представления будем считать, что $S_i = \{1, ..., n_i\}, i \in N = \{1, ..., n\}.$

- Пусть в бескоалиционной игре n лиц $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$
- каждый игрок i имеет конечное число стратегий n_i .
- Для простоты представления будем считать, что $S_i = \{1, \dots, n_i\}, i \in N = \{1, \dots, n\}.$
- Решениями бескоалиционной игры являются ситуации равновесия.

- Пусть в бескоалиционной игре n лиц $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$
- ullet каждый игрок i имеет конечное число стратегий n_i .
- Для простоты представления будем считать, что $S_i = \{1, \dots, n_i\}, i \in N = \{1, \dots, n\}.$
- Решениями бескоалиционной игры являются ситуации равновесия.
- Многие бескоалиционные игры не имеют ситуаций равновесия.

- Пусть в бескоалиционной игре n лиц $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$
- каждый игрок i имеет конечное число стратегий n_i .
- Для простоты представления будем считать, что $S_i = \{1, \dots, n_i\}, i \in N = \{1, \dots, n\}.$
- Решениями бескоалиционной игры являются ситуации равновесия.
- Многие бескоалиционные игры не имеют ситуаций равновесия.
- Чтобы это исправить, нам нужно некоторым образом расширить понятие стратегии с целью получить игру, которая имела бы решение.

- Пусть в бескоалиционной игре n лиц $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$
- каждый игрок i имеет конечное число стратегий n_i .
- Для простоты представления будем считать, что $S_i = \{1, \dots, n_i\}, i \in N = \{1, \dots, n\}.$
- Решениями бескоалиционной игры являются ситуации равновесия.
- Многие бескоалиционные игры не имеют ситуаций равновесия.
- Чтобы это исправить, нам нужно некоторым образом расширить понятие стратегии с целью получить игру, которая имела бы решение.
- Сушествует несколько способов сделать это.

• Наиболее известный способ расширить понятие стратегии базируется на следующих рассуждениях.

- Наиболее известный способ расширить понятие стратегии базируется на следующих рассуждениях.
- Предполагается, что игра будет повторяться многократно.

- Наиболее известный способ расширить понятие стратегии базируется на следующих рассуждениях.
- Предполагается, что игра будет повторяться многократно.
- В силу допущения о разумности игроков, принятого в теории игр, нужно допустить, что

- Наиболее известный способ расширить понятие стратегии базируется на следующих рассуждениях.
- Предполагается, что игра будет повторяться многократно.
- В силу допущения о разумности игроков, принятого в теории игр, нужно допустить, что
- если игрок использует свои стратегии с некоторой детерминированной закономерностью,

- Наиболее известный способ расширить понятие стратегии базируется на следующих рассуждениях.
- Предполагается, что игра будет повторяться многократно.
- В силу допущения о разумности игроков, принятого в теории игр, нужно допустить, что
- если игрок использует свои стратегии с некоторой детерминированной закономерностью,
- то его оппоненты разгадают эту стратегию.

- Наиболее известный способ расширить понятие стратегии базируется на следующих рассуждениях.
- Предполагается, что игра будет повторяться многократно.
- В силу допущения о разумности игроков, принятого в теории игр, нужно допустить, что
- если игрок использует свои стратегии с некоторой детерминированной закономерностью,
- то его оппоненты разгадают эту стратегию.
- Остается использовать свои стратегии случайным образом, но с определенной закономерностью,

- Наиболее известный способ расширить понятие стратегии базируется на следующих рассуждениях.
- Предполагается, что игра будет повторяться многократно.
- В силу допущения о разумности игроков, принятого в теории игр, нужно допустить, что
- если игрок использует свои стратегии с некоторой детерминированной закономерностью,
- то его оппоненты разгадают эту стратегию.
- Остается использовать свои стратегии случайным образом, но с определенной закономерностью,
- поскольку иначе игра превратится в случайный процесс.

Смешанные стратегии

В дальнейшем стратегии игроков будем называть чистыми стратегиями, чтобы отличать их от смешанных стратегий, к рассмотрению которых мы приступаем.

Определение

Смешанной стратегией p_i игрока i $(i=1,\ldots,n)$ в конечной бескоалиционной игре называется полный набор вероятностей применения его чистых стратегий, т. е. $p_i = (p_{i1}, p_{i2}, \ldots, p_{i,n_i}), \; \sum_{j=1}^{n_i} p_{ij} = 1, \; p_{ij} \geq 0, \; j=1,\ldots,n_i.$

• Множество смешанных стратегий S_i игрока i есть симплекс \sum_{n_i} .

Смешанные стратегии

В дальнейшем стратегии игроков будем называть чистыми стратегиями, чтобы отличать их от смешанных стратегий, к рассмотрению которых мы приступаем.

Определение

Смешанной стратегией p_i игрока i $(i=1,\ldots,n)$ в конечной бескоалиционной игре называется полный набор вероятностей применения его чистых стратегий, т. е. $p_i = (p_{i1}, p_{i2}, \ldots, p_{i,n_i}), \; \sum_{j=1}^{n_i} p_{ij} = 1, \; p_{ij} \geq 0, \; j=1,\ldots,n_i.$

- Множество смешанных стратегий S_i игрока i есть симплекс \sum_{n_i} .
- Смешанная стратегия $e_j \in S_i$ игрока i соответствует его j-й чистой стратегии.

Один из способов реализации смешанных стратегий

- Свою смешанную стратегию $p_i = (p_{i1}, \dots, p_{i,n_i})$ игрок i может реализовать,
- например, сделав рулетку, в которой n_i секторов,
- *j*-й сектор размера $p_{ij} \cdot 360^o$.
- Перед началом очередной партии игрок крутит колесо рулетки и, после того, как оно остановится,
- номер сектора j, на который указывает стрелка рулетки, опрелеляет стратегию, которую игрок применит в этой партии.

Один из способов реализации смешанных стратегий

- Свою смешанную стратегию $p_i = (p_{i1}, \dots, p_{i,n_i})$ игрок i может реализовать,
- например, сделав рулетку, в которой n_i секторов,
- *j*-й сектор размера $p_{ij} \cdot 360^o$.
- Перед началом очередной партии игрок крутит колесо рулетки и, после того, как оно остановится,
- номер сектора j, на который указывает стрелка рулетки, опрелеляет стратегию, которую игрок применит в этой партии.

• В бескоалиционной игре каждый игрок использует свои чистые стратегии независимо от всех остальных игроков,

- В бескоалиционной игре каждый игрок использует свои чистые стратегии независимо от всех остальных игроков,
- поэтому в смешанной ситуации $p = (p_1, \dots, p_n)$ вероятность p(s) появления (чистой) ситуации $s = (s_1, \dots, s_n) \in S = \prod_{j=1}^n S_j$

- В бескоалиционной игре каждый игрок использует свои чистые стратегии независимо от всех остальных игроков,
- поэтому в смешанной ситуации $p = (p_1, \ldots, p_n)$ вероятность p(s) появления (чистой) ситуации $s = (s_1, \ldots, s_n) \in S = \prod_{j=1}^n S_j$
- равна произведению вероятностей использования игроками своих чистых стратегий, т. е. $p(s) = p(s_1, \dots, s_n) = p_{1,s_1} \cdot p_{2,s_2} \cdot \dots \cdot p_{n,s_n}.$

- В бескоалиционной игре каждый игрок использует свои чистые стратегии независимо от всех остальных игроков,
- поэтому в смешанной ситуации $p = (p_1, \ldots, p_n)$ вероятность p(s) появления (чистой) ситуации $s = (s_1, \ldots, s_n) \in S = \prod_{j=1}^n S_j$
- равна произведению вероятностей использования игроками своих чистых стратегий, т. е. $p(s) = p(s_1, \ldots, s_n) = p_{1,s_1} \cdot p_{2,s_2} \cdot \ldots \cdot p_{n,s_n}.$
- Математическое ожидание $\phi_i(p)$ выигрыша игрока i $(i=1,\ldots,n)$ в смешанной ситуации $p=(p_1,\ldots,p_n)$ определяется по формуле

$$\bar{\phi}_i(p) = \bar{\phi}_i(p_1, \dots, p_n) = \sum_{s \in S} \phi_i(s) p(s) = \sum_{s_1 \in S_1} \dots \sum_{s_n \in S_n} \phi_i(s_1, s_2, \dots, s_n) p_{1, s_1} \dots p_{n, s_n}.$$

Смешанное расширение конечной бескоал. игры

Определение

• Смешанным расширением конечной бескоалиционной игры γ называется бескоалиционная игра

$$\gamma^* = (N, \{S_i\}_{i \in N}, \{\bar{\phi}_i\}_{i \in N}).$$

Смешанное расширение конечной вескоал. игры

Определение

• Смешанным расширением конечной бескоалиционной игры γ называется бескоалиционная игра

$$\gamma^* = (N, \{S_i\}_{i \in N}, \{\bar{\phi}_i\}_{i \in N}).$$

• Ситуацией равновесия (Нэша) в смешанных стратегиях игры γ называется ситуация равновесия ее смешанного расширения γ^* .

 Мы определили выигрыши игроков в смешанной ситуации равными их ожидаемым выигрышам.

- Мы определили выигрыши игроков в смешанной ситуации равными их ожидаемым выигрышам.
- Это неявным образом предполагает, что все игроки являются нейтральными к риску.

- Мы определили выигрыши игроков в смешанной ситуации равными их ожидаемым выигрышам.
- Это неявным образом предполагает, что все игроки являются нейтральными к риску.
- Для примера рассмотрим две ситуации,
 - в первой из которых игрок может выиграть с равной вероятностью 2 или 0,

- Мы определили выигрыши игроков в смешанной ситуации равными их ожидаемым выигрышам.
- Это неявным образом предполагает, что все игроки являются нейтральными к риску.
- Для примера рассмотрим две ситуации,
 - в первой из которых игрок может выиграть с равной вероятностью 2 или 0,
 - \bullet а во второй 1 с вероятностью 1.

- Мы определили выигрыши игроков в смешанной ситуации равными их ожидаемым выигрышам.
- Это неявным образом предполагает, что все игроки являются нейтральными к риску.
- Для примера рассмотрим две ситуации,
 - в первой из которых игрок может выиграть c равной вероятностью 2 или 0,
 - ullet а во второй 1 с вероятностью 1.
- В обоих ситуациях ожидаемый выигрыш игрока равен 1.

- Мы определили выигрыши игроков в смешанной ситуации равными их ожидаемым выигрышам.
- Это неявным образом предполагает, что все игроки являются нейтральными к риску.
- Для примера рассмотрим две ситуации,
 - в первой из которых игрок может выиграть с равной вероятностью 2 или 0,
 - ullet а во второй 1 с вероятностью 1.
- В обоих ситуациях ожидаемый выигрыш игрока равен 1.
- Для нейтрального к риску игрока обе ситуации равноценны,

- Мы определили выигрыши игроков в смешанной ситуации равными их ожидаемым выигрышам.
- Это неявным образом предполагает, что все игроки являются нейтральными к риску.
- Для примера рассмотрим две ситуации,
 - в первой из которых игрок может выиграть с равной вероятностью 2 или 0,
 - ullet а во второй 1 с вероятностью 1.
- В обоих ситуациях ожидаемый выигрыш игрока равен 1.
- Для нейтрального к риску игрока обе ситуации равноценны,
- а неприемлющий риск игрок предпочтет вторую ситуацию первой.

• Рассмотрим конечную бескоалиционную игру $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}).$

- Рассмотрим конечную бескоалиционную игру $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}).$
- и ее смешанное расширение $\gamma^* = (N, \{S_i\}_{i \in N}, \{\bar{\phi}_i\}_{i \in N}).$

- Рассмотрим конечную бескоалиционную игру $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}).$
- и ее смешанное расширение $\gamma^* = (N, \{S_i\}_{i \in N}, \{\bar{\phi}_i\}_{i \in N}).$
- ullet Так как S_i есть симплекс, то S_i выпуклое множество.

- Рассмотрим конечную бескоалиционную игру $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}).$
- и ее смешанное расширение $\gamma^* = (N, \{S_i\}_{i \in N}, \{\bar{\phi}_i\}_{i \in N}).$
- ullet Так как S_i есть симплекс, то S_i выпуклое множество.
- Каждая функция $\bar{\phi}_i$ линейна по p_i при фиксированых остальных аргументах p_{-i} .

- Рассмотрим конечную бескоалиционную игру $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N}).$
- и ее смешанное расширение $\gamma^* = (N, \{S_i\}_{i \in N}, \{\bar{\phi}_i\}_{i \in N}).$
- Так как S_i есть симплекс, то S_i выпуклое множество.
- Каждая функция $\bar{\phi}_i$ линейна по p_i при фиксированых остальных аргументах p_{-i} .
- Поэтому γ^* выпуклая игра, которая имеет ситуацию равновесия.

Теорема (Нэша)

Каждая конечная бескоалиционная игра имеет хотя бы одну ситуацию равновесия в смешанных стратегиях.

Является ли смешанная ситуация равновесием

Теорема

Чтобы смешанная ситуация $p \in S = S_1 \times \cdots \times S_n$ была ситуацией равновесия в смешанных стратегиях в конечной бескоалиционной игре $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$, необходимо и достаточно, чтобы выполнялись неравенства:

$$\bar{\phi}_i(p) \ge \bar{\phi}_i(e_j, p_{-i}), \quad e_j \in \sum_{n_i}, \ i = 1, \dots, n.$$

Является ли смешанная ситуация равновесием

Теорема

Чтобы смешанная ситуация $p \in S = S_1 \times \cdots \times S_n$ была ситуацией равновесия в смешанных стратегиях в конечной бескоалиционной игре $\gamma = (N, \{S_i\}_{i \in N}, \{\phi_i\}_{i \in N})$, необходимо и достаточно, чтобы выполнялись неравенства:

$$\bar{\phi}_i(p) \ge \bar{\phi}_i(e_j, p_{-i}), \quad e_j \in \sum_{n_i}, \ i = 1, \dots, n.$$

Эта теорема утверждает, что

ситуация является равновесием в смешанных стратегиях, если ни одному игроку в отдельности не выгодно переходить от своей смешанной стратегии к какой-либо чистой стратегии.

