CONTENTS

DESCRIPTION		PAGE NO
CONTENTS		
LIST OF FIGURES		
LIST OF TABLES		
GLOSSARY		
NOMENCLATURE		
CHAPTER 1: DEREGULA	ATED POWER SYSTEM	1
1.1 History of	deregulation	3
1.2 Benefits o	f deregulation	4
1.3 Problems	of deregulation	5
CHAPTER 2: INTRODUCTION		7
2.1 Transmiss	ion system	8
2.2 Need of ca	apacitors	9
2.3 Considera	tions in locating capacitor	9
CHAPTER 3: LITERATU	RE SURVEY	10
CHAPTER 4: OPTIMAL POWER FLOW ANALYSIS		13
4.1 Optimal p	ower flow	14
4.2 Load flow	studies	14
4.2.1 Forwa	ard/Backward sweep method	15
4.3 Load flow	,	16
4.4 Objective	function	17
4.5 Constraint	ts	18
4.6 Flow char	t of sweep method	19
CHAPTER 5: ANT LION OPTIMIZATION ALGORITHM		20
5.1 Introduction	on	21
5.2 Initializati	on	21

5.3 Steps of ALO	21
5.3.1 Random walk of ants	23
5.3.2 Area of trap structure	23
5.3.3 Entrapping	24
5.3.4 Sliding of ants	24
5.3.5 Consuming and rebuilding	25
5.3.6 Elitism	25
5.4 Flow Chart	26
5.5 Procedure	26
5.6 Merits	27
CHAPTER 6: PROPOSED METHOD	28
6.1 IEEE-57 Bus system	29
6.2 System data	30
6.2.1 Bus data	30
6.2.2 Line data	32
6.3 IEEE-33 Bus system	37
6.4 System data	37
6.4.1 Line data	37
6.4.2 Bus data	38
CHAPTER 7: MATLAB RESULTS	40
7.1 Tabular forms	41
7.2 Graphs	58
CHAPTER 8: CONCLUSION &FUTURE SCOPE	60
8.1 Conclusion	61
8.2 Future scope	61
CHAPTER 9: REFERENCES	62
APPENDIX	69
	0)

LIST OF FIGURES

S.NO	FIGURES	PG.NO	
1.	4.1.SIMPLE RADIAL DISTRUBUTION SYSTEM	16	
2.	5.1.CONE SHAPED TRAP	22	
3.	5.2.RANDOM WALK OF ANTS	22	
4.	5.3.CATCHING PREY	22	
5.	5.4.ENTRAPMENT OF ANTS	22	
6.	5.5 MOVEMENT OF ANTS INSIDE TRAP	24	
7.	6.1. IEEE 57 BUS SYSTEM	29	
8.	6.2 IEEE 33 BUS SYSTEM	36	
9.	7.1 VOLTAGE MAGNITUDE (57 BUS)	58	
10.	7.2 CONVERGENCE CURVE (57 BUS)	58	
11.	7.3 VOLTAGE MAGNITUDE (33 BUS)	59	
12.	7 4 CONVERGENCE CURVE (33 BUS)	59	

LIST OF TABLES

S.NO	NAME OF THE TABLE	PG.NO
1.	IEEE-57 Bus bus data	30-32
2.	IEEE-57 Bus line data	32-35
3.	IEEE-33 Bus line data	36-37
4.	IEEE-33 Bus bus data	38-39
5.	IEEE-57 Bus Results	41-55
6.	IEEE-33 Bus Results	55-58

GLOSSARY

DG Distributed Generator AC **Alternating Current** DC Direct Current KVKilo Volt KW Kilo Watt GS Gauss Saidel Newton Raphson NR FD Fast Decoupled P.U Per unit Kilo volt ampere reactance **KVAR** ALO Antlion algorithm GA Genetic algorithm **PSO** Particle swam optimizaton

NOMENCLATURE

S	S.NO	SYMBOL	DESCRIPTION	UNITS
1		Z	Impedance	Ohms
2		R	Resistance	Ohms
3	}	X	Reactance	Ohms
4	ļ	P	Active power	Kv
5	5	Q	Reactive Power	Kw
6	5	V	Voltage	Volt
7	,	θ	Theta	-