Assignment F300/7320/8600 am Help

Introduction and Review

https://tutorcs.com

WeChat: Cstutorcs
Lecture 1

Course Staffs and Meetings

Assignment diatroject Exam Help

Email: christiern.rose@uq.edu.au Consultation: Tuesdays 15:00-17:00

- Practicals: Fridays, /08:00-12:00 or 12:00-14:00 (starting week 1)
- Lectures: mainly theoretical "which methods and why"
- Practical howith with Gas and in the lett in thods (STATA)

Course Information

Assignusation of the course will focus on estimation and inference methods that are the source has a topic based structure, and the source and applications.

- ► The course has a topics-based structure, and theory and applications are closely integrated.
- Menver Sulearna mehod theoretical (legiting) there will be a Stata exercise with data for the method (practical)
- The course will provide econometric skills that could be used in quantitative research at the Graduate level
- ► The course has a strong practical focus, but we will use some basic mathematical/statistical concepts.

Learning Resources

Assignment Project Exam Help Cameron, A.C. and P.K. Trivedi (2009) Microeconometrics Using Stata

Revised Edition, Stata Press, College Station: TX. CT-Stata

- ► The team of the property of
- As the semester progresses, lecture notes, slides, datasets, problem sets, etc. will be provided. It is however strongly encouraged that you read the relevant part of the textbook and other references

This week: math review

Assignment Project Exam Help

mathematics/statistics. If most of the concepts we cover today are unfamiliar to you, this course may be unsuitable.

- Hantida pagables/tixpedaton variance covariance
- Point Estimation, Hypothesis Testing, Interval Estimation
- Linear Algebra: vector and matrix and their operations Welnat: CSTUTOTCS

Math Review random variable

Assignformally, a Random Variable (RV) takes on Tumerical values Help

Example: Consider an experiment in which a fair coin is tossed. Then, the possible outcomes are Head and Tail, i.e., $\{H, T\}$. Then, we define Transposition of the partial partial

$$X = \begin{cases} 0 & \text{if the outcome is } T \\ 1 & \text{if the outcome is } H \end{cases}$$

The X could be either 0 or 1 whenever the coin is tassed. The uncertainty can be summarised as Pr(X = 0) = 0.5.

Math Review probability functions

The uncertainty of a random variable, say X, is represented by its cumulative distribution function (CDF), defined as

Assignment Project Exam Help

 \blacktriangleright When $F_X(x)$ is a continuous function, X is said to be a continuous random variable. For a continuous random variable, the probability density function (PDE) denoted by $f_X(x)$, is a function that satisfies $\underbrace{\text{Pr}(a < X < b)}_{a} = \int_{a}^{b} f_X(t) dt$

$$\underbrace{\Pr(a < X < b)}_{=F_X(b)-F_X(a)} = \int_a^b f_X(t) dt$$

► If Wx G Giffe heat, we has tutores

$$f_X(x)=\frac{d}{dx}F_X(x)$$

If $F_X(x)$ is a step function, X is discrete, which we do not cover today.

Math Review expectation

A function of a random variable is also a random variable. For example, $\exp(X)$, $\log(X)$, etc. More generally, g(X) with some function $g(\cdot)$.

Assignment $\Pr_{E[g(X)]}$ $F[g(X)] = \int_{-\infty}^{\infty} g(t) \cdot f_X(t) dt$ $F[g(X)] = \int_{-\infty}^{\infty} g(t) \cdot f_X(t) dt$

which represents the central tendency of the random variable, g(X).

hatspease with utorcs.com

$$E[X] := \int_{-\infty}^{\infty} t \cdot f_X(t) dt$$

who is the expectation of CS the extent Gus or the mean

► Consider another case with $g(X) = (X - E[X])^2$.

$$V(X) := E[(X - E[X])^2]$$

which is called the variance that represents the variability of X. Note that $\sqrt{V(X)}$ is the standard deviation of X.

Math Review expectation

 \blacktriangleright E[X] and V(X) are the population parameters, or theoretical moments.

You need to know the distribution to compute F[X] and V(X). Help with the distinguished from the sample mean (average). For example, when you observe some numbers x_1, \ldots, x_n , its average is

https://tutorcscom

which is NOT the expectation of the distribution

Trillar you must distinguish & (*K) and the pample variance

$$\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x}_n)^2$$

Math Review expectation

1. E[c] = c, for any constant c

Assign the Fift of the project and the part of the par

https://tutorcs=1com

- 4. V(c) = 0, for any constant c.
- 5. $V(aX + b) = a^2 Var(X)$ for any constants a and c.

Math Review joint distribution

Suppose X and Y are jointly distributed with the joint PDF $f_{XY}(x,y)$.

ASSIGNATION THE POINT TO SUPPOSE X and Y are jointly distributed with the joint PDF $f_{XY}(x,y)$.

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$

https://etutorgistacom/

$$f_{XY}(x,y)=f_X(x)f_Y(y)$$

The pectation of g(X, Y) for some function g(X, Y) is $E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{XY}(x, y) dxdy$

Math Review covariance

▶ If g(X, Y) = (X - E[X])(Y - E[Y]), then we have the covariance,

Assignment Project Exam Help

- If C(X, Y) > 0, the X and Y move in the same direction. If C(X, Y) < 0, they move in the opposite direction.
- ► https://www.tutor.ce.sor.ca.or.ce.ficient

$$\rho_{XY} := \frac{\mathcal{C}(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}$$
 is the first of the state of

▶ If X and Y are independent, C(X, Y) = 0. But, the converse is not generally true

Math Review conditional distribution

Assignment Project Exam Help Then, the conditional PDF of Y given X = x is

https://tutorcs.com

which summarises the distribution of Y when X takes a value x.

► If X and Y are independent, $f_{Y|X}(y|x) = f_Y(y)$ and $f_{X|Y}(x|y) = f_X(x)$ CSTUTORS

Math Review conditional expectation

Assignment of the expression of the expression

- heteroitignal variance to over Size Com $V(Y|X=x) = E\left[(Y-E[Y|X=x])^2 \middle| X=x\right]$
- ► E[X|X = x] and V(Y|X = x) are functions of x.
 ► When x is not specified, E[Y|X] and V(Y|X) are random.

Math Review conditional expectation

Assignment Project Exam Help

- 2. E[a(X)Y + b(X)|X] = a(X)E[Y|X] + b(X) for any functions $a(\cdot), b(\cdot)$
- 3. https://tettoros.com
- 4. E[E[Y|X]] = E[Y]. This is called the **law of iterated expectations.**
- 5. It Xand Y are independent, V(Y|X) = V(Y) CSTUTORS

Math Review normal distribution

Assisppanain fariable rolling of the distribution with help p

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$

• The Yitan Son a value ring $\mathcal{N}(\mu,\sigma^2)$, the realisation of Y will be different. The uncertainty is summarised as its probability density function (PDF),

Math Review normal distribution

► The shape of $f_Y(y|\mu, \sigma^2)$ is given as follows when $\mu = 0$ and $\sigma^2 = 1$.

Assignment Project Exam Help

- It is symmetric about μ and the scale is determined by $\sigma := \sqrt{\sigma^2}$
- ▶ The whole shape (distribution) is completely determined by (μ, σ^2)

Math Review normal distribution

Assignment Project Exam Help often used for statistical inference

- hsimulated three number from $\mathcal{N}(0,1)$ using my computer and I doaned S . / tutors . Com $\{0.5377, 1.8339, -2.2588\}$
- These numbers are **realisations** of $\mathcal{N}(0,1)$. Their average is NOT the expectation of $\mathcal{N}(0,1)$. In fact the average is 0.0376 while the expectation is 0.0311. CSTULOTCS
- But, the average seems quite close to the mean

Math Review point estimation for normal mean

Assignment Project Exam Help

and also assume that μ is unknown but σ^2 is known. That is, if we knew the **parameter** μ , we would know all.

► With the Earn // flow the random Sample Strien, i.e., Y_1, \ldots, Y_n . Especially, we consider the (point) estimator

WeChat: cstutorcs

▶ The estimator $\hat{\mu}_n$ is random because Y_1, \ldots, Y_n are all random. (Its realisation is an **estimate** of $\hat{\mu}_n$.)

Math Review sampling distribution of the estimator

Assignment Parofeetar Bexama Help

This implies that

https://tutorcsi.com

That is, we know that

$$\hat{\mu}_n \sim \mathcal{N}\left(E[\hat{\mu}_n], V(\hat{\mu}_n)\right)$$

 $\hat{\mu}_n \sim \mathcal{N}\left(E[\hat{\mu}_n], V(\hat{\mu}_n)\right)$ Then, the are the data and the trade of the stimator $\hat{\mu}_n$?

Math Review sampling distribution of the estimator

Assignment Project Exam Help

This implies that

which means

$$\hat{\mu}_n \sim \mathcal{N}\left(\mu, V(\hat{\mu}_n)\right)$$

 $\hat{\mu}_n \sim \mathcal{N}(\mu, V(\hat{\mu}_n))$ $\blacktriangleright \text{ The signatural partial action of the property of the prop$

Math Review sampling distribution of the estimator

Assimilarity (ax) = $a^2V(x)$ when x is random and a is a constant A is random and a is a constant A is a c

Therefore,

https:
$$\frac{1}{n} \sum_{i=1}^{n} \text{tiltps: } \frac{1}{n^2} \text{Constant} = \frac{1}{n^2} (n\sigma^2) = \frac{\sigma^2}{n}$$

Finally, we have

WeChat: estutorcs

where μ is the unknown parameter and σ^2 is assumed to be known.

Math Review consistency of the estimator

Assignment Project Exam Help

- especially, $E[\hat{\mu}_n] = \mu$ and $V(\hat{\mu}_n) = \frac{\sigma^2}{n}$ The estimator is distributed control around μ and its variance gets smaller when n grows,
- his suggests that $\hat{\mu}_n$ gets 'very' close to μ as $n \to \infty$.
- This quality is referred to as the consistency of the estimator.

Math Review consistency of the estimator

Assignment Project Exam Help

$$\lim_{n\to\infty}\Pr(|X_n-c|>\varepsilon)=0,$$

that f is then the second with f and we often write f is f and f is f is f and f is f is f and f is f is f is f is f is f in f is f in f in f is f in f in f in f is f in f in

Wechat. Estutores

When

Assignment a Particular Confidence of the pa

https://tutorcs.com

▶ Back to our estimator $\hat{\mu}_n$: since

$$\frac{\hat{\mu}_n - \mu}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0,1)$$

Assign that we have the project Exam Help $Pr(|Z| \le 1.96) = 0.95$ or, equivalently, Pr(|Z| > 1.96) = 0.05

- That is, the event that $|Z| \le 1.96$ happens with 95% probability.
- So, the event that $|Z| \le 1.96$ is likely to happen. But, the event that |Z| > 1.96 is unlikely to happen.
- Converge) when the event that Z = 1.67 appeas, you might want to suspect whether Z really follows $\mathcal{N}(0,1)$

Assignment $\underset{\sqrt{\sigma^2/n}}{\text{Project}} \text{Exam Help}$

but we do not know the true value of μ .

- So tets assume that μ is the following the following property of the value is leasonable with respect to our distributional knowledge of $\hat{\mu}_n$.
- We test the null hypothesis

WeChat: cstutorcs

▶ Under the null hypothesis H_0 , we know $\frac{\hat{\mu}_n - \mu_0}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0, 1)$ and the event

Assignment Project Exam Help

happens with 5% of probability (low prob).

- ▶ firetails Shypothesset aut, we sontider his unlikely event as a statistical evidence against H_0 . So, we reject H_0 .
- We admit that even if H_0 is correct, we could mistakenly reject H_0 with 500 probability. This error rate is called the size (level) of the test.
- You could have a different size. For example, you could use

$$P(|Z| > 2.5758) = 0.01$$

Assignment (Projector Exam: Help

For example, 95% CI is the set of all that values for μ_0 that would not be rejected by the test of 5% size. After some algebra, we construct

$$\text{https://tutorcs.p.p.p.p.p.p.}$$

or simply we may write $\hat{\mu}_n \pm 1.96 \sqrt{\sigma^2/n}$

- Whe Chat: cstutorcs

Assignment, Project, Exam Help some distribution (may not be normal) with mean μ and variance σ^2

- Two useful asymptotic results: $\frac{1}{n} \frac{1}{n} \frac{1}{$
- ► WWW directly implies teons is tener to full orcs

Assignment Project Exam Help

implies that when n is large

https://tutores.com
where sis 'approximately distributed,' which can be rewritten as

WeChat: $\frac{\hat{\mu}_n - \mu}{\sqrt{N}} \stackrel{\text{$\stackrel{\circ}{\sim}}}{\sim} \mathcal{N}^{(0,1)}$

Assignment Project Exam Help For example, we reject $H_0: \mu = \mu_0$ at 5% level if

 $\frac{\text{https://tutofcs.com}}{\text{https://tutofcs.com}}|> 1.96$

 $\begin{array}{c} \mathbf{WeCh} & \hat{\mu}_n \pm 1.96\sqrt{\sigma^2/n} \\ \mathbf{Volumer} & \mathbf{CStuttorcs} \\ \text{without normality,} & \hat{\nu}_{\sigma^2/n} \\ \mathbf{V}(0,1) & \hat{\nu}_{\sigma^2/n} \\ \mathbf{V}(0,1) \end{array}$

Assignment Project Exam Help

- If σ^2 is unknown, we cannot compute the test statistic and the confidence interval.
- https://thitorsinso.com

$$\hat{\sigma}_n^2 \stackrel{p}{\longrightarrow} \sigma^2$$
,

• Exercise: now that the CLT and Slutsky lemma implies $\sqrt{n}(\hat{\mu}_n - \mu)/\hat{\sigma}_n \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1)$

Assignment $Project_{N(\hat{\mu}_n-\mu)/\hat{\sigma}_n}$ Exam Help

implies that when n is large

https://tutores.com

where $\stackrel{a}{\sim}$ is 'approximately distributed,' which can be rewritten as

WeChat: $\frac{\hat{\mu}_n - \mu}{\text{CS}} \hat{t}$ utorcs

Assignment Project Exam Help

• Specifically, we reject $H_0: \mu = \mu_0$ at 5% level if

https://tut $\bigcirc^{\hat{\mu}_n - \mu_0}$ s.le6om and the asymptotic 95% confidence interval is

WeChat: csttrorcs

Note that $\sqrt{\hat{\sigma}_n^2/n}$ is called the standard error, $se(\hat{\mu}_n) = \sqrt{\hat{\sigma}_n^2/n}$.

$Assign E_{0,\,Z_1,\,\ldots,\,Z_K}^{\text{Recall that }Z\sim\mathcal{N}(0,\,1)} Project_{\sum_{j=1}^{K}Z_j^2\sim\mathcal{X}^2(K)}^{\text{Then, }Z_j^2\sim\mathcal{X}^2(1)} Exam \ Help$

https://tutore $\int_{\hat{\sigma}_n^2/n}^{0} \ln \frac{\mu}{n} = \mu_0$, since

we have

▶ The LHS is the Wald statistic. At level 5%, we reject H_0 if $W_n > (1.96)^2$.

Math Review asymptotic inference

We started from the result

$Assign \stackrel{\sqrt{n}(\hat{\mu}_n-\mu)/\sigma}{e} \stackrel{d}{t} \stackrel{\mathcal{C}(0,1)}{e} \stackrel{or}{e} \stackrel{t}{t} \stackrel{\tilde{\mu}_n-\mu}{e} \stackrel{u}{\to} \stackrel{d}{\to} \stackrel{\mathcal{N}(0,+\mu)}{e} \stackrel{e}{\to} \stackrel{e}{$

$$\begin{array}{c} W_n = n(\hat{\mu}_n - \mu) \left(\hat{\sigma}_n^2\right)^{-1} (\hat{\mu}_n - \mu) \stackrel{a}{\sim} \chi^2(1) \\ \text{https://tutores.com} \\ \text{More generally, for a parameter } \theta \in \mathbb{R}^n \text{ and and its estimator } \hat{\theta}_n, \text{ if} \end{array}$$

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V),$$

www.strukting valid dats to Utorcs

$$n(\hat{\theta}_n - \theta)' \hat{V}^{-1}(\hat{\theta}_n - \theta) \stackrel{a}{\sim} \chi^2(k)$$

with a consistent estimator $\hat{V} \stackrel{p}{\longrightarrow} V$, the asymptotic variance covariance matrix of $\hat{\theta}$. You will see this sandwich form often.

As mentioned briefly, we often use a vector and matrix notation in econometrics. Vectors and matrices are collections of numbers in the latest and the lates

- Let $\mathbf{a} := \begin{pmatrix} a_1 \\ \vdots \\ https: \end{pmatrix}$ and $\mathbf{b} := \begin{pmatrix} b_1 \\ \vdots \\ tutof \\ \mathbf{c} \\ \mathbf{S} \\ \mathbf{c} \\ \mathbf{c$
- ▶ Then, $\mathbf{a}' = (a_1 \dots a_n)$, the transpose of \mathbf{a} , is an n-dim row vector.
- Attaition is defined when two vectors are in the same form. $\mathbf{a} + \mathbf{b} = \begin{pmatrix} \vdots \\ a_n + b_n \end{pmatrix} \text{ and } \mathbf{a}' + \mathbf{b}' = (\mathbf{a} + \mathbf{b})'. \text{ But } \mathbf{a}' + \mathbf{b} \text{ is not defined.}$

Inner product

Assignment Project ExambHelp

Interest. A:=
$$\begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & & \vdots \\ \end{pmatrix}$$
 = $\begin{pmatrix} a_1 & \dots & a_k \end{pmatrix}$ WeChat: cstutorcs

where
$$m{a}_j = \left(egin{array}{c} a_{1j} \ dots \ a_{nj} \end{array}
ight)$$
 for $j=1,\ldots,k$.

a vector is a special case of a matrix (e.g., k = 1)

Transpose:

Addition is allowed between two matrices in the same dimension. Let

https://tutorcs.com
$$\vdots \qquad \vdots \\
b_{n1} \quad \dots \quad b_{nk}$$
= $(b_1 \quad \dots \quad b_k)$

where constant to the column of the TCS

$$\mathbf{A} + \mathbf{B} = \left(\begin{array}{cccc} a_{11} + b_{11} & \dots & a_{1k} + b_{1k} \\ \vdots & & \vdots \\ a_{n1} + b_{n1} & \dots & a_{nk} + b_{nk} \end{array} \right)$$

But, $\mathbf{A}' + \mathbf{B}$ is not defined unless k = n, i.e., \mathbf{A} and \mathbf{B} are square

To explain multiplication, we define a $k \times m$ matrix

Assignment Project Exam Help

- Assimple atting of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$. The $(i,j)^{\text{th}}$ entry of $\mathbf{A} \times \mathbf{C}$ is $\sum_{\ell=1}^k a_{i\ell} c_{\ell j}$.
 - For example, $A \times C$ is well defined and the resulting matrix is $n \times m$ dimensional but $C \times A$ is not defined unless m = n.
 - Suppose A is a square matrix, i.e., n = k. a_{ij} is called a diagonal element A. If off-diagonal elements are all zero, A is said to be a diagonal matrix. If A' = A, it is symmetric $(a_{ij} = a_{ji}$ for all (i, j))

If A is diagonal and all diagonal elements are ones, A is an n dimensional identity matrix, for which a reserved notation is In. So,

Assignment Project Exam Help

- That is, $\mathbf{A} \times \mathbf{I} = \mathbf{A}$ and $\mathbf{I} \times \mathbf{B} = \mathbf{B}$.
- For a square matrix \mathbf{A} , if there is another matrix \mathbf{B} such that $\mathbf{A} = \mathbf{B} \mathbf{A}$, the $\mathbf{B} = \mathbf{B} \mathbf{A}$ is said to be invertible or nonsingular.
- (i) $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$ for a constant α , (ii) $(AB)^{-1} = B^{-1} A^{-1}$, (iii) $(A')^{-1} = (A^{-1})'$

Assignment, Project, Exam Help

https://tutorcsi.com

(i) $tr(I_n) = n$, (ii) tr(A') = tr(A), (iii) tr(A + B) = tr(A) + tr(B), (iv) $tr(\alpha A) = \alpha tr(A)$ for a constant α .
(i) tr(AB) = th(BA) for any dimensionality conformable A and B.

Assignment of a set of a x 1 vectors. These are linearly roject Exam Help $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = 0$

implies $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

- When x_1, \dots, x_n are linearly independent, x_j cannot be represented as a linear combination of others.
- beta be arrow k matrix $(n \ge k)$. The rank of X, denoted by rank(A), is the matrix in Linear Single pandent of U.S.
- If rank(X) = k, X has full column rank.

Assigned and payment of the qualifactic form with Als Help

$$f(x) = x'Ax$$

Then, A is **positive definite** (p.d.) if x'Ax > 0 for all non-zero x. In the positive setti-definite (p.s.d.) $x'Ax \ge 0$ for all x.

- ▶ (i) If A is p.d., then $a_{ii} > 0$ for all i.
 - (ii) If A is p.s.d., then $a_{ii} \geq 0$ for all i.
 - (i) Y A is r.d., then A is invertible i.e. 4-1 exists S
 - (v) If X is $n \times k$ and rank(X) = k, then X'X is p.d. (so invertible)

For a given $n \times 1$ vector a, consider the linear function

Assignment Project Exam Help

$$\frac{\partial f(x)}{\partial x} = a$$

 $\frac{\partial f(x)}{\partial x} = a$ • For any Psymmetric matrix f, Ceftine a quadratic function

$$g(x) = x'Ax$$

$$\text{ "W"e Centrat"} \text{ "estutores} \\ \frac{\partial g(x)}{\partial x} = 2Ax$$

Note $\frac{\partial f(x)}{\partial x'} = \left(\frac{\partial f(x)}{\partial x}\right)'$ and $\frac{\partial g(x)}{\partial x'} = \left(\frac{\partial g(x)}{\partial x}\right)'$

Assignment $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider $\Pr_{\beta}^{\text{Let } y \text{ be an } n \times 1}$ vector and X be $n \times k$. Consider X is a sum of X be X and X be X and X be X and X be X and X be X be X and X be X be X and X a

https://tutto/pcs/com $= (y - X\beta)' = y' - (X\beta)' = y' - \beta'X'. \text{ So, the objective function is}$ https://tutto/pcs/com $= (y - \beta'X')(y - X\beta)$ $= y'y - y'X\beta - \beta'X'y + \beta'X'X\beta$ wechat: cstutorcs $min(y - X\beta)'(y - X\beta) = min(y'y - 2y'X\beta + \beta'X'X\beta)$

Then, the first order necessary condition (FOC) is

Assignment Project Exam Help

Applying the rules above,

The FOC is then

at the optimal solution for β , say β : The solution exists if and only if X'X is invertible;

$$\hat{\beta} = (X'X)^{-1}X'y$$

 $rank(X) = k \Longrightarrow (X'X)$ is p.d. (therefore invertible)

Math Review

Assirachtaentaproject Exame Help

- ▶ Also V(Y) := E[(Y E[Y])(Y E[Y])'].
- in the diagonal depend of V(Y) is $C(Y_i, Y_i)$.

 (ii) The diagonal depend of V(Y) is $C(Y_i, Y_i)$.

 (iii) V(Y) is symmetric because $C(Y_i, Y_j) = C(Y_j, Y_i)$,

Math Review

Assignment Project Exam Help

https://tuttores.com

and

We Chat: cstutors