六、1、设 $F(x) = f(x) - \frac{1}{2}$, f(x) 在[0,1]连续,得F(x) 在[0,1]连续。

则
$$F(0) = \frac{x_1 + x_2 + \dots + x_n}{n} - \frac{1}{2}$$
, $F(1) = f(1) - \frac{1}{2} = \frac{1}{2} - \frac{x_1 + x_2 + \dots + x_n}{n} = -F(0)$, 若

F(0)=0 ,则有 $x_0=0\in[0,1]$,使 $f(x_0)=\frac{1}{2}$;若 $F(0)\neq 0$, $F(0)\cdot F(1)<0$,由零

点定理,存在 $x_0 \in (0,1)$, $F(x_0) = 0$,即 $f(x_0) = \frac{1}{2}$ 。

2、令 $F(x) = e^{-x} f(x)$,则F(x)在[a,b]可微,且F(a) = F(b) = 0(3分),由罗尔定理, 存 在 $\xi \in (a,b)$, $F'(\xi) = 0$ 。 而 $F'(x) = -e^{-x} f(x) + e^{-x} f'(x)$, $-e^{-\xi}f(\xi)+e^{-\xi}f'(\xi)=0$,所以, $f'(\xi)=f(\xi)$ 。

2013 级试卷

- 一、选择题(每小题3分,共15分)
- 1. 若 $\lim_{x\to 0} f(x) = \infty$, $\lim_{x\to 0} g(x) = \infty$ 下列极限正确的是 (

A.
$$\lim_{x\to 0} (f(x) + g(x)) = \infty$$

B.
$$\lim_{x\to 0} (f(x)-g(x))=0$$

C.
$$\lim_{x\to 0} \frac{1}{f(x) + g(x)} = 0$$

- D. $\lim_{x\to 0} kf(x) = \infty (k 为常数且k \neq 0)$
- 2. 如果 $\lim_{x\to x_0} f(x)$ 存在,则 f(x) 在 x_0 处 ()。

 - A. 一定有定义 B. 一定无定义
- C. 可以有定义, 也可无定义
- D. 有定义且有 $\lim_{x \to x_0} f(x) = f(x_0)$
- 3. 下列函数中,在x=0处可导的是(

- A. $y = \ln x$ B. $y = |\cos x|$ C. $y = |\sin x|$ D. $y = \begin{cases} x^2 & x < 0 \\ x & x \ge 0 \end{cases}$
- 4. 设 $x \to 0$ 时, $(1-\cos x)\ln(1+x^2)$ 是比 $x\sin x$ " 高阶的无穷小,而x" $\sin x$ 是比 $e^{x^2}-1$ 高阶的无穷小,则正整数 n=
- C. 3
- 5. 设f(x)可导, $F(x) = f(x)(1+|\sin x|)$,若使F(x)在x = 0处可导,则必有(

- A. f(0)=0 B. f'(0)=0 C. f(0)+f'(0)=0 D. f(0)-f'(0)=0

- 二、填空题 (每小题 3 分, 共 15 分):
- 1. 当 $x \to 0^+$ 时, $\sin(\sqrt{x} + \sqrt[3]{x})$ 是x 的 _____ 阶无穷小(数量阶)。
- 2. 极限 $\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}} =$ ____。 3. 已知: $\lim_{x\to \infty} \frac{x^{2013}}{x''-(x-1)^n} = \frac{1}{2014}$,则自然数 n =____。
- 4. 设 $y^{(n-2)} = x \cos x$, 则 $y^{(n)} =$ ______
- 5. 设函数 y=f(x) 在 x=1 处可导, f(1)=4 , 且 在 邻 域 $U(1,\delta)$ 内 f(x) = 1 + 3x + o(x-1),则曲线 y = f(x) 在 x = 1 处的切线方程是____ 三、试解下列各题(每小题5分,共25分)
- 1、用极限定义证明 $\lim_{x\to 2} x^2 = 4$ 。 2、求极限 $\lim_{x\to 1} \frac{x^2 \cos(x-1)}{\ln x}$ 。
- 3、求极限 $\lim_{x\to 0} \frac{x}{(1+\cos x^2)\ln(1+x)}$ 。
- 4、设 $f(x) = \begin{cases} x & x < 1 \\ x & x > 1 \end{cases}$, $\varphi(x) = \begin{cases} b & x \le 0 \\ x + 1 & x > 0 \end{cases}$, 求a, b使 $f(x) + \varphi(x)$ 在 $(-\infty, +\infty)$ 上连续。
- 5、设函数 y = y(x) 由方程 $2^{xy} = x + y$ 确定,求 $dy|_{x=0}$ 。
- 四、求下列函数的一阶或高阶导数(每小题 6 分,共 18 分)

1、设
$$y = \left(\frac{a}{b}\right)^x \left(\frac{b}{x}\right)^a \left(\frac{x}{a}\right)^b$$
 , $(a > 0, b > 0)$, 求 y' 。 2、设 $y = (x+1)e^x$, 求 $y^{(100)}(0)$ 。

3、设
$$\begin{cases} x = \ln \sqrt{1+t^2} \\ y = \arctan t \end{cases}$$
, 求 y' , y'' 。

五、(8分) 求极限
$$\lim_{n\to\infty} \left(\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \dots + \frac{n}{n^2+n+n}\right)$$
。

六、(8分) 设
$$f(x) = \lim_{t \to x} \left(\frac{\sin t}{\sin x} \right)^{\frac{x}{\sin t - \sin x}}$$
, 求函数 $f(x)$ 的间断点并指出其类型。

七、(5 分)设函数 f(x) 在有限开区间 (a,b) 内连续, f(a+0), f(b-0) 存在且 $f(a+0)\cdot f(b-0)<0$, 证明存在 $\xi\in(a,b)$, 使得 $f(\xi)=0$ 。

八、(6 分)设函数 f(x) 在闭区间 [a,b] 上连续, f'(x) 在开区间 (a,b) 内存在, 又

1

 $f'_+(a), f'_-(b)$ 存在且 $f'_+(a)\cdot f'_-(b)$ < 0 ,证明存在 $\xi\in (a,b)$,使得 $f'(\xi)=0$ 。

2013 级参考答案

-, D,C,B,B,A
$$= 1. \frac{1}{3}$$
; 2. e^6 ; 3. 2014; 4. $-2\sin x - x\cos x$; 5. $y = 3x + 1$.

三、1、
$$x \to 2$$
,∴ 不妨设 $|x-2| < 1$ 。则对 $\forall \epsilon > 0$,要使得

$$|x^2-4|=|x-2||x+2| < 5|x-2| < \varepsilon , \ \, \exists \ \, |x-2| < \frac{\varepsilon}{5} \ \, , \quad \mathbb{R} \ \, \delta = \min\left\{\frac{\varepsilon}{5},1\right\} \ \, , \quad \underline{\$}$$

$$0 < |x-2| < \delta$$
 时,有 $|x^2-2| < \varepsilon$,所以 $\lim_{x \to 2} x^2 = 4$ 。

$$2 \cdot \lim_{x \to 1} \frac{x^2 - \cos(x - 1)}{\ln x} = \lim_{x \to 1} \frac{2x + \sin(x - 1)}{\frac{1}{x}} = 2 \cdot \frac{1}{x}$$

$$3. \lim_{x\to 0} \frac{2\tan 3x + x^2 \sin \frac{1}{x}}{(1+\cos x^2)\ln(1+x)} = \lim_{x\to 0} \frac{2\tan 3x}{2x} + \lim_{x\to 0} \frac{x\sin \frac{1}{x}}{2} = 3.$$

4.
$$f(x) + \varphi(x) = \begin{cases} x+b & x \le 0 \\ 2x+1 & 0 < x < 1 \end{cases}$$
, $\lim_{x \to 0^{-}} (f+\varphi) = b$, $\lim_{x \to 0^{+}} (f+\varphi) = 1$, $\lim_{x \to 1^{-}} (f+\varphi) = 3$,

$$\lim_{x\to 1^+} (f+\varphi) = 2+a$$
, 欲使 $f(x)+\varphi(x)$ 在 $x=0$, $x=1$ 处连续,必须 $a=b=1$ 。

5、
$$2^{xy} \ln 2(y+xy')=1+y' \Rightarrow y'=\frac{1-y2^{xy} \ln 2}{x2^{xy} \ln 2-1}$$
,将 $x=0$ 代入原方程得 $y=1$,所以

$$y'(0) = \ln 2 - 1$$
, $\text{MU} dy|_{x=0} = (\ln 2 - 1) dx$.

四、1、
$$lny = x ln \left(\frac{a}{b}\right) + a(lnb - lnx) + b(lnx - lna),$$

$$\frac{y'}{y} = In\left(\frac{a}{b}\right) - \frac{a}{x} + \frac{b}{x}, \text{ sty } y' = \left(\frac{a}{b}\right)^x \left(\frac{b}{x}\right)^a \left(\frac{x}{a}\right)^b \left(In\left(\frac{a}{b}\right) - \frac{a}{x} + \frac{b}{x}\right).$$

2.
$$y^{(n)}(x) = (x+n+1)e^x$$
, $n = 0,1,2,\cdots$, 所以 $y^{(100)}(0) = 101$.

3.
$$y' = \frac{\frac{1}{1+t^2}}{\frac{t}{1+t^2}} = \frac{1}{t}$$
, $y'' = \frac{-\frac{1}{t^2}}{\frac{t}{1+t^2}} = -\frac{1+t^2}{t^3}$.

五、
$$\frac{i}{n^2+n+n} \le \frac{i}{n^2+n+i} \le \frac{i}{n^2+n+1} (i=1,2,\cdots)$$
,所以
$$\frac{n(n+1)}{2} \cdot \frac{1}{n^2+n+n} \le \frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \cdots + \frac{n}{n^2+n+n} \le \frac{n(n+1)}{2} \cdot \frac{1}{n^2+n+1}$$

而
$$\lim_{n\to\infty} \frac{n(n+1)}{2} \cdot \frac{1}{n^2+n+n} = \frac{1}{2}$$
 , $\lim_{n\to\infty} \frac{n(n+1)}{2} \cdot \frac{1}{n^2+n+1} = \frac{1}{2}$ 由 夹 逼 准 则 得 :
$$\lim_{n\to\infty} \left(\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \dots + \frac{n}{n^2+n+n}\right) = \frac{1}{2}$$
 ·

六、
$$f(x) = \lim_{t \to x} \left(1 + \frac{\sin t - \sin x}{\sin x}\right)^{\frac{\sin x}{\sin t - \sin x} \frac{x}{\sin x}} = e^{\frac{x}{\sin x}}$$
,间断点为 $x = k\pi$, $k = 0$, ± 1 , ± 2 ,…,

 $\lim_{x\to 0} f(x) = e$, 所以 x = 0 是第一类(可去)间断点; $\lim_{x\to k\pi} f(x)$ 不存在($k \neq 0$),所以 $x = k\pi(k \neq 0)$ 是第二类间断点。

七、设 f(a+0)>0, f(b-0)<0,由极限保号性,存在 a 的右邻域 $(a,a+\delta_1)$,当 $x\in (a,a+\delta_1)$,有f(x)>0 。 同 理 存 在 b 的 左 邻 域 $(b-\delta_2,b)$, 当 $x\in (b-\delta_2,b)$,有f(x)<0 。 所 以 分 别 取 $x_1\in (a,a+\delta_1)$, $x_2\in (b-\delta_2,b)$, 使 得 $f(x_1)>0$, $f(x_2)<0$,。 f(x) 在闭区间 $[x_1,x_2]$ 上连续,由零点定理存在 $\xi\in (a,b)$,使 得 $f(\xi)=0$ 。

八、函数 f(x) 在闭区间 [a,b] 内连续,故 f(x) 有最大值。设 $f'_+(a) > 0$, $f'_-(b) < 0$,因为 $\lim_{x \to a+} \frac{f(x) - f(a)}{x - a} = f'_+(a) > 0$,由极限保号性,存在 a 的右邻域 $(a, a + \delta_1)$ 的点 x_1 ,使 得 $\frac{f(x_1) - f(a)}{x_1 - a} > 0$,且由于 $x_1 > a$ 得 $f(x_1) > f(a)$,同理由 $\lim_{x \to b-} \frac{f(x) - f(b)}{x_1 - b} = f'_-(b) < 0$,存在 $x_2 \in (b - \delta_2, b)$ 有 $\frac{f(x_2) - f(b)}{x_1 - b} < 0$ 且由于 $x_2 < b$ 得

 $f(x_2)>f(b)$,这说明 f(a),f(b)不会是最大值, f(x) 的最大值只能在(a,b)内取得,从而这最大值是极大值。设 $\xi\in(a,b)$, $f(\xi)$ 是最大值,由 Fermat 定理 $f'(\xi)=0$ 。

2014 级试卷

- 一、选择题 (每小题 3 分, 共 15 分)
- 1.下述说法中, ()与 $\lim_{n\to\infty} x_n = a$ 的定义等价。