

Reinforcement learning

FINAL PROJECT

Group member: Wang Zeyao Wang Chengzhi Chen Chen

CONTENTS

- Introduction
- 2 Pysical method
- **Q-learning**
- Deep Q-learning
- 5 Comparison

Introduction

Reinforcement learning

Agent

Action(At)

Discount factor

Q-value

Value(Vt)

Policy

Reinforcement learning

Markov chain

Physical method of cartpole problem

CARTPOLE PROBLEM IN LAB

A SIMPLE COUPLED SYSTEM
AN UNSTABLE SYSTEM

MATHEMATICAL MODEL

M	Mass of the Cart
m	Mass of the Pendulum
b	Friction of the Cart
L	Length of pendulum to Center of Gravity
I	Moment of Inertia (Pendulum)
R	Radius of Pulley,
τ_{M}	Time Constant of motor
K _M	Gain of Motor
K _F	Gain of Feedback
F	Force applied to the cart
X	Cart Position Coordinate
θ	Pendulum Angle with the vertical

MATHEMATICAL MODEL

$$\frac{\theta(s)}{U(s)} = \frac{3}{s^2 - 29.4}$$

$$M\ddot{x} = u(t) - R_x \quad (1)$$

$$m\ddot{x} + ml\ddot{\theta}cos\theta = R_x \quad (2)$$

$$J\ddot{\theta} = mglsin\theta - ml\ddot{\theta}l - m\ddot{x}lcos\theta \quad (3)$$

$$sin\theta = \theta, cos\theta = 1, \theta^2 = 0$$

$$(M+m)\ddot{x} + ml\ddot{\theta} = u(t) \quad (4)$$

$$(J+ml^2)\ddot{\theta} + ml\ddot{x} = mgl\theta \quad (5)$$

PID CONTROLLER

$$\frac{\theta(s)}{U(s)} = \frac{3}{s^2 - 29.4}$$

PID CONTROLLER

P:proportion

I: integral

D:differential

$$G(s) = \frac{R(s)}{E(s)} = K_P + \frac{K_I}{s} + K_D s = \frac{K_D s^2 + K_P s + K_I}{s}$$

Introduction of Q-learning

Environment

Environment:OpenAl gym cartpole V0

Observation

Type: Box(4)

Num	Observation	Min	Max
0	Cart Position	-2.4	2.4
1	Cart Velocity	-Inf	Inf
2	Pole Angle	~ -41.8°	~ 41.8°
3	Pole Velocity At Tip	-Inf	Inf

Environment

Actions

Type: Discrete(2)

Num	Action
0	Push cart to the left
1	Push cart to the right

Reward

Reward is 1 for every step taken, including the termination step

Starting State

All observations are assigned a uniform random value between ±0.05

Episode Termination

- 1. Pole Angle is more than ±12°
- 2. Cart Position is more than ±2.4 (center of the cart reaches the edge of the display)

Solved Requirements

Considered solved when the average reward is greater than or equal to 195.0 over 100 consecutive trials.

Process of Q-learning

Process of Q-learning

Comparison between two methods

Condition and setup

01

Physical condition

Gravity = 9.8 m/s2Mass cart = 1.0kg Mass pole = 0.1kg Length pole = 0.25m 03

Control

CartpoleV0: 10N OR -10N

PID control: $\frac{\theta(s)}{U(s)} = \frac{3}{s^2 - 29.4}$

Initial conditions

CartpoleV0: random float between -0.05~0.05 for each variable in the observation space.

PID control: an instance acceleration of 0.05m/s2. 04

Failure condition

CartpoleV0: Pole Angle is more than \pm 0.1 radian PID control: Pole radian

can't converge.

PID Control

Stable time: 402.24s

Stable run: 159

Conclusion

- Advantages of Physical Method:
 - ✓ Stability
 - ✓ Less time spent to achieve stability
- Disadvantages of Physical Method:
 - ✓ Lots of preparations for the experiment
 - ✓ Large amounts of manual calculation
 - ✓ Parameters needed to be adjusted by practical situation and human experiment.
- Advantages of Reinforcement Learning Method:
 - ✓ Little preparation for experiment
 - ✓ Little calculation.
- Disadvantages of Reinforcement Learning Method:
 - ✓ Lack of Stability

Conclusion

Tanks