Solutions to Extremal Combinatorics

Naman Kumar

February 14, 2024

Abstract

The following document contains solutions to selected problems in the book 'Extremal Combinatorics' by Stasys Jukna. Some problems which are either trivial or require nothing more than brute force/proof mirroring have been omitted.

Contents

1 Counting 3

1 Counting

In-text. Prove:

$$\sum_{x \in Y} d(x) = \sum_{A \in \mathcal{F}} |Y \cap A| \text{ for any } Y \subseteq X.$$
 (1.1)

$$\sum_{x \in X} d(x)^2 = \sum_{x \in \mathcal{F}} \sum_{x \in A} d(x) = \sum_{A \in \mathcal{F}} \sum_{B \in \mathcal{F}} |A \cap B|. \tag{1.2}$$

Answer. We can proceed by a counting argument. For the first part, consider the incidence matrix $M = (m_{x,a})$ of \mathcal{F} . Adding the rows belonging to the elements of $x \in Y$ gives us the left hand side. If we 'slice' the matrix in this way, however (removing all the rows belonging to elements $x \notin Y$) then summing via the columns we get the sum of only those elements which are both in A and in Y, ie. $|A \cap Y|$.

For the second part, it is enough to notice that if we replace each entry 1 in the incidence matrix with d(x), then adding along the rows gives $\sum_{x \in X} d(x)^2$ while adding along the columns gives the term in the central equality (we add d(x) for every $x \in A$, and then we sum over each of the As). The final equality follows from noticing that

$$\sum_{x \in \mathcal{F}} \sum_{x \in A} d(x) = \sum_{A' \in \mathcal{F}} \left(\sum_{x \in A} |A \cap A'| \right)$$
$$= \sum_{A \in \mathcal{F}} \sum_{B \in \mathcal{F}} |A \cap B|.$$

where the second equality follows from substituting the first part.