Quantum Gate Synthesis - SQUANDER -

Balázs Menkó

Supervisor: Péter Rakyta Eötvös Loránd University

Scientific Modelling Computer Laboratory
March 27, 2025

Project recap

- SQUANDER package
 - An optimization based quantum compiler
- Variation Quantum Eigensolver (VQE) algorithm
 - hybrid quantum classical algorithm [1]
 - approximate the E_{ground} of a system [2]
 - parametrized quantum circuit
 - iterative minimization based on classical method

Project recap

Optimization methods

- SQUANDER built-in optimizers (gradient-based)
 - ADAM Adaptive Moment Estimation
 - BFGS Broyden-Fletcher-Goldfarb-Shanno
 - Cosine strategy
 - Gradient descend
 - Gradient descend with parameter shift rule
- Other optimizers (gradient-free) from SciPy package
 - Nelder Mead
 - Powell
 - Cobyla

Written codes

A forked version of SQUANDER on github.com/menkobalazs/SMC-Lab-SQUANDER

- Heisenberg_VQE.py (modified):
 - Added argument parser for flexible execution.
 - Modified the config variable.
 - Implemented result-saving and logging.
 - Introduced SciPy's minimize with Nelder-Mead, Powell, and Cobyla.
 - Added random parameter initialization.
- explore_simulations.py : Generates figures from results.
- run_simulations.sh: Runs simulations in a screen session.

Figure 1: Minimization of cost function with zero initial parameters.

5 / 16

Balázs Menkó – ELTE SQUANDER March 27, 2025

Figure 2: Minimization of cost function with zero initial parameters.

Figure 3: Minimization of cost function with random initial parameters.

7 / 16

Figure 4: Minimization of cost function with random initial parameters.

Figure 5: Minimization of cost function with zero initial parameters.

9 / 16

Figure 6: Minimization of cost function with zero initial parameters.

Figure 7: Minimization of cost function with random initial parameters.

Balázs Menkó – ELTE SQUANDER March 27, 2025 11 / 16

Figure 8: Minimization of cost function with random initial parameters.

Comparison with the article [3]*

Figure 9: Fig. 8. from [3]

Figure 10: Fig. 9. from [3]

Random initialization Zero initialization -10 $E_{VQE}[eV]$ $E_{VQE} [eV]$ -25-30exact ground state exact ground state 1.6 This work L = 321.0 GD η GD. ILS n0.8 $\frac{^{5}1.2}{S}$ ADAM nPowell 0.8 exact ground state 0.6 Cost function evaluations [10⁶] Cost function evaluations [10⁶]

^{*} Line Search Strategy for Navigating through Barren Plateaus in Quantum Circuit Training

My consent to the development

Figure 11: The issue in SQUANDER/qgd_VQE_Base_Wrapper.cpp file.

Further plans

- Search the reason of the peaks in *Gradient Descend* method.
- Create bar charts about the runtime of optimization process.

References

Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. *The theory of variational hybrid quantum-classical algorithms*. New Journal of Physics, 18(2):023023, 2016

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O'brien.

A variational eigenvalue solver on a photonic quantum processor.

Nature communications, 5(1):4213, 2014

Jakab Nádori, Gregory Morse, Zita Majnay-Takács, Zoltán Zimborás, and Péter Rakyta. Line search strategy for navigating through barren plateaus in quantum circuit training, 2025.

2402.05227