Università della Calabria

Dipartimento di Matematica e Informatica

Corso di Laurea Magistrale in Artificial Intelligence & Computer Science

Tesi di Laurea

Design and Implementation of an AMO-SUM aggregate for ASP

Relatori:

Prof. Carmine Dodaro

Prof. Thomas Eiter

Dr. Tobias Geibinger

Candidato:

Salvatore Fiorentino

Matricola 242706

Anno Accademico 2023/2024

Contents

Contents					
1					
2					
	2.1	Syntax and Semantics	6		
	2.2	ALO (clauses) and AMO as a Special Cases	9		
	2.3	Stable Model Search, Propagators and Learning	10		
3	AMOSUM				
	3.1	Syntax and Semantics	16		
	3.2	Inference rules	17		
	3.3	Propagate	19		
	3.4	Unroll	23		
4	Mir	nimizing reason	24		
	4.1	Properties of a reason	24		
	4.2	Redundant literal	25		
	4.3	Increment	26		
		4.3.1 False literal	26		
		4.3.2 True literal	27		
		4.3.3 Algorithm	27		
	4.4	Minimality	28		
		4.4.1 Minimal reason	29		
		4.4.2 Cardinality Minimal Reason	31		

4.5	Comp	lexity \ldots 3	8
	4.5.1	Minimal Reason	8
		Polynomial	8
	4.5.2	Cardinality Minimal Reason	8
		Pseudo-Polynomial	8
		NP-Hardness 3	8

Chapter 1

Introduction

Answer Set Programming (ASP) is a highly used framework for knowledge representation and automated reasoning [1]-[4]. In ASP, combinatorial problems are formulated using logical rules that incorporate various linguistic constructs, which simplify the representation of complex knowledge. In its most basic form, ASP programs consist of normal logic rules, where each rule has a head atom and a body that is a conjunction of literals. Often, normal programs are extended by incorporating aggregates, as discussed by Bartholomew et al. (2011) [5], Faber et al. (2011b) [6], Ferraris (2011) [7], Gelfond and Zhang (2014) [8], Liu et al. (2010) [9], and Simons et al. (2002) [9]. Specifically, SUM aggregates are used in rule bodies, where literals are assigned weights, and the sum of the weights of the true literals must satisfy a specified (in)equality. When the head of the rule is false the aggregate becomes a constraint aggregate. Another kind of constraint is the At Most One constraint that essentially inhibits truth of pairs of literals in a given set. It is very common that these two constraints (SUM and AMO) are linked together. State of the art solvers treat this case ignoring the correlation between these two constraints. Our work aims to define a new costruct named AMO-SUM to efficiently handle this case. This efficiency improvement comes from the fact that we are able to treat the two constraint as a whole constraint.

Nowadays current ASP solver implements a (CDCL) algorithm with propagators, as explained by *Gebser et al.* (2012) [10]. CDCL (Conflict-

Driven Clause Learning) is a contemporary form of non-chronological backtracking that follows the *choose-propagate-learn* pattern, as described by *Marques-Silva et al.* (2021) [11], [12].

This pattern consists of this three phases: **choose** phase, or decision phase, consists in picking a branking literal as true; **propagate** phase derives determinists consequences of the current state; **learn** phase is triggered when a conflict arises and aims at understanding from the conflict to not making the same mistake again. In the propagate phase specific procedures called *propagators* are used to derive such consequences. Propagators are required to explain why a consequence has been derived. This explanation is called reason, it is a set of literals that led to derive that consequence and it is used in the learning phase. When an aggregate is introduced inside the program then a specific propagator is required. Our work provides both a novel propagator for handling the new AMO-SUM construct and an algorithm to minimize the reasons of the aggregate-derived consequences. To provide a more comprehensive understanding of our work the

In summary, the contributions of this thesis are the following:

FINIRE

- 1. We defined a novel propagator for handling AMOSUM constraints (Chapter 3.3)
- 2. We defined a novel strategy for improving the reasons of the AMOSUM propagator
- 3. We implemented the novel propagator on the top of the ASP solver WASP
- 4. We performed an experimental analysis on several benchmarks, showing that ...

Chapter 2

Background

This chapter defines all the background needed to explain our work, trying to guide the reading through a clear and intuitive idea. Initially the syntax and semantics of normal program (section 2.1) is showed, primarly focusing on notions relevant for this thesis, for instance on some extension such as the SUM constraints. Then some specific cases of SUM constraints, the so-called ALO and AMO constraints, is explained in section (2.2). Afterwards, the current State-of-Art ASP solver algorithm to find a stable model is discussed (section 2.3), focusing on the concept of *propagator*.

2.1 Syntax and Semantics

This section proceeds in a bottom-up fashion, introducing the most basic elements to the concept of *program* and *stable model*.

The first element is the set of atoms, let \mathcal{A} be such set. \neg is a symbol representing the common negation in logic. A literal is an atom with possibly the negation symbol in front of it. For instance $a \in \mathcal{A}$ is a literal (and an atom) and $\neg b$ with $b \in \mathcal{A}$ is a literal (but not an atom); a is said to be a positive literal instead b is a negative literal. In a more formal way: given a literal $\ell \in \mathcal{L}$, ℓ is positive if $\ell \in \mathcal{A}$ otherwise it is negative. Let L be a set of literals. Given $\ell \in L$ then ℓ denotes its complement, if ℓ is a positive literal, i.e. $\ell = a \in \mathcal{A}$, then $\ell = a$ else when $\ell = a$ (negative literal) with $\ell \in \mathcal{A}$

then $\overline{\ell} = a$. A set of literal L can be negated, written \overline{L} ; \overline{L} is equivalent to the set of literals of L where each literal is negated, that is, $\overline{L} = {\overline{\ell} \mid \ell \in L}$.

Each atom can be mapped to a truth value (boolean value) by an interretation. An interretation (or assignment) I is a set of literals where $I \cap \overline{I} = \emptyset$. If $A \subseteq (I \cup \overline{I})$ then I is called total-interretation, otherwise it is a partial-interretation. On one hand if $\ell \in I$ then ℓ is true under I, on the other hand if $\ell \in \overline{I}$ then it is false under I. If either $\ell \not\in I$ and $\ell \not\in \overline{I}$ then ℓ is said to be undefined. Abusing of notation, If $\ell \in I$ let $I^{\top}(\ell) := 1$, 0 otherwise; if $\ell \not\in \overline{I}$ let $I^{-\perp}(\ell) := 1$, 0 otherwise.

Now the first main brick can be presented: the rule. A rule is a classic implication in propositional logic.

$$r: \quad p \leftarrow \ell_1, \dots, \ell_n \tag{2.1}$$

where p is an atom and ℓ_1, \ldots, ℓ_n with $n \geq 0$ are literals. The rule r-2.1 is equivalent to $\ell_1 \wedge \ldots \wedge \ell_n \to p$. As in propositional logic p and ℓ_1, \ldots, ℓ_n are named respectively head and body of the rule. The head of r is defined by the symbol H(r) := p and the body by the set $B(r) := \{\ell_1, \ldots, \ell_n\}$. Each rule has a positive and negative part, and it is strictly linked with the concept of positive and negative literal. On one hand, the positive body of the rule r, named $B^+(r)$, is the set of positive literals of r, that is, $B^+(r) = \{\ell \mid \{\ell\} \cap \mathcal{A} \neq \emptyset\}$. On the other hand, the negative body of the rule r, named $B^-(r)$, is the set of negative literals of r, namely, $B^-(r) = \{\ell \mid \{\ell\} \cap \mathcal{A} = \emptyset\}$

Now the relation \models (satisfies, or is model of) is inductly defined: let I be an interpretation, if $\ell \in I$ then $I \models \ell$; if $\ell \in \overline{I}$ then $I \models \overline{\ell}$; if $I \models \ell_+$ for every $\ell_+ \in B^+(r)$ and $I \models \ell_-$ for every $\ell_- \in B^-(r)$, then $I \models B(r)$; if whenever $I \models B(r)$ also $I \models H(r)$ then $I \models r$. A (normal) program Π is a set of rules. $M(\Pi) = \{I \mid I \models \Pi\}$ is the set of models of Π .

Let's now shift to another concept that allow us to transition from a normal program to an extension of it: the concept of *SUM constraint*. A SUM constraint (or simply constraint) has the following form

$$SUM\{w_1: \ell_1; \cdots; w_n: \ell_n\} \ge b \tag{2.2}$$

where $n \geq 0$, $\{\ell_1, \ldots, \ell_n\}$ is a set of literals such that $\ell_i \neq \ell_j$ for all $i, j \in \{1, \ldots, n\}$ such that $i \neq j$ and $\{b, w_1, \ldots, w_n\}$ is a set of naturals numbers. Let σ be a constraint of the form 2.2 then bnd_{σ} represents the bound of the constraint σ ; w_1, \ldots, w_n are the weights of each literal in σ ; $lits_{\sigma}$ is the set of literals of σ . Let's specify the relation \in as $(w_i, \ell_i) \in \sigma$ to be read as $(w_i : \ell_i)$ is an element in (the aggregation set of) σ ; The function $wh_{\sigma}(\ell_i) = w_i$, namely, this is a function that maps every literal of σ to its weight. Intuitively, the constraint is satisfied w.r.t. an interpretation I if summing the weight of the true literals under I yields to value greater or equal to the bound. More formally, extending the relation \models , σ is satisfied if $\sum_{i=1}^n wh_{\sigma}(l_i) \cdot I^{\top}(l_i) \geq bnd_{\sigma}$, written $I \models \sigma$. Note that σ may be omitted from the above notation if its meaning is clear from context.

Just as a side note: in ASP-Core-2 standard [13] the constraint 2.2 is written as the headless rule $|: - \#sum\{w_1, \ell_1 : \ell_1; ...; w_n, \ell_n : \ell_n\} < b.|$ Now a more formal definition of program can be given: a program Π is a set of rules and constraint, referred as $rules(\Pi)$ and $constraints(\Pi)$ respectively. The sets of rules and constraints define the set of atoms of the program and they are named $atoms(\Pi)$. Finally, I satisfies Π , written $I \models \Pi$, if $I \models r$ for all $r \in rules(\Pi)$ and $I \models \sigma$ for all $\sigma \in constraints(\Pi)$.

fare più

carino

To make the discussion made so far more understandable, we will introduce the following example:

Example 1 (Running example). Let Π_{run} be the following:

$$\begin{array}{ll} r_{\alpha} : & \alpha \leftarrow \neg \alpha' & \alpha \in \{x,y,z\} \\ \\ r_{\alpha'} : & \alpha' \leftarrow \neg \alpha & \alpha \in \{x,y,z\} \\ \\ \sigma_{1} : & \text{SUM}\{1:\overline{x};\ 1:\overline{y} & \} \geq 1 \\ \\ \sigma_{2} : & \text{SUM}\{1:x;\ 2:y;\ 2:z\} \geq 3 \end{array}$$

Note that there are six atoms (x, y, z, x', y', z'), six rules and two constraints. $wh_{\sigma_1}(\overline{x}) = 1, wh_{\sigma_1}(\overline{y}) = 1, wh_{\sigma_2}(x) = 1, wh_{\sigma_2}(y) = 2, wh_{\sigma_2}(z) = 2, bnd_{\sigma_1} = 1, bnd_{\sigma_2} = 3.$

A possible (total) interpretation I satisfying Π_{run} is: $I_1 = \{x, z, \overline{y}, x', y', z'\}$.

Since, $\sum_{i=1}^{2} wh_{\sigma_{1}}(l_{i}) \cdot I_{1}(l_{i}) = \sum 1 \cdot I_{1}(\overline{x}) + 1 \cdot I_{1}(\overline{y}) = 1 \geq bnd_{\sigma_{1}}$ and $1 \cdot I_{1}(x) + 2 \cdot I_{1}(y) + 2 \cdot I_{1}(z) = 3 \geq bnd_{\sigma_{2}}$. Given a program Π and an interpretation I, its reduct is defined as follows: $\Pi^{I} = \{H(r) \leftarrow B^{+}(r) \mid r \in rules, I \models B(r)\}$, please note that $constraints(\Pi^{I}) = \emptyset$. One interpretation may differ from another due to its stability. An interpretation I is a stable model of a program Π if $I \models \Pi$ and there is no $J \subset I$ such that $J \models \Pi^{I}$. Let $SM(\Pi)$ denote the set of stable models of Π . Taking in consideration example 1 we can notice that I_{1} is not a stable model, that is, $I_{1} \not\in SM(\Pi_{run})$. This is because taking the partial assignment $J_{1} = \{y'\}$ then $J_{1} \models \Pi_{run}^{I_{1}}$ since $\Pi_{run}^{I_{1}} = \{y' \leftarrow \}$ and $J_{1} \subset I_{1}$. Instead $I_{2} = \{x, z, \overline{y}, \overline{x'}, y', \overline{z'}\} \in SM(\Pi_{run})$.

Continuing talking about the above example, a last consideration that let us to move towards the next chapter has to be addressed. The constraint σ_1 is a special one, it says: at least 1 of the 2 literals has to be satisfied. Notice that all the literals are flipped, so referring to the literals without being flipped it is actually saying 'at least 1 of the 2 have to be falsified', and since 2 = 1 - 1 it can be reformulated as 'at most 1 of them can be satisfied'. Thus, with an At least $One\ (ALO)$ sum constraint is possible to define an $At\ Most\ One\ (AMO)$ constraint.

2.2 ALO (clauses) and AMO as a Special Cases

Given a set $\{\ell_1, \ldots, \ell_n\}$, with $n \geq 1$, an At Least One (ALO) constraint over this set will enforce to have at least one literal true. As in the example 1 it can be expressed as:

$$SUM\{1: \ell_1; \dots; 1: \ell_n\} \ge 1 \tag{2.3}$$

This constraint can be written as a set of the form

$$\{\ell_1, \dots, \ell_n\} \tag{2.4}$$

Usually this constraint is named also *clause* (following the *CNF* notation of the propositional logic). Modern ASP solvers enrich the input program with

clauses enforcing I to be a model of rules of the form (2.1) (i.e., $\{p, \overline{\ell_1}, \dots, \overline{\ell_n}\}$). If over this set instead is enforced an At Most Constraint, i.e., at most one literal is true, the following constraint is introduced:

$$SUM\{1: \overline{\ell_1}; \cdots; 1: \overline{\ell_n}\} \ge n - 1 \tag{2.5}$$

To enforce that at most one literal is true of a given set it is enough to enforce that at least n-1 literals are falsified. Since, intuitively, if two different literals are satisfied then n-2 literals are not falsified. More formally given an interpretation I, I satisfies at most 1 literal if $\sum_{i=1}^{n} I^{\top}(\overline{\ell_i}) \geq n-1$, or equivalently $\sum_{i=1}^{n} I^{\top}(\ell_i) \leq 1$. The AMO constraint (2.5) is compactly written AMO $\{\ell_1, \ldots, \ell_n\}$.

Example 2 (Continuing Example 1). Note that σ_1 is the clause $\{\overline{x}, \overline{y}\}$, or also the AMO constraint AMO $\{x, y\}$.

2.3 Stable Model Search, Propagators and Learning

Currently ASP solvers employ a conflict-driven clause learning (CDCL) algorithm [10] to search a stable model. This is an algorithm also used in a lot of SAT solvers and it has been revealed to be a very effective one. The CDCL follows a pattern called choose-propagate-learn, where: the choose phase consists in deciding a literal to become true, such literal is named branching literal; propagate phase involves to deterministically derive new consequences from the current state (interpretation); learn phase, when a conflict arises, understands some new clause (constraint) that was not explicitly defined in the program. To dive into each of these phases, understanding the CDCL, some previous concepts have to be mentioned.

A conflict occurs in an interretation I, when two literals $\ell, \overline{\ell}$ are together in I. Given two clauses C, D of the form (2.4) (as described in 2.2) and a literal ℓ such that $\ell \in C$ and $\overline{\ell} \in D$ then the resolution ([14], [15]) step of C and D upon ℓ , written $C \otimes_{\ell} D$, is equal to $(C \setminus \{\ell\}) \cup (D \setminus \{\overline{\ell}\})$. Intuitively, if $C \in \Pi$ and $D \in \Pi$ then since an interpretation cannot simultaneously satisfying ℓ and $\overline{\ell}$ then $C \setminus \{\ell\}$ or $D \setminus \{\overline{\ell}\}$ have to be satisfied, thus the following clause $(C \setminus \{\ell\}) \cup (D \setminus \overline{\ell})$ has to be satisfied. Please note that if an interpretation $I \models \Pi$ then $I \models C \otimes_{\ell} D$. So $C \otimes_{\ell} D$ is implied by the program, written $\Pi \models C \otimes_{\ell} D$. A clause C is redundant in Π if $\Pi \models C$. Given a clause C then an assignment I that blocks C is an assignment that falsifies all literals (and no others) of C, i.e., $I = \overline{C}$.

In the *choose* phase a branching (undefined) literal is selected. Every branching (or decision) literal is paired with a *decision level*. To understand the decision level is enough to now that at each choose phase the corresponding literal is added into a 'list' and the decision level is the index into the list (index starting from 1). The term 'backjumping to a certain level l' refers to the process of 'forgetting' every decision made after decision level l, including the respective propagated literals, and then resuming the decision-making process starting from level l.

In the propagate, given an interretation I, potentially some literal ℓ is derivated (or propagated) using a Propagate function according to some inference rule. An inference rule is a logical construct used to derive new literals (conclusions) from a current interretation I (premises). It specifies the conditions under which certain statements (the conclusions) can be inferred from other statements (the premises). After a literal ℓ is inferred, thanks to some inference rule, then a reason, written reason(ℓ), is specified. This reason defines why ℓ has been propagated. More in detail, the reason is a clause of this form

$$R = \{\ell\} \cup \{\overline{\ell_1}, \dots, \overline{\ell_n}\}$$
 (2.6)

(2.6) represents the implication rule $\ell_1 \wedge \ldots \wedge \ell_n \to \ell$ and it specifies that when all the literals $\ell_1 \wedge \ldots \wedge \ell_n$ are true then also ℓ must be true. $B(R) = \overline{\{\overline{\ell_1}, \ldots, \overline{\ell_n}\}}$ is the body of the reason and $H(R) = \{\ell\}$. Given a reason R of a literal z, $J_r = B(R)$; note that J_r is the assignment blocking $R \setminus \{\ell\}$. A clause C

of the form (2.6) is a reason for ℓ , under the assignment I, if $I \supseteq B(C)$ and under interretation J_c the propagator infers ℓ , thanks to some inference rule. Finally, $reason(\ell)$ has to be a reason of ℓ under I. Can happen that inferring a literal ℓ creates a conflic (i.e., $\overline{\ell} \in I$), in that case ℓ is a conflict literal. Moreover ℓ is also paired with a decision literal that it is inherited from the current decision level of the search. Unit Propagation is a specific kind of propagation, it is applied when given a clause C and a literal $\ell \in C$, $(C \setminus \{\ell\}) \cap \overline{I} = C \setminus \{\ell\}$. In this case the only way to satisfy C is setting ℓ to true, thus ℓ is propagated to true; the reason is exactly because the other literals are falses, so $reason(\ell) = C$. Please not the $reason(\ell)$ respresents $\overline{\ell_1} \wedge \ldots \wedge \overline{\ell_n} \to \ell$, where $\{\ell_1 \wedge \ldots \wedge \ell_n\} = C \cap \overline{I}$. The Propagate function is implemented using multiple propagators, calling them sequentially according to a priority list.

The whole algorithm, initially starts with an empty assignment (all literals undefined) and a the decision level (dl) to 0, then the propagate phases takes place, inferring all the consequences. If a conflict is detected it means that the program is not satisfiable, since without any choice we got a conflict. Else if no conflict is detected then the *choose* phase decides the new branching literal. An important note is that just the a branching literal ℓ has a reason of the form $\{\ell\}$, representing $\to \ell$ (ℓ must be true), since it does not follows from any logic reasoning. Then, again the propagate phase is executed. If a conflict is detected then a process named conflict analysis starts. Starting from the reason of the conflict literal a (backward) resolution upon a literal of the last decision level is performed. This step is iteratively done until the new obtained (redundant) clause contains just one literal of the current decision level, this clause in called *Unique Implication Point (UIP)*. Given the UIP then a backjump operation is performed to the second highest decision level (assertion level); to update the internal state following a backjump, the Unroll function is invoked for each propagator. The assertion level is special in the sense that it is the deepest level at which adding the conflict-driven clause (UIP) would allow unit propagation to derive a new implication using that clause. Since the literal with highest dl after backjumping is the only undefined literal inside UIP then the unit propagation will infer that literal, that is, will flip the previous value. When the highest literal in the UIP has 0 as dl then the assertion level is -1 by default. Some **important** final notes: the reason for a literal ℓ must include at least one literal from the most recent decision level, excluding ℓ itself, otherwise, unit propagation cannot be performed; the smaller the cardinality of the conflict literal's reason, the higher the potential jump in the search space. After this, a new choice is made until either all atoms are defined or the assertion level is -1. The above described algorithm is defined below and it is mainly based on the algorithm defined in [16].

Algorithm 1 Typical CDCL algorithm

Input: An ASP program Π

else

return I

 $dl \leftarrow \beta$

BACKJUMP (Π, I, β)

14

15

16

17

```
1 begin
 \mathbf{2}
        I \leftarrow []
        dl \leftarrow 0
 3
        if (PROPAGATE(\Pi, I) == CONFLICT) then
 4
            return Unsat
 \mathbf{5}
        while not AllVariablesAssigned(\Pi, I) do
 6
            \ell = \text{PickBranchingLiteral}(\Pi, I)
 7
            dl \leftarrow dl + 1
 8
            store(I, \ell, dl)
 9
            if (PROPAGATE(\Pi, I) == CONFLICT) then
10
                 \beta = \text{ConflictAnalysis}(\Pi, I)
11
                 if (\beta < 0) then
12
                     return Unsat
13
```

Let's assume for now that the Propagate function is exactly equal to the

propagator implementing *Unit propagation*, this is usefull for the next example.

Example 3. Let Π have, among others, the rules

$$x \leftarrow \neg z \quad y \leftarrow \neg z \quad w \leftarrow x, y$$

Hence, a modern ASP solver materializes the clauses

$$\{x,z\}$$
 $\{y,z\}$ $\{w,\overline{x},\overline{y}\}$

For readability at each literal is associated the relative decision level as superscript. Let's assume that the current interpretation is $I = [\overline{w}^1]$ and the decision level is dl = 1. Since no propagation is performed the algorithm goes directly to the propagate phase, let's assume that \overline{z} is selected. Then, by unit propagation, x and y are inferred, thanks to the first two clauses. Unit propagation infers x, y from the first two clauses, and then y (a conflict literal) from the third clause. The correspective reasons are: reason(x) = $\{x, z\}$, reason(y) = $\{y, z\}$ and reason(\overline{y}) = $\{w, \overline{x}, \overline{y}\}$. The current interpretation I is equal to $[\overline{w}^1, \overline{z}^2, y^2, x^2]$. Since there are more than 1 literal of the decision level 2 (the last one) in the conflict clause ($\{w, \overline{x}, \overline{y}\}$) a backward resolution step is performed. Let's take arbitrarily \overline{x} : $\{w, \overline{x}, \overline{y}\} \otimes_{\overline{x}} \{x, z\} = \{w, \overline{y}, z\}$. Since both \overline{y} , z are with decision level 2 then let's take arbitrarily \overline{y} : $\{w, \overline{y}, z\} \otimes_{\overline{y}} \{y, z\} = \{w, z, z\} = \{w, z\}$.

 $\{w,z\}$ is UIP so let's backjump to the assertion level 1. This will unit propagate z with $reason(z) = \{w,z\}$. So the interpretation will look like: $I = [\overline{w}^1, z^1]$

The main difference between a SAT solver and a ASP solver can be summarized focusing on the function $Propagate(\Pi, I)$. SAT solvers employ mainly unit propagation inside the Propagate function, instead ASP solvers use, in addition on unit propagation, other two fundamental propagation functions: Unfounded-free propagation and ConstraintPropagation. The first one (Unfounded-free propagation) assesses that the interpretation is a stable model, but its details are out of the scope of this work. The second one (Constraint-Propagation) is used to derive new consequences from the constraints present

in the program. For a SUM constraint σ of the form (2.2), solvers typically employ a specific constraint propagator [17], [18] leveraging the concept of max possible sum (mps). Given an interpretation I, a literal ℓ and a constraint σ of the form (2.2), a max possible sum, considering ℓ as false, is $mps_{\sigma}(I,\ell) = \sum_{j \in [1..n], \ell_j \neq \ell} w_j \cdot I^{\neg \perp}(\ell_j)$; intuitively, if all the undefined literal were true and ℓ was false then the sum would be equal to $mps(I,\ell)_{\sigma}$. An inference rule of a sum constraint essentially adds to I the literal ℓ if ℓ is required to (possibly) reach the bound b, i.e., if

$$mps_{\sigma}(I,\ell) < bnd_{\sigma}$$
 (2.7)

In this case $reason(\ell) = \{\ell\} \cup lits_{\sigma} \cap \overline{I}$. A rational behind this is as follows: if in the best case (that is, when the sum is $mps(I,\ell)$) the sum does not reach the bound it means that ℓ cannot be false, that is, it is required to be true. Intuitively, the falses literals are the only justification why the bound bnd_{σ} could be not reached if ℓ was not added to I. In the special case of (2.5), that is, if σ is $AMO\{\ell_1, \ldots, \ell_n\}$, the literal $\overline{\ell}_i$ ($i \in [1..n]$) is added to I if there is ℓ_j , with $j \neq i$, such that $\ell_j \in I$. In this case, $reason(\overline{\ell_i})$ is $\{\overline{\ell_i}, \overline{\ell_j}\}$.

Example 4 (Continuing Example 1). If I is empty, no literal can be inferred from σ_1 and σ_2 . If I is $[\overline{z}]$, then the application of (2.7) to the literals of σ_2 gives

$$2 \cdot [\overline{z}]^{\uparrow}(y) + 2 \cdot [\overline{z}]^{\uparrow}(z) = 2 \cdot 1 + 2 \cdot 0 = 2 < 3$$
$$1 \cdot [\overline{z}]^{\uparrow}(x) + 2 \cdot [\overline{z}]^{\uparrow}(z) = 1 \cdot 1 + 2 \cdot 0 = 1 < 3$$
$$1 \cdot [\overline{z}]^{\uparrow}(x) + 2 \cdot [\overline{z}]^{\uparrow}(y) = 1 \cdot 1 + 2 \cdot 1 = 3 \nleq 3$$

Hence, x and y are inferred with $reason(x) = \{x, z\}$ and $reason(y) = \{y, z\}$. Note that, once $I = [\overline{z}, x, y]$, the application of (2.7) to σ_1 gives

$$1 \cdot [\overline{z}, x, y]^{\uparrow}(\overline{y}) = 1 \cdot 0 = 0 < 1$$
$$1 \cdot [\overline{z}, x, y]^{\uparrow}(\overline{x}) = 1 \cdot 0 = 0 < 1$$

Therefore, a conflict is raised, say because \overline{y} (or similarly \overline{x}) is added to I with $reason(\overline{y}) = {\overline{x}, \overline{y}}.$

Chapter 3

AMOSUM

In this chapter we propose a new constraint with relative syntax and semantics (section 3.1). This constraint combines a SUM constraint of the form (2.2) with a collection of AMO constraints of the form (2.5). Then the related rules for propagating are described in section 3.2. Finally the *Propagate* and the *Unroll* functions are defined in the last two sections

3.1 Syntax and Semantics

An AMOSUM constraint is defined as follows:

AMOSUM
$$\{w_1 : \ell_1 \ [g_1]; \ \cdots; \ w_n : \ell_n \ [g_n]\} \ge b$$
 (3.1)

where $n \geq 0$, ℓ_1, \ldots, ℓ_n are distinct literals such that $\ell_i \neq \overline{\ell_j}$ (for all $1 \leq i < j \leq n$), and $b, w_1, \ldots, w_n, g_1, \ldots, g_n$ are naturals numbers. As in (2.2): $\{w_1, \ldots, w_n\}$ is the set of weights and $wh_{\sigma}(l_i) = w_i$; $bnd_{\sigma} = b$ is the bound of the constraint σ . The new term is g_i , it represents the group id of the literal; every literal with the same group id is inside an AMO constraint. Relation \in is now defined as $(w_i : \ell_i \ [g_i]) \in \sigma$ for all $i \in [1..n]$. \mathbb{G}_{σ} is the set of possible group id, it means that $g_i \in \mathbb{G}_{\sigma}$ for all $1 \leq i \leq n$. Given a literal ℓ_i in the aggregate, $group_{\sigma}$ is function that maps ℓ_i to its group id, that is, $group(\ell_i) = g_i$. Given a group id $g \in \mathbb{G}_{\sigma}$ then all the literals in the same group are defined $lits_{\sigma}|_g = \{\ell \mid (w : \ell[g]) \in \sigma, w \in \mathbb{N}\}$. The relation \models for a

constraint σ of the form (3.1), defined in 2.1, is extended as follows: given an interpretation I, $I \models \sigma$ if $\sum_{i=1}^{n} w_i \cdot I^{\top}(\ell_i) \geq bnd_{\sigma}$, and $\sum_{\ell \in lits_{\sigma}|_{g}} I^{\top}(\ell) \leq 1$ for all $g \in \mathbb{G}_{\sigma}$. If the subscript σ is clear from context, it will be omitted.

The corresponding set of constraints defining an AMOSUM (3.1) using just SUM constraints of the form (2.2) is the following:

$$\operatorname{SUM}\{w_1 : \ell_1; \cdots; w_n : \ell_n\} \ge b$$

$$\operatorname{SUM}\{1 : \overline{\ell_1^g}; \cdots; 1 : \overline{\ell_{m_g}^g}\} \ge m_g - 1 \quad g \in G$$

where l_i^g is the *i-th* literal in the group g and m_g is the number of literals in the group g.

To provide a more concrete illustration, a concrete example is given.

Example 5 (Continuing Example 1). Π_{run} is rewritten by replacing σ_1 and σ_2 with

$$\sigma_3$$
: AMOSUM $\{1: x [1]; 2: y [1]; 2: z [2]\} \ge 3$

Note that $G_{\sigma_3} = \{1, 2\}$, $group_{\sigma_3}(x) = group_{\sigma_3}(y) = 1$, $group_{\sigma_3}(z) = 2$, $lits_{\sigma_3}|_1 = \{x, y\}$, and $lits_{\sigma_3}|_2 = \{z\}$.

3.2 Inference rules

The propagator for constraint 3.1 has 3 inference rules, the first 2 have a counterpart in the classical setting, instead the last one is a totally new one.

AMO inference rule The first inference rule is the one ensuring the at most one constraint (2.5): given a literal ℓ such that $(w : \ell[g]) \in \sigma$ for some $w \in \mathbb{N}$ and $g \in \mathbb{G}$, then ℓ is inferred as false, i.e., $\overline{\ell} \in I$, if there exists $\ell' \in lits|_g$ such that $\ell' \in I$. In this case $reason(\ell') = {\overline{\ell}, \overline{\ell'}}$

SUM inference rule This inference rule has a corresponding couterpart in the SUM constraint, that is, a literal is inferred as true if it is required to reach the bound. As it is done in (2.7) the concept of max possible sum

is used, a literal ℓ is required to be true if all the literals in $lits|_{group(\ell)} \setminus \{\ell\}$ are falses (i.e., it is the only not false literal in its group) and the maximum possible sum (considering ℓ as false) would be less than bnd. In this case the max possible sum is different, since not all the literals are free to contribute to the overall sum; just one literal per group can be true (i.e., contribute to the sum). To get the maximum possible sum it is enough to pick the maximum not false literal from each group; more formally: $mps_amo_{\sigma}(I,\ell) = \sum_{g \in \mathbb{G}_{\sigma} \setminus \{group_{\sigma}(\ell)\}} mwh_{\sigma}(I,g)$ where $mwh_{\sigma}(I,g) := \max\{w \cdot I^{-\perp}(\ell) \mid (w : \ell [g]) \in \sigma\} \cup \{0\}$ is the maximum weight that group g can contribute to the overall sum. Finally, the literal ℓ is added to I if the following condition holds

$$mps_amo_{\sigma}(I, \ell) < bnd_{\sigma}$$
 (3.2)

Furthermore, $mwh_{\sigma}(g) = \max\{w \mid (w : x[g]) \in \sigma\} \cup \{0\}$ and $ml_{\sigma}(g) = \arg\max_{e \in S} wh(e)$ where $S = \{x \mid (w : x[g]) \in \sigma, w \in \mathbb{N}\}$

Henceforth, unless otherwise specified, mps will be used in place of mps_amo . In this case, $reason(\ell)$ is

$$lits_{\sigma}|_{group_{\sigma}(\ell)} \cup \bigcup_{g \in \mathbb{G}_{\sigma} \setminus \{group_{\sigma}(\ell)\}} just_{\sigma}(I,g),$$
 (3.3)

where $just_{\sigma}(I,g) := \{\overline{\ell'}\}$ if $\ell' \in lits_{\sigma}|_{g} \cap I$ (i.e., there exists a true literal in the group g), and $\{\ell' \in lits_{\sigma}|_{g} \mid wh_{\sigma}(\ell') > mwh_{\sigma}(s)\}$ otherwise (i.e., the false literals in the group g that could had increased the overall sum).

Enforced falsity rule The third inference rule has not counterpart in AMO or SUM constraints. This rule enfore falsity of a literal that it is guaranteed to lead the max possible sum under the bound if that literal was true. Given a literal $\bar{\ell}$ it is added to I if the following condition holds:

$$mps_{\sigma}(I,\ell) + wh_{\sigma}(\ell) < bnd_{\sigma}$$
 (3.4)

The rational behind this inference rules is the following: if ℓ was true it would contribute to the mps, if with this hypothesis the mps would be less than the

bound then it means that ℓ must be false. In this case, $reason(\bar{\ell})$ is

$$\{\overline{\ell}\} \cup \bigcup_{g \in \mathbb{G}_{\sigma} \setminus \{group_{\sigma}(\ell)\}} just_{\sigma}(I,g).$$
 (3.5)

Example 6 (Continuing Example 5). Already when I is empty, σ_3 infers z. In fact, z is the last undefined literal in part 2, and (3.2) gives

$$\max\{1 \cdot []^{\neg \perp}(x), 2 \cdot []^{\neg \perp}(y)\} = \max\{1 \cdot 1, 2 \cdot 1\} = 2 < 3$$

From (3.3), $reason(z) = \{z\}.$

Example 7. Let us consider the following constraint:

$$\sigma_4$$
: AMOSUM $\{1: x [1]; 2: y [1]; 2: z [2]; 3: w [2]\} \ge 3$

If $I = [\overline{w}]$, the second inference rule associated with σ_4 infers z with reason $(z) = \{z, w\}$. The same holds if $I = [\overline{x}, \overline{w}]$, with the addition of y with reason $(y) = \{y, x, w\}$; note that w is included in reason(y) because it could increase the overall sum. On the other hand, if $I = [\overline{y}, \overline{w}]$, then x and z are inferred with reason $(x) = \{x, y, w\}$ and reason $(z) = \{z, w, y\}$; note that y is included in $r_1 = reason(z)$ because it could increase the overall sum. It is easy to see that if $I = [\overline{w}]$ from (3.2) z is inferred with $r_2 = reason(z) = \{z, w\}$; note $r_2 \subset r_1$. This case arises from the fact that if y was undefined then z would be inferred anyway, more technically: the increment to the possible sum, given from removing y from the reason, is not enough to increase the mps up to the bound, thus the reason without y is a valid reason. As discussed in section z and z smaller reason in size is preferred. In chapter z an algorithm to compute the minimal and cardinality minimal reason is proposed. Finally, if z is inferred with reason z is inferred with reason z is inferred with reason z in this specific case z could be ignored.

3.3 Propagate

In this section on the details about the *Propagate* function implemented in the AMOSUM propagator. The Propagate function is divided in two phases:

update_phase and propagate_phase; the first one updates the internal states (more precisely the global variable mps (Max Possible Sum)) of the propagator and understands if the propagation phase is required; the second one is the 'actual' propagator, it implements the inference rules and correlated reasons, as described in section 3.2. The Propagate function is defined with the algorithm 2. Let assume to have in input to the function propagate function the literal ℓ .

Algorithm 2 Propagate

Input: A constraint σ , an interpretation I, a literal $\ell \in I$

Output: A list of propagated literals

```
1 begin
```

The update phase, is described in algorithm 3. Abusing of notation the relation \in defined in section 3.1 is extended, defining $\ell \in \sigma$ true if $(w : \ell[g]) \in \sigma$ for some weight $w \in \mathbb{N}$ and group $g \in \mathbb{G}_{\sigma}$. If $\ell \in \sigma$ it means that it means that ℓ is true and it is in the aggregate set of σ . If ℓ becomes true, it will contribute to the mps; On one hand, if it was already contribuiting to the mps (it was the max undefined) then the mps will not change, i.e., will not be inferred any literal, so the next phase will not start. On the other hand the mps will change so. To update the mps when a literal becomes true then it is necessary to remove the contribution of the previous literal and add the contribution of ℓ , that is, $mps_{\sigma} \leftarrow mps_{\sigma} - mwh_{\sigma}(I,g) + wh_{\sigma}(\ell)$ In this case mps has changed so the next phase is required. If, instead, $\bar{\ell} \in \sigma$, it means that $\bar{\ell}$ is false and (maybe) will not contribute anymore on mps. To check this, it is sufficient to check that it was contributing and there was no true literal in its group; more precisely: $wh_{\sigma}(\ell) = mwh_{\sigma}(I \setminus \{\ell\}, g)$ and $lits_{\sigma}|_{qroup(\ell)} \cap I = \emptyset$. In this case, the contribution of ℓ has to be removed, since it is false, and the new contribution $(mwh_{\sigma}(I,g))$ has to be added to mps. In this case mps has changed so the next phase is required. When $wh_{\sigma}(\bar{\ell}) = mwh_{\sigma}(I \setminus {\ell}, g)$ is false can happen

that: there is no true literal in $lits|_g$ and there is just one undefined literal in $lits|_g$; in this case, thanks to (3.2), some literal could be inferred, so whatever is the mps the next phase is required. In all the other cases the next phases is not required.

Algorithm 3 update_phase

Input: An aggregate σ , an interpretation I, a literal $\ell \in I$. Output: Boolean to move to the next phase 1 begin if $\ell \in \sigma$ then $\mathbf{2}$ $g \leftarrow group_{\sigma}(\ell);$ if $mwh_{\sigma}(I,g) = wh_{\sigma}(\ell)$ then $ig \lfloor {
m return} \ ot$ $\mathbf{5}$ $mps_{\sigma} \leftarrow mps_{\sigma} - mwh_{\sigma}(I, g) + wh_{\sigma}(\ell);$ 6 else if $\bar{\ell} \in \sigma$ then 7 $g \leftarrow group_{\sigma}(\overline{\ell});$ 8 if $wh_{\sigma}(\overline{\ell}) = mwh_{\sigma}(I \setminus {\{\ell\}}, g)$ and $lits_{\sigma}|_{group(\ell)} \cap I = \emptyset$ then 9 $mps_{\sigma} \leftarrow mps_{\sigma} + mwh_{\sigma}(I, g) - wh_{\sigma}(\ell);$ 10 else if $|lits_{\sigma}|_{qroup_{\sigma}(\ell)} \setminus (I \cup \overline{I})| = 1$ and $lits_{\sigma}|_{qroup(\ell)} \cap I = \emptyset$ then 11 $\mathbf{return} \; \top$ 12else **13** $\mathbf{return} \perp$ 14 else **15** ${f return}\ ot$ 16 $\mathbf{return} \; \top$ **17**

Now let's move to the actual propagation phase.

Algorithm 4 propagate_phase

10

11

12

16

return S;

```
Input: A constraint \sigma, an interpretation I
    Output: A set S of pairs (literal, reason),
1 begin
          S \leftarrow \emptyset
          falses \leftarrow \emptyset
3
          for g \in \mathbb{G} do
4
                // AMO inference rule
                if lits_{\sigma}|_g \cap I = \{\ell\} then
\mathbf{5}
                  6
                // Enforced falsity rule
                for \ell \in lits_{\sigma}|_q do
7
                       if \ell \notin I \cup \overline{I} then
8
                             if mps_{\sigma} - mwh_{\sigma}(I, g) + wh_{\sigma}(\ell) < lb then
9
                                 \begin{aligned} rns_{\ell} &= lits_{\sigma}|_{g} \cup \bigcup_{x \in \mathbb{G}_{\sigma} \setminus \{g\}} just_{\sigma}(I, x) \\ S &\leftarrow (\overline{\ell}, reason(\ell)) \\ falses &\leftarrow falses \cup \{\ell\} \end{aligned}
```

3.4 Unroll

Actually, in addition to the *Propagate* function, called when a literal has been chosen as a branching literal, also a *Unroll* function has to be defined, to update the internal state of the propagator when a literal becomes undefined (due to some backjump in the search process).

Algorithm 5 Unroll

Input : A constraint σ , an interpretation I, a literal $\ell \not\in (I \cup \overline{I})$, previous value v

 ${f Output}$: Updated mps

```
1 begin
          if \ell \in \sigma or \overline{\ell} \in \sigma then
 \mathbf{2}
                if \bar{\ell} \in \sigma then
 3
 4
 \mathbf{5}
                g \leftarrow group(\ell)
 6
                if v = \top then
 7
                      // \ell was true
                      if mwh(I,g) > wh(\ell) then
 8
                           mps \leftarrow mps - wh(\ell) + mwh(I,g);
 9
                else if wh(\ell) > mwh(I \cup \{\overline{\ell}\}, g) and lits|_g \cap I = \emptyset then
10
                      // \ell was false
                     mps \leftarrow mps - mwh(I \cup {\overline{\ell}}, g) + wh(\ell);
11
```

Chapter 4

Minimizing reason

In Section 4.1, we discuss some important properties of the reason. Subsequently, we introduce the concept of a redundant literal and explain the notion of increment, in section 4.2 and 4.3 respectively. Utilizing these concepts, we define two algorithms in sections 4.4.1, 4.4.2: one for obtaining the minimal reason and the other for obtaining the cardinality minimal reason, respectively. At the end (section 4.5) the complexity of both algorithms is analized, showing that the first algorithm has a polynomial complexity and the second one has a pseudo-polynomial complexity. In the last part 4.5.2, the second algorithm is proved to be NP-Hard.

All the discussion applies on the inference rule (3.2) for a constraint σ of the from (3.1), thus, when it is possible, the subscript σ is omitted.

4.1 Properties of a reason

An important property of a reason R is that $\Pi \models R$, i.e., it is redundant. Let R_1, R_2 be two reason of z of the form:

$$R_1 = \{z\} \cup \{\ell_1, \dots, \ell_n, y\}$$
(4.1)

$$R_2 = \{z\} \cup \{\ell_1, \dots, \ell_n, \overline{y}\},$$
 (4.2)

where $n \geq 0$. In this case $R_1 \setminus \{y\} = R_2 \setminus \{\overline{y}\}$ and $z, y \in R_1$ and $z, \overline{y} \in R_2$. Let Π be a program such that $\Pi \models R_1$ and $\Pi \models R_2$. Let $I \models \Pi$ then $I \models R_1$ and

 $I \models R_2$, hence $I \models R_1 \land R_2$. We have seen in 2.3 that $R_1 \land R_2 \to R_1 \otimes_y R_2$, thus $I \models R_1 \otimes_\ell R_2$, hence $\Pi \models R_1 \otimes_y R_2 = \{z\} \cup \{\ell_1, \dots, \ell_n\} = R$. Since $z \in R$ and $\Pi \models R$ then R is a reason of z in Π .

Example 8. continuing example 7

When $I = [\overline{y}, \overline{w}]$ then z is inferred, thanks to (3.2), with $reason(z) = \{z, y, w\} = R_1$. If $I = [y, \overline{w}]$ then mps(I, z) = wh(y) = 2 < 3 and lits $|_{group(z)} \setminus \overline{I} = \{z\}$ so z is inferred with $reason(z) = \{z, \overline{y}, w\} = R_2$. Since $R_1 = \{z\} \cup \{w, y\}$, $R_2 = \{z\} \cup \{w, \overline{y}\}$ are two reason of the form 4.1, 4.2 (respectively) then $\Pi \models R_1 \otimes_y R_2 = \{z, w\} = R$ and R is a reason of z.

We can see in the above example that y can be removed from the reason, getting R, and R continues to be a reason, so it is redundant.

4.2 Redundant literal

Let L be set such that $\ell \in L$, then $L_{\overline{\ell}} = (L \setminus {\ell}) \cup {\overline{\ell}}$. A literal ℓ is redundant in a reason R of the literal z, under interpretation I, if $R_{\overline{\ell}}$ is a reason of z under I_{ℓ} . If $\ell \in R$ then $R, R_{\overline{\ell}}$ are of the form 4.1 and 4.2 respectively, and $R \otimes_{\ell} R_{\overline{\ell}} = R \setminus {\ell} = R'$ is a reason of z. Note that R' is a reason under $I' = \overline{R' \setminus \{z\}}$; thus, given that $I' \subseteq I$, then R' is a reason under I. It is easy to see that every redundat literal of a reason R can be removed from it.

Example 9. Continuing example 7

When $I = [\overline{y}, \overline{w}]$ then z is inferred, thanks to (3.2), with reason(z) = $\{z, y, w\}$ = R; R is a reason of z under I.

Let's check if y is redundant. $R_{\overline{y}} = (R \setminus \{y\}) \cup \{\overline{y}\} = \{z, \overline{y}, w\}$ and $I_y = [y, \overline{w}]$. With $J_{R_{\overline{y}}} = [y, \overline{w}]$ the propagator, thanks to (3.2), would infer z. So, $R_{\overline{y}}$ is a reason for z and y is redundant in R. Now, let's take the case where $I = [x, \overline{y}, \overline{w}]$, and z is inferred with reason(z) = $\{z, w, \overline{x}\} = R$, that is, $\overline{w} \wedge x \rightarrow z$. Let's check if \overline{x} is redundant.

 $R_x = \{z, w, x\}$ and it is a reason of z under $I_{\overline{x}}[\overline{w}, \overline{y}, \overline{x}]$, since $J_{R_x} = \overline{\{w, x\}} = \overline{[w, \overline{x}]} \subseteq I_{\overline{x}}$ infers z. Hence, x is redundant in R.

Continuing the discussion about the example 9. Let's examine the first case more in detail: $reason(z) = \{z, w, y\}$ is a reason of z under $I = [\overline{y}, \overline{z}]$. This is true because, given $J_R = \overline{\{z, w, y\}} \setminus \overline{\{z\}} = \{w, y\}$, $mps(J_R, z) = wh(x) = 1 < 3$ and $lits \mid_{group(z)} \setminus \overline{I} = \{z\}$. Since $R_{\overline{y}} = \{z, w, \overline{y}\}$ then $J_{R_{\overline{y}}} = [\overline{w}, y]$ and $mps(J_{R_{\overline{y}}}, z) = wh(y) = 2 < 3$ and $lits \mid_{group(z)} \setminus \overline{I_y} = \{z\}$, thus z would be added in I_y . More in concrete, y is redundant because $mps(J_R, z) + inc(y) = 1 + 1 < bnd = 3$ and $y \notin group(z)$, where the $inc(y) = mps(J_{R_{\overline{y}}}, z) - mps(J_R, z) = 2 - 1$. Now, let's take the other case, where $I = [x, \overline{y}, \overline{w}]$, and z is inferred with $reason(z) = \{z, w, \overline{x}\}$, that is, $\overline{w} \wedge x \to z$. As already seen $J_{R_x} = [\overline{x}, \overline{w}]$. $mps(J_{R_x}, z) = wh(y) = 2 < 3$ and $lits \mid_{group(z)} \setminus \overline{I_x} = \{z\}$, so $reason(z) = \{z, x, w\}$ and \overline{x} is redundant.

4.3 Increment

As mentioned before, increment of ℓ , written $inc(\ell)$, defines how much the mps increases when that literal is flipped in the reason (to possibly be removed).

4.3.1 False literal

Let ℓ be a false literal that is, $\overline{\ell} \in I$. A reason R of a literal z under I can contain ℓ , let's assume R to be such reason. Let $J_R = \overline{R \setminus \{z\}}$, $J_{R_{\overline{\ell}}} = \overline{R_{\overline{\ell}} \setminus \{z\}}$, thus $\ell \in J_{R_{\overline{\ell}}}$.

Note that $mps(J_R, z) = \sum_{g \in \mathbb{G} \setminus \{group(z)\}} mwh(J_R, g)$ and $mps(J_{R_{\overline{\ell}}}, z) = \sum_{g \in \mathbb{G} \setminus \{group(z)\}} mwh(J_{R_{\overline{\ell}}}, g)$. Since $J_R \setminus lits|_{group(\ell)} = J_{R_{\overline{\ell}}} \setminus lits|_{group(\ell)}$, that is, all the literals outside $group(\ell)$ remain with the same value; then just the maximum weight of $lits|_{group(\ell)}$ can change. Hence,

$$inc(\ell) = mps(J_{R_{\overline{\ell}}}, z) - mps(J_r, z) = mwh(J_{R_{\overline{\ell}}}, group(\ell)) - mwh(J_r, group(\ell))$$

Hence, when a literal has to be checked to be redundant and it is false then $inc(\ell)$ has to be considered has the increment of the mps.

4.3.2 True literal

Let ℓ be a *true* literal that is, $\ell \in I$. A reason R of a literal z under I can contain $\overline{\ell}$, let's assume R to be such reason. Then $J_R = \overline{R \setminus \{z\}}$ and $J_{R_\ell} = \overline{R_\ell \setminus \{z\}}$, thus $\overline{\ell} \in J_{R_\ell}$.

Since $\ell \in I$ then R, by construction, does not containt any literal of $group(\ell)$ except ℓ , then R_{ℓ} will do the same. Since $J_{R_{\ell}} = \overline{R_{\ell} \setminus \{z\}}$ then also $J_{R_{\ell}}$ has no literal of group of ℓ except $\overline{\ell}$ (since it is false, it does not contribute to the mps). That is, $mwh(J_{R_{\ell}}, group(\ell)) = \max\{mwh(x) \mid group(x) = group(\ell)\} = mwh(group(\ell))$. It is easy to see that

$$inc(\ell) = mps(J_{R_{\ell}}, z) - mps(J_{r}, z) = mwh(group(\ell)) - wh(\ell)$$

Hence, when a literal has to be checked to be redundant and it is true then $inc(\ell)$ has to be considered has the increment of the mps.

4.3.3 Algorithm

In this section is proposed the algorithm computing the increment and its lower bound 0 is proved. The increment is always non-negative since removing a literal from a reason in the worst case does not affect the mps.

Theorem 1. Given a reason R and a literal $\ell \in R$ then $inc(\ell) \geq 0$.

Proof. Case when $I \models \ell \in R$. Then $inc(\ell) = mwh(group(\ell)) - wh(\ell)$. Since $mwh(group(\ell))$ is the maximum weight in $lits \mid_{group(\ell)}$ and $\ell \in lits \mid_{group(\ell)}$ then $mwh(group(\ell)) \geq wh(\ell)$ and $inc(\ell) \geq 0$.

Case when $I \models \bar{\ell} \in R$. For readability let define $g = group(\ell)$.

Then $inc(\ell) = mwh(J_{R_{\overline{\ell}}}, g) - mwh(J_R, g)$.

Since $J_{R_{\overline{\ell}}} = (J_R \setminus {\overline{\ell}}) \cup {\ell}$ then

$$mwh(J_{R_{\overline{\ell}}},g) = \max\{w \cdot J_R^{\neg \perp}(\ell) \mid (w : \ell [g]) \in \sigma\} \cup \{wh(\ell)\}$$

It is trivial to see that

$$\max\{w\cdot J_R^{\neg\perp}(\ell)\mid (w:\ell\ [g])\in\sigma\}\cup\{wh(\ell)\}\geq \max\{w\cdot J_R^{\neg\perp}(\ell)\mid (w:\ell\ [g])\in\sigma\}$$

Since $\max\{w\cdot J_R^{\neg\perp}(\ell)\mid (w:\ell\ [g])\in\sigma\}=mwh(J_R,g)$ then

$$\max\{w \cdot J_R^{\neg \perp}(\ell) \mid (w : \ell \ [g]) \in \sigma\} \cup \{wh(\ell)\} \ge mwh(J_R, g).$$

Given that $\max\{w\cdot J_R^{\neg\perp}(\ell)\mid (w:\ell\ [g])\in\sigma\}\cup\{wh(\ell)\}=mwh(J_{R_{\overline{\ell}}},g), \text{ finally,}$

$$mwh(J_{R_{\overline{s}}}, g) \ge mwh(J_R, g)$$

In both cases $inc(\ell) \geq 0$.

Hence,
$$inc(\ell) \ge 0$$
 for all $\ell \in R$

The following algorithm computes the increment as previously described.

Algorithm 6 inc

Input: literal $\ell \in R$, interpretation I, reason R

Given a reason R, interretation I and a set $S \subseteq R$ the total increment of S denoted $inc(S, I, R) = \sum_{\ell \in S} inc(\ell, I, R \setminus S \cup \{\ell\})$

4.4 Minimality

In this section we propose two algorithms to minimize the reason generated by the propagator. The first algorithm (4.4.1) is an algorithm to get the minimal reason. In subsection 4.4.2, instead, a new algorithm to compute the cardinality minimal reason is proposed. For both algorithms a proof of correctness is provided.

4.4.1 Minimal reason

Given a reason R of a literal ℓ then it is minimal if there not exists a literal $\ell' \in R$ such that $R \setminus \{\ell'\}$ is a reason of ℓ . In other words, R is minimal if it does not containts redundant literals. As seen before with each literal ℓ in a reason R has an *increment*. That is, the increment to the mps when ℓ is removed from the reason.

At this point, an important parallel must be drawn: minimizing a reason R equates to maximizing the number of literals removed from R. This first algorithm identifies the maximal set of literals to be removed from R.

Maximal Subset Sum As mentioned before finding the minimal reason is equal to find the maximal set of literal to remove from the reason. Let R be a reason of a literal z under interpretation I and $S \subseteq R'$ be a set of literals where $R' = R \setminus lits|_{group(z)}$. S can be removed from R if

$$\sum_{e \in S} inc(e, I, (R' \setminus S) \cup \{e\}) \le s$$

where s = bnd - mps(I, z) - 1. To comprehend the reasoning behind s, it is crucial to observe that, given $J = B(R' \setminus S)$ then

$$mps(J,z) = mps(I,z) + \sum_{e \in S} inc(e,I,(R' \setminus S) \cup \{e\})$$

For $R' \setminus S$ to remain a reason the condition $mps(R' \setminus S, z) \leq bnd - 1$ must continue to hold. Since $mps(I, z) \leq bnd - 1$ (otherwise R would not be a reason) and $\sum_{e \in S} inc(e, I, (R' \setminus S) \cup \{e\}) \leq bnd - mps(I, z) - 1$ then

$$mps(I,z) + \sum_{e \in S} inc(e,I,(R' \backslash S) \cup \{e\}) \leq mps(I,z) + bnd - mps(I,z) - 1 = bnd - 1$$

. Now, the entire algorithm can be defined. It begins with an empty set S and a current increment ci equal to 0. For each literal ℓ that is not in the group of z it verifies if ℓ is redundant. If it is, it is added to the set S and the ci increase of $inc(\ell)$.

Algorithm 7 Maximal Subset sum (mss)

Input: interpretation I, reason R of z, threshold s

Paramenters: inc function

Output : subset maximal

```
1 begin
```

Proof Correctness Before proving the theorem about the correctness of algorithm 7 the following lemma has to be proved.

Lemma 1. Given a reason R, a set $S \subseteq R$, a literal $\ell \in R \setminus S$ and $ci, s \in \mathbb{N}$. If $ci + inc(\ell, I, R \setminus S) > s$ then every superset $S' \supseteq S \cup \{\ell\}$ yields to an increment greater of s

Proof. The total increment of $S' = inc(S', I, R) = inc(S, I, R) + inc(\ell, I, R \setminus S) + \sum_{\ell \in S'} inc(x, I, R \setminus S' \cup \{x\})$. Since $inc(S, I, R) + inc(\ell, I, R \setminus S) > s$ by assumption and ,thanks to theorem 1, $inc(x, I, R \setminus S' \cup \{x\}) \geq 0$ then inc(S', I, R) > s. Hence, S' is not a subset of R giving as sum a value less than s.

Theorem 2. The Maximal Subset Sum algorithm returns the maximal subset S where $inc(S, I, R) \leq s$

Proof. Let S_m the final subset returned by mss. Arguing by contradiction, if it is not maximal it means that there is a literal $\ell \in R \setminus S_m$ that could be added to S_m . But since $ci + inc(\ell, I, R \setminus S) \geq s$ for some S. Since $S \subseteq S_m$, then $S \cup \{\ell\} \subseteq S_m \cup \{\ell\}$,; thanks to theorem $1 S_m \cup \{\ell\}$ is not a subset giving

as sum a value less then s, that is, ℓ cannot be added to S_m . Hence, S_m is maximal,

4.4.2 Cardinality Minimal Reason

This section, as previously mentioned, we propose a new algorithm to minimize the reason, the main difference is that with algorithm 7 the final reason is not guaranteed to be cardinality-minimal. This new approach can find a cardinality-minimal reason, at the price of having a *pseuso-polynomial* algorithm. Before introducing the algorithm some preliminars have to be done.

Preliminars All the previous notation continue to hold. Let I an interpretation, R be a reason of z generated under I and $S \subseteq R$ a set of redundant literals of R.

Function $ml_{inc}: \mathcal{P}(R) \times G \mapsto R$ returns the maximum increment literal in S of group g; that is, $ml_{inc}(S,g) = \arg\max_{k \in S \cap lits|_{group(g)}} inc(k)$.

Given a set, a literal ℓ is active in S if $ml_{inc}(S, group(\ell)) = \ell$; the set of active literal of S is equal to $A_S = \{\ell \in S \mid \ell \text{ is active in } S\}$. Given a literal $l \in R$ then $blw : R \mapsto \mathcal{P}(R)$ is a function that returns all the literals below ℓ , that is, $blw(\ell) = \{k \in lits|_{group(\ell)} \mid inc(k, I, R) \leq inc(l, I, R)\}$. Function $sum(S) = \sum_{\ell \in A_S} inc(\ell, I, R)$ is the sum of all increments of active literals of S.

A extension of a set S with a literal $\ell \in R \setminus S$, written as $S' = S \xrightarrow{\text{ext}} \ell$, is equal to $S' = S \cup blw(\ell)$.

A sufficient condition for a literal ℓ to be active in $S' = S \xrightarrow{\text{ext}} \ell$ is that $S \cap group(\ell) = \emptyset$. Let $(lits_ord_g, \preceq)$ be an ordered set where $lits_ord_g = lits|_g$ and $\preceq = \{(l, l') \in lits|_g \times lits|_g : inc(l, I, R) \ge inc(l', I, R)\}$.

Let

$$L = \{l_1^1, \dots, l_{m_1}^1, \dots, l_1^g, \dots, l_{m_g}^g, \dots, l_1^k, \dots, l_{m_k}^k\}$$
(4.3)

where $k = |\mathbb{G}|$, m_g is the size of $lits_ord|_g$, l_j^g is the j-th literal in $lits_ord_g$. The set L_j represent the first j elements of L and n = |L|. Abusing of notation,

given a literal $\ell_j \in L$, $\{\ell_j\} = L_j \setminus L_{j-1}$, i.e., ℓ_j is the *j-th* literal in L.

Cardinality-Maximal Set As done in section 4.4.1 to find a minimal reason R' starting from R we compute a maximal subset S of R of redudant literals to remove from R. In the first approach, the cardinal-minimality property is not ensured, instead in this case S is cardinality-maximal. Differently from the 7, here the increment is always with respect the 'initial' increment, that is, with respect to the initial reason R; instead in the first algorithm the increment dependes from the current reason.

Algorithm 8 Cardinality Maximum Subset Sum (cmss)

Input : L, interpretation I, reason R of z, threshold s

 ${\bf Parameters}: group: {\bf Group} \ {\bf Function}, \ inc: {\bf Increment} \ {\bf Function}$

Output : S: Set of literals representing the maximum subset

```
1 begin
           n \leftarrow |L|
 \mathbf{2}
           M \leftarrow Init(I, R, L, s)
 3
           for i \in \{1, ..., s\} do
                 for j \in \{1, ..., n\} do
 5
 6
                      w \leftarrow inc(\ell, I, R)
 7
                       if i \geq w then
 8
                             for k \leftarrow j-1 to 0 do
 9
                                  if \ell \notin M_{i-w,k} \vee \square \in M_{i-w,k} then break
10
11
                          bool \leftarrow \square \not\in M_{i-w,k} \land \ell \not\in M_{i-w,k}
12
                            wls \leftarrow M_{i-w,k} \xrightarrow{\mathrm{ext}} \ell if bool Else \square
13
                            M_{i,j} \leftarrow \arg\max\{|wls|, |M_{i,j-1}|\}
14
                       else
15
                            M_{i,j} \leftarrow M_{i,j-1}
16
           S = \arg\max_{i \in \{0,\dots,s\}} |M_{i,n}|
17
           return S
18
```

Algorithm 9 Init

Input: interpretation I, reason R, L, threshold $s \in \mathbb{N}$

1. begin $\mathbf{2} \quad M_{0,j} = \{\ell \mid \ell \in L_j \land inc(\ell,I,R) = 0\} \quad \forall j \in \{1,\ldots,|L|\}$ $\mathbf{3} \quad M_{i,0} = \square \quad \forall i \in \{1,\ldots,s\}$

The algorithm 8 computes the cardinality-maximal subset S of L such that the total increment $inc(S,I,R) \leq s$, using a dynamic approach. It creates a matrix M where each cell $M_{i,j}$ has domain $\mathcal{P}(L) \cup \{\Box\}$. $M_{i,j}$ represents the cardinality-maximal set with $sum(M_{i,j}) = i$ and $M_{i,j}$ 'considers' literal in L_j ; considers means that **just** literals in L_j can be active, all the literals in $L \setminus L_j$ can appear in $M_{i,j}$ but are **not** active. If a set S is built considering just literals in $D \subseteq L$ then it is written: $S \sqsubseteq D$. if $M_{i,j} = \Box$ it means that such set does not exists. When $M_{i,j} = \Box$ then, abusing of notation, $|M_{i,j}| = -1$, $M_{i,j} \stackrel{\text{ext}}{\longrightarrow} \ell = \Box$ and $\ell \not\in M_{i,j}$ for all $\ell \in L$. The matrix is initialized with function Init 9. This function will initialize just the first row and column. It is trivial to see that $M_{0,j}$ will contain all the literals of L_j with increment equal to 0, since the sum i = 0. Thus, the first row will be $M_{0,j} = \{\ell \mid \ell \in L_j \land inc(\ell,I,R) = 0\}$ $\forall j \in \{1,\ldots,n\}$.

When the sum i>0 then with $L_0=\emptyset$ is impossible to reach i, that's why $M_{i,0}=\square \quad \forall i\in\{1,\dots,s\}$. After initilization the algorithm 8 constructs each cell $M_{i,j}$, with $1\geq i\geq s$ and $1\geq j\geq n$, starting from $M_{i,j-1}$ and $M_{i-w,j-1}$, where $w=inc(\ell_j,I,R)$. Let $S_{\overline{\ell}}\sqsubseteq L_j$ and $S_{\ell}\sqsubseteq L_j$ and having a total increment equal to i, with ℓ_j non-active and ℓ_j active, respectively. By selecting the larger set between these two, we obtain the maximum set considering literals in L_j . $S_{\overline{\ell}}=M_{i,j-1}$, since is the largest set giving as sum i and ℓ is not active given that $M_{i,j-1}$ considers just the first j-1 literals; note, this does not mean that $M_{i,j-1}\cap\{\ell\}=\emptyset$, since can happen that for some d< j $M_{i,d}=M_{l,k}\stackrel{\rm ext}{\longrightarrow}\ell_d$ and $group(\ell_d)=group(\ell_j)$. Instead finding S_ℓ is not so trivial, we cannot just take $M_{i-w,j-1}$, since $M_{i-w,j-1}$ could containt a literal ℓ_d such that d< j, $group(\ell_d)=group(\ell_j)$ and in that case $sum(M_{i-w,j-1})=sum(M_{i-w,j-1}\stackrel{\rm ext}{\longrightarrow}\ell_j)$; it is due to the fact that ℓ_j would not be active. Since L is ordered,

and within each group there is a descending order, and since each cell $M_{i,j}$ is computed from left to right then $M_{i-w,j-1} \cap lits_{group(\ell)} = \emptyset$ is also a necessary condition to have ℓ active in $M_{i-w,j-1} \stackrel{\text{ext}}{\longrightarrow} \ell$ (so it becomes necessary and sufficient). Since, by construction, $M_{i-w,j-1}$ can contain just literals 'greater' (in terms of increment) of ℓ_j , and if this happens also ℓ_j is inside $M_{i-w,j-1}$ then it is sufficient to check that $M_{i-w,j-1} \cap \{\ell_j\} = \emptyset$. Taking $M_{i-w,k} \stackrel{\text{ext}}{\longrightarrow} \ell_j$ with $k = \arg\max_{k \in \{0,\dots,j-1\}} \ell_j \notin M_{i-w,k}$ yields the cardinality maximum set with a sum of i, and ℓ_j active. Hence, $S_\ell = M_{i-w,k}$. Subsequently, after the for loop is completed all cells of the matrix are correct and it is enough to take the largest set in the last column, that is, the largest set giving as sum a value less or equal to s considering all literals in L.

Proof Correctess To formally prove that algorithm 8 is correct a lemma has to be proved.

Lemma 2. Given a set of literals $D \subseteq L$, a literal $\ell \in D$ and a set $S_{\overline{\ell}} \subseteq D$ and $S_{\ell} \subseteq D$ and a sum s. Let $S_{\overline{\ell}}$ is the maximum cardinality set giving s as sum with ℓ being an non-active literal and S_{ℓ} is the maximum cardinality set with ℓ being an active literal giving s as sum.

Let
$$S = \arg\max_{X \in \{S_{\ell}, S_{\overline{\ell}}\}} |X|$$
.

Then $S \subseteq D$ is a maximum cardinality set that gives as sum s.

Proof. Let's assume by contradiction that S is not the maximum cardinality set that gives as sum s. So there exists a set $S' \sqsubseteq D$ such that |S'| > |S|. If $\ell \not\in A_{S'}$ then $|S'| > |S_{\overline{\ell}}|$, that is $S_{\overline{\ell}}$ is not the maximum cardinality set with ℓ being a non-active literal giving as sum s, but this is a contradiction. So $\ell \in A_{S'}$ then $|S'| > |S_{\ell}|$, that is S_{ℓ} is not the maximum cardinality set with ℓ being a active literal giving as sum s, but this is a contradiction. So $\ell \in A_{S'}$ and $\ell \not\in A_{S'}$ and this is a contradiction.

To prove that algorithm cmss 8 returns the cardinality maximal subset S where $inc(S, I, R) \leq s$ it is necessary to introduce the relation $C_M \subseteq N_1 \times N_2$, where $N_1 = \{-max_{inc}, \ldots, -1, 0, \ldots, s\}$, $N_2 = \{0, \ldots, n\}$ and $max_{inc} = \{0, \ldots, n\}$

 $\max\{inc(\ell, I, R) \mid \ell \in L\}$. The relation C_M is defined as follows:

$$C_M = \{(i,j) \in N_1 \times N_2 \mid i \in \{-max_{inc}, \dots, -1\}\} \quad \cup$$
$$\{(i,j) \in N_1 \times N_2 \mid M_{i,j} \text{ is largest set s.t. } M_{i,j} \sqsubseteq L_j \text{ and } inc(M_{i,j}, I, R) = i\}$$

 C_M represents the notion of 'correct': $(i,j) \in C_M$ iff $M_{i,j}$ is actually the maximum set, considering literals in L_j , giving as sum a value equal to i for all $i \in \{0, \ldots, s\}$ and $j \in \{0, \ldots, n\}$. The first block $\{(i,j) \in N_1 \times N_2 \mid i \in \{-max_{inc}, \ldots, -1\}\}$ has a 'padding' purpose, i.e., if the sum is less than 0 it cannot be reached (since function inc has been proved to be bounded by 0 below), so it is true by default (this is usefull for the following theorem).

Theorem 3.
$$C_M(i,j)$$
 holds for all $i \in \{0,\ldots,s\}$ and $j \in \{0,\ldots,n\}$

Proof. (Induction proof)

This proof is a two variable induction proof.

Base case(s):

- $C_M(i,j)$ hold $\forall i \in \{-max_{inc}, \dots, -1\}$ and $\forall j \in \{0, \dots, n\}$
- $C_M(0,j)$ holds $\forall j \in \{0,\ldots,n\}$
- $C_M(i,0)$ holds $\forall i \in \{1,\ldots,s\}$

Induction hypothesis:

• if $C_M(i, j-1)$ and $C_M(i-w, k)$ hold then $C_M(i, j)$ holds $\forall i \in \{1, \dots, s\}$ and $\forall j \in \{1, \dots, n\}$.

Where
$$w = inc(\ell_j, I, R)$$
 and $k = \arg \max_{k \in \{0, \dots, j-1\}} \ell_j \notin M_{i-w,k}$.

It is easy to see that, if the base cases and the induction are proved then every $C_M(i,j)$ is 'inferred' from previous cells (i,j-1) and (i-w,j-1) $\forall i \in \{1,\ldots,s\}$ and $\forall j \in \{1,\ldots,n\}$; it would mean that $C_M(i,j)$ holds $\forall i \in \{0,\ldots,s\}$ and $\forall j \in \{0,\ldots,n\}$.

Proof base cases

• $C_M(i,j)$ hold $\forall i \in \{-max_{inc}, \dots, -1\}$ and $\forall j \in \{0,\dots, n\}$

- It is true since by construction $(i, j) \in C_M$ if $i \in \{-max_{inc}, \dots, -1\}$.
- $C_M(0,j)$ holds $\forall j \in \{0,\ldots,n\}$
 - By construction, $(0, j) \in C_M$ iff $M_{i,j}$ is the maximum subset on L_j giving as sum 0. Algorithm cmss (8) builds

$$M_{0,j} = \{ \ell \mid \ell \in L_j \land inc(\ell, I, R) = 0 \} \quad \forall j \in \{1, \dots, |L| \}$$

Then $M_{0,j} \subseteq L_j$ and $M_{i,j}$ is the maximum subset s.t. $inc(M_{i,j}, I, R) = 0$, given that to get the maximum set it is enough to add all literals with increment 0. Hence, $(0,j) \in C_M \quad \forall j \in \{0,\ldots,n\}$

- $C_M(i,0)$ holds $\forall i \in \{1,\ldots,s\}$
 - Algorithm *cmss* builds

$$M_{i,0} = \square \quad \forall i \in \{1, \dots, s\}$$

It is trivial to see that, if i > 0 and j = 0 then it is impossible to reach sum i with 0 elements, so such subset does not exists. Thus, $M_{i,0}$ 'represent' the maximum subset. Hence, $(i,0) \in C_M \quad \forall i \in \{1,\ldots,s\}$

Now, let's move to the induction hypothesis.

- If $C_M(i, j-1)$ and $C_M(i-w, j-1)$ hold then $C_M(i, j)$ holds $\forall i \in \{1, \dots, s\}$ and $\forall j \in \{1, \dots, n\}$. Where $w = inc(\ell_j, I, R)$.
 - If $C_M(i, j-1)$ holds then by definition $M_{i,j-1}$ is the largest set such that $M_{i,j-1} \sqsubseteq L_{j-1}$ and $sum(M_{i,j-1}) = i$. Let $S_{\overline{\ell_j}} \sqsubseteq L_j$ be the largest set with sum i and ℓ_j is **non-active**. Now the claim to get is that $M_{i,j-1} = S_{\overline{\ell_j}}$. Since l_j has to be not active, $S_{\overline{\ell_j}}$ has to be built considering $L_j \setminus {\ell_j}$, i.e., $S_{\overline{\ell_j}} \sqsubseteq L_{j-1}$. All Possible Set to be considered are $PS = {S \mid S \sqsubseteq L_{j-1} \text{ and } inc(S, I, R) = i}$. Given that, by induction hypothesis, $C_M(i, j-1)$ holds, then $|M_{i,j-1}| \ge$

 $|S| \quad \forall S \in PS$. So, given that $S_{\overline{\ell_j}}$ is the largest set amoung those in PS then $|M_{i,j-1}| = |S_{\overline{\ell_j}}|$. Thus, we can take $M_{i,j-1}$ as $S_{\overline{\ell_j}}$.

If $C_M(i-w,k)$ holds then by definition $M_{i-w,k}$ is the largest set such that $M_{i,k} \sqsubseteq L_k$ and $sum(M_{i,k}) = i - w$, where $w = inc(\ell_j, I, R)$ and $k = \arg\max_{k \in \{0,\dots,j-1\}} \ell_j \notin M_{i-w,k}$. Let $S_{\ell_j} \sqsubseteq L_j$ be the largest set with sum i and ℓ_j is **active**. Let $M_{i,k} \xrightarrow{\text{ext}} \ell_j = E_{\ell_j}$ be the set obtained after extending $M_{i,k}$ with ℓ_j . Let's analyze what is the value of $sum(E_{\ell_i})$. By definition $sum(M_{i-w,k}) = i - w$. By construction $sum(M_{i-w,k}) \cap lits|_{group(\ell)} = \emptyset$; as seen in the preliminars it is a sufficient condition to deduce that ℓ_i is active in $M_{i,k} \xrightarrow{\text{ext}} \ell_j$, that is, $\ell_j \in A_{E_{\ell_i}}$. Thus, since $sum(M_{i-w,k}) = i - w$ and $\ell_j \in M_{i,k} \xrightarrow{\text{ext}} \ell_j$ then $sum(M_{i,k} \xrightarrow{\text{ext}} \ell_j, I, R) = sum(E_{\ell_j}) =$ $sum(M_{i-w,k}) + inc(\ell_i, I, R) = i - w + w = i$. Now the claim to get is that $E_{\ell_l} = S_{\ell_i}$. This claim is reached reasoning by contradition. Let's assume that E_{ℓ_l} is not the largest set, in other words: there exists a set $S' \sqsubseteq L_j$ such that $|S'| > E_{\ell_j}$, moreover, sum(S') = i and $\ell_j \in A_{S'}$ (i.e., ℓ_j is active). In this case $\ell_j \in A_{E_{\ell_i}} \cap A_{S'}$, i.e., it is active in both sets; so by construction $blw(\ell_j) \in E_{\ell_j}$ and $blw(\ell_j) \in S'$, furthermore, there not exists a literal $\ell' \in lits|_{group(\ell_i)}$ such that $wh(\ell') > wh(\ell_j)$ and $\ell' \in E_{\ell_j}$ or $\ell' \in S'$, thus, $|S' \setminus blw(\ell_j)| >$ $|E_{\ell_j} \setminus blw(\ell_j)|$ Given that $E_{\ell_j} = M_{i-w,k} \xrightarrow{\text{ext}} \ell_j = M_{i-w,k} \cup blw(\ell_j,j)$ then $E_{\ell_i} \setminus blw(\ell_j) = (M_{i-w,k} \cup blw(\ell_j)) \setminus blw(\ell_j) = M_{i-w,k}$. Given that $\ell_j \in A_{S'}$ it means that $S' \cap group(\ell_j) \setminus blw(\ell_j) = \emptyset$, i.e., there is no literal $\ell' \in S'$ such that $wh(\ell') > \ell_j$. So, $S'' = S' \setminus blw(\ell_j) \sqsubseteq L_d$ where $d \in 0, ..., j-1$ such that $L_d \cap group(\ell_j) = \emptyset$. Given that ℓ_j is active in S' then $sum(S'') = sum(S') - inc(\ell_j, I, R) = i - w$. Since $|S'' \subseteq L_d| > |M_{i-w,k}| \subseteq L_k$ it means that d > k, since to be greater than $M_{i-w,k}$ then S'' has to consider more literals then L_k (otherwise $M_{i-w,k}$ would not be the largest set considering L_k). So $d > k = \arg \max_{k \in \{0,...,j-1\}} \ell_j \notin M_{i-w,k}$. So $k < d \ge j-1$, it means that L_d contains some literal of the group of ℓ_j , and it is a contradiction. Thus, E_{ℓ_l} is the largest set such that $E_{\ell_l} \sqsubseteq L_j$ and $\ell_j \in A_{E_{\ell_j}}$. Hence, we can take $S_{\ell_j} = E_{\ell_j}$. By lemma 2, given that $S_{\overline{\ell_j}}$ is the maximum cardinality set giving i as sum with ℓ_j being an non-active literal and S_{ℓ_j} is the maximum cardinality set with ℓ_j being an active literal giving i as sum.

Then $S = \arg \max_{X \in \{S_{\ell}, S_{\overline{\ell}}\}} |X|$ is a maximum cardinality set that gives as sum s. Given that $M_{i,j} = S$ then $C_M(i,j)$ holds, and the prove is completed.

Now the theorem proving the correctness is straightforward.

Theorem 4. The Cardinality Maximal Subset Sum algorithm returns the cardinality maximal subset S where its sum of increments of S is less than s

Proof. Thanks theorem 3 $C_M(i,j)$ holds for all $i \in \{0,\ldots,s\}$ and $j \in \{0,\ldots,n\}$. Thus, $M_{i,n}$ is the largest set considering $L_n = L$ literals with sum i. Given that $i \in \{0,\ldots,s\}$, taking the largest set in the last column n leads to the maximum set with sum less or equal to s.

4.5 Complexity

4.5.1 Minimal Reason

Polynomial

4.5.2 Cardinality Minimal Reason

Pseudo-Polynomial

NP-Hardness

Bibliography

- [1] V. Marek and M. Truszczyński, "Stable models and an alternative logic programming paradigm," in *The Logic Programming Paradigm: a 25-year Perspective*, 1999, pp. 375–398. DOI: 10.1007/978-3-642-60085-2_17.
- [2] I. Niemelä, "Logic programming with stable model semantics as a constraint programming paradigm," Annals of Mathematics and Artificial Intelligence, vol. 25, no. 3,4, pp. 241–273, 1999. DOI: 10.1023/A:1018930122475.
- [3] G. Brewka, T. Eiter, and M. Truszczynski, "Answer set programming at a glance," *Commun. ACM*, vol. 54, no. 12, pp. 92–103, 2011. DOI: 10.1145/2043174.2043195. [Online]. Available: https://doi.org/10.1145/2043174.2043195.
- [4] M. Gelfond and V. Lifschitz, "Logic programs with classical negation," in Logic Programming: Proc. of the Seventh International Conference, 1990, pp. 579–597.
- [5] M. Bartholomew, J. Lee, and Y. Meng, "First-order semantics of aggregates in answer set programming via modified circumscription," in Logical Formalizations of Commonsense Reasoning, AAAI Spring Symposium, AAAI, 2011. [Online]. Available: http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2472.
- [6] W. Faber, G. Pfeifer, and N. Leone, "Semantics and complexity of recursive aggregates in answer set programming," Artif. Intell., vol. 175, no. 1, pp. 278–298, 2011. DOI: 10.1016/j.artint.2010.04.002. [Online]. Available: http://dx.doi.org/10.1016/j.artint.2010.04.002.

- [7] P. Ferraris, "Logic programs with propositional connectives and aggregates," ACM Trans. Comput. Log., vol. 12, no. 4, p. 25, 2011. DOI: 10.1145/1970398.1970401. [Online]. Available: http://doi.acm.org/10.1145/1970398.1970401.
- [8] M. Gelfond and Y. Zhang, "Vicious circle principle and logic programs with aggregates," *Theory and Practice of Logic Programming*, vol. 14, no. 4-5, pp. 587–601, 2014. DOI: 10.1017/S1471068414000222. [Online]. Available: http://dx.doi.org/10.1017/S1471068414000222.
- [9] L. Liu, E. Pontelli, T. C. Son, and M. Truszczynski, "Logic programs with abstract constraint atoms: The role of computations," *Artif. Intell.*, vol. 174, no. 3-4, pp. 295–315, 2010. DOI: 10.1016/j.artint.2009.11.016. [Online]. Available: http://dx.doi.org/10.1016/j.artint.2009.11.016.
- [10] M. Gebser, B. Kaufmann, and T. Schaub, "Conflict-driven answer set solving: From theory to practice," Artif. Intell., vol. 187, pp. 52–89, 2012. DOI: 10.1016/j.artint.2012.04.001. [Online]. Available: http://dx.doi.org/10.1016/j.artint.2012.04.001.
- [11] J. Marques-Silva, I. Lynce, and S. Malik, "Conflict-driven clause learning SAT solvers," in *Handbook of Satisfiability*, ser. FAIA, vol. 336, IOS Press, 2021, pp. 133–182.
- [12] D. Carmine, "Design and implementation of modern cdcl asp solvers," 2014.
- [13] F. Calimeri, W. Faber, M. Gebser, et al., "Asp-core-2 input language format," Theory Pract. Log. Program., vol. 20, no. 2, pp. 294–309, 2020. DOI: 10.1017/S1471068419000450. [Online]. Available: https://doi.org/10.1017/S1471068419000450.
- [14] M. Davis and H. Putnam, "A computing procedure for quantification theory," *Journal of the ACM (JACM)*, vol. 7, no. 3, pp. 201–215, 1960.

- [15] J. Robinson, "A machine-oriented logic based on the resolution principle," *Journal of the ACM (JACM)*, vol. 12, no. 1, pp. 23–41, 1965. DOI: 10.1145/321250.321253.
- [16] J. Marques-Silva, I. Lynce, and S. Malik, "Conflict-driven clause learning SAT solvers," in *Handbook of Satisfiability*, ser. Frontiers in Artificial Intelligence and Applications, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., vol. 185, IOS Press, 2009, pp. 131–153. DOI: 10.3233/978-1-58603-929-5-131. [Online]. Available: https://doi.org/10.3233/978-1-58603-929-5-131.
- [17] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, "On the implementation of weight constraint rules in conflict-driven ASP solvers," in ICLP, ser. LNCS, vol. 5649, Springer, 2009, pp. 250–264.
- [18] W. Faber, N. Leone, M. Maratea, and F. Ricca, "Look-back techniques for ASP programs with aggregates," Fundam. Informaticae, vol. 107, no. 4, pp. 379–413, 2011.