Lab 07 - BSDS

Jhony A. Mejia Universidad de Los Andes Biomedical Engineering Department

ja.mejia12@uniandes.edu.co

Abstract

Clustering can be used for segmentation and contour detection. However, clustering performs better in the first task than in the second one. The most common clustering methods are kmeans, gmm, hierarchical segmentation and watershed. Kmeans in general performs better when one doesn't know what to do. Anyway, the clustering method result is highly affected by the feature representation of the image. In this case, the best feature representation was obtained with RGB (color) and X and Y (spatial). Also it is important to recall that downsampling an image can be useful for making faster methods without diminishing the method's performance (AP or Jaccard). Finally, post-segmentation processes can be very useful for improving a method's performance.

1. Introduction

There are different methods for clustering data. One of the most used methods is k-means. K-means is a process of optimization of groups. The idea is to make that the data belonging to a cluster is more similar with data within the cluster than outside it. The most commonly distance used in k-means is the euclidean distance. The clusters are 'hard assignations' (which means, each cluster has a label). In general, k-means is the easiest clustering method. Additionally, k-means performs in general better than any other clustering algorithm.

Clustering can be used for producing segmentations. The features that are presented to the methods have a wide variety. One of the most common features are color (and its different color spaces representation) and space information (distance between points). For obtaining an optimal segmentation one must find the best combination of features, method and its hyper-parameters.

BSDS500 is one of the most important databases for studying segmentation/border detection problems. It contains 500 images (200 for train, 200 for test and 100 for validation). Each image has multiple annotations made by

humans. The goal is to produce an algorithm that resembles human's performance in both border detection and segmentation.

2. Materials and Methods

In previous works [1] it was showed that the best methods for producing segmentations were obtained with k-means. The best result was obtained with k-means and HSV color space, and the second best result was obtained with k-means and RGB+XY.

The 'best method' of the previous work was defined taking into account the relationship between time and Jaccard's index. Anyway, three methods were tested in a minidatabase (bench-fast images, containing 5 images) for reproducing and reconfirming the two best methods. The methods compared in this data base were k-means in HSV, k-means in RGB+XY, and gmm in Lab. For each method, qualitative and time performance was recorded. The clusters for this process were 5, 10, 15 and 20.

After that, it was confirmed that the best two methods were the ones found in the previous work (HSV-kmeans and RGB+XY-kmeans). It is important to say that none rescaling was performed in any of the feature spaces. Additionally, the methods were ran with the default parameters (excepting gmm, where 'Regularization Value' was settled to 0.1).

20 segmentations were done per images. The k-clusters started in 5, and augmented by 5 until 100 clusters. The two default (raw) best methods were tested in the test subset of BSDS500 and the results obtained were compared with Pablo Arbelaez' method [2].

More hyper-parameters were added to the model in order to improve its performance. Two resolution reduction methods were used (Gaussian downsampling (G) and cubic interpolation (I)). Two levels of reduction were considered (half (1) or quarter (2)). These two hyper-parameters were related to the image itself. Two additional hyper-parameters were defined for the k-means algorithm. Those were the maximum of iterations (500 or 1000) and centroids initializing ('plus' or 'cluster'). These hyper-parameters were

tested in the BSDS500's validation subset (100 images).

The two best methods after considering these hyper-parameters were tested in the test subset (200 images). These two methods were also compared with Pablo Arbelaez' method [2].

The metrics analyzed for all the methods tested were the Precision-Recall curves, AP, Jaccard Index and relationship between OIS and ODS.

3. Results

As stated before, gmm in Lab, k-means in HSV and k-means in RGB+XY were performed in a mini-database of 5 images for obtaining an approximation of the method's performance.

Times for sub-database (5 images). k = 5,10,15 and 20:

HSV-kmeans: 170.619899 seconds. RGB+XY-kmeans: 221.727105 seconds.

Lab-gmm: 2158.867954 seconds.

Assuming that each image takes the same time, one has the following times per image:

HSV-kmeans: 34.1 seconds.

RGB+XY-kmeans: 44.3 seconds.

Lab-gmm: 431.8 seconds. More than 7 minutes.

Taking into account the time factor, the best method is HSV-kmeans, followed by RGB+XY-kmeans, and at last Lab-gmm. Qualitative results can be seen in Figures 1 - 6.

As one can see in Fig. 1, HSV - kmeans makes a decent perceptual segmentation. It's most notable mistake is the shadow of the tables. The mountains could be segmented by another person. In Fig. 2 it is easy to detect that this method has a really high recall (almost all of the segmented borders by the person are present in the predicted borders) but a really low precision (too many false positives).

In Fig. 3 it is easy to recognize the debilities of RGB+XY - kmeans in segmentation. This method tends to divide homogeneous regions because they are far away. However, in 4 one can see that these method has a higher precision than HSV - kmeans, but a lower recall, despite of the creation of false contours (as in the middle of the image).

In Fig. 5 one can see that Lab - gmm method produces acceptable segmentations. Anyway, the presence of false segmentations is easy to recognize. It's more common mistake is seen in bright locations (as the clouds in the sky or the snow that is directly being impacted by the sun). In Fig. 6 the result of contour detection is similar to the one obtained in HSV - kmeans. However, this method produces a bit more of false positives (like in the lower right part) and has almost the same recall than HSV - kmeans.

To sum up, the most noticeable patterns of mistakes of HSV - kmeans and Lab - gmm are the creation of false con-

tours. This false contours can be created mainly by shadows or changes in luminosity.

Taking into account that the qualitative results of HSV - kmeans compared with Lab - gmm, and considering that Lab - gmm takes 7 minutes per image while HSV - kmeans only takes 34 seconds per image; one of the selected as 'best methods' is HSV - kmeans. It is important to say that this was the best method in the previous work [1].

Similarly, RGB+XY will be considered as the 'second best method' because of its qualitative high precision.

The two best methods were tested in BSDS500's test subset. First, the segmentations were created using 'run-Method.m', which contains several functions from precious works [1]. After that, the Precision-Recall curve was created using 'evalData.m' and 'plot_eval'. The Precision-Recall curves obtained can be seen in 7.

It is important to say that ideally, one should have a Precision - Recall curve that is always (or at least most of the time) in (1,1). However, it would be weird that the algorithm produces borders and segmentations that are even better than the ones of humans. Taking that into account, the practical goal is to be near of the human consistency (their F-Value).

The 'runMethod.m' times (creation of segmentations) in the test subset are:

HSV-kmeans: 143387.232986 seconds.

RGB+XY-kmeans: 209093.323658 seconds.

Assuming that each image takes the same time on has that the time of each method per image is:

HSV - kmeans: 717 seconds. Almost 12 minutes per image.

RGB+XY - kmeans: 1045 seconds. Almost 17 minutes per image.

One can see that the time performance of both methods is extremely poor. More than 10 minutes per images is really slow. Also, it is important to say that both methods showed a lot of failures of convergence. RGB+XY showed significant more convergence failures than HSV. It may suggest that the clustering process might not be optimal.

As one can see in 7, the method of HSV - kmeans has a really poor performance. It only has values of high recall and very low variations on precision. It even does a strange U-turn in some part. It's highest precision does not go over 0.4. More detailed information of this method's performance can be seen in Fig. 8. There, one can see that this method's performance as contour detector is really poor (AP of 0.02). However, the method's performance as a segmentation algorithm is acceptable (Jaccard of 0.41). It is important to say that despite of having a poor performance, this method is robust as the OIS and ODS are similar. The best results are obtained in k = 5 (it says th=1, but the 1 corresponds to k=5).

The method of RGB+XY - kmeans (Fig. 7) shows a

more dynamical performance. It has a wider range of precisions and recalls. However, the maximum recall is slower than most of the HSV - kmeans method. Anyway, this method has a better performance as contour detector (AP = 0.20) as it can be seen in Fig. 9. Also, this method performance as a segmentation algorithm is slightly better (Jaccard of 0.46). Similarly to HSV, this method has similar OIS and ODS, which suggests robustness. The best results are obtained in k=20 for contour detection and k=5 for segmentation.

Both methods are hugely overwhelmed by Pablo Arbelaez' method [2]. As one can see in Fig. 7, the curve is almost always above both of the methods proposed. The only part that seems to 'beat' Pablo is that HSV - kmeans has a greater recall (right part of the graph). However, in the balance between precision and recall, Pablo beats us with a huge margin. As one can see in 10, his method performance is remarkable both as a contour detector (AP = 0.68) and as a segmentation algorithm (Jaccard of 0.84). Also, his method is robust as it shows similar OIS and ODS.

It is fair to say that the author of this paper does not know how long does Pablo's method takes. It is believed that this method might take a considerable amount of time as it has to calculate 32 textons per image. However, Pablo's algorithm does not lose time using k-means or any other clustering algorithm. Pablo has a huge advantage, and it is that he is taking into account texture, while we are only taking into account intensity. It is clever to think that texture can be more effective for detecting contours than only changes in intensity. To sum up, the process of representing the image in a specific feature space (texture in Pablo's method and intensity and/or location in our method) is more effective in Pablo's method, but more expensive.

Pablo's method takes into account multiple scale analysis. This can offer him a wider range of borders. We only consider one scale at a time for simplicity. Again, this part might be slower in Pablo's algorithm compared with ours. However, the richness of Pablo's contours is way bigger than ours. Also Pablo uses the local differences of textures using Probability of Boundaries. Anyway, one might think that Pablo's algorithm might have a great recall, but a lot of false positives, as our HSV - kmeans method.

Pablo solves the problem of the false positives by using normalized cuts with its eigenvectors. Again, he doesn't use k-means. Instead he uses the gradient of the eigenvectors. After using this, Pablo reduces and prevents drastically the number of false positives. We don't use any algorithm for reducing or preventing false positives.

Pablo's algorithm is way more refined that ours. He takes multiple steps for optimizing his results. He never uses kmeans, as it takes too long to process. This makes his algorithm way more effective. As Pablo himself says, when you don't know what to do, you use kmeans. He does know what to do for improving results. Meanwhile, our segmentation and contour detection algorithm is based in k-means. However, k-means produces good results, compared with its simplicity.

After being aware that rising the AP and the Jaccard index is really difficult only using k-means, our efforts went on developing a faster method that showed similar quality performance.

That is why we considered new hyper-parameters. Two hyper-parameters were defined for improving the image representation. The first hyper-parameter is associated with the modality of reducing resolution. Two modalities were considered: Gaussian reduction and bicubic interpolation. The second hyper-parameter is related to the level of reduction. Two levels were considered: half or quarter of the original resolution. The idea of reducing the resolution is making faster the process of clustering (segmentation).

One of the main challenges of reducing dimensionality is how to compare it with it's corresponding ground truth. Basically there are two options: lower the annotation's resolution or returning the segmentation's resolution to the original image dimensions. The first option result on segmentations and boundaries can be seen in Fig. 11 and 12. As one can see, the effect on reducing the dimensionality of the segmentation using Gaussian scaling produces new unwanted regions. The effect on the borders is devastating: it destroys almost all borders.

That is why the second option had to be considered. Again, two options for upsampling are considered (gaussian and interpolation). The upsampling of the segmentation can be seen in Fig. 13. Again it is easy to see that new regions are being created when using Gauss, while almost the same image is obtained using Interpolation with its nearest neighbor. Some destruction of borders can be seen in Gaussian upsample, while borders are conserved using interpolation with the nearest neighbor (Fig. 14). That is why interpolation with nearest neighbor was chosen as the method for upsampling and posterior comparison with ground truth.

To sum up, to options were considered to downsample the original image for its posterior segmentation (Gauss or Bicubic Interpolation). For upsampling (for comparing with ground truth), interpolation by nearest neighbor was performed. This process was repeated depending on the reducing level considered (1 or 2).

Two other hyper-parameters were considered for improving the clustering process. These two parameters were the maximum of iterations and the initialization of centroids. Both hyper-parameters' goal is to guarantee that the model will converge.

The new method with 4 hyper-parameters was tested in the val subset. Each method took the following times:

1-HSV-G-Plus-500: 53412.305307 seconds.

1-RGB+XY-G-Plus-500: 57342.409964 seconds.

1-HSV-I-Plus-500: 54652.808688 seconds.

1-RGB+XY-I-Plus-500: 59056.981995 seconds.

1-HSV-G-Cluster-500: 68309.505598 seconds.

1-RGB+XY-G-Cluster-500: 61448.949955 seconds.

1-HSV-I-Cluster-500: 67733.808736 seconds.

1-RGB+XY-I-Cluster-500: 64276.921903 seconds.

2-HSV-G-Plus-1000: 6535.939247 seconds.

2-RGB+XY-G-Plus-1000: 6754.969530 seconds.

2-HSV-I-Plus-1000: 6891.392972 seconds.

2-RGB+XY-I-Plus-1000: 7429.716696 seconds.

2-HSV-G-Cluster-1000: 8707.885277 seconds.

2-RGB+XY-G-Cluster-1000: 9159.351909 seconds.

2-HSV-I-Cluster-1000: 9118.892614 seconds.

2-RGB+XY-I-Cluster-1000: 9008.976381 seconds.

The objective of reducing time was accomplished with the hyper-parameters purposed. It's corresponding Precision-Recall curves can be seen in Figs. 15 and 18. As one can see, the best methods for both levels of downsampling (1 and 2) are RGB+XY with Gaussian downsampling and its corresponding level, max of iterations and any of the clustering method initialization.

The specific results for the best methods can be seen in Figs. 16, 17, 19 and 20. There was no difference on the clustering initialization method, but it is fair to say that the 'cluster' method was slower than the 'plus' method. Little difference was obtained in the results of 1 level of downsampling, compared with the ones of 2 levels (AP=0.15, J=0.45 and AP=0.13, J=0.44 respectively).

Considering time and efficiency, the best two methods for the new hyper-parameters are 2-RGB+XY-G-Plus-1000 and 1-RGB+XY-G-Plus-500. Both methods were ran in the test method but they didn't finish on time.

Test:

2-RGB+XY-G-Plus-1000: 5604.396099 seconds.

One of the biggest limitation of our algorithms is the complexity for defining the optimal parameters. Having to change the resolution, the method for changing dimensions, and k-means hyper-parameter is exhausting. It is even more exhausting when one doesn't see significant differences between methods. However, an optimization of the method's time was accomplished.

Another big limitation is having to estimate manually the number of clusters. It would be much easier to use a method as mean shift that estimates the number of clusters automatically. This would save a lot of time with similar results.

Other limitation is that clustering is useful for segmentation (that is why our methods performed better in Jaccard index than in AP). Clustering might not be the best option for contour detection. Additionally, clustering creates closed sections, while other contour detection algorithms can produce open regions.

Another limitation is that our method produces hard clusters, with only one level of intensity. It would be more

useful to have a family of borders with different probabilities of being border (as Pablo's method). Probably a better usage of gmm can be useful for obtaining decent results with clustering.

Other limitation is the creation of false contours, and the lack of an option for eliminating those contours. One easy solution could be to use normalized cuts, for removing similar boundaries, and thus, improving the method's precision.

RGB+XY remained as the method with best performance. However, it's time of execution is higher than HSV. Anyway, the relation between performance and time makes RGB+XY the best method. At the beginning of the paper HSV was the best method because of its fast implementation. Anyway, it's time advantage was overwhelmed by the RGB+XY performance.

RGB+XY might been way better than HSV because there were larger amount of images. In the previous work [1] there were way less images. One might think that RGB+XY is more robust compared with HSV.

It would be interesting to try optimizing gmm, but its computational cost is way to high. That was the reason why this method wasn't studied.

4. Conclusions

Clustering is a good segmentation algorithm, but it isn't too good as a contour detection algorithm. The fact of having closed areas gives it a better performance in segmentation than in contour detection.

One of the most expensive things is to find the correct k for obtaining better results. Most of the times with a very low k (5) one can have better results than with bigger k's. However, there are some exceptions in which a higher k can show good performance.

The image representation trough different feature spaces is vital for obtaining good results. A rich representation of the image (as textons with probability of boundary) will produce better results. Even, taking into account spatial information can give better results than only considering intensity or color. However, it is important to say that this method has the disadvantage of partitioning homogeneous regions just because they are far away.

Post segmentation/contour detection processes are also vital for obtaining good results. The use of normalized cuts (or its eigenvectors) can be really useful for reducing the number of false positives.

References

- [1] Mejia, J. *Lab 06 Segmentation*. Universidad de Los Andes. 2018.
- [2] Arbelaez, P., Maire, M., Fowlkes, C., Malik, J. Contour Detection and Hierarchical Image Segmentation. Berkeley. 2010.

Figure 1. Comparison of segmentations between the original image, a given segmentation by a person, HSV - kmeans segmentation and Pablo's method (Probability of Boundary - Pb).

Figure 2. Comparison of border detection between the original image, a given segmentation by a person, HSV - kmeans segmentation and Pablo's method (Probability of Boundary - Pb).

5. Images and Tables

Figure 3. Comparison of segmentations between the original image, a given segmentation by a person, RGB+XY - kmeans segmentation and Pablo's method (Probability of Boundary - Pb).

Figure 4. Comparison of border detection between the original image, a given segmentation by a person, RGB+XY - kmeans segmentation and Pablo's method (Probability of Boundary - Pb).

Figure 5. Comparison of segmentations between the original image, a given segmentation by a person, Lab - gmm segmentation and Pablo's method (Probability of Boundary - Pb).

Figure 6. Comparison of border detection between the original image, a given segmentation by a person, Lab - gmm segmentation and Pablo's method (Probability of Boundary - Pb).

Figure 7. Precision-Recall curves for the proposed methods (HSV - kmeans and RGB+XY - kmeans) and Probability of Boundaries (Pablo's method).

Figure 8. Detailed performance results of HSV - kmeans method.

Figure 9. Detailed performance results of RGB+XY - kmeans method.

Figure 10. Detailed performance results of Probabilty of Boundary (Pablo's method).

Figure 11. Gaussian effect on segmentation after upsampling or downsampling.

Figure 12. Gaussian effect on borders after upsampling or downsampling.

Figure 13. Segmentation upsampling using Gaussian or Interpolating method.

Figure 14. Border upsampling using Gaussian or Interpolating method.

Figure 15. Validation Precision-Recall curves for different hyperparameter's values (1 level of downsample).

Figure 16. Validation results for RGB+XY, 500 maximum iterations, 'cluster' clustering, Gaussian downsampling (1 level of downsample).

```
Eval_RXK_plus_G_1
Boundary
ODS: F( 0.84, 0.44 ) = 0.58     [th = 3.74]
OIS: F( 0.85, 0.47 ) = 0.61
Area_PR = 0.15

Region
GT covering: ODS = 0.37 [th = 1.00]. OIS = 0.38. Best = 0.45
Rand Index: ODS = 0.72 [th = 2.00]. OIS = 0.74.
Var. Info:: ODS = 2.66 [th = 1.00]. OIS = 2.63.
```

Figure 17. Validation results for RGB+XY, 1000 maximum iterations, 'plus' clustering, Gaussian downsampling (1 level of downsample).

Figure 18. Validation Precision-Recall curves for different hyperparameter's values (2 levels of downsample).

Figure 19. Validation results for RGB+XY, 500 maximum iterations, 'cluster' clustering, Gaussian downsampling (2 levels of downsample).

Figure 20. Validation results for RGB+XY, 1000 maximum iterations, 'plus' clustering, Gaussian downsampling (2 levels of downsample).