Séries de Fourier Généralités

1 Définitions

1.1 Continuité par morceaux

Définition 1

Soient a, b deux nombres réels avec a < b. Une fonction $f : [a, b] \to \mathbb{C}$ est continue par morceaux s'il existe un nombre fini (éventuellement nul) de points x_0, x_1, \ldots, x_n du segment [a, b] tels que

- $x_0 = a < x_1 < \ldots < x_n = b$ (on dit que (x_0, \ldots, x_n) est une subdivision de [a, b]).
- pour tout $i \in \{0, \dots, n-1\}$, la fonction f est continue sur $[x_i, x_{i+1}]$
- pour tout $i \in \{0, ..., n\}$, f admet une limite finie à gauche ¹ et à droite ² en x_i , notées respectivement $f(x_i^-)$ et $f(x_i^+)$.

Définition 2

Une fonction $f: \mathbb{R} \to \mathbb{C}$, définie sur un intervalle est dite continue par morceaux si sa restriction à tout segment de \mathbb{R} est continue par morceaux.

Proposition 1

Soit $T \in \mathbb{R}_+^*$. Une fonction T-périodique $f : \mathbb{R} \to \mathbb{C}$ est continue par morceaux si, et seulement si, sa restriction à un segment de longueur T est continue par morceaux.

1.2 Polynôme trigonométrique

Définition 3

On appelle polynôme trigonométrique toute fonction $f: \mathbb{R} \to \mathbb{C}$ qui s'écrit pour tout $t \in \mathbb{R}$ sous la forme

$$f(t) = \sum_{n=0}^{N} \left(\lambda_n \cos(nt) + \mu_n \sin(nt) \right)$$

pour un entier naturel N et des coefficients complexes $\lambda_0, \ldots, \lambda_N$ et μ_0, \ldots, μ_N .

Une série trigonométrique S est la donnée, pour chaque $t \in \mathbb{R}$, d'une série numérique S(t) qui s'écrit sous la forme

$$S(t) = \sum \left(\lambda_n \cos(nt) + \mu_n \sin(nt) \right)$$

où $\lambda_0, \ldots, \lambda_N$ et μ_0, \ldots, μ_N sont des coefficients complexes.

1.3 Série de Fourier

Définition 4

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique continue par morceaux. On appelle série de Fourier de f la série trigonométrique F(f), définie pour tout $t \in \mathbb{R}$, par la série numérique

$$F(f)(t) = \frac{a_0(f)}{2} + \sum_{n \ge 1} \left(a_n(f) \cos(nt) + b_n(f) \sin(nt) \right)$$

^{1.} sauf pour i = 0.

^{2.} sauf pour i = n.

Séries de Fourier Généralités

οù

$$\forall n \in \mathbb{N}, \quad a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(nt) dt$$

$$\forall n \in \mathbb{N}, \quad b_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin(nt) dt$$

Remarques

Si f impaire alors, pour tout $n \in \mathbb{N}$, $a_n(f) = 0$.

Si f paire alors, pour tout $n \in \mathbb{N}$, $b_n(f) = 0$.