Introduction to Cryptography Assignment 4 Xian Mardiros Dec. 8, 2022

Question 1

Consider the following variation of the Merkle-Damgard transform:

Let (Gen,h) be a compression function with input messages of length 2n and output of length n. Construct a hash function as follows:

- Gen: Same as in compression function (Gen, h)
- H: on input a key s and a string $x \in \{0,1\}^*$ do the following
 - o append a 1 to x, followed by enough zeroes so that the length of the resulting string is a multiple of n. Parse the resulting string as the sequence of n-bit blocks $z_0, x_1, x_2, ..., x_B$
 - \circ for i=1,2,...,B compute $z_i=h^s(z_{i-1})||x_i||$
 - \circ output z_B as the has value of z

Find a collision in this hash function. That is, find $x \neq x'$ such that $H^s(x) = H^s(x')$

Answer

This hash function is vulnerable because the adversary is able to set z_0 instead of having it set as a randomized IV.

For n, and any message where $|m| \ge n$, a collision can be found when the the second-last output of the hash function, z_{B-1} is used as the input message, concatenated to the last block of the original resulting block sequence, ie. $H^s(z_{B-1}^m||x_B^m) = H^s(m)$.

Example:

For n=3, the adversary picks value $m_1=(000\ 000)$. This is turned into the block sequence $z_0^1\|x_1^1\|x_2^1=(000\ 000\ 100)$. This creates the hash results $z_0^1=000$, $z_1^1=h^s(z_0^1\|x_1^1)$ and $z_2^1=h^s(z_1^1\|x_2^1)=z_B^1$. The adversary picks the second message $m_2=z_1^1$. This is then turned into the block sequence $z_1^1\|100=z_1^1\|x_2^1=z_1^1\|x_2^2$. Note that $x_2^1=x_2^2$. The hash result is $z_1^2=h^s(z_1^1\|x_2^1)=z_B^2$.

Since $z_B^1 = z_B^2$, we have a hash collision.

Question 2

Alice publishes her public key for RSA encryption as follows: modulus n = 133 and (encryption) exponent e = 7

- 1. Bob wants to send alice the message m=3. What ciphertext does bob send to alice?
- 2. Compute the decryption exponent d for alice
- 3. Suppose alice receives the ciphertext c=2 from bob. What is the plaintext?

1: encrypt m=3

$$n = pq = 133, e=7$$

ciphertext is $c = m^e = 3^7 \pmod{133} = 3^5*3^2 \pmod{133} = 243*3^2 \pmod{133} = 110*3^2 \pmod{133} = 330*3 \pmod{133} = 64*3 \pmod{133} = 59$

2: compute decryption exponent

decryption exponent d is the inverse of e.

to compute d, first need phi(n) = (q-1)(q-1). The prime factors of 133 are 7 and 19, and so $\phi(n) = (q-1)(p-1) = 6 \cdot 18 = 108$. It is acceptable to assume that the prime factors are known, since in reality, n would have been calculated from them, and not the other way around. Using extended Euclidean algorithm, find $d = 7^{-1} \pmod{108}$

Euclidian algorithm:

$$108=15.7+3$$
 $7=2.3+1$
 $3=2.1+1$
 $1=1.1+0$

So
$$(-77)(7) = (31)(7) = 1 \pmod{108}$$
. So d = 31

3. Compute plaintext from ciphertext c = 2

$$m = c^d \pmod{n} = 2^{31} \pmod{133} = 79$$

Question 3

in RSA, the modulus value n = pq is public but $\phi(n)$ is private. Show how an adversary could determine p and q if they had $\phi(n)$.

The value of n is public, so

$$(p-1)(q-1) = \phi(n)$$
 and $pq = n$

Find values p and q such that $\phi(n)=(p-1)(q-1)=pq-q-p+1=n-q-p+1$.

Combining this with pq=n, we can obtain the quadratics:

$$\phi(n) = n - \frac{n}{p} - p + 1 \Rightarrow 0 = -p^2 + p(n + 1 - \phi) - n$$
 and $0 = -q^2 + q(n + 1 - \phi) - n$

The two quadratics are the same, and applying the quadratic formula will give two solutions, which are the values of p and q.

For example, for the previous question $\phi(n)=108$, n=133. Applying the quadratic formula to the roots of the polynomial $y=-x^2+x(133+1-108)-133=-x^2+x(26)-133$ gives the solutions x=7,19, which are the primes given in question 2.

Quadratic formula calculations omitted because this isn't high school.

Question 4.

For the ElGamal digital signature scheme, suppose prime p = 6961, generator g = 437, signing exponent s = 6104

What is the value of v?

Assuming that v is equivalent to β in the lecture notes, then $v = g^s \pmod{p} = 437^{6104} \pmod{6961}$

Using the efficient exponentiation algorithm:

The exponent 6104 can be written as (1011111011000)₂

The exponentiation calculation was done on libreoffice calc:

	Z (m	Z (mod	
I ki	6961	.)	
		1	
12	1	437	
11	0	3022	
10	1	1066	
9	1	3754	
8	1	4948	
7	1	2985	
6	1	716	
5	0	4503	
4	1	6217	
3	1	482	
2	0	2611	
1	0	2502	
0	0	2065	

So the final value of *v* is 2065.

What is the signature (S1,S2) for the message m = 5584 when the secret random value for e is e = 4451.

$$Enc_K(x,k) = (y_1, y_2) = (g^k (mod p), x\beta^k (mod p))$$

Using the notation used in this assignment,

$$(S_1, S_2) = (g^e (mod p), m v^e) = (437^{4451} (mod p), 5584 \times 2065^{4451} (mod p))$$

Extending the formulas in libreoffice allows this to be easily calculated. The binary representation of exponent 4451 is 1000101100011.

Calculating S1, which has base 437:

		Z (mod	
I	ki	696	1)
			1
	12	1	437
	11	0	3022
	10	0	6613
	9	0	2767
	8	1	604
	7	0	2844
	6	1	1940
	5	1	3808
	4	0	1101
	3	0	987
	2	0	6590
	1	1	6077
	0	1	3534

Calculating S2 which has base 2065:

I ki		Z (mod 6961)	
		1	
12	1	2065	
11	0	4093	
10	0	4483	
9	0	882	
8	1	2207	
7	0	5110	
6	1	353	
5	1	4220	
4	0	2162	
3	0	3413	
2	0	2816	
1	1	5747	
0	1	4735	
	5584	2362	

And so the signature is (3534, 2362)

Question 5.

Show that there exists a message m such that an adversary can forge a signature (S1,S2) using only public information if it also knows that s=e.

Want to find a message from which the values $S_1 = g^s \pmod{p}$ and $S_2 = m \, v^s \pmod{p}$ can be calculated without directly knowing p. Since we know that s=e, and v is calculated using s, we should use v in our calculations somehow.

Forging S1 is trivial, since $S_1 = g^e \pmod{p} = g^e \pmod{p} = v$ which is part of the public key.

For any message m, forging $S_2 = m v^s \pmod{p}$ is not trivial, however for the message m=0, the equation becomes $S_2 = 0 v^s \pmod{p} = 0$.

Therefore, for m=0, the signature can be forged as $(S_1, S_2) = (v, 0)$.

Question 6.

Show that alice and bob output the same key.

$$w \oplus t = (u \oplus r) \oplus t = (s \oplus t) \oplus r \oplus t = (k \oplus r) \oplus t \oplus r \oplus t = k$$

What messages are public?

The messages s, u and w are public.

Since $s=k\oplus r$, $k=s\oplus r$

Since $w=u\oplus r$, $r=w\oplus u$

Therefore $k = s \oplus w \oplus u$