- 256KB EEPROM ending at FFFFFH, using 64K x 16 bits memories
- 128KB DRAM, using 32K x 8 bits memories

STEP 1

$$EEPROM \# circuits = \frac{256 \, KB}{64 \, K * 16 \, bits} = 2$$

$$DRAM \# circuits = \frac{128 \, KB}{32 \, K * 8 \, bits} = 4$$

STEP 2

EEPROM #
$$\frac{circuits}{block} = \frac{16}{16} = 1$$

EEPROM # $blocks = \frac{2}{1} = 2 \rightarrow B1, B2$

DRAM #
$$\frac{circuits}{block} = \frac{16}{8} = 2$$
DRAM # $blocks = \frac{4}{2} = 2 \rightarrow B3, B4$

STEP 3

BLOCK	BLOCK SIZE	ADDRESS LINES ADDRESS RANGE			
B1	128 KB	17	0x0_0000	0x1_FFFF	
B2	128 KB	17	0x0_0000	0x1_FFFF	
В3	64 KB	16	0x0000	0xFFFF	
B4	64 KB	16	0x0000	0xFFFF	

TYPE	BLOCK	MEMORY MAP			
	В3	0×0_0000			
DRAM	65	0x0_FFFF			
DRAII	B4	0×1_0000			
	Ь4	0x1_FFFF			
		•			
	B1	0xC_0000			
EEPROM	PI	0xD_FFFF			
EEPRON	B2	0×E_0000			
	DZ	0xF_FFFF			

A19	A18	A17	A16	A15	A14		A1	A0	
1	1	0	0	0	0		0	0	D1
1	1	0	1	1	1		1	1	B1
1	1	1	0	0	0		0	0	רם
1	1	1	1	1	1		1	1	B2
0	0	0	0	0	0	• • •	0	0	В3
0	0	0	0	1	1		1	1	63
0	0	0	1	0	0		0	0	DII
0	0	0	1	1	1		1	1	B4

$$\frac{\overline{C_{S1}}}{C_{S2}} = \overline{A_{19} \cdot A_{18} \cdot \overline{A_{17}}}
\underline{C_{S2}} = \overline{A_{19} \cdot A_{18} \cdot A_{17}}
\underline{C_{S3}} = \overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}} \cdot \overline{A_{16}}}
\underline{C_{S4}} = \overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}} \cdot A_{16}}$$

- 256KB EEPROM starting at 40000H, using 64K x 8 bits memories
- 256KB DRAM, using 64K x 1 bit memories

STEP 1

$$EEPROM \# circuits = \frac{256 \ KB}{64 \ K * 8 \ bits} = 4$$

$$DRAM \# circuits = \frac{256 \ KB}{64 \ K * 1 \ bits} = 32$$

STEP 2

EEPROM #
$$\frac{circuits}{block} = \frac{16}{1} = 16$$

EEPROM # $blocks = \frac{32}{16} = 2 \rightarrow B1, B2$

DRAM #
$$\frac{circuits}{block} = \frac{16}{8} = 2$$
DRAM # $blocks = \frac{4}{2} = 2 \rightarrow B3, B4$

STEP 3

BLOCK	BLOCK SIZE	ADDRESS LINES	ADDRESS RANGE			
B1	128 KB	17	0x0_0000	0x1_FFFF		
B2	128 KB	17	0x0_0000	0x1_FFFF		
В3	128 KB	17	0x0_0000	0x1_FFFF		
B4	128 KB	17	0x0_0000	0x1_FFFF		

TYPE	BLOCK	MEMORY MAP			
	В3	0×0_0000			
DRAM	65	0x1_FFFF			
DKAN	В4	0x2_0000			
	D4	0x3_FFFF			
	B1	0×4_0000			
EEPROM	B1	0x5_FFFF			
EEPRON	B2	0×6_0000			
	DZ	0x7_FFFF			

A19	A18	A17	A16	A15	A14		A1	A0	
0	0	0	0	0	0		0	0	В3
0	0	0	1	1	1		1	1	63
0	0	1	0	0	0		0	0	В4
0	0	1	1	1	1		1	1	D4
0	1	0	0	0	0	• • •	0	0	B1
0	1	0	1	1	1		1	1	DI
0	1	1	0	0	0		0	0	רם
0	1	1	1	1	1		1	1	B2

STEP 6

$$\frac{\overline{C_{S1}}}{\overline{C_{S2}}} = \frac{\overline{A_{19} \cdot A_{18} \cdot \overline{A_{17}}}}{\overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}}}} \\
\frac{\overline{C_{S3}}}{\overline{C_{S4}}} = \frac{\overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}}}}{\overline{A_{19} \cdot \overline{A_{18}} \cdot A_{17}}}$$

- 128KB EEPROM, using 64K x 8 bits memories
- 512KB DRAM, using 64K x 8 bits memories

STEP 1

$$EEPROM # circuits = \frac{128 KB}{64 K * 8 bits} = 2$$

$$DRAM # circuits = \frac{512 KB}{64 K * 8 bits} = 8$$

STEP 2

$$EEPROM # \frac{circuits}{block} = \frac{16}{8} = 2$$
$$EEPROM # blocks = \frac{2}{2} = 1 \rightarrow B1$$

$$DRAM # \frac{circuits}{block} = \frac{16}{8} = 2$$

$$DRAM # blocks = \frac{8}{2} = 4 \rightarrow B2, B3, B4, B5$$

STEP 3

BLOCK	BLOCK SIZE	ADDRESS LINES	ADDRESS RANGE			
B1	128 KB	17	0x0_0000	0x1_FFFF		
B2	128 KB	17	0x0_0000	0x1_FFFF		
В3	128 KB	17	0x0_0000	0x1_FFFF		
В3	128 KB	17	0x0_0000	0x1_FFFF		
В3	128 KB	17	0x0_0000	0x1_FFFF		

<u> </u>					
TYPE	BLOCK	MEMORY MAP			
EEPROM	B1	0×0_0000			
EEPROM	PT	0x1_FFFF			
	B2	0x2_0000			
	D2	0x3_FFFF			
	В3	0×4_0000			
DRAM	65	0x5_FFFF			
DRAM	B4	0X6_0000			
	D4	0x7_FFFF			
	B5	0x8_0000			
	65	0x9_FFFF			

A19	A18	A17	A16	A15	A14		A1	A0	
0	0	0	0	0	0		0	0	B1
0	0	0	1	1	1		1	1	DΙ
0	0	1	0	0	0		0	0	B2
0	0	1	1	1	1		1	1	DZ
0	1	0	0	0	0		0	0	DO
0	1	0	1	1	1	• • •	1	1	В3
0	1	1	0	0	0		0	0	DII
0	1	1	1	1	1		1	1	В4
1	0	0	0	0	0		0	0	DE
1	0	0	1	1	1		1	1	B5

STEP 6

$$\begin{aligned} & \overline{C_{S1}} = \overline{\overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}}}} \\ & \overline{C_{S2}} = \overline{\overline{A_{19} \cdot \overline{A_{18}} \cdot A_{17}}} \\ & \overline{C_{S3}} = \overline{\overline{A_{19} \cdot A_{18} \cdot \overline{A_{17}}}} \\ & \overline{C_{S4}} = \overline{\overline{A_{19} \cdot A_{18} \cdot A_{17}}} \\ & \overline{C_{S5}} = \overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}}} \end{aligned}$$

- 64KB EEPROM ending at FFFFFH, using 16K x 16 bits memories
- 64KB DRAM, starting at 00000h, using 32K x 8 bits memories

STEP 1

$$EEPROM # circuits = \frac{64 \text{ KB}}{16 \text{ K} * 16 \text{ bits}} = 2$$

$$DRAM # circuits = \frac{64 \text{ KB}}{32 \text{ K} * 8 \text{ bits}} = 2$$

STEP 2

EEPROM #
$$\frac{circuits}{block} = \frac{16}{16} = 1$$

EEPROM # $blocks = \frac{2}{1} = 2 \rightarrow B1, B2$

DRAM #
$$\frac{circuits}{block} = \frac{16}{8} = 2$$
DRAM # $blocks = \frac{2}{2} = 1 \rightarrow B3$

STEP 3

BLOCK	BLOCK SIZE	ADDRESS LINES	ADDRESS RANGE		
B1	32 KB	15	0x0000	0x7FFF	
B2	32 KB	15	0x0000	0x7FFF	
В3	64 KB	16	0x0000	0xFFFF	

TYPE	BLOCK	MEMORY MAP						
DRAM	В3	0×0_0000						
DRAIT	כם	0x0_FFFF						
	B1	0xF_0000						
EEPROM	DI	0xF_7FFF						
EEPRUN	B2	0xF_8000						
	DZ	0xF_FFFF						

A19	A18	A17	A16	A15	A14	A13	A12		A1	A0	
1	1	1	1	0	0	0	0		0	0	B1
1	1	1	1	0	1	1	1		1	1	DI
1	1	1	1	1	0	0	0		0	0	בם
1	1	1	1	1	1	1	1	•••	1	1	B2
0	0	0	0	0	0	0	0		0	0	D2
0	0	0	0	1	1	1	1		1	1	В3

$$\frac{\overline{C_{S1}}}{\overline{C_{S2}}} = \overline{\frac{A_{19} \cdot A_{18} \cdot A_{17} \cdot A_{16} \cdot \overline{A_{15}}}{A_{19} \cdot A_{18} \cdot A_{17} \cdot A_{16}} \cdot A_{15}}$$

$$\overline{C_{S3}} = \overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}} \cdot \overline{A_{16}}}$$

- 256KB EEPROM ending at 7ffffH, using 32K x 16 bits memories
- 256KB DRAM, using 64K x 8 bits memories

STEP 1

$$EEPROM \# circuits = \frac{256 \, KB}{32 \, K * 16 \, bits} = 4$$

$$DRAM \# circuits = \frac{256 \, KB}{64 \, K * 8 \, bits} = 4$$

STEP 2

EEPROM #
$$\frac{circuits}{block} = \frac{16}{16} = 1$$

EEPROM # $blocks = \frac{4}{1} = 4 \rightarrow B1, B2, B3, B4$

DRAM #
$$\frac{circuits}{block} = \frac{16}{8} = 2$$
DRAM # $blocks = \frac{4}{2} = 2 \rightarrow B5, B6$

STEP 3

BLOCK	BLOCK SIZE	ADDRESS LINES	ADDRESS RANGE		
B1	64 KB	16	0x0000	0xFFFF	
B2	64 KB	16	0x0000	0xFFFF	
В3	64 KB	16	0x0000	0xFFFF	
В4	64 KB	16	0x0000	0xFFFF	
B5	128 KB	17	0x0_0000	0x1_FFFF	
В6	128 KB	17	0x0_0000	0x1_FFFF	

TYPE	BLOCK	MEMORY MAP			
	B5	0×0_0000			
DRAM	ВЭ	0x1_FFFF			
DKAN	В6	0×2_0000			
	ВО	0x3_FFFF			
	B1	0x4_0000			
	BI	0x4_FFFF			
	B2	0×5_0000			
EEPROM	DZ	0x5_FFFF			
EEPRON	В3	0×6_0000			
	65	0x6_FFFF			
	В4	0×7_0000			
	04	0x7_FFFF			

A19	A18	A17	A16	A15	A14		A1	A0	
0	0	0	0	0	0		0	0	B5
0	0	0	1	1	1		1	1	БЭ
0	0	1	0	0	0		0	0	В6
0	0	1	1	1	1		1	1	БО
0	1	0	0	0	0		0	0	D1
0	1	0	0	1	1		1	1	B1
0	1	0	1	0	0	• • •	0	0	20
0	1	0	1	1	1		1	1	B2
0	1	1	0	0	0		0	0	D2
0	1	1	0	1	1		1	1	В3
0	1	1	1	0	0		0	0	DII
0	1	1	1	1	1		1	1	B4

$$\begin{split} & \overline{C_{S1}} = \overline{\overline{A_{19}} \cdot A_{18} \cdot \overline{A_{17}} \cdot \overline{A_{16}}} \\ & \overline{C_{S2}} = \overline{\overline{A_{19}} \cdot A_{18} \cdot \overline{A_{17}} \cdot A_{16}} \\ & \overline{C_{S3}} = \overline{\overline{A_{19}} \cdot A_{18} \cdot A_{17} \cdot \overline{A_{16}}} \\ & \overline{C_{S4}} = \overline{\overline{A_{19}} \cdot A_{18} \cdot A_{17}} \cdot A_{16} \\ & \overline{C_{S5}} = \overline{\overline{A_{19}} \cdot \overline{A_{18}} \cdot \overline{A_{17}}} \\ & \overline{C_{S6}} = \overline{\overline{A_{19}} \cdot \overline{A_{18}} \cdot A_{17}} \end{split}$$

- 192KB EEPROM, using 32K x 16 bits memories
- 128KB DRAM, using 32K x 8 bits memories

STEP 1

$$EEPROM # circuits = \frac{192 KB}{32 K * 16 bits} = 3$$

$$DRAM # circuits = \frac{192 KB}{32 K * 16 bits} = 4$$

STEP 2

EEPROM #
$$\frac{circuits}{block} = \frac{16}{16} = 1$$

EEPROM # $blocks = \frac{3}{1} = 3 \rightarrow B1, B2, B3$

DRAM #
$$\frac{circuits}{block} = \frac{16}{8} = 2$$
DRAM # $blocks = \frac{4}{2} = 2 \rightarrow B4, B5$

STEP 3

BLOCK	BLOCK SIZE	ADDRESS LINES	ADDRESS RANGE		
B1	64 KB	16	0x0000	0xFFFF	
B2	64 KB	16	0×0000	0xFFFF	
В3	64 kb	16	0x0000	0xFFFF	
B4	64 KB	16	0x0000	0xFFFF	
B5	64 KB	16	0x0000	0xFFFF	

TYPE	BLOCK	MEMORY MAP	
	B1	0×0_0000	
EEPROM	DI.	0x0_FFFF	
EEPROM	B2	0×1_0000	
	D2	0x1_FFFF	
	B3	0×2_0000	
	В3	0X2_FFFF	
DRAM	B4	0x3_0000	
DRAM	D4	0x3_FFFF	
	B3	0×4_0000	
	65	0X4_FFFF	

A19	A18	A17	A16	A15	A14		A1	A0	
0	0	0	0	0	0		0	0	D1
0	0	0	0	1	1		1	1	B1
0	0	0	1	0	0		0	0	מם
0	0	0	1	1	1		1	1	B2
0	0	1	0	0	0		0	0	D2
0	0	1	0	1	1	•••	1	1	В3
0	0	1	1	0	0		0	0	DII
0	0	1	1	1	1		1	1	B4
0	1	0	0	0	0		0	0	DE
0	1	0	0	1	1		1	1	B5

STEP 6

$$\frac{C_{S1}}{C_{S2}} = \frac{\overline{A_{19} \cdot \overline{A_{18} \cdot \overline{A_{17}} \cdot \overline{A_{16}}}}}{\overline{A_{19} \cdot \overline{A_{18} \cdot \overline{A_{17}} \cdot \overline{A_{16}}}}}$$

$$\frac{C_{S3}}{C_{S3}} = \frac{\overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}} \cdot \overline{A_{16}}}}{\overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}} \cdot \overline{A_{16}}}}$$

$$\frac{C_{S4}}{C_{S5}} = \overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}} \cdot \overline{A_{16}}}$$

- 96KB EEPROM ending at FFFFFH, using 16K x 16 bits memories
- 128KB DRAM, using 64K x 2 bits memories

STEP 1

$$EEPROM # circuits = \frac{96 KB}{16 K * 16 bits} = 3$$

$$DRAM # circuits = \frac{128 KB}{64 K * 2 bits} = 8$$

STEP 2

EEPROM #
$$\frac{circuits}{block} = \frac{16}{16} = 1$$

EEPROM # $blocks = \frac{3}{1} = 3 \rightarrow B1, B2, B3$

DRAM #
$$\frac{circuits}{block} = \frac{16}{2} = 8$$
DRAM # $blocks = \frac{8}{8} = 1 \rightarrow B4$

STEP 3

BLOCK	BLOCK SIZE	ADDRESS LINES	ADDRES	S RANGE
B1	32 KB	15	0x0000	0x7FFF
B2	32 KB	15	0x0000	0x7FFF
В3	32 KB	15	0x0000	0x7FFF
B4	128 KB	17	0x0_0000	0x1_FFFF

TYPE	BLOCK	MEMORY MAP		
DRAM	B4	0×0_0000		
	D4	0x1_FFFF		
	• •	•		
	B1	0xE_8000		
	D1	0xE_FFFF		
EEPROM	B2	0×F_0000		
EEPRON	D2	0xF_7FFF		
	B3	0xF_8000		
	60	0xF_FFFF		

A19	A18	A17	A16	A15	A14	A13	A12		A1	A0	
0	0	0	0	0	0	0	0		0	0	B4
0	0	0	1	1	1	1	1		1	1	D4
1	1	1	0	1	0	0	0		0	0	D1
1	1	1	0	1	1	1	1		1	1	B1
1	1	1	1	0	0	0	0	•••	0	0	מם
1	1	1	1	0	1	1	1		1	1	B2
1	1	1	1	1	0	0	0		0	0	DO
1	1	1	1	1	1	1	1		1	1	В3

STEP 6

$$\frac{C_{S1}}{C_{S2}} = \overline{A_{19} \cdot A_{18} \cdot A_{17} \cdot \overline{A_{16}} \cdot A_{15}}
\underline{C_{S2}} = \overline{A_{19} \cdot A_{18} \cdot A_{17} \cdot A_{16} \cdot \overline{A_{15}}}
\underline{C_{S3}} = \overline{A_{19} \cdot A_{18} \cdot A_{17}} \cdot A_{16} \cdot A_{15}
\underline{C_{S4}} = \overline{A_{19} \cdot \overline{A_{18}} \cdot \overline{A_{17}}} \cdot A_{16} \cdot A_{15}$$

