Combating Exacerbated Heterogeneity for Robust Models in Federated Learning

Jianing Zhu¹, Jiangchao Yao^{2, 3}, Tongliang Liu⁴, Quanming Yao⁵, Jianliang Xu¹, Bo Han¹

¹Hong Kong Baptist University ²Shanghai Jiao Tong University ³Shanghai Al Laboratory

⁴Sydney Al Centre, The University of Sydney ⁵Tsinghua University

Outline

- Background
- Intensified Heterogeneity
- Slacked Federated Adversarial Training (SFAT)
- Summary

Federated Adversarial Training

Adversarial Vulnerability in Device-edge

- a. Local Adversarial Training
- **b.** Federated Model Aggregation

"panda"
57.7% confidence

+.007 ×

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

Previous Work

Towards the algorithmic challenge of federated adversarial training

Unexpected Robust Deterioration

AT vs. FAT

(a) Centralized AT vs. FAT

Intensified Heterogeneity

Adversarial Training with FL

the inner-maximization for pursuing adversarial robustness would exacerbate the data heterogeneity among local clients in federated learning.

Intensified Heterogeneity

Heterogeneity in FL

$$\min_{f_{\theta} \in \mathcal{F}} \frac{1}{N} \sum_{n=1}^{N} \left(\max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n), y_n) \right)$$

Intensified Heterogeneity

α-Slack Mechanism

$$\mathcal{L}_{AT} = \frac{1}{N} \sum_{n=1}^{N} \max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n), y_n)$$

$$\mathcal{L}_{AT} = \frac{1}{N} \sum_{n=1}^{N} \max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n), y_n) = \sum_{k=1}^{K} \frac{N_k}{N} \underbrace{\left(\frac{1}{N_k} \sum_{n=1}^{N_k} \max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n^k), y_n^k)\right)}_{\mathcal{L}_k}$$

$$\geq (1 + \alpha) \sum_{k=1}^{\hat{K}} \frac{N_{\phi(k)}}{N} \mathcal{L}_{\phi(k)} + (1 - \alpha) \sum_{k=\hat{K}+1}^{K} \frac{N_{\phi(k)}}{N} \mathcal{L}_{\phi(k)}$$

$$\doteq \mathcal{L}^{\alpha}(\hat{K}), \qquad \text{s.t. } \alpha \in [0, 1), \ \hat{K} \leq \frac{K}{2},$$

SFAT

α-Slack Mechanism

$$\mathcal{L}_{AT} = \frac{1}{N} \sum_{n=1}^{N} \max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n), y_n) = \sum_{k=1}^{K} \frac{N_k}{N} \underbrace{\left(\frac{1}{N_k} \sum_{n=1}^{N_k} \max_{\tilde{x}_n \in \mathcal{B}_{\epsilon}[x_n]} \ell(f_{\theta}(\tilde{x}_n^k), y_n^k)\right)}_{\mathcal{L}_k}$$

$$\geq (1 + \alpha) \sum_{k=1}^{\hat{K}} \frac{N_{\phi(k)}}{N} \mathcal{L}_{\phi(k)} + (1 - \alpha) \sum_{k=\hat{K}+1}^{K} \frac{N_{\phi(k)}}{N} \mathcal{L}_{\phi(k)}$$

$$\doteq \mathcal{L}^{\alpha}(\hat{K}), \quad \text{s.t. } \alpha \in [0, 1), \ \hat{K} \leq \frac{K}{2},$$

Theorem 4.1. $\mathcal{L}^{\alpha}(\widehat{K})$ is monotonically decreasing w.r.t. both α and \widehat{K} , i.e., $\mathcal{L}^{\alpha_1}(\widehat{K}) < \mathcal{L}^{\alpha_2}(\widehat{K})$ if $\alpha_1 > \alpha_2$ and $\mathcal{L}^{\alpha}(\widehat{K}_1) < \mathcal{L}^{\alpha}(\widehat{K}_2)$ if $\widehat{K}_1 > \widehat{K}_2$. Specifically, $\mathcal{L}^{\alpha}(\widehat{K})$ recovers \mathcal{L} of adversarial training when α achieves 0, and $\mathcal{L}^{\alpha}(\widehat{K})$ relaxes \mathcal{L} to a lower bound objective by increasing \widehat{K} and α .

Slacked Federated Adversarial Training

SFAT

$$\min \mathcal{L}_{\text{SFAT}} = \min_{f_{\theta} \in \mathcal{F}} \frac{1}{\sum_{k}^{K} N_{k}} \sum_{k=1}^{K} P_{k} N_{k} \cdot \underbrace{\left(\frac{1}{N_{k}} \sum_{n=1}^{N_{k}} \max_{\tilde{x}_{n}^{k} \in \mathcal{B}_{\epsilon}[x_{n}^{k}]} \ell(f_{\theta}(\tilde{x}_{n}^{k}), y_{n}^{k})\right)}_{\mathcal{L}_{k}}$$

SFAT

Empirical Properties

Experiment

a. Ablation Study

b. Performance on different views

Table 1: Test accuracy on CIFAR-10 (Non-IID) partition with different client numbers.

Client Number	Methods	Natural	PGD-20	$ $ CW $_{\infty}$
10	FAT	56.62%	31.24%	29.82%
10	SFAT	56.67%	33.31%	31.58%
20	FAT	60.55%	32.67%	31.07%
	SFAT	62.24%	35.66%	33.21%
25	FAT	58.97%	32.98%	31.14%
	SFAT	62.73%	35.75%	33.16%
50	FAT	56.74%	32.91%	30.50%
	SFAT	57.21%	34.35%	31.75%

Table 2: Test accuracy on *CIFAR-10* (Non-IID) with different local adversarial training methods.

Methods		Natural	PGD-20	0 CW _∞		
AT	FAT	57.45%	32.58%	30.52%		
	SFAT	62.34%	35.59%	33.06%		
TRADES	FAT	64.00%	31.64%	28.95%		
	SFAT	65.26%	35.10%	31.80%		
MART	FAT	56.29%	36.27%	32.41%		
	SFAT	58.41%	38.90%	34.67%		

Experiment

Table 3: Performance on Non-IID settings with different federated optimization methods (Mean±Std).

Setting		Non-IID							
CIFAR-10		Natural FGSM		PGD-20	$ $ CW $_{\infty}$	AA			
FedAvg	FAT	58.13±0.68%	40.06±0.62%	32.56±0.01%	30.88±0.37%	29.17±0.03%			
	SFAT	63.36±0.07%	44.82±0.32%	37.14±0.03%	33.39±0.61%	31.66±0.70%			
FedProx	FAT	59.95±0.45%	41.44±0.15%	33.83±0.01%	31.65±0.36%	30.11±0.09%			
	SFAT	62.04±0.47%	44.21±0.08%	36.64±0.11%	32.62±0.20%	31.83±0.15%			
Scaffold	FAT SFAT	61.44±1.37% 63.16±0.96%			32.56±0.02% 34.82±0.04%	31.03±0.08% 33.32±0.01%			
CIFAR	1-100	Natural	FGSM	PGD-20	$ $ CW_{∞}	AA			
FedAvg	FAT	34.63±0.56%	19.92±0.28%	15.40±0.20%	13.23±0.03%	12.23±0.01%			
	SFAT	35.65±0.54%	20.23±0.44%	16.24±0.16%	13.53±0.02%	12.45±0.03%			
FedProx	FAT SFAT	31.93±0.43% 34.87±0.24%	19.06±0.17% 20.54±0.08%	15.30±0.08% 16.09±0.10%	12.93±0.02% 13.35±0.12%				
Scaffold FAT SFAT		39.98±0.02%	24.30±0.04%	19.34±0.07%	16.49±0.12%	15.29±0.08%			
		44.13±0.05%	25.32±0.94%	20.22±0.07%	16.96±0.17%	15.80±0.10%			
SVHN		Natural	FGSM	PGD-20	$ $ CW_{∞}	AA			
FedAvg	FAT	91.52±0.28%	88.13±0.18%	68.98±0.11%	68.04±0.15%	66.59±0.04%			
	SFAT	91.26±0.01%	88.27±0.02%	72.04±0.32%	69.96±0.16%	68.89±0.27%			
FedProx	FAT	91.00±0.08%	87.65±0.15%	68.48±0.04%	67.16±0.02%	65.76±0.18%			
	SFAT	91.19 ± 0.06 %	88.15±0.01%	71.84±0.30%	69.88±0.35%	68.84±0.37%			
Scaffold	FAT	90.82±0.87%	87.89±0.66%	69.51±0.84%	68.12±0.88%	67.19±0.54%			
	SFAT	90.93±0.76%	88.27±0.45%	71.77±0.38%	69.49±0.67%	68.37±0.48%			

In the performance comparison, we demonstrate the effectiveness of SFAT in Three datasets.

Experiment

Table 21: Performance on three benchmark datasets under different federated optimization methods (Non-IID & IID).

Setti	ng	Non-IID				IID					
CIFAI	R-10	Natural	FGSM	PGD-20	CW_{∞}	AA	Natural	FGSM	PGD-20	CW_{∞}	AA
Centralized AT		-	-	-	-	-	66.47%	47.68%	38.18%	37.04%	34.48%
FedAvg	FAT SFAT	57.45% 63.44 %	39.44% 45.13%	32.58% 37.17%	30.52% 33.99%	29.20% 32.36%	69.35 % 67.43%	48.45% 50.33%	37.43% 42.78%	35.72% 37.91%	33.96% 36.20%
FedProx	FAT	60.44%	41.59%	33.84%	31.29%	30.02%	66.91%	46.70%	37.14%	34.54%	32.68%
	SFAT	62.51%	44.29 %	36.75 %	33.82%	31,98%	68.31%	48.40%	42.41 %	37.25%	35.97%
Scaffold	FAT	62.81%	43.61%	34.13%	32.53%	30.95%	68.27%	49.25%	39.33%	37.31%	35.30%
	SFAT	64.12%	46.05%	37.35%	34.78 %	33.32%	71.36%	50.42%	43.83 %	39.12%	35.47%
CIFAR	-100	Natural	FGSM	PGD-20	CW_{∞}	AA	Natural	FGSM	PGD-20	CW_{∞}	AA
Centraliz	ed AT	-	-	-	-	-	35.81%	23.09%	18.64%	16.48%	15.42%
FedAvg	FAT	35.19%	20.20%	15.60%	13.26%	12.22%	32.65%	20.44%	16.47%	14.10%	12.99%
	SFAT	36.18%	20.70%	16.40%	13.55%	12.42%	38.36%	21.86%	17.10%	14.36%	13.42%
FedProx	FAT	32.36%	19.22%	15.37%	12.91%	12.05%	34.78%	20.71%	16.37%	14.28%	13.09%
	SFAT	35.11%	20.62%	16.19%	13.47%	12.63%	37.58%	21.74%	17.03%	14.46%	13.50%
Scaffold	FAT	39.96%	24.26%	19.41%	16.60%	15.37%	43.80%	26.25%	20.76%	18.39%	17.20%
	SFAT	44.08%	24.38%	20.29%	16.79%	15.90%	44.36%	28.65%	23.14%	20.11%	18.39%
SVE	SVHN		FGSM	PGD-20	CW_{∞}	AA	Natural	FGSM	PGD-20	CW _∞	AA
Centralia	zed AT	-	-	-	-	-	92.39%	89.75%	72.73%	72.31%	70.93%
FedAvg	FAT	91.24%	87.95%	68.87%	67.89%	66.54%	93.52%	90.68%	72.24%	71.22%	70.08%
	SFAT	91.25%	88.28%	71.72%	69.79 %	68.62%	92.75%	90.06%	74.37 %	72.34%	71.27%
FedProx	FAT	90.92%	87.50%	68.44%	67.18%	65.94%	93.54%	90.66%	72.53%	71.42%	70.21%
	SFAT	91.25%	88.15%	71.54%	69.53%	68.47%	93.59%	90.80%	74.66 %	72.67%	71.48%
Scaffold	FAT	89.95%	87.23%	68.66%	67.23%	66.65%	93.80%	91.00%	73.26%	72.05%	70.80%
	SFAT	90.20%	87.81%	71.39%	68.81%	67.88%	93.92%	91.28%	75.96 %	74.05 %	72.88%

We find that our method could improve the original FAT on not only Non-IID but also IID setting in FL.

Summary

- In this work, We study the critical robustness deterioration in FAT, and discover that the reason behind this phenomenon may attribute to the intensified data heterogeneity induced by the adversarial generation in local clients.
- We derive an α -slack mechanism for adversarial training to relax the innermaximization to a lower bound, which could asymptotically approach the original goal towards adversarial robustness and alleviate the intensified heterogeneity in federated learning.

Thank You!

