### Localization: Part II

Chapter 9

### Last Week

 Bayes' rule provides a formal framework to use information about known features in a map

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$





 The problem can be computationally simplified using a "Particle Filter"







### Lab

- Calculate a position estimate (X,Y) from two range measurements
- Calculate the variance of the range measurement
- Calculate the variance of X,Y
- New: Two estimates for the robots location
  - Odometry
  - Triangulation



## Brainstorming: How to fuse two sources of information for the same random variable?

- Problem statement
  - Given a prior distribution for the robot's location
  - The range measurement (Gaussian distributed) from a known beacon
  - Required: Posterior distribution given the observation
- How to do this using the Markov localization example?
- How to do this using the Particle filter example?



### Possible ways to merge information

- Markov localization: multiply a circular Gaussian distribution around the known beacon with the prior pose
- Particle Filter: Calculate the probability for every particle to obtain such a range measurement
- Or: calculating a new distribution based on the individual variances

# Optimal fusion of two random variables

$$\hat{q_1}$$
  $\hat{q_2}$   $\sigma_1^2$   $\sigma_2^2$ 

$$\min_{\mathbf{q}} S = \sum_{i=1}^n \frac{1}{\sigma_i} (q - \hat{q}_i)^2$$

$$q = \hat{q}_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (\hat{q}_2 - \hat{q}_1) \qquad \sigma^2 = \frac{1}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$$

### Example



# Optimal fusion of two random variables

- Weighing each observation with its variance leads to an optimal estimate
- The new variance is *smaller* than either measurement's variance!
- Adding information always helps
- Careful: only works for independent random variables

### The Kalman Filter

- Other interpretation:
  - q₁ current value
  - $-q_2$  is a prediction

$$q = \hat{q}_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (\hat{q}_2 - \hat{q}_1)$$

- Known as the perception update of the filter (action update as before)
- New estimate is a weighted sum between own estimate q<sub>1</sub> and prediction q<sub>2</sub>
- $q_2$ - $q_1$  is known as *Innovation* and  $\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$  as the *Kalman gain*

### So far in this class...

- How a robot moves (kinematics) and how its uncertainty propagates
- How sensors work and how to extract information from them
- How to fuse information from different sources (to obtain a robot's location)
- How to plan a robot's motion
- Tons of useful stuff: trigonometry, statistics, RANSAC, least-squares, particle filter, electronics, ...
- Missing: treating maps / beacons as being also probabilistic, known as Simultaneous Localization and Mapping

### Reminder of this class (4 weeks)

#### Project

- Model a business application with Sparki (coverage, delivery, search and rescue etc.)
- Next Monday: Design review
- Explain what your problem is and how you will solve it
- Need to use concepts from class
- Final deliverable: presentation, demo and 1-minute video

#### Debates

- Oxford style: Pro, Contra, Synthesis
- Need to be anchored in concepts from class
- Need to perform literature review (magazine articles, policy articles, technical publications)

### Summary

- Multiple ways to fuse different information for a common random variable
- Markov localization, particle filter, Kalman filter
- The more information, the better