● 運動軌跡與相關物理量測量

各物體質量

旋轉體: 0.20846 kg
砝碼: 0.00942 kg
掛勾: 0.01002 kg

實驗一

1. 實驗內容:

改變旋轉半徑(r),固定砝碼(m)、旋轉體(M)質量,測量對應的週期(T)5 組,回推 mg 實驗值,並計算與實際值的差距。

2. 實驗記錄:

	mg(N)	M(kg)	r(m)	T(s)	$T^2(s^2)$
第一次	0.46746	0. 20846	0.1680	1.645942	2. 709125
第二次	0. 46746	0. 20846	0.1413	1. 477353	2. 182572
第三次	0.46746	0. 20846	0.1165	1. 383235	1. 913340
第四次	0. 46746	0. 20846	0.0950	1. 241852	1. 542196
第五次	0. 46746	0. 20846	0. 1955	1. 791250	3. 208577

▲實驗數據

▲r-T²圖擬合

實驗值:mg = $Mr \frac{4\pi^2}{T^2}$ = $0.0605 \times 0.20846 \times 4\pi^2$ = 0.4979(N)

誤差:[(0.4979-0.46746)÷0.46746]×100% = 6.511%

實驗二

1. 實驗內容:

改變砝碼(m)質量,固定旋轉體(M)質量、旋轉半徑(r),測量對應的週期(T)5組,回推M實驗值,並計算與實際值的差距。

2. 實驗記錄:

	m(kg)	M(kg)	r(m)	T(s)	$T^2(s^2)$	$1/T^{2}(s^{-2})$
第一次	0. 0477	0. 20846	0. 1955	1. 79125	3. 208577	0. 311665
第二次	0. 03828	0. 20846	0.1955	1. 993871	3. 975521	0. 251539
第三次	0.02886	0. 20846	0.1955	2. 249	5. 058001	0.197707
第四次	0.01944	0. 20846	0.1955	2. 742667	7. 52222	0.132939
第五次	0.01002	0. 20846	0.1955	3. 871364	14. 98746	0.066722

▲實驗數據

▲m-1/T² 圖擬合

實驗值: $M = \frac{mgT^2}{4\pi^2r} = 0.1546 \times 9.8 \div (4\pi^2 \times 0.1955) = 0.1963(kg)$

誤差:[(0.20846-0.1963)÷0.20846]×100% = 5.831%

問題討論

- 1. 請寫下使用擬合方式的好處(與分別取值再取平均比較) A:分別取值再取平均方法的方法會使誤差在計算過程中被放大,而擬合曲線因為去 除標準差的影響,計算出的誤差會比較小。
- 2. 如果在做實驗時,中心支架沒有剛好在旋轉中心,會出現什麼樣的問題? A:實際上的旋轉半徑較測量值長、用砝碼測得的向心力較實際小

心得

這次的實驗進行的非常順利,透過前兩次實驗的經驗,我與組員逐漸找到了適合的分工,實驗進行的效率大大的提升,加上對於 Excel 的操作逐漸熟悉,數據處理的速度也提升了起來,不過一開始對於實驗器材操作不熟悉,浪費了一些時間,下次應該要先做好準備工作。