Transformacions de variables aleatòries

Recordatori:

donada una v.a. X i una funció $g: \mathbb{R} \to \mathbb{R}$, la funció de probabilitat o de densitat de Y = g(X) es calculava de la següent manera:

- 1) en el cas discret: P(Y = y) = P(g(X) = y) = P(A), on $A = \{x/g(x) = y\}$.
- 2) en el cas continu: $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(A)$, on $A = \{x/g(x) \le y\}$. A continuació derivam $F_Y(y)$ per a obtenir $f_Y(y)$. En alguns casos particulars es pot utilitzar una fòrmula que relaciona $f_X(x)$ i $f_Y(y)$.

Exemple 13:

Sigui
$$X \sim \mathcal{U}(-1,1)$$
 i $Y = X^2$. Trobau $f_Y(y)$.

En aquest tema:

donades dues variables aleatòries X i Y distribuïdes conjuntament i una funció g, volem trobar la distribució de g(X,Y).

Podem trobar dos casos:

Cas 1: $g: \mathbb{R}^2 \to \mathbb{R}$, per exemple Z = g(X, Y) = 2X + Y, llavors:

- Cas discret: $P(Z = z) = P(g(X,Y) = z) = P(A) = \sum_A P(X = x,Y = y)$, on $A = \{(x,y)/g(x,y) = z\}$.
- Cas continu: $F_Z(z) = P(Z \le z) = P(g(X,Y) \le z) = P(A) = \iint_A f_{XY}(x,y) \, dx \, dy$, on $A = \{(x,y)/g(x,y) \le z\}$. A continuació derivam $F_Z(z)$ per a obtenir $f_Z(z)$.

Exemple 14:

(Exercici 4). Les variables aleatòries $X_1i X_2$ són independents i amb densitat comú

$$f(x) = \begin{cases} 1 & si \ 0 \le x \le 1 \\ 0 & en \ cas \ contrari \end{cases}$$

- a) Determinau la densitat de $Y = X_1 + X_2$.
- b) Determinau la densitat de $Z = X_1 X_2$.

Exemple 15:

Siguin X i Y dues v.a. amb funció de probabilitat conjunta

$Y \backslash X$	0	1	2	3
$\overline{-1}$	0	1/12	2/12	2/12
0	1/12	2/12	0	1/12
1	1/12	1/12	1/12	0

Trobau la funció de probabilitat conjunta de Z = |X - Y|.

Cas 2: $g: \mathbb{R}^2 \to \mathbb{R}^2$, per exemple $(U, V) = g(X, Y) = (g_1(x, y), g_2(x, y)) = (2X + Y, X - Y)$, llavors:

- Cas discret: $P(U = u, V = v) = P(g_1(X, Y) = u, g_2(x, y) = v) = P(A) = \sum \sum_A P(X = x, Y = y),$ on $A = \{(x, y)/g_1(x, y) = u \text{ i } g_2(x, y) = v\}.$
- Cas continu: $F_{UV}(u,v) = P(U \le u, V \le v) = P(A) = \iint_A f_{XY}(x,y) \, dx dy$, on $A = \{(x,y)/g_1(x,y) \le u \text{ i } g_2(x,y) \le v\}$. A continuació derivam $F_{UV}(u,v)$ per a obtenir $f_{UV}(u,v)$.

Casos especials:

1) Si podem trobar dues funcions h_1 i h_2 tals que $x = h_1(u, v)$ i $y = h_2(u, v)$, llavors:

$$f_{UV}(u,v) = f_{XY}(h_1(u,v), h_2(u,v)) \cdot |J_{h_1h_2}(u,v)| \qquad \text{on} \qquad J_{h_1h_2}(u,v) = \det \begin{pmatrix} \frac{\partial h_1(u,v)}{\partial u} & \frac{\partial h_1(u,v)}{\partial v} \\ \frac{\partial h_2(u,v)}{\partial u} & \frac{\partial h_2(u,v)}{\partial v} \end{pmatrix}$$

per a cada conjunt de valors de (u, v) on les funcions h_1 i h_2 són úniques.

2) Si g(X,Y) té forma matricial: $\binom{U}{V} = A \cdot \binom{X}{Y}$ i $\det(A) \neq 0$, llavors:

$$f_{UV}(u,v) = \frac{1}{|\det(A)|} f_{XY} \left(A^{-1} \cdot \begin{pmatrix} u \\ v \end{pmatrix} \right)$$

Exemple 16:

Sigui (X,Y) la v.a. discreta de l'exemple anterior. Calculau la funció de probabilitat conjunta de $(U,V)=(|X-Y|^2,Y^2)$

Exemple 17:

(Exercici 27). Sigui (X, Y) una v.a. contínua amb funció de densitat:

$$f_{XY}(x,y) = \begin{cases} \frac{2-x-y}{8} & -1 \le x \le 1 \\ 0 & en \ altre \ cas \end{cases} -1 \le y \le 1$$

Calculau la funció de densitat de (X^2, Y^2) .

Exemple 18:

Sigui (X,Y) una v.a. contínua amb funció de densitat:

$$f_{XY}(x,y) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & en \ altre \ cas \end{cases} \quad 0 \le y \le 1$$

Definim una nova variable (U,V) = (2X + Y, X - Y). Calculau la funció de densitat de (U,V).

Exercicis proposats: 31, 25, 29, 30