Dennis Fischer RWTH Aachen

Probeklausur Effiziente Algorithmen

Name:	
VORNAME:	
MATRIKELNUMMER:	
STUDIENGANG:	

Hinweise:

- Die Bearbeitungszeit beträgt 120 Minuten.
- $\bullet\,$ Schreiben Sie auf jedes Blatt Ihre Matrikelnummer.
- Die Klausur hat 18 Seiten. Bitte prüfen Sie Ihre Klausur auf Vollständigkeit.
- Die Klausur besteht aus 6 Aufgaben mit Unteraufgaben.
- Bitte achten Sie auf eine klare und mathematisch korrekte Darstellung.
- Benutzen Sie ausschließlich das zur Verfügung gestellte Papier. Gegebenenfalls können Sie auch noch zusätzliches Papier erfragen.
- Bitte schreiben Sie deutlich. Unleserliches wird nicht korrigiert und als fehlerhaft gewertet.
- Streichen Sie Konzeptrechnungen, die nicht gewertet werden sollen, durch oder machen Sie sie anderweitig kenntlich. Bei mehreren Lösungsversuchen pro Aufgabe wird der Schlechteste gewertet.
- Bitte verwenden Sie einen dokumentenechten Stift mit blauer oder schwarzer Tinte, und verwenden Sie keinen Tintenkiller oder Ähnliches.
- Bitte schalten Sie Ihre elektronischen Geräte aus!

Aufgabe Nr.:	1	2	3	4	5	6	Summe
Punktzahl:	20	20	20	20	30	10	120
Davon erreicht:							

1. Geben Sie (ohne weitere Begründung) die bestmögliche Anzahl von Vergleichen an, mit denen

die folgenden Probleme im Worst-Case gelöst werden könn paarweise verschiedenen positiven ganzen Zahlen, die in eine	`	
(a) i. Bestimme das Minimum von 101 Zahlen:		2 Punkte
ii. Bestimme die zweitgrößte von 1024 Zahlen:	i	3 Punkte
iii. Bestimme Minimum und Maximum von 200 Zahlen	ii:	3 Punkte

iii. __

(b)	In einer Gruppe von $n=6$ Personen ist jedes Personen paar entweder miteinander befreundet	12 Punkte
	oder mit einander verfeindet. Ein Soziologe will herausfinden, ob man diese Gruppe in zwei nicht-leere Teilgruppen A und B aufspalten kann, sodass jede Person in A mit jeder Person	
	in B verfeindet ist. (Anmerkung: Feindschaften und Freundschaften innerhalb von A und B spielen dabei keine Rolle.)	
	Bestimmen Sie die bestmögliche Anzahl von Fragen, mit denen der Soziologe sein Problem ${\bf im}$	
	Worst-Case lösen kann.	

Es sei $n=2^q$ eine Zweierpotenz, und es seien ω^i mit $i=0,\ldots,n-1$ die dazugehörigen n -ten	15 Punkte
Zeigen Sie, wie man in $O(n \log n)$ Zeit die Koeffizienten-Darstellung $\langle a_0, a_1, \dots, a_{n-1} \rangle$ des Polynoms $A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$ in die entsprechende Punkt-Wert-Darstellung	
$(x_0, y_0), \dots, (x_{n-1}, y_{n-1})$ mit $x_i = \omega^i$ für $i = 0, \dots, n-1$ überführen kann.	
	Einheitswurzeln. Zeigen Sie, wie man in $O(n \log n)$ Zeit die Koeffizienten-Darstellung $\langle a_0, a_1, \dots, a_{n-1} \rangle$ des

5 Punkte

Beschreiber schiede zun	n das Vorgehen d n einfachen Verfa	les Verfahrens von Ed ahren.	monds und Karp.	Beschreiben Sie die Unter-	8 I

) Geben Sie die Laufzeit des Verfahrens von Edmonds und Karp an.	1 Pur
Begründen Sie diese Laufzeit.	
i. D.h. wie oft wird die äußere Schleife durchlaufen (mit Begründe	ung der Aussage).

Und was ist der Aufwand bei jedem Schleifendurchlauf?	5 Punkte

- 4. In der Vorlesung wurde folgender Algorithmus zum Bestimmen eines Schedules angegeben:
 - 1. Ein Orakel liefert $Z \in \mathbb{N}$, den Wert des optimalen Makespan.
 - 2. Phase 1:
 - (a) Betrachte die großen Jobs: $G = \{i \in \{1, 2, ..., n\} \mid p_i > \epsilon Z\}.$
 - (b) Skaliere die Größe der Jobs aus G:

$$p_i' = \left\lceil \frac{p_i}{\epsilon^2 Z} \right\rceil$$

(c) Bestimme Schedule mit Jobgrößen p'_i mit Makespan

$$Z' = \left[(1 + \epsilon) \frac{1}{\epsilon^2} \right].$$

- 3. Phase 2:
 - (a) Betrachte die kleinen Jobs: $K = \{i \in \{1, 2, ..., n\} \mid p_i \le \epsilon Z\}.$
 - (b) Verteile die Jobs aus K nach der LL Heuristik.
- (a) Geben Sie den Approximationsfaktor des obigen Algorithmus an.

1 Punkte

(a) _____

Begründen Sie diesen Faktor für die kleinen Jobs.	5 Punkte

7 Punkte

(d)	Beschreiben Sie das Vorgehen in Zeile 5 des Algorithmus, also wie bestimmt man einen Schedule für die Jobgrößen p_i' mit einem Makespan
	$Z' = \left\lfloor (1+\epsilon) \frac{1}{\epsilon^2} \right\rfloor?$

(a)	Wie las	st sich d	er Suciliau	iii iii dei	FORM S_1 ,.	$, S_n \mod \epsilon$	emeren:		5	5 Pun
b)	wie kön	nen wir	schnell ein			ades haben bere Schrai				8 Pur
b)	wie kön	nen wir								3 Pur
b)	wie kön	nen wir	schnell ein							8 Pur
b)	wie kön	nen wir	schnell ein							3 Pur
b)	wie kön	nen wir	schnell ein							3 Pur
(b)	wie kön	nen wir	schnell ein							8 Pur
b)	wie kön	nen wir	schnell ein							8 Pur
b)	wie kön	nen wir	schnell ein							8 Pur
b)	wie kön	nen wir	schnell ein							8 Pur
b)	wie kön	nen wir	schnell ein							8 Pur
b)	wie kön	nen wir	schnell ein							8 Pur
b)	wie kön	nen wir	schnell ein							8 Pur

warum sie eine	guve wam ist.			

6. ((a)	Wie lässt sich mit einem fairen Würfel eine 1 aus 10 Entscheidung gleichverteilt treffen?	3 Punkte
,			- D 1.
(Schätzen Sie mit dem Verfahren der Vorlesung grob ab, wie groß der Suchbaum in etwa ist, wenn wir das 10-Damen-Problem mit dem gewöhnlichen Backtrackingalgorithmus lösen. Dokumentieren Sie die einzelnen Schritte. Sie müssen die genaue Zahl nicht ausrechnen. Es reicht,	7 Punkte
		wenn Sie das Ergebnis z.B. als Produkt von Zahlen oder ähnlich angeben.	

Zusätzlicher Platz:		

Matrikelnummer: ___

17.1.2019

Zusätzlicher Platz: