Изучение строения линейного кода

$$\underline{\text{Задача 1}}$$
. Пусть $G=\left(egin{array}{cccccc} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{array}
ight)$ — порождающая матрица

бинарного линейного (5,3)-кода. Найти для этого кода проверочную матрицу, все кодовые слова, а также дуальный код. Найти весовые спектры этих кодов. Выписать все синдромы и лидеры смежных классов и декодировать при помощи лидеров слово 11010.

<u>Решение</u>. Для данного кода C длина сообщений k=3, длина кодовых слов n=5 и число проверочных соотношений m=n-k=2. Порождающая матрица G не имеет систематического вида. Поэтому прежде чем применять известное правило нахождения проверочной матрицы приведем G эквивалентными преобразованиями над полем \mathbb{F}_2 к каноническому (систематическому) виду $G'=(E_3\mid -A^{\rm T})$, где $A\in (\mathbb{F}_2)^{2\times 3}$. Тогда $H=(A\mid E_2)$ является каноническим видом проверочной матрицы кода C. Под матрицей будем записывать ее элементарные преобразования, обозначая строки матрицы римскими цифрами.

$$G = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix} \sim III \leftrightarrow II$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix} \sim G' = \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 \\ 0 & 1 & 0 & | & 1 & 0 \\ 0 & 0 & 1 & | & 1 & 1 \\ II + IIII + I & & & E_3 & -A^T \end{pmatrix}.$$

Таким образом,
$$-A^{\mathrm{T}}=\begin{pmatrix}1&0\\1&0\\1&1\end{pmatrix}$$
, следовательно,
$$A=-(-A^{\mathrm{T}})^{\mathrm{T}}=(-A^{\mathrm{T}})^{\mathrm{T}}=\begin{pmatrix}1&1&1\\0&0&1\end{pmatrix},$$

$$H=\begin{pmatrix}1&1&1&1&0\\0&0&1&0&1\end{pmatrix}.$$

Пусть $\mathbf{a} = (a_1, a_2, a_3)$, где $a_1, a_2, a_3 \in \mathbb{F}_2$, — сообщение, тогда соответствующее кодовое слово равно

$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5) = \mathbf{a}G' = (a_1, a_2, a_3, a_1 + a_2 + a_3, a_3).$$

Кстати, для исходной порождающей матрицы код C (в смысле "кодовой книги", т.е. набора всех кодовых слов) будет тот же, что и для G', C'. Однако соответствие между сообщениями и кодовыми словами будет, конечно, другое.

$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5) = \mathbf{a}G = (a_1 + a_2 + a_3, a_1, a_2, a_3, a_2).$$

Приведем исходную матрицу элементарными преобразованиями к систематическому виду подробно, используя MapleV. Прибавили ко второй первую строку.

> G1a:= matrix_modp(addrow(G1,1,2,1),2);

$$G1a := \left[\begin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{array} \right]$$

Переставили первую и третью строки.

> G1b :=swaprow(G1a, 1, 3);

$$G1b := \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{array} \right]$$

Прибавили к третьей первую.

> G1c:= matrix_modp(addrow(G1b,1,3,1),2);

$$G1c := \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{array} \right]$$

Прибавили к третьей вторую.

> G1d:= matrix_modp(addrow(G1c,2,3,1),2);

$$G1d := \left[egin{array}{ccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{array}
ight]$$

Прибавили ко второй третью.

> G1e:= matrix_modp(addrow(G1d,3,2,1),2);

$$G1e := \left[egin{array}{cccccc} 1 & 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 & 1 \end{array}
ight]$$

Составим списки кодовых слов с обеими порождающими матрицами.

> C1:=code_list(G1e,2);

$$C1 := [[0, 0, 0, 0, 0], [0, 0, 1, 1, 1], [0, 1, 0, 1, 0], [0, 1, 1, 0, 1], [1, 0, 0, 1, 0], [1, 0, 1, 0, 1], [1, 1, 0, 0, 0], [1, 1, 1, 1, 1]]$$

> C1s:=sort(C1,weight_order);

$$C1s := [[0, 0, 0, 0, 0], [0, 1, 0, 1, 0], [1, 0, 0, 1, 0], [1, 1, 0, 0, 0], [0, 0, 1, 1, 1], [0, 1, 1, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]]$$

> Cs:=sort(code_list(G1,2),weight_order);

$$Cs := [[0, 0, 0, 0, 0], [1, 0, 0, 1, 0], [1, 1, 0, 0, 0], [0, 1, 0, 1, 0], [1, 0, 1, 0, 1], [0, 0, 1, 1, 1], [0, 1, 1, 0, 1], [1, 1, 1, 1, 1]]$$

Код (в смысле множества векторов) тот же самый. Правда отображение $L_k - - > L_n$ другое, например, образы сообшения (001) различные.

> multiply([0,0,1], G1);multiply([0,0,1], G1e);

Систематический вид проверочной матрицы

> H:=matrix([[1,1,1,1,0],[0,0,1,0,1]]);

$$H := \left[egin{array}{cccccc} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{array}
ight]$$

> matrix_modp(multiply(G1,transpose(H)),2);

> matrix_modp(multiply(G1e,transpose(H)),2);

$$\left[\begin{array}{cc}0&0\\0&0\\0&0\end{array}\right]$$

Матрица является проверочной и для исходного кода.

Приведем таблицу всевозможных сообщений и соответствующих кодовых слов.

$\mathbf{F_2^3}$	000	001	010	011	100	101	110	111
C	00000	10010	10101	00111	11000	01010	01101	11111
C'	00000	00111	01010	01101	10010	10101	11000	11111

Проверочная матрица используется для установления наличия ошибок и их исправления. Ее основное свойство $G\cdot H^T=0$ отражает тот факт, что проверочная матрица, будучи порождающей для дуального кода, имеет строки, ортогональные всем кодовым словам. Поэтому переход от исходной матрицы G к систематической G' (к другому базису) этого условия не нарушает.

Запишем таблицу лидеров $\mathbf{e_i}$ и соответствующих смежных классов $\mathbf{e}_i + C$. С точки зрения математики это разложение группы по смежным классам. Новый класс мы начинаем с так называемого "лидера", который трактуется как вектор -ошибка. Число лидеров (смежных классов) равно $2^n/|C| = 2^n/2^k = 2^m = 4$. Заполнение таблицы происходит следующим образом: сначала выписываем все кодовые слова $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8,$ (первая строка таблицы). Очевидно, синдромы нулевые, $S(\mathbf{x}_j) = (0,0)^T$. Затем выбираем лидеры $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4$ смежных классов, так, чтобы их вес был как можно меньше и $S(\mathbf{e}_i) \neq S(\mathbf{e}_j)$ для $i \neq j$.

Векторы из \mathbb{F}_2^5 наименьшего веса — суть

$$\mathbf{x}_1 = 00000, \ \mathbf{w}_1 = 00001, \ \mathbf{w}_2 = 00010, \ \mathbf{w}_3 = 00100, \ \mathbf{w}_4 = 01000, \ \mathbf{w}_5 = 10000.$$

Напомним, что $S(\mathbf{y}) = S(\mathbf{e}_i)$, если $\mathbf{y} \in \mathbf{e}_i + C$ и $S(\mathbf{e}_i) \neq S(\mathbf{e}_j)$ для $i \neq j$, где $S(\mathbf{y}) = H \cdot \mathbf{y}^T$ — синдром вектора \mathbf{y} .Посчитаем их синдромы:

$$S(\mathbf{x}_1) = (0,0)^{\mathrm{T}}, \ S(\mathbf{w}_1) = (0,1)^{\mathrm{T}},$$

 $S(\mathbf{w}_2) = S(\mathbf{w}_4) = S(\mathbf{w}_5) = (1,0)^{\mathrm{T}}, \ S(\mathbf{w}_3) = (1,1)^{\mathrm{T}}.$

Возьмем в качестве векторов $\mathbf{e}_1 = \mathbf{x}_1$, $\mathbf{e}_2 = \mathbf{w}_1$, $\mathbf{e}_3 = \mathbf{w}_2$. Оставшийся лидер \mathbf{e}_4 из векторов \mathbf{w}_4 , \mathbf{w}_5 выбирать нельзя, т.к. они уже вошли в смежный класс $\mathbf{w}_2 + C$. В качестве \mathbf{e}_4 можно взять вектор 00100. Итак, имеем следующую таблицу лидеров и их синдромов

\mathbf{e}_i	$S(\mathbf{e}_i)$
00000	$(0,0)^{\mathrm{T}}$
00001	$(0,1)^{\mathrm{T}}$
00010	$(1,0)^{\mathrm{T}}$
00100	$(1,1)^{\mathrm{T}}$

В некоторых случаях (не в данном) приходится рассматривать вектора из \mathbb{F}_2^n с весами, равными двум и выбирать среди них очередного лидера, если векторов с меньшим весом не хватает для построения таблицы.

Запишем лидеры в первый столбец таблицы лидеров и их смежных классов. Элемент, стоящий в i-й строке и j-м столбце таблицы, равен $\mathbf{y}_{ij} = \mathbf{e}_i + \mathbf{x_j}$. Таким образом, i-я строка таблицы представляет собой смежный класс $\mathbf{e_i} + \mathbf{C}$.

${ m F_2^3}$	000	001	010	011	100	101	110	111
C	00000	10010	10101	00111	11000	01010	01101	11111
$\mathbf{e}_2 + C$	00001	10011	10100	00110	11001	01011	01100	11110
$\mathbf{e}_3 + C$	00010	10000	10111	00101	11010	01000	01111	11101
$\mathbf{e}_4 + C$	00100	10110	10001	00011	11100	01110	01001	11011

Синдром слова $\mathbf{y} = 11010$, которое нужно декодировать, равен $S(\mathbf{y}) = (1,0)^{\mathrm{T}} = S(\mathbf{e}_3)$, т.е. $\mathbf{y} \in \mathbf{e}_3 + C$, а именно, слово \mathbf{y} находится в 3-й строке и 7-м столбце. Следовательно, с наибольшей вероятностью передано слово $\mathbf{x}_3 = \mathbf{y} - \mathbf{e}_3 = 11000$ (иначе - ближайшее к полученному кодовое слово). Соответствующее сообщение представляет собой слово $\mathbf{a} = 100$.

Найдем дуальный (5,2)-код C^* . Порождающей матрицей G^* для этого кода является матрица H, а проверочной — матрица G. Можно привести матрицу G^* элементарными преобразованиями над \mathbb{F}_2 к систематическому виду $G^{*'} = (E_2|-A^{*T})$. Если $\mathbf{a}^* = (a_1^*, a_2^*)$ — сообщение, тогда соответствующее кодовое слово из дуального кода равно

$$\mathbf{x}^* = (x_1^*, x_2^*, x_3^*, x_4^*, x_5^*) = \mathbf{a}^* H.$$

Приведем таблицу всевозможных сообщений и соответствующих кодовых слов для кода C^* .

\mathbf{a}^*	00	01	10	11
\mathbf{x}^*	00000	00101	11110	11011

Таким образом, $C^* = \{00000, 00101, 11011, 11110\}.$

Найдем весовые спектры кодов. Отсортируем в порядке возрастания веса.

> C1s:=sort(C1,weight_order);

$$C1s := \{(0, 0, 0, 0, 0), (1, 0, 0, 1, 0)], (1, 1, 0, 0, 0), *(0, 1, 0, 1, 0), (1, 0, 1, 0, 1), (0, 0, 1, 1, 1), (0, 1, 1, 0, 1), (1, 1, 1, 1, 1)\}$$

 $C^* = \{\mathbf{x}_1^*, \mathbf{x}_2^*, \mathbf{x}_3^*, \mathbf{x}_4^*\}$. Находим веса слов этих кодов:

> weight_enumerator_vector(G1,2);

weight_enumerator_vector(H,2);

Отсюда имеем следующие весовые спектры для кодов C и C^* :

$$A_0 = 1, \ A_2 = 3, \ A_3 = 3, \ A_5 = 1 \ A_1 = A_4 = 0;$$

 $A_0^* = A_2^* = 1, A_4^* = 2, \ A_1^* = A_3^* = A_5^* = 0.$

Задача 2. Найти проверочные и порождающие матрицы и информационные скорости для (7,4)-кода Хемминга и удлиненного (8,4)-кода Хемминга. Сколько ошибок обнаруживают и исправляют эти коды? Декодировать слова 1101011 и 01011011 в коде Хемминга и его удлиненном коде соответственно.

<u>Решение</u>. Обозначим через H и G соответственно проверочную и порождающую матрицы кода Хемминга C, а через H^* и G^* — проверочную

и порождающую матрицы удлиненного кода Хемминга C^* . Проверочной матрицей (7,4)-кода Хемминга является бинарная (над полем \mathbb{F}_2) матрица размера 3×7 , i-й столбец которой есть двоичная запись числа i(младший разряд может соответствовать как первой, так и последней строкам). Значит,

$$H = \left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right).$$

Т.н. удлиненный (8,4)-код получают добавлением одного проверочного символа x_8 к кодовым словам кода Хемминга и добавлением одного проверочного уравнения $x_1 + x_2 + \ldots + x_8 = 0$ (проверкой на четность). Следовательно, матрица H^* может быть получена из H приписыванием сверху строки $(1,1,1,\ldots,1)$ и справа столбца $(1,0,0,\ldots,0)^{\mathrm{T}}$. Следовательно,

Элементарными преобразованиями приводим матрицы H и H^* к каноническому виду $H' = (A \mid E_3), H^{*'} = (\overline{A} \mid E_4)$. В результате получаем:

$$H' = \left(\begin{array}{cccc|cccc} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right);$$

Следовательно,

$$G = \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & | & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & | & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & | & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & 1 & 1 & 1 \end{array}\right);$$

Строки любой порождающей матрицы, записанной в канонической форме, являются базисом пространства кодовых слов. Далее, кодовые слова удлиненного кода получаются из кодовых слов исходного кода добавлением символа проверки на четность. Следовательно, матрицу G^* можно было получить из G добавлением справа столбца, i-й элемент которого является сумммой всех элементов i-й строки матрицы G (проверкой на четность).

Информационная скорость кода равна отношению числа информационных символов, длины сообщения, к длине кодового слова. Для кода Xемминга C

$$k/n = (2^m - 1 - m)/(2^m - 1) = 3/7,$$

а информационная скорость удлиненного кода Хемминга C^* равна

$$k^*/n = (2^m - m)/2^m = 4/8 = 1/2.$$

Известно, что $d_{\min}(C)=3,\ d_{\min}(C^*){=}4$, следовательно, код C обнаруживает $d_{\min}(C)-1=2$ ошибки и исправляет $[(d_{\min}(C)-1)/2]=1$ ошибку, а код C^* обнаруживает $d_{\min}(C^*) - 1 = 3$ ошибки и исправляет $[(d_{\min}(C^*) - 1)/2] = 1$ ошибку.

Слово $\mathbf{y}_1=1101011$ имеет синдром $S_1(\mathbf{y}_1)=H\mathbf{y}_2^{\mathrm{T}}=(1,1,0)^{\mathrm{T}},$ который является двоичной записью числа 6, и декодер кода Хемминга решает, что ошибка произошла в 6-й позиции. Следовательно, слову \mathbf{y}_1 соответствует кодовое слово $\mathbf{x}_1 = \mathbf{y}_1 - 0000010 = 1101111$, а соответствующее сообщение будет 1101.

Синдром слова $\mathbf{y}_2 = 01011011$ равен

$$S_2(\mathbf{y}_2) = H^* \mathbf{y}_2^{\mathrm{T}} = \begin{pmatrix} \sum\limits_{i=1}^8 y_i \\ S_1(\mathbf{y}) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix},$$

где $\mathbf{y}_2 = y_1 y_2 \dots y_7 y_8 = 01011011, \, \mathbf{y} = y_1 y_2 \dots y_7 = 0101101.$ Следовательно, $S_1(\mathbf{y}) = (\mathbf{1}, \mathbf{0}, \mathbf{0})^\mathrm{T}$ и ошибка в слове \mathbf{y} произошла в 4-й позиции кодового слова $\mathbf{x} = x_1 x_2 \dots x_7$ кода Хемминга C. Следовательно, $\mathbf{x} = \mathbf{y} - 0001000 = 0100101$. Соответствующее кодовое слово \mathbf{x}^* удлиненного (8,4)-кода Хемминга \overline{C} равно слову $x_1x_2 \dots x_7x_8 = 01001011$, где $x_8 = \sum_{i=1}^{t} x_i = 1$ — есть символ проверки на четность. Кодовому слову 01001011 соответствует сообщение 0100.

Ответ. H, G, H^*, G^* ; инфомационные скорости кодов C и C^* равны соответственно 3/7 и 1/2; код C обнаруживает две ошибки и исправляет одну ошибку, а код C^* обнаруживает три ошибки и исправляет одну ошибку; 1101111(110), 01001011(010).

Задача 3. Найти порождающую матрицу, все кодовые слова и весовой спектр для линейного тернарного (т.е. над \mathbb{F}_3) (4,2)-кода с проверочной матрицей $H = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \end{pmatrix}$. Выписать все синдромы и лидеры смежных классов и декодировать при помощи лидеров слово 2001. Оценить вероятность правильного декодирования.

Решение. Находим порождающую матрицу, используя известное соотношение между G и H. Элементарными преобразованиями над \mathbb{F}_3 приведем порождающую матрицу H кода C к каноническому (систематическому) виду $H'=(A\mid E_2)$, где $A\in (\mathbb{F}_3)^{2\times 2}$. Напомним, что в поле \mathbb{F}_3 справедливо следующее: -1 = 2, -2 = 1, 2 + 2 = 1, 2 + 1 = 0, $2 \cdot 2 = 1$, $2^{-1} = 2$.

$$H = \begin{pmatrix} 0 & 1 & | & 1 & 1 \\ 1 & 1 & | & 2 & 1 \end{pmatrix}$$
 $\sim \begin{pmatrix} 0 & 1 & | & 1 & 1 \\ 1 & 2 & | & 0 & 2 \end{pmatrix}$ \sim прибавим ко II строке I , умножим II на $2^{-1}=2$ $\sim \begin{pmatrix} 0 & 1 & | & 1 & 1 \\ 2 & 1 & | & 0 & 1 \end{pmatrix}$ $\sim \begin{pmatrix} 1 & 0 & | & 1 & 0 \\ 2 & 1 & | & 0 & 1 \end{pmatrix}$ \sim $H' = \begin{pmatrix} 1 & 0 & | & 1 & 0 \\ 2 & 1 & | & 0 & 1 \end{pmatrix}$ $A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, $G = (E_2 | -A^T) = \begin{pmatrix} 1 & 0 & | & 2 & 1 \\ 0 & 1 & | & 0 & 2 \end{pmatrix}$.

Пусть $\mathbf{a} = (a_1, a_2)$, где $a_1, a_2 \in \mathbb{F}_3$ — некоторое сообщение, тогда соот-

ветствующее кодовое слово равно

$$\mathbf{x} = (x_1, x_2, x_3, x_4) = \mathbf{a}G = (a_1, a_2, 2a_1, a_1 + 2a_2).$$

И мы имеем следующее соответствие сообщений и кодовых слов.

a	00	01	02	10	11	12	20	21	22
X	0000	0102	0201	1021	1120	1222	2012	2111	2210

Выберем, учитывая минимальный вес кодовых слов, лидеры $\mathbf{e}_1, \mathbf{e}_2 \dots$, е смежных классов. Теперь напишем таблицу лидеров и соответствующих смежных классов. Первая строка — это множество всех кодовых слов, первый столбец — множество всех лидеров, i-я строка представляет собой смежный класс $\mathbf{e}_i + C$, а элемент, стоящий на пересечении i-й строки и j-го столбца, равен $\mathbf{y}_{ij} = \mathbf{e}_i + \mathbf{x}_j$. Заметим, что при выборе лидеров приходится брать элементы с весом 2, т.к. некоторые элементы с весом 1 уже вошли в перечисленные выше смежные классы.

C		0102							
$\mathbf{e}_2 + C$	0001	0100	0202	1022	1121	1220	2010	2112	2211
$\mathbf{e}_3 + C$									
$\mathbf{e}_4 + C$	1000	1102	1201	2021	2120	2222	0012	0111	0210
$\mathbf{e}_5 + C$									
$\mathbf{e}_6 + C$	0020	0122	0221	1011	1110	1212	2002	2101	2200
$\mathbf{e}_7 + C$		2102							
$\mathbf{e}_8 + C$		0110							
$\mathbf{e}_9 + C$	1010	1112	1211	2001	2100	2202	0022	0121	0220

Построим синдромную таблицу декодирования. Первый столбец — лидеры. Рядом запишем соответствующие синдромы.

$$S(\mathbf{e}_i) = \mathbf{e}_i \cdot H.$$

\mathbf{e}_i	$S(\mathbf{e}_i)$
0000	$(0,0)^{\mathrm{T}}$
0001	$(0,1)^{\mathrm{T}}$
0010	$(1,0)^{\mathrm{T}}$
1000	$(1,2)^{\mathrm{T}}$
0002	$(0,2)^{\mathrm{T}}$
0020	$(2,0)^{\mathrm{T}}$
2000	$(2,1)^{\mathrm{T}}$
0011	$(1,1)^{\mathrm{T}}$
1010	$(2,2)^{\mathrm{T}}$

Слово $\mathbf{y}=2001$ лежит в 9-й строке и 4-м столбце, следовательно две ошибки не можем исправить.

Минимальное расстояние кода $d_{\min}(C)=3$. Значит, код C обнаруживает $s=d_{\min}(C)-1=2$ ошибки и исправляет $t=[(d_{\min}(C)-1)/2]=1$ ошибку.

Задача 4. Найти проверочные и порождающие матрицы для симплексного (7,3)-кода и (8,4)-кода Рида-Малера первого порядка. Содержат ли слова 0101101 и 11001100 в симплексном коде и в коде Рида-Малера обнаруживаемые ошибки? Оценить вероятность обнаружения ошибки для этих кодов.

<u>Решение</u>. Обозначим через H^* и G^* соответственно проверочную и порождающую матрицы симплексного кода C^* , а через \overline{H}^* и \overline{G}^* — проверочную и порождающую матрицы кода Рида-Малера \overline{C}^* (матрицы G, H, \overline{G} , \overline{H} , означают то же, что и в задаче 2). Тогда $H^* = G$, $G^* = H$, $\overline{H}^* = \overline{G}$. $\overline{G}^* = \overline{H}$.

Выясним, содержат ли слова $\mathbf{y}_1 = 0101101$, $\mathbf{y}_2 = 11001100$ обнаруживаемые ошибки в кодах C^* и \overline{C}^* :

$$S_1(\mathbf{y}_1) = H^* \mathbf{y}_1^{\mathrm{T}} = (1, 1, 1, 1)^{\mathrm{T}} \neq (0, 0, 0, 0)^{\mathrm{T}};$$

 $S_2(\mathbf{y}_2) = \overline{H}^* \mathbf{y}_2^{\mathrm{T}} = (0, 0, 0, 0)^{\mathrm{T}}.$

Значит, декодер кода C^* будет выдавать сообщение об ошибке в слове \mathbf{y}_1 , а декодер кода \overline{C}^* будет считать слово \mathbf{y}_2 кодовым словом.

Известно, что $d_{\min}(C^*) = d_{\min}(\overline{C}^*) = 2^{m-1} = 4$ (утверждние ??), следовательно, коды C^* и \overline{C}^* обнаруживают $s = d_{\min}(C^*) - 1 = 3$ ошибки. Это означает, что для вероятностей P_1 , P_2 пропуска ошибки этими кодами (т.е. для вероятностей того, что произошло не более трех ошибок) справедливы неравенства

$$P_{1} \geq \sum_{i=0}^{3} {7 \choose i} p^{n-i} q^{i} = p^{7} + 7p^{6}q + 21p^{5}q^{2} + 35p^{4}q^{3};$$

$$P_{2} \geq \sum_{i=0}^{3} {8 \choose i} p^{n-i} q^{i} = p^{8} + 8p^{7}q + 28p^{6}q^{2} + 56p^{5}q^{3}.$$

<u>Ответ</u>. $H^*=G,\,G^*=H,\,\overline{H^*}=\overline{G},\,\overline{G}^*=\overline{H}$ (матрицы $G,\,H,\,\overline{G},\,\overline{H}$ найдены в задаче 2); в слове 0101101 произошла ошибка с вероятностью $P_1\geq p^7+7p^6q+21p^5q^2+35p^4q^3;$ в слове 11001100 не произошла ошибка с вероятностью $P_2\geq p^8+8p^7q+28p^6q^2+56p^5q^3.$