ЛЕКЦИЯ 5.2 КВАДРАТИЧНЫЕ СПЛАЙНЫ. ОБЩИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ

1. Квадратичные сплайны S_2

Функция y=f(x) задана таблицей 1. Точки x_i - узлы интерполяции. Квадратичные сплайны – это сплайны второй степени, т.е. состоящие из квадратных трёхчленов. В частности, можно построить интерполяционный квадратичный сплайн S_2 . На каждом отрезке между соседними узлами он совпадает с многочленом степени m=2, удовлетворяет условиям интерполяции по всей таблице и непрерывен со своими производными до некоторого порядка p включительно. Число m-p называется дефектом сплайна. На отрезке $[x_{i-1};\ x_i]$ сплайн S_2 равен квадратному трёхчлену $P_{2,i}$, который определяется тремя коэффициентами $a_i,\ b_i,\ c_i$:

$$P_{2,i}(x) = a_i x^2 + b_i x + c_i,$$

Табл. 1. Функция y = f(x)

i	x_i	y_i
0	x_1	y_1
1	x_2	y_2
:	:	:
n	x_n	y_n

 $i=1,\dots,n$. Всего имеются n отрезков $[x_{i-1};\ x_i]$, поэтому нужно построить n квадратных трёхчленов, т.е. найти 3n неизвестных коэффициентов. Условия интерполяции дадут 2n уравнений:

$$\begin{cases} P_{2,1}(x_0) = y_0, \\ P_{2,1}(x_1) = y_1, \\ P_{2,2}(x_1) = y_1, \\ \vdots \\ P_{2,n-1}(x_{n-1}) = y_{n-1}, \\ P_{2,n}(x_{n-1}) = y_{n-1}, \\ P_{2,n}(x_n) = y_n. \end{cases}$$

Первое и последнее уравнения системы – это условия интерполяции в крайних узлах. Во внутренних узлах должны «стыковаться» трёхчлены на соседних отрезках, поэтому для каждого внутреннего узла записаны два условия. Всего получаются 2(n-1)+2=2n уравнений.

Таким образом, условие непрерывности сплайна уже использовано. Нужны ещё n уравнений для замыкания системы. Если дефект сплайна равен единице, то p=1, т.е. его производная также должна быть непрерывна. Это даёт нам ещё n-1 уравнение:

$$P'_{2,i}(x_i) = P'_{2,i+1}(x_i),$$

 $i=1,\ldots,n-1$. Здесь записано условие «стыковки» производных трёхчленов на соседних отрезках во внутреннем узле. Всего получилось 3n-1 уравнение. Не хватает одного уравнения. Его можно получить из какого-либо граничного условия. Например, если известно значение производной в левом крайнем узле, то добавляется уравнение $P_{2,1}'(x_0)=y_0'$. Получаем систему линейных уравнений, решаем и по найденным коэффициентам строим квадратные трёхчлены для каждого отрезка интерполяции.

2. Другой подход к построению квадратичного сплайна

Существуют другие подходы к построению сплайнов. Можно «стыковать» многочлены не в узлах, как в сплайне S_m , который мы рассматривали до сих пор, а в некоторых промежуточных точках. Посмотрим, как это делается, на примере квадратичного сплайна.

Дополнительно к узлам x_i введём систему точек $\widetilde{x}_0=x_0<\ \widetilde{x}_1<\widetilde{x}_2<\cdots<<\widetilde{x}_{n+1}=x_n,$ где

$$\widetilde{x}_i = \frac{x_{i-1} + x_i}{2},$$

 $i=1,\dots,n$, т.е. первая и (n+1)-я дополнительные точки совпадают с узлами x_0 и x_n , а остальные n точек находятся посередине между соседними узлами интерполяции x_{i-1} и x_i . «Кусочки» сплайна – квадратные трёхчлены $P_{2,i}$ – строятся на отрезках $[\widetilde{x}_{i-1};\ \widetilde{x}_i\],$

i=2,...,n. При этом крайние «кусочки» $P_{2,1}$ и $P_{2,n+1}$ строятся на половинах крайних отрезках $[x_0;\ x_1]$ и $[x_{n-1};\ x_n]$ соответственно. Всего получается n+1 квадратный трёхчлен, каждый определяется тремя коэффициентами. Поэтому надо найти 3n+3 неизвестных.

Для каждого трёхчлена $P_{2,i}$ имеется одно условие интерполяции:

$$\begin{cases} P_{2,1}(x_0) = y_0, \\ P_{2,2}(x_1) = y_1, \\ \vdots \\ P_{2,n}(x_{n-1}) = y_{n-1}, \\ P_{2,n+1}(x_n) = y_n. \end{cases}$$

Всего n+1 уравнение.

Условие непрерывности сплайна даёт ещё n уравнений:

$$P_{2,i}(\tilde{x}_i) = P_{2,i+1}(\tilde{x}_i),$$

i=1,2,...,n (во внутренних точках \tilde{x}_i «стыкуются» соседние трёхчлены).

Если потребовать, чтобы дефект сплайна был равен единице, то p=1, т.е. его производная должна быть непрерывна. Это даёт ещё n уравнений:

$$P'_{2,i}(\tilde{x}_i) = P'_{2,i+1}(\tilde{x}_i),$$

i=1,2,...,n (во внутренних точках $ilde{x}_i$ «стыкуются» производные соседних трёхчленов).

Итак, получилось 3n+1 уравнение для нахождения 3n+3 коэффициентов n+1 квадратичного полинома. Как и ранее, для замыкания системы надо добавить еще два граничных условия. Они также могут быть разные. Например, краевые условия на производную:

$$\begin{cases} P'_{2,i}(x_0) = y'_0, \\ P'_{2,i+1}(x_n) = y'_n. \end{cases}$$

Получаем систему линейных уравнений. Далее решается система, и по найденным коэффициентам строятся квадратные трёхчлены для каждого отрезка интерполяции.