NATIONAL AVIATION FACILITIES EXPERIMENTAL CENTER ATL--ETC F/G 21/7 EXHAUST EMISSIONS CHARACTERISTICS FOR A GENERAL AVIATION LIGHT---ETC(U) AD-A074 338 AUG 79 E E BECKER FAA-NA-79-30 UNCLASSIFIED FAA-RD-79-67 1 OF 2 AD A074338

Report No. FAA-RD-79-67

LEVELLOS

EXHAUST EMISSIONS CHARACTERISTICS
FOR A GENERAL AVIATION LIGHT-AIRCRAFT

TELEDYNE CONTINENTAL MOTORS 6-285-B

(TIARA) PISTON ENGINE

AD A 0 74338

Eric E. Becker

DE COLUMNICATION OF THE PARTY IS TO SERVICE TO SERVICE

FINAL REPORT

AUGUST 1979

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590

 $79^{\circ}09^{\circ}26^{\circ}026$

DOC FILE COPY

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

1. Report No. 2. Government Acce	ession No. 3. Recipient's Catalog No.
FAA-RD-79-67	3. Recipient's Colony No.
4. Title and Subtitle	5 Repair Pare
EXHAUST EMISSIONS CHARACTERISTICS FOR A	
AVIATION LIGHT-AIRCRAFT TELEDYNE CONTIN	ENTAL MOTORS 6. Performing Organization Code
6-285-B PISTON ENGINE.	Control to the Associate Theory of the Association of
7	8. Performing Organization Report No.
TTARA) PEric E. Becker	FAA-NA-79-30
9. Performing Organization Name and Addless	10. Work Unit No. (TRAIS)
Federal Aviation Administration	IV. WORK UNIT NO. (TRAIS)
National Aviation Facilities Experiment	al Center 11. Contract or Grant No.
Atlantic City, New Jersey 08405	201-521-100
	13. Type of Resert and Period Covered
12. Sponsoring Agency Name and Address	(9)
U.S. Department of Transporation	(12)
Federal Aviation Administration Systems Research and Development Servic	Final hep
Washington, D.C. 20590	14. Sponsaling Ayency Code
15. Supplementary Notes	
6. Abstract	
The Teledyne Continental Motors 6-285-B	constant (C/N700106) and the
	engine (5/N/00100) was tested at the
National Aviation Facilities Experiment	al Center (NAFEC) to develop an exhaust
National Aviation Facilities Experiment emissions data base. This data base co	al Center (NAFEC) to develop an exhaust insists of current production baseline
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emi	al Center (NAFEC) to develop an exhaust insists of current production baseline ssions data, effects of leaning-out the f
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emi schedule on cylinder head temperatures,	al Center (NAFEC) to develop an exhaust insists of current production baseline ssions data, effects of leaning-out the fand data showing ambient effects on exhaust
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emi schedule on cylinder head temperatures, emissions and cylinder head temperature	al Center (NAFEC) to develop an exhaust insists of current production baseline assions data, effects of leaning-out the fand data showing ambient effects on exhaus. The engine operating with its current
National Aviation Facilities Experiment emissions data base. This data base co- emissions characteristics, lean-out emi- schedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul	al Center (NAFEC) to develop an exhaust possists of current production baseline assions data, effects of leaning-out the fand data showing ambient effects on exhaus. The engine operating with its current do not meet the proposed Environmental
National Aviation Facilities Experiment emissions data base. This data base co- emissions characteristics, lean-out emi- schedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul- Protection Agency (EPA) standard for ca	al Center (NAFEC) to develop an exhaust masists of current production baseline assions data, effects of leaning-out the fand data showing ambient effects on exhaus. The engine operating with its current do not meet the proposed Environmental arbon monoxide (CO) under sea level
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine di	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhauss. The engine operating with its current do not meet the proposed Environmental irbon monoxide (CO) under sea level do, however, meet the proposed EPA standar
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxide	al Center (NAFEC) to develop an exhaust ensists of current production baseline assions data, effects of leaning-out the fand data showing ambient effects on exhaus. The engine operating with its current do not meet the proposed Environmental arbon monoxide (CO) under sea level d, however, meet the proposed EPA standardes of nitrogen (NOx) under sea level
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxide standard-day conditions. The results of	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhause. The engine operating with its current do not meet the proposed Environmental into monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOx) under sea level fengine testing under different ambient
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxide standard-day conditions. The results of conditions are also presented, and these	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhause. The engine operating with its current do not meet the proposed Environmental into monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOx) under sea level fengine testing under different ambient is results show a trend toward higher level
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxidestandard-day conditions. The results of conditions are also presented, and these of emissions output for CO and HC under	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhause. The engine operating with its current do not meet the proposed Environmental into monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOx) under sea level fengine testing under different ambient
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxide standard-day conditions. The results of conditions are also presented, and these	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhause. The engine operating with its current do not meet the proposed Environmental into monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOx) under sea level fengine testing under different ambient is results show a trend toward higher level
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxidestandard-day conditions. The results of conditions are also presented, and these of emissions output for CO and HC under	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhause. The engine operating with its current do not meet the proposed Environmental into monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOx) under sea level fengine testing under different ambient is results show a trend toward higher level
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxidestandard-day conditions. The results of conditions are also presented, and these of emissions output for CO and HC under	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhause. The engine operating with its current do not meet the proposed Environmental into monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOx) under sea level fengine testing under different ambient is results show a trend toward higher level
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxidestandard-day conditions. The results of conditions are also presented, and these of emissions output for CO and HC under	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhause. The engine operating with its current do not meet the proposed Environmental into monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOx) under sea level fengine testing under different ambient is results show a trend toward higher level
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxidestandard-day conditions. The results of conditions are also presented, and these of emissions output for CO and HC under	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhause. The engine operating with its current do not meet the proposed Environmental into monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOx) under sea level fengine testing under different ambient is results show a trend toward higher level
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxidestandard-day conditions. The results of conditions are also presented, and these of emissions output for CO and HC under	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhause. The engine operating with its current do not meet the proposed Environmental into monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOx) under sea level fengine testing under different ambient is results show a trend toward higher level
National Aviation Facilities Experiment emissions data base. This data base commissions characteristics, lean-out emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine differ unburned hydrocarbons (HC) and oxidestandard-day conditions. The results of conditions are also presented, and these of emissions output for CO and HC under	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhause. The engine operating with its current do not meet the proposed Environmental into monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOx) under sea level fengine testing under different ambient is results show a trend toward higher level
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine difor unburned hydrocarbons (HC) and oxidestandard-day conditions. The results o conditions are also presented, and these of emissions output for CO and HC under slightly lower levels of NOx.	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhaust. The engine operating with its current do not meet the proposed Environmental irbon monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NO _X) under sea level fengine testing under different ambient is results show a trend toward higher lever warm-or hot-day conditions while product
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine difor unburned hydrocarbons (HC) and oxidestandard-day conditions. The results o conditions are also presented, and these of emissions output for CO and HC under slightly lower levels of NOx.	cal Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhaust. The engine operating with its current do not meet the proposed Environmental irbon monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NO _X) under sea level fengine testing under different ambient is results show a trend toward higher level warm-or hot-day conditions while product
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine difor unburned hydrocarbons (HC) and oxidestandard-day conditions. The results o conditions are also presented, and these of emissions output for CO and HC under slightly lower levels of NOx.	cal Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhaust. The engine operating with its current do not meet the proposed Environmental information monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOX) under sea level for engine testing under different ambient is eresults show a trend toward higher lever warm-or hot-day conditions while product
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine difor unburned hydrocarbons (HC) and oxidestandard-day conditions. The results o conditions are also presented, and these of emissions output for CO and HC under slightly lower levels of NOx. 17. Key Words General Aviation Oxides of Nitrogen Piston Engines Oxides Oxides Carbon Monoxide	cal Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhaust. The engine operating with its current do not meet the proposed Environmental irbon monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NO _X) under sea level for engine testing under different ambient is eresults show a trend toward higher lever warm-or hot-day conditions while product warm-or hot-day conditions while product through the National Technical Informat
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine diffor unburned hydrocarbons (HC) and oxidestandard-day conditions. The results o conditions are also presented, and these of emissions output for CO and HC under slightly lower levels of NOx. 17. Key Words General Aviation Piston Engines Oxides of Nitrogen Carbon Monoxide Emissions (Pollution)	cal Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhaust. The engine operating with its current do not meet the proposed Environmental information monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NOX) under sea level for engine testing under different ambient is eresults show a trend toward higher lever warm-or hot-day conditions while product
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine difor unburned hydrocarbons (HC) and oxidestandard-day conditions. The results o conditions are also presented, and these of emissions output for CO and HC under slightly lower levels of NOx. 17. Key Words General Aviation Oxides of Nitrogen Piston Engines Oxides Oxides Carbon Monoxide	cal Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhaust. The engine operating with its current do not meet the proposed Environmental irbon monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NO _X) under sea level for engine testing under different ambient is eresults show a trend toward higher lever warm-or hot-day conditions while product warm-or hot-day conditions while product through the National Technical Informat
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine diffor unburned hydrocarbons (HC) and oxidestandard-day conditions. The results o conditions are also presented, and these of emissions output for CO and HC under slightly lower levels of NOx. 17. Key Words General Aviation Piston Engines Oxides of Nitrogen Carbon Monoxide Emissions (Pollution) Unburned Hydrocarbons	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhaust. The engine operating with its current do not meet the proposed Environmental irbon monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NO _X) under sea level fengine testing under different ambient is eresults show a trend toward higher level warm-or hot-day conditions while product warm-or hot-day conditions while product through the National Technical Informat Service, Springfield, Virginia 22161
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine diffor unburned hydrocarbons (HC) and oxidestandard-day conditions. The results o conditions are also presented, and these of emissions output for CO and HC under slightly lower levels of NOx. 17. Key Words General Aviation Piston Engines Oxides of Nitrogen Carbon Monoxide Emissions (Pollution) Unburned Hydrocarbons 19. Security Classif. (of this report) 20. Security Classif.	ral Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhaust. The engine operating with its current do not meet the proposed Environmental irbon monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NO _X) under sea level for engine testing under different ambient is results show a trend toward higher level warm-or hot-day conditions while product warm-or hot-day conditions while product Service, Springfield, Virginia 22161
National Aviation Facilities Experiment emissions data base. This data base co emissions characteristics, lean-out emischedule on cylinder head temperatures, emissions and cylinder head temperature full-rich production fuel schedule coul Protection Agency (EPA) standard for castandard-day conditions. The engine diffor unburned hydrocarbons (HC) and oxidestandard-day conditions. The results o conditions are also presented, and these of emissions output for CO and HC under slightly lower levels of NOx. 17. Key Words General Aviation Piston Engines Oxides of Nitrogen Carbon Monoxide Emissions (Pollution) Unburned Hydrocarbons 19. Security Classif. (of this report) 20. Security Classif.	al Center (NAFEC) to develop an exhaust insists of current production baseline issions data, effects of leaning-out the fand data showing ambient effects on exhaust. The engine operating with its current do not meet the proposed Environmental irbon monoxide (CO) under sea level do, however, meet the proposed EPA standaries of nitrogen (NO _X) under sea level fengine testing under different ambient is eresults show a trend toward higher level warm-or hot-day conditions while product warm-or hot-day conditions while product through the National Technical Informat Service, Springfield, Virginia 22161

Pa	15 = 3 T •:	333	**	2 x x 32 3	*	
	inches inches feet yands miles	square inches square yards square miles acres	ounces pounds short tons	fluid ounces pints querts qualtons cubic feet cubic yards	Fabrenheit temperature	25002 091
Multiply by LENGTH	23.4 2.1.3.3.4 2.6.5.3.4 2.6.6.3.4	IAS IAS	0.036 2.2 1.1 VOLUME	0.03 2.1 7.06 0.26 35 1.3	TEMPERATURE (exact) 9/5 (then e add 32)	20 120
Approximate Conversions from Matric Measures When Yes Know Multiply by To find LENGTH	Centimeters meters meters kilometers	square centimeters square kilometers square kilometers hectares (10,000 m²)	grants kilogrants tonnes (1000 kg)	milisiters liters liters Cubic maters	TEMP Celsius temperature	32 40 20 32
1	6 e e 5	ት ግ ያ	.3.	ē "ዩ"e	٥	* 0,10,
				interior de la constanta de la	- - 	1 inche
į	5 5 c 5	\$ \$ \$ \$ \$ \$		111	`e°e v	10. 286,
Mossures To Find	Centimeters Centimeters Milameters Ailameters	square centimeters square meters square meters square kilometers hectares	grams kilograms tonnes	milliiters milliiters milliiters liters liters	cubic meters cubic meters Celsius	tables, see NBS Misc. Put
Apprenimate Conversions to Motric Me ten You Know Muliphy by	2.5 30 1.6 1.6	6.5 0.09 0.8 2.6 0.4	28 0.45 0.9 VOLUME	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	TEMPERATURE (exact)	32) 32) 32) rsions and more detailed. Catalog No. C13.10:286
Apprezimate Con: When You Know	inches feet vads miles	square inches square foot square yards square miles.	ounces pounds short tons (2000 (b)	tesspoons tablespoons fluid cunces cups prints quarts quarts spallions	Cubic yards Cubic yards TEMPE Fahranheit	superature 32) 22) 122) 123) 124 (exactly), For other exact conversions and more detailed tables, see NBS Misc. Publ. 286, Units of Weights and Messures, Price \$2.25, SD Catalog No. C13.10.286.
1	e	<u> የ</u> ቀምነ	8 2	12 - 2 - 23 12 - 2 - 23	· 5	'1 in = 2.54 (er Units of Weights

The state of the s	
Accession For	
Acces.	
Val. 1818	
TABLE OF CONTENTS Sy.	
TABLE OF CONTENTS Sy. It ricalled	\
CI 10 May	. \
TABLE OF CONTENTS &	
1 de D	Y
	/
Ma Wilder	Page
INTRODUCTION Dist Availability	/
INTRODUCTION	1
Purpose Background	
Power / M specific	1
Purpose	1
Background	
and the line of the latter and the l	
DISCUSSION	2
and the same the second of the	
Description of TCM 6-285-B (TIARA)	2
Description of Test Set-Up and Basic Facilities	2
Description of Air Induction System and Airflow Computations	5
Description of Fuel Flow System	5
Description of Cooling Air System	7
Description of Test Procedures and EPA Standards	7
Description of Emissions Measurement System (Reference 3)	9
Description of Sample Handling System	15
Description of Filtration System	15
Computation Procedures	15
Control of the Contro	
RESULTS	22
General Comments	22
Results of Baseline Tests (Landing-Takeoff Cycle Effects)	22
Results of Lean-Out Tests	23
Results of Tests with Varying Spark Settings	31
Results of fests with varying spark settings	21
CIRCURY OF PROIT MO	
SUMMARY OF RESULTS	40
Exhaust Emissions	40
Maximum Cylinder Head Temperatures	40
Critical Landing and Takeoff Cycle	40
Optimum Spark Setting	41
CONCLUSIONS	41
REFERENCES	43

APPENDICES

- A Fuel Sample Analysis
- Composition of Air (General Properties)
 NAFEC Test Data and Working Plots for Analysis and Evaluation
 TCM 6-285-B (TIARA) C

LIST OF ILLUSTRATIONS

Figure		Page
1	Typical Sea Level Propellor Test StandTCM 6-285-B (TIARA) Engine Installation-Emissions Testing	3
2	Engine InstallationNAFEC General Aviation Piston Engine Test FacilityTCM 6-285-B (TIARA) Engine Test Installation	4 on
3	NAFEC Air Induction (Airflow Measurement) System for Light Aircraft Piston Engine Emission Tests	6
4	NAFEC Fuel Flow System for Light Aircraft Piston Engine Emission Test	8
5	Schematic of Emissions Measurement Systems and Measurements Characteristics	10
6	Beckman Model 402 THC Analyzer (1.5 PSI Unmodified)	12
7	Beckman Model 402 THC Analyzer (1.5 PSI Modified)	12
8	Beckman Model 402 THC Analyzer (3 PSI Unmodified)	13
9	Exhaust Gas Molecular Weights	18
10	Relation of Carbon Monoxide and Hydrogen	20
11	Total Emissions Characteristics for a TCM 6-285-B (TIARA) Engine Operating Under Varying Sea Level Induction Air Temperatures-Production Rich Limit	24
12	Total Emissions Characteristics for a TCM 6-285-B (TIARA) Engine with Different Fuel Schedule Adjustments-Sea Level Standard Day	25
13	Total Emissions Characteristics for a TCM 6-285-B (TIARA) Engine Operating Under Varying Sea Level Induction Air Temperatures (Takeoff and Climb Modes Both set to 100-percent Power)Production Rich Limit	27

LIST OF ILLUSTRATION (Continued)

Figure		Page
14	Total Emissions Characteristics for a TCM 6-285-B With Different Fuel Schedule AdjustmentsSea Level Standard Day (Takeoff and Climb Modes Both set to 100-percent Power)	28
15	Sea Level Standard-Day Maximum Cylinder Head Temperature for Different Power Mode Conditions and Varying Fuel- Air-RatiosTCM 6-285-B (TIARA) Engine	32
16	Sea Level Warm-Day (T ₁ -80° F) Maximum Cylinder Head Temperature for Different Power Mode Conditions and Varying Fuel-Air-RatiosTCM 6-285-B (TIARA) Engine	33
17	Sea Level Hot-Day (T ₁ -100° F) Maximum Cylinder Head Temperature for Different Power Mode Conditions and Varying Fuel-Air-RatiosTCM 6-285-B (TIARA) Engine	34
18	Effect of Varying Spark Setting on Engine Performance and Exhaust Emissions—Takeoff Mode	37
19	Effect of Varying Spark Setting on Engine Performance and Exhaust Emissions—Climb Mode	38
20	Effect of Varying Spark Setting on Engine Performance and Exhaust Emissions-Approach Mode	39

LIST OF TABLES

Table		Page
1	TCM 6-285-B (TIARA) Engine	2
2	EPA Five-Mode LTO Cycle	7
3	FAA/NAFEC Seven-Mode LTO Cycle	7
4	Maximum Five-Mode LTO Cycle	9
5	Minimum Five-Mode LTO Cycle	9
6	Summary of Exhaust Emissions (CO) Reduction Possibilities for a TCM 6-285-B EngineSea Level Standard Day (Except as Noted)Air \(\Delta P = 3.0 \) in H2O	29
7	Summary of Engine Performance and Exhaust Emissions Characteristics for Three Different Spark Settings (°BTC)Full Rich Full Schedule	35

INTRODUCTION

PURPOSE.

General aviation piston engine exhaust emission tests were conducted at the National Aviation Facility Experimental Center (NAFEC) for the following reasons:

- 1. Determine and establish total exhaust emissions characteristics for a representative group of current production general aviation piston engines.
- 2. Determine the effects of leaning-out of the fuel metering system on exhaust emissions.
- 3. Verify the acceptability of test procedures, testing techniques, and instrumentation.
- 4. Determine reductions in operating limits and safety margins resulting from fuel system adjustments/modifications evaluated for improved piston engine exhaust emissions characteristics.

BACKGROUND.

Beginning in 1967, Congress enacted a series of laws which added environmental considerations to the civil aviation safety, control, and promotional functions of the Federal Aviation Administration (FAA). This legislation was in response to the growing public concern over environmental degradation. Thus, the FAA was committed to the development, evaluation, and execution of programs designed to identify and minimize the undesirable environmental effects attributable to aviation.

In accordance with the Clean Air Act Amendments of 1970, the Environmental Protection Agency (EPA) established emission standards and outlined test procedures when it used EPA rule part 87 in January 1973. The Secretary of Transportation and, therefore, the FAA was charged with the responsibility for issuing regulations to implement this rule and enforcing these standards.

Implementation of this rule was contingent on the FAA's finding that safety was not impaired by whatever means was employed to achieve the standards. For this reason the FAA undertook a program, subsequent to the issuance of the EPA emission standards in July 1973, to determine the feasibility of implementation, to verify test procedures, and to validate test results.

There was concern that the actions suggested in order to comply with the EPA emission standards, such as operating engines at leaner mixture settings during landing and takeoff cycles, might compromise safety and/or significantly reduce engine operating margins. Therefore, the FAA contracted with Avco Lycoming and Teledyne Continental Motors (TCM) to select engines that they considered typical of their production, test these engines as normally produced

to establish a baseline emissions data base, and then alter (by lean-out adjustments) the fuel schedule and ignition timing to demonstrate methods by which the proposed EPA limits could be reached and identify hazardous operating conditions. Independent verification of data was accomplished by the FAA at NAFEC by the duplication of the manufacturer's tests.

This report presents the NAFEC test results for the TCM 6-285-B (TIARA) piston engine (S/N700106). It should be noted that since the time of these tests, the EPA has rescinded the promulgated piston engine standards (reference 1). This work is reported upon herein in the same light as it would have been if the requirements were still in effect.

DISCUSSION

DESCRIPTION OF TCM 6-285-B (TIARA).

The 6-285-B engine tested at NAFEC is a geared fuel injected, horizontally opposed engine with a nominal 406 cubic inch displacement (cid), rated at 285 brake horsepower (bhp) for a nominal brake specific fuel consumption (bsfc) of 0.50. This engine is designed to operate on 100/130 octane aviation gasoline (appendix A--Fuel Sample Analysis of NAFEC Test Fuel). The vital statistics for this engine are provided in table 1.

TABLE 1. TCM 6-285-B (TIARA)

No. of Cylinders	6
Cylinder Arrangement	но
Max. Engine Takeoff Power (HP, RPM)	285, 4000/2000*
Bore and Stroke (in.)	4.875x3.625
Displacement (cu. in.)	406
Weight, Dry (1bs)Basic Engine	375
Propeller Drive	Geared
Fuel GradeOctane Rating	100/130
Compression Ratio	9.0:1
Max. Cylinder Head Temperature Limit (°F)	460
*Drive Ratio	0.50:1

DESCRIPTION OF TEST SET-UP AND BASIC FACILITIES.

For the NAFEC sea level static tests, the engine was installed in the propeller test stand shown in figures 1 and 2. This test stand was located in the NAFEC General Aviation Piston Engine Test Facility. The test facility provided the following capabilities for testing light aircraft piston engines:

FIGURE 1. TYPICAL SEA LEVEL PROPELLOR TEST STAND--TCM 6-285-B (TIARA) ENGINE INSTALLATION-EMISSIONS TESTING

FIGURE 2. ENGINE INSTALLATION--NAFEC GENERAL AVIATION PISTON ENGINE TEST FACILITY--TCM 6-285-B (TIARA) ENGINE TEST INSTALLATION

Two basic air sources-dry bottled and ambient air (1)

(2) Ambient temperatures (20 to 140 degrees Fahrenheit (°F))

(3) Nominal sea level pressures (28.50 to 31.50 inches of mercury absolute (inhgA)

Humidity (specific humidity--0 to 0.020 lb of water (H20) vapor/lb dry air)

(5) Fuel (100/130 octane aviation gasoline--a dedicated 5,000-gallon tank)

DESCRIPTION OF AIR INDUCTION SYSTEM AND AIRFLOW COMPUTATIONS.

The airflow system (induction system) utilized at NAFEC for testing lightaircraft piston engines is illustrated in figure 3. This system incorporated a redundant airflow measuring system for accuracy and reliability. In the high-flow measuring section NAFEC utilized a 3.792-inch orifice and an Autronics air meter (model 100-750S). The capability of this high-flow system ranged from 500 to 3,000 pounds per hour with an estimated tolerance in flow accuracy of ± 2 percent. The low-flow measuring section utilized a small 1.375-inch orifice and an Autronics air meter (model 100-100S). The capability of this system ranged from 50 to 500 pounds per hour with an estimated tolerance in flow accuracy of +3 percent. The size of the basic air duct was 8.0 inches (inside diameter) for the high-flow system and 2.0 inches (inside diameter) for the low-flow system.

The airflow was computed from the orifice differential pressure and induction air density using the following equation:

Wa = (1891) (C_f)
$$(d_0)^2$$
 [(.03609) ΔP_0]^{1/2} (Reference 2)

 $\Delta P = inH_2O$ (differential air pressure) $\rho = 1b/ft^3$ (induction air density)

do = inches (orifice diameter)

Cf = flow coefficient for orifice (nondimensional)

1891 = conversion constant for airflow in pounds per hour (1b/h).

For the 3.792-inch orifice this equation simplifies to:

Wa = (16,994.5) [(.03609)
$$\Delta P_{\rho}$$
]^{1/2} = 3228.5 (ΔP_{ρ})^{1/2}

For the 1.375-inch orifice this equation simplifies to:

Wa =
$$(2,484.7)$$
 [(.03609) ΔP_0]^{1/2} = 472.03 (ΔP_0)^{1/2}

DESCRIPTION OF FUEL FLOW SYSTEM.

The fuel flow system utilizied during the NAFEC light-aircraft piston engine emission tests incorporated rotameters, turboflow meters, and a burette. high-flow section incorporated a rotameter in series with a high-flow turbometer, while the low-flow section incorporated a low-flow turbometer in series with a burette. The high-flow system was capable of measuring fuel flows from

LOW-FLOW METERING SECTION

NAFEC AIR INDUCTION (AIRFLOW MEASUREMENT) SYSTEM FOR LIGHT-AIRCRAFT PISTON ENGINE EMISSION TESTS FIGURE 3.

50 lb/h up to 300 lb/h with an estimated tolerance of ± 1.0 percent. The low-flow system was capable of flow measurements ranging from 0-50 lb/h with an estimated tolerance of ± 2.0 percent. Figure 4 illustrates the NAFEC fuel flow system in schematic form.

DESCRIPTION OF COOLING AIR SYSTEM.

The NAFEC piston engine test facility also incorporated a system which provided cooling air (see figure 1) to the engine cylinders. The engine mounted in the test stand was enclosed in a simulated nacelle, and cooling air was provided to this enclosure from an external source. The cooling air temperature was maintained within $\pm 10^{\circ}$ F of the induction air supply temperature for any specified set of test conditions. This not only minimized variations in temperature but also minimized variations in the specific weight of air for all test conditions. All of the basic cooling air tests conducted with the 6-285-B engine (take-off, climb, and approach modes (see appendix C)) were conducted with differential cooling air pressures of 3.0 inH₂O. During taxi mode tests, the cooling air differential pressure was approximately equal to 0 inH₂O.

DESCRIPTION OF TEST PROCEDURES AND EPA STANDARDS.

The data presented in this report were measured while conducting tests in accordance with specific landing and takeoff cycles (LTO) and by modal leanout tests. The basic EPA LTO cycle is defined in table 2.

The FAA/NAFEC contract and in-house test programs utilized an LTO cycle which was a modification of the table 2 test cycle. Table 3 defines this modified LTO cycle which was used to evaluate the total full rich emission characteristics of light aircraft piston engines.

TABLE 2. EPA FIVE-MODE LTO CYCLE

Mode No.	Mode Name	Time-In-Mode (Min.)	Power (%)	Engine Speed (%)
1	Taxi/idle (out)	12.0	*	*
2	Takeoff	0.3	100	100
3	Climb	5.0	75-100	*
4	Approach	6.0	40	*
5	Taxi/idle (in)	4.0	*	*

^{*}Manufacturer's Recommended

TABLE 3. FAA/NAFEC SEVEN-MODE LTO CYCLE

Mode	Mode	Time-In-Mode	Power	Engine Speed
No.	Name	(Min.)	_(%)_	(%)
1	Idle (out)	1.0	*	
2	Taxi (out)	11.0	*	*
3	Takeoff	0.3	100	100
4	Climb	5.0	80	*
5	Approach	6.0	40	*
6	Taxi (in)	3.0	*	*
7	Idle (in)	1.0	*	*
*Manu	facturer's Re	commended		

NAPEC FUEL FLOW SYSTEM FOR LIGHT-AIRCRAFT PISTON ENGINE EMISSION TESTS FIGURE 4.

An additional assessment of the test data clearly indicates that further evaluations of the general aviation piston exhaust emission must be analyzed with the climb mode emissions at 100-percent and 75-percent power setting (tables 4 and 5). This would then provide the basis for a complete evaluation of test data and permit a total assessment of the proposed EPA standard based on LTO cyclic tolerances.

TABLE 4. MAXIMUM FIVE-MODE LTO CYCLE

Mode No.	Mode Name	Time-In-Mode (Min.)	Power (%)	Engine Speed (%)
1	Taxi (out)	12.0	505 *	*
2	Takeoff	0.3	100	100
3	Climb	5.0	100	100
4	Approach	6.0	40	*
5	Taxi (in)	4.0	*	*

^{*}Manufacturer's Recommended

TABLE 5. MINIMUM FIVE-MODE LTO CYCLE

Mode No.	Mode Name	Time-In-Mode (Min)	Power (%)	Engine Speed (%)
1	Taxi (out)	12.0	*	*
2	Takeoff	0.3	100	100
3	Climb	5.0	75	*
4	Approach	6.0	40	*
5	Taxi (in)	4.0	*	*

^{*}Manufacturer's Recommended

The EPA Standards (reference 1) that were evaluated during this program were:

Carbon Monixide (CO)--0.042 lb/cycle/rated BHP Unburned Hydrocarbon (HC)--0.0019 lb/cycle/rated BHP Oxides of Nitrogen (NO_X)--0.0015 lb/cycle/rated BHP

DESCRIPTION OF EMISSIONS MEASUREMENT SYSTEM (Reference 3).

EMISSION ANALYZERS. The instrumentation used to monitor the exhaust emissions from general aviation piston engines was basically the same as that recommended by EPA, but with a number of modifications and additions to enhance the reliability and accuracy of the system. A schematic of the emissions measurement system is shown in figure 5.

FIGURE 5. SCHEMATIC OF EMISSIONS MEASUREMENT SYSTEMS AND MEASUREMENT CHARACTERISTICS

EMISSION INSTRUMENTATION ACCURACY/MODIFICATION. The basic analysis instrumentation utilized for this system is explained in the following paragraphs.

Carbon Dioxide. The carbon dioxide (CO₂) subsystem is constructed around a Beckman model 864-23-2-4 nondispersive infrared analyzer (NDIR). This analyzer has a specified repeatability of +1 percent of full scale for each operating range. The calibration ranges on this particular unit are: Range 1, 0 to 20 percent; Range 3, 0 to 5 percent. Stated accuracy for each range is, +0.2 and +0.05 percent, respectively.

Carbon Monoxide. The subsystem used to measure carbon monoxide (CO) is constructed around a Beckman model 865-X-4-4-4 NDIR. This analyzer has a specified repeatability of +1 percent of full scale for ranges 1 and 2 and +2 percent of full scale for range 3.

Range 1 has been calibrated for 0 to 20 percent by volume, range 2 for 0 to 1,000 parts per million (ppm) and range 3 for 0 to 100 ppm. The widerange capability of this analyzer is made possible by using stacked sample cells which in effect give this analyzer six usable ranges when completely calibrated.

Effects of interfering gases, such as CO₂ and water vapor, were determined and reported by the factory. Interferences from 10 percent CO₂ were determined to be 12 ppm equivalent CO, and interferences from 4 percent water vapor were determined to be 6 ppm CO equivalent. Even though the interference from water vapor is negligible, a condenser is used in the CO/CO₂ subsystem to eliminate condensed water in the lines, analyzers, and flowmeters. This condensation would have decreased analyzer sensitivity and necessitated more frequent maintenance if it had been eliminated.

Total Hydrocarbons. The system that is used to measure total hydrocarbons is a modified Beckman model 402 heated flame ionization detector. This analyzer has a full-scale sensitivity that is adjustable to 150,000 ppm carbon with intermediate range multipliers 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001 times full scale.

Repeatability for this analyzer is specified to be +1 percent of full scale for each range. In addition, this modified analyzer is linear to the full-scale limit of 150,000 ppm carbon when properly adjusted. The two major modifications which were made to this analyzer were the installation of a very fine metering value in the sample capillary tube, and the installation of an accurate pressure transducer and digital readout to monitor sample pressure. Both of these modifications were necessary because of the extreme pressure sensitivity of the analyzer (figures 6 through 8). Correct instrument response depends on the amount of sample passing through a capillary tube; as a result, if there is too high a sample flow, the analyzer response becomes nonlinear when a high concentration gas is encountered. Sample flow may be controlled by varying the pressure on this capillary or increasing the length of the capillary. On this analyzer, linearity to 50,000-ppm carbon was obtained by reducing the sample pressure to 1.5 pounds per square inch gauge (psig). However, the need

FIGURE 6. BECKMAN MODEL 402 THC ANALYZER 1.5 PSI UNMODIFIED)

FIGURE 7. BECKMAN MODEL 402 THC ANALYZER (1.5 PSI MODIFIED)

for linearity to 120,000-ppm carbon was anticipated. Further reduction of the sample pressure increased the noise level of the analyzer to an unacceptable level. In order to reduce the flow through the capillary without using a lower pressure, either the length or the resistance of the capillary had to be increased. The standard modification for this analyzer in order to limit flow is the installation of an additional length of capillary tubing. This procedure requires trial and error determination of proper capillary length and is a permanent modification that limits sensitivity at low hydrocarbon levels. By installing a metering valve in the capillary, flow could be selectively set at either low flow for linearity at high concentrations or high flow for greater sensitivity at low concentrations. Installation time was reduced by eliminating the cut-and-try procedure for determining capillary length.

The addition of a sensitive pressure transducer and digital readout to monitor sample pressure was needed since the pressure regulator and gauge supplied with the analyzer would not maintain the pressure setting accurately at low pressures. Using the digital pressure readout, the sample pressure could be monitored and easily maintained to within 0.05 inH20.

Oxides of Nitrogen. Oxides of nitrogen (NO_X) are measured by a modified Beckman model 951H atmospheric pressure, heated, chemiluminescent analyzer (CL). This analyzer has a full-scale range of 10,000 ppm with six intermediate ranges. Nominal minimum sensitivity is 0.1 ppm on the 10 ppm full-scale range.

FIGURE 8. BECKMAN MODEL 402 THC ANALYZER (3PSI UNMODIFIED)

The atmospheric pressure analyzer was chosen because of its simplicity, ease of maintenance, and compactness. Anticipated water vapor problems in the atmospheric pressure unit were to be handled by the heating of the internal sample train. Interference from ${\rm CO_2}$ quenching, common in the atmospheric pressure type CL analyzer, was checked and found to be nonexistent.

A series of major modifications were performed by the manufacturer on this analyzer to insure compliance with specifications. One such modification was installed in order to maintain the temperature of the sample stream above the dew point of the sample gas. Originally this analyzer was specified to maintain a temperature of 140° F at all points in contact with the sample. After a survey of the 951H analyzers in use on FAA projects, it was determined that this temperature was not being achieved because the method used to heat the components was inadequate. A recommendation was made to the manufacturer to install a positive method of heating the sample tube compartment and reaction chamber that would be thermostatically controlled. In time, the modification was made, and this problem was eliminated. Increasing the temperature of the internal sample components eliminated the condensed water problem; however, the elevated temperature caused an instability in the photomultiplier tube output. Another recommendation was made to thermostatically control the temperature of this tube. This was accomplished by installing an electronic cooling jacket designed to maintain the photomultiplier tube at a constant temperature below the internal case temperature.

A further modification required was the addition of a flow control valve to adjust and balance the flow rate through the NO and NO_{X} legs. This valve replaced a restrictor clamp that was used by the manufacturer to set the NO to NO_{X} flow balance. The problem that was encountered with this clamp was that it was not a positive method of adjusting the restriction on the capillary. The clamp compression was affected by the flexible material on which the clamp was mounted and the variable flexibility of the teflon capillary as it was heated. This caused the restriction on the capillary to change with time and caused permanent deformation of the capillary allowing only an adjustment that would increase the restriction.

Oxygen Measurement. Oxygen (O_2) was measured by a Beckman model OM-11 oxygen analyzer. This analyzer uses a polagraphic type sensor unit to measure oxygen concentration. An advanced sensor and amplification system combine to give an extremely fast response and high accuracy. Specified response for 90 percent of final reading is less than 200 milliseconds (ms) with an accuracy of less than ± 0.1 -percent \pm

EMISSIONS INSTRUMENTATION MODIFICATION STATUS DURING THE TESTING OF THE 6-285-B (TIARA) ENGINE. The tests conducted with the TCM 6-285-B (TIARA) engine utilized all of the above noted instrumentation and the latest modifications to this instrumentation. The OM-11 O2 analyzer and the latest prototype 951H NO $_{\rm X}$ analyzer were both in use.

All of the emissions and exhaust constituent-measuring instruments/analyzers incorporated the latest specified modifications described in this report.

DESCRIPTION OF SAMPLE HANDLING SYSTEM.

Exhaust samples are transported to the analysis instrumentation under pressure through a 35-foot-long, 3/8-inch 0.D., heated, stainless steel sample line. The gas is first filtered and then pumped through this line by a heated Metal Bellows model MB-158 high temperature stainless steel sample pump. The pump, filter, and line are maintained at a temperature of 300° +4° F to prevent condensation of water vapor and hydrocarbons. At the instrument console, the sample is split to feed the hydrocarbon, oxides of nitrogen, and CO/CO2/O2 subsystems which require different temperature conditioning. The sample gas to the total hydrocarbon subsystem is maintained at 300° F while the temperature of remaining sample gas to the NO_x and CO/CO₂/O₂ system is allowed to drop to 150° F. Gas routed to the oxides of nitrogen subsystem is then maintained at 150° F, while the gas to the $\rm CO/CO_2/O_2$ subsystem is passed through a 32° F condenser to remove any water vapor present in the sample. Flow rates to each analyzer are controlled by a fine-metering valve and are maintained at predetermined values to minimize sample transport and system response time. Flow is monitored at the exhaust of each analyzer by three 15-centimeter (cm) rotameters. Two bypasses are incorporated into the system to keep sample transport time through the lines and condenser to a minimum without causing adverse pressure effects in the analyzers.

DESCRIPTION OF FILTRATION SYSTEM.

Particulates are removed from the sample at three locations in the system, thereby minimizing downtime due to contaminated sample lines and analyzers (figure 5). Upstream of the main sample pump is a heated clamshell-type stainless steel filter body fitted with a Whatman GF/C glass fiber paper filter element capable of retaining particles in the 0.1 micron range. A similar filter is located in the total hydrocarbon analyzer upstream of the sample capillary. A Mine Safety Appliances (MSA) type H ultra filter capable of retaining 0.3 micron particles is located at the inlet to the oxides of nitrogen and $CO/CO_2/O_2$ subsystems.

COMPUTATION PROCEDURES.

The calculations required to convert exhaust emission measurements into mass emissions are the subject of this section.

Exhaust emission tests were designed to measure CO_2 , CO_3 , unburned hydrocarbons (HC), $NO_{\rm X}$, and exhaust excess O_2 concentrations in percent or ppm by volume. Mass emissions were determined through calculations utilizing the data obtained during the simulation of the aircraft LTO cycle and from modal lean-out data.

COMBUSTION EQUATION. The basic combustion equation can be expressed very simply:

Fuel + Air = Exhaust Constituents

An initial examination of the problem requires the following simplifying assumptions:

- 1. The fuel consists solely of compounds of carbon and hydrogen.
- The air is a mixture of oxygen and inert nitrogen in the volumetric ratio of 3.764 parts apparent nitrogen to 1.0 part oxygen (see appendix B for additional details).
- If a stoichiometric combustion process exists, the fuel and air are supplied in chemically correct proportions.
- The fuel (which consists usually of a complex mixture of hydrocarbons) can be represented by a single hydrocarbon having the same carbon-hydrogen ratio and molecular weight as the fuel; usually C8H17 as an average fuel.

Applying the above assumptions for stoichiometric conditions, a useful general reaction equation for hydrocarbon fuel is:

$$M_f C8H_{17} + M_a (02 + 3.764N_2 + M_wH_20) \rightarrow M_1 CO_2 + M_3H_2O + M_5N_2$$
 (References 4 and 5)

Mf = Moles of Fuel Where Ma = Moles of Air or Oxygen

M₁ = Moles of Carbon Dioxide (CO₂) M₃ = Moles of Condensed Water (H₂O)

M5 = Moles of Nitrogen (N2) - Exhaust

3.764Ma = Moles of Nitrogen (N2) - In Air M_aM_w = Moles of Humidity (H₂O) - In Air

The above equation is applicable to dry air when M_{ω} is equal to zero.

From equation (1), and assuming dry air with one mole of fuel (Mf=1.0), the stoichiometric fuel-air ratio may be expressed as:

$$(F/A)_S = \frac{Wt. Fuel}{Wt. Air Required} = \frac{12.011 (8) + 1.008 (17)}{12.25 32.000 + 3.764(28.161)}$$

$$(F/A)_S = \frac{113.224}{12.25(127.008)} = 0.067$$

The mass carbon-hydrogen ratio of the fuel may be expressed as follows:

$$C/H = \frac{12.001(8)}{1.008(17)} = \frac{96.088}{17.136} = 5.607$$
 (3)

The atomic hydrogen-carbon ratio is:

$$17/8 = 2.125$$
 (4)

The stoichiometric fuel-air ratio may be expressed as a function of the mass carbon-hydrogen ratio of the fuel. The derivation of this equation is presented in reference 4.

$$(F/A)_s = \frac{C/H + 1}{11.5(C/H+3)}$$
 (5)

 $(F/A)_s = 0.067$ for a mass carbon-hydrogen ratio of 5.607

With rich (excess fuel) mixtures, which are typical for general aviation piston engines, some of the chemical energy will not be liberated because there is not enough air to permit complete oxidation of the fuel. Combustion under such conditions is an involved process. By making certain simplifying assumptions based on test results, the effect of rich mixtures may be calculated with reasonable accuracy.

For rich (excess fuel) mixtures, equation (1) will now be rewritten to express the effects of incomplete combustion:

$$M_f C_8 H_{17} + M_a (O_2 + 3.764 N_2 + M_w H_2 O) + M_1 CO_2 + M_2 CO + M_3 H_2 O + M_4 H_2 + M_5 N_2 + M_6 NO + M_7 CH_4 + M_8 O_2 + M_9 C$$
 (6)

Since only a limited number of the exhaust constituents were measured during the testing of general aviation piston engines, the above equation can only be solved by applying certain expeditious assumptions and empirical data.

An important requirement was the accurate measurement of air and fuel flows. These parameters provide the data for determining engine mass flow (W_m) , and with the aid of figure 9 (developed from reference 6), it is a simple computation to calculate the total moles $(M_{\mbox{\scriptsize tp}})$ of exhaust products being expelled by general aviation piston engines.

$$(M_{tp}) = W_m \text{ (engine mass flow) + (exh. mol. wt)}$$
 (7)

Since the unburned hydrocarbons (HC) and oxides of nitrogen (NO $_{\rm X}$) are measured wet, it becomes a very simple matter to compute the moles of HC and NO $_{\rm X}$ that are produced by light-aircraft piston engines.

M7 (Moles of HC) =
$$(ppm + 10^6) \times M_{tp}$$
 (8)

$$M_6$$
 (Moles of NO_X) = (ppm + 10⁶) x M_{tp} (9)

If the dry products $(M_{\rm dp})$ of combustion are separated from the total exhaust products $(M_{\rm tp})$, it is possible to develop a partial solution for five of the products specified in equation 6.

This can be accomplished as follows:

The summation of the mole fractions (MF) d for dry products is

$$m_1 + m_2 + m_4 + m_5 + m_8 = 1.0000$$
 (10)

 $m_1 = MF(CO_2) = %CO_2$ (measured dry), expressed as a fraction

78-28-9

FIGURE 9. EXHAUST GAS MOLECULAR WEIGHTS

m₂ = MF(CO) = %CO (measured dry), expressed as a fraction

 $m_4 = MF(H_2) = K_4$ (%CO) (see figure 10, also references 5, 6, and 7), expressed as a fraction

 $m_8 = MF(O_2) = %O_2$ (measured dry), expressed as a fraction

$$m_5 = 1.0000 - (m_1 + m_2 + m_4 + m_8) = %N_2 (dry)$$
, expressed as a fraction (11)

Utilizing the nitrogen balance equation, it is now possible to determine the moles of nitrogen that are being exhausted from the engine.

$$M_5 = 3.764M_a - (M_6 + 2); M_6 = moles (NO)$$
 (12)

The moles of exhaust dry products (M_{dp}) may now be determined by dividing equation 12 by equation 11.

$$M_{dp} = M_5 + m_5 \tag{13}$$

Using all the information available from equations (7), (8), (9), (10), (11), (12), and (13), it is now possible to determine the molar quantities for seven exhaust products specified in equation 6.

Moles
$$(CO_2) = M_1 = m_1 \times M_{dp}$$
 (14)

Moles (CO) =
$$M_2 = m_2 \times M_{dp}$$
 (15)

Moles
$$(H_2) = M_4 = m_4 \times M_{dp}$$
 (16)

Moles
$$(N_2) = M_5 = m_5 \times M_{dp}$$
 (17)

Moles
$$(O_2) = M_8 = m_8 \times M_{dp}$$
 (18)

Moles (NO) =
$$M_6$$
 = (ppm + 10⁶) x M_{tp} (20)

To determine M_3 (moles of condensed H_2O), it is now appropriate to apply the oxygen balance equation.

$$M_3 = M_a (2 + M_w) - (2M_1 + M_2 + M_6 + 2M_8) = Moles (H_2O)$$
 (21)

The remaining constituent specified in equation 6 may now be determined from the carbon balance equation 22.

$$M_9 = 8M_f - (M_1 + M_2 + M_7)$$
 (22)

A check for the total number of exhaust moles (M_{tp}) , calculated from equation 9, may now be determined from equation 23.

FIGURE 10. RELATION OF CARBON MONOXIDE AND HYDROGEN

$$M_{tp} = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_7 + M_8 + M_9$$

$$\dot{m}_1 + \dot{m}_2 + \dot{m}_3 + \dot{m}_4 + \dot{m}_5 + \dot{m}_6 + \dot{m}_7 + \dot{m}_8 + \dot{m}_9 = 1.0000$$

$$\dot{m}_1 = MF(CO_2) = M_1 + M_{tp}$$

$$\dot{m}_2 = MF(CO) = M_2 + M_{tp}$$

$$\dot{m}_3 = MF(H_2O) = M_3 + M_{tp}$$

$$\dot{m}_4 = MH(H_2) = M_4 + M_{tp}$$

$$\dot{m}_5 = MF(N_2) = M_5 + M_{tp}$$

$$\dot{m}_6 = MH(NO) = M_6 + M_{tp}$$

$$\dot{m}_7 = MF(CH_4) = M_7 + M_{tp}$$

$$\dot{m}_8 = MF(O_2) = M_8 + M_{tp}$$

The exhaust constituent mass flow rates may be computed in the following manner using each exhaust constituents molar constant with the appropriate molecular weight.

 $m_Q = MF(C) = M_Q + M_{tp}$

$$M_1 \times 44.011 = CO_2 \text{ in 1b/h}$$
 (25)
 $M_2 \times 28.011 = CO \text{ in 1b/h}$ (26)
 $M_3 \times 18.016 = H_2O \text{ in 1b/h}$ (27)
 $M_4 \times 2.016 = H_2 \text{ in 1b/h}$ (28)
 $M_5 \times 28.161 = N_2 \text{ in 1b/h}$ (29)
 $M_6 \times 30.008 = NO \text{ in 1b/h}$ (30)
 $M_7 \times 16.043 = CH_4 \text{ in 1b/h}$ (31)
 $M_8 \times 32.000 = O_2 \text{ in 1b/h}$ (32)
 $M_9 \times 12.011 = C \text{ in 1b/h}$ (33)

The exhaust fuel flow (W_{fe}), based on exhaust constituents, can now be calculated on a constituent-by-constituent basis as follows:

$$(M_1 + M_2 + M_9) \times 12.011 = 1b/h$$
 (34)

$$M_7 \times 16.043 = 1b/h$$
 (35)

$$(M_3 - M_a M_w) + M_4 \times 2.016 = 1b/h$$
 (36)

$$W_{fe} = (34) + (35) + (36) = 1b/h$$
 (37)

In a similar manner the exhaust airflow (W_{ae}) can also be calculated on a constituent-by-constituent basis:

$$M_1 \times 32.000 = 1b/h$$
 (38)

$$M_2 \times 16.000 = 1b/h$$
 (39)

$$(M_3 \times 16.000) + (M_a M_w \times 18.016) = 1b/h$$
 (40)

$$M_5 \times 28.161 = 1b/h$$
 (41)

$$M_6 \times 30.008 = 1b/h$$
 (42)

$$M_8 \times 32.000 = 1b/h$$
 (43)

$$W_{ae} = \Sigma(38) + (43) = 1b/h$$
 (44)

Using equations (37) and (44) it is now possible to determine a calculated fuel-air ratio on the basis of total exhaust constituents.

$$(F/A)_{calculated} = (37) + (44)$$
 (45)

RESULTS

GENERAL COMMENTS.

General aviation piston engine emission tests were conducted to provide the following categories of data:

- Full-rich (or production fuel schedule) baseline data for each power mode specified in the LTO test cycle.
- Lean-out data for each power mode specified in the LTO test cycle.
- Data for the above categories at different spark settings.
- 4. Data for each power mode specified in the LTO test cycle utilized cooling air flow $\Delta P = 3.0$ in H2O at takeoff, climb, and approach powers.

RESULTS OF BASELINE TESTS (LANDING-TAKEOFF CYCLE EFFECTS).

Based on an analysis of the factors affecting piston engine emissions (time in mode, F/A, ambient conditions, etc.), it can be shown that the mode conditions

having the greatest influence on the gross pollutant levels produced by the combustion process are taxi, approach, and climb when using the LTO cycle defined in tables 3, 4, and 5. The five-mode LTO cycle shows that approximately 99 percent of the total cycle time (27.3-min) is attributed to these three modal conditions. Furthermore, the taxi modes (both out and in) account for slightly less than 59 percent of the total cycle time. The remainder of the time is almost equally apportioned to the approach and climb modes (22 and 18 percent, respectively).

As a result of these time apportionments, it was decided that an investigation and evaluation of the data should be undertaken to determine which mode(s) has the greatest influence on improving general aviation piston engine emissions. The subsequent sections of this report will show the exhaust emissions characteristics for a TCM 6-285-B engine (S/N700106) and what improvements are technically feasible within the limits of safe aircraft/engine operational requirements based on sea level propeller test stand evaluations conducted at NAFEC.

The first set of data to be presented and evaluated are the five-mode baseline runs conducted to establish the current production full-rich exhaust emissions characteristics of the 6-285-B engine. These are summarized in tabular form in appendix C (see tables C-1 through C-10) and includes data that were obtained for a range of sea level ambient conditions, specified as follows:

Induction air temperature $(T_1) = 60^{\circ} \text{ F to } 130^{\circ} \text{ F}$ Cooling air temperature $(T_c) = T_1 + 10^{\circ} \text{ F}$ Induction air pressure $(P_1) = 28.50$ to 30.50 inHgA Induction air density $(\rho_1) = 0.0670$ to 0.0785 lb/ft³

Figure 11 presents five-mode baseline data in bargraph form (for different sea level ambient conditions). It also compares the total emissions characteristics of the 6-285-B engine (current production configuration) with the proposed EPA standards as a function of percent of standard. The data that were utilized to develop figure 11 is tabulated in appendix C and plotted in various forms for analysis and evaluation in figures C-1 through C-19. Tables C-19 through C-21 provide the data tabulation that was used to construct the bargraphs for T_1 =60° F, 80° F, and 100° F.

RESULTS OF LEAN-OUT TESTS.

In the subsequent sections of this report, it will be shown what improvements can be achieved as a result of making lean-out adjustments to the fuel metering device: (1) taxi mode only, (2) taxi and approach modes combined, and (3) leaning-out the climb mode to "best power" in combination with taxi and approach mode leaning.

EFFECTS OF LEANING-OUT ON CO EMISSIONS. The test data obtained as a result of NAFEC testing the TCM 6-285-B (TIARA) have been evaluated on the basis of leaning-out the taxi, approach, and climb modes while continuing the operation of the test engine at the production rich and lean limits in the takeoff mode. The results of leaning-out under this procedure are shown in bargraph form in figure 12.

TOTAL EMISSIONS CHARACTERISTICS FOR A TCM 6-285-B (TIARA) ENGINE OPERATING UNDER VARYING SEA LEVEL INDUCTION AIR TEMPERATURES--PRODUCTION RICH LIMIT FIGURE 11.

TOTAL EMISSIONS CHARACTERISTICS FOR A TCM 6-285-B (TIARA) ADJUSTMENTS--SEA LEVEL STANDARD DAY FIGURE 12.

When the taxi modes (out and in) are leaned-out from the production rich or lean limits to a fuel-air ratio of 0.075, but not lower than stoichiometric (F/A = 0.067) (see figure 12), CO emissions are reduced approximately 22 percent. However, adjustments to the taxi mode fuel schedule alone are not sufficient to bring the total five-mode LTO cycle CO emission level below the proposed federal standard.

Simultaneously, leaning-out both the taxi and approach modes to fuel-air ratios between 0.067 to 0.075 will result in additional improvements in CO emissions. In the case of operating the engine at production rich limits for takeoff and climb while operating taxi and approach at F/A = 0.070 to 0.075, the total five-mode LTO cycle CO emission level will be reduced approximately 50 percent as shown in figure 12.

Additional improvements in the total five-mode LTO cycle for CO emissions can be achieved, as shown in figure 12, if the engine is adjusted to operate at "best power" fuel-air ratios in the climb mode while operating the approach and taxi modes at F/A = 0.075 or lower (not lower than fuel-air ratio (F/A) = 0.067).

The preceding evaluation of CO emissions characteristics was based on the LTO cycle defined by table 5. However, the EPA five-mode LTO cycle defined by table 2 implies that the climb mode power levels range from 75 to 100 percent. The exhaust emissions produced will be drastically affected. Examination of the measured data produced at NAFEC shows that there is a significant difference in each engine's total LTO cycle emissions output when climbing at 100 percent power compared to climbing at 75-or 80-percent power. This data evaluation also shows that where as a CO limit of 0.042 pounds per cycle per rated brake horsepower may be approximately achievable as described previously by using the LTO cycle defined by table 5; it is not achievable using an LTO cycle defined by table 4. When one considers the following safety considerations: (1) sea level, hot-day takeoff requirements with an aircraft at heavy gross weight and (2) altitude takeoff requirements with an aircraft at heavy gross weight, it would appear that the EPA 0.042 limit for CO is not realistic and cannot be complied with unless engine operational and safety limits are totally ignored. Figures 13 and 14 illustrate the emissions characteristics that would result when operating the engine to the requirements of table 4.

Table 6 provides a summary of the NAFEC data which indicates what levels of improvement in CO emissions can be achieved by applying simple fuel management techniques (leaning-out by mixture control manipulations), albeit with drastically reduced margins between actual measured maximum cylinder head temperature (CHT) and the maximum CHT limit.

Example: Consider the engine installed in a sea level (SL) propeller stand and operating with cooling air at a $\Delta P = 3.0$ inH₂O and the following critical test conditions:

TOTAL EMISSIONS CHARACTERISTICS FOR A TCM 6-285-B (TIARA) ENGINE OPERATING UNDER VARYING SEA LEVEL INDUCTION AIR TEMPERATURES (TAKEOFF AND CLIMB MODES BOTH SET TO 100-PERCENT POWER)--PRODUCTION RICH LIMIT FIGURE 13.

NOTE:

1. THIS FIGURE IS BASED ON THE TABLE 4 LTO CYCLE WITH THE CLIMB MODE AT 100 PERCENT POWER.

TOTAL EMISSIONS CHARACTERISTICS FOR A TCM 6-285-B (TIARA) ENGINE WITH DIFFERENT FUEL SCHEDULE ADJUSTMENTS-SEA LEVEL STANDARD DAY (TAKEOFF AND CLIMB MODES BOTH SET TO 100-PERCENT POWER) FIGURE 14.

79-30-14

SUMMARY OF EXHAUST EMISSIONS (CO) REDUCTION POSSIBILITIES FOR A TCM 6-285-B ENGINE-SEA LEVEL STANDARD DAY (EXCEPT AS NOTED) - COOLING AIR P-3.0 Inhizo TABLE 6.

Cooling Air P-inH20	3.0		3.000
FIA	0.0750 0.0860 0.0860 0.0735	This Column For SL. Hot Day	0.0750 0.0860 0.0795 0.0735
Max.	390	This Column For SL. Hot Day	485 445 390
Max. CHT-*F	460	This Column For SL. Standard Day	- 460 430 375
CO 1b/Mode	2.933 0.475 7.917 1.800 13.125 0.0461 0.042 0.0041 9.8		2.933 0.475 4.000 1.800 9.208 0.0123 0.042 0097 76.9
F/A	0.0750 0.0815 0.0815 0.0705	antika TES aus dendisa	0.0750 0.0815 0.0750 0.0750
Max.	440 440 365	This Column For SL. Standard	440
CO 1b/Mode	5,600 0,588 9,792 5,000 20,980 0,0136 0,0316 75,2 175,2		5.600 0.588 7.208 5.000 18.396 0.065 0.023 53.7
F/A	0.0900 0.0880 0.0880 0.0785		0.0900 0.0880 0.0820 0.0785
Parameter	100		(C) 100 + 100
Mode	Taxi Takeoff (100%) Climb (100%) Approach 1b/Cycle 1b/Cycle/RBHP Federal Limit Dlff. = (0 - (0) ((0 + (0)) x 100 % of STD = (0) + 100		Taxi Takeoff (1002) Climb (802) Approach 1b/Cycle RBHF Federal Limit 01ff. = (0 - (0) ((0 + (0)) x 100 Z of STD = (0 + 100
	1004597861		11 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15

- 1. Ambient conditions (pressure, temperature, and density) -- SL. standard day
- 2. Fuel schedule--production rich setting
- 3. Power setting--100%
- 4. Measured max. CHT-440° F
- 5. Max. CHT limit--460° F
- 6. Margin-- 5 minus 4 20° F

If we now adjust this engine fuel schedule setting to best power or max. CHT limit (all other parameters constant based on above conditions), we now find the following changes take place:

- 1. CO emissions are improved approx. 65.5% (nominal)
- 2. Measured max. CHT increases 4.5% (from 440° F to 460° F)
- 3. Max. CHT limit--460° F
- 4. Margin-- 3 minus 2 = 0° F
- 5. Reduction in margin (max CHT) (20+20) x 100 = 100.0%

Now, if we apply the above results to a SL. hot-day condition, we arrive at the following results:

Production Rich Limit Schedule (maximum available power)

- 1. Ambient conditions-SL. hot day (100° F)
- 2. Fuel schedule--production rich setting
- 3. Power setting--maximum available based on CHT limit (95-100% EST.)
- Measured max. CHT-460° F
- 5. Max. CHT limit--460° F
- 6. Margin-- 5 minus $4 = 0^{\circ}$ F

Best Power Fuel Schedule (maximum available power)

- 1. Ambient conditions--SL. hot day
- 2. Fuel schedule-best power fuel schedule
- 3. Power setting--85-90% (EST.)
- 4. Measured max. CHT--460°F
- 5. Max. CHT limit--460°F
- 6. Margin--5 minus 4 = 0°F

NOTE: This hot-day example indicates that the engine operating at constant ΔP cooling air conditions must be operated at reduced power when taking off and climbing under leaned-out fuel schedule settings.

EFFECTS OF LEANING-OUT ON HC EMISSIONS. The test data show that the TCM 6-285-B engine meets the federal standard for unburned hydrocarbon emissions when operating at the production rich limit fuel flows (figures 11, 12, 13, and 14). Additional leaning-out in the taxi, approach, and climb modes provides added improvements, but is not required to produce HC emission levels below the federal standard.

EFFECTS OF LEANING-OUT ON NO_X EMISSIONS. Oxides of nitrogen emissions are not improved as a result of applying lean-out adjustments to the fuel metering devices. In fact, the NO_X levels are at their lowest when the engine is operating full rich as shown in figures 11, 12, 13, and 14.

EFFECTS ON ALLOWABLE MAXIMUM CYLINDER HEAD TEMPERATURE. One of the major problems that occurs as an effect of leaning-out general aviation piston engines in order to improve emissions is the increase or rise in maximum cylinder head temperatures.

Most general aviation aircraft are designed to operate with cooling air pressure differentials of 4.0 inH $_2$ 0 or less. The tests conducted with the TCM 6-285-B engine utilized 3.0 inH $_2$ 0 as the basic cooling flow condition, except in the taxi mode where the cooling air ΔP was essentially zero.

No tests were conducted using variations in cooling air flow to evaluate these effects on different lean-out schedules.

Data shown in tables C-1 through C-21 and plotted in figures 15 through 17 show the results of these tests.

In summary it can be concluded that any attempts to lean-out current production-type horizontally opposed general aviation piston engines in the takeoff mode to F/A ratios lower than production lean limits will produce CHT's that are higher than the manufacturer's specified limit.

Any attempt to lean-out the climb mode to F/A ratios below best power will result in higher than normal CHT's. This could become particularly acute under hot-day takeoff and climb conditions at sea level or altitude.

RESULTS OF TESTS WITH VARYING SPARK SETTINGS.

This engine was evaluated with different spark settings. The basic production setting is 30° before top dead center (BTC). Two other settings were evaluated 45° BTC and 21° BTC. Table 7 summarizes the results of all the tests conducted and presents the data on an average basis. The three basic power modes (takeoff, climb, and approach—100, 75-80, and 40 percent, respectively) are tabulated using average data based on three test runs for each power mode condition and each spark setting.

The results of these tests and the percent changes in emissions output are also shown in table 7. For a change in the spark setting from 30° BTC to 45° BTC it may be noted that the $\Delta\%CO$ increases approximately 0.3 to 0.5 in the takeoff and climb modes with a negigible decrease in the approach mode. These changes occur for a 5.0 to 7.7 percent decrease in power, while the takeoff and climb CHT increases from 5.8 to 8.0 percent, respectively, and the approach mode CHT decreases approximately 1.2 percent. Although the percent changes in unburned HC and NOx appear to be significant, it should be noted that both of these pollutants are measured on a fraction of a percent basis.

FIGURE 15. SEA LEVEL STANDARD-DAY MAXIMUM CYLINDER HEAD TEMPERATURE FOR DIFFERENT POWER MODE CONDITIONS AND VARYING FUEL-AIR-RATIOS-TCM 6-285-B (TIARA) ENGINE

FIGURE 16. SEA LEVEL WARM-DAY (T₁-80° F) MAXIMUM CYLINDER HEAD TEMPERATURE FOR DIFFERENT POWER MODE CONDITIONS AND VARYING FUEL-AIR-RATIOS-TCM 6-285-B (TIARA) ENGINE

The second second

FIGURE 17. SEA LEVEL HOT-DAY (T_1-100° F) MAXIMUM CYLINDER HEAD TEMPERATURE FOR DIFFERENT POWER MODE CONDITIONS AND VARYING FUEL-AIR-RATIOS-TCM 6-285-B (TIARA) ENGINE

TABLE 7. SUMMARY OF ENGINE PERFORMANCE AND EXHAUST EMISSIONS CHARACTERISTICS FOR THREE DIFFERENT SFARK SETTINGS (*BTC)--FULL RICH FUEL SCHEDULE

Run No.	102, 115 103, 116 104, 117		148, 170 152, 171 156, 172		182, 944 186, 945 190, 946			
digiliya inabası	77. 1		143, 1		177, 1			
Avg. Max. CHT (*F)	416 401 345		440 433 340		410 401 338	Z ACHT (Max)	+5.77 +7.89 -1.15	03
Avg.	235 371 179		315 440 248		162 232 113	lina i ju		-1.44 0 -2.03
Avg. HC-PPH	1876 1841 2846		3267 3021 3763		1934 1984 3043	ANO _X (Z)	+34.04 +18.60 +38.55	-31.06 -37.47 -36.87
Avg.	9.08 7.68 10.17		9.44 8.22 10.11		8.50 7.58 9.95	∨ РИС (2)	+74.15 +64.10 +32.22	+ 3.09 + 7.76 + 6.61
Av8.	9.30 10.21 8.80		8.83 9.61 8.43		9.39 10.10 8.86	0220	+0.32 +0.54 -0.06	-0.58 -0.01 -0.22
F/A	0.0954 0.0868 0.0884		0.0970 0.0879 0.0889		0.0946 0.0856 0.0870	<u>AZC02</u>	-0.47	40.09 40.04
Avg. Wa 1b/h	1813 1497 848		1793 1468 821		1840 1518 851	Z ABHP	-5.74 -7.69 -5.05	-6.56 -7.69 -9.09
Avg. Wf 1b/h	173		174 129 73		174 130 74	Nominal Ind. Air Temp. (*F)	65 65.5 65.5	65.5 65.5 66.5
Avg. Ind. Air Temp. (°F)	99		65 65 65		65 65 67	Ind	-14 -16 - 5	-16 -16 - 9
Meas. BHP 30° BTC	244 208 99	Meas. BHP 45° BTC	230 192 94	Meas. BHP 21° BTC	228 192 90	ATorq.	-35 -47 -14	-27 -47 -27
Meas. Torq. 1b-ft 30° BTC	640 606 299	Meas. Torq. 1b-ft 45° BTC	605 559 285	Meas. Torq. 1b-ft 21° BTC	598 559 272		30°-45° BTC 30°-45° BTC 30°-45° BTC	30°-21° BTC 30°-21° BTC 30°-21° BTC
Mode Cond.	Takeoff Climb Approach		Takeoff Climb Approach		Takeoff Climb Approach		Takeoff Climb Approach	Takeoff Climb Approach

Changing the spark setting from 30° BTC to 21° BTC shows that the %CO decreases from 0.2 to 0.6 in the approach and takeoff modes with a negligible decrease in the climb mode. These changes occur for a 6.6 to 9.1 percent decrease in power, while the takeoff and approach mode CHT decreases from 1.4 to 2.0 percent. No change was measured in the climb mode CHT. The percent changes in unburned HC and NO_X appear to be significant. Whereas, the HC and NO_X both increased for a spark setting change from 30° BTC to 45° BTC; the HC increased and the NO_X decreased the a spark setting change from 30° BTC to 21° BTC.

The data presented in table 7 and the plotted results in figures 18 through 20 for the three power conditions and spark settings indicate that the most optium condition for the TCM 6-285-B (TIARA) engine is the 30° BTC spark setting. Any deviation from this setting will not produce the most benefical results (lower power available conditions, higher CHT's with the 45° BTC setting, etc).

The second secon

FIGURE 18. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS-TAKEOFF MODE

FIGURE 19. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS--CLIMB MODE

FIGURE 20. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS--APPROACH MODE

SUMMARY OF RESULTS

EXHAUST EMISSIONS.

- 1. The 6-285-B (TIARA) engine does not meet the proposed EPA carbon monoxide standards for 1979/80 under sea level standard-day conditions.
- 2. The 6-285-B (TIARA) engine meets the proposed EPA unburned hydrocarbon and oxides of nitrogen standards for 1979/80 under sea level standard-day conditions.
- 3. The engine fuel metering device could be adjusted on the test stand to reduce the current CO exhaust emission level to approximate the proposed EPA standard for 1979/80.
- 4. The highest exhaust emission levels for all three pollutants were measured under the most severe LTO cycle requirements (table 4) and under hot-day, ambient conditions.

MAXIMUM CYLINDER HEAD TEMPERATURES.

- 1. Adjusting the fuel metering device in the takeoff mode to constant best power operation results in an increase in maximum CHT, which will exceed the engine specification limit if cooling air ΔP is 3.0 inH20 or less. This setting will also result in a takeoff condition that has zero tolerance/margin.
- 2. Adjusting the fuel metering device in the climb mode to constant best power will result in an increase in maximum CHT. This change would necessitate an increase in cooling air flow to provide adequate temperature margins for hot-day operations. An increase in cooling air differential pressure of approximately 1.0 inH20 may be required for critical aircraft installations.
- 3. No critical maximum CHT's resulted from leaning-out the approach and taxi modes. However, taxi mode maximum CHT's were measured in excess of 400° F while operating under leaned-out test conditions with no measurable cooling air ΔP , a condition related to actual operation.

CRITICAL LANDING AND TAKEOFF CYCLE.

- 1. The most critical LTO cycle is the cycle defined in this report as the maximum five-mode LTO cycle (table 4). Engine operation in accordance with the maximum five-mode LTO cycle in a sea level propeller test stand could be adjusted to approximate the proposed EPA CO emission standard for 1979/80 without exceeding maximum CHT limits.
- 2. Engine operation in accordance with the minimum five-mode LTO cycle (table 5) could be adjusted to meet the proposed EPA emissions standards for 1979/80 without exceeding engine maximum CHT limits while operating with a cooling air $\Delta P = 3.0$ inH2O in the takeoff, climb, and approach modes and a $\Delta P = 0$ in the taxi mode.

OPTIMUM SPARK SETTING.

- 1. The 30° BTC spark setting produces optimum test results:
 - a. Optimum power
 - b. Optimum CHT
- c. Emissions that are most compatible with desired power output and CHT limits.

CONCLUSIONS

The following conclusions are based on the testing accomplished with the TCM 6-285-B (TIARA) engine.

- 1. The single use of simple fuel management adjustments (altering of fuel schedule) does not allow safe reduction of exhaust emissions of the test engine, the TCM 6-285-B. In conjuction with other data, references 12, 13, and 14, this appears to be a valid general conclusion for typical light-aircraft piston engines.
- 2. The test data indicate that fuel management adjustments should be combined with engine/nacelle cooling modifications before a safe, low-emissions aircraft/engine combination can be achieved.
- 3. Spark settings other than the 30° BTC setting do not appear to produce significantly beneficial improvements in exhaust emissions.
- 4. The EPA CO limit of 0.042 lb/cycle/rated BHP is too low to be met by this engine. This limit appears to be only approximately achievable when hot-day takeoff and climb requirements are impacted by aircraft heavy gross weight and the need to pay close attention to CHT limitations. The TIARA engine is particularly critical under these operational requirements since it is a powerplant designed for agricultural-type aircraft which require high power performance under heavy gross weight and warm-/hot-day ambient conditions.
- 5. Based on an assessment of the maximum five-mode LTO cycle (table 4) test data, it is concluded that the following standard changes should be made to the proposed EPA emission standards:

Proposed EPA Standard for 1979/80 (Reference 1) 1b/Cycle/Rated BHP	Proposed Change to the 1979/80 Standard 1b/Cycle/Rated BHP
CO Standard 0.042	0.075
HC Standard 0.0019	0.0025
NO _x Standard 0.0015	0.0015

- 6. To avoid CHT problems in the takeoff mode (100 percent power), it is adviseable not to adjust the fuel metering device. Engine operation in this mode should continue to be accomplished within current production rich/lean limits. No change in current maximum CHT limitations will then be required.
- 7. The test procedures (baseline and lean-out tests) and test techniques used to evaluate the exhaust emissions characteristics of this engine appeared to be satisfactory for sea level propeller stand test work.
- 8. The instrumentation defined in this report proved to be satisfactory throughout the conduct of tests performed with this engine.

REFERENCES

- 1. Control of Air Pollution from Aircraft Engines, Environmental Protection Agency, Federal Register, Volume 38, No. 136, Part II, July 17, 1973.
- 2. Flow of Fluids Through Valves, Fittings, and Pipe, Crane Industrial Products Group, Technical Paper No. 410, 1957.
- 3. Salmon, R. F. and Imbrogno, S., Measurement and Testing Problems
 Experienced During FAA's Emissions Testing of General Aviation Piston Engines,
 Aircraft Piston Engine Exhaust Emissions Symposium, Lewis Research Center,
 Cleveland, Ohio, September 14-15, 1976.
- 4. Liston, J., Power Plants for Aircraft, McGraw-Hill Book Company, Inc., New York, 1953.
- 5. Obert, E. F., <u>Internal Combustion Engines and Air Pollution</u>, Intext Educational Publishers, New York, 1973.
- 6. D'Alleva, B. A., <u>Procedure and Charts for Estimating Exhaust Gas Quantities and Compositions</u>, General Motors Corp., Research Laboratories, GMR-372, May 15, 1960.
- 7. Graf, Gleeson, and Paul, <u>Interpretation of Exhaust Gas Analyses</u>, Engineering Experiment Station, Oregon State Agricultural College, Bulletin Series No. 4, 1934.
- 8. Guide to Aviation Products, Humble Oil and Refining Company, 1969.
- 9. NAPTC Fuel Sample Analysis -- 100/130 Octane Aviation Gasoline,
- 10. G.E. Aircraft Propulsion Data Book, General Electric, 1957.
- 11. Aeronautical Vest-Pocket Handbook, Pratt and Whitney Aircraft, 1957.
- 12. Becker, E. E., Exhaust Emissions Characteristics for a General Aviation Light-Aircraft AVCO Lycoming IO-360-BIBD Piston Engine, DOT/FAA/NAFEC, Report No. FAA-RD-78-129, 1978.
- 13. Becker, E. E., Exhaust Emissions Characteristics for a General Aviation Light-Aircraft AVCO Lycoming IO-360 AlB6D Piston Engine, DOT/FAA/NAFEC, Report No. FAA-RD-78-142, 1978.
- 14. Becker, E. E., Exhaust Emissions Characteristics for a General Aviation Light-Aircraft TCM TSIO-360-C Piston Engine, DOT/FAA/NAFEC, Report No. FAA-RD-79-14, June 1979.
- 15. Stukas, L. J., Aircraft Piston Engines, DOT/FAA/NAFEC, Report No. FAA-RD-78-79, March 1979.

APPENDIX A

FUEL SAMPLE ANALYSIS

COMBUSTIBLE ELEMENTS IN FUELS (AVIATION FUEL).

- 1. Carbon and hydrogen are the predominant combustible elements in fuels (aviation type), with small amounts of sulphur as the only other fuel element.
- 2. Liquid fuels are mixtures of complex hydrocarbons.
- 3. For combustion calculations, gasoline or fuel oil can be assumed to have the average molecular formula C_8H_{17} .

Note: The Exxon data presented in table A-1 may be found in reference 7.

TABLE A-1. TYPICAL SPECIFICATIONS FOR AVIATION FUELS

Item	D910-76 Grade 100/130	Exxon Aviation Gas 100/130	D910-70 Grade 115/145	Exxon Aviation Gas 115/145
Freezing Point, °F Reid Vapor Press., PSI Sulfur, % by Weight Lower Heating Value, BTU/1b	-72 Max. 7.0 Max. 0.05 Max. 18,720 Min.	Below -76 6.8 0.02	-76 Max. 7.0 Max. 0.05 Max. 18,800 Min.	Below -76 6.8 0.02
Heat of Comb. (NET).		18,960		19,050
BTU/1b				
Distillation, %Evaporated				
At 167° F (Max.)	10	22	10	21
At 167° F (Min.)	40		40	
At 221° F (Max.)	50	76	50	62
At 275° F (Max.)	90	97	90	96
Distillation End	338° F Max.		338° F Max.	
Point				
Final Boiling		319		322
Point °F				
Tel Content,	4.0 Max.	3.9	4.6 Max.	4.5
ML/U.S. Gal.				
Color	Green	Green	Purple	Purple

^{4.} NAFEC used 100/130 (octane rated) aviation gasoline for the piston engine emission tests. The following analysis of a typical fuel sample (table A-2) made at the U.S. Naval Air Propulsion Test Center (NAPTC), Trenton, N.J. (reference 8).

TABLE A-2. ANALYSIS OF NAFEC FUEL SAMPLE, 100/130 FUEL

<u>Item</u>	NAFEC Sample 100/130	Grade 100/13 Spec Limits Min.	0(MIL-G-5572E)
Freezing Point, °F	Below -76° F		-76
Reid Vapor Press., PSI	6.12	5.5	7.0
Sulfur % By Weight	0.024		0.05
Lower Heating Value BTU/1b		18,700	
Heat of Comb. (NET)	18,900		
BTU/1b			
Distillation,		Distill	
% Evaporated At 158° F	10	% Evapo	ration
At 167° F (Min.)	10	167° F 10	
At 107 F (HIII.)		107 1 10	
At 167° F (Max.)		40	167° F
At 210° F	40		
At 220° F	50		
At 221° F		221° F 50	
At 242° F	90		
At 275° F	0100 -	275° F 90	2228 =
Distillation End Point	313° F		338° F
Specific Gravity	0.7071	Report	Report
060° F	0.7071	Report	Report
API Gravity @60° F	68.6	No Limi	t
Tel Content, ML/U.S. Gal.	1.84		4.60

Computation for the fuel hydrogen-carbon ratio is based on the fuel net heating value, h_f , equal to 18,900 BTU/lb and figure A-1.

C/H = 5.6 C = 12.011 $C_8 = 8 \times 12.011 = 96.088$ $H_y = (96.088) \div 5.6 = 17.159$ H = 1.008 $Y = (17.159) \div 1.008 = 17.022$ Use Y = 17

APPENDIX B

COMPOSITION OF AIR (GENERAL PROPERTIES)

1. Dry air is a mixture of gases that has a representative volumetric analysis in percentages as follows:

Oxygen (02)--20.99%

Nitrogen (N2)--78.03%

Argon (A)--0.94% (Also includes traces of the rare gases neon, helium, and krypton)

Carbon Dioxide (CO2)--0.03%

Hydrogen (H2)--0.01%

2. For most calculations it is sufficiently accurate to consider dry air as consisting of:

02 = 21.0%

 $N_2 = 79.0\%$ (including all other inert gases)

3. The moisture or humidity in atmospheric air varies over wide limits, depending on meteorological conditions, its presence in most cases simply implies an additional amount of essentially inert material.

Note: Information given in items 1, 2, and 3 is recommended for computation purposes (reference 3, 4, 9, and 10).

TABLE B-1. MASS ANALYSIS OF PURE DRY AIR

Gas	Volumetric Analysis %	Mole Fraction	Molecular Weight	Relative Weight
02	20.99	0.2099	32.00	6.717
N ₂	78.03	0.7803	28.016	21.861
A -	0.94	0.0094	39.944	0.376
CO2	0.03	0.0003	44.003	0.013
Inert Gases	0.01	0.0001	48.0	0.002
	100.00	1.000		28.969 = M for air

4. The molecular weight of the <u>apparent nitrogen</u> can be similarly determined by dividing the total mass of the inert gases by the total number of moles of these components:

 $M_{\text{Apparent}} = \frac{2225}{79.01} = 28.161$

- 5. This appendix advocates the term nitrogen as referring to the entire group of inert gases in the atmosphere and therefore the molecular weight of 28.161 will be the correct value (rather than the value 28.016 for pure nitrogen).
- 6. In combustion processes the active constituent is oxygen (0_2) , and the apparent nitrogen can be considered to be inert. Then for every mole of oxygen supplied, 3.764 moles of apparent nitrogen accompany or dilute the oxygen in the reaction:

$$\frac{79.01}{20.99} = 3.764 \frac{\text{Moles Apparent Nitrogen}}{\text{Mole Oxygen}}$$

7. The information given in items 4, 5, and 6 is recommended for computational purposes in reference 4. Therefore, one mole of air (dry), which is composed of one mole of oxygen (O_2) and 3.764 moles of nitrogen (N_2) , has a total weight of 137.998 pounds.

$$(0_2 + 3.764 N_2) = 137.998$$

This gives the molecular weight of air = 28.97.

APPENDIX C

NAFEC TEST DATA AND WORKING PLOTS FOR ANALYSIS AND EVALUATION, TCM 6-285-B ENGINE

LIST OF ILLUSTRATIONS

Figure		Page
C-1	Recommended Fuel Flow Versus Power for a TCM 6-285-B (TIARA) Engine (Derived from Reference 14)	C-1
C-2	Measured PerformanceTCM 6-285-B (TIARA) Engine Takeoff, Climb, and Approach ModesNominal Sea Level Air Density 0.0756 lb/ft ³	C-2
C-3	Measured PerformanceTCM 6-285-B (TIARA) Engine Takeoff, Climb, and Approach ModesNominal Sea Level Air Density 0.0730 lb/ft ³	C-3
C-4	Measured PerformanceTCM 6-825-B (TIARA) Engine Takeoff, Climb, and Approach ModesNominal Sea Level Air Density 0.0684 lb/ft ³	C-4
C-5	Airflow as a Function of Induction Air Specific Weight for a TCM 6-285-B (TIARA) EngineNominal Sea Level Test Data	C-5
C-6	Measured Brake Horsepower (BHP) as a Function of Induction Air Specific Weight for a TCM 6-285-B (TIARA) Engine nominal Sea Level Test Data	C-6
C-7	Exhaust Carbon Monoxide as a Function of Induction Air Specific Weight for Several Takeoff Constant Fuel Flow SchedulesTCM 6-285-B (TIARA) Engine	C-7
C-8	Exhaust Carbon Monoxide as a Function of Induction Air Specific Weight for Several Climb Mode Constant Fuel Flow SchedulesTCM 6-285-B (TIARA) Engine	C-8
C-9	Exhaust Carbon Monoxide as a Function of Induction Air Specific Weight for Several Approach Mode Constant Fuel Flow SchedulesTCM 6-285-B (TIARA) Engine	C-9
C-10	Exhaust Carbon Monoxide as a Function of Induction Specific Weight for Several Taxi Mode Fuel Flow SchedulesTCM 6-285-B (TIARA) Engine	C-10
C-11	Unburned Exhaust Hydrocarbons as a Function of Induction Air Specific Weight for Several Takeoff Constant Fuel Flow SchedulesTCM 6-285-B (TIARA) Engine	C-11

LIST OF ILLUSTRATION (Continued)

Figure		Page
C-12	Unburned Exhaust Hydrocarbons as a Function of Induction Air Specific Weight for Several Climb Mode Constant Fuel Flow SchedulesTCM 6-285-B (TIARA) Engine	C-12
C-13	Unburned Exhaust Hydrocarbons as a Function of Induction Air Specific Weight for Several Approach Mode Constant Fuel Flow SchedulesTCM 6-285-B (TIARA) Engine	C-13
C-14	Unburned Exhaust Hydrocarbons as a Function of Induction Air Specific Weight for Several Taxi Mode Constant Fuel Flow SchedulesTCM 6-285-B (TIARA) Engine	C-14
C-15	Oxides of Nitrogen as a Function of Exhaust Gas Temperature for Several Takeoff Constant Fuel Flow Schedules and Different Specific Weight Conditions	C-15
C-16	Oxides of Nitrogen as a Function of Exhaust Gas Temperature for Several Climb Mode Constant Fuel Flow Schedules and Different Specific Weight Conditions	C-16
C-17	Oxides of Nitrogen as a Function of Exhaust Gas Temperature for Several Approach Mode Constant Flow Schedules and Different Specific Weight Conditions	C-17
C-18	Sea Level Standard Day Emission Characteristics for a TCM 6-285-B (TIARA) EngineCarbon Monoxide	C-18
C-19	Sea Level Standard Day Emissions Characteristics for a TCM 6-285-B (TIARA) EngineUnburned Hydrocarbons	C-19
C-20	Sea Level Standard Day Emissions Characteristics for a TCM 6-285-B (TIARA) EngineOxides of Nitrogen	C-20

FIGURE C-1. RECOMMENDED FUEL FLOW VERSUS POWER FOR A TCM 6-285-B (TIARA) ENGINE (DERIVED FROM REFERENCE 14)

FIGURE C-2. MEASURED PERFORMANCE--TCM 6-285-B (TIARA) ENGINE--TAKEOFF, CLIMB, AND APPRAOCH MODES--NOMINAL SEA LEVEL AIR DENSITY 0.0756 1b.ft³

FIGURE C-3. MEASURED PERFORMANCE--TCM 6-285-B (TIARA) ENGINE--TAKEOFF, CLIMB, AND APPROACH MODES--NOMINAL SEA LEVEL AIR DENSITY 0.0730 1b/ft³

FIGURE C-4. MEASURED PERFORMANCE--TCM 6-285-B (TIARA) ENGINE--TAKEOFF, CLIMB, AND APPROACH MODES--NOMINAL SEA LEVEL AIR DENSITY 0.0684 1b/ft³

FIGURE C-5. AIRFLOW AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR A TCM 6-285-B (TIARA) ENGINE--NOMINAL SEA LEVEL TEST DATA

FIGURE C-6. MEASURED BRAKE HORSEPOWER (BHP) AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR A TCM 6-285-B (TIARA) ENGINE--NOMINAL SEA LEVEL TEST DATA

FIGURE C-7. EXHAUST CARBON MONOXIDE AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL TAKEOFF CONSTANT FUEL FLOW SCHEDULES-TCM 6-285-B (TIARA) ENGINE

FIGURE C-8. EXHAUST CARBON MONOXIDE AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL CLIMB MODE CONSTANT FUEL FLOW SCHEDULES-TCM 6-285-B (TIARA) ENGINE

FIGURE C-9. EXHAUST CARBON MONOXIDE AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL APPROACH MODE CONSTANT FUEL FLOW SCHEDULES-TCM 6-285-B (TIARA)

The second secon

FIGURE C-10. EXHAUST CARBON MONOXIDE AS A FUNCTION OF INDUCTION AIR SPECIFIC (TIARA) ENGINE

EXHAUST CARBON MONOXIDE AS A FUNCTION OF INDUCTION AIR SPECIFIC (TIARA) ENGINE

FIGURE C-11. UNBURNED EXHAUST HYDROCARBONS AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL TAKEOFF CONSTANT FUEL FLOW SCHEDULES-TCM 6-285-B (TIARA) ENGINE

FIGURE C-12. UNBURNED EXHAUST HYDROCARBONS AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL CLIMB MODE CONSTANT FUEL FLOW

FIGURE C-13. UNBURNED EXHAUST HYDROCARBONS AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL APPROACH MODE CONSTANT FUEL FLOW SCHEDULES--TCM 6-285-B (TIARA) ENGINE

FIGURE C-14. UNBURNED EXHAUST HYDROCARBONS AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL TAXI MODE CONSTANT FUEL FLOW SCHEDULES--TCM 6-285-B (TIARA) ENGINE

Company of the Compan

FIGURE C-15. OXIDES OF NITROGEN AS A FUNCTION OF EXHASUT GAS TEMPERATURE FOR SEVERAL TAKEOFF CONSTANT FUEL FLOW SCHEDULES AND DIFFERENT SPECIFIC WEIGHT CONDITIONS

FIGURE C-16. OXIDES OF NOTROGEN AS A FUNCTION OF EXHAUST GAS TEMPERATURE FOR SEVERAL CLIMB MODE CONSTANT FUEL FLOW SCHEDULES AND DIFFERENT SPECIFIC WEIGHT CONDITIONS

FIGURE C-17. OXIDES OF NITROGEN AS A FUNCTION OF EXHAUST GAS TEMPERATURE FOR SEVERAL APPROACH MODE CONSTANT FLOW SCHEDULES AND DIFFERENT SPECIFIC WEIGHT CONDITIONS

FIGURE C-18. SEA LEVEL STANDARD DAY EMISSION CHARACTERISTICS FOR A TCM 6-285-B (TIARA) ENGINE--CARBON MONOXIDE

FIGURE C-19. SEA LEVEL STANDARD DAY EMISSIONS CHARACTERISTICS FOR A TCM 6-285-B (TIARA) ENGINE--UNBURNED HYDROCARBONS

FIGURE C-20. SEA LEVEL STANDARD DAY EMISSIONS CHARACTERISTICS FOR A TCM 6-285-B (TIARA) ENGINE--OXIDES OF NITROGEN

TABLE C-1. TCM 6-285-B ENGINE NAFEC TEST DATA--BASELINE 1-(NO IDLE, FIVE MODE) SPARK SETTING 30° BTC

906	Taxi In	30.03	0.0150	85	88	30.20	1800	11.5	0.0734	16.5	189.0	0.0873	372	351	298	739	25	7	8.41	9.28	0.59	5925	45	24.46	17,18	1.25	0.72	0.010	1,145	0.048	0.001
905	Approach	30.03	0,0150	84	88	30.03	3500	16.6	0.0732	74.0	824.0	0.0898	375	365	361	1158	275	92	8.59	9.46	0.27	2606	149	109.0	76.4	2.49	1.40	0.15	7.641	0.140	0.015
906	C11mb	30.03	0.0150	84	98	30.11	3600	25.7	0.0731	124.0	1452.0	0.0854	430	418	410	1372	575	197	86.6	7.24	0.21	1528	336	216.2	8.66	3,31	1.42	0.58	8.317	0.118	0.049
903	Takeoff	30.03	0.0150	83	98	29.96	4000	27.7	0.0731	166.0	1767.0	0.0939	777	427	405	1428	620	236	9.21	8.45	0.18	1589	226	246.6	144.0	3.50	1.85	0.49	0.720	0.009	0.002
	Taxi Out	30.03	0.0150	82	91	30,17	1800	12.0	0.0738	17.3	205.0	0.0844	405	373	283	728	1	1	8.15	9.70	0.65	5857	77	25.84	19.57	1.50	0.76	0.011	3.914	0.153	0.002
Run No.	Parameter Mode	. Act. Baro inHgA	. Spec. Hum 1b/1b	. Induct. Air Temp °F	. Cooling Air Temp °F	. Induct. Air PressinHgA	. Engine Speed - RPM	. Manifold Air PressInHgA	. Induct. Air Density-1b/ft3	. Fuel Flow, Wf-lb/h	. Airflow, Wa-1b/h	. F/A (Measured) = (9 / 10	. Max. Cht - °F	. Avg. Cht - °F	0	. EGT - °F	. Torque, 1b-ft	. OBS. Bhp	% CO2	00 %	% 02 (D	. HC-ppm (Wet)	. NO _x -ppm (Wet)	. CO ₂ -1b/h	. co-1b/h	. 02-1b/h	. HC-1b/h	. NO _x -1b/h			NOx-1b/Mode
		-	7	e	4	5	9	-	œ	6	9		12	13	14	15	16	17	18	19	20	21	22	23	24	25	26.	27	28	29	30

TABLE C-2. TCM 6-285-B ENGINE NAFEC TEST DATA--BASELINE 2-- (NO IDLE, FIVE MODE) SPARK SETTING 30° BTC

33	Taxi In	30.14	0.0150	9/	78	30.29	1775	11,5	0.0749	17.7	201.0	0.0881	393	362	281	750	70	7	8,42	9.22	89.0	5399	43	25.00	18.12	1.53	0.70	0.010	1.208	0.047	0.001
32	Approach	30.14	0,0150	9/	78	30,14	3460	16.5	0.0745	74.0	827.0	0,0895	358	348	344	1161	291	96	8.60	9,39	0.32	2471	133	109.4	76.0	2.96	1,33	0.134	7.603	0.133	0.013
31	C11mb	30.14	0.0150	75	77	30,22	3600	25.7	0.0748	128.0	1486.0	0.0861	417	407	397	1381	587	201	10.2	7,14	0.27	1524	317	221.7	100.6	4.34	1.45	0.565	8.381	0.121	0.047
30	Takeoff	30,14	0.0150	9/	78	30.07	4000	27.7	0.0747	168.0	1793.0	0.0937	439	424	397	1435	622	237	9.37	8,33	0.27	1628	227	252.9	144.0	5.33	1.92	0.501	0.720	0.010	0.003
. 29	Taxi Out	30.14	0.0150	77	98	30.28	1800	11.7	0.0747	18.2	208.0	0.0875	373	347	272	729	32	5	8.45	9.34	0.64	5290	45	27.13	19.09	1.49	0.71	0.011	3.817	0.142	0.002
Run No.	Parameter Mode	1. Act. Baro inHgA	2. Spec. Hum 1b/1b	3. Induct. Air Temp°F	4. Cooling Air Temp °F	5. Induct. Air PressinHgA	6. Engine Speed - RPM	7. Manifold Air PressinHgA	8. Induct. Air Density-1b/ft3	9. Fuel Flow, Wf-lb/h	10. Airflow, W2-lb/h			13. Avg. Cht - °F		15. EGT - °F	16. Torque, 1b-ft				20. % 02 (Dry)		22. NO _X -ppm (Wet)	23. CO2-1b/h	24. c0-1b/h	25. 02-1b/h	26. HC-1b/h	27. NO _x -1b/h		29. HC-1b/Mode	30. NOx-1b/Mode

TABLE C-3. TCM 6-285-B ENGINE NAFEC TEST DATA--BASELINE 3-(NO IDLE, FIVE MODE) SPARK SETTING 30° BTC

59	Taxi In	30.21	0.0130	74	75	30,37	1800	11.5	0.0754	18.0	200.0	006000	385	356	276	742	87	80	8.30	9.29	69.0	5402	43	25.56	18.21	1.54	0.70	0.010	1.214	0.047	0.001
28	Approach	30.21	0.0130	73	75	30.28	3460	16.5	0.0753	0.97	845.0	0.0899	368	357	352	1174	308	101	8.53	9.25	0.37	2524	141	110.8	76.5	3.49	1.39	0.14	7.647	0,139	0.014
57	C11mb	30.21	0.0130	73	75	30.29	3600	25.7	0.0753	130.0	1488.0	0.0874	422	414	398	1386	602	206	9.84	7.11	0.32	1550	312	218,1	100.3	5.16	1.49	0.56	8,357	0.124	0.047
99	Takeoff	30.21	0.0130	73	75	30.14	4000	27.7	0.0749	172.0	1809.0	0.0951	435	419	394	1440	632	241	9.17	8.23	0.31	1586	224	250.8	143.3	6.17	1.90	0.50	0.716	0.010	0.003
	Taxi Out	30.21	0.0130	74	79	30,38	1800	11.6	0.0754	18.4	197.0	0.0934	385	356	273	707	33	9	7.88	9.85	0.71	6293	38	24.14	19.20	1.58	98.0	0.00	3.841	0.171	0.002
Run No.	Parameter Mode	. Act. Baro inHgA	. Spec. Hum 1b/1b	. Induct. Air Temp°F	. Cooling Air Temp F	. Induct. Air PressinHgA	. Engine Speed - RPM	. Manifold Air PressinHgA	. Induct. Air Density-lb/ft3				-			. EGT - °F	. Torque, 1b-ft				% 02 (I	HC-ppm (. co-1b/h	. 02-1b/h		_		, HC-1b/h	, NO _x -1b/Mode
		1	7	ë	4	5	9	7.	8	6	10	=	17.	13	14	15	16	17.	18	19	20.	21.	22.	23	24.	22.	26.	27.	28.	29.	30

TABLE C-4. TCM 6-285-B ENGINE NAFEC TEST DATA--BASELINE 4-- (NO IDLE, FIVE MODE) SPARK SETTING 30° BTC

	99	Tax1 In	30.16	0.0145	75	75	30,31	1825	11.1	0.0751	16.2	206.0	0.0786	369	350	292	782	20	6	10.67	5.54	09.0	2530	84	32,18	10.63	1,32	0.33	0.020	0.709	0.022	0.001
	9	Approach	30,16	0.0145	75	77	30,28	3460	16.5	0.0750	63.0	820.0	0.0768	381	371	366	1246	303	100	11.25	4.87	0.34	1804	597	133.6	36.8	2.94	0.92	0.57	3.682	0.092	0.057
ING 30° BTC	99	C11mb	30,16	0.0145	74	92	30,25	3600	25.7	0.0751	111.0	1456.0	0.0762	434	425	412	1454	009	206	11.92	4.01	0.30	1222	923	249.5	53.4	4.57	1,10	1,56	4.452	0.092	0.130
3) SPARK SETTING	63	Takeoff	30,16	0.0145	74	9/	30.09	4000	27.7	0.0747	153.0	1789.0	0.0855	094	777	418	1503	620	236	10.55	6.20	0.25	1213	209	277.8	103.9	4.79	1,39	1,30	0.520	0.007	900.0
LE, FIVE MODE)	62	Taxi Out	30,16	0.0145	75	75	30,34	1775	11.3	0.0752	14.5	192.0	0.0755	380	357	283	730	34	9	68.6	98.9	09.0	4165	63	28.23	12,46	1.25	0.49	0.014	2.492	0.099	0.003
(NO IDLE,	Run No.	Parameter	Act. Baro inHgA	Spec. Hum 1b/1b	Induct. Air Temp°F	Cooling Air Temp°F	Induct. Air PressinHgA	Engine Speed - RPM	Manifold Air PressinHgA	Induct. Air Density-1b/ft3	Fuel Flow, Wf-1b/h		Measur	Cht -	Avg. Cht - °F	Min. Cht - °F	1	Torque, 1b-ft	Obs. Bhp	% CO ₂ (Dry)	% CO (Dry)	% 02 (Dry)	-	NOx-ppm (Wet)	C02-1b/h	CO-1b/h	02-1b/h	HC-1b/h	NOx-1b/h	CO-1b/Mode	HC-1b/Mode	NO _x -1b/Mode
			1.	2.	e,	4.	2°	9	1.	œ .	6	10.	11	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	.67	30.

The second secon

TABLE C-5. TCM 6-285-B ENGINE NAFEC TEST DATA--Baseline 5-- (NO IDLE, FIVE MODE) SPARK SETTING 30° BTC

73	Taxi In	30,20	0.0130	74	92	30,38	1800	11.1	0.0754	14.7	194.9	0.0754	367	351	301	772	41	7	10.22	5.95	0.62	2067	72	29.25	10.84	1.29	0.36	0.016	0.722	0.024	0.001
72	Approach	30.20	0.0130	73	74	30.24	3500	16.5	0.0752	70.0	844.5	0.0829	373	364	360	1212	307	102	6.84	98.9	0.34	2054	301	123.4	54.7	3.10	1.10	0,301	2.467	0.110	0.030
11	C11mb	30.20	0.0130	73	74	30.28	3600	25.7	0.0753	120.0	1487.7	0.0807	427	419	907	1421	909	207	10.66	5.52	0.26	1380	514	238.4	80.7	4.13	1.29	06.0	6.727	0.108	0.075
70	Takeoff	30.20	0.0130	73	74	30,13	4000	27.7	0.0749	160.0	1808.6	0.0885	944	428	405	1466	625	238	6.67	99.9	0.24	1409	365	271.5	118.0	4.69	1,65	0.80	0.566	0.008	0.004
	Taxi Out	30.20	0.0130	74	80	30.36	1825	11.4	0.0754	15.8	201.6	0.0784	372	348	281	702	97	80	96.6	6.45	0.58	3311	75	29.66	12.23	1.26	0.42	0.018	2,445	0.083	0.004
Run No.	Parameter Mode	Act. Baro inHgA	Spec. Hum 1b/1b	Induct. Air Temp°F	Cooling Air Temp °F	Induct. Air PressinHgA	Engine Speed - RPM	Manifold Air PressinHgA	Induct. Air Density-1b/ft3	Fuel Flow, Wf-1b/h	Airflow, Wa-lb/h	F/A (Measured) =(9) / (10)	Max. Cht - °F	Avg. Cht - °F	Min. Cht - °F	EGT - °F	Torque, 1b-ft			% CO (Dry)	% 02 (Dry)	HC-ppm (Wet)	NO _X -ppm (Wet)	CO2-1b/h	CO-1b/h	02-1b/h	HC-1b/h	NO _x -1b/h	C0-1b/Mode	HC-1b/Mode	NOx-1b/Mode
		1.	2.	3.	4	5	.9	7	8	6	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.

TABLE C-6. TCM 6-285-B ENGINE NAFEC TEST DATA--BASELINE 6-(NO IDLE, FIVE MODE) SPARK SETTING 30° BTC

80	Taxi In	30,16	0.0000	71	70	30,33	1800	11.0	0.0757	17.8	199.0	0.0894	356	335	273	735	77	∞	8.40	10,33	0.65	5810	52	26.5	20.8	1.5	0.8	0.01	1,384	0.050	0.001
79	Approach	30,16	0.0000	72	11	30.27	3460	16.5	0.0754	75.0	859.0	0.0873	349	342	338	1168	300	66	8.87	10.05	0°30	2840	195	120.3	86.8	3.0	1.57	0.2	8.676	0.157	0.020
78	C11mb	30,16	0.0000	71	72	30,23	3600	25.7	0.0755	128.0	1482.0	0.0864	401	393	385	1378	809	208	10,26	7.58	0.25	1911	393	230.6	108.4	4.1	1.8	0.7	9.036	0.151	0.058
11	Takeoff	30,16	0.0000	71	72	30.08	4000	27.8	0.0751	172.0	1811.0	0.0950	419	400	380	1447	645	246	9.52	8.83	0.20	1923	254	266.2	157.1	4.1	2.3	9.0	0.786	0.012	0.003
	Taxi Out	30.16	0600.0	71	70	30,33	1800	11.1	0.0757	17.6	198.0	0.0889	395	364	274	714	38	7	8,35	10.23	0.63	7366	26	26.2	20.4	1.4	0.94	0.01	4.078	0.189	0.003
Run No.	Parameter	1. Act. Baro inHgA	2. Spec. Hum 1b/1b		4. Cooling Air Temp °F	5. Induct. Air PressinHgA	6. Engine Speed - RPM							. Avg.	, Min.	24	6. Torque, 1b-ft		200 %	19. % co (Dry)		_			•						0. NOx-1b/Mode
					7		-		~	•	10	=	12	13	4	-	7	H	7	1	7	21	22	7	5	7	5	27	28	53	3

TABLE C-7. TCM 6-285-B ENGINE NAFEC TEST DATA--BASELINE 7-- (NO IDLE, FIVE MODE) SPARK SETTING 30° BTC

105	Taxi In	29.93	0,0080	29	62	30.27	1775	11,1	0.0761	16,3	198.0	0,0823	337	324	285	765	20	00	8.84	9.26	0.62	5549	84	27.1	18.0	1,38	969.0	0.011	1,203	0.046	0.001
104	Approach	29.93	0.0080	99	63	30.21	3460	16.4	0.0761	75.0	831.0	0.0903	339	332	327	1147	313	103	8.75	9.95	0.30	2830	162	113,2	81.9	2.82	1.53	0.16	8,194	0.153	0.016
103	Climb	29.93	0.0080	99	63	30.21	3620	25.7	0.0761	130.0	1495.0	0.0870	407	395	383	1378	613	211	10,19	7.57	0.24	1836	348	229.9	108.7	3.94	1.77	0.63	9.957	0.147	0.052
102	Takeoff	29.93	0.0080	99	63	30°16	4000	27.7	0.0760	175.0	1818.0	0.0963	415	399	379	1426	079	244	9.14	9,13	0.21	1860	213	255.6	162.5	4.27	2,25	0.48	0.812	0.011	0.002
	Taxi Out	29.93	0.0080	29	61	30.27	1800	11.1	0.0761	16.3	206.0	0.0791	369	339	276	721	20	6	80.6	8.58	0.57	6330	99	28.5	17.1	1.30	0.814	0.014	3,429	0.163	0.003
Run No.	Parameter Mode	1. Act. Baro inHgA	2. Spec. Hum 1b/1b	3. Induct. Air Temp°F	4. Cooling Air Temp°F	5. Induct. Air PressinHgA	6. Engine Speed - RPM	7. Manifold Air PressinHgA			10. Airflow, Wa-1b/h					5. EGT - °F								23. C02-1b/h					28. CO-1b/Mode	29. HC-1b/Mode	30. NOx-1b/Mode
											-	-	-	-	-	-	7	-	ī	-	7	7	7	7	7	7	7	7	7	7	m

118	30.06 0.0060 62 57	1820 10.9 0.0772 17.4 202.0 0.0861 333	737 737 9.52 0.62 4832 63 29.2 19.2 1.43	0.015 1.280 0.042 0.001
117	Approach 30.06 0.0060 61 58 30.35	3480 16.4 0.0772 75.0 856.0 0.0876 340 335	1160 285 94 8.79 10.50 0.28 2869 181 119.3 90.7 2.76	0.19 9.000 0.158 0.019
TCM 6-285-B ENGINE NAFEC TEST DATABASELINE 8- (NO IDLE, FIVE MODE) SPARK SETTING 30° BTC Run No. 114 115 116 Mode Taxl Out Takeoff	30.06 0.0060 61 58 30.35	25.7 0.0772 132.0 1514.0 0.0872 395 388 378	598 205 10.18 7.90 0.23 1777 372 234.6 115.9 3.85 1.73	9.658 0.144 0.056
FIVE MODE) SPARK SE: 114 115 1x1 Out Takeoff	30.06 0.0060 61 58 30.30 4000	0.0771 174.0 1811.0 0.0961 413 394 374	634 241 9.37 9.28 0.19 1845 2.38 2.63.4 166.0 3.88 2.22 0.54	0.003
6-285-B ENGINE (NO IDLE, FIVE M Run No. 114	30.06 0.0060 62 57 30.41 1820 10.9	0.0772 17.2 205.0 0.0839 366 340 277 740	8.71 9.95 0.58 5227 62 20.4 1.36 0.68 0.015	0.136 0.003
C-8. TCM 6- (NO (NO Mode	F F InHgA InHgA 1b/fr3	(2)		
TABLE eter	Spec. Hum 1b/1b Induct. Air Temp°r Cooling Air Temp°r Induct. Air PressinHgA Manifold Air PressinHgA Induct. Air Density-1b/ft3	Airflow, Wf-lb/h F/A (Measured) = (9) / Max. Cht - °F Avs. Cht - °F Min. Cht - °F EGT - °F Torque, lb-ft Obs. Bhp	2 CO (Dry) 2 CO (Dry) 3 CO (Dry) HC-PPm (Wet) NOx-PPm (Wet) CO-1b/h CO-1b/h HC-1b/h NOx-1b/h HC-1b/h NOx-1b/h NOx-1b/h NOx-1b/h	
i,	, 4, 4, 6, 6, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,		C C H Z O H Z	

TABLE C-9. TCM 6-285-B ENGINE NAFEC TEST DATA-BASELINE 9-- (NO IDLE, FIVE MODE) SPARK SETTING 30° BTC

		Run No.	120	121	122	123	124
	Parameter	Mode	Taxi Out	Takeoff	C11mb	Approach	Taxi In
1.	Act. Baro inHgA		29.92	29.92	29.92	29.92	29.92
2.	Spec. Hum 1b/1b		0.0095	0.0095	0,0095	0.0095	0.0095
3	Induct. Air Temp°F		113	122	125	123	119
4.	Cooling Air Temp°F		124	123	127	126	121
5.	Induct. Air PressinHg		29.93	30.15	30,32	30.22	29.93
9	Engine Speed - RPM		1800	4000	3600	3375	1800
7.	Manifold Air PressinH	Y.Y	11.3	27.9	25.7	16.5	11.2
8	Induct. Air Density-lb/	t3	0.0692	0.0687	0.0687	0.0687	0.0685
	Fuel Flow, Wf-1b/h		16.8	172.0	126.0	72.0	17.2
	Airflow, Wa-lb/h		204.0	1755.0	1428.0	785.0	203.0
	F/A (Measured) =(9) /(1)		0.0824	0.0980	0.0882	0.0917	0.0847
	Max. Cht - °F		302	451	431	385	324
13.	Avg. Cht - °F		596	432	427	381	319
14.	Min. Cht - °F		290	414	418	375	310
15.	EGT - °F		707	1408	1342	1120	741
16.	Torque, 1b-ft		20	009	552	258	26
17.	Obs. Bhp		3	228	189	83	7
18.	% CO ₂ (Dry)		8.77	8.66	9.27	7.93	8.69
19.	% CO (Dry)		8.61	9.27	8.32	10,31	8.69
20.	% 0 ₂ (Dry)		0.59	0.20	0.22	0.29	0.59
21.			5548	2290	2136	3562	5272
22.	NOx-ppm (Wet)		45	166	219	106	41
23.	CO2-1b/h		27.35	234.3	201.5	97.5	26.99
24.	CO-1b/h		17.09	159.6	115,1	80°7	17.18
25.	02-1b/h		1.34	3.93	3.48	2.59	1,33
26.	HC-1b/h		0.72	2.69	1.97	1.83	0.683
27.	NOx-1b/h		0.011	0,365	0,378	0.102	0.0099
28.	CO-1b/Mode		3.418	0.798	9,591	8.070	1,145
29.	HC-1b/Mode		0.143	0.013	0.164	0.183	0.046
30.	NOx-1b/Mode		0.002	0.002	0.032	0.010	0.001

TABLE C-10. TCM 6-285-B ENGINE NAFEC TEST DATA-BASELINE 10-(NO IDLE, FIVE MODE) SPARK SETTING 30° BTC

139	Taxt In	28.40	0.0110	104	110	28.62	1800	11,3	0.0673	17.6	204.0	0,0863	306	299	291	732	30	2	9.02	7.95	0.59	9614	09	27.6	15.5	1.32	0.63	0.015	1.034	0.042	0.001
138	Approach	28.50	0.0110	106	105	28.83	3375	16.5	0.0675	72.0	787.0	0.0915	362	358	354	1129	268	98	8.12	99.6	0.30	3400	158	98.2	74.4	2.64	1,75	0,15	7.438	0,175	0.015
137	C11mb	28.50	0.0110	112	113	29,14	3600	25.7	0.0675	126.0	1391.0	9060.0	422	417	407	1350	550	188	04.6	7.84	0.22	2010	316	195.6	103.8	3,33	1.82	0.54	8.654	0.152	0.045
136	Takeoff	28.50	0.0110	109	110	29.07	4000	28.0	0.0677	174.0	1742.0	0.0999	441	419	401	1416	909	230	8.75	8.99	0.20	2105	214	234.3	153.2	3.89	2.47	0.47	992.0	0.012	0.002
	Taxi Out	28.50	0.0110	103	113	28.88	1810	11.3	0.0680	17.8	212.0	0.0840	300	294	288	743	1	1	9.28	7.89	0.59	5110	69	29.5	16.0	1.37	69.0	0.017	3,197	0.138	0.004
Run No.	Parameter Mode	. Act. Baro inHgA	. Spec. Hum 1b/1b	. Induct. Air Temp°F	. Cooling Air Temp°F	. Induct. Air PressinHgA	. Engine Speed - RPM	. Manifold Air PressinHgA	i. Induct. Air Density-1b/ft3			. F/A (Measured) =(9) / (10)	. Max. Cht - °F	Avg.	Min.				% %							. 02-1b/h	. HC-1b/h	. NOx-1b/h). NOx-1b/Mode
		1	7	3	4	2	9	1	00	0	10	=	12	13	14	15	16	17	18	19.	20	21.	22	23	54	25,	26.	27.	28	29	30

TABLE C-11 TCM 6-285-B ENGINE NAFEC TEST DATA--TAKEOFF MODE LEAN-OUT--

	11	Takeoff	30.04	0.0140	85	88	29.96	0007						697	452	426	1481	612	233	10,62	6,11	0,22	1372	502	275.4	100.8	4.15	1,55	1,06	0.504	0.008	5000
80 10 10	10	Takeoff	30.03	0,0140	85	88	29.96	4000	27.7	0.0729	155.0	1758.0	0.0882	997	977	421	1468	612	233	10.22	6.71	0.19	1348	419	266,1	111.2	3.50	1,53	0.89	0.556	0.008	0.004
BTC	6	Takeoff	30.04	0.0140	85	88	29.96	4000	27.7	0.0729	160.0	1756.0	0.0911	456	439	415	1451	610	232	9.78	7.46	0.17	1432	326	256.9	124.7	3.25	1,64	0.70	0.624	0.008	0.003
SPARK SETTING 30°	Run No. 8	Takeoff	30.04	0.0140	85	87	29.97	0007	27.7	0.0729	165.0	1761.0	0.0937	677	432	410	1428	615	234	05.6	8.00	0.15	1309	215	249.1	135.0	2.89	1.52	0.47	0.675	0.008	0.002
SPA	Run	Parameter	Act. Baro inHgA	Spec. Hum 1b/1b	Induct. Air Temp°F	Cooling Air Temp°F	Induct. Air PressinHgA	Engine Speed - RPM	Manifold Air PressinHgA	Induct. Air Density-1b/ft3	Fuel Flow, Wf-1b/h	low, Wa-1b/h	Measur	Cht - °F	Avg. Cht - °F	Min. Cht - °F	EGT - °F	Torque, 1b-ft	Obs. Bhp	% CO ₂ (Dry)	% co (Dry)	% 02 (Dry)	-	NO _x -ppm (Wet)	C02-1b/h	C0-1b/h	02-1b/h	HC-1b/h	NO _x -1b/h	CO-1b/Mode	HC-1b/Mode	NOx-1b/Mode
			4	7.	3	4.	5	•	7.	œ	6	10	=	17.	13.	14.	15.	16.	17.	18	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30

TABLE C-12. TCM 6-285-B ENGINE NAFEC TEST DATA--CLIMB MODE

	15	C11mb	30.03	0.0140	98	88	30,12	3600	25.7	0.0731	108.0	1437.0	0.0752	442	432	454	1448	554	190	11.74	4.12	0.25	1251	980	242.4	54.1	3.75	1.11	1,62	4.511	0.092	0.135
TCM 6-285-B ENGINE NAFEC TEST DATACLIMB MODE LEAN-OUTSPARK SETTING 30° BTC	14	C11mb	30.04	0.0140	98	88	30.12	3600	25.6	0.0731	113.0	1440.0	0.0785	437	426	419	1414	557	191	11,15	5.01	0.24	1342	902	232.8	9.99	3.64	1.20	1.19	5.547	0.100	0.099
6-285-B ENGINE NAFEC TEST DATA LEAN-OUTSPARK SETTING 30° BTC	13	C1 1mb	30.04	0.0140	86	88	30,12	3600	25.6	0.0731	118.0	1434.0	0.0823	432	421	414	1391	559	192	10.34	6.33	0.21	1475	452	218.4	85.1	3,22	1.34	0.77	7.091	0.111	0.064
285-B ENGINE N-OUTSPARK	0. 12	C11mb	30.04	0.0140	98	89	30,12	3600	25.7	0.0731	123.0	1429.0	0.0861	434	421	412	1374	556	191	9.85	7.12	0.21	1550	346	209.2	96.3	3.24	1.42	0.59	8.022	0.118	0.049
TABLE C-12. TCM 6-2 LEAN	Run No.	Parameter Mode		2. Spec. Hum 1b/1b	3. Induct. Air Temp"F	4. Cooling Air Temp F	5. Induct. Air PressinHgA	6. Engine Speed - RPM				Airflow, Wa-1b/h	F/A (Max.	Avg.	_	5. EGT - °F		_	18. % CO ₂ (Dry)			HC-ppm (_	00. NOx-1b/Mode
												-	-	-	-	1	-	1	7	-	7	7	7	7	7	7	7	7	7	7	7	m

TABLE C-13. TCM 6-285-B ENGINE NAFEC TEST DATA--APPROACH MODE LEAN-OUT--SPARK SETTING 30° BTC

19	Approach	30.00	0.0130	88	92	30.00	3480	16.5	0.0726	61.0	825.0	0.0739	330	380	374	1266	264	87	11.58	4.07	0.28	1879	797	137.1	30.7	2.41	0.95	0.75	3,066	0,095	0.075
18	Approach	30.00	0.0130	88	91	30.00	3480	16.5	0.0726	0°49	816.0	0.0784	385	375	370	1234	267	88	10,45	5.81	0,25	2012	424	124.5	44.1	2,17	1.02	0.43	4.405	0.102	0.043
17	Approach	30.00	0.0130	88	92	30.00	3480	16.5	0.0726	0.69	811.0	0.0851	371	362	358	1191	265	88	04.6	7.55	0.27	2297	258	114.0	58.3	2.38	1.19	0.25	5.827	0,119	0.025
Vo. 16	Approach	30.00	0.0130	88	91	30.00	3490	16.5	0.0726	74.0	825.0	0.0897	363	356	351	1163	797	88	8.43	9.25	0.24	2687	153	106.5	74.4	2.20	1.44	0.15	7.439	0.144	0.015
Run No.	Parameter		. Spec. Hum 1b/1b	. Induct. Air Temp°F	. Cooling Air Temp F	. Induct. Air PressinHgA	. Engine Speed - RPM	. Manifold Air PressInHgA	. Induct. Air Density-lb/ft3	. Fuel Flow, Wf-1b/h	o/h)		•		. Min. Cht - °F			0		. % CO (Dry)				. C02-1b/h		• 02-1b/h				-14	• NOx-1b/Mode
		-	7	m	4	5	9	7	œ	6	10	#	12	13,	14	15,	16,	17	18	19	20	21,	22	23	77	25	26	27	28.	29	30

TABLE C-14. TCM 6-285-B ENGINE NAFEC TEST DATA--TAKEOFF MODE LEAN-OUT--SPARK SETTING 30° BTC

		Run No.	42	43	4	45
	Parameter	Mode	Takeoff	Takeoff	Takeoff	Takeoff
-	Act. Baro inHgA		29.93	29.93	29.93	29.93
2.	Spec. Hum 1b/1b		0.0100	0.0100	0.0100	0.0100
3	ir 1	te.	121	125	127	128
4.	Cooling Air Temp "	<u> </u>	128	129	129	130
5.	Induct. Air Press.	inHgA	30.15	30.15	30.15	30.15
9	Engine Speed - RPM		4000	0007	0007	0007
7.	Manifold Air PressinHgA	-inHgA	27.9	27.9	27.9	27.9
8	Induct. Air Density-1b/	-1b/ft ³	0.0688	0.0683	0.0681	0.0680
6	Fuel Flow, Wf-1b/h		174.0	169.0	164.0	159.0
10.	Airflow, Wa-1b/h	(1758.0	1749.6	1745.0	1737.6
11.	F/A (Measured) =(9)	(10)	0.0990	9960.0	0.0940	0.0915
12.	Max. Cht - F)	644	459	897	944
13.	Avg. Cht - °F		429	439	877	458
14.	Min. Cht - °F		410	420	428	435
15.	EGT - °F		1405	1422	1436	1443
16.	Torque, 1b-ft		595	598	009	602
17.	Obs. Bhp		227	228	228	229
18.	2 CO ₂ (Dry)		8.53	80.6	9.57	9.87
19.	2 co (Dry)		9.74	00.6	8.38	7.85
20.	Z 02 (Dry)		0.21	0.21	0.21	0.21
21.	HC-ppm (Wet)		2230	2074	1969	1917
22.	NO _x -ppm (Wet)		168	229	283	328
23.	CO2-1b/h		232.0	243.5	254.0	258.8
24.	co-1b/h		168.6	153.6	141.6	131.0
25.	02-1b/h		4.15	60.4	4.05	4.00
26.	нс-1b/h		2.63	2.42	2.27	2.18
27.	NO _x -1b/h		0.371	0.499	0.609	0.6965
28.	CO-1b/Mode		0.843	0.768	0.708	0.655
29.	HC-1b/Mode		0.0132	0.0121	0.0113	0.0109
30.	NO _x -1b/Mode		0.00185	0.00250	0.00304	0.00348

TABLE C-15. TCM 6-285-B ENGINE NAFEC TEST DATA--CLIMB MODE LEAN-OUT--SPARK SETTING 30° BTC

67	C11mb	29.93	0.0100	128	123	30.29	3600	25.7	0.0686	111.0	1415.0	0.0784	450	445	435	1410	246	187	11,38	5,34	0.23	1711	765	236.6	70.7	3.48	1.51	1.262	5.888	0.1258	0,1052
84	C11mb	29.93	0.0100	128	131	30.28	3600	25.7	0.0681	116.0	1405.0	0.0826	777	077	431	1384	553	190	10,73	6.53	0.23	1820	522	224.8	87.1	3.50	1.62	0.868	7.256	0.1349	0.0724
24	C11mb	29.93	0.0100	128	130	30.28	3600	25.7	0.0683	121.0	1412.0	0.0857	436	432	424	1353	542	186	9.16	8.00	0.23	2003	318	209.4	109.2	3.59	1.81	0.537	9,101	0.1349	0.0448
10. 46	Climb	29.93	0.0100	128	130	30.27	3600	25.7	0.0682	126.0	1385.0	0.0910	429	425	417	1336	542	186	9.25	8.84	0.23	2133	237	197.1	119.9	3.56	1.93	0.401	886.6	0.1606	0.0334
Run No.	Parameter Mode		2. Spec. Hum 1b/1b	3. Induct. Air Temp°F	4. Cooling Air Temp °F	5. Induct. Air PressinHgA	6. Engine Speed - RPM	7. Manifold Air PressinHgA	8. Induct. Air Densigy-lb/ft3	9. Fuel Flow, Wf-lb/h	/h/		_	Avg.	_		6. Torque, 1b-ft	0	8. % CO ₂ (Dry)	24	26	H	Z	23. C02-1b/h	٥	•	_	_	٥	_	0. NOx-1b/Mode

TABLE C-16. TCM 6-285-B ENGINE NAFEC TEST DATA--CLIMB MODE LEAN-OUT--SPARK SETTING 30° BTC

53	Approach	29.92	060000	122	122	29.92	3400	16.5	0.0681	57.0	786.0	0.0725	397	394	389	1258	267	98	12.87	3.14	0,32	2131	1260	145.6	22.6	2,63	1,01	1,11	2,261	0.101	0,111
52	Approach	29.92	0600*0	124	. 127	29.92	3400	16.5	0.0678	62.0	784.0	0.0791	386	383	380	1198	263	85	10.79	6.35	0.30	2544	787	126.1	47.2	2.55	1.25	0.44	4.724	0.125	0.044
51	Approach	29.92	0600*0	122	125	29.92	3400	16.5	0.0681	67.0	781.0	0.0858	374	370	367	1150	262	85	9.15	9.05	0.30	2996	208	110.5	9.69	2.63	1.50	0.19	6.957	0.150	0.019
. 50	Approach	29.92	0600*0	121	123	29.92	3355	16.5	0.0682	72.0	795.0	0.0905	365	360	355	1118	261	83	8.04	10.94	0.31	3462	123	102.0	88.4	2.86	1.79	0.12	8.836	0.179	0.012
Run No.	Parameter	l. Act. Baro inHgA	2. Spec. Hum 1b/1b	3. Induct. Air Temp°F	. Cooling Air Temp °F	o. Induct. Air PressinHgA	5. Engine Speed - RPM	7. Manifold Air PressinHgA	 Induct. Air Density-lb/ft³ 	. Fuel Flow, Wf-1b/h	low, Wa-1b/h	1. F/A (Measured) =(9) /(10)	. Max.		. Min.	H		0	3. % CO ₂ (Dry)). % 02 (Dry)	=	~	O	0	5. 02-1b/h	_	_	_	_). NOx-1b/Mode
		7	4	3	4	S	9	1	8	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29.	30

TABLE C-17. TCM 6-285-B ENGINE NAFEC TEST DATA--TAXI MODE LEAN-OUT--SPARK SETTING 30° BTC

78	Taxi	30.14	70	30,39	1800	0.0760	12.8	187.7	0.0682	418	381	294	748	28	5	12,28	3.82	0.54	2973	146	33.5	6.63	1.07	0.334	0.0306	1,768	0.0891	0.00816
83	Taxi	30.14	70	30.29	1775	0.0757	14.1	184.5	0.0764	395	363	289	733	30	2	11,19	5.30	0.58	3424	86	30.3	9.15	1.14	0.391	0,0210	2,440	0.104	0,00560
No. 82	Taxi	30.14	70	30.38	1790	0.0760	15.8	193.5	0.0817	387	355	281	710	30	5	8.71	8.81	0.63	5133	99	25.8	16.6	1,35	0.612	0.0144	4.427	0.163	0.00384
Run No.	Mode			nHgA		Innga Ib/ft3		(9/																			
	Parameter	Act. Baro inHgA Spec. Hum lb/lb	H 1	Induct, Air Press, =inHgA	Engine Speed - RPM	ranifold Air FressinngA Induct. Air Density-lb/ft3	Fuel Flow, Wf-1b/h	h/c	F/A (Measured) =(9)	Max. Cht - °F	Avg. Cht - °F	Min. Cht - °F	EGT - °F	Torque, 1b-ft	Obs. Bhp	% CO ₂ (Dry)	% CO (Dry)		5	NOx-ppm (Wet)	CO2-1b/h	CO-1b/h	02-1b/h	HC-1b/h	NOx-1b/h	CO-1b/Mode	HC-1b/Mode	NOx-1b/Mode
		1:	e .		• 1	. %	6	10.	11:	17.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	79	27.	28.	29.	30.

The state of the s

TABLE C-18. TCM 6-285-B ENGINE NAFEC TEST DATA--TAXI MODE

ATAXI MODE	128	Taxi	28.50	0.0110	102	109	28.87	1800	11.4	14.5	207.6	8690.0	304	298	293	786	-		12,55	3.16	0.47	2748	134	37.4	5.99	1.02	0.344	0.0315	1,597	0.0917	0,00840
TCM 6-285-B ENGINE NAFEC TEST DATATAXI MODE LEAN-OUTSPARK SETTING 30° BTC	127	Taxi	28.80	0.0110	103	113	29.19	1820	11.3	16.0	200.9	96200	293	288	283	736		•	10.88	5.57	0.52	3947	76	32.0	10.4	1,11	0.498	0.0222	2,773	0,133	0.00592
LEAN-OUT-SPARK SETTING 30°	No. 126	Taxi	28.80	0.0110	104	109	29.19	1800	11.4	17.5	201.6	8980.0	307	301	293	721	•		9.18	8.20	0.54	5347	62	27.9	15.9	1.19	0.694	0.0150	4.240	0.185	0.00400
TABLE C-18. TCM 6-	Run No.	Parameter	Act. Baro inHgA	Spec. Hum 1b/1b	Induct. Air Temp °F	Cooling Air Temp °F	Induct. Air PressinHgA	Engine Soeed - RPM	Tadnot Air Denotiment / ft3	Fuel Flow, Wf-1b/h	Airflow, Wa-1b/h	F/A (Measured) =(9) /(10)	Cht -	Avg. Cht - °F	Min. Cht - °F		Torque, 1b-ft		% CO ₂ (Dry)			HC-ppm		_		_			_		NOx-1b/Mode
			1	2.	e.	4.	2	6	°	6	10.	11.	12.	13.	14.	15.	16.	17.	18	19	20.	21.	27.	23.	24.	25.	26.	27.	28.	29.	30.

AD-A074 338

NATIONAL AVIATION FACILITIES EXPERIMENTAL CENTER ATL-ETC F/G 21/7
EXHAUST EMISSIONS CHARACTERISTICS FOR A GENERAL AVIATION LIGHT---ETC(U)
AUG 79 E BECKER
FAA-NA-79-30 FAA-RD-79-67 NI

UNCLASSIFIED

2 0 2 AD A074338

END

DDC

TABLE C-19. TOTAL EMISSIONS CHARACTERISTICS--TCM 6-285 B ENGINE -- SEA LEVEL STANDARD DAY

Hode	(1b/h)	CO (1b/Mode)	HC (1b/h)	HC (1b/Mode)	NO _X (1b/h)	NO _K (1b/Mod)	(V/A)	Max. (CHT-*P)
Taxi (16.9 - Min.)	21.0	5.600	0.880	0.235	0.0100	0.0027	0.0900	365
Takeoff (0.3 - Min.)	117.5	0.588	1.400	0.001	0.8000	0.0040	0.0880	044
Climb (5.0 - Min.)	86.5	7.208	1.220	0.102	0.7250	0.0604	0.0820	425
Approach (6.0 - Min.)	50.0	2.000	1.000	0.100	0.3000	0.0300	0.0785	365
1b/Cycle		18.396		0.444		0.0971		
1b/Cycle/RBHP		0.065		0.0016		0.00034		
Pederal Limit		0.042		0.0019		0.0015		
Diff 6 - 0		0.023		0003		00116		
(Q + Q) x 100		53.7		-18.0		-77.3		
Z of STD (9 + 100		153.7		82.0		17.71		
	(1b/h)	Wa (1b/h)						
Takeoff (100%) Climb (80%)	160	1818						
Approach (402)	19	854						
Taxi	18	200						

TABLE C-20. TOTAL EMISSIONS CHARACTERISTICS--TCM 6-285 B ENGINE--SEA LEVEL WARM DAY (80° F)

Hode	00 (1b/h)	CO (1b/Mode)	HC (1b/h)	HC (1b/Mode)	NO _X (1b/h)	NO _X (1b/Mod)	(F/A)	Max. (CHT-*F)
Takeoff (0 3 - Min.)	19.7	5.253	0.930	0.248	0.0100	0.0027	0.0900	385
Climb (5.0 - Min.)	95.0	7.917	1.600	0.117	0.5800	0.0483	0.0905	430 430
Approach (6.0 - Min.) 1b/Cvcle	58.0	5.800	1.190	0.119	0.3000	0.0300	0.0830	37.5
1b/Cycle/RBHP		0.069		0.0017		0.0003		
Federal Limit		0.042		0.0019		0.0015		
D - 9 - 0		.027		0002		0012		
(8+(2) × 100		64.3		-9.1		-80.2		
Z of STD. = (9) + 100		164.3		6.06		19.8		
	, n							
	(1b/h)	(1b/h)						
Takeoff (1002)	160	1768						
Climb (80Z)	122	1444						
Approach (40Z)	67	807						
Техт	18	200						

TABLE C-21. TOTAL EMISSIONS CHARACTERISTICS--TCM 6-285 B ENGINE--SEA LEVEL HOT DAY (100°F)

Mode	CO (1b/h)	CO (1b/Mode)	HC (1b/h)	HC (1b/Mode)	NO _x (1b/h)	NO _X (1b/Mod)	(<u>k/k</u>)	Max. (CHT-*F)
Taxi (16.0 - Min.) Takeoff (0.3 - Min.) Climb (5.0 - Min.) Approach (6.0 - Min.) 1b/Cycle 1b/Cycle 1b/Cycle/RBHP Federal Limit Diff. = 6 - 0 (18.4 127.0 103.0 65.0	4.907 0.635 8.583 6.500 20.625 0.0724 0.042 0.042 72.3	0.900 1.950 1.580 1.360	0.240 0.010 0.132 0.136 0.518 0.00182 0.0019 -4.2 95.8	0.0100 0.7000 0.5250 0.2500	0.0027 0.0035 0.0438 0.0250 0.0750 0.00026 0.0015 00124 -82.5	0.0900 0.0920 0.0870 0.0835	305 467 435 375
Takeoff (100%) Climb (80%) Approach (40%) Taxi	Wf (1b/h) 160 122 67 18	Wa (1b/h) 1739 1402 802 200						