Metody Sztucznej Inteligencji Wykład 2: **Zadanie klasyfikacji**

dr inż. Paweł Ksieniewicz Katedra Systemów i Sieci Komputerowych

13 marca 2019

 $\sim\sim$

Uczenie nadzorowane

3/32

<u>Uczenie nadzorowane</u>

 \hookrightarrow Regresja:

Uczenie nadzorowane

→ Regresja:

× predykcja **liczby rzeczywistej** powiązanej z zadanym wzorcem (wektorem cech).

Uczenie nadzorowane

- \hookrightarrow Regresja:
 - × predykcja liczby rzeczywistej powiązanej z zadanym wzorcem (wektorem cech).
- → Klasyfikacja:

Uczenie nadzorowane

→ Regresja:

× predykcja liczby rzeczywistej powiązanej z zadanym wzorcem (wektorem cech).

→ Klasyfikacja:

× predykcja **liczby całkowitej** (etykiety) powiązanej z zadanym wzorcem.

Przykład

ZWIERZĘ	jajorodne?	ma tuski?	jadowite?	zmiennoceplne?	$ile\ nóg?$	czy gad?
kobra	1	1	1	1	0	1
grzechotnik	1	1	1	1	0	1
$boa\ dusiciel$	0	1	0	1	0	1
kurczak	1	1	0	1	2	0
gupik	0	1	0	0	0	0
Andrzej	0	0	0	0	2	0
zebra	0	0	0	0	4	0
pyton	1	1	0	1	0	1
aligator	1	1	0	1	4	1

	kobra	grzechotnik	boa dusiciel	kura	gupik	Andrzej	zebra	pyton	aligator
kobra	_	0.00_{1}	3.144	2.70_{3}	3.796	4.657	5.118	2.412	3.43_{5}
grzechotnik	0.00_{1}		3.14_{4}	2.70_{3}	3.79_{6}	4.65_{7}	5.11_{8}	2.41_{2}	3.43_{5}
$boa\ dusiciel$	3.14_4	3.14_{5}		2.36_{3}	2.12_{2}	3.43_{7}	4.04_{8}	2.01_{1}	3.17_{6}
kurczak	2.70_4	2.70_{5}	2.36_{3}	_	3.17_{6}	3.79_{7}	3.98_{8}	1.22_{1}	1.22_{2}
gupik	3.796	3.79_{7}	2.12_{1}	3.17_{4}		2.70_{2}	3.43_{5}	2.92_{3}	3.81_{8}
Andrzej	4.65_{7}	4.65_{8}	3.43_{3}	3.79_{4}	2.70_{2}	_	1.22_{1}	3.98_{5}	3.98_{6}
zebra	5.11_7	5.11_{8}	4.04_{5}	3.98_{4}	3.43_{2}	1.22_{1}	—	4.51_{6}	3.79_{3}
pyton	2.413	2.414	2.01_{2}	1.22_{1}	2.92_{6}	3.98_{7}	4.518	_	2.45_{5}
aligator	3.434	3.43_{5}	3.17_{3}	1.22_{1}	3.817	3.98_{8}	3.796	2.45_{2}	_
czy gad?	1	1	1	0	0	0	0	1	1

→ Najbardziej banalnym rozwiązaniem jest **najbliższy** sąsiad.

→ Najbardziej banalnym rozwiązaniem jest **najbliższy** sąsiad.

→ Jest to tak zwane uczenie leniwe.

- → Najbardziej banalnym rozwiązaniem jest **najbliższy** sąsiad.
- → Jest to tak zwane uczenie leniwe.
- Uczenie polega wprost na zapamiętaniu wszystkich przypadków (wzorców, obiektów) ze zbioru uczącego.

- → Najbardziej banalnym rozwiązaniem jest **najbliższy** sąsiad.
- → Jest to tak zwane uczenie leniwe.
- \hookrightarrow Uczenie polega wprost na zapamiętaniu wszystkich przypadków (wzorców, obiektów) ze zbioru uczącego.
- → Predykcja składa się z całych dwóch kroków:

- → Najbardziej banalnym rozwiązaniem jest **najbliższy** sąsiad.
- → Jest to tak zwane uczenie leniwe.
- Uczenie polega wprost na zapamiętaniu wszystkich przypadków (wzorców, obiektów) ze zbioru uczącego.
- → Predykcja składa się z całych dwóch kroków:
 - × znajdź najbliższego sąsiada,

- → Najbardziej banalnym rozwiązaniem jest **najbliższy** sąsiad.
- → Jest to tak zwane uczenie leniwe.
- Uczenie polega wprost na zapamiętaniu wszystkich przypadków (wzorców, obiektów) ze zbioru uczącego.
- → Predykcja składa się z całych dwóch kroków:
 - × znajdź najbliższego sąsiada,
 - imes zwróć etykietę odnalezionego najbliższego sąsiada.

	kobra	grzechotnik	boa dusiciel	kura	gupik	Andrzej	zebra	pyton	aligator
kobra	_	0.00_{1}	3.144	2.70_{3}	3.79_{6}	4.65_{7}	5.118	2.41_{2}	3.43_{5}
grzechotnik	0.00_{1}		3.14_{4}	2.70_{3}	3.79_{6}	4.65_{7}	5.118	2.41_{2}	3.43_{5}
$boa\ dusiciel$	3.144	3.14_{5}		2.36_{3}	2.12_{2}	3.43_{7}	4.04_{8}	2.01_{1}	3.17_{6}
kurczak	2.70_4	2.70_{5}	2.36_{3}	_	3.17_{6}	3.79_{7}	3.98_{8}	1.22_{1}	1.22_{2}
gupik	3.79_{6}	3.79_{7}	2.12_{1}	3.17_{4}	—	2.70_{2}	3.43_{5}	2.92_{3}	3.81_{8}
Andrzej	4.65_{7}	4.65_{8}	3.43_{3}	3.79_{4}	2.70_{2}	_	1.22_{1}	3.98_{5}	3.98_{6}
zebra	5.117	5.118	4.04_{5}	3.984	3.432	1.221			
pyton	2.413	2.41_{4}	2.01_{2}	1.22_{1}	2.92_{6}	3.98_{7}			
aligator	3.43_4	3.43_{5}	3.17_{3}	1.22_{1}	3.81_{7}	3.98_{8}			
czy gad?	1	1	1	0	0	0	0	1	1

 \hookrightarrow Jest to nadal uczenie leniwe.

→ Jest to nadal uczenie leniwe.

→ Predykcja nadal składa się z całych dwóch kroków:

- → Jest to nadal uczenie leniwe.
- Predykcja nadal składa się z całych dwóch kroków:
 - \times znajdź k najbliższych sąsiadów,

- → Jest to nadal uczenie leniwe.
- → Predykcja nadal składa się z całych dwóch kroków:
 - \times znajdź k najbliższych sąsiadów,
 - × zwróć najczęściej pojawiającą się etykietę wśród odnalezionych najbliższych sąsiadów.

	kobra	grzechotnik	boa dusiciel	kura	gupik	Andrzej	zebra	pyton	aligator
kobra	_	0.00_{1}	3.144	2.70_{3}	3.79_{6}	4.65_{7}	5.118	2.41_{2}	3.43_{5}
grzechotnik	0.00_{1}		3.14_{4}	2.70_{3}	3.79_{6}	4.65_{7}	5.118	2.41_{2}	3.43_{5}
$boa\ dusiciel$	3.14_{4}	3.14_{5}		2.36_{3}	2.12_{2}	3.43_{7}	4.04_{8}	2.01_{1}	3.17_{6}
kurczak	2.70_4	2.70_{5}	2.36_{3}	_	3.17_{6}	3.79_{7}	3.98_{8}	1.22_{1}	1.22_{2}
gupik	3.79_{6}	3.79_{7}	2.12_{1}	3.17_{4}		2.70_{2}	3.43_{5}	2.92_{3}	3.81_{8}
Andrzej	4.65_{7}	4.65_{8}	3.43_{3}	3.79_{4}	2.70_{2}	_	1.22_1	3.98_{5}	3.98_{6}
zebra	5.117	5.118	4.04_{5}	3.984	3.432	1.221			
pyton	2.413	2.41_{4}	2.01_{2}	1.22_{1}	2.92_{6}	3.98_{7}			
aligator	3.434	3.435	3.17 ₃	1.22_{1}	3.817	3.988			
czy gad?	1	1	1	0	0	0	0	1	1

 $\sim\sim$

Ile powinno wynosić k?

14/32

Powinno być **nieparzyste**, dla ewidentnego wyniku głosowania.

- Powinno być **nieparzyste**, dla ewidentnego wyniku głosowania.
- \hookrightarrow Im **mniejsze** k, tym mniejsza próbka, a więc większy wpływ obserwacji odstających.

- Powinno być **nieparzyste**, dla ewidentnego wyniku głosowania.
- \hookrightarrow Im **mniejsze** k, tym mniejsza próbka, a więc większy wpływ obserwacji odstających.
- \hookrightarrow Im większe k, tym bardziej upraszczamy klasyfikację do wyboru klasy dominującej według prawdopodobieństwa a priori.

- Powinno być **nieparzyste**, dla ewidentnego wyniku głosowania.
- \hookrightarrow Im **mniejsze** k, tym mniejsza próbka, a więc większy wpływ obserwacji odstających.
- → Im większe k, tym bardziej upraszczamy klasyfikację do wyboru klasy dominującej według prawdopodobieństwa a priori.
- 9- W większości pakietów domyślnie wynosi 5.

- Powinno być **nieparzyste**, dla ewidentnego wyniku głosowania.
- \hookrightarrow Im **mniejsze** k, tym mniejsza próbka, a więc większy wpływ obserwacji odstających.
- → Im większe k, tym bardziej upraszczamy klasyfikację do wyboru klasy dominującej według prawdopodobieństwa a priori.
- → W większości pakietów domyślnie wynosi 5.
- → Najlepszy byłby dobór eksperymentalny przez **zbiór** walidujący.

Zbiór danych

Uczenie jest nieprzyzwoicie wręcz szybkie. (bo go nie ma)

- Uczenie jest nieprzyzwoicie wręcz szybkie. (bo go nie ma)
- Nie wymaga żadnej matematyki do wyjaśnienia. (o ile nie skupiamy się na definicji odległości)

- Uczenie jest nieprzyzwoicie wręcz szybkie. (bo go nie ma)
- Nie wymaga żadnej matematyki do wyjaśnienia. (o ile nie skupiamy się na definicji odległości)
- Jest szalenie nieefektywny pamięciowo. (musi zapisać w pamięci wszystko)

- Uczenie jest nieprzyzwoicie wręcz szybkie. (bo go nie ma)
- Nie wymaga żadnej matematyki do wyjaśnienia. (o ile nie skupiamy się na definicji odległości)
- Jest szalenie nieefektywny pamięciowo. (musi zapisać w pamięci wszystko)
- Jest przygnębiająco nieefektywny obliczeniowo. (im większe k i im większa liczba wzorców, tym dłużej szuka)

- Uczenie jest nieprzyzwoicie wręcz szybkie. (bo go nie ma)
- Nie wymaga żadnej matematyki do wyjaśnienia. (o ile nie skupiamy się na definicji odległości)
- Jest szalenie nieefektywny pamięciowo. (musi zapisać w pamięci wszystko)
- Jest przygnębiająco nieefektywny obliczeniowo. (im większe k i im większa liczba wzorców, tym dłużej szuka)
- NIE MÓWI NAM NIC O PROBLEMIE. (nie budujemy w nim żadnego modelu)

~~~

# Miary oceny jakości

18/32









# Macierz pomyłek dla problemu binarnego

|          | Wynik predykcji |       |      |
|----------|-----------------|-------|------|
| Etykieta | Prawda          | Falsz | Suma |
| Prawda   | TP              | FN    | P    |
| Fałsz    | FP              | TN    | N    |
| Suma     | P'              | N'    |      |

# Błąd i dokładność

$$ERR = \frac{FN + FP}{TP + FN + FP + TN}$$

$$ACC = 1 - ERR$$

→ Nie znaczy przesadnie wiele, jeśli mamy do czynienia z problemem niezbalansowanym.

- → Nie znaczy przesadnie wiele, jeśli mamy do czynienia z problemem niezbalansowanym.
- → Najczęściej mamy do czynienia z problemem niezbalansowanym.

- Nie znaczy przesadnie wiele, jeśli mamy do czynienia z problemem niezbalansowanym.
- Najczęściej mamy do czynienia z problemem niezbalansowanym.
- Jeśli klasyfikujemy bardzo rzadką chorobę (załóżmy, że występuje u jednego człowieka na milion) i ograniczymy nasz klasyfikator do informowania każdego pacjenta o tym że jest zdrowy, niezależnie od wyników badań, otrzymamy dokładność powyżej 99%.

- → Nie znaczy przesadnie wiele, jeśli mamy do czynienia z problemem niezbalansowanym.
- Najczęściej mamy do czynienia z problemem niezbalansowanym.
- Jeśli klasyfikujemy bardzo rzadką chorobę (załóżmy, że występuje u jednego człowieka na milion) i ograniczymy nasz klasyfikator do informowania każdego pacjenta o tym że jest zdrowy, niezależnie od wyników badań, otrzymamy dokładność powyżej 99%.
- Wszyscy chorzy umrą w niewiedzy i mękach.

#### Precision

Ile z **ocenionych pozytywnie wzorców** zostało ocenionych słusznie.

#### Precision

Ile z **ocenionych pozytywnie wzorców** zostało ocenionych słusznie.



#### Precision

Ile z **ocenionych pozytywnie wzorców** zostało ocenionych słusznie.



#### Recall

Ile z **pozytywnych wzorców** zostało ocenionych słusznie.

#### Precision

Ile z **ocenionych pozytywnie wzorców** zostało ocenionych słusznie.



#### Recall

Ile z **pozytywnych wzorców** zostało ocenionych słusznie.



### F-score

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$