Identifying Key Health Indicators and Sociodemographic Factors Associated with Diabetes Risk

Alice Kang, Qidi An, Manwen Jia, Leon Li, Jiahao Chen

Background

What is Diabetes?

Why Study Diabetes?

- 1 in 10 adults in the U.S. has diabetes
- Rising global prevalence → 422M+ cases worldwide
- Early prediction = better prevention & management

Background

Dataset Snapshot

- 100,000 individuals
- Clinical + demographic features
- Source: Diabetes Health & Demographics Dataset by ZIYA

Background

Our Project Goal:

- Predict diabetes status using health indicators
- Identify key risk factors from medical and demographic data

Heatmap of correlation coefficients of each characteristic with diabetes

Heatmap of Selected Feature characteristic

- → Blood Glucose Level
- → HbA1c Level
- → Age
- → Bmi
- → **Hypertension**
- → Heart Disease

- Rescaling: use standardscaler()
- Baseline Model Consideration:
 - 91.5% of individuals do not have diabetes, and only 8.5% do.
 - Predicting Probabilities of "no diabetes" gets 91.5% accuracy.

Stratified Sampling for Data Splitting

> Training Set: 80%

> Validation Set: 10%

> Test Set: 10%

> Stratify by diabetes proportion

Train set diabetes proportion: 0.0850 Validation set diabetes proportion: 0.0850 Test set diabetes proportion: 0.0850

Model Selection & Tuning

- Tested models: Logistic Regression, Decision Tree, SVM, KNN
- Each model was tuned twice:
 - Once with accuracy as the scoring metric
 - i. measure the overall correctness of predictions
 - o Once with **recall**, which is crucial for disease detection
 - i. focuses specifically on finding all positive instances

Model	Accuracy score (optimizing for accuracy)	Accuracy score (optimizing for recall)
Logistic	0.9619	0.9623(Finalized Model)
Decision Tree	0.9731	0.95 70
KNN	0.9677	0.9698
SVM	0.9685	0.9685

Results

Our final Model is Logistic Regression Model.

$$P(\text{diabetes} = 1 \mid X) = \frac{1}{1 + \exp(5.005 - \sum_{i} w_{i} x_{i})}.$$

$$\sum_{i} w_{i}x_{i} = 2.53 \cdot \text{hbA1c_level} + 1.35 \cdot \text{blood_glucose_level} + 1.04 \cdot \text{age} + 0.61 \cdot \text{bmi}$$

$$+ 0.20 \cdot \text{hypertension} + 0.16 \cdot \text{heart_disease}$$

- Hyperparameters We Choose
 - ❖ Test Data Accuracy ≈ 95.8% (> 91.5%)

- · c= 10 (low regularization)
- penalty= 'I1' (Lasso)
- solver= 'liblinear' ('liblinear' optimization algorithm)

Hyperparameter tuning:

- GridSearchCV
- □ 3-fold cross-validation
- Scoring metric: "Recall"

1 Tuning

parameters: C=[0.01,0.1,10]

penalty=['l1', 'l2']

solver=['liblinear', 'sage']

```
Fitting 3 folds for each of 16 candidates, totalling 48 fits
Logistic Best Params: {'C': 10, 'penalty': 'l1', 'solver': 'liblinear'}
Logistic Best CV Accuracy: 0.62
```

Logistic Best CV Accuracy: 0.62 Logistic Validation Accuracy: 0.96

Test Data Confusion Matrix:

	Predicted 0(Negative)	Predicted 1(Positive)
Actual 0(No Diabetes)	9057	93
Actual 1(With Diabetes)	327	523

Precision = 523/(523+93) ≈ 0.849
 High Confidence in Predicting Diabetes

• **Recall** = $519/(519+327) \approx 0.613$

Identified Patients: 61.3% Missed Patients: 38.7%

ROC Curve Demonstrates Robust Generalization

 Consistent AUC shows the model generalizes equally well to unseen data.

 High TPR/FPR trade-off allows tuning threshold for either fewer false alarms or fewer misses.

Visualize our logistic curves

- As age/BMI increases, the possibility of having diabetes will increase.
- Test data points are well-separated

Future Directions

- Interaction Terms
 - such as HbA1c * age, BMI * hypertension
- Include Other Potential Variables to Increase the Accuracy:
 - other medical conditions
 - family medical history
- Make new models to predict Type I, Type II, disease severity for other complex dataset

Thanks!

Do you have any questions? :)

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

Reference List

- World Health Organization (WHO). (2016). Global report on diabetes. Geneva: World Health Organization. https://www.who.int/publications/i/item/9789241565257
- Centers for Disease Control and Prevention (CDC). (2023). National Diabetes
 Statistics Report. https://www.cdc.gov/diabetes/data/statistics-report/index.html
- ZIYA. (2023). Diabetes Clinical Dataset (100K Rows). Available on Kaggle: https://www.kaggle.com/datasets/ziya07/diabetes-clinical-dataset100k-rows