Problem 1	DNYANESH PAWASKAR
K _T A	$q = q_0 \frac{z}{L}$ $MM = LDL$
k	N/m² UDS
K -L-	*
Let rigid bar rotate a	bout A thru angle 0 ccw.
Then $u = z\theta$ vert d	eflection for small angles
1 DOF system as 8 that Jescribes the s	tate/config. of the system.
	$\frac{u^2dz qudz}{}$
0	adz. u in opp
note: kdz adz are	directions the pointwise stiffness
and force respe	ectively so integrate rely many points over length.
over the "infinit	ely many" points over length.
$\Pi = \underbrace{1}_{2} \underbrace{k_{7} \theta + \underbrace{1}_{2} k \theta^{2}}_{2}$	$\frac{L^{3} + 900 L^{3} - 0}{L}$

www.PrintablePaper.net

		DNYANESH PAWASKAR
PMPE ⇒	10 <u>- 0</u>	
⇒ k _T 0 1	$\frac{1}{3} + \frac{1}{3} = 0$	
⇒ θ=	$\frac{-9_0L^2/3}{k_T + kL^3/3}$	
u(L)= def	$\frac{k_T + KL^2/3}{\text{lection at } B = L\theta}$	
u(L) =	-9.L ³ 3k _T + KL ³	
	3KT+KL	

www.PrintablePaper.net

Problem 2

Propped Cantilever with UDL

$$F_A = 0$$
 $M_B = 0$

$$\sum_{A} M_{A} = 0 \Rightarrow M_{A} + 9L \cdot \frac{L}{2} = 0 \Rightarrow M_{A} = -\frac{9L^{2}}{2}$$

$$\begin{array}{c} \Sigma M_{B} = 0 \Rightarrow M_{A} + 9L \cdot \underline{L} = 0 \Rightarrow M_{A} = -\frac{9L^{2}}{2} \\ \Sigma M_{A} = 0 \Rightarrow M_{A} + 9L \cdot \underline{L} - 9L \cdot \underline{L} = 0 \Rightarrow M_{A} = -\frac{9L^{2}}{2} \\ \Sigma M_{A} = 0 \Rightarrow M_{A} + 9L \cdot \underline{L} - 9L \cdot \underline{L} = 0 \Rightarrow M_{A} = -\frac{9L^{2}}{2} \end{array}$$

Calculate M(z)

$$M(z) - M_A - 9z. \frac{Z}{2} = 0$$

$$\Rightarrow M(z) = M_A + 9z^2/2 = -9L^2 + 9z^2$$

$$= 9(z^2 - L^2)$$

or

$$M(z)$$
 $L-z$
 $F_B = qL$
 $q(L-z)(L-z) - M(z) - F_B(L-z) = 0$
 $M(z) = q(L-z)(L-z) - qL(L-z)$
 $= q(L-z)\left[\frac{L-z}{2} - L\right]$
 $= q(L-z)\left[\frac{L-z}{2} - L\right]$

Either way, $M(z) = EIU'' = q(z^2 - L^2)$
 $U'' = q(z^2 - L^2) \Rightarrow U' = q(z^2 - L^2)$
 $U'' = q(z^2 - L^2) \Rightarrow U' = q(z^3 - L^2z + Q')$
 $U'' = q(z^4 - L^2z^2 + C_2)$, $U(L) = 0$
 $U'' = q(z^4 - L^2z^2 + SL^4)$
 $U'' = q(z^4 - L^2z^2 + SL^4)$

Max when $U' = 0 \Rightarrow z^3 - L^2z = 0$
 $U'' = z^2 - L^3$
 $U'' = z^3 - L^$