중간고사

통계적 방법론

2016-4-22

학번 _____

이름 _____

BMI

1. 다음 중 plot(rn96\$height, rn96\$weight) 의 결과로 적합한 것은 무엇인가?

- 2. 다음 산점도에 회귀선을 그리는 데 적합한 것은 무엇인가?
 - 가. lines(lm(weight ~ height, data = rn96)\$coefficient)
 - 나. points(lm(weight ~ height, data = rn96)\$coefficient)
 - 다. abline(lm(weight ~ height, data = rn96)\$coefficient)
 - 라. polygon(lm(weight ~ height, data = rn96)\$coefficient)

- 3. 1차 회귀식으로는 살피기 힘든 국소적인 변화를 살피기 위하여 붉은 색으로 local smoother를 추가한다. 이 때 적합한 것은?
 - 가. lines(lowess(rn96\$height, rn96\$weight), col = "red")
 - 나. points(lowess(rn96\$height, rn96\$weight), col = "red")
 - 다. abline(lowess(rn96\$height, rn96\$weight), col = "red")
 - 라. polygon(lowess(rn96\$height, rn96\$weight), col = "red")
- 4. BMI 를 토대로 한 비만도 판정은 "18.5 미만은 underweight, 18.5 ~ 24.9 는 Normal, 25 ~ 29.9 는 Overweight, 30 이상은 Obese" 이다. 이 때, rn96 에 판정결과를 덧붙이기 위하여 작성한 다음 코드에서 괄호 자리에 적당한 R 함수는 무엇인가?
 - 가. ifelse
 - 나. if
 - 다. for
 - 라. while

```
rn96$BMI <- BMI
(rn96$obesity <- (          )(BMI < 18.5, "Underweight", (          )(BMI >= 18.5 & BMI
< 24.9, "Normal", (          )(BMI >= 25 & BMI < 29.9, "Overweight", "Obese"))))</pre>
```

Quetelet's Scottish Soldiers

- 5. 다음과 같이 그림 파일로 저장되어 있는 자료를 불러들이는 코드로 적절한 것은? 단, 그림의 폭을 기준으로 적절히 조절하고자 한다.
 - 가. ![Quetelet's frequency table](../pics/quetelet_soldiers.png)
 - 나.
 - 다. ![Quetelet's frequency table](../pics/quetelet_soldiers.png, width = 480)
 - 라.

MESURES de la POITRISE.	NONBRE d'hommes.	NOMBRE	PROBABILITÉ d'après L'obstavation.	RANG Jans LA TABLE.	RANG d'après le catert.	PROBABILITÉ d'après La table	NOMBRE D'OMERVATIONS calculé.
Poures.							
22	3	5	0,5000			0,5000	7
54	18	31	0,4993	52	50	0,4993	29
35	81	141	0,4964	42,5	42,5	0,4964	110
26	185	322	0,4823	33,5	34,5	0,4854	323
57	420	732	0,4501	26,0	26,5	0,4531	732
28	749	1305	0,3769	18,0	18,5	0,3799	1333
30	1073	1867	0,2464	10,5	10,5	0,2466	1838
			0.0597	2,5	2,5	0,0628	
40	1079	1882	0,1285	5,5	5,5	0,1359	1987
41	934	1628	0,2913	13	13,5	0,3034	1675
42	658	1148	0,4061	21	21,5	0,4130	1096
45	370	645	0,4706	20	29,5	0,4690	560
44	92	160	0,4866	55	57,5	0,4911	221
45	50	87	0,4953	41	45,5	0,4980	69
46	21	38	0,4991	49,5	55,5	0,4996	16
47	4	7	0,4998	56	61,8	0,4999	2
48	1	2	0,5000			0,5000	1
	5758	1,0000					1,0000

- 6. 아래와 같은 구조를 가진 chest.table 에서 "Freq" 를 추출하는 방법 중 그 결과가 다른 것은?
 - 가. chest.table\$Freq
 - 나. chest.table[, 2]
 - 다. chest.table[, "Freq"]
 - 라. chest.table["Freq"]

```
## 'data.frame': 16 obs. of 2 variables:
## $ Chest: int 33 34 35 36 37 38 39 40 41 42 ...
## $ Freq : num 3 18 81 185 420 ...
```

7. 다음 barplot 에서 막대 사이의 간격을 없애려면 어떤 조건을 넣어야 하는가?

가. names.arg = 33:48

나. space = 0

다. offset = 0

라. beside = TRUE

8. 아래 그림에서 빗금친 부분을 나타내기 위위해서 사용한 R 함수는 무엇인가?

가. plot

나. lines

다. abline

라. polygon

Fitting Normal Distribution

9. 위의 chest.table 데이터 프레임을 33인치 세번, 34인치가 18번 등으로 반복해서 나오는 한 줄의 벡터로 바꾸려면 어떤 방법이 적절한가?

가. rep(chest.table\$Chest, chest.table\$Freq

나. rep(chest.table\$Freq, chest.table\$Chest)

다. rep(chest.table\$Chest, times = chest.table\$Freq

라. rep(chest.table\$Freq, times = chest.table\$Chest

Lifetable

다음 소스코드와 출력결과물을 보고 물음에 답하시오.

```
plot(halley, ann = FALSE, xaxt = "n", yaxt = "n", type = "l")
abline(v = c(0, 76, 84), lty = 2)
points(halley.graunt, pch = 21, col = "black", bg = "white")
lines(graunt, type = "b", pch = 21, col = "black", bg = "white")
axis(side = 1, at = c(graunt$x, 84), labels = c(graunt$x, 84))
axis(side = 2, at = graunt$xPo.g, labels = graunt$xPo.g, las = 1)
axis(side = 2, at = xPo.halley.age.6, labels = xPo.halley.age.6, las = 1)
text(x = c(16, 36), y = c(20, 50), label = c("Graunt", "Halley"))
title(main = main.title.2, xlab = x.lab, ylab = y.lab)
polygon(poly.upper, angle = 45, density = 15, col = "red", border = NA)
polygon(poly.lower, angle = 45, density = 15, col = "green", border = NA)
points(graunt, pch = 21, col = "black", bg = "white")
points(halley.graunt, pch = 21, col = "black", bg = "white")
points(x = 84, y = halley$xPo[85], pch = 21, col = "black", bg = "white")
```

Survival Function of Graunt and Halley


```
가. ann = FALSE
   나. xaxt. = "n"
   다. yaxt = "n"
   라. type = "1"
11. 관찰 연령의 시작과 끝을 뚜렷이 나타내기 위해서 사용한 코드는 무엇인가?
   가. abline(v = c(0, 76, 84), lty = 2)
   \sqcup axis(side = 1, at = c(graunt$x, 84), labels = c(graunt$x, 84))
   다. axis(side = 2, at = graunt$xPo.g, labels = graunt$xPo.g, las = 1)
   라. axis(side = 2, at = xPo.halley.age.6, labels = xPo.halley.age.6, las = 1)
12. Halley 생존표에서만 관찰되는 6세 연령의 생존률을 v축에 표시하기 위하여 작성된 코드는 무엇인가?
   가. abline(v = c(0, 76, 84), lty = 2)
   \sqcup axis(side = 1, at = c(graunt$x, 84), labels = c(graunt$x, 84))
   다. axis(side = 2, at = graunt$xPo.g, labels = graunt$xPo.g, las = 1)
   라. axis(side = 2, at = xPo.halley.age.6, labels = xPo.halley.age.6, las = 1)
13. 빗금친 부분을 표시하는 코드에서 굳이 넣지 않아도 되는 것은 무엇인가?
   가. angle = 45
   나. density = 15
   다. col = "green"
   라. border = NA
14. 이 코드 중에서 점의 윤곽을 뚜렷이 하기 위하여 작성된 부분은 어디인가?
   가. abline(v = c(0, 76, 84), lty = 2)
   나. axis(side = 2, at = xPo.halley.age.6, labels = xPo.halley.age.6, las = 1)
   다. text(x = c(16, 36), y = c(20, 50), label = c("Graunt", "Halley"))
   라. points(graunt, pch = 21, col = "black", bg = "white")
15. 아래의 reshaping 과정에서 factor를 설정하는 부분은 어디인가?
   가. list(graunt.2, halley.2, us93.2)
   나. id.vars = "x"
   다. value.name = "xPo"
   라. variable.name = "Who"
ghu.melt <- melt(list(graunt.2, halley.2, us93.2), id.vars = "x", value.name =</pre>
"xPo", variable.name = "Who")
```

10. 이 중에서 도표의 제목을 사용자가 입력하기 위해서 집어넣은 조건은 무엇인가?

다음 소스코드와 출력결과물을 보고 물음에 답하시오.

```
(ghup <- ggplot() +
  geom_line(data = ghu.melt, aes(x = x, y = xPo, colour = Who)) +
  geom point(data = ghu.melt.g, aes(x = x, y = xPo, colour = Who), shape = 21,
fill = "white") +
  theme bw() +
  xlab(x.lab) +
 ylab(y.lab) +
  ggtitle(main.title.3) +
  theme(legend.position = c(0.2, 0.2)) +
  annotate("text", x = c(36, 36, 70), y = c(25, 50, 90), label = c("Graunt", "H
alley", "US93")) +
  scale x continuous(breaks = c(graunt$x, 84)) +
  scale y continuous(breaks = c(graunt$xPo.g, xPo.halley.age.6)) +
  geom polygon(data = poly.upper, aes(x = x, y = y), alpha = 0.3, fill = "red")
  geom_polygon(data = poly.lower.76, aes(x = x, y = y), alpha = 0.3, fill = "gr
een") +
  geom polygon(data = poly.us.76, aes(x = x, y = y), alpha = 0.3, fill = "blu
e") +
  geom point(data = data.frame(x = 84, y = halleyxPo[85]), aes(x = x, y = y),
colour = 3, shape = 21, fill = "white"))
```

Survival Function Plots


```
가. x = x, y = xPo
  나. colour = Who
  다. shape = 21
  라. fill = "white"
17. 도표의 배경을 흑백으로 바꿔주는 코드는?
  가. theme bw()
  나. xlab(x.lab)
  다. ylab(y.lab)
  라. ggtitle(main.title.3)
18. 범례를 도표 안쪽으로 위치시키는 코드는 무엇인가?
  가. theme(legend.position = c(0.2, 0.2))
  나. theme bw()
  다. scale_x_continuous(breaks = c(graunt$x, 84))
  라. scale_y_continuous(breaks = c(graunt$xPo.g, xPo.halley.age.6))
19. R의 Base Plot에서 axis(side = 2, ...) 와 같은 기능을 수행하는 코드는 무엇인가?
  가. theme(legend.position = c(0.2, 0.2))
  나. theme_bw()
  다. scale_x_continuous(breaks = c(graunt$x, 84))
  라. scale_y_continuous(breaks = c(graunt$xPo.g, xPo.halley.age.6))
20. 색깔 투명도를 조절하는 코드는 무엇인가?
  가. alpha = 0.3
  나. colour = Who
  다. shape = 21
  라. fill = "white"
```

16. 뼈대가 되는 생존곡선을 그리는 과정에 각 집단을 구분하는 코드는 무엇인가?