

INTRO TO FDTD (9)

Flexcompute Inc.

Spatial discretization: 25 nm

1D Yee lattice with spatial dielectric distribution

Maxwell's equation in 1D:

$$\frac{\partial (\varepsilon_{xx} E_{x})}{\partial t} = -\frac{\partial H_{y}}{\partial z}$$

$$\mu \frac{\partial H_{y}}{\partial t} = -\frac{\partial E_{x}}{\partial z}$$

• Dielectric constant is allocated together with electric field

$$\varepsilon_{xx}[m+1]$$
 $E_x[m+1]$

- E-gric
- H-grid

6 grids assigned to silicon: 6×25 nm = 150 nm

7 grids assigned to silicon: 7×25 nm = 175 nm

Important to understand how dielectric constant is assigned to Yee lattice

Important to understand how dielectric constant is assigned to Yee lattice

- How to automate the assignment for arbitrary slab position and grid size?
- More complicated geometries?

Next lecture: subpixel averaging