AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

- 1-11. (Cancelled)
- 12. (Previously presented) A process for the production of eneamide compounds represented by formula (I)

wherein;

R1 and R2 and R3 are independently selected from the group consisting of a hydrogen atom; an alkyl; a cycloalkyl; a cycloalkylalkyl; an alkylaryl; an aryl; a heterocycle; a cyano; an alkoxy; an aryloxy; a carboxyl; a carbamoyl; -CONR5R6 in which R5 and R6 are independently selected from an alkyl, an arylalkyl, an aryl; and R5 and R6 taken together may form a ring; and -COOR5 in which R5 is selected from an alkyl, an alkylaryl, a cycloalkyl, and aryl;

said alkyl, cycloalkyl, cycloalkylalkyl, alkylaryl and aryl being substituted or not substituted with a group selected from a functional group and R5;

R1 and R2 taken together may form a monocyclic ring; a di-cyclic ring and a higher polycyclic ring, said ring being substituted or not substituted with a group selected from a

functional group and R5;

R4 is selected from the group consisting of a hydrogen atom, alkyl, aryl and alkylaryl; said alkyl, aryl, and alkylaryl being substituted or not substituted with halogen;

X is selected from an oxygen atom or a leaving group;

m is an integer selected from 1 and 2;

when m is 1 X is a leaving group; when m is 2 X is an oxygen atom;

said method comprising a hydrogenation/isomerization reaction in presence of a heterogeneous catalyst based on at least one metal selected from Ir and Rh, of an oxime derivative of formula (II)

$$R2$$
 $R3$
 $R1$
 N
 OH
 (II)

wherein R1, R2 and R3 are as defined above;

with an acyl derivative of formula (III):

$$(R4CO)_mX$$

wherein R4, m and X are is as defined above;

X is selected from an oxygen atom and a leaving group;

m is an integer selected from 1 and 2;

when m is 1 then X is a leaving group; when m is 2 then X is an oxygen atom.

- 13. (Previously presented) The process of claims 12, wherein the derivative of formula (III) is used in the amount selected from at least 2 times per mole based on the oxime, and an amount sufficient to act as a reacting agent and as a solvent.
 - 14. (Canceled)
- 15. (Previously presented) The process of claim 12, wherein the heterogeneous catalyst is in a form selected from a metal oxide and from a metallic form, optionally supported on a suitable carrier; and is used in an amount ranging between 0.001 and 30% mole, based on the oxime derivative.
- 16. (Previously presented) The process of claim 12, which is carried out in a suitable solvent.
- 17. (Previously presented) The process of claim 12, which is carried out under a hydrogen pressure ranging between 0.5 and 20 bars.
- 18. (Previously presented) The process of claim 12, which is carried out under a temperature ranging between -20 and 150 $^{\circ}$ C.
- 19. (Previously presented) The process of claim 12, further comprising a work up step of an organic solution of the compound of formula (I) which is a washing step with water containing organic or mineral salt(s) without halogen atom.
- 20. (Previously presented) The process of claim 19, wherein the organic or mineral salt(s) is/ are selected from the group consisting of phosphate, sulfate, acetate, citrate, formate, borate, carbonate, or ammonium.
- 21. (Previously presented) The process of claim 12, wherein said eneamide is selected from the group consisting of:
 - N-(6-Methoxy-3H-inden-1-yl)-acetamide;

- N(3,4-dihydro-1-naphtalenyl)acetamide;
- N(3,4-dihydro-naphtalen-2-yl)acetamide;
- N-(2-Phenyl-cyclohex-1-enyl)-acetamide; and
- N-(7-Methoxy-3,4-dihydro-naphthalen-2-yl)-acetamide.
- 22. (Currently amended) A method of manufacture of an amine or an amide compound comprising:

performing a hydrogenation reaction of a eneamide compound selected from:

a) an ene-amide of formula (IIE)

(IIE)

wherein R4 is selected from the group consisting of hydrogen, alkyl, aryl and alkylaryl; said alkyl, aryl, and alkylaryl being substituted or not substituted with halogen;

R7, R8, R9 and R10 are independently selected from the group consisting of hydrogen; functional group, halogen; a group comprising –OH, -OR5, -CN, -COOR5, -COR5, -CONR5R6, -OCOR5, -NH2, -NHR5, -NR5R6, -NO2, -SH and -SR5, wherein R5 and R6 are independently an alkyl, an alkylaryl or an aryl group or R5 and R6 taken together may form a ring; alkyl and aryl, while not simultaneously being hydrogen;

- b) N(3,4-dihydro-1-naphtalenyl)acetamide;
- c) N(3,4-dihydro-naphtalen-2-yl) acetamide;
- d) N-(2-Phenyl-cyclohex-1-enyl)-acetamide; and

e) N-(7-Methoxy-3,4-dihydro-naphthalen-2-yl)-acetamide;

to obtain a hydrogenated compound;

said method comprising, prior to said hydrogenation reaction of said eneamide, preparing said eneamide by wherein said eneamide has been prepared by performing a hydrogenation/isomerisation reaction of the corresponding oxime in the presence of a heterogeneous catalyst based on at least one metal selected from Ir and Rh, with an acyl derivative of formula (III) (R₄CO)_mX, to obtain a hydrogenated compound of formula I, by the method as defined in claim 12 wherein R1 and R2 taken together form a di-cyclic ring; and said hydrogenated compound of formula I is further used as an intermediate in the synthesis of said amine or amide compound.

- 23. (Previously presented) The method of claim 22, wherein said hydrogenation reaction performs an asymmetric hydrogenation of said compound of formula (IIE), thereby obtaining a chiral amide or amine.
- 24. (Previously presented) The method of claim 22, wherein the eneamide compound is selected from the group consisting of:
 - N-(6-Methoxy-3H-inden-1-yl)-acetamide;
 - N(3,4-dihydro-1-naphtalenyl)acetamide;
 - N(3,4-dihydro-naphtalen-2-yl)acetamide;
 - N-(2-Phenyl-cyclohex-1-enyl)-acetamide; and
 - N-(7-Methoxy-3,4-dihydro-naphthalen-2-yl)-acetamide.
- 25. (Currently amended) A process <u>for production</u> of eneamide compounds represented by formula (I)

(I)

wherein;

R1 and R2 and R3 are independently selected from the group consisting of a hydrogen atom; an alkyl; a cycloalkyl; a cycloalkylalkyl; an alkylaryl; an aryl; a heterocycle; a cyano; an alkoxy; an aryloxy; a carboxyl; a carbamoyl; -CONR5R6 in which R5 and R6 are independently selected from an alkyl, an arylalkyl, an aryl; and R5 and R6 taken together may form a ring; and -COOR5 in which R5 is selected from an alkyl, an alkylaryl, a cycloalkyl, and aryl;

said alkyl, cycloalkyl, cycloalkylalkyl, alkylaryl and aryl being substituted or not substituted with a group selected from a functional group and R5;

R1 and R2 taken together may form a monocyclic ring; a di-cyclic ring and a higher polycyclic ring, said ring being substituted or not substituted with a group selected from a functional group and R5;

R4 is selected from the group consisting of a hydrogen atom, alkyl, aryl and alkylaryl; said alkyl, aryl, and alkylaryl being substituted or not substituted with halogen;

said method comprising a hydrogenation/isomerization reaction in presence of a heterogeneous catalyst based on at least one metal selected from Ir and Rh, of an oxime derivative of formula (II)

wherein R1, R2 and R3 are as defined above;

with an acyl derivative of formula (III):

$$(R4CO)_mX$$

wherein R4 is as defined above;

X is selected from an oxygen atom and a leaving group;

m is an integer selected from 1 and 2;

when m is 1 then X is a leaving group; when m is 2 then X is an oxygen atom;

wherein the heterogeneous catalyst is in a form selected from a metal oxide and from a metallic form, optionally supported on a suitable carrier; and is used in an amount ranging between 0.001 and 30% mole, based on the oxime derivative.

26. (Cancelled)

- 27. (Previously presented) A method of manufacture of an amine or an amide compound comprising
 - (i) performing a hydrogenation/isomerization reaction of

$$R8$$
 $R9$
 $R10$
 $R3$
 $R3$
 $R4$
 $R5$

with an acyl derivative of formula (III) (R₄CO)_mX, in the presence of a heterogeneous catalyst based on at least one metal selected from Ir and Rh, to form the ene-amide compound of formula (IIE)

(ii) hydrogenating the compound of formula (IIE) to form a chiral amine or a chiral amide,

R4 is selected from the group consisting of hydrogen, alkyl, aryl, and alkylaryl being substituted or not substituted with halogen; R7, R8, R9 and R10 are independently selected from the group consisting of hydrogen; halogen; a group comprising –OH, -OR5, -CN, -COOR5, -COR5, -CONR5R6, -OCOR5, -NH2, -NHR5, -NR5R6, -NO2, -SH and -SR5, wherein R5 and R6 are independently an alkyl, an alkylaryl or an aryl group or R5 and R6 taken together may form a ring; alkyl and aryl, while not simultaneously being hydrogen.

28. (Previously presented) The process of claim 27, wherein the heterogeneous catalyst is in a form selected from a metal oxide and from a metallic form, optionally supported on a suitable carrier; and is used in an amount ranging between 0.001 and 30% mole, based on the oxime derivative.

9