Μη-γραμμική παλινδρόμηση

Δημήτρης Κουγιουμτζής

10 Μαΐου 2011

Επάρκεια μοντέλου απλής γραμμικής παλινδρόμησης

Είναι το μοντέλο κατάλληλο / επαρκές;

Ένδειξη από το διάγραμμα διασποράς της Y προς τη X

Καλύτερα: κατάλληλα γραφήματα των υπολοίπων $e_i=y_i-\hat{y}_i$

Καλύτερα: τυποποιημένα σφάλματα προσαρμογής, $e_i^*=e_i/s_{
m e}$

διαγνωστικό γράφημα των e_i^* προς \hat{y}_i

Μη-Γραμμική Παλινδρόμηση

Μη-γραμμική εξάρτηση της Y από τη X.

Εγγενής γραμμική συνάρτηση παλινδρόμησης

εγγενής γραμμική συνάρτηση όταν μπορεί να γίνει γραμμική με κατάλληλο μετασχηματισμό

Εγγενής συνάρτηση	Μετασχηματισμός	Γραμμική
1 . Εκθετική: $y=lpha e^{eta x}$	$y' = \ln(y)$	$y' = \ln(\alpha) + \beta x$
2. Δύναμης: $y=lpha x^eta$	$y' = \log(y), \ x' = \log(x)$	$y' = \log(\alpha) + \beta x'$
3. $y = \alpha + \beta \log(x)$	$x' = \log(x)$	$y = \alpha + \beta x'$
4. Αντίστροφη: $y = \alpha + \beta \frac{1}{x}$	$x' = \frac{1}{x}$	$y = \alpha + \beta x'$
	^	

Εγγενής γραμμική συνάρτηση παλινδρόμησης

Μετασχηματισμός σε γραμμική συνάρτηση \Longrightarrow

υπολογισμός / εκτίμηση παραμέτρων (μέθοδος ελαχίστων τετραγώνων)

Στοχαστική εγγενή γραμμική συνάρτηση: συνάρτηση + ή * θόρυβο.

$$y = \alpha e^{\beta x} + \epsilon$$
: μη εγγενής γραμμική

$$y = \alpha x^{\beta} + \epsilon$$
: μη εγγενής γραμμική

$$y = \alpha e^{eta x} \cdot \epsilon$$
: εγγενής γραμμική

$$y = \alpha x^{\beta} \cdot \epsilon$$
: εγγενής γραμμική

Αν $\epsilon \sim \lambda$ ογαριθμική κανονική $\Longrightarrow \epsilon' = \ln \epsilon \sim$ κανονική κατανομή.

$$y=\alpha+\beta\log(x)+\epsilon$$
 και $y=\alpha+\betarac{1}{x}+\epsilon$: εγγενείς γραμμικές

Παράδειγμα: πίεση και όγκος ιδανικού αερίου

Ισχύει $pV^{\gamma}=C$;

► C: σταθερά,

p: απόλυτη πίεση του αερίου,

V: ο όγκος του

 $ightharpoonup \gamma$ είναι ένας εκθέτης χαρακτηριστικός για το ιδανικό αέριο

Πρόβλημα:

- 1. Εκτίμηση του γ και της σταθεράς C
- 2. Πρόβλεψη απόλυτης πίεσης για όγκο 25 in.³

A/A	p [psi]	V [in. ³]
1	16.6	50
2	39.7	30
3	78.5	20
4	115.5	15
5	195.3	10
6	546.1	5

Εγγενή γραμμική συνάρτηση της μορφής δύναμης

$$pV^{\gamma} = C \quad \Leftrightarrow \quad y = \alpha x^{\beta},$$
 $y = p, \ x = V, \ \alpha = C \ \text{kal} \ \beta = -\gamma.$ $y' = \ln(y) = \ln(p) \ \text{kal} \ x' = \ln(x) = \ln(V) \implies$ $y' = \ln(\alpha) + \beta x' \quad \Leftrightarrow \quad \ln(p) = \ln(C) - \gamma \ln(V).$

Θεωρώντας πολλαπλασιαστικό θόρυβο στο αρχικό μοντέλο:

$$pV^{\gamma} = C \cdot \epsilon \quad \Leftrightarrow \quad y = \alpha x^{\beta} \cdot \epsilon,$$

και θέτοντας $\epsilon' = \ln(\epsilon)$

$$y' = \ln(\alpha) + \beta x' + \epsilon' \quad \Leftrightarrow \quad \ln(p) = \ln(C) - \gamma \ln(V) + \ln(\epsilon).$$

A/A	x'	y'
1	1.609	6.303
2	2.303	5.275
3	2.708	4.749
4	2.996	4.363
5	3.401	3.681
6	3.912	2.809

Εκτίμηση παραμέτρων

$$\bar{x}=2.82,\; \bar{y}=4.53,\; s_X^2=0.6614\;$$
 kal $s_{XY}=-0.9915,\;$

$$b_1 = \frac{-0.9915}{0.6614} = -1.4991, \quad b_0 = 4.53 + 1.4991 \cdot 2.82 = 8.7598$$

$$s_Y^2=1.4908 \implies s_\epsilon^2=\frac{6}{5}(1.4908+1.4991^2\cdot 0.6614)=0.00554$$
 kal $s_\epsilon=0.07442.$

Σημειακή πρόβλεψη

Για όγκο 25 in.³, x' = ln(25) = 3.219

$$ln(p) = y' = 8.7598 - 1.4991 \cdot 3.219 = 3.9344.$$

Πρόβλεψη της απόλυτης πίεσης: $p = \exp(3.9344) = 51.13$ psi

Διαστήματα πρόβλεψης

Διαστήματα πρόβλεψης για το μετασχηματισμένο γραμμικό μοντέλο

Για $x' = \ln(25) = 3.219$, 95% διάστημα πρόβλεψης της μέσης y' [3.839, 4.030]

Αντίστροφος μετασχηματισμός στα άκρα: το 95% διάστημα πρόβλεψης της μέσης απόλυτης πίεσης για όγκο ιδανικού αερίου 25 in.^3 : [46.465, 56.264]

95% διαστήματος πρόβλεψης για μια τιμή του y' όταν $x' = \ln(25) = 3.219$: [3.707, 4.162] Αντίστοιχα όρια: [40.718, 64.205]

Πολυωνυμική παλινδρόμηση

Οι εγγενείς γραμμικές συναρτήσεις είναι μονότονες. Μη-μονοτονία;

Μοντέλο πολυωνυμικής γραμμικής παλινδρόμησης βαθμού k

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + \epsilon.$$

Συνάρτηση μη-γραμμική ως προς το xΣυνάρτηση γραμμική ως προς τους συντελεστές eta_0,eta_1,\dots,eta_k

Άθροισμα ελαχίστων τετραγώνων:

$$f(\beta_0, \beta_1, \dots, \beta_k) = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k))^2.$$

Η παραγώγιση ως προς κάθε παράμετρο δίνει το σύστημα κανονικών εξισώσεων

$$b_{0}n + b_{1} \sum_{i} x_{i} + b_{2} \sum_{i} x_{i}^{2} + \cdots + b_{k} \sum_{i} x_{i}^{k} = \sum_{i} y_{i}$$

$$b_{0} \sum_{i} x_{i} + b_{1} \sum_{i} x_{i}^{2} + b_{2} \sum_{i} x_{i}^{3} + \cdots + b_{k} \sum_{i} x_{i}^{k+1} = \sum_{i} x_{i} y_{i}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{0} \sum_{i} x_{i}^{k} + b_{1} \sum_{i} x_{i}^{k+1} + b_{2} \sum_{i} x_{i}^{k+2} + \cdots + b_{k} \sum_{i} x_{i}^{2k} = \sum_{i} x_{i}^{k} y_{i}$$

Τα σφάλματα προσαρμογής: $e_i = y_i - \hat{y}_i$, όπου

$$\hat{y}_i = b_0 + b_1 x + b_2 x^2 + \dots + b_k x^k.$$

και η διασπορά εκτιμάται

$$s_e^2 = \frac{1}{n - (k+1)} \sum_{i=1}^n (y_i - \hat{y}_i)^2,$$

R²: συντελεστής του πολλαπλού προσδιορισμού

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Προσαρμοσμένος συντελεστής του πολλαπλού προσδιορισμού

$$\operatorname{adj} R^2 = 1 - \frac{n-1}{n - (k+1)} \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Διαστήματα εμπιστοσύνης και στατιστικοί έλεγχοι για $\beta_0,\beta_1,\ldots,\beta_k$: όπως για απλή γραμμική παλινδρόμηση.

Συγκομιδή του paddy

A/A	Ημέρες	Σοδειά
1	16	2508
2	18	2518
3	20	3304
4	22	3423
5	24	3057
6	26	3190
7	28	3590
8	30	3883
9	32	3823
10	34	3646
11	36	3708
12	38	3333
13	40	3517
14	42	3241
15	44	3103
16	46	2776

$$y = -1.1242 + 0.2979x - 0.0046x^2$$

