Introduction to Reinforcement Learning https://github.com/racousin/rl_introduction

Raphael Cousin

March 4, 2024

Raphael Cousin March 4, 2024 1/35

Course Objectives

- The keys to go by yourself in RL
- Practice coding
- General culture

What do you already know about RL?

Raphael Cousin March 4, 2024 2 / 35

Why reinforcement learning?

Figure 1: In 2017, AlphaGo defeated Ke Jie, the world's top-ranked Go player.

Raphael Cousin March 4, 2024 3/35

RL vs. Other Machine Learning Paradigms

- Supervised Learning: Learning from labeled data to predict outcomes.
- Unsupervised Learning: Finding patterns in data without explicit labels.
- Reinforcement Learning: Learning decision-making by interacting with an environment to achieve goals.

In contrast to the other two, RL is focused on learning from the consequences of actions.

Raphael Cousin March 4, 2024 4 / 35

The RL Framework

- Absence of explicit "correct" actions.
- Learning is guided by rewards that represent the objectives.

Figure 2: The agent-environment interaction in RL.

Raphael Cousin March 4, 2024 5 / 35

Applications of RL

RL has been successfully applied in various fields, including:

- Autonomous vehicles/Robotics
- Control systems
- Chat bots policy
- Marketing/Trading strategies
- Game playing and beyond

Figure 3: RL in video games.

Raphael Cousin March 4, 2024 6 / 35

Course Outline

- I) Understanding Markov Decision Processes (MDPs)
- II) Exploring Model-Free Reinforcement Learning
- III) Diving into Deep Reinforcement Learning

We'll start with the basics and gradually move to more complex concepts.

Raphael Cousin March 4, 2024 7/35

I) Understanding Markov Decision Processes

Figure 4: Illustrative example of an MDP, showcasing state transitions, actions, and rewards.

Raphael Cousin March 4, 2024 8/35

First Glossary of MDPs

- State Space (S)
- Action Space (A)
- \bullet Transition Model (P)
- Reward function (R)
- Policy (π)
- Trajectory (τ)
- Return (G)

Raphael Cousin March 4, 2024 9 / 35

Simple Grid World Problem

Our environment is a 4x4 grid where an agent aims to reach a goal.

Figure 5: A: Agent, G: Goal

Raphael Cousin March 4, 2024 10 / 35

State Space (S)

16 discrete states.			
$S_{0,3}$	$S_{1,3}$	$S_{2,3}$	$S_{3,3}$
$S_{0,2}$	$S_{1,2}$	$S_{2,2}$	$S_{3,2}$
$S_{0,1}$	$S_{1,1}$	$S_{2,1}$	$S_{3,1}$
$S_{0,0}$	$S_{1,0}$	$S_{2,0}$	$S_{3,0}$

Raphael Cousin March 4, 2024 11 / 35

Action Space (A)

4 discrete actions (Up, Down, Left, Right).

Raphael Cousin March 4, 2024 12 / 35

Transition Model: $P_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$

Raphael Cousin March 4, 2024 13 / 35

Transition Model: $P_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$

Raphael Cousin March 4, 2024 14 / 35

Reward function: r = R(s, a) = r(s')

Simple goal reward.

0	0	0	+1
0	0	0	0
0	0	0	0
0	0	0	0

Raphael Cousin March 4, 2024 15 / 35

Reward function: r = R(s, a) = r(s')

Other example of environment reward function.

-77	-46	-28	+1
-31	-64	-23	-9
-86	-50	-82	-35
-58	-40	-15	-85

Raphael Cousin March 4, 2024

16/35

Policy: $(\pi: S \to A)$

Agent action in a state defined by its policy deterministic/stochastic

Raphael Cousin March 4, 2024 17 / 35

Trajectory: $\tau_{\pi} = (s_0, a_0, s_1, a_1, ...)$

 $(s_{0,0}, \rightarrow, 0, s_{1,0}, \rightarrow, 0, s_{2,0}, \uparrow, 0, s_{2,1}, \uparrow, 0, s_{2,2}, \leftarrow, 0, s_{1,2}, \uparrow, 0, s_{1,3}, \rightarrow, 0, s_{2,3}, \rightarrow, 1)$

Raphael Cousin March 4, 2024 18 / 35

Return: $G_t = \sum_{k=1}^{T} \gamma^k r_{t+k}$

Cumulative rewards

Cumulative rewards			
	t=6	t=7	
	1	1	G
	t=5	t=4	
	1	1	
		t=3	
		1	
t=0	t=1	t=2	
1	1	1	

Discounted rewards (0.95)

			` ,
	t=6	t=7	
	0.90	0.95	G
	t=5	t=4	
	0.86	0.81	
		t=3	
		0.77	
		0.11	
t=0	t=1	t=2	
0.66	0.7	0.74	
0.00	0.7	0.74	

Raphael Cousin March 4, 2024 19 / 35

Objective: Find best Policy $\pi^* = \arg \max_{\pi} E_{\tau \sim \pi}[G(\tau)]$

Optimal policy in the grid world environment.

Raphael Cousin March 4, 2024 20 / 35

Let's Code: Environment and Agent Interaction

Second Glossary of MDPs

- Value Function (V)
- Action Value Function (Q)
- Bellman Equations
- Dynamic Programming

Raphael Cousin March 4, 2024 22 / 35

Value Function: $V^{\pi}(s) = E_{\tau \sim \pi}[G_t | S_t = s]$

Expected Return for State following π

0.61	0.78	0.94	G
0.44	0.61	0.78	0.94
0.28	0.44	0.61	0.78
	0.28	0.44	0.61

Raphael Cousin March 4, 2024 23 / 35

Action Value Function:

$$Q^{\pi}(s,a) = E_{\tau \sim \pi}[G_t \mid S_t = s, A_t = a]$$

Expected Return for State-Action following π

Raphael Cousin March 4, 2024 24/35

Bellman Equations

• Idea: The value of your starting point is the reward you expect to get from being there, plus the value of wherever you land next.

$$V(s) = \mathbb{E}[G_t | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) | S_t = s]$$

$$Q(s, a) = \mathbb{E}[R_{t+1} + \gamma \mathbb{E}_{a \sim \pi} Q(S_{t+1}, a) \mid S_t = s, A_t = a]$$

Raphael Cousin March 4, 2024 25 / 35

Value Function Decomposition: $V^{\pi}(s)$

Value Function:
$$V^{\pi}(s) = E[R_{t+1} + \gamma V^{\pi}(S_{t+1})|S_t = s]$$

Raphael Cousin March 4, 2024 26 / 35

Bellman Equations development

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) Q_{\pi}(s, a)$$

$$Q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V_{\pi}(s')$$

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V_{\pi}(s') \right)$$

$$Q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} \sum_{s' \in \mathcal{A}} \pi(a'|s') Q_{\pi}(s', a')$$

Raphael Cousin March 4, 2024 27 / 35

The MDP Solution

Dynamic Programming allows to resolve the MDP optimization problem ($\pi^* = \arg \max_{\pi} E_{\tau \sim \pi}[G(\tau)]$). It is an iterative process:

- Policy initialization
- Policy evaluation
- Policy improvement

Raphael Cousin March 4, 2024 28 / 35

Policy evaluation

Policy Evaluation: compute the state-value V_{π} for a given policy π : We initialize V_0 arbitrarily. And we update it using:

$$V_{k+1}(s) = \mathbb{E}_{\pi}[r + \gamma V_k(s_{t+1})|S_t = s]$$

= $\sum_{a} \pi(a|s) \sum_{s',r} P(s',r|s,a)(r + \gamma V_{\pi}(s'))$ (1)

 $V_{\pi}(s)$ is a fix point for (1), so if $(V_k)_{k\in\mathbb{N}}$ converges, it converges to V_{π} .

March 4, 2024 29 / 35

Policy Improvement

Policy Improvement: generates a better policy $\pi' \geq \pi$ by acting greedily. Compute Q from V $(\forall a, s)$:

$$Q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma V_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$
$$= \sum_{s', r} P(s', r | s, a) (r + \gamma V_{\pi}(s'))$$

Update greedily: $\pi'(s) = \arg \max_{a \in \mathcal{A}} Q_{\pi}(s, a) \ (\forall s)$

Raphael Cousin March 4, 2024 30 / 35

Policy improvement: $\pi'(s) = \arg \max_{a \in A} Q_{\pi}(s, a)$

Raphael Cousin March 4, 2024 31 / 35

Dynamic Programming

Policy Iteration: iterative procedure to improve the policy when combining policy evaluation and improvement.

$$\pi_0 \xrightarrow{\text{evaluation}} V_{\pi_0} \xrightarrow{\text{improve}} \pi_1 \xrightarrow{\text{evaluation}} \dots \xrightarrow{\text{improve}} \pi_* \xrightarrow{\text{evaluation}} V_* \quad (1)$$

Raphael Cousin March 4, 2024 32 / 35

Bellman Equations Optimality

Bellman equations for the optimal value functions

$$V_{*}(s) = \max_{a \in \mathcal{A}} Q_{*}(s, a)$$

$$Q_{*}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V_{*}(s')$$

$$V_{*}(s) = \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V_{*}(s') \right)$$

$$Q_{*}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} \max_{a' \in \mathcal{A}} Q_{*}(s', a')$$

Raphael Cousin March 4, 2024 33 / 35

Take home message

Initialize $\pi(s), \forall s$

- Evaluate $V_{\pi}(s), \forall s \text{ (using } \mathbb{P}^a_{ss'})$
- **2** Compute $Q_{\pi}(s, a), \forall s, a \text{ (using } \mathbb{P}^{a}_{ss'})$
- While $\pi'(s) \neq \pi(s)$ do $\pi(s) = \pi'(s)$ and iterate

Result : $\pi = \arg \max_{\pi} E[G]$

Raphael Cousin March 4, 2024 34 / 35

Coding session Dynamic Programming