DBMS collège 1

Topic -> Basic, classifications of DBMS OBMS Architecture

### 1) Basic

- · Data > known fact that can be recorded & have an implicit meaning.
- · Database > A collection of sclouted cluta representing some aspects of scal world.
- · Miniworld + Some part of real world about which data is stored in database.
- \*Detabuse Managment > General purpose software system that Fystem fucilitates the purpose of defining, constructing & manipulating dutabases for various applications &g: MySQL, Oracle
  - 1. Defining database specifying data types, structures & constraints for data
  - 2. Constructing data base Brocess of storing data on some or Load bodahase medium that is antrolled by DBMS.
  - 3. Manipulating a database functions like querying, updating, insertions, deletions

3 Enample of Database

Mini world for enample = University Environment

Some mini - world Entities.

- o stretents
- 2) (ourses
- 3) Actions (of courses)
- a) (academic) Departments
- 5) INSTRUCTORS

Some mini-world Relationships:-

- · SECTIONS are of specific COURSES
  - · STUDENTS take SECTIONS
  - \* Courses have pretequisite Courses
  - · INSTRUCTORS beach Section's
  - · STUDGNTS major in DEPARTMENTS

### it can be sepresented as ER model

| Student | Name  | Students no. | class, | Major |
|---------|-------|--------------|--------|-------|
|         | Smith | 17           | 1      | CS    |
|         | Brown | 8            | 2      | CS    |

| Grade | Students No. | Section Identifier | 960 |
|-------|--------------|--------------------|-----|
|       | 17           | 1/2                | K   |
|       | 17           | 119                | (   |
|       | 8            | 85                 | A   |

# above could be expressed in

Entity-Relationship data made

| Courses | Course Name      | Course No. | Goodit Hours | 1 appartmen |
|---------|------------------|------------|--------------|-------------|
|         | Into to Pacagour |            | 4            | Cs          |
|         | Data Structure   | CS 332,    | 4            | Cg          |
| 1       | Osisete Muths    | MA 2410    | 3            | Maths       |
|         | Databuse         | (53380     | 3            | CS          |

| queste | Course Number | Pregust |
|--------|---------------|---------|
|        | C\$3330       | CS 3320 |
|        | CS 3380       | MA 2410 |
|        | CS 3320       | CS1310  |

| section                                 | Section Identifie |                  | Semester | Year | Instructor |
|-----------------------------------------|-------------------|------------------|----------|------|------------|
| , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | 92                | MA2410<br>(S1310 |          | 98   | King       |
|                                         | 102               | (53320           | fall     | 98   | Andrew     |
|                                         | 11 2              | MA2410           | fall     | 99   | Knok       |
|                                         | 119               | CS1310           | feel ex  |      | Chang      |

### 3 Relations

| Relation_name | No-of-colum |  |
|---------------|-------------|--|
| STURNT        |             |  |
| Course        | 4           |  |
| section       | 5           |  |
| GRADE         | 3           |  |
| PREREQUISITE  | 2           |  |

# Main Characteristics of Patabase approach

- P Insulation bet program & data Called program data independent Allows changing data storage structures & operations without having to change DBMS access programs,
- 2) Data Abstruction A data model is used to hide storage details I present the user with conceptual view of database.
- 3) Support of multiple views of data: Each user may see of differen View of database, which describe only data of interest of that user.

### Outabase Usous

Users are of 2 type

- 1. Those who actually use I control the content (called actor on the scenle') eg: Natabase administrators, Postabase designers, end-users.
- 2. Those who enable database to be developed & DBMS software to be designed & implemented (called "Actors behind the Scene") eg: System designors & Implementors, Tool Developers operators & Maintenance Personnel.

# 1 DBMS ARCHITECTURE

\* Data model + A set of concepts to describe structure of a database & certain constraints a database should poses.

# Categories of data models:

- · Conceptual (high-level, semantic) data models:
  Provide concepts that are close to the way many users
  perceive data (Also called entity-based or object-based
  data models.)
- · Physical (low-level, internal) data models: Provide concepts that describe details of how data is stored in computer.
- · Implementation (representational) data models: Provide concepts that fall between the above two, balancing user views with some computer storage details.

# # Schemas vs instances:-

- · Database Schema: The description of a database. In cludes description of data base structure & constraints that should hold on database.
- · Schema Diagram: A diagrammatic display of (some aspects of) database schema.
- \* Schema constant :- A component of schema or an object within the Schema, cg:-STUDENT, COURSE
- · Database instance: The actual data stored in datal at particular moment in time. Also called database state (or occurance)

3 Scheme diagram

STUDENT [Name | Student Number | Class | Major

ONIRSE

Num | Course No, | Coudit | Department

is called intension, whereas state is called entension.

#### eg of Database State

GURSE

| Name              | Course No. | Credit | Departmen |
|-------------------|------------|--------|-----------|
| Data              | CS 3320    | 4      | CS        |
| Discrete<br>maths | MA2410     | 3      | MATH      |

# · Three Schema Architecture

Defines DBMS schemas at three levels.

- 1) Internal Schema : at internal level to describe physical storage Structures & access paths. Typically uses a physical data
- 2) Conceptual Schema: at conceptual level to describe the Structure & constraints for whale database for a community of users. Uses a conceptual or an implementation dute model.
- 3) Enternal Schemas: at enternal level to describe various user Villus, Usually uses the same data model as conceptual level
- mappings among scheme levels are needed to transform request & data. Program refer to an enternal schema, and are mapped by OBMS to internal schema for encution



#### # Data Independence

Schema without having to change the enternal schemas and & their application programs.

?) Physical Pata Independence: - The capacity to change internal Shema without having to change conceptual schema

#### # DBMS LANGUAGES

- Data Defination Language (DDL): Used by DBA & database designers to specify conceptual scheme of a distubuse. In many OBMS, the DDL is also used to define internal & enternal schemes (views).
- 2) Data Manipulation Language (DML): Used to specify database retrievals & updates
  - \* DML commands (duta sublanguage) can be embedded in general-Purpose programming language (host language) such as C or air Assembly language
- · Alternatively, stand-appeared pML commands can be applied directly (query language)

## @ Classification of DBMS

- @ Based on data model used:
  - · Relational , Network , hierarchical
  - · Object oriented, Object relational
- Gother dassifications:
  - · Single user (typically used with micro-computers) vs multiuser.
  - · Centralized (uses single computer with one database) is distributed (uses multiple computers, multiple databases)