Trier et rechercher

INFORMATIQUE COMMUNE - TP nº 1.4 - Olivier Reynet

À la fin de ce chapitre, je sais :

- 🕼 coder un algorithme de tri simple et explicité
- 😰 évaluer le temps d'exécution d'un algorithme avec la bibliothèque time
- rechercher un élément dans un tableau séquentiellement ou par dichotomie itérative
- générer un graphique légendé avec la bibliothèque matplotlib

A Trier un tableau

A1. On souhaite trier des listes Python, considérées ici comme des tableaux, avec des algorithmes différents (cf. algorithmes 1, 2 et 3). Chaque algorithme de tri est implémenté par une fonction Python. Le prototype de ces fonctions est my_sort(t), où t est un paramètre formel qui représente le tableau à trier.

```
def my_sort(t):
    # tri du tableau
    # for i in range(len(t))
    # t[i] = ...
```

Cette fonction, une fois réalisée, trie le tableau t passé en paramètre mais ne renvoie rien (i.e. pas de return). Expliquer pourquoi.

- A2. Coder les algorithmes de tri par sélection, par insertion et par comptage en respectant le prototype défini à la question précédente ¹.
- A3. Tester ces algorithmes sur une **même** liste Python de longueur 20 et contenant de types **int** choisis aléatoirement entre 0 et 100.
- A4. Peut-t-on trier des listes de chaînes de caractères avec ces mêmes codes? Tester cette possbilité à l'aide de la liste ["Zorglub", "Spirou", "Fantasio", "Marsupilami", "Marsu", "Samovar", "Zantafio"]. Analyser les résultats. Pourquoi est-ce possible? Pourquoi n'est-ce pas possible? La bibliothèque matplotlib permet de générer des graphiques à partir de données de type list qui constituent les abscisses et les ordonnées associées. La démarche à suivre est de :
 - importer la bibliothèque from matplotlib import pyplot as plt
 - créer une figure plt.figure()
 - tracer une courbe plt.plot(x,y) si x et y sont les listes des abscisses et des ordonnées associées. La bibliothèque trace les points (x[i], y[i]) sur le graphique.
 - ajouter les éléments de légende et de titre,

 $^{1. \ \} On\ a\ le\ droit\ de\ collaborer,\ de\ se\ r\'epartir\ les\ algorithmes\ et\ de\ s'\'echanger\ les\ codes\ s'ils\ sont\ corrects!$

Algorithme 1 Tri par sélection

```
1: Fonction TRIER SELECTION(t)
2:
       n \leftarrow \text{taille}(t)
3:
       pour i de 0 à n-1 répéter
          min\_index \leftarrow i
4:
                                                                                  ⊳ indice du prochain plus petit
          pour i de i + 1 à n - 1 répéter
                                                                              > pour tous les éléments non triés
5:
              si t[j] < t[min_index ] alors</pre>
6:
                  min index \leftarrow i
                                                                           ⊳ c'est l'indice du plus petit non trié!
7:
          échanger(t[i], t[min_index])
                                                                                   ⊳ c'est le plus grand des triés!
8:
```

Algorithme 2 Tri par insertion

```
1: Fonction TRIER_INSERTION(t)
2:
      n \leftarrow taille(t)
      pour i de 1 à n-1 répéter
3:
         a_insérer \leftarrow t[i]
4:
5:
6:
         tant que t[j-1] > a_insérer et j>0 répéter
                                                                               ⊳ faire monter les éléments
7:
             t[i] \leftarrow t[i-1]
             j ← j-1
8:
                                                                                  9:
         t[j] ← à_insérer
```

Algorithme 3 Tri par comptage

```
1: Fonction TRIER_COMPTAGE(t, v_{max})
                                                                            \triangleright v_{max} est le plus grand entier à trier
2:
       n \leftarrow taille(t)
3:
       c ← un tableau de taille v_{max} + 1 initialisé avec des zéros
       pour i de 0 à n-1 répéter
4:
           c[t[i]] \leftarrow c[t[i]] + 1
                                                    > compter les occurrences de chaque élément du tableau.
5:
       résultat ← un tableau de taille n
6:
       i \leftarrow 0
7:
       pour v de 0 à v_{max} répéter
                                                                ▶ On prend chaque valeur possible dans l'ordre
8:
           si c[v] > 0 alors
                                                                     ▶ Si l'élément v est présent dans le tableau
9:
               pour j de 0 à c[v] - 1 répéter
10:
                   résultat[i] ← v
                                                              \triangleright alors écrire autant de v que d'occurrences de v
11:
                   i \leftarrow i + 1
                                                                                       ⊳ à la bonne place, la ième!
12:
       renvoyer résultat
13:
```

• montrer la figure ainsi réalisée plt.show().

La bibliothèque time permet notamment de mesurer le temps d'exécution d'un code. Un exemple de code utilisant ces deux bibliothèques est donné ci-dessous. Le graphique qui en résulte est montré sur la figure 1.

Code 1 - Example d'utilisation des bibliothèques time et matplotlib

```
from matplotlib import pyplot as plt
def to measure(d):
    time.sleep(d) # Do nothing, wait for d seconds
# Simple use
tic = time.perf_counter()
to_measure(0.1)
toc = time.perf_counter()
print(f"Execution time : {toc - tic} seconds")
# Plotting results
timing = []
delay = [d / 1000 for d in range(1, 100, 5)]
for d in delay:
    tic = time.perf_counter()
    to_measure(d)
    toc = time.perf_counter()
    timing.append(toc - tic)
plt.figure()
plt.plot(delay, timing, color='cyan', label='fonction to_measure')
plt.xlabel('Delay', fontsize=18)
plt.ylabel("Execution time", fontsize=16)
plt.legend()
plt.show()
```

A5. À l'aide de la bibliothèque matplotlib, tracer les temps d'exécution nécessaires au tri d'un même tableau d'entiers par les algorithmes implémentés. On pourra également les comparer à la fonction sorted de Python. Analyser les résultats. Essayer de qualifier les coûts des algorithmes en fonction de la taille du tableau d'entrée.

FIGURE 1 – Figure obtenue à partir des bibliothèques matplotlib et time et du code 1

B Recherche d'un élément dans un tableau

On considère une liste L contenant des éléments de type int. Cette liste est **triée** par ordre croissant de ses éléments. On veut savoir si un élément x est présent dans L et comparer les performances des approches séquentielles et la dichotomiques. On dispose des algorithmes 4, 5 et 6.

Algorithme 4 Recherche séquentielle d'un élément dans un tableau

Algorithme 5 Recherche d'un élément par dichotomie dans un tableau trié

```
1: Fonction RECHERCHE DICHOTOMIQUE(t, elem)
2:
       n \leftarrow taille(t)
3:
       g \leftarrow 0
4:
       d \leftarrow n-1
       tant que g \le d répéter
                                                             ⊳ ≤ cas où valeur au début, au milieu ou à la fin
5:
                                                                   ▶ Division entière : un indice est un entier!
           m \leftarrow (g+d)//2
6:
           si t[m] < elem alors
7:
                                                                 ⊳ l'élément devrait se trouver dans t[m+1, d]
8:
              g \leftarrow m + 1
           sinon si t[m] > elem alors
9:
               d ← m - 1
                                                                  ▷ l'élément devrait se trouver dans t[g, m-1]
10:
11:
           sinon
                                                                                        ▷ l'élément a été trouvé
12:
              renvover m
       renvoyer l'élément n'a pas été trouvé
13:
```

- B1. Coder l'algorithme de recherche séquentielle d'un élément dans un tableau. Lorsque l'élément n'est pas présent dans le tableau, la fonction Python renvoie None. Sinon, elle renvoie l'indice de l'élément trouvé dans le tableau. Vérifier que cet algorithme fonctionne sur un tableau d'entiers de 20 éléments rempli aléatoirement. Dans le pire des cas, quel est le coût d'une recherche séquentielle en fonction de la taille du tableau?
- B2. Coder l'algorithme 5. Lorsque l'élément n'est pas présent dans le tableau, la fonction Python renvoie None. Sinon, elle renvoie l'indice de l'élément trouvé dans le tableau. Vérifier que cet algorithme fonctionne sur un tableau d'entiers de 20 éléments rempli aléatoirement et trié.
- B3. Coder l'algorithme 6. Vérifier que cet algorithme fonctionne sur un tableau d'entiers de 20 éléments rempli aléatoirement et trié et que l'indice renvoyé est bien l'indice minimal de la première occurrence de l'élément recherché.
- B4. On suppose que la longueur de la liste est une puissance de 2, c'est à dire $n = 2^p$ avec $p \ge 1$. Combien d'étapes l'algorithme 6 comporte-t-il? En déduire le nombre de comparaisons effectuées, dans le

Algorithme 6 Recherche d'un élément par dichotomie dans un tableau trié, renvoyer l'indice minimal en cas d'occurrences multiples.

```
1: Fonction RECHERCHE_DICHOTOMIQUE_INDICE_MIN(t, elem)
       n \leftarrow taille(t)
2:
       g \leftarrow 0
3:
       d \leftarrow n-1
4:
       tant que g < d répéter
                                                                          > attention au strictement inférieur!
5:
                                                                          ▶ Un indice de tableau est un entier!
           m \leftarrow (g+d)//2
6:
           si t[m] < elem alors
7:
                                                                 ⊳ l'élément devrait se trouver dans t[m+1, d]
8:
              g \leftarrow m + 1
9:
           sinon
              d \leftarrow m
                                                                    ⊳ l'élément devrait se trouver dans t[g, m]
10:
11:
       si t[g] = elem alors
12:
           renvoyer g
13:
       sinon
           renvoyer l'élément n'a pas été trouvé
14:
```

cas où l'élément est absent, en fonction de p puis de n, et comparer avec l'algorithme de recherche séquentielle.

- B5. Tracer le graphique des temps d'exécution des algorithmes précédent en fonction de n. Les tracés sont-ils cohérents avec les calculs des coûts effectués précédemment?
- B6. La recherche dichotomique fonctionne-t-elle sur les listes non triées? Donner un contre-exemple si ce n'est pas le cas.