Chaos Theory (Math 145)

Teaching Assitant

Joseph Immel <jhimmel@ucsc.edu>

Office hours:

Mondays 11am-12pm - ARC 116 Thursdays 2:30-3:30pm - ARC 116

Website: jhi3.github.io

- (a) Show that if $S \subseteq \mathbb{R}$ is finite, then it has no limit points.
- (b) Address the distance between the limit set of a sequence $\{u_n\}_{n\geq 0}$ and the limit set of its associated set $\{u_n:n\geq 0\}$. Consider the examples $u_n=\frac{1}{n}$ and $u_n=(-1)^n$.

(a) Show that if $S \subseteq \mathbb{R}$ is finite, then it has no limit points.

Definition: Limit Point of a (Real) Set

We say that y is a limit point of the set $S \subseteq \mathbb{R}$ if

$$\forall \varepsilon > 0$$
, $\exists x \in S$ such that $x \neq y$ and $\operatorname{dist}(x, y) < \varepsilon$.

- What does S being finite tell use about the distance between points $x \in S$?
- ♦ How do we choose epsilon to show that this is true?
- (b) Address the distance between the limit set of a sequence $\{u_n\}_{n\geq 0}$ and the limit set of its associated set $\{u_n:n\geq 0\}$. Consider the examples $u_n=\frac{1}{n}$ and $u_n=(-1)^n$.

Definition: Limit Point of a (Real) Set

We say that y is a limit point of the set $S \subseteq \mathbb{R}$ if

 $\forall \varepsilon > 0$, $\exists x \in S$ such that $x \neq y$ and $\operatorname{dist}(x, y) < \varepsilon$.

(b) Address the distance between the limit set of a sequence $\{u_n\}_{n\geq 0}$ and the limit set of its associated set $\{u_n:n\geq 0\}$. Consider the examples $u_n=\frac{1}{n}$ and $u_n=(-1)^n$.

Definition: Limit Point of a (Real) Sequence

We say that y is a limit point of real-valued sequence $\{x_n\}_{n\geq 0}$ if

$$\forall \varepsilon > 0, \ \forall N \in \mathbb{N}, \ \exists n \ge N \text{ such that } \operatorname{dist}(x_n, y) < \varepsilon.$$

- ♦ What are the limit points of these two sequences?
- ♦ Are those elements present in the respective sets $\{u_n : n \ge 0\}$?

Discuss the density of $\mathbb Q$ in $\mathbb R$ to expose yourself with various proofs of density.

Discuss the density of $\mathbb Q$ in $\mathbb R$ to expose yourself with various proofs of density.

Definition: Density (in ℝ)

For $A, B \subseteq \mathbb{R}$, we say that A is dense in B if every point in B is a limit point of A.

- ◆ In plain language, what does it mean to be dense?
- ♦ Letting $A = \mathbb{Q}$ and $B = \mathbb{R}$, what is $B \setminus A$ (i.e. $\mathbb{R} \setminus \mathbb{Q}$)?

Definition: Limit Point of a (Real) Set

We say that y is a limit point of the set $S \subseteq \mathbb{R}$ if

$$\forall \varepsilon > 0$$
, $\exists x \in S$ such that $x \neq y$ and $\operatorname{dist}(x, y) < \varepsilon$.

♦ Take $y ∈ \mathbb{R} \setminus \mathbb{Q}$, and consider $(y - \varepsilon, y + \varepsilon)$ for any $\varepsilon > 0$. How do we know there exists $q ∈ \mathbb{Q}$ such that $q ∈ (y - \varepsilon, y + \varepsilon)$?

Revisit how to derive the 2 and 3 cycles of the doubling map.

Revisit how to derive the 2 and 3 cycles of the doubling map.

The Doubling Map

Let $f: \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}/2\pi\mathbb{Z}$ be given by $f(\theta) = 2\theta \pmod{2\pi}$.

• The point θ is k-periodic if $f^k(\theta) = \theta$.

Exercise

Solve $f^k(\theta) = \theta + 2p\pi$ for θ , where $p \in \mathbb{Z}$.

Exercise

Compute $Per_2(f)$ and $Per_3(f)$.

♦ Describe the behavior of *k*-periodic points on the unit circle.

Let (X,d) be a metric space. Show that if $\{U_\alpha\}_\alpha$ is an arbitrary collection of open sets, then their union $\bigcup_\alpha U_\alpha$ is open.

Let (X,d) be a metric space. Show that if $\{U_\alpha\}_\alpha$ is an arbitrary collection of open sets, then their union $\bigcup_\alpha U_\alpha$ is open.

Definition: Metric Space

A metric space is a set X equipped with a distance function $d: X \times X \to [0, \infty)$ satisfying

- 1. d(x,x) = 0 for every $x \in X$,
- 2. d(x, y) = d(y, x) for every $x, y \in X$,
- 3. and $d(x, y) \le d(x, z) + d(z, y)$ for every $x, y, z \in X$.

Definition: Open Sets (in Metric Spaces)

We say that a set $U \subseteq X$ is open if for each point $x \in X$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset U$.

- ♦ What does the union of open sets do to their combined "size" (i.e. distance from interior points to the boundary)?
- ♦ Given any $x \in \bigcup_{\alpha} U_{\alpha}$, how do we go about picking ε ?

Recall the definition of $F_{\mu}(x) = \mu x(1-x)$ (logistic map) for $\mu > 0$ and $Q_c(x) = x^2 + c$ (quadratic map) for $c \in \mathbb{R}$. Both families undergo "similar" bifurcation patterns as μ or c vary. The main reason is that they are conjugate via a linear transformation.

- (a) Show that the map h(x) = -4x + 2 conjugates Q_{-2} and F_4 in the sense that $Q_{-2} \circ h = h \circ F_4$.
- (b) More generally, for any $\mu > 0$, there exists a map h(x) = ax + b which conjugates F_{μ} with Q_c , for some real numbers a, b, c. Find a, b, c by enforcing the equality $Q_c \circ h = h \circ F_{\mu}$.

(a) Show that the map h(x) = -4x + 2 conjugates Q_{-2} and F_4 in the sense that $Q_{-2} \circ h = h \circ F_4$.

Exercise

Compute $Q_{-2}(h(x))$ and $h(F_4(x))$ directly.

(b) More generally, for any $\mu > 0$, there exists a map h(x) = ax + b which conjugates F_{μ} with Q_c , for some real numbers a, b, c. Find a, b, c by enforcing the equality $Q_c \circ h = h \circ F_{\mu}$.

(a) Show that the map h(x) = -4x + 2 conjugates Q_{-2} and F_4 in the sense that $Q_{-2} \circ h = h \circ F_4$.

Exercise

Compute $Q_{-2}(h(x))$ and $h(F_4(x))$ directly.

- (b) More generally, for any $\mu > 0$, there exists a map h(x) = ax + b which conjugates F_{μ} with Q_c , for some real numbers a,b,c. Find a,b,c by enforcing the equality $Q_c \circ h = h \circ F_{\mu}$.
 - ♦ Compute $Q_c(h(x))$ and $h(F_{\mu}(x))$.
 - Observe that we have control over choosing a and b. If $Q_c(h(x)) = h(F_\mu(x))$, what choice for b allows simplification? Once simplified, can we repeat the process for a?
 - lacktriangle Once we know a and b, what is the relation between μ and c that makes the equality true?

Attendance

