ABE6933 SML Take-Home Final Exam (100 pts + 10 pts bonus)

Christopher Marais

General functions, data, and libraries

```
# functions
myCVids <- function(n, K, seed=0) {
# balanced subsets generation (subset sizes differ by at most 1)
# n is the number of observations/rows in the training set
# K is the desired number of folds (e.g., 5 or 10)
set.seed(seed);
t = floor(n/K); r = n-t*K;
id0 = rep((1:K), times=t)
ids = sample(id0,t*K)
if (r > 0) {ids = c(ids, sample(K,r))}
ids
}
# function to generate all subsets of the set (1,2,\ldots,p)
myf <- function(p) {</pre>
  out = matrix(c(0,1), nrow=2);
  if (p > 1) {
    for (i in (1:(p-1))) {
      d = 2^i
      o1 = cbind(rep(0,d),out)
      o2 = cbind(rep(1,d),out)
      out = rbind(o1,o2)
    }
  }
  colnames(out) <- c(2^((p-1):0)); # powers for binary expansion</pre>
  # colnames(out) <- c()</pre>
  out
}
nbSubsets <- function(p,m) {</pre>
  M = myf(p)
  rs = rowSums(M)
  ii = (rs == m)
  (M[ii,])
}
# function to convert binary representation to decimal representation
```

```
bin2dec <- function(binM) {</pre>
  dd = dim(binM); # nrows and ncols
  p = dd[2]-1
                 # max power;
  d = rep(0,dd[1]) # initialize placeholder for the answer
  for (i in 1:(p+1)) {
    d = d + 2^{(p+1-i)}*binM[,i]
  }
  d
}
# Mis-classification error rate calculation
MCR <- function(target, predicted, threshold=0.5){</pre>
  if(length(target)!=length(predicted)){
    print("ERROR: predictions and true values not of same shape")
  }else{
    pred_vals = as.integer((predicted > threshold))
    mcr = sum(pred_vals != target)/length(target)
    return(mcr)
  }
}
# get probability from multivariate Gaussian
my_dmvnorm <- function(X,mu,sigma) {</pre>
    k <- ncol(X)
    rooti <- backsolve(chol(sigma),diag(k))</pre>
    quads <- colSums((crossprod(rooti,(t(X)-mu)))^2)</pre>
    return(exp(-(k/2)*log(2*pi) + sum(log(diag(rooti))) - .5*quads))
}
# data
load('SML.2022.final.Rdata')
# libraries used in textbook
library(ROCR)
library(glmnet)
## Loading required package: Matrix
## Loaded glmnet 4.1-6
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
```

```
library(gbm)

## Loaded gbm 2.1.8.1

library(e1071)
library(MASS)

# libraries for ease of use
library(pdist) # pdist() can be replaced by dist() but dist() is slower
library(tidyr) # just saved some time on filling NA values in a data frame

##

## Attaching package: 'tidyr'

## The following objects are masked from 'package:Matrix':

##

## expand, pack, unpack

library(mvtnorm) # to estimate multivariate Normal Density else use my_dmvnorm
```

1.1

The receiver operating characteristic (ROC) curve is a graphical representation of the performance of a binary classification model. It plots the true positive rate (TPR) against the false positive rate (FPR) at different classification thresholds. The ROC curve is useful for evaluating the trade-off between the sensitivity and the specificity of a classification model. The confusion matrix (CM) is a table that displays the number of true positive, true negative, false positive, and false negative examples produced by a classification model. Another major difference between ROC curves and CMs is that ROC curves are calcualted for multiple classification thresholds and a CM is claclualted for a single threshold. One benefit that ROC curves have over CMs is that they can be used to calibrate the threshold value of a classifier of further tune it. CMs may not be able to be used for multiple thresholds at once but have one advantage over the ROC curve as it gives a more detailed view of the classifier's performance. It is capable of providing information not only about the TPR and FPR but can be used ot calcualte TNR, FNR, accuracy or the F-1 score of a classifier.

1.2

The 45-degree line on a ROC curve plot is equal to the performance of a classifier that is making random predictions or a classifier that has no skill. This 45-degree line is defined as TPR = FPR. The classifier described in the question will have an ROC curve that lies along the 45-degree line. This indicates that the classifier is making random predictions and has no ability to differentiate between positive and negative examples. Such a classifier would have a very low overall accuracy and would not be useful for most applications.

1.3

This classifier is one that is better than random, but not yet ideal. This means That technically there is room to improve the model's performance either through changing some of it's hyperparameters or by acquiring more data and retrain the model. This could potentially allow the model to learn more complex patterns and improve its ability to differentiate between positive and negative examples.

1.4

The TPR and FPR will almost be equal to one another and this in turn will equal the probability p. If we simulate a classifier of this type the ROC curve would look similar to the following. The classifier would be very close to non-informative and sit tight to the 45-degree line with a TPR and FPR always very close to one another. The point is not whether the probabilities of obtaining a case is similar or not it is more whether the process is random or not. With the process being close to random it will have a poor FPR/TPR ratio

```
# simulate true data
set.seed(0)
true = sample(c(1,0), prob=c(0.2,0.8), size=1000, replace=TRUE)

# simulate classifier p
prob = seq(0,1,length.out=1000)

# ROC curve
pred = prediction(prob, true)
perf = performance(pred,'tpr','fpr')
{plot(perf,lwd=3)
abline(0,1,lty=3,lwd=3,col="red")}
```


1.5

As q approaches 0, the TPR and FPR of the classifier will both approach 0. This is because the probability of selecting a case will approach 0, so the probability of correctly predicting 1 will also approach 0. Similarly, the probability of selecting a control will approach 1, so the probability of incorrectly predicting 1 will also approach 0. The TPR and FPR ratio as seen in a ROC is not influenced by changes in the class balance. The classifier will stay close of a random classifier.

1.6

Because p and n are similar in size it is unlikely that λ will be 0. The size of n is relatively small when compared to p with the true covariates also known to not be zero. This situation is ideal for ridge regression with a nonzero λ so as to regularize the model and prevent over fitting by reducing the weight of the estimated coefficients of the model. As n increases in size by sampling from the same population we will likely see the λ value decrease. By increasing n the true coefficients are more likely to be learned by the model reducing over fitting and the necessity for regularization. A larger n and smaller p will result in a smaller λ whereas a smaller n and larger p will result in a larger λ .

2.1

```
# variables
k = 2
seed = 0
# basic K-means function
my_kmeans <- function(data, k=2, seed=0){</pre>
  # initialize centroids from data
  set.seed(seed)
  centroid_mat <- data[sample(nrow(data), k), ]</pre>
  old_centroid_mat <- centroid_mat</pre>
  new_centroid_mat = matrix(0, nrow = k, ncol = ncol(centroid_mat))
  # repeat until convergence or iteration limit
  while(identical(old_centroid_mat, new_centroid_mat)==FALSE){
    # calculate euclidean distance between centroids and all points
    dist_mat <- t(as.matrix(pdist(centroid_mat, data)))</pre>
    # assign each point a class based on closest centroid
    closest_vent_mat = as.matrix(apply(dist_mat, 1, which.min))
    # calculate new centroids as mean of each class
    for(k_i in 1:k){
      new_centroid_mat[k_i,] <- colMeans(data[closest_vent_mat==k_i,])</pre>
    old_centroid_mat <- centroid_mat</pre>
    centroid_mat <- new_centroid_mat</pre>
  }
  return(list(centroid_mat, closest_vent_mat))
# upgraded K-means function
upgraded_kmeans <- function(data,</pre>
                             k=2,
                             version="v1",
                             seed=0,
                             init_method="random"){
  # initialize sample classes and mu
  if(init_method=="random"){
    # initialize classes and mu randomly
    set.seed(seed)
    mu = data[sample(nrow(data), k), ]
    set.seed(seed)
    class_vec = matrix(sample(1:2, size=nrow(data), replace=TRUE))
  }else if(init_method=="kmeans"){
```

```
# initialize classes and mu from K-means
  kmeans_result = my_kmeans(data=data, k=k, seed=seed)
  mu = kmeans result[[1]]
  class_vec = kmeans_result[[2]]
}else{
  print("ERROR: Use either 'random' or 'kmeans' for init method.")
}
# initialize other parameters
pi_vec = c()
for(i_c in 1:k){
 pi = mean(class_vec==i_c)
 pi_vec = c(pi_vec, pi)
}
# prepare list to record results in
log_likelihood = 0
old_log_likelihood <- log_likelihood</pre>
new_log_likelihood = 1
log_likelihood_lst = list()
new_class_vec = rep(0, nrow(data))
old_class_vec <- class_vec</pre>
# implement different versions of upgraded K-means
if(version=="v1"){
  # get single sigma for all classes
  sigma = cov(data)
  # loop until convergence
  while(identical(old_class_vec,new_class_vec)==FALSE){
    # update old log likelihood
    # old_log_likelihood <- log_likelihood
    old_class_vec <- class_vec</pre>
    # Estimate class probabilities
   mvn_lst = list()
    for(i_c in 1:k){
      mvn_ic = list(
      pi_vec[i_c]*dmvnorm(x=data,mean=as.numeric(mu[i_c,]),
                              sigma=sigma))
      mvn_lst = append(mvn_lst, mvn_ic)
   mvn_df = data.frame(mvn_lst)
    colnames(mvn_df) = 1:k
    mvn_df$total = rowSums(mvn_df)
```

```
ri_lst = list()
   for(i_c in 1:k){
      ri_vec = mvn_df[i_c]/mvn_df$total
      ri_lst = append(ri_lst, ri_vec)
    }
   ri_df = data.frame(ri_lst)
    class_vec = as.matrix(apply(ri_df, 1, which.max))
    # Update parameters and calculate maximum likelihood
    for(i_c in 1:k){
      pi = mean(class_vec==i_c)
      pi_vec = c(pi_vec, pi)
      mu[i_c,] <- colMeans(data[class_vec==i_c,])</pre>
    sigma = cov(data)
    # calculate log likelihood
   for(i_c in 1:k){
      log_likelihood=log(sum(dmvnorm(x=data[class_vec==i_c,],
                                                      mean=as.numeric(mu[i_c,]),
                                                      sigma=sigma)))
    }
    # new_log_likelihood <- log_likelihood</pre>
    new_class_vec <- class_vec</pre>
   log_likelihood_lst = append(log_likelihood_lst, log_likelihood)
  return(class_vec)
}else if(version=="v2"){
  # get a list of sigmas, one for each class
  sigma_lst = list()
  for(i_c in 1:k){
    class_df = data.frame(data[class_vec==i_c,])
    sigma = list(cov(class_df))
    sigma_lst = append(sigma_lst, sigma)
  }
  # loop until convergence
  while(identical(old_class_vec,new_class_vec)==FALSE){
    # update old log likelihood
    # old_log_likelihood <- log_likelihood</pre>
    old_class_vec <- class_vec</pre>
    # Estimate class probabilities
```

```
mvn_lst = list()
  for(i_c in 1:k){
    mvn_ic = list(
    pi_vec[i_c]*dmvnorm(x=data,mean=as.numeric(mu[i_c,]),
                            sigma=sigma_lst[[i_c]]))
    mvn_lst = append(mvn_lst, mvn_ic)
  mvn_df = data.frame(mvn_lst)
  colnames(mvn_df) = 1:k
  mvn_df$total = rowSums(mvn_df)
  ri_lst = list()
  for(i_c in 1:k){
    ri_vec = mvn_df[i_c]/mvn_df$total
    ri_lst = append(ri_lst, ri_vec)
  }
  ri_df = data.frame(ri_lst)
  class_vec = as.matrix(apply(ri_df, 1, which.max))
  # Update parameters and calculate maximum likelihood
  for(i_c in 1:k){
    pi = mean(class_vec==i_c)
    pi_vec = c(pi_vec, pi)
    mu[i_c,] <- colMeans(data[class_vec==i_c,])</pre>
  }
  sigma_lst = list()
  for(i_c in 1:k){
    class_df = data.frame(data[class_vec==i_c,])
    sigma = list(cov(class_df))
    sigma_lst = append(sigma_lst, sigma)
  }
  # calculate log likelihood
  for(i_c in 1:k){
    log_likelihood=log(sum(dmvnorm(x=data[class_vec==i_c,],
                                                   mean=as.numeric(mu[i_c,]),
                                                    sigma=sigma_lst[[i_c]])))
  }
  # new_log_likelihood <- log_likelihood</pre>
  new_class_vec <- class_vec</pre>
  log_likelihood_lst = append(log_likelihood_lst, log_likelihood)
return(class_vec)
```

```
}else{
   print("ERROR: Use either 'v1' or 'v2' for version.")
}
```

Plot data to answer questions

```
for( i in 1:length(prob2.list)){
  df = prob2.list[[i]]
  # plot K-means
  plot(x=df[,1],
       y=df[,2],
       main=paste("K-Means on Dataset:",i),
       col=my_kmeans(data=df,
                     seed=seed)[[2]])
  # plot version 1
  plot(x=df[,1],
       y=df[,2],
       main=paste("V1 on Dataset:",i),
       col=upgraded_kmeans(data=df,
                           version="v1",
                            init_method="random",
                            seed=seed))
  # plot version 2
  plot(x=df[,1],
       y=df[,2],
       main=paste("V2 on Dataset:",i),
       col=upgraded_kmeans(data=df,
                            version="v2",
                            init_method="random",
                            seed=seed))
}
```


2.2

True, as long as the sigma values for all he classes are the same then the original K-means should act the same way as the V1 K-Means.

2.3

```
# initialize clustering with different points
seed = 10
for( i in 1:length(prob2.list)){
  df = prob2.list[[i]]
  # plot K-means
  plot(x=df[,1],
       y=df[,2],
       main=paste("K-Means on Dataset:",i),
       col=my_kmeans(data=df,
                     seed=seed)[[2]])
  # plot version 1
  plot(x=df[,1],
       y=df[,2],
       main=paste("V1 on Dataset:",i),
       col=upgraded_kmeans(data=df,
                            version="v1",
                            init_method="random",
                            seed=seed))
  # plot version 2
  plot(x=df[,1],
       y=df[,2],
       main=paste("V2 on Dataset:",i),
       col=upgraded_kmeans(data=df,
                            version="v2",
                            init_method="random",
                            seed=seed))
}
```


With Σ dependent on k we can see that the algorithm is much more flexible and capable of classifying different clusters more effectively. We can see that the V1 version performs similarly to the K-means method with some data sets and then again performs more similarly to V2 in others. From the testing it seems that V2 is the only method capable of classifying data set 7 correctly. The most notable observation though is that how much of an impact the initialization has on the classification. These methods all seem prone to getting stuck in local optima for classification and struggle to optimize further. Each data set was classified successfully using the V2 method when different initializations were used.

```
# initialize parameters
k = 5
d_{max} = 10
d \min = 1
# function to calculate RMSE
rmse_func <- function(test, pred){</pre>
  rmse = sqrt(mean((test - pred)^2))
  return(rmse)
}
# record data from nested cv
k_i_vec = c()
k_j_vec = c()
d_{vec} = c()
rmse_j_vec = c()
best d vec = c()
rmse_i_vec = c()
rmse_i_mat = matrix(0, nrow=d_max, ncol=k)
# Outer CV to estimate performance (seed=0)
n_i = nrow(prob3.df)
```

```
for(k_i in seq(k)){
  inds.part = myCVids(n=n_i, K=k, seed=0)
  isk = (inds.part == k_i)
  valid.i = which(isk)
  train.i = which(!isk)
  # split data into external train and test sets
  data.valid.i = prob3.df[valid.i,]
  rownames(data.valid.i) <- NULL
  data.train.i = prob3.df[train.i,]
  rownames(data.train.i) <- NULL
  # loop through parameter sets
  rmse_d_vec = c()
  for(d in d_min:d_max){
    # Inner CV to estimate parameters (seed=1000)
    n_j = nrow(data.train.i)
    rmse_j_d_vec = c()
    for(k_j in seq(k)){
      inds.part = myCVids(n=n_j, K=k, seed=1000)
      isk = (inds.part == k_j)
      valid.j = which(isk)
      train.j = which(!isk)
      # split data into train and test sets
     data.valid.j = data.train.i[valid.j,]
      data.train.j = data.train.i[train.j,]
      # train model in internal cv loop
      lm.fit.j = lm(y ~ poly(x, degree=d), data = data.train.j)
      pred.j = predict(lm.fit.j , data.valid.j)
      rmse.j = rmse_func(test=data.valid.j$y, pred=pred.j)
      rmse_j_vec = c(rmse_j_vec, rmse.j)
      rmse_j_d_vec = c(rmse_j_d_vec, rmse.j)
      # record data
     k_i_vec = c(k_i_vec, k_i)
     k_j_vec = c(k_j_vec, k_j)
      d_{vec} = c(d_{vec}, d)
    # get mean RMSE for each parameter
   rmse_d = mean(rmse_j_d_vec)
   rmse_d_vec = c(rmse_d_vec, rmse_d)
    # train external model with selected d
    lm.fit.i = lm(y ~ poly(x, degree=d), data = data.train.i)
    pred.i = predict(lm.fit.i , data.valid.i)
   rmse.i = rmse_func(test=data.valid.i$y, pred=pred.i)
    rmse_i_mat[d,k_i] = rmse.i
  }
```

```
# select parameter set with lowest RMSE
  best_d = (d_min:d_max)[which(rmse_d_vec == min(rmse_d_vec))]
  best_d_vec = c(best_d_vec, best_d)
  # train external model with selected d
  lm.fit.i = lm(y ~ poly(x, best_d), data = data.train.i)
  pred.i = predict(lm.fit.i , data.valid.i)
  rmse.i = rmse_func(test=data.valid.i$y, pred=pred.i)
  rmse_i_vec = c(rmse_i_vec, rmse.i)
}
# organize results into a data frame
results_df = data.frame(ki=k_i_vec, kj=k_j_vec, d=d_vec, rmse_j=rmse_j_vec)
results_df$rmse_i = 0
results_df$best_d = 0
results_df$best_rmse = 0
for(i_k in 1:k){
  results_df$best_d[results_df$ki==i_k] = best_d_vec[i_k]
  results_df$best_rmse[results_df$ki==i_k] = rmse_i_vec[i_k]
  for(d in d_min:d_max){
    results_df$rmse_i[results_df$ki==i_k & results_df$d==d] = rmse_i_mat[d,k_i]
  }
}
# collect data for curve plots from inner adn outer cv loop results
ki_d_rmse_lst = list()
for(k_i in 1:k){
  ki_d_rmse_vec = c()
  d_rmse_vec = c()
  for(d in d_min:d_max){
    ki_d_mean_rmse = mean(
                      results_df$rmse_j[results_df$ki==k_i & results_df$d==d]
    ki_d_rmse_vec = c(ki_d_rmse_vec, ki_d_mean_rmse)
    d_rmse = mean(
                  results_df$rmse_i[results_df$d==d]
    d rmse vec = c(d rmse vec, d rmse)
  }
  ki_d_rmse_lst = append(ki_d_rmse_lst, list(ki_d_rmse_vec))
# display results table
knitr::kable(head(results_df, 100))
```

— ki	kj	d	rmse j	rmse i	best d	best rmse
1	1	1	1.870285	1.968968		1.484873
1	2	1	1.963539	1.968968	2	1.484873
1	3	1	2.055382	1.968968	$\overline{2}$	1.484873
1	4	1	1.657675	1.968968	2	1.484873
1	5	1	2.064572	1.968968	2	1.484873
1	1	2	1.878747	1.991959	2	1.484873
1	2	2	1.957772	1.991959	2	1.484873
1	3	2	2.037305	1.991959	2	1.484873
1	4	2	1.649110	1.991959	2	1.484873
1	5	2	2.071771	1.991959	2	1.484873
1	1	3	1.896799	1.990399	2	1.484873
1	2	3	1.955857	1.990399	2	1.484873
1	3	3	2.035939	1.990399	2	1.484873
1	4	3	1.648428	1.990399	2	1.484873
1	5	3	2.072248	1.990399	2	1.484873
1	1	4	1.897565	1.988841	2	1.484873
1	2	4	1.957486	1.988841	2	1.484873
1	3	4	2.034824	1.988841	2	1.484873
1	4	4	1.649061	1.988841	2	1.484873
1	5	4	2.071914	1.988841	2	1.484873
1	1	5	1.935765	1.987758	2	1.484873
1	2	5	1.957102	1.987758	2	1.484873
1	3	5	2.120890	1.987758	2	1.484873
1	4	5	1.650729	1.987758	2	1.484873
1	5	5	2.075676	1.987758	2	1.484873
1	1	6	2.029966	1.995224	2	1.484873
1	2	6	1.989976	1.995224	2	1.484873
1	3	6	2.123344	1.995224	2	1.484873
1	4	6	1.647030	1.995224	2	1.484873
1	5	6	2.089536	1.995224	2	1.484873
1	1	7	2.039120	2.006448	2	1.484873
1	2	7	2.007069	2.006448	2	1.484873
1	3	7	2.123280	2.006448	2	1.484873
1	4	7	1.663389	2.006448	2	1.484873
1	5	7	2.090476	2.006448	2	1.484873
1	1	8	2.038876	2.010370	2	1.484873
1	2	8	2.037914	2.010370	2	1.484873
1	3	8	2.144957	2.010370	2	1.484873
1	4	8	1.662937	2.010370	2	1.484873
1	5	8	2.108003	2.010370	2	1.484873
1	1	9	2.040491	2.032230	2	1.484873
1	2	9	2.037163	2.032230	2	1.484873
1	3	9	2.144108	2.032230	2	1.484873
1	4	9	1.658463	2.032230	2	1.484873
1	5	9	2.115636	2.032230	$\frac{2}{2}$	1.484873
1	1	10	2.073504	2.035435	2	1.484873
1	2	10	2.045652	2.035435	2	1.484873
1	3	10	2.142588	2.035435	2	1.484873

ki	kj	d	${\rm rmse_j}$	${\rm rmse_i}$	$best_d$	best_rmse
1	4	10	1.703645	2.035435	2	1.484873
1	5	10	2.113479	2.035435	2	1.484873
2	1	1	2.117692	1.968968	1	1.689378
2	2	1	1.997274	1.968968	1	1.689378
2	3	1	1.869417	1.968968	1	1.689378
2	4	1	1.535978	1.968968	1	1.689378
2	5	1	1.884340	1.968968	1	1.689378
2	1	2	2.106300	1.991959	1	1.689378
2	2	2	2.060370	1.991959	1	1.689378
2	3	2	1.907080	1.991959	1	1.689378
2	4	2	1.532592	1.991959	1	1.689378
2	5	2	1.906136	1.991959	1	1.689378
2	1	3	2.100055	1.990399	1	1.689378
2	2	3	2.057835	1.990399	1	1.689378
2	3	3	1.970956	1.990399	1	1.689378
2	4	3	1.554205	1.990399	1	1.689378
2	5	3	1.933351	1.990399	1	1.689378
2	1	4	2.099792	1.988841	1	1.689378
2	2	4	2.058728	1.988841	1	1.689378
2	3	4	1.971691	1.988841	1	1.689378
2	4	4	1.579596	1.988841	1	1.689378
2	5	4	1.935071	1.988841	1	1.689378
2	1	5	2.156970	1.987758	1	1.689378
2	2	5	2.062639	1.987758	1	1.689378
2	3	5	2.036358	1.987758	1	1.689378
2	4	5	1.656695	1.987758	1	1.689378
2	5	5	1.958164	1.987758	1	1.689378
2	1	6	2.196910	1.995224	1	1.689378
2	2	6	2.082418	1.995224	1	1.689378
2	3	6	2.030913	1.995224	1	1.689378
2	4	6	1.653409	1.995224	1	1.689378
2	5	6	1.975435	1.995224	1	1.689378
2	1	7	2.217288	2.006448	1	1.689378
2	2	7	2.085739	2.006448	1	1.689378
2	3	7	2.128182	2.006448	1	1.689378
2	4	7	1.664233	2.006448	1	1.689378
2	5	7	1.974984	2.006448	1	1.689378
2	1	8	2.222984	2.010370	1	1.689378
2	2	8	2.111251	2.010370	1	1.689378
2	3	8	2.128832	2.010370	1	1.689378
2	4	8	1.755577	2.010370	1	1.689378
2	5	8	1.982152	2.010370	1	1.689378
2	1	9	2.229218	2.032230	1	1.689378
2	2	9	2.100867	2.032230	1	1.689378
2	3	9	2.078272	2.032230	1	1.689378
2	4	9	1.767015	2.032230	1	1.689378
2	5	9	1.969071	2.032230	1	1.689378
2	1	10	2.231451	2.035435	1	1.689378

ki	kj	d	rmse_j	rmse_i	best_d	best_rmse
2	2	10	2.098925	2.035435	1	1.689378
2	3	10	2.082165	2.035435	1	1.689378
2	4	10	1.773148	2.035435	1	1.689378
2	5	10	1.966365	2.035435	1	1.689378

```
# add data to data frame for visualization
plot_df = data.frame((d_min:d_max), ki_d_rmse_lst, d_rmse_vec)
colnames(plot_df) = c("d", as.character(1:k), "outer_cv")
# visualize results as line plots
{plot(x=plot_df$d,
     y=plot_df$outer_cv,
     type="b",
     col="black",
     1wd=2,
     1ty=2,
     ylim=c(min(plot_df[2:7]),max(plot_df[2:7])),
     pch=19,
     ylab="RMSE",
     xlab="Polynomial degree (d)")
lines(x=plot_df$d, y=plot_df$`1`, col="blue", lwd=2, type="b", pch=19)
lines(x=plot_df$d, y=plot_df$^2`, col="green", lwd=2, type="b", pch=19)
lines(x=plot_df$d, y=plot_df$^3`, col="orange", lwd=2, type="b", pch=19)
lines(x=plot_df$d, y=plot_df$^4`, col="purple", lwd=2, type="b", pch=19)
lines(x=plot_df$d, y=plot_df$`5`, col="red", lwd=2, type="b", pch=19)
legend("bottomright",
       inset=.02,
       legend=c("Outer CV",
                "Inner CV 4",
                "Inner CV 5",
                "Inner CV 3",
                "Inner CV 2",
                "Inner CV 1"),
       col=c("black","blue","green","orange","red","purple"),
       lty=c(2,1,1,1,1,1),
       bg = "white",
       cex=0.75)
```



```
# display best "ensemble" model statistics
best_model_df = results_df[
    c("ki","best_d","best_rmse")
][!duplicated(
    results_df[c("ki","best_d","best_rmse")]
    ),]
rownames(best_model_df) = NULL
knitr::kable(best_model_df)
```

ki	best_d	best_rmse
1	2	1.484873
2	1	1.689378
3	2	1.907865
4	1	2.047146
5	2	1.991959

```
print(paste("Mean RMSE: ", mean(best_model_df$best_rmse)))
```

[1] "Mean RMSE: 1.8242442649514"

Nested k-fold cross-validation can be computationally expensive and time-consuming, especially for complex models and large data sets. Models with a lot of descriptors or large data sets will increase computation time even further making this technique not suited when time or computational constraints are a concern.

4.a

```
# initialize data
p = 4
k_max = 5
n = nrow(prob4.df)
binM = myf(p)
ids = bin2dec(binM)
ROC_df = data.frame(matrix(ncol = length(ids), nrow = n), Y=prob4.df$Y)
colnames(ROC_df) = c(ids, "Y")
# loop through models
feature_names = c("X1","X2","X3","X4")
features_vec = c()
mean_mcr_vec = c()
glm_lst = list()
for(i in seq(1:length(ids))){
  # select subset of data
  gamma = binM[i,]
  alpha = ids[i]
  X = data.frame(Intercept=1, prob4.df[,-5][,gamma==1])
  Y = prob4.df$Y
  data_df = data.frame(Y, X)
  # get feature names of id
  if(sum(gamma)==0){
    features = "None"
  }else{
    features = feature_names[gamma==1]
  }
  features_vec = c(features_vec, paste(features,collapse=" "))
  # perform 5-fold CV
  inds.part = myCVids(n, 5, seed=0)
  # loop through folds
  mcr_vec = c()
  for(k in seq(1:k_max)){
    isk = (inds.part == k)
    valid.k = which(isk)
    train.k = which(!isk)
    # train logistic regression model
    glm.fit = glm(Y \sim 0 +.,
                 family=binomial,
                 data=as.data.frame(data_df[train.k,]))
    glm_lst = append(glm_lst, list(glm.fit))
```

```
# predict target on validation data
    pred = predict(glm.fit , data_df[valid.k,], type= "response")
    ROC_df[valid.k,i] = pred # store predictions in data frame for 4.b
    # calculate mis-classification error rate for default 0.5 threshold
    mcr = MCR(target=data_df[valid.k,]$Y, predicted=pred, threshold=0.5)
    mcr_vec = c(mcr_vec, mcr)
  }
  mean_mcr = mean(mcr_vec)
  mean_mcr_vec = c(mean_mcr_vec, mean_mcr)
}
# add data to a data frame
res_df = data.frame(ids,
features_vec,
mean_mcr_vec)
colnames(res_df) = c("ID", "covariates", "mean_mcr")
ord_res_df = res_df[order(res_df$mean_mcr),]
rownames(ord_res_df) = NULL
knitr::kable(ord_res_df, format = "markdown")
```

ID	covariates	mean_mcr
3	X3 X4	0.375
2	X3	0.385
6	X2 X3	0.390
7	X2 X3 X4	0.395
11	X1 X3 X4	0.395
10	X1 X3	0.415
14	X1 X2 X3	0.420
15	X1 X2 X3 X4	0.420
1	X4	0.470
9	X1 X4	0.480
5	X2 X4	0.490
13	X1 X2 X4	0.500
8	X1	0.525
0	None	0.535
12	X1 X2	0.535
4	X2	0.545

[1] "The Best model ID is 3 with X3 X4 as features and a MCR of 0.375"

```
{plot(x=res_df$ID,
    y=res_df$mean_mcr,
    pch=19,
    type="b",
    lty=2,
    xlim=c(min(res_df$ID), max(res_df$ID)+2),
    xlab="Model ID",
    ylab="CV Mean misclassification Rate")

text(mean_mcr~ID,
    labels=res_df$covariates,
    data=res_df,
    cex=0.75,
    font=3,
    pos=4)}
```


4.b

```
# select the best model using a 0.5 threshold
best_model = ord_res_df[1,1]

# predictions data of best model
Y_pred = ROC_df[,best_model+1]
Y = ROC_df[,ncol(ROC_df)]
```

```
# Get the full ROC curve for entire prediction vs Y
pred = prediction(Y_pred, Y)
perf_all = performance(pred, 'tpr', 'fpr')
# get threshold, tpr and fpr values from ROCR
threshold_df = data.frame(cut=perf_all@alpha.values[[1]],
                      fpr=perf_all@x.values[[1]],
                      tpr=perf_all@y.values[[1]])
# create ROC curve for each CV in best model
inds.part = myCVids(n, 5, seed=0)
perf lst = list()
for(k in seq(1:k max)){
  isk = (inds.part == k)
  valid.k = which(isk)
  pred <- prediction(Y_pred[valid.k], Y[valid.k])</pre>
  perf <- performance(pred, 'tpr', 'fpr')</pre>
  perf_df = data.frame(cut=perf@alpha.values[[1]],
                      fpr=perf@x.values[[1]],
                      tpr=perf@y.values[[1]])
  perf_lst = append(perf_lst, list(perf_df))
  # use this code to plot the folds seperately
  # {plot(perf,
         lwd=2,
         main='ROC curve from 5-fold cross-validation')
  # abline(0,1,lty=2,lwd=2,col="red")}
}
# Create data frame with all cv performance data data
cv_threshold_df = data.frame(cut=threshold_df$cut)
for(i in 1:k_max){
  cv_threshold_df = merge(cv_threshold_df, perf_lst[[i]], by="cut", all=TRUE)
  colnames(cv_threshold_df)[i*2] = paste("fpr_",as.character(i), sep="")
  colnames(cv_threshold_df)[i*2+1] = paste("tpr_",as.character(i), sep="")
}
cv_threshold_df = cv_threshold_df[order(cv_threshold_df$cut, decreasing=TRUE),]
rownames(cv threshold df) = NULL
cv_threshold_df = cv_threshold_df %>% fill(colnames(cv_threshold_df)[-1],
                                            .direction="down")
# calculate the best threshold value
threshold_df$tpr_fpr_dist = sqrt(
  ((1-threshold_df$tpr)**2)+(threshold_df$fpr**2)
best_threshold_df = threshold_df[which.min(threshold_df$tpr_fpr_dist),]
```

```
# visualize ROC curve
{plot(perf_all,
     lwd=3,
     main='ROC curve from 5-fold cross-validation',
     xlim=c(0,1),
     ylim=c(0,1)
abline(0,1,lty=3,lwd=3,col="red")
lines(x=cv_threshold_df$fpr_1, y=cv_threshold_df$tpr_1, lty=2, col="grey")
lines(x=cv_threshold_df$fpr_2, y=cv_threshold_df$tpr_2, lty=2, col="grey")
lines(x=cv_threshold_df$fpr_3, y=cv_threshold_df$tpr_3, lty=2, col="grey")
lines(x=cv_threshold_df$fpr_4, y=cv_threshold_df$tpr_4, lty=2, col="grey")
lines(x=cv_threshold_df$fpr_5, y=cv_threshold_df$tpr_5, lty=2, col="grey")
points(x=best_threshold_df$fpr, y=best_threshold_df$tpr, col="green", pch=19)
text(x=best_threshold_df$fpr,
     y=best_threshold_df$tpr,
     pos=1,
     paste("(",round(best_threshold_df$fpr,3),",",round(best_threshold_df$tpr,3),")"))
}
```

ROC curve from 5-fold cross-validation


```
# Print optimal threshold value with (FPR, TPR) closest to ideal as (0,1)
print(paste("The best threshold value is: ", best_threshold_df$cut))
```

[1] "The best threshold value is: 0.471360246630924"

Problem 5

```
p=50
n = nrow(prob5.df)
```

```
test_df = prob5.df[401:800,]
x_test_df = model.matrix(Y~., test_df )[,-1]
y_test_df = test_df$Y
data_set_vec = c(100, 200, 400)
k_max = 5
# define parameters to search
lambda_vec = seq(0,1,0.1)
mtry_vec = c(1:7,p)
interaction_depth_vec = 1:7
# create lists and data frame for results
lr_dataset_lst = list()
rf_dataset_lst = list()
gbm_dataset_lst = list()
RMSE_df = data.frame(matrix(0, nrow=3, ncol=6))
colnames(RMSE_df) = c("cv_RMSE_n100",
                      "test_RMSE_n100",
                      "cv_RMSE_n200",
                      "test_RMSE_n200",
                      "cv_RMSE_n400",
                      "test RMSE n400")
# loop through sets of data
for(dat in 1:length(data_set_vec)){
  dataset = data set vec[dat]
  # specify training data set
  train_df = prob5.df[1:dataset,]
  x_train_df = model.matrix(Y~., train_df)[,-1]
  y_train_df = train_df$Y
  # perform 5-fold CV
  set_n = nrow(train_df)
  inds.part = myCVids(set_n, k_max, seed=0)
  # create data frames to record results in
  lr_cv_rmse_df = data.frame(matrix(0,
                                nrow=length(lambda_vec),
                                ncol=k_max))
  rf_cv_rmse_df = data.frame(matrix(0,
                                nrow=length(mtry_vec),
                                ncol=k_max))
  gbm_cv_rmse_df = data.frame(matrix(0,
                                 nrow=length(interaction_depth_vec),
                                 ncol=k max))
  for(k in seq(1:k_max)){
    isk = (inds.part == k)
    valid.k = which(isk)
    train.k = which(!isk)
```

```
cv_train_df = train_df[train.k,]
cv_valid_df = train_df[valid.k,]
x_cv_train_df = model.matrix(Y~., cv_train_df )[,-1]
y_cv_train_df = cv_train_df$Y
x_cv_valid_df = model.matrix(Y~., cv_valid_df )[,-1]
y_cv_valid_df = cv_valid_df$Y
for(l in 1:length(lambda_vec)){
  lambda = lambda_vec[1]
  # train LR
  set.seed(0)
  lasso_reg.fit = glmnet(x_cv_train_df,
                         y_cv_train_df,
                         alpha=1,
                         lambda=lambda)
  # eval LR
  lr_pred = predict(lasso_reg.fit, x_cv_valid_df)
  lr_rmse = sqrt(mean((y_cv_valid_df - lr_pred)^2))
 lr_cv_rmse_df[1,k] = lr_rmse
}
for(m in 1:length(mtry_vec)){
  mtry = mtry_vec[m]
  # train RF
  set.seed(0)
 rf.fit = randomForest(Y~.,
                        data=cv_train_df,
                        mtry=mtry,
                        ntree=500,
                        importance=TRUE)
  # eval RF
  rf_pred = predict(rf.fit, cv_valid_df)
  rf_rmse = sqrt(mean((y_cv_train_df - rf_pred)^2))
 rf_cv_rmse_df[m,k] = rf_rmse
}
for(d in 1:length(interaction_depth_vec)){
  interaction_depth = interaction_depth_vec[d]
  # train GBM
  set.seed(0)
  gbm.fit = gbm(Y^{-}.,
                data=cv_train_df,
                distribution="gaussian",
                n.trees=1000,
                shrinkage=0.01,
                interaction.depth=interaction_depth)
  # eval GBM
  gbm_pred = predict(gbm.fit, cv_valid_df)
  gbm_rmse = sqrt(mean((y_cv_train_df - gbm_pred)^2))
```

```
gbm_cv_rmse_df[d,k] = gbm_rmse
}
# add data frames to list
lr_cv_rmse_df$mean = rowMeans(lr_cv_rmse_df)
lr_dataset_lst = append(lr_dataset_lst,list(lr_cv_rmse_df))
rf_cv_rmse_df$mean = rowMeans(rf_cv_rmse_df)
rf_dataset_lst = append(rf_dataset_lst, list(rf_cv_rmse_df))
gbm_cv_rmse_df$mean = rowMeans(gbm_cv_rmse_df)
gbm_dataset_lst = append(gbm_dataset_lst, list(gbm_cv_rmse_df))
# select best parameter and get best mean cv RMSE
lr_min_rmse_idx = which.min(lr_cv_rmse_df$mean)
lr_best_par = lambda_vec[lr_min_rmse_idx]
lr_cv_rmse = min(lr_cv_rmse_df$mean)
RMSE_df[1,paste("cv_RMSE_n",dataset,sep="")] = lr_cv_rmse
rf_min_rmse_idx = which.min(rf_cv_rmse_df$mean)
rf_best_par = mtry_vec[rf_min_rmse_idx]
rf_cv_rmse = min(rf_cv_rmse_df$mean)
RMSE_df[2,paste("cv_RMSE_n",dataset,sep="")] = rf_cv_rmse
gbm_min_rmse_idx = which.min(gbm_cv_rmse_df$mean)
gbm_best_par = interaction_depth_vec[gbm_min_rmse_idx]
gbm_cv_rmse = min(gbm_cv_rmse_df$mean)
RMSE_df[3,paste("cv_RMSE_n",dataset,sep="")] = gbm_cv_rmse
# train best LR
set.seed(0)
best_lasso_reg.fit = glmnet(x_train_df,
                       y_train_df,
                       alpha=1,
                       lambda=lr_best_par)
# test best LR
lr_pred = predict(best_lasso_reg.fit, x_test_df)
lr_rmse = sqrt(mean((y_test_df - lr_pred)^2))
RMSE_df[1,paste("test_RMSE_n",dataset,sep="")] = lr_rmse
# train RF
set.seed(0)
best_rf.fit = randomForest(Y~.,
                      data=train_df,
                      mtry=rf_best_par,
                      ntree=500,
                      importance=TRUE)
# eval RF
rf_pred = predict(best_rf.fit, test_df)
```

```
rf_rmse = sqrt(mean((y_test_df - rf_pred)^2))
  RMSE_df[2,paste("test_RMSE_n",dataset,sep="")] = rf_rmse
  # train GBM
  set.seed(0)
  best_gbm.fit = gbm(Y~.,
                data=train_df,
                distribution="gaussian",
                n.trees=1000,
                shrinkage=0.01,
                interaction.depth=gbm_best_par)
  # eval GBM
  gbm_pred = predict(best_gbm.fit, test_df)
  gbm rmse = sqrt(mean((y test df - gbm pred)^2))
  RMSE_df[3,paste("test_RMSE_n",dataset,sep="")] = gbm_rmse
}
# name rows in results data frame
rownames(RMSE_df) = c("LR", "RF", "GBM")
# visualize cross-validation RMSE
# plot Lasso regression model CV results
# find optimal values
lr_min_lst = which.min(c(min(lr_dataset_lst[[1]]$mean),
                          min(lr_dataset_lst[[2]]$mean),
                          min(lr_dataset_lst[[3]]$mean)))
lr_idx_min = which.min(lr_dataset_lst[[lr_min_lst]]$mean)
lr_y_min = round(lr_dataset_lst[[lr_min_lst]]$mean[lr_idx_min],3)
lr_x_min = lambda_vec[lr_idx_min]
{plot(x=lambda_vec,
     y=lr_dataset_lst[[1]]$mean,
     type="b",
     main="Lasso Regression CV for different datasets",
     xlab="Lambda",
     ylab="CV Mean validation RMSE",
     pch=19,
     lwd=2,
     vlim=c(min(min(lr dataset lst[[1]]$mean),
                min(lr_dataset_lst[[2]]$mean),
                min(lr_dataset_lst[[3]]$mean))-0.1,
              max(max(lr_dataset_lst[[1]]$mean),
                max(lr_dataset_lst[[2]]$mean),
                max(lr_dataset_lst[[3]]$mean))),
      xlim=c(0,max(lambda_vec)+(max(lambda_vec)/10)))
lines(x=lambda_vec,
      lr_dataset_lst[[2]]$mean,
      type="b",
      pch=19,
```

```
col="red",
      1wd=2)
lines(x=lambda vec,
      lr_dataset_lst[[3]]$mean,
      type="b",
      pch=19,
      col="blue",
      1wd=2,
      )
points(x=lr_x_min, y=lr_y_min, cex=2, lwd=3, col="green")
text(x=lr_x_min, y=lr_y_min, pos=1, paste("(",lr_x_min,",",lr_y_min,")"))
legend("topright",
       inset=.02,
       title="Sample size",
       legend=c("n=100",
                "n=200",
                "n=400"),
       lty=c(1,1,1),
       col=c("black","red","blue"),
       bg = "white",
       cex=0.75)
```

Lasso Regression CV for different datasets


```
# plot Random Forest model CV results
# find optimal values
rf_min_lst = which.min(c(min(rf_dataset_lst[[1]]$mean),
```

```
min(rf_dataset_lst[[2]]$mean),
                          min(rf_dataset_lst[[3]]$mean)))
rf_idx_min = which.min(rf_dataset_lst[[rf_min_lst]]$mean)
rf_y_min = round(rf_dataset_lst[[rf_min_lst]]$mean[rf_idx_min],3)
rf_x_min = mtry_vec[rf_idx_min]
{plot(x=mtry_vec,
     y=rf_dataset_lst[[1]]$mean,
     type="b",
    main="Random Forest CV for different datasets",
     xlab="Number of sampled candidates at split",
     ylab="CV Mean validation RMSE",
    pch=19,
    lwd=2,
     ylim=c(min(min(rf_dataset_lst[[1]]$mean),
                min(rf_dataset_lst[[2]]$mean),
                min(rf_dataset_lst[[3]]$mean)),
              max(max(rf_dataset_lst[[1]]$mean),
                max(rf_dataset_lst[[2]]$mean),
                max(rf_dataset_lst[[3]]$mean)))
     )
lines(x=mtry_vec,
      rf_dataset_lst[[2]]$mean,
      type="b",
      pch=19,
      col="red",
      1wd=2)
lines(x=mtry_vec,
      rf_dataset_lst[[3]]$mean,
      type="b",
      pch=19,
      col="blue",
      lwd=2)
points(x=rf_x_min, y=rf_y_min, cex=2, lwd=3, col="green")
text(x=rf_x_min, y=rf_y_min, pos=4, paste("(",rf_x_min,",",rf_y_min,")"))
legend("bottomright",
       inset=.02,
       title="Sample size",
       legend=c("n=100",
                "n=200",
                "n=400"),
       lty=c(1,1,1),
       col=c("black","red","blue"),
       bg = "white",
       cex=0.75)
```

Random Forest CV for different datasets

Number of sampled candidates at split

```
# plot gbm model CV results
# find optimal values
gbm_min_lst = which.min(c(min(gbm_dataset_lst[[1]]$mean),
                          min(gbm_dataset_lst[[2]]$mean),
                          min(gbm_dataset_lst[[3]]$mean)))
gbm_idx_min = which.min(gbm_dataset_lst[[gbm_min_lst]]$mean)
gbm_y_min = round(gbm_dataset_lst[[gbm_min_lst]]$mean[gbm_idx_min],3)
gbm_x_min = interaction_depth_vec[gbm_idx_min]
{plot(x=interaction_depth_vec,
     y=gbm_dataset_lst[[1]]$mean,
     type="b",
     main="Generalized Boosted Regression CV for different datasets",
     xlab="Interaction Depth",
     ylab="CV Mean validation RMSE",
    pch=19,
     lwd=2.
     ylim=c(min(min(gbm_dataset_lst[[1]]$mean),
                min(gbm_dataset_lst[[2]]$mean),
                min(gbm_dataset_lst[[3]]$mean)),
              max(max(gbm dataset lst[[1]]$mean),
                max(gbm_dataset_lst[[2]]$mean),
                max(gbm dataset lst[[3]]$mean)))
lines(x=interaction_depth_vec,
```

```
gbm_dataset_lst[[2]]$mean,
      type="b",
      pch=19,
      col="red",
      lwd=2)
lines(x=interaction_depth_vec,
      gbm_dataset_lst[[3]]$mean,
      type="b",
      pch=19,
      col="blue",
      lwd=2)
points(x=gbm_x_min, y=gbm_y_min, cex=2, lwd=3, col="green")
text(x=gbm_x_min, y=gbm_y_min, pos=4, paste("(",gbm_x_min,",",gbm_y_min,")"))
legend("bottomright",
       inset=.02,
       title="Sample size",
       legend=c("n=100",
                "n=200",
                "n=400"),
       lty=c(1,1,1),
       col=c("black","red","blue"),
       bg = "white",
       cex=0.75)
```

Generalized Boosted Regression CV for different datasets

$\hbox{\it\# display table of RMSE results for different data set sizes}$

knitr::kable(RMSE_df)

	cv_RMSE_n10@est	_RMSE_n10@v	_RMSE_n20@st	_RMSE_n20@v	_RMSE_n40test	RMSEn400
LR	1.360690	1.399217	1.403066	1.381895	1.396029	1.375865
RF	1.365293	1.371260	1.411022	1.369140	1.399912	1.371364
GBM	1.550574	1.491290	1.501748	1.408234	1.444921	1.348527

variable importance of best models

best_rf_var_importance = data.frame(importance(best_rf.fit))

knitr::kable(best_rf_var_importance[order(best_rf_var_importance\$X.IncMSE),])

	X.IncMSE	IncNodePurity
X29	-2.5916505	12.91214
X23	-1.9847393	12.16836
X45	-1.8413896	13.13325
X25	-1.7735024	13.60662
X34	-1.6297428	12.88759
X17	-1.5364538	12.07460
X13	-1.5277839	13.49658
X28	-1.4820672	13.99083
X6	-1.4614623	12.82746
X27	-1.4284636	14.84803
X41	-1.3998038	13.89606
X8	-1.3673163	13.56246
X16	-1.2352002	13.56140
X32	-1.2197214	12.26527
X48	-1.1067155	12.71878
X38	-1.0526474	13.10167
X11	-1.0499736	14.14953
X12	-0.8045081	13.21615
X30	-0.7618064	11.99427
X26	-0.7242413	14.23260
X35	-0.7183456	12.76530
X36	-0.5553919	14.49858
X4	-0.5445047	14.70522
X15	-0.5420168	14.31255
X47	-0.4973223	13.99525
X39	-0.3178708	13.83954
X7	-0.2706111	14.15578
X1	-0.2270562	14.09000
X44	-0.2120796	13.09160
X46	-0.1302534	13.98108
X5	-0.0449731	11.90699
X20	-0.0260533	13.76552
X18	0.0223525	13.11206

	X.IncMSE	IncNodePurity
X9	0.1461766	13.77700
X43	0.2732401	15.25078
X2	0.3828024	12.85476
X14	0.4206784	15.05823
X50	0.4832366	12.30618
X42	0.5000993	13.84108
X40	0.5115375	15.50958
X24	0.6021159	13.97642
X49	0.7006539	15.28368
X21	0.7662314	14.76698
X31	0.8801522	14.83051
X10	1.0178126	12.82549
X33	1.2616535	13.13228
X22	1.4741521	12.66539
X3	1.5594347	13.95564
X37	3.5865036	16.06830
X19	5.6832410	16.23629

best_gbm_var_importance = summary(best_gbm.fit)

knitr::kable(best_gbm_var_importance)

	var	rel.inf
X19	X19	14.3906710
X37	X37	11.9599606
X40	X40	6.1100856
X14	X14	4.8873637
X49	X49	4.4437227
X31	X31	4.4010696
X27	X27	4.3906084
X21	X21	3.0572196
X33	X33	2.9281740
X47	X47	2.7017385
X39	X39	2.5194653
X45	X45	2.3471318
X36	X36	2.1599790
X10	X10	2.1573071
X11	X11	1.9291016
X8	X8	1.9040879
X26	X26	1.8645460
X46	X46	1.8199406
X41	X41	1.6263900
X44	X44	1.6210698
X42	X42	1.5862620
X1	X1	1.5786467
X43	X43	1.3835027
X15	X15	1.3678307
X38	X38	1.2507803
X9	X9	1.2221270
X24	X24	1.2113328
X4	X4	1.0799885
X50	X50	0.8431890
X18	X18	0.8308683
X48	X48	0.7859923
X20	X20	0.7640700
X22	X22	0.6832765
X3	X3	0.6033500
X25	X25	0.5928914
X17	X17	0.5895884
X34	X34	0.5121746
X16	X16	0.5107093
X2	X2	0.5101200
X23	X23	0.3919250
X5	X5	0.3857606
X35	X35	0.3291374
X6	X6	0.3244545
X32	X32	0.2972139
X28	X28	0.2711117
X12	X12	0.2687051
X13	X13	0.2654197
X30	X30	0.1513693

	var	rel.inf
X29	X29	0.1054205
X7	X7	0.0831486

AS n increases it seems as though the test RMSE decreases reliably. However, the RMSE during cross-validation does not decrease much for the optimal parameters as n increases. This makes sense because the validation data set grows in size alongside the training data set when n increases, but the testing data set does not increase in size. This shows us that there is some element of noise in the data that is not captured by the features.

The Random forest and the GBM method seem to agree on which 2 variables are most important. However, for the less informative variables they are not in agreement. This is expected as the two techniques take different approaches to measure importance. The top two most informative variables seem to variables 19 and 37.

When the testing sample size is held constant and the training sample size increases we expect the performance of the model to improve on the testing data. When the training sample size is held fixed and the testing sample size increases we expected the model to show lower performance on the testing data.

```
# generate additional 50 features
data_df = data.frame(prob5.df, matrix( rnorm(n*50,mean=0,sd=1), n, 50))
# clean data df = data \ df[,-Y]
\# colnames(clean data df) = 1:100
\# clean_data_df\$Y = data_df\$Y
# define parameters
p = 100
n = nrow(data_df)
test_df = data_df [401:800,]
x_test_df = model.matrix(Y~., test_df )[,-1]
y_test_df = test_df$Y
data_set_vec = c(100, 200, 400)
k \max = 5
# define parameters to search
lambda_vec = seq(0,1,0.1)
mtry vec = c(1:7,p)
interaction_depth_vec = 1:7
# create lists and data frame for results
lr_dataset_lst = list()
rf_dataset_lst = list()
gbm_dataset_lst = list()
RMSE_df = data.frame(matrix(0, nrow=3, ncol=6))
colnames(RMSE_df) = c("cv_RMSE_n100",
                       "test_RMSE_n100",
                       "cv RMSE n200",
                       "test RMSE n200",
                       "cv_RMSE_n400",
                       "test RMSE n400")
```

```
# loop through sets of data
for(dat in 1:length(data_set_vec)){
  dataset = data_set_vec[dat]
  # specify training data set
  train_df = data_df[1:dataset,]
  x_train_df = model.matrix(Y~., train_df )[,-1]
  y_train_df = train_df$Y
  # perform 5-fold CV
  set n = nrow(train df)
  inds.part = myCVids(set_n, k_max, seed=0)
  # create data frames to record results in
  lr cv rmse df = data.frame(matrix(0,
                                nrow=length(lambda_vec),
                                ncol=k_max))
  rf_cv_rmse_df = data.frame(matrix(0,
                                nrow=length(mtry_vec),
                                ncol=k_max))
  gbm_cv_rmse_df = data.frame(matrix(0,
                                 nrow=length(interaction_depth_vec),
                                 ncol=k_max))
  for(k in seq(1:k_max)){
    isk = (inds.part == k)
    valid.k = which(isk)
   train.k = which(!isk)
    cv_train_df = train_df[train.k,]
    cv_valid_df = train_df[valid.k,]
    x_cv_train_df = model.matrix(Y~., cv_train_df )[,-1]
   y_cv_train_df = cv_train_df$Y
    x_cv_valid_df = model.matrix(Y~., cv_valid_df )[,-1]
    y_cv_valid_df = cv_valid_df$Y
    for(l in 1:length(lambda_vec)){
      lambda = lambda_vec[1]
      # train LR
      set.seed(0)
      lasso_reg.fit = glmnet(x_cv_train_df,
                             y_cv_train_df,
                             alpha=1,
                             lambda=lambda)
      # eval LR
      lr_pred = predict(lasso_reg.fit, x_cv_valid_df)
      lr_rmse = sqrt(mean((y_cv_valid_df - lr_pred)^2))
     lr_cv_rmse_df[1,k] = lr_rmse
    for(m in 1:length(mtry_vec)){
      mtry = mtry_vec[m]
```

```
# train RF
    set.seed(0)
    rf.fit = randomForest(Y~.,
                          data=cv_train_df,
                          mtry=mtry,
                          ntree=500,
                          importance=TRUE)
    # eval RF
    rf_pred = predict(rf.fit, cv_valid_df)
    rf_rmse = sqrt(mean((y_cv_train_df - rf_pred)^2))
   rf_cv_rmse_df[m,k] = rf_rmse
  for(d in 1:length(interaction_depth_vec)){
    interaction_depth = interaction_depth_vec[d]
    # train GBM
    set.seed(0)
    gbm.fit = gbm(Y^{-}.,
                  data=cv_train_df,
                  distribution="gaussian",
                  n.trees=1000,
                  shrinkage=0.01,
                  interaction.depth=interaction_depth)
    # eval GBM
    gbm_pred = predict(gbm.fit, cv_valid_df)
    gbm_rmse = sqrt(mean((y_cv_train_df - gbm_pred)^2))
   gbm_cv_rmse_df[d,k] = gbm_rmse
}
# add data frames to list
lr cv rmse df$mean = rowMeans(lr cv rmse df)
lr_dataset_lst = append(lr_dataset_lst,list(lr_cv_rmse_df))
rf_cv_rmse_df$mean = rowMeans(rf_cv_rmse_df)
rf_dataset_lst = append(rf_dataset_lst, list(rf_cv_rmse_df))
gbm_cv_rmse_df$mean = rowMeans(gbm_cv_rmse_df)
gbm_dataset_lst = append(gbm_dataset_lst, list(gbm_cv_rmse_df))
# select best parameter and get best mean cv RMSE
lr_min_rmse_idx = which.min(lr_cv_rmse_df$mean)
lr_best_par = lambda_vec[lr_min_rmse_idx]
lr_cv_rmse = min(lr_cv_rmse_df$mean)
RMSE_df[1,paste("cv_RMSE_n",dataset,sep="")] = lr_cv_rmse
rf min rmse idx = which.min(rf cv rmse df$mean)
rf_best_par = mtry_vec[rf_min_rmse_idx]
rf_cv_rmse = min(rf_cv_rmse_df$mean)
RMSE_df[2,paste("cv_RMSE_n",dataset,sep="")] = rf_cv_rmse
```

```
gbm_min_rmse_idx = which.min(gbm_cv_rmse_df$mean)
  gbm_best_par = interaction_depth_vec[gbm_min_rmse_idx]
  gbm_cv_rmse = min(gbm_cv_rmse_df$mean)
  RMSE_df[3,paste("cv_RMSE_n",dataset,sep="")] = gbm_cv_rmse
  # train best LR
  set.seed(0)
  best_lasso_reg.fit = glmnet(x_train_df,
                         y_train_df,
                         alpha=1,
                         lambda=lr best par)
  # test best LR
  lr_pred = predict(best_lasso_reg.fit, x_test_df)
  lr_rmse = sqrt(mean((y_test_df - lr_pred)^2))
  RMSE_df[1,paste("test_RMSE_n",dataset,sep="")] = lr_rmse
  # train RF
  set.seed(0)
  best_rf.fit = randomForest(Y~.,
                        data=train_df,
                        mtry=rf_best_par,
                        ntree=500,
                        importance=TRUE)
  # eval RF
  rf_pred = predict(best_rf.fit, test_df)
  rf_rmse = sqrt(mean((y_test_df - rf_pred)^2))
  RMSE_df[2,paste("test_RMSE_n",dataset,sep="")] = rf_rmse
  # train GBM
  set.seed(0)
  best_gbm.fit = gbm(Y~.,
                data=train_df,
                distribution="gaussian",
                n.trees=1000,
                shrinkage=0.01,
                interaction.depth=gbm_best_par)
  # eval GBM
  gbm_pred = predict(best_gbm.fit, test_df)
  gbm_rmse = sqrt(mean((y_test_df - gbm_pred)^2))
  RMSE_df[3,paste("test_RMSE_n",dataset,sep="")] = gbm_rmse
# name rows in results data frame
rownames(RMSE df) = c("LR", "RF", "GBM")
# visualize cross-validation RMSE
# plot Lasso regression model CV results
# find optimal values
lr_min_lst = which.min(c(min(lr_dataset_lst[[1]]$mean),
```

```
min(lr_dataset_lst[[2]]$mean),
                          min(lr_dataset_lst[[3]]$mean)))
lr_idx_min = which.min(lr_dataset_lst[[lr_min_lst]]$mean)
lr_y_min = round(lr_dataset_lst[[lr_min_lst]] mean[lr_idx_min],3)
lr_x_min = lambda_vec[lr_idx_min]
{plot(x=lambda_vec,
     y=lr_dataset_lst[[1]]$mean,
     type="b",
    main="Lasso Regression CV for different datasets",
     xlab="Lambda",
     ylab="CV Mean validation RMSE",
    pch=19,
    lwd=2,
     ylim=c(min(min(lr_dataset_lst[[1]]$mean),
                min(lr_dataset_lst[[2]]$mean),
                min(lr_dataset_lst[[3]]$mean))-0.1,
              max(max(lr_dataset_lst[[1]]$mean),
                max(lr_dataset_lst[[2]]$mean),
                max(lr_dataset_lst[[3]]$mean))),
      xlim=c(0,max(lambda_vec)+(max(lambda_vec)/10)))
lines(x=lambda_vec,
      lr_dataset_lst[[2]]$mean,
      type="b",
      pch=19,
      col="red",
      lwd=2)
lines(x=lambda_vec,
      lr_dataset_lst[[3]]$mean,
      type="b",
      pch=19,
      col="blue",
      1wd=2,
      )
points(x=lr_x_min, y=lr_y_min, cex=2, lwd=3, col="green")
text(x=lr_x_min, y=lr_y_min, pos=1, paste("(",lr_x_min,",",lr_y_min,")"))
legend("topright",
       inset=.02,
       title="Sample size",
       legend=c("n=100",
                "n=200",
                "n=400"),
       lty=c(1,1,1),
       col=c("black","red","blue"),
       bg = "white",
       cex=0.75)
```

Lasso Regression CV for different datasets


```
# plot Random Forest model CV results
# find optimal values
rf_min_lst = which.min(c(min(rf_dataset_lst[[1]]$mean),
                          min(rf_dataset_lst[[2]]$mean),
                          min(rf_dataset_lst[[3]]$mean)))
rf_idx_min = which.min(rf_dataset_lst[[rf_min_lst]]$mean)
rf_y_min = round(rf_dataset_lst[[rf_min_lst]] mean[rf_idx_min],3)
rf_x_min = mtry_vec[rf_idx_min]
{plot(x=mtry_vec,
     y=rf_dataset_lst[[1]]$mean,
     type="b",
     main="Random Forest CV for different datasets",
     xlab="Number of sampled candidates at split",
     ylab="CV Mean validation RMSE",
    pch=19,
     1wd=2,
     ylim=c(min(min(rf_dataset_lst[[1]]$mean),
                min(rf_dataset_lst[[2]]$mean),
                min(rf_dataset_lst[[3]]$mean)),
              max(max(rf_dataset_lst[[1]]$mean),
                max(rf_dataset_lst[[2]]$mean),
                max(rf_dataset_lst[[3]]$mean)))
lines(x=mtry_vec,
```

```
rf_dataset_lst[[2]]$mean,
      type="b",
      pch=19,
      col="red",
      lwd=2)
lines(x=mtry_vec,
      rf_dataset_lst[[3]]$mean,
      type="b",
      pch=19,
      col="blue",
      1wd=2)
points(x=rf_x_min, y=rf_y_min, cex=2, lwd=3, col="green")
text(x=rf_x_min, y=rf_y_min, pos=4, paste("(",rf_x_min,",",rf_y_min,")"))
legend("bottomright",
       inset=.02,
       title="Sample size",
       legend=c("n=100",
                "n=200",
                "n=400"),
       lty=c(1,1,1),
       col=c("black","red","blue"),
       bg = "white",
       cex=0.75)
```

Random Forest CV for different datasets

Number of sampled candidates at split

```
# plot qbm model CV results
# find optimal values
gbm min lst = which.min(c(min(gbm dataset lst[[1]]$mean),
                          min(gbm_dataset_lst[[2]]$mean),
                          min(gbm_dataset_lst[[3]]$mean)))
gbm_idx_min = which.min(gbm_dataset_lst[[gbm_min_lst]]$mean)
gbm y min = round(gbm dataset_lst[[gbm min lst]] $mean[gbm idx min],3)
gbm_x_min = interaction_depth_vec[gbm_idx_min]
{plot(x=interaction_depth_vec,
     y=gbm_dataset_lst[[1]]$mean,
     type="b",
    main="Generalized Boosted Regression CV for different datasets",
     xlab="Interaction Depth",
     ylab="CV Mean validation RMSE",
     pch=19,
     lwd=2,
     ylim=c(min(min(gbm_dataset_lst[[1]]$mean),
                min(gbm_dataset_lst[[2]]$mean),
                min(gbm_dataset_lst[[3]]$mean)),
              max(max(gbm_dataset_lst[[1]]$mean),
                max(gbm_dataset_lst[[2]]$mean),
                max(gbm_dataset_lst[[3]]$mean)))
lines(x=interaction_depth_vec,
      gbm_dataset_lst[[2]]$mean,
      type="b",
      pch=19,
      col="red",
      lwd=2)
lines(x=interaction depth vec,
      gbm_dataset_lst[[3]]$mean,
      type="b",
      pch=19,
      col="blue",
points(x=gbm_x_min, y=gbm_y_min, cex=2, lwd=3, col="green")
text(x=gbm_x_min, y=gbm_y_min, pos=4, paste("(",gbm_x_min,",",gbm_y_min,")"))
legend("bottomright",
       inset=.02,
       title="Sample size",
       legend=c("n=100",
                "n=200",
                "n=400"),
       lty=c(1,1,1),
       col=c("black", "red", "blue"),
       bg = "white",
       cex=0.75)
```

Generalized Boosted Regression CV for different datasets

 $\hbox{\it \# display table of RMSE results for different data set sizes } \\ \hbox{\it \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#Briefly discuss your findings; particularly, as n increases.} \\$

knitr::kable(RMSE_df)

	cv_RMSE_n10@s	t_RMSE_n10@v	v_RMSE_n20test	_RMSE_n20@v	_RMSE_n40@st_	RMSEn400
LR	1.311378	1.429326	1.403066	1.381895	1.389988	1.385018
RF	1.365724	1.386949	1.402618	1.377009	1.403018	1.378467
GBM	1.489638	1.480139	1.493967	1.434162	1.461208	1.379375

variable importance of best models

best_rf_var_importance = importance(best_rf.fit)

knitr::kable(best_rf_var_importance)

	% IncMSE	IncNodePurity
X1	-1.4703486	6.831852
X2	-0.6335669	6.473027
X3	1.0777003	7.180965
X4	-1.7703127	6.630276
X5	0.1387735	6.348846
X6	-0.1817582	7.443842
X7	-2.6437686	6.090668

	%IncMSE	IneNodoDunitar
		IncNodePurity
X8	-0.3845298	6.642736
X9	-0.0434756	7.011202
X10	1.0381877	6.780919
X11	0.1701114	6.345616
X12	-0.4391972	6.558208
X13	-1.2098991	6.213941
X14	0.9263745	7.395488
X15	0.4541259	7.364527
X16	-1.3357547	6.654630
X17	-0.0034933	6.371431
X18	-1.2732269	6.716546
X19	4.3309206	8.655539
X20	-0.3651086	6.878088
X21	2.6757767	7.259988
X22	-0.4498469	6.658555
X23	-0.8856796	6.532560
X24	-0.5365938	6.844381
X25	-0.8339538	6.606038
X26	-0.4542588	6.490512
X27	0.8580611	6.899337
X28	0.2395604	7.266327
X29	-0.2474976	7.331967
X30	-1.7991226	5.617055
X31	0.9036106	6.900699
X32	-0.0580707	6.457307
X33	1.6534951	7.127782
X34	0.2660517	6.892015
X35	0.3330019	6.324564
X36	-0.7765627	7.029060
X37	-0.2325843	6.969468
X38	-0.5198927	6.966605
X39	0.7267948	6.421298
X40	0.6415217	8.556990
X41	-0.8645179	5.785437
X42	0.9463792	6.762533
X43	1.6139214	6.555814
X44	-0.3083184	6.617686
X45	0.7500252	6.629571
X46	0.3760283	6.926173
X47	1.0972772	8.121794
X48	-0.4641485	7.449760
X49	0.4701503	7.931179
X50	-0.2155726	6.349418
X1.1	-0.6465747	8.211388
X2.1	2.3621064	7.395358
X3.1	2.3620101	7.897417
X4.1	0.9257706	6.674414
X5.1	-1.0962912	7.602732

	07 I MOE	I N 1 D ''
	%IncMSE	IncNodePurity
X6.1	-0.4146852	7.058994
X7.1	-0.0211359	7.453863
X8.1	1.6267088	6.838765
X9.1	-1.3594050	6.752206
X10.1	-1.4279641	6.506055
X11.1	-0.8300979	6.814416
X12.1	1.6379796	6.424797
X13.1	0.3041693	6.765402
X14.1	2.0393424	6.953001
X15.1	-0.3144224	6.716200
X16.1	-1.6135395	7.535840
X17.1	-1.1365350	6.211980
X18.1	-0.2351343	6.143254
X19.1	-0.6879446	7.645486
X20.1	0.0889272	7.426194
X21.1	-1.1362616	6.803223
X22.1	1.0504542	6.900577
X23.1	-0.3194138	6.545143
X24.1	0.6330683	6.442204
X25.1	2.1710334	7.527827
X26.1	1.6270244	7.198945
X27.1	0.8897853	5.575470
X28.1	-0.7623077	6.608437
X29.1	-0.8798883	6.476336
X30.1	-1.2867057	6.367546
X31.1	-1.7542267	5.610766
X32.1	-1.0492600	6.858616
X33.1	0.2635814	6.511111
X34.1	0.6995746	6.540755
X35.1	-1.5704607	7.445631
X36.1	0.1112149	6.494960
X37.1	0.1513059	7.245613
X38.1	-0.7812160	6.438477
X39.1	1.3289499	5.803364
X40.1	0.2466277	8.494218
X41.1	-1.8460103	6.283196
X42.1	-0.0564387	6.499763
X43.1	-0.3549130	6.723980
X44.1	0.8517822	6.290129
X45.1	1.0921683	6.274807
X46.1	0.2601070	5.824728
X40.1 X47.1	0.2001070 0.3492683	6.272117
X48.1	-0.1673526	5.875025
X49.1	0.5480345	5.885674
X50.1	-1.0747286	6.389593
A50.1	-1.0141200	

knitr::kable(best_gbm_var_importance)

	var	rel.inf
X19	X19	10.8698289
X37	X37	7.2354894
X26.1	X26.1	5.0468776
X40.1	X40.1	4.8328368
X40	X40	4.7146519
X14	X14	4.1031241
X2.1	X2.1	2.6958881
X31	X31	2.6626978
X49	X49	2.6434173
X27	X27	2.4035030
X3.1	X3.1	2.1660815
X16.1	X16.1	2.0972969
X21	X21	1.9275320
X13.1	X13.1	1.9042302
X8.1	X8.1	1.7483180
X47	X47	1.6850999
X6.1	X6.1	1.5536643
X45	X45	1.5524068

	var	rel.inf
X20.1	X20.1	1.4310021
X14.1	X14.1	1.3097034
X41.1	X41.1	1.3044040
X26	X26	1.2011605
X39	X39	1.1624463
X36	X36	1.1298275
X10	X10	1.1024309
X33	X33	1.0713118
X19.1	X19.1	1.0293633
X46	X46	1.0125735
X9	X9	0.9627287
X24	X24	0.9442857
X44.1	X44.1	0.9362490
X22.1	X22.1	0.9220569
X33.1	X33.1	0.8852675
X32.1	X32.1	0.8702235
X10.1	X10.1	0.8582209
X49.1	X49.1	0.7988554
X42	X42	0.7877123
X44	X44	0.7807229
X24.1	X24.1	0.7667257
X37.1	X37.1	0.7425487
X11	X11	0.7398264
X30.1	X30.1	0.6410342
X11.1	X11.1	0.5792023
X8	X8	0.5605114
X22	X22	0.5583144
X41	X41	0.5554375
X25.1	X25.1	0.5504700
X39.1	X39.1	0.5468354
X35.1	X35.1	0.5159906
X1.1	X1.1	0.5130187
X38.1	X38.1	0.5074655
X15.1	X15.1	0.4903955
X7.1	X7.1	0.4877544
X34.1	X34.1	0.4622069
X38	X38	0.4538266
X20	X20	0.4453805
X21.1	X21.1	0.4310602
X48	X48	0.4197919
X42.1	X42.1	0.3635822
X43	X43	0.3461536
X50	X50	0.3105958
X4	X4	0.3089263
X15	X15	0.3022787
X36.1	X36.1	0.2842179
X1	X1	0.2796074
X45.1	X45.1	0.2781797

	var	rel.inf
X25	X25	0.2592592
X2	X2	0.2481224
X28.1	X28.1	0.2462302
X5.1	X5.1	0.2427427
X27.1	X27.1	0.2346934
X43.1	X43.1	0.2302709
X50.1	X50.1	0.2289686
X29.1	X29.1	0.2225051
X35	X35	0.1999501
X17	X17	0.1960914
X31.1	X31.1	0.1792910
X17.1	X17.1	0.1555669
X12.1	X12.1	0.1439322
X34	X34	0.1428590
X13	X13	0.1415661
X18.1	X18.1	0.1310084
X23	X23	0.1138216
X3	X3	0.1100310
X32	X32	0.0893083
X16	X16	0.0865146
X12	X12	0.0798458
X6	X6	0.0759214
X46.1	X46.1	0.0757678
X18	X18	0.0729878
X5	X5	0.0666470
X28	X28	0.0657509
X30	X30	0.0609829
X48.1	X48.1	0.0608925
X4.1	X4.1	0.0536417
X7	X7	0.0000000
X29	X29	0.0000000
X9.1	X9.1	0.0000000
X23.1	X23.1	0.0000000
X47.1	X47.1	0.0000000

We expect the predictive performance of the model to decrease on the test data but increase for the validation data as more noise is added. If the variables that were added were reliably correlated to the response it would have increased our performance on the test data and the validation data. As we can see the CV RMSE is slightly lower than the original attempt, but the testing RMSE is slightly higher than the original attempt. This shows that the data added was uninformative and just noise. Even though our models can learn some of the noise, it does not increase it's predictive capabilities.

Problem 6

```
# define data
p = 20
n = 200
k \max = 5
train_df = prob6.df[1:200,]
train_df$Y = as.factor(train_df$Y)
test_df = prob6.df[201:400,]
test_df$Y = as.factor(test_df$Y)
# define parameters to search
svm_par_vec = seq(0,0.4,0.01)
rf_par_vec = c(1:7,p)
gbm_par_vec = 1:7
# create lists and data frame for results
MER_df = data.frame(matrix(0, nrow=3, ncol=2))
colnames(MER_df) = c("cv_MER", "test_MER")
rownames(MER_df) = c("SVM","RF","GBM")
svm_cv_mer_df = data.frame(matrix(0,
                              nrow=length(svm_par_vec),
                              ncol=k_max))
rf_cv_mer_df = data.frame(matrix(0,
                              nrow=length(rf_par_vec),
                              ncol=k_max))
gbm_cv_mer_df = data.frame(matrix(0,
                               nrow=length(gbm_par_vec),
                               ncol=k_max))
# specify training and testing data set
x_train_df = model.matrix(Y~., train_df)[,-1]
y_train_df = train_df$Y
x_test_df = model.matrix(Y~., test_df )[,-1]
y_test_df = test_df$Y
# perform 5-fold CV
set_n = nrow(train_df)
inds.part = myCVids(set_n, k_max, seed=0)
for(k in seq(1:k_max)){
  isk = (inds.part == k)
  valid.k = which(isk)
  train.k = which(!isk)
  # create training and validation sets
  cv_train_df = train_df[train.k,]
  cv_valid_df = train_df[valid.k,]
  x_cv_train_df = model.matrix(Y~., cv_train_df)[,-1]
```

```
y_cv_train_df = cv_train_df$Y
x_cv_valid_df = model.matrix(Y~., cv_valid_df )[,-1]
y_cv_valid_df = cv_valid_df$Y
# SVM
for(l in 1:length(svm_par_vec)){
  gamma = svm_par_vec[1]
  set.seed(0)
  svm.fit = svm(Y~.,
                data=cv_train_df,
                kernel="radial",
                probability=TRUE,
                gamma=gamma,
                type="C")
  svm_pred = attr(
    predict(svm.fit, cv_valid_df, probability=TRUE),
                  "probabilities")[,2]
  svm_mcr = MCR(target=as.logical(y_cv_valid_df),
                predicted=svm_pred)
  svm_cv_mer_df[1,k] = svm_mcr
}
for(m in 1:length(rf_par_vec)){
 mtry = rf_par_vec[m]
  set.seed(0)
 rf.fit = randomForest(Y~.,
                        data=cv_train_df,
                        mtry=mtry,
                        ntree=500,
                        importance=TRUE)
 rf_pred = predict(rf.fit, cv_valid_df, type="prob")[,2]
 rf_mcr = MCR(target=as.logical(y_cv_valid_df),
               predicted=rf_pred)
 rf_cv_mer_df[m,k] = rf_mcr
}
for(d in 1:length(gbm_par_vec)){
  interaction_depth = gbm_par_vec[d]
  set.seed(0)
  gbm.fit = gbm(as.integer(cv_train_df$Y)-1~.,
                data=cv train df,
                distribution="bernoulli",
                n.trees=1000.
                shrinkage=0.01,
                interaction.depth=interaction_depth)
  gbm_pred = predict(gbm.fit, cv_valid_df, type="response")
```

```
gbm_mcr = MCR(target=as.logical(y_cv_valid_df),
                  predicted=gbm_pred)
   gbm_cv_mer_df[d,k] = gbm_mcr
  }
}
# calculate means of cv MER
svm cv mer df$mean = rowMeans(svm cv mer df)
rf_cv_mer_df$mean = rowMeans(rf_cv_mer_df)
gbm cv mer df$mean = rowMeans(gbm cv mer df)
# select best parameter and get best mean cv RMSE
svm min idx = which.min(svm cv mer df$mean)
svm_best_par = svm_par_vec[svm_min_idx]
svm_cv_mcr = min(svm_cv_mer_df$mean)
MER_df[1,1] = svm_cv_mcr
rf_min_idx = which.min(rf_cv_mer_df$mean)
rf_best_par = rf_par_vec[rf_min_idx]
rf_cv_mcr = min(rf_cv_mer_df$mean)
MER_df[2,1] = rf_cv_mcr
gbm_min_idx = which.min(gbm_cv_mer_df$mean)
gbm_best_par = gbm_par_vec[gbm_min_idx]
gbm_cv_mcr = min(gbm_cv_mer_df$mean)
MER_df[3,1] = gbm_cv_mcr
# display CV MER curves
# SVM CV MER plot
{plot(y = svm_cv_mer_df$mean,
    x=svm_par_vec,
    type="b",
    pch=19,
    lty=2,
     1wd=2,
    ylim=c(0,1),
    main="SVM",
    xlab="Gamma",
    ylab="MER")
lines(y = svm_cv_mer_df$X1,
    x=svm_par_vec,
     type="1",
     pch=19,
     col="orange")
lines(y = svm_cv_mer_df$X2,
    x=svm_par_vec,
    type="1",
    pch=19,
```

```
col="red")
lines(y = svm_cv_mer_df$X3,
     x=svm_par_vec,
     type="1",
     pch=19,
     col="purple")
lines(y = svm_cv_mer_df$X4,
     x=svm_par_vec,
     type="1",
     pch=19,
     col="blue")
lines(y = svm_cv_mer_df$X5,
     x=svm_par_vec,
     type="1",
     pch=19,
     col="darkgreen")
points(x=svm_best_par,
       y=svm_cv_mcr,
       cex=3,
       1wd=3,
       col="green"
text(x=svm_best_par,
     y=svm_cv_mcr,
     pos=4,
     labels=paste("(",svm_best_par,",",svm_cv_mcr,")"))
legend("topright",
       inset=.02,
       legend=c("Mean MER",
                "fold 1",
                "fold 2",
                "fold 3",
                "fold 4",
                "fold 5"),
       lty=c(2,1,1,1,1,1),
       col=c("black","orange","red","purple","blue","darkgreen"),
       bg = "white",
       cex=0.75)
```

SVM


```
# RF CV MER plot
{plot(y = rf_cv_mer_df$mean,
     x=rf_par_vec,
     type="b",
     pch=19,
     lty=2,
     lwd=2,
     ylim=c(0,1),
     xlim=c(0,20),
     main="RF",
     xlab="Mtry",
     ylab="MER")
lines(y = rf_cv_mer_df$X1,
     x=rf_par_vec,
     type="1",
     pch=19,
     col="orange")
lines(y = rf_cv_mer_df$X2,
     x=rf_par_vec,
     type="1",
     pch=19,
     col="red")
lines(y = rf_cv_mer_df$X3,
     x=rf_par_vec,
     type="1",
```

```
pch=19,
     col="purple")
lines(y = rf_cv_mer_df$X4,
     x=rf_par_vec,
     type="1",
     pch=19,
     col="blue")
lines(y = rf_cv_mer_df$X5,
     x=rf_par_vec,
     type="1",
     pch=19,
     col="darkgreen")
points(x=rf_best_par,
       y=rf_cv_mcr,
       cex=3,
       1wd=3,
       col="green"
       )
text(x=rf_best_par,
     y=rf_cv_mcr,
     pos=1,
     labels=paste("(",rf_best_par,",",rf_cv_mcr,")"))
legend("topright",
       inset=.02,
       legend=c("Mean MER",
                "fold 1",
                "fold 2",
                "fold 3",
                "fold 4",
                "fold 5"),
       lty=c(2,1,1,1,1,1),
       col=c("black","orange","red","purple","blue","darkgreen"),
       bg = "white",
       cex=0.75)
```



```
#GBM CV MER plot
{plot(y = gbm_cv_mer_df$mean,
     x=gbm_par_vec,
     type="b",
     pch=19,
     1ty=2,
     1wd=2,
     ylim=c(0,1),
     xlim=c(0.5,7),
     main="GBM",
     xlab="Interaction depth",
     ylab="MER")
lines(y = gbm_cv_mer_df$X1,
     x=gbm_par_vec,
     type="1",
     pch=19,
     col="orange")
lines(y = gbm_cv_mer_df$X2,
     x=gbm_par_vec,
     type="1",
     pch=19,
     col="red")
lines(y = gbm_cv_mer_df$X3,
     x=gbm_par_vec,
     type="1",
```

```
pch=19,
     col="purple")
lines(y = gbm_cv_mer_df$X4,
     x=gbm_par_vec,
     type="1",
     pch=19,
     col="blue")
lines(y = gbm_cv_mer_df$X5,
     x=gbm_par_vec,
     type="1",
     pch=19,
     col="darkgreen")
points(x=gbm_best_par,
       y=gbm_cv_mcr,
       cex=3,
       1wd=3,
       col="green"
       )
text(x=gbm_best_par,
     y=gbm_cv_mcr,
     pos=1,
     labels=paste("(",gbm_best_par,",",gbm_cv_mcr,")"))
legend("topright",
       inset=.02,
       legend=c("Mean MER",
                "fold 1",
                "fold 2",
                "fold 3",
                "fold 4",
                "fold 5"),
       lty=c(2,1,1,1,1,1),
       col=c("black","orange","red","purple","blue","darkgreen"),
       bg = "white",
       cex=0.75)
```

GBM


```
# train and test best SVM
set.seed(0)
best_svm.fit = svm(Y~.,
              data=train_df,
              kernel="radial",
              probability=TRUE,
              gamma=svm_best_par,
              type="C")
svm_pred = attr(
  predict(best_svm.fit, test_df, probability=TRUE),
                "probabilities")[,2]
svm_mcr = MCR(target=as.logical(y_test_df), predicted=svm_pred)
MER_df[1,2] = svm_mcr
# train and test best RF
set.seed(0)
best_rf.fit = randomForest(Y~.,
                      data=train_df,
                      mtry=rf_best_par,
                      ntree=500,
                      importance=TRUE)
rf_pred = predict(best_rf.fit, test_df, type="prob")[,2]
rf_mcr = MCR(target=as.logical(y_test_df), predicted=rf_pred)
MER_df[2,2] = rf_mcr
```

	cv_MER	test_MER
SVM	0.345	0.295
RF	0.395	0.325
GBM	0.330	0.275

From the misclassification Error rate (MER) in the cross-validation step and the test step we can see in all methods that the cross validation MER was worse than the test MER. This shows that each of the models still generalize better than what is estimated during training and that over fitting has not occurred.

```
# calculate ROC curves for each classifier using the test data
ROC_models_df = data.frame(Y=y_test_df,
                           svm=svm_pred,
                           rf=rf pred,
                           gbm=gbm_pred)
# SVM
pred = prediction(svm_pred, y_test_df)
perf_all = performance(pred, 'tpr', 'fpr')
svm_threshold_df = data.frame(cut=perf_all@alpha.values[[1]],
                      svm_fpr=perf_all@x.values[[1]],
                      svm_tpr=perf_all@y.values[[1]])
# RF
pred = prediction(rf_pred, y_test_df)
perf_all = performance(pred, 'tpr', 'fpr')
rf_threshold_df = data.frame(cut=perf_all@alpha.values[[1]],
                      rf_fpr=perf_all@x.values[[1]],
                      rf_tpr=perf_all@y.values[[1]])
# GBM
pred = prediction(gbm_pred, y_test_df)
perf_all = performance(pred, 'tpr', 'fpr')
```

```
gbm_threshold_df = data.frame(cut=perf_all@alpha.values[[1]],
                      gbm_fpr=perf_all@x.values[[1]],
                      gbm_tpr=perf_all@y.values[[1]])
# merge all ROC curve data
all_threshold_df = merge(svm_threshold_df,
                         rf_threshold_df,
                         by="cut",
                         all=TRUE)
all_threshold_df = merge(all_threshold_df,
                         gbm_threshold_df,
                         by="cut",
                         all=TRUE)
all\_threshold\_df[1,2:7] = 1
all_threshold_df = all_threshold_df %>% fill(colnames(all_threshold_df)[-1],
                                            .direction="down")
# plot ROC curves
{plot(x=all_threshold_df$svm_fpr,
      y=all_threshold_df$svm_tpr,
     1wd=3,
     type="1",
     lty=1,
     col="purple",
     main='ROC curves',
     xlab="False Postive Rate (FPR)",
     ylab="True Postive Rate (TPR)",
     xlim=c(0,1),
     vlim=c(0,1)
abline(0,1,lty=3,lwd=3,col="red")
lines(x=all_threshold_df$rf_fpr,
      y=all_threshold_df$rf_tpr,
      1wd=3,
      lty=1,
      col="darkgreen")
lines(x=all_threshold_df$gbm_fpr,
      y=all_threshold_df$gbm_tpr,
      1wd=3,
      lty=1,
      col="orange")
legend("topleft",
       inset=.02,
       title="Models",
       legend=c("SVM",
                "Random Forest",
                "GBM"),
       lty=c(1,1,1),
       1wd=c(3,3,3),
       col=c("purple","darkgreen","orange"),
```

ROC curves

From the ROC curve we can see that all the models perform better than a random model would. Each of the models likely has a different optimal threshold with the RF model likely having a lower optimal than the other two models. We can see that the GBM model performed the best, followed by the SVM model and then lastly by the RF model. The RF model could likely benefit from finer parameter tuning.