HOMEWORK 1

JOHN WOOD

Section 12.1

24. Find an equation of the largest sphere with center (5,4,9) that is contained in the first octant.

Since the circle must be located in the first octant, 4 is the maximum radius of the circle and still be located in the first octant.

still be located in the first octain:

$$(x-5)^2 + (y-4)^2 + (z-9)^2 = 4^2 \Rightarrow (x-5)^2 + (y-4)^2 + (z-9)^2 = 16$$

Section 12.2

28. What is the angle between the vector and the positive direction of the x-axis? $8\mathbf{i} + 6\mathbf{j}$

$$\tan(\theta) = 6/8 \Rightarrow \theta = \arctan(3/4) \approx 36.87^{\circ}$$

Section 12.3

26. Find the values of x such that the angle between the vectors (2, 1, -1) and (1, x, 0) is 45° .

$$\begin{array}{l} \langle 2,1,-1\rangle \cdot \langle 1,x,0\rangle = \sqrt{2^2+1+1} \cdot \sqrt{1+x^2} \cdot \cos(45) \ \rightarrow \ 2+x = \sqrt{6} \cdot \sqrt{1+x^2} \cdot (\sqrt{2}/2) \ \Rightarrow \ x^2+4x+4=3(1+x^2) \Rightarrow 2x^2-4x-1=0 \end{array}$$

$$x = \frac{4 \pm \sqrt{16 - 4(2)(-1)}}{2a} \to x = 1 \pm \frac{\sqrt{6}}{2}$$

Section 12.4

12. Find the vector not with determinants, but by using properties of the cross product? $(i + j) \times (i - j)$

$$\mathbf{i}\times(\mathbf{i}-\mathbf{j})+\mathbf{j}\times(\mathbf{i}-\mathbf{j})=\mathbf{i}\times\mathbf{i}-\mathbf{i}\times\mathbf{j}+\mathbf{j}\times\mathbf{i}-\mathbf{j}\times\mathbf{j}=0-\mathbf{k}+(-\mathbf{k})+0=-2\mathbf{k}=-2\mathbf{k}$$

Section 12.5

74. Find the distance between the given parallel planes. 6z = 4y - 2x, 9z = 1 - 3x + 6y

set
$$x = y = 0$$
, we get: $z = 0$ thus $(0,0,0)$ is a point on the first line. $d = \frac{|1-0+0-0|}{\sqrt{3^2+6^2+9^2}} = \sqrt{14}/42$

2 JOHN WOOD

Section 13.1

32. At what point does the helix $\mathbf{r}(t) = \langle \sin(t), \cos(t), t \rangle$ intersect the sphere $x^2 + y^2 + z^2 = 5$?

$$(\sin^2(t) + \cos^2(t)) + t^2 = 5 \Rightarrow 1 + t^2 = 5 \Rightarrow t = \pm 2$$

Point 1: $(\sin(2), \cos(2), 2)$ Point 2: $(\sin(-2), \cos(-2), -2)$

Section 13.2

16. Find the derivative of the vector function: $\mathbf{r}(t) = t\mathbf{a} \times (\mathbf{b} + t^2\mathbf{c})$

$$\mathbf{r}'(t) = [\mathbf{a}] \times (\mathbf{b} + t\mathbf{c}) + [t\mathbf{a}] \times (0 + \mathbf{c}) = [\mathbf{a}] \times (\mathbf{b} + t\mathbf{c}) + [\mathbf{a}] \times (t\mathbf{c}) = [a] \times (\mathbf{b} + t\mathbf{c} + t\mathbf{c}) = \mathbf{a} \times (\mathbf{b} + 2t\mathbf{c}) = [a] \times (\mathbf{b} + t\mathbf{c} + t\mathbf{c})$$

 $E ext{-}mail\ address: jdw0091@auburn.edu}$