

Rapport d'Audit

Mode de compatibilité

IEEE ISET BIZERTE STUDENT BRANCH

CONTENTS

CHAI	PTER	1 : PRELIMINARY ENERGY AUDIT	2
1.1	Ob	jectives and method of preliminary energy audit	2
1.21	Prelim	inary Energy audit	2
1	.2.1	Description of the industrial installation: CTE Thermoelectric Power Plant	2
1	.2.2	Preliminary diagnoses : Data collection	6
CHAI	PTER	2: IN-DEPTH ENERGY AUDIT	17
2.1	En	ergy assessment level 1	17
2.2	En	ergy balance level 2	18
2.3	En	ergy assessment level 3	19
2	.3.1	Approach to calculating boiler energy balances	20
2	.3.2	Boiler energy balances	23
NETO	OGRA	PHY	26
Energ	gy Au	diting Report (Anex : STIR DATA)	27
STEA	M CO	ONSUMPTION TABLES	28
ELI	ECTR	ICITY PRODUCTION TABLE	31
MAT	ERIA	L BALANCES	33
1.	VHP	assessment	33
2.	VBP	assessment	42
3.	Elect	rical balances	47
SPEC	EIFIC	CONSUMPTIONS	56
Steam	n Rala	nces	62

CHAPTER 1: PRELIMINARY ENERGY AUDIT

Evaluating the performance of a thermal power plant requires an overall energy analysis to determine its overall efficiency and a detailed energy analysis to determine the efficiencies of its various components.

This chapter is a preliminary audit which focuses on the collection of data necessary for the overall energy audit.

1.1 Objectives and method of preliminary energy audit

The objective of the mission is to support the company in carrying out a preliminary audit bringing together all the data collected, the investigations carried out and the proposed action plan. This objective is part of a more global goal of improving the company's energy performance.

The preliminary audit was carried out in accordance with the terms of reference and the specifications of the energy audit of the industrial sector established by ANME.

1.2Preliminary Energy audit

1.2.1 Description of the industrial installation: CTE Thermoelectric Power Plant

STIR - as already specified - is the only refinery which includes the following units:

- A TOPPING unit whose basic process is atmospheric distillation
- A PLATFORMING unit which is based on the catalytic reforming process
- An LPG chemical treatment unit
- A thermoelectric power plant to meet the energy needs of the refinery (water, steam, electricity, air)
- A local laboratory
- A product storage park
- An oil port equipped with two loading stations [1]

The plant produces electrical energy from fuel oil and gas. The STIR, as already mentioned, has two sources of electrical energy:

- STEG Network
- CTE plant (Self-production)

Figure 1: Boundary of the STIR and location of the CTE

Energy production processes

With a particular interest in self-production, CTE boilers are natural circulation water tube boilers which produce high pressure steam from drinking water devoid of dissolved gaseous mineral substances, in order to avoid undesirable phenomenal feared such as corrosion, scaling and priming and guarantee the quality of the steam produced.

The CH101 boiler consumes fuel oil and fuel gas as fuels. However, the CH202 boiler only uses fuel oil.

In order to improve combustion and transform the fuel into fine droplets, it is injected in parallel with the fuel, a flow of atomization steam which is a medium pressure steam with a temperature of 260°C and a pressure of 12 bars. The air necessary for combustion is taken from the outside and blown towards the hearth by a turbo fan.

The production of steam at the CTE is done as follows: The demineralized water rich in dissolved gas, stored in the S83 tank with the condensate returns coming from the condenser of the TG2 group and the equipment, is returned to the degasser via three food pumps to deplete it of gases and oxygen by injecting degassing and eliminox steam before feeding the boilers.

The degassed water is subsequently transported to the boilers via four pumps. This water circulates inside the tubes of the CH101 boiler passing through the upper tank and enters the tubes of the CH202 boiler through the upper tank passing through a preheater followed by a water heater economizer.

The combustion produced in the combustion chamber of each of two boilers releases a quantity of heat which heats and vaporizes the water which circulates in the tubes lining the walls of this chamber.

The wet saturated steam generated is sent and collected in the upper tank which in turn allows the steam to be separated from the liquid, the excess water is returned to the lower tank by drop tubes not subject to heat and the saturated steam dry which does not contain droplets of liquid water leaves the tank, passes through the boiler superheaters and is transformed into superheated steam at high pressure of around 42 bars and a temperature of around 400°C.

The high pressure steam produced by the two boilers is sent to the parallel collector, where it is subdivided to satisfy the needs of the other equipment.

At this collector, high pressure steam is sent to the two turbogenerators TG1 and TG2 to produce electricity. A portion is also transported to the TK1 turbocharger of the PLATFORMING unit.

The medium pressure steam, used by the turbopumps of the production unit, is obtained either by the discharge of steam from TG1 or by a reduction station (42/12) which converts the high pressure steam to medium steam. pressure with a temperature of approximately 260°C and a pressure of 12 bars.

Low pressure steam with a temperature of approximately 170°C and a pressure of 5 bars, used for stripping and heating lines and tanks, is obtained either by the reduction station (12/5) which allows convert medium pressure steam into low pressure steam or by the discharge of certain turbopumps operating with medium pressure steam.

The following figure schematizes the process of producing superheated steam in the CTE of the STIR.

As for the production of electricity, the high-pressure steam coming from the parallel collector turns the turbines which subsequently drive the alternators to which they are coupled. Thanks to the energy provided by the turbines, the alternators of groups TG1 and TG2 produce alternating electric current.

Figure 2: Process for producing superheated steam

Turbines can operate by evacuating the steam output to the atmosphere, which then results in significant energy loss. It is for this reason that a device is installed at the exhaust of each turbine. That of the first turbine is a parallel collector which ensures the recovery of medium pressure steam and the second is a condenser which allows the steam to be recovered in liquid form to be stored and then sent back to the steam generator, in a closed circuit.

Transformers are used to modify the voltage of the electric current produced by the alternators and subsequently ensure its transport in the lines.

In fact, the medium voltage electrical energy, produced by the CTE transformers, supplies the various equipment of the production units and the power plant and the various pumps in the pump room and the low voltage electrical energy, produced by the transformers of the pump room, the transformers of the production units and the other transformers of the power plant, provides lighting and power supply to various other equipment.

Figure3: Detailed steam distribution diagram

1.2.2 Preliminary diagnoses : Data collection

Data collection is an important step in an overall energy audit, more precisely, the main step of the initial diagnosis before any calculation. The first data collected is taken from the control room, where there are screens reflecting the state of the boilers, turbo-alternators, their characteristic parameters and instantaneous production and consumption, etc.

The control room is part of the CTE and provides digital control of the plant's central plant.

A series of measurements and assessments were carried out with a view to managing the energy performance of the plant more effectively.

STIR needs to know how energy is used and the quantity of energy produced and consumed over time.

A first work will then consist of recording the values of specific parameters linked to boilers and turbogenerators then the consumption and production indicators of these same installations for a period spanning 10 days from March 8, 2022 to March 18, 2022.

Measurements are taken at 10 a.m.

The tables given on the following pages represent the measurement table models.

The duly completed tables with the values measured according to the specified date are grouped together in the technical file.

Measurement tables

The measurement tables to be completed will concern:

- Characteristic parameters of boilers.
- Boiler totalizers.
- Steam consumption
- Electricity production.
- Electricity consumption.

Table of boiler characteristic parameters

In this table, the characteristic parameters of the boiler are taken directly from the control room, since the CH202 boiler is more recent, it is equipped with a specific screen which displays all its data, while several displays are linked to the ancient, and each represents a characteristic parameter.

Figure 4: Displays relating to CH202 and CH101

Painting1: Typical table of characteristic parameters of CH101 & CH202 boilers

	CH101	CH202
Steam flow (Kg/h)		
Water flow (Kg/h)		
Boiler level		
Fuel flow (Kg/h)		
Fuel temperature ()C)		
Gas flow (Kg/h)		
Combustion air flow (Kg/h)		
Steam pressure (Bar)		
Steam temperature (°C)		

Noticed: The boiler level unit in CH101 is % while CH202 is mm H20.

Boiler totalizer table

This totalizer is a steam production and water, fuel oil and gas consumption meter linked to CH101 and CH202 boilers, which makes it possible to better monitor and manage daily consumption and production. The counting operation is carried out every day, the parameters measured each day are in fact automatically added to the parameters of the last day.

Figure5: CH202 totalizer display

Painting2: Typical boiler totalizer table

	Totalizers (Kg)			
	CH101	CH202		
Steam				
Water				
Fuel				
Gas				

Steam consumption table

The table below summarizes the instantaneous consumption of the three types of steam by the different units. Reading the values is done by directly reading the screen in the control room.

Figure6: Steam consumption display CH101

Painting3: Typical steam consumption table

Steam consumption (Kg/h)				
HPV (TG1)				
HPV (TG2)				
VHP Platforming				
VBP				
VHP reduction station				
VHP sea water				
VMP				

Electricity production table

Once steam is produced in the ETC, part of the VHP is automatically sent to the turbogenerators to produce electricity. The table below groups the production values are taken directly from the electrical monitoring area of the control room. The latter are the results of the daily counting at levels TG1, TG2 without forgetting the external STEG network.

Figure7: Display of TG1 and TG2 electricity production

Painting4: Typical electricity production table

	Production (counter in KWh)								
TG1 TG2 STEG									
		Transformer 1	Transformer 2						

Electricity consumption table

The table below presents the electricity consumption meter, which works almost on the same principle as production, whether it comes from self-production or from the external STEG network. Measurements are carried out in the electrical monitoring area of the control room.

Figure8: Display of electricity consumption TG1 and TG2

Painting5: Typical electricity consumption table

	Consumption (counter in KWh)									
	TG1		TG2			STEG				
TR1A	TR2A	95 MPE 1	TR1B	TR2B	01 MPE 1A	R3S				

Material balances

A daily report is completed based on the measurements established to help document previous data (the daily value tables)

See figure 12 page 28.

VHP assessment: from to ..

		CH101 CH202		Total (tama)
				Total (tons)
	Quantity produced (tons)			
Production	Progressive (tons) to//			
1 Toduction	Average hourly flow (t/h)			
	Number of hours of service (hours)			
	Progressive (hours) to//			

			VHP				Total
		TG I	TG II	SR VHP - VMP	02 TK1	EMI Station	(tons)
	Quantity Consumed (tons)						
Consumption	Average hourly flow (t/h)						
Consumption	Progressive (tons) to//						

VMP assessment: from to ..

			Total		
		TG I	SR VHP - VMP	RC boiler	(tons)
	Quantity produced (tons)				
Production	Average hourly flow (t/h)				
Trouuction	Progressive(tonnes) to//				

		SR VMP - VBP	СТЕ	Topping+ LPG treatment	R.C.	Total (tons)
	Quantity Consumed (tons)					
	Average hourly flow (t/h)					
Consumption	Progressive (tons) to//					

VBP assessment : from to ..

			VBP			- Total (tons)
		SR VBP	VMP-	Topping Turbines	RC turbines	Total (tons)
	Quantity produced (tons)					
Production	Average hourly flow (t/h)					
	Progressive (tons) to//					

		VBP					Total
		CTE	CDM	Topping + line. Chemical	R.C	Condensation	Total (tons)
	Quantity Consumed (tons)						
Consumption	Average hourly flow (t/h)						
	Progressive (tons) to//						

(The duly completed tables can be found in the technical file.)

Electrical assessment

		TG I	TG II
	Total production (Kw)		
	Total (kw)		
	Progressive (Kw) as of//2022		
	Progressive total (Kw)		
CTE	Average hourly production in Kwh		
	Total hourly production in kWh		
	Number of hours of service (hours)		
	Progressive (hours) to//2022		
	Total purchase (kw)		
STEG	Average hourly purchase (kwh)		
	Progressive (Kw) as of//2022		

Production and purchase: from ... to ...

Consumption: from.. to...

	СТЕ	Productio n units	CDM	95 MP2	95 MP1	Total
Total consumption (kW)						
Average hourly consumption (KWh)						
Progressive (Kw) at//						

Consumption from CTE's electrical energy production

Consumption from the STEG network:

The preliminary audit is notably a stage of collecting data, information and documents as well as knowledge of the installations. It is the subject of this energy audit which presents an initial assessment of the steam and electrical balances of the factory, energy consumption values on which more detailed investigations will take place in the next chapter.

	СТЕ	Units of production	CDM (TR3S)	95 MP3s	Lighting + Services general	Total
Total consumption (kW)						
Average hourly consumption (Kwh)						
Progressive (Kw) at/						

CHAPTER 2: IN-DEPTH ENERGY AUDIT

Once the preliminary phase of the energy audit is completed, ANME grants a phase in the specifications relating to the energy audit which includes carrying out operations to measure energy consumption with consumer assessment. energy and methods of controlling energy use and equipment operation. This stage is an in-depth examination which researches, analyzes and evaluates energy saving possibilities and which subsequently facilitates the establishment of a detailed action plan.

According to ANME, the in-depth audit is made up of energy assessments of different levels:

- ➤ A level 1 energy balance
- ➤ A level 2 energy balance
- ➤ A level 3 energy balance

2.1 Energy assessment level 1

From the data collected at the company and from the measurements carried out during the preliminary audit, an overall energy and material balance sheet must be presented essentially in the form of tables which group together the specific consumptions:

- Turbo-generators
- Boilers

Specific consumption of turbogenerators

The calculation of the specific consumption of turbogenerators is done as follows:

 $Cspturbo = \frac{Qte Steam Consumed}{Qte electrical energy producted}$

	Production (KW)	Steam consumption (t/h)	Progress of VHP consumption (tons)	Specific consumption (kg steam/KW)
TG I				
TG II				

Specific consumption of boilers

The specific consumption of boilers is calculated according to this formula:

Ī	$Cspboiler = \frac{Qte\ Fuel\ Consumed}{Qte\ Steam\ produced}$
ı	Que sicum produccu

CH 101	Steam produce d (t/h)	Fuel Oil consumes(t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)

CH202	Steam produce d (t/h)	Fuel Oil consumed (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
			***	***	

2.2Energy balance level 2

It is a mass and energy balance of each production workshop (material / energy) which requires the presence of the daily report which includes measurement parameters involved in the development of this balance. The latter must follow energy balance $n^{\circ}1$

As mentioned in the previous chapter, the preliminary audit assessments are carried out every day therefore the level 2 energy assessments will be carried out in relation to the latter.

Energy balance formula:

$$Energetic\ flow = Mass\ flow\ \times enthalpy$$

Enthalpy reading method (see enthalpy table appendix):

For the VHP the enthalpy reading is done as follows: the temperature is 440°C and the pressure is 40 Bar so the combination between them gives the enthalpy value.

For the VMP the temperature is 260°C and the pressure 11 Bar.

For the VBP the temperature is 200°C and the pressure 3 Bar.

VHP							
	Prod	uction	Consumption				
	CH101	CH202	TG1	TG2	SR	02 TK1	SEMI
Flow rate (Kg/h)							
Temperature (°C)							
Pressure (Bar)							
Enthalpy (Kcal/Kg)							
Energy flow (kcal/h)							

(The duly completed tables can be found in the technical file.)

	VMP							
		Production		Consumption				
	TG1	SR (VHP-VMP)	CH-RC	SR (VMP-VBP	CTE	Topping	R.C.	
Mass flow (Kg/h)								
Temperature (°C)								
Pressure (Bar)								
Enthalpy (kcal/kg)								
Energy flow (Kcal/h)								

(The duly completed tables can be found in the technical file.)

	VBP						
	Pro	duction		Consumption			
	SR (VMP-VBP) Turbine topping RC C			СТЕ	CDM	Topping+chemica l treatment	Cond
Mass flow (Kg/h)							
Temperature (°C)							
Pressure (Bar)							
Enthalpy (kcal/kg)							
Energy flow (Kcal/h)							

(The duly completed tables can be found in the technical file.)

2.3 Energy assessment level 3

At this stage, a detailed analysis is carried out, it is the main assessment of the audit which must essentially include:

• The methodology used for the in-depth diagnosis

• An energy balance of the main equipment (boilers)

2.3.1 Approach to calculating boiler energy balances

\sum energies entering = \sum energies leaving + loses

We will determine the efficiency of the two CTE boilers using direct and indirect methods in order to obtain more information on the condition of the boiler and the precision of the results.

Note that the quantities of theoretical air required by boiler 101 and boiler 202 depend on the flow rate of fuel consumed.

The components of fuel oil come in the following proportions:

• Carbon: 87%

• Hydrogen: 12%

• Sulphur: 0.6%

• Oxygen: 0.35%

• Nitrogen: 0.24%

Their combustion reactions are:

$$C + O_2 \rightarrow CO_2 + Heat$$

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O + Heat$$

$$S + O_2 \rightarrow SO_2 + Heat$$

Using a flow **m** of fuel oil (kg/h), the stoichiometric combustion of

Components of fuel oil determine the following masses and mole numbers:

• Mass flow m:

 \dot{m} carbon = \dot{m} of fuel \times 0.87

 $\dot{\mathbf{m}}$ hydrogen = $\dot{\mathbf{m}}$ of fuel × 0.12

 \dot{m} sulfur = \dot{m} of fuel $\times 0.006$

 $\dot{\textbf{m}}$ oxygen = $\dot{\textbf{m}}$ of fuel $\times 0.0035$

 $\dot{\mathbf{m}}$ nitrogen = $\dot{\mathbf{m}}$ of fuel $\times 0.0024$

• Molar mass

M carbon = 0.012 Kg/mol

M hydrogen = 0.001 Kg/mol

M sulfur = 0.032 Kg/mol

Oxygenated M =0.016 Kg/mol

M nitrogen = 0.014 Kg/mol

SO:

- Molar flow: $\dot{n} = \frac{\dot{m}}{M}$
- \dot{n} carbon = \dot{m} carbon ÷ M carbon
- \dot{n} hydrogen = \dot{m} hydrogen ÷ M hydrogen
- \dot{n} sulfur = \dot{m} sulfur ÷ M sulfur
- \dot{n} oxygen = \dot{m} oxygen $\dot{+}$ M oxygen
- \dot{n} nitrogen = \dot{m} nitrogen \dot{m} nitrogen

According to the combustion equations we have:

One mole of carbon requires one mole of oxygen,

For n moles of carbon, we need n moles of dioxygen,

One mole of hydrogen requires ½ moles of oxygen,

For n moles of dihydrogen, we need n/2 moles of dioxygen.

One mole of sulfur requires one mole of oxygen,

For n moles of sulfur, we need n moles of dioxygen,

• Theoretical O2 molar flow

This is the sum of the flow rates necessary for combustion.

$$\dot{n}$$
 Theoretical O2 = \dot{n} carbon + (\dot{n} hydrogen ÷ 2)+ \dot{n} sulfur

• Theoretical molar air flow

Knowing that oxygen represents 21 of air%

$$\dot{n}$$
 air theoretical = \dot{n} Theoretical 02 $\times \frac{100}{21}$

• Theoretical air mass flow:

Molar mass of air = $0.21 \times 32 + 0.79 \times 28 = 28.84 \text{ kg/kmol}$

SO:

$$\dot{m}$$
 theoretical air = \dot{n} air theoretical × Molar mass of air

• Excess air:

According to the smoke analysis in the STIR laboratory we have:

$$CO_2 = 6.13\%$$

$$O_2 = 4.5\%$$

Excès d'air =
$$\frac{0.79 \times \%O_2}{0.21 \times (100 - \%CO_2) - \%O_2} \times 100$$

That is an excess of air of around 23%.

• Actual airflow:

$$Actual \ air \ flow = Theoritical \ air \ flow \ (1 + excés)$$

• Calculation of the energy introduced Qe:

The energy introduced to the boiler is given by the following formula:

$$\begin{aligned} Q_e &= \dot{m}(fuel\,oil) \times PCI + \dot{m}(v.\,a) \times \Delta H(v.\,a) + \dot{m}(air) \times \Delta H(air) \\ &+ \dot{m}\,(water) \times \Delta H(water) \end{aligned}$$

• Calculation of Qs (useful energy):

The heat flow recovered by the water at the boiler level is therefore:

$$Qs = m_v \times (H_v - H_e)$$

According to the table of enthalpies of superheated steam we have:

Hey= kcal/kg, 116.23 **Hv** = **777**kcal/kg,

• Calculation of Q_p (energy lost):

The energy lost can be determined with the following expression:

$$Q_p = Q_e - Q_s$$

• The yield:

The boiler efficiency is given by the following formula:

$$\eta = Q_s/Q_e$$

Specific consumption of the boiler

The specific consumption of boiler 101 is given by the following formula:

$$Csp = \frac{Qte\ Fuel\ Consumed}{VHP\ production}$$

2.3.2 Boiler energy balances

After clarifying the calculation methodology, a detailed assessment must be presented essentially in the form of tables following the model below:

Molar Flow (Mol/h)

ENERGY BALANCE OF BOILER N° + (DATE)

Fuel chemical elements	Percentage %	Mass Flow (kg/h)	Molar Mass (kg/mol)
Carbon			
Hydrogen			
Sulfur			
Oxygen			
Nitrogen			
Fuel			
Theoretical O ² molar flow (Mol/h)			
Theoretical molar air flow (mol/h)			
	- 1		
Theoretical air mass flow (Kg/h)			
	l e		
Excess air			
	•		
Actual air flow (Kg/h)			
	Mass flow (Kg/h)	Enthalpy (Kcal/Kg)	Lower calorific value (Kcal/Kg)
Water			
Atomizing steam			
High pressure steam			
Air			
Fuel			
Energy introduced Qe (Kcal/h)			
Useful Energy Qs (Kcal/h)			
Lost Energy Qp (Kcal/h)			

Yield			
G 100 (1 /27 7 1 /27 7 1			
Specific consumption (Kg Fuel /Kg Vap)			

The efficiency of a boiler depends on its condition and its operation. To achieve satisfactory yields, it is necessary to check the various installations of the plant such as the fuel tanks, the water treatment units, etc. in addition to the operating status.

The evaluation of the performance of the equipment serves to study the effectiveness of the CTE and identify the causes of major problems which could negatively affect the energy production process and from these results the development of a plan is decided. action plan bringing together all the solutions and plans proposed as a starting point.

NETOGRAPHY

[1]https://www.stir.com.tn/fr/

[2]http://www.anme.tn/

[3]http://www.anme.tn/sites/default/files/cahier_des_charges_audit_secteur_industriel_2011-07-07.pdf

[4]https://www.iso.org/fr/iso-50001-energy-management.html

[5]https://www.iso.org/fr/standard/60088.html

[6]https://datatab.net/?fbclid=IwAR2o7UlL2kg5eg5SHBERUrgIW2gOnGgilE6nMgsRH2p4J kHAaDkMQHeLhmQ

[7]https://sites.google.com/site/reglagedeschaudieres/bilan-thermique-d-une-chaudiere

Energy Auditing Report (Anex : STIR DATA)

STEAM CONSUMPTION TABLES

03/08/2022 at 10 AM.:

Steam balance (Kg/h)					
HPV (TG1)	12400				
HPV (TG2)	5400				
VHP Platforming	2400				
VBP	3200				
VHP reduction station	5900				
VHP sea water	0				
VMP	6900				

03/09/2022 at 10 AM:

Steam balance (Kg/h)					
VHP (TG1) 20500					
HPV (TG2)	5200				
VHP Platforming	2200				
VBP	2700				
VHP reduction station	2400				
VHP sea water	0				
VMP	6800				

03/10/2022 at 10 AM:

Steam balance (Kg/h)		
VHP (TG1) 21.		
HPV (TG2)	4900	
VHP Platforming	2400	
VBP	3800	
VHP reduction station	800	
VHP sea water	0	
VMP	5900	

<u>03/11/2022 at 10 AM</u>:

Steam balance (Kg/h)		
HPV (TG1) 21		
HPV (TG2)	5000	
VHP Platforming	2300	
VBP	3500	
VHP reduction station	500	
VHP sea water	0	
VMP	7000	

<u>03/14/2022 at 10 AM</u>:

Steam balance (Kg/h)		
VHP (TG1) 2150		
HPV (TG2)	5000	
VHP Platforming	2100	
VBP	2400	
VHP reduction station	24700	
VHP sea water	0	
VMP	7000	

<u>03/15/2022 at 10 AM</u>:

Steam balance (Kg/h)		
VHP (TG1) 2100		
HPV (TG2)	4900	
VHP Platforming	2200	
VBP	1600	
VHP reduction station	0	
VHP sea water	0	
VMP	7000	

03/16/2022 at 10 AM:

Steam balance (Kg/h)		
VHP (TG1) 215		
HPV (TG2)	5000	
VHP Platforming	2200	
VBP	2900	
VHP reduction station	0	
VHP sea water	0	
VMP	6900	

03/17/2022 at 10 AM:

Steam balance (Kg/h)		
VHP (TG1) 21500		
HPV (TG2)	5300	
VHP Platforming	2100	
VBP	2300	
VHP reduction station	400	
VHP sea water	0	
VMP	7000	

<u>03/18/2022 at 10 AM</u>:

Steam balance (Kg/h)		
HPV (TG1) 2150		
HPV (TG2)	5000	
VHP Platforming	2200	
VBP	2800	
VHP reduction station	500	
VHP sea water	0	
VMP	7300	

ELECTRICITY PRODUCTION TABLE

<u>03/08/2022 at 10 AM</u>:

Production (Counter in KWh)			
TG1 TG2 STEG			
7384662	33870779	TR1: 14056200	TR2: 13357100

03/09/2022 at 10 AM:

Production (Counter in KWh)			
TG1 TG2 STEG			
7405142	33890602	TR1:14059000	TR2:13360000

03/10/2022 at 10 AM:

Production (Counter in KWh)			
TG1 TG2 STEG			
74274368	33910669	TR1:14061000	TR2:13362000

<u>03/11/2022 at 10 AM :</u>

Production (Counter in KWh)			
TG1 TG2 STEG			
74507061	33930437	TR1:14064000	TR2:13364000

03/14/2022 at 10 AM:

Production (Counter in KWh)						
TG1 TG2 STEG						
74520079	33978512	TR1: 14075000	TR2: 13370000			

<u>03/15/2022 at 10 AM</u>:

Production (Counter in KWh)						
TG1 TG2 STEG						
74545127	34006212	TR1:14075000	TR2:13377000			

<u>03/16/2022 at 10 AM</u>:

Production (Counter in KWh)						
TG1 TG2 STEG						
75679321	34026622	TR1:14079900	TR2: 13381800			

<u>03/17/2022 at 10 AM</u>:

Production (Counter in KWh)						
TG1 TG2 STEG						
75900817	34047022	TR1:14083600	TR2: 13385600			

03/18/2022 at 10 AM:

Production (Counter in KWh)						
TG1 TG2 STEG						
7613021	34067021	TR1:14087000	TR2:13389200			

MATERIAL BALANCES

1. VHP assessment

From March 7 to 8, 2022:

		V	'HP	Total (tana)
		CH 101	CH202	-Total (tons)
	Quantity produced (tons)	368	274	642
Production	Progressive (tons) as of 03/08/2022	2385	1964	4349
	Average hourly flow (t/h)	15.3	11.4	26.8
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/08/2022	168	168	

			VHP				
		TG I	TG II	SR VHP - VMP	02 TK1	EMI Station	Total (tons)
Consumption	Quantity Consumed (tons)	461	128	5	48	0	642
	Average hourly flow (t/h)	19.2	5.3	0.2	2	0	26.8
	Progressive (tons) as of 03/08/2022	3081	897	35	336	0	4349

From March 8 to 9, 2022:

		7	/HP	Total (tana)
		CH 101	CH202	Total (tons)
	Quantity produced (tons)	326	317	643
Production	Progressive (tons) as of 03/09/2022	2711	2281	4992
	Average hourly flow (t/h)	13.6	13.2	26.8
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/09/2022	192	192	

		VHP					7D 4 1
		TG I	TG II	SR VHP - VMP	02 TK1	EMI Station	Total (tons)
	Quantity Consumed (tons)	463	127	5	48	0	643
Consumption	Average hourly flow (t/h)	19.3	5.3	0.2	2	0	26.8
	Progressive (tons) as of 03/09/2022	3544	1024	40	384	0	4992

From March 9 to 10, 2022:

		\ \	/HP	Total (tona)
		CH 101	CH202	Total (tons)
	Quantity produced (tons)	311	332	643
Production	Progressive (tons) as of 03/10/2022	3022	2613	5635
	Average hourly flow (t/h)	13	13.9	26.8
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/10/2022	216	216	

			VHP				T-4-1
		TG I	TG II	SR VHP - VMP	02 TK1	EMI Station	Total (tons)
Consumption	Quantity Consumed (tons)	464	124	7	48	0	643
	Average hourly flow (t/h)	19.3	5.2	0.3	2	0	26.8
	Progressive (tons) as of 03/10/2022	4008	1148	47	432	0	5635

From March 10 to 11, 2022:

		7	/HP	Total (tana)
		CH 101	CH202	Total (tons)
	Quantity produced (tons)	326	317	643
Production	Progressive (tons) as of 03/11/2022	3353	2925	6278
	Average hourly flow (t/h)	13.6	13.2	26.8
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/11/2022	240	240	

		VHP				7D 4 1	
		TG I	TG II	SR VHP - VMP	02 TK1	EMI Station	Total (tons)
	Quantity Consumed (tons)	475	115	5	48	0	643
Consumption	Average hourly flow (t/h)	19.8	4.8	0.2	2	0	26.8
	Progressive (tons) as of 03/11/2022	4483	1263	52	480	0	6278

From March 11 to 14, 2022:

		1	VHP	Total (tona)
		CH 101	CH202	Total (tons)
Production	Quantity produced (tons)	1030	490	1970
	Progressive (tons) as of 03/14/2022	4383	3865	8248
	Average hourly flow (t/h)	14.3	13	27.4
	Number of hours of service (hours)	72	72	
	Progressive (hours) as of 03/14/2022	312	312	

		VHP				TD 4.1	
		TG I	TG II	SR VHP - VMP	02 TK1	EMI Station	Total (tons)
Consumption	Quantity Consumed (tons)	1453	355	18	144	0	1970
	Average hourly flow (t/h)	20.2	4.9	0.3	2	0	27.4
	Progressive (tons) as of 03/14/2022	5936	1618	70	624	0	8248

From 14 March to 15, 2022:

		VHP		Total (tans)
		CH 101	CH202	Total (tons)
Production	Quantity produced (tons)	335	330	665
	Progressive (tons) as of 03/15/2022	4718	4195	8913
	Average hourly flow (t/h)	14	13.8	27.7
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/15/2022	336	336	

			VHP				
		TG I	TG II	SR VHP - VMP	02 TK1	EMI Station	Total (tons)
	Quantity Consumed (tons)	490	117	10	48	0	665
Consumption	Average hourly flow (t/h)	20.4	4.9	0.4	2	0	27.7
	Progressive (tons) as of 03/15/2022	6426	1735	80	672	0	8913

From March 15 to 16, 2022:

		7	/HP	Total (tama)
		CH 101	CH202	-Total (tons)
	Quantity produced (tons)	361	275	636
Production	Progressive (tons) as of 03/16/2022	5079	4469	9548
	Average hourly flow (t/h)	15	11.5	26.5
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/16/2022	360	360	

			VHP				
		TG I	TG II	SR VHP - VMP	02 TK1	EMI Station	Total (tons)
	Quantity Consumed (tons)	458	120	10	48	0	636
Consumption	Average hourly flow (t/h)	19.1	5	0.4	2	0	26.5
, , , , , , , , , , , , , , , , , , ,	Progressive (tons) as of 03/16/2022	6883	1855	90	720	0	9548

From March 16 to 17, 2022:

		1	VHP	Total (tons)
		CH 101	CH202	Total (tons)
	Quantity produced (tons)	375	259	634
Production	Progressive (tons) as of 03/17/2022	5454	4728	10182
	Average hourly flow (t/h)	15.6	10.8	26.4
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/17/2022	384	384	

			VHP				
		TG I	TG II	SR VHP - VMP	02 TK1	EMI Station	Total (tons)
	Quantity Consumed (tons)	454	122	10	48	0	634
Consumption	Average hourly flow (t/h)	18.9	5.1	0.4	2	0	26.4
	Progressive (tons) as of 03/17/2022	7337	1977	100	768	0	10182

From March 17 to 18, 2022:

		V	/HP	Total (tons)
		CH 101	CH202	Total (tons)
	Quantity produced (tons)	372	268	640
Production	Progressive (tons) as of 03/18/2022	5826	4996	10882
	Average hourly flow (t/h)	15.5	11.2	26.7
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/18/2022	480	408	

			VHP				
		TG I	TG II	SR VHP - VMP	02 TK1	EMI Station	Total (tons)
	Quantity Consumed (tons)	468	119	5	48	0	640
Consumption	Average hourly flow (t/h)	19.5	5.0	0.2	2	0	26.7
· ·	Progressive (tons) as of 03/18/2022	7805	2096	105	816	0	10822

1. VMP assessment

From March 7 to 8, 2022:

			VMP				
		TG I	SR VHP - VMP	RC boiler	(tons)		
	Quantity produced (tons)	461	5	36	502		
Production	Average hourly flow (t/h)	19.2	0.2	1.5	20.9		
1 Toddelloll	Progressive (tons) as of 03/08/2022	3081	35	252	3368		

			VMP				
		SR VMP - VBP	СТЕ	Topping+ LPG treatment	R.C.	Total (tons)	
	Quantity Consumed (tons)	104	192	108	96	500	
Consumption	Average hourly flow (t/h)	4.3	8	4.5	4	20.8	
Consumption	Progressive (tons) as of 03/08/2022	593	1344	756	672	3365	

From March 8 to 9, 2022:

			VMP			
		TG I	SR VHP - VMP	RC boiler	Total (tons)	
	Quantity produced (tons)	463	5	36	504	
Production	Average hourly flow (t/h)	19.3	0.2	1.5	21	
1 Toduction	Progressive (tons) as of 03/09/2022	3544	40	288	372	

			VMP				
		SR VMP - VBP	СТЕ	Topping+ LPG treatment	R.C.	Total (tons)	
	Quantity Consumed (tons)	108	192	108	96	504	
Consumption	Average hourly flow (t/h)	4.4	8	4.5	4	21	
Consumption	Progressive (tons) as of 03/09/2022	701	1536	864	768	3869	

From March 9 to 10, 2022:

			VMP		Total
		TG I	SR VHP - VMP	RC boiler	(tons)
	Quantity produced (tons)	464	7	36	507
Production	Average hourly flow (t/h)	19.3	0.3	1.5	21.1
Troduction	Progressive (tons) as of 03/10/2022	4008	47	324	4379

			VMP				
		SR VMP - VBP CTE		Topping+ LPG treatment	R.C.	Total (tons)	
	Quantity Consumed (tons)	110	192	108	96	506	
Consumption	Average hourly flow (t/h)	4.6	8	4.5	4	21.1	
Consumption	Progressive (tons) as of 03/10/2022	811	1728	972	864	4375	

From March 10 to 11, 2022:

			VMP		Total
		TG I	SR VHP - VMP	RC boiler	(tons)
	Quantity produced (tons)	475	5	36	516
Production	Average hourly flow (t/h)	19.8	0.2	1.5	21.5
Troduction	Progressive (tons) as of 03/11/2022	4483	52	360	4895

			VMP				
		SR VMP - VBP CTE Topping+ LPG treatment		R.C.	Total (tons)		
	Quantity Consumed (tons)	12	192	108	96	516	
Consumption	Average hourly flow (t/h)	5,	8	4.5	4	21.5	
Consumption	Progressive (tons) as of 03/11/2022	931	1920	1080	960	4891	

From March 11 to 14, 2022:

			VMP		Total	
		TG I	SR VHP - VMP	RC boiler	(tons)	
	Quantity produced (tons)	1453	18	108	1579	
Production	Average hourly flow (t/h)	20.2	0.3	1.5	21.9	
Troduction	Progressive (tons) as of 03/14/2022	5936	70	468	6474	

			VMP				
		SR VMP - VBP	SR VMP - VBP CTE I		R.C.	Total (tons)	
	Quantity Consumed (tons)	391	576	324	288	1579	
Consumption	Average hourly flow (t/h)	5.4	8	4.5	4	21.9	
Consumption	Progressive (tons) as of 03/14/2022	1322	2496	1404	1248	6470	

From March 14 to 15, 2022:

			VMP		Total	
		TG I SR VHP - VMP RC		RC boiler	(tons)	
	Quantity produced (tons)	490	10	36	536	
Production	Average hourly flow (t/h)	20.4	0.4	1.5	22.3	
Troduction	Progressive (tons) as of 03/15/2022	6426	80	504	7010	

			VMP			
		SR VMP - VBP	SR VMP - VBP CTE Top LP		R.C.	Total (tons)
	Quantity Consumed (tons)	140	192	108	96	536
Consumption	Average hourly flow (t/h)	5.8	8	4.5	4	22.3
Consumption	Progressive (tons) as of 03/15/2022	1462	2688	1512	1344	7006

From March 15 to 16, 2022:

			VMP		Total
		TG I	SR VHP - VMP	RC boiler	(tons)
	Quantity produced (tons)	485	10	36	504
Production	Average hourly flow (t/h)	19.1	0.4	1.5	21
Troudenon	Progressive (tons) as of 03/16/2022	6883	90	540	7513

			VMP			
		SR VMP - VBP	СТЕ	Topping+ LPG treatment	R.C.	Total (tons)
	Quantity Consumed (tons)	107	192	108	96	503
Consumption	Average hourly flow (t/h)	4.5	8	4.5	4	21
	Progressive (tons) as of 03/16/2022	1569	2880	1620	1440	7509

From March 16 to 17, 2022:

			VMP		Total
		TG I	SR VHP - VMP	RC boiler	(tons)
	Quantity produced (tons)	454	10	36	500
Production	Average hourly flow (t/h)	18.9	0.4	1.5	20.8
Troduction	Progressive (tons) as of 03/17/2022	7337	100	576	8013

			VMP				
		SR VMP - VBP	SR VMP - VBP CTE Top		R.C.	Total (tons)	
	Quantity Consumed (tons)	104	192	108	96	500	
Consumption	Average hourly flow (t/h)	4.3	8	4.5	4	20.8	
Consumption	Progressive (tons) as of 03/17/2022	1673	3072	1728	1536	8009	

From March 17 to 18, 2022:

			VMP		Total
		TG I	SR VHP - VMP	RC boiler	(tons)
	Quantity produced (tons)	468	5	36	509
Production	Average hourly flow (t/h)	19.5	0.2	1.5	21.2
Troudenon	Progressive (tons) as of 03/18/2022	7805	105	612	8522

			VMP					
		SR VMP - VBP	CTE	Topping+ LPG treatment	R.C.	Total (tons)		
Consumption	Quantity Consumed (tons)	112	192	108	96	508		
	Average hourly flow (t/h)	4.7	8	4.5	4	21.2		
	Progressive (tons) as of 03/18/2022	1785	3264	1836	1632	8517		

2. VBP assessment

From March 7 to 8, 2022:

		SR VMP - VBP	Topping Turbines	RC turbines	Total (tons)
Production	Quantity produced (tons)	104	0	24	128
	Average hourly flow (t/h)	4.3	0	1	5.3
	Progressive (tons) as of 03/08/2022	593	0	144	737

		VBP					
		СТЕ	CTE CDM Topping + Line. Chemical R.C Condensation		Condensation	Total (tons)	
	Quantity Consumed (tons)	14	48	24	12	29	127
	Average hourly flow (t/h)	0.6	2	1	0.5	1.2	5.3
Consumption	Progressive (tons) as of 03/08/2022	95	269	168	84	116	732

From March 8 to 9, 2022:

		SR VMP - VBP	Topping Turbines	RC turbines	Total (tons)
	Quantity produced (tons)	108	0	24	132
Production	Average hourly flow (t/h)	4.5	0	1	5.5
Toduction	Progressive (tons) as of 03/09/2022	701	0	168	869

		VBP					
		СТЕ	CDM	Topping + line. Chemical	R.C	Condensation	Total (tons)
	Quantity Consumed (tons)	14	48	24	12	34	132
	Average hourly flow (t/h)	0.6	2	1	0.5	1.4	5.5
Consumption	Progressive (tons) as of 03/09/2022	109	317	192	96	150	864

From March 9 to 10, 2022:

		SR VMP - VBP	Topping Turbines	RC turbines	Total (tons)
	Quantity produced (tons)	110	0	24	134
Production	Average hourly flow (t/h)	4.6	0	1.0	5.6
	Progressive (tons) as of 03/10/2022	811	0	192	1003

			VBP				
		СТЕ	CDM	Topping + Line. Chemical	R.C	Condensation	Total (tons)
	Quantity Consumed (tons)	14	48	24	12	36	134
	Average hourly flow (t/h)	0.6	2	1	0.5	1.5	5.6
Consumption	Progressive (tons) as of 03/10/2022	123	365	216	108	186	998

From March 10 to 11, 2022:

		VBP			
		SR VMP - VBP	Topping Turbines	RC turbines	Total (tons)
	Quantity produced (tons)	120	0	24	144
Production	Average hourly flow (t/h)	5.0	0	1	6
1 Toduction	Progressive (tons) as of 03/11/2022	931	0	216	1147

		VBP					
		СТЕ	CDM	Topping + line. Chemical	R.C	Condensation	Total (tons)
	Quantity Consumed (tons)	12	48	36	12	36	144
	Average hourly flow (t/h)	0.5	2	1.5	0.5	1.5	6
Consumption	Progressive (tons) as of 03/11/2022	135	413	252	120	222	1142

From March 11 to 14, 2022:

		SR VMP - VBP	Topping Turbines	RC turbines	Total (tons)
Production	Quantity produced (tons)	391	0	72	463
	Average hourly flow (t/h)	5.4	0	1	6.4
	Progressive (tons) as of 03/14/2022	1322	0	288	1610

			VBP				
		СТЕ	CDM	Topping + line. Chemical	R.C	Condensation	Total (tons)
	Quantity Consumed (tons)	36	144	144	36	101	461
	Average hourly flow (t/h)	0.5	2	2	0.5	1.4	6.4
Consumption	Progressive (tons) as of 03/14/2022	171	557	396	156	323	1603

From March 14 to 15, 2022:

		SR VMP - VBP	Topping Turbines	RC turbines	Total (tons)
	Quantity produced (tons)	140	0	24	164
Production	Average hourly flow (t/h)	5.8	0	1	6.8
Toduction	Progressive (tons) as of 03/15/2022	1462	0	312	1774

			VBP				
		CTE	CDM	Topping + line. Chemical	R.C	Condensation	Total (tons)
	Quantity Consumed (tons)	12	60	48	12	31	163
	Average hourly flow (t/h)	0.5	2.5	2	0.5	1.3	6.8
Consumption	Progressive (tons) as of 03/15/2022	183	617	444	168	354	1766

From March 15 to 16, 2022:

		VBP			
		SR VMP - VBP	Topping Turbines	RC turbines	Total (tons)
	Quantity produced (tons)	107	0	24	131
Production	Average hourly flow (t/h)	4.5	0	1	5.5
	Progressive (tons) as of 03/16/2022	1569	0	336	1905

			VBP				
		СТЕ	CDM	Topping + line. Chemical	R.C	Condensation	Total (tons)
	Quantity Consumed (tons)	12	48	48	12	10	130
	Average hourly flow (t/h)	0.5	2	2	0.5	0.4	5.4
Consumption	Progressive (tons) as of 03/16/2022	195	665	492	180	364	1896

From March 16 to 17, 2022:

		VBP			
		SR VMP - VBP	Topping Turbines	RC turbines	Total (tons)
	Quantity produced (tons)	104	0	24	128
Production	Average hourly flow (t/h)	4.3	0	1	5.3
	Progressive (tons) as of 03/17/2022	1673	0	360	2033

			VBP				
		СТЕ	CDM	Topping + line. Chemical	R.C	Condensation	Total (tons)
	Quantity Consumed (tons)	12	8	48	12	7	127
	Average hourly flow (t/h)	0.5	2	2	0.5	0.3	5.3
Consumption	Progressive (tons) as of 03/17/2022	207	713	540	192	371	2023

From March 17 to 18, 2022:

		VBP			
		SR VMP - VBP	Topping Turbines	RC turbines	Total (tons)
	Quantity produced (tons)	112	0	24	136
Production	Average hourly flow (t/h)	4.7	0	1	5.7
	Progressive (tons) as of 03/18/2022	1785	0	384	2169

			VBP				
		СТЕ	CDM	Topping + line. Chemical	R.C	Condensation	Total (tons)
	Quantity Consumed (tons)	12	48	48	12	14	134
	Average hourly flow (t/h)	0.5	2	2	0.5	0.6	5.6
Consumption	Progressive (tons) as of 03/18/2022	219	761	588	204	385	2157

3. Electrical balances

		TG I	TG II	
	Total production (Kw)	20300	21435	
	Total (kw)	41735		
	Progressive (Kw) as of 03/08/2022	140350	151190	
	Progressive total (Kw)	291540		
СТЕ	Average hourly production in Kwh	845.8	893.1	
_	Total hourly production in kWh	1739		
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/08/2022	168	168	
	Total purchase (kw)	8400		
STEG	Average hourly purchase (kwh)	350		
	Progressive (Kw) as of 03/08/2022	60200		

Production and purchase: from March 7 to 8, 2022:

Production and purchase: from March 8 to 9, 2022:

		TG I	TG II
	Total production (Kw)	20790	20860
	Total (kw)	41650	
	Progressive (Kw) as of 03/09/2022	161140	172050
	Progressive total (Kw)	333190	
СТЕ	Average hourly production in Kwh	866.3	869.2
	Total hourly production in kWh	1735	
	Number of hours of service (hours)	24	24
	Progressive (hours) as of 03/09/2022	192	192
	Total purchase (kw)	6700	
STEG	Average hourly purchase (kwh)	279	
DIEG	Progressive (Kw) as of 03/09/2022	66900	

Production and purchase: from March 9 to 10, 2022:

		TG I	TG II	
	Total production (Kw)	21815	20062	
	Total (kw)	41877	1	
	Progressive (Kw) as of 03/10/2022	182955	192112	
	Progressive total (Kw)	375067		
СТЕ	Average hourly production in Kwh	909	835.9	
012	Total hourly production in kWh	1745		
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/10/2022	216	216	
	Total purchase (kw)	5300		
STEG	Average hourly purchase (kwh)	221		
	Progressive (Kw) as of 03/10/2022	71200)	

Production and purchase: March 10 to 11, 2022:

		TG I	TG II	
	Total production (Kw)	23304	19785	
	Total (kw)	43089		
	Progressive (Kw) as of 03/11/2022	206259	211897	
	Progressive total (Kw)	418156		
	Average hourly production in Kwh	971	824.4	
СТЕ	Total hourly production in kWh	1795		
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/11/2022	240	240	
	Total purchase (kw)	5900		
STEG	Average hourly purchase (kwh)	246		
	Progressive (Kw) as of 03/11/2022	77100		

Production and purchase: March 11 to 14:

		TG I	TG II	
	Total production (Kw)	70756	56868	
	Total (kw)	127624		
	Progressive (Kw) as of 03/14/2022	277015	268765	
COL	Progressive total (Kw)	545780		
CTE	Average hourly production in Kwh	982.7	789.8	
	Total hourly production in kWh	1773		
	Number of hours of service (hours)	72	72	
	Progressive (hours) as of 03/14/2022	312	312	
	Total purchase (kw)	1770	00	
STEG	Average hourly purchase (kwh)	246		
	Progressive (Kw) as of 03/14/2022	9486	00	

Production and purchase: March 14 to 15:

		TG I	TG II
	Total production (Kw)	23690	18980
	Total (kw)	426	70
	Progressive (Kw) as of 03/15/2022	300705	287745
CTE	Progressive total (Kw)	5884	450
	Average hourly production in Kwh	987.1	790.8
	Total hourly production in kWh	1778	3
	Number of hours of service (hours)	24	24
	Progressive (hours) as of 03/15/2022	336	336
	Total purchase (kw)	6800)
STEG	Average hourly purchase (kwh)	283	
	Progressive (Kw) as of 03/15/2022	1010	500

Production and purchase: March 15 to 16, 2022:

		TG I	TG II	
	Total production (Kw)	22435	19885	
	Total (kw)	4232	20	
	Progressive (Kw) as of 03/16/2022	323140	307630	
СТЕ	Progressive total (Kw)	630770		
CIE	Average hourly production in Kwh	934.8	828.5	
	Total hourly production in kWh	176.	3	
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/16/2022	360	360	
	Total purchase (kw)	7600	0	
STEG	Average hourly purchase (kwh)	317		
	Progressive (Kw) as of 03/16/2022	1092	200	

Production and purchase: March 16 to 17, 2022:

		TG I	TG II	
	Total production (Kw)	22310	20340	
	Total (kw)	4265	50	
	Progressive (Kw) as of 03/17/2022	345450	327970	
СТЕ	Progressive total (Kw)	6734	20	
CIE	Average hourly production in Kwh	929.6	847.5	
	Total hourly production in kWh	1777		
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/17/2022	384	384	
	Total purchase (kw)	7500		
STEG	Average hourly purchase (kwh)	312		
	Progressive (Kw) as of 03/17/2022	11670	00	

Production and purchase: March 17 to 18, 2022:

		TG I	TG II	
	Total production (Kw)	22870	20230	
	Total (kw)	43100		
	Progressive (Kw) as of 03/18/2022	368320	348200	
СТЕ	Progressive total (Kw)	716520		
CIE	Average hourly production in Kwh	952.9	842.9	
	Total hourly production in kWh	1796		
	Number of hours of service (hours)	24	24	
	Progressive (hours) as of 03/18/2022	408	408	
~~	Total purchase (kw)	6800		
STEG	Average hourly purchase (kwh)	283		
	Progressive (Kw) as of 03/18/2022	12350	00	

Consumption from CTE's electrical energy production:

Consumption from March 7 to March 8, 2022:

	CTE	Production units	CDM	95 MP2	95 MP1	Total
Total consumption (kW)	7757	27848	0	0	6130	41735
Average hourly consumption (Kwh)	323	1160	0	0	255	1739
Progressive (Kw) as of 03/08/2022	54186	194544	0	0	42810	291540

Consumption from March 8 to 9, 2022:

	СТЕ	Production units	CDM	95 MP2	95 MP1	Total
Total consumption (kW)	8004	27886	0	0	5760	41650
Average hourly consumption (Kwh)	33	1162	0	0	240	1735
Progressive (Kw) as of 03/09/2022	62190	22430	0	0	48570	333190

Consumption from March 9 to 10, 2022:

	CTE	Production units	CDM	95 MP2	95 MP1	Total
Total consumption (kW)	8549	27218	0	0	6110	41877
Average hourly consumption (Kwh)	356	1134	0	0	255	1745
Progressive (Kw) as of 03/10/2022	70739	249648	0	0	54680	375067

Consumption from March 10 to 11, 2022:

	СТЕ	Production units	CDM	95 MP2	95 MP1	Total
Total consumption (kW)	8963	27946	0	0	6180	43089
Average hourly consumption (Kwh)	373	1164	0	0	257	1795
Progressive (Kw) as of 03/11/2022	79702	277594	0	0	60860	418156

Consumption from March 11 to 14, 2022:

	СТЕ	Production units	CDM	95 MP2	95 MP1	Total
Total consumption (kW)	25729	83445	0	0	18450	127624
Average hourly consumption (Kwh)	357	1159	0	0	256	1773
Progressive (Kw) as of 03/14/2022	105431	361039	0	0	79310	545780

Consumption from March 14 to 15, 2022:

	СТЕ	Production units	CDM	95 MP2	95 MP1	Total
Total consumption (kW)	8823	27677	0	0	6170	42670
Average hourly consumption (Kwh)	368	1153	0	0	257	1778
Progressive (Kw) as of 03/15/2022	114254	388716	0	0	85480	588450

Consumption from March 15 to 16, 2022:

	СТЕ	Production units	CDM	95 MP2	95 MP1	Total
Total consumption (kW)	8520	27710	0	0	6090	42320
Average hourly consumption (Kwh)	355	1155	0	0	254	1763
Progressive (Kw) as of 03/16/2022	122774	416426	0	0	91570	630770

Consumption from March 16 to 17, 2022:

	СТЕ	Production units	CDM	95 MP2	95 MP1	Total
Total consumption (kW)	8469	28061	0	0	6120	42650
Average hourly consumption (Kwh)	353	1169	0	0	255	1777
Progressive (Kw) as of 03/17/2022	131235	444495	0	0	97690	673420

Consumption from March 17 to 18, 2022:

	CTE	Production units	CDM	95 MP2	95 MP1	Total
Total consumption (kW)	8733	28137	0	0	6230	43100
Average hourly consumption (Kwh)	364	1172	0	0	260	1796
Progressive (Kw) as of 03/18/2022	139968	472632	0	0	103920	716520

Consumption from the STEG network:

Consumption from March 7 to 8, 2022:

	СТЕ	Units of production	CDM (TR3S)	95 MP3s	Lighting+Services general	Total
Total consumption (kW)	0	0	7818	0	582	8400
Average hourly consumption (Kwh)	0	0	326	0	24	350
Progressive (Kw) as of 03/08/2022	0	0	55435	0	4765	60200

Consumption from March 8 to 9, 2022:

	СТЕ	Units of production	CDM (TR3S)	95 MP3s	Lighting+Services general	Total
Total consumption (kW)	0	0	4958	820	922	6700
Average hourly consumption (Kwh)	0	0	207	34	38	279
Progressive (Kw) as of 03/09/2022	0	0	60393	820	5687	66900

Consumption from March 9 to 10, 2022:

	СТЕ	Units of production	CDM (TR3S)	95 MP3s	Lighting+Services general	Total
Total consumption (kW)	0	0	4479	0	821	5300
Average hourly consumption (Kwh)	0	0	187	0	34	221
Progressive (Kw) as of 03/10/2022	0	0	64872	820	5508	71200

Consumption from March 10 to 11, 2022:

	СТЕ	Units of production	CDM (TR3S)	95 MP3s	Lighting+Services general	Total
Total consumption (kW)	0	0	5296	0	604	5900
Average hourly consumption (Kwh)	0	0	221	0	25	246
Progressive (Kw) as of 03/11/2022	0	0	70168	820	6112	77100

Consumption from March 11 to 14, 2022:

	CT E	Units of production	CDM (TR3S)	95 MP3s	Lighting+Services general	Total
Total consumption (kW)	0	0	14730	0	2970	17700
Average hourly consumption (Kwh)	0	0	205	0	41	246
Progressive (Kw) as of 03/14/2022	0	0	84898	820	9082	94800

Consumption from March 14 to 15, 2022:

	CT E	Units of production	CDM (TR3S)	95 MP3s	Lighting+Services general	Total
Total consumption (kW)	0	0	6055	0	745	6800
Average hourly consumption (Kwh)	0	0	252	0	31	283
Progressive (Kw) as of 03/15/2022	0	0	90953	820	9827	101600

Consumption from March 15 to 16, 2022:

	CT E	Units of production	CDM (TR3S)	95 MP3s	Lighting+Services general	Total
Total consumption (kW)	0	0	6073	0	1527	7600
Average hourly consumption (Kwh)	0	0	253	0	64	317
Progressive (Kw) as of 03/16/2022	0	0	97026	820	11354	109200

Consumption from March 16 to 17, 2022:

	СТЕ	Units of production	CDM (TR3S)	95 MP3s	Lighting+Services general	Total
Total consumption (kW)	0	0	6400	0	1100	7500
Average hourly consumption (Kwh)	0	0	267	0	46	312
Progressive (Kw) as of 03/17/2022	0	0	103426	820	12454	116700

Consumption from March 17 to 18, 2022:

	СТЕ	Units of production	CDM (TR3S)	95 MP3s	Lighting+Services general	Total
Total consumption (kW)	0	0	5954	0	846	6800
Average hourly consumption (Kwh)	0	0	248	0	35	283
Progressive (Kw) as of 03/18/2022	0	0	109380	2070	12050	123500

SPECIFIC CONSUMPTIONS

Specific consumption of the turbogenerators

Consumption from March 7 to 8, 2022:

	Production (KW)	Steam consumption (t/h)	Progress of VHP consumption (tons)	Specific consumption (kg steam/KW)
TG I	846	19.2	3081	22.71
TG II	893	5.3	897	5.97

Consumption from March 8 to 9, 2022:

	Production (KW)	Steam consumption (t/h)	Progress of VHP consumption (tons)	Specific consumption (kg steam/KW)
TG I	866	19.3	3544	22.27
TG II	869	5.3	1024	6.09

Consumption from March 9 to 10, 2022:

	Production (KW)	Steam consumption (t/h)	Progress of VHP consumption (tons)	Specific consumption (kg steam/KW)
TG I	909	19.3	4088	21.27
TG II	836	5.2	1148	6.18

Consumption from March 10 to 11, 2022:

	Production (KW)	Steam consumption (t/h)	Progress of VHP consumption (tons)	Specific consumption (kg steam/KW)
TG I	971	19.8	4483	20.38
TG II	824	4.8	1263	5.81

Consumption from March 11 to 14, 2022:

	Production (KW)	Steam consumption (t/h)	Progress of VHP consumption (tons)	Specific consumption (kg steam/KW)
TG I	938	20.2	5936	2054
TG II	790	4.9	1618	6.24

Consumption from March 14 to 15, 2022:

	Production (KW)	Steam consumption (t/h)	Progress of VHP consumption (tons)	Specific consumption (kg steam/KW)
TG I	987	20.4	6426	20.68
TG II	791	4.9	1735	6.16

Consumption from March 15 to 16, 2022:

	Production (KW)	Steam consumption (t/h)	Progress of VHP consumption (tons)	Specific consumption (kg steam/KW)
TG I	935	19.1	6883	20.41
TG II	829	5	1855	6.03

Consumption from March 16 to 17, 2022:

	Production (KW)	Steam consumption (t/h)	Progress of VHP consumption (tons)	Specific consumption (kg steam/KW)
TG I	930	18.9	7337	20.35
TG II	848	5.1	1977	6

Consumption from March 16 to 17, 2022:

	Production (KW)	Steam consumption (t/h)	Progress of VHP (tons)	consumption Specific consumption n (kg steam/KW)
TG I	930	18.9	7337	20.35
TG II	848	5.1	1977	6

Consumption from March 17 to 18, 2022:

	Production (KW)	Steam consumption (t/h)	Progress of VHP consumption (tons)	Specific consumption (kg steam/KW)
TG I	953	19.5	7805	20.46
TG II	843	5	2096	5.88

Specific consumption of boilers

Consumption from March 7 to 8, 2022:

CH 101	Steam produce d (t/h)	Fuel Oil consumes(t /h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	15.3	0.637	568	0.341	70.36

CH202	Steam produce d (t/h)	Fuel Oil consumed (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	11.4	0.796	*	*	70.32

Consumption from March 8 to 9, 2022:

CH 101	Steam produce d (t/h)	Fuel Oil consumes (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	13.6	0.624	464	0.278	72.56

CH202	Steam produce d (t/h)	Fuel Oil consume d (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	(6/11)	(6/11)			
	13, 2	0.950	*	*	72.53

Consumption from March 9 to 10, 2022:

CH 101	Steam produce d (t/h)	Fuel Oil consumes(t /h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	13	0.591	418	0.237	69.68

CH202	Steam produce d (t/h)	Fuel Oil consumed (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	13.9	0.993	*	*	72.27

Consumption from March 10 to 11, 2022:

СН 101	Steam produce d (t/h)	Fuel Oil consumes(t /h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	13.6	0.614	468	0.266	70.92

CH202	Steam produce d (t/h)	Fuel Oil consumed (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	13.2	0.926	*	*	70.76

Consumption from March 11 to 14, 2022:

CH 101	Steam produce d (t/h)	Fuel Oil consumes(t /h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	14.3	0.616	534	0.303	70.88

CH202	Steam produce d (t/h)	Fuel Oil consumed (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	13	0.917	*	*	70.88

Consumption from March 14 to 15, 2022:

CH 101	Steam produce d (t/h)	Fuel Oil consumes(t /h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	14	0.6	477	0.295	70.22

CH202	Steam produce d (t/h)	Fuel Oil consumed (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	13.8	0.957	*	*	70.19

Consumption from March 15 to 16, 2022:

СН 101	Steam produce d (t/h)	Fuel Oil consumes(t /h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	15	0.604	57	0.375	70.66

CH202	Steam produce d (t/h)	Fuel Oil consumed (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	11.5	0.809	*	*	71.21

Consumption from March 16 to 17, 2022:

CH 101	Steam produce d (t/h)	Fuel Oil consumes(t /h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	15.6	0.548	628	0.439	70.22

CH202	Steam produce d (t/h)	Fuel Oil consumed (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	10.8	0.763	*	*	71.40

Consumption from March 17 to 18, 2022:

CH 101	Steam produce d (t/h)	Fuel Oil consumes(t /h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	15.5	0.544	636	0.444	70.95

CH202	Steam produce d (t/h)	Fuel Oil consumed (t/h)	Fuel Gas consumed (Nm3/h)	Fuel Gas consumed (t/h)	Specific consumption (Toe*10-3/ton of steam)
	11.2	0.788	*	*	71.11

Steam Balances

Steam report from March 7 to 8, 2022:

			VHP							
	Production			Consumption						
	CH101	CH202	TG I	TG II	SR VHP-VMP	02 TK1	EMI Station			
Mass flow (kg/h)	15300	11400	19200	5300	200	2000	0			
Temperature (°C)	440 440		440	440	440	440	0			
Pressure (Bar)	40	40	40	40	40	40	0			
Enthalpy (kcal/kg)	789	789	789	789	789	789	0			
Energy flow (kcal/h)	12071700	8994600	15148800	4181700	157800	1578000	0			

			VMP					
		Production		Consumption				
	TGI	SR VHP-VMP	RC boiler	SR VMP-VBP	CTE	Topping	R.C.	
Mass flow (kg/h)	19200	200	1500	4300	8000	4500	4000	
Temperature (°C)	260	260	260	260	260	260	260	
Pressure (Bar)	11	11	11	11	11	11	11	
Enthalpy (Kcal/Kg)	707	707	707	707	707	707	707	
Energy flow (kcal/h)	13574400	141400	1060500	3040100	5656000	3181500	2828000	

			VBP							
		Production			Consumption					
	SR VMP-VBP	Turbine topping	RC turbine	СТЕ	CDM	Topping+ Chemical treatment	R.C.	Condensation		
Mass flow (kg/h)	4300	0	1000	600	2000	1000	500	1200		
Temperature (°C)	200	0	200	200	200	200	200	200		
Pressure (Bar)	3	0	3	3	3	3	3	3		
Enthalpy (kcal/kg)	684	0	684	684	684	684	684	684		
Energy flow (kcal/h)	2941200	0	684000	410400	1368000	684000	342000	820800		

Steam report from March 8 to 9, 2022:

			VHP					
	Production		Consumption					
	CH101	CH202	TG I	TG II	SR VHP-VMP	02 TK1	EMI Station	
Mass flow (kg/h)	13600	13200	19300	5300	200	2000	0	
Temperature (°C)	440	440	440	440	440	440	0	
Pressure (Bar)	40	40	40	40	40	40	0	
Enthalpy (kcal/kg)	789	789	789	789	789	789	0	
Energy flow (kcal/h)	10730400	10414800	15227700	4181700	157800	1578000	0	

			VMP									
		Production Consumption										
	TGI	SR VHP-VMP	RC boiler	SR VMP-VBP	CTE	Topping	R.C.					
Mass flow (kg/h)	19300	300	1500	4600	8000	4500	4000					
Temperature (°C)	260	260	260	260	260	260	260					
Pressure (Bar)	11	11	11	11	11	11	11					
Enthalpy (kcal/kg)	707	707	707	707	707	707	707					
Energy flow (kcal/h)	13645100	212100	1060500	3252200	5656000	3181500	2828000					

	VBP												
		Produc	tion		Consumption								
	SR VMP-VBP	Turbine Topping	RC turbine	СТЕ	CDM	Topping + chemical treatment	R.C.	Condensation					
Mass flow (kg/h)	4500	0	1000	600	2000	1000	500	1400					
Temperature (°C)	200	0	200	200	200	200	200	200					
Pressure (Bar)	3	0	3	3	3	3	3	3					
Enthalpy (kcal/kg)	684	0	684	684	684	684	684	684					
Energy flow (kcal/h)	3078000	0	684000	410400	1368000	684000	342000	957600					

Steam report from March 9 to 10, 2022:

			VHP					
	Production		Consumption					
	CH101	CH202	TG I	TG II	SR VHP-VMP 02 TK1		EMI Station	
Mass flow (kg/h)	13000	13900	19300	5200	300	2000	0	
Temperature (°C)	440	440	440	440	440	440	0	
Pressure (Bar)	40	40	40	40	40	40	0	
Enthalpy (kcal/kg)	789	789	789	789	789	789	0	
Energy flow (kcal/h)	10257000	10967100	15227700	4102800	236700	1578000	0	

			VMP				
		Production		Consumption			
	TGI	SR VHP-VMP	RC boiler	SR VMP-VBP	CTE	Topping	R.C.
Mass flow (kg/h)	19300	300	1500	4600	8000	4500	4000
Temperature (°C)	260	260	260	260	260	260	260
Pressure (Bar)	11	11	11	11	11	11	11
Enthalpy (kcal/kg)	707	707	707	707	707	707	707
Energy flow (kcal/h)	13645100	212100	1060500	3252200	5656000	3181500	2828000

	VBP											
		Production				Consumption						
	SR VMP-VBP Turbines topping RC turbine					CDM Chemical R.C. C treatment						
Mass flow (kg/h)	4600	0	1000	600	2000	1000	500	1500				
Temperature (°C)	200	0	200	200	200	200	200	200				
Pressure (Bar)	3	0	3	3	3	3	3	3				
Enthalpy (kcal/kg)	Enthalpy (kcal/kg) 684 0 684					684	684	684				
Energy flow (kcal/h)	3146400	0	684000	410400	1368000	684000	342000	1026000				

Steam report from March 10 to 11, 2022:

			VHP				
	Production				Consumption		
	CH101	CH202	TG I	TG II	SR VHP-VMP	02 TK1	EMI Station
Mass flow (kg/h)	326000	317000	475000	115000	5000	48000	0
Temperature (°C)	440	440	440	440	440	440	0
Pressure (Bar)	40	40	40	40	40	40	0
Enthalpy (kcal/kg)	789	789	789	789	789	789	0
Energy flow (kcal/h)	257214000	250113000	374775000	90735000	3945000	37872000	0

			VMP				
		Production					
	TGI	SR VHP-VMP	RC boiler	SR VMP-VBP	CTE	Topping	R.C.
Mass flow (kg/h)	475000	5000	36000	120000	192000	108000	360000
Temperature (°C)	260	260	260	260	260	260	260
Pressure (Bar)	11	11	11	11	11	11	11
Enthalpy (Kcal/Kg)	707	707	707	707	707	707	707
Energy flow (kcal/h)	335825000	3535000	25452000	84840000	135744000	76356000	254520000

			VBP					
		Production		Consumption				
	SR VMP-VBP	Turbine topping	RC turbine	СТЕ	CDM	Topping+ Chemical treatment	R.C.	Condensation
Mass flow (kg/h)	120000	0	24000	12000	480000	36000	12000	36000
Temperature (°C)	200	0	200	200	200	200	200	200
Pressure (Bar)	3	0	3	3	3	3	3	3
Enthalpy (kcal/kg)	684	0	684	684	684	684	684	684
Energy flow (kcal/h)	82080000	0	16416000	8208000	328320000	24624000	8208000	24624000

Steam report from March 11 to 14, 2022:

			VHP				
	Production				Consumption		
	CH101	CH202	TG I	TG II	SR VHP-VMP	02 TK1	EMI Station
Mass flow (kg/h)	14300	13000	20200	4900	300	2000	0
Temperature (°C)	440	440	440	440	440	440	0
Pressure (Bar)	40	40	40	40	40	40	0
Enthalpy (kcal/kg)	789	789	789	789	789	789	0
Energy flow (kcal/h)	11282700	10257000	15937800	3866100	236700	1578000	0

			VMP					
		Production			Consumption			
	TGI	SR VHP-VMP	RC boiler	SR VMP-VBP	CTE	Topping	R.C.	
Mass flow (kg/h)	20200	300	1500	5400	8000	4500	4000	
Temperature (°C)	260	260	260	260	260	260	260	
Pressure (Bar)	11	11	11	11	11	11	11	
Enthalpy (kcal/kg)	707	707	707	707	707	707	707	
Energy flow (kcal/h)	14281400	212100	1060500	3817800	5656000	3181500	2828000	

			VBP							
	Production				Consumption					
	SR VMP- VBP	Turbine topping	RC turbine	СТЕ	CDM	Topping + chemical treatment	R.C.	Condensation		
Mass flow (kg/h)	5400	0	1000	500	2000	2000	500	1400		
Temperature (°C)	200	0	200	200	200	200	200	200		
Pressure (Bar)	3	0	3	3	3	3	3	3		
Enthalpy (kcal/kg)	684	0	684	684	684	684	684	684		
Energy flow (kcal/h)	3693600	0	684000	342000	1368000	1368000	342000	957600		

Steam report from March 14 to 15, 2022:

			VHP				
	Production				Consumption		
	CH101	CH202	TG I	TG II	SR VHP-VMP	02 TK1	EMI Station
Mass flow (kg/h)	14000	13800	20400	4900	400	2000	0
Temperature (°C)	440	440	440	440	440	440	0
Pressure (Bar)	40	40	40	40	40	40	0
Enthalpy (kcal/kg)	789	789	789	789	789	789	0
Energy flow (kcal/h)	11046000	10888200	16095600	3866100	315600	1578000	0

			VMP				
		Production					
	TGI	SR VHP-VMP	SR VMP-VBP CTE Topping				
Mass flow (kg/h)	20400	400	1500	5800	8000	4500	4000
Temperature (°C)	260	260	260	260	260	260	260
Pressure (Bar)	11	11	11	11	11	11	11
Enthalpy (kcal/kg)	707	707	707	707	707	707	707
Energy flow (kcal/h)	14422800	282800	1060500	4100600	5656000	3181500	2828000

			VBP					
		Production			Consumption	n		
	SR VMP-VBP	Turbine topping	RC turbine	СТЕ	CDM	Topping + Chemical treatment	R.C.	Condensation
Mass flow (kg/h)	5800	0	1000	500	2500	2000	500	1300
Temperature (°C)	200	0	200	200	200	200	200	200
Pressure (Bar)	3	0	3	3	3	3	3	3
Enthalpy (kcal/kg)	684	0	684	684	684	684	684	684
Energy flow (kcal/h)	3967200	0	684000	342000	1710000	1368000	342000	889200

Steam report from March 15 to 16, 2022:

			VHP				
	Production		Consumption	Consumption			
	CH101						
Mass flow (kg/h)	15000	11500	19100	5000	400	2000	0
Temperature (°C)	440	440	440	440	440	440	0
Pressure (Bar)	40	40	40	40	40	40	0
Enthalpy (kcal/kg)	789	789	789	789	789	789	0
Energy flow (kcal/h)	11835000	9073500	15069900	3945000	315600	1578000	0

			VMP				
		Production			Consumption		
	TGI	SR VHP-VMP	RC boiler	SR VMP-VBP	CTE	Topping	R.C.
Mass flow (kg/h)	19100	400	1500	4500	8000	4500	4000
Temperature (°C)	260	260	260	260	260	260	260
Pressure (Bar)	11	11	11	11	11	11	11
Enthalpy (kcal/kg)	707	707	707	707	707	707	707
Energy flow (kcal/h)	13503700	282800	1060500	3181500	5656000	3181500	2828000

			VBP					
			Consumption					
	SR VMP-VBP	R VMP-VBP Turbine topping RC turbine CTE				Topping + chemical treatment	R.C.	Condensation
Mass flow (kg/h)	4500	0	1000	500	2000	2000	500	400
Temperature (°C)	200	0	200	200	200	200	200	200
Pressure (Bar)	3	0	3	3	3	3	3	3
Enthalpy (kcal/kg)	684	0	684	684	684	684	684	684
Energy flow (kcal/h)	3078000	0	684000	342000	1368000	1368000	342000	273600

Steam report from March 16 to 17, 2022:

			VHP				
	Production						
	CH101	CH202	TG I	TG II	SR VHP-VMP	02 TK1	EMI Station
Mass flow (kg/h)	15600	10800	18900	5100	400	2000	0
Temperature (°C)	440	440	440	440	440	440	0
Pressure (Bar)	40	40	40	40	40	40	0
Enthalpy (kcal/kg)	789	789	789	789	789	789	0
Energy flow (kcal/h)	12308400	8521200	14912100	4023900	315600	1578000	0

VMP								
	Production			Consumption				
	TGI	SR VHP-VMP	RC boiler	SR VMP-VBP	CTE	Topping	R.C.	
Mass flow (kg/h)	18900	400	1500	4300	8000	4500	4000	
Temperature (°C)	260	260	260	260	260	260	260	
Pressure (Bar)	11	11	11	11	11	11	11	
Enthalpy (kcal/kg)	707	707	707	707	707	707	707	
Energy flow (kcal/h)	13362300	282800	1060500	3040100	5656000	3181500	2828000	

VBP									
		Production		Consumption					
	SR VMP-VBP	Turbine topping	RC turbine	CTE	CDM	Topping + chemical treatment	R.C.	Condensation	
Mass flow (kg/h)	4300	0	1000	500	2000	2000	500	300	
Temperature (°C)	200	0	200	200	200	200	200	200	
Pressure (Bar)	3	0	3	3	3	3	3	3	
Enthalpy (kcal/kg)	684	0	684	684	684	684	684	684	
Energy flow (kcal/h)	2941200	0	684000	342000	1368000	1368000	342000	205200	

Steam report March 17 to 18, 2022:

VHP								
	Production Consumption							
	CH101	CH202	TG I	TG II	SR VHP-VMP	02 TK1	EMI Station	
Mass flow (kg/h)	15500	11166.66667	19500	4958.333333	208.3333333	48000	0	
Temperature (°C)	440	440	440	440	440	440	0	
Pressure (Bar)	40	40	40	40	40	40	0	
Enthalpy (kcal/kg)	789	789	789	789	789	789	0	
Energy flow (kcal/h)	12229500	8810500	15385500	3912125	164375	37872000	0	

			VMP				
		Produc	ction	Consumption			
	TGI	SR VHP-VMP	RC boiler	SR VMP-VBP	CTE	Topping	R.C.
Mass flow (kg/h)	19500	208.3333333	1500	4666.666667	8000	4500	4000
Temperature (°C)	260	260	260	260	260	260	260
Pressure (Bar)	11	11	11	11	11	11	11
Enthalpy (kcal/kg)	707	707	707	707	707	707	707
Energy flow (kcal/h)	13786500	147291.6667	1060500	3299333,333	5656000	3181500	2828000

VBP									
	Production				Consumption				
	SR VMP-VBP	Turbine Topping	RC turbine	CTE	CDM	Topping + chemical treatment	R.C.	Condensation	
Mass flow (kg/h)	4666.666667	0	1000	500	2000	2000	500	583.3333333	
Temperature (°C)	200	0	200	200	200	200	200	200	
Pressure (Bar)	3	0	3	3	3	3	3	3	
Enthalpy (kcal/kg)	684	0	684	684	684	684	684	684	
Energy flow (kcal/h)	3192000	0	684000	342000	1368000	1368000	342000	399000	