The Eos SMT/SMA-Solver: A Preliminary Report ¹

Giulio Mazzi

Università Degli Studi di Verona

Lisbon, 7th July 2019

¹Joint work with Maria Paola Bonacina

Conflict-driven Reasoning

Conflict-Driven SATisfiability²

- CDCL: propositional conflict-driven reasoning
- DPLL(T): CDCL + black-box theories → conflict-driven reasoning: only propositional
- MCSAT: lifts CDCL to SMT for one theory → not a combination calculus
- CDSAT: generalizes MCSAT to generic combination of disjoint theories

The CDSAT trail

- Sequence of assignments (variable/value pairs)
- Either decisions (Boolean or first-order) or justified assignments
- SMT: only Boolean input (as assignments with empty justification)
- SMA: Boolean and first-order assignments as input
- Each assignment has a level, not necessarily in increasing order (≠ CDCL)

Example of trail

Example

A trail with two input formulas, a first-order decision and a Boolean propagation

$$\underbrace{\{\} \vdash y < 0, \{\} \vdash x + y > 0,}_{\text{lv. 0}}, \underbrace{\{x \leftarrow 0, \{y < 0, x + y > 0\} \vdash x > 0,}_{\text{lv. 0}}, \dots$$

- y < 0, x + y > 0 are input formulas (empty justification)
- x > 0 is propagated at level 0. Since it is lower than the highest level this is called a *late propagation*
- x > 0 is not an input term. These non-trivial inferences are only to explain a conflict

Overview of Eos

- Written in C++
- Implements CDSAT as the central class
- Extensible: defines a theory module class that gets instantiated for each theory module
- Three theory modules already implemented:
 - SAT → Propositional logic
 - LRA → Linear Real Arithmetic
 - ullet UF o Uninterpreted Functions
- All three quantifier-free
- QF_UF, QF_LRA and QF_UFLRA in SMT-LIB

The CDSAT trail in *Eos*

- Every non-input justified assignment stores the ID of the responsible module
- The justification can be built lazily from this ID on demand
- This is crucial for fast propagation (both Boolean and theory)

Example

Given the trail:

$$a \lor (x + y > 0), \ ?x \leftarrow 1, \ ?y \leftarrow 2, \ \underbrace{\{x \leftarrow 1, y \leftarrow 2\} \vdash}_{ID_{1D}} (x + y > 0)$$

The CDSAT transition system in *Eos*

Two main functions:

- check_sat: implements the search for a model of the input problem, covering the trail rules Deduce, Decide, Fail, and ConflictSolve
- conflict_analysis: implements the conflict-state rules Resolve, Backjump, UndoClear, and UndoDecide

Use of the Deduce rule

- Propagation: trivial inferences (e.g. BCP in CDCL). In Eos this is applied exhaustively in the propagate() function
- Conflict explanation: non-trivial inferences (e.g. resolution in CDCL)

Propagation

```
function check sat
  loop
      propagate( )
                                                           > rule Deduce
      if conflict then
                                 > the propagation has generated a conflict
         if conflict at level zero then
            return unsatisfiable

    rule Fail

         else
             conflict_analysis( )
                                                      else
                               > everything was propagated without conflict
         if decision order is empty then ▷ every term has a value assigned?
             return satisfiable

⊳ SAT

         else
            make_decision()
```

propagate() example

Example

Given the trail:

$$\underbrace{\ldots, \ (x<0) \lor (y<0), \ \ldots,}_{\mathsf{lv.} \ 0} \ \underbrace{?x \leftarrow 1,}_{\mathsf{lv.} \ 1}$$

LRA can deduce that x < 0 is false:

$$\ldots, \underbrace{\{x \leftarrow 1\} \vdash \neg(x < 0),}_{\text{lv. 1}}$$

SAT can deduce that y < 0 is true:

...,
$$\underbrace{\{\neg (x<0), (x<0) \lor (y<0)\} \vdash (y<0)\}}_{\text{lv. 1}}$$

Decisions

- If no more trivial inferences are possible, a decision must be made
- Eos selects a term for a decision, and it asks the appropriate theory module to assign an acceptable value to the term.
 - \bullet SAT module \to Boolean terms
 - LRA module \rightarrow Real terms
 - ullet UF module o terms of uninterpreted sort

Example

if y > 3 is true an acceptable value for y must be greater than 3

Decision Order

- The selection of terms for decisions is based on a generalization of the VSIDS heuristic to handle both Boolean and first-order terms
- Eos increases the activity of both Boolean and first-order terms during conflict analysis
- A theory module can request a higher priority for a first-order term that has a single acceptable value (forced decision)

Collecting levels in *macrolevels*

- Eos makes forced decisions as soon as possible
- A *free decision* (i.e. a non-forced decision) open a new *macrolevel*: it collects a free decision and their related forced decisions
- Macrolevels are useful in heuristics

Decision and satisfiability

A decision is made only if at least a term has no value. If everything is already assigned without any conflict, the problem is satisfiable

```
function check sat
   loop
                                                             > rule Deduce
      propagate( )
      if conflict then
                                  by the propagation has generated a conflict
          if conflict at level zero then
             return unsatisfiable
                                                                 ⊳ rule Fail
          else
             conflict_analysis()
                                                        else
                                > everything was propagated without conflict
          if decision order is empty then ▷ every term has a value assigned?
             return satisfiable

⊳ SAT

          else
                                                              > rule Decide
             make_decision( )
```

Conflicts during propagate()

- Theory modules can find conflicts during propagation
- If a conflict is at level zero, the problem is unsatisfiable
- Otherwise conflict_analysis() takes care of the conflict

```
function check sat
   loop
                                                           > rule Deduce
      propagate( )
      if conflict then
                                 > the propagation has generated a conflict
         if conflict at level zero then

⊳ rule Fail

             return unsatisfiable
         else
             conflict_analysis( )
                                                      else
                               > everything was propagated without conflict
         if decision order is empty then ▷ every term has a value assigned?
             return satisfiable

⊳ SAT

         else
            make_decision( )
```

Conflict example

Late Propagation

This trail is in conflict

$$\underbrace{y < 0, \ x + y > 1}_{\text{lv. 0}}, \ \underbrace{?x \leftarrow 0}_{\text{lv. 1}}, \ \underbrace{\{y < 0, x + y > 1\} \vdash x > 1}_{\text{lv. 0}}$$

Arithmetic conflict

conflict:
$$\left[\begin{array}{c} x \leftarrow 0, x > 1 \\ y = 1 \end{array}\right]$$

The level of the conflict is 1

Conflict Analysis

```
procedure conflict_analysis
   conflict \leftarrow get\_reason()
                                                                                                p get the reason of the conflict
   conflict_level ← get_max_level(conflict)
                                                                                                b higher level of conflict values
   backiump(conflict_level)

    □ undo everything after the conflict

   while conflict has two or more terms at conflict_level do
       last ← pop_from_trail( )
                                                                                p get the last Boolean propagation on the trail
                                                                                                                  ⊳ rule Resolve
       if last.level() = conflict_level and last is in conflict then
                                                                                           > resolve this value with the conflict
           conflict.remove(last)
          p get the justification of this propagation
          justification ← get_justification(last)
          for all Term just in justification do
              > is this propagation justified by a first order decision at the conflict level?
              if just is non-Boolean and at conflict level then
                  new_value ← ¬ trail.get_value(last)
                                                                                             ▷ flip the value of the propagation
                                                                                                      ▷ rule UndoDecide: undo
                  backjump_one_level()
                  add_decision(last,new_value)
                                                                                                     ▷ rule UndoDecide: decide
                  return
              else
                  conflict.add(just)

    □ add just to the conflict

   > here, the conflict has a single term assigned at the level of the conflict
    topmost\_var \leftarrow get\_outstanding(conflict)
   if topmost_var is non-Boolean then
                                                                                                               ▷ rule UndoClear
       backjump_one_level()
       return
   clause ← create_clause(conflict)
                                                                                                            b learn a new clause
   bt_level ← compute_backjump_level(conflict)
   backjump(bt_level)
                                                                                                               ▷ rule Backiump
   learn_new_clause(clause)
```

Conflict analysis - Preliminaries

The procedure retrieves the conflict terms and computer the highest level among the assignments in conflict. Every level higher than the level of the conflict can be immediately pruned.

Propositional resolution

Resolve is applied until a Backjump, UndoClear, or UndoDecide is possible

```
procedure conflict_analysis
   while conflict has two or more terms at conflict_level do
       last ← pop_from_trail() > get the last Boolean propagation on the trail
       if last.level() = conflict_level and last is in conflict then ▷ rule Resolve
           conflict.remove(last)
                                             > resolve this value with the conflict

    pet the justification of this propagation

          justification \leftarrow get_{justification}(last)
           for all Term just in justification do
              > is this propagation justified by a first order decision at the conflict level?
              if just is non-Boolean and at conflict level then
              else
                  conflict.add(just)

    □ add just to the conflict
```

UndoClear

- The first-order decision at conflict level was acceptable, now it is in conflict → a late propagation explains why this decision is no longer acceptable
- it is useful to compare the macrolevel

```
procedure conflict_analysis
   while conflict has two or more terms at conflict level do
   ▷ here, the conflict has a single term assigned at the level of the conflict
   topmost\_var \leftarrow get\_outstanding(conflict)
   if topmost_var is non-Boolean then
                                                                    ▷ rule UndoClear
       backjump_one_level()
       return
                                                                ▷ learn a new clause
   clause ← create_clause(conflict)
   bt\_level \leftarrow compute\_backjump\_level(conflict)
   backjump(bt_level)
                                                                    learn_new_clause(clause)
```

Backjump

- A backjump to the second highest level in the conflict
- CDSAT can learn lemmas using the LearnBackjump extension → Eos learns only purely Boolean conflicts!

```
procedure conflict_analysis
   while conflict has two or more terms at conflict level do
   ▷ here, the conflict has a single term assigned at the level of the conflict
   topmost\_var \leftarrow get\_outstanding(conflict)
   if topmost_var is non-Boolean then
                                                                 backjump_one_level( )
      return
   clause ← create_clause(conflict)
                                                             learn a new clause
   bt\_level \leftarrow compute\_backjump\_level(conflict)
   backjump(bt_level)
                                                                 learn_new_clause(clause)
```

UndoDecide

```
procedure conflict_analysis
   while conflict has two or more terms at conflict_level do
       last ← pop_from_trail() > get the last Boolean propagation on the trail
      if last.level() = conflict_level and last is in conflict then ▷ rule Resolve
          for all Term just in justification do
             ▷ is this propagation justified by a first order decision at the conflict level?
             if just is non-Boolean and at conflict level then
                 new\_value \leftarrow \neg trail.get\_value(last) \triangleright flip the propagated value
                 backjump_one_level()
                                                          ▷ rule UndoDecide: undo
                 add_decision(last,new_value)
                                                         return
             else
```

SAT module - MiniSAT inspired

- Equisatisfiable CNF problem: Tseitin transformation
- Main focus: very efficient Boolean Clausal Propagation (BCP)
- Two watched literals scheme
- A specialized memory manager is used to store the clauses in a compact area of memory

Example

$$(a \lor b \lor c)$$
, $? \neg a$, $? \neg b$, $(a \lor b \lor c), \neg a, \neg b \vdash c$

implied literal: c, unit clause: $a \lor b \lor c$

UF and LRA - Overview

- Inspired by the implementation of MCSAT (CVC4 version)
- The UF module handles equalities and inequalities between terms of uninterpreted sorts and checks the congruence axioms hold
- The LRA module handles linear constraints for real variables

Generalization of the Two watched literals scheme

Example

The constraint 2x + y - z > 0 can be seen as a generalized clause: $\{x, y, z, 2x + y - z > 0\}$

- If x, y, and z are assigned the truth value of 2x + y z > 0 can be propagated
- If x, y, and 2x + y z > 0 are assigned the acceptable values for z changes
- If everything is assigned the module check that this is a consistent assignment, otherwise the module is in error

UF - Conflicts

- The equality propagation can identify transitivity conflicts
- Eos can build new terms to explain these conflicts

Transitivity Conflict

The trail:

$$a \simeq b$$
, $a \simeq c$, $?b \leftarrow \mathfrak{q}_1$, $?c \leftarrow \mathfrak{q}_2$

is in conflict. The UF module creates and propagates the term $b \simeq c$ and builds the conflict as:

$$[a \simeq b, \ a \simeq c, \ \neg(b \simeq c)]$$

UF - Uninterpreted Functions

- The UF module also checks that the congruence axioms hold
- The arguments of function applications are watched, when all the arguments are assigned the module checks that the congruence axiom is respected

Congruence Conflict

Given function $f: \mathtt{Real} \to \mathtt{Bool}$, the trail

$$x \leftarrow 5, \ f(x), \ \neg f(y), \ y \leftarrow 5$$
 (1)

is in conflict, builds the conflict

$$[x \simeq y, \ \neg(f(x) \simeq f(y))] \tag{2}$$

where $x \simeq y$ and $(f(x) \simeq f(y))$ may be new terms

LRA - Fourier-Motzkin

- The module keeps a set of acceptable values for every real term: lower bound, un upper bound, and list of equalities and disequalities
- If a real term has no acceptable values the module find a conflict

FM Conflict

The trail

$$y < x$$
, $x < 0$, $_?y \leftarrow 1$

is in conflict. The module makes a non-trivial inference by FM-resolution:

$$y < x, \ x < 0 \vdash y < 0$$

and builds the conflict:

$$[y \leftarrow 1, y < 0]$$

LRA - Disequality Elimination

- Another rule is required to handle a special case
- If a real symbol has the same upper and lower bound but this bound is not an acceptable value the disequality elimination rule applies

$$t_1 \le x, \ x \le t_2, \ t_1 = t_0, \ t_2 = t_0, \ x \ne t_0 \ \vdash \bot$$

Disequality Conflict

The trail

$$x-y \ge 0, \ x \le 0, \ \neg(x=z), \ ?z \leftarrow 0, \ ?y \leftarrow 0$$

is in conflict. The symbol x should be ≤ 0 , ≥ 0 and $\neq 0$ The conflict is now:

$$[x-y \ge 0, \ x \le 0, \ y=z, \ 0=z, \ \neg(x=z)]$$

Fun Fact: Who is *Eos*?

In Greek mythology, Eos is a Titaness and the goddess of the dawn, who rose each morning from her home at the edge of the Oceanus.

Inferences in Eos vs MCSAT

Eos

$$\underbrace{y < 0, \ x+y > 1}_{\text{lv. 0}}, \ \underbrace{?x \leftarrow 0}_{\text{lv. 1}}, \ \underbrace{\{y < 0, x+y > 1\} \vdash x > 1}_{\text{lv. 0}}$$

conflict:
$$[\underbrace{x \leftarrow 0}_{|y|}, \underbrace{x > 1}_{|y|}] \leftarrow$$
 The level of the conflict is 1

MCSAT

This trail is in conflict

$$\underbrace{y < 0, \ x + y > 1}_{\text{Iv. 0}}, \ \underbrace{{}_{!}x \leftarrow 0}_{\text{Iv. 1}}, \ \underbrace{{}_{x \leftarrow 0}_{\vdash} \neg (x > 1)}_{\text{Iv. 1}}$$

conflict:
$$[\underbrace{y < 0}, \underbrace{x + y > 1}, \underbrace{\neg(x > 1)}] \leftarrow \text{The level of the conflict is 1}$$

Iv 0

lv. 0 lv. 1