PP Hypothesis Tests

Hypothesis Tests for CSR

- With a spatial point process, a single realization from the underlying point process is observed.
- Hypothesis tests and Monte Carlo simulation procedures allow testing for departures from Complete Spatial Randomness (CSR).
- Devise and implement a Monte Carlo-based test for CSR. First detail your test statistic and implementation, then assess the results with the four data sets from Lecture 21.

G and F Functions

- One way to describe a spatial point process, is to consider the probability of being a certain distance from a point or similarly, the number of points expected in a distance from a point.
- Define Num(s,d;S) as the number of points from S in a circle of diameter d from point s.
- Then we can compute the probability that more than one point exists with a distance d of an observed point.

$$E_{\boldsymbol{S}}\left(\sum_{\boldsymbol{s}_i \in \boldsymbol{S}} 1(Num(\boldsymbol{s}_i), d; \boldsymbol{S}) > 0\right) = \lambda |\boldsymbol{D}| P(Num_d(\boldsymbol{s}, d; \boldsymbol{S}) > 0)$$

- The term $P(Num_d(\mathbf{s}, d; \mathbf{S}) > 0$ is referred to as G(d). G(d) increases in d.
- The G(d) function is similar to a CDF of the **nearest neighbor** distance
- A similar statistic is the F(d) function. Whereas G(d) is centered at the observed s_i , F(d) is defined at any arbitrary point. Hence this is a CDF for empty space.
- QUESTION: Assume a CSR Poisson process with constant intensity λ , calculate F(d) or G(d) (they are the same).

•	Discuss how to create an empirical estimate of $\hat{G}(d)$, given a realization of a point process.
•	With bounded area, edge correction procedures are necessary. $Hence,\ consider$
	$\hat{G}(d) = \frac{\sum_{i} 1(d_i \le d < b_i)}{\sum_{i} 1(d < b_i)},$
	where b_i is the distance from s_i to the edge and d_i is the distance to the nearest neighbor of s_i .
•	The empirical estimates of G or H can be compared with G or F using a QQ-plot.
	Discuss: What would be the implications of shorter tails or longer tails than expected under CSR?
•	shorter tail = $clustering/attraction$, $longer\ tail = inhibition/repulsion$
•	Describe a natural process that might cluster and another than might repel

spatstat

Consider a dataset with medieval grave site information.

```
## Marked planar point pattern: 143 points
## Average intensity 5.70489e-06 points per square unit
##
## Coordinates are integers
## i.e. rounded to the nearest unit
##
## Multitype:
             frequency proportion intensity
## unaffected 113 0.7902098 4.50806e-06
## affected
                    30 0.2097902 1.19683e-06
##
## Window: polygonal boundary
## single connected closed polygon with 16 vertices
## enclosing rectangle: [4376.579, 10511.88] x [2809.612, 10702.971] units
                       (6135 x 7893 units)
## Window area = 25066200 square units
## Fraction of frame area: 0.518
```

grave

envelope(grave, Fest, verbose = F)

envelope(grave, Gest, verbose = F)

Estimating the intensity Function

- With CSR, the intensity function is trivial
- Discuss: given a realization of a point process, how could an intensity function be estimated?

Now using the plot(density(.)) function, plot and interpret the empirical intensity for the grave dataset along with the four synthetic examples.

density(grave)

Now let's return to the four datasets we looked at earlier. You can use envelope but first need to create ppp objects.

```
x1 <- ppp(x[1:n[1]], y[1:n[1]])
plot(envelope(x1, Fest, verbose = F))</pre>
```

envelope(x1, Fest, verbose = F)

plot(envelope(x1, Gest, verbose = F))

envelope(x1, Gest, verbose = F)

plot(density(x1))

density(x1)


```
x2 \leftarrow ppp(x[(n[1] + 1):(n[1] + n[2])], y[(n[1] + 1):(n[1] + n[2])])

plot(envelope(x2, Fest, verbose = F))
```

envelope(x2, Fest, verbose = F)

plot(envelope(x2, Gest, verbose = F))

envelope(x2, Gest, verbose = F)

plot(density(x2))

density(x2)


```
x3 \leftarrow ppp(x[(n[1] + n[2] + 1):(n[1] + n[2] + n[3])],
y[(n[1] + n[2] + 1):(n[1] + n[2] + n[3])])
plot(envelope(x3, Fest, verbose = F))
```

envelope(x3, Fest, verbose = F)

plot(envelope(x3, Gest, verbose = F))

envelope(x3, Gest, verbose = F)

plot(density(x3))

density(x3)


```
x4 \leftarrow ppp(x[(n[1] + n[2] + n[3] + 1):(n[1] + n[2] + n[3] + n[4])],

y[(n[1] + n[2] + n[3] + 1):(n[1] + n[2] + n[3] + n[4])])

plot(envelope(x4, Fest, verbose = F))
```

envelope(x4, Fest, verbose = F)


```
plot(envelope(x4, Gest, verbose = F))
```

envelope(x4, Gest, verbose = F)

plot(density(x4))

density(x4)

