Dirac and Majorana Mass

Atul Singh Arora

Indian Institute of Science Education and Research Mohali

April 18, 2015

Overview of the Talk

Outline

Introduction

Prerequisites

Quantum theory of fields

Dirac and Majorana Mass

Physical Relevance

Closing Remarks

Introduction

• Inertia | Newton

- Inertia | Newton
- Special Relativity | $p^2 = m^2$

- Inertia | Newton
- Special Relativity | $p^2 = m^2$
- Particle Physics
 - QED (Quantum Electrodynamics)

- Inertia | Newton
- Special Relativity | $p^2 = m^2$
- Particle Physics
 - QED (Quantum Electrodynamics)
 - Classical Electrodynamics gauge field: A^{μ}

- Inertia | Newton
- Special Relativity $| p^2 = m^2$
- Particle Physics
 - QED (Quantum Electrodynamics)
 - Classical Electrodynamics gauge field: A^μ
 - Quantize | Massless Gauge Field

- Inertia | Newton
- Special Relativity $|p^2 = m^2$
- Particle Physics
 - QED (Quantum Electrodynamics)
 - Classical Electrodynamics gauge field: A^{μ}
 - Quantize | Massless Gauge Field
 - Standard Model
 - Massive Gauge fields | Spontaneous Symmetry Breaking

- Inertia | Newton
- Special Relativity $| p^2 = m^2$
- Particle Physics
 - QED (Quantum Electrodynamics)
 - Classical Electrodynamics gauge field: A^μ
 - Quantize | Massless Gauge Field
 - Standard Model
 - Massive Gauge fields | Spontaneous Symmetry Breaking
 - Scalar field | Higgs

- Inertia | Newton
- Special Relativity $| p^2 = m^2$
- Particle Physics
 - QED (Quantum Electrodynamics)
 - Classical Electrodynamics gauge field: A^μ
 - Quantize | Massless Gauge Field
 - Standard Model
 - Massive Gauge fields | Spontaneous Symmetry Breaking
 - Scalar field | Higgs
 - Beyond Standard Model
 - Neutrino Oscillations

- Inertia | Newton
- Special Relativity $|p^2 = m^2$
- Particle Physics
 - QED (Quantum Electrodynamics)
 - Classical Electrodynamics gauge field: A^μ
 - Quantize | Massless Gauge Field
 - Standard Model
 - Massive Gauge fields | Spontaneous Symmetry Breaking
 - Scalar field | Higgs
 - Beyond Standard Model
 - Neutrino Oscillations
 - Neutrino Mass

- Inertia | Newton
- Special Relativity $| p^2 = m^2$
- Particle Physics
 - QED (Quantum Electrodynamics)
 - Classical Electrodynamics gauge field: A^μ
 - Quantize | Massless Gauge Field
 - Standard Model
 - Massive Gauge fields | Spontaneous Symmetry Breaking
 - Scalar field | Higgs
 - Beyond Standard Model
 - Neutrino Oscillations
 - Neutrino Oscillations
 - Neutrino Mass

- From CM, recall
 - Lagrangian Formalism

- From CM, recall
 - Lagrangian Formalism
 - Euler Lagrange equations

- From CM, recall
 - Lagrangian Formalism
 - Euler Lagrange equations
 - Noether's Theorem relating conserved quantities and continuous symmetries

- From CM, recall
 - Lagrangian Formalism
 - Euler Lagrange equations
 - Noether's Theorem relating conserved quantities and continuous symmetries
- From STR, I'll use
 - $\eta^{\mu\nu} = \text{diag}(1, -\vec{1}) \; (\text{NB} : \eta^T = \eta^{-1} = \eta)$

- From CM, recall
 - Lagrangian Formalism
 - Euler Lagrange equations
 - Noether's Theorem relating conserved quantities and continuous symmetries
- From STR, I'll use
 - $\eta^{\mu\nu} = \text{diag}(1, -\vec{1}) \; (\text{NB} : \eta^T = \eta^{-1} = \eta)$
 - $c = 1, \hbar = 1$

- From CM, recall
 - Lagrangian Formalism
 - Euler Lagrange equations
 - Noether's Theorem relating conserved quantities and continuous symmetries
- From STR, I'll use
 - $\eta^{\mu\nu} = \text{diag}(1, -\vec{1}) \; (\text{NB: } \eta^T = \eta^{-1} = \eta)$
 - $c = 1, \hbar = 1$
 - indices
 - *i*, *j*, *k*, *l* etc. run from 1 to 3

- From CM, recall
 - Lagrangian Formalism
 - Euler Lagrange equations
 - Noether's Theorem relating conserved quantities and continuous symmetries
- From STR, I'll use
 - $\eta^{\mu\nu} = \text{diag}(1, -\vec{1}) \; (\text{NB: } \eta^T = \eta^{-1} = \eta)$
 - $c = 1, \hbar = 1$
 - indices
 - i, j, k, l etc. run from 1 to 3
 - α, β, γ etc. run from 0 to 3

- From CM, recall
 - Lagrangian Formalism
 - Euler Lagrange equations
 - Noether's Theorem relating conserved quantities and continuous symmetries
- From STR, I'll use
 - $\eta^{\mu\nu} = \text{diag}(1, -\vec{1}) \; (\text{NB: } \eta^T = \eta^{-1} = \eta)$
 - $c = 1, \hbar = 1$
 - indices
 - i, j, k, l etc. run from 1 to 3
 - α, β, γ etc. run from 0 to 3

- I'll need the 4 vector notation. Recall
 - Summation Convention $A^{lpha}B_{lpha}=\sum_{lpha=0}^4 A^{lpha}B_{lpha}$

- I'll need the 4 vector notation. Recall
 - Summation Convention $A^{\alpha}B_{\alpha}=\sum_{\alpha=0}^{4}A^{\alpha}B_{\alpha}$
 - if $A^{\alpha}=(A^0,\vec{A})$, then $A_{\alpha}\equiv\eta_{\alpha\beta}A^{\beta}=(A^0,-\vec{A})$

- I'll need the 4 vector notation. Recall
 - Summation Convention $A^{\alpha}B_{\alpha}=\sum_{\alpha=0}^{4}A^{\alpha}B_{\alpha}$
 - if $A^{\alpha}=(A^{0},\vec{A})$, then $A_{\alpha}\equiv\eta_{\alpha\beta}A^{\beta}=(A^{0},-\vec{A})$ λ^{α}_{β} , $A^{\alpha}\to A'^{\alpha}=\lambda^{\alpha}_{\beta}A^{\beta}$

- I'll need the 4 vector notation. Recall
 - Summation Convention $A^{\alpha}B_{\alpha}=\sum_{\alpha=0}^{4}A^{\alpha}B_{\alpha}$
 - if $A^{\alpha}=(A^0,\vec{A})$, then $A_{\alpha}\equiv\eta_{\alpha\beta}A^{\overline{\beta}}=(A^0,-\vec{A})$
 - λ^{α}_{β} , $A^{\alpha} \rightarrow A'^{\alpha} = \lambda^{\alpha}_{\beta} A^{\beta}$
 - contracted indices don't transform (NB: $\lambda^T \eta \lambda = \eta$)

- I'll need the 4 vector notation. Recall
 - Summation Convention $A^{\alpha}B_{\alpha}=\sum_{\alpha=0}^{4}A^{\alpha}B_{\alpha}$
 - if $A^{\alpha}=(A^0,\vec{A})$, then $A_{\alpha}\equiv\eta_{\alpha\beta}A^{\beta}=(A^0,-\vec{A})$
 - λ_{β}^{α} , $A^{\alpha} \rightarrow A'^{\alpha} = \lambda_{\beta}^{\alpha} A^{\beta}$
 - contracted indices don't transform (NB: $\lambda^T \eta \lambda = \eta$)
- From QM, I'll need the following. Recall
 - State: $|\psi\rangle$ (or $\psi(x)=\langle x|\psi\rangle$)

- I'll need the 4 vector notation. Recall
 - Summation Convention $A^{\alpha}B_{\alpha} = \sum_{\alpha=0}^{4} A^{\alpha}B_{\alpha}$
 - if $A^{\alpha}=(A^{0},\vec{A})$, then $A_{\alpha}\equiv\eta_{\alpha\beta}A^{\beta}=(A^{0},-\vec{A})$
 - λ_{β}^{α} , $A^{\alpha} \rightarrow A'^{\alpha} = \lambda_{\beta}^{\alpha} A^{\beta}$
 - contracted indices don't transform (NB $\lambda^T \eta \lambda = \eta$)
- From QM, I'll need the following. Recall
 - State: $|\psi\rangle$ (or $\psi(x)=\langle x|\psi\rangle$)
 - Time Evolution: For H (st. $H^{\dagger}=H$; where $H^{\dagger}\equiv H^{*T}$) we have

$$H\ket{\psi}=i\hbarrac{\partial}{\partial t}\ket{\psi}$$

- I'll need the 4 vector notation. Recall
 - Summation Convention $A^{\alpha}B_{\alpha} = \sum_{\alpha=0}^{4} A^{\alpha}B_{\alpha}$
 - if $A^{\alpha}=(A^0,\vec{A})$, then $A_{\alpha}\equiv\eta_{\alpha\beta}A^{\beta}=(A^0,-\vec{A})$
 - λ_{β}^{α} , $A^{\alpha} \rightarrow A'^{\alpha} = \lambda_{\beta}^{\alpha} A^{\beta}$
 - contracted indices don't transform (NB: $\lambda^T \eta \lambda = \eta$)
- From QM, I'll need the following. Recall
 - State: $|\psi\rangle$ (or $\psi(x) = \langle x|\psi\rangle$)
 - Time Evolution: For H (st. $H^{\dagger}=H$, where $H^{\dagger}\equiv H^{*T}$) we have

$$H\ket{\psi}=i\hbarrac{\partial}{\partial t}\ket{\psi}$$

and

$$|\psi(t)
angle = e^{(i\hbar)^{-1}Ht} |\psi(0)
angle$$

NB: $U \equiv e^{(i\hbar)^{-1}Ht}$ is unitary, viz. $U^\dagger = U^{-1}$

- I'll need the 4 vector notation. Recall
 - Summation Convention $A^{\alpha}B_{\alpha}=\sum_{\alpha=0}^{4}A^{\alpha}B_{\alpha}$
 - if $A^{\alpha}=(A^{0},\vec{A})$, then $A_{\alpha}\equiv\eta_{\alpha\beta}A^{\beta}=(A^{0},-\vec{A})$
 - λ_{β}^{α} , $A^{\alpha} \rightarrow A'^{\alpha} = \lambda_{\beta}^{\alpha} A^{\beta}$
 - contracted indices don't transform (NB: $\lambda^T \eta \lambda = \eta$)
- From QM, I'll need the following. Recall
 - State: $|\psi\rangle$ (or $\psi(x) = \langle x|\psi\rangle$)
 - Time Evolution: For H (st. $H^{\dagger}=H$, where $H^{\dagger}\equiv H^{*T}$) we have

$$H\ket{\psi}=i\hbarrac{\partial}{\partial t}\ket{\psi}$$

and

$$|\psi(t)
angle = e^{(i\hbar)^{-1}Ht} |\psi(0)
angle$$

NB. $U \equiv e^{(i\hbar)^{-1}Ht}$ is unitary, viz. $U^{\dagger} = U^{-1}$

- Measurement/Observables
 - Collapse into eigenstate of operator corresponding to the measurement

- I'll need the 4 vector notation. Recall
 - Summation Convention $A^{\alpha}B_{\alpha}=\sum_{\alpha=0}^{4}A^{\alpha}B_{\alpha}$
 - if $A^{\alpha}=(A^0,\vec{A})$, then $A_{\alpha}\equiv\eta_{\alpha\beta}A^{\beta}=(A^0,-\vec{A})$
 - λ_{β}^{α} , $A^{\alpha} \rightarrow A'^{\alpha} = \lambda_{\beta}^{\alpha} A^{\beta}$
 - contracted indices don't transform (NB: $\lambda^T \eta \lambda = \eta$)
- From QM, I'll need the following. Recall
 - State: $|\psi\rangle$ (or $\psi(x) = \langle x|\psi\rangle$)
 - Time Evolution: For H (st. $H^{\dagger}=H$, where $H^{\dagger}\equiv H^{*T}$) we have

$$H\ket{\psi}=i\hbarrac{\partial}{\partial t}\ket{\psi}$$

and

$$|\psi(t)\rangle = e^{(i\hbar)^{-1}Ht} |\psi(0)\rangle$$

NB. $U \equiv e^{(i\hbar)^{-1}Ht}$ is unitary, viz. $U^{\dagger} = U^{-1}$

- Measurement/Observables
 - Collapse into eigenstate of operator corresponding to the measurement
 - Collapse to state $|n\rangle$ with probability $|\langle n|\psi\rangle|^2$

- I'll need the 4 vector notation. Recall
 - Summation Convention $A^{\alpha}B_{\alpha}=\sum_{\alpha=0}^{4}A^{\alpha}B_{\alpha}$
 - if $A^{\alpha}=(A^0,\vec{A})$, then $A_{\alpha}\equiv\eta_{\alpha\beta}A^{\beta}=(A^0,-\vec{A})$
 - λ^{α}_{β} , $A^{\alpha} \rightarrow A'^{\alpha} = \lambda^{\alpha}_{\beta} A^{\beta}$
 - contracted indices don't transform (NB: $\lambda^T \eta \lambda = \eta$)
- From QM, I'll need the following. Recall
 - State: $|\psi\rangle$ (or $\psi(x) = \langle x|\psi\rangle$)
 - Time Evolution: For H (st. $H^{\dagger}=H$; where $H^{\dagger}\equiv H^{*T}$) we have

$$H\ket{\psi}=i\hbarrac{\partial}{\partial t}\ket{\psi}$$

and

$$|\psi(t)
angle = e^{(i\hbar)^{-1}Ht} |\psi(0)
angle$$

NB. $U \equiv e^{(i\hbar)^{-1}Ht}$ is unitary, viz. $U^{\dagger} = U^{-1}$

- Measurement / Observables
 - Collapse into eigenstate of operator corresponding to the measurement
 - Collapse to state $|n\rangle$ with probability $|\langle n|\psi\rangle|^2$
- Basics of quantum harmonic oscillator using a a[†]

• I'll use the following pauli matrices

$$\sigma^1= \qquad \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$
 • I'll use the following pauli matrices $\sigma^2= \qquad \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)$
$$\sigma^3= \qquad \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

$$\sigma^1= \qquad \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$
 • I'll use the following pauli matrices $\sigma^2= \qquad \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)$
$$\sigma^3= \qquad \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

Terminology from particle physics

$$\sigma^1 = \left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight)$$

• I'll use the following pauli matrices $\sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

$$\sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Terminology from particle physics
 - Leptons: Eg. Electron, Electron Neutrino

Prerequisites

$$\sigma^1 = \left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight)$$

• I'll use the following pauli matrices $\sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

$$\sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Terminology from particle physics
 - Leptons: Eg. Electron, Electron Neutrino (beta decay, massless, rather inert)

Prerequisites

$$\sigma^1 = \left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight)$$

• I'll use the following pauli matrices $\sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

$$\sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Terminology from particle physics
 - Leptons: Eg. Electron, Electron Neutrino (beta decay, massless, rather inert)
 - Quarks

Towards a quantum theory of fields

• All electrons are identical

- All electrons are identical
- Unification of QM and STR

- All electrons are identical
- Unification of QM and STR
- Crisis: Can't predict the result of collision of particles

- All electrons are identical
- Unification of QM and STR
- Crisis: Can't predict the result of collision of particles

Targets of the new theory

Creation and destruction

- All electrons are identical
- Unification of QM and STR
- Crisis: Can't predict the result of collision of particles

Targets of the new theory

- Creation and destruction
- Consistent with STR (high energy)

- All electrons are identical
- Unification of QM and STR
- Crisis: Can't predict the result of collision of particles

Targets of the new theory

- Creation and destruction
- Consistent with STR (high energy)
- Predict probabilities

$$\bullet \ \left(E^2-\vec{p}^2\right)\psi=m^2\psi$$

•
$$(E^2 - \vec{p}^2) \psi = m^2 \psi$$

and put $E \to i \frac{\partial}{\partial t}, \vec{p} \to -i \vec{\nabla}$ to get

•
$$(E^2 - \vec{p}^2) \psi = m^2 \psi$$

and put $E \to i \frac{\partial}{\partial t}, \vec{p} \to -i \vec{\nabla}$ to get
$$(\frac{\partial}{\partial t}^2 - \vec{\nabla}^2) \psi = m^2 \psi$$

•
$$(E^2 - \vec{p}^2) \psi = m^2 \psi$$

and put $E \to i \frac{\partial}{\partial t}, \vec{p} \to -i \vec{\nabla}$ to get

$$(rac{\partial}{\partial t}^2 - \vec{
abla}^2)\psi = m^2\psi$$

(Klein Gordon Equation)

Causality

• $(E^2 - \vec{p}^2) \psi = m^2 \psi$ and put $E \to i \frac{\partial}{\partial t}, \vec{p} \to -i \vec{\nabla}$ to get

$$(\frac{\partial}{\partial t}^2 - \vec{\nabla}^2)\psi = m^2\psi$$

(Klein Gordon Equation)

- Causality
- Negative Energies (no stable ground state)

• $(E^2 - \vec{p}^2) \psi = m^2 \psi$ and put $E \to i \frac{\partial}{\partial t}, \vec{p} \to -i \vec{\nabla}$ to get

$$(\frac{\partial}{\partial t}^2 - \vec{\nabla}^2)\psi = m^2\psi$$

(Klein Gordon Equation)

- Causality
- Negative Energies (no stable ground state)
- Expected: t parameter, \vec{x} operator

• One field for each type of particle

• One field for each type of particle (Wheeler's idea)

- One field for each type of particle (Wheeler's idea)
- creates and destroys particles

- One field for each type of particle (Wheeler's idea)
- creates and destroys particles
- Interacting fields, interacting particles

- One field for each type of particle (Wheeler's idea)
- creates and destroys particles
- Interacting fields, interacting particles

• Classical field | real scalar (number at every space time point)

- Classical field | real scalar (number at every space time point)
- Demand Klein Gordon, then

$$\mathcal{L}=rac{1}{2}\left(\partial^{\mu}\phi\partial_{\mu}\phi+m^{2}\phi
ight)$$

- Classical field | real scalar (number at every space time point)
- Demand Klein Gordon, then

$$\mathcal{L}=rac{1}{2}\left(\partial^{\mu}\phi\partial_{\mu}\phi+m^{2}\phi
ight)$$

• $\phi = \phi(t, \vec{x})$ which I assume I can write as

- Classical field | real scalar (number at every space time point)
- Demand Klein Gordon, then

$$\mathcal{L}=rac{1}{2}\left(\partial^{\mu}\phi\partial_{\mu}\phi+m^{2}\phi
ight)$$

• $\phi = \phi(t, \vec{x})$ which I assume I can write as

$$\phi = \int rac{d^3p}{\left(2\pi\right)^3\sqrt{2\omega_p}}\,\left(ae^{i\mathsf{px}} + a^\dagger e^{-i\mathsf{px}}
ight)$$

where $a = a(\vec{p})$

- Classical field | real scalar (number at every space time point)
- Demand Klein Gordon, then

$$\mathcal{L}=rac{1}{2}\left(\partial^{\mu}\phi\partial_{\mu}\phi+m^{2}\phi
ight)$$

• $\phi = \phi(t, \vec{x})$ which I assume I can write as

$$\phi = \int \frac{d^3p}{\left(2\pi\right)^3 \sqrt{2\omega_p}} \left(ae^{ipx} + a^{\dagger}e^{-ipx} \right)$$

where $a = a(\vec{p})$

• π from \mathcal{L} .

- Classical field | real scalar (number at every space time point)
- Demand Klein Gordon, then

$$\mathcal{L}=rac{1}{2}\left(\partial^{\mu}\phi\partial_{\mu}\phi+m^{2}\phi
ight)$$

• $\phi = \phi(t, \vec{x})$ which I assume I can write as

$$\phi = \int rac{d^3p}{\left(2\pi\right)^3 \sqrt{2\omega_p}} \left(a \mathrm{e}^{i\mathsf{p}\mathsf{x}} + a^\dagger e^{-i\mathsf{p}\mathsf{x}}\right)$$

where $a = a(\vec{p})$

- π from \mathcal{L} .
- Quantum Field $| [\phi(t, \mathbf{x}), \pi(t, \mathbf{x}')] = i\delta(\mathbf{x} \mathbf{x}')$

•
$$[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] \sim \delta(\mathbf{p} - \mathbf{p}')$$

•
$$[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] \sim \delta(\mathbf{p} - \mathbf{p}')$$

$$H \sim a^{\dagger}a + \frac{1}{2}[a(\mathbf{p}), a^{\dagger}(\mathbf{p})]$$

•
$$[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] \sim \delta(\mathbf{p} - \mathbf{p}')$$

$$H \sim a^{\dagger}a + \frac{1}{2}[a(\mathbf{p}), a^{\dagger}(\mathbf{p})]$$

• Similarity with Quantum Harmonic Oscillator

•
$$[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] \sim \delta(\mathbf{p} - \mathbf{p}')$$

$$H \sim a^{\dagger}a + \frac{1}{2}[a(\mathbf{p}), a^{\dagger}(\mathbf{p})]$$

- Similarity with Quantum Harmonic Oscillator
- $a^{\dagger}(\vec{p}) | \text{vacuum} \rangle$

•
$$[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] \sim \delta(\mathbf{p} - \mathbf{p}')$$

•

$$H\sim a^{\dagger}a+rac{1}{2}[a(\mathbf{p}),a^{\dagger}(\mathbf{p})]$$

- Similarity with Quantum Harmonic Oscillator
- $a^{\dagger}(\vec{p}) | \text{vacuum} \rangle$
- Noether's theorem + Space-time invariance of $\mathcal{L} o$ physical momentum and energy operators

•
$$[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] \sim \delta(\mathbf{p} - \mathbf{p}')$$

 $H \sim a^{\dagger} a + rac{1}{2} [a(\mathbf{p}), a^{\dagger}(\mathbf{p})]$

- $a^{\dagger}(\vec{p}) | \text{vacuum} \rangle$
- Noether's theorem + Space-time invariance of $\mathcal{L} o$ physical momentum and energy operators
- To be a particle, it must satisfy $E^2 \vec{p}^2 = m^2$

•
$$[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] \sim \delta(\mathbf{p} - \mathbf{p}')$$

•

$$H \sim a^{\dagger}a + \frac{1}{2}[a(\mathbf{p}), a^{\dagger}(\mathbf{p})]$$

- Similarity with Quantum Harmonic Oscillator
- $a^{\dagger}(\vec{p}) | \text{vacuum} \rangle$
- Noether's theorem + Space-time invariance of $\mathcal{L} o$ physical momentum and energy operators
- To be a particle, it must satisfy $E^2 \vec{p}^2 = m^2$ and it does

•
$$[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] \sim \delta(\mathbf{p} - \mathbf{p}')$$

 $H \sim a^{\dagger} a + \frac{1}{2} [a(\mathbf{p}), a^{\dagger}(\mathbf{p})]$

- Similarity with Quantum Harmonic Oscillator
- $a^{\dagger}(\vec{p}) | \text{vacuum} \rangle$
- Noether's theorem + Space-time invariance of $\mathcal{L} o$ physical momentum and energy operators
- To be a particle, it must satisfy $E^2 \vec{p}^2 = m^2$ and it does
- Conclusion: Parameter m is mass

Non-interacting field

- Non-interacting field
- Observable fields must interact

- Non-interacting field
- Observable fields must interact
- QFT | perturbation theory, expanded around the non-interacting part

- Non-interacting field
- Observable fields must interact
- QFT | perturbation theory, expanded around the non-interacting part
- results in Feynman Rules

- Non-interacting field
- Observable fields must interact
- QFT | perturbation theory, expanded around the non-interacting part
- results in Feynman Rules (Prof. Mukunda story)

- Non-interacting field
- Observable fields must interact
- QFT | perturbation theory, expanded around the non-interacting part
- results in Feynman Rules (Prof. Mukunda story)
 - Decay Rates

- Non-interacting field
- · Observable fields must interact
- QFT | perturbation theory, expanded around the non-interacting part
- results in Feynman Rules (Prof. Mukunda story)
 - Decay Rates
 - Scattering Cross sections

- Non-interacting field
- Observable fields must interact
- QFT | perturbation theory, expanded around the non-interacting part
- results in Feynman Rules (Prof. Mukunda story)
 - Decay Rates
 - Scattering Cross sections
- Interacting case, m no longer the mass

- Non-interacting field
- Observable fields must interact
- QFT | perturbation theory, expanded around the non-interacting part
- results in Feynman Rules (Prof. Mukunda story)
 - Decay Rates
 - Scattering Cross sections
- Interacting case, m no longer the mass
 - defined as pole of the 'full propagator'

- Non-interacting field
- Observable fields must interact
- QFT | perturbation theory, expanded around the non-interacting part
- results in Feynman Rules (Prof. Mukunda story)
 - Decay Rates
 - Scattering Cross sections
- Interacting case, m no longer the mass
 - defined as pole of the 'full propagator' (I'll leave it at that)

Dirac and Majorana Mass

$$(i\partial_{\mu}\gamma^{\mu}-m)\psi=0$$

 $(i\partial_{\mu}\gamma^{\mu}-m)\psi=0$

The Dirac Equation

$$\begin{split} &(i\partial_{\mu}\gamma^{\mu}-m)(i\partial_{\nu}\gamma^{\nu}-m)\\ =&(-\partial_{\mu}\partial_{\nu}\gamma^{\mu}\gamma^{\nu}-im\partial_{\mu}\gamma^{\mu})-(im\partial_{\nu}\gamma^{\nu}-m^{2})\\ =&(-\frac{1}{2}\partial_{\mu}\partial_{\nu}\{\gamma^{\mu},\gamma^{\nu}\}-2m[i(\partial_{\mu}\gamma^{\mu})]+m^{2})\\ =&(-\frac{1}{2}\partial_{\mu}\partial_{\nu}\{\gamma^{\mu},\gamma^{\nu}\}-2m^{2}+m^{2})\\ =&(-\frac{1}{2}\partial_{\mu}\partial_{\nu}\{\gamma^{\mu},\gamma^{\nu}\}-m^{2}) \end{split}$$

$$(i\partial_{\mu}\gamma^{\mu}-m)\psi=0$$

•

$$\begin{split} &(i\partial_{\mu}\gamma^{\mu} - m)(i\partial_{\nu}\gamma^{\nu} - m) \\ = &(-\partial_{\mu}\partial_{\nu}\gamma^{\mu}\gamma^{\nu} - im\partial_{\mu}\gamma^{\mu}) - (im\partial_{\nu}\gamma^{\nu} - m^{2}) \\ = &(-\frac{1}{2}\partial_{\mu}\partial_{\nu}\{\gamma^{\mu}, \gamma^{\nu}\} - 2m[i(\partial_{\mu}\gamma^{\mu})] + m^{2}) \\ = &(-\frac{1}{2}\partial_{\mu}\partial_{\nu}\{\gamma^{\mu}, \gamma^{\nu}\} - 2m^{2} + m^{2}) \\ = &(-\frac{1}{2}\partial_{\mu}\partial_{\nu}\{\gamma^{\mu}, \gamma^{\nu}\} - m^{2}) \end{split}$$

• To be Klein Gordon, $\{\gamma^\mu,\gamma^
u\}=-2\delta^{\mu
u}$

$$(i\partial_{\mu}\gamma^{\mu}-m)(i\partial_{\nu}\gamma^{\nu}-m) = (-\partial_{\mu}\partial_{\nu}\gamma^{\mu}\gamma^{\nu}-im\partial_{\mu}\gamma^{\mu})-(im\partial_{\nu}\gamma^{\nu}-m^{2})$$

 $(i\partial_{\mu}\gamma^{\mu}-m)\psi=0$

$$= (-\frac{1}{2}\partial_{\mu}\partial_{\nu}\{\gamma^{\mu}, \gamma^{\nu}\} - 2m[i(\partial_{\mu}\gamma^{\mu})] + m^{2})$$

$$= (-\frac{1}{2}\partial_{\mu}\partial_{\nu}\{\gamma^{\mu}, \gamma^{\nu}\} - 2m^{2} + m^{2})$$

$$= (-\frac{1}{2}\partial_{\mu}\partial_{\nu}\{\gamma^{\mu}, \gamma^{\nu}\} - m^{2})$$

- To be Klein Gordon, $\{\gamma^{\mu},\gamma^{
 u}\}=-2\delta^{\mu
 u}$
- Claim γ^μ are 4 \times 4 matrices and ψ then is a 4-component object, called a Dirac spinor.

• Hat:

$$egin{aligned} \sigma^{\mu} \equiv (1,ec{\sigma}) & \overline{\sigma}^{\mu} \equiv (1,-ec{\sigma}) \ \gamma^{\mu} \equiv & \left(egin{array}{cc} 0 & \sigma^{\mu} \ \overline{\sigma}^{\mu} & 0 \end{array}
ight) \end{aligned}$$

Hat:

$$egin{aligned} \sigma^{\mu} &\equiv (1,ec{\sigma}) & \overline{\sigma}^{\mu} &\equiv (1,-ec{\sigma}) \ \gamma^{\mu} &\equiv & \left(egin{array}{cc} 0 & \sigma^{\mu} \ \overline{\sigma}^{\mu} & 0 \end{array}
ight) \end{aligned}$$

• Claim: commutation holds

• Claim:

$$\psi = \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight)$$

under a Lorentz boost $oldsymbol{eta}$ and a rotation $oldsymbol{ heta}$

Claim:

$$\psi = \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight)$$

under a Lorentz boost $oldsymbol{eta}$ and a rotation $oldsymbol{ heta}$

$$\psi_L \to e^{-i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2}} \psi_L = S_L \psi_L$$
$$\psi_R \to e^{-i\theta \cdot \frac{\sigma}{2} + \beta \cdot \frac{\sigma}{2}} \psi_R = S_R \psi_R$$

Claim:

$$\psi = \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight)$$

under a Lorentz boost $oldsymbol{eta}$ and a rotation $oldsymbol{ heta}$

$$\psi_L \to e^{-i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2}} \psi_L = S_L \psi_L$$
$$\psi_R \to e^{-i\theta \cdot \frac{\sigma}{2} + \beta \cdot \frac{\sigma}{2}} \psi_R = S_R \psi_R$$

which in a compact form, I'll write as

$$\psi
ightarrow \Lambda_{1/2} \psi$$

• $\psi^{\dagger}\psi$

Claim:

$$\psi = \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight)$$

under a Lorentz boost $oldsymbol{eta}$ and a rotation $oldsymbol{ heta}$

$$\psi_L \to e^{-i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2}} \psi_L = S_L \psi_L$$
$$\psi_R \to e^{-i\theta \cdot \frac{\sigma}{2} + \beta \cdot \frac{\sigma}{2}} \psi_R = S_R \psi_R$$

which in a compact form, I'll write as

$$\psi
ightarrow \Lambda_{1/2} \psi$$

• $\psi^\dagger \psi$ | not Lorentz invariant

Claim:

$$\psi = \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight)$$

under a Lorentz boost $oldsymbol{eta}$ and a rotation $oldsymbol{ heta}$

$$\psi_L \to e^{-i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2}} \psi_L = S_L \psi_L$$
$$\psi_R \to e^{-i\theta \cdot \frac{\sigma}{2} + \beta \cdot \frac{\sigma}{2}} \psi_R = S_R \psi_R$$

which in a compact form, I'll write as

$$\psi
ightarrow \Lambda_{1/2} \psi$$

- $\psi^\dagger \psi$ | not Lorentz invariant
- S_L and S_R are not unitary

• Claim:

$$\psi^\dagger \gamma^0 o \psi^\dagger \gamma^0 \Lambda_{1/2}^{-1}$$

• Claim:

$$\psi^\dagger \gamma^0 o \psi^\dagger \gamma^0 \Lambda_{1/2}^{-1}$$

• I define

$$\overline{\psi} \equiv \psi^\dagger \gamma^0$$

so that

• Claim:

$$\psi^\dagger \gamma^0 o \psi^\dagger \gamma^0 \Lambda_{1/2}^{-1}$$

I define

$$\overline{\psi} \equiv \psi^\dagger \gamma^0$$

so that

$$\overline{\psi}
ightarrow \overline{\psi} \Lambda_{1/2}^{-1}$$

• Claim:

$$\psi^\dagger \gamma^0 o \psi^\dagger \gamma^0 \Lambda_{1/2}^{-1}$$

I define

$$\overline{\psi} \equiv \psi^\dagger \gamma^0$$

so that

$$\overline{\psi}
ightarrow \overline{\psi} \Lambda_{1/2}^{-1}$$

ullet $\overline{\psi}\psi$ is Lorentz invariant

• Claim:

$$\psi^\dagger \gamma^0 o \psi^\dagger \gamma^0 \Lambda_{1/2}^{-1}$$

I define

$$\overline{\psi} \equiv \psi^\dagger \gamma^0$$

so that

$$\overline{\psi}
ightarrow \overline{\psi} \Lambda_{1/2}^{-1}$$

- ullet $\overline{\psi}\psi$ is Lorentz invariant
- Claim: $\overline{\psi}\gamma^{\mu}\psi$ transforms as a four-vector.

• Claim:

$$\psi^\dagger \gamma^0 o \psi^\dagger \gamma^0 \Lambda_{1/2}^{-1}$$

I define

$$\overline{\psi} \equiv \psi^\dagger \gamma^0$$

so that

$$\overline{\psi}
ightarrow \overline{\psi} \Lambda_{1/2}^{-1}$$

- ullet $\overline{\psi}\psi$ is Lorentz invariant
- Claim: $\overline{\psi}\gamma^{\mu}\psi$ transforms as a four-vector.

•

$$\mathcal{L}_{\mathsf{Dirac}} = \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi$$

• Claim:

$$\psi^\dagger \gamma^0 o \psi^\dagger \gamma^0 \Lambda_{1/2}^{-1}$$

I define

$$\overline{\psi} \equiv \psi^\dagger \gamma^0$$

so that

$$\overline{\psi}
ightarrow \overline{\psi} \Lambda_{1/2}^{-1}$$

- ullet $\overline{\psi}\psi$ is Lorentz invariant
- Claim: $\overline{\psi}\gamma^{\mu}\psi$ transforms as a four-vector.

•

$$\mathcal{L}_{\mathsf{Dirac}} = \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi$$

is therefore Lorentz invariant

Recall:

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} - \frac{\partial \mathcal{L}}{\partial \phi} = 0$$

Recall:

$$\frac{\partial \mathcal{L}}{\partial (\partial_{u} \phi)} - \frac{\partial \mathcal{L}}{\partial \phi} = 0$$

(treating ψ and $\overline{\psi}$ as independent) for $\overline{\psi}$ yeilds the Dirac equation in ψ .

9

$$m\overline{\psi}\psi=m\left(egin{array}{cc} \psi_L^\dagger & \psi_R^\dagger \end{array}
ight)\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight)\left(egin{array}{cc} \psi_L \ \psi_R \end{array}
ight)=m(\psi_R^\dagger\psi_L+\psi_L^\dagger\psi_R)$$

Recall:

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} - \frac{\partial \mathcal{L}}{\partial \phi} = 0$$

(treating ψ and $\overline{\psi}$ as independent) for $\overline{\psi}$ yeilds the Dirac equation in ψ .

•

$$m\overline{\psi}\psi=m\left(egin{array}{cc} \psi_L^\dagger & \psi_R^\dagger \end{array}
ight)\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight)\left(egin{array}{cc} \psi_L \ \psi_R \end{array}
ight)=m(\psi_R^\dagger\psi_L+\psi_L^\dagger\psi_R)$$

- Mass term mixes the left and right spinors
- Explore: mass term that doesn't mix

•

$$\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight) \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight) = \left(egin{array}{c} \psi_L \ 0 \end{array}
ight)$$

• As it turns out, if I define $\gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3$,

$$\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight) \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight) = \left(egin{array}{c} \psi_L \ 0 \end{array}
ight)$$

• As it turns out, if I define $\gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3$, then in our basis

$$\gamma^5 = \left(egin{array}{cc} -1 & 0 \ 0 & 1 \end{array}
ight)$$

$$\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight) \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight) = \left(egin{array}{c} \psi_L \ 0 \end{array}
ight)$$

• As it turns out, if I define $\gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3$, then in our basis

$$\gamma^5 = \left(egin{array}{cc} -1 & 0 \ 0 & 1 \end{array}
ight)$$

 $\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight) \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight) = \left(egin{array}{c} \psi_L \ 0 \end{array}
ight)$

• As it turns out, if I define $\gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3$, then in our basis

$$\gamma^5=\left(egin{array}{ccc} -1 & 0 \ 0 & 1 \end{array}
ight)$$

$$P_L = \frac{1 - \gamma^5}{2}$$

Similarly,

$$P_R = \frac{1+\gamma^5}{2}$$

• Obvious from matrix multiplication and definitions of

 $\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight) \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight) = \left(egin{array}{c} \psi_L \ 0 \end{array}
ight)$

• As it turns out, if I define $\gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3$, then in our basis

$$\gamma^5 = \left(egin{array}{cc} -1 & 0 \ 0 & 1 \end{array}
ight)$$

$$P_L = \frac{1 - \gamma^5}{2}$$

Similarly,

$$P_R = \frac{1+\gamma^5}{2}$$

ullet Obvious from matrix multiplication and definitions of P_L and P_R that

 $\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight) \left(egin{array}{c} \psi_L \ \psi_R \end{array}
ight) = \left(egin{array}{c} \psi_L \ 0 \end{array}
ight)$

• As it turns out, if I define $\gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3$, then in our basis

$$\gamma^5=\left(egin{array}{ccc} -1 & 0 \ 0 & 1 \end{array}
ight)$$

$$P_L = \frac{1 - \gamma^5}{2}$$

Similarly,

$$P_R = \frac{1+\gamma^5}{2}$$

ullet Obvious from matrix multiplication and definitions of P_L and P_R that

$$P_L + P_R = 1_{4\times4}$$

$$P_L P_R = 0$$
; $P_R P_L = 0$

$$P_L P_R = 0; P_R P_L = 0$$

• Claim:
$$\{\gamma^5,\gamma^\mu\}=0$$

$$P_L P_R = 0; P_R P_L = 0$$

- Claim: $\{\gamma^5,\gamma^\mu\}=0$
- It then follows that

$$P_L P_R = 0; P_R P_L = 0$$

- Claim: $\{\gamma^5, \gamma^\mu\} = 0$
- It then follows that

$$\gamma^{\mu}P_{L}=\gamma^{\mu}rac{\left(1-\gamma^{5}
ight)}{2}=rac{\left(1+\gamma^{5}
ight)}{2}\gamma^{\mu}=P_{R}\gamma^{\mu}$$

• and that

$$P_L P_R = 0; P_R P_L = 0$$

- Claim: $\{\gamma^5, \gamma^\mu\} = 0$
- It then follows that

$$\gamma^{\mu}P_{L}=\gamma^{\mu}rac{\left(1-\gamma^{5}
ight)}{2}=rac{\left(1+\gamma^{5}
ight)}{2}\gamma^{\mu}=P_{R}\gamma^{\mu}$$

I define

$$\Psi_L \equiv P_L \psi = \left(egin{array}{c} \psi_L \\ 0 \end{array}
ight)$$

• and that

$$P_L P_R = 0; P_R P_L = 0$$

- Claim: $\{\gamma^5, \gamma^\mu\} = 0$
- It then follows that

$$\gamma^{\mu}P_{L}=\gamma^{\mu}rac{\left(1-\gamma^{5}
ight)}{2}=rac{\left(1+\gamma^{5}
ight)}{2}\gamma^{\mu}=P_{R}\gamma^{\mu}$$

I define

$$\Psi_L \equiv P_L \psi = \left(egin{array}{c} \psi_L \\ 0 \end{array}
ight)$$

and

$$\Psi_R \equiv P_R \psi = \left(egin{array}{c} 0 \ \psi_R \end{array}
ight)$$

• This allows me to write

• This allows me to write

$$\psi=1_{4 imes4}\psi=\left(P_{L}+P_{R}
ight)\psi=\Psi_{L}+\Psi_{R}$$

• This allows me to write

$$\psi = 1_{4 imes 4}\psi = (P_L + P_R)\psi = \Psi_L + \Psi_R$$

along with the hermitian conjugate

$$\psi^\dagger = \psi^\dagger \mathbb{1}_{4 imes 4} = \psi^\dagger \left(P_{\mathit{L}} + P_{\mathit{R}}
ight) = \Psi^\dagger_{\mathit{L}} + \Psi^\dagger_{\mathit{R}}$$

• Clarity:

• This allows me to write

$$\psi = 1_{4\times4}\psi = (P_L + P_R)\psi = \Psi_L + \Psi_R$$

along with the hermitian conjugate

$$\psi^\dagger = \psi^\dagger \mathbb{1}_{4 imes 4} = \psi^\dagger \left(P_L + P_R
ight) = \Psi_L^\dagger + \Psi_R^\dagger$$

Clarity:

$$\overline{\psi} = \psi^\dagger \gamma^0 = \psi^\dagger \mathbf{1}_{4\times 4} \gamma^0 = \psi^\dagger \left(P_L + P_R\right) \gamma^0 = \Psi_L^\dagger \gamma^0 + \Psi_R^\dagger \gamma^0 = \overline{\Psi}_L + \overline{\Psi}_R$$

• and that in turn allows me to expand the mass term

This allows me to write

$$\psi = 1_{4 \times 4} \psi = (P_L + P_R) \psi = \Psi_L + \Psi_R$$

along with the hermitian conjugate

$$\psi^\dagger = \psi^\dagger \mathbb{1}_{4 imes 4} = \psi^\dagger \left(P_L + P_R
ight) = \Psi_L^\dagger + \Psi_R^\dagger$$

• Clarity:

$$\overline{\psi} = \psi^\dagger \gamma^0 = \psi^\dagger \mathbf{1}_{4\times 4} \gamma^0 = \psi^\dagger \left(P_L + P_R\right) \gamma^0 = \Psi_L^\dagger \gamma^0 + \Psi_R^\dagger \gamma^0 = \overline{\Psi}_L + \overline{\Psi}_R$$

• and that in turn allows me to expand the mass term

$$m\overline{\psi}\psi = m\left(\overline{\Psi}_L + \overline{\Psi}_R\right)(\Psi_L + \Psi_R) = m\left(\overline{\Psi}_L + \overline{\Psi}_R\right)(\Psi_L + \Psi_R)$$

$$= m\left(\overline{\Psi}_L + \overline{\Psi}_R\right)(\Psi_L + \Psi_R)$$

$$= m\left(\overline{\Psi}_L \Psi_R + \overline{\Psi}_R \Psi_L\right)$$

Recall:

$$m\overline{\psi}\psi=m(\psi_R^\dagger\psi_L+\psi_L^\dagger\psi_R)$$

Recall:

$$m\overline{\psi}\psi=m(\psi_R^{\dagger}\psi_L+\psi_L^{\dagger}\psi_R)$$

both are correct and equivalent

• Recall:

$$m\overline{\psi}\psi=m(\psi_R^{\dagger}\psi_L+\psi_L^{\dagger}\psi_R)$$

both are correct and equivalent

• Defn: For a four vector B^{μ}

• Recall:

$$m\overline{\psi}\psi=m(\psi_R^{\dagger}\psi_L+\psi_L^{\dagger}\psi_R)$$

both are correct and equivalent

• Defn: For a four vector B^{μ}

$$ot\!\!\!/ B \equiv \gamma^\mu B_\mu$$

• Recall:

$$m\overline{\psi}\psi=m(\psi_R^{\dagger}\psi_L+\psi_L^{\dagger}\psi_R)$$

both are correct and equivalent

• Defn: For a four vector B^{μ}

$$\cancel{B} \equiv \gamma^\mu B_\mu$$

Result:

• Recall:

$$m\overline{\psi}\psi=m(\psi_R^{\dagger}\psi_L+\psi_I^{\dagger}\psi_R)$$

both are correct and equivalent

• Defn: For a four vector B^{μ}

$$\mathscr{B}\equiv \gamma^{\mu}B_{\mu}$$

• Result:

$$\begin{split} \mathcal{L}_{\mathsf{Dirac}} &= & \overline{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi \\ &= & \left(\overline{\Psi}_{L} + \overline{\Psi}_{R}\right)\left(i\not\partial - m\right)\left(\Psi_{L} + \Psi_{R}\right) \\ &= & \overline{\Psi}_{L}i\not\partial\Psi_{L} + \overline{\Psi}_{R}i\not\partial\Psi_{R} - m\left(\overline{\Psi}_{L}\Psi_{R} + \overline{\Psi}_{R}\Psi_{L}\right) \end{split}$$

Recall:

$$m\overline{\psi}\psi=m(\psi_R^{\dagger}\psi_L+\psi_I^{\dagger}\psi_R)$$

both are correct and equivalent

• Defn: For a four vector B^{μ}

$$\mathscr{B}\equiv \gamma^{\mu}B_{\mu}$$

• Result:

$$\mathcal{L}_{\mathsf{Dirac}} = \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi$$

$$= (\overline{\Psi}_{L} + \overline{\Psi}_{R}) (i \not \partial - m) (\Psi_{L} + \Psi_{R})$$

$$= \overline{\Psi}_{L} i \not \partial \Psi_{L} + \overline{\Psi}_{R} i \not \partial \Psi_{R} - m (\overline{\Psi}_{L} \Psi_{R} + \overline{\Psi}_{R} \Psi_{L})$$

• In this notation also, there's mixing

• Defn:

$$C=i\left(\begin{array}{cc}\sigma^2&0\\0&-\sigma^2\end{array}\right)$$

• Defn:

$$C=i\left(\begin{array}{cc}\sigma^2&0\\0&-\sigma^2\end{array}\right)$$

• Recall and process: For

$$\psi^{\mathsf{T}} = \left(\begin{array}{cc} \psi_{\mathsf{L}}^{\mathsf{T}} & \psi_{\mathsf{R}}^{\mathsf{T}} \end{array} \right)$$

• Defn:

$$C = i \begin{pmatrix} \sigma^2 & 0 \\ 0 & -\sigma^2 \end{pmatrix}$$

• Recall and process: For

$$oldsymbol{\psi}^{ au} = \left(egin{array}{cc} oldsymbol{\psi}_{L}^{ au} & oldsymbol{\psi}_{R}^{ au} \end{array}
ight)$$

under a Lorentz boost β and a rotation θ ,

• Defn:

$$C = i \begin{pmatrix} \sigma^2 & 0 \\ 0 & -\sigma^2 \end{pmatrix}$$

• Recall and process: For

$$\psi^T = (\psi_L^T \quad \psi_R^T)$$

under a Lorentz boost β and a rotation θ ,

$$\psi_L^T \to \psi_L^T e^{-i\theta \cdot \frac{\sigma^T}{2} - \beta \cdot \frac{\sigma^T}{2}} = \psi_L^T S_L^T$$
$$\psi_R^T \to \psi_R^T e^{-i\theta \cdot \frac{\sigma^T}{2} + \beta \cdot \frac{\sigma^T}{2}} = \psi_R^T S_R^T$$

• Defn:

$$C = i \begin{pmatrix} \sigma^2 & 0 \\ 0 & -\sigma^2 \end{pmatrix}$$

• Recall and process: For

$$\psi^T = (\begin{array}{cc} \psi_L^T & \psi_R^T \end{array})$$

under a Lorentz boost β and a rotation θ ,

$$\psi_L^T \to \psi_L^T e^{-i\theta \cdot \frac{\sigma^T}{2} - \beta \cdot \frac{\sigma^T}{2}} = \psi_L^T S_L^T$$
$$\psi_R^T \to \psi_R^T e^{-i\theta \cdot \frac{\sigma^T}{2} + \beta \cdot \frac{\sigma^T}{2}} = \psi_R^T S_R^T$$

which in a compact form is

$$\psi^T o \psi^T \Lambda_{1/2}^T$$

• NB: from

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• NB: from

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

it's obvious that

• NB: from

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

it's obvious that

$$egin{pmatrix} \left(\sigma^1
ight)^T &=& \sigma^1 \ \left(\sigma^2
ight)^T &=& -\sigma^2 \ \left(\sigma^3
ight)^T &=& \sigma^3 \end{pmatrix}$$

ullet Further, we can use the fact that $\{\sigma^i,\sigma^k\}=2\delta^{ik}$ to see that

• Further, we can use the fact that $\{\sigma^i,\sigma^k\}=2\delta^{ik}$ to see that

$$\begin{pmatrix} \sigma^1 \end{pmatrix}^T \sigma^2 = -\sigma^2 \sigma^1$$

$$\begin{pmatrix} \sigma^2 \end{pmatrix}^T \sigma^2 = -\sigma^2 \sigma^2$$

$$\begin{pmatrix} \sigma^3 \end{pmatrix}^T \sigma^2 = -\sigma^2 \sigma^3$$

ullet consider the object $\psi_L^T \sigma^2$

• consider the object $\psi_L^T \sigma^2$

$$\psi_L^T \sigma^2 \to \psi_L^T e^{-i\theta \cdot \frac{\sigma^T}{2} - \beta \cdot \frac{\sigma^T}{2}} \sigma^2 = \psi_L^T \sigma^2 e^{-\left(-i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2}\right)} = \psi_L^T \sigma^2 S_L^{-1}$$

• consider the object $\psi_L^T \sigma^2$

$$\psi_L^T \sigma^2 \to \psi_L^T e^{-i\theta \cdot \frac{\sigma^T}{2} - \beta \cdot \frac{\sigma^T}{2}} \sigma^2 = \psi_L^T \sigma^2 e^{-\left(-i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2}\right)} = \psi_L^T \sigma^2 S_L^{-1}$$

similarly

$$\psi_R^T \sigma^2 \to \psi_R^T e^{-i\theta \cdot \frac{\sigma^T}{2} + \beta \cdot \frac{\sigma^T}{2}} \sigma^2 = \psi_R^T \sigma^2 e^{-\left(-i\theta \cdot \frac{\sigma}{2} + \beta \cdot \frac{\sigma}{2}\right)} = \psi_R^T \sigma^2 S_R^{-1}$$

• consider the object $\psi_l^T \sigma^2$

$$\psi_L^T \sigma^2 \to \psi_L^T e^{-i\theta \cdot \frac{\sigma^T}{2} - \beta \cdot \frac{\sigma^T}{2}} \sigma^2 = \psi_L^T \sigma^2 e^{-\left(-i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2}\right)} = \psi_L^T \sigma^2 S_L^{-1}$$

similarly

$$\psi_R^T \sigma^2 \to \psi_R^T e^{-i\theta \cdot \frac{\sigma^T}{2} + \beta \cdot \frac{\sigma^T}{2}} \sigma^2 = \psi_R^T \sigma^2 e^{-\left(-i\theta \cdot \frac{\sigma}{2} + \beta \cdot \frac{\sigma}{2}\right)} = \psi_R^T \sigma^2 S_R^{-1}$$

• We want to make it compact. To that end, we note

• consider the object $\psi_l^T \sigma^2$

$$\psi_L^T \sigma^2 \to \psi_L^T e^{-i\theta \cdot \frac{\sigma^T}{2} - \beta \cdot \frac{\sigma^T}{2}} \sigma^2 = \psi_L^T \sigma^2 e^{-\left(-i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2}\right)} = \psi_L^T \sigma^2 S_L^{-1}$$

similarly

$$\psi_R^T \sigma^2 \to \psi_R^T e^{-i\theta \cdot \frac{\sigma^T}{2} + \beta \cdot \frac{\sigma^T}{2}} \sigma^2 = \psi_R^T \sigma^2 e^{-\left(-i\theta \cdot \frac{\sigma}{2} + \beta \cdot \frac{\sigma}{2}\right)} = \psi_R^T \sigma^2 S_R^{-1}$$

• We want to make it compact. To that end, we note

$$\psi^{\mathsf{T}}C = i \begin{pmatrix} \psi_L^{\mathsf{T}} & \psi_R^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \sigma^2 & 0 \\ 0 & -\sigma^2 \end{pmatrix} = i \begin{pmatrix} \psi_L^{\mathsf{T}}\sigma^2 & -\psi_R^{\mathsf{T}}\sigma^2 \end{pmatrix}$$

• consider the object $\psi_l^T \sigma^2$

$$\psi_L^T \sigma^2 \to \psi_L^T e^{-i\theta \cdot \frac{\sigma^T}{2} - \beta \cdot \frac{\sigma^T}{2}} \sigma^2 = \psi_L^T \sigma^2 e^{-\left(-i\theta \cdot \frac{\sigma}{2} - \beta \cdot \frac{\sigma}{2}\right)} = \psi_L^T \sigma^2 S_L^{-1}$$

similarly

$$\psi_R^T \sigma^2 \to \psi_R^T e^{-i\theta \cdot \frac{\sigma^T}{2} + \beta \cdot \frac{\sigma^T}{2}} \sigma^2 = \psi_R^T \sigma^2 e^{-\left(-i\theta \cdot \frac{\sigma}{2} + \beta \cdot \frac{\sigma}{2}\right)} = \psi_R^T \sigma^2 S_R^{-1}$$

• We want to make it compact. To that end, we note

$$\psi^{\mathsf{T}}C = i \begin{pmatrix} \psi_L^{\mathsf{T}} & \psi_R^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \sigma^2 & 0 \\ 0 & -\sigma^2 \end{pmatrix} = i \begin{pmatrix} \psi_L^{\mathsf{T}}\sigma^2 & -\psi_R^{\mathsf{T}}\sigma^2 \end{pmatrix}$$

• so that the transformation is

so that the transformation is

$$\psi^{\mathsf{T}}C \to i \left(\begin{array}{cc} \psi_L^{\mathsf{T}} S_L^{\mathsf{T}} \sigma^2 & -\psi_R^{\mathsf{T}} S_R^{\mathsf{T}} \sigma^2 \end{array} \right)$$
$$= i \left(\begin{array}{cc} \psi_L^{\mathsf{T}} \sigma^2 S_L^{-1} & -\psi_R^{\mathsf{T}} \sigma^2 S_R^{-1} \end{array} \right) = \psi^{\mathsf{T}} C \lambda_{1/2}^{-1}$$

so that the transformation is

$$\begin{split} \psi^T C &\to i \left(\begin{array}{cc} \psi_L^T S_L^T \sigma^2 & -\psi_R^T S_R^T \sigma^2 \end{array} \right) \\ &= i \left(\begin{array}{cc} \psi_L^T \sigma^2 S_L^{-1} & -\psi_R^T \sigma^2 S_R^{-1} \end{array} \right) = \psi^T C \lambda_{1/2}^{-1} \end{split}$$

• And what will all of this do? Well, it means that

so that the transformation is

$$\begin{split} \psi^T C &\to i \left(\begin{array}{cc} \psi_L^T S_L^T \sigma^2 & -\psi_R^T S_R^T \sigma^2 \end{array} \right) \\ &= i \left(\begin{array}{cc} \psi_L^T \sigma^2 S_L^{-1} & -\psi_R^T \sigma^2 S_R^{-1} \end{array} \right) = \psi^T C \lambda_{1/2}^{-1} \end{split}$$

And what will all of this do? Well, it means that

$$\psi^{\mathsf{T}} \mathsf{C} \psi \to \psi^{\mathsf{T}} \mathsf{C} \lambda_{1/2}^{-1} \lambda_{1/2} \psi = \psi^{\mathsf{T}} \mathsf{C} \psi$$

so that the transformation is

$$\begin{split} \psi^T C &\to i \left(\begin{array}{cc} \psi_L^T S_L^T \sigma^2 & -\psi_R^T S_R^T \sigma^2 \end{array} \right) \\ &= i \left(\begin{array}{cc} \psi_L^T \sigma^2 S_L^{-1} & -\psi_R^T \sigma^2 S_R^{-1} \end{array} \right) = \psi^T C \lambda_{1/2}^{-1} \end{split}$$

And what will all of this do? Well, it means that

$$\psi^{\mathsf{T}} \mathsf{C} \psi \to \psi^{\mathsf{T}} \mathsf{C} \lambda_{1/2}^{-1} \lambda_{1/2} \psi = \psi^{\mathsf{T}} \mathsf{C} \psi$$

• Result: We have arrived at a Lorentz scalar!

• Comments:

- Comments:
 - We could've arrived at the same result by simply noting that $\lambda_{1/2}^T C \lambda_{1/2} = C$

- Comments:
 - We could've arrived at the same result by simply noting that $\lambda_{1/2}^T C \lambda_{1/2} = C$
 - ullet I can write C as a product of γ matrices as

$$C = i \begin{pmatrix} \sigma^2 & 0 \\ 0 & -\sigma^2 \end{pmatrix} = -i\gamma^2\gamma^0$$

which is easy to verify.

• Defn: A different mass term

• Defn: A different mass term

$$\mathcal{L}_{\mathsf{Majorana\ Mass}} \sim m \psi^\mathsf{T} C \psi$$

$$= -i m \left(\Psi_L^\mathsf{T} + \Psi_R^\mathsf{T} \right) \gamma^2 \gamma^0 \left(\Psi_L + \Psi_R \right)$$

$$= -i m \left(\Psi_L^\mathsf{T} \gamma^2 \gamma^0 \Psi_L + \Psi_R^\mathsf{T} \gamma^2 \gamma^0 \Psi_R \right)$$

$$= m \left(\Psi_L^\mathsf{T} C \Psi_L + \Psi_R^\mathsf{T} C \Psi_R \right)$$

• Defn: A different mass term

• Result: Does not mix the left and right spinors!

• Defn: A different mass term

$$\mathcal{L}_{\mathsf{Majorana\ Mass}} \sim m \psi^{\mathsf{T}} C \psi$$

$$= -i m \left(\Psi_L^{\mathsf{T}} + \Psi_R^{\mathsf{T}} \right) \gamma^2 \gamma^0 \left(\Psi_L + \Psi_R \right)$$

$$= -i m \left(\Psi_L^{\mathsf{T}} \gamma^2 \gamma^0 \Psi_L + \Psi_R^{\mathsf{T}} \gamma^2 \gamma^0 \Psi_R \right)$$

$$= m \left(\Psi_L^{\mathsf{T}} C \Psi_L + \Psi_R^{\mathsf{T}} C \Psi_R \right)$$

- Result: Does not mix the left and right spinors!
- To ensure reality, we add $-m\psi^{\dagger}C\psi^{*}$

- Concluding Remarks:
 - Majorana fermion is s.t. ψ equals it's own 'conjugate'.

- Concluding Remarks:
 - Majorana fermion is s.t. ψ equals it's own 'conjugate'. Reduces dof from 4 to 2

- Concluding Remarks:
 - Majorana fermion is s.t. ψ equals it's own 'conjugate'. Reduces dof from 4 to 2
 - C is closely related to the charge conjugation operator

• Concluding Results:

- Concluding Results:
 - The Lagrangian with the 'kinetic part' is

- Concluding Results:
 - The Lagrangian with the 'kinetic part' is

- Concluding Results:
 - · The Lagrangian with the 'kinetic part' is

• Corresponding Euler Lagrange

- Concluding Results:
 - · The Lagrangian with the 'kinetic part' is

· Corresponding Euler Lagrange

$$i\overline{\sigma}.\partial\psi_L - im\sigma^2\psi_I^* = 0$$

- Concluding Results:
 - The Lagrangian with the 'kinetic part' is

$$\begin{split} \mathcal{L}_{\mathsf{Majorana}} &= \psi_L^\dagger i \overline{\sigma}. \partial \psi_L + \frac{i m}{2} \left(\psi_L^\mathsf{T} \sigma^2 \psi_L - \psi_L^\dagger \sigma^2 \psi_L^* \right) \\ &= \quad i \overline{\Psi}_L \not\!\! \partial \Psi_L - \frac{m}{2} \left(\Psi_L^\mathsf{T} C \Psi_L + \Psi_L^\dagger C \Psi_L^* \right) \end{split}$$

· Corresponding Euler Lagrange

$$i\overline{\sigma}.\partial\psi_L - im\sigma^2\psi_I^* = 0$$

which implies that the Klein Gordon is satisfied and

- Concluding Results:
 - The Lagrangian with the 'kinetic part' is

· Corresponding Euler Lagrange

$$i\overline{\sigma}.\partial\psi_I - im\sigma^2\psi_I^* = 0$$

which implies that the Klein Gordon is satisfied and it is itself is Lorentz invariant.

• No 'right handed' neutrinos

- No 'right handed' neutrinos
- 'left handed' nearly massless

- No 'right handed' neutrinos
- 'left handed' nearly massless
- The great Standard Model has the term

- No 'right handed' neutrinos
- 'left handed' nearly massless
- The great Standard Model has the term

$$\mathcal{L} = \overline{\nu}_L i \not \! \partial \nu_L$$

- No 'right handed' neutrinos
- 'left handed' nearly massless
- The great Standard Model has the term

$$\mathcal{L} = \overline{\nu}_L i \not \! \partial \nu_L$$

• To implement mass, we must handle half a spinor

- No 'right handed' neutrinos
- 'left handed' nearly massless
- The great Standard Model has the term

$$\mathcal{L} = \overline{\nu}_L i \partial \!\!\!/ \nu_L$$

- To implement mass, we must handle half a spinor
- Dirac mass as we know it, necessarily mixes the left and right handed part

- No 'right handed' neutrinos
- 'left handed' nearly massless
- The great Standard Model has the term

$$\mathcal{L} = \overline{\nu}_L i \partial \!\!\!/ \nu_L$$

- To implement mass, we must handle half a spinor
- Dirac mass as we know it, necessarily mixes the left and right handed part
- In this sense, Majorana spinors and the Majorana mass associated can describe neutrinos

- No 'right handed' neutrinos
- 'left handed' nearly massless
- The great Standard Model has the term

$$\mathcal{L} = \overline{\nu}_L i \partial \!\!\!/ \nu_L$$

- To implement mass, we must handle half a spinor
- Dirac mass as we know it, necessarily mixes the left and right handed part
- In this sense, Majorana spinors and the Majorana mass associated can describe neutrinos
- There're alternatives, such as 'see-saw' model

The End

References

- An Introduction to Quantum Field Theory M. E. Peskin, D. V. Schroeder
 Addison-Wesley Publishing Company
- PHY659 Lectures
 Prof. C. S. Aulakh
 Spring 2015, IISER Mohali
- Quantum Field Theory, Second Edition
 L. H. Ryder
 Cambridge University Press

Acknowledgement

- Indian Institute of Science Education and Research, Mohali
- Kishor Vaigyanik Protsahan Yojna, Department of Science and Technology