PRÁCTICO 3 - Lógica Combinacional

Minitérminos y maxitérminos para tres variables binarias

			Minit	términos	Maxit	términos
x	y	Z	Términos	Designación	Términos	Designación
0	0	0	x'y'z'	m_0	x + y + z	$M_{\rm o}$
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Mapas de Karnaugh de 2, 3 y 4 variables:

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m ₁₂	m ₁₃	m ₁₅	m_{14}
m_8	m_9	m_{11}	m_{10}

wx	0 0	01	11	10
00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
11	wxy'z'	wxy'z	wxyz	wxyz'
10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

Programmable Logic Array (PLA):

Ejercicio 1:

Un detector de paridad impar de 4 entradas y una salida funciona de la siguiente manera: si la cantidad de entradas con valor '1' es impar la salida se pone en '1', en el resto de los casos la salida toma valor '0'.

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos (funciones canónicas).
- c. Implementar el sistema con compuertas NAND de la cantidad de entradas requeridas.
- d. Implementar el sistema con una PLA.

Ejercicio 2:

Un sistema digital recibe información en forma de palabras de 5 bits (**ABCDE**) en un código protegido contra errores, de tal forma que cualquier dato que se reciba debe contener 3 y sólo 3 bits en '1'. Diseñar un circuito con las entradas **ABCDE** y una salida **err** que *se activa* por bajo cuando se recibe un dato incorrecto.

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos (funciones canónicas).
- c. Implementar el sistema con una PLA.

Ejercicio 3:

Verificar los resultados obtenidos de cada función lógica en la Guía 2 - Ejercicio 1, mediante la utilización de mapas de Karnaugh, el cual garantiza la obtención de la mínima expresión.

a.
$$x.y + x.y'$$

b.
$$(x + y).(x + y')$$

c.
$$x.y.z + x'.y + xyz'$$

$$d. \quad z.x + z.x'.y$$

e.
$$(A + B)'.(A' + B')'$$

f.
$$y.(w.z' + w.z) + x.y$$

Ejercicio 4:

Dadas la siguientes tablas de verdad para las funciones Fx:

(f₄

x3 x2 x1 x0 F(x3,x2,x1,x0) 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0				(11)	
0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0	х3	x2	x1	x0	F(x3,x2,x1,x0)
0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0	0	0	0	0	1
0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0	0	0	0	1	1
0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0	0	0	1	0	1
0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0	0	0	1	1	0
0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0	0	1	0	0	0
0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0	0	1	0	1	0
1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0	0	1	1	0	1
1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0	0	1	1	1	0
1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0	1	0	0	0	1
1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0	1	0	0	1	1
1 1 0 0 0 1 1 0 1 0 1 1 1 0 0	1	0	1	0	1
1 1 0 1 0 1 1 1 0 0	1	0	1	1	0
1 1 1 0 0	1	1	0	0	0
	1	1	0	1	0
1 1 1 1 0	1	1	1	0	0
	1	1	1	1	0

 (f_2)

х3	x2	x1	х0	F(x3,x2,x1,x0)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

 (f_3)

x2	x1	x0	F(x2,x1,x0)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- a. Encontrar las expresiones canónicas de cada Fx como suma de minitérminos y como producto de maxitérminos.
- b. Encontrar la expresión minimizada de cada Fx utilizando mapas de Karnaugh.

Ejercicio 5:

Un circuito combinacional comparador toma dos números de 2 bits, $\mathbf{A} = (A_1, A_0)$ y $\mathbf{B} = (B_1, B_0)$ y retorna tres salidas (" $\mathbf{A} > \mathbf{B}$ ", " $\mathbf{A} = \mathbf{B}$ " y " $\mathbf{A} < \mathbf{B}$ ") de 1 bit cada una.

Ej: si A = (00) y B = (10), entonces "A>B" = (0), "A=B" = (0) y "A<B" = (1).

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos.
- c. Encontrar la función minimizada de cada salida como suma de productos usando mapas de Karnaugh.
- d. Implementar el sistema con compuertas lógicas básicas.

Ejercicio 6:

Analizar los circuitos de lógica combinacional de la figura. Para cada uno:

- a. Escribir la función booleana correspondiente.
- b. Encontrar la tabla de verdad para la función obtenida.
- c. Obtener la función minimizada como suma de productos a partir del mapa de Karnaugh.
- d. Dibujar el circuito de lógica combinacional resultante del punto (c).

Ejercicio 7:

Un DECODIFICADOR es un circuito combinacional que convierte información binaria de 'N' entradas codificadas (\mathbf{A}), a '2^{N'} salidas <u>únicas</u> (\mathbf{X}). Esto quiere decir que sólo una salida \mathbf{X} está activa y representa el valor de las señales de entrada \mathbf{A} .

Considere un decodificador activo por bajo (salida activa = '0') con N=2 y $2^N=4$ (deco 2 x 4).

- a. Expresar las tablas de verdad de las cuatro salidas X₀, X₁, X₂ y X₃.
- b. Encontrar las expresiones de X_0 , X_1 , X_2 y X_3 como suma de minitérminos y como producto de maxitérminos.
- c. Encontrar expresiones minimizadas de X_0 , X_1 , X_2 y X_3 utilizando el método de Karnaugh o un método algebraico.
- d. Implementar las expresiones anteriores a través del uso de compuertas lógicas.
- e. Repetir el punto (d) agregando una entrada de HABILITACIÓN (**E**) activa por bajo, de tal forma que cuando **E**='1' ninguna señal de salida permanezca habilitada.

Ejercicio 8:

Implementar un decodificador de 3 x 8 y otro de 4 x 16 a partir de decodificadores 2 x 4 activos por bajo, con entrada de habilitación (**E**) activa por bajo y compuertas lógicas.

Ejercicio 9:

- a. Diseñar un circuito SUMADOR COMPLETO (3 entradas: X, Y, C_{IN}; 2 salidas: S, C_{OUT}) mediante el uso de un Decodificador de salida activa por alto y compuertas OR. Tip: La salida que vale 1 representa el minitérmino equivalente al número binario que está a la entrada.
- b. Diseñar un sumador completo usando dos semisumadores y una compuerta.

Ejercicio 10:

Un MULTIPLEXOR (MUX) es un circuito combinacional que que selecciona información binaria de muchas entradas y la dirige <u>a una única salida (\mathbf{Y})</u>, conforme al estado de las señales de selección. Si un MUX posee '2^{N'} entradas de información (\mathbf{D}) requiere 'N' señales de selección (\mathbf{S}).

- a. Expresar la tabla de verdad de un MUX de 2 entradas (y una salida) y su implementación mediante el uso de compuertas lógicas (AND, OR, NOT, NOR, NAND, etc.)
- b. Mostrar cómo se puede usar un MUX para obtener una compuerta NOT.
- c. ¿Cómo obtener un MUX de 4 entradas (y una salida) en base a multiplexores de 2 entradas?
- d. ¿Cómo obtener un multiplexor de 'N' entradas con multiplexores de 2 entradas?

Ejercicio 11:

Dado el siguiente circuito con entradas (DCBA):

a. Elabore la tabla de verdad de "SALIDA" y responda: ¿Para cuantas combinaciones posibles de entradas la salida es igual a 1?

ATENCIÓN: no confundir el nombre de las señales del enunciado con las de selección del decodificador!

Ejercicio 12:

Dado el siguiente circuito con entradas (DCBA):

Asumir que las salidas Q del decodificador son activas por alto, y que las salidas Q(1,4,5,7) no se conectan a ninguna compuerta.

a. a.Elaborar la tabla de verdad de la función f y responder: ¿Para cuantas combinaciones posibles de entradas la salida f es igual a 1?

Ejercicio 13:Dado el siguiente circuito con entradas (ABCD):

- a. Elaborar la tabla de verdad de la función f y responder: ¿Para cuantas combinaciones posibles de entradas la salida f es igual a 1?
- b. Repetir el punto a) pero conectando la salida Y del Multiplexor a la entrada Enable del Decodificador. ¿Qué diferencias se obtuvieron? ¿Por qué?

Ejercicio 1:

Un detector de paridad impar de 4 entradas y una salida funciona de la siguiente manera: si la cantidad de entradas con valor '1' es impar la salida se pone en '1', en el resto de los casos la salida toma valor '0'.

- a. Construir la tabla de verdad para dicho sistema.
- Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos (funciones canónicas).
- c. Implementar el sistema con compuertas NAND de la cantidad de entradas requeridas.
- d. Implementar el sistema con una PLA.

a) Table de verdod

ABCD	¥	Minitérmino	Maxitermino	nro.
0000	0	A'B'c'D'	A+B+C+D	٥
0001	1	A'B'C'D	A+B+C+D'	ı
0010	١	A'B'CD'	4+B+C'+D	2
0011	0	A'B'CD	A+B+c'+D	3
0100	1	A'BC'D'	A+ B'+C+D	4
0101	0	A'BC'D	A+B'+C+D'	5
0110	6	A'BCD'	A+B'+C'+D	6
6151	1	ABCD	A+B'+C'+D'	ヲ
1000)	AB'C'D'	A+B+C+D	8
1001	0	AB'C'D	A'+ B+C+D'	9
,010	0	AB'CD'	A'+B+C+D	10
1011	1	AB'CD	A'+B+c'+D'	1(
1100	0	ABC'D'	A'+B'+C+D	15
1 1 0 1	1	ABC'D	A'+B'+ C+D'	13
1110	1	ABCD'	A'+B'+c'+D	14
1 1 1	0	ABCD	A'+B'+C'+D'	15

b) Suma de minitérminos: tomo los minitérminos que hacen que f devuelva 1.

f= A'B'C'D+A'B'CD'+A'BC'D'+A'BCD+AB'C'D'+AB'CD+ABC'D+ABCD'
Producto de maxitérminos:

c) Para implementar & sólo con compuertas NAND, tomo la suma de minitérminos y niego dos veces:

d) Implementación de f en un PLA

Ejercicio 2:

Un sistema digital recibe información en forma de palabras de 5 bits (**ABCDE**) en un código protegido contra errores, de tal forma que cualquier dato que se reciba debe contener 3 y sólo 3 bits en '1'. Diseñar un circuito con las entradas **ABCDE** y una salida **err** que *se activa por bajo* cuando se recibe un dato incorrecto.

- a. Construir la tabla de verdad para dicho sistema.
- Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos (funciones canónicas).
- c. Implementar el sistema con una PLA.
- a) Tabla de verdad de err

A	B	4	D	E	err	Minitermino	Maxitérmino	٥١٥
0	0	0	0	0	0	A'B'C'D'E'	A+B+C+D+E	0
0	O	0	0	,	6	A'B'c' D' E	A+B+C+D+E"	1
0	Ð					A'B'C'DE'	A+B+C+D'+E	2
0	0	0	1	0	0	A'B'C' DE	A+B+C+D'+E'	3
0	0	ı	Ð	0	٥	A'B'CD'E'	A+B+C'+D+E	4
0	0	1	0	1	٥	A'B'CD'E	A+B+C'+D+E'	S
Ð	0	1	١	0	٥	A'B' CDE'	A+B+ C'+D'+E	6
0	0	ì	1)	1	ABCDE	4+8+c'+0'+E'	7
0	١	٥	0	0	0	A'BC'D'E'	A+B'+C+D+E	8
0	1	0	0)	0	A'BC'D'E	A+B'+ C+O+E'	9
0	1	0	1	0	0	A'BC'DE'	A+B'+C+D'+E	10
0	1	O	i	ı	1	A'BC'DE	4+B'+C+D'+ E'	П
o	1	J	0	0	0	A'B C D'E'	A+B'+C'+0+E	12
0	١	١	Ø	1	ť	A'BCD'E	A+B'+c'+0+E'	13
0	1	1	1	0	١	A'BLDE'	A+B'+C'+0'+E	14
_	1	١	1	ı	٥	A'BLDE	A+B'+L'+0'+E'	1s
1	O	0	Ø	0	0	AB.C.D.E.	A'+B+C+D+E	16
1	6	0	0	١	0 0	AB'C'D'E	A'+B+C+D+E' A'+B+C+D'+E'	17
'n	0	0	1	0	0	AB'C' DE	A'+B+C+D'+E'	18
-	0	ī	1000000	0	0	AB'CD'E'	A'+B+C'+D+E	20
1	ō	i	0	ĭ	Ĭ	AB'CO'E	A'+B+C'+D+E'	21
1	٥	3	ı	0	ι	AB'CDE'	A'+B+c'+D'+E	22
1	Ь	1	i	1	Ð	AB'C DE	A'+B+C'+0'+E'	23
ī	1	0	٥	0	0	ABC'D'E'	A'+B'+C+D+E	24
1	ı	0	0	1	1	ABC'D'E	A'+B'+C+D+ 6'	22
1	1	0	١	0	1	ABC'DE'	A'+B'+C+0'+E	26
-	1	0	1	L.	0	ABC'DE	A'+8'+c+0'+E	27
1	1	1	0	0	1	ABCD'E'	A'+B'+C'+D+E	28
i	ļ	ı	0	1	0	ABLDE'	A'+B'+C'+D+E' A'+B'+C'+D'+E	29 30
ì	1	l I	1	0	0	ABCDE	A'+B'+C'+0'+E'	30
5						,		

b) Suma de minitérminos : tomo los miniterminos que hacen que en devuelva 1.

err = A'B'CDE + A'BC'DE + A'BCDE + A'BCDE + AB'C'DE + AB'CDE + AB'CDE + ABC'DE + ABC'DE + ABCD'E'

Producto de maxitérminos : tomo los maxitérminos pue hacen que err devuelva 0.

err = (A+B+C+D+E) • (A+B+C+D+E ·) · (A+B+C+D'+E) • (A+B+C+D'+E') • (A+B+C'+D+E)

- . (A+B+c'+D+E').(A+B+c'+D'+E).(A+B'+c+D+E).(A+B'+C+D+E').(A+B+c'+D+E)
- . (A+B'+c'+D+E). (A+B'+c'+D'+E'). (A'+B+c+D+E). (A'+B+C+D+E'). (A'+B+c+D'+E')
- . (A'+B+C'+D+E) · (A'+B+C'+D'+E') · (A'+B'+C+D+E) · (A'+B'+C+D'+E) · (A'+B'+C+D'+E)
- . (A'+B'+c'+D+E') . (A'+B'+c'+D'+E) . (A'+B'+c'+D'+E')

C) Implementación de err en un PLA

err =A'B'CDG+A'BC'DE+A'BCDE+A'BCDE'+AB'C'DE+AB'CD'E+AB'CDE'+ABC'D'-+ABC'DE'+ABCD'E'

Ejercicio 3:

Verificar los resultados obtenidos de cada función lógica en la Guía 2 - Ejercicio 1, mediante la utilización de mapas de Karnaugh, el cual garantiza la obtención de la mínima expresión.

- a. x.y + x.y'
- b. (x + y).(x + y')
- $c. \quad x.y.z + x'.y + xyz'$
- d. z.x + z.x'.y
- e. (A + B)'.(A' + B')'
- f. y.(w.z' + w.z) + x.y

a) x . y + x . y'

Tabla

X Y XY+XY 0 0 0 1 0 1 1 1 1

Mapa de Karnaugh

Tabla

×	4	(x+4)·(x+4)
0	٥	0
٥	١	0
1	٥	1
1)	1

Mapa de Karnaugh

Tabla

X	4	3	S
0	0	0	1
0	0	1	١
0	- 1	0	0
0	١)	0
١	00	0	1
1	0	1	1
1	١	0	0
١	1	1	0

Mapa de Karnaugh

$$X'Y + XY = Y(x'+x) = Y$$

Tabla

3	×	4	S
6	0	0	٥
0	0	1	0
0	1	이	0
0)	1	٥
-1	0	0	٥
1	0	1	1
1	١	0	1
١	١	1	1

Mapa de Karnaugh

Tabla

Д	В	5
0	a	0
0	1	0
1	0	0
١	l	D

Mapa de Karnaugh

Tabla

_9	3	W	X	5
0	0	0	0	O
0	0	Q	1	O
6	0	١	0	n 0 0 0 0
Ø	٥	١	-	0
0000	-	00-	0	0
0	ı	0	0-0-	0
0	١	1	O	0
0	1	1	1	0000
1	0	0	0	0
١		00	0-0-	
١	О	1	0	0
_1	000	١	1	I
1	1	0	0-0-	1
1	1	0	1	
1	١	00-	0	1
ı	J	1	,	l I

Mapa de Karnaugh

Ejercicio 4:Dadas la siguientes tablas de verdad para las funciones Fx:

(f ₁)							
хЗ	x2	x1	x0	F(x3,x2,x1,x0)			
0	0	0	0	1			
0	0	0	1	1			
0	0	1	0	1			
0	0	1	1	0			
0	1	0	0	0			
0	1	0	1	0			
0	1	1	0	1			
0	1	1	1	0			
1	0	0	0	1			
1	0	0	1	1			
1	0	1	0	1			
1	0	1	1	0			
1	1	0	0	0			
1	1	0	1	0			
1	1	1	0	0			
1	1	1	1	0			

			(T ₂)	
хЗ	x2	x1	x0	F(x3,x2,x1,x0)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

	(f ₃)					
x2	x1	x0	F(x2,x1,x0)			
0	0	0	0			
0	0	1	0			
0	1	0	0			
0	1	1	1			
1	0	0	1			
1	0	1	0			
1	1	0	1			
1	1	1	1			

- a. Encontrar las expresiones canónicas de cada Fx como suma de minitérminos y como producto de maxitérminos.
- b. Encontrar la expresión minimizada de cada Fx utilizando mapas de Karnaugh.

a)
$$f_1 = x_3' x_2' x_1' x_0' + x_3' x_3' x_1' x_0 + x_3' x_2' x_1 x_0' + y_3' x_2 x_1 x_0' + x_3 x_2' x_1 x_0 + x_3 x_2' x_1 x_0 + x_3 x_2' x_1 x_0'$$

$$f_1 = (x_3 + x_2 + x_1' + x_0') \cdot (x_2 + x_2' + x_1 + x_0) \cdot (x_3 + x_2' + x_1' + x_0') \cdot (x_3 + x_2' + x_1' + x_0')$$

$$\oint_{\mathcal{Z}} = (x_3 + x_2 + x_1 + x_0) \cdot (x_3 + x_2 + x_1 + x_2') \cdot (x_3 + x_1' + x_2 + x_1') \cdot (x_3 + x_1' + x_2' + x_1' + x_0') \cdot (x_3 + x_2 + x_1 + x_0') \cdot (x_3 + x_2 + x_1' + x_2') \cdot (x_3 + x_2 + x_1 + x_0) \cdot (x_3' + x_2' + x_1 + x_0') \cdot (x_3' + x_2' + x_1' + x_0') \cdot (x_3' + x_2' + x_$$

$$f_{3} = x_{2}' x_{1} x_{0} + x_{2} x_{1}' x_{0} + x_{2} x_{1} x_{0}' + x_{2} x_{1} x_{0}$$

$$f_{3} = (x_{2} + x_{1} + x_{0}) \cdot (x_{2} + x_{1} + x_{0}') \cdot (x_{2} + x_{1} + x_{0}')$$

Ejercicio 5:

Un circuito combinacional comparador toma dos números de 2 bits, $\bf A$ = (A_1 , A_0) y $\bf B$ = (B_1 , B_0) y retorna tres salidas (" $\bf A$ > $\bf B$ ", " $\bf A$ = $\bf B$ " y " $\bf A$ < $\bf B$ ") de 1 bit cada una.

Ej: si A = (00) y B = (10), entonces "A>B" = '0', "A=B" = '0' y "A<B" = '1'.

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos.
- Encontrar la función minimizada de cada salida como suma de productos usando mapas de Karnaugh.
- d. Implementar el sistema con compuertas lógicas básicas.

a)

				<u>β</u>	fz	£3
Δ,	Ao	B,	B.	A7B 0 0 0	A <b< th=""><th>A = B</th></b<>	A = B
0	0	Ø	0	0	0	1
0	0	0	1	0	1	
6	0	ı	0	6	1	0
0000	0	i	ĭ	0	1 1 1	0
)	QQ	0	1	0	0
0	1	Ö		1 0 0	0	1
0	1	1	O	0	1	0
0000	١	i	1	٥	0 1 1	0
1	Q	0	0	1 1 0 0	D 0 0 1	0
1	0	0	3	1	0	0 0 1 0
1	0	1	0	0	0	1
3.	0	1	10	0	1	0
1	ı	0	0	1	0	
)	1	6	1		0	0
1	١	1	0	1	0	0 0
1	1	1)	0	0	1

Fz = A'A D'B'B + A 'A D' B B + A 'A D' B B D + A A D B B D + A A D B B D

Fz = (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B + B D) · (A + A D + B D) · (A D

```
$\frac{\Psi}{3} = A'A'\do'B'B'\do + A'A\do'B'B\do + A_1A\do'B_1B\do' + A_1A\do'B_1B\do
$\frac{\Psi}{3} = (A_1 + A_0 + B_1 + B_0') \cdot (A_1 + A_0 + B_1 + B_0') \cdot (A_1 + A_0' + B_1 + B_0') \cdot (A_1 + A_0' + B_1' + B_0') \cdot (A_1' + A_0' + B_1' + A_0' + B_1' + B_0') \cdot (A_1' + A_0' + B_1' + A_0' +
```


73 = A'AO'B'BO + A'AOB'BO + AIAO'BIBO' + AIAOBIBO

Ejercicio 6:

Analizar los circuitos de lógica combinacional de la figura. Para cada uno:

- a. Escribir la función booleana correspondiente.
- b. Encontrar la tabla de verdad para la función obtenida.
- c. Obtener la función minimizada como suma de productos a partir del mapa de Karnaugh.
- d. Dibujar el circuito de lógica combinacional resultante del punto (c).

a

6)	Circuito
	0.0

a	6	(Z
0	0	0	0
0	0	1	0
0	l	0	١
0	1	1	ι
1	0	٥	1
ı	0	1	1
ı	1	0	٥
1	1)	0

Circuito	B
	~

a	b	C	d	ڪ
0	٥	0	0	L)
D	0	0	1	0
0	0	1	0	0
Ō	O	1	1	0
0	1	0	0	0
0	1	0	1	0
0)	t	0	
0	1	1	1	00
1	0	0	0	0
1		0	0	0
1	000	١	0	1
,	0	ι	1	О
	1	0	0	1
1	ı	0	1	1
ı	1	1	0	O
1	ı	1	J	0

Circuito A

F = ab'ta'b

Circuito B

B = a'b'c'd' + abc' + ab'cd'

d) Circuito A

Circuito B

Ejercicio 7:

Un DECODIFICADOR es un circuito combinacional que convierte información binaria de 'N' entradas codificadas (**A**), a '2^{N'} salidas <u>únicas</u> (**X**). Esto quiere decir que sólo una salida **X** está activa y representa el valor de las señales de entrada **A**.

Considere un decodificador activo por bajo (salida activa = '0') con N=2 y 2N=4 (deco 2 x 4).

- a. Expresar las tablas de verdad de las cuatro salidas X₀, X₁, X₂ y X₃.
- Encontrar las expresiones de X₀, X₁, X₂ y X₃ como suma de minitérminos y como producto de maxitérminos.
- c. Encontrar expresiones minimizadas de X₀, X₁, X₂ y X₃ utilizando el método de Karnaugh o un método algebraico.
- d. Implementar las expresiones anteriores a través del uso de compuertas lógicas.
- e. Repetir el punto (d) agregando una entrada de HABILITACIÓN (E) activa por bajo, de tal forma que cuando E='1' ninguna señal de salida permanezca habilitada.

a)	Δ.	40	χ _o	×٬	۲×۶	Хз
	0	0	0	١	١	1
	0	ı	١	0	١	1
	1	0	١	ı	0	1
	1	0 1 0 1	١	l	1	٥

b)
$$X_0 = A_1 \cdot A_0' + A_1' \cdot A_0 + A_1' \cdot A_0'$$
 $Y_0 = A_1 + A_0$
 $X_1 = A_1' \cdot A_0' + A_1 \cdot A_0' + A_1 \cdot A_0$
 $X_2 = A_1' \cdot A_0' + A_1' \cdot A_0 + A_1 \cdot A_0$
 $X_3 = A_1' \cdot A_0' + A_1' \cdot A_0 + A_1 \cdot A_0'$
 $X_4 = A_1' \cdot A_0' + A_1' \cdot A_0 + A_1 \cdot A_0'$
 $X_5 = A_1' \cdot A_0' + A_1' \cdot A_0 + A_1 \cdot A_0'$

Ejercicio 8:

Implementar un decodificador de 3 x 8 y otro de 4 x 16 a partir de decodificadores 2 x 4 activos por bajo, con entrada de habilitación (**E**) activa por bajo y compuertas lógicas.

Decodificador de 3x8 con decodificadores Zxy activos por bajo

Decodificador de 4x16 con decodificadores Zx4 activos por bajo

Ejercicio 9:

- a. Diseñar un circuito SUMADOR COMPLETO (3 entradas: X, Y, C_{IN}; 2 salidas: S, C_{OUT}) mediante el uso de un Decodificador de salida activa por alto y compuertas OR. Tip: La salida que vale 1 representa el minitérmino equivalente al número binario que está a la entrada.
- b. Diseñar un sumador completo usando dos semisumadores y una compuerta.

0

X	4	Cin	Cout	S
0	0	0	0	0
0	0	1	٥	1
0	1	D	0	1
0	1	l	ı	0
1	0	0	0	1
1	0	1	J	0
1	ſ	0	ı	0
1	١	Ī	1	Ī
he				

b) Semisumador: suma dos bits y genera la salida y un carry,

No toma carry de entrada

Ejercicio 10:

Un MULTIPLEXOR (MUX) es un circuito combinacional que que selecciona información binaria de muchas entradas y la dirige <u>a una única salida (Y)</u>, conforme al estado de las señales de selección. Si un MUX posee '2^{N'} entradas de información (**D**) requiere 'N' señales de selección (**S**).

- a. Expresar la tabla de verdad de un MUX de 2 entradas (y una salida) y su implementación mediante el uso de compuertas lógicas (AND, OR, NOT, NOR, NAND, etc.)
- b. Mostrar cómo se puede usar un MUX para obtener una compuerta NOT.
- c. ¿Cómo obtener un MUX de 4 entradas (y una salida) en base a multiplexores de 2 entradas?
- d. ¿Cómo obtener un multiplexor de 'N' entradas con multiplexores de 2 entradas?

d) 1-Poner una primera columna de multiplexores hosta tener las entradas requeridas.

2-Poner una sepunda columna de multiplexores de la mitaci de multiplexores que la primero.

3-Repetir paso z hasta que quede un solo multiplexor, todos las entrados de selección de una misma columna se conectan, tomendo el menos significativo pora la primor columna y se incrementa a derecha.

Ejercicio 11:

Dado el siguiente circuito con entradas (DCBA):

a. Elabore la tabla de verdad de "SALIDA" y responda: ¿Para cuantas combinaciones posibles de entradas la salida es igual a 1?

ATENCIÓN: no confundir el nombre de las señales del enunciado con las de selección del decodificador!

a)	D	4	В	l Y
	6	0	0	رم
	0	D	ı	c,
	0	ı	0	Cz
	D	ı	1	63
	1	٥	0	(4
	1	0	1	(4 (5
	1	1	0	کھ
	1	ı	1	6

D	C	В	A	У
0	0	0	0	0
0	0	0	١	0
0	0	1	0	1
0	٥	- 1	1	0
000	1	0	0	1
0	ı	0	(0
0	1	- 1	0	0
D	1	1	1	1
1	0	0	0	1
1	0	O	1	O
1	0	1	0	1
1	0	ı	1	1
1	1	0	0	1
1	1	0	1	1
1	١	1	0	O
١	1 1		Ī	0

Ejercicio 12:

Dado el siguiente circuito con entradas (DCBA):

Asumir que las salidas Q del decodificador son activas por alto, y que las salidas Q(1,4,5,7) no se conectan a ninguna compuerta.

a. a.Elaborar la tabla de verdad de la función f y responder: ¿Para cuantas combinaciones posibles de entradas la salida f es igual a 1?

a) .	A	B	C	D	f
1	0	0	0	0	1
	O	0	0	١	0
	0	0	1	О	0
	0	0	1	I	0
	0	5	О	O	1
	0	1	0	ı	0
	0	1	I	0	0
	0	1	١	J	1
	1	0	0	0	0
	1	တ	0	1	0
	1	O	1	0	0
	1	0	1	1	00
	T	1	0	0	0
)	l	0)	1
	ŀ	ı	1	0	000
	J	١	1	J	0

A	В	C	S
0	0	0	Qo
0	0	ı	Q
0	١	0	Qz
0	ſ	I	Q_3
1	6	0	04
1	0	1	Qs
1	1	0	Q6
1	ı	1	Q7

Ejercicio 13:Dado el siguiente circuito con entradas (ABCD):

- a. Elaborar la tabla de verdad de la función f y responder: ¿Para cuantas combinaciones posibles de entradas la salida f es igual a 1?
- b. Repetir el punto a) pero conectando la salida Y del Multiplexor a la entrada Enable del Decodificador. ¿Qué diferencias se obtuvieron? ¿Por qué?

D	c	В	А	₽,	₽z
0	0	0	0	ı	1
0	0	0	1	١	ı
0	0	ſ	0	0	1
0	0	1	1	0	1
0	1	0	0	0	j.
0	١	0	1	0	1
0	. 1	1	0	1	1
0		١	ı	١	1
1	Q	0	0	1	١
1	C	0	1	1	1
1	C	1 (0	0	١
1	Ò		ı	0	1
	1	0	0	0	1
	1	O	ı	۵	1
	ı	١	0	1	1
	1	j J	I	1	1

6