This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt **European Patent Office**

Office européen des brevets

EP 1 199 365 A2

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 24.04.2002 Bulletin 2002/17
- (21) Application number: 01203826.1
- (22) Date of filing: 10.10.2001

(51) Int CI.7: C12N 15/55, C12N 15/54, C12N 15/62, C12N 15/10, C12N 9/10, C12N 9/22, C12N 1/21

(11)

- (84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR **Designated Extension States:** AL LT LV MK RO SI
- (30) Priority: 20.10.2000 US 693146
- (71) Applicant: NEW ENGLAND BIOLABS, INC. Beverly Massachusetts 01915 (US)
- (72) Inventors:
 - Xu, Shuang-yong Lexington, Massachusetts 02173 (US)

- · Xiao, Jian-ping Wenham, Massachusetts 01984 (US)
- Zhu, Zhenyu Beverly, Massachusetts 01915 (US)
- (74) Representative: Davies, Jonathan Mark Reddie & Grose 16 Theobalds Road London WC1X 8PL (GB)

Remarks:

The biological material has been deposited with American Type Culture Collection (ATTC) under number(s) PTA-2596; PTA-2597; PTA-2598

- (54)Method for cloning and expression of Bpml restiction endonuclease in E. coli
- (57) The present invention relates to recombinant DNA which encodes the Bpml restriction endonuclease as well as Bpml methyltransferase, expression of Bpml restriction endonuclease from E. colicells containing the recombinant DNA. Bpml endonuclease is a fusion of two distinct elements with a possible structural domains of restriction-methylationspecificity (R-M-S). This domain organization is analogous to the type I restriction-modification system with three distinct subunits, restriction,

methylation, and specificity (R, M, and S). Because Bpml is quite distinct to other type IIS restriction enzymes, it is proposed that Bpml belongs to a subgroup of type Il restriction enzymes called type IIf (f stands for fusion of restriction-modification-specificity domains). The Type IIf group of restriction enzyme includes Eco571, Bpml, Gsul, BseRl and some other restriction enzymes that cut downstream sequences at long distance, 10-20 bp downstream of recognition sequence, such as Mmel

(N20/N18)).

FIG. 1 BpmIRM gene BooIR1 gene R H S (Bool-Ast) (BpmI-A#2) (Bpel-Ae3)

Description

BACKGROUND OF THE INVENTION

[0001] The present invention relates to recombinant DNA which encodes the *BpmI* restriction endonuclease as well as *BpmI* methyltransferase and expression of *BpmI* restriction endonuclease from *E. coli* cells containing the recombinant DNA. *BpmI* is an isoschizomer of *GsuI* (Fermentas 2000-2001 Catalog, Product No. ER0461/ER0462).

[0002] Type II restriction endonucleases are a class of enzymes that occur naturally in bacteria and in some viruses. When they are purified away from other bacterial proteins, restriction endonucleases can be used in the laboratory to cleave DNA molecules into small fragments for molecular cloning and gene characterization.

[0003] Restriction endonucleases act by recognizing and binding to particular sequences of nucleotides (the 'recognition sequence') along the DNA molecule. Once bound, they cleave the molecule within, to one side of, or to both sides of the recognition sequence. Different restriction endonucleases have affinity for different recognition sequences. Over two hundred and eleven restriction endonucleases with unique specificities have been identified among the many hundreds of bacterial species that have been examined to date (Roberts and Macelis, *Nucl. Acids Res.* 27:312-313 (1999)).

[0004] Restriction endonucleases typically are named according to the bacteria from which they are derived. Thus, the species *Deinococcus radiophilus* for example, produces three different restriction endonucleases, named *Drall, Drall* and *Drall*. These enzymes recognize and cleave the sequences 5'TTT/AAA3', 5'PuG/GNCCPy3' and 5'CACNNW GTG3' respectively. *Escherichia coli* RY13, on the other hand, produces only one enzyme, *Eco*RI, which recognizes the sequence 5'G/AATTC3'.

[0005] A second component of bacterial restriction-modification (R-M) systems are the methyltransferases (methylases). These enzymes are complementary to restriction endonucleases and they provide the means by which bacteria are able to protect their own DNA and distinguish it from foreign, infecting DNA. Modification methylases recognize and bind to the same recognition sequence as the corresponding restriction endonuclease, but instead of cleaving the DNA, they chemically modify one particular nucleotide within the sequence by the addition of a methyl group (C5-methyl cytosine, N4-methyl cytosine, or N6 methyl adenine). Following methylation, the recognition sequence is no longer cleaved by the cognate restriction endonuclease. The DNA of a bacterial cell is always fully modified by the activity of its modification methylase. It is therefore completely insensitive to the presence of the endogenous restriction endonuclease. It is only unmodified, and therefore identifiably foreign DNA, that is sensitive to restriction endonuclease recognition and cleavage.

[0006] By means of recombinant DNA technology, it is now possible to clone genes and overproduce the enzymes in large quantities. The key to isolating clones of restriction endonuclease genes is to develop a simple and reliable method to identify such clones within complex genomic DNA libraries, i.e. populations of clones derived by 'shotgun' procedures, when they occur at frequencies as low as 10⁻³ to 10⁻⁴. Preferably, the method should be selective, such that the unwanted majority of clones are destroyed while the desirable rare clones survive.

[0007] A large number of type II restriction-modification systems have been cloned. The first cloning method used bacteriophage infection as a means of identifying or selecting restriction endonuclease clones (*EcoRII*: Kosykh et al., *Mol. Gen. Genet.* 178:717-719 (1980); *Hhall*: Mann et al., *Gene* 3:97-112 (1978); *Psti*: Walder et al., *Proc. Nat. Acad. Sci.* 78:1503-1507 (1981)). Since the presence of restriction-modification systems in bacteria enable them to resist infection by bacteriophage, cells that carry cloned restriction-modification genes can, in principle, be selectively isolated as survivors from genomic DNA libraries that have been exposed to phages. This method has been found, however, to have only limited value. Specifically, it has been found that cloned restriction-modification genes do not always manifest sufficient phage resistance to confer selective survival.

[0008] Another cloning approach involves transferring systems initially characterized as plasmid-borne into E. colicloning plasmids (EcoRV: Bougueleret et al., Nucl. Acids. Res. 12:3659-3876 (1984); PaeR7: Gingeras and Brooks, Proc. Natl. Acad. Sci. USA 80:402-406 (1983); Theriault and Roy, Gene 19:355-359 (1982); Pvull: Blumenthal et al., J. Bacteriol. 164:501-509 (1985); Tsp45I: Wayne et al. Gene 202:83-88 (1997)).

[0009] A third approach is to select for active expression of methylase genes (methylase selection) (U.S. Patent No. 5,200,333 and BsuRl: Kiss et al., Nucl. Acids. Res. 13:6403-6421 (1985)). Since R-M genes are often closely linked together, both genes can often be cloned simultaneously. This selection does not always yield a complete restriction system however, but instead yields only the methylase gene (BspRl: Szomolanyi et al., Gene 10:219-225 (1980); Bcnl: Janulaitis et al., Gene 20:197-204 (1982); BsuRl: Kiss and Baldauf, Gene 21:111-119 (1983); and Mspl: Walder et al., J. Biol. Chem. 258:1235-1241 (1983)).

[0010] A more recent method, the "endo-blue method", has been described for direct cloning of restriction endonuclease genes in *E. coli* based on the indicator strain of *E. coli* containing the *dinD::lacZ* fusion (Fomenkov et al., U.S. Patent No. 5,498,535, (1996); Formenkov et al., *Nucl. Acids Res.* 22:2399-2403 (1994)). This method utilizes the *E. coli* SOS response signals following DNA damages caused by restriction endonucleases or non-specific nucleases. A

number of thermostable nuclease genes (*Taq*I, *Tth*111I, *Bso*BI, *Tf* nuclease) have been cloned by this method (U.S. Patent No. 5,498,535).

[0011] Because purified restriction endonucleases, and to a lesser extent, modification methylases, are useful tools for creating recombinant molecules in the laboratory, there is a commercial incentive to obtain bacterial strains through recombinant DNA techniques that produce large quantities of restriction enzymes. Such overexpression strains should also simplify the task of enzyme purification.

SUMMARY OF THE INVENTION

5

25

30

[0012] The present invention relates to a method for cloning the Bpml restriction endonuclease from Bacillus pumilus into E.coli by methylase selection and inverse PCR amplification of the adjacent DNA of the Bpml methylase gene.
[0013] The present invention relates to recombinant Bpml and methods for producing the same. Bpml restriction endonuclease is found in the strain of Bacillus pumilus (New England Biolabs' strain collection #711). It recognizes doublestranded DNA sequence 5' CTGGAG3' (or 5'CTCCAG3') and cleaves 16/14 bases downstream of its recognition sequence (N16/N14) to generate a 2-base 3' overhanging ends.

[0014] By methylase selection, a methylase gene with high homology to amino-methyltransferases (N6-adenine methylases) was found in a DNA library. This gene was named *Bpml* M1 gene (*BpmlM1*, 1650 bp), encoding a 549-aa protein with predicted molecular mass of 63,702 daltons. There was one partial open reading frame upstream of *BpmlM1* gene that displayed 31% amino acid sequence identity to another restriction enzyme *Eco*57I with similar recognition sequence (*Eco*57I recognition sequence: 5'CTGAAG N16/N14; *Bpml* recognition sequence: 5' CTGGAG N16/N14; A. Janulaitis et al. *Nucl. Acids Res.* 20:6051-6056, (1992)).

[0015] In order to clone the rest of the *BpmIRM* gene, inverse PCR was used to amplify the adjacent DNA sequence. After four rounds of inverse PCR reactions, an open reading frame of 3030 bp was found upstream of *BpmI* M1 methylase gene, which encodes a 1009-aa protein with predicted molecular mass of 116,891 daltons. By amino acid sequence comparison of *BpmI* endonuclease with all known proteins in GenBank protein database, it was discovered that *BpmI* endonuclease is a fusion of two distinct elements with a possible structural domains of restriction-methylation-specificity (R-M-S). This domain organization is analogous to the type I restriction-modification system with three distinct subunits R, M, and S. Because *BpmI* is quite distinct to other type IIs restriction enzymes, it is proposed that *BpmI* belongs to a subgroup of type II restriction enzymes called type IIf (f stands for fusion of restriction-modification domains) [0016] To generate a premodified expression host, the *BpmIM1* gene was amplified in PCR and cloned in *E. coli* strain ER2568. *BpmI* M1 methylase also modifies *XhoI* site. *XhoI* recognition sequence 5' CTCGAG 3' is similar to *BpmI* recognition sequence 5' CTGGAG 3' with only one base difference. It was concluded that *BpmI* M1 methylase may recognize the sequence 5' CTNNAG 3' and possibly modify the adenine base to create N6-adenine in the symmetric sequence.

[0017] The expression of 3030-bp *BpmIRM* gene was quite difficult because of the large size of the PCR porduct. The *BpmIRM* gene was first amplified by Taq DNA polymerase and cloned into the premodified host, but no *BpmI* activity was detected. To improve the fidelity of PCR reaction, Deep Vent DNA polymerase was used in PCR. Among 18 clones with the insert, only one clone (#4) displayed partial *BpmI* activity. This clone was sequenced and confirmed to contain wild type sequence.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018]

- Figure 1 Gene organization of *Bpml* restriction-modification system. Genes *BpmlRM* and *BpmlM1* code for *Bpml* endonuclease (*Bpml* endonuclease-methylase fusion protein and *Bpml* M1, respectively. *Bpml*-Δ#1, *Bpml*-Δ#2, and *Bpml*-Δ#3 are deletion mutants with deletions in the methylation or specificity domains.
- Figure 2 DNA sequence of *Bpml* M1 methylase gene (*BpmlM1*) (SEQ ID NO:1) and its encoded amino acid sequence (SEQ ID NO:2).
 - Figure 3 DNA sequence of *BprnI* endonuclease gene (*BprnIRM*) (SEQ ID NO:3) and its encoded amino acid sequence (SEQ ID NO:4).
- Figure 4 Recombinant *Bpm*I endonuclease activity in column fractions following heperin Sepharose chromatography. Lane 1: purified native *Bpm*I endonuclease; lanes 2 to 23: heperin Sepharose column fractions. Fractions 11 to 14 gave rise to complete *Bpm*I digestion of λ DNA. The remaining fractions contain no or partial *Bpm*I activity. Lane 24: 1 kb DNA size marker.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

35

40

50

55

[0019] The method described herein by which the *BpmI* methylase gene and the *BpmI* restriction endonuclease genes are preferably cloned and expressed in *E. coli* employ the following steps:

1. Preparation of genomic DNA and restriction digestion of genomic DNA.

[0020] Genomic DNA is prepared from *Bacillus pumilus* (New England Biolabs collection #711) by the standard procedure. Five µg genomic DNA is digested partially with 2, 1, 0.5, and 0.25 units of *Apol* (recognition sequence R/AATTY). Genomic DNA fragments in the range of 2-10 kb are purified through a low-melting agarose gel. Genomic and pBR322 DNA are also digested with *Aat*il, *Bam*HI, Clai, *Eag*I, *Eco*RI, *Hin*dIII, *Nde*I, *Nhe*I, *Sal*I, and *Sph*I, respectively, however, no methylase positive clones were obtained.

2. Construction of Apol partial genomic DNA library and challenge of library with Bpml.

[0021] The Apol partial DNA fragments are ligated to EcoRI digested and CIP treated pBR322 vector. The ligated DNA is transferred into E. coli RR1 competent cells by electroporation. Transformants are pooled and amplified. Plasmid DNA is prepared from the cells and challenged with Bpml. Following Bpml digestion, the challenged DNA is transformed into RR1 cells. Survivors are screened for resistance to Bpml digestion. Two resistant clones, #18 and #26, were identified to be resistant to Bpml digestion. Aafl, BamHI, Clal, Eagl, EcoRI, HindIII, Ndel, Nhel, Sall, and Sphl digested genomic DNA were also ligated to pBR322 with compatible ends and genomic DNA libraries are constructed. However, no apparent Bpml resistant clones were discovered from these libraries.

3. Subcloning and DNA sequencing of the resistant clone.

[0022] One resistant clone #26 contained an insert of about 3.1 kb. The forward and reverse primers of pUC19 were used to sequence the insert. Three Apol and one HindIII fragments were subcloned in pUC19 and sequenced. The entire insert was sequenced by primer walking. A methylase gene with high homology to amino-methyltransferase is found within the insert which is name BpmI M1 gene. The BpmIM1 gene is 1,650 bp, encoding a 549-amino acid protein with predicted molecular mass of 63,702 deltons.

4. Cloning of *Bpmi* restriction endonuclease gene (*BpmiRM*) by inverse PCR.

[0023] In accordance with the present invention, it was determined that there was one partial open reading frame upstream of *BpmlM1* gene that has 31% amino acid sequence identity to another restriction enzyme *Eco*57l with similar recognition sequence (*Eco*57l recognition sequence: 5'CTGAAG N16/N14; A. Janulaitis et al. *Nucl. Acids Res.* 20: 6051-6056 (1992); *Bpml* recognition sequence: 5'CTGGAG N16/N14). Genomic DNA is digested with restriction enzymes. The digested DNA is ligated at a low DNA concentration and then used for inverse PCR amplification of *BpmlR* gene. Inverse PCR products are derived, gel-purified from low-melting agarose and sequenced. After four rounds of inverse PCR reactions, an open reading frame of 3,030 bp was found upstream of *Bpml* M1 methylase gene, which encoded a 1,009-amino acid protein with predicted molecular mass of 116,891 daltons. This is one of the largest restriction enzyme discovered so far. By amino acid sequence comparison of *Bpml* endonuclease with all known proteins in GenBank protein database, it is discovered that *Bpml* endonuclease is a fusion of two distinct elements with a possible structural domains of restriction-methylation-specificity (R-M-S). This domain organization is analogous to the type I restriction-modification system with three distinct subunits, restriction, methylation, and specificity (R, M, and S). Because *Bpml* is quite distinct to other type IIs restriction enzymes, it is suggested that *Bpml* belongs to a subgroup of type II restriction enzymes called type IIf (f stands for fusion of restriction-modification-specificity domains)

5. Expression of *BpmIM1* gene in *E. coli*.

[0024] Two primers are synthesized to amplify <code>BpmlM1</code> gene in PCR. Following digestion with <code>BamHI</code> and <code>SphI</code>, the PCR product is ligated into pACYC184 with the compatible ends. The ligated DNA is transformed into ER2566 competent cells. Plasmids with <code>BpmlM1</code> gene inserts are tested for resistance to <code>BpmI</code> digestion. Two out of 18 clones were found to be resistant to <code>BpmI</code> digestion, indicating efficient <code>BpmI</code> M1 expression in <code>E. coli</code> cells and <code>BpmI</code> site modification on the expression plasmid. The host cell ER2566 [pACYC-BpmlM1] is used for expression of <code>BpmIRM</code> cene.

[9025] Bpml M1 methylase also modifies Xhol site. Xhol recognition sequence 5'CTCGAG3' is similar to Bpml recognition sequence 5'CTGGAG3' with only one base difference. It is concluded that Bpml M1 methylase may recognize

the sequence 5'CTNNAG3' and modify the adenine base to generate N6-adenine in the symmetric sequence.

6. Expression of BpmIRM gene in E. coli using a T7 expression vector.

[0026] The 3,030-bp *BpmIRM* gene was amplified in PCR using Taq DNA polymerase, digested with *Bam*HI and ligated into *Bam*HI-digested T7 expression vectors pAll17 and pET21a. After transformation of the ligated DNA into ER2566 [pACYC-BpmIM1], transformants were screened for the endonuclease gene insert. Seven out of 72 clones contained the insert with correct orientation. However, no *BpmI* activity was detected in cell extracts of IPTG-induced cells. This is probably due to mutations introduced during the PCR process.

[0027] To reduce the mutation frequency, Deep Vent® DNA polymerase was used in PCR reactions to amplify the 3030-bp *BpmIRM* gene. The PCR product was digested with *Bami*HI and *Xbe*I and ligated to T7 expression vectors pAII17 and pET21at. Eighteen out of 36 clones contain the correct size insert. Ten ml cell culture for all 18 clones were induced with IPTG and cell extracts were prepared and assayed for *BpmI* activity. Clone #4 displayed partial *BpmI* activity.

7. Partial purification of recombinant Bpml activity.

[0028] Five hundred ml of cell culture was made for the expression clone #4 ER2566 [pACYC-BpmIM1, pET21at-BpmIRM]. Cell extract (40 ml) containing *Bpm*I was purified through a heparin Sepharose column. Proteins were eluted with a NaCl gradient of 50 mM to 1 M. Fractions 6 to 27 are assayed for *Bpm*I activity on λ DNA. It was found that fractions 15 to 18 contained the most active *Bpm*I activity (Figure 4). The yield was estimated at 1,800 units of *Bpm*I per gram of wet *E. coli* cells. The specific activity was estimated at 24,000 units per mg of protein.

[0029] The present invention is further illustrated by the following Examples. These Examples are provided to aid in the understanding of the invention and are not construed as a limitation thereof.

25 [0030] The references cited above and below are hereby incorporated by reference herein.

EXAMPLE 1

10

15

20

30

35

40

45

55

CLONING OF Bpm/ RESTRICTION-MODIFICATION SYSTEM IN E. COLI

1. Preparation of genomic DNA and restriction digestion of genomic DNA.

[0031] Genomic DNA is prepared from *Bacillus pumilus* (New England Biolabs collection #711) by the standard procedure consisting the following steps:

- (a) cell lysis by addition of lysozyme (2 mg/ml final), sucrose (1% final), and 50 mM Tris-HCl, pH 8.0;
- (b) cell lysis by addition of 10% SDS (final concentration 0.1%);
- (c) cell lysis by addition of 1% Triton X-100 and 62 mM EDTA, 50 mM Tris-HCl, pH 8.0;
 - (d) phenol-CHCl₃ extraction of DNA 3 times (equal volume) and CHCl₃ extraction one time;
 - (e) DNA dialysis in 4 liters of TE buffer, change 3x; and

(f) RNA was removed by RNAse A treatment and the genomic DNA was precipitated in ethanol and resupended in TE buffer;

[0032] Five µg genomic DNA was digested partially with 2, 1, 0.5, and 0.25 units of *Apol* (recognition sequence R/AATTY) at 50°C for 30 min. Genomic DNA fragments in the range of 2-10 kb were purified through a 1% low-melting agarose gel. Genomic and pBR322 DNA were also digested with *Aat*II, *Bam*HI, *Cla*I, *Eag*I, *EcoR*I, *Hind*III, *Nde*I, *Nhe*I, *SaI*I, and *Sph*I, respectively. Genomic DNA fragments were ligated to pBR322 with compatible ends.

2. Construction of Apol partial genomic DNA library and challenge of library with Bpml.

[0033] The Apol partial DNA fragments were ligated to EcoRI digested and CIP treated pBR322 vector. The ligated DNA was dialyzed by drop dialysis on 4 L of distilled water and transferred into E. coli RR1 competent cells by electroporation. ApR transformants were pooled and amplified. Plasmid DNA was prepared from the overnight cells and

challenged with *Bpm*I. Following *Bpm*I digestion, the challenged DNA was transformed into RR1 cells. ApR survivors were screened for resistance to *Bpm*I digestion. A total of 36 plasmid mini-preparations were made. Two resistant clones, #18 and #26, were identified to be resistant to *Bpm*I digestion. *Aat*II, *Bam*IHI, *Cla*I, *Eag*I, EcoRI, *Hind*III, *Nde*I, *Nhe*I, *Sal*I, and *Sph*I digested genomic DNA were also ligated to pBR322 with compatible ends and genomic DNA libraries were constructed. However, no apparent *Bpm*I resistant clones were discovered from these libraries after screening more than 144 clones.

3. Subcloning and DNA sequencing of the resistant clone.

15

25

30

40

45

55

[0034] One resistant clone #26 contains an insert of about 3.1 kb. The forward and reverse primers of pUC19 were used to sequence the insert. Three *Apol* and one *Hin*dIII fragments were gel-purified and subcloned in pUC19 and sequenced. The rest of the insert was sequenced by primer walking. A methylase gene with high homology to aminomethyltransferase (N6-adenine methylase) was found within the insert which was name *Bpml* M1 gene. The *BpmlM1* gene is 1,650 bp, encoding a 549-amino acid protein with predicted molecular mass of 63,702 daltons.

4. Cloning of Bpml restriction endonuclease gene (BpmlRM) by inverse PCR.

[0035] There is one partial open reading frame upstream of *BpmlM1* gene that has 31% amino acid sequence identity to another restriction enzyme *Eco*57I with similar recognition sequence (*Eco*57I recognition sequence: 5'CTGAAG N16/N14; A. Janulaitis et al. *Nucl. Acids Res.* 20:6051-6056 (1992); *Bpml* recognition sequence: 5'CTGGAG N16/N14). Genomic DNA was digested with restriction enzymes *Asel*, *Bcl*, *Hael*I, *Hpal*I, *Mbol*, *Msel*, *Nlal*II, *Pad*, and *Tsp*509I. The digested DNA was ligated at a low DNA concentration at 2 μg/ml and then used for inverse PCR amplification of *BpmlR* gene. The sequence of the inverse PCR primers was the following:

5' gtggaaacggaccgtattatggtt 3' (232-34) (SEQ ID NO:5)

5' caccagtaaataacaggttattcc 3' (232-35) (SEQ ID NO:6)

[0036] Inverse PCR conditions were 94°C 1 min, 55°C 1 min, 72°C 2 min for 35 cycles. Inverse PCR products were derived from *HaelII* and *NiaIII* templates, gel-purified from low-melting agarose and sequenced using primers 232-34 and 35.

[0037] The primers for second round of inverse PCR were the following:

5' ttcgtagcaagtacggtccatatcagt 3' (233-76) (SEQ ID NO:7)

5' ccgtatgtacttgataggaataacctg 3' (233-77) (SEQ ID NO:8)

[0038] Genomic DNA was digested with Asel, Bcfl, BsrFl, BsrNl, EcoRl, Hincll, Hindlll, Hpall, Ncol, Pacl, Pvul, Taql, Tfl, and Xbal. The digested DNA was ligated at a low DNA concentration at 2 µg/ml and then used for inverse PCR amplification of BpmIR gene. Inverse PCR conditions were 94°C 1 min, 55°C 1 min, 72°C 2 min for 35 cycles. Inverse PCR products were derived from Asel, Hindlll, Hpall, and Taql templates, gel-purified from low-melting agarose and sequenced using primers 233-76 and 77.

[0039] The primers for third round of inverse PCR were the following:

5' aggaactaagaaagttcatagctg 3' (234-61) (SEQ ID NO:9)

5' atgcggtattatataacccaacag 3' (234-62) (SEQ ID NO:10)

- [0040] Genomic DNA was digested with Afill, BspHI, BsfNI, EcoRI, Haell, HinP1I, Hhall, HindIII, Styl, and XmnI. The digested DNA was ligated at a low DNA concentration at 2 μg/ml and then used for inverse PCR amplification of BpmIR gene. Inverse PCR conditions were 94°C 1 min, 55°C 1 min, 72°C 2 min for 35 cycles. Inverse PCR products were derived from HinP1I and XmnI templates, gel-purified from low-melting agarose and sequenced using primers 234-61 and 62.
- 10 [0041] The primers for the fourth round of inverse PCR were the following:

5' tgacgtcctcttcacctaattcgg 3' (235-50) (SEQ ID NO:11)

15

5' gagtttgtgaagatagaaccattg 3' (235-51) (SEQ ID NO:12)

[0042] Genomic DNA was digested with Apol, BstBl, BstPl, Clal, EcoRl, Ndel, Rsal, Sau3Al, Sspl, Taql, and Xmnl. The digested DNA was ligated at a low DNA concentration at 2 µg/ml and then used for inverse PCR amplification of BpmlR gene. Inverse PCR conditions were 94°C 1 min, 55°C 1 min, 72°C 2 min for 35 cycles. Inverse PCR products were derived from Apol, Clal, Ndel, Rsal, Sspl, and Taql templates, gel-purified from low-melting agarose and sequenced using primers 235-50 and 51. The Clal fragment (2.4 kb) further extends upstream of BpmlRM gene. The rest of the Clal fragment was sequenced using primer walking.

[0043] After four rounds of inverse PCR reactions, an open reading frame of 3,030 bp was found upstream of *Bpml* M1 methylase gene, which encodes a 1,009-amino acid protein with predicted molecular mass of 116,891 daltons. This is one of the largest restriction enzyme discovered so far. By amino acid sequence comparison of *Bpml* endonuclease with all known proteins in GenBank protein database, it was discovered that *Bpml* endonuclease is a fusion of two distinct elements with a possible structural domains of restriction-methylation-specificity (R-M-S). This domain organization is analogous to the type I restriction-modification system with three distinct subunits, restriction, methylation, and specificity (R, M, and S). Because *Bpml* is quite distinct to other type IIs restriction enzymes, it is proposed that *Bpml* belongs to a subgroup of type II restriction enzymes called type IIf (f stands for fusion of restriction-modification-specificity domains)

5. Expression of *BpmiM1* gene in *E. coll.*

[0044] Two primers are synthesized to amplify BpmIM1 gene in PCR. The primer sequences are:

forward:

5' agcggatccggaggtaaataaatgaatcaattaattgaaaatgttaat 3' (238-177) (SEQ ID NO:13)

reverse:

5' aagggggcatgcttatacttatttcttcgttctattgtttct 3' (238-178) (SEQ ID NO:14)

55

40

45

[0045] Following digestion with BamHI and SphI, the PCR product was ligated into pACYC184 with the compatible ends. The ligated DNA was transformed into ER2566 competent cells. CmR transformants were plated at 37°C overnight. Plasmids with BpmIM1 gene inserts were tested for resistance to BpmI digestion. Two out of 18 clones showed

full resistance to *Bpml* digestion, indicating efficient *Bpml* M1 expression in *E. coli* cells and *Bpml* site modification on the expression plasmid. The host cell ER2566 [pACYC-BpmlM1] was used for expression of *BpmlRM* gene.

[0046] *Bpml* M1 methylase also modifies *Xhol* site. *Xhol* recognition sequence 5'CTCGAG3' is similar to *Bpml* recognition sequence 5'CTGGAG3' with only one base difference. It is concluded that *Bpml* M1 methylase may recognize the sequence 5'CTNNAG3' and modify the adenine base to generate N6-adenine in the symmetric recognition sequence.

6. Expression of BpmIRM gene in E. coli using a T7 expression vector.

15

20

25

35

40

- 10 [0047] Two primers were synthesized to amplify the BpmIRM gene. The primer sequences were:
 - 5' caaggatccggaggtaaataaatgcatataagtgagttagtagataaatac 3' (247-217) (SEQ ID NO:15)
- 5' ttaggatcctcatttttcttctcctaacgccgctgt 3' (238-182) (SEQ ID NO:16)

[0048] The 3,030-bp *BipmiRM* gene was amplified in PCR using Taq DNA polymerase, digested with *Bami*HI and ligated into *Bami*HI-digested T7 expression vectors pAlI17 and pET21a. After transformation of the ligated DNA into ER2566 [pACYC-BipmiM1], ApR CmR transformants were screened for the endonuclease gene insert. Seven out of 72 clones contained the insert with correct orientation. However, no *Bipmi* activity was detected in cell extracts of IPTG-induced cells. This was probably due to mutations introduced during the PCR process.

[0049] To reduce the mutation frequency, Deep Vent® DNA polymerase was used in PCR reactions to amplify the

[UU49] To reduce the mutation frequency, Deep Venter DNA polymerase was used in PCR reactions to amplify the 3,030-bp *BpmlRM* gene. The forward primer incorporated an *Xba*l site and its sequence is the following:

5' caccaatctagaggaggtaaataaatgcatataagtgagttagtagata aatac 3' (238-181) (SEQ ID NO:17)

[0050] PCR was performed using primers 238-181, 238-182, and Deep Vent® DNA polymerase. The PCR conditions were 94°C 5 min for one cycle; 94°C 1 min, 55°C 1.5 min, 72°C 8 min for 20 cycles. The PCR product was purified through a Qiagen spin column and digested with BamHI and Xbal and ligated to T7 expression vectors pAll17 and pET21at with compatible ends. Eighteen out of 36 clones contain the correct size insert. Ten ml cell culture for all 18 clones containing inserts were induced with IPTG for 3h and cell extracts were prepared by sonication and assayed for BpmI activity. Clone #4 displayed partial BpmI activity. Because this gene was derived by PCR cloning, the entire BpmIRM fusion gene was sequenced on both strands and it was confirmed to be wild type sequence.

7. Partial purification of recombinant Bpmi activity.

[0051] Five hundred ml of cell culture was made for the expression clone #4 ER2566 [pACYC-BpmlM1, pET21at-BpmlRM]. The late log cells were induced with IPTG and Cell extract (40 ml) containing *Bpml* was purified through a heparin Sepharose column. Proteins were eluted with a NaCl gradient of 50 mM to 1 M. Fractions 6 to 27 contained the most protein concentration and were assayed for *Bpml* activity on λ DNA. It was found that fractions 15 to 18 contained the most active *Bpml* activity (Figure 4). The yield was estimated at 1,800 units of *Bpml* per gram of wet *E. coli* cells. The specific activity was estimated at 24,000 units per mg of protein. Proteins from fractions 15 to 18 were analyzed on a SDS-PAGE gel and protein bands were stained with Gelcode blue stain. A protein band corresponding

to ~115 kDa was detected on the protein gel, in close agreement with the predicted size of 117 kDa.

[0052] The E. coli strain ER2566 [pACYC-BpmlM1, pET21at-BpmlRM] has been deposited under the terms and conditions of the Budapest Treaty with the American Type Culture Collection on October 12, 2000 and received Accession No. PTA-2598.

Example 2

5

10

15

20

*3*0

45

50

Deletion of the methylase portion of Bpmi RM fusion protein

[0053] Two primers were synthesized to amplify the putative endonuclease domain with deletion of the methylase and specificity domains. The deletion clone thus contains only the R portion and the M and S portions were removed. The forward primer was 238-181 as described above. The reverse primer had the following sequence with a Xhol site at the 5' end:

5' tgaaatctcgagttatcctgatccacaacatatatctgctat 3' (244-95) (SEQ ID NO:18)

[0054] The deletion junction was in motif I of γtype N6 adenine methylase. The γtype N6 adenine methylases contain conserved motifs of X, I, II, III, IV, V, VI, VII, VIII. The specificity domain (TRD) is located after motif VIII. The *BpmI* deletion clone (*BpmI*-Δ#1) still carried motifs X and part of motif I. The specificity domain after motif VIII was also deleted (the remaining portion is shown in Figure 1).

[0055] PCR was performed using primers 238-181 and 244-95 and Taq plus Vent® DNA polymerase (94°C 1 min, 60°C 1 min, and 72°C 1 min for 25 cycles). The PCR product was digested with Xbel and Xhol and cloned into a T7 expression vector pET21b. Sixteen clones out of 36 screened contained the correct size insert and the cells were induced with IPTG for 3h. Cell extract was prepared by sonication and assayed for Bpml activity on λ DNA. However, no apparent Bpml digestion pattern was detected. Only non-specific nuclease was detected in cell extract, resulting a smearing of DNA substrate. It was concluded that deletion of the methylase and specificity portion of the BpmlRM fusion protin abolished Bpml restriction activity.

[0056] To further confirm the above result, another deletion clone was constructed that deleted methylase motifs IV, V, VI, VII, and the specificity domain. This *Eco*RI fragment deletion mutant contains 1,521 bp (507 amino acid) deletion at the C-terminus half of the fusion protein (*Bpm*I-Δ#2). IPTG-induced cell extract of this mutant also did not display *Bpm*I endonuclease activity.

[0057] To delete the specificity domain (target-recognizing domain, TRD), a *Hin*dIII fragment of 579 bp (193 amino acid) was deleted from the C-terminus of *BpmI* RM fusion endonuclease (*BpmI*-Δ#3). IPTG-induced cell extract of the TRD deletion mutant did not show any *BpmI* endonuclease activity. However, the mutant protein displayed non-specific nuclease activity. It was concluded that the specificity (TRD) domain is also required for *BpmI* endonuclease activity. Deletion of the specificity (TRD) domain may abolish or reduce its DNA binding affinity and specificity. By swapping in of other N6 methylase and specificity domains, one may be able to create new enzyme specificity.

Example 3

Generation of new enzyme specificity using BpmI RM fusion protein

[0058] Since *BpmI* endonuclease consists of three domains (R-M-S), it is possible to plug in other methylation-specificity domains to create a new enzyme specificity. The *BpmIRM* fusion gene is cloned in a T7 expression vector as described in Example 1. Plasmid DNA is prepared. The *γ* type N6 adenine methylases contain conserved motifs of X, I, II, III, IV, V, VI, VII, VIII (Malone T. et al. *J.Mol.Biol* 253:618-632 (1995)). Motifs X through VIII and TRD are deleted and a DNA linker coding for one or more bridging amino acids is inserted with a restriction site, preferably blunt (for example *Sma*I site). The number of amino acids will differ from one system to the next and can be determined by routine experimentation. The goal is to provide sufficient steric space for the introduction of the new M-S domains. DNA coding for other *γ* type N6 adenine methylases containing motifs of X, I, II, III, IV, V, VI, VII, VIII and TRD are ligated to the digested blunt site (in frame) of the *BpmI* deletion clone. The ligated DNA is transformed into a non-T7 expression vector. After the insert is verified, the plasmid containing new methylation-specificity domains is transformed into a T7 expression host and induced with IPTG. Cell extract is assayed on plasmid and phage DNA and analyzed

for new restriction activity.

55

SEQUENCE LISTING 5 <110> New England Biolabs, Inc. <120> Method for Cloning and Expression of BpmI Restriction Endonuclease in E 10 <130> 43635/EP <160> 18 <170> PatentIn version 3.1 15 <210> <211> 1650 <212> DNA <213> Bacillus pumilus 20 <220> <221> CDS <222> (1)..(1650) <223> 25 <400> 1 atg aat caa tta att gaa aat gtt aat cta caa aaa tta agg ggt ggg 48 Met Asn Gln Leu Ile Glu Asn Val Asn Leu Gln Lys Leu Arg Gly Gly tat tac acc cct ama gtt att gct gac ttt tta tgt cam tgg agt att 96 30 Tyr Tyr Thr Pro Lys Val Ile Ala Asp Phe Leu Cys Gln Trp Ser Ile 20 caa gat gac aca aag agt gta ctt gaa ccc agt tgt gga gat ggt aat 144 Gln Asp Asp Thr Lys Ser Val Leu Glu Pro Ser Cys Gly Asp Gly Asn 40 35 ttt att gaa tog goa ata ott agg tto aaa gaa ott agt ata gat aat 192 Phe Ile Glu Ser Ala Ile Leu Arg Phe Lys Glu Leu Ser Ile Asp Asn 50 55 gaa caa ctt aaa gga aga att aca gga gta gag cta att gaa gaa gaa 40 Glu Gln Leu Lys Gly Arg Ile Thr Gly Val Glu Leu Ile Glu Glu Glu gct ttg aaa gtt caa aat cga gca aat gag ttg ggg gtt gat aaa aac Ala Leu Lys Val Gln Asn Arg Ala Asn Glu Leu Gly Val Asp Lys Asn 45 85 tca ata gta aat agt gac ttc ttt caa ttt gta aaa gat aat aag aat 336 Ser Ile Val Asn Ser Asp Phe Phe Gln Phe Val Lys Asp Asn Lys Asn 100 105 50 aaa aaa ttt gat act att att ggt aat cca cca ttc ata aga tac caa 384 Lys Lys Phe Asp Thr Ile Ile Gly Asn Pro Pro Phe Ile Arg Tyr Gln 120 aac ttt cct gaa gag cat cgt agt ata gcc atg gaa atg gag gaa 432 Asn Phe Pro Glu Glu His Arg Ser Ile Ala Met Glu Met Met Glu Glu

135

5												tgg Trp					480
3												aag Lys					528
10												gca Ala					576
15												att Ile					624
		_		-				_	_	-		cta Leu 220			_	_	672
20												att Ile				aac [.] Asn 240	720
25												ata Ile					768
												aca Thr					816
30		_	_	_					-	-		aag Lys		_		_	864
35												gtt Val 300					912
	gga Gly 305	cga Arg	aac Asn	gaa Glu	ttc Phe	Phe 310	atg Met	atg Met	a aa Lys	gaa Glu	aac Asn 315	caa Gln	gta Val	aaa Lys	gaa Glu	tgg Trp 320	960
40				-					-			agg Arg			_		1008
45												gaa Glu					1056
50												gaa Glu					1104
50	tta Leu	ccg Pro 370	att Ile	gag Glu	tgt Cys	caa Gln	aat Asn 375	tat Tyr	atc Ile	aag Lys	tat Tyr	ggg Gly 380	gaa Glu	gaa' Glu	aaa Lys	ggc Gly	1152
55	ttc	cat	caa	ggc	tat	aaa	acc	aga	att	aga	aaa	cgt	tgg	tat	ata	act	1200

	Phe 385	His	Gln	Gly	Tyr	Lys 390	Thr	Arg	Ile	Arg	Lys 395	Arg	Trp	Tyr	Ile	Thr 400	
5	cca Pro	tct Ser	aga Arg	tgg Trp	gtt Val 405	cca Pro	gat Asp	gct Ala	ttt Phe	gct Ala 410	tta Leu	aga Arg	cag Gln	gtt Val	gat Asp 415	ggc Gly	1248
10						tta Leu											1296
						ttt Phe											1344
15						tca Ser											1392
20						ggt Gly 470											1440
25						tcc Ser											1488
						cga Arg											1536
30						ctt Leu			Tyr								1584
35						ej A Gad											1632
		_	acg Thr	_		taa											1650
40	<21: <21: <21: <21:	1> : 2> :	2 549 PRT Bacil	llus	pumi	ilus											
45	<40	D> :	2														
	Met 1	Asn	Gln	Leu	Ile 5	Glu	Asn	Val	Asn	Leu 10	Gln	Lys	Leu	Arg	Gly 15	Gly	
50	Tyr	Tyr	Thr	Pro 20	Lys	Val	Ile	Ala	Asp 25	Phe	Leu	Суз	Gln	Trp 30	Ser	Ile	
55	Gln	Asp	Asp 35	Thr	Lys	Ser	Val	Leu 40	Glu	Pro	Ser	Cys	Gly 45	Asp	Gly	Asn	

5	Phe	Ile 50	Glu	Ser	Ala	Ile	Leu 55	Arg	Phe	Lys	Glu	Leu 60	Ser	Ile	Азр	Asn
10	Gl u 6 5	Gln	Leu	Lys	Gly	Arg 70	Ile	Thr	Gly	Val	Glu 75	Leu	Ile	Glu	G1 u	Glu 80
10	Ala	Leu	Lys ·	Val	Gln 85	Asn	Arg	Ala	Asn	Glu 90	Leu	Gly	Val	Asp	Lys 95	Asn
15	Ser	Ile	Val	Asn 100	Ser	Asp	Phe	Phe	Gln 105	Phe	Val	Lys	Asp	Asn 110	Lys	Asn
20	Lys	Lys	Phe 115	Asp	Thr	Ile	Ile	Gly 120	Asn	Pro	Pro	Phe	Ile 125	Arg	Tyr	Gln
	Asn	Phe 130	Pro	Glu	Glu	His	A rg 135	Ser	Ile	Ala	Met	Glu 140	Met	Met	Glu	Glu
25	Leu 145	Gly	Leu	Lys	Pro	Asn 150	Lys	Leu	Thr	Asn	Ile 155	Trp	Val	Pro	Phe	Leu 160
30	Val	Val	Ser	Ala	Thr 165	Leu	Leu	Asn	Glu	Gln 170	Gly	Lys	Met	Ala	Met 175	Val
	Ile	Pro	Ala	Glu 180	Leu	Phe	Gln	Val	Lys 185	Tyr	Ala	Ala	Glu	Thr 190	Arg	Ile
35	Phe	Leu	Ser 195	Lys	Phe	Phe	Азр	Arg 200	Ile	Thr	Ile	Ile	Thr 205	Phe	Glu	Lys
40	Leu	Val 210	Phe	Glu	Asn	Ile	Gln 215	Gln	Glu	Val	Ile	Leu 220	Leu	Leu	Cys	Glu
	Lys 225	Lys	Val	Asn	Lys	Gly 230	Lys	Gly	Ile	Arg	Val 235	Ile	Glu	Cys	Glu	Asn 240
45	Leu	Asp	Gly	Leu	Asn 245	Ser	Ile	Asp	Phe	Val 250	Ala	Ile	Asn	Gly	Ser 255	Asn
50	Val	Lys	Pro	Ile 260	Glu	His	Arg	Thr	Glu 265	Lys	Trp	Thr	Lys	Tyr 270	Phe	Leu
	Asn	Glu	Asp 275	Glu	Ile	Leu	Leu	Leu 280	Gln	Ser	Leu	Lys	Glu 285	Asp	Lys	Arg
55																

5	Val	Lys 290	Asn	Cys	Asn	Asp	Tyr 295	Phe	Lys	Thr	Glu	Val 300	Gly	Leu	Val	Thr
	Gly 305	Arg	Asn	Glu	Phe	Phe 310	Met	Met	Lys	Glu	Asn 315	Gln	Val	Lys	Glu	Trp 320
10	Asn	Leu	Glu	Glu	Tyr 325	Thr	Ile	Pro	Val	Thr 330	Gly	Arg	Ser	Asn	Gln 335	Leu
15	Lys	Gly	Ile	Thr 340	Phe	Thr	Glu	Asn	Asp 345	Phe	His	Glu	Asn	Ser 350	Met	Glu
	Gln	Lys	Ala 355	Ile	His	Leu	Phe	Leu 360	Pro	Pro	Asp	Glu	Asp 365	Phe	Glu	Lys
20	Leu	Pro 370	Ile	Glu	Cys	Gln	Asn 375	Tyr	Ile	Lys	Tyr	Gly 380	Glu	Glu	Lys	Gly
25	Phe 385	His	Gln	Gly	Tyr	Lys 390	Thr	Arg	Ile	Arg	Lys 395	Arg	Trp	Tyr	Ile	Thr 400
20	Pro	Ser	Arg	Тгр	Val 405	Pro	Asp	Ala	Phe	Ala 410	Leu	Arg	Gln	Val	Asp 415	Gly
30	Tyr	Pro	Lys	Leu 420	Ile	Leu	Asn	Glu	Thr 425	Asp	Ala	Ser	Ser	Thr 430	Asp	Thr
35	Ile	His	Arg 435	Val	Arg	Phe	Lys	Glu 440	Gly	Ile	Asn	Glu	Lys 445	Leu	Ala	Val
40	Val	Ser 450	Phe	Leu	Asn	Ser	Leu 455	Thr	Phe	Ala	Ser	Ser 460	Glu	Ile	Thr	Gly
	Arg 465	Ser	Tyr	БÌУ	Gly	Gly 470	Val	Met	Thr	Phe	Glu 475	Pro	Thr	Glu	Ile	Gly 480
45	Glu	Ile	Leu	Ile	Pro 485	Ser	Phe	Asp	Asn	Leu 490	Ser	Ile	Asp	Phe	Азр 495	Lys
50	Ile	qeA	Ala	Leu 500	Ile	Arg	Glu	Lys	Glu 505	Ile	Glu	Lys	Val	Leu 510	Asp	Ile
	Val	Asp	Glu 515	Ala	Leu	Leu	Ile	Lys 520	Tyr	His	Gly	Phe	Ser 525	Glu	Lys	Glu
55																

	Val Lys 530		Leu	Arg	Gly	Ile 535	Trp	Lys	Lys	Leu	Ser 540	Gln	Arg	Arg	Asn	
5	Asn Arg 545	Thr	Lys	Lys												
10	<211> <212>	3 3030 DNA Bacil	llus	pumi	ilus											
15		CDS (1)	. (303	30)												
20	<400> atg cat Met His 1		•			_	-						_	_		48
25	ttt tta Phe Leu															96
	gac cca Asp Pro															144
30	aaa aca Lys Thr 50				_	_	_			_	-			_		192
35	aaa gat Lys Asp 65		-		_				-				•			240
	ggt acg Gly Thr															288
40	ttg aaa Leu Lys															336
45	gct aac Ala Asn	ctt Leu 115	ggt Gly	att Ile	tca Ser	gta Val	ctt Leu 120	aca Tbr	aat Asn	ttc Phe	gag Glu	cat Ris 125	cta Leu	gtt Val	att Ile	384
50	tat gat Tyr Asp 130	Cys														432
	aga tat Arg Tyr 145															480
55	ata aag	gat	ata	att	tca	tat	gag	tca	gcc	aac	tca	ggt	gct	ctg	gac	528

	Ile	Lys	Asp	Ile	Ile 165	Ser	Tyr	Glu	Ser	Ala 170	Asn	Ser	Gly	Ala	Leu 175	Asp	
5						aat Asn											576
10						gag Glu											624
						gaa Glu											672
15						aga Arg 230											720
20						gaa Glu											. 768
25						caa Gln											816
						gat As p											864
<i>30</i>		•	_		_	att Ile		-	-						_		912
35						gtc Val 310											960
						gaa Glu											1008
40						gaa Glu											1056
45						gaa Glu											1104
						ttt Phe											1152
50						gga Gly 390											1200
55						gaa Glu											1248

					405					410					415		
5														ctt Leu 430			1296
10	aaa Lys	aga Arg	aat Asn 435	atc Ile	ttg Leu	gag Glu	aat Asn	aat Asn 440	ttg Leu	ttt Phe	ggt Gly	gtt Val	gat Asp 445	gtt Val	aat Asn	cca Pro	1344
														cta Leu			1392
15					-	_	-							cat His		-	1440
20				-	-							_		aac Asn	_		1488
														gag Glu 510			1536
25														gag Glu			1584
			atg Met											aat Asn			1632
30		530				_	535		•			540	•				
30		gtt	cga	ata	_	aac	535 atg	aaa	aaa	tat	agt	540 cct	gag	gaa Glu	att	gaa	1680
35	Tyr 545 tat	gtt Val tat	cga Arg	ata Ile tca	Gln	aac Asn 550 gac	535 atg Met tct	aaa Lys gaa	aaa Lys tat	tat Tyr	agt Ser 555 gtt	540 cct Pro	gag Glu aaa	gaa	att Ile gaa	gaa Glu 560 aca	1680 1728
	Tyr 545 tat Tyr	gtt Val tat Tyr	cga Arg caa Gln	ata Ile tca Ser	Gln aaa Lys 565 ttt	aac Asn 550 gac Asp	535 atg Met tct ser	aaa Lys gaa Glu	aaa Lys tat Tyr	tat Tyr act Thr 570	agt Ser 555 gtt Val gca	540 cct Pro gca Ala	gag Glu aaa Lys	gaa Glu aaa	att Ile gaa Glu 575	gaa Glu 560 aca Thr	
35	Tyr 545 tat Tyr gtt Val	gtt Val tat Tyr gac Asp	cga Arg caa Gln aag Lys	ata Ile tca Ser tat Tyr 580	Gln aaa Lys 565 ttt Phe	aac Asn 550 gac Asp tta Leu	535 atg Met tct Ser ttt Phe	aaa Lys gaa Glu att Ile	aaa Lys tat Tyr gag Glu 585 ata	tat Tyr act Thr 570 aga Arg	agt Ser 555 gtt Val gca Ala	540 cct Pro gca Ala tta Leu	gag Glu aaa Lys ata Ile	gaa Glu aaa Lys tta Leu	att Ile gaa Glu 575 ctc Leu	gaa Glu 560 aca Thr aat Asn	1728
35	Tyr 545 tat Tyr gtt Val cct Pro	gtt Val tat Tyr gac Asp act Thr	cga Arg caa Gln aag Lys ggg Gly 595	ata Ile tca Ser tat Tyr 580 ctg Leu	aaa Lys 565 ttt Phe ttg Leu	aac Asn 550 gac Asp tta Leu ggt Gly	535 atg Met tct Ser ttt Phe tat Tyr aga	aaa Lys gaa Glu att Ile ata Ile 600	aaa Lys tat Tyr gag Glu 585 ata Ile	tat Tyr act Thr 570 aga Arg ccg Pro	agt Ser 555 gtt Val gca Ala cat His	540 cct Pro gca Ala tta Leu aaa Lys	gag Glu aaa Lys ata Ile ttc Phe 605 aaa	gaa Glu aaa Lys tta Leu 590	att Ile gaa Glu 575 ctc Leu att Ile	gaa Glu 560 aca Thr aat Asn aca Thr	1728 1776
35	Tyr 545 tat Tyr gtt Val cct Pro aaa Lys	gtt Val tat Tyr gac Asp act Thr ggt 610	cga Arg caa Gln aag Lys ggg Gly 595 ggt Gly	ata Ile tca Ser tat Tyr 580 ctg Leu aag Lys	Gln aaa Lys 565 ttt Phe ttg Leu gaa Glu aat	aac Asn 550 gac Asp tta Leu ggt Gly	535 atg Met tct Ser ttt Phe tat Tyr aga Arg 615	aaa Lys gaa Glu att Ile ata Ile 600 aag Lys	aaa Lys tat Tyr gag Glu 585 ata Ile ttc Phe	tat Tyr act Thr 570 aga Arg ccg Pro	agt Ser 555 gtt Val gca Ala cat His	cett Pro gca Ala tta Leu aaaa Lys gaa Glu 620 ttt	gag Glu aaa Lys ata Ile ttc Phe 605 aaa Lys	gaa Glu aaa Lys tta Leu 590 ttt Phe	att Ile gaa Glu 575 ctc Leu att Ile caa Gln aga	gaa Glu 560 aca Thr aat Asn aca Thr	1728 1776 1824
35 40 45	tat Tyr gtt Val cct Pro aaa Lys tca Ser 625 aca	gtt Val tat Tyr gac Asp act Thr ggt 610 aaa Lys	cga Arg caa Gln aag Lys ggg Gly 595 ggt Gly att Ile	ata Ile tca Ser tat Tyr 580 ctg Leu aag Lys ata Ile	Gln aaa Lys 565 ttt Phe ttg Leu gaa Glu aat Asn	aac Asn 550 gac Asp tta Leu ggt Gly cta Leu ttt Phe 630 tta	atg Met tct Ser ttt Phe tat Tyr aga Arg 615 ggt Gly	aaaa Lys gaa Glu att Ile ata Ile 6000 aag Lys gtt Val	aaa Lys tat Tyr gag Glu 585 ata Ile ttc Phe aca Thr	tat Tyr act Thr 570 aga Arg ccg Pro ata Ile cag Gln	agt Ser 555 gtt Val gca Ala cat His gct Ala gtc Val 635 aat	cct Pro gca Ala tta Leu aaa Lys gaa Glu 620 ttt Phe	gag Glu aaa Lys ata Ile ttc Phe 605 aaa Lys cca Pro	gaa Glu aaa Lys tta Leu 590 ttt Phe cat	att Ile gaa Glu 575 ctc Leu att Ile caa Gln aga Arg	gaa Glu 560 aca Thr aat Asn aca Thr ata Ile gcg Ala 640 ttc	1728 1776 1824 1872

17

5	aag Lys	tat Tyr	aag Lys	aaa Lys 660	gta Val	agt Ser	aat Asn	ata Ile	tca Ser 665	gca Ala	gaa Glu	acc Thr	cta Leu	gat Asp 670	tct Ser	gaa Glu	2016
						tat Tyr											2064
10						gaa Glu											2112
15						ctt Leu 710											2160
						aaa Lys											2208
20						ttt Phe											2256
25				-	-	cca Pro	-			-							2304
30	_	-		_		aat A sn	_		_					-		-	2352
	•	-	-	-		cta Leu 790			-	-	-		-		-		2400
35						tat Tyr										Lys	2448
40						cgt Arg											2496
						ttt Phe											2544
45						ccg Pro											2592
50						gga Gly 870											2640
			_			ttt Phe								_		-	2688

5	agt at Ser Me															2736
	cat gg His Gl		Gln													2784
10	gat ga Asp As 93	o Gln	gat Asp	gag Glu	gta Val	gac Asp 935	aaa Lys	tat Tyr	aat Asn	acg Thr	gtg Val 940	gtc Val	aca Thr	aca Thr	gta Val	2832
15	gaa aa Glu Ly: 945															2880
	ecc ege Pro Ar															2928
20`	ctt ate Leu Ile	_	-			-					_	_	_	_		2976
25	acg ac							Lei					ı G			3024
	aaa tg: Lys	a						•								3030
30	<210> <211> <212> <213>	4 1009 PRT Baci		pumi	ilus							•				
30	<211> <212> <213>	1009 PRT		pumi	ilus											
	<211> <212> <213>	1009 PRT Baci	llus	•		Val	Yab	Lys	Tyr 10	Lys	Ala	His	Arg	Ser 15	Thr	
	<211> <212> <213> <400> Met His	1009 PRT Baci: 4	llus Ser	Glu 5	Leu			_	10	_			-	15		
35	<211> <212> <213> <400> Met Hi: 1	1009 PRT Baci 4 s Ile	Ser Pro 20	Glu 5	Leu Tyr	Asn	Gl u	Thr 25	10 Gln	Leu	Arg	Asn	Asp 30	15 Phe	Ile	
35	<211> <212> <213> <400> Met Hi: 1	1009 PRT Baci: 4 s Ile Lys	Ser Pro 20	Glu 5 Thr	Leu Tyr Ser	Asn Leu	Glu Gly 40	Thr 25 Trp	10 Gln Asp	Leu Val	Arg Asp	Asn Asn 45	Asp 30	15 Phe Lys	Ile	
35	<211> <212> <213> <400> Met Hi: 1 Phe Let Asp Pro	1009 PRT Baci: 4 s Ile Lys D Leu 35	Ser Pro 20 Leu	Glu 5 Thr Lys	Leu Tyr Ser Arg	Asn Leu Asp 55	Glu Gly 40 Val	Thr 25 Trp	Gln Asp	Leu Val Glu	Arg Asp Glu 60	Asn Asn 45	Asp 30 Thr	Phe Lys Glu	Ile Gly Ile	

					85					90					95	
5	Leu	Lys	Ser	Ala 100	Lys	Ala	Ala	Phe	Gln 105	Thr	Arg	Arg	Tyr	Gly 110	Trp	Ser
10	Ala	Asn	Leu 115	Gly	Ile	Ser	Val	Leu 120	Thr	Asn	Phe	Glu	His 125	Leu	Val	Ile
	Tyr	Asp 130	Cys	Arg	Tyr	Thr	Pro 135	Asp	Lys	Ser	Asp	Asn 140	Glu	His	Ile	Ala
15	Arg 145	Tyr	Lys	Val	Phe	Ser 150	Tyr	Glu	Glu	Tyr	Glu 155	Glu	Ala	Phe	Asp	Glu 160
20	Ile	Lys	Asp	Ile	Ile 165	Ser	Туг	Glu	Ser	Ala 170	Asn	Ser	Gly	Ala	Leu 175	Asp
	Glu	Met	Phe	Asp 180	Val	Asn	Thr	Arg	Val 185	Gly	Glu	Thr	Phe	Asp 190	Glu	Tyr
25	Phe	Leu	Gln 195	Gln	Ile	Glu	Asn	Trp 200	Arg	Glu	Lys	Leu	Ala 205	Lys	Thr	Ala
<i>30</i>	Ile	Lys 210	Asn	Asn	Thr	Glu	Leu 215	Gly	Glu	Glu	Asp	Val 220	Asn	Phe	lle	Val
35	Gln 225	Arg	Leu	Leu	Asn	Arg 230	Ile	Ile	Phe	Leu	A rg 235	Val	Cys	Glu	Asp	Arg 240
~	Thr	Ile	Glu	Lys	Tyr 245	Glu	Thr	Ile	Lys	Ser 250	Ile	Lys	Asn	Tyr	Glu 255	Glu
40	Leu	Lys	Asp	Leu 260	Phe	Gln	Lys	Ser	Asp 265	Arg	Lys	Phe	Asn	Ser 270	Gly	Leu
45	Phe	Asp	Phe 275	Ile	Asp	Asp	Thr	Leu 280	Leu	Leu	Glu	Val	Glu 285	Ile	Asp	Ser
	Asn	Val 290	Leu	Ile	Glu	Ile	Phe 295	Ser	Asp	Leu	Tyr	Phe 300	Pro	Gln	Ser	Pro
50	Tyr 305	Asp	Phe	Ser	Val	Val 310	Asp	Pro	Thr	Ile	Leu 315	Ser	Gln	Ile	Tyr	Glu 320
55	Arg	Phe	Leu	Gly	Gln 325	Glu	Ile	Ile	Ile	Glu 330	Ser	Gly	Gly	Thr	Phe 335	His

5	Ile	Thr	Glu	Ser 340	Pro	Glu	Val	Ala	Ala 345	Ser	Asn	Gly	Val	Val 350	Pro	Thr
10	Pro	Lys	Ile 355	Ile	Val	Glu	Gln	Ile 360	Val	Lys	Asp	Thr	Leu 365	Thr	Pro	Leu
	Thr	Glu 370	Gly	Lys	Lys	Phe	Asn 375	Glu	Leu	Cys	Äsn	Leu 380	Lys	Ile	Ala	Asp
15	Ile 385	Cys	Суз	Gly	Ser	Gly 390	Thr	Phe	Leu	Ile	Ser 395	Ser	Tyr	Asp	Phe	Leu 400
20	Val	Glu	Lys	Val	Met 405	Glu	Lys	Ile	Ile	Glu 410	Giu	Asn	Ile	Asp	Asp 415	Ser
	Asp	Leu	Val	Tyr 420	Glu	Thr	.Glu	Glu	Gly 425	Leu	Ile	Leu	Thr	Leu 430	Lys	Ala
25	Lys	Arg	Asn 435	Ile	Leu	Glu	Asn	Asn 440	Leu	Phe	Gly	Val	Asp 445	Val	Asn	Pro
30	Tyr	Ala 450	Val	Gl u	Val	Ala	Glu 455	Phe	Ser	Leu	Leu	Leu 460	Lys	Leu	Leu	Glu
	Gly 465	Glu	Asn	Glu	Ala	Ser 470	Val	Asn	λsn	Phe	Ile 475	His	Glu	His	Glu	Asp 480
35	Lys	Ile	Leu	Pro	Asp 485	Leu	Thr	Ser	Ile	Ile 490	Lys	Cys	Gly	Asn	Ser 495	Leu
40	Val	Asp	λsn	Lys 500	Phe	Phe	Glu	Phe	Met 505	Pro	Glu	Ser	Leu	Glu 510	Asp	Asp
-	Glu	Ile	Leu 515	Phe	Lys	Ala	Asn	Pro 520	Phe	Glu	Trp	Glu	Glu 525	Glu	Phe	Pro
4 5	Asp	Ile 530	Met	Ala	Asn	Gly	Gly 535	Phe	Asp	Ala	Ile	Ile 540	Gly	Asn	Pro	Pŗo
50	Tyr 545	Val	Arg	Ile	Gln	Asn 550	Met	Lys	Lys	Tyr	Ser 555	Pro	Glu	Glu	Ile	Glu 560
	Tyr	Tyr	Gln	Ser	Lys 565	Asp	Ser	Glu	Tyr	Thr 570	Val	Ala	Lys	Lys	Glu 575	Thr
55																

5	Val	Asp	Lys	Tyr 580	Phe	Leu	Phe	Ile	Glu 585	Arg	Ala	Leu	Ile	Leu 590	Leu	Asn
	Pro	Thr	G1 y 595	Leu	Leu	Gly	Tyr	Ile 600	Ile	Pro	His	Lys	Phe 605	Phe	Ile	Thr
10	Lys	Gly 610	Gly	Lys	Glu	Leu	Arg 615	Lys	Phe	Ile	Ala	Glu 620	Lys	His	Gln	Ile
15	Ser 625	Lys	Ile	Ile	Asn	Phe 630	Gly	Val	Thr	Gln	Val 635	Phe	Pro	СŢĀ	Arg	Ala 640
	Thr	Tyr	Thr	Ala	Ile 645	Leu	Ile	Ile	Gln	Ala 650	Asn	Lys	Met	Ala	Gln 655	Phe
20	Lys	Tyr	Lys	Lys 660	Val	Ser	Asn	Ile	Ser 665	Ala	Gl u	Thr	Leu	Asp 670	Ser	Glu
25	Glu	Asn	Thr 675	Суз	Val	Tyr	Ser	Ser 680	Glu	Lys	Tyr	Asn	Ser 685	Asp	Pro	Trp
30	Ile	Phe 690	Leu	Ser	Pro	Glu	Thr 695	Glu	Ala	Val	Phe	Thr 700	Lys	Phe	Thr	Glu
	Ala 705	Gln	Phe	Glu	Lys	Leu 710	Gly	Glu	Ile	Thr	Asp 715	Ile	Ser	Val	Gly	Leu 720
35	Gln	Thr	Ser	Ala	Asp 725	Lys	Ile	Tyr	Ile	Phe 730	Ile	Pro	Glu	Asn	Glu 735	Thr
40	Ser	Asp	Thr	Tyr 740	Ile	Phe	Asn	Tyr	Lys 745	Gly	Lys	Arg	Tyr	Glu 750	Ile	Glu
	Lys	Ser	Ile 755	Суз	Суз	Pro	Ala	Ile 760	Tyr	Asp	Leu	Ser	Phe 765	Gly	Ser	Phe
45	Glu	Ser 770	Ile	Gln	Gly	Asn	Ala 775	Gln	Met	Ile	Phe	Pro 780	Tyr	Glu	Ile	Arg
50	Asp 785	Glu	Glu	Ala	Tyr	Leu 790	Leu	Glu	Glu	Glu	Thr 795	Leu	Glu	Asn	Asp	Tyr 800
	Pro	Leu	Ala	Тгр	Asn 805	Tyr	Leu	Asn	Glu	Phe 810	Lys	Glu	Ala	Leu	Gl u 815	Lys

41 (1)

	Arg	Ser	Leu	Gln 820	Gly	Arg	Asn	Pro	Lys 825	Trp	Tyr	Gln	Tyr	Gly 830		Ser	
5	Gln	Ser	Leu 835	Ser	Lys	Phe	His	Asp 840	Lys	Glu	Lys	Leu	Ile 845	Trp	Thr	Val	
10 ·	Leu	Ala 850	Thr	Lys	Pro	Pro	Tyr 855	Val	Leu	Asp	Arg	Asn 860	Asn	Leu	Leu	Phe .	
15	Thr 865	Gly	Gly	Gly	Asn	Gly 870	Pro	Tyr	Tyr	Gly	Leu 875	Ile	Asn	Gln	Ser	Ile 880	
	Tyr	Ser	Leu	His	Tyr 885	Phe	Leu	Gly	Ile	Leu 890	Ser	His	Pro	Val	Ile 895	Glu	
20	Ser	Met	Val	Lys 900	Ala	Arg	Ala	Ser	Glu 905	Phe	Arg	Gly	Ser	Tyr 910	Tyr	Ser	
25	His	Gly	Lys 915	Gln	Phe	Ile	Glu	Lys 920	Ile	Pro	Ile	Arg	Lys 925	Ile	Ąsp	Phe	
	Asp	Asp 930	Gln	Asp	Glu	Val	Asp 935	Lys	Tyr [°]	Asn	Thr	Val 940	Val	Thr	Thr	Val	
30	Glu 945	Lys	Leu	Ile	Ile	Thr 950	Thr	Asp	Arg	Ile	Lys 955	Seŕ	Glu	Ser	Asn	Gly 960	
35	Pro	Arg	Arg	Arg	Met 965	Leu	Arg	Arg	Arg	Leu 970	Asp	Ala	Leu	Ser	Asn 975	Gln	
	Leu	Ile	Gln	Val 980	Ile	Asn	Glu	Leu	Tyr 985	Asn	Ile	Ser	Asp	Glu 990	Glu	Tyr	
40	Thr	Thr	Val 995	Leu	Asn	Asp	Glu	Met 1000		Thr	: A la	Ala	Leu 100		y Gl	u Glu	
45	Lys																
50	<210 <211 <212 <213	l> 2 ?> I	5 24 ONA Bacil	llus	pumi	.lus							•				
	<400 gtgg		s gg a	ccgt	atta	ıt gç	ŗtt										24
55																	

23

	<210>	6	
	<211>	24 .	
	<212>		
5		Bacillus pumilus	
		•	
	<400>	6	24
	caccag	rtaaa taacaggtta ttcc	24
40			
10	<210>	7	
	<211>		
	<212>		
	<213>	Bacillus pumilus	
	<400>	7	
15	ttcata	gcaa gtacggtcca tatcagt	27
	,	, ,,,·,·	
	4210 5	a	
	<210>	8	
	<211>		
20	<212>		
	<213>	Bacillus pumilus	
	<400>	8	
	ccgtat	gtac ttgataggaa taacctg	27
25			
	<210>	9	
	<211>		
	<212>		
		Bacillus pumilus	
30	44005		
•	<400>	9	
	aggaac	taag aaagttcata gctg	24
	·		
	<210>		
	<211>		
35	<212>	DNA	
	<213>	Bacillus pumilus	
	<400>	10	
		tatt atataaccca acag	24
40			
	<210>	11	
	<211>	24	
	<211>	DNA	
		Bacillus pumilus	
45	(213)	pacific punitus	
~	<400>	11	
	tgacgt	cctc ttcacctaat tcgg	24
	<210>	12	
50	<211>		
-	<212>		
		Bacillus pumilus	
		10	
	<400>	12	24
55	yayıı	gtga agatagaacc attg	24

5	<210> <211> <212> <213>	48	
	<400>	13	·
10	agcgga	tccg gaggtaaata aatgaatcaa ttaattgaaa atgttaat	48
	<210>		
	<211> <212>		
	<213>		
15	12107	pactitan hamitan	
	<400>	14	
	aagggg	gcat gcttatactt atttcttcgt tctattgttt ct	42
20	<210>	15	
20	<211>		
	<212>		
	<213>	Bacillus pumilus	
A F		15	
25	caagga	tccg gaggtaaata aatgcatata agtgagttag tagataaata c	51
	<210>	16	
	<211>		
30	<212>		
-	<213>	Bacillus pumilus	
	<400>	16	
	ttagga	tect cattiticti etectaacge egetgt	² 36
35	-03.05		
	<210> <211>		
	<211>		
		Bacillus pumilus	
40	<400>	17	
	caccaat	tcta gaggaggtaa ataaatgcat ataagtgagt tagtagataa atac	54
	<210>	18	
	<211>		
45	<212>		
	<213>	Bacillus pumilus	
	<400>	18	
	tgaaat	ctcg agttatcctg atccacaaca tatatctgct at	42

Claims

5

15

20

25

30

35

40

50

55

- Isolated DNA segment coding for the Bpml restriction endonuclease, wherein the isolated DNA is obtainable from Bacillus pumilus (New England Biolabs collection #711).
- A recombinant DNA vector comprising a vector into which a DNA segment encoding the BpmIRM restriction endonuclease has been inserted.
- Isolated DNA segment coding for the Bpml restriction endonuclease and Bpml methylase M1, wherein the isolated
 DNA is obtainable from ATCC No. PTA-2598.
 - 4. A cloning vector which comprises the isolated DNA of claim 3.
 - 5. A host cell transformed by the vector of claims 2 or 4.
 - A method of producing recombinant Bpml restriction endonuclease comprising culturing a host cell transformed with the vector of claims 2 or 4 under conditions for expression of said endonuclease.
 - 7. A method for modifying the specificity of a target restriction-modification system comprising the steps:
 - (a) isolating DNA coding for a Type IIf restriction-modification system and deleting the methylation-specificity domains of said Type IIf restriction-modification system;
 - (b) inserting a DNA linker coding for an appropriate restriction site and one or more amino acids at the deletion site of step (a); and
 - (c) Inserting an methylation-specificity fusion from a second Type IIf restriction-modification system adjacent the DNA linker of step (b) to form a modified target restriction-modification system.

BpmIRM gene BpmIR1 gene

R H S

(BpmI-A+1)

(BpmI-A+2)

FIG. 2A TGAATCAATTAATTGAAAATGTTAATCTACAAAAATTAAGGGGTGGGT	CT -+
N Q L I E N V N L Q K L R G G Y Y T P AAGTTATTGCTGACTTTTTATGTCAATGGGTATTCAAGATGACACAAAGAGTGTAC	
VIADFLCQWSIQDDTKSVL AACCCAGTTGTGGAGATGGTAATTTTATTGAATCGGCAATACTTAGGTTCAAAGAAC	II
PSCGDGNFIESAILRFKEL GTATAGATAATGAACAACTTAAAGGAAGAATTACAGGAGTAGAGCTAATTGAAGAAG	
I D N E O L K G R I T G V E L I E E E CTTTGAAAGTTCAAAATCGAGCAAATGAGTTGGGGGTTGATAAAAACTCAATAGTAA	AŢ
LKYONRANELGYDKNSIYN GTGACTTCTTTCAATTTGTAAAAGATAATAAGAATAAAAAATTTGATACTATTATTG	GŢ
D F F Q F V K D N K N K K F D T I I G ATCCACCATTCATAAGATACCAAAACTTTCCTGAAGAGCATCGTAGTATAGCCATGG	
PPFIRYONFPEEHRSIA ME TGATGGAGGAACTAGGTTTAAAACCTAATAAACTTACAAATATCTGGGTTCCATTTC	•
M E E L G L K P N K L T N I W V P F L TGGTATCTGCTACATTACTTAATGAACAAGGAAAGATGGCTATGGTTATACCGGCTG	AA AA
V S A T L L N E Q G K H A M V I P A E TATTTCAGGTAAAGTATGCAGCAGAAACAAGAATTTTTTTATCAAAGTTTTTCGATC	GT
FOYKYAAETRIFLSKFFDR TCACTATAATTACATTIGAAAAACTTGTTTTTGAAAATATCCAACAGGAAGTTATAC	TA
TIITFEKLVFENIOOEVIL	4C -+
L C E K K V N K G K G I R V I E C E N TAGATGGATTAAATTCCATTGATTTTGTAGCTATAAATGGTTCAAATGTTAAACCTA 	
D G L N S I D F V A I N G S N V K P I AACACCGTACTGAAAAGTGGACAAAGTATTTCTTAAACGAAGATGAAATACTTCTTT	ΓA -•
HRTEKWTKYFLNEDEILL AGAGTTTAAAGGAAGACAAACGCGTTAAAAATTGTAATGACTATTTTAAGACAGAAG	- +
S L K E D K R V K N C N D Y F K T E V GCTTAGTTACTGGACGAAACGAATTCTTTATGATGAAAGAAA	3G - +
LVTGRNEFFMMKENOVKEW ATCTAGAAGAATATACAATACCTGTTACAGGTAGGTCCAATCAGTTAAAAGGTATAA	
LEEYTIPVTGRSNOLKGIT	

FIG. 2B

1021	TTTACAGAAAATGATTTTCATGAAAATTCAATGGAACAAAAGGCAATTCACCTATTTTTG	1080
	FIENDFHENSMEQKAIHLFL CCACCAGATGAAGATTTTGAAAAGTTACCGATTGAGTGTCAAAATTATATCAAGTATGGG	
1081	PPDEDFEKLPIECONYIKYGGAAGAAAAGGCTTCCATCAAGGCTATAAAACCAGAATTAGAAAACGTTGGTATATAACT	1140
1141	E E K G F H O G Y K T R I R K R W Y I T CCATCTAGATGGGTTCCAGATGCTTTTGCTTTAAGACAGGTTGATGGCTATCCAAAACTA	1200
1201	PSRWVPDAFALROVDGYPKL ATTITAAATGAAACCGACGCTTCTTCTACTGATACAATTCATAGGGTTAGATTTAAAGAA	1260
1261	I L N E T D A S S T D T I H R V R F K E	1320
1321	GETATAAATGAAAAGITAGCCGTAGTTTCATTTTTGAACTCACTCACTTTTTGCATCTTCA G I N E K L A V V S F L N S L T F A S S	1380
1381	E I T G R S Y G G G V M T F E P T E I G	1440
1441	GAAATCCTAATACCTTCCTTTGATAACTTATCCATTGATTTTGATAAAATTGATGCCTTA E I L I P S F D N L S I D F D K I D A L	1500
1501	ATTCGAGAAAAGGAGATTGAAAAAGTCCTTGATATTGTTGATGAAGCTTTACTTATAAAA	1560
1561	TATCATGGGTTTAGTGAGAAAGAAGTAAAACAGCTTCGAGGGATATGGAAGAAACTTTCT	1620
1621	Y H G F S E K E V K O L R G I W K K L S CAGAGAAGAACAATAGAACSAAGAAATAA	
	O R R N N R T K K *	

ATI	GCA	TAT	aag	TGA	6TT	AG1		-	G. ata			GCA1	TAG/	4AG	TAC	III	Ш	AAA	ACCA
												H						K	P Agga
 T	Υ	N	-•- E	 T		• L	R	N	D	+ F	 I	D	-+ P	 L	ι.	+ K	 S	L	+
												L TCC/		D ITA	V TAC	I ACT	O TCG	E TAT	E Aaac
												P GTC1						I atca	N AGCT
												S TGC							A ACTT
		A TTT										A ATA		_ =		I Caa		V CGA	L Caat
Ξ.			_=-				I VAGT					Y 6GA/	. <u>-</u>				S	D TGA	n Tgaa
												E AGG1							E TGAT
												G					H TGA		0 1166
												F CACC			O AGG	I Tga	-	N GGA	W CGTC
												T		L IAG/		E TTG			V TAGA
												F					E AAA	_	R ICTG
									S		• •	N CTTT	-	-	E CAT	L AGA	•••	D TACE	_
												F AGAA							L ITTC
CCA	L	E 4460	V CC	E ATA	TGA	Ш	TTC	TGT	TGT	CGA	TCC		ATA	ITI/	NAG	CCA	GAT	ATAI	F IGAA
P CG1	Ш	TCT/	166	TCA	D Aga	F Aat	S AAT	V Tati	y Aga(D GTC/	P AGG		I Aca	L (TT)	S TCAI	O Cat	I Taci	Y GGA(E GTCA
 a	F	 1	. • - •	n	F	+ T	 T	r	F	۰ ا			+ T		u u	+ T	т	F	·+

FIG. 3B
CCAGAAGTTGCGGCGTCCAATGGTGTTGTTCCAACTCCAAAAATTATCGTCGAACAGATA
PEVAASNGVVPTPKIIVEQIGGGGAAGACACTTTAATGAGCCCCTTACGGAAGGCAAAAAATTTAATGAGCTATGTAACTTA
V K D T L T P L T E G K K F N E L C N L AAAATAGCAGATATATGTTGTGGGATCAGGAACTTTCCTAATTTCAAGTTATGACTTTCTA
KIADICCGSGIFLISSYDFL
GTAGAGAAAGTAATGGAAAAGATAATAGAAGAGAACATCGATGATTCAGATTTAGTATAT
V E K V M E K I I E E N I D D S D L V Y
GAAACTGAAGAAGGGCTAATTTTGACACTTAAAGCAAAAAGAAATATCTTGGAGAATAAT
E T E E G L I L T L K A K R N I L E N N
TTGTTTGGTGTTGATGTTAATCCATACGCTGTTGAAGTAGCTGAGTTCAGTTTATTATTA
L F G V D V N P Y A V E V A E F S L L L AAGCTATTAGAAGGTGAGAATGAGGCATCGGTTAATAATTTCATTCA
K L L E G E N E A S V N N F I H E H E D
AAAATATTACCGGATTTAACATCTATTATTAAATGTGGAAACAGCTTAGTAGATAATAAG
KILPDLTSIIKCGNSLVDNK
TTTTTTGAATTCATGCCAGAATCGTTAGAGGACGATGAAATCTTATTTAAGGCTAATCCA
FFEFMPESLEDDEILFKANP
TTTGAATGGGAAGAGGAGTTTCCAGATATTATGGCAAATGGTGGCTTTGATGCTATTATA
F E W E E E F P D I M A N G G F D A I I
GGAAATCCACCTTATGTTCGAATACAGAACATGAAAAAATATAGTCCTGAGGAAATTGAA
6 N P P Y V R I Q N M K K Y S P E E I E
TATTATCAATCAAAAGACTCTGAATATACTGTTGCAAAAAAAGAAACAGTTGACAAGTAT
YYOSKDSEYTVAKKETVDKY
TTTTTATTTATTGAGAGAGCATTAATATTACTCAATCCTACTGGGCTGTTGGGTTATATA
F L F I E R A L I L I N P I G L L G Y T
F L F I E R A L I L L N P I G L L G Y I ATACCGCATAAATTCTTTATTACAAAAGGTGGTAAGGAACTAAGAAAGTTCATAGCTGAA
I P H K F F I T K G G K E L R K F I A E AAACATCAAATATCAAAAATTATAAATTTTGGTGTTACACAGGTCTTTCCAGGAAGAGCG
K H O I S K I I N F G V T Q V F P G R A
ACATATACGGCTATTITAATTATCCAAGCAAATAAAATGGCACAGTTCAAGTATAAGAAA

I Y T A I L I I Q A N K M A Q F K Y K K GTAAGTAATATCAGCAGAAACCCTAGATTCTGAAGAAAATACGTGTGTTTATAGCTCA

V S N I S A E T L D S E E N T C V Y S S

1980

2040

1921 ----

	20
FIG.	<i>3C</i>

2041	GAAAAGTATAATTCTGACCCTTGGATATTTTTATCTCCTGAAACAGAAGCTGTTTTTACT
	EKYNSDPWIFLSPETEAVFT AAATTTACAGAAGCTCAATTTGGAGAAACTTGGAGAAATCACTGATATAAGTGTAGGACTA
2101	K F T E A O F E K L G E I T D I S V G L CAAACAAGCGCTGATAAAATATATTTTTATTCCTGAAAATGAAACTTCAGATACATAT
2161	O T S A D K I Y I F I P E N E T S D T Y ATATTTAATTATAAAGGGAAAAGATATGAAATAGAAAAATCTATATGTTGCCCAGCTATC
2221	I F N Y K G K R Y E I E K S I C C P A I
2281	Y D L S F G S F E S I Q G N A Q M I F P
2341	TATGAAATCAGAGATGAAGAAGCATATCTACTAGAGGAAGAAACGCTTGAAAATGATTAT
2401	CCTCTTGCTTGGAATTATTTGAATGAGTTTAAAGAAGCTCTTGAAAAAAGAAGCTTACAA
2461	PLAWNYLNEFKEALEKRSLO GGCCGTAATCCGAAATGGTATCAATATGGTCGGTCCCAAAGTTTATCAAAATTTCATGAT
2521	G R N P K W Y Q Y G R S Q S L S K F H D AAAGAAAACTGATATGGACCGTACTTGCTACGAAACCCCCGTATGTACTTGATAGGAAT
2581	K E K L I W T V L A T K P P Y V L D R N AACCTGTTATTTACTGGTGGGGAAACGGACCGTATTATGGTTTAATTAA
2641	N L L F T G G G N G P Y Y G L I N O S I TACTCTTTGCATTATTTTTTAGGTATTCTTTCACATCCTGTAATAGAAAGTATGGTAAAA
	Y S L H Y F L G I L S H P Y I E S M V K GCAAGGGCCAGTGAATTTAGGGGATCATATTATTCTCATGGAAAACAATTTATTGAGAAA
2701	A R A S E F R G S Y Y S H G K O F I E K ATCCCAATTAGAAGATTGATTTGATGATCAAGATGAGGTAGACAAATATAATACGGTG
2761	I P I R K I D F D D O D E V D K Y N T V GTCACAACAGTAGAAAATTAATTATAACTACCGATAGAATTAAAAGTGAGAGCAATGGA
2821	V T T V E K L I I T D R I K S E S N G CCCCGGAGGAGATGTTAAGAAGAAGGTTAGATGCTTTGTCTAATCAACTTATCCAGGTT
2881	PRRHERRALDALS NOLIQV
941	ATTAATGAACTITATAATATCAGTGACGAAGAATATACGACAGTTTTGAATGATGAAATG I N E L Y N I S D E E Y T T V L N D E N
1001	TTGACAGCGGCGTTAGGAGAAGAAAATGA

FIG. 4

