Topics in Algebra

David Cardozo

December 7, 2014

These are few notes and compilation of exercises of the book *Topics in Algebra*. by I. N. Herstein.

1 Preliminary notions

1.1 Set Theory

Given a set S we shall use the notation throughout $a \in S$ to read "a is an element of S". The set A will be said to be a subset of S if every element in A is an element of S, We shall write $A \subset S$. Two sets A and B are equal, if both $A \subset B$ and $B \subset A$. A set D will be called proper subset of S if $D \subset S$ but $D \neq S$. The null set is the set having no elements; it is a subset of every set. Given a set S we shall use the notation $A \{a \in S | P(a)\}$ to read " A is the set of all elements in S for which the property P holds.

Definition 1. The union of the two sets A and B, written as $A \cup B$, is the set $\{x | x \in A \text{ or } \in B\}$

Remark when we say that x is in A or x is in B, we mean x is in at least one of A or B, and may be in both.

Definition 2. The intersection of the two sets A and B, written as $A \cap B$, is the set $\{x | x \in A \text{ and } x \in B\}$

Two sets are said to be disjoint if their intersection is empty.

Proposition 1. For any three sets, A, B, C we have

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Proof. We will prove first $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$. Observe $B \subset B \cup C$, so that $A \cap B \subset A \cap (B \cup C)$, in the same line of reasoning, $C \subset B \cap C$, so that $A \cap C \subset A \cap (B \cap C)$, and we conclude $(A \cap B) \cup (A \cap C) \subset (A \cap (B \cup C)) \cup (A \cap (B \cup C)) = A \cap (B \cup C)$. Now for the other direction, let $x \in A \cap (B \cup C)$, so that $x \in A$, and $x \in B \cup C$; suppose the former, and we have that $x \in (A \cap B)$. The second possibility, namely, $x \in C$,

implies that $x \in A \cap C$. Thus in either case, $x \in (A \cap C) \cup (A \cap B)$, whence $A \cap (B \cup C) \subset (A \cap B) (A \cap C)$. Combining the two concluding assertions, they give us the equality of both sets

Given a set T, we say that T serves as an *index set* for the family $F = \langle A_{\alpha} \rangle$ of sets if for every $\alpha \in T$, there exist a set of A_{α} in the family F. By the iunion of the set A_{α} , where α is in T, we mean the set $\{x|x\in A_{\alpha} \text{ for at least one }\alpha\in T\}$. We denote it by $\bigcup_{\alpha\in T}A_{\alpha}$. Similarly, we denote the intersection of the sets A_{α} by $\bigcap_{\alpha\in T}A_{\alpha}$. The sets A_{α} are mutually disjoint if for $\alpha\neq\beta$, $A_{\alpha}\cap A_{\beta}$ is the null set.

Definition 3. Given the two sets A, B then the **difference set**, A - B, is the set $\{x \in A | x \notin N\}$

Proposition 2. For any set B, the set A satisfies

$$A = (A \cap B) \cup (A - B).$$

Proof. Again, using the same strategy used before, we will show first $(A \cap B) \cup (A - B) \subset A$, Observe that $A \cap B \subset A$, and $A - B \subset A$ so that $(A \cap B) \cup (A - B) \subset A$ Now, for the converse, we want to see $A \subset (A \cap B)$, first observe that if we suppose that $x \in A$, then either $x \in (A - B)$ or $x \in A \cap B$, so that in either case, eventually $x \in ((A \cap B) \cup (A - B))$, so we conclude $A \subset (A \cap B)$. Finally, combining the concluding assertions we have $A = (A \cap B)$ which proves our proposition.

Observe $B \cap (A - B)$ is the null set. Observe than when $B \subset A$, we call A - B the complement of B in A.