Algorithmic Syntactic Causal Identification

Dhurim Cakiqi and Max A. Little

University of Birmingham

November 15, 2024

Basics of Causal inference

Introduction

- Nodes represent random variables
- Directed arrows represent causal influence

Basics of Causal inference

Introduction 00000

- Intervene by deleting parent edges
- Replace distribution with a constant distribution

Basics of Causal inference

- In real life data is not always fully observed
- We can represent an unobserved confounde as a bidirected arc between two observed nodes

Causal identifiability

Introduction

- Assess if we have enough information to answer a specific causal query
- A classic example is the *front-door* criterion

• E.g. Inferring whether or not smoking causes cancer in the lungs

Limitations of Causal inference

- How to represent Marginalization
- How to represent hidden/latent variables
- Conflation of syntax and semantics
- Causal queries outside of probability theory?

Introduction

Building String Diagrams from DAGs

Building String Diagrams from DAGs

Building String Diagrams from DAGs

Representing unobserved variables

Theory

Factorized string diagrams

The fixing operation

The Fixing operation

Exterior morphisms

Combining Operation

$$\Sigma_{\boldsymbol{Y}|do(\boldsymbol{A})}^{\mathcal{G}} = Hide_{\boldsymbol{Y}^{\star} \setminus \boldsymbol{Y}} \left(\bigcup_{\boldsymbol{D}' \in \boldsymbol{D}^{\star}} Simple\left(Fixseq_{\boldsymbol{V}^{\mathcal{G} \setminus \boldsymbol{D}'}}\left(\boldsymbol{\Sigma}^{\mathcal{F}}\right)\right) \right)$$

$$\Sigma_{\boldsymbol{Y}|\text{do}(\boldsymbol{A})}^{\mathcal{G}} = \text{Hide}_{\boldsymbol{Y}^{\star} \setminus \boldsymbol{Y}} \left(\bigcup_{\boldsymbol{D}' \in \boldsymbol{D}^{\star}} \text{Simple} \left(\text{Fixseq}_{\boldsymbol{V}^{\mathcal{G} \setminus \boldsymbol{D}'}} \left(\boldsymbol{\Sigma}^{\mathcal{F}} \right) \right) \right)$$

The factorized signature

$$\Sigma_{\boldsymbol{Y}|\text{do}(\boldsymbol{A})}^{\mathcal{G}} = \text{Hide}_{\boldsymbol{Y}^{\star} \setminus \boldsymbol{Y}} \left(\bigcup_{\boldsymbol{D}' \in \boldsymbol{D}^{\star}} \text{Simple} \left(\overline{\text{Fixseq}_{\boldsymbol{V}^{\mathcal{G} \setminus \boldsymbol{D}'}}} \left(\boldsymbol{\Sigma}^{\mathcal{F}} \right) \right) \right)$$

The valid sequence of applications of the fixing operation to be applied to the signature

$$\Sigma_{\boldsymbol{Y}|do(\boldsymbol{A})}^{\mathcal{G}} = Hide_{\boldsymbol{Y}^{\star} \setminus \boldsymbol{Y}} \left(\bigcup_{\boldsymbol{D}' \in \boldsymbol{D}^{\star}} \underline{Simple} \left(Fixseq_{\boldsymbol{V}^{\mathcal{G} \setminus \boldsymbol{D}'}} \left(\boldsymbol{\Sigma}^{\mathcal{F}} \right) \right) \right)$$

A purely algebraic formalism of the naturality of the delete operation

$$\Sigma_{\boldsymbol{Y}|do(\boldsymbol{A})}^{\mathcal{G}} = Hide_{\boldsymbol{Y}^{\star} \setminus \boldsymbol{Y}} \left(\bigcup_{\boldsymbol{D}^{\prime} \in \boldsymbol{D}^{\star}} Simple\left(Fixseq_{\boldsymbol{V}^{\mathcal{G}} \setminus \boldsymbol{D}^{\prime}}\left(\boldsymbol{\Sigma}^{\mathcal{F}}\right)\right) \right)$$

Combing all the fixed and simplified signatures together, for each identified district

$$\boldsymbol{\Sigma_{\boldsymbol{Y}|do(\boldsymbol{A})}^{\mathcal{G}}} = \boxed{Hide_{\boldsymbol{Y}^{\star}\backslash\boldsymbol{Y}}} \left(\bigcup_{\boldsymbol{D}^{\prime}\in\boldsymbol{D}^{\star}} Simple\left(Fixseq_{\boldsymbol{V}^{\mathcal{G}\backslash\boldsymbol{D}^{\prime}}}\left(\boldsymbol{\Sigma}^{\mathcal{F}}\right)\right) \right)$$

Applying the deletion operation on a set of morphisms in the final combined signature

 Start with front-door DAG and then identify valid fixing sequences

 Start with front-door DAG and then identify valid fixing sequences

• In this example we have;

 Start with front-door DAG and then identify valid fixing sequences

- In this example we have;
- $Fixseq_{\{X,Z\}} = Hide_X \circ Fix_Z$

 Start with front-door DAG and then identify valid fixing sequences

- In this example we have;
- $\operatorname{Fixseq}_{\{X,Z\}} = \operatorname{Hide}_X \circ \operatorname{Fix}_Z$
- $Fixseq_{\{X,Y\}} = Fix_X \circ Fix_Y$

Application

Application

Interpretations

Application

• $p(Y = y | do(X = x)) = \sum_{z \in \Omega_Z} p(Z = z | X = x) \sum_{x' \in \Omega_Y} p(Y = y | X' = x', Z = z) p(X' = x')$

Application 00000

Interpretations

- $p(Y = y | do(X = x)) = \sum_{z \in \Omega_Z} p(Z = z | X = x) \sum_{x' \in \Omega_Y} p(Y = y | X' = x', Z = z) p(X' = x')$
- $f(y|do(x)) = \min_{z \in Z} \mathbf{f}(z|x) + \min_{x' \in X} [\mathbf{f}(y|x',z) + \mathbf{f}(x'|)]$.

Interpretations

Application 0000

- $p(Y = y | do(X = x)) = \sum_{z \in \Omega_{7}} p(Z = z | X = x) \sum_{x' \in \Omega_{Y}} p(Y = y | X' = x', Z = z) p(X' = x')$
- $f(y|do(x)) = \min_{z \in Z} f(z|x) + \min_{x' \in X} [f(y|x',z) + f(x'|)]$.
- do(x) Ry iff $\exists z, x' \in Z, X : (xR_3z) \land \Big(((x', z) R_2y) \land (R_3x') \Big)$

Conclusion

- We have introduced a purely syntactic form of causal identification
- This allows for causal identification in generic settings
- Interpretations can be implemented for non-probabilistic models

