

Praktična razmatranja

Višekategorijska klasifikacija

Višekategorijska klasifikacija

Petal length	Sepal length	species
5.1	1.4	setosa
4.9	1.4	setosa
7	4.7	versicolor
6.3	6	virginica

1-vs-all model

y = 1: setosa y = 0: versicolor, virginica

y = 1: versicolor y = 0: setosa, virginica

y = 1: virginica y = 0: setosa, versicolor

Predvideti klasu sa najvećom verovatnoćom:

$$P_{max} = 0$$
; $\hat{y} = 0$

Za svaku klasu $c \in \{1, ..., C\}$:

ako je
$$P_c(y^{(i)} = 1|x^{(i)}) > P_{max}$$
: $\hat{y} = c$

1-vs-1 model

- Za svaki par klasa c_k i c_{k^\prime} napraviti problem binarne klasifikacije
 - Trening podaci sa labelom c_k će biti 'pozitivni' (y=1)
 - Trening podaci sa labelom $c_{k'}$ će biti 'negativni' (y=0)
 - Zanemariti sve ostale trening podatke
- Trenirati C(C-1)/2 binarna klasifikatora (C broj klasa)
- Predikcija: kombinovati izlaz rezultujuća C(C-1)/2 klasifikatora

Kada koristiti koji pristup?

1-vs-all

C klasifikatora

Računarski manje zahtevan za veliko *C*

Izuzetno nebalansirani skupovi podataka za veliko *C* (značajno više negativnih primera)

1-vs-1

$$\frac{C(C-1)}{2}$$
 klasifikatora

Za treniranje koristimo manji podskup podataka (brže ako imamo veliki trening skup)

> Manje problematičan sa aspekta neizbalansiranosti

• Ili: Multinomial Logistic, Maximum Entropy Classifier ili Multi-class Logistic Regression

 Generalizacija logističke regresije za višekategorijsku klasifikaciju

- Softmax funkcija računa verovatnoću da trening primer $x^{(i)}$ pripada klasi c_j
- Treba da izračunamo verovatnoću $P\big(y=c_j|s^{(i)}\big)$ za svaku od klasa $\{c_k, k=1,\dots,C\}$
- Dakle, izlaz $h_{\theta}(x)$ će biti *vektor* čiji su članovi verovatnoća "uspeha" za svaku od klasa:

$$h_{\theta}(x) = \begin{bmatrix} P(y = c_1 | x) \\ P(y = c_2 | x) \\ \dots \\ P(y = c_C | x) \end{bmatrix}$$

- Naša predikcija: klasa sa navećom verovatnoćom "uspeha"
- Ali, mora da važi $\sum_{k=1}^C P(y=c_k|x)=1$ za ovo se brine softmax funkcija

Parametri modela:

$$\theta = \begin{bmatrix} | & | & | & | \\ \theta^{(1)} & \theta^{(2)} & \dots & \theta^{(C)} \\ | & | & | & | \end{bmatrix}_{D \times C}$$

gde je D broj obeležja, a C broj klasa

 Sigmoidnu funkciju (koju smo koristili u binarnoj logističkoj regresiji):

$$P(y = 1|s^{(i)}) = \frac{1}{1 + e^{-s(i)}}$$

• ćemo zameniti sa tzv. *softmax* funkcijom:

$$P(y = c_j | s^{(i)}) = f(s^{(i)}) = \frac{e^{s(i)}}{\sum_{(k=1)}^{C} e^{s(k)}}$$

• gde je $s = \theta^T x$ ("score"), a C broj klasa

Primer

Recimo da imamo skup podataka (4 primera i 3 moguće klase):

$$\{(x^{(1)}, c_1), (x^{(2)}, c_2), (x^{(3)}, c_3), (x^{(4)}, c_3)\}$$

• Izlaz y ćemo predstaviti putem 1-hot-encoding:

$$y^{(1)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, y^{(2)} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, y^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, y^{(2)} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• Ulaz x ćemo predstaviti matricom čiji redovi predstavljaju trening primere, a kolone obeležja (recimo da imamo 2 obeležja):

$$X = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} \\ 1 & x_1^{(3)} & x_2^{(3)} \\ 1 & x_1^{(4)} & x_2^{(4)} \end{bmatrix}_{4 \times 3}$$

Primer

• Matrica koeficijenata θ će biti dimenzije 3×3 :

$$\theta = \begin{bmatrix} \theta_0^{(1)} & \theta_0^{(2)} & \theta_0^{(3)} \\ \theta_1^{(1)} & \theta_1^{(2)} & \theta_1^{(3)} \\ \theta_2^{(1)} & \theta_2^{(2)} & \theta_2^{(3)} \end{bmatrix}$$

• Da bismo dobili "score" s množimo matrice $x_{4\times 3}$ i $\theta_{3\times 3}$ kao izlaz dobijamo matricu $S=X\theta$ dimenzije 4×3

Primer

• Matricu $S_{4\times3}$ propuštamo kroz softmax funkciju

$$S = \begin{bmatrix} 0.07 & 0.22 & 0.28 \\ 0.35 & 0.78 & 1.12 \\ -0.33 & -0.58 & -0.92 \\ 0.39 & -0.7 & -1.1 \end{bmatrix} \rightarrow \begin{bmatrix} 0.294 & 0.342 & \mathbf{0}.363 \\ 0.213 & 0.327 & \mathbf{0}.460 \\ \mathbf{0}.429 & 0.334 & 0.238 \\ \mathbf{0}.449 & 0.330 & 0.221 \end{bmatrix}$$

- Prvi i drugi primer bismo stavili u klasu c_3 , a treći i četvrti u c_1
- Trening skup: $\{(x^{(1)}, c_1), (x^{(2)}, c_2), (x^{(3)}, c_3), (x^{(4)}, c_3)\}$
- Naše predikcije nisu dobre, tako da treba rafinirati heta

Granica odluke

• Granica odluke: granica između bilo koje dve klase je linearna (prava linija)

Napomena: numerička stabilnost

- Kod računanja vrednosti softmax funkcije, vrednosti e^{s_j} i $\sum_k e^{s_k}$ mogu biti veoma velike zbog eksponenta (potencialni overflow)
- Zbog toga koristimo sledeći trik: ako pomnožimo imenilac i brojilac konstantom C, dobijamo ekvivalentan izraz:

$$\frac{e^{s_j}}{\sum_k e^{s_k}} = \frac{Ce^{s_j}}{C\sum_k e^{s_k}} = \frac{e^{s_j + \log C}}{\sum_k e^{s_k + \log C}}$$

• Čest izbor $\log(C) = -\max_j s_j \to \text{"pomerili"}$ smo vrednosti vektora s tako da je najveća vrednost 0