Mathematik III

18.10.2016

Inhaltsverzeichnis

1	Vek	torräume	2
	1.1	Definition (Reelle Vektorräume)	2
	1.2	Beispiel	2
	1.3	Lemma	3
	1.4	Definition	4
	1.5	Beispiel	4
	1.6	Satz (Unterraumkriterium)	5
	1.7	Beispiel	5
	1.8	Satz	8
	1.9	Bemerkung	8
	1.10	Beispiel	9
	1.11	Beispiel	9
	1.12	Definition (Linearkombination, Erzeugendensystem)	10
	1.13	Bemerkung	10
	1.14	Definition: Lineare Unabhängigkeit	13
	1.15	Beispiel	13
	1.16	Satz	14
	1.17	Satz	15
	1.18	Definition (Basis)	16
		Beispiel	16
	1.20	Satz (Existenz von Basen)	16
	1.21	Satz (Austauschlemma)	17
	1.22	Satz (Steinitz'scher Austauschsatz)	18
	1.23	Korollar	18
	1.24	Satz	19

1 Vektorräume

Bemerkung: 1.1-1.10 identisch mit 8.1-8.10 aus Mathematik 2, SS16

1.1 Definition (Reelle Vektorräume)

Ein R-Vektorraum V ist eine nichtleere Menge, deren Elemente Vektoren genannt werden (Bezeichnung mittels kleiner lateinischer Buchstaben, v, w, x, y, ...), auf der eine Addition + definiert ist, +: $V \times V \to V$; und eine Multiplikation mit reellen Zahlen ('Skalare') (Bezeichnung mittels kleiner griechischer Buchstaben $\alpha, \beta, \gamma, \lambda, \mu, ...$), ·: $\mathbb{R} \times V \to V$, so dass gilt:

- $(1.1) \ u + v + w = u + (v + w) \qquad \forall u, v, w \in V$
- (1.2) Es existiert ein Vektor $\mathcal{O} \in V$ ('Nullvektor') mit $v + \mathcal{O} = \mathcal{O} + v = v \qquad \forall v \in V$
- (1.3) Zu jedem $v \in V$ existiert ein Vektor $-v \in V$ mit $v + (-v) = \mathcal{O}$
- $(1.4) \ u + v = v + u \qquad \forall u, v \in V$

(Diese Eigenschaften (1.1) bis (1.4) kann man zusammenfassen als '(V, +) ist eine kommutative Gruppe').

$$(2.1) \ \ \overset{\text{Addition in } \mathbb{R}}{(\lambda + \mu)} \cdot v = \lambda \cdot v \ \ \overset{\text{Addition in } V}{+} \mu \cdot v \qquad \forall \lambda, \mu \in \mathbb{R}, v \in V$$

(2.2)
$$\lambda(v+w) = \lambda v + \lambda w \quad \forall \lambda \in \mathbb{R}, v, w \in V$$

$$(2.3) \quad \begin{array}{c} \text{Multiplikation in } \mathbb{R} \\ (\lambda \cdot \mu) \quad \cdot v = \lambda \cdot \\ \end{array} \quad \begin{array}{c} \text{Multiplikation mit Skalar} \\ (\mu \cdot v) \\ \end{array} \quad \forall \lambda, \mu \in \mathbb{R}, v \in V$$

$$(2.4) \ 1 \cdot v = v \qquad \forall v \in V$$

1.2 Beispiel

- a) trivialer Vektorraum Nullraum: $V = \{\mathcal{O}\}$ Es gilt $\mathcal{O} + \mathcal{O} \coloneqq \mathcal{O}, \quad \lambda \cdot \mathcal{O} \coloneqq \mathcal{O} \quad \forall \lambda \in \mathbb{R}$
- b) $V=\mathbb{R}^n,$ Raum aller 'Spaltenvektoren' der Länge n über $\mathbb{R},$ Elemente haben

die Form
$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
 mit $x_1, \dots, x_n \in \mathbb{R}$.
$$\mathcal{O} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix}, \quad \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \dots \\ x_n + y_n \end{pmatrix}, \quad \lambda \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda \cdot x_1 \\ \dots \\ \lambda \cdot x_n \end{pmatrix}$$

c) \mathbb{R} ist ein \mathbb{R} -Vektorraum.

Vektoren: reelle Zahlen.

Skalare: reelle Zahlen.

$$\mathcal{O} = 0$$

d) Funktionenraum:

 $M \neq \emptyset$ Menge. $V = \mathcal{F}(M, \mathbb{R}) := \{f : M \to \mathbb{R}\}$

Menge der auf M definierten reellen Funktionen.

Für $f, g \in V$, $\lambda \in \mathbb{R}$ sei

$$-f+g:M\to\mathbb{R},\quad (f+g)(x)=f(x)+g(x)\quad \forall x\in M$$

$$-\lambda \cdot f \colon M \to \mathbb{R}, \quad (\lambda \cdot f)(x) = \lambda \cdot f(x) \quad \forall x \in M$$

Dann ist V mit $\mathbb{R}, +, \cdot$ ein Vektorraum. Nullvektor ist $f=0\colon M\to\mathbb{R}, \quad f(x)=0 \quad \forall x\in M.$

(kurz: $f \equiv 0$, identisch Null)

1.3 Lemma

Sei V ein \mathbb{R} -Vektorraum, $v \in V$, $\lambda \in \mathbb{R}$

a)
$$0 \cdot v = \mathcal{O}$$

b)
$$\lambda \cdot \mathcal{O} = \mathcal{O}$$

c) Zu jedem $v \in V$ ist der Vektor -v aus (1.3) in 8.1 eindeutig bestimmt.

d)
$$(-1) \cdot v = -v$$

Beweis

a)

$$\mathcal{O} \stackrel{(1.3)}{=} \underbrace{0 \cdot v}^{x} + \underbrace{(-0 \cdot v)}^{-x} = \underbrace{(0+0)v} + (-0 \cdot v)$$

$$\stackrel{(2.1)}{=} (0 \cdot v + 0 \cdot v) + (-0 \cdot v)$$

$$\stackrel{(1.1)}{=} 0 \cdot v + (0 * v + (-0 \cdot v))$$

$$\stackrel{(1.3)}{=} 0 \cdot v + \mathcal{O}$$

$$\stackrel{(1.2)}{=} 0 \cdot v$$

b) Wie a), starte mit $\mathcal{O} = \lambda \cdot \mathcal{O} + (-\lambda \cdot \mathcal{O})$, erhalte $\mathcal{O} = \lambda \cdot \mathcal{O}$

d)

$$\underbrace{v + (-1 \cdot v)}_{} = 1 \cdot v + (-1 \cdot v)$$

$$\stackrel{(2.1)}{=} (1 + (-1))v$$

$$= 0 \cdot v$$

$$\stackrel{a)}{=} \mathcal{O}$$

$$\stackrel{(1.3)}{=} v + (-v)$$

Addiere auf beiden Seiten -v:

$$v + (-1)v + (-v) = v + (-v) + (-v)$$
$$\Rightarrow -1 \cdot v = -v$$

c) Angenommen, zu $v \in V$ gibt es -v und -v' mit $v+(-v)=\mathcal{O}$ und $v+(-v')=\mathcal{O}$. Dann ist $v+(-v)=v+(-v') \stackrel{+(-v)\text{auf beiden Seiten}}{\Rightarrow} -v=-v'$

1.4 Definition

Sei V ein \mathbb{R} -Vektorraum.

Eine Teilmenge $U \subseteq V$, $U \neq \emptyset$ heißt Unter(vektor)raum von V, falls U bezüglich der Addition auf V und der Multiplikation mit Skalaren selbst ein Vektorraum ist.

1.5 Beispiel

- a) $V = \mathbb{R}^2$, $U = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ ist Unterraum von V
- b) $V = \mathbb{R}^2$, $U = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ ist kein Unterraum von V, z.B. (1.2) ist verletzt, Addition funktioniert auch nicht: $\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \notin U$
- c) $V = \mathbb{R}^2$, $U = \{ \begin{pmatrix} \lambda \\ 0 \end{pmatrix} | \lambda \in \mathbb{R} \}$ ist ein Unterraum von V (prüfe alle Eigenschaften von Definition 8.1) \to umständlich, einfacher geht es mit 8.6

1.6 Satz (Unterraumkriterium)

Sei V ein \mathbb{R} -Vektorraum, sei $\emptyset \neq U \subseteq V$.

Dann ist U Unterraum von V genau dann, wenn gilt (\Leftrightarrow) :

(1)
$$v \in U$$
, $\lambda \in \mathbb{R} \Rightarrow \lambda \cdot v \in U$

(2)
$$v, w \in U \Rightarrow v + w \in U$$

(oder äquivalent: $\forall v, w \in U, \forall \lambda, \mu \in \mathbb{R}$ ist $\lambda \cdot v + \mu \cdot w \in U$)

Man sagt: U ist abgeschlossen bezüglich der Vektoraddition und der Multiplikation mit Skalaren.

Beweis

- \Rightarrow ist klar, da U laut Definition 8.4 selbst Vektorraum
- \Leftarrow rechne die Vektorraumaxiome nach (Definition 8.1, also z.B. $\mathcal{O} \in U,...$)

1.7 Beispiel

a) $V \text{ ist ein } \mathbb{R}\text{-Vektorraum, } \mathcal{O} \neq v \in V.$ Dann ist $G = \{\lambda \cdot v | \lambda \in \mathbb{R}\}$ ein Unter-

 $V=\mathbb{R}^2,\mathbb{R}^3$: G ist Gerade durch Nullpunkt (geometrisch), z.B.

$$v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, w = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Aber: $G' = \{w + \lambda \cdot v | \lambda \in \mathbb{R}, w \in V\}$ ist kein Unterraum für $w \neq \mu \cdot v, \mu \in \mathbb{R}$.

Warum? Z.B. $\mathcal{O} \notin G'$

b)
$$V = \mathbb{R}^3$$
, $U_1 = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 | x_1 + x_2 - x_3 = 0 \}$ ist Unterraum. Wir zeigen (1), (2) aus 8.6:

$$-U_1 \neq \emptyset$$
, z.B. $\mathcal{O} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in U_1$, denn $0 + \begin{pmatrix} x_1 \\ 0 \end{pmatrix} = 0$

(1) Sei
$$\lambda \in \mathbb{R}$$
, $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in U_1$, d.h. $v_1 + v_2 - v_3 = 0$

Prüfe: Ist $\lambda \cdot v \in U_1$? $\lambda \cdot v = \begin{pmatrix} \lambda \cdot v_1 \\ \lambda \cdot v_2 \\ \lambda \cdot v_3 \end{pmatrix}$

$$\lambda \cdot v_1 + \lambda \cdot v_2 - \lambda \cdot v_3 = \lambda(v_1 + v_2 - v_3)$$

$$= \lambda \cdot 0$$

$$= 0$$

Also ist $\lambda \cdot v \in U_1$

(2) Seien
$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
, $w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in U_1$, d.h. $v_1 + v_2 - v_3 = 0$, $w_1 + w_2 - w_3 = 0$. Gilt $v + w \in U_1$? $v + w = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix}$

$$(v_1 + w_1) + (v_2 + w_2) - (v_3 + w_3) = \underbrace{(v_1 + v_2 - v_3)}_{=0} + \underbrace{(w_1 + w_2 - w_3)}_{=0}$$

Also $v + w \in U_1$

- Geometrische Interpretation:

$$U_{1} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{1} + x_{2} \end{pmatrix} \middle| x_{1}, \quad x_{2} \in \mathbb{R} \right\}$$
$$= \left\{ x_{1} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \middle| x_{1}, \quad x_{2} \in \mathbb{R} \right\}$$

D.h. U_1 ist die Ebene durch $O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ mit den Richtungsvektoren

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 und $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

c)
$$U_2 = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 | x_1 + x_2 - x_3 = 1 \}$$
 ist kein Unterraum. Z.B. $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \mathcal{O} \notin U_2$: $0 + 0 - 0 = 0 \neq 1$.

Anderes Argument: Sei $\lambda \in \mathbb{R}$, $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in U_2$, d.h. $x_1 + x_2 - x_3 = 1$.

Gilt
$$\lambda \cdot x \in U_2$$
? $\lambda \cdot x = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{pmatrix}$

$$\lambda x_1 + \lambda x_2 - \lambda x_3 = \lambda \underbrace{(x_1 + x_2 - x_3)}_{=1}$$

$$= \underbrace{\lambda = 1}_{\text{nur für } \lambda = 1}$$

 \Rightarrow nicht erfüllt für $\lambda \neq 1$.

Geometrische Interpretation:

$$U_{2} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{1} + x_{2} - 1 \end{pmatrix} \middle| x_{1}, \quad x_{2} \in \mathbb{R} \right\}$$

$$= \left\{ \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + x_{1} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \middle| x_{1}, \quad x_{2} \in \mathbb{R} \right\}$$

Ebene durch $\begin{pmatrix} 0\\0\\-1 \end{pmatrix}$ mit Richtungsvektoren $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ und $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$

d)
$$U_3 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 | x_1^2 + x_2^2 + x_3^2 \le 1 \right\}$$
 ist kein Unterraum, z.B.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in U_3, \qquad 1^2 + 0^2 + 2 \le 1 \quad \checkmark, \text{ aber}$$

$$2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \notin U_3, \text{ denn } 2^2 + 0^2 + 0^2 \nleq 1$$

Geometrische Interpretation:

$$U_3$$
 ist eine Kugel um $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ mit Radius 1

e) $I \subseteq \mathbb{R}$ Intervall

Menge C(I) (C: continuous, stetig) der stetigen Funktionen auf I ist Unterraum von $\mathcal{F}(I,\mathbb{R})$ (vgl. Beispiel 8.2d)).

Menge der diffbaren Funktionen auf I ist Unterraum von C(I).

1.8 Satz

V ist ein \mathbb{R} . Vektorraum, U_1, U_2 sind Unterräume von V.

- a) $U_1 \cap U_2 = \{u \in V | u \in U_1 \land u \in U_2\}$ ist Unterraum von V.
- b) $U_1 + U_2 := \{u_1 + u_2 | u_1 \in U_1 \land u_2 \in U_2\}$ Summe von U_1, U_2 ist Unterraum von V (das ist nicht die Vereinigung $U_1 \cap U_2$!)

Beweis

Prüfe Unterraumkriterium 8.6

- a) Übung: Prüfe $\mathcal{O} \in U_1 \cap U_2$? \checkmark , (1), (2)
- b) $-U_1 + U_2 \neq \emptyset$, denn $U_1 + U_2 \ni \mathcal{O} = \underbrace{\mathcal{O}}_{\in U_1} + \underbrace{\mathcal{O}}_{\in U_2}$
 - Seien $v = u_1 + u_2$, $u_1 \in U_1$, $u_2 \in U_2$ und $w = u'_1 + u'_2$, $u'_1 \in U_1$, $u'_2 \in U_2$, also $v, w \in U_1 + U_2$ und $\lambda, \mu \in \mathbb{R}$.

$$\Rightarrow \lambda v + \mu v = \lambda (u_1 + u_2) + \mu (u'_1 + u'_2)$$

$$= \underbrace{\lambda u_1 + \mu u'_1}_{\in U_1} + \underbrace{\lambda u_2 + \mu u'_2}_{\in U_2} \qquad \in U_1 + U_2$$

1.9 Bemerkung

- a) lässt sich für unendlich viele Unterräume ausweiten
- b) lässt sich für endlich viele Unterräume ausweiten
- $U_1 \cup U_2$ ist im Allgemeinen <u>kein</u> Unterraum

1.10 Beispiel

•
$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{R}^2$$
 $G_1 = \{\lambda v | \lambda \in \mathbb{R}\}$

•
$$w = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \in \mathbb{R}^2$$
 $G_2 = \{\mu w | \mu \in \mathbb{R}\}$

(vgl. 8.7a), Geraden durch $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, Unterräume

• $G_1 + G_2$ ist Ebene

•
$$G_1 \cap G_2$$
 ist $\mathcal{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

1.11 Beispiel

•
$$u = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

•
$$v = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

•
$$E = \{\lambda_1 \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} | \lambda_1, \lambda_2 \in \mathbb{R} \}$$

- E $\subseteq \mathbb{R}^3$ ist Untervektorraum (UVR) und wird <u>aufgespannt/erzeugt</u> von u und v. Man nennt $\left\{\begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\0 \end{pmatrix}\right\}$ <u>Erzeugendensystem</u> von E.
- D.h. $w \in E \Leftrightarrow \exists \lambda_1, \lambda_2 \in \mathbb{R} : w = \underbrace{\lambda_1 \cdot u + \lambda_2 \cdot v}_{\text{Linearkombination von } u \text{ und } v}$

•
$$w \notin E$$
, z.B. $w = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ ergibt:

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \lambda_1 \cdot u + \lambda_2 \cdot v = \lambda_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \text{Letzte Zeile: } 1 = \lambda_1$$

$$\text{Zweite Zeile: } 0 = \lambda_1$$

$$\Rightarrow \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \notin E$$

$$\Rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \notin E$$

1.12 Definition (Linearkombination, Erzeugendensystem)

 $V: \mathbb{R}\text{-VR}$ (V ist Vektorraum in den reellen Zahlen)

- (i) $v_1, ..., v_m \in V$ und $\lambda_1, ..., \lambda_m \in \mathbb{R}$ Der Vektor $\lambda_1 \cdot v_1 + ... + \lambda_m \cdot v_m$ heißt <u>Linearkombination</u> von $v_1, ..., v_m$.
- (ii) Sei $M \subseteq V$. Dann ist

$$\langle M \rangle_{\mathbb{R}} = \{ \sum_{k=1}^{n} \lambda_k \cdot v_k | \lambda_k \in \mathbb{R}, v_k \in M, n \in \mathbb{N} \}$$

der von M aufgespannte/erzeugte UVR von V

Vereinbarung:
$$\langle \emptyset \rangle = \{0\}$$

Schreibweise: $M = \{v_1, ..., v_m\}$
 $\langle M \rangle_{\mathbb{R}} = \langle v_1, ..., v_m \rangle_{\mathbb{R}}$

(iii) Ist $V = \langle M \rangle_{\mathbb{R}}$, so heißt M ein <u>Erzeugendensystem</u> von V. V heißt <u>endlich erzeugt</u>, falls es ein endliches Erzeugendensystem gibt.

1.13 Bemerkung

 $M \subseteq V \Rightarrow \langle M \rangle_{\mathbb{R}}$ ist der kleinste UVR von V, der M enthält.

Beweis

- $\langle M \rangle_{\mathbb{R}}$ ist UVR. erfüllt Kriterien von 1.6, daher klar: 1.6 2) erfüllt. $u \in \langle M \rangle_{\mathbb{R}} \Rightarrow u = \lambda_1 \cdot v_1 + ... + \lambda_n \cdot v_n \quad (M = \{v_1, ..., v_n\})$ $\Rightarrow \lambda \cdot u = \underbrace{\lambda \lambda_1}_{\in \mathbb{R}} \cdot v_1 + ... + \underbrace{\lambda \lambda_n}_{\in \mathbb{R}} \cdot v_n$ 1.6 3) ähnlich.
- Angenommen U ist der kleinste UVR, so dass $M \subseteq U$. Z. z.: $\langle M \rangle_{\mathbb{R}} = U$. Wegen 1.6 enthält U alle Linearkombinationen von Vektoren aus M. ⇒ $\langle M \rangle_{\mathbb{R}} \subseteq U$ ⇒ U kann nicht kleiner sein als $\langle M \rangle_{\mathbb{R}}$ ⇒ $\langle M \rangle_{\mathbb{R}} = U$

Fortsetzung Bsp. 1.11

a)
$$E = \langle \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \rangle_{\mathbb{R}}$$

b) \mathbb{R}^n wird erzeugt von $e_j=\begin{pmatrix} 0\\ \vdots\\ 1\\ \vdots\\ 0 \end{pmatrix}$, wobei j die Stelle ist, an der der Vektor 1

ist.
$$R^{n} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\rangle_{\mathbb{R}}$$
 "kanonische Einheitsvektoren"
$$v = \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix} = v_{1} \cdot e_{1} + v_{2} \cdot e_{2} + \dots + e_{n} \cdot v_{n}$$

c) Spannen $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ den \mathbb{R}^2 auf?

Wenn ja, dann muss für $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ $\alpha, \beta \in \mathbb{R}$ existieren mit

$$\alpha \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \beta \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Leftrightarrow \qquad \qquad \alpha + \beta = x$$

$$\alpha + 2\beta = y$$

$$\Rightarrow \qquad \qquad \alpha = x - \beta$$

$$= y - 2\beta$$

$$\Leftrightarrow \qquad \qquad \beta = y - x$$

$$\alpha = 2x - y$$

$$\Rightarrow \quad \text{Allg. } \begin{pmatrix} x \\ y \end{pmatrix} = (2x - y) \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + (y - x) \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Rightarrow \mathbb{R}^2 = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle_{\mathbb{R}}$$

- d) Spannen $\binom{1}{2}$ und $\binom{3}{6}$ den \mathbb{R}^2 auf? Nein, denn $\binom{3}{6}$ ist $3 \cdot \binom{1}{2} \Rightarrow \langle \binom{1}{2}, \binom{3}{6} \rangle_{\mathbb{R}} = \langle \binom{1}{2} \rangle_{\mathbb{R}} = \{\lambda \cdot \binom{1}{2} | \lambda \in \mathbb{R} \} \subsetneq \mathbb{R}^2$
- e) $\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle_{\mathbb{R}} = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle_{\mathbb{R}} = \mathbb{R}^2$, d.h. Erzeugendensysteme sind <u>nicht</u> eindeutig!
- $\begin{array}{ll} \mathrm{f}) \ \, \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \rangle_{\mathbb{R}} = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle_{\mathbb{R}}, \, \mathrm{da} \, \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \\ \mathrm{D.h.} \ \, M = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \} \ \, \mathrm{ist} \ \, \mathrm{kein} \, \, \underline{\mathrm{minimales}} \, \, \mathrm{Erzeugendensystem} \, \, \mathrm{des} \\ \mathbb{R}^2, \, \mathrm{denn} \, \, v \in M \, \, \mathrm{kann} \, \, \mathrm{immer} \, \, \mathrm{dargestellt} \, \, \mathrm{werden} \, \, \mathrm{als} \, \, \mathrm{Linearkombination} \, \, \mathrm{von} \, \, \mathrm{Vektoren} \, \, \mathrm{aus} \, \, M \setminus v. \end{array}$

Man sagt: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ sind <u>linear abhängig</u>.

Ergänzung zu 1.13

Bsp:
$$M = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \Rightarrow \langle M \rangle_{\mathbb{R}} = \left\{ \lambda \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} | \lambda \in \mathbb{R} \right\}$$
 Gerade

• $\langle M \rangle_{\mathbb{R}} \supseteq M$

•
$$E = \{\lambda_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} | \lambda_1, \lambda_2 \in \mathbb{R}\} \supseteq M$$

 $\langle M \rangle_{\mathbb{R}}$ Gerade, E Ebene, d.h. E ist größer als $\langle M \rangle_{\mathbb{R}}$ $\langle M \rangle_{\mathbb{R}}$ ist der kleinste UVR von \mathbb{R}^3 , der M enthält.

1.14 Definition: Lineare Unabhängigkeit

• $V: \mathbb{R} - VR$, $v_1, ..., v_n$ heißen linear unabhängig, wenn gilt:

$$\left. \begin{array}{l} \lambda_1 \cdot v_1 + \ldots + \lambda_m \cdot v_m = 0 \\ \lambda_1, \ldots, \lambda_m \in \mathbb{R} \end{array} \right\} \Rightarrow \underbrace{\lambda = \lambda_2 = \ldots = \lambda_m = 0}_{\text{einzige L\"osung!}}$$

- $M\subseteq V$ heißt linear unabhängig, wenn gilt: Für beliebiges $m\in\mathbb{N}$ und $v_1,...,v_m\in M$ paarweise verschieden sind $v_1,...,v_m$ linear unabhängig
- Ist in obigen beiden Fällen (mindestens) $\lambda_i \neq 0$, dann sind die Vektoren linear abhängig

1.15 Beispiel

- a) \mathcal{O} ist linear abhängig, da $\lambda \cdot \mathcal{O} = 0$ $\forall \lambda \neq 0$
- b) Sind $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$ linear abhängig in \mathbb{R}^2 ? $\lambda_1 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \lambda_2 \cdot \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \lambda_3 \cdot \begin{pmatrix} 1 \\ -5 \end{pmatrix} = \mathcal{O}$ $\begin{cases} I & \lambda_1 3\lambda_2 + \lambda_3 &= 0 \\ II & 2\lambda_1 + \lambda_2 5\lambda_3 &= 0 \end{cases}$ Erfüllt für $\lambda_1 = \lambda_2 = \lambda_3 = 0$. Aber hier gibt es noch die Lösung: $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = 1$! $\Rightarrow \text{ Vektoren sind linear abhängig}$
- c) $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ linear unabhängig (l.u.) in \mathbb{R}^3
- d) $v \neq \mathcal{O}, \quad v \in V, \quad v$, ist linear unabhängig Angenommen es existiert $\lambda \neq 0$ mit $\lambda \cdot v = 0$. $\Rightarrow v = (\frac{1}{\lambda} \cdot \lambda) \cdot v = \frac{1}{\lambda} \cdot (\lambda \cdot v) = \mathcal{O}$ f

e)

$$v,w$$
linear abhängig $\Leftrightarrow v=\lambda w$, für ein $\lambda\in\mathbb{R}$
$$\Leftrightarrow v\in\langle w\rangle_{\mathbb{R}}$$

f) In
$$V = \mathcal{F}(\mathbb{R}, \mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} | \text{ f Abbildung} \}$$
 sind die Vektoren
$$- f(x) = x, \quad g(x) = x^2 \text{ linear unabhängig}$$

$$- f(x) = \sin^2(x), \quad g(x) = \cos^2(x), \quad h(x) = 2 \text{ linear abhängig:}$$

$$2 = 2 \cdot (\sin^2 x + \cos^2 x)$$
$$= 2\sin^2 x + 2\cos^2 x$$
$$0 = \underbrace{2}_{\lambda_1} \sin^2 x + \underbrace{2}_{\lambda_2} \cos^2 x \underbrace{-1}_{\lambda_3} \cdot 2$$

1.16 Satz

$$M = \{v_1, ..., v_n\} \subseteq V$$

- (i) M linear unabhängig \Leftrightarrow Zu jedem $v \in \langle M \rangle_{\mathbb{R}}$ gibt es eindeutig bestimmte $\lambda_1, ... \lambda_n \in \mathbb{R} : v = \sum_{i=1}^n \lambda_i \cdot v_i$
- (ii) M linear unabhängig, $v \notin \langle M \rangle_{\mathbb{R}} \Rightarrow M \cup \{v\}$ linear unabhängig

Beweis

- (i) (\Leftarrow) $\mathcal{O} \in \langle M \rangle_{\mathbb{R}} \Rightarrow \exists$ eindeutig bestimmte $\lambda_1, ..., \lambda_m \in \mathbb{R}$: $\mathcal{O} = \lambda_1 \cdot v_1 + ... + \lambda_n \cdot v_n$ Gleichung erfüllt für $\lambda_1 = ... = \lambda_n = 0$ (eindeutige Lösung)
 - $\begin{array}{c} (\Rightarrow) \ \, \mathrm{Sei} \, \, M \, \, \mathrm{linear} \, \, \mathrm{unabh\ddot{a}ngig}, \, v \in \langle M \rangle_{\mathbb{R}} \\ \, \mathrm{Angenommen} \, \, v = \sum_{i=1}^n \lambda_i \cdot v_i = \sum_{i=1}^n \mu_i \cdot v_i \\ \, \Leftrightarrow \sum_{i=1}^n \underbrace{(\lambda_i \mu_i)}_{=0, \, \mathrm{da} \, M \, \, \mathrm{linear} \, \, \mathrm{unabh\ddot{a}ngig}}_{=0, \, \mathrm{da} \, M \, \, \mathrm{linear} \, \, \mathrm{unabh\ddot{a}ngig}} \\ \, \Rightarrow \lambda_i = \mu_i \quad \, \forall i = 1, \dots, n \end{array}$
- (ii) Z.z.: $\sum_{i=1}^{n} \lambda_i \cdot v_i + \lambda \cdot v = \mathcal{O} \Rightarrow \lambda_i = 0 \quad \forall i, \lambda = 0$ Annahme: $\lambda \neq 0 \Rightarrow v = \underbrace{-\frac{\lambda_1}{\lambda}}_{\in \mathbb{R}} \cdot v_1 - \dots - \frac{\lambda_n}{\lambda} \cdot v_n$ $\Rightarrow v \in \langle M \rangle_{\mathbb{R}} \mathbf{f}. \text{ Also } \lambda = 0$

 $\lambda_i = 0$, weil M linear unabhängig.

1.17 Satz

 $M \subseteq V$ linear unabhängig genau dann, wenn gilt:

$$N \subseteq M$$
, $\langle N \rangle_{\mathbb{R}} = \langle M \rangle_{\mathbb{R}} \Rightarrow N = M$

In Worten: Man kann von M keinen Vektor weglassen, ohne dass der von M aufgespannte Raum sich verkleinert.

Beweis

 (\Rightarrow) Sei $M\subseteq V$ linear unabhängig.

Angenommen: Man kann doch aus M Vektoren weglassen, d.h.

$$N \subseteq M$$
, $\langle N \rangle_{\mathbb{R}} = \langle M \rangle_{\mathbb{R}}$ und $N \neq M$

$$N \neq M \Rightarrow \exists x \in M \setminus N \qquad \qquad (\text{da } N \subseteq M)$$

$$\Rightarrow \exists v_1, ..., v_n \in N \qquad \text{paarweise verschieden und}$$

$$\exists \lambda_1, ..., \lambda_n \in \mathbb{R} \qquad \text{so dass}$$

$$x = \lambda_1 v_1 + ... + \lambda_n v_n \qquad (\text{da } \langle N \rangle_{\mathbb{R}} = \langle M \rangle_{\mathbb{R}})$$

$$\Rightarrow \lambda_1 v_1 + ... + \lambda_n v_n - x = \mathcal{O}$$

$$\underbrace{v_1, ..., v_n,}_{\in N} \qquad \underbrace{x}_{\in M \setminus N} \qquad \text{paarweise verschieden}$$

Da $N \subseteq M$, ist $\underbrace{v_1,...,v_n,x}_{\text{linear abhängig}} \in M \Rightarrow M$ linear abhängig

Also muss N = M gelten.

 (\Leftarrow) Sei M linear abhängig.

Z.z. Man kann Vektoren aus M weglassen, d.h.:

$$\exists N \subseteq M, \quad \langle N \rangle_{\mathbb{R}} = \langle M \rangle_{\mathbb{R}} \text{ und } N \neq M$$

$$M$$
 linear abhängig $\Rightarrow \exists n \in \mathbb{N} \quad \exists v_1, ..., v_n \in M$
 $\exists \lambda_1, ..., \lambda_n \in \mathbb{R} \text{ (mit } \lambda_i \neq 0 \text{ für ein i)}$
 $\lambda_1 \cdot v_1 + ... + \lambda_n \cdot v_n = 0$

O.B.d.A:
$$\lambda_1 \neq 0 \Rightarrow v_1 = -\frac{\lambda_2}{\lambda_1} \cdot v_2 - \frac{\lambda_3}{\lambda_1} \cdot v_3 - \dots - \frac{\lambda_n}{\lambda_1} \cdot v_n$$

Setze $N = M \setminus \{v_1\} \Rightarrow N \neq M$

Da v_1 Linearkombination von $v_2, ..., v_n$ folgt:

Jede Linearkombination von $v_1,...,v_n$ lässt sich ausdrücken als Linearkombination von $v_2,...,v_n\Rightarrow\langle N\rangle_{\mathbb{R}}=\langle M\rangle_{\mathbb{R}}$

Basis und Dimension

Ein minimales Erzeugendensystem heißt Basis.

1.18 Definition (Basis)

V endlich erzeugter \mathbb{R} -VR. Eine endliche Menge $B \subseteq V$ heißt Basis, falls

- $\langle B \rangle_{\mathbb{R}} = V$ und
- B linear unabhängig.

Für $V = \{\mathcal{O}\}$ ist $B = \emptyset$ die Basis.

1.19 Beispiel

- a) $\{e_1, ..., e_n\}$ ist Basis von \mathbb{R}^n ('Standard-/kanonische Basis')
- b) Basisi ist nicht eindeutig.

$$B_{1} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \qquad B_{2} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$

$$\Rightarrow \langle B_{1} \rangle_{\mathbb{R}} = \langle B_{2} \rangle_{\mathbb{R}}, \text{ da: } \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ und } \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in \langle B_{2} \rangle_{\mathbb{R}} \Rightarrow \mathbb{R}^{2} = \langle B_{1} \rangle_{\mathbb{R}} \subseteq \langle B_{2} \rangle_{\mathbb{R}}$$

1.20 Satz (Existenz von Basen)

V andlich erzeugter \mathbb{R} -VR \Rightarrow Jedes endliche Erzeugendensystem enthält Basis.

Beweis

Sei $M \subseteq V$ endlich, $\langle M \rangle_{\mathbb{R}} = V$

- M linear unabhängig \rightarrow fertig
- M linear abhängig $\stackrel{1.17}{\Rightarrow}$ Man kann aus M einen Vektor $v \in M$ weglassen, so dass $\langle M \setminus \{v\} \rangle_{\mathbb{R}} = V = \langle M \rangle_{\mathbb{R}}$. Nach endlich vielen Schritten liefert das Verfahren eine Basis.

Fragen

- Basis nicht eindeutig. Sind alle Basen gleich groß?
- geg. $w = \begin{pmatrix} \frac{1}{3} \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^3$, $S = \{e_1, e_2, e_3\}$. Wie kann man w zu einer Basis ergänzen? Welche Vektoren aus S sind geeignet?

$$w=rac{1}{3}e_1+e_3=\{\underbrace{w,e_1,e_3}_{ ext{linear abhängig}}\}$$
 keine Basis, aber
$$\{\underbrace{w,e_1,e_2}_{ ext{linear unabhängig}}\}$$
 Basis und $\{w,e_2,e_3\}$ Basis

1.21 Satz (Austauschlemma)

V endlich erzeugter \mathbb{R} -VR. Gegeben: $w \in V$, $w \neq \mathcal{O}$, $w = \sum_{i=1}^{n} \lambda_i v_i$, wobei $B = \{v_1, ..., v_n\} \subseteq V$ Basis von V. $\Rightarrow \underbrace{(B \setminus \{v_j\}) \cup \{w\}}_{(\star)}$ Basis, falls $\lambda_j \neq 0$

Beweis

Z.z: (\star) ist Basis.

1) (\star) ist linear unabhängig. Z.z:

$$\sum_{i\neq j} \mu_i v_i + \mu w = 0 \Rightarrow \mu_i = 0 \text{ und } \mu = 0$$

$$\sum_{i \neq j} \mu_i v_i + \mu w = \sum_{i \neq j} \mu_i v_i + \mu \left(\sum_{i=1}^n \lambda_i v_i\right)$$
$$= \sum_{i \neq j} (\mu_i + \mu \lambda_i) v_i + \mu \lambda_j v_j$$
$$= 0$$

$$B = \{v_1, ..., v_n\} \text{ Basis } \Rightarrow \mu \lambda_j = 0 \text{ und } \mu_i + \mu \lambda_i = 0 \quad \forall i \neq j$$
$$\lambda_j \neq 0 \Rightarrow \mu = 0 \Rightarrow \mu_i + \underbrace{\mu \lambda_i}_{=0} = \mu_i = 0 \quad \forall i \neq j$$

2) (\star) erzeugt V.

$$\begin{split} w &= \lambda_j v_j + \sum_{i \neq j}^{\lambda_i v_i} & |: \lambda_j, \, \mathrm{da} \, \lambda_j \neq 0 \\ \Leftrightarrow & v_j = \frac{1}{\lambda_j} w - \sum_{i \neq j} \frac{\lambda_i}{\lambda_j} v_i \\ \Rightarrow & v_j \in \langle (B \setminus \{v_j\}) \cup \{w\} \rangle_{\mathbb{R}} \\ \Rightarrow & \langle (B \setminus \{v_j\}) \cup \{w\} \rangle_{\mathbb{R}} = \langle B \cup \{w\} \rangle_{\mathbb{R}} = V \end{split}$$

1.22 Satz (Steinitz'scher Austauschsatz)

Geg. $w_1,...,w_m \in V$ linear unabhängig, $\{v_1,...,v_n\}$ Basis von V. Es folgt:

- a) Aus den n Vektoren $v_1, ..., v_n$ kann man n-m Vektoren auswählen, die mit $w_1, ..., w_m$ eine Basis bilden.
- b) $m \leq n$

Beweis

- a) 1) $w_1 \in V \Rightarrow w_1 = \sum_{i=1}^n \lambda_i v_i$ Wären alle $\lambda_i = 0$, dann wäre auch $w_1 = 0$. Da $\mathcal{O} \in V$ linear abhängig ist, wäre also auch $w_1, ..., w_m$ linear abhängig. EAlso: Mindestens ein $\lambda_i \neq 0$ O.B.d.A. $\lambda_1 \neq 0$ (sonst umnummerieren) $\stackrel{1.20}{\Rightarrow} \{w_1, v_2, ..., v_n\}$ ist Basis von V
 - 2) $w_2 \in V \Rightarrow \mu_1 w_1 + \sum_{i=2}^n \mu_i v_i$ Wären alle $\mu_2, ..., \mu_n = 0$, so wäre $w_2 = \mu_1 w_1$, also auch w_1, w_2 linear abhängig. E, da $\{w_1, ..., w_m\}$ linear unabhängig. \Rightarrow Mindestens ein $\mu_i \neq 0$, $i \in \{2, ..., n\}$ O.B.d.A. $\mu_2 \neq 0 \stackrel{1.20}{\Rightarrow} \{w_1, w_2, v_3, ..., v_n\}$ Basis von V

b) \rightarrow Übung

1.23 Korollar

V endlich erzeugter \mathbb{R} -VR

- i) Je zwei Basen von V enthalten gleich viele Elemente.
- ii) Basisergänzungssatz Jede linear unabhängige Teilmenge von V lässt sich zu einer Basis von V ergänzen.

Beweis

i) B, \tilde{B} Basen

Blinear unabhängig $\overset{1.22\mathrm{b})}{\Rightarrow}|B|\leq |\tilde{B}|$

 \tilde{B} linear unabhängig $\overset{1.22\text{b})}{\Rightarrow} |\tilde{B}| \leq |B|$

 $\Rightarrow |B| = |\tilde{B}|$

ii) Wähle beliebige Basis von V und tausche aus(1.22a)).

1.24 Satz

V endlich erzeugter \mathbb{R} -VR, $B \subseteq V$.

Dann sind äquivalent:

- i) B ist Basis
- ii) B ist maximale linear unabhängige Menge in V
- iii) B ist minimales Erzeugendensystem

Beweis

- i) \Rightarrow ii) Wegen 1.23 (linear unabhängige Menge zu Basis ergänzen, alle Basen gleich groß)
- ii) \Rightarrow i) (Bzw. \neg i) \Rightarrow \neg ii).) B keine Basis, B linear unabhängig $\Rightarrow \langle B \rangle_{\mathbb{R}} \subsetneq V \Rightarrow \exists v \in V \setminus \langle B \rangle_{\mathbb{R}} \colon B \cup \{v\}$ linear unabhängig
- i)⇒iii) Satz 1.17