

Introduction to R

Lesson 2 5th September 2024

Now we open R studio

Molecular_Approaches_Clinical_Microbiology_2024 / course_data / 🕒

2

Errors Faced and changes made:

1. Changing file permission sudo chmod 777 filename another alternative is sudo chmod a+rwx filename

2. Rstudio not opening and crashing sudo sysctl -w kernel.apparmor_restrict_unprivileged_userns=0

3. Rstudio package installation line install.packages(c("data.table", "janitor", "dplyr", "stringr", "stringi", "tidyverse", "ggplot2", "tidyr", "ggpubr", "plotly", "arsenal", "cowplot", "openxlsx"))

Paste it on your Terminal and press Enter. Now you can open R studio

By the end of today

- View and Understand data
- Selecting Columns
- Filtering Rows
- Mutating/Adding Columns
- Grouping and Summarizing Data
- Plotting in R

Recap

X

data_Africa <- read_excel(path = ../inputs/African_meningococci.xlsx)</pre>

View and Understanding your data

```
# 1. to know the structure of your data
str(data_01_Africa)
# OR
alimpse(data_01_Africa)
#______
# 2. view the column names
names(data_01_Africa)
# OR
colnames(data_01_Africa)
# 3. tidy up the column names.
data_02_Africa <- clean_names(data_01_Africa)</pre>
# confirm that the names of the columns have changed
names(data_01_Africa)
names(data_02_Africa)
```

```
# 4. To view the first top rows - by default will view 6
  data_03_Africa <- head(data_01_Africa)</pre>
  # 5. To view the bottom rows - by default will view the last 6
  data_04_Africa <- tail(data_01_Africa)</pre>
 # 6. Selecting columns
 data_01_subset <- select(data_01_Africa, id, isolate, country)</pre>
 # OR (remove certain columns)
 data_02_subset <- select(data_01_Africa, -id, -isolate)</pre>
 # 7. Filtering rows
 Nigeria <- filter(data_01_Africa, country == "Nigeria")
#_____
# 8. Number of samples in each country
table(data_01_Africa$country)
```

Questions we can answer?

- 1. The number of samples in each year? [hint: table]
- 2. The number of samples in each serogroup?

3. The number of samples collected in each year only in Togo? [hint: filter then table]

Answers

1. The number of samples in each year? [hint: table]

2011	2012	2013	2014	2015	2016
115	272	60	26	158	85

2. The number of samples in each serogroup?

Α	С	NG	W	X	Υ
90	124	8	431	61	2

3. The number of samples collected in each year only in Togo? [hint: filter then table]

2014	2015	2016
16	12	42

Too many variables

Pipe operator: %>%

select(id, isolate, year, country)

 Can I clean col names, select, filter all in one variable and run once.

```
# remove all the data frames loaded except the data_01_Africa
rm(data_02_Africa, data_03_Africa, data_04_Africa, Nigeria, data_01_subset, data_02_subset)

# 9. clean names
data_02_Africa <- data_01_Africa %>%
    clean_names()

# 9. clean names | selecting columns | Filter only "Burkina Faso"
data_02_Africa <- data_01_Africa %>%
    clean_names() %>%
    select(id, isolate, year, country) %>%
    filter(country == "Burkina Faso")
```

The number of samples each year per country

country	year 🗦	count [‡]
Benin	2012	41
Burkina Faso	2012	167
Burkina Faso	2011	41
Burkina Faso	2013	20
Burkina Faso	2015	11
Burkina Faso	2016	5
Burkina Faso	2014	4
Cameroon	2012	4
Central African Republic	2016	23
Central African Republic	2015	7

Grouping and summarizing data

• group_by and summarise function

```
# 10. Number of samples identified in each year per Country
data_03_Africa <- data_01_Africa %>%
   clean_names() %>%
   group_by(country, year) %>%
   summarise(count = n())
```

More questions we can answer

- 1. The clonal complexes identified in each genogroup? [hint: group_by and summarise]
- 2. The number of clonal complexes identified by country? [hint: group_by and summarise]

Include the proportions of each

clonal_complex_mlst	count [‡]	prop [‡]
ST-11 complex	38	92.6829268
ST-181 complex	3	7.3170732
ST-10217 complex	1	0.4032258
ST-11 complex	194	78.2258065
ST-175 complex	2	0.8064516
ST-181 complex	48	19.3548387
	ST-11 complex ST-181 complex ST-10217 complex ST-11 complex ST-175 complex	ST-11 complex 38 ST-181 complex 3 ST-10217 complex 1 ST-11 complex 194 ST-175 complex 2

```
# 11. Number of samples identified in each year per Country
data_04_Africa <- data_01_Africa %>%
   clean_names() %>%
   group_by(country, clonal_complex_mlst) %>%
   summarise(count = n()) %>%
   mutate(prop = count/sum(count) *100)
```

Task

1. Which Country has the highest proportion of Serogroup W?

2. Create one table showing the number of each serogroup by year and country****

The number of each serogroup by year and country

country A//	year ‡	serogroup [‡]	count [‡]	prop [‡]
Benin	2012	W	38	92.682927
Benin	2012	X	3	7.317073
Burkina Faso	2011	Α	1	2.439024
Burkina Faso	2011	W	21	51.219512
Burkina Faso	2011	X	19	46.341463
Burkina Faso	2012	NG	3	1.796407
Burkina Faso	2012	W	140	83.832335
Burkina Faso	2012	X	22	13.173653
Burkina Faso	2012	Υ	2	1.197605
Burkina Faso	2013	W	14	70.000000

```
# 12. The number of each serogroup by year and country
data_05_Africa <- data_01_Africa %>%
   clean_names() %>%
   group_by(country, year, serogroup) %>%
   summarise(count = n()) %>%
   mutate(prop = count/sum(count) *100)
```

Function: ggplot

country	year ‡	serogroup [‡]	count ‡	prop ÷
Benin	2012	W	38	92.682927
Bei NG	2012	х	3	7.317073
Burkina Faso	2011	Α	1	2.439024
Burkina Faso	2011	W	21	51.219512
Burkina Faso	2011	X	19	46.341463
Burkina Faso	2012	NG	3	1.796407
Burkina Faso	2012	w	140	83.832335
Burkina Faso	2012	x	22	13.173653
Burkina Faso	2012	Υ	2	1.197605
Burkina Faso	2013	W	14	70.000000
Burkina Faso	2013	X	6	30.000000
Burkina Faso	2014	NG	1	25.000000
Burkina Faso	2014	W	3	75.000000
Burkina Faso	2015	NG	1	9.090909
Burkina Faso	2015	w	10	90.909091
Burkina Faso	2016	NG	2	40.000000
Burkina Faso	2016	W	3	60.000000
Cameroon	2012	Α	4	100.000000
Central African Republic	2015	W	7	100.000000
Central African Republic	2016	W	23	100.000000
Chad	2011	Α	45	95.744681
Chad	2011	W	1	2.127660
Chad	2011	X	1	2.127660
Chad	2012	Α	16	69.565217
Chad	2012	W	7	30.434783
Chad	2013	Α	19	79.166667
Chad	2013	w	4	16.666667
Chad	2013	X	1	4.166667
Chad	2014	W	1	100.000000
Chad	2015	W	1	100.000000
Guinea	2011	Α	4	100.000000
Guinea	2013	Α	1	11.111111
Guinea	2013	W	8	88.888889
Ivory Coast	2012	w	7	100.000000
Ivory Coast	2015	X	1	100.000000
Mali	2011	W	6	100.000000
Mali	2012	W	30	100.000000
Mali	2015	С	8	53.333333

OR

Plotting the number of Serogroups in each Country by Year

```
# 13. Visualize with points on a graph
# We use the function ggplot, which is under ggplot2 package
library(aaplot2)
plot_Africa <- data_05_Africa %>%
  qqplot(aes(x = year, y = country)) +
  geom_point(aes(color = serogroup, size = count), alpha = 6)
# 13. Visualize with points on a graph
# We use the function agplot, which is under agplot2 package
library(ggplot2)
plot_Africa <- data_05_Africa %>%
 qaplot(aes(x = year, y = country)) +
 geom_point(aes(color = serogroup, size = count), alpha = 6) +
 xlab("Year") +
 ylab("Country") +
 theme_minimal() +
 theme(axis.title = element_text(size = 35),
       axis.text = element_text(size = 35),
       legend.title = element_text(size = 16),
                                              # Increase legend title size
       legend.key.size = unit(1.5, "lines"))
```

Task

• Plot the Serogroup C distribution by Country for each Year