Diagramas de Voronoi

María Oliver Balsalobre mariaob@correo.ugr.es

4 de Julio de 2017

Índice

- 1 Objetivos
- 2 Formalización
- 3 Propiedades
- 4 Triangulación de Delaunay
- 5 Algoritmos
- 6 Implementación

Índice

- 1 Objetivos
- 2 Formalización
- 3 Propiedades
- 4 Triangulación de Delaunay
- 5 Algoritmos
- 6 Implementación

Objetivos

- ► Estudio de los Diagramas de Voronoi en espacios euclídeos.
- Formalización y propiedades teóricas más conocidas.
- Estudio de los algoritmos empleados para su construcción.

Objetivos

- ► Estudio de los Diagramas de Voronoi en espacios euclídeos.
- Formalización y propiedades teóricas más conocidas.
- Estudio de los algoritmos empleados para su construcción.
- Elaboración de una librería donde implementar los Diagramas de Voronoi.
- Realización de una interfaz gráfica.

Índice

- 1 Objetivos
- 2 Formalización
- 3 Propiedades
- 4 Triangulación de Delaunay
- 5 Algoritmos
- 6 Implementación

Apartados

► Diagramas de Voronoi

Apartados

► Diagramas de Voronoi

Aplicaciones

Apartados

- ► Diagramas de Voronoi
 - Geometría
 - → Algoritmos

Aplicaciones

Diagramas de Voronoi

Diagramas de Voronoi

Un **Diagrama de Voronoi**, V(S), es la subdivisión del plano en n regiones convexas.

$$p \in VR(p, S) \Leftrightarrow d(p, s_i) < d(p, s_j), \forall s_i \in S \text{ con } j \neq i.$$

Estructura involucrada en la vida.

- Estructura involucrada en la vida.
- ► En arquitectura, en el diseño o en la urbanística.

- Estructura involucrada en la vida.
- ► En arquitectura, en el diseño o en la urbanística.
- ► En meteorología para determinar áreas de precipitación.

Índice

- 1 Objetivos
- 2 Formalización
- 3 Propiedades
- 4 Triangulación de Delaunay
- 5 Algoritmos
- 6 Implementación

- Infinidad de resultados conocidos.
- Nos centramos en los puntos de vista estructurales y algorítmicos.

- Infinidad de resultados conocidos.
- Nos centramos en los puntos de vista estructurales y algorítmicos.
- Problema basado en la distancia euclídea.

- Infinidad de resultados conocidos.
- Nos centramos en los puntos de vista estructurales y algorítmicos.
- Problema basado en la distancia euclídea.
- Clave para su aplicación efectiva y para el desarrollo de la construcción de algoritmos.

Las regiones no se superponen, y para cada punto hay al menos un sitio más cercano en S.

Las regiones no se superponen, y para cada punto hay al menos un sitio más cercano en S.

Lemma

Un punto $p \in S$ se encuentra en el límite de la envolvente convexa $\Leftrightarrow VR(p,S)$ es ilimitada.

Teorema

El número medio de aristas en el límite de una región de Voronoi es menor que 6.

Teorema

El número medio de aristas en el límite de una región de Voronoi es menor que 6.

▶ Un tiempo O(n) es suficiente para decidir si una partición del plano en regiones convexas es un Diagrama de Voronoi.

Índice

- 1 Objetivos
- 2 Formalización
- 3 Propiedades
- 4 Triangulación de Delaunay
- 5 Algoritmos
- 6 Implementación

Formalización

► Triangulación: conjunto máximo de segmentos de línea no cruzados.

Formalización

- ► Triangulación: conjunto máximo de segmentos de línea no cruzados.
- ► Condición de Delaunay: todas las circunferencias circunscritas de todos los triángulos son vacías.

Formalización

- ► Red de triángulos conexa y convexa que cumple la condición de Delaunay.
- ▶ Delaunay definió dicha triangulación como el dual de V(S).

- Útiles para el desarrollo de los algoritmos para su construcción.
 - ► En dos dimensiones, los triángulos son lo más equiláteros posible.

- Útiles para el desarrollo de los algoritmos para su construcción.
 - ► En dos dimensiones, los triángulos son lo más equiláteros posible.

Lemma

Dos puntos de S están conectados por una arista de Delaunay \Leftrightarrow sus regiones de Voronoi tienen una arista adyacente.

- Útiles para el desarrollo de los algoritmos para su construcción.
 - ► En dos dimensiones, los triángulos son lo más equiláteros posible.

Lemma

Dos puntos de S están conectados por una arista de Delaunay \Leftrightarrow sus regiones de Voronoi tienen una arista adyacente.

Teorema

Tres puntos de S dan como resultado exactamente un triángulo de Delaunay si el círculo que definen no contiene ningún otro punto de S.

Índice

- 1 Objetivos
- 2 Formalización
- 3 Propiedades
- 4 Triangulación de Delaunay
- 5 Algoritmos
- 6 Implementación

Algoritmos más conocidos

Algoritmo de Fuerza Bruta

Algoritmo Divide y Vencerás

Algoritmo de Fortune

Algoritmos más conocidos

Algoritmo de Fuerza Bruta

Algoritmo Divide y Vencerás

Algoritmo de Fortune

Algoritmo de Bowyer-Watson

Algoritmo Incremental

▶ Supuesto construido V(S) para k puntos, construir el diagrama para k + 1.

Método más popular y utilizado.

► Complejidad computacional $O(n^2)$.

▶ Supuesto construido V(S) para k puntos, construir el diagrama para k + 1.

► Método más popular y utilizado.

- ► Encontramos el sitio cuya región contenga al nuevo punto de entrada.
- ► Trazamos la mediatriz entre el sitio de la región y el nuevo punto.

- ► Encontramos el punto en el que la mediatriz cruza el límite de la región de Voronoi adyacente.
- Generamos la secuencia de segmentos perpendiculares de los sitios vecinos hasta llegar al punto de partida.

► Finalmente, borramos la estructura que queda dentro del nuevo polígono.

Índice

- 1 Objetivos
- 2 Formalización
- 3 Propiedades
- 4 Triangulación de Delaunay
- 5 Algoritmos
- 6 Implementación

▶ Recoger el comportamiento y funcionamiento del sistema.

- ► Recoger el comportamiento y funcionamiento del sistema.
- Librería para la gestión de Diagramas de Voronoi.
 - Facilitar información.

- ▶ Recoger el comportamiento y funcionamiento del sistema.
- Librería para la gestión de Diagramas de Voronoi.
 - Facilitar información.
- Interacción con ficheros.
 - Entrada de puntos.

- ► Recoger el comportamiento y funcionamiento del sistema.
- Librería para la gestión de Diagramas de Voronoi.
 - Facilitar información.
- Interacción con ficheros.
 - Entrada de puntos.
- ► Interfaz gráfica que permita calcular los Diagramas de manera incremental.

► Aplicación en robótica.

► Aplicación en robótica.

► Aplicación en robótica.

Estructura de la Biblioteca

Estructura de la Biblioteca

Estructura de la Biblioteca

Prueba aplicaciones

Aplicación por terminal

Interfaz gráfica

Gracias por su atención.

¿PREGUNTAS?

María Oliver Balsalobre