RAMCloud: A Low-Latency Datacenter Storage System

Ankita Kejriwal Stanford University

(Joint work with Diego Ongaro, Ryan Stutsman, Steve Rumble, Mendel Rosenblum and John Ousterhout)

What if you had...

... a Storage System that provides:

Scale

Data size: 10 PB

Accessible by 100,000 nodes (10 Million cores)

Uniform fast random access time to all data

100 B read: 2 µs RPC

100 B write: 5 µs RPC

Durable and available

RAMCloud

- General-purpose storage system
- All data always in DRAM
- Scale: 1000 10000 servers, 1 PB data
- Performance goals:
 - High throughput: 1M ops/sec/server
 - Low-latency access: 5-10µs RPC
- Durable and available
- Potential impact: enable new class of applications
 - Primary motivation: Web sphere
 - Maybe HPC?

DRAM in Storage Systems

DRAM in Storage Systems

DRAM is cheaper!

Why Does Latency Matter?

Traditional Application

Web Application

0.5-10ms latency

- Large-scale apps struggle with high latency
 - Random access data rate has not scaled!
 - Facebook: can only make 100-150 internal requests per page

RAMCloud Goal: Scale and Latency

Traditional Application

<< 1µs latency

Web Application

0.5-10ms latency 5-10µs

Enable new class of applications

RAMCloud Architecture

1000 – 100,000 Application Servers

1000 – 10,000 Storage Servers

Data Model: Key-Value Store

Tables

Richer model in the future:

- Indexes?
- Transactions?
- Graphs?

Durability and Availability

Goals:

- No impact on performance
- Minimum cost, energy

Keep replicas in DRAM of other servers?

- 3x system cost, energy
- Still have to handle power failures

RAMCloud approach:

- 1 copy in DRAM
- Backup copies on disk/flash: durability ~ free!

Issues to resolve:

- Synchronous disk I/O's during writes??
- Data unavailable after crashes??

Buffered Logging

- No disk I/O during write requests
- Log-structured: backup disks and master's memory
- Log cleaning

Crash Recovery

Server crashes:

Must replay log to reconstruct data

Crash recovery:

- Choose recovery master
- Backup reads log info from disk
- Transfers logs to recovery master
- Recovery master replays log
- Meanwhile, data is unavailable

- RAMCloud approach: fast crash recovery
 - 1-2 seconds for 100 GB of data
 - Use system scale to get around bottlenecks

Fast Crash Recovery

- Scatter backup data across backups
- Divide each master's data into partitions
 - Recover each partition on a separate recovery master
 - Each backup divides its log data among recovery masters

RAMCloud Project Status

- Goal: build production-quality implementation
- Nearing 1.0-level release
- Current test cluster:
 - 80 servers, 2 TB data
 - High speed Infiniband networking
 - Performance:
 - 100 B read: 5.3 µs RPC
 - 100 B write: 15 µs RPC
- Interested in finding applications for RAMCloud

Is RAMCloud right for HPC apps?

Properties of RAMCloud relevant to application developers:

- Durability and availability
- Key-value store
- Commodity hardware
- Read / write access latency
- Random access to small objects

Conclusion

- General-purpose storage system
- All data always in DRAM
- Designed for:

Scale: 1000 – 10000 servers, 1 PB data

Performance: 5-10µs RPC

Durable and available

Questions

- Is RAMCloud appropriate for HPC Applications?
 - Durability and availability
 - Key-value store
 - Commodity hardware
 - Read / write access latency
 - Random access to small objects
- One thing that we could change to make RAMCloud interesting to you!

Thank you!

