Correction du devoir surveillé 8.

Problème

Partie 1: Un exemple pour commencer

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta' & -\sin \theta' \\ \sin \theta' & \cos \theta' \end{pmatrix} = \begin{pmatrix} \cos \theta \cos \theta' - \sin \theta \sin \theta' & -\cos \theta \sin \theta' - \sin \theta \cos \theta' \\ \sin \theta \cos \theta' + \cos \theta \sin \theta' & -\sin \theta \sin \theta' + \cos \theta \cos \theta' \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta + \theta') & -\sin(\theta + \theta') \\ \sin(\theta + \theta') & \cos(\theta + \theta') \end{pmatrix}$$

$$\boxed{M(\theta)M(\theta') = M(\theta + \theta')}$$

 $\mathbf{2}^{\circ}$) Soit $\theta \in \mathbb{R}$. Appliquons le résultat de la question précédente en remplaçant θ et θ' par $\frac{\theta}{2}$: on obtient $\left(M\left(\frac{\theta}{2}\right)\right)^2 = M\left(\frac{\theta}{2} + \frac{\theta}{2}\right) = M(\theta).$

Comme $M(\theta)$ représente f_{θ} dans la base canonique et que $\left(M\left(\frac{\theta}{2}\right)\right)^2$ représente $\left(f_{\frac{\theta}{2}}\right)^2$ dans la base canonique, on en tire que $\left(f_{\frac{\theta}{2}}\right)^2=f_{\theta}$. Ainsi, $f_{\frac{\theta}{2}}$ est une racine carrée de f_{θ} .

3°) Lorsqu'on prend $\theta=\pi$, $M(\pi)=-I_2$ donc $f_{\pi}=-\mathrm{id}_{\mathbb{R}^2}$. D'après la question précédente, $f_{\frac{\pi}{2}}$ est alors

une racine carrée de $-\mathrm{id}_{\mathbb{R}^2}$, et sa matrice dans la base canonique est $M(\frac{\pi}{2}) = \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix}$

Posons
$$N = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
. On calcule N^2 :

Posons
$$N = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
. On calcule N^2 :
$$\begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ \hline 0 & 0 & -1 & 0 \\ \hline 0 & 0 & 0 & -1 \end{pmatrix}$$

Ainsi $N^2 = -I_4$. Donc l'endomorphisme g canoniquement associé à N vérifie $g^2 = -\mathrm{id}_{\mathbb{R}^4}$. On pourrait généraliser en considérant, en dimension 2p avec $p \in \mathbb{N}^*$, la matrice de $\mathcal{M}_{2p}(\mathbb{R})$ suivante ("diagonale par blocs", avec p blocs de taille 2x2, des zéros partout ailleurs):

$$\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}$$

$$0$$

$$0$$

$$0$$

$$1$$

$$1$$

$$0$$

L'endomorphisme canoniquement associé est alors une racine carrée de $-\mathrm{id}_{\mathbb{R}^{2p}}$.

4°) Soit $n \in \mathbb{N}^*$. On a $\det(-\mathrm{id}_{\mathbb{R}^n}) = \det(-I_n)$, car $-I_n$ représente $-\mathrm{id}_{\mathbb{R}^n}$ dans la base canonique (même dans n'importe quelle base), donc $\det(-\mathrm{id}_{\mathbb{R}^n}) = (-1)^n \det(I_n) = (-1)^n = \boxed{-1}$ si n est impair. Si n est impair et si g est une racine carrée $\det(-\mathrm{id}_{\mathbb{R}^n})$, on a $g^2 = -\mathrm{id}_{\mathbb{R}^n}$, donc $\det(g \circ g) = \det(-\mathrm{id}_{\mathbb{R}^n})$, i.e. $(\det(g))^2 = -1$. Or $\det(g) \in \mathbb{R}$: c'est impossible. Ainsi, si n est impair, $-\mathrm{id}_{\mathbb{R}^n}$ n'a pas de racine carrée.

Partie 2: Un cas particulier en dimension n puis une application pour n=3

5°) **a**)
$$g^2 = f \text{ donc } G^2 = D$$
.

b)
$$DG = (G^2)G = G^3 = G(G^2) = GD$$
. Donc $DG = GD$

c) On note
$$M = DG$$
 et $N = GD$. On écrit $M = (m_{i,j}), N = (n_{i,j}), D = (d_{i,j}), G = (g_{i,j})$.

Soit
$$(i,j) \in \{1,\ldots,n\}^2$$
. $m_{i,j} = \sum_{k=1}^n d_{i,k} g_{k,j}$.

Or si $k \neq i$ alors $d_{i,k} = 0$. Ainsi, $m_{i,j} = d_{i,i}g_{i,j} = \lambda_i g_{i,j}$.

$$n_{i,j} = \sum_{k=1}^{n} g_{i,k} d_{k,j} = g_{i,j} d_{j,j} = \lambda_j g_{i,j}.$$

Or M = N donc $m_{i,j} = n_{i,j}$ donc $\lambda_i g_{i,j} = \lambda_j g_{i,j}$ i.e. $(\lambda_i - \lambda_j) g_{i,j} = 0$.

On suppose $i \neq j$. Alors $\lambda_i \neq \lambda_j$ donc $g_{i,j} = 0$.

On en déduit que G est diagonale.

d)
$$G$$
 est diagonale donc G est de la forme : $G = \begin{pmatrix} \mu_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \mu_n \end{pmatrix}$. Donc $G^2 = \begin{pmatrix} \mu_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \mu_n^2 \end{pmatrix}$. $G^2 = D$ donc, pour tout $i \in \{1, \dots, n\}, \ \mu_i^2 = \lambda_i$. On en déduit que $\lambda_i \geq 0$. Ainsi, pour tout $i \in \{1, \dots, n\}, \lambda_i \geq 0$.

6°) **a**) Soit $\lambda \in \mathbb{R}$.

$$\det(A - \lambda I_3) = \begin{vmatrix} 7 - \lambda & -3 & 3 \\ 7 & -3 - \lambda & 3 \\ 1 & -1 & 1 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 7 - \lambda & -3 & 0 \\ 7 & -3 - \lambda & -\lambda \\ 1 & -1 & -\lambda \end{vmatrix} \qquad C_3 \leftarrow C_3 + C_2$$

$$= -\lambda \begin{vmatrix} 7 - \lambda & -3 & 0 \\ 7 & -3 - \lambda & 1 \\ 1 & -1 & 1 \end{vmatrix} \qquad \text{par linéarité par rapport à } C_3$$

$$= -\lambda \begin{vmatrix} 4 - \lambda & -3 & 0 \\ 4 - \lambda & -3 - \lambda & 1 \\ 0 & -1 & 1 \end{vmatrix} \qquad \text{par linéarité par rapport à } C_1$$

$$= -\lambda (4 - \lambda) \begin{vmatrix} 1 & -3 & 0 \\ 1 & -3 - \lambda & 1 \\ 0 & -1 & 1 \end{vmatrix} \qquad \text{par linéarité par rapport à } C_1$$

$$= -\lambda (4 - \lambda) \begin{vmatrix} 1 & -3 & 0 \\ 0 & -\lambda & 1 \\ 0 & -1 & 1 \end{vmatrix} \qquad \text{en développant par rapport à la première colonne}$$

$$= -\lambda (4 - \lambda) (-\lambda + 1)$$

Ainsi, $det(A - \lambda I_3) = 0 \iff \lambda = 0$ ou $\lambda = 4$ ou $\lambda = 1$. Or:

$$\det(A - \lambda I_3) \neq 0 \iff A - \lambda I_3 \text{ inversible}$$

$$\iff f - \lambda \mathrm{id}_{\mathbb{R}^3} \text{ bijective}$$

$$\iff f - \lambda \mathrm{id}_{\mathbb{R}^3} \text{ injective, car il s'agit d'un endomorphisme en dimension finie}$$

$$\iff \mathrm{Ker}(f - \lambda \mathrm{id}_{\mathbb{R}^3}) = \{0\}$$

$$\iff \dim\left(\mathrm{Ker}(f - \lambda \mathrm{id}_{\mathbb{R}^3})\right) = 0$$

On en tire que dim $(\operatorname{Ker}(f - \lambda \operatorname{id}_{\mathbb{R}^3})) \ge 1 \iff \det(A - \lambda I_3) = 0 \iff \lambda \in \{0, 1, 4\}$

b) • Soit $(x, y, z) \in \mathbb{R}^3$.

$$(x, y, z) \in \operatorname{Ker} f \iff A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} 7x - 3y + 3z = 0 \\ 7x - 3y + 3z = 0 \\ x - y + z = 0 \end{cases}$$

$$\iff \begin{cases} x - y + z = 0 \\ 7x - 3y + 3z = 0 \end{cases}$$

$$\iff L_2 \leftarrow L_2 - 7L_1 \begin{cases} x - y + z = 0 \\ 4y - 4z = 0 \end{cases}$$

$$\iff \begin{cases} x = 0 \\ y = z \end{cases}$$

Donc $Ker f = \{(0, z, z) / z \in \mathbb{R}\} = Vect((0, 1, 1))$

• Soit $(x, y, z) \in \mathbb{R}^3$.

$$(x, y, z) \in \operatorname{Ker}(f - \operatorname{id}_{\mathbb{R}^3}) \iff (A - I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} 6x - 3y + 3z = 0 \\ 7x - 4y + 3z = 0 \\ x - y = 0 \end{cases}$$

$$\iff \begin{cases} 3y + 3z = 0 \\ 3y + 3z = 0 \\ x = y \end{cases}$$

$$\iff \begin{cases} z = -y \\ x = y \end{cases}$$

Donc $\text{Ker}(f - \text{id}_{\mathbb{R}^3}) = \{(y, y, -y) / y \in \mathbb{R}\} = \text{Vect}((1, 1, -1))$

• Soit $(x, y, z) \in \mathbb{R}^3$.

$$(x, y, z) \in \operatorname{Ker}(f - 4\operatorname{id}_{\mathbb{R}^3}) \iff (A - 4I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{cases} 3x - 3y + 3z = 0 \\ 7x - 7y + 3z = 0 \\ x - y - 3z = 0 \end{cases}$$

$$\iff L_1 \leftarrow \frac{L_1}{3} \begin{cases} x - y + z = 0 \\ 7x - 7y + 3z = 0 \\ x - y - 3z = 0 \end{cases}$$

$$\iff L_2 \leftarrow L_2 - 7L_1 \begin{cases} x - y + z = 0 \\ -4z = 0 \\ -4z = 0 \end{cases}$$

$$\iff \begin{cases} x = y \\ z = 0 \end{cases}$$

Donc $Ker(f - 4id_{\mathbb{R}^3}) = \{(y, y, 0) / y \in \mathbb{R}\} = Vect((1, 1, 0))$

c) Posons $e_1 = (0, 1, 1)$, $e_2 = (1, 1, -1)$ et $e_3 = (1, 1, 0)$. D'après la question précédente, $f(e_1) = 0$, $(f - \mathrm{id}_{\mathbb{R}^3})(e_2) = 0$ d'où $f(e_2) = e_2$, et $(f - 4\mathrm{id}_{\mathbb{R}^3})(e_3) = 0$ d'où $f(e_3) = 4e_3$.

La matrice de la famille (e_1, e_2, e_3) dans la base canonique est $P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$. Calculons $\det(P)$: avec $C_2 \leftarrow C_2 + C_1$, puis un développement par rapport à la troisième ligne :

$$\det(P) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = 1 - 2 = -1$$

Ainsi $\det(P) \neq 0$, donc P est inversible, donc (e_1, e_2, e_3) est une base de \mathbb{R}^3 . Notons-la \mathcal{B} .

Par construction, la matrice de f dans \mathcal{B} est $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$. Comme P est la matrice de changement de base de la base canonique à la base \mathcal{B} , on a bien $P^{-1}AP = D$.

- d) Soit $Y \in \mathcal{M}_3(\mathbb{R})$ telle que $Y^2 = D$. On se retrouve dans la même situation que dans la question 5 puisque sur la diagonale de D: 0 < 1 < 4. Ainsi, Y commute avec D puis Y est une matrice diagonale.
 - D'après ce qui précède, pour résoudre l'équation $Y^2 = D$, on peut supposer Y diagonale, de la forme $Y = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ avec a, b, c réels.

$$Y^{2} = D \iff \begin{pmatrix} a^{2} & 0 & 0 \\ 0 & b^{2} & 0 \\ 0 & 0 & c^{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

$$\iff \begin{cases} a^{2} = 0 \\ b^{2} = 1 \\ c^{2} = 4 \end{cases}$$

$$\iff \begin{cases} a = 0 \\ b = \pm 1 \\ c = \pm 4 \end{cases}$$

Ainsi, l'équation $Y^2 = D$ a quatre solutions :

$$Y_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad Y_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad Y_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \quad Y_4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

e) Soit $g \in \mathcal{L}(\mathbb{R}^3)$. Notons X la matrice de g dans la base canonique et Y la matrice de g dans la base \mathcal{B} .

$$\begin{split} g^2 &= f \Longleftrightarrow \max_{\mathcal{B}}(g^2) = \max_{\mathcal{B}}(f) \\ &\iff Y^2 = D \\ &\iff \exists \, k \in \{1, 2, 3, 4\}, \, \, Y = Y_k \\ &\iff \exists \, k \in \{1, 2, 3, 4\}, \, \, P^{-1}XP = Y_k \, \, \text{d'après la formule de changement de base} \\ &\iff \exists \, k \in \{1, 2, 3, 4\}, \, \, X = PY_kP^{-1} \end{split}$$

Ainsi, les racines carrées de f sont les endomorphismes canoniquement associés aux matrices PY_1P^{-1} , PY_2P^{-1} , PY_3P^{-1} et PY_4P^{-1} . Il s'agit bien de quatre endomorphismes deux à deux distinctes car ces quatre matrices sont deux à deux distinctes : si $PY_kP^{-1} = PY_jP^{-1}$ pour $(k,j) \in \{1,\ldots,4\}$, alors comme P inversible, $Y_kP^{-1} = Y_jP^{-1}$, puis $Y_k = Y_j$, donc k = j.

Partie 3: Un contre-exemple

7°) a) Soit
$$(\lambda_0, \dots, \lambda_{p-1}) \in \mathbb{R}^p$$
. On suppose que $: \sum_{i=0}^{p-1} \lambda_i f^i(x) = 0$.

Montrons que $\lambda_0 = \cdots = \lambda_{p-1} = 0$.

$$\lambda_0 x + \lambda_1 f(x) + \dots + \lambda_{p-1} f^{p-1}(x) = 0.$$

En prenant l'image, par f^{p-1} , on obtient par linéarité :

$$\lambda_0 f^{p-1}(x) + \lambda_1 f^p(x) + \dots + \lambda_p f^{2p-1}(x) = 0.$$

Or
$$f^p(x) = 0$$
 donc $f^k(x) = 0$ pour $k \ge p$. Ainsi, $\lambda_0 f^{p-1}(x) = 0$.

Comme $f^{p-1}(x) \neq 0$, il vient : $\lambda_0 = 0$.

On a alors (si
$$p \ge 2$$
): $\lambda_1 f(x) + \dots + \lambda_{p-1} f^{p-1}(x) = 0$.

En prenant l'image par
$$f^{p-2}: \lambda_1 f^{p-1}(x) = 0$$
 donc $\lambda_1 = 0$.

Ainsi de suite : on obtient $\lambda_1 = \cdots = \lambda_{p-1} = 0$.

Ainsi, la famille
$$(x, f(x), \dots, f^{p-1}(x))$$
 est libre

b) La famille $(x, f(x), \dots, f^{p-1}(x))$ est libre dans E et elle contient p vecteurs.

Comme $\dim(E) = n$ on en déduit que $p \le n$.

On a alors :
$$f^n = f^p \circ f^{n-p} = 0 \circ f^{n-p} = 0 : f^n = 0$$
.

8°) a)
$$f^2(e_1) = f(f(e_1)) = f(e_2) = e_3, f^2(e_2) = f(f(e_2)) = f(e_3) = 0$$

$$f^2(e_3) = f(f(e_3)) = f(0) = 0.$$

Ainsi, comme $f^2(e_1) \neq 0$, on en déduit que $f^2 \neq 0$.

$$f^3(e_1) = f(f^2(e_1)) = f(e_3) = 0, f^3(e_2) = f(f^2(e_2)) = f(0) = 0, f^3(e_3) = 0.$$

L'endomorphisme f^3 coïncide avec l'endomorphisme nul sur une base de E.

On en déduit que $f^3 = 0$.

Ainsi, f est nilpotent d'indice 3.

b)
$$g^2 = f$$
. Comme $f^3 = 0$, il vient : $(g^2)^3 = 0$ i.e. $g^6 = 0$.

Ainsi, g est nilpotente. Or g est un endomorphisme d'un espace de dimension 3 donc, par la question 7b, $g^3 = 0$. $g^4 = g^3 \circ g = 0 \circ g = 0$.

Or
$$f^2 = (g^2)^2 = g^4$$
 donc $f^2 = 0$. Ceci est exclu.

Ainsi, f n'admet pas de racine carrée

Partie 4: Un deuxième contre-exemple

9°) a)
$$\operatorname{Ker}(D) = \{ P \in \mathbb{R}[X] / P' = 0 \}$$
. Donc, $\overline{\operatorname{Ker}(D) = \mathbb{R}_0[X]}$
Ainsi, $\overline{\dim(\operatorname{Ker}(D)) = 1}$.

```
b) Soit P \in \mathbb{R}[X]. D^2(P) = D(D(P)) = D(P') = P''. P \in \text{Ker}(D^2) \iff P'' = 0. Donc \text{Ker}(D^2) = \{aX + b \mid (a, b) \in \mathbb{R}^2\}. On reconnaît \boxed{\text{Ker}(D^2) = \mathbb{R}_1[X]}. Ainsi, \boxed{\dim(\text{Ker}(D^2)) = 2}.
```

10°) Si T était injective alors $T^2 = T \circ T$ le serait comme composée d'applications injectives. Ainsi, $Ker(T^2) = \{0\}.$

Or $T^2 = D$ donc $\operatorname{Ker}(T^2) = \operatorname{Ker}(D) = \mathbb{R}_0[X] \neq \{0\}$: ceci est exclu.

Donc, T n'est pas injective

- 11°) a) Soit $P \in \text{Ker}(T)$. Alors T(P) = 0. Donc T(T(P)) = T(0). Comme T est linéaire, cela donne : $T^2(P) = 0$: $P \in \text{Ker}(T^2)$. Ainsi, $\boxed{\text{Ker}(T) \subset \text{Ker}(T^2)}$.
 - b) $\operatorname{Ker}(T) \subset \operatorname{Ker}(T^2)$. Or, $T^2 = D$ et $\operatorname{Ker}(D) = \mathbb{R}_0[X]$ par 9a. Donc, $\operatorname{Ker}(T) \subset \mathbb{R}_0[X]$. Ainsi, $\dim(\operatorname{Ker}(T)) \leq \dim(\mathbb{R}_0[X]) = 1$. Donc, $\dim(\operatorname{Ker}(T)) = 0$ ou $\dim(\operatorname{Ker}(T)) = 1$. T n'est pas injective donc $\dim(\operatorname{Ker}(T)) \neq 0$. D'où $\dim(\operatorname{Ker}(T)) = 1$. On a : $\operatorname{Ker}(T) \subset \mathbb{R}_0[X]$ et $\dim(\operatorname{Ker}(T)) = \dim(\mathbb{R}_0[X])$ donc $\operatorname{Ker}(T) = \mathbb{R}_0[X]$. Comme $T^2 = D$ et $\mathbb{R}_0[X] = \operatorname{Ker}(D)$, on en déduit que : $\operatorname{Ker}(T) = \operatorname{Ker}(T^2)$.
- 12°) On note, pour $n \in \mathbb{N}^*$, $H_n : \text{Ker}(T^n) = \text{Ker}(T)$.
 - \star $T^1 = T$ donc H_1 est vraie.
 - ★ On suppose que, pour un $n \in \mathbb{N}^*$ fixé, H_n est vraie : $\operatorname{Ker}(T^n) = \operatorname{Ker}(T)$. Montrons que $\operatorname{Ker}(T^{n+1}) = \operatorname{Ker}(T)$.

Il y a une inclusion claire : $\operatorname{Ker}(T) \subset \operatorname{Ker}(T^{n+1})$: en effet, si $P \in \operatorname{Ker}(T)$ alors T(P) = 0.

Donc, $T^n(T(P)) = T^n(0)$ i.e. $T^{n+1}(P) = 0 : P \in \text{Ker}(T^{n+1})$.

Réciproquement, soit $P \in \text{Ker}(T^{n+1})$. Montrons que $P \in \text{Ker}(T)$.

 $T^{n+1}(P) = 0$ donc $T^n(T(P)) = 0$. Ainsi, $T(P) \in \text{Ker}(T^n)$.

Par H_n , on en déduit que $T(P) \in \text{Ker}(T) : T(T(P)) = 0$ donc $T^2(P) = 0$. Ainsi, $P \in \text{Ker}(T^2)$.

Par la question précédente, on en déduit que $P \in \text{Ker}(T)$.

Ainsi, $Ker(T^{n+1}) \subset Ker(T)$.

Finalement, $Ker(T^{n+1}) = Ker(T) : H_{n+1}$ est vraie.

- \star On a montré par récurrence que : $\forall n \in \mathbb{N}^*, \operatorname{Ker}(T^n) = \operatorname{Ker}(T)$
- 13°) On sait que $T^2 = D$, $\operatorname{Ker}(D) = \mathbb{R}_0[X]$, $\operatorname{Ker}(D^2) = \mathbb{R}_1[X]$. Prenons n = 4 dans $12 : \operatorname{Ker}(T^4) = \operatorname{Ker}(T)$. Donc, $\operatorname{Ker}(T^4) = \operatorname{Ker}(T^2)$ puisque $\operatorname{Ker}(T) = \operatorname{Ker}(T^2)$. Or $T^2 = D$ et $T^4 = D^2$ donc $\operatorname{Ker}(D^2) = \operatorname{Ker}(D)$. Donc $\mathbb{R}_1[X] = \mathbb{R}_0[X]$: ceci est exclu. On aboutit à une contradiction. Ainsi, [l'endomorphisme D n'a pas de racine carrée].

Partie 5 : Racines carrées de l'endomorphisme nul

- 14°) Soit $x \in \text{Im}(g)$: $\exists y \in E, x = g(y)$. On a donc $g(x) = g(g(y)) = g^2(y) = 0$ puisque $g^2 = 0$. Ainsi $x \in \text{Ker}(g)$. On a bien: $\boxed{\text{Im}(g) \subset \text{Ker}(g)}$.
- 15°) Comme E est de dimension finie n et que F et $\operatorname{Ker} g$ sont supplémentaires, on a : $n = \dim(F) + \dim(\operatorname{Ker}(g))$ donc $\dim(F) = n \dim(\operatorname{Ker}(g))$.

 Par ailleurs, d'après le théorème du rang, $n = r + \dim(\operatorname{Ker}(g))$ donc $n \dim(\operatorname{Ker}(g)) = r$. Ainsi $\dim(F) = r$.

Soient $(\lambda_1, \dots, \lambda_r) \in \mathbb{R}^r$ tels que $\lambda_1.g(x_1) + \dots + \lambda_r.g(x_r) = 0$.

Par linéarité de g, on a : $g(\lambda_1.x_1 + \cdots + \lambda_r.x_r) = 0$.

Ainsi $\lambda_1.x_1 + \cdots + \lambda_r.x_r \in \text{Ker}(g)$.

C'est aussi un vecteur de F puisque (x_1, \ldots, x_r) est une famille de vecteurs de F.

Comme $F \cap \text{Ker}(g) = \{0\}$, on en déduit que $\lambda_1.x_1 + \cdots + \lambda_r.x_r = 0$.

Comme (x_1, \ldots, x_r) est une famille libre, on en tire que tous les λ_i sont nuls.

Ainsi la famille $(g(x_1), \ldots, g(x_r))$ est libre.

Comme il s'agit de vecteurs de Im(g) et que dim (Im(g)) = r, cette famille est donc une base de Im(g)

16°) a) D'après le théorème du rang, $n = \dim(\operatorname{Im}(g)) + \dim(\operatorname{Ker}(g))$ et comme n = 2r et que dim $\operatorname{Im} g = r$, on en tire que dim $(\operatorname{Ker}(g)) = r = \dim(\operatorname{Im}(g))$.

Comme par ailleurs $\operatorname{Im}(g) \subset \operatorname{Ker}(g)$, on en déduit que $\overline{\operatorname{Im}(g) = \operatorname{Ker}(g)}$.

b) La famille $(g(x_1), \ldots, g(x_r))$ est donc une base de $\operatorname{Im} g = \operatorname{Ker} g$.

Comme F est un supplémentaire de $\operatorname{Ker}(g)$ dans E, lorsqu'on adjoint la base (x_1, \ldots, x_r) de F, on obtient bien une base de E. Notons-la \mathcal{B} .

Déterminons l'image par g de chaque vecteur de cette base.

Pour les r premiers vecteurs de \mathcal{B} : ils sont dans $\operatorname{Im}(g)$ donc dans $\operatorname{Ker}(g)$, donc leur image est nulle. Pour les r suivants: ce sont x_1, \ldots, x_r , leurs images $g(x_1), \ldots, g(x_r)$ sont les r premiers vecteurs de la base \mathcal{B} .

La matrice de g dans la base $\mathcal B$ est donc :

17°) La famille $(g(x_1), \ldots, g(x_r))$ est une base de $\operatorname{Im}(g)$, et $\operatorname{Im}(g) \subset \operatorname{Ker}(g)$, donc c'est une famille libre de $\operatorname{Ker}(g)$. D'après le théorème de la base incomplète, on peut la compléter en une base $(g(x_1), \ldots, g(x_r), e_{r+1}, \ldots, e_{n-r})$ de $\operatorname{Ker}(g)$ (on sait que $\dim(\operatorname{Ker}(g)) = n - r$ d'après le théorème du rang, la base doit compter n - r vecteurs).

Comme (x_1, \ldots, x_r) est une base de F et que F et Ker(g) sont supplémentaires dans E, la famille $(g(x_1), \ldots, g(x_r), e_{r+1}, \ldots, e_{n-r}, x_1, \ldots, x_r)$ est une base de E. Notons-la \mathcal{B} .

Puisque les n-r premiers vecteurs de \mathcal{B} sont dans $\mathrm{Ker}(g)$, leur image est nulle.

Pour les r suivants : ce sont x_1, \ldots, x_r , leurs images $g(x_1), \ldots, g(x_r)$ sont les r premiers vecteurs de la base \mathcal{B} . Ainsi :

Exercice

1°) a) Un jury est une 10-combinaison de l'ensemble des 25 personnes parmi lesquelles on fait le tirage au sort. Il y a donc $\binom{25}{10}$ jurys possibles.

- b) Donnons une méthode permettant d'obtenir une et une seule fois chaque jury comportant 5 hommes et 5 femmes:
 - Choix d'une 5-combinaison de l'ensemble des 12 hommes, il y a $\binom{12}{5}$ possibilités. Choix d'une 5-combinaison de l'ensemble des 13 femmes, il y a $\binom{13}{5}$ possibilités.

Le nombre total de jurys comportant 5 hommes et 5 femmes est donc $\begin{pmatrix} 12 \\ 5 \end{pmatrix} \begin{pmatrix} 13 \\ 5 \end{pmatrix}$

c) Notons A l'ensemble des jurys dont tous les membres sont des hommes et B l'ensemble des jurys dont tous les membres sont des femmes. On cherche $\operatorname{card}(A \cup B)$.

Comme A et B sont disjoints, on a $card(A \cup B) = card(A) + card(B)$.

A est l'ensemble des 10-combinaisons de l'ensemble des 12 hommes, donc $\operatorname{card}(A) = \binom{12}{10}$.

De même, $\operatorname{card}(B) = \begin{pmatrix} 13 \\ 10 \end{pmatrix}$.

Donc $\operatorname{card}(A \cup B) = \binom{10}{10} + \binom{13}{10}$

d) Notons E l'ensemble de tous les jurys possibles, et C l'ensemble des jurys où Monsieur X et Madame Y ne sont pas présents tous les deux.

C est l'ensemble des jurys comportant à la fois Monsieur X et Madame Y.

Choisir un tel jury revient à choisir les 8 autres membres du jury parmi les 23 autres personnes, donc $\operatorname{card}(\overline{C}) = \binom{23}{8}$.

On en déduit que $\operatorname{card}(C) = \operatorname{card}(E) - \operatorname{card}(\overline{C}) = \begin{pmatrix} 25 \\ 10 \end{pmatrix} - \begin{pmatrix} 23 \\ 8 \end{pmatrix}$

2°) a) Un classement est un 100-arrangement de l'ensemble des 500 candidats.

Il y en a donc $\frac{500!}{(500-100)!} = \boxed{\frac{500!}{400!}}$

b) Notons F l'ensemble de tous les classements possibles et D l'ensemble des classements avec au moins un garçon. \overline{D} est l'ensemble des classements avec uniquement des filles, autrement dit des 100-arrangements de l'ensemble des 300 filles. Donc $\operatorname{card}(\overline{D}) = \frac{300!}{(300 - 100)!}$. D'où $\operatorname{card}(D) = \operatorname{card}(E) - \operatorname{card}(\overline{D}) = \left[\frac{500!}{400!} - \frac{300!}{200!}\right]$.

c) Notons G l'ensemble des classements recherchés. On va distinguer les classements recherchés selon le nombre k de filles dans le classement, qui peut varier de 1 à 99 (pour qu'il y ait au moins une fille et au moins un garçon).

Plus précisément, pour tout $k \in \{1, \dots, 99\}$, on note G_k l'ensemble des classements constitués de filles pour les k premières places et de garçons pour les 100 - k places suivantes.

On a alors $G = \bigcup_{k=1}^{n} G_k$. Les G_k sont deux à deux disjoints donc :

$$\operatorname{card}(G) = \sum_{k=1}^{99} \operatorname{card}(G_k).$$

Fixons $k \in \{1, \dots, 99\}$ et donnons une méthode permettant d'obtenir une et une seule fois chaque élément de G_k :

- On choisit les k filles pour les premières places, autrement dit on choisit un k-arrangement de l'ensemble des 300 filles, il y a donc $\frac{300!}{(300-k)!}$ possibilités.
- On choisit les 100 k garçons pour les places suivantes, autrement dit on choisit un (100 k)arrangement de l'ensemble des 200 garçons, $\frac{200}{(200-(100-k))!}$ possibilités.

Ainsi card $(G_k) = \frac{300!}{(300-k)!} \frac{200!}{(100+k)!}$.

On en déduit que $\left| \frac{1}{\operatorname{card}(G)} = \sum_{k=1}^{99} \frac{300!}{(300-k)!} \frac{200!}{(100+k)!} \right|$