CPT_S 260 Intro to Computer Architecture Lecture 18

Exam 1 Review February 23, 2021

Ganapati Bhat
School of Electrical Engineering and Computer Science
Washington State University

Abstraction Layers in Modern Systems

Instruction Count and CPI

Clock Cycles = Instruction Count \times Cycles per Instruction CPU Time = Instruction Count \times CPI \times Clock Cycle Time = $\frac{Instruction Count \times CPI}{Clock Rate}$

Instruction Count for a program

Determined by program, ISA and compiler

Average cycles per instruction

- Determined by CPU hardware
- If different instructions have different CPI
 - » Average CPI affected by instruction mix

CPI in More Detail

If different instruction classes take different numbers of cycles

Clock Cycles =
$$\sum_{i=1}^{n} (CPI_i \times Instruction Count_i)$$

Weighted average CPI

$$CPI = \frac{Clock \ Cycles}{Instruction \ Count} = \sum_{i=1}^{n} \left(CPI_i \times \frac{Instruction \ Count_i}{Instruction \ Count} \right)$$

Relative frequency

Performance Summary

$$CPU \ Time = \frac{Instructions}{Program} \times \frac{Clock \ cycles}{Instruction} \times \frac{Seconds}{Clock \ cycle}$$

Performance depends on

- Algorithm: affects IC, possibly CPI
- Programming language: affects IC, CPI
- Compiler: affects IC, CPI
- Instruction set architecture: affects IC, CPI, T_c

Computer Performance

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

	Inst Count	CPI	Clock Rate
Program	X		
Compiler	X	(X)	
Inst. Set.	X	X	
Organization		X	X
Technology			X

Amdahl's Law

- How do we increase performance?
 - Utilize parallelism
 - Principle of locality
 - Focus on the common case
- Amdahl's law provides a method to quantify speedup

$$Speedup_{overall} = \frac{t_{old}}{t_{new}} = \frac{1}{(1 - fraction_{enhanced}) + \frac{fraction_{enhanced}}{speedup_{enhanced}}}$$

Best achievable speedup is

$$Speedup_{maximum} = \frac{1}{1 - fraction_{enhanced}}$$

$$\longrightarrow$$

Numbering Systems

- A number system of a specific base (radix) uses numbers from 0 to that base-1
- Numbers can be computed to decimal through the sum of the weighted digits-

$$Number = \sum_{i=0}^{n} base^{i} * digit$$

	Binary	Octal	Decimal	Hexadecimal
Base	2	8	10	16
Symbols	{0,1}	{0,1,2,3,4,5,6,7}	{0,1,2,3,4,5,6,7,8,9}	{0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F}

Binary → **Decimal**

Compose a series of base-2 terms from a binary number by identifying the position of every '1' and expressing 1's as 2^{position}. Read binary numbers from right to left and index the rightmost position as zero.

Example: Convert 11001001₂ to decimal

Binary ↔ **Hexadecimal**

Partition binary digits right-to-left in groups of four. Convert each group to one hexadecimal symbol.

Example: Convert 10001010102 to hexadecimal

Hexadecimal number	Binary-coded hexadecimal		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		
Α	1010		
В	1011		
С	1100		
D	1101		
E	1110		
F	1111		

2's-Complement Signed Integers

Given an n-bit number:

$$x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- Range: -2ⁿ⁻¹ to +2ⁿ⁻¹ − 1
- Example
- Using 32 bits, 2's complement range is:
 - -2,147,483,648 to +2,147,483,647

Signed Negation in 2's Complement

- Complement and add 1
 - Complement means $1 \rightarrow 0, 0 \rightarrow 1$

- Example: negate +2
 - **+2** = 0000 0000 ... 0010₂
 - $-2 = 1111 \ 1111 \ \dots \ 1101_2 + 1$ = 1111 \ 1111 \ \dots \ 1110_2

Overflow

- The addition of two numbers with the same sign or subtraction of two numbers with different sign may cause overflow
- The condition wherein a result cannot be represented in allocated memory
- An overflow condition can be detected by observing the carry into the sign bit

carries: 0 1 carries: 1 0
+70 0 1000110
$$-70$$
 1 0111010
+80 0 1010000 -80 1 0110000
+150 1 0010110 -150 0 1101010

Conversion for Numbers with Fractions

- In real mathematical operation, we have numbers with fractions
 - Float and Double numbers in programing languages
- We should take three steps:
 - Convert the Integer Part (The same as integer numbers)
 - Convert the Fraction Part
 - Join the two results with a radix point

Fractional Part in Binary Format

 Repeatedly multiply the fraction by 2 and save the resulting integer digits. The digits for the binary number are the 0,1 in order of their computation.

Normalized Numbers

- A number in scientific notation that has no leading 0s is called a normalized number
- Example:
 - 1.0_{ten} x10 ⁻⁹ is in **normalized** scientific notation,
 - -0.1_{ten} x10 ⁻⁸ and 10.0_{ten} x10⁻¹⁰ are not
- Just as we can show decimal numbers in scientific notation, we can also show binary numbers in scientific notation

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Arithmetic Operations

- Add and subtract, three operands
 - Two sources and one destination
 - add a, b, c # a gets b + c
- All arithmetic operations have this form
- Design Principle 1: Simplicity favors regularity
 - Regularity makes implementation simpler
 - Simplicity enables higher performance at lower cost

Arithmetic Example

C code:

$$f = (g + h) - (i + j);$$

Compiled MIPS code:

```
add t0, g, h # temp t0 = g + h add t1, i, j # temp t1 = i + j sub f, t0, t1 # f = t0 - t1
```

We see what are these variables!

Register Operands

- Arithmetic instructions use register operands
- MIPS has a 32 × 32-bit register file
 - Use for frequently accessed data
 - Numbered 0 to 31
 - 32-bit data called a "word"
- Assembler names
 - -\$t0, \$t1, ..., \$t9 for temporary values
 - -\$s0, \$s1, ..., \$s7 for saved variables
- Design Principle 2: Smaller is faster
 - -c.f. main memory: millions of locations

Register Operand Example

C code:

```
f = (g + h) - (i + j);
For instance, f, ..., j stored in $50, ..., $54
```

Compiled MIPS code:

```
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1
```

Memory Operand Example #1

C code:

$$g = h + A[8];$$

- Assume that g is in \$s1, h in \$s2, base address of A in \$s3
- Compiled MIPS code:
 - Index 8 requires offset of 32
 - » 4 bytes per word

offset

base register

Memory Operand Example #2

C code:

$$A[12] = h + A[8];$$

– h in \$s2, base address of A in \$s3

Compiled MIPS code:

Index 8 requires offset of 32

```
lw $t0, 32($s3)  # load word
add $t0, $s2, $t0
sw $t0, 48($s3)  # store word
```

Conditional Operations

- Branch to a labeled instruction if a condition is true
 - Otherwise, continue sequentially
- beq rs, rt, L1
 - if (rs == rt) branch to instruction labeled L1;
- bne rs, rt, L1
 - if (rs != rt) branch to instruction labeled L1;
- j L1
 - unconditional jump to instruction labeled L1

Compiling If Statements

C code:

```
if (i==j) f = g+h;
else f = g-h;

-f, g, ... in $s0, $s1, ...
```

Compiled MIPS code:

```
bne $s3, $s4, Else add $s0, $s1, $s2 j Exit Else: sub $s0, $s1, $s2 Exit: ...

Assembler calculates
```


addresses