TÍN HIỆU VÀ HỆ THỐNG CHƯƠNG 6: Tín hiệu rời rạc

TÍN HIỆU

- Tín hiệu rời rạc
- Thời gian

$$x(n) = \cos\left(\frac{n}{4}\right)$$

$$x(n) = \frac{1}{2} \exp\left(\frac{n}{4}\right)$$

PHÂN LOẠI TÍN HIỆU

- Tín hiệu năng lượng và tín hiệu công suất
- Năng lượng

$$E = \lim_{N \to \infty} \sum_{n=-N}^{N} |x(n)|^2$$

- Công suất

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^{2}$$

- Tín hiệu năng lượng: $E < \infty$
- Tín hiệu công suất: $P < \infty$

PHÂN LOẠI TÍN HIỆU

- Tín hiệu tuần hoàn và không tuần hoàn
 - ightharpoonup Tín hiệu tuần hoàn x(n) = x(n+N)
 - Giá trị nhỏ nhất của N thỏa mãn phương trình trên được gọi là chu kì cơ sở
 - $\triangleright \cos(\omega n)$ có tính chu kì không?
 - $ightharpoonup \cos(\omega n)$ tuần hoàn nếu $\frac{2k\pi}{\omega}$ là số nguyên với mọi số nguyên k
 - ❖ Ví dụ: cos(3n)

CÁC TÍN HIỆU TIÊU BIỂU

Hàm xung đơn vị

$$\delta(n) = \begin{cases} 1, n = 0, \\ 0, n \neq 0. \end{cases}$$

Hàm bước nhảy đơn vị

$$u(n) = \begin{cases} 0, n < 0, \\ 1, n \ge 0. \end{cases}$$

 Mối quan hệ giữa hàm đơn vị và hàm bước nhảy đơn vị

$$\delta(n) = u(n) - u(n-1)$$

$$u(n) = \sum_{k=-\infty}^{n} \delta(k)$$

CÁC TÍN HIỆU TIÊU BIỂU

Hàm mũ

$$x(n) = \exp(\alpha n)$$

• Hàm mũ phức

$$x(n) = \exp(j\omega_0 n) = \cos(\omega_0 n) + j\sin(\omega_0 n)$$

NỘI DUNG CHÍNH

- Các tín hiệu rời rạc
- Các hệ thống rời rạc
- Biến đổi Z

Hệ thống: Đáp ứng xung

- Đáp ứng xung của hệ thống LTI
 - Đáp ứng của hệ thống khi đầu vào là $\delta(n)$

$$x(n) = \delta(n)$$
 Hệ thống $y(n) = h(n)$

- Đáp ứng của hệ thống với tín hiệu là xung bất kì
 - Bất kì một tín hiệu có thể phân tích thành tổng của các xung bị dịch theo thời gian

$$x(n) = \sum_{k=-\infty}^{+\infty} x(k) \delta(n-k)$$

Bất biến theo thời gian

$$\delta(n-k)$$
 Hệ thống $h(n-k)$

Tuyến tính

HỆ THỐNG TỔNG CHẬP

- Tổng chập
 - Tổng chập của hai tín hiệu x(n) và h(n) là

$$x(n) \otimes h(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n-k)$$

- Đáp ứng của hệ thống LTI
 - Đầu ra của hệ thống LTI là tổng chập của tín hiệu vào và đáp ứng xung của hệ thống

HỆ THỐNG TỔNG CHẬP

Ví dụ

$$-1$$
. $x(n) \otimes \delta(n-m)$

$$-2. \quad x(n) = \alpha^n u(n), \qquad h(n) = \beta^n u(n)$$
$$x(n) \otimes h(n) =$$

HỆ THỐNG TỔNG CHẬP

Ví dụ

– Cho x(n) = [1;3;-1;-2] và h(n) = [1;2;0;-1;1] là hai dãy, hãy tìm

$$x(n) \otimes h(n)$$

HỆ THỐNG: GHÉP NỐI HỆ THỐNG

HỆ THỐNG: PHƯƠNG TRÌNH SAI PHÂN

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

NỘI DUNG CHÍNH

- Các tín hiệu rời rạc
- Các hệ thống rời rạc
- Biến đổi Z

BIẾN ĐỔI Z

Biến đổi Z hai phía

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n)z^{-n}$$

Biến đổi Z một phía

$$X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n}$$

- Biến đổi Z
 - Dễ dàng cho việc phân tích
 - Không có ý nghĩa vật lý (mô tả trong miền tần số của tín hiệu rời rạc có thể đạt được thông qua phân tích chuỗi Fourier rời rạc)
 - Của hệ thống liên tục: Laplace

BIẾN ĐỔI Z

Ví dụ: tìm biến đổi Z

$$-1$$
. $x(n) = \delta(n)$

$$-2. x(n) = \left(\frac{1}{2}\right)^n u(n)$$

BIẾN ĐỔI Z

Ví dụ

$$-3.$$
 $x(n) = -\left(\frac{1}{2}\right)^n u(-n-1)$

• Miền hội tụ (ROC)

BIẾN ĐỔI Z: Sự hội tụ

Sự hội tụ của tín hiệu nhân quả

$$x(n) = \alpha^n u(n)$$

• Sự hội tụ của tín hiệu phản nhân quả

$$x(n) = \beta^n u(-n-1)$$

BIẾN ĐỔI Z: TÍNH CHẤT DỊCH THỜI GIAN

- Dịch thời gian
 - Cho x(n) là một dãy nhân quả với biến đỏi Z X(z)
 - Suy ra

$$Z[x(n+n_0)] = z^{n_0}X(z) - z^{n_0}\sum_{m=0}^{n_0-1}x(m)z^{-m}$$

$$Z[x(n-n_0)] = z^{-n_0}X(z) + z^{-n_0}\sum_{m=-n_0}^{-1}x(m)z^{-m}$$

BIẾN ĐỔI Z: HỆ THỐNG LTI

Phương trình sai phân :

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

• Mô tả trên miền Z:

$$\left[\sum_{k=0}^{N} a_k z^{-k}\right] Y(z) = \left[\sum_{k=0}^{M} b_k z^{-k}\right] X(z)$$

Hàm truyền

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\left[\sum_{k=0}^{M} b_k z^{-k}\right]}{\left[\sum_{k=0}^{N} a_k z^{-k}\right]}$$

BIẾN ĐỔI Z: HỆ THỐNG LTI

Ví dụ

 Hãy tìm hàm truyền của hệ thống được mô tả bởi phương trình sai phân :

$$y(n) - 2y(n-1) + 2y(n-2) = x(n) + \frac{1}{2}x(n-1)$$

BIẾN ĐỔI Z: TÍNH ỔN ĐỊNH

$$H(z) = \frac{z}{z - a} \qquad h(n) = a^n u(n)$$

- Hệ thống LTI ổn định khi tất cả các cực nằm trong vòng đơn vị (|a|<1)
- Hệ thống LTI không ổn định khi có ít nhất một điểm cực nằm ngoài vòng đơn vị (|a|>1)

