

# Audit Report Bitcointry Token

January 2024

Network BSC

Address 0x2024b9be6b03f2a57d3533ae33c7e1d0b0b4be47

Audited by © cyberscope



# **Analysis**

CriticalMediumMinor / InformativePass

| Severity | Code | Description             | Status |
|----------|------|-------------------------|--------|
| •        | ST   | Stops Transactions      | Passed |
| •        | OTUT | Transfers User's Tokens | Passed |
| •        | ELFM | Exceeds Fees Limit      | Passed |
| •        | MT   | Mints Tokens            | Passed |
| •        | ВТ   | Burns Tokens            | Passed |
| •        | ВС   | Blacklists Addresses    | Passed |



# **Diagnostics**

CriticalMediumMinor / Informative

| Severity | Code | Description                                | Status     |
|----------|------|--------------------------------------------|------------|
| •        | CO   | Code Optimization                          | Unresolved |
| •        | RFS  | Redundant Fee Structure                    | Unresolved |
| •        | L04  | Conformance to Solidity Naming Conventions | Unresolved |
| •        | L13  | Divide before Multiply Operation           | Unresolved |
| •        | L22  | Potential Locked Ether                     | Unresolved |



## **Table of Contents**

| Analysis                                         | 1  |
|--------------------------------------------------|----|
| Diagnostics                                      | 2  |
| Table of Contents                                | 3  |
| Review                                           | 4  |
| Audit Updates                                    | 4  |
| Source Files                                     | 4  |
| Findings Breakdown                               | 6  |
| CO - Code Optimization                           | 7  |
| Description                                      | 7  |
| Recommendation                                   | 8  |
| RFS - Redundant Fee Structure                    | 9  |
| Description                                      | 9  |
| Recommendation                                   | 10 |
| L04 - Conformance to Solidity Naming Conventions | 11 |
| Description                                      | 11 |
| Recommendation                                   | 12 |
| L13 - Divide before Multiply Operation           | 13 |
| Description                                      | 13 |
| Recommendation                                   | 13 |
| L22 - Potential Locked Ether                     | 14 |
| Description                                      | 14 |
| Recommendation                                   | 14 |
| Functions Analysis                               | 15 |
| Inheritance Graph                                | 16 |
| Flow Graph                                       | 17 |
| Summary                                          | 18 |
| Disclaimer                                       | 19 |
| About Cyberscope                                 | 20 |



## **Review**

| Contract Name     | Bitcointry_Token                                                           |
|-------------------|----------------------------------------------------------------------------|
| Compiler Version  | v0.8.19+commit.7dd6d404                                                    |
| Optimization      | 200 runs                                                                   |
| Explorer          | https://bscscan.com/address/0x2024b9be6b03f2a57d3533ae33<br>c7e1d0b0b4be47 |
| Address           | 0x2024b9be6b03f2a57d3533ae33c7e1d0b0b4be47                                 |
| Network           | BSC                                                                        |
| Symbol            | BTTY                                                                       |
| Decimals          | 18                                                                         |
| Total Supply      | 497,420,000                                                                |
| Badge Eligibility | Yes                                                                        |

## **Audit Updates**

| Initial Audit | 13 Jan 2024 |
|---------------|-------------|
|---------------|-------------|

## **Source Files**

| Filename         | SHA256                                                               |
|------------------|----------------------------------------------------------------------|
| TokenRecover.sol | 8e9398635a7efa71f68b9bc847e9476fba96c310cba12235fc3060af11e2<br>8571 |
| Token.sol        | da285962076df08746401472d9a9f22305fa99e1a91eb88f22ef627d896f<br>2597 |



| Ownable.sol            | 33422e7771fefe5fbfe8934837515097119d82a50eda0e49b38e4d6a64a<br>1c25d |
|------------------------|----------------------------------------------------------------------|
| Initializable.sol      | b05c26d897c4178cbdb35ad113527e463e1bdeae5764869318a54f93c8<br>b98a94 |
| IUniswapV2Router02.sol | a2900701961cb0b6152fc073856b972564f7c798797a4a044e83d2ab8f0<br>e8d38 |
| IUniswapV2Router01.sol | 0439ffe0fd4a5e1f4e22d71ddbda76d63d61679947d158cba4ee0a1da60<br>cf663 |
| IUniswapV2Pair.sol     | 29c75e69ce173ff8b498584700fef76bc81498c1d98120e2877a1439f0c3<br>1b5a |
| IUniswapV2Factory.sol  | 51d056199e3f5e41cb1a9f11ce581aa3e190cc982db5771ffeef8d8d1f96<br>2a0d |
| IERC20Metadata.sol     | b10e2f8bcc3ed53a5d9a82a29b1ad3209225331bb4de4a0459862a762<br>cf83a1a |
| IERC20.sol             | 7ebde70853ccafcf1876900dad458f46eb9444d591d39bfc58e952e2582<br>f5587 |
| ERC20Burnable.sol      | 480b22ce348050fdb85a693e38ed6b4767a94e4776fc6806d6808a0ec1<br>71177e |
| ERC20.sol              | f70c6ae5f2dda91a37e17cfcbec390cc59515ed0d34e316f036f5431b5c0<br>a3f2 |
| Context.sol            | 1458c260d010a08e4c20a4a517882259a23a4baa0b5bd9add9fb6d6a1<br>549814a |



# **Findings Breakdown**



| Severity                   | Unresolved | Acknowledged | Resolved | Other |
|----------------------------|------------|--------------|----------|-------|
| <ul><li>Critical</li></ul> | 0          | 0            | 0        | 0     |
| <ul><li>Medium</li></ul>   | 0          | 0            | 0        | 0     |
| Minor / Informative        | 5          | 0            | 0        | 0     |



#### **CO - Code Optimization**

| Criticality | Minor / Informative        |
|-------------|----------------------------|
| Location    | Token.sol#L106,161,167,174 |
| Status      | Unresolved                 |

#### Description

There are code segments that could be optimized. A segment may be optimized so that it becomes a smaller size, consumes less memory, executes more rapidly, or performs fewer operations.

Specifically, \_beforeTokenTransfer and \_afterTokenTransfer override functions merely call their respective super implementations without adding any additional functionality. Overriding these functions in the current state does not contribute any value, as they do not extend or modify the base behavior.

Additionally, the function \_\_setAMMPair contains an empty conditional statement. This empty block suggests an incomplete implementation or an unnecessary code segment, resulting in potential confusion regarding its purpose.

Lastly, in the \_\_transfer function, the boolean \_swapping is initialized but never set to true within the contract. Its presence in the conditional check if (!\_swapping && ...) is therefore redundant, as it does not actively contribute to the function's logic.



```
function beforeTokenTransfer(address from, address to, uint256
amount)
   internal
    override
    super. beforeTokenTransfer(from, to, amount);
function afterTokenTransfer(address from, address to, uint256
amount)
   internal
   override
    super. afterTokenTransfer(from, to, amount);
function setAMMPair(address pair, bool isPair) private {
   AMMPairs[pair] = isPair;
   if (isPair) {
   emit AMMPairsUpdated(pair, isPair);
bool private swapping;
function transfer(
    (! swapping && ...)
```

#### Recommendation

The team is advised to take these segments into consideration and rewrite them or remove them so the runtime will be more performant. That way it will improve the efficiency and performance of the source code and reduce the cost of executing it.



#### **RFS - Redundant Fee Structure**

| Criticality | Minor / Informative |
|-------------|---------------------|
| Location    | Token.sol#L26,30,84 |
| Status      | Unresolved          |

#### Description

Both totalFees and stakingFees arrays are declared and utilized in a manner that results in them always holding identical values. This redundancy is evident in the stakingFeesSetup function, where totalFees are recalculated based on the current values of stakingFees. Initially, as both arrays are initialized to zeros, the first call to stakingFeesSetup sets totalFees to the same values as stakingFees. Subsequent calls maintain this equality, as totalFees is reset to mirror the latest stakingFees. The current implementation does not reflect an accumulation or a diverse set of fees; instead, it merely duplicates the values from stakingFees. This redundancy raises questions about the necessity of maintaining two separate arrays for fees or potential issues with the business logic, as they do not provide distinct data, contrary to what might be expected from their naming and structure.

```
address public stakingAddress;

uint16[3] public totalFees;

function stakingFeesSetup(uint16 _buyFee, uint16 _sellFee,
uint16 _transferFee) public onlyOwner {
    totalFees[0] = totalFees[0] - stakingFees[0] + _buyFee;
    totalFees[1] = totalFees[1] - stakingFees[1] + _sellFee;
    totalFees[2] = totalFees[2] - stakingFees[2] +
    _transferFee;
    require(totalFees[0] <= 2500 && totalFees[1] <= 2500 &&
totalFees[2] <= 2500, "TaxesDefaultRouter: Cannot exceed max total fee of 25%");

    stakingFees = [_buyFee, _sellFee, _transferFee];

    emit stakingFeesUpdated(_buyFee, _sellFee, _transferFee);
}</pre>
```



#### Recommendation

It is recommended to reevaluate the purpose and usage of the totalFees and stakingFees arrays. The current mechanism results in both arrays always holding identical values, leading to an unnecessary duplication of data. If the intent was for totalFees to represent a cumulative or diverse set of fees separate from stakingFees, the logic in stakingFeesSetup needs to be revised to reflect this.



## **L04 - Conformance to Solidity Naming Conventions**

| Criticality | Minor / Informative                |
|-------------|------------------------------------|
| Location    | Token.sol#L23,35,37,38,39,61,75,84 |
| Status      | Unresolved                         |

#### Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code. Adhering to a style guide can help improve the readability and maintainability of the Solidity code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

- 1. Use camelCase for function and variable names, with the first letter in lowercase (e.g., myVariable, updateCounter).
- 2. Use PascalCase for contract, struct, and enum names, with the first letter in uppercase (e.g., MyContract, UserStruct, ErrorEnum).
- 3. Use uppercase for constant variables and enums (e.g., MAX\_VALUE, ERROR\_CODE).
- 4. Use indentation to improve readability and structure.
- 5. Use spaces between operators and after commas.
- 6. Use comments to explain the purpose and behavior of the code.
- 7. Keep lines short (around 120 characters) to improve readability.



```
contract Bitcointry_Token is ERC20, ERC20Burnable, Ownable,
TokenRecover, Initializable {
    address public stakingAddress;
    uint16[3] public stakingFees;

    mapping (address => bool) public isExcludedFromFees;
...
    internal
    override
    {
        super._afterTokenTransfer(from, to, amount);
    }
}
```

#### Recommendation

By following the Solidity naming convention guidelines, the codebase increased the readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.



### L13 - Divide before Multiply Operation

| Criticality | Minor / Informative |
|-------------|---------------------|
| Location    | Token.sol#L122,126  |
| Status      | Unresolved          |

#### Description

It is important to be aware of the order of operations when performing arithmetic calculations. This is especially important when working with large numbers, as the order of operations can affect the final result of the calculation. Performing divisions before multiplications may cause loss of prediction.

```
fees = amount * totalFees[txType] / 10000;

stakingPortion = fees * stakingFees[txType] /
totalFees[txType];
```

#### Recommendation

To avoid this issue, it is recommended to carefully consider the order of operations when performing arithmetic calculations in Solidity. It's generally a good idea to use parentheses to specify the order of operations. The basic rule is that the multiplications should be prior to the divisions.



#### **L22 - Potential Locked Ether**

| Criticality | Minor / Informative |
|-------------|---------------------|
| Location    | Token.sol#L65       |
| Status      | Unresolved          |

#### Description

The contract contains Ether that has been placed into a Solidity contract and is unable to be transferred. Thus, it is impossible to access the locked Ether. This may produce a financial loss for the users that have called the payable method.

```
receive() external payable {}
```

#### Recommendation

The team is advised to either remove the payable method or add a withdraw functionality. it is important to carefully consider the risks and potential issues associated with locked Ether.



# **Functions Analysis**

| Contract             | Туре                 | Bases                                                                          |            |             |
|----------------------|----------------------|--------------------------------------------------------------------------------|------------|-------------|
|                      | Function Name        | Visibility                                                                     | Mutability | Modifiers   |
|                      |                      |                                                                                |            |             |
| Bitcointry_Toke<br>n | Implementation       | ERC20,<br>ERC20Burna<br>ble,<br>Ownable,<br>TokenRecov<br>er,<br>Initializable |            |             |
|                      |                      | Public                                                                         | ✓          | ERC20       |
|                      | initialize           | External                                                                       | 1          | initializer |
|                      |                      | External                                                                       | Payable    | -           |
|                      | decimals             | Public                                                                         |            | -           |
|                      | _sendInTokens        | Private                                                                        | ✓          |             |
|                      | stakingAddressSetup  | Public                                                                         | ✓          | onlyOwner   |
|                      | stakingFeesSetup     | Public                                                                         | ✓          | onlyOwner   |
|                      | excludeFromFees      | Public                                                                         | ✓          | onlyOwner   |
|                      | _transfer            | Internal                                                                       | ✓          |             |
|                      | _updateRouterV2      | Private                                                                        | ✓          |             |
|                      | setAMMPair           | External                                                                       | ✓          | onlyOwner   |
|                      | _setAMMPair          | Private                                                                        | ✓          |             |
|                      | _beforeTokenTransfer | Internal                                                                       | ✓          |             |
|                      | _afterTokenTransfer  | Internal                                                                       | ✓          |             |



## **Inheritance Graph**





# Flow Graph





## **Summary**

Bitcointry Token contract implements a token mechanism. This audit investigates security issues, business logic concerns and potential improvements. Bitcointry Token is an interesting project that has a friendly and growing community. The Smart Contract analysis reported no compiler error or critical issues. The contract Owner can access some admin functions that can not be used in a malicious way to disturb the users' transactions. There is also a limit of max 25% fees.



#### **Disclaimer**

The information provided in this report does not constitute investment, financial or trading advice and you should not treat any of the document's content as such. This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes nor may copies be delivered to any other person other than the Company without Cyberscope's prior written consent. This report is not nor should be considered an "endorsement" or "disapproval" of any particular project or team. This report is not nor should be regarded as an indication of the economics or value of any "product" or "asset" created by any team or project that contracts Cyberscope to perform a security assessment. This document does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors' business, business model or legal compliance. This report should not be used in any way to make decisions around investment or involvement with any particular project. This report represents an extensive assessment process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk Cyberscope's position is that each company and individual are responsible for their own due diligence and continuous security Cyberscope's goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing technologies and in no way claims any guarantee of security or functionality of the technology we agree to analyze. The assessment services provided by Cyberscope are subject to dependencies and are under continuing development. You agree that your access and/or use including but not limited to any services reports and materials will be at your sole risk on an as-is where-is and as-available basis Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty. The assessment reports could include false positives false negatives and other unpredictable results. The services may access and depend upon multiple layers of third parties.

## **About Cyberscope**

Cyberscope is a blockchain cybersecurity company that was founded with the vision to make web3.0 a safer place for investors and developers. Since its launch, it has worked with thousands of projects and is estimated to have secured tens of millions of investors' funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has built a high-profile network of clients and partners.



The Cyberscope team

https://www.cyberscope.io