CHEMICAL CHANGES

If, A + B \rightleftharpoons C , E.C.(Equilibrium Constant) = k and C \rightleftharpoons A + B where E.C = k' then $k' = \frac{1}{k}$

Relation between K_p and K_c :

$$K_p = K_c (RT)^{\Delta n}$$

$$\begin{split} R &= Gas\ Constant \\ T &= Kelvin\ Temperature \\ \Delta &= \sum C_p - \sum C_r \\ &= (Sum\ of\ Coefficiant(s)\ of\ Product) - (Sum\ of\ Coefficiant(s)\ Reactant) \end{split}$$

if, $lA + mB \rightleftharpoons nC + oD$ where E.C = k again, if, $2lA + 2mB \rightleftharpoons 2nC + 2oD$ then $k' = K^2$ In other words if the Coefficients of a reaction is multiplied by ${\bf n}$, then $k' = k^n$

Kp and Kc:

If, a reaction is as follow - $aA + aB \rightleftharpoons cC + dD$

$$K_p = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

$$K_c = \frac{P_C^c P_D^d}{P_A^a P_B^b}$$

P is the partial Pressure of their respected elements

 ∂ Pressure = Totatl Pressure \times Mole Fraction

 $Mole fraction of an element = \frac{Number of moles of that element}{Total number of Moles \in the reaction}$

lacktriangle K_w of Water = 1 * 10⁻¹⁴ mol² L⁻² [If Temperature is 25C]

$$pH = -\log[H^{+}]$$

$$POH = -\log[OH^{-}]$$

Dissolvation rate,
$$\alpha = \frac{Dissolved moles of Acid or Base}{Total moles of Acid or Base}$$

OSTWALD'S DILUTION LAW:

$$K_a = \frac{C \alpha^2}{(1-\alpha)}$$
 if acid is so weak, $\alpha << 1$ so $(1-\alpha)=1$ hence, $K_a = C \alpha^2$ $K_b = \frac{C \alpha^2}{(1-\alpha)}$ if base is so weak, $\alpha << 1$ so $(1-\alpha)=1$ hence, $K_b = C \alpha^2$ $pK_a = -\log[K_a]$ $pH + POH = 14$; if Temperature is 25 Degree Celcius

Buffer Solutions:

$$pH of \ buffer = pK_a + \log_{10} \frac{[\text{Conjugate Base}]}{[\text{Weak Acid}]}$$

$$pH of \ Bases = 14 - pK_b - \log_{10} \frac{[\text{Conjugate Acid of Weak Base}]}{[\text{Weak Base}]}$$

$$\textit{Buffer Capacity ,} \beta = \frac{\textit{Gram molecular number of acide/base solute in 1 L solution}}{\textit{Changes of pH}}$$