MH1812 Tutorial Chapter 9: Functions

- Q1: Consider the set $A = \{a, b, c\}$ with power set P(A) and intersection \cap function: $P(A) \times$ $P(A) \to P(A)$, i.e., for any $x, y \in P(A)$, $f(x, y) = x \cap y$. What is its domain? its co-domain? its range? What is the cardinality of the pre-image of $\{a\}$?
- \mathbb{Q}_{2} : Show that $\sin : \mathbb{R} \to \mathbb{R}$ is not one-to-one.
- \mathbb{Z}_3 : Show that $\sin : \mathbb{R} \to \mathbb{R}$ is not onto, but $\sin : \mathbb{R} \to [-1, 1]$ is.
- Q4. Is $h: \mathbb{Z} \to \mathbb{Z}$, h(n) = 4n 1, onto (surjective)? Q5: Is $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$, a bijection (one-to-one correspondence)?
- Q6: Consider $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ and $g: \mathbb{R} \to \mathbb{R}$, g(x) = x + 5. What is $g \circ f$? What is
- Q7: Consider $\underline{f: \mathbb{Z} \to \mathbb{Z}, f(n) = n+1}$ and $\underline{g: \mathbb{Z} \to \mathbb{Z}, g(n) = n^2}$. What is $\underline{g \circ f?}$ What is $\underline{f \circ g?}$
- Q8: Given two functions $f: X \to Y$, $g: Y \to Z$. If $g \circ f: X \to Z$ is one-to-one, must both f and g be one-to-one? Prove or give a counter-example.
- Q9. Show that if $f: X \to Y$ is invertible with inverse function $f^{-1}: Y \to X$, then $f^{-1} \circ f = i_X$ and $f \circ f^{-1} = i_Y$.
- Q10: Prove or disprove $\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil$, for x, y two real numbers.
- Q71: If you pick five cards from a deck of 52 cards, prove that at least two will be of the same suit.
- If you have 10 black socks and 10 white socks, and you are picking socks randomly, you will only need to pick three to find a matching pair.