Сходимост на мерки

През цялото време ще работим върху топологичното пространство (E, τ) , а σ -алгебрата над която са дефинирани крайните мерки е $\sigma(\tau)$.

<u>Дефиниция</u>: Нека (E,d) е метрично пространство. За редицата от мерки $(\mu_n)_{n\in\mathbb{N}}\subset \mathcal{M}_f(E)$ казваме, че се схожда <u>слабо</u> към $\mu \overset{def}{\Longleftrightarrow} \int f d\mu_n \underset{n\to\infty}{\longrightarrow} \int f d\mu$ за всяка $f\in \mathcal{C}_b(E)$ Още записваме $\mu = w-\lim_{n\to\infty} \mu_n$

<u>Teopema (Portmanteau)</u>: Нека (E,d) е метрично пространство и $\mu \in \mathcal{M}_{\leq 1}(E)$, $\left(\mu_n\right)_{n \in \mathbb{N}} \subset \mathcal{M}_{\leq 1}(E)$. Тогава следните са еквивалентни:

1.
$$\mu = w - \lim_{n \to \infty} \mu_n$$

2.
$$\int f d\mu_n \xrightarrow[n \to \infty]{} \int f d\mu \text{ so } f \in C_b(E) \cap Lip(E)$$

3.
$$\limsup_{n\to\infty}\mu_n(F)\leq \mu(F)$$
 и $\liminf_{n\to\infty}\mu_n(E)\geq \mu(E)$ за всяко $F\subseteq E$ – затворено и измеримо

4.
$$\liminf_{n \to \infty} \mu_n(G) \ge \mu(G)$$
 и $\limsup_{n \to \infty} \mu_n(E) \le \mu(E)$ за всяко $G \subseteq E$ — отворено и измеримо

5.
$$\lim_{n \to \infty} \mu_n(A) = \mu(A)$$
 за измеримо A , т.че $\mu(\partial A) = 0$

6.
$$\int f d\mu_n \xrightarrow[n \to \infty]{} \int f d\mu$$
 за всяка измерима $f \in \mathcal{C}_b(E)$ непрекъсната μ п.н.

<u>док.</u>:

$$(1) \to (2)$$

 $Lip(E) \cap C_b(E) \subseteq C_b(E)$

$$(2) \rightarrow (3)$$

Нека $F \subseteq E$ е затворено и измеримо множество.

Дефинираме функцията $\rho_{F,\varepsilon}$: $E \to [0,1]$ по следния начин:

Дефинираме функцията
$$\rho_{F,\varepsilon} : E \to [0,1]$$
 то $\rho_{F,\varepsilon}(x) \coloneqq \begin{cases} 1, & x \in F \\ 1 - \frac{d(x,A)}{\varepsilon}, x \notin F \land d(x,A) < \varepsilon \\ 0, & d(x,F) \ge \varepsilon \end{cases}$

 $\rho_{F,\varepsilon}(x) \geq \mathbb{I}_F(x)$ sa $\forall x \in E$.

Така получаваме $\int
ho_{F,arepsilon} d\mu_n \geq \int \mathbb{I}_F d\mu_n = \mu_n(F)$

 $\limsup_{n\to\infty}\int \rho_{F,\varepsilon}d\mu_n\geq \limsup_{n\to\infty}\mu_n(F) \text{ за } \forall \varepsilon>0 \text{ и понеже } \rho_{F,\varepsilon}\in Lip_{\frac{1}{\varepsilon}}(E,[0,1])\cap \mathcal{C}_b(E)\text{, то имаме }$

$$\lim_{n\to\infty}\int \rho_{F,\varepsilon}d\mu_n\geq \limsup_{n\to\infty}\mu_n(F) \text{ aa } \forall \varepsilon>0 \ \Rightarrow \ \inf_{\varepsilon>0}\lim_{n\to\infty}\int \rho_{F,\varepsilon}d\mu_n\geq \limsup_{n\to\infty}\mu_n(F)$$

Остава да забележим, че заради (2) имаме $\lim_{n \to \infty} \int \rho_{F,\varepsilon} d\mu_n = \int \rho_{F,\varepsilon} d\mu$, както и че

 $ho_{F,arepsilon} \underset{arepsilon o 0}{\longrightarrow} \mathbb{I}_F$. Така получаваме:

$$\limsup_{n\to\infty} \mu_n(F) \leq \inf_{\varepsilon>0} \lim_{n\to\infty} \int \rho_{F,\varepsilon} d\mu_n = \inf_{\varepsilon>0} \int \rho_{F,\varepsilon} d\mu = \lim_{\varepsilon\to0} \int \rho_{F,\varepsilon} d\mu = \int \lim_{\varepsilon\to0} \rho_{F,\varepsilon} d\mu = \int \mathbb{I}_F d\mu = \mu(F)$$

Най-напред да обърнем внимание, че за произволна редица $(a_n)_{n\in\mathbb{N}}$ имаме:

$$-\limsup_{n\to\infty}(-a_n)=-\lim_{n\to\infty}\sup_{k\geq n}(-a_k)=-\lim_{n\to\infty}\left(-\inf_{k\geq n}a_k\right)=\lim_{n\to\infty}\inf_{k\geq n}a_k=\liminf_{n\to\infty}a_n$$

Нека $G \subseteq E$ е отворено и измеримо множество. Тогава от (3) имаме:

$$\limsup_{n \to \infty} \mu_n(E \setminus G) \le \mu(E \setminus G) \implies \limsup_{n \to \infty} [\mu_n(E) - \mu_n(G)] \le \mu(E) - \mu(G)$$

 $\limsup \mu_n(E) + \limsup (-\mu_n(G)) \le \mu(E) - \mu(G)$

$$\limsup_{n\to\infty} \mu_n(E) - \mu(E) \le \liminf_{n\to\infty} \mu_n(G) - \mu(G)$$

Тъй като $\liminf_{n\to\infty}\mu_n(E)\geq\mu(E)$, то достигаме до:

$$0 \le \liminf_{n \to \infty} \mu_n(E) - \mu(E) \le \limsup_{n \to \infty} \mu_n(E) - \mu(E) \le \liminf_{n \to \infty} \mu_n(G) - \mu(G)$$

т.е. $\liminf_{n\to\infty}\mu_n(G)\geq \mu(G)$ за всяко $G\subseteq E$ – отворено и измеримо.

$$(4) \rightarrow (3)$$

По аналогичен начин достигаме и от (4) до (3)

$$(3)$$
 и $(4) \rightarrow (5)$

Нека A е измеримо, т.че $\mu(\partial A) = 0$. Имаме:

$$\mu(A^o) = \mu(A) = \mu(\overline{A}) \Leftarrow \begin{cases} \mu(\overline{A}) = \mu(A^o \cup \partial A) = \mu(A^o) + \mu(\partial A) = \mu(A^o) \\ A^o \subseteq A \subseteq \overline{A} \implies \mu(A^o) \le \mu(A) \le \mu(\overline{A}) \end{cases}$$
 От (3) имаме $\limsup_{n \to \infty} \mu_n(\overline{A}) \le \mu(\overline{A})$ и от (4) $\liminf_{n \to \infty} \mu_n(A^o) \ge \mu(A^o)$. Така получаваме:

$$\mu(A^o) \leq \liminf_{n \to \infty} \mu_n(A^o) \leq \liminf_{n \to \infty} \mu_n(A) \leq \limsup_{n \to \infty} \mu_n(A) \leq \limsup_{n \to \infty} \mu_n(\overline{A}) \leq \mu(\overline{A})$$

и тъй като $\mu(A^o)=\mu(\overline{A})$ следва $\liminf_{n\to\infty}\mu_n(A)=\limsup_{n\to\infty}\mu_n(A)=\mu(\overline{A})=\mu(A)$. Получихме: $\lim_{n\to\infty}\mu_n(A)=\mu(A)$

$$\lim_{n\to\infty}\mu_n(A)=\mu(A)$$

$$(5) \rightarrow (6)$$

 $U_f \coloneqq \{x \in E \mid f - \text{прекъсната в } x\}$

Нека $f \in C_b(E)$ $(f: E \to \mathbb{R})$ е измерима и непрекъсната μ п.н. За всяко $D \subset \mathbb{R}$ е в сила:

$$\partial f^{-1}(D) \subset f^{-1}(\partial D) \cup U_f \ (*)$$

f е непрекъсната в $x \in E \stackrel{def}{\iff} \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 \colon f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)).$

И така, ако f е непрекъсната в $x \in E$, то има точки y и z, т.че: $y \in f^{-1}(D) \cap B_{\delta}(x)$ и $z \in$ $f^{-1}(D^c) \cap B_{\delta}(x)$. Тогава $f(y) \in D \cap B_{\varepsilon}(f(x)) \neq \emptyset$ и $f(z) \in D^c \cap B_{\varepsilon}(f(x)) \neq \emptyset \Rightarrow f(x) \in \partial D$.

Нека $\varepsilon > 0$. Множеството $A \coloneqq \{y \in \mathbb{R} \mid \mu(f^{-1}(\{y\})) > 0\}$ е най-много изброимо. Понеже f е ограничена, то съществува $N \in \mathbb{N}$ и $y_0 \le -\|f\|_{\infty} < y_1 < \dots < y_{N-1} < \|f\|_{\infty} < y_N$, т.че:

$$y_i \in \mathbb{R} \backslash A$$
 и $|y_{i+1} - y_i| < arepsilon$ за всяко i

Нека $E_i \coloneqq f^{-1}([y_i,y_{i+1}])$ за i=0,...,N-1. Тогава $E=\bigcup_{i=0}^{N-1}E_i$ и E_i са непресичащи се. Използвайки (*), и че $y_i \notin A$ за всяко i:

 $\mu(\partial E_i) < \mu(f^{-1}(\partial E_i) \cup U_f) = \mu(f^{-1}(\partial E_i)) + \mu(U_f) = \mu(f^{-1}(y_{i+1})) + \mu(f^{-1}(y_i)) + \mu(U_f) = 0$ така от (5) следва $\lim_{n\to\infty}\mu_n(E_i)=\mu(E_i)$

$$\begin{aligned} y_i &< f(x) < y_{i+1} \ \forall x \in E_i \\ |y_i - y_{i+1}| &< \varepsilon \ \Rightarrow |f(x) - y_i| \le \varepsilon \ \text{sa} \ \forall x \in E_i \\ y_i - \varepsilon \le f(x) \le y_i + \varepsilon \ \text{sa} \ \forall x \in E_i \end{aligned}$$

Нека $\nu \in \{\mu, \mu_1, \mu_2, ..., \mu_n, ...\}$ и значи $\nu \in \mathcal{M}_{\leq 1}(E)$. Интегрирайки неравенствата върху E_i :

$$\int_{E_i} (y_i - \varepsilon) d\nu \le \int_{E_i} f d\nu \le \int_{E_i} (y_i + \varepsilon) d\nu$$

Сумираме по i от 0 до N-1:

$$\sum_{i=0}^{N-1} y_i \nu(E_i) - \varepsilon \nu(E) = \sum_{i=0}^{N-1} \int_{E_i} (y_i - \varepsilon) d\nu \le \sum_{i=0}^{N-1} \int_{E_i} f d\nu \le \sum_{i=0}^{N-1} \int_{E_i} (y_i + \varepsilon) d\nu = \sum_{i=0}^{N-1} y_i \nu(E_i) + \varepsilon \nu(E)$$

$$\sum_{i=0}^{N-1} y_i \nu(E_i) + \varepsilon \le \sum_{i=0}^{N-1} y_i \nu(E_i) - \varepsilon \nu(E) \le \sum_{i=0}^{N-1} \int_{E_i} f d\nu \le \sum_{i=0}^{N-1} y_i \nu(E_i) + \varepsilon \nu(E) \le \sum_{i=0}^{N-1} y_i \nu(E_i) + \varepsilon \nu(E)$$

Прилагайки последното неравенство два пъти, и това че $\sum_{i=0}^{N-1} \int_{E_i} f dv = \int f dv$:

$$\limsup_{n\to\infty}\int fd\mu_n \leq \limsup_{n\to\infty}\sum_{i=0}^{N-1}y_i\mu_n(E_i) + \varepsilon = \lim_{n\to\infty}\sum_{i=0}^{N-1}y_i\mu_n(E_i) + \varepsilon = \sum_{i=0}^{N-1}y_i\mu\left(E_i\right) + \varepsilon \leq \int fd\mu + 2\varepsilon$$
 за $\varepsilon\to 0$ достигаме до $\limsup_{n\to\infty}\int fd\mu_n \leq \int fd\mu$

Накрая заменяйки f с (-f), получаваме и обратното неравенство:

$$\liminf_{n\to\infty} \int f d\mu_n \ge \int f d\mu$$

Обединявайки двете неравенства

$$\limsup_{n\to\infty}\int fd\mu_n\leq \int fd\mu\leq \liminf_{n\to\infty}\int fd\mu_n\leq \limsup_{n\to\infty}\int fd\mu_n$$

 $\limsup_{n\to\infty}\int fd\mu_n\leq \int fd\mu\leq \liminf_{n\to\infty}\int fd\mu_n\leq \limsup_{n\to\infty}\int fd\mu_n$ с което доказахме, че $\lim_{n\to\infty}\int fd\mu_n=\int fd\mu$ за произволна измерима $f\in C_b(E)$ с $\mu\big(U_f\big)=0$

(6)
$$\to$$
 (1) $\{f: E \to \mathbb{R} \mid f$ — непрекъсната $\} \subset \{f: E \to \mathbb{R} \mid \mu(U_f) = 0\}$

<u>Дефиниция</u>: Нека $X_1, X_2, ...$ са сл. вел., приемащи стойности в E. Казваме, че редицата от сл. вел. $(X_n)_{n\in\mathbb{N}}$ се схожда по разпределение към сл. вел. $X\overset{def}{\Longleftrightarrow}~\mathbb{P}_X=\operatorname*{w-lim}_{n\to\infty}\mathbb{P}_{X_n}.$ Записваме $X_n \stackrel{d}{\to} X$.

Тази дефиниция, благодарение на <u>Portmanteau</u>, още е еквивалентна на $X_n \overset{d}{ o} X$ $\stackrel{def}{\Longleftrightarrow} \mathbb{E} f(X_n) \xrightarrow[n \to \infty]{} \mathbb{E} f(X)$ за всяка $f \in \mathcal{C}_b(E)$.

Теорема (Slutzky): Нека $X, X_1, X_2, ...$ и $Y_1, Y_2, ...$ са сл. вел. със стойности в E. Ако $X_n \stackrel{d}{\to} X$ и $d(X_n, Y_n) \xrightarrow[n \to \infty]{} 0$, to $Y_n \xrightarrow{d} X$.

<u>док.</u>:

Ще покажем, че $\mathbb{E} f(Y_n) \xrightarrow[n \to \infty]{} \mathbb{E} f(X)$ за всяка $f \in \mathcal{C}_b(E) \cap Lip(E)$, и благодарение на

Portmanteau теоремата, ще следва $Y_n \stackrel{d}{\to} X$.

Нека $f: E \to \mathbb{R}$ е ограничена и непрекъсната Липшицова функция с константа K. Тогава: $|f(x) - f(y)| \le \min\{K|x - y|, 2||f||_{\infty}\}$ sa $x, y \in E$

Така, от теоремата за монотонна сходимост получаваме $\operatorname{limsup} \mathbb{E}|f(X_n) - f(Y_n)| =$

$$\mathbb{E}\limsup_{n\to\infty}|f(X_n)-f(Y_n)|=\mathbb{E}\lim_{n\to\infty}|f(X_n)-f(Y_n)|=\mathbb{E}0=0$$

 $\limsup_{n \to \infty} |\mathbb{E}f(Y_n) - Ef(X)| \le \limsup_{n \to \infty} |\mathbb{E}f(X) - \mathbb{E}f(X_n)| + \limsup_{n \to \infty} |\mathbb{E}f(X_n) + \mathbb{E}f(Y_n)| = 0 + 0 = 0$ $\Rightarrow 0 \le \liminf_{n \to \infty} |\mathbb{E}f(Y_n) - \mathbb{E}f(X)| \le \limsup_{n \to \infty} |\mathbb{E}f(Y_n) - \mathbb{E}f(X)| \le 0$

$$\Rightarrow 0 \le \liminf_{n \to \infty} |\mathbb{E}f(Y_n) - \mathbb{E}f(X)| \le \limsup_{n \to \infty} |\mathbb{E}f(Y_n) - \mathbb{E}f(X)| \le 0$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{E}f(Y_n) = \mathbb{E}f(X) \iff Y_n \stackrel{d}{\to} X$$

<u>Теорема</u>: Нека \mathbb{P}_X , \mathbb{P}_{X_1} , \mathbb{P}_{X_2} , ... ∈ $\mathcal{M}_1(\mathbb{R})$ със съответно функции на разпределение F_{X} , $F_{X_{1}}$, $F_{X_{2}}$, Тогава следните са еквивалентни:

1.
$$\mathbb{P}_X = \mathbf{w} - \lim_{n \to \infty} \mathbb{P}_{X_n}$$

2. $F_{X_n} \xrightarrow[n \to \infty]{} F_X$ за всички точки на непрекъснатост x на F_X

<u>док.</u>:

$$(1) \rightarrow (2)$$

Нека F е непрекъсната в точката x. От $\mathbb{P}(\partial(-\infty,x])=\mathbb{P}(\{x\})=0$ и **Portmanteau** следва, че $F_{X_n}(x) = \mathbb{P}_{X_n}((-\infty, x]) \xrightarrow[n \to \infty]{} \mathbb{P}_X((-\infty, x]) = F_X(x)$

$$(2) \rightarrow (1)$$

Нека $f \in Lip_1(\mathbb{R},[0,1])$. От <u>Portmanteau</u> е достатъчно да покажем $\int_{\mathbb{R}} f \ d\mathbb{P}_n \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} f \ d\mathbb{P}$

От $F_{X_n} \xrightarrow[n \to \infty]{} F_X$ за всички точки на непрекъснатост x на F, следва:

Нека $\varepsilon > 0$. Тогава съществува $N_{\varepsilon} \in \mathbb{N}$ и точки на непрекъснатост $y_0 < y_1 < \dots < y_N$ на F, т.че: $G(y_0) < \varepsilon$, $1 - G(y_N) < \varepsilon$ и $y_{i+1} - y_i < \varepsilon$ за всяко i и $G \in \{F, F_1, F_2, ...\}$. Така получаваме неравенствата:

$$\int_{-\infty}^{y_0} f \, d\mathbb{P}_{X_n} \le \sup_{x \le y_0} f(x) * \mathbb{P}_{X_n} \left((-\infty, y_0] \right) \le F_{X_n} (y_0) \le \varepsilon \quad (\mathbf{1})$$

$$\int_{\infty}^{y_N} f \, d\mathbb{P}_{X_n} \le \sup_{x \ge y_N} f(x) * \mathbb{P}_{X_n} \left((y_N, \infty) \right) \le 1 - F_{X_n} (y_N) \le \varepsilon \quad (\mathbf{2})$$

$$\int_{y_i}^{y_i} f \, d\mathbb{P}_{X_n} \le \sup_{y_i \le x \le y_{i+1}} f(x) * \mathbb{P}_{X_n} \left([y_i, y_{i+1}] \right) \le (f(y_i) + \varepsilon) * (F_{X_n} (y_{i+1}) - F_{X_n} (y_i))$$

понеже $f \in Lip_1(\mathbb{R}, [0,1])$ и така $|f(x) - f(y_i)| \le |x - y_i| \le |y_{i+1} - y_i| < \varepsilon$ за $\forall x \in [y_i, y_{i+1}]$ $\Rightarrow f(x) < f(y_i) + \varepsilon$ за $\forall x \in [y_i, y_{i+1}]$. Сумирайки по i последното неравенство горе, получаваме:

$$\int_{y_n}^{y_N} f \, d\mathbb{P}_{X_n} \le \sum_{i=0}^{N-1} (f(y_i) + \varepsilon) * \left(F_{X_n}(y_{i+1}) - F_{X_n}(y_i) \right) \le \varepsilon + \sum_{i=0}^{N-1} f(y_i) * \left(F_{X_n}(y_{i+1}) - F_{X_n}(y_i) \right)$$
 (3)

Обединявайки (1), (2) и (3), достигаме до:

$$\int_{\mathbb{R}} f \, d\mathbb{P}_{X_n} \le 3\varepsilon + \sum_{i=0}^{N-1} f(y_i) * \left(F_{X_n}(y_{i+1}) - F_{X_n}(y_i) \right) \quad (*)$$

Ако повторим стъпки (1), (2) и (3), но с инфимум (спрямо $\mathbb P$ този път) и използваме неравенството $f(x) > f(y_i) - \varepsilon$ за $\forall x \in [y_i, \ y_{i+1}]$, ще получим и горна оценка:

$$\sum_{i=0}^{N-1} f(y_i) * \left(F_X(y_{i+1}) - F_X(y_i) \right) \le \varepsilon + \int_{\mathbb{R}} f \, d\mathbb{P} \qquad (**)$$

Прилагаме (*) и (**):

$$\limsup_{n\to\infty} \int_{\mathbb{R}} f \, d\mathbb{P}_{X_n} \leq 3\varepsilon + \sum_{i=0}^{N-1} f(y_i) * \limsup_{n\to\infty} \left(F_{X_n}(y_{i+1}) - F_{X_n}(y_i) \right)$$

$$= 3\varepsilon + \sum_{i=0}^{N-1} f(y_i) * \lim_{n\to\infty} \left(F_{X_n}(y_{i+1}) - F_{X_n}(y_i) \right) = 3\varepsilon + \sum_{i=0}^{N-1} f(y_i) * \left(F_{X}(y_{i+1}) - F_{X}(y_i) \right)$$

$$\leq 4\varepsilon + \int_{\mathbb{R}} f \, d\mathbb{P} \text{ 3a } \forall \varepsilon > 0$$

Тогава при arepsilon o 0 имаме $\limsup_{n o \infty} \int_{\mathbb{R}} f \ d\mathbb{P}_{X_n} \le \int_{\mathbb{R}} f \ d\mathbb{P}$

Ако заменим f с 1-f ще достигнем до $\liminf_{n \to \infty} \int_{\mathbb{R}} f \ d\mathbb{P}_{X_n} \geq \int_{\mathbb{R}} f \ d\mathbb{P}$, откъдето следва, че

$$\lim_{n\to\infty}\int\limits_{\mathbb{R}}f\,d\mathbb{P}_{X_n}\;=\int\limits_{\mathbb{R}}f\,d\mathbb{P}\;\iff\;\mathbb{P}_X=\operatorname{w-lim}_{n\to\infty}\mathbb{P}_{X_n}$$

Teopema (Continuous mapping theorem): Нека (E_1,d_1) и (E_2,d_2) са две метрични пространства и $\varphi\colon E_1\to E_2$ е измерима функция. С U_φ означаваме множеството от точки на непрекъснатост на φ . Тогава:

- 1. Ако $\mu, \mu_1, \mu_2, ... \in \mathcal{M}_{\leq 1}(E_1)$ с $\mu(U_{\varphi}) = 0$ и $\mu = \underset{n \to \infty}{\mathrm{w}} \lim_{n \to \infty} \mu_n$, то $\mu_n \circ \varphi^{-1} \xrightarrow[n \to \infty]{} \mu \circ \varphi^{-1}$ слабо.
- 2. Ако $X, X_1, X_2, ...$ са сл. вел., приемащи стойности в E_1 , $\mathbb{P}_X \big(U_{\varphi} \big) = 0$ и $X_n \overset{d}{\to} X$, то $\varphi(X_n) \overset{d}{\to} \varphi(X)$

<u>док.</u>:

 $U_{\varphi} \subset E_1$ е измеримо и $\mu(U_{\varphi}) = 0$. Нека $f \in C_b(E_2)$ е произволна. Тогава $f \circ \varphi$ е ограничена и измерима функция и $U_{f \circ \varphi} \subset U_{\varphi} \implies \mu(U_{f \circ \varphi}) = 0$. Използвайки <u>Portmanteau</u> и теоремата за смяна на променливата при интегриране

$$\lim_{n\to\infty}\int\limits_{E_2}f\,d(\mu_n\circ\varphi^{-1})=\lim_{n\to\infty}\int\limits_{E_1}f\circ\varphi\,d\mu_n=\int\limits_{E_1}f\circ\varphi\,d\mu=\int\limits_{E_2}f\,d(\mu\circ\varphi^{-1})$$

Точка 2. се доказва чрез точка 1., използвайки $\mathbb{P}_{\varphi(X)} = \mathbb{P}_X \circ \varphi^{-1}$.

<u>Пример (приложение)</u>: Нека редицата $(X_n)_{n \in \mathbb{N}}$ от сл.вел. се схожда по разпределение към $X \sim \mathcal{N}(0,1)$. Нека φ е функцията $\varphi(x) \coloneqq x^2$. Тогава $(\varphi(X_n))_{n \in \mathbb{N}} \stackrel{d}{\to} \mathcal{X}^2_{(1)}$.

<u>Дефиниция (Стегнатост)</u>: Класът $\mathcal{F} \subset \mathcal{M}_f(E)$ ще наричаме "стегнат" $\stackrel{def}{\Longleftrightarrow}$ за всяко $\varepsilon > 0$ съществува компактно множество $K_\varepsilon \subset E$, такова че $\nu(E \backslash K_\varepsilon) < \varepsilon$ за всяко $\nu \in \mathcal{F}$.

<u>Дефиниция (Относителна компактност)</u>: Класът $\mathcal{F} \subset \mathcal{M}_1(E)$ от вероятностни мерки наричаме относително компактен $\stackrel{def}{\Longleftrightarrow}$ всяка редица $(\mu_n)_{n\in\mathbb{N}} \subset \mathcal{F}$ има слабо сходяща подредица $(\mu_{n_k})_{k\in\mathbb{N}}$ в \mathcal{F} .

<u>Дефиниция (Полско пространство)</u>: Едно топологично пространство (E, τ) наричаме Полско пространство, ако:

- (E, τ) е <u>сепарабелно</u>, т.е. съществува **изброимо гъсто** подмножество от елементи на E; Това означава, че съществува $(x_n)_{n\in\mathbb{N}}\subset E$, т.че всяко непразно отворено множество на τ съдържа поне един елемент на тази редица.
- Метричното пространство (E,d) е <u>банахово (пълно)</u>, т.е. всяка редица на Коши е сходяща в него.

Теорема (Prokhorov): Нека (E,d) е метрично пространство и $\mathcal{F} \subset \mathcal{M}_1(E)$. Тогава:

- 1. \mathcal{F} е стегнат клас $\Rightarrow \mathcal{F}$ е относително компактен.
- 2. Ако в допълнение E е Полско пространство, то от \mathcal{F} е относително компактен клас $\Longrightarrow \mathcal{F}$ е стегнат клас.

<u>док.</u>:

Ще докажем само втората част на теоремата (точка 2):

Най-напред искаме да покажем следното:

Ако $U_1,U_2,...$ са отворени множества в E, които го покриват, то за всяко $\varepsilon>0$ съществува $N\geq 1$, т.че $\mu(\bigcup_{i=1}^N U_i)>1-\varepsilon$ за всяко $\mu\in\mathcal{F}$

За тази цел да допуснем противното:

Съществува $\varepsilon^*>0$, т.че за всяко $N\geq 1$ съществува $\nu_N\in\mathcal{F}$, т.че $\ \nu_N(\bigcup_{i=1}^N U_i)\leq 1-\varepsilon$

Тъй като $\mathcal F$ е относително компактен клас, то редицата $(\nu_N)_{N\in\mathbb N}\subset\mathcal F$ има слабо сходяща подредица $\left(\nu_{N_j}\right)_{j\in\mathbb N}$ в $\mathcal F$ и нека нейната граница е ν .

За всяко $N \geq 1 \ \cup_{i=1}^N U_i$ е отворено и от теоремата <u>Portmanteau</u> получаваме:

$$\nu\left(\bigcup_{i=1}^{N} U_{i}\right) \leq \liminf_{j \to \infty} \nu_{N_{j}}\left(\bigcup_{i=1}^{N} U_{i}\right) \leq \liminf_{j \to \infty} \nu_{N_{j}}\left(\bigcup_{i=1}^{N_{j}} U_{i}\right) \leq 1 - \varepsilon^{*} < 1 \text{ sa } N \geq 1$$

Понеже $\bigcup_{i=1}^N U_i \subseteq \bigcup_{i=1}^{N+1} U_i$ за всяко $N \ge 1$ и знаем, че $\bigcup_{i=1}^\infty U_i = E$, то като пуснем граница $N \to \infty$ на горното неравенство, получаваме:

$$1 = \lim_{N \to \infty} 1 > \lim_{N \to \infty} \nu \left(\bigcup_{i=1}^{N} U_i \right) = \nu \left(\bigcup_{i=1}^{\infty} U_i \right) = \nu(E) = 1$$

с което стигаме до противоречие и сме доказали първата част.

Нека $\varepsilon>0$ е произволно. От това, че E е сепарабелно, знаем, че съществува изброимо гъсто подмножество от елементи на E и нека го бележим с $D=\{x_1,x_2,...\}$. За всяко $m\geq 1$ отворените кълба $B_{\frac{1}{m}}(x_i),\ i=1,2,...$ са покритие на E. От това, което вече сме доказали, следва, че съществува $k_m\geq 1$, т.че $\mu\left(\bigcup_{i=1}^{k_m}B_{\frac{1}{m}}(x_i)\right)>1-\varepsilon*2^{-m}$ за всяко $\mu\in\mathcal{F}$.

Образуваме множеството:

$$K := \bigcap_{m=1}^{\infty} \bigcup_{i=1}^{k_m} \overline{B}_{\frac{1}{m}}(x_i)$$

Така K е <u>затворено</u> множество и за всяко $\delta>0$ можем да вземем m, т.че $\frac{1}{m}<\delta$, откъдето

$$K \subset \bigcup_{i=1}^{k_m} \overline{B}_{\delta}(x_i)$$

и това означава, че K е <u>ограничено</u>. K е затворено и ограничено $\Longrightarrow K$ е компакт. Остана да покажем, че $\mu(E \setminus K) < \varepsilon$, с което доказателството ще е завършено.

$$\mu(E \backslash K) = \mu \left(E \backslash \bigcap_{m=1}^{\infty} \bigcup_{i=1}^{k_m} \overline{B}_{\frac{1}{m}}(x_i) \right) = \mu \left(\bigcup_{m=1}^{\infty} \left[\bigcup_{i=1}^{k_m} \overline{B}_{\frac{1}{m}}(x_i) \right]^c \right) \leq \sum_{m=1}^{\infty} \mu \left(\left[\bigcup_{i=1}^{k_m} \overline{B}_{\frac{1}{m}}(x_i) \right]^c \right) = \sum_{m=1}^{\infty} \left(1 - \mu \left(\bigcup_{i=1}^{k_m} \overline{B}_{\frac{1}{m}}(x_i) \right) \right) \leq \sum_{m=1}^{\infty} \varepsilon * 2^{-m} = \varepsilon \implies \mathcal{F} \text{ е стегнат клас}$$

7