# Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií

Semestrální práce MPC-AUP

Radim Říha, 221013 Petr Šopák, 221022 Brno, 2023

### Zadání:

Technologický proces slouží k pasterizaci kapalin. Nerezová nádrž je vysoká 2000 mm a její objem je přesně 2 m³. Pro přívod materiálu je využito vstupní a pro odvod výstupní potrubí. Vstupní potrubí o průměru DN125 je konstantně tlakováno vstupním materiálem. Výstupní potrubí, rovněž o průměru DN125 je přivedeno do zásobníků, které uchovávají výstupní produkt pro další zpracování. Technologie je vybavena mechanismem pro míchání materiálu uvnitř tanku (mixérem), jehož statický krouticí moment v okamžiku kdy je tank zcela plný je 380 N/m a jehož maximální přípustná rychlost je 40 ot./min. Tento mechanismus je vybaven převodovkou s převodovým poměrem 38:1. Pro ohřev je k technologii připojen tepelný okruh z přidružené výroby (jaderné elektrárny) s plynule regulovatelným jmenovitým výkonem 25 MW. Maximální přípustná teplota veškerých mechanických částí je 95 °C, po jejímž překročení dojde k nenávratným škodám a technologie bude zničena.

### **Požadavky:**

- 1. Nerezová nádrž výška 2000 mm a objem 2 m<sup>3</sup>
- 2. Vstupní a výstupní potrubí DN125
- 3. Vstupní potrubí je tlakováno konstantně
- 4. Mixér statický krouticí moment 380 N/m, maximální přípustná rychlost 40 ot./min, převodovka 38:1
- 5. Ohřev jmenovitý výkon 25 MW
- 6. Maximální přípustná teplota mechanických částí 95 °C

#### Schéma:



Obr.1.: Zjednodušený proces pasterizační jednotky



Obr.2.: Process flow diagram pasterizační jednotky

# Hazardní stavy a jejich detekce:

| stav                             | detekce stavu                    |
|----------------------------------|----------------------------------|
| trhlina v nádrži                 | snímač hladiny kapaliny v nádrži |
| porucha vstupního ventilu        | průtokoměr vstupního potrubí     |
| porucha výstupního ventilu       | průtokoměr výstupního potrubí    |
| porucha motoru                   | snímač otáček hřídele motoru     |
| porucha převodovky nebo míchadla | snímač otáček hřídele motoru     |
| přehřátí motoru                  | snímač teploty motoru            |
| přehřátí nádrže                  | snímač teploty kapaliny v nádrži |
| porucha tepelného okruhu         | snímač teploty tepelného okruhu  |

# 2. P&ID diagram:



Obr.3.: P&ID diagram procesní jednotek pro topení a manipulace se vstupní kapalinou



Obr.4.: P&ID diagram procesní jednotky pro čištění tanku vodou a louhem

# Použité snímače:

| označení | typ  | účel                                                         |
|----------|------|--------------------------------------------------------------|
| F01.01   | FICQ | měření a regulace množství napuštěné kapaliny                |
| F01.02   | FIQ  | měření množství vypuštěné kapaliny                           |
| S01.01   | SI   | detekce poruchy míchadla nebo převodovky                     |
| T01.01   | TC   | regulace teploty kapaliny v tanku                            |
| T01.02   | TI   | detekce přehřátí motoru                                      |
| L01.01   | LC   | regulace výšky hladiny kapaliny v nádrži                     |
| L01.02   | LM   | detekce napuštění maximálního množství kapaliny              |
| T02.01   | TC   | měření množství tepla předaného z tepelného okruhu do nádrže |
| T02.02   | TC   | měření množství tepla předaného z tepelného okruhu do nádrže |
| F02.01   | FICQ | měření množství tepla předaného z tepelného okruhu do nádrže |
| L03.01   | LM   | detekce napuštění maximálního množství čisté vody            |
| C03.01   | CI   | měření koncentrace louhu                                     |

# Použité akční členy:

| označení | popis                                               |
|----------|-----------------------------------------------------|
| V01.01   | vypouštěcí ventil kapaliny pro pasterizaci do tanku |
| V01.02   | vypouštěcí ventil pasterizované kapaliny z tanku    |
| V01.03   | vypouštěcí ventil čisticí kapaliny z tanku          |
| V01.04   | přetlakový ventil tanku                             |
| M01.01   | motor míchadla                                      |
| V02.01   | vstupní ventil hlavního čerpadla tepelného okruhu   |
| V02.02   | výstupní ventil hlavního čerpadla tepelného okruhu  |
| V02.03   | vstupní ventil záložního čerpadla tepelného okruhu  |
| V02.04   | výstupní ventil záložního čerpadla tepelného okruhu |
| V02.05   | rozdělovací ventil tepelného okruhu                 |
| P02.01A  | hlavní čerpadlo tepelného okruhu                    |
| P02.01B  | záložní čerpadlo tepelného okruhu                   |
| V03.01   | vstupní ventil čisté vody                           |
| V03.02   | napouštěcí ventil nádrže s čistou vodou             |
| V03.03   | oddělovací ventil nádrží                            |
| V03.04   | napouštěcí ventil nádrže s použitou vodou           |
| V03.05   | oddělovací ventil nádrží                            |
| V03.06   | napouštěcí ventil nádrže s louhem                   |
| V03.07   | vypouštěcí ventil nádrže s čistou vodou             |
| V03.08   | vypouštěcí ventil nádrže s použitou vodou           |
| V03.09   | výstupní ventil použité vody                        |
| V03.10   | vypouštěcí ventil nádrže s louhem                   |
| P03.01   | čerpadlo nádrží                                     |

# 3. Instrumentace

### a) Zvolené snímače:

|         | Označení         | Rozsah                 | Citlivost      | Rozlišení | Provozní<br>podmínky  | Chyba<br>měření | Mechanické<br>vlastnosti | Rozhraní           | Data       |
|---------|------------------|------------------------|----------------|-----------|-----------------------|-----------------|--------------------------|--------------------|------------|
| 1       | F01.01<br>F01.02 | 0135 m <sup>3</sup> /h | 0,07<br>V*h/m³ | -         | -20120 °C<br>1600 kPa | ±2 %            | příruba<br>DN125         | 0,510 V            | <u>URL</u> |
| 3       | T01.01           | -50150 °C              | 0,08 mA/°C     | 0,04 K    | 30 Mpa                | ±0.3 K          | závit G1/2               | 420 mA             | LIDI       |
| 3       | 101.01           | -50150 C               | 0,08 MA/ C     | 0,04 K    | зо імра               | IU.3 K          | Zavit G1/Z               | 420 MA             | <u>URL</u> |
| 4       | T01.02           | -40300 °C              | 13,8 Ω/Κ       | ı         | -                     | ±6 K            | v motoru                 | odpor              | <u>URL</u> |
| 5       | S01.01           | 36000 ot./min          | -              | -         | -2080°C               | -               | závit M18                | pulzní             | <u>URL</u> |
| 6       | L01.01           | 0,152 m                | 8,65 mA/m      | <1 mm     | -3070°C               | ±0,15<br>%      | závit G1                 | 420 mA             | <u>URL</u> |
| 7       | L01.02           | on/off                 | -              | -         | -40100°C              | -               | závit G3/4               | NPN/PNP            | <u>URL</u> |
| 8       | F02.01           | 021 m <sup>3</sup> /h  | 0,45<br>V*h/m³ | -         | -20120 °C<br>1600 kPa | ±2 %            | závit DN50               | 0,510 V            | <u>URL</u> |
| 9<br>10 | T02.01<br>T02.02 | -30130 °C              | 0,39 Ω/°C      | -         | 595 % r. v.           | ±1 K            | příložné<br>čidlo        | odporový<br>výstup | <u>URL</u> |

**Snímače F01.01; F01.02:** Rozsah snímače je 0 – 135 m³/h. Provozní podmínky až do 120°C. Pro potrubí o průměru DN125. Analogový napěťový výstup v rozsahu 0,5 až 10 V.

**Snímač T01.01:** Rozsah měřené teploty v rozmezí -50 až 150 °C. Vyrobeno z nerezové oceli a ochrana IP 67. Má proudové rozhraní (4 až 20 mA).

**Snímač S01.01:** Snímač otáček v rozsahu 3 až 6000 ot./min, což splňuje maximální otáček motoru dle zadání. Provozní teplota může být menší. Je mimo pasterizační tank.

**Snímač L01.01:** Hladinoměr s proudovým výstupem anebo linkou RS-485 s Modbus RTU. Vhodný pro teploty až 100 °C.

Snímač L01.02: Binární hladinoměr s maximální provozní teplotou až 100 °C.

**Snímač F02.01:** Tento snímač je řiditelný a dostáváme z něho analogový výstup v rozsahu 0,5-10 V. Splňuje provozní podmínky – maximální provozní podmínka pro tento snímač je 120 °C. Pro potrubí o průměru DN50.

**Snímače T02.01; T02.02:** Snímače měří v rozsahu -30 – 130 °C. Lze s ním měřit i při maximální provozní teplotě 95 °C.

### b) **Zvolené ventily:**

|   | Označení | Mechanické<br>vlastnosti | Provozní<br>podmínky        | Maximální<br>průtok   | Doba<br>přestavení | Způsob<br>otevíraní    | Datasheet  |
|---|----------|--------------------------|-----------------------------|-----------------------|--------------------|------------------------|------------|
| 1 | V01.01   | n řím uh o               | -10120 °C                   |                       |                    |                        |            |
| 2 | V01.02   | příruba<br>DN125         | 1600 kPa                    | 250 m <sup>3</sup> /h | 150 s              | servopohon             | <u>URL</u> |
| 3 | V01.03   | DIN125                   | 1000 KPa                    |                       |                    |                        |            |
| 4 | V01.04   | vnější závit<br>DN23     | -196185 °C<br>200 kPa 5 MPa | -                     | -                  | -                      | <u>URL</u> |
| 5 | V02.01   |                          |                             |                       |                    |                        |            |
| 6 | V02.02   | vnitřní závit            | -40185 °C                   |                       |                    | ruční                  | LIDI       |
| 7 | V02.03   | DN50                     | 3,5 MPa                     | -                     | -                  | ruciii                 | <u>URL</u> |
| 8 | V02.04   |                          |                             |                       |                    |                        |            |
| 9 | V02.05   | příruba DN50             | 5120 °C<br>600 kPa          | 40 m <sup>3</sup> /h  | 113 s              | zdvihový<br>servopohon | <u>URL</u> |

**Ventily V01.01; V01.02; V01.03:** Byly vybrány ventily pro potrubí o průměru DN125. Materiál ventilu je z nerezové oceli, která je vhodná pro potravinářské odvětví. Dále jsou řiditelné za pomocí servopohonů, které budou popsány níže. Dle zadání splňují provozní podmínky – do 120 °C, je řiditelný a pro potrubí o průměru DN125.

**Přetlakový ventil V01.04:** Nerezový pojistný ventil nastavitelný v rozmezí 200 kPa – 5 MPa. Hodnota nastavení musí být předem známa. Určen pro průměr potrubí DN23. Je vhodný pro jakýkoliv druh unikajícího plynu. Je vhodný pro teploty až do 185 °C.

**Ventily V02.01; V02.02; V02.03; V02.04**: pro průměr potrubí DN50, určené pro studenou i horkou vodu a provozní podmínky až do 185 °C, což splňují všechny podmínky zadání jako je maximální přípustná teplota.

**Ventil V02.05:** pro průměr potrubí DN50, je možnost řízení ventilu, určen pro medium vody a splňuje podmínku maximální přípustné teploty. Provozní podmínky až do 120 °C.

## c) **Zvolené motory a čerpadla:**

|   | Označení | Kroutící<br>moment | Jmenovité<br>napětí | Jmenovitý<br>proud | Jmenovité<br>otáčky | Provozní<br>podmínky | Datasheet    | Pozn. |
|---|----------|--------------------|---------------------|--------------------|---------------------|----------------------|--------------|-------|
| 1 | V01.01M  |                    |                     |                    |                     |                      |              |       |
| 2 | V01.02M  | 40 Nm              | 24 V DC/AC          | 460 mA             | -                   | -3050 °C             | <u>URL</u>   | *1    |
| 3 | V01.03M  |                    |                     |                    |                     |                      |              |       |
| 4 | M01.01   | 10 Nm              | 230 VAC             | 6,5 A              | 1445 ot./min        | -2040 °C             | 1LE1003-0EB4 | *2    |
| 5 | V02.05M  | zdvih 1500N        | 24 V DC/AC          | 83 mA              | -                   | 050 °C               | <u>URL</u>   | *1    |
| 6 | P02.01A  |                    | 230 VAC             | 2 27 4             |                     | -10110 °C            | LIDI         |       |
| 7 | P02.01B  | -                  | 230 VAC             | 2,37 A             | _                   | 1 Mpa                | <u>URL</u>   |       |

<sup>\*1:</sup> Standardní servomechanismy pro přidružené ventily.

**Servomechanismy V01.01M; V01.02M; V01.03M:** modulační rotační pohony s funkcí nouzového ovládání. Krouticí moment 40 Nm a spojité ovládání DC (0)2-10 V.

**Servomechanismus V02.05M:** zdvihový pohon pro 3-cestné zdvihové ventily. Ovládání spojité DC v rozsahu (0)2-10 V.

Motor M01.01: Krouticí moment 10Nm, jmenovité otáčky 1445 ot./min. Splňuje podmínky zadání.

**Čerpadla P02.01A; P02.01B:** Vhodné pro teploty až do 110 °C a pro potrubí o průměru DN50. Splňují podmínky z parametrů zadání.

<sup>\*2:</sup> Asynchronní elektromotor pro míchadlo. Výsledný krouticí moment za převodovkou je 10\*38 = 380 Nm a otáčky 1445/38 = 38 ot./min.

# 4. Elektrotechnické schéma

# a) **Zvolené moduly:**

|   | Označení | Typ modulu                       | Popis                          | Datasheet  | Poznámka |
|---|----------|----------------------------------|--------------------------------|------------|----------|
| 1 | MODULE1  | Analogový výstupní modul         | AQ 4xU/I HF                    | <u>URL</u> |          |
| 2 | MODULE2  | Analogový vstupní modul          | AI 8xU/I/RTD BA                | <u>URL</u> |          |
| 3 | MODULE3  | Digitální vstupní/výstupní modul | DI 16x24VDC<br>DQ16x24VDC/0,5A | <u>URL</u> |          |
| 4 | -        | CPU                              | SIMATIC S7-1500                | <u>URL</u> | *1       |
| 5 | -        | Zdroj                            | PS 25W 24 V DC                 | <u>URL</u> | *1       |

<sup>\*1:</sup> Jsou připojeny za pomocí šasi

# b) Další přidané součástky:

|   | Označení | Typ modulu        | Datasheet  |
|---|----------|-------------------|------------|
| 1 | KM1      | Stykač            | <u>URL</u> |
| 2 | FR1      | Motorový spouštěč | <u>URL</u> |
| 3 | F1       | Dojistka          | LIDI       |
| 4 | F2       | Pojistka          | <u>URL</u> |







# 5. UML diagramy

### a) Use-Case diagram:



Obr.5.: User-Case diagram

### **Specifikace:**

### UC1 - Konfigurace systému:

#### Krátký popis

Use case umožňuje nastavení konfigurace pasterizačního systému.

#### Aktéři

Technolog

Systém

#### Podmínky pro spuštění

Technolog musí vlastnit administrativní účet v daném systému.

#### Základní tok

- 1. Systém vygeneruje uživatelské rozhrání umožňující přihlášení technologa
- 2. Technolog vyplní přihlašovací údaje (uživatelské jméno a heslo)
- 3. Sytém ověří data od technologa
- 4. Systém následně pošle validační zprávu na mail technologa a vygeneruje pole pro vepsání doručeného kódu ze zprávy
- 5. Technolog vepíše kód z svého mailu a je připuštěn
- 6. Systém připustí technologa do nastavení konfigurace systému
- 7. Po změnách konfigurace a následného potvrzení technologem jsou změny uloženy

#### Alternativní tok 1

3.1 Pokud technolog zadal nesprávné uživatelské údaje, systém vyhlásí chybu, odstraní vyplněné údaje a technolog pokračuje v základním toku 2.

#### Alternativní tok 2

5.1 Pokud technolog zadal nesprávný kód, systém vyhlásí chybu, odstraní vyplněné údaje a systém se vrátí do bodu 4 základního toku.

#### Podmínky pro dokončení

Technolog uloží změny konfigurace systému, potvrdí změnu a případně odhlásí se ze systému

# b) Stavový diagram:



Obr.6.: Stavový diagram

# c) Sekvenční diagram:



Obr.7.: Sekvenční diagram

# 6. Technická dokumentace projektu

# a) Implementace řídicího SW a vlastní inovace

Jednotlivé bloky byly doplněny dle komentářů a návodu, otestovány a okomentovány. Oproti zadání zde bylo provedeno několik změn:

- Ve fázi míchání je možné do parametru TimeSec dosadit hodnotu -1. V tomto případě nedojde k automatickému ukončení fáze Running a míchání bude pokračovat, dokud nebude fáze ukončena manuálně. Toho je využito při zahřívání obsahu tanku a současném míchání, protože není předem znám čas, za který regulátor dosáhne požadované hodnoty.
- Ve fázi zahřívání je po stabilizaci teploty v požadovaném intervalu nastaven parametr done, ale fáze Running není automaticky ukončena. Toho je využito pro držení žádané teploty během míchání.

V PLC byl vytvořen i kód pro spuštění výrobního procesu jedné dávky. Jedná se o stavový automat, který je možné spustit nebo ukončit z HMI. Automat spouští jednotlivé fáze v definovaném pořadí a po vytvoření jedné dávky je ukončen. Během zahřívání je obsah tanku současně míchán a během míchání je teplota držena na požadované hodnotě.



Obr.8.: Stavový diagram výrobního procesu

# b) Návrh HMI

HMI bylo dokončeno a otestováno, ale nebylo oproti kostře výrazně změněno. Jedinou inovací je přidání tlačítek a indikátoru pro automatické spouštění fází v pravém horním rohu a přidání indikace stavu Done jednotlivých fází.

Hlavní obrazovka obsahuje sekce pro všechny akční členy. V nich je možné přepnout mezi automatickým nebo manuálním ovládáním daného členu. V manuálním režimu je možné člen ovládat příslušnými tlačítky (On/Off nebo Open/Close). V automatickém režimu člen ovládá příslušná fáze, jejichž nastavení se nachází na pravé straně obrazovky. Jednotlivé fáze je možné opět ovládat manuálně pomocí tlačítek Start, Stop, Pause, Resume. Automaticky je možné fáze spouštět z nadřazeného systému nebo pomocí stavového automatu z PLC, který lze spustit nebo zastavit v pravém horním rohu.



Obr.9.: Hlavní obrazovka HMI

Nastavitelnými parametry tanku je výška hladiny při napouštění a vypouštění, čas fáze míchání a požadovaná teplota fáze zahřívání.



Obr.10.: Obrazovka parametrů tanku HMI

# c) Návrh regulátoru

### 1) Identifikace parametrů soustavy:

Z PLC byly získány data tak, že byl tank prvně napuštěn kapalinou na určitou hladinu a následně byl nastavený výkon ohřevu na 100 %. Byly odečítány data, dokud teplota nedosáhla 100 °C. Po dosáhnutí 100 °C se teplota dále nezvyšovala. Vstupní data z PLC byly prvně předzpracována, aby počáteční podmínka f(0) = 0. Průběhy získané z PLC lze vidět na obrázku *obr.11*. Dále došlo k identifikaci parametrů této soustavy.



Obr.11.: Získané průběhy z PLC s počáteční podmínkou f(0) = 0

Identifikace parametrů soustavy proběhla za pomocí nástroje *Systém Identification Toolbox*. Přenos soustavy byla vyjádřena za pomocí postupného zvyšování kořenů a nul. Z nich bylo postupně odečítána přesnost (Best Fit). Při zvyšování řádu se už přesnost nijak neměnila. Nejvyšší získaná přesnost je 98,85 %. Proto byl vybrán přenos s nejmenším řádem. Zvyšováním řádu by se zbytečně zvyšovala složitost řešení. Na obrázku *obr.12* lze vidět průběh soustavy po identifikaci. Modře je vykreslena naměřená data a červeně průběh soustavy  $F_s$ . Výsledný přenos soustavy  $F_s$  je:

$$F_S(s) = \frac{-0,001145s + 0,005118}{s^2 + 0,3583s + 0,003327}$$



Obr.12.: Průběh identifikace soustavy.

### 2) Návrh regulátoru:

Regulátor byl navržen za pomocí Matlab Simulinku. Na obrázku *obr. 13* lze vidět použitý regulační obvod. Byl navržen PID regulátor nastaveny jako *ideal* se saturací výstupu na 0-100 s použitou metodou Anti-Windup. Následně byl použit PIDTune pro provedení návrhu regulátoru. Výsledný průběh byl navržen jako kompromis požadavků: robustní na poruchy a dostatečně rychlý. Dále musí splňovat kritéria jako maximální překmit musí být menší než 20% ustálené hodnoty; nesmí mít více než 2-3 kmity. Na obrázku *obr. 14* jsou parametry navrženého regulátoru a na *obr.15* průběhu PID regulátoru.



Obr.13.: Regulační obvod pro návrh regulátoru



Obr.14.: Parametry navrženého PID regulátoru



Obr.15.: Průběh navrženého regulátoru.

### 3) PID regulátor v PLC:

TIA portál používá PIDT1 regulátor s anti-windup, váhováním proporcionální a derivační složky. Tedy jeho rovnice je:

$$y = K_P \left[ (b \cdot w - x) + \frac{1}{T_i \cdot s} (w - x) + \frac{T_D \cdot s}{a \cdot T_D \cdot s + 1} (c \cdot w - x) \right],$$

Kde y je výstupní hodnota PID;  $K_P$  je proporcionální zesílení, s – Laplacův operátor; b – váha proporcionální složky; w – setpoint; x – procesní hodnota,  $T_I$  – doba integračního zásahu;  $T_D$  – doba derivačního zásahu; a - koeficient derivačního zpoždění; c – váha derivačního zásahu; D – Šířka Dead zóny a C ontrolD – Šířka ControlD – Šířka ControlD0.

Převod je vypočítán níže – výpočet koeficientů za pomocí porovnání s rovnicí z MatLabu. A použité hodnoty jsou na obrázku *obr. 16*. Navržený PID byl otestován a výsledný průběh regulované hodnoty lze vidět na *obr. 17*.

$$D\frac{N}{1+N\frac{1}{s}} = \frac{T_D s}{aT_D s + 1} = \frac{T_D s \frac{1}{a}}{T_D s (1 + \frac{1}{aT_D s})} = \left| N = \frac{1}{aT_D} \right| = \frac{T_D N}{1+N\frac{1}{s}}$$

$$\to T_D = D; \ a = \frac{1}{T_D N}$$

$$\to K_P = P; \ T_I = \frac{1}{I}$$



Obr.16.: Nastaveny hodnoty pro regulátor v PLC



Obr.17.: Výsledný průběh z PLC