1 point	1.	For which of the following problems would anomaly detection be a suitable algorithm?
point		Given data from credit card transactions, classify each transaction according to type of purchase (for example: food, transportation, clothing).
		Given an image of a face, determine whether or not it is the face of a particular famous individual.
		From a large set of primary care patient records, identify individuals who might have unusual health conditions.
		Given a dataset of credit card transactions, identify unusual transactions to flag them as possibly fraudulent.
1 point	2.	Suppose you have trained an anomaly detection system that flags anomalies when $p(x)$ is less than ε , and you find on the cross-validation set that it has too many false positives (flagging too many things as anomalies). What should you do?
		lacktriangle Decrease $arepsilon$
		igcap Increase arepsilon
1 point	3.	Suppose you are developing an anomaly detection system to catch manufacturing defects in airplane engines. You model uses
		$p(x) = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2).$
		You have two features x_1 = vibration intensity, and x_2 = heat generated. Both x_1 and x_2 take on values between 0 and 1 (and are strictly greater than 0), and for most "normal" engines you expect that $x_1 \approx x_2$. One of the suspected anomalies is that a flawed engine may vibrate very intensely even without generating much heat (large x_1 , small x_2), even though the particular values of x_1 and x_2 may not fall outside their typical ranges of values. What additional feature x_2 should you create to capture these types of anomalies:

 $\bigcirc \quad x_3 = x_1 + x_2$

 $\bigcirc \quad x_3 = x_1^2 \times x_2$

 $\bigcirc \quad x_3 = x_1 \times x_2$

 $igotimes x_3 = rac{x_1}{x_2}$

4. Which of the following are true? Check all that apply.

- If you are developing an anomaly detection system, there is no way to make use of labeled data to improve your system.
- If you have a large labeled training set with many positive examples and many negative examples, the anomaly detection algorithm will likely perform just as well as a supervised learning algorithm such as an SVM.
- When choosing features for an anomaly detection system, it is a good idea to look for features that take on unusually large or small values for (mainly the) anomalous examples.
- If you do not have any labeled data (or if all your data has label y=0), then is is still possible to learn p(x), but it may be harder to evaluate the system or choose a good value of ϵ .

1 point 5. You have a 1-D dataset $\{x^{(1)},\ldots,x^{(m)}\}$ and you want to detect outliers in the dataset. You first plot the dataset and it looks like this:

Suppose you fit the gaussian distribution parameters μ_1 and σ_1^2 to this dataset. Which of the following values for μ_1 and σ_1^2 might you get?

- $\bigcirc \quad \mu_1=-6, \sigma_1^2=4$
- $\bigcirc \quad \mu_1=-3, \sigma_1^2=2$
- $\qquad \qquad \mu_1=-6, \sigma_1^2=2$