${\mathfrak l}_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$t_1^{#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + ^{\alpha}$

Source constraints				
SO(3) irreps				
$\tau_{0^{+}}^{\#2} == 0$				
$\tau_{0}^{\#1} == 0$				
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$				
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{\imath}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total #:				

$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0 0		$\frac{2}{t_1}$	
$\tau_2^{\#1}_+ \alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
·	$\sigma_2^{#1} + \alpha^{\beta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 - t_1$
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	0	0	0	0
$\omega_{0}^{\#1}$	$6 k^2 r_3$	0	0	0
,	$\omega_{0}^{\#1}$ †	$f_{0}^{\#1}$ †	$f_0^{\#2} +$	$\omega_{0^{\text{-}}}^{\#1}\dagger$

ı							
$f_{1}^{\#2}$	0	0	0	<i>أ لا د</i> ً1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	€ 1 7	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (2 r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-rac{1}{3}ec{\it i}kt_1$
$f_{1}^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta} \ f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{#1} + \alpha^{\beta}$	$o_1^{\#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_1^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} + \alpha$

0 | t₁| 2

0

 $\omega_{2}^{\#1} +^{lphaeta\chi}$

 $\omega_2^{#1} + \alpha \beta$ $f_2^{#1} + \alpha \beta$

	Massive particle					
»	Pole residue:	$-\frac{1}{r_2} > 0$				
	Polarisations:	1				
	Square mass:	$\frac{t_1}{r_2} > 0$				
	Spin:	0				
	Parity:	Odd				

Quadratic pole				
Pole residue:	$-\frac{1}{(2r_3+r_5)t_1^2} > 0$			
Polarisations:	2			