Digitaalitekniikan alkeiskurssi

Logiikkojen jaottelu

- Kombinaatiologiikka
 - Lähtöjen tilat riippuvat ainoastaan tämän hetkisistä tulojen tiloista
- Sekvenssilogiikka
 - Lähtöjen tilat riippuvat sekä tämän hetkisistä että aikaisemmista tulojen tiloista

Kombinaatiologiikat

- Perusportit: AND, OR, XOR, NAND, NOR, invertteri
 - schmitt-trigger, kolmitila, avokollektori
- Puskurit, väyläohjaimet
- Multiplekserit (valitsimet)
 - esim. 2:1 mux, 4:1 mux, 8:1 mux
- Demultiplekserit, dekooderit
 - esim. 3:8 demux, 4:10 demux, BCD-to-7-segment
- Erikoispiirit
 - yhteenlasku, vertailu, konversio, encoder

Multiplekseri

Demultiplekseri

Dekooderi/enkooderi

Porttipiirien korvaaminen

Invertterin korvaaminen NANDilla tai NORilla

Porttipiirien korvaaminen

ANDin korvaaminen kahdella NANDilla

ORin korvaaminen kahdella NORilla

Ohjattu invertteri

XORin käyttö ohjattuna invertterinä: XOR joko invertoi tai ei, riippuen toisen tulon tilasta.

Esimerkkejä

- 4:1 multiplekseri (74xx153)
 - play-hookey: multiplexer
- 2:4 demultiplekseri (74xx139)
 - play-hookey: decoder/demultiplexer
 - Circuit simulator: 74xx139_simul
- Komparaattori (74xx85)
 - Circuit simulator: 2-bit comparator
- 7-segment dekooderi (74xx47)
 - Circuit simulator: 7-segment led decoder

Kombinaatio- ja sekvenssilogiikat

Logiikkojen jaottelu

- Kombinaatiologiikka
 - Lähtöjen tilat riippuvat ainoastaan tämän hetkisistä tulojen tiloista
- Sekvenssilogiikka
 - Lähtöjen tilat riippuvat sekä tämän hetkisistä että aikaisemmista tulojen tiloista

Kombinaatiologiikat

- Perusportit: AND, OR, XOR, NAND, NOR, invertteri
 schmitt-trigger, kolmitila, avokollektori
- Puskurit, väyläohjaimet
- Multiplekserit (valitsimet)
 - esim. 2:1 mux, 4:1 mux, 8:1 mux
- Demultiplekserit, dekooderit
 - esim. 3:8 demux, 4:10 demux, BCD-to-7-segment
- Erikoispiirit
 - yhteenlasku, vertailu, konversio, encoder

Kombinaatiologiikkojen lajit.

Esimerkki multiplekseristä eli valitsimesta.
Valintatuloihin tuotu binäärisana valitsee piirin sisäisen "kytkimen" asennon, eli minkä tulon tila kytkeytyy lähtöön. Tuloja on aina 2ⁿ kpl, missä n on valintatulojen määrä. Lähtöjä on yksi. Käytännön piireissä on yleensä lisäksi enable-input.

Esimerkki demultiplekseristä. Valintatuloihin tuotu binäärisana valitsee piirin sisäisen "kytkimen" asennon, eli mihin lähtöön tulon tila kytkeytyy. Lähtöjä on aina 2ⁿ kpl, missä n on valintatulojen määrä. Tuloja on yksi. Käytännön piireissä on yleensä lisäksi enable-input.

Dekooderipiiri tekee muunnoksia erilaisten esitystapojen välillä. Tyypillinen käyttöesimerkki on BCD-koodin (4 bittiä) muuntaminen vastaavaksi 7-segment-näyttöä ohjaavaksi koodiksi (7 segmenttiohjausta). Myös erilaisia 1-of-n to binary -enkoodereita on saatavissa.

Käytännön suunnittelussa porttipiirien korvaaminen toisilla on yleistä, jotta saadaan IC-piirien määrää vähennettyä.

Invertteri voidaan korvata useilla eri tavoilla.

Myös näillä korvauksilla voidaan usein säästää ICpiirejä.

XOR-porttia voi käyttää ohjattuna invertterinä. Toisen tulon tilan avulla voidaan valita, toimiiko portti invertterinä vai pelkkänä ei-invertoivana puskurina.

Esimerkkejä

- 4:1 multiplekseri (74xx153)
 - play-hookey: multiplexer
- 2:4 demultiplekseri (74xx139)
 - play-hookey: decoder/demultiplexer
 - Circuit simulator: 74xx139_simul
- Komparaattori (74xx85)
 - Circuit simulator: 2-bit comparator
- 7-segment dekooderi (74xx47)
 - Öircuit simulator: 7-segment led decoder

