Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Breadth-First Search

Breadth-First Search

- Breadth-first search
 (BFS) is a general
 technique for traversing
 a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Can determines whetherG is connected
 - Can computes the connected components of G
 - Can computes a spanning forest of G

- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS Algorithm

```
Algorithm BFS(G, s)
Q \leftarrow new empty queue
Q.enqueue(s)
mark(s)
while Q is not empty do \{
   u \leftarrow Q.dequeue()
   visit (u)
  for each edge (u,v) incident on u do
        if (u,v) is not labelled then
           if v is not marked then {
               Label (u,v) as DISCOVERY
               mark(v)
               Q.enqueu(v)
           else
               Label (u,v) as CROSS
```

Example

Example (cont.)

Example (cont.)

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s called a BFS tree

Property 3

For each vertex v in level L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- \Box Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once initialized as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once initialized as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into the queue
- Method incidentEdges is called once for each vertex
- BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure and it runs in $O(n^2)$ time if the graph is represented by the adjacency matrix structure.

Applications

- □ We can use a BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	V	1
Shortest paths		1

DFS vs. BFS (cont.)

Back edge (v, w)

 w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

w is in the same level asv or in the next level

