

NNEP 4.0

César Hervás-Martínez Pedro Antonio Gutiérrez Peña

Grupo de Investigación AYRNA

Departamento de Informática y Análisis
Numérico
Universidad de Córdoba
Campus de Rabanales. Edificio Einstein.
Emails: chervas@uco.es
pagutierrez@uco.es
2021-2022

Software NNEP 4.0

Crisis" y aplique el clasificador MLP con diferente número de nodos en la capa oculta (valor por defecto a 3 nodos, 7, 10, 15) y el diseño experimental dado por 66% de entrenamiento y 33% de test y 5-fold cross-validation. Apartado a)

PIMA (DIABETES) UTILIZANDO WEKA Clasificador MLP. Diseño experimental 66% -33%

Nº nodos	CCR	MS
а	0.743	0.675
3	0.755	0.699
7	0,732	0,711
10	0.747	0,699
15	0,751	0,651

Mejor combinación de CCR y MS

Algoritmo evolutivo NNEP A) Con la base de datos "Banking Crisis" utilizando un diseño holdout aplique el algoritmo NNEP con unidades producto, sigmoides, RBF e Hibridas PU+RBF y obtenga los resultados correspondientes, analizando las matrices de confusión y muestre los mejores modelos obtenidos con cada tipo de red.

ÁNÁLISIS DE LOS PARÁMETROS UTILIZADOS EN LOS

Se trata de un problema con 22 variables de entrada. Hemos trabajado con una población de 1000 individuos para ser entrenados en el experimento, compuesto por 100 generaciones (condición de parada), con 4 nodos mínimo en capa oculta, 5 iniciales y 6 de máximo, posteriormente hemos probado con 1-2-3 (según función utilizada); entre 1 y 2 neuronas a añadir o eliminar (mutación estructural), hemos dejado los valores por defecto en la mutación parametrica, replicando el 10% de los mejores individuos y pasándolos a la siguiente generación (tan sólo se les aplica mutación parametrica) y desechando el 10% de los peores. Al 90% restante se le aplica mutación estructural y parametrica. La otra condición de parada es la de 20 generaciones seguidas sin incremento medio en el número de patrones bien clasificados y el fitness del modelo.

Evolución de α_1 , α_2

- Si el mejor individuo mejora durante 10 generaciones seguidas se aumenta el valor de α_1 , α_2
- Si el mejor individuo no mejora durante 10 generaciones seguidas se disminuye el valor de α_1 , α_2

$$\alpha_i(t+1) = \begin{cases} (1+\beta)\alpha_i(t), & \text{si } A(s) > A(s-1), & \forall s \in \{t,t-1,\dots,t-r\} \\ (1-\beta)\alpha_i(t), & \text{si } A(s) = A(s-1), & \forall s \in \{t,t-1,\dots,t-r\} \\ \alpha_i(t) & \text{en el resto de casos} \end{cases}$$

- Zona Prometedora=> Se aumenta el grado de mutación
- •Zona no Prometedora=> Se disminuye el grado de mutación


```
Best Neuralnet
        -3.03//15022310//1 " ( AI )
        +4.052957177079351 * ( xinformación de las salidas en cada generación
        +6.174050909107757 * ( x4
       +2.7398651061275925 * ( x5 )
        -2.0608418574396934 * ( x6 )
        -0.2751289412512349 * ( x7 )
       +1.2173925894776367 * ( x8 )
       +3.6687072285380933 * ( x12 )
       -1.6693650633136237 * ( x14 )
       +0.4070195612242719 * ( x15 )
       -1.5228758564165925 * ( x17 )
        +1.8758951900618845 * ( x19 )
        -1.6354735411321568 * ( x20 )
        -2.6317751726916083 * ( x22 )
        -3.300329128952152 * (1) )) )
-3.625930062845518 * (1)
Fitness: 0.013869275048806707
Number of hidden neurons: 4 Number of effective links: 36
Train CCR: 76,92307692307693
Test CCR: 87.34177215189874
AlphaInput 0.5 AlphaOutput 1.0
Generations without improving ==> Best: 0 ( 0.013869275048806707 / 0.0138329165
03070022 )
                                  Mean: 0 ( 0.013546418432320271 / 0.0135376469
69324166 )
```


NNEP A) Con la base de datos "Banking Crisis" utilizando un diseño holdout aplique el algoritmo NNEP con unidades sigmoides y obtenga los resultados correspondientes, analizando las matrices de confusión y muestre los mejores modelos obtenidos con cada tipo de red.

BANKING CRISIS. Peores resultados que en la generación 50 REDES UNIDADES SIGMOIDES. Capa oculta 4-5-5 Generación 100, conjunto de test

Iteration	Generation	CABestEP	NoflinksBest EP
1	100	74.6835443	48
2	100	79.7468354	52
3	100	81.0126582	40
4	100	83.5443038	45
5	100	79.7468354	36
	Mean	79.7468354	44.2000000
	StdDv	3.2272275	6.3403470

NNEP A) Con la base de datos "Banking Crisis" utilizando un diseño holdout aplique el algoritmo NNEP con unidades sigmoides y obtenga los resultados correspondientes, analizando las matrices de confusión y muestre los mejores modelos obtenidos con cada tipo de red.

BANKING CRISIS. REDES UNIDADES SIGMOIDES. Capa oculta 4-5-5 Generación 50, conjunto de test

Iterati	on	Generation	CABestEP	NoflinksBestEP
	1	50	70.8860759	48
	2	50	86.0759494	52
Mejor modelo	3	50	88.6075949	40
	4	50	79.7468354	54
	5	50	74.6835443	36
		Mean	80.0000000	46.0000000
		StdDv	7.4565451	7.7459667

NNEP A) Con la base de datos "Banking Crisis" utilizando un diseño holdout aplique el algoritmo NNEP con unidades sigmoides y obtenga los resultados correspondientes, analizando las matrices de confusión y muestre los mejores modelos obtenidos con cada tipo de red.

BANKING CRISIS. REDES U. SIGMOIDES. Capa oculta 4-5-5 Generación 50, conjunto de test

fitness: 0.013969642496342203

Number of hidden neurons: 4 Number of effective links: 40

Train CCR: 77.38

Train Confussion Matrix

Pred. 0 1 CCR
Target
0 64 73 0.4671
1 27 278 0.9114

Test CCR: 88.61

Test Confussion Matrix

Predicted 0 1 CCR
Target
0 21 6 0.7777
1 3 49 0.9423

Train Log: 0.4958183815024666 TrainChisq: 70.5837932332083

NNEP A) Con la base de datos "Banking Crisis" utilizando un diseño holdout aplique el algoritmo NNEP con unidades producto y obtenga los resultados correspondientes, analizando las matrices de confusión y muestre los mejores modelos obtenidos con cada tipo de red.

BANKING CRISIS. REDES UNIDADES PRODUCTO. Capa oculta 4-5-6

Iteration	Generation	CABestEP No	flinksBestEP
1	100	75,9493671	61
2	100	86,0759494	53
3	100	79,7468354	52
4	100	83,5443038	37
5	100	82,2784810	35
Mejores resultados	Mean StdDv	81,5189873 3,8602407	47,6000000 11,1713920

Base de datos indias Pima: Problema de clasificación binaria

Diseño experimental : hold_out estratificado 75% para entrenar y 25% para generalizar para cada una de las dos clases

train_pima.dat: 576 patrones 8 variables de entrada y 2 de salida

test_pima.dat: 192 patrones 8 variables de entrada y 2 de salida

Base de datos Grate: Problema de Regresión en Microbiología Predictiva

Diseño experimental : hold_out estratificado 75% para entrenar y 25% para generalizar

train_grate.dat: 150 patrones 4 variables de entrada y 1 de salida

test_grate.dat: 60 patrones 4 variables de entrada y 1 de salida

Resultados Base de datos indias Pima

Mejor modelo BBDD PIMA con PU con 2, 4, 5 nodos en capa oculta Iteration 2 - Generation 30 - Methodology EP

```
-3.900512587963034 * ( x1^-0.13684235372038445 * x2^0.8947057849519509 * x3^-0.16177688100613585 * x4^-0.22211012576697753 * x6^0.4913432471220496 * x7^0.23623427912780293 )
+4.879092963310238 * ( x1^0.11285972138120698 * x2^-1.3619173861726994 * x3^0.9628706545339946 * x5^0.05405779792187547 * x6^-1.5084101778277188 )
+6.132961230744894 * ( x1^-1.409023891889148 * x2^-0.7106040581439343 * x3^-0.5403167304727159 * x4^-0.28968502343526836 * x5^0.555395799909222 * x7^-0.4734870655117997 )
-0.11286664464330956 * ( x1^0.8983631146643081 * x2^-1.7527372637244092 *
```

-0.11286664464330956 * (x1^0.8983631146643081 * x2^-1.7527372637244092 * x6^0.8171140881579099 * x7^0.2618757435172636 * x8^-1.956517944452171) +2.5127160041976815 * (1)

Fitness: 0.010812206809437544

Number of hidden neurons: 4 Number of effective links: 27

Test CCR: 82.29

Test Confussion Matrix

Predicted	0	1	CCR
Target			
0	123	12	0.9111
1	22	35	0.6140

Train Log: 0.49129231836572657 TrainChisq: 91.48805702894435

Resultados Base de datos indias Pima

	CCR: 76.			75.87	17
	Confuss			76.56	27
Pred. Targe		1	CCR	75.87	13
0	325	40	0.8904	76.74	21
1	95	116	0.5497	76.91	21
				Media 76.39	19.80
				SD. 0.49	5.22
Test	CCR: 82	.29		78.13	17
	Confussi			82.29	27
Pred	licted CCR	0	1	79.17	13
Targ				79.17	21
0 1	123 22	12 35	0.9111 0.6140	79.17	21
				Media 79.58	19.80
				SD. 1.58	5.22

Resultados Base de datos Grate

Mejor modelo con PU para Grate 1, 2, 5 numero de nodos. 1000 individuos

Iteration 4 - Generation 400 - Methodology EP

1.3892874334462106 * (x1^1.1585166569836731 * x4^-0.1051251125212078)

+1.7863616190220453 * (x1^-4.087978726705221 * x3^-4.69547483185112 *

x4^0.18663881866740797)

+0.1956211641178407 * (x1^-3.7369045659863787 * x3^2.4068525108311905 *

x4^0.18625837668354234)

-0.17422043783551888 * (x1^0.12967881626147726 * x2^-3.1639588170762014 *

x4^0.3236642700125189)

+0.3228931353820062 * (x1^0.8356221719188421 * x3^-4.572180685852902)

-1.0603249747825179 * (1)

Fitness: 0.9961592282738658

Number of hidden neurons: 5 Number of effective links: 19

Train MSE: 3.948114052385393E-4

Test MSE: 3.771368707920658E-4

Train SEP: 9.28527137842698 Test SEP: 9.109535824243359

NNEP A) Con la base de datos "Banking Crisis" utilizando un diseño holdout aplique el algoritmo NNEP con unidades producto y obtenga los resultados correspondientes, analizando las matrices de confusión y muestre los mejores modelos obtenidos con cada tipo de red.

BANKING CRISIS. REDES UNIDADES SRBF. Capa oculta 4-5-5. 100

Iteration	Generation	CABestEP	NoflinksBestE P
1	100	88.61	110
2	100	83.54	67
Mejor modelo 3	100	88.61	(63)
4	100	83.54	64
5	100	84.81	77
	Mean	85.82	76.20
	StdDv	2.59	19.69

MEJORES MODELOS OBTENIDOS CON REDES SIGMOIDES.

Iteration 3 - Generation 100 - Methodology EP

-Fitness: 0.0140

Number of hidden neurons: 4 Number of effective links: 63

Train CCR: 78.51

Train Confussion Matrix

Pred.	0	1	CCR
Target			
0	59	78	0.43
1	17	288	0.94

Test CCR: 88.61

Test Confussion Matrix

Predicted	0	1	CCR
Target			
0	20	7	0.7407
1	2	50	0.9615

Train Log: 0.4958 TrainChisq: 70.2511

NNEP 4.0

GRACIAS POR SU ATENCIÓN

César Hervás-Martínez Pedro Antonio Gutiérrez Peña

Grupo de Investigación AYRNA

Departamento de Informática y Análisis Numérico Universidad de Córdoba Campus de Rabanales. Edificio Einstein. Emails: chervas@uco.es pagutierrez@uco.es 2021-2022