The Human Variant Database

Mya Warren

Michael Smith Genome Sciences Centre Vancouver BC

Bioinformatics is Big Data

- Human genome has
 - 3 billion nucleotide bases
 - 60 thousand genes
 - 10-20 thousand proteins
- Bioinformatics takes advantage of
 - High performance computing
 - Sophisticated algorithms
 - Math/Statistics
 - Machine learning

Our mission

- Two parallel goals:
 - Personalized Oncogenomics Program
 Use patient genomics to diagnose and identify therapies for each patient's unique disease
 - Cancer research

Find new patterns in the genomics data to identify novel targets for therapy, learn fundamental truths about cancer

Our mission

- Two parallel goals:
 - Personalized Oncogenomics Program
 Use patient genomics to diagnose and identify therapies for each patient's unique disease
 - Cancer research
 Find new patterns in the genomics data to identify novel targets for therapy, learn fundamental truths about cancer
- The database supports these goals through:
 - Fast querying and exploration of patient genomics, clinical covariates
 - Data mining and analysis of patient cohorts

HAWQ (HAdoop With Queries)

A massively parallel processing (MPP) SQL engine in Hadoop

HAWQ (HAdoop With Queries)

A massively parallel processing (MPP) SQL engine in Hadoop

Interface with the data using PostgreSQL

HAWQ (HAdoop With Queries)

A massively parallel processing (MPP) SQL engine in Hadoop

- Interface with the data using PostgreSQL
- Parallel, fault tolerant architecture for storing and processing big data

Our system

- 13 slave nodes
- 32 thread CPUs
- Total memory: 1.5 TB
- Total storage: 250 TB
- Current disk usage: 1.5 TB
- Largest table: ~10 billion rows

HAWQ Architecture

- Hadoop distributed file system (HDFS)
 - Data is chunked, replicated, distributed
- Data locality
 - Move the computation to the data
 - Data is not shared
 - HAWQ is very fast, linear scalability
- Can interface with the rest of the Hadoop ecosystem

HAWQ vs. Relational Databases

- Append-only tables
- No primary keys
- No foreign keys
- Joins are more expensive
- Extract-transform-load (ETL) optimized for large data files
 - Import raw data
 - Transform data in database

The Data

- Internally generated data + public cancer datasets (TCGA)
- 11,519 patients
- 21,591 libraries
- 31,067 analyses
- > 10 billion rows

Variants

- Raw data for
 - Unpaired/somatic SNVs and Indels
 - Germline/somatic CNVs
 - Somatic loss of heterozygosity
 - Gene expression
 - Homozygous deletions
- Post-Processed and filtered variant data

Metadata

- Library construction and sequencing
- Analysis pipeline
- Patient data
 - Demographics
 - Biopsy diagnoses
 - Drug treatment
 - Radiation treatment

Annotations

- dbSNP
- COSMIC
- ClinVar
- SnpEff
- Gene models

Coming soon

- Other internal projects
- More external data sets!
- Structural variants, miRNA...
- Disease/Drug ontologies
- Knowledgebase
- More data = better analysis!

Accessing the data

Custom queries and pipelines

Accessing the data

- Custom queries and pipelines
- General purpose REST APIs
 - Python
 - SQL Alchemy Object Relational Model
 - Pyramid REST framework
- Web interface
 - Query
 - Filter
 - Analyze

Query selector

Results

The Future

Let the database do the work!

The Future

Let the database do the work!

- Why give up your pipeline?
 - speed
 - flexibility

Tasks that could be done on the variant database

- Annotations
- Filtering
- Statistical analysis and analytics
- Correlations
- Machine Learning

scalable, in-database analytics

Predictive Analytics Library

SUP	FRV	ISED	IFΔ	DNI	NO

Regression Models

- Cox Proportional Hazards Regression
- Elastic Net Regularization
- · Generalized Linear Models
- Logistic Regression
- Marginal Effects
- Multinomial Regression
- Ordinal Regression
- Robust Variance, Clustered Variance
- Support Vector Machines

Tree Methods

- Decision Tree
- Random Forest

Other Methods

- Conditional Random Field
- Naive Bayes

UNSUPERVISED LEARNING

- Association Rules (Apriori)
- Clustering (K-means)
- Topic Modeling (LDA)

TIME SERIES

ARIMA

MODEL EVALUATION

Cross Validation

OTHER MODULES

- Conjugate Gradient
- Linear Solvers
- PMML Export
- Random Sampling
- · Term Frequency for Text

DATA TYPES AND TRANSFORMATIONS

- Array Operations
- Dimensionality Reduction (PCA)
- · Encoding Categorical Variables
- Matrix Operations
- Matrix Factorization (SVD, Low Rank)
- · Norms and Distance Functions
- Sparse Vectors

STATISTICS

Descriptive

- Cardinality Estimators
- Correlation
- Summary

Inferential

Hypothesis Tests

Other Statistics

Probability Functions

Thanks!

Variant DB Developers

Marcel Bernard

Joshua Davies

Darryl D'Souza

Navjashan Singh

James Zhou

Simon Chan

PIPE/BioApps/LIMS

Morgan Bye

Karen Eddy

Patrick Plettner

Systems

Hansen Wong

Rudy Zhou

Lance Bailey

Brandon Pierce

Richard Corbett

Eric Chuah

Yussanne Ma