

D 플립플롭을 이용한 순서논리회로 설계

■ 회로 동작 기술

■ 상태표 작성

• 상태도로부터 상태표 유도

현재	현재 상태		다음 상태		출력
A	В	X	A	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

상태표

■ 플립플롭의 수와 형태 결정

• 정의해야 할 상태의 수가 n가지이면 $\lceil \log_{10} n \rceil$ 개의 플립플롭이 필요

$$n=4$$
이면, $[log_24] = 2log_22 = 2$

$$n=5$$
이면, $[log_25] = [2.3219] = 3$

• 상태의 수가 4가지인 경우이므로 2개의 플립플롭이 필요하다.

■ 플립플롭의 형태

• 비교적 설계 과정이 단순한 *D* 플립플롭을 이용한다.

■ 상태여기표 유도

현자	상태	입력	다음	상태	플립플	롭 입력	출력
\boldsymbol{A}	В	X	A	В	D_{A}	D_B	у
0	0	0	0	0			0
0	0	1	0	1			0
0	1	Q	0	0			1
0	1	1	1	1			0
1	0	0	0	0			1
1	0	1	1	0			0
1	1	0	0	0			1
1	1	1	1	0		-	0

	Ü Tip						
	D 플립플롭의 여기표						
9	Q(t)	Q(t+1)	D				
	0	0	0				
	0	1	1				

■ 플립플롭의 입력함수 및 회로의 출력함수 유도

$$A(t+1) = D_{A} = \overline{ABx} + A\overline{Bx} + ABx$$

$$B(t+1) = D_{B} = ABx + ABx$$

$$- - - - -$$

$$y(t+1) = ABx + ABx$$

$$D_A = Ax + Bx = (A + B)x$$

■ 논리 회로의 구현

$$D_A = (A + B)x$$

$$D_B = Ax$$

$$y = (A + B)x$$

- 순서논리회로에서는 어떠한 상태도 초기 상태가 될 수 있으므로 현재 상태를 순 서논리회로에서 모두 사용하지 않는 경우 문제점 발생
- 미사용 상태에 대해 다음 상태가 어떤지를 구할 필요가 있다.
- 미사용 상태는 플립플롭의 입력함수를 간소화할 때 무관항으로 처리한다.

□ 미사용 상태를 설명하기 위한 상태도

□ 순서논리회로의 상태여기표

Ò	전 상	태	입력		구음 싱	I I	플립플롭 입력					
A	В	\boldsymbol{C}	X	\boldsymbol{A}	В	\boldsymbol{C}	J_A	K_{A}	J_B	K_{B}	J_C	K_C
0	1	0	0	0	1	1	0	×	×	0	1	×
0	1	0	1	0	1	0	0	×	×	0	0	×
0	1	1	0	0	1	1	0	×	×	0	×	0
0	1	1	1	1	1	1	1	×	×	0	×	0
1	0	0	0	1	0	0	×	0	0	×	0	×
1	0	0	1	1	1	0	×	0	1	×	0	×
1	0	1	0	1	0	1	×	0	0	×	×	0
1	0	1	1	1	0	0	×	0	0	×	×	1
1	1	0	0	1	1	0	×	0	×	0	0	×
1	1	0	1	0	1	0	×	1	×	0	0	×
1	1	1	0	1	0	1	×	0	×	1	×	0
1	1	1	1	1	1	1	×	0	×	0	×	0

• 사용하지 않은 2개의 상태(000, 001)에 대해서는 카르노 맵에서 무관항으로 처 리하여 간소화

Cx	;					
AB	00	01	11	10		
00	Χ	Χ	Χ	Χ		
01	Χ	X	Х	Х		
11		1				
10						
$K_A = B \overline{C} x$						

$$K_A = B\overline{C}x$$

$$K_B = AC x$$

$$J_C = \overline{A}x$$

$$K_{C} = Bx$$

□ 미사용 상태에 대한 다음 상태 유도

- ① A = 0, B = 0, C = 0, x = 0일 때
 - F-F A는 $J_A=Cx=0$, $K_A=B\overline{C}x=0$ 이므로 현재 상태가 변하지 않는다(A=0).
 - F-F B는 $J_B = \overline{C}x = 0$, $K_B = AC\overline{x} = 0$ 이므로 현재 상태가 변하지 않는다(B = 0).
 - F-F C는 $J_C = \overline{Ax} = 1$, $K_C = \overline{Bx} = 0$ 이므로 세트 상태가 된다(C = 1).
- ② A = 0, B = 0, C = 0, x = 1 일 때
 - F-F A는 $J_A=Cx=0$, $K_A=B\overline{C}x=0$ 이므로 현재 상태가 변하지 않는다(A=0).
 - F-F B는 $J_B = \overline{C}x = 1$, $K_B = AC\overline{x} = 0$ 이므로 세트 상태가 된다(B = 1).
 - F-F C는 $J_C = \overline{Ax} = 0$, $K_C = \overline{Bx} = 1$ 이므로 리셋 상태가 된다(C = 0).

현재 상태			입력		음 상	태
A	В	\boldsymbol{C}	X	\boldsymbol{A}	В	C
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	0	1
0	0	1	1	1	0	0

- ③ A = 0, B = 0, C = 1, x = 0일 때
 - F-F A는 $J_A=Cx=0$, $K_A=B\overline{C}x=0$ 이므로 현재 상태가 변하지 않는다(A=0).
 - F-F B는 $J_B = \overline{C}x = 0$, $K_B = AC\overline{x} = 0$ 이므로 현재 상태가 변하지 않는다(B = 0).
 - F-F C는 $J_C = \overline{Ax} = 1$, $K_C = \overline{Bx} = 0$ 이므로 세트 상태가 된다(C = 1).
- 4A = 0, B = 0, C = 1, x = 1일 때
 - F-F A는 $J_A = Cx = 1$, $K_A = B\overline{C}x = 0$ 이므로 세트 상태가 된다(A = 1).
 - F-F B는 $J_B=\overline{C}x=0$, $K_B=AC\overline{x}=0$ 이므로 현재 상태가 변하지 않는다(B=0).
 - F-F C는 $J_C = \overline{Ax} = 0$, $K_C = \overline{Bx} = 1$ 이므로 리셋 상태가 된다(C = 0).

현재 상태			입력		음 상	태
A	В	C	X	\boldsymbol{A}	В	C
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	0	1
0	0	1	1	1	0	0

현재 상태			입력	다음 상태		
\boldsymbol{A}	В	C	\mathcal{X}	\boldsymbol{A}	В	C
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	0	1
0	0	1	1	1	0	0

- 순서논리회로의 상태방정식은 상태표에 표시된 정보와 똑같은 내용을 대수적으로 표시하고 있으며, 플립플롭의 특성방정식과 형태가 유사
- 상태방정식은 상태표에서 쉽게 유도할 수 있으며, 모든 순서논리회로는 상태방정식으로 표시할 수 있다.
- <u>D 플립플롭이나 JK 플립플롭</u>은 <u>상태방정식을 사용</u>하여 순서논리회로를 설계하는 것이 더욱 편리하다.
- SR 플립플롭이나 T 플립플롭의 경우에는 상태방정식을 적용할 수 있으나 많은 대수적 처리가 필요하다.

JK 플립플롭을 사용한 상태방정식

JK 플립플롭의 특성방정식

$$Q(t+1) = JQ + KQ$$

• JK 플립플롭의 상태방정식을 JK 플립플롭의 특성방정식과 같은 형태로 변 형 하으로써 플립플롭의 J와 K의 입력함수를 구할 수 있다.

□ 상태도(상태방정식을 이용하는 경우)

□ 상태표

현재	현재 상태		다음 상태		출력
\boldsymbol{A}	В	X	A	В	y
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	1	1	0

- 2개의 JK 플립플롭을 각각 A, B라 할 때, 상태여기표에서 플립플롭 A, B의 다음 상태가 논리 1이 되는 항을 최소항으로 하는 불 함수를 구한다.
- 여기에 수싴을 입력하십시오.

$$= (B x) \overline{A} + (B x + B x + B x) A$$

$$= (B x) \overline{A} + (\overline{B x + B x + B x}) A \qquad A(t+1) = \overline{J_A A} + \overline{K_A A}$$

특성방정식 형태 $Q(t+1) = I\overline{Q} + \overline{K}Q$

$$B(t+1) = \overline{ABx} + \overline{ABx} + \overline{ABx} + \overline{ABx}$$

$$= (\overline{Ax} + \overline{Ax})B + (\overline{Ax} + \overline{Ax})B$$

$$= (\overline{Ax} + \overline{Ax})B + (\overline{Ax} + \overline{Ax})B$$

$$= (\overline{Ax} + \overline{Ax})B + (\overline{Ax} + \overline{Ax})B$$

특성방정식 형태 $Q(t+1) = J\overline{Q} + \overline{K}Q$

A(t+1) = ABx + ABx + ABx + ABx 최소항의 합 형태

$$A(t+1) = J_{A}A + K_{A}A$$

$$J_{A} = Bx$$

$$K_{A} = Bx + Bx + Bx = (B+x) = Bx$$

A + A = 1

◆ 최소항의 합 형태

$$B(t+1) = J_{B}B + K_{B}B$$

$$J_{B} = Ax + Ax = x$$

$$K_{B} = Ax + Ax = x$$

$$y = x AB + xA B$$

$$= x(AB + AB) = x(A \oplus B)$$

□ 회로도(상태방정식을 이용하는 경우)

D 플립플롭을 사용한 상태방정식

• D 플립플롭의 상태방정식을 D 플립플롭의 특성방정식과 같은 형태로 변형 함으로써 플립플롭의 D의 입력함수를 구할 수 있다.

$$Q\left(t+1\right)=D$$

D 플립플롭의 특성방정식

□ 상태도(상태방정식을 이용하는 경우)

□ 상태표

현재 상태		입력	다음	상태
A	В	X	A	В
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	0	0
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	1	1

• 상태방정식을 특성 방정식의 형태로 변환한다.

$$A(t+1) = \overline{ABx} + ABx + ABx + ABx$$
 최소항의 합 형태
$$= (\overline{A} + A)\overline{Bx} + (\overline{B} + B)Ax$$

$$= \overline{Bx} + Ax$$
 특성방정식 형태
$$Q(t+1) = D$$
 $D_A = \overline{Bx} + Ax$

□ 회로도(상태방정식을 이용하는 경우)

