

Physics Course

Aden German International University

Aden -Yemen

What is a Charge?

What is a Charge?

- Charge is the inherent property of matter that feels force of attraction out repulsion due to excess or deficiency of electrons.
- It is of 2 types :
- A. Positive Charge (Due to electron deficiency)
- B. Negative Charge (Due to excess of electrons)
- Its S.I. unit is Coulombs denoted by 'C'.
- It is detected and measured using a device called Electroscope.

Properties Of Charge

Properties of Charge

- The total charge of the universe is conserved i.e. constant
- Unlike Charges attract each other and like charges repel each other
- Charges are additive in nature
- Charges are always quantized i.e. Q = n x e
 where q = charge,
 n = no. of electrons
 e = charge on one electron i.e. 1.67 x 10⁻¹⁹ C
- Charge is relativistically constant

What is Electricity?

What is Electricity?

- Electricity is a form of a energy that can be easily changed to many other forms.
- It can also be defined as flow of electrons in a circuit.

Electric Current

Electric Current

 It is the rate of flow of electric charge (or electrons) through a conductor i.e.

I = Q/t = ne/t where I stands for current

- It is a scalar quantity
- Its S.I. unit is coulomb per second or amperes (A)
- It is measured by a device called Ammeter
- Its direction is taken opposite to the flow of electrons
- It flows as a result of potential difference across the

ends of a conductor

Electric Field

Electric Field

- It is the 3 dimensional space around a charge in which the force of attraction or repulsion can be felt.
- ➤ Electric Field Intensity
- It is the force experienced by a unit positive test charge at a given point in an electric field.
- It is denoted by 'E'
- Its S.I. unit is newton per coulomb (N/C)
- It is a vector quantity

Electric Potential and Potential Difference

Electric Potential

- It is the amount of work done in bringing a unit positive charge from infinity to a given point in the electric field.
- It is a scalar quantity
- Its S.I. unit is joules per coulomb or volts (V)

Potential Difference

- It is the amount of work done in bringing a unit positive charge from one point to another point in an electric field.
- It is a scalar quantity
- Its S.I. unit is joules per coulomb or volts (V)
- It is responsible for the flow of current in a conductor.
- Measured by a device called Voltmeter.

Ohm's Law

Ohm's Law

STORE SIMON OHM

- It was stated by Georg Simon Ohm
- It states that at constant physical conditions like temperature are kept constant then the amount of current flowing through a conductor is directly proportional to the potential difference across its ends i.e.

Ιαν

V = IR where R is constant called Resistance

- According to this law conductors are divide into -
- 1. Ohmic conductors (follow ohm's law)
- Non- ohmic conductors (do not follow ohm's law)

I-V Graphs for Conductors

Resistance and Resistivity

Resistance

- It is defined as the hindrance to the flow of current
- It is the ratio of potential difference to current i.e.
 R = V/I
- Its S.I. unit is volts per ampere or Ohm (denoted by Ω)

• Reciprocal or resistance is called Conductance (C)

S.I. unit Ohm⁻¹ i.e. Ω^{-1}

high resistance low current

low resistance high current

Factors affecting Resistance

- R α Length (1)(i)
- R α 1/Area of cross section of conductor (A)(ii)
- R α Resistivity(P)(iii)

From (i), (ii) and (iii) we get

R = ρl/A where constant "p" is the specific resistance of the

conductor

$$A = \text{area}$$

$$L = \text{length}$$

$$\rho = \text{resistivity}$$

$$R = \rho \frac{L}{A}$$

- Fixed Resistances: Their value does not change under constant physical conditions. They are set at a particular value
- ➤ Variable Resistances: Their resistance can be easily changed by changing area of cross section and length

Variable resistance or Rheostat

Electric Circuit and Its Components

Electric Circuit

- A closed path in which electric current can flow is called an electric circuit
- There are 2 types of circuits
 - 1. Open Circuit: No current flows
 - 2. Closed Circuit: Current flows continuously

Electric Circuit Symbols		
1	An electric cell	—
2	A battery or a combination of cells	
3	Plug key or switch (open)	—()—
4	Plug key or switch (closed)	—(•)—
5	A wire joint	
6	Wires crossing without joining	
7	Electric bulb	
8	A resistor of resistance R	
9	Variable resistance or rheostat	
10	Ammeter	
11	Voltmeter	— <u></u>

Measuring Devices

Ammeter

It must be connected in series in the circuit.

Positive side of ammeter must be connected nearest to the positive terminal of the battery (electric cell), and vice versa.

Voltmeter

- Voltmeters must be connected in parallel to the circuit.
- The <u>positive</u> side of voltmeter is connected to the <u>positive</u> terminal of the cell, and vice versa.

Combination Of

Resistances

Combination of Resistances

There are 2 ways of joining resistors together

- 1. Series Combination
- 2. Parallel Combination

Resistance in Series

The figure shows three resistances R_1,R_2,R_3 connected in series. Now suppose potential difference across resistance R_1 is V_1 , R_2 is V_2 and R_3 is V_3 . Let potential difference across battery be V, then :

$$\mathbf{V} = \mathbf{V_1} + \mathbf{V_2} + \mathbf{V_3}.$$

Applying Ohm's law to the whole circuit: V = IR.(1)

Applying Ohm's law to the three resistors separately, we get:

$$V_1 = I \times R_1$$
.(2)

$$V_2 = I \times R_2$$
.(3)

$$V_3 = I \times R_3.$$
 (4)

Substituting (2), (3), (4) in (1)

$$IR = IR_1 + IR_2 + IR_3$$

OR, IR=
$$I(R_1+R_2+R_3)$$

Or,
$$R = R_1 + R_2 + R_3$$
.

Therefore we conclude that the sum total resistance in a series resistance connection is equal to the sum of all the resistances.

Resistance in Parallel

The figure shows three resistances R₁,R₂,R₃ connected in series. Now suppose currant across resistance R₁ is I₁, R₂ is I₂ and R₃ is I₃. Let total current in the circuit be I, then:

$$I = I_1 + I_2 + I_3$$
.

Applying Ohm's law to the whole circuit: I = V/R.(1)

Applying Ohm's law to the three resistors separately, we get:

$$I_1 = V / R_1$$
. (2)

$$I_2 = V / R_2$$
.(3)

$$I_3 = V / R_3.$$
 (4)

Substituting (2), (3), (4) in (1)

$$V/R = V/R_1 + V/R_2 + V/R_3$$

OR,
$$V/R = V (1/R_1 + 1/R_2 + 1/R_3)$$

Or,
$$1/R = 1/R_1 + 1/R_2 + 1/R_3$$
.

Therefore we conclude that the sum total resistance in a parallel resistance connection is equal to the sum of reciprocal of all the resistances.

THANK YOU INVIOLEN