

GPU MEMORY BOOTCAMP III

COLLABORATIVE ACCESS PATTERNS

Tony Scudiero - NVIDIA Devtech

Fanatical Bandwidth Evangelist

The Axioms of Modern Performance

Chips getting wider, not faster for 10+ years

"the rate at which operands can be supplied to functional units"

Flop/BW ratios increase

Memory latency increases, single-chip NUMA

Bootcamp 1: Best Practices

http://on-demand.gputechconf.com/gtc/2015/video/S5353.html

Loads in Flight

Coalescing

Shared Memory & Bank Conflicts

Memory Level Parallelism

A stream of C5 Galaxy aircraft filled with microSD cards has amazing bandwidth but latency leaves something to be desired

Bootcamp 2: Beyond Best Practices

http://on-demand.gputechconf.com/gtc/2015/video/S5376.html

Opt-In L1 Caching - when it helps, when it hurts

Maximize data load size when applicable

Exploit Memory-Level-Parallelism:

Hoist Loads, in-thread latency hiding

Maximize loads in flight per thread

Bootcamp2: The Lost Slide

COLLABORATIVE APPROACH

- Keeps all threads alive for all iterations of all threads in the block
 - They will keep doing memory system work
- When the threadblock arrives at memory operations for a task which has completed
 - entire threadblock effectively does a continue;
 - Moves on quickly to issue next global memory transaction
 - Continues getting coalescing of the chunk(struct) load
- Divergence occurs "in-core" (in-SM)
 - Threads fall off the computation only in accessing shared

Bootcamp 2: The Lost Kernel

```
template<typename T, int MAX SUMMANDS, int OPS PER PASS>
 global void collaborative_access_small_summandVersatile (long n, long m,
                                      long * offsetArray,
                                      T * dataArray,
                                      int * iterationArray,
                                      int summands,
                                      T * results)
      shared long iterationOffset[COLABORATIVE CTA SIZE MAX];
      shared T sdata[OPS PER PASS][MAX SUMMANDS+1];
      shared T sResult[COLABORATIVE CTA SIZE MAX];
              int sIterCount[COLABORATIVE CTA SIZE MAX];
      shared
              int maxIt;
```

I Collect Quadro M6000s

All results are from Quadro M6000 (GM200)

AGENDA

Review of Bootcamp 1 and Bootcamp 2

Defining Collaborative Patterns

Reintroduce Bootcamp Kernel

Two collaborative versions of Bootcamp Kernel

Example: Signal Processing

Defining Collaborative Patterns

What Is Collaborative

<u>Collaborate:</u> To work together with others to achieve a common goal

Non-Exhaustive List of Collaborative Pattern Indicators:

Data dependency between threads, especially operation results

Number of outputs is less than number of active threads

Thread works on data it did not load

__syncthreads()

Collaborative Patterns: Memory Specific

Fundamental Principle: Minimize repeated or wasted memory traffic

- * Achieve Coalescing
- * Reuse data loaded by other threads

Focus on load/store structure of the algorithm

As opposed to inputs/outputs or compute structure

May result in threads that never issue 'math ops'

1D Stencil is Collaborative

Reminder: What is 1D Stencil

Reuse in 1D Stencil

Rather . . It should be collaborative

AGENDA

Review of Bootcamp 1 and Bootcamp 2

Defining Collaborative Patterns

Reintroduce Bootcamp Kernel

Two collaborative versions of Bootcamp Kernel

Example: Signal Processing

THE BOOTCAMP CODE

Access of a Single Task


```
template <typename T>
                                                              Type Abstraction
         global void reference algo (long n,
                                       long m,
                                       long * offsetArray,
Parallelism:
                                       T * dataArray,
M executions
                                       int * iterationArray, // Outer Loop Limit
                                       int summands,
                                        T * results)
           int idx = threadIdx.x + blockDim.x * blockIdx.x;
           int iterations = iterationArray[idx];
                                                             Random offset into dataArray
           if (idx >= m)
           { return;}
                                                                     Outer Loop (iterations)
           long offset = offsetArray[idx];
           for(int i=0; i<iterations; i++)◆</pre>
               for(int s=0; s<summands; s++)</pre>
                                                                      Inner Loop (Summands)
                   results[idx] += dataArray[offset + s];
               offset = offsetArray[offset]; 
                                                              New dataArray offset each Iteration
```

Baseline Performance

Kernel	Float perf (M iters/s)	Float Bandwidth (GB/s)	Double perf (M iters/s)	Double Bandwidth (GB/s)
Reference	145.79	18.67	91.71	23.50
Bootcamp2: LoadAs_u2	405.5	51.95	158.33	40.577

AGENDA

Review of Bootcamp 1 and Bootcamp 2

Defining Collaborative Access

Reintroduce Bootcamp Kernel

Two collaborative versions of Bootcamp Kernel

Example: Signal Processing

Collaborative Approach

Each task's starting location is random, but . . .

Subsequent loads (after the first) are not random

Chunk of seqential/stride-1 memory

Simulates reading a multi-word data structure in AoS fashion

Could we load that sequential data (struct) in a coalesced fashion?

Assume we cannot parallelize across iterations

Collaborative Approaches

- 1. Each thread block performs one task
 - Vector-style pattern

- 2. Each thread does one task, thread block collaborates on load
 - Collaborative memory pattern only
 - Compute structure remains similar

Collaborative Approach #1

Vector-Style Collaboration

"Restructure for Coalescing"

Each block performs the work of a single task

Instead of each thread

Collaborative Approach #1

Vector-Style kernel

```
Assumes (summands == blockDim.x),
 shared float sBuffer[MAX SUMMANDS];
                                                Condition checks omitted from slide
int offset = offsetArray[blockIdx.x];
for (int i=0; i<iterations; i++)</pre>
    float r = 0.0f;
    sBuffer[threadIdx.x] = dataArray[offset + threadIdx.x];
      syncthreads();
    if(threadIdx.x == 0)
                                                          Single Thread performs compute!
        for(int s=0; s<summands; s++)</pre>
             r += sBuffer[s];
        results[blockIdx.x] += r;
    offset = offsetArray[offset];
                                              blockldx.x == task id
```

Performance Report

Kernel	Float perf (M iters/s)	Float Bandwidth (GB/s)	Double perf (M iters/s)	Double Bandwidth (GB/s)
Reference	145.79	18.67	91.71	23.50
Bootcamp2: LoadAs_u2	405.5	51.95	158.33	40.577
Vector-Style	364.3	46.7	90.1	23.1

Sneaky Stuff

The code on the previous slide works as expected on

- > Single precision on all hardware
- > Double precision on full-throughput double precision hardware
 - Which GM200 is not

Single thread reduction is compute limiting due to double precision latency

Using a parallel reduction returns to our expectations

Performance Report

Kernel	Float perf (M iters/s)	Float Bandwidth (GB/s)	Double perf (M iters/s)	Double Bandwidth (GB/s)
Reference	145.79	18.67	91.71	23.50
Bootcamp2: LoadAs_u2	405.5	51.95	158.33	40.577
Vector-Style	364.3	46.7	90.1	23.1
Vector-Style w/Reduce	338.1	43.32	266.84	68.37

A Second Version

A Hybrid Kernel

- Single thread per task (like original kernel)
- Whole block performs load (like vector kernel)

Collaborative memory structure

- Threads join up and collaborate for loads, split up for compute
- > Can diverge in compute, must be kept alive

Collaborative Access Kernel

In Pseudocode

```
for i=1:iterations
   for each thread in the block
      coalesced load of data for this iteration into shared buffer
   end
   __syncthreads();
   for s=1:summands
      r += shared buffer[threadIdx.x][s];
   end
   update offsets for next iteration
   __syncthreads();
end for
Compute
Step
```

COLLABORATIVE LOAD

Shared Memory Buffer Each color is the data for one iteration of one task Data Array in Memory

COLLABORATIVE LOAD

Shared Memory Buffer Each color is the data for one iteration of one task Data Array in Memory

COLLABORATIVE LOAD

Shared Memory Buffer Each color is the data for one iteration of one task Data Array in Memory

Compute Step

B = blockDim.x

After the load step, each thread processes its data from shared memory

Collaborative Access Kernel

Assumes blockDim.x == summands, No bounds Checks on slide

```
shared long iterationOffset[THREADS PER BLOCK];
  shared float sdata[THREADS PER BLOCK][MAX SUMMANDS+1];
long idx = blockDim.x*blockIdx.x + threadIdx.x;
long offset = offsetArray[idx];
for(int i=0; i<iterations; i++)</pre>
    iterationOffset[threadIdx.x] = offset;
                                                                                   Load
    for(int s=0; s<THREADS PER BLOCK; s++)</pre>
    { sdata[s][threadIdx.x] = dataArray[iterationOffset[s] + threadIdx.x];}
                                                                                   Step
      syncthreads();
    float r = 0.0:
    for(int s=0; s<summands; s++)</pre>
                                              Compute
        { r+= sdata[threadIdx.x][s]; }
                                                Step
    result[idx] += r;
    offset = offsetArray[offset];
     syncthreads();
```

What It really looks like

Even at 32 threads per block (1 warp), sdata is 4kb(float) or 8kb(double).

Max Occupancy 15.6%(f) 7.8%(d)

Solution: Multiple passes per thread block

Shared buffer is 32xK. for K=8, sdata is 1024b or 2048b per block

All threads load, threads 0-7 perform computation

Only 25% of threads are doing 'computations'

K=8 and K=16 are best performers on GM200

Performance Report

Kernel	Float perf (M iters/s)	Float Bandwidth (GB/s)	Double perf (M iters/s)	Double Bandwidth (GB/s)
Reference	145.79	18.67	91.71	23.50
Bootcamp2: LoadAs_u2	405.5	51.95	158.33	40.577
Vector-Style	364.3	46.7	90.1	23.1
Vector-Style w/Reduce	338.1	43.32	266.84	68.37
Collaborative Load	736.0	94.3	452.76	116.02

Discussion Slide

32 threads per thread block, single precision

Kernel	Threads performing addition	Tasks per block	Performance GM200 (M iters/s)	Bandwidth GM200 (GB/s)
Reference	blockDim.x	blockDim.x	145.79	18.67
LoadAs	blockDim.x	blockDim.x	405.5	51.95
Vector-Style	1	1	364.3	46.7
Collaborative Access	<u>blockDim.x</u> K	blockDim.x	736.0	94.3

Comparing the Kernels

Why is the collaborative access better?

Loads In Flight (threadblock)

"But wait, there's more"

GM200 is Maxwell ...

... which doesn't have full throughput double precision

Shouldn't double precision be 1/32nd the speed of float?

Kernel	Performance		Bandwidth	
	M Iters/s	Vs. Float	GB/sec	Vs. float
Vector w/Reduce (float)	338.1	-	43.32	-
Vector w/Reduce (double)	266.84	78.9%	68.37	157.8%
Collaborative(float)	738.131	-	94.57	-
Collaborative(double)	452.9	61.4%	116.06	122.7%

One More Thing

Kernel	Float perf (M iters/s)	Float BW (GB/s)	M iters/GB
Reference	145.79	18.67	7.809
Bootcamp2: LoadAs_u2	405.5	51.95	7.805
Vector-Style	364.3	46.7	7.800
Collaborative	338.1	43.32	7.805

Kernel	Doubleperf (M iters/s)	Double BW(GB/s)	M iters/GB
Reference	91.71	23.50	3.907
Bootcamp2: LoadAs_u2	158.33	40.577	3.902
Vector-Style w/Reduce	266.84	68.37	3.903
Collaborative	452.76	116.02	3.902

AGENDA

Review of Bootcamp 1 and Bootcamp 2

Defining Collaborative Patterns

Reintroduce Bootcamp Kernel

Two collaborative versions of Bootcamp Kernel

Example: Signal Processing

Signal Processing: Multi-Convolution

Signal length: N Arbitrarily long Filter Length: M Very Small

Collaborative Implementation

One block per convolution, i.e., (filter, signal) pair

Each convolution is executed vector-like within the block

Filter is collaboratively loaded into shared memory (cached)

Signal is buffered in shared (cached)

Strong resemblance to 1D Stencil!

Signal Processing: Bank Convolution

Slide-Simplified kernel (no bounds checking)

```
shared float filterBuffer[filterLength];
  shared float signalBuffer[2*BLOCK SIZE];
int index = blockIdx.x:
filterBuffers[threadIdx.x] = filters[index][filterLength-threadIdx.x];}
signalBuffer[blockDim.x + threadIdx.x] = 0.0f;
                                                                      Collaborative
for(int i=0; i<signalLength; i+=blockDim.x)</pre>
                                                                       Loads are
                                                                       coalesced
     syncthreads();
    signalBuffer[threadIdx.x] = signalBuffer[blockDim.x + threadIdx.x];
    signalBuffer[blockDim.x + threadIdx.x] = signal[i*blockDim.x + threadIdx.x];
     syncthreads();
    float r = 0.0f;
    for(int t=0; t<filterLength; t++)</pre>
        r+= filterBuffers[t]*signalBuffer[t+threadIdx.x];
                                                                      Operands & results
    results[index][i*blockDim.x + threadIdx.x] = r;
                                                                      all in shared mem
```

Coalesced write

and registers

AGENDA

Review of Bootcamp 1 and Bootcamp 2

Defining Collaborative Patterns

Reintroduce Bootcamp Kernel

Two collaborative versions of Bootcamp Kernel

Example: Signal Processing

Specific Results

Kernel Investigated

- At 1/32nd throughput, one thread/block doing compute is a limiter in this code
- At 1/32nd throughput, parallel compute is not a limiter in this code
- At full throughput, 1 thread/block doing compute is not a limiter in this code
- Collaborative pattern worked well for bootcamp kerenel

General Observations

Collaborative patterns seem to use <u>__shared__</u> memory

Yes - in-block communication - collaboration requires communication
Collaborative patterns are good when there is data reuse

Yes - data reuse is a natural candidate for collaborative load structure

If code is <u>limited by the rate at which operands are delivered to functional units</u>:

- a). Optimization efforts should focus on operand delivery
- b). In collaborative kernels, some threads may not do any 'compute'

TROVE

https://github.com/bryancatanzaro/trove

A GPU Library from Bryan Catanzaro (of Deep Learning fame)

Library to allow access to AoS data structures

Gather large structures from random locations in GPU memory

Is This Code on github?

By far, the most frequently asked bootcamp question

The wait is over. . .

https://github.com/tscudiero/MemBootcamp

THANK YOU

JOIN THE CONVERSATION
#GTC16 **F**

