Cinética da redução do corante azul de toluidina pelo ião sulfito

Felipe Pinto	61387	MIEQB
Francisco Duarte	63754	LEQB
Lunara Maciel	54768	MIEQB
Sebastião Carvalhal	60823	MIEQB

Conteúdo

1	Teorico	2
2	Cálculos Pré-laboratoriais	3
3	Resultados	4
4	Dados	5

1 Teorico

No estudo da reação de redução do azul de toluidina TB⁺ pelo ião sulfito SO₃²⁻ descrita pela equação:

$$H_{2}N$$
 + SO_{3}^{2-} + $H_{2}O$ $H_{2}N$ + SO_{4}^{2-} + H^{+} TBH

O azul de toluidina TB^+ é um corante caraterizado por $\lambda_{max}=596\,\mathrm{nm}$ e por $\epsilon(596\,\mathrm{nm})=24000\,\mathrm{M}^{-1}\,\mathrm{cm}^{-1}$ em solução aquosa.[1] O ião sulfito reduz o azul de toluidina em branco de toluidina TBH. Esta reação segue uma cinética de 2^a ordem, dado que velocidade da reação é diretamente proporcional ao produto das concentrações dos reagentes, isto é, a velocidade da reação aumenta exponencialmente à medida que as concentrações dos reagentes aumentam:

$$v = k \left[\mathrm{SO_3^{-2}} \right]_0 \left[\mathrm{TB}^+ \right]$$

Como sabemos que o ião sulfito se encontra em excesso em comparação com o azul de toluidina, a sua concentração não irá variar significativamente durante a reação, o que nos permite estudar a reação como sendo de pseudo 1ª ordem. Assim a velocidade da reação depende apenas da concentração do reagente em menor quantidade, podendo ser aproximada a uma cinética de 1ª ordem

$$v=k'$$
 [TB⁺] $k'=k$ [SO₃²⁻]₀

Partindo da nova equação de velocidade, se integrarmos obtemos:

$$\ln [TB^{+}] = \ln [TB^{+}]_{0} - k't \iff \ln A = \ln A_{0} - k't$$

Através da lei de Lambert-Beer, $A = \varepsilon b[TB^+]$, sabemos que a TB^+ é diretamente proporcial à absorvância, (A), medida experimentalmente pelo espectrofotómetro. Assim conseguimos obter o valor de k' pelo declive da reta $\ln(A) \times \text{tempo}$.

Utilizando diferentes concentrações de $[SO_3^{2-}]_0$ para diferentes soluções, construimos um gráfico dos respetivos k' em função da concentração $[SO_3^{2-}]_0$ cujo declive da reta formada equivale ao valor do k, constante cinética da reação em estudo.

2 Cálculos Pré-laboratoriais

 TB^{+}

$$V_{Mae} = rac{ ext{mL}_{ ext{Mae}}}{2.0*10^{-4}\, ext{mol}_{ ext{TB}^+}} rac{2.0*10^{-5}\, ext{mol}_{ ext{TB}^+}}{ ext{mL}_{ ext{Sol}}} \, 20\, ext{mL}_{ ext{Sol}} = 2.0\, ext{mL}_{ ext{Mae}}$$

Na₂SO₃

$$V_{Mae} = \frac{\text{mL}_{Mae}}{0.20\,\text{mol}_{Na_2SO_3}} \, \frac{x\,\text{mol}_{Na_2SO_3}}{\text{mL}_{Sol}} \, 20\,\text{mL}_{Sol} = 100\,x\,\text{mL}_{Mae}$$

$$\frac{\text{mol}\,\text{dm}_{Na_2SO_3}^{-3}}{\text{mL}_{Mae}} \, \frac{0.02}{2} \, \frac{0.04}{4} \, \frac{0.06}{6} \, \frac{0.08}{8} \, \frac{0.10}{10}$$

$$\text{mL}_{Mae} \, \frac{2}{4} \, \frac{4}{6} \, \frac{6}{8} \, \frac{8}{10}$$

NaCl

$$V_{Mae} = rac{0.48999 - 3\,c_{
m Na_2SO_3}}{0.03}\,{
m mL_{Mae}}$$

$$V_{Mae} = \frac{\mathrm{mL_{Mae}}}{0.60\,\mathrm{mol_{NaCl}}}\,\frac{\mathrm{[NaCl]mol_{NaCl}}}{\mathrm{mL_{Sol}}}\,20\,\mathrm{mL_{Sol}} = \frac{\mathrm{[NaCl]}}{0.03}\,\mathrm{mL_{Mae}}$$

$$I = 0.49 = \frac{1}{2} \sum_{i=1}^{n} c_n z_n^2 = \frac{1}{2} \begin{pmatrix} 2.0 * 10^{-5} & * (+1)^2 + \\ + [\text{Na}_2 \text{SO}_3] * 2 & * (+1)^2 + \\ + [\text{Na}_2 \text{SO}_3] & * (-2)^2 + \\ + [\text{NaCl}] & * (+1)^2 + \\ + [\text{NaCl}] & * (-1)^2 \end{pmatrix} \begin{pmatrix} \text{TB}^+ \\ \text{(Na}^{2^+} \\ \text{(So}^{2^-}) \implies \\ \text{(Na}^{1^+} \\ \text{(Cl}^{1^-}) \end{pmatrix}$$

Volumes usados

Solução	TB ⁺ /mL	Na ₂ SO ₃ /mL	NaCl/mL	H ₂ O/mL
1	2	2	14	2
2	2	4	12	2
3	2	6	10	2
4	2	8	8	2
5	2	10	6	2

Volume Total: 20 mL

segundos para a primeira solução

Solução 2

-1.5

-2.5

-3

-3

Solução 1

Abs

0.306

0.314

0.

0.

Sc

0. 0. 0. 0. 0. 0. 0. 0.

0.

0

50

segundos para a quinta solução

ln(Abs)

 $-1.184\,17$

-1.15836

100

150 200

Tempo/s

30

64

250

Figura 5: Grafico apresentando o logaritimo neperiano em função do tempo em

Tempo/s

Solução 3

Abs

0.336

0.324

300 350 400 450 500 550 600 650

ln(Abs)

-1.09064

-1.12701

-1.16155

-1.20065

-1.22758

-1.36649

-1.39837

-1.43970

-1.46968

-1.51413

-1.54178

Tempo/s

30

59

90

121

149

270

298

330

359

389

420

568

593

622

-1.25878180 -1.30195212-1.33181239

0.014	1.100 00	04	0.024
0.305	-1.18744	83	0.313
0.292	-1.23100	113	0.301
0.288	-1.24479	150	0.293
0.283	-1.26231	197	0.284
0.280	-1.27297	221	0.272
0.277	-1.28374	240	0.264
0.274	-1.29463	271	0.255
0.271	-1.30564	317	0.247
0.270	-1.30933	335	0.237
0.269	-1.31304	367	0.230
0.265	-1.32803	393	0.22
0.266	-1.32426	419	0.214
0.262	-1.33941	452	0.203
0.259	-1.35093	483	0.198
0.254	-1.37042	507	0.191
0.253	-1.37437	539	0.184
0.248	-1.39433	570	0.176
0.245	-1.40650	607	0.171
0.242	-1.41882	635	0.166
0.237	-1.43970	663	0.159
0.236	-1.44392	695	0.154
0.234	-1.45243	725	0.147
0.233	-1.45672	754	0.143
0.229	-1.47403	783	0.138
0.226	-1.48722	813	0.134
0.227	-1.48281	841	0.127
0.223	-1.50058	872	0.122
0.221	-1.50959	901	0.119
0.218	-1.52326	932	0.115
0.217	-1.52786	962	0.110
0.212	-1.55117	989	0.106
0.209	-1.56542	1022	0.102

.262	-1.33941	452	0.20	-1.59455	452
.259	-1.35941 -1.35093	483	0.20		
.253	-1.37042	507	0.19		
.253	-1.37437	539	0.18		
.248	-1.39433	570	0.17		
.245	-1.40650	607	0.17		
.242	-1.40030 -1.41882	635	0.17		
.237	-1.43970	663	0.15		
.236	-1.44392	695	0.15		
.234	-1.45243	725	0.13		
233	-1.45672	754	0.14		750
229	-1.47403	783	0.14		
.226	-1.47403 -1.48722	813	0.13		
.227	-1.48722 -1.48281	841	0.13		
.223	-1.48281 -1.50058	872	0.12		
.223	-1.50058 -1.50959	901	0.12		
.221	-1.50959 -1.52326	901	0.11		
.218					
	-1.52786	962	0.11		
212	-1.55117	989	0.10		
209	-1.56542	1022	0.10		
206	-1.57988	1050	0.10		
.208	-1.57022	1078	0.09		
.203	-1.59455	1111	0.09		
.200	-1.60944	1139	0.08	$\frac{-2.41912}{-}$	114
oluçã	o 2		Solı	ıção 4	
4bs	ln(Abs)	Tempo/s	Abs	$s = \ln(Abs)$	Temp
337	-1.08767	32	0.31	7 -1.14885	29
330	-1.10866	60	0.29	-1.22758	60
324	-1.12701	91	0.27	0 -1.30933	92
.319	-1.14256	119	0.25	-1.37833	120
307	-1.18091	147	0.23	-1.46968	148
304	-1.19073	181	0.21	4 -1.54178	179
295	-1.22078	207	0.19	-1.63476	206
291	-1.23443	239	0.18	-1.69827	239
285	-1.25527	270	0.16	66 -1.79577	265
.282	-1.26585	298	0.15	-1.87080	297
.279	-1.27654	330	0.14	-1.95193	324
276	-1.28735	357	0.13	-2.00992	354
.270	-1.30933	388	0.12	-2.09557	382
265	-1.32803	415	0.11	-2.18037	412
.263	-1.33560	445	0.10	-2.22562	441
.257	-1.35868	474	0.09	-2.33304	471
.255	-1.36649	504	0.08	-2.41912	503
250	-1.38629	544	0.09	-2.36446	

0.270	-1.30933	388	0.123	-2.09557	382
0.265	-1.32803	415	0.113	-2.18037	412
0.263	-1.33560	445	0.108	-2.22562	441
0.257	-1.35868	474	0.097	-2.33304	471
0.255	-1.36649	504	0.089	-2.41912	503
0.250	-1.38629	544	0.094	-2.36446	531
0.248	-1.39433	563	0.072	-2.63109	562
0.246	-1.40242	593	0.067	-2.70306	589
0.240	-1.42712	622	0.063	-2.76462	619
0.238	-1.43548	653	0.059	-2.83022	649
0.236	-1.44392	682	0.056	-2.88240	678
0.234	-1.45243	715	0.053	-2.93746	708
0.227	-1.48281	744			
0.225	-1.49165	771	Soluçã	o 5 	
0.222	-1.50508	801	Abs	ln(Abs)	Tempo/s
0.218	-1.52326	831	0.314	-1.15836	32
0.215	-1.53712	858	0.289	-1.24133	64
0.215	-1.53712	888	0.263	-1.33560	91
0.212	-1.55117	918	0.239	-1.43129	121
0.210	-1.56065	950	0.217	-1.52786	149
0.208	-1.57022	978	0.194	-1.63990	181
0.205	-1.58475	1006	0.184	-1.69282	210
0.202	-1.59949	1034	0.189	-1.66601	239
0.198	-1.61949	1061	0.148	-1.91054	269
0.197	-1.62455	1092	0.142	-1.95193	302
0.193	-1.64507	1123	0.124	-2.08747	326
			0.114	-2.17156	361
			0.104	-2.26336	386
			0.096	-2.34341	417
			0.085	-2.46510	446
			0.082	-2.50104	475
			0.074	-2.60369	517
			0.071	-2.64508	534
			0.00	2 - 22 2-	Z 00

Calculando a constante cinética

Solução

	2	0.0005	0.04	
	3	0.0012	0.06	0.49
	4	0.0027	0.08	
	5	0.0030	0.10	
3				•
2				

 k'/s^{-1}

0.0004

0.065

0.060

0.056

 $[SO_3^{-2}]_0/M$

0.02

-2.73337

-2.81341

 $-2.88\overline{240}$

I/M

Figura 6: Grafico cruzando a constante cinética aparente com a concentração de

 $\vec{k}_{ ext{reação}} = \mathbf{0.037}\, ext{s}^{-1}\, ext{mol}^{-1}$

T / O C		k'/s^{-1}		
<i>T/</i> °C	Solução		$[SO_3^{-2}]_0/M$	I/M
	1	$5.75\mathrm{E}{-4}$	0.02	
	2	$1.10\mathrm{E}{-3}$	0.04	
20	3	$1.53\mathrm{E}{-3}$	0.06	0.3
	4	$2.11\mathrm{E}{-3}$	0.08	
	5	2.82 E-3	0.10	
	1	$7.35\mathrm{E}{-4}$	0.02	
	2	$1.62\mathrm{E}{-3}$	0.04	
22.5	3	$3.01\mathrm{E}{-3}$	0.06	0.3
	4	$2.29\mathrm{E}{-3}$	0.08	
	5	$3.87\mathrm{E}{-3}$	0.10	
	1	$8.16\mathrm{E}{-4}$	0.02	
	2	$1.50\mathrm{E}{-3}$	0.04	
25	3	$1.84\mathrm{E}{-3}$	0.06	0.3
	4	$2.40\mathrm{E}{-3}$	0.08	
	5	$3.33\mathrm{E}{-3}$	0.10	
	1	$9.17\mathrm{E}{-4}$	0.02	
30	2	$3.86\mathrm{E}{-3}$	0.06	0.3
	3	$5.73\mathrm{E}{-3}$	0.08	
	1	$1.20\mathrm{E}{-3}$	0.02	
	2	$2.05\mathrm{E}{-3}$	0.04	
31	3	$4.13\mathrm{E}{-3}$	0.06	0.3
	4	$4.83\mathrm{E}{-3}$	0.08	
	1	$5.29\mathrm{E}{-4}$	0.02	
	2	$9.71\mathrm{E}{-4}$	0.04	
20	3	$1.44\mathrm{E}{-3}$	0.06	0.39
20	$\frac{3}{4}$	$1.75\mathrm{E}{-3}$	0.08	0.07
	5	$2.01\mathrm{E}{-3}$	0.10	
	1	$5.46\mathrm{E}{-4}$	0.02	
21.0	2	$7.31\mathrm{E}{-4}$	0.04	0.40
21.9	3	$1.04\mathrm{E}{-3}$	0.06	0.48
	4	1.34 E-3	0.08	
	5	$\frac{1.69\mathrm{E}{-3}}{}$	0.10	
	1	$1.17\mathrm{E}{-3}$	0.02	
	2	$2.64\mathrm{E}{-3}$	0.04	
35	3	$3.66\mathrm{E}{-3}$	0.06	0.48
	4	$5.08\mathrm{E}{-3}$	0.08	
	5	$6.09\mathrm{E}{-3}$	0.10	
	1	$1.06\mathrm{E}{-3}$	0.02	0.06
	2	$8.30\mathrm{E}{-4}$	0.02	0.09
21	3	$8.33\mathrm{E}{-4}$	0.02	0.12
	4	$7.82\mathrm{E}{-4}$	0.02	0.15
	5	$4.48\mathrm{E}{-4}$	0.02	0.24
	1	$1.05\mathrm{E}{-3}$	0.02	0.06
	2	$9.86\mathrm{E}{-4}$	0.02	0.09
21	3	$9.02\mathrm{E}{-4}$	0.02	0.12
	4	$8.05\mathrm{E}{-4}$	0.02	0.15
	5	$7.37\mathrm{E}{-4}$	0.02	0.24
	1	$1.29\mathrm{E}{-3}$	0.02	0.06
	2	$1.27\mathrm{E}{-3}$	0.02	0.09
24	3	$1.07\mathrm{E}{-3}$	0.02	0.12
	4	$1.21\mathrm{E}{-3}$	0.02	0.15
	5	$1.01\mathrm{E}{-3}$	0.02	0.24