Homework 1

1 Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a basis of the vector space V. Let $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ be an ordered set of an arbitrary m vectors in this vector space.

Show that the set of vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ is linear dependent if $m \geq 4$.

Show that the ordered set of vectors $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ is a basis of V if and only if these three vectors are linear independent.

Show that the ordered set of vectors $\{a_1, a_2\}$ is not a basis of V.

Show that the ordered set of vectors $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ is not a basis of V in the case if $\mathbf{a_3} = 0$.

2 Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a basis of the vector space V.

Show that an arbitrary basis $\{\mathbf{e}_1', \mathbf{e}_2', \dots, \mathbf{e}_m'\}$ also possesses three vectors, i.e. if the ordered sets of vectors $\{\mathbf{e}_1', \mathbf{e}_2', \dots, \mathbf{e}_m\}$ in this vector space is also a basis, then m = 3.

3 Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a basis of the vector space V.

Is a set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ a basis of V in the case if

- a) $\mathbf{e}'_1 = \mathbf{e}_2, \, \mathbf{e}'_2 = \mathbf{e}_1, \, \mathbf{e}'_3 = \mathbf{e}_3;$
- b) $\mathbf{e}_1' = \mathbf{e}_1, \ \mathbf{e}_2' = \mathbf{e}_1 + 3\mathbf{e}_3, \ \mathbf{e}_3' = \mathbf{e}_3;$
- c) $\mathbf{e}'_1 = \mathbf{e}_1 \mathbf{e}_2, \ \mathbf{e}'_2 = 3\mathbf{e}_1 3\mathbf{e}_2, \ \mathbf{e}'_3 = \mathbf{e}_3;$
- d) $\mathbf{e}'_1 = \mathbf{e}_2$, $\mathbf{e}'_2 = \mathbf{e}_1$, $\mathbf{e}'_3 = \mathbf{e}_1 + \mathbf{e}_2 + \lambda \mathbf{e}_3$ (where λ is an arbitrary coefficient)?

4 Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^2 + x^3 y^3$ is a scalar product in \mathbf{R}^3 .

Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^2$ does not define scalar product in \mathbf{R}^3 .

Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^2 - x^3 y^3$ does not define scalar product in \mathbf{R}^3 .

Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + 3x^2 y^2 + 5x^3 y^3$ is a scalar product in \mathbf{R}^3 .

- **5** The matrix $T=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ obeys the conditions $T^tT=I$. Show that
- a) $\det T = \pm 1$
- b) if det T=1 then there exists an angle $\varphi:0\leq\varphi<2\pi$ such that $T=T_{\varphi}$ where

$$T_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \text{ (rotation matrix)}$$

- c) if det T=-1 then then there exists an angle $\varphi:0\leq\varphi<2\pi$ such that $T=T_{\varphi}R$, where $R=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$ (a reflection matrix).
- **6** Show that for matrix T_{φ} defined in the previous exercise the following relations are satisfied:

$$T_{\varphi}^{-1} = T_{\varphi}^t = T_{-\varphi} \,, \qquad T_{\varphi+\theta} = T_{\varphi} \cdot T_{\theta} \,\,.$$

7 Show that under the transformation $(\mathbf{e}_1', \mathbf{e}_2') = (\mathbf{e}_1, \mathbf{e}_2) T_{\varphi}$ an orthonormal basis transforms to an orthonormal one.

How coordinates of vectors change if we rotate the orthonormal basis $(\mathbf{e}_1, \mathbf{e}_2)$ on the angle $\varphi = \frac{\pi}{3}$ anticlockwise?

8 Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be an orthonormal basis of Euclidean space \mathbf{E}^3 . Consider the ordered set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ which is expressed via basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ as in the exercise 3.

Find out is the ordered set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ an orthonormal basis of \mathbf{E}^3 .

Write down explicitly transition matrix from the basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ to the ordered set of the vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$.

What is the rank of this matrix?

Is this matrix orthogonal?

(you have to consider all cases a),b) c) and d)).

- 9^{\dagger} . Show that an arbitrary orthogonal transformation of two-dimensional Euclidean space can be considered as a composition of reflections.
 - 10[†] Prove the Cauchy–Bunyakovsky–Schwarz inequality

$$(\mathbf{x}, \mathbf{y})^2 \le (\mathbf{x}, \mathbf{x})(\mathbf{y}, \mathbf{y}),$$

where \mathbf{x}, \mathbf{y} are arbitrary two vectors and (,) is a scalar product in Euclidean space.

Hint: For any two given vectors \mathbf{x}, \mathbf{y} consider the quadratic polynomial $At^2 + 2Bt + C$ where $A = (\mathbf{x}, \mathbf{x})$, $B = (\mathbf{x}, \mathbf{y})$, $C = (\mathbf{y}, \mathbf{y})^2$. Show that this polynomial has at most one real root and consider its discriminant.