Contents

1	$\mathbf{W}\mathbf{h}$	y Measure Software?
2	Met	trics
	2.1	Example metrics
	2.2	Main objectives of software quality metrics
	2.3	Software quality metrics Requirements
	2.4	Product metrics
	2.5	Types of measures
	2.6	Size oriented metrics
	2.7	Process metrics categories

1 Why Measure Software?

- To determine the quality of the current product or process and to make informed comparisons
- To predict qualities of a product/process
- To improve quality of a product/process (often continuously *kaizen*)

2 Metrics

2.1 Example metrics

- Error rates / Defect rates
- A defect is a failure to do something
- An error is a wrong result or illegal action
- Code generation rates. Measured by: per **person**, per **team**, per **project**. Will involve **aggregation** see later
- Errors should be categorized by origin, type etc.

2.2 Main objectives of software quality metrics

- Facilitate management control, planning and managerial intervention. Based on deviations of actual
 - performance from planned.
 - timetable and budget performance from planned.
- 2. Identify situations for development or maintenance process improvement (preventive or corrective actions). Based on:
 - Accumulation of metrics information regarding the performance of teams, units, etc.

2.3 Software quality metrics Requirements

General requirements:

- Relevant
- Valid
- Reliable
- Comprehensive
- Mutually exclusive

Operative requirements:

- Easy and simple
- Does not require independent data collection
- Immune to biased interventions by interested parties

2.4 Metrics evaluations

Metrics can be evaluated on:

- Products: Explicit results of software development activities. Deliverables, documentation, other artifacts produced
- Process: Activities related to production of software
- Resource: Inputs into the software development activities, such as hardware, knowledge, people.

2.5 Process metrics

Rates of production / productivity, quality of estimates, burn down rate (project velocity), refactoring rate. These can lead to **long term process improvement** by driving reflection on the process and suggestions for improvement

2.6 Product metrics

2.7 Types of measures

- Direct: Cost, effort, LOC, speed, memory
- Indirect: functionality, quality, efficiency, reliablity, maintainability

2.8 Size oriented metrics

- Size of software produced
- \bullet LOC Lines of Code or KLOC 1000 Lines of code
- SLOC statement lines of code (no whitespace)
- Number of function points (NFP)
- Open used as part of density CONT

2.9 Process metrics categories

- Software oricess quality metrics: Error density, severity metrics
- \bullet Sof

Reference section

measure

A quantitative indication of extent, amount, dimension, capacity, or size of some attribute of a product or process. for example: Lines of code (LOC), Number of errors

metric

quantitative measure of degree to which a system, component or process possesses a given attribute. That is to say a derived measure. May involve guesstimates where human processes are concerned. for example: Error density.

kaizen

An approach to **continuous** organization improvement with emphasis on continuous measure and understanding of process.