

Homotopietypentheorie

Oberseminar Theoretische Informatik

Florian Chudigiewitsch

Institut für Theoretische Informatik

Themen

- Geschichtliches
- Grundlagen der Typentheorie
- Homotopietypentheorie
- Anwendungen & Aktuelle Forschungsfragen

Russellsche Antinomie

Special Year on Univalent Foundations of Mathematics

Quellen und Referenzen

https://homotopytypetheory.org/book/ [Uni13]

Computerphile (Youtube)

- Type Theory
- Propositions as Types
- Voevodsky
- Homotopy Type Theory

Emily Riehl

- Video
- Slides

Grundlagen der Typentheorie

Konstruktivität

- Law of excluded middle (LEM) wichtiges Axiom in der klassischen Mathematik
 - $\vdash \phi \lor \neg \phi$
 - Ermöglicht Widerspruchsbeweise
- Konstruktive Logik verzichtet auf LEM
- Dadurch wird durch einen Beweis immer ein "Witness" erzeugt
- Keine wirkliche Einschränkung, da man LEM jederzeit als Annahme hinzunehmen kann
- Hilft "mentaler Hygiene": (Wo) brauche ich LEM wirklich?

Dependent Type Theory: Die vier "Grundaussagen"

□ ist der Kontext, der die Typen aller vorkommenen Variablen deklariert.

Die vier Grundformen ("judgements") der "wohlgeformten Formeln" der Dependent Type Theory sind:

Formel	Interpretation	Beispiel
Γ ⊢ <i>A</i> type	"A ist ein Typ"	N type
Γ ⊢ <i>a</i> : <i>A</i>	" $_a$ ist ein Term vom Typ $_A$ "	$1:\mathbb{N}$
$\Gamma, x : A \vdash B(x)$ type	" $B(x)$ ist eine Typfamilie über A "	$n: \mathbb{N} \vdash \mathbb{R}^n$ type
Γ , $x : A \vdash b(x) : B(x)$	" $b(x)$ ist eine Termfamilie"	$n: \mathbb{N} \vdash \vec{0}: \mathbb{R}^n$

Universum: Typ, dessen Elemente Typen sind. Bilden Hierarchie

$$\mathcal{U}_0:\mathcal{U}_1:\mathcal{U}_2:\cdots$$

Dependent Type Theory: Die vier "Grundregelschemata" I

- Name: ×-formation rules
- Beschreibung: Haben wir Typen A und B gegeben, gibt es einen Produkttypen $A \times B$.
- Formal:

$$\frac{\Gamma \vdash A \text{ type } \Gamma \vdash B \text{ type}}{\Gamma \vdash A \times B \text{ type}}$$

Dependent Type Theory: Die vier "Grundregelschemata" II

- Name: ×-introduction rules
- Beschreibung: Haben wir Terme a:A und b:B gegeben, gibt es einen Term $(a,b):A\times B$.
- Formal:

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B}{\Gamma \vdash (a, b) : A \times B}$$

Dependent Type Theory: Die vier "Grundregelschemata" III

- Name: ×-elimination rules
- Beschreibung: Haben wir einen Term $p: A \times B$ gegeben, gibt es Terme $pr_1(p): A$ und $pr_2(p): B$.
- Formal:

$$\frac{\Gamma \vdash p : A \times B}{\Gamma \vdash \operatorname{pr}_{1}(p) : A} \qquad \frac{\Gamma \vdash p : A \times B}{\Gamma \vdash \operatorname{pr}_{2}(p) : B}$$

Weiterhin: Judgemental equality (α -conversion), computation rules (β -reduction): verbinden introduction und elimination rules, optionales uniqueness principle (η -expansion).

Funktionstypen

- \rightarrow -formation: Haben wir Typen A und B gegeben, gibt es einen Typen $A \rightarrow B$.
- \rightarrow -introduction: Haben wir im Kontext eines Terms x:A einen Term b(x):B gegeben, gibt es einen Term $\lambda x.b(x):A\rightarrow B$. Formal:

$$\frac{\Gamma, x : A \vdash b(x) : B}{\Gamma \vdash \lambda x . b(x) : A \to B}$$

- \rightarrow -elimination: Haben wir Terme $f:A\rightarrow B$ und a:A gegeben, gibt es einen Term f(a):B.
- Zwei computation rules.

Propositions as Types

- Aussagen werden durch Typen repräsentiert
- Man beweist sie indem man einen Term vom entsprechenden Typ erzeugt

•

$$\frac{\mathsf{Beweise}}{\mathsf{Aussagen}} = \frac{\mathsf{Programme}}{\mathsf{Typen}}$$

- Klassisch: Prop <>>> Bool, "Wahrheit"
- Andere Möglichkeit: Prop <>>> Types, "Zeugnis"

Propositions as Types: Beispiel

Beispiel 1

Aussage: Für beliebige Typen P und Q gibt es den Term

modus-ponens :
$$P \times (P \rightarrow Q) \rightarrow Q$$
.

Beweis: Mit \rightarrow -introduction aus Term $x: P \times (P \rightarrow Q)$ einen Term aus Q generieren. \times -elimination liefert uns $\operatorname{pr}_1(x): P$ und $\operatorname{pr}_2(x): P \rightarrow Q$.

 \rightarrow -elimination liefert $(pr_2(x))(pr_1(x)) : Q$.

Somit: modus-ponens := $\lambda x.(pr_2(x))(pr_1(x))$.

Curry-Howard-Isomorphismus: Ein Beweis korrespondiert zu einem Computerprogramm, welches einen Term vom Typ der Aussage zurückgibt.

Gleichheit als Identitätstyp

Mathematische Gleichheit wird über Identitätstypen ausgedrückt.

- =-formation: Haben wir einen Typ A und zwei Terme x, y : A gegeben, gibt es einen Typ $x =_A y$.
- =-introduction: Haben wir einen Term x : A gegeben, so gibt es einen Term $refl_x : x =_A x$.

Elimination rule für $x =_A y$ via path induction:

Gleichheit ist eine Äquivalenzrelation

Lemma 2 Für beliebige
$$x, y : A$$
 gilt $(x =_A y) \rightarrow (y =_A x)$.

Beweis. Hausaufgabe. ©

Lemma 3 Für beliebige
$$x, y, z : A$$
 gilt $(x =_A y) \rightarrow ((y =_A z) \rightarrow (x =_A z))$.

Beweis.

Hausaufgabe. ©

Der "Stein von Rosette" für HoTT

Typen	Logik	Mengen	Homotopie
A	Aussage	Menge	Raum
a : A	Beweis	Element	Punkt
B(x)	Prädikat	Mengenfamilie	Faserung
b(x):B(x)	Bedingter Beweis	Elementfamilie	Schnitt
0, 1	⊥,⊤	\emptyset , $\{\emptyset\}$	∅, ⋆
A + B	$A \lor B$	Disjunkte Vereinigung	Coprodukt
$A \times B$	$A \wedge B$	Menge von Paaren	Produktraum
A o B	$A \Rightarrow B$	Menge von Funktionen	Funktionsraum
$\sum_{(x:A)} B(x)$	$\exists_{x:A}B(x)$	Disjunkte Summe	Totalraum
$\prod_{(x:A)} B(x)$	$\forall_{x:A}B(x)$	Produkt	Raum der Schnitte
Id_A	Gleichheit (=)	$\{(x,x)\mid x\in A\}$	Pfadraum <i>A</i> ¹

Path induction "homotopisch" interpretiert

- Term $a:A \longleftrightarrow Punkt a in A$
- Term $p: x =_A y \iff \mathsf{Pfad}\ p \ \mathsf{von}\ x \ \mathsf{nach}\ y \ \mathsf{in}\ A$
- Term p: p =_{x=AY} a ← Homotopie h von p nach q in A

- Symmetrie und Transitivität wird als Umkehrung und Komposition von Pfaden, Homotopien, höheren Homotopien... interpretiert.
- \bullet van den Berg/Garner und Lumsdaine: Typen haben die Struktur eines schwachen $\infty\text{-}\mathsf{Gruppoiden}$
- Unterschied: Homotopietheorie analytisch, Homotopietypentheorie synthetisch

Extensional vs. Intensional und UIP

Frage:

- "Uniqueness of identity proofs" (UIP): Wenn zwei Beweise p und q beide A zeigen, gilt dann immer p=q?
- Extensional: Ja, Intensional (hier): Nein
- Homotopie-Äquivalenzklassen von Schleifen an einem Punkt x_0 bilden die fundamentale Gruppe.

Weitere Typen – mit homotopischer Interpretation

- Typfamilie $x : A \vdash B(x)$ type \longleftrightarrow Faserung über A
- Dependent sum Typ ∑_{x:A} B(x) ← Totalraum einer Faserung
 Beispiel:

$$\mathsf{Gruppoid} :\equiv \sum_{A:\mathcal{I}} (A \to A \to A)$$

Weitere Typen – mit homotopischer Interpretation

- Typfamilie $x : A \vdash B(x)$ type \longleftrightarrow Faserung über A
- Dependent function Typ $\prod_{x:A} B(x) \iff$ Raum der Schnitte Beispiel:

swap:
$$\prod_{A:\mathcal{U}} \prod_{B:\mathcal{U}} (A \to B \to C) \to (B \to A \to C)$$

Kontrahierbare Typen

Definition 4: (Kontrahierbare Typen)

Es gibt einen eindeutigen Term vom Typ A gdw.

$$\sum_{a:A} \prod_{x:A} a =_A x$$

bewohnt ist, bzw. wenn der Raum A kontrahierbar ist.

Typenäquivalenz

Definition 5: (Typenäquivalenz)

Zwei Typen A und B sind äquivalent, wenn der Typ

$$A \simeq B :\equiv \sum_{h:A \to B} \left(\sum_{f:B \to A} \prod_{a:A} f(h(a)) =_A a \right) \times \left(\sum_{g:B \to A} \prod_{b:B} h(g(b)) =_B b \right)$$

bewohnt ist.

Univalenzaxiom

Man kann leicht beweisen, dass

$$(A = B) \rightarrow (A \simeq B).$$

Definition 6: (Univalenzaxiom (Voevodsky))

$$(A = B) \simeq (A \simeq B)$$

Was gibt es noch?

- HoTT und der λ-Kalkül
- Higher inductive types
 Typkonstruktoren können auch (höhere) Pfade erzeugen. Intervalltyp I:
 - Punkt 0₁ : 1
 - Punkt 1₁: /
 - Pfad seg : $0_{I} =_{I} 1_{I}$

Hausaufgabe: Kreis als higher inductive type definieren

• Beweistheorie in HoTT

Anwendungen & Aktuelle Forschungsfragen

Anwendungen

- Homotopietheorie
- Kategorientheorie
- Theorembeweiser
- Programmverifikation
- Funktionale Progammierung

Aktuelle Forschungsfragen

- Informelle Typentheorie
- Formalisierung der klassischen Mathematik in HoTT
- Konstruktivität des Univalenzaxioms (Cubical Type Theory)
- ullet HoTT auf diskreten Räumen (wie $\mathbb N$) führt zu vielen "unnötigen" Identitätstermen
 - Möglichkeit, diese zu kollabieren
- HoTT und Topoi
 - Intuitionistische Higher Order Logic ist die interne Sprache von 1-Topoi, HoTT könnte die von $(\infty,1)$ -Topoi sein

Wenn HoTT Grundlage der Mathematik sein kann, muss man mit ihr auch Komplexitätstheorie betreiben können!

- Klassische Komplexitätstheorie sehr "mengenzentriert"
- HoTT eng verbunden mit funktionalen Programmiersprachen

Motivierende Fragen

Betrachte fiktive Sprache \mathcal{L} : Funktional, total, mit Dependent Types.

- Ist die Korrektheit meines \mathcal{L} -Programmes effizient verifizierbar?
- ullet Kann ich verifizieren, dass mein $\mathcal{L} ext{-Programm}$ effizient ist?
- Ist ein Problem effizient lösbar und wie sieht der Algorithmus aus, der das Problem effizient löst?
- Kann ich die Daten meiner Datenbank effizient und korrekt migrieren?

Mögliche Ausgangspunkte

- Mathematische Strukturen sind "First Class Citizens" in HoTT
 - Kodierung egal
- Eher rekursionstheoretische Ansätze erforderlich [Con95]
 - Maschinenunabhängige Komplexitätstheorie
 - Implizite Komplexitätstheorie [Lag12]
 - Wird schon für lineare Typentheorien angewendet

Begriff der "Linearität" in HoTT*

Definition von Komplexitätsmaßen

Definition von Komplexitätsmaßen

Charakterisierung von effizienter Berechenbarkeit [BC]

Fragen?

Danke!

Quellenverweise i

- Robert Atkey. Syntax and Semantics of Quantitative Type Theory. 2018.

 DOI: https://doi.org/10.1145/3209108.3209189.
- Stephen Bellatoni und Stephen Cook. A New Recursion-Theoretic Characterization of the Polytime Functions. URL: https://www.cs.toronto.edu/~sacook/homepage/ptime.pdf.
- R.L. Constable. "Expressing computational complexity in constructive type theory". In: Leivant D. (eds) Logic and Computational Complexity (1995).

 DOI: https://doi.org/10.1007/3-540-60178-3_82.

Quellenverweise ii

- U. Dal Lago. "A Short Introduction to Implicit Computational Complexity". In: Bezhanishvili N., Goranko V. (eds) Lectures on Logic and Computation (2012). DOI: https://doi.org/10.1007/978-3-642-31485-8_3.
- Conor McBride. I Got Plenty o' Nuttin'. URL: https:
 //personal.cis.strath.ac.uk/conor.mcbride/Plenty0-CR.pdf.
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.