3. CSMA (Carrier Sensing Multiple Access)

- A station senses the channel before it starts transmission
 - If idle, start transmission
 - → If busy, either wait or schedule backoff (different options)

Cpr E 489 -- D.Q. 4.7

Vulnerable Period

Vulnerable period is now $2t_{\text{prop}}$ seconds long

Three CSMA Options

- 1-Persistent CSMA
- Non-Persistent CSMA
- P-Persistent CSMA

Cpr E 489 -- D.Q. 4.9

Throughput of 1-Persistent CSMA

 Normalized one-way delaybandwidth product (denote by a)

$$a = \frac{t_{prop}R}{I_{\cdot}} = \frac{t_{prop}}{X}$$

- It is better than ALOHA & Slotted ALOHA for small a
- It is worse than ALOHA when a > 1
- It is worse than Slotted ALOHA when a > 0.5

Throughput of Non-Persistent CSMA

- It achieves higher throughput than 1persistent CSMA
- It is worse than ALOHA when a > 1
- It is worse than Slotted ALOHA when a > 0.5

Cpr E 489 -- D.Q. 4.11

4. CSMA/CD (CSMA with Collision Detection)

- In both ALOHA and CSMA schemes, collisions involve entire frame transmissions
- The amount of the wasted bandwidth can be reduced by aborting the transmission as soon as a collision is detected
 - ▶ If a collision is detected during the transmission, the station
 - aborts the transmission
 - sends a short jamming signal to ensure that other stations know that a collision has occurred, and
 - use a backoff algorithm to schedule a future re-sensing time

IEEE 802.3 MAC Protocol

- 1-Persistent CSMA/CD with Truncated Binary Exponential Backoff
 - Collision resolution: Truncated Binary Exponential Backoff
 - If a station has experienced the nth collision in a row for a frame, it selects an integer value (K) at random from {0, 1,, 2^m-1} where m = min(n, 10) and waits for K mini-slots (each mini-slot = 2t_{prop}) before sensing again
 - The increasing range of selection for backoff after each collision is intended to increase the likelihood that re-transmission will succeed
 - Up to 16 re-transmission attempts will be allowed, after which the system gives up

Cpr E 489 – D.Q. 4.13

CSMA/CD Reaction Time

 It takes A up to 2t_{prop} time to find out whether it has captured the channel successfully

Minimum Frame Size in IEEE 802.3 Ethernet

- Observation: the transmitter must keep transmitting (i.e., hold the carrier) for the entire 2t_{prop} period, in order to detect whether its own frame is involved in a collision
- Example:
 - Transmission rate = 10 Mbps
 - Maximum distance = 2500 m (500 m segments & 4 repeaters)
 - Mini-slot time = $2t_{prop}$ = 2×2500 m / $(2 \times 10^8$ m/s) = $25 \mu s$
 - Absolute minimum frame size is 25 μs x 10 Mbps = 250 bits
 - ▶ IEEE 802.3 standard requires 512 bits = 64 bytes
- So, when the transmission rate increases, in order for CSMA/CD to operate correctly, we need to
 - Increase the minimum frame size, or
 - Reduce the maximum distance between two stations

Cpr E 489 -- D.Q. 4.15

<u>Throughput Comparison of Random Access Approaches</u>

- For small a: CSMA/CD has the best throughput
- For large a: ALOHA & Slotted ALOHA yield better throughput