BÀI TOÁN ĐƯỜNG ĐI NGẮN NHẤT

- Các khái niệm
- Thuật toán Dijkstra
- Thuật toán Floyd-Warshall

CÁC KHÁI NIỆM

- Cho đồ thị G=(V, E) có trọng số, |V|=n, |E|=m
 - Nếu (u, v) \in E thì w(u, v) = α < ∞
 - Ngược lại (u, v)∉ E thì coi w(u, v) = ∞
 - Trọng số của đường đi $P=v_0, v_1,...v_k$ là $w(P)=\sum_{i=1,k}w(v_{i-1}, v_i)$

CÁC KHÁI NIỆM

Trọng số của đường đi ngắn nhất từ u đến v là

•
$$d(u, v) = \begin{cases} \min\{w(p)\}, \text{ n\'eu c\'o dường đi p từ u đến v} \\ \infty \text{ n\'eu ngược lại} \end{cases}$$

 Một đường đi p từ u đến v mà w(p)=d(u, v) gọi là đường đi ngắn nhất từ u đến v (cũng gọi d(u, v) là khoảng cách từ u đến v)

• **Bài toán:** Tìm các đường đi ngắn nhất từ một đỉnh s đến mọi đỉnh khác trong một đồ thị có trọng số không âm

Ý tưởng

- Ký hiệu d[v] là một cận trên của d(s,v), thuật toán kiểm tra và giảm d[v] cho đến khi d[v]=d(s, v)
 - Nếu d[v]>d[u]+w(u,v) thì làm tốt cận trên d[v] bằng cách gán
 d[v]= d[u]+w(u,v) (gọi là relaxation)
 - Nếu d[v] đã tốt nhất thì đưa v vào trong tập S = {v ∈V | d[v]
 =d(s, v)}, lúc này d[v] là độ dài đường đi ngắn nhất từ s đến v

Figure 24.3 Relaxation of an edge (u, v) with weight w(u, v) = 2. The shortest-path estimate of each vertex is shown within the vertex. (a) Because d[v] > d[u] + w(u, v) prior to relaxation, the value of d[v] decreases. (b) Here, $d[v] \le d[u] + w(u, v)$ before the relaxation step, and so d[v] is unchanged by relaxation.

```
RELAX(u, v, w)

1 if d[v] > d[u] + w(u, v)

2 then d[v] \leftarrow d[u] + w(u, v)

3 \pi[v] \leftarrow u
```

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S \leftarrow \emptyset

3 Q \leftarrow V[G]

4 while Q \neq \emptyset

5 do u \leftarrow \text{EXTRACT-MIN}(Q)

6 S \leftarrow S \cup \{u\}

7 for each vertex v \in Adj[u]

8 do RELAX(u, v, w)
```

```
INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v \in V[G]

2 do d[v] \leftarrow \infty

3 \pi[v] \leftarrow \text{NIL}

4 d[s] \leftarrow 0
```


Figure 24.6 The execution of Dijkstra's algorithm. The source s is the leftmost vertex. The shortest-path estimates are shown within the vertices, and shaded edges indicate predecessor values. Black vertices are in the set S, and white vertices are in the min-priority queue Q = V - S. (a) The situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the minimum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration. The d and π values shown in part (f) are the final values.

 Bài toán: Tìm các đường đi ngắn nhất giữ mọi cặp đỉnh của đồ thị G= (V, E)

Ý tưởng

 Gọi d_{ij}^(k) là độ dài đường đi ngắn nhất P từ i đến j, qua nhiều nhất k đỉnh trung gian, thì

- Ma trận D⁽ⁿ⁾= (d_{ij}⁽ⁿ⁾) là ma trận khoảng cách (độ dài đường đi ngắn nhất giữa các cặp đỉnh i và j
- Giải thuật tính d_{ij}⁽¹⁾, d_{ij}⁽²⁾, ..., d_{ij}⁽ⁿ⁻¹⁾ và d_{ij}⁽ⁿ⁾ qua một vòng lặp k=1, 2, ..., n
- Các ma trận $\pi^{(k)} = (\pi_{ij}^{(k)})$ là các ma trận đường đi tương ứng qua nhiều nhất k đỉnh trung gian (với k=0, $\pi_{ij}^{(0)} = j$ nếu có cạnh (i, j) và $\pi_{ii}^{(0)} = 0$ nếu ngược lại)

```
Floyd-Warshall(G, W) // \pi_{ij} là đỉnh trước j (sau i)
    n \leftarrow rows[W[G]]
2 D ←W
3 for i \leftarrow 1 to n
          do for j ←1 to n
4
5
                   do if w(i, j) < \infty then \pi_{ii} \leftarrow j else \pi_{ii} \leftarrow 0
    for k \leftarrow 1 to n
          do for i \leftarrow 1 to n
8
              do for j \leftarrow 1 to n
9
                       do if d_{ii} > d_{ik} + d_{ki}
9
                                then d_{ij} \leftarrow d_{ik} + d_{kj}
11
                                         \pi_{ii} \leftarrow \pi_{ik}
12 return D
```


k=0

D(0)

 $\pi^{(0)}$

∞	7	5	8
∞	8	7	6
8	8	8	8
4	1	11	8

0	2	3	0
0	0	3	4
0	0	0	0
1	2	3	0

k=1

 $D^{(1)}$

 $\pi^{(1)}$

∞	7	5	∞
∞	8	7	6
8	8	8	8
4	1	9	8

0	2	3	0
0	0	3	4
0	0	0	0
1	2	1	0

k=2

 $D^{(2)}$

 $\pi^{(2)}$

∞	7	5	13
∞	∞	7	6
8	8	8	8
4	1	8	7

0	2	3	2
0	0	3	4
0	0	0	0
1	2	2	2

k=3

D(3)

 $\pi^{(3)}$

∞	7	5	13
∞	8	7	6
∞	8	8	8
4	1	8	7

0	2	3	2
0	0	3	4
0	0	0	0
1	2	2	2

k=4

 $D^{(4)}$

 $\pi^{(4)}$

17	7	5	13
10	7	7	6
∞	8	8	8
4	1	8	7

2	2	3	2
4	4	3	4
0	0	0	0
1	2	2	2

- Để tìm đường đi ngắn nhất từ i đến j, sử dụng công thức truy hồi:
- i, π_{ij} , $\pi_{\pi_{ij}}$ j, ..., j

- Ví dụ: $d(1, 4) = D^{(4)}_{1,4} = 13$ nên
 - \rightarrow 1 \rightarrow $\pi_{1,4} = 2 \rightarrow \pi_{2,4} = 4$
 - \blacktriangleright Đường đi ngắn nhất $1 \rightarrow 2 \rightarrow 4$

- Đồ thị có hướng sẽ liên thông mạnh nếu mọi phần tử không thuộc đường chéo chính trong ma trận khoảng cách có giá trị hữu hạn
- Nếu D⁽ⁿ⁾_{ii} < ∞ thì đồ thị có chu trình chứa đỉnh i

 Để tìm đường đi ngắn nhất trong đồ thị vô hướng thì thay thế cạnh e=(u, v) bởi hai cạnh có hướng (u, v) và (v, u) có cùng trọng số với e