5010 Go Deeper

Here is a procedure's pseudocode:

```
\label{eq:continuous} \begin{array}{ll} \text{go(int $dep$, int $n$, int $m$)} \\ \text{begin} \\ \text{output the value of $dep$.} \\ \text{if $dep$ < $m$ and $x[a[dep]]$ + $x[b[dep]]$ != $c[dep]$ then $\gcd(dep+1,n,m)$ end } \end{array}
```

In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than a. Array a consists of only 0 and 1. Array a consists of only 0, 1 and 2. The lengths of array a, a and a are a while the length of array a is a.

Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value does the procedure output?

Input

There are multiple test cases. The first line of input is an integer T ($0 < T \le 100$), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m ($0 < n \le 200$, $0 < m \le 10000$). Then m lines of 3 integers follow. The i-th ($1 \le i \le m$) line of them are a_{i-1} , b_{i-1} and c_{i-1} ($0 \le a_{i-1}$, $b_{i-1} < n$, $0 \le c_{i-1} \le 2$).

Output

For each test case, output the result in a single line.

Sample Input

0 0 0

2 2

0 1 0

1 1 2

Sample Output

1 1

2