CS221: Digital Design

FSM Optimization: Implication Chart Method

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

<u>Outline</u>

- FSM State Optimization
 - Row Matching Method (Last Class)
 - Partitioning Method (Last Class)
 - -Implication Chart Method
- FSM State Encoding
 - Binary, gray, One-hot
 - -Heuristic Based

FSM State Minimization

- Minimizing number of state reduce
 - Requirement of bigger size state register
 - Possibly reduce the CCC

Some Definitions

- State Equivalence: S1 and S2 are equivalent if for every input sequence applied to machine goes to same NS and Output
 - If S1(t+1)=S2(t+1) and Z1=Z2 then S1=S2

 Distinguishable States: Two states S1 and S2 are Distinguishable iff there exist at least one finite input sequence which produce different outputs from S1 and S2

Methods

- Row Matching Method or Partitioning Method
- Implication Chart Method

FSM Reduction: Implication Chart Method

Problem:

Single input X, Single output Z

Output a 1 whenever the serial sequence 010 or 110 has been observed at the inputs

Input Sequence	Present State		State X=1	Outp X=0	
Reset	S ₀	S ₁	S ₂	0	0
0	S ₁	S_3	$S_{\underline{A}}$	0	0
1	S_2	S_3 S_5	S_6	0	0
00	S_3		S	0	0
01	S_4°	S	S	1	0
10	S_{5}^{T}	S _o S _o	S_0	0	0
11	S_6°	S_0	S_0°	1	0

Enumerate all possible combinations of states taken two at a time

Naive Data Structure: X_{ij} will be the same as X_{ji} Also, can eliminate the diagonal

Filling in the Implication Chart

Entry X_{ij} — Row is S_i , Column is S_j

 \mathbf{S}_{i} is equivalent to \mathbf{S}_{j} if outputs are the same and next states are equivalent

 X_{ij} contains the next states of S_i , S_j which must be equivalent if S_i and S_j are equivalent

If $\mathbf{S_i}$, $\mathbf{S_j}$ have different output behavior, then $\mathbf{X_{ij}}$ is crossed out

If S_i , S_j have different output behavior, then X_{ij} is crossed out

Input _I	P State	NS ,X=0 X=1,		Output X=0 X=1	
-				0	\circ
Reset	$\mathcal{S}_{\mathbb{C}}$		၂	O	U
0	S	S	S	0	0
1	S	S	S	0	0
00	S ₃	S	S	0	0
01	S	နွိ	ທ [∾] ທ [ູ] ທ [ູ] ທ [ູ] ທ [ູ] ທ [ູ] ທ [ູ]	1	0
10	S ₅	နှ	S	0	0
11	᠕ [ႍ] ᠕ [ႍ] ᠕ ^᠕ ᠕ ^ᢁ ᠕ ^ᢋ ᠕ ^ᢧ ᠕ ^᠖	ທ [ຼ] ທ [ູ] ທ [ູ] ທ [ູ] ທ [ູ] ທ [ູ] ທ [ູ]	S	1 10	0

Starting Implication Chart

If Si, Sj have different output behavior, then Xij is crossed out

S4 have different out put behavior with S0, S1, S 2, S3, S5 S6 have different out put behavior with S0, S1, S 2, S3, S5

الم مراد		NS Y-0 Y-1		Output X=0 X=1	
Input	P State	I^{™0}	X=1	∧= U	∕ = I
Reset	S	S	S	0	0
0	S ₀ S ₁	S ₃	S	0	0
1	<u>•</u>	S	᠀ᠬ᠕ᢋ᠙᠙᠐᠐᠐	0	0
00	S	S	S ₀	0	0
01	S	Š	S ₀	1	0
10	S	နှို	S ₀	0	0
11	$\mathcal{S}^{2}\mathcal{S}^{3}\mathcal{S}^{4}\mathcal{S}^{5}\mathcal{S}^{6}$	ທ [ຼ] ທ [ູ] ທູ ^ດ ທ [ູ] ທ [ູ] ທ [ູ]	S	1 11	0

11

Second Pass Adds No New Information

Second Pass Adds No New Information

Final: Reduce State Tabe

Reduces State table

	NS			Output		
Input	P State	I ^{X=0}	X=1	X=0	X =1	
Reset	S	S	S	0	0	
0	Sı	S	S	0	0	
1	S	S	S	0	0	
00	S ₃	S	S	0	0	
01	$S_{\underline{4}}$	S	S	1	0	
10	$S_{\overline{5}}$	S	S	0	0	
11	$\mathcal{S}^{\circ}\mathcal{S}^{\scriptscriptstyle{\perp}}\mathcal{S}^{\scriptscriptstyle{lpha}}\mathcal{S}^{\scriptscriptstyle{lpha}}\mathcal{S}^{\scriptscriptstyle{lpha}}\mathcal{S}^{\scriptscriptstyle{4}}\mathcal{S}^{\scriptscriptstyle{5}}\mathcal{S}^{\scriptscriptstyle{6}}$	$S^{\circ}S^{\circ}S^{\circ}S^{\circ}S^{\circ}S^{\circ}S^{\circ}S^{\circ}$	᠀ᠬ᠕ᡩ᠕᠖᠐᠐᠐᠐	1	0	

Input	PS	NS		Output	
		X=0	X=1	X=0	X=1
Reset	SO	S1'	S1'	0	0
0 or 1	S1'	S3'	S4'	0	0
00 or 10	S3'	SO	SO	0	0
01 or 11	S4'	SO	SO	1	0