Prove que a solução geral de

$$\mathbf{X'} = \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} t^2 + \begin{pmatrix} 4 \\ -6 \end{pmatrix} t + \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$

no intervalo (-∞, ∞) é

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ -1 - \sqrt{2} \end{pmatrix} e^{\sqrt{2}t} + c_2 \begin{pmatrix} 1 \\ -1 + \sqrt{2} \end{pmatrix} e^{-\sqrt{2}t} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} t^2 + \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

[8.5.2] Nos Problemas 27-30, os vetores coluna indicados formam um conjunto fundamental de soluções, em $(-\infty,\infty)$, para o sistema dado. Forme uma matriz fundamental $\Phi(t)$ e calcule $\Phi^{-1}(t)$.

27.
$$\mathbf{X}' = \begin{pmatrix} 4 & 1 \\ 6 & 5 \end{pmatrix} \mathbf{X}; \quad \mathbf{X}_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{2t}, \quad \mathbf{X}_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{7t}$$

28.
$$\mathbf{X}' = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \mathbf{X}; \quad \mathbf{X}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t}, \quad \mathbf{X}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{5t}$$

29.
$$\mathbf{X'} = \begin{pmatrix} 4 & 1 \\ -9 & -2 \end{pmatrix} \mathbf{X}; \quad \mathbf{X}_1 = \begin{pmatrix} -1 \\ 3 \end{pmatrix} e^t, \quad \mathbf{X}_2 = \begin{pmatrix} -1 \\ 3 \end{pmatrix} t e^t + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^t$$

30.
$$\mathbf{X}' = \begin{pmatrix} 3 & -2 \\ 5 & -3 \end{pmatrix} \mathbf{X}; \quad \mathbf{X}_1 = \begin{pmatrix} 2\cos t \\ 3\cos t + \sin t \end{pmatrix}, \quad \mathbf{X}_2 = \begin{pmatrix} -2\sin t \\ \cos t - 3\sin t \end{pmatrix}$$

- 31. Ache a matriz fundamental $\Psi(t)$ que satisfaz $\Psi(0)$ = I para o sistema dado no Problema 27.
- 32. Ache a matriz fundamental $\Psi(t)$ que satisfaz $\Psi(0) = I$ para o sistema dado no Problema 28.
- 33. Ache a matriz fundamental $\Psi(t)$ que satisfaz $\Psi(0) = I$ para o sistema dado no Problema 29.
- 34. Ache a matriz fundamental $\Psi(t)$ que satisfaz $\Psi(\pi/2) = 1$ para o sistema dado no Problema 30.
- 35. Se $X = \Phi(t)C$ é a solução geral de X' = AX, mostre que a solução do problema de valor inicial X' = AX, $X(t_o) = X_o$, é $X = \Phi(t)\Phi^{-1}(t_o)X_o$.
- 36. Mostre que a solução do problema de valor inicial dada no Problema 35 é também dada por $X = \Psi(t)X_{\circ}$.
- 37. Mostre que $\Psi(t) = \Phi(t)\Phi^{-1}(t)$. [Sug.: Compare os Problemas 35 e 36.]

8.6 SISTEMAS LINEARES HOMOGÊNEOS

8.6.1 Autovalores Reals Distintos

No decorrer deste capítulo, trabalharemos apenas com sistemas lineares com coeficientes reais constantes.

No Exemplo 9 da Seção 8.5, vimos que a solução geral do sistema homogêneo

$$\frac{dx}{dt} = x + 3y$$

$$\frac{dy}{dt} = 5x + 3y$$

é

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}.$$

Como ambos os vetores solução apresentam a forma básica

$$\mathbf{X}_i = \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} e^{\lambda_i t}, \quad i = 1, 2.$$

 k_1 e k_2 constantes, somos levados a indagar se é sempre possível achar uma solução da forma

$$\mathbf{X} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} e^{\lambda t} = \mathbf{K} e^{\lambda t} \tag{1}$$

para o sistema linear homogêneo de primeira ordem

$$X' = AX \tag{2}$$

onde A é uma matriz de constantes $n \times n$.

Autovalores e Autovetores

Se (1) deve ser um vetor solução de (2), então $\mathbf{X}' = \mathbf{K} \lambda e^{\lambda t}$ de modo que o sistema se torna

$$K\lambda e^{\lambda t} = AK\lambda e^{\lambda t}$$
.

Dividindo por $e^{\lambda t}$ e reordenando, obtemos

$$AK = \lambda K$$

ou

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{K} = \mathbf{0}. \tag{3}$$

A Equação (3) é equivalente às equações algébricas simultâneas (8) da Seção 8.4. Para achar uma solução X não-trivial de (2), devemos achar um vetor não-trivial K que satisfaça (3). Mas para que (3) tenha soluções não-triviais, devemos ter

$$\det\left(\mathbf{A}-\lambda\mathbf{I}\right)=0.$$

Reconhecemos nessa última equação a equação característica da matriz **A**. Em outras palavras, $\mathbf{X} = \mathbf{K}e^{\lambda t}$ será uma solução do sistema de equações diferenciais (2) se e somente se λ for um **autovalor** de **A** e **K** um **autovetor** correspondente a λ .

Quando a matriz $n \times n$ A possui n autovalores reais distintos $\lambda_1, \lambda_2, \dots, \lambda_n$, então sempre se pode achar um conjunto de n autovetores linearmente independentes $\mathbf{K}_1, \mathbf{K}_2, \dots, \mathbf{K}_n$ e

$$\mathbf{X}_1 = \mathbf{K}_1 e^{\lambda_1 t}, \ \mathbf{X}_2 = \mathbf{K}_2 e^{\lambda_2 t}, \ ..., \ \ \mathbf{X}_n = \mathbf{K}_n e^{\lambda_n t}$$

é um conjunto fundamental de soluções de (2) em $(-\infty, \infty)$.

TEOREMA 8.9 Solução Geral – Sistemas Homogêneos

Sejam $\lambda_1, \lambda_2, \dots, \lambda_n$ n autovalores reais distintos da matriz de coeficientes **A** do sistema (2), e sejam $\mathbf{K}_1, \mathbf{K}_2, \dots, \mathbf{K}_n$ os autovetores correspondentes. Então a **solução geral** de (2) no intervalo $(-\infty, \infty)$ é dada por

$$\mathbf{X} = c_1 \mathbf{K}_1 e^{\lambda_1 t} + c_2 \mathbf{K}_2 e^{\lambda_2 t} + \dots + c_n \mathbf{K}_n e^{\lambda_n t}$$

EXEMPLO 1

Resolva

$$\frac{dx}{dt} = 2x + 3y$$

$$\frac{dy}{dt} = 2x + y.$$
(4)

Solução Inicialmente achamos os autovalores e os autovetores da matriz de coeficientes.

A equação característica é

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 3 \\ 2 & 1 - \lambda \end{vmatrix} = \lambda^2 - 3\lambda - 4 = 0.$$

Como $\lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4)$, notamos que os autovalores são $\lambda_1 = -1$ e $\lambda_2 = 4$. Para $\lambda_1 = -1$, (3) é equivalente a

$$3k_1 + 3k_2 = 0$$
$$2k_1 + 2k_2 = 0.$$

Assim, $k_1 = -k_2$. Quando $k_2 = -1$, o autovetor correspondente é

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
.

Para $\lambda_2 = 4$, temos

$$-2k_1 + 3k_2 = 0$$
$$2k_1 - 3k_2 = 0$$

de forma que $k_1 = 3k_2/2$ e, assim, com $k_2 = 2$, o autovetor correspondente é

$$\mathbf{K}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Como a matriz A de coeficientes é uma matriz 2×2 , e como achamos duas soluções linearmente independentes de (4),

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} \quad \mathbf{e} \quad \mathbf{X}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{4t},$$

concluímos que a solução geral do sistema é
$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{4t}. \tag{5}$$

Para fins de revisão, o leitor deve ter em mente que uma solução de um sistema de equações diferenciais de primeira ordem, quando escrita em termos de matrizes, nada mais é do que uma alternativa para o método que empregamos na Seção 8.1, a saber, listar as funções individuais e as relações entre as constantes. Somando os vetores dados em (5), obtemos

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} c_1 e^{-t} + 3c_2 e^{4t} \\ -c_1 e^{-t} + 2c_2 e^{4t} \end{pmatrix}$$

o que, por seu turno, dá as relações mais familiares

$$x(t) = c_1 e^{-t} + 3c_2 e^{4t}$$

$$y(t) = -c_1 e^{-t} + 2c_2 e^{4t}.$$

EXEMPLO

Resolva

$$\frac{dx}{dt} = -4x + y + z$$

$$\frac{dy}{dt} = x + 5y - z$$

$$\frac{dz}{dt} = y - 3z.$$
(6)

Tomando os co-fatores da terceira linha, obtemos

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -4 - \lambda & 1 & 1 \\ 1 & 5 - \lambda & -1 \\ 0 & 1 & -3 - \lambda \end{vmatrix} = -(\lambda + 3)(\lambda + 4)(\lambda + 5) = 0$$

e assim os autovalores são $\lambda_1 = -3$, $\lambda_2 = -4$ e $\lambda_3 = 5$.

Para $\lambda_1 = -3$, a eliminação de Gauss-Jordan dá

$$(\mathbf{A} + 3\mathbf{I} \mid \mathbf{0}) = \begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 8 & -1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
 operações com linhas
$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} .$$

Portanto, $k_1 = k_2$, $k_2 = 0$. A escolha $k_3 = 1$ dá o autovetor

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}. \tag{7}$$

23

Analogamente, para $\lambda_{\gamma} = -4$,

$$(\mathbf{A} + 4\mathbf{I} \mid \mathbf{0}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 9 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
 operações com linhas
$$\begin{pmatrix} 1 & 0 & -10 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

implica $k_1 = 10k_3$, $k_2 = -k_3$. Escolhendo $k_3 = 1$, obtemos o segundo autovetor

$$\mathbf{K}_2 = \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix}. \tag{8}$$

Finalmente, quando $\lambda_3 = 5$, as matrizes aumentadas

$$(\mathbf{A} - 5\mathbf{I} \mid \mathbf{0}) = \begin{pmatrix} -9 & 1 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -8 & 0 \end{pmatrix}$$
 $\stackrel{\text{operações}}{=}$ $\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -8 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

dão

$$\mathbf{K}_3 = \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix}. \tag{9}$$

Multiplicando os vetores (7), (8) e (9) por e^{-3t} , e^{-4t} e e^{5t} , respectivamente, temos três soluções de (6):

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{-3t}, \quad \mathbf{X}_2 = \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix} e^{-4t}, \quad \mathbf{X}_3 = \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} e^{5t}.$$

A solução geral do sistema é então

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix} e^{-4t} + c_3 \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} e^{5t}.$$

8.6.2 Autovalores Complexos

Se
$$\lambda_1 = \alpha + i\beta$$
 e $\lambda_2 = \alpha - i\beta$, $i^2 = -1$,

são autovalores complexos da matriz A de coeficientes, podemos sem dúvida esperar que seus autovetores correspondentes também tenham elementos complexos.*

^{*}Quando a equação característica tem coeficientes reais, os autovalores complexos sempre aparecem em pares conjugados.

Por exemplo, a equação característica do sistema

$$\frac{dx}{dt} = 6x - y$$

$$\frac{dy}{dt} = 5x + 4y$$
(10)

ć

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 6 - \lambda & -1 \\ 5 & 4 - \lambda \end{vmatrix} = \lambda^2 - 10\lambda + 29 = 0.$$

Pela fórmula quadrática, obtemos

$$\lambda_1 = 5 + 2i, \quad \lambda_2 = 5 - 2i.$$

Para $\lambda_1 = 5 + 2i$, devemos resolver

$$(1-2i)k_1 - k_2 = 0$$

 $5k_1 - (1+2i)k_2 = 0.$

Como $k_2 = (1 - 2i)k_1$,* decorre, após escolhermos $k_1 = 1$, que um autovetor é

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ 1 - 2i \end{pmatrix}.$$

Analogamente, para $\lambda_2 = 5 - 2i$, achamos o outro autovetor

$$\mathbf{K}_2 = \begin{pmatrix} 1 \\ 1 + 2i \end{pmatrix}.$$

Consequentemente, duas soluções de (10) são

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 - 2i \end{pmatrix} e^{(5+2i)t}$$
 e $\mathbf{X}_2 = \begin{pmatrix} 1 \\ 1 + 2i \end{pmatrix} e^{(5-2i)t}$.

Pelo princípio de superposição, outra solução é

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 1 - 2i \end{pmatrix} e^{(5+2i)t} + c_2 \begin{pmatrix} 1 \\ 1 + 2i \end{pmatrix} e^{(5-2i)t}. \tag{11}$$

Note que os elementos em \mathbf{K}_2 correspondentes a λ_2 são os conjugados dos elementos em \mathbf{K}_1 correspondentes a λ_1 . O conjugado de λ_1 é, naturalmente, λ_2 . Escrevemos $\lambda_2 = \overline{\lambda}_1$ e $\mathbf{K}_2 = \overline{\mathbf{K}}_1$. Acabamos de ilustrar o seguinte resultado geral.

^{*}Note que a segunda equação é simplesmente (1 + 2i) vezes a primeira.

TEOREMA 8.10 Soluções Correspondentes a Autovalores Complexos

Seja A a matriz de coeficientes, com elementos reais, do sistema homogêneo (2), e seja K um autovetor correspondente ao autovalor complexo $\lambda_1 = \alpha + i\beta$, com α e β reais. Então

$$\mathbf{X}_1 = \mathbf{K}_1 e^{\lambda_1 t}$$
 e $\mathbf{X}_2 = \overline{\mathbf{K}}_1 e^{\lambda_1 t}$

são soluções de (2).

É conveniente, e relativamente fácil, escrever uma solução como (11) em termos de funções reais. Como

$$x = c_1 e^{(5+2i)t} + c_2 e^{(5-2i)t}$$

$$y = c_1 (1-2i)e^{(5+2i)t} + c_2 (1+2i)e^{(5-2i)t},$$

decorre da fórmula de Euler que

$$\begin{aligned} x &= e^{5t} [c_1 e^{2it} + c_2 e^{-2it}] \\ &= e^{5t} [(c_1 + c_2) \cos 2t + (c_1 i + c_2 i) \sin 2t] \\ y &= e^{5t} [(c_1 (1 - 2i) + c_2 (1 + 2i)) \cos 2t + (c_1 i (1 - 2i) - c_2 i (1 + 2i)) \sin 2t] \\ &= e^{5t} [(c_1 + c_2) - 2(c_1 i - c_2 i)] \cos 2t + e^{5t} [2(c_1 + c_2) + (c_1 i - c_2 i)] \sin 2t. \end{aligned}$$

Substituindo $c_1 + c_2$ por C_1 e $c_1i - c_2i$ por C_2 , então

$$x = e^{5t} [C_1 \cos 2t + C_2 \sin 2t]$$

$$y = e^{5t} [C_1 - 2C_2] \cos 2t + e^{5t} [2C_1 + C_2] \sin 2t$$

ou, em termos de vetores.

$$\mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix} = C_1 \begin{pmatrix} \cos 2t \\ \cos 2t + \sin 2t \end{pmatrix} e^{5t} + C_2 \begin{pmatrix} \sin 2t \\ -2\cos 2t + \sin 2t \end{pmatrix} e^{5t}. \tag{12}$$

Aqui, naturalmente, pode-se verificar que cada vetor em (12) é uma solução de (10). Além disso, as soluções são linearmente independentes no intervalo $(-\infty, \infty)$. Podemos ainda supor que C_1 e C_2 sejam completamente arbitrários e reais. Assim, (12) é a solução geral de (10).

Podemos generalizar o processo precedente. Seja \mathbf{K}_1 um autovetor da matriz \mathbf{A} correspondente ao autovalor complexo $\lambda_1 = \alpha + i\beta$. Então, \mathbf{X}_1 e \mathbf{X}_2 no Teorema 8.10 podem ser escritos como

$$\mathbf{K}_{1}e^{\lambda_{1}t} = \mathbf{K}_{1}e^{\alpha t}e^{i\beta t} = \mathbf{K}_{1}e^{\alpha t}(\cos\beta t + i\sin\beta t)$$

$$\overline{\mathbf{K}}_{1}e^{\overline{\lambda}_{1}t} = \overline{\mathbf{K}}_{1}e^{\alpha t}e^{-i\beta t} = \overline{\mathbf{K}}_{1}e^{\alpha t}(\cos\beta t - i\sin\beta t).$$

As equações precedentes dão

$$\frac{1}{2}(\mathbf{K}_{1}e^{\lambda_{1}t} + \overline{\mathbf{K}}_{1}e^{\overline{\lambda}_{1}t}) = \frac{1}{2}(\mathbf{K}_{1} + \overline{\mathbf{K}}_{1})e^{\alpha t} \cos \beta t - \frac{i}{2}(-\mathbf{K}_{1} + \overline{\mathbf{K}}_{1})e^{\alpha t} \sin \beta t$$

$$\frac{i}{2}(-\mathbf{K}_{1}e^{\lambda_{1}t} + \overline{\mathbf{K}}_{1}e^{\overline{\lambda}_{1}t}) = \frac{i}{2}(\mathbf{K}_{1} + \overline{\mathbf{K}}_{1})e^{\alpha t} \cos \beta t + \frac{1}{2}(\mathbf{K}_{1} + \overline{\mathbf{K}}_{1})e^{\alpha t} \sin \beta t.$$

Para qualquer número complexo z = a + ib, notamos que $\frac{1}{2}(z + \overline{z}) = a$ e $\frac{i}{2}(-z + \overline{z}) = b$ são números reais. Portanto, os elementos dos vetores coluna $\frac{1}{2}(\mathbf{K}_1 + \overline{\mathbf{K}}_1)$ e $\frac{i}{2}(-\mathbf{K}_1 + \overline{\mathbf{K}}_1)$ são números reais. Definindo

$$\mathbf{B}_1 = \frac{1}{2} [\mathbf{K}_1 + \overline{\mathbf{K}}_1] \quad \text{e} \quad \mathbf{B}_2 = \frac{i}{2} [-\mathbf{K}_1 + \overline{\mathbf{K}}_1],$$
 (13)

somos levados ao teorema seguinte:

TEOREMA 8.11 Soluções Reais Correspondentes a um Autovalor Complexo

Seja $\lambda_i = \alpha + i\beta$ um autovalor complexo da matriz A de coeficientes no sistema homogêneo (2), e denotemos por B₁ e B₂ os vetores coluna definidos em (13). Então

$$\mathbf{X}_1 = (\mathbf{B}_1 \cos \beta t - \mathbf{B}_2 \sin \beta t)e^{\alpha t}$$

$$\mathbf{X}_2 = (\mathbf{B}_2 \cos \beta t + \mathbf{B}_1 \sin \beta t)e^{\alpha t}$$
(14)

são soluções linearmente independentes de (2) no intervalo (-∞, ∞).

As matrizes B₁ e B₂ em (13) costumam denotar-se por

$$\mathbf{B}_1 = \text{Re}(\mathbf{K}_1) \quad \text{e} \quad \mathbf{B}_2 = \text{Im}(\mathbf{K}_1)$$
 (15)

porque esses vetores são, respectivamente, as partes real e imaginária do autovetor K1. Por exemplo, (12) decorre de (14) com

$$\mathbf{K}_{1} = \begin{pmatrix} 1 \\ 1 - 2i \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + i \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$
$$\mathbf{B}_{1} = \mathbf{Re}(\mathbf{K}_{1}) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{e} \ \mathbf{B}_{2} = \mathbf{Im}(\mathbf{K}_{1}) = \begin{pmatrix} 0 \\ -2 \end{pmatrix}.$$

EXEMPLO

Resolver

$$\mathbf{X'} = \begin{pmatrix} 2 & 8 \\ -1 & -2 \end{pmatrix} \mathbf{X}.$$

Solução Inicialmente, obtemos os autovalores a partir de

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 8 \\ -1 & -2 - \lambda \end{vmatrix} = \lambda^2 + 4 = 0.$$

Assim, os autovalores são $\lambda_1 = 2i$ e $\lambda_2 = \overline{\lambda_1} = -2i$. Para λ_i , vemos que o sistema

$$(2-2i)k_1 + 8k_2 = 0$$
$$-k_1 + (-2-2i)k_2 = 0$$

dá $k_1 = -(2 + 2i)k_2$. Escolhendo $k_2 = -1$, obtemos

$$\mathbf{K}_{1} = \begin{pmatrix} 2+2i \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} + i \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

De (15), formamos

$$\mathbf{B}_1 = \operatorname{Re}(\mathbf{K}_1) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 e $\mathbf{B}_2 = \operatorname{Im}(\mathbf{K}_1) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$.

Como \alpha = 0, decorre de (14) que a solução geral do sistema é

$$\mathbf{X} = c_1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cos 2t - \begin{bmatrix} 2 \\ 0 \end{bmatrix} \sin 2t \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 0 \end{bmatrix} \cos 2t + \begin{bmatrix} 2 \\ -1 \end{bmatrix} \sin 2t$$

$$= c_1 \begin{bmatrix} 2\cos 2t - 2\sin 2t \\ -\cos 2t \end{bmatrix} + c_2 \begin{bmatrix} 2\cos 2t + 2\sin 2t \\ -\sin 2t \end{bmatrix}.$$

EXEMPLO 4

Resolver $\mathbf{X}' = \begin{pmatrix} 1 & 2 \\ -\frac{1}{2} & 1 \end{pmatrix} \mathbf{X}$.

Solução As soluções da equação característica

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & 2 \\ -\frac{1}{2} & 1 - \lambda \end{vmatrix} = \lambda^2 - 2\lambda + 2 = 0$$

são $\lambda_1 = 1 + i$ e $\lambda_2 = \lambda_1 = 1 - i$.

Agora, um autovetor associado a λ_i é

$$\mathbf{K}_{1} = \begin{pmatrix} 2 \\ i \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

De (15), vem

$$\mathbf{B}_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad \mathbf{e} \quad \mathbf{B}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Assim, (14) nos dá

$$\mathbf{X} = c_1 \begin{bmatrix} 2 \\ 0 \end{bmatrix} \cos t - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \sin t \end{bmatrix} e^t + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cos t + \begin{bmatrix} 2 \\ 0 \end{bmatrix} \sin t \end{bmatrix} e^t$$
$$= c_1 \begin{bmatrix} 2 \cos t \\ -\sin t \end{bmatrix} e^t + c_2 \begin{bmatrix} 2 \sin t \\ \cos t \end{bmatrix} e^t.$$

Método Alternativo

Quando A é uma matriz 2×2 com um autovalor complexo $\lambda = \alpha + i\beta$, a solução geral do sistema também pode ser obtida a partir da hipótese

$$\mathbf{X} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} e^{\alpha t} \operatorname{sen} \beta t + \begin{pmatrix} c_3 \\ c_4 \end{pmatrix} e^{\alpha t} \cos \beta t$$

levando-se então x(t) e y(t) em uma das equações do sistema original. Esse processo é basicamente o da Seção 8.1.

8.6.3 Autovalores Repetidos

Até aqui não consideramos o caso em que alguns dos n autovalores $\lambda_1, \lambda_2, \dots, \lambda_n$ de uma matriz $n \times n$ sejam repetidos. Por exemplo, vê-se imediatamente que a equação característica da matriz de coeficientes em

$$\mathbf{X'} = \begin{pmatrix} 3 & -18 \\ 2 & -9 \end{pmatrix} \mathbf{X} \tag{16}$$

é $(\lambda + 3)^2 = 0$ e, assim, que $\lambda_1 = \lambda_2 = -3$ é uma raiz de *multiplicidade dois*. Para esse valor, obtemos o único autovetor

$$\mathbf{K}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

e assim uma solução de (16) é

$$\mathbf{X}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^{-3t}. \tag{17}$$

Mas como estamos obviamente interessados em formar a solução geral do sistema, devemos prosseguir na busca de uma segunda solução.

De modo geral, se m é um inteiro positivo e $(\lambda - \lambda_1)^m$ é um fator da equação característica, enquanto que $(\lambda - \lambda_1)^{m+1}$ não o é, então dizemos que λ_1 é um **autovalor de multiplicidade** m. Distinguimos duas possibilidades:

(i) Para algumas matrizes n × n, é possível eventualmente achar m autovetores linearmente independentes K₁, K₂, ..., Km correspondentes a um autovalor λ₁ de multiplicidade m ≤ n. Nesse caso, a solução geral do sistema contém a combinação linear

$$c_1\mathbf{K}_1e^{\lambda_1t}+c_2\mathbf{K}_2e^{\lambda_1t}+\cdots+c_m\mathbf{K}_me^{\lambda_1t}.$$

(ii) Se há apenas um autovetor correspondendo ao autovalor λ_1 de multiplicidade m, então sempre podemos achar m soluções linearmente independentes da forma

$$\begin{split} & \mathbf{X}_{1} = \mathbf{K}_{11} e^{\lambda_{1} t} \\ & \mathbf{X}_{2} = \mathbf{K}_{21} t e^{\lambda_{1} t} + \mathbf{K}_{22} e^{\lambda_{1} t} \\ & \vdots \\ & \mathbf{X}_{m} = \mathbf{K}_{m1} \frac{t^{m-1}}{(m-1)!} e^{\lambda_{1} t} + \mathbf{K}_{m2} \frac{t^{m-2}}{(m-2)!} e^{\lambda_{1} t} + \cdots + \mathbf{K}_{mm} e^{\lambda_{1} t}, \end{split}$$

onde K_{ii} são vetores coluna.

Autovalores de Multiplicidade Dois

Consideraremos inicialmente autovalores de multiplicidade dois. No primeiro exemplo, ilustramos uma matriz para a qual podemos achar dois autovetores distintos correspondentes a um autovalor duplo.

EXEMPLO 5

Resolver

$$\mathbf{X'} = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \mathbf{X}.$$

Solução Desenvolvendo o determinante na equação característica

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & -2 & 2 \\ -2 & 1 - \lambda & -2 \\ 2 & -2 & 1 - \lambda \end{vmatrix} = 0$$

vem $-(\lambda + 1)^2(\lambda - 5) = 0$. Vemos que $\lambda_1 = \lambda_2 = -1$ e $\lambda_3 = 5$.

Para $\lambda_1 = -1$, a eliminação de Gauss-Jordan dá imediatamente

$$(\mathbf{A} + \mathbf{I} \mid \mathbf{0}) = \begin{pmatrix} 2 & -2 & 2 & 0 \\ -2 & 2 & -2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix}$$
 operações com linhas
$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} .$$

De $k_1 - k_2 + k_3 = 0$, podemos expressar, digamos, k_1 em termos de k_2 e k_3 . Escolhendo $k_2 = 1$ e $k_3 = 0$ em $k_1 = k_2 - k_3$, obtemos $k_1 = 1$ e, assim, um autovetor é

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Mas a escolha k_2 = 1, k_3 = 1 implica k_1 = 0. Logo, um segundo autovetor é

$$\mathbf{K}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Como nenhum dos autovetores é múltiplo constante do outro, obtivemos duas soluções linearmente independentes correspondentes ao mesmo autovalor:

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{-t} \quad \mathbf{e} \quad \mathbf{X}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} e^{-t}.$$

Finalmente, para $\lambda_3 = 5$, a redução

$$(\mathbf{A} - 5\mathbf{I} \mid \mathbf{0}) = \begin{pmatrix} -4 & -2 & 2 \mid 0 \\ -2 & -4 & -2 \mid 0 \\ 2 & -2 & -4 \mid 0 \end{pmatrix}$$
 operações com linhas
$$\begin{pmatrix} 1 & 0 & -1 \mid 0 \\ 0 & 1 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix}$$

implica $k_1 = k_3$ e $k_2 = -k_3$. Escolhendo $k_3 = 1$, vem $k_1 = 1$, $k_2 = -1$ e, assim,

$$\mathbf{K}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

é um terceiro autovetor.

Concluímos que a solução geral do sistema é

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} e^{-t} + c_3 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} e^{5t}.$$

Segunda Solução

Suponhamos agora que λ_1 seja um autovalor de multiplicidade dois e que haja apenas um autovetor associado a esse valor. Pode-se achar uma solução da forma

$$\mathbf{X}_2 = \mathbf{K} t e^{\lambda_1 t} + \mathbf{P} e^{\lambda_1 t}, \tag{18}$$

onde

$$\mathbf{K} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} \quad \mathbf{e} \quad \mathbf{P} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}.$$

Para confirmar, levamos (18) no sistema X' = AX e simplificamos:

$$(\mathbf{A}\mathbf{K} - \lambda_1 \mathbf{K})te^{\lambda_1 t} + (\mathbf{A}\mathbf{P} - \lambda_1 \mathbf{P} - \mathbf{K})e^{\lambda_1 t} = 0.$$

鷢

Como essa última equação deve ser válida para todos os valores de t, devemos ter

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{K} = \mathbf{0} \tag{19}$$

$$e (A - \lambda_1 I)P = K. (20)$$

A Equação (19) simplesmente afirma que \mathbf{K} deve ser um autovetor de \mathbf{A} associado a λ_1 . Resolvendo (19), encontramos uma solução $\mathbf{X}_1 = \mathbf{K}e^{\lambda_1 t}$. Para achar a segunda solução \mathbf{X}_2 , basta resolvermos o sistema adicional (20) em relação ao vetor \mathbf{P} .

EXEMPLO 6

Ache a solução geral do sistema dado em (16).

Solução Por (17), sabemos que $\lambda_1 = -3$, e que uma solução é

$$\mathbf{X}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^{-3t}.$$

Identificando $\mathbf{K} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ e $\mathbf{P} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$, vemos, por (20), que devemos resolver $(\mathbf{A} + 3\mathbf{I})\mathbf{P} = \mathbf{K}$ ou $\begin{pmatrix} 6 & -18 \\ 2 & -6 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Efetuando a multiplicação nessa última expressão, vem

$$6p_1 - 18p_2 = 3$$
$$2p_1 - 6p_2 = 1.$$

Como esse sistema é obviamente equivalente a uma única equação, temos um número infinito de escolhas para p_1 e p_2 . Escolhendo, por exemplo, p_1 = 1,obtemos p_2 = 1/6. Entretanto, por questão de simplicidade, escolheremos p_1 = 1/2, de forma que p_2 = 0. Logo, $\mathbf{P} = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}$. Assim, de (18), obtemos

$$\mathbf{X}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} t e^{-3t} + \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} e^{-3t}.$$

A solução geral de (16) é então

$$\mathbf{X} = c_1 \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^{-3t} + c_2 \left[\begin{pmatrix} 3 \\ 1 \end{pmatrix} t e^{-3t} + \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} e^{-3t} \right].$$

Autovalores de Multiplicidade Três

Quando uma matriz A tem apenas um autovetor associado a um autovalor λ_1 de multiplicidade três, podemos achar uma segunda solução da forma (18) e uma terceira solução da forma

$$\mathbf{X}_{3} = \mathbf{K} \frac{t^{2}}{2} e^{\lambda_{\parallel} t} + \mathbf{P} t e^{\lambda_{\parallel} t} + \mathbf{Q} e^{\lambda_{\parallel} t}, \tag{21}$$

onde
$$\mathbf{K} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}$$
, $\mathbf{P} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}$ e $\mathbf{Q} = \begin{pmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{pmatrix}$.

Levando (21) no sistema X' = AX, vemos que os vetores colunas K, P e Q devem satisfazer

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{K} = \mathbf{0} \tag{22}$$

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{P} = \mathbf{K} \tag{23}$$

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{Q} = \mathbf{P}. \tag{24}$$

É claro que as soluções de (22) e (23) podem ser utilizadas na formulação das soluções \mathbf{X}_1 e \mathbf{X}_2 .

EXEMPLO 7

Resolver

78

$$\mathbf{X'} = \begin{pmatrix} 2 & 1 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{X}.$$

Solução A equação característica $(\lambda - 2)^3 = 0$ mostra que $\lambda_1 = 2$ é um autovalor de multiplicidade três. Em sequência, vemos que uma solução de

$$(\mathbf{A} - 2\mathbf{I})\mathbf{K} = 0 \in \mathbf{K} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix};$$

uma solução de

$$(\mathbf{A} - 2\mathbf{I})\mathbf{P} = \mathbf{K} \in \mathbf{P} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix};$$

e, finalmente, que uma solução de

$$(\mathbf{A} - 2\mathbf{I})\mathbf{Q} = \mathbf{P} \in \mathbf{Q} = \begin{pmatrix} 0 \\ -\frac{6}{5} \\ \frac{1}{5} \end{pmatrix}.$$

Por (18) e (21), vemos que a solução geral do sistema é

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{pmatrix} t e^{2t} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^{2t} \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \frac{t^2}{2} e^{2t} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} t e^{2t} + \begin{pmatrix} 0 \\ -\frac{6}{5} \\ \frac{1}{5} \end{pmatrix} e^{2t} \end{bmatrix}.$$

8.6 EXERCÍCIOS

As respostas dos exercícios selecionados estão nas páginas 393 a 394.

[8.6.1] Nos Problemas 1-12, ache a solução geral do sistema dado.

1.
$$\frac{dx}{dt} = x + 2y$$
$$\frac{dy}{dt} = 4x + 3y$$
3.
$$\frac{dx}{dt} = -4x + 2y$$

5.
$$\mathbf{X}' = \begin{pmatrix} 10 & -5 \\ 8 & -12 \end{pmatrix} \mathbf{X}$$

 $\frac{dy}{dt} = -\frac{5}{2}x + 2y$

7.
$$\frac{dx}{dt} = x + y - z$$
$$\frac{dy}{dt} = 2y$$
$$\frac{dz}{dt} = y - z$$

9.
$$\mathbf{X}' = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} \mathbf{X}$$

11.
$$\mathbf{X}' = \begin{pmatrix} -1 & -1 & 0 \\ \frac{3}{4} & -\frac{3}{2} & 3 \\ \frac{1}{8} & \frac{1}{4} & -\frac{1}{2} \end{pmatrix} \mathbf{X}$$

$$\frac{dx}{dt} = 2y$$

$$\frac{dy}{dt} = 8x$$

$$dx = 1$$

4.
$$\frac{dx}{dt} = \frac{1}{2}x + 9y$$
$$\frac{dy}{dt} = \frac{1}{2}x + 2y$$

$$6. \quad \mathbf{X'} = \begin{pmatrix} -6 & 2 \\ -3 & 1 \end{pmatrix} \mathbf{X}$$

8.
$$\frac{dx}{dt} = 2x - 7y$$
$$\frac{dy}{dt} = 5x + 10y + 4z$$
$$\frac{dz}{dt} = 5y + 2z$$

10.
$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \mathbf{X}$$

12.
$$\mathbf{X}' = \begin{pmatrix} -1 & 4 & 2 \\ 4 & -1 & -2 \\ 0 & 0 & 6 \end{pmatrix} \mathbf{X}$$

Nos Problemas 13 e 14, resolva o sistema dado, sujeito às condições iniciais indicadas.

13.
$$\mathbf{X}' = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & -\frac{1}{2} \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

14.
$$\mathbf{X}' = \begin{pmatrix} 1 & 1 & 4 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$

[8.6.2] Nos Problemas 15-26, ache a solução geral do sistema dado.

15.
$$\frac{dx}{dt} = 6x - y$$
$$\frac{dy}{dt} = 5x + 2y$$

16.
$$\frac{dx}{dt} = x + y$$
$$\frac{dy}{dt} = -2x - y$$