Sistema de Evaluación y Bio-Feedback para Balance Postural

Héctor Gabriel Peredo Urbina

Diciembre 2016

Agenda[']

Introducción

- Introducción
- Objetivos

- Introducción
- Objetivos
- 3 Diseño del Sistema de Bio-feedback

- Introducción
- Objetivos
- 3 Diseño del Sistema de Bio-feedback
- 4 Resultados

- Introducción
- Objetivos
- 3 Diseño del Sistema de Bio-feedback
- 4 Resultados
- Conclusiones

Contexto Problema

Contexto Problema Balance Postural

Contexto Problema Balance Postural

• El mantener la posición bípeda.

Contexto Problema Balance Postural

- El mantener la posición bípeda.
- Permanecer dentro de los limites de estabilidad (centro de masa).

Contexto Problema Balance Postural

- El mantener la posición bípeda.
- Permanecer dentro de los limites de estabilidad (centro de masa).
- Estabilometría.

Contexto Problema Balance Postural

- El mantener la posición bípeda.
- Permanecer dentro de los limites de estabilidad (centro de masa).
- Estabilometría.

Bio-Feedback

Obtener información de un ser vivo.

Contexto Problema Balance Postural

- El mantener la posición bípeda.
- Permanecer dentro de los limites de estabilidad (centro de masa).
- Estabilometría.

- Obtener información de un ser vivo.
- Registra principalmente mediante sensores.

Contexto Problema Balance Postural

- El mantener la posición bípeda.
- Permanecer dentro de los limites de estabilidad (centro de masa).
- Estabilometría.

- Obtener información de un ser vivo.
- Registra principalmente mediante sensores.
- Representar en tiempo real.

Bio-Feedback Balance Postural Estudio Balance Soluciones Presentes para el Estudio del Balance Propuesta Sistema de Bio-feedback Balance Postural

Estudio Balance

Estabilometría

Estabilometría

Estabilometría

Modelo Péndulo Invertido

Estabilometría

Modelo Péndulo Invertido

Soluciones para el Estudio del Balance

Soluciones para el Estudio del Balance

Figura: Kistler Force Plate

Soluciones para el Estudio del Balance

Figura: Kistler Force Plate

Figura: Balance SD

Bio-Feedback Balance Postural Estudio Balance Soluciones Presentes para el Estudio del Balance Propuesta Sistema de Bio-feedback Balance Postural

• Sistema de Bio-feedback para el Balance Postural.

- Sistema de Bio-feedback para el Balance Postural.
- Arduino y Sensores Inerciales.

- Sistema de Bio-feedback para el Balance Postural.
- Arduino y Sensores Inerciales.
- Sofware para registro y bio-realimentación (desplazamiento Centro de Masa).

- Sistema de Bio-feedback para el Balance Postural.
- Arduino y Sensores Inerciales.
- Sofware para registro y bio-realimentación (desplazamiento Centro de Masa).

Objetivos General

Objetivo General

Diseñar e implementar un prototipo de software-hardware basado en un microcontrolador Arduino y un sensor de velocidad angular y acelerometría de 3 ejes, para el registro y representación gráfica del centro de masa y bio-realimentación.

Objetivos Específicos

Objetivos Específicos

 Integrar microcontrolador Arduino con sensor (giroscopio-acelerómetro).

Objetivos Específicos

Objetivos Específicos

- Integrar microcontrolador Arduino con sensor (giroscopio-acelerómetro).
- Diseñar sistema que permita el registro y visualización de todas las variables cinemáticas (posición y velocidad angular) del centro de masa.

Objetivos Específicos

Objetivos Específicos

- Integrar microcontrolador Arduino con sensor (giroscopio-acelerómetro).
- Diseñar sistema que permita el registro y visualización de todas las variables cinemáticas (posición y velocidad angular) del centro de masa.
- Construcción de un sistema que facilite mediante bio-realimentación la posición del centro de presión (proyección del centro de masa).

Diseño del Sistema de Bio-feedback - Hardware

• Conexión y comunicacón de sensor inerciales \leftrightarrow Arduino (I^2C) .

Diseño del Sistema de Bio-feedback - Hardware

- Obtención datos sensor MPU6050 (Acelerómetro y Giroscopio).

Diseño del Sistema de Bio-feedback - Hardware

- Obtención datos sensor MPU6050 (Acelerómetro y Giroscopio).
- Ajustes (frecuencia de captura, rangos, filtros internos)

Diseño del Sistema de Bio-feedback - Software

• Establecer comunicación con el micro-controlador Arduino (Serial).

- Establecer comunicación con el micro-controlador Arduino (Serial).
- Obtención y filtrado de las variables cinemáticas: Ángulo y Desplazamiento.

- Establecer comunicación con el micro-controlador Arduino (Serial).
- Obtención y filtrado de las variables cinemáticas: Ángulo y Desplazamiento.
- Registro y visualizado en tiempo real.

- Establecer comunicación con el micro-controlador Arduino (Serial).
- Obtención y filtrado de las variables cinemáticas: Ángulo y Desplazamiento.
- Registro y visualizado en tiempo real.

• Despliegue resultados y herramientas de análisis (OFFLINE).

Evaluación y comparación de algoritmos

Evaluación y comparación de algoritmos

 Algoritmos para cálculo de ángulo (Sin Filtro, Filtro Complementario y Filtro Kalman).

Evaluación y comparación de algoritmos

- Algoritmos para cálculo de ángulo (Sin Filtro, Filtro Complementario y Filtro Kalman).
- Algoritmos de obtención del desplazamiento (Proyección y Recorrido Curvo).

 Obtención del desplazamiento Centro de Masa usando Dispositivo de Bio-feedback.

- Obtención del desplazamiento Centro de Masa usando Dispositivo de Bio-feedback.
- Contraste entre Kistler y Dispositivo (COP vs COM).

Figura: Comparativa Kistler vs Dispositivo

Pruebas	Espalda		Izquierda		Frontal	
	A.P	M.L	A.P	M.L	A.P	M.L
Coeficiente Correlación	0.98790	0.90179	0.94307	0.81876	0.94733	0.96013
Rango Kistler (cm)	18.655	4.6465	17.679	4.9096	19.085	19.105
Mínima Diferencia (cm)	$9.9893e^{-5}$	$1.1176e^{-4}$	$5.3333e^{-4}$	$1.5627e^{-4}$	$1.2202e^{-3}$	$3.08842e^{-4}$
Máxima Diferencia(cm)	2.7892	1.0676	6.2550	1.5199	6.1098	5.4528
Error Medio Porcentual(%)	3.9034	5.7586	8.9823	8.1358	9.2246	4.6773
Mínimo Error Porcentual(%)	$5.3548e^{-4}$	0.0024053	0.0030168	0.0031829	0.0063938	0.0016166
Máximo Error Porcentual(%)	14.952	22.976	35.381	30.957	32.014	28.542

Figura: Tabla Resumen Resultados

Pruebas	Espalda		Izquierda		Frontal	
	A.P	M.L	A.P	M.L	A.P	M.L
Coeficiente Correlación	0.98790	0.90179	0.94307	0.81876	0.94733	0.96013
Rango Kistler (cm)	18.655	4.6465	17.679	4.9096	19.085	19.105
Mínima Diferencia (cm)	$9.9893e^{-5}$	$1.1176e^{-4}$	$5.3333e^{-4}$	$1.5627e^{-4}$	$1.2202e^{-3}$	$3.08842e^{-4}$
Máxima Diferencia(cm)	2.7892	1.0676	6.2550	1.5199	6.1098	5.4528
Error Medio Porcentual(%)	3.9034	5.7586	8.9823	8.1358	9.2246	4.6773
Mínimo Error Porcentual(%)	$5.3548e^{-4}$	0.0024053	0.0030168	0.0031829	0.0063938	0.0016166
Máximo Error Porcentual(%)	14.952	22.976	35.381	30.957	32.014	28.542

Figura: Tabla Resumen Resultados

Conclusiones

Conclusiones

 Los sensores inerciales montados en una placa Arduino generan resultados similares a una plataforma especializada en el estudio del Balance.

Conclusiones

Conclusiones

- Los sensores inerciales montados en una placa Arduino generan resultados similares a una plataforma especializada en el estudio del Balance.
- El bajo coste de la solución propuesta frente a las soluciones existentes.

Conclusiones

Conclusiones

- Los sensores inerciales montados en una placa Arduino generan resultados similares a una plataforma especializada en el estudio del Balance.
- El bajo coste de la solución propuesta frente a las soluciones existentes.
- Los resultados expuestos son un buen punto de partida para nuevas investigaciones.

Trabajos Futuros

Los trabajos futuros que pueden desprenderse de esta tesis son:

Trabajos Futuros

Los trabajos futuros que pueden desprenderse de esta tesis son:

• Validación de la solución como un instrumento para el estudio del Balance (ISPG).

Trabajos Futuros

Los trabajos futuros que pueden desprenderse de esta tesis son:

- Validación de la solución como un instrumento para el estudio del Balance (ISPG).
- Añadir interfaces para comunicación inalámbrica.

Trabajos Futuros

Los trabajos futuros que pueden desprenderse de esta tesis son:

- Validación de la solución como un instrumento para el estudio del Balance (ISPG).
- Añadir interfaces para comunicación inalámbrica.
- Mejora de algoritmos y sensores utilizados.

Sistema de Evaluación y Bio-Feedback para Balance Postural

Héctor Gabriel Peredo Urbina

Diciembre 2016

