# **Pandas**

#### Pandas 소개

■ Pandas는 파이썬에서 사용하는 데이터 분석 라이브러리로 '판다스'라고 읽는다.

■ Pandas는 다차원으로 구조화된 데이터를 뜻하는 계량 경제학 용어인 Panel data와 파이썬 데이터 분석인 Python data analysis에서 따온 이름이다.

Pandas는 안정적으로 대용량의 데이터를 처리하는데 편리한 도구이다.

#### Pandas 소개

 Pandas는 NumPy의 고성능 배열 계산 기능과 스프레드시트, SQL과 같은 관계형 데이터베이스의 데이터 조작 기능을 조합한 것이다.

- Pandas는 series와 dataframe 자료구조를 제공한다.
  - ✓ Series : list와 dictionary의 장점을 섞어 놓은 듯한 자료구조
  - ✓ DataFrame : 행과 열로 이루어진 2차원 형태의 자료구조

 Pandas의 기능을 이용해 데이터의 재배치와 집계, 부분집합 구하기 등을 보다 쉽게 할 수 있다.

### List (리스트)

■ 요소들의 모음 ... 집합과 비슷, but 순서 있음

- 예)
  - [1, 2, 3, 4, 5]
  - [5, 4, 3, 2, 1]
  - ['aa', 'b', 'cde', 'fghi']
  - [3, 8, 1, 3, 2]
  - [1, 'a', [1, 2], 'b']

# List (리스트)

■ 관련 연산자

| 연산자 | 사용 형태     | 의미                 | 예                                                                  |
|-----|-----------|--------------------|--------------------------------------------------------------------|
| +   | 리스트 + 리스트 | 두 리스트 연결 시키기       | $[1, 2, 3] + ['a', 'b', 'c'] \rightarrow [1, 2, 3, 'a', 'b', 'c']$ |
| *   | 리스트 * 숫자  | 리스트를 숫자 만큼 반복하여 연결 | $[1, 2] * 4 \rightarrow [1, 2, 1, 2, 1, 2, 1, 2]$                  |

- 우선 순위: \* > +
- \* 사용 시 숫자
  - ✓ 정수형만 가능
  - ✓ 0이나 음수일 경우: [] (비어있는 리스트)

- 리스트 인덱싱(indexing)
  - 리스트의 요소 하나를 선택
  - 인덱싱
    - ✓ 왼쪽부터 0, 1, 2, ... 로 증가
    - ✓ 오른쪽에서 -1, -2, -3, ...로 감소

- 리스트 인덱싱(indexing)
  - 예시 왼쪽부터 증가하는 인덱스 사용

```
In [1]: a = [1, 2, 3]
In [2]: a[0]
Out [2]: 1
In [3]: a[1]
Out [3]: 2
In [4]: a[2]
Out [4]: 3
In [5]: a[3]
        IndexError
                                                  Traceback (most recent call last)
        <ipython-input-5-f75b6be7dBe3> in <module>
        --> 1 a[3]
        IndexError: list index out of range
```

- 리스트 인덱싱(indexing)
  - 예시 오른쪽부터 감소하는 인덱스 사용

```
In [1]: a = [1, 2, 3]

In [2]: a[-1]

Out [2]: 3

In [3]: a[-2]

Out [3]: 2

In [4]: a[-3]

Out [4]: 1
```

- 문자열 인덱싱(indexing)
  - 문자열도 리스트와 같은 방식으로 인덱싱 가능
  - 예시 왼쪽부터 증가하는 인덱스 사용

```
In [1]: a = '123'
In [2]: a[0]
Out [2]: '1'
In [3]: a[1]
Out [3]: '2'
In [4]: a[2]
Out [4]: '3'
In [5]: a[3]
        IndexError
                                                  Traceback (most recent call last)
        <ipython-input-5-f75b6be7d8e3> in <module>
        --> 1 a[3]
        IndexError: string index out of range
```

- 문자열 인덱싱(indexing)
  - 문자열도 리스트와 같은 방식으로 인덱싱 가능
  - 예시 오른쪽부터 감소하는 인덱스 사용

```
In [1]: a = '123'

In [2]: a[-1]

Out [2]: '3'

In [3]: a[-2]

Out [3]: '2'

In [4]: a[-3]

Out [4]: '1'
```

- 리스트 슬라이싱(slicing)
  - 리스트의 일부분을 잘라 냄
    - ✓ 결과는 리스트
    - ✓ 부분 집합과 비슷
  - 사용하는 방법: *변수*[시작 인덱스:끝 인덱스:스텝]
    - ✓ 시작 인덱스: 범위의 시작, 생략 시 0
    - ✓ 끝 인덱스: 범위의 끝, 생략 시 리스트의 크기
      - ❖ 끝 인덱스는 미포함, 직전 값까지만 포함
    - ✓ 스텝: 자료를 취하는 간격, 생략 시 1

- 리스트 슬라이싱(slicing)
  - 예시

```
In [1]: a = [0, 1, 2, 3, 4, 5]
In [2]: a[0:2]
Out [2]: [0, 1]
In [3]: a[2:]
Out [3]: [2, 3, 4, 5]
In [4]: a[:4:2]
Out [4]: [0, 2]
In [5]: a[-3:]
Out [5]: [3, 4, 5]
In [6]: a[:-3]
Out [6]: [0, 1, 2]
```

- 문자열 슬라이싱(slicing)
  - 문자열도 리스트와 같은 방식으로 슬라이싱 가능
  - 예시

```
In [1]: a = '012345'
In [2]: a[0:2]
Out [2]: '01'
In [3]: a[2:]
Out [3]: '2345'
In [4]: a[:3]
Out [4]: '012'
In [5]: a[-3:]
Out [5]: '345'
In [6]: a[:-3]
Out [6]: '012'
```

#### List (리스트) - 생성하기

- 리스트 생성 관련 함수
  - list(), split(), range(끝), range(시작, 끝), range(시작, 끝, 스텝)

$$a = '1 2 3 4 5'$$
  
 $b = a.split() \rightarrow b = ['1', '2', '3', '4', '5']$ 

a = '1:2:3:4:5'  
b = a.split(':') 
$$\rightarrow$$
 b = ['1', '2', '3', '4', '5']

```
list(range(4)) \rightarrow [0, 1, 2, 3]
list(range(3, 5)) \rightarrow [3, 4]
list(range(2, 11, 2)) \rightarrow [2, 4, 6, 8, 10]
list(range(9, 1, -2)) \rightarrow [9, 7, 5, 3]
```

# List (리스트) - 수정하기

■ 리스트에 추가, 삭제 관련 함수

| 사용 방법                 | 의미                     | 예시(a = [1, 2, 3]일 때)                               |
|-----------------------|------------------------|----------------------------------------------------|
| 리스트.append(요소)        | 리스트의 마지막에 요소를 추가       | a.append(4) $\rightarrow$ a = [1, 2, 3, 4]         |
| 리스트.extend(리스트2)      | 리스트의 마지막에 리스트2를 추가     | a.extend([4, 5]) $\rightarrow$ a = [1, 2, 3, 4, 5] |
| 리스트.insert(index, 요소) | 리스트의 index 위치에 요소를 추가  | a.insert(1, 4) $\rightarrow$ a = [1, 4, 2, 3]      |
| del 리스트[index]        | 리스트의 index에 위치한 요소를 삭제 | del a[1] $\rightarrow$ a = [1, 3]                  |
| 리스트.remove(요소)        | 리스트에서 첫 번째로 나오는 요소를 삭제 | a.remove(1) $\rightarrow$ a = [2, 3]               |

#### 실습

- 생년월일을 입력 받아 홀수 번째 글자들로만 이루어진 문자열을 출력하는 프로그램을 작성하시오.
  - 문자열 슬라이싱 이용하기

```
In [1]: birthday = input('생년월일 입력(yyyymmdd): ')
part = birthday[::2]
print(part)
```

실행결과(밑줄 친 부분은 키보드로 입력 받는 부분)

생년월일 입력(yyyymmdd): <u>20190101</u> 2100

#### 실습

- 문자열을 입력 받아 거꾸로 출력하는 프로그램을 작성하시오.
  - 문자열 슬라이싱 이용하기

```
In [1]: print('문자열을 입력하시오.')
myStr = input()
revStr = myStr[-1::-1]
print('거꾸로 문자열:')
print(revStr)
```

실행결과(밑줄 친 부분은 키보드로 입력 받는 부분)

```
문자열을 입력하시오.
<u>Hello</u>
거꾸로 문자열:
이let
```

#### **Dictionary**

- Key와 value 쌍들의 모음
- {} 사용
- 예:
  - {'name':'gdhong', 'phone':'0222200001', 'addr':['Seoul', 'Wangsimni']}
- Key
  - 중복 X, list형 불가
- Value
  - 숫자, 문자열, list, dictionary 등 대부분의 자료형 가능

#### **Dictionary**

- Value의 선택
  - List와 비교하였을 때 index 번호(0부터 시작) 대신 key 값으로 value를 선택
- 예시

```
In [1]: a = {1:'a', 2:'b', 'three':'c'}
In [2]: a[1]
Out[2]: 'a'
In [3]: a[2]
Out[3]: 'b'
In [4]: a['three']
Out[4]: 'c'
```

```
In [5]: a.get(1)
Out[5]: 'a'
In [6]: a.get(2)
Out[6]: 'b'
In [7]: a.get('three')
Out[7]: 'c'
```

#### Dictionary - 수정하기

- 요소 수정, 추가, 삭제
  - 수정: 기존에 있는 쌍에서 value만 수정
  - 추가: 기존에 없는 key에 대한 value를 대입
  - 삭제: del dictionary[키]
  - 모두 삭제: clear()

#### Dictionary - 수정하기

- 요소 수정, 추가, 삭제
  - 예시

```
In [1]: a = {1:'a', 2:'b', 'three':'c'}
In [2]: a[1] = 'abc'
In [6]: del a['three']
In [7]: a
Out[3]: {1: 'abc', 2: 'b', 'three': 'c'}
Out[7]: {1: 'abc', 2: 'b', 4: 'd'}
In [4]: a[4] = 'd'
In [8]: a.clear()
In [9]: a
Out[5]: {1: 'abc', 2: 'b', 'three': 'c', 4: 'd'}
Out[9]: {}
```

#### Dictionary – 정보 추출하기

- Key만 얻기, value만 얻기
  - keys(): dictionary의 key만 모아서 반환
  - values(): dictionary의 value만 모아서 반환
  - 예시

```
In [1]: a = {1:'a', 2:'b', 'three':'c'}
In [2]: a.keys()
Out[2]: dict_keys([1, 2, 'three'])
In [3]: list(a.keys())
Out[3]: [1, 2, 'three']
In [4]: a.values()
Out[4]: dict_values(['a', 'b', 'c'])
In [5]: list(a.values())
Out[5]: ['a', 'b', 'c']
```

#### 실습

 n, m을 입력 받아 'nXm'을 key로, n\*1, n\*2, ..., n\*m을 요소로 갖는 list를 value로 갖는 dictionary를 출력하시오.

```
In [1]:    n = int(input('Input a number: '))
    m = int(input('Input a number: '))
    nList = list(range(n, n*m*1, n))
    mDic = {str(n)*'X'*str(m):nList}
    print(mDic)
```

실행결과(밑줄 친 부분은 키보드로 입력 받는 부분)

```
Input a number: <u>5</u>
Input a number: <u>8</u>
{'5X8': [5, 10, 15, 20, 25, 30, 35, 40]}
```

```
Input a number: <u>2</u>
Input a number: <u>7</u>
{'2X7': [2, 4, 6, 8, 10, 12, 14]}
```

#### 실습

■ Dictionary를 이용하여 다음과 같이 실행되는 프로그램을 작성하시오.

실행결과(밑줄 친 부분은 키보드로 입력 받는 부분)

```
학생 수: 3
학번: 11
이름: 홍길동
학번: 22
이름: 김철수
학번: 33
이름: 이영미
입력된 값:
{'11': '홍길동', '22': '김철수', '33': '이영미'}
검색할 학번: 22
학번 22에 해당하는 학생의 이름은 김철수입니다.
계속 검색하시겠습니까?(y/n) y
검색할 학번: 11
학번 11에 해당하는 학생의 이름은 홍길동입니다.
계속 검색하시겠습니까?(y/n) n
```

#### 실습 - 답안

```
n = int(input('학생 수: '))
dic = {}
for i in range(n):
    num = input('학번: ')
    name = input('이름: ')
    dic[num] = name;
print('입력된 값:')
print(dic)
while True:
    num = input('검색할 학번: ')
    print('학번 ' + num + '에 해당하는 학생의 이름은 ' + dic.get(num) + '입니다.')
    answer = input('계속 검색하시겠습니까?(y/n) ')
    if answer != 'y':
        break
```

#### Array

- 배열은 리스트와 비슷하지만 다음과 같은 점에서 다르다.
  - 모든 원소가 같은 자료형이어야 한다.
  - 원소의 개수를 바꿀 수 없다.
- 파이썬은 자체적으로 배열 자료형을 제공하지 않는다.
- 배열은 NumPy 라이브러리에서 제공한다.

#### Array - 생성

- List를 array로 만들기
  - 생성방법: 배열 = np.array(리스트)
  - 1차원 vs. 2차원

```
In [1]: import numpy as np
In [2]: a = np.array([1, 2, 3])
In [3]: a
Out [3]: array([1, 2, 3])
```

#### Array - 생성

- 동일 간격으로 등분한 array 생성
  - 배열 = np.linspace(시작, 끝, 숫자개수)
  - 예시

```
In [1]: import numpy as np
In [2]: a = np.linspace(0, 15, 4)
In [3]: a
Out[3]: array([ 0., 5., 10., 15.])
```

```
In [1]: import numpy as np
In [2]: b = np.linspace(0, 1, 5)
In [3]: print(b)
      [0.  0.25 0.5  0.75 1. ]
```

#### Array - 생성

- 수열로 구성된 array 생성
  - range + array
  - 배열 = np.arange(시작, 끝, 증감)
  - 예시

```
In [1]: import numpy as np
In [4]: a = np.arange(10)
In [5]: print(a)
      [0 1 2 3 4 5 6 7 8 9]
```

```
In [6]: b = np.arange(3, 10)
In [7]: print(b)
       [3 4 5 6 7 8 9]
In [8]: c = np.arange(3, 10, 2)
In [9]: print(c)
       [3 5 7 9]
```

- 다수의 값에 동일한 연산하기
  - List의 기본 연산으로는 해결 X





- 다수의 값에 동일한 연산하기
  - Array 사용







- 다수의 값에 동일한 연산하기
  - List의 기본 연산으로는 해결 X

```
In [5]: a = [1, 2, 3]

In [6]: b = [4, 5, 6]

In [7]: c = a + b

In [8]: c

Out [8]: [1, 2, 3, 4, 5, 6]
```



- 다수의 값에 동일한 연산하기
  - Array 사용



- 합 구하기
  - List의 기본 연산으로는 해결 X



- 합 구하기
  - List의 기본 연산으로는 해결 X

#### Array - list와의 유사점

- Indexing/slicing 방법이 비슷
  - 예시

```
In [1]: import numpy as np
In [6]: a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [7]: a
Out [7]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [8]: a[3]
Out [8]: 3
In [9]: a[3:]
Out [9]: array([3, 4, 5, 6, 7, 8, 9])
```

```
In [10]: a[:3]
Out[10]: array([0, 1, 2])
In [11]: a[::2]
Out[11]: array([0, 2, 4, 6, 8])
In [12]: a[::-1]
Out[12]: array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
In [13]: a[-2:2:-1]
Out[13]: array([8, 7, 6, 5, 4, 3])
```

### Array - list와의 유사점

- Indexing/slicing 방법이 비슷
  - 예시

```
import numpy as np
In [2]: a = np.array([[3, 0, 5, 5, 1, 0], [9, 7, 0, 3, 5, 8], [1, 1, 9, 7, 8, 0]])
In [3]: print(a)
        [[305510]
         [970358]
         [1 1 9 7 8 0]]
In [4]: a[2]
Out [4]: array([1, 1, 9, 7, 8, 0])
In [5]: a[2, 3]
Out [5]: 7
In [7]: a[1:, 3:]
Out [7]: array([[3, 5, 8],
               [7, 8, 0]])
```

### 실습

Array를 이용하여 다음과 같이 실행되는 프로그램을 작성하시오.

실행결과(밑줄 친 부분은 키보드로 입력 받는 부분)

```
학생 수: 3
1번째 학생의 국어,영어,수학 성적(,로 구분): 50,60,80
2번째 학생의 국어,영어,수학 성적(,로 구분): 80,70,90
3번째 학생의 국어,영어,수학 성적(,로 구분): 70,80,80
학생들의 성적:
[[50 60 80]
[80 70 90]
[70 80 80]]
각 학생의 총점:
[190 240 230]
각 과목의 평균:
[66.66666667 70. 83.33333333]
```

#### 실습 - 답안

```
import numpy as np
n = int(input('학생 수: '))
score list = []
for i in range(1, n+1):
    scores = input('%d번째 학생의 국어,영어,수학 성적(,로 구분): ' % i).split(',')
   scores = [int (i) for i in scores]
   score list.append(scores)
score array = np.array(score list)
print('학생들의 성적: ')
print(score array)
print('각 학생의 총점: ')
print(score array.sum(axis=1))
print('각 과목의 평균: ')
print(score array.sum(axis=0)/n)
```

#### Series 개요

- Series: 1차원 배열 + index
  - index: values를 선택할 때 주소 역할을 하는 배열(값이 모두 달라야 함)
  - values: 데이터 부분에 해당하는 배열
- 1차원 배열 vs. Series: list vs. dictionary와 비슷
  - 1차원 배열/list: index 번호(자동)로 값 접근
  - Series/Dictionary: key/index명(지정)으로 값 접근

#### Series - 생성

- Values만 입력하는 방법
  - 생성 방법: s = Series(list/array)
  - Index 값은 0, 1, 2, ..., 로 자동 생성
  - 예시

```
In [1]: import pandas as pd
In [2]: score = [84, 21, 87, 100, 59, 46]
In [3]: s = pd.Series(score)
In [4]: print(s)

0     84
     1     21
     2     87
     3     100
     4     59
     5     46
     dtype: int64
```

#### Series - 생성

- Index + values 입력하는 방법
  - 생성 방법: s = Series(list/array, index = list/array)
  - Index는 주어진 list나 array로 지정
  - 예시

```
In [1]: import pandas as pd
       names = ['철수', '영이', '길동', '미영', '순이', '철이']
In [2]:
In [3]: score = [84, 21, 87, 100, 59, 46]
       s = pd.Series(score, index=names)
In [4]:
In [5]:
       print(s)
        철수
영이
길동
                84
                21
                87
        미영
               100
        순이
                59
        철이
                46
        dtype: int64
```

#### Series - 생성

- Dictionary를 이용하는 방법
  - 생성 방법: s = Series(dictionary)
  - 예시

```
In [1]: import pandas as pd

In [2]: dic = {'철수':84, '영이':21, '길동':87, '미영':100, '순이':59, '철이':46}

In [3]: s = pd.Series(dic)

In [4]: print(s)

철수 84
영어 21
길동 87
미영 100
순어 59
철어 46
dtype: int64
```

#### Series - 산술 연산

- 덧셈
  - Array간 덧셈: score1 + score2 → 순서대로 하나씩 더함
  - Series간 덧셈: s0 + s1 → 순서와 상관없이 같은 index명을 갖는 값끼리 더함
    - ✓ values만 연산에 관여함
    - ✓ index가 같은 값끼리 연산 수행 → 데이터 관리에 유리
- 뺄셈, 곱셈 등도 덧셈과 같은 방식으로 처리

#### Series - 산술 연산

#### ■ 산술 연산

• 예시

```
In [9]: s1
In [1]:
        import numpy as np
                                                                                 Out [9]: 철수
                                                                                                 84
                                                                                         영이
길동
                                                                                                 21
In [2]:
        import pandas as pd
                                                                                                 87
                                                                                         미영
                                                                                                 100
In [3]: names1 = np.array(['철수', '영이', '길동', '미영', '순이', '철이'])
                                                                                         순이
                                                                                                 59
                                                                                         철이
                                                                                                 46
        score1 = np.array([84, 21, 87, 100, 59, 46])
                                                                                         dtype: int32
In [4]:
                                                                                In [10]:
In [5]: names2 = np.array(['길동', '철수', '영이', '철이', '순이', '미영'])
                                                                                Out [10]: 길동
                                                                                                99
In [6]: score2 = np.array([99, 87, 87, 84, 77, 15])
                                                                                         철수
영이
                                                                                                87
                                                                                                87
                                                                                         철이
                                                                                                84
In [7]: s1 = pd.Series(score1, index=names1)
                                                                                         순이
                                                                                                77
                                                                                         미영
                                                                                                15
In [8]:
       s2 = pd.Series(score2, index=names2)
                                                                                         dtype: int32
```

### Series - 산술 연산

#### ■ 산술 연산

• 예시

```
In [9]: s1
          철수
영이
길동
미영
 Out [9]:
                    84
                    21
                    87
                    100
           순이
                    59
          철이
                     46
          dtype: int32
In [10]:
           s2
          길동
철수
영이
철이
Out [10] :
                   99
                   87
                   87
                   84
           순이
                   77
          미영
                   15
          dtype: int32
```





### Series - 부분 정보 선택하기

- Index번호를 사용한 부분 정보 선택
  - 예시







#### Series - 부분 정보 선택하기

- Index명을 사용한 부분 정보 선택
  - 예시





## Series - 값 추가, 수정, 삭제

- 값추가
  - index 명을 사용하여 값 추가
  - 예시



### Series - 값 추가, 수정, 삭제

- 값 수정
  - index 번호와 index 명을 사용하여 값 수정
  - 예시



### Series - 값 추가, 수정, 삭제

- 값 삭제
  - index 명을 사용하여 값 삭제
  - 예시



# Series – 논리 연산과 filtering

#### ■ 논리 연산과 filtering 예시

```
In [48]: s1
           철수
영이
길동
미영
순이
철이
Out [48]:
                       84
                       21
                       87
                      100
                       59
                       46
            dtype: int32
In [49]: s2
Out [49]: 길동
철수
영이
철이
순이
미영
                      99
                      87
                      87
                      84
                      77
                      15
            dtype: int32
```



| In [50]:                | x = s1 > 85                                                                       |
|-------------------------|-----------------------------------------------------------------------------------|
| In [51]:                | х                                                                                 |
| Out [51] :              | 철수 False<br>영이 False<br>길동 True<br>미영 True<br>순이 False<br>철이 False<br>dtype: bool |
| In [52]:                | s1 [x]                                                                            |
|                         |                                                                                   |
| Out [52] :              | 길동 87<br>미영 100<br>dtype: int32                                                   |
| Out [52] :<br>In [53] : | 미영 100                                                                            |

#### 실습

Series를 이용하여 다음과 같이 실행되는 프로그램을 작성하시오.

실행결과(밑줄 친 부분은 키보드로 입력 받는 부분)

```
학생들의 이름 입력(,로 구분): 영희,철수,미나
학생들의 국어성적 입력(,로 구분): 20,20,40
학생들의 영어성적 입력(,로 구분): 40,20,80
학생들의 수학성적 입력(,로 구분): 15,65,95
국어성적
영희
     20
철수
     20
40
dtype: int64
열어설적
영희
     40
철수
     20
미나
     80
dtype: int64
수학성적
영희
     15
철수
     65
     95
dtype: int64
합계
영희
      75
철수
     105
     215
dtype: int64
```

#### 실습 - 답안

```
import pandas as pd
name = input('학생들의 이름 입력(,로 구분): ').split(',')
score_kor = input('학생들의 국어성적 입력(,로 구분): ').split(',')
score_eng = input('학생들의 영어성적 입력(,로 구분): ').split(',')
score_math = input('학생들의 수학성적 입력(,로 구분): ').split(',')
score_kor = [int (i) for i in score_kor]
score_eng = [int (i) for i in score_eng]
score math = [int (i) for i in score_math]
s kor = pd.Series(score kor. index = name)
s_eng = pd.Series(score_eng, index = name)
s_math = pd.Series(score_math, index = name)
s_tot = s_kor + s_eng + s_math
print('국어성적')
print(s_kor)
print('영어성적')
print(s_eng)
print('수학성적')
print(s_math)
print('합계')
print(s_tot)
```

#### DataFrame 개요

Series: 1차원 배열 + index

■ DataFrame: 2차원 배열 + index + columns

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 87 | 84 |
| 길동 | 87  | 99 | 76 |
| 미영 | 100 | 15 | 99 |
| 순이 | 59  | 77 | 59 |
| 철이 | 46  | 84 | 56 |
|    |     |    |    |

Values(1차원)

index



- Series를 이용하여 생성
  - 빈 DataFrame 만들기: d = pd.DataFrame()
  - 열 채우기: d[column명] = series
  - 예시

```
In [1]: import pandas as pd

In [2]: names1 = ['철수', '영이', '길동', '미영', '순이', '철이']

In [3]: score1 = [84, 21, 87, 100, 59, 46]

In [4]: names2 = ['길동', '철수', '영이', '철이', '순이', '미영']

In [5]: score2 = [99, 87, 87, 84, 77, 15]

In [6]: s1 = pd.Series(score1, index=names1)

In [7]: s2 = pd.Series(score2, index=names2)
```

```
In [10]: d = pd.DataFrame()
In [11]: d['국어'] = s1
In [12]: d['영어'] = s2
In [13]: d['합'] = d.국어 + d.영어
In [14]: d
Out [14]:
              국어 영어
                    87 171
         영이
                21
                    87 108
         길동
                    99 186
                87
         미영
              100
                    15 115
                    77 136
         순이
                59
         철이
                       130
```

- 데이터 직접 넣어 생성
  - 방법1: d = pd.DataFrame(list/array/dictionary)
  - 방법2: d = pd.DataFrame(list/array/dictionary, index = list/array)
  - 방법3: d = pd.DataFrame(list/array/dictionary, index = list/array, columns = list/array)

- 데이터 직접 넣어 생성
  - 예시 index와 columns 지정 없을 때

- 데이터 직접 넣어 생성
  - 예시 index와 columns 지정 있을 때

```
In [1]: import pandas as pd
In [2]: | scores = [[84, 87, 78], [21, 15, 84], [87, 84, 76], [100, 87, 99], [59, 99, 59], [46, 77, 56]]
In [3]: names = ['철수', '영이', '길동', '미영', '순이', '철이']
In [4]: lectures = ['국어', '수학', '영어']
In [5]: d2 = pd.DataFrame(scores, index = names, columns = lectures)
In [6]: d2
Out [6]:
             국어 수학 영어
         철수
              84
                   87
                       78
         영이
              21
                   15
                        84
        길동
              87
                   84
                        76
        미영
              100
                   87
                        99
        순이
               59
                        59
        철이
               46
                   77
                        56
```

- 데이터 직접 넣어 생성
  - 예시 dictionary를 사용할 때

```
import pandas as pd
In [1]:
In [2]: ScoresWithLectures = {'수학': [84, 21, 87, 100, 59, 46], '국어': [87, 15, 84, 87, 99, 77], '영어': [78, 84, 76, 99, 59, 56]}
In [3]: names = ['철수', '영이', '길동', '미영', '순이', '철이']
In [4]: d3 = pd.DataFrame(ScoresWithLectures, index = names)
In [5]:
       d3
Out [5]:
             수학 국어 영어
        영이
              21
                   15
        길동
                        76
        미영
              100
        순이
               59
                        59
        철이
                        56
```

- index 변경
  - DataFrame객체.index = 새로운 index 배열/list
  - 예시

```
In [6]: d1
Out[6]:
            국어 영어 수학
                      78
                  15
        영이
        길동
             87
                  84
                      76
        미영
             100
                      99
        순이
        철이
              46
                 77
                      56
In [7]: d1.index = ['학생1', '학생2', '학생3', '학생4', '학생5', '학생6']
In [8]: d1
Out[8]:
             국어 영어 수학
                  87
                      78
        학생1
        학생2
              21
                   15
        학생3
                       76
                       59
                   77
```

- index 변경
  - DataFrame객체.rename(index={기존 index : 새 index, ...})
    - ✓ 새로운 DataFrame 객체 반환
  - 예시

```
In [10]: d1
Out[10]:
```

|     | 국어  | 영어 | 수학 |
|-----|-----|----|----|
| 학생1 | 84  | 87 | 78 |
| 학생2 | 21  | 15 | 84 |
| 학생3 | 87  | 84 | 76 |
| 학생4 | 100 | 87 | 99 |
| 학생5 | 59  | 99 | 59 |
| 학생6 | 46  | 77 | 56 |



```
In [11]: d1.rename(index={'학생1':'철수', '학생2':'영이'})
Out[11]:
              국어 영어 수학
          철수
                   87
          영이
                   15
                       76
         학생3
         학생4
         학생5
         학생6
                   77
In [12]:
Out[12]:
```

|     | 국어  | 영어 | 수약 |
|-----|-----|----|----|
| 학생1 | 84  | 87 | 78 |
| 학생2 | 21  | 15 | 84 |
| 학생3 | 87  | 84 | 76 |
| 학생4 | 100 | 87 | 99 |
| 학생5 | 59  | 99 | 59 |
| 학생6 | 46  | 77 | 56 |

- index 변경
  - DataFrame객체.rename(index={기존 index : 새 index, ...}, inplace=True)
    - ✓ 원본 객체 변경
  - 예시



- column 변경
  - DataFrame객체.columns = 새로운 columns 배열/list
  - 예시



- column 변경
  - DataFrame객체.rename(columns={기존 이름 : 새 이름, ...})
    - ✓ 새로운 DataFrame 객체 반환
  - 예시

```
In [18]: d1
Out[18]:
```

|    | 과목1 | 과목2 | 과목3 |
|----|-----|-----|-----|
| 철수 | 84  | 87  | 78  |
| 영이 | 21  | 15  | 84  |
| 길동 | 87  | 84  | 76  |
| 미영 | 100 | 87  | 99  |
| 순이 | 59  | 99  | 59  |
| 철이 | 46  | 77  | 56  |



Out [20]:

```
In [19]: d1.rename(columns={'과목1':'국어', '과목2':'영어'})
Out[19]:
             국어 영어 과목3
         철수
                  15
         영이
             100
         미영
         철이
                  77
                       56
```

In [20]: d1

|    | 과목1 | 과목2 | 과목3 |
|----|-----|-----|-----|
| 철수 | 84  | 87  | 78  |
| 영이 | 21  | 15  | 84  |
| 길동 | 87  | 84  | 76  |
| 미영 | 100 | 87  | 99  |
| 순이 | 59  | 99  | 59  |
| 철이 | 46  | 77  | 56  |

- column 변경
  - DataFrame객체.rename(columns={기존 이름 : 새 이름, ...}, inplace=True)
    - ✓ 원본 객체 변경
  - 예시



- 행 삭제
  - DataFrame객체.drop(index/list/배열, [axis=0])
    - ✓ 새로운 DataFrame 객체 반환





철수

영이

길동

미영

순이

철이



- 행 삭제
  - DataFrame객체.drop(index/list/배열, [axis=0], inplace=True)
    - ✓ 원본 객체 변경
  - 예시



- 열 삭제
  - DataFrame객체.drop(column명/list/배열, axis=1)
    - ✓ 새로운 DataFrame 객체 반환
  - 예시







철수

영이

길동

미영

순이

철이



- 열 삭제
  - DataFrame객체.drop(column명/list/배열, axis=1, inplace=True)
    - ✓ 원본 객체 변경
  - 예시



## DataFrame - 행, 열 추가

- 행추가
  - ▶ DataFrame객체.loc[새index명] = 데이터
  - 예시 합계 추가



## DataFrame - 행, 열 추가

- 열추가
  - DataFrame객체[새column명] = 데이터
  - 예시 합계 추가











# DataFrame - 값 수정

- 행의 값 수정
  - DataFrame객체.loc[index명] = 데이터
  - 예시



# DataFrame - 값 수정

- 행의 값 수정
  - ▶ DataFrame객체.iloc[index번호] = 데이터
  - 예시



# DataFrame - 값 수정

- 열의 값 수정
  - DataFrame객체[column명] = 데이터
  - 예시



# 실습

DataFrame을 이용하여 다음과 같이 실행되는 프로그램을 작성하시오.

실행결과(밑줄 친 부분은 키보드로 입력 받는 부분)

```
학생들의 이름 입력(,로 구분): 철수,영희,미영
학생들의 국어성적 입력(,로 구분): 90,80,80
학생들의 영어성적 입력(,로 구분): 80,80,90
학생들의 수학성적 입력(,로 구분): 70,89,88
국어 영어 수학 합계
철수 90 80 70 240
영희 80 80 89 249
미영 80 90 88 258
```

## 실습 - 답안

```
import pandas as pd
name = input('학생들의 이름 입력(,로 구분): ').split(',')
score kor = input('학생들의 국어성적 입력(,로 구분): ').split(',')
score_eng = input('학생들의 영어성적 입력(,로 구분): ').split(',')
score math = input('학생들의 수학성적 입력(,로 구분): ').split(',')
score kor = [int (i) for i in score kor]
score eng = [int (i) for i in score eng]
score math = [int (i) for i in score math]
s kor = pd.Series(score kor, index = name)
s eng = pd.Series(score eng, index = name)
s math = pd.Series(score math, index = name)
d = pd.DataFrame()
d['국어'] = s kor
d['영어'] = s eng
d['수학'] = s math
a['합계'] = a.국어 + a.영어 + a.수학
print(d)
```

- Index, columns, values 접근
  - Index: DataFrame객체.index
  - Columns: DataFrame객체.columns
  - Values: DataFrame객체.values
  - 예시

```
In [58]: d1
Out[58]:
              국어 영어 수학
               84
                    87
                        78
          철수
          영이
               21
                    15
                        84
                        76
                    84
          길동
                87
          미영
               100
                    87
                    99
          순이
               46
                    77
                        56
          철이
```

- []을 이용한 선택
  - 열 indexing: DataFrame객체[column명] 또는 DataFrame객체.column명
  - 예시



- []을 이용한 선택
  - 행 slicing: DataFrame객체[행번호:행번호] 또는 DataFrame객체[index명:index명]
  - 예시



- []을 이용한 선택
  - 열과 행 같이 선택
    - ✓ DataFrame객체[column명][행번호:행번호]
    - ✓ DataFrame객체[column명][index명: index명]
    - ✓ DataFrame객체.column명[행번호:행번호]
    - ✓ DataFrame객체.column명[index명 : index명]
  - 예시



- loc를 이용한 행 선택
  - index명 사용
  - 열 추가 시 comma 사용
  - 열 추가 시 column명 사용
  - 예시





- iloc를 이용한 행 선택
  - 번호 사용
  - 열 추가 시 comma 사용
  - 예시







# DataFrame - 산술/논리 연산 및 filtering

- 산술 연산
  - Array, series와 비슷
  - 예시







# DataFrame - 산술/논리 연산 및 filtering

- 논리 연산과 filtering
  - Array, series와 비슷
  - 예시



미영

순이

철이



영이

길동

미영



#### DataFrame - <u>정렬</u>

- 열 기준 정렬하기
  - index 기준: DataFrame객체.sort\_index(ascending = True/False)
  - 특정 열 기준: DataFrame객체.sort\_values(by = 'column명', ascending = True/False)
  - 예시



# 실습

DataFrame을 이용하여 다음과 같이 실행되는 프로그램을 작성하시오.

실행결과(밑줄 친 부분은 키보드로 입력 받는 부분)

```
학생들의 이름 입력(,로 구분): 영희,철수,미미
학생들의 국어성적 입력(,로 구분): 30,50,80
학생들의 영어성적 입력(,로 구분): 40,50,70
학생들의 수학성적 입력(,로 구분): 30,60,90
  국어 영어 수학
                합계
영희
   30
       40
         30 100
철수
   50
      50 60 160
80
      70 90 240
평균 53 53 60 166
검색할 학생 이름은? 철수
국어
      50
열어
      50
수학
      60
함계
     160
Name: 철수, dtype: int64
```

## 실습 - 답안

```
import pandas as pd
names = input('학생들의 이름 입력(.로 구분): ').split('.')
score_kor = input('학생들의 국어성적 입력(,로 구분): ').split(',')
score_eng = input('학생들의 영어성적 입력(,로 구분): ').split(',')
score math = input('학생들의 수학성적 입력(.로 구분): ').split('.')
score_kor = [int (i) for i in score_kor]
score_eng = [int (i) for i in score_eng]
score math = [int (i) for i in score math]
s_kor = pd.Series(score_kor, index = names)
s_eng = pd.Series(score_eng, index = names)
s math = pd.Series(score math, index = names)
d = pd.DataFrame()
d[' \pm O'] = s kor
d['역어'] = s_eng
d['수학'] = s_math
d['합계'] = d.sum(axis=1)
d.loc['평균'] = d.sum() // len(names)
print(d)
name = input('검색할 학생 이름은? ')
print(d.loc[name])
```

# 실습

DataFrame을 이용하여 다음과 같이 실행되는 프로그램을 작성하시오.

실행결과(밑줄 친 부분은 키보드로 입력 받는 부분)

```
학생들의 이름 입력(,로 구분): 철수,영미,길동.
학생들의 국어성적 입력(.로 구분): 50.70.90
학생들의 영어성적 입력(,로 구분): 80,75,80
학생들의 수학성적 입력(,로 구분): 95,85,90
  국어 영어 수학 합계
철수 50 80 95 225
역미 70
      75 85 230
길돔 90
      80 90
           260
정렬 기준 선택(1:국어, 2:영어, 3:수학, 4:합계): 4
정렬 방법 선택(1:오름차순, 2:내림차순): 2
  국어 영어 수학
               함계
길동 90
      -80 90 260
열미 70
      75 85 230
철수 50
         95 225
      80
```

#### 실습 - 답안

```
import pandas as pd
name = input('학생들의 이름 입력(,로 구분): ').split(',')
score_kor = input('학생들의 국어성적 입력(,로 구분): ').split(',')
score_eng = input('학생들의 영어성적 입력(,로 구분): ').split(',')
score_math = input('학생들의 수학성적 입력(,로 구분): ').split('.')
score_kor = [int (i) for i in score_kor]
score_eng = [int (i) for i in score_eng]
score_math = [int (i) for i in score_math]
s_kor = pd.Series(score_kor, index = name)
s eng = pd.Series(score eng. index = name)
s math = pd.Series(score math, index = name)
d = pd.DataFrame()
d[' \exists \Theta'] = s_kor
d['역어'] = s_eng
d['수학'] = s_math
d['합계'] = d.국어 + d.영어 + d.수학
print(d)
```

```
sort_no = input('정렬 기준 선택(1:국어, 2:영어, 3:수학, 4:합계): ')
sort_type = input('정렬 방법 선택(1:오름차순, 2:내림차순): ')
if sort_no == '1':
   if sort_type = '1':
       d_new = d.sort_values(by = '국어', ascending = True)
   el se:
       d_new = d.sort_values(by = '국어', ascending = False)
elif sort no = '2':
    if sort_type == '1':
       d_new = d.sort_values(by = '얼어', ascending = True)
    el se
       d_new = d.sort_values(by = '열어', ascending = False)
elif sort no = '3':
   if sort_type = '1':
       d_new = d.sort_values(by = '수학', ascending = True)
   el se:
       d_new = d.sort_values(by = '수학', ascending = False)
elif sort no = '4':
   if sort type = '1':
       d_new = d.sort_values(by = '합계', ascending = True)
   el se:
       d_new = d.sort_values(by = '할계', ascending = False)
print(d_new)
```

# ■ Pandas의 데이터 입출력

| 파일 형식           | 읽기             | 쓰기           |
|-----------------|----------------|--------------|
| MS Excel        | read_excel     | to_excel     |
| CSV             | read_csv       | to_csv       |
| JSON            | read_json      | to_json      |
| HTML            | read_html      | to_html      |
| Local clipboard | read_clipboard | to_clipboard |
| HDF5 Format     | read_hdf       | to_hdf       |
| SQL             | read_sql       | to_sql       |

- 엑셀 파일로 저장하기
  - DataFrame객체.to\_excel('경로/파일명', encoding = '코딩방식')
    - ✓ 한글 encoding 방식: encoding = 코딩방식(utf-8이나 euc-kr 사용)
  - 예시



<c:/data/scores.xls>

- 엑셀 파일 읽어오기
  - DataFrame객체 = pd.read\_excel('경로/파일명', sheet\_name='시트명', encoding = '코딩방식')
    - ✓ 시트명을 넣어주지 않으면 1번째 시트에서 읽어 옴
    - ✓ index열 지정: index\_col = 열번호
  - 예시 index 열 지정하지 않은 경우

| 4 | Α  | В   | С  | D  |  |
|---|----|-----|----|----|--|
| 1 |    | 국어  | 영어 | 수학 |  |
| 2 | 철수 | 84  | 87 | 78 |  |
| 3 | 영이 | 21  | 15 | 84 |  |
| 4 | 길동 | 87  | 84 | 76 |  |
| 5 | 미영 | 100 | 87 | 99 |  |
| 6 | 순이 | 59  | 99 | 59 |  |
| 7 | 철이 | 46  | 77 | 56 |  |
| 0 |    |     |    |    |  |







87

100

59

46

76

99

59

56

길동

미영

순이

철이

3

5

- 엑셀 파일 읽어오기
  - DataFrame객체 = pd.read\_excel('경로/파일명', sheet\_name='시트명', encoding = '코딩방식')
    - ✓ 시트명을 넣어주지 않으면 1번째 시트에서 읽어 옴
    - ✓ index열 지정: index\_col = 열번호
  - 예시 index열 지정한 경우

|   | Α  | В   | С  | D  |
|---|----|-----|----|----|
| 1 |    | 국어  | 영어 | 수학 |
| 2 | 철수 | 84  | 87 | 78 |
| 3 | 영이 | 21  | 15 | 84 |
| 4 | 길동 | 87  | 84 | 76 |
| 5 | 미영 | 100 | 87 | 99 |
| 6 | 순이 | 59  | 99 | 59 |
| 7 | 철이 | 46  | 77 | 56 |
| 0 |    |     |    |    |

<c:/data/scores.xls>



- CSV(comma-separated values) 파일로 저장하기
  - 줄바꿈으로 행, comma 등으로 열을 구분하여 데이터를 저장하는 파일 형식
  - DataFrame객체.to\_csv('경로/파일명.csv', encoding = '코딩방식')
    - ✓ 한글 encoding 방식은 euc-kr 권장
  - 예시

```
In [6]:
       import pandas as pd
In [7]: names = ['철수', '영이', '길동', '미영', '순이', '철이']
In [8]: Tectures = ['국어', '영어', '수학']
In [9]: scores = [84, 87, 78], [21, 15, 84], [87, 84, 76], [100, 87, 99], [59, 99, 59], [46, 77, 56]
                                                              ,국어,영어,수학
In [10]: d1 = pd.DataFrame(scores, index = names, columns = lectures)
                                                              철수,84,87,78
In [11]: d1.to_csv('c:/data/scores.csv')
                                                               영이,21,15,84
                                                               길동,87,84,76
                                                              미영,100,87,99
                                                               순이,59,99,59
                                                                                  <c:/data/scores.csv>
                                                               철이,46,77,56
```

- CSV 파일 읽어오기
  - DataFrame객체 = pd.read\_csv('경로/파일명', encoding = '코딩방식')
    - ✓ index열 지정: index\_col = 열번호
    - ✓ comma(,) 외의 구별 문자 지정: sep = 구별문자(보통 '\t' 탭)
  - 예시 index 열 지정하지 않은 경우

,국어,영어,수학 철수,84,87,78 영이,21,15,84 길동,87,84,76 미영,100,87,99 순이,59,99,59 철이,46,77,56



<c:/data/scores.csv>



|   | Unnamed: 0 | 국어  | 영어 | 수학 |
|---|------------|-----|----|----|
| 0 | 철수         | 84  | 87 | 78 |
| 1 | 영이         | 21  | 15 | 84 |
| 2 | 길동         | 87  | 84 | 76 |
| 3 | 미영         | 100 | 87 | 99 |
| 4 | 순이         | 59  | 99 | 59 |
| 5 | 철이         | 46  | 77 | 56 |

- CSV 파일 읽어오기
  - DataFrame객체 = pd.read\_csv('경로/파일명', encoding = '코딩방식')
    - ✓ index열 지정: index\_col = 열번호
    - ✓ comma(,) 외의 구별 문자 지정: sep = 구별문자(보통 '\t' 탭)
  - 예시 index 열 지정한 경우

,국어,영어,수학 철수,84,87,78 영이,21,15,84 길동,87,84,76 미영,100,87,99 순이,59,99,59 철이,46,77,56

<c:/data/scores.csv>



```
In [14]: d3 = pd.read_csv('c:/data/scores.csv', index_col=0)
In [15]: d3
Out [15]: 국어 영어 수학
```

|    | 국어  | 영어 | 수악 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |

- JSON 파일로 저장하기
  - DataFrame객체.to json('경로/파일명')
  - 예시

```
In [6]: import pandas as pd
In [21]: names = ['stu1', 'stu2', 'stu3', 'stu4', 'stu5', 'stu6']
In [22]: lectures = ['kor', 'eng', 'math']
In [23]: scores = [[84, 87, 78], [21, 15, 84], [87, 84, 76], [100, 87, 99], [59, 99, 59], [46, 77, 56]]
In [24]: d1 = pd.DataFrame(scores, index = names, columns = lectures)
In [26]: d1.to_json('c:/data/scores.json')
```



"kor":{"stu1":84,"stu2":21,"stu3":87,"stu4":100,"stu5":59,"stu6":46},
"eng":{"stu1":87,"stu2":15,"stu3":84,"stu4":87,"stu5":99,"stu6":77},
"math":{"stu1":78,"stu2":84,"stu3":76,"stu4":99,"stu5":59,"stu6":56}

<c:/data/scores.json>

- JSON 파일 읽어오기
  - DataFrame객체 = pd.read\_json('경로/파일명')
  - 예시

```
kor":{"stu1":84,"stu2":21,"stu3":87,"stu4":100,"stu5":59,"stu6":46},
"eng":{"stu1":87,"stu2":15,"stu3":84,"stu4":87,"stu5":99,"stu6":77},
"math":{"stu1":78,"stu2":84,"stu3":76,"stu4":99,"stu5":59,"stu6":56}
```

<c:/data/scores.json>



|      | kor | eng | math |
|------|-----|-----|------|
| stu1 | 84  | 87  | 78   |
| stu2 | 21  | 15  | 84   |
| stu3 | 87  | 84  | 76   |
| stu4 | 100 | 87  | 99   |
| stu5 | 59  | 99  | 59   |
| stu6 | 46  | 77  | 56   |

- HTML 파일로 저장하기
  - Dataframe은 HTML 페이지에 표 형식()으로 저장됨
  - DataFrame객체.to\_html('경로/파일명')
  - 예시

```
In [6]:
      import pandas as pd
In [21]: names = ['stu1', 'stu2', 'stu3', 'stu4', 'stu5', 'stu6']
                                                                        lectures = ['kor', 'eng', 'math']
In [22]:
                                                                         stu1
      scores = [[84, 87, 78], [21, 15, 84], [87, 84, 76], [100, 87, 99], [59, 99, 59], [46, 77, 56]]
In [23]:
                                                                          84
                                                                          87
      d1 = pd.DataFrame(scores, index = names, columns = lectures)
In [30]:
                                                                          78
                                                                         In [31]: d1.to_html('c:/data/scores.html')
                                          <table_border="1" class="dataframe">
                                                                         stu2
                                            <thead>
                                                                          21
                                             15
                                              84
                                              kor
                                                                         eng
                                              math
                                                                        <c:/data/scores.html>
                                                                       </thead>
```

- HTML 파일 읽어오기
  - HTML 웹 페이지에 있는 태그에서 표 형식의 데이터를 읽어옴
  - DataFrame객체리스트 = pd.read\_html('경로/파일명', encoding = '코딩방식')
  - DataFrame객체리스트 = pd.read\_html('웹주소(url)', encoding = '코딩방식')
  - 예시

|      | kor | eng | math |
|------|-----|-----|------|
| stu1 | 84  | 87  | 78   |
| stu2 | 21  | 15  | 84   |
| stu3 | 87  | 84  | 76   |
| stu4 | 100 | 87  | 99   |
| stu5 | 59  | 99  | 59   |
| stu6 | 46  | 77  | 56   |
|      | 국아  | 영0  | 서 수학 |
| 철수   | 84  | 87  | 78   |
| 영희   | 21  | 15  | 84   |
| 미영   | 87  | 84  | 76   |

```
<c:/data/scores.html>
```

```
In [38]: tables = pd.read_html('c:/data/scores.html',index_col = 0, encoding='euc-kr')
In [39]: print(len(tables))
         2
In [40]: for i in range(len(tables)):
             print("tables[%d]" x i)
             print(tables[i])
             print()
         tables[0]
               kor
                    eng
                        math
               84
                    87
                           78
         stu1
                    15
                21
                           84
         stu2
               87
                     84
                           76
         stu3
                           99
               100
                    87
         stu4
                           59
         stu5
                     77
                           56
         stu6
         tables[1]
                   영어 수학
                   87 78
```

- 데이터베이스에 저장하기: SQLite DB 사용
  - DataFrame객체.to sql(name, con, flavor='sqlite', schema=None, if exists='fail', index=True, index label=None, chunksize=None, dtype=None)
  - 예시



- 데이터베이스에서 읽어오기: SQLite DB 사용
  - DataFrame객체 = pd.read\_sql('쿼리', con)
  - 예시

```
import sqlite3
import pandas as pd

con = sqlite3.connect("test.db")

d2 = pd.read_sql('SELECT * FROM scores', con)

d2
```

|   | 이름 | 국어  | 영어 | 수학 |
|---|----|-----|----|----|
| 0 | 철수 | 84  | 87 | 78 |
| 1 | 영이 | 21  | 15 | 84 |
| 2 | 길동 | 87  | 84 | 76 |
| 3 | 미영 | 100 | 87 | 99 |
| 4 | 순이 | 59  | 99 | 59 |
| 5 | 철이 | 46  | 77 | 56 |

- 데이터 취득
  - ✓ 서울시열린데이터광장 (https://data.seoul.go.kr) => 서울시 주민등록인구 (구별) 통계



- 데이터 취득
  - 서울시열린데이터광장 (https://data.seoul.go.kr) => 서울시 주민등록인구 (구별) 통계



- 데이터 취득
  - 서울시열린데이터광장 (https://data.seoul.go.kr) => 서울시 주민등록인구 (구별) 통계



- 데이터 취득
  - 서울시열린데이터광장 (https://data.seoul.go.kr) => 서울시 주민등록인구 (구별) 통계



#### ■ 데이터 읽기

import pandas as pd

pop\_seoul = pd.read\_excel('c:/data/pop\_in\_seoul.xls')

pop\_seoul

|    | 기간       | 자치구  | 세대      | 인구       | 인구.1    | 인구.2    | 인구.3    | 인구.4    | 인구.5    | 인구.6   | 인구.7   | 인구.8   | 세대당인구 | 65세이상고령자 |
|----|----------|------|---------|----------|---------|---------|---------|---------|---------|--------|--------|--------|-------|----------|
| 0  | 기간       | 자치구  | 세대      | 합계       | 합계      | 합계      | 한국인     | 한국인     | 한국인     | 등록외국인  | 등록외국인  | 등록외국인  | 세대당인구 | 65세이상고령자 |
| 1  | 기간       | 자치구  | 세대      | 계        | 남자      | 여자      | 계       | 남자      | 여자      | 계      | 남자     | 여자     | 세대당인구 | 65세이상고령자 |
| 2  | 2019.1/4 | 합계   | 4290922 | 10054979 | 4909387 | 5145592 | 9770216 | 4772134 | 4998082 | 284763 | 137253 | 147510 | 2.28  | 1436125  |
| 3  | 2019.1/4 | 종로구  | 73914   | 162913   | 78963   | 83950   | 152778  | 74536   | 78242   | 10135  | 4427   | 5708   | 2.07  | 26981    |
| 4  | 2019.1/4 | 중구   | 61800   | 135836   | 66720   | 69116   | 125942  | 61992   | 63950   | 9894   | 4728   | 5166   | 2.04  | 22421    |
| 5  | 2019.1/4 | 용산구  | 109413  | 245139   | 119597  | 125542  | 229168  | 110626  | 118542  | 15971  | 8971   | 7000   | 2.09  | 38049    |
| 6  | 2019.1/4 | 성동구  | 137247  | 314608   | 154011  | 160597  | 306404  | 150287  | 156117  | 8204   | 3724   | 4480   | 2.23  | 43076    |
| 7  | 2019.1/4 | 광진구  | 163460  | 370658   | 179162  | 191496  | 354873  | 172361  | 182512  | 15785  | 6801   | 8984   | 2.17  | 46288    |
| 8  | 2019.1/4 | 동대문구 | 162228  | 363262   | 179100  | 184162  | 346750  | 172784  | 173966  | 16512  | 6316   | 10196  | 2.14  | 57570    |
| 9  | 2019.1/4 | 중랑구  | 181182  | 407211   | 201808  | 205403  | 402203  | 199730  | 202473  | 5008   | 2078   | 2930   | 2.22  | 62789    |
| 10 | 2019.1/4 | 성북구  | 188670  | 450021   | 217400  | 232621  | 438245  | 212830  | 225415  | 11776  | 4570   | 7206   | 2.32  | 68612    |
| 11 | 2019.1/4 | 강북구  | 143663  | 321151   | 156525  | 164626  | 317386  | 155075  | 162311  | 3765   | 1450   | 2315   | 2.21  | 58858    |

- 데이터 읽기
  - 특정 열 가져오고, column 설정

```
pop_seoul = pd.read_excel('c:/data/pop_in_seoul.xls', usecols=[1,3,6,9,13], header=2)
pop_seoul
```

|    | 자치구  | 계        | 계.1     | 계.2    | 65세이상고령자 |
|----|------|----------|---------|--------|----------|
| 0  | 합계   | 10054979 | 9770216 | 284763 | 1436125  |
| 1  | 종로구  | 162913   | 152778  | 10135  | 26981    |
| 2  | 중구   | 135836   | 125942  | 9894   | 22421    |
| 3  | 용산구  | 245139   | 229168  | 15971  | 38049    |
| 4  | 성동구  | 314608   | 306404  | 8204   | 43076    |
| 5  | 광진구  | 370658   | 354873  | 15785  | 46288    |
| 6  | 동대문구 | 363262   | 346750  | 16512  | 57570    |
| 7  | 중랑구  | 407211   | 402203  | 5008   | 62789    |
| 8  | 성북구  | 450021   | 438245  | 11776  | 68612    |
| 9  | 강북구  | 321151   | 317386  | 3765   | 58858    |
| 10 | 도봉구  | 340089   | 337820  | 2269   | 56742    |

- 데이터 읽기
  - column명 변경

pop\_seoul.columns = ['구별','인구수','한국인','외국인','고령자']
pop\_seoul

|   | 구별   | 인구수      | 한국인     | 외국인    | 고령자     |
|---|------|----------|---------|--------|---------|
| 0 | 합계   | 10054979 | 9770216 | 284763 | 1436125 |
| 1 | 종로구  | 162913   | 152778  | 10135  | 26981   |
| 2 | 중구   | 135836   | 125942  | 9894   | 22421   |
| 3 | 용산구  | 245139   | 229168  | 15971  | 38049   |
| 4 | 성동구  | 314608   | 306404  | 8204   | 43076   |
| 5 | 광진구  | 370658   | 354873  | 15785  | 46288   |
| 6 | 동대문구 | 363262   | 346750  | 16512  | 57570   |
| 7 | 중랑구  | 407211   | 402203  | 5008   | 62789   |
| 8 | 성북구  | 450021   | 438245  | 11776  | 68612   |

- 데이터 읽기
  - index 설정

| pop_seou  | l.set_inde | ex('구별' | , inplac | ce=True) |
|-----------|------------|---------|----------|----------|
| pop_seou  |            |         |          |          |
| 1-11-2-11 |            |         |          |          |
|           | 인구수        | 한국인     | 외국인      | 고령자      |
| 구별        |            |         |          |          |
| 합계        | 10054979   | 9770216 | 284763   | 1436125  |
| 종로구       | 162913     | 152778  | 10135    | 26981    |
| 중구        | 135836     | 125942  | 9894     | 22421    |
| 용산구       | 245139     | 229168  | 15971    | 38049    |
| 성동구       | 314608     | 306404  | 8204     | 43076    |
| 광진구       | 370658     | 354873  | 15785    | 46288    |
| 동대문구      | 363262     | 346750  | 16512    | 57570    |
| 중랑구       | 407211     | 402203  | 5008     | 62789    |
| 성북구       | 450021     | 438245  | 11776    | 68612    |
| 강북구       | 321151     | 317386  | 3765     | 58858    |

- 데이터 읽기
  - 합계 데이터(1번째 행) 삭제

```
pop_seoul.drop('합계', inplace=True)
pop_seoul.head()
       인구수 한국인 외국인 고령자
  구별
종로구 162913 152778
                    10135
                          26981
  중구 135836 125942
                     9894
                          22421
용산구 245139 229168
                    15971
                         38049
성동구 314608 306404
                     8204
                          43076
광진구 370658 354873
                    15785 46288
```

- 데이터 분석하기
  - 한국인 비율 구하기

```
pop_seoul['한국인비율(%)'] = (pop_seoul.한국인 / pop_seoul.인구수) * 100
pop_seoul
```

|      | 인구수    | 한국인    | 외국인   | 고령자   | 한국인비율(%)  |
|------|--------|--------|-------|-------|-----------|
| 구별   |        |        |       |       |           |
| 종로구  | 162913 | 152778 | 10135 | 26981 | 93.778888 |
| 중구   | 135836 | 125942 | 9894  | 22421 | 92.716217 |
| 용산구  | 245139 | 229168 | 15971 | 38049 | 93.484921 |
| 성동구  | 314608 | 306404 | 8204  | 43076 | 97.392310 |
| 광진구  | 370658 | 354873 | 15785 | 46288 | 95.741357 |
| 동대문구 | 363262 | 346750 | 16512 | 57570 | 95.454520 |
| 중랑구  | 407211 | 402203 | 5008  | 62789 | 98.770171 |
| 성북구  | 450021 | 438245 | 11776 | 68612 | 97.383233 |
|      |        |        |       |       |           |

- 데이터 분석하기
  - 외국인 비율 구하기

```
pop_seoul['외국인비율(%)'] = (pop_seoul.외국인 / pop_seoul.인구수) * 100
pop_seoul
```

|   |      | 인구수    | 한국인    | 외국인   | 고령자   | 한국인비율(%)  | 외국인비율(%)        |
|---|------|--------|--------|-------|-------|-----------|-----------------|
|   | 구별   |        |        |       |       |           |                 |
|   | 종로구  | 162913 | 152778 | 10135 | 26981 | 93.778888 | 6.221112        |
|   | 중구   | 135836 | 125942 | 9894  | 22421 | 92.716217 | 7.283783        |
|   | 용산구  | 245139 | 229168 | 15971 | 38049 | 93.484921 | 6.515079        |
|   | 성동구  | 314608 | 306404 | 8204  | 43076 | 97.392310 | 2.607690        |
|   | 광진구  | 370658 | 354873 | 15785 | 46288 | 95.741357 | 4.258643        |
| - | 동대문구 | 363262 | 346750 | 16512 | 57570 | 95.454520 | 4.545480        |
|   | 중랑구  | 407211 | 402203 | 5008  | 62789 | 98.770171 | 1.229829        |
|   | 성북구  | 450021 | 438245 | 11776 | 68612 | 97.383233 | <u>2.616767</u> |

- 데이터 분석하기
  - 고령자 비율 구하기

```
pop_seoul['고령자비율(%)'] = (pop_seoul.고령자 / pop_seoul.인구수) * 100
pop_seoul
```

|      | 인구수    | 한국인    | 외국인   | 고령자   | 한국인비율(%)  | 외국인비율(%)        | 고령자비율(%)         |
|------|--------|--------|-------|-------|-----------|-----------------|------------------|
| 구별   |        |        |       |       |           |                 |                  |
| 종로구  | 162913 | 152778 | 10135 | 26981 | 93.778888 | 6.221112        | <u>16.561600</u> |
| 중구   | 135836 | 125942 | 9894  | 22421 | 92.716217 | 7.283783        | 16.505934        |
| 용산구  | 245139 | 229168 | 15971 | 38049 | 93.484921 | 6.515079        | 15.521398        |
| 성동구  | 314608 | 306404 | 8204  | 43076 | 97.392310 | 2.607690        | 13.691960        |
| 광진구  | 370658 | 354873 | 15785 | 46288 | 95.741357 | 4.258643        | 12.488062        |
| 동대문구 | 363262 | 346750 | 16512 | 57570 | 95.454520 | 4.545480        | 15.848066        |
| 중랑구  | 407211 | 402203 | 5008  | 62789 | 98.770171 | 1.229829        | 15.419279        |
| 성북구  | 450021 | 438245 | 11776 | 68612 | 97.383233 | <u>2.616767</u> | 15.246400        |

- 데이터 분석하기
  - 인구수 합계 내림차순 정렬하기

```
pop_seoul.sort_values(by = '인구수', ascending = False)
```

|     | 인구수    | 한국인    | 외국인   | 고령자   | 한국인비율(%)  | 외국인비율(%)        | 고령자비율(%)  |
|-----|--------|--------|-------|-------|-----------|-----------------|-----------|
| 구별  |        |        |       |       |           |                 |           |
| 송파구 | 685361 | 678521 | 6840  | 83492 | 99.001986 | 0.998014        | 12.182193 |
| 강서구 | 602886 | 596287 | 6599  | 80903 | 98.905432 | 1.094568        | 13.419287 |
| 강남구 | 546875 | 541854 | 5021  | 68104 | 99.081874 | 0.918126        | 12.453303 |
| 노원구 | 545486 | 541174 | 4312  | 78170 | 99.209512 | 0.790488        | 14.330340 |
| 관악구 | 520645 | 502615 | 18030 | 73005 | 96.536988 | 3.463012        | 14.022030 |
| 은평구 | 488713 | 484274 | 4439  | 78406 | 99.091696 | 0.908304        | 16.043363 |
| 양천구 | 466622 | 462599 | 4023  | 58930 | 99.137846 | 0.862154        | 12.629066 |
| 성북구 | 450021 | 438245 | 11776 | 68612 | 97.383233 | <u>2.616767</u> | 15.246400 |
| 구로구 | 438889 | 404726 | 34163 | 63017 | 92.216027 | 7.783973        | 14.358300 |
|     |        |        |       |       |           |                 |           |

- 데이터 분석하기
  - 인구수가 적은 순서대로 5개 구 출력하기

```
sorted_pop = pop_seoul.sort_values(by = '인구수', ascending = True)
sorted_pop.head()
```

|     | 인구수    | 한국인    | 외국인   | 고령자   | 한국인비율(%)  | 외국인비율(%) | 고령자비율(%)         |
|-----|--------|--------|-------|-------|-----------|----------|------------------|
| 구별  |        |        |       |       |           |          |                  |
| 중구  | 135836 | 125942 | 9894  | 22421 | 92.716217 | 7.283783 | <u>16.505934</u> |
| 종로구 | 162913 | 152778 | 10135 | 26981 | 93.778888 | 6.221112 | <u>16.561600</u> |
| 용산구 | 245139 | 229168 | 15971 | 38049 | 93.484921 | 6.515079 | 15.521398        |
| 금천구 | 254244 | 233981 | 20263 | 36301 | 92.030097 | 7.969903 | 14.278016        |
| 성동구 | 314608 | 306404 | 8204  | 43076 | 97.392310 | 2.607690 | 13.691960        |

- 데이터 분석하기
  - 외국인수 내림차순 정렬하기

pop\_seoul.sort\_values(by = '외국인', ascending = **False**)

|      | 인구수    | 한국인    | 외국인   | 고령자   | 한국인비율(%)  | 외국인비율(%) | 고령자비율(%)  |
|------|--------|--------|-------|-------|-----------|----------|-----------|
| 구별   |        |        |       |       |           |          |           |
| 영등포구 | 404556 | 368824 | 35732 | 56463 | 91.167601 | 8.832399 | 13.956782 |
| 구로구  | 438889 | 404726 | 34163 | 63017 | 92.216027 | 7.783973 | 14.358300 |
| 금천구  | 254244 | 233981 | 20263 | 36301 | 92.030097 | 7.969903 | 14.278016 |
| 관악구  | 520645 | 502615 | 18030 | 73005 | 96.536988 | 3.463012 | 14.022030 |
| 동대문구 | 363262 | 346750 | 16512 | 57570 | 95.454520 | 4.545480 | 15.848066 |
| 용산구  | 245139 | 229168 | 15971 | 38049 | 93.484921 | 6.515079 | 15.521398 |
| 광진구  | 370658 | 354873 | 15785 | 46288 | 95.741357 | 4.258643 | 12.488062 |
| 동작구  | 412031 | 398886 | 13145 | 60462 | 96.809706 | 3.190294 | 14.674139 |

- 데이터 분석하기
  - 외국인 비율 내림차순 정렬하기

```
pop_seoul.sort_values(by = '외국인비율(%)', ascending = False)
```

|      | 인구수    | 한국인    | 외국인   | 고령자   | 한국인비율(%)  | 외국인비율(%) | 고령자비율(%)         |
|------|--------|--------|-------|-------|-----------|----------|------------------|
| 구별   |        |        |       |       |           |          |                  |
| 영등포구 | 404556 | 368824 | 35732 | 56463 | 91.167601 | 8.832399 | 13.956782        |
| 금천구  | 254244 | 233981 | 20263 | 36301 | 92.030097 | 7.969903 | 14.278016        |
| 구로구  | 438889 | 404726 | 34163 | 63017 | 92.216027 | 7.783973 | 14.358300        |
| 중구   | 135836 | 125942 | 9894  | 22421 | 92.716217 | 7.283783 | 16.505934        |
| 용산구  | 245139 | 229168 | 15971 | 38049 | 93.484921 | 6.515079 | 15.521398        |
| 종로구  | 162913 | 152778 | 10135 | 26981 | 93.778888 | 6.221112 | <u>16.561600</u> |
| 동대문구 | 363262 | 346750 | 16512 | 57570 | 95.454520 | 4.545480 | 15.848066        |
| 광진구  | 370658 | 354873 | 15785 | 46288 | 95.741357 | 4.258643 | 12.488062        |
| 서대문구 | 324604 | 311771 | 12833 | 51085 | 96.046568 | 3.953432 | 15.737637        |
|      |        |        |       |       |           |          |                  |

- 데이터 분석하기
  - 고령자 비율 오름차순 정렬하기

pop\_seoul.sort\_values(by = '고렵자비율(%)', ascending = **True**)

|     | 인구수    | 한국인    | 외국인   | 고령자   | 한국인비율(%)  | 외국인비율(%) | 고령자비율(%)  |
|-----|--------|--------|-------|-------|-----------|----------|-----------|
| 구별  |        |        |       |       |           |          |           |
| 송파구 | 685361 | 678521 | 6840  | 83492 | 99.001986 | 0.998014 | 12.182193 |
| 강남구 | 546875 | 541854 | 5021  | 68104 | 99.081874 | 0.918126 | 12.453303 |
| 광진구 | 370658 | 354873 | 15785 | 46288 | 95.741357 | 4.258643 | 12.488062 |
| 양천구 | 466622 | 462599 | 4023  | 58930 | 99.137846 | 0.862154 | 12.629066 |
| 서초구 | 437007 | 432762 | 4245  | 55366 | 99.028620 | 0.971380 | 12.669362 |
| 마포구 | 386571 | 375106 | 11465 | 51293 | 97.034180 | 2.965820 | 13.268714 |
| 강서구 | 602886 | 596287 | 6599  | 80903 | 98.905432 | 1.094568 | 13.419287 |
| 성동구 | 314608 | 306404 | 8204  | 43076 | 97.392310 | 2.607690 | 13.691960 |
| 강동구 | 429601 | 425267 | 4334  | 59742 | 98.991157 | 1.008843 | 13.906392 |
|     |        |        |       |       |           |          |           |

- 평균값
  - 모든 열의 평균값: DataFrame객체.mean()
  - 특정 열의 평균값: DataFrame객체['column명'].mean()
  - 예시

```
d1
          영어 수학
철수
                78
           87
영이
       21
            15
                84
길동
       87
            84
                76
미영
      100
            87
                99
순이
       59
            99
철이
       46
            77
```

```
In [54]:
         import pandas as pd
In [55]: names = ['철수', '영이', '길동', '미영', '순이', '철이']
         Tectures = ['국어', '영어', '수학']
In [56]:
         scores = [[84, 87, 78], [21, 15, 84], [87, 84, 76], [100, 87, 99], [59, 99, 59], [46, 77, 56]]
        d1 = pd.DataFrame(scores, index = names, columns = lectures)
In [68]:
         d1.mean()
Out [68]:
        국어
                66.166667
         영어
                 74.833333
                 75.333333
         dtype: float64
In [69]: d1['국어'].mean()
Out [69]: 66,16666666666667
```

- 중간값
  - 주어진 값들을 크기의 순서대로 정렬했을 때 가장 중앙에 위치하는 값
  - 값이 짝수개일 때에는 중앙에 있는 두 값의 평균
  - 모든 열의 중간값: DataFrame객체.median()
  - 특정 열의 중간값: DataFrame객체['column명']. median()
  - 예시

| d1 |     |    |    |
|----|-----|----|----|
|    | 국어  | 영어 | 수학 |
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |

- 최대값
  - 모든 열의 최대값: DataFrame객체.max()
  - 특정 열의 최대값: DataFrame객체['column명']. max()
  - 예시



- 최소값
  - 모든 열의 최소값: DataFrame객체.min()
  - 특정 열의 최소값: DataFrame객체['column 명']. min()
  - 예시



- 표준편차
  - 표준 편차(standard deviation)는 분산을 제곱근한 것
    - ✓ 분산(variance)은 관측값에서 평균을 뺀 값을 제곱하고, 그것을 모두 더한 후 전체 개수로 나눠서 구한다.
  - 모든 열의 표준편차: DataFrame객체.std()
  - 특정 열의 표준편차 : DataFrame객체['column명']. std()
  - 예시

|    |     |    |    | In [78]: d1.std()                      |
|----|-----|----|----|----------------------------------------|
|    | 국어  | 영어 | 수학 | Out [78]: 국어 29.647372<br>열어 30.162339 |
| 철수 | 84  | 87 | 78 | 수학 16.020820                           |
| 영이 | 21  | 15 | 84 | dtype: float64                         |
| 길동 | 87  | 84 | 76 | 1 F701   H [1 7 0 1 1 1 1 1 1 1        |
| 미영 | 100 | 87 | 99 | In [79]: d1['국어'].std()                |
| 순이 | 59  | 99 | 59 | Out [79]: 29.64737200270315            |
| 철이 | 46  | 77 | 56 |                                        |

- 상관계수
  - 두 변수간의 관계 강도를 나타냄
  - 모든 열의 상관계수: DataFrame객체.corr()
  - 특정 열의 상관계수 : DataFrame객체[column명 리스트].corr()
  - 예시



- 데이터 분석하기
  - 평균 구하기

dtype: float64

```
pop_seoul.mean()
인구수 402199.160000
한국인 390808.640000
외국인 11390.520000
고령자 57445.000000
한국인비율(%) 96.686855
외국인비율(%) 3.313145
고령자비율(%) 14.568931
```

- 데이터 분석하기
  - 인구수 최대값 구하기

```
pop_seoul['인구수'].max()
685361
```

• 인구수 최소값 구하기

```
pop_seoul['인구수'].min()
```

135836

- 데이터 분석하기
  - 인구수와 고령자수 간의 상관 관계

```
pop_seoul[['인구수', '고령자']].corr()
```

|     | 인구수      | 고령자      |
|-----|----------|----------|
| 인구수 | 1.000000 | 0.942086 |
| 고령자 | 0.942086 | 1.000000 |

• 누락 데이터 확인

55

슬기

80

65

- isnull() : 누락 데이터이면 True를 반환하고, 유효한 데이터가 존재하면 False를 반환
- notnull(): 유효한 데이터가 존재하면 True를 반환하고, 누락 데이터이면 False를 반환
- 예시



- 누락 데이터 제거
  - 행제거: DataFrame객체.dropna(subset=column명 리스트, how='any'/'all', axis=0, thresh=개수)
  - 열 제거: DataFrame객체.dropna(axis=1, thresh=개수)
  - thresh : 유효한 값의 개수가 thresh의 값보다 작은 행이나 열을 삭제
  - 예시 행 제거





- 누락 데이터 치환
  - DataFrame객체['column명'].fillna(값)
    - ✓ 새로운 객체 반환
  - DataFrame객체['column명'].fillna(값, inplace=True)
    - ✓ 원본 객체 변경
  - 예시







- 중복 데이터 확인
  - 행 중복 확인: DataFrame객체.duplicated()
  - 열 중복 확인: DataFrame객체['column명'].duplicated()
  - 예시

d3

|    | 국어    | 영어    | 수학    |
|----|-------|-------|-------|
| 길동 | 167.0 | 174.0 | 156.0 |
| 미영 | 200.0 | 177.0 | 198.0 |
| 순이 | 136.0 | 194.0 | 129.0 |
| 슬기 | 71.0  | NaN   | NaN   |
| 영이 | 71.0  | 75.0  | 154.0 |
| 철수 | 164.0 | 167.0 | 168.0 |
| 철이 | 71.0  | NaN   | NaN   |







- 중복 데이터 제거
  - 중복 행 제거: DataFrame객체.drop\_duplicates(subset=column명 리스트)
  - 예시



- 자료형 변환
  - DataFrame객체['column명'].astype(자료형)
  - 예시





```
d3['영어']
       174.0
미영
       177.0
순이
슬기
       194.0
         NaN
영이
        75.0
철수
       167.0
철이
         NaN
```



- 다른 자료형을 시계열 객체로 변환
  - 문자열을 Timestamp로 변환
    - ✓ to\_datetime() 함수 사용
  - 예시

d1

|    | 생년월일       | 점수 |
|----|------------|----|
| 철수 | 1990-03-02 | 90 |
| 영이 | 1991-06-08 | 95 |
| 길동 | 1990-11-22 | 80 |
| 미영 | 1991-01-05 | 88 |



```
d1['생년월일'] = pd.to_datetime(d1['생년월일'])
d1
```



```
dl.info()

<class 'pandas.core.frame.DataFrame'>
Index: 4 entries, 철수 to 미영
Data columns (total 2 columns):
생년월일 4 non-null datetime64[ns]
점수 4 non-null int64
dtypes: datetime64[ns](1), int64(1)
memory usage: 96.0+ bytes
```



- 다른 자료형을 시계열 객체로 변환
  - Timestamp를 Period로 변환
    - ✓ to\_period() 함수 사용
  - 예시

```
dates = ['2019-01-01', '2020-03-02', '2021-12-31']
ts dates = pd.to datetime(dates)
ts dates
DatetimeIndex(['2019-01-01', '2020-03-02', '2021-12-31'], dtype='datetime64[ns]', freq=None)
pr_day = ts_dates.to_period(freq='D')
pr day
PeriodIndex(['2019-01-01', '2020-03-02', '2021-12-31'], dtype='period[D]', freq='D')
pr_month = ts_dates.to_period(freq='M')
pr_month
PeriodIndex(['2019-01', '2020-03', '2021-12'], dtype='period[M]', freq='M')
pr year = ts dates.to period(freq='A')
pr year
PeriodIndex(['2019', '2020', '2021'], dtype='period[A-DEC]', freq='A-DEC')
```

- 시계열 데이터 만들기
  - Timestamp 배열
    - ✓ date\_range() 함수 사용
  - 예시

```
ts ms = pd.date range(start='2019-01-01',
                      end=None,
                      periods=6,
                      freq='MS',
                      tz='Asia/Seoul')
ts ms
DatetimeIndex(['2019-01-01 00:00:00+09:00', '2019-02-01 00:00:00+09:00',
               '2019-03-01 00:00:00+09:00', '2019-04-01 00:00:00+09:00',
               '2019-05-01 00:00:00+09:00', '2019-06-01 00:00:00+09:00'],
              dtype='datetime64[ns, Asia/Seoul]', freq='MS')
ts m = pd.date range(start='2019-01-01',
                     end=None,
                     periods=6,
                     freq='2M',
                     tz='Asia/Seoul')
ts m
DatetimeIndex(['2019-01-31 00:00:00+09:00', '2019-03-31 00:00:00+09:00',
               '2019-05-31 00:00:00+09:00', '2019-07-31 00:00:00+09:00',
               '2019-09-30 00:00:00+09:00', '2019-11-30 00:00:00+09:00'],
              dtype='datetime64[ns, Asia/Seoul]', freq='2M')
```

- 시계열 데이터 만들기
  - Period 배열
    - ✓ period\_range() 함수 사용
  - 예시

- 시계열 데이터 활용
  - 날짜 데이터 분리
    - ✓ 연-월-일 정보에서 연,월,일 추출: dt.year, dt.month, dt.day를 사용
  - 예시

d1

|    | 생년윌일       | 점수 |
|----|------------|----|
| 철수 | 1990-03-02 | 90 |
| 영이 | 1991-06-08 | 95 |
| 길동 | 1990-11-22 | 80 |
| 미영 | 1991-01-05 | 88 |



```
d1['년'] = d1['생년월일'].dt.year
d1['월'] = d1['생년월일'].dt.month
d1['일'] = d1['생년월일'].dt.day
d1
```

|    | 생년월일       | 점수 | 년    | 윌  | 일  |
|----|------------|----|------|----|----|
| 철수 | 1990-03-02 | 90 | 1990 | 3  | 2  |
| 영이 | 1991-06-08 | 95 | 1991 | 6  | 8  |
| 길동 | 1990-11-22 | 80 | 1990 | 11 | 22 |
| 미영 | 1991-01-05 | 88 | 1991 | 1  | 5  |

- 시계열 데이터 활용
  - 날짜 데이터 분리
    - ✓ 연-월-일 정보에서 연-월 등 추출: dt.to\_period()를 사용
  - 예시





|    | 생년월일       | 점수 | 년    | 윌  | 일  | 년윌      |
|----|------------|----|------|----|----|---------|
| 철수 | 1990-03-02 | 90 | 1990 | 3  | 2  | 1990-03 |
| 영이 | 1991-06-08 | 95 | 1991 | 6  | 8  | 1991-06 |
| 길동 | 1990-11-22 | 80 | 1990 | 11 | 22 | 1990-11 |
| 미영 | 1991-01-05 | 88 | 1991 | 1  | 5  | 1991-01 |

- 시계열 데이터 활용
  - 날짜 인덱스 활용
  - 예시

| d1     | d1 |            |      |          |      |     |      |         |  |
|--------|----|------------|------|----------|------|-----|------|---------|--|
| 생년:    |    | 생년월일       | ! 점= | <u> </u> | 년 4  | 렄   | 잌    | 년윌      |  |
| 철수 1   |    |            |      | 0 199    |      | 3   |      | 1990-03 |  |
| ල<br>( |    | 1991-06-08 | 3 9  | 5 199    | 91   | 6   | 8    | 1991-06 |  |
| 길등     | 동  | 1990-11-22 | 2 8  | 0 199    | 90 1 | 1 2 | 22   | 1990-11 |  |
| пļя    | ğ  | 1991-01-0  | 5 8  | 8 199    | 91   | 1   | 5    | 1991-01 |  |
|        |    |            | J    | Ļ        |      |     |      |         |  |
|        |    |            |      |          |      |     | 21.0 | vi.     |  |
|        | ď  | 2 = d1.s   | et_i | ndex     | ('실  | 경단형 | 필일   | ≝')     |  |
|        | ď  | 2          |      |          |      |     |      |         |  |
|        |    |            |      |          |      |     |      |         |  |
|        |    |            | 점수   | 년        | 윌    | 일   |      | 년윌      |  |
|        | _  | 생년물일       |      |          |      |     |      |         |  |
|        | 1  | 990-03-02  | 90   | 1990     | 3    | 2   | 1    | 1990-03 |  |
|        | 1  | 991-06-08  | 95   | 1991     | 6    | 8   | 1    | 1991-06 |  |
|        | 1  | 990-11-22  | 80   | 1990     | 11   | 22  | 1    | 1990-11 |  |
|        | 1  | 991-01-05  | 88   | 1991     | 1    | 5   | 1    | 1991-01 |  |



날짜\_차이

## DataFrame 응용

- 열 순서 변경
  - 예시

| d1 |
|----|
|----|

|  |    | 생년윌일       | 점수 | 년    | 윌  | 일  | 년윌      |
|--|----|------------|----|------|----|----|---------|
|  | 철수 | 1990-03-02 | 90 | 1990 | 3  | 2  | 1990-03 |
|  | 영이 | 1991-06-08 | 95 | 1991 | 6  | 8  | 1991-06 |
|  | 길동 | 1990-11-22 | 80 | 1990 | 11 | 22 | 1990-11 |
|  | 미영 | 1991-01-05 | 88 | 1991 | 1  | 5  | 1991-01 |





|   |    | 점수 | 생년월일       | 년윌      | 년    | 윌  | 일  |
|---|----|----|------------|---------|------|----|----|
| 2 | 철수 | 90 | 1990-03-02 | 1990-03 | 1990 | 3  | 2  |
| • | 영이 | 95 | 1991-06-08 | 1991-06 | 1991 | 6  | 8  |
| i | 길동 | 80 | 1990-11-22 | 1990-11 | 1990 | 11 | 22 |
| ı | 미영 | 88 | 1991-01-05 | 1991-01 | 1991 | 1  | 5  |

columns\_sorted = sorted(d1.columns)

d1[columns\_sorted]

|    | 년    | 년윌      | 생년월일       | 윌  | 일  | 점수 |
|----|------|---------|------------|----|----|----|
| 철수 | 1990 | 1990-03 | 1990-03-02 | 3  | 2  | 90 |
| 영이 | 1991 | 1991-06 | 1991-06-08 | 6  | 8  | 95 |
| 길동 | 1990 | 1990-11 | 1990-11-22 | 11 | 22 | 80 |
| 미영 | 1991 | 1991-01 | 1991-01-05 | 1  | 5  | 88 |

### DataFrame 응용

- DataFrame 연결
  - pandas.concat(DataFrame 리스트, axis=0, join='outer', ignore\_index=False, sort=False)
    - ✓ axis = 0 일때



|    | 열A  | 열B | 열C | 열D  | 열E  |
|----|-----|----|----|-----|-----|
| 행1 |     |    |    | NaN | NaN |
| 행2 |     |    |    | NaN | NaN |
| 행3 |     |    |    | NaN | NaN |
| 행4 | NaN |    |    |     |     |
| 행5 | NaN |    |    |     |     |

- DataFrame 연결
  - 예시 axis = 0

```
import pandas as pd
d1 = pd.DataFrame({'a': ['a0', 'a1', 'a2', 'a3'],
                   'b': ['b0', 'b1', 'b2', 'b3'],
                   'c': ['c0','c1','c2','c3']},
                   index=[0,1,2,3]
d2 = pd.DataFrame({'a': ['a2', 'a3', 'a4', 'a5'],
                   'b': ['b2', 'b3', 'b4', 'b5'],
                   'c': ['c2','c3','c4','c5'],
                   'd': ['d2','d3','d4','d5']},
                   index=[2,3,4,5])
     d1
                         d2
         a b c
                             a b c d
      0 a0 b0 c0
                         2 a2 b2 c2 d2
      1 a1 b1 c1
                         3 a3 b3 c3 d3
      2 a2 b2 c2
                         4 a4 b4 c4 d4
      3 a3 b3 c3
                         5 a5 b5 c5 d5
```

```
r1 = pd.concat([d1,d2], sort=False)
r1
   a b c
0 a0 b0 c0 NaN
1 a1 b1 c1 NaN
2 a2 b2 c2 NaN
3 a3 b3 c3 NaN
2 a2 b2 c2
3 a3 b3 c3 d3
4 a4 b4 c4 d4
5 a5 b5 c5
```

- DataFrame 연결
  - pandas.concat(DataFrame 리스트, axis=0, join='outer', ignore\_index=False, sort=False)
    - ✓ axis = 1 일때



- DataFrame 연결
  - 예시 axis = 1

```
import pandas as pd
d1 = pd.DataFrame({'a': ['a0', 'a1', 'a2', 'a3'],
                   'b': ['b0', 'b1', 'b2', 'b3'],
                   'c': ['c0','c1','c2','c3']},
                   index=[0,1,2,3]
d2 = pd.DataFrame({'a': ['a2', 'a3', 'a4', 'a5'],
                   'b': ['b2', 'b3', 'b4', 'b5'],
                   'c': ['c2','c3','c4','c5'],
                   'd': ['d2','d3','d4','d5']},
                   index=[2,3,4,5]
     d1
                         d2
         a b c
                             a b c d
      0 a0 b0 c0
                         2 a2 b2 c2 d2
      1 a1 b1 c1
                         3 a3 b3 c3 d3
      2 a2 b2 c2
                         4 a4 b4 c4 d4
      3 a3 b3 c3
                         5 a5 b5 c5 d5
```





- DataFrame 병합
  - pandas.merge(df\_left, df\_right, how='inner', on=None)

|   | Α  | В  | С  |
|---|----|----|----|
| 0 | a0 | b0 | c0 |
| 1 | a1 | b1 | c1 |
| 2 | a2 | b2 | c2 |



|   | Α  | В  | E  |
|---|----|----|----|
| 0 | 0a | 0b | 0e |
| 1 | a1 | b1 | e1 |



(how='outer', on='A')

|   | Α  | B_x | С   | B_y | E   |
|---|----|-----|-----|-----|-----|
| 0 | a0 | b0  | c0  | NaN | NaN |
| 1 | a1 | b1  | c1  | b1  | e1  |
| 2 | a2 | b2  | c2  | NaN | NaN |
| 3 | 0a | NaN | NaN | 0b  | 0e  |

(how='inner', on='A')

|   | Α  | B_x | C  | B_y | Е  |
|---|----|-----|----|-----|----|
| 0 | a1 | b1  | c1 | b1  | e1 |

1 a3

b3 c3

- DataFrame 병합
  - 예시

 a
 b
 c

 0
 a0
 b0
 c0

 1
 a1
 b1
 c1

 2
 a2
 b2
 c2

 3
 a3
 b3
 c3

 d2

 a
 b
 c
 d

 2
 a2
 b2
 c2
 d2

 3
 a3
 b3
 c3
 d3

 4
 a4
 b4
 c4
 d4

5 a5 b5 c5 d5

```
r3 = pd.merge(d1, d2, how='outer', on='a')
r3
   a b_x c_x b_y c_y
       b0
           c0 NaN NaN NaN
           c1 NaN NaN NaN
2 a2
       b2
               b2
                   c2
           c2
       b3
           с3
               b3
                   c3
4 a4 NaN NaN
                    c4 d4
5 a5 NaN NaN
               b5
                    c5
                        d5
r4 = pd.merge(d1, d2, how='inner', on='a')
r4
   a b_x c_x b_y c_y d
0 a2 b2 c2 b2 c2 d2
```

b3 c3 d3



- DataFrame 결합
  - merge() 함수와 작동 방식 비슷
  - 두 DataFrame의 행 index를 기준으로 결합
  - DataFrame1.join(DataFrame2, how='left')
  - 예시





- 그룹화
  - DataFrame객체.groupby(기준이 되는 열의 리스트)
  - 예시

```
import pandas as pd
names = ['철수', '영이', '길동', '미영', '순이', '철이']
columns = ['성별', '점수']
scores = [['남', 90], ['여', 90], ['남', 85], ['여', 99], ['여', 76], ['남', 98]]
                                                                                  print()
                                                                              * key: 남
d1 = pd.DataFrame(scores, index = names, columns = columns)
                                                                              * number: 3
                                                                              성별 점수
철수 남 90
길동 남 85
d1
    성별 점수
         90
철수
                                                                              * key: 여
                                                                              * number: 3
영이
                                                                                 성별 점수
길동
         85
                                                                              열이 여 90
미영
         99
                                                                              미열 여 99
                                                                              순이 여 76
순이
철이
         98
```

```
grouped = d1.groupby(['성별'])
for key, group in grouped:
   print('* key:', key)
    print('* number:', len(group))
   print (group)
```

- 그룹 연산
  - 데이터 집계
    - ✓ group객체.함수()
    - ✓ 함수: mean(), max(), min(), sum(), count(), std(), 등등
  - 예시

```
d1
     성별
         점수
철수
          90
영이
          90
길동
          85
미영
          99
순이
          76
철이
```

```
grouped = d1.groupby(['성별'])
                                              mean_all
for key, group in grouped:
   print('* key:', key)
   print('* number:', len(group))
                                                       점수
   print (group)
   print()
                                               성별
* key: 남
                                                남 91.000000
* number: 3
                                                   88.333333
성별
철수 남
길동 남
        점수
        90
       85
철이 남
        98
* key: 여
* number: 3
   성별
       점수
열이 여
       90
미영 여
       99
순이 여 76
```

- 그룹 연산
  - 데이터 변환
    - ✓ group객체.transform(매핑 함수)



- 그룹 연산
  - 그룹 객체 필터링
    - ✓ group객체.filter(조건식 함수)

```
grouped = d1.groupby(['성별'])
for key, group in grouped:
   print('* key:', key)
    print('* number:', len(group))
    print (group)
    print()
* key: 남
* number: 3
   성별 점수
철수 남 90
길동 남 85
철이 남 98
* key: 여
* number: 3
       점수
열이 여 90
미열 여 99
순이 여 76
```



```
grouped_filter = grouped.filter(lambda x: x.점수.mean() > 90)
grouped_filter
```

|    | 성별 | 점수 |
|----|----|----|
| 철수 | 남  | 90 |
| 길동 | 남  | 85 |
| 철이 | 남  | 98 |

• CCTV 데이터 취득



[CHART]서울시 자치구 목적별 CCTV 설치 현황 | 서울시 정보소통광장 ... https://opengov.seoul.go.kr/data/2813901 ▼

... 지하철 노선별 물품보관함 문의처 · · 차상위계층 의료급여 선정방법과 절차는 어떻게 되나요? · 주 거정비사업(재개발.재건축.주거환경개선사업)의 시행절차는?

#### • CCTV 데이터 취득







| 원문정보      | 회의정보               | 사전공표    | 정보공개청구 | 이용안내 |
|-----------|--------------------|---------|--------|------|
| 홈 > 더보기 > | 서울시의 다양한 아카이브 정보 🤾 | > 공공데이터 |        |      |

#### [FILE]서울시 자치구 년도별 CCTV 설치 현황

















#### 내용 바로가기

[FILE]서울시 자치구 년도별 CCTV 설치 현황



• CCTV 데이터 취득



#### ■ CCTV 데이터 취득

• c:/data/cctv\_in\_seoul.xlsx 파일을 열어서 '기관명' 부분에 공백 없애고 저장

| А     | В     | С       | D     |
|-------|-------|---------|-------|
| 기관명   | 소계    | 2013년이전 | 2014년 |
| 강남구   | 4,758 | 1,979   | 474   |
| 강동구   | 1,493 | 1,028   | 73    |
| 강북구   | 946   | 472     | 70    |
| 강 서 구 | 1,202 | 634     | 52    |
| 관 악 구 | 3,223 | 1,511   | 406   |



| Α   | В     | С       | D     |
|-----|-------|---------|-------|
| 기관명 | 소계    | 2013년이전 | 2014년 |
| 강남구 | 4,758 | 1,979   | 474   |
| 강동구 | 1,493 | 1,028   | 73    |
| 강북구 | 946   | 472     | 70    |
| 강서구 | 1,202 | 634     | 52    |
| 관악구 | 3,223 | 1,511   | 406   |
| 광진구 | 1,228 | 1,025   | 85    |
| 구로구 | 2,746 | 1,434   | 189   |

#### • 인구수 데이터 읽기

import pandas as pd

pop\_seoul = pd.read\_excel('c:/data/pop\_in\_seoul.xls')

pop\_seoul

|    | 기간       | 자치구  | 세대      | 인구       | 인구.1    | 인구.2    | 인구.3    | 인구.4    | 인구.5    | 인구.6   | 인구.7   | 인구.8   | 세대당인구 | 65세이상고령자 |
|----|----------|------|---------|----------|---------|---------|---------|---------|---------|--------|--------|--------|-------|----------|
| 0  | 기간       | 자치구  | 세대      | 합계       | 합계      | 합계      | 한국인     | 한국인     | 한국인     | 등록외국인  | 등록외국인  | 등록외국인  | 세대당인구 | 65세이상고령자 |
| 1  | 기간       | 자치구  | 세대      | 계        | 남자      | 여자      | 계       | 남자      | 여자      | 계      | 남자     | 여자     | 세대당인구 | 65세이상고령자 |
| 2  | 2019.1/4 | 합계   | 4290922 | 10054979 | 4909387 | 5145592 | 9770216 | 4772134 | 4998082 | 284763 | 137253 | 147510 | 2.28  | 1436125  |
| 3  | 2019.1/4 | 종로구  | 73914   | 162913   | 78963   | 83950   | 152778  | 74536   | 78242   | 10135  | 4427   | 5708   | 2.07  | 26981    |
| 4  | 2019.1/4 | 중구   | 61800   | 135836   | 66720   | 69116   | 125942  | 61992   | 63950   | 9894   | 4728   | 5166   | 2.04  | 22421    |
| 5  | 2019.1/4 | 용산구  | 109413  | 245139   | 119597  | 125542  | 229168  | 110626  | 118542  | 15971  | 8971   | 7000   | 2.09  | 38049    |
| 6  | 2019.1/4 | 성동구  | 137247  | 314608   | 154011  | 160597  | 306404  | 150287  | 156117  | 8204   | 3724   | 4480   | 2.23  | 43076    |
| 7  | 2019.1/4 | 광진구  | 163460  | 370658   | 179162  | 191496  | 354873  | 172361  | 182512  | 15785  | 6801   | 8984   | 2.17  | 46288    |
| 8  | 2019.1/4 | 동대문구 | 162228  | 363262   | 179100  | 184162  | 346750  | 172784  | 173966  | 16512  | 6316   | 10196  | 2.14  | 57570    |
| 9  | 2019.1/4 | 중랑구  | 181182  | 407211   | 201808  | 205403  | 402203  | 199730  | 202473  | 5008   | 2078   | 2930   | 2.22  | 62789    |
| 10 | 2019.1/4 | 성북구  | 188670  | 450021   | 217400  | 232621  | 438245  | 212830  | 225415  | 11776  | 4570   | 7206   | 2.32  | 68612    |
| 11 | 2019.1/4 | 강북구  | 143663  | 321151   | 156525  | 164626  | 317386  | 155075  | 162311  | 3765   | 1450   | 2315   | 2.21  | 58858    |

- 인구수 데이터 읽기
  - 특정 열 가져오고, column 설정

```
pop_seoul = pd.read_excel('c:/data/pop_in_seoul.xls', usecols=[1,3,6,9,13], header=2)
pop_seoul
```

|    | 자치구  | 계        | 계.1     | 계.2    | 65세이상고령자 |
|----|------|----------|---------|--------|----------|
| 0  | 합계   | 10054979 | 9770216 | 284763 | 1436125  |
| 1  | 종로구  | 162913   | 152778  | 10135  | 26981    |
| 2  | 중구   | 135836   | 125942  | 9894   | 22421    |
| 3  | 용산구  | 245139   | 229168  | 15971  | 38049    |
| 4  | 성동구  | 314608   | 306404  | 8204   | 43076    |
| 5  | 광진구  | 370658   | 354873  | 15785  | 46288    |
| 6  | 동대문구 | 363262   | 346750  | 16512  | 57570    |
| 7  | 중랑구  | 407211   | 402203  | 5008   | 62789    |
| 8  | 성북구  | 450021   | 438245  | 11776  | 68612    |
| 9  | 강북구  | 321151   | 317386  | 3765   | 58858    |
| 10 | 도봉구  | 340089   | 337820  | 2269   | 56742    |

- 인구수 데이터 읽기
  - column명 변경

pop\_seoul.columns = ['구별','인구수','한국인','외국인','고령자']
pop\_seoul

|   | 구별   | 인구수      | 한국인     | 외국인    | 고령자     |
|---|------|----------|---------|--------|---------|
| 0 | 합계   | 10054979 | 9770216 | 284763 | 1436125 |
| 1 | 종로구  | 162913   | 152778  | 10135  | 26981   |
| 2 | 중구   | 135836   | 125942  | 9894   | 22421   |
| 3 | 용산구  | 245139   | 229168  | 15971  | 38049   |
| 4 | 성동구  | 314608   | 306404  | 8204   | 43076   |
| 5 | 광진구  | 370658   | 354873  | 15785  | 46288   |
| 6 | 동대문구 | 363262   | 346750  | 16512  | 57570   |
| 7 | 중랑구  | 407211   | 402203  | 5008   | 62789   |
| 8 | 성북구  | 450021   | 438245  | 11776  | 68612   |

- 인구수 데이터 읽기
  - 합계 데이터(1번째 행) 삭제

```
pop_seoul.drop(0, inplace=True)
pop_seoul
```

|    | 구별   | 인구수    | 한국인    | 외국인   | 고령자   |
|----|------|--------|--------|-------|-------|
| 1  | 종로구  | 162913 | 152778 | 10135 | 26981 |
| 2  | 중구   | 135836 | 125942 | 9894  | 22421 |
| 3  | 용산구  | 245139 | 229168 | 15971 | 38049 |
| 4  | 성동구  | 314608 | 306404 | 8204  | 43076 |
| 5  | 광진구  | 370658 | 354873 | 15785 | 46288 |
| 6  | 동대문구 | 363262 | 346750 | 16512 | 57570 |
| 7  | 중랑구  | 407211 | 402203 | 5008  | 62789 |
| 8  | 성북구  | 450021 | 438245 | 11776 | 68612 |
| 9  | 강북구  | 321151 | 317386 | 3765  | 58858 |
| 10 | 도봉구  | 340089 | 337820 | 2269  | 56742 |
| 11 | 노원구  | 545486 | 541174 | 4312  | 78170 |

#### ■ CCTV 데이터 읽기

```
cctv_seoul = pd.read_excel('c:/data/cctv_in_seoul.xlsx')
cctv_seoul
```

|    | 기관명  | 소계   | 2013년이전 | 2014년 | 2015년 | 2016년 | <b>2017년</b> |
|----|------|------|---------|-------|-------|-------|--------------|
| 0  | 강남구  | 4758 | 1979    | 474   | 760   | 770   | 775          |
| 1  | 강동구  | 1493 | 1028    | 73    | 142   | 240   | 10           |
| 2  | 강북구  | 946  | 472     | 70    | 147   | 257   | 0            |
| 3  | 강서구  | 1202 | 634     | 52    | 177   | 168   | 171          |
| 4  | 관악구  | 3223 | 1511    | 406   | 593   | 352   | 361          |
| 5  | 광진구  | 1228 | 1025    | 85    | 62    | 19    | 37           |
| 6  | 구로구  | 2746 | 1434    | 189   | 256   | 326   | 541          |
| 7  | 금천구  | 1526 | 922     | 91    | 305   | 109   | 99           |
| 8  | 노원구  | 1576 | 627     | 80    | 461   | 298   | 110          |
| 9  | 도봉구  | 899  | 480     | 185   | 49    | 102   | 83           |
| 10 | 동대문구 | 1555 | 1046    | 29    | 111   | 233   | 136          |
| 11 | 동작구  | 1792 | 781     | 341   | 103   | 314   | 253          |

- CCTV 데이터 읽기
  - column명 변경

```
cctv_seoul.columns = ['구별','CCTV수','2013년 이전','2014년','2015년','2016년','2017년']
cctv_seoul
```

|   | 구별  | CCTV수 | 2013년 이전 | 2014년 | 2015년 | 2016년 | 2017년 |
|---|-----|-------|----------|-------|-------|-------|-------|
| 0 | 강남구 | 4758  | 1979     | 474   | 760   | 770   | 775   |
| 1 | 강동구 | 1493  | 1028     | 73    | 142   | 240   | 10    |
| 2 | 강북구 | 946   | 472      | 70    | 147   | 257   | 0     |
| 3 | 강서구 | 1202  | 634      | 52    | 177   | 168   | 171   |
| 4 | 관악구 | 3223  | 1511     | 406   | 593   | 352   | 361   |
| 5 | 광진구 | 1228  | 1025     | 85    | 62    | 19    | 37    |
| 6 | 구로구 | 2746  | 1434     | 189   | 256   | 326   | 541   |
| 7 | 금천구 | 1526  | 922      | 91    | 305   | 109   | 99    |

#### • CCTV와 인구수 데이터 합병

```
pop_cctv = pd.merge(pop_seoul, cctv_seoul, how='outer', on='구별')
pop_cctv
```

| 구별   | 인구수                                                   | 한국인                                                                                                                                      | 외국인                                                                                                                                                                                                            | 고령자                                                                                                                                                                                                                                                                   | CCTV수                                                                                                                                                                                                                                                                                                                             | 2013년 이전                                                                                                                                                                                                                                                                                                                                                                          | 2014년                                                                                                                                                                                                                                                                                                                                                                                                                           | 2015년                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2016년                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2017년                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 종로구  | 162913                                                | 152778                                                                                                                                   | 10135                                                                                                                                                                                                          | 26981                                                                                                                                                                                                                                                                 | 1925                                                                                                                                                                                                                                                                                                                              | 1324                                                                                                                                                                                                                                                                                                                                                                              | 167                                                                                                                                                                                                                                                                                                                                                                                                                             | 163                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 중구   | 135836                                                | 125942                                                                                                                                   | 9894                                                                                                                                                                                                           | 22421                                                                                                                                                                                                                                                                 | 1260                                                                                                                                                                                                                                                                                                                              | 786                                                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                              | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 용산구  | 245139                                                | 229168                                                                                                                                   | 15971                                                                                                                                                                                                          | 38049                                                                                                                                                                                                                                                                 | 2379                                                                                                                                                                                                                                                                                                                              | 2071                                                                                                                                                                                                                                                                                                                                                                              | 97                                                                                                                                                                                                                                                                                                                                                                                                                              | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 성동구  | 314608                                                | 306404                                                                                                                                   | 8204                                                                                                                                                                                                           | 43076                                                                                                                                                                                                                                                                 | 2554                                                                                                                                                                                                                                                                                                                              | 1953                                                                                                                                                                                                                                                                                                                                                                              | 159                                                                                                                                                                                                                                                                                                                                                                                                                             | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 광진구  | 370658                                                | 354873                                                                                                                                   | 15785                                                                                                                                                                                                          | 46288                                                                                                                                                                                                                                                                 | 1228                                                                                                                                                                                                                                                                                                                              | 1025                                                                                                                                                                                                                                                                                                                                                                              | 85                                                                                                                                                                                                                                                                                                                                                                                                                              | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 동대문구 | 363262                                                | 346750                                                                                                                                   | 16512                                                                                                                                                                                                          | 57570                                                                                                                                                                                                                                                                 | 1555                                                                                                                                                                                                                                                                                                                              | 1046                                                                                                                                                                                                                                                                                                                                                                              | 29                                                                                                                                                                                                                                                                                                                                                                                                                              | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 중랑구  | 407211                                                | 402203                                                                                                                                   | 5008                                                                                                                                                                                                           | 62789                                                                                                                                                                                                                                                                 | 1053                                                                                                                                                                                                                                                                                                                              | 751                                                                                                                                                                                                                                                                                                                                                                               | 64                                                                                                                                                                                                                                                                                                                                                                                                                              | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 성북구  | 450021                                                | 438245                                                                                                                                   | 11776                                                                                                                                                                                                          | 68612                                                                                                                                                                                                                                                                 | 2221                                                                                                                                                                                                                                                                                                                              | 1155                                                                                                                                                                                                                                                                                                                                                                              | 208                                                                                                                                                                                                                                                                                                                                                                                                                             | 263                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 강북구  | 321151                                                | 317386                                                                                                                                   | 3765                                                                                                                                                                                                           | 58858                                                                                                                                                                                                                                                                 | 946                                                                                                                                                                                                                                                                                                                               | 472                                                                                                                                                                                                                                                                                                                                                                               | 70                                                                                                                                                                                                                                                                                                                                                                                                                              | 147                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 도봉구  | 340089                                                | 337820                                                                                                                                   | 2269                                                                                                                                                                                                           | 56742                                                                                                                                                                                                                                                                 | 899                                                                                                                                                                                                                                                                                                                               | 480                                                                                                                                                                                                                                                                                                                                                                               | 185                                                                                                                                                                                                                                                                                                                                                                                                                             | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 노원구  | 545486                                                | 541174                                                                                                                                   | 4312                                                                                                                                                                                                           | 78170                                                                                                                                                                                                                                                                 | 1576                                                                                                                                                                                                                                                                                                                              | 627                                                                                                                                                                                                                                                                                                                                                                               | 80                                                                                                                                                                                                                                                                                                                                                                                                                              | 461                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 종로구<br>용산구<br>성동구<br>광진구<br>동대문구<br>성북구<br>강북구<br>도봉구 | 종로구 162913<br>중구 135836<br>용산구 245139<br>성동구 314608<br>광진구 370658<br>동대문구 363262<br>중랑구 407211<br>성북구 450021<br>강북구 321151<br>도봉구 340089 | 종로구 162913 152778<br>중구 135836 125942<br>용산구 245139 229168<br>성동구 314608 306404<br>광진구 370658 354873<br>동대문구 363262 346750<br>중랑구 407211 402203<br>성북구 450021 438245<br>강북구 321151 317386<br>도봉구 340089 337820 | 종로구 162913 152778 10135<br>중구 135836 125942 9894<br>용산구 245139 229168 15971<br>성동구 314608 306404 8204<br>광진구 370658 354873 15785<br>동대문구 363262 346750 16512<br>중랑구 407211 402203 5008<br>성북구 450021 438245 11776<br>강북구 321151 317386 3765<br>도봉구 340089 337820 2269 | 종로구 162913 152778 10135 26981<br>중구 135836 125942 9894 22421<br>용산구 245139 229168 15971 38049<br>성동구 314608 306404 8204 43076<br>광진구 370658 354873 15785 46288<br>동대문구 363262 346750 16512 57570<br>중랑구 407211 402203 5008 62789<br>성북구 450021 438245 11776 68612<br>강북구 321151 317386 3765 58858<br>도봉구 340089 337820 2269 56742 | 종로구 162913 152778 10135 26981 1925<br>중구 135836 125942 9894 22421 1260<br>용산구 245139 229168 15971 38049 2379<br>성동구 314608 306404 8204 43076 2554<br>광진구 370658 354873 15785 46288 1228<br>동대문구 363262 346750 16512 57570 1555<br>중랑구 407211 402203 5008 62789 1053<br>성북구 450021 438245 11776 68612 2221<br>강북구 321151 317386 3765 58858 946<br>도봉구 340089 337820 2269 56742 899 | 종로구 162913 152778 10135 26981 1925 1324<br>중구 135836 125942 9894 22421 1260 786<br>용산구 245139 229168 15971 38049 2379 2071<br>성동구 314608 306404 8204 43076 2554 1953<br>광진구 370658 354873 15785 46288 1228 1025<br>동대문구 363262 346750 16512 57570 1555 1046<br>중랑구 407211 402203 5008 62789 1053 751<br>성북구 450021 438245 11776 68612 2221 1155<br>강북구 321151 317386 3765 58858 946 472<br>도봉구 340089 337820 2269 56742 899 480 | 종로구 162913 152778 10135 26981 1925 1324 167<br>중구 135836 125942 9894 22421 1260 786 40<br>용산구 245139 229168 15971 38049 2379 2071 97<br>성동구 314608 306404 8204 43076 2554 1953 159<br>광진구 370658 354873 15785 46288 1228 1025 85<br>동대문구 363262 346750 16512 57570 1555 1046 29<br>중랑구 407211 402203 5008 62789 1053 751 64<br>성북구 450021 438245 11776 68612 2221 1155 208<br>강북구 321151 317386 3765 58858 946 472 70<br>도봉구 340089 337820 2269 56742 899 480 185 | 종로구 162913 152778 10135 26981 1925 1324 167 163<br>중구 135836 125942 9894 22421 1260 786 40 191<br>용산구 245139 229168 15971 38049 2379 2071 97 76<br>성동구 314608 306404 8204 43076 2554 1953 159 98<br>광진구 370658 354873 15785 46288 1228 1025 85 62<br>동대문구 363262 346750 16512 57570 1555 1046 29 111<br>중랑구 407211 402203 5008 62789 1053 751 64 102<br>성북구 450021 438245 11776 68612 2221 1155 208 263<br>강북구 321151 317386 3765 58858 946 472 70 147<br>도봉구 340089 337820 2269 56742 899 480 185 49 | 종로구 162913 152778 10135 26981 1925 1324 167 163 129<br>중구 135836 125942 9894 22421 1260 786 40 191 123<br>용산구 245139 229168 15971 38049 2379 2071 97 76 77<br>성동구 314608 306404 8204 43076 2554 1953 159 98 39<br>광진구 370658 354873 15785 46288 1228 1025 85 62 19<br>동대문구 363262 346750 16512 57570 1555 1046 29 111 233<br>중랑구 407211 402203 5008 62789 1053 751 64 102 75<br>성북구 450021 438245 11776 68612 2221 1155 208 263 357<br>강북구 321151 317386 3765 58858 946 472 70 147 257<br>도봉구 340089 337820 2269 56742 899 480 185 49 102 |

- CCTV와 인구수 데이터 합병
  - index 설정

```
pop_cctv.set_index('구별', inplace=True)
pop_cctv
```

|      | 인구수    | 한국인    | 외국인   | 고령자   | CCTV卆 | 2013년 이전 | 2014년 | 2015년 | 2016년 | 2017년 |
|------|--------|--------|-------|-------|-------|----------|-------|-------|-------|-------|
| 구별   |        |        |       |       |       |          |       |       |       |       |
| 종로구  | 162913 | 152778 | 10135 | 26981 | 1925  | 1324     | 167   | 163   | 129   | 142   |
| 중구   | 135836 | 125942 | 9894  | 22421 | 1260  | 786      | 40    | 191   | 123   | 120   |
| 용산구  | 245139 | 229168 | 15971 | 38049 | 2379  | 2071     | 97    | 76    | 77    | 58    |
| 성동구  | 314608 | 306404 | 8204  | 43076 | 2554  | 1953     | 159   | 98    | 39    | 305   |
| 광진구  | 370658 | 354873 | 15785 | 46288 | 1228  | 1025     | 85    | 62    | 19    | 37    |
| 동대문구 | 363262 | 346750 | 16512 | 57570 | 1555  | 1046     | 29    | 111   | 233   | 136   |
| 중랑구  | 407211 | 402203 | 5008  | 62789 | 1053  | 751      | 64    | 102   | 75    | 61    |
| 성북구  | 450021 | 438245 | 11776 | 68612 | 2221  | 1155     | 208   | 263   | 357   | 238   |
| 강북구  | 321151 | 317386 | 3765  | 58858 | 946   | 472      | 70    | 147   | 257   | 0     |

- CCTV와 인구수 데이터 분석
  - 인구수 대비 cctv 비율, 외국인 대비 cctv 비율, 고령자 대비 cctv 비율을 계산하여 데이터프레임에 추가

```
pop_cctv['CCTV/인구수'] = (pop_cctv['CCTV수'] / pop_cctv['인구수']) * 100
pop_cctv['CCTV/외국인'] = (pop_cctv['CCTV수'] / pop_cctv['외국인']) * 100
pop_cctv['CCTV/고령자'] = (pop_cctv['CCTV수'] / pop_cctv['고령자']) * 100
pop_cctv
```

|      | 인구수    | 한국인    | 외국인   | 고령자   | CCTV卆 | 2013년 이전 | 2014년 | 2015년 | 2016년 | 2017년 | CCTV/인구수 | CCTV/외국인  | CCTV/고령자 |
|------|--------|--------|-------|-------|-------|----------|-------|-------|-------|-------|----------|-----------|----------|
| 구별   |        |        |       |       |       |          |       |       |       |       |          |           |          |
| 종로구  | 162913 | 152778 | 10135 | 26981 | 1925  | 1324     | 167   | 163   | 129   | 142   | 1.181612 | 18.993587 | 7.134650 |
| 중구   | 135836 | 125942 | 9894  | 22421 | 1260  | 786      | 40    | 191   | 123   | 120   | 0.927589 | 12.734991 | 5.619732 |
| 용산구  | 245139 | 229168 | 15971 | 38049 | 2379  | 2071     | 97    | 76    | 77    | 58    | 0.970470 | 14.895749 | 6.252464 |
| 성동구  | 314608 | 306404 | 8204  | 43076 | 2554  | 1953     | 159   | 98    | 39    | 305   | 0.811804 | 31.131156 | 5.929056 |
| 광진구  | 370658 | 354873 | 15785 | 46288 | 1228  | 1025     | 85    | 62    | 19    | 37    | 0.331303 | 7.779538  | 2.652955 |
| 동대문구 | 363262 | 346750 | 16512 | 57570 | 1555  | 1046     | 29    | 111   | 233   | 136   | 0.428066 | 9.417393  | 2.701060 |
| 중랑구  | 407211 | 402203 | 5008  | 62789 | 1053  | 751      | 64    | 102   | 75    | 61    | 0.258588 | 21.026358 | 1.677045 |
| 성북구  | 450021 | 438245 | 11776 | 68612 | 2221  | 1155     | 208   | 263   | 357   | 238   | 0.493533 | 18.860394 | 3.237043 |
| 강북구  | 321151 | 317386 | 3765  | 58858 | 946   | 472      | 70    | 147   | 257   | 0     | 0.294565 | 25.126162 | 1.607258 |
| 도봉구  | 340089 | 337820 | 2269  | 56742 | 899   | 480      | 185   | 49    | 102   | 83    | 0.264343 | 39.620978 | 1.584364 |
| 노원구  | 545486 | 541174 | 4312  | 78170 | 1576  | 627      | 80    | 461   | 298   | 110   | 0.288917 | 36.549165 | 2.016119 |
|      |        |        |       |       |       |          |       |       |       |       |          |           |          |

- CCTV와 인구수 데이터 분석
  - 데이터프레임 엑셀 파일로 저장

```
pop_cctv.to_excel('c:/data/cctv_pop.xls', encoding = 'euc-kr')
```



| Α    | В      | С      | D     | E     | F     | G        | Н     |       | J     | K     | L           | M           | N           |
|------|--------|--------|-------|-------|-------|----------|-------|-------|-------|-------|-------------|-------------|-------------|
| 구별   | 민구수    | 한국민    | 외국민   | 고령자   | CCTV수 | 2013년 이전 | 2014년 | 2015년 | 2016년 | 2017년 | CCTV/민구수    | CCTV/외국민    | CCTV/고령자    |
| 종로구  | 162913 | 152778 | 10135 | 26981 | 1925  | 1324     | 167   | 163   | 129   | 142   | 1.181612272 | 18.99358658 | 7.134650309 |
| 중구   | 135836 | 125942 | 9894  | 22421 | 1260  | 786      | 40    | 191   | 123   | 120   | 0.927589152 | 12.7349909  | 5.619731502 |
| 용산구  | 245139 | 229168 | 15971 | 38049 | 2379  | 2071     | 97    | 76    | 77    | 58    | 0.970469815 | 14.89574854 | 6.252463928 |
| 성동구  | 314608 | 306404 | 8204  | 43076 | 2554  | 1953     | 159   | 98    | 39    | 305   | 0.811803896 | 31.13115553 | 5.929055623 |
| 광진구  | 370658 | 354873 | 15785 | 46288 | 1228  | 1025     | 85    | 62    | 19    | 37    | 0.33130271  | 7.779537536 | 2.65295541  |
| 동대문구 | 363262 | 346750 | 16512 | 57570 | 1555  | 1046     | 29    | 111   | 233   | 136   | 0.428065694 | 9.417393411 | 2.70105958  |
| 중랑구  | 407211 | 402203 | 5008  | 62789 | 1053  | 751      | 64    | 102   | 75    | 61    | 0.258588299 | 21.02635783 | 1.677045342 |
| 성북구  | 450021 | 438245 | 11776 | 68612 | 2221  | 1155     | 208   | 263   | 357   | 238   | 0.493532524 | 18.86039402 | 3.237043083 |
| 강북구  | 321151 | 317386 | 3765  | 58858 | 946   | 472      | 70    | 147   | 257   | 0     | 0.294565485 | 25.12616202 | 1.607258147 |
| 도봉구  | 340089 | 337820 | 2269  | 56742 | 899   | 480      | 185   | 49    | 102   | 83    | 0.264342569 | 39.6209784  | 1.584364316 |
| 노원구  | 545486 | 541174 | 4312  | 78170 | 1576  | 627      | 80    | 461   | 298   | 110   | 0.288916672 | 36.54916512 | 2.016118716 |
| 은평구  | 488713 | 484274 | 4439  | 78406 | 2505  | 1351     | 343   | 210   | 358   | 243   | 0.512570773 | 56.43162875 | 3.194908553 |
| 서대문구 | 324604 | 311771 | 12833 | 51085 | 2705  | 1808     | 114   | 109   | 266   | 408   | 0.833323064 | 21.07846957 | 5.295096408 |
| 마포구  | 386571 | 375106 | 11465 | 51293 | 1743  | 838      | 65    | 164   | 334   | 342   | 0.450887418 | 15.2027911  | 3.3981245   |
| 망천구  | 466622 | 462599 | 4023  | 58930 | 2498  | 1701     | 164   | 178   | 338   | 117   | 0.535336954 | 62.09296545 | 4.238927541 |

c:/data/cctv\_pop.xls

# Visualization

#### Matplotlib - 선 그래프(line plot)

- 연속하는 데이터 값들을 직선 또는 곡선으로 연결하여 데이터 값 사이의 관계를 나타냄
- 기본 사용법
  - import matplotlib.pyplot as plt
  - plt.plot(x축, y축)
  - 제목: plt.title('제목')
  - X축 이름 설정: plt.xlabel('x축이름')
  - Y축 이름 설정: plt.ylabel('y축이름')
  - 범례 표시: plt.legend()
  - 그래프 표시: plt.show()
  - 한글 폰트 오류 해결
    - √ from matplotlib import font\_manager, rc
    - ✓ rc('font', family='폰트명')

### Matplotlib - 선 그래프(line plot)

#### ■ 기본 사용법

• 예시

46 77 56

```
import pandas as pd
import matplotlib.pyplot as plt
names = ['철수', '영이', '길동', '미영', '순이', '철이']
lectures = ['국어', '영어', '수학']
scores = [[84, 87, 78], [21, 15, 84], [87, 84, 76], [100, 87, 99], [59, 99, 59], [46, 77, 56]]
d1 = pd.DataFrame(scores, index = names, columns = lectures)
d1
     국어 영어 수학
      21 15
```

```
from matplotlib import font_manager, rc
rc('font', family='HCR Dotum')

plt.plot(dl.index, dl['국어'])
plt.title('국어성적')
plt.xlabel('이름')
plt.ylabel('점수')
plt.show()
```

```
국어성적
100
90
80
70
60
50
 40
30
20
    월수
              영이
                        길동
                                 미영
                                            순이
                                                      월이
                             이름
```

## Matplotlib - 선 그래프(line plot)

- 꾸미기
  - 꾸미기 옵션

| 옵션                | 설명                            |
|-------------------|-------------------------------|
| 'o'               | 점 그래프로 표현                     |
| marker=마커모양       | 마커 모양 (예: 'o', '+', '*', '.') |
| markerfacecolor=색 | 마커 배경색                        |
| markersize=숫자     | 마커 크기                         |
| color=색           | 선의 색                          |
| Linewidth=숫자      | 선의 두께                         |
| label=label이름     | label 지정                      |

#### Matplotlib - 면적 그래프(area plot)

- 선 그래프를 확장한 개념
- 각 열의 패턴과 함께 열 전체의 합계가 어떻게 변하는지 파악할 수 있음
- 기본 사용법
  - DataFrame객체.plot() 함수에 kind = 'area' 옵션 추가
  - 누적 여부 설정: stacked=True/False (기본값: True)
  - 색의 투명도 설정: alpha=값(0~1범위, 기본값: 0.5)

### Matplotlib - 면적 그래프(area plot)

#### ■ 기본 사용법

• 예시

d1

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |



```
dl.plot(kind='area', alpha=0.2)
plt.title('학생들의 성적')
plt.ylabel('점수')
plt.xlabel('이름')
plt.show()
```



### Matplotlib - 막대 그래프(bar plot)

- 데이터 값의 크기에 비례하여 높이를 갖는 직사각형 막대로 표현
- 세로형 막대 그래프는 시계열 데이터를 표현하는데 적합
- 가로형 막대 그래프는 각 변수 사이 값의 크기 차이를 설명하는데 적합
- 기본 사용법
  - DataFrame객체.plot() 함수에 kind = 'bar' 옵션 추가
  - 색상 설정: color = 색상 리스트
  - 가로형 막대 그래프: kind = 'barh'

### Matplotlib - 막대 그래프(bar plot)

- 기본 사용법
  - 예시 세로형

d1

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |



```
dl.plot(kind='bar')
plt.title('학생들의 성적')
plt.ylabel('점수')
plt.xlabel('이름')
plt.show()
```



### Matplotlib - 막대 그래프(bar plot)

- 기본 사용법
  - 예시 가로형

d1

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |



```
d1['국어'].plot(kind='barh')
plt.title('국어성적')
plt.ylabel('이름')
plt.xlabel('점수')
plt.show()
```



### Matplotlib – 히스토그램(histogram)

- 변수가 하나인 단변수 데이터의 빈도수를 표현
  - x축: 같은 크기의 여러 구간
  - y축: 각 구간에 속하는 데이터 값의 개수(빈도)
- 기본 사용법
  - DataFrame객체['컬럼명'].plot() 함수에 kind = 'hist' 옵션 추가
  - 구간: bins=숫자

### Matplotlib – 히스토그램(histogram)

#### ■ 기본 사용법

• 예시

d1

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |



```
plt.style.use('ggplot')
d1['국어'].plot(kind='hist', bins=10, color='green', figsize=(5,3))
plt.xlabel('국어점수')
plt.show()
```



#### Matplotlib – 산점도(scatter plot)

- 서로 다른 두 변수 사이의 관계를 나타냄
- 기본 사용법
  - DataFrame객체.plot() 함수에 kind = 'scatter' 옵션 추가
  - 두 변수에 대하여 x, y 옵션에 추가
  - 예시

d1

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |





# Matplotlib - 파이 차트(pie chart)

- 원을 파이 조각처럼 나누어서 표현
- 기본 사용법
  - plot() 함수에 kind = 'pie' 옵션 추가
  - 예시

|    | 국어  | 영어 | 수학 | 성별 | 평균 | Pass/Fail | count |
|----|-----|----|----|----|----|-----------|-------|
| 철수 | 84  | 87 | 78 | 남  | 83 | Р         | 1     |
| 영이 | 21  | 15 | 84 | 여  | 40 | F         | 1     |
| 길동 | 87  | 84 | 76 | 남  | 82 | Р         | 1     |
| 미영 | 100 | 87 | 99 | 여  | 95 | Р         | 1     |
| 순이 | 59  | 99 | 59 | 여  | 72 | F         | 1     |
| 철이 | 46  | 77 | 56 | 남  | 59 | F         | 1     |



```
d2 = d1.groupby(['성별', 'Pass/Fail']).sum()
d2
```



# Matplotlib - 박스 플롯(boxplot)

- 범주형 데이터의 분포를 파악하는데 적합
- 5개의 통계 지표(최소값, 1분위값, 중간값, 3분위값, 최대값)를 제공
- 기본 사용법
  - boxplot() 함수 사용
  - 예시







- 회귀선이 있는 산점도
  - 서로 다른 2개의 연속 변수 사이의 산점도를 그리고 선형회귀분석에 의한 회귀선을 함께 나타냄
  - regplot() 함수 사용
  - 두 변수에 대하여 x, y 옵션에 추가
  - 사용할 데이터가 들어 있는 데이터프레임은 data 옵션에 추가

- 회귀선이 있는 산점도
  - 예시

| d1 |  |  |  |
|----|--|--|--|
|    |  |  |  |

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |



#### import seaborn as sns

```
plt.figure(figsize=(5,3))
sns.regplot(x='국어', y='열어', data=d1)
plt.show()
```



- 히스토그램/커널 밀도 그래프
  - 단변수 데이터의 분포를 확인할때 사용
  - distplot() 함수 사용
  - 기본값으로 히스토그램과 커널 밀도 함수(그래프와 x축 사이의 면적이 1이 되도록 그리는 밀도 분포 함수)를 그래프로 출력
  - 히스토그램 표시 안 하기: hist=False
  - 커널 밀도 그래프 표시 안 하기: kde=False

- 히스토그램/커널 밀도 그래프
  - 예시

| d1 |
|----|
|----|

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |





- 히스토그램/커널 밀도 그래프
  - 예시 hist=False

| d1 |
|----|
|----|

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |



```
plt.figure(figsize=(5,3))
sns.distplot(d1['수학'], hist=False)
plt.show()
```



- 히스토그램/커널 밀도 그래프
  - 예시 kde=False

| d1 |
|----|
|----|

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |







- 히트맵
  - 2개의 범주형 변수를 각각 x, y축에 놓고 데이터를 매트릭스 형태로 분류
  - heatmap() 함수를 사용
  - 예시

|    | 국어  | 영어 | 수학 |
|----|-----|----|----|
| 철수 | 84  | 87 | 78 |
| 영이 | 21  | 15 | 84 |
| 길동 | 87  | 84 | 76 |
| 미영 | 100 | 87 | 99 |
| 순이 | 59  | 99 | 59 |
| 철이 | 46  | 77 | 56 |





- 범주형 데이터의 산점도
  - 범주형 변수에 들어 있는 각 범주별 데이터의 분포 확인
  - stripplot() 함수와 swarmplot() 함수 사용
  - swarmplot() 함수는 데이터의 분산까지 고려하여, 데이터 포인트가 서로 중복되지
     않도록 그림으로써, 데이터가 퍼져 있는 정도를 입체적으로 볼 수 있음

- 범주형 데이터의 산점도
  - 예시

|    | 국어  | 영어 | 수학 | 성별 |
|----|-----|----|----|----|
| 철수 | 84  | 87 | 78 | 남  |
| 영이 | 21  | 15 | 84 | 여  |
| 길동 | 87  | 84 | 76 | 남  |
| 미영 | 100 | 87 | 99 | 여  |
| 순이 | 59  | 99 | 59 | 여  |
| 철이 | 46  | 77 | 56 | 남  |



```
plt.figure(figsize=(5,3))
sns.swarmplot(x='국어',y='수학',data=d1, hue='성별')
plt.show()
```



- 막대 그래프
  - barplot() 함수를 사용
  - 예시

|    | 국어  | 영어 | 수학 | 성별 |
|----|-----|----|----|----|
| 철수 | 84  | 87 | 78 | 남  |
| 영이 | 21  | 15 | 84 | 여  |
| 길동 | 87  | 84 | 76 | 남  |
| 미영 | 100 | 87 | 99 | 여  |
| 순이 | 59  | 99 | 59 | 여  |
| 철이 | 46  | 77 | 56 | 남  |





- 빈도 그래프
  - 각 범주에 속하는 데이터의 개수를 막대 그래프로 나타냄
  - countplot() 함수를 사용
  - 예시

|    | 국어  | 영어 | 수학 | 성별 |
|----|-----|----|----|----|
| 철수 | 84  | 87 | 78 | 남  |
| 영이 | 21  | 15 | 84 | 여  |
| 길동 | 87  | 84 | 76 | 남  |
| 미영 | 100 | 87 | 99 | 여  |
| 순이 | 59  | 99 | 59 | 여  |
| 철이 | 46  | 77 | 56 | 남  |



```
plt.figure(figsize=(5,3))
sns.countplot(x='설별', palette='<mark>Set3</mark>', data=d1)
plt.show()
```



- 박스 플롯/바이올린 그래프
  - 박스 플롯은 범주형 데이터 분포와 주요 통계 지표를 함께 제공
  - 박스 플롯만으로는 데이터가 퍼져 있는 분산의 정도를 정확하게 알기 어렵기 때문에 커널 밀도 함수 그래프를 y축 방향에 추가하여 바이올린 그래프를 그리기도 함
  - 박스 플롯: boxplot() 함수 사용
  - 바이올린 그래프: violinplot() 함수 사용

- 박스 플롯/바이올린 그래프
  - 예시 박스 플롯

|    | 국어  | 영어 | 수학 | 성별 |
|----|-----|----|----|----|
| 철수 | 84  | 87 | 78 | 남  |
| 영이 | 21  | 15 | 84 | 여  |
| 길동 | 87  | 84 | 76 | 남  |
| 미영 | 100 | 87 | 99 | 여  |
| 순이 | 59  | 99 | 59 | 여  |
| 철이 | 46  | 77 | 56 | 남  |



```
plt.figure(figsize=(5,3))
sns.boxplot(x='설별', y='국어', data=d1)
plt.show()
```



- 박스 플롯/바이올린 그래프
  - 예시 바이올린 그래프

|    | 국어  | 영어 | 수학 | 성별 |
|----|-----|----|----|----|
| 철수 | 84  | 87 | 78 | 남  |
| 영이 | 21  | 15 | 84 | 여  |
| 길동 | 87  | 84 | 76 | 남  |
| 미영 | 100 | 87 | 99 | 여  |
| 순이 | 59  | 99 | 59 | 여  |
| 철이 | 46  | 77 | 56 | 남  |



```
plt.figure(figsize=(5,3))
sns.violinplot(x='성별', y='국어', data=d1)
plt.show()
```



- 조인트 그래프
  - 산점도를 기본으로 표시하고, x-y축에 각 변수에 대한 히스토그램을 동시에 보여줌
  - 두 변수의 관계와 데이터가 분산되어 있는 정도를 한눈에 파악하기 좋음
  - jointplot() 함수 사용
  - 회귀선 추가: kind='reg'
  - 육각 산점도: kind='hex'
  - 커널 밀도 그래프: kind='kde'

- 조인트 그래프
  - 예시

d1

|    | 국어  | 영어 | 수학 | 성별 |
|----|-----|----|----|----|
| 철수 | 84  | 87 | 78 | 남  |
| 영이 | 21  | 15 | 84 | 여  |
| 길동 | 87  | 84 | 76 | 남  |
| 미영 | 100 | 87 | 99 | 여  |
| 순이 | 59  | 99 | 59 | 여  |
| 철이 | 46  | 77 | 56 | 남  |

sns.jointplot(x='국어', y='영어', kind='reg', data=d1) plt.show()





- 화면을 그리드로 분할하기
  - FacetGrid() 함수 사용
  - 행, 열 방향으로 서로 다른 조건을 적용하여 여러 개의 서브 플롯을 만듦
  - map() 함수를 이용하여 각 서브 플롯에 적용할 그래프 종류를 전달

- 화면을 그리드로 분할하기
  - 예시

|    | 국어  | 영어 | 수학 | 성별 | 평균 | Pass/Fail |
|----|-----|----|----|----|----|-----------|
| 철수 | 84  | 87 | 78 | 남  | 83 | Р         |
| 영이 | 21  | 15 | 84 | 여  | 40 | F         |
| 길동 | 87  | 84 | 76 | 남  | 82 | Р         |
| 미영 | 100 | 87 | 99 | 여  | 95 | Р         |
| 순이 | 59  | 99 | 59 | 여  | 72 | F         |
| 철이 | 46  | 77 | 56 | 남  | 59 | F         |



```
g = sns.FacetGrid(data=d1, col='Pass/Fail', row='성별')
g = g.map(plt.scatter, '평균', '국어')
```



- 이변수 데이터의 분포
  - pairplot() 함수 사용
  - 인자로 전달되는 데이터프레임의 열(변수)을 두 개씩 짝을 지을 수 있는 모든 조합에 대해 표현
  - 그래프를 그리기 위해 만들어진 짝의 개수만큼 화면을 그리드로 나눔
  - 같은 변수끼리 짝을 이루는 경우에는 히스토그램을 그리고 서로 다른 변수 간에는 산점도를 그림

### • 이변수 데이터의 분포

• 예시

| М | 1 |  |
|---|---|--|
| u | 1 |  |
|   |   |  |

|    | 국어  | 영어 | 수학 | 성별 |
|----|-----|----|----|----|
| 철수 | 84  | 87 | 78 | 남  |
| 영이 | 21  | 15 | 84 | 여  |
| 길동 | 87  | 84 | 76 | 남  |
| 미영 | 100 | 87 | 99 | 여  |
| 순이 | 59  | 99 | 59 | 여  |
| 철이 | 46  | 77 | 56 | 남  |





### ■ 데이터 읽어오기

```
import pandas as pd

pop_cctv = pd.read_excel('c:/data/cctv_pop.xls')

pop_cctv
```

|    | 구별   | 인구수    | 한국인    | 외국인   | 고령자   | CCTV수 | 2013년 이전 | 2014년 | 2015년 | 2016년 | 2017년 | CCTV/인구수 | CCTV/외국인  | CCTV/고령자 |
|----|------|--------|--------|-------|-------|-------|----------|-------|-------|-------|-------|----------|-----------|----------|
| 0  | 종로구  | 162913 | 152778 | 10135 | 26981 | 1925  | 1324     | 167   | 163   | 129   | 142   | 1.181612 | 18.993587 | 7.134650 |
| 1  | 중구   | 135836 | 125942 | 9894  | 22421 | 1260  | 786      | 40    | 191   | 123   | 120   | 0.927589 | 12.734991 | 5.619732 |
| 2  | 용산구  | 245139 | 229168 | 15971 | 38049 | 2379  | 2071     | 97    | 76    | 77    | 58    | 0.970470 | 14.895749 | 6.252464 |
| 3  | 성동구  | 314608 | 306404 | 8204  | 43076 | 2554  | 1953     | 159   | 98    | 39    | 305   | 0.811804 | 31.131156 | 5.929056 |
| 4  | 광진구  | 370658 | 354873 | 15785 | 46288 | 1228  | 1025     | 85    | 62    | 19    | 37    | 0.331303 | 7.779538  | 2.652955 |
| 5  | 동대문구 | 363262 | 346750 | 16512 | 57570 | 1555  | 1046     | 29    | 111   | 233   | 136   | 0.428066 | 9.417393  | 2.701060 |
| 6  | 중랑구  | 407211 | 402203 | 5008  | 62789 | 1053  | 751      | 64    | 102   | 75    | 61    | 0.258588 | 21.026358 | 1.677045 |
| 7  | 성북구  | 450021 | 438245 | 11776 | 68612 | 2221  | 1155     | 208   | 263   | 357   | 238   | 0.493533 | 18.860394 | 3.237043 |
| 8  | 강북구  | 321151 | 317386 | 3765  | 58858 | 946   | 472      | 70    | 147   | 257   | 0     | 0.294565 | 25.126162 | 1.607258 |
| 9  | 도봉구  | 340089 | 337820 | 2269  | 56742 | 899   | 480      | 185   | 49    | 102   | 83    | 0.264343 | 39.620978 | 1.584364 |
| 10 | 노원구  | 545486 | 541174 | 4312  | 78170 | 1576  | 627      | 80    | 461   | 298   | 110   | 0.288917 | 36.549165 | 2.016119 |

- 데이터 읽어오기
  - index 설정

```
pop_cctv.set_index('구별', inplace=True)
pop_cctv
```

|      | 인구수    | 한국인    | 외국인   | 고령자   | CCTV∻ | 2013년 이전 | 2014년 | 2015년 | 2016년 | 2017년 | CCTV/인구수 | CCTV/외국인  | CCTV/고령자 |
|------|--------|--------|-------|-------|-------|----------|-------|-------|-------|-------|----------|-----------|----------|
| 구별   |        |        |       |       |       |          |       |       |       |       |          |           |          |
| 종로구  | 162913 | 152778 | 10135 | 26981 | 1925  | 1324     | 167   | 163   | 129   | 142   | 1.181612 | 18.993587 | 7.134650 |
| 중구   | 135836 | 125942 | 9894  | 22421 | 1260  | 786      | 40    | 191   | 123   | 120   | 0.927589 | 12.734991 | 5.619732 |
| 용산구  | 245139 | 229168 | 15971 | 38049 | 2379  | 2071     | 97    | 76    | 77    | 58    | 0.970470 | 14.895749 | 6.252464 |
| 성동구  | 314608 | 306404 | 8204  | 43076 | 2554  | 1953     | 159   | 98    | 39    | 305   | 0.811804 | 31.131156 | 5.929056 |
| 광진구  | 370658 | 354873 | 15785 | 46288 | 1228  | 1025     | 85    | 62    | 19    | 37    | 0.331303 | 7.779538  | 2.652955 |
| 동대문구 | 363262 | 346750 | 16512 | 57570 | 1555  | 1046     | 29    | 111   | 233   | 136   | 0.428066 | 9.417393  | 2.701060 |
| 중랑구  | 407211 | 402203 | 5008  | 62789 | 1053  | 751      | 64    | 102   | 75    | 61    | 0.258588 | 21.026358 | 1.677045 |
| 성북구  | 450021 | 438245 | 11776 | 68612 | 2221  | 1155     | 208   | 263   | 357   | 238   | 0.493533 | 18.860394 | 3.237043 |
| 강북구  | 321151 | 317386 | 3765  | 58858 | 946   | 472      | 70    | 147   | 257   | 0     | 0.294565 | 25.126162 | 1.607258 |
| 도봉구  | 340089 | 337820 | 2269  | 56742 | 899   | 480      | 185   | 49    | 102   | 83    | 0.264343 | 39.620978 | 1.584364 |
| 노원구  | 545486 | 541174 | 4312  | 78170 | 1576  | 627      | 80    | 461   | 298   | 110   | 0.288917 | 36.549165 | 2.016119 |
|      |        |        |       |       |       |          |       |       |       |       |          |           |          |

- 데이터 시각화
  - 인구수 정렬 후 시각화

```
import matplotlib.pyplot as plt
from matplotlib import font_manager, rc
rc('font', family='HCR Dotum')

sorted_df = pop_cctv.sort_values(by='인구수', ascending=True)

sorted_df['인구수'].plot(kind='barh',grid=True)
plt.title('인구수')
plt.show()
```



- 데이터 시각화
  - CCTV 수 정렬 후 시각화

```
sorted_df = pop_cctv.sort_values(by='CCTV수', ascending=True)
sorted_df['CCTV수'].plot(kind='barh',grid=True)
plt.title('CCTV수')
plt.show()
```



- 데이터 시각화
  - 인구수와 CCTV 수 시각화 1

```
pop_cctv.plot(kind='scatter', x='인구수', y='CCTV수', s=30, grid=True) plt.title('인구수 vs CCTV수') plt.show()
```



- 데이터 시각화
  - 인구수와 CCTV 수 시각화 2

```
import seaborn as sns
sns.regplot(x='인구수', y='CCTV수', data=pop_cctv)
plt.title('인구수 vs CCTV수')
plt.show()
```



- 데이터 시각화
  - 고령자와 CCTV 수 시각화

```
sns.regplot(x='고령자', y='CCTV수', data=pop_cctv)
plt.title('고령자수 vs CCTV수')
plt.show()
```

