目录

1	数列			
	1.1	几个常用的记号	1	
	1.2	微积分或数学分析必须建立在实数系上 R 上	1	
	1.3	数列极限的科学定义	2	
	1.4	极限存在的两个常用准则	3	
2	数列极限的性质与应用			
	2.1	复习数列极限的线性性质	4	
	2.2	数列极限的"四性"	4	
	2.3	收敛数列极限的四则运算法则	5	
	2.4	例题	5	
3	数列极限习题课			
	3.1	习题	6	
	3.2	关于无穷大	6	
	3.3	Stolz 定理及其应用	6	
	3.4	例题	7	
4	实数集连续性的五个等价命题			
	4.1	五个等价命题	8	
	4.2	Stolz 定理的证明	8	
	4.3	例题	8	
	4.4	函数极限 24 种科学定义	8	
5	函数极限 24 种 10			
	5.1	数列 $\{a_n\}$ 极限 4 种科学定义 \ldots	10	
	5.2	函数极限的 " $\varepsilon - \delta$ " 定义法	10	
	5.3	函数极限的四则运算法则	10	
	5.4	3 个重要极限及其证明	11	
6	函数极限习题课 1			
	6.1	几个基本概念	11	
	6.2	无穷大的大小	12	
	6.3	 例题	12	

1 数列极限 1

数列极限 1

1.1 几个常用的记号

- 1. \forall ← A ← any: 任意给定的一个;给定后为常数
- 2. $∃ \leftarrow E \leftarrow exist$: 存在一个; 通常不唯一
- $3. \sup E:$ 数集 E 的最小上界,即 E 的上确界 (supremum) $\sup E$ 同时满足两条件:
 - (a) $\forall x \in E, x \leq \sup E$;
 - (b) $\forall \varepsilon > 0, \exists x_0 \in E, \sup E \varepsilon < x_0.$
- 4. $\inf E$: 数集 E 的最大下界,即 E 的下确界 ($\inf E$) $\inf E$ 同时满足两条件:
 - (a) $\forall x \in E, x \ge \inf E$;
 - (b) $\forall \varepsilon > 0, \exists x_0 \in E, x_0 < \inf E + \varepsilon$.
- **例 1.1.** 设 $E = \{1, 3, 5, 8\}F = (-\sqrt{3}, \pi], \, \text{则}:$ $\sup E = 8, \inf E = 1, \sup F = \pi, \inf F = -\sqrt{3}$. 且有
 - 1. $\sup E = -\inf(-E)$;
 - 2. $\inf F = -\sup(-F)$;

注记. 这里的 -E 表示 E 的相反数集合,即 $-E = \{-e : e \in E\}$.

1.2 微积分或数学分析必须建立在实数系上 R 上

理由: 极限运算时微积分的最基本运算, 而有理数集合 Q 关于极限运算时不 封闭的. 例如: $\lim_{n\to\infty} (1+\frac{1}{n})^n = e; \forall n \in N, (1+\frac{1}{n}) \in Q, \ \text{但} \ e \notin Q.$ 又如, $\forall n \in N, a_n = \sum_{m=1}^n \frac{1}{m^2} \in Q, \ \text{但} \ \lim_{n\to\infty} a_n = \frac{\pi^2}{6} \notin Q.$

又如,
$$\forall n \in N, a_n = \sum_{n=1}^n \frac{1}{m^2} \in Q$$
,但 $\lim_{n \to \infty} a_n = \frac{\pi^2}{6} \notin Q$.

实数集合 R 在数轴上的点是连续不断的, 且关于极限运算时封闭的. 因此, 称实数集 R 是具有连续性. 实数集 R 的连续性也称为实数集的完备性.

描述实数集 R 连续性的公理通常有五个:

1. 确界存在原理;

1 数列极限 2

- 2. 单调有界极限存在准则;
- 3. 极限存在的柯西 (Cauchy) 准则;
- 4. 闭区间套定理:
- 5. 列紧性原理, 即有界数列必有收敛子列定理.

这五个公理是互相等价的, 本课程采用"确界存在原理"作为实数集 R 连续性的公理.

注记. 这五条公理与课本 1.1.3 的连续性公理是等价的,即任意一个公理都可以推导出另外四个公理. 因此这里说这五个等价命题描述了 R 的连续性.

公理 1.2. 确界存在原理

有上 (Γ) 界的非空实数集 E 必有上 (Γ) 确界 $\sup E(\inf E)$.

1.3 数列极限的科学定义

设数列 $\{a_n\}$ 以常数 a 为极限, 科学的定义如下:

 $\forall \varepsilon > 0, \exists N \in N*, \forall n > N$ 都有 $|a_n - a| < \varepsilon$ 成立, 则 $\{a_n\}$ 以常数 a 为极限, 记为 $\lim_{n \to \infty} a_n = a$ 或 $a_n \to a(n \to \infty)$.

事实上, 所有的收敛的有理数列, 其极限点的全体即是实数集 R. 即实数集 R 是有理数列的极限值构成的.

注记. 1.Q 对极限是不封闭的; 2. 由 Q 组成的数列的极限可以是实数; 3. 由 Q 组成的数列的极限只能是实数; 4. 由 Q 组成的所有收敛数列, 他们的极限的集合, 恰好就是 R, 不多不少.

理由如下:

对 $\forall x \in R$, 设 x 的小数表示为: $x = a_0.a_1a_2a_3\cdots$,则有理数列: $a_0,a_0.a_1,a_0.a_1a_2,\cdots$ 当 $n \to \infty$ 时,其极限为 x. 若 x 是有理数,则 $a_0.a_1a_2\cdots a_n$ 是有限小数或循环小数,若 x 是无理数,则 $a_0.a_1a_2\cdots a_n$ 是无限不循环小数,则极限点 x 是无理数.

注记. 此处 $x = a_0.a_1a_2a_3\cdots$, 其中每一个 a_i 都是一个数字, a_0 是整数部分, $a_1a_2a_3\cdots$ 是小数部分. 比如, $x = 3.1415926\cdots$,那么 $a_0 = 3, a_1 = 1, a_2 = 4, a_3 = 1, a_4 = 5, a_5 = 9, a_6 = 2, a_7 = 6, \cdots$

可以由 $x=a_0.a_1a_2a_3\cdots$ 构造出一个数列 $\tau_1=a_0,\tau_2=a_0.a_1,\tau_3=a_0.a_1a_2,\cdots$,说 x 为极限指的,是 x 是数列 $\{\tau_n\}$ 的极限,记为 $\lim_{n\to\infty}\tau_n=x$.

1 数列极限 3

都用 x 代指,是因为我这里不能确定 x 是不是有限小数,有理数还是无理数. 但是 x 是数列 $\{\tau_n\}$ 的极限是确定的.

1.4 极限存在的两个常用准则

- 1. 单调有界极限存在准则: 若数列 $\{a_n\}$ 单调增 (减) 且有上 (下) 界,则 $\{a_n\}$ 收敛. 且 $\lim_{n\to\infty} a_n = \sup a_n (\inf a_n)$.
- 2. 夹逼准则 (即两边夹准则): 设数列 $\{a_n\}, \{b_n\}, \{c_n\}$ 满足 $a_n \leq b_n \leq c_n, \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = a$, 则 $\lim_{n \to \infty} b_n = a$.

证明. 单调增有界极限存在.

设数列 $\{a_n\}$ 单调增且有上界, 由确界存在定理, $\{a_n\}$ 有上确界. 令 $\sup a_n = \beta$, 则 β 是 $\{a_n\}$ 满足以下两点:

- 1. $\forall n \in N, a_n < \beta$;
- 2. $\forall \varepsilon > 0, \exists a_{n_0} \in \{a_n\}, \beta \varepsilon < a_{n_0}.$

又因为 $\{a_n\}$ 单调增,故 $\forall n > n_0, a_n \leq a_{n_0} > \beta - \varepsilon$,且 $a_n \geq \beta < \beta + \varepsilon$. 即 $|\beta - a_n| < \varepsilon,$ 故 $\lim_{n \to \infty} a_n = \beta$.

证明. $\lim_{n \to \infty} a_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N_1 \in N*, \forall n > N, |a_n - a| < \varepsilon.$ 又 $\lim_{n \to \infty} c_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N_2 \in N*, \forall n > N, |c_n - a| < \varepsilon.$

取 $N = \max\{N_1, N_2\}$,则 $\forall n > N, a_n \le b_n \le c_n$,故 $a - \varepsilon < a_n \le b_n \le c_n < a + \varepsilon$. 即 $\lim_{n \to \infty} b_n = a$.

例 1.3. 下列 a, b, q, c_1, c_2 皆为常数).

- 1. 设 |q| < 1, 证明 $\lim_{n \to \infty} aq^n = 0$;
- 2. $\ \, \mathfrak{P} \, a > 0, \ \mathbb{M} \, \lim_{n \to \infty} a^{\frac{1}{n}} = 1;$
- 3. 证明 $\lim_{n\to\infty} \sqrt[n]{n} = 1;$
- 4. 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, 证明 $\lim_{n\to\infty} (c_1a_n + c_2b_n) = c_1a + c_2b$. 即线性 组合的极限等于极限的线性组合, 称此为极限的线性性质.

数列的极限具有线性性质,同理函数极限也是具有线性性质的,统称为极限的线性性质.由极限的线性性质,可导出微积分中绝大多数概念也具有线性性质.如函数的导数、导数、微分、积分,都具有线性性质.

作业。 ex1.2. 1(2)(4); 3; 4; 5; 6; 8(5); 15(1); 19.

2 数列极限的性质与应用

2.1 复习数列极限的线性性质

设 a, b, c_1, c_2 为常数且 $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = b$, 证明: $\lim_{n \to \infty} (c_1 a_n + c_2 b_n) = c_1 a + c_2 b = c_1 \lim_{n \to \infty} a_n + c_2 \lim_{n \to \infty} b_n$.

从上述极限的线性性质,不难得到以下结论:

1.
$$\stackrel{\text{def}}{=} c_1 = c_2 = 1 \text{ pd}, \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n;$$

2.
$$\stackrel{\text{def}}{=} c_1 = 1, c_2 = -1 \text{ Fr}, \lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n;$$

3.
$$\stackrel{\text{def}}{=} c_1 = k, c_2 = 0 \text{ pd}, \lim_{n \to \infty} ka_n = k \lim_{n \to \infty} a_n.$$

4. 数列的线性性质可推广到任意有限个收敛数列的情形: 设 $a_{1n} \rightarrow a_1, a_{2n} \rightarrow$

$$a_2, \dots, a_{mn} \to a_m$$
, 且 $a_1, a_2, \dots, a_m, c_1, c_2, \dots, c_m$ 为常数, 则
$$\lim_{n \to \infty} (c_1 a_{1n} + c_2 a_{2n} + \dots + c_m a_{mn})$$

$$= c_1 a_1 + c_2 a_2 + \dots + c_m a_m$$

$$= c_1 \lim_{n \to \infty} a_{1n} + c_2 \lim_{n \to \infty} a_{2n} + \dots + c_m \lim_{n \to \infty} a_{mn}$$

2.2 对极限的空四性"

- 1. 有界性: 若 $\{a_n\}$ 收敛, 则 $\{a_n\}$ 有界, 反之未必;
- 2. 唯一性: 若 $\{a_n\}$ 收敛,则其极限唯一;
- 3. 保号性: 若 $\{a_n\}$ 收敛且 $\lim_{n\to\infty} a_n = a, a_n \ge 0, \forall n \ge n_0,$ 则必有 $a \ge 0;$
- 4. 保序性: 若 $a_n \to a, b_n \to b$, 且 $a_n \le (\ge)b_n, \forall n \ge n_0$, 则必有 $a \le (\ge)b$.

2.3 收敛数列极限的四则运算法则

1.
$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n.$$

2.
$$\lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$
.

3.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$
, $\sharp \vdash \lim_{n \to \infty} b_n \neq 0$.

证明. 仅证
$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{b}(b \neq = 0), n \to \infty$$
 注意到 $\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{|b_n - b|}{|b||b_n|}$

不妨设
$$b > 0$$
, 即 $\exists N_1, \forall n > N_1, s.t.b_n > b - \varepsilon$ (a)

取
$$\varepsilon < \frac{b}{2}$$
, 则 $b_n > b - \varepsilon \stackrel{(a)}{=} \frac{b}{2}$ (b)

得
$$\left|\frac{1}{b_n}-\frac{1}{b}\right|=\frac{|b_n-b|}{|b||b_n|}\overset{(b)}{<}\frac{|b_n-b|}{b^{\frac{b}{2}}}\overset{(c)}{<}\frac{\varepsilon}{\frac{b^2}{2}}$$

2.4 例题

例 2.1. 设 $a_n = (1 + \frac{1}{n})^n, n \in N^*$, 证明:

1.
$$\lim_{n\to\infty} a_n = e \approx 2.7182818128;$$

2.
$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x = e = \lim_{x \to -\infty} (1 + \frac{1}{x})^x, x \in \mathbb{R}$$

3.
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e, x \in R$$

例 2.2. 证明闭区间套定理: 若 $\{[a_n,b_n]\}$ 是一列闭区间, 满足 $[a_n,b_n]\supset [a_{n+1},b_{n+1}], n=1,2,\cdots$,且 $\lim_{n\to\infty}(b_n-a_n)=0$,则存在唯一的实数 ξ ,使得 $\xi\in[a_n,b_n], n=1,2,\cdots$.

注记. 闭区间套定理, 是刻画实数集 R 的连续性的五个等价公理之一.

为了纪念数学家 Euler(欧拉) 在其中的贡献,将 $\lim_{n\to\infty} (1+\frac{1}{n})^n$ 记为 e. 经计算可知, $e\approx 2.718281828$. 讲义中还证明了 e 是一个无理数,且将以 e 为底的对数称为自然对数,记为 $\ln x$,即 $\ln x = \log_e x$.

作业。 ex1.2: 14;15(3)(4);16;18(3);22(2)(4);CH1:3(2).

3 数列极限习题课

3.1 习题

1.
$$(1 + \frac{1}{n})^n < e < (1 + \frac{1}{n})^{n+1}, n \in \mathbb{N}^*.$$

2.
$$\left(\frac{1}{n+1}\right) < \ln\left(1+\frac{1}{n}\right) < \left(\frac{1}{n}\right), n \in \mathbb{N}^*$$
.

3.
$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}, \ \mathbb{P} \ \sqrt[n]{n!} e \sim n.$$

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n, n \in N^*, \text{ } \text{iff}:$$

- 1. $\{a_n\}$ 收敛;
- 2. $\lim_{n \to \infty} \frac{1}{n+1} + \dots + \frac{1}{2n} = \ln 2;$

3.
$$\lim_{n \to \infty} \frac{1}{3n+1} + \dots + \frac{1}{3n+2n} = \ln \frac{5}{3};$$

4.
$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \sim \ln n$$
.

3.2 关于无穷大

- 1. $\{a_n\} \to +\infty \Leftrightarrow \forall M > 0, \exists N \in N^*, \forall n > N, a_n > M.$
- 2. $\{a_n\} \to -\infty \Leftrightarrow \forall M > 0, \exists N \in N^*, \forall n > N, a_n < -M.$
- 3. $\{a_n\} \to \infty \Leftrightarrow \forall M > 0, \exists N \in N^*, \forall n > N, |a_n| > M.$

3.3 Stolz 定理及其应用

定理 3.1 (Stolz 定理). 设 $\{a_n\},\{b_n\}$ 是两个数列, 且 $\lim_{n\to\infty}b_n=+\infty$, 若

$$\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}=A$$

,其中 A 可以是有限数, 也可以是 $\pm\infty$; $\{b_n\}$ 是严格单调递增且趋于 $+\infty$, 则

$$\lim_{n\to\infty}\frac{a_n}{b_n}=A=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}.$$

3 数列极限习题课

7

注记. 完整的利用 Stolz 定理的过程要求先证明 $\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = A$ 极限存在并求得 A, 然后再利用 Stolz 定理求 $\lim_{n \to \infty} \frac{a_n}{b_n}$. 不过不严谨的直接写出 $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}}$ 也是能接受的.

注记 3.2. 当 $\lim_{n\to\infty} \frac{a_n-a_{n-1}}{b_n-b_{n-1}}=\infty$ 时,Stolz 定理不一定成立. 反例可取 $a_n=(-1)^n,b_n=n.$

3.4 例题

例 3.3. 证明:

2. 若
$$\lim_{n\to\infty} a_n = a \ge 0$$
, 则 $\lim_{n\to\infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$.

3.
$$\sharp \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a, \ \mathbb{M} \lim_{n \to \infty} \sqrt[n]{a_n} = a.$$

例 3.4. 设 a_1, a_2, \dots, a_m 是 m 个常数, 证明:

$$\lim_{n \to \infty} \sqrt[n]{|a_1|^n + |a_2|^n + \dots + |a_m|^n} = \max\{|a_1|, |a_2|, \dots, |a_m|\}.$$

2.
$$\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3} = \frac{1}{3};$$

3.
$$\lim_{n \to \infty} \frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4} = \frac{1}{4}.$$

4.
$$\lim_{n \to \infty} \frac{1^k + 2^k + 3^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1}$$
.

定理 3.6. 常用的平均值不等式:

设 a_1, a_2, \cdots, a_n 是 n 个正数,则有:

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \dots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n} \le \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

4 实数集连续性的五个等价命题

4.1 五个等价命题

- 1. 确界存在原理: 有上(下)界的非空实数集E必有上(下)确界 $\sup E(\inf E)$.
- 2. 单调有界极限存在准则: 若数列 $\{a_n\}$ 单调增 (減) 且有上 (下) 界, 则 $\{a_n\}$ 收敛. 且 $\lim_{n\to\infty} a_n = \sup a_n (\inf a_n)$.
- 3. 闭区间套定理: 若 $\{[a_n,b_n]\}$ 是一列闭区间, 满足 $[a_n,b_n] \supset [a_{n+1},b_{n+1}], n = 1,2,\cdots$,且 $\lim_{n\to\infty}(b_n-a_n)=0$,则存在唯一的实数 ξ ,使得 $\xi\in[a_n,b_n], n = 1,2,\cdots$.
- 4. 列紧性原理: 若 $\{a_n\}$ 有界且含无穷多项,则 $\{a_n\}$ 必有收敛子列 $\{a_{n_k}\}$.
- 5. 柯西 (Cauchy) 准则: 数列 $\{a_n\}$ 收敛的充要条件是: 对 $\forall \varepsilon > 0, \exists N \in N^*, \forall n, m > N, |a_n a_m| < \varepsilon$.

例 4.1. 证明确界原理推连续性.

由 $Y \neq \emptyset$, 故 X 有上界,

由确界原理, X 有上确界, 同理 Y 有下确界, 记 $c_1=\sup X, c_2=\inf Y$, (目标: 找到 $c,s.t. \forall a\in X, b\in Y, a\leq c\leq b$)

若 $c_1 \in X$, 则取 $c = c_1$.

若 $c_1 \notin X$, 则 $c_1 \in Y.c_2 \in Y \Rightarrow c = c_2; c_2 \notin Y \Rightarrow c_2 \in X, c_2 < c_1$ 这与 $\forall x \in X, y \in Y, x < y$ 矛盾.

4.2 Stolz 定理的证明

4.3 例题

例 4.2. 收敛的数列 $\{a_n\}$ 被称为 "Cauchy 列"或"基本列".

1. 设
$$a_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}, n \in \mathbb{N}^*$$
, 证明 $\{a_n\}$ 是 Cauchy 列;

2. 设
$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}, n \in \mathbb{N}^*$$
, 证明 $\{a_n\}$ 不是 Cauchy 列.

4.4 函数极限 24 种科学定义

设 x_0 为常数

⇒ 表示"则有…",在此处在 ⇔ 的子语句之中.

$$1. \lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon.$$

$$2. \lim_{x \to x_0^+} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x_0 < x < x_0 + \delta \Rightarrow |f(x) - A| < \varepsilon.$$

3.
$$\lim_{x \to x_0^-} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x_0 - \delta < x < x_0 \Rightarrow |f(x) - A| < \varepsilon.$$

$$4. \lim_{x \to x_0} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall 0 < |x - x_0| < \delta \Rightarrow f(x) > M.$$

5.
$$\lim_{x \to x_0^+} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 < x < x_0 + \delta \Rightarrow f(x) > M.$$

6.
$$\lim_{x \to x_0^-} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 - \delta < x < x_0 \Rightarrow f(x) > M.$$

7.
$$\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall 0 < |x - x_0| < \delta \Rightarrow f(x) < -M.$$

8.
$$\lim_{x \to x_0^+} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 < x < x_0 + \delta \Rightarrow f(x) < -M.$$

9.
$$\lim_{x \to x_0^-} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 - \delta < x < x_0 \Rightarrow f(x) < -M.$$

10.
$$\lim_{x \to x_0} f(x) = \infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall 0 < |x - x_0| < \delta \Rightarrow |f(x)| > M.$$

11.
$$\lim_{x \to x_0^+} f(x) = \infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 < x < x_0 + \delta \Rightarrow |f(x)| > M.$$

12.
$$\lim_{x \to x_0^-} f(x) = \infty \Leftrightarrow \forall M > 0, \exists \delta > 0, \forall x_0 - \delta < x < x_0 \Rightarrow |f(x)| > M.$$

13.
$$\lim_{x \to +\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists X_0 > 0, \forall x > X_0 \Rightarrow |f(x) - A| < \varepsilon.$$

14.
$$\lim_{x \to -\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists X_0 > 0, \forall x < -X_0 \Rightarrow |f(x) - A| < \varepsilon.$$

15.
$$\lim_{x \to \infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow |f(x) - A| < \varepsilon.$$

16.
$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall x > X_0 \Rightarrow f(x) > M.$$

17.
$$\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall x > X_0 \Rightarrow f(x) < -M.$$

18.
$$\lim_{x \to \infty} f(x) = \infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow |f(x)| > M.$$

19.
$$\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall x < -X_0 \Rightarrow f(x) > M.$$

20.
$$\lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall x < -X_0 \Rightarrow f(x) < -M.$$

21.
$$\lim_{x \to -\infty} f(x) = \infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow |f(x)| > M.$$

22.
$$\lim_{x \to \infty} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow f(x) > M.$$

23.
$$\lim_{x \to \infty} f(x) = -\infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow f(x) < -M.$$

24.
$$\lim_{x \to \infty} f(x) = \infty \Leftrightarrow \forall M > 0, \exists X_0 > 0, \forall |x| > X_0 \Rightarrow |f(x)| > M.$$

5 函数极限 24 种 10

5 函数极限 24 种

5.1 数列 $\{a_n\}$ 极限 4 种科学定义

- 1. $\lim_{n \to \infty} a_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N \in N^*, \forall n > N, |a_n a| < \varepsilon.$
- 2. $\lim_{n \to \infty} +\infty \Leftrightarrow \forall M > 0, \exists N \in N^*, \forall n > N, a_n > M.$
- 3. $\lim_{n \to \infty} -\infty \Leftrightarrow \forall M > 0, \exists N \in N^*, \forall n > N, a_n < -M.$
- 4. $\lim_{n \to \infty} \infty \Leftrightarrow \forall M > 0, \exists N \in N^*, \forall n > N, |a_n| > M.$

例 5.1. $\forall k \in N^*$, 证明: $\lim_{n \to \infty} n^k = +\infty$.

$\mathbf{5.2}$ 函数极限的 " $\varepsilon - \delta$ " 定义法

定义 5.2. 设 x_0 为常数, 函数在 x_0 处的极限为 a 定义为:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x, 0 < |x - x_0| < \delta \Rightarrow |f(x) - a| < \varepsilon.$$

若 x 从大于 x_0 的一侧趋近于 x_0 , 则称为 x_0 的右极限, 记为 $\lim_{x \to x_0^+} f(x) = a \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x, x_0 < x < x_0 + \delta \Rightarrow |f(x) - a| < \varepsilon;$ 若 x 从小于 x_0 的一侧趋近于 x_0 , 则称为 x_0 的左极限, 记为 $\lim_{x \to x_0^-} f(x) = a \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x, x_0 - \delta < x < x_0 \Rightarrow |f(x) - a| < \varepsilon.$

定理 5.3.
$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \to x_0^+} f(x) = a = \lim_{x \to x_0^-} f(x).(x_0)$$
 为常数)

定理 5.4.
$$\lim_{x \to \infty} = a \Leftrightarrow \lim_{x \to +\infty} f(x) = a = \lim_{x \to -\infty} f(x)$$
.

例 5.5.
$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x = \lim_{x \to -\infty} (1 + \frac{1}{x})^x = \lim_{x \to \infty} (1 + \frac{1}{x})^x = e.$$

5.3 函数极限的四则运算法则

定理 5.6. 设 x_0, a, b, c_1, c_2 为常数, 令 $\lim_{x \to x_0} f(x) = a, \lim_{x \to x_0} g(x) = b$, 则:

- 1. $\lim_{x \to x_0} (c_1 f(x) + c_2 g(x)) = c_1 a + c_2 b;$
- 2. $\lim_{x\to x_0} f(x)g(x) = a\cdot b;$ 特别地, $\lim_{x\to x_0} f^2(x) = a^2;$
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b} (b \neq 0).$

注记 5.7. 函数极限: $\lim_{x\to x_0}f(x)=a\in R$ 也是有"四性", 即局部有界性, 唯一性, 保号性, 保序性.

11

注记 5.8. 局部有界性的证明: 设函数 y = f(x) 的定义域为 I, 点 $x_0 \in I$, 且 $\lim_{x \to x_0} f(x) = a \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x, 0 < |x - x_0| < \delta \Rightarrow |f(x) - a| < \varepsilon \Leftrightarrow$ |f(x)|<|a|+arepsilon. 因此, 函数 f(x) 在 x_0 的某邻域内有界, 但 f(x) 在整个定义域 I 内未必有界.

5.4 3 个重要极限及其证明

$$1. \lim_{x \to 0} \frac{\sin x}{x} = 1;$$

2.
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

2.
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e;$$
3.
$$\lim_{x \to 0} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \begin{cases} \frac{a_0}{b_0}, & n = m; \\ 0, & n < m; \\ \infty, & n > m. \end{cases}$$

作业. ex1.3:1(2)(3);2(2)(4);3(2);5(1)(2);9(3)(4);10(3);CH1:13.

函数极限习题课

6.1 几个基本概念

- (1) 以零为极限的变量称为无穷小量; 绝对值无限增大的变量称无穷大量. 常数中只有零是无穷小量, 非零无穷小与无穷大具有倒数关系.
- **例 6.1.** $x \to 0$ 时, $\sin x$, $x^m (m > 0)$, $\tan x$, $e^x 1$, $1 \cos x$ 都是无穷小量; $n \in \mathbb{N}^*, n \to \mathbb{H}, n^n, n!, a^n(a > 1), n^{\alpha}(\alpha > 0), \ln n$ 都是无穷大量.
- (2) 若函数 f(x) 在 x_0 处有定义, 且 $f(x_0) = \lim_{x \to x_0} f(x)$, 则称 f(x) 在 x_0 处 连续, 若 f(x) 在区间 I 上每一点都连续, 则称 f(x) 在 I 上连续. 当 f(x) 在 x_0 处连续时, 有 $f(x_0) = f(\lim_{x \to x_0} x) = \lim_{x \to x_0} f(x)$, 即连续函数的极限与函数值可以 交换次序.
- (3) 幂 (x^{α}, α) 为常量), 指数 $(a^{x}, a > 0)$, 三角函数 $(\sin x, \cos x, \tan x)$, 对数函 数 $(\log_a x, a > 0, a \neq 1)$, 指数函数 (e^x) , 反三角函数 $(\arcsin x, \arccos x, \arctan x)$, 双曲函数 $(\sinh x, \cosh x, \tanh x)$ 等函数在其定义域内均连续.
 - 一切基本初等函数, 在其定义域内均连续.

12

6.2 无穷大的大小

例 6.2. 设 a, α, m 为常数, 且 $a > 1, \alpha > 0, m > 0$, 证明:

$$1. \ n^n >> n! >> a^n >> n^{\alpha} >> (\ln n)^m$$
,在 $n \to \infty, n \in N^*$ 时成立; 其中 $n^n >> n! \Leftrightarrow \lim_{n \to \infty} \frac{n^n}{n!} = +\infty$,称为 n^n 是 $n!$ 的高阶无穷大.

$$2. \ x^x>>a^x>>x^\alpha>>(\ln x)^m,$$
在 $x\to +\infty, x>0, x\in R$ 时成立.

6.3 例题

例 6.3. 证明:

1.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2};$$

$$2. \lim_{x \to 0} \frac{\arcsin x}{x} = 1;$$

3.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1;$$

4.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1;$$

5.
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a, a > 0, a \neq 1.$$

6.
$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha, \alpha \neq 0.$$

7.
$$\lim_{x \to 0^+} (\cos \sqrt{x})^{\frac{1}{x}} = \frac{1}{\sqrt{e}}$$
.

8.
$$\lim_{x \to 0} \left(\frac{x^2 + 3x - 5}{x^2 + 6} \right)^{4x} = e^{12}.$$

注记. 上述例 $1\sim 6$ 今后可作为公式直接使用, 并可记为: 当 $\rightarrow 0$ 时,

1.
$$\frac{1-\cos x}{x^2} \sim \frac{1}{2}$$
;

2.
$$\arcsin x \sim x$$
;

3.
$$\ln(1+x) \sim x$$
;

4.
$$l^x - 1 \sim x$$
;

5.
$$a^x - 1 \sim \ln a \cdot x$$
;

6.
$$(1+x)^{\alpha} - 1 \sim \alpha \cdot x$$
.

作业. ex1.3:4;9(1)(2);10(1)(2)(4);11(1)(2).