CENTRO UNIVERSITÁRIO SALESIANO DE VITÓRIA

AUGUSTO BERNARDO DE OLIVEIRA

CÁLCULO DINÂMICO DE NOTAS

VITÓRIA 2022

AUGUSTO BERNARDO DE OLIVEIRA

CÁLCULO DINÂMICO DE NOTAS

Trabalho apresentado ao Centro Universitário Salesiano, como requisito para encerramento do projeto de Sistema de Cálculo Dinâmico.

Orientador: Prof. Jaimel Lima

VITÓRIA 2022

SUMÁRIO

1 O que o sistema faz de forma geral	4
2 Quais as principais variáveis	4
3 Quais dados o usuário deve inserir	4
3.1 DE QUAIS TIPOS	5
4 QUAIS DADOS O USUÁRIO RECEBERÁ COMO SAÍDA	5
5 QUAIS AS PRINCIPAIS ESTRUTURAS UTILIZADAS	5
5.1 PORQUE ESSAS ESTRUTURAS FORAM UTILIZADAS	5
6 COMO ESSAS ESTRUTURAS FUNCIONAM	6

1 O QUE O SISTEMA FAZ DE FORMA GERAL

Este sistema recebe um número X de alunos e um número Y de notas que serão atribuídas para cada aluno, definindo um limite de notas e um limite de alunos. Após receber essas informações, o sistema irá criar uma matriz perguntando a nota do aluno X, até chegar no limite de notas que foi definido no início do sistema.

Depois de receber as notas de cada aluno, o sistema irá calcular a média das notas de cada um dos alunos e imprimindo na tela as notas que este aluno tirou, a média que o aluno ficou e se ele reprovou, ou se precisará de fazer a prova final ou se o mesmo passou. Por fim, o sistema irá calcular a média da sala, calculando a média de todas as notas atribuídas aos alunos e depois imprimindo esta média.

2 QUAIS AS PRINCIPAIS VARIÁVEIS

- pergunta (linhas) | Guarda o número de alunos que receberão as notas.
- pergunta_notas (colunas) | Guarda o número de notas que serão atribuídas para cada aluno.
- m | Matriz para guardar as notas de cada aluno. Seu tamanho é calculado da seguinte forma: número de alunos multiplicado pelo número de notas.
- v | Vetor para guardar os nomes dos alunos.
- Nome | Guarda o nome dos alunos.
- soma_notas | Calcula e guarda a soma das notas de cada aluno para usar no cálculo da média.
- media_notas | Calcula a média de cada aluno.
- soma sala | Calcula e guarda a soma de todas as notas atribuídas.
- media sala | Calcula a média da sala.

3 QUAIS DADOS O USUÁRIO DEVE INSERIR

O usuário deve inserir a quantidade de alunos que irão receber as notas, a quantidade de notas que serão atribuídas para cada aluno, o nome de cada aluno, e as notas de cada um deles.

3.1 DE QUAIS TIPOS

A quantidade de alunos, a quantidade de notas são do tipo inteiros. Já os valores das notas, as médias e as somas (soma_notas e soma_sala) são do tipo float, reais. E os nomes dos alunos são do tipo string, caracteres.

4 QUAIS DADOS O USUÁRIO RECEBERÁ COMO SAÍDA

O usuário irá receber como saída o nome dos alunos, que será do tipo string (caracteres), juntamente com suas devidas notas e médias, que serão do tipo float (reais), por final receberá a média da sala, que também será do tipo float.

5 QUAIS AS PRINCIPAIS ESTRUTURAS UTILIZADAS

As principais estruturas utilizadas neste sistema foram:

- Matriz.
- Vetor.
- Estruturas de repetição (For).
- Estruturas condicionais (If e Elif).

5.1 PORQUE ESSAS ESTRUTURAS FORAM UTILIZADAS

A matriz foi utilizada por ser uma forma mais dinâmica de guardar um número X de colunas (notas) em um número Y de linhas (alunos), além de obter melhor organização e mais facilidade na manipulação desses dados

O vetor foi utilizado pois é a forma mais organizada, mais dinâmica, que por sua vez se torna mais fácil de ser manipulada. As estruturas de repetição foram utilizadas porque ao longo do sistema é necessário percorrer toda a matriz, e a forma mais eficaz de percorrer a matriz é utilizando a estrutura de repetição for. Como por exemplo, a forma que é visto com mais frequência no código é de uma estrutura de repetição for, para linhas, seguida de outra estrutura de repetição for, para colunas, fazendo com que o acesso para cada elemento da matriz se torne mais dinâmico.

As estruturas condicionais foram utilizadas pois ao final do sistema é feita uma verificação para saber se o aluno reprovou, terá que fazer a prova final ou se o mesmo passou. Para esta verificação funcionar é indispensável o uso das estruturas condicionais.

6 COMO ESSAS ESTRUTURAS FUNCIONAM

As estruturas de repetição for, foram implementadas para que se torne mais dinâmico e mais fácil o acesso aos elementos da matriz. As estruturas de repetição for foram utilizadas seguidas, ao longo de todo o código é encontrado dois "for" seguidos, isso acontece por que a primeira estrutura de repetição for irá percorrer as linhas de toda a matriz, já o segundo for, irá percorrer todas as colunas da linha. Portanto, para cada linha existente na matriz, o sistema irá acessar os elementos de cada linha de acordo com o limite de colunas (que são os elementos de cada linha) definido no início do sistema.

Já as estruturas condicionais funcionam para fazer verificações das notas, para verificar se o aluno reprovou, se ele terá que fazer a prova final ou se ele passou. A verificação é necessária para um sistema de cálculo de média de notas, e quando se pensa em verificação é indispensável o uso das estruturas condicionais. No código foram utilizadas o: If e o Elif.

A matriz é onde as notas serão guardadas, ela funciona como um banco de dados de todas as notas que os alunos tiveram. O tamanho dessa matriz é dada pela quantidade de alunos, que será interpretada como linhas, multiplicados pela quantidade de notas que serão atribuídas para cada aluno, que serão interpretadas como as colunas da matriz.

O vetor tema lógica parecida com a matriz, mas ao invés de guardar as notas dos alunos e de ter um tamanho com duas dimensões (linhas multiplicadas pelas colunas), o vetor atem apenas uma dimensão, apenas linhas. Este vetor, no sistema, irá guardar o nome de todos os alunos, que serão recebidos através de uma pergunta ao usuário.