

Start with the lookup table - Initially Random.	e - C - Batch siza 32	2 X Leughl of Alphabet 27
Get a Random batch of big	irans - X - Ratu	hsize & Blocksize
Create Embedded table.	- -	2 × 3
	R X Dimensions •	Blocksize
32	× 2·3	
-	2 × 6	1 18
E will now be our imputs to the Network.		
	-C-	-X-
23456	374 1	513 7
32	12 27 5k	1 32 J
	7	
Filled with the	think of ead	o scher o
Jactors from -C- from	vector (· Joy S
in order given from		placed int
Start Forward Pass -		the follet-
100 hidden Nemons	-Ho-	
6×100 Weight 1 - 100 bias 1 - bi-	Wi =	
Note: Both Size = 32		
Ho= W10E+151 = 6		100 + <u>bl</u>
(212		
32		,
= 32	H0 /	Original Hidden Layer. Uste: Actually 32 Hidden Layers.

We now want to normalize the entire batch => 32×100 Nodes After normalization, the values in the hidden layer will have a mean (u) of zero & a standard beviation (t) of one. u=\$ 1=1 Hormal = Horiginal - en $\mu = \frac{1}{n} \stackrel{?}{\leq} H_o^i$ -n-1 Bessel's Correction σ² = 1 = (μi-μ)2 σ² = Variance $H_{N} = \frac{H_{0} - \mu}{\sqrt{0^{2} + \epsilon^{2}}} \frac{10^{5} \left(\text{avoid } \div \text{ Zero} \right)}{\sqrt{0^{2} + \epsilon^{2}}}$ First calculate the mean (e) for the batch Sum the columns N=15# & divide by batch size (32) Next calculate the variance of the batch $\frac{100}{100} - \frac{100}{110} = \frac{100}{100}$ $\frac{100}{100} = \frac{100}{100} = \frac{100}{100}$ Subtract the mean from each now of the batch & square the result Here add the columns & divide by batchsize. 82 11111 / $0^{2} = \frac{1}{32} \lesssim (H_{i} - \mu)^{2}$ Finally Complete the Normalization Hu= 1/0-1 = 22 Ho-1 × (1/6=6) multiply eads row by to , 1111

Scale 8 & Shift B Not actually needed for Batch Normalization but used in Most cases.

Allows the Normalized Values: $u=b \neq S=1$ to be most cases. altered by these two parameters. i.e Hz = 8 HN+B => 8 -> scale (or gain)

In om case both 8 = B are vectors & 100 langth. And we set & to all one's & A to all zero's We can now implement the activation function -in our case it's fanh(x) So Hactivated = Ha = fanh (Hz) Finally we can compute the last linear layer of our wetwork-Logits = Wz. He + bz where Wz is 100 x27 \$ bz is 27 32 Ha 27 + 27 10 W2 + 100 W2 11 Use softmax to convert log counts (Logits) to probabilities Ŷ = Frohabilities. - 32 Rows - each row should sun to 1.00 Now start back propogation; First we need to determine 24 derivative of Loss wirt output - Ps w.r.t output - probabilities - probability (0-1) レニ を (ヤーイ) = 」 (デースタアナソン) $\frac{\partial L}{\partial S} = \frac{1}{2} \left(Z \hat{Y} - Z Y \right) = \frac{\hat{Y} - Y}{2} - \text{actual (0-1)}$

probabilities

So NOW Use have
$$\frac{\partial L}{\partial P}$$
 but we used the following:

 $\frac{\partial L}{\partial b_{2}}$, $\frac{\partial L}{\partial U_{2}}$, $\frac{\partial L}{\partial A}$, $\frac{\partial L}{\partial V}$, $\frac{\partial L}{\partial U_{1}}$, $\frac{\partial L}{\partial U_{2}}$, $\frac{\partial L}{\partial U_{2}}$, $\frac{\partial L}{\partial U_{3}}$,

We also need $\frac{\partial L}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial HN} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial \mu} \cdot \frac{\partial HN}{\partial \mu} + \frac{\partial L}{\partial \sigma} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial \mu} \cdot \frac{\partial L}{\partial \mu} + \frac{\partial L}{\partial \sigma} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial \mu} \cdot \frac{\partial L}{\partial \mu} + \frac{\partial L}{\partial \sigma} \cdot \frac{\partial \sigma^2}{\partial \mu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial \mu} \cdot \frac{\partial L}{\partial \nu} \cdot \frac{\partial \sigma^2}{\partial \nu} + \frac{\partial L}{\partial \sigma} \cdot \frac{\partial \sigma^2}{\partial \nu}$ $\frac{\partial \sigma^2}{\partial \mu} = \frac{\partial L}{\partial \nu} \cdot \frac{\partial L}{\partial \nu} \cdot \frac{\partial \sigma^2}{\partial \nu} + \frac{\partial L}{\partial \sigma} \cdot \frac{\partial \sigma^2}{\partial \nu}$ $\frac{\partial \sigma^2}{\partial \nu} = \frac{\partial L}{\partial \nu} \cdot \frac{\partial \sigma^2}{\partial \nu} + \frac{\partial \sigma^2}{\partial \nu} \cdot \frac{\partial \sigma^2}{\partial \nu} + \frac{\partial \sigma^2}{\partial \nu} \cdot \frac{\partial \sigma^2}{\partial \nu}$ And We need $\frac{\partial L}{\partial H_0} = \frac{\partial L}{\partial H_0} \cdot \frac{\partial H_0}{\partial H_0} + \frac{\partial L}{\partial \sigma^2} \cdot \frac{\partial \sigma^2}{\partial H_0} + \frac{\partial L}{\partial \mu} \cdot \frac{\partial \mu}{\partial H_0} \cdot$ 50 26 = 26. 1 + 26. -2 (Ho-1) + 26. -1 to unembed the gradients Now we of to un late C, W1, b1, W2, b2, 8, B