

Computação em nuvem

Tecnologias de Suporte à Computação em Nuvem

Prof. Dr. Marcos A. Simplicio Jr.
Laboratório de Arquitetura e Redes de Computadores
Departamento de Engenharia de Computação e
Sistemas Digitais
Escola Politécnica da Universidade de São Paulo

Objetivos – Aula 16

 Entender o conceito de virtualização e suas diversas formas

Virtualização

Recursos computacionais em Data Centers

- Dimensionados para picos
- Máquinas subutilizam processador: boa parte do tempo ficam na espera de I/O (ex.: rede, disco)
- Aplicações não utilizam o processador o tempo todo

Virtualização:

Várias "máquinas virtuais" compartilhando uma infraestrutura

Virtualização: Conceitos

- Conceito amplo de virtualização
 - Abstração de um conjunto de recursos (computacionais e/ou de comunicação)
 - Abstração representa recursos com características diferentes
- Alguns exemplos já devem ser bem conhecidos
 - VLANs (Virtual LANs): abstração segmento rede
 - VPNs (Virtual Private Networks): abstração de enlace
 - Java Virtual Machine: abstração da plataforma de execução da aplicação
 - RAID: abstração de armazenamento

Virtualização: Máquinas Virtuais

- Máquina Virtual (Virtual Machine VM)
 - > Hardware físico é representado por um hardware virtual
 - > Várias VMs podem ser executadas na mesma máquina física
 - VMs gerenciadas pelo Monitor de Máquinas Virtuais
 - Função essencial: **isolamento**

Virtualização: Monitor de Máquinas Virtuais

- Monitor de Máquinas Virtuais (MMV) ou Hypervisor
 - Executado sobre um sistema operacional ou diretamente sobre o hardware

Virtualização: tipos

Emulação (E)

- Máquina virtual simula um hardware com CPU diferente do hardware físico
- MMV precisa converter instruções
- SO funciona sem modificações
- Ex.: uma máquina virtual x86 em um computador com processador PowerPC (Virtual PC for Power Mac)

Virtualização Nativa/ Full Virtualization (F)

- Máquina virtual simula um hardware com mesma CPU do hardware físico
- MMV precisa controlar instruções, sem convertê-las
- > **SO** funciona **sem modificações**
- Ex.: Intel x86 sobre Intel x86 (VMWare, Parallels)

Virtualização: tipos

Assistida por Hardware (H)

- Hardware auxilia no isolamento máquinas virtuais
- Hardware se encarrega de partes ineficientes e/ou complexas da virtualização via software

Ex.: processadores Intel com tecnologia VT + Linux XEN

Paravirtualização (P)

- > VM não simula completamente o hardware
- SO é modificado para efetuar chamadas relacionadas ao monitor de máquinas virtuais
- Ex.: Linux XEN, VMWare VMTools

Virtualização: usos

Consolidação de servidores físicos

- Menos máquinas físicas para gerenciar
- Menor \$\$ de infraestrutura

Recuperação de desastres / Manutenção

Mais fácil migrar uma máquina virtual que reinstalar um SO

Servidor físico pode ser recriado em ambiente lógico para teste de novas aplicações

Virtualização de serviços

Serviços executados no servidor por thin clients

Virtualização: gerenciamento

- Máquinas virtuais + Gerenciamento: permitem obter utility computing
 - Hardware virtual é padronizado
 - Migração automática de VMs padrão entre máquinas físicas
 - Máquina física fora do ar ou sobrecarregada

Fonte: VMware Virtual Infrastructure 3 (VI3)

Virtualização: Contêineres

- Contêiner: virtualização no nível de SO
 - Menos "camadas" para chegar ao hardware
 - Melhor gerenciamento de recursos (compartilhamento)

Virtualização: Contêineres

- História: conceito existe desde 2001 (Linux)
 - E Google usa contêineres em seus sistemas (ex.: GAE)
 - Maior visibilidade: 2013, com Docker p/ gerenciamento

Vantagens:

- ▶ Densidade: mais leves → #contêineres/host > #VMs/host
- Elasticidade: criação e destruição rápidas (segs, não mins)
 - Especialmente para serviços pequenos (ex.: web)

Limitações:

- Não suporta múltiplos kernels sobre mesmo kernel
 - Cenário ideal p/ contêineres: sistemas homogêneos
 - Nota: há soluções para suporte a contêineres de distros Linux
- Segurança: menos testada do que VMs

Resumo

- Entender o conceito e virtualização e suas diversas formas
 - Virtualização: abstração de um conjunto de recursos (ex.: máquina virtual → hardware subjacente)
 - Tipos de virtualização: emulação, nativa, assistida por hardware e paravirtualização
 - Usos: redução de custos, maior facilidade de manutenção, segurança, utility computing
 - Contêineres: virtualização por SO, na forma de processos
- Próxima aula: SDN

