

ADVFLOW: INCONSPICUOUS BLACK-BOX ADVERSARIAL ATTACKS USING NORMALIZING FLOWS

HADI M. DOLATABADI, SARAH ERFANI, AND CHRISTOPHER LECKIE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS, THE UNIVERSITY OF MELBOURNE

ABSTRACT

- **Motivation**: we want to construct black-box adversarial examples that come from a similar distribution as the clean data.
- **Proposal**: we utilize *normalizing flows* in conjunction with *natural evolution strategies* (*NES*) to build blackbox adversarial attacks called AdvFlow.
- Key features:
- 1. AdvFlow distribution is similar to the clean data.
- 2. AdvFlow perturbations have a data-like structure.
- 3. AdvFlow outperforms well-known black-box attacks on defended classifiers.

ADVERSARIAL ATTACKS

ADVERSARIAL EXAMPLES

Diff. ($\times 10$) AdvFlow Clean Image \mathcal{N} ATTACK Diff. ($\times 10$)

• **Takeaway**: AdvFlow generates perturbations that take the structure of the data into account, making them less detectable!

NORMALIZING FLOWS

Change-of-variables formula:

- Random vector $\mathbf{Z} \sim p_{\mathbf{Z}}(\mathbf{z})$
- Invertible and differentiable function $f(\cdot)$
- Random vector $\mathbf{X} = \mathbf{f}(\mathbf{Z})$

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(\mathbf{z}) \left| \det \left(\nabla_{\mathbf{z}} \mathbf{f}(\mathbf{z}) \right) \right|^{-1}$$

Normalizing flows:

- Z: simple base random variable (e.g. standard normal)
- $f_{\theta}(\cdot)$: composition of invertible neural nets

$$\mathbf{f}_{\boldsymbol{\theta}}\left(\cdot\right) = \left(\mathbf{f}_{K} \circ \mathbf{f}_{K-1} \circ \mathbf{f}_{2} \circ \mathbf{f}_{1}\right)\left(\cdot\right)$$

• Fitting $f_{\theta}(\cdot)$ to observations through maximum likelihood objective

ADVERSARIAL EXAMPLE GENERATION

It can be shown that adversarial example generation is equivalent to the following optimization problem:

$$\mathbf{x}_{adv} = \operatorname*{arg\,min}_{\mathbf{x}' \in \mathcal{S}(\mathbf{x})} \mathcal{L}(\mathbf{x}'), \qquad (1)$$

where

- $\mathcal{L}(\cdot)$ is an objective involving the classifier, and
- S(x) is the set of similar data to the clean one x.

NATURAL EVOLUTION STRATEGIES (NES)

Instead of optimizing Eq. (1) directly, define a parametric search distribution $p(\mathbf{x}'|\boldsymbol{\psi})$ on \mathbf{x}' and replace the Eq. (1) objective with:

$$J(\boldsymbol{\psi}) = \mathbb{E}_{p(\mathbf{x}'|\boldsymbol{\psi})} \left[\mathcal{L}(\mathbf{x}') \right]. \tag{2}$$

It can be shown that [1]

$$\nabla_{\boldsymbol{\psi}} J(\boldsymbol{\psi}) = \mathbb{E}_{p(\mathbf{x}'|\boldsymbol{\psi})} \left[\mathcal{L}(\mathbf{x}') \nabla_{\boldsymbol{\psi}} \log \left(p(\mathbf{x}'|\boldsymbol{\psi}) \right) \right]. \tag{3}$$

This only involves querying $\mathcal{L}(\cdot)$, making it suitable for black-box optimization/attacks.

ADV. EXAMPLE DETECTION

Data	Detector	AUROC(%)↑	
Q	Method	$\overline{\mathcal{N}}$ ATTACK	AdvFlow
CIFAR-10	LID Mahalanobis Res-Flow	78.69 97.95 97.90	57.59 66.85 67.03
SVHIN	LID Mahalanobis Res-Flow	57.70 73.17 69.70	61.11 64.72 64.68

• **Takeaway**: AdvFlow generates adversarial examples that are closer to the true data distribution!

OUR APPROACH: ADVFLOW

- 1. Pre-train a flow-based model $f(\cdot)$ on clean data.
- 2. Change the flow-based model base random vector from $\mathcal{N}(\mathbf{z}|\mathbf{0},I)$ to $\mathcal{N}(\mathbf{z}|\boldsymbol{\mu},\sigma^2I)$.
- 3. Use this density as the search distribution $p(\mathbf{x}'|\boldsymbol{\psi})$.
- 4. Given a target image, adjust $\psi = \{\mu, \sigma\}$ using NES to turn the clean data distribution into an adversarial one.
- 5. Generate an adversarial example by sampling from $p(\mathbf{x}'|\boldsymbol{\psi})$.

Use NES to update μ $\mathbf{f}^{-1}(\cdot)$ $\|\mathbf{x}_{adv} - \mathbf{x}\|_{p} \leq \epsilon$ DNN Class Prob.

Adv. Images \mathbf{x}_{adv}

ATTACK SUCCESS RATE (%)

Attack	Bandits / $NATTACK$ / SimBA / AdvFlow		
Data	CIFAR-10	ImageNet	
Van. Def.	96.75 / 99.85 / 99.96 / 99.37 45.20 / 45.19 / 43.57 / 49.08	95.79 / 99.47 / 98.42 / 95.58 50.77 / 33.99 / 47.55 / 57.20	

• Takeaway: AdvFlow is the most effective approach among well-known attacks against defended DNNs!

CONTACT INFORMATION & REFERENCES

Twitter hmdolatabadi

Website hmdolatabadi.github.io
Repo. github.com/hmdolatabadi/AdvFlow

- [1] Wierstra et al. Natural evolution strategies. *JMLR*, 2014.
- [2] Rezende & Mohamed. Variational inference with normalizing flows. In *ICML*, 2015.
- [3] Li et al. NATTACK: learning the distributions of adversarial examples for an improved black-box attack on deep neural networks. In *ICML*, 2019.