Khôlles de Mathématiques - Semaine 5

Kylian Boyet, George Ober

18 avril 2024

1 Montrer que l'ensemble des similitudes directes du plan complexe est un groupe pour la composition

Démonstration. Montrons donc que (S, \circ) est un sous groupe de $(S(\mathbb{C}), \circ)$

- \Diamond D'une part, $S \subset \mathcal{S}(\mathbb{C})$. Or l'ensemble des permutations $(\mathcal{S}(\mathbb{C}), \circ)$ est un groupe. En effet, les similitudes sont des bijections de $\mathbb{C} \to \mathbb{C}$.
- \Diamond De plus, S est non vide, par exemple l'application $\mathrm{Id}(\mathbb{C})$ est une similitude pour $a\leftarrow 1$ et $b\leftarrow 1$.
- \Diamond Prenons finalement a et c dans \mathbb{C}^* puis b et d dans \mathbb{C} . et posons les deux applications suivantes :

$$s \left| \begin{array}{ccc} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto az + b \end{array} \right| \begin{array}{ccc} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto az + b \end{array}$$

Ainsi, comme toute similitude directe est une bijection, en particulier s' en est une, et

$$s'^{-1} \mid \mathbb{C} \to \mathbb{C}$$
 $z \mapsto \frac{z}{c} - \frac{d}{c}$

Soit $z \in \mathbb{C}$ fixé quelconque :

$$(s \circ s'^{-1})(z) = s(s'^{-1}(z))$$

$$= s\left(\frac{z}{c} - \frac{d}{c}\right)$$

$$= a\left(\frac{z}{c} - \frac{d}{c}\right) + b$$

$$= \frac{a}{c}z + \left(b - \frac{ad}{c}\right)$$

Qui est une similitude directe, puisque $\frac{a}{c} \neq 0$ donc $s \circ s'^{-1} \in S$. Donc (S, \circ) est bien un sous-groupe de $(S(\mathbb{C}), \circ)$.

Classifier et interpréter une similitude directe donnée sous la forme $z\mapsto az+b$ sur un exemple, donner l'expression complexe d'une similitude dont on connaît les éléments caractéristiques.

 $D\acute{e}monstration$. Soient $(a,b) \in \mathbb{C}^*$ fixés quelconques. Posons la similitude

$$s \mid \begin{array}{cc} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto az + b \end{array}$$

- $\Diamond\,$ Si a=1, c'est la translation de vecteur d'affixe b
- \lozenge Si $a \neq 1$, s admet un unique point fixe appelé "centre de la similitude" $\omega = \frac{b}{1-b}$
 - \star Si $a \in \mathbb{R}^*$, s est l'homotétie de centre ω et de rapport a.

- \star Si $a \in (\mathbb{C}^* \setminus \mathbb{R})$, s est la composée de
 - La rotation de centre ω et d'angle α , où α est un argument de a.
 - L'homotétie de centre ω et de rapport |a|.

On nommera alors |a| le rapport de s et α une mesure de l'angle de s.

Exemple: Prenons la similitude $s: z \mapsto (1-i)z - 1$.

$$s(z) = z \iff (1 - i)z - 1 = z$$

 $\iff -iz = 1$
 $\iff z = i$

De plus,

$$(1-i)z - 1 = \sqrt{2}e^{-i\frac{\pi}{4}}z - 1$$

On en déduit donc que s est la similitude directe de centre d'affixe i, de rapport $\sqrt{2}$, et d'angle $-\frac{\pi}{4}$.

3 Montrer qu'une combinaison linéaire de deux fonctions bornées (respectivement lipschitziennes) est bornée (resp. lipschitzienne)

 $D\acute{e}monstration$. Soit I un intervalle réel.

Soient f et g deux fonctions de I dans \mathbb{R} . Soient $(\lambda, \mu) \in \mathbb{R}^2$

 \Diamond Si f et g sont respectivement bornées par A et par B. Soit $x \in I$.

$$\left| (\lambda . f + \mu . g)(x) \right| = \left| \lambda . f(x) + \mu . g(x) \right|$$

$$\leq \left| \lambda \right| \left| f(x) \right| + \left| \mu \right| \left| g(x) \right|$$

$$\leq \left| \lambda \right| A + \left| \mu \right| B$$

Donc $\lambda . f + \mu . g$ est bornée.

 \Diamond Si f et g sont respectivement K et L lipschitziennes. Soient $(x,y) \in I^2$.

$$\begin{split} \left| (\lambda.f + \mu.g)(x) - (\lambda.f + \mu.g)(y) \right| &= \left| \lambda.f(x) + \mu.g(x) - \lambda.f(y) - \mu.g(y) \right| \\ &= \left| \lambda(f(x) - f(y)) + \mu(g(x) - g(y)) \right| \\ &\leqslant \left| \lambda \middle| \left| f(x) - f(y) \middle| + \middle| \mu \middle| \left| g(x) - g(y) \middle| \right| \\ &\leqslant \left| \lambda \middle| K \middle| x - y \middle| + \middle| \mu \middle| L \middle| x - y \middle| \right. \\ &\leqslant (|\lambda|K + |\mu|L)|x - y| \end{split}$$