Important Necessary Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PowerTransformer
from sklearn.ensemble import IsolationForest
```

* 2) Data Preprocessing*

A) Load and Explore the Dataset

---> Load the Dataset and display the first few rows to understand the structure.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

appliance_data = pd.read_csv('/content/smart_home_dataset.csv')
appliance_data.head()
```


	Unix Timestamp	Transaction_ID	Television	Dryer	0ven	Refrigerator	Microwave	Line Voltage	Voltage	Apparent Power	Energy Consumption (kWh)	Month	Day of the Week	H (
0	1577836800	1	0	0	0	1	0	237	233	1559	24.001763	January	Wednesday	
1	1577839322	2	0	1	0	0	1	232	230	1970	31.225154	January	Wednesday	
2	1577841845	3	0	1	0	0	0	223	222	1684	70.460700	January	Wednesday	
3	1577844368	4	1	0	1	1	0	225	224	1694	32.264043	January	Wednesday	
4	1577846891	5	1	0	0	1	0	222	214	1889	32.728111	January	Wednesday	
4														

B. Data Cleaning

--> Convert the "Unix Timestamp" into a readable data format.

*---> Handling the missing values *

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
appliance_data = pd.read_csv('/content/smart_home_dataset.csv')
def convert_to_readable_time(unix_timestamp):
  readable_time = datetime.datetime.utcfromtimestamp(unix_timestamp)
  return readable_time
appliance_data['Unix Timestamp'] = appliance_data['Unix Timestamp'].apply(convert_to_readable_time)
print(appliance data)
print("size and shape of Data set:")
print(appliance data.shape)
print("##############"")
print("checking the information of data set:")
appliance_data.info()
print("##############"")
print("checking the null values in the dataset:")
appliance_data.isnull().sum()
```

,							_	_			
→ *		Unix Times	tamp Trans	saction_ID	Telev	/ision	Dryer	0ven	\		
_	0	2020-01-01 00:0	-	_ 1		0	0	0	·		
	1	2020-01-01 00:4	2:02	2		0	1	0			
	2	2020-01-01 01:2	4:05	3		0	1	0			
	3	2020-01-01 02:0		4		1	0	1			
	4	2020-01-01 02:4	8:11	5		1	0	0			
	48967	2023-11-30 20:4	5:35	48968		1	0	1			
	48968	2023-11-30 21:2	7:38	48969		0	0	1			
		2023-11-30 22:09		48970		1	0	0			
	48970	2023-11-30 22:5	1:44	48971		1	1	1			
	48971	2023-11-30 23:3	3:47	48972		0	0	0			
		Refrigerator	Microwave	Line Volta	ge Vo	oltage	Appare	nt Pow	er	\	
	0	1	0	2	37	233		15	59		
	1	0	1	2	32	230		19	70		
	2	0	0	2	23	222		16	84		
	3	1	0	2	25	224		16	94		
	4	1	0	2	22	214		18	89		
	48967	0	0	2	34	230		18	15		
	48968	0	1	2	38	235		16	92		
	48969	1	1	2	35	229		16	86		
	48970	1	1	2	37	230		17	54		
	48971	0	1	2	20	215		16	60		
		Energy Consump			Day of		eek Ho	ur of	the	Day	\
	0		24.001763	,		Wedneso	-			0	
	1		31.225154	,		Wedneso	-			0	
	2		70.460700	January		Wedneso	-			1	
	3		32.264043	,		Wedneso	-			2	
	4		32.728111	January		Wedneso	day			2	
	• • •		• • •	• • •			• • •			• • •	
	48967		20.161006			Thurs				20	
	48968		91.965343			Thurs	-			21	
	48969		40.224097			Thurs	-			22	
	48970		37.366360			Thurs				22	
	48971		66.239065	November		Thurs	day			23	
		0.663									
	•	Offloading Deci									
	0		ocal								
	1		mote								
	2		mote								
	3		mote								
	4	L	ocal								
	40067	_									
	48967		mote								
	48968		ocal								
	48969		ocal								
	48970	L	ocal								

```
48971 Local
```

Data columns (total 15 columns):

	00100000 (00000 10 001000000	<i>,</i> •	
#	Column	Non-Null Count	Dtype
0	Unix Timestamp	48972 non-null	datetime64[ns]
1	Transaction_ID	48972 non-null	int64
2	Television	48972 non-null	int64
3	Dryer	48972 non-null	int64
4	Oven	48972 non-null	int64
5	Refrigerator	48972 non-null	int64
6	Microwave	48972 non-null	int64
7	Line Voltage	48972 non-null	int64
8	Voltage	48972 non-null	int64
9	Apparent Power	48972 non-null	int64
10	Energy Consumption (kWh)	48972 non-null	float64
11	Month	48972 non-null	object
12	Day of the Week	48972 non-null	object
13	Hour of the Day	48972 non-null	int64
14	Offloading Decision	48972 non-null	object
dtype	es: datetime64[ns](1), flo	at64(1), int64(1	0), object(3)

memory usage: 5.6+ MB

checking the null values in the dataset:

0 **Unix Timestamp** 0 Transaction_ID 0 **Television** 0 Dryer 0 Oven 0 Refrigerator 0 **Microwave** 0 Line Voltage 0 Voltage 0

Apparent Power 0 https://colab.research.google.com/drive/1TeQyJK2TK9AFS19u-5LgFEFi-UIROg53#printMode=true

Energy Consumption (kWh) 0

Month 0

Day of the Week 0

Hour of the Day 0

Offloading Decision 0

https://colab.research.google.com/drive/1TeQyJK2TK9AFS19u-5LgFEFi-UIROg53#printMode=true

--> Splitting the Data before Normalizing and scaling to avoid Data Leak

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from sklearn.model selection import train test split
appliance data = pd.read csv('/content/smart home dataset.csv', header=0)
def convert to readable time(unix timestamp):
  readable time = datetime.datetime.utcfromtimestamp(unix timestamp)
  return readable time
appliance data['Unix Timestamp'] = appliance data['Unix Timestamp'].apply(convert to readable time)
appliance_data = pd.DataFrame(appliance_data)
appliance data.columns = appliance data.columns.str.strip()
#print(appliance data
# splitting the data before scaling to avoid Data Leak
x appliance data = appliance data.iloc[:,:-1]
#print(x appliance data)
#print("###############"")
y appliance data = appliance data.iloc[:,-1]
#print(y appliance data)
x_appliance_data_train,x_appliance_data_test,y_appliance_data_train,y_appliance_data_test = train_test_split(x_appliance_data,y_appliance_data,tes
print("training Dataset X:")
print(x appliance data train)
print("$$$$$$$$$$$$$$$$$$")
print("training Dataset Y:")
print(y_appliance_data_train)
print("Displaying the Test Dataset:")
print("Testing Dataset X:")
print(x appliance data test)
print("$$$$$$$$$$$$$$$$$")
print("Testing Dataset Y:")
print(y appliance data test)
    training Dataset X:
```

Unix Timestamp Transaction ID Television Dryer Oven \

2.42 FIVI					ai_Saiit	osii_vasai	iisetti_iC	/1_A55
40485	2023-03-28 04	:27:19	40486	1	1	1		
45468	2023-08-20 16:	:36:42	45469	0	1	1		
	2023-02-02 00:		38631	0	0	0		
22381	2021-10-15 12	:55:06	22382	1	0	0		
	2022-05-25 02		29970	0	0	0		
			• • •					
	2021-09-12 07	:23:31	21244	0	1	0		
	2023-09-02 01:		45892	1	0	1		
	2023-05-29 07		42614	0	1	0		
	2023-06-26 04		43568	0	0	0		
2732	2020-03-20 18		2733	1	1	1		
	Refrigerator	Microwave	Line Voltage	Voltage Ap	parent	t Power	\	
40485	_	0	229	229		1895	•	
45468		0	229	222		1576		
38630		1	222	219		1924		
22381		1	226	225		1529		
29969		0	223	219		1964		
	• • • •			•••		•••		
21243		1	236	232		1695		
45891		1	233	228		1554		
42613		0	236	235		1855		
43567		0	224	219		1515		
2732	1	1	234	228		1635		
40485	Energy Consur	nption (kWh) 10.102420	March	ay of the Wee	y	ur of th	e Day 4	
45468		87.199789	August	Sunda			16	
38630		82.569542	February	Thursda	-		0	
22381		29.984347	October	Frida	-		12	
29969		43.646074	May	Wednesda	ıy		2	
• • •		• • •	• • •	• •			• • •	
21243		36.332429	•	Sunda			7	
45891		67.365992		Saturda	-		1	
42613		86.451906	May	Monda	-		7	
43567		59.434337	June	Monda	-		4	
2732		21.009772	March	Frida	ıy		18	
\$\$\$\$\$	Local Local							
2000								
21243	•••							
45891								

42613

Remote

```
43567 Local
2732 Local
Name: Offloading Decision, Length: 39177, dtype: object
Displaying the Test Dataset:
Testing Dataset X:
```

--> Normalize or scale features like Voltage, Apparent Power, and Energy Consumption (kWh) to standardize the data for modeling by identifying the features distribution using Visualized presentation

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PowerTransformer
appliance data = pd.read csv('/content/smart home dataset.csv', header=0)
def convert to readable time(unix timestamp):
  readable time = datetime.datetime.utcfromtimestamp(unix timestamp)
  return readable time
appliance_data['Unix Timestamp'] = appliance_data['Unix Timestamp'].apply(convert_to_readable_time)
appliance_data = pd.DataFrame(appliance_data)
appliance data.columns = appliance data.columns.str.strip()
#print(appliance data
# splitting the data before scaling to avoid Data Leak
x appliance data = appliance data.iloc[:,:-1]
#print(x appliance data)
#print("###############"")
y appliance_data = appliance_data.iloc[:,-1]
#print(y_appliance_data)
x_appliance_data_train,x_appliance_data_test,y_appliance_data_train,y_appliance_data_test = train_test_split(x_appliance_data,y_appliance_data,tes
appliance data properties = ['Voltage', 'Apparent Power', 'Energy Consumption (kWh)']
print("Below Graph (Diagram) depicts the visualization of Distributions for each mentioned Features")
print("\n")
plt.figure(figsize=(10, 6))
sns.boxplot(data=x appliance data train[appliance data properties])
plt.title('Box Plot of Appliance Data Properties')
plt.xlabel('Properties')
```

```
plt.ylabel('Values')
plt.show()
# we will be using "Standard Scaling" method for "Voltage" feature of smart home dataset, as they follow normal distribution.
scalar standard = StandardScaler()
x appliance data train['Voltage'] = scalar standard.fit transform(x appliance data train[['Voltage']])
# we will be applying "Power Transformer" scaling method for "ApparantPower" feature of "smart home dataset", as they fall into "Skewed Distributi
scalar power = PowerTransformer(method = 'yeo-johnson')
x appliance data train['Apparent Power'] = scalar power.fit transform(x appliance data train[['Apparent Power']])
# we will be using "Power Transformer" for "EnergyConsumption" feature of "smart_home_dataset", as they are falling under "Skewed_Distribution".
scalar power energy = PowerTransformer(method = 'yeo-johnson')
x_appliance_data_train['Energy Consumption (kWh)'] = scalar_power_energy.fit_transform(x_appliance_data_train[['Energy Consumption (kWh)']])
print(" After using scaling methods on data x:\n")
print(x appliance data train)
# we will be scaling the testing data from smart home dataset
x appliance data test = pd.DataFrame(x appliance data test)
x appliance data test['Voltage'] = scalar standard.transform(x appliance data test[['Voltage']])
x appliance data test['Apparent Power'] = scalar power.transform(x appliance data test[['Apparent Power']])
x appliance data test['Energy Consumption (kWh)'] = scalar power energy.transform(x appliance data test[['Energy Consumption (kWh)']])
print("After applying scaling methods on testing data:\n")
print(x appliance data test)
```

Felow Graph (Diagram) depicts the visualization of Distributions for each mentioned Features

1

1

0

0

1

0

Poficianaton Michaelana Lina Valtaga Valtaga Annanont Davian \

22382

29970

21244

45892

42614

43568

2733

22381 2021-10-15 12:55:06

29969 2022-05-25 02:41:42

21243 2021-09-12 07:23:31

45891 2023-09-02 01:03:21

42613 2023-05-29 07:47:15

43567 2023-06-26 04:21:51

2732 2020-03-20 18:37:26

	ve i i TREI a roi	LITCI OMAAC	TTHE ANTRARE	Antrake	Apparent rower	\
40485	0	0	229	0.624197	1.006945	
45468	0	0	229	-0.461662	-1.209199	
38630	1	1	222	-0.927030	1.203551	
22381	0	1	226	0.003706	-1.544833	
29969	1	0	223	-0.927030	1.473516	
21243	0	1	236	1.089565	-0.370392	
45891	1	1	233	0.469074	-1.365987	
42613	0	0	236	1.554933	0.734519	
43567	0	0	224	-0.927030	-1.645307	
2732	1	1	234	0.469074	-0.791404	
	Energy Consum	ption (kWh)	Month Da	ay of the We	ek Hour of the	Day
40485		-1.915255	March	Tueso	lay	4
45468		1.199030	August	Sund	lay	16
38630		1.042463	February	Thurso	lay	0
22381		-0.948187	October	Fric	lay	12
29969		-0.380321	May	Wednesd	lay	2
			• • •		•••	
21243		-0.677880	September	Sund	lay	7
45891		0.512127	September	Saturo	lay	1
42613		1.173883	May	Mond	lay	7
43567		0.223900	June	Mond	lay	4
2732		-1.355770	March	Fric	lay	18

[39177 rows x 14 columns]

After applying scaling methods on testing data:

	Unix [·]	Time	stamp	Tran	sactio	n_ID Te	elevisi	ion	Dryer	0ven	\	
33846	2022-09-15	07:	45:04		3:	3847		1	0	1		
4819	2020-05-20	17:	13:21		4	4820		1	0	0		
3114	2020-03-31	22:	20:05			3115		1	1	0		
39572	2023-03-01	12:	36:44		39	9573		0	1	0		
44136	2023-07-12	19:	07:38		4	4137		0	0	0		
						• • •						
3715	2020-04-18	11:	31:26		:	3716		1	0	1		
8671	2020-09-10	04:	45:30		:	8672		0	1	0		
38935	2023-02-10	22:	11:37		3	8936		1	0	1		
7887	2020-08-18	07:	19:12		•	7888		0	1	1		
27782	2022-03-22	06:	00:54		2	7783		0	0	0		
	Refrigera [.]	tor	Micro	wave	Line '	Voltage		_		ent Po	wer	\
33846		1		1		229	-0.461	L662		0.850	479	
4819		1		1		223	-1.237	7276		0.918	566	
3114		1		0		237	0.779	320		1.277	931	
39572		0		1		235	0.934	1442		-0.573	406	
44136		0		0		233	0.003	3706		0.748	175	
3715		1		1		236	1.554	1933		0.864	103	
8671		1		0		229	-0.771	L907		-0.328	498	

C.Feature Engineering

--->Extract meaningful time-based features from the timestamp, including Month, Day of the Week, and Hour of the Week

--> Drop "Unix Timestamp"

```
4819
                                                                                1/
                             0.643439
                                             May
                                                       Wednesday
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from sklearn.model selection import train test split
appliance data = pd.read csv('/content/smart home dataset.csv', header=0)
def convert to readable time(unix timestamp):
  readable_time = datetime.datetime.utcfromtimestamp(unix_timestamp)
  return readable time
appliance data['Unix Timestamp'] = appliance data['Unix Timestamp'].apply(convert to readable time)
# Here we will be extracting meaningful time based features from appliance data i.e smart home dataset
appliance data['month'] = appliance data['Unix Timestamp'].dt.month
appliance data['day of the week'] = appliance data['Unix Timestamp'].dt.day
appliance_data['hour of the week'] = appliance_data['Unix Timestamp'].dt.weekday * 24 + appliance_data['Unix Timestamp'].dt.hour
appliance data = appliance data.drop(columns=['Unix Timestamp'])
print(appliance_data[['month', 'day of the week', 'hour of the week']])
\overline{2}
                   day of the week hour of the week
     0
                                  1
     1
                1
                                                   48
                                  1
     2
                1
                                  1
                                                   49
     3
                1
                                  1
                                                   50
     4
                1
                                                   50
                                  1
               . . .
                                . . .
                                                   . . .
     . . .
     48967
               11
                                 30
                                                   92
                                 30
                                                   93
     48968
               11
     48969
               11
                                 30
                                                   94
     48970
               11
                                 30
                                                   94
     48971
               11
                                 30
                                                   95
     [48972 rows x 3 columns]
```

D). Data Splitting

-->Split the dataset into training, and test sets (ex. 80% train, 20%test)

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from sklearn.model selection import train_test_split
appliance data = pd.read csv('/content/smart home dataset.csv', header=0)
def convert to readable time(unix timestamp):
  readable time = datetime.datetime.utcfromtimestamp(unix timestamp)
  return readable time
appliance data['Unix Timestamp'] = appliance data['Unix Timestamp'].apply(convert to readable time)
appliance_data['month'] = appliance_data['Unix Timestamp'].dt.month
appliance data['day of the week'] = appliance data['Unix Timestamp'].dt.day
appliance_data['hour of the week'] = appliance_data['Unix Timestamp'].dt.weekday * 24 + appliance_data['Unix Timestamp'].dt.hour
appliance data = appliance data.drop(columns=['Unix Timestamp'])
appliance data = pd.DataFrame(appliance data)
appliance data.columns = appliance data.columns.str.strip()
#print(appliance data
# splitting the data before scaling to avoid Data Leak
x_appliance_data = appliance_data.iloc[:,:-1]
#print(x appliance data)
#print("##############"")
y appliance data = appliance data.iloc[:,-1]
#print(y appliance data)
x appliance data train,x appliance data test,y appliance data train,y appliance data test = train test split(x appliance data,y appliance data,test
print("Below Data depicts the Training and Testing Data of smart home dataset(appliance data):\n")
print("Training Dataset of x and y:")
print('Training Dataset x:')
print(x appliance data train)
print("##############"")
print('Training dataset y:')
print(y appliance data train)
print("##############"")
print("Testing Dataset of x and y:")
print('Testing Dataset x:')
```

```
print(x_appliance_data_test)
print("########################")
print('Testing dataset y:')
print(y_appliance_data_test)
print("####################")
```

Below Data depicts the Training and Testing Data of smart_home_dataset(appliance_data):

Below	Data depicts th	ne Training a	nd Testi	ng Data	a of smart_hom	e_dataset	(applia	ince_dat
	ng Dataset of	x and y:						
II.9TIIT	ng Dataset x: Transaction_I) Television	Dryer	0ven	Refrigerator	Microwav	e \	
40485	40486		-	1	Nerrigerator 0		= \ }	
45468	45469			1	0		9	
				0	1			
38630 22381	38631 22382			0	0		1 1	
29969	29976		_	0	1		9	
		•	•	-	_			
 21243	21244		1			• •	• 1	
45891	45892			1	1		1	
42613	42614			0	0		9	
43567	43568			0	0))	
2732	2733			1	1		1	
2132	2/3.	, 1		1	_	•	L	
	Line Voltage	Voltage Ann	arent Po	wer Fr	nergy Consumpt	ion (kWh)	\	
40485	229	229		895	ici gy consumpe	10.102420	`	
45468	229	222		576		87.199789		
38630	222	219		924		82.569542		
22381	226	225		529		29.984347		
29969	223	219		964		43.646074		
21243	236	232		695		36.332429		
45891	233	228	1	554		67.365992		
42613	236	235	1	855		86.451906		
43567	224	219	1	515		59.434337		
2732	234	228	1	635		21.009772		
	Month Day	of the Week	Hour of	the Da	ay Offloading	Decision	month	\
40485	March	Tuesday			4	Local	3	
45468	August	Sunday			16	Local	8	
38630	February	Thursday			0	Local	2	
22381	October	Friday		-	12	Remote	10	
29969	May	Wednesday			2	Local	5	
• • •	• • •	• • •		•	• •	• • •	• • •	
21243	September	Sunday			7	Remote	9	
45891	September	Saturday			1	Local	9	
42613	May	Monday			7	Remote	5	
43567	June	Monday			4	Local	6	

18

Local

3

Friday

2732

March

```
day of the week
40485
                20
45468
38630
                 2
22381
                15
                25
29969
21243
                12
45891
                 2
                29
42613
43567
                26
2732
                20
[39177 rows x 16 columns]
______
```

3. Model Selection And Training

--> Consider algorithms suited to anomaly detection, such as Isolation Forest.

-->Use the training set to train the model, focusing on detecting unusual patterns in Energy Consumption (kWh), Voltage, and Apparent Power

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PowerTransformer
from sklearn.ensemble import IsolationForest
appliance data = pd.read csv('/content/smart home dataset.csv', header=0)
def convert to readable time(unix timestamp):
  readable time = datetime.datetime.utcfromtimestamp(unix timestamp)
  return readable time
appliance data['Unix Timestamp'] = appliance data['Unix Timestamp'].apply(convert to readable time)
appliance data = pd.DataFrame(appliance data)
appliance_data.columns = appliance_data.columns.str.strip()
#print(appliance data
# splitting the data before scaling to avoid Data Leak
x appliance data = appliance data.iloc[:,:-1]
#print(x appliance data)
```

```
#print("###############"")
y appliance data = appliance data.iloc[:,-1]
#print(y appliance data)
x appliance data train,x appliance data test,y appliance data train,y appliance data test = train test split(x appliance data,y appliance data,tes
appliance data properties = ['Voltage', 'Apparent Power', 'Energy Consumption (kWh)']
#plt.figure(figsize=(10, 6))
#sns.boxplot(data=x appliance data train[appliance data properties])
#plt.title('Box Plot of Appliance Data Properties')
#plt.xlabel('Properties')
#plt.ylabel('Values')
#plt.show()
# we will be using "Standard Scaling" method for "Voltage" feature of smart_home_dataset, as they follow normal distribution.
scalar standard = StandardScaler()
x_appliance_data_train['Voltage'] = scalar_standard.fit_transform(x_appliance_data_train[['Voltage']])
# we will be applying "Power Transformer" scaling method for "ApparantPower" feature of "smart home dataset", as they fall into "Skewed Distributi
scalar power = PowerTransformer(method = 'yeo-johnson')
x appliance data train['Apparent Power'] = scalar power.fit transform(x appliance data train[['Apparent Power']])
# we will be using "Power Transformer" for "EnergyConsumption" feature of "smart home dataset", as they are falling under "Skewed Distribution".
scalar power energy = PowerTransformer(method = 'yeo-johnson')
x appliance data train['Energy Consumption (kWh)'] = scalar power energy.fit transform(x appliance data train[['Energy Consumption (kWh)']])
#print(" After using scaling methods on data x:\n")
#print(x appliance data train)
# we will be scaling the testing data from smart home dataset
x appliance data test = pd.DataFrame(x appliance data test)
x appliance data test['Voltage'] = scalar standard.transform(x appliance data test[['Voltage']])
x appliance data test['Apparent Power'] = scalar power.transform(x appliance data test[['Apparent Power']])
x appliance data test['Energy Consumption (kWh)'] = scalar power energy.transform(x appliance data test[['Energy Consumption (kWh)']])
# As we have columns with string values in a dataset, we will be transforming them to vaoid their hinderance while training and testing the data.
appliance data['month'] = appliance data['Unix Timestamp'].dt.month
appliance_data['day of the week'] = appliance_data['Unix Timestamp'].dt.day
appliance data['hour of the week'] = appliance data['Unix Timestamp'].dt.weekday * 24 + appliance data['Unix Timestamp'].dt.hour
appliance data = appliance data.drop(columns=['Unix Timestamp'])
#As we have string values in columns 'Month' and "Day of the Week", we need to map them to respective values to convert them into numeric values.
# Define mappings
```

```
Month mapping = {
    "January": 1, "February": 2, "March": 3, "April": 4,
    "May": 5, "June": 6, "July": 7, "August": 8,
    "September": 9, "October": 10, "November": 11, "December": 12
}
Day of week mapping = {
    "Monday": 0, "Tuesday": 1, "Wednesday": 2, "Thursday": 3,
    "Friday": 4, "Saturday": 5, "Sunday": 6
}
# Map string values to numbers
x appliance data train['Month'] = x appliance data train['Month'].map(Month mapping)
x_appliance_data_train['Day of the Week'] = x_appliance_data_train['Day of the Week'].map(Day_of_week_mapping)
#Now we are gonna handle Month and Day columns from the respective training data.
if 'Month'in x appliance data train.columns and 'Day of the Week' in x appliance data train.columns:
  # Transform 'month' and 'day' to cyclical features
    x appliance data train['Month sin'] = np.sin(2 * np.pi * x appliance data train['Month'] / 12)
    x appliance data train['Month cos'] = np.cos(2 * np.pi * x appliance data train['Month'] / 12)
    x appliance data train['Day of the Weeky sin'] = np.sin(2 * np.pi * x appliance data train['Day of the Week'] / 31)
    x appliance data train['Day of the Weeky cos'] = np.cos(2 * np.pi * x appliance data train['Day of the Week'] / 31)
x appliance data train = x appliance data train.drop(columns=['Month', 'Day of the Week'])
y appliance data train = pd.DataFrame(y appliance data train)
# Now that, we have removed all the options of having Non-Numeric values in the dataset. Let's predict some anomolies in the respective features.
features = ['Energy Consumption (kWh)','Voltage','Apparent Power']
x appliance data train features = x appliance data train[features]
#Now applying Isolation Forest Model to predict the Anomolies.
isolation forest model = IsolationForest(n estimators =100, contamination = 0.05, max samples = 'auto', random state=42, verbose =1 )
isolation forest model.fit(x appliance data train features)
# Now predicting the anomolies only on the training set as mentioned.
x appliance data train predictions = isolation forest model.predict(x appliance data train features)
x appliance data train labels = (x appliance data train predictions == 1).astype(int)
# Step 5: Visualize anomalies for each feature individually
print("Below Diagram charts depicts the Anomolies present in each of the Features:")
print("\n")
# Assuming you have already set up the subplots and scatter plots
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
# Visualize anomalies in Energy Consumption (kWh)
```

```
scatter1 = axes[0].scatter(
    x_appliance_data_train_features['Energy Consumption (kWh)'],
    x_appliance_data_train_labels,
    c=x appliance data train labels, cmap='coolwarm', alpha=0.7
axes[0].set title('Anomalies in Energy Consumption (kWh)')
axes[0].set xlabel('Energy Consumption (kWh)')
axes[0].set ylabel('Anomaly (1: Normal, 0: Anomaly)')
fig.colorbar(scatter1, ax=axes[0], label='Anomaly Score') # Adding colorbar
# Visualize anomalies in Voltage
scatter2 = axes[1].scatter(
    x appliance data train features['Voltage'],
    x_appliance_data_train_labels,
    c=x_appliance_data_train_labels, cmap='coolwarm', alpha=0.7
)
axes[1].set title('Anomalies in Voltage')
axes[1].set_xlabel('Voltage')
axes[1].set ylabel('Anomaly (1: Normal, 0: Anomaly)')
fig.colorbar(scatter2, ax=axes[1], label='Anomaly Score') # Adding colorbar
# Visualize anomalies in Apparent Power
scatter3 = axes[2].scatter(
    x appliance data train features['Apparent Power'],
    x appliance data train labels,
    c=x_appliance_data_train_labels, cmap='coolwarm', alpha=0.7
)
axes[2].set title('Anomalies in Apparent Power')
axes[2].set xlabel('Apparent Power')
axes[2].set_ylabel('Anomaly (1: Normal, 0: Anomaly)')
fig.colorbar(scatter3, ax=axes[2], label='Anomaly Score') # Adding colorbar
plt.tight layout()
plt.show()
```

Below Diagram charts depicts the Anomolies present in each of the Features:

4. Anomoly Labeling and Evaluation

A). Labeling Anomolies

-->Define a synthetic threshold for anomalies in 'Energy Consumption (kWh)'

-->Create synthetic labels for anomalies

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PowerTransformer
```

```
from sklearn.ensemble import IsolationForest
appliance_data = pd.read_csv('/content/smart_home_dataset.csv', header=0)
def convert to readable time(unix timestamp):
  readable time = datetime.datetime.utcfromtimestamp(unix timestamp)
  return readable time
appliance data['Unix Timestamp'] = appliance data['Unix Timestamp'].apply(convert to readable time)
appliance data = pd.DataFrame(appliance data)
appliance data.columns = appliance data.columns.str.strip()
#print(appliance data
# splitting the data before scaling to avoid Data Leak
x appliance data = appliance data.iloc[:,:-1]
#print(x appliance data)
#print("###############"")
y_appliance_data = appliance_data.iloc[:,-1]
#print(y appliance data)
x_appliance_data_train,x_appliance_data_test,y_appliance_data_train,y_appliance_data_test = train_test_split(x_appliance_data,y_appliance_data,tes
appliance data properties = ['Voltage', 'Apparent Power', 'Energy Consumption (kWh)']
#plt.figure(figsize=(6, 6))
#sns.boxplot(data=x_appliance_data_train[appliance_data_properties])
#plt.title('Box Plot of Appliance Data Properties')
#plt.xlabel('Properties')
#plt.ylabel('Values')
#plt.show()
# we will be using "Standard Scaling" method for "Voltage" feature of smart home dataset, as they follow normal distribution.
scalar standard = StandardScaler()
x appliance data train['Voltage'] = scalar standard.fit transform(x appliance data train[['Voltage']])
# we will be applying "Power Transformer" scaling method for "ApparantPower" feature of "smart home dataset", as they fall into "Skewed Distributi
scalar power = PowerTransformer(method = 'yeo-johnson')
x appliance data train['Apparent Power'] = scalar power.fit transform(x appliance data train[['Apparent Power']])
# we will be using "Power Transformer" for "EnergyConsumption" feature of "smart home dataset", as they are falling under "Skewed Distribution".
scalar power energy = PowerTransformer(method = 'yeo-johnson')
x_appliance_data_train['Energy Consumption (kWh)'] = scalar_power_energy.fit_transform(x_appliance_data_train[['Energy Consumption (kWh)']])
#print(" After using scaling methods on data x:\n")
#print(x appliance data train)
```

```
# we will be scaling the testing data from smart home dataset
x_appliance_data_test = pd.DataFrame(x_appliance_data_test)
x appliance data test['Voltage'] = scalar standard.transform(x appliance data test[['Voltage']])
x appliance data test['Apparent Power'] = scalar power.transform(x appliance data test[['Apparent Power']])
x appliance data test['Energy Consumption (kWh)'] = scalar power energy.transform(x appliance data test[['Energy Consumption (kWh)']])
# As we have columns with string values in a dataset, we will be transforming them to vaoid their hinderance while training and testing the data.
appliance data['month'] = appliance data['Unix Timestamp'].dt.month
appliance data['day of the week'] = appliance data['Unix Timestamp'].dt.day
appliance data['hour of the week'] = appliance data['Unix Timestamp'].dt.weekday * 24 + appliance data['Unix Timestamp'].dt.hour
appliance data = appliance data.drop(columns=['Unix Timestamp'])
#As we have string values in columns 'Month' and "Day of the Week", we need to map them to respective values to convert them into numeric values.
# Define mappings
Month mapping = {
    "January": 1, "February": 2, "March": 3, "April": 4,
    "May": 5, "June": 6, "July": 7, "August": 8,
    "September": 9, "October": 10, "November": 11, "December": 12
}
Day of week mapping = {
    "Monday": 0, "Tuesday": 1, "Wednesday": 2, "Thursday": 3,
    "Friday": 4, "Saturday": 5, "Sunday": 6
# Map string values to numbers
x appliance data train['Month'] = x appliance data train['Month'].map(Month mapping)
x_appliance_data_train['Day of the Week'] = x_appliance_data_train['Day of the Week'].map(Day_of_week_mapping)
#Now we are gonna handle Month and Day columns from the respective training data.
if 'Month'in x appliance data train.columns and 'Day of the Week' in x appliance data train.columns:
  # Transform 'month' and 'day' to cyclical features
    x_appliance_data_train['Month_sin'] = np.sin(2 * np.pi * x_appliance_data_train['Month'] / 12)
    x appliance data train['Month cos'] = np.cos(2 * np.pi * x appliance data train['Month'] / 12)
    x_appliance_data_train['Day of the Weeky_sin'] = np.sin(2 * np.pi * x_appliance_data_train['Day of the Week'] / 31)
    x appliance data train['Day of the Weeky cos'] = np.cos(2 * np.pi * x appliance data train['Day of the Week'] / 31)
x appliance data train = x appliance data train.drop(columns=['Month', 'Day of the Week'])
y appliance data train = pd.DataFrame(y appliance data train)
# Now that, we have removed all the options of having Non-Numeric values in the dataset. Let's predict some anomolies in the respective features.
features = ['Energy Consumption (kWh)','Voltage','Apparent Power']
x appliance data train features = x appliance data train[features]
```

```
#Now applying Isolation Forest Model to predict the Anomolies.
isolation forest model = IsolationForest(n estimators =100, contamination = 0.05, max samples = 'auto', random state=42, verbose =1 )
isolation forest model.fit(x appliance data train features)
# Now predicting the anomolies only on the training set as mentioned.
x appliance data train predictions = isolation forest model.predict(x appliance data train features)
x appliance data train labels = (x appliance data train predictions == 1).astype(int)
# Assuming x appliance_data_train is your training dataset
# Defining a synthetic threshold for anomalies in 'Energy Consumption (kWh)'
# 1. Calculate the mean and standard deviation of 'Energy Consumption (kWh)'
mean energy train = x appliance data train['Energy Consumption (kWh)'].mean()
std energy train = x appliance data train['Energy Consumption (kWh)'].std()
# 2. Define thresholds for anomaly detection (using mean ± 3 * std deviation)
threshold_upper_train = mean_energy_train + 3 * std_energy_train # upper threshold
threshold lower train = mean energy train - 3 * std energy train # lower threshold
# 3. Create synthetic labels for anomalies based on these thresholds
# If a value is above the upper threshold or below the lower threshold, it's an anomaly
x appliance data train['Anomaly Label'] = np.where(
    (x appliance data train['Energy Consumption (kWh)'] > threshold upper train) |
    (x appliance data train['Energy Consumption (kWh)'] < threshold lower train),</pre>
    0, # 0 for anomaly
    1 # 1 for normal
# 4. Check the data with anomaly labels
print(x appliance data train[['Energy Consumption (kWh)', 'Anomaly Label']])
# 5. Count the number of anomalies detected
anomalies count = x appliance data train['Anomaly Label'].value counts()
print(f"Anomalies detected (including synthetic ones):\n{anomalies count}")
\overline{\Rightarrow}
            Energy Consumption (kWh) Anomaly Label
     40485
                           -1.915255
                                                   1
     45468
                            1.199030
                                                   1
                            1.042463
     38630
                                                   1
     22381
                            -0.948187
                                                   1
     29969
                            -0.380321
                                                   1
     . . .
     21243
                           -0.677880
                                                   1
```

```
45891
                       0.512127
                                              1
                                              1
42613
                       1.173883
43567
                       0.223900
                                              1
2732
                      -1.355770
[39177 rows x 2 columns]
Anomalies detected (including synthetic ones):
Anomaly Label
   39177
Name: count, dtype: int64
```

B). Evaluate the Model

--> Model Evaluation with Synthetic Labels

--> Calculate specific metrics (Accuracy, Precision, Recall Score, F1 Score)

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PowerTransformer
from sklearn.ensemble import IsolationForest
from sklearn.metrics import accuracy score, precision score, recall score, f1 score
# Load the dataset
appliance_data = pd.read_csv('/content/smart_home_dataset.csv', header=0)
# Convert the 'Unix Timestamp' to readable time
def convert to readable time(unix timestamp):
    readable time = datetime.datetime.utcfromtimestamp(unix timestamp)
    return readable time
appliance_data['Unix Timestamp'] = appliance_data['Unix Timestamp'].apply(convert_to_readable_time)
# Clean the column names
appliance_data.columns = appliance_data.columns.str.strip()
# Splitting the data before scaling to avoid data leakage
x appliance data = appliance data.iloc[:,:-1]
y_appliance_data = appliance_data.iloc[:,-1]
```

```
# Splitting into training and testing data
x_appliance_data_train, x_appliance_data_test, y_appliance_data_train, y_appliance_data_test = train_test_split(x_appliance_data, y_appliance_data
# Feature selection for scaling
appliance data properties = ['Voltage', 'Apparent Power', 'Energy Consumption (kWh)']
# Standard Scaling for 'Voltage'
scalar standard = StandardScaler()
x appliance data train['Voltage'] = scalar standard.fit transform(x appliance data train[['Voltage']])
# Power Transformer for 'Apparent Power'
scalar power = PowerTransformer(method='yeo-johnson')
x appliance data train['Apparent Power'] = scalar power.fit transform(x appliance data train[['Apparent Power']])
# Power Transformer for 'Energy Consumption (kWh)'
scalar power energy = PowerTransformer(method='yeo-johnson')
x appliance data train['Energy Consumption (kWh)'] = scalar power energy.fit transform(x appliance data train[['Energy Consumption (kWh)']])
# Scaling the testing data
x appliance data test = pd.DataFrame(x appliance data test)
x appliance data test['Voltage'] = scalar standard.transform(x appliance data test[['Voltage']])
x appliance data test['Apparent Power'] = scalar power.transform(x appliance data test[['Apparent Power']])
x appliance data test['Energy Consumption (kWh)'] = scalar power energy.transform(x appliance data test[['Energy Consumption (kWh)']])
# Creating features for 'Month' and 'Day of the Week' from 'Unix Timestamp'
appliance data['month'] = appliance data['Unix Timestamp'].dt.month
appliance data['day of the week'] = appliance data['Unix Timestamp'].dt.day
appliance data['hour of the week'] = appliance data['Unix Timestamp'].dt.weekday * 24 + appliance data['Unix Timestamp'].dt.hour
appliance data = appliance data.drop(columns=['Unix Timestamp'])
# Map 'Month' and 'Day of the Week' columns to numeric values
Month mapping = {
    "January": 1, "February": 2, "March": 3, "April": 4,
    "May": 5, "June": 6, "July": 7, "August": 8,
    "September": 9, "October": 10, "November": 11, "December": 12
}
Day of week mapping = {
    "Monday": 0, "Tuesday": 1, "Wednesday": 2, "Thursday": 3,
    "Friday": 4, "Saturday": 5, "Sunday": 6
}
x appliance data train['Month'] = x appliance data train['Month'].map(Month mapping)
x appliance data train['Day of the Week'] = x appliance data train['Day of the Week'].map(Day of week mapping)
# Create cyclical features for 'Month' and 'Day of the Week'
```

```
x appliance data train['Month sin'] = np.sin(2 * np.pi * x appliance data train['Month'] / 12)
x_appliance_data_train['Month_cos'] = np.cos(2 * np.pi * x_appliance_data_train['Month'] / 12)
x appliance data train['Day of the Weeky sin'] = np.sin(2 * np.pi * x appliance data train['Day of the Week'] / 31)
x appliance data train['Day of the Weeky cos'] = np.cos(2 * np.pi * x appliance data train['Day of the Week'] / 31)
# Drop original 'Month' and 'Day of the Week' columns
x appliance data train = x appliance data train.drop(columns=['Month', 'Day of the Week'])
# Now, applying Isolation Forest Model for anomaly detection
features = ['Energy Consumption (kWh)', 'Voltage', 'Apparent Power']
x appliance data train features = x appliance data train[features]
x_appliance_data_test_features = x_appliance_data_test[features]
# Initialize Isolation Forest Model
isolation forest model = IsolationForest(n estimators=100, contamination=0.05, max samples='auto', random state=42, verbose=1)
isolation_forest_model.fit(x_appliance_data_train_features)
# Predict anomalies for the test set
x appliance data test predictions = isolation forest model.predict(x appliance data test features)
# Convert the predictions to binary labels (1 = normal, 0 = anomaly)
predicted labels = (x appliance data test predictions == 1).astype(int)
# Create synthetic anomaly labels based on 'Energy Consumption (kWh)' thresholds
mean energy test = x appliance data test['Energy Consumption (kWh)'].mean()
std_energy_test = x_appliance_data_test['Energy Consumption (kWh)'].std()
threshold upper test = mean energy test + 3 * std energy test
threshold_lower_test = mean_energy_test - 3 * std_energy_test
# Assign synthetic anomaly labels
x appliance data test['Anomaly Label'] = np.where(
    (x appliance data test['Energy Consumption (kWh)'] > threshold upper test) |
    (x appliance data test['Energy Consumption (kWh)'] < threshold lower test),</pre>
    0, # 0 for anomaly
    1 # 1 for normal
# Model evaluation
accuracy = accuracy score(x appliance data test['Anomaly Label'], predicted labels)
precision = precision score(x appliance data test['Anomaly Label'], predicted labels)
recall = recall score(x appliance data test['Anomaly Label'], predicted labels)
f1 = f1_score(x_appliance_data_test['Anomaly Label'], predicted_labels)
# Print evaluation metrics
print("Model Evaluation Metrics:")
print(f"Accuracy: {accuracy:.4f}")
```

```
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")

Model Evaluation Metrics:
    Accuracy: 0.9492
    Precision: 1.0000
    Recall: 0.9492
    F1 Score: 0.9739
```

C). Describing the Anomolies

1. Visualized Approach

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PowerTransformer
from sklearn.ensemble import IsolationForest
# Load the dataset
appliance data = pd.read csv('/content/smart home dataset.csv', header=0)
# Convert Unix timestamps to readable time
def convert to readable time(unix timestamp):
    readable_time = datetime.datetime.utcfromtimestamp(unix_timestamp)
    return readable time
appliance_data['Unix Timestamp'] = appliance_data['Unix Timestamp'].apply(convert_to_readable_time)
# Clean up column names
appliance data = pd.DataFrame(appliance data)
appliance data.columns = appliance data.columns.str.strip()
# Splitting the data before scaling to avoid data leakage
x appliance data = appliance data.iloc[:,:-1]
y appliance data = appliance data.iloc[:,-1]
# Train-test split
x_appliance_data_train, x_appliance_data_test, y_appliance_data_train, y_appliance_data_test = train_test_split(
```

```
x_appliance_data, y_appliance_data, test_size=0.2, random_state=0
# Standard scaling for "Voltage" feature
scalar standard = StandardScaler()
x appliance data train['Voltage'] = scalar standard.fit transform(x appliance data train[['Voltage']])
# Power Transformer scaling for "Apparent Power" feature
scalar power = PowerTransformer(method='yeo-johnson')
x appliance data train['Apparent Power'] = scalar power.fit transform(x appliance data train[['Apparent Power']])
# Power Transformer scaling for "Energy Consumption (kWh)" feature
scalar power energy = PowerTransformer(method='yeo-johnson')
x appliance data train['Energy Consumption (kWh)'] = scalar power energy.fit transform(x appliance data train[['Energy Consumption (kWh)']])
# Scaling the test data
x appliance data test['Voltage'] = scalar standard.transform(x appliance data test[['Voltage']])
x appliance data test['Apparent Power'] = scalar power.transform(x appliance data test[['Apparent Power']])
x appliance data test['Energy Consumption (kWh)'] = scalar power energy.transform(x appliance data test[['Energy Consumption (kWh)']])
# Predict anomalies using Isolation Forest
features = ['Energy Consumption (kWh)', 'Voltage', 'Apparent Power']
x_appliance_data_train_features = x_appliance_data_train[features]
# Experiment with different contamination values
isolation forest model = IsolationForest(n estimators=100, contamination=0.1, max samples='auto', random state=42, verbose=1)
isolation forest model.fit(x appliance data train features)
# Predict anomalies on the training set
x appliance data train predictions = isolation forest model.predict(x appliance data train features)
# Convert -1 (anomaly) and 1 (normal) to binary labels
x appliance data train labels = (x appliance data train predictions == 1).astype(int)
# Check how many anomalies were detected
anomalies_count = pd.Series(x_appliance_data_train_labels).value_counts()
print(f"Total anomalies detected: {anomalies count[0]}")
```