

INSTITUTO POLITÉCNICO NACIONAL

Escuela Superior de Cómputo

Apuntes de:

BASE DE DATOS I

 $\label{eq:controller} P\ R\ E\ S\ E\ N\ T\ A$ M. en C. ©Euler Hernández Contreras

México, D. F.

 $Marzo \ del \ 2007$

Contenido

1	Mo	delo R	elacional	1
	1.1	Álgebr	ra y Cálculo Relacional	1
		1.1.1	Selección	1
		1.1.2	Proyección	2
		1.1.3	Unión	2
		1.1.4	Diferencia	3
		1.1.5	Intersección	3
		1.1.6	Producto Cartesiano	3
		1.1.7	Reunión	4
		1.1.8	División	4
		1.1.9	Ejercicios	9
		1.1.10	Solución a Ejercicios	10

Capítulo 1

Modelo Relacional

1.1 Álgebra y Cálculo Relacional

Es una colección de operaciones que son usadas para manipular relaciones completas.

El resultado de cada operación es una nueva relación, que a su vez también puede ser manipulada.

Esta descrito de la siguiente forma:

 $\langle Operador \rangle_{\langle operandos \rangle} \langle operandos \rangle \rightarrow \langle resultado \rangle$

Operaciones en el álgebra relacional:

- Selección (σ)
- Proyección (π)
- Unión (\cup)
- Diferencia (R-S)
- Intersección (∩)
- Producto Cartesiano $(R \times S)$
- Reunión $(R|\times|S)$
- División $(R \div S)$

1.1.1 Selección

Produce un subconjunto horizontal de la relación operando.

Fórmula General:

$$\sigma_F(R) = \{t | t \in R \land F(t) \text{ es verdadero}\}$$

donde:

R es una relación, t es una variable tupla, F es una fórmula consistente de:

- operandos que son constantes o atributos
- operadores artiméticos de comparación $(<,>,=,\neq,\leq,\geq)$.
- operadores lógicos (\land, \lor, \sim) .

1.1.2 Proyección

Produce una división vertical de una relación.

Fórmula General:

$$\pi_{A_1,...,A_n}(R) = \{t[A_1,...,A_n] | t \in R\}$$

donde:

R es una relación, t es una variable tupla, $\{A_1, \ldots, A_n\}$ es un subconunto de los atributos de R, sobre los cuales la proyección será ejecutada.

1.1.3 Unión

Similar a la unión de conjuntos.

Las relaciones tienen que ser compatibles o del mismo rango.

Compatibilidad:

- Mismo grado (el mismo número de Atributos).
- Los atributos correspondientes deben estár definidos sobre el mismo dominio.

Fórmula General:

$$R \cup S = \{t | t \in R \lor t \in S\}$$

donde:

R, S son relaciones, t es una variable tupla.

El resultado contiene tuplas que están en R o en S.

1.1.4 Diferencia

Fórmula General:

$$R - S = \{t | t \in R \land t \notin S\}$$

donde:

R,S son relaciones, t es una variable tupla.

El resultado contiene tuplas que están en R, pero no en S.

$$R - S \neq S - R$$
.

R, S deben ser compatibles en unión.

1.1.5 Intersección

La intersección obtiene como resultado una relación que contiene las tuplas de R que también se encuentran S.

Fórmula General:

$$R \cap S = \{t | t \in R \ \land t \in S\}$$

donde:

R es una relación, t es una variable tupla.

La intersección se puede expresar en términos de diferencias:

$$R \cap S = R - (R - S)$$

1.1.6 Producto Cartesiano

Dadas dos relaciones:

- R de grado n, cardinalidad x
- $\bullet \ S$ de grado m, cardinalidad y

El producto cartesiano se define como:

$$R \times S = \{t[A_1, \dots, A_n, B_1, \dots, B_m] | t[A_1, \dots, A_n] \in R \land t[B_1, \dots, B_m] \in S\}$$

El resultado de $R \times S$ es una relación de grado (m+n) y consiste de todas la $(x \bullet y)$ -tuplas, donde cada tupla es la concatenación de una tupla R con cada una de las tuplas de S.

1.1.7 Reunión

Fórmula General:

$$R[\times|_{F(R.A_i,S.B_i)}S = \{t[A_1,\ldots,A_n,B_1,\ldots,B_m]|t[A_1,\ldots,A_n] \in R \land t[B_1,\ldots,B_m] \in S \land F_{(R.A_i,S.B_i)} \text{sea verdadero}\}$$

donde:

R,S son relaciones, t es una variable tupla y $F_{(R.A_i,S.B_j)}$ es una fórmula definida como una selección.

Es una derivación del producto cartesiano:

$$R| \times |_F S = \sigma_F (R \times S)$$

Tipos de Reunión:

• θ -Reunión:

La fórmula F usa el operador θ -Reunión.

• Equi-Reunión:

La fórmula F usa el operador de igualdad.

$$R| \times |_{R.A=S.B}S$$

• Reunión Natural:

Equi-reunión de dos relaciones R y S sobre un atributo (o atributos) comunes a R y S y proyectando sólo una copia de estos atributos.

$$R| \times |S = \pi_{R \cup S} \sigma_F(R \times S)$$

1.1.8 División

Dadas las relaciones:

- R de grado m $(R = \{A_1, ..., A_m\})$
- S de grado n $(S = \{B_1, ..., B_n\})$

Sea $A = \{A_1, \ldots, A_m\}$ y $B = \{B_1, \ldots, B_n\}$ y $B \subseteq A$ entonces, $R \div S$ da T de grado m - n [esto es, T(Y), donde Y = A - B] tal que para cada tupla de t deben aparecer en R en combinación con cada tupla en S.

noHospital	Nombre	NoCamas
22	Hospital General Balbuena	412
13	Hospital General Xoco	502
45	Hospital Regional 1 Octubre (ISSSTE)	845
18	Hospital Los Ángeles	987

Tabla 1.1: Relación Hospital

noHospital	noGuardia	nombreServcio	NoCamas
22	6	Diálisis	60
22	6	Terapia Intensiva	21
22	2	Maternidad	35
13	1	Maternidad	25
13	2	Terapia Intensiva	40
13	3	Emergencias	50
45	1	Maternidad	120

Tabla 1.2: Relación Guardia

noHospital	noGuardia	nombrePersonal	Cargo
22	6	Claudia Ramírez	Enfermera
13	3	Nancy Rojas	Enfermera
22	6	Luis Martínez	Jefe Enseñanza
22	2	Franciso García	Residente
45	1	Patricia Contreras	Enfermera
22	1	Juana López	Enfermera

Tabla 1.3: Relación Personal

nombreEmpleado	sueldo	codigoDepto	FechaIngreso
Luis Torres	12,000	A1	01/01/2006
Diana Soto	5,000	A2	01/01/2005
Jaime Pérez	3,000	A2	01/10/2005
Carlos Figueroa	6,000	A1	01/03/2007
Ruth Salas	15,000	A1	01/01/2004
Martín Ríos	20,000	A3	01/06/2004
Jorge Campos	8,000	A2	01/11/2005
Thania Cruz	6,000	A1	01/06/2005
Iván Zamora	5,000	A2	01/04/2004
Gamaliel Arce	20,000	A3	01/10/2003

Tabla 1.4: $Relaci\'{o}n$ Empleado

nombreDepto	codigoDepto	fechaCreación
Sistemas	A1	01/10/2003
Mercadotécnia	A2	01/10/2003
Ventas	A3	01/10/2003
Recursos Humanos	A4	01/10/2003

Tabla 1.5: $Relaci\'{o}n$ Departamento

noHospital	noGuardia	nombreMédico	especialidad
45	607	Jaime González	Pediatría
18	585	Carlos Pérez	Neurocirugía
22	453	Karla Rodríguez	Psicología
22	398	Laura Ayala	Cardiología
13	301	Mónica Juárez	Pediatría
13	197	Ulises Ruíz	Pediatría

Tabla 1.6: Relación Médico

noBoleta	nombreAlumno	carrera	Escuela
2004440202	Brianza Padilla Mario	Ingeniería Biomédica	UPIBI
2003330568	Hernández Aguilar Carlos Alberto	Ingeniería Biotecnológica	UPIBI
2003370901	Sánchez Tapia Carlos	Ingeniería Telemática	UPIITA
2006630314	Vargas Martínez Blanca Elizabeth	Ingeniería Mecatrónica	UPIITA
2005451203	Guzmán Aviles Edgar Martín	Ingeniería en Informática	UPIICSA
2005461105	Lozada Rodríguez Aurora	Ingeniería en Informática	UPIICSA
2003350811	Valdespino Zamora Alberto	Licenciatura en Ciencias de la Informática	UPIICSA
2006641123	Reséndiz Zamora Carlos Alberto	Licenciatura en Física y Matemáticas	ESFM
2004441124	Reyes Cruz Julieta	Licenciatura en Física y Matemáticas	ESFM
2005450512	Merino Menéses Hugo David	Ingeniería en Sistemas Computacionales	ESCOM
2006620156	Luna Vera Marlén	Ingeniería en Sistemas Computacionales	ESCOM
2006610523	Ostria Vazquez Arturo	Ingeniería en Sistemas Computacionales	ESCOM
2003350618	Guzmán Rivera Marcela	Ingeniería en Computación	ESIME
2004421022	Arreguín Herrera Edgar	Ingeniería en Computación	ESIME
2005460307	Flores Cruz Mariana	Ingeniería en Comunicación y Electrónica	ESIME

Tabla 1.7: $Relaci\'{o}n\ Alumno$

Nombre	Nacionalidad	Institución
Date, C.J.	Americana	Relational Institute
Saltor, F.	Española	U.P.C.
Ceri, S	Italiana	Politénica de Milán

Tabla 1.8: Relación Autor

Nombre	Nacionalidad	Institución
Chen, P.	Americana	ER Institute
Yao, L.	Americana	U.N.Y.
Ceri, S	Italiana	Politénica de Milán

Tabla 1.9: Relación Editor

códigoSocio	nombreSocio	Dirección
1	Jorge Luis Rodríguez Vera	Av. México, 34
2	Yira Muñoz Sánchez	Av. Universidad, 455

Tabla 1.10: Relación Socio

Libro	Autor	Editorial
Modern Database Management	Mc Fadden, Fred	Addison-Wesley
An Introduction to Database Systems	C.J., Date	Addison-Wesley
Principles of Database Systems	J.D., Ullman	Computer Science Press

Tabla 1.11: Relación Libro

1.1.9 Ejercicios

```
Considerar las siguientes Relaciones:
Relación Hospital (ver Tabla 1.1).
Relación Guardia (ver Tabla 1.2).
Relación Personal (ver Tabla 1.3).
Relación Empleado (ver Tabla 1.4).
Relación Departamento (ver Tabla 1.5).
Relación Médico (ver Tabla 1.6).
Relación Alumno (ver Tabla 1.7).
Relación Autor (ver Tabla 1.8).
Relación Editor (ver Tabla1.9).
Relación Socio (ver Tabla1.10).
Relación Libro (ver Tabla1.11).
```

- 1. Queremos conocer qué Hospitales tienen más de 600 camas.
- 2. Determinar todas las tuplas de Hospitales, donde el código sea igual a 22.
- 3. Extraer las tuplas correspondientes de Guardias de maternidad o de terapia intensiva, que no son del Hospital 13 y que tengan entre 20 y 40 camas.
- 4. Mostrar una lista de los distintos cargos que existen en los hospitales.
- 5. Hacer una consulta que muestre el código y el nombre del Hospital.
- 6. Mostrar los nombres de los pediatras.
- 7. Mostrar los datos correspondientes del empleado Diana Soto.
- 8. Mostrar los datos de los empleados con sueldo $\geq 5,000$ que ingresaron en el 2005.
- 9. Obtener los nombres de los distintos departamentos.
- 10. Obtener el monto de los sueldos de los empleados.
- 11. Extraer el nombre de los empleados que ganan más de 10,000.
- 12. Obtener el sueldo y la fecha de ingreso del empleado Ruth Salas.
- 13. Extraer los nombres de los empleados que ganan más de 7,000 o que trabajan en el departamento con código A1.
- 14. Mostrar una lista de todos los nombres de los alumnos, excepto aquellos que estudian Ingeniería en Sistemas Computacionales .
- Visualizar los datos correspondientes de los alumnos, excepto aquellos que estudian en ESCOM.
- 16. Listar el número de hospital y el nombre de todo el personal médico y no médico.
- 17. Mostrar una lista de todo los los datos correspondientes de los autores y editores.

- 18. Determinar la diferencia entre Autor y Editor, visualizando la relación resultante.
- 19. Mostrar aquellas tuplas que se encuentras tanto en la relación autor como en editor.
- 20. Determinar el producto cartesiano entre las relaciones socio y libro, visualizando la relación resultante.
- 21. Queremos saber quienes son los Pediatras que trabajan en el Hospital General Balbuena.
- 22. Establecer la reunión entre Autor y Libro.
- 23. Listar todos los empleados y el nombre del departamento en que trabajan.

1.1.10 Solución a Ejercicios

- 1. Queremos conocer qué Hospitales tienen más de 600 camas. $\sigma_{NoCamas>600}(Hospital)$
- 2. Determinar todas las tuplas de Hospitales, donde el código sea igual a 22. $\sigma_{noHospital=22}(Hospital)$
- 3. Extraer las tuplas correspondientes de Guardias de maternidad o de terapia intensiva, que no son del Hospital 13 y que tengan entre 20 y 40 camas.

```
\sigma_{1\neq 13 \wedge (3="Maternidad" \vee 3="TerapiaIntensiva") \wedge (4\geq 20 \wedge 4\leq 40)}(Guardia)
```

Es válido usar el número de columna:

- (a) $1 \rightarrow noHospital$
- (b) $3 \rightarrow nombreServicio$
- (c) $4 \rightarrow NoCamas$
- 4. Mostrar una lista de los distintos cargos que existen en los hospitales. $\pi_{Cargo}(Personal)$
- 5. Hacer una consulta que muestre el código y el nombre del Hospital. $\pi_{noHospital,Nombre}(Hospital)$
- 6. Mostrar los nombres de los pediatras. $\pi_{nombreMedico}(\sigma_{especialidad="Pediatria"}(Medico))$
- 7. Mostrar los datos correspondientes del empleado Diana Soto. $\sigma_{nombre Empleado="Diana Soto"}(Empleado)$
- 8. Mostrar los datos de los empleados con sueldo \geq 5,000 que ingresaron en el 2005. $\sigma_{2\geq 5000\wedge 4\geq 0/01/2005\wedge 4\leq 31/12/2005}(Empleado)$
- 9. Obtener los nombres de los distintos departamentos. $\pi_{nombre Depto}(Departamento)$

10. Obtener el monto de los sueldos de los empleados.

 $\pi_{sueldo}(Empleado)$

11. Extraer el nombre de los empleados que ganan más de 10,000.

 $\pi_{nombreEmpleado}(\sigma_{sueldo>10,000}(Empleado))$

12. Obtener el sueldo y la fecha de ingreso del empleado Ruth Salas.

 $\pi_{sueldo,FechaIngreso}(\sigma_{nombreEmpleado="RuthSalas"}(Empleado))$

13. Extraer los nombres de los empleados que ganan más de 7,000 o que trabajan en el departamento con código A1.

 $\pi_{nombreEmpleado}(\sigma_{sueldo>7,000}(Empleado)) \cup \sigma_{codigoDepto="A1"}(Empleado)$

14. Mostrar una lista de todos los nombres de los alumnos, excepto aquellos que estudian Ingeniería en Sistemas Computacionales .

 $\pi_{nombreAlumno}(Alumno) - \pi_{nombreAlumno}(\sigma_{carrera="IngenieriaenSistemasComputacionales"}(Alumno))$

15. Visualizar los datos correspondientes de los alumnos, excepto aquellos que estudian en ESCOM.

 $\sigma_{Escuela \neq "ESCOM"}(Alumno)$

16. Listar el número de hospital y el nombre de todo el personal médico y no médico. $\pi_{noHospital,nombreMedico}(Medico) \cup \pi_{noHospital,nombrePersonal}(Personal)$

- 17. Mostrar una lista de todo los los datos correspondientes de los autores y editores. $Autor \cup Editor$
- 18. Determinar la diferencia entre Autor y Editor, visualizando la relación resultante. Autor-Editor
- 19. Mostrar aquellas tuplas que se encuentras tanto en la relación autor como en editor. $Autor \cap Editor$

En términos de diferencias queda:

Autor - (Autor - Editor)

20. Determinar el producto cartesiano entre las relaciones socio y libro, visualizando la relación resultante.

 $Socio \times Libro$

21. Queremos saber quienes son los Pediatras que trabajan en el Hospital General Balbuena.

 $\pi_6(\sigma_{1=4\land 2="HospitalGeneralBalbuena"\land 7="Pediatria"}(Hospital\times Medico))$

22. Establecer la reunión entre Autor y Libro.

 $Hospital \mid \times \mid (\sigma_{Autor.Nombre=Libro.Autor}) Libro$

En términos de Selección queda:

 $\sigma_{Autor.Nombre=Libro.Autor}(Autor \times Libro)$

23. Listar todos los empleados y el nombre del departamento en que trabajan.

 $\pi_{Empleado.nombreEmpleado,Departamento.nombreDepto}(Empleado \mid \times \mid (\sigma_{Empleado.3=Departamento.2})Departamento)$