Supplemental material: How many faces can it recognize? Performance extrapolation for multi-class classification

Charles Zheng, Rakesh Achanta and Yuval Benjamini

1 Proofs

Theorem 3.1. Let Q be a single-distribution classification function, and let \mathbb{F} , $\hat{\mathbb{F}}(F)$ be a distribution on $\mathcal{P}(\mathcal{Y})$. Further assume that $\hat{\mathbb{F}}$ and Q jointly satisfy the tie-breaking property:

$$\Pr[\mathcal{Q}(\hat{F}, y) = \mathcal{Q}(\hat{F}', y)] = 0 \tag{1}$$

for all $y \in \mathcal{Y}$, where $\hat{F}, \hat{F}' \stackrel{iid}{\sim} \hat{\mathbb{F}}$. Let U be defined as the random variable $U = u(\hat{F}, Y)$ for $F \sim \mathbb{F}$, $Y \sim F$, and $\hat{F} \sim \hat{\mathbb{F}}(F)$ with $Y \perp \hat{F}$. Then

$$p_k = \mathbf{E}[U^{k-1}],$$

where p_k is the expected accuracy as defined by (??).

Proof. Write $q^{(i)}(y) = \mathcal{Q}(\hat{F}_i, y)$. By using conditioning and conditional

independence, p_k can be written

$$p_{k} = \mathbf{E} \left[\frac{1}{k} \sum_{i=1}^{k} \Pr_{F_{i}}[q^{(i)}(Y) > \max_{j \neq i} q^{(j)}(Y)] \right]$$

$$= \mathbf{E} \left[\Pr_{F_{1}}[q^{(1)}(Y) > \max_{j \neq 1} q^{(j)}(Y)] \right]$$

$$= \mathbf{E}_{F_{1}}[\Pr[q^{(1)}(Y) > \max_{j \neq 1} q^{(j)}(Y) | \hat{F}_{1}, Y]]$$

$$= \mathbf{E}_{F_{1}}[\Pr[\cap_{j>1}q^{(1)}(Y) > q^{(j)}(Y) | \hat{F}_{1}, Y]]$$

$$= \mathbf{E}_{F_{1}}[\prod_{j>1} \Pr[q^{(1)}(Y) > q^{(j)}(Y) | \hat{F}_{1}, Y]]$$

$$= \mathbf{E}_{F_{1}}[\Pr[q^{(1)}(Y) > q^{(2)}(Y) | \hat{F}_{1}, Y]^{k-1}]$$

$$= \mathbf{E}_{F_{1}}[u(\hat{F}_{1}, Y)^{k-1}] = \mathbf{E}[U^{k-1}].$$