Problem Set 3

Mark Xavier (xaviem01)

April 2, 2019

1. Constraint 1: Any set $W_i \in W$ where W_i is also in Y, the union of all such W_i should include any atom of U exactly once. In other words, $\forall a \in U$, if $a \in Y$ then it is only in Y once. In the example given, we cannot have $Y = \{a, d, f, h\}, \{b, d, f, h\}$ as f and h are in Y twice.

Constraint 2: For the problem to actually be satisfiable, the union of all sets $W_i \in W$ must include every $a \in U$ at least once. If this constraint is not met, the problem is unsatisfiable as no collection of W_i will include every atom in S. If, in the example given, W did not include a single W_i that included a, the problem would be unsolvable.

Constraint 3: $\forall W_i \in W, j \in W_i \Leftrightarrow j \in U$ - this is given via the problem prompt but is an additional constraint.

Constraint 4: This follows from constraint one, however Y may not include any $W_i \in W$ more than once, so Y cannot include $\{a, d, f, h\}$ twice.

2. Problem 2:

- (a) Parent(Anne, Ted)
- (b) $\forall_{x,y} \; \mathtt{Parent}(\mathtt{x},\mathtt{y}) \Rightarrow \mathtt{Earlier}(\mathtt{Birth}(\mathtt{p}),\mathtt{Birth}(\mathtt{q}))$
- $(c) \ \forall_{p,q}, \mathtt{Living}(\mathtt{p},\mathtt{t}) \Leftrightarrow \mathtt{Earlier}(\mathtt{Birth}(\mathtt{p}),\mathtt{t}) \land \mathtt{Earlier}(\mathtt{t},\mathtt{Death}(\mathtt{p}))$
- (d) $\forall_{ta,tb}$ Earlier(ta,tb) $\Rightarrow \neg$ Earlier(tb,ta) (I use implies instead of iff to account for the case where ta == tb)
- (e) $\forall_{ta,tb,tc}$ Earlier(ta,tb) \land Earlier(tb,tc) \Rightarrow Earlier(ta,tc)
- (f) $\forall_p \exists_t \text{ s.t.Living}(p,t)$
- $(g) \ \neg \texttt{Living}(\texttt{Ted}, \texttt{Born}(\texttt{Anne}))$
- (h) $\forall_p \; \texttt{Earlier}(\texttt{Born}(p), \texttt{Death}(p))$
- 3. After conversion to CNF, we are left with the following clauses:
 - a. Parent(Anne, Ted)
 - b. $\neg Parent(x, y) \vee Earlier(Birth(x), Birth(y))$
 - c1. \neg Living(p,t) \lor Earlier(Birth(p),t)
 - c2. \neg Living(p,t) \lor Earlier(t, Death(p))
 - c3. $\neg Earlier(Birth(p), t) \lor \neg Earlier(t, Death(p)) \lor Living(p, t)$
 - d. $\neg Earlier(ta, tb) \lor \neg Earlier(tb, ta)$
 - S: Living(Ted, Born(Anne)) this is our negated assumption to prove.

The resolutions done follow below:

ID	Clauses	Substitution	Resolution
r1	a, b	$\{x \to Anne, y \to Ted\}$	E(B(Anne), B(Ted))
r2	r1, d	$\{ta \rightarrow B(Anne), tb \rightarrow B(Ted)\}$	$\neg \texttt{E}(\texttt{B}(\texttt{Ted}), \texttt{B}(\texttt{Anne}))$
r3	r2, c1	$\{p \to Ted, t \to B(Anne)\}$	$\neg L(\mathtt{Ted},\mathtt{B}(\mathtt{Anne}))$
sol	r3, S	N/A	negation

And we prove by contradiction that S cannot be true.

- 4. After conversion to CNF, we are left with the following clauses:
 - $c1. \ \neg \texttt{Living}(p, t) \lor \texttt{Earlier}(\texttt{Birth}(p), t)$
 - c2. $\neg Living(p, t) \lor Earlier(t, Death(p))$
 - c3. $\neg \text{Earlier}(\text{Birth}(p), t) \lor \neg \text{Earlier}(t, \text{Death}(p)) \lor \text{Living}(p, t)$
 - e. $\neg \text{Earlier}(\text{ta}, \text{tb}) \lor \neg \text{Earlier}(\text{tb}, \text{tc}) \lor \text{Earlier}(\text{ta}, \text{tc})$
 - f. Living $(p, \lambda(p))$
 - S. $\neg Earlier(Born(p), Death(p))$ this is our negated assumption to prove.

Again, the resolutions follow:

ID	Clauses	Substitution	Resolution
r1	c1, f	$\lambda(p) \to t$	$\mathtt{E}(\mathtt{B}(\mathtt{p}),\mathtt{t})$
r2	c2, f	$\lambda(p) \to t$	$\mathtt{E}(\mathtt{t},\mathtt{D}(\mathtt{p}))$
r3	r1, e	$\mathtt{ta} o \mathtt{B}(\mathtt{p}), \mathtt{tb} o \mathtt{t}$	$\neg \texttt{E}(\texttt{t},\texttt{tc}) \lor \texttt{E}(\texttt{B}(\texttt{p}),\texttt{tc})$
r4	r2, r3	$\mathtt{tc} o \mathtt{D}(\mathtt{p})$	E(B(p),D(P))
sol	r4, S	N/A	negation

Hence we prove by contradiction that S is not true.