Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Высшая школа прикладной математики и вычислительно физики

Вычислительные комплексы

Лабораторная работа №4

Работу выполнил: Колесник Виктор Группа: 3630102/70201 Преподаватель: к.ф.-м.н., доцент Баженов Александр

Николаевич

 ${
m Cankt-}\Pi{
m erepfypr}$ 2020

Содержание

1.	Постановка задачи	4
	1.1. Конкретизация задачи	4
2.	Решение	4
	2.1. Регуляризация ИСЛАУ	4
	2.2. Регуляризация заданной ИСЛАУ	5
3.	Результаты	Ę
	3.1. Полученные результаты	Ę
	3.2. Ограничения на x_2	
	3.3. Ограничения на x_3	
	3.4. Ограничения на x_2 и x_3	
	3.5. Анализ	
4.	Приложение	ç

Список иллюстраций

3.1.	Зависимость от ограничений на x_2 при решении Simplex-методом	6
3.2.	Зависимость от ограничений на x_2 при решении Interior-point-методом	7
3.3.	Зависимость от ограничений на x_3 при решении Simplex-методом	7
3.4.	Зависимость от ограничений на x_3 при решении Interior-point-методом	8
3.5.	Зависимость от ограничений на x_2 и x_3 при решении Simplex-методом	8
3.6	Зависимость от ограничений на x_2 и x_2 при решении Interior-point-метолом	g

1. Постановка задачи

Требуется решить ИСЛАУ с применением аппарата линейного программирования для проведения регуляризации рассматриваемой системы.

1.1. Конкретизация задачи

Дана ИСЛАУ с точечной матрицей A и интервальной правой частью \mathbf{b} :

$$A = \begin{pmatrix} 3 & 3 & 9 \\ 5 & 2 & 6 \\ 4 & 2 & 6 \end{pmatrix} \tag{1}$$

$$\mathbf{b} = \begin{pmatrix} [0,1] \\ [-2,0] \\ [4,6] \end{pmatrix} \tag{2}$$

С помощью распознающего функционала Tol(x) можно убедиться, что у системы нет решений. Используя функцию tolsolvty были найдены максимум распознающего функционала и значение аргумента, в котором он достигался:

$$\max \text{Tol} = -2 \tag{3}$$

$$\arg\max \text{Tol} = \begin{pmatrix} 7.3788 * 10^{-8} \\ 0.1 \\ 0.3 \end{pmatrix} \tag{4}$$

Так как max Tol < 0, допусковое множество ИСЛАУ пусто.

2. Решение

2.1. Регуляризация ИСЛАУ

Проведем l_1 -регуляризацию для получения решения. Изменим радиусы компонент вектора **b** их поэлементным домножением на вектор масштабирующих множителей w:

$$\mathbf{b} = \begin{pmatrix} [\operatorname{mid}b_1 - \operatorname{rad}b_1; \operatorname{mid}b_1 + \operatorname{rad}b_1] \\ [\operatorname{mid}b_2 - \operatorname{rad}b_2; \operatorname{mid}b_2 + \operatorname{rad}b_2] \\ [\operatorname{mid}b_3 - \operatorname{rad}b_3; \operatorname{mid}b_3 + \operatorname{rad}b_3] \end{pmatrix} \rightarrow \tilde{\mathbf{b}} = \begin{pmatrix} [\operatorname{mid}b_1 - w_1\operatorname{rad}b_1; \operatorname{mid}b_1 + w_1\operatorname{rad}b_1] \\ [\operatorname{mid}b_2 - w_2\operatorname{rad}b_2; \operatorname{mid}b_2 + w_2\operatorname{rad}b_2] \\ [\operatorname{mid}b_3 - w_3\operatorname{rad}b_3; \operatorname{mid}b_3 + w_3\operatorname{rad}b_3] \end{pmatrix}$$
(5)

При этом масштабирующие множители подбираются так, чтобы регуляризованная ИС-ЛАУ $Ax = \mathbf{b}$ стала разрешимой, а сумма этих множителей $\sum w_i$ была минимально возможной.

Накладывая на масштабирующие множители естественное требование их неотрица-

тельности, и введя вектор $u = \begin{pmatrix} x \\ w \end{pmatrix}$, можно записать полученную задачу в виде:

$$\begin{cases} cu = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ w_1 \\ w_2 \\ w_3 \end{pmatrix} \to \min \\ u_{4,5,6} \ge 0 \\ Cu \le r, \text{ где } C = \begin{pmatrix} -A & -\text{diag}(\text{rad}\mathbf{b}) \\ A & -\text{diag}(\text{rad}\mathbf{b}) \end{pmatrix}, r = \begin{pmatrix} -\text{mid}\mathbf{b} \\ \text{mid}\mathbf{b} \end{pmatrix} \end{cases}$$
(6)

Полученная задача является задачей линейного программирования. В результате решения определяются одновременно необходимые масштабирующие множители и соответствующее им появившееся в результате регуляризации решение ИСЛАУ.

2.2. Регуляризация заданной ИСЛАУ

Для конкретной ИСЛАУ получим следующие вектор и матрицу для задачи линейного программирования:

$$r = \begin{pmatrix} -0.5 \\ -1 \\ -5 \\ 0.5 \\ 1 \\ 5 \end{pmatrix} \tag{7}$$

$$C = \begin{pmatrix} -3 & -3 & -9 & -0.5 & 0 & 0 \\ -5 & -2 & -6 & 0 & -1 & 0 \\ -4 & -2 & -6 & 0 & 0 & -1 \\ 3 & 3 & 9 & -0.5 & 0 & 0 \\ 5 & 2 & 6 & 0 & -1 & 0 \\ 4 & 2 & 6 & 0 & 0 & -1 \end{pmatrix}$$

$$(8)$$

3. Результаты

3.1. Полученные результаты

Воспользуемся двумя методами решения задач линейного программирования: simplex и interior-point. Получим следующие результаты:

• Simplex-метод

$$x \approx \begin{pmatrix} -0.4444 \\ 0 \\ 0.2037 \end{pmatrix}, w \approx \begin{pmatrix} 0 \\ 0 \\ 5.5555 \end{pmatrix}, \min cu = 5.5555$$
 (9)

• Interior-point-метод

$$x \approx \begin{pmatrix} -0.4444\\ 0.0608\\ 0.1834 \end{pmatrix}, w \approx \begin{pmatrix} 0\\0\\5.5555 \end{pmatrix}, \min cu = 5.5555$$
 (10)

Из результатов видно, что первая координата имеет одинаковое значение при решении обоими методами. Кроме того, соответствующий масштабирующий множитель равен нулю. Проверим, что решения с $x_1 = -0.4444$ оптимальны и устойчивы. Для этого зададим ограничение $x_1 \geq -0.4444 + 0.0001 = -0.4443$. Получим следующие результаты:

• Simplex-метод

$$x \approx \begin{pmatrix} -0.4443 \\ 0 \\ 0.2036 \end{pmatrix}, w \approx \begin{pmatrix} 0 \\ 0.0003 \\ 5.5555 \end{pmatrix}, \min cu = 5.5556$$
 (11)

• Interior-point-метод

$$x \approx \begin{pmatrix} -0.4443 \\ 0.0609 \\ 0.1833 \end{pmatrix}, w \approx \begin{pmatrix} 0 \\ 0.0003 \\ 5.5555 \end{pmatrix}, \min cu = 5.5556$$
 (12)

Значение суммы масштабирующих коэффициентов стало больше, чем соответствующее значение при решении задачи без ограничения на x_1 . Значит, решения с $x_1 = -0.4444$ являются оптимальными и устойчивыми.

3.2. Ограничения на x_2

Если позволить x_1 принимать значение -0.4444, то одинаково хорошие решения с точки зрения суммы масштабирующих коэффициентов можно получить при любых ограничениях на одну из координат x_2 или x_3 . Попробуем ограничивать значение x_2 интервалами шириной 0.2: $x_2 = [x_{2\min}; x_{2\min} + 0.2]$. Посмотрим на зависимость других координат решения, соответствующего масштабирующего коэффициента и целевой функции от выбора ограничения на x_2 . Результаты представлены на графиках для 2 методов решения задачи ЛП.

Рисунок 3.1. Зависимость от ограничений на x_2 при решении Simplex-методом

Рисунок 3.2. Зависимость от ограничений на x_2 при решении Interior-point-методом

Из графиков видно, что значение целевой функции не меняется, а координата x_3 зависит от ограничений на x_2 линейно.

3.3. Ограничения на x_3

Аналогично предыдущему пункту будем ограничивать координату x_3 интервалом ширины 0.2. Посмотрим на зависимость других координат решения, соответствующего масштабирующего коэффициента и целевой функции. Результаты представлены на графиках для 2 методов решения задачи ЛП.

Рисунок 3.3. Зависимость от ограничений на x_3 при решении Simplex-методом

Рисунок 3.4. Зависимость от ограничений на x_3 при решении Interior-point-методом

Из графиков видно, что значение целевой функции не меняется, а координата x_2 зависит от ограничений на x_3 линейно.

3.4. Ограничения на x_2 и x_3

Теперь попробуем наложить ограничения на x_2 и x_3 одновременно. Иначе говоря, $x_2=[x_{2,3\,\mathrm{min}},x_{2,3\,\mathrm{min}}+0.2]$ и $x_3=[x_{2,3\,\mathrm{min}},x_{2,3\,\mathrm{min}}+0.2]$. Посмотрим, как будут зависеть координата x_1 и целевая функция.

Рисунок 3.5. Зависимость от ограничений на x_2 и x_3 при решении Simplex-методом

Рисунок 3.6. Зависимость от ограничений на x_2 и x_3 при решении Interior-point-методом

Из графиков видно, что минимум целевой функции 5.5555 достигается только тогда, когда x_2 и x_3 находятся примерно на отрезке [0.1, 0.2].

3.5. Анализ

Таким образом, можно сделать вывод, что множество одинаково хороших решений задачи ЛП соответствует фиксированному значению $x_1 = -0.4444$, и целой полосе возможных значений в осях $x_2(x_3)$ или $x_3(x_2)$.

4. Приложение

Код программы на Python лежит в данном репозитории:

https://github.com/PinkOink/Interval_Analysis/tree/main/lab4

Реализация функции tolsolvty на Python: https://github.com/MaximSmolskiy/tolsolvty