VEKTORIANALYYSI I

2018, Laskuharjoitukset 3

- 1. Oletetaan, että funtiolla $g:\mathbb{R}\to\mathbb{R}$ on kaksi jatkuvaa derivaattaa. Laske suraavien funktioiden ensimmäiset ja toisen kertaluvun soittaisderivaatat
 - (a) $h(u,v) = g(uv^2 + 1)$,
 - (b) h(u, v) = g(u v).
- 2. Laske funktion $f: \mathbb{R}^n \to \mathbb{R}$

$$f\left(x\right) = \left\|x\right\|^{\alpha}$$

osittaisderivaatat origon ulkopuolella, kun $\alpha \in \mathbb{R}$. Millä vakion α arvoilla osittaisderivaat ovat olemassa myös origossa?

3. Olkoon $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = 2 - x^2 + 3y^2$$

Määritä funktion f graafin tangenttitason yhtälö pisteess (2,1). Selitä, miksi se on tangenttitaso. Havainnollista kuvalla.

4. Olkoon $T:\mathbb{R}^n \to \mathbb{R}$ lineaarikuvaus ja $A:\mathbb{R}^n \to \mathbb{R}$ kuvaus

$$A\left(x\right) =Tx+c$$

missä c on reaalinen vakio. Osoita, että kuvauksen A sunnattu derivaatta yksikkövektorin $e \in \mathbb{R}^n$ suuntaan on

$$\partial_e A(x) = Te$$
.

5. Olkoon $f: \mathbb{R}^3 \to \mathbb{R}$

$$f(x, y, z) = x^2 + xy^2z^2 + z.$$

Laske funktion gradienttivektori pisteessä (x, y, z).