

Probability and Stochastic Processes

Lecture 02: Countable Sets, Uncountable Sets

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

01 August 2025

Countability

- A set A is said to be finite if A is empty or $|A|=|\{1,\ldots,n\}|=n$ for some $n\in\mathbb{N}$
- A set A is said to be countably infinite if $|A|=|\mathbb{N}|$, where $\mathbb{N}=\{1,2,\ldots\}$ denotes the set of natural numbers
- A set A is countable if either $|A| < +\infty$ or $|A| = |\mathbb{N}|$

Remark

If *A* is countably infinite, then its elements may be listed as $A = \{a_1, a_2, \ldots\}$.

Examples of Countable Sets

- Set of odd natural numbers, set of even natural numbers
- Set of integers, $\mathbb{Z} = \{0, +1, -1, +2, -2, \ldots\}$
- Set of prime numbers
- Set of rational numbers, $\mathbb Q$

(1) is Countable - Proof

Step 1: $\mathbb{Q} \cap [0, 1]$ is countable. Indeed, we have

$$\mathbb{Q}\cap[0,1]=\bigg\{0,1,\frac{1}{2},\frac{1}{3},\frac{2}{3},\frac{1}{4},\frac{3}{4},\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5},\frac{1}{6},\frac{5}{6},\dots\bigg\}.$$

Q is Countable - Proof

Step 1: $\mathbb{Q} \cap [0, 1]$ is countable. Indeed, we have

$$\mathbb{Q} \cap [0,1] = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \dots\right\}.$$

Step 2: "Countable union of countable sets is countable."

Lemma

If A_1, A_2, \ldots is a collection of countable sets, then their union is countable.

(1) is Countable - Proof

Step 1: $\mathbb{Q} \cap [0, 1]$ is countable. Indeed, we have

$$\mathbb{Q} \cap [0,1] = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \dots\right\}.$$

Step 2: "Countable union of countable sets is countable."

Lemma

If A_1, A_2, \ldots is a collection of countable sets, then their union is countable.

Step 3: Use above lemma in conjunction with

$$\mathbb{Q} = \mathbb{Q} \cap \left(\bigcup_{i \in \mathbb{Z}} [i,i+1] \right) = \bigcup_{i \in \mathbb{Z}} \mathbb{Q} \cap [i,i+1].$$

Proof of Lemma - 1

Lemma (Countable Union of Countable Sets is Countable)

If A_1, A_2, \ldots is a countably infinite collection of countable sets, then their union is countable.

- Let $A=A_1\cup A_2\cup \cdots$; we want to prove that A is countable (i.e., finite or countably infinite)
- Fix any $n \in \mathbb{N}$. Because A_n is countable, there exists an injection

$$f_n:A_n o \mathbb{N}.$$

ullet For any $a\in A$, let $f:A o \mathbb{N} imes \mathbb{N}$ be defined as

$$f(a) = (n_a, f_{n_a}(a)),$$

where $n_a = \min\{n \in \mathbb{N} : a \in A_n\}$

Proof of Lemma - 2

• Claim: f is an injection. Indeed, for any $a, b \in A$,

$$egin{aligned} f(a) = f(b) & \Longrightarrow & (n_a, f_{n_a}(a)) = (n_b, f_{n_b}(b)) \ & \Longrightarrow & n_a = n_b = n ext{ (say)}, \qquad a, b \in A_n, \qquad f_n(a) = f_n(b) \ & \Longrightarrow & a = b \qquad ext{ (because f_n is injective)} \end{aligned}$$

- Homework: $\mathbb{N} \times \mathbb{N}$ is countably infinite
- Putting the pieces together,

 $f:A \to \mathbb{N} \times \mathbb{N}$ injective, $\mathbb{N} \times \mathbb{N}$ countably infinite \Longrightarrow A is countable.

Uncountable Sets

Definition (uncountable sets)

A set *A* is said to be uncountable if it is not countable, i.e., if $|A| > |\mathbb{N}|$.

Some examples of uncountable sets:

- Set of all countably infinite length binary strings, denoted commonly as $\{0,1\}^{\mathbb{N}}$
- Unit interval, [0, 1]
- Set of all real numbers, R
- Set of all irrational numbers, $\mathbb{R} \setminus \mathbb{Q}$
- Power set of \mathbb{N} (collection of all subsets of \mathbb{N}), denoted $2^{\mathbb{N}}$

Suffices to show that there exists an injective map but no bijective map from \mathbb{N} to $\{0,1\}^{\mathbb{N}}$.

Suffices to show that there exists an injective map but no bijective map from $\mathbb N$ to $\{0,1\}^{\mathbb N}$. Injective map: Define $f:\mathbb N\to\{0,1\}^{\mathbb N}$ by

f(n) = infinite binary string with '1' in the n th index.

Suffices to show that there exists an injective map but no bijective map from $\mathbb N$ to $\{0,1\}^{\mathbb N}$. Injective map: Define $f:\mathbb N\to\{0,1\}^{\mathbb N}$ by

f(n) = infinite binary string with '1' in the n th index.

No bijective map: Suppose there exists a bijective map $g:\mathbb{N} o \{0,1\}^{\mathbb{N}}$. Let

$$g: n \mapsto a_{n1} a_{n2} a_{n3} \cdots,$$

where $a_{nj} \in \{0, 1\}$ for all n, j.

Suffices to show that there exists an injective map but no bijective map from $\mathbb N$ to $\{0,1\}^{\mathbb N}$. Injective map: Define $f:\mathbb N\to\{0,1\}^{\mathbb N}$ by

f(n) = infinite binary string with '1' in the n th index.

No bijective map: Suppose there exists a bijective map $g:\mathbb{N} o \{0,1\}^{\mathbb{N}}$. Let

$$g: n \mapsto a_{n1} a_{n2} a_{n3} \cdots,$$

where $a_{nj} \in \{0, 1\}$ for all n, j.

Cantor's diagonalization argument: Consider the binary string

$$b = \bar{a}_{11} \, \bar{a}_{22} \, \bar{a}_{33} \cdots$$

where $\bar{a}_{jj}=1-a_{jj}$ for all $j\in\mathbb{N}$. Then, $\nexists\,n\in\mathbb{N}$ such that g(n)=b. Thus, g is not a bijection.

$\left[0,1\right]$ is Uncountable - Proof

[0, 1] is Uncountable - Proof

Let

$$\mathcal{D}=\left\{d_1=rac{1}{2},d_2=rac{1}{4},d_3=rac{3}{4},d_4=rac{1}{8},\dots
ight\} \ - \ ext{set of dyadic rational numbers}$$

Define $g:\{0,1\}^{\mathbb{N}} \to [0,1]$ as

$$g:b=(b_1\,b_2\,\cdots)\mapsto egin{cases} \sum_{k=1}^\inftyrac{b_k}{2^k},&b
otin\mathcal{D},\ d_1,&b=(100\,\cdots)\ d_2,&b=(011\,\cdots)\ d_3,&b=(0100\,\cdots)\ d_4,&b=(0011\,\cdots)\ dots \end{cases}$$

[0, 1] is Uncountable - Proof

Let

$$\mathcal{D} = \left\{d_1 = \frac{1}{2}, d_2 = \frac{1}{4}, d_3 = \frac{3}{4}, d_4 = \frac{1}{8}, \dots\right\} \ - \ \text{set of } \frac{\text{dyadic}}{\text{dyadic}} \text{ rational numbers}$$

Define $g:\{0,1\}^{\mathbb{N}} \to [0,1]$ as

$$g:b=(b_1\,b_2\,\cdots)\mapsto egin{cases} \sum_{k=1}^\inftyrac{b_k}{2^k},&b
otin\mathcal{D},\ d_1,&b=(100\,\cdots)\ d_2,&b=(011\,\cdots)\ d_3,&b=(0100\,\cdots)\ d_4,&b=(0011\,\cdots) \end{cases}$$

Claim: g is a bijection!

Examples of Uncountable Sets

- [0, 1]
- $2^{\mathbb{N}}$ = power set of \mathbb{N} (exercise)
- \mathbb{R} : the set of real numbers. Hint: consider the function $f:[0,1] \to \mathbb{R}$ defined via

$$f(x) = \tan\left(\pi x - \frac{\pi}{2}\right), \quad x \in [0, 1].$$

• $\mathbb{R} \setminus \mathbb{Q}$: the set of irrational numbers. Hint: write \mathbb{R} as

$$\mathbb{R} = (\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Q}.$$

Cantor set