### Aula 5

2024-09-26

## Ciclo Trigonométrico

- Circunferência (linha):  $C=2\pi r$  (unidades de comprimento)
- Círculo (área):  $A_0=\pi r^2$  (unidades de área)

Seja uma circunferência com centro na origem. Para cada ponto P da circunferência existe um ângulo  $\theta$  associado a essa posição. Vejamos como é a representação no plano cartesiano.



Uma volta completa é igual a  $2\pi$  rad. Logo, cada quadrante de um círculo cujo centro está em C(0,0) será equivalente a  $\frac{2\pi}{4}=\frac{\pi}{2}$ .

$$C = 2\pi r \cong 2 \cdot 3., 14r = 6, 28r$$

Isso significa que, em toda circunferência, cabem 6, 28 raios, formando o comprimento total.

Um radiano é o comprimento ao longo da circunferência equivalente a um raio.

$$0^{\circ} \equiv 0 \text{ rad} \equiv 2\pi \text{ rad}$$
 $90^{\circ} \equiv \frac{\pi}{2} \text{ rad}$ 
 $\pi \text{ rad} \equiv 180^{\circ}$ 
 $270^{\circ} \equiv \frac{3\pi}{2} \text{ rad}$ 



$$\cos \theta = \frac{\text{ca}}{\text{hip}} = \frac{x}{1} \Rightarrow x = \cos \theta$$
  
 $\sin \theta = \frac{\text{co}}{\text{hip}} = \frac{y}{1} \Rightarrow y = \sin \theta$ 

# Tabela de seno, cosseno e tangente

| $	heta(\circ)$ | $	heta(\mathrm{rad})$ | $\frac{y}{\sin \theta}$ | $\frac{x}{\cos \theta}$ | $\operatorname{tg} \theta = \frac{\sin \theta}{\cos \theta}$ |
|----------------|-----------------------|-------------------------|-------------------------|--------------------------------------------------------------|
| 0°             | 0                     | 0                       | 1                       | 0                                                            |
| 30°            | $\frac{\pi}{6}$       | $\frac{1}{2}$           | $\frac{\sqrt{3}}{2}$    | $\frac{\sqrt{3}}{3}$                                         |
| 45°            | $rac{\pi}{4}$        | $\frac{\sqrt{2}}{2}$    | $\frac{\sqrt{2}}{2}$    | 1                                                            |
| 60°            | $\frac{\pi}{3}$       | $\frac{\sqrt{3}}{2}$    | $\frac{1}{2}$           | $\sqrt{3}$                                                   |
| 90°            | $\frac{\pi}{2}$       | 1                       | 0                       | Não existe ∄                                                 |
| 120°           | $\frac{2\pi}{3}$      | $\frac{\sqrt{3}}{2}$    | $\frac{-1}{2}$          | $-\sqrt{3}$                                                  |
| 135°           | $\frac{3\pi}{4}$      | $\frac{\sqrt{2}}{2}$    | $\frac{-\sqrt{2}}{2}$   | -1                                                           |
| 150°           | $\frac{5\pi}{6}$      | $\frac{1}{2}$           | $\frac{-\sqrt{3}}{2}$   | $\frac{-\sqrt{3}}{3}$                                        |

Para  $\theta = 30^{\circ}$ :

$$h^{2} = c_{1}^{2} + c_{2}^{2}$$

$$1^{2} = \left(\frac{1}{2}\right)^{2} + x^{2}$$

$$1 = \frac{1}{4} + x^{2}$$

$$1 = -\frac{1}{4}$$

$$x^{2} = 1\frac{-1}{4}$$

$$x^{2} = \frac{3}{4} \Rightarrow x = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

Para 
$$\theta = 45^{\circ} = \frac{\pi}{4}$$
 rad:

Será formado pelo conjunto de dois triângulos com ângulos de  $45^{\circ}$  um triângulo com um ângulo de  $90d^{\circ}$ , onde se poderá obter a diagonal pelo teorema de Pitágoras:

$$d^{2} = l^{2} + l^{2}$$

$$d^{2} = 2l^{2}$$

$$d = \sqrt{2l^{2}}$$

$$d = l\sqrt{2}$$

## Funções Trigonométricas

#### Função Seno

Seja  $f: \mathbb{R} \to [-1,1]$ , uma função y=f(x) tal que  $y=\sin(x)$ . Vamos construir o gráfico da função com base no ciclo trigonométrico.

Note que, neste caso, x faz o papel do ângulo ou do argumento.



#### Exemplo 1

$$y = 4\sin(x)$$



O período da função P é quanto a função leva para repetir seu comportamento após atravessar seu ponto máximo e mínimo e voltar ao valor inicial. Para este exemplo,  $P=2\pi$ .

A amplitude A é quanto a função muda em relação ao seus pontos extremos e pode ser obtida por  $A=\frac{\max-\min}{2}$  ou olhando para o termo que multiplica  $\sin x$ . Para este exemplo,  $A=\frac{4-4}{2}=\frac{8}{2}=4$ .

#### Exemplo 2

$$y = -2\sin x + 3$$

$$I = [-1,1] \times (-2)$$
 
$$[-2,2] + 3 \text{ (sempre o menor à esquerda)}$$
 
$$I_* = [1,5]$$



#### Exemplo 3

 $y = \sin(2x)$ 

$$\frac{2\pi}{4} = \frac{\pi}{2}$$

$$P = \frac{2\pi}{|2|} = \frac{2\pi}{2} = \pi$$



Quando um valor multiplica x, isso altera a velocidade da função.

#### Alterando a frequência

Antes de visualizarmos um caso concreto, vamos entender como é a representação geral da função seno.

$$y = A \cdot \sin(bx + c) + d$$

A = amplitude

d = deslocamento vertical

 $b={\rm altera}$ a frequência

$$f = \frac{1}{p} \; ; \; p = \frac{2\pi}{|b|}$$

#### Função cosseno

Seja  $f: \mathbb{R} \to [-1,1]$  uma função y=f(x), com  $y=\cos(x)$ . A representação gráfica é dada abaixo.

