\mathbf{Test}	\mathbf{n}°	9	(durée	:	30	mn))
-----------------	----------------------	---	--------	---	----	-----	---

NOM:

Question de cours

Soient
$$f: U_{\text{ouvert de }\mathbb{R}^p} \longrightarrow \mathbb{R}^q$$
 et $g: V_{\text{ouvert de }\mathbb{R}^q \atop \text{contenant } f(U)} \longrightarrow \mathbb{R}^r$ deux applications différentiables.

Écrire la formule qui exprime $d(g \circ f)$ à l'aide de dg et de df.

Exercices

1) Soit $f \colon \mathbb{R}^2 \to \mathbb{R}$ l'application définie par :

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

a) Montrer que f est continue en (0,0).

c) Montrer que f n'est pas	différentiable en $(0,0)$.	

b) Montrer que les dérivées partielles de f en (0,0) existent et les calculer.

2) Soit k un entier naturel. On dit qu'une application $f: \mathbb{R}^n \to \mathbb{R}^m$ est homogène de degré k si :

 $(*) \qquad \forall x \in \mathbb{R}^n \quad \forall t \in \mathbb{R} \qquad f(tx) = t^k f(x).$

- Soit f une telle application, qu'on suppose de plus différentiable sur \mathbb{R}^n .
- a) Montrer que pour tout $x \in \mathbb{R}^n$, on a : $(\mathrm{d}f)(x) \cdot x = kf(x)$ (on pourra, par exemple, dériver par rapport à t l'égalité (*) ou penser à la dérivé partielle dans la direction d'un vecteur).

b) Montrer que pour tout $x \in \mathbb{R}^n$ et pour tout $t \in \mathbb{R} \setminus \{0\}$ on a : $(df)(tx) = t^{k-1}(df)(x)$.