에너지 하베스팅 시뮬레이션

목 차

OI 프로젝트소개 - 분석 배경 및 목적

02 분석과정 - 데이터 정의 및 활용기법

03 결론 및 기대효과 - 해외사례 및 미래전망

I프로젝트 소개

분석 배경 및 목적

I. 프로젝트 소개

왜 이런 주제를 택하게 되었는지 ?

우리나라 국민의 I인당 전기사용량이 매년 최고치를 기록하고 있으며, 국내 I인당 연간 전기사용량 증가 추세가 계속 되고 있다.

I. 분석 배경

2222 연료를 통해 얻을 수 있는 전력에너지 비율

에너지	단위	화석연료	원자력 재생에너지		바이오연료/폐기물
01-10111471	Mtoe	234.91	38.67	1.43	7.19
일차에너지	비율	83.24%	13.70%	0.51%	2.55%
7.74	TWh		148.43	14.00	6.90
전력	비율	69.90%	26.38%	2.49%	1.23%

환경에 좋지 않는 자원들에 의존량이 높다.

에너지 하베스팅 발전을 통해 해결!!

I. 분석 배경

에너지 하베스팅이란?

개별 장치들이 자연적인 에너지원으로부터 발생하는 에너지나 주변에 버려지는 빛, 운동에너지 등을 모아서 저장한 전력으로 변환하는 기술

I. 분석 목적

프로젝트 주제

친환경적인 자연에너지를 사용한 지하철 역에 대한 발전량 시뮬레이션

2

분석과정

데이터 정의 및 활용 기법

2. 데이터 정의

I. 서울시 지하철 유동인구

년도	2019
역명	역별
총 승하차 승객 수	역별
역이 위치한 자치구	구별
역 위치	위도/경도
지역코드	법정동 코드

출처:서울시 열린데이터 광장

2. 서울시 대기정보

기준	일별
PMI0	$(\mu g/\red{m})$
PM2.5	$(\mu g/\red{m})$
오존	(ppm)
 이산화질소	(ppm)
 일산화탄소	(ppm)
아황산가스	(ppm)

출처:에어코리아

2. 데이터 정의

3. 기상청 데이터

기준	일별
기온	(°C)
풍속	(ms)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(mm)
 기압	(hPa)

출처:기상청

#### 4. 서울시 전력 사용량



기준	월별		
자치구	구별		
총 전력사용량	(MWh)		
가정용사용량	(MWh)		
공공용 사용량	(MWh)		
산업별사용량	(MWh)		

출처:서울시 열린데이터 광장

#### 5. 서울시 전력 발전량



지역	서울시
연료원	바이오가스/태양광/폐 기물/LNG/연료전지/바 이오매스
전력거래량	(MWh)

출처:전력거래소요청자료

## 2. 설치지역 선정 조건





지하철 유동인구가 가장 많은 구

# 2. 설치지역 선정 조건 - 유동인구



#### 유동인구 데이터

station_sul	date	line_sub	ride_sub	off_sub	population	gu
가락시장	201901	3호선	3483	3396	1162954	송파구
가산디지털	201901	경부선	4487	6298	3640019	금천구
가양	201901	9호선	8571	8953	1240173	강서구
강남	201901	2호선	38729	36544	6718007	강남구
강남구청	201901	분당선	1963	2280	1587830	강남구
강동	201901	5호선	8167	7770	1133714	강동구
강동구청	201901	8호선	4043	4184	666819	강동구
강변(동서旨	201901	2호선	29375	27265	2726016	광진구
개롱	201901	5호선	2564	2817	421560	송파구
개화	201901	9호선	2241	2029	343428	강서구
개화산	201901	5호선	2745	2918	357181	강서구
거여	201901	5호선	3009	3029	440540	송파구
건대입구	201901	2호선	29309	30013	3807946	광진구
경복궁(정복	201901	3호선	9902	10734	1455246	종로구
경찰병원	201901	3호선	2541	2775	484868	송파구
고덕	201901	5호선	3343	3481	565360	강동구
고려대(종일	201901	6호선	3719	3989	524794	성북구
고속터미널	201901	3호선	44564	36579	5848825	서초구
공덕	201901	경의선	1619	1346	2364484	마포구
공릉(서울고	201901	7호선	5295	5698	746555	노원구
공항시장	201901	9호선	1441	1696	187303	강서구
광나루(장(	201901	5호선	7240	7120	829512	광진구

Raw Data → 월별 반기 별 데이터로 나눔

#### 구 데이터

station_sul	gu
동대문	종로구
동묘앞	종로구
서울역	중구
시청	중구
신설동	동대문구
제기동	동대문구
종각	종로구
종로3가	종로구
종로5가	종로구
청량리(서음	동대문구
강남	강남구

역들을 구별로 나눠 조인

#### 2. 설치지역 선정 조건 - 유동인구

법정동코드법정동명 |11000000(서울특별시 11110000(서울특별시 종로구 11110101(서울특별시 종로구 청운동 11110102(서울특별시 종로구 신교동 11110103(서울특별시 종로구 궁정동 |11110104(서울특별시 종로구 효자동 11110105(서울특별시 종로구 창성동 11110106(서울특별시 종로구 통의동 11110107(서울특별시 종로구 적선동 11110108(서울특별시 종로구 통인동 11110109(서울특별시 종로구 누상동 11110110(서울특별시 종로구 누하동 11110111(서울특별시 종로구 옥인동 11110112(서울특별시 종로구 체부동 11110113(서울특별시 종로구 필운동

법정동 코드 -> 시각화를 위한 필수 데이터



위도, 경도 표현 -> 시각화를 위한 데이터

## 2. 설치지역 선정 조건 - 유동인구



서울시 유동인구는 강남구가 가장 높음을 의미



유동인구 가장 높은 구 top 3

# 2. 설치지역 선정 조건 - 전력사용량

기간	자치구	합계	가정용	공공용	서비스업	서비스업	서비스업	서비스업	서비스업	산업용	산업용	산업용	산업용
기간	자치구	합계	가정용	공공용	소계	전철	수도	사업자용	순수서비스	소계	농림어업	광업	제조업
2019.01	합계	4,416,889	1,185,166	371,235	2,702,348	134,106	57,409	10,795	2,500,038	158,139	1,747	243	156,150
2019.01	종로구	165,505	22,682	18,573	118,036	-	227	254	117,556	6,213	12	65	6,136
2019.01	중구	224,852	17,439	11,870	174,557	-	24	1,157	173,377	20,986	4	18	20,963
2019.01	용산구	130,464	34,731	27,638	66,382	418	537	68	65,359	1,713	4	-	1,710
2019.01	성동구	201,405	38,429	30,149	109,333	17,560	4,996	366	86,411	23,494	36	30	23,429
2019.01	광진구	150,084	40,582	10,399	95,779	27,352	5,451	315	62,661	3,324	27	6	3,291
2019.01	동대문구	135,701	43,725	14,463	70,306	5,094	750	174	64,289	7,207	36	9	7,162
2019.01	중랑구	104,585	45,279	4,905	48,565	234	483	202	47,646	5,836	41	5	5,790
2019.01	성북구	136,265	51,857	22,308	57,757	-	1,455	119	56,182	4,343	18	1	4,325

Raw Data

기간		자치구	합계
	2019.01	합계	4416889
	2019.01	종로구	165505
	2019.01	증구	224852
	2019.01	용산구	130464
	2019.01	성동구	201405
	2019.01	광진구	150084
	2019.01	동대문구	135701
	2019.01	중랑구	104585
	2019.01	섬폭구	136265
	2019.01	강독구	87430
	2019.01	도봉구	84271
	2019.01	노원구	143438
	2019.01	온평구	131762
	2019.01	서대문구	116553
	2019.01	아포구	201820
	2019.01	양친구	150401
	2019.01	강서구	239060
	2019.01	구로구	180922
	2019.01	금친구	154207
	2019.01	엄듬포구	243014
	2019.01	동작구	118557

구별로 전력사용량을 나눔

## 2. 설치지역 선정 조건 - 전력사용량



시각화 단위(MWh) -> 전력사용량이 강남구가 가장 높음을 나타냄



전력사용량이 가장 높은 구 top 3

# 2. 설치지역 선정





전력사용량과 유동인구가 가장 높은 강남구로 설치지역 선정

# 2. 적용 할 발전 방식









강남구 지하철역에 압전, 태양광, 회전문 방식의 하베스팅 발전을 적용

# 2. 적용 방식







지하철 역 내부에 압전 방식과 회전문 방식을 적용 지하철 주변엔 태양광패널이 적용된 쉼터 적용

## 2. 설치 할 역 선정



station_sul	date	line_sub	population	gu
강남	201901	2호선	73630199	강남구
강남구청	201901	분당선	18710733	강남구
논현	201901	7호선	14470749	강남구
대청	201901	3호선	7139918	강남구
대치	201901	3호선	9056974	강남구
도곡	201901	3호선	9176292	강남구
매봉	201901	3호선	8096530	강남구
봉은사	201901	9호선2~3	13130911	강남구
삼성(무역선	201901	2호선	44148760	강남구
삼성중앙	201901	9호선2~3	4221006	강남구
선릉	201901	2호선	47721053	강남구
선정릉	201901	분당선	12028144	강남구
수서	201901	3호선	24319789	강남구
신논현	201901	9호선	24440273	강남구
신사	201901	3호선	24964022	강남구
압구정	201901	3호선	25457570	강남구
언주	201901	9호선2~3	6429710	강남구
역삼	201901	2호선	36206514	강남구
일원	201901	3호선	7263480	강남구
청담	201901	7호선	15152146	강남구





20I9년 지하철역 유동인구 데이터 전처리(분류)

막대그래프 시각화

지도시각화

## 2. 설치 할 역 선정





강남구 역 중 유동인구 Top 3



강남구 역 중 유동인구 Top 3 – bar plot

## 2. 압전 발전 방식



#### ☞ 관련 핵심 나노기술

출처: 나노기술연구협의회

핵심 나노기술	주요성능지표	최종	2018	2022	2027
나노소재/구조기반 압전에너지 하베스팅	압전계수(pC/N)	2000	500	700	1000
다도도세/下조기한 급천에다시 아베스팅	발전량(mW/cm²)	40	10	15	20
나노소재/구조기반 정전에너지 하베스팅	에너지 변환효율(%)	50	10	20	30
	마찰 발전량(mJ/s)	50	3	15	30
나노소재/구조기반 열전 발전/냉각	열전성능지수(ZT)	10	3	4	5

#### 압전 블록 크기가 45cm x 60cm 일 때

2014	2018	2022	2027	Final	
7w	27w	40.5w	54w	108w	



총 4번(I인당 밟을 횟수) x 압전 블록크기(45cm x 60cm) 3개의 역에 설치 시 17,874,000 kW

## 2. 터빈 발전 방식





$$Energy = \int_{1.1}^{3.4} 6.7744x^6 - 92.721x^5 + 516.4x^4 - 1498x^3 + 2379.7x^2 - 1945.1x + 635.89 dx$$

 $\therefore$  Energy generated per push = 15.91 W

논문에서 가정한 회전문, 수식

#### <월 발전량>



I회 회전 당 발전량 = I5.9IW 3개의 역에 설치 시 2,633,I05 kW





태양광 데이터를 신경망 모델을 통해 태양광 발전량을 예측해 볼 예정

서울시 태양광 발전 데이터 (2018 ~ 2019년 데이터) + 대기질 데이터 + 기상청 데이터 (전체 데이터의 80% 훈련 20% 테스트)



단위: kWh

실제 값	300	600	900	1200	1500	1800	2100	2400	2700	3000
300	6	2	0	0	0	0	0	0	0	0
600	0	3	0	0	0	0	0	0	0	0
900	0	2	8	2	1	0	0	0	0	0
1200	0	1	4	4	4	1	0	0	0	0
1500	0	0	0	1	5	2	0	0	0	0
1800	0	0	0	1	3	10	6	2	0	0
2100	0	0	0	0	0	5	4	8	1	0
2400	0	0	0	0	0	2	6	14	3	0
2700	0	0	0	0	0	0	0	4	8	0
3000	0	0	0	0	0	0	0	3	5	13

삭제한 변수 pmI0 /pm2.5 /평균 증기압/ 평균 이슬점 온도/평균현지기압/평균풍속 Accuracy = 0.5208 정확도는 낮지만, 대부분 데이터가 대칭 데이터 이기 때문에 태양광 에너지 발전의 총합은 더 높은 예측율을 보여준다.



태양광 예측 데이터를 기반으로 강남구 전체의 I년 예측 발전량을 구했을 때 2,54I,625,I75kW 발전



태양광 패널 설치 면적 지하철 역 하나 당 설치할 태양광 패널 설비용량은 3,000kW

#### 









삼성(무역센터)

태양광 패널 설비용량 3,000kw 당 발전량 363,089,310kW

3개의 역에 설치 시 I,089,267,932kW 발전



# *3* 결론 및 기대효과

해외사례 및 미래전망

## 3. 해외 하베스트 성공 활용 사례

#### 이스라엘의 '도로 압전 발전기'



발전기 Ikm를 편도 2차선 도로에 설치할 경우 400kWh의 전력을 발전

#### 브라질의 '빈민가를 밝히는 축구장'



축구장 밑의 200개의 압전 타일과 태양광 패널을 통해 빈민가에서 밤에 필요한 전력의 20%까지 공급

# 3. 기대효과 (전기차)

국가	추진현황
노르웨이	2025년부터 내연기관 차량 판매 금지 법안 합의(2016.6)      수도 오슬로에서 2017년부터 디젤 자동차의 일시적 운행 금지 조치      일반승용차, 단거리 버스, 경량 트럭은 무공해 차량만 등록하는 방침
네덜란드	2025년부터 내연기관 차량 판매 긁지 법안 하원 통과(2016.4)     신자에 대해서만 휘발유 및 경유 자동차의 판매금지를 추진     법안의 최종가결시, 2025년부터 하이브리드 모델을 포함한 내연기관 자동차의 판매 금지를 포함하고 있으나, 민주당의 강력한 반대로 실현가능성에 주목
염국	2040년부터 취발유 및 경유 차량의 판매를 금지하는 정희 발표(2017.7)     예산 지원(30억파운드)과 함께 경유 차량에 대한 높은 부담금을 부과할 예정
프랑스	2040년부터 내연기관 차량의 판매를 금지하는 정책 발표(2017.7) - 1997년 이전에 생산된 경유차와 2001년 이전에 생산된 휘발유 차량을 친환경차로 바꾸면 인센티브를 주는 방식으로 내연기관 차량을 점차 퇴출
독일	• 2016년 10월 결의안이 통과되었으나 연방하의원 통과를 이끌어내진 못함 - 자동차 산업이 독일 산업의 중추라는 점을 감안하여 신중한 태도
인도	2030년부터 전기차만 판매하는 정책을 추진하기로 발표(2017.6)     생산된 지 10년이 경과한 경유차는 수도 뉴델리에 등록하지 못하도록 조치
중국	신에너지 차량 개발과 대기오염 완화를 위해 화석연료 자동차의 생신 판매를 중단하기 위한 계획을 마련중     다만, 판매 중단 시기는 자국 산업의 경쟁력 확보 시기와 연계하여 고려 중





많은 국가에서 환경문제 때문에 내연기관 자동차를 판매 금지할 예정 전기차 효율이 증가함에 따라 보급률 또한 증가하고 있기에, 환경오염이 점차 완화될 것으로 예측하고 있다.

# 3. 기대효과(하베스팅)





재사용에너지도 전기차처럼 꾸준한 성장세를 보이므로 미래에는 화석연료의 높은 의존량을 해결할 수 있을 것

## 3. 기대효과







하베스팅 발전방식은 실내형 정류장이나 스마트 빌딩 등 폭넓게 적용될 수 있을 것이다.

#### 3. 결론



▲ 문재인 대통령이 한국판 뉴딜 정책 발표에 앞서 기조연설을 하고 있다.(사진출처:청와대)

정부는 14일 오후 청와대에서 문재인 대통령이 참석한 가운데 '한국판 뉴딜 국민보고대회'를



신재생에너지 효율은 아직 모자랄지라도, 미래가치는 기대이상이다. 지금부터 환경문제에 대비하지 않았을 때의 기회비용은 만만치 않을 것이다.

[사설] '정부 LNG 병기
 [기자수첩] 태양광발

## 출처

#### 

사용 분석 툴



R Studio



Python



Excel

#### 참고 자료

https://data.seoul.go.kr/dataList/OA-12914/S/1/datasetView.do#

https://data.seoul.go.kr/dataList/378/S/2/datasetView.do

http://epsis.kpx.or.kr/epsisnew/selectEkpoBcrGrid.do?menuId=030900

https://kidshyundai.tistory.com/325

https://m.blog.naver.com/PostView.nhn?blogId=erounnet&logNo=220180090738&

proxyReferer=https:%2F%2Fwww.google.com%2F

https://kidshyundai.tistory.com/325

#### 참고 문헌

미래를 향한 도전, 나노기술지도 - 과학기술정보통신부 압전 하베스터 시범검증 및 운영전략 수립 - 한국도로공사 도로교통연구원 DEVELOPMENT OF ENERGY HARVESTING SYSTEM USING ROTATION MECHANISM OF A REVOLVING DOOR - Syed Faizan-ul-Haq Gilani, Syed Ihtsham-ul-Haq Gilani

#