

#### **Transaction Processing Monitor**

- It was developed for building complex transaction processing systems with a large number of clients and servers.
- Transaction Processing Monitors act as **middleware** (middleware is software that helps and bridges a variety of communication/connectivity between two or more applications)
- Its main task is to support and handle interactions between applications on a variety of computer platforms.
- Transaction Processing Monitors also usually known as TP-monitors provide functionalities such as managing, deploying, and developing transactional distributed information systems. It controls programs that monitor or manage a transaction of data as it passes from one stage in a process to another in an organized transaction-oriented manner.

#### **Transaction Processing Monitor**

- Transaction processing monitor is a program that monitors transactions from one stage to the next.
- The main aim of transaction processing monitor is to ensure that the transaction is processed either completely or not at all.
- And if any transaction is processed partially, it would bring the database to its previous consistent state.
- If any error occurs in between, then it would take appropriate actions.
- It is used in 2-tier, 3-tier and n-tier architectures.
- It also takes care about resource sharing is done appropriately among applications.

#### **Transaction Processing Monitor**

• It provides infrastructure for building and administering complex transaction processing systems with a large number of clients and multiple servers.

#### ☐ Duties carried out by TP Monitor:

- It provides the ease of creating user interfaces.
- It unwraps the incoming content/data into data packets.
- It provides a continuous row/queue of client requests and responses from the server.
- It routes the client data to servers.
- It gives secure returns to services.
- It hides inner transmission details from programmers.
- Helps in maintaining the load of the program.

#### Process per client model:

- In this model, each client would be handled by each server process, which authenticates the client and executes the action requested by the client.
- Problems occurring in this model are as follows:
- This model needs huge amount of memory.
- CPU overhead occurs as, OS divides up CPU time among processes by process of switching called multitasking.



#### • Single Server Model

- In this, remote client sends the request to the server process which then executes those requests.
- The server processes handles tasks, such as user authentication, basically handled by operating systems.
- The server process is multithreaded, so that other clients do not get blocked while processing long requests arriving from each client. It helps in performing low overhead multitasking all together.
- Cost of switching between threads is low compared to previous model.
- This model overcomes the problems, which occur in process per client model.



Single-server model

#### Many server, Single router

- Multiple application server processes access a common database, clients communicate with the application through a single communication process that routes requests.
- It provides independent server processes for multiple applications
- Multithreaded server process
- Runs on parallel or distributed database servers



Many-server, single-router model

- Many-server, many router model
- Multiple processes communicate with clients.
- Client communication processes interact with router processes that route their request to the appropriate server.
- Controller process starts up and supervises other processes.



Many-server, many-router model

### **TP-Monitor Structure/Components**



## TP-Monitor Structure/Components(cont..)

- Queue manager manages the queue of incoming messages from clients.
- Queue manager provides durable or persistent queuing of messages.
- Regardless of system failure, messages stored in queue will be processed eventually.
- On transaction commit, TP monitor takes care of message is delivered to client regardless of system crash.
- ACID properties are provided for sending messages outside the database system.

### TP-Monitor Structure/Components(cont..)

- TP monitors also provide locking, logging and recovery services, so that application servers can implement it by themselves.
- Interface between TP monitor and resource manager is defined by a set of transaction primitives.
- Resource manager interface is defined by X/Open distributed transaction processing standard
- TP monitor controls the scope of failure by administering server pools.
- TP monitor system provides a transactional remote procedure call interface to their services.

#### Transactional Workflow

- Workflows are activities that involve the coordinated execution of multiple tasks performed by different processing entities.
- The processing entity that performs the tasks may be a person or a software system(eg. A mailer, an application program or database management system)
- With the growth of networks, and the existence of multiple autonomous database systems, workflows provide a convenient way of carrying out tasks that involve multiple systems.
- Example: electronic mail routing.

# Transactional Workflow Examples

| Work <del>f</del> low<br>application | Typical<br>task         | Typical processing entity              |
|--------------------------------------|-------------------------|----------------------------------------|
| electronic-mail routing              | electronic-mail message | mailers                                |
| loan processing                      | form processing         | humans,<br>application software        |
| purchase-order processing            | form processing         | humans, application<br>software, DBMSs |

## Loan Processing System



- Computerized workflow aim to automate many of the tasks.
- But still humans play an important role. E.g. in approving loans.
- The coordination of the task is carried out by passing the loan application with attached notes and other information from one employee to another in the form of electronic mail.

#### Aspects of Computerized/Automated Workflow

- **1. Specification of workflows** Details of the tasks to be carried out and defining its execution requirements.
- 2. Workflow Execution Execute the transactions specified in the workflow while also provide traditional database safety related to the computations, data integrity and durability.
  - For e.g. Loan application should not get lost even if system failure occurs.

### Workflow specification

- The coordination of tasks can be specified either statically or dynamically.
- Static Specification:
- It defines the tasks and dependencies among them before the execution of the workflow begins.
- The dependencies among tasks may be simple each one needs to be completed before the next begins i.e. preconditions need to be satisfied.
- Pre Conditions like:
- Execution states of other tasks.
- Output values of other tasks.
- External variables, that are modified by external events.

### Workflow specification (cont..)

- Dynamic task coordination
- E.g. Electronic Mail Routing System in which the task to be scheduled for a given mail message depends on the destination address and on which intermediate routers are functioning.

#### Failure-Atomicity Requirements

- Using ACID transactional requirements is too strong/unimplementable for workflow applications.
- However, workflows must satisfy some limited transactional properties that guarantee a process is not left in an inconsistent state.
- Acceptable termination states:
- Every execution of a workflow will terminate in a state that satisfies the failure-atomicity requirements defined by the designer.
  - Commit
  - Abort
- A workflow must reach an acceptable termination state even in the presence of system failure.

#### **Execution of Workflows**

- The execution of the tasks may be controlled by a human coordinator or by a software system.
- A workflow management system consists of a scheduler, task agent, and mechanism to query the state of the workflow system.
- •Scheduler: A program that processes workflows by submitting various tasks for execution, monitoring various events, and evaluating conditions related to inter-task dependencies. Responsible for ensuring tasks reach acceptable termination states.
- Task agent: Controls the execution of a task by a processing entity.

# Thank You