PPO

传统强化学习都是在维护表格,也就是要列举出在所有状态下应该采取的行动。这面临两个问题。一是当状态太多时,需要大量样本,并且存储表格状态也需要大量空间;二是只适合状态连续的场景,对于温度、GDP等指标则需要离散化成不同的状态(单个指标离散化会造成一定的精度损失,当多个指标需要离散化时会加重这种损失)。

更好的方法是构造方程来预测给定状态下的v和q,也就是构造 $\hat{v}(s,w) \approx v_{\pi}(s)$,训练目标就是 $min\ l(w) = \sum_s \mu(s) [v_{\pi}(s) - \hat{v}(s,w)]^2$, $\mu(s)$ 表示被访问的概率。如果采用梯度下降,则更新公式为:

$$w = w - \eta
abla l(w) = w + \eta
abla \sum_s \mu(s) \cdot 2[v_\pi(s) - \hat{v}(s,w)]
abla \hat{v}(s,w)$$

又已知 $v_{\pi}(s)=E[G_t|S_t=s]=E[R_{t+1}+\gamma G_{t+1}|S_t=s]=R_{t+1}+\gamma v_{\pi}(S_{t+1})$,只需要知道下一个状态就可以对当前状态进行的w进行更新.

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R}$ such that $\hat{v}(\text{terminal},\cdot) = 0$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose $A \sim \pi(\cdot|S)$

Take action A, observe R, S'

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})$$

 $S \leftarrow S'$

until S is terminal

PPO前身Policy gradient

之前介绍对于continuing task,有不考虑衰减的奖励 $G_t = \sum_{k=t+1}^n R_k$,考虑衰减的奖励

$$G_t = \sum_{k=t+1}^n \gamma^{k-t} R_k$$
。此外,还有differential return,其中 $r(\pi)$ 是基于当前所有奖励算出的平均

值,这样计算的好处是能减少方差。

$$G_t \doteq R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + R_{t+3} - r(\pi) +$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{r,s'} p(s',r|s,a) \Big[r - r(\pi) + v_{\pi}(s') \Big],$$

$$q_{\pi}(s,a) = \sum_{r,s'} p(s',r|s,a) \Big[r - r(\pi) + \sum_{a'} \pi(a'|s') q_{\pi}(s',a') \Big]$$

利用differential return,可以改写基于TD和梯度下降的Sarsa, $\hat{q}(S,A,w)$ 是一个回归模型,拟合真实的q值。

Differential semi-gradient Sarsa for estimating $\hat{q} \approx q_*$

Input: a differentiable action-value function parameterization $\hat{q}: \mathbb{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R}$

Algorithm parameters: step sizes $\alpha, \beta > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Initialize average reward estimate $\bar{R} \in \mathbb{R}$ arbitrarily (e.g., $\bar{R} = 0$)

Initialize state S, and action A

Loop for each step:

Take action A, observe R, S'

Choose A' as a function of $\hat{q}(S', \cdot, \mathbf{w})$ (e.g., ε -greedy)

$$\delta \leftarrow R - \bar{R} + \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})$$

$$\bar{R} \leftarrow \bar{R} + \beta \delta$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \delta \nabla \hat{q}(S, A, \mathbf{w})$$

$$S \leftarrow S'$$

$$A \leftarrow A'$$

之前介绍的policy iteration是首先计算state-value值,再采用贪心的策略更新策略。现在想直接对策略进行优化,表示为 $\pi(a|s,\theta)$,其满足 $\pi(a|s,\theta) \geq 0$, $\sum_{a \in A} \pi(a|s,\theta) = 1$ 。

首先想到可以用softmax函数,其中h函数可以用深度学习的回归模型来实现

$$\pi(a|s, heta) = rac{e^{h(s,a, heta)}}{\sum_{b\in A} e^{h(s,b, heta)}}$$

训练目标:

$$J(heta) = \sum_{s \in S} d^\pi(s) v^\pi(s) = \sum_{s \in S} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) q^\pi(s,a)$$

其中 $d^\pi(s)$ 表示状态s被访问的概率,目标是最大化 $J(\theta)$,也就是希望访问的都是价值高的state,这里的v就是state-value, $v_\pi(S)=E[G_t|S_t=s]$ 。需要计算的也就是 $\nabla_\theta J(\theta)$

$$heta = heta + \eta
abla_{ heta} J(heta)$$

依照policy gradient theorem(这个证明比较复杂,这里不写了):

$$egin{aligned}
abla_{ heta}J(heta) &=
abla_{ heta}[\sum_{s\in S}d^{\pi}(s)\sum_{a\in \mathcal{A}}\pi_{ heta}(a|s)q^{\pi}(s,a)] arpropto \sum_{s\in S}d^{\pi}(s)\sum_{a\in \mathcal{A}}q^{\pi}(s,a)
abla_{ heta}\pi_{ heta}(a|s) &= \ \sum_{s\in S}d^{\pi}(s)\sum_{a\in \mathcal{A}}\pi_{ heta}(a|s)q^{\pi}(s,a)rac{
abla_{ heta}\pi_{ heta}(a|s)}{\pi_{ heta}(a|s)} &= E_{s\in S,a\in\pi_{ heta}(a|s)}q^{\pi}(s,a)
abla_{ heta}ln\pi_{ heta}(a|s) &= \ \sum_{s\in S}d^{\pi}(s)\sum_{a\in \mathcal{A}}\pi_{ heta}(a|s)q^{\pi}(s,a)rac{
abla_{ heta}\pi_{ heta}(a|s)}{\pi_{ heta}(a|s)} &= E_{s\in S,a\in\pi_{ heta}(a|s)}q^{\pi}(s,a)
abla_{ heta}ln\pi_{ heta}(a|s) &= \ \sum_{s\in S}d^{\pi}(s)\sum_{a\in \mathcal{A}}\pi_{ heta}(a|s)q^{\pi}(s,a)rac{
abla_{ heta}\pi_{ heta}(a|s)}{\pi_{ heta}(a|s)} &= E_{s\in S,a\in\pi_{ heta}(a|s)}q^{\pi}(s,a)
abla_{ heta}ln\pi_{ heta}(a|s) &= \ \sum_{s\in S}d^{\pi}(s)\sum_{a\in \mathcal{A}}\pi_{ heta}(a|s)q^{\pi}(s,a) &= \ \sum_{s\in S}d^{\pi}(s)\sum_{a\in \mathcal{A}}\pi_{ heta}(a|s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s\in S}d^{\pi}(s)q^{\pi}(s)q^{\pi}(s)q^{\pi}(s)q^{\pi}(s)q^{\pi}(s) &= \ \sum_{s$$

下图中用G近似替代了q,都是奖励函数。

REINFORCE: Monte Carlo Policy Gradient

面临问题:episode怎么生成,可能很长,episode生成和策略更新不可同时进行。

Off-policy policy gradient

之前介绍的是on-policy的,即采样和更新都是对同一个 θ 进行,因此只能能同时做一件事。off-policy值利用参考的相似的 θ 生成的episode更新目标的 θ 。

采用Off-policy policy gradient,对应的梯度加一个距离系数,变成了:

$$abla_{ heta}J(heta) = E_{eta}[rac{\pi_{ heta}(a|s)}{eta(a|s)}q^{\pi}(s,a)
abla_{ heta}ln(a|s)]$$

在PPO中,用 π^{t-1} 作为 β 。此外用Advantage function $A^\pi(s,a)=q^\pi(s,a)-v^\pi(s)$ 代替q,因为 $v(s)=\sum_{a\in A}\pi(a|s)q(s,a)$,相当于减去平均值,使得方差更小更平滑,就得到了TRPO

$$\mathbb{E}_{s\sim
ho^{\pi_{ heta_{
m old}}},a\sim\pi_{ heta_{
m old}}}ig[rac{\pi_{ heta}(a|s)}{\pi_{ heta_{
m old}}(a|s)}\hat{A}_{ heta_{
m old}}(s,a)ig]$$
 maxmize

$$\mathbb{E}_{s\sim
ho^{\pi_{ heta_{
m old}}}}[D_{
m KL}(\pi_{ heta_{
m old}}(.\,|s)\|\pi_{ heta}(.\,|s)] \leq \delta$$
 s. t.

面临问题:存在限制条件,要求参考策略和目标策略距离接近,难以优化。PPO消除了限制条件

PPO

为了消除限制条件,首先定义 $r(\theta)=\dfrac{\pi_{\theta}(a|s)}{\pi_{\theta_{old}}(a|s)}$,对 $r(\theta)$ 进行clip操作。实验证明,只对上区间做clip效果最好。

$$r(heta) = 1 + \epsilon, if \ r(heta) > 1 + \epsilon$$

$$egin{aligned} J^{ ext{CLIP}}(heta) &= \mathbb{E}[\min(r(heta)\hat{A}_{ heta_{ ext{old}}}(s,a), ext{clip}(r(heta), 1-\epsilon, 1+\epsilon)\hat{A}_{ heta_{ ext{old}}}(s,a))] \ J^{ ext{CLIP}'}(heta) &= \mathbb{E}[J^{ ext{CLIP}}(heta) - c_1(V_{ heta}(s) - V_{ ext{target}})^2 + c_2H(s,\pi_{ heta}(s))] \end{aligned}$$

红色项是因为采用了Advantage function(A(s,a)=q(s,a)-v(s)),需要一个模型 V_{θ} 来求出针对当前状态下的状态值,这里与policy采用同一个网络参数,因此放在一起优化,红色项最小化预测 V_{θ} 与真实 V_{target} 之间的距离;第三项为了exploration,采用熵的形式,提升模型可探索域的大小。

整体的训练流程就是基于 θ_{old} 生成一个episode,利用episode计算目标函数中的值,更新 θ .伪代码中 ϕ_0 一般与 θ_0 用同一个模型。

Algorithm 1 PPO-Clip

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: **for** k = 0, 1, 2, ... **do**
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 4: Compute rewards-to-go \hat{R}_t .
- 5: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 6: Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right),$$

typically via stochastic gradient ascent with Adam.

7: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_t} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm.

8: end for