Assignment 2 - Linear Programming Models

Solution 1:

Resource	Resource Usage per Unit of Activity		Amount of Resource	
	Collegiate	Mini	Available	
Nylon (in ft)	3	2	5000	
Time (in hrs)	0.75	0.67	35*40 = 1400	
Profit per unit(\$)	32	24		
Max Sales	1000	1200		

a. Clearly define the decision variables

The no. of collegiate and the no of mini bags that should be produced in a week.

b. What is the objective function? Objective Function, Maximise Z = 32X + 24Y, X = no. of collegiate bags, Y = no. of Mini bags

c. What are the constraints? Resources are the constraints. $3X + 2Y \le 5000$ $0.75X + 0.67Y \le 1400$ $X \le 1000$ $Y \le 1200$

d. Write down the full mathematical formulation for this LP problem.

Z = 32X + 24YSubject To $3X + 2Y \le 5000$ $0.75X + 0.67Y \le 1400$ $X \le 1000$ $Y \le 1200$ And $X \ge 0$,

Y≥0

Resource	Resource Usage per Unit of Activity			Amount of	Resource
	Large	Medium	Small	Resource Available Capacity	Available Storage
Plant 1	X _{LP1}	X _{MP1}	X _{SP1}	750	13000
Plant 2	X _{LP2}	X _{MP2}	X _{SP2}	900	12000
Plant 3	X _{LP3}	X _{MP3}	X _{SP3}	450	5000
Profit per unit(\$)	420	360	300		
Max Sales	900	1200	750		

a. Define the decision variables

How many products of each size Large, Medium, and Small should be produced by each plant to utilize excess capacity and maximize profit.

b. Formulate a linear programming model for this problem.

$$\begin{aligned} & \text{Maximize P, } Z = 420 \text{ X}_{\text{LP1}} + 360 \text{X}_{\text{MP1}} + 300 \text{X}_{\text{SP1}} + 420 \text{X}_{\text{LP2}} + 360 \text{X}_{\text{MP2}} + 300 \text{X}_{\text{SP2}} + 420 \text{X}_{\text{LP3}} + \\ & 360 \text{X}_{\text{MP3}} + 300 \text{X}_{\text{SP3}} \end{aligned}$$