

Vorlesung 13 - Kommutative Gruppen

Diskrete Strukturen (WS 2024-25)

Łukasz Grabowski

Mathematisches Institut

Diskrete Strukturen	
1. Wiederholung	
2. Untergruppen	
3. Mehr über \mathbb{Z}/n	
4. Ringe und Körper	

Kommutative Gruppen - zwei äquivalente Definitionen. Die die wir am meisten nutzen: (M, +) ist eine kommutative Gruppe, gdw.

- ightharpoonup für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)
- Für alle $x, y \in M$ gilt x + y = y + x
- ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
- ▶ für alle $x \in M$ gibt es y so dass x + y = 0.

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$ und für alle $x\in M$ gilt $\varphi(-x)=-\varphi(x)$

• Beispiele von Gruppenhomomorphismen:

$$ightharpoonup f: \mathbb{Z} o \mathbb{Z}/n$$
, $f(x) := x \mod n$.

- $ightharpoonup f: \mathbb{Z}/m o \mathbb{Z}/n$, wenn $n \mid m$. $f(x) := x \mod n$.
- $\mathbf{r} = \mathbf{r} + \mathbf{r}$ ist nötig um einen Homomorphismu zu hahen. $\mathbf{7} \mathbf{R} = \mathbf{f} \cdot \mathbf{Z} / 5 \mathbf{Z}$
- ▶ $n \mid m$ ist nötig um einen Homomorpphismu zu haben. Z.B. $f \colon \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/3$ mit $f(x) := x \mod 3$ ist kein Homomorphismus: f(3+3) = f(6) = f(1) = 1, aber f(3) + f(3) = 0 + 0 = 0.

Sei (M,+) eine kommutative Gruppe. $N\subset M$ ist eine Untergruppe, wenn $0\in N$, und für alle $x, y \in N$ gilt $x + y \in N$, und für alle $x \in N$ gilt $-x \in N$.

Beispiele

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{O}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{O}$ ist keine Untergruppe
- $n\mathbb{Z} \subset \mathbb{Z}$ ist eine Untergruppe, wobei $n\mathbb{Z} := \{nx \colon x \in \mathbb{Z}\}.$ • \mathbb{Z} ist isomorph zu vielen verschiedenen Untergruppen von \mathbb{Z}^2 , zum Beispiel
 - $\{(x,0): x \in \mathbb{Z}\}, \{(x,x): x \in \mathbb{Z}\}, \{(5x,7x): x \in \mathbb{Z}\}.$
- Sei $k, n \in \mathbb{N}$ mit $k \mid n$. Dann $\{0, k, 2k, \ldots, n-k\}$ ist eine Untergruppe von $\mathbb{Z}/n := \{0, 1, 2, \dots, n\}$. Diese Untergruppe ist isomorph zu $\mathbb{Z}/\frac{n}{k}$.

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots , $\{\ldots-1,n-1,\ldots\}$
- Wir können alternativ \mathbb{Z}/n als die Menge allen Äquivalenzklassen definieren. Also $\mathbb{Z}/n:=\mathbb{Z}/\equiv$.
 - ▶ Die Addition ist dann definiert als [x] + [y] := [x + y].
 - ▶ Der Homomorphismus $\mathbb{Z} \to \mathbb{Z}/n$ ist dann definiert als f(x) := [x].

• Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^*:=\{1,2,\ldots,p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x\oplus y:=x\cdot \mod p$.

▶ In
$$\mathbb{Z}/7^*$$
 haben wir zum Beispiel $3 \cdot 4 \equiv 5$.

Warum ist es eine Gruppe?

- ► Assoziativität. Kommutativität klar
- ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
- ► Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende:
- für ein gegebenes $a\in \mathbb{Z}/p^*$ müssen wir $b\in \mathbb{Z}/p^*$ finden, so dass $xy\equiv 1\mod p$.
- ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist. ▶ Diese Funktion ist injektiv: Wenn $ax \equiv ay$ dann $a(x - y) \equiv 0 \mod p$, d.h.
- ▶ Diese Funktion ist injektiv: Wenn $ax \equiv ay \ \text{dann} \ a(x-y) \equiv 0 \mod p$, d.h. $p \mid a(x-y)$. Also entweder $p \mid a \ \text{oder} \ p \mid (x-y)$, aber das ist nicht möglich.
- $p \mid a(x-y)$. Also entweder $p \mid a$ oder $p \mid (x-y)$, aber das ist nicht möglich.

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p\approx 10^1000$ verschiedene Elemente von \mathbb{Z}/p^* überprüfen, um die Inverse zu finden.
- Aus diesem Grund geben wir einen anderen, etwas komplizierteren Beweis, dass multiplikative Inverse modulo p existieren, der einen effektiven Algorithmus liefert.

wollen. $p = q_1 a + r_1$

• Wir führen den euklidischen Algorithmus durch, mit p und a, das wir invertieren

- **.** . . . $ightharpoonup r_{k-2} = q_k r_{k-1} + r_k$
- $ightharpoonup r_{k-1} = q_{k+1} r_k$.
- Dann ist r_k gleich zu qqt(p,a), also 1.

 $a = q_2r_1 + r_2$

 $r_1 = q_3r_2 + r_3$

- Wenn wir nach oben gehen, erhalten wir die Bezout-Identität: $xp + ya = r_k = 1$ für
- einige x, y. Jetzt ist y die multiplikative Inverse von a.

• Die Anzahl der Zeilen im euklidischen Algorithmus ist vergleichbar mit $\log(p)$.

11 / 19 **Diskrete Strukturen** | Mehr über \mathbb{Z}/n

- Wenn $n \mid m$, dann haben wir einen surjektiven Homomomorphismus $\varphi \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, gegeben durch $\varphi(a) := a \mod n$.
- Der folgende Satz ist als "Chinesischer Restsatz" bekannt.

Satz. Seien a,b positive teilerfremde ganze Zahlen und n:=ab. Dann sind die Gruppen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ isomorph.

• Dieser Satz ist extrem häufig benutzt. Anders gesagt: Gegeben sind $k, l \in \mathbb{Z}$. Wir wollen die Gleichungs-system $x \equiv k \mod a$, $x \equiv l \mod b$ lösen.

Satz. Seien a,b positive teilerfremde ganze Zahlen und n:=ab. Dann sind die Gruppen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ isomorph.

Beweis. Wir betrachten den Homomoprhismus $\varphi \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$, der als $\varphi(x) := (x \mod a, x \mod b)$ definiert ist. Wir müssen zeigen, dass φ bijektiv ist.

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.
- Dazu nehmen wir an, dass $x,y \in \{0,\ldots,n-1\}$ so sind, dass $\varphi(x) = \varphi(y)$ und nehmen wir widerspruchshalber x < y an.
- wir widerspruchshalber x < y an.

 Dann $a \mid y x$ und $b \mid y x$. Da aber a und b teilfremd sind, bedeutet dies, dass

 $n \mid y - x$. Widerspruch zu der Tatsache, dass 0 < y - x < n.

Diskrete Strukturen | Mehr über \mathbb{Z}/n

• Was für eine Gruppe ist \mathbb{Z}/p^* ? Ist sie zu $\mathbb{Z}/(n-1)$ isomorph?

- Natürlich gibt es für Zahlenmengen wie $\mathbb Z$ oder $\mathbb Q$ zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - ightharpoonup (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$
 - ▶ für alle $a, b, c \in M$ gilt $a \cdot (b + c) = a \cdot b + a \cdot c$.

- Wie bei Gruppen könnten wir Ringe als $(M,+,-\cdot,0_M,\cdot,\cdot^{-1},1_M)$ mit geeigneten Axiomen definieren.
- $(\mathbb{Z}, +, \cdot)$ ist ein Ring, $(\mathbb{Q}, +, \cdot)$ is ein Ring
- In einem Ring $(M, +, \cdot)$ haben wir $0 \cdot x = 0$ für alle x.
- ▶ Tatsächlich: $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$, und da (M,+) eine kommutative Gruppe ist, folgt $0 \cdot x = 0$.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert, dass x = 0 oder y = 0.
- ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.
- Wonn A und B Dings eind, dann ist A v. B chanfalls ein Ding. Wonn A und B ise
- Wenn A und B Ringe sind, dann ist $A\times B$ ebenfalls ein Ring. Wenn A und B jedoch Körper sind, dann ist $A\times B$ kein Körper: wir haben $(1_A,0_B)\cdot(0_A,1_B)=(0_A,0_B)$

Beispiel

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

Beweis.

• Wir haben im obigen Beispiel gesehen, dass, wenn p keine Primzahl ist, $\mathbb{Z}/p\mathbb{Z}$ kein Körper ist.

• Wir haben auch gesehen dass wenn p ist eine Primzahl, dann die multiplikative

Inversen existieren, also \mathbb{Z}/p ist ein Körper. Der Körper \mathbb{Q} und die Körper $\mathbb{Z}/p\mathbb{Z}$ werden als Primkörper bezeichnet. Jeder Körper enthält ein Primkörper.

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de