1.	Let's imagine we add support to our dynamic array for a new operation PopBack (which removes the last element), and that PopBack never reallocates the associated dynamically-allocated array. Calling PopBack on an empty dynamic array is an error.					
	If we have a sequence of 48 operations on an empty dynamic array: 24 PushBack and 24 PopBack (not necessarily in that order), we clearly end with a size of 0. What are the minimum and maximum possible final capacities given such a sequence of 48 operations on an empty dynamic array? Assume that PushBack doubles the capacity, if necessary, as in lecture.					
	ininimum: 1, maximum: 32					
	minimum: 24, maximum: 24					
	minimum: 32, maximum: 32					

1/1 point

2.	Let's imagine we add support to our dynamic array for a new operation PopBack (which removes the last element). PopBack will reallocate the dynamically-allocated array if the size is \leq the capacity / 2 to a new array of half the capacity. So, for example, if, before a PopBack the size were 5 and the capacity were 8, then after the PopBack, the size would be 4 and the capacity would be 4.	1/1 point
	Give an example of \boldsymbol{n} operations starting from an empty array that require $O(n^2)$ copies.	
	igorup Let n be a power of 2. Add $n/2$ elements, then alternate $n/4$ times between doing a PushBack of an element and a PopBack.	
	igcup PushBack 2 elements, and then alternate $n/2-1$ PushBack and PopBack operations.	
	\bigcirc PushBack $n/2$ elements, and then PopBack $n/2$ elements.	

		m

3. Let's imagine we add support to our dynamic array for a new operation PopBack (which removes the last element). Calling PopBack on an empty dynamic array is an error.

PopBack reallocates the dynamically-allocated array to a new array of half the capacity if the size is \leq the capacity / 4 . So, for example, if, before a PopBack the size were 5 and the capacity were 8, then after the PopBack, the size would be 4 and the capacity would be 8. Only after two more PopBack when the size went down to 2 would the capacity go down to 4.

We want to consider the worst-case sequence of any n PushBack and PopBack operations, starting with an empty dynamic array.

What potential function would work best to show an amortized O(1) cost per operation?

- $\bigcirc \Phi(h) = 2$
- $Φ(h) = max(2 \times size capacity, capacity/2 size)$
- \bigcirc $\Phi(h) = 2 \times size capacity$

is $O(1$
= 000

 ${\bf 4.} \quad {\bf Imagine~a~stack~with~a~new~operation:~PopMany~which~takes~a~parameter,~i,~that~specifies~how}$

1/1 point