

SPEEDING UP PERMUTATION BASED INDEXING WITH INDEXING

Karina Figueroa Universidad Michoacana México Kimmo Frediksson University of Kuopio Finland

- Permutation-based algorithm
- Indexing Permutations
- Experimental Results
- Conclusions

Permutation based algorithms

$$\Pi_u = p_3, p_6, p_2, p_1, p_5, p_4
\Pi_q = p_6, p_5, p_4, p_1, p_3, p_2$$

Spearman Footrule metric

$$\Pi_q = p_1, p_2, p_3, p_4, p_5, p_6$$
 $\Pi_u = p_3, p_6, p_2, p_1, p_5, p_4$

Differences between positions

$$F(\Pi_q, \Pi_u) = |1 - 3| + |2 - 6| + |3 - 2| + |4 - 1| + |5 - 5| + |6 - 4| = 12$$

Permutation-based algorithm

Preprocessing

Search Process

Permutations based algorithm

Algorithm 1 Sequential-Range-Query(q, r, f)

- 1: **INPUT**: q is a query and r its radius, f is the fraction of the database to traverse.
 - 2: **OUTPUT**: Reports a subset of those $u \in \mathbb{U}$ that are at distance at most r to q.
 - 3: Let A[1,n] be an array of tuples and $\mathbb{U}=\{u_1,\ldots,u_n\}$
 - 4: Compute Π_q^{-1}
 - 5: **for** $i \leftarrow 1$ to n **do**
 - 6: $A[i] \leftarrow \langle u_i, S_\rho(\Pi_{u_i}, \Pi_q) \rangle$
 - 7: end for
 - 8: SortIncreasing(A) // by second component of tuples
 - 9: **for** $i \leftarrow 1$ to $f \cdot n$ **do**
 - 10: Let $\langle u, s \rangle = A[i]$
 - 11: if $d(q, u) \leq r$ then
 - 12: Report u
 - 13: end if
 - 14: **end for**

Distance evaluations.

Our proposal

- Define a new metric space
 - The permutations of the database
 - The metric between permutations
- In this new metric space
 - We can use any algorithm for metric spaces
 - Finds the most similar permutations to the query
 - Avoids making comparisons through the whole database
 - Reduces the searching time

Indexing Permutations

Algorithm 2 Indexed-Range-Query(q, r, f)

- 1: **INPUT**: q is a query and r its radius, f is the fraction of the database to traverse.
- 2: **OUTPUT**: Reports a subset of those $u \in \mathbb{U}$ that are at distance at most r to q.
- 3: Let $A[1, f \cdot n]$ be an array of elements and W an index of permutations
- 4: Compute Π_q^{-1}
- 5: $A \leftarrow \text{NearestNeighbors}(W, \Pi_q, f \cdot n)$
- 6: **for** $i \leftarrow 1$ to $f \cdot n$ **do**
- 7: **if** $d(q, A[i]) \leq r$ **then**
- 8: Report u
- 9: end if
- 10: end for

Nearest Neighbor query

- What Algorithm can we use?
 - Any for metric spaces
 - Because it is a metric space
 - LClusters
 - GHT
 - BKT
 - MVP
 - SAT
 - Also, permutation-based (again and again, etc)

Databases

- Synthetic vectors in an unitary cube
 - □ Dimensions from 8 to 128
 - 16,000 and 40,000 objects
- Gaussians vectors
 - □ 10,000 object
- Spanish Language dictionary
 - **86,000** words
- □ Faces (762 dimensions)
 - FERET
 - 761 images

Experimental Results

Synthetic vectors in a Unitary cube

Experimental Results

Synthetic vectors in a Unitary cube

Vectors: Unitary cube

Gaussians vectors

Strings: Spanish Language dictionary

Conclusions

- We have significantly reduced the CPU time of one of the best algorithms for searching in very high dimensional metric spaces
- We were able to do this by identifying another metric space search problem in the algorithms internals.

Thanks

karina@fismat.umich.mx

Kimmo.frediksson@uku.fi

