

Optimal Control of Switched System

Equivalent Problem Formulation

Problem 1

Given:

- subsystem $\dot{x} = f_i(x,u)$
- a fixed time interval $\left[t_0,t_f
 ight]$
- a prespecified squence of active subsystems $\sigma = ((t_0, i_0), (t_1, i_1), \dots, (t_K, i_K))$

find a continuous input $u \in U_{[t_0,t_f]}$ and switching instants t_1,\dots,t_K

such that

- $x(t_0) = x_0$
- meet S_f at t_f
- · minimize cost function

$$J=arPhi(x(t_f))+\int_{t_0}^{t_f}L(x(t),u(t))dt$$

 Ψ 为终端部分,L为积分部分.

Two Stage Decomposition

Decomposition Problem 1 into two stages.

Stage(a)

find an optimal continuous input ${\bf u}$ and the corresponding minimum ${\cal J}.$

Seek $J_1(\hat{t})$ for the corresponding $\hat{t}=(t_1,\ldots,t_k)^T$ is conventional since these intervals are fixed.

Only difference is system dynamics changes with respect to different time intervals.

Theorem 1Necessary conditions for stage (a)

Assume:

- the subsystem k is active in $[t_{k-1},t_k)$, $k\in [1,K]$.
- subsystem K+1 is active in $[t_K, t_{K+1}]$, $t_{K+1} = t_f$.
- $u \in U_{[t_0,t_f]}$ continuous input such that $x(t_0) = x_0$ and meets $S_f =$ $\{x|arPhi_f(x)=0,arPhi:R^n o R^{l_f}\}$ at t_f .

such that
$$\Phi_f(x(t_f)) = 0$$

In order for u is optimal:

• exist a vector function $p(t) = [p_1(t), \dots, p_n(t)]^T, t \in [t_0, t_f]$.

Such that following conditions:

- $H(x, p, u) = L(x, u) + p^T f_k(x, u)$, for any $t \in [t_0, t_f]$
 - 1. 状态方程state equations: $\frac{dx(t)}{dt} = (\frac{\partial H}{\partial p}(x(t),p(t),u(t)))^T$
 - 2. 协态方程costate equations: $\frac{dp(t)}{dt} = -(\frac{\partial H}{\partial x}(x(t),p(t),u(t)))^T$
 - 3. 控制方程 stationarity condition: $0 = (\frac{\partial H}{\partial u}(x(t), p(t), u(t)))^T$ 4. 横截条件 $p(t_f) = \frac{\partial \Psi}{\partial x}(x(t_f))^T + \frac{\partial \Phi_f}{\partial x}(x(t_f))^T \lambda$

 - 5. 连续性条件 $p(t_{k^-}) = p(t_{k^+})$.

Stage(b)

solve the constrained nonlinear optimization problem

$$min_{ ilde{t}}J_1(\hat{t}) \ ext{subject to } ilde{t} \in T$$

Problem 2

Given:

· a switched system

$$\dot{x} = f_1(x, u), t_0 \le t \le t_1$$

$$\dot{x}=f_2(x,u), t_1\leq t\leq t_f$$

• t_0 , t_f and $x(t_0) = x_0$

find a switching instant t_1 and u(t)

such that

· minimize the cost functional

$$J=arPhi(x(t_f))+\int_{t_0}^{t_f}L(x,u)dt$$

Problem 3 (an Equivalent Problem)

introduce a state variable x_{n+1} corresponding to t_1 . x_{n+1} satisfy

$$\frac{x_{n+1}}{dt} = 0$$

$$x_{n+1}(0) = t_1$$

这里 x_{n+1} 为一常量 t_1 ,不过会在下一节中看作未知参数.

 $\it introduce$ a new independent time variable au.

t will become au and u_{n+1}

$$t = egin{cases} t_0 + (x_{n+1} - t_0) au & 0 \leq au \leq 1 \ x_{n+1} + (t_f - x_{n+1}) (au - 1) & 1 \leq au \leq 2 \end{cases}$$

显然
$$t=t_0, au=0$$
; $t=t_1, au=1$; $t=t_f, au=2$

Given:

a system

in the interval $au \in [0,1)$

$$rac{dx(au)}{d au}=(x_{n+1}-t_0)f_1(x,u)$$

$$rac{dx_{n+1}}{d au}=0$$

in the interval $au \in [1,2]$

$$rac{dx(au)}{d au}=(t_f-x_{n+1})f_2(x,u)$$

$$rac{dx_{n+1}}{d au}=0$$

• t_0, t_f and $x(0) = x_0$

such that:

· minimize the cost functional

$$J=arPhi(x(2))+\int_0^1(x_{n+1}-t_0)L(x,u)d au+\int_1^2(t_f-x_{n+1})L(x,u)d au$$

$Q: 引入\tau$ 的作用是什么?

- 1. 切换时刻不再是时变的,整个问题变为传统问题
- 2. 将 x_{n+1} 看作参数,Problem2 和 Problem3 维数相同

Method Based on Solving a Boundary Value **Differential Algebraic Equation**

Define:

•
$$\tilde{f}_1(x, u, x_{n+1}) = (x_{n+1} - t_0)f_1(x, u)$$

•
$$\tilde{f}_2(x, u, x_{n+1}) = (t_f - x_{n+1})f_2(x, u)$$

•
$$\tilde{L}_1(x,u,x_{n+1})=(x_{n+1}-t_0)L(x,u)$$

•
$$\tilde{L}_2(x,u,x_{n+1}) = (t_f - x_{n+1})L(x,u)$$

Regarding x_{n+1} as a parameter, $x(au) o x(au, x_{n+1})$.

Parameterized Hamiltonian

$$H(x,p,u,x_{n+1}) = egin{cases} ilde{L}_1(x,u,x_{n+1}) + p^T ilde{f}_1(x,u,x_{n+1}) & 0 \leq au \leq 1 \ ilde{L}_2(x,u,x_{n+1}) + p^T ilde{f}_2(x,u,x_{n+1}) & 1 \leq au \leq 2 \end{cases}$$

Assume:

• x_{n+1} is a given fixed unknown parameter

Apply Theorem 1 to Problem 3:

1. 状态方程state equ:
$$rac{\partial x}{\partial au}=(rac{\partial H}{\partial p})^T= ilde{f}_k(x,u,x_{n+1})$$

2. 协态方程costate function:
$$\frac{\partial p}{\partial \tau} = -(\frac{\partial H}{\partial x})^T = -(\frac{\partial \tilde{f}_k}{\partial x})^T p - (\frac{\partial \tilde{L}_k}{\partial x})^T$$
3. 控制方程 stationarity equ: $0 = (\frac{\partial H}{\partial u})^T = (\frac{\partial \tilde{f}_k}{\partial u})^T p + (\frac{\partial \tilde{L}_k}{\partial u})^T$
4. 边界条件 $x(0, x_{n+1}) = x_0$; $p(2, x_{n+1}) = (\frac{\partial \Psi}{\partial x}(x(2, x_{n+1})))^T$.

3. 控制方程 stationarity equ:
$$0=(\frac{\partial H}{\partial u})^T=(\frac{\partial \tilde{f}_k}{\partial u})^Tp+(\frac{\partial \tilde{L}_k}{\partial u})^T$$

4. 边界条件
$$x(0,x_{n+1})=x_0$$
 ; $p(2,x_{n+1})=(rac{\partial \Psi}{\partial x}(x(2,x_{n+1})))^T$

5. 连续性条件
$$p(1^-,x_{n+1})=p(1^+,x_{n+1})$$

6. cost function

$$J(x_{n+1}) = arPsi(x(2,x_{n+1})) + \int_0^1 ilde{L}(x,u,x_{n+1}) d au + \int_1^2 ilde{L}(x,u,x_{n+1}) d au$$

differentiating above function with respect to x_{n+1}

Problem 4General Switched Linear Quadratic

Problem

Given:

a switched system

$$\dot{x} = A_1 x + B_1 u, t_0 \le t \le t_1$$

$$\dot{x} = A_2 x + B_2 u, t_1 \leq t \leq t_f$$

find a switching instant t_{1} and a continous input u

such that:

· minimize cost functional

$$J = \underbrace{\frac{1}{2} x(t_f)^T Q_f x(t_f) + M_f x(t_f) + W_f}_{\Psi}) + \int_{t_0}^{t_f} \underbrace{(\frac{1}{2} x^T Q x + x^T V u + \frac{1}{2} u^T R u + M_f x(t_f) + W_f)}_{L(x,u)}$$

Problem 5Equivalent GSLQ problem

Given:

a system

in the interval $au \in [0,1)$

$$rac{dx(au)}{d au}=(x_{n+1}-t_0)(A_1x+B_1u)$$

$$rac{dx_{n+1}}{d au}=0$$

in the interval $au \in [1,2]$

$$rac{dx(au)}{d au}=(t_f-x_{n+1})(A_2x+B_2u)$$

$$\frac{dx_{n+1}}{d\tau} = 0$$

find a x_{n+1} and $u_{ au}$ such that:

· minimize

$$J = \underbrace{rac{1}{2} x(2)^T Q_f x(2) + M_f x(2) + W_f}_{\Psi}) + \int_0^1 (x_{n+1} - t_0) L(x,u) d au + \int_1^2 (t_f - x_{n+1}) d au$$

aassume:

the optimal value function 值函数:

$$V^*(x, au,x_{n+1}) = rac{1}{2} x^T P(au,x_{n+1}) x + S(au,x_{n+1}) x + T(au,x_{n+1})$$

- 计算 HJB function:
 - 。 HJB计算公式

$$-rac{\partial V^{\star}}{\partial t}(x,t)=min_{u}\{F+rac{\partial V^{\star}}{\partial t}f\}$$

 \circ in the interval $au \in [0,1]$

$$-rac{\partial V^\star}{\partial au}(x, au,x_{n+1})=min_{u(au)}\{(x_{n+1}-t_0)(L(x,u)+rac{\partial V^\star}{\partial x}(x, au,x_{n+1})f_1\}$$

 \circ in the interval $au \in [1,2]$

$$-rac{\partial V^{\star}}{\partial au}(x, au,x_{n+1})=min_{u(au)}\{(t_f-x_{n+1})(L(x,u)+rac{\partial V^{\star}}{\partial x}(x, au,x_{n+1})f_2)\}$$

the solution to the above HJB equation:

$$u(x, au,x_{n+1}) = R^{-1}(B_k^T P(au,x_{n+1}) + V^T) x(au,x_{n+1}) - R^{-1}(B_k^T S^T(au,x_{n+1}) + N^T)$$

Q.

什么是HJB function

什么是the optimal value function

Question

- 1. 引入 x_{n+1} 参数化作用是什么?参数化方法是指什么方法?
- 2. a two point boundary value DAE 是指 t_0 , t_f 给定吗?
- 3. 引入独立参数 τ 的作用是什么?