Expt 8 – Precision Rectifier and Active Filters

Oct 1, 2021 (Friday)
EE 230 Analog Circuits Lab
Joseph John
2021-22/I

Summary

- Precision Rectifiers
 - Half-wave Precision Rectifier Standard circuit
 - Improved Half-wave Precision Rectifier (Circuit A)
 - Improved Half-wave Precision Rectifier (Circuit B)
 - Precision Full-wave Rectifier

- Active Filters
 - Single-pole (LPF and HPF)
 - Sallen-Key (2-pole) LPF and HPF

Precision Rectifiers

- Rectifier circuits diode drops neglected (as these drops typ. 0.7 V)
 - were much smaller compared to the input ac signal, roughly 20 sin ωt.
- What about if the signal (to be rectified) of the order of the diode drops or much smaller.

- We can combine a diode and an Opamp (with negative feedback)
 - Problem can be easily addressed.
 - Combination of an Opamp and a diode is often called a 'Super diode' or a 'Precision Rectifier' circuit.

Half-wave Precision Rectifier - Standard circuit

• Here, $V_o = V_i$, when $V_i > 0$; $V_o = 0$, when $V_i < 0$

• Problems

- When V_i < 0, Opamp is saturated
- Will affect its switching speed

 V_{o}

 V_{o1}

Improved Half-wave Precision Rectifier (Circuit A)

One more diode introduced

- Opamp in linear region at all times
- Speeds improved

 V_{o}

 V_{o1}

Improved Half-wave Precision Rectifier (Circuit B)

One more diode introduced

- Opamp in linear region at all times
- Speeds improved

 V_o vs V_i

Precision Full-wave Rectifier

Full-wave rectifier

 Combination of a Half-wave and an inverting summer

 Half-wave rectifier output combined with Vi through a summer.

 V_{o}

 V_o vs V_i

Single-pole Active Low-pass Filter

- Very popular
- Can avoid using inductors
- Gain can be provided
- RC filter + a non-inverting amplifier
- Single-pole (-20 dB/decade roll-off)

Circuit values:

$$R_A = 4.7 \text{ k}\Omega$$
, $C_A = 0.1 \text{ \mu}\text{F}$, $R_1 = 9.1 \text{ k}\Omega$, $R_2 = 1 \text{ k}\Omega$
Voltage gain = 10

Single-pole Active High-pass Filter

- RC filter + a noninverting amplifier
- Single-pole (-20 dB/decade roll-off)
- Circuit values:

$$R_A = 4.7 \text{ k}\Omega, C_A = 0.1 \mu\text{F},$$

 $R_1 = 9.1 \text{ k}\Omega, R_2 = 1 \text{ k}\Omega$

• Voltage gain = 10

Sallen-Key (2-pole) Active Low-pass Filter

- 2-pole filter
- -40 dB/decade roll-off

 Need to choose R₁ and R₂ carefully (to take care of damping factor)

Sallen-Key (2-pole) Active High-pass Filter

- 2-pole filter
- -40 dB/decade rolloff

 Need to choose R₁ and R₂ carefully (to take care of damping factor)

Announcements

- Expt Handout of Expt 8 (please use only Ver 3, Oct 1)
 - Mistakes corrected (Ver 2.1, Sep 29): Lab Report: both Precision Rectifiers and Active Filters
 - Mistakes corrected (Ver 3, Oct 1): Sec 2.2 and Sec 2.3 R_1 = 9.1 k Ω , R_2 = 1 k Ω

Doubts – both Expt 7 and Expt 8