Zadanie C - Operacje tablicowe

Punktów procentowych do uzyskania: **8** (ewentualnie **10**)

Język programowania: C++
autor zadania: Marek Śmieja

Zadanie polega na zaimplementowaniu trzech operacji modyfikujących zadane fragmenty tablicy jednowymiarowej.

Opis zadania

Aby wyjaśnić dokładne działanie poszczególnych operacji zakładamy, że dana jest n-elementowa tablica liczb całkowitych o nazwie data, przy czym $n \ge 0$. Operacje będą wykonywane na fragmencie (ewentualnie na fragmentach) tablicy, to znaczy na podtablicach zadanych za pomocą dwóch liczb całkowitych b oraz e spełniających nierówności: $0 \le b < n$, $0 \le e < n$, $b \ne e$, gdzie bjest indeksem początku, zaś e jest indeksem końca fragmentu. Zakładamy ponadto, że tablica data reprezentuje "strukturę cykliczną", to znaczy po ostatnim (o indeksie n-1) elemencie następuje element o indeksie 0. Innymi słowy, przejście z ostatniego elementu tablicy na następny element skutkuje przejściem na poczatek tablicy. W konsekwencji nic nie stoi na przeszkodzie, aby zdefiniować fragment gdzie e<b. Wówczas fragment dla działań obejmuje elementy o indeksach b,b+1,...,n-1,0,1,...,e-1,e.

Specyfikacja możliwych operacji

1. Odwracanie.

W wyniku operacji należy odwrócić kolejność elementów w być może cyklicznym fragmencie od indeksu *b* do indeksu *e*.

2. Przesunięcie o k pozycji.

Jeśli $k \geqslant 0$, to być może cykliczny fragment od indeksu b do indeksu e ulega przesunięciu w prawo o wartość k miejsc, przy czym przesunięcie mieści się w zadanym fragmencie. Jeśli zaś k < 0 to analogiczny fragment ulega przesunięciu w lewo o k miejsc.

3. Zamiana fragmentów o zadanej długości.

W wyniku działania operacji należy zamienić ze sobą elementy dwóch być może cyklicznych fragmentów. Pierwszy z nich zadany jest za pomocą indeksów b oraz b+k, zaś drugi za pomocą indeksów e oraz e+k. Dokładniej mówiąc, każdy element o indeksie b+i powinien zostać zamieniony z elementem e+i dla i=0,1,...,k. Dla opisywanej operacji zakładamy,

że fragmenty nie nachodzą na siebie, to znaczy żaden element pierwszego fragmentu nie zawiera się w drugim fragmencie.

Wejście

- Dane wczytywane są ze standardowego wejścia.
- Pierwsza linia zawiera nieujemną liczbę $n \le 10000$ oznaczającą ilość elementów tablicy z danymi.
- W kolejnej linii znajduje się n liczb całkowitych oddzielonych spacją, stanowiących kolejne elementy tablicy danych.
- Następne linie zawierają kody (pojedynczy znak) oraz liczbowe parametry operacji jakie należy kolejno wykonać oddzielone pojedynczym znakiem spacji. Zakończenie ciągu operacji zadane jest kodem e.
- Specyfikacja operacji:
 - 1. Odwracanie oznaczone jest kodem r i zawiera dwa parametry *b* oraz *e*, które specyfikują fragment, który należy odwrócić.
 - 2. Przesunięcie zadane jest kodem s. Ponownie parametry *b* oraz *e* specyfikują fragment, który należy przesunąć. Ponadto, ostatni parametr *k* oznacza o ile pozycji należy przesunąć elementy.
 - 3. Zamiana fragmentów jest określona kodem m. Kolejne parametry to *b* (początek pierwszego fragmentu), *e* (początek drugiego fragmentu), *k* (długość fragmentu w rozumieniu specyfikacji).
- Operacji do wykonania może być dowolnie wiele.

Wyjście

Po napotkaniu kodu kończącego sekwencję operacji należy wypisać wynikową tablicę w jednej linii oddzielając elementy pojedynczym znakiem spacji.

Dodatkowe uwarunkowania

- Pierwsza linia kodu źródłowego MUSI w komentarzu w standardzie języka C++ (dwa znaki ukośnika) zawierać imię i nazwisko autora rozwiązania.
- Jedynym dozwolonym do włączenia plikiem nagłówkowym jest plik iostream.
- W rozwiązaniu zabronione jest używanie jakichkolwiek pomocniczych tablic, a jedyna konieczna i dozwolona tablica zawierająca dane musi nazywać się data.

- W rozwiązaniu zabronione jest używanie własnych podprogramów.
- Zabronione jest używanie operatora adresu (znak &) oraz operatora wyłuskania (znak *), ale nie jest zabronione używanie znaków wymienionych operatorów w innych zastosowaniach.
- Jakakolwiek próba obejścia powyższych warunków skutkuje dyskwalifikacją rozwiązania i wyzerowaniem punktacji po upływie terminu oddawania zadania.

Punktacja

Dla zaliczenia zadania wystarczy przyznanie przez Ba-Cę wartości 80%, co oznacza 8 punktów procentowych z całej puli punktów możliwych do uzyskania na BaCy. Jednakże przyznanie przez BaCę 100% wykonania zadania oznacza dwa bonusowe punkty procentowe z puli punktów BaCy.

Przykłady wejścia i odpowiadającego wyjścia

Przykład pierwszy:

wejście	wyjście
10	1 8 7 6 5 4 3 2 9 0
0 1 2 3 4 5 6 7 8 9	
r 2 7	
s 8 1 7	
e	

Przykład drugi:

wejście	wyjście
10 0 1 2 3 4 5 6 7 8 9	5 6 2 3 9 0 1 7 8 4
m 4 9 2	
e	

Przykład trzeci:

wejście	wyjście
10 0 1 2 3 4 5 6 7 8 9 s 7 2 -2 e	2 7 8 3 4 5 6 9 0 1