CIT2213 Game Engine Architecture

Lecture: Basic Physics Concepts

Dr Minsi Chen

Informatics

Overview

- Rigid bodies
- Kinematics
- Forces
- Angular motion

Basic Operations in Game Physics

- Move game entities
 - Apply forces
 - Compute motions
 - Integrate velocity, acceleration
- Collision detection
- Resolve collisions

Rigid Bodies

Definition

For a body to be characterised as rigid, its internal mass elements must be fixed relatively to each other.

- All mass elements undergo the same motion
- Simplify the notion of linear motion by treating a rigid body as a particle

A rigid body viewed as a particle system

Basic Properties

If a rigid body consists of n discrete mass elements, its mass and centre of mass are:

Mass:

The mass M is

$$M = \sum_{i=1}^{n} m_i$$

Centre of Mass:

The centre of mass \vec{c} is

$$\vec{c} = \frac{\sum_{i=1}^{n} m_i \vec{p_i}}{\sum_{i=1}^{n} m_i}$$

The body of a box car is constructed by "gluing" together multiple rigid bodies with uniform mass.

Kinematics

Definition

The study of motion without considering the influence of external forces is referred to as *kinematics*. For examples, we can describe the motion of our orbiting moon without knowing the gravitational forces; in TSP, an optimal path can be found without taking into account on how the salesman "travels"; motions from devices such as Kinect.

Describe the position of a particle as a function of time

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$

The Derivatives

- Velocity
 - $\vec{v}(t) = \frac{d\vec{r}}{dt}$
 - $\frac{d\vec{r}}{dt} \approx \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}(t_1) \vec{r}(t_0)}{t_1 t_0}$
- Acceleration
 - $\vec{a}(t) = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$
 - $\frac{d\vec{v}}{dt} \approx \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}(t_1) \vec{v}(t_0)}{t_1 t_0}$

Core quantities used in kinematics

- Displacement/position
- Velocity
- Acceleration

An Example 2D Motion

•
$$\vec{r}(t) = \vec{r_0} + \vec{v}t + \frac{1}{2}\vec{a}t^2$$

Motion in each dimension

$$x(t) = x_0 + v_x t + \frac{1}{2} a_x t^2$$

$$y(t) = y_0 + v_y t + \frac{1}{2} a_y t^2$$

Newtonian Laws of Motion

First law:

The uniform motion of an object is maintained unless an external force is applied to it.

Second law:

 $\mathbf{F} = m\mathbf{a}$

Third law:

For every action there is an equal and opposite reaction.

Forces - Newton's Gravity

The gravitational force between two bodies with mass m_1 and m_2 is,

•
$$\mathbf{F} = G \frac{m_1 m_2}{r^2}$$
;

• where

$$G \approx 6.67 \times 10^{-11} (Nm^2 kg^{-2}),$$

 r is the distance between two bodies.

The polar radius of the Earth is approx. 6.371 km and its mass $5.972\times10^{24}~\mathrm{kg}$

Shoot Thyself in the Back

What is the muzzle velocity required?

Forces - Hooke's Spring

Given a spring with rest length l_0 , the spring force ${\bf F}$ it generates when depressed or stretched is given by Hooke's law

•
$$\mathbf{F} = -k(l - l_0)$$

- *l* is depressed or stretched length
- k is the stiffness

More Realistic Springs

- Hooke's law only considers the linear property of a spring
- Unrealistic when large displacement occur
- A possible solution: model the spring constant k as a function of l

The property of material described using Young's modulus.

Forces - Dissipative Forces

Definition

Dissipative forces reduce the energy of a system when motions take place.

Given a body moving at velocity \vec{v} , the general dissipative model is:

$$|\vec{F}_{dissipative}| = c|\vec{v}|^n$$

- ullet $|\vec{F}|$ is the magnitude of the force
- c is a constant related to the environment
- \bullet In general, a dissipative force counters the object's motion, thus its direction is $-\vec{v}$

Dissipative Forces - Friction

Static Friction

$$\vec{F} = c_s \vec{F}_{normal}$$

where

$$c_s = \frac{max(F_{friction})}{F_{normal}}$$

Dynamic/Kinetic Friction

$$\vec{F} = -c_k \frac{\vec{v}}{|\vec{v}|}$$

where
$$c_k = \frac{F_{friction}}{F_{normal}}$$

To move the object, ${\cal F}$ has to first overcome static friction; when in motion the friction becomes kinetic friction.

How can we work out the friction coefficient of a specific surface?

Some Useful Friction Coefficients for Cars

The rolling resistance of a car is caused by friction between its tires and the surface it travels on.

On concrete: $c_s = 1.0, c_k = 0.8$

On wet road: $c_s = 0.6, c_k = 0.4$

On snow: $c_s = 0.3, c_k = 0.2$

Dissipative Forces - Viscous Force

- When a body travels through fluid (e.g. air, water),
- The viscous force is modelled by:

$$\vec{F} = -c|\vec{v}|^n \frac{\vec{v}}{|\vec{v}|}$$

 The aerodynamic drag of a car is a specific instance of viscous force:

$$\vec{F} = -c|\vec{v}|^2 \frac{\vec{v}}{|\vec{v}|} = -c\vec{v}|\vec{v}|$$

Forces - Torque

Definition

Torque is a physical quantity that describes the tendency for a force to cause rotation on a body.

- A force \vec{F} is exerted on point \vec{p} , the torque $\vec{\tau}$ is
- $\bullet \ \vec{\tau} = \vec{r} \times \vec{F}$
- where $\vec{r} = \vec{p} \vec{c}$
- \bullet \vec{c} is the centre of mass

Angular Motion in 2D

- In 2D, objects only have 1 DOF in angular motion
- ullet Given a torque au, the angular acceleration lpha is given by

$$\alpha = \frac{\tau}{I}$$

$$\tau = I\alpha$$

• *I* is the moment of inertia, defined as

$$I = \sum_{i=1}^{n} m_i |\vec{p_i} - \vec{c_i}|^2$$

Angular Motion in 3D

- In 3D, objects have 3 DoFs in angular motion
- ullet $ec{ au}$ and $ec{lpha}$ are related by the inertia tensor ${f I}$

$$\begin{bmatrix} \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix} \begin{bmatrix} \alpha_x \\ \alpha_y \\ \alpha_z \end{bmatrix}$$

$$\vec{\tau} = \mathbf{I}\vec{\alpha}$$

To find angular acceleration from torque (require matrix inversion)

$$\vec{\alpha} = \mathbf{I}^{-1} \vec{\tau}$$