# Infrastructure & Renewable Energy Business Development

**Gigih Prakoso**SVP Corporate Strategic Growth



PT Pertamina (Persero)

Jln. Medan Merdeka Timur No.1A Jakarta 10110 Telp (62-21) 381 5111 Fax (62-21) 384 6865 http://www.pertamina.com

## **AGENDA**





## **AGENDA**





## The government has set national energy targets for 2025, encompassing a shift in the mix toward coal, renewables and gas

#### **Indonesia's National Energy Mix (Mboe)**

2010-2025 shift - Perpres 5/2006



#### Comments

- Perpres 5/2006 aims to secure national energy supply by achieving, by 2025:
  - energy elasticity ratio (rate of energy consumption growth vs. rate of economic growth) < 1</li>
  - A shift in the energy mix toward a more sustainable one (from oil to renewable, coal and gas)
- Minister of Energy & Mineral Resources has the responsibility to develop the Blueprint of National Energy Management, defining the high level requirements for the development of critical infrastructures (in particular for coal and gas)



## Energy demand mix evolution is driven by consumer growth and fuel substitution – regulation impacts both dimensions



#### **Role of Regulations**

- Industrial regulations are key to growth of consumer segments:
  - Facilitation in setting up industry units
  - Pricing driving customer acquisition
  - Public service obligation etc.



- Fuel pricing regulations impact economic substitution between fuels:
  - Price subsidies on gasoline, diesel and natural gas will determine their demand mix
- Mandates may drive substitution of certain fuels:
  - Substitution of gasoline and diesel with CNG may be boosted by mandating CNG use in public transport
- Regulatory thrust on alternate energy may drive its adoption over conventional fuels



## Within the likely consumer growth, substitution and regulatory scenarios, Indonesia can expect a surge in oil and gas demand

#### **Indonesia – Demand Outlook**



## This demand growth entails ~\$30 bn investments in infrastructure across the oil and gas value chain, excluding supply infrastructure

Supply infrastructure

#### **Investment Required** \$ Bn, Till 2025 Storage **■**Vessel Retail Truck 2 - 5~0.2 3.5 - 4Bridger **DPPU** Refueler ~0.03 ~0.4 ~0.1



<sup>\*</sup> Transmission pipeline investments will depend on detailed planning of regas and pipelines



## Pertamina has been proactively thinking about infrastructure development and has developed supporting tools for planning

Initiative : Pertamina Infrastructure Strategy 2025 (Models & Tools)

## Initiative : Pertamina Infrastructure Planning (Models & Tools)

### Integrated Energy Model



- Model integrated energy demand up to 2025
- Integrate internal Pertamina study & bottom-up approach – analysis by consumer industry

In addition, business model reference book developed to guide partnership decisions

### Infrastructure Integration Model



 Translate projected demand into required infrastructure using thumb rules

## 2 Infrastructure Database (Existing)



 Create a single "source of truth" on existing infrastructure

## 4 Gap Identification Model



 Identify gaps by comparing required infrastructure to existing infrastructure + RJPP projects



### RJPP Infrastructure Projects (Planned)



 List of infrastructure projects in RJPP i.e. 2014-2018

#### 5 Prioritization Model



 Prioritize infrastructure gaps based on quantitative criteria



#### Output:

Prioritized Gaps serving as inputs to infrastructure planning





## Analysis suggests retail & storage as key gaps by 2018; additional infrastructure is required across regions/fuels to meet 2025 demand

#### **Gap Analysis – Summary**





## Gap mitigation will require extra investments – business model options have been evaluated with a view of attracting partners

#### **Business Model Review - Key Drivers**

- Funding constraints could be addressed by attracting partners through implementation of alternate business models
- Partnership options across the value chain of relevant infrastructure have been evaluated on the basis of:
  - <u>Capability requirement</u>: Level and sophistication of resources required from Pertamina
  - Implementation risk: Pertamina's risk appetite in building the infrastructure
  - <u>Funding requirement</u>: Pertamina's available funding given the overall investment perspective
  - Balance sheet implication: Implications of investments to Pertamina's financial statements (e.g. distinction between operational vs financial lease)
  - Attractiveness for partner: Creation of an incentive model to attract potential partners



Source: Team analysis



## Regulatory support is required to effectuate favorable demand mix and infrastructure investments

#### **Key Support required from Regulators**

Facilitation of Target Energy Mix

- Regulatory support is required for Indonesia to achieve the target of oil substitution by increase in gas and renewable penetration. Certain steps in this direction could be:
  - Facilitating substitution driven by economics through pricing regulations: e.g.
     Liquid fuel price deregulation and/or subsidies on alternative energy / CNG
  - Volume allocation of substitutes to consumers to create certainty of supply : e.g.
     preferential allocation of gas to city gas distribution, fostering fuel substitution
  - Mandates facilitating substitute adoption : e.g. mandating use of CNG in public transport

Facilitation of Infrastructure Investments

- Attracting global players to provide access to their existing infrastructure or invest in new infrastructure to support Indonesia's energy demand:
  - Facilitating use of assets of global players : e.g. Gas shipping activities
  - Attracting infrastructure investments: e.g. providing tax breaks to global investors

Facilitation of Supply Enhancement

 Attracting investment in exploration & production as well as supply infrastructure such as refineries by easing the regulatory regime appropriately

Source: Team analysis



## **AGENDA**





## Renewable Energy Projects in Pertamina – updated 2014





### Integrated Bioethanol project: NPV USD 45 Mn, IRR 12.6%, Capex USD 200 Mn

## **Bioethanol project financials**

#### **Integrated Projects Cash Flows (USD Mn)**



### **Cost Breakdown**



|                                | Key assumptions                                                                                                           |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Technology                     | 2 <sup>nd</sup> Generation (Enzymatic)                                                                                    |
| Plant capacity                 | 76,000 KL of refinery and 7000 Ha of plantation                                                                           |
| CAPEX                          | ~ USD 170 Mn for refinery<br>& ~ USD 50 Mn for<br>plantation                                                              |
| Plant lifetime                 | 20 years                                                                                                                  |
| Conversion factor <sup>1</sup> | 5                                                                                                                         |
| Feedstock requirement          | Napier Grass                                                                                                              |
| Feedstock cost                 | 41 USD per ton of biomass increasing at inflation                                                                         |
| Product price                  | Increasing ethanol price<br>forecast driven by<br>increasing global mandates<br>and high crude oil prices<br>(AT Kearney) |
| Inflation                      | 3% & 7% per annum                                                                                                         |

## Several proven technology provider in 2G bioethanol industry

## **Technology Partners**

|                                   |                              |                                                                                                                                |                 | nign (                        | ) LOW P                   | omising Partners                                            |
|-----------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|---------------------------|-------------------------------------------------------------|
| Technology                        | Company                      | Overview                                                                                                                       | 2G<br>Capacity  | Tech<br>Maturity <sup>2</sup> | Willingness<br>to License | Strengths /<br>USP                                          |
|                                   | BETA RENEWABLES              | <ul> <li>JV between</li> <li>Mossi &amp; Ghisolfi (global energy group</li> <li>Chemtex (leading chemicals firm)</li> </ul>    | 76              |                               | <b>✓</b>                  | World's first<br>commercial scale<br>plant                  |
| 2 <b>G</b>                        | Advanced Biofuels  ABENGOA   | <ul> <li>JV between</li> <li>POET – Largest 1G ethanol producer<br/>in US</li> <li>DSM – Leading technology company</li> </ul> | 95 <sup>1</sup> | <b>4</b>                      | <b>√</b>                  |                                                             |
| Biochemical  1. Under Constructio | ABCINGOA                     | Leading US 1G ethanol producer                                                                                                 | 95 <sup>1</sup> |                               | ✓                         |                                                             |
|                                   | frontier renewables  ZeaChem | <ul> <li>JV between</li> <li>Mascoma – Renewable fuels firm</li> <li>J.M. Longyear – leading natural resources firm</li> </ul> | 76 <sup>1</sup> |                               | <b>√</b>                  | Cost reduction by combining enzyme treatment & fermentation |
|                                   |                              | <ul> <li>Fuel and chemical player</li> <li>Products include biofuels, diesel, acetic acid, etc.</li> </ul>                     | 95¹             |                               |                           | Among highest expected ethanol yields                       |

High Dow Promising Partners

<sup>2.</sup> Based on estimated time to start commercial operations Sources: News Sources, Secondary research, A.T. Kearney

## Technology, economics and feedstock assessment shows 2G ethanol as the most attractive

## **Assessment of bioethanol project types**

| Un            | favourable |  | Favourable |
|---------------|------------|--|------------|
| Selected Proj |            |  | t Types    |

|                                         | Assessment Criteria                                             |   |                                          |   | Other                                                                                                                                              |   |                                                            |         |
|-----------------------------------------|-----------------------------------------------------------------|---|------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------|---------|
| Project type                            | Technology maturity                                             |   | Economics <sup>2</sup> (Production Cost) |   | 3 Feedstock                                                                                                                                        |   | Considerations                                             | Overall |
| 1G – Yeast<br>Fermentation <sup>1</sup> | Most widely used (~99% of global production)                    | • | • High (USD ~0.78-<br>0.83 / I)          |   | Decent availability – Large competing demand from food, industry                                                                                   | • | Unviable<br>economics –<br>Insufficient<br>benchmark price |         |
| 2G – Biochemical<br>Treatment           | Multiple operating / upcoming commercial facilities             | • | Low (USD 0.4-0.6 / I)                    | • | <ul> <li>Rice husk, rice straw, EFB, wood fuel, etc.</li> <li>Significant availability; Supply chain to be established</li> </ul>                  | • |                                                            |         |
| 2G –<br>Thermochemical<br>Treatment     | Enerkem, INEOS,<br>Lanzatech are the<br>only major<br>companies | • | Low (USD 0.4-0.6 / I)                    | • | <ul> <li>Rice husk &amp; straw, EFB,<br/>MSW, wood fuel, etc.</li> <li>Significant availability;<br/>Supply chain to be<br/>established</li> </ul> | • |                                                            |         |
| 3G – Algae<br>Fermentation              | No commercial facility                                          | 0 | High (USD 1.0-2.0 / I)                   | 0 | <ul><li>Large potential for algae</li><li>Efficient method needs to<br/>be developed</li></ul>                                                     |   | Problems related to scalability                            |         |

<sup>1.</sup> Acetic acid fermentation is another type of fermentation, but lesser used

<sup>2.</sup> Status as of 2012 Source: A.T. Kearney

### Integrated Greendiesel project: NPV USD 183 Mn, IRR 14.8%, Capex USD 900 Mn

## **Greendiesel project financials**

#### **Integrated Projects Cash Flows (USD Mn)**



### **Cost Breakdown**



|                       | Key assumptions                                                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|
| Technology            | 1.5 generation (hydrogenated)                                                                                         |
| Plant capacity        | 10,000bbl/day of refinery and 100,000 Ha of plantation                                                                |
| CAPEX                 | ~ USD 193 Mn for refinery<br>& ~ USD 700 Mn for<br>plantation                                                         |
| Plant lifetime        | 20 years                                                                                                              |
| Feedstock requirement | CPO, RBDPO, Stearin                                                                                                   |
| Feedstock cost        | Integrated                                                                                                            |
| Product price         | Increasing Gasoil price<br>forecast driven by<br>increasing global mandates<br>and high crude oil prices<br>(Woodmac) |
| Inflation             | 3% & 7% per annum                                                                                                     |

### Bioavtur project: NPV USD 283 Mn, IRR 23.74%, Capex USD 259 Mn

## **Bioavtur project financials**

### **Projects Cash Flows (USD Mn)**



### **Cost Breakdown**



|                       | Key assumptions                                                    |
|-----------------------|--------------------------------------------------------------------|
| Technology            | 1.5 generation (hydrogenated+Isomerization)                        |
| Plant capacity        | 10,000bbl/day of refinery                                          |
| CAPEX                 | ~ USD 259 Mn for refinery                                          |
| Plant lifetime        | 20 years                                                           |
| Feedstock requirement | CPO, RBDPO, Stearin                                                |
| Feedstock cost        | Integrated                                                         |
| Product price         | Increasing jet A1 price forecast (Woodmac) driven multiply by 120% |
| Inflation             | 3% & 7% per annum                                                  |

## **Biofuels Project Update**

| Project<br>Name | Project<br>Profile                                                                                                                                                                                                                | Updated<br>Status                                                                                                                      | Target<br>Onstream | Potential Partners                                                                                 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------|
| Green<br>Diesel | <ul> <li>10,000 bbl/day</li> <li>Total capex USD 187 mio</li> <li>Feedstock : CPO and derivaitves</li> <li>Hydrogenation Technology (1.5G)</li> <li>Strategy : Integrated with<br/>Plantation</li> </ul>                          | <ul> <li>Pre-FS done</li> <li>Procuring Consultant for<br/>DFS is on progress</li> </ul>                                               | 2018               | <ul> <li>PTPN IV<br/>(Persero)</li> <li>PT Medco<br/>intidinamika</li> <li>PT SMART Tbk</li> </ul> |
| Bio avtur       | <ul> <li>10,000 bbl/day atau 257,000 KL/year</li> <li>Capex USD 220 mio</li> <li>Feedstock : CPO and derivatives</li> <li>Hydrogenation Technology</li> <li>Strategy : Offtake CPO with Hedging</li> </ul>                        | <ul> <li>Pre-FS done</li> <li>Procuring Consultant for<br/>DFS is on progress</li> </ul>                                               | 2018               | PT Wilmar     Nabati     Indonesia                                                                 |
| Bio ethanol     | <ul> <li>200 ton/day atau 76,000 KL/year</li> <li>Capex USD 170 mio</li> <li>Feedstock : Lignocellulosic<br/>(napier grass)</li> <li>Technology 2G Lignocelluloseic</li> <li>Strategy : Integrated with<br/>Plantation</li> </ul> | <ul> <li>Pre-FS done in mid<br/>2013</li> <li>Have selected<br/>Consultant for DFS<br/>(Nexant)</li> <li>DFS is on progress</li> </ul> | End of 2017        | <ul><li>Toyota Motor<br/>Corporation</li><li>PTPN X<br/>(persero)</li></ul>                        |



## Resource Availability of Wind Farm in Indonesia limited to several area with strong wind regime

## Resource availability

**Global Average Wind Speed** 



5km Wind Map

Mean Wind Speed at 80m

Overall Indonesia is not a major wind resources country: wind energy potential along the equator is usually limited

Potential 9 GW, average 3 m/s in most areas



## **Wind Energy Project Update**

| Project<br>Name          | Project Profile                                                                                                                                                                                            | Status                                                                                                                                                         | Target On<br>Stream | Partners                     |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|
| Wind Energy<br>Jeneponto | <ul> <li>Wind farm in Jeneponto, South Sulawesi</li> <li>Site Measurement conducted by GE for 4.5 years to date</li> <li>Capacity 62.5 MW expandable into 130 MW</li> <li>Capex USD 150 million</li> </ul> | <ul> <li>Data collection completed</li> <li>Ijin Prinsip granted</li> <li>On going propose PPA to PLN (Rp 1600/kWh)</li> <li>EPC Contract selection</li> </ul> | Q1- 2017 •          | Asia Green<br>Capital<br>IFC |
| Wind Energy<br>Viron     | <ul> <li>Wind farm in Sukabumi, West Java</li> <li>Capacity 10-50 MW</li> <li>Capex 20 million</li> <li>Site measurement by P3TKEBTKE (ESDM) 2006-2008</li> <li>PPA for 10 MW at Rp 870/kWh</li> </ul>     | <ul> <li>Renegotiation PPA<br/>(lead by partner)</li> <li>Finalization Feasibility<br/>Study</li> </ul>                                                        | 2015                | Viron Energy<br>Suzlon       |



## **AGENDA**





## Pertamina Geothermal Energy (PGE) had cooperation with Japan International Cooperation Agency (JICA) as follow...

| Projects Progress per Januari 2014 |                                                                   | COD Target                            | Financing Scheme                                       |  |  |
|------------------------------------|-------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------|--|--|
| Lumut Balai<br>Unit 1              | Unit 1 : Development & EPCC Bidding                               | Unit 1: 2016                          | <ul><li>Corporate Loan + Soft loan from JICA</li></ul> |  |  |
| Lumut Balai<br>Unit 2,3 & 4        | <ul> <li>Unit 2,3, &amp; 4: Exploration<br/>(Drilling)</li> </ul> | • Unit 2 : 2018<br>• Unit 3 & 4: 2019 | <ul><li>Corporate Loan + Soft loan from JICA</li></ul> |  |  |





