cronologic

Ndigo5G-PCle
USER GUIDE

www.cronologic.de

1 Introduction

The Ndigo5G is a digitizer and transient recorder designed to sample relatively shorts pulses in rapid repetition. It produces a stream of output packets, each containing data from a single trigger event together with a timestamp.

By default the Ndigo5G is equipped with a passive cooling system. If necessary, the unit might be ordered with an active cooling system on demand (see Figure 1.1).

1.1 Features

- · 10 bit dynamic range
- Up to **5 Gsps** sample rate (in 1 channel mode) for increased resolution in time domain.
- Up to **4 channels** for your individual measurement setups.
- · Digital input with TDC that can also be used for gating and triggering.
- · 2nd digital input for gating or triggering.
- PCle 4x 1.1 with **800 MB/s throughput** for simple and fast data transfer to most PCs.
- · Multiple boards can be synchronized via reference clock if more channels are required.
- · Extension board available with 4 additional digital inputs.

Figure 1.1: Overview of the Ndigo5G equipped with active cooling system.

2 Hardware

2.1 Installing the Board

The **Ndigo6G** board can be installed in any **x4** (or higher amount of lanes) PCIe slot. If the slot electrically supports less than 4 lanes, the board will operate at lowerdata throughput rates.

Please ensure proper cooling of the device. The Ndigo5G has an onboard temperature detection. If the ADC chip temperature exceeds 90 C a warning is issued to the device driver. In case the temperature is higher than 95 C the ADC is disabled to avoid damage. Using a PCI-slot cooler is in many cases an appropriate solution to circumvent problems caused by overheating if the board is used inside a PC. The Ndigo-Crate will provide sufficient cooling under normal operating conditions.

Using a single **Ndigo6G**, no further connections need to be made.

For applications that require more than four ADC channels, several Ndigo boards can be operated in sync. Any board of the **Ndigo product line** can be synced to other Ndigo boards, allowing, for instance, for a combination of high speed ADCs (e.g., **Ndigo6G**) and slower high resolution ADCs (**Ndigo250M-14**).

The signals used for board synchronization and inter-board triggering are transferred on a bus between the boards. Join all C2 connectors (see Figure 2.3) on the boards using a ribbon cable. Both ends of the bus need to be terminated properly. If using a **Ndigo Crate**, connectors providing the termination are located on the crate mainboard next to the PCIe slots to the extreme left and right. <more details, pease refer to the Ndigo Crate user guide. In applications that use only a few Ndigo boards installed directly inside a PC, termination PCBs available from cronologic can be used.

The standard device driver of the **Ndigo6G** can be used to read out all boards and acquire data. For more complex scenarios, using the **cronoSync-library**, which is part of cronoTools, is recommended. The **cronoSync-library** is provided with the Ndigo device driver. Please refer to the **cronoTools User Guide** for more information.

Figure 2.1: If several Ndigo boards are connected to work in sync, the boards must be connected using a ribbon cable as bus for synchronization and trigger signals. Proper termination is required at both ends of the cable.

2.2 Ndigo6G External Inputs and Connectors

2.2.1 Connectors

The inputs of the **Ndigo6G** are located on the PCI bracket. Figure 2.3 shows the location of the four analog inputs A to D and the two digital inputs G (GATE) and T (Trigger). Furthermore, two board interconnection connectors can be found at the top edge of the **Ndigo6G** board, as displayed in Figure 2.3. Connector C1 is used for a board-to-board connection (e. g., to link a **HPTDC8-PCI** and a **Ndigo5G** via a **Ndigo Extension Board**, see Chapter 2.3). Connector C2 is used as a bus interface between multiple Ndigo boards distributing clock, trigger and sync signals. Proper termination must be placed at both ends of the bus interconnection ribbon cable.

Figure 2.2: Input connectors of an Ndigo6G board located on the PCI bracket.

Figure 2.3: Ndigo6G board showing inter-board connectors C1 and C2.

2.2.2 Analog Inputs

Figure 2.4: Input circuit for each of the four analog channels.

The analog inputs of the ADC are single ended LEMO00 coax connectors. The inputs have a 50 Ω impedance and are AC coupled. The inputs are converted to a differential signal using a balun.

Analog Offsets

AC coupling removes the common mode voltage from the input signal. Users can move the common mode voltage to a value of their choice using the analogoffset parameter of each channel before sampling.

This feature is useful for highly asymmetric signals, such as pulses from TOF spectrometers or LIDAR systems. Without analog offset compensation, the pulses would begin in the middle of the ADC range, effectively cutting the dynamic range in half (see Figure 2.6). By shifting the DC baseline to one end of the ADC range, the input range can be used fully, providing the maximum dynamic range. The analog offset can be set between \pm 0.25 V.

Figure 2.5: Users can add analog offset to the input before sampling

Figure 2.6: Asymmetric signal shifted to increase dynamic range

2.2.3 Digital Inputs

There are two digital inputs on the front slot cover called Trigger (T) and Gate (G).

Both inputs provide a digital input signal routed to the trigger matrix. These signals can be used to trigger any of the trigger state machines and gating blocks. The inputs are AC coupled. A DC offset is configurable via dc_offset_parameter in the *configurations structure* to support positive and negative input pulses.

The configuration is set via the structure's trigger [8] and trigger [9] in the configuration structure. The input circuit is shown in Figure 2.17.

TDC on Trigger Input

A time-to-digital (TDC) connected to the Trigger input. The TDC creates packets of **type 8**. These packets first contain a coarse timestamp and a payload that can be used to calculate the trigger position with higher precision. The function ndigo_process_tdc_packet can be used to replace the coarse timestamp with the precise timestamp. This function is described in Chapter %s. TDC pulses must have a minimum duration of 3.3 ns. The dead-time of the TDC is 32 ns.

Note: When used with the TDC, the Trigger input supports negative pulses only.

2.3 Extension Card

The **Ndigo Extension Card** provides additional inputs or outputs to the FPGA. It is connected to the C1 (Samtec QSS-025) connector on an **Ndigo5G** by an Samtec SQCD cable assembly.

The **Ndigo Extension Card** provides up to ten single ended LEMO00 connectors. The circuit connecting to each of these circuits can be chosen to provide inputs or outputs. These can be AC or DC coupled. AC coupled inputs support NIM signaling.

The signals connect to 2.5 V IO Pins of the Xilinx Virtex-5 FPGA. The current firmware revision provides the following signal connections.

Connector	QSS Pin	FPGA Pin	Direc- tion	Signal	
LEMO00: CH0	22	AD9	Input	Ndigo Extension digital channel 0	
LEMO00: CH1	18	AE10	Input	Ndigo Extension digital channel 1	
LEMO00: CH2	14	D10		not connected	
LEMO00: CH3	10	AF9	Output	39.0625 MHz clock for HPTDC	
LEMO00: CH4	6	AD11	Output	39.0625 MHz clock for HPTDC	
LEMO00: CH5	5	AE7	Output	39.0625 MHz clock for HPTDC	
LEMO00: CH6	9	AF7	Output	39.0625 MHz clock for HPTDC	
LEMO00: CH7	13	D9		not connected	
LEMO00: CH8	17	V9	Input	Ndigo Extension digital channel 2	
LEMO00: CH9	21	W9	Input	Ndigo Extension digital channel 3	
SYNC1: Sync-TDC8	26	F9		not connected	
SYNC1: Sync- HPTDC	44	AA7	Output	Sync for HPTDC	

The four digital inputs are routed to the bus inputs of the trigger matrix to be used for triggering. The routing can be configured to either *OR*ing the sync bus and extension channels or use the extension channels exclusively.

Connector	Extension Card	Trigger matrix input	Trigger matrix input
	Digital Channel	ignorecable = 0	ignorecable = 1
LEMO00: CH0	0	BUS0 = EXTO Sync Cable 0	BUS0 = EXTO
LEMO00: CH1	1	BUS1 = EXT1 Sync Cable 1	BUS1 = EXT1
LEMO00: CH8	2	BUS2 = EXT2 Sync Cable 2	BUS2 = EXT2
LEMO00: CH9	3	BUS3 = EXT3 Sync Cable 3	BUS3 = EXT3

2.3. Extension Card 7

2.4 Ndigo5G Functionality

2.4.1 ADC Modes

Depending on board configuration, the analog input signal is quantized to 8 or 10 bits. However, the board always scales and offsets the data to 16 bit signed data centered around 0.

Data processing such as trigger detection or packet building are always performed on 3.2 ns intervals. Depending on the ADC mode, this interval may contain 4, 8 or 16 samples.

The board supports using one, two or four channels:

1 Channel Modes A, B, C and D

In these modes, only a single channel is used. The analog signal on that channel is digitized at 5Gsps. Packet size is always a multiple of 16 samples per 3.2 ns (See Figures 2.9 and 2.15).

2 Channel Modes AC, BC, AD and BD

In these modes, two channels are used simultaneously. The analog signals on these channels are digitized at **2.5 Gsps** each. Packet size is always a multiple of 8 samples per 3.2 ns (See Figures 2.8 and 2.14).

4 Channel Mode ABCD

In this mode, all four channels are digitized independently at 1.25 Gsps each. The packet size is always a multiple of 4 samples per 3.2 ns. (See Figures 2.7 and 2.13).

Multiple Sampling Modes AAAA, BBBB, CCCC and DDDD

In these modes, only one analog input channel is used, but the channel is sampled independently and simultaneously by four ADCs at **1.25 Gsps**. The board creates four independent streams with 4 samples each per **3.2 ns**.

Using the same trigger setting on all ADCs, can be used to reduce noise by averaging the four channels. To deal with complex triggering conditions, different trigger settings on each of the ADCs can be used.

The **Ndigo5G** provides four ADCs sampling at **1.25 Gsps** each. Higher speed modes are implemented by interleaving two or four of these ADCs.

During interleaving, the **Ndigo5G** firmware reorders and groups the data into a linear sample stream. The process is fully transparent. For users, the only difference is that a **3.2 ns** cycle can contain 4, 8 or 16 samples, depending on mode.

Figure 2.7: ADCs in 4 channel mode ABCD at 1.25 Gsps.

Figure 2.8: ADCs in 2 channel mode AD, interleaved for 2.5 Gsps.

Figure 2.9: ADCs in 1 channel mode A, B, C or D interleaved for 5 Gsps.

2.4.2 Zero Suppression

One key features of the **Ndigo6g** is on-board zero suppression to reduce PCIe bus load. Only data that passes specifications predefined by the user is transmitted. This guide refers to transmitted waveform data as "packets". A packet contains the waveform data and a timestamp giving the absolute time (i.e. the time since start of data acquisition) of the packet's last sample.

Figure 2.14 shows a simple example: Data is written to the PC only if values exceed a specified threshold. Expanding on that, **Ndigo5G**'s zero suppression can be used to realize much more complex scenarios.

Figure 2.10: Simple zero suppression: Only data with values above a threshold are written to the PC.

2.4.3 Trigger Blocks

Ndigo5G-10 and **Ndigo5G-8** record analog waveforms using zero suppression. Whenever a relevant waveform is detected, data is written to an internal FIFO memory. Each ADC channel has one trigger block determining whether data is written to the FIFO. The parameters are set in Structure **ndigo_trigger_block** (See Chapter %s).

Each trigger block consists of two independent units that check the incoming raw data stream for trigger conditions (Figure 2.10). Users can specify a threshold and can choose

whether triggering is used whenever incoming data is below or above the threshold (level triggering) or only if data exceeds the threshold (edge triggering).

A gate length can be set to extend the trigger window by multiples of **3.2 ns**. Furthermore, if users choose precursor values > 0, the trigger unit will start writing data to the FIFO precursor 3.2 ns before the trigger event.

When using edge triggering, all packets have the same length (Figure 2.11): precursor + length + 1 cycles of **3.2 ns**. For level triggering, packet length is data dependent (Figure 2.12).

Please note that triggering is not accurate to sample. For each **3.2 ns** clock cycle, it is determined whether on any sample during that clock cycle a trigger condition is met. The clock cycle is then selected as the trigger point. As a result, the trigger sample can be anywhere within a range of up to 16 samples in single channel mode (Figure 2.15) at 16 samples per 3.2 ns.

If retriggering is active, the current trigger window is extended if a trigger event is detected inside the window.

A trigger block can use several input sources:

- The 8 trigger decision units of all four ADC channels (Figure 2.16)
- The GATE input (Figure 2.17)
- The Trigger or TDC input (Figure 2.17)
- · A function trigger providing random or periodic triggering.
- Triggers originating from other cards connected with the sync cable or from the Ndigo Extension card (BUSO, BUS1, BUS2, BUS3)
- A second set of trigger units with names ending in pe for the digital inputs Trigger, GATE, BUSO, BUS1, BUS2, and BUS3 configured for positive edge triggering. Together with the regular trigger units on this inputs, both edges of a pulse can be used in the trigger logic. This set of triggers is not available as inputs for the gate blocks.

Trigger inputs from the above sources can be concatenated using logical OR (Figure 2.19) by setting the appropriate bits in the trigger blocks source mask.

Triggers can be fed into the gate blocks as described in Chapter 2.4.4 (Figure 2.20). Gate blocks can be used to block writing data to the FIFO. That way, only zero suppressed data occurring when the selected gate is active is transmitted. This procedure reduces PCIe bus load even further (Figure 2.20).

Figure 2.11: Parameters for edge triggering.

Figure 2.12: Parameters for level triggering.

Figure 2.13: Triggering in 4 channel mode at 4 samples per clock cycle.

Figure 2.14: Triggering in 2 channel mode at 8 samples per clock cycle.

Figure 2.15: Triggering in 1 channel mode at 16 samples per clock cycle.

Figure 2.16: From the ADC inputs, a trigger unit creates an input flag for the trigger matrix. Each digitizer channel (A, B, C, D) has two trigger units.

Figure 2.17: The digital inputs Trigger, GATE, BUSO, BUS1, BUS2 and BUS3 have simpler trigger units.

Figure 2.18: The extension block combines signals from the optional extension board and the sync cable.

Figure 2.19: Trigger Matrix: The trigger signals of each ADC channel, the trigger input, the GATE input or the sync cable can be combined to create a trigger input for each trigger block. The four gate signals can be used to suppress triggers during certain time frames.

2.4.4 Gating Blocks

Figure 2.20: Gating Blocks: Each gating block can use an arbitrary combination of inputs to trigger its state machine. The outputs can be individually inverted and routed to the AND-gate feeding the trigger blocks.

To decrease the amount of data transmitted to the PC, **Ndigo6G** includes four independent gate and delay units. A gate and delay unit creates a gate window starting at a specified time after a trigger, closing the window at gate stop. Both timing values — gate start and gate stop — must be set as multiples of 3.2 ns.

Trigger blocks can use the gate signal to suppress data acquisition: Only data that fulfills zero suppression specifications occurring in an active gate window is written to the PC.

As input, any trigger from the four trigger blocks, the GATE and Trigger inputs, a trigger from a connected board and the function generator can be used.

The retrigger feature will create a new gate if a trigger occurs during an active gate window. The gate signal can be inverted, causing an active gate to close for a time defined by the user.

The parameters of a gating block are set in Structure ndigo_gating_block described in Section %s <3.4.4>.

Figure 2.21 shows the functionality of the gate timing and delay unit. The active gate time is marked in green.

Figure 2.21: Gate and delay functionality: When a trigger occurs, the gate opens after a set period of time "gate start" and closes when it reaches "gate stop".

Gating Example 1: Suppression of Noise After Starting an Acquisition

In mass spectrometer and other experiments, noise while starting data acquisition can result in undesired trigger events for that time period. To prevent noise in the output data, a gating block could be used to suppress all triggers during start-up.

The following example illustrates the use of a gating block to prevent noise: The GATE input transmits a pulse on each acquisition start. The trigger structure of the GATE input is used to select pulse polarity. Then, the GATE trigger is selected as gating block input and the gating block's start parameter is set to 0. The stop parameter is set to the desired length measured in 3.2 ns clock cycle and negate is set to true. The gating block will now output a low pulse of the desired length whenever there is a pulse on the GATE input.

Enabling this gating block as an AND input to the trigger block, for which noise shall be suppressed.

Gating Example 2: Delayed Trigger

To sample a short window at a specified time after a trigger event on a channel, the gating block can be used to create a delayed trigger. To do this, one of the triggers of the channel of interested is configured to the desired parameters by selecting the threshold, setting the edge polarity and enabling edge triggering.

Instead of directly using this trigger as input to the trigger block's input matrix, the trigger is selected as an input to a gating block. The block is configured to start = delay (in 3.2 ns clock cycles) and stop = start+1, negate = false. This causes the gating block to produce a one clock cycle pulse on its output after the specified delay.

To send this pulse to the trigger block, the gating block must be enabled in the trigger block's AND matrix and the ONE trigger source must be selected.

Gating Example 3: Dual Level Trigger

The gates provide AND connections between each other (see Figure 2.19) which can be used for example in a dual level trigger. For the acquisition of signal data with amplitudes between a lower and an upper bound, for example, two level triggers can be connected (see Figure 2.22): a falling level trigger with an upper threshold and a rising level trigger with a lower threshold.

Since the triggers are only connected by OR in the triggerblock logic (see Figure 2.19) they are assigned to one of the gates each and connected with AND via the gating block region of the trigger matrix (see Figures 2.19 and 2.23). Because of the dead times of the gates it is important to enable the retriggering feature. Furthermore a precursor of 2 clock cycles is needed, because the gates are delayed in relation to the ADC samples.

Figure 2.22: Measureing data with amplitude between an upper and a lower threshold by means of two level triggers.

Config settings can be found in the following code snippet.

```
config.trigger_block[0].enabled = 1;
config.trigger_block[0].precursor = 2;
config.trigger_block[0].length = 0;
config.trigger_block[0].sources = NDIGO_TRIGGER_SOURCE_ONE;
config.trigger_block[0].gates = NDIGO_TRIGGER_GATE_0 | NDIGO_TRIGGER_GATE_1;
config.gating_block[0].retrigger = 1;
config.gating_block[0].stop = 0;
config.gating_block[0].sources = NDIGO_TRIGGER_A0;
config.gating_block[1].retrigger = 1;
config.gating_block[1].stop = 0;
config.gating_block[1].stop = 0;
config.gating_block[1].sources = NDIGO_TRIGGER_A1;
config.trigger[NDIGO_TRIGGER_A0].rising = 0;
config.trigger[NDIGO_TRIGGER_A0].threshold = 10000;
config.trigger[NDIGO_TRIGGER_A1].rising = 1;
config.trigger[NDIGO_TRIGGER_A1].threshold = -10000;
```


Figure 2.23: Gating block logic for the AND connectino of two triggers.

2.4.5 Auto Triggering Function Generator

Some applications require periodic or random triggering. **Ndigo5G**'s function generator provides this functionality.

The delay between two trigger pulses of this trigger generator is the sum of two components: A fixed value M and a pseudo-random value given by the exponent N.

The period is

$$T = 1 + M + [1...2^N]$$

clock cycles with a duration of 3.2 ns per cycle.

This allows to monitor input signals at times the current trigger configuration does not trigger, e. g., to get base line information in mass spectrometry applications. It can also be used to determine a suitable threshold level for the trigger by first getting random statistics on the input signal.

2.4.6 Timestamp Channel

The timestamp channel produces a stream of small packets that denote the time of the trigger event. An arbitrary set of trigger sources can be selected in the trigger matrix to cause the creation of a packet.

The packets have a fixed length of 16 bytes. The format is described in Chapter %s. The length field of the packet contains a 32-bit pattern that contains the levels of all trigger sources at the time of the trigger event except for the period monitor. Only one packet is created, no matter how many trigger sources caused the timestamp channel to trigger.

2.4.7 Data Lookup Table

In some applications it might be useful to modify the ADC sample data by a user defined function f(x). In this case the onboard FPGA is able to perform this task such that the the data stream consists of data words f(sample) instead of sample. The function f(x) is applied using a 1024 word lookup table (LUT) which needs to be provided by the user. This is done by defining the corresponding function as a custom_lut-member of the ndigo_configuration structure. Please feel free to contact cronologic if you plan the use this feature. The onboard INL correction is applied prior to mapping the LUT values.

2.5 Multiple Ndigo boards synchronization

Using several Ndigo devices in applications that use more channels than a single board can provide requires synchronized operation. To ensure exact synchronization, a delay parameter needs to be set for each board. This parameter might change in case boards are swapped, added or removed and in some cases might change after a firmware update.

The calibration tool "MultiboardCalibration.exe" is available after installing the Ndigo device driver. It is used to find appropriate delay values for each board in a given board setup. After starting, the application lists all Ndigo boards found (Figure 2.24).

Figure 2.24: Main window of the multiple boards sync calibration tool.

A board's appropriate delay depends on whether it operates in master or slave mode. The respective values can be set in the column "Delay M" (for master boards) and "Delay S" (for slave boards). The designated master board can be selected in the column "Master". The calibration procedure creates a histogram for each board displaying the current delay between

the boards. The histogram can be viewed by clicking on "Show!". When the appropriate delay values are found they can be stored in the on-board flash PROM by clicking "Do it!" separately for each board. Clicking "Flash All!" will write the values to all boards at once. Please note: Flashing the values might take up to 10 seconds during which the program might not respond.

Note: If the application reports a "PLL not locked" error check the cable. If the recording of histograms does not make progress check the cable. Make sure the cable is properly terminated at both ends and firmly attached to each card.

2.5.1 Calibration Procedure

- 1. Make sure "Automode" is selected.
- 2. Record the calibration histograms by pressing "Record histograms". The program will perform up to 200 measurements of the sync delay. After accumulating some data, the delay values found are reported in the column "AutoMmt". The values can be verified by examining the histogram that was recorded. A board's histogram should look like the one shown in Figure 2.25. During normal operation the delay will be adjusted such that the data points accumulated roughly coincide with the vertical markers in the upper panel. As the delay pattern is periodic valid delay values are between 0 and 31. Thus, the delay value found by the auto measurement should correspond to the distance between the vertical markers and accumulated data points. Hint: When moving the mouse pointer across the histogram the delay value of the current location is displayed.
- 3. After stopping the data acquisition, by pressing "Record Histograms" again or waiting for 200 measurements to complete, the delay values of the auto measurement need to be copied to the columns "Delay M" or "Delay S" depending on the corresponding board being a master or a slave. The correct field to copy the value to is highlighted in green.
- 4. You may record a new dataset as a crosscheck that the delay is now set to an appropriate value. By disabling "Automode" the new delay values are used. Press "Record Histograms" in order to start the data acquisition. After some time the histogram should look similar to the one in Figure 2.26.
- 5. The delay values for all boards in a set needs to be found. For the case a board acts as a master, the value "Delay M" needs to be adjusted, in case it is a slave, the "Delay S" parameter needs to be changed. In order to find the master-case delay values for all boards, the calibration procedure needs to be performed with every board acting as a master once. After changing the master board, the slave values of the other boards don't need to be readjusted. Only Ndigo5G boards may be set as masters. Therefore, a Ndigo250M board only needs to be calibrated as a slave.
- 6. After finding all delay values, write the values to the on-board flash PROMs by pressing "Flash All!".

Figure 2.25: Histogram for the case that the delay value for the board is not set correctly. Please note that the lower panel might differ from board to board, with the "step" being at a different position.

Figure 2.26: Histogram for the case that the delay value of the board is set correctly. Please note that the lower panel might differ from board to board, with the "step" being at a different position.

2.5.2 Synchronizing a Ndgio5G and an HPTDC8-PCI

In order to operate a Ndigo5G in sync with one ore more HPTDC8-PCI boards, a board to board interconnection using a Ndigo Extension Board needs to be done. The Ndigo Extension Board has four clock outputs. One of them needs to be connected to the external clock input of the HPTDC using a standard Lemo 00 cable. The Ndigo5G is connected to the Ndigo Extension Board using the Samtec ribbon cable provided with the Ndigo Extension Board. The signals used for synchronization of the boards are transmitted by a standard 10pin ribbon cable connecting the Ndigo Extension Board and the HPTDC. A schematic of all necessary connections is shown in Figure 2.27.

In principle the user can use the standard device drivers of the Ndigo5G and the HPTDC8-PCI to perform data acquisition. It is, however, recommended to use the cronoSync-library, which is a part of the cronoTools provided with with the Ndigo5G device driver. CronoSync offers an easy group-based access to the data recorded and handles the synchronization of all cronologic data ac-quisition devices used. A detailed description of cronoTools and cronoSync can be found in the cronoTools user guide.

Figure 2.27: Interconnection scheme of a Ndigo5G (left) and a HPTDC8-PCI (right) using a Ndigo Extension Board (middle).

2.6 Performing a firmware update

After installing the Ndigo device driver, a firmware update tool is available. By choosing "NdigoFirmwareGUI.exe" a firmware update can be performed. After invoking the application a window as shown in Figure 2.28 will appear. The tool can be used for updating the firmware and to create a backup of the on-board calibration data of the Ndigo unit. If several boards are present, the one which is going to be used can be selected in the upper left corner of the window. Pressing the "Backup" buttons a backup of the firmware or the calibration data will be created, respectively. In order to perform a firmware update, chose the ".ndigorom"-file to used by pressing "Browse". The file contains the firmware PROMs for all boards of the Ndigo product line. By pressing "Flash" the firmware is written to the board. "Verify" can be used to compare the data stored inside the PROM to the one inside a file.

Figure 2.28: The firmware update and calibration data backup tool as provided with the Ndigo device driver.

Note: The new firmware will only be used after a power cycle, i.e., after switching the PC (or Ndigo crate) off and back on. A simple reboot is not sufficient. Therefore the information shown in the upper half of the application window does not change right after flashing a new firmware.

After flashing and shutting the PC or the crate off and on again it is recommended to perform a window calibration. The tool "WindowCalibration" is provided for that purpose within the driver installation. The omission of the calibration process leads to longer execution times of applications using that firmware, since the calibration is performed then instead.

2.7 Calibrating the TDC

After each update of the Ndigo5G-10 firmware the TDC has to be calibrated. The calibration is done with the tool "TDCCalibration.exe" which is available after installing the Ndigo device driver. After invoking the application a window as shown in Figure 2.29 will appear.

The calibration procedure is as follows:

1. Connect an external pulse signal to the Trigger input. The signal should be low active with a frequency in the kHz range. It must not be synchronized to the clock source of the Ndigo5G-10. The input frequency must not exceed 10 MHz. The pulse low and high width has to be at least 10ns each.

Figure 2.29: The TDC calibration tool as provided with the Ndigo device driver.

- 2. Set Serial Number according to the sticker on the card if the shown value is not correct.
- 3. Start capturing pulse events by pressing the Start button.
- 4. Adjust the *Input Offset* so that *First Bin* is in the range of 4 to 16. If *First Bin* is less than 4, increment *Input Offset* by one. If *First Bin* is greater than 16 decrement *Input Offset* by one. Repeat increment/decrement until *First Bin* is in the range of 4 to 16. Depending on the firmware revision the *Input Offset* value for a successful calibration may be in the range of 6–10 or 28–32.
- 5. When the *Write Calibration Data* button becomes enabled press it to update the calibration data on the card.
- 6. Calibration done!

The card can only be successfully calibrated if:

- First Bin is in the range of 4 to 16
- · Empty Bins is less than (First Bin + 4)
- · at least 10,000 events have been captured
- · a valid serial number is set.

Note: If the application reports an error check if the input pulse is within specification.

3 Driver Programming API

The API is a DLL with C linkage. The functions provided by the DLL are declared in Ndigointerface.h.

3.1 Constants

#define NDIGO_CHANNEL_COUNT 4

The number of analog input channels.

#define NDIGO_GATE_COUNT 4

The number of gating blocks.

#define NDIGO_TRIGGER_COUNT 16

The number of triggers. Two per analog input, one per digital input plus some specials.

#define NDIGO_ADD_TRIGGER_COUNT 6

Additional set of triggers for digital inputs.

3.2 Initialization

```
int ndigo_count_devices(int *error_code, char **error message)
```

Return the number of boards that are supported by this driver in the system.

int ndigo_get_default_init_parameters(ndigo_init_parameters *init)

Get a set of default parameters to feed into **ndigoinit().** This must always be used to initialize the **ndigo_init_parameter** structure.

```
ndigo_device *ndigo_init(ndigo_init_parameters *params, int *error_code,
    char **error_message)
```

Open and initialize the Ndigo board with the given index. With error_code and error_message the user must provide pointers where to buffers where error information should be written by the driver. The buffer for the error message must by at least **80** chars long. Params is a structure of type **ndigo_init_parameters** that must be completely initialized.

```
int ndigo_close(ndigo_device *device)
```

Finalize the driver for this device.

3.2.1 Structure ndigo_init_parameters

int version

Must be set to NDIGO_API_VERSION

int card index

The index in the list of **Ndigo5G** boards that should be initialized. There might be multiple boards in the system that are handled by this driver as reported by ndigo_count_devices. This index selects one of them. Boards are enumerated depending on the PCle slot. The lower the bus number and the lower the slot number the lower the card index. int board_id This 8 bit number is filled into each packet created by the board and is useful if data streams of multiple boards will be merged. If only **Ndigo5G** cards are used this number can be set to the card index. If boards of different types that use a compatible data format are used in a system each board should get a unique id. Can be changed with **int** ndigosetboardid(ndigodevice*device, **int** boardid).

ndigo_bool_t use_external_clock

Use 10MHz clock supplied by IPC flat band cable. Must be set for all slaves.

ndigo_bool_t drive_external_clock

Drive internal 10MHz clock of this board to IPC flat band cable. Must be set for master.

ndigo_bool_t is_slave

Data acquisition of this board is controlled by the master board. **int** sync_period Period of the multicard sync pulse. Should be set to **4** (default) when using several Ndigo boards in sync. Ignored for single board setups. The **Ndigo5G** has 4 phases relative to the global 10MHz clock.

int sync_delay

Fine tap delay for incoming sync signals.

ndigo_bool_t force_window_calibration

If true / 1, valid data window is detected at initialization. Default value is false / 0: values from flash memory are used in order to set data window to correct position. ndigo_bool_t hptdc_sync_enabled A **HPTDC** is connected to this board. Enables the clock and sync line from the **Ndigo5G** to the **HPTDC**.

__int64 buffer_size[8]

The minimum size of the DMA buffer. If set to \emptyset the default size of 16MByte is used. **Ndigo5G** only uses buffer_size[\emptyset].

int buffer_type

Must be set to NDIGO_BUFFER_ALLOCATE.

__int64 buffer_address

Ignored. Might be used for future buffer types.

int variant

Set to 0. Can be used to activate future device variants such as different base frequencies.

int device_type

3.2. Initialization 29

Initialized by ndigo_get_default_init_parameters().

Must be left unchanged.

#define CRONO_DEVICE_HPTDC 0 #define CRONO_DEVICE_NDIGO5G 1 #define CRONO_DEVICE_NDIGO250M 2

int_dma read_delay

Initialized by ndigo_get_default_init_parameters(). The write pointer update is delay by this number of **4 ns** clock periods to hide race conditions between software and DMA.