

Human-Computer Interaction: 3A. Movement and Fitts' Law

22 October 2024

Human Movement and Fitts' Law

- Fitts' Law
- Index of Difficulty (ID)
- Building a Fitts' Law Model
- Speed-Accuracy Trade-off
- Throughput in HCI

Learning Objectives: be able to ...

- Identify factors in human performance of input
- Calculate the ID of a pointing task
- Build a Fitts' Law model of the performance with an input device
- Explain how speed-accuracy trade-off and throughput apply to input

Fitts' Law

- Paul Fitts (1912-1965)
 - Psychologist
 - Pioneer in Human Factors
- Fitts' Law is a model of human performance
 - How long does it take to make a movement to a known target?
 - How does this depend on properties of the movement task?
 - Distance and size (width) of the target

Fitts' Experiment – Apparatus

- Four distances (D):2, 4, 8, 16 inch
- Four widths (W):0.25, 0.5, 1, 2 inch
- 16 combinations

Fitts' Experiment – W and D in 1D Task

Fitts' Experiment – Dataset

Amplitude	Width	MT
2	0.25	392
2	0.5	281
2	1	212
2	2	180
4	0.25	484
4	0.5	372
4	1	260
4	2	203
8	0.25	580
8	0.5	469
8	1	357
8	2	279
16	0.25	731
16	0.5	595
16	1	481
16	2	388
	Mean	391.5
	SD	157.3

Fitts' Experiment – Initial Analysis

Fitts' Experiment – Factor of Distance

MT

Fitts' Experiment – Factor of Size

Fitts' Experiment – Interactions (Size x Distance)

Fitts' Experiment – Interactions (Effects - Inverse)

Fitts' Experiment – Interactions (Effects - Direct)

Fitt's Experiment – Conclusions

- Movement time depends on the task
- A pointing task has two properties that affect performance
 - Target distance (= Amplitude of the movement)
 - Target width (= Tolerance for landing on the target)
- When a target is nearer, we can reach it faster
- When a target is smaller, we have to slow down to land on it

Human Movement and Fitts' Law

- Fitts' Law
- Index of Difficulty (ID)
- Building a Fitts' Law Model
- Speed-Accuracy Trade-off
- Throughput in HCI

Task Difficulty

- Some tasks take the same time to complete
- They have the same difficulty
- We can model task difficulty based on distance and width

Index of Difficulty (ID)

- Paul Fitts proposed to combine distance and width into a single *index of difficulty*, measured in bits
- The formulation has become refined through later research, and in HCI we now use:

$$ID = log_2 \left(\frac{D}{W} + 1 \right)$$

$$ID = log_2\left(\frac{2D}{W}\right)$$
Original formulation proposed by Paul Fitts

 These four tasks have the same D/W ratio

$$\frac{D}{W} = 8$$

• $ID = log_2(8+1) = 3.17$ bits

$$ID = log_2(8 + 1)$$

= 3.17 bits

$$ID = log_2(16 + 1)$$

= 4.09 bits.....

- Same Size
- Nearer Target=> Smaller ID

$$ID = log_2(4 + 1)$$

= 2.32 bits

Building a Fitts' Law Model

Amplitude	Width	ID	MT
2	0.25	3.17	392
2	0.5	2.32	281
2	1	1.58	212
2	2	1	180
4	0.25	4.09	484
4	0.5	3.17	372
4	1	2.32	260
4	2	1.58	203
8	0.25	5.04	580
8	0.5	4.09	469
8	1	3.17	357
8	2	2.32	279
16	0.25	6.02	731
16	0.5	5.04	595
16	1	4.09	481
16	2	3.17	388
		Mean	

SD

157.3

Building a Fitts' Law Model - Formulation

- Movement time depends on task difficulty
- The relationship is linear
- Fitts' Law: MT = a + b * ID
- The values for a and b are specific to the apparatus / device

Fitts' Law - Generalisation

$$MT = a + b * ID = a + b * log_2\left(\frac{D}{W} + 1\right)$$

- Distance (D): Distance of the target
- Width (W): width of the target in the direction of the movement
- ID: index of difficulty of the task, in *bits*
- b: rate at which time increases with task difficulty, in seconds/bit
- a is a time constant, in *seconds*

- D, W and ID are properties of the movement task
 - <u>independent</u> of the device used for the movement
- a and b are <u>device-dependent</u>, on the device and body part used to perform the movement

Human Movement and Fitts' Law

- Fitts' Law
- Index of Difficulty (ID)
- Building a Fitts' Law Model
- Speed-Accuracy Trade-off
- Throughput in HCI

Speed-Accuracy Trade-off

- Fitts' Law captures the *speed-accuracy trade-off* in movement
 - We move faster, when we don't have to be accurate
 - We can be more accurate, when we move more slowly
- The speed-accuracy trade-off is a fundamental property of input in user interfaces
 - When we move faster, we make more errors
 - Pointing with less precision
 - Typing errors

Factor of Device

- Speed and accuracy of input depend on the input method
- There are many factors that can influence speed and accuracy
 - The movement of the user that is sensed in *motor space* (eyes, head, hands)
 - Input devices and trackers used (mouse, trackpad, joystick, ...)
 - The mapping of input from motor space to display space (control-display gain, transfer function)
- Collectively we refer to these as Factor of Device

Example: Control-Display Gain (CD Gain)

• CD gain is a scale factor in mapping input from a device to a cursor on the display:

$$CD_{gain} = \frac{V_{display}}{V_{control}}$$

- CD gain > 1: less movement of the input device needed, for faster cursor movement on the display (coarse pointing)
- CD gain <1: cursor moves more slowly than the input device, for precise input (fine positioning)

Throughput

- Throughput is the amount of data that can pass through a system in a given amount of time
 - In communication systems, throughput depends on bandwidth (speed) and signal-to-noise ratio (accuracy)
 - It provides a single metric of a system's efficiency, that combines speed and accuracy, measured in bit/s
- One of the key ideas underlying Fitts' Law is that we can adopt throughput as a single measure of human performance with an input device, for the transfer of information to a computer

Throughput in Fitts' Law

• Fitts' Law defines throughput TP as a measure of input efficiency

$$TP = \frac{ID}{MT}$$
 [in bit/s]

- Throughput (ID/MT) increases ...
 - When we can complete more difficult tasks (higher ID) within a given time (fixed MT)
 - When we need less time (lower MT) for a task of given difficulty (fixed ID)
- Throughput combines speed and accuracy into a single metric of performance, of a user with an input device

Throughput – Thought Experiment

- Think of information transfer as selection of 1 from N options
- If we divide the screen into two large buttons (A) then we can select 1 of 2
 - Transferring 1 bit/selection
- If we divide the screen into more buttons, then every selection transfers more information
 - B: 1 of 16 => 4 bit/selection
 - C: 1 of 128 => 7 bit/selection

Throughput – Thought Experiment Scenario 1: No errors

- Scenario 1: we are very careful to avoid any input error
- The time for a selection depends on the button size, say
 - A: MT = 250ms -> 4 selections/s
 - B: MT = 666ms -> 1.5 selections/s
 - C: MT = 1000ms -> 1 selection/s
- Which interface has the highest throughput?

Throughput – Thought Experiment Scenario 2: High-speed input

- Scenario 2: we risk error and make all selections at high speed
 - MT = 250ms -> 4 selections/s
- Fast movement means that we will not be precise. Our input will be noisy:
 - A: no errors
 - B: 40% error rate
 - C: 80% error rate
- Which interface has the highest throughput?

Throughput – Fitts' Law Visualisation

•
$$MT = a + b * ID$$

•
$$TP = \frac{ID}{MT}$$

 We can approximate throughput as the inverse of the slope

$$TP = \frac{1}{b}$$

 The <u>flatter</u> the slope, the higher the throughput

Throughput of devices / muscle groups

- Mouse tasks, perceived difficulty:
 - Select a word: "hardest easy task"
 - Select a char.: "easiest hard task"
- Mouse throughput 10.4 bit/s
 - 1991 data! Further optimization since
- Fingers have higher throughput, 40 bit/s
 - For adjacent buttons, not in general
- Head pointing is less efficient, 4.2 bit/s
 - Select a word in the time mouse pointing can select a character

Movement and Fitts' Law – Key Points

- Movement and input are subject to a speed-accuracy trade-off
- Most input in HCl is based on aimed movements
 - Reaching for controls, pointing with a mouse, typing on keyboard, ...
- Aimed movements can be modelled using Fitts' Law
 - Modelling the difficulty of input tasks
 - Modelling the performance with different devices
- Throughput is a measure of input performance that takes both speed and accuracy into account

Next Lecture

- Input models
- Fitts' Law Application
- Pointing and Crossing
- Steering Law
- Keystroke-level Model (KLM)