Algèbre linéaire Chapitre 5

Definition 0.1

Soient V un espace euclidien et $T:V\to V$ une application linéaire. On dit que T est orthogonale si ||T(v)||=||v|| pour tout $v\in V$.

Definition 0.2

Soient $V = \mathbb{R}^n$ muni du produit scalaire usuel et $A \in M_{n \times n}(\mathbb{R})$ une matrice de taille $n \times n$ à coefficients réels. On dit que A est orthogonale si ||AX|| = ||X|| pour tout $X \in M_{n \times 1}(\mathbb{R})$.

Remarque : Soit $T: V \to V$ une transformation orthogonale d'un espace euclidien V. Alors T est injective (et donc bijective par le théorème du rang).

Proposition 0.3

Soient V un espace euclidien et $T: V \to V$ une application linéaire orthogonale. Soient également $u, v \in V$ et désignons par θ (respectivement γ) l'angle entre les deux vecteurs u, v (respectivement, l'angle entre les deux vecteurs T(u) et T(v)). Alors $\theta = \gamma$, i.e. T préserve les angles.

Proposition 0.4

Soient $V = \mathbb{R}^n$ muni du produit scalaire usuel et $A \in M_{n \times n}(\mathbb{R})$ une matrice de taille $n \times n$ à coefficients réels. Alors les conditions suivantes sont équivalentes.

- 1. ||AX|| = ||X|| pour tout $X \in M_{n \times 1}(\mathbb{R})$.
- 2. $\langle AX, AY \rangle = \langle X, Y \rangle$ pour tous $X, Y \in M_{n \times 1}(\mathbb{R})$.
- 3. $AA^T = I_n = A^T A$.
- 4. Les lignes de A forment une base orthonormée de V.
- 5. Les colonnes de A (vues comme vecteurs de \mathbb{R}^n) forment une base orthonormée de V.

Aussi, si A est orthogonale, alors $\det A = \pm 1$.

Definition 0.5

Soit $A \in M_{n \times n}(\mathbb{R})$. On dit que A est orthogalement diagonalisable s'il existe une matrice orthogonale $P \in M_{n \times n}(\mathbb{R})$ telle que $P^{-1}AP$ soit diagonale. Aussi, si V désigne un espace euclidien et $T: V \to V$ une transformation linéaire de V, on dit que T est orthogonalement diagonalisable si V possède une base orthonormée formée de vecteurs propres de T.

Remarques:

- 1. Soient V un espace euclidien, $T:V\to V$ une transformation linéaire de V et $\mathscr B$ une base orthonormée de V. Alors $A=[T]_{\mathscr B}$ est orthogonalement diagonalisable si et seulement si T est orthogonalement diagonalisable.
- 2. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice orthogonalement diagonalisable et supposons que $P \in M_{n \times n}(\mathbb{R})$ soit comme ci-dessus. Alors $P^TAP = P^{-1}AP$.

Proposition 0.6

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice orthogonalement diagonalisable. Alors A est une matrice symétrique.

Proposition 0.7

Soient $A \in M_{n \times n}(\mathbb{R})$ une matrice symétrique (et donc $A = A^T$) et $\lambda \neq \mu$ deux valeurs propres distinctes pour A. Si $u \in E_{\lambda}$ et $v \in E_{\mu}$, alors u et v sont orthogonaux (pour le produit scalaire usuel de \mathbb{R}^n).

Theorem 0.8

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice symétrique. Alors il existe une matrice $P \in M_{n \times n}(\mathbb{R})$ orthogonale telle que P^TAP soit diagonale, i.e. A est orthogonalement diagonalisable.

Remarques:

- 1. Soit $A \in M_{n \times n}(\mathbb{R})$. Alors A est orthogonalement diagonalisable si et seulement si elle est symétrique.
- 2. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice symétrique. Alors il est possible de factoriser $c_A(t)$ en un produit de facteurs linéaires sur \mathbb{R} . En particulier, $c_A(t)$ n'admet aucune racine purement complexe.
- 3. Pour chaque valeur propre $\lambda \in \mathbb{R}$ de A, la dimension de l'espace propre E_{λ} est égale à la multiplicité algébrique de λ comme racine de $c_A(t)$.

Méthode pour diagonaliser orthogonalement une matrice symétrique $A \in M_{n \times n}(\mathbb{R})$:

- 1. Déterminer le polynôme caractéristique $c_A(t)$ de A.
- 2. Trouver toutes les racines $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ distinctes de $c_A(t)$ telles que

$$c_A(t) = (-1)^n (t - \lambda_1)^{m_+} \cdots (t - \lambda_r)^{m_r}.$$

- 3. Pour chaque $1 \leq i \leq r$, déterminer une base \mathcal{B}_i de E_{λ_i} .
- 4. Pour chaque $1 \le i \le r$, utiliser le procédé de Gram-Schmidt afin de trouver une base *ortho-normée* \mathscr{B}'_i de E_{λ_i} .
- 5. La base $\mathscr{B}'=\mathscr{B}'_1\cup\ldots\cup\mathscr{B}'_r$ est une base orthonormée de $V=\mathbb{R}^n$.
- 6. La matrice $P = [id_V]_{\mathscr{CB}'}$ (où \mathscr{C} désigne la base canonique de V) est orthogonale et P^TAP est diagonale.

Definition 0.9

Une forme quadratique Q sur \mathbb{R}^n est une application $Q: \mathbb{R}^n \to \mathbb{R}$ définie par une matrice symétrique $A \in M_{n \times n}(\mathbb{R})$ de telle sorte que $Q(u) = uAu^T$ pour tout $u \in \mathbb{R}^n$. Aussi, si x_1, \ldots, x_n sont des variables, alors l'équation $Q(x_1, \ldots, x_n) = 1$ définit une conique dans \mathbb{R}^2 (respectivement, une quadrique dans \mathbb{R}^3).

Definition 0.10

Une forme quadratique Q sur \mathbb{R}^n est une application $Q: \mathbb{R}^n \to \mathbb{R}$ définie par une matrice symétrique $A \in M_{n \times n}(\mathbb{R})$ de telle sorte que $Q(u) = uAu^T$ pour tout $u \in \mathbb{R}^n$.

Theorem 0.11 (Théorème des axes principaux)

Soient $A \in M_{n \times n}(\mathbb{R})$ une matrice symétrique et $Q : \mathbb{R}^n \to \mathbb{R}$ la forme quadratique associée. Alors il existe une matrice orthogonale $P \in M_{n \times n}(\mathbb{R})$ telle que P^TAP soit diagonale. Les colonnes de P sont appelés les axes principaux de Q.

Méthode pour déterminer les axes principaux d'une forme quadratique donnée :

Soit $Q: \mathbb{R}^n \to \mathbb{R}$ une forme quadratique. Pour déterminer les axes principaux de Q, on procéde comme suit.

- 1. Déterminer la matrice $A \in M_{n \times n}(\mathbb{R})$ qui définit Q, c'est-à-dire qui satisfait $Q(u) = uAu^T$ pour tout $u \in \mathbb{R}^n$.
- 2. Diagonaliser orthogonalement la matrice A, i.e. trouver une base orthonormée \mathscr{B} de \mathbb{R}^n formée de vecteurs propres de A.
- 3. Les vecteurs de \mathcal{B} sont les axes principaux de Q.

Definition 0.12

Soit $Q: \mathbb{R}^n \to \mathbb{R}$ une forme quadratique. On dit que Q est

- 1. définie positive si Q(u) > 0 pour tout $u \in \mathbb{R}^n$ non-nul.
- 2. définie négative si Q(u) < 0 pour tout $u \in \mathbb{R}^n$ non-nul.
- 3. non-définie si A prend des valeurs positives ainsi que négatives.
- 4. positive si $Q(u) \geq 0$ pour tout $u \in \mathbb{R}^n$.
- 5. négative si $Q(u) \geq 0$ pour tout $u \in \mathbb{R}^n$.

Theorem 0.13 (Formes quadratiques et vecteurs propres)

Soient $A \in M_{n \times n}(\mathbb{R})$ une matrice symétrique et $Q : \mathbb{R}^n \to \mathbb{R}$ la forme quadratique associée. Alors les affirmations suivantes sont vérifiées.

1. Q est définie positive si et seulement si toutes les valeurs propres de A sont strictement positives.

- 2. Q est définie négative si et seulement si toutes les valeurs propres de A sont strictement négatives.
- 3. Q est non-définie si A admet à la fois des valeurs propres positives et négatives.

Lemma 0.14

Soient \mathscr{B},\mathscr{B} les bases canoniques respectives de $\mathbb{R}^n, \mathbb{R}^m$, munis des produits scalaires usuels. Soit également $\phi: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire telle que $[\phi]_{\mathscr{B}_2\mathscr{B}_1} = A \in M_{m \times n}(\mathbb{R})$. Finalement, on désigne par $\phi^T: \mathbb{R}^m \to \mathbb{R}^n$ l'application linéaire définie par $[\phi^T]_{\mathscr{B}_1\mathscr{B}} = A^T$. Alors $\phi^T \circ \phi: \mathbb{R}^n \to \mathbb{R}^n$ et \mathbb{R}^n possède une base de vecteurs propres pour $\phi^T \circ \phi$ et toutes les valeurs propres (réelles) sont positives ou nulles.

Definition 0.15

Soit $A \in M_{m \times n}(\mathbb{R})$. On appelle valeurs singulières de A les racines carrées des valeurs propres de la matrice A^TA . On les note en général $\sigma_1, \ldots, \sigma_n$, de telle sorte que $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$. Ainsi, il existe une base (v_1, \ldots, v_n) de \mathbb{R}^n composée de vecteurs propres de A avec valeurs propres correspondantes $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \geq 0$, où $\sigma_i = \sqrt{\lambda_i}$.

Theorem 0.16 (Existence de bases compatibles)

Soit $\phi: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire entre les espaces euclidiens $\mathbb{R}^n, \mathbb{R}^m$ (munis des produits scalaires usuels). Soit v_1, \ldots, v_n une base orthonormée de \mathbb{R}^n , formée de vecteurs propres de $\phi^T \circ \phi$. Supposons également que ϕ admette r valeurs singulières non-nulles. Alors $(\phi(v_1), \ldots, \phi(v_r))$ est une base orthogonale de $\operatorname{im}(\phi)$ et donc le rang de ϕ vaut r. De plus, $(\frac{\phi(v_1)}{\sigma_1}, \ldots, \frac{\phi(v_r)}{\sigma_r})$ est une base orthonormée de $\operatorname{im}(\phi)$.

Theorem 0.17 (Décomposition en valeurs singulières)

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice de rang r. Alors il existe $\Sigma \in M_{n \times n}(\mathbb{R})$ telle que

$$\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix},$$

 $où D \in M_{r \times r}(\mathbb{R})$ est diagonale, avec

$$D = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{pmatrix}.$$

Ici, $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \geq 0$ sont les r valeurs singulières non-nulles et $U \in M_{m \times m}(\mathbb{R})$, $V \in M_{n \times n}(\mathbb{R})$ sont orthogonales telles que $A = U \Sigma V$.

Méthode de décomposition en valeurs singulières :

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice de taille $m \times n$ à coefficients réels et $\phi : \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire correspondante, i.e. $[\phi]_{\mathscr{C}_2\mathscr{C}_1} = A$, où \mathscr{C}_1 et \mathscr{C}_2 sont les bases canoniques de \mathbb{R}^n et \mathbb{R}^m .

- 1. Chercher les valeurs propres de la matrice $A^T A \in M_{n \times n}(\mathbb{R})$.
- 2. Si $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r > 0$ sont les valeurs propres non-nulles de $A^T A$, alors les valeurs singulières de A sont données par $\sigma_j = \sqrt{\lambda_j}$, ceci pour tout $1 \leq j \leq r$.
- 3. Chercher une base orthonormée $\mathscr{B}_1 = (v_1, \dots, v_n)$ de \mathbb{R}^n formée de vecteurs propres pour $A^T A$.
- 4. Une base orthogonale de l'image de ϕ est donnée par (Av_1, \ldots, Av_m) .
- 5. Normaliser la base obtenue au point précédent, afin d'obtenir une base orthonormée de l'image de ϕ .
- 6. On dénote par \mathcal{B}_2 la base orthonormée de \mathbb{R}^n obtenue en complétant la base du point précédent en une base de \mathbb{R}^n , puis en appliquant le procédé de Gram-Schmidt à bon escient.
- 7. La décomposition en valeurs singulières de A est donnée par $[id]_{\mathscr{C}_2\mathscr{B}_2}[\phi]_{\mathscr{B}_2\mathscr{B}_1}[id]_{\mathscr{B}_1\mathscr{C}_1}$.