长安大学 2017 年招收攻读硕士研究生入学试题

科目: 814 信号与系统 考试时间: 2016 年 12 月 25 日

一、填空题 (每空3分, 共30分)

- 1. 已知序列 $f(k) = \{1, 2, 3, 4, 5\}$, (首项序号 k = 0), 求 $f(k) = (k+3)\varepsilon(k)$ 的 Z 变换为
- $_{...}^{**}$ 2. 计算 $\int_{0}^{10} t^{2} \delta(2t-2) dt = _{...}$
- 3. 线性时不变系统输入 f(t) 与零状态响应 g(t) 之间的关系为 $g(t) = \int_{-\infty}^{t} f(\tau 2)e^{-t-\tau} d\tau$,求系统单位响应
- 4. 利用能量等式 $\int_{-\infty}^{\infty} f^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(j\omega)|^2 d\omega$,计算 $\int_{-\infty}^{\infty} \left(\frac{\sin t}{t}\right)^2 dt = \underline{\qquad}$
- \mathcal{F} 5. 信号 $f(t) = 4 + 5\cos \pi t + 3\cos 2\pi t$ 的平均功率为
- 6. 己知 $f(t) \leftrightarrow F(s) = \frac{3s+1}{s(s+1)}$,原函数的初值 f(0) =_
- 系统的零状态响应为
- $\stackrel{\cdot}{\mathbb{N}}$ 8. 已知信号 f(t) 的频谱函数 $F(j\omega)=\begin{cases} 1, & |\omega|<2\,\mathrm{rad/s}\\ 0, & |\omega|>2\,\mathrm{rad/s} \end{cases}$,则对 f(3t) 进行理想采样的奈奎斯特采样间隔
- 9. 单边拉普拉斯变换 $F(s) = \frac{e^{-(s+5)}}{s+5}$ 的原函数 f(t) 的原函数 $f(t) = __$
- 10. LTI 离散系统的附中响应 $g(k) = \left(\frac{1}{2}\right)^k \varepsilon(k)$,系统函数 H(z) =

- 二、选择题(每小题3分,共30分)
- 11. 某信号的频谱是周期的离散谱,则对应的时域信号为.
 - A. 连续的周期信号
- B. 连续的非周期信号
- C. 离散的非周期信号
- 12. 以下等式不成立的是
- A. $\int_{-\infty}^{\infty} f(\tau) d\tau = f(t) * \varepsilon(t)$

- B. $\int_{-\infty}^{t} \delta(\tau) d\tau = 1$
- C. $f_1(t-t_0) * f_2(t+t_0) = f_1(t) * f_2(t)$
- D. $\delta(t) * f(t) * \delta(t) = f(t)$

已知信号 $f_1(t)$ 、 $f_2(t)$ 如图 1 所示 (a 是常数), $f(t) = f_1(t) + f_2(t)$,则 f(t) 的傅里叶变换为

A.
$$\frac{a}{2}Sa\left(\frac{\omega a}{4}\right) + \frac{a}{2}Sa\left(\frac{\omega a}{2}\right)$$

C. $\frac{a}{2}Sa\left(\frac{\omega a}{4}\right) + aSa\left(\frac{\omega a}{2}\right)$

B.
$$aSa\left(\frac{\omega a}{4}\right) + \frac{a}{2}Sa\left(\frac{\omega a}{2}\right)$$

D.
$$aSa\left(\frac{4a}{4}\right) + aSa\left(\frac{2a}{2}\right)$$

- - B. $e^{-t}\varepsilon(t)$
- C. $te^{-t}\varepsilon(t)$

15. 某系统的输出与输入关系满足 y'(t) + 5y(t) = f(t+10) - 2,则该系统是

- A. 线性、时不变、因果

B. 线性、时变、因果

② 非线性、时不变、非因果

D. 非线性、时变、非因果

16. 序列
$$f(k) = \sin\left(\frac{\pi}{8}k\right) - 3\cos\left(\frac{\pi}{4}k + \frac{\pi}{6}\right) + 2\sin\left(\frac{\pi}{2}k - \frac{\pi}{4}\right)$$
 的周期 N 为 A. 2 B. 4 C. 8 D. 16

- 17. 已知系统微分方程为 y'(t) + 2y(t) = 2f(t),若 $y(0_+) = \frac{4}{3}$, $f(t) = \varepsilon(t)$,解得全响应为 $y(t) = \frac{1}{3}e^{-2t} + 1$, $t \ge 0$, 则全响应中 $\frac{4}{3}e^{-2t}$ 为 A. 零输入响应分量
- B. 零状态响应分量
- C. 自由响应分量
- D. 强迫响应分量

- 18. 设 $f(t) \leftrightarrow F(j\omega)$, 若 $f_0(t) \leftrightarrow \frac{1}{4}F\left(j\frac{\omega}{4}\right)e^{j\frac{5}{4}\omega}$ A. f(-4t+5) B. f(4t+5)
- C. f(-4t-5)
- D. f(4t-5)

19. 已知某线性时不变系统,当输入信号
$$f(t) = (e^{-t} + e^{-3t})\varepsilon(t)$$
 时,其零状态响应是 $y(t) = (2e^{-t} - 2e^{-4t})\varepsilon(t)$,则该系统的频率响应为

A.
$$-\frac{3}{2}\left(\frac{1}{j\omega+4} + \frac{1}{j\omega+2}\right)$$
C. $\frac{3}{2}\left(\frac{1}{j\omega+4} - \frac{1}{j\omega+2}\right)$

B.
$$\frac{3}{2} \left(\frac{1}{j\omega + 4} + \frac{1}{j\omega + 2} \right)$$
D.
$$\frac{3}{2} \left(-\frac{1}{j\omega + 4} + \frac{1}{j\omega + 2} \right)$$

20. 周期信号满足
$$f(t) = -f(-t)$$
 时,则其傅里叶级数异形式中所含频率分量有

()

B. 只有余弦项

C. 只有直流分量

D. 正弦余弦项都有

三、简答题 (每小题 5 分, 共 25 分)

1. 简述拉普拉斯变换与傅里叶变换之间的关系,那么是否在斜体情况下函数的单边拉普拉斯变换存在,其傅里叶变换也存在呢?

2. 其系统的频率响应 $H(j\omega)=\frac{1+j\omega}{1-j\omega}$,试判断该系统是否为无失真传输系统? 并说明理由。

3. 两个离散系统如图 2a、图 2b 所示,请问两个离散系统是否等效?为什么?

4. 试说明周期矩形脉冲当周期T不变、脉冲宽度 τ 变小时,对谱线间隔和带宽的影响;当脉冲宽度 τ 不变、周期T变大时,对谱线间隔和带宽的影响。

- 5. 简述什么是模拟信号、连续信号、离散信号和数字信号?
- 四、计算综合题 (65分)

**

3. 某 LTI 连续系统,在以下各种情况下其初始状态相同,已知: 当激励 $f_1(t) = \delta(t)$ 时,其全响应 $y_1(t) = \delta(t) + e^t \varepsilon(t)$; 当激励 $f_2(t) = \varepsilon(t)$ 时,其全响应 $y_2(t) = 3e^t \varepsilon(t)$; 求:

(1) 系统的系统函数 H(s);

(2) 如果 $f(t) = t\varepsilon(t)$,求零状态响应 $y_{zs}(t)$ 。

4. (15分)一个 LTI 离散时间系统可由如下养分方程描述

$$2y(k) - 5y(k-1) + 2y(k-2) = 3f(k-1)$$

- (1) 求该系统的系统函数 H(z);
- (2) 画该系统的信号流图;
- (3) 若该系统是因果的,求系统的单位序列响应 h(k),并判断系统的稳定性?

5. (15 分) 理想低能滤波器 $H_1(j\omega)$ 的频率响应如图 4 所示, $|H_1(j\omega)| = \begin{cases} 1, & |\omega| \leq 2\pi \\ 0, & |\omega| > 2\pi \end{cases}$,相频特性 $\varphi(\omega) = 0$,则:

- (1) 如图 5 所示系统,当输入为 $f(t)=\dfrac{\sin(2\pi t)}{\pi t}$ 时,求通过理想滤波器 $H_1(j\omega)$ 的输出信号 x(t);
- (2) 已知 $s(t) = \cos(6\pi t)$,要使 y(t) 通过融通滤波器 $H_2(j\omega)$ 时能够完全通过,则此带通滤波器的最小带宽是多少?(也可以画图来说明)

