Summer School on Digital Humanities

Web site: https://bit.ly/dt4h-gis

Augusto Ciuffoletti

9 giugno 2025

- Georeferencing involves transforming an image into a map
 - assigning geographic operdinates to each pixel in the image
- To achieve this, match points on the image with corresponding locations in the image with corresponding locations.
- A geore

OGIS provided tools or this

4 D > 4 A > 4 B > 4 B > B 996

- Georeferencing involves transforming an image into a map
 - assigning geographic coordinates to each pixel in the image
- To achieve this, match points on the image with corresponding locations in arrange reference raster (e.g. OSM).
- A georefe phing indicates paloulaises the coordinates for all pixels

QGIS provid

- Georeferencing involves transforming an image into a map
 - assigning geographic coordinates to each pixel in the image
- To achieve this, match points on the image with corresponding locations on an accurate reference raster (e.g., OSM)
- A georeferencing idditten galquates the coordinates for all pixels

- Georeferencing involves transforming an image into a map
 - assigning geographic coordinates to each pixel in the image
- To achieve this, match points on the image with corresponding locations on an accurate reference raster (e.g., OSM)
- A georeferencing tool then calculates the coordinates for all pixels

- Georeferencing involves transforming an image into a map
 - assigning geographic coordinates to each pixel in the image
- To achieve this, match points on the image with corresponding locations on an accurate reference raster (e.g., OSM)
- A georeferencing tool then calculates the coordinates for all pixels
 - Accuracy improves with the number of reference points

40140141111 1 000

- Georeferencing involves transforming an image into a map
 - assigning geographic coordinates to each pixel in the image
- To achieve this, match points on the image with corresponding locations on an accurate reference raster (e.g., OSM)
- A georeferencing tool then calculates the coordinates for all pixels
 - Accuracy improves with the number of reference points
 - The image may need morphing (non-linear transformation)
 - OGIS provided tools for this test

- Georeferencing involves transforming an image into a map
 - assigning geographic coordinates to each pixel in the image
- To achieve this, match points on the image with corresponding locations on an accurate reference raster (e.g., OSM)
- A georeferencing tool then calculates the coordinates for all pixels
 - Accuracy improves with the number of reference points
 - The image may need morphing (non-linear transformation)
 - Optimal reference points are distant and non-aligned
- QGIS provides tools for this last

- Georeferencing involves transforming an image into a map
 - assigning geographic coordinates to each pixel in the image
- To achieve this, match points on the image with corresponding locations on an accurate reference raster (e.g., OSM)
- A georeferencing tool then calculates the coordinates for all pixels
 - Accuracy improves with the number of reference points
 - The image may need morphing (non-linear transformation)
 - Optimal reference points are distant and non-aligned
- QGIS provides tools for this task

- Create a new project and load the reference raster (OSM)
- Adjust the scale to match the area covered in the map
- Observe the code/in the bottom right corner: RPSQ32 (WGS84/Pse/dof/Mercator)
- Open th
- In the Ged

- Create a new project and load the reference raster (OSM)
- Adjust the scale to match the area covered in the map
- Observe the code in the bottom right corner: RPSG 3857 (WGS84/Pseudo-Mercator)
- Open the
- In the G

- Create a new project and load the reference raster (OSM)
- Adjust the scale to match the area covered in the map

This is the usual projection for Web mapping

 Observe the code in the bottom right corner: EPSG:3857 (WGS84/Pseudo-Mercator)

(D) (A) (B) (B) (A)

- Create a new project and load the reference raster (OSM)
- Adjust the scale to match the area covered in the map
- Observe the code in the bottom right corner: EPSG:3857 (WGS84/Pseudo-Mercator)
 - This is the usual projection for Web mapping
- Open the Georgierencer to
- In the Georgie Program

- Create a new project and load the reference raster (OSM)
- Adjust the scale to match the area covered in the map
- Observe the code in the bottom right corner: EPSG:3857 (WGS84/Pseudo-Mercator)
 - This is the usual projection for Web mapping
- Open the Georeferencer tool:
 - Select Layer Gebre Parce

□ ト 4 周 ト 4 章 ト 4 章 ト 章 9 Q Q

- Create a new project and load the reference raster (OSM)
- Adjust the scale to match the area covered in the map
- Observe the code in the bottom right corner: EPSG:3857 (WGS84/Pseudo-Mercator)
 - This is the usual projection for Web mapping
- Open the Georeferencer tool:
 - Select Layer -> Georeferencer... to open a new window
- Select File > Charl Rast

- Create a new project and load the reference raster (OSM)
- Adjust the scale to match the area covered in the map
- Observe the code in the bottom right corner: EPSG:3857 (WGS84/Pseudo-Mercator)
 - This is the usual projection for Web mapping
- Open the Georeferencer tool:
 - Select Layer -> Georeferencer... to open a new window
- In the Georeferencer window:
 - Select File -> Open Raster
 - Locate and open the image file you want to georeference

- Create a new project and load the reference raster (OSM)
- Adjust the scale to match the area covered in the map
- Observe the code in the bottom right corner: EPSG:3857 (WGS84/Pseudo-Mercator)
 - This is the usual projection for Web mapping
- Open the Georeferencer tool:
 - Select Layer -> Georeferencer... to open a new window
- In the Georeferencer window:
 - Select File -> Open Raster
 - Locate and open the image file you want to georeference

- Create a new project and load the reference raster (OSM)
- Adjust the scale to match the area covered in the map
- Observe the code in the bottom right corner: EPSG:3857 (WGS84/Pseudo-Mercator)
 - This is the usual projection for Web mapping
- Open the Georeferencer tool:
 - Select Layer -> Georeferencer... to open a new window
- In the Georeferencer window:
 - Select File -> Open Raster
 - Locate and open the image file you want to georeference

Unreferenced image loaded

• Configure transformation settings:

- Select Settings -> Transformation Settings
- Choose a transformation type (TPS is generally)
- Ensi
- _____
- 000
- Enai
- O O O
- windov

- Configure transformation settings:
 - Select Settings -> Transformation Settings
 - Choose a transformation type (TPS is generally suitable)
 - Ensure the SRS is set to EPSG:3857 V
 - Spe@
 - a Engli
 - ----

 - WITIGOV

- Configure transformation settings:
 - Select Settings -> Transformation Settings
 - Choose a transformation type (TPS is generally suitable)
 - Ensure the SRS is set to EPSG:3857 WGS84/Pseudo-Mercato
 - Opcom analy
 - Enable Load
 - Ulicki U
 - windo

D + 4 B + 4 B + B + 900

- Configure transformation settings:
 - Select Settings -> Transformation Settings
 - Choose a transformation type (TPS is generally suitable)
 - Ensure the SRS is set to EPSG:3857 WGS84/Pseudo-Mercator

- Configure transformation settings:
 - Select Settings -> Transformation Settings
 - Choose a transformation type (TPS is generally suitable)
 - Ensure the SRS is set to EPSG:3857 WGS84/Pseudo-Mercator
 - Specify a target file for the result
 - Enable Load in OCIS who
 - window Lafeth

- Configure transformation settings:
 - Select Settings -> Transformation Settings
 - Choose a transformation type (TPS is generally suitable)
 - Ensure the SRS is set to EPSG:3857 WGS84/Pseudo-Mercator
 - Specify a target file for the result
 - Enable "Load in QGIS when done"
 - Click Ok to aboly the settings and return to the Georeference

- Configure transformation settings:
 - Select Settings -> Transformation Settings
 - Choose a transformation type (TPS is generally suitable)
 - Ensure the SRS is set to EPSG:3857 WGS84/Pseudo-Mercator
 - Specify a target file for the result
 - Enable "Load in QGIS when done"
 - Click OK to apply the settings and return to the Georeferencer window

 Repeat the following steps for at least three (distant, non-aligned) points on your map image:

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris
 - Use arrow keys to move and the mouse wheel to zoom, but clicking is disabled

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris
 - Use arrow keys to move and the mouse wheel to zoom, but clicking is disabled
 - Click when the crosshair is positioned over the reference detail (e.g., Lutetia)

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris
 - Use arrow keys to move and the mouse wheel to zoom, but clicking is disabled
 - Click when the crosshair is positioned over the reference detail (e.g., Lutetia)
 - A window appears to input the coordinates

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris
 - Use arrow keys to move and the mouse wheel to zoom, but clicking is disabled
 - Click when the crosshair is positioned over the reference detail (e.g., Lutetia)
 - A window appears to input the coordinates
 - Click the From Map Canvas button
 - The map and dialog disappear, and you neturn to the OSM raster
 - Locate the coverage and point (e.g. paris) on the raster and click
 - QGIS extracts the geographic coordinates from the raster

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris
 - Use arrow keys to move and the mouse wheel to zoom, but clicking is disabled
 - Click when the crosshair is positioned over the reference detail (e.g., Lutetia)
 - A window appears to input the coordinates
 - Click the From Map Canvas button
 - The map and dialog disappear, and you return to the OSM raster with a crosshair pointer
 - Locate the corresponding point (e.g. Paris) on the raster and click
 - QGIS extracts the geographic coordinates from the raste
 - The map reappears with the coordinates filled in

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris
 - Use arrow keys to move and the mouse wheel to zoom, but clicking is disabled
 - Click when the crosshair is positioned over the reference detail (e.g., Lutetia)
 - A window appears to input the coordinates
 - Click the From Map Canvas button
 - The map and dialog disappear, and you return to the OSM raster with a crosshair pointer
 - Locate the corresponding point (e.g., Paris) on the raster and click
 - QGIS extracts the geographic coordinates from the raster
 - The map reappears with the coordinates filled in

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris
 - Use arrow keys to move and the mouse wheel to zoom, but clicking is disabled
 - Click when the crosshair is positioned over the reference detail (e.g., Lutetia)
 - A window appears to input the coordinates
 - Click the From Map Canvas button
 - The map and dialog disappear, and you return to the OSM raster with a crosshair pointer
 - Locate the corresponding point (e.g., Paris) on the raster and click
 - QGIS extracts the geographic coordinates from the raster
 - The map reappears with the coordinates filled in

Matching Points

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris
 - Use arrow keys to move and the mouse wheel to zoom, but clicking is disabled
 - Click when the crosshair is positioned over the reference detail (e.g., Lutetia)
 - A window appears to input the coordinates
 - Click the From Map Canvas button
 - The map and dialog disappear, and you return to the OSM raster with a crosshair pointer
 - Locate the corresponding point (e.g., Paris) on the raster and click
 - QGIS extracts the geographic coordinates from the raster
 - The map reappears with the coordinates filled in

Click OK and repeat for at least three points

Matching Points

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris
 - Use arrow keys to move and the mouse wheel to zoom, but clicking is disabled
 - Click when the crosshair is positioned over the reference detail (e.g., Lutetia)
 - A window appears to input the coordinates
 - Click the From Map Canvas button
 - The map and dialog disappear, and you return to the OSM raster with a crosshair pointer
 - Locate the corresponding point (e.g., Paris) on the raster and click
 - QGIS extracts the geographic coordinates from the raster
 - The map reappears with the coordinates filled in
 - Click OK and repeat for at least three points

The map before georeferencing

GCP table

Enabled ↑ ID Source X Source Y Dest. X Dest. Y dX (pixels) dY (pixels) dY (pixels)

| 0 385.542577 | 265.631889 | 260543.31 (6265191.65 | 0.860690 | 3.587920 | 3.689709

- Once all reference points are set, apply the georeferencing algorithm
- Click the green thangle in the Georeferencer toolban is start the process.
- A pop-up all confirm completion
- Keep the thought the All the Sylventry of the Sylven

- Once all reference points are set, apply the georeferencing algorithm
- Click the green triangle in the Georeferencer toolbar to start the process
- A pop-up will confirm completion
- Keep the George and Country to the mai

- Once all reference points are set, apply the georeferencing algorithm
- Click the green triangle in the Georeferencer toolbar to start the process
- A pop-up will confirm completion
- Keep the Georgia en and switch to the main QGIS window to inspert the result.

- Once all reference points are set, apply the georeferencing algorithm
- Click the green triangle in the Georeferencer toolbar to start the process
- A pop-up will confirm completion
- Keep the Georeferencer window open and switch to the main QGIS window to inspect the result

The image appears as a new raster layer in the main QGIS window

To assess the georeferencing accuracy, adjust transparency:

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties
 - Set Global Disacity to approximately 50
- georeferenced hateries man a
- The three
- Observe h
- If the result

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties
 -> Transparency
 - Set Global Offacity to approximately 50
 - The next still illustrates an QSM raster of Fi georeferended illustrated map of ancient tribe
- The three re
- Observe h
- If the result

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties
 -> Transparency
 - Set Global Opacity to approximately 50
- The next side illustrates an OSM raster of France with georeferenced historical man of ancient tribes.
- The three reference control seed paid Macsaile, and Bordeau
- Observe how the National dissiple of the between the maps
- If the result

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties
 -> Transparency
 - Set Global Opacity to approximately 50
- The next slide illustrates an OSM raster of France with a georeferenced historical map of ancient tribes
- The three reference being used Palis, Marseille, and Bordeaux
- Observe how the harm dissiple of the between the maps
- If the result is insatisfactory

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties
 -> Transparency
 - Set Global Opacity to approximately 50
- The next slide illustrates an OSM raster of France with a georeferenced historical map of ancient tribes
- The three reference points used: Paris, Marseille, and Bordeaux
- Observe how the northern doas line differs between the maps
- If the result is vasatisfactory

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties
 -> Transparency
 - Set Global Opacity to approximately 50
- The next slide illustrates an OSM raster of France with a georeferenced historical map of ancient tribes
- The three reference points used: Paris, Marseille, and Bordeaux
- Observe how the northern coastline differs between the maps
- a If the regult is Incatisfactory

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties
 -> Transparency
 - Set Global Opacity to approximately 50
- The next slide illustrates an OSM raster of France with a georeferenced historical map of ancient tribes
- The three reference points used: Paris, Marseille, and Bordeaux
- Observe how the northern coastline differs between the maps
- If the result is unsatisfactory:
 - Remove the laver
 - Return to the Geoleference window to add more points
 - Repeat the georefer

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties
 -> Transparency
 - Set Global Opacity to approximately 50
- The next slide illustrates an OSM raster of France with a georeferenced historical map of ancient tribes
- The three reference points used: Paris, Marseille, and Bordeaux
- Observe how the northern coastline differs between the maps
- If the result is unsatisfactory:
 - Remove the layer
 - Return to the Georeference, window to add more points
 - Repeat the georeferencing process

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties
 -> Transparency
 - Set Global Opacity to approximately 50
- The next slide illustrates an OSM raster of France with a georeferenced historical map of ancient tribes
- The three reference points used: Paris, Marseille, and Bordeaux
- Observe how the northern coastline differs between the maps
- If the result is unsatisfactory:
 - Remove the layer
 - Return to the Georeferencer window to add more points
 - Repeat the georeferencing process

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties
 -> Transparency
 - Set Global Opacity to approximately 50
- The next slide illustrates an OSM raster of France with a georeferenced historical map of ancient tribes
- The three reference points used: Paris, Marseille, and Bordeaux
- Observe how the northern coastline differs between the maps
- If the result is unsatisfactory:
 - Remove the layer
 - Return to the Georeferencer window to add more points
 - Repeat the georeferencing process

Referenced image generated

- During the georeferencing process, you specified a location to save the new raster
- To load it in QGIS, open a new project and access the Data Source Manager

Augusto Ciuffoletti

- During the georeferencing process, you specified a location to save the new raster
- To load it in QGIS, open a new project and access the Data Source Manager
 - Select Raster as the data source type
 - Click File to choose the raster format
 - Brows of fur flesystem and set the Source
 - Data Source Manager Raster Source Type Raster File ○ Protocol: HTTP(S), cloud, etc. ○ OGC API Mesh Source Point Cloud Raster dataset(s) sto/Scrivania/DHSummerSchool 2025/Maps/Map Gallia Tribes Town raster.tif 🚳 ... ▼ Options Consult GTiff driver help page for detailed explanations on options NUM THREADS <Default> GEOTIFF KEYS FLAVOR GEOREF SOURCES <Default> SPARSE OK

Tutorial Web site: https://bit.ly/dt4h-gis

- During the georeferencing process, you specified a location to save the new raster
- To load it in QGIS, open a new project and access the Data Source Manager
 - Select Raster as the data source type
 - Click File to choose the raster format
 - Brown for flesystem and set the Source field to the sath of your

- During the georeferencing process, you specified a location to save the new raster
- To load it in QGIS, open a new project and access the Data Source Manager
 - Select Raster as the data source type
 - Click File to choose the raster format
 - Browse your flesystem and set the Source field to the bath of your

- During the georeferencing process, you specified a location to save the new raster
- To load it in QGIS, open a new project and access the Data Source Manager
 - Select Raster as the data source type
 - Click File to choose the raster format
 - Browse your filesystem and set the Source field to the path of your new raster

- Find in-depth QGIS tutorials at https://www.qgistutorials.com/en/
- Access geographic data (such as OpenStreetWap) from regional and global sources:

 - down
- https://w

- Find in-depth QGIS tutorials at https://www.qgistutorials.com/en/
- Access geographic data (such as OpenStreetMap) from regional and global sources:
 - https://ealythexptorer.usgs.gov/ (Explore available datasets)
 - http://www.lpdd.liabamydaysta.id/mattm/sarvia/di-sca
 - down dading WES resources to import into CGS
- https://www.datsgillo.jag.com.mi/2012.jag.working_itheyerrain.htm

401401451451 5 000

- Find in-depth QGIS tutorials at https://www.qgistutorials.com/en/
- Access geographic data (such as OpenStreetMap) from regional and global sources:
 - https://earthexplorer.usgs.gov/ (Explore available datasets)

- Find in-depth QGIS tutorials at https://www.qgistutorials.com/en/
- Access geographic data (such as OpenStreetMap) from regional and global sources:
 - https://earthexplorer.usgs.gov/ (Explore available datasets)
 - http://wms.pcn.minambiente.it/mattm/servizi-di-scaricamento/ for downloading WFS resources to import into QGIS
 - https://www.disgutofia.com/ai/20cs/2/working_with_terrain.html

Cham

- Find in-depth QGIS tutorials at https://www.qgistutorials.com/en/
- Access geographic data (such as OpenStreetMap) from regional and global sources:
 - https://earthexplorer.usgs.gov/ (Explore available datasets)
 - http://wms.pcn.minambiente.it/mattm/servizi-di-scaricamento/ for downloading WFS resources to import into QGIS
- Try an engaging tutorial:
 - https://www.qgistutorials.com/en/docs/3/working_with_terrain.html
 - Learn to add contour lines to OGIS maps

- Find in-depth QGIS tutorials at https://www.qgistutorials.com/en/
- Access geographic data (such as OpenStreetMap) from regional and global sources:
 - https://earthexplorer.usgs.gov/ (Explore available datasets)
 - http://wms.pcn.minambiente.it/mattm/servizi-di-scaricamento/ for downloading WFS resources to import into QGIS
- Try an engaging tutorial:
 - https://www.qgistutorials.com/en/docs/3/working_with_terrain.html
 - Learn to add contour lines to QGIS maps

