Tank Estimators

How can a random sample of integers between 1 and N (with N unknown to the researcher) be used to estimate N?

1.	The tanks are numbered from I to N. Working with your group, randomly select five tanks, without replacement, from the bowl. The tanks are numbered:
2.	Think about how you would use your data to estimate N. (Come up with at least 3 estimators.) Come to a consensus within the group as to how this should be done. One person from your group will report out after the warm-up is over. Ideally, the person to report out will be someone who has not yet spoken in class this semester. Step-up if you haven't yet spoken. Step back if you speak regularly.
	Our estimates of N are:
	Our rules or formulas for the estimators of N based on a sample of n (in your case 5

integers are:

Assuming the random variables are distributed according to a discrete uniform. (Tbh, this model is with replacement, but the answers you get aren't much different than without replacement if $n \ll N$.)

$$X_i \sim P(X = x | N) = \frac{1}{N}$$
 $x = 1, 2, ..., N$ $i = 1, 2, ..., n$

3. What is the method of moments estimator of N?

4. What is the maximum likelihood estimator of N?

Mean Squared Error

Most of our estimators are made up of four basic functions of the data: the mean, the median, the min, and the max. Fortunately, we know something about the moments of these functions:

$g(\underline{X})$	$E[g(\underline{X})]$	Var(g(X))
\overline{X}	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12n}$
$median(\underline{X}) = M$	$\frac{N+1}{2}$	$\frac{(N-1)^2}{4n}$
$\min(\underline{X})$	$\frac{(N-1)}{n} + 1$	$\left(\frac{N-1}{n}\right)^2$
$\max(\underline{X})$	$N - \frac{(N-1)}{n}$	$\left(\frac{N-1}{n}\right)^2$

Using this information, we can calculate the MSE for 4 of the estimators that we have derived. (Remember that $MSE = Variance + Bias^2$.)

MSE
$$(2 \cdot \overline{X} - 1) = \frac{4(N+1)(N-1)}{12n} + \left(2\left(\frac{N+1}{2}\right) - 1 - N\right)^2$$

$$= \frac{4(N+1)(N-1)}{12n}$$
(1)

MSE
$$(2 \cdot M - 1) = \frac{4(N-1)^2}{4n} + \left(2\left(\frac{N+1}{2}\right) - 1 - N\right)^2$$

= $\frac{4(N-1)^2}{4n}$ (2)

MSE
$$(\max(\underline{X}))$$
 = $\left(\frac{N-1}{n}\right)^2 + \left(N - \frac{(N-1)}{n} - N\right)^2$
 = $\left(\frac{N-1}{n}\right)^2 + \left(\frac{N-1}{n}\right)^2 = 2 * \left(\frac{N-1}{n}\right)^2$ (3)

$$MSE\left(\left(\frac{n+1}{n}\right)\max(\underline{X})\right) = \left(\frac{n+1}{n}\right)^2 \left(\frac{N-1}{n}\right)^2 + \left(\left(\frac{n+1}{n}\right)\left(N - \frac{N-1}{n}\right) - N\right)^2 (4)$$

	xbar2	med2	xbarmed	iqr2	max	adjmax	max.min	maxmax
mean	244.6	244.1	244.3	215.5	230.6	247.1	244.9	251.7
median	244.5	245.0	244.0	215.0	235.0	251.8	245.0	245.0
sd	35.8	58.4	45.6	53.5	13.9	14.8	20.2	28.2
\min	111.3	53.0	92.1	47.0	139.0	148.9	147.0	148.3
max	378.2	429.0	400.8	401.0	245.0	262.5	359.0	378.2

Table 1: Sample statistics for 10,000 reps taken from a population with N=245 and n=15.

True Population Size True Population Size MSE for different estimates of the Population Size 2Xbar-1 2M-1 max (n+1)/n *max 2Xbar-1 2M-1 max (n+1)/n *max 01=n,∃SM 0S=n ,3SM True Population Size True Population Size --- 2M-1
--- 2M-1
--- max
--- (n+1)/n *max 2Xbar-1 2M-1 max (n+1)/n *max g=u '3SW MSE, n=25