Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Modelación y Simulación 2 SIMIO 2021 May Student Competition Primer Semestre 2021 Ing. Miguel Ángel Cancinos Aux. Jorge Vásquez

<u>Demand Driven Materials Requirement</u> Planning (DDMRP) Problem

Enunciado Fase 1

I. Objetivo General

A. Determinar, analizar y mejorar el comportamiento de los sistemas de procesos reales, al genera modelos que se adapten a ellos aplicando su conocimiento en el uso de software de simulación.

II. Objetivos Específicos

- A. Mejorar el concomimiento del estudiante sobre la herramienta de simulación SIMIO al realizar modelos de sistemas reales.
- B. Realizar lectura y escritura de datos con la herramienta SIMIO, para poder analizar datos de interés y generar a través de esta salida de información.
- C. Analizar resultados obtenidos con el proceso de simulación y mejorar su comportamiento.

Descripción

Durante esta fase el estudiante deberá analizar la información proporcionada a través del archivo "DataFile.xlsx", específicamente las hojas BOM Matrix, Current State Inventory Policy, Processing Data, Quality Data, Supplier Data. A demás deberá importar al proyecto de SIMIO las imágenes necesarias para poder construir el modelo de simulación y agregar al modelo los buffers en las coordenadas que indica el archivo de entrada.

Nota: debe de tomar como base el enunciado original de la competencia, para realizar esta fase.

BOM Matrix:

Definir metodología para trabajar sobre la información brindada en la BOM Matrix. Ejemplo, si se manejara la matriz en memoria o a través de lectura del Excel. Para esto deberá definir los **procesos** que controlaran el flujo de esta información dependiendo de los productos y subensamblajes que conforman la matriz y la cantidad de componentes para dicha construcción.

2. Current State Inventory Policy:

Para esta fase, únicamente implementar la lista de buffers y ubicaciones de cada una de estos en el modelo final, a través de las coordenadas proporcionadas en el archivo de entrada. La implementación para esta parte del modelo queda a su discreción.

3. Processing Data

Determinar la distribución de probabilidad asociada a los datos históricos que se proporcionan en el archivo de entrada, por cada estación y tipo de producto que se ha procesado según la información entregada.

Ejemplo: si ha determinado que se utilizara una distribución normal para cierta estación, deberá definir la media y desviación estándar que se utilizara para dicha distribución.

Deberá generar un archivo de salida que contenga las siguientes columnas: nombre estación, tipo de producto, distribución asociada, tiempos esperados (para esto puede ser más de una columna, Ejemplo: min, max, media, etc).

4. Quality Data

Determinar la distribución de probabilidad asociada a los datos históricos que se proporcionan en el archivo de entrada, por cada inspección de calidad dependiendo del proveedor y material que este proporciona.

Ejemplo: si ha determinado que se utilizara una distribución normal para cierto control de calidad, deberá definir la media y desviación estándar que se utilizara para dicha distribución.

Deberá generar un archivo de salida que contenga las siguientes columnas: nombre proveedor, tipo de producto, distribución asociada, tiempos esperados (para esto puede ser más de una columna, Ejemplo: min, max, media, etc).

5. Supplier Data

Determinar los tiempos y distribuciones asociadas de envió de los productos por los proveedores, por cada proveedor dependiendo del producto que se le ha solicitado.

Ejemplo: si ha determinado que se utilizara una distribución normal para cierto envió, deberá definir la media y desviación estándar que se utilizara para dicha distribución.

Deberá generar un archivo de salida que contenga las siguientes columnas: nombre proveedor, tipo de material, cantidad de unidades, distribución asociada, tiempos esperados (para esto puede ser más de una columna, Ejemplo: min, max, media, etc).

6. Importación de Imagen base para construcción del modelo

Deberá importar las imágenes necesarias proporcionadas en el archivo 2021May_Data al proyecto de SIMIO, para iniciar la construcción del modelo final solicitado. Estas imágenes deben definirse con las medidas proporcionadas en el enunciado original del proyecto.

Documentación

Realizar un documento en formato Markdown con los elementos que se describen a continuación.

- Diseño del sistema con justificación: documentación de los procesos principales del sistema mediante gráficas y descripción de los elementos utilizados para modelar el proceso.
- Descripción del análisis realizado para determinar distribuciones de probabilidad para los flujos del sistema en las partes que lo requieran (agregar comandos, graficas, software utilizado, etc) justificado.
- Graficas del modelo final realizado para esta fase explicando cada uno de sus componentes.
- Conclusiones: descripción de los comportamientos relevantes del sistema obtenidos del análisis propio de simulación.

Entregable

Link del repositorio del grupo de trabajo por medio de UEDI, el nombre del repositorio deberá ser MYS2_Proyecto_G#, el cual deberá de contener.

- Modelo principal: [MYS2]Modelo_G#.spfx
- Modelo de datos: [MYS2]AnálisisDatos_G#.spfx
- Archivos de Excel utilizados (Entrada o salida): [MYS2]<descripción> G#.xlsx
- Archivos extras utilizados para el análisis de las distribuciones de probabilidad, ejemplo: archivos de R. Agregarlos en una carpeta llamada Análisis_G#.
- Documentación: README.md, también deberá agregar la información de los integrantes del grupo en el encabezado del documento.

Fecha límite de entrega: sábado 20 de marzo del 2021 antes de las 23:59.

Restricciones

- El proyecto deberá ser desarrollado en los grupos definidos para la competencia.
- Únicamente esta permitido el uso de la herramienta de simulación SIMIO para la manipulación de la data. Puede utilizar herramientas como R únicamente para determinar distribuciones de probabilidad asociadas a los datos obtenidos.
- Se deberá crear un repositorio (GitLab o GitHub) en donde deberán estar todos los integrantes del grupo.
- El repositorio deberá ser privado.
- Se deberá agregar al auxiliar al repositorio de trabajo de cada grupo.

Usuario GitHub: Jorge2808

Usuario GitLab: Jorgev28

- El Workflow utilizado en su repositorio es libre, pero se calificará del ultimo merge realizado a la rama master o main antes de finalizar la fecha de entrega.
- Las personas que realizaran los commit al repositorio podrán agregar como Coauthored a los integrantes que hayan colaborado a realizar ese avance del proyecto. Únicamente se permite como máximo un Co-authored por commit.
- Se calificará la cantidad y calidad de los commits realizados por cada integrante del grupo. Tomar en cuenta que si se detectan commit sin avances significativos se penalizara a las personas involucradas.
- No se permitirán entregas fuera de tiempo.
- Copias totales o parciales tendrán nota de 0 y serán reportadas a la Escuela de Ciencias y Sistemas.