Data Exploration
Data Preparation
Correlation
Modèle
Conclusion

Projet Jedha

Les déterminants de la réussite scolaire des élèves en Afrique : cas du Kenya

Abou & Boris

Enseignant : Badr Ouali

2020

Contexte de l'étude

- Le SACMEQ est un consortium qui regroupe 15 pays d'Afrique australe et orientale qui permet :
 - Repenser les politiques, d'orienter les réformes, d'élaborer des programmes éducatifs,
 - Gérer les défis lancés touchant la qualité de l'enseignement

Problématique

- Les inégalités scolaires :
 - Isolement des écoles
 - Régionales, rurales / urbaines, isolées / non isolées,
 - Entre les filles et garçons,
 - Entre établissements publics/privés.

Plan

- Data Exploration
- 2 Data Preparation
- 3 Correlation
- 4 Modèle
- Conclusion

Data Exploration
Data Preparation
Correlation
Modèle
Conclusion

Data Exploration

Data Preparation

Les variables

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4436 entries, 0 to 4435
Data columns (total 55 columns):
                 4436 non-null float32
TD
COUNTRY
                 4436 non-null object
REGION
                 4436 non-null object
DISTRICT
                 4436 non-null object
SCHOOT.
                 4436 non-null float64
PUPIL
                 4436 non-null float64
READ
                 4436 non-null float64
MATH
                 4433 non-null float64
read prof
                 4191 non-null float64
math prof
                 4071 non-null float64
numstu
                 4436 non-null float64
                 4436 non-null category
PSEX
PTRAVEL
                 4436 non-null category
PTRAVEL2
                 4436 non-null category
PMOTHER
                 4436 non-null category
PFATHER
                 4422 non-null category
                  4436 non-mull cotosomu
CHADE
```

Data Preparation

Les variables

- Nettoyages de la base de données
- Calcul de la moyenne de la variable à prédire score = (READ + MATH)/2
- Suppression des outiliers des et des variables avec trop de valeurs manquantes
- Créations des dummies

Correlation

Variables selectionnées

Out[298]:		Features	Value
	12	SLOCAT_LARGE CITY	0.463633
	0	DISTANCE	0.102244
	34	PFATHER_Completed University Degree	0.085936
	22	PMOTHER_Completed University Degree	0.058412
	3	PTRAVEL2_WALK	0.045986
	19	PMOTHER_Completed All Secondary	0.038504
	11	SLOCAT_SMALLTOWN	0.020682
	1	PSEX_BOY	0.018845
	6	PTRAVEL2_BUS/TRUCK/VAN	0.018127
	10	SLOCAT_RURAL	0.017175
	2	PSEX_GIRL	0.014631
	13	PMOTHER_No School, No Adult Education	0.011365
	33	PFATHER_Completed Some University	0.010624
	20	PMOTHER_Completed Training After Secondary	0.009698
	14	PMOTHER_No School, Some Adult Education	0.009318
	23	PMOTHER_I Do Not Know	0.008513
	32	PFATHER_Completed Training After Secondary	0.008176
	15	PMOTHER_Completed Some Primary	0.007083

Abou et Boris

Modèle Decision Tree

```
[49]:
           # Evaluation du modèle
           print("Train Score : {}".format(dtree.score(X train, y train)))
           print('Test Score : {}'.format(dtree.score(X test, y test)))
     Train Score: 0.058833069127457005
     Test Score: 0.09934970520614084
           v pred=dtree.predict(X test)
f501:
[51]:
           from sklearn import metrics
           print('Mean Absolute Error:', metrics.mean absolute error(y test, y pred))
           print('Mean Squared Error:', metrics.mean squared error(y test, y pred))
           print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, y pred)))
     Mean Absolute Error: 68.78260780647231
     Mean Squared Error: 7876.010218259053
     Root Mean Squared Error: 88.74688849902881
```

Data Exploration
Data Preparation
Correlation
Modèle
Conclusion

Modèle Random Forest 1

Modèle

Random Forest 2

```
# Tentons une random forest
       from sklearn.ensemble import RandomForestRegressor
       regressor = RandomForestRegressor(n estimators = 1000, random state=0)
    5 regressor.fit(X train, v train)
    6 v pred = regressor.predict(X test)
    1 # Evaluation du modèle
    2 print("Train Score : ()".format(regressor.score(X train, v train)))
       print('Test Score : {}'.format(regressor.score(X test, y test)))
 Train Score : 0.5885003430235788
 Test Score : 0.09541805193929653
1:
       from sklearn import metrics
    3 print('Mean Absolute Error:', metrics.mean absolute error(y test, y pred))
       print('Mean Squared Error:', metrics.mean squared error(y test, y pred))
    5 print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, y pred)))
 Mean Absolute Error: 69.17453652480096
 Mean Squared Error: 7910.391755114491
 Root Mean Squared Error: 88.9403831513812
```

Conclusion

- grande ville,
- distance,
- Niveau d'education du père

Perspective

