CPE301 – SPRING 2019

MIDTERM 1

Student Name: Armon Latifi Student #: 2000698173

Student Email: latifa1@unlv.nevada.edu

Primary Github address: https://github.com/armonlatifi

Directory: https://github.com/armonlatifi/sub_da/tree/master/MIDTERM%201

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/Midterm, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

List of Components used:

- Assembler
- Simulator
- Debugger
- Breadboard
- Atmega328P
- Wires (male/female)
- Esp-01/firmware
- esp-01 adapter
- Atmel Studio
- Thinkspeak
- FTDI
- LM34

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
//set baud rate to 9600
//set clock rate at 16 MHz
//set the UBRR number
#define BAUD 9600
#define F_CPU 16000000UL
#define MYUBRR F_CPU/16/BAUD-1
#include <avr/io.h>
#include <util/delay.h>
#include <stdio.h>
#include <avr/interrupt.h>
void read_adc(void);
void adc init(void);
void USART init( unsigned int ubrr );
void USART_tx_string(char *data);
volatile unsigned int r_value;
char outs[20];
void usart_send( unsigned char ascii)
{
        while(!(UCSR0A & (1<<UDRE0)));
        UDR0 = ascii;
}
unsigned char usart_receive(void)
{
        while (!(UCSR0A & (1<<RXCIE0)));
        return UDR0;
}
void send AT( unsigned char message[])
        unsigned char i=0;
        while(message[i] != '\0')
        {
                usart_send(message[i]);
                j++;
        }
}
int main(void) {
        unsigned char CIPMUX[] = "AT+CIPMUX=1\r\n";
        unsigned char CIPSTART[] = "AT+CIPSTART=0,\"TCP\",\"api.thingspeak.com\",80\r\n";
        unsigned char AT[] = "AT\r\n";
        unsigned char CIPSEND[] = "AT+CIPSEND=0,110\r\n";
        unsigned char GET_DATA[] = "GET
https://api.thingspeak.com/apps/thinghttp/send request?api key=SBYXUXDC8TLMA50V\r\n";
        unsigned char SEND DATA[] = "GET
https://api.thingspeak.com/update?api_key=RLIBH668P4MZTRB6=50\r\n";
```

```
//initialize and wait
        USART init(MYUBRR);
        USART_tx_string("Connected!\r\n");
        _delay_ms(325);
        send AT(AT);
        delay ms(2000);
        send_AT(CIPMUX);
        _delay_ms(2000);
        send AT(CIPSTART);
        _delay_ms(2000);
        send_AT(GET_DATA);
        _delay_ms(2000);
        send_AT(SEND_DATA);
        adc_init();
        //interrupt
        sei();
        while(1)
        }
}
void adc_init(void)
        /** Setup & enable ADC **/
        ADMUX = (0<<REFS1)| // Reference Selection Bits
        (1<<REFS0)| // AVcc - external cap at AREF
        (0<<ADLAR)| // ADC Left Adjust Result
        (0<<MUX2)| // ANalog Channel Selection Bits
        (1<<MUX1)| // ADC2 (PC2 PIN25)
        (0 << MUX0);
        ADCSRA = (1<<ADEN)| // ADC enable
        (0<<ADSC)| //Start Conversion
        (0<<ADATE)| //Auto Trigger Enable
        (0<<ADIF)| //Interrupt Flag
        (0<<ADIE)| //Interrupt Enable
        (1<<ADPS2)| //Prescaler Select Bits
        (0<<ADPS1)
        (1<<ADPS0);
       // Timer/Counter1 Interrupt Mask Register
        TIMSK1 |= (1<<TOIE1); // enable overflow interrupt
        TCCR1B |= (1<<CS12)|(1<<CS10); // native clock
                                //set Timer counter
        TCNT1 = 49911;
}
/* READ PINS */
void read_adc(void) {
        unsigned char i =4;
```

```
r_value = 0;
        while (i--) {
                ADCSRA |= (1<<ADSC);
                while(ADCSRA & (1<<ADSC));
                r_value+= ADC;
                _delay_ms(50);
       //take average
        r_value = r_value / 8;
        r_value = r_value /2;
}
/* INIT USART */
void USART_init( unsigned int ubrr ) {
        UBRR0H = (unsigned char)(ubrr>>8);
        UBRR0L = (unsigned char)ubrr;
        UCSR0B = (1 \ll TXEN0);
        UCSR0C = (3 \ll UCSZ00);
}
void USART_tx_string( char *data ) {
        while ((*data != '\0')) {
                while (!(UCSR0A & (1 <<UDRE0)));
                UDR0 = *data;
                data++;
       }
}
ISR(TIMER1_OVF_vect)
        read_adc();
        snprintf(outs,sizeof(outs),"%3d\r\n", r_value);
        USART_tx_string(outs);
        //reset
        TCNT1 = 49911;
}
```

3. SCHEMATICS

Use fritzing.org

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

GET https://api.thingspeak.com/apps/thinghttp/send_request?api_key=SBYXUXDC8TLMAS0 GET https://api.thingspeak.com/update?api_key=RLIBH668P4MZTRB6=50 95 89 86

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. GITHUB LINK OF THIS DA

https://github.com/armonlatifi/sub_da/tree/master/MIDTERM%201

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Armon Latifi