Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny
Przedmiot:	Matematyka
Poziom:	Poziom podstawowy

Uwagi:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający, rozwiązując zadanie otwarte, popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Wymagania egzaminacyjne w 2023 i 2024 r.:

https://link.operon.pl/uk

Zadanie 1. (0-1)

•	
Wymagania ogólne	Wymagania szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach rzeczywistych,	II.1) stosuje wzory skróconego mnożenia na:
także przy użyciu kalkulatora, stosowanie praw	$(a+b)^2$, $(a-b)^2$, a^2-b^2 .
działań matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz wykorzystywanie	
tych umiejętności przy rozwiązywaniu problemów	
w kontekstach rzeczywistych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

C

Obliczenie prowadzące do rozwiązania

$$-2\left(\frac{1}{\sqrt{3}} + 3 - \frac{\sqrt{3}}{3} + 3\right)^2 = -2 \cdot 6^2 = -72$$

Zadanie 2. (0-1) Wymagania ogólne Wymagania szczegółowe I. Sprawność rachunkowa. Zdający: Wykonywanie obliczeń na liczbach rzeczywistych, I.4) stosuje związek pierwiastkowania z potakże przy użyciu kalkulatora, stosowanie praw tęgowaniem oraz prawa działań na potęgach działań matematycznych przy przekształcaniu i pierwiastkach.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

wyrażeń algebraicznych oraz wykorzystywanie tych umiejętności przy rozwiązywaniu problemów w kontekstach rzeczywistych i teoretycznych.

Rozwiązanie

Obliczenie prowadzące do rozwiązania
$$\frac{8^{22}}{2} = \frac{(2^3)^{22}}{2} = \frac{2^{66}}{2} = 2^{65}$$

Zadanie 3. (0–1)	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	I.1) wykonuje działania ([] logarytmowanie)
1. Stosowanie obiektów matematycznych i opero-	w zbiorze liczb rzeczywistych.
wanie nimi, interpretowanie pojęć matematycz-	I. 9) stosuje związek logarytmowania z potę-
nych.	gowaniem, posługuje się wzorami na logarytm
	iloczynu, logarytm ilorazu i logarytm potęgi.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

Obliczenie prowadzące do rozwiązania

$$\log_3 24 - 3\log_3 6 = \log_3 24 - \log_3 6^3 = \log_3 \frac{24}{216} = \log_3 \frac{1}{9} = -2$$

www.operon.pl

26

Zadanie 4. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	III.3) rozwiązuje nierówności liniowe z jedną
1. Stosowanie obiektów matematycznych i opero-	niewiadomą.
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiazanie

D

Obliczenie prowadzące do rozwiązania

$$3-x \ge \frac{3}{5}x+7$$

 $-\frac{8}{5}x \ge 4$, czyli $x \le -2,5$, zatem najmniejsza liczba całkowita, która nie należy do zbioru rozwiązań to -2

Zadanie 5. (0-1)

· /	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	I.7) stosuje interpretację geometryczną i algebra-
2. Dobieranie i tworzenie modeli matematycz-	iczną wartości bezwzględnej, rozwiązuje równa-
nych przy rozwiązywaniu problemów praktycz-	nia i nierówności typu: [] $ x+3 \ge 4$.
nych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

C

Zadanie 6. (0–1)

· /	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	III.4) rozwiązuje równania i nierówności kwa-
1. Stosowanie obiektów matematycznych i opero-	dratowe.
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

PF

Obliczenie prowadzące do rozwiązania

$$x^2 + 3x = 0$$

$$x(x+3) = 0$$
, zatem $x = 0$ lub $x = -3$

Zatem liczby (-3) oraz 0 są miejscami zerowymi funkcji f(x) – zdanie prawdziwe (P).

 $x^2 + 3x \ge 0$ dla $x \in (-\infty, -3] \cup [0, +\infty)$ – zdanie fałszywe (F).

Wymagania ogólneWymagania szczegółoweIV. Rozumowanie i argumentacja.Zdający:4. Stosowanie i tworzenie strategii przy rozwią-
zywaniu zadań, również w sytuacjach nietypo-
wych.III.5) rozwiązuje równania wielomianowe po-
staci W(x) = 0 dla wielomianów [...] takich, które
dają się doprowadzić do postaci iloczynowej [...]
metodą grupowania.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiazanie

C

Obliczenie prowadzące do rozwiązania

$$\left(-\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(-2\right)=10$$

Zadanie 8. (0–2)	
Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy rozwią-	III.5) rozwiązuje równania wielomianowe po-
zywaniu zadań, również w sytuacjach nietypo-	staci $W(x)=0$ dla wielomianów [] takich, które
wych.	dają się doprowadzić do postaci iloczynowej []
	metodą grupowania.

Zasady oceniania

2 pkt – zastosowanie poprawnej metody rozwiązania równania i poddanie rozwiązania równania: $x = \frac{5}{2}$ 1 pkt – przekształcenie równania do postaci iloczynu wielomianów stopnia co najwyżej drugiego: $(x^2 + 4)(2x - 5) = 0$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe rozwiązanie

$$2x^3 - 5x^2 + 8x - 20 = 0$$

$$(x^2+4)(2x-5)=0$$

$$x^2 + 4 = 0$$
 lub $2x - 5 = 0$

równanie sprzeczne $x = \frac{5}{2}$

Zadanie 9. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	III.6) rozwiązuje równania wymierne postaci
1. Stosowanie obiektów matematycznych i opero-	V(x) 0 addis violenis vy $V(x)$ i $W(x)$ so
wanie nimi, interpretowanie pojęć matematycz-	$\frac{V(x)}{W(x)} = 0$, gdzie wielomiany $V(x)$ i $W(x)$ są
nych.	zapisane w postaci iloczynowej.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

В

Obliczenie prowadzące do rozwiązania

Dziedzina równania:
$$x \in \mathbb{R} \setminus \left\{ \frac{4}{3}, 5 \right\}$$

$$5x(x+5)(3x-4)=0$$
,

stąd x = 0 lub x = -5 lub $x = \frac{4}{3}$ nie należy do dziedziny równania

Zatem równanie ma dwa rozwiązania.

Zadanie 10. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	IV.2) stosuje układy równań do rozwiązywania
2. Dobieranie i tworzenie modeli matematycz-	zadań tekstowych.
nych przy rozwiązywaniu problemów praktycz-	
nych i teoretycznych	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

В

Wymagania ogólneWymagania szczegółoweII. Wykorzystanie i tworzenie informacji.Zdający:1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel.V.4) odczytuje z wykresu funkcji: dziedzinę, zbiór wartości [...];V.12) na podstawie wykresu funkcji y=f(x) szkicuje wykresy funkcji y=f(x-a), y=f(x)+b, y=-f(x), y=f(-x).

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

В

Obliczenie prowadzące do rozwiązania

Wykres funkcji y = f(x) został przesunięty o 6 jednostek w górę.

Zadanie 11.2. (0–1)	
Wymagania ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami	V.4) odczytuje z wykresu funkcji: dziedzinę,
przedstawionymi w tekście, zarówno matema-	zbiór wartości, []
tycznym, jak i popularnonaukowym, a także	V.12) na podstawie wykresu funkcji $y=f(x)$
w formie wykresów, diagramów, tabel.	szkicuje wykresy funkcji $y=f(x-a)$, $y=f(x)+b$,
	y=-f(x), y=f(-x).

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiazanie

F

Obliczenie prowadzące do rozwiązania

Wykres funkcji y = f(x) został przekształcony w symetrii osiowej względem osi Ox układu współrzędnych.

Zadanie 12. (0–1)	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	V. 6) wyznacza wzór funkcji liniowej na podsta-
1. Stosowanie obiektów matematycznych i opero-	wie informacji o jej wykresie lub o jej własno-
wanie nimi, interpretowanie pojęć matematycz-	ściach.
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

 \mathbf{C}

Obliczenie prowadzące do rozwiązania

$$a = \frac{-3-2}{0+3} = -\frac{5}{3}, b = -3$$

Zadanie 13. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	V.5) interpretuje współczynniki występujące we
1. Stosowanie obiektów matematycznych i opero-	wzorze funkcji liniowej.
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

В

Obliczenie prowadzące do rozwiązania

$$f(x) = (3-m)x + 15,$$

Funkcja rosnąca, jeśli 3 - m > 0, zatem m < 3.

Zadanie 14.1. (0-1)

· /	
Wymagania ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami	V.8) interpretuje współczynniki występujące we
przedstawionymi w tekście, zarówno matema-	wzorze funkcji kwadratowej w postaci ogólnej,
tycznym, jak i popularnonaukowym, a także	kanonicznej i iloczynowej (jeśli istnieje).
w formie wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

CD

Obliczenie prowadzące do rozwiązania

$$W = (-1, 5)$$
, gdzie $p = -1$, $q = 5$

Parabola będąca wykresem funkcji jest skierowana ramionami w dół, więc zbiór wartości to $(-\infty, q]$, czyli $(-\infty, 5]$.

Wymagania ogólneWymagania szczegółoweII. Wykorzystanie i tworzenie informacji.Zdający:1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matema-V.8) interpretuje współczynniki występujące we wzorze funkcji kwadratowej w postaci ogólnej,

kanonicznej i iloczynowej (jeśli istnieje).

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

tycznym, jak i popularnonaukowym, a także

w formie wykresów, diagramów, tabel.

Rozwiazanie

FF

Obliczenie prowadzące do rozwiązania

Parabola będąca wykresem funkcji jest skierowana ramionami w dół, więc funkcja jest rosnąca w przedziale $(-\infty, -1]$ – zdanie fałszywe (F).

$$f(3) = -2(3+1)^2 + 5 = -2 \cdot 16 + 5 = -27 < 5$$
 – zdanie fałszywe (F).

Zadanie 14.3. (0-1)

Wymagania ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami	V.10) wyznacza największą i najmniejszą wartość
przedstawionymi w tekście, zarówno matema-	funkcji kwadratowej w przedziale domkniętym.
tycznym, jak i popularnonaukowym, a także	
w formie wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

A

Obliczenie prowadzące do rozwiązania

Wartość najmniejsza to:

$$f(-7) = -2(-7+1)^2 + 5 = -2 \cdot 36 + 5 = -67$$

Zadanie 15. (0-2)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	V.9) wyznacza wzór funkcji kwadratowej na pod-
2. Dobieranie i tworzenie modeli matematycz-	stawie informacji o tej funkcji lub o jej wykresie.
nych przy rozwiązywaniu problemów praktycz-	
nych i teoretycznych.	

Zasady oceniania

2 pkt – poprawne wyznaczenie współczynników b i c we wzorze funkcji: b=-4, c=-12 lub zapisanie funkcji w postaci ogólnej: $f(x)=x^2-4x-12$

1 pkt – zapisanie wzoru funkcji f w postaci iloczynowej: f(x) = (x+2)(x-6)

ALBO

– poprawne wyznaczenie jednego ze współczynników b lub c

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe rozwiązanie

Sposób 1

Wyznaczamy drugie miejsce zerowe funkcji: x = 6

Wtedy:
$$f(x) = (x+2)(x-6) = x^2 - 4x - 12$$

Zatem: b = -4, c = -12

Sposób 2

Wyznaczamy współczynnik b = -4 ze wzoru: $p = \frac{-b}{2a}$.

Do wzoru funkcji $f(x) = x^2 - 4x + c$ podstawiamy punkt (-2, 0) i wyznaczamy c = -12.

Zadanie 16. (0–1)	
Wymagania ogólne	Wymagania szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach rzeczywi-	VI.1) oblicza wyrazy ciągu określonego wzorem
stych, także przy użyciu kalkulatora, stosowanie	ogólnym.
praw działań matematycznych przy przekształ-	
caniu wyrażeń algebraicznych oraz wykorzysty-	
wanie tych umiejętności przy rozwiązywaniu	
problemów w kontekstach rzeczywistych i teore-	
tycznych.	
III. Wykorzystanie i interpretowanie reprezen-	
tacji.	
1. Stosowanie obiektów matematycznych i opero-	
wanie nimi, interpretowanie pojęć matematycz-	
nvch.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

D

Obliczenie prowadzące do rozwiązania $a_{12} = \sqrt[3]{5 \cdot 12 - 6} = \sqrt[3]{54} = \sqrt[3]{27} \cdot \sqrt[3]{2} = 3\sqrt[3]{2}$

Zadanie 17. (0-2)

Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także kilku-	VI.3) sprawdza, czy dany ciąg jest arytmetyczny
etapowych, podawanie argumentów uzasadnia-	lub geometryczny.
jących poprawność rozumowania, odróżnianie	
dowodu od przykładu.	

Zasady oceniania

2 pkt – przeprowadzenie pełnego rozumowania uzasadniającego, że ciąg jest arytmetyczny, np. prawidłowe obliczenie różnicy kolejnych wyrazów oraz wykazanie, że jest stała i nie zależy od *n* (sposób 1.)

ALBO

– przeprowadzenie pełnego rozumowania uzasadniającego, że ciąg jest arytmetyczny, np. powołanie się na własność trzech kolejnych wyrazów ciągu arytmetycznego oraz sprawdzenie tej własności (sposób 2.)

1 pkt – zapisanie różnicy dwóch kolejnych wyrazów:
$$\frac{7n+2}{5} - \frac{7n-5}{5}$$
 (sposób 1.) *ALBO*

– zapisanie związku między trzema kolejnymi wyrazami ciągu:
$$\frac{7n+2}{5} = \frac{\frac{7n-5}{5} + \frac{7n+9}{5}}{2}$$
 dla każdego $n \ge 1$ (sposób 2.)

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe rozwiązanie

Sposób 1

Aby udowodnić, że ciąg jest arytmetyczny, należy wykazać, że różnica dwóch kolejnych wyrazów $a_{n+1}-a_n$ jest stała i nie zależy od n. Wyznaczymy wzór ogólny na a_{n+1} wyraz

ciagu:
$$a_{n+1} = \frac{7n+2}{5}$$

Wtedy:
$$a_{n+1} - a_n = \frac{7n+2}{5} - \frac{7n-5}{5} = \frac{7}{5}$$
 dla każdego $n \ge 1$

To oznacza, że ciąg (an) jest ciągiem arytmetycznym o różnicy $r = \frac{7}{5}$.

Sposób 2

Aby udowodnić, że ciąg jest arytmetyczny, należy wykazać, że dla dowolnych kolejnych trzech wyrazów ciągu, np. $a_{n,}a_{n+1},a_{n+2}$, zachodzi związek: $a_{n+1}=\frac{a_n+a_{n+2}}{2}$ dla $n\geq 1$.

Wyznaczymy wzór ogólny na a_{n+1} oraz a_{n+2} wyraz ciągu:

$$a_{n+1} = \frac{7n+2}{5}, a_{n+2} = \frac{7n+9}{5}$$

Sprawdzamy, czy dla kolejnych trzech wyrazów ciągu (an) zachodzi związek:

$$\frac{a_n + a_{n+2}}{2} = \frac{\frac{7n-5}{5} + \frac{7n+9}{5}}{2} = \frac{\frac{14n+4}{5}}{2} = \frac{14n+4}{10} = \frac{7n+2}{5} = a_{n+1}$$

Zatem:
$$\frac{a_n + a_{n+2}}{2} = a_{n+1}$$

To oznacza, że ciąg (an) jest ciągiem arytmetycznym.

Zadanie 18. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VI.4) stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i>
2. Dobieranie i tworzenie modeli matematycz-	początkowych wyrazów ciągu arytmetycznego.
nych przy rozwiązywaniu problemów praktycz-	
nych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiazanie

C

Obliczenie prowadzące do rozwiązania

$$a_2 = \frac{3+27}{2} = 15$$
, zatem $r = a_2 - a_1 = 12$

Ze wzoru: $a_n = a_1 + (n-1)r$, otrzymujemy:

$$99 = 3 + (n-1) \cdot 12$$
, stad $n = 9$.

Zadanie 19. (0-1)

· /	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VI.5) stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i>
2. Dobieranie i tworzenie modeli matematycz-	początkowych wyrazów ciągu geometrycznego.
nych przy rozwiązywaniu problemów praktycz-	
nych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

 $\overline{}$

Obliczenie prowadzące do rozwiązania

$$S_8 = a_1 \cdot \frac{1 - q^n}{1 - q} = -3 \cdot \frac{1 - (-2)^8}{1 - (-2)} = -3 \cdot \frac{1 - 256}{3} = 255$$

Zadanie 20. (0-2)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VII.1) wykorzystuje definicje funkcji sinus, cosi-
1. Stosowanie obiektów matematycznych i opero-	nus i tangens dla kątów od 0° do 180° [].
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiazanie

BF

Obliczenie prowadzące do rozwiązania

$$\sin \beta = \frac{|AC|}{|AB|} = \frac{9}{11} \text{ oraz } |BC| = 2\sqrt{10}, \text{ wiec}$$

$$tg\beta = \frac{|AC|}{|BC|} = \frac{9}{2\sqrt{10}} = \frac{9\sqrt{10}}{20}$$

Zadanie 21.1. (0-2)

· /	
Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy rozwią-	VII.3) stosuje twierdzenie cosinusów [].
zywaniu zadań, również w sytuacjach nietypo-	
wych.	

Zasady oceniania

2 pkt – wyznaczenia długości przekatnej rombu: $\sqrt{600}$

1 pkt – wyznaczenie wartości cosinusa 120° oraz poprawne zapisanie twierdzenia cosinusów dla danych z zadania

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe rozwiązanie

$$\cos 120^{\circ} = -\cos 60^{\circ} = -\frac{1}{2}$$

$$d^{2} = (10\sqrt{2})^{2} + (10\sqrt{2})^{2} - 2 \cdot 10\sqrt{2} \cdot 10\sqrt{2} \cdot (-\frac{1}{2})$$

$$d^{2} = 600$$

$$d = \sqrt{600} = 10\sqrt{6}$$

Zadanie 21.2. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VII.3) stosuje [] wzór na pole trójkąta
1. Stosowanie obiektów matematycznych i opero-	$P = \frac{1}{2} \cdot a \cdot b \cdot \sin \gamma.$
wanie nimi, interpretowanie pojęć matematycz-	$\frac{1}{2}$ $\frac{1}$
nych.	

Zasady oceniania

1 pkt – wyznaczenie pola rombu: $100\sqrt{3}$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe rozwiązanie

$$P = a^2 \cdot \sin \alpha = \left(10\sqrt{2}\right)^2 \cdot \frac{\sqrt{3}}{2} = 100\sqrt{3}$$

Zadanie 22. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VIII.7) stosuje twierdzenia: Talesa, o dwusiecz-
1. Stosowanie obiektów matematycznych i opero-	nej kąta oraz o kącie między styczną a cięciwą.
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

D

Obliczenie prowadzące do rozwiązania

Z twierdzenia o dwusiecznej kąta w trójkącie otrzymujemy zależność, np.: $\frac{|AC|}{|AD|} = \frac{|BC|}{|BD|}$, czyli $\frac{|AC|}{4} = \frac{5}{3,2}$,

wiec |AC| = 6,25.

Zadanie 23. (0-1)

· /	
Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także kilku-	VIII.5) stosuje własności kątów wpisanych
etapowych, podawanie argumentów uzasadnia-	i środkowych.
jących poprawność rozumowania, odróżnianie	
dowodu od przykładu.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

A

Obliczenie prowadzące do rozwiązania

Kạt BAD ma miarę 90°, więc kąt BAC ma miarę 65°. Kąt α jest kątem środkowym opartym na tym samym łuku, co kąt BAC, więc ma miarę 130°.

Zadanie 24. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VIII.9) wykorzystuje zależności między obwoda-
2. Dobieranie i tworzenie modeli matematycz-	mi oraz między polami figur podobnych.
nych przy rozwiązywaniu problemów praktycz-	
nych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiazanie

 \mathbf{C}

Obliczenie prowadzące do rozwiązania

Skala podobieństwa czworokątów: $k = \frac{24\sqrt{3}}{6\sqrt{6}} = 2\sqrt{2}$

Obwód czworokąta *ADCD* jest równy $18\sqrt{6}$, zatem obwód czworokąta *KLMN* wynosi $18\sqrt{6} \cdot k = 18\sqrt{6} \cdot 2\sqrt{2} = 36\sqrt{12} = 72\sqrt{3}$.

Zadanie 25. (0–1)	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	IX.1) rozpoznaje wzajemne położenie prostych
1. Stosowanie obiektów matematycznych i opero-	na płaszczyźnie na podstawie ich równań, w tym
wanie nimi, interpretowanie pojęć matematycz-	znajduje wspólny punkt dwóch prostych, jeśli
nych.	taki istnieje.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

FP

Obliczenie prowadzące do rozwiązania

Proste nie mają tych samych współczynników kierunkowych – stwierdzenie fałszywe (F). Iloczyn współczynników kierunkowych obu prostych jest równy (-1), zatem proste są prostopadłe – stwierdzenie prawdziwe (P).

Wymagania ogólne Wymagania szczegółowe III. Wykorzystanie i interpretowanie reprezentacji. Zdający: 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych. IX.4) posługuje się równaniem okręgu (x-a)²+(y-b)=r²; IX.6) wyznacza obrazy okręgów i wielokątów w symetriach osiowych względem osi układu współrzędnych [...].

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

D

Obliczenie prowadzące do rozwiązania

Obrazem okręgu O w symetrii względem osi Oy jest okrąg o środku w punkcie (-2, -7).

Zadanie 27. (0–4)		
Wymagania ogólne	Wymagania szczegółowe	
IV. Rozumowanie i argumentacja.	Zdający:	
4. Stosowanie i tworzenie strategii przy rozwią-	IX.1) rozpoznaje wzajemne położenie prostych	
zywaniu zadań, również w sytuacjach nietypo-	na płaszczyźnie na podstawie ich równań, w tym	
wych.	znajduje wspólny punkt dwóch prostych, jeśli	
	taki istnieje;	
	IX.2) posługuje się równaniem prostej na płasz-	
	czyźnie w postaci kierunkowej, w tym wyzna-	
	cza równanie prostej o zadanych własnościach	
	(takich jak na przykład przechodzenie przez dwa	
	dane punkty, znany współczynnik kierunkowy,	
	równoległość lub prostopadłość do innej prostej,	
	styczność do okręgu).	

Zasady oceniania

- 4 pkt zapisanie poprawnego układu równań lub równania prowadzącego do wyznaczenia wierzchołka C oraz wyznaczenie współrzędnych wierzchołka C(4,8)
- 3 pkt wyznaczenie równania prostej AC: y = x + 4, ALBO
- wyznaczenie współrzędnych wierzchołka C w zależności od jednej zmiennej, np.: C(x,-x+12) oraz zapisanie poprawnie twierdzenia Pitagorasa dla trójkąta ABC w zależności od współrzędnych wierzchołka C
- 2 pkt wyznaczenie współrzędnych wierzchołka B(0,12) oraz równania prostej BC: y=-x+12
- 1 pkt wyznaczenie współrzędnych wierzchołków A(-4,0) i B(0,12) ALBO
- wyznaczenie współrzędnych wierzchołka B(0,12) oraz równania prostej BC: y=-x+12
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Uwaga:

Jeśli zdający poprawnie zastosuje twierdzenie Pitagorasa i otrzyma dwa możliwe rozwiązania i nie odrzuci odpowiedzi C(0,12), to za całe zadanie otrzymuje maksymalnie 3 punkty, o ile wcześniej nie popełnił błędów.

Przykładowe rozwiązanie

Sposób 1

Współrzędne *A* oraz *B* trójkąta wyznaczamy z równania prostej *AB*: y = 3x + 12.

Punkt B jest punktem przecięcia prostej AB z osią Oy, więc B(0, 12).

Punkt *A* jest punktem przecięcia prostej *AB* z osią *Ox*, więc z równania 3x + 12 = 0 otrzymujemy współrzędne punktu A(-4, 0).

Do prostej zawierającej przyprostokątną BC należy punkt D(6, 6) oraz punkt B(0, 12).

Zatem do równania prostej: y = ax + 12 podstawiamy współrzędne punktu B i otrzymujemy równanie prostej BC: y = -x + 12.

Prosta AC jest prostopadła do prostej BC, więc punkt A należy do prostej y = x + b. Podstawiając współrzędne punktu A do równania y = x + b, otrzymujemy równanie prostej AC w postaci y = x + 4.

Punkt C jest punktem wspólnym prostych AC i BC, zatem współrzędne punktu C spełniają układ rów-

$$\min \begin{cases} y = -x + 12 \\ y = x + 4 \end{cases}$$

Stad C(4, 8).

Sposób 2

Wyznaczamy współrzędne punktów A i B oraz prostej BC jak w sposobie 1.

Punt C należy do prostej BC, zatem C(x, -x+12).

Trójkat ABC jest prostokatny, więc z twierdzenia Pitagorasa:

$$|AC|^2 + |BC|^2 = |AB|^2$$

$$(x+4)^{2} + (-x+12)^{2} + (x)^{2} + (-x+12-12)^{2} = 160$$

$$4x^2 - 16x = 0$$

$$x = 4 \text{ lub } x = 0$$

Zatem punkt C może mieć współrzędne C(4,8) lub C(0,12). Z uwagi na to, że punkt B(0,12), więc punkt C(4,8).

Zadanie 28. (0-1)

Zudume 20: (0 1)	
Wymagania ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami	X.4) oblicza objętości i pola powierzchni grania-
przedstawionymi w tekście, zarówno matema-	stosłupów i ostrosłupów, również z wykorzysta-
tycznym, jak i popularnonaukowym, a także	niem trygonometrii i poznanych twierdzeń.
w formie wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

R

Obliczenie prowadzące do rozwiązania

Jedna krawędź sześcianu ma długość: 72 cm : 12 = 6 cm

Objętość sześcianu: 6 cm³ = 216 cm³

40

Zadanie 29. (0-1) Wymagania ogólne Wymagania szczegółowe IV. Rozumowanie i argumentacja. Zdajacy 3. Dobieranie argumentów do uzasadnienia po-XI.2) zlicza obiekty, stosując reguły mnożenia prawności rozwiazywania problemów, tworzenie i dodawania (także łacznie) dla dowolnej liczby ciagu argumentów, gwarantujacych poprawność czynności w sytuacjach nie trudniejszych niż: rozwiazania i skuteczność w poszukiwaniu roza) obliczenie, ile jest czterocyfrowych niepawiązań zagadnienia. rzystych liczb całkowitych dodatnich takich, że w ich zapisie dziesiętnym występuje dokładnie jedna cyfra 1 i dokładnie jedna cyfra 2, b) obliczenie, ile jest czterocyfrowych parzystych liczb całkowitych dodatnich takich, że w ich zapisie dziesiętnym występuje dokładnie jedna cyfra

0 i dokładnie jedna cyfra 1.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiazanie

C2

Obliczenie prowadzące do rozwiązania

Liczb czterocyfrowych o parzystych cyfrach jest $4 \cdot 5 \cdot 5 \cdot 5 = 500$, ponieważ liczbę tworzą tylko cyfry parzyste i pierwsza cyfra tej liczby nie może być zerem.

Zadanie 30. (0–1)	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	XII.2) oblicza średnią arytmetyczną [].
2. Dobieranie i tworzenie modeli matematycz-	
nych przy rozwiązywaniu problemów praktycz-	
nych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

 \mathbf{C}

Obliczenie prowadzące do rozwiązania

Średnia arytmetyczna zestawu liczb: 3, 6, 9, 14, jest równa 8, więc średnia arytmetyczna zestawu liczb: 3, 6, 9, 14, x, x + 4, jest równa 11.

Czyli
$$\frac{3+6+9+14+x+x+4}{6} = 11$$
, stąd $x = 15$.

Ladanie 31. (0–4)	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	XIII) rozwiązuje zadania optymalizacyjne
2. Dobieranie i tworzenie modeli matematycz-	w sytuacjach dających się opisać funkcją kwadra-
nych przy rozwiązywaniu problemów praktycz-	tową.
nych i teoretycznych.	
IV. Rozumowanie i argumentacja.	
4. Stosowanie i tworzenie strategii przy rozwią-	
zywaniu zadań, również w sytuacjach nietypo-	
wych.	

Zasady oceniania

7 adamia 21 (0 4)

4 pkt – poprawna metoda obliczenia obu wymiarów ogrodzonego placu i podanie poprawnych wyników; x = 20 m, y = 180 m oraz łącznej długości płotu ogradzającego plac: 386 m

3 pkt – obliczenie wartości x = 20, dla której funkcja P przyjmuje wartość największą oraz podanie dziedziny funkcji: $x \in (0,40)$

2 pkt – poprawne zapisanie wzoru na pole placu w zależności od jednej zmiennej, np.: P(x) = 9x(40-x)

1 pkt – zapisanie poprawnego związku między wymiarami placu, np.: $\frac{40}{360} = \frac{40 - x}{y}$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe rozwiązanie

Niech x, y – długości krawędzi placu (zgodnie z rysunkiem), gdzie: 0 < x < 40, 0 < y < 360.

Korzystając z własności trójkątów podobnych, możemy zapisać zależność: $\frac{40}{360} = \frac{40 - x}{y}$

Pole powierzchni placu jest funkcją: $P(x) = 9x(40-x), x \in (0,40)$

Pole jest największe dla x=20, bo wykresem funkcji P jest fragment paraboli o ramionach skierowanych w dół.

Wtedy długość: y = 9(40 - x) = 180

Zatem: $x = 20 \,\mathrm{m}$, $y = 180 \,\mathrm{m}$ oraz łączna długość płotu ogradzającego plac:

 $2 \cdot 20 + 2 \cdot 180 - 14 = 386 \text{ m}$