#### Algorithm Analysis

- Efficiency of algorithms
  - growth rate
- Big-O

### Determining efficiency

How do we decide whether one program is more efficient (<u>faster</u>) than another?

- Time them?
- What if different processors?
- What if written in different languages?
- What if one uses a while loop and one uses recursion?

### Determining efficiency

How do we determine the INTRINSIC efficiency of an ALGORITHM, independent from the processor, programming language, coding style, etc.?

#### Solution:

By determining how the running time of an algorithm depends on the size of the problem it's solving.

### Algorithm Efficiency

- Analysis is difficult because
  - different way of coding the same algorithm
  - different computer architecture
  - different original status of the data
- It is not an exact science, just an approximation!

# Efficiency

- Efficiency depends on
  - sorting algorithm
  - initial order of the data
  - number of elements
  - swaps are more costly than comparisons

### Order of Magnitude

- How fast the algorithm grows as a function of the size of the data.
  - Growth rate functions (Big O)
  - constant: not proportional to n
  - logarithmic: proportional to log<sub>2</sub> n
  - linear: proportional to n
  - quadratic: proportional to n<sup>2</sup>
  - cubic: proportional to n<sup>3</sup>
  - exponential: proportional to 2<sup>n</sup>
- The "O" comes from the phrase "on the order of"

#### Growth rate functions



#### It does matter ...

| size      | O(n2)        | O(n log <sub>2</sub> n) |
|-----------|--------------|-------------------------|
| 10        | 93 millisecs | 356 millisecs           |
| 100       | 8.46 secs    | 3.62 secs               |
| 1,000     | 13.91 min    | 36.91 secs              |
| 10,000    | 23.15 hrs    | 5.93 min                |
| 100,000   | 96.45 days   | 1 hr                    |
| 1,000,000 | 26.41 years  | 10.23 hrs               |

### Scalability and scenarios

Any algorithm is efficient for a small set of data.
 Thus, when analyzing algorithms we need to think BIG.

- We need to consider three possible scenarios:
  - Best case when the algorithm performs the fastest
  - Worst when the algorithm performs the slowest
  - Average (or expected)

# What does Big-Oh tell you?

- It does not tell you the numerical running time of an algorithm for a particular input or for small n.
- It tells you something about the rate of growth as the size of the input increases.
- At some point O(n) algorithm will be faster than an O(n<sup>2</sup>) algorithm, always. As the input size grows, the O(n) algorithm will get increasingly faster than an O(n<sup>2</sup>) algorithm. But it will not tell you for what values of n the O(n) algorithm is faster than the O(n<sup>2</sup>) algorithm.

#### The math of BigO()

$$2n + 25$$
 => O(n)  
 $5n^2 - 2n + 5$  => O( $n^2$ )  
 $\log_2(3n)$  => O( $\log_2 n$ )

and ...

$$O(n) + O(n) = O(n)$$
 $O(n) + O(n^2) = O(n^2)$ 
 $O(n) * O(log_2n) = O(n log_2n)$ 
 $O(n) + O(log_2n) = O(n)$ 

# Example 1 - Initializing an array

Algorithm A

```
for (k = 0; k < size; k++)
list[k] = 0;
```

Algorithm B

```
list[0] = 0;
list[1] = 0;
list[2] = 0;
list[size-1] = 0;
```

### Example 2 - cumulative sum

Algorithm A

Algorithm B

```
sum = ((n+1) * n) / 2;
```

#### Hidden factors

One must pay attention when calling Java methods.
 We need to understand how the method works.

```
private static boolean contains(int[] a, int value, int index) {
    if (index == a.length)
        return false;
    else if (a[index] == value)
        return true;
    else
        return contains(a, value, index+ 1);
}
```

Time is proportional to the size of the array. We say O(n).

Always?

#### Hidden factors

```
public static boolean hasDuplicates(int[] a) {
    for (int i = 0; i < a.length; i++){
        if (contains(a, a[i], i + 1))
        return true;
    }
    return false;
}</pre>
```

How many times do we call *contains*?

Time for each call to *contains* is proportional to \_\_\_\_\_\_

#### Hidden factors

If we double the length of the array, then we will call *contains*\_\_\_\_\_ as many times, AND each call to *contains* will take \_\_\_\_\_ as long. Therefore, *hasDuplicates* will take \_\_\_\_\_ times as long.

The running time for *hasDuplicates* is proportional to the \_\_\_\_\_ of a.length. We say O(n<sup>2</sup>).

#### Fibonacci numbers revisited ...

Fib(n) = Fib(n-1) + Fib(n-2)



Time for Fib(10) is almost twice the time for Fib(8) or almost twice the time for Fib(9). Each of those is O(n). Thus, Fib(n) is O(n)

# Let's analyze some algorithms ...(1)

- Retrieving an element in a list
  - array-based -- O(1)
  - reference-based -- O(n)

KEY: is the time proportional to the length of the list?

NOTE: we are <u>not</u> using the ArrayList or the LinkedList Java classes ...

# Let's analyze some algorithms ... (2)

- Inserting an element at the beginning of a list
  - array-based -- O(n)
  - reference-based -- O(1)

KEY: is the time proportional to the length of the list?

NOTE: we are <u>not</u> using the ArrayList or the LinkedList Java classes ...

# Let's analyze some algorithms ... (3)

- Deleting last element in a list
  - array-based -- O(1)
  - reference-based -- O(n)

KEY: is the time proportional to the length of the list?

NOTE: we are <u>not</u> using the ArrayList or the LinkedList Java classes ...

#### Homework

- Homework #4 (recursion) due tonight
- Quiz #4 (recursion) tomorrow

Exam #1 on Thursday Oct. 8

# Readings

Read, as much as possible, the pdf on algorithm analysis

Watch the video Algorithm Analysis