2. Семинар 14.02.2017

2.1. Универсальная МТ

Каждую машину Тьюринга с фиксированным входным алфавитом Σ можно описать конструктивным образом, закодировав множества Q, Π , F и таблицу переходов δ . Описание МТ M будем обозначать $\langle M \rangle \in \{0,1\}^*$. Можно построить машину Тьюринга, которая, получив на вход слово x и описание $\langle M \rangle$, эмулирует работу M над этим словом. Для этого в памяти нужно хранить текущую конфигурацию эмулируемой МТ, и осуществлять переходы согласно таблице, для чего, конечно, можно построить алгоритм. Такую машину будем называть **универсальной МТ**. Заметим, что если МТ M не останавливается на входе x, то универсальная МТ y не останавливается и возвращает y, то так же делает и y. Можно сказать, что универсальная МТ является интерпретатором для языка программирования, который описывает программы на МТ.

2.2. Вычислимость, перечислимость и разрешимость

Пусть задана функция $f: X \to Y$ (возможно, частично определенная), где X, Y — некоторые множества конструктивных объектов (например, Σ^*). Область определения $f(\cdot)$ будем обозначать как $\mathrm{Dom}(f)$, а область значений — f(X) или $\mathrm{Val}(f)$. Частично определенная функция $f(\cdot)$ называется (частично) **вычислимой**, если существует алгоритм, который на каждом входе $x \in \mathrm{Dom}(f)$ возвращает f(x), а на входах не из $\mathrm{Dom}(f)$ алгоритм не останавливается.

Язык (или множество конструктивных объектов) называется **разрешимым** (рекурсивным), если существует алгоритм, который *распознаем* этот язык и всегда останавливается. Это эквивалентно тому, что всюду определенная *характеристическая функция* языка L

$$\chi_L(x) := \begin{cases} 1, & x \in L; \\ 0, & x \notin L; \end{cases}$$

является вычислимой.

Язык (множество) называется **перечислимым** (рекурсивно перечислимым), если существует алгоритм, который печатает (перечисляет) все слова из этого языка, и только их (в произвольном порядке, возможно, с повторениями). Заметим, что такой язык, вообще говоря, может быть бесконечным — тогда наш алгоритм не останавливается. Аналогично разрешимым языкам, оказывается, что язык L перечислим тогда и только тогда, когда его частично определенная *полухарактеристическая функция*

$$ilde{\chi}_L(x) := \begin{cases} 1, & x \in L; \\ \text{не определена}, & x \notin L; \end{cases}$$

является вычислимой. Иначе можно сказать, что язык перечислим если и только если существует алгоритм, который его принимает, т.е. L=L(M) для какой-то МТ. Действительно, если L перечислим, то можно построить алгоритм, который, получив на вход слово x, начинает перечислять все слова из L, пока не встретит x. Если $x \in L$, то рано или поздно это слово встретиться, поэтому алгоритм примет x, если же $x \notin L$, то алгоритм не останавливается. Пусть теперь L принимается некоторой МТ M. Покажем, что есть алгоритм, перечисляющий L. Для этого будем для $n=1,2,\ldots$ с помощью универсальной МТ имитировать первые n шагов M на первых n словах из Σ^* (все слова в алфавите, очевидно, можно перечислять,

например, в лексикографическом порядке). Если M приняла какое-то слово за эти n шагов, то печатаем его. Таким образом мы перечислим все слова из языка L = L(M).

Некоторые свойства перечислимых и разрешимых множеств и вычислимых функций.

- Если язык L разрешимый, то его дополнение $\overline{L} := \Sigma^* \setminus L$ тоже разрешимо. Действительно, если функция $\chi_L(x)$ вычислима, то и $\chi_{\overline{L}}(x) = 1 \chi_L(x)$ тоже вычислима.
- Любой конечный язык разрешим. Алгоритму достаточно просто сравнить входное слово с конечным набором слов, которые он может хранить в своем коде (программе).
- Любой разрешимый язык перечислим. Чтобы вычислить полухарактеристическую функцию, можно построить алгоритм, который вычисляет характеристическую функцию языка L, и если $\chi_L(x) = 0$, то алгоритм зацикливается.
- Язык L разрешим тогда и только тогда, когда L и \overline{L} перечислимы (теорема Поста). В одну сторону это очевидным образом следует из предыдущего пункта. Пусть теперь L и \overline{L} перечислимы. Тогда можно построить следующий алгоритм, разрешающий L: получив на вход слово x, поочередно печатаем слова из L и \overline{L} , пока не встретим x (это рано или поздно произойдет, так как мы перечисляем $L \cup \overline{L} = \Sigma^*$). Если x было напечатано алгоритмом, перечисляющим L, то принимаем его, иначе отвергаем.
- Множество F перечислимо $\Leftrightarrow F$ множество определения вычислимой функции \Leftrightarrow F множество значений вычислимой функции.

Теорема 1. Множество F перечислимо тогда и только тогда, когда оно является проекцией некоторого разрешимого множества, т.е. существует разрешимое множество пар $W \in X \times Y$, такое, что $F = \pi_x(W) := \{x | \exists y : (x,y) \in W\}.$

Иначе можно сказать, что для всякого перечислимого F существует всюду определенный вычислимый предикат $R(\cdot,\cdot)$ на парах (x,y) — высказывание, которое может быть истинно (R=1) или ложно (R=0), — и $x\in F$ если и только если можно предоставить такой y (сертификат для x), что верно R(x,y).

Доказательство. Пусть $R(\cdot,\cdot)$ — всюду определенный вычислимый предикат. Построим алгоритм, принимающий множество F: для заданного x будем перечислять все y и вычислять значение R(x,y). Если R(x,y)=1, то $x\in F$, поэтому принимаем x. Если же R(x,y)=0 для любого y, то $x\notin F$, и алгоритм не останавливается. Таким образом, данный алгоритм принимает F.

Пусть теперь F — перечислимо. Тогда есть алгоритм A, который печатает все элементы F. Нам удобно считать, что A не останавливается — даже если F конечно, можно печатать его элементы циклически. Так как работу A можно имитировать на универсальной МТ, то вычислим такой предикат: R(x,n)= "алгоритм A печатает x на шаге n". Как несложно видеть, $x\in F\Leftrightarrow \exists n: R(x,n)=1$.

Заметим, что существуют неперечислимые языки: действительно, любой перечислимый язык можно задать с помощью соответствующей МТ, поэтому их счетное число, а всех возможных языков несчетное число (т.к. это все подмножества счетного множества Σ^*).

Можно построить неперечислимое множество и в более явном виде. Для удобства будем рассматривать множество натуральных чисел $\mathbb N$ вместо Σ^* . Во-первых, покажем, что существует универсальное перечислимое множество, т.е. такое перечислимое множество

пар $W\subset \mathbb{N}\times \mathbb{N}$, что для любого перечислимого $V\subset \mathbb{N}$ найдется номер n, при котором $V=W_n:=\{x:(n,x)\in W\}$. Чтобы его построить, можно рассмотреть все МТ, решающие проблему проверки принадлежности (это перечислимое множество) и использовать универсальную МТ: для каждого $n=1,2,\ldots$ запускать первые n МТ M_1,\ldots,M_n на первых n числах, и делать на них n шагов. Если за эти n шагов МТ M_i приняла число j, то включаем пару (i,j) в W. Тогда W_n есть в точности множество, принимаемое машиной с номером n.

Неперечислимое множество построим с помощью диагонального процесса: $K:=\{n:(n,n)\notin W\}$. Тогда K отличается от любого перечислимого множества $V=W_n$ в точке n. Следовательно, K — неперечислимое. Схожим образом можно построить перечислимое неразрешимое множество: достаточно просто взять дополнение K. Очевидно, $\overline{K}=\{n:(n,n)\in W\}$ перечислимо, но не разрешимо по теореме Поста.

2.3. Алгоритмически неразрешимые задачи

Рассмотрим **проблему остановки**: по заданной паре $(x,\langle M\rangle)$ определить, остановится ли МТ M на входе x. Оказывается, не существует алгоритма, который решал бы эту задачу. Действительно, если бы он существовал, то был бы алгоритм, решающий **проблему самоприменимости**: определить, останавливается ли МТ M на входе $\langle M\rangle$. Тогда можно построить МТ T, которая принимает на вход описания $\langle M\rangle$ и останавливается, если M зацикливается на $\langle M\rangle$, иначе T зацикливается. Тогда, рассматривая работу T на входе $\langle T\rangle$, приходим к противоречию. Следовательно, не существует МТ, которая решала бы проблему самоприменимости или проблему остановки. Также можно показать, что **проблема остановки на пустом входе** алгоритмически неразрешима.

Заметим, что язык

$$L_{stop} := \{\langle M \rangle : \mathsf{MT}\ M \text{ останавливается на пустом входе}\}$$

является перечислимым (опять же, можно эмулировать конечное число шагов МТ). Аналогично, перечислимы и языки, соответствующие проблеме самоприменимости и проблеме остановки.

Важный прием, который здесь использовался — это *сводимость* одной задачи к другой. Так, мы показали, что если бы проблема остановки была разрешима, то можно было бы построить алгоритм, который решал и бы и проблему самоприменимости. Но она неразрешима, следовательно, проблема остановки тоже неразрешима. То есть, мы *свели* задачу самоприменимости к задаче остановки.

Упражнение 1. Является ли разрешимым язык $L_{<2017}$, состоящий из описаний всех МТ, которые делают меньше 2017 шагов на каждом входном слове?

Решение. Во-первых, если МТ делает меньше 2017 шагов, то она не может сдвинуться больше, чем на 2016 ячеек. В этом случае имеют значение только первые 2017 символов входного слова. Таким образом, язык $L_{<2017}$ состоит в точности из описаний тех МТ, которые делают меньше 2017 шагов на каждом слове x, длина которого $|x| \leq 2017$. Таких слов, разумеется конечное число, поэтому с помощью универсальной МТ можно имитировать первые 2017 шагов заданной МТ M на каждом из этих слов. Если M остановилась на каждом из этих слов, сделав меньше 2017 шагов, то $\langle M \rangle \in L_{<2017}$, иначе $\langle M \rangle \notin L_{<2017}$. Таким образом, язык $L_{<2017}$ разрешим.

2.4. Невычислимые функции

Эту тему на семинаре я не успел рассказать, но идеологически она очень тесно связана с неразрешимыми задачами. Простейший пример невычислимой функции — это характеристическая функция $\chi_L(\cdot)$ какого-нибудь неразрешимого языка L. Другой любопытный пример невычислимой функции, не использующий непосредственно неразрешимость (вернее, неразрешимость проблемы остановки можно доказать из невычислимости данной функции) это функция Радо $R(\cdot)$, она же busy beaver, то бишь, "занятой бобр". Ее можно определить следующим образом: рассмотрим все MT с алфавитом $\Pi = \{1, \bot\}$, которые имеют n состояний. Тогда R(n) равно максимальному числу единиц, которые будут записаны на ленте после окончания работы одной из этих МТ, запущенных на пустом входе. Т.е. мы устраиваем соревнование, в котором участвуют те MT с n состояниями, которые останавливаются на пустом входе, и побеждает машина, написавшая больше всего 1. Заметим, что здесь как раз-таки и кроется причина невычислимости этой функции — мы не знаем, какие из машин в конце концов остановятся, а какие нет. Можно показать, что R(3n+1) > 4n (см. книгу Вялого, п. 4.2.4). Если $R(\cdot)$ вычислима, то можно построить MT с 3n+C состояниями (где C — некоторая константа), которая сначала печатает 4n единиц, а затем, используя их как вход, вычисляет R(4n). Тогда R(4n) < R(3n+C), но функция Радо, очевидно, монотонна, что приводит к противоречию при n > C.

Интересно, что можно привести пример частично определенной вычислимой функции, которая не имеет всюду определенного вычислимого продолжения. Пусть, например, f(n) равна номеру шага, на котором останавливается МТ с номером n, запущенная на пустом входе. Если же машина не останавливается на пустом входе, то f(n) неопределена. Эта функция является вычислимой, но частично определенной. Рассмотрим ее произвольное продолжение $g(\cdot)$, т.е. такую всюду определенную функцию, что g(n) = f(n) для всех $n \in \text{Dom}(f)$. Допустим, она вычислима. Тогда для любого n можно с помощью универсальной МТ сымитировать первые g(n) шагов МТ с номером n на пустом входе. Если она не остановилась, то $g(n) \neq f(n)$, значит, f(n) не определена, следовательно, эта машина вообще не останавливается. Но тогда мы получили алгоритм, решающий проблему остановки — противоречие.