

Gowin BSRAM & SSRAM User Guide

UG285-1.3.5E, 01/05/2023

Copyright © 2023 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN is a trademark of Guangdong Gowin Semiconductor Corporation and is registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description
05/31/2018	1.09E	Initial version published.
08/17/2020	1.2E	The chapter structure modified and content optimized.
06/21/2021	1.3E	Some figures updated and "Help" information removed of chapter 6 IP Generation.
10/12/2021	1.3.1E	The description of RESET updated.
07/22/2022	1.3.2E	The disable mode and related devices of BSRAM updated.
08/10/2022	1.3.3E	The device information of SSRAM primitive updated.
11/01/2022	1.3.4E	GW1NS-2 removed.
01/05/2023	1.3.5E	The configuration box "File" modified to "General" and "Device Version" option added on the IP interface.

Contents

UG285-1.3.5E

С	ontents	i
Li	ist of Figures	iii
Li	ist of Tables	iv
1	About This Guide	1
	1.1 Purpose	1
	1.2 Related Documents	1
	1.3 Abbreviations and Terminology	1
	1.4 Support and Feedback	2
2	Overview	3
	2.1 Features	3
	2.2 Configuration Mode	4
3	BSRAM Primitives	6
	3.1 Dual Port Mode	6
	3.2 Single Port Mode	18
	3.3 Semi Dual Port Mode	23
	3.4 Read-only Mode	29
4	BSRAM Output Reset	33
5	SSRAM Primitives	36
	5.1 RAM16S1	36
	5.2 RAM16S2	39
	5.2.1 RAM16S4	41
	5.3 RAM16SDP1	43
	5.4 RAM16SDP2	45
	5.5 RAM16SDP4	48
	5.6 ROM16	50
6	IP Generation	52
	6.1 BSRAM Dual-port Mode	52
	6.2 BSRAM Single-port Mode	55
7	Initialization File	57
	7.1 Bin File	57

7.2 Hex File	57
7.3 Hex File with Address	58

UG285-1.3.5E ii

List of Figures

Figure 3-1 Timing Diagram of DPB/DPX9B Normal(Bypass)	7
Figure 3-2 Timing Diagram of DPB/DPX9B Normal(Pipeline)	8
Figure 3-3 Timing Diagram of DPB/DPX9B Write-through(Bypass)	9
Figure 3-4 Timing Diagram of DPB/DPX9B Write-through(Pipeline)	10
Figure 3-5 Timing Diagran of DPB/DPX9B Read-before-write(Bypass)	11
Figure 3-6 Timing Diagram of DPB/DPX9B Read-before-write(Pipeline)	12
Figure 3-7 DPB/DPX9B Diagram	
Figure 3-8 SP/SPX9 Port Diagram	19
Figure 3-9 Timing Diagram of Semi Dual Port BSRAM Normal(Bypass)	23
Figure 3-10 Timing Diagram of Semi Dual Port BSRAM Normal(Pipeline)	24
Figure 3-11 SDPB/SDPX9B Diagram	24
Figure 3-12 Timing Diagrm of ROM(Bypass)	29
Figure 3-13 Timing Diagram of ROM(Pipeline)	29
Figure 3-14 pROM/pROMX9 Diagram	30
Figure 4-1 Reset Diagram	33
Figure 4-2 Timing Diagram of Synchronous Reset(Pipeline)	34
Figure 4-3 Timing Diagram of Synchronous Reset(Bypass)	34
Figure 4-4 Timing Diagram of Asynchronous Reset(Pipeline)	34
Figure 4-5 Timing Diagram of Asynchronous Reset(Bypass)	35
Figure 5-1 Timing Diagram of RAM16S1	37
Figure 5-2 RAM16S1Blcok Diagram	37
Figure 5-3 RAM16S2 Port Diagram	39
Figure 5-4 RAM16S4 Diagram	41
Figure 5-5 Timing Diagram of RAM16SDP1	43
Figure 5-6 RAMSDP1 Port Diagram	44
Figure 5-7 RAM16SDP2 Port Diagram	46
Figure 5-8 RAMSDP4 Diagram	48
Figure 5-9 ROM16 Port Diagram	50
Figure 6-1 IP Customization of DPB	53
Figure 6-2 IP Customization of RAM16S	55

UG285-1.3.5E iii

List of Tables

Table 1-1 Abbreviations and Terminology	1
Table 2-1 Configuration Mode	4
Table 2-2 BSRAM Data Width and Address Width	4
Table 2-3 Data Width in Dual Port Mode	5
Table 2-4 Data Width in Semi Dual Port Mode	5
Table 3-1 Configuration Relationship of Data Width and Address Depth	12
Table 3-2 Port Description	13
Table 3-3 Parameter Description	14
Table 3-4 Configuration Relationship of Data Width and Address Depth	19
Table 3-5 Port Description	19
Table 3-6 Parameter Description	20
Table 3-7 Configuration Relationship of Data Width and Address Depth	24
Table 3-8 Port Description	25
Table 3-9 Parameter Description	25
Table 3-10 Configuration Relationship of Data Width and Address Depth	29
Table 3-11 Port Description	30
Table 3-12 Parameter Description	30
Table 5-1 Shadow Memory Mode	36
Table 5-2 Port Description	37
Table 5-3 Parameter Description	37
Table 5-4 Port Description	39
Table 5-5 Parameter Description	39
Table 5-6 Port Description	41
Table 5-7 Parameter Description	42
Table 5-8 Port Description	44
Table 5-9 Parameter Description	44
Table 5-10 Port Description	46
Table 5-11 Parameter Description	46
Table 5-12 Port Description	48
Table 5-13 Parameter Description	48
Table 5-14 Port Description	50
Table 5-15 Parameter Description	51

1 About This Guide 1.1 Purpose

1 About This Guide

1.1 Purpose

This manual describes the features, operating modes, primitives and IP generation of Gowin BSRAM & SSRAM to help you better understand Gowin products.

1.2 Related Documents

The latest user guides are available on GOWINSEMI Website. You can find the related documents at www.gowinsemi.com:

- DS100, GW1N series of Products Data Sheet
- DS117, GW1NR series of FPGA Products Data Sheet
- DS102, GW2A series of FPGA Products Data Sheet
- DS226, GW2AR series of FPGA Products Data Sheet
- SUG100, Gowin Software User Guide

1.3 Abbreviations and Terminology

The abbreviations and terminology used in this manual are shown in Table 1-1.

Table 1-1 Abbreviations and Terminology

Abbreviations and Terminology	Name
BSRAM	Block Static Random Access Memory
CFU	Configurable Function Unit
CST	Constraints
DP	True Dual Port 16K Block SRAM
ROM	Read-only Memory
SDP	Semi Dual Port 16K Block SRAM
SP	Single Port 16K Block SRAM
SSRAM	Shadow Static Random Access Memory

UG285-1.3.5E 1(58)

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly using the information provided below.

Website: www.gowinsemi.com
E-mail: support@gowinsemi.com

UG285-1.3.5E 2(58)

2 Overview 2.1 Features

2 Overview

GOWINSEMI FPGA products provide abundant memories, including BSRAM and SSRAM.

Each BSRAM can be configured with up to 18 Kbits. Data width and address depth can also be configured. Each BSRAM has two ports: Port A and Port B. Either port can be a read or write port. They have independent clocks, addresses, data, and control signals, and they share the same storage memory.

Configurable Function Unit (CFU) is a basic unit that composes Gowin FPGA products. It can be configured as SSRAM, including 16 x 4 bits SRAM or ROM16.

2.1 Features

- Each BSRAM can store up to 18Kbits of data.
- Supports up to 380MHz (230MHz in read-before-write mode).
- Supports Single Port mode (SP).
- Supports Dual Port mode (DP).
- Supports Semi-dual Port mode (SDP).
- Supports Read-only-mode (ROM).
- Supports up to 36 bits data width.
- Dual Port and Semi-dual Port support independent clocks and independent data width.
- Supports pipeline mode and bypass mode.
- Supports normal mode, write-through mode, and read-before-write mode.

UG285-1.3.5E 3(58)

2 Overview 2.2 Configuration Mode

2.2 Configuration Mode

Each BSRAM can be configured as 16 Kbits or 18 Kbits. Data width and address depth configuration is as shown in Table 2-1.

Table 2-1 Configuration Mode

Size	Single Port Mode	Dual Port Mode	Semi-dual Port Mode	Read Only Mode	
	16K x 1	16K x 1	16K x 1	16K x 1	
	8K x 2	8K x 2	8K x 2	8K x 2	
16Kbits	4K x 4	4K x 4	4K x 4	4K x 4	
TORDIIS	2K x 8	2K x 8	2K x 8	2K x 8	
	1K x 16	1K x 16	1K x 16	1K x 16	
	512 x 32	_	512 x 32	512 x 32	
	2K x 9	2K x 9	2K x 9	2K x 9	
18Kbits	1K x 18	1K x 18	1K x 18	1K x 18	
	512 x 36	_	512 x 36	512 x 36	

Each BSRAM has 14-bit address line, that is AD[13:0], and the maximum address depth is 16,384. Different data widths use different address lines, as shown in Table 2-2.

Table 2-2 BSRAM Data Width and Address Width

Size	Mode	Data Width	Address Depth	Address Width
	16K x 1	[0:0]	16,384	[13:0]
	8K x 2	[1:0]	8,192	[13:1]
16Kbits	4K x 4	[3:0]	4,096	[13:2]
TONDIES	2K x 8	[7:0]	2,048	[13:3]
	1K x 16	[15:0]	1,024	[13:4]
	512 x 32	[31:0]	512	[13:5]
	2K x 9	[8:0]	2,048	[13:3]
18Kbits	1K x 18	[17:0]	1,024	[13:4]
	512 x 36	[35:0]	512	[13:5]

Dual Port and Semi-dual Port support independent read/write clocks and independent read/write data width. In Dual Port mode, the data widths supported by Port A and Port B are as shown in Table 2-3. In Semi-dual Port mode, the data widths supported by Port A and Port B are as shown in Table 2-4.

UG285-1.3.5E 4(58)

2 Overview 2.2 Configuration Mode

Table 2-3 Data Width in Dual Port Mode

Size	Port B	Port A						
Size		16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	2K x 9	1K x 18
	16K x 1	Yes	Yes	Yes	Yes	Yes	N/A	N/A
	8K x 2	Yes	Yes	Yes	Yes	Yes	N/A	N/A
16Kbits	4K x 4	Yes	Yes	Yes	Yes	Yes	N/A	N/A
	2K x 8	Yes	Yes	Yes	Yes	Yes	N/A	N/A
	1K x 16	Yes	Yes	Yes	Yes	Yes	N/A	N/A
101/bito	2K x 9	N/A	N/A	N/A	N/A	N/A	Yes	Yes
18Kbits	1K x 18	N/A	N/A	N/A	N/A	N/A	Yes	Yes

Table 2-4 Data Width in Semi Dual Port Mode

		Port A								
Size	Port B	16Kx 1	8K×2	4Kx4	2Kx8	1K×16	512x32	2K x 9	1Kx18	512x36
	16K x 1	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
	8K x 2	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
16Kbits	4K x 4	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
TONDIES	2K x 8	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
	1K x 16	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
	512 x 32	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
19Khite	2K x 9	N/A	N/A	N/A	N/A	N/A	N/A	Yes	Yes	Yes
18Kbits	1K x 18	N/A	N/A	N/A	N/A	N/A	N/A	Yes	Yes	Yes

UG285-1.3.5E 5(58)

3 BSRAM Primitives

BSRAM includes single port mode (SP/SPX9), dual port mode (DPB/DPX9B), semi-dual mode (SDPB/SDPX9B), and read-only mode (pROM/pROMX9).

Note!

- GW1N-9/GW1N-1S/GW1NR-9/GW1NS-4 series does not support dual port mode.
- For GW1N-9/GW1NR-9/GW1NS-4 series, 32/36-bit SP/SPX9 is divided into two SP/SPX9s, which occupy two BSRAMs.
- GW1NZ-1/GW1NZ-1C does not support dual port mode with 1/2/4/8/9 bit widths.
- GW1N-4D/GW1NR-4D/GW2AN-18X/GW2AN-9X does not support read-before-write in dual port mode with1/2/4/8/9 bits width.

3.1 Dual Port Mode

Primitive

DPB/DPX9B (True Dual Port 16K BSRAM/True Dual Port 18K BSRAM)

Functional Description

DPB/DPX9B works in dual port mode with its memory space of 16K bit/18K bit. Port A and port B support read/write operations respectively. DPB/DPX9B supports 2 read modes (bypass mode and pipeline mode) and 3 write modes (normal mode, write-through mode and read-before-write mode).

Read Mode

The output pipeline register at A port and B port are configured by READ_MODE0 and READ_MODE1. When the output pipeline register is used, the read operation needs extra delay cycle.

Write Mode

The write mode at A and B is configured by WRITE_MODE0 and WRITE_MODE1. The modes include normal mode, write-through mode and read-before-write mode. The corresponding timing diagram of different modes is shown from Figure 3-1 to Figure 3-6.

UG285-1.3.5E 6(58)

Figure 3-1 Timing Diagram of DPB/DPX9B Normal (Bypass)

UG285-1.3.5E 7(58)

Figure 3-2 Timing Diagram of DPB/DPX9B Normal (Pipeline)

UG285-1.3.5E 8(58)

Figure 3-3 Timing Diagram of DPB/DPX9B Write-through (Bypass)

UG285-1.3.5E 9(58)

Figure 3-4 Timing Diagram of DPB/DPX9B Write-through (Pipeline)

UG285-1.3.5E 10(58)

Figure 3-5 Timing Diagran of DPB/DPX9B Read-before-write (Bypass)

UG285-1.3.5E 11(58)

Figure 3-6 Timing Diagram of DPB/DPX9B Read-before-write (Pipeline)

Configuration Relationship

Table 3-1 Configuration Relationship of Data Width and Address Depth

Dual Port Mode	BSRAM Capacity	Data Width	Address Depth
		1	14
		2	13
DPB	16K	4	12
		8	11
		16	10
DPX9B	18K	9	11
DPX9B	ION	18	10

UG285-1.3.5E 12(58)

Port Diagram

Figure 3-7 DPB/DPX9B Diagram

Port Description

Table 3-2 Port Description

Name	I/O	Description
DOA[15:0]/DOA[17:0]	Output	A data output
DOB[15:0]/DOB[17:0] Output		B data output
DIA[15:0]/DIA[17:0]	Input	A data input
DIB[15:0]/DIB[17:0]	Input	B data input
ADA[13:0]	Input	A address input
ADB[13:0]	Input	B address input
WREA	Input	A write enable input 1: write 0: read
WREB	Input	B write enable input 1: write 0: read
CEA	Input	A clock enable signal, active-high
CEB	Input	B clock enable signal, active-high
CLKA	Input	A clock input
CLKB	Input	B clock input
RESETA	Input	A reset input, synchronous reset and asynchronous reset supported, active-high. It is the RESETA reset register, rather than the value of reset register.
RESETB	Input	B reset input, synchronous reset and asynchronous reset supported, active-high. It is the RESETB reset register, rather than the value of reset register.
OCEA	Input	A output clock enable signal used in Pipeline, invalid in Bypass
OCEB	Input	B output clock enable signal used in Pipeline, invalid in Bypass

UG285-1.3.5E 13(58)

Name	I/O	Description
BLKSELA[2:0]	Input	BSRAM A block selection signal for multiple BSRAM memory units cascading to realize capacity expansion
BLKSELB[2:0]	Input	BSRAM B block selection signal for multiple BSRAM memory units cascading to realize capacity expansion

Parameter

Table 3-3 Parameter Description

Name	Туре	Range	Default	Description
READ_MODE0	Integer	1'b0,1'b1	1'b0	A read mode configuration 1'b0:bypass 1'b1:pipeline
READ_MODE1	Integer	1'b0,1'b1	1'b0	B read mode configuration 1'b0:bypass 1'b1:pipeline
WRITE_MODE0	Integer	2'b00,2'b01,2'b10	2'b00	A write mode configuration 2'b00: normal 2'b01: write-through 2'b10: read-before-write
WRITE_MODE1	Integer	2'b00,2'b01,2'b10	2'b00	B write mode configuration 2'b00: normal 2'b01: write-through 2'b10: read-before-write
BIT_WIDTH_0	Integer	DPB:1,2,4,8,16 DPX9B:9,18	DPB:16 DPX9B:18	A data width configuration
BIT_WIDTH_1	Integer	DPB:1,2,4,8,16 DPX9B:9,18	DPB:16 DPB:18	B data width configuration
BLK_SEL_0	Integer	3'b000~3'b111	3'b000	When BSRAM A block selection parameter is equal to BLKSELA, the BSRAM is selected. The software will handle expansion automatically when IP Core Generator is used

UG285-1.3.5E 14(58)

Name	Туре	Range	Default	Description
				to expand storage capacity.
BLK_SEL_1	Integer	3'b000~3'b111	3'b000	When BSRAM B block selection parameter is equal to BLKSELB, the BSRAM is selected. The software will handle expansion automatically when IP Core Generator is used to expand storage capacity.
RESET_MODE	String	SYNC,ASYNC	SYNC	Reset mode configuration SYNC: synchronous reset ASYNC: asynchronous reset
INIT_RAM_00~ INIT_RAM_3F	Integer	DPB:256'h00~2 56'h11 DPX9B:288'h00 ~288'h11	DPB:256'h 00 DPX9B:28 8'h00	Used to set BSRAM initialization data

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter <u>6 IP Generation</u>. Take DPB as an example to introduce the instantiation.

Verilog Instantiation:

```
DPB bram_dpb_0 (
.DOA({doa[15:8],doa[7:0]}),
.DOB({doa[15:8],dob[7:0]}),
.CLKA(clka),
.OCEA(ocea),
.CEA(cea),
.RESETA(reseta),
.WREA(wrea),
.CLKB(clkb),
.OCEB(oceb),
.CEB(ceb),
```

UG285-1.3.5E 15(58)

```
.RESETB(resetb),
      .WREB(wreb),
      .BLKSELA({3'b000}),
      .BLKSELB({3'b000}),
      .ADA({ada[10:0],3'b000}),
      .DIA({{8{1'b0}},dia[7:0]})
      .ADB({adb[10:0],3'b000}),
      .DIB({{8{1'b0}},dib[7:0]})
   );
  defparam bram dpb 0.READ MODE0 = 1'b0;
  defparam bram dpb 0.READ MODE1 = 1'b0;
  defparam bram dpb 0.WRITE MODE0 = 2'b00;
  defparam bram dpb 0.WRITE MODE1 = 2'b00;
  defparam bram dpb 0.BIT WIDTH 0 = 8;
  defparam bram dpb 0.BIT WIDTH 1 = 8;
  defparam bram dpb 0.BLK SEL 0 = 3'b000;
  defparam bram_dpb_0.BLK_SEL_1 = 3'b000;
  defparam bram_dpb_0.RESET_MODE = "SYNC";
  defparam bram dpb 0.INIT RAM 00 =
000000000B:
  defparam bram dpb 0.INIT RAM 3E =
000000000B:
  defparam bram dpb 0.INIT RAM 3F =
000000000B;
 VhdI Instantiation:
   COMPONENT DPB
         GENERIC (
                  BIT_WIDTH_0:integer:=16;
                  BIT WIDTH 1:integer:=16;
                  READ MODE0:bit:='0';
                  READ MODE1:bit:='0';
                  WRITE MODE0:bit vector:="00";
                  WRITE MODE1:bit vector:="00";
                  BLK SEL 0:bit vector:="000";
```

UG285-1.3.5E 16(58)

```
BLK_SEL_1:bit_vector:="000";
             RESET MODE:string:="SYNC";
             );
      PORT (
             DOA, DOB: OUT std logic vector (15 downto 0):
=conv std logic vector(0,16);
             CLKA, CLKB, CEA, CEB, OCEA, OCEB, RESETA,
RESETB, WREA, WREB: IN std logic;
             ADA, ADB: IN std logic vector (13 downto 0);
             BLKSELA:IN std logic vector(2 downto 0);
             BLKSELB:IN std logic vector(2 downto 0);
             DIA, DIB: IN std logic vector (15 downto 0)
      );
  END COMPONENT:
  uut:DPB
    GENERIC MAP(
            BIT WIDTH 0=>16,
            BIT WIDTH 1=>16,
            READ MODE0=>'0',
            READ MODE1=>'0',
            WRITE MODE0=>"00",
            WRITE MODE1=>"00",
            BLK SEL 0=>"000",
            BLK SEL 1=>"000",
            RESET MODE=>"SYNC",
```

UG285-1.3.5E 17(58)

```
)
PORT MAP(
   DOA=>doa.
   DOB=>dob,
   CLKA=>clka,
   CLKB=>clkb,
   CEA=>ceb,
   CEB=>ceb,
   OCEA=>ocea,
   OCEB=>oceb,
   RESETA=>reseta,
   RESETB=>resetb.
   WREA=>wrea,
   WREB=>wreb.
   ADA=>ada,
   ADB=>adb,
   BLKSELA=>blksela,
   BLKSELB=>blkselb,
   DIA=>dia.
   DIB=>dib
);
```

3.2 Single Port Mode

Primitive

SP/SPX9 (Single Port 16K BSRAM/Single Port 18K BSRAM)

Functional Description

SP/SPX9 works in single port mode with a memory capacity of 16K bit/18K bit. The read/write operation of the single port is controlled by a clock. SP/SPX9 supports two read modes (bypass mode and pipeline mode) and three write modes (normal mode, write-through mode and read-before-write mode).

Read mode

The output pipeline register is configured by READ_MODE. When the output pipeline register is used, the read operation needs extra delay cycle.

Write mode

Normal mode, write-through mode, and read-before-write mode are configured by WRITE_MODE.

UG285-1.3.5E 18(58)

For the timing diagram of single port BSRAM different read/write modes, see the dual port BSRAM A/B ports timing diagram from Figure 3-1 to Figure 3-6.

Configuration Relationship

Table 3-4 Configuration Relationship of Data Width and Address Depth

Single Port Mode	BSRAM Capacity	Data width	Address Depth
		1	14
	16K	2	13
SP		4	12
SF		8	11
		16	10
		32	9
		9	11
SPX9	18K	18	10
		36	9

Port Diagram

Figure 3-8 SP/SPX9 Port Diagram

Port Description

Table 3-5 Port Description

Port Name	I/O	Description
DO[31:0]/DO[35:0]	Output	Data output
DI[31:0]/DI[35:0]	Input	Data input
AD[13:0]	Input	Address input
WRE	Input	Write enable input 1: write 0: read
CE	Input	Clock enable input, active-high.
CLK	Input	Clock input

UG285-1.3.5E 19(58)

Port Name	I/O	Description
RESET	Input	Reset input, synchronous reset and asynchronous reset supported, active-high
OCE	Input	Output clock enable signal used in Pipeline, invalid in Bypass
BLKSEL[2:0]	Input	BSRAM block selection signal for multiple BSRAM memory units cascading to realize capacity expansion

Parameter

Table 3-6 Parameter Description

Name	Туре	Value	Default Value	Description
READ_MODE	Integer	1'b0,1'b1	1'b0	Read mode configuration 1'b0:bypass 1'b1:pipeline
WRITE_MODE	Integer	2'b00,2'b01,2'b1 0	2'b00	Write mode configuration 2'b00: Normal 2'b01:write-through 2'b10: Read-before-write
BIT_WIDTH	Integer	SP:1,2,4,8,16,32 SPX9:9,18,36	SP:32 SPX9:36	Data width configuration
BLK_SEL	Integer	3'b000~3'b111	3'b000	BSRAM block selection parameter is equal to BLKSEL, and the BSRAM is selected. The software will handle expansion automatically when IP Core Generator is used to expand storage capacity.
RESET_MODE	String	SYNC,ASYNC	SYNC	Reset mode configuratiom SYNC: synchronized reset ASYNC: asynchronous reset
INIT_RAM_00~ INIT_RAM_3F	Integer	SP:256'h00~2 56'h11 SPX9:288'h00 ~288'h11	SP:256'h00 SPX9:288'h00	Used to set up BSRAM memory unit initialization data

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter <u>6 IP Generation</u>. Take SP as an example to introduce the instantiation.

Verilog Instantiation:

```
SP bram_sp_0 (
    .DO({dout[31:8], dout[7:0]}),
    .CLK(clk),
    .OCE(oce),
```

UG285-1.3.5E 20(58)

```
.CE(ce),
     .RESET(reset),
     .WRE(wre),
     .BLKSEL({3'b000}),
     .AD({ad[10:0], 3'b000}),
     .DI({{24{1'b0}}, din[7:0]})
  );
  defparam bram sp 0.READ MODE = 1'b0;
  defparam bram sp 0.WRITE MODE = 2'b00;
  defparam bram sp 0.BIT WIDTH = 8;
  defparam bram sp 0.BLK SEL = 3'b000;
  defparam bram sp 0.RESET MODE = "SYNC";
  defparam bram sp 0.INIT RAM 00 =
  A00000000000B;
  defparam bram sp 0.INIT RAM 01 =
  A00000000000B:
  defparam bram sp 0.INIT RAM 3F =
  A00000000000B:
 VhdI Instantiation:
  COMPONENT SP
        GENERIC(
              BIT WIDTH:integer:=32;
              READ MODE:bit:='0';
               WRITE MODE:bit vector:="01";
               BLK SEL:bit vector:="000";
               RESET MODE:string:="SYNC";
               INIT RAM 00:bit vector:=X"00A00000000000B
INIT RAM 01:bit vector:=X"00A00000000000B
INIT_RAM_3F:bit_vector:=X"00A000000000000B
);
        PORT(
               DO:OUT std logic vector(31 downto 0):=conv
```

UG285-1.3.5E 21(58)

```
std_logic_vector(0,32);
                  CLK,CE,OCE,RESET,WRE:IN std logic;
                  AD:IN std logic vector(13 downto 0);
                  BLKSEL: IN std logic vector(2 downto 0);
                  DI:IN std logic vector(31 downto 0)
           );
     END COMPONENT;
     uut:SP
         GENERIC MAP(
                     BIT WIDTH=>32,
                     READ MODE=>'0',
                     WRITE MODE=>"01",
                     BLK SEL=>"000",
                     RESET MODE=>"SYNC",
                     INIT RAM 00=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B",
                     INIT RAM 01=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B",
                     INIT RAM 02=>X"00A000000000000B00A00
INIT RAM 3F=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B"
        PORT MAP (
            DO=>dout,
            CLK=>clk,
            OCE=>oce.
            CE=>ce.
            RESET=>reset,
            WRE=>wre,
            BLKSEL=>blksel,
            AD=>ad,
            DI=>din
        );
```

UG285-1.3.5E 22(58)

3.3 Semi Dual Port Mode

Primitive

SDPB/SDPX9B (Semi Dual Port 16K BSRAM /Semi Dual Port 18K BSRAM).

Functional Description

SDPB/SDPX9B works in semi-dual port mode with its memory space of 16K bit/18K bit. Port A support write operation and port B support read operation. SDPB/SDPX9B supports two read modes (bypass mode and pipeline mode) and one write mode (normal mode).

Read Mode

You can configure the output pipeline register by READ_MODE. When the output pipeline register is used, the read operation needs extra delay cycle.

Write Mode

Port A supports write operation and port B support read operation.

The timing diagram of semi-dual port different read modes is shown in Figure 3-9 and Figure 3-10.

Figure 3-9 Timing Diagram of Semi Dual Port BSRAM Normal (Bypass)

UG285-1.3.5E 23(58)

Figure 3-10 Timing Diagram of Semi Dual Port BSRAM Normal (Pipeline)

Configuration Relationship

Table 3-7 Configuration Relationship of Data Width and Address Depth

Semi-dual Port Mode	BSRAM Capacity	Data Width	Address Depth
		1	14
		2	13
CDDD	16K	4	12
SDPB		8	11
		16	10
		32	9
SDPX9B	18K	9	11
		18	10
		36	9

Port Diagram

Figure 3-11 SDPB/SDPX9B Diagram

UG285-1.3.5E 24(58)

Port Description

Table 3-8 Port Description

Name	I/O	Description
DO[31:0]/DO[35:0]	Output	Data output
DI[31:0]/DI[35:0]	Input	Data input
ADA[13:0]	Input	A address input
ADB[13:0]	Input	B address input
CEA	Input	A clock enable signal, active-high
CEB	Input	B clock enable signal, active-high
CLKA	Input	A clock input
CLKB	Input	B clock input
RESETA	Input	A reset input, synchronous reset and asynchronous reset supported, active-high.
RESETB	Input	B reset input, synchronous reset and asynchronous reset supported, active-high. It is the RESETB reset register, rather than the value of reset register.
OCE	Input	Output clock enable signal used in Pipeline, invalid in Bypass
BLKSELA[2:0]	Input	BSRAM A port block selection signal for multiple BSRAM memory units cascading to realize capacity expansion
BLKSELB[2:0]	Input	BSRAM B port block selection signal for multiple BSRAM memory units cascading to realize capacity expansion

Parameter

Table 3-9 Parameter Description

Name	Туре	Range	Defaul t	Description
READ_MODE	Integer	1'b0,1'b1	1'b0	Read mode configuartion 1'b0:bypass 1'b1:pipeline
BIT_WIDTH_0	Integer	SDPB:1,2,4,8,16, 32 SDPX9B:9,18,36	SDPB: 32 SDPX 9B:36	A data width configuration
BIT_WIDTH_1	Integer	SDPB:1,2,4,8,16, 32 SDPX9B:9,18,36	SDPB: 32 SDPX 9B:36	B data width configuration
BLK_SEL_0	Integer	3'b000~3'b111	3'b000	When BSRAM A block selection parameter is equal to BLKSEL, the BSRAM is selected. The software will handle

UG285-1.3.5E 25(58)

Name	Туре	Range	Defaul t	Description
				expansion automatically when IP Core Generator is used to expand storage capacity.
BLK_SEL_1	Integer	3'b000~3'b111	3'b000	When BSRAM B block selection parameter is equal to BLKSEL, the BSRAM is selected. The software will handle expansion automatically when IP Core Generator is used to expand storage capacity.
RESET_MODE	String	SYNC,ASYNC	SYNC	Reset mode configuration SYNC: synchronous reset ASYNC: asynchronous reset
INIT_RAM_00~ INIT_RAM_3F	Integer	SDPB:256'h00 ~256'h11 SDPX9B:288'h0 0~288'h11	SDPB: 256'h0 0 SDPX 9B:28 8'h0 0	Used to set BSRAM initialization data

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter <u>6 IP Generation</u>. Take SDPB as an example to introduce the instantiation.

Verilog Instantiation:

```
SDPB bram_sdpb_0 (
.DO({dout[31:16],dout[15:0]}),
.CLKA(clka),
.CEA(cea),
.RESETA(reseta),
.CLKB(clkb),
.CEB(ceb),
.RESETB(resetb),
.OCE(oce),
.BLKSELA({3'b000}),
.BLKSELB({3'b000}),
.ADA({ada[9:0], 2'b00, byte_en[1:0]}),
```

UG285-1.3.5E 26(58)

```
.DI({{16{1'b0}},din[15:0]}),
      .ADB({adb[9:0],4'b0000})
   );
   defparam bram sdpb 0.READ MODE = 1'b1;
   defparam bram sdpb 0.BIT WIDTH 0 = 16;
   defparam bram sdpb 0.BIT WIDTH 1 = 16;
   defparam bram sdpb 0.BLK SEL 0 = 3'b000;
   defparam bram sdpb 0.BLK SEL 1 = 3'b000;
   defparam bram sdpb 0.RESET MODE = "SYNC";
   defparam bram sdpb 0.INIT RAM 00 =
   A00000000000B;
   defparam bram sdpb 0.INIT RAM 3F =
   A00000000000B;
 VhdI Instantiation:
   COMPONENT SDPB
         GENERIC(
                 BIT WIDTH 0:integer:=16;
                 BIT WIDTH 1:integer:=16;
                 READ MODE:bit:='0';
                 BLK SEL 0:bit vector:="000";
                 BLK SEL 1:bit vector:="000";
                 RESET MODE:string:="SYNC";
                 INIT RAM 00:bit vector:=X"00A000000000000
INIT RAM 01:bit vector:=X"00A000000000000
INIT RAM 3F:bit vector:=X"00A000000000000
);
         PORT(
                DO:OUT std logic vector(31 downto 0):=conv
std logic vector(0,32);
                CLKA, CLKB, CEA, CEB: IN std logic;
                OCE, RESETA, RESETB: IN std logic;
                ADA, ADB: IN std logic vector (13 downto 0);
```

UG285-1.3.5E 27(58)

```
BLKSELA:IN std_logic_vector(2 downto 0);
                   BLKSELB:IN std logic vector(2 downto 0);
                   DI:IN std logic vector(31 downto 0)
            );
    END COMPONENT;
    uut:SDPB
       GENERIC MAP(
                    BIT WIDTH 0=>16,
                    BIT WIDTH 1=>16,
                    READ MODE=>'0',
                    BLK SEL 0=>"000",
                    BLK_SEL_1=>"000",
                    RESET MODE=>"SYNC",
                    INIT RAM 00=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B".
                    INIT RAM 01=>X"00A000000000000B00A00
INIT RAM 3F=>X"00A00000000000B00A00
000000000B00A0000000000B00A0000000000B"
                    )
         PORT MAP(
            DO=>dout,
            CLKA=>clka,
            CEA=>cea,
            RESETA=>reseta,
            CLKB=>clkb,
            CEB=>ceb.
            RESETB=>resetb,
            OCE=>oce,
            BLKSELA=>blksela,
            BLKSELB=>blkselb,
            ADA=>ada,
            DI=>din,
            ADB=>adb
         );
```

UG285-1.3.5E 28(58)

3 BSRAM Primitives 3.4 Read-only Mode

3.4 Read-only Mode

Primitive

pROM/pROMX9 (16K Block ROM /18K Block ROM)

Functional Description

ROM/ROMX9 works in read only mode with the memory capacity of 16K bit/18K bit and supports two read modes (bypass mode and pipeline mode).

Enable or disable output pipeline register by READ_MODE. When using the output pipeline register, the read requires an additional delay.

The timing diagram of ROM different read modes is as shown in Figure 3-12 and Figure 3-13.

Figure 3-12 Timing Diagrm of ROM (Bypass)

Figure 3-13 Timing Diagram of ROM (Pipeline)

Configuration Relationship

Table 3-10 Configuration Relationship of Data Width and Address Depth

Read-only Mode	BSRAM Capacity	Data Width	Address Depth
pROM	16K	1	14
		2	13
		4	12

UG285-1.3.5E 29(58)

3 BSRAM Primitives 3.4 Read-only Mode

Read-only Mode	BSRAM Capacity	Data Width	Address Depth
		8	11
		16	10
		32	9
		9	11
pROMX9 18K	18K	18	10
		36	9

Port Diagram

Figure 3-14 pROM/pROMX9 Diagram

Port Description

Table 3-11 Port Description

Name	I/O	Description
DO[31:0]/DO[35:0]	Output	Data output
AD[13:0]	Input	Address input
CE	Input	Clock enable input, active-high.
CLK	Input	Clock input
RESET	Input	Reset input, supporting synchronous and asynchronous reset, active-high. It is the RESET reset register, rather than the value of reset register.
OCE	Input	Output clock enable signal used for Pipeline, invalid in Bypass.

Parameter

Table 3-12 Parameter Description

Name	Туре	Range	Default	Description
READ_MODE	Integer	1'b0,1'b1	1'b0	Read mode configuration 1'b0:bypass

UG285-1.3.5E 30(58)

3 BSRAM Primitives 3.4 Read-only Mode

Name	Туре	Range	Default	Description
				1'b1:pipeline
BIT_WIDTH	Integer	pROM:1,2,4,8,16,32 pROMX9:9,18,36	pROM:32 pROMX9:36	Data width configuration
RESET_MODE	String	SYNC,ASYNC	SYNC	Reset mode configuration SYNC: synchronous reset ASYNC: asynchronous reset
INIT_RAM_00~ INIT_RAM_3F	Integer	pROM:256'h00~2 56'h11 pROMX9:288'h00 ~288'h11	pROM:256'h 00 pROMX9:28 8'h00	Used to set BSRAM initialization data

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter <u>6 IP Generation</u>. Take pROM as an example to introduce the instantiation.

Verilog Instantiation:

```
pROM bram prom 0 (
   .DO({dout[31:8],dout[7:0]}),
   .CLK(clk),
   .OCE(oce),
   .CE(ce),
   .RESET(reset),
   .AD({ad[10:0],3'b000})
);
defparam bram_prom_0.READ_MODE = 1'b0;
defparam bram prom 0.BIT WIDTH = 8;
defparam bram_prom_0.RESET_MODE = "SYNC";
defparam bram_prom_0.INIT_RAM_00 =
256'h9C23645D0F78986FFC3E36E141541B95C19F2F7164085E63
1A819860D8FF0000:
defparam bram prom 0.INIT RAM 01 =
000FFFFFBDCF;
```

Vhdl Instantiation:

COMPONENT pROM

UG285-1.3.5E 31(58)

3 BSRAM Primitives 3.4 Read-only Mode

```
GENERIC(
              BIT WIDTH:integer:=1;
              READ MODE:bit:='0';
              RESET MODE:string:="SYNC";
              INIT RAM 00:bit vector:=X"9C23645D0F78986FF
C3E36E141541B95C19F2F7164085E631A819860D8FF0000":
              );
       PORT(
              DO:OUT std logic vector(31 downto 0):=conv std
logic vector(0,32);
              CLK,CE,OCE,RESET:IN std_logic;
              AD:IN std logic vector(13 downto 0)
      );
  END COMPONENT;
  uut:pROM
     GENERIC MAP(
               BIT WIDTH=>1,
               READ_MODE=>'0',
               RESET MODE=>"SYNC",
               INIT RAM 00=>X"9C23645D0F78986FFC3E36
E141541B95C19F2F7164085E631A819860D8FF0000",
               )
     PORT MAP(
          DO=>do,
          AD=>ad,
          CLK=>clk,
          CE=>ce.
          OCE=>oce,
          RESET=>reset
      );
```

UG285-1.3.5E 32(58)

4 BSRAM Output Reset

RESET signal acts on the output module and the module outputs reset data 0. The diagram is shown in Figure 4-1.

Figure 4-1 Reset Diagram

When the RESET signal is high-level, the output port outputs 0.

RESET supports synchronous and asynchronous reset, which is set by RESET_MODE when you call the primitives library. When you use IP Core Generator, the reset mode can be selected through GUI. For the details, see chapter 6 IP Generation.

RESET signal resets the latch and the output register. When RESET signal is valid, the port outputs 0 whether you use the register output mode or the bypass output mode.

Note!

RESET signal must be set to 0 (invalid) during write operation.

The timing diagrams of synchronous and asynchronous reset modes are as shown from Figure 4-2 to Figure 4-5. DO_RAM represents the data in the storage array, and DO represents the data of the output port.

The register output mode is as follows.

- When synchronous reset is valid, DO is reset to 0 at CLK pos-edge.
- When asynchronous reset is valid, DO is reset to 0 without waiting for CLK pos-edge.
- When reset is invalid but OCE signal is valid, DO outputs DO RAM.
- When reset and OCE signal are both invalid, DO retains the last output.

UG285-1.3.5E 33(58)

The bypass output mode is as follows:

- When synchronous reset is valid, DO is reset to 0 at CLK pos-edge.
- When asynchronous reset is valid, DO is reset to 0 without waiting for CLK pos-edge.
- When reset is invalid, DO outputs DO_RAM whether OCE signal is valid.

Figure 4-2 Timing Diagram of Synchronous Reset (Pipeline)

Figure 4-3 Timing Diagram of Synchronous Reset (Bypass)

Figure 4-4 Timing Diagram of Asynchronous Reset (Pipeline)

UG285-1.3.5E 34(58)

DO

D4

D5

0000

Ď7

Figure 4-5 Timing Diagram of Asynchronous Reset (Bypass)

D2

X 0000 X

D₁

UG285-1.3.5E 35(58)

5 SSRAM Primitives

The Shadow Memory can be configured as single port mode, semi-dual port mode and read-only mode, as shown in Table 5-1.

Table 5-1 Shadow Memory Mode

Primitive	Description
RAM16S1	Single port SSRAM with address depth 16 and data width 1
RAM16S2	Single port SSRAM with address depth 16 and data width 2
RAM16S4	Single port SSRAM with address depth 16 and data width 4
RAM16SDP1	Semi-dual port SSRAM with address depth 16 and data width 1
RAM16SDP2	Semi-dual port SSRAM with address depth 16 and data width 2
RAM16SDP4	Semi-dual port SSRAM with address depth 16 and data width 4
ROM16	Read-only ROM with address depth 16 and data width 1

Note!

GW1N-1, GW1N-1S, GW1N-4, GW1N-4B, GW1NR-1, GW1NR-4, GW1NR-4B, GW1NRF-4B, GW1NS-4, GW1NS-4C, GW1NSER-4C, GW1NSR-4, GW1NSR-4C, GW1N-4D and GW1NR-4D devices do not support SSRAM.

5.1 RAM16S1

Primitive

16-Deep by 1-Wide Single-port SSRAM (RAM16S1) is a single-port SSRAM with address depth of 16 and bit width of 1.

Functional Description

RAM16S1 is a single-port SSRAM with bit width of 1. The read and write addresses are the same. When WRE is high, you can perform write operation. At this time, the data is loaded to the address corresponding to memory at the pos-edge of CLK. The address determines the read data in RAM in read operation. That is, SSRAM is implemented by the LUT of CFU, synchronous write and asynchronous read. However, if required, a register associated with each LUT can be used for synchronous read. The timing diagram is shown in Figure 5-1.

UG285-1.3.5E 36(58)

Figure 5-1 Timing Diagram of RAM16S1

Port Diagram

Figure 5-2 RAM16S1Blcok Diagram

Port Description

Table 5-2 Port Description

Port Name	I/O	Description
DI	Input	Data Input
CLK	Input	Clock input
WRE	Input	Write Enable Input
AD[3:0]	Input	Address Input
DO	Output	Data Output

Parameter

Table 5-3 Parameter Description

Name	Value	Default	Description
INIT_0	16'h0000~16'hffff	16'h0000	Initial value of the RAM16S1

UG285-1.3.5E 37(58)

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter 6 IP Generation.

Verilog Instantiation:

```
RAM16S1 instName(
      .DI(DI),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT)
  );
  defparam instName.INIT_0=16'h1100;
VhdI Instantiation:
  COMPONENT RAM16S1
       GENERIC (INIT:bit vector:=X"0000");
       PORT(
           DO:OUT std logic;
           DI:IN std logic;
           CLK: IN std logic;
           WRE: IN std logic;
           AD:IN std_logic_vector(3 downto 0)
       );
  END COMPONENT:
  uut:RAM16S1
      GENERIC MAP(INIT=>X"0000")
      PORT MAP (
            DO=>DOUT,
            DI=>DI,
            CLK=>CLK,
            WRE=>WRE,
            AD=>AD
      );
```

UG285-1.3.5E 38(58)

5.2 RAM16S2

Primitive

16-Deep by 2-Wide Single-port SSRAM (RAM16S2) is a single-port SSRAM with address depth of 16 and bit width of 2.

Functional Description

RAM16S2 is a single-port SSRAM with bit width of 2. The read and write addresses are the same. When WRE is high, you can perform write operation. At this time, the data is loaded to the address corresponding to memory at the pos-edge of CLK. The address determines the read data in RAM in read operation. That is, SSRAM is implemented by the LUT of CFU, synchronous write and asynchronous read. However, if required, a register associated with each LUT can be used for synchronous read. The timing diagram is shown in Figure 5-1.

Port Diagram

Figure 5-3 RAM16S2 Port Diagram

Port Description

Table 5-4 Port Description

Port Name	1/0	Description
DI[1:0]	Input	Data Input
CLK	Input	Clock input
WRE	Input	Write Enable Input
AD[3:0]	Input	Address Input
DO[1:0]	Output	Data Output

Parameter

Table 5-5 Parameter Description

Name	AllowedValues	Default	Description
INIT_0~ INIT_1	16'h0000~16'hffff	16'h0000	Initial value of the RAM16S2

UG285-1.3.5E 39(58)

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter 6 IP Generation.

Verilog Instantiation:

```
RAM16S2 instName(
      .DI(DI[1:0]),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT[1:0])
  );
  defparam instName.INIT 0=16'h0790;
  defparam instName.INIT 1=16'h0f00;
VhdI Instantiation:
  COMPONENT RAM16S2
       GENERIC (INIT_0:bit_vector:=X"0000";
                    INIT 1:bit vector:=X"0000"
         );
        PORT(
            DO:OUT std logic vector(1 downto 0);
           DI:IN std_logic_vector(1 downto 0);
           CLK:IN std logic;
           WRE:IN std_logic;
           AD:IN std logic vector(3 downto 0)
       );
  END COMPONENT;
  uut:RAM16S2
      GENERIC MAP(INIT_0=>X"0000",
                        INIT 1=>X"0000"
        )
      PORT MAP (
            DO=>DOUT,
            DI=>DI.
            CLK=>CLK,
            WRE=>WRE,
```

UG285-1.3.5E 40(58)

5.2.1 RAM16S4

Primitive

16-Deep by 4-Wide Single-port SSRAM (RAM16S4) is a single-port SSRAM with address depth of 16 and bit width of 4.

Functional Description

RAM16S4 is a single-port SSRAM with bit width of 4. The read and write addresses are the same. When WRE is high, you can perform write operation. At this time, the data is loaded to the address corresponding to memory at the pos-edge of CLK. The address determines the read data in RAM in read operation. That is, SSRAM is implemented by the LUT of CFU, synchronous write and asynchronous read. However, if required, a register associated with each LUT can be used for synchronous read. The timing diagram is shown in Figure 5-1.

Diagram

Figure 5-4 RAM16S4 Diagram

Port Description

Table 5-6 Port Description

Port Name	I/O	Description
DI[3:0]	Input	Data Input
CLK	Input	Clock input
WRE	Input	Write Enable Input
AD[3:0]	Input	Address Input
DO[3:0]	Output	Data Output

UG285-1.3.5E 41(58)

Parameter

Table 5-7 Parameter Description

Name	Value	Default	Description
INIT_0~ INIT_3	16'h0000~16'hffff	16'h0000	Initial value of the RAM16S4

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter <u>6 IP Generation</u>.

Verilog Instantiation:

```
RAM16S4 instName(
      .DI(DI[3:0]),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT[3:0])
  );
  defparam instName.INIT 0=16'h0450;
  defparam instName.INIT 1=16'h1ac3;
  defparam instName.INIT 2=16'h1240;
  defparam instName.INIT_3=16'h045c;
VhdI Instantiation:
  COMPONENT RAM16S4
        GENERIC (INIT 0:bit vector:=X"0000";
                     INIT 1:bit vector:=X"0000";
                     INIT 2:bit vector:=X"0000";
                     INIT_3:bit_vector:=X"0000"
         );
        PORT(
            DO:OUT std logic vector(3 downto 0);
            DI:IN std logic vector(3 downto 0);
            CLK:IN std_logic;
            WRE: IN std logic;
            AD:IN std_logic_vector(3 downto 0)
       );
  END COMPONENT;
```

UG285-1.3.5E 42(58)

5.3 RAM16SDP1

Primitive

16-Deep by 1-Wide Semi Dual-port SSRAM (RAM16SDP1) is a semi-dual-port SSRAM with address depth of 16 and bit width of 1.

Functional Description

RAM16SDP1 is a semi-dual-port SSRAM with bit width of 1. The read address is RAD and the write address is WAD, and they are asynchronous. When WRE is high, you can perform write operation. At this time, the data is loaded to the address corresponding to memory at the pos-edge of CLK. The address determines the read data in RAM in read operation. The timing diagram is shown in Figure 5-5.

Figure 5-5 Timing Diagram of RAM16SDP1

UG285-1.3.5E 43(58)

Port Diagram

Figure 5-6 RAMSDP1 Port Diagram

Port Description

Table 5-8 Port Description

Port Name	I/O	Description
DI	Input	Data Input
CLK	Input	Clock input
WRE	Input	Write Enable Input
WAD[3:0]	Input	Write Address
RAD[3:0]	Input	Read Address
DO	Output	Data Output

Parameter

Table 5-9 Parameter Description

Name	Value	Default	Description
INIT_0	16'h0000~16'hffff	16'h0000	Initial value of the RAM16SDP1

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter <u>6 IP Generation</u>.

Verilog Instantiation:

```
RAM16SDP1 instName(
.DI(DI),
.WRE(WRE),
```

UG285-1.3.5E 44(58)

```
.CLK(CLK),
      .WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT)
  );
  defparam instName.INIT 0=16'h0100;
VhdI Instantiation:
  COMPONENT RAM16SDP1
       GENERIC (INIT_0:bit_vector:=X"0000");
       PORT(
           DO:OUT std logic;
           DI:IN std_logic;
           CLK: IN std logic;
           WRE: IN std logic;
           WAD:IN std_logic_vector(3 downto 0);
           RAD: IN std logic vector (3 downto 0)
      );
  END COMPONENT;
  uut:RAM16SDP1
      GENERIC MAP(INIT 0=>X"0000")
      PORT MAP (
            DO=>DOUT,
            DI=>DI.
            CLK=>CLK,
            WRE=>WRE.
         WAD=>WAD,
            RAD=>RAD
       );
```

5.4 RAM16SDP2

Primitive

16-Deep by 2-Wide Semi Dual-port SSRAM (RAM16SDP2) is a semi-dual-port SSRAM with address depth of 16 and bit width of 2.

Functional Description

RAM16SDP2 is a semi-dual-port SSRAM with bit width of 2. The read address is RAD and the write address is WAD, and they are asynchronous.

UG285-1.3.5E 45(58)

When WRE is high, you can perform write operation. At this time, the data is loaded to the address corresponding to memory at the pos-edge of CLK. The address determines the read data in RAM in read operation. The timing diagram is shown in Figure 5-5.

Port Diagram

Figure 5-7 RAM16SDP2 Port Diagram

Port Description

Table 5-10 Port Description

Port Name	I/O	Description
DI[1:0]	Input	Data Input
CLK	Input	Clock input
WRE	Input	Write Enable Input
WAD[3:0]	Input	Write Address
RAD[3:0]	Input	Read Address
DO[1:0]	Output	Data Output

Parameter

Table 5-11 Parameter Description

Name	Value	Default	Description
INIT_0~ INIT_1	16'h0000~16'hffff	16'h0000	Initial value of the RAM16SDP2

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter 6 IP Generation.

Verilog Instantiation:

RAM16SDP2 instName(.DI(DI[1:0]),

UG285-1.3.5E 46(58)

```
.WRE(WRE),
      .CLK(CLK),
      .WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT[1:0])
  );
  defparam instName.INIT 0=16'h5600;
  defparam instName.INIT_1=16'h0af0;
Vhdl Instantiation:
  COMPONENT RAM16SDP2
       GENERIC (INIT 0:bit vector:=X"0000";
                   INIT_1:bit_vector:=X"0000"
        );
       PORT(
           DO:OUT std logic vector(1 downto 0);
           DI:IN std logic vector(1 downto 0);
           CLK:IN std_logic;
           WRE: IN std logic;
           WAD:IN std_logic_vector(3 downto 0);
           RAD:IN std logic vector(3 downto 0)
      );
  END COMPONENT;
  uut:RAM16SDP2
      GENERIC MAP(INIT_0=>X"0000",
                       INIT 1=>X"0000"
        )
      PORT MAP (
            DO=>DOUT,
            DI=>DI,
            CLK=>CLK,
            WRE=>WRE,
         WAD=>WAD,
            RAD=>RAD
       );
```

UG285-1.3.5E 47(58)

5.5 RAM16SDP4

Primitive

16-Deep by 4-Wide Semi Dual-port SSRAM (RAM16SDP4) is a semi-dual-port SSRAM with address depth of 16 and bit width of 4.

Functional Description

RAM16SDP4 is a semi-dual-port SSRAM with bit width of 4. The read address is RAD and the write address is WAD, and they are asynchronous. When WRE is high, you can perform write operation. At this time, the data is loaded to the address corresponding to memory at the pos-edge of CLK. The address determines the read data in RAM in read operation. The timing diagram is shown in Figure 5-5.

Diagram

Figure 5-8 RAMSDP4 Diagram

Port Description

Table 5-12 Port Description

Port Name	I/O	Description
DI[3:0]	Input	Data Input
CLK	Input	Clock Input
WRE	Input	Write Enable Input
WAD[3:0]	Input	Write Address
RAD[3:0]	Input	Read Address
DO[3:0]	Output	Data Output

Parameter

Table 5-13 Parameter Description

Name	Value	Default	Description
INIT_0~ INIT_3	16'h0000~16'hffff	16'h0000	Initial value of of the RAM16SDP4

UG285-1.3.5E 48(58)

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter 6 IP Generation.

Verilog Instantiation:

```
RAM16SDP4 instName(
      .DI(DI[3:0]),
      .WRE(WRE),
      .CLK(CLK),
      .WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT[3:0])
  );
  defparam instName.INIT 0=16'h0340;
  defparam instName.INIT_1=16'h9065;
  defparam instName.INIT_2=16'hac12;
  defparam instName.INIT 3=16'h034c;
VhdI Instantiation:
  COMPONENT RAM16SDP2
        GENERIC (INIT 0:bit vector:=X"0000";
                    INIT 1:bit vector:=X"0000";
                    INIT 2:bit vector:=X"0000";
                    INIT 3:bit vector:=X"0000";
         );
        PORT(
            DO:OUT std logic vector(3 downto 0);
            DI:IN std_logic_vector(3 downto 0);
            CLK: IN std logic;
            WRE: IN std logic;
            WAD:IN std logic vector(3 downto 0);
            RAD: IN std logic vector (3 downto 0)
       );
  END COMPONENT;
  uut:RAM16SDP2
       GENERIC MAP(INIT 0=>X"0000",
                        INIT 1=>X"0000",
```

UG285-1.3.5E 49(58)

5 SSRAM Primitives 5.6 ROM16

5.6 ROM16

Primitive

ROM16 is a read-only memory with address depth 16 and data width1. The memory is initialized using INIT.

Functional Description

ROM16 is a read-only memory with a data bit width of 1, and the address determines the output data in ROM. The timing diagram is shown in Figure 5-9.

Port Diagram

Figure 5-9 ROM16 Port Diagram

Port Description

Table 5-14 Port Description

Port Name	I/O	Description
AD[3:0]	Input	Address Input
DO	Output	Data Output

UG285-1.3.5E 50(58)

5 SSRAM Primitives 5.6 ROM16

Parameter

Table 5-15 Parameter Description

Name	Value	Default	Description
INIT_0	16'h0000~16'hffff	16'h0000	Initial value of the ROM16

Primitive Instantiation

You can instantiate the primitives directly or generate them through IP Core Generator. For details, see chapter 6 IP Generation.

```
Verilog Instantiation:
  ROM16 instName (
```

```
.AD(AD[3:0]),
    .DO(DOUT)
);
defparam instName.INIT_0=16'hfc00;
```

VhdI Instantiation:

```
COMPONENT ROM16
     GENERIC (INIT:bit_vector:=X"0000");
     PORT(
         DO:OUT std logic;
        AD:IN std_logic_vector(3 downto 0)
     );
END COMPONENT;
uut:ROM16
    GENERIC MAP(INIT=>X"0000")
    PORT MAP (
         DO=>DOUT,
         AD=>AD
    );
```

UG285-1.3.5E 51(58)

6 IP Generation

You can configure data width, address depth, write mode and read mode of IP Core in Gowin software, and Gowin software generates the corresponding IP module. In addition, there are two ways to implement BSRAM and SSRAM. You can configure ports and parameters to generate the required IP module by invoking Gowin software library files. You can also select synthesis tool to automatically generate BSRAM and SSRAM modes.

In IP Core Generator, the BSRAM module can implement single-port mode, semi-dual-port mode, dual-port mode and read-only mode. The SSRAM module can implement single-port mode, semi-dual-port mode and read-only mode. The following takes BSRAM dual-port mode and SSRAM single-port mode to introduce IP invoking.

6.1 BSRAM Dual-port Mode

DP is the dual port mode of BSRAM, which can be implemented by DPB and DPX9B primitives. Click "DPB" on the IP Core Generator interface. A brief introduction to the DPB will be displayed on the right of the screen.

IP Configuration

Double click the "DPB" to open the "IP Customization" window. This includes the "General" configuration, "Options" configuration, and ports diagram, as shown in Figure 6-1.

UG285-1.3.5E 52(58)

🖺 IP Customization **DPB** GW1N-2 Device Version: C Device: Verilog Part Number: GW1N-LV2MG132XC7/I6 Language: gowin_dpb Module Name: Gowin DPB E:\fpga_project\src\gowin_dpb Options Address Depth: 2 -Address Depth: 2 Data Width: + Data Width: 1 + Read Mode: Bypass Read Mode: Bypass Write Mode: Normal Write Mode: Normal Optimization:

Area

Speed Byte Size: ® 8bit Calculate DFF Usage: 0 DPB Usage: 1 / 4 LUT Usage: 0 Reset Mode:
Synchronous
Asynchronous Initialization Memory Initialization File: Dimension Match: Port A Port B थ् थ् OK Cancel

Figure 6-1 IP Customization of DPB

- 1. The General configuration box includes the basic information related to IP deisgn file, as shown in Figure 6-1.
 - Device: Select a device
 - Device Version: Select a device version
 - Part Number: Select a part number
 - Language: Verilog and VHDL
 - Module Name: The module name of the generated IP Core files. Enter the module name in the text box on the right side. Module name cannot be the same as the primitive Name. If it is the same, an error will be reported;
 - File Name: The name of the generated IP Core files. Enter the file name in the text box on the right side;
 - Create In: The path in which the generated IP files will be stored;
 Enter the target path in the box on the right side or select the target path by clicking the option button.
- The Options configuration box is as shown in Figure 6-1.
 - Width & Depth: Configure address depth and data width. If the configuration cannot be implemented by one module, multiple modules will be used to implement the configuration;

UG285-1.3.5E 53(58)

- Resource Usage: Calculate and display the resource usage of Block Ram, DFF, LUT, and MUX;
- Read/Write Mode: Configure Read/Write modes. DPB supports the following modes;
 - Two Read modes: Bypass and Pipeline;
 - Three Write modes: Normal, Write-Through, Read-before-Write:
- Reset Mode: synchronous or asynchronous;
- Initialization: Allows you to select a memory initialization file for the module. INIT value is written in the initialization file in Binary, Hex or Hex with address. The Memory Initialization File can be written or generated by the menus "File > New > Memory File". For details, please refer to <u>SUG100</u>, <u>Gowin Software User Guide</u>.

Note!

- The address depth, data width and read/write mode of the Port A and Port B of the DPB can be configured independently.
- Port A and Port B of DPB are read and written to the same memory, so Address Depth*Data Width of Port A and Port B must be the same.
- The data width in the initialization file (Memory initialization File) should match the port data width selected by Dimension Match.
- If the address depth and data width of DP Port A and Port B are different, an error message will pop up.
- If the data width is different, the Init value of the generated DPB instantiation is 0 by default, and an error message will be displayed: Error (MG2105): Initial values' width is unequal to user's width.

3. Ports Diagram

- The ports configuration diagram displays the IP Core configuration. Input/Output bit-width updates in real time based on the "Options" configuration, as shown in Figure 6-2.
- "Address Depth" of Port A and Port B affects the bit-width of address; "Data Width" affects the bit-width of input and output.

IP Generation Files

After configuration, click "OK" to generate three files that are named after the "File Name":

- gowin_dpb.v " file is a complete Verilog module to generate instance RAM16S, and it is generated according to the IP configuration;
- "gowin dpb tmp.v" is the instance template file;
- "gowin_dpb.ipc " file is IP configuration file. You can load the file to configure the IP.

Note!

If VHDL is selected as the hardware description language, the first two files will be named with an .vhd suffix. Taking verilog for instance, the following sections introduce the generated files.

UG285-1.3.5E 54(58)

6.2 BSRAM Single-port Mode

RAM16S is SSRAM single-port mode, which can be implemented by RAM16S1, RAM16S2 and RAM16S4 primitives. Click "RAM16S" on the IP Core Generator, and a brief introduction to the RAM16S will be displayed.

IP Configuration

Double-click "RAM16", and the "IP Customization" window pops up. This includes the "File", "Options", and ports diagram, as shown in Figure 6-2.

Figure 6-2 IP Customization of RAM16S

- The General configuration box is used to configure IP design file. The
 File configuration box of the RAM16S is similar to the BSRAM dual-port
 mode. For details, refer to the General configuration box of 6.1 BSRAM
 <u>Dual-port Mode</u>.
- 2. The Options configuration box is as shown in Figure 6-2. The Options configuration box of the RAM16S is similar to the BSRAM dual-port mode. For details, refer to the Options configuration box of <u>6.1 BSRAM Dual-port Mode</u>.
- Ports Diagram
 - The ports diagram is based on the IP Core configuration. The input/output bit-width updates in real time based on the "Options" configuration.
 - "Address Depth" affects the bit-width of Address; "Data Width" affects the bit-width of input and output.

UG285-1.3.5E 55(58)

IP Generation Files

After configuration, it will generate three files that are named after the "File Name".

- " gowin_ram16s.v " file is a complete Verilog module to generate instance RAM16S, and it is generated according to the IP configuration;
- "gowin_ram16s_tmp.v" is the instance template file;
- "gowin_ram16s.ipc" file is IP configuration file. You can load the file to configure the IP.

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

UG285-1.3.5E 56(58)

7 Initialization File 7.1 Bin File

7 Initialization File

In BSRAM and SSRAM modes, each bit of memory can be initialized to 0 or 1. The initial value is written in binary, hex, or hex with address in the initialization file.

7.1 Bin File

The Bin file is a text file consisting of 0 and 1. The row number represents the address depth, and the column number represents the data width.

7.2 Hex File

The Hex file is similar to the Bin file, and it consists of the hexadecimal number 0~F. The row number represents the address depth and the binary bit of each row represents the data width.

```
#File_format=Hex

#Address_depth=8

#Data_width=16

3A40

A28E

0B52

1C49

D602
```

UG285-1.3.5E 57(58)

7 Initialization File 7.3 Hex File with Address

0801

03E6

4C18

7.3 Hex File with Address

The Hex file with address records the addresses and data recorded in the file. The addresses and data are composed of 0~F. The address and data are separated by a colon. The file only records the written addresses and data. The unrecorded addresses default to 0.

#File_format=AddrHex

#Address depth=256

#Data_width=16

9:FFFF

23:00E0

2a:001F

30:1E00

UG285-1.3.5E 58(58)

