₩ 摘要视图

StartUp 专栏

业精于勤而荒于嬉,行成于而思毁于随

sunbin0123

访问: 61398次 积分: 944 等级: 8L00 3 排名: 干里之外

原创: 33篇 转载: 13篇 译文: 1篇 评论: 9条

博士简介

CS硕士在读,关注算法,分 布式系统构架,机器学习, 结交好友,志同道合,分享 成功!

文章搜索

文章分类

Algorithm (10)

C/C++ (5)

Search Engine/Info Retrieval (2)

C#/ASP.NET (4)

JavaScript/jQuery/Plugin (1)

Tools (3)

System Optimization (5)

Make Sense (2)

PM (2)

Book (0)

Computer Vision (1)

文章存档

2015年04月 (1)

2015年03月 (3)

2015年02月 (1)

2015年01月 (5)

2014年12月 (2)

展开

阅读排行

HSV颜色直方图

(10102)Linux Shell 之定时检测T (5526)

异步赠书:9月重磅新书升级,本本经典 SDCC 2017之区块链技术实战线上峰会 程序员9月书讯

:= 目录视图

每周荐书: ES6、虚拟现实。

RSS 订阅

物联网 (评论送书)

HSV颜色直方图

2014-12-29 17:24

10110人阅读

评论(4) 收藏 举报

≡ 分类: Machine Learning (6)

■版权声明:本文为博主原创文章,未经博主允许不得转载。

颜色特征是在图像检索中应用最为广泛的视觉特征,主要原因在于颜色往往和图像中所包含的物体或场景十分相关。 此外,与其他的视觉特征相比,颜色特征对图像本身的尺寸、方向、视角的依赖性较小,从而具有较高的鲁棒性。

面向图像检索的颜色特征的表达涉及到若干问题。首先,我们需要选择合适的颜色空间来描述颜色特征;其次,我们 要采用一定的量化方法将颜色特征表达为向量的形式;最后,还要定义一种相似度(距离)标准用来衡量图像之间在 颜色上的相似性。在本节中,我们将主要讨论前两个问题,并介绍颜色直方图、颜色矩、颜色集、颜色聚合向量以及 颜色相关图等颜色特征的表示方法。

1 颜色直方图

颜色直方图是在许多图像检索系统中被广泛采用的颜色特征。它所描述的是不同色彩在整幅图像中所占的比例,而并 不关心每种色彩所处的空间位置,即无法描述图像中的对象或物体。颜色直方图特别适于描述那些难以进行自动分割

当然,颜色直方图可以是基于不同的颜色空间和坐标系。最常用的颜色空间是RGB颜色空间,原因在于大部分的数字 图像都是用这种颜色空间表达的。然而,RGB空间结构并不符合人们对颜色相似性的主观判断。因此,有人提出了基 于HSV空间、Luv空间和Lab空间的颜色直方图,因为它们更接近于人们对颜色的主观认识。其中HSV空间是直方图最 常用的颜色空间。它的三个分量分别代表色彩(Hue)、饱和度(Saturation)和值(Value)。

计算颜色直方图需要将颜色空间划分成若干个小的颜色区间,每个小区间成为直方图的一个bin。这个过程称为颜色量 化(color quantization)。然后,通过计算颜色落在每个小区间内的像素数量可以得到颜色直方图。颜色量化有许多方 法,例如向量量化、聚类方法或者神经网络方法。最为常用的做法是将颜色空间的各个分量(维度)均匀地进行划 分。相比之下,聚类算法则会考虑到图像颜色特征在整个空间中的分布情况,从而避免出现某些bin中的像素数量非常 稀疏的情况,使量化更为有效。另外,如果图像是RGB格式而直方图是HSV空间中的,我们可以预先建立从量化的 RGB空间到量化的HSV空间之间的查找表(look-up table),从而加快直方图的计算过程。

上述的颜色量化方法会产生一定的问题。设想两幅图像的颜色直方图几乎相同,只是互相错开了一个bin,这时如果我 们采用L1距离或者欧拉距离(见3.1.1节)计算两者的相似度,会得到很小的相似度值。为了克服这个缺陷,需要考虑 到相似但不相同的颜色之间的相似度。一种方法是采用二次式距离[4](见3.1.3节)。另一种方法是对颜色直方图事先 进行平滑过滤,即每个bin中的像素对于相邻的几个bin也有贡献。这样,相似但不相同颜色之间的相似度对直方图的相 似度也有所贡献。

选择合适的颜色小区间(即直方图的bin)数目和颜色量化方法与具体应用的性能和效率要求有关。一般来说,颜色小 区间的数目越多,直方图对颜色的分辨能力就越强。然而,bin的数目很大的颜色直方图不但会增加计算负担,也不利 于在大型图像库中建立索引。而且对于某些应用来说,使用非常精细的颜色空间划分方法不一定能够提高检索效果, 特别是对于不能容忍对相关图像错漏的那些应用。另一种有效减少直方图bin的数目的办法是只选用那些数值最大(即 像素数目最多)的bin来构造图像特征,因为这些表示主要颜色的bin能够表达图像中大部分像素的颜色。实验证明这种 方法并不会降低颜色直方图的检索效果。事实上,由于忽略了那些数值较小的bin,颜色直方图对噪声的敏感程度降低 了,有时会使检索效果更好。两种采用主要颜色构造直方图的方法可以在文献[5,6]中找到。

Matlab实现

01. function colorhist = colorhist(rgb)

Linux下Apache配置cgi	(4052)
C#程序数据量太大导致村	(3993)
使用正则表达式解析URL	(2459)
移动硬盘电脑无法识别之	(2038)
java_Tomcat_连接池之 <i>)</i>	(2014)
Redhat5.5 Memcached₹	(1824)
VS2010编译arthurv的C+	(1652)
搜索引擎和信息检索实践	(1629)

评论排行

HSV颜色直方图	(4)
VS2010编译arthurv的C+	(2)
C#程序数据量太大导致村	(1)
搜索引擎和信息检索实践	(1)
Stanford公开课之算法:	(1)
矩阵相乘的三种实现	(0)
TLD源码解析-tldGenerat	(0)
网站提速的最佳实践-Bes	(0)
Stanford公开课之算法:	(0)
Solutions_to_Introduction	(0)

推荐文章

- * CSDN日报20170828——《4个 方法快速打造你的阅读清单》
- * Android检查更新下载安装
- * 动手打造史上最简单的 Recycleview 侧滑菜单
- * TCP网络通讯如何解决分包粘包 问题
- * SDCC 2017之区块链技术实战 线上峰会
- * 快速集成一个视频直播功能

最新评论

C#程序数据量太大导致栈溢出Sta

power_virus: 首先说明: 作者真是牛X,我的问题用方法一完美解决,在此谢过,不过我还有些疑问请作者不吝赐教。我的问题...

VS2010编译arthurv的C++版Ope orangetaste: 还是运行错误啊, 楼主

HSV颜色直方图

Janaldo: Forbes_Zhong[/reply修改其中H_BITS = 4; S_BITS =2; V Bl...

HSV颜色直方图

Janaldo: @yifan12345678:stem (colorhist)

HSV颜色直方图

yifan12345678: 麻烦问一下这个程序运行了之后怎么将直方图显示呢? 这里面没有显示的语句啊

VS2010编译arthurv的C++版Ope

gg112324d: 博主您好,在 vs2013上面可以运行吗?可以把 修改过的代码发我一份吗!万分 感谢!904590476@...

HSV颜色直方图

Forbes_Zhong: 请问如果每个通道都有16个bin的时候,该如何设置实验参数?

Stanford公开课之算法:设计与分bigtailbear: mergeT里面是不是改加delete比较好防止memory leak

```
02.
03.
      if size(rgb,3) ~= 3
04.
          error('3 components are needed for histogram');
05.
06.
07.
      % globals
08.
      H_BITS = 4; S_BITS = 2; V_BITS = 2;
09.
      % rgb2hsv可用rgb2hsi代替
10.
      hsv = uint8(255*rgb2hsv(rgb));
11.
12.
      imgsize = size(hsv);
13.
      % get rid of irrelevant boundaries
      %i0 = round(0.05*imgsize(1));
14.
15.
      %i1 = round(0.95*imgsize(1));
      %j0 = round(0.05*imgsize(2));
      %j1 = round(0.95*imgsize(2));
17.
18.
      %hsv = hsv(i0:i1, j0:j1);
19.
20.
      % histogram
21.
      for i = 1 : 2^H BITS
22.
          for j = 1 : 2^S_BITS
23.
              for k = 1 : 2^V_BITS
                 colorhist(i,j,k) = sum(sum(bitshift(hsv(:,:,1),-(8-H_BITS))==i-1 & bitshift(hsv
24.
      (:,:,2),-(8-S_BITS))==j-1 \& bitshift(hsv(:,:,3),-(8-V_BITS))==k-1));
25.
26.
          end
27.
      end
28.
      colorhist = reshape(colorhist, 1, 2^(H_BITS+S_BITS+V_BITS));
29.
      %normalize
30.
      %colorhist = colorhist/sum(colorhist);
```

说明:bitshift是对数据的位操作,其实就是乘除法,例如:bitshift(12,-2),就是12除以2的2次方,结果为3,第二个参数是负数就是除,是整数就是乘。

reshape是吧一个矩阵变成1*M的长向量。

最后一步是归一化的计算。

原图

直方图

参考资料:

- 1. 颜色直方图, HSV直方图, histogram bins
- 2. 图像颜色特征提取
- 3. 百度知道的一个答案

- 上一篇 linux下mysql忘记密码解决办法
- 下一篇 机器视觉,图像处理,多物体追踪的资源列表

相关文章推荐

- OpenCV粒子滤波器用于物体跟踪
- 携程机票大数据基础平台架构演进-- 许鹏
- 图像颜色特征提取
- Python可以这样学--董付国
- 【OpenCV】显示HSV模型中H分量的颜色直方图
- 一步一步学Spring Boot
- 颜色直方图, HSV直方图, histogram bins
- 深入浅出C++程序设计

- 粒子滤波总结笔记
- Android Material Design 新控件
- 数据挖掘准备
- 机器学习需要用到的数学知识
- 颜色直方图, HSV直方图, histogram bins
- 基于HSV分块颜色直方图的图像检索算法
- CBIR(MATLAB,HSV直方图, Haar纹理特征, GIS...
- matlab 在Hsv空间里画出颜色直方图程序

查看评论

2楼 yifan12345678 2016-04-15 15:19发表

麻烦问一下这个程序运行了之后怎么将直方图显示呢?这里面没有显示的语句啊

Re: Janaldo 2016-10-11 22:59发表

回复yifan12345678: stem(colorhist)

公司简介 | 招贤纳士 | 广告服务 | 联系方式 | 版权声明 | 法律顾问 | 问题报告 | 合作伙伴 | 论坛反馈

网站客服 杂志客服 微博客服 webmaster@csdn.net 400-660-0108 | 北京创新乐知信息技术有限公司 版权所有 | 江苏知之为计算机有限公司 |

江苏乐知网络技术有限公司

京 ICP 证 09002463 号 | Copyright © 1999-2017, CSDN.NET, All Rights Reserved

