Teleinformatica y Comunicaciones

Ppt 2

Direcciones IP

□ Servicio universal:

• Cualquier computadora puede comunicarse con cualquier otra

Identificacion unica universal

Identificacion

- □ Nombre : Indica quien es
- □ Dirección: Indica donde esta
- □ Ruta: Indica como llegar

Direcciones IP

- Similares a las direcciones de hardware
- Unicas para cada host de Internet
- □ 32 bits
- Valores elegidos buscando un ruteo eficiente
- Se dividen en dos partes
 - Red
 - Host

Caracteristicas Deseables

- □ Compactas (pequeñas)
- Universales
- Independencia del Hardware
- Esquema original
 - Esquema de clases

Direcciones A,B y C

Direcciones

- □ Las direcciones NO especifican una computadora sino una conexion a la red
- \square Cuando hostid = 0 \square nos referimos a la red
- □ Cuando hostid = 255 □ difusion
- Para rutear se utiliza el netid

Computadoras Multi homed

Notación

10000000 00001010 00000010 00011110 128 10 2 30

128.10.2.30

Direcciones especiales

Ejemplo

Otro Ejemplo

Red (Ejemplo)

Pánico en las calles

REITERAMOS

16:21 26:5

3 FEB 2011 ICANN ANUNCIA NO HAY MAS IP4

NO000!!

Limitaciones de IPv4

Crecimiento exponencial de Internet

- Agotamiento de direcciones
- Reúso mediante NAT
- Problema con dispositivos orientados a la conexión

Necesidad de configuraciones simples

- Requiere mucha conf manual
- Salir de DHCP

Mejor soporte a tiempo real

- IPv4 tiene funcionalidad limitada
- No permite diferenciar TCP de UDP en datagramas encriptados

Funcionalidad de IPv6 1

- Minimiza procesamiento
- No es interoperable con IPv6
- Doble de long del de IPv4
- 128 bits Vs 32 de IPv4
- Evita el uso de NAT
- Mejora de seguridad
- Provee integridad y autenticación de datos

Funcionalidad de IPv6 2

Direcciones

Con 128 bits se puede asignar 6.6 10²³ direcciones / m²

Direcciones de 128 bits

8 grupos de 16 bits en hexa

2001:0bb8:1232:5678:9abc:def0:1234:5678

Omisión de ceros

2001:0db8:0000:130F:0000:0000:087C:140B

2001:0db8:0:130F::087C:140B

Migración a IPv6

Red IPv6 paralla

Separadas pero sobre un mismo

medio

 A causa de as ventajas de IPv6 los usuarios se pasarían

Islas de IPv6

Gateways

• Comenzar con "Islas" hasta que toda la red sea IPv6

 Se transforma una versión en otra cuando sea necesario

Unicast

64 BITS Network ID Asignada administrativamente

64 BITS Host ID

- . Manualmente
- . DHPv6
- . EUI-64

EUI-64MAC

Tipos de direcciones IPv6

Unicast:

Para un único nodo o interface

Multicast:

Para grupos de nodos o interfaces

Anycast:

Unicast a múltiples dispositivos

Global Unicast Address Format

- Inicia con 001
- Global Prefix : Asiganado por IANA
- SLA: Subred, Asignada al usuario por el ISP
- LAN: Redes individuales administradas por el usuario

Resolución de direcciones

- Dos máquinas para comunicarse DEBEN conocer sus direcciones físicas
- Lo que el usuario conoce es la dirección IP

Se necesita convertir de IP a MAC

ARP (IP6 no usa ARP)

- □ Permite que la computadora A encuentre la direccion de Hard de la computadora B
- □ Tecnica : Se emite un pedido por Broadcast y se obtiene la respuesta

Solución en redes de difusión

- A quiere enviar un mensaje a B del cual tiene su IP (Ib).
- A genera una difusion pidiendo a todos los host: "El host con direccion Ib responda con su direccion fisica"

Solución en redes de difusión

- Todos los host escuchan el pedido
- B responde enviando su direccion fisica

Encapsulación

Formato mensaje ARP

Mensaje ARP

31	16	8	0
	IP ADDRESS TYPE (0800)	ETHERNET ADDRESS TYPE (1)	
	OPERATION	IP ADDR LEN (4)	ETH ADDR LEN (6)
SENDER'S ETH ADDR (first 4 octets)			
	SENDER'S IP ADDR (first 2 octets)	SENDER'S ETH ADDR (last 2 octets)	
	TARGET'S ETH ADDR (first 2 octets)	SENDER'S IP ADDR (last 2 octets)	
TARGET'S ETH ADDR (last 4 octets)			
TARGET'S IP ADDR (all 4 octets)			
	DDR (first 4 octets) SENDER'S IP ADDR (first 2 octets) TARGET'S ETH ADDR (first 2 octets) DDR (last 4 octets)	SENDER'S ETH AIDDR (last 2 octets) DR (last 2 octets) TARGET'S ETH AIDDR	SENDER'S ETH A

Enacapsulación

Caching

- Evita consultas reiteradas
- □ La tabla ARP se mantiene en cache
- Las entradas que pasan de tiemmpo se eliminan (tipico 20 minutos)

```
bsdi % arp -a
bsdi % telnet svr4 discard
Trying 140.252.13.34...
Connected to svr4.
Escape character is '^]'.
^]
telnet> quit
Connection closed.
```

verify ARP cache is empty connect to the discard server

type Control, right bracket to get Telnet client prompt and terminate

```
0.0
                   0:0:c0:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60:
                   arp who-has svr4 tell bsdi
0.002174 (0.0022) 0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 arp 60:
                   arp reply svr4 is-at 0:0:c0:c2:9b:26
0.002831 (0.0007)
                   0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
                   bsdi.1030 > svr4.discard: S 596459521:596459521(0)
                   win 4096 <mss 1024> [tos 0x10]
0.007834 (0.0050)
                   0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 ip 60:
                   svr4.discard > bsdi.1030: S 3562228225:3562228225(0)
                   ack 596459522 win 4096 <mss 1024>
0.009615 (0.0018)
                   0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
                   bsdi.1030 > svr4.discard: . ack 1 win 4096 [tos 0x10]
```

RARP (Reverse ARP)

- □ Protocolo antiguo usado en maquinas sin disco rigido
- Obtiene la direccion IP propia de un servidor
- Viaja sobre la trama

El cliente difunde un pedido

Uno o mas servidores responden

Detalles

- Cada computadora se indentifica a si misma
- Solo es eficiente cuando el direccionamiento no cambia
- Casi completamente reeplazado por DHCP

RARP

IEEE 802.2/802.3 Encapsulation (RFC 1042):

