Macroscopic Models: Conservation Laws

Henri Navier (1785 Dijon–1836 Paris) - mechanical engineer - mathematician - physicist

George Gabriel Stokes

(1819 Ireland – 1903) - mathematician - physicist

Molecules

- Mass conservation
- Momentum conservation

Fluid

Navier-Stokes Equations (1823-1845)

- 2 equations
 - Mass conservation
 - Momentum conservation
- 2 unknowns (density ρ, velocity u)

Start of road traffic

1908 Statista 1993

[Charansonney et al, TFTC (2018)]

Johnson 1929

[Kühne, TRB (2011)]

Greenshield 1933

[Kühne, TRB (2011)]

[Charansonney et al, TFTC (2018)]

Johnson 1929

[Kühne, TRB (2011)]

Greenshield 1933

[Kühne, TRB (2011)]

Johnson 1929 Aerial view

[Charansonney et al, TFTC (2018)]

Vehicular Flux Measurements

Inductance loops

Vehicular Flux Measurements

Solenoid

Solenoid with iron core

⇒ Electromagnet.

Vehicular velocity Measurements

Double loops

From [Treiber, M2 Course]

Vehicular velocity Measurements

Double loops

From [Coifman (2018), Traffic Flow Theory and Characteristics Committee Mid-Year Meeting]

Model LWR (1955-1956)

$$\partial_t
ho + \partial_x (
ho u) = 0$$
 (Mass conservation) $u = V(
ho) = rac{F(
ho)}{
ho}$ (Fundamental Diagram)

Single vehicle data

- Passage time
- velocity
- length
- SETRA category

SETRA categories

Model LWR (1955-1956)

$$\partial_t
ho + \partial_x \left(F(
ho)
ight) = 0$$
 (Mass conservation)
$$F(
ho) \quad \textit{or} \quad V(
ho) \equiv \frac{F(
ho)}{
ho} \quad (\text{Fundamental diagram})$$

Fundamental diagrams

Various equivalent representations of the fundamental diagram

From [Rakha & Gao (2011), 75 Years of FD]

Characteristics and shocks

From [Dingra et al (2011)]

Measuring the wave speed w

From [Treiber, M2 course]

Example of simulation of the LWR model

Model LWR with fundamental diagram $V(\rho) = V_{max} \left(1 - \frac{\rho}{\rho_{max}}\right)$ (Greenshield's fundamental diagram)

Ex: traffic light becomes green in x = 0.6.

From [Goatin (2023), review paper]

From [Sugiyama et al, New J. Phys. (2008)]

Drivers were asked to cruise at about 30 km/h.

From [Lenz et al, ECC, 2001 APCA]

Spatiotemporal plot of speed (averaged across three running lanes) for the high coverage section of M42 ATM showing two stop-and-go waves.

From [E. Wilson (2011), 75 Years of FD]

From [Sugiyama et al, New J. Phys. (2008)]

- Trajectories of vehicles on the highway (aerial photograph taken in 1967). From [Treiterer and Myers, Transp. Traffic Theory (1974)]
- Green line: corresponds to a backward cluster velocity of 20 km/h, as measured in [Sugiyama (2008)].

1st order macroscopic model

Modèle LWR (1955-1956)

2nd order macroscopic model

- Payne-Whitham model (1971)
 - "Requiem for second-order fluid approximations of traffic flow"

[Daganzo 1995]

1st order macroscopic model

Modèle LWR (1955-1956)

2nd order macroscopic model

- Payne-Whitham model (1971)
 - "Requiem for second-order fluid approximations of traffic flow"
 [Daganzo 1995]
- Aw-Rascle model (2000)
 - "Resurrection of "Second Order" Models of Traffic Flow and numerical simulation"

ARZ Model with the choice $p(\rho) = \rho$.

- ullet ignoring the relaxation term $(au o\infty)$
- with a group of more agressive drivers (higher w) behind slow ones.
- ρ^0 = 150 veh/km for

0.1 < x < 0.6;

 $v^0 = 50$ km/h for 0.1 < x < 0.4; $v^0 = 10$ km/h for 0.4 < x < 0.6;

Non-local models非局域模型

Rieman pbl黎曼 问题

$$\rho_I = 0.6 \text{ for } x < 0$$

$$\rho_R = 0.2 \text{ for } x \ge 0$$

[Blandin & Goatin, Numer. Math.(2016)]

Local model局域模型

$$\partial_t \rho(t,x) + \partial_x \left[\rho(t,x) \left(1 - \rho(t,x) \right) \right] = 0$$

Non-local models

Rieman pbl

$$\rho_L = 0.6 \text{ for } x < 0$$
 $\rho_R = 0.2 \text{ for } x \ge 0$

[Blandin & Goatin, Numer. Math.(2016)]

Downstream non-local model

$$\partial_t \rho(t,x) + \partial_x \left[\rho(t,x) V \left(\int_x^{x+\eta} \rho(t,y) w_{\eta}(y-x) dy \right) \right] = 0$$

Non-local models

Rieman pbl

$$\rho_L = 0.6 \text{ for } x < 0$$
 $\rho_R = 0.2 \text{ for } x \ge 0$

[Blandin & Goatin, Numer. Math.(2016)]

Centered non-local model

$$\partial_t \rho(t,x) + \partial_x \left[\rho(t,x) V \left(\int_{x-\eta/2}^{x+\eta/2} \rho(t,y) w_\eta(y-x) dy \right) \right] = 0$$

Non-local models

Rieman pbl

$$\rho_L = 0.6 \text{ for } x < 0$$
 $\rho_R = 0.2 \text{ for } x \ge 0$

[Blandin & Goatin, Numer. Math.(2016)]

Upstream non-local model

$$\partial_t \rho(t,x) + \partial_x \left[\rho(t,x) V \left(\int_{x-\eta}^x \rho(t,y) w_\eta(y-x) dy \right) \right] = 0$$

Models for road traffic

Fluid-like models

Equations for the density ρ and mean velocity u of the vehicles

Car-following models

 $\begin{array}{c} \text{acceleration = fonction (distance,} \\ \text{velocity difference,} \cdots) \end{array}$

Reaction times

Rapport LCPC / Appert

Log-normal law (Probability density): $\sigma =$ 0.44, $\mu =$ 0.17

Time headways

From [Treiber, M2 Course]

Time headways

Data from Hollywood Freeway

From [A. Tordeux et al, Transp. Res. B (2010)]

Car-following experiment

From [Chandler et al (1958)]

Other car-following models

GHR model (1959-1961)

$$a_f(t) = cv_f^m(t) \frac{\Delta v(t-\tau)}{\Delta x^I(t-\tau)}$$

From Gazis, Herman, Rothery

Other car-following models

Gibbs model (1981)

$$\dot{x}_n(t+\tau_{Gipps}^n) = \\ \min \left\{ \begin{array}{l} \underbrace{b^n \cdot \tau_{Gipps}^n + \sqrt{(b^n \cdot \tau_{Gipps}^n)^2 - b^n \cdot [2 \cdot (\Delta x^{n-1,n}(t) - \delta_0^n) - \dot{x}_n(t) \cdot (\tau_{Gipps}^n - \dot{x}_n(t)^2/\hat{b}]}_{\text{Régime congestionné}} \\ \underbrace{\dot{x}_n(t) + 2.5 \cdot a^n \cdot \tau_{Gipps}^n \cdot (1 - \dot{x}_n(t)/u_f^n) \times \sqrt{0.025 + \dot{x}_n(t)/u_f^n}}_{\text{Régime fluide}} \right. \\ \end{array} \right.$$

[Gibbs, Transp. Res. B (1981)], Formula rewritten in [Gomez-Patiño, PhD thesis (2022)]

Other car-following models

Tampere model (2004)

$$\frac{dv}{dt} = \min\left(\frac{v_n^f - v_n}{\tau_f}; \quad \frac{s_n - s^d(v_n)}{\tau_s} + \frac{v_{n-1} - v_n}{\tau_v}\right)$$

with

$$a_{min} < \frac{dv}{dt} < a_{max}$$

 $s^d(v) = s_1^d v + s_2^d v^2$

From [Tampere, PhD thesis TU Delft (2004)]

Car-following models in commercial softwares

TABLE 1 Software Car-Following Model Formulations

Software	Model	Formulation
CORSEM	Pitt Model	$u_n(t+\Delta t) = \min \left[3.6 \cdot \left \frac{s_n(t) - s_j}{c_g} - b \left(u_n(t) - u_{n-1}(t) \right)^2 \right , u_f \right]$
VESIM	Wiedemann/4	$3.6 \cdot \left(\frac{s_a(t) - s_j}{BX \cdot EX} \right)^{2-7}$
	Wiedemann/99	$u_{n}(t + \Delta t) = \min \begin{cases} u_{n}(t) + 8.6 \cdot \left[COS + \frac{COS - COO}{80} u_{n}(t)\right] \Delta t \\ 3.6 \cdot u_{n}(t) - \frac{CCO - L_{n-1}}{u_{n}(t)} \end{cases}, u_{t} \end{cases}$
Paramics	Fritzsche	$u_{_{\alpha}}(t + \Delta t) = \min \begin{cases} 3.6 \cdot \left(\frac{AD - A_0}{T_o}\right), u_f \\ 3.6 \cdot \left(\frac{AR - A_0}{T_c}\right), u_f \end{cases}$
AIMSUN2	Cklyps	$ \begin{aligned} & u_n(t+T) = \\ & \left[u_n(t) + 3.6 \left[2.5 u_{min} T \left(1 - \frac{u_n(t)}{u_f} \right) \sqrt{0.025 + \frac{u_n(t)}{u_f}} \right] \\ & \min \\ & \left[3.6 \left[-bT + \sqrt{b^2 T^2} + b \left[2 \left[v_n(t) - L_{n-1} \right] - \frac{u_n(t)}{3.6} T + \frac{u_{n-1}(t)^2}{3.6^2 \times b^2} \right] \right] \end{aligned} $
INTEGRATION	Van Aerde	$\begin{split} &u_n(t+\Delta t) = \\ & \begin{bmatrix} u_n(t) + 3.6 & \frac{F_n(t) - R_n(t)}{m} \Delta t, \\ -c_1' + c_2 u_f + \tilde{s}_n(t) - \sqrt{\left[c_1' - c_1 u_f - \tilde{s}_n(t)\right]^2 - 4c_2 \left[\tilde{s}_n(t) u_f - c_1' u_f - c_2\right]} \end{bmatrix} \\ & \text{Where } \tilde{s}_n(t) = \underline{s}_n(t) + \left[u_{n-1}(t+\Delta t) - u_n(t)\right] \Delta t + 0.5c_{n-1}(t+\Delta t) \Delta t^2 \end{split}$

From [Rakha & Gao (2011), 75 Years of FD]

Data collection

Magnetic loops

Limitations:

- Hypothesis: homogeneous vehicles
 - results depend on the length of vehicles, on their free velocity [cf Coifman (2018)]
 - possible to put corrections if single-vehicle data

Videos

- NGSIM project (Next Generation Simulation):
 - by U.S. Department of Transportation Federal Highway Administration
 - Extracted vehicle trajectories
 - Made available for the community

Data collection: NGSIM Project

- Measurements on several highways/freeways (2005...)
- Many lanes
- Onramps and intersections
- Typically 500 meters long
- Typically hour duration

Data collection: NGSIM Project

[Coifman and Li, Transp. Res. B (2017)]

Data collection: NGSIM Project

- Dashed lines: raw NGSIM trajectories
- Solid lines: new trajectories

[Coifman and Li, Transp. Res. B (2017)]

Data collection

[Coifman et al, Transp. Res. C (2016)]

Data collection

Data

- Benjamin Coifman homepage
 - NGSIM revisited and others (LIDAR, etc)
- TU Delft (Hoogendoorn, Daamen, etc): trajectories at on ramp
- ZEN Traffic Data (2018...): trajectories on several kilometers on highway (Japan)
- Open ACC Database from data.europa.eu
 - Car-following experiments involving 28 vehicles, among which
 22 with commercial Adaptive Cruise Control systems
- πneuma project (2020) at open-traffic.epfl.ch
 - 10 drones, congested area of a 1.3 km² area, more than 100 km-lanes, ∼ half a million trajectories.
- inD Dataset (2020) at www.ind-dataset.com
 - Drones, 13 500 road users (vehicles, bicyclists and pedestrians), 4 intersections, 10 hours of measurement.

Data collection: inD Dataset

[Bock et al, 2020 IEEE Intelligent Vehicles Symposium]