In [5]: !pip install pandas numpy seaborn matplotlib klib dtale scikit-learn joblib pandas-

```
Requirement already satisfied: pandas in c:\python3107\lib\site-packages (1.4.4)
Requirement already satisfied: numpy in c:\python3107\lib\site-packages (1.23.3)
Requirement already satisfied: seaborn in c:\python3107\lib\site-packages (0.11.2)
Requirement already satisfied: matplotlib in c:\python3107\lib\site-packages (3.5.
Requirement already satisfied: klib in c:\python3107\lib\site-packages (1.0.5)
Requirement already satisfied: dtale in c:\python3107\lib\site-packages (2.8.1)
Requirement already satisfied: scikit-learn in c:\python3107\lib\site-packages (1.
1.2)
Requirement already satisfied: joblib in c:\python3107\lib\site-packages (1.1.0)
Requirement already satisfied: pandas-profiling in c:\python3107\lib\site-packages
Requirement already satisfied: xgboost in c:\python3107\lib\site-packages (1.6.2)
Requirement already satisfied: pytz>=2020.1 in c:\python3107\lib\site-packages (fr
om pandas) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\python3107\lib\site-pa
ckages (from pandas) (2.8.2)
Requirement already satisfied: scipy>=1.0 in c:\python3107\lib\site-packages (from
seaborn) (1.9.1)
Requirement already satisfied: fonttools>=4.22.0 in c:\python3107\lib\site-package
s (from matplotlib) (4.37.3)
Requirement already satisfied: cycler>=0.10 in c:\python3107\lib\site-packages (fr
om matplotlib) (0.11.0)
Requirement already satisfied: packaging>=20.0 in c:\python3107\lib\site-packages
(from matplotlib) (21.3)
Requirement already satisfied: pyparsing>=2.2.1 in c:\python3107\lib\site-packages
(from matplotlib) (3.0.9)
Requirement already satisfied: pillow>=6.2.0 in c:\python3107\lib\site-packages (f
rom matplotlib) (9.2.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\python3107\lib\site-package
s (from matplotlib) (1.4.4)
Requirement already satisfied: Jinja2<4.0.0,>=3.0.3 in c:\python3107\lib\site-pack
ages (from klib) (3.1.2)
Requirement already satisfied: requests in c:\python3107\lib\site-packages (from d
tale) (2.28.1)
Requirement already satisfied: openpyxl in c:\python3107\lib\site-packages (from d
tale) (3.0.10)
Requirement already satisfied: dash-bootstrap-components in c:\python3107\lib\site
-packages (from dtale) (1.2.1)
Requirement already satisfied: dash>=2.0.0 in c:\python3107\lib\site-packages (fro
m dtale) (2.6.2)
Requirement already satisfied: et-xmlfile in c:\python3107\lib\site-packages (from
dtale) (1.1.0)
Requirement already satisfied: kaleido in c:\python3107\lib\site-packages (from dt
ale) (0.2.1)
Requirement already satisfied: strsimpy in c:\python3107\lib\site-packages (from d
tale) (0.2.1)
Requirement already satisfied: xarray in c:\python3107\lib\site-packages (from dta
le) (2022.6.0)
Requirement already satisfied: networkx in c:\python3107\lib\site-packages (from d
tale) (2.8.6)
Requirement already satisfied: xlrd in c:\python3107\lib\site-packages (from dtal
e) (2.0.1)
Requirement already satisfied: lz4 in c:\python3107\lib\site-packages (from dtale)
(4.0.2)
Requirement already satisfied: future>=0.14.0 in c:\python3107\lib\site-packages
(from dtale) (0.18.2)
Requirement already satisfied: squarify in c:\python3107\lib\site-packages (from d
tale) (0.4.3)
Requirement already satisfied: dash-daq in c:\python3107\lib\site-packages (from d
tale) (0.5.0)
```

```
bigmartsalesprediction
Requirement already satisfied: six in c:\python3107\lib\site-packages (from dtale)
(1.16.0)
Requirement already satisfied: flask-ngrok in c:\python3107\lib\site-packages (fro
m dtale) (0.0.25)
Requirement already satisfied: Flask in c:\python3107\lib\site-packages (from dtal
e) (2.2.2)
Requirement already satisfied: dash-colorscales in c:\python3107\lib\site-packages
(from dtale) (0.0.4)
Requirement already satisfied: missingno<=0.4.2 in c:\python3107\lib\site-packages
(from dtale) (0.4.2)
Requirement already satisfied: itsdangerous in c:\python3107\lib\site-packages (fr
om dtale) (2.1.2)
Requirement already satisfied: certifi in c:\python3107\lib\site-packages (from dt
ale) (2022.9.24)
Requirement already satisfied: Flask-Compress in c:\python3107\lib\site-packages
(from dtale) (1.13)
Requirement already satisfied: plotly>=5.0.0 in c:\python3107\lib\site-packages (f
rom dtale) (5.10.0)
Requirement already satisfied: statsmodels in c:\python3107\lib\site-packages (fro
m dtale) (0.13.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\python3107\lib\site-pack
ages (from scikit-learn) (3.1.0)
Requirement already satisfied: phik<0.13,>=0.11.1 in c:\python3107\lib\site-packag
es (from pandas-profiling) (0.12.2)
Requirement already satisfied: tangled-up-in-unicode==0.2.0 in c:\python3107\lib\s
ite-packages (from pandas-profiling) (0.2.0)
Requirement already satisfied: multimethod<1.9,>=1.4 in c:\python3107\lib\site-pac
kages (from pandas-profiling) (1.8)
Requirement already satisfied: visions[type_image_path]==0.7.5 in c:\python3107\li
b\site-packages (from pandas-profiling) (0.7.5)
Requirement already satisfied: htmlmin==0.1.12 in c:\python3107\lib\site-packages
(from pandas-profiling) (0.1.12)
Requirement already satisfied: pydantic<1.10,>=1.8.1 in c:\python3107\lib\site-pac
kages (from pandas-profiling) (1.9.2)
Requirement already satisfied: PyYAML<6.1,>=5.0.0 in c:\python3107\lib\site-packag
es (from pandas-profiling) (6.0)
Requirement already satisfied: tqdm<4.65,>=4.48.2 in c:\python3107\lib\site-packag
es (from pandas-profiling) (4.64.1)
Requirement already satisfied: attrs>=19.3.0 in c:\python3107\lib\site-packages (f
rom visions[type image path]==0.7.5->pandas-profiling) (22.1.0)
Requirement already satisfied: imagehash in c:\python3107\lib\site-packages (from
visions[type_image_path] == 0.7.5->pandas-profiling) (4.3.1)
Requirement already satisfied: dash-html-components==2.0.0 in c:\python3107\lib\si
te-packages (from dash>=2.0.0->dtale) (2.0.0)
Requirement already satisfied: dash-core-components==2.0.0 in c:\python3107\lib\si
te-packages (from dash>=2.0.0->dtale) (2.0.0)
Requirement already satisfied: dash-table==5.0.0 in c:\python3107\lib\site-package
s (from dash>=2.0.0->dtale) (5.0.0)
Requirement already satisfied: Werkzeug>=2.2.2 in c:\python3107\lib\site-packages
(from Flask->dtale) (2.2.2)
Requirement already satisfied: click>=8.0 in c:\python3107\lib\site-packages (from
Flask->dtale) (8.1.3)
Requirement already satisfied: MarkupSafe>=2.0 in c:\python3107\lib\site-packages
(from Jinja2<4.0.0,>=3.0.3->klib) (2.1.1)
Requirement already satisfied: tenacity>=6.2.0 in c:\python3107\lib\site-packages
(from plotly>=5.0.0->dtale) (8.1.0)
Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\python3107\lib\sit
e-packages (from pydantic<1.10,>=1.8.1->pandas-profiling) (4.3.0)
```

Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\python3107\lib\site-pac kages (from requests->dtale) (1.26.12)

Requirement already satisfied: charset-normalizer<3,>=2 in c:\python3107\lib\site-

```
packages (from requests->dtale) (2.1.1)
```

Requirement already satisfied: idna<4,>=2.5 in c:\python3107\lib\site-packages (from requests->dtale) (3.4)

Requirement already satisfied: patsy>=0.5.2 in c:\python3107\lib\site-packages (fr om statsmodels->dtale) (0.5.2)

Requirement already satisfied: colorama in c:\python3107\lib\site-packages (from t qdm<4.65,>=4.48.2->pandas-profiling) (0.4.5)

Requirement already satisfied: brotli in c:\python3107\lib\site-packages (from Fla sk-Compress->dtale) (1.0.9)

Requirement already satisfied: PyWavelets in c:\python3107\lib\site-packages (from imagehash->visions[type_image_path]==0.7.5->pandas-profiling) (1.4.1)

In [10]: import pandas as pd
import numpy as np
%matplotlib inline

#magic function in IPython

import matplotlib.pyplot as plt # is a collection of command style functions th
import seaborn as sns

In [12]: df_train.head() # displays the first five rows of the dataframe by default

Out[12]:		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_lo
	0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	
	1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	
	2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	
	3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	
	4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	

In [13]: #df test.head()

In [14]: df_train.shape # a tuple of array dimensions that tells the number of rows and col

Out[14]: (8523, 12)

In [15]: df train.isnull().sum() #seeing the number of null values in the dataset

```
Out[15]: Item Identifier
                                         0
         Item Weight
                                      1463
         Item_Fat_Content
                                         0
         Item Visibility
                                         0
         Item_Type
                                         0
         Item_MRP
                                         0
         Outlet Identifier
                                         0
         Outlet_Establishment_Year
                                         0
         Outlet Size
                                      2410
         Outlet_Location_Type
                                         0
         Outlet_Type
                                         0
         Item_Outlet_Sales
                                         0
         dtype: int64
In [16]: df_test.isnull().sum()
Out[16]: Item_Identifier
                                         0
         Item_Weight
                                       976
         Item Fat Content
                                         0
         Item_Visibility
                                         0
         Item Type
                                         0
         Item_MRP
                                         0
         Outlet_Identifier
                                         0
         Outlet_Establishment_Year
         Outlet Size
                                      1606
         Outlet_Location_Type
                                         0
         Outlet_Type
                                         0
         dtype: int64
In [17]: df_train.info() #seeing the detailed info of the dataset and its types of target
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 8523 entries, 0 to 8522
         Data columns (total 12 columns):
              Column
                                         Non-Null Count Dtype
             -----
                                         _____
             Item_Identifier
          0
                                         8523 non-null
                                                         object
              Item_Weight
                                         7060 non-null
                                                         float64
          1
          2
              Item_Fat_Content
                                         8523 non-null
                                                         object
                                         8523 non-null
          3
              Item Visibility
                                                         float64
          4
              Item Type
                                         8523 non-null
                                                         object
          5
              Item MRP
                                         8523 non-null
                                                         float64
              Outlet_Identifier
          6
                                         8523 non-null
                                                         object
          7
              Outlet_Establishment_Year 8523 non-null
                                                         int64
          8
              Outlet_Size
                                         6113 non-null
                                                         object
          9
              Outlet Location Type
                                         8523 non-null
                                                         object
          10 Outlet Type
                                         8523 non-null
                                                         object
                                         8523 non-null
                                                         float64
          11 Item Outlet Sales
         dtypes: float64(4), int64(1), object(7)
         memory usage: 799.2+ KB
In [18]: df_train.describe() # to generate descriptive statistics that summarize the centro
                              # shape of a dataset's distribution, excluding NaN values.
```

Out[18]:

		Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
	count	7060.000000	8523.000000	8523.000000	8523.000000	8523.000000
	mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
	std	4.643456	0.051598	62.275067	8.371760	1706.499616
	min	4.555000	0.000000	31.290000	1985.000000	33.290000
	25%	8.773750	0.026989	93.826500	1987.000000	834.247400
	50%	12.600000	0.053931	143.012800	1999.000000	1794.331000
	75%	16.850000	0.094585	185.643700	2004.000000	3101.296400
r	max	21.350000	0.328391	266.888400	2009.000000	13086.964800

Item_Weight is numerical column so we fill it with Mean Imputation

```
In [19]: df_train['Item_Weight'].describe() #seeing all the central tendenies of the datase
Out[19]: count
                  7060.000000
         mean
                    12.857645
         std
                     4.643456
                     4.555000
         min
         25%
                     8.773750
         50%
                    12.600000
         75%
                    16.850000
                    21.350000
         Name: Item_Weight, dtype: float64
In [20]: df_train['Item_Weight'].fillna(df_train['Item_Weight'].mean(),inplace=True)
         df_test['Item_Weight'].fillna(df_train['Item_Weight'].mean(),inplace=True)
In [21]: df_train.isnull().sum() #no null values in item weight
Out[21]: Item_Identifier
                                          0
         Item_Weight
                                          0
         Item_Fat_Content
                                          0
         Item Visibility
                                          0
                                          0
         Item_Type
         Item MRP
         Outlet_Identifier
                                          0
         Outlet_Establishment_Year
                                          0
                                       2410
         Outlet Size
         Outlet_Location_Type
                                          0
         Outlet_Type
                                          0
         Item_Outlet_Sales
                                          0
         dtype: int64
In [22]: df train['Item Weight'].describe()
```

```
8523.000000
Out[22]: count
         mean
                  12.857645
                   4.226124
         std
                    4.555000
         min
         25%
                    9.310000
         50%
                    12.857645
         75%
                    16.000000
         max
                    21.350000
         Name: Item_Weight, dtype: float64
```

Outlet_Size is catagorical column so we fill it with Mode Imputation

```
In [23]: df_train['Outlet_Size'] #it is a categorical value
Out[23]: 0
                 Medium
                 Medium
         2
                 Medium
         3
                    NaN
                   High
         8518
                   High
         8519
                    NaN
         8520
                  Small
         8521
                 Medium
         8522
                  Small
         Name: Outlet_Size, Length: 8523, dtype: object
In [24]: df_train['Outlet_Size'].value_counts()
Out[24]: Medium
                   2793
         Small
                   2388
                    932
         Name: Outlet_Size, dtype: int64
In [25]: df_train['Outlet_Size'].mode()
Out[25]: 0
              Medium
         Name: Outlet Size, dtype: object
In [26]: | df_train['Outlet_Size'].fillna(df_train['Outlet_Size'].mode()[0],inplace=True)
         df_test['Outlet_Size'].fillna(df_test['Outlet_Size'].mode()[0],inplace=True)
```

pandas treats the mode as something special since they can be unimodal, bimodal or multimodal distributions they

had to make sure that 1 value could be returned "Always return series even if only one value is returned"

```
In [27]: df_train.isnull().sum() #no null value :)
```

```
Out[27]: Item Identifier
                                       0
         Item Weight
                                       0
         Item_Fat_Content
                                       0
         Item_Visibility
                                       0
         Item_Type
                                       0
         Item_MRP
         Outlet_Identifier
                                       0
         Outlet_Establishment_Year
         Outlet_Size
         Outlet_Location_Type
                                       0
         Outlet_Type
                                       0
         Item_Outlet_Sales
                                       0
         dtype: int64
In [28]: df_test.isnull().sum()
Out[28]: Item_Identifier
                                       0
         Item_Weight
                                       0
         Item Fat Content
                                       0
         Item_Visibility
                                       0
         Item Type
         Item_MRP
                                       0
         Outlet_Identifier
         Outlet_Establishment_Year
         Outlet Size
         Outlet_Location_Type
                                       0
         Outlet_Type
         dtype: int64
```

Dimesnsionality reduction of item identifier and outlet identifier

```
In [29]: df_train.drop(['Item_Identifier','Outlet_Identifier'],axis=1,inplace=True)
    df_test.drop(['Item_Identifier','Outlet_Identifier'],axis=1,inplace=True)
In [30]: df_train
```

Out[30]:		Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Establishment_
	0	9.300	Low Fat	0.016047	Dairy	249.8092	
	1	5.920	Regular	0.019278	Soft Drinks	48.2692	
	2	17.500	Low Fat	0.016760	Meat	141.6180	
	3	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	
	4	8.930	Low Fat	0.000000	Household	53.8614	
	•••						
	8518	6.865	Low Fat	0.056783	Snack Foods	214.5218	
	8519	8.380	Regular	0.046982	Baking Goods	108.1570	
	8520	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	
	8521	7.210	Regular	0.145221	Snack Foods	103.1332	
	8522	14.800	Low Fat	0.044878	Soft Drinks	75.4670	
	8523 r	ows × 10 colu	mns				
4							+

In [31]: df_test

				•	•		
t[31]:		Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Establishment_
	0	20.750000	Low Fat	0.007565	Snack Foods	107.8622	
	1	8.300000	reg	0.038428	Dairy	87.3198	
	2	14.600000	Low Fat	0.099575	Others	241.7538	
	3	7.315000	Low Fat	0.015388	Snack Foods	155.0340	
	4	12.857645	Regular	0.118599	Dairy	234.2300	
	•••						
	5676	10.500000	Regular	0.013496	Snack Foods	141.3154	
	5677	7.600000	Regular	0.142991	Starchy Foods	169.1448	
	5678	10.000000	Low Fat	0.073529	Health and Hygiene	118.7440	
	5679	15.300000	Regular	0.000000	Canned	214.6218	
	5680	9.500000	Regular	0.104720	Canned	79.7960	
	5681 r	ows × 9 colun	nns				

EDA (Exploratory data analysis) with Dtale library

```
In [32]: import dtale
In [33]: dtale.show(df_train)
```


Out[33]:

EDA using Pandas profiling

In [34]: pip install ipywidgets

```
bigmartsalesprediction

Requirement already satisfied: ipywidgets in c:\python3107\lib\site-packages (8.0.2)

Requirement already satisfied: traitlets>=4.3.1 in c:\python3107\lib\site-packages (from ipywidgets) (5.4.0)

Requirement already satisfied: jupyterlab-widgets~=3.0 in c:\python3107\lib\site-packages (from ipywidgets) (3.0.3)

Requirement already satisfied: widgetsnbextension~=4.0 in c:\python3107\lib\site-packages (from ipywidgets) (4.0.3)
```

Requirement already satisfied: ipykernel>=4.5.1 in c:\python3107\lib\site-packages (from ipywidgets) (6.16.0)

Requirement already satisfied: ipython>=6.1.0 in c:\python3107\lib\site-packages (from ipywidgets) (8.5.0)

Requirement already satisfied: packaging in c:\python3107\lib\site-packages (from ipykernel>=4.5.1->ipywidgets) (21.3)

Requirement already satisfied: matplotlib-inline>=0.1 in c:\python3107\lib\site-pa ckages (from ipykernel>=4.5.1->ipywidgets) (0.1.6)

Requirement already satisfied: nest-asyncio in c:\python3107\lib\site-packages (fr om ipykernel>=4.5.1->ipywidgets) (1.5.5)

Requirement already satisfied: jupyter-client>=6.1.12 in c:\python3107\lib\site-pa ckages (from ipykernel>=4.5.1->ipywidgets) (7.3.5)

Requirement already satisfied: tornado>=6.1 in c:\python3107\lib\site-packages (fr om ipykernel>=4.5.1->ipywidgets) (6.2)

Requirement already satisfied: debugpy>=1.0 in c:\python3107\lib\site-packages (fr om ipykernel>=4.5.1->ipywidgets) (1.6.3)

Requirement already satisfied: pyzmq>=17 in c:\python3107\lib\site-packages (from ipykernel>=4.5.1->ipywidgets) (24.0.1)

Requirement already satisfied: psutil in c:\python3107\lib\site-packages (from ipy kernel>=4.5.1->ipywidgets) (5.9.2)

Requirement already satisfied: stack-data in c:\python3107\lib\site-packages (from ipython>=6.1.0->ipywidgets) (0.5.1)

Requirement already satisfied: colorama in c:\python3107\lib\site-packages (from i python>=6.1.0->ipywidgets) (0.4.5)

Requirement already satisfied: jedi>=0.16 in c:\python3107\lib\site-packages (from ipython>=6.1.0->ipywidgets) (0.18.1)

Requirement already satisfied: decorator in c:\python3107\lib\site-packages (from ipython>=6.1.0->ipywidgets) (5.1.1)

Requirement already satisfied: pygments>=2.4.0 in c:\python3107\lib\site-packages (from ipython>=6.1.0->ipywidgets) (2.13.0)

Requirement already satisfied: prompt-toolkit<3.1.0,>3.0.1 in c:\python3107\lib\si te-packages (from ipython>=6.1.0->ipywidgets) (3.0.31)

Requirement already satisfied: backcall in c:\python3107\lib\site-packages (from i python>=6.1.0->ipywidgets) (0.2.0)

Requirement already satisfied: pickleshare in c:\python3107\lib\site-packages (fro m ipython>=6.1.0->ipywidgets) (0.7.5)

Requirement already satisfied: parso<0.9.0,>=0.8.0 in c:\python3107\lib\site-packa ges (from jedi>=0.16->ipython>=6.1.0->ipywidgets) (0.8.3)

Requirement already satisfied: jupyter-core>=4.9.2 in c:\python3107\lib\site-packa ges (from jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (4.11.1)

Requirement already satisfied: entrypoints in c:\python3107\lib\site-packages (fro m jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (0.4)

Requirement already satisfied: python-dateutil>=2.8.2 in c:\python3107\lib\site-pa ckages (from jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (2.8.2)

Requirement already satisfied: wcwidth in c:\python3107\lib\site-packages (from prompt-toolkit<3.1.0,>3.0.1->ipython>=6.1.0->ipywidgets) (0.2.5)

Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\python3107\lib\site-packages (from packaging->ipykernel>=4.5.1->ipywidgets) (3.0.9)

Requirement already satisfied: executing in c:\python3107\lib\site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (1.1.0)

Requirement already satisfied: asttokens in c:\python3107\lib\site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (2.0.8)

Requirement already satisfied: pure-eval in c:\python3107\lib\site-packages (from

stack-data->ipython>=6.1.0->ipywidgets) (0.2.2)

Requirement already satisfied: pywin32>=1.0 in c:\python3107\lib\site-packages (fr om jupyter-core>=4.9.2->jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (30 4)

Requirement already satisfied: six>=1.5 in c:\python3107\lib\site-packages (from p ython-dateutil>=2.8.2->jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (1.1 6.0)

Note: you may need to restart the kernel to use updated packages.

```
In [37]: from pandas_profiling import ProfileReport
```

```
In [38]: profile = ProfileReport(df_train, title ="Pandas Profiling Report")
```

In [39]: profile

Summarize dataset: 0%| | 0/5 [00:00<?, ?it/s]

Generate report structure: 0% | 0/1 [00:00<?, ?it/s]

Render HTML: 0% | 0/1 [00:00<?, ?it/s]

Variables

Item_Weight

Real number ($\mathbb{R}_{\geq 0}$)

HIGH

CORRELATION (This variable has a high correlation with 1 fields: Outlet_Type)

Distinct	416	
Distinct (%)	4.9%	
Missing	0	
Missing (%)	0.0%	
Infinite	0	
Infinite (%)	0.0%	
Mean	12.85764518	
Minimum	4.555	
Maximum	21.35	
Zeros	0	
Zeros (%)	0.0%	
Negative	0	
Negative (%)	0.0%	
Memory size	66.7 KiB	

Out[39]:

```
In [40]: plt.figure(figsize=(10,5))
sns.heatmap(df_train.corr(),annot=True)
plt.show()

2022-10-07 20:54:08,791 - WARNING - findfont: Font family ['Heiti TC'] not found.
Falling back to DejaVu Sans.
```


EDA using Klib library

```
In [41]: import klib
In [45]: # klib.describe - functions for visualizing datasets
    klib.cat_plot(df_train) # returns a visualization of the number and frequency of co
Out[45]: GridSpec(6, 5)
```

Categorical data plot

In [46]: klib.corr_mat(df_train) # returns a color-encoded correlation matrix

Out[46]:		Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Iten
	Item_Weight	1.00	-0.01	0.02	-0.01	
	Item_Visibility	-0.01	1.00	-0.00	-0.07	
	Item_MRP	0.02	-0.00	1.00	0.01	
	Outlet_Establishment_Year	-0.01	-0.07	0.01	1.00	
	Item_Outlet_Sales	0.01	-0.13	0.57	-0.05	
4						•

In [47]: klib.corr_plot(df_train) # returns a color-encoded heatmap, ideal for correlations

Out[47]: <AxesSubplot:title={'center':'Feature-correlation (pearson)'}>

Feature-correlation (pearson)

In [48]: klib.dist_plot(df_train) # returns a distribution plot for every numeric feature

Out[48]: <AxesSubplot:xlabel='Item_Outlet_Sales', ylabel='Density'>

In [49]: klib.missingval_plot(df_train) # returns a figure containing information about miss

No missing values found in the dataset.

Data cleaning Klib

```
In [54]: # klib.clean - functions for cleaning datasets
klib.data_cleaning(df_train) # performs datacleaning (drop duplicates & empty rows)
Shape of cleaned data: (8523, 10) - Remaining NAs: 0

Dropped rows: 0
    of which 0 duplicates. (Rows (first 150 shown): [])

Dropped columns: 0
    of which 0 single valued. Columns: []
Dropped missing values: 0
Reduced memory by at least: 0.46 MB (-70.77%)
```

				_			
Out[54]:		item_weight	item_fat_content	item_visibility	item_type	item_mrp	outlet_establishment_y
	0	9.300000	Low Fat	0.016047	Dairy	249.809204	1
	1	5.920000	Regular	0.019278	Soft Drinks	48.269199	2
	2	17.500000	Low Fat	0.016760	Meat	141.617996	1
	3	19.200001	Regular	0.000000	Fruits and Vegetables	182.095001	1
	4	8.930000	Low Fat	0.000000	Household	53.861401	1
	•••	•••					
	8518	6.865000	Low Fat	0.056783	Snack Foods	214.521805	1
	8519	8.380000	Regular	0.046982	Baking Goods	108.156998	2
	8520	10.600000	Low Fat	0.035186	Health and Hygiene	85.122398	2
	8521	7.210000	Regular	0.145221	Snack Foods	103.133202	2
	8522	14.800000	Low Fat	0.044878	Soft Drinks	75.467003	1
	8523 r	ows × 10 colu	umns				
4							•

In [55]: klib.clean_column_names(df_train) # cleans and standardizes column names, also call

localhost:8888/nbconvert/html/bigmartsalesprediction.ipynb?download=false

Out[55]:		item_weight	item_fat_content	item_visibility	item_type	item_mrp	outlet_establishment_ye					
	0	9.300	Low Fat	0.016047	Dairy	249.8092	19					
	1	5.920	Regular	0.019278	Soft Drinks	48.2692	20					
	2	17.500	Low Fat	0.016760	Meat	141.6180	19					
	3	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	19					
	4	8.930	Low Fat	0.000000	Household	53.8614	19					
	•••											
	8518	6.865	Low Fat	0.056783	Snack Foods	214.5218	19					
	8519	8.380	Regular	0.046982	Baking Goods	108.1570	20					
	8520	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	20					
	8521	7.210	Regular	0.145221	Snack Foods	103.1332	20					
	8522	14.800	Low Fat	0.044878	Soft Drinks	75.4670	19					
4	8523 r	ows × 10 colu	umns				>					
In [56]:	df_tr	<pre>df_train.info()</pre>										
	Range Data	Index: 8523	ore.frame.DataForentries, 0 to 8	8522								
	1 2 3 4 5 6 7 8 9 dtype	outlet_size outlet_locatoutlet_type item_outlet_	lity plishment_year tion_type _sales 4), int64(1), ol	8523 non-nul 8523 non-nul 8523 non-nul 8523 non-nul	object l floate l object l floate l int64 l object l object	: 64 : 64 : :						
In [57]:		rain=klib.com	nvert_datatypes	(df_train) #	converts e	existing t	o more efficient dty					

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 10 columns):
```

#	Column	Non-Null Count	Dtype
0	item_weight	8523 non-null	float32
1	item_fat_content	8523 non-null	category
2	item_visibility	8523 non-null	float32
3	item_type	8523 non-null	category
4	item_mrp	8523 non-null	float32
5	outlet_establishment_year	8523 non-null	int16
6	outlet_size	8523 non-null	category
7	outlet_location_type	8523 non-null	category
8	outlet_type	8523 non-null	category
9	item_outlet_sales	8523 non-null	float32

dtypes: category(5), float32(4), int16(1)

memory usage: 192.9 KB

Tn	[58]·	klih my	col	handling	df)	train	١
T11	1001.	KTTO • III A	COT	Halluttilg	uı	CLatil	,

[]							
t[58]:		item_weight	item_fat_content	item_visibility	item_type	item_mrp	outlet_establishment_y
	0	9.300000	Low Fat	0.016047	Dairy	249.809204	1
	1	5.920000	Regular	0.019278	Soft Drinks	48.269199	2
	2	17.500000	Low Fat	0.016760	Meat	141.617996	1
	3	19.200001	Regular	0.000000	Fruits and Vegetables	182.095001	1
	4	8.930000	Low Fat	0.000000	Household	53.861401	1
	•••						
	8518	6.865000	Low Fat	0.056783	Snack Foods	214.521805	1
	8519	8.380000	Regular	0.046982	Baking Goods	108.156998	2
	8520	10.600000	Low Fat	0.035186	Health and Hygiene	85.122398	2
	8521	7.210000	Regular	0.145221	Snack Foods	103.133202	2
	8522	14.800000	Low Fat	0.044878	Soft Drinks	75.467003	1
	8523 r	ows × 10 colu	ımns				

Preprocessing Task before Model Building

1) Label encoding

In [59]: from sklearn.preprocessing import LabelEncoder

```
le=LabelEncoder()
In [60]: | df_train['item_fat_content'] = le.fit_transform(df_train['item_fat_content'])
          df_train['item_type'] = le.fit_transform(df_train['item_type'])
          df_train['outlet_size'] = le.fit_transform(df_train['outlet_size'])
          df_train['outlet_location_type']= le.fit_transform(df_train['outlet_location_type']
          df_train['outlet_type'] = le.fit_transform(df_train['outlet_type'])
In [61]: df_train.head(5)
Out[61]:
             item weight item fat content item visibility item type
                                                                   item mrp
                                                                            outlet establishment year
                9.300000
                                                                  249.809204
                                              0.016047
                                                                                                1999
                5.920000
                                              0.019278
                                                                   48.269199
                                                                                                2009
          2
               17.500000
                                       1
                                              0.016760
                                                              10
                                                                 141.617996
                                                                                                1999
               19.200001
                                              0.000000
                                                                 182.095001
                                                                                                1998
          4
                8.930000
                                       1
                                              0.000000
                                                                   53.861401
                                                                                                1987
```

2) Splitting our data into train and test files

3)Standarization

65]:	X.desc	ribe()							
]:		item_weight	item_fat_content	item_visibility	item_type	item_mrp	outlet_establishme		
	count	8523.000000	8523.000000	8523.000000	8523.000000	8523.000000	8523		
	mean	12.857646	1.369354	0.066132	7.226681	140.992767	1997		
	std	4.226124	0.644810	0.051598	4.209990	62.275066	8		
	min	4.555000	0.000000	0.000000	0.000000	31.290001	1985		
	25%	9.310000	1.000000	0.026989	4.000000	93.826500	1987		
	50%	12.857645	1.000000	0.053931	6.000000	143.012802	1999		
	75%	16.000000	2.000000	0.094585	10.000000	185.643700	2004		
	max	21.350000	4.000000	0.328391	15.000000	266.888397	2009		
							>		
[66]:		<pre>from sklearn.preprocessing import StandardScaler sc= StandardScaler()</pre>							

```
In [67]: X_train_std= sc.fit_transform(X_train)
In [68]: X test std= sc.transform(X test)
In [69]: X_train_std
Out[69]: array([[ 1.52290023, -0.57382672, 0.68469731, ..., -1.95699503,
                  1.08786619, -0.25964107],
                [-1.239856, -0.57382672, -0.09514746, ..., -0.28872895,
                 -0.13870429, -0.25964107],
                [1.54667619, 0.97378032, -0.0083859, ..., -0.28872895,
                 -0.13870429, -0.25964107],
                . . . ,
                [-0.08197109, -0.57382672, -0.91916229, ..., 1.37953713,
                 -1.36527477, -0.25964107],
                [-0.74888436, 0.97378032, 1.21363045, ..., -0.28872895,
                 -0.13870429, -0.25964107],
                [0.67885675, -0.57382672, 1.83915361, ..., -0.28872895,
                  1.08786619, 0.98524841]])
In [70]: X_test_std
Out[70]: array([[-0.43860916, -0.57382672, -0.21609253, ..., -0.28872895,
                  1.08786619, 0.98524841],
                [1.22570184, -0.57382672, -0.52943464, ..., -1.95699503,
                  1.08786619, -0.25964107],
                [-1.2184578, 0.97378032, 0.16277341, ..., 1.37953713,
                 -1.36527477, -0.25964107],
                [0.65508101, -0.57382672, 0.8782423, ..., -0.28872895,
                  1.08786619, -1.50453056],
                [1.01171909, -0.57382672, -1.28409256, ..., -0.28872895,
                  1.08786619, 0.98524841],
                [-1.56558541, 0.97378032, -1.09265374, ..., -0.28872895,
                  -0.13870429, -0.25964107]])
In [71]: Y_train
Out[71]: 3684
                  163.786804
         1935
                 1607.241211
         5142
                 1510.034424
         4978
                 1784.343994
         2299
                 3558.035156
                    . . .
         599
                 5502.836914
         5695
                 1436.796387
         8006
                 2167.844727
         1361
                 2700.484863
         1547
                  829.586792
         Name: item_outlet_sales, Length: 6818, dtype: float32
In [72]: Y_test
```

```
Out[72]: 8179
                 904.822205
         8355
                 2795.694092
         3411
                 1947.464966
         7089
                  872.863770
         6954
                 2450.144043
                    . . .
         1317
                 1721.093018
         4996
                  914.809204
         531
                  370.184814
         3891
                 1358.232056
         6629
                 2418.185547
         Name: item_outlet_sales, Length: 1705, dtype: float32
In [73]:
        import joblib
In [74]:
         joblib.dump(sc,r'D:\5th_semester\MiniProject2A\Projectworking\models\sc.sav')
Out[74]: ['D:\\5th_semester\\MiniProject2A\\Projectworking\\models\\sc.sav']
```

Model building

In [75]:	X_test.head()						
Out[75]:		item_weight	item_fat_content	item_visibility	item_type	item_mrp	outlet_establishment_y
	8179	11.000000	1	0.055163	8	100.335800	2(
	8355	18.000000	1	0.038979	13	148.641800	19
	3411	7.720000	2	0.074731	1	77.598602	1!
	7089	20.700001	1	0.049035	6	39.950600	20
	6954	7.550000	1	0.027225	3	152.934006	2(
4							+
In [76]:	from	sklearn.met	rics import r2_	score, mean_a	bsolute_er	rror, mean_	_squared_error

Linear Regression

```
In [77]: from sklearn.linear_model import LinearRegression
lr= LinearRegression()

In [78]: lr.fit(X_train_std,Y_train)

Out[78]: v LinearRegression
LinearRegression()

In [79]: Y_pred_lr=lr.predict(X_test_std)

In [80]: print(r2_score(Y_test,Y_pred_lr))
    print(mean_absolute_error(Y_test,Y_pred_lr))
    print(np.sqrt(mean_squared_error(Y_test,Y_pred_lr)))
```

0.5041875773270634 880.99990440845 1162.4412631603452

```
In [81]: joblib.dump(lr,r'D:\5th_semester\MiniProject2A\Projectworking\models\lr.sav')
```

Out[81]: ['D:\\5th_semester\\MiniProject2A\\Projectworking\\models\\lr.sav']

Random Forest Regressor

XG Boost Regressor

```
In [89]: Y_pred_xg= xg.predict(X_test_std)
```

Hyper parameter tuning

```
In [92]: from sklearn.model_selection import RepeatedStratifiedKFold
         from sklearn.model_selection import GridSearchCV
         # define models and parameters
         model = RandomForestRegressor()
         n_{estimators} = [10, 100, 1000]
         max_depth=range(1,31)
         min_samples_leaf=np.linspace(0.1, 1.0)
         max_features=["auto", "sqrt", "log2"]
         min_samples_split=np.linspace(0.1, 1.0, 10)
         # define grid search
         grid = dict(n_estimators=n_estimators)
         grid_search_forest = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1,
                                     scoring='r2',error_score=0,verbose=2,cv=2)
         grid_search_forest.fit(X_train_std, Y_train)
         # summarize results
         print(f"Best: {grid_search_forest.best_score_:.3f} using {grid_search_forest.best_r
         means = grid_search_forest.cv_results_['mean_test_score']
         stds = grid_search_forest.cv_results_['std_test_score']
         params = grid search forest.cv results ['params']
         for mean, stdev, param in zip(means, stds, params):
             print(f"{mean:.3f} ({stdev:.3f}) with: {param}")
         Fitting 2 folds for each of 3 candidates, totalling 6 fits
         Best: 0.549 using {'n_estimators': 1000}
         0.514 (0.005) with: {'n estimators': 10}
         0.546 (0.004) with: {'n_estimators': 100}
         0.549 (0.005) with: {'n_estimators': 1000}
In [93]: grid_search_forest.best_params_
Out[93]: {'n estimators': 1000}
In [94]: grid_search_forest.best_score_
Out[94]: 0.5493344344113504
In [95]: Y_pred_rf_grid=grid_search_forest.predict(X_test_std)
```

```
In [96]: r2_score(Y_test,Y_pred_rf_grid)
```

Out[96]: 0.5489701766293793

Save the model

```
In [97]: import joblib
In [98]: joblib.dump(grid_search_forest,r'D:\5th_semester\MiniProject2A\Projectworking\rando
Out[98]: ['D:\\5th_semester\\MiniProject2A\\Projectworking\\random_forest_grid.sav']
In [99]: model=joblib.load(r'D:\5th_semester\MiniProject2A\\Projectworking\\random_forest_grid
In [100... model.predict(X_test_std)
Out[100]: array([1675.38383487, 3578.52313513, 1277.31334682, ..., 395.41662216, 1662.80688269, 2422.13182642])
In []:
```