AURIX 2G Startup

Sherry Li IFCN ATV SMD GC SAE MC

Agenda

- 1 Power Startup
- Boot Options and Boot Mode Headers
- 3 Startup Flow Complete Picture

Agenda

- 1 Power Startup
- Boot Options and Boot Mode Headers
- 3 Startup Flow Complete Picture

TC3xx Startup Overview

TC3xx Single Supply Mode Start-up

External supply ramps up
 (dV_{EXT}/dt =120V/ms - 0.5V/min)
 Robust against residual supply-ramp

@ VEVRSB = VLVDRST5

No power sequencing

- Basic Infrastructure ramp-up
- HWCFG pin evaluation

2. EVRC & EVR33 soft ramp-up

- Gradual Capacitor charging
- PORST release when all supplies in operational range
- Start-up Safety tests (TC39xB)

3. Firmware

- RAM initialization (optional)
- Startup boot modes....

TC3xx

External Supply Mode Start-up

TC3xx

External Supply Mode Start-up

HWCFG PINs for EVR Startup

Figure 173 Hardware Configuration (HWCFG) pins

- HWCFG signals are filtered through a spike / glitch filter and are monitored for a constant level over a 28us - 115us nominal debouncing period.
- HWCFG[6] pin is latched during early VEXT supply ramp-up (VEXT < VDDPPA) to decide and set the default reset state of port pins as early as possible.
- > HWCFG [1,2,3,6] pins are only latched by the PMS on every initial supply ramp-up
- All HWCFG pins are latched on internal reset release additionally (between 100us 180us after warm reset assertion) and the status is stored redundantly in STSTAT register by SCU.

Agenda

- 1 Power Startup
- Boot Options and Boot Mode Headers
- 3 Startup Flow Complete Picture

TC3xx Boot Options

- AURIX2G controllers provide following boot modes
 - Internal Start
 - This is usual simple startup mode, where the execution is started from internal flash
 - Start Address is defined by Boot Mode Header (BMHDx.STAD)
 - Bootloader Mode
 - Bootstrap loaders run to download the code to CPU0 PSPR
 - Generic Bootstrap Loader (CAN/ASC) or
 - ASC Bootstrap Loader
 - Alternate Boot Modes (ABM)
 - Application defines the ABM header with Start Address and Memory Area for which CRC is to be checked
 - Execution is started only if required checks are through
 - In case of checks not through, bootstrap loader modes entered

Bootstrap Loader Mode	Channel/node	RxD	TxD
		Line	Line
ASC Bootstrap Loader mode	ASCLIN0	P15.3	P15.2
Generic Bootstrap Loader mode - ASC protocol	ASCLIN0	P14.1	P14.0
Generic Bootstrap Loader mode - CAN protocol	MCMCAN0 module CAN1 node	P14.1	P14.0

TC3xx Boot Mode Selection

- Boot mode is selected depends on the evaluation result of the Boot Mode Headers (BMHDx, x=0...3) after power on.
- If valid BMHD is found,
 - the selected mode is taken either directly from the value configured in BMHD, or according to the state at HWCFG [5:3] pins if pin-configuration is enabled in BMHD.
- If no valid BMHD is found,
 - If HSM boot and Boot Mode Lock is disabled
 - If Halt After Reset request has been received (eg. Debugger)
 - Boot mode is Internal Start from FLASH. (Boot_Addr = PFlash0_Begin)
 - If no Halt After Reset request has been received
 - Boot mode is Generic Bootstrap Loader mode. (Boot_Addr = CPU0_PSPR_begin)
 - If HSM boot or Boot Mode Lock is enabled
 - No Boot Mode is configured and SSW will be in endless loop.
 - If debug interface is not locked by HSM, debugger can still connect to the device to reprogram

BMI Configuration in TC3xx

- The BMI configuration shall not be stored in PFLASH to ensure the boot configuration is not lost every time when PFLASH is erased.
- In AURIX™ TC3xx Platform, four sets of Boot Mode Headers (BMHDx, x=0, 1, 2, 3) are defined in the User Configuration Blocks (UCB) of Data Flash (DFLASH).
- Each set contains an original and copy in UCB_BMHDx_ORIG and UCB_BMHDx_COPY respectively.

Address Range		Size	Unit	Access Type		
				Read	Write	
AF40 0000 _H	- AF40 01FF _H	512 Byte	UCB00 (UCB_BMHD0_ORIG)	Access	SRIBE	
AF40 0200 _H	- AF40 03FF _H	512 Byte	UCB01 (UCB_BMHD1_ORIG)	Access	SRIBE	
AF40 0400 _H	- AF40 05FF _H	512 Byte	UCB02 (UCB_BMHD2_ORIG)	Access	SRIBE	
AF40 0600 _H	- AF40 07FF _H	512 Byte	UCB03 (UCB_BMHD3_ORIG)	Access	SRIBE	
AF40 1000 _H	- AF40 11FF _H	512 Byte	UCB08 (UCB_BMHD0_COPY)	Access	SRIBE	
AF40 1200 _H	- AF40 13FF _H	512 Byte	UCB09 (UCB_BMHD1_COPY)	Access	SRIBE	
AF40 1400 _H	- AF40 15FF _H	512 Byte	UCB10 (UCB_BMHD2_COPY)	Access	SRIBE	
AF40 1600 _H	- AF40 17FF _H	512 Byte	UCB11 (UCB_BMHD3_COPY)	Access	SRIBE	

BMHD in DFLASH0_UCB (in TC3xx Memory Map Seg. A)

Seg.	Address Range	Memory Type	
10	0xA0000000 - 0xA02FFFFF 0xA0300000 - 0xA05FFFFF 0xA0600000 - 0xA08FFFFF 0xA0900000 - 0xA0BFFFFF 0xA0F00000 - 0xA0FFFFFF 0xA1000000 - 0xA11FFFFF 0xA2000000 - 0xAFFFFFFF 0xAF400000 - 0xAFFFFFF 0xAF400000 - 0xAFFFFFF 0xAF400000 - 0xAFFFFFF 0xAF800000 - 0xAFFFFFF 0xAF800000 - 0xAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	Program Flash 0 (PF0, 3MB), Program Flash 1 (PF1, 3MB), Program Flash 2 (PF2, 3MB), Program Flash 3 (PF3, 3MB), Program Flash 4 (PF4, 3MB), Program Flash 5 (PF5, 1MB), Reserved (for PFLASH, 2MB), Erase Counter 0 (EC0, 16KB), PFI User Register 0 (PFI0, 256KB), Erase Counter 1 (EC0, 16KB), PFI User Register 1 (PFI0, 256KB), Erase Counter 2 (EC0, 16KB), PFI User Register 2 (PFI0, 256KB), Erase Counter 3 (EC0, 16KB), PFI User Register 3 (PFI0, 256KB), Erase Counter 4 (EC0, 16KB), PFI User Register 4 (PFI0, 256KB), Erase Counter 5 (EC0, 16KB), PFI User Register 5 (PFI0, 256KB), Data Flash 0 EEPROM (DF0, 1MB), Data Flash 0 UCB (DF0, 24KB), Data Flash 1 EEPROM (DF1, 128KB),	
	0xAFE00000 - 0xAFFFFFF	EBU, OLDA, BROM	

UCB_BMHD0_ORIG/COPY (TC39x B-Step)

Table 205 Register Overview - UCB00 (ascending Offset Address)

Short Name	Long Name					
BMI_BMHDID	UCB_BMHD0_ORIG_DATA - Boot Mode Index (BMI) and Boot Mode Header ID (CODE) = B359H	0000 _H				
STAD	UCB_BMHD0_ORIG_DATA - ABHMDx start address (in case BMI.HWCFG = ABM = 110B) or User Code start address (in case BMI.HWCFG = Flash start = 111B)	0004 _H				
CRCBMHD UCB_BMHD0_ORIG_DATA - Check Result for the BMI Header (offset 000H - 007H)						
CRCBMHD_N UCB_BMHD0_ORIG_DATA - Inverted Check Result for the BMI Header (offset 000H - 007H)						
PW0	UCB_BMHD0_ORIG_PW - 256-bit password protection, PW0 (least significant)	0100 _H				
PW1	UCB_BMHD0_ORIG_PW - 256-bit password protection, PW1	0104 _H				
PW2	UCB_BMHD0_ORIG_PW - 256-bit password protection, PW2	0108 _H				
PW3	UCB_BMHD0_ORIG_PW - 256-bit password protection, PW3	010C _H				
PW4	UCB_BMHD0_ORIG_PW - 256-bit password protection, PW4	0110 _H				
PW5	UCB_BMHD0_ORIG_PW - 256-bit password protection, PW5	0114 _H				
PW6	UCB_BMHD0_ORIG_PW - 256-bit password protection, PW6	0118 _H				
PW7	UCB_BMHD0_ORIG_PW - 256-bit password protection, PW7	011C _H				
CONFIRMATION	UCB_BMHD0_ORIG_CODE - 32-bit CODE	01F0 _H				

UCB_BMHDx_ORIG/COPY (x=1,2,3) (TC39x B-Step)

Table 206 Register Overview - UCB01 (ascending Offset Address)

Short Name	Long Name	Offset Address	
BMI_BMHDID	UCB_BMHD1_ORIG_DATA - Boot Mode Index (BMI) and Boot Mode Header ID (CODE) = B359H	0200 _H	
STAD	UCB_BMHD1_ORIG_DATA - ABHMDx start address (in case BMI.HWCFG = ABM = 110B) or User Code start address (in case BMI.HWCFG = Flash start = 111B)	0204 _H	
CRCBMHD	UCB_BMHD1_ORIG_DATA - Check Result for the BMI Header (offset 000H - 007H)	0208 _H	
CRCBMHD_N	UCB_BMHD1_ORIG_DATA - Inverted Check Result for the BMI Header (offset 000H - 007H)	020C _H	
CONFIRMATION	UCB_BMHD1_ORIG_CODE - 32-bit CODE	03F0 _H	

BMI – Boot Mode Index

Bit Field	Bit Field Name	Description
bit [0]	PINDIS	Mode selection by configuration pins: OB Mode selection by HWCFG pins is enabled 1B Mode selection by HWCFG pins is disabled
bits [3:1]	HWCFG	Start-up mode selection: 111B Internal start from Flash 110B Alternate Boot Mode (ABM) 100B Generic Bootstrap Loader Mode (ASC/CAN BSL) 011B ASC Bootstrap Loader Mode (ASC BSL) Else invalid
bit [4]	LSENA0	Lockstep monitoring control by SSW for CPU0: OB Lockstep monitoring for CPU0 is disabled 1B Lockstep monitoring for CPU0 is enabled
bit [5]	LSENA1	Lockstep monitoring control by SSW for CPU1: 1) OB Lockstep monitoring for CPU1 is disabled 1B Lockstep monitoring for CPU1 is enabled

¹⁾ Only if the respective CPUx Lockstep functionality is available on the product, otherwise the bit is Reserved, must be configured to 0 in UCB_BMHDx

BMI – Boot Mode Index

Bit Field	Bit Field Name	Description
bit [6]	LSENA2	Lockstep monitoring control by SSW for CPU2: 1) 0B Lockstep monitoring for CPU2 is disabled 1B Lockstep monitoring for CPU2 is enabled
bit [7]	LSENA3	Lockstep monitoring control by SSW for CPU3: 1) OB Lockstep monitoring for CPU3 is disabled 1B Lockstep monitoring for CPU3 is enabled
bit [8]	LBISTENA	LBIST execution start by SSW: OB LBIST execution start by SSW is disabled 1B LBIST execution start by SSW upon cold power-on is enabled
bits [11:9]	CHSWENA	Checker Software (CHSW) execution after SSW: 2) 101B CHSW execution after SSW is disabled else CHSW execution after SSW is enabled
bits [15:12]	reserved	Reserved for future extensions, must be configured to 0 in UCB_BMHDx

¹⁾ Only if the respective CPUx Lockstep functionality is available on the product, otherwise the bit is Reserved, must be configured to 0 in UCB BMHDx

²⁾ This bitfield is not evaluated during the SSW flow but by the Checker Software

UCB Confirmation Code

Table 183 UCB States

State	Value	Description
UNLOCKED	4321 1234 _H	Delivery State The UCB confirmation code is programmed with the UNLOCKED value.
CONFIRMED	57B5 327F _H	Operational State The UCB confirmation code is programmed with the CONFIRMED value. Note: The UNLOCKED value can be over programmed with the CONFIRMED value.
ERASED	0000 0000 _H	Erased State Behavior as for the ERRORED state.
ERRORED	Others	Errored State The UCB confirmation code stored is not the CONFIRMED or UNLOCKED value.

- Since Erased state (0x0) is considered ERRORED state, transition from UNLOCKED state (0x43211234) to CONFIRMED state (0x57B5327F) can be done without erasing the UCB. This over-programming is allowed but the 4 bytes following the confirmation code must be kept 0x00000000 in the unlocked state and in the over-programmed data.
- The data stored in the ORIG and COPY of a UCB pair should be identical. If need to change these two UCB data,
 - Firstly, erase COPY UCB under ORIG and COPY UCB all CONFIRMED state, then program COPY UCB with CONFIRMED state.
 - Secondly, Erase ORIG UCB, then program ORIG UCB with CONFIRMED state.

Boot Mode Header Installation

- Boot Mode Header Installation is dependent on the confirmation states of UCB_BMHDx_ORIG and UCB_BMHDx_COPY.
- If the confirmation code of both ORIG and COPY is ERRORED, SSW does not evaluate the UCB.
- Confirmation State Indication is in the DMU register HF_CONFIRMO.
 - The confirmation state of UCB_BMHDx_ORIG (x=0-3) is indicated by DMU_HF_CONFIRM0.PROINBMHDxO.
 - The confirmation state of UCB_BMHDx_COPY (x=0-3) is indicated by DMU_HF_CONFIRM0.PROINBMHDxC.

Ta	ble	e 1	84	Bo	ot	Μc	ode	Н	lead	ler	0	Ins	tal	llat	ion
----	-----	-----	----	----	----	----	-----	---	------	-----	---	-----	-----	------	-----

Table 184 Boot Mode Header Unistallation					
UCB_BMHD0_ORIG Confirmation State	UCB_BMHD0_COPY Confirmation State	Boot Mode Header Installation			
UNREAD	Don't Care	No evaluation.			
UNLOCKED	Don't Care	SSW evaluates UCB_BMHD0_ORIG. Password installed from UCB_BMHD0_ORIG.			
CONFIRMED	Don't Care	SSW evaluates UCB_BMHD0_ORIG. Password installed from UCB_BMHD0_ORIG.			
ERRORED	UNLOCKED	SSW evaluates UCB_BMHD0_COPY. Password installed from UCB_BMHD0_COPY.			
ERRORED	CONFIRMED	SSW evaluates UCB_BMHD0_COPY. Password installed from UCB_BMHD0_COPY.			
ERRORED	ERRORED	No evaluation. No Password installed.			

Table 185 Boot Mode Header x Installation(x= 1 - 3)

UCB_BMHDx_ORIG Confirmation State	UCB_BMHDx_COPY Confirmation State	Boot Mode Header Installation
UNREAD	Don't Care	No evaluation.
UNLOCKED	Don't Care	SSW evaluates UCB_BMHDx_ORIG.
CONFIRMED	Don't Care	SSW evaluates UCB_BMHDx_ORIG.
ERRORED	UNLOCKED	SSW evaluates UCB_BMHDx_COPY.
ERRORED	CONFIRMED	SSW evaluates UCB_BMHDx_COPY.
ERRORED	ERRORED	No evaluation.

Confirmation State Indication in FLASH Confirm Status Register 0

Field	Bits	Type	Description
PROINBMHD0	1:0	rh	UCB_BMHD0_ORIG Confirmation
0			This bit reflects the confirmed state of UCB_BMHD0_ORIG.
			00 _B UCB_BMHD0_ORIG state is UNREAD.
			01 _B UCB_BMHD0_ORIG state is UNLOCKED.
			10 _B UCB_BMHD0_ORIG state is CONFIRMED.
			11 _B UCB_BMHD0_ORIG state is ERRORED.
PROINBMHD1	3:2	rh	UCB_BMHD1_ORIG Confirmation
0			This bit reflects the confirmed state of UCB_BMHD1_ORIG.
			00 _B UCB_BMHD1_ORIG state is UNREAD.
			01 _B UCB_BMHD1_ORIG state is UNLOCKED.
			10 _B UCB_BMHD1_ORIG state is CONFIRMED.
			11 _B UCB_BMHD1_ORIG state is ERRORED.
PROINBMHD2	5:4	rh	UCB_BMHD2_ORIG Confirmation
0			This bit reflects the confirmed state of UCB_BMHD2_ORIG.
			00 _B UCB_BMHD2_ORIG state is UNREAD.
			01 _B UCB_BMHD2_ORIG state is UNLOCKED.
			10 _B UCB_BMHD2_ORIG state is CONFIRMED.
			11 _B UCB_BMHD2_ORIG state is ERRORED.
PROINBMHD3	7:6	rh	UCB_BMHD3_ORIG Confirmation
0			This bit reflects the confirmed state of UCB_BMHD3_ORIG.
			00 _B UCB_BMHD3_ORIG state is UNREAD.
			01 _B UCB_BMHD3_ORIG state is UNLOCKED.
			10 _B UCB_BMHD3_ORIG state is CONFIRMED.
			11 _B UCB_BMHD3_ORIG state is ERRORED.

riela	BITS	туре	Description	
PROINBMHD0	17:16	rh	UCB_BMHD0_COPY Confirmation	
C			This bit reflects the confirmed state of UCB_BMHD0_COPY.	
			00 _B UCB_BMHD0_COPY state is UNREAD.	
			01 _B UCB_BMHD0_COPY state is UNLOCKED.	
			10 _B UCB_BMHD0_COPY state is CONFIRMED.	
			11 _B UCB_BMHD0_COPY state is ERRORED.	
PROINBMHD1	19:18	rh	UCB_BMHD1_COPY Confirmation	
C			This bit reflects the confirmed state of UCB_BMHD1_COPY.	
			00 _B UCB_BMHD1_COPY state is UNREAD.	
			01 _B UCB_BMHD1_COPY state is UNLOCKED.	
			10 _B UCB_BMHD1_COPY state is CONFIRMED.	
			11 _B UCB_BMHD1_COPY state is ERRORED.	
PROINBMHD2	21:20	rh	UCB_BMHD2_COPY Confirmation	
C			This bit reflects the confirmed state of UCB_BMHD2_COPY.	
			00 _B UCB_BMHD2_COPY state is UNREAD.	
			01 _B UCB_BMHD2_COPY state is UNLOCKED.	
			10 _B UCB_BMHD2_COPY state is CONFIRMED.	
			11 _B UCB_BMHD2_COPY state is ERRORED.	
PROINBMHD3	23:22	rh	UCB_BMHD3_COPY Confirmation	
C			This bit reflects the confirmed state of UCB_BMHD3_COPY.	
			00 _B UCB_BMHD3_COPY state is UNREAD.	
			01 _B UCB_BMHD3_COPY state is UNLOCKED.	
			10 _B UCB_BMHD3_COPY state is CONFIRMED.	
			11 _B UCB_BMHD3_COPY state is ERRORED.	

Description

Field

BMI and ABM Headers Configurable Addresses

- User start addresses shall be configurable in both ABM and Internal Start from Flash modes.
- In case of Internal Start from Flash, it is proposed to have configurable start address in BMI.STAD.
- In case of Alternate Boot Mode, Start address is configured in ABM.STADBM like before. It is proposed to have configurable ABM start address stored in BMI.STAD
- STAD must be a valid word-aligned address inside PFLASH.
- This allows flexibility for locating of headers in Flash to avoid non used areas in Flash owing to fixed address. This enables contiguous memory blocks and better management of logistics/ variant management data.

UCB00	UCB00 Address Range: AF40 0000 _H - AF40 01FF _H Size = 512 Bytes				
Offset Size BMHDn BMI		BMHDn	BMI Header Description		
Addr.	(Byte) (Bitfields)				
000 _H	2	ВМІ	Boot Mode Index (BMI)		
0 Mo			PINDIS[3]: Mode selection by configuration pins: Mode selection by HWCFG pins is enabled Mode selection by HWCFG pins is disabled		
			HWCFG [6:4]: Start-up mode selection: 111 _B Internal start from Flash 110 _B Alternate Boot Mode (ABM) 100 _B Generic Bootstrap Loader 011 _B ASC Bootstrap Loader		
002 _H	2	BMHDID	Boot Mode Header ID (Confirmation code) = B359 _H		
004 _H	4	STAD	ABMHDx Start address (in case BMI.HWCFG=ABM=110 $_{\rm H}$) User Code Start address (in case BMI.HWCFG=Flash Start=111 $_{\rm H}$)		
008 _H	4	CRCBMHD	Check Result for the BMI Header (offset 00 _H 07 _H)		
00C _H	4	CRCBMHD_N	Inverted Check Result for the BMI Header		
1F0 _H	4	Confirmation	32 bit confirmation code		

ABMHD0	А	ddress Range: STA	DO _H - (STAD0 + 1F) _H Size = 32 Bytes
Offset	Size	ABMHDn	ABM Header in Pflash
Addr.	(Byte)		Description
00H	4	STADABM	User Code Start Address in ABM mode
04H	4	ABMHDID	ABM Header ID (Confirmation code) = $xxxx_H$
08H	4	CHKSTART	Memory Range to be checked - Start Address
0CH	4	CHKEND	Memory Range to be checked - End Address
10H	4	CRCRANGE	Check Result for the Memory Range
14H	4	CRCRANGE_N	Inverted Check Result for the Memory Range
18H	4	CRCABMHD	Check Result for the ABM Header (offset 00H13H)
1CH	4	CRCABMHD_N	Inverted Check Result for the ABM Header

BMI and ABM Headers Configurable Addresses

Internal Start From FLASH

 $8000\ 0000_{\rm H}$ $A000\ 0000_{\rm H}$

PFLASH (lower 1/2/3 MB)

Alternate Boot Mode

 $\begin{array}{c} 8000 \ 0000_{H} \\ A000 \ 0000_{H} \end{array}$

PFLASH (lower 1/2/3 MB)

2 BMI headers in UCB

BMII	HD0C -	UCB08 (Redu	Indant Copy) Address Range: AF40 1000 _H - AF40	
BMIHD0 Bytes	- UCB00	<u>Addre</u>	ess Range : AF40 0000 _H - AF40 01FF _H Size = 512	
Offset	Size	BMHD0	BMI Header Description	_
Addr.	(Byte)	(Bitfields)		
000 _H	2	BMI	Boot Mode Index (BMI)	
	.		PINDIS[3]: Mode selection by configuration pins: 0 Mode selection by HWCFG pins is enabled 1 Mode selection by HWCFG pins is disabled	
			HWCFG [6:4]: Start-up mode selection: 111 _B Internal start from Flash 110 _B Alternate Boot Mode (ABM) 100 _B Generic Bootstrap Loader 011 _B ASC Bootstrap Loader	_
002 _H	2	BMHDID	Boot Mode Header ID (Confirmation code) = B359 _H	
004 _H	4	STAD	ABMHDx Start address (in case BMI.HWCFG = ABM = 110 H) User Code Start address (in case BMI.HWCFG = Flash Start PECKH)	
008 _H	4	CRCBMHD	Check Result for the BMI Header (offset Quantity)	
00C _H	4		Inverted Check Result for the BMI Header BMI,STAL)
1FO _{MANDAC (Confirmation 32 bit confirmation code AE40 0200 AE40 320}				
BMIHD: Size = 5			Address Range : AF40 0206 - AF40 03FF _H	
Offset	Size	BMHD1	BMI Header Description	
Addr.	(Byte)	(Bitfields)	$\sqrt{3}$	
000 _H	2	BMI	Boot Mode Index (BMI)	
			PINDIS[3]: Mode selection by configuration pins: 0 Mode selection by HWCFG pins is enabled 1 Mode selection by HWCFG pins is disabled	
			HWCFG [6:4]: Start-up mode selection: 111 _B Internal start from Flash 110 _B Alternate Boot Mode (ABM) 100 _B Generic Bootstrap Loader 011 _B ASC Bootstrap Loader	_
002 _H	2	BMHDID	Boot Mode Header ID (Confirmation code) = B359 _H	
004 _H	4	STAD	ABMHDx Start address (in case BMI.HWCFG = ABM = 110 _H)	
			User Code Start address (in case BMI.HWCFG = Flash Start = $111_{\rm H}$)	
008 _н	4 8 1 -06-2	CRCBMHD	`	

1F0. 4 Confirmation 32 bit confirmation code

2 ABM headers in Flash

ABMHD0	А	ddress Range: ST	AD_H - $(STAD + 1F)_H$ Size = 32 Bytes
Offset	Size	ABMHD0	ABM Header in Pflash
Addr.	(Byte)		Description
00H	4	STADABM \	User Code Start Address in ABM mode
04H	4	ABMHDID	ABM Header ID (Confirmation code) = $xxxx_H$
08H	4	CHKSTART	Memory Range to be checked - Start Address
0CH	4	CHKEND	Memory Range to be checked - End Address
10H	4	CRCRANGE	Check Result for the Memory Range
14H	4	CRCRANGE_N	Inverted Check Result for the Memory Range
18H	4	CRCABMHD	Check Result for the ABM Header (offset 09H 13H)
1CH	4	CRCABMHD_N	Inverted Check Result for the ABM Reader

3)

header & code CRC

ser Code Start address = STADABM in case of ABM mode

= STAD in case of Internal Start from Flash

ABMHD1 Address Range: STA				AD_H - (STAD + 1F) _H Size = 32 Bytes
	Offset	Size	ABMHD1	ABM Header in Pflash
	Addr.	(Byte)		Description
	00H	4	STADABM \	User Code Start Address in ABM mode
	04H	4	ABMHDID	ABM Header ID (Confirmation code) = $xxxx_H$
	08H	4	CHKSTART	Memory Range to be checked - Start Address
	0CH	4	CHKEND	Memory Range to be checked - End Address
	10H	4	CRCRANGE	Check Result for the Memory Range
	14H	4	CRCRANGE_N	Inverted Check Result for the Memory Range
	18H	4	CRCABMHD	Check Result for the ABM Header (offset 00H13H)
	1CH	4	CRCABMHD_N	Inverted Check Result for the ABM Header

User Code Start address

= STADABM in case of ABM mode

= STAD in case of Internal Start from Flash

Agenda

- 1 Power Startup
- Boot Options and Boot Mode Headers
- 3 Startup Flow Complete Picture

Startup Flow: Complete Picture

Startup Software: Phase 1 Reset Evaluation (lite)

- Quick reset evaluation is done to know if last reset was Application reset OR System Reset:
 - RSTSTAT register is not cleared after this
 - Allows the detailed reset evaluation later
 - > Startup flow takes different paths based on the result

Startup Software: Phase 2 PMS, LBIST, MBIST Handling

- This part is executed only if the last reset was power-on reset
- At the beginning of this phase power supply related configurations are done
- If LBIST is started last time, which resulted in a warm power reset. This phase is being executed again.
- A call back to application is triggered in case of LBIST error
- An MBIST is triggered for the CPU0 Stack and CSA (at 100MHz SPB)

Startup Software: Phase 3 Enabling Function Calls @ CPU0

- This phase is executed for all types of resets
 - Initialization of CPU0 USTACK (user stack pointer)
 - Establish the linked lists of CPU0 CSA (context save area)
 - Handling CPU0 Watchdog and Safety Watchdog for the first time

Note:

- Function calls are allowed from this point of time. However Stack and CSA are not completely tested.
- Global Variables shall not be used yet

Startup Software: Phase 4 PLL and Clocks

- Configure Flash Wait States (suitable for highest CPU frequency)
- Configure the System PLL and Peripheral PLL
 - Lock Both PLLs for required P and N divider values
 - Setup the clock distribution values
 - Throttle the Sys PLL (K2 divider) to required higher frequency.
 - ~100mA with 100uS settling time
 - Configure the MBIST for entire RAM area with NDT (NDIT)
 - In case of error, trigger the error handling at application with call back
 - This part of the software shall not use any RAM (not even Stack and CSA)

Startup Software: Phase 5 Multicore Startup

- Starting each CPU introduces current jump of 20~100mA
- This requires the power supply settling time of >100uS
- Multicore Startup is done as chain sequence, where any CPU enables only the next enabled CPU in the chain.
- With this CPU0 could continue with its initializations.

- Cascading the startup of other CPUs saves time
- Or start remaining CPUs from CPU0 (would utilize some part of the wait time)

Startup Software: Phase 5 C Initialization

- Enable Cache Mechanism
- Initialize CPU0 "Attached" Global Variables, and CPU-Shared variables
- Enable interrupt and traps mechanism
 - Enable interrupts and vector tables
 - Initialize the vector tables (if required)

Part of your life. Part of tomorrow.

