

Design for Testability (DFT) with Scan Technique

黃稚存 Chih-Tsun Huang

cthuang@cs.nthu.edu.tw

聲明

 本課程之內容(包括但不限於教材、影片、圖片、檔案資料等), 僅供修課學生個人合理使用,非經授課教師同意,不得以任何 形式轉載、重製、散布、公開播送、出版或發行本影片內容 (例如將課程內容放置公開平台上,如 Facebook, Instagram, YouTube, Twitter, Google Drive, Dropbox 等等)。如有侵權行 為,需自負法律責任。

Lec17 CS5120 CT 2024

Outline

- Why IC testing?
- Fault Modeling
- Scan Test
- Other DFT Techniques
- Verilog Coding Style vs. DFT

Why IC Testing?

» Semiconductor testing

IC Production

- IC Design (with only simulation) is not the final goal
 - Without production, your design is not real
- IC manufacturing
 - Design
 - Debugging/verification
 - Test chip shuttle bus
 - Post-silicon validation
 - IC production, assembly and test
 - Pilot run
 - Yield ramp-up
 - Mass production

IC Fabrication Process

- Lithography
- Etching
- Deposition
- Chemical mechanical polishing (CMP)
- Oxidation
- Ion implantation
- Diffusion

Layout Example

https://www.semitracks.com/reference-material/design/device-recognition.php

Typical IC Production Flow (After Fabrication)

Why Testing?

 Purpose of product test: to guarantee quality, reliability, performance, etc.

Defect detected during IC test

Defect detected during system test

Defect detected during field test

Fault Modeling

 Yield (Y) is the ratio of # good dies per wafer to # dies per wafer, or the fraction of dies that are produced free of defects

•
$$Y = \frac{\text{# good dies}}{\text{# total dies}} = \frac{50}{100} = 50\%$$

- Defect level (DL) is the fraction of bad parts among the parts that pass all tests and are shipped
 - ◆ $DL = 1 Y^{(1-FC)}$
- Fault coverage (FC) refers to the real defect coverage (probability that T (test) detects any possible fault – in F or not)
- DL is measured in terms of DPM (defects per million)

PPM (parks per million)

Design for Testability

- Or Design for Test, DFT
 - IC design techniques that add testability features to a hardware design
 - Facilitate the manufacturing tests to the designed hardware
- Fault modeling
- Scan test
- Software-based test
- Built-In Self Test (BIST)
- Boundary scan

Fault Modeling

Lec17 CS5120 CT 2024 11

Logical Fault Model

- # physical defects is countless!!
- Simple logical model: independent of technology details
 - Stuck-at faults (s-a-1 and s-a-0) (short faults)
 - Stuck-open faults (open faults)
 - Bridging faults (short faults)
 - Timing faults (delay faults)
- Reducing the complexity of fault detection algorithm
- Applicable to any physical defect manifesting as a signal that is stuck at a fixed logic level
- One stuck-at fault can model one or more kinds of defects
 - Generally we apply single stuck-at fault model to evaluate test patterns for real cases with multiple faults

Stuck-At Faults

Two-Input AND Gate With Stuck-At-0 Fault on Output Pin

Fault Detection

- Controllability
- Observability
- Single stuck-at fault model
 - Single-fault vs.
 multiple-fault model
 - Greatly reduces the complexity
 - Acceptable defect coverage from industrial experience

Fault List

Fault Coverage

- $FC = \frac{\text{# detected faults}}{\text{(# total faults # of undetectable faults)}}$
- Fault simulation
 - Determines all faults detected by a test vector
 - Logic simulation
 - □ Fault-free circuit
 - Fault injection
 - Faulty circuit

Scan Test

Lec17 CS5120 CT 2024 17

ATPG (Automatic Test Pattern Generation)

- ATPG generates test patterns with fault coverage statistics
 - Random pattern generation technique
 - Deterministic pattern generation technique
- Well understood for combinational circuits
- Not efficient for sequential circuits
 - Coverage is not high enough
- Structure DFT techniques
 - Internal scan

Scan Technique

- Controllability of sequential cells
 - Ability to assign the state vector from the primary inputs
- Observability of sequential cells
 - Ability to observe the next state from the primary outputs

Concept of Full Scan

- All sequential cells are replaced by CAD tools with their scannable equivalents during scan insertion
- Providing virtual Inputs and Outputs

Lec17 CS5120 CT 2024 20

Another Example of Full-Scan

Scan Control

normal clock

Tester Cycles Clock Scan Enable

Five Phases

- ① Scan-In
- ② Parallel Measure
- 3 Parallel Capture
- First Scan-Out
- Scan-Out

Scan Control (cont)

- In each cycle, the next scan bit is applied serially to <u>SI</u>. On the clock edge, it is shifted in to the scan chain. Meanwhile, parallel outputs are masked.
- Parallel Measure:
 PIs are applied early in the cycle.
 The clock remains inactive. The
 CUT is now in a known state.
 POs are measured late in the
 cycle.
- The clock is pulsed once. This captures virtual PO data in the scan chain. The CUT is left in a don't-care state. Captured bits are ready for scan out.

- First Scan-Out:
 With no clock, the SO port is strobed, measuring the first scanned-out bit.
- Scan-Out Phase: In each cycle, the next captured bit is scanned out and measured at SO.

Full Scan

- All scan flops initialize nodes within the design (controllability)
 - Vs. partial scan technique
- Scan flops capture results from within the design (observability)
- Inserting a scan path involves replacing all flip-flops with their scannable equivalent flip-flops
 - Larger area than non-scan registers; larger setup time requirement
 - Area and performance overhead
 - Extra primary input/output pins
- The modified sequential cells are chained together to form one or more large shifting paths
 - Single scan chain
 - ◆ Multiple scan chains → 如放乳圈 scan chain, 唇有多個 scan in, Scan ont 工/6

Full Scan (cont)

- An automatic methodology
 - Scan insertion + ATPG
- High fault coverage than partial scan
- Better diagnostic capability compared with partial scan
- Extended features
 - Debugging
 - Profiling
- Scannable equivalents
 - Multiplexed flip-flop (MUX scan)
 - Clocked scan
 - Level-sensitive scan design (LSSD)
 - Auxiliary-clock LSSD

Mux Scan Technique

- Flip-Flop with an additional MUX
- Test pins
 - Scan input
 - Scan enable
 - Scan output (can be shared with a functional output pin)
- Most commonly supported
- Mux scan cells
 - D, JK, master-slave flip-flops
 - D latches
 - Level sensitive in functional mode, edge triggered during scan shift

Mux Scan Cell

Lec17 CS5120 CT 2024 27

DFT Tools for Scan

- Insert scan
 - Synopsys DFT Compiler (integrated in Design Compiler)
- ATPG
 - Synopsys TetraMAX
 - User guide /usr/cad/synopsys/doc/TetraMAX/TetraMAX User Guide.pdf

Lec17 CS5120 CT 2024 28

Other DFT Techniques

Lec17 CS5120 CT 2024 2

Other DFT Techniques

- Software-based test
 Sucture test fault coverage
- Built-In Self Test (BIST)
 - Logic BIST
 - Pseudo random pattern generator
 - Utilizing LFSR (linear feedback shift register)
 - Memory BIST
 - March-based test algorithms
- Boundary scan design (for board/system level)
 - IEEE Std 1149.1
 - Board-level DFT
 - Primary for testing the interconnections between chips on the board

Board Testing with Boundary Scan

Verilog Coding Style vs. DFT

Lec17 CS5120 CT 2024 32

DFT Rule Violation: Mixed-Edge Clock Control

- Mixed positive and negative edge triggered clocks in one design module
 - Reduce effective clock period
 - Complicated scan testing

DFT Rule Violation: Asynchronous Clocking

- Asynchronous logic
 - Non-clock signal appears in the sensitivity list
 - Complicated scan testing

```
always @(posedge clk) begin

...
end
always @(posedge enable) begin

...
end
```

Summary

- Definition
 - Yield
 - Defect level
 - Fault model
- DFT techniques are mandatory to ensure the quality, reliability, and performance of IC product
 - Controllability
 - Observability
 - Yield vs. cost
 - Structure test vs. functional test