ESPECTROMETRÍA $\underline{\alpha}$ EN DETECTORES DE SEMICONDUCTOR

Juan Alejandre Farauste
TE II, Nuclear (Universidad de Sevilla)
Viernes 14 de mayo de 2021

ÍNDICE

- I. OBJETIVO
- 2. INTRODUCCIÓN TEÓRICA
- 3. DISPOSITIVO EXPERIMENTAL Y REALIZACIÓN DE LA SESIÓN
- 4. RESULTADOS EXPERIMENTALES
- 5. CONCLUSIONES

• Entender el funcionamiento de un detector de semiconductor (Si).

- Entender el funcionamiento de un detector de semiconductor (Si).
- Calibrar el espectro de energía usando el pulser (posterior comprobación).

- Entender el funcionamiento de un detector de semiconductor (Si).
- Calibrar el espectro de energía usando el pulser (posterior comprobación).
- Identificar una muestra problema.

- Entender el funcionamiento de un detector de semiconductor (Si).
- Calibrar el espectro de energía usando el pulser (posterior comprobación).
- Identificar una muestra problema.
- Calcular la actividad de una muestra conocida.

- Entender el funcionamiento de un detector de semiconductor (Si).
- Calibrar el espectro de energía usando el pulser (posterior comprobación).
- Identificar una muestra problema.
- Calcular la actividad de una muestra conocida.
- Medir los espesores de diferentes láminas de oro.

INTRODUCCIÓN TEÓRICA

$${}_Z^A X^* \rightarrow {}_{Z-2}^{A-2} Y + {}_2^4 He$$

Son núcleos de ⁴He (sistemas ligados de 2p⁺ y 2 n⁰).

 E_{α} entre 4-6~MeV

$${}_{Z}^{A}X^{*} \rightarrow {}_{Z-2}^{A-2}Y + {}_{2}^{4}He$$

 E_{α} entre 4-6~MeV

- Son núcleos de ⁴He (sistemas ligados de 2p⁺ y 2 n⁰).
- Generalmente muy estable al ser emitida por núcleos muy pesados.

$${}_{Z}^{A}X^{*} \rightarrow {}_{Z-2}^{A-2}Y + {}_{2}^{4}He$$

 E_{α} entre 4 – 6 MeV

- Son núcleos de ⁴He (sistemas ligados de 2p⁺ y 2 n⁰).
- Generalmente muy estable al ser emitida por núcleos muy pesados.
- Más ventajosa que la de los nucleones debido a la alta energía de ligadura entre las partículas α .

$${}_{Z}^{A}X^{*} \rightarrow {}_{Z-2}^{A-2}Y + {}_{2}^{4}He$$

 E_{α} entre 4 – 6 MeV

- Son núcleos de ⁴He (sistemas ligados de 2p⁺ y 2 n⁰).
- Generalmente muy estable al ser emitida por núcleos muy pesados.
- Más ventajosa que la de los nucleones debido a la alta energía de ligadura entre las partículas α .
- Presentan un espectro de energía monoenergético

$${}_{Z}^{A}X^{*} \rightarrow {}_{Z-2}^{A-2}Y + {}_{2}^{4}He$$

• La partícula α interacciona con el medio y va perdiendo energía.

- La partícula α interacciona con el medio y va perdiendo energía.
- Como su tamaño es mucho mayor que el de los e-, su trayectoria es prácticamente recta.

- La partícula α interacciona con el medio y va perdiendo energía.
- Como su tamaño es mucho mayor que el de los e-, su trayectoria es prácticamente recta.
- Cuando su velocidad es cercana a la de los e-, comienza a neutralizarse hasta que no interacciona depositando su energía.

Fuente ²⁴¹Am

La medida de la energía puede darnos información sobre el espesor de la lámina

La medida de la energía puede darnos información sobre el espesor de la lámina

$$S(E) = -\frac{dE}{dx}$$

Poder de frenado: Cantidad de energía perdida por partícula α por unidad de longitud del material atravesado

$$S(E) = \frac{S_{low}S_{high}}{S_{low} + S_{high}}$$

$$S(E) = \frac{S_{low}S_{high}}{S_{low} + S_{high}} \quad \longrightarrow \quad$$

$$S(E) = \frac{S_{low}S_{high}}{S_{low} + S_{high}}$$

$$S_{low} = A_1(1000 \cdot E)^{A_2}$$

$$S_{high} = \frac{1000A_3}{E}\ln(1 + \frac{1000A_4}{E} + A_5\frac{E}{1000})$$

• Para las partículas α entre I y I0 MeV los valores de S(E) están tabulados de la siguiente manera:

$$S(E) = \frac{S_{low}S_{high}}{S_{low} + S_{high}}$$

$$S_{low} = A_1(1000 \cdot E)^{A_2}$$

$$S_{high} = \frac{1000A_3}{E}\ln(1 + \frac{1000A_4}{E} + A_5\frac{E}{1000})$$

Si la energía está en keV, los valores de las constantes son los siguientes de tal manera que:

Para las partículas α entre I y I0 MeV los valores de S(E) están tabulados de la siguiente manera:

$$S(E) = \frac{S_{low}S_{high}}{S_{low} + S_{high}}$$

$$S_{low} = A_1(1000 \cdot E)^{A_2}$$

$$S_{high} = \frac{1000A_3}{E} \ln(1 + \frac{1000A_4}{E} + A_5 \frac{E}{1000})$$

Si la energía está en keV, los valores de las constantes son los siguientes de tal manera que:

$$[S(E)] = eV/(10^{15}at/cm^2)$$

$$A_1 = 3,223$$

$$A_1 = 3,223$$
 $A_2 = 0,5883$ $A_3 = 232,7$ $A_4 = 2,954$ $A_5 = 1,05$

$$A_3 = 232, 7$$

$$A_4=2,954$$

$$A_5 = 1,05$$

ACTIVIDAD DE UNA MUESTRA

$$A = -\frac{dN}{dt} = \lambda N$$

$$A = -\frac{dN}{dt} = \lambda N$$

n° de desintegraciones por unidad de tiempo en una muestra de N núcleos

$$A = -\frac{dN}{dt} = \lambda N$$

Es directamente proporcional a la constante de semidesintegración que depende exclusivamente de la muestra

n° de desintegraciones por unidad de tiempo en una muestra de N núcleos

$$A = -\frac{dN}{dt} = \lambda N$$

n° de desintegraciones por unidad de tiempo en una muestra de N núcleos Es directamente proporcional a la constante de semidesintegración que depende exclusivamente de la muestra

• Suele medirse en Bq o en Ci

$$A = -\frac{dN}{dt} = \lambda N$$

n° de desintegraciones por unidad de tiempo en una muestra de N núcleos Es directamente proporcional a la constante de semidesintegración que depende exclusivamente de la muestra

• Suele medirse en Bq o en Ci

$$A = \frac{N}{I_{\alpha} \cdot G}$$

$$A = -\frac{dN}{dt} = \lambda N$$

Es directamente proporcional a la constante de semidesintegración que depende exclusivamente de la muestra

• Suele medirse en Bq o en Ci

n° de desintegraciones por unidad de tiempo en una muestra de N núcleos

$$A = \frac{N}{I_{\alpha} \cdot G}$$

$$G = sen^2(\frac{\theta}{2})$$

Factor geométrico

$$A = -\frac{dN}{dt} = \lambda N$$

Es directamente proporcional a la constante de semidesintegración que depende exclusivamente de la muestra

• Suele medirse en Bq o en Ci

n° de desintegraciones por unidad de tiempo en una muestra de N núcleos

$$A = \frac{N}{I_{\alpha} \cdot G}$$

$$G = sen^2(\frac{\theta}{2})$$

con

$$\theta = arctg(\frac{R}{d})$$

Factor geométrico

Es directamente proporcional a la constante de semidesintegración que depende exclusivamente de la muestra

• Suele medirse en Bq o en Ci

n° de desintegraciones por unidad de tiempo en una muestra de N núcleos

$$A = \frac{N}{I_{\alpha} \cdot G}$$

$$G = sen^2(\frac{\theta}{2})$$

con

$$\theta = arctg(\frac{R}{d})$$

Radio del área efectiva del detector

Distancia fuente-detector

Factor geométrico

• <u>Detector de semiconductor</u>: genera pulsos de corriente debido a la creación de pares e—ion tras el paso de la radiación.

- <u>Detector de semiconductor</u>: genera pulsos de corriente debido a la creación de pares e—ion tras el paso de la radiación (teoría de bandas en SC).
- <u>Union PN</u>: Región de deplexión (idealmente "muerta").

- <u>Detector de semiconductor</u>: genera pulsos de corriente debido a la creación de pares e—ion tras el paso de la radiación (teoría de bandas en SC).
- <u>Union PN</u>: Región de deplexión (idealmente "muerta").
- Polarización inversa: necesario para aumentar la región de deplexión.

- <u>Detector de semiconductor</u>: genera pulsos de corriente debido a la creación de pares e—ion tras el paso de la radiación (teoría de bandas en SC).
- Union PN: Región de deplexión (idealmente "muerta").
- Polarización inversa: necesario para aumentar la región de deplexión.
- Cámara al vacío (α son muy ionizantes) y a oscuras (sensibilidad la luz).

- <u>Detector de semiconductor</u>: genera pulsos de corriente debido a la creación de pares e—ion tras el paso de la radiación (teoría de bandas en SC).
- Union PN: Región de deplexión (idealmente "muerta").
- <u>Polarización inversa</u>: necesario para aumentar la región de deplexión.
- Cámara al vacío (α son muy ionizantes) y a oscuras (sensibilidad la luz).
- Refrigeración para evitar el ruido electrónico.

• Fuente emisora de partículas lpha

- Fuente emisora de partículas lpha
- Cámara y bomba de vacío

- Fuente emisora de partículas lpha
- Cámara y bomba de vacío
- Detector de Si

- Fuente emisora de partículas α
- Cámara y bomba de vacío
- Detector de Si
- Electrónica asociada:
 - o Preamplificador
 - o Amplificador
 - o Alimentación

- Fuente emisora de partículas α
- Cámara y bomba de vacío
- Detector de Si
- Electrónica asociada:
 - o Preamplificador
 - o Amplificador
 - Alimentación
- Pulser

- Fuente emisora de partículas α
- Cámara y bomba de vacío
- Detector de Si
- Electrónica asociada:
 - o Preamplificador
 - o Amplificador
 - o Alimentación
- Pulser
- AMC y PC.

- Medida del espectro del ²⁴¹Am para las situaciones siguientes:
 - Sin vacío y ni polarización
 - Con vacío y sin polarización
 - Con vacío y polarización

- Medida del espectro del ²⁴¹Am para las situaciones siguientes:
 - Sin vacío y ni polarización
 - Con vacío y sin polarización
 - Con vacío y polarización
- Calibración en energía
 - Deducción de la pendiente con el pulser.
 - Calibración de la recta con el fotopico del ²⁴¹Am.
 - Comprobación de la calibración con el ²¹⁰Po.

• Identificación de la muestra problema

- Identificación de la muestra problema
- Cálculo de las actividades del ²⁴¹Am y del ²¹⁰Po.

- · Identificación de la muestra problema
- Cálculo de las actividades del ²⁴¹Am y del ²¹⁰Po.
- Determinación de los espesores de las láminas de oro colocadas a modo de barrera entre la fuente de radiación α y el detector

RESULTADOS EXPERIMENTALES

FUNCIONAMIENTO DEL DETECTOR

- Con el aire las partículas α pierden mucha energía
- La pérdida de energía depende del ángulo de incidencia
- Como dijimos antes, con HV la zona de deplexión es mayor y se recoge más carga

• <u>Pulser</u>: calibración en energía. No hace falta realizar el vacío, pero sí mantener cerrada la cámara para evitar la luz. Además aplicamos el voltaje para reducir el ruido electrónico (respuesta lineal — pendiente).

 <u>Pulser</u>: calibración en energía. No hace falta realizar el vacío, pero sí mantener cerrada la cámara para evitar la luz. Además aplicamos el voltaje para reducir el ruido electrónico (respuesta lineal — pendiente).

$$E(MeV) = m\left(\frac{MeV}{canal}\right) \cdot n^{\underline{o}} \ de \ canal + b(MeV)$$

 <u>Pulser</u>: calibración en energía. No hace falta realizar el vacío, pero sí mantener cerrada la cámara para evitar la luz. Además aplicamos el voltaje para reducir el ruido electrónico (respuesta lineal — pendiente).

$$E(MeV) = m\left(\frac{MeV}{canal}\right) \cdot n^{\underline{o}} \ de \ canal + b(MeV)$$

• Obtenemos primero la pendiente y posteriormente calculamos la b usando la energía del ²⁴¹Am.

Energía	Canal	
Ι	80	
1,99	178	
2,99	277	
3,98	376	
4,97	475	
5,97	575	
6,97	674	
7,97	774	
8,97	873	
9,97	972	

Parámetros de ajuste				
m (MeV/canal)	$(1,0045 \pm 0,0005) \cdot 10^{-2}$			
b (MeV)	$(0,2521 \pm 0,0006)$			
r ²	0,99998			

Parámetros de ajuste			
m (MeV/canal)	$(1,0045 \pm 0,0005) \cdot 10^{-2}$		
b (MeV)	(0.2521 ± 0.0006)		
r ²	0,99998		

Usando la energía del pico del ²⁴¹Am y su posición en el canal, obtenemos la b

E = 5,480 MeV Canal = 521

Parámetros de ajuste				
m (MeV/canal)	$(1,0045 \pm 0,0005) \cdot 10^{-2}$			
b (MeV)	(0.2521 ± 0.0006)			
r ²	0,99998			

Usando la energía del pico del ²⁴¹Am y su posición en el canal, obtenemos la b

 $E(MeV) = 1,0045 \cdot 10^{-2} \cdot n^{\circ} de canal + 0,2521$

Núclido	Modo de desintegración	Periodo de semidesintegración	Energía desprendida (MeV)	Producto de desintegración
Th 232	α	1,405·10 ¹⁰ a	4,081	Ra 228
Ra 228	β-	5,75 a	0,046	Ac 228
Ac 228	β-	6,25 h	2,124	Th 228
Th 228	α	1,9116 a	5,520	Ra 224
Ra 224	α	3,6319 d	5,789	Rn 220
Rn 220	α	55,6 s	6,404	Po 216
Po 216	α	0,145 s	6,906	Pb 212
Pb 212	β-	10,64 h	0,570	Bi 212
Bi 212	β ⁻ 64.06% α 35.94%	60,55 min	2,252 6.208	Po 212 TI 208
Po 212	α	299 ns	8,955	Pb 208
TI 208	β-	3,053 min	4,999	Pb 208
Pb 208		estable		

	Serie radiactiva del Torio										
Núcleo	²³² Th	²²⁸ Ra	²²⁸ Ac	²²⁸ Th	²¹² Bi	²²⁴ Ra	²²⁰ Rn	²¹⁶ Po	²¹² Pb	²¹² Bi	²¹² Po
E (MeV)	4,011	0,046	2,124	5,425	6,0208	5,689	6,294	6,787	0,570	2,252	8,801
Tipo	α	β^-	β^-	α	α	α	α	α	β^-	β^-	α
		×	×	✓	✓	✓	✓	✓	×	×	✓

CÁLCULO DE ACTIVIDADES

Núcleo	$n \pm \Delta n$ (cuenta/s)	$I_{\alpha} \pm \Delta I_{\alpha}$	$\mathbf{A} \pm \Delta A$ (Bq)
241Am	$41, 3 \pm 0, 5$	$\textbf{0,86} \pm \textbf{0,01}$	1896 ± 300
210Po	$\textbf{0,70} \pm \textbf{0,03}$	$f 100\pm 0$, $f 01$	31 ± 20

ESPESORES DE LAS LÁMINAS DE ORO

ESPESORES DE LAS LÁMINAS DE ORO

• Si se aproxima $S(E) = S(E_i)$ siendo E_i la energía inicial:

$$S(E_i) = -\frac{dE(x)}{dx}$$
 $E_i - E(x = t) = \Delta E = S(E_i) \cdot t$

$$t = \frac{\Delta E}{S(E_i)\rho_{AH}} \qquad \longrightarrow \qquad S(E)\Delta(S(E)) = |S(E_i) - S(E_f)|$$

lámina	I	2
$t(\mu m)$	$0,372 \pm 0,007$	$0,41 \pm 0,03$

CONCLUSIONES

CONCLUSIONES

- Hemos estudiado el funcionamiento de un detector de tipo semiconductor.
- Se ha realizado la calibración de los canales a través de un pulser y una muestra de Americio.
- Se ha verificado el impacto del vacío y la polarización en una muestra de Americio.
- Se han estudiado los eventos más importantes para muestras de Americio y Polonio.
- Obtuvimos la actividad de estas dos muestras, así como los espesores de una serie de láminas de Au a partir de los espectros y las fórmulas teóricas.
- Hemos logrado determinar la composición de una muestra problema a través de su emisiones.

FIN