# **Representation of 1D-Array in memory**

Let A be a 1D array. Elements of A are stored in successive memory locations. The address of the first element of the array is known as **Base Address** and is denoted by **base(A)**.

The address of the  $k^{th}$  element of the array A is denoted by Loc(A[k]).

Hence, Loc(A[k]) = base(A) + w \* (k - lb)

where w is size of each element of the array in byte and lb is the lower bound of the array.

## Example:

The linear array A shown below can be represented as either A[1:6] or A(1..6) to mean that array A has 6 homogeneous elements with lower bound 1 and upper bound 6.



If we assume base(A) = 100 and each element A contains integer values and if we require 2 bytes to store integer data then w = 2.

Hence Loc(A[3]) = base(A) + 2 \* (3 - 1) = 100 + 4 = 104.

# Representation of 2D Array in memory

An 2D-array with m rows and n columns is denoted as **either** A[1:m, 1:n] **or** A[1.m, 1.n]. In the memory, a 2D-array of order  $\mathbf{m} \times \mathbf{n}$  is stored as 1D-array having ( $\mathbf{m} \times \mathbf{n}$ ) elements.

Now the elements can be stored in two ways –

- 1. **Column Major Order** Elements are stored column by column.
- $2. \quad \textbf{Row Major Order} Elements \ are \ stored \ row \ by \ row.$

Example:

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 3 \times 4 & 3 \times 4 & 3 \times 4 \end{pmatrix}$$

### Column Major Order

| A[1, 1] | A[2, 1] | A[3, 1] | A[1, 2] | A[2, 2] | A[3, 2] | A[1, 3] | A[2, 3] | A[3, 3] | A[1, 4] | A[2,4] | A[3,4] |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|
| 1       | 5       | 9       | 2       | 6       | 10      | 3       | 7       | 11      | 4       | 8      | 12     |

Row Major Order

| A[1, 1] | A[1, 2] | A[1, 3] | A[1, 4] | A[2, 1] | A[2, 2] | A[2, 3] | A[2, 4] | A[3, 1] | A[3, 2] | A[3,3] | A[3,4] |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|
| 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11     | 12     |

100

100

Compiled by Alok Basu for CSE 2<sup>nd</sup> SEM students of Siliguri Institute of Technology.

Location of an element in the i<sup>th</sup> row and j<sup>th</sup> column is represented as Loc(A[i, j]).

# Column Major Order:

$$Loc(A[i, j]) = base(A) + w * [m * (j - lbc) + (i - lbr)].$$

# **Row Major Order:**

$$\begin{aligned} Loc(A[i,j]) &= base(A) + \text{ w * [ n * (i-lbr) + (j-lbc) ]}. \\ & \text{Where lbr - lower bound of row} \\ & \text{lbc - lower bound of column.} \\ & \text{m - number of rows.} \\ & \text{n - number of columns.} \\ & \text{w - size of each element in bytes.} \end{aligned}$$

# Check:

Find address of element A[2, 3] of the above 2D-array A in both methods of storage assuming base address is 100 and size of each element is 2 bytes.

## Row Major Order

$$Loc(A[2, 3]) = 100 + 2 * [4 * (2 - 1) + (3 - 1)] = 100 + 12 = 112.$$

## Column Major Order

$$Loc(A[2, 3]) = 100 + 2 * [3 * (3 - 1) + (2 - 1)] = 100 + 14 = 114.$$

**TRY**: Find address of A[3,4] in both cases. Ans = 122.

### **Problem 1**:

Let the size of the elements stored in an 8 x 3 matrix be 4 bytes each. If the base address of the matrix is 3500 then find the address of A[4, 2] for both row major and column major cases.

#### Solution:

Location of an element in the i<sup>th</sup> row and j<sup>th</sup> column of matrix A is represented as Loc(A[i, j]).

## Column Major Order –

Location of an element in the 
$$i^{th}$$
 row and  $j^{th}$  column of matrix A is 
$$Loc(A[i,j]) = base(A) + w * [m * (j-lbc) + (i-lbr)].$$
 where  $lbr - lower$  bound of row 
$$lbc - lower$$
 bound of column. 
$$m - number$$
 of rows. 
$$w - size$$
 of each element in bytes.

So, in column major order,

address of A[4, 2] = 
$$3500 + 4 * [8 * (2 - 1) + (4 - 1)] = 3500 + 4 * 11 = 3500 + 44 = 3544$$
.

### Row Major Order -

$$\begin{aligned} Loc(A[i,j]) &= base(A) + \text{ w * [ n * (i-lbr) + (j-lbc) ].} \\ & \text{where lbr - lower bound of row} \\ & \text{lbc - lower bound of column.} \\ & \text{n - number of columns.} \\ & \text{w - size of each element in bytes.} \end{aligned}$$

So, in row major order,

address of A[4, 2] = 
$$3500 + 4 * [3 * (4 - 1) + (2 - 1)] = 3500 + 4 * 10 = 3500 + 40 = 3540$$
.

Compiled by Alok Basu for CSE 2<sup>nd</sup> SEM students of Siliguri Institute of Technology.

## **Problem 2**:

Consider the array int a [1.. 10] [1..10] and the base address 2000, then calculate the address of the array a [2] [3] in the row and column major ordering. Solution:

Let us assume, 2 bytes are required to store each integer element in the array.

### Column Major Order –

We know, Location of an element in the  $i^{th}$  row and  $j^{th}$  column of matrix A is Loc(A[i, j]) = base(A) + w \* [m \* (j - lbc) + (i - lbr)]. where lbr - lower bound of row lbc - lower bound of column. m - number of rows. w - size of each element in bytes.

# So, in Column Major Order,

Address of the element a[2][3] = 2000 + 2 \* (10 \* (3 - 1) + (2 - 1)) = 2000 + 42 = 2042

# Row Major Order -

We know Loc(A[i, j]) = base(A) + w \* [n \* (i - lbr) + (j - lbc)]. where lbr – lower bound of row lbc – lower bound of column. n – number of columns. w – size of each element in bytes.

# So, in row Major Order,

Address of the element a[2][3] = 2000 + 2 \* (10 \* (2 - 1) + (3 - 1)) = 2000 + 24 = 2024.

## **Problem 3**:

Suppose one 2-D array is initialized as int a[5][7]; Base address is 4000. Find the location of element a[2][4] in row major form and column major form.