Τ	VYSOKÉ UČENÍ FAKUL TECHNICKÉ A KOMUN V BRNĚ TECHNOLOGIÍ					
Mikrosenzory a mikromechanické systémy						
Měření chemických veličin Zpráva z laboratorního měření				Úloha č.9		
Jméno a příjmení:						
Spolupracovník:		Datum měření:				

Zadání

Seznamte se se základním principem stanovení VOC pomocí PID senzoru. Za pomoci základní dokumentace všech potřebných komponent sestavte aparaturu pro detekci VOC. Pomocí existující knihovny pro Python a dostupné dokumentace následně připravte skript pro kontinuální akvizici signálu. Na závěr otestujte funkčnost zařízení, navrhněte a implementujte přepočet ze surových hodnot na některé běžně použitelné jednotky.

Postup měření

Za žádných okolností počítač RaspberryPi nepřipojujte do elektřiny dříve, než je vaše zapojení zkontrolováno vyučujícím. V případě špatného zapojení hrozí nenávratné poškození! V případě nejasností se vždy ptejte.

- 1. Na pracovišti naleznete vzduchotěsnou nádobu, populární jednodeskový počítač RaspberryPi, stohovatelnou desku s 8-kanálovým ADC převodníkem, PID senzor s potřebnou kabeláží a potřebnou dokumentaci. Seznamte se s dokumentací HW, jež je součástí této úlohy.
- 2. Nastavte i²c adresy ADC převodníku na 0x68 a 0x69
- 3. Zapojte jednotlivé komponenty měřící soustavy. V případě nejasností konzultujte s vyučujícím

4. Zavolejte vyučujícího pro kontrolu před spuštěním

- 5. Připojte RaspberryPi do elektřiny. Zařízení se automaticky spustí
- 6. Vytvořte si **kopii** souboru VOC umístěného na ploše a spusťte ji. Tímto otevřete program Thonny, Python IDE
- 7. Vytvořte skript vyčítání a vypisování hodnot z kanálu ADC, na který je připojený PID senzor. Jednotlivé funkce a knihovny, které potřebujete importovat, najdete v dokumentaci. V případě nejasností konzultujte s vyučujícím.
- 8. Otestujte funkčnost Vašeho skriptu. V případě správného vyčítání na kanálu detekujete hodnotu > 0
- 9. Přepracujte skript pro kontinuální vyčítání hodnot.

- 10. Navrhněte přepočet získané hodnoty ve voltech na běžně používané jednotky (PPM, PPB). Všechny potřebné údaje jsou v dokumentaci.
- 11. Implementujte přepočet na jednotky a uveďte jednotky ve vypisovaných výsledcích.
- 12. Otestujte funkčnost měřící aparatury a zavolejte vyučujícího pro kontrolu.
- 13. Otestujte linearitu odezvy senzoru na koncentraci acetonu zvolte vhodné množství acetonu, které budete opakovaně přidávat do měřicí nádoby. Koncentraci můžete

vypočítat podle vztahu $C(ppm) = \frac{22,4\rho V'}{MV} \cdot 10^6$ kde V je objem nádoby v litrech, zbylé hodnoty se vztahují k acetonu (M = 58 g/mol, $\rho = 0,79$ g/l, V').

14. Otestujte odezvu senzoru na etanol (M=46 g/mol, $\rho=0.79$ g/l). Stačí provést pro dvě koncentrace.

Zdrojový kód:

Měření a jeho vyhodnocení

Tabulka 1 – Měření koncentrace acetonu

přídavek	$V_{aceton}[\mu l]$	Cvypočítaná [ppm]	C _{měřená} [ppm]
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Kontrolní otázky:

- 1. Zhodnoť te linearitu odezvy senzoru. Jak se (ne)shoduje měřená a vypočítaná hodnota?
- 2. Jak se liší odezva senzoru na aceton a ethanol?

Závěr