Experimentos - Algoritmo Genético

Estrutura do Repositório

O repositório está organizado da seguinte forma:

- MainOptimizationScript.py: Contém a classe da implementação principal do algoritmo genético, incluindo as funções de otimização, avaliação de fitness, manutenção de diversidade, e geração de gráficos.
- Library: Diretório que contém módulos auxiliares, como métodos de seleção, cruzamento e mutação.
- Experiments_1A: Diretório onde os resultados dos experimentos são armazenados, incluindo gráficos e tabelas gerados.

Como Iniciar o Script

Para executar o script principal e realizar as otimizações, siga o exemplo abaixo, você pode usar o script Playground.py:

```
from MainOptimizationScript import MainOptimizationScript

# Inicializa objeto do algoritimo genético
OptimizationObject = MainOptimizationScript(
    FITNESS_FUNCTION_SELECTION='Levi',
    IDENTIFIER="LeviExperiment"
)
```

Uma vez que o objeto está inicializado você pode configurar o script com base nos parâmetros de configuração a seguir.

Parâmetros de Configuração do Script MainOptimizationScript

Abaixo está a lista de parâmetros de configuração disponíveis no script MainOptimizationScript, juntamente com suas descrições, valores padrão e possíveis valores:

Parâmetro	Descrição	Valor Padrão	Possíveis Valores
POPULATION_SIZE	Tamanho da população inicial.	100	Inteiros positivos (e.g., 50, 100, 200).
GENERATION_COUNT	Número máximo de gerações para a execução do algoritmo.	10	Inteiros positivos (e.g., 10, 50, 100).
CHROMOSOME_LENGTH	Comprimento do cromossomo (número de genes).	2	Inteiros positivos (e.g., 1, 2, 10).
LOWER_BOUND	Limite inferior para os valores dos genes.	-100	Float ou inteiro representando o limite inferior.
UPPER_BOUND	Limite superior para os valores dos genes.	100	Float ou inteiro representando o limite superior.
FITNESS_FUNCTION_SELECTION	Define a função de fitness a ser utilizada no algoritmo.	'Levi'	'Base', 'Akley', 'Drop-Wave', 'Levi', etc.

Parâmetro	Descrição	Valor Padrão	Possíveis Valores
SELECTION_METHOD	Método de seleção utilizado para escolher os pais.	'Random'	'Random', 'TournamentSelection', 'InvertedRouletteWheelSelection', 'RandomSelection', 'DeterministicSamplingSelection'.
SELECTION_TOURNAMENT_SIZE	Tamanho do torneio (aplicável ao método de seleção por torneio).	10	Inteiros positivos (e.g., 2, 5, 10).
CROSSOVER_METHOD	Método de cruzamento utilizado para gerar descendentes.	'Random'	'Random', 'SinglePointCrossover', 'ArithmeticCrossover'.
CROSSOVER_RATE	Taxa de cruzamento entre os indivíduos.	0.8	Float entre 0.0 e 1.0.
MUTATION_METHOD	Método de mutação aplicado aos indivíduos.	'RandomMutationOnIndividualGenes'	'RandomMutationOnIndividualGenes'.
MUTATION_RATE	Taxa de mutação aplicada aos indivíduos.	0.5	Float entre 0.0 e 1.0.
APPLY_DIVERSITY_MAINTENANCE	Define se estratégias de manutenção de diversidade serão aplicadas.	True	True, False.
OPTIMIZATION_METHOD	Método de otimização utilizado no algoritmo.	'Elitism'	'Elitism'.
OPTIMIZATION_METHOD_NUMBER_ELITES	Número de indivíduos mantidos diretamente na próxima geração (elitismo).	10	Inteiros positivos menores que o tamanho da população.
IDENTIFIER	Identificador único para os experimentos, usado para salvar os resultados.	None	Qualquer string representando o identificador.
STOPPING_METHOD	Critério de parada para o algoritmo.	'GenerationCount'	'GenerationCount', 'TargetFitness', 'NoImprovement'.

Parâmetro	Descrição	Valor Padrão	Possíveis Valores
TARGET_FITNESS	Valor de fitness para interromper a execução (aplicável ao critério de parada por fitness).	None	Float representando o valor de fitness desejado.
NO_IMPROVEMENT_LIMIT	Número máximo de gerações sem melhoria para interromper a execução.	None	Inteiros positivos (e.g., 10, 20, 50).

Certifique-se de ajustar os valores desses parâmetros de acordo com os requisitos do seu experimento para obter os melhores resultados.

Uma vez que o objeto está configurado você tem duas opções de execução do algorítimo. Você pode executá-lo múltiplas vezes utilizando o método multiple_optimization.

Execução da otimização múltiplas vezes

Dois argumentos são utilizados na chamada dessa função, são eles:

num_executions: Indica a quantidade de vezes que o algorítimo genético será executado.

optimal_solution: Indica a solução ótima do problema da função de fitness que deseja-se encontrar. Esse termo é opcional mas os dados de taxa de sucesso se baseiam nele.

```
OptimizationObject.multiple_optimization(num_executions=num_executions, optimal_solution=optimal_solution)
```

Utilize o script Playground.py para testes específicos no script de algorítimo genético. Este script já está pré-configurado com base nas informações dadas até aqui.

Fluxograma das Funções

multiple_optimization

O fluxograma abaixo descreve o funcionamento da função multiple_optimization, que realiza múltiplas execuções do algoritmo genético e avalia estatisticamente os resultados:

```
flowchart TD
   A[Início] --> B["Visualizar função de fitness"]
   B --> C["Resetar resultados e métricas"]
   C --> D["Iniciar temporizador e loop de execuções"]
   D --> E["Executar otimização com elitismo ('elitism_optimization')"]
   E --> F["Armazenar resultados da execução"]
   F --> G["Atualizar melhor resultado geral"]
   G --> H{"Solução ótima encontrada?"}
   H -->|Sim| I["Incrementar contador de sucesso"]
   H -->|Não| J["Continuar"]
   I --> J
   J --> K["Atualizar métricas agregadas"]
   K --> L{"Todas execuções concluídas?"}
   L --> | Não | E
   L -->|Sim| M["Calcular métricas finais"]
   M --> N["Gerar gráficos e salvar resultados"]
   N --> O[Fim]
```

O fluxograma abaixo descreve o funcionamento da função elitism_optimization, que realiza a otimização utilizando o operador de elitismo:

```
flowchart TD
   A[Início] --> B[Gerar população inicial aleatoriamente]
   B --> C[Avaliar fitness da população inicial]
   C --> D[Resetar métricas de diversidade]
   D --> E[Iterar por gerações]
   E --> F[Selecionar pais para cruzamento]
    F --> G[Gerar descendentes com cruzamento e mutação]
   G --> H[Aplicar elitismo]
   H --> I[Atualizar população]
   I --> J[Avaliar fitness da nova população]
   J --> K[Calcular diversidade da população]
   K --> L{Diversidade abaixo do threshold e função de manutenção ativa?}
   L -->|Sim| M[Aplicar métodos de manutenção de diversidade]
   L --> Não N[Continuar]
   M --> N
   N --> O{Critério de parada atingido?}
   O -->|Sim| P[Retornar melhor solução]
   0 --> |Não | F
   P --> Q[Fim]
```

Métodos de Seleção

Os métodos de seleção determinam como os pais são escolhidos para gerar descendentes. Os métodos disponíveis são:

- TournamentSelection: Seleciona um grupo de indivíduos aleatórios (tamanho definido por SELECTION_TOURNAMENT_SIZE) e escolhe o
 melhor entre eles.
- InvertedRouletteWheelSelection: A probabilidade de seleção de um indivíduo é inversamente proporcional ao seu fitness. Indivíduos com menor fitness têm maior chance de serem escolhidos.
- RandomSelection: Seleciona indivíduos aleatoriamente, sem considerar o fitness.
- DeterministicSamplingSelection: Seleciona indivíduos com base em uma proporção fixa de fitness, garantindo que cada indivíduo seja representado de acordo com sua aptidão.
- Random: Alterna aleatoriamente entre os métodos TournamentSelection, InvertedRouletteWheelSelection, RandomSelection, e
 DeterministicSamplingSelection.

A escolha do método de seleção pode impactar diretamente a exploração e a exploração do espaço de busca.

Métodos de Mutação

A mutação introduz variação nos descendentes, alterando os genes de forma aleatória. O método disponível é:

RandomMutationOnIndividualGenes: Altera os genes de um indivíduo com uma probabilidade definida por MUTATION_RATE. Cada gene
tem uma chance independente de ser modificado.

A mutação é essencial para evitar a convergência prematura e explorar novas regiões do espaço de busca.

Métodos de Cruzamento

O cruzamento combina os genes de dois pais para gerar descendentes. Os métodos disponíveis são:

- SinglePointCrossover: Divide os cromossomos dos pais em um ponto aleatório e troca as partes para formar os descendentes.
- ArithmeticCrossover: Combina os genes dos pais usando uma média ponderada para gerar os descendentes.
- Random: Alterna aleatoriamente entre os métodos SinglePointCrossover e ArithmeticCrossover.

O cruzamento é responsável por explorar combinações promissoras de genes.

Manutenção de Diversidade

A manutenção de diversidade é aplicada quando a diversidade da população cai abaixo de um limite. As estratégias utilizadas são:

- 1. Reinicialização Parcial: Substitui uma porcentagem da população por novos indivíduos gerados aleatoriamente.
- 2. Aumento Temporário da Taxa de Mutação: Multiplica a taxa de mutação por um fator (e.g., 1.5) para introduzir mais variação.
- 3. Introdução de Indivíduos Aleatórios: Adiciona novos indivíduos aleatórios à população.

Essas estratégias ajudam a evitar a estagnação e a melhorar a exploração do espaço de busca.

Critérios de Parada

Os critérios de parada determinam quando o algoritmo deve encerrar a execução. Os critérios disponíveis são:

- GenerationCount: O algoritmo para após atingir o número máximo de gerações (GENERATION_COUNT).
- TargetFitness: O algoritmo para quando o melhor fitness encontrado atinge ou supera um valor alvo (TARGET_FITNESS).
- NoImprovement: O algoritmo para quando não há melhoria no melhor fitness por um número consecutivo de gerações (NO_IMPROVEMENT_LIMIT).

A escolha do critério de parada depende dos objetivos do experimento e do tempo disponível para execução.

Experimentos

Experimento 1

Esse experimento é executado pelo script `ExperimentSimple.py', ele é utilizado apenas pra demonstrar o código genético com uma configuração fixa. Resultados são apresentados a seguir para cada função custo.

Função Levi

A configuração utilizada para o experimento com a função Levi foi a seguinte:

Parâmetro	Valor
POPULATION_SIZE	200
GENERATION_COUNT	100
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Levi
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.1
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[1, 1]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	Levi

Resultados do Experimento

Métrica	Valor
Total Execution Time (s)	49.38577842712402
Success Rate (%)	100.0
Average Best Fitness	6.931186853893761e-06
Best Solution Found	4.344423405276921e-16

Métrica	Valor
Chromosome for Best Solution	[1.0000000019259585, 0.99999989937808]
Mean of Optimal Points	[0.9999762205854817, 1.0000000017900224]
Standard Deviation of Optimal Points	[0.0002726099263058269, 0.0004528774520905827]

Gráficos Gerados

Curva de Convergência

Diversidade da População

A diversidade é calculada através da média do desvio padrão de cada gene em cada geração. O gráfico a seguir apresenta a média de diversidade de todas as execuções e o seu desvio padrão associado.

A imagem a seguir mostra os pontos ótimos obtidos para todas execuções bem sucedidas. Além disso, apresenta-se a média desses pontos ótimos e o desvio padrão associado a essa média.

Função Drop-Wave

A configuração utilizada para o experimento com a função Drop-wave foi a seguinte:

Parâmetro	Valor
POPULATION_SIZE	200
GENERATION_COUNT	200
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Drop-Wave
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.1
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[0, 0]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	Drop-Wave

Resultados do Experimento

Métrica	Valor
Total Execution Time (s)	86.25582528114319
Success Rate (%)	92.0
Average Best Fitness	-0.9948896050918223
Best Solution Found	-1.0
Chromosome for Best Solution	[1.1968360855877302e-10, -1.2295441717671068e-09]
Mean of Optimal Points	[3.727417379878614e-05, 2.7765052998566814e-05]
Standard Deviation of Optimal Points	[0.0005256006788410745, 0.00014802600090781904]

Gráficos Gerados

Curva de Convergência

Diversidade da População

Distribuição dos Pontos Ótimos

Experimento 2

O segundo experimento consistiu em variar a população inicial para cada uma das funções custo utilizadas. Para fazer isso de uma forma estrutura foi implementado o script ExperimentPopulationSize.py.

Esse script vai executar os passos anteriormente explicitados enquanto varia a população inicial em: [50, 100, 200, 400]

Os resultados podem ser encontrados em 02_PopulationSizeVariation, mas as informações principais são apresentadas a seguir.

Função Levi

Parâmetro	Valor

Parâmetro	Valor	
POPULATION_SIZE	50 100 200 400	
GENERATION_COUNT	100	
CHROMOSOME_LENGTH	2	
LOWER_BOUND	-100	
UPPER_BOUND	100	
FITNESS_FUNCTION_SELECTION	Levi	
SELECTION_METHOD	Random	
SELECTION_TOURNAMENT_SIZE	10	
CROSSOVER_METHOD	Random	
CROSSOVER_RATE	0.8	
MUTATION_METHOD	Random	
MUTATION_RATE	0.225	
OPTIMIZATION_METHOD	Elitism	
OPTIMIZATION_METHOD_NUMBER_ELITES	20	
NUM_EXECUTIONS	100	
OPTIMAL_SOLUTION	[1, 1]	
TOLERANCE	0.01	
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False	
IDENTIFIER	LeviExperiment_POP50	

Resultados:

Métrica	Valor (Pop 50)	Valor (Pop 100)	Valor (Pop 200)	Valor (Pop 400)
Total Execution Time (s)	13.734084367752075	24.39724111557007	49.836204051971436	115.94279527664185
Success Rate (%)	96.0	100.0	100.0	100.0
Average Best Fitness	0.0002759522713756379	4.834148016256333e-05	1.4423788788487844e-05	5.597974456271896e-07
Best Solution Found	1.6857203051960365e-09	5.309025825887526e-13	3.7200342912541225e-17	2.888746143425376e-14
Chromosome for Best Solution	[1.0000007607647516, 0.9999595805494914]	[1.0000000064190506, 1.0000007260863275]	[0.999999993852009, 0.9999999981977981]	[1.0000000057696836, 0.9999998390739089]
Mean of Optimal Points	[1.000067980257224, 0.9999557675466907]	[1.0001405119913311, 1.0000438362952746]	[1.000035746607017, 0.9999302430277044]	[1.0000011292055253, 1.0000042500303954]
Standard Deviation of Optimal Points	[0.0017099195046880596, 0.0017906220807427506]	[0.0007007161132453017, 0.0015693413159984623]	[0.00039094460619084584, 0.0007584421942344941]	[7.544505970749895e-05, 0.00021994529289061127]

Gráficos Gerados

Sucesso vs. Tamanho da População

Tempo de Execução vs. Tamanho da População

Diversidade Média vs. Tamanho da População

Curvas de Convergência para Diferentes Tamanhos de População

Função Drop-Wave

Parâmetro	Valor
POPULATION_SIZE	50 100 200 400
GENERATION_COUNT	200
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Drop-Wave

Parâmetro	Valor
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.1 (varia com população)
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[0, 0]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	Drop-WaveExperiment_POP50

Resultados:

Métrica	Valor (Pop 50)	Valor (Pop 100)	Valor (Pop 200)	Valor (Pop 400)
Total Execution Time (s)	30.41422390937805	55.762266874313354	114.32732343673706	260.98560070991516
Success Rate (%)	67.0	66.0	88.0	98.0
Average Best Fitness	-0.980204931140019	-0.9794249826693925	-0.9946680287966604	-0.9992923811056188
Best Solution Found	-0.999999999943	-1.0	-1.0	-0.99999999999998
Chromosome for Best Solution	[-2.150870537723986e-09, 1.2537300101991205e-07]	[5.110254744307705e-10, 1.401576822006087e-09]	[-5.579270544899776e- 10, 1.397761252045926e- 09]	[-2.3520112836471112e-09, -1.5440200181792199e-09]
Mean of Optimal Points	[-6.199480807987171e-05, -5.394110083363191e-05]	[-0.0001357890410971659, 0.00028054367746785337]	[5.213785344044782e-05, 8.376101174055558e-05]	[8.04094334594194e-05, -8.565309660534587e-06]
Standard Deviation of Optimal Points	[0.0015690021797839055, 0.001215205333742817]	[0.0006586359203090773, 0.0008647967860396557]	[0.000420247490047234, 0.0003959220429625053]	[0.0005975047169587559, 0.0001304449854207518]

Gráficos Gerados

Sucesso vs. Tamanho da População

Tempo de Execução vs. Tamanho da População

Diversidade Média vs. Tamanho da População

Curvas de Convergência para Diferentes Tamanhos de População

Experimento 3

O terceiro experimento consistiu em variar a taxa de cruzamento. Para fazer isso de uma forma estrutura foi implementado o script ExperimentCrossoverRate.py.

Esse script vai executar os passos de execução do algorítimo genético enquanto varia a taxa de cruzamento em: [0.2, 0.4, 0.6, 0.8]

Os resultados podem ser encontrados em 03_CrossoverRateVariation, mas as informações principais são apresentadas a seguir.

Função Levi

Parâmetro	Valor

Parâmetro	Valor
POPULATION_SIZE	200
GENERATION_COUNT	100
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Levi
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.2 0.4 0.6 0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.1
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[1, 1]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	LeviExperiment_CR20

Resultados:

Métrica	Valor (CR 0.2)	Valor (CR 0.4)	Valor (CR 0.6)	Valor (CR 0.8)
Total Execution Time (s)	48.228148460388184	49.49453020095825	50.60233998298645	51.648521184921265
Success Rate (%)	98.0	100.0	100.0	100.0
Average Best Fitness	0.00030693809365380567	0.00016009818394668377	3.893211403434806e-05	6.717681490268055e-06
Best Solution Found	1.4642394243252776e-07	1.850625972393934e-08	1.1401917115114965e-09	4.802642593353976e-13
Chromosome for Best Solution	[0.9999849772778537, 0.9996448224598866]	[1.0000143430143298, 1.0000051941919639]	[0.9999982287686628, 0.9999707018303328]	[1.0000000663278827, 1.000000291689727]
Mean of Optimal Points	[1.0000511135218595, 1.0000178000336184]	[1.000106539459325, 0.9998214685570213]	[1.0001247963164155, 1.000113624330652]	[0.9999833644398154, 0.999974880760946]
Standard Deviation of Optimal Points	[0.0013721943413688767, 0.0022036166406925756]	[0.001317891759408302, 0.0017539252978811509]	[0.0006404612788528389, 0.0008238176350856776]	[0.0002697208770926505, 0.0003968642486789746]

Gráficos Gerados

Sucesso vs. Taxa de Cruzamento

Tempo de Execução vs. Taxa de Cruzamento

Diversidade Média vs. Taxa de Cruzamento

Curvas de Convergência para Diferentes Taxas de Cruzamento

Função Drop-Wave

Parâmetro	Valor
POPULATION_SIZE	200
GENERATION_COUNT	200
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Drop-Wave

Parâmetro	Valor
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.2 0.4 0.6 0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.1
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[0, 0]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	Drop-WaveExp_CR20

Resultados:

Métrica	Valor (CR 0.2)	Valor (CR 0.4)	Valor (CR 0.6)	Valor (CR 0.8)
Total Execution Time (s)	95.26983642578125	98.79219198226929	101.0256679058075	100.18523359298706
Success Rate (%)	67.0	69.0	69.0	82.0
Average Best Fitness	-0.9804223691231256	-0.9818338594675967	-0.9834726646545026	-0.9889905693487635
Best Solution Found	-0.9999997909318954	-0.9999999959277033	-0.999999999999809	-1.0
Chromosome for Best Solution	[-7.39395085033307e-05, -1.7330478290933536e-05]	[2.392874073023714e-07, -1.059631830150579e-05]	[-6.015759814972612e-10, 2.2936812621326693e-08]	[4.730365854521187e-12, 4.665374578432198e-11]
Mean of Optimal Points	[-0.00027809547833298055, 0.0003140420725221098]	[-1.5583891157953607e- 05, 0.00016969272682033015]	[0.000129949280166672, 0.00025699600444634564]	[-5.78694009985157e-05, 5.102668585786947e-05]
Standard Deviation of Optimal Points	[0.002001829999174437, 0.0027641386773536378]	[0.001193410728037605, 0.001331090199682656]	[0.0006149528835635319, 0.00113100987766833]	[0.00041218136304147683, 0.00038002652517376873]

Gráficos Gerados

Sucesso vs. Taxa de Cruzamento

Tempo de Execução vs. Taxa de Cruzamento

Diversidade Média vs. Taxa de Cruzamento

Curvas de Convergência para Diferentes Taxas de Cruzamento

Experimento 4

O quarto experimento consistiu em variar a taxa de mutação. Para fazer isso de uma forma estrutura foi implementado o script ExperimentMutationRate.py.

Esse script vai executar os passos de execução do algorítimo genético enquanto varia a taxa de cruzamento em: [0.05, 0.1, 0.15, 0.2]

Os resultados podem ser encontrados em 04_MutationRateVariation, mas as informações principais são apresentadas a seguir.

<u>Função Levi</u>

Parâmetro	Valor

Parâmetro	Valor
POPULATION_SIZE	200
GENERATION_COUNT	100
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Levi
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.05 0.1 0.15 0.2
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[1, 1]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	LeviExperiment_MR5

Resultados:

Métrica	Valor (MR 0.05)	Valor (MR 0.1)	Valor (MR 0.15)	Valor (MR 0.2)
Total Execution Time (s)	63.64865803718567	57.57697606086731	65.21808528900146	66.68169617652893
Success Rate (%)	100.0	100.0	100.0	100.0
Average Best Fitness	1.8155518074823477e-05	6.262022127793411e-06	1.1006784668010278e-05	1.6989383898487343e-05
Best Solution Found	2.2871346276861776e-15	9.843054514000198e-15	7.266389188779052e-14	9.607534749761284e-13
Chromosome for Best Solution	[1.0000000049013311, 0.9999999886320652]	[0.9999999895821257, 0.99999999903045482]	[0.9999999718137011, 1.000000036051484]	[1.0000000075795743, 0.9999990224556528]
Mean of Optimal Points	[1.000062268644595, 1.0000715495089059]	[1.0000166359933704, 1.000058596135597]	[1.0000053407649627, 0.9999727171936326]	[0.999982743277974, 0.9999620052553335]
Standard Deviation of Optimal Points	[0.00043832215474291645, 0.0007391569729526776]	[0.00025798412918568646, 0.0005053260415023057]	[0.0003478845506749992, 0.0003642856429780684]	[0.00043009413996225284, 0.0005882668552716354]

Gráficos Gerados

Sucesso vs. Taxa de Mutação

Tempo de Execução vs. Taxa de Mutação

Diversidade Média vs. Taxa de Mutação

Curvas de Convergência para Diferentes Taxas de Mutação

Função Drop-Wave

Parâmetro	Valor
POPULATION_SIZE	200
GENERATION_COUNT	200
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Drop-Wave

Parâmetro	Valor
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.05 0.1 0.15 0.2
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[0, 0]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	Drop-WaveExperiment_MR5

Resultados:

Métrica	Valor (MR 0.05)	Valor (MR 0.1)	Valor (MR 0.15)	Valor (MR 0.2)
Total Execution Time (s)	113.43129873275757	116.88155484199524	105.64892077445984	111.53991603851318
Success Rate (%)	87.0	96.0	96.0	100.0
Average Best Fitness	-0.9922297467129111	-0.997388692717553	-0.9978793601188424	-0.9999985210655103
Best Solution Found	-1.0	-1.0	-1.0	-1.0
Chromosome for Best Solution	[2.4388040545491236e- 10, 8.44684146518145e- 10]	[7.41533368558058e-10, 9.376036987802425e-10]	[-1.1355374296179785e- 09, -7.831705304395526e- 11]	[7.295278892406775e-10, 1.328472962464868e-10]
Mean of Optimal Points	[8.478836201469852e-05, -3.993713372039226e-05]	[-0.00016810447760392825, 1.7143527631831191e-06]	[3.953382214891979e-05, -1.1649485822599492e- 05]	[-2.0555567776670262e- 05, -5.771386333605411e- 07]
Standard Deviation of Optimal Points	[0.0004835791024148683, 0.00047994617813158026]	[0.0011904347023247042, 0.0005590537145584015]	[0.00025581721354650224, 0.0002100179023348101]	[0.00014868434998470585, 0.00013516110673886163]

Gráficos Gerados

Sucesso vs. Taxa de Mutação

Tempo de Execução vs. Taxa de Mutação

Diversidade Média vs. Taxa de Mutação

Curvas de Convergência para Diferentes Taxas de Mutação

Experimento 5

O quinto experimento consistiu em variar a proporção de individuos definidos como "elites" em relação a população inicial. Para fazer isso de uma forma estrutura foi implementado o script ExperimentElitismProportion.py.

Esse script vai executar os passos de execução do algorítimo genético enquanto varia a proporção de elites em: [0.1, 0.2, 0.3, 0.4]

Os resultados podem ser encontrados em 05_ElitismProportionVariation, mas as informações principais são apresentadas a seguir.

Função Levi

Parâmetro	Valor
POPULATION_SIZE	200

Parâmetro	Valor
GENERATION_COUNT	100
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Levi
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.1
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20 40 60 80
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[1, 1]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	LeviExp_EP10

Resultados:

Métrica	Valor (EP 10%)	Valor (EP 20%)	Valor (EP 30%)	Valor (EP 40%)
Total Execution Time (s)	49.154149532318115	53.634897232055664	59.30273962020874	63.667489528656006
Success Rate (%)	100.0	100.0	100.0	100.0
Average Best Fitness	7.268079042260288e-06	4.581632915155468e-06	1.0873428498978745e-05	9.158646991154204e-06
Best Solution Found	2.4297301516733986e-18	5.015575339596988e-14	4.851622446231831e-18	1.0112032540933745e-16
Chromosome for Best Solution	[1.0000000001053546, 1.0000000011969514]	[0.9999999810556681, 0.9999998661413136]	[1.0000000002305087, 0.99999999997193532]	[0.999999999311189, 1.0000000100346467]
Mean of Optimal Points	[1.0000191916148697, 1.0000423331021095]	[1.0000251939121447, 0.9999892990740349]	[1.0000019269521332, 1.0000238510634842]	[1.0000343968364158, 1.0000325010985378]
Standard Deviation of Optimal Points	[0.000276977239385058, 0.0005848950437874454]	[0.0002123960386449826, 0.0006871396206837133]	[0.0003461499136057992, 0.0003315868103414719]	[0.00031248194663649313, 0.000529845885614189]

Gráficos Gerados

Sucesso vs. Proporção de Elites

Tempo de Execução vs. Proporção de Elites

Diversidade Média vs. Proporção de Elites

Curvas de Convergência para Diferentes Proporções de Elites

Função Drop-Wave

Parâmetro	Valor
POPULATION_SIZE	200
GENERATION_COUNT	200
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Drop-Wave

Parâmetro	Valor
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.1
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20 40 60 80
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[0, 0]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	Drop-WaveExp_EP10

Resultados:

Métrica	Valor (EP 10%)	Valor (EP 20%)	Valor (EP 30%)	Valor (EP 40%)
Total Execution Time (s)	98.95973777770996	103.28781819343567	121.37364840507507	133.1347851753235
Success Rate (%)	87.0	86.0	90.0	93.0
Average Best Fitness	-0.9924922223968047	-0.9910399096521231	-0.9940474399357737	-0.9955427512751944
Best Solution Found	-1,0	-1.0	-1.0	-1.0
Chromosome for Best Solution	[-8.958218660318589e-10, -1.4088726616697334e-10]	[2.198354260466937e-10, -8.179038490174246e-10]	[-1.5394038227797313e- 10, -2.678432020202786e- 10]	[-1.3958852765745515e- 09, -4.544971627525049e- 10]
Mean of Optimal Points	[6.207775612158132e-05, -0.0001100970356825456]	[5.126529242647239e-05, 9.365613835378687e-05]	[-5.967528707031825e-05, -3.5792985485703674e-05]	[6.427660614091573e-05, 4.823646797097185e-05]
Standard Deviation of Optimal Points	[0.00036873144562788227, 0.0009516617488339543]	[0.0008101136078005096, 0.0006614068303177757]	[0.0005006058106672425, 0.00030800788647086704]	[0.0005857361590232405, 0.0004203499385424038]

Gráficos Gerados

Sucesso vs. Proporção de Elites

Tempo de Execução vs. Proporção de Elites

Diversidade Média vs. Proporção de Elites

Curvas de Convergência para Diferentes Proporções de Elites

