ZILFIMIAN

Regularization/GLM (Q6L7)

19% (4/21)

- 1. Overdispersion in Poisson Regression occurs when
 - A var(Y|X)>var(Y)
 - (B) var(Y|X)>mean(Y|X)
 - C Variance is decreasing
 - D I do not know
- ✓ 2. Which one of these is the measure for goodness of fit for Poisson Regression?
 - (A) Ordinal R^2
 - B Chi-square & Pseudo R^2
 - C I do not know
 - D There are not measure for it
- X 3. Which one of these is the correct interpretation of the coefficient of Poisson Regression?
 - A For a 1-unit increase in X, we expect a b1 unit increase in Y.
 - $oxed{\mathsf{B}}$ For a 1-unit increase in X, we expect b1 percentage increase in Y.
 - (c) For a 1-percentage increase in X, we expect b1 percentage increase in Y.
 - \bigcirc For a 1-percentage increase in X, we expect b1 unit increase in Y.
 - (E) I do not know
- X 4. In Poisson regression...
 - (A) The asymptotic distribution of the maximum likelihood estimates is multivariate normal.
 - (B) The distribution of the maximum likelihood estimates is multivariate normal.
 - The asymptotic distribution of the maximum likelihood estimates is multivariate Poisson distribution.
 - D I do not know
- 5. Pseudo R-Squared Measures are calculated based on...
 - (A) The likelihood function
 - B Chi-squared value
 - C I do not know
 - (D) Overdispersion term

Tigran Karapetyan Page 1 of 5

×	6.	In the case of intercept-only model
	(A)	The mean of the dependent variable equals the exponential value of intercept
	В	The mean of the dependent variable equals the intercept
	(c)	The mean of the dependent variable equals 0
	D	I do not know
×	7. e^(-	In(lambda) = 0.6 - 0.2* female [lamda = the average number of articles] Note: -0.2)=0.78
	A	One unit increase in female brings a 0.2 decrease in ln(lambda).
	В	Being female decreases the average number of articles by 0.78 percent
	(c)	Being female decreases the average number of articles by 22%
	D	I do not know
×	8. lam	While running the Poisson Regression we will have never faced with the value of obda
	В	1
	$\left(C\right)$	2
	D	I do not know
×	9.	Why does not quasi-Poisson model have AIC?
	A	Quasi-Poisson is used quasi-likelihood instead of log-likelihood estimates.
	В	Quasi-Poisson does not use iterative estimation
	(c)	I do not know
X	10.	Why Poisson regression is called log-linear?
	A	Because we use a log link to estimate the logarithm of the average value of the dependent variable
	В	Because we use a log values of independent variable
	(c)	Because we use a log value of an independent variable is transformed to linear
	\bigcirc	I do not know
	\sim	

Tigran Karapetyan Page 2 of 5

×	11.	
	(A)	The number of observations is much larger than the number of variables (n>>p)
	(B)	The number of observations is slightly larger than the number of variables (n>p)
	C	The number of observations equals than the number of variables (n=p)
	D	The number of observations is lees than the number of variables (n <p)< th=""></p)<>
	E	It is not important
	F	I do not know
	12.	The way of solving the problem of a large number of variables is Subset Selection & Shrinkage (Regularization)
	B	Shrinkage (Regularization) & Maximum Likelihood estimation
		Dimension Reduction & OLS estimation
		I do not know
	E	The absence of the right answer
	13. :)	The bias of an estimator (e.g. z^) equalsHint: the OLS coefficients are unbias
	A	E(z^) - z
	B	E(z^2) - [E(z)]^2
	(c)	$[E(z^2) - E(z)]^2$
		$E(z^2)$
	E	I do not know
×	14.	Which of following is not a type of regularization:
	A	L1 - Lasso
	B	L2 - Ridge
	C	Elastic Net
	D	L3 - Passo
	E	I do not know
×	15.	The main idea of regularization is
	A	To introduce a small amount of bias in order to have less variance.
	B	To introduce a small amount of variance in order to have less bias.
	C	To introduce a small amount of variance and bias in order to have less bias.
	(D)	I do not know

Tigran Karapetyan Page 3 of 5

	(B)	regular()
	C	lm()
	D	glm()
	E	I do not know
X	17.	How the tune of any parametr can be made
	(A)	using Cross validation
	B	It is impossible
	(c)	I do not now
		using larger sample
	E	only having population
	18.	Elastic Net is
	A	the combination of L1 and L2 regularization
	B	the combination of L2 and L3 regularization
	$\overline{(c)}$	is independent from other types of refularization
		I do not know
	E	not a type of regularization
×	19.	Regularization is used only for
	A	Poisson Regression
	B	Linear Regression
	(c)	Logistic Regression
	\bigcirc	any regression
	E	I do not know
×	20.	Regularization can solve the problem of
	A	heteroscedasticity
	\bigcirc B	multicollinearity
	C	autocorrelation
	D	I do not know
)	

X 16. With which function we can show regularization in R

(A) glmnet()

Tigran Karapetyan Page 4 of 5

X 21. Multicollinearity occurs when

- A rank(X)<m (m is the number of explanatory variables)
- (B) var(ε)= σ^2 I
- (c) E(ϵ)=0
- D cov(εi,εj)=const
- E I do not know

Tigran Karapetyan Page 5 of 5