微电子与 电 基础

毛新宇 信息科学技术学院

2023. 2. 21

群聊: 23春 电基

该二维码7天内(2月24日前)有效, 重新进入将更新

课程定位

- 专业平台基础课之一
- 教学目标
 - 铺垫 背景
 - 了解知识
 - 提升 兴趣
- 要求掌握层次
 - 基本概念、过程
 - 基本原则、方法

信息领域

参考资料, 教学团队

- 参考:
 - 上课幻灯片
- 主页: http://course.pku.edu.cn
 - 课件,作业,讨论区
- 教师
 - 刘晓彦 微纳电子大厦408
 - 62756793
 - xyliu@ime.pku.edu.cn
 - 毛新宇 理科二号楼2256
 - 62763276
 - xymao@pku. edu. cn

•助教:

- 张柏骏: 微纳电子大厦
 - jontpj@stu. pku. edu. cn
- 吕奕腾
 - 手机: 18358178865
 - Ivyiteng@pku. edu. cn

课时安排: 共15次

随堂小

测验

六 21 2.28 作业提交 4 14 28 24 期末 小测验

周

每周周二7-9节

上课地点: 理教309

课程安排

- 授课:主要为课堂讲授,共计15次课
 - 7 (电路基础) + 7 (微电子基础)
 - 期末小测验
- 考核 (P/F) 制
- 电路部分+微电子部分成绩分布

作业: 5+5 20+20=40

• 随堂小测验: 2+2 10+10=20

期末测试: 1

40

• 总分100, 通过: >= 70

•期中考试:无!

• 习题课: 无!

参观计划:

五月中旬, 亦庄,

课程内容

电路基础

- 常见元器件和信号
- 常见电路模块/积木
- 典型的电子系统

- 半导体物理
- 半导体器件物理
- 集成电路制造工艺
- 设计自动化
- 技术趋势和前沿领域

微电子 学科

- 微电子(Microelectronics) : 微型电子学
 - 在半导体材料上,制作微小型电路、系统和功能结构
 - 空间的尺度常以微米、纳米来衡量
 - 主要研究与集成电路有关的科学与技术: 设计、制造
- 集成电路(Integrated Circuit)
 - "将各种元件,按照一定电路,缩微集合到一块半导体的晶片上,并封装起来,执行特定的电路功能"
 - 功能强、尺寸小、耗电省、速度高、可靠性高、价格低
 - 一个国家电子信息产业的支柱之一
 - 复杂的设计流程 和 加工工艺流程

课程内容安排

- 概述
- 典型电路系统
 - 放大器, 滤波器, 稳压源
 - 数字传输, 手环, 录音笔, 计算机

怎样起源的

原理架构是什么

怎样分析

会有怎样的发展

- 集成电路是怎么工作的?
 - 半导体物理基础、半导体器件物理基础
 - CMOS集成电路基础
- 集成电路是怎么制造的?
 - 集成电路平面工艺
 - CMOS 集成电路的工艺集成
- 集成电路是怎么设计的?
 - 集成电路设计的典型设计流程及设计工具
- 知识介绍:
 - MEMS, 平板显示, AI芯片、图像传感

电路的分类

• 名称: 电力线路(强电)

• 组成: 发电机+变压器+电器

• 操作: 产生/传输/分配/转换/存储

对象: 能量, 功率

• 指标: 效率、容限、安全性

• 课程: 电工、电机、...

- 电子线路(弱电)
- 信号源+电路板+元件
 - 传输/处理/变换/存储
- 信号, 信息, 噪声
- 功能、信息量、计算力
- 模电、数电、集成电路…

电路的分类

模拟电路 数字电路 线性电路 非线性电路 无源电路 有源电路 稳恒电路 时变电路 低频电路 高频电路 通用电路 专用电路

常见电子系统

• 计算: 微机、巨型机、嵌入系统、PAD...

• 通信: 电报、电话、蜂窝、网络、定位...

• 传媒: 电影、电视、广告、广播、印刷...

• 娱乐:游戏机、玩具、DC、DV、PMP....

• 其它: 白色家电、门禁、识别...

专用电子系统

• 军工: 雷达、火控、对抗、遥控、监听...

• 汽车:导航、动力控制、防盗、安全...

• 工业:程控、自动化、质检、仪器仪表...

• 医疗: 诊断、治疗、专家系统、人造器官..

• 其它: 航空航天、遥感、金融交易系统...

电子系统的一般结构

- 功能电路:
 - 元器件(包括IC), 电路板(机械电气连接)
- 电源:
 - 电网|稳压源|电池|发电机|电容|电感...
- 信号源:
 - 其它电路、传感器、噪声和干扰...
- 负载:
 - 其它电路、换能器...
- 人机界面:
 - 开关、键盘、显示、多媒体...

电源

• 交流电: 正弦, 市电/动力电...

• 直流电源: 稳压电源, 开关电源

• 电池: 提供稳恒的直流电压

• 电容|电感: 提供电压/电流; 随充电/放电变化

20.00V 1.500R

• 电流源: 提供稳恒电流

信号源 传感器 电源

功能电路

人机界面

信号源

- 传感器:
 - 将自然现象转成电信号
 - 存储信号: 来自以前的记录的媒质
 - 通信信号: 来自通信发射端的信号
- 信号发生器: 人造的确定/伪随机信号
- 噪声和干扰: 源于热运动或其他设备

负载

- 换能器:
 - 转换成其他物理形式
 - 发射: 通过天线或者其他形式传送出去
 - 存储: 通过光、磁、电等形式存储起来
- 负载是另一些电路(后级电路)
 - 等效负载: 用简单电路代替复杂电路

电源

功能电路

信号源

硬件与 软件

- 硬件部分: 元器件 + 电路
 - 电路: 印刷电路板 和 电缆电线等
 - 元器件: 分立元器件 和 集成电路
 - 集成电路: 内部具有复杂的电路
- 软件部分: 多种形式和平台
 - 通用|专用,低级语言|高级语言
- 软硬件的功能总是相辅相成的
- 同一系统有多种软硬分工方式
 - 软的比例大 <> 灵活
 - 硬的比例大 <> 高效
- 软硬件的分界不再泾渭分明

印刷电路板 的 制版图

- 一般电子线路的结构:
 - PCB + 元器件

Printed Circuit Board

• 元器件: 具备一定功能和特性

• 种类: 分立元器件、集成电路、模块…

• PCB: 连接元器件的金属图样 <> 照相印刷

• 过孔和焊盘: 用于层间连接和固定元件

顶层(正面)PCB图

底层(背面)PCB图

原理图(schematic)

• 图块: 指示元器件及其管脚

• 连线: 指示元器件管脚之间的连接关系

• CAD: 用计算机辅助设计和分析···

• 仿真: 用计算机模拟真实电路的运行…

• 模拟真实的程度, 取决于模型和算法

实验电路板的发展

• 钻孔式: 元器件大而重, 需要螺丝固定

• 绕线式: 可以反复拆装, 但走线繁复

• 焊接式: 适合一般的电路, 目前很常用

• 接插式: 便于试验/教学, 不适于复杂电路

• 智能式: 和电源/信号源/虚拟仪器一体化

主流的印刷电路 (PCB)

• 电路板: 多种形状和材质、不同层数…

• 覆铜层: 绘制成连线与填充区

• 过孔Via: 连接不同的铜层

• 焊盘Pad: 安装、连接元器件的位置

• 元件和接插件: 插装、表面贴装, 插座

多层 PCB 及其 加工流程

• 优点: 面积小/易走线/屏蔽性/新封装

• 缺点: 加工难/成本高/测试难/维修难

多层 PCB 及其 加工流程

• 步骤1: 裁板|压膜|曝光|显影|蚀刻|去膜|内检...

• 步骤2: 冲孔|铆合|叠板|压合|钻孔|去毛|去胶...

• 步骤3: 沉铜|镀铜|镀锡|阻焊|丝网|其它|检测...

电路的设计和生产过程

• 方案调研: 分析需求, 提出方案, 并选件

• 原理设计:完成原理图,导出网表

• 原型试验: 调试原型, 关键技术测试

• 定型设计: 绘制PCB, 设定测试方案

• 生产制造: PCB制造, 装焊, 测试

表面贴装工艺 (SMT)

- 查料|文件准备|程式制定
- 锡膏印刷|烘干|点固定胶|贴片|检测
- 回流焊/波峰焊|清洗|检测返修

表面贴装工艺 (SMT)

- 查料|文件准备|程式制定
- 锡膏印刷|烘干|点固定胶|贴片|检测
- 回流焊/波峰焊|清洗|检测返修
- 翻面|针台测试|切割|人工装配|整机测试
 - 测试方法: 光检测|电检测|X光|超声波

电信号的测量: 常用仪器

• 万用表: 测量电流、电压、电阻等...

• 示波器: 电路试验/实验最重要的仪器

- 观测电压~时间的函数波形
- 同时观察多个信号之间的关系...
- 其他: 信号发生器/频谱仪/场强仪/虚拟仪器…

电路的调试 和 仿真

• 目的: 电路各处的信号是否符合预期

• 调试: 真实的硬件 + 试验用的信号

• 仿真: 虚拟的硬件 + 试验用的信号 <> 低成本

• 增加了环节,但提高了效率 <> 返工周期短

• 计算机辅助下, 自动排错, 自动/半自动设计

• 可随意选择/设定各种器件,可自由编制测试信号

• 可以采用丰富、直观的形式显示结果

• 主要的缺陷: 慢, 少数情况下不符实

仿真软件的使用

- 仿真软件的发展: SPICE +图形界面
- 基本仿真步骤
 - 1. 放置元器件, 信号源, 测试仪器…
 - 2. 连线…
 - 3. 启动仿真
 - 4. 观察+分析
 - 5. 调整电路, 再运行…
- 仿真软件的发展方向:
 - 模型库不断扩充: 数量、逼真程度
 - 模拟可编程器件: 程序可以在虚拟芯片上运行
 - 混合式(半实物)仿真: 与真实硬件相结合
 - 电子设计自动化(EDA): 仿真作为重要步骤

电路元器件

模拟电路元件

- 典型模拟元件
 - 电阻
 - 电容
 - 电感
 - 变压器 (互感)
 - 电源
 - 晶体二极管
 - 晶体三极管
 - 集成放大器

•

不是双端口元件

双端元件!

VCR:伏安特性

• F(V,I) = 0

• 推广: F(V,I,t) = 0

• 多端元件怎么描述?

电阻

- 欧姆定理: I = V/R
 - 过零点的直线, 斜率为 1/R
- 耗能元件: 焦耳热= I2R 或 V2/R
- 用途很多: 限流、分流、降压、 滤波、匹配、转换、上拉、下拉...
- 特殊电阻: 人体、大地、超导体...
- 参数:
 - 电阻值...
 - 其它: 尺寸、精度、额定功率...
- 固定电阻: 准确度、稳定度
- 可变阻值: 手动调节, 环境参数影响
 - 电阻传感器:
 - 阻值易随环境变化——- 热、光、压、湿...

电阻的参数

• 标称阻值	 电阻器设定的电阻值。 通常用数字或色标在电阻器上标志。欧(Ω)、千欧(kΩ)、兆欧(MΩ)。 直标法:将电阻的阻值直接用数字和字母印在电阻上 色标法:将不同颜色的色环涂在电阻器上来表示电阻
• 允许偏差	 实际阻值与标称阻值间允许的最大偏差,以百分比表示。 常用的有±5%、±10%、±20%,精密的小于±1%,高精密的可达0.001%。 通常同时标出标称值及允许误差
• 额定功率	• 电阻器在额定温度下连续工作所允许耗散的最大功率。
	非线性: 电流与所加电压特性偏离线性关系的程度 享版特性: 阳值随工作频率增享而下降的关系。分布电容和分布电域

• 其他参数

- 高频特性: 阻值随工作频率增高而下降的关系。分布电容和分布电感
- 温度系数: T.C.R.) 温度每改变1℃时阻值的平均相对变化, ppm/℃。
- 长期稳定性: 电阻器在长期使用或贮存过程中受环境条件的影响阻值发生变化
- 电压系数: 所加电压每改变1伏时阻值的相对变化率、
- 电流噪声: 电阻体内因电流流动所产生的噪声电势的有效值与测试电压之比

电容

- 动态元件: f(V,I,t)=0
 - I = dQ/dt = d(CV)/dt = CV'
 - 电流不是无穷大时, 电压不会突变
 - => 所谓的记忆性
 - 解含C的电路,要解微分方程/组
- 电容的串、并联等效 和 R, L 相反
- 可逆的能量转化: 电能 <=> 电场能
 - 正弦信号激励下: I/V 相位差90度
 - 不消耗能量, 平均功率为零
- 用途:滤波、存储、。。。
- 电容值: 恒定、可变

电感

- 动态元件: f(V,I,t)=0
 - $V=n d\Phi/dt = d(L I)/dt = L I'$
 - 电压不是无穷大时,电流不会突变 => 记忆性
 - 解含L的电路, 要解微分方程/组
- 可逆的能量转化: 电能 <==> 磁场能
 - 正弦信号激励下: V/I相位差90度
 - 不消耗能量, 平均功率为零
- 与电容存在对偶性 => 用 C 设计的电路也有 L 版本
 - 成本比 C 贵 => 多数时候用 C
 - 需要 L、C 同时出现的电路, 替代起来比较难
- 电感值: 恒定、可变

线性元件: 电阻R、电容C、电感L

- 元器件最基本描述方法: 伏安特性 (VCR)
 - 电阻: V=IR => 欧姆定理
 - 电容: Q = C V => dQ/dt => I = C V'
 - 电感: Φ = L I => n dΦ/dt => V = L I'
- 线性元件: 在分析电路时有许多简便方法
 - 若 I₀ => V₀, 则: A·I₀ => A·V₀
 - 若 I₁ => V₁, I₂ => V₂, 则: I₁+I₂ => V₁+V₂

线性元件: 电阻R、电容C、电感L 其他的元件?

- 电阻: V = I R => dv = Rdi
- 电容: Q = C V => dq = Cdv
- 电感: Φ = L I => dΦ = Ldi

