II - Systèmes linéaires

Le plan est rapporté à un repère $(O; \vec{\imath}, \vec{\jmath})$.

Définition : Soient a, b et c trois nombres réels, a et b n'étant pas tous deux nuls. On appelle équation linéaire à deux inconnues x et y une équation de la forme ax + by = c (ceci constitue une équation cartésienne de droite). Résoudre cette équation consiste à trouver tous les couples $(\alpha; \beta)$ de réels vérifiant $a\alpha + b\beta = c$.

Exemple : On donne l'équation 5x - 4y = 7 d'inconnues x et y. L'équation est celle d'une droite dans le plan. Le couple (x; y) = (3; 2) est une solution de l'équation car $5 \times 3 - 4 \times 2 = 7$.

De même le couple (x; y) = (-1; -3) est une autre solution de cette équation car $5 \times (-1) - 4 \times (-3) = 7$.

Cela signifie que les points de coordonnées (3; 2) et (-1; -3) sont sur la droite d'équation 5x - 4y = 7.

Par contre le couple (x; y) = (4; 1) n'est pas une solution de l'équation car $5 \times 4 - 4 \times 1 = 16 \neq 7$. Donc le point de coordonnées (4; 1) n'est pas sur la droite.

Propriété: Une équation linéaire à deux inconnues ax + by = c, où $(a; b) \neq (0; 0)$, admet une infinité de couples solutions. Ces solutions sont les coordonnées des points de la droite d'équation ax + by = c.

Interprétation géométrique

Dans le cas où $b \neq 0$ et $b' \neq 0$, le système correspond aux équations de deux droites \mathscr{D} et \mathscr{D}' de coefficients directeurs $-\frac{a}{b}$ et $-\frac{a'}{b'}$ (en effet, pour \mathscr{D} , $ax+by=c \iff by=-ax+c \iff y=-\frac{a}{b}x+\frac{c}{b}$). \mathscr{D} est parallèle à \mathscr{D}' équivaut à $-\frac{a}{b}=-\frac{a'}{b'}$ c'est-à-dire ab'=a'b ce qui donne ab'-a'b=0. • $ab'-a'b\neq 0$ équivaut à \mathscr{D} et \mathscr{D}' sont sécantes en un point S. Le couple de coordonnées de S est le couple

- solution du système.
- ab' a'b = 0 équivaut à \mathscr{D} et \mathscr{D}' sont parallèles.
 - soit les ordonnées à l'origine des deux droites sont différentes, c'est-à-dire $\frac{c}{b} \neq \frac{c'}{b'}$, alors les droites \mathscr{D} et \mathcal{D}' sont strictement parallèles et le système n'admet pas de couple solution.
 - soit les ordonnées à l'origine sont égales, c'est-à-dire $\frac{c}{b} = \frac{c'}{b'}$, alors les droites \mathscr{D} et \mathscr{D}' sont confondues et tous les couples qui représentent les coordonnées des points de \mathcal{D} sont solutions du système.

Exercice: Résoudre les deux systèmes suivants:
$$\begin{cases} 4x - 3y = 6 \\ x + 5y = 13 \end{cases}$$
 et
$$\begin{cases} 4x - 6y = 2 \\ 6x - 9y = 3 \end{cases}$$