CMOS

1/1 point (ungraded)

Given the following cmos gate, determine the function computed by this gate.

- \bigcirc A) $Z = B \cdot (A + C)$
- \bigcirc B) $Z = B + A \cdot C$

$$leftondown$$
 C) $Z=\overline{B}\cdot(\overline{A}+\overline{C})$

- \bigcirc D) $Z = \overline{B} + \overline{A} \cdot \overline{C}$
- E) None of the above

Explanation

Looking at the pulldown circuitry for this gate, we see that $Z=\overline{B+A\cdot C}$. To simplify this, we use DeMorgan's Law to find that $Z=\overline{B}\cdot\overline{A\cdot C}=\overline{B}\cdot(\overline{A}+\overline{C})$.

Submit

1 Answers are displayed within the problem

CMOS

1/1 point (ungraded)

What is the minimum number of NFETs required to build a CMOS circuit (perhaps involving more than one CMOS gate) that has the following truth table?

A	\boldsymbol{B}	C	G
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

(A) 3			
(D) 4			

O C) 5			

O D) 6

E) None of the above

Submit

✓ Correct (1/1 point)

CMOS

2/2 points (ungraded)

Consider the following circuit that implements the 3-input function Z(A,B,C):

Which of the proposals below is the best way to shorten the rise time of the signal at Z?

- P1: Add two additional series-connected inverters to the output.
- P2: Double the width of the NFET in the output inverter.
- P3: Double the width of the PFET in the output inverter.
- P4: Halve the width of the NFET in the output inverter.
- P5: Halve the width of the PFET in the output inverter.

Best proposal: P3

✓ Answer: P3

Explanation

Making the PFETs wider will make it so that when the output is switching from 0 to 1, the PFETs will conduct more and the output will be pulled up to vdd more quickly.

Can the function Z(A, B, C) be implemented as a single 3-input CMOS gate having complementary pullup/pulldown circuits?

Implement as a single CMOS gate? YES

✓ Answer: YES

Explanation

The truth table for this circuit is the following:

\boldsymbol{A}	\boldsymbol{B}	C	Z(A,B,C)
0	0	0	1
0	0	1	1

0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

This is equivalent to \overline{ABC} , which is a 3-input NAND gate. We know that NAND gates can be implemented as a single CMOS gate, so the answer is YES.

Submit

Answers are displayed within the problem

Discussion

Hide Discussion

Topic: 4. Combinational Logic / Tutorial : CMOS Continued

Add a Post

Show all posts by recent activity

* Why more current causes faster rise time?

| I'm not surprised though, but why exactly is that? I don't remember learning it in the course.

| Course | Co