Astro ML course

Lecture 1

Course plan

15 discussion/hands-on sessions
One person leads the discussion
Everyone reads the book

Content and format are flexible!

Project

Choose a method from the book and solve a real problem

1-3 people per project

Peer-review

Deadline in May

- •What is machine learning?
- Some terminology
- The bias-variance trade-off
- Real-world example: predicting galaxy escape fractions with Lasso regression
- Practical stuff: how to access the data sets used in the book

What is machine learning?

A computer program is said to learn from an experience E with respect to some task T and some performance measure P if its performance on T as measured by P improves with experience E.

-Andrew Ng

"...analysis and interpretation of data, often involving large quantities of data, and often resorting to numerical methods..."

-The course book

"Machine learning is what computer scientists say when they mean 'statistics' "

-Some person on the internet

Buzzwords

Machine learning/statistical learning

Supervised learning (6,7)

Regression

Classification

Clustering, dimensionality reduction,

density estimation

K-means

d on,

Logistic regression, Support Vector Machines,

K Nearest Neighbor,

Decision trees

Principal Components Stochastic Neighbor embedding

Unsupervised learning, (8,9)

(Data mining)

Anomaly

detection

. . .

Linear regression, Lasso regression, Ridge regression, Neural networks

. . .

. . .

Examples

Regression:

Given galaxy magnitudes in a number of filters, predict the redshift of the galaxy

Classification:

Given an image of an object, determine whether the object is a star or a galaxy

Clustering:

Given a set of stellar spectra, find out if there are natural groups of stars

Flexibility

Terminology, Supervised learning

Set of training examples, each with a label y and n features

(response, dependent variable)

(predictor, independent variable)

Fit a model that predicts y, given an unseen set of features

The model should minimize the cost function

(loss function, objective function, fitness function ...)

Example: house prices

Supervised learning (regression)

Problem: Predict the price of a house, given its size in square meters

Features: the size in square meters (only one)

Label: the house price

Training set: historical records of house prices and sizes

Model: price = $\theta_0 + \theta_1$ *size (linear regression)

Cost function: $L(\theta_0, \theta_1) = 1/m \sum_{\text{trainingset}} (\theta_0 + \theta_1 \text{size}_i - \text{price}_i)^2$

Example: house prices

Minimizing the cost function

House size

Bias-variance trade-off

Bias-variance trade-off

High-bias model
Underfits data

High-variance model
Overfits data

Cross-validation

- The best model is one that gives the smallest error for new data points
- Separate data into training and cross-validation set
- •Fit parameters on training set for different tuning parameters, evaluate on cross-validation set

Cross-validation

A real-world example

Predicting the escape fraction from galaxy spectra using Lasso regression

escape fraction = fraction of ionizing photons that

get out of a galaxy

Example spectra

With simulated noise

Approach to solve problem

Regression problem (supervised learning)

- 1. Identify features and labels
- 2. Pre-process data
- 3. Assume a model
- 4. Define a cost function
- 5. Use cross-validation to pick best model

1. Identify features and labels

Labels: escape fractions

Features: e.g. flux in each bin

2. Preprocess data

Make sure all spectra are binned in the same way

Normalize to have mean=1

Normalize each feature to have same variance

3. Assume a model

Keep it simple, not necessarily make the optimal model

4. Define a cost function

Lasso regression:

$$L(heta) = \sum_{i=1}^{m} (\hat{f}_{
m esc} - f_{
m esc})^2 + (\lambda \sum_{j=1}^{N} | heta_j|)$$
 Regularization $\hat{f}_{
m esc} = heta_0 + \sum_{i=1}^{N} heta_i f_{\lambda,i}$ term

Equivalent version of Lasso

$$\underset{\theta}{\operatorname{argmin}} \sum (\hat{f}_{\operatorname{esc}} - f_{\operatorname{esc}})^2$$

s.t.

$$\sum_{i} |\theta_i| \le s$$

Trivial example: fitting a line

$$\hat{y} = \theta_0 + \theta_1 x$$

5. Fit model using cross-validation

Fitting model = minimizing cost function

We want to find the best value for the regularization

parameter

Regularization parameter

Results on test set

MAE=0.10

Previous approach

Zackrisson, Inoue, Jensen 2013

Slope of spectrum + strength of $H\beta$ line

Still simulation dependent...

Data sets in the book

- SDSS photometry and spectra of millions of objects
- 2MASS photometry for stars from SDSS
- •LINEAR variable stars
- LIGO simulated gravitational wave data
- Asteroid data from various sources