Question 1: Deep Learning Warm-up

2

One of your friends shows up with a brand new model she has invented, but which she is not able to train. You suspect this could be due to VANISHING/EXPLODING GRADIEN T, what would you look at to check THIS hypothesis?

HINT: Six and only six are correct; if you mark more, these will be counted as errors, if y ou mark less you are loosing points ...
(3 punti)

The activation functions used for neurons
The output values of neurons during training
The distribution of the weights during training
The initialization of the weights
The depth of the network
The balance of classes
The gradient descent algorithm used
The average gradient norm during training
The value of the learning rate
Whether the model contains Convolutional layers
Whether the model contains Recurrent Layers
The loss function used

In Recurrent Neural Networks (RNN), what is the Vanishing Gradient due to? How this i
s fixed by Long Short-Term Memories (LSTM)? Why does this fix the problem?
(3 punti)

Inserisci la risposta		
Indietro	Pagina 2 di 5	

Questo contenuto è creato dal proprietario del modulo. I dati inoltrati verranno inviati al proprietario del modulo. Microsoft non è responsabile per la privacy o le procedure di sicurezza dei propri clienti, incluse quelle del proprietario di questo modulo. Non fornire mai la password.

Con tecnologia Microsoft Forms | <u>Privacy e cookie (https://go.microsoft.com/fwlink/p/?linkid=857875)</u> | <u>Condizioni per l'utilizzo (https://go.microsoft.com/fwlink/p/?LinkId=2083423)</u> | <u>Accessibilità (https://go.microsoft.com/fwlink/?linkid=2121429)</u>

Question 2: Convolutional Neural Networks

```
import tensorflow as tf
tfk = tf.keras
tfkl = tf.keras.layers
input\_shape = (128,256,3)
input_layer = tfkl.Input(shape=input_shape, name='input')
conv1 = tfkl.Conv2D(filters = 16, kernel_size = (5,5), strides=(1,1), padding='same', acti
vation='relu', name='conv1')(input layer)
mp1 = tfkl.MaxPooling2D(name='mp1')(conv1)
conv2 = tfkl.Conv2D(filters = 32, kernel_size = (3,3), strides=(1,1), padding='same', acti
vation='relu', name='conv2')(mp1)
mp2 = tfkl.MaxPooling2D(name='mp2')(conv2)
dropout = tfkl.Dropout(0.3)(mp2)
conv3 = tfkl.Conv2D(filters = 128, kernel_size = (1,1), strides=(1,1), padding='same', ac
tivation='relu', name='conv3')(dropout)
batchNorm = tfkl.BatchNormalization(name='batchNorm')(conv3) #this normalizes eac
h slice of the volume independently
convt1 = tfkl.Conv2DTranspose(filters = 32, kernel_size = (3,3), strides=(2,2), padding
='same', activation='relu', name='convt1')(batchNorm)
convt2 = tfkl.Conv2DTranspose(filters = 16, kernel_size = (3,3), strides=(2,2), padding
='same', activation='relu', name='convt2')(convt1)
output_layer = tfkl.Conv2DTranspose(filters = 3, kernel_size =(1,1), strides=(1,1), paddin
g='same', activation='sigmoid', name='output')(convt2)
model = tfk.Model(inputs=input_layer, outputs=output_layer, name='model')
# Consider now the execution of the following command
model.summary()
# TO ANSWER THIS QUESTION, DOWNLOAD THE TXT FILE FROM HERE
# https://www.dropbox.com/s/w1awzyyyhg0mkxl/2022_02_09_architecture.txt?
dl=0
(https://www.dropbox.com/s/w1awzyyyhg0mkxl/2022 02 09 architecture.txt?
dl=0
# THEN COPY THE TEMPLATE DIRECTLY IN THE ANSWER FIELD.
# KEEP EVERYTHING ALIGNED WITH THE TEMPLATE
# Note that sizes are expressed as (batch, width, height, channels)
# Fill in the missing numbers in the console output below. In particular, replace
# - [ADD SIZES] with the tuple indicating the output shape in the form [WIDTH, HEIGH
```

T, CHANNELS]

. Remember that the first size is None because is the minibatch size used during trainin
- [ADD PARAMS FORMULA] add the formula for computing the parameters (e.g. 8 x 2 x 4)
- [ADD PARAMS] add the resulting number of parameters (e.g. = 64).
(5 punti)
5
What is the receptive field of a pixel at the center of the output of batchNorm layer?
(1 punto)
6 x 8
9 x 9
10 x 10
4 x 4
8 x 8
12 x 12
5 x 5

Consider the network is now compiled as follows,

model.compile(optimizer=tfk.optimizers.Adam(), loss='categorical')

and that you have a large training set of images from a surveillance camera, with whate ver annotation needed.

Select all the tasks for which a neural network expert (like you are expected to be) would train and use this network for:
(1 punto)

determining how many persons appears in the image
determining the image regions covered by cars, by persons and anything else
determining whether it is winter or summer, whether it is raining or not
determining which pixels contain a human, a car and what is the temperature in there
determining where cars are parked in the image
determining where there are empty parking slots
tracking persons, cars and buses moving in the scene
determining the locations of: each person, each dog, each car in the scene.
determining all the pixels covered by road, sky or others

Consider the Inception Net module. Which of the following statements are true?						
(1 punto)						
it uses multiple convolutional filters of different sizes in parallel						
it was the first to introduce skip connections						
it has been the first module used for semantic segmentation						
it was the first learnable upsampling filter						
it leverages 1x1 convolutions to reduce the computational burden						
8						
What are GANs? *Briefly* describe their training process. (2 punti)						
Inserisci la risposta						
Indietro Pagina 3 di 5						

Questo contenuto è creato dal proprietario del modulo. I dati inoltrati verranno inviati al proprietario del modulo. Microsoft non è responsabile per la privacy o le procedure di sicurezza dei propri clienti, incluse quelle del proprietario di questo modulo. Non fornire mai la password.

Attention models

What are Neural Turing Machines? How does attention work in this kind of models? (2 punti)

Inserisci la risposta			

10

What is the Transformer? How does attention work in this model? (2 punti)

Inserisci la risposta			

Indietro Pagina 4 di 5

Questo contenuto è creato dal proprietario del modulo. I dati inoltrati verranno inviati al proprietario del modulo. Microsoft non è responsabile per la privacy o le procedure di sicurezza dei propri clienti, incluse quelle del proprietario di questo modulo. Non fornire mai la password.