Вычислительный эксперимент пологих, гибких прямоугольных в плане оболочек

Иванов И.И., Петров П.П., Федоров Ф.Ф. adress@email.ru

Введение:

1. Основные уравнения

Для интегрирования уравнений в частных производных используется метод конечных разностей с аппроксимацией O(h2) как по временной, так и по пространственной координате.

Для этого область $D=\{(x,t)|0\leq x\leq 1,0\leq t\leq T\}$ покрывалась прямоугольной сеткой , где $x_i=x_{i+1}-x_i=h_x=1/n_x$ $(n_x$ целое) и $h_t=t_{j+1}-t_j$. $h_z=1.0/h_z$. На сетке дифференциальные уравнения приближенно заменяются соответствующими конечно-разностными соотношениями. С целью повышения точности использовались симметричные формулы для производных. После несложных преобразований получаем

$$w_{li,j+1} = \frac{1}{1+\varepsilon_l h_t/2b_l h_l} \left[2w_{li,j} + \left(\frac{\varepsilon_l h_t}{2h_l} - 1 \right) w_{li,j-1} + \frac{h_t^2}{b_l h_l} A_{li,j} \right],$$

$$u_{ij+1} = \frac{h_t^2}{bh} \left[\frac{\partial E_{0l}}{\partial x} (u' + \frac{1}{2} (w')^2) + E_{0l} (u'' + w'w'') - \frac{\partial E_{1l}}{\partial x} w'' - E_{1l} w''' \right]_{ij} + 2u_{ij},$$

где
$$A_{li,j} = \frac{\partial^2}{\partial x^2} \left[E_{1l}(u'_l + \frac{1}{2}(w'_l)^2) - E_{2l}w''' \right] - \frac{\partial}{\partial x} \left[w' E_{0l}(u'_l + \frac{1}{2}(w'_l)^2) - E_{1l}w'' \right]_{i,j}$$

Начальные условия:

$$w_{l-1,j}-2w_{l0,j}+w_{l1,j}=0, w_{l0,j}=0, w_{ln-1,j}-2w_{in,j}+w_{ln+1,j}=0, w_{ln,j}=0; u_{l0,j}=u_{ln,j}=0,$$
 Граничные условия:

$$\frac{w_{li,j+1}-w_{li,j}}{h_t} = F_{li}, w_{li} = f_{li}, u_{li} = u_{l0i},$$

Установлено, что для получения результатов с необходимой степенью точности в МКР достаточно разбить интервал интегрирования [0,1] на 40 частей. [3] На каждом шаге по времени строится итерационная процедура метода переменных параметров упругости Биргера.

Результаты и их анализ

Полученный в данном эксперименте сценарий очень интересен, т. к. появление независимой частоты здесь приводит не к жесткому переходу колебаний оболочки в хаотические, а к бифуркации утроения периода. Утроение периода колебаний происходит резко не только с увеличением амплитуды сдвиговой силы, но при ее фиксированном значении с течением времени. Дальнейший переход сисчтемы к хаосу осуществляется через перемежаемость. Т. е. при движении по амплитуде нагрузки возникает все большее количество хаотических зон, мало того их расположение на вейвлет спектре имеет периодический характер. Таким образом с ростом управляющего параметра не только увеличевается количество окон хаоса, но и сокращается период их появления.

Данный сценарий можно назвать модифицированным сценарием Помо – Манневиля (модификации 2).

А. Характеристики оболочки t ∈ [30,109]			
2-D Вейвлет спектр Морле	Фазовый портрет	3D Модальный портрет 3D	Спектр мощности
signal1212_w11_4_150728_morl_2Dwavelet 12- 10-	0.2	0.1. 0.1. 0.1. 0.3. 0 0.62	-50 5 10
В. Характеристики оболочки $t \in [30,46]$			
2-D Вейвлет спектр Морле	Фазовый портрет	3D Модальный портрет 3D	Спектр мощности
signal121_w11_4_150726_morl_2Owavelet 12- 10-	1	2 2000 0 1 300	
С. Характеристики оболочки $t \in [50,66]$			
2-D Вейвлет спектр Морле	Фазовый портрет	3D Модальный портрет 3D	Спектр мощности
eignal/1217_w11_4_150726_morl_2Dwavelet 12: 10: 8: 6: 4: 2: 55 till 65			
D. Характеристики оболочки $t \ t \in [110,126]$			
2-D Вейвлет спектр Морле	Фазовый портрет	3D Модальный портрет 3D	Спектр мощности
signal1212_w11_4_150726_morl_2Dwavelet 12- 10- 8 8 6- 4- 2- 105 110 115 120			
E. Характеристики оболочки t ∈ [130,258]			
2-D Вейвлет спектр Морле	Фазовый портрет	3D Модальный портрет 3D	Спектр мощности
signal (21t_w11_4_150728_mort_2Dwavelet 12- 10- 		J. J	

Было выяснено, что математический аппарат быстрого преобразования Фурье не позволяет в полной мере проанализировать характер подобных колебаний и построить, как это традиционно делалось, сценарии перехода системы в хаос. По этому в работе поведение оболочек исследовалось на основании вейвлет анализа.

Трехмерный Вейвлет спектр указывает на то, что хаос наступает на низких частотах.

Рис 5. Вейвлет спектр на интервале $52 \le t \le 200, s_0 = 18.7, \omega_p = 8.7.$

По средствам вейвлет анализа было выяснено, что характер колебаний оболочки под действием внешней знакопеременной сдвиговой нагрузки, с течением времени, может меняться от гармонического и квазипериодического до хаотического при постоянных значениях амплитуды и частоты воздействия. Также могут наблюдаться кратковременные области хаотических колебаний внутри квазипериодического окна и квазипериодические зоны внутри гармонических областей. Таким образом, происходит потеря устойчивости системы не только при изменении некоторых управляющих параметров, но и при их фиксированных значениях с течением времени, т. е. наблюдается перемежаемость по времени.

В результате численных экспериментов установлено, что единого сценария перехода в хаос для рассматриваемых систем нет. В зависимости от геометрических параметров оболочки и частоты внешней знакопеременной сдвиговой нагрузки сценарии существенно меняются. Было получено несколько сценариев большая часть из которых - новые: сценарий Фейгенбаума (и посчитана константа Фейгенбаума), сценарии Помо — Манневиля трех различных модификаций, сценарии Рюеля - Такенса - Ньюхауся четырех различных модификаций и принципиально новый сценарий (ПНС).

Литература

- 1. Krysko V.A., Awrejcewicz J., Bruk V.M. On the solution of a coupled thermomechanical problem for non-homogeneous Timoshenko-type shells // Journal of Mathematical Analysis and Applications. 2003. № 273. P. 409-416.
- 2. Krysko V.A., Awrejcewicz J., Bruk V.M. On existence and uniqueness of solutions to coupled thermomechanics problem of non- homogeneous isotropic plates // J. Appl. Anal. 2002. № 8(1). P. 129 139.
- 3. Вольмир А.С. Устойчивость упругих систем. М.: Физматгиз, 1963, 880 с.
- 4. Awrejcewicz J., Krysko V., Narkaitis G. Bifurcations of Thin Plate Strip Excited Transversally and Axially. Nonlinear Dynamics, 32, p. 187 209, 2003.