第4章 非线性规划

一维搜索方法

一维搜索方法

目标函数为单变量的非线性规划问题称为一维搜索问题 (又称为线性搜索问题)。

$$\min_{\substack{t \geq 0 \ (0 \leq t \leq t_{\max})}} \varphi(t)$$
 ,其中 $t \in \mathbb{R}$ 。

解决一维搜索 MP 问题的方法统称为一维搜索方法。主要有:

- ●精确一维搜索方法: (1) 0.618 法, (2) Newton 法。
- ●非精确一维搜索方法: (1) Goldstein 法, (2) Armijo 法。

0.618法

0.618法的基本思想

- $\varphi(t)$ 是一个函数。如果存在一个 $t^* \in [a, b]$,使得 $\varphi(t)$ 在 $[a, t^*]$ 上严格递减,在 $[t^*, b]$ 上严格递增,则称函数 $\varphi(t)$ 在 [a, b]上是单谷的,区间 [a, b]称为 $\varphi(t)$ 的单谷区间。
- 以单谷区间[a, b]为初始搜索空间。首先按照某种方法确定[a, b]内两个探索点 t_1 , t_2 。
- 观测: 若 $\varphi(t_1) \leq \varphi(t_2)$, 则 $t^* \in [a, t_2]$ 。 若 $\varphi(t_1) \geq \varphi(t_2)$, 则 $t^* \in [t_1, b]$ 。
- ●然后以[a, t_2](或[t_1 , b])为新的搜索区间,确定新的探索点,继续进行搜索。
- ●如何使搜索区间宽度逐次递减?

使搜索区间宽度逐次递减

- 在搜索过程中,既有可能以[a, t₂]为新的搜索区间,也有可能以[t₁, b]为新的搜索区间。因此令二者宽度相等,即 t₂ a = b t₁。
- ●希望搜索区间宽度能按比例递减。于是,令

$$\omega = \frac{t_2 - a}{b - a} = \frac{b - t_1}{b - a},$$
 (1)

因此,
$$t_1 = a + (1 - \omega)(b - a)$$
, $t_2 = a + \omega(b - a)$ 。 (2)

●假设以[a, t_2]为新的搜索区间([t_1 , b]的情形与此对称)。

使搜索区间宽度逐次递减

- ●设 $[a,t_2]$ 中的新的探索点为 t_1' 和 t_2' 。
- ●由于搜索区间宽度要按相同比例递减,因此

$$\frac{t_2' - a}{t_2 - a} = \frac{t_2 - t_1'}{t_2 - a} = \omega$$
 (3)

- 并且,希望在新一轮的搜索中,上次的探索点能够被重复利用(以减少计算)。
- Case 1: 不妨设重复利用 t_1 为新的探索点 t_1' ,而 t_2' 重新选择 ($t_1' < t_2'$)。
- **⑤** 因此, $t_2 t_1' = t_2 t_1 = \omega(t_2 a) = \omega^2(b a)$ 。 (由(1))
- $\pm (2)$, $t_2 t_1 = (2\omega 1)(b a)$.

使搜索区间宽度逐次递减

- ●于是, $\omega^2 = 2\omega 1$ 。但这将得到 $\omega = 1$,搜索区间不能递减。 这表明将 t_1 用作 t_1' 不合适。
- Case 2: 将 t₁用作t'₂。
- (3), (1) $\Rightarrow t_1 a = \omega(t_2 a) = \omega^2(b a)$.
- \bullet (2) $\Rightarrow t_1 a = (1 \omega)(b a)$.
- ●于是, $\omega^2 + \omega 1 = 0$ 。解二次方程,得 $\omega = \frac{\sqrt{5-1}}{2} \approx 0.618$ (另一个根舍弃)。
- ●这就是 0.618 法的由来。

0.618法

(ε>0 为输入参数,表示最后区间精度。)

- 1 确定单谷区间[a, b]为初始搜索区间。
- 2 探索点 t_1, t_2 赋初值: $t_1 \leftarrow a + 0.382(b-a), \varphi_1 \leftarrow \varphi(t_1);$ $t_2 \leftarrow a + 0.618(b-a), \varphi_2 \leftarrow \varphi(t_2).$

0.618法

```
3 while b-a > \varepsilon do
       if \varphi_1 < \varphi_2 then
5
            b \leftarrow t_2, t_2 \leftarrow t_1, \varphi_2 \leftarrow \varphi_1
            t_1 \leftarrow a + 0.382(b-a), \quad \varphi_1 \leftarrow \varphi(t_1)
6
7
        else
8
            a \leftarrow t_1, t_1 \leftarrow t_2, \varphi_1 \leftarrow \varphi_2.
            t_2 \leftarrow a + 0.618(b-a), \quad \varphi_2 \leftarrow \varphi(t_2)
9
10
        endif
11 endwhile
12 return t_1, \phi_1 作为最后求到的最小值估计。
```

用 0.618 法解 $\min_{t\geq 0} \varphi(t) = t^3 - 2t + 1$, 搜索区间宽度到 $\varepsilon = 0.5$ 。

●解:根据经验,选择初始搜索区间为[0,3](单谷区间)。

●计算过程:

	а	<i>t</i> ₁	t_2	b	ϕ_1	ϕ_2
0	0	1.146	1.854	3	0.2131	3.6648
1	0	0.708	1.146	1.854	-0.0611	0.2131
2	0	0.438	0.708	1.146	0.2082	-0.0611
3	0.438	0.708	0.876	1.146	-0.0611	-0.0798
4	0.708	0.876	0.979	1.146	-0.0798	-0.0197

最后输出 $t_1 = 0.876$ 。

最后一次迭代

0.618法

• 优点: 迭代规则简单, 迭代计算快速

• 缺点: 只适用于单谷区间,应用范围有限

Newton法

Newton法的基本思想

●考虑如下的一维搜索问题:

 $\min \varphi(t)$, 其中 $\varphi(t)$ 二次可微, 且 $\varphi''(t) \neq 0$ 。

- 首先根据经验估计一个探索点 t_k 。
- $\varphi(t)$ 在点 t_k 处的二阶 Taylor 展开式为:

$$\varphi(t) = \varphi(t_k) + \varphi'(t_k)(t - t_k) + \frac{\varphi''(t_k)}{2}(t - t_k)^2 + o((t - t_k)^2)_{\circ}$$

- 记 $g(t) = \varphi(t_k) + \varphi'(t_k)(t t_k) + \frac{\varphi''(t_k)}{2}(t t_k)^2$,使用 g(t)近似代替 $\varphi(t)$ 。
- ●因此,下一个探索点 t_{k+1} 选择使得 g'(t)=0 的点 t。

Newton法的基本思想

- 由 $g'(t) = \varphi'(t_k) + \varphi''(t_k)(t t_k) = 0$,求得 $t = t_k \frac{\varphi'(t_k)}{\varphi''(t_k)}$,这就是新的探索点 t_{k+1} 。
- 重复上述过程,直到 $|g'(t_k)| = |\varphi'(t_k)| \le \varepsilon$,算法停止。 $(|g'(t_k)| = |\varphi'(t_k)| \le \varepsilon \text{ 表明已经非常接近于 } g'(t) = 0 \text{ 的点 } t.)$

Newton法

(ε>0 为搜索精度。)

- 1 k ← 1,选择初始探索点 t_1 。
- 2 while $|\varphi'(t_k)| \ge \varepsilon$ do
- $\mathbf{3}$ if $\varphi''(t_k) = 0$ then 解题失败,停止。
- 4 $t_{k+1} \leftarrow t_k \frac{\varphi'(t_k)}{\varphi''(t_k)}$, $k \leftarrow k+1$.
- 5 if $|t_{k+1} t_k| < \varepsilon$ then 退出循环。
- 6 endwhile
- 7 return t_{k+1} .

用 Newton 法求 $min \varphi(t) = \int_0^t \arctan x \, dx$ 的最优解。

• **P**:
$$\varphi'(t) = \arctan t$$
, $\frac{1}{\varphi''(t)} = 1 + t^2$, $t_{k+1} = t_k - \varphi'(t_k) \frac{1}{\varphi''(t_k)}$.

●选择 t_1 =1,开始计算,搜索精度取ε=0.01。

k	t_k	$\varphi'(t_k)$	$1/\varphi''(t_k)$
1	1	0.7854	2
2	-0.5708	-0.5187	1.3258
3	0.1169	0.1164	1.0137
4	-0.0011	-0.0011	

最后输出 $t_k = -0.0011$ 。

用一阶导数判断

接近最优解 t*=0。

用 Newton 法求 $\min \varphi(t) = \int_0^t \arctan x \, dx$ 的最优解。

• **PR:**
$$\varphi'(t) = \arctan t$$
, $\frac{1}{\varphi''(t)} = 1 + t^2$, $t_{k+1} = t_k - \varphi'(t_k) \frac{1}{\varphi''(t_k)}$.

●选择 t_1 =2,开始计算,搜索精度取 ϵ =0.01。

k	t_k	$\varphi'(t_k)$	$1/\varphi''(t_k)$
1	2	1.1071	5
2	-3.5357	-1.2952	13.50
3	13.95		

无法趋近最优解。

用 Newton 法求 $\min_{t\geq 0} \varphi(t) = t^3 - 2t + 1$ 的最优解。

•
$$p(t) = 3t^2 - 2$$
, $\varphi''(t) = 6t$, $t_{k+1} = t_k - \frac{\varphi'(t_k)}{\varphi''(t_k)}$.

●选择 t_1 = 0.5, 开始计算, 搜索精度取ε = 0.01。

k	t_k	$\varphi'(t_k)$	$1/\varphi''(t_k)$
1	0.5	-1.25	3
2	0.9167	0.5210	5.5002
3	0.8219	0.0266	4.9314
4	0.8165	0.0000()	

最后输出 $t_k = 0.8165$ 。

Newton法

• 优点: 求局部最优解收敛快速

缺点:只有局部收敛性;依赖于起始搜索,只适用于起始搜索充分接近于最优解的情况;要求二阶可导。

