Mining Sequences

Examples of Sequence

• Web sequence:

• Purchase history of a given customer

```
⟨{Java in a Nutshell, Intro to Servlets} {EJB Patterns},...⟩
```

• Sequence of classes taken by a computer science major:

```
⟨ {Algorithms and Data Structures, Introduction to Operating Systems} {Database Systems, Computer Architecture} {Computer Networks, Software Engineering} {Computer Graphics, Parallel Programming} ...⟩
```

Formal Definition of a Sequence

• A sequence is an ordered list of **elements** (transactions)

$$s = \langle e_1 e_2 e_3 ... \rangle$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- A k-sequence is a sequence that contains k events (items)

Formal Definition of a Subsequence

• A sequence $\langle a_1 a_2 \dots a_n \rangle$ is contained in another sequence $\langle b_1 b_2 \dots b_m \rangle$ $(m \ge n)$ if there exist integers $i_1 < i_2 < \dots < i_n$ such that $a_1 \subseteq b_{i1}$, $a_2 \subseteq b_{i2}$, ..., $a_n \subseteq b_{in}$

Data sequence	Subsequence	Contained?
⟨ {2,4} {3,5,6} {8} ⟩	⟨ {2} {3,5} ⟩	Yes
⟨ {1,2} {3,4} ⟩	⟨ {1} {2} ⟩	No
⟨ {2,4} {2,4} {2,5} ⟩	⟨ {2} {4} ⟩	Yes

- Support of a subsequence w is the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is $\geq minsup$)

Sequential Pattern Mining: Example

E.g.

A: <{1,2,4}, {2,3}, {5}>

B: <{1,2}, {2,3,4}>

Group	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2 2,3,4 1,2 2,3,4 2,4,5
В	2	2,3,4
С	1	1,2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
Е	2	2, 4, 5

Minsup = 50% *i.e.* min. sup. count = 2

Examples of Frequent Subsequences:

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, *minsup*
- Task:
 - Find all subsequences with support ≥ *minsup*
- Challenge:
 - Many more candidate sequential patterns than candidate itemsets.

Extracting Sequential Patterns

- Given *n* events (items): $i_1, i_2, i_3, ..., i_n$
- Candidate 1-subsequences:

$$\langle \{i_1\} \rangle, \langle \{i_2\} \rangle, \langle \{i_3\} \rangle, ..., \langle \{i_n\} \rangle$$

Candidate 2-subsequences:

$$<\{i_1, i_2\}>, <\{i_1, i_3\}>, ..., <\{i_1\} \{i_1\}>, <\{i_1\} \{i_2\}>, ..., <\{i_{n-1}\} \{i_n\}>$$

• Candidate 3-subsequences:

$$<\{i_1, i_2, i_3\}>, <\{i_1, i_2, i_4\}>, ..., <\{i_1, i_2\} \{i_1\}>, <\{i_1, i_2\} \{i_2\}>, ..., <\{i_1\} \{i_1, i_2\}>, <\{i_1\} \{i_1, i_3\}>, ..., <\{i_1\} \{i_1\} \{i_1\}>, <\{i_1\} \{i_2\}>, ...$$

APRIORI-like Algorithm

- Make the first pass over the sequence database to yield all the 1-element frequent sequences
- Repeat until no new frequent sequences are found

Candidate Generation:

• Merge pairs of frequent subsequences found in the $(k-1)^{th}$ pass to generate candidate sequences that contain k items

Candidate Pruning:

• Prune candidate k-sequences that contain infrequent (k-1)-subsequences

Support Counting:

- Make a new pass over the sequence database to find the support for these candidate sequences
- Eliminate candidate k-sequences whose actual support is less than *minsup*

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences $\langle \{i_1\} \rangle$ and $\langle \{i_2\} \rangle$ will produce four candidate 2-sequences:
 - $<\{i_1\}, \{i_2\}>, <\{i_2\}, \{i_1\}>, <\{i_1, i_2\}>, <\{i_2, i_1\}>$
- General case (k>2):
 - A frequent (k-1)-sequence w_1 is merged with another frequent (k-1)-sequence w_2 to produce a candidate k-sequence if the subsequence obtained by removing the first event in w_1 is the same as the subsequence obtained by removing the last event in w_2
 - The resulting candidate after merging is given by the sequence w_1 extended with the last event of w_2 .
 - If the last two events in w_2 belong to the same element, then the last event in w_2 becomes part of the last element in w_1
 - Otherwise, the last event in w_2 becomes a separate element appended to the end of w_1

Candidate Generation Examples

• Merging the sequences

```
w_1=<{1} {2 3} {4}> and w_2 =<{2 3} {4 5}> will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w_2 (4 and 5) belong to the same element
```

• Merging the sequences

```
w_1=<{1} {2 3} {4}> and w_2 =<{2 3} {4} {5}> will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two events in w_2 (4 and 5) do not belong to the same element
```

- Finally, the sequences $<\{1\}\{2\}\{3\}>$ and $<\{1\}\{2,5\}>$ don't have to be merged (Why?)
- Because removing the first event from the first sequence doesn't give the same subsequence as removing the last event from the second sequence.
- If $<\{1\}\{2,5\}\{3\}>$ is a viable candidate, it will be generated by merging a different pair of sequences, $<\{1\}\{2,5\}>$ and $<\{2,5\}\{3\}>$.

Example

Frequent 3-sequences

- < {1} {2} {3} >
- < {1} {2 5} >
- < {1} {5} {3} >
- < {2} {3} {4} >
- < {2 5} {3} >
- < {3} {4} {5} >
- < {5} {3 4} >

Candidate Generation

- < {1} {2} {3} {4} >
- < {1} {2 5} {3} >
- < {1} {5} {3 4} >
- < {2} {3} {4} {5} >
- < {2 5} {3 4} >

Candidate Pruning

< {1} {2 5} {3} >

```
Buyer A: < {TV} ... {DVD Player} >
Buyer B: < {TV} ... {DVD Player} >
...
```

The sequential pattern of interest is

```
<{TV}{DVD Player}>
```

which suggests that people who buy TV will also soon buy DVD player.

• A person who bought a TV ten years earlier should not be considered as supporting the pattern because the time gap between the purchases is too long.

Data sequence	Subsequence	Contained?
<{2,4} {3,5,6} {4,7} {4,5} {8}>	< {6} {5} >	
<{1} {2} {3} {4} {5}>	< {1} {4} >	
<{1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	
<{1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	

Data sequence	Subsequence	Contained?
<{2,4} {3,5,6} {4,7} {4,5} {8}>	< {6} {5} >	Yes
<{1} {2} {3} {4} {5}>	< {1} {4} >	
<{1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	
<{1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	

Data sequence	Subsequence	Contained?
<{2,4} {3,5,6} {4,7} {4,5} {8}>	< {6} {5} >	Yes
<{1} {2} {3} {4} {5}>	< {1} {4} >	No
<{1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	
<{1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	

Data sequence	Subsequence	Contained?
<{2,4} {3,5,6} {4,7} {4,5} {8}>	< {6} {5} >	Yes
<{1} {2} {3} {4} {5}>	< {1} {4} >	No
<{1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
<{1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	

max-gap = 2, max-span = 4

Data sequence	Subsequence	Contained?
<{2,4} {3,5,6} {4,7} {4,5} {8}>	< {6} {5} >	Yes
<{1} {2} {3} {4} {5}>	< {1} {4} >	No
<{1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
<{1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Mining Sequential Patterns with Timing Constraints

Approach 1:

- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns

• Approach 2:

- Modify algorithm to directly prune candidates that violate timing constraints
- Question:
 - Does APRIORI principle still hold?

APRIORI Principle for Sequence Data

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Suppose:

$$max$$
- $gap = 1$
 max - $span = 5$

Problem exists because of max-gap constraint

This problem can avoided by using the concept of a contiguous subsequence.

Contiguous Subsequences

• s is a contiguous subsequence of

$$w = \langle e_1, e_2, ..., e_k \rangle$$

if any of the following conditions holds:

- 1. s is obtained from w by deleting an item from either e_1 or e_k
- 2. s is obtained from w by deleting an item from any element e_i that contains at least 2 items
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: $s = < \{1\} \{2\} >$
 - is a contiguous subsequence of

```
< \{1\} \{23\}>, < \{12\} \{2\} \{3\}>,  and < \{34\} \{12\} \{23\} \{4\}>
```

is not a contiguous subsequence of

```
< \{1\} \{3\} \{2\} > and < \{2\} \{1\} \{3\} \{2\} >
```

Modified Candidate Pruning Step

Modified APRIORI Principle

- If a k-sequence is frequent, then all of its contiguous (k-1)-subsequences must also be frequent
- Candidate generation doesn't change. Only pruning changes.
- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)subsequences is infrequent
- With maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its contiguous
 (k-1)-subsequences is infrequent