2. Klausur zur Vorlesung Diskrete Strukturen, WS 2011/2012 Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen, 28.3.2012

Name:	Matrikelnummer:
Dauer: 120 min. Gesamtpunktzahl: 50	Mindestpunktzahl zum Bestehen: 25
Aufgabe 1. Gegeben seien die Permutati $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$	
$\sigma = \begin{pmatrix} 4 & 7 & 1 & 3 & 8 & 5 \end{pmatrix}$	
Weiter sei $\pi = \sigma \circ \tau$.	
 (a) Schreiben Sie π als Produkt von α (b) Berechnen Sie das Signum von π (c) Sei k₀ das kleinste k ∈ N mit π^k (d) Schreiben Sie die Permutation x Zykeln. 	. (1 P.)
$\pi = \boxed{\hspace{1cm}} \operatorname{sgn}(\pi$	$)=\boxed{ \qquad \qquad } k_0=\boxed{ \qquad \qquad } x=\boxed{ \qquad }$
Aufgabe 2.	
(b) Finden Sie die kleinste natürliche	$\begin{array}{ll} \text{und } \lambda, \mu \in \mathbb{Z} \text{ mit } d = \lambda \cdot 407 + \mu \cdot 341. \\ \text{Zahl } a \text{ mit } a \equiv 3 \cdot 5^4 \cdot 11 \cdot 13^3 \pmod{8}. \\ \text{iche Zahl } x \text{ für die gilt } x \cdot 3 \equiv 1 \pmod{77}. \end{array} \tag{3 P.}$
$d = $ $\lambda = $	$\mu = $ $a = $ $x = $
Aufgabe 3. Für $a \in \mathbb{Q}$ seien $A \in \mathbb{Q}^{3 \times 2}$ u	and $B \in \mathbb{Q}^{3 imes 3}$ mit
$A = \begin{pmatrix} 1 & a+2 \\ 1 & a+1 \\ -2 & -2a + \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 (a) Bestimmen Sie für a = 0 ein X ∈ (b) Wieviele Lösungen hat die Matrix (c) Für welche a ∈ ℚ ist AX = B m 	AX = B für a = 0? (2 P.)
(a) (b)	(c)

(b) So (c) 4 ko (d) 3	ei M eir gleiche eine Zah Student	Äquival ne Meng Würfel al genau en solle n zu vert	e mit 11 werden zweima n 6 Auf	1 Elemen gleich: al vorko gaben v	enten. W zeitig go mmt? vorrechr	vieviele eworfen nen. Wie	3-eleme a. Wievi eviele M	entige To ele Aug Iöglichk	eilmeng genkomb	en hat I pination	en gibt	es, in d (aben au	3 P .)
	(a)		(b)			(c)		(d))				
Aufgabe Kanten E					nteten C	Graphen	G = 0	(V,E) r	nit Kno	tenmen	ge V =	= <u>8</u> und	l den
Kante Gewicht	$\{4, 8\}$	${3,4}$	$\{5,6\}$	${3,8}$	$\{4, 6\}$	{1,8}	$\{4,7\}$	$\{5, 8\}$	$\{1, 4\}$	$\{4,5\}$	$\{2,6\}$	$\{2, 4\}$	$\{1,6\}$
Gewicht	1	2	3	4	5	6	7	8	9	10	11	12	13
(b) B (c) W (d) E so B	esitzt de Vas ist de in minimo dass di estimme ösung g	von G? er Graph er maxir naler Ka te Summ en Sie d eben Sie Brücken	G eine male Grantenzugne der Glie mini die Ger	ad eines g zwisch ewichte malen 1 wichte a	Knoter nen zwe der Ka Kantenz iller vor	ns in G? i Knoten inten mi rüge in komme	n von G inimal is G vom	ist ein I st. Knoter	Kantenz n 7 zu j	ug zwis edem a gender R	chen die	esen Kn Knoten lge an.	. Als
Bearbeite einem ges Aufgabe	sonderte 6. Für (en Blatt. eine qua			_								
(z.B. $A^3 =$ Sei $A =$	$ \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) $	$\left(\begin{array}{c} \\ \end{array} \right) \in \mathbb{Q}^{2}$	^{2×2} . Fin	den Sie	eine Fo	ormel fü	ir die Ei	nträge o	ler Matı	rizen A^{\imath}	$^{\imath}$ für all	$e n \in \mathbb{N}$	und
beweisen	ore area	se forme	zı mın Ir	iaukuoi	ı uber n	•						(3 P.)

Aufgabe 4. Bestimmen Sie die folgenden Anzahlen. Die Lösungen sind vollständig auszurechnen und als

ganze Zahlen einzutragen.

die den gleichen Grad haben.

Viel Erfolg!

Aufgabe 7. Beweisen Sie, dass jeder Graph mit mehr als einem Knoten mindestens zwei Knoten enthält,

(3 P.)