Simon Says Stats "First we take Manhattan, then we take Berlin" Adjusting for site-effects (rejoinder)

Simon White

Department of Psychiatry, University of Cambridge MRC Biostatistics Unit, University of Cambridge

2020/Jul/21 Ed Group Meeting

Our example with three ROIs (truth via GAMLSS)

Data (with true female-population level curve plotted)

GAMLSS Adjustment

Obtaining "adjusted" y from GAMLSS

() Sit GAMLSS model (Si ad ROI Megadantly)
La likela need some model selection (ALC?)

$$\rightarrow \text{ obtain file, leg.} \quad \hat{\mu} = \hat{\lambda} + \hat{\beta} \times + \hat{\delta} \stackrel{\text{def}}{\text{sex}} + \left\{ \begin{array}{c} \hat{\lambda}_1 \\ \hat{\lambda}_2 \\ \hat{\lambda}_3 \\ \hat{\lambda}_4 \\ \hat{\lambda}_5 \\ \hat{\lambda}_6 \\ \hat{\lambda}_7 \\$$

under GAMLS we use a link distribution

GAM LS we use a link distribution
$$\delta_{i} \sim N(0, \delta_{n}^{*})$$

 $\hat{G} \sim \underbrace{f(\hat{n}, \hat{\sigma})}_{\text{really}}$
 $f(\hat{n}(x, ...), \hat{\sigma}(x, ...))$ [or ever $\hat{M}^{\pm} f(\hat{n}, \hat{\sigma}, \hat{\tau})$]

where f() is a probability distribution

(2) So we can obtain GAP-specitia quantile, for the dutut
$f(x,): (-0,0) \mapsto [0,1] \qquad f^{-1}: [0,1] \mapsto (-0,0)$ of winder
we "undo" the GAMLSS model
y dis - g = residud specific to gip undon d'tal
Specific to yroup-lared
NOTE Using quantiles since GAMUSS link doesn't have to be normal dist (it normal, then we zerozes)

So
$$f'(y-\hat{y}) M(x_{...,gp}), s(x_{...,gp})$$

So $f'(y-\hat{y}) M(x_{...,gp}), s(x_{...,gp})$

So $f'(y-\hat{y}) M(x_{...,gp}), s(x_{...,gp})$

So $f'(y-\hat{y}) M(x_{...,gp}), s(x_{...,gp})$

Thuring removed grp effects

(or $M & s$)

F(x) = $\int_{-\infty}^{\infty} f(x) - ix$ cumulative distinguished

F(x) = $\int_{-\infty}^{\infty} f(x) - ix$ cumulative distinguished

set grp effect to zero

GAMLSS Adjustment

GAMLSS Adjustment

ComBAT

The procedure for the estimation of the site parameters γ_{iv} and δ_{iv} uses Empirical Bayes, and is described in [Johnson et al. 2007] and Fortin et al. [2017]. The final ComBatharmonized cortical thickness measurements are defined as

. const site effect across (101) site 1013 10 P711 1017 CMDAI G PMUSS Α 13 13 B GM

- ComBat uses Empirical Bayes to account for small number of samples per batch/group/study/site
- As number of samples per group increases, ComBat will converge to LME with heteroscedasticity
- GAMLSS more flexible...but requires bigger sample sizes!

- ComBat uses Empirical Bayes to account for small number of samples per batch/group/study/site
- As number of samples per group increases, ComBat will converge to LME with heteroscedasticity
- GAMLSS more flexible...but requires bigger sample sizes!
- Incorrect adjustment is a problem for all these methods
 - perhaps see Jacob, Gagnon-Bartsch and Speed (2016)
 Biostatistcs
 - Setting with unknown factor of interest (but this is hard)

- ComBat uses Empirical Bayes to account for small number of samples per batch/group/study/site
- As number of samples per group increases, ComBat will converge to LME with heteroscedasticity
- GAMLSS more flexible...but requires bigger sample sizes!
- Incorrect adjustment is a problem for all these methods
 - perhaps see Jacob, Gagnon-Bartsch and Speed (2016)
 Biostatistcs
 - Setting with unknown factor of interest (but this is hard)
- ComBat requires multiple measures per subject (i.e. ROIs), but assumes constant batch affect across all measures (strong assumption?)

- ComBat uses Empirical Bayes to account for small number of samples per batch/group/study/site
- As number of samples per group increases, ComBat will converge to LME with heteroscedasticity
- GAMLSS more flexible...but requires bigger sample sizes!
- Incorrect adjustment is a problem for all these methods
 - perhaps see Jacob, Gagnon-Bartsch and Speed (2016)
 Biostatistcs
 - Setting with unknown factor of interest (but this is hard)
- ComBat requires multiple measures per subject (i.e. ROIs), but assumes constant batch affect across all measures (strong assumption?)
- GAMLSS does not share batch random-effect estimates across measures (lossing information?)

