Examples of NOT OK using car package

Kyun-Seop Bae MD PhD

2023-07-10 12:41:51.230633

Contents

1	Tested Version and Books used for the Validation 1.1 Packages Used						
	1.2 Books and Articles used for the Test	3					
2	Snee EMS ANOVA 1974	4					
3	Goodnight	9					
	3.1 p33	9					
4	SAS for Linear Models 4e	11					
	4.1 p403	11					
	4.2 p417						
	4.3 p431	15					
5	Sahai - Unbalanced	19					
	5.1 Table 15.3	19					
	5.2 Table 16.3	23					
6	Federer - Variations	27					
	6.1 Example 2.2	27					
	6.2 Example 3.1	30					
	6.3 Example 5.1	39					
	6.4 Example 7.1	44					
	6.5 Example 7.3	48					
	6.6 Example 8.1	54					
	6.7 Example 9.2	57					
	6.8 Example 10.1	60					
7	Hinkelmann & Kempthorne - Volume 1	74					
	7.1 p410	74					
8	Searle - Linear Models 2e	77					
	8.1 7.2 (p390, 59%)	77					
	8.2 7.2 (p393, 60%)	78					
9	Web site examples	80					

	9.1	https://github.com/djnavarro/psyr	80
10	Bioe	quivalence (BE) data example	82
11	Sess	sion Information	84

1 Tested Version and Books used for the Validation

1.1 Packages Used

• 'sasLM' version: 0.9.9

• 'SAS' version: 9.4 Licensed and University Edition

• 'car' version: 3.1.2

• R version: R version 4.3.1 (2023-06-16 ucrt)

The 'car' package is not necessary for 'sasLM.' It is used for the comparison of the results.

If you see any difference betwwen 'car' and 'sasLM', 'SAS' results coincide with 'sasLM', not with 'car.'

Before 'sasLM' is available on CRAN, you can download using the following command in R.

```
install.packages("sasLM", repos="http://r.acr.kr")
```

1.2 Books and Articles used for the Test

- 1. Snee RD. Computation and Use of Expected Mean Squares in Analysis of Variance. J Qual Tech. 1974:6(3);128-137.
- 2. Goodnight JH. The General Linear Models Procedure, Proceedings of the First International SAS User's Group, SAS Institute, Raleigh, N.C. 1976.
- 3. Littell RC, Stroup WW, Freund RJ. SAS for Linear Models 4e. John Wiley & Sons Inc. 2002.
- 4. Sahai H, Ojeda MM. Analysis of Variance for Random Models Volume 2 Unbalanced Data. 2005.
- 5. Federer WT, King F. Variations on Split Plot and Split Block Experiment Designs. John Wiley & Sons Inc. 2007.
- 6. Hinkelmann K, Kempthorne O. Design and Analysis of Experiments Volume 1 Introduction to Experimental Design. 2e. John Wiley & Sons Inc. 2008.
- 7. Searle SR, Gruber MHJ. Linear Models 2e, Kindle Edition. John Wiley & Sons Inc. 2016.

2 Snee EMS ANOVA 1974

Reference

- Snee RD. Computation and Use of Expected Mean Squares in Analysis of Variance. J Qual Tech. 1974:6(3);128-137.
- (1) MODEL

```
Snee = read.csv("http://r.acr.kr/Snee_EMS_ANOVA1974.csv")
Snee = af(Snee, c("Machine", "Analyst", "Test", "Day"))
Snee
```

	Machina	Analuat	Togt	Day	Y
1	riacii ille	Analyst 1	1	рау 1	6.1
2	1	1	1	2	8.5
3	1	1	1	3	8.6
4	1	1	1	4	9.3
5	1	1	1	5	8.1
6	1	1	1	6	8.5
7	1	1	1	7	9.8
8	1	1	1	8	9.0
9	1	1	1	9	11.0
10	1	1	1	10	9.7
11	1	1	1	11	10.5
12	1	1	1	12	8.3
13	1	1	1	13	8.4
14	1	1	1	14	10.2
15	1	1	1	15	9.3
16	1	1	1	16	7.1
17	1	1	1	17	5.8
18	1	1	1	18	8.9
19	1	1	1	19	11.5
20	1	1	1	20	10.3
21	1	1	1	21	9.1
22	1	1	1	22	5.7
23	1	1	1	23	8.5
24	1	1	1	24	9.6
25	1	1	1	25	9.4
26	1	1	1	26	10.3
27	1	1	1	27	7.0
28	1	1	1	28	11.5
29	1	1	1	29	6.0
30	1	1	1	30	8.0
31	1	1	1	31	13.4
32	1	1	1	32	12.1
33	1	1	1	33	14.2
34	1	1	1	34	10.0
35	1	1	1	35	6.5
36	1	1	1	36	6.5

37	1	1	1	37	9.2
38	1	1	1	38	11.0
39	1	1	1	39	8.6
40	1	1	1	40	8.9
41	1	1	1	41	6.6
42	1	1	1	42	8.4
43	1	1	2	1	6.6
44	1	1	2	2	9.6
45	1	1	2	3	6.7
46	1	1	2	4	7.2
47	1	1	2	5	7.1
48	1	1	2	6	9.0
49	1	1	2	7	9.8
50	1	1	2	8	8.0
51	1	1	2	9	10.9
52	1	1	2	10	10.6
53	1	1	2	11	8.4
54	1	1	2	12	10.6
55	1	1	2	13	7.2
56	1	1	2	14	8.0
57	1	1	2	15	8.7
58	1	1	2	16	8.7
59	1	1	2	17	6.8
60	1	1	2	18	6.6
61	1	1	2	19	7.1
62	1	1	2	20	10.0
63	1	1	2	21	9.5
64	1	1	2	22	7.7
65	1	1	2	23	8.8
66	1	1	2	24	12.2
67	1	1	2	25	10.4
68	1	1	2	26	10.6
69	1	1	2	27	10.6
70	1	1	2	28	7.3
71	1	1	2	29	7.0
72	1	1	2	30	7.0
73	1	1	2	31	9.2
74	1	1	2	32	11.7
75	1	1	2	33	10.6
76	1	1	2	34	10.4
77	1	1	2	35	8.4
78	1	1	2	36	6.8
79	1	1	2	37	10.1
80	1	1	2	38	11.0
81	1	1	2	39	10.0
82	1	1	2	40	8.0
83	1	1	2	41	7.2
84	1	1	2	42	8.8

85	1	2	1	1	6.6
86	1	2	1	2	8.2
87	1	2	1	3	8.0
88	1	2	1	4	6.5
89	1	2	1	5	2.3
90	1	2	1	6	4.0
91	1	2	1	7	11.7
92	1	2	1	8	6.8
93	1	2	1	9	10.5
94	1	2	1	10	10.3
95	1	2	1	11	10.0
96	1	2	1	12	8.8
97	1	2	1	13	6.7
98	1	2	1	14	8.9
99	1	2	1	15	9.9
100	1	2	1	16	8.2
101	1	2	1	17	7.5
102	1	2	1	18	6.6
103	1	2	1	19	3.1
104	1	2	1	20	7.2
105	1	2	1	21	10.7
106	1	2	1	22	8.4
107	1	2	1	23	7.6
108	1	2	1	24	12.6
109	1	2	1	25	9.6
110	1	2	1	26	12.6
111	1	2	1	27	10.8
112	1	2	1	28	5.1
113	1	2	1	29	6.6
114	1	2	1	30	8.6
115	1	2	1	31	12.5
116	1	2	1	32	10.4
117	1	2	1	33	10.6
118	1	2	1	34	7.2
119	1	2	1	35	7.8
120	1	2	1	36	4.4
121	1	2	1	37	8.7
122	1	2	1	38	11.2
123	1	2	1	39	10.3
124	1	2	1	40	7.0
125	1	2	1	41	7.7
126	1	2	1	42	7.6
127	2	1	1	1	8.8
128	2	1	1	2	8.1
129	2	1	1	3	7.4
130	2	1	1	4	8.0
131	2	1	1	5	9.5
132	2	1	1	6	9.2

```
133
          2
                           7 12.8
                  1
                       1
134
          2
                  1
                       1
                           8 9.2
135
          2
                  1
                           9 11.3
                       1
136
          2
                  1
                       1 10 9.3
          2
                  1
                         11 4.0
137
                       1
          2
138
                  1
                          12
                              9.7
          2
139
                  1
                       1
                         13 4.6
                              2.1
140
          2
                  1
                         14
141
          2
                  1
                       1 15 9.7
142
          2
                  1
                         16 10.0
                       1
          2
                       1 17 10.2
143
                  1
144
          2
                  1
                       1
                         18 9.2
          2
145
                  1
                         19 10.8
                       1
          2
                  1
                       1 20 9.4
146
          2
                       1 21 10.3
147
                  1
          2
                  1
                       1 22 10.3
148
149
          2
                  1
                       1 23 8.3
150
          2
                  1
                       1 24 11.6
          2
151
                  1
                       1 25 9.4
152
          2
                  1
                       1 26 11.3
          2
153
                  1
                         27 11.4
                       1
          2
154
                  1
                       1 28 9.6
155
          2
                  1
                       1 29
                              2.2
          2
156
                  1
                       1
                          30 6.6
          2
157
                  1
                       1 31 11.5
          2
158
                  1
                       1
                          32
                              9.1
159
          2
                  1
                          33 4.6
                       1
          2
160
                  1
                       1
                          34 7.9
          2
                  1
                       1
                         35
                              9.0
161
162
          2
                  1
                       1
                         36
                              8.1
          2
                              9.4
163
                  1
                       1
                          37
          2
164
                  1
                       1
                         38 10.9
165
          2
                  1
                       1
                         39
                              9.0
          2
166
                  1
                       1 40 7.8
167
          2
                  1
                       1
                         41
                              9.3
          2
168
                  1
                       1
                          42
                              6.8
```

GLM(Y ~ Day/Machine/Analyst/Test, Snee)

\$ANOVA

Response : Y

Df Sum Sq Mean Sq F value Pr(>F)

MODEL 167 751.27 4.4986

RESIDUALS 0 0.00 CORRECTED TOTAL 167 751.27

\$Fitness

Root MSE Y Mean Coef Var R-square

```
NA 8.736905
                         NA
                                   1
$`Type I`
                         Df Sum Sq Mean Sq F value Pr(>F)
                         41 365.58 8.9166
Day
Day:Machine
                         42 196.59 4.6807
Day:Machine:Analyst
                         42 118.80 2.8285
Day:Machine:Analyst:Test 42 70.30 1.6739
$`Type II`
                         Df Sum Sq Mean Sq F value Pr(>F)
Day
                         41 365.58 8.9166
Day:Machine
                         42 196.59 4.6807
Day:Machine:Analyst
                         42 118.80 2.8285
Day: Machine: Analyst: Test 42 70.30 1.6739
$`Type III`
                         Df Sum Sq Mean Sq F value Pr(>F)
Day
                         41 359.44 8.7669
                         42 199.40 4.7477
Day:Machine
Day:Machine:Analyst
                         42 118.80 2.8285
Day: Machine: Analyst: Test 42 70.30 1.6739
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y ~ Day/Machine/Analyst/Test, Snee), type=3, singular.ok=TRUE)
```

NOT WORKING

3 Goodnight

Reference

 Goodnight JH. The General Linear Models Procedure, Proceedings of the First International SAS User's Group, SAS Institute, Raleigh, N.C. 1976.

3.1 p33

(2) MODEL

```
p33 = read.csv("http://r.acr.kr/Goodnight-p33.csv")
p33 = af(p33, c("A", "B"))
p33
 ΑВ
      У
1 1 1 2.96
2 1 2 7.90
3 2 1 4.79
4 2 2 9.55
5 3 3 9.53
GLM(y \sim A + B + A:B, p33) # p35
$ANOVA
Response : y
                Df Sum Sq Mean Sq F value Pr(>F)
MODEL
                4 34.905 8.7261
RESIDUALS
                0.000
CORRECTED TOTAL 4 34.905
$Fitness
Root MSE y Mean Coef Var R-square
      NA 6.946
                      NA
$`Type I`
   Df Sum Sq Mean Sq F value Pr(>F)
    2 11.3739 5.6870
    1 23.5225 23.5225
A:B 1 0.0081 0.0081
$`Type II`
   Df Sum Sq Mean Sq F value Pr(>F)
    1 3.0276 3.0276
    1 23.5225 23.5225
A:B 1 0.0081 0.0081
$`Type III`
CAUTION: Singularity Exists!
   Df Sum Sq Mean Sq F value Pr(>F)
```

```
A 1 3.0276 3.0276

B 1 23.5225 23.5225

A:B 1 0.0081 0.0081

options(contrasts = c("contr.sum", "contr.poly"))

Anova(lm(y ~ A + B + A:B, p33), type=3, singular.ok=TRUE) # NOT WORKING
```

4 SAS for Linear Models 4e

Reference

• Littell RC, Stroup WW, Freund RJ. SAS for Linear Models 4e. John Wiley & Sons Inc. 2002.

4.1 p403

(3) MODEL

```
p403 = read.table("http://r.acr.kr/sas4lm/p403.txt", header=TRUE)
p403 = af(p403, c("PATIENT", "VISIT"))
p403
```

	PATIENT	SEQUENCE	VISIT	BASEHR	HR	DRUG	RESIDT	RESIDS	
1	1	В	2	86	86	placebo	0	0	
2	1	В	3	86	106	test	-1	-1	
3	1	В	4	62	79	${\tt standard}$	1	0	
4	2	F	2	48	66	test	0	0	
5	2	F	3	58	56	placebo	1	0	
6	2	F	4	74	79	${\tt standard}$	-1	-1	
7	3	В	2	78	84	placebo	0	0	
8	3	В	3	78	76	test	-1	-1	
9	3	В	4	82	91	${\tt standard}$	1	0	
10	4	D	2	66	79	${\tt standard}$	0	0	
11	4	D	3	72	100	test	0	1	
12	4	D	4	90	82	placebo	1	0	
13	5	С	2	74	74	test	0	0	
14	5	С	3	90	71	${\tt standard}$	1	0	
15	5	С	4	66	62	placebo	0	1	
16	6	В	2	62	64	placebo	0	0	
17	6	В	3	74	90	test	-1	-1	
18	6	В	4	58	85	${\tt standard}$	1	0	
19	7	A	2	94	75	${\tt standard}$	0	0	
20	7	A	3	72	82	placebo	0	1	
21	7	A	4	100	102	test	-1	-1	
22	8	A	2	54	63	${\tt standard}$	0	0	
23	8	A	3	54	58	placebo	0	1	
24	8	A	4	66	62	test	-1	-1	
25	9	D	2	82	91	${\tt standard}$	0	0	
26	9	D	3	96	86	test	0	1	
27	9	D	4	78	88	placebo	1	0	
28	10	C	2	86	82	test	0	0	
29	10	C	3	70	71	${\tt standard}$	1	0	
30	10	C	4	58	62	placebo	0	1	
31	11	F	2	82	80	test	0	0	
32	11	F	3	80	78	placebo	1	0	
33	11	F	4	72	75	${\tt standard}$	-1	-1	
34	12	Е	2	96	90	placebo	0	0	

35	12	E	3	92	93	standard	-1	-1
36	12	E	4	82	88	test	0	1
37	13	D	2	78	87	$\operatorname{standard}$	0	0
38	13	D	3	72	80	test	0	1
39	13	D	4	76	78	placebo	1	0
40	14	F	2	98	86	test	0	0
41	14	F	3	86	86	placebo	1	0
42	14	F	4	70	79	${\tt standard}$	-1	-1
43	15	Α	2	86	71	${\tt standard}$	0	0
44	15	Α	3	66	70	placebo	0	1
45	15	Α	4	74	90	test	-1	-1
46	16	E	2	86	86	placebo	0	0
47	16	E	3	90	103	${\tt standard}$	-1	-1
48	16	E	4	82	86	test	0	1
49	17	Α	2	66	83	${\tt standard}$	0	0
50	17	Α	3	82	86	placebo	0	1
51	17	Α	4	86	102	test	-1	-1
52	18	F	2	66	82	test	0	0
53	18	F	3	78	80	placebo	1	0
54	18	F	4	74	95	${\tt standard}$	-1	-1
55	19	E	2	74	80	placebo	0	0
56	19	E	3	78	79	${\tt standard}$	-1	-1
57	19	E	4	70	74	test	0	1
58	20	В	2	66	70	placebo	0	0
59	20	В	3	74	62	test	-1	-1
60	20	В	4	62	67	${\tt standard}$	1	0
61	21	C	2	82	90	test	0	0
62	21	C	3	90	103	${\tt standard}$	1	0
63	21	C	4	76	82	placebo	0	1
64	22	C	2	82	82	test	0	0
65	22	C	3	66	83	${\tt standard}$	1	0
66	22	C	4	90	82	placebo	0	1
67	23	E	2	82	66	placebo	0	0
68	23	E	3	74	87	${\tt standard}$	-1	-1
69	23	E	4	82	82	test	0	1
70	24	D	2	72	75	${\tt standard}$	0	0
71	24	D	3	82	86	test	0	1
72	24	D	4	74	82	placebo	1	0

GLM(HR ~ SEQUENCE + PATIENT %in% SEQUENCE + VISIT + DRUG + RESIDS + RESIDT, p403)

\$ANOVA

Response : HR

Df Sum Sq Mean Sq F value Pr(>F)

MODEL 29 6408.7 220.99 3.912 3.127e-05 ***

RESIDUALS 42 2372.6 56.49

CORRECTED TOTAL 71 8781.3

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE HR Mean Coef Var R-square Adj R-sq
7.515988 80.80556 9.301326 0.7298134 0.543256
$`Type I`
                Df Sum Sq Mean Sq F value
                                           Pr(>F)
                 5 508.9 101.79 1.8019 0.133346
SEQUENCE
SEQUENCE: PATIENT 18 4692.3 260.69 4.6147 2.21e-05 ***
VISIT
                 2 146.8
                          73.39 1.2991 0.283499
DRUG
                 2 668.8 334.39 5.9194 0.005435 **
                 1 391.0 391.02 6.9219 0.011854 *
RESIDS
RESIDT
                      0.8
                            0.84 0.0149 0.903511
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
                Df Sum Sq Mean Sq F value
                                           Pr(>F)
SEQUENCE
                 5 701.2 140.237 2.4825 0.04665 *
SEQUENCE: PATIENT 18 4692.3 260.685 4.6147 2.21e-05 ***
                 2 146.8 73.389 1.2991 0.28350
VISIT
DRUG
                 2 344.0 171.975 3.0443 0.05826 .
RESIDS
                 1 309.2 309.174 5.4731 0.02414 *
                      0.8
RESTDT
                 1
                           0.840 0.0149 0.90351
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type III`
                Df Sum Sq Mean Sq F value
                                           Pr(>F)
SEQUENCE
                 5 701.2 140.237 2.4825 0.04665 *
SEQUENCE: PATIENT 18 4692.3 260.685 4.6147 2.21e-05 ***
VISIT
                 2 146.8 73.389 1.2991 0.28350
DRUG
                 2 344.0 171.975 3.0443 0.05826 .
RESIDS
                 1 309.2 309.174 5.4731 0.02414 *
RESIDT
                      0.8
                           0.840 0.0149 0.90351
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(HR ~ SEQUENCE + PATIENT %in% SEQUENCE + VISIT + DRUG + RESIDS + RESIDT,
        p403), type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
```

Anova Table (Type III tests)

Response: HR

```
Sum Sq Df F values Pr(>F)
SEQUENCE
                   0.0 0
VISIT
                 146.8 2
                            1.2991 0.28350
DRUG
                 343.9 2
                            3.0443 0.05826 .
                 309.2 1
RESIDS
                            5.4731 0.02414 *
RESIDT
                   0.8 1
                            0.0149 0.90351
SEQUENCE: PATIENT 4692.3 18
                            4.6147 2.21e-05 ***
Residuals
                2372.6 42
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
4.2 p417
 (4) MODEL
p417 = read.table("http://r.acr.kr/sas4lm/p417.txt", header=TRUE)
p417 = af(p417, c("TRT", "POT", "PLANT"))
p417
  Obs TRT POT PLANT Y
1
    1
        1
            1
                  1 15
                  2 13
2
     2
        1
            1
3
    3
        1
            1
                  3 16
4
    4
        1
            2
                  1 17
5
    5
        1
            2
                  2 19
6
    6
            3
                  1 12
        1
7
    7
                  1 20
        2
            1
        2
                  2 21
8
    8
            1
9
    9
        2
            2
                  1 20
        2
            2
                  2 23
10 10
        2
            2
                  3 19
11 11
                  4 19
12 12
        2
            2
13 13
        3
            1
                  1 12
14 14
        3
            1
                  2 13
                  3 14
15 15
       3
            1
            2
16 16
       3
                  1 11
17 17
       3
            3
                  1 12
            3
18 18
       3
                  2 13
            3
                  3 15
19 19
        3
20 20
        3
            3
                  4 11
                  5 9
            3
21 21
        3
GLM(Y ~ TRT + POT %in% TRT, p417) # p418 Output 11.28
$ANOVA
Response : Y
               Df Sum Sq Mean Sq F value
                                             Pr(>F)
MODEL
                7 267.226 38.175 12.433 7.522e-05 ***
RESIDUALS
               13 39.917
                            3.071
```

```
CORRECTED TOTAL 20 307.143
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE
         Y Mean Coef Var R-square Adj R-sq
1.752288 15.42857 11.35742 0.8700388 0.8000596
$`Type I`
       Df Sum Sq Mean Sq F value
                                   Pr(>F)
        2 236.921 118.460 38.580 3.412e-06 ***
TRT
TRT:POT 5 30.306 6.061
                         1.974
                                    0.1499
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
       Df Sum Sq Mean Sq F value
                                   Pr(>F)
        2 236.921 118.460 38.580 3.412e-06 ***
TRT
TRT:POT 5 30.306 6.061
                           1.974
                                    0.1499
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
       Df Sum Sq Mean Sq F value
                                   Pr(>F)
        2 200.111 100.055 32.586 8.626e-06 ***
TRT:POT 5 30.306 6.061
                          1.974
                                    0.1499
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y ~ TRT + POT %in% TRT, p417), type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: Y
         Sum Sq Df F values Pr(>F)
         22.310 1
TRT
                     7.266 0.01835 *
         30.306 5
                     1.974 0.14991
TRT:POT
Residuals 39.917 13
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

4.3 p431

(5) MODEL

```
p431 = read.table("http://r.acr.kr/sas4lm/p431.txt", header=TRUE)
p431 = af(p431, c("line", "sire", "agedam", "steerno"))
p431
```

	Obs	line	sire	agedam	steerno	age	intlwt	avdlygn
1	1	1	1	3	1	192	390	2.24
2	2	1	1	3	2	154	403	2.65
3	3	1	1	4	3	185	432	2.41
4	4	1	1	4	4	193	457	2.25
5	5	1	1	5	5	186	483	2.58
6	6	1	1	5	6	177	469	2.67
7	7	1	1	5	7	177	428	2.71
8	8	1	1	5	8	163	439	2.47
9	9	1	2	4	9	188	439	2.29
10	10	1	2	4	10	178	407	2.26
11	11	1	2	5	11	198	498	1.97
12	12	1	2	5	12	193	459	2.14
13	13	1	2	5	13	186	459	2.44
14	14	1	2	5	14	175	375	2.52
15	15	1	2	5	15	171	382	1.72
16	16	1	2	5	16	168	417	2.75
17	17	1	3	3	17	154	389	2.38
18	18	1	3	4	18	184	414	2.46
19	19	1	3	5	19	174	483	2.29
20	20	1	3	5	20	170	430	2.30
21	21	1	3	5	21	169	443	2.94
22	22	2	4	3	22	158	381	2.50
23	23	2	4	3	23	158	365	2.44
24	24	2	4	4	24	169	386	2.44
25	25	2	4	4	25	144	339	2.15
26	26	2	4	5	26	159	419	2.54
27	27	2	4	5	27	152	469	2.74
28	28	2	4	5	28	149	379	2.50
29	29	2	4	5	29	149	375	2.54
30	30	2	5	3	30	189	395	2.65
31	31	2	5	4	31	187	447	2.52
32	32	2	5	4	32	165	430	2.67
33	33	2	5	5	33	181	453	2.79
34	34	2	5	5	34	177	385	2.33
35	35	2	5	5	35	151	414	2.67
36	36	2	5	5	36	147	353	2.69
37	37	3	6	4	37	184	411	3.00
38	38	3	6	4	38	184	420	2.49
39	39	3	6	5	39	187	427	2.25
40	40	3	6	5	40	184	409	2.49
41	41	3	6	5	41	183	337	2.02
42	42	3	6	5	42	177	352	2.31

```
43 43
          3
               7
                       3
                              43 205
                                         472
                                                 2.57
44 44
          3
               7
                       3
                               44 193
                                         340
                                                 2.37
               7
                       4
                                                 2.64
45 45
          3
                              45 162
                                         375
46 46
          3
               7
                       5
                              46 206
                                         451
                                                 2.37
                       5
    47
          3
               7
                               47 205
                                         472
                                                 2.22
47
48 48
          3
               7
                       5
                               48 187
                                         402
                                                 1.90
49 49
          3
               7
                       5
                               49 178
                                         464
                                                 2.61
50 50
          3
               7
                       5
                              50 175
                                         414
                                                 2.13
51 51
          3
               8
                       3
                              51 200
                                         466
                                                 2.16
52 52
                       3
                                         356
                                                 2.33
          3
               8
                              52 184
53 53
               8
                       3
                              53 175
                                         449
                                                 2.52
          3
54 54
          3
               8
                       4
                              54 178
                                         360
                                                 2.45
                       5
                              55 189
                                         385
                                                 1.44
55 55
          3
               8
56 56
          3
               8
                       5
                              56 184
                                         431
                                                 1.72
57 57
          3
                              57 183
                                                 2.17
               8
                       5
                                         401
58 58
          3
               9
                       3
                              58 166
                                         404
                                                 2.68
59 59
          3
               9
                       4
                              59 187
                                         482
                                                 2.43
                              60 186
60 60
          3
               9
                       4
                                         350
                                                 2.36
61 61
          3
               9
                       4
                              61 184
                                         483
                                                 2.44
62 62
          3
               9
                       5
                              62 180
                                         425
                                                 2.66
                                                 2.46
63 63
          3
               9
                       5
                               63 177
                                         420
64 64
          3
               9
                       5
                               64 175
                                         440
                                                 2.52
65 65
          3
               9
                       5
                               65 164
                                         405
                                                 2.42
```

GLM(avdlygn ~ line + line:sire + agedam + line:agedam + age + intlwt, p431)

\$ANOVA

MODEL

Response : avdlygn

Df Sum Sq Mean Sq F value Pr(>F)
16 2.5275 0.157966 3.1437 0.001091 **

RESIDUALS 48 2.4119 0.050248

CORRECTED TOTAL 64 4.9394

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\$Fitness

Root MSE avdlygn Mean Coef Var R-square Adj R-sq 0.2241612 2.411385 9.295956 0.511696 0.348928

\$`Type I`

Df Sum Sq Mean Sq F value Pr(>F)
line 2 0.38009 0.190046 3.7821 0.02983 *
line:sire 6 0.92634 0.154391 3.0726 0.01260 *
agedam 2 0.11894 0.059471 1.1835 0.31497
line:agedam 4 0.64889 0.162222 3.2284 0.02000 *
age 1 0.18349 0.183487 3.6516 0.06200 .
intlwt 1 0.26970 0.269704 5.3674 0.02483 *

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
           Df Sum Sq Mean Sq F value
                                       Pr(>F)
line
            2 0.05526 0.02763 0.5498 0.580636
            6 0.97389 0.16231 3.2303 0.009543 **
line:sire
agedam
            2 0.33106 0.16553 3.2943 0.045640 *
line:agedam 4 0.45343 0.11336 2.2560 0.076821 .
            1 0.38128 0.38128 7.5878 0.008277 **
age
            1 0.26970 0.26970 5.3674 0.024830 *
intlwt
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
           Df Sum Sq Mean Sq F value
                                       Pr(>F)
            2 0.13620 0.06810 1.3553 0.267560
line
line:sire
            6 0.97389 0.16231 3.2303 0.009543 **
agedam
            2 0.13011 0.06505 1.2946 0.283392
line:agedam 4 0.45343 0.11336 2.2560 0.076821 .
            1 0.38128 0.38128 7.5878 0.008277 **
age
intlwt
            1 0.26970 0.26970 5.3674 0.024830 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# p433 Output 11.40
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(avdlygn ~ line + line:sire + agedam + line:agedam + age + intlwt, p431),
     type=3, singular.ok=TRUE) # NOT OK for line
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: avdlygn
            Sum Sq Df F values
                                Pr(>F)
line
           0.00000 0
agedam
           0.13011 2
                       1.2946 0.283392
           0.38128 1
                       7.5878 0.008277 **
age
intlwt
           0.26970 1
                        5.3674 0.024830 *
                        3.2303 0.009543 **
line:sire
           0.97389 6
line:agedam 0.45343 4
                        2.2560 0.076821 .
Residuals
           2.41192 48
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

5 Sahai - Unbalanced

Reference

• Sahai H, Ojeda MM. Analysis of Variance for Random Models Volume 2 Unbalanced Data. 2005.

5.1 Table 15.3

(6) MODEL

```
T15.3 = read.table("http://r.acr.kr/sahai/T15.3.txt")
colnames(T15.3) = c("Dam", "Sire", "pH")
T15.3 = af(T15.3, c("Dam", "Sire"))
T15.3
```

```
Dam Sire
                рΗ
1
      1
           1 7.48
2
           1 7.48
      1
3
      1
           1 7.52
4
      1
           1 7.54
5
           1 7.54
      6
6
      6
           1 7.36
7
           1 7.36
      6
8
      6
           1 7.40
9
     11
           1 7.52
           1 7.54
10
     11
11
           1 7.52
     11
           1 7.56
12
     11
13
     11
           1 7.53
           2 7.48
14
      1
15
           2 7.53
      1
16
      1
           2 7.43
17
           2 7.39
      1
18
      6
           2 7.44
19
      6
           2 7.47
           2 7.48
20
      6
21
      6
           2 7.48
22
     11
           2 7.56
           2 7.39
23
     11
24
     11
           2 7.52
25
           2 7.49
     11
           2 7.48
26
     11
27
      2
           1 7.45
28
      2
           1 7.43
           1 7.49
29
      2
30
      2
           1 7.40
31
      2
           1 7.40
32
      6
           3 7.43
33
      6
           3 7.52
```

34	6	3 7.50
35	6	3 7.46
36	6	3 7.39
37	12	1 7.50
38	12	1 7.45
39	12	1 7.43
40	12	1 7.44
41	12	1 7.49
42	2	2 7.50
43	2	2 7.45
44	2	2 7.43
45	2	2 7.36
46	7	1 7.41
	7 7	
47		1 7.42
48	7	1 7.36
49	7	1 7.47
50	12	2 7.52
51	12	2 7.43
52	12	2 7.38
53	12	2 7.33
54	3	1 7.40
55	3	1 7.45
56	3	1 7.42
57	3	1 7.48
	7	
58	1	2 7.47
59	7	2 7.36
60	7	
	1	
61	7 7	2 7.38
62	7	2 7.41
63	13	1 7.39
64	13	1 7.37
65	13	1 7.33
66	13	1 7.43
67	13	1 7.42
68	3	2 7.45
69	3	2 7.33
70	3	2 7.40
71	3	2 7.46
72	7	3 7.53
73	7	3 7.40
74	7	3 7.44
75	7	3 7.40
76	7	3 7.45
77	13	2 7.43
78	13	2 7.38
79	13	2 7.44
80	3	3 7.40
81	3	3 7.47

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 119 119 119 119 119 119 119 119	3 3 8 8 8 8 13 13 13 14 4 4 8 8 8 8 8 8 14 14 14 14 4 4 4 9 9 9 9 14 14 14 15 5 5 5 5 5 9 9 9 9 14 14	3 7.40 3 7.47 3 7.47 1 7.52 1 7.53 1 7.48 3 7.46 3 7.44 3 7.37 3 7.54 1 7.48 1 7.46 2 7.40 2 7.40 2 7.50 1 7.53 1 7.51 1 7.53 1 7.51 1 7.43 2 7.37 2 7.31 2 7.45 2 7.41 1 7.37 1 7.45 2 7.46 2 7.45 2 7.46 2 7.42 2 7.45 2 7.46 2
124	9	2 7.40 3 7.42

```
2 7.49
130
     5
131
     5
          2 7.49
132
     5
          2 7.49
133
     5
          2 7.50
          1 7.39
134 10
135 10
          1 7.31
136
    10
          1 7.30
          1 7.41
137 10
138 10
          1 7.48
139
    15
          1 7.47
140 15
          1 7.49
141 15
          1 7.45
142 15
          1 7.43
143 15
          1 7.42
144
    5
          3 7.48
          3 7.59
145
    5
146
     5
          3 7.59
147 10
          2 7.50
148 10
          2 7.44
          2 7.40
149 10
          2 7.45
150 10
151 15
          2 7.45
          2 7.42
152 15
          2 7.52
153 15
154 15
          2 7.51
          2 7.32
155 15
156 15
          3 7.51
157 15
          3 7.51
158 15
          3 7.53
159 15
          3 7.45
160 15
          3 7.51
GLM(pH ~ Dam/Sire, T15.3) # p301
$ANOVA
Response : pH
                Df Sum Sq Mean Sq F value Pr(>F)
                36 0.25804 0.0071678 2.8977 7.2e-06 ***
MODEL
RESIDUALS
               123 0.30425 0.0024736
CORRECTED TOTAL 159 0.56229
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$Fitness
  Root MSE pH Mean Coef Var R-square Adj R-sq
0.04973534 7.449813 0.6676053 0.4589074 0.3005388
$`Type I`
```

```
Sum Sq
                      Mean Sq F value
                                         Pr(>F)
        14 0.178017 0.0127155 5.1405 1.563e-07 ***
Dam:Sire 22 0.080024 0.0036374 1.4705
                                        0.09662 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
             Sum Sq
        Df
                      Mean Sq F value
                                         Pr(>F)
        14 0.178017 0.0127155 5.1405 1.563e-07 ***
Dam:Sire 22 0.080024 0.0036374 1.4705
                                        0.09662 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
             Sum Sq
                      Mean Sq F value
                                         Pr(>F)
        14 0.179405 0.0128146 5.1805 1.347e-07 ***
Dam:Sire 22 0.080024 0.0036374 1.4705
                                        0.09662 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c("contr.sum", "contr.poly"))
Anova(lm(pH ~ Dam/Sire, T15.3), type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: pH
           Sum Sq Df F values
                                  Pr(>F)
         0.081011
                        5.4584 4.898e-05 ***
Dam
                   6
Dam:Sire 0.080024 22
                        1.4705
                                 0.09662 .
Residuals 0.304253 123
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
5.2 Table 16.3
 (7) MODEL
T16.3 = read.csv("http://r.acr.kr/sahai/T16.3.csv")
colnames(T16.3) = c("Plot", "Sample", "Subsample", "Residue")
T16.3 = af(T16.3, c("Plot", "Sample", "Subsample"))
T16.3
  Plot Sample Subsample Residue
            1
                      1
                           0.52
2
     1
            1
                      1
                           0.43
3
     1
            1
                      2
                           0.40
```

1

1

2

0.52

5	1	2	1	0.26
6	1	2	2	0.54
7	1	3	1	0.52
8	2	1	1	0.50
9	2	1	1	0.59
10	2	1	2	0.47
11	2	1	2	0.50
12	2	2	1	0.04
13	2	2	2	0.43
		3	1	
14	2			1.08
15	3	1	1	0.34
16	3	1	1	0.26
17	3	1	2	0.32
18	3	1	2	0.45
19	3	2	1	0.25
20	3	2	2	0.38
21	3	3	1	0.29
22	4	1	1	0.18
23	4	1	1	0.24
	4			
24		1	2	0.31
25	4	1	2	0.29
26	4	2	1	0.13
27	4	2	2	0.25
28	4	3	1	0.10
29	5	1	1	1.05
30	5	1	1	0.66
31	5	1	2	0.60
32	5	1	2	0.51
33	5	2	1	0.95
34	5	2	2	0.84
35	5	3	1	0.92
36	6	1	1	0.52
37	6	1	1	0.66
38	6	1	2	0.55
39	6	1	2	0.40
40	6	2	1	0.33
41	6	2	2	0.26
42	6	3	1	0.41
43	7	1	1	0.77
44	7	1	1	0.56
45	7	1	2	0.51
46	7	1	2	0.60
47	7	2	1	0.44
48	7	2	2	0.50
49	7	3	1	0.44
50	8	1	1	0.89
51	8	1	1	0.92
52	8	1	2	0.75

```
0.58
53
      8
                          2
              1
54
      8
              2
                               0.64
                          1
55
      8
              2
                          2
                               0.54
56
      8
              3
                          1
                               0.36
57
      9
              1
                          1
                               0.50
58
      9
              1
                          1
                               0.67
59
      9
              1
                          2
                               0.60
                          2
60
      9
              1
                               0.53
61
      9
              2
                          1
                               0.60
62
      9
              2
                          2
                               0.71
63
      9
              3
                          1
                               0.92
64
     10
              1
                          1
                               0.58
65
              1
                               0.52
     10
                          1
66
     10
              1
                          2
                               0.56
67
                          2
                               0.44
     10
              1
              2
68
     10
                          1
                               0.46
69
     10
              2
                          2
                               0.52
70
              3
                               0.52
     10
                          1
71
     11
              1
                          1
                               0.24
72
     11
              1
                          1
                               0.36
73
     11
              1
                          2
                               0.48
74
     11
              1
                          2
                               0.30
              2
75
     11
                          1
                               0.53
76
     11
              2
                          2
                               0.50
77
     11
              3
                          1
                               0.39
```

GLM(Residue ~ Plot/Sample/Subsample, T16.3) # p344

\$ANOVA

```
Response : Residue
```

Df Sum Sq Mean Sq F value Pr(>F)

MODEL 54 3.1897 0.059069 5.8842 1.476e-05 ***

RESIDUALS 22 0.2208 0.010039

CORRECTED TOTAL 76 3.4106

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

\$Fitness

Root MSE Residue Mean Coef Var R-square Adj R-sq 0.100193 0.5023377 19.94535 0.9352456 0.776303

\$`Type I`

Df Sum Sq Mean Sq F value Pr(>F)
Plot 10 1.84041 0.184041 18.3332 1.929e-08 ***
Plot:Sample 22 0.99175 0.045079 4.4906 0.0004209 ***

Plot:Sample:Subsample 22 0.35757 0.016253 1.6191 0.1330632

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

```
$`Type II`
                     Df Sum Sq Mean Sq F value
                                                   Pr(>F)
Plot
                     10 1.84041 0.184041 18.3332 1.929e-08 ***
                     22 0.99175 0.045079 4.4906 0.0004209 ***
Plot:Sample
Plot:Sample:Subsample 22 0.35757 0.016253 1.6191 0.1330632
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
                     Df Sum Sq Mean Sq F value
                                                    Pr(>F)
                     10 1.78686 0.178686 17.7998 2.547e-08 ***
Plot
                     22 0.99175 0.045079 4.4906 0.0004209 ***
Plot:Sample
Plot:Sample:Subsample 22 0.35757 0.016253 1.6191 0.1330632
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c("contr.sum", "contr.poly"))
Anova(lm(Residue ~ Plot/Sample/Subsample, T16.3), type=3, singular.ok=TRUE)
Note: model has aliased coefficients
      sums of squares computed by model comparison
Anova Table (Type III tests)
Response: Residue
                      Sum Sq Df F values Pr(>F)
Plot
                     0.00000 0
Plot:Sample
                     0.36613 11
                                  3.3156 0.00805 **
Plot:Sample:Subsample 0.35758 22
                                  1.6191 0.13306
Residuals
                     0.22085 22
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
# NOT OK
```

6 Federer - Variations

Reference

• Federer WT, King F. Variations on Split Plot and Split Block Experiment Designs. John Wiley & Sons Inc. 2007.

6.1 Example 2.2

(8) MODEL

```
ex2.2 = read.table("http://r.acr.kr/split/sbex2_2.txt", header=TRUE)
ex2.2 = af(ex2.2, c("Row", "Column", "R", "S"))
ex2.2
```

```
Row Column R S
                         Y
1
      1
             1 1 1 1027.85
2
             1 1 2 982.74
      1
3
      1
             1 1 3 1007.24
4
             1 1 4 1008.47
      1
5
             2 2 1 1004.33
      1
6
      1
             2 2 2 977.86
7
             2 2 3 999.15
      1
8
      1
             2 2 4 990.86
9
      1
             3 3 1 992.57
             3 3 2 993.71
10
      1
             3 3 3 1012.57
11
      1
12
             3 3 4 968.25
      1
13
      1
             4 4 1 994.60
14
             4 4 2 1021.81
      1
15
             4 4 3 995.03
      1
16
      1
             4 4 4 1002.17
17
             5 5 1 1019.89
      1
18
      1
             5 5 2 1017.48
19
      1
             5 5 3 987.82
20
             5 5 4 995.63
      1
21
      2
             4 1 1 996.18
22
      2
             4 1 2 981.96
23
      2
             4 1 3 985.63
24
      2
             4 1 4 965.80
25
      2
             5 2 1 996.61
26
      2
             5 2 2 1011.94
27
      2
             5 2 3 972.76
28
      2
             5 2 4 1011.99
29
      2
             2 3 1 1021.61
30
      2
             2 3 2 1014.46
31
      2
             2 3 3 980.03
32
      2
             2 3 4 1014.80
33
      2
             3 4 1 1028.78
```

```
34
      2
              3 4 2 1006.01
35
      2
              3 4 3 1015.04
36
      2
              3 4 4 1000.72
37
      2
              1 5 1 994.91
              1 5 2 999.91
38
      2
39
      2
              1 5 3 1010.29
              1 5 4 1018.49
40
      2
41
              5 1 1 985.72
      3
42
      3
              5 1 2 1012.60
43
      3
             5 1 3 984.62
              5 1 4 973.47
44
      3
45
      3
              1 2 1 1013.52
              1 2 2 1017.40
46
      3
47
      3
              1 2 3
                    996.63
48
      3
              1 2 4
                    989.91
49
             4 3 1 1003.92
      3
50
      3
             4 3 2
                    999.33
51
      3
              4 3 3
                    995.70
52
      3
             4 3 4 988.14
              2 4 1 1010.08
53
      3
54
              2 4 2 997.66
      3
55
      3
              2 4 3 1012.12
             2 4 4 1019.53
56
      3
57
      3
              3 5 1 1004.83
58
      3
             3 5 2 983.86
59
      3
              3 5 3 1018.60
60
              3 5 4 1020.95
      3
61
      4
              2 1 1 991.79
62
              2 1 2 979.47
      4
63
      4
              2 1 3 1004.70
              2 1 4 1032.75
64
      4
65
      4
              3 2 1 1004.52
66
      4
              3 2 2 996.53
67
      4
             3 2 3 1016.95
68
      4
              3 2 4 983.79
69
              1 3 1 990.17
      4
              1 3 2 972.21
70
      4
71
      4
              1 3 3 1002.17
72
              1 3 4 1017.56
      4
73
              5 4 1 1006.13
      4
74
             5 4 2 1005.57
      4
75
      4
              5 4 3 1003.18
76
      4
              5 4 4 992.21
77
             4 5 1 1011.02
      4
78
             4 5 2
                    982.79
      4
79
             4 5 3 1018.23
      4
80
      4
             4 5 4 976.68
81
      5
             3 1 1 993.54
```

```
3 1 2 1006.80
82
      5
83
      5
             3 1 3 1001.24
             3 1 4 1010.73
84
      5
85
      5
             4 2 1 985.04
             4 2 2 987.54
86
      5
87
      5
             4 2 3 990.53
             4 2 4 982.68
88
      5
89
             5 3 1 1012.14
      5
90
      5
             5 3 2 999.32
91
      5
             5 3 3 1005.51
92
      5
             5 3 4 998.86
93
      5
             1 4 1 985.12
94
      5
             1 4 2 984.14
95
      5
             1 4 3 1010.74
96
      5
             1 4 4 1004.63
97
      5
             2 5 1 967.39
98
      5
             2 5 2 1009.78
99
      5
             2 5 3 1027.49
100
      5
             2 5 4 1001.61
GLM(Y \sim Row + R + S + R:S + Row:R + Column:S + Column:R:S, ex2.2)
$ANOVA
Response : Y
                Df Sum Sq Mean Sq F value Pr(>F)
MODEL
                99 22310 225.36
RESIDUALS
                 0
                        0
CORRECTED TOTAL 99 22310
$Fitness
Root MSE
           Y Mean Coef Var R-square
       NA 1000.098
                         NA
$`Type I`
           Df Sum Sq Mean Sq F value Pr(>F)
                147.4
                        36.86
Row
            4
            4 1159.8 289.94
R
S
            3
                351.9 117.29
                826.0
R:S
                       68.83
           12
               3979.8 248.74
Row:R
           16
S:Column
           12
               3863.3 321.94
R:S:Column 48 11982.3 249.63
$`Type II`
           Df
               Sum Sq Mean Sq F value Pr(>F)
Row
            0
R
            4 1159.8 289.94
S
                351.9 117.29
```

```
R:S
           12
                826.0
                        68.83
Row:R
           0
S:Column
           12 3863.3 321.94
R:S:Column 48 11982.3 249.63
$`Type III`
CAUTION: Singularity Exists!
           Df Sum Sq Mean Sq F value Pr(>F)
Row
           0
R
            4 1159.8 289.94
S
            3
                351.9 117.29
R:S
           12
                826.0
                      68.83
Row:R
           0
S:Column
           12 3863.3 321.94
R:S:Column 48 11982.3 249.63
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y \sim Row + R + S + R:S + Row:R + Column:S + Column:R:S, ex2.2), type=3,
      singular.ok=TRUE) # NOT WORKING
```

6.2 Example 3.1

(9) MODEL

```
ex3.1a = read.table("http://r.acr.kr/split/Ex3.1-example.txt", header=TRUE)
ex3.1a = af(ex3.1a, c("row", "P", "column", "R", "S"))
ex3.1a
```

```
row P column R S height
1
      1 1
                1 3 4
                          103
2
      1 1
                1 3 2
                           98
3
                1 3 3
      1 1
                          101
4
      1 1
                1 3 1
                          101
5
                2 4 2
      1 1
                          100
6
      1 1
                2 4 3
                           98
7
      1 1
                2 4 1
                          100
8
      1 1
                2 4 4
                           99
9
                3 5 3
      1 1
                           99
                3 5 1
10
      1 1
                           99
11
      1 1
                3 5 2
                          100
12
      1 1
                3 5 4
                           97
13
      1 1
                4 2 2
                           99
14
      1 1
                4 2 1
                          102
                4 2 3
15
                           99
      1 1
                4 2 4
16
      1 1
                          100
17
                5 1 1
      1 1
                          102
18
      1 1
                5 1 2
                          107
19
      1 1
                5 1 3
                           98
                5 1 4
20
      1 1
                           99
```

21	1 2	1 3 4	101
22	1 2	1 3 2	101
23	1 2	1 3 3	99
24	1 2	1 3 1	100
25	1 2	2 4 2	97
	1 2	2 4 3	85
26			
27	1 2	2 4 1	99
28	1 2	2 4 4	97
29	1 2	3 5 3	98
30	1 2	3 5 1	96
31	1 2	3 5 2	88
32	1 2	3 5 4	98
33	1 2	4 2 2	95
34	1 2	4 2 1	90
35	1 2	4 2 3	99
36	1 2	4 2 4	87
37	1 2	5 1 1	98
38	1 2	5 1 2	98
39	1 2	5 1 3	99
40	1 2	5 1 4	89
41	2 1	1 2 4	99
42	2 1	1 2 2	97
43	2 1	1 2 3	98
44	2 1	1 2 1	95
45	2 1	2 3 2	99
46	2 1	2 3 3	98
47	2 1	2 3 1	96
48	2 1	2 3 4	93
49	2 1	3 1 3	97
50	2 1	3 1 1	99
51	2 1	3 1 2	95
52	2 1	3 1 4	98
53	2 1	4 4 2	97
54	2 1	4 4 1	95
55	2 1	4 4 3	99
56	2 1	4 4 4	94
57	2 1	5 5 1	98
58	2 1	5 5 2	93
59	2 1	5 5 3	98
60	2 1	5 5 4	96
61	2 2	1 2 4	99
62	2 2	1 2 2	89
63	2 2	1 2 3	98
64	2 2	1 2 1	94
65	2 2	2 3 2	98
66	2 2	2 3 3	91
67	2 2	2 3 1	97
68	2 2	2 3 4	96

69	2 2	3 1 3	94
70	2 2	3 1 1	97
71	2 2	3 1 2	98
72	2 2	3 1 4	96
73	2 2	4 4 2	99
74	2 2	4 4 1	89
75	2 2	4 4 3	97
76	2 2	4 4 4	98
77	2 2	5 5 1	99
78	2 2	5 5 2	96
79	2 2	5 5 3	93
80	2 2	5 5 4	98
81	3 1	1 4 4	99
82	3 1	1 4 2	88
83	3 1	1 4 3	98
84	3 1	1 4 1	96
85	3 1	2 5 2	98
86	3 1	2 5 3	99
87	3 1	2 5 1	92
88	3 1	2 5 4	88
89	3 1	3 2 3	
90	3 1		98 ee
91	3 1	3 2 1 3 2 2	85 88
92	3 1	3 2 4	
			95 07
93	3 1		97
94	3 1	4 1 1	87
95	3 1	4 1 3	96
96	3 1	4 1 4	88
97	3 1	5 3 1	88
98	3 1	5 3 2	85
99	3 1	5 3 3	78
100	3 1	5 3 4	78
101	3 2	1 4 4	88
102	3 2	1 4 2	85
103	3 2	1 4 3	78
104	3 2	1 4 1	80
105	3 2	2 5 2	80
106	3 2	2 5 3	79
107	3 2	2 5 1	77
108	3 2	2 5 4	78
109	3 2	3 2 3	90
110	3 2	3 2 1	91
111	3 2	3 2 2	92
112	3 2	3 2 4	93
113	3 2	4 1 2	99
114	3 2	4 1 1	97
115	3 2	4 1 3	98
116	3 2	4 1 4	99

117	3 2	5 3 1	80
118	3 2	5 3 2	81
119	3 2	5 3 3	82
120	3 2	5 3 4	83
121	4 1	1 1 4	80
122	4 1	1 1 2	81
123	4 1	1 1 3	84
124	4 1	1 1 1	80
125	4 1	2 2 2	90
126	4 1	2 2 3	90
127	4 1	2 2 1	90
128	4 1	2 2 4	90
129	4 1	3 3 3	99
130	4 1	3 3 1	98
131	4 1	3 3 2	97
132	4 1	3 3 4	99
133	4 1	4 5 2	95
134	4 1	4 5 1	95
135	4 1	4 5 3	95
136	4 1	4 5 4	96
137	4 1	5 4 1	99
138	4 1	5 4 2	95
139	4 1	5 4 3	98
140	4 1	5 4 4	98
141	4 2	1 1 4	98
142	4 2	1 1 2	99
143	4 2	1 1 3	97
144	4 2	1 1 1	99
145	4 2	2 2 2	88
146	4 2	2 2 3	87
147	4 2	2 2 1	88
148	4 2	2 2 4	86
149	4 2	3 3 3	99
150		3 3 3	97
151	4 2 4 2	3 3 2	96
152	4 2	3 3 4	95
153		4 5 2	89
154	4 2 4 2	452	88
155	4 2	4 5 1	
156			87 85
157	4 2		85 90
	4 2		
158	4 2	5 4 2	90
159	4 2	5 4 3	90
160	4 2	5 4 4	97
161	5 1	154	98
162	5 1	1 5 2	98
163	5 1	153	99
164	5 1	151	97

```
5 1
165
               2 1 2
                         98
166
      5 1
               2 1 3
                         97
167
     5 1
               2 1 1
                         98
168
     5 1
               2 1 4
                         89
      5 1
               3 4 3
169
                         88
170
     5 1
               3 4 1
                         87
     5 1
               3 4 2
171
                         88
172
     5 1
               3 4 4
                         88
173
     5 1
               4 3 2
                         98
174
     5 1
               4 3 1
                         95
               4 3 3
175
     5 1
                         97
176
      5 1
               4 3 4
                         99
               5 2 1
177
     5 1
                         98
     5 1
               5 2 2
                         98
178
179
     5 1
               5 2 3
                         95
     5 1
               5 2 4
                         99
180
181
     5 2
               1 5 4
                         88
182
     5 2
               1 5 2
                         87
     5 2
183
               1 5 3
                         99
     5 2
               1 5 1
184
                         98
     5 2
               2 1 2
                         99
185
     5 2
186
               2 1 3
                         95
     5 2
               2 1 1
                         99
187
     5 2
188
               2 1 4
                         90
189
     5 2
               3 4 3
                         98
     5 2
               3 4 1
190
                         99
     5 2
               3 4 2
                         99
191
     5 2
               3 4 4
                         92
192
     5 2
               4 3 2
193
                         88
194
     5 2
               4 3 1
                         86
     5 2
               4 3 3
                         87
195
     5 2
               4 3 4
196
                         83
197
     5 2
               5 2 1
                         99
198
     5 2
               5 2 2
                         96
199
      5 2
               5 2 3
                         98
               5 2 4
200
     5 2
                         99
```

```
GLM(height \sim row + R + P + S + S:R + row:P + R:P + row:R:P + S:P + S:P:row + S:R:P + R:S:P:row, ex3.1a)
```

\$ANOVA

Response : height

Df Sum Sq Mean Sq F value Pr(>F)

MODEL 199 7534.8 37.863

RESIDUALS 0 0.0 CORRECTED TOTAL 199 7534.8

\$Fitness

```
Root MSE height Mean Coef Var R-square
       NΑ
              93.965
                           NA
                                     1
$`Type I`
         Df Sum Sq Mean Sq F value Pr(>F)
           4 2017.03 504.26
              90.63
R
                      22.66
Ρ
           1 253.12 253.12
S
          3
             16.38
                      5.46
R:S
         12 195.05
                      16.25
          4 167.25
                      41.81
row:P
R:P
          4 504.95
                     126.24
         32 2933.52
row:R:P
                      91.67
P:S
          3 14.29
                       4.76
         24 234.68
                       9.78
row:P:S
R:P:S
         12 100.33
                       8.36
row:R:P:S 96 1007.52
                      10.49
$`Type II`
         Df Sum Sq Mean Sq F value Pr(>F)
           4 2017.03 504.26
R
             90.63
                      22.66
Ρ
          1 253.12 253.12
S
           3
              16.38
                      5.46
R:S
         12 195.05
                      16.25
          4 167.25
                      41.81
row:P
          4 504.95
                     126.24
R:P
         32 2933.52
                      91.67
row:R:P
          3 14.29
                       4.76
P:S
row:P:S
         24 234.68
                       9.78
R:P:S
         12 100.33
                       8.36
row:R:P:S 96 1007.52
                      10.49
$`Type III`
         Df Sum Sq Mean Sq F value Pr(>F)
           4 2017.03 504.26
row
              90.63
                      22.66
R
Ρ
           1 253.13
                     253.13
S
           3
             16.38
                       5.46
         12 195.05
                      16.25
R:S
row:P
          4 167.25
                      41.81
          4 504.95
                     126.24
R:P
row:R:P
         32 2933.52
                      91.67
                       4.77
P:S
          3
             14.30
         24 234.68
                       9.78
row:P:S
R:P:S
         12 100.33
                       8.36
```

row:R:P:S 96 1007.52

10.49

```
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(height \sim row + R + P + S + S:R + row:P + R:P + row:R:P + S:P + R:P 
                         S:P:row + S:R:P + R:S:P:row, ex3.1a), type=3, singular.ok=TRUE)
                         # NOT WORKING
alias(height \sim row + R + P + S + S:R + row:P + R:P + row:R:P + S:P + S:P:row +
           S:R:P + R:S:P:row, ex3.1a) # NO ALIAS
Model:
height \sim \text{row} + R + P + S + S:R + \text{row}:P + R:P + \text{row}:R:P + S:P +
           S:P:row + S:R:P + R:S:P:row
 (10) MODEL
        • p94 Appendix 3.1
ex3.1b = read.table("http://r.acr.kr/split/spexvar3.txt", header=TRUE)
ex3.1b = af(ex3.1b, c("rep", "var", "nit", "row", "col"))
ex3.1b
        row col rep var nit set reps yield
              1
                         1
                                     1
                                                3
                                                           3
                                                                       1
                                                                                     1
                                                                                                 156
1
2
                         2
                                                3
                                                           2
                                                                                                118
              1
                                     1
                                                                       1
                                                                                      1
3
              1
                         3
                                     4
                                                3
                                                           2
                                                                       2
                                                                                                109
4
             1
                         4
                                     4
                                                3
                                                           3
                                                                       2
                                                                                     1
                                                                                                 99
5
              2
                                                3
                                                           1
                                                                       1
                                                                                                140
                         1
                                    1
                                                                                     1
6
              2
                         2
                                                3
                                                           4
                                                                                                105
                                     1
                                                                       1
                                                                                     1
7
              2
                         3
                                     4
                                                3
                                                           4
                                                                       2
                                                                                     1
                                                                                                 63
8
              2
                                     4
                                                                       2
                                                                                     1
                                                                                                70
                         4
                                                3
                                                           1
9
              3
                         1
                                     1
                                                1
                                                           4
                                                                       1
                                                                                     1
                                                                                                111
10
              3
                         2
                                                1
                                                           1
                                                                       1
                                                                                     1
                                                                                                130
                                     1
              3
                                                2
                                                                       2
                                                                                                 80
11
                         3
                                     4
                                                           4
                                                                                     1
12
             3
                         4
                                     4
                                                2
                                                           2
                                                                       2
                                                                                     1
                                                                                                 94
13
             4
                                                           3
                                                                                                174
                         1
                                     1
                                               1
                                                                       1
                                                                                     1
14
             4
                         2
                                     1
                                               1
                                                           2
                                                                       1
                                                                                     1
                                                                                                157
             4
                                     4
                                                2
                                                            3
                                                                       2
15
                         3
                                                                                     1
                                                                                                126
                                                                       2
16
             4
                         4
                                     4
                                                2
                                                           1
                                                                                     1
                                                                                                 82
17
             5
                         1
                                     1
                                                2
                                                           4
                                                                       1
                                                                                     1
                                                                                               117
             5
                         2
                                                2
                                                                                                114
18
                                     1
                                                           1
                                                                       1
                                                                                     1
             5
19
                         3
                                     4
                                                1
                                                           1
                                                                       2
                                                                                                90
20
             5
                         4
                                     4
                                               1
                                                           2
                                                                       2
                                                                                     1
                                                                                                100
21
                                                2
                                                           2
             6
                         1
                                     1
                                                                       1
                                                                                     1
                                                                                                161
22
             6
                         2
                                     1
                                                2
                                                           3
                                                                       1
                                                                                     1
                                                                                                141
23
                                                                       2
             6
                         3
                                     4
                                                1
                                                           3
                                                                                     1
                                                                                                116
                                     4
                                                           4
                                                                       2
24
              6
                         4
                                               1
                                                                                     1
                                                                                                62
25
                                     2
                                                           2
                                                                                     2
             7
                         1
                                                3
                                                                       1
                                                                                                104
                                               3
                                                                                     2
                                                                                                70
26
             7
                         2
                                                           4
                                                                     1
27
             7
                                    5
                                               2
                                                           3
                                                                       2
                                                                                     2
                                                                                                   96
```

```
30
     8
          2
               2
                    3
                                        117
                        3
                             1
                                   2
31
     8
          3
               5
                    2
                        2
                             2
                                   2
                                         89
32
     8
          4
               5
                    2
                        1
                             2
                                   2
                                        102
33
     9
          1
               2
                    1
                        3
                             1
                                   2
                                        122
      9
          2
               2
                        4
                             1
                                   2
                                         74
34
                    1
                             2
                                   2
35
     9
          3
               5
                    1
                        2
                                        112
      9
               5
                             2
                                   2
                                         86
36
          4
                    1
                        3
               2
37
                                   2
                                         89
    10
          1
                    1
                        1
                             1
38
    10
          2
               2
                    1
                        2
                             1
                                   2
                                         81
39
    10
               5
                        4
                             2
                                   2
                                         68
          3
                    1
               5
                             2
                                   2
                                         64
40
    10
          4
                    1
                        1
41
    11
          1
               2
                    2
                        1
                             1
                                   2
                                        103
               2
                    2
                                   2
42
          2
                        4
                             1
                                         64
    11
               5
                    3
                        2
                             2
                                   2
                                        132
43
    11
          3
               5
44
    11
          4
                    3
                        3
                             2
                                   2
                                        124
               2
45
                    2
                        2
                             1
                                   2
    12
          1
                                        132
46
    12
          2
               2
                    2
                        3
                             1
                                   2
                                        133
47
    12
          3
               5
                    3
                        1
                             2
                                   2
                                        129
                             2
48
    12
          4
               5
                    3
                        4
                                   2
                                         89
               3
                    2
                             1
                                   3
                                        108
49
    13
          1
                        1
    13
               3
                    2
                        2
                             1
                                   3
                                        126
50
          2
51
    13
          3
               6
                    1
                        2
                             2
                                   3
                                        118
                             2
52
               6
                        4
                                   3
    13
          4
                    1
                                         53
53
    14
          1
               3
                    2
                        3
                             1
                                   3
                                        149
54
    14
          2
               3
                    2
                        4
                             1
                                   3
                                         70
                             2
                                   3
55
    14
          3
               6
                    1
                        3
                                        113
    14
               6
                             2
                                   3
                                         74
56
          4
                    1
                        1
               3
                    3
                                   3
57
    15
                        3
                             1
                                        144
          1
58
          2
               3
                    3
                                   3
                                        124
    15
                        1
                             1
59
    15
          3
               6
                    2
                        3
                             2
                                   3
                                        104
                        2
               6
                    2
                             2
                                   3
                                         86
60
    15
          4
               3
61
    16
          1
                    3
                        2
                             1
                                   3
                                        121
62
    16
          2
               3
                    3
                        4
                             1
                                   3
                                         96
63
    16
          3
               6
                    2
                        4
                             2
                                   3
                                         89
64
    16
               6
                    2
                        1
                             2
                                   3
                                         82
          4
65
    17
               3
                    1
                        4
                             1
                                   3
                                         61
          1
                             1
                                   3
66
    17
          2
               3
                    1
                        3
                                        100
67
    17
          3
               6
                    3
                        4
                             2
                                   3
                                         97
                             2
                                         99
68
    17
          4
               6
                    3
                        1
                                   3
69
   18
               3
                    1
                        1
                             1
                                   3
                                         91
          1
70
    18
                        2
                             1
                                         97
          2
               3
                    1
                                   3
                                        119
71
    18
          3
               6
                    3
                        2
                             2
                                   3
72
    18
          4
               6
                    3
                        3
                             2
                                   3
                                        121
```

```
GLM(yield ~ rep + var + rep:var + nit + var:nit + row + col, ex3.1b)
```

\$ANOVA

Response : yield

```
Df Sum Sq Mean Sq F value
                                           Pr(>F)
MODEL
               37 48090 1299.7 11.341 6.734e-11 ***
RESIDUALS
               34
                    3896
                          114.6
CORRECTED TOTAL 71 51986
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE yield Mean Coef Var R-square Adj R-sq
 10.70513 103.9722 10.29615 0.9250491 0.8434848
$`Type I`
       Df Sum Sq Mean Sq F value
                                    Pr(>F)
        5 15875.3 3175.1 27.7056 4.391e-11 ***
rep
                   893.2 7.7939 0.0016359 **
var
        2 1786.4
rep:var 10 6013.3
                  601.3 5.2472 0.0001207 ***
        3 20020.5 6673.5 58.2331 1.754e-13 ***
nit
var:nit 6
            321.7
                    53.6 0.4679 0.8271333
        9
            900.9
                  100.1 0.8734 0.5575581
row
        2 3171.5 1585.7 13.8373 4.012e-05 ***
col
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type II`
       Df Sum Sq Mean Sq F value
                                    Pr(>F)
        2 5942.5 2971.3 25.9273 1.449e-07 ***
rep
        2 2799.8 1399.9 12.2155 0.0001005 ***
var
                  249.4 2.1767 0.0926008 .
rep:var 4
            997.8
        3 12559.3 4186.4 36.5308 9.683e-11 ***
nit
var:nit 6 477.8
                    79.6 0.6949 0.6553307
            945.0
                   105.0 0.9162 0.5230151
row
        9
col
        2 3171.5 1585.7 13.8373 4.012e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
CAUTION: Singularity Exists!
       Df Sum Sq Mean Sq F value
                                    Pr(>F)
        2 5942.5 2971.3 25.9273 1.449e-07 ***
rep
        2 2799.8 1399.9 12.2155 0.0001005 ***
var
            997.8
                  249.4 2.1767 0.0926008 .
rep:var 4
        3 11977.9 3992.6 34.8397 1.775e-10 ***
nit
            477.8
                    79.6 0.6949 0.6553307
var:nit 6
            945.0
                  105.0 0.9162 0.5230151
row
        2 3171.5 1585.7 13.8373 4.012e-05 ***
col
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(yield ~ rep + var + rep:var + nit + var:nit + row + col, ex3.1b),
     type=3, singular.ok=TRUE) # NOT OK for var
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: yield
          Sum Sq Df F values
                                Pr(>F)
          5942.5 2 25.9273 1.449e-07 ***
rep
             0.0 0
var
         11977.9 3 34.8397 1.775e-10 ***
nit
           945.0 9 0.9162
                                0.5230
row
          3171.5 2 13.8373 4.012e-05 ***
col
           997.8 4 2.1767
                                0.0926 .
rep:var
var:nit
           477.8 6
                      0.6949
                                0.6553
Residuals 3896.4 34
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
6.3 Example 5.1
(11) MODEL
ex5.1 = read.table("http://r.acr.kr/split/sbsp.txt", header=TRUE)
ex5.1 = af(ex5.1, c("R", "A", "C", "B", "Tx"))
ex5.1
  R A C B Tx Y
1 1 1 1 2 1 2
2 1 1 1 1 2 5
3 1 1 2 2 4 6
4 1 1 2 1 3 9
5 1 1 3 1 6 8
6 1 1 3 2 5 5
7 1 2 1 2 4 9
8 1 2 1 1 3 7
9 1 2 2 2 6 8
10 1 2 2 1 5 4
11 1 2 3 1 1 3
12 1 2 3 2 2 5
13 2 2 1 2 6 8
14 2 2 1 1 5 5
15 2 2 2 2 1 3
16 2 2 2 1 2 5
17 2 2 3 1 4 9
```

18 2 2 3 2 3 7

```
19 2 1 1 2 3 3
20 2 1 1 1 6 4
21 2 1 2 2 5 3
22 2 1 2 1 1 0
23 2 1 3 1 2 1
24 2 1 3 2 4 2
25 3 1 1 2 5 5
26 3 1 1 1 1 5
27 3 1 2 2 2 5
28 3 1 2 1 4 9
29 3 1 3 1 3 7
30 3 1 3 2 6 8
31 3 2 1 2 2 6
32 3 2 1 1 4 8
33 3 2 2 2 3 7
34 3 2 2 1 6 8
35 3 2 3 1 5 6
36 3 2 3 2 1 3
GLM(Y \sim R + A + A:R + C + B + B:C + Tx + A:Tx + B:Tx, ex5.1)
$ANOVA
Response: Y
               Df Sum Sq Mean Sq F value
                                            Pr(>F)
MODEL
               24 196.238 8.1766 7.0476 0.0008758 ***
RESIDUALS
               11 12.762 1.1602
CORRECTED TOTAL 35 209.000
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE Y Mean Coef Var R-square Adj R-sq
 1.077122
            5.5 19.58405 0.9389372 0.8057093
$`Type I`
    Df Sum Sq Mean Sq F value
                                  Pr(>F)
R
      2 33.500 16.7500 14.4373 0.0008391 ***
      1 16.000 16.0000 13.7908 0.0034197 **
R:A
      2 32.167 16.0833 13.8626 0.0009856 ***
C
         0.500 0.2500 0.2155 0.8094766
         1.778 1.7778 1.5323 0.2415358
В
      1
C:B
         0.389 0.1944 0.1676 0.8478141
Tx
      5 103.333 20.6667 17.8131 6.055e-05 ***
A:Tx 5
         6.521 1.3042 1.1241 0.4027183
         2.050 0.5126 0.4418 0.7761730
B:Tx 4
---
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

```
$`Type II`
    Df Sum Sq Mean Sq F value
                                 Pr(>F)
     2 23.116 11.5581 9.9622 0.003396 **
R
Α
     1 12.375 12.3751 10.6664 0.007519 **
     2 27.426 13.7132 11.8197 0.001820 **
R:A
С
         0.970 0.4850 0.4180 0.668392
В
         1.757 1.7574 1.5148 0.244080
C:B
         0.085 0.0424 0.0366 0.964202
     5 103.333 20.6667 17.8131 6.055e-05 ***
         2.655 0.6636 0.5720 0.688652
A:Tx 4
B:Tx 4
         2.050 0.5126 0.4418 0.776173
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
CAUTION: Singularity Exists!
    Df Sum Sq Mean Sq F value
                                 Pr(>F)
     2 22.186 11.0928 9.5611 0.003924 **
R
Α
     1 15.185 15.1853 13.0886 0.004042 **
R:A
     2 27.426 13.7132 11.8197 0.001820 **
         1.010 0.5049 0.4352 0.657839
C
В
         1.792 1.7922 1.5448
                               0.239751
         0.085 0.0424 0.0366 0.964202
     5 103.333 20.6667 17.8131 6.055e-05 ***
Tx
         2.655 0.6636 0.5720 0.688652
A:Tx 4
B:Tx 4
         2.050 0.5126 0.4418 0.776173
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
alias(Y \sim R + A + A:R + C + B + B:C + Tx + A:Tx + B:Tx, ex5.1)
Model :
Y \sim R + A + A:R + C + B + B:C + Tx + A:Tx + B:Tx
Complete:
       (Intercept) R1 R2 A1 C1
                                     C2 B1
                                              Tx1 Tx2 Tx3 Tx4 Tx5 R1:A1
                          0 - 1/5
                                        0 -1/5
                                                      0
                                                           0
                                                                0
B1:Tx5
                                   0
                                                 0
                                                                     0
                     0
      R2:A1 C1:B1 C2:B1 A1:Tx1 A1:Tx2 A1:Tx3 A1:Tx4 A1:Tx5 B1:Tx1 B1:Tx2 B1:Tx3
                        1/5
                               1/5
                                      1/5
B1:Tx5
                     0
                                             1/5
                                                     -1
                                                          1/5
                                                                 1/5
                                                                        1/5
      B1:Tx4
B1:Tx5 1/5
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y \sim R + A + A:R + C + B + B:C + Tx + A:Tx + B:Tx, ex5.1),
     type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
```

Anova Table (Type III tests)

```
Response: Y
          Sum Sq Df F values
                               Pr(>F)
          22.186 2
                     9.5611 0.003924 **
R
           0.000 0
Α
С
           1.010 2
                    0.4352 0.657839
В
           0.000 0
Tx
         103.333 5 17.8131 6.055e-05 ***
          27.426 2 11.8197 0.001820 **
R:A
C:B
           0.085 2 0.0366 0.964202
A:Tx
           2.655 4 0.5720 0.688652
B:Tx
           2.050 4 0.4418 0.776173
Residuals 12.762 11
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(12) MODEL
GLM(Y \sim R + A + A:R + C + B + C:B + Tx + A:Tx + B:Tx + A:B:Tx, ex5.1)
$ANOVA
Response : Y
               Df Sum Sq Mean Sq F value
                                          Pr(>F)
MODEL
               28 204.2 7.2929 10.635 0.001719 **
RESIDUALS
                7
                     4.8 0.6857
CORRECTED TOTAL 35 209.0
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
$Fitness
 Root MSE Y Mean Coef Var R-square Adj R-sq
0.8280787
             5.5 15.05598 0.9770335 0.8851675
$`Type I`
      Df Sum Sq Mean Sq F value
                                   Pr(>F)
R
       2 33.500 16.7500 24.4271 0.0006969 ***
       1 16.000 16.0000 23.3333 0.0018985 **
R:A
       2 32.167 16.0833 23.4549 0.0007889 ***
С
       2 0.500 0.2500 0.3646 0.7069339
В
       1 1.778 1.7778 2.5926 0.1513998
C:B
       2 0.389 0.1944 0.2836 0.7613494
Tx
       5 103.333 20.6667 30.1389 0.0001357 ***
       5 6.521 1.3042 1.9019 0.2123307
A:Tx
B:Tx
           2.050 0.5126 0.7475 0.5896365
A:B:Tx 4 7.962 1.9905 2.9029 0.1038803
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

\$`Type II`

```
Df Sum Sq Mean Sq F value
       2 31.838 15.9191 23.2153 0.0008139 ***
R
Α
       1 12.375 12.3751 18.0470 0.0038017 **
R:A
          2.017 2.0174 2.9420 0.1300172
С
           0.500 0.2500 0.3645 0.7069558
В
           1.757 1.7574 2.5629 0.1534298
C:B
           0.644 0.6445 0.9399 0.3646045
Tx
       5 103.333 20.6667 30.1389 0.0001357 ***
           2.655 0.6636 0.9678 0.4812226
A:Tx
B:Tx
           2.050 0.5126 0.7475 0.5896365
A:B:Tx 4
           7.962 1.9905 2.9029 0.1038803
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
CAUTION: Singularity Exists!
      Df Sum Sq Mean Sq F value
                                    Pr(>F)
       2 28.112 14.0562 20.4986 0.0011846 **
R
Α
       1 14.655 14.6551 21.3720 0.0024176 **
R:A
           2.017 2.0174 2.9420 0.1300172
C
           0.471 0.2356 0.3436 0.7205632
В
           1.769 1.7694 2.5804 0.1522328
C:B
           0.644 0.6445 0.9399 0.3646045
       5 103.815 20.7630 30.2793 0.0001336 ***
Tx
A:Tx
       4 2.951 0.7378 1.0760 0.4358837
B:Tx
           3.553 0.8882 1.2954 0.3579988
           7.962 1.9905 2.9029 0.1038803
A:B:Tx 4
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
alias(Y ~ R + A + A:R + C + B + C:B + Tx + A:Tx + B:Tx + A:B:Tx, ex5.1)
Y \sim R + A + A:R + C + B + C:B + Tx + A:Tx + B:Tx + A:B:Tx
Complete :
          (Intercept) R1
                          R2 A1
                                    C1
                                         C2
                                             В1
                                                  Tx1 Tx2 Tx3 Tx4 Tx5
B1:Tx5
                        0
                             0 - 1/5
                                       0
                                           0 -1/5
                                                     0
                                                          0
                                                               0
A1:B1:Tx5 -1/6
                        0
                             0
                                  0
                                       0
                                            0
                                                0 1/6 1/6 1/6 1/6 -5/6
A1:B1:Tx6
                      2/3
                             0 4/45 2/3 -2/3 4/45 -1/3 1/3 -1/3
         R1:A1 R2:A1 C1:B1 C2:B1 A1:Tx1 A1:Tx2 A1:Tx3 A1:Tx4 A1:Tx5 B1:Tx1
                  0
                        0
                              0
                                  1/5
                                         1/5
                                               1/5
                                                      1/5
                                                              -1
                                                                    1/5
B1:Tx5
A1:B1:Tx5
            0
                  0
                        0
                              0
                                    0
                                          0
                                                 0
                                                        0
                                                               0
                                                                      0
                                        -1/5
                                                      4/5
A1:B1:Tx6 -2/9
                4/9 -2/9 -2/9 -1/5
                                              -1/5
                                                                   -1/5
         B1:Tx2 B1:Tx3 B1:Tx4 A1:B1:Tx1 A1:B1:Tx2 A1:B1:Tx3 A1:B1:Tx4
B1:Tx5
          1/5
                 1/5
                        1/5
                                 0
                                          0
                                                    0
                                                              0
A1:B1:Tx5
                   0
                          0
                                 0
                                          0
                                                    0
                                                              0
A1:B1:Tx6 -1/5
                -1/5
                        4/5
                                 1
                                          -1
                                                              0
```

```
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y \sim R + A + A:R + C + B + C:B + Tx + A:Tx + B:Tx + A:B:Tx, ex5.1),
      type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
      sums of squares computed by model comparison
Anova Table (Type III tests)
Response: Y
         Sum Sq Df F values
                              Pr(>F)
R
          11.643 1 16.9793 0.004456 **
          0.000 0
Α
С
          0.002 1
                     0.0025 0.961483
В
          0.000 0
Tx
         89.178 3 43.3503 6.87e-05 ***
          2.017 1
                     2.9420 0.130017
R:A
C:B
          0.644 1
                    0.9399 0.364604
A:Tx
          0.543 3 0.2640 0.849381
B:Tx
          3.384 3 1.6451 0.264128
          7.962 4
                     2.9029 0.103880
A:B:Tx
Residuals 4.800 7
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
6.4 Example 7.1
(13) MODEL
ex7.1 = read.table("http://r.acr.kr/split/asped.txt", header=TRUE)
ex7.1 = af(ex7.1, c("R", "G", "F"))
ex7.1
    YR GF
   2 1 25 1
1
   4 1 25 2
2
   6 1 25 3
3
4
  1 1 26 1
   3 1 26 2
5
6
   5 1 26 3
7
   9 1 27 1
8
   9 1 27 2
9
   8 1 27 3
10 9 1 28 1
11 9 1 28 2
12 7 1 28 3
13 2 1 1 1
14 5 1 1 2
```

15 7 1 1 3

- 16 3 1 2 1
- 17 6 1 2 2
- 18 5 1 2 3
- 19 4 1 3 1
- 20 7 1 3 2
- 21 6 1 3 3
- 22 5 1 4 1
- 4 2 8 1
- 23
- 24 4 1 4 3 25 6 1 5 1
- 5 2
- 26 8 1
- 27 8 1 5 3
- 28 7 1 6 1
- 29 8 1 6 2
- 30 7 1 6 3
- 31 3 2 25 1
- 32 3 2 25 2
- 33 7 2 25 3
- 34 2 2 26 1
- 35 2 2 26 2
- 4 2 26 3 36
- 8 2 27 1 37
- 38 8 2 27 2
- 8 2 27 3 39
- 40 7 2 28 1
- 41 8 2 28 2
- 42 9 2 28 3
- 43 1 2 7 1
- 7 2 44 2 2
- 45 3 2 7 3
- 46 2 2 8 1
- 3 2 8 2 47
- 48 5 2 8 3
- 49 3 2 9 1
- 50 4 2 9 2
- 4 2 9 3 51
- 52 4 2 10 1
- 53 4 2 10 2
- 54 5 2 10 3
- 55 8 2 11 1
- 56 8 2 11 2
- 57 8 2 11 3
- 58 3 2 12 1
- 59 5 2 12 2
- 60 7 2 12 3
- 61 4 3 25 1
- 62 6 3 25 2
- 63 8 3 25 3

- 64 2 3 26 1
- 65 5 3 26 2
- 66 7 3 26 3
- 67 8 3 27 1
- 68 7 3 27 2
- 69 9 3 27 3
- 70 7 3 28 1
- 71 7 3 28 2
- 72 9 3 28 3
- 73 7 3 13 1
- 74 7 3 13 2
- 75 9 3 13 3
- 76 5 3 14 1
- 77 6 3 14 2
- 78 8 3 14 3
- 79 3 3 15 1
- 80 5 3 15 2
- 81 6 3 15 3
- 82 7 3 16 1
- 83 7 3 16 2
- 84 9 3 16 3
- 85 6 3 17 1
- 30 0 3 17 1
- 86 8 3 17 2
- 87 8 3 17 3
- 88 5 3 18 1
- 89 7 3 18 2
- 90 8 3 18 3
- 91 4 4 25 1
- 92 5 4 25 2
- 93 6 4 25 3
- 94 5 4 26 1
- 95 2 4 26 2
- 96 5 4 26 3
- 97 9 4 27 1
- 98 9 4 27 2
- 99 9 4 27 3
- 100 9 4 28 1
- 101 8 4 28 2
- 102 7 4 28 3
- 103 5 4 19 1
- 104 8 4 19 2
- 105 9 4 19 3
- 106 6 4 20 1
- 107 6 4 20 2
- 108 8 4 20 3
- 109 7 4 21 1
- 110 4 4 21 2
- 111 8 4 21 3

```
112 8 4 22 1
113 7 4 22 2
114 9 4 22 3
115 9 4 23 1
116 8 4 23 2
117 9 4 23 3
118 9 4 24 1
119 8 4 24 2
120 9 4 24 3
GLM(Y \sim R + G + R:G + F + F:G, ex7.1)
$ANOVA
Response : Y
                Df Sum Sq Mean Sq F value
                                             Pr(>F)
MODEL
                95 577.82 6.0824 5.3082 1.068e-05 ***
RESIDUALS
                24 27.50 1.1458
CORRECTED TOTAL 119 605.32
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE Y Mean Coef Var R-square Adj R-sq
 1.070436 6.175
                 17.335 0.9545699 0.7747422
$`Type I`
   Df Sum Sq Mean Sq F value
                                Pr(>F)
    3 84.76 28.2528 24.6570 1.655e-07 ***
   27 343.48 12.7216 11.1025 4.286e-08 ***
R:G 9 11.75 1.3056 1.1394
                                0.3749
    2 59.85 29.9250 26.1164 9.481e-07 ***
G:F 54 77.98 1.4441 1.2603
                                0.2718
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type II`
   Df Sum Sq Mean Sq F value
                                Pr(>F)
       5.75 1.9167 1.6727
                                0.1994
R
   27 343.48 12.7216 11.1025 4.286e-08 ***
G
R:G 9 11.75 1.3056 1.1394
                                0.3749
    2 59.85 29.9250 26.1164 9.481e-07 ***
G:F 54 77.98 1.4441 1.2603
                                0.2718
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
   Df Sum Sq Mean Sq F value
                                Pr(>F)
       5.75 1.9167 1.6727
                                0.1994
```

```
27 343.48 12.7216 11.1025 4.286e-08 ***
R:G 9 11.75 1.3056 1.1394
                               0.3749
    2 50.50 25.2525 22.0385 3.686e-06 ***
G:F 54 77.98 1.4441 1.2603
                               0.2718
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y ~ R + G + R:G + F + F:G, ex7.1), type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: Y
          Sum Sq Df F values
                               Pr(>F)
           0.000 0
G
         202.417 3 58.8848 3.258e-11 ***
F
          50.505 2 22.0385 3.686e-06 ***
R:G
          11.750 9
                    1.1394
                               0.3749
G:F
          77.983 54
                    1.2603
                               0.2718
Residuals 27.500 24
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
6.5 Example 7.3
(14) MODEL
ex7.3 = read.table("http://r.acr.kr/split/assped.txt", header=TRUE)
ex7.3 = af(ex7.3, c("R", "T", "G", "F"))
ex7.3
   YRT GF
   2 1 1 1 1
1
   4 1 1 1 2
2
   6 1 1 1 3
3
   3 1 1 2 1
4
   5 1 1 2 2
5
6
   7 1 1 2 3
7
   7 1 1 3 1
8
   7 1 1 3 2
9
   9 1 1 3 3
10 8 1 1 4 1
11 8 1 1 4 2
12 9 1 1 4 3
13 8 1 1 5 1
14 8 1 1 5 2
15 9 1 1 5 3
```

3 2 1 10 1

62 5 2 1 10 2 63 6 2 1 10 3

61 62

111 4 3 1 15 3

157 5 4 1 20 1 158 5 4 1 20 2 159 7 4 1 20 3

```
160 5 4 1 21 1
161 6 4 1 21 2
162 8 4 1 21 3
163 5 4 1 22 1
164 7 4 1 22 2
165 7 4 1 22 3
166 6 4 1 23 1
167 8 4 1 23 2
168 9 4 1 23 3
169 2 4 2 16 1
170 2 4 2 16 2
171 4 4 2 16 3
172 3 4 2 17 1
173 5 4 2 17 2
174 6 4 2 17 3
175 4 4 2 18 1
176 6 4 2 18 2
177 7 4 2 18 3
178 5 4 2 19 1
179 7 4 2 19 2
180 7 4 2 19 3
181 6 4 2 20 1
182 7 4 2 20 2
183 8 4 2 20 3
184 4 4 2 21 1
185 6 4 2 21 2
186 7 4 2 21 3
187 7 4 2 22 1
188 8 4 2 22 2
189 8 4 2 22 3
190 7 4 2 23 1
191 8 4 2 23 2
192 9 4 2 23 3
GLM(Y \sim R + T + R:T + G + G:T + R:T:G + F + F:T + F:G + F:G:T, ex7.3)
$ANOVA
Response : Y
                 Df Sum Sq Mean Sq F value
                155 656.12 4.2330 13.446 3.997e-14 ***
MODEL
                 36 11.33 0.3148
RESIDUALS
CORRECTED TOTAL 191 667.45
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$Fitness
  Root MSE
             Y Mean Coef Var R-square Adj R-sq
 0.5610836 6.265625 8.95495 0.98302 0.9099118
```

```
$`Type I`
     Df Sum Sq Mean Sq F value
                                   Pr(>F)
         27.06
                 9.019
                        28.6489 1.203e-09 ***
R
Τ
         10.55 10.547
                        33.5018 1.334e-06 ***
R:T
      3
          2.97
                 0.991
                        3.1489 0.036705 *
G
     22 389.01 17.682 56.1668 < 2.2e-16 ***
T:G
     22
         18.42
                 0.837
                         2.6601 0.004445 **
R:T:G 12
          8.78
                 0.731
                         2.3235 0.025315 *
F
      2 164.28 82.141 260.9173 < 2.2e-16 ***
          0.84
T:F
      2
                 0.422
                         1.3401 0.274574
G:F
     44 23.47
                 0.533
                         1.6943 0.053191 .
                 0.244
                         0.7753 0.790640
T:G:F 44 10.74
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
     Df Sum Sq Mean Sq F value
                                   Pr(>F)
      3 12.49
                 4.162 13.2206 5.655e-06 ***
R
Τ
      1
        10.55 10.547 33.5018 1.334e-06 ***
R:T
      3
          1.15
                 0.384
                        1.2206 0.316281
G
     22 389.01 17.682 56.1668 < 2.2e-16 ***
T:G
     22 18.42
                 0.837
                        2.6601 0.004445 **
R:T:G 12
          8.78
                 0.731
                         2.3235 0.025315 *
F
      2 164.28 82.141 260.9173 < 2.2e-16 ***
T:F
                 0.422
                         1.3401 0.274574
          0.84
G:F
     44 23.47
                 0.533
                         1.6943 0.053191 .
T:G:F 44 10.74
                         0.7753 0.790640
                 0.244
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
     Df Sum Sq Mean Sq F value
                                   Pr(>F)
      3 12.49
                 4.162 13.2206 5.655e-06 ***
R
Τ
         11.16 11.158 35.4430 8.021e-07 ***
          1.15
R:T
      3
                 0.384
                         1.2206 0.316281
G
     22 389.01 17.682 56.1668 < 2.2e-16 ***
T:G
     22 18.42
                 0.837
                         2.6601 0.004445 **
R:T:G 12
          8.78
                 0.731
                         2.3235 0.025315 *
      2 120.56 60.282 191.4828 < 2.2e-16 ***
F
T:F
      2
          0.82
                 0.411
                         1.3060 0.283432
G:F
     44 23.47
                 0.533
                         1.6943 0.053191 .
T:G:F 44 10.74
                 0.244
                         0.7753 0.790640
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y \sim R + T + R:T + G + G:T + R:T:G + F + F:T + F:G + F:G:T, ex7.3),
```

```
type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: Y
          Sum Sq Df F values
                               Pr(>F)
           0.000 0
R
           0.000 0
Т
G
          73.444 2 116.6471 < 2.2e-16 ***
F
         120.563 2 191.4828 < 2.2e-16 ***
R:T
           0.000 0
                     9.1765 0.0006018 ***
T:G
           5.778 2
T:F
           0.822 2 1.3060 0.2834316
G:F
          23.469 44 1.6943 0.0531910 .
           8.778 12
R:T:G
                     2.3235 0.0253153 *
          10.740 44 0.7753 0.7906401
Residuals 11.333 36
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
6.6 Example 8.1
(15) MODEL
ex8.1 = read.table("http://r.acr.kr/split/asbed.txt", header=TRUE)
ex8.1 = af(ex8.1, c("R", "A", "B"))
ex8.1
    YR AB
    9 1 1 1
1
    2 1 1 2
2
3
    8 1 1 7
    7 1 1 8
4
    5 1 1 9
5
6
    9 1 2 1
7
    7 1 2 2
8
    3 1 2 7
9
    5 1 2 8
10
    4 1 2 9
11
    9 1 3 1
    2 1 3 2
12
    8 1 3 7
13
    7 1 3 8
14
    5 1 3 9
15
16
    9 1 10 1
    1 1 10 2
17
```

```
9 2 13 3
66
67
    7 2 13 4
68 13 2 13 7
69
    5 2 13 8
    4 2 13 9
70
71 19 3
        7 5
72 17 3 7 6
73
   13 3
         7 7
74 15 3 7 8
75 14 3 7 9
76 19 3
         8 5
         8 6
77 12 3
78 18 3
         8 7
79 17 3
         8 8
80 45 3
         8 9
81 19 3
         9 5
82 17 3 9 6
83 13 3 9 7
84 25 3 9 8
85 34 3 9 9
86 15 3 10 5
87
    9 3 10 6
88 11 3 10 7
89 10 3 10 8
90 10 3 10 9
91
    9 3 11 5
92 17 3 11 6
93 13 3 11 7
94 15 3 11 8
95 14 3 11 9
    9 3 12 5
96
97 12 3 12 6
98
    8 3 12 7
99 17 3 12 8
100 15 3 12 9
101 9 3 13 5
102 17 3 13 6
103 13 3 13 7
104 15 3 13 8
105 14 3 13 9
GLM(Y \sim R + A + R:A + B + B:R + A:B + A:B:R, ex8.1)
$ANOVA
Response : Y
                Df Sum Sq Mean Sq F value Pr(>F)
MODEL
               104 3951.8 37.999
```

RESIDUALS

0

0.0

```
CORRECTED TOTAL 104 3951.8
$Fitness
Root MSE Y Mean Coef Var R-square
      NA 10.0381
                       NA
$`Type I`
      Df Sum Sq Mean Sq F value Pr(>F)
R
      2 1787.68 893.84
Α
      12 601.24
                  50.10
R:A
      6
         24.93
                  4.16
В
      8 156.87
                  19.61
      4 319.87
                 79.97
R:B
A:B
     60 1012.26
                  16.87
         49.00
                 4.08
R:A:B 12
$`Type II`
      Df Sum Sq Mean Sq F value Pr(>F)
R
      2 372.22 186.111
      12 601.24 50.103
Α
         50.00 8.333
R:A
      6
В
      8 156.87 19.609
R:B
         87.44 21.861
A:B
     60 1012.26 16.871
R:A:B 12
         49.00 4.083
$`Type III`
      Df Sum Sq Mean Sq F value Pr(>F)
      2 372.22 186.111
R
Α
      12 572.31 47.692
R:A
          50.00
                 8.333
      8 185.85 23.231
В
         87.44 21.861
R:B
      4
A:B
     60 1012.26 16.871
R:A:B 12
          49.00 4.083
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y \sim R + A + R:A + B + B:R + A:B + A:B:R, ex8.1), type="III",
      singular.ok=TRUE) # NOT WORKING
6.7 Example 9.2
(16) MODEL
ex9.2 = read.table("http://r.acr.kr/split/Ex9.2-sbex.txt", header=TRUE)
ex9.2 = af(ex9.2, c("rep", "hyb", "gen"))
ex9.2
```

yield rep hyb gen

1	48	1	3	1
	46	1	3	3
2 3	40	1		
3	43		3	2
4 5 6 7 8	46	1	8	1
5	45	1	8	3
6	42	1	8	2
7	46	1	2	1
8	42 46 44	1	2	1 3
9	42	1	2	2
10	42	1	1	1
11	16			J.
11	42 42 46 44	1	1	3
12	44	1	1	2
13	43	1	6	1
14 15	45	1	6	3
15	44	1	6	2
16	47	1	7	1
17	49	1	7	1 3
18	47	1	7 7 7	2
19	43 45 44 47 49 47 48 45 45 46 48	1	0	1
20	15	1	0	1 3 2 1
20 21 22 23 24 25 26 27 28 29 30 31 32	45			2
21	45	1	0	
22	46	1	9	1
23	48	1	9	3
24	47 46 48 47	1	9	2 1
25	46	1	4	
26	48	1	4	3
27	47	1		
28	49	1	4 5	2 1 3
29	49	1	5	3
30	49 48 46 48	1	5	2
21	16		4	2
21	40	2 2	1	2 3
32	48		4	
33	42	2	4	1
34	45	2	3	2
35	44	2	3	3
36	42	2	3	1
37	46	2	9	2
38	46	2	9	3
39	44	2	9	1
40	45	2	5	2
41	45	2	5	3
42	43	2	5	1
43	43	2	1	2
44	50	2	1	3
45	44	2	1	1
46	48	2	7	2
47	51	2	7	3
48	48	2	7	1

```
49
     44
          2 2
                  2
50
          2
              2
                  3
     48
51
     47
          2
              2
                  1
52
     44
          2
              8
                  2
53
          2
     46
              8
                  3
54
          2
              8
     46
                  1
55
     47
          2
              6
                  2
56
     48
          2
              6
                  3
57
          2
              6
     44
                  1
GLM(yield ~ rep + hyb + rep:hyb + gen + gen:rep + gen:hyb, ex9.2)
$ANOVA
Response : yield
               Df Sum Sq Mean Sq F value
                                         Pr(>F)
               40 247.813 6.1953 4.4606 0.001119 **
MODEL
               16 22.222 1.3889
RESIDUALS
CORRECTED TOTAL 56 270.035
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE yield Mean Coef Var R-square Adj R-sq
         45.77193 2.574747 0.9177062 0.7119716
1.178511
$`Type I`
       Df Sum Sq Mean Sq F value
                                   Pr(>F)
        1 0.239 0.2388 0.1719 0.6839085
rep
        9 66.796 7.4218 5.3437 0.0018370 **
hyb
rep:hyb 8 67.000 8.3750 6.0300 0.0011569 **
        2 36.351 18.1754 13.0863 0.0004293 ***
rep:gen 2 16.923 8.4616 6.0924 0.0107858 *
hyb:gen 18 60.504 3.3613 2.4201 0.0408545 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
$`Type II`
       Df Sum Sq Mean Sq F value
                                   Pr(>F)
        1 0.167 0.1667 0.1200 0.7335481
rep
        9 66.796 7.4218 5.3437 0.0018370 **
hyb
rep:hyb 8 67.000 8.3750 6.0300 0.0011569 **
        2 36.351 18.1754 13.0863 0.0004293 ***
rep:gen 2 12.111 6.0556 4.3600 0.0308015 *
hyb:gen 18 60.504 3.3613 2.4201 0.0408545 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
```

```
Df Sum Sq Mean Sq F value
                                    Pr(>F)
        1 0.167 0.1667 0.1200 0.7335481
rep
hyb
        9 66.796 7.4218 5.3437 0.0018370 **
rep:hyb 8 67.000 8.3750 6.0300 0.0011569 **
        2 30.671 15.3356 11.0416 0.0009707 ***
rep:gen 2 12.111 6.0556 4.3600 0.0308015 *
hyb:gen 18 60.504 3.3613 2.4201 0.0408545 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(yield ~ rep + hyb + rep:hyb + gen + gen:rep + gen:hyb, ex9.2), type=3,
     singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: yield
         Sum Sq Df F values
                               Pr(>F)
          0.000 0
rep
         66.704 8
                     6.0033 0.0011847 **
hyb
         30.671 2 11.0416 0.0009707 ***
gen
         67.000 8 6.0300 0.0011569 **
rep:hyb
         12.111 2
                    4.3600 0.0308015 *
rep:gen
         60.504 18
                     2.4201 0.0408545 *
hyb:gen
Residuals 22.222 16
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
6.8 Example 10.1
(17) MODEL
ex10.1 = read.table("http://r.acr.kr/split/Ex10.1-New.txt", header=TRUE)
ex10.1 = af(ex10.1, c("Site", "Block", "A", "B", "C"))
ex10.1
   Obs Site Block A B C Yield
1
               R1 A1 B1 C1 6979
2
               R1 A1 B1 C2 7272
     2
          1
3
     3
          1
               R1 A1 B1 C3 7565
4
     4
          1
               R1 A1 B1 C4 7827
5
               R1 A1 B2 C1 8113
     5
          1
6
     6
          1
               R1 A1 B2 C2 7025
7
     7
               R1 A1 B2 C3 7340
          1
8
     8
          1
               R1 A1 B2 C4 7637
9
     9
          1
               R1 A2 B1 C1 7910
10
    10
          1
               R1 A2 B1 C2 8250
```

11	11	1	R1	A2	В1	СЗ	8611
12	12	1	R1	A2	В1	C4	8865
13	13	1	R1	A2	В2	C1	9090
14	14	1	R1	A2	В2	C2	9453
15	15	1	R1	A2	В2	СЗ	9762
16	16	1	R1	A2	В2	C4	8440
17	17	1	R1	АЗ	В1	C1	8785
18	18	1	R1	АЗ	В1	C2	8963
19	19	1	R1	АЗ	В1	СЗ	9278
20	20	1	R1	АЗ	В1	C4	11100
21	21	1	R1	АЗ	В2	C1	10800
22	22	1	R1	АЗ	В2	C2	10600
23	23	1	R1	АЗ	В2	СЗ	10200
24	24	1	R1	АЗ	В2	C4	10100
25	25	1	R1	A 4	В1	C1	9834
26	26	1	R1	A 4	В1	C2	10200
27	27	1	R1	A 4	В1	СЗ	10400
28	28	1	R1	A 4	В1	C4	10900
29	29	1	R1	A 4	В2	C1	11000
30	30	1	R1	A 4	В2	C2	12600
31	31	1	R1	A 4	В2	СЗ	12400
32	32	1	R1	A 4	В2	C4	12100
33	33	1	R1	A 5	В1	C1	11900
34	34	1	R1	A 5	В1	C2	11500
35	35	1	R1	A 5	В1	СЗ	11800
36	36	1	R1	A5	B1	C4	12100
37	37	1	R1	A5	B2	C1	12400
38	38	1	R1	A5	B2	C2	12700
39	39	1	R1	A5	B2	C3	12800
40	40	1	R1	A5	B2	C4	13300
41	41	1	R2	A1	B1	C1	7132
42	42	1	R2	A1	B1	C2	7412
43	43	1	R2	A1	B1	C3	7659
44	44	1	R2	A1	B1	C4	7947
45	45	1	R2	A1	B2	C1	8241
46	46	1	R2	A1	B2	C2	7273
47	47	1	R2	A1	B2	C3	7493
48	48	1	R2	A1	B2	C4	7837
49	49	1	R2	A2	B1	C1	8050
50	50	1	R2	A2	B1	C2	8398
51	51	1	R2	A2	B1	C3	8700
52	52	1	R2	A2	B1	C4	8954
53	53	1	R2	A2	B2	C1	9380
54	54	1	R2	A2	B2	C2	9478
55	55	1	R2	A2	B2	C3	10000
56	56	1	R2	A2	B2	C4	8498
57	57	1	R2	A3	B1	C1	8944
58	58	1	R2	A3	B1	C2	9070
55	50	-	164	по	דע	02	5010

59	59	1	R2	АЗ	В1	СЗ	9388
60	60	1	R2	АЗ	В1	C4	11300
61	61	1	R2	АЗ	B2	C1	10900
62	62	1	R2	АЗ	В2	C2	10600
63	63	1	R2	АЗ	В2	СЗ	10400
64	64	1	R2	АЗ	В2	C4	10100
65	65	1	R2	A 4	В1	C1	10100
66	66	1	R2	A 4	В1	C2	10300
67	67	1	R2	A 4	В1	СЗ	10500
68	68	1	R2	A 4	В1	C4	10900
69	69	1	R2	A 4	В2	C1	11200
70	70	1	R2	A4	B2	C2	12800
71	71	1	R2	A4	B2	C3	12600
72	72	1	R2	A4	B2	C4	12300
73	73	1	R2	A5	B1	C1	11900
74	74	1	R2	A5	B1	C2	11700
75	75	1	R2	A5	B1	C3	11800
76	76	1	R2	A5	B1	C4	12200
77	77	1	R2	A5	B2	C1	12500
78	78	1	R2	A5	B2	C2	12800
79	79	1	R2	A5	B2	C3	12900
80	80	1	R2	A5	в2 В2	C4	13500
				A3			
81	81	1	R3		B1	C1	6794
82	82	1	R3	A1	B1	C2	7055
83	83	1	R3	A1	B1	C3	7368
84	84	1	R3	A1	B1	C4	7664
85	85	1	R3	A1	B2	C1	7918
86	86	1	R3	A1	B2	C2	6842
87	87	1	R3	A1	B2	СЗ	7215
88	88	1	R3	A1	B2	C4	7454
89	89	1	RЗ	A2	B1	C1	7768
90	90	1	RЗ	A2	B1	C2	7976
91	91	1	RЗ	A2	B1	СЗ	8356
92	92	1	RЗ	A2	B1	C4	8555
93	93	1	RЗ	A2	B2	C1	8885
94	94	1	RЗ	A2	B2	C2	9164
95	95	1	RЗ	A2	B2	СЗ	9592
96	96	1	RЗ	A2	B2	C4	8204
97	97	1	RЗ	АЗ	B1	C1	8464
98	98	1	RЗ	АЗ	B1	C2	8901
99	99	1	RЗ	АЗ	B1	СЗ	9021
100	100	1	RЗ	АЗ	В1	C4	11000
101	101	1	RЗ	АЗ	B2	C1	10700
102	102	1	RЗ	АЗ	В2	C2	10400
103	103	1	RЗ	АЗ	B2	СЗ	10200
104	104	1	RЗ	АЗ	B2	C4	9949
105	105	1	RЗ	A 4	В1	C1	9642
106	106	1	RЗ	A 4	В1	C2	9990

107	107	1	RЗ	A 4	В1	СЗ	10300
108	108	1	RЗ	A4	В1	C4	10500
109	109	1	RЗ	A 4	B2	C1	10900
110	110	1	RЗ	A 4	B2	C2	12400
111	111	1	RЗ	A 4	B2	СЗ	12200
112	112	1	RЗ	A 4	B2	C4	11900
113	113	1	RЗ	A 5	В1	C1	11600
114	114	1	R3	A 5	В1	C2	11400
115	115	1	RЗ	A 5	В1	СЗ	11600
116	116	1	R3	A 5	В1	C4	11800
117	117	1	R3	A 5	В2	C1	12200
118	118	1	RЗ	A 5	В2	C2	12400
119	119	1	RЗ	A 5	В2	СЗ	12700
120	120	1	RЗ	A 5	В2	C4	13200
121	121	2	R1	A1	В1	C1	6940
122	122	2	R1	A1	В1	C2	7267
123	123	2	R1	A1	В1	СЗ	7475
124	124	2	R1	A1	В1	C4	7868
125	125	2	R1	A1	В2	C1	8077
126	126	2	R1	A1	В2	C2	7078
127	127	2	R1	A1	В2	СЗ	7299
128	128	2	R1	A1	В2	C4	7643
129	129	2	R1	A2	В1	C1	7916
130	130	2	R1	A2	В1	C2	8193
131	131	2	R1	A2	В1	СЗ	8653
132	132	2	R1	A2	В1	C4	8873
133	133	2	R1	A2	В2	C1	9036
134	134	2	R1	A2	В2	C2	9449
135	135	2	R1	A2	B2	СЗ	9770
136	136	2	R1	A2	B2	C4	8316
137	137	2	R1	АЗ	В1	C1	8793
138	138	2	R1	АЗ	В1	C2	8943
139	139	2	R1	АЗ	В1	СЗ	9291
140	140	2	R1	АЗ	В1	C4	11100
141	141	2	R1	АЗ	B2	C1	10900
142	142	2	R1	АЗ	B2	C2	10600
143	143	2	R1	АЗ	B2	СЗ	10200
144	144	2	R1	АЗ	B2	C4	9879
145	145	2	R1	A 4	В1	C1	9861
146	146	2	R1	A 4	В1	C2	10200
147	147	2	R1	A 4	В1	СЗ	10300
148	148	2	R1	A 4	В1	C4	10800
149	149	2	R1	A 4	B2	C1	10900
150	150	2	R1	A 4	B2	C2	12600
151	151	2	R1	A 4	В2	СЗ	12400
152	152	2	R1	A 4	В2	C4	12100
153	153	2	R1	A 5	В1	C1	11800
154	154	2	R1	A 5	В1	C2	11500

155	155	2	R1	A 5	B1	СЗ	11600
156	156	2	R1	A 5	B1	C4	12100
157	157	2	R1	A 5	В2	C1	12400
158	158	2	R1	A 5	В2	C2	12600
159	159	2	R1	A5	В2	СЗ	12800
160	160	2	R1	A5	В2	C4	13300
161	161	2	R2	A1	В1	C1	6819
162	162	2	R2	A1	В1	C2	7137
163	163	2	R2	A1	В1	СЗ	7398
164	164	2	R2	A1	В1	C4	7680
165	165	2	R2	A1	B2	C1	7903
166	166	2	R2	A1	B2	C2	6968
167	167	2	R2	A1	B2	C3	7172
168	168	2	R2	A1	B2	C4	7494
169	169	2	R2	A2	B1	C1	7811
170	170	2	R2	A2	B1	C2	8000
171	171	2	R2	A2	B1	C3	8350
172	172	2	R2	A2	B1	C4	8730
173	173	2	R2	A2	B2	C1	8956
174	174	2				C2	9195
174	174		R2	A2	B2 B2	C2	
		2	R2	A2			9547
176	176	2	R2	A2	B2	C4	8183
177	177	2	R2	A3	B1	C1	8484
178	178	2	R2	A3	B1	C2	8865
179	179	2	R2	A3	B1	C3	9115
180	180	2	R2	АЗ	B1	C4	11100
181	181	2	R2	АЗ	B2	C1	10700
182	182	2	R2	АЗ	B2	C2	10400
183	183	2	R2	АЗ	B2	СЗ	10000
184	184	2	R2	АЗ	B2	C4	9830
185	185	2	R2	A 4	В1	C1	9789
186	186	2	R2	A4	B1	C2	9977
187	187	2	R2	A4	B1	СЗ	10200
188	188	2	R2	A4	B1	C4	10500
189	189	2	R2	A4	B2	C1	10900
190	190	2	R2	A4	B2	C2	12500
191	191	2	R2	A4	B2	СЗ	12300
192	192	2	R2	A 4	B2	C4	11800
193	193	2	R2	A 5	В1	C1	11600
194	194	2	R2	A 5	B1	C2	11300
195	195	2	R2	A5	В1	СЗ	11500
196	196	2	R2	A5	В1	C4	12000
197	197	2	R2	A5	В2	C1	12100
198	198	2	R2	A 5	В2	C2	12600
199	199	2	R2	A5	В2	СЗ	12700
200	200	2	R2	A5	B2	C4	13100
201	201	2	R3	A1	B1	C1	7189
202	202	2	R3	A1	B1	C2	7371
				_	_		

203	203	2	R3	A1	В1	СЗ	7700
204	204	2	R3	A1	В1	C4	8047
205	205	2	R3	A1	В2	C1	8337
206	206	2	R3	A1	В2	C2	7327
207	207	2	R3	A1	В2	СЗ	7595
208	208	2	R3	A1	В2	C4	7867
209	209	2	R3	A2	В1	C1	8105
210	210	2	R3	A2	В1	C2	8396
211	211	2	R3	A2	В1	СЗ	8807
212	212	2	R3	A2	В1	C4	8953
213	213	2	R3	A2	В2	C1	9390
214	214	2	R3	A2	B2	C2	9733
215	215	2	R3	A2	B2	C3	9858
216	216	2	R3	A2	B2	C4	8640
217	217	2	R3	A3	B1	C1	9035
218	218	2	R3	A3	B1	C2	9194
219	219	2	R3	A3	B1	C3	9442
220	220	2	R3	A3	B1	C4	11400
221	221	2	R3	A3	B2	C1	11000
222	222	2	R3	A3	B2	C2	10800
223	223	2	R3	A3	B2	C3	10600
224	224	2	R3	A3	B2	C4	10200
225	225	2	R3	A4	B1	C1	9976
226	226	2	R3	A4	B1	C2	10300
227	227	2	R3	A4	B1	C3	10600
228	228	2	R3	A4	B1	C4	11000
229	229	2	R3	A4	B2	C1	11200
230	230	2	R3	A4	B2	C2	12800
231	231	2	R3	A4	в2 В2	C3	12600
	232	2	R3		в2 В2	C4	12200
232	233	2	R3	A4	в2 В1	C1	11900
233234	234	2	R3	A5 A5	в1 В1	C2	11700
	235		R3				11800
235		2		A5	B1	C3	
236	236	2	R3	A5	B1	C4	12300
237	237	2	R3	A5	B2	C1	12600
238	238	2	R3	A5	B2	C2	12900
239	239	2	R3	A5	B2	C3	13000
240	240	2	R3	A5	B2	C4	13500
241	241	3	R1	A1	B1	C1	7035
242	242	3	R1	A1	B1	C2	7161
243	243	3	R1	A1	B1	C3	7590
244	244	3	R1	A1	B1	C4	7909
245	245	3	R1	A1	B2	C1	8123
246	246	3	R1	A1	B2	C2	7088
247	247	3	R1	A1	B2	C3	7270
248	248	3	R1	A1	B2	C4	7705
249	249	3	R1	A2	B1	C1	7992
250	250	3	R1	A2	В1	C2	8293

251	251	3	R1	A2	В1	СЗ	8574
252	252	3	R1	A2	В1	C4	8872
253	253	3	R1	A2	В2	C1	9159
254	254	3	R1	A2	В2	C2	9451
255	255	3	R1	A2	В2	СЗ	9779
256	256	3	R1	A2	В2	C4	8399
257	257	3	R1	АЗ	В1	C1	8683
258	258	3	R1	АЗ	В1	C2	8991
259	259	3	R1	АЗ	В1	C3	9314
260	260	3	R1	AЗ	B1	C4	11300
261	261	3	R1	A3	B2	C1	10800
262	262	3	R1	A3	B2	C2	10600
263	263	3	R1	A3	B2	C3	10400
264	264	3	R1	A3	B2	C4	10100
265	265	3	R1	A4	B1	C1	9803
266	266	3	R1	A4	B1	C2	10100
267	267	3	R1	A4	B1	C3	10500
268	268	3	R1	A4	B1	C4	10700
269	269	3	R1	A4	B2	C1	11100
270	270	3	R1	A4	в2 В2	C2	12600
271	271	3	R1	A4	в2 В2	C2	12500
272	271		R1			C4	12100
		3		A4	B2		
273	273	3	R1	A5	B1	C1	11900
274	274	3	R1	A5	B1	C2	11600
275	275	3	R1	A5	B1	C3	11700
276	276	3	R1	A5	B1	C4	12000
277	277	3	R1	A5	B2	C1	12400
278	278	3	R1	A 5	B2	C2	12600
279	279	3	R1	A5	B2	СЗ	12900
280	280	3	R1	A5	B2	C4	13400
281	281	3	R2	A1	B1	C1	7007
282	282	3	R2	A1	B1	C2	7311
283	283	3	R2	A1	B1	СЗ	7557
284	284	3	R2	A1	B1	C4	7935
285	285	3	R2	A1	B2	C1	8209
286	286	3	R2	A1	B2	C2	7048
287	287	3	R2	A1	B2	C3	7322
288	288	3	R2	A1	B2	C4	7783
289	289	3	R2	A2	B1	C1	8055
290	290	3	R2	A2	B1	C2	8247
291	291	3	R2	A2	B1	C3	8590
292	292	3	R2	A2	В1	C4	8901
293	293	3	R2	A2	B2	C1	9210
294	294	3	R2	A2	B2	C2	9521
295	295	3	R2	A2	В2	СЗ	9746
296	296	3	R2	A2	В2	C4	8480
297	297	3	R2	АЗ	В1	C1	8766
298	298	3	R2	АЗ	В1	C2	9014

299	299	3	R2	АЗ	В1	СЗ	9370
300	300	3	R2	АЗ	В1	C4	11200
301	301	3	R2	АЗ	В2	C1	11000
302	302	3	R2	АЗ	В2	C2	10700
303	303	3	R2	АЗ	В2	СЗ	10300
304	304	3	R2	АЗ	В2	C4	10100
305	305	3	R2	A4	В1	C1	9872
306	306	3	R2	A4	В1	C2	10100
307	307	3	R2	A4	В1	C3	10400
308	308	3	R2	A4	В1	C4	10800
309	309	3	R2	A4	B2	C1	11100
310	310	3	R2	A4	B2	C2	12600
311	311	3	R2	A4	B2	C3	12500
312	312	3	R2	A4	B2	C4	12200
313	313	3	R2	A5	B1	C1	11900
314	314	3	R2	A5	B1	C2	11600
315	315	3	R2	A5	B1	C3	11700
316	316	3	R2	A5	B1	C4	12100
317	317	3	R2	A5	B2	C1	12400
318	318	3	R2	A5		C2	
					B2	C2	12700 12900
319	319	3	R2	A5	B2		
320	320	3	R2	A5	B2	C4	13400
321	321	3	R3	A1	B1	C1	7108
322	322	3	R3	A1	B1	C2	7295
323	323	3	R3	A1	B1	C3	7675
324	324	3	R3	A1	B1	C4	7948
325	325	3	R3	A1	B2	C1	8220
326	326	3	R3	A1	B2	C2	7142
327	327	3	R3	A1	B2	C3	7413
328	328	3	R3	A1	B2	C4	7826
329	329	3	RЗ	A2	B1	C1	8038
330	330	3	R3	A2	B1	C2	8358
331	331	3	R3	A2	B1	C3	8718
332	332	3	R3	A2	B1	C4	9000
333	333	3	R3	A2	B2	C1	9410
334	334	3	R3	A2	B2	C2	9520
335	335	3	R3	A2	В2	C3	9812
336	336	3	R3	A2	В2	C4	8452
337	337	3	R3	АЗ	B1	C1	8894
338	338	3	R3	АЗ	В1	C2	9137
339	339	3	R3	АЗ	В1	СЗ	9409
340	340	3	R3	АЗ	В1	C4	11300
341	341	3	R3	АЗ	В2	C1	10900
342	342	3	R3	АЗ	В2	C2	10700
343	343	3	R3	АЗ	В2	C3	10400
344	344	3	R3	AЗ	B2	C4	10100
345	345	3	R3	A4	B1	C1	9975
346	346	3	R3	A4	B1	C2	10200
-	-			_	_	_	

347	347	3	R3	A4	В1	СЗ	10500
			100	ΛŢ	υт	$^{\circ}$	10500
348	348	3	R3	A 4	В1	C4	10900
349	349	3	R3	A 4	B2	C1	11200
350	350	3	R3	A 4	В2	C2	12700
351	351	3	R3	A 4	B2	СЗ	12500
352	352	3	R3	A 4	B2	C4	12200
353	353	3	R3	A 5	B1	C1	11900
354	354	3	R3	A 5	B1	C2	11600
355	355	3	R3	A5	В1	СЗ	11800
356	356	3	R3	A 5	В1	C4	12300
357	357	3	R3	A 5	B2	C1	12500
358	358	3	R3	A 5	B2	C2	12800
359	359	3	R3	A 5	B2	СЗ	12900
360	360	3	R3	A 5	B2	C4	13500
361	361	4	R1	A1	B1	C1	6995
362	362	4	R1	A1	B1	C2	7287
363	363	4	R1	A1	B1	СЗ	7580
364	364	4	R1	A1	B1	C4	7774
365	365	4	R1	A1	B2	C1	8150
366	366	4	R1	A1	B2	C2	7026
367	367	4	R1	A1	B2	СЗ	7322
368	368	4	R1	A1	B2	C4	7698
369	369	4	R1	A2	B1	C1	7970
370	370	4	R1	A2	B1	C2	8243
371	371	4	R1	A2	B1	СЗ	8520
372	372	4	R1	A2	В1	C4	8812
373	373	4	R1	A2	B2	C1	9088
374	374	4	R1	A2	B2	C2	9508
375	375	4	R1	A2	B2	СЗ	9718
376	376	4	R1	A2	B2	C4	8326
377	377	4	R1	АЗ	B1	C1	8744
378	378	4	R1	АЗ	B1	C2	9061
379	379	4	R1	АЗ	B1	СЗ	9310
380	380	4	R1	АЗ	В1	C4	11300
381	381	4	R1	АЗ	B2	C1	10900
382	382	4	R1	АЗ	B2	C2	10600
383	383	4	R1	АЗ	B2	СЗ	10200
384	384	4	R1	АЗ	B2	C4	9971
385	385	4	R1	A 4	B1	C1	9832
386	386	4	R1	A 4	В1	C2	10200
387	387	4	R1	A 4	В1	СЗ	10500
388	388	4	R1	A4	В1	C4	10700
389	389	4	R1	A4	B2	C1	11000
390	390	4	R1	A4	B2	C2	12600
391	391	4	R1	A 4	B2	СЗ	12500
392	392	4	R1	A4	B2	C4	12100
393	393	4	R1	A 5	В1	C1	11800
394	394	4	R1	A5	В1	C2	11600

395	395	4	R1	A5	В1	СЗ	11800
396	396	4	R1	A5	В1	C4	12100
397	397	4	R1	A5	В2	C1	12300
398	398	4	R1	A5	В2	C2	12600
399	399	4	R1	A5	В2	СЗ	12900
400	400	4	R1	A5	В2	C4	13300
401	401	4	R2	A1	В1	C1	6796
402	402	4	R2	A1	В1	C2	7122
403	403	4	R2	A1	В1	СЗ	7489
404	404	4	R2	A1	В1	C4	7695
405	405	4	R2	A1	В2	C1	8050
406	406	4	R2	A1	В2	C2	7010
407	407	4	R2	A1	В2	СЗ	7324
408	408	4	R2	A1	В2	C4	7540
409	409	4	R2	A2	В1	C1	7933
410	410	4	R2	A2	В1	C2	8130
411	411	4	R2	A2	B1	C3	8423
412	412	4	R2	A2	В1	C4	8674
413	413	4	R2	A2	В2	C1	9138
414	414	4	R2	A2	B2	C2	9380
415	415	4	R2	A2	В2	СЗ	9704
416	416	4	R2	A2	В2	C4	8313
417	417	4	R2	АЗ	В1	C1	8584
418	418	4	R2	АЗ	В1	C2	8890
419	419	4	R2	АЗ	В1	СЗ	9246
420	420	4	R2	АЗ	В1	C4	11100
421	421	4	R2	АЗ	В2	C1	10700
422	422	4	R2	АЗ	В2	C2	10500
423	423	4	R2	АЗ	В2	СЗ	10200
424	424	4	R2	АЗ	В2	C4	9882
425	425	4	R2	A 4	В1	C1	9785
426	426	4	R2	A4	В1	C2	10100
427	427	4	R2	A4	В1	СЗ	10300
428	428	4	R2	A4	В1	C4	10800
429	429	4	R2	A 4	В2	C1	11000
430	430	4	R2	A4	В2	C2	12500
431	431	4	R2	A4	В2	СЗ	12400
432	432	4	R2	A 4	В2	C4	12100
433	433	4	R2	A5	В1	C1	11700
434	434	4	R2	A5	В1	C2	11500
435	435	4	R2	A5	В1	СЗ	11700
436	436	4	R2	A5	В1	C4	12100
437	437	4	R2	A5	В2	C1	12300
438	438	4	R2	A5	В2	C2	12600
439	439	4	R2	A5	В2	СЗ	12800
440	440	4	R2	A5	В2	C4	13300
441	441	4	R3	A1	В1	C1	7125
442	442	4	RЗ	A1	В1	C2	7505

```
443 443
                R3 A1 B1 C3
                            7752
444 444
                R3 A1 B1 C4
                              8099
445 445
           4
                R3 A1 B2 C1
                              8409
446 446
                R3 A1 B2 C2
                              7332
           4
447 447
                R3 A1 B2 C3
                              7512
448 448
                R3 A1 B2 C4
                              7917
449 449
                R3 A2 B1 C1
                              8176
450 450
           4
                R3 A2 B1 C2
                              8382
451 451
                R3 A2 B1 C3
                              8861
           4
452 452
                R3 A2 B1 C4
                              9056
           4
453 453
                R3 A2 B2 C1
                              9419
           4
454 454
           4
                R3 A2 B2 C2 9700
                R3 A2 B2 C3 10000
455 455
           4
456 456
                R3 A2 B2 C4
                             8573
457 457
                R3 A3 B1 C1
                              8953
           4
458 458
                R3 A3 B1 C2 9278
459 459
           4
                R3 A3 B1 C3 9538
                R3 A3 B1 C4 11400
460 460
           4
461 461
           4
                R3 A3 B2 C1 11100
                R3 A3 B2 C2 10800
462 462
           4
                R3 A3 B2 C3 10600
463 463
464 464
                R3 A3 B2 C4 10300
465 465
                R3 A4 B1 C1 10000
466 466
                R3 A4 B1 C2 10400
           4
467 467
           4
                R3 A4 B1 C3 10700
                R3 A4 B1 C4 11000
468 468
           4
                R3 A4 B2 C1 11200
469 469
           4
                R3 A4 B2 C2 12900
470 470
           4
                R3 A4 B2 C3 12600
471 471
           4
472 472
                R3 A4 B2 C4 12400
473 473
           4
                R3 A5 B1 C1 12000
474 474
           4
                R3 A5 B1 C2 11700
475 475
                R3 A5 B1 C3 12000
           4
476 476
                R3 A5 B1 C4 12300
           4
477 477
                R3 A5 B2 C1 12500
           4
                R3 A5 B2 C2 12900
478 478
           4
479 479
                R3 A5 B2 C3 13000
480 480
                R3 A5 B2 C4 13700
f10.1 = Yield ~ Site/Block + A/Site + B/Site + A:B + A:B:Site + A:B:Site:Block +
        C + A:C + B:C + A:B:C + C:Site + A:C:Site + B:C:Site + A:B:C:Site
GLM(f10.1, ex10.1)
```

\$ANOVA

MODEL

Response : Yield

Df Sum Sq Mean Sq F value Pr(>F)
239 1639561484 6860090 2162 < 2.2e-16 ***

RESIDUALS 240 761522 3173

CORRECTED TOTAL 479 1640323006

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\$Fitness

Root MSE Yield Mean Coef Var R-square Adj R-sq 56.32947 9967.354 0.5651396 0.9995357 0.9990734

\$`Type I`

	${\tt Df}$	Sum Sq	Mean Sq	F value	Pr(>F)	
Site	3	552717	184239	5.8064e+01	< 2e-16	***
Site:Block	8	7062320	882790	2.7822e+02	< 2e-16	***
A	4	1387680917	346920229	1.0933e+05	< 2e-16	***
Site:A	12	34068	2839	8.9470e-01	0.55301	
В	1	100939695	100939695	3.1812e+04	< 2e-16	***
Site:B	3	1618	539	1.6990e-01	0.91662	
A:B	4	31444008	7861002	2.4775e+03	< 2e-16	***
Site:A:B	12	33737	2811	8.8600e-01	0.56185	
Site:Block:A:B	72	186911	2596	8.1810e-01	0.84155	
C	3	19356264	6452088	2.0334e+03	< 2e-16	***
A:C	12	26075792	2172983	6.8483e+02	< 2e-16	***
B:C	3	23901388	7967129	2.5109e+03	< 2e-16	***
A:B:C	12	41996729	3499727	1.1030e+03	< 2e-16	***
Site:C	9	47625	5292	1.6677e+00	0.09747	
Site:A:C	36	104110	2892	9.1140e-01	0.61768	
Site:B:C	9	61111	6790	2.1400e+00	0.02701	*
Site:A:B:C	36	82475	2291	7.2200e-01	0.87941	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\$`Type II`

. 71						
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Site	3	552717	184239	5.8064e+01	< 2e-16	***
Site:Block	8	7062320	882790	2.7822e+02	< 2e-16	***
A	4	1387680917	346920229	1.0933e+05	< 2e-16	***
Site:A	12	34068	2839	8.9470e-01	0.55301	
В	1	100939695	100939695	3.1812e+04	< 2e-16	***
Site:B	3	1618	539	1.6990e-01	0.91662	
A:B	4	31444008	7861002	2.4775e+03	< 2e-16	***
Site:A:B	12	33737	2811	8.8600e-01	0.56185	
Site:Block:A:B	72	186911	2596	8.1810e-01	0.84155	
C	3	19356264	6452088	2.0334e+03	< 2e-16	***
A:C	12	26075792	2172983	6.8483e+02	< 2e-16	***
B:C	3	23901388	7967129	2.5109e+03	< 2e-16	***
A:B:C	12	41996729	3499727	1.1030e+03	< 2e-16	***
Site:C	9	47625	5292	1.6677e+00	0.09747	
Site:A:C	36	104110	2892	9.1140e-01	0.61768	
Site:B:C	9	61111	6790	2.1400e+00	0.02701	*

```
Site:A:B:C
              36
                      82475
                                 2291 7.2200e-01 0.87941
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
              Df
                     Sum Sq
                              Mean Sq
                                         F value Pr(>F)
Site
               3
                     552717
                               184239 5.8064e+01 < 2e-16 ***
Site:Block
                    7062320
                               882790 2.7822e+02 < 2e-16 ***
               4 1387680917 346920229 1.0933e+05 < 2e-16 ***
                                 2839 8.9470e-01 0.55301
Site:A
              12
                      34068
В
               1 100939695 100939695 3.1812e+04 < 2e-16 ***
                                  539 1.6990e-01 0.91662
Site:B
               3
                       1618
                              7861002 2.4775e+03 < 2e-16 ***
A:B
               4
                  31444008
              12
                                 2811 8.8600e-01 0.56185
Site:A:B
                      33737
Site:Block:A:B 72
                     186911
                                 2596 8.1810e-01 0.84155
                  19356264
                              6452088 2.0334e+03 < 2e-16 ***
              3
A:C
              12
                   26075792
                              2172983 6.8483e+02 < 2e-16 ***
B:C
              3
                   23901387
                             7967129 2.5109e+03 < 2e-16 ***
A:B:C
              12
                   41996729
                              3499727 1.1030e+03 < 2e-16 ***
Site:C
              9
                      47625
                                 5292 1.6677e+00 0.09747 .
Site:A:C
              36
                     104110
                                 2892 9.1140e-01 0.61768
                                 6790 2.1400e+00 0.02701 *
Site:B:C
               9
                      61111
Site:A:B:C
              36
                      82475
                                 2291 7.2200e-01 0.87941
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(f10.1, ex10.1), type=3, singular.ok=TRUE) # NOT OK for Site:Block
```

Note: model has aliased coefficients sums of squares computed by model comparison

Anova Table (Type III tests)

Response: Yield

1		
	Sum Sq	Df F values Pr(>F)
Site	552717	3 5.8064e+01 < 2e-16 ***
A	1387680917	4 1.0933e+05 < 2e-16 ***
В	100939695	1 3.1812e+04 < 2e-16 ***
C	19356264	3 2.0334e+03 < 2e-16 ***
Site:Block	0	0
Site:A	34068	12 8.9470e-01 0.55301
Site:B	1618	3 1.6990e-01 0.91662
A:B	31444008	4 2.4775e+03 < 2e-16 ***
A:C	26075792	12 6.8483e+02 < 2e-16 ***
B:C	23901388	3 2.5109e+03 < 2e-16 ***
Site:C	47625	9 1.6677e+00 0.09747 .
Site:A:B	33737	12 8.8600e-01 0.56185
A:B:C	41996729	12 1.1030e+03 < 2e-16 ***

Site:A:C 104110 36 9.1140e-01 0.61768 Site:B:C 61111 9 2.1400e+00 0.02701 * Site:Block:A:B 186911 72 8.1810e-01 0.84155 Site:A:B:C 82475 36 7.2200e-01 0.87941

Residuals 761522 240

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

7 Hinkelmann & Kempthorne - Volume 1

Reference

• Hinkelmann K, Kempthorne O. Design and Analysis of Experiments Volume 1 Introduction to Experimental Design. 2e. John Wiley & Sons Inc. 2008.

7.1 p410

(18) MODEL

```
v1p410 = read.table("http://r.acr.kr/kemp/v1p410.txt", head=TRUE)
v1p410$carry = ifelse(v1p410$carry == 0, 3, v1p410$carry)
v1p410 = af(v1p410,c("period", "sequence", "steer", "trt", "carry"))
v1p410
```

	period	sequence	steer	trt	carry	У
1	1	1	1	1	3	50
2	2	1	1	2	1	61
3	3	1	1	3	2	53
4	1	1	2	1	3	55
5	2	1	2	2	1	63
6	3	1	2	3	2	57
7	1	2	3	2	3	44
8	2	2	3	3	2	42
9	3	2	3	1	3	57
10	1	2	4	2	3	51
11	2	2	4	3	2	46
12	3	2	4	1	3	59
13	1	3	5	3	3	35
14	2	3	5	1	3	55
15	3	3	5	2	1	47
16	1	3	6	3	3	41
17	2	3	6	1	3	56
18	3	3	6	2	1	50
19	1	4	7	1	3	54
20	2	4	7	3	1	48
21	3	4	7	2	3	51
22	1	4	8	1	3	58
23	2	4	8	3	1	51
24	3	4	8	2	3	54
25	1	5	9	2	3	50
26	2	5	9	1	2	57
27	3	5	9	3	1	51
28	1	5	10	2	3	55
29	2	5	10	1	2	59
30	3	5	10	3	1	55
31	1	6	11	3	3	41
32	2	6	11	2	3	56

```
33
       3
                6
                     11
                                2 58
                          1
34
       1
                     12
                          3
                                3 46
                6
35
                                3 58
       2
                6
                     12
                          2
36
       3
                6
                     12
                          1
                                2 61
GLM(y ~ period + sequence + steer:sequence + trt + carry, v1p410) # OK
$ANOVA
Response : y
               Df Sum Sq Mean Sq F value
                                             Pr(>F)
               17 1302.51 76.618 8.7402 1.572e-05 ***
MODEL
                            8.766
RESIDUALS
               18 157.79
CORRECTED TOTAL 35 1460.31
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE
           y Mean Coef Var R-square Adj R-sq
2.960778 52.36111 5.654535 0.8919461 0.7898953
$`Type I`
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
               2 292.06 146.028 16.6580 8.038e-05 ***
period
               5 326.47 65.294 7.4484 0.0006072 ***
sequence
sequence:steer 6 118.50 19.750 2.2530 0.0849122 .
               2 549.06 274.528 31.3166 1.377e-06 ***
trt
               2 16.43
                          8.215 0.9372 0.4100385
carry
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
               2 172.31 86.154 9.8279 0.0013030 **
period
               5 318.69 63.738 7.2709 0.0006954 ***
sequence
sequence:steer 6 118.50 19.750 2.2530 0.0849122 .
trt
               2 440.61 220.304 25.1311 6.164e-06 ***
carry
               2 16.43
                          8.215 0.9372 0.4100385
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type III`
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
               2 172.31 86.154 9.8279 0.0013030 **
period
sequence
               5 318.69 63.738 7.2709 0.0006954 ***
sequence:steer 6 118.50 19.750 2.2530 0.0849122 .
               2 440.61 220.304 25.1311 6.164e-06 ***
trt
               2 16.43
                          8.215 0.9372 0.4100385
carry
```

75

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(y ~ period + sequence + steer:sequence + trt + carry, v1p410), type=3,
     singular.ok=TRUE) # NOT OK for sequence
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: y
              Sum Sq Df F values Pr(>F)
              172.31 2
                         9.8279 0.001303 **
period
sequence
                0.00 0
              440.61 2 25.1311 6.164e-06 ***
trt
               16.43 2 0.9372 0.410038
carry
sequence:steer 118.50 6 2.2530 0.084912.
             157.79 18
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

8 Searle - Linear Models 2e

Reference

• Searle SR, Gruber MHJ. Linear Models 2e, Kindle Edition. John Wiley & Sons Inc. 2016.

8.1 7.2 (p390, 59%)

(19) MODEL

```
weight = c(8,13,9,12,7,11,6,12,12,14,9,7,14,16,10,14,11,13)
"tc", "tc", "tc", "tc")
variety = c("va","va","va","vc","vd","vd","va","va","vb","vb","vb","vb","vc",
           "vc", "vd", "vd", "vd")
d1 = data.frame(weight, treatment, variety)
GLM(weight ~ treatment*variety, d1)
$ANOVA
Response : weight
              Df Sum Sq Mean Sq F value Pr(>F)
MODEL
               7
                     82 11.714 2.0918 0.14
RESIDUALS
              10
                     56
                         5.600
CORRECTED TOTAL 17
                    138
$Fitness
Root MSE weight Mean Coef Var R-square Adj R-sq
2.366432
                 11 21.51302 0.5942029 0.3101449
$`Type I`
                Df Sum Sq Mean Sq F value Pr(>F)
                 2 10.500 5.250 0.9375 0.42348
treatment
                 3 36.786 12.262 2.1896 0.15232
variety
treatment:variety 2 34.714 17.357 3.0995 0.08965 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
                Df Sum Sq Mean Sq F value Pr(>F)
                 2 9.486 4.7429 0.8469 0.45731
treatment
                 3 36.786 12.2619 2.1896 0.15232
variety
treatment: variety 2 34.714 17.3571 3.0995 0.08965 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type III`
                Df Sum Sq Mean Sq F value Pr(>F)
                 2 12.471 6.2353 1.1134 0.36595
treatment
variety
                 3 34.872 11.6240 2.0757 0.16719
```

```
treatment:variety 2 34.714 17.3571 3.0995 0.08965 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(contrasts = c("contr.sum", "contr.poly"))
Anova(lm(weight ~ treatment*variety, d1), type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
      sums of squares computed by model comparison
Anova Table (Type III tests)
Response: weight
                 Sum Sq Df F values Pr(>F)
                  0.000 0
treatment
variety
                  0.000 0
treatment: variety 34.714 2
                             3.0995 0.08965 .
Residuals
                 56.000 10
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
8.2 7.2 (p393, 60%)
(20) MODEL
percent = c(31,33,44,36,38,26,37,59,42,42,34,42,28,39,36,32,38,42,36,22,42,46,
            26,37,43)
refinery = c(rep("g",9),rep("n",8),rep("s",8))
process = as.factor(c(1,1,1,1,1,1,2,2,2,1,1,1,1,2,2,2,2,1,1,1,2,2,2,2,2))
source0 = c("t","t","t","t","o","m","t","o","m","i","i","i","i","t","o","m","m",
            "t", "o", "i", "o", "o", "m", "i", "i")
d2 = data.frame(percent, refinery, process, source=source0)
GLM(percent ~ refinery*source, d2)
$ANOVA
Response : percent
               Df Sum Sq Mean Sq F value Pr(>F)
MODEL
               10 442.56 44.256 0.6361 0.7616
RESIDUALS
               14 974.00 69.571
CORRECTED TOTAL 24 1416.56
$Fitness
Root MSE percent Mean Coef Var R-square
                                           Adj R-sq
8.340949
                37.24 22.39782 0.3124188 -0.1787106
$`Type I`
               Df Sum Sq Mean Sq F value Pr(>F)
                2 20.963 10.481 0.1507 0.8615
refinery
                3 266.124 88.708 1.2751 0.3212
source
refinery:source 5 155.474 31.095 0.4469 0.8086
```

```
$`Type II`
```

Df Sum Sq Mean Sq F value Pr(>F)
refinery 2 25.535 12.767 0.1835 0.8343
source 3 266.124 88.708 1.2751 0.3212
refinery:source 5 155.474 31.095 0.4469 0.8086

\$`Type III`

Df Sum Sq Mean Sq F value Pr(>F)
refinery 2 10.766 5.383 0.0774 0.9259
source 3 282.633 94.211 1.3542 0.2972
refinery:source 5 155.474 31.095 0.4469 0.8086

options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(percent ~ refinery*source, d2), type=3, singular.ok=TRUE) # NOT OK

Note: model has aliased coefficients sums of squares computed by model comparison

Anova Table (Type III tests)

Response: percent

Sum Sq Df F values Pr(>F)
refinery 2.52 1 0.0362 0.8518
source 268.19 2 1.9275 0.1822
refinery:source 155.47 5 0.4469 0.8086

Residuals 974.00 14

9 Web site examples

9.1 https://github.com/djnavarro/psyr

(21) MODEL d21 = read.csv("http://r.acr.kr/psyr/coffee.csv") GLM(babble ~ sugar*milk - 1, d21) \$ANOVA Response : babble Df Sum Sq Mean Sq F value MODEL 6 472.54 78.756 298.84 2.39e-12 *** 3.16 0.264 RESIDUALS 12 UNCORRECTED TOTAL 18 475.70 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 \$Fitness Root MSE babble Mean Coef Var R-square Adj R-sq 0.5133631 5.066667 10.13217 0.9933519 0.9900279 \$`Type I` Df Sum Sq Mean Sq F value Pr(>F) 3 465.64 155.213 588.9486 2.756e-13 *** sugar milk 0.96 0.956 3.6279 0.081061 . 5.94 2.972 11.2769 0.001754 ** sugar:milk 2 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 \$`Type II` Df Sum Sq Mean Sq F value 2 3.0696 1.53482 5.8238 0.017075 * sugar 1 0.9561 0.95611 3.6279 0.081061 . sugar:milk 2 5.9439 2.97193 11.2769 0.001754 ** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 \$`Type III` CAUTION: Singularity Exists! Df Sum Sq Mean Sq F value 2 2.1318 1.0659 4.0446 0.045426 * sugar 1 1.0041 1.0041 3.8102 0.074672 . sugar:milk 2 5.9439 2.9719 11.2769 0.001754 ** ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 options(contrasts=c("contr.sum", "contr.poly")) r21 = lm(babble ~ sugar*milk - 1, d21)

```
anova(r21) # Type I SS OK
Analysis of Variance Table
Response: babble
                                        Pr(>F)
          Df Sum Sq Mean Sq F value
           3 465.64 155.213 588.9486 2.756e-13 ***
sugar
                     0.956
milk
           1
               0.96
                             3.6279 0.081061 .
sugar:milk 2
               5.94
                     2.972 11.2769 0.001754 **
Residuals 12
                    0.264
               3.16
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova(r21, type=2) # NOT OK
Anova Table (Type II tests)
Response: babble
          Sum Sq Df F value
                                Pr(>F)
          453.76 3 573.9233 3.214e-13 ***
sugar
milk
            0.96 1
                      3.6279 0.081061 .
            5.94 2 11.2769 0.001754 **
sugar:milk
            3.16 12
Residuals
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova(r21, type=3) # NOT OK
Anova Table (Type III tests)
Response: babble
          Sum Sq Df F value
                                Pr(>F)
          454.77 3 575.1970 3.172e-13 ***
sugar
            1.00 1
                      3.8102 0.074672 .
            5.94 2 11.2769 0.001754 **
sugar:milk
Residuals
            3.16 12
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

10 Bioequivalence (BE) data example

(22) MODEL GLM(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata) # a BE dataset in sasLM package \$ANOVA Response : log(CMAX) Df Sum Sq Mean Sq F value Pr(>F) 48 23.1924 0.48317 5.6278 4.395e-08 *** MODEL RESIDUALS 42 3.6059 0.08585 CORRECTED TOTAL 90 26.7983 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 \$Fitness Root MSE log(CMAX) Mean Coef Var R-square Adj R-sq 0.2930098 6.071036 4.826355 0.8654428 0.7116631 \$`Type I` Df Sum Sq Mean Sq F value Pr(>F) SEQ 1 0.6454 0.64544 7.5178 0.008938 ** SEQ:SUBJ 45 22.4395 0.49866 5.8081 3.359e-08 *** PRD 1 0.0969 0.09686 1.1281 0.294242 TRT 1 0.0106 0.01057 0.1231 0.727410 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 \$`Type II` Df Sum Sq Mean Sq F value Pr(>F) 1 0.6440 0.64395 7.5005 0.009011 ** SEQ SEQ:SUBJ 45 22.5232 0.50052 5.8298 3.173e-08 *** PRD 1 0.0996 0.09958 1.1599 0.287632 1 0.0106 0.01057 0.1231 0.727410 TRT Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 \$`Type III` Df Sum Sq Mean Sq F value Pr(>F) SEQ 1 0.3368 0.33679 3.9228 0.05421 . SEQ:SUBJ 45 22.5232 0.50052 5.8298 3.173e-08 *** 1 0.0996 0.09958 1.1599 PRD 0.28763 TRT 1 0.0106 0.01057 0.1231 0.72741 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 options(contrasts=c("contr.sum", "contr.poly")) Anova(lm(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata), type=3, singular.ok=TRUE)

Note: model has aliased coefficients sums of squares computed by model comparison

Anova Table (Type III tests)

Response: log(CMAX)

Sum Sq Df F values Pr(>F)

SEQ 0.0000 0

PRD 0.0996 1 1.1599 0.2876 TRT 0.0106 1 0.1231 0.7274 SEQ:SUBJ 22.5232 45 5.8298 3.173e-08 ***

Residuals 3.6059 42

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

11 Sesssion Information

[9] compiler_4.3.1 tools_4.3.1

MASS_7.3-60

[13] rlang_1.1.1

```
R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)
Matrix products: default
locale:
[1] LC_COLLATE=Korean_Korea.utf8 LC_CTYPE=Korean_Korea.utf8
[3] LC_MONETARY=Korean_Korea.utf8 LC_NUMERIC=C
[5] LC_TIME=Korean_Korea.utf8
time zone: Asia/Seoul
tzcode source: internal
attached base packages:
[1] stats
             graphics grDevices utils
                                           datasets methods
                                                                base
other attached packages:
[1] car_3.1-2
                   carData_3.0-5 sasLM_0.9.9
                                                mvtnorm_1.1-3 rmarkdown_2.21
loaded via a namespace (and not attached):
 [1] digest_0.6.31
                     fastmap_1.1.1
                                     xfun_0.39
                                                     abind_1.4-5
 [5] knitr_1.42
                     htmltools_0.5.5 tinytex_0.45
                                                     cli_3.6.1
```

evaluate_0.21

yam1_2.3.7