

CREDIT RISK PREDICTION

Background

When a bank receives a loan application, based on the applicant's profile bank has to decide whether to go ahead with the loan approval or not. Two types of risks are associated with the bank's decision –

If the applicant is a good credit risk, i.e. is likely to repay the loan, then not approving the loan to the person results in a loss of business to the bank.

If the applicant is a bad credit risk, i.e is not likely to repay the loan, then approving the loan to the person results in a financial loss to the bank.

Business Objective

To minimize loss from the bank's perspective, the bank needs a decision rule regarding who to give approval & who not to. An applicant's demographic and social-economic profiles are considered by loan managers before a decision is taken regarding his/her loan application

This assignment is related to building a logistic regression model on credit data. It contains data on a 1000 customers of a bank, and their credit rating (Good/Bad) based on previous history. The variable response in the dataset corresponds to the risk label, 1 has been classified as bad and 2 has been classified as good.

Develop a credit scoring rule that can be used to determine if a new applicant is a good credit risk or a bad credit risk, based on values for one or more of the predictor variables.

Data dictionary.

There is a total on 29 attributes are there in the dataset. Their descriptions and details have been tabulated below:

odelis ar. #	Variable Name	Description	Variable Type	Code Description			Sheet Name
	OBS#	Observation No.	Categorical				Part1
	DURATION	Duration of credit in months	Numerical				Part1
	NEW CAR	Purpose of credit	Binary	car (new) 0: No. 1: Yes			Part1
	USED CAR	Purpose of credit	Binary	car (used) 0: No, 1: Yes			Part1
	FURNITURE	Purpose of credit	Binary	furniture/equipment 0: No, 1: Yes			Part1
	RADIO/TV	Purpose of credit	Binary	radio/television 0: No, 1: Yes			Part1
	EDUCATION	Purpose of credit	Binary	education 0: No, 1: Yes			Part1
	RETRAINING	Purpose of credit	Binary	retraining 0: No, 1: Yes			Part1
	INSTALL RATE	Installment rate as % of disposable income	Numerical	-			Part1
0	CO-APPLICANT	Application has a co-applicant	Binary	0: No, 1: Yes			Part1
1	GUARANTOR	Applicant has a guarantor	Binary	0: No, 1: Yes			Part1
2	REAL_ESTATE	Applicant owns real estate	Binary	0: No, 1: Yes			Part1
3	PROP_UNKN_NONE	Applicant owns no property (or unknown)	Binary	0: No, 1: Yes			Part1
4	AGE	Age in years	Numerical				Part1
5	OTHER_INSTALL	Applicant has other installment plan credit	Binary	0: No, 1: Yes			Part1
6	RENT	Applicant rents	Binary	0: No, 1: Yes			Part1
7	OWN_RES	Applicant owns residence	Binary	0: No, 1: Yes			Part1
8	NUM_CREDITS	Number of existing credits at this bank	Numerical				Part1
9	NUM_DEPENDENTS	Number of people for whom liable to provide maintenance	Numerical				Part1
0	TELEPHONE	Applicant has phone in his or her name	Binary	0: No, 1: Yes			Part1
1	FOREIGN	Foreign worker	Binary	0: No, 1: Yes			Part1
2	RESPONSE	Credit rating is good	Binary	0: No, 1: Yes			Part1
3	AMOUNT	Credit amount	Numerical				part1
4	CHK_ACCT	Checking account status	Categorical				Part2
				0:<0GB	1: 0 < < 200 GB	2 : => 200 GB	
				3 : no account			
5	HISTORY	Credit history	Categorical	0: no credits taken	1: all credits at this bank paid back duly	2.existing credits paid	part2
				back duly till now 3. delay in paying	off in the past 4. critical account		
6	SAV_ACCT	Average balance in savings account	Categorical	0:< 100 GB	1 : 100<= < 500 GB	2:500<= < 1000	part2
				GB 3 : =>1000 GE	3 4: unknown/ no	savings account	
7	EMPLOYMENT	Present employment since	Categorical	0 : unemployed	1: < 1 year	2:1 <= < 4 years	part 2
				3:4 <= < 7 years	4 : >= 7 year		
8	PRESENT_RESIDENT	Present resident since - years	Categorical	0: <= 1 year	1: 1<<=2 years	2: 2<<=3 years	part2
				3:>4years			
9	JOB	Nature of job	Categorical	0 : unemployed/ unskilled - non-res		2 : skilled employee	/ part2
				official 3 : management	t/ self-employed/highly qualified employee/ of	officer	

Tasks to be carried out

- 1. Review the predictor variables and guess from their definition at what their role might be in a credit decision. Are there any surprises in the data?
- 2. Divide the data randomly into training (60%) and validation (40%) partitions, and develop classification models using the following machine Learning techniques in Python & R:
 - Logistic regression
 - Classification trees
 - Neural networks

- 3. Choose one model from each technique and report the confusion matrix and the cost/gain matrix for the validation data. For the logistic regression model use a cutoff "predicted probability of success" ("success"=1) of 0.5. Which technique gives the most net profit on the validation data?
- 4. Let's see if we can improve our performance by changing the cutoff.