Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman

Παναγιώτης Γροντάς - Άρης Παγουρτζής

ΕΜΠ - Κρυπτογραφία (2017-2018)

07/11/2017

Formal Models - DHKE 1/46

Περιεχόμενα

- Ορισμός Κρυπτοσυστήματος
- Δυνατότητες Αντιπάλου Επιθέσεις
- Εμπειρική Ασφάλεια (Kerckhoffs) Σημασιολογική
 Ασφάλεια Μη Διακρισιμότητα
- Γενική Μορφή Κρυπτογραφικών Αναγωγών
- Ανταλλαγή Κλειδιού Diffie Hellman

Formal Models - DHKE 2 / 46

Κρυπτοσύστημα Ι

- $lacktriangledown \mathcal{CS} = (\mathtt{M}, \mathtt{K}, \mathtt{C}, \mathtt{KeyGen}, \mathtt{Encrypt}, \mathtt{Decrypt})$
- Μ: Σύνολο Μηνυμάτων
- Κ: Σύνολο Κλειδιών
- C: Σύνολο Κρυπτοκειμένων
- KeyGen $(1^{\lambda}) = (key_{enc}, key_{dec}) \in K^2$
 - Πιθανοτικός Αλγόριθμος
 - Το κλειδί συνήθως επιλέγεται *ομοιόμορφα* από το Κ
 - λ : Παράμετρος ασφάλειας πλήθος bits του κλειδιού
- $Encrypt(key_{enc}, m) = c \in C$
 - Ντετερμινιστικός Αλγόριθμος: Κάθε μήνυμα αντιστοιχεί σε ένα κρυπτοκείμενο
 - Πιθανοτικός Αλγόριθμος: Κάθε μήνυμα αντιστοιχεί σε ένα σύνολο πιθανών κρυπτοκειμένων
- $Decrypt(key_{dec}, c) = m$

Formal Models - DHKE Ορισμοί 3/46

Κρυπτοσύστημα ΙΙ

Παρατηρήσεις:

- Συμμετρικό Κρυπτοσύστημα key_{enc} = key_{dec}
- lacktriangle Ασύμμετρο Κρυπτοσύστημα $key_{enc}
 eq key_{dec}$
 - Κρυπτογραφία Δημοσίου Κλειδιού
 - Το key_{enc} μπορεί να δημοσιοποιηθεί για την εύκολη ανταλλαγή μηνυμάτων
- Ορθότητα σε κάθε περίπτωση: $\text{Decrypt}(\textit{key}_\textit{dec}, \text{Encrypt}(\textit{key}_\textit{enc}, \textit{m})) = \textit{m}, \forall \textit{m} \in \texttt{M}$

Formal Models - DHKE Ορισμοί 4 / 46

Ο αντίπαλος Α

- Στόχος: Να σπάσει το κρυπτοσύστημα
- Δηλαδή, με δεδομένο το c:
 - Να μάθει το κλειδί k;
 - Επίθεση Πυρηνικής Βόμβας
 - Θέλουμε να προστατεύσουμε το μήνυμα
 - lacktriangle Encrypt(k,m)=m παρέχει ασφάλεια αλλά όχι μυστικότητα
 - Να μάθει ολοκληρο το αρχικό μήνυμα m;
 - Αν μάθει το 90%;
 - Να μάθει κάποια συνάρτηση του m;
 - Ναι αλλά ποια;
- Συμπέρασμα:Χρειάζονται ακριβείς ορισμοί
 - Για το τι σημαίνει 'σπασιμο'
 - Για τις δυνατότητες και τα μέσα του αντιπάλου.

Formal Models - DHKE Ορισμοί 5 / 46

Δυνατότητες και Μέσα (Ιστορικά) Ι

Επιθέσεις

- Επίθεση Μόνο Κρυπτοκειμένου Ciphertext Only Attack (COA)
 - Παθητικός Αντίπαλος
 - Πολύ εύκολη: Χρειάζεται απλά πρόσβαση στο κανάλι επικοινωνίας

Formal Models - DHKE Ορισμοί 6 / 46

Δυνατότητες και Μέσα (Ιστορικά) ΙΙ

- Επίθεση Γνωστού Μηνύματος Known Plaintext Attack (KPA)
 - Παθητικός Αντίπαλος
 - Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
 - Ρεαλιστικό σενάριο για συμμετρικά
 - Ακόμα και τα απόρρητα πρωτόκολλα περιέχουν μη απόρρητα μηνύματα (handshakes, ack)
 - Enigma: Κρυπτοκείμενα πρόγνωσης καιρού
 - Κρυπτογραφημένα μηνύματα γίνονται κάποια στιγμή διαθέσιμα
 - Τετριμμένο σενάριο για ασύμμετρα
 - Ο Α έχει το δημόσιο κλειδί
 - Μπορεί να κατασκευάσει μόνος του όσα ζεύγη θέλει

Formal Models - DHKE Ορισμοί 7/46

Δυνατότητες και Μέσα (Ιστορικά) ΙΙΙ

Επίθεση Επιλεγμένου Μηνύματος - Chosen Plaintext Attack (CPA)

- Ενεργός Αντίπαλος
- Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
- Μπορεί να ζητήσει την κρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Κρυπτογράφησης)
- Ιστορικό Παράδειγμα: Η ναυμαχία του Midway (1942)
 - Αποστολή Πλαστών Μηνυμάτων Με Την Λέξη 'Midway'
 - Συλλογή Επικοινωνιών Με Κρυπτοκείμενα 'AF'
 - Συσχέτιση με παλιότερες επικοινωνίες

Formal Models - DHKE Oρισμοί 8 / 46

Δυνατότητες και Μέσα (Ιστορικά) Ι

- Επίθεση Επιλεγμένου Κρυπτοκειμένου Chosen Ciphertext Attack (CCA)
 - Ενεργός Αντίπαλος
 - Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
 - Μπορεί να ζητήσει την κρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Κρυπτογράφησης)
 - Μπορεί να επιτύχει την αποκρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Αποκρυπτογράφησης)
 - Ο αντίπαλος μπορεί να βγάλει έμμεσα συμπεράσματα από αντιδράσεις σε κρυπτογραφημένα μηνύματα
 - Απόρριψη κρυπτογραφημένων 'σκουπιδιών' από το πρωτόκολλο (Bleichenbacher RSA PKCS1 attack)
 - Ενέργεια στον πραγματικό κόσμο (πχ. αγορά μετοχών)

Formal Models - DHKE Oρισμοί 9 / 46

Οι κανόνες του Kerchoffs (1883) Ι

Οι πρώτες προσπάθειες ορισμού ασφάλειας κρυπτοσυστήματων και προστασίας

Αρχή 2

Ο αλγόριθμος (από) κρυπτογράφησης δεν πρέπει να είναι μυστικός. Πρέπει να μπορεί να πέσει στα χέρια του $\mathcal A$ χωρίς να δημιουργήσει κανένα πρόβλημα. Αντίθετα το κλειδί μόνο πρέπει να είναι μυστικό.

Λόγοι:

- Το κλειδί διανέμεται πιο εύκολα από τους αλγόριθμους (μικρότερο μέγεθος, απλούστερη δομή)
- Το κλειδί είναι πιο εύκολο να αλλαχθεί αν διαρρεύσει
- Πιο πρακτική χρήση για περισσότερους από έναν συμμετέχοντες

Formal Models - DHKE Ορισμοί 10 / 46

Οι κανόνες του Kerchoffs (1883) II

- Ανοικτό κρυπτοσύστημα: Εύκολη μελέτη
- (Μεγάλες) εταιρίες δημιουργούν και χρησιμοποιούν δικούς τους μυστικούς αλγόριθμους/πρωτόκολλα
 - Bruce Schneier Crypto Snake Oil

Formal Models - DHKE Ορισμοί 11/46

Οι κανόνες του Kerchoffs (1883) III

Αρχή 1

Το κρυπτοσύστημα θα πρέπει να είναι πρακτικά απρόσβλητο, αν δεν γίνεται θεωρητικά

- Διάρκεια Κρυπτανάλυσης > Διάρκεια Ζωής Μηνύματος
- Μικρή Πιθανότητα Επιτυχίας
- Υπολογιστική Ασφάλεια

Σε κάθε περίπτωση - Εμπειρικές Αρχές: Δεν αντιστοιχίζονται σε κάτι απτό

Formal Models - DHKE Ορισμοί 12 / 46

Γενικά

Ιδέα

Μαθηματική (Λογική) απόδειξη ότι το κρυπτοσύστημα έχει κάποιες ιδιότητες ασφάλειας.

Παράδειγμα: Τέλεια μυστικότητα (Shannon)

Πρόβλημα: Μπορεί να εφαρμοστεί στην κρυπτογραφία

δημοσίου κλειδιού; Γιατί;

Επαναχρησιμοποίηση δημοσίου κλειδιού

Formal Models - DHKE 'Αποδείξιμη' Ασφάλεια 13/46

Σημασιολογική Ασφάλεια Ι

Βασική ιδέα (Goldwasser, Micali): Χαλαρώνουμε τις υποθέσεις για να οδηγηθούμε σε έναν πιο χρήσιμο ορισμό, λαμβάνοντας υπόψιν:

- lacktriangle την υπολογιστική ισχύ του ${\cal A}$
- την πιθανότητα επιτυχίας
- το είδος των επιθέσεων

Διαίσθηση

Ένας υπολογιστικά περιορισμένος $\mathcal A$ δεν μπορεί να μάθει τίποτε χρήσιμο από το κρυπτοκείμενο παρά μόνο με αμελητέα πιθανότητα

Formal Models - DHKE 'Αποδείξιμη' Ασφάλεια 14 / 46

Σημασιολογική Ασφάλεια ΙΙ

Ρητή Προσέγγιση

Ένα κρυπτοσύστημα είναι (τ,ϵ) ασφαλές αν οποιοσδήποτε $\mathcal A$ σε χρόνο το πολύ τ , δεν μπορεί να το σπάσει με πιθανότητα καλύτερη από ϵ

Για συμμετρικά κρυπτοσυστήματα σήμερα $\tau=2^{80}$ και $\epsilon=2^{-64}$ Δεν χρησιμοποιείται γιατί

- Δεν ασχολείται με το υπολογιστικό μοντέλο (κατανεμημένοι υπολογιστές, εξειδικευμένο HW κτλ.)
- lacktriangle Δ εν ασχολείται με το τι θα γίνει μετά το au
- Για τους ίδιους λόγους με Υπολογιστική Πολυπλοκότητα

Formal Models - DHKE 'Αποδείξιμη' Ασφάλεια 15/46

Σημασιολογική Ασφάλεια ΙΙΙ

Ασυμπτωτική Προσέγγιση

Ένα κρυπτοσύστημα είναι ασφαλές αν οποιοσδήποτε PPT \mathcal{A} έχει αμελητέα πιθανότητα να το σπάσει (σε σχέση με την παράμετρο ασφάλειας)

Παρατηρήσεις:

- lacktriangle Ισχύει για μεγάλες τιμές του λ
- Συνέπεια του |K| < |M|</p>
- Επιτρέπει προσαρμογή της ασφάλειας με αλλαγή του μήκους του κλειδιού

Formal Models - DHKE 'Αποδείξιμη' Ασφάλεια 16 / 46

Σημασιολογική Ασφάλεια ΙV

Τυπικός Ορισμός: Υποθέσεις

- lacksquare Ο $\mathcal A$ θέλει να υπολογίσει το κατηγόρημα $m q: \mathtt M o \{0,1\}$
- $Pr_{m \in M}[q(m) = 0] = Pr_{m \in M}[q(m) = 1] = \frac{1}{2}$
- Το μήκος των κρυπτοκειμένων είναι το ίδιο (δεν διαρρέει πληροφορία)

Το πλεονέκτημα του Α

$$\mathit{Adv}(\mathcal{A}) = |\mathit{Pr}[\mathcal{A}(\mathit{c}) = \mathit{q}(\mathtt{Decrypt}(\mathit{key}, \mathit{c}))] - \frac{1}{2}|$$

Παρατήρηση: Αν ο $\mathcal A$ μαντέψει στην τύχη έχει $Adv(\mathcal A)=0$

Formal Models - DHKE 'Αποδείξιμη' Ασφάλεια 17/46

Σημασιολογική Ασφάλεια V

Ορισμός

Ένα κρυπτοσύστημα είναι σημασιολογικά ασφαλές όταν \forall PPT \mathcal{A} , $\forall q$:

$$\textit{Adv}(\mathcal{A}) = \textit{negl}(\lambda)$$

Αμελητέα συνάρτηση: Μεγαλώνει με πιο αργό ρυθμό από αντίστροφο πολυώνυμο

Formal Models - DHKE 'Αποδείξιμη' Ασφάλεια 18 / 46

Σημασιολογική Ασφάλεια VI

Αμελητέα συνάρτηση

Οποιαδήποτε συνάρτηση για την οποία για κάθε πολυώνυμο pυπάρχει n_0 ώστε $\forall n \geq n_0: neql(n) < \frac{1}{p(n)}$

Συνήθως: $c2^{-n}$, $2^{-\sqrt{n}}$, n^{-logn}

Παρατηρήσεις

- Ο τυπικός ορισμός ενσωματώνει την παράμετρο ασφαλείας
- Δύσχρηστος ορισμός
- Δεν ορίσαμε ακριβώς τη διαδικασία προς το 'σπάσιμο'

Formal Models - DHKE 'Αποδείξιμη' Ασφάλεια 19/46

Μη Διακρισιμότητα(Indistinguishability) Ι

Παίγνιο Μη Διακρισιμότητας μεταξύ των \mathcal{A} , \mathcal{C} (αναπαριστά το κρυπτοσύστημα)

- ΑνταλλαγήΜηνυμάτων μεταξύΑ , C
- A : Παράγει δύο μηνύματα m₀, m₁
- $lackbrace \mathcal{C}$: Διαλέγει ένα τυχαίο bit b
- $m{\mathcal{C}}$: Παράγει και απαντά με το $c_b = exttt{Encrypt}(m_b)$
- A : Μαντεύει ένα
 bit b'

$$\mathit{IND-Game}(\mathcal{A}) = egin{cases} 1, \mathit{b}' = \mathit{b} \\ 0, \textit{αλλιώς} \end{cases}$$

Formal Models - DHKE 'Αποδείζιμη' Ασφάλεια 20 / 46

Μη Διακρισιμότητα(Indistinguishability) II

Πλεονέκτημα

$$\mathit{Adv}_{\mathit{IND}}(\mathcal{A}) = |\mathit{Pr}[\mathit{IND} - \mathit{Game}(\mathcal{A}) = 1] - \frac{1}{2}|$$

Ορισμός

Ένα κρυπτοσύστημα διαθέτει την ιδιότητα της μη διακρισιμότητας όταν \forall PPT $\mathcal A$:

$$Adv_{IND}(A) = negl(\lambda)$$

Θεώρημα

Σημασιολογική Ασφάλεια \Leftrightarrow Μη-Διακρισιμοτητα

Formal Models - DHKE 'Αποδείξιμη' Ασφάλεια 21 / 46

IND-EAV

Formal Models - DHKE Μοντελοποίηση Επιθέσεων 22 / 46

IND-CPA

Formal Models - DHKE Μοντελοποίηση Επιθέσεων 23 / 46

Παρατηρήσεις

Θεώρημα

Ένα κρυπτοσύστημα με ντετερμινιστικό αλγόριθμο κρυπτογράφησης δεν μπορεί να έχει την ιδιότητα IND-CPA.

Απόδειξη

lacksquare Ο $\mathcal A$ θέτει $m^*=m_0$ και λαμβάνει την κρυπτογράφηση c^*

lacksquare Η απάντηση του είναι $b'=egin{cases} 0,c^*=c \ 1,$ αλλιώς

lacksquare Ο $\mathcal A$ κερδίζει πάντα $Pr[\mathit{IND}-\mathit{CPA}(\mathcal A)=1]=1$

Formal Models - DHKE Μοντελοποίηση Επιθέσεων 24 / 46

IND-CCA

Formal Models - DHKE Μοντελοποίηση Επιθέσεων 25 / 46

Παρατηρήσεις

- Στο παίγνιο IND-CCA ο $\mathcal A$ δεν μπορεί να ρωτήσει τον $\mathcal C$ για την αποκρυπτογραφήση του $\mathcal C$
- Μπορεί όμως να:
 - Μετατρέψει το *c* σε *ĉ*
 - Ζητήσει την αποκρυπτογράφηση του \hat{c} σε \hat{m}
 - Να μετατρέψει το \hat{m} σε m, κερδίζοντας με πιθανότητα 1
- IND-CCA2: Επιτρέπεται χρήση του μαντείου αποκρυπτογράφησης μετά το *c* (adaptive IND-CCA)
- IND-CCA1: αλλιώς

Formal Models - DHKE Μοντελοποίηση Επιθέσεων 26 / 46

Malleability I

Malleable (εύπλαστο) Κρυπτοσύστημα

Επιτρέπει στο \mathcal{A} να φτιάξει, γνωρίζοντας μόνο το κρυπτοκείμενο $c=\mathrm{Encrypt}(m)$, ένα έγκυρο κρυπτοκείμενο $c'=\mathrm{Encrypt}(h(m))$, για κάποια, συνήθως πολυωνυμικά αντιστρέψιμη, συνάρτηση h γνωστή σε αυτόν.

Σημαντική ιδιότητα

Non-malleability ⇔ IND-CCA2

Formal Models - DHKE Μοντελοποίηση Επιθέσεων 27/46

Malleability II

Κάποιες φορές είναι επιθυμητή και κάποιες όχι.

- Ομομορφικά Κρυπτοσυστήματα: Αποτίμηση μερικών πράξεων στα κρυπτοκείμενα (ηλ. ψηφοφορίες)
- Πλήρως Ομομορφικά Κρυπτοσυστήμα (Gentry 2010):
 Αποτίμηση οποιουδήποτε κυκλώματος στα κρυπτοκείμενα
- Δεν μπορούν να είναι IND-CCA2, ... αλλά είναι πολύ χρήσιμα

Formal Models - DHKE Μοντελοποίηση Επιθέσεων 28 / 46

Κρυπτογραφικές Αναγωγές Ι

Γενική Μορφή

Αν ισχύει η υπόθεση \mathcal{Y} , τότε και το κρυπτοσύστημα \mathcal{CS} είναι ασφαλές (υπό συγκεκριμένο ορισμό).

Αντιθετοαντιστροφή

Αν το \mathcal{CS} ΔΕΝ είναι ασφαλές (υπό συγκεκριμένο ορισμό), τότε δεν ισχύει η \mathcal{Y} .

Κατασκευαστική απόδειξη

Formal Models - DHKE 29 / 46

Κρυπτογραφικές Αναγωγές ΙΙ

- $lackbox{}{lackbox{}{\ }} \mathcal{CS}$ μη ασφαλές \Rightarrow \exists PPT \mathcal{A} ο οποίος παραβιάζει τον ορισμό ασφάλειας
- Κατασκευάζουμε PPT αλγόριθμο \mathcal{B} , ο οποίος αλληλεπιδρά με τον $\mathcal{C}_{\mathcal{V}}$ ο οποίος προσπαθεί να 'υπερασπιστεί' την \mathcal{Y}
- Ο \mathcal{B} για να καταρρίψει την \mathcal{Y} χρησιμοποιεί εσωτερικά σαν υπορουτίνα τον \mathcal{A} (black box access) παριστάνωντας τον \mathcal{C} στο παίγνιο μη διακρισιμότητας του \mathcal{CS}

Formal Models - DHKE Aναγωγή 30 / 46

Κρυπτογραφικές Αναγωγές ΙΙΙ

Formal Models - DHKE Aναγωγή 31 / 46

Παρατηρήσεις

Κανόνες Ορθότητας

- Προσομοίωση: Ο Α δεν θα πρέπει να ξεχωρίζει τον Β από οποιονδήποτε άλλο εισηγητή.
- Πιθανότητα επιτυχίας: Αν ο Α έχει μη αμελητέα
 πιθανότητα επιτυχίας τότε και ο Β θα πρέπει να έχει μη αμελητέα πιθανότητα
- Πολυπλοκότητα: Ο Β θα πρέπει να είναι PPT. Αυτό πρακτικά σημαίνει ότι όποια επιπλέον εσωτερική επεξεργασία πρέπει να είναι πολυωνυμική
- lacktriangle Πρέπει να είναι όσο πιο tight γίνεται $(t_{\mathcal{B}} pprox t_{\mathcal{A}}$ και $\epsilon_{\mathcal{B}} pprox \epsilon_{\mathcal{A}})$

Formal Models - DHKE Aναγωγή 32 / 46

Συμπεράσματα-Συζήτηση

Κρυπτογραφικές Αναγωγές

- Παρέχουν σχετικές εγγυήσεις (Δύσκολο Πρόβλημα, Μοντέλο Ασφάλειας)
- Δίνουν ευκαιρία να ορίσουμε καλύτερα το κρυπτοσύστημα/πρωτόκολλο
- Πρακτική Χρησιμότητα: Ρύθμιση Παραμέτρου Ασφάλειας
- Συγκέντρωση Κρυπταναλυτικών Προσπαθειών στο
 Πρόβλημα Αναγωγής και όχι σε κάθε κρυπτοσύστημα ξεχωριστά
- Πιο σημαντικές όσο πιο πολύπλοκο γίνεται το πρωτόκολλο
- Αποδεικνύουν την ασφάλεια του μοντέλου
 - Πόσο αναπαριστά το μοντέλο την πραγματικόητα; ΚRACK
 - Δεν σημαίνει ότι οποιαδήποτε υλοποίηση θα είναι ασφαλής

Formal Models - DHKE Αναγωγή 33 / 46

Το πρωτόκολλο DHKE

Πρωτόκολλο Δημιουργίας Κλειδιού

Απαιτήσεις:

Ορθότητα: Αντιμεταθετική ιδιότητα

Ασφάλεια: Ύψωση σε δύναμη - μονόδρομη συνάρτηση στην \mathbb{G}

Συνήθως: \mathbb{G} υποομάδα του \mathbb{Z}_p^* με p πρώτο

Εφαρμογές: SSL, TLS, IPSEC

Formal Models - DHKE

Σχετιζόμενα Προβλήματα Ι

DLP - Το πρόβλημα του Διακριτού Λογαρίθμου

Δίνεται μια κυκλική ομάδα $\mathbb{G}=< g>$ τάξης q και ένα τυχαίο στοιχείο $y\in\mathbb{G}$

Να υπολογιστεί $x\in\mathbb{Z}_q$ ώστε $g^x=y$ δηλ. το $log_g y\in\mathbb{Z}_q$

Αγνοούμε δεδομένα στο πρωτόκολλο DHKE

Formal Models - DHKE

Ανταλλαγή Κλειδιού Diffie Hellman

35 / 46

Σχετιζόμενα Προβλήματα ΙΙ

CDHP - Το υπολογιστικό πρόβλημα Diffie Hellman

Δίνεται μια κυκλική ομάδα $\mathbb{G}=< g>$, δύο στοιχεία

$$y_1 = g^{x_1}, y_2 = g^{x_2}$$

Nα υπολογιστεί το $g^{x_1 \cdot x_2}$

Formal Models - DHKE

Ανταλλαγή Κλειδιού Diffie Hellman

Σχετιζόμενα Προβλήματα ΙΙΙ

Μπορούμε να δοκιμάζουμε τυχαία στοιχεία

DDHP - Το πρόβλημα απόφασης Diffie Hellman

Δίνεται μια κυκλική ομάδα $\mathbb{G}=< g>$, δύο στοιχεία $y_1=g^{x_1},y_2=g^{x_2}$ και κάποιο $y\in\mathbb{G}$ Να εξεταστεί αν $y=g^{x_1\cdot x_2}$

ή ισοδύναμα

DDHP - Το πρόβλημα απόφασης Diffie Hellman

Δίνεται μια κυκλική ομάδα $\mathbb{G}=< g>$, δύο στοιχεία $y_1=g^{x_1},y_2=g^{x_2}$ και κάποιο $y\in\mathbb{G}$ Μπορούμε να ξεχωρίσουμε τις τριάδες $(g^{x_1},g^{x_2},g^{x_1x_2})$ και (g^{x_1},g^{x_2},y) ;

Formal Models - DHKE

Ανταλλαγή Κλειδιού Diffie Hellman

37 / 46

Σχέσεις Προβλημάτων

$CDHP \leq DLP$

Αν μπορούμε να λύσουμε το DLP, τότε μπορούμε να υπολογίζουμε τα x_1, x_2 από τα y_1, y_2 και στην συνέχεια το $g^{x_1 \cdot x_2}$

$DDHP \leq CDHP$

Αν μπορούμε να λύσουμε το *CDHP*, υπολογίζουμε το $g^{x_1 \cdot x_2}$ και ελέγχουμε ισότητα με το y

 Δ ηλαδή: $DDHP \leq CDHP \leq DLP$

Δεν γνωρίζουμε αν ισχύει η αντίστροφη σειρά - ισοδυναμία

Όμως: Υπάρχουν ομάδες όπου το DDHP έχει αποδειχθεί

εύκολο, ενώ CDHP δεν έχει αποδειχθεί εύκολο

Μάλλον: DDHP < CDHP

Formal Models - DHKE

Ανταλλαγή Κλειδιού Diffie Hellman

Ασφάλεια DHKE I

Διαίσθηση

Ένας (παθητικός) αντίπαλος δεν αποκτά καμία χρήσιμη πληροφορία για το κλειδί που δημιουργείται.

Ισοδύναμα

Ένας (παθητικός) αντίπαλος δεν μπορεί να διακρίνει το κλειδί από ένα τυχαίο στοιχείο της ομάδας στην οποία ανήκει

Formal Models - DHKE

Ανταλλαγή Κλειδιού Diffie Hellman

39 / 46

Ασφάλεια DHKE II

Παιχνίδι ανταλλαγής κλειδιού $\mathit{KEG}(\lambda,\Pi,\mathcal{A})$

- lacksquare Εκτέλεση πρωτοκόλλου $\Pi(1^{\lambda})
 ightarrow (au, {\it k})$
- τ: Τα μηνύματα που ανταλλάσσονται (δημόσια)
- k: Το κλειδί που παράγεται (ιδιωτικό)
- \blacksquare Επιλογή τυχαίου $b \in \{0,1\}$
- **■** Αν b=0 επιλογή τυχαίου k' αλλιώς k'=k
- lacksquare Εκτέλεση \mathcal{A} (au, k')
 ightarrow b'
- Αν $b' \neq b$ τότε το αποτέλεσμα του παιχνιδιού είναι 0, αλλιώς 1

Formal Models - DHKE

Ασφάλεια DHKE III

Ορισμός ασφάλειας

Ένα πρωτόκολλο ανταλλαγής κλειδιού Π είναι ασφαλές, αν κάθε PPT παθητικός αντίπαλος $\mathcal A$ έχει αμελητέα πιθανότητα ως προς την παράμετρο ασφάλειας να επιτύχει στο KEG

$$Prob[\mathit{KEG}(\lambda,\Pi,\mathcal{A})=1] \leq \frac{1}{2} + \mathit{negl}(\lambda)$$

Formal Models - DHKE

Ανταλλαγή Κλειδιού Diffie Hellman

41 / 46

42 / 46

Απόδειξη ασφάλειας DHKE

$DDH \implies DHKE$

Αν το DDHP είναι δύσκολο, τότε το πρωτόκολλο DHKE είναι ασφαλές (απέναντι σε παθητικό αντίπαλο).

Απόδειξη - Σχεδιάγραμμα Έστω ότι το DHKE δεν είναι ασφαλές.

 $\exists \mathcal{A}$ ώστε $Prob[\mathit{KEG}(\lambda,\Pi,\mathcal{A})=1]>rac{1}{2}+\mathit{non}-\mathit{negl}(\lambda)$

 Θ α κατασκευάσουμε αντίπαλο PPT $\overline{\mathcal{B}}$ ο οποίος παραβιάζει την DDH.

Τα μηνύματα που ανταλλάσσονται είναι τα $au=(\mathbb{G}, \mathit{g}, \mathit{g}^{\mathsf{x}_1}, \mathit{g}^{\mathsf{x}_2})$

Εκτελούμε τον $\mathcal A$ με είσοδο $(au, \mathbf g^{\mathbf x_1 \mathbf x_2})$

Επειδή το $g^{x_1x_2}$ είναι έγκυρο κλειδί:

 $Prob[KEG(\lambda, \Pi, A(\tau, g^{x_1x_2})) = 1] > \frac{1}{2} + non - negl(\lambda)$

Εκτελούμε τον $\mathcal A$ με είσοδο (τ,y) με $y\in_R\mathbb G$

Επειδή το y είναι τυχαίο στοιχείο:

 $Prob[KEG(\lambda, \Pi, \mathcal{A}(\tau, y))=1]=1_{\overline{2}}$

Άρα ο $\mathcal B$ μπορεί να σπάσει την DDH γιατί μπορεί να ξεχωρίσει με μη αμελητέα πιθανότητα το y από το g^{x_1,x_2} ΑΤΟΠΟ

Formal Models - DHKE Ανταλλαγή Κλειδιού Diffie Hellman

Ενεργοί Αντίπαλοι

Man In The Middle Attacks

Superfish - Lenovo (02/2015) DELL - 10/2015

Formal Models - DHKE

Ανταλλαγή Κλειδιού Diffie Hellman

43 / 46

Βιβλιογραφία Ι

- St. Zachos and Aris Pagourtzis. Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία. Πανεπιστημιακές Σημειώσεις
- Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman and Hall/Crc Cryptography and Network Security Series). Chapman and Hall/CRC, 2007
- Nigel Smart. Introduction to cryptography
- Alptekin Kupcu. Proofs In Cryptography
- S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–299, 1984.
- S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryptosystems. SIAM J. Computing, 17(2):412–426, 1988.

Formal Models - DHKE Πηγές 44 / 46

Βιβλιογραφία ΙΙ

- W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf. Theor., 22(6):644-654, September 1976
- Ivan Damgard, A proof reading of some issues in cryptography
- Neil Koblitz, Alfred Menezes Another Look at "Provable Security"
- Dan Boneh (1998). "The Decision Diffie—Hellman Problem". ANTS-III: Proceedings of the Third International Symposium on Algorithmic Number Theory. Springer-Verlag: 48–63. doi:10.1007/bfb0054851
- Bruce Schneier's Blog
 - Memo to the Amateur Cipher Designer (https://goo.gl/92TW36)
 - Crypto Snake Oil (https://goo.gl/FaFoSK)
- A Few Thoughts on Cryptographic Engineering

Formal Models - DHKE Πηγές 45 / 46

Βιβλιογραφία III

- Bristol Cryptography Blog
- Kerckhoffs Wikipedia Entry (https://goo.gl/SHnu8K)

Formal Models - DHKE $\Pi\eta\gamma\dot{\epsilon}\varsigma$ 46 / 46