Instituto Superior Técnico

Lic. Engenharia Informática e de Computadores (Alameda)

Teoria da Computação

28 de Maio de 2014 Teste 2 Duração: 1h30

Grupo I (1+4 valores)

- a) Enuncie o teorema de Rice.
- **b)** Seja $L = \{0^n 1^{2n} : n \in \mathbb{N}_0\}.$

Use o teorema de Rice para demonstrar que a linguagem $\{\langle M \rangle : L_M = L\}$ é indecidível.

Grupo II (5 valores)

Demonstre que a linguagem L do **Grupo I**, alínea **b**) pertence à classe **TIME** $(n.\log(n))$.

Grupo III (1+1+3 valores)

- a) Seja $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ uma função. Defina a classe de complexidade **SPACE**(f(n)).
- b) Enuncie o teorema de hierarquia espacial.
- c) Use o teorema de hierarquia espacial para mostrar que

$$\mathbf{SPACE}(n^k) \subsetneq \mathbf{SPACE}(n^{k+1}).$$

Grupo IV (1+4 valores)

- a) Dadas duas linguagens L_1 e L_2 , o que significa dizer que $L_1 \leq_p L_2$?
- b) Demonstre que se $L_2 \in \mathbf{P}$ e $L_1 \leq_p L_2$ então $L_1 \cup L_2 \in \mathbf{P}$.