No part of the candidate evidence in this exemplar material may be presented in an external assessment for the purpose of gaining credits towards an NCEA qualification.

aterial urpose

91392

QUALIFY FOR THE FUTURE WORLD KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

Level 3 Chemistry, 2017

91392 Demonstrate understanding of equilibrium principles in aqueous systems

2.00 p.m. Wednesday 15 November 2017 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence		
Demonstrate understanding of equilibrium principles in aqueous	Demonstrate in-depth understanding of equilibrium principles in aqueous	Demonstrate comprehensive understanding of equilibrium principles		
systems.	systems.	in aqueous systems.		

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L3–CHEMR.

If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–11 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL 21

QUESTION ONE

- (a) Hydrogen fluoride, HF, and hydrogen bromide, HBr, both form acidic solutions when added to water.
 - (i) Write an equation for the reaction of each acid with water.

Hydrogen fluoride, HF, with water:

Hydrogen bromide, HBr, with water:

(ii) Compare and contrast the electrical conductivity of $0.150 \text{ mol } L^{-1}$ solutions of hydrofluoric acid, HF, and hydrobromic acid, HBr.

In your answer, you should:

- include the requirements for a solution to conduct electricity
- identify the species present AND their relative concentrations.

No calculations are necessary.

(b) 40.0 mL of 0.150 mol L⁻¹ HBr solution was added to 25.0 mL of a saturated silver bromide, AgBr, solution.

(i) Write an equation for the equilibrium occurring in a saturated solution of AgBr.

1.0.	<u></u>	Ag*	<u>با</u>	D.*	ÿ
rgbr		79	Т	br	

(ii) Explain the changes that occur to the concentrations of the species in the saturated solution of AgBr on the addition of the HBr solution.

On addition, HBr dissociates to form H30+ and
Br^- ions (HBr + H ₂ 0 \rightleftharpoons Br + H ₃ 0 [†]). According to
le chatelier's principle, the excess of Br jons
Will cause the AgBr equilibrium to favour
the reverse reaction to reduce the concentration
of Brions. Thus the concentration of Agt and
Br decreases and concentration of AgBr increases. //

(iii) Calculate the concentration of the silver ions, Ag⁺, after the HBr solution has been added.

$$K_{\rm s}({\rm AgBr}) = 5.00 \times 10^{-13}$$

Assume the concentration of Br⁻ in the original saturated solution of AgBr is insignificant.

$$[Ag^{+}][Br^{-}] = 5.00 \times 10^{-13}$$
 $C(Br) = n(Br^{-})$

$$[Ag^{+}][0.6923] = 5.00 \times 10^{-13}$$
 $n(010 Br) = 0.150 \times 0.04$
 $[Ag^{+}] = 5.42 \times 10^{-12} mol L^{-1} = 6 \times 10^{-3} mol$

QUESTION TWO

(a) Ammonia, NH₃, is a weak base.

$$pK_a(NH_4^+) = 9.24$$
 $K_a(NH_4^+) = 5.75 \times 10^{-10}$

(i) Calculate the pH of a $0.105 \text{ mol L}^{-1} \text{ NH}_3 \text{ solution}$.

$$[H_{3}O^{\dagger}] = \int \frac{K_{9} \times K_{w}}{C(b_{0}Se)}$$

$$= \int \frac{5.75 \times 10^{-10} \times 10^{-14}}{0.105}$$

$$= 7.40 \times 10^{-12}$$

$$= 11.18 \text{ //}$$

(ii) Dilute hydrochloric acid, HCl, is added to the NH_3 solution until the ratio of NH_3 to NH_4^+ in the solution is 5:1.

Determine the pH of this solution, and evaluate its ability to resist a change in pH when small volumes of strong acid or base are added.

$$PH = pK_q + log [base]$$

$$= 924 + log 5$$

$$= 998$$

The pH of the Solution is 993 meaning there is a higher concentration of conjugate base NH3, than NH4+. Thus, the Solution will be more effective at maintaining pH when small volumes of Strong acid are added as the excess NH3 reachs with it to form NH4+ and water.

$$NH_3 + H_3O+ \implies NH_4+ + H_2O$$

(b) (i) Write the equation for the equilibrium occurring in a saturated solution of copper(II) hydroxide, Cu(OH)₂.

ASSESSOR'S USE ONLY

$$Cu(OH)_2 \stackrel{\longrightarrow}{=} Cu^{2+} + 2OH^-$$

(ii) Write the expression for $K_s(Cu(OH)_2)$.

$$K_{S}(Cu(OH)_{2}) = [Cu^{2+}][OH^{-}]^{2}$$

(iii) Calculate the solubility of Cu(OH), in water at 25°C.

 $K_{\rm s}({\rm Cu(OH)}_2) = 4.80 \times 10^{-20}$

$$\int [Cu^{2+}][OH^{-}]^{2} = 4.80 \times 10^{-20}$$

$$45^{3} = 4.80 \times 10^{-20}$$

$$5 = 2.29 \times 10^{-7} \text{ mol } L^{-1}$$

(c) Explain why the solubility of Cu(OH), increases when dilute hydrochloric acid is added.

Cu (OH)₂ dissociates to form Cu²⁺ and OH⁻ ions

((Cu(OH)₂) \rightleftharpoons Cu²⁺ + 2OH⁻). When dilute hydrachlanc

acid is added it forms H_3O^+ and Cl⁻ ions $(HCl + H_2O \rightleftharpoons Cl^+ H_3O^+)$.

These H_3O^+ ions newtralise OH⁻ ions to form H_3O (OH⁻ + $H_3O^+ \rightleftharpoons H_2O$), Which decreases the concentration of OH⁻ ions in the Solution. Thus the Cu(OH)₂ equilibrium favours the forward reaction to replenish

OH⁻ ions, increasing the Solubility as more

(u(OH)₂ dissolves.

A titration was carried out by adding $0.112 \text{ mol } L^{-1}$ sodium hydroxide solution, NaOH(aq), to 20.0 mL of ethanoic acid solution, CH₃COOH(aq).

The equation for the reaction is:

$$CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(\ell)$$

$$K_{\rm a}({\rm CH_3COOH}) = 1.74 \times 10^{-5}$$

(a) With reference to the titration curve above, put a tick next to the indicator most suited to identify the equivalence point.

Indicator	pK _a	Tick ONE box below
Methyl yellow	3.1	
Bromocresol purple	6.3	
Phenolphthalein	9.6	\wedge

(b) (i) The ethanoic acid solution, CH₃COOH(aq), has a pH of 2.77 before any NaOH is added.

ASSESSOR'S USE ONLY

Show by calculation that the concentration of the CH_3COOH solution is 0.166 mol L^{-1} .

$$\frac{1.74 \times 10^{-5} \cdot = [H_30^+]^2}{[CH_3COOH]} \qquad \frac{10^{-2.77}}{[CH_3COOH]} = 1.698 \times 10^{-3}$$

$$[CH_{3}COOH] = (1.698 \times 10^{-3})^{2}$$

$$= 0.166 \text{ mol } c^{-1}$$

(ii) Calculate the pH of the solution in the flask after 10.0 mL of 0.112 mol L^{-1} NaOH has been added to 20.0 mL of ethanoic acid solution, $CH_3COOH(aq)$.

$$C(CH_3COOH) = 1111158 COORSBAORS 2.2 × 10-3 = 0.0733 mol L-1$$

$$C(NaOH) = \frac{n(NaOH ackled)}{0.03} = \frac{(0.112 \times 0.01)}{0.03} = 0.0373 \text{ mol } E$$

Question Three continues on the following page.

- (c) The equivalence point pH for the titration of ethanoic acid with sodium hydroxide is 8.79.
 - (i) Identify the chemical species present at the equivalence point, other than water.

(ii) In a second titration, a $0.166 \text{ mol } L^{-1}$ methanoic acid solution, HCOOH(aq), is titrated with the NaOH solution. The equivalence point pH for this titration is 8.28.

The equivalence point pH for the CH₃COOH titration is 8.79.

Compare and contrast the pH values at the equivalence point for both titrations.

$$K_{\rm a}({\rm HCOOH}) = 1.82 \times 10^{-4}$$
 $K_{\rm a}({\rm CH_3COOH}) = 1.74 \times 10^{-5}$

No calculations are necessary.

HCOOH	has a	higher	Ka	Value	than
CH3COOH	. This	means	that	HCOOH	will.
_ dissociate	more	than	CH3CO	10H ie.	the
<u>equilibrium</u>	lies	further	to the	e right	
(HCO	OH + H-	0 =	HC00-	+ H30+). ThuS
	Will			1/2	
	Solution,				
	CH3CO				

1

Excellence exemplar for 91392 2017			Total score	21			
Q	Grade score	Annotation					
		The candidate was awarded E7 for the following reasons:					
1	E7	In part (a)(i), the correct arrow was used for hydrogen fluoride, but not for hydrogen bromide. In part (a)(ii), the candidate had the correct ideas on both conductivity and strength.					
		In part (b), the candidate wrote the correct equation; had a full discussion on solubility – justifying their response using Le Chatelier's Principle; correctly used K_s expression to correctly calculate the concentration of the silver ions present in the dilution.					
		The candidate was awarded E7 for the following	reasons:				
2	E7	In part (a), the candidate calculated the pH correctly, but the answer did not reflect the appropriate number of significant figures. The correct buffer pH and evaluation were given.					
		In part (b), the correct equation and expression vused to correctly calculate the solubility of Cu(Obunit.	•				
		In part (c), a full discussion on solubility relati acid-base reaction was given.		ım and			
		The candidate was awarded E7 for the following	reasons:				
3	E7	In part (a), an incorrect indicator was chosen.					
		In part (b), the calculation of both concentration and pH were correct with justification.					
		In part (c), four correct species were given; the p strength, however, to gain E8, the candidate's re to all species present, e.g. the conjugate base st	sponse need to				