BAB9

DIMENSI TIGA

Kedudukan Garis dan Bidang

1. Kedudukan Titik terhadap Garis

 Sebuah titik P dikatakan terletak pada garis g, jika g melalui titik P.

 Sebuah titik P dikatakan di luar garis g, jika garis g tidak melalui titik P.

2. Kedudukan Titik terhadap Bidang

 Sebuah titik P terletak pada bidang A, jika bidang A melalui titik P.

b. Sebuah titik P dikatakan berada **di luar** bidang A, jika bidang A tidak melalui titik P.

3. Kedudukan Dua Garis

 a. Garis g dan garis h dikatakan **berhimpit**, jika setiap titik pada garis g juga terletak pada garis h, dan sebaliknya.

 b. Garis g dan garis h dikatakan saling berpotongan jika kedua garis tersebut memiliki satu titik persekutuan yang disebut titik potong. Dua garis hanya dapat berpotongan jika terletak pada suatu bidang yang sama.

Garis g dan garis h dikatakan sejajar jika kedua garis tidak memiliki titik persekutuan.

4. Kedudukan Garis dan Bidang

 Garis g dikatakan terletak pada bidang A jika paling sedikit dua titik pada garis g terletak pada bidang A.

 Garis g dikatakan sejajar bidang A jika garis g sejajar dengan garis pada bidang A.

5. Kedudukan Dua Bidang

a. Bidang A dan bidang B dikatakan **berhimpit** jika kedua bidang mempunyai daerah persekutuan.

b. Bidang A dan bidang B dikatakan **sejajar** jika kedua bidang tidak mempunyai titik persekutuan.

c. Bidang A dan bidang B dikatakan berpotongan jika bidang A dan Btidak sejajar. Dalam hal ini perpotongan bidang A dan bidang B akan membentuk sebuah garis potong, yaitu garis g.

B Proyeksi Garis

1. Proyeksi Titik dan Garis pada Garis

Proyeksi ruas garis AB pada garis g adalah bayangan ruas garis AB pada garis g oleh sinar garis yang tegak lurus dengan g. Ruas A' B' adalah proyeksi ruas garis AB pada garis g.

Jika garis AB dengan panjang a membentuk sudut θ terhadap garis g, maka panjang proyeksi AB = A'B' = a cos θ .

2. Proyeksi Titik pada Bidang

Proyeksi titik P pada bidang A adalah titik tembus garis yang tegak lurus dari P ke bidang A.

Pada gambar terlihat:

P' = proyeksi P pada bidang A

PP' = jarak titik P terhadap bidang A

A = bidang proyeksi

3. Proyeksi Garis pada Bidang

a. Jika Garis Sejajar Bidang

Panjang proyeksi PQ = panjang P'Q'

b. Jika Garis Tegak Lurus Bidang

Ruas garis PQ tegak lurus bidang A. Titik P' adalah proyeksi ruas garis PQ pada bidang A.

c. Jika Garis Memotong Bidang

Ruas garis PQ memotong bidang A di Q. Panjang proyeksi PQ = panjang P'Q

Contoh:

Diketahui kubus ABCD.EFGH dengan rusuk 8 cm. Panjang proyeksi DE pada BDHF adalah ... cm.

Pembahasan:

Proyeksi ED pada bidang BDFH adalah DF'

$$ET = \frac{1}{2}EG = \frac{1}{2}8\sqrt{2} = 4\sqrt{2}$$

$$DT = \sqrt{DH^2 + HT^2} = \sqrt{8^2 + (4\sqrt{2})^2}$$
$$= \sqrt{64 + 32} = \sqrt{96} = 4\sqrt{6}$$

Perhatikan ΔEDT!

$$\begin{aligned} \text{COS } \alpha &= \frac{8^2 + \left(4\sqrt{6}\right)^2 - \left(4\sqrt{2}\right)^2}{2 \cdot 8 \cdot 4\sqrt{6}} = \frac{8}{4\sqrt{6}} \\ \text{COS } \alpha &= \frac{\text{DE'}}{\text{DE}} \Leftrightarrow \frac{2}{\sqrt{6}} = \frac{\text{DE'}}{8\sqrt{2}} \\ \Leftrightarrow \text{DE'} &= \frac{8\sqrt{2} \cdot 2}{\sqrt{6}} \end{aligned}$$

$$\Leftrightarrow$$
 DE' = $\frac{16}{2}\sqrt{6}$

Jadi, panjang proyeksi ED pada bidang BDHF adalah $\frac{16}{3}\sqrt{6}$ cm.

C Jarak Pada Bangun Ruang

1. Jarak antara Dua Titik

Jarak titik A ke titik B sama dengan panjang ruas garis AB, yang ditentukan dengan teorema Phythagoras, yaitu:

$$AB = \sqrt{x^2 + y^2}$$

2. Jarak Titik ke Garis

a. Jika Titik dan Garis Terletak pada Satu Bidang

 Titik P dan garis g terletak pada bidang A. Buatlah garis h yang melalui titik P dan memotong tegak lurus garis g di B.

2) Titik B adalah proyek titik P pada garis g. PB adalah jarak antara titik P dan garis g.

b. Jika Titik dan Garis Tidak Terletak pada Satu Bidang

Garis g terletak pada bidang A. Untuk menentukan iarak antara titik P dan garis g.

- Buatlah garis PQ yang tegak lurus dengan bidang A.
- 2) Buatlah garis QR yang tegak lurus garis g.
- 3) PR adalah jarak antara titik A dan garis g.

Contoh:

• Kubus ABCD.EFGH panjang rusuknya 4 cm. Titik P tengah-tengah EH. Jarak titik P ke garis BG adalah ... cm.

Pembahasan:

Kubus ABCD.EFGH panjang rusuknya 4 cm.

Perhatikan segitiga BPG!

O adalah proyeksi titik P pada garis BG. Jarak titik P ke Garis BG = panjang PO. Di mana

GO =
$$\frac{1}{2}$$
 × diagonal bidang BCFG = $\frac{1}{2}$ × $4\sqrt{2}$ = $2\sqrt{2}$
PG = $\sqrt{(GH)^2 + (PH)^2}$ = $\sqrt{(4)^2 + (2)^2}$ = $\sqrt{20}$ = $2\sqrt{5}$
Jadi,PO = $\sqrt{(PG)^2 - (GO)^2}$ = $\sqrt{(2\sqrt{5})^2 - (2\sqrt{2})^2}$
= $\sqrt{20 - 8}$ = $\sqrt{12}$ = $2\sqrt{3}$

3. Jarak Titik ke Bidang

Titik P terletak di luar bidang A. Jarak antara titik P dan bidang A sebagai berikut:

- a. Buat garis g yang melalui titik P dan tegak lurus bidang A.
- b. Jika garis g menembus bidang di B, maka PB adalah jarak antara titik P dan bidang A

Contoh:

Pada kubus ABCD.EFGH, diketahui panjang rusuknya 8 cm. Jarak titik E ke bidang BGD adalah ... cm.

Pembahasan:

Jarak titik E ke bidang BGD adalah EP.

EC =
$$8\sqrt{3}$$
 (diagonal ruang)
EP = $\frac{2}{3}$ EC = $\frac{2}{3}8\sqrt{3} = \frac{16}{3}\sqrt{3}$

4. Jarak Dua Garis vang Sejajar

Garis g sejajar dengan garis h dan keduanya terletak pada bidang A. Jarak garis g dan garis h, adalah:

- Buatlah garis k yang tegak lurus kedua garis g dan garis h
- b. Garis k memotong garis g di titik P dan garis h di titik P'. PP' adalah jarak antara garis g dengan garis h.

5. Jarak antara Garis dan Bidang Sejajar

Garis g sejajar dengan bidang A. Jarak antara garis g dan bidang A adalah:

- Buatlah garis sembarang h melalui titik P di garis g dan tegak lurus bidang A. Garis h menembus bidang A di titik P'.
- b. PP'adalah jarak antara garis g dan bidang A.

6. Jarak Dua Bidang yang Sejajar

Bidang A sejajar dengan bidang B. Misalnya garis g melalui titik P dan tegak lurus bidang B.

P' adalah titik tembus dari garis g pada bidang B. PP' adalah jarak antara bidang A dan bidang B.

Contoh:

1 Diketahui kubus ABCD.EFGH dengan rusuk $6\sqrt{3}$ cm. Jarak bidang ACH dan EGB adalah ... cm. (SOAL UN)

Pembahasan:

Panjang rusuk kubus ABCD.EFGH adalah $6\sqrt{3}\,$ cm. Panjang diagonal ruangnya adalah:

$$6\sqrt{3} \times \sqrt{3} = 18 \text{ cm}$$

Jarak bidang ACH dan EGB adalah $\frac{1}{3} \times$ diagonal ruang, yaitu $\frac{1}{3} \times 18 = 6$ cm

D Sudut pada Bangun Ruang

1. Sudut antara Dua Garis yang Berpotongan

Garis g dan h terletak pada bidang A, dan berpotongan di titik P. Sudut antara garis g dan h yaitu θ .

2. Sudut antara Dua Garis yang Bersilangan

Garis g terletak pada bidang A sedangkan garis h terletak pada bidang B. Garis g dan h adalah garis yang bersilangan.

Sudut antara garis g dan h dapat ditentukan dengan cara membuat garis yang sejajar dengan g (misalnya gʻ) dan memotong garis h. Sudut yang terbentuk yaitu θ

2. Sudut antara Garis dan Bidangww

Misalkan garis g memotong (menembus) bidang A di titik Q. Titik P pada garis g dan P' adalah proyeksi P ke bidang A. Sudut antara garis g dengan bidang A adalah:

Contoh:

① Diketahui kubus ABCD.EFGH. Besar sudut antara garis AH dan bidang BFHD adalah

Pembahasan:

Sudut antara AH dan bidang BFHD yaitu:

AC merupakan diagonal bidang ABCD. Misalkan rusuk kubus ABCD.EFGH adalah a, maka:

$$AA' = \frac{1}{2}AC = \frac{1}{2}a\sqrt{2}$$

AH merupakan diagonal bidang ADEH, maka:

$$\sin \alpha = \frac{AA'}{AH} = \frac{\frac{1}{2}a\sqrt{2}}{a\sqrt{2}} = \frac{1}{2}$$

Jadi, besar sudutnya adalah 30°.

3. Sudut antar Dua Bidang

Misalkan bidang A dan bidang B berpotongan di garis g. Sudut antara bidang A dan bidang B dapat ditentukan dengan membuat masing-masing garis pada bidang A dan B yang memotong tegak lurus garis g. Sehingga, sudut antara bidang A dan bidang B yaitu:

Contoh:

 Diketahui limas beraturan T.ABCD dengan panjang rusuk 6 cm. Titik P pada CT sehingga TP : PC = 2 : 1. Jarak P ke bidang BDT adalah

Pembahasan:

Diketahui limas T.ABCD dengan

TC = 6 cm.

Titik P pada CT sehingga TP: PC = 2:1.

$$TP = \frac{2}{3} \times 6 = 4 \text{ cm} \text{ dan } PC = \frac{1}{3} \times 6 = 2 \text{ cm}$$

 $AC = diagonal sisi = 6\sqrt{2} cm$

Maka, OC =
$$\frac{1}{2} \times 6\sqrt{2} = 3\sqrt{2} \text{ cm}$$

Segitiga TOC dan TQP sebangun, maka berlaku perbandingan sisi-sisinya:

$$\frac{PQ}{OC} = \frac{TP}{TC} \Rightarrow \frac{PQ}{3\sqrt{2}} = \frac{4}{6}$$
$$\Rightarrow PQ = \frac{4 \times 3\sqrt{2}}{6} = 2\sqrt{2} \text{ cm}$$

E Rumus Praktis Jarak pada Kubus

$$EP = PQ = QC = \frac{1}{3}EC = \frac{1}{3}a\sqrt{3}$$

$$Jarak E ke AFH = EP = \frac{1}{3}a\sqrt{3}$$

$$Jarak E ke BDG = EQ = \frac{2}{3}a\sqrt{3}$$

$$Jarak AFH ke BDG = PQ = \frac{1}{3}a\sqrt{3}$$

CONTOH SOAL DAN PEMBAHASAN

1. Diberikan kubus ABCD.EFGH. Jika θ adalah sudut antara bidang ACF dan ABCD, maka $\cos \theta = ...$

A.
$$\sqrt{2}$$

D.
$$\frac{1}{\sqrt{2}}$$

B.
$$\frac{1}{\sqrt{3}}$$

C.
$$\frac{1}{2}$$

Pembahasan SMART:

Sudut antara bidang ACF dan alas ABCD adalah sudut yang dibentuk oleh ruas garis OF dan OB yaitu ∠FOB. Misalkan panjang rusuk kubus adalah p, maka:

OB =
$$\frac{1}{2}$$
AC = $\frac{1}{2}$ p $\sqrt{2}$ = $\frac{p\sqrt{2}}{2}$

Perhatikan segitiga OBF!

Untuk menentukan $\cos\theta$, perlu dicari dulu panjang OF, yaitu:

$$OF = \sqrt{OB^2 + FB^2}$$

$$OF = \sqrt{\frac{p\sqrt{2}}{p\sqrt{2}}} + p$$

$$OF = \sqrt{\frac{6}{4}p^2}$$

$$OF = \frac{p}{2}\sqrt{6}$$

Jadi,
$$\cos \theta = \frac{OB}{OF} = \frac{\frac{p\sqrt{2}}{2}}{\frac{p}{2}\sqrt{6}} = \sqrt{\frac{2}{6}} = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}}$$

Jawaban: B

2. Diketahui limas T.ABC dengan TA tegak lurus bidang ABC. Panjang rusuk AB, AC, BC, dan TA berturut-turut adalah 3cm, 4cm, 5cm, dan $\frac{9}{5}$ cm. Jika f sudut antara bidang BCT dengan bidang ABC, maka nilai cos f adalah

A.
$$\frac{4}{5}$$

D.
$$\frac{9}{25}$$

B.
$$\frac{3}{5}$$

E.
$$\frac{12}{25}$$

C.
$$\frac{}{25}$$

Pembahasan SMART:

Alas limas merupakan segitiga siku-siku di A.

Luas alas =
$$\frac{1}{2}$$
.AC.AB

Luas alas =
$$\frac{1}{2}$$
.BC.AD

Maka,
$$\frac{1}{2}$$
.BC.AD = $\frac{1}{2}$.AC.AB

$$\Rightarrow AD = \frac{AC.AB}{BC}$$

$$\Rightarrow AD = \frac{4.3}{5} = \frac{12}{5}$$

Perhatikan bahwa segitiga ADT siku-siku di A.

Maka, panjang
$$TD = \sqrt{AD^2 + AT^2}$$

$$=\sqrt{\left(\frac{12}{5}\right)^2 + \left(\frac{9}{5}\right)^2}$$
$$=\sqrt{\frac{144}{25} + \frac{81}{25}} = \sqrt{\frac{225}{25}} = \frac{15}{5}$$

$$\begin{array}{c}
T \\
\underline{95} \\
A
\end{array}$$

$$\begin{array}{c}
\underline{25} \\
5
\end{array}$$

$$\begin{array}{c}
\theta \\
D
\end{array}$$

Sehingga,
$$\cos\theta = \frac{\frac{12}{5}}{\frac{15}{5}} = \frac{12}{5} \times \frac{5}{15} = \frac{12}{15} = \frac{4}{5}$$

Jawaban: A

3. Diberikan bidang empat beraturan T.ABC dengan panjang rusuk a. Jika titik P adalah titik tengah rusuk BC, maka jarak titik P ke garis AT adalah

A.
$$\frac{a}{4}\sqrt{2}$$
 D. $\frac{a}{2}\sqrt{3}$

D.
$$\frac{a}{2}\sqrt{3}$$

B.
$$\frac{a}{3}\sqrt{2}$$
 E. $\frac{a}{3}\sqrt{3}$

E.
$$\frac{a}{2}\sqrt{3}$$

C.
$$\frac{a}{2}\sqrt{2}$$

Pembahasan SMART:

Perhatikan bahwa segitiga TPC siku-siku di P, maka:

$$TP = \sqrt{TC^2 - PC^2}$$

$$= \sqrt{a^2 - \left(\frac{1}{2}a\right)^2} = \sqrt{a^2 - \frac{1}{4}a^2}$$

$$= \sqrt{\frac{3}{4}a^2} = \frac{1}{2}a\sqrt{3}$$

Perhatikan segitiga TPA, panjang TP = AP, maka segitiga TPA sama kaki.

Sehingga:

$$PK = \sqrt{PT^2 - TK^2}$$

$$= \sqrt{\left(\frac{1}{2}a\sqrt{3}\right)^2 - \left(\frac{1}{2}a\right)^2}$$

$$= \sqrt{\frac{3}{4}a^2 - \frac{1}{4}a^2} = \sqrt{\frac{2}{4}a^2} = \frac{1}{2}a\sqrt{2}$$

PK adalah jarak titik P ke garis AT, panjangnya

$$=\frac{1}{2}a\sqrt{2}=\frac{a}{2}\sqrt{2}$$

Jawaban: C

Pada kubus ABCD.EFGH, titik P terletak segmen BG sehingga 3 PG = 2 BP. Titik Q adalah titik potong garis HP dan bidang ABCD. Jika panjang sisi kubus 6 cm, luas segitiga APQ adalah ... cm².

A.
$$9\sqrt{2}$$

B.
$$12\sqrt{2}$$

Pembahasan SMART:

1) BP =
$$\frac{3}{5}$$
 BG = $\frac{3}{5}$.6 $\sqrt{2}$

2) Kesebangunan AAQH dengan BQP:

$$\frac{BQ}{AQ} = \frac{BP}{AH} \Leftrightarrow \frac{6+X}{12+X} = \frac{\frac{3}{5} \cdot 6\sqrt{2}}{6\sqrt{2}} \Leftrightarrow$$

$$30+5x = 36+3x$$

$$3x = 6$$

$$x = 3$$

Diperoleh panjang AQ = 12+3 = 15 cm. Karena BP tegak lurus AQ, diperoleh:

L
$$\triangle$$
AQP = $\frac{1}{2}$.AQ.BP
= $\frac{1}{2}$.15. $\frac{3}{5}$.6 $\sqrt{2}$
= $27\sqrt{2}$ cm²

Jawaban: D