1 」プログラム数学科目の内容

	数学 I-J	応用数学 I-J				
目的・内容	線形代数学 の内容を一通り身につけることを目	微分積分学について講義する. 多変数関数の微				
	標とする. 1 次独立性・ベクトル空間等の基礎概	分・積分の基本的な概念を理解し、機械工学の				
	念を理解した上で線形写像・固有値・行列の対	分野において必要となる問題解決能力・計算力				
	角化について学ぶ.	を身につける.				
第1回	ベクトル空間①(平面ベクトルの復習)	偏微分① (多変数関数とその極限)				
第2回	ベクトル空間②(n 次元数ベクトル)	偏微分②(偏微分)				
第3回	ベクトル空間③(正規直交系)	偏微分③(全微分)				
第4回	部分空間① (定義と線形条件)	偏微分④(合成関数の微分)				
第5回	部分空間②(基底と次元)	偏微分⑤ (陰関数の微分)				
第6回	部分空間③(和,積,直和)	偏微分⑥ (極値の判定)				
第7回	線形写像① (定義と線形条件)	偏微分⑦ (陰関数の極値)				
第8回	線形写像②(表現行列)	中間試験(50 点)				
第9回	線形写像③(正則変換,直交変換)	積分① (原始関数と不定積分)				
第 10 回	固有値と固有ベクトル① (定義と求め方)	積分②(面積定積分)				
第 11 回	固有値と固有ベクトル②(固有空間)	重積分①(累次積分)				
第 12 回	固有値と固有ベクトル③(行列の対角化)	重積分②(2 重積分)				
第 13 回	固有値と固有ベクトル④(対称行列の対角化)	重積分③(積分順序の変更)				
第 14 回	固有値と固有ベクトル⑤(2 次形式の標準化)	重積分④(体積と重積分)				
第 15 回	期末試験(100 点)	期末試験(50点)				
	数学 II-J	応用数学 II-J				
目的・内容	統計学 の内容を一通り身につけることを目的と	微分方程式論 の内容を一通り身につけることを				
目的・内容	統計学 の内容を一通り身につけることを目的と する. まず, 前半は, データを整理し, <u>平均,</u> <u>分散</u> ,	微分方程式論 の内容を一通り身につけることを 目的とする. <u>変数分離形</u> , <u>同次形</u> といった代表的				
日的・内容						
日的・内容	する. まず, 前半は, データを整理し, <u>平均</u> , <u>分散</u> ,	目的とする. <u>変数分離形</u> , <u>同次形</u> といった代表的				
第1回	する. まず, 前半は, データを整理し, <u>平均, 分散,</u> 相関係数を求める. 後半は, 代表的な確率分布で	目的とする. <u>変数分離形</u> , <u>同次形</u> といった代表的 な微分方程式の解法を学び, <u>線形微分方程式</u> につ				
	する. まず, 前半は, データを整理し, <u>平均, 分散,</u> 相関係数を求める. 後半は, 代表的な確率分布で ある <u>正規分布</u> の性質を使った <u>推定, 検定</u> を学ぶ.	目的とする. <u>変数分離形</u> , <u>同次形</u> といった代表的な微分方程式の解法を学び, <u>線形微分方程式</u> について学ぶ.				
第1回	する. まず, 前半は, データを整理し, <u>平均, 分散, 相関係数</u> を求める. 後半は, 代表的な確率分布である <u>正規分布</u> の性質を使った <u>推定, 検定</u> を学ぶ. 記述統計学①(データの整理)	目的とする.変数分離形, 同次形といった代表的な微分方程式の解法を学び, 線形微分方程式について学ぶ. 1 階微分方程式①(解と曲線群)				
第1回	する. まず, 前半は, データを整理し, <u>平均</u> , 分散, <u>相関係数</u> を求める. 後半は, 代表的な確率分布である <u>正規分布</u> の性質を使った <u>推定</u> , 検定を学ぶ. 記述統計学①(データの整理)	目的とする. <u>変数分離形</u> , <u>同次形</u> といった代表的な微分方程式の解法を学び, <u>線形微分方程式</u> について学ぶ. 1 階微分方程式①(解と曲線群) 1 階微分方程式②(変数分離形)				
第 1 回 第 2 回 第 3 回	する. まず, 前半は, データを整理し, 平均, 分散, 相関係数を求める. 後半は, 代表的な確率分布で ある正規分布の性質を使った推定, 検定を学ぶ. 記述統計学①(データの整理) 記述統計学②(代表値) 記述統計学③(散布度)	目的とする.変数分離形, 同次形といった代表的な微分方程式の解法を学び, 線形微分方程式について学ぶ. 1 階微分方程式①(解と曲線群) 1 階微分方程式②(変数分離形) 1 階微分方程式③(同次形)				
第 1 回 第 2 回 第 3 回 第 4 回	する. まず, 前半は, データを整理し, 平均, 分散, 相関係数を求める. 後半は, 代表的な確率分布で ある正規分布の性質を使った推定, 検定を学ぶ. 記述統計学①(データの整理) 記述統計学②(代表値) 記述統計学③(散布度) 記述統計学④(相関係数)	目的とする.変数分離形, 同次形といった代表的な微分方程式の解法を学び, 線形微分方程式について学ぶ. 1 階微分方程式①(解と曲線群) 1 階微分方程式②(変数分離形) 1 階微分方程式③(同次形) 1 階微分方程式④(線形)				
第 1 回 第 2 回 第 3 回 第 4 回 第 5 回	する. まず, 前半は, データを整理し, 平均, 分散, 相関係数を求める. 後半は, 代表的な確率分布である正規分布の性質を使った推定, 検定を学ぶ. 記述統計学①(データの整理) 記述統計学②(代表値) 記述統計学③(散布度) 記述統計学③(間関係数) 記述統計学③(相関係数)	目的とする.変数分離形, 同次形といった代表的な微分方程式の解法を学び, 線形微分方程式について学ぶ. 1 階微分方程式①(解と曲線群) 1 階微分方程式②(変数分離形) 1 階微分方程式③(同次形) 1 階微分方程式④(線形) 1 階微分方程式④(線形)				
第1回 第2回 第3回 第4回 第5回 第6回	する. まず, 前半は, データを整理し, 平均, 分散, 相関係数を求める. 後半は, 代表的な確率分布で ある正規分布の性質を使った推定, 検定を学ぶ. 記述統計学①(データの整理) 記述統計学②(代表値) 記述統計学③(散布度) 記述統計学④(相関係数) 記述統計学⑤(相関表)※レポート課題(20 点) 確率論①(確率)	目的とする.変数分離形, 同次形といった代表的な微分方程式の解法を学び, 線形微分方程式について学ぶ. 1 階微分方程式①(解と曲線群) 1 階微分方程式②(変数分離形) 1 階微分方程式③(同次形) 1 階微分方程式④(線形) 1 階微分方程式④(線形) 1 階微分方程式⑤(ベルヌーイ) 1 階微分方程式⑥(完全微分方程式)				
第1回 第2回 第3回 第4回 第5回 第6回 第7回	する. まず, 前半は, データを整理し, 平均, 分散, 相関係数を求める. 後半は, 代表的な確率分布で ある正規分布の性質を使った推定, 検定を学ぶ. 記述統計学①(データの整理) 記述統計学②(代表値) 記述統計学③(散布度) 記述統計学④(相関係数) 記述統計学⑤(相関表)※レポート課題(20 点) 確率論①(確率) 確率論②(確率変数と確率分布)	目的とする.変数分離形, 同次形といった代表的な微分方程式の解法を学び, 線形微分方程式について学ぶ. 1 階微分方程式①(解と曲線群) 1 階微分方程式②(変数分離形) 1 階微分方程式③(同次形) 1 階微分方程式④(線形) 1 階微分方程式⑤(ベルヌーイ) 1 階微分方程式⑥(完全微分方程式) 1 階微分方程式⑥(完全微分方程式)				
第1回 第2回 第3回 第4回 第5回 第6回 第7回	する. まず, 前半は, データを整理し, 平均, 分散, 相関係数を求める. 後半は, 代表的な確率分布である正規分布の性質を使った推定, 検定を学ぶ. 記述統計学①(データの整理)記述統計学②(代表値)記述統計学③(散布度)記述統計学③(相関係数)記述統計学⑤(相関表)※レポート課題(20 点)確率論①(確率) 確率論②(確率変数と確率分布)	目的とする.変数分離形,同次形といった代表的な微分方程式の解法を学び,線形微分方程式について学ぶ. 1階微分方程式①(解と曲線群) 1階微分方程式②(変数分離形) 1階微分方程式③(同次形) 1階微分方程式④(線形) 1階微分方程式④(線形) 1階微分方程式⑤(ベルヌーイ) 1階微分方程式⑥(完全微分方程式) 1階微分方程式⑥(完全微分方程式)				
第1回 第2回 第3回 第4回 第5回 第6回 第7回 第8回 第9回	する. まず, 前半は, データを整理し, 平均, 分散, 相関係数を求める. 後半は, 代表的な確率分布である正規分布の性質を使った推定, 検定を学ぶ. 記述統計学①(データの整理)記述統計学②(代表値)記述統計学③(散布度)記述統計学④(相関係数)記述統計学⑤(相関表)※レポート課題(20点)確率論①(確率)確率論②(確率変数と確率分布)確率論③(確率変数の平均と分散)確率論④(二項分布, ポアソン分布)	目的とする.変数分離形, 同次形といった代表的な微分方程式の解法を学び, 線形微分方程式について学ぶ. 1 階微分方程式①(解と曲線群) 1 階微分方程式②(変数分離形) 1 階微分方程式③(同次形) 1 階微分方程式④(線形) 1 階微分方程式⑥(ベルヌーイ) 1 階微分方程式⑥(汽全微分方程式) 1 階微分方程式⑥(完全微分方程式) 1 階微分方程式⑦(積分因子) 中間試験(40 点) 2 階定数係数線形方程式①(解の性質)				
第 1 回 第 2 回 第 3 回 第 4 回 第 5 回 第 6 回 第 7 回 第 8 回 第 9 回 第 10 回	する. まず, 前半は, データを整理し, 平均, 分散, 相関係数を求める. 後半は, 代表的な確率分布である正規分布の性質を使った推定, 検定を学ぶ. 記述統計学①(データの整理)記述統計学②(代表値)記述統計学③(散布度)記述統計学③(散布度)記述統計学⑤(相関係数)記述統計学⑤(相関表)※レポート課題(20 点)確率論①(確率)確率論②(確率変数と確率分布)確率論②(確率変数の平均と分散)確率論④(二項分布, ポアソン分布)確率論④(正現分布)	目的とする.変数分離形,同次形といった代表的な微分方程式の解法を学び,線形微分方程式について学ぶ. 1階微分方程式①(解と曲線群) 1階微分方程式②(変数分離形) 1階微分方程式③(同次形) 1階微分方程式④(線形) 1階微分方程式④(線形) 1階微分方程式⑤(ベルヌーイ) 1階微分方程式⑥(完全微分方程式) 1階微分方程式⑥(完全微分方程式) 2階微分方程式⑦(積分因子) 中間試験(40点) 2階定数係数線形方程式①(解の性質) 2階定数係数線形方程式②(微分演算子)				
第 1 回 第 2 回 第 3 回 第 4 回 第 5 回 第 6 回 第 7 回 第 8 回 第 9 回 第 10 回 第 11 回	する. まず, 前半は, データを整理し, 平均, 分散, 相関係数を求める. 後半は, 代表的な確率分布である正規分布の性質を使った推定, 検定を学ぶ. 記述統計学①(データの整理)記述統計学②(代表値)記述統計学③(散布度)記述統計学④(相関係数)記述統計学⑤(相関表)※レポート課題(20 点)確率論①(確率)確率論②(確率変数と確率分布)確率論③(確率変数の平均と分散)確率論④(二項分布, ポアソン分布)確率論④(正規分布の応用)	目的とする.変数分離形, 同次形といった代表的な微分方程式の解法を学び, 線形微分方程式について学ぶ. 1階微分方程式①(解と曲線群) 1階微分方程式②(変数分離形) 1階微分方程式③(同次形) 1階微分方程式③(同次形) 1階微分方程式④(線形) 1階微分方程式④(線形) 1階微分方程式⑥(ベルヌーイ) 1階微分方程式⑥(完全微分方程式) 1階微分方程式⑥(完全微分方程式) 2階微分方程式⑦(積分因子) 中間試験(40点) 2階定数係数線形方程式①(解の性質) 2階定数係数線形方程式②(微分演算子) 2階定数係数線形方程式③(同次形の一般解)				
第 1 回 第 2 回 第 3 回 第 4 回 第 5 回 第 6 回 第 7 回 第 8 回 第 9 回 第 10 回 第 11 回 第 12 回	する. まず, 前半は, データを整理し, 平均, 分散, 相関係数を求める. 後半は, 代表的な確率分布である正規分布の性質を使った推定, 検定を学ぶ. 記述統計学①(データの整理)記述統計学②(代表値)記述統計学③(散布度)記述統計学③(間関係数)記述統計学③(相関係数)記述統計学⑤(相関表)※レポート課題(20 点)確率論①(確率) 確率論②(確率変数と確率分布)確率論②(確率変数の平均と分散)確率論④(正項分布, ポアソン分布)確率論⑥(正規分布)	目的とする.変数分離形,同次形といった代表的な微分方程式の解法を学び,線形微分方程式について学ぶ. 1階微分方程式①(解と曲線群) 1階微分方程式②(変数分離形) 1階微分方程式③(同次形) 1階微分方程式③(同次形) 1階微分方程式④(線形) 1階微分方程式⑥(ベルヌーイ) 1階微分方程式⑥(完全微分方程式) 1階微分方程式⑥(完全微分方程式) 2階微分方程式⑦(積分因子) 中間試験(40点) 2階定数係数線形方程式②(微分演算子) 2階定数係数線形方程式③(同次形の一般解) 2階定数係数線形方程式③(同次形の一般解)				

2 機械工学科数学科目カリキュラムマップ

3 大学での基礎数学と機械工学で初期に学ぶ内容の関連

		熱力学	流体力学	振動学	材料力学	機構学	電熱工学	加工学	機械材料学	制御工学
微分積分	様々な関数の微分積分計算	0	0	0	0	0	0	0	0	0
	2 変数関数の偏微分	0	0		0			0		
	全微分	0	0		0					
	重積分と体積				0		0			
線形代数	行列計算		0	0						0
	連立1次方程式			0		0				0
	ベクトル空間			0		0				0
	固有値							0		0
	対称行列の対角化									0
微分方程式	常微分方程式		0	0			0			0
	偏微分方程式		0	0			0			
解析学	ベクトル関数の微分積分		0							0
	スカラーの積分		0							
	ストークスの定理		0							
	複素数の演算		0							0
	テイラー展開		0							0
	留数		0							

「機械工学のための数学(日本機械学会)」から引用

4 現状

● 履修者数と合格者数 (上段: Jプロ生, 下段: Jプロ以外の学生)

	数等	ž I-J	応用数学 I-J		数学	≛ II-J	応用数学 II-J		
平成 27 年度	16/17	(94.1%)	14/15	(93.3%)	15/22	(68.2%)	12/14	(85.7%)	
	3/10	(30.0%)	2/2	(100%)					
平成 28 年度	14/16	(87.5%)	12/15	(80.0%)	19/21	(90.5%)	12/15	(80.0%)	
	11/23	(47.8%)	0/3	(0%)	0/3	(0%)	1/3	(33.3%)	
平成 29 年度	10/12	(83.3%)	13/13	(100%)					
	12/22	(54.5%)	2/4	(50.0%)					

● 平成 29 年度「数学 I-J」履修者 (J プロ以外の学生) へのアンケート「本科目履修の動機は?」

数学が好きだから : 4名教職免許のため : 2名他に履修する科目がないから:16名