Computational Statistics

Transformation of $x \sim f_X(x)$ Z = 9 (x) Q: What is the density of Z?? F3(3) = Prob(248) = Prob (g(x) < 3) = Prob (x ≤ g (3))

= Fx (g(8))

 $\frac{d}{ds} F_z(s) = \frac{d}{ds} F_x(g^{\dagger}(s)) \leftarrow Apply chain rule.$

Examples: g(x)= a+bx for b=0

Let
$$X_1, \dots, X_n$$
 fid $f_X(x)$

order statistics: $X_{(n)}$, $X_{(n)}$, ..., $X_{(n)}$, ..., $X_{(n)}$
 $X_{(n)} = \min_{1 \le i \le n} X_i$
 $X_{(n)} = \max_{1 \le n} X_i$
 X

Example: Order statistics:

 $f_{X_{(n)}}(x) = \frac{d}{dx} F_{X_{(n)}}(x) = \frac{d}{dx} \left[F_{X}(x) \right]^{n} = n \left[F_{X}(x) \right]^{n-1} f_{X}(x)$

$$\forall x \in \mathbb{R}$$
 $1 - f_{x_{(1)}}(x) = Prob(x_{(1)} \geqslant x) = Prob(x_{(1)} \geqslant x, x_2 \geqslant x, \dots, x_n \geqslant x)$
 $= (1 - f_{x}(x))^n$

Quick review (Joint densities)

random vectors
$$(\Omega \rightarrow IR)$$

$$\times = \begin{pmatrix} x_1 \\ \vdots \end{pmatrix}$$

random vectors
$$(-2 \rightarrow 1R^2)$$

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$F_{x_1,\dots,x_n}(x_1,\dots,x_n) = \operatorname{Irob}(x_1 \leq x_1, x_2 \leq x_2, \dots, x_n \leq x_n)$$

$$F_{x_1,\dots,x_n}(x_1,x_2) = \frac{1}{2\pi} e^{-\frac{x_1^2 + x_2^2}{2}} - \infty < x_1 < \infty$$

$$- \infty < x_1 < \infty$$

$$X_1, X_2$$
 $X_1 \in \{1, \dots, 10\}$
 $X_2 = \{1, \dots, 10\}$

$$F_{X_1}(X_1) = \int_{X_2} F_{X_1, X_2}(x_1, x_2) dx_2$$

The region of density $\{x_1, x_2, \dots, x_n\}$

K, X2

Endependence of r.v.s. with the joint density
$$X_1 \& X_2$$
 are r.v.s with the joint density $f_{X_1,X_2}(x_1,x_2)$ be the marginal densities $g_1 X_1$ and $g_2 X_2$ resp.

Then $g_1 X_2$ are called as independent r.v.s. $g_2 X_1 X_2 = f_{X_1,X_2}(x_1,x_2) = f_{X_1,X_2}(x_1,x$

¥ 1/2

Conditional density: $f_{x_2|x_1=x_1} = \frac{f(x_1, x_2)}{f_{x_1}(x_1)}$

Independence of r.v.s.

$$X = \begin{pmatrix} x_{1} \\ x_{N} \end{pmatrix}$$

$$E(X) = \begin{pmatrix} M_{1} \\ \mu_{N} \end{pmatrix} = \mu$$

$$Z = \omega variance matrix$$

$$Z = E(x - \mu)[x - \mu]$$

$$Z_{ij} = E(x_{i} - \mu_{i})(x_{j} - \mu_{i})$$

$$Z_{ij} = E(x_{i} - \mu_{i})(x_{j} - \mu_{i})$$

$$Z_{ij} = E(x_{i} - \mu_{i})(x_{j} - \mu_{i})$$

$$X = \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix}$$

$$Y = AX \quad \text{where} \quad A \in \mathbb{R}^{d \times d}$$

For any random vector x

$$N_Y = E(Y) = E(AX) = A E(X) = AN_X$$

$$Y = E(Y - N_Y)(Y - N_Y)^T$$

$$Z_X = E(X - N_X)(X - N_X)^T$$

$$Z_{y} = E(Y - \mu_{y})(Y - \mu_{y})^{T}$$
, $Z_{x} = 0$

 $N_{x} = E(x)$, $P_{y} = E(y)$

$$y = E(Y - \mu_Y)(Y - \mu_Y)^T$$
, $\Sigma_X = E[A(X - \mu_X)][A(X - \mu_X)]^T$

= E [A (x-4x) (x-4x) AT]

= A[E (x-H)(x-H)] AT

Zy = A ZxAT

$$y = E(Y - \mu_Y)(Y - \mu_Y)^T$$
, $\Sigma_X =$

$$(x) = |x| dx$$

Prob
$$(Y \in C) = Prob(X \in D) \approx h^2 f_Y(y)$$

$$= h^2 |A|^{-1} |f_X(x)|$$

 $x_1, \ldots, x_n \stackrel{\text{iid}}{\approx} U[0,1]$

Find the densities of X(1) and X(n)