Отчет по лабораторной работе №2

Задача о погоне

Ильин Никита Евгеньевич

2022 Feb 10th

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Выполнение лабораторной работы	8
Выводы	13

Список иллюстраций

Список таблиц

Цель работы

Цель данной работы — Изучение основ работы с системой контроля версий git.

Задание

Номер	
задачи	Описание задачи
2.1	Рассчитать данные для задачи своего варианта.
2.2	Написать программу.
2.3	Построить траекторию движения для первого случая.
2.4	Построить траекторию движения для второго случая.
2.5	Определить точку пересечения катера и лодки.

Теоретическое введение

Имя

каталога Описание каталога

Полярныекоординаты объекта, выраженные через направление и расстояние. координаты

Полярная угол между точкой и полуосью угла 0°.

ось

Тангенциантынам скорость вращения катера относительно полюса.

скорость

Радиальная скорость, с которой катер удаляется от полюса.

скорость

Угловая величина, которая представляет собой отношение от угла поворота в скорость момент.

Дифференуравлистие, в которое входят производные функции и могут входить уравнениссама функция, независимая переменная и параметры.

Выполнение лабораторной работы

1. Рассчитываем данные расстрояние для первого и второго случая

2. Рассчитываем тангенциальную и радиальную скорости

$$V_{r} = \frac{dr}{dt} = V$$

$$V_{t} = \frac{d\theta}{dt} \cdot r = \sqrt{2,8^{2}v^{2}V^{2}} = \sqrt{2,62} \cdot V$$

3. Решаем дифферинциальное уравнение

$$\int \frac{dr}{dt} = V$$

$$r \frac{d\theta}{dt} = \sqrt{2,62} \cdot V$$

$$\frac{dr}{d\theta} = \frac{r}{\sqrt{2,62}}$$

4. Пишем программу в Scilab

```
1 s=6.8;//- начальное - расстояние - от - лодки - до - катера
 2 fi=3*%pi/4;
 3
    //функция, \cdot описывающая \cdot движение \cdot катера \cdot береговой \cdot охраны
 1 function dr=f(tetha, r)
 2 dr=r/sqrt(2.62);
 3 endfunction;
 8 //начальные·условия·в·случае·1
 9 r0=1.79;
10 tetha0=0;
11 tetha=0:0.01:2*%pi;
12
| 13 | //начальные · условия · в · случае · 2
14 r0=3.7;
15 tetha0=-%pi;
16 tetha=0:0.01:2*%pi;
17
18 r=ode(r0, tetha0, tetha, f);
19
20 //функция, описывающая движение лодки браконьеров
1 function xt=f2(t)
2 xt=tan(fi)*t;
3 endfunction
24
25 t=0:1:800;
26
28 plot2d(t, <u>f2</u>(t), style = color('red'));
27 polarplot(tetha,r,style = color('green')); //построение траектории движения катера в полярных координатах
```

5. Получаем график для первого случая

6. Получаем график для второго случая

7. Находим точку пересечения для первого случая

8. Находим точку пересечения для второго случая

Выводы

В ходе данной работы были получены навыки работы с Scilab. Также в ходе данной работы был повторен материал лаб. работы №1 "Работа с Git".