INTRODUCTION TO CATEGORY THEORY AND ITS APPLICATIONS

YANNIS BÄHNI

Contents
1 Representable Functors 1 1.1 The Yoneda Lemma 1 2 Adjoints 2 2.1 Adjunctions 2
1. Representable Functors
1.1. The Yoneda Lemma.
Proposition 1.1. Let \mathcal{C} be a locally small category and $X \in \mathcal{C}$ an object. Define $\operatorname{Hom}_{\mathcal{C}}(X,-):\mathcal{C} \to \operatorname{Set}$ on objects $Y \in \mathcal{C}$ by $\operatorname{Hom}_{\mathcal{C}}(X,Y):=\mathcal{C}(X,Y)$ and on norphisms $f:Y \to Z$ by post-composition with f , i.e.
$\operatorname{Hom}_{\mathcal{C}}(X, f) : \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{C}}(X, Z)$
is defined by $\operatorname{Hom}_{\mathcal{C}}(X, f)(g) := f \circ g$. Then $\operatorname{Hom}_{\mathcal{C}}(X, -)$ is a functor.
Proof.
Proposition 1.2. Let \mathcal{C} be a locally small category and $f \in \mathcal{C}(X, X')$ a morphism. Define $\eta^f := (\eta^f_A)_{A \in \mathcal{C}}$ by letting $\eta^f_A : \operatorname{Hom}_{\mathcal{C}}(X', A) \to \operatorname{Hom}_{\mathcal{C}}(X, A)$ be pre-composition with f , i.e. $\eta^f_A(g) := g \circ f$. Then $\eta^f : \operatorname{Hom}_{\mathcal{C}}(X', -) \Rightarrow \operatorname{Hom}_{\mathcal{C}}(X, -)$.
Proof.
Proposition 1.3. Let \mathcal{C} be a locally small category. Define $H^{\bullet}: \mathcal{C}^{op} \to [\mathcal{C}, Set]$ on objects $X \in \mathcal{C}$ by $H^{\bullet}(X) := Hom_{\mathcal{C}}(X, -)$ and on morphisms $f \in \mathcal{C}^{op}$ by $H^{\bullet}(f) := \eta^f$. Then H^{\bullet} is a functor.
Proof.

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Definition 1.1 (Representable and Corepresentable Functor). Let \mathcal{C} be a locally small category. A covariant functor F is said to be **representable**, if there exists an object $X \in \mathcal{C}$, such that $F \cong \operatorname{Hom}_{\mathcal{C}}(X, -)$. A contravariant functor F is said to be **corepresentable**, if there exists $X \in \mathcal{C}$ such that $F \cong \operatorname{Hom}_{\mathcal{C}}(-, X)$, where $\operatorname{Hom}_{\mathcal{C}}(-, X) := \operatorname{Hom}_{\mathcal{C}^{op}}(X, -)$.

The functor defined in the dualized statement of proposition 1.3 has its own name.

Definition 1.2 (Yoneda embedding of \mathcal{C} **).** *Let* \mathcal{C} *be a locally small category. Then the functor* $H_{\bullet} := H^{\bullet} : \mathcal{C} \to [\mathcal{C}^{op}, Set]$ *is called the* **Yoneda embedding of** \mathcal{C} .

Theorem 1.1 (Yoneda Lemma). Let \mathcal{C} be a locally small category. For any functor $F:\mathcal{C}\to\mathsf{Set}$ and for every object $X\in\mathcal{C}$ there is a bijection

$$[\mathcal{C}, \mathsf{Set}] \left(\mathsf{Hom}_{\mathcal{C}}(X, -), F \right) \cong F(X) \tag{1}$$

that associates to each $\alpha: \operatorname{Hom}_{\mathcal{C}}(X, -) \Rightarrow F$ the element $\alpha_X(\operatorname{id}_X) \in F(X)$. Moreover, the correspondence is natural in both X and F.

2. Adjoints

2.1. Adjunctions.

Definition 2.1. Let \mathcal{C} and \mathcal{D} . An adjunction from \mathcal{C} to \mathcal{D} is a triple (F, G, φ) consisting of two functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ and a function φ , which assigns to each $X \in \mathcal{C}$ and $Y \in \mathcal{D}$ a bijection

$$\varphi_{X,Y}: \mathcal{D}\left(F(X),Y\right) \cong \mathcal{C}\left(X,G(Y)\right)$$
 (2)

which is natural in both X and Y.