Méthodes de *mapping* de *reads* avec indexation des *reads*

Pierre Morisse

26 juin 2016

Plan de la présentation

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : Les reads NaS
- Conclusion

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : Les reads NaS
- Conclusion

Contexte

- Milieu des années 2000 ⇒ Développement des séquenceurs à très haut débit (NGS)
- Production de millions de très courtes séquences appelées reads, utilisés pour résoudre des problèmes :
 - De mapping
 - D'assemblage
 - ▶ De traitement des 7 requêtes suivantes, pour f de longueur k fixé :
 - Dans quels reads f apparaît?
 - Dans combien de reads f apparaît?
 - Quelles sont les occurrences de f?
 - Quel est le nombre d'occurrences de f?
 - Dans quels reads f n'apparaît qu'une fois?
 - Dans combien de *reads f* n'apparaît qu'une fois?
 - Quelles sont les occurrences de f dans les reads où f n'apparaît qu'une fois?

Contexte

- Reads produits bruités ⇒ Nécessité d'une procédure de correction avant utilisation
- Nécessité d'index ces reads pour traiter les différents problèmes identifiée dans [1], où les 7 requêtes précédentes et un index les supportant ont été développé
- De nombreuses méthodes d'indexation permettant de traiter ces problèmes existent

5/36

Définitions et notations

Définitions et notations

Alphabet : $\Sigma = \{A, C, G, T\}$

Séquence : Mot sur l'alphabet Σ

k-mer: Facteur de longueur k d'une séquence

Contig : Séquence générée par l'assemblage de plus courtes

séquences se chevauchant

Gb: Gigabases

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : Les reads NaS
- Conclusion

Description

- Ont pour but de produire des séquences à partir de ...
- Différentes technologies et plateformes ⇒ Possibilité de traiter divers problèmes de génomiques
- Prix désormais abordable ⇒ Séquençage accessible à tous
- Depuis peu, séquençage de reads de plus en plus longs ⇒ Très utiles dans les problèmes d'assemblage
- Mais ces reads sont très bruités

8 / 36

Principaux séquenceurs

Technologie	Technique de séquençage	Plateforme	Nombre de reads	Longueur	Précision	Temps	Débit	Coût	Erreurs	
		HiSea 2500/1500	3 milliards	36 - 100	99	2 - 11 jours	600	740 000		
Illumina	Synthèse, basé sur ADN polymérases	MiSeq	17 millions	25 - 250	>99	4 - 27 heures	8,5	125 000		
D l	B1	454 GS FLX+	1 million	700	99,997	23 heures	0,7	450 000	Indels.	
Roche	Pyroséquençage	454 GS Junior	1 million	400	>99	10 heures	0,4	108 000	indeis.	
ABI Life Technologies	Ligature	5500xl SOLiD	2,8 millions	75	99,99	7 jours	180	595 000	595 000 Indels.	
Abi Lile leciliologies	Détection de protons	Ion Proton Chip I/II	60 - 80 millions	jusqu'à 200	>99	2 heures	10 - 100	243 000 Indeis.		
Pacific Biosciences	Simple molécule en temps réel	PacBio RS	50 000	3 000 en moyenne	85	2 heures	13	750 000	Indels.	
Oxford Nanopore	Exonucléase par Nanopore	GridION	4 - 10 millions	dizaines de milliers	96	variable	quelques dizaines	variable	Indels.	
Oxidia Nanopore		MinION	70 000	dizaines de milliers	70	48 heures	0,132	1 000	indeis.	

9/36

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : Les reads NaS
- Conclusion

Méthodes de correction

Motivations

- Reads bruités
- Difficiles à utiliser
- Nécessité d'améliorer leur précision

Méthodes de correction

Principaux outils:

Outil	Structure de données	Erreurs corrigées	Nombre de reads (longueur)	Espace mémoire	Temps	reads corrigés	
SHREC	Arbre des suffixes	subs.	1 090 946 (70)	1 500	183	88,56	
HybridSHREC	Arbre des suffixes	subs. + indels	977 971 (178)	15 000	28	98,39	
HiTEC	Table des suffixes	subs.	1 090 946 (70)	757	28	94.43	
HITEC	Table des suffixes		4 639 675 (70)	3 210	125	94,43	
Fiona	Table des suffixes partielle	subs. + indels	977 971 (178)	2 000	15	66.76	
riona	rable des surfixes partielle		2 464 690 (142)	3 000	32	00,70	
Coral	Table de hachage	subs. + indels	977 971 (178)	8 000	5	92,88	
RACER	Table de hachage	subs.	2 119 404 (75)	1 437	23	76,65	
KACEK	RACER Table de nachage		101 548 652 (457 595)	41 700	104	42,95	
BLESS	Filtres de Bloom	subs. + indels	1 096 140 (101)	11	6	84,38	
LoRDEC	Graphe de De Bruijn	subs. + indels	33 360 reads longs (2 938) et 2 313 613 reads courts (100)	960	10	85,78	

Méthodes de mapping

Motivations

- Comparer ADN d'un individu à un génome de référence
- Détection de mutations dans l'ADN séquencé
- => TODO : un gène en particulier, à rechercher

13 / 36

Méthodes de mapping

Principaux outils:

Outil	Structure de données	Erreurs prises en compte	Nombre de reads (longueur)	Espace mémoire	Temps	reads mappés
MAQ	Table de hachage	subs. + indels	1 000 000 (44)	1 200	331	92,53
MrsFAST	Table de hachage	subs.	1 000 000 (100)	20 000	169	90,70
MrsFAST-Ultra	Table de hachage	subs.	2 000 000 (100)	2 000	57	91,41

Remarques

- Peu d'outils présentés ici
- De nombreux outils, n'utilisant pas de structure d'index sur les reads, existent et produisent de bons résultats

Méthodes de traitement des 7 requêtes

Motivations

• TODO: Revoir motivations requêtes

Méthodes de traitement des 7 requêtes

Principaux outils:

Outil	Structure de données	Nombre de reads (longueur)	Espace mémoire	Temps R1	Temps R2	Temps R3	Temps R4
	Table des suffixes modifiée						
	+						
GkA	Table des suffixes modifiée inverse	42 400 000 (75)	20	16	25	25	0,1
	+						
	Table associant k-mer - nombre d'occurrences						
	Table de suffixes échantillonnée						
CGkA	+	42 400 000 (75)	3 - 7	1203	28	1278	28
	3 vecteurs de bits						
	Table des suffixes échantillonnée						
PgSA	+	42 400 000 (75)	1 - 4	70	58	70	58
	Table auxiliaire d'information sur les reads et k-mers						

Remarque

Les requêtes 5-7 sont exclues du comparatifs, car non implémentées dans GkA et CGkA au moment des tests réalisés.

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : Les reads NaS
- Conclusion

Problématique

- Reads longs très utiles, notamment pour résoudre des problèmes d'assemblage longs et complexes
- Séquencer de tels reads est devenu rapide, peu coûteux et facile, notamment à l'aide de MinION
- Ces reads présentent un fort taux d'erreur
- La correction de ces reads longs par des méthodes classiques n'est pas aussi efficace que la correction de reads courts
- Nécessité de proposer une méthode alternative

Solution: les reads NaS

- Création de reads longs synthétiques via une approche hybride
- Peuvent atteindre une longueur de 60 000, disposent d'une précision de 99,99%, et peuvent donc s'aligner intégralement et sans erreurs
- ⇒ Première solution efficace permettant d'appliquer un traitement correctif aux reads longs

Solution: les reads NaS

Nous présentons ici deux méthodes de synthèse des reads NaS :

- La première [2] nécessite d'aligner les reads courts sur les reads longs, mais également entre eux
- La deuxième, que nous avons mis en place, vise à ne déduire des informations qu'à partir de l'alignement des reads courts sur les reads longs

Jeu de données utilisé

• 66 492 reads longs MinION répartis en 5 ensembles comme suit :

Ensemble	Nombre de reads	% reads 2D	% taille totale
1	9 241	6,5	14,6
2	3 990	13,6	27,1
3	6 052	43,3	57,1
4	11 957	11,6	42,7
5	35 252	9,7	44,6

- 83,2% des reads 2D et 16,6% des reads 1D alignés
- Identité moyenne de 74,5% et 56,5%, respectivement
- Deux ensembles de 5 984 858 reads courts Illumina

Nous présentons ici la méthode pour le traitement d'un read long :

4 étapes

- Alignement des reads courts sur le read long template
- Recrutement de nouveaux reads, en alignant les reads courts entre eux
- Micro-assemblage de l'ensemble de reads obtenu
- Obtention d'un contig

Illustration

Alignement des reads courts sur le read long template

Recrutement de nouveaux reads courts

Micro-assemblage de l'ensemble de reads obtenu Obtention d'un contig

contig

En général un unique contig est produit, mais de mauvais *reads* peuvent être recrutés et produire des contigs erronés

4 étapes supplémentaires

- Obtention de plusieurs contigs
- Construction du graphe des contigs
- Sélection du chemin optimal
- 4 Vérification du contig obtenu, par alignement des reads courts

Illustration

Obtention de plusieurs contigs

contig 1 contig 2 contig 3 contig 4 contig 2 contig 5

Construction du graphe des contigs

Illustration

Sélection du chemin optimal

Vérification du contig, par alignement des reads courts

Résultats

- 11 275 reads NaS produits
- Longueur maximale de 59 863
- Seulement 17% des reads longs ont produit un read NaS (76,4% 2D, 8,1% 1D)
- Certains reads NaS sont plus longs que leur template de référence
- Temps de traitement d'un read long : Moins d'une minute en moyenne

Résultats

- Les reads NaS produits couvrent 99,96% du génome de référence
- Identité moyenne de 99,99%
- 97% s'alignent sans erreur
- 99,2% s'alignent avec au plus une erreur

Nous présentons la méthode pour le traitement d'un read long

Principe

- Alignement des reads courts sur le read long template, en se fixant un sueil Imin, pour récupérer les reads :
 - Totalement alignés, et servant de seeds
 - Avec un préfixe de longueur

 Imin aligné
 - ► Avec un suffixe de longueur ≥ Imin aligné
- Deux étapes d'extensions :
 - Recrutement de reads partiellement alignés, similaires aux seeds
 - Recrutement de nouveaux reads partiellement alignés, sans relation de similarité, en se fixant un nouveau seuil Imax

Détails sur la première étape?

Détails sur la deuxième étape?

Présentation des résultats

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : Les reads NaS
- Conclusion

Conclusion

Conclusion

N. Philippe, M. Salson, T. Lecroq, M. Leonard, T. Commes, and E. Rivals.

Querying large read collections in main memory : a versatile data structure.

BMC bioinformatics, 12(1):242, 2011.

M.-A. Madoui, S. Engelen, C. Cruaud, C. Belser, L. Bertrand, A. Alberti, A. Lemainque, P. Wincker, and J.-M. Aury. Genome assembly using Nanopore-guided long and error-free DNA reads.

BMC Genomics, 16:327, 2015.

