Quantitative Macroeconomics II HANK models

Tobias Broer

HANK

Since Great Recession: strong interest in heterogeneous-agent NK (HANK) models. Why?

HANK

Since Great Recession: strong interest in heterogeneous-agent NK (HANK) models. Why?

- Interaction Aggregate fluctuations / macro-policy ⇔ inequality / individual risks
 - Welfare cost of BCs, cyclical inequality, changed transmission of shocks / policies
- 2. Keynesian demand-shortfall seems to have depressed output
 - NK demand effects: nominal rigidities, & monopolistic competition
 - ▶ High MPC out of income shocks for Keynesian multiplier

What is HANK?

- Builds on NK model (see Gali's textbook)
 - Firm sector: NC production, Monopolistic competition, price setting friction (quadratic adj cost or Calvo-"fairy")
 - Central Bank stabilises economy (Taylor rule for nominal interest rate)
 - 3. Government fiscal authority
- Replace rep HH by continuum of HH as in Bewley Huggett -Aiyagari:
 - ► Idiosyncratic income risk
 - Incomplete markets (bonds, plus perhaps illiquid asset)

What is HANK?

- Builds on NK model (see Gali's textbook)
 - Firm sector: NC production, Monopolistic competition, price setting friction (quadratic adj cost or Calvo-"fairy")
 - Central Bank stabilises economy (Taylor rule for nominal interest rate)
 - 3. Government fiscal authority
- Replace rep HH by continuum of HH as in Bewley Huggett -Aiyagari:
 - Idiosyncratic income risk
 - Incomplete markets (bonds, plus perhaps illiquid asset)
- ► "AiyaGali" !!

HANK: Early literature

- ▶ Oh and Reis (2012)
- ► Guerrieri and Lorenzoni (2017)
- McKay and Reis (2016)
- McKay et al. (2016)
- Werning (2015),
- Kaplan, Moll and Violante (2018)
- Den Haan et al. (2017)
- Bayer et al. (2017)
- Gornemann et al (unpublished)

Point of departure: Galí textbook model

Textbook NK model: Background

- ▶ 1970s: Stagflation, Lucas-critique of old-style macro models
- ▶ 1980s: Real-business-cycle revolution: microfoundations for household and firm behavior
- But: no role for monetary policy
- New-Keynesian economics: introduce frictions in RBC model that give role to monetary policy
- Firms have market power (so make profits), but cannot freely set prices
- Time-varying markups of price over marginal cost is key to aggregate fluctuations

Recap: NK textbook model

- 1. Rep HH: standard, choose consumption & labor supply
- 2. Firm sector
 - ► Final good: CES basket of many intermediate goods, downward-sloping demand for intermediate good *i*
 - Intermediate goods:
 - Production: $Y_i = L$ (no capital)
 - Monopolistic competition: set p_i taking aggregate price level P as given; implies optimal 'markup' of price over marginal cost is constant
 - Price setting friction (Calvo 83): can only reset p_i with probability 1θ ; must satisfy demand at p_i
 - Implies: Markups fluctuate in response to aggregate shocks
- 3. Central Bank: Taylor rule raise nominal interest rate when inflation is above target or output below its flex-price level
- 4. Government fiscal authority

Galí textbook model: Households

► The representative agent solves:

$$\begin{aligned} \max_{C_t, B_t, N_t} \quad & E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma} - 1}{1-\sigma} - \frac{N_t^{1+\varphi}}{1+\varphi} \right) \\ \text{s.t.} \quad & P_t C_t + Q_t B_t \leq B_{t-1} + W_t N_t + P_t D_t \end{aligned}$$

Galí textbook model: Production side

A competitive final goods producer assembles intermediate goods using the Dixit-Stiglitz aggregator → CES demand for intermediate goods:

$$Y_{it} = \left(\frac{P_{it}}{P_t}\right)^{-\epsilon} Y_t$$

Intermediate goods producer i uses production technology

$$Y_{it} = N_{it}$$

- \blacktriangleright Calvo friction: Intermediate goods firms can only reset prices with probability $1-\theta$
- ► A resetting firm maximizes the sum of expected discounted profits subject to the demand function

Galí textbook model: Government

- ► Fiscal authority does nothing
- Central bank follows Taylor rule:

$$\begin{split} \frac{1}{Q_t} &= \frac{1}{\beta} \Pi_t^{\phi_\pi} e^{\nu_t} \\ \Rightarrow & \quad \hat{i_t} = \phi_\pi \pi_t^P + \nu_t \end{split}$$

Galí textbook model: Summary of log-linearized equilibrium

Phillips:
$$\pi_t^P = \beta E_t \pi_{t+1}^P + \lambda_p \hat{\omega}_t$$
 IS:
$$\hat{c}_t = E_t \hat{c}_{t+1} - \frac{1}{\sigma} (\hat{i}_t - E_t \pi_{t+1})$$
 Taylor rule:
$$\hat{i}_t = \phi_\pi \pi_t^P + \nu_t$$
 Labor supply:
$$\hat{\omega}_t = \varphi \hat{n}_t + \frac{1}{\sigma} \hat{c}_t$$
 Market clearing:
$$\hat{c}_t = \hat{n}_t$$
 HH BC:
$$\hat{c}_t = \bar{S} (\hat{\omega}_t + \hat{n}_t) + (1 - \bar{S}) \hat{d}_t$$

where $\bar{S}=rac{W_tN_t}{Y_tP_t}=rac{\epsilon_p-1}{\epsilon_p}$ is the steady state labor share

Production $\hat{c}_t = \hat{n}_t$

HANK: Motivation

- 1. Micro-consistency
 - Effect of interest rate changes
 - Average MPC out of transitory income changes
- 2. Novel Macro-implications
 - New responses to old questions
 - New questions to be asked
 - New model features that become important

Micro-consistency: RA model at odds with emp. evidence

- 1. Effect of interest rate changes
- 2. Average MPC out of transitory income changes

Generally:

- RANK: One permanent-income consumer, high intertemporal elasticity of substitution, low MPC
- HANK: Consumers with little / illiquid wealth have low IES, high MPC

Effect of interest rate changes: Data

- Weak reaction of aggregate consumption
- Individual reaction depends on portfolio of assets (Floden, Kilstroem, Sigurdsson, and Vestman 2016)
- Weak reaction of consumers with little wealth (Vissing-Jorgensen 2002)

Effect of interest rate changes: RANK vs HANK

- ► RANK:
 - lacktriangle Representative agent has substantial wealth, acts pprox PIH-agent
 - Strong response to interest rate changes
- ► HANK:
 - Strong response by the wealthy
 - Weak reaction to interest rate changes by many consumers

Average MPC out of transitory income changes

▶ Why does this matter?

Average MPC out of transitory income changes

- ► Why does this matter?
- ► GE effects of shocks and policies strongly depend on MPC (e.g. Keynesian multiplier)
- Average MPC AND distribution matters, e.g. with heterogeneous income effects of shocks and policies

Average MPC out of transitory income changes: Data

- ► Kaplan and Violante (2022) for references
- 3 separate approaches:
 - Quasi-experimental evidence on transfers (Johnson et al 2006; Parker, et al 2013) or lottery wins (Fagereng et al 2019; Golosov et al 2021)
 - Survey instruments that pose hypothetical questions (Parker and Souleles 2019; Japelli and Pistaferri 2014)
 - Semi-structural methods that identify transitory income change (Blundell, Pistaferri, and Preston, 2008; Ganong et al 2020)
- Survey Jappelli and Pistaferri (2010):
 - 1. sizeable average MPC out of small, unantic., transitory Δy
 - 2. larger MPCs for negative than for positive income shocks
 - 3. small MPCs out of announced future income gains
 - 4. strong heterogeneity in MPCs, correlated with access to liquidity

MPC out of transitory income changes: RANK vs HANK

- RANK:
 - Representative agent has substantial wealth
 - ightharpoonup acts pprox as a PIH-agent, MPC pprox 1-eta
- ► HANK: Distribution of wealth
 - Constrained agents: MPC=1
 - Prudence / borrowing constraints: concave consumption function; MPC declines from 1 to 1β
 - Additional heterogeneity
 - ▶ Portfolios: "wealthy hand-to-mouth" with low liquid wealth
 - Discount factors: more constrained agents

Kaplan and Violante (2022)

- One-asset model can replicate average MPC when adding features
 - discount-factor heterogeneity
 - heterogeneous returns
 - behavioral features
- But: "missing middle" too polarized wealth distribution
- Two-asset models
 - Illiquid asset (s.t. adjustment costs) plus bonds
 - ⇒ "wealthy hand-to-mouth"
 - ► Matches both average MPC and wealth-distribution

Macro-implications I: New responses to old questions

- Effect and transmission of shocks: Kaplan, Moll, and Violante 2018 AER
- 2. Fiscal policy effects: Mitman et al 2019 (Broer et al 2023)
- 3. Determinacy of equilibrium
- 4. Optimal policy

1. Macro-dynamics: Kaplan, Moll, and Violante JEP 2018

- ▶ Builds on KMV AER 2018
- ► Same model, more shocks

1. Macro-dynamics: Kaplan, Moll, and Violante JEP 2018

- Continuous time
- ▶ NK supply: CES aggregate of different. intermediate goods
 - ▶ Produced with *K* and *L*, sold under monop comp
 - Quadratic price adjustment costs (Rotemberg 1983)
- ► Continuum of HH, die with prob 1/180

 - ► Trans. & pers. poisson shocks to idios. labor productivity
 - Trade 2 assets:
 - 1. Liquid riskless real gov. bonds $b_t > -b$, interest r_t^b with premium on borrowing
 - 2. Illiquid asset a_t , return r_t^a
 - comprises K and claims to profits of interm-goods firms Transaction costs of withdrawals $d_t \neq 0$: > 0 and convex
- ▶ Gov finances G & lump-sum T with prop tax on L & debt B_t
- Monetary authority follows Taylor rule $i_t = \overline{r}^b + \psi \pi_t$

KMV JEP

- Compare response of consumption to shocks, and their transmission, in RANK vs HANK
 - "Strong equivalence": Consumption response and transmission mechanism identical
 - vs. "Weak equivalence": Consumption response identical, but not transmission mechanism
- 2. Transmission: 3 dimensions
 - Decomposition of C response into shock $\{\nu_t\}$, equ prices $\{w_t, r_t^b, r_t^a, q_t\}$, and equ. transfers $\{T_t\}$
 - ► PE (HANK vs RANK, at p^{RANK}) vs GE (HANK at p^{GE} vs p^{RANK}) $C^{HANK} C^{RANK} = C^{HANK}(p^{GE}) C^{HANK}(p^{RANK}) + C^{HANK}(p^{RANK}) C^{RANK}$
 - Sensitivity to fiscal rule

Transmission of demand (disc factor) shocks

Transmission of demand (disc factor) shocks

► "Strong" equivalence

Transmission of TFP shocks

Transmission of TFP shocks

► "Weak" equivalence

Transmission of MP shocks

Transmission of MP shocks

- ► Non-equivalence
- ▶ RANK: direct effect of r^b accounts for most $r^b = r^b = r^b$

2. Fiscal policy in HANK

- "Fiscal multiplier" depends on
 - ► Effect of Government spending on demand
 - Effect of demand on output
- Need: Realistic MPC and nominal rigidity HANK
- Other important features
 - Fiscal rule (Ricardian equvalence does not hold)
 - Monetary-policy rule

KMV JEP: Transmission of G shocks in HANK

Mitman et al "The Fiscal Multiplier"

Table II: Main Results: Consumption, Investment and Multipliers

	Normal Times					1	Liquidity Trap		
Experiment:	$\underline{\mathrm{Benchmark}}$		Taylor Rule		$\underline{\mathrm{Transfer}}$	Bene	chmark	$\underline{\mathrm{Transfer}}$	
Financing:	$\underline{\text{Tax}}$	<u>Deficit</u>	$\underline{\text{Tax}}$	<u>Deficit</u>	$\underline{\text{Deficit}}$	$\underline{\mathrm{Tax}}$	<u>Deficit</u>	<u>Deficit</u>	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Impact Mult.	0.61	1.34	0.54	0.66	0.66	0.73	1.39	0.86	
Cumul Mult.	0.43	0.55	0.40	0.29	-0.3	0.48	0.51	-0.11	
$100 \times \Delta C_0$	-2.7	1.4	-2.9	-0.4	5.2	-2.5	1.3	4.8	
$100 \times \Delta I_0$	0.3	0.6	-0.02	-1.6	0.4	0.2	0.5	0.4	
Decomposition of Consumption $(100 \times \Delta)$									
Direct G on C	1.2	1.2	1.2	1.2	0.0	1.2	1.2	3.9	
Tax/Transfers	-3.1	0.5	-3.1	-0.2	4.6	-2.9	0.5	0.4	
Indirect Income	-0.7	0.2	-0.8	-0.7	1.1	-0.6	0.0	0.8	
Prices	-0.1	-0.5	-0.2	-0.8	-0.5	-0.2	-0.5	-0.4	

Note - The table contains the impact and the cumulative multiplier \overline{M} (using definition (60) for the last column and (A1) otherwise) as well as the initial consumption and investment responses, ΔC_0 and ΔI_0 (as a % of output). The last four rows show the decomposition of the initial aggregate consumption response (also multiplied by 100) into the direct G impact on C (Eq. 39), the effect of taxes/transfers (Eq. 40), indirect income effects (Eq. 41) and the price and interest rate effects (Eq. 42).

Broer, Druedahl, Harmenberg, berg: Stimulus effects of common fiscal policies

- One-asset HANK model with endogenous separations and sluggish vacancies
- ► Calibrated to response of JF and Sep rates to macro-shocks, and consumption response to unemployment

Broer et al: Transmission cycle

Figure 1: Model as a directed cycle graph with three separate blocks.

Broer et al: Cumulative fiscal multipliers

	G norm. [level]	transfer	UI level	UI duration	retention	hiring
Baseline	1.0 [1.01]	0.26	0.42	0.97	1.57	0.70
Full insurance	1.0 [0.71]	0.00	0.00	0.00	0.69	0.19
Fewer HtM	1.0 [0.82]	0.20	0.39	1.02	1.88	0.66
No Prec. sav.	1.0 [0.88]	0.27	0.25	0.77	1.54	0.69
More liquidity	1.0 [0.91]	0.20	0.32	0.68	1.54	0.68
Less liquidity	1.0 [1.20]	0.35	0.55	1.49	1.60	0.72
Near-zero liquidity	1.0 [12.19]	0.98	0.68	0.30	1.13	0.98

3. Determinacy in HANK

- 1. RANK model: price level is indeterminate, inflation is determinate under sufficiently responsive Taylor rule (if we rule out explosive paths of π_t)
- 2. HANK model: precautionary savings lead to determinacy of the price level (Hagedorn 2020)

4. Optimal policy

- 1. Challe, Acharya and Dogra (2020)
- 2. Bhandari, Evans, Golosov, and Sargent, Econometrica 2021
- 3. Redistribution becomes an important policy concern

Macro-implications II: New questions to be asked

New microfoundation of demand shocks

- ► Tighter credit limits (Guerrieri Lorenzoni 2017) Tightening in consumersâ borrowing capacity ⇒ constrained consumers repay debt, unconstrained increase precautionary savings.
- Rise in idiosyncratic risk
 - 1. Den Haan et al 2017Increase in prec savings $(\downarrow C)$
 - 2. Bayer et al 2019: ... plus switch to liquid paper assets $(\downarrow I)$

KMV JPE: Transmission of credit / risk shocks in HANK

Heterogeneity in transmission

Redistributional effects of policies interact with MPC heterogeneity

- Patterson (AER 2023): Covariance of MPCs & elasticity of earnings to GDP across income distribution amplifies aggr.
 MPC
- ▶ Auclert (AER 2019): Heterog. MPCs change MP effects via
 - 1. Earnings heterogeneity channel of unequal income gains
 - 2. Fisher channel of unexp. inflation changes
 - 3. Interest rate exposure channel of real-interest rate changes

Aggregate effects of redistributional policies

- McKay and Reis (2016): Automatic stabilisers dampen US business cycles
- ► Ferriere and Navarro (2024): Financing through progressive taxes raises *G*-multiplier in HA model (as income-rich have less elastic labor supply) and U.S. post-WW II data
- Kekre (2024): Surprise unemployment benefit increases and extensions can stimulate output when the employed have lower MPCs and hold prec. buffers against unemployment
- ► Graves (2024): UI insurance dampens business cycles

Macro-implications III: Model features that become important

- timing and distribution of fiscal transfers (no Ric Eq)
- distribution of profits (Broer et al 2019, Kaplan and Violante 2018)
- cyclicality of income risk (Werning 2015, Acharya and Dogra 2019)
- ▶ incidence of labor market risk (Patterson 2019)
- source of nominal rigidity (Broer et al 2019)

HANK: Analytical characterizations

A step back: Why are HANK models difficult to solve?

- ▶ RANK: no analytical solution. But: simple characterization of aggregate C, N, Y, i, π (EE, PC, TR)
- HANK:
 - 1. C, N aggregate non-linear decision rules for c_i , n_i across continuous distribution Θ of b_i , A_i
 - 2. ⊖ matters for labor supply, savings (and, with capital, for prices next period)
- Can we simplify HANK if we are only intrested in aggregate macro outcomes?

Simple HANK models

- Alternative I: linear consumption rule with exogenous labor supply (Acharya and Dogra 2019)
- ► Alternative II: conditions such that individual allocation independent of aggregate quantities (Werning 2015)
- Alternative III: no-liquidity limit (B, b = 0), no capital: wealth distribution degenerate; can write EE for 'marginal saver's c i.t.o. C (Broer et al (2019), Ravn and Sterck (2018))
- ► Alternative IV: simplify heterogeneity "TANK" models (Bilbiie (various), Broer et al (2019), Gali and Debortoli (2018))

Next session

- Solution methods for HANK models
- ► Simple HANK / TANK models

Quantitative Macroeconomics II

HANK models

Tobias Broer

- G. Kaplan and G. L. Violante. How much consumption insurance beyond self-insurance? American Economic Journal: Macroeconomics, 2(4):53–87, 2010. URL http: //ideas.repec.org/a/aea/aejmac/v2y2010i4p53-87.html.
- G. Kaplan and G. L. Violante. The marginal propensity to consume in heterogeneous agent models. *Annual Review of Economics*, 14:747–775, 2022.