ANSYS HFSS RCS Simulation Instructions

- Launch ANSYS HFSS from Start Menu or Icon
- Set Tool Options
 - On top menu bar, select Tools > Options > General Options
 - HFSS > Boundary Assignment
 - Check boxes that say "Use Wizards for data input when creating new boundaries" and "Duplicate Boundaries/mesh operations with geometry"
 - 3D Modeler > Drawing
 - Chex boxes that say "Edit properties of new primitives"

- Create and Save HFSS Design
 - On top menu bar, select **Project > Insert HFSS Design**
 - Select File > Save As and choose filename RCS_Cu_Sphere_125mm.aedt
- Set Solution Type and 3D Model
 - Select HFSS > Solution Type
 - Check Solution Type: Modal
 - Check Driven Options: Network Analysis
 - Select Modeler > Units
 - Select Meters
 - o In the Modeler Toolbar, select Materials
 - Set default to Vacuum

• Draw the Conducting Sphere

- Select **Draw** > **Sphere**
 - Click on Origin of XYZ coordinates, then move mouse away from origin and click again to draw sphere
 - A **Properties** window should appear
 - Center Position: (0,0,0)
 - Radius: type 'a' as the variable for radius
 - Unit Type: Length
 - Unit: meter
 - Value: 0.0625

• Edit the Sphere Properties

In the modeler window, right-clickSphere1 > Properties

■ Name: TargetSphere

■ Material: "copper"

■ Color: Red

• Create the Airbox

- \circ Select **Draw > Box**
 - Draw 3D box anywhere in coordinate system
 - **Properties** window should come up again

• Position: (-2*a, -2*a, -2*a)

• XSize: 4*a

• YSize: 4*a

• ZSize: 4*a

In the Modeler Window, right clickBox1 > Properties > Attribute

■ Name: Airbox

■ Material: Vacuum

■ Color: Blue

■ Transparent: 0.8

• Create PML (Perfectly Matched Layer)

- o A PML Box emulates an infinite vacuum or ideal anechoic chamber
- o In the Toolbar, select Edit > Selection Mode > Faces
- Edit > Select Objects > By Name
 - Select **Airbox** then highlight all Faces and click OK
- o In the Toolbar, select HFSS > Boundaries > PML Setup Wizard
- Check "Create PML Cover Objects On Selected Faces"
 - Uniform Layer Thickness: 0.250 meter (4*radius length)
- Click Next
- Check "PML Objects Accept Free Radiation"
 - Min Frequency: 0.04 GHz
 - Minimum Radiating Distance: 0.125 meter (2*radius length)
- o Click Finish
- In Modeler Window, highlight all PMLGroup____ items
 - Click Green Eye up top to make visible

• Use symmetry to simplify solution

- Because our target object is symmetrical, we can apply a symmetrical boundary condition on only a quarter of the sphere to reduce computation time
- We will cut sphere, then set Perfect E and H boundaries on the appropriate sphere faces
- In Modeler Window, highlight ALL Solids(include all items in drop-downs of PMLGroup_ objects)
 - In Toolbar, select **Modeler > Boolean > Split**

• Split Plane: YZ

• Keep Result: Positive Side

• Splot Objects: Split all objects

• Delete invalid objects

• Use Symmetry(continued)

- In Modeler Window, highlight ALL Solids again (include all items in drop-downs of PMLGroup_ objects and new objects created from last split)
 - In Toolbar, select **Modeler > Boolean > Split**

• Split Plane: ZX

• Keep Result: Positive Side

• Splot Objects: Split all objects

• Delete invalid objects

 You should now have a perfectly quartered sphere, Airbox, and PML Layer

- Assign Boundary Conditions (YZ)
 - Select all the Faces in the YZ Plane:
 - On the Toolbar, select Edit > Selection Mode > Faces
 - In the 3D Model Window, hold CTRL and select all 6 faces on the YZ Plane
 - On the Toolbar, select HFSS > Boundaries > Assign > Symmetry
 - Select the "Perfect E" Button

- Assign Boundary Conditions (XZ)
 - Select all the Faces in the XZ Plane:
 - On the Toolbar, select Edit > Selection Mode > Faces
 - In the 3D Model Window, hold CTRL and select all 6 faces on the XZ Plane
 - On the Toolbar, select HFSS > Boundaries > Assign > Symmetry
 - Select the "Perfect H" Button

- Assign Plane Wave
 - On the Toolbar, select HFSS >
 Excitations > Assign > Incident Wave

 Plane Wave
 - Vector Input Format: Spherical
 - Click Next
 - IWavePhi Start, Stop, Step: 0
 - IWaveTheta Start, Stop, Step: 0
 - Eo Vector
 - Phi: 0
 - Theta: 1
 - Click Next
 - Type of Plane Wave: Regular/Propagating
 - Click Finish

Assign Meshing

- On the Toolbar, select HFSS >
 Mesh Operations > Initial Mesh
 Settings
 - Check "Apply curvilinear meshing to all curved surfaces"
 - Set Mesh Size to Large/fine for greater accuracy at higher frequencies but longer computation time

• Add Solution Setup

- In the Toolbar, select HFSS >
 Analysis Setup > Add Solution
 Setup
 - Frequency: 5 GHz (This is not the excitation frequency)
 - Maximum Number of Passes: 20
 - Maximum Delta Energy: 0.01
- Select Options tab
 - Order of Basis Functions: Second Order

• Add Solution Setup

- In the Project Manager window, expand the HFSSDesign1 dropdown menu
- o Expand "Analysis"
- Highlight "Setup1"
 - In the Toolbar, select HFSS > Analysis Setup > Add Frequency Sweep
 - Sweep Name: 32to40GHz
 - Sweep Type: Discrete
 - Distribution: Linear Step
 - Start: 32 GHzEnd: 40 GHz
 - Step Size: 0.01 GHz
 - Check "Save Radiated Field Only" box

• Add Far-Field Setup

In the Toolbar, select HFSS > Radiation >
 Insert Far Field Setup > Infinite Sphere

■ Phi Start, Stop, Step Size: 0, 0, 0

■ Theta Start, Stop, Step Size: 0, 0, 0

Add Plot

○ In the Toolbar, select **HFSS** > **Results** >

Create Far Fields Report > Rectangular

Plot

■ Primary Sweep: Freq

■ Category: Bistatic RCS

■ Quantity: RCSTotal

■ Click New Report

Far Field Radiation Sphere Setup

Start

Start

Step Size 0

Save As Defaults

Infinite Sphere | Coordinate System | Radiation Surface |

Name | Infinite Sphere1

→

deg

View Sweep Points...

• Save RCS Data for Processing

- Last step should have resulted in a Plot of RCS(in meters^2) as a function of Frequency
- o Right click plot to Export as image and/or .csv file in desired location

