# Trabalho Algoritmos de Ordenação

**Grupo: Júlio César, Lorenzo Bonet** 

Repositório: https://github.com/julio-czr/Sort

## Relatório de Análise de Algoritmos de Ordenação

## Objetivo:

O objetivo deste relatório é comparar a eficiência do algoritmo por meio do resultado do tempo de execução (nanosegundos) dos diferentes algoritmos de ordenação (Bubble Sort, Insertion Sort, Quick Sort) utilizados para ordenar diferentes tipos de conjuntos de dados.

#### Resultados:

|                | Conjunto pequer                | no de dados (100 | )         |
|----------------|--------------------------------|------------------|-----------|
|                | Crescente                      | Decrescente      | Aleatório |
| Bubble Sort    | 924700                         | 1792800          | 1140100   |
| Insertion Sort | 638200                         | 712400           | 1034500   |
| Quick Sort     | 852200                         | 914000           | 2099300   |
|                |                                |                  |           |
|                | Conjunto médio de dados (1000) |                  |           |
|                | Crescente                      | Decrescente      | Aleatório |
| Bubble Sort    | 7447199                        | 9096200          | 7993899   |
| Insertion Sort | 1050900                        | 3632200          | 1810600   |
| Quick Sort     | 4610200                        | 3767899          | 2621000   |
|                |                                |                  |           |
|                | Conjunto grande                | de dados (1000)  | 0)        |
|                | Crescente                      | Decrescente      | Aleatório |
| Bubble Sort    | 32640300                       | 99750100         | 186507000 |
| Insertion Sort | 2513100                        | 100131600        | 48615901  |
| Quick Sort     | 36552000                       | 52362700         | 16204400  |
|                |                                |                  |           |
|                |                                |                  |           |



### Conjunto médio de dados (1000)



#### Conjunto grande de dados (10000)



#### Conclusão:

A utilização do Insert Sort se mostra a mais recomendável para conjuntos de dados médios ou pequenos, tanto pela eficiência quanto pela facilidade de implementação, porém perde eficiência conforme o conjunto aumenta. Em conjuntos já ordenados, ele se mostra muito eficiente mesmo em conjuntos grandes, ou seja, para ordenar um novo valor em um conjunto ordenado, ele é o mais recomendado.

O Quick Sort tem melhor desempenho em conjuntos grandes, quanto maior o conjunto, maior a discrepância comparado aos outros.

Já o Bubble Sort se mostra pouco eficiente em qualquer situação.