

CLAIMS:

1 1. A method for utilizing bits in an illegal op code in order to not increase the
2 number of bits required to represent each instruction comprising the steps of:

3 fetching a plurality of instructions from a memory;
4 re-encoding one or more illegal op codes of one or more instructions into a
5 single illegal op code if said one or more instructions comprise illegal op codes that
6 are a member of a group of illegal op codes;

7 pre-decoding a fetched instruction that does not have an illegal op code; and
8 re-encoding one or more fields of said pre-decoded instruction into a
9 previously illegal op code which was re-mapped into said single illegal op code.

1 2. The method as recited in claim 1, wherein said pre-decoding produces
2 additional pre-decoded information, wherein said re-encoded pre-decoded instruction
3 is configured to store said additional pre-decoded information in said previously
4 illegal op code.

1 3. The method as recited in claim 2, wherein said additional pre-decoded
2 information comprises a carry-out field.

1 4. The method as recited in claim 3, wherein said carry-out field is associated
2 with a fetched branch instruction.

1 5. A processor, comprising:
2 an instruction cache configured to fetch a plurality of instructions; and
3 a logic unit coupled to said instruction cache configured to re-encode one or
4 more illegal op codes of one or more instructions into a single illegal op code if said
5 one or more instructions comprise illegal op codes that are a member of a group of
6 illegal op codes, wherein said logic unit is further configured to pre-decode a fetched
7 instruction that does not have an illegal op code, wherein said logic unit is further
8 configured to re-encode one or more fields of said pre-decoded instruction into a
9 previously illegal op code which was re-mapped into said single illegal op code.

1 6. The processor as recited in claim 5, wherein said pre-decoding produces
2 additional pre-decoded information, wherein said re-encoded pre-decoded instruction
3 is configured to store said additional pre-decoded information in said previously
4 illegal op code.

1 7. The processor as recited in claim 6, wherein said additional pre-decoded
2 information comprises a carry-out field.

1 8. The processor as recited in claim 7, wherein said carry-out field is associated
2 with a fetched branch instruction.

9. A processor, comprising:

means for fetching a plurality of instructions from a memory;

means for re-encoding one or more illegal op codes of one or more instructions into a single illegal op code if said one or more instructions comprise illegal op codes that are a member of a group of illegal op codes;

means for pre-decoding a fetched instruction that does not have an illegal op code; and

means for re-encoding one or more fields of said pre-decoded instruction into a previously illegal op code which was re-mapped into said single illegal op code.

10. The processor as recited in claim 9, wherein said pre-decoding produces additional pre-decoded information, wherein said re-encoded pre-decoded instruction is configured to store said additional pre-decoded information in said previously illegal op code.

11. The processor as recited in claim 10, wherein said additional pre-decoded information comprises a carry-out field.

12. The processor as recited in claim 11, wherein said carry-out field is associated with a fetched branch instruction.

1 13. A system, comprising:

2 a memory configured to store instructions;
3 an instruction cache coupled to said memory, wherein said instruction cache is
4 configured to fetch a plurality of instructions from said memory; and

5 a logic unit coupled to said instruction cache configured to re-encode one or
6 more illegal op codes of one or more instructions into a single illegal op code if said
7 one or more instructions comprise illegal op codes that are a member of a group of
8 illegal op codes, wherein said logic unit is further configured to pre-decode a fetched
9 instruction that does not have an illegal op code, wherein said logic unit is further
10 configured to re-encode one or more fields of said pre-decoded instruction into a
11 previously illegal op code which was re-mapped into said single illegal op code.

1 14. The system as recited in claim 13, wherein said pre-decoding produces
2 additional pre-decoded information, wherein said re-encoded pre-decoded instruction
3 is configured to store said additional pre-decoded information in said previously
4 illegal op code.

1 15. The system as recited in claim 14, wherein said additional pre-decoded
2 information comprises a carry-out field.

1 16. The system as recited in claim 15, wherein said carry-out field is associated
2 with a fetched branch instruction.