

Ministero dell' Istruzione, dell' Università e della Ricerca M179 – ESAME DI STATO <u>DI ISTRUZIONE SECONDARIA SUPERIORE</u>

Indirizzo: ITMP - MECCANICA, MECCATRONICA ED ENERGIA
ARTICOLAZIONE MECCANICA E MECCATRONICA
OPZIONE TECNOLOGIE DELLE MATERIE PLASTICHE

Tema di: TECNOLOGIE MECCANICHE E PLASTURGICHE, DISEGNO ED ORGANIZZAZIONE INDUSTRIALE

Il candidato svolga la prima parte della prova e due tra i quesiti proposti nella seconda parte.

PRIMA PARTE

Si vuole sviluppare la realizzazione di un seggiolino per altalena di cui sono assegnati le seguenti specifiche di massima: dimensioni 360x160x190 mm, spessore parete 3,5 mm, carico massimo 70 kg.

Il candidato, avvalendosi delle schede tecniche allegate e assumendo con giustificato criterio ogni altro dato, esegua:

- la scelta del materiale della fune, tra quelli proposti nelle schede tecniche;
- il dimensionamento della fune nell'ipotesi che essa abbia un'area della sezione resistente pari a 0,45 dell'area della sezione lorda;
- il disegno di massima della seduta, appropriato alla tecnologia scelta per la fabbricazione, specificando il materiale impiegato;
- Indipendentemente dalla tecnologia impiegata, fare un confronto degli investimenti nell'ipotesi di due differenti cicli di fabbricazione della seduta, caratterizzati dai dati riportati in tabella (Ciclo A e Ciclo B). Calcolare il volume di produzione per cui l'uno diventa più conveniente dell'altro;

Condizioni	Ciclo di fabbricazione		Figura. Seggiolino
	A	В	
Pezzi prodotti per ogni ciclo	4	16	COMMISSION AND ADDRESS OF THE PROPERTY OF THE
Tempo ciclo [s]	20	32	
Costo stampi [€]	55.000,00	65.000,00	
Costi orari [€/h]	36	54	

Ministero dell'Istruzione, dell'Università e della Ricerca M179 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: ITMP - MECCANICA, MECCATRONICA ED ENERGIA ARTICOLAZIONE MECCANICA E MECCATRONICA OPZIONE TECNOLOGIE DELLE MATERIE PLASTICHE

Tema di: TECNOLOGIE MECCANICHE E PLASTURGICHE, DISEGNO ED ORGANIZZAZIONE INDUSTRIALE

SECONDA PARTE

- 1. Con riferimento alla parte 1, il candidato analizzi le tecniche di riciclo della seduta a fine uso mettendole a confronto e illustri le fasi del processo di una delle tecniche analizzate.
- 2. Il candidato, tra le tecnologie tradizionali e non tradizionali idonee alla costruzione della figura di stampo della seduta del seggiolino altalena, ne individui una per tipologia e ne faccia il confronto. Illustri poi il processo di asportazione del materiale con la tecnologia non tradizionale.
- 3. Il candidato esegua il disegno della colonna di guida di cui in figura 1 completo di tolleranze dimensionali, geometriche, indicazione della qualità di finitura superficiale ed eventuali trattamenti termici.
- 4. Il candidato imposti il ciclo di lavorazione della colonna di figura 1 nell'ipotesi di un volume di produzione di larga serie.

La colonna guida stampo di figura 1 è montata sulla piastra (tronco D1) con bloccaggio leggero non smontabile a mano. Nelle fasi di chiusura e apertura stampo il tronco diametro D funge da guida in accoppiamento con la bussola di figura 2.

Durata massima della prova: 6 ore.

È consentito l'uso di manuali tecnici e di calcolatrici non programmabili.

È consentito l'uso del dizionario della lingua italiana.

È consentito l'uso del dizionario bilingue (italiano-lingua del paese di provenienza) per i candidati di madrelingua non italiana. Non è consentito lasciare l'Istituto prima che siano trascorse 3 ore dalla dettatura del tema.

Ministero dell'Istruzione, dell' Università e della Ricerca

SCHEDE TECNICHE

ABS	Copolimero ABS	Amorfo
Allungamento a rottura	15 - 30	%
Contropressione	50 - 150	bar
Corsa dosaggio	0.5 - 4 D	mm
Cuscino	2 - 8	mm
Densità	1,02 - 1,21	g/cm3
Essiccamento	2 ore a 70	ore/°C
Modulo di elasticità	1300 - 2700	MPa
Pressione di mantenimento	30% - 60%	bar
Pressione d'iniezione	1000 - 1500	bar
Resistenza Trazione	32 - 45	N/mm2
Ritiro	0.4 - 0.7	%
Temperatura fuso	200 - 270	$^{\circ}\mathrm{C}$
Temperatura stampo	50 - 90	°C
Velocità periferica vite	0.6	m/s

PA6	Poliammide 6	Semicristallino
Allungamento a rottura	200 - 300	%
Contropressione	20 - 80	bar
Corsa dosaggio	0.5 - 3.5	Dmm
Cuscino	2 - 6	mm
Densità	1.13	g/cm3
Essiccamento	8/15	ore/°C
Modulo di elasticità	1400	MPa
Pressione di mantenimento	50 % Pi	bar
Pressione d'iniezione	1000 - 1600	bar
Resistenza Trazione	70 - 85	N/mm2
Ritiro	0.8 - 2.5	%
Temperatura fuso	240 -290	°C
Temperatura stampo	60 - 120	°C
Velocità periferica vite	< 1	m/s

Ministero dell'Istruzione, dell' Università e della Ricerca

PC	Policarbonato	Amorfo
Allungamento a rottura	100 - 130	%
Contropressione	100 - 150	bar
Corsa dosaggio	0.5 - 3.5 D	mm
Cuscino	2 - 6	mm
Densità	1.2	g/cm3
Essiccamento	4 ore a 110	ore/°C
Modulo di elasticità	2100 - 2400	MPa
Pressione di mantenimento	40 - 60 % Pi	bar
Pressione d'iniezione	1300 - 1800	bar
Resistenza Trazione	56 - 67	N/mm2
Ritiro	0.6 - 0.8	%
Temperatura fuso	270 - 320	$^{\circ}\mathrm{C}$
Temperatura stampo	80 - 120	°C
Velocità periferica vite	0.6	m/s

PE-HD	Polietilene HD	Semicristallino
Allungamento a rottura	100 - 1000	%
Contropressione	50 - 200	bar
Corsa dosaggio	0.5 - 4 D	mm
Cuscino	2 - 8	mm
Densità	0.94 - 0.928	g/cm3
Essiccamento		ore/°C
Modulo di elasticità	700 - 1400	MPa
Pressione di mantenimento	30 - 60 % Pi	bar
Pressione d'iniezione	800 - 1400	bar
Resistenza Trazione	18 - 35	N/mm2
Ritiro	1,5 - 3	%
Temperatura fuso	180 - 250	$^{\circ}\mathrm{C}$
Temperatura stampo	10 - 60	$^{\circ}\mathrm{C}$
Velocità periferica vite	< 1.3	m/s

Ministero dell'Istruzione, dell'Università e della Ricerca

PMMA	Polimetilmetacrilato	Amorfo
Allungamento a rottura	2 - 10	%
Contropressione	100 - 300	bar
Corsa dosaggio	= 0.6 m/s	mm
Cuscino	0.5 - 3 D	mm
Densità	1.17 - 1.20	g/cm3
Essiccamento	2 - 6 ore a	ore/°C
Modulo di elasticità	1600 - 3600	MPa
Pressione di mantenimento	40 - 60 % Pi	bar
Pressione d'iniezione	1000 - 1700	bar
Resistenza Trazione	50 - 77	N/mm2
Ritiro	0.3 - 0.8	%
Temperatura fuso	190 - 270	°C
Temperatura stampo	40 - 90	°C
Velocità periferica vite	-	m/s

PP	Polipropilene	Semicristallino
Allungamento a rottura	20 - 80	%
Contropressione	50 - 200	bar
Corsa dosaggio	0.5 - 4 D	mm
Cuscino	2 - 8	mm
Densità	0.90 - 0.97	g/cm3
Essiccamento	-	ore/°C
Modulo di elasticità	1100 - 1300	MPa
Pressione di mantenimento	30 - 60% Pi	bar
Pressione d'iniezione	800 - 1400	bar
Resistenza Trazione	21 - 37	N/mm2
Ritiro	1.3 - 2.5	%
Temperatura fuso	200 - 270	°C
Temperatura stampo	20 - 90	°C
Velocità periferica vite	< 1.3	m/s