# Expected Values Estimated via Mean-Field Approximation are 1/N-Accurate

Nicolas Gast

Inria, Grenoble, France

Sigmetrics 2017, Urbana-Champaign

# Mean-field approximation is widely used in our community

A few examples of SIGMETRICS papers. . .

- 2016 Asymptotics of Insensitive Load Balancing and Blocking Phases Jonckheere Prabhu
- 2016 On the Approximation Error of Mean-Field Models Ying
- 2015 Power of d Choices for Large-Scale Bin Packing: A Loss Model Xie et al
- 2015 Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms – Gast, Van Houdt
- 2013 Queueing system topologies with limited flexibility. Tsitsiklis, Xu
- 2013 A mean field model for a class of garbage collection algorithms in flash-based solid state drives. Van Houdt
- 2012 Fluid limit of an asynchronous optical packet switch with shared per link full range wavelength conversion. Van Houdt, Bortolussi
- 2011 On the power of (even a little) centralization in distributed processing. –
- 2010 Randomized load balancing with general service time distributions. Bramson et al.
- 2010 Incentivizing peer-assisted services: a fluid shapley value approach. Misra et al
- 2010 A mean field model of work stealing in large-scale systems. Gast, Gaujal
- 2009 **The age of gossip: spatial mean field regime.** Chaintreau et al.

# What is mean-field approximation?

We study a population of N interchangeable objects.

 $X^{(N)}$  denotes the empirical measure.

$$X_i^{(N)}(t) =$$
fraction of objects in state  $i$ 

# Idea of mean-field: Some models simplify as $N \to \infty$

Theorem (Kurtz 70,...) 
$$X^{(N)}(t) \approx x(t)$$

# Idea of mean-field: Some models simplify as $N o \infty$

Theorem (Kurtz 70,...) 
$$X^{(N)}(t) \approx x(t)$$





# Idea of mean-field: Some models simplify as $N o \infty$

Theorem (Kurtz 70,...) 
$$X^{(N)}(t) \approx x(t)$$





Theorem (Kurtz 70... Ying 16) 
$$X^{(N)}(t) \approx x(t) + \frac{1}{\sqrt{N}}G_t$$



Theorem (Kurtz 70... Ying 16) 
$$X^{(N)}(t) \approx x(t) + \frac{1}{\sqrt{N}}G_t$$



Theorem (Kurtz 70... Ying 16) 
$$X^{(N)}(t) \approx x(t) + \frac{1}{\sqrt{N}} G_t$$



Theorem (Kurtz 70... Ying 16) 
$$X^{(N)}(t) \approx x(t) + \frac{1}{\sqrt{N}}G_t$$



#### How accurate is mean-field for expected values?

Can we use the approximation for N = 1000? N = 100? N = 10?

| N                                 | 10     | 100    | 1000   | $\infty$ |
|-----------------------------------|--------|--------|--------|----------|
| Average queue length (simulation) | 2.8040 | 2.3931 | 2.3567 | 2.3527   |
|                                   |        |        |        |          |

Table: Two-choice model with  $\rho = 0.9$ 

## How accurate is mean-field for expected values?

Can we use the approximation for N = 1000? N = 100? N = 10?

| N                                 | 10     | 100    | 1000   | $\infty$ |
|-----------------------------------|--------|--------|--------|----------|
| Average queue length (simulation) | 2.8040 | 2.3931 | 2.3567 | 2.3527   |
| Error of mean-field               | 0.4513 | 0.0404 | 0.0040 | 0        |

Table: Two-choice model with  $\rho = 0.9$ 

## How accurate is mean-field for expected values?

Can we use the approximation for N = 1000? N = 100? N = 10?

| N                                 | 10     | 100    | 1000   | $\infty$ |
|-----------------------------------|--------|--------|--------|----------|
| Average queue length (simulation) | 2.8040 | 2.3931 | 2.3567 | 2.3527   |
| Error of mean-field               | 0.4513 | 0.0404 | 0.0040 | 0        |

Table: Two-choice model with  $\rho = 0.9$ 

#### Contributions:

- **1** We show that under very general conditions, the error is in O(1/N)
- In addition to previous work, the drift needs to be twice-differentiable.
- We study numerically the power-of-two choice.

#### Outline

- 1 The Kurtz's Population Model: Classical Convergence Results
- 2 The O(1/N)-Accuracy of Mean-Field Approximation
- 3 Example: two-choice model
- 4 Recap and Discussion

#### Outline

- 1 The Kurtz's Population Model : Classical Convergence Results
- 2 The O(1/N)-Accuracy of Mean-Field Approximation
- 3 Example: two-choice model
- 4 Recap and Discussion

#### CTMC

A continous-time Markov chain (CTMC) with state-space **E** is given by an initial state  $x_0$  and its transitions ( $\ell \in \mathcal{L}$ ):

$$X \mapsto X + \ell$$
 at rate  $\beta_{\ell}(X)$ .

The drift is 
$$f(x) = \sum_{\ell} \ell \beta_{\ell}(x)$$
.

<sup>&</sup>lt;sup>1</sup>We assume  $(\mathbf{E}, \|\cdot\|)$  is a Banach space, not necessarily  $\mathbb{R}^d$ .

#### Population CTMC

Density dependent population process (70s)

A population process is a sequence of CTMC  $\mathbf{X}^N$ , indexed by the population size N, with state spaces  $\mathbf{E}^N \subset \mathbf{E}$ , with initial state  $x_0$  and with transitions (for  $\ell \in \mathcal{L}$ ):

$$X\mapsto X+\ rac{\ell}{N}$$
 at rate  $N\beta_\ell(X)$ .

The drift is 
$$f(x) = \sum_{\ell} \ell \beta_{\ell}(x)$$
.

<sup>&</sup>lt;sup>1</sup>We assume  $(\mathbf{E}, \|\cdot\|)$  is a Banach space, not necessarily  $\mathbb{R}^d$ .

## Transient regime

Let  $\Phi_t$  denotes the (unique) solution of the ODE :

$$\Phi_t x = x + \int_0^t f(\Phi_s x) ds.$$

#### Transient regime

Let  $\Phi_t$  denotes the (unique) solution of the ODE :

$$\Phi_t x = x + \int_0^t f(\Phi_s x) ds.$$

#### Theorem (Kurtz 70s)

If f is Lipschitz-continuous with constant L, then for any fixed T:

$$\sup_{t < T} \left\| X^N(t) - \Phi_t X^N(0) \right\| = O(1/\sqrt{N}) \qquad \qquad (\lim_{N \to \infty} \cdot = 0).$$



# Stationary regime

If the ODE  $\dot{x} = f(x)$  has a unique fixed point  $x^*$  that is exponentially stable, then:

#### Theorem (Ying 2016)

If f is Lipschitz-continuous with constant L, then for any fixed T:

$$\mathbb{E}\left[\left\|X^{N}-x^{*}\right\|\right]=O(1/\sqrt{N}) \qquad (\lim_{N\to\infty}\cdot=0).$$

(the uniqueness of the fixed point is not sufficient, see Benaim-Le Boudec 2008).

#### Outline

- The Kurtz's Population Model: Classical Convergence Results
- 2 The O(1/N)-Accuracy of Mean-Field Approximation
- 3 Example: two-choice model
- Recap and Discussion

# $1/\sqrt{N}$ or 1/N?



| N                            | 10   | 100   | 1000  | $+\infty$ |
|------------------------------|------|-------|-------|-----------|
| Average queue length $(m^N)$ | 2.81 | 2.39  | 2.36  | 2.35      |
| Error $(m^N - m^{\infty})$   | 0.46 | 0.039 | 0.004 | 0         |

# $1/\sqrt{N}$ or 1/N?



| N                            | 10   | 100   | 1000  | $+\infty$ |
|------------------------------|------|-------|-------|-----------|
| Average queue length $(m^N)$ | 2.81 | 2.39  | 2.36  | 2.35      |
| Error $(m^N - m^{\infty})$   | 0.46 | 0.039 | 0.004 | 0         |

#### Steady-state analysis

We say that  $\dot{x} = f(x)$  has an exponentially stable attractor  $x^*$  if for any solution:

$$||x(t) - x^*|| \le Ce^{-\alpha t} ||x(0) - x^*||.$$

# Steady-state analysis

We say that  $\dot{x} = f(x)$  has an exponentially stable attractor  $x^*$  if for any solution:

$$||x(t)-x^*|| \leq Ce^{-\alpha t} ||x(0)-x^*||.$$

#### Theorem

If f is twice differentiable, if the ODE has an exponentially stable attractor  $x^*$  and if there exists a bounded set  $\mathcal{B}$  such that  $\mathbf{P}\left[X^N \notin \mathcal{B}\right] = O(1/N^2)$ , then for any bounded function h. there exists a constant K such that:

$$\limsup_{N\to\infty} N \left| \mathbb{E} \left[ h(X^N) \right] - h(x^*) \right| \leq K.$$

Note: A similar result holds for the transient behavior.

# Main ideas of the proof

#### 1. Comparison of the generators:

$$(L^{(N)}h)(x) = \sum_{\ell \in \mathcal{L}} N\beta_{\ell}(x) (h(x + \frac{\ell}{N}) - h(x))$$
$$(\Lambda h)(x) = \sum_{\ell \in \mathcal{L}} \beta_{\ell}(x) Dh(x) \cdot \ell = Dh(x) \cdot f(x)$$

#### 2. Stein's method:

$$\mathbb{E}\left[h(X^N)-h(x^*)\right]\mathbb{E}\left[(\Lambda-L^{(N)})(Gh)X^N\right],$$

where 
$$Gh(x) = \int_0^\infty (h(\Phi_t x) - h(x^*)) dt$$
 satisfies  $(x) - h(x^*) = \Lambda(Gh)x$ .

**3.** Perturbation theory:  $D^2(Gh)$  is twice-differentiable.

#### Outline

- 1 The Kurtz's Population Model: Classical Convergence Results
- ② The O(1/N)-Accuracy of Mean-Field Approximation
- 3 Example: two-choice model
- 4 Recap and Discussion

#### The two choice model<sup>2</sup>



Randomly choose two, and select one

Infinite state-space:

$$X_0(t), X_1(t), \dots$$

where

 $X_i(t)$  = fraction with i or more jobs.

 $<sup>^2</sup>$  This model or variants have been heavily studied (Vvedenskaya 96, Mitzenmacher 98  $\dots$  Tsitsiklis et al. 2016, $\dots$ ).

# Does this model satisfies our assumptions?

$$(\mathbf{E}, \|\cdot\|)$$
 is the set of infinite sequences such that  $\|x\|_w = \sum_{i=1}^\infty w_i |x_i| < \infty$ .

- Transitions : easy
- Regularity of the drift: easy
- Unique attractor: mitzenmacher 98
- Stationary measure concentrates on a bounded set : coupling argument : 2-choice  $\ll$  1-choice.

## The power of two-choice

Our theory guarantees that the average queue length satisfies:

$$m^N(\rho) = m^\infty(\rho) + O(1/N),$$

where 
$$m^{\infty}(
ho) pprox \log_2 rac{1}{1-
ho}$$
 (as  $ho o 1$ ).

# The power of two-choice

Our theory guarantees that the average queue length satisfies:

$$m^N(\rho) = m^\infty(\rho) + O(1/N),$$

where  $m^{\infty}(\rho) \approx \log_2 \frac{1}{1-\rho}$  (as  $\rho \to 1$ ).

By simulation, we observe that  $N(m^N(\rho) - m^\infty) = d(\rho) \approx \frac{\rho^2}{2(1-\rho)}$ 

| N                                          | 10    | 20    | 30    | 50    | $+\infty$ |
|--------------------------------------------|-------|-------|-------|-------|-----------|
| $m^N( ho)$                                 | 2.804 | 2.566 | 2.491 | 2.434 | _         |
| $m^{\infty}( ho) + rac{ ho^2}{2N(1- ho)}$ | 2.758 | 2.555 | 2.488 | 2.434 | 2.353     |

Table: Average queue length in the two-choice model ( $\rho = 0.9$ ).

# The quality of the approximation degrades as ho goes to 1

Simulation results suggest that:

$$m^N(
ho) pprox \underbrace{m^\infty(
ho)}_{pprox 1} + \frac{1}{N} \underbrace{d(
ho)}_{
ho^2} + O(\frac{1}{N^2})$$
 $pprox \log_2 \frac{1}{1-
ho} \qquad pprox \frac{
ho^2}{2(1-
ho)}$ 

Conjecture: the power of two-choice holds if  $N = \Omega(\frac{1}{1-\alpha})$ 

#### Outline

- The Kurtz's Population Model: Classical Convergence Results
- ② The O(1/N)-Accuracy of Mean-Field Approximation
- 3 Example: two-choice model
- 4 Recap and Discussion

## Recap

- **①** Convergence of mean-field model is O(1/N).
  - ► Works for transient and steady-state
  - ▶ Works for infinite-dimensional state space.
- Our approach is to focus on the expected values



## In practice

For many mean-field models:

$$\mathbb{E}\left[X^{N}\right]\approx x+\frac{C}{N},$$

• C can be computed for one N and then interpolated.

This provides a new light for the two-choice.

## Does it always work?

- Works for the model of Kurtz
- Also works for the "Benaim-Le Boudec" by using uniformization

But: it requires the drift to be twice-differentiable.

• (see counter-example on the paper)

# Extension and open questions

- Multistable equilibria.
- Non-homogeneous population.
  - ► e.g., caching
- Technical conditions (ex: twice-differentiability or Lipschitz-continuity).

Paper, simulations (and slides) are reproducible: https://github.com/ngast/meanFieldAccuracy

## Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

#### Mean-field and decoupling

| Benaïm,<br>Le Boudec 08 | A class of mean field interaction models for computer and communication systems, M.Benaïm and J.Y. Le Boudec., Performance evaluation, 2008.                                             |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Le Boudec 10            | The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points., JY. L. Boudec., Arxiv:1009.5021, 2010                                            |
| Darling Norris 08       | R. W. R. Darling and J. R. Norris, Differential equation approximations for Markov chains, Probability Surveys 2008                                                                      |
| G. 16                   | Construction of Lyapunov functions via relative entropy with application to caching, Gast, N., ACM MAMA 2016                                                                             |
| G. 16                   | Expected Values Estimated via Mean-field approximation are 1/N accurate, Gast, N., SIGMETRICS 2017                                                                                       |
| Budhiraja et al. 15     | Limits of relative entropies associated with weakly interacting particle systems., A. S. Budhiraja, P. Dupuis, M. Fischer, and K. Ramanan., Electronic journal of probability, 20, 2015. |
|                         |                                                                                                                                                                                          |

# References (continued)

#### Optimal control and mean-field games:

| G.,Gaujal Le Boudec<br>12 | Mean field for Markov decision processes: from discrete to continuous optimization, N.Gast,B.Gaujal,J.Y.Le Boudec, IEEE TAC, 2012            |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| G. Gaujal 12              | Markov chains with discontinuous drifts have differential inclusion limits., Gast N. and Gaujal B., Performance Evaluation, 2012             |
| Lasry Lions               | Mean field games, JM. Lasry and PL. Lions, Japanese Journal of Mathematics, 2007.                                                            |
| Tembine at al 09          | Mean field asymptotics of markov decision evolutionary games and teams, H. Tembine, JY. L. Boudec, R. El-Azouzi, and E. Altman., GameNets 00 |

#### Applications: caches

| Don and Towsley | An approximate analysis of the LRU and FIFO buffer replacement schemes, A. Dan and D. Towsley., SIGMETRICS 1990                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| G. Van Houdt 15 | Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms., Gast, Van Houdt., ACM Sigmetrics 2015 |