

EUROMARINE SUMMER SCHOOL

"PulseOcean: Taking an interdisciplinary pulse on ocean under global change"

"Ocean Acidification and Macrophytes: Photosynthesis, Respiration, & Calcification"

Irene Olivé, Stazione Zoologica Anton Dohrn

Inorganic Carbon chemistry in seawater

Quantifying C chemistry in seawater

- If we want to evaluate the DIC "status" of the ocean and know "how" will behave the ocean in the future ("Sink or Source of CO_2 ") we need to have estimates of ALL elements (DIC, pH, CO_2 , HCO₂, CO_3 , pCO₂, CO_3 , pCO₃, CO_3
- Measuring pH, DIC; A_T , pCO₂ is feasible
- Measuring CO₂, HCO₂-, CO₃²⁻ in seawater is DIFFICULT

BUT since 3 equilibrium constants (K_0, K_1, K_2) links all concentrations...

$$\mathbf{K_0} = \frac{[CO^2]}{mCO_2 \cdot p}$$

$$K_0 = \frac{[CO^2]}{mCO_2 \cdot p}$$
 $K_1 = \frac{[H^+][HCO_3^-]}{[CO_2]}$ $K_2 = \frac{[H^+][CO_3^2]}{[HCO_3^-]}$

$$K_2 = \frac{[H^+][CO_3^{2^-]}}{[HCO_3^-]}$$

• There are only 2 degrees of freedom -> This implies that only two of the aqueous concentrations can be varied independently of one another.

In other words, If we measure 2 parameters, we can have it all

Atmospheric CO₂ is rising and seawater too

Data: Mauna Loa (ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2 mm_mlo.txt) ALOHA (http://hahana.soest.hawaii.edu/hot/hot-dogs/bextraction.html) ALOHA pH & pCO2 are calculated at in-situ temperature from DIC & TA (measured from samples collected on Hawaii Ocean Times-series (HOT) cruises) using co2sys (Pelletier, v25b06) with constants: Lueker et al. 2000, KSO4: Dickson, Total boron: Lee et al. 2010, & KF: seacarb

- Increase Dissolved CO₂
- Increased DIC
- Increase bicarbonate HCO₃⁻
- Decrease carbonate CO₃²⁻
- Increase H⁺, decrease pH
- Decrease saturation state calcium carbonate (Ω)

euromarinenetwork.eu

IF YOU ARE ALIVE, YOU BREATH

$$CH_2O + O_2 \longrightarrow CO_2 + H_2O$$
Respiration (R)

If you also have chloroplasts

Photosynthesis (P)

$$CO_2 + H_2O$$
 \longrightarrow $CH_2O + O_2$

If you are alive and have chloroplasts

$$CO_2 + H_2O \longrightarrow CH_2O + O_2$$

Respiration (R)

If an organism feels it "ROCKS"

Calcification (C)

$$Ca^{2+} + 2HCO_3^ \longleftrightarrow$$
 $CaCO_3 + CO_2 + H_2O$

Dissolution (decalcification) (D)

Photosynthesis (P)

$$CO_2 + H_2O \longrightarrow CH_2O + O_2$$

Respiration (R)

Calcification (C)

$$Ca^{2+} + 2HCO_3^-$$
 Ca $CO_3 + CO_2 + H_2O$

Dissolution (D)

- P and D removes CO₂
- R and C releases CO₂

How can we evaluate changes due to biological activity?

Some examples

- Net Community Production (NCP)
- Posidonia oceanica
- Incubation chambers
- Oxygen by Winkler method by spectrophotometry

Olivé et al. (2016) 7:30h euromarinenetwork.eu

Incubation duration	Light budget	Night budget	Daily budget
(Hours)	(mmol O ₂ ·m ⁻²)	(mmol O ₂ ·m⁻²)	(mmol $O_2 \cdot m^{-2} \cdot d^{-1}$)
1.5-2	143.3 ± 21.7	-81.7 ± 11.3	61.7 ± 24.5
3-5	102.8 ± 15.7	(na)	(na)
12	80.0 ± 8.7	-30.1 ± 6.9	49.9 ± 11.1
24	-	-	14.8 ± 5.4

UNDERESTIMATION of:

28% "light NCP budget" (3-5h) 44% "light NCP budget" (12h)

63% "night NCP budget" (12h)

19% daily NCP budget (12h)76% daily NCP budget (24h)

Calcareous

Rhodoliths

How can we evaluate changes due to biological activity?

- Measure changes in biological activity
- Measure under "optimized" conditions
- Measure under "controlled" conditions
- Account for the changes not due to our object of study

How well should we measure?

Accuracy and Precision

How much precision is needed?

1st exp.	рН	TA (umol Kg ⁻¹)
Mean	8.11	2641.80
SD	0.12	156.85

2nd exp.	pH (T,S corrected)	TA (umol/Kg ⁻¹) (corrected)
Mean	8.06	2615.84
SD	0.09	58.0646

How much precision is needed?

in oceanography changes <50 uM are quantified

Flecha et al. (2012)

1st exp.	pH TA (umol Kg ⁻¹)	
Mean	8.11	2641.80
SD	0.12	156.85

2nd exp.	pH (T,S corrected)	TA (umol/Kg ⁻¹) (corrected)
Mean	8.06	2615.84
SD	0.09	58.0646

How much accuracy is needed?

The U.S. NSF funded the development of certified reference materials (CRMs) for the measurement of oceanic CO₂ parameters (Dickson Lab USA)

1st exp.	pH TA (umol Kg ⁻¹)	
Mean	8.11	2641.80
SD	0.12	156.85

2nd exp.	pH (T,S corrected)	TA (umol/Kg ⁻¹) (corrected)	
Mean	8.06	2615.84	
SD	0.09	58.0646	

How well should we measure?

Accuracy and Precision

Accuracy -> Use of CRM

Precision -> Lower the SD

Biology is also affected (and affects) OA

Ocean Acidification and Marine Organisms

Calcifying organisms vulnerable to ocean acidification

(Orr et al 2005; Doney et al 2009; Reise et al 2009; Talmage and Gobler 2009, 2010, 2011, 2012)

Milner et al. 2016

David Littschwager/National Geographic Society

Ocean Acidification and Marine Organisms

Ωi and pH decreases

Calcification (C)

$$Ca^{2+} + 2HCO_3^ CaCO_3 + CO_2 + H_2O$$

Decalcification (D)

David Littschwager/National Geographic Society

P. Ziveri

Ocean Acidification and Marine Organisms

EURO MARINE EIROPEAN MARINE RESEARCH METWORK

Are all organisms threatened by OA?

With Ocean Acidification

CO₂ increases
DIC increases

Photosynthesis (P)

$$CO_2 + H_2O$$
 $CH_2O + O_2$ Respiration (R)

Marine Primary producers as

- OA buffers
- Nature Based Solutions

euromarinenetwork.eu

Some examples

(spoiler: going for some controversy now)

CO₂ vents

Vulcano Island (Sicily, Italy)

- Shallow CO₂ Vents (< 5 m)
- Cymodocea nodosa
- *In situ* incubations (*in loco* vs transplants)
- Gene expression and Plant productivity

Site	pH (NBS)	pCO ₂ (uatm)	DIC (umol kg SW ⁻¹)	S (psu)	T (ºC)
Ref	8.18	427	2244	37.5	20.3
CO ₂	7.98	737	2377	37.5	19.8

Net balance autotrophic (NPP>0)

Hypothesis:
Ocean Acidification stimulates seagrass productivity

Controlled conditions

NPP increases with DIC

Hypothesis:
Ocean Acidification stimulates seagrass
productivity

• In Vulcano CO₂ vents, seagrass productivity decreases in plants exposed to high CO₂ (CO₂ vents)

BUT

• Under controlled conditions, seagrass productivity significantly correlates (increases) with CO₂ availability

Is there something in the (CO₂ vents) water?

CO2 vents

Ischia

- Posidonia oceanica
- CO₂ "pure" (Tedesco 1996)

Panarea

- Posidonia oceanica
- CO₂ & Other gases
 (Gugliando et al. 2006)

Ischia

"pure" CO₂

Panarea

 $CO_2 + ??$

TOO MUCH SPOILER

Your turn to work

