Itens Para Testes de Avaliação | 2.º Período

MATEMÁTICA A | 11.º ANO

Temas: Trigonometria, Geometria e Sucessões

- **1.** Considera a função h, de domínio $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$, definida por $h(x) = \left(\cos x \frac{1}{\cos x} \right)^2$.
- **1.1** Qual é o valor de $h\left(-\frac{\pi}{3}\right) h\left(\frac{5\pi}{4}\right)$?

 - $A \frac{7}{4}$ $B \frac{5}{12}$ $C \frac{5}{12}$
- $\mathbf{D} \frac{7}{4}$
- **1.2** Para um certo valor de $\alpha \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$ tem-se $\operatorname{sen}(-\alpha 3\pi) = \frac{1}{\sqrt{7}}$.

Qual é valor de $h\left(\alpha - \frac{3\pi}{2}\right)$?

- **1.3** Mostra, que para todo o $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$, $h(x) = \operatorname{tg}^2 x \operatorname{sen}^2 x$.
- **2.** Determina, no intervalo $\left[-\frac{3\pi}{2}, \pi\right]$, o conjunto-solução da equação $\sin^2 x + 1 = \frac{1}{4} + 2\sin x$.
- **3.** Considera, em referencial o.n. Oxy, a reta r de equação 10y + 5x = 6.

Seja s a reta perpendicular a r que passa no ponto de coordenadas (1,4).

Qual é a equação reduzida da reta s?

C
$$y = -2x + \frac{5}{3}$$

B
$$y = -2x + 6$$

D
$$y = 2x + \frac{3}{5}$$

4. Na figura, está representada, em referencial o.n. Oxyz, a pirâmide reta $\begin{bmatrix} ABCDE \end{bmatrix}$.

Sabe-se que:

• a base [ABCD] é um losango;

• A(0,1,3), C(2,3,-1) e E pertence ao primeiro octante;

• uma equação do plano ABC é x+y+z-4=0;

• a altura da pirâmide é $3\sqrt{3}$.

4.1 Mostra que as coordenadas do ponto E são (4,5,4).

4.2 Determina uma equação cartesiana do plano BDE.

4.2 Determina, em graus, com aproximação às décimas, a amplitude do ângulo AEC.

5. Considera as sucessões (u_n) e (v_n) definidas por $u_n = \frac{2-5n}{n+7}$ e $v_n = \frac{\left(-1\right)^n n + n - 1}{n+2}$.

5.1 Estuda a sucessão (u_n) quanto à monotonia.

5.2 Mostra que a sucessão (v_n) é limitada e indica o conjunto dos majorantes e o dos minorantes dos seus termos.

5.3 Para um certo valor real de a, seja $\left(W_{n} \right)$ a sucessão definida por:

$$\begin{cases} w_1 = a \\ w_{n+1} = 8u_n - w_n, & n \ge 1 \end{cases}$$

Sabe-se que o terceiro termo da sucessão é $-\frac{55}{9}$.

Qual é o valor de a?

A −2

c 1

B −1

D 2

6. Seja (u_n) uma progressão aritmética tal que $u_8 + u_{20} = 11$.

6.1 Qual é o valor de $u_{12} + u_{13} + u_{14} + u_{15} + u_{16}$?

 $\mathbf{A} \quad \frac{11}{2}$

 $\frac{c}{2}$

B $\frac{33}{2}$

D $\frac{77}{2}$

6.2 Sabendo que $u_{12} = 5$, determina o termo geral de (u_n) .

7. Seja (w_n) uma progressão geométrica, de termos não nulos, tal que $w_{n+3}+w_n=0$, para todo o n natural.

A soma dos 2024 primeiros termos de (w_n) é igual a:

 $\mathbf{A} - w_1$

 \mathbf{C} w_1

B 0

D 2024

- **8.** Seja (u_n) uma progressão aritmética tal que $u_2 = u_8 + 12$.
- **8.1** Mostra que a sucessão (u_n) é monótona decrescente.
- **8.2** Considera a sucessão (v_n) definida por $v_n = \frac{3^{u_n}}{27^{-n}}$.
 - **8.2.1** Mostra que (v_n) é uma progressão geométrica de razão 3. Admite que a razão da progressão aritmética (u_n) é -2.
 - **8.2.2** Sabendo que a soma dos dez primeiros termos de (v_n) é 118 096, determina o seu termo geral, escrevendo-o na forma $a \times b^n$, sendo $a \in b$ números racionais.

FIM

Sugestão de cotações

1.1	1.2	1.3	2.	3.	4.1	4.2	4.3	5.1	5.2.	5.3	6.1	6.2	7.	8.1	8.2.1	8.2.2	Total
10	13	12	13	10	13	12	13	12	13	10	10	12	10	12	13	12	200

Propostas de resolução

1.1 Tem-se que:

•
$$h\left(-\frac{\pi}{3}\right) = \left(\cos\left(-\frac{\pi}{3}\right) - \frac{1}{\cos\left(-\frac{\pi}{3}\right)}\right) = \left(\frac{1}{2} - \frac{1}{\frac{1}{2}}\right)^2 = \left(\frac{1}{2} - 2\right)^2 = \left(-\frac{3}{2}\right)^2 = \frac{9}{4};$$

•
$$h\left(\frac{5\pi}{4}\right) = \left(\cos\left(\frac{5\pi}{4}\right) - \frac{1}{\cos\left(\frac{5\pi}{4}\right)}\right)^2 = \left(-\frac{\sqrt{2}}{2} + \frac{1}{\frac{\sqrt{2}}{2}}\right)^2 = \left(-\frac{\sqrt{2}}{2} + \frac{2}{\sqrt{2}}\right)^2 = \left(\frac{-2+4}{2\sqrt{2}}\right)^2 = \left$$

$$= \left(\frac{\cancel{2}}{\cancel{2}\sqrt{2}}\right)^2 = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}.$$

Portanto,
$$h\left(-\frac{\pi}{3}\right) - h\left(\frac{5\pi}{4}\right) = \frac{9}{4} - \frac{1}{2} = \frac{7}{4}$$
.

Resposta: D

1.2 Tem-se que
$$sen(-\alpha - 3\pi) = sen(-\alpha - 2\pi - \pi) = sen(-\alpha - \pi) = sen\alpha$$
.

Portanto, como sen $(-\alpha - 3\pi) = \frac{1}{\sqrt{7}}$, vem que sen $\alpha = \text{sen}(-\alpha - 3\pi) = \frac{1}{\sqrt{7}}$.

Tem-se que,
$$h\left(\alpha - \frac{3\pi}{2}\right) = \left(\cos\left(\alpha - \frac{3\pi}{2}\right) - \frac{1}{\cos\left(\alpha - \frac{3\pi}{2}\right)}\right)^2$$
 e, recorrendo novamente à circunferência

trigonométrica:

Logo,
$$\cos\left(\alpha - \frac{3\pi}{2}\right) = -\sin\alpha = -\frac{1}{\sqrt{7}}$$
, pelo que:

$$h\left(\alpha - \frac{3\pi}{2}\right) = \left(\cos\left(\alpha - \frac{3\pi}{2}\right) - \frac{1}{\cos\left(\alpha - \frac{3\pi}{2}\right)}\right)^2 = \left(-\frac{1}{\sqrt{7}} + \frac{1}{\frac{1}{\sqrt{7}}}\right)^2 = \left(-\frac{1}{\sqrt{7}} + \sqrt{7}\right)^2 = \left(\frac{-1+7}{\sqrt{7}}\right)^2 = \left(\frac{6}{\sqrt{7}}\right)^2 = \frac{36}{7}$$

1.3 Tem-se,
$$h(x) = \left(\cos x - \frac{1}{\cos x}\right)^2 = \left(\frac{-\frac{\sin^2 x}{\cos^2 x - 1}}{\cos x}\right)^2 = \left(-\frac{\sin^2 x}{\cos x}\right)^2 = \left(-\frac{\sin x}{\cos x} \times \sin x\right)^2 = \left(-\frac{\sin x}{\cos x}\right)^2 = \left$$

$$= (-\operatorname{tg} x \times \operatorname{sen} x)^{2} = (-\operatorname{tg} x)^{2} \times (\operatorname{sen} x)^{2} = \operatorname{tg}^{2} x \operatorname{sen}^{2} x$$

2. Tem-se
$$\operatorname{sen}^2 x + 1 = \frac{1}{4} + 2\operatorname{sen} x \Leftrightarrow \underbrace{\operatorname{sen}^2 x - 2\operatorname{sen} x + 1}_{=(\operatorname{sen} x - 1)^2} = \frac{1}{4} \Leftrightarrow (\operatorname{sen} x - 1)^2 = \frac{1}{4} \Leftrightarrow$$

$$\Leftrightarrow$$
 sen $x - 1 = \pm \sqrt{\frac{1}{4}} \Leftrightarrow$ sen $x - 1 = -\frac{1}{2} \lor$ sen $x - 1 = \frac{1}{2}$

$$\Leftrightarrow \operatorname{sen} x = \frac{1}{2} \vee \underbrace{\operatorname{sen} x = \frac{3}{2}}_{\text{Equação impossível}} \Leftrightarrow \operatorname{sen} x = \frac{1}{2}$$

$$\Leftrightarrow x = \frac{\pi}{6} + 2k\pi \lor x = \pi - \frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}$$

Assim:

• se
$$k = 0 \to x = \frac{\pi}{6} \lor x = \frac{5\pi}{6}; \frac{\pi}{6} \in \left[-\frac{3\pi}{2}, \pi \right] e^{\frac{5\pi}{6}} \in \left[-\frac{3\pi}{2}, \pi \right]$$

• se
$$k = 1 \to x = \frac{13\pi}{6} \lor x = \frac{17\pi}{6}; \frac{13\pi}{6} \notin \left[-\frac{3\pi}{2}, \pi \right] e^{\frac{17\pi}{6}} \notin \left[-\frac{3\pi}{2}, \pi \right]$$

• se
$$k = -1 \rightarrow x = -\frac{11\pi}{6} \lor x = -\frac{7\pi}{6}; -\frac{11\pi}{6} \notin \left[-\frac{3\pi}{2}, \pi \right] e^{-\frac{7\pi}{6}} \in \left[-\frac{3\pi}{2}, \pi \right]$$

• se
$$k = -2 \rightarrow \underline{\qquad} \lor x = -\frac{19\pi}{6}; -\frac{19\pi}{6} \notin \left[-\frac{3\pi}{2}, \pi \right]$$

Logo, o conjunto-solução da equação dada, no intervalo $\left] -\frac{3\pi}{2}, \pi \right]$, é $\left\{ -\frac{7\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6} \right\}$.

3. Como as retas r e s são perpendiculares, então $m_s = -\frac{1}{m_r}$, sendo m_s o declive da reta s e m_r o declive da reta r.

Tem-se $10y + 5x = 6 \Leftrightarrow 10y = -5x + 6 \Leftrightarrow y = -\frac{5}{10}x + \frac{6}{10} \Leftrightarrow y = -\frac{1}{2}x + \frac{3}{5}$. Logo, o declive da reta $f(x) = -\frac{1}{2}x + \frac{1}{2}$. pelo que o declive da reta $f(x) = -\frac{1}{2}x + \frac{1}{2}$. Assim, a equação reduzida da reta $f(x) = -\frac{1}{2}x + \frac{1}{2}$.

O ponto de coordenadas (1,4) pertence à reta s, pelo que, substituindo na sua equação:

$$4 = 2 \times 1 + b \Leftrightarrow b = 2 \Rightarrow s : v = 2x + 2$$

Resposta: A

4.1 Tem-se que $E = M + \overrightarrow{ME}$, sendo M é o ponto médio do segmento de reta [AC]:

$$M\left(\frac{x_A + x_C}{2}, \frac{y_A + y_C}{2}, \frac{z_A + z_C}{2}\right) = \left(\frac{0+2}{2}, \frac{1+3}{2}, \frac{3-1}{2}\right) = (1, 2, 1)$$

Um vetor normal ao plano ABC é $\vec{u}(1,1,1)$. Como a pirâmide é reta e $\begin{bmatrix} ABCD \end{bmatrix}$ é um losango, o vetor \overrightarrow{ME} também é um vetor normal a ABC. Assim, \overrightarrow{ME} e \vec{u} são colineares, pelo que existe um $k \in \mathbb{R} \setminus \{0\}$ tal que $\overrightarrow{ME} = k \, \vec{u} = k (1,1,1) = (k,k,k)$.

Por outro lado, a altura da pirâmide é $3\sqrt{3}$, pelo que $\|\overrightarrow{ME}\| = 3\sqrt{3}$. Então:

$$\|\overrightarrow{ME}\| = 3\sqrt{3} \Leftrightarrow \sqrt{k^2 + k^2 + k^2} = 3\sqrt{3} \Leftrightarrow \sqrt{3k^2} = 3\sqrt{3} \Leftrightarrow \sqrt{3} \times \sqrt{k^2} = 3\sqrt{3} \Leftrightarrow \sqrt{3} \times \sqrt{k^2} = 3\sqrt{3} \Leftrightarrow \sqrt{3k^2} = 3\sqrt{3} \Leftrightarrow \sqrt{3k^$$

Logo, se:

- k=-3, então $\overrightarrow{ME}(-3,-3,-3)$ e $E=M+\overrightarrow{ME}$, ou seja, neste caso, as coordenadas do ponto E são (1-3,2-3,1-3)=(-2,-1,-2), que não pertence ao primeiro octante;
- k=3, então $\overline{ME}(3,3,3)$ e $E=M+\overline{ME}$, ou seja, neste caso as coordenadas do ponto E são (1+3,2+3,1+3)=(4,5,4), que pertence ao primeiro octante.

E(4,5,4)

4.2 Como a pirâmide é reta e como [ABCD] é um losango, o vetor \overrightarrow{AC} é normal ao plano BDE .

Tem-se $\overrightarrow{AC} = C - A$, pelo que as coordenadas de \overrightarrow{AC} são (2-0,3-1,-1-4)=(2,2,-4) e, portanto, uma equação cartesiana do plano BDE é da forma 2x+2y-4z+d=0.

Como o ponto E pertence ao plano BDE , substituindo as suas coordenadas na equação de BDE , tem-se $2\times4+2\times5-4\times4+d=0 \Leftrightarrow 2+d=0 \Leftrightarrow d=-2$.

Logo, BDE: $2x+2y-4z-2=0 \Leftrightarrow x+y-2z-1=0$.

4.3 A amplitude do ângulo \overrightarrow{AEC} é igual à amplitude do ângulo formado pelos vetores \overrightarrow{EA} e \overrightarrow{EC} , que é dada por:

$$\cos\left(\widehat{AEC}\right) = \cos\left(\overline{EA} \widehat{EC}\right) = \frac{\overline{EA} \cdot \overline{EC}}{\|\overline{EA} \| \times \|\overline{EC}\|}$$

Tem-se $\overrightarrow{EA} = A - E$, ou seja, as coordenadas de \overrightarrow{EA} são (0-4,1-5,3-4) = (-4,-4,-1) e $\overrightarrow{EC} = C - E$, ou seja, as coordenadas de \overrightarrow{EC} são (2-4,3-5,-1-4) = (-2,-2,-5).

Assim,
$$\cos(\widehat{AEC}) = \cos(\overline{EA} \cdot \overline{EC}) = \frac{\overline{EA} \cdot \overline{EC}}{\|\overline{EA}\| \times \|\overline{EC}\|} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-1)^2} \times \sqrt{(-2)^2 + (-2)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-1)^2} \times \sqrt{(-2)^2 + (-2)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-1)^2} \times \sqrt{(-2)^2 + (-2)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-1)^2} \times \sqrt{(-2)^2 + (-2)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-1)^2} \times \sqrt{(-2)^2 + (-2)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-1)^2} \times \sqrt{(-2)^2 + (-2)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-1)^2} \times \sqrt{(-2)^2 + (-2)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-1)^2} \times \sqrt{(-2)^2 + (-2)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-5)^2}} = \frac{(-4, -4, -1) \cdot (-2, -2, -5)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2}} = \frac{(-4, -4, -4) \cdot (-4, -4)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2}} = \frac{(-4, -4, -4) \cdot (-4, -4)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2}} = \frac{(-4, -4, -4) \cdot (-4, -4)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2}} = \frac{(-4, -4, -4) \cdot (-4)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2}} = \frac{(-4, -4, -4) \cdot (-4)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2}} = \frac{(-4, -4, -4)}{\sqrt{(-4)^2 + (-4)^2}} = \frac{(-4, -4, -4)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2}} = \frac{(-4, -4)}{\sqrt{(-4)^2 + (-4)^2}} = \frac{(-4, -4)}{\sqrt{(-4)^2 + (-4)^2 + (-4)^2}} = \frac{(-4, -4)}{\sqrt{(-4$$

$$=\frac{8+8+5}{\sqrt{16+16+1}\times\sqrt{4+4+25}}=\frac{21}{\sqrt{33}\times\sqrt{33}}=\frac{21}{33}$$

Portanto, $\angle AEC = \cos^{-1}\left(\frac{21}{33}\right) \approx 50,48^{\circ}$.

5.1 Tem-se que:

$$u_{n+1} - u_n = \frac{2 - 5(n+1)}{n+1+7} - \frac{2 - 5n}{n+7} = \frac{2 - 5n - 5}{n+8} - \frac{2 - 5n}{n+7} = \frac{(-3 - 5n)(n+7) - (2 - 5n)(n+8)}{(n+8)(n+7)} = \frac{-3n - 21 - 5n^2 - 35n - 2n - 16 + 5n^2 + 40n}{(n+8)(n+7)} = \frac{-38n - 37 + 38n}{(n+8)(n+7)} = -\frac{37}{(n+8)(n+7)}$$

Logo, como (n+8)(n+7)>0, para todo o $n\in\mathbb{N}$, tem-se que $-\frac{37}{(n+8)(n+7)}<0$, ou seja, $u_{n+1}-u_n<0$, para todo o $n\in\mathbb{N}$, e, portanto, a sucessão (u_n) e monótona decrescente.

5.2

• Para *n* impar, tem-se que
$$(-1)^n = -1$$
, pelo que $v_n = \frac{(-1)^n n + n + 1}{n+2} = \frac{-n+n-1}{n+2} = -\frac{1}{n+2}$.

Para todo o n natural ímpar, $0 < \frac{1}{n+2} \le \frac{1}{3}$, pelo que, $-\frac{1}{3} \le -\frac{1}{n+2} < 0$.

• Para
$$_n$$
 par, tem-se que $\left(-1\right)^n = 1$, pelo que $v_n = \frac{\left(-1\right)^n n + n - 1}{n + 2} = \frac{n + n - 1}{n + 2} = \frac{2n - 1}{n + 2}$

Fazendo a divisão inteira de 2n-1 por n+2:

$$2n - 1$$
 $n+2$ $-2n - 4$ 2 -5

Logo, para *n* par,
$$v_n = 2 - \frac{5}{n+2}$$
.

Para todo o *n* natural par, $0 < \frac{1}{n+2} \le \frac{1}{4}$, pelo que:

$$0 < \frac{1}{n+2} \le \frac{1}{4} \underset{\times (-5)}{\iff} -\frac{5}{4} \le -\frac{5}{n+2} < 0 \underset{+2}{\iff} -\frac{5}{4} + 2 \le 2 - \frac{3}{n+2} < 2 \underset{+2}{\iff} \frac{3}{4} \le 2 - \frac{3}{n+2} < 2$$

Portanto, para todo o n natural, $-\frac{1}{3} \le v_n < 2$, pelo que (v_n) é limitada. O conjunto dos majorantes é $\left[2,+\infty\right[$ e o conjunto dos minorantes é $\left]-\infty,-\frac{1}{3}\right]$.

5.3 Tem-se que:

•
$$w_2 = 8u_1 - w_1 = 8 \times \frac{2 - 5 \times 1}{1 + 7} - a = 8 \times \frac{-3}{8} - a = -3 - a$$
;

•
$$w_3 = 8u_2 - w_2 = 8 \times \frac{2 - 5 \times 2}{2 + 7} - (-3 - a) = 8 \times \frac{-8}{9} + 3 + a = -\frac{64}{9} + 3 + a = -\frac{37}{9} + a$$
.

Logo, como
$$w_3 = -\frac{55}{9}$$
, tem-se $w_3 = -\frac{55}{9} \Leftrightarrow -\frac{37}{9} + a = -\frac{55}{9} \Leftrightarrow a = -\frac{55}{9} + \frac{37}{9} \Leftrightarrow a = -\frac{18}{9} \Leftrightarrow a = -2$

Resposta: A

6.1 Como (u_n) é uma progressão aritmética, e sendo r a sua razão, tem-se:

$$u_{12} + u_{13} + u_{14} + u_{15} + u_{16} = \frac{u_{12} + u_{16}}{2} \times 5 = \frac{u_{8} + 4r}{2} \times 5 = \frac{u_{8} + 4r + u_{20} - 4r}{2} \times 5 = \frac{u_{8} + u_{20}}{2} \times 5 = \frac{11}{2} \times 5 = \frac{55}{2}$$

Resposta: C

6.2 Sendo r a razão da progressão aritmética (u_n) , tem-se que:

$$u_8 = u_{12} - 4r = 5 - 4r$$
;

$$u_{20} = u_{12} + 8r = 5 + 8r.$$

Assim, como $u_8 + u_{20} = 11$, vem que $u_8 + u_{20} = 11 \Leftrightarrow 11 \Leftrightarrow 4r = 1 \Leftrightarrow r = \frac{1}{4}$.

Portanto, o termo geral de (u_n) é dado por:

$$u_n = u_{12} + (n-12) \times r = 5 + (n-12) \times \frac{1}{4} = 5 + \frac{1}{4}n - 3 = \frac{1}{4}n + 2$$

7. Seja r a razão da progressão geométrica (w_n) . Assim, para todo o $n \in \mathbb{N}$, tem-se $w_{n+3} = w_n \times r^3$, pelo que:

$$w_{n+3} + w_n = 0 \iff w_n \times r^3 + w_n = 0 \iff w_n (r^3 + 1) = 0 \iff w_n = 0 \lor r^3 + 1 = 0$$

Como
$$w_n \neq 0$$
, $\forall n \in \mathbb{N}$, vem que $w_n = 0 \lor r^3 + 1 = 0 \Leftrightarrow r^3 = -1 \Leftrightarrow r = \sqrt[3]{-1} \Leftrightarrow r = -1$.

Logo, a soma dos 2024 primeiros termos de (w_n) é dada por:

$$w_1 \times \frac{1 - r^{2024}}{1 - r} = w_1 \times \frac{1 - \left(-1\right)^{2024}}{1 - \left(-1\right)} \underset{(-1)^{2024} = 1}{=} w_1 \times \frac{1 - 1}{2} = w_1 \times 0 = 0$$

Resposta: B

8.1 Seja r a razão da progressão aritmética (u_n) .

Assim,
$$u_8 = u_2 + 6r$$
, pelo que $u_2 = u_8 + 12 \Leftrightarrow u_2' = u_2' + 6r + 12 \Leftrightarrow -6r = 12 \Leftrightarrow r = -2$.

Logo, a sucessão (u_n) é decrescente dado que é uma progressão aritmética de razão negativa.

8.2.1 A sucessão (v_n) é uma progressão geométrica de razão 3 se $\frac{v_{n+1}}{v_n} = 3$, $\forall n \in \mathbb{N}$.

Tem-se que
$$v_n = \frac{3^{u_n}}{27^{-n}} = \frac{3^{u_n}}{\left(3^3\right)^{-n}} = \frac{3^{u_n}}{3^{-3n}} = 3^{u_n+3n}$$
.

Dado que (u_n) é uma progressão aritmética de razão -2, então $u_{n+1}-u_n=-2$, $\forall n \in \mathbb{N}$.

Assim,
$$\frac{v_{n+1}}{v_n} = \frac{3^{u_{n+1}+3(n+1)}}{3^{u_n+3n}} = 3^{u_{n+1}+3n+3-u_n-2n} = 3^{u_{n+1}-u_n+3} = 10^{u_{n+1}-u_n+3} = 10^{u$$

Logo, a sucessão (v_n) é uma progressão geométrica de razão 3.

8.2.2 A soma dos dez primeiros termos de (v_n) é dada por $v_1 \times \frac{1 - 3^{10}}{1 - 3} = v_1 \times \frac{-59048}{-2} = 29524v_1$.

Logo,
$$29524v_1 = 118096 \Leftrightarrow v_1 = \frac{118096}{29524} \Leftrightarrow v_1 = 4$$
.

Portanto, o termo geral de (v_n) é dado por $v_n = v_1 \times 3^{n-1} = 4 \times \frac{3^n}{3} = \frac{4}{3} \times 3^n$.

FIM