T01 Search and game tree search

16337019 陈浩玮

2018年9月28日

Contents

1	$\mathbf{Q}1$	2
2	$\mathbf{Q2}$	2
3	Q3	3

1 Q1

使用一致代价搜索, 节点上部标号为扩展顺序。

2 Q2

(a) Is h admissible? Is h monotone? Explain.

由课本定理,可采纳性可由单调性推到出,下面只证明单调性,即证:

$$h(s) <= 1 + h(s*)$$

其中, s* 是由 s 经过一次移动得到的状态。分三种情况讨论:

1. 一个木块 x 从堆顶部移动到地面上,不妨设该木块原来不在目标位置。

- i. 当该木块 x 下面没有这样的木块 y, 使得木块 y 在目标状态的位置也在 x 下面时,若 x 被移到目标位置,则 $h(s^*) = h(s) 1$,若 x 没有被移到目标位置, $h(s^*) = h(s)$
- ii. 当木块 x 下面存在这样的木块 y 时, x 的目标位置必定不在地面上, 所以有 $h1(s^*)$ = h1(s), $h2(s^*)$ = h2(s) 1, 即 $h(s^*)$ = h(s) 1
- 2. 一个木块 x 从地面移动到堆顶部,不妨设该木块原来不在目标位置。
 - i. 当木块 x 被移到目标位置时, $h(s^*) = h(s) 1$
 - ii. 当木块 x 的新位置仍然不是目标位置时, $h(s^*) >= h(s)$
- 3. 一个木块 x 从一个堆移到另一个堆,不妨设该木块原来不在目标位置。
 - i. 当该木块 x 下面没有这样的木块 y, 使得木块 y 在目标状态的位置也在 x 下面时,若 x 被移动到目标位置,则 $h(s^*) = h(s)$ 1,若没有被移到目标位置,则必有 $h(s^*)$ >= h(s)
 - ii. 当木块 x 下面存在这样的木块 y 时, x 必定不能通过一次移动就到达目标位置(木块 y 的目标位置在 x 目标位置的下方,但此时木块 y 还在原来的堆上),所以 $h1(s^*)$ = h1(s), $h2(s^*)$ = h2(s) 1 或 $h2(s^*)$ = h2(s), 都有 $h(s^*)$ >= h(s) 1。

综上所述,无论在何种情况,一次移动后都有 $h(s) <= h(s^*) + 1$ 。所以 h(s) 满足单调性。

(b) Trace the operation of A* with cycle checking: Draw the search tree; for each node, mark its g and h values.

由方框框住的节点为被扩展节点,其它节点为边缘节点,No. 指明节点扩展顺序。

3 Q3

图都在下一页

Figure 1: Q2(b) 图

Figure 2: Q3 图