Colle 5 MPSI/MP2I Jeudi 16 novembre 2023

Planche 1

- 1. Définition de la densité d'une partie de R. Caractérisation séquentielle de la densité. Énoncé et démonstration.
- 2. On considère l'équation différentielle $x^2y'' + 4xy' (x^2 2)y = 0$ d'inconnue $y : \mathbb{R}_+^* \to \mathbb{R}$, $y \mapsto y(x)$ deux fois dérivable. La résoudre en considérant $x \mapsto x^2y(x)$.
- 3. Soit $\beta \in \mathbb{R}_+^*$ et $f : \mathbb{R} \to \mathbb{R}$ une fonction continue bornée positive.
 - (a) Soit $y : \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 telle que $y' = \beta y + f$. Montrer que $e^{-\beta t}y(t)$ admet une limite finie quand t tend vers $+\infty$.
 - (b) En déduire qu'il existe une unique fonction $y : \mathbb{R} \to \mathbb{R}$ de classe C^1 bornée et solution de $y' = \beta y + f$.

Planche 2

- 1. Définition de la borne supérieure. Première caractérisation de la borne supérieure d'une partie non vide majorée de R. Énoncé et démonstration.
- 2. On considère l'équation différentielle $x(1+x^2)y'-(x^2-1)y+2x=0$, d'inconnue $y:\mathbb{R}\to\mathbb{R},y\mapsto y(x)$ dérivable. La résoudre sur \mathbb{R}_+^* , sur \mathbb{R}_-^* , puis sur \mathbb{R} .
- 3. Déterminer l'ensemble des fonctions f et g continues de $\mathbb R$ dans $\mathbb R$ vérifiant

$$\forall x \in \mathbb{R}, \quad \int_0^x f(t)dt = x - 1 + g(x), \quad \int_0^x g(t)dt = x - 1 + f(x)$$

Planche 3

- 1. Définition de la convexité. Montrer que toute partie convexe de $\mathbb R$ est un intervalle.
- 2. Déterminer l'ensemble des fonctions $y: \mathbb{R} \to \mathbb{C}$ trois fois dérivables telles que

$$y^{(3)} + y'' + y' = 0$$

3. Déterminer l'ensemble des fonctions dérivables $f: \mathbb{R} \to \mathbb{R}$ vérifiant

$$\forall x \in \mathbb{R}, \quad f'(x) + f(-x) = e^x$$

Bonus

Soit $n \in \mathbb{N}$. On note $J_n : \mathbb{R} \to \mathbb{C}$, $x \mapsto \int_{-\pi}^{\pi} e^{-i(nt-x\sin(t))} dt$. Montrer que J_n est deux fois dérivable et vérifie

$$\forall x \in \mathbb{R}, \quad x^2 J_n''(x) + x J_n'(x) + (x^2 - n^2) J_n(x) = 0$$