REAL-TIME INTERACTION WITH AN ELECTROPHYSIOLOGICAL CANCER CELL MODEL

Peter Waldert^{1,2}, Theresa Rienmüller¹, Christian Baumgartner¹ and Sonja Langthaler¹

¹Institute of Health Care Engineering with European Testing Center of Medical Devices, TU Graz ²Institute of Computer Graphics and Knowledge Visualisation, TU Graz

Introduction

We improve on the A549 electrophysiological cancer cell model introduced in [1, 2], combining numerical methods with an efficient implementation to reduce simulation time to a level where it is feasible for live interaction. More specifically, we were able to accelerate the simulation with adaptive timestepping and a highly efficient implementation in the Rust programming language, while we also managed to approach the corresponding inverse problem using a quadratic program, solving it within milliseconds. We introduce a visualisation approach of the entire model in the form of a live simulation dashboard available online, running directly in the browser. The entire source code is freely available on GitHub and reusable through three different channels: the simulation interface (powered by compilation to WebAssembly), the Rust linkable library implementation and a Python package.

Live, In-Browser Cell Simulation Interface

Available live on in-silico.hce.tugraz.at.

Model

The whole cell current $I:T\to\mathbb{R}$ over time $t\in T\subset\mathbb{R}^+$ is the sum of all individual channel contributions $I_k, k \in \{1, ..., M\}$ over $M \in \mathbb{N}$ channel types

$$I(t) := \sum_{k=1}^{M} N_k I_k(t) = \sum_{k=1}^{M} N_k g_k p_{o,k} \left(V(t) - E_k \right) , \qquad (1)$$

At each time step,

$$\boldsymbol{s}_{k,n+1} = H_k(V(t_n), \boldsymbol{C}(t_n), t_n) \, \boldsymbol{s}_{k,n} \,. \tag{2}$$

Adaptive Timestepping

Pointwise Error between Simulation and Measurements

Formulation as a Quadratic Program

We want to find

$$N_{\text{opt}} = \underset{N \in \mathbb{N}_0^M}{\operatorname{arg min}} \frac{1}{2} \|RN - I_{\text{meas}}\|_2^2,$$
 (4)

with $I_{\text{meas}} \in \mathbb{R}^{N_t}$ the experimentally measured current and $R \in \mathbb{R}^{N_t \times M}$ the matrix of all currents I_k per channel type. Letting $\boldsymbol{d} := \boldsymbol{I}_{\text{meas}}$ for brevity,

$$oldsymbol{N}_{ ext{opt}} pprox rg \min_{oldsymbol{x} \in \mathbb{R}_+^M} f(oldsymbol{x}) = rg \min_{oldsymbol{x} \in \mathbb{R}_+^M} {}^1 / {}_2 \left\| R oldsymbol{x} - oldsymbol{d}
ight\|_2^2 \; ,$$

with cost function $f: \mathbb{R}^M \to \mathbb{R}^+$, which we manipulate to

$$f(\boldsymbol{x}) = \frac{1}{2}(R\boldsymbol{x} - \boldsymbol{d})^{T}(R\boldsymbol{x} - \boldsymbol{d})$$

$$= \frac{1}{2}(\boldsymbol{x}^{T}R^{T}R\boldsymbol{x} - \boldsymbol{x}^{T}R^{T}\boldsymbol{d} - \boldsymbol{d}^{T}R\boldsymbol{x} + \boldsymbol{d}^{T}\boldsymbol{d})$$

$$= \frac{1}{2}(\boldsymbol{x}^{T}P\boldsymbol{x} + \boldsymbol{x}^{T}\boldsymbol{q} + \boldsymbol{q}^{T}\boldsymbol{x}) + \mathcal{O}(1)$$

$$= \frac{1}{2}\boldsymbol{x}^{T}P\boldsymbol{x} + \boldsymbol{q}^{T}\boldsymbol{x} + \mathcal{O}(1)$$

where we let $P:=R^TR\in\mathbb{R}^{M\times M}$ and $\boldsymbol{q}:=-R^T\boldsymbol{d}\in\mathbb{R}^M$ and leave out the constant d^Td as $\mathcal{O}(1)$. We can express the nonnegativity constraint $x \geq 0$ as an equality constraint using a slack variable $s \in \mathbb{R}^{M}_{+}$,

$$-x+s=0 \Leftrightarrow Ax+s=b$$

where we set $A:=-1 \in \mathbb{R}^{M\times M}$ and $b:=0 \in \mathbb{R}^M$. This leaves us with a constrained quadratic program,

$$\min_{\boldsymbol{x} \in \mathbb{R}^{M}} \frac{1}{2} \boldsymbol{x}^{T} P \boldsymbol{x} + \boldsymbol{q}^{T} \boldsymbol{x},
s.t. A \boldsymbol{x} + \boldsymbol{s} = \boldsymbol{b}, \ \boldsymbol{s} \in \mathbb{R}_{+}^{M}.$$
(5)

$$s.t. A \boldsymbol{x} + \boldsymbol{s} = \boldsymbol{b}, \ \boldsymbol{s} \in \mathbb{R}_{+}^{M}. \tag{6}$$

The integer solution can then be obtained from rounding,

$$oldsymbol{N}_{ ext{opt}} = \lfloor oldsymbol{x}
ceil \in \mathbb{N}_0^M$$
 .

Comparison of Optimization Methods

Algorithm	Abbreviation	Runtime / ms	RMSE / pA
Particle Swarm Optimization	PSO	22571	27.69
Gradient Descent + More Thuente	GD	18924	32.34
Limited-Memory BFGS + Hager Zhang	LBFGS	4845	32.20
Non-Negative Least Squares [3]	NNLS	318	28.00
Quadratic Program	QP	18	28.13

Conclusion

simply run: pip install in-silico-cancer-cell