Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Complex Analysis (MTH 403) Exercise Sheet 2

1. Basic properties of holomorphic functions

- Suppose that $\Omega \subseteq_{open} \mathbb{C}$ and $f : \Omega \longrightarrow \mathbb{C}$ is holomorphic. Assume further that $f(\Omega) \subseteq \mathbb{R}$. Show that, if f is holomorphic at $z_0 \in \Omega$ then $f'(z_0) = 0$.
- 1.2. Let $z_0 = x_0 + iy_0 \in \Omega \subseteq_{open} \mathbb{C}$ and $f : \Omega \longrightarrow \mathbb{C}$.
 - (a) Assume that f is holomorphic at z_0 . Show that, when f is viewed as a function defined from the open subset Ω of \mathbb{R}^2 to \mathbb{R}^2 , it is differentiable at the point (x_0, y_0) .
 - (b) Conclude from 1.2.a that f must be continuous at z_0 .
 - (c) Does the converse of 1.2.a hold?
 - (d) If the converse of 1.2.a is false, then find necessary and sufficient conditions on f so that the converse of 1.2.a holds true.
 - (e) Can you express the conditions obtained above in 1.2.d in polar coordinates?
- In each of the following cases, find all points in \mathbb{C} at which f is holomorphic:
 - (a) $f(z) \stackrel{\text{def}}{=} \bar{z}$

- (b) $f(z) \stackrel{\text{def}}{=} |z|$ (c) $f(z) \stackrel{\text{def}}{=} |z|^2$ (d) $f(z) \stackrel{\text{def}}{=} e^{\text{Re } z}$.
- Assume that $\Omega \subseteq \mathbb{C}$ is open and connected and $f:\Omega \longrightarrow \mathbb{C}$ is holomorphic. In each of the following cases show that f is constant:
 - (a) Re f is constant
- (b) Im f is constant
- (c) |f| is constant.

- 1.5. Let $z_0 \in \Omega \subseteq_{open} \mathbb{C}$ and $f : \Omega \longrightarrow \mathbb{C}$.
 - (a) Show that f is holomorphic at z_0 if and only if $\exists f^* : \Omega \xrightarrow[\text{cts. at } z_0]{} \mathbb{C}$ satisfying

$$f(z)-f(z_0)=f^*(z)(z-z_0),\,\forall z\in\Omega.$$

- (b) Find $f^*(z_0)$ in case of 1.5.a.
- Suppose that $z_0 \in \Omega \subseteq_{open} \mathbb{C}$ and $f, g : \Omega \longrightarrow \mathbb{C}$ are holomorphic at z_0 . Show the following:
 - (a) $f \pm g$ is differentiable at z_0 and $(f \pm g)'(z_0) = f'(z_0) \pm g'(z_0)$.
 - (b) fg is differentiable at z_0 and $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$.
 - (c) If $g(z_0) \neq 0$, there exists r > 0 such that $D(z_0; r) \subseteq \Omega_1$ and g vanishes nowhere in $D(z_0; r)$.
 - (d) Let g be as above in 1.6.c. Then $\frac{1}{g}:D(z_0;r)\longrightarrow\mathbb{C}$ is differentiable at z_0 and

$$\left(\frac{1}{g}\right)'(z_0) = -\frac{g'(z_0)}{g(z_0)^2}.$$

1

(e) Let g be as above in 1.6.c. The function $\frac{f}{g}:D(z_0;r)\longrightarrow\mathbb{C}$ is differentiable at a and $\left(\frac{f}{g}\right)'(z_0)=$ $\frac{g(z_0)f'(z_0) - f(z_0)g'(z_0)}{g(z_0)^2}.$

In 1.7. and 1.8., we let $\Omega_1, \Omega_2 \subseteq_{open} \mathbb{C}, z_0 \in \Omega_1, f : \Omega_1 \longrightarrow \Omega_2$ and $g : \Omega_2 \longrightarrow \mathbb{C}$.

1.7. Show that if f is holomorphic at z_0 and g is holomorphic at $f(z_0)$, then $g \circ f$ is also holomorphic at z_0 and $(g \circ f)'(z_0) = g'(f(z_0))f'(z_0)$.

1.8. Assume that f is continuous at z_0 , g is holomorphic at $f(z_0)$ and $\forall z \in \Omega_1$, g(f(z)) = z. Show that, if $g'(f(z_0)) \neq 0$ then f must be holomorphic at z_0 and $f'(z_0) = \frac{1}{g'(f(z_0))}$.

In 1.9. and 1.10., let $f:[a,b] \to \mathbb{C}$ be Riemann integrable and $\gamma:[a,b] \to \mathbb{C}$ be a continuous curve. Recall that the function

$$F(z) \stackrel{\text{def}}{=} \int_{a}^{b} \frac{f(t)}{\gamma(t) - z} dt, \ \forall z \notin \gamma^*,$$

is holomorphic. In fact, if $z_0 \in \mathbb{C} \setminus \gamma^*$ and r > 0 such that $D(z_0; r) \cap \gamma^* = \emptyset$, then we see that

$$F(z) = \sum_{n=0}^{\infty} \left(\int_{a}^{b} \frac{f(t)}{(\gamma(t) - z_0)^{n+1}} dt \right) (z - z_0)^n, \ \forall z \in D(z_0; r).$$

1.9. For any $n \in \mathbb{N}$, define the function $F_n : \mathbb{C} \setminus \gamma^* \longrightarrow \mathbb{C}$ as follows:

$$F_n(z) = \int_a^b \frac{f(t)}{(\gamma(t) - z)^n} dt, \ \forall z \notin \gamma^*.$$

Then show that, F_n is holomorphic and

$$F'_n(z) = n \int_a^b \frac{f(t)}{(\gamma(t) - z)^{n+1}} dt, \ \forall z \notin \gamma^*.$$

1.10. Consider $z_0 \in \mathbb{C} \setminus \gamma^*$ and r > 0 such that $D(z_0; r) \cap \gamma^* = \emptyset$. For any $n \ge 0$, consider the *n*-th remainder term of the Taylor series of F at z_0 , i.e.,

$$R_n(z) \stackrel{\text{def}}{=} F(z) - \sum_{k=0}^n \frac{F^{(k)}(z_0)}{k!} (z - z_0)^k, \ \forall z \in D(z_0; r).$$

Show that, for every $z \in D(z_0; r)$,

$$R_n(z) = (z - z_0)^{n+1} \int_a^b \frac{f(t)}{(\gamma(t) - z_0)^{n+1} (\gamma(t) - z)} dt.$$

2. Analytic maps on $\mathbb D$ and $\mathbb H$

In what follows, \mathbb{D} and \mathbb{H} stand for the unit disc D(0;1) and the upper half plane $\{z \in \mathbb{C} : \text{Im } z > 0\}$ respectively. For $\Omega_{open} \subseteq \mathbb{C}$, by an *(analytic) automorphism* of Ω we mean a bijective holomorphic map from Ω to Ω whose inverse is also holomorphic. It is easy to see that, the set of all automorphisms of Ω forms a group with respect to composition. This group is denoted by $\text{Aut}(\Omega)$.

2.1. Consider the following maps

$$F: \mathbb{H} \longrightarrow \mathbb{C}, \ F(z) \stackrel{\text{def}}{=} \frac{i-z}{i+z},$$

and

$$G: \mathbb{D} \longrightarrow \mathbb{C}, \ G(w) \stackrel{\text{def}}{=} i \frac{1-w}{1+w}.$$

Show the following:

- (a) F and G are inverse to each other.
- (b) Both are holomorphic.

(c) The groups $Aut(\mathbb{H})$ and $Aut(\mathbb{D})$ are isomorphic.

2.2. Let
$$g \stackrel{\text{def}}{=} \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R})$$
 and $z \in \mathbb{H}$. Define $gz = \frac{az+b}{cz+d}$.

- (a) Verify that $gz \in \mathbb{H}$, for all $z \in \mathbb{H}$.
- (b) Show that, for any $g \in SL_2(\mathbb{R})$, the map $\mathbb{H} \longrightarrow \mathbb{H}$, $z \mapsto gz$, is an automorphism of \mathbb{H} .

2.3. Let
$$w \in \mathbb{D}$$
. Consider the function $\varphi_w : \overline{\mathbb{D}} \longrightarrow \overline{\mathbb{D}}$, $\varphi_w(z) \stackrel{\text{def}}{=} \frac{w - z}{1 - \overline{w}z}$.

- (a) Verify that $\varphi_w(z) \in \overline{\mathbb{D}}$, for all $z \in \overline{\mathbb{D}}$.
- (b) Show that, φ_w maps $\mathbb D$ and $\partial \mathbb D$ to $\mathbb D$ and $\partial \mathbb D$ respectively.
- (c) Show that $\varphi_w \in Aut(\mathbb{D})$.

In what follows, for any $g \in SL_2(\mathbb{R})$ and $z \in \mathbb{H}$, we let gz be as defined above in 2.2.

2.4.** (a) Show that, the following defines an action of the group $SL_2(\mathbb{R})$ on \mathbb{H} :

$$(g, z) \mapsto gz, \ \forall (g, z) \in \mathrm{SL}_2(\mathbb{R}) \times \mathbb{H}.$$
 (2.1)

(b) Geometrially describe how the following matrices act on a point $z \in \mathbb{H}$:

(i)
$$\begin{pmatrix} a & 0 \\ 0 & \frac{1}{a} \end{pmatrix}$$
, where $a > 0$ (ii) $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$, where $n \in \mathbb{R}$.

- (c) Show that the action defined as above in (2.1) is transitive.
- (d) Find the stabilizer of the point i under the action defined in (2.1).
- (e) Consider the following subgroups:

$$A \stackrel{\text{def}}{=} \left\{ \begin{pmatrix} a & 0 \\ 0 & \frac{1}{a} \end{pmatrix} : a > 0 \right\},$$

$$N \stackrel{\text{def}}{=} \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{R} \right\},$$

and

$$K \stackrel{\text{def}}{=} \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\}.$$

Using 2.4.c and 2.4.d, show that, for every $g \in SL_2(\mathbb{R})$, there exist $a \in A$, $n \in N$ and $k \in K$ such that g = nak. (**Hint:** Do you see that A normalizes N?)

(f) For any $g \in SL_2(\mathbb{R})$, are the matrices n, a and k obtained in 2.4.e unique?

2.5.* Consider

$$S \stackrel{\text{def}}{=} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } T \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \tag{2.2}$$

- (a) Find the orders of S, T and ST.
- (b) Let \mathcal{G} be the part of either a vertical line or a circle centred on the real axis in \mathbb{H} . What can you say about $S(\mathcal{G})$ and $T(\mathcal{G})$? (**Hint:** What are the equations of a line or circle in \mathbb{C} ?)
- (c) Let $D \stackrel{\text{def}}{=} \{z \in \mathbb{C} : |z| \ge 1 \text{ and } |\operatorname{Re} z| \le \frac{1}{2} \}$. Find the image of D under T, S, TS, ST, TS^{-1} and $S^{-1}T$.