2022 Fall

FINE 6310-Market Neutral Project

Group 1

Yujun Liu, 218374314

Vivek Solanki, 219101229

Yiyang Yao, 219309921

Abstract

Our objective is to create a market-neutral portfolio with three pairs of long-short pair trading from 3 different sectors to ensure the portfolio's value is not impacted by the market condition change. The three sectors have different extents of sensitivity to the economic condition in the investment universe. The first pair DVA and PHG are from the Healthcare industry, which is relatively defensive to the macro condition change. The second and third pairs are MEI and CAJ, SAH and F, which are from Technology and Consumer cyclical, respectively. The latter two-sector heavily relies on economic condition and are sensitive to market volatility. We used twenties years of monthly data from 2002 to 2021 of the respective companies and three Fama French model factors generated from WRDS to create a market-neutral portfolio. In the first stage, we compute each company's market beta; then, we use their Beta of market volatility to assign weight against its pair. Each pair was confirmed market-neutral, and the final portfolio was the average weight of the three pairs. The out-of-sample Beta is 1.3556, which indicates our portfolio will not remain neutral over time and requires reweighting.

Contents

Introduction	3
Literature Review	3
Data Description	5
Methodology	5
Result	6
Conclusion	7
APPENDIX A: Companies Selections:	8
APPENDIX B: Functional Form of Fama French Model	8
Excel Summary Statistics	9
APPENDIX C: Summary Statistics of Raw Data	9
APPENDIX D: Summary Statistics of Portfolio	9
Appendix E: Hedge Portfolio CAJ-MEI Reg 01-11	10
Appendix F: Hedge Portfolio SAH-F Reg 01-11	10
APPENDIX G: Hedge Portfolio DVA-PHG Reg 01-11	11
APPENDIX H: Hedge Portfolio Reg 2012-2021	11
APPENDIX I: Hedge Portfolio Reg 2012-2017	12
APPENDIX J: MEI	13
APPENDIX K: CAJ	13
APPENDIX L: SAH	14
APPENDIX M: F	14
APPENDIX O: DVA	15
APPENDIX P: PHG	15
Python Summary Statistics	16
APPENDIX Q: Python Code:	16
APPENDIX R: Python Output - In-sample Final Portfolio	17
APPENDIX S: Python Output – Out-of-sample Final Portfolio	18
SAS Summary Statistics	19
APPENDIX T: SAS Code	19
APPENDIX U: In-sample	20
APPENDIX V: Out of sample	22
	2-

Introduction

The focus of this research is to form a market-neutral (Beta = 0) equity-only portfolio by hedging two securities to develop a long-short pair trading to ensure the portfolio's value will not be impacted by the market condition. In our portfolio construction, we incorporated multiple strategies in an attempt to create a robust portfolio.

Literature Review

- 1. A note on market-neutral portfolio selection-Clarence C.Y. Kwan *
 - a. Long-short equity strategies allow investors to benefit potentially from both undervalued and overvalued securities (p.g 1)
 - b. Unlike the other long-short trading strategies, the market-neutral strategy does not involve derivative securities. This is where a portfolio response to market movements is eliminated by offsetting market exposures with long and short equity holdings. The spread in returns between long and short positions provides a residual return relative to an underlying market index (p.g 24)
- 2. Patton, A.J. "Are `Market Neutral' Hedge Funds Really Market Neutral?", The Review of Financial Studies, 22(7), 2009, 2495-2530
 - a. The most commonly used risk-based definition of neutrality is based on correlation or "beta": a fund may be said to be market neutral if it generates returns that are uncorrelated with the returns on some market index(p.g 2)
 - b. While correlation and Beta are simple to compute and easy to interpret, the dynamic strategies employed by hedge fund managers and the resulting nonlinear payoff profiles mean that these simple measures of neutrality may provide misleading information about the true diversification benefits offered by these funds(p.g 2)

- c. The author proposes an alternative of five neutrality concepts: mean neutrality, Variance neutrality, value-at-risk neutrality, and tail neutrality. These four factors all relate to the neutrality of the risk of the hedge fund returns to market returns. And the final part is complete neutrality, which corresponds to the statistical independence of fund and market returns. (p.g 3)
- 3. Gatev, E., Goetzmann, W., Rouwenhorst, K.G. Pairs Trading: Performance of a Relative-Value Arbitrage Rule, The Review of Financial Studies, 19(3), 2006, 797–827.
 - a. The concept of pairs trading is disarmingly simple. Find two stocks whose prices have moved together historically; when the spread between them widens, short the winner and buy the loser. If history repeats itself, prices will converge, and the arbitrageur will profit. It is hard to believe that such a simple strategy, based solely on past price dynamics and simple contrarian principles, could possibly make money. If the U.S. equity market were efficient at all times, risk-adjusted returns from pairs trading should not be positive(p.g 1)
 - The author found that trading suitably formed pairs of stocks exhibits profits which are robust to conservative estimates of transaction costs. These profits are uncorrelated to the S&P 500;
 - i. however, they do exhibit low sensitivity to the spreads between small and large stocks and between value and growth stocks in addition to the spread between high- and intermediate-grade corporate bonds and shifts in the yield curve.
 - c. One view of the lower profitability of pairs trading in recent year is that returns are competed away by increased hedge fund activity. The alternative view, taken in this article, is that abnormal returns to pairs strategies are compensation to arbitrageurs for enforcing the "Law of One Price." (p.g 30)

Data Description

WRDS (Wharton research data services, 2022) was used to source all of the data tested in this report. We have collected 20 years of the HPR (holding period returns) from CRSP of six selected companies traded on the U.S. stock exchanges from December 31, 2001, to December 31, 2021, with a total of 241 observations per company. The first ten years are used as an estimation window, while the last ten years will be out of the sample window to examine our profile evolution over time.

Data procedures: The first ten years from 2002 -2011 are defined as the in-sample period, and the last ten years are defined as the out-of-sample period.

The following data is for the in-sample period data for each company (a complete summary can be found in Appendix: C)

	Defensive		Sen	sitive	Cyclical		
SECTOR	Healthcare		Tech	nology	Consumer cyclical		
Ticker	DVA	PHG	MEI	CAJ	SAH	F	
Mean	0.01426994	0.002891595	0.0106667	0.008130833	0.01839155	0.008876813	
Standard Error	0.0061256	0.008750481	0.0130954	0.006242874	0.02345998	0.016534361	
Median	0.01019679	-0.006320895	-0.0063991	0.010540459	0.00126945	-0.02203607	
Standard Deviation	0.06710259	0.095856721	0.14345294	0.068387261	0.2569912	0.181124852	
Sample Variance	0.00450276	0.009188511	0.02057875	0.004676817	0.06604448	0.032806212	

The return data suggest that the characteristics of each security vary from period to period. Although not significant, we predict that these variations between the in-period and out-period will likely cause our market-neutral portfolio will fail to keep neutrality from the in-sample period to the out-of-sample period.

Methodology

(Complete steps see Appendix:B)

We have selected six securities to form 3 long-short trading pairs from Healthcare, Technology and Consumer cyclical to achieve such a goal. These three industries have different extents of sensitivity to the economic condition. For example, where Health Care is relatively defensive to the macro condition change, Consumer cyclical heavily relies on economic conditions, and Technology is sensitive to market

volatility. Therefore, in each target industry, we selected a large-cap and a small stock with the intent of longing the smaller-cap companies and shorting the larger cap to increase Abnormal return.. The six companies are DaVita Inc. (DVA) and Koninklijke Philips N.V. (PHG), Methode Inc. (MEI) and Canon Inc. (CAJ), Sonic Automotive, Inc. (SAH) and Ford Motor Company (F).

We used the Fama Frech Asset Pricing Model to estimate the expected return, abnormal return α , and corresponding sensitivity factors β s for each stock by running three platforms (Python, SAS, and Excel).

- We ran a regression of excessive returns on the three factors for each of the six securities using the in-period data. Following this, we recorded the Beta of each security. Finally, the weights of each pair were calculated based on the Beta(βi_{Mkt})
- 2. We regressed the three factors for each pair using the in-period factor data to confirm if we successfully created three market-neutral pairs.
- 3. Lastly, we average the weight of the three pairs to create a market-neutral portfolio.

Through dynamic pair trading, we achieve a market-neutral investment goal, with the correlation coefficient βi_{Mkt} determining the weight of each security within the pair. The factor exposure β_s could change over time, and the portfolio may need to be re-assessed, and the weights of the stock in each pair may be required to be reweighted in the long term.

Result

The results we obtained from Excel, Python, and SAS are consistent and share the same values. For the in-sample final portfolio, the Beta of the portfolio is close to 0, which is -4.18e-18, and the fitness of the data is 0.033, which means our portfolio is well diversified and market neutral hedged. The Alpha of estimates is 0.0176, which shares that our portfolio brings a positive return while market-neutral hedged. For the small minus big (SMB), we obtained a value of 0.829, and the P-value for SMB is 0.076 indicating the SMB is indeed statistically significant. On the other hand, we obtained a value of 0.099 for the high minus low (HML). The P-value of HML is 0.817. The P-values indicate that the result for HML is not

statistically significant. Hence for the in-sample period, our primary(market-neutral) and secondary objective(small minus big) both hold, and it can generate an abnormal return.

After assigning the weight using the formula from Appendix B, we obtained data for the out-of-sample Market-Neutral Hedged portfolio. Again, the results we got from Excel, python and SAS are consistent since they share the same values. In the out of the sample, the Beta is worse than what we obtained from the in-sample. With a beta of 1.3557 and an R-square of 0.072, the Beta is statistically significant. The coefficient of return, Alpha, in the out-of-sample is -0.011, which means we now have a portfolio of slightly negative returns. The SMB and HML are now both negative and statistically insignificant. Overall, our out-of-sample portfolio is starting to fall apart in terms of our primary and secondary objectives; it has a negative return and is higher than market risk. Market neutral is not hedged; therefore, our market neutral hedge strategy did not meet our expectations.

Conclusion

Our work is consistent with our expectations and the literature we reviewed earlier in the report, such that our portfolio being a simple long-short market-neutral portfolio, cannot withstand the challenge of time. In addition, our report has not considered transaction costs, and it will be too costly to rebalance the portfolio constantly; it will futher decrease the already low excessive return of our market-neutral portfolio. We also believe a simple long-short trading pair that only considers Beta and SMB are insufficient and misleading, and more variables should be considered.

APPENDIX A: Companies Selections:

	Smal	ller-Cap	Larger-Cap		
SECTOR	TICKER	Market Cap	TICKER	Market Cap	
Healthcare	DVA	6.70 billion	PHG	13.47 billion	
Technology	MEI	1.84 billion	CAJ	30.16 billion	
Consumer cyclical	SAH	1.90 billion	F	55.72 billion	

APPENDIX B: Functional Form of Fama French Model

 $Return = \alpha + \beta_1(r_m - r_f) + \beta_2(SMB) + \beta_3(HML) + \varepsilon$

- $r_m r_f$: Market risk
- SMB: size premium(small minus big)
- *HML*: value premium (High minus low)

Weight calculation:

- $w_{MEI}\beta_{MEI} + w_{CAI}\beta_{CAI} = 0$
- $w_{SAH}\beta_{SAH} + w_F\beta_F = 0$
- $\bullet \quad w_{DVA}\beta_{DVA} + w_{PHG}\beta_{PHG} = 0$

$$\mbox{Hedge Portfolio} \ = \ \frac{\mbox{\it Weight}_{MEI-CAJ} + \mbox{\it Weight}_{SAH-F} + \mbox{\it Weight}_{DVA-PHG}}{3}$$

Excel Summary Statistics

APPENDIX C: Summary Statistics of Raw Data

Summary Stats in Estimation Window	MEI	CAJ	SAH	F	DVA	PHG	mktrf	SMB	HML
12/31/01 - 11/30/11	0.010666697	0.008130833	0.018391546	0.008876813	0.014269937	0.002891595	0.002745833	0.004034167	0.000715
Mean	0.013095402	0.006242874	0.02345998	0.016534361	0.0061256	0.008750481	0.004277468	0.002274349	0.002378437
Standard Error	-0.006399149	0.010540459	0.001269452	-0.022036067	0.010196794	-0.006320895	0.00895	0.0013	0.0009
Median	0.143452944	0.068387261	0.256991203	0.181124852	0.067102591	0.095856721	0.046857314	0.024914245	0.02605447
Standard Deviation	0.020578747	0.004676817	0.066044478	0.032806212	0.004502758	0.009188511	0.002195608	0.00062072	0.000678835
Sample Variance	4.168665451	-0.267460712	46.291073	19.98343216	-0.144985332	1.201800027	1.117232505	-0.53796512	2.926355473
Kurtosis	1.176575854	0.008798469	5.528067869	2.910194204	0.137385071	-0.103436484	-0.552445644	0.166640952	-0.561719182
Skewness	1.005171643	0.318718842	2.714849667	1.85331029	0.336619777	0.557414386	0.2858	0.1132	0.1892
Range	-0.304154307	-0.157736067	-0.489949763	-0.579646157	-0.148274034	-0.32190092	-0.1723	-0.0528	-0.1129
Minimum	0.701017337	0.160982774	2.224899905	1.273664133	0.188345742	0.235513465	0.1135	0.0604	0.0763
Maximum	1.280003691	0.975700018	2.206985507	1.065217572	1.712392478	0.346991389	0.3295	0.4841	0.0858
Sum	120	120	120	120	120	120	120	120	120
Count									
Summary Stats 12/30/11 - 12/31/21	MEI	CAJ	SAH	F	DVA	PHG	mktrf	SMB	HML
Mean	0.020890793	-0.002195332	0.017988617	0.011890818	0.011600716	0.009290232	0.013116529	-6.8595E-05	-0.001908264
Standard Error	0.009768154	0.004901214	0.011259718	0.007611603	0.007125278	0.006218458	0.003571071	0.002231842	0.002751592
Median	0.023251176	-0.003659736	0.00440081	0.007673689	0.004468352	0.011276238	0.0154	0.0023	-0.0042
Standard Deviation	0.107449689	0.053913351	0.123856894	0.083727633	0.078378061	0.068403037	0.03928178	0.024550261	0.030267512
Sample Variance	0.011545436	0.002906649	0.01534053	0.007010317	0.00614312	0.004678975	0.001543058	0.000602715	0.000916122
Kurtosis	2.078758465	1.488606103	6.672092605	1.995008986	2.931044207	1.266205172	2.246400792	0.002398913	3.576264313
Skewness	-0.363838961	-0.327949959	0.663094457	-0.062527758	0.520457663	-0.431068227	-0.46158946	0.341750695	-0.28618832
Range	0.777872145	0.328873783	1.137147747	0.566433274	0.516927477	0.426889047	0.2704	0.1222	0.2216
Minimum	-0.415086299	-0.1903854	-0.523442887	-0.307334505	-0.223011192	-0.255449742	-0.1339	-0.0488	-0.1397
Maximum	0.362785846	0.138488384	0.61370486	0.259098768	0.293916286	0.171439305	0.1365	0.0734	0.0819
Sum	2.527785985	-0.265635218	2.176622674	1.438788946	1.403686632	1.124118063	1.5871	-0.0083	-0.2309
Count	121	121	121	121	121	121	121	121	121

APPENDIX D: Summary Statistics of Portfolio

Summary Stats in Estimation Window				
12/31/01 - 11/30/11	Final Hedge Portfolio	Hedge Portfolio CAJ-MEI	Hedge Portfolio SAH-F	Hedge Portfolio DVA-PHG
Mean	0.022322811	-0.00207086	0.007731693	0.057277906
Standard Error	0.010855429	0.013342106	0.016172671	0.024853571
Median	0.029705278	0.028870079	0.014462012	0.046689294
Standard Deviation	0.118915267	0.146155452	0.17716273	0.27225723
Sample Variance	0.014140841	0.021361416	0.031386633	0.074123999
Kurtosis	0.684320555	3.540818226	5.537872631	-0.339328264
Skewness	0.191964884	-1.249778142	0.79598791	0.179801811
Range	0.702356123	0.982877498	1.364259866	1.326741866
Minimum	-0.242094028	-0.658150863	-0.564505133	-0.560503986
Maximum	0.460262094	0.324726635	0.799754733	0.766237881
Sum	2.678737322	-0.248503195	0.927803172	6.87334873
Count	120	120	120	120

Appendix E: Hedge Portfolio CAJ-MEI Reg 01-11

SUMMARY OUTPUT								
Regre	ession Statistics							
Multiple R	0.29363377							
R Square	0.086220791							
Adjusted R Square	0.06258857							
Standard Error	0.141507723							
Observations	120							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	0.219173985	0.073057995	3.648442141	0.014734639			
Residual	116	2.322834545	0.020024436					
Total	119	2.54200853						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.004255893	0.013087583	0.325185574	0.745626404	-0.021665715	0.030177501	-0.021665715	0.030177501
mktrf	-3.258E-16	0.30506849	-1.06796E-15	1	-0.604226583	0.604226583	-0.604226583	0.604226583
SMB	-1.451621787	0.561875094	-2.58353111	0.01102127	-2.564486209	-0.338757364	-2.564486209	-0.338757364
HML	-0.658278434	0.520956254	-1.263596373	0.208908512	-1.690097937	0.37354107	-1.690097937	0.37354107

Appendix F: Hedge Portfolio SAH-F Reg 01-11

SUMMARY OUTPUT								
Regre	ession Statistics							
Multiple R	0.281061602							
R Square	0.078995624							
Adjusted R Square	0.055176545							
Standard Error	0.172205769							
Observations	120							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	0.295049393	0.098349798	3.316485291	0.02242962			
Residual	116	3.439959933	0.029654827					
Total	119	3.735009325						
-	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.002846386	0.015926745	0.178717351	0.858471407	-0.028698539	0.03439131	-0.028698539	0.03439131
mktrf	-5.42999E-17	0.37124867	-1.46263E-16	1	-0.735304769	0.735304769	-0.735304769	0.735304769
SMB	0.941429741	0.683765739	1.376830817	0.171216007	-0.412854461	2.295713943	-0.412854461	2.295713943
HML	1.520871317	0.633970151	2.398963603	0.01803487	0.265213552	2.776529082	0.265213552	2.776529082

APPENDIX G: Hedge Portfolio DVA-PHG Reg 01-11

ression Statistics							
0.26899257							
0.072357003							
0.048366235							
0.265591605							
120							
df	SS	MS	F	Significance F			
3	0.638243459	0.21274782	3.016035382	0.032809944			
116	8.18251246	0.070538901					
119	8.820755919						
Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
0.045595311	0.024563693	1.856207492	0.065961652	-0.003056178	0.094246801	-0.003056178	0.094246801
-3.258E-16	0.572573906	-5.69009E-16	1	-1.134054766	1.134054766	-1.134054766	1.134054766
2.995901291	1.054566526	2.840884116	0.005315406	0.907199409	5.084603173	0.907199409	5.084603173
-0.564154398	0.977767181	-0.576982342	0.565069448	-2.500745502	1.372436705	-2.500745502	1.372436705
	0.26899257 0.072357003 0.048366235 0.265591605 120 df 3 116 119 Coefficients 0.045595311 -3.258E-16 2.995901291	0.26899257 0.072357003 0.048366235 0.265591605 120 df SS 3 0.638243459 116 8.18251246 119 8.820755919 Coefficients Standard Error 0.045595311 0.024563693 -3.258E-16 0.572573906 2.995901291 1.054566526	0.26899257 0.072357003 0.048366235 0.265591605 120 df SS MS 3 0.638243459 0.21274782 116 8.18251246 0.070538901 119 8.820755919 Coefficients Standard Error t Stat 0.045595311 0.024563693 1.856207492 -3.258E-16 0.572573906 -5.69009E-16 2.995901291 1.054566526 2.840884116	0.26899257 0.072357003 0.048366235 0.265591605 120 df SS MS F 3 0.638243459 0.21274782 3.016035382 116 8.18251246 0.070538901 119 8.820755919 Coefficients Standard Error t Stat P-value 0.045595311 0.024563693 1.856207492 0.065961652 -3.258E-16 0.572573906 -5.69009E-16 1 2.995901291 1.054566526 2.840884116 0.005315406	0.26899257 0.072357003 0.048366235 0.048366235 0.265591605 0.265591605 120 120 55 MS F Significance F 3 0.638243459 0.21274782 3.016035382 0.032809944 116 8.18251246 0.070538901 0.032809944 119 8.820755919 4	0.26899257 0.072357003 0.048366235 0.048366235 0.265591605 0.265591605 120 120 55 MS F Significance F 3 0.638243459 0.21274782 3.016035382 0.032809944 116 8.18251246 0.070538901 0.032809944 119 8.820755919 0.0032809944 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 0.045595311 0.024563693 1.856207492 0.065961652 -0.003056178 0.094246801 -3.258E-16 0.572573906 -5.69009E-16 1 -1.134054766 1.134054766 2.995901291 1.054566526 2.840884116 0.005315406 0.907199409 5.084603173	0.26899257 0.072357003 0.048366235 0.265591605 120 df

APPENDIX H: Hedge Portfolio Reg 2012-2021

SUMMARY OUTPUT								
Regressi	ion Statistics							
Multiple R	0.459128035							
R Square	0.210798552							
Adjusted R Square	0.190562618							
Standard Error	0.100904006							
Observations	121							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	0.318186995	0.106062332	10.41704061	3.97467E-06			
Residual	117	1.191249347	0.010181618					
Total	120	1.509436342						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.011399932	0.009766787	-1.167214193	0.245497215	-0.030742542	0.007942677	-0.030742542	0.007942677
mktrf	1.355756479	0.246311052	5.504245409	2.22219E-07	0.867950347	1.843562611	0.867950347	1.843562611
SMB	-0.223133497	0.394545626	-0.565545484	0.572785764	-1.004510434	0.55824344	-1.004510434	0.55824344
HML	-0.274596449	0.309801997	-0.886361134	0.377241182	-0.888143069	0.338950171	-0.888143069	0.338950171

APPENDIX I: Hedge Portfolio Reg 2012-2017

SUMMARY OUTPUT								
Regression St	tatistics							
Multiple R	0.339517311							
R Square	0.115272004							
Adjusted R Square	0.067875862							
Standard Error	0.084981228							
Observations	60							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	0.052692415	0.017564138	2.432096749	0.074532647			
Residual	56	0.40442131	0.007221809					
Total	59	0.457113726						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.011640565	0.011881967	-0.979683343	0.331456012	-0.035443005	0.012161875	-0.035443005	0.012161875
X Variable 1	0.881121193	0.37022614	2.37995403	0.020744697	0.139469115	1.622773271	0.139469115	1.622773271
X Variable 2	0.269454876	0.513672329	0.524565682	0.601955582	-0.75955445	1.298464201	-0.75955445	1.298464201
X Variable 3	0.074877173	0.514448937	0.145548308	0.884800611	-0.955687886	1.105442231	-0.955687886	1.105442231

APPENDIX J: MEI

SUMMARY OUTPU	Т							
Regression S	itatistics							
Multiple R	0.541702837							
R Square	0.293441964							
Adjusted R Square	0.275168911							
Standard Error	0.122131551							
Observations	120							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	0.718601492	0.239533831	16.05872696	8.50951E-09			
Residual	116	1.730269429	0.014916116					
Total	119	2.448870921						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.001307353	0.011295545	0.115740605	0.908058249	-0.021064897	0.023679604	-0.021064897	0.023679604
mktrf	0.987169768	0.263296497	3.749270416	0.000278179	0.465677879	1.508661656	0.465677879	1.508661656
SMB	1.510964734	0.484939445	3.115780226	0.00231246	0.550481059	2.471448409	0.550481059	2.471448409
HML	0.77378598	0.449623483	1.720964338	0.087923415	-0.116749982	1.664321942	-0.116749982	1.664321942

APPENDIX K: CAJ

SUMMARY OUTPU	Γ							
Regression S	tatistics							
Multiple R	0.66036694							
R Square	0.436084496							
Adjusted R Square	0.421500474							
Standard Error	0.052014774							
Observations	120							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	0.242699023	0.080899674	29.90152551	2.14706E-14			
Residual	116	0.313842256	0.002705537					
Total	119	0.556541279						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.005262295	0.004810675	1.09387865	0.276274505	-0.004265853	0.014790443	-0.004265853	0.014790443
mktrf	0.933767424	0.112135706	8.327119483	1.873E-13	0.711668528	1.155866319	0.711668528	1.155866319
SMB	0.056132707	0.206531525	0.271787597	0.786268471	-0.352929002	0.465194416	-0.352929002	0.465194416
HML	0.109259003	0.191490762	0.570570619	0.569394339	-0.270012579	0.488530584	-0.270012579	0.488530584

APPENDIX L: SAH

Г							
tatistics							
0.588483188							
0.346312462							
0.32940675							
0.210449474							
120							
df	55	MS	F	Significance F			
3	2.721771077	0.907257026	20.48493777	1.01148E-10			
116	5.137521829	0.044288981					
119	7.859292906						
Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
0.004100345	0.019463779	0.210665431	0.833517965	-0.034450122	0.042650812	-0.034450122	0.042650812
2.231466657	0.453696108	4.918417008	2.90386E-06	1.332864347	3.130068966	1.332864347	3.130068966
1.647710584	0.835617418	1.971848059	0.05100717	-0.007335002	3.302756171	-0.007335002	3.302756171
2.121434729	0.774763154	2.738171941	0.007152928	0.586918681	3.655950778	0.586918681	3.655950778
	dtistics 0.588483188 0.346312462 0.32940675 0.210449474 120 df 3 116 119 Coefficients 0.004100345 2.231466657 1.647710584	tatistics 0.588483188 0.346312462 0.32940675 0.210449474 120 df SS 3 2.721771077 116 5.137521829 119 7.859292906 Coefficients Standard Error 0.004100345 0.019463779 2.231466657 0.453696108 1.647710584 0.835617418	tatistics 0.588483188 0.346312462 0.32940675 0.210449474 120 df SS MS 3 2.721771077 0.907257026 116 5.137521829 0.044288981 119 7.859292906 Coefficients Standard Error t Stat 0.004100345 0.019463779 0.210665431 2.231466657 0.453696108 4.918417008 1.647710584 0.835617418 1.971848059	tatistics 0.588483188 0.346312462 0.32940675 0.210449474 120 df SS MS F 3 2.721771077 0.907257026 20.48493777 116 5.137521829 0.044288981 119 7.859292906 Coefficients Standard Error t Stat P-value 0.004100345 0.019463779 0.210665431 0.833517965 2.231466657 0.453696108 4.918417008 2.90386E-06 1.647710584 0.835617418 1.971848059 0.05100717	tatistics 0.588483188 0.346312462 0.32940675 0.210449474 120 df SS MS F Significance F 3 2.721771077 0.907257026 20.48493777 1.01148E-10 116 5.137521829 0.044288981 119 7.859292906 Coefficients Standard Error t Stat P-value Lower 95% 0.004100345 0.019463779 0.210665431 0.833517965 -0.034450122 2.231466657 0.453696108 4.918417008 2.90386E-06 1.332864347 1.647710584 0.835617418 1.971848059 0.05100717 -0.007335002	tatistics 0.588483188 0.346312462 0.32940675 0.210449474 120 df SS MS F Significance F 3 2.721771077 0.907257026 20.48493777 1.01148E-10 116 5.137521829 0.044288981 119 7.859292906 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 0.004100345 0.019463779 0.210665431 0.833517965 -0.034450122 0.042650812 2.231466657 0.453696108 4.918417008 2.90386E-06 1.332864347 3.130068966 1.647710584 0.835617418 1.971848059 0.05100717 -0.007335002 3.302756171	tatistics 0.588483188 0.346312462 0.32940675 0.210449474 120 df SS MS F Significance F 3 2.721771077 0.907257026 20.48493777 1.01148E-10 116 5.137521829 0.044288981 119 7.859292906 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% 0.004100345 0.019463779 0.210665431 0.833517965 -0.034450122 0.042650812 -0.034450122 2.231466657 0.453696108 4.918417008 2.90386E-06 1.332864347 3.130068966 1.332864347 1.647710584 0.835617418 1.971848059 0.05100717 -0.007335002 3.302756171 -0.007335002

APPENDIX M: F

SUMMARY OUTPU	Т							
Regression S	tatistics							
Multiple R	0.572007598							
R Square	0.327192692							
Adjusted R Square	0.309792503							
Standard Error	0.150476222							
Observations	120							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	1.277340386	0.425780129	18.80397349	5.24089E-10			
Residual	116	2.626598839	0.022643093					
Total	119	3.903939225						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.000856436	0.01391705	0.061538608	0.951036172	-0.026708036	0.028420908	-0.026708036	0.028420908
mktrf	2.015128474	0.324403169	6.211802677	8.4394E-09	1.372607122	2.657649826	1.372607122	2.657649826
SMB	0.546537155	0.597485703	0.914728422	0.362231738	-0.636858565	1.729932875	-0.636858565	1.729932875
HML	0.394892701	0.553973503	0.712836804	0.477378242	-0.702321623	1.492107025	-0.702321623	1.492107025

APPENDIX O: DVA

SUMMARY OUTPU	Т							
Regression S	itatistics							
Multiple R	0.45029216							
R Square	0.202763029							
Adjusted R Square	0.182144832							
Standard Error	0.06068446							
Observations	120							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	0.108646142	0.036215381	9.834178234	7.87664E-06			
Residual	116	0.427182023	0.003682604					
Total	119	0.535828164						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.010116593	0.005612506	1.802509098	0.074061923	-0.000999682	0.021232868	-0.000999682	0.021232868
mktrf	0.378279618	0.130826191	2.891467028	0.004579325	0.119161862	0.637397375	0.119161862	0.637397375
SMB	0.802385196	0.240955658	3.330011855	0.001164851	0.325142155	1.279628237	0.325142155	1.279628237
HML	-0.171054586	0.223407939	-0.765660284	0.445433579	-0.613542159	0.271432987	-0.613542159	0.271432987

APPENDIX P: PHG

SUMMARY OUTPU	Т							
Regression S	itatistics							
Multiple R	0.810442192							
R Square	0.656816547							
Adjusted R Square	0.647941113							
Standard Error	0.056876155							
Observations	120							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	0.718184763	0.239394921	74.00387838	8.09322E-27			
Residual	116	0.375248047	0.003234897					
Total	119	1.093432809						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.002938477	0.005260288	-0.55861524	0.577501069	-0.013357141	0.007480187	-0.013357141	0.007480187
mktrf	1.595024237	0.122616082	13.00827928	2.08061E-24	1.352167637	1.837880837	1.352167637	1.837880837
SMB	0.387373337	0.225834279	1.715299102	0.088960402	-0.059919909	0.834666583	-0.059919909	0.834666583
HML	-0.157100984	0.209387783	-0.750287249	0.454600863	-0.571819871	0.257617904	-0.571819871	0.257617904

Python Summary Statistics

APPENDIX Q: Python Code:

```
import pandas as pd
import numpy as np
import statsmodels.api as sm
indata = r'/Users/wewake/Desktop/Fall 2022/FINE6310/Assignment 3/Data.xlsx'
t = pd.read excel(indata)
tic_pair = [['MEI', 'CAJ'], ['SAH', 'F'], ['DVA', 'PHG']]
longshort = []
longshort in = []
for x in tic pair:
  Intercept = []
  Beta = []
  ls = []
  for tic in x:
    s1 = t[t['TICKER'].str.contains(tic)]
    s1.reset index(drop=True, inplace=True)
    X = s1[['mktrf', 'SMB', 'HML']].iloc[:120]
    print(x)
    X = sm.add constant(X)
    ret = s1.RET - s1.rf
    est = sm.OLS(ret.iloc[:120], X).fit()
    print("The model is for {}".format(tic))
    print(est.summary())
    df = pd.read html(est.summary().tables[1].as html(), header=0, index col=0)[0]
    i = df['coef'].values[0]
    b = df['coef'].values[1]
    Intercept.append(i)
    Beta.append(b)
    ls.append(ret)
    ret.reset index(drop=True, inplace=True)
    X.reset index(drop=True, inplace=True)
    print()
    print()
  long = np.argmax(Intercept)
  short = np.argmin(Intercept)
  b long = Beta[short] / Beta[long]
  temp = b_long * ls[long] - ls[short]
  temp1 = temp.iloc[:120]
  temp = temp.iloc[120:]
  longshort.append(temp)
  longshort in.append(temp1)
average Is = np.mean(np.array(longshort), axis=0)
average Is in = np.mean(np.array(longshort in), axis=0)
vwretd = s1[['mktrf', 'SMB', 'HML']].iloc[120:]
vwretd.reset index(drop=True, inplace=True)
print(vwretd.describe())
vwretd = sm.add constant(vwretd)
est = sm.OLS(average ls, vwretd).fit()
print("Final model taking average of longshort")
print(est.summary())
print("\n" * 5)
```

APPENDIX R: Python Output - In-sample Final Portfolio

Final model taking average of longshort In-Sample
OLS Regression Results

=======				=====			
Dep. Vari	able:		У	R-sq	uared:		0.033
Model:			OLS	Adj.	R-squared:		0.008
Method:		Least Squa	ares	F-st	atistic:		1.324
Date:		Fri, 02 Dec 2	2022	Prob	(F-statistic):	:	0.270
Time:		14:53	3:01	Log-	Likelihood:		89.701
No. Obser	vations:		120	AIC:			-171.4
Df Residu	als:		116	BIC:			-160.3
Df Model:			3				
Covarianc	e Type:	nonrol	oust				
	coe				P> t	-	0.975]
const	0.017				0.106		0.039
mktrf	-5.765e-0	5 0.251	-0	.000	1.000	-0.498	0.498
SMB	0.828	5 0.463	1	.790	0.076	-0.088	1.745
HML	0.099	5 0.429	0	.232	0.817	-0.750	0.949
Omnibus:		3.	.491	Durb	in-Watson:		2.131
Prob(Omni	bus):	0.	.175	Jarq	ue-Bera (JB):		3.224
Skew:		-0.	.220	Prob	(JB):		0.199
Kurtosis:		3.	671	Cond	. No.		44.9
=======							

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

APPENDIX S: Python Output – Out-of-sample Final Portfolio

Model:	OLS	Adj. R-squared:	0.191
Method:	Least Squares	F-statistic:	10.42
Date:	Fri, 02 Dec 2022	Prob (F-statistic):	3.98e-06
Time:	14:53:01	Log-Likelihood:	107.87
No. Observations:	121	AIC:	-207.7
Df Residuals:	117	BIC:	-196.6
Df Model:	3		
Covariance Type:	nonrobust		
CO	ef std err	t P> t	[0.025 0.975]
	L4 0.010 -	-1.167 0.245	-0.031 0.008
mktrf 1.35	0.246	5.504 0.000	0.868 1.843
SMB -0.22	31 0. 395 -	-0.566 0.573	-1.004 0.558
HML -0.27	46 0.310 ·	-0.886 0.377	-0.888 0.339
Omnibus	44.204		4.000
Omnibus:	11.304		1.850
Prob(Omnibus):	0.004	1 7	30.347
Skew:	-0.080	· /	2.57e-07
Kurtosis:	5.448	Cond. No.	44.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

SAS Summary Statistics

APPENDIX T: SAS Code

```
data CAJ; set week2.tech2; if ticker="CAJ";
CAJ=ret;
proc sort; by date;
data MEI; set week2.tech2; if permno="53197";
MEI=ret:
proc sort: by date:
data SAH; set week2.tech2; if ticker="SAH";
proc sort; by date;
data F; set week2.tech2; if ticker="F";
F=ret;
proc sort; by date;
data DVA; set week2.tech2; if ticker="DVA";
DVA=ret:
proc sort; by date;
data PHG; set week2.tech2; if ticker="PHG";
PHG=ret;
proc sort; by date;
data allt; merge CAJ MEI SAH F DVA PHG; by date;
data ff; set week2.ff1;
date=dateff;
HML=HML:
SMB=SMB:
UMD=UMD;
mktrf=mktrf;
proc sort; by date;
data all; merge allt (in=a) ff; by date;
year=year(date);
month=month(date);
CAJ=CAJ-rf;
MEI=MEI-rf;
SAH=SAH-rf;
F=F-rf;
DVA=DVA-rf;
PHG=PHG-rf;
proc means;
proc model data=all;
where date<mdy(12,1,2011);
CAJ= a1 +b_mktrf1*mktrf +b_SMB1*SMB +b_HML1*HML;
MEI= a2 +b_mktrf2*mktrf +b_SMB2*SMB +b_HML2*HML;
SAH= a3 +b_mktrf3*mktrf +b_SMB3*SMB +b_HML3*HML;
F= a4 +b_mktrf4*mktrf +b_SMB4*SMB +b_HML4*HML;
DVA= a5+b_mktrf5*mktrf+b_SMB5*SMB+b_HML5*HML;
PHG= a6+b_mktrf6*mktrf+b_SMB6*SMB+b_HML6*HML;
fit CAJ MEI SAH F DVA PHG/outest=neutral1 gmm kernel=(bart,2,0);
test a1, a2, a3 ,a4 ,a5 ,a6, /out=p;
data mktneutral; set all; if _n=1 then set neutral1;
mhedge1=(CAJ*b_mktrf2/b_mktrf1)-MEI;
mhedge2=(SAH*b_mktrf4/b_mktrf3)-F;
mhedge3=(DVA*b_mktrf6/b_mktrf5)-PHG;
hedge=(mhedge1+mhedge2+mhedge3)/3;
proc means;
var hedge mhedge1 mhedge2 mhedge3 CAJ MEI SAH F DVA PHG;
where date<mdy(12,1,2011);
proc corr data=mktneutral;
var hedge CAJ MEI SAH F DVA PHG;
proc model data=mktneutral;
where date<mdy(12,1,2011);
hedge= alpha +b_mktrf*mktrf +b_SMB*SMB +b_HML*HML;
fit hedge/gmm kernel=(bart,2,0);
title "Simple Market-Neutral Hedge, In-Sample"; run;
proc model data=mktneutral;
where date>mdy(12,1,2011);
hedge= alpha +b_mktrf*mktrf +b_SMB*SMB +b_HML*HML;
fit hedge/gmm kernel=(bart,2,0);
title "Simple Market-Neutral Hedge, Out-of-Sample"; run;
proc model data=mktneutral;
where date>mdy(12,1,2011);
\label{eq:hedge} hedge= alpha + b\_mktrf*mktrf + b\_SMB*SMB + b\_HML*HML + b\_UMD*UMD;
fit hedge/gmm kernel=(bart,2,0);
title "Simple Market-Neutral Hedge, Out-of-Sample"; run;
ods graphics / reset width=6.4in height=4.8in imagemap;
proc sgplot data=WORK.MKTNEUTRAL; where date>mdy(12,1,2011);
reg x=MEI y=hedge /CURVELABEL="Average Hedge Portfolio" LINEATTRS=( pattern=solid)
LEGENDLABEL="Regression Line Average Hedge";
reg x=MEI y=mhedge1 /CURVELABEL="Hedge Using Just MEI and CAJ" LINEATTRS=
(pattern=dot ) LEGENDLABEL="Regression Line CAJ/MEI Hedge";
yaxis grid;
run;
```

APPENDIX U: In-sample

Simple Market-Neutral Hedge, In-Sample

The MODEL Procedure

Nonlinear GMM Summary of Residual Errors							
Equation	Equation DF Model DF Error SSE MSE Root MSE R-Square Adj R-Sq						
hedge	4	116	1.5757	0.0136	0.1165	0.0331	0.0081

Nonlinear GMM Parameter Estimates								
Parameter Estimate Approx Std Err t Value Pr > t								
alpha	0.017566	0.0106	1.66	0.0993				
b_mktrf	-418E-18	0.2251	-0.00	1.0000				
b_SMB	0.82857	0.4121	2.01	0.0467				
b_HML	0.099479	0.3855	0.26	0.7968				

Number of Obse	ervations	Statistics for System			
Used	120	Objective	8.534E-33		
Missing	0	Objective*N	1.024E-30		

GMM Test Statistics							
Test DF Statistic Prob							
Overidentifying Restrictions 0 0.00 .							

Simple Market-Neutral Hedge, Out-of-Sample

The MODEL Procedure

	Nonlinear GMM Summary of Residual Errors							
Equation	Equation DF Model DF Error SSE MSE Root MSE R-Square Adj R-Sq							
hedge	hedge 4 117 1.1912 0.0102 0.1009 0.2108 0.1906							

Nonlinear GMM Parameter Estimates								
Parameter Estimate Approx Std Err t Value Pr > t								
alpha	-0.0114	0.00881	-1.29	0.1981				
b_mktrf	1.355756	0.2958	4.58	<.0001				
b_SMB	-0.22313	0.4044	-0.55	0.5821				
b_HML	-0.2746	0.2783	-0.99	0.3258				

Number of Observations		Statistics for System		
Used	121	Objective	2.542E-32	
Missing	0	Objective*N	3.075E-30	

GMM Test Statistics					
Test	DF	Statistic	Prob		
Overidentifying Restrictions	0	0.00			

Reference

- . 1) Borkovec, M., Domowitz, I., Kiernan, B., & Serbin, V. Portfolio optimization and the cost of trading. Journal of Investing, 19(2), 2010, 63-76.
- . 2) Gatev, E., Goetzmann, W., Rouwenhorst, K.G. Pairs Trading: Performance of a Relative-Value Arbitrage Rule, The Review of Financial Studies, 19(3), 2006, 797–827.
- . 3) Kwan, C.C.Y. "A note on market-neutral portfolio selection", Journal of Banking & Finance 23, 1999, 773-799.
- . 4) Patton, A.J. "Are `Market Neutral' Hedge Funds Really Market Neutral?", The Review of Financial Studies, 22(7), 2009, 2495-2530.