ΛΥΣΗ

α) Οι συντεταγμένες του σημείου Α επαληθεύουν τις εξισώσεις των δύο ελλείψεων αφού

$$\frac{2^2}{12} + \frac{2^2}{6} = \frac{4}{12} + \frac{4}{6} = \frac{2}{3} + \frac{1}{3} = 1 \quad \text{kat} \quad \frac{2^2}{6} + \frac{2^2}{12} = \frac{4}{6} + \frac{4}{12} = \frac{1}{3} + \frac{2}{3} = 1$$

Το σημείο Β είναι συμμετρικό του σημείο Α ως προς τον άξονα y'y, επομένως θα ανήκει στις δύο ελλείψεις, αφού και το σημείο Α ανήκει στις δύο ελλείψεις.

β) Η εφαπτομένη ε_1 της έλλειψης C_1 στο σημείο Α έχει εξίσωση:

$$\frac{2x}{12} + \frac{2y}{6} = 1 \Leftrightarrow \frac{x}{6} + \frac{2y}{6} = 1 \Leftrightarrow x + 2y = 6 \Leftrightarrow x + 2y - 6 = 0.$$

Η εφαπτομένη ϵ_2 της έλλειψης C_2 στο σημείο Β έχει εξίσωση:

$$\frac{-2x}{6} + \frac{2y}{12} = 1 \Leftrightarrow \frac{-2x}{6} + \frac{y}{6} = 1 \Leftrightarrow -2x + y = 6 \Leftrightarrow -2x + y - 6 = 0.$$

γ) Ο συντελεστής διεύθυνσης της εφαπτομένης $ε_1$ είναι $\lambda_1 = -\frac{1}{2}$ και ο συντελεστής διεύθυνσης της εφαπτομένης $ε_2$ είναι $\lambda_2 = 2$.

Οι εφαπτομένες ϵ_1 , ϵ_2 είναι κάθετες, γιατί $\lambda_1\lambda_2=-\frac{1}{2}\cdot 2=-1$.