

planetmath.org

Math for the people, by the people.

proof of necessary and sufficient condition for diagonalizability

 ${\bf Canonical\ name} \quad {\bf ProofOfNecessary And Sufficient Condition For Diagonalizability}$

Date of creation 2013-03-22 14:15:45 Last modified on 2013-03-22 14:15:45

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 13

Author rspuzio (6075)

Entry type Proof Classification msc 15A04 First, suppose that T is diagonalizable. Then V has a basis whose elements $\{v_1,\ldots,v_n\}$ are eigenvectors of T associated with the eigenvalues $\{\lambda_1,\ldots,\lambda_n\}$ respectively. For each $i=1,\ldots,n$, as v_i is an eigenvector, its annihilator polynomial is $m_{v_i}=X-\lambda_i$. As these vectors form a basis of V, we have that the http://planetmath.org/MinimalPolynomialEndomorphismminimal polynomial of T is $m_T=\text{lcm}(X-\lambda_1,\ldots,X-\lambda_n)$ which is trivially a product of linear factors.

Now, suppose that $m_T = (X - \lambda_1) \dots (X - \lambda_p)$ for some p. Let $v \in V$. Consider the T - cyclic subspace generated by $v, Z(v, T) = \langle v, Tv, \dots, T^rv \rangle$. Let T_v be the restriction of T to Z(v, T). Of course, v is a cyclic vector of $Z(v, T_v)$, and then $m_v = m_{T_v} = \chi_T$. This is really easy to see: the dimension of Z(v, T) is v + 1, and it's also the degree of v. But as v divides v. (because v divides v