pyiso Documentation

Release 0.3

Anna Schneider

November 01, 2017

1	1 Introduction	3
	1.1 What's an ISO?	
	1.2 What's included	 3
2	2 Installation	9
	2.1 Install	 9
	2.2 Uninstall	 9
3	3 Configuration	11
	3.1 Accounts	
	3.2 Logging and debug	 11
4	4 Usage	13
	4.1 Clients	
	4.2 Tasks	 15
5	5 Options	17
6	6 Contributing	19
	6.1 For developers	 19
	6.2 For data users	
	6.3 For project admins	
	6.4 Legal things	 20
7	7 Supporting	21
8	8 Indices and tables	23

Contents:

Contents 1

2 Contents

Introduction

Pyiso provides Python client libraries for ISO and other power grid data sources. It powers the WattTime Impact API, among other things.

What's an ISO?

Electricity markets are operated by "balancing authorities," which manage supply and demand for a given service area. The bigger balancing authorities, called Independent Services Operators and Regional Transmission Organizations (ISOs/RTOs, or simply ISOs), together cover about 2/3 of US electricity consumers.

ISOs are required to provide real-time data about electricity market operations, but choose to do so in a wide variety of unstandardized, inconvenient formats. Some smaller balancing authorities provide data too.

What's included

Pyiso makes it easier to collect data from ISOs and other balancing authorities by providing a uniform Python interface to each data stream. See the *Usage* page for instructions on how to get started.

Specifically, here are the included balancing authorities and their respective data sources:

Note: Some balancing authorities offer data directly and through the EIA client.

balancing authority abbrev.	balancing authority name/region	data source
AESO	Alberta Elec. System Operator (Canada)	AESO
AZPS	Arizona Public Service	SVERI
BCH	British Columbia Hydro (Canada)	BCH
BPA	Bonneville Power Administration (Pac NW)	BPA
CAISO	California ISO	CAISO
DEAA	DECA Arlington Valley (AZ)	SVERI
ELE	El Paso Electric	SVERI
ERCOT	Texas	ERCOT
EU	European Union	ENTSO
GRIF	Griffith Energy (AZ)	SVERI
HGMA	Harquahala Generation Maricopa Arizona	SVERI
IESO	Ontario (Canada)	IESO
IID	Imperial Irrigation District (CA)	SVERI
ISONE	ISO New England	ISONE
MISO	Midcontinent ISO	MISO
NBP	New Brunswick Power (Canada)	NBPower
NLH	Newfoundland and Labrador Hydro (Canada)	NLHydro
NSP	Nova Scotia Power (Canada)	NSPower
NEVP	Nevada Power	NVEnergy
NYISO	New York ISO	NYISO
PEI	Price Edward Island (Canada)	PEI
PJM	Mid-Atlantic	PJM
PNM	Public Service Co New Mexico	SVERI
SASK	Saskatchewan Power (Canada)	SaskPower
SPPC	Sierra Pacific Power (NV)	NVEnergy
SRP	Salt River Project (AZ)	SVERI
TEPC	Tuscon Electric Power Co	SVERI
WALC	WAPA Desert Southwest (NV, AZ)	SVERI
YUKON	Yukon Energy (Canada)	YUKON

The following BAs are available through the EIA client.

balancing authority abbrev.	balancing authority name/region	data source		
AEC	PowerSouth Energy Cooperative	EIA		
AECI	Associated Electric Cooperative, Inc.	EIA		
AESO	Alberta Electric System Operator	EIA		
AVA	Avista Corporation	EIA		
AZPS	Arizona Public Service- EIA data	EIA		
BANC	Bal Authority of Northern California	EIA		
BCTC	British Columbia Transmission Corp	EIA		
BPAT	Bonneville Power Admin- EIA data	EIA		
CAISO	California ISO- EIA data	EIA		
CFE	Comision Federal de Electricidad	EIA		
CHPD	Pub Utility Dist 1 of Chelan County	EIA		
CISO	California Independent System Operator	EIA		
CPLE	Duke Energy Progress East	EIA		
CPLW	Duke Energy Progress West	EIA		
DEAA	DECA Arlington Valley (AZ)- EIA data	EIA		
DOPD	PUD No. 1 of Douglas County	EIA		
DUK	Duke Energy Carolinas	EIA		
EEI	Electric Energy, Inc	EIA		
EPE	El Paso Electric - EIA data	EIA		
ERCO Texas- EIA data EIA		EIA		
Continued on next page				

Table 1.1 – continued from previous page

	i – continued from previous page	
balancing authority abbrev.	balancing authority name/region	data source
FMPP	Florida Municipal Power Pool	EIA
FPC	Duke Energy Florida	EIA
FPL	Florida Power and Light Co.	EIA
GCPD	PUD of Grant County, Washington	EIA
GRID	Gridforce Energy Management	EIA
GRIF	Griffith Energy (AZ) - EIA data	EIA
GRMA	Gila River Power	EIA
GVL	Gainesville Regional Utilities	EIA
GWA	NaturEner Power Watch	EIA
HGMA	Harquahala Gen Maricopa Az - EIA	EIA
HQT	Hydro-Quebec TransEnergie	EIA
HST	City of Homestead	EIA
IESO	Ontario IESO	EIA
IID	Imperial Irrigation District- EIA	EIA
IPCO	Idaho Power Company	EIA
ISNE	ISO New England - EIA data	EIA
JEA	JEA Jacksonville, Fl	EIA
LDWP	Los Angeles Dept of Water and Power	EIA
LGEE	Louisville Gas & Electric/KY Utilities	EIA
MHEB	Manitoba Hydro	EIA
MISO	Midcontinent ISO - EIA data	EIA
NBSO	New Brunswick System Operator	EIA
NEVP	Nevada Power - EIA data	EIA
NSB	New Smyrna Beach UC	EIA
NWMT	NorthWestern Corporation	EIA
NYIS	New York ISO - EIA data	EIA
OVEC	Ohio Valley Electric Corporation	EIA
PACE	PacifiCorp East	EIA
PACW	PacifiCorp West	EIA
PGE	Portland General Electric Co	EIA
PJM	Mid-Atlantic - EIA data	EIA
PNM	Public Service Co New Mexico- EIA	EIA
PSCO	Public Service Company of Colorado	EIA
PSEI	Puget Sound Energy	EIA
SC	South Carolina Public Service Auth	EIA
SCEG	South Carolina Electric and Gas	EIA
SCL	Seattle City Light	EIA
SEC	Seminole Electric Cooperative	EIA
SEPA	Southeastern Power Admin	EIA
SOCO	Southern Company Services	EIA
SPA	Southwestern Power Admin	EIA
SPC	Saskatchewan Power Corporation	EIA
SRP	Salt River Project (AZ) - EIA data	EIA
SWPP	Southwest Power Pool	EIA
TAL	City of Tallahassee	EIA
TEC	Tampa Electric Company	EIA
TEPC	Tuscon Electric Power Co	EIA
TIDC	Turdock Irrigation District	EIA
TPWR	City of Tacoma DPU	EIA
TVA	Tennessee Valley Authority	EIA
WACM	Western Area Power Admin- Rocky Mtn	EIA
WACWI		
	Continued	on next page

1.2. What's included 5

Table 1.1 – continued from previous page

balancing authority abbrev.	balancing authority name/region	data source	
WALC	WAPA Desert Southwest (NV, AZ)-EIA	EIA	
WAUW	Western Area Power Admin- Great Plains	EIA	
WWA	NaturEner Wind Watch	EIA	
YAD	Alcoa Power Generation- Yadkin	EIA	

For European data, you also need to specify a "control area". The available control areas are:

control area abbrev.	control area country/provider		
AL	Albania		
AT	Austria		
BA	Bosnia and Herzegovina		
BE	Belgium		
BG	Bulgaria		
СН	Switzerland		
CY	Cyprus		
CZ	Czech Republic		
DE(50HzT)	Germany (50 HzT)		
DE(Amprion)	Germany (Amprion)		
DE(TenneT GER)	Germany (TenneT)		
DE(TransnetBW)	Germany (Transnet)		
DK	Denmark		
EE	Estonia		
ES	Spain		
FI	Finland		
FR	France		
GR	Greece		
HR	Croatia		
HU	Hungary		
IE	Ireland		
IT	Italy		
LT	Lithuania		
LU	Luxembourg		
LV	Latvia		
MD	Moldavia		
ME	Montenegro		
MK	Macedonia		
MT	Malta		
NIE	UK (NIE)		
NL	Netherlands		
NO	Norway		
National Grid	UK (National Grid)		
PL	Poland		
PL-CZ	Czech Republic/Poland		
PT	Portugal		
RO	Romania		
RS	Serbia		
RU	Russia		
RU-KGD	Russia (KGD)		
SE	Sweden		
SI	Slovenia		
SK	Slovakia		
Continued on next page			

Table 1.2 – continued from previous page

control area abbrev.	control area country/provider
TR	Turkey
UA	Ukraine
UA-WEPS	Ukraine (WEPS)

1.2. What's included 7

Installation

Install

Pyiso is available on PyPI and on GitHub.

For users, the easiest way to get pyiso is with pip:

```
pip install pyiso
```

For developers, you can get the source from GitHub or PyPI, then:

```
cd pyiso
python setup.py install
```

Pyiso depends on pandas so be prepared for a large install.

Windows Users: If you are unable to setup pyiso due to issues with installing or using numpy, a dependent package of pyiso, try installing a precompiled version of numpy found here: http://www.lfd.uci.edu/~gohlke/pythonlibs/

Uninstall

To uninstall:

pip uninstall pyiso

Configuration

Accounts

ISONE requires a username and password to collect data. You can register for an ISONE account here (http://www.isone.com/participate/applications-status-changes/access-software-systems#data-feeds)

Then, set your usernames and passwords as environment variables:

```
export ISONE_USERNAME=myusername1 export ISONE_PASSWORD=mysecret1
```

The EU (ENTSOe) REST API requires a security token. You must first sign up for an account and then get your security token from here (https://transparency.entsoe.eu/). To use the token set as an environment variable as follows:

```
export ENTSOe_SECURITY_TOKEN=token
```

The EIA API requires an API key. You can apply for a key here (https://www.eia.gov/opendata/register.cfm). To use the key, set an environment variable as follows:

```
export EIA_KEY=my-eia-api-key
```

All other ISOs allow unauthenticated users to collect data, so no other credentials are needed.

Logging and debug

By default, logging occurs at the INFO level. If you want to change this, you can set the *LOG_LEVEL* environment variable to the integer associated with the desired log level. For instance, ERROR is 40 and DEBUG is 10.

You can also turn on DEBUG level logging by setting the *DEBUG* environment variable to a truthy value. This setting will additionally enable caching during testing, which will significantly speed up the test suite.

Usage

There are two main ways to use pyiso: via the client objects, or via celery tasks. The client approach is preferred for scripted data analysis. The task approach enables asynchronous or periodic data collection and is in use at the WattTime Impact API.

Clients

First, create a client using the client_factory (ba_name) function. ba_name should be taken from this list of abbreviated names for available balancing authorities listed on the *Introduction* page. For example:

```
>>> from pyiso import client_factory
>>> isone = client_factory('ISONE')
```

Requests made to external data sources will automatically time out after 20 seconds. To change this value, add a keyword argument in the constructor:

```
>>> isone = client_factory('ISONE', timeout_seconds=60)
```

Each client returned by client_factory is derived from BaseClient and provides one or more of the following methods (see also *Options*):

```
BaseClient.get_generation(latest=False, yesterday=False, start_at=False, end_at=False,

**kwargs)
Scrape and parse generation fuel mix data.
```

Parameters

- **latest** (*bool*) If True, only get the generation mix at the one most recent available time point. Available for all regions.
- **yesterday** (*bool*) If True, get the generation mix for every time point yesterday. Not available for all regions.
- **start_at** (*datetime*) If the datetime is naive, it is assummed to be in the timezone of the Balancing Authority. The timestamp of all returned data points will be greater than or equal to this value. If using, must provide both <code>start_at</code> and <code>end_at</code> parameters. Not available for all regions.
- end_at (datetime) If the datetime is naive, it is assummed to be in the timezone of the Balancing Authority. The timestamp of all returned data points will be less than or equal to this value. If using, must provide both start_at and end_at parameters. Not available for all regions.

Returns List of dicts, each with keys [ba_name, timestamp, freq, market, fuel_name, gen_MW]. Timestamps are in UTC.

Return type list

BaseClient.get_load (latest=False, yesterday=False, start_at=False, end_at=False, **kwargs)
Scrape and parse load data.

Parameters

- latest (bool) If True, only get the load at the one most recent available time point. Available for all regions.
- **yesterday** (*bool*) If True, get the load for every time point yesterday. Not available for all regions.
- **start_at** (*datetime*) If the datetime is naive, it is assummed to be in the timezone of the Balancing Authority. The timestamp of all returned data points will be greater than or equal to this value. If using, must provide both <code>start_at</code> and <code>end_at</code> parameters. Not available for all regions.
- end_at (datetime) If the datetime is naive, it is assummed to be in the timezone of the Balancing Authority. The timestamp of all returned data points will be less than or equal to this value. If using, must provide both start_at and end_at parameters. Not available for all regions.

Returns List of dicts, each with keys [ba_name, timestamp, freq, market, load_MW]. Timestamps are in UTC.

Return type list

BaseClient.get_trade(latest=False, yesterday=False, start_at=False, end_at=False, **kwargs)

Scrape and parse import/export data. Value is net export (export - import), can be positive or negative.

Parameters

- latest (bool) If True, only get the trade at the one most recent available time point. Available for all regions.
- **yesterday** (*bool*) If True, get the trade for every time point yesterday. Not available for all regions.
- start_at (datetime) If the datetime is naive, it is assummed to be in the timezone of the Balancing Authority. The timestamp of all returned data points will be greater than or equal to this value. If using, must provide both start_at and end_at parameters. Not available for all regions.
- end_at (datetime) If the datetime is naive, it is assummed to be in the timezone of the Balancing Authority. The timestamp of all returned data points will be less than or equal to this value. If using, must provide both start_at and end_at parameters. Not available for all regions.

Returns List of dicts, each with keys [ba_name, timestamp, freq, market, net_exp_MW]. Timestamps are in UTC.

Return type list

The lists returned by clients are conveniently structured for import into other data structures like pandas.DataFrame:

```
>>> import pandas as pd
>>> data = isone.get_generation(latest=True)
>>> df = pd.DataFrame(data)
```

14 Chapter 4. Usage

```
>>> print df
 ba_name freq fuel_name gen_MW market
                                                      timestamp
  ISONE n/a
                 coal 1170.0 RT5M
                                      2014-03-29 20:40:27+00:00
1
   ISONE
         n/a
                 hydro
                        813.8
                                 RT5M
                                      2014-03-29 20:40:27+00:00
2
   ISONE
          n/a
                natgas 4815.7
                                 RT5M
                                      2014-03-29 20:40:27+00:00
3
   ISONE
              nuclear 4618.8
                                      2014-03-29 20:40:27+00:00
          n/a
                                 RT5M
4
   ISONE
          n/a
                biogas
                         29.5
                                 RT5M
                                      2014-03-29 20:40:27+00:00
5
   ISONE
               refuse
                        428.6
                                 RT5M
                                      2014-03-29 20:40:27+00:00
         n/a
                                 RT5M 2014-03-29 20:40:27+00:00
6
                 wind
                         85.8
   ISONE n/a
                                 RT5M 2014-03-29 20:40:27+00:00
   ISONE n/a
               biomass 434.3
```

Happy data analysis!

Tasks

If you have a celery environment set up, you can use the tasks provided in the pyiso.tasks module. There is one task for each of the client's get_* methods that implements a thin wrapper around that method. The call signatures match those of the corresponding client methods, except that the ba_name is a required first argument. For example, to get the latest ISONE generation mix data every 10 minutes, add this to your celerybeat schedule:

```
CELERYBEAT_SCHEDULE = {
    'get-isone-genmix-latest' : {
        'task': 'pyiso.tasks.get_generation',
        'schedule': crontab(minute='*/10'),
        'args': ['ISONE'],
        'kwargs': {'latest': True},
    }
}
```

In practice, you will want to chain these tasks with something that captures and processes their output.

4.2. Tasks 15

16 Chapter 4. Usage

Options

Not all date range options are available for all methods in all regions. Here's what's available now:

method	latest	start_at and end_at pair	yesterday	forecast ok
AESO.get_generation	yes	no	no	no
AESO.get_load	yes	yes	yes	yes
AESO.get_trade	yes	no	no	no
AESO.get_lmp	no	no	no	no
BCH.get_generation	no	no	no	no
BCH.get_load	no	no	no	no
BCH.get_trade	yes	yes	yes	no
BPA.get_generation	yes	yes	no	no
BPA.get_load	yes	yes	no	no
CAISO.get_generation	yes	yes	yes	yes
CAISO.get_load	yes	yes	yes	yes
CAISO.get_trade	yes	yes	yes	yes
EIA.get_generation	yes	yes	yes	no
EIA.get_load	yes	yes	yes	yes
EIA.get_trade	yes	yes	yes	no
ERCOT.get_generation	yes	no	no	no
ERCOT.get_load	yes	yes	no	yes
EU.get_generation	yes	yes	yes	no
EU.get_load	yes	yes	no	yes
IESO.get_generation	yes	yes	yes	yes
IESO.get_load	yes	yes	yes	yes
IESO.get_trade	yes	yes	yes	yes
ISONE.get_generation	yes	yes	no	no
ISONE.get_load	yes	yes	no	yes
MISO.get_generation	yes	yes	no	yes
MISO.get_load	yes	yes	no	yes
MISO.get_trade	no	yes	no	yes
MISO.get_lmp	yes	yes	no	yes
NLH.get_generation	no	no	no	no
NLH.get_load	yes	no	no	no
NLH.get_trade	no	no	no	no
NPB.get_generation	no	no	no	no
NPB.get_load	yes	yes	no	yes
NPB.get_trade	yes	no	no	no
NSP.get_generation	yes	yes	no	no
NSP.get_load	yes	yes	no	yes
			Continued	on next page

Table 5.1 – continued from previous page

method	latest	start_at and end_at pair	yesterday	forecast ok
NSP.get_trade	no	no	no	no
NVEnergy.get_load	yes	yes	no	yes
NYISO.get_generation	yes	yes	no	no
NYISO.get_load	yes	yes	no	yes
NYISO.get_trade	yes	yes	no	no
PEI.get_generation	yes	no	no	no
PEI.get_load	yes	no	no	no
PEI.get_trade	no	no	no	no
PJM.get_generation	yes	no	no	no
PJM.get_load	yes	yes	no	yes
PJM.get_trade	yes	no	no	no
SASK.get_generation	no	no	no	no
SASK.get_load	yes	no	no	no
SASK.get_trade	no	no	no	no
SVERI.get_generation	yes	yes	no	no
SVERI.get_load	yes	yes	no	no
YUKON.get_generation	yes	yes	no	no
YUKON.get_load	yes	yes	no	no
YUKON.get_trade	n/a	n/a	n/a	n/a

18 Chapter 5. Options

Contributing

Right now, pyiso only has interfaces for collecting a small subset of the interesting electricity data that the ISOs provide. You can help by adding more! Please create an issue on github if you have questions about any of this.

For developers

When you're ready to get started coding:

- fork the repo
- install in development mode: python setup.py develop
- run the tests: python setup.py test (or python setup.py test -s tests.test_some_file.TestSomeClass.test_some_method to run a specific subset of the tests)
- add tests to the tests directory and code to the pyiso directory, following the conventions that you see in the existing code
- add docs to the docs/source directory
- add a note to the Upcoming Changes section in *README.md* on a separate line
- · send a pull request
- sign the CLA at https://www.clahub.com/agreements/WattTime/pyiso (see below)

For data users

Found a bug, or know of a data source that you think pyiso should include? Please add an issue to github. Ideas of new balancing authorities (anywhere in the world) and of new data streams from ISOs we already support are both very welcome.

For project admins

Before making a release, check that these are true in the master branch of the GitHub repo:

- the changelog in *README.md* includes all changes since the last release
- test coverage is good and the tests pass locally and on Travis

- changes are reflected in the docs in docs/source
- the version number is upgraded in *pyiso/__init__.py*

To make a release, run these commands (replacing 0.x.y with the correct version number):

```
git checkout master
git pull origin master
git tag v0.x.y
git push origin master --tags
python setup.py sdist upload

Releasing via twine:

python setup.py sdist
twine upload dist/pyiso-VERSION.tar.gz
```

Legal things

Because we use pyiso as the base for our other software products, we ask that contributors sign the following Contributor License Agreement. If you have any questions, or concerns, please drop us a line on Github.

You and WattTime, Corp, a california non-profit corporation, hereby accept and agree to the following terms and conditions:

Your "Contributions" means all of your past, present and future contributions of object code, source code and documentation to pyiso however submitted to pyiso, excluding any submissions that are conspicuously marked or otherwise designated in writing by You as "Not a Contribution."

You hereby grant to the WattTime, Corp a non-exclusive, irrevocable, worldwide, no-charge, transferable copyright license to use, execute, prepare derivative works of, and distribute (internally and externally, in object code and, if included in your Contributions, source code form) your Contributions. Except for the rights granted to the WattTime, Corp in this paragraph, You reserve all right, title and interest in and to your Contributions.

You represent that you are legally entitled to grant the above license. If your employer(s) have rights to intellectual property that you create, you represent that you have received permission to make the Contibutions on behalf of that employer, or that your employer has waived such rights for your Contributions to pyiso.

You represent that, except as disclosed in your Contribution submission(s), each of your Contributions is your original creation. You represent that your Contribution submissions(s) included complete details of any license or other restriction (including, but not limited to, related patents and trademarks) associated with any part of your Contributions)(including a copy of any applicable license agreement). You agree to notify WattTime, Corp of any facts or circumstances of which you become aware that would make Your representations in the Agreement inaccurate in any respect.

You are not expected to provide support for your Contributions, except to the extent you desire to provide support. Your may provide support for free, for a fee, or not at all. Your Contributions are provided as-is, with all faults, defects and errors, and without any warranty of any kind (either express or implied) including, without limitation, any implied warranty of merchantability and fitness for a particular purpose and any warranty of non-infringement.

To get started, sign the Contributor License Agreement.

Supporting

Pyiso is an open source project maintained by WattTime, a nonprofit that develops software standards to reduce power grid pollution and enable new kinds of clean energy choices.

We've spent more than 1000 developer-hours building pyiso, keeping it up-to-date with evolving data sources, and adding features requested by the community. As the foundation of our internal data pipeline, it makes our work easier every day. And we've made it free and open source because we want to make open energy data access a bit easier for other researchers, engineers, and citizens too!

Want to chip in and support pyiso? You or your company can make a tax-deductible donation to WattTime here. Every dollar helps us help you! We also have corporate sponsorship opportunities available; get in touch if you're interested.

Another great way to support pyiso is to send us a quick thank-you note. Your testimonials help us raise money from other folks, so it really does make a difference. Thanks bunches!

CHAPTER 8

Indices and tables

- genindex
- modindex
- search