2016/2017 SEMESTER TWO EXAMINATION

Diploma in Electrical and Electronic Engineering 3rd Year Full Time 3rd Year Full Time Technical Elective

DIGITAL SIGNAL PROCESSING

<u>Time Allowed</u>: 2 Hours

<u>Instructions to Candidates</u>

- 1. The examination rules as set out on the last page of the answer booklet are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 6 Short Questions, 10 marks each.
Section B - 2 Long Questions, 20 marks each.

- 3. ALL questions are COMPULSORY.
- 4. **ALL** questions are to be answered in the answer booklet.
- 5. This paper consists of 6 pages, including 2 pages of mathematical formulae.

2016/2017_S2 Page 1 of 6

(4 marks)

SECTION A - SHORT QUESTIONS [10 marks each]

A1 The system function of a digital system is given as:

$$H(z) = \frac{z^2 - 1}{z^2 + 0.5z}$$

- a) Obtain its difference equation.
- b) Determine the output y(n) of the system if the input is a unit step. (4 marks)
- c) If the output y(n) from (b) is cascaded in series with another system, $G(z)=z^{-1}+z^{-2}$, find the new output, $k_T(n)$. (2 marks)
- A2 Evaluate N=4 point DFT for X(0), X(1) and X(2) for $x(n) = \{0,1,0,1\}$. (10 marks)
- A3 A system has an output response, $y(n) = \{-2,5,-3,1,2\}$ when subjected to an unknown input x(n) and an impulse response $h(n) = \{1, -1, 1\}$ Find the Z-transform of h(n) and y(n) and hence solve for the input sequence x(n) up to the 1^{st} 3 terms using long division method. (10 marks)
- A4 The block diagram of a digital system is given as:

- a) Find the overall system function, $h_T(n)$ in terms of $h_1(n)$, $h_2(n)$, $h_3(n)$, $h_4(n)$ and $h_5(n)$. (4 marks)
- b) If z-transform of $h_1(n) = H_1(z)$, $h_2(n) = H_2(z)$, $h_3(n) = H_3(z)$, $h_4(n) = H_4(z)$ and $h_5(n) = H_5(z)$ respectively and $h_1(n) = h_2(n) = h_3(n) = h_4(n) = h_5(n) = \{2,-1\}$, find the system function, $h_T(n)$.

(6 marks)

2016/2017_S2 Page 2 of 6

A5 The system function of a digital system is given as:

$$X(z) = \frac{4 - 0.6z^{-1} + 0.2z^{-2}}{(1 - 0.5z^{-1})(1 + 0.4z^{-1})}$$

Using partial fraction, find x(n).

(10 marks)

Hint:

$$X(z) = A + \frac{B}{1 - 0.5z^{-1}} + \frac{C}{1 + 0.4z^{-1}}$$

A6 Find the inverse z transform of the following signals.

a)
$$X(z) = \frac{2}{1+z^{-1}} - \frac{1}{1+2z^{-1}}$$
 (5 marks)

b)
$$Y(z) = 1 + \frac{2z^{-1}}{(1-z^{-1})^2} + \frac{1+z^{-1}}{1+2z^{-1}+z^{-2}}$$
 (5 marks)

SECTION B - LONG QUESTIONS [20 marks each]

You are required to design a digital FIR low-pass filter to reject the high frequency noise found in a telemetry signal. The specifications of the filter are as follow:

Passband: 0 to 10 kHz Stopband: 12 to 20 kHz

To minimise the effect of the noise, they need to be suppressed by at least 42 dB. The sampling frequency for the digital filter is chosen to be 2 times the Nyquist frequency.

To design this filter, determine

- (a) the windowing function that you would choose, (3 marks)
- (b) the number of tap coefficient that you would need, (5 marks)
- (c) the value of the first 4 tap coefficients, (8 marks)
- (d) 2 disadvantage for using IIR filter and 2 disadvantages for using FIR filter.

(4 marks)

- **B2** Given the difference equation y(n) = x(n) 0.7071x(n-1) + 1.4142y(n-1) y(n-2).
 - (a) Determine the network diagram of the filter. (4 marks)
 - (b) From the filter system function, determine its impulse response using inverse *z*-transform. (8 marks)
 - (c) Find the gain of this filter at 2 kHz if the sampling frequency used for the filter is 8 kHz (*Hint*: $e^{-j\frac{\pi}{2}} = -j$). (8 marks)

-End of Paper-

2016/2017_S2 Page 4 of 6

Appendix

The z-transform is defined as $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$

	$\eta = -\infty$
Sequence	Transform
$\delta[n]$	1
u[n]	$\frac{1}{1-z^{-1}}$
	$1-z^{-1}$
δ[n - m]	Z ^{-m}
a ⁿ u[n]	1
	$ \frac{1-az^{-1}}{az^{-1}} $
na ⁿ u[n]	$1-u_{\zeta}$
na u[n]	az^{-1}
	$(1-az^{-1})^2$
$[\cos \omega_0 n] u[n]$	$1 - [\cos \omega_0] z^{-1}$
Ŭ	$-\frac{1}{-1}$
	$\frac{1 - [2\cos\omega_0]z^{-1} + z^{-2}}{1 - [2\cos\omega_0]z^{-1} + z^{-2}}$
$[\sin \omega_0^n]u[n]$	$[\sin \omega_0]z^{-1}$
	$\frac{1 - [2\cos\omega_0]z^{-1} + z^{-2}}{1 - [2\cos\omega_0]z^{-1} + z^{-2}}$
	$1 - [2\cos \omega_0]z + z$
$[r^n \cos \omega_0 n] u[n]$	$1 - [r\cos\omega_0]z^{-1}$
	$1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}$
$[r^n \sin \omega_0 n] u[n]$	$[r\sin\omega_0]z^{-1}$
	$1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}$
	$\begin{bmatrix} 1 - [2i\cos \omega_0]z & \pm i \end{bmatrix}$

Some z-transform properties:			
Sequence	Transform		
x[n]	X(z)		
$x_1[n]$	$X_1(z)$		
$x_2[n]$	$X_2(z)$		
$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$		
x[n - m]	$z^{-m}X(z)$		

Some trigonometric identities:

$$e^{\pm j\theta} = \cos \theta \pm j \sin \theta$$

$$\cos^{2} \theta + \sin^{2} \theta = 1$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Discrete Fourier Transform:

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}$$

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)e^{j\frac{2\pi}{N}kn}$$

Complex number theory:

$$z = a + jb = r \angle \theta = re^{j\theta}$$
 Quadratic equation solution:

$$r = \sqrt{a^2 + b^2}$$
 If $ax^2 + bx + c = 0$

$$\theta = \tan^{-1} \frac{b}{a}$$
 then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The characteristics of the different windowing functions:

Window Type	Peak	Transition
	approximation	Band
	Error	$\Delta \omega$
	$20 \log_{10} \delta dB$	
Rectangular $w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	-21	$\frac{4\pi}{M+1}$
$\textbf{Bartlett} \qquad \text{w[n]} = \begin{cases} \frac{2n}{M} & 0 \le n \le \frac{M}{2} \\ 2 - \frac{2n}{M} & \frac{M}{2} \le n \le M \\ 0 & \text{otherwise} \end{cases}$	-25	$\frac{8\pi}{M}$
Hanning $w[n] = \begin{cases} 0.5 - 0.5 \cos\left(\frac{2\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	-44	$\frac{8\pi}{M}$
Hamming $w[n] = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	-53	$\frac{8\pi}{M}$
Blackman	-74	$\frac{12\pi}{M}$
$w[n] = \begin{cases} 0.42 - 0.5\cos\left(\frac{2\pi n}{M}\right) + 0.08\cos\left(\frac{4\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		

The impulse response of an ideal low pass filter is: $h_d(n) = \frac{\sin(\omega_C(n - \frac{M}{2}))}{\pi(n - \frac{M}{2})}$