Assignment 01

Amyre Wells

2025-01-07

Git Repository

Set Up

```
source('dataGenerato.R')
#This generates data for species name, limb width, limb length, and observer name columns
source('volumeEstimato.R')
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
#This calculates the volume of limbs using the formula for the volume of a cylinder
#load in libraies
library(dplyr)
library(ggplot2)
```

Sort data

```
sorted_data <- measurements %>%
   arrange(Limb_Volume_cm3) %>%
   arrange(Observer) %>%
   arrange(Species_Name)

#data is now sorted alphabetically by species, then observer, then in ascending order of limb volume
```

Average Limb Volume by Species

```
#get average limb volume for each species
average_volume <- measurements %>%
  group_by(Species_Name) %>%
  summarize(Average_Volume = mean(Limb_Volume_cm3))
```

```
#print results
print(average_volume)
## # A tibble: 5 x 2
    Species_Name Average_Volume
##
     <chr>
                           <dbl>
## 1 Ally
                            41.7
## 2 Bally
                            46.8
                            44.3
## 3 Cally
## 4 Dally
                            39.7
## 5 Elly
                            49.6
Number of Observations by Species and Observer
#get number of observations for each combination of species/observer
counts <- measurements %>%
 group_by(Species_Name, Observer) %>%
 summarize (Count = n())
## `summarise()` has grouped output by 'Species_Name'. You can override using the
## `.groups` argument.
#create matrix for count data where x is observers and y is species
count_matrix <- matrix(counts$Count, nrow = 5, byrow = TRUE)</pre>
colnames(count_matrix)<- observer_vec</pre>
rownames(count_matrix)<- species_vec</pre>
#convert to table
count_table<- as.table(count_matrix)</pre>
#print result
print(count_table)
##
        Xeb Yeb Zeb
## Ally
          7
              8
## Bally 8
             5
## Cally 7 11
## Dally 9 5 4
## Elly
           9 5 2
Boxplot
#create box plot of limb volume by species
boxplot<- ggplot(measurements, aes(x=Species_Name, y=Limb_Volume_cm3)) +
 geom_boxplot() +
 labs(title="Limb volume by species", x="Species", y="Limb Volume (cm3)")
print(boxplot)
```

Limb volume by species

Figure 1. Graph depicting limb volume data in cm3 for species Ally, Bally, Cally, Dally, and Elly. Volume was calculated using the formula for the volume of a cylinder.

Frequency Histograms

```
#create faceted histogram of limb volume by species
histogram<- ggplot(measurements, aes(x=Limb_Volume_cm3)) +
   geom_histogram(bins = 5) +
   facet_wrap(~Species_Name)+
   labs(title="Limb volume frequency distribution by species", x="Limb Volume (cm3)", y="Count")
print(histogram)</pre>
```

Limb volume frequency distribution by species

Figure 2 Graph depicting frequency distribution of limb volume data in cm3 for species Ally, Bally, Cally, Dally, and Elly. Volume was calculated using the formula for the volume of a cylinder.