Section 2.1 The Geometry of Real-Valued Functions

In previous calculus courses, you have learned functions of one variable and scalar-valued functions. Here you will study functions of several variables and vector-valued functions. In this section, there are four keypoints: functions, graph, level sets, and sections.

Functions

We first introduce some terminology. Let $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ be a function/mapping from \mathbb{R}^n to \mathbb{R}^m . In other words, f is a function that takes n inputs and give m outputs.

- When m = 1, f is scalar-valued since $f(x_1, \ldots, x_n) \in \mathbb{R}$.
- When m > 1, f is vector-valued since $f(x_1, \ldots, x_n) \in \mathbb{R}^m$. The subset $A \subset \mathbb{R}^n$ is called the domain of $f(\vec{x})$. In particular, if n = 1, f is the function of one variable; and if n > 1, f is the function of several variables.

Example. The function $f: \mathbb{R}^3 \to \mathbb{R}$ defined by

$$f(x, y, z) = x^2 + y^2 + z^2$$

is scalar-valued. (other notation $f:(x,y,z)\mapsto x^2+y^2+z^2$.) But the function $g:\mathbb{R}^3\to\mathbb{R}^2$ given by

$$g:(x,y,z)\mapsto (x^2+y^2+z^2,x+y+z)$$

is vector-valued.

Graph

Recall that for a one-variable scalar function $f: U \subset \mathbb{R} \to \mathbb{R}$, its graph is the set of all points (x, f(x)) in \mathbb{R}^2 such that $x \in U$. That is,

graph of
$$f = \{(x, y) | x \in U, y = f(x)\} \subset \mathbb{R}^2$$
.

How about several-variable functions? For example, let $f: U \subset \mathbb{R}^n \to \mathbb{R}$, then

graph of
$$f = \{(x_1, x_2, \dots, x_n, z) \mid (x_1, \dots, x_n) \in U, \text{ and } z = f(x_1, \dots, x_n)\} \subset \mathbb{R}^{n+1}.$$

Level Sets

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$. The level set of value c is the set $\{\vec{x} \in U \mid f(\vec{x}) = c\} \subset \mathbb{R}$. **Remark.** When n = 2, the level set is called the level curve; and when n = 3, it is called the level surface.

Remark. When n = 2, the level set is called the level curve; and when n = 3, it is called the level surface. (Why?)

