Inductive data types

Inductive data types

Assia Mahboubi, **Sandrine Blazy** Paris, Suzhou, Shanghai

4th Asian-Pacific summer school on formal methods, 2012-07-19

Inductive data types

Inductive declarations

An arbitrary type as assumed by :

Variable T : Type.

gives no a priori information on the nature, the number, or the properties of its inhabitants.

Inductive declarations

An inductive type declaration explains how the inhabitants of the type are built, by giving names to each construction rule.

```
Print bool.

Inductive bool: Type := true : bool | false : bool.

Print nat.

Inductive nat : Type := O : nat | S : nat -> nat.
```

Each such rule is called a constructor.

Inductive declarations in Coq

Inductive types in *Coq* can be seen as the generalization of similar type constructions in more common programming languages.

They are in fact an extremely rich way of defining data-types, operators, connectives, specifications,...

They are at the core of powerful programming and reasoning techniques.

Enumerated types

cyan : color

Enumerated types are types which list and name exhaustively their inhabitants.

```
Inductive bool : Type := true : bool | false : bool.
Inductive color : Type :=
  white | black | yellow | cyan | magenta
| red | blue | green.
Check cyan.
```

Labels refer to distinct elements.

Enumerated types: program by case analysis

Inspect the enumerated type inhabitants and assign values.

```
Definition my_negb (b : bool) :=
  match b with true => false | false => true.
Definition is_black_or_white (c : color) : bool :=
  match c with
  | black => true
  | white => true
  | => false
  end.
Compute (is_black_or_white blue).
                                        = false
                                        : bool
```

Enumerated types: reason by case analysis

Inspect the enumerated type inhabitants and build proofs.

```
Lemma bool_case : forall b : bool, b = true \( \nabla \) b = false.
Proof.
intro b.
case b.
  left; reflexivity.
  right; reflexivity.
Qed.
```

Qed.

Enumerated types: reason by case analysis

Inspect the enumerated type inhabitants and build proofs.

```
Lemma is_black_or_whiteP : forall c : color,
  is_black_or_white c = true ->
  c = black \lor c = white.
Proof.
(* Case analysis + computation *)
intro c; case c; simpl; intro H.
(* In the first two cases, H: true = true *)
 right; reflexivity.
 left; reflexivity.
 (* In the next six cases: H: false = true *)
 discriminate H. discriminate H.
 discriminate H. discriminate H.
 discriminate H. discriminate H.
```

Enumerated types: reason by case analysis

Two important tactics, not specific to enumerated types

- simpl : makes computation progress (pattern matching applied to a term starting with a constructor)
- discriminate : uses the fact that constructors are distinct
 - discriminate H : closes a goal featuring a hypothesis H such as (H : true = false)
 - discriminate : closes a goal like (0 <> S n)

Recursive types

Base case constructors do not feature self-reference to the type. Recursive case constructors do.

```
Inductive data types

Recursive types
```

Recursive types

```
Inductive natBinTree : Type :=
Leaf : nat -> natBinTree
Node : nat -> natBinTree -> natBinTree -> natBinTree.
Inductive term : Type :=
|Zero : term
|One : term
|Plus : term -> term -> term
|Mult : term -> term -> term.
Check Mult One (Plus One Zero).
                           Mult One (Plus One Zero): term
```

An inhabitant of a recursive type is built from a finite number of constructor applications.

Recursive types: program by case analysis

We have already seen some examples of such pattern matching.

```
Definition isNotTwo (n:nat) :=
  match n with
  | S (S 0) => false
  | => true
end.
Definition is_single_nBT (t : natBinTree) :=
match t with
|Leaf _ => true
| => false
end.
```

Recursive types: proof by case analysis

```
Lemma is_single_nBTP : forall t,
  is_single_nBT t = true -> exists n : nat, t = Leaf n.
Proof.
(* We use the possibility to destruct the tree
  while introducing *)
intros [ nleaf | nnode t1 t2] h.
(* First case: we use the available label *)
  exists nleaf.
  reflexivity.
(* Second case: the test evaluates to false *)
  simpl in h.
  discriminate
Qed.
```

```
Inductive data types
Recursive types
```

Recursive types

Constructors are injective.

Check Leaf.

Leaf : nat -> natBinTree

```
Lemma inj_leaf : forall x y, Leaf x = Leaf y -> x = y.
Proof.
intros x y H.
injection H.
trivial.
Qed.
```

Recursive types: structural induction

Let us go back to the definition of natural numbers.

```
Inductive nat : Type := 0 : nat | S : nat -> nat.
```

The Inductive keyword means that at definition time, this system geneates an induction principle :

```
Check nat_ind
    : forall P : nat -> Prop,
        P 0 ->
        (forall n : nat, P n -> P (S n)) ->
        forall n : nat, P n
```

Recursive types: structural induction

Given P : term -> Prop, how to prove the theorem
forall t : term, P t?
It is sufficient to prove that :

- ▶ P holds for the base cases
 - ▶ (P Zero)
 - ▶ (P One)
- ▶ P is transmitted inductively
 - forall t1 t2 : term,
 P t1 -> P t2 -> P (Plus t1 t2)
 - forall t1 t2 : term,
 P t1 -> P t2 -> P (Mult t1 t2)

The type term is the smallest type containing Zero and One, and closed under Plus and Mult.

Recursive types: structural induction

The induction principles generated at definition time by the system allow to :

- Program by recursion (Fixpoint)
- Prove by induction (induction)

Recursive types: program by structural induction

```
Fixpoint size (t : natBinTree) : nat :=
  match t with
  |Leaf _ => 1
  |Node t1 t2 \Rightarrow (size t1) + (size t2) + 1
  end.
 Fixpoint height (t : natBinTree) : nat :=
  match t with
    |Leaf _ => 0
    |Node _t1 t2 => Max.max (height t1) (height t2) + 1
  end.
```

Recursive types: proofs by structural induction

We have already seen induction at work on nats and lists. Here it goes on binary trees.

```
Lemma le_height_size : forall t : natBinTree,
           height t <= size t.
Proof.
induction t; simpl.
  auto.
apply plus_le_compat_r.
apply max_case.
  apply (le_trans _ _ _ IHt1).
  apply le_plus_1.
  apply (le_trans _ _ _ IHt2).
  apply le_plus_r.
Qed.
```

```
Inductive data types

They are also inductive types!
```

Option types

```
A polymorphic (like list) non recursive type
Print option.
Inductive option (A : Type) : Type :=
  Some : A -> option A | None : option A
Use it to lift a type to a copy of this type but with a default value.
Fixpoint olast (A : Type)(1 : list A) : option A :=
  match 1 with
    Inil => None
    la :: nil => Some a
    la :: 1 => olast A 1
  end.
```

```
Inductive data types

They are also inductive types!
```

Pairs & co

A polymorphic (like list) pair construction

Print pair.

Inductive prod (A B : Type) : Type :=
 pair : A -> B -> A * B

The notation A * B denotes (prod A B).

The notation (x, y) denotes (pair x y) (implicit argument).

```
Check (2, 4). : nat * nat
Check (true, 2 :: nil). : bool * (list nat)
```

Fetching the components

```
Compute (fst (0, true)).
```

= 0 : nat Compute (snd (0, true)).

= true : bool

```
Inductive data types

They are also inductive types!
```

Pairs & co

Pairs can be nested.

This can also be adapted to polymorphic n-tuples.

```
Inductive triple (T1 T2 T3 : Type) :=
   Triple T1 -> T2 -> T3 -> triple T1 T2 T3.
```

Record types

A record type bundles pieces of data you wish to gather in a single type.

```
Record admin_person := MkAdmin {
id_number : nat;
date_of_birth : nat * nat * nat;
place_of_birth : nat;
gender : bool}.
```

Definition MrX := MkAdmin 42 (1,1,2001) 6 true.

They are also inductive types with a single constructor!

```
Inductive data types

They are also inductive types!
```

Record types

Access to the fields

In proofs, you can break an element of record type with tactic case or destruct.

Warning: this is pure functional programming