SECTION A [25 marks]

This section consists of 3 questions. Answer all the questions given.

1. (a) Given $f(x) = \frac{x^2 - 1}{x - 1}$, find $\lim_{x \to 1} f(x) - \lim_{x \to 0} f(x)$.

[4 marks]

- (b) Evaluate $\lim_{x \to +\infty} \frac{\sqrt{x^2 1}}{3x + 5}$ [5 marks]
- 2. (a) Given that $y = x \ln x 3x$, find the value of x and y when $\frac{dy}{dx} = 0$.

[5 marks]

(b) Given $y = \alpha e^{2x} + \beta e^{-2x}$ where α and β are constants. Show that $\frac{d^2y}{dx^2} = 4y$.

[6 marks]

3. Given $f(x) = x^2 - \frac{2}{x}$, where $x \ne 0$. Find the coordinate of stationary point and determine whether it is relative maximum or relative minimum.

[5 marks]

SECTION B [75 marks]

This section consists of 7 questions. Answer all questions.

- 1. Given that $z_1 = 2 + 3i$, $z_2 = 3 + 2i$ and $z_3 = a + bi$ are three complex numbers, where a and b are real.
 - (a) Find $z_1 + z_2$. Hence, determine the modulus of $z_1 + z_2$.
 - (b) If $z = \frac{z_1 z_3}{z_2}$, find z in terms of a and b. Giving your answer in the form x + yi, where $x, y \in \mathbb{R}$.
 - (c) From part (b), given that $z = \frac{17}{13} \frac{7}{13}i$,

- (i) find the values of a and b,
- (ii) find $\arg z$, giving your answer in radians to 3 decimal places.
- (iii) Hence, express z in polar form.

[9 Marks]

- 2. (a) Solve the equation $\log_5 5x + \log_x 5 = \log_4 64$.
 - (b) Determine the value of x for $3-x \le x(x-3) < 10-3x$. Express your answer in the interval form.

[11 Marks]

- 3. The function f is defined by $f(x) = \frac{x+2}{x-2}$, $x \neq k$ and $g(x) = \frac{2x+2}{x-1}$
 - (a) State the value of k.
 - (b) Determine whether f is one-to-one function algebraically.
 - (c) Find $f \circ g$ and hence state the relationship between f and g.

[8 marks]

- 4. The functions f and g are defined by $f(x) = \ln(3x-1)$, $g(x) = e^x$
 - (a) Determine the inverse function of f.
 - (b) State the domain and range of f^{-1} .
 - (c) Sketch the graphs of f and f^{-1} on the same axes.
 - (d) Find $g \circ f$.

[10 marks]

5. Given that

$$f(x) = \begin{cases} \frac{2 - x^2 - p}{x}, & x < q \\ r & x + 6, & q \le x < 2 \\ x^3 - p, & x \ge 2 \end{cases}$$

Find the values of p, q and r such that f(2) = p and f(x) is continuous everywhere.

[11 marks]

- 6. (a) A curve has the equation $y^2 + 6x = 3xy + y$. Find the coordinates of the points on the curve and its gradient when x = 2. [8 marks]
 - (c) The parametric equations of a curve are given by $x = \frac{1}{3}\sin^3 2\theta$ and $y = 2\cos^3 2\theta$. Find $\frac{dy}{dx}$ in terms of θ . Hence, find the value of $\frac{dy}{dx}$ when $\theta = \frac{\pi}{6}$.

[8 marks]

- 7. Water is leaking from the bottom of a conical tank with radius 1.5 meter and height 2 meter at a rate of 0.25 cubic meter per minute. The tank was initially full. If the height of water is 1 meter then, find the rate of change of
 - (a) the water level
 - (b) the radius of the water surface

[9 marks]

ANSWER

Section A

- 1. (a) 1 (b) $\frac{1}{3}$
- 2. (a) $x = e^2$ $y = -e^2$ (b) shown
- 3. Stationary point (-1, 3), relative minimum.

Section B

- 1. (a) 5+5i, $5\sqrt{2}$ (b) $=\frac{12a-5b}{13} + \frac{(5a+12b)}{13}i$
 - (c) (i) a=1, b=-1 (ii) $\arg z = -0.391 \ rad$ (iii) $z = \sqrt{2} \left(\cos \left(-0.391 \ rad \right) + i \sin \left(-0.391 \ rad \right) \right)$
- 2. (a) x = 5 (b) $\left(-\sqrt{10}, -1\right] \cup \left[3, \sqrt{10}\right)$
- 3. (a) k=2(c) f g(x) = x, f and g are inverse of each other

- 4. (a) $f^{-1}(x) = \frac{e^x + 1}{3}$
 - (b) $D_{f^{-1}} = R_f = (-\infty, \infty), \quad R_{f^{-1}} = D_f = (\frac{1}{3}, \infty)$

- (d) 3x-1
- 5. $p = 4, r = \frac{1}{2}, q = 0$
- 6. (a) 2,4 and 2,3 ; gradient = 6,-3
- (b) $\frac{dy}{dx} = -6\cot 2\theta ; -2\sqrt{3}$

7. (a) -0.1415 m/min

(b) -0.1061 m/min