Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Лабораторна робота №1

Тема: Моделювання цифрових логічних схем

Роботу виконав студент 3 курсу мережевий адміністратор Цибульський Роман Мета: Ознайомлення з основними можливостями пакета програм автоматизованого проектування електронних схем Proteus. Моделювання роботи простих логічних схем.

Лабораторне завдання

- 1. Уважно ознайомтесь з наведеним вище теоретичним матеріалом.
- 2. У Proteus введіть схему, зображену на рис 1.1.

3. Схема на рис. 1.1 фактично аналогом елемента 2I-2AБОНЕ (74х51). Замініть в схемі дані елементи на схему 74х51. Проведіть симуляцію роботи цієї схеми, порівняйте її роботу з роботою попередньої схеми.

На жаль, схема 7451 в Proteus 8 не має робочої симуляції

	,			1	<i>-</i>	
Showing local result	s: 23				Preview	
Device	Library	Cat.	Stock Code	Description	No Simulator Model	
52745-1096	MOLEX	Connectors	Digikey WM7709TR-ND	CONN FFC/FPC 10POS .50MM R/A	1	1A
52745-1196	MOLEX	Connectors	Digikey 52745-1196-ND	CONN FFC 11POS .50MM R/A ZIF	12	1B
52745-1296	MOLEX	Connectors	Digikey 52745-1296-ND	CONN FFC 12POS .50MM R/A ZIF	13	1C 1Y 08
52745-1396	MOLEX	Connectors	Digikey 52745-1396-ND	CONN FFC 13POS .50MM R/A ZIF	13 9 10	1D
52745-1496	MOLEX	Connectors	Digikey 52745-1496-ND	CONN FFC 14POS .50MM R/A ZIF	10	1E
52745-1596	MOLEX	Connectors	Digikey 52745-1596-ND	CONN FFC 15POS .50MM R/A ZIF	<u>11</u>	1F
52745-1696	MOLEX	Connectors	Digikey 52745-1696-ND	CONN FFC 16POS .50MM R/A ZIF	•	
52745-1796	MOLEX	Connectors	Digikey 52745-1796-ND	CONN FFC 17POS .50MM R/A ZIF	2 3	2A
52745-1896	MOLEX	Connectors	Digikey 52745-1896-ND	CONN FFC 18POS .50MM R/A ZIF	3	2B
52745-1996	MOLEX	Connectors	Digikey 52745-1996-ND	CONN FFC 19POS .50MM R/A ZIF	<u>4</u> 5	2C 2Y 0 5
7451	74STD	TTL 74 series		Dual 2-wide 2-input and 3-input AN	_5_	2D
7/151 JEC	74STD	TTI 74 series		Dual 2-wide 2-input and 3-input AN		

Через це на виходи не подається який-небудь сигнал Тому було знайдено аналог схеми 7451 - 74LS51, до якої симуляція була.

При розташуванні всіх сигналів на одному графіку можна побачити, що схеми працюють однаково.

4. Зберіть схему «Виключне АБО» на елементах І-НЕ та повторіть для неї пункт 3.

Елемент XOR(Виключне АБО) має таблицю істинності

 $F = \overline{A}B + A\overline{B} = A\overline{A} + \overline{A}B + A\overline{B} + B\overline{B} = \overline{A}(A+B) + \overline{B}(A+B) = (\overline{A}+\overline{B})(A+B) = \overline{AB}(A+B) = (\overline{AB})A + (\overline{AB})B = \overline{(A(\overline{AB}))(B(\overline{AB}))} = (A|(A|B))|(B|(A|B))$

5. Зберіть, та проведіть симуляцію роботи двох схем, згідно з Вашим варіантом. При проектуванні схем поведіть пошук оптимальних схем.

Номер варіанту 5814 = 1 0110 1011 0110, 10 1011 0110 за умовою

ТАБЛИЦЯ ІСТИННОСТІ ПЕРЕМИКАЛЬНИХ ФУНКЦІЙ

χ_4	X_3	χ_2	X_I	$f_{\scriptscriptstyle I}$	f_2
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	1
0	0	1	1	0	0
0	1	0	0	X	0
0	1	0	1	0	0
0	1	1	0	1	X
0	1	1	1	X	X
1	0	0	0	1	0
1	0	0	1	0	0

1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	1	X
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

ЕЛЕМЕНТНИЙ БАЗИС

h10	h9	h8	Логічні елементи
1	0	1	2І-НЕ, 4АБО

F1	x4	0	1	1	0
	x 3	0	0	1	1
x1x	2				
00		1	1	1	X
01		1	0	1	1
11		0	0	1	X
10		0	0	1	0

$$F1 = x3x4 + nx1nx4 + nx1nx2 = (x3|x4) | (nx1|nx4) | (nx1|nx2)$$

Ca = 6

Cb = 15

F2	x4	0	1	1	0
	x 3	0	0	1	1
x1x	2				
00		1	0	X	0
01		1	0	1	X
11		0	0	1	X
10		1	0	1	0

$$F2 = x4x3 + nx4nx3nx2 + nx4nx3nx1 = (x4|x3)|(nx4|nx3|nx2)|(nx4|nx3|nx1)$$

Ca = 6

Cb = 18

Висновок : в ході виконання роботи були вивченні основні можливості програми Proteus 8. За допомогою програми було спроектовано декілька різних логічних схем. Було реалізовано схему виключного або на основі базису І-НЕ. Також у ході виконання було мінімізовано на спроектовано схеми для двох функцій на основі логічних елементів 2І-НЕ та 4АБО.

Контрольні питання

- 1. В якій бібліотеці знаходиться логічні ІМС 74-ї серії? 74STD
- 2. Як записується досконала нормальна диз'юнктивна форма?

На основі таблиці істинності побудується рівняння, яке включатиме всі можливі комбінації вхідних змінних, де логічний вираз має значення "1" (істинно). Змінні, які приймають значення "1" в даній комбінації, записуються без заперечень, а змінні, які приймають значення "0", записуються з запереченням.

3. Як записується досконала нормальна кон'юнктивна форма?

будується на основі таблиці істинності логічного виразу, але включає всі можливі комбінації вхідних змінних, де логічний вираз має значення "0" (хибно). Змінні, які приймають значення "0" в даній комбінації, записуються без заперечень, а змінні, які приймають значення "1", записуються з запереченням.

4. Як провести симуляцію роботи Вашої схеми?

6. В чому різниця між ДНФ, КНФ та ТДНФ?

ДНФ представляється як диз'юнкція (логічне "або") кон'юнкцій (логічних "і") змінних або їхніх заперечень. ДНФ використовується для представлення логічних функцій у вигляді суми логічних добутків.

КНФ представляється як кон'юнкція (логічне "i") диз'юнкцій (логічних "або") змінних або їхніх заперечень. КНФ використовується для представлення логічних функцій у вигляді добутку логічних сум.

ТДНФ є спеціальним випадком ДНФ, в якому всі можливі комбінації вхідних змінних включені в ДНФ. ТДНФ використовується для представлення логічної функції таким чином, щоб вона визначалася у всьому просторі можливих комбінацій вхідних змінних.

7. Який Ви знаєте алгоритм запису таблично-заданої функції через базис Пірса?

При переході від КНФ до рівняння в базисі Пірса всі терми (елементарні дизьюнкций) беруться в дужки, а все знаки конь'юнкція і дизьюнкций замінюються на знак операції Пірса. Над однолітерними (від слова літера) термами ставляться знаки заперечення.