

## FIRST SEMESTER 2021-22

**Course Handout** 

20-08-2021

Course No. : BITS F312

Course Title : Neural Network and Fuzzy Logic Instructor-in-Charge : Dr. Rajesh Kumar Tripathy

## 1. Scope and Objective of the Course:

This course introduces several fundamental concepts of artificial neural network and fuzzy logic. The objective is to familiarize the students with some basic learning algorithms and techniques and their applications, as well as general questions related to analyzing and handling large data sets. Several software libraries and datasets publicly available will be used to illustrate the application of these algorithms. In this course, the various supervised learning algorithms such as logistic regression, multiclass logistic regression, multilayer perceptron, radial basis function neural network, extreme learning machine and the deep neural network will be discussed. By the end of this course, students will have a strong understanding of artificial neural network based techniques for various real-time applications.

#### 2. Textbooks:

T1. Simon Haykin, "Neural Networks – A comprehensive Foundation", Pearson Education, 1999.

T2. H. J. Zimmermann, "Fuzzy Set Theory and its Applications",3<sup>rd</sup> Edition, Kluwer Academic, 1996.

#### 3. Reference books/Materials

R1: CS229 Lecture notes: Stanford University

R2: CS231 Convolutional neural networks for visual recognition: Stanford University

R3: http://gyan.iitg.ernet.in/handle/123456789/833

R4: https://www.sciencedirect.com/science/article/pii/S0925231206000385

R5: https://www.springer.com/cda/content/document/cda\_downloaddocument/9783319284354-c2.pdf?

SGWID=0-0-45-1545215-p177863021

#### 4. Course Plan:

| Lecture<br>No. | Learning Objectives                                                                 | Topics to be covered                                                                                                                                               | Chapter<br>in the<br>Text Book |
|----------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1              | Pattern recognition and<br>Machine learning<br>introduction                         | Introduction to Pattern recognition, machine learning, Supervised, unsupervised and semi-supervised learning,                                                      | T1 (ch 2)                      |
| 2-4            | To understand<br>classification and<br>regression problems and<br>linear regression | Classification and regression problems, Linear regression, gradient descent (Batch gradient descent, mini-batch gradient descent, and stochastic gradient descent) | R1                             |
| 5-8            | To understand Binary and Multiclass                                                 | Logistic regression, multiclass extension of logistic regression (One Vs One and One Vs All Multiclass coding schemes)                                             | R1                             |



|       | classifications                                           |                                                                                                                                                        |                       |
|-------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 9     | To understand measures for classifiers                    | Performance Measures for Classifiers (binary class and multiclass), Probabilistic classifiers                                                          | R3 (2.9.5)            |
| 10-11 | To understand neural<br>network                           | What is a Neural Network?, Human Brain and Biological Neuron,<br>Model of an Artificial Neuron, Activation functions, Neural<br>Network Architectures. | T1 (ch 1)             |
| 12-13 | To understand<br>mathematical model of a<br>single neuron | Single Layer Perceptron, Linear Separability, XOR Problem,<br>Perceptron Learning rules                                                                | T1 (ch 3)             |
| 14-16 | To understand<br>multilayer perceptron                    | Multilayer Perceptron, Back-propagation Algorithm and parameters selection and tuning                                                                  | T1 (ch 4)             |
| 17-19 | To understand kernel<br>machines in machine<br>learning   | Radial-Basis Function Networks, various kernel functions used in RBFN, Support Vector Machine (SVM), kernel functions in SVM                           | T1 (ch 5)<br>and R3   |
| 20-24 | To understand<br>Autoencoder and deep<br>neural network   | Autoencoder, Sparse autoencoder, Denoising autoencoder, Deep neural network based on stacking of autoencoders                                          | R1                    |
| 25-27 | To understand ELM and its kernel extension                | Extreme learning machine (ELM), Kernel ELM                                                                                                             | R4                    |
| 28-31 | To understand CNN for solving classification problems     | Convolutional neural network (CNN), Convolutional Layer, Pooling Layer, and Fully-Connected Layers, Convolutional Autoencoder                          | R2                    |
| 32-34 | To introduce the fuzzy<br>world for decision<br>making    | Crisp Sets and Crisp relations, Fuzzy sets and Fuzzy relations,<br>Crisp Logic and Fuzzy Logic                                                         | T2 (ch 1)             |
| 35-37 | To understand fuzzy<br>inference                          | Membership function, Fuzzification, Fuzzy Inference,<br>Defuzzification Methods                                                                        | T2 (ch4,<br>ch5, ch9) |
| 38-42 | To understand hybrid neuro-fuzzy networks                 | Neuro-Fuzzy System, Takagi-Sugeno's Approach (ANFIS),<br>Fuzzy Backpropagation Networks                                                                | R5                    |

# 5. Evaluation Scheme:

| Component                                             | Durati<br>on | Weightage<br>(%) | Marks | Date & Time     | Nature of<br>Component |
|-------------------------------------------------------|--------------|------------------|-------|-----------------|------------------------|
| Mid-Sem Exam                                          | 90 min       | 30%              | 90    | To be announced | Closed Book            |
| Programming Assignments using Python and Google Colab |              | 30%              | 90    | To be announced | Open Book              |
| Comprehensive Exam                                    | 120<br>min   | 40%              | 120   | To be announced | Closed Book            |

**6. Chamber Consultation Hour:** Through google meet

7. Notices: Notices concerning this course will be on CMS.

**8. Make–up Examination:** Make-up will be given on genuine grounds only. Prior application should be made for seeking the make- up examination.



**9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Rajesh Kumar Tripathy
INSTRUCTOR-IN-CHARGE