Example of Meta-analysis Using Transcriptomic Data

Mengyuan Kan

December 11, 2018

Prerequisite Files

secondary analysis results

- A directory with all .csv files (microarray) and/or .txt files (RNA-Seq) of DE results
- A .csv file of sample information.

Required columns: GEO_ID, App (asthma or GC, representing disease or treatment), Tissue, Asthma (disease endotype or exposure), N_Condition0 (sample size in condition 0), N_Condition1 (sample size in condition 1), Total (total sample size), Unique_ID (DE filename without extention), and batchadj (if use SVA batch effect adjusted p value, define 'yes')

example of the sample info sheet: Microarray_data_infosheet_R.csv

GEO_ID	App	Tissue	Asthma	PMID	Treatment
GSE44037	asthma	BE	allergic_asthma	24282527	NA
GSE4917	GC	MCF10A-Myc	GC	16690749	Dex 1uM 24h

continued

Daily_Dosage	steroid_resistance_sensitivity	N_Condition0	N_Condition1	Total
NA	no	6	6	12
NA	no	3	3	6

continued

Description

Bronchial epithelial cell brushings; n=12 (6 healthy control, 6 allergic asthma)

MCF10A-Myc cells; n=6 (3 dexamethasone treatments (1uM; 24h), 3 ethanol)

continued

Long_tissue_name	Unique_ID	batchadj
Bronchial epithelium	GSE44037_BE_asthma_vs_healthy	yes
MCF10A-Myc	GSE4917_MCF10A-Myc_nonasthma_dex_24hr_vs_control_24hr	corr_donor_scandate

scripts

- csv2rds.R: convert DE result files .csv/.txt to .RDS
- meta_analysis_geneexpr.py: generate command lines/job scripts for integration based on user-defined options
- integration_utility.R: R utilities and functions used for integration, will be called in meta_analysis_geneexpr.R and meta_analysis_RankProd.R
- meta_analysis_geneexpr.R: R scripts to run integration methods (i.e. fisher's sum-of-log, meta-analysis using random-effects model, and rank product)
- meta_analysis_RankProd.R: R scripts to run 1000 permutations for rank-based integration
- study.rankprod.combine.R: R scripts to compute expected rank product and p-values, and also combine p-value-based and effect size-based results in one file
- mk_bsub.py: use piped input to generate LSF file. Put under \$PATH directory.

Meta-analysis Example

Convert csv output to RDS

Directly run R script csv2rds. R to convert recently added DE result in .csv format to RDS format

Rscript /home/mengykan//Projects/integration/scripts/csv2rds.R

Change three variables in the scripts before running. Modify three variables under *Change Here*.

- datainfor_fn_hpc: sample info sheet with absolute path
- resdir_hpc: directory with all DE restuls .csv/.txt files
- appdir_hpc: directory where the .RDS files will be generated

How csv2rds.R works:

- If batchadj is *yes* in sample sheet, replace P.Value with pValuesBatch and replace adj.P.Val with qValuesBatch, otherwise use the original P.Value and adj.P.Val values without batch effect adjustment.
- Create SD column by computing SD=logFC/t
- Select results only have gene symbol available, and use the gene-based restuls with the smallest p-value.
- Create rank column based on the rank of p-values.
- If p-value is zero, assign the smallest non-zero p-value in the results

Run meta-analysis for treatment comparison

In this example, perform meta-analysis for treatment studies of structural cell type

Check options in meta_analysis_geneexpr.py:

python /home/mengykan//Projects/integration/scripts/meta_analysis_geneexpr.py -h

- --script_dir: directory for all the R scripts
- make selection:
 - ▶ --tissue: (required) select tissues
 - ▶ --disease: (required if treatment/study is not specified) select disease endotypes
 - ▶ --treatment: (required if disease/study is not specified) select treatments/exposures
 - ▶ --study: (optional) select studies corresponding to Unique_ID. If study is specified, tissue/disease/treatment types will be ignored
 - specify *entire* if use all tissues/disease endotypes/exposures
- --out: output prefix, including the absolute path. e.g. ~/GC_structural/GC_structural will generate files starting with GC_structural in the GC_structural directory

Effect size-based integration

There are two ways to run:

1. directly use python to invoke R

 $python /home/mengykan/Projects/integration/scripts/meta_analysis_geneexpr.py --samp_info /project/bhimeslab/databas \\ es/AsthmaApp/databases/Microarray_data_infosheet_R.RDS --DE_dir /project/bhimeslab/databases/AsthmaApp/databases/mi\croarray_results --script_dir /home/mengykan/Projects/integration/scripts --tissue 'ASM BE' --treatment GC --out /h\come/mengykan/Projects/integration/GC_structural/GC_structural --method metaranef$

- 2. submit a job on HPC. This method is always preferable because this process will take a while.
- 1) create a directory for LSF scripts

mkdir /home/mengykan/Projects/integration/scripts/GC_structural
cd /home/mengykan/Projects/integration/scripts/GC_structural

2) create a command line

cmd="python /home/mengykan/Projects/integration/scripts/meta_analysis_geneexpr.py --samp_info /project/bhimeslab/da\
tabases/AsthmaApp/databases/Microarray_data_infosheet_R.RDS --DE_dir /project/bhimeslab/databases/AsthmaApp/databas\
es/microarray_results --script_dir /home/mengykan/Projects/integration/scripts --tissue 'ASM BE' --treatment GC --o\
ut /home/mengykan/Projects/integration/GC_structural/GC_structural --method metaranef"

3) mk_bsub.py is used for automatically generate LSF file by piping user's input command

echo \$cmd | mk_bsub.py --line 1 --thread 1 --job_name GC_structural_metaranef --memory 24000 # generate a script GC_structural_metaranef.lsf

4) submit job

It is recommended to exit the computational node and submit the job from headnode.

```
bsub < GC_structural_metaranef.lsf # submit job
```

You can check job status by issuing

bjobs

Show LSF script

cat GC_structural_metaranef.lsf

```
#!/bin/bash
#BSUB -L /bin/bash
#BSUB -J GC_structural_metaranef
#BSUB -q normal
#BSUB -outdir /home/mengykan/Projects/integration/scripts/GC_structural
#BSUB -o GC_structural_metaranef_%J.out
#BSUB -e GC_structural_metaranef_%J.screen
#BSUB -M 24000
#BSUB -n 1
```

python /home/mengykan/Projects/integration/scripts/meta_analysis_geneexpr.py --samp_info /project/bhimeslab/databases/AsthmaApp/databases/Microarray_data_infosheet_R.RDS --DE_dir /project/bhimeslab/databases/AsthmaApp/databases/microarray_results --script_dir /hom\e/mengykan/Projects/integration/scripts --tissue 'ASM BE' --treatment GC --out /home/mengykan/Projects/integration/GC_structural/GC_\structural --method metaranef

Show standard outputs

5 treatment gene expression datasets have been selected

[1] "GSE13168_ASM_nonasthma_GFP_Flu_vs_GFP_basal"

[2] "GSE1815_BE_nonasthma_dex_8hr_vs_control_8hr"

[3] "SRP033351_healthy_dex_vs_healthy_untreated_full_DESeq2_results"

[4] "GSE34313_ASM_nonasthma_dex24hr_vs_nodex"

[5] "BUDResponse_non_asthma_BUD_vs_non_asthma_control_full_DESeq2_results"

Select genes shared within at least two studies

Obtain 19266 genes

Perform meta-analysis using random-effects model

Show results. Output files are under the pre-defined directory: /home/mengykan/Projects/integration/GC_structural.

head -6 /home/mengykan/Projects/integration/GC_structural/GC_structural.metaranef.txt

Gene	logFC	SE	CI_lower	CI_upper	df	P.Value	qval	rank
KANK4	-3.59	0.09	-3.76	-3.41	2	0	0	1.5
PPP1R14A	3.10	0.07	2.96	3.24	2	0	0	1.5
SOST	-1.97	0.08	-2.13	-1.81	1	9.29E-128	5.96E-124	3
FER1L6	-2.84	0.13	-3.09	-2.58	1	4.54E-106	2.19E-102	4
TBX18	-1.79	0.08	-1.95	-1.63	1	5.18E-105	1.99E-101	5

p-value-based integration

Here use the second way to run, i.e. submit a job to HPC

```
cd /home/mengykan/Projects/integration/scripts/GC_structural
cmd="python /home/mengykan/Projects/integration/scripts/meta_analysis_geneexpr.py --samp_info /project/bhimeslab/databases/AsthmaApp\
/databases/Microarray_data_infosheet_R.RDS --DE_dir /project/bhimeslab/databases/AsthmaApp/databases/microarray_results --script_dir\
/home/mengykan/Projects/integration/scripts --tissue 'ASM BE' --treatment GC --out /home/mengykan/Projects/integration/GC_structura\
1/GC_structural --method fisherp"
echo $cmd | mk_bsub.py --line 1 --thread 10 --job_name GC_structural_fisherp --memory 24000 # generate a script GC_structural_fisher\
p.lsf
bsub < GC_structural_fisherp.lsf
```

output file: /home/mengykan/Projects/integration/GC_structural/GC_structural.fisherp.txt

head -6 /home/mengykan/Projects/integration/GC_structural/GC_structural.fisherp.txt

Gene	P.Value	qval	rank
GLUL	0	0	2
SAMHD1	0	0	2
TSC22D3	0	0	2
NKD1	2.66E-322	1.29E-318	4
FKBP5	2.14E-304	8.24E-301	5

rank-based integration

To perform 1,000,000 permutations, create 20 .lsf files with R command to run 50,000 permutations each based on random seeds from 1 to 1,000,000

1. Generate 20 .lsf files to run 1,000,000 permutations

BASH

cd /home/mengykan/Projects/integration/scripts/GC_structural
python /home/mengykan/Projects/integration/scripts/meta_analysis_geneexpr.py --samp_info /project/bhimeslab/databases/AsthmaApp/databases/Microarray_data_infosheet_R.RDS --DE_dir /project/bhimeslab/databases/AsthmaApp/databases/microarray_results --script_dir /hom\
e/mengykan/Projects/integration/scripts --tissue 'ASM BE' --treatment GC --out /home/mengykan/Projects/integration/GC_structural/GC_\

Output files:

- Under output directory: /home/mengykan/Projects/integration/GC_structural/
 - ► GC_structural.rankprodt.txt: gene and its observed rank product
 - ► GC_structural.ranklist.RDS: a list object with the gene and rank columns from each study
- The directory GC_structural_rankperm the under output directory
 - ► Containing 20 RDS objects. Each has permutation results after 50,000 permutations.

To run step 2, make sure all 20 jobs are completed. Two ways to check:

1) the number of RDS files in the output directory

```
11 rank*.RDS | wc # should be 20
```

2) the standard error in script directory. If the job is halted, 'Execution halted' can be found in .screen files.

```
grep "Execution halted" rank*screen
```

If any LFS script reports an error, re-run the corresponding script.

2. Combine permutation results and obtain expected RP and p-values, then combine the results from the other two methods

Directly run R script study.rankprod.combine.R. V1: output prefix; V2: directory with previous integration results

generate a combined output file

 $\verb|cat|/home/mengykan|/Projects/integration/GC_structural/GC_structural.txt|$

Gene	logFC	SE	CI_lower	CI_upper	df
KANK4	-3.59	0.09	-3.76	-3.41	2
PPP1R14A	3.10	0.07	2.96	3.24	2

Continued

. CDI/1			C 1 DII 1	C: 1 1	C: 1 1
metaranef_P.Value m	etaranef_aval	metaranef_rank	fisherp_P.Value	fisherp_qval	fisherp_rank

0	0	1.5	1.69E-22	3.04E-21	1071
0	0	1.5	5.02E-89	8.95E-87	108

Continued

RP	Count	rankprodperm_P.Value	rankprodperm_rank	FDR
0.67	1194	1.19E-03	294	7.82E-02
0.70	11	1.10E-05	53.5	3.96E-03

Run meta-analysis for disease comparison

In this example: Perform meta-analysis for severe asthma studies of all cell types

Effect size-based integration

```
mkdir /home/mengykan/Projects/integration/scripts/severe_asthma_entire
cd /home/mengykan/Projects/integration/scripts/severe_asthma_entire
cd /home/mengykan/Projects/integration/scripts/severe_asthma_entire
cmd="python /home/mengykan/Projects/integration/scripts/meta_analysis_geneexpr.py --samp_info /project/bhimeslab/databases/AsthmaApp\
/databases/Microarray_data_infosheet_R.RDS --DE_dir /project/bhimeslab/databases/AsthmaApp/databases/microarray_results --script_dir\
/home/mengykan/Projects/integration/scripts --tissue 'entire' --disease 'severe_asthma' --out /home/mengykan/Projects/integration/s\
evere_asthma_entire/severe_asthma_entire --method metaranef"
echo $cmd | mk_bsub.py --line 1 --thread 1 --job_name severe_asthma_entire_metaranef --memory 24000
bsub < severe_asthma_entire_metaranef.lsf
```


--disease option is specified to select severe asthma; --tissue 'entire' to use all cell and tissue types

p-value-based integration

```
cd /home/mengykan/Projects/integration/scripts/severe_asthma_entire
cmd="python /home/mengykan/Projects/integration/scripts/meta_analysis_geneexpr.py --samp_info /project/bhimeslab/databases/AsthmaApp\
/databases/Microarray_data_infosheet_R.RDS --DE_dir /project/bhimeslab/databases/AsthmaApp/databases/microarray_results --script_dir\
/home/mengykan/Projects/integration/scripts --tissue 'entire' --disease 'severe_asthma' --out /home/mengykan/Projects/integration/s\
evere_asthma_entire/severe_asthma_entire --method fisherp"
echo $cmd | mk_bsub.py --line 1 --thread 10 --job_name severe_asthma_entire_fisherp --memory 24000
bsub < severe_asthma_entire_fisherp.lsf
```

rank-based integration

To perform 1,000,000 permutations, create 20 .lsf files with R command to run 50,000 permutations each based on random seeds from 1 to 1,000,000

1. Generate 20 .lsf files to run 1,000,000 permutations

BASH

cd /home/mengykan/Projects/integration/scripts/severe_asthma_entire_python /home/mengykan/Projects/integration/scripts/meta_analysis_geneexpr.py --samp_info /project/bhimeslab/databases/AsthmaApp/databases/Microarray_data_infosheet_R.RDS --DE_dir /project/bhimeslab/databases/AsthmaApp/databases/microarray_results --script_dir /hom\e/mengykan/Projects/integration/scripts --tissue 'entire' --disease 'severe_asthma' --out /home/mengykan/Projects/integration/severe_asthma_entire/severe_asthma_entire --method rankprodt # generate 20 LSF file
for i in rank_*.lsf; do bsub < \$i; done

2. Combine results

 $Rscript \ /home/mengykan/Projects/integration/scripts/study.rankprod.combine. R \ "severe_asthma_entire" \ "/home/mengykan/Projects/integration/severe_asthma_entire" \ /Projects/integration/severe_asthma_entire" \ /Projects/integration/severe_asthma_entire \ /Projects/integration/severe_a$

show results

datasets selected:

_ OUTPUT

- [1] "9 disease gene expression datasets have been selected"
- [1] "GSE31773_CD4_severe_asthma_vs_healthy"
- [2] "GSE31773_CD8_severe_asthma_vs_healthy"
- [3] "GSE27011_WBC_severe_asthma_vs_healthy"
- [4] "GSE63142_ScanYear_BE_Baseline_severe_asthma_vs_healthy"
- [5] "GSE89809_Epithelial_Baseline_severe_vs_healthy"
- [6] "GSE89809_BAL_Baseline_severe_vs_healthy"
- [7] "GSE89809_Spm_Baseline_severe_vs_healthy"
- [8] "GSE69683_Blood_Baseline_severe_asthma_vs_healthy"
- [9] "GSE64913_Central_airway_epithelium_Baseline_severe_asthma_vs_healthy"

. . .

Select genes shared within at least two studies Obtain 21632 genes

cat /home/mengykan/Projects/integration/severe_asthma_entire/severe_asthma_entire.txt