Hypothesis Testing

Suppose some to with the or the being the inverse

Typel Error (a)
. Ho is rejected but should hold

Type 2 Enor (B)

Difference in Means
-when given an B ou

·When given an A output Given Following Data

1) Determine if variances are equal or unequal

• Question STATES this

2) Perform t test on two means (tv or $t_{\rm h\,i}$ th_z-2)

3) Determine confidence interval (called a,b)

-If t<a or t>b, REJECT

-0/2 only if 2 sided

Given μ , α , and some \bar{x} (either a proportion or values)

1) Determine tails (One or Two)
- If one tail, find left or right

2)Determine if using t or Z ·n>30, use Z ·n≤30, use t

3) Calculate t or 2 value of a and the other mean

Reject if: $\alpha < P(Z)$ $\alpha < P(T)$ $\gamma = \frac{Z_{\frac{M}{2}}}{2} < 2$ $\gamma = \frac{1}{2} < T$

If z value is in red, REJECT

Type 2 Error Questions (B)

·When given true mean/proportion of something

Powe

- ·Associated with type 2 errors
- · Power = 1- B

· Colculate new rejection zones with original z values

- 1) DO NOT COPY Z VALUES
- 2) Determine confidence in terval of original
- 3) Using interval, convert to z values of new true mean
- 4) Calculate

Single Variable Least Squares

· Determines relationship existence

· Equation of line:
$$\hat{V} = \hat{\beta}_1 \times + \hat{\beta}_0 \times$$

where
$$\hat{\beta}_1 = \frac{s_{xy}}{s_{xy}}$$
 $\hat{\beta}_0 = \hat{y} - \hat{\beta}_1$
 $s_{xx} = \sum_{i=1}^n x_i^{1_i} \cdot n\bar{x}^{2_i}$
 $s_{xy} = \sum_{i=1}^n x_i y_i \cdot n\bar{x}\bar{y}$

·Table given looks as such if information given: Coefficients:

$$\uparrow_{n-2} = \frac{\hat{\beta}_i}{\sqrt{\frac{\hat{\beta}^*}{S_{xx}}}} \qquad \hat{\delta}^2 = \frac{SSE}{n-2}$$

Given other values such as means of residuals

Pr(>|+1) is calculated with tvalue

·If p value <0.05, reject
Ho and state strong correlation

Determine regression line

1)
$$\overline{x} \& \overline{y}$$
 $\overline{x} = 7.2$
 $\overline{y} = 4.4$
3) $S_{xy} = \sum_{i=1}^{\infty} x_i y_i - n \overline{x} \overline{y}$

$$= 0.8 + 5.6 + 8.2 + 111.4 + 12.2$$
2) $S_{xxy} = \sum_{i=1}^{\infty} x_i^2 - n \overline{x}^2$

$$= -5.7.2 \cdot 4.4$$

$$= 0^2 + 5^2 + 8^2 + ||^2 + ||^2 + ||^2 - 5(7.2)^2$$

$$= 94.8$$

$$4) \hat{\beta}_{1} = \frac{S_{NY}}{S_{NY}} \qquad \hat{\beta}_{0} = \tilde{y} - \hat{\beta}_{1} \tilde{x}$$

$$= \frac{-44.4}{94.8} \qquad = 9.44 + 0.46 + 0.7.2$$

$$= 7.772 + 0.46 + 0.46 + 0.7.2$$

$$= 7.772 + 0.46 + 0.46 + 0.7.2$$

$$= 7.772 + 0.46 + 0.46 + 0.7.2$$

y=7.7722-0.4684×

Residuals

$$(6,8): \widehat{\bigvee} = 7.7722 \qquad (11,41): \widehat{\bigvee} = 7.7722 - 0.4684 (11) \\ = 2.6198 \qquad = 2.6198 \\ = 0.228 \qquad = 1.380$$

$$(5,6): \widehat{\bigvee} = 7.7722 - 0.4684 (5) \\ = 5.4302 \qquad (12,2) \widehat{\bigvee} = 7.7722 - 0.4684 (12) \\ = 6.5.4302 \qquad = 2.16144$$

$$(6-9.4302) = 2.1514$$

$$= 0.570$$

$$(8.2): \hat{y} = 7.7722 - 0.4684(8)$$

$$= 4.025$$

$$(2-4.025)$$

$$= -2.025$$

Residual Sum: $0.228^2 + 1.38^2 + 0.57^2 + 2.025^2 + 0.151^2$ = 6.4051 (Depends on rounding)

Fisher's LSD Test

- ·Compares 2 means to see if they are Similar or not
- 1) Calculate the absolute difference between the two means (a)
- 2) Calculate the LSO for two means (b)

• It	a > b, then	significantly different
------	-------------	-------------------------

					_			
Exercise	n	mean	8 d	E	Er	X'-X5	LSD	Difference
0	36	135.16	13.04	0	1	5,74	5.53	✓
1	38	129.42	12.12	0	2	9.93	7.75	✓
2	13	125.23	9.71	٥	3	13.07	8.83	✓
3	11	122.09	11.09	1	2	4.19	7.75	×
Find pairs that are significantly				y [3	7.33	8.83	×
different 01=0.05			2	3	3.14	9.88	l x l	
1) ta/2, N	To.025,96			'	'	1		

i)
$$t_{\alpha/2}$$
, $N-q = t_{0.025}$, q_0

$$= t_{0.025}$$
, q_0

$$= 1.990$$

2) Calculate different pairs:

ANOVA Table

of groups

·breaks down components of variation in data

. Distributed on table as follows, where

N is the sum of all the sample, a is the

·Multiple groups with means, standard deviations, and sample size

Determines if the means are similar/same

Ho: M= M2=...

H,:µi≠µj for some (i,j) pair

	n	ss	MS	F	Pvalue	Forit
Treatments	a-1	SS Treatments	SSTreatments a-1	MS _{treatments} MS _E	FromF	From P
Emor	N-a	SSE	SSE N-9			
Total	N-I	SST				

A value needed would be the true mean (\overline{y} ...), which is calculated by adding all values divided by # of values (n)

Exercise	n	mean	6 d	1) True mean
0	36	135.16	13.04	"y= 38.135.16+38.129.42+13.125.23+11.122.09
1	38	129.42	12.12	100
2	13	125.23	9.71	1 7
3	11	129.42 125.23 122.09	11.09	y= 130.2502 N=100

2) 55 (sum of squares)
$$65 \text{ Treatments} = \sum_{i=1}^{n} n_i (\overline{y_i} - \overline{y_{..}})^2 = \sum_{i=1}^{\infty} \frac{\overline{y_i}}{n_i} - \frac{y_{..}^2}{N}$$

$$= 36 (185.16 - 180.2502)^2 + 38 (129.42 - 130.2502)^2 + 13(125.23 - 130.2502)^2$$

$$+ ||(122.09 - 130.2502)^2$$

$$= 2007.3328$$

$$SS_{E} = \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} (y_{ij} - \overline{y}_{i\cdot})^{2} = \sum_{i=1}^{n} (n_{i}-1) s_{i}^{2}$$

$$= 37 \cdot 13.04^{2} + 37 \cdot 12.12^{2} + 12 \cdot 9.71^{2} + 10 \cdot 11.04^{2}$$

$$= 140 87.9222$$

3) M5

MS_{Treatments} =
$$\frac{2002.2328}{2002.2328}$$

= $\frac{667.444...}{667.9222}$

= $\frac{140.87.9222}{96}$

= $\frac{140.749}{60}$

_	n	\$5	MS	F
Treatments	3	2007.3328	667.44	4.59
Emor	96	140 87.9222	146.749	
Total	99	16090.255		