PROVA (PARTE 2)

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

07 de março de 2018

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- $\bullet\,$ A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- $-\ P$ é a pontuação obtida na prova, e
- -EB é a pontuação total dos exercícios-bônus.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Problemas Decidíveis, (4) Problemas indecidíveis e (5) Complexidade de Tempo.

N.T		
Nome:		
TAOIIIO.		

1 Terceiro Teste

- 1. (5,0 pt) [Sipser 4.12] Seja $A = \{\langle R, S \rangle \mid R \in S \text{ são expressões regulares e } L(R) \subseteq L(S)\}$. Mostre que A é decidível.
 - R Para que $L(R) \subseteq L(S)$, é necessário garantir que $L(R) \cup L(S) = L(S)$ (pois toda cadeia em L(R) tem que pertencer também a L(S)). Para isto, criamos os AFDs T e U de forma que L(T) = L(R) e L(U) = L(S) (Definição 1.16, e Teorema 1.54). Por fim, criamos o AFD V de forma que $L(V) = L(T) \cup L(U)$ (Teorema 1.25) e verificamos se $\langle U, V \rangle$ é membro de EQ_{AFD} (Teorema 4.5).

Diante disto, será construído a seguir um decisor M_A para A:

 $M_A=$ "Sobre a entrada $\langle R,S\rangle,$ em que Re Ssão expressões regulares, faça:

- (a) Construa os AFDs U e V conforme descritos anteriormente;
- (b) Construa a MT X que decide EQ_{AFD} (Teorema 4.5);
- (c) Rode X sobre $\langle U, V \rangle$;
 - i. Se X aceita, aceite;
 - ii. Caso contrário, rejeite.

A linguagem A é decidível pois foi possível construir uma máquina de Turing que a decide (Definição 3.6) \blacksquare

2. (5,0 pt) [Sipser 4.15] Seja $A = \{\langle R \rangle \mid R \text{ \'e uma expressão regular que descreve uma linguagem contendo pelo menos uma cadeia <math>\omega$ que tem 111 como uma subcadeia (i.e., $\omega = x111y$ para alguma x alguma e y)}. Mostre que A é decidível.

Resposta: É possível criar um AFD B de forma que L(B) seja a expressão regular $\Sigma^*111\Sigma^*$ (Definição 1.16 e Teorema 1.54). Assim, para que R gere pelo menos uma cadeia ω que tem 111 como uma subcadeia, é necessário garantir que $L(R) \cap L(B) \neq \emptyset$. Por fim, vamos criar um outro AFD C de forma que $L(C) = L(R) \cap L(B)$ (pois a classe de linguagens regulares é fechada sob a operação de interseção) e verificamos se $\langle C \rangle$ é membro de V_{AFD} (Teorema 4.4).

Diante disto, será construído a seguir um decisor M_A para A:

 M_A = "Sobre a entrada $\langle R \rangle$, em que R é uma expressão regular, faça:

- (a) Construa o AFD B conforme descrito anteriormente;
- (b) Construa o AFD C conforme descrito anteriormente;
- (c) Construa a MT X que decide V_{AFD} (Teorema 4.4);
- (d) Rode X sobre $\langle C \rangle$;
 - i. Se X aceita, rejeite;
 - ii. Caso contrário, aceite.

A linguagem A é decidível pois foi possível construir uma máquina de Turing que a decide (Definição 3.6)

Quarto Teste

3. (5,0 pt) [Sipser 7.6] Mostre que P é fechada sob operação de concatenação.

Prova: Sejam A e B duas linguagens decidíveis em \mathbf{P} . Sejam M_A e M_B duas máquinas de Turing simples que decidem as linguagens A e B, respectivamente (pois se uma linguagem é decidível, então uma máquina de Turing a decide). Como A e B são decidíveis em tempo polinomial determinístico, A e B pertencem a $\mathrm{TIME}(n^k)$ e $\mathrm{TIME}(n^l)$ respectivamente (em que k e l são números naturais). Iremos construir a máquina de Turing M_{aux} , a partir de M_A e M_B , que decide $A \circ B$ em tempo polinomial. A descrição de M_{aux} é dada a seguir:

 M_{aux} = "Sobre a entrada ω , faça:

- (a) Para cada um dos n+1 cortes de ω , de forma que $\omega = \omega_A \circ \omega_B$, faça:
 - i. Rode M_A sobre ω_A ;
 - ii. Rode M_B sobre ω_B ;
 - iii. Se M_A e M_B aceitam, aceite.
- (b) Rejeite".

O tempo de execução t de M_{aux} é igual a soma do tempo de execução dos passos (a) e (b). Logo, $t = O(n) \times (O(n^k) + O(n^l) + O(1)) + O(1) = O(n) \times O(n^{max(k,l)}) = O(n^{max(k,l)+1})$.

Seja c = max(k, l) + 1. Temos assim, $t = O(n^c)$. Como c é um número natural, $A \circ B \in \text{TIME}(n^c)$ e, consequentemente, $A \circ B \in \mathbf{P}$. Logo, podemos afirmar que \mathbf{P} é fechada sob a operação de concatenação

4. (5,0 pt) [Sipser 7.9] (Adaptação) Um triângulo em um grafo não-direcionado é um 3-clique. Mostre que $TRIANG \in \mathbf{NP}$, em que

$$TRIANG = \{\langle G \rangle \mid G \text{ contém um triângulo} \}.$$

Prova: Se TRIANG \in **NP**, então é possível construir uma máquina de Turing não-determinística (MTN) que a decide em tempo polinomial. Construiremos a MTN M que decide TRIANG:

MTN = "Sobre a entrada $\langle G \rangle$, em que G é um grafo não-directionado, faça:

- (a) Selecione, de forma não-determinística, cada conjunto distinto C com três vértices de G:
 - i. Verifique se C forma um 3-clique em G.
 - ii. Se sim, aceite.
 - iii. Caso contrário, rejeite".

O tempo de execução t de M é igual a soma do tempo de execução dos passos (a), (i), (ii), e (iii). Logo, $t = O(1) + O(1) + O(1) = O(1) = O(n^0)$.

0 é um número natural e TRIANG \in NTIME(n^0). Logo, podemos afirmar que TRIANG \in NP \blacksquare

Teoremas Auxiliares

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.26: A classe de linguagens regulares é fechada sob a operação de concatenação.

Teorema 1.26.1: A classe de linguagens regulares é fechada sob a operação de complemento.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.49: A classe de linguagens regulares é fechada sob a operação estrela.

Teorema 1.49.1: A classe de linguagens regulares é fechada sob a operação de intersecção.

Teorema 1.54: Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Definição 3.5: Chame uma linguagem de Turing-reconhecível se alguma máquina de Turing a reconhece.

Definição 3.6: Chame uma linguagem de Turing-decidível ou simplesmente decidível se alguma máquina de Turing a decide.

Teorema 3.13: Toda máquina de Turing multifita tem uma máquina de Turing que lhe é equivalente.

Teorema 3.16: Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Teorema 3.21: Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Teorema 4.1: A_{AFD} é uma linguagem decidível.

Teorema 4.2: A_{AFN} é uma linguagem decidível.

Teorema 4.3: A_{EXR} é uma linguagem decidível.

Teorema 4.4: V_{AFD} é uma linguagem decidível.

Teorema 4.5: EQ_{AFD} é uma linguagem decidível.

Teorema 4.9: Toda linguagem livre-de-contexto é decidível.

Teorema 4.11: A_{MT} é uma linguagem indecidível.

Definição 4.14: Um conjunto A é contável se é finito ou tem o mesmo tamanho que N.

Teorema 7.8: Seja t(n) uma função, em que $t(n) \ge n$. Então toda máquina de Turing multifita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo $O(t^2(n))$.

Teorema 7.11: Seja t(n) uma função, em que $t(n) \geq n$. Então toda máquina de Turing não-determinística de uma única fita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo $2^{O(t(n))}$.

Definição 7.12: P é a classe de linguagens que são decidíveis em tempo polinomial sobre uma máquina de Turing determinística de uma única fita. Em outras palavras, $\mathbf{P} = \bigcup_k \mathbf{TIME} \ (n^k)$.

Definição 7.19: NP é a classe das linguagens que têm verificadores de tempo polinomial.

Teorema 7.20: Uma linguagem está em \mathbf{NP} sse ela é decidida por alguma máquina de Turing não-determinística de tempo polinomial. Em outras palavras, $\mathbf{NP} = \bigcup_k \mathbf{NTIME} \ (n^k)$.