The group G is isomorphic to the group labelled by [72, 45] in the Small Groups library. Ordinary character table of $G \cong C2 \times ((C3 \times C3) : C4)$:

	1a	2a	3a	4a	4b	3b	2b	2c	6a	4c	4d	6b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	-1	-1	1	-1	-1	-1	1	1	-1
χ_3	1	1	1	-1	-1	1	1	1	1	-1	-1	1
χ_4	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_5	1	-1	1	-E(4)	E(4)	1	-1	1	-1	E(4)	-E(4)	-1
χ_6	1	-1	1	E(4)	-E(4)	1	-1	1	-1	-E(4)	E(4)	-1
χ_7	1	-1	1	-E(4)	E(4)	1	1	-1	1	-E(4)	E(4)	1
χ_8	1	-1	1	E(4)	-E(4)	1	1	-1	1	E(4)	-E(4)	1
χ_9	4	0	-2	0	0	1	-4	0	2	0	0	-1
χ_{10}	4	0	-2	0	0	1	4	0	-2	0	0	1
χ_{11}	4	0	1	0	0	-2	-4	0	-1	0	0	2
χ_{12}	4	0	1	0	0	-2	4	0	1	0	0	-2

Trivial source character table of $G \cong C2 \times ((C3 \times C3) : C4)$ at p = 3:

Trivial source character table of $G \cong C2 \times ((C3 \times C3) : C4)$ at $p = 3$:																								
Normalisers N_i			N_1						N_2				N_3				N_4							
p-subgroups of G up to conjugacy in G			j	P_1					P_{2}	2			P_3	3					P_4					
Representatives $n_j \in N_i$	1a $2a$	4a	4b	2b	2c	4c	4d	1a	2a	2b	2c	1a	2a	2b 2c	$c \mid 1$	a $2b$	4d	2a	4b	2c	4c	4a		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	9 1	1	1	9	1	1	1	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	9 1	-1	-1	9	1	-1	-1	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	9 -1	E(4)	-E(4)	9	-1	E(4)	-E(4)	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	9 - 1	-E(4)	E(4)	9	-1	-E(4)	E(4)	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	9 1	-1	-1	-9	-1	1	1	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	9 1	1	1	-9	-1	-1	-1	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	9 -1	E(4)	-E(4)	-9	1	-E(4)	E(4)	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	9 - 1	-E(4)	E(4)	-9	1	E(4)	-E(4)	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	6 2	0	0	-6	-2	0	0	3	1	-3	-1	0	0	0 0) (0 0	0	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	6 2	0	0	6	2	0	0	3	1	3	1	0	0	0 0) (0 0	0	0	0	0	0	0		
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} $	$\begin{vmatrix} 6 & -2 \end{vmatrix}$	2 0	0	6	-2	0	0	3	-1	3	-1	0	0	0 0) (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	6 -2	2 0	0	-6	2	0	0	3	-1	-3	1	0	0	0 0) (0 0	0	0	0	0	0	0		
$\boxed{0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}}$	6 2	0	0	-6	-2	0	0	0	0	0	0	3	1	-3 -	1 (0 0	0	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	6 2	0	0	6	2	0	0	0	0	0	0	3	1	3 1	. (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	6 -2	0	0	6	-2	0	0	0	0	0	0	3	-1	3 –	1 (0 0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	6 -2	0	0	-6	2	0	0	0	0	0	0	3	-1	-3 1	. (0 0	0	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1 1		1 1	1	1	1	1	1	1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1 1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	-1 -	1 :	1 - 1	-1	1	1	-1	-1	1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1 1	-1	-1	1	1	-1	-1	1	1	1	1	1	1	1 1		1 1	-1	1	-1	1	-1	-1		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1 1	-1	-1	-1	-1	1	1	1	1	-1	-1	1	1	-1 -	1 1	1 - 1	1	1	-1	-1	1	-1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1 -1	-E(4)	E(4)	-1	1	E(4)	-E(4)	1	-1	-1	1	1	-1	-1 1		1 –1	-E(4) -1	E(4)	1	E(4)	-E(4)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1 -1	E(4)	-E(4)	-1	1	-E(4)	E(4)	1	-1	-1	1	1	-1	-1 1	. .	1 - 1	E(4)	-1	-E(4)	1	-E(4)	E(4)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	$\begin{bmatrix} 1 & -1 \end{bmatrix}$	-E(4)	E(4)	1	-1	-E(4)	E(4)	1	-1	1	-1	1	-1	1 -	1 :	1 1	E(4)	-1	E(4)	-1	-E(4)	-E(4)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	$\begin{bmatrix} 1 & -1 \end{bmatrix}$	E(4)	-E(4)	1	-1	E(4)	-E(4)	1	-1	1	-1	1	-1	1 -	1	1 1	-E(4) -1	-E(4)	-1	E(4)	E(4)		

```
P_1 = Group([()]) \cong 1
```

 $N_1 = Group([(1,2)(3,4)(5,8,6,7),(1,2),(5,6)(7,8),(4,8,7),(3,5,6)(4,8,7)]) \cong C2 \times ((C3 \times C3) : C4)$

 $N_2 = Group([(3,5,6),(4,7,8),(1,2)(4,7,8),(4,8)(5,6)]) \cong C2 \times ((C3 \times C3) : C2)$

 $N_3 = Group([(3,5,6)(4,7,8),(4,7,8),(1,2)(4,7,8),(4,8)(5,6)]) \cong C2 \times ((C3 \times C3) : C2)$

 $N_4 = Group([(1,2)(3,4)(5,8,6,7),(1,2),(5,6)(7,8),(4,8,7),(3,5,6)(4,8,7)]) \cong C2 \times ((C3 \times C3) : C4)$

 $P_2 = Group([(3,5,6)]) \cong C3$

 $P_3 = Group([(3,5,6)(4,7,8)]) \cong C3$

 $P_4 = Group([(3,5,6),(4,7,8)]) \cong C3 \times C3$