DISTRIBUCIONES DISCRETAS

Distribución		Parámetros	Función de probabilidad	Media	Varianza	
Bernoulli	x = 1, si se obtiene un tiene éxito en un ensayo. x = 0, si se obtiene fracaso en un ensayo.	p = probabilidad de éxito. 0 <p<1 </p<1 	$p(x) = \begin{cases} p^{x}q^{1-x} & x = 0, 1\\ 0 & \text{c. o. c.} \end{cases}$	p	pq	
Binomial	x = número de éxitos en n ensayos de Bernoulli, los ensayos son independientes (con reemplazo)	n = número de ensayos p = probabilidad de éxito. 0 <p<1< td=""><td>$p(x) = \begin{cases} \binom{n}{x} p^{x} q^{n-x} & x = 0, 1, 2,, n \\ 0 & \text{c.o.c.} \end{cases}$</td><td>np</td><td>npq</td><td></td></p<1<>	$p(x) = \begin{cases} \binom{n}{x} p^{x} q^{n-x} & x = 0, 1, 2,, n \\ 0 & \text{c.o.c.} \end{cases}$	np	npq	
Geométrica	x = número de ensayos necesarios para obtener el primer éxito	p = probabilidad de éxito. 0 <p<1 q = 1-p</p<1 	$p(x) = \begin{cases} pq^{x-1} & x = 1, 2, 3, \dots \\ 0 & \text{c. o. c.} \end{cases}$	1/p	q/p^2	
Pascal (Binomial negativa)	x = número de ensayos independientes requeridos para obtener k éxitos.	p = probabilidad de éxito. k = 1, 2, 3, k>0 0 <p<1 </p<1 	$p(x) = \begin{cases} \binom{x-1}{k-1} p^k q^{x-k} & x = k, k+1, k+2, \dots \\ 0 & \text{c. o. c.} \end{cases}$	k/p	kq/p ²	
Hipergeométrica	x = número de éxitos en n ensayos de Bernoulli, los ensayos se realizan sin reemplazo sobre una población finita de tamaño N.	N = tamaño de la población k = número elementos en la población que tienen una característica en particular. n = número de ensayos.	$p(x) = \begin{cases} \binom{k}{x} \binom{N-k}{n-x} & x = 0,1,2,,n \\ \binom{N}{n} & x \le k, & (n-x) \le (N-k) \\ N, & n, & k \text{ enteros positivos} \end{cases}$ $0 & \text{c.o.c.}$	$n\left(\frac{k}{N}\right)$	$n\left(\frac{k}{N}\right)\left(1-\frac{k}{N}\right)\left(\frac{N-n}{N-1}\right)$	
Poisson	X = número de eventos aleatorios independientes que ocurren a una rapidez constante sobre el tiempo o el espacio	λ = número promedio de ocurrencias por unidad de tiempo. $\lambda > 0$	$p(x) = \begin{cases} \frac{e^{-\lambda} \lambda^{x}}{x!} & x = 0, 1, 2,; \ \lambda > 0 \\ o & \text{c. o. c.} \end{cases}$	λ	λ	

DISTRIBUCIONES CONTINUAS

Distribución	Parámetros	Función de densidad de probabilidad	Media	Varianza
Uniforme	a, b b>a	$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{c. o. c} \end{cases}$	$\frac{a+b}{2}$	$\frac{(a+b)^2}{12}$
Exponencial	λ λ >0	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{c. o. c} \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normal	μ, σ^2 $\sigma^2 > 0$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{X-\mu}{\sigma}\right)^2} - \infty < x < \infty$	μ	σ^2
Beta	α , β $\alpha > 0$, $\beta > 0$	$f(x) = \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} & 0 < x < 1 \\ \alpha, \beta > 0 & \alpha, \beta > 0 \end{cases}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Gamma	α , θ $\alpha > 0$, $\theta > 0$	$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha-1} e^{-x/\theta} & x > 0\\ & \alpha, \theta > 0 \end{cases}$ 0c.o.c.	αθ	$lpha heta^2$
Weibull	α , θ $\alpha > 0$, $\theta > 0$	$f(x) = \begin{cases} \frac{\alpha}{\theta^{\alpha}} x^{\alpha - 1} e^{-(x/\theta)^{\alpha}} & x > 0\\ & \alpha, \theta > 0 \end{cases}$ 0c. o. c.	$\theta \Gamma \left(1 + \frac{1}{\alpha}\right)$	$\theta^{2} \left[\Gamma \left(1 + \frac{2}{\alpha} \right) - \Gamma^{2} \left(1 + \frac{1}{\alpha} \right) \right]$

Nota: $\Gamma(n)$ se conoce como función Gamma del argumento n, y es una extensión de la definición de factorial de un número para cuando a pertenece a los números reales.

La función Gamma se define como: $\Gamma(n) = \int_0^\infty u^{n-1} e^{-u} du, \quad n > 0$

Algunas de sus propiedades son: $\Gamma(n+1) = n!$ si n es un entero positivo.

 $\Gamma(n+1) = n\Gamma(n), \quad n > 0$

$$\Gamma\!\!\left(\frac{1}{2}\right) = \sqrt{\pi}$$