

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

КУРСОВАЯ РАБОТА

Модели конкуренции в экологии и экономике

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр.

Б9121-01.03.02сп

Держапольский Ю.В.

(Ф.И.О.)

(подпись)

Профессор д.ф.-м. н.

Абакумов А. И.

(Ф.И.О.)

(подпись)

« 9 » июня 2024 г.

г. Владивосток

2024

Содержание

1	Введение			3
2	Модель Лотки-Вольтерры			4
	2.1	2.1 Математическая модель		4
	2.2	Анали	из модели	5
3	Модель Колмогорова			9
	3.1	Математическая модель		9
	3.2	Анали	из модели	10
4	Вычислительные эксперименты			13
	4.1 Модель Лотки-Вольтерры		ть Лотки-Вольтерры	13
		4.1.1	При вымершей первой популяции	14
		4.1.2	При вымершей второй популяции	15
		4.1.3	При вымершей третьей популяции	16
		4.1.4	Несколько изначально не вымерших популяций	17
	4.2	2 Модель Колмогорова		18
		4.2.1	При вымершей первой популяции	18
		4.2.2	При вымершей второй популяции	18
		4.2.3	При вымершей третьей популяции	19
		4.2.4	Несколько изначально не вымерших популяций	19
5	2010	попоп		20

1. Введение

2. Модель Лотки-Вольтерры

2.1. Математическая модель

$$\begin{cases} \dot{x}_1 = \varepsilon_1(x_1) - V_{12}(x_1)x_2 - V_{13}(x_1)x_3, \\ \dot{x}_2 = \varepsilon_2(x_2) + k_{12}V_{12}(x_1)x_2 - V_{23}(x_2)x_3, \\ \dot{x}_3 = -\varepsilon_3(x_3) + k_{13}V_{13}(x_1)x_3 + k_{23}V_{23}(x_2)x_3. \end{cases}$$

Имеем автономную систему $\dot{x} = f(x)$, где $k_{ij} > 0$. Примем функции в системе за линейные функции:

$$\varepsilon_i(x_j) = \varepsilon_i \cdot x_j, V_{ij}(x_k) = \alpha_{ij} \cdot x_k, \quad \varepsilon_i, \alpha_{ij} > 0$$

Тогда получим систему:

$$\begin{cases} \dot{x}_1 = \varepsilon_1 x_1 - \alpha_{12} x_1 x_2 - \alpha_{13} x_1 x_3, \\ \dot{x}_2 = \varepsilon_2 x_2 + k_{12} \alpha_{12} x_1 x_2 - \alpha_{23} x_2 x_3, \\ \dot{x}_3 = -\varepsilon_3 x_3 + k_{13} \alpha_{13} x_1 x_3 + k_{23} \alpha_{23} x_2 x_3. \end{cases}$$

2.2. Анализ модели

Найдём точки равновесия дифференциального уравнения.

$$\dot{x} = 0 \Rightarrow f(x) = 0$$

Т.е. нужно найти решения (x_1, x_2, x_3) системы уравнений:

$$\begin{cases} \varepsilon_{1}x_{1} - \alpha_{12}x_{1}x_{2} - \alpha_{13}x_{1}x_{3} = 0, \\ \varepsilon_{2}x_{2} + k_{12}\alpha_{12}x_{1}x_{2} - \alpha_{23}x_{2}x_{3} = 0, \\ -\varepsilon_{3}x_{3} + k_{13}\alpha_{13}x_{1}x_{3} + k_{23}\alpha_{23}x_{2}x_{3} = 0. \end{cases} \Rightarrow \begin{cases} x_{1}(\varepsilon_{1} - \alpha_{12}x_{2} - \alpha_{13}x_{3}) = 0, \\ x_{2}(\varepsilon_{2} + k_{12}\alpha_{12}x_{1} - \alpha_{23}x_{3}) = 0, \\ x_{3}(-\varepsilon_{3} + k_{13}\alpha_{13}x_{1} + k_{23}\alpha_{23}x_{2}) = 0. \end{cases}$$

- 1. Если две любых переменных равны нулю, то в оставшейся строчке остаётся уравнение $\varepsilon_i x_i = 0$, т.е. все переменные равны нулю. Получаем тривиальное решение $x^{(0)} = (0,0,0)$.
- 2. Если $x_1 = 0; x_2, x_3 \neq 0$:

$$\begin{cases} \varepsilon_2 - \alpha_{23} x_3 = 0, \\ -\varepsilon_3 + k_{23} \alpha_{23} x_2 = 0. \end{cases} \Rightarrow x^{(1)} = \left(0, \frac{\varepsilon_3}{k_{23} \alpha_{23}}, \frac{\varepsilon_2}{\alpha_{23}}\right)$$

3. Если $x_2 = 0$; $x_1, x_3 \neq 0$:

$$\begin{cases} \varepsilon_1 - \alpha_{13}x_3 = 0, \\ -\varepsilon_3 + k_{13}\alpha_{13}x_1 = 0. \end{cases} \Rightarrow x^{(2)} = \left(\frac{\varepsilon_3}{k_{13}\alpha_{13}}, 0, \frac{\varepsilon_1}{\alpha_{13}}\right)$$

4. Если $x_3 = 0; x_1, x_2 \neq 0$:

$$\begin{cases} \varepsilon_1 - \alpha_{12} x_2 = 0, \\ \varepsilon_2 + k_{12} \alpha_{12} x_1 = 0. \end{cases} \Rightarrow x^{(3)} = \left(-\frac{\varepsilon_2}{k_{12} \alpha_{12}}, \frac{\varepsilon_1}{\alpha_{12}}, 0 \right)$$

5. Если $x_1, x_2, x_3 \neq 0$:

$$\begin{cases} \varepsilon_1 - \alpha_{12}x_2 - \alpha_{13}x_3 = 0, \\ \varepsilon_2 + k_{12}\alpha_{12}x_1 - \alpha_{23}x_3 = 0, \\ -\varepsilon_3 + k_{13}\alpha_{13}x_1 + k_{23}\alpha_{23}x_2 = 0. \end{cases}$$

Тогда решение $x^{(4)}$:

$$\begin{cases} x_1 = \frac{-\varepsilon_1 \alpha_{23} k_{23} + \varepsilon_2 k_{23} \alpha_{13} + \varepsilon_3 \alpha_{12}}{\alpha_{12} \alpha_{13} (k_{13} - k_{12} k_{23})}, \\ x_2 = \frac{\varepsilon_1}{\alpha_{12}} - \frac{\alpha_{13}}{\alpha_{12}} x_3 = \frac{\varepsilon_1 \alpha_{23} k_{13} - \varepsilon_2 \alpha_{13} k_{13} - \varepsilon_3 \alpha_{12} k_{12}}{\alpha_{12} \alpha_{23} (k_{13} - k_{12} k_{23})}, \\ x_3 = \frac{\varepsilon_2}{\alpha_{23}} + \frac{k_{12} \alpha_{12}}{\alpha_{23}} x_1 = \frac{-\varepsilon_1 \alpha_{23} k_{12} k_{23} + \varepsilon_2 \alpha_{13} k_{13} + \varepsilon_3 \alpha_{12} k_{12}}{\alpha_{13} \alpha_{23} (k_{13} - k_{12} k_{23})}. \end{cases}$$

Получили все точки. Для анализа устойчивости в этих точках воспользуемся методом первого приближения. Найдём матрицу Якоби:

$$J = \frac{\partial f}{\partial x} = \begin{pmatrix} \varepsilon_1 - \alpha_{12}x_2 - \alpha_{13}x_3 & -\alpha_{12}x_1 & -\alpha_{13}x_1 \\ k_{12}\alpha_{12}x_2 & \varepsilon_2 + k_{12}\alpha_{12}x_1 - \alpha_{23}x_3 & -\alpha_{23}x_2 \\ k_{13}\alpha_{13}x_3 & k_{23}\alpha_{23}x_3 & -\varepsilon_3 + k_{13}\alpha_{13}x_1 + k_{23}\alpha_{23}x_2 \end{pmatrix}$$

После чего подставляем значения точки равновесия и ищем собственные значения матрицы.

$$A = J\Big|_{x^*}$$
, $\det(\lambda I - A) = 0 \Rightarrow b_0 \lambda^3 + b_1 \lambda^2 + b_2 \lambda + b_3 = 0$.

Для того, чтобы точка была устойчивой, необходимо, чтобы $\forall i \; \mathrm{Re} \; \lambda_i < 0.$ Однако, напрямую решать кубическое уравнение может быть непросто, поэтому можно воспользоваться критерием Рауса-Гурвица. Для этого построим матрицу Гурвица:

$$\Delta = \begin{pmatrix} b_1 & b_3 & 0 \\ b_0 & b_2 & 0 \\ 0 & b_1 & b_3 \end{pmatrix}$$

Если $b_0 > 0$, то для устойчивости необходимо, чтобы все главные миноры матрицы Δ были положительны.

1.
$$J\Big|_{x^{(0)}} = \begin{pmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & -\varepsilon_3 \end{pmatrix}$$

Откуда получаем собственные значения матрицы:

$$\lambda_1 = \varepsilon_1 > 0, \quad \lambda_2 = \varepsilon_2 > 0, \quad \lambda_1 = -\varepsilon_3 < 0.$$

Значит около начала координат решения будут расходиться по x_1, x_2 и сходиться по x_3 .

$$\begin{aligned} 2. \ A &= J \Big|_{x^{(1)}} = \begin{pmatrix} \varepsilon_1 - \alpha_{12} \frac{\varepsilon_3}{k_{23}\alpha_{23}} - \alpha_{13} \frac{\varepsilon_2}{\alpha_{23}} & 0 & 0 \\ k_{12}\alpha_{12} \frac{\varepsilon_3}{k_{23}\alpha_{23}} & 0 & -\alpha_{23} \frac{\varepsilon_3}{k_{23}\alpha_{23}} \\ k_{13}\alpha_{13} \frac{\varepsilon_2}{\alpha_{23}} & k_{23}\alpha_{23} \frac{\varepsilon_2}{\alpha_{23}} & 0 \end{pmatrix} \\ \det(\lambda I - A) &= \left(\lambda - \left(\varepsilon_1 - \frac{\varepsilon_3\alpha_{12}}{k_{23}\alpha_{23}} - \frac{\varepsilon_2\alpha_{13}}{\alpha_{23}}\right)\right) (\lambda^2 + \varepsilon_2\varepsilon_3) = 0. \\ \lambda_1 &= \varepsilon_1 - \frac{\varepsilon_3\alpha_{12}}{k_{23}\alpha_{23}} - \frac{\varepsilon_2\alpha_{13}}{\alpha_{23}}, \quad \lambda_{2,3} = \pm i\sqrt{\varepsilon_2\varepsilon_3}. \end{aligned}$$

Точка $x^{(1)}$ – неустойчивая. В плоскости $x_1=0$ точка будет являться центром (асимптотически неустойчивая точка), т.е. создавать вокруг себя циклы, а в некоторой близости от этой плоскости циклы будут двигаться в некотором направлении, в зависимости от констант.

$$3. \ A = J\Big|_{x^{(2)}} = \begin{pmatrix} 0 & -\alpha_{12}\frac{\varepsilon_3}{k_{13}\alpha_{13}} & -\alpha_{13}\frac{\varepsilon_3}{k_{13}\alpha_{13}} \\ 0 & \varepsilon_2 + k_{12}\alpha_{12}\frac{\varepsilon_3}{k_{13}\alpha_{13}} - \alpha_{23}\frac{\varepsilon_1}{\alpha_{13}} & 0 \\ k_{13}\alpha_{13}\frac{\varepsilon_1}{\alpha_{13}} & k_{23}\alpha_{23}\frac{\varepsilon_1}{\alpha_{13}} & 0 \end{pmatrix}$$

$$\det(\lambda I - A) = \left(\lambda - \left(\varepsilon_2 + k_{12}\alpha_{12}\frac{\varepsilon_3}{k_{13}\alpha_{13}} - \alpha_{23}\frac{\varepsilon_1}{\alpha_{13}}\right)\right)(\lambda^2 + \varepsilon_1\varepsilon_3) = 0.$$

$$\lambda_1 = \varepsilon_2 + k_{12}\alpha_{12}\frac{\varepsilon_3}{k_{13}\alpha_{13}} - \alpha_{23}\frac{\varepsilon_1}{\alpha_{13}}, \quad \lambda_{2,3} = \pm i\sqrt{\varepsilon_1\varepsilon_3}.$$

Аналогично предыдущей точке, $x^{(2)}$ – неустойчивая и в плоскости $x_2=0$ является центром и будет создавать вокруг себя циклы.

$$4. \ A = J\Big|_{x^{(3)}} = \begin{pmatrix} 0 & -\alpha_{12} \frac{-\varepsilon_2}{k_{12}\alpha_{12}} & -\alpha_{13} \frac{-\varepsilon_2}{k_{12}\alpha_{12}} \\ k_{12}\alpha_{12} \frac{\varepsilon_1}{\alpha_{12}} & 0 & -\alpha_{23} \frac{\varepsilon_1}{\alpha_{12}} \\ 0 & 0 & -\varepsilon_3 + k_{13}\alpha_{13} \frac{-\varepsilon_2}{k_{12}\alpha_{12}} + k_{23}\alpha_{23} \frac{\varepsilon_1}{\alpha_{12}} \end{pmatrix}$$

$$\det(\lambda I - A) = \left(\lambda - \left(-\varepsilon_3 + k_{13}\alpha_{13} \frac{-\varepsilon_2}{k_{12}\alpha_{12}} + k_{23}\alpha_{23} \frac{\varepsilon_1}{\alpha_{12}}\right)\right)(\lambda^2 - \varepsilon_1 \varepsilon_2) = 0.$$

$$\lambda_1 = -\varepsilon_3 + k_{13}\alpha_{13} \frac{-\varepsilon_2}{k_{12}\alpha_{12}} + k_{23}\alpha_{23} \frac{\varepsilon_1}{\alpha_{12}}, \quad \lambda_{2,3} = \pm \sqrt{\varepsilon_1 \varepsilon_2}.$$

Точка $x^{(3)}$ – неустойчивая, но в плоскости $x_3=0$ является седлом по некоторым двум направлениям.

5.
$$A = J \Big|_{x^{(4)}} = \begin{pmatrix} 0 & -\alpha_{12}x_1 & -\alpha_{13}x_1 \\ k_{12}\alpha_{12}x_2 & 0 & -\alpha_{23}x_2 \\ k_{13}\alpha_{13}x_3 & k_{23}\alpha_{23}x_3 & 0 \end{pmatrix}$$

$$\det(\lambda I - A) = \lambda^3 - \lambda(k_{12}\alpha_{12}^2x_1x_2 + k_{13}\alpha_{13}^2x_1x_3 + k_{23}\alpha_{23}^2x_2x_3) + x_1x_2x_3\alpha_{12}\alpha_{13}\alpha_{23}(k_{12}k_{23} - k_{13}) = 0$$

Явное решение данного уравнения будет непростым, поэтому воспользуемся критерием Рауса-Гурвица.

$$b_0 = 1$$
, $b_1 = 0$, $b_2 = -(k_{12}\alpha_{12}^2x_1x_2 + k_{13}\alpha_{13}^2x_1x_3 + k_{23}\alpha_{23}^2x_2x_3)$,
 $b_3 = x_1x_2x_3\alpha_{12}\alpha_{13}\alpha_{23}(k_{12}k_{23} - k_{13})$.

Матрица Гурвица и главные миноры:

$$\Delta = \begin{pmatrix} 0 & b_3 & 0 \\ 1 & b_2 & 0 \\ 0 & 0 & b_3 \end{pmatrix} \Rightarrow \begin{cases} \Delta_1 = 0, \\ \Delta_2 = -b_3, \\ \Delta_3 = b_3 \cdot \Delta_2 = -b_3^2 \le 0. \end{cases}$$

3. Модель Колмогорова

3.1. Математическая модель

В модели Колмогорова для начала мы отказываемся от явного выражения функциональных зависимостей, ограничиваясь некоторыми качественными предположениями.

Первое предположение состоит в том, что в популяциях хищников отсутствует внутривидовая конкуренция.

$$\begin{cases} \dot{x}_1 = \varepsilon(x_1)x_1 - V_{12}(x_1)x_2 - V_{13}(x_1)x_3, \\ \dot{x}_2 = K_{12}(x_1)x_2 - V_{23}(x_2)x_3, \\ \dot{x}_3 = K_{13}(x_1)x_3 + K_{23}(x_2)x_3. \end{cases}$$

Сформулируем остальные предположения:

- 1. $\varepsilon' < 0$; $\varepsilon(0) > \varepsilon(\bar{x}_1) = 0 > \varepsilon(\infty)$. Здесь у жертв ограниченное количество ресурса и за него существует конкуренция. Поэтому без хищников прирост жертв с увеличением их количества в некоторый момент прекратится и стабилизируется на уровне \bar{x}_1 .
- 2. $K'_{ij} > 0$; $K_{ij}(0) < K_{ij}(x_i^*) = 0 < K_{ij}(\infty)$. Это значит, что при увеличении численности жертв коэффициент естественного прироста хищников возрастает. Коэффициент переходит от отрицательных значения при недостатке пищи к положительным.
- 3. $V_{ij}(0)=0;\ V_{ij}(x_i)>0, x_i>0.$ Этот коэффициент показывает количество жертв, поглощаемых одним хищником.

Имеем автономную систему $\dot{x} = f(x)$.

3.2. Анализ модели

Найдём точки равновесия дифференциального уравнения и исследуем их устойчивость.

Матрица Якоби:

$$J = \begin{pmatrix} \varepsilon'(x_1)x_1 + \varepsilon(x_1) - V'_{12}(x_1)x_2 - V'_{13}(x_1)x_3 & -V_{12}(x_1) & -V_{13}(x_1) \\ K'_{12}(x_1)x_2 & K_{12}(x_1) - V'_{23}(x_2)x_3 & -V_{23}(x_2) \\ K'_{13}(x_1)x_3 & K'_{23}(x_2)x_3 & K_{23}(x_2) \end{pmatrix}$$

Нужно найти решения (x_1, x_2, x_3) системы уравнений:

$$\dot{x} = 0 \Rightarrow f(x) = 0 \Rightarrow \begin{cases} \varepsilon(x_1)x_1 - V_{12}(x_1)x_2 - V_{13}(x_1)x_3 = 0, \\ K_{12}(x_1)x_2 - V_{23}(x_2)x_3 = 0, \\ K_{13}(x_1)x_3 + K_{23}(x_2)x_3 = 0. \end{cases}$$

1. Если $x_2 = x_3 = 0$, то остаётся уравнение

$$\varepsilon(x_1)x_1=0.$$

Получаем тривиальное решение $x^{(0)} = (0,0,0)$ и $x^{(1)} = (\bar{x}_1,0,0)$.

(a)
$$J\Big|_{x^{(0)}} = \begin{pmatrix} \varepsilon(0) & 0 & 0\\ 0 & K_{12}(0) & 0\\ 0 & 0 & K_{23}(0) \end{pmatrix}$$

$$\lambda_1 = \varepsilon(0) > 0, \ \lambda_2 = K_{12}(0) < 0, \ \lambda_3 = K_{23}(0) < 0.$$

Значит, в плоскостях $x_2=0$ и $x_3=0$ начало координат является седлом и направление x_1 — неустойчивое. В плоскости $x_1=0$ точка является устойчивым узлом.

(b)
$$J\Big|_{x^{(1)}} = \begin{pmatrix} \varepsilon'(\bar{x}_1)\bar{x}_1 & -V_{12}(\bar{x}_1) & -V_{13}(\bar{x}_1) \\ 0 & K_{12}(\bar{x}_1) & 0 \\ 0 & 0 & K_{23}(0) \end{pmatrix}$$

$$\lambda_1 = \varepsilon'(\bar{x}_1)\bar{x}_1 < 0, \ \lambda_2 = K_{12}(\bar{x}_1), \ \lambda_3 = K_{23}(0) < 0.$$

В зависимости от нахождения корня функции K_{12} данная точка может быть:

- і. Устойчивым узлом, если $K_{12}(\bar{x}_1) \leq 0$,
- іі. Устойчивым узлом в плоскости $x_2=0$ и седлом в плоскости $x_3=0$, если $K_{12}(\bar{x}_1)>0$,
- 2. Если $x_1 = x_2 = 0$, то в третьей строчке получем

$$K_{13}(0)x_3 + K_{23}(0)x_3 = 0.$$

Поскольку $x_3 > 0$, то данное равенство не может быть выполнено.

3. Если $x_1 = x_3 = 0$, то во второй строчке получем

$$K_{12}(0)x_2=0.$$

Поскольку $x_2 > 0$, то равенство не может быть выполнено.

4. Если $x_1 = 0; x_2, x_3 > 0$:

$$\begin{cases} K_{12}(0)x_2 - V_{23}(x_2)x_3 = 0, \\ K_{13}(0)x_3 + K_{23}(x_2)x_3 = 0. \end{cases} \Rightarrow \begin{cases} x_3 = \frac{K_{12}(0)x_2}{V_{23}(x_2)} < 0, \\ x_2 = K_{23}^{-1}(-K_{13}(0)). \end{cases}$$

Поскольку функции $K_{ij}(x_i)$ при $x_i>0$ монотонно возрастающие, то можно найти обратные к ним. Однако, получили противоречие, т.к. $K_{12}(0)<0, V_{ij}>0$, значит эта точка будет находиться вне исследуемой области.

5. Если $x_2 = 0; x_1, x_3 > 0$:

$$\begin{cases} \varepsilon(x_1)x_1 - V_{13}(x_1)x_3 = 0, \\ K_{13}(x_1)x_3 + K_{23}(0)x_3 = 0. \end{cases} \Rightarrow \begin{cases} x_3 = \frac{\varepsilon(x_1)x_1}{V_{13}(x_1)}, \\ x_1 = K_{13}^{-1} \left(-K_{23}(0) \right). \end{cases}$$

Поскольку $K_{ij}:[0,\infty]\to [-a,\infty]$, то $K_{ij}^{-1}:[-a,\infty]\to [0,\infty]$, значит $x_1>0$. В исследуемой области данная точка будет находиться, если $x_1\leq \bar{x}_1$.

$$J\Big|_{x^{(2)}} = \begin{pmatrix} \varepsilon'(x_1)x_1 + \varepsilon(x_1) - V'_{13}(x_1)x_3 & -V_{12}(x_1) & -V_{13}(x_1) \\ 0 & K_{12}(x_1) - V'_{23}(0)x_3 & 0 \\ K'_{13}(x_1)x_3 & K'_{23}(0)x_3 & K_{23}(0) \end{pmatrix}$$

6. Если $x_3 = 0; x_1, x_2 > 0$:

$$\begin{cases} \varepsilon(x_1)x_1 - V_{12}(x_1)x_2 = 0, \\ K_{12}(x_1)x_2 = 0. \end{cases} \Rightarrow \begin{cases} x_2 = \frac{\varepsilon(x_1)x_1}{V_{12}(x_1)}, \\ x_1 = K_{12}^{-1}(0). \end{cases}$$

В исследуемой области данная точка будет находиться, если $x_1 \leq \bar{x}_1$.

$$J\Big|_{x^{(3)}} = \begin{pmatrix} \varepsilon'(x_1)x_1 + \varepsilon(x_1) - V'_{12}(x_1)x_2 & -V_{12}(x_1) & -V_{13}(x_1) \\ K'_{12}(x_1)x_2 & 0 & -V_{23}(x_2) \\ 0 & 0 & K_{23}(x_2) \end{pmatrix}$$

7. Если $x_1, x_2, x_3 > 0$:

$$\begin{cases} \varepsilon(x_1)x_1 - V_{12}(x_1)x_2 - V_{13}(x_1)x_3 = 0, \\ K_{12}(x_1)x_2 - V_{23}(x_2)x_3 = 0, \\ K_{13}(x_1)x_3 + K_{23}(x_2)x_3 = 0. \end{cases}$$

4. Вычислительные эксперименты

4.1. Модель Лотки-Вольтерры

Возьмём параметры для модели:

$$\xi_1 = 10, \xi_2 = 8, \xi_3 = 6,$$

 $\alpha_{12} = 6, \alpha_{13} = 2, \alpha_{23} = 0.5,$
 $k_{12} = 4, k_{13} = 1, k_{23} = 0.5.$

При этом точка равновесия $x^{(4)}=(-3.458\ldots,46.66\ldots,-150)$. Откуда получаем $b_3=-22040 \Rightarrow \Delta_2=22040>0$. Значит, что по какой-то оси она будет устойчивая, по второй неустойчива, а по третьей устойчивость неизвестна. Однако, вероятно, это точка не будет иметь влияния, поскольку находится на большом удалении в отрицательных координатах.

4.1.1. При вымершей первой популяции

Рис. 1: На отрезке времени [0,3].

4.1.2. При вымершей второй популяции

Рис. 2: На отрезке времени [0,3].

4.1.3. При вымершей третьей популяции

Рис. 3: На отрезке времени [0, 0.1].

4.1.4. Несколько изначально не вымерших популяций

Рис. 4: На отрезке времени [0,3].

4.2. Модель Колмогорова

Возьмём такие функции для построения модели:

$$\varepsilon(x_1) = -x_1 + 10,$$
 $K_{12}(x_1) = x_1 - 5, K_{13}(x_1) = x_1 - 3, K_{23}(x_2) = x_2 - 4,$
 $V_{12}(x_1) = 2x_1, V_{13}(x_1) = 3x_1, V_{23}(x_2) = x_2.$

4.2.1. При вымершей первой популяции

4.2.2. При вымершей второй популяции

4.2.3. При вымершей третьей популяции

4.2.4. Несколько изначально не вымерших популяций

Рис. 5: На отрезке времени [0,3].

5. Заключение