FACTORS ON DEMAND

Optimized Flexible Factors for Risk Estimation and Attribution

Attilio Meucci

http://ssrn.com/abstract=1565134

EXECUTIVE SUMMARY

TRADITIONAL MULTI-PURPOSE FACTOR MODELS

FACTORS ON DEMAND – THEORY

FACTORS ON DEMAND – APPLICATIONS

REFERENCES

EXECUTIVE SUMMARY

TRADITIONAL MULTI-PURPOSE FACTOR MODELS

FACTORS ON DEMAND – THEORY

FACTORS ON DEMAND – APPLICATIONS

REFERENCES

Executive Summary Risk Estimation vs. Risk Attribution

Risk Estimation

- Identify Risk Factors to impose structure on estimate of large multivariate market distribution
- Compute overall portfolio risk (Standard Deviation and Tail Risk) from market distribution
- Goal: maximize predictive power

Risk Attribution

- Define Attribution Factors
- Allocate overall portfolio risk obtained from Risk Estimation to Attribution Factors
- Goal: maximize interpretability and practicality for hedging/trading

Executive Summary Traditional Multi-Purpose Factor Models

Risk Estimation

- Identify Risk Factors F_k to impose structure on estimate of large multivariate market distribution
- Compute overall portfolio risk (Standard Deviation and Tail Risk) from market distribution
- Goal: maximize predictive power

Risk Attribution

- ullet Define Attribution Factors F_k
- Allocate overall portfolio risk obtained from Risk Estimation to Attribution Factors
- Goal: maximize interpretability and practicality for hedging/trading

Traditional Factor Models: same or similar factors for Risk Estimation and Attribution

- Suboptimal choice of "systematic" factors
 - Suboptimal statistical properties for risk estimation
 - Risk attribution factors are not most practical for hedging/interpretation
 - Not portfolio-specific estimation/attribution
- Inflexible choice of loadings ("betas")
 - Rigid bottom-up aggregation (beta of portfolio is sum of beta of securities)
 - Rigid maximization target (R-square)
 - Rigid unconstrained maximization (CAPM beta)
- Incorrect modeling of non-linear products/derivatives

- Identify Risk Factors F_k to impose structure on estimate of large multivariate market distribution
- Compute overall portfolio risk (Standard Deviation and Tail Risk) from market distribution
- Goal: maximize predictive power

Risk Attribution

- ullet Define Attribution Factors Z_k
- Allocate overall portfolio risk obtained from Risk Estimation to Attribution Factors
- Goal: maximize interpretability and practicality for hedging/trading

Factors On Demand: different factors for Risk Estimation and Risk Attribution

- Flexible choice of factors: "dominant", instead of "systematic"
 - Ideal statistical properties for risk estimation
 - Ideal hedging/interpretation properties for risk attribution
 - Portfolio-specific estimation/attribution
- Flexible choice of loadings ("betas")
 - Flexible top-down aggregation
 - Flexible maximization target (R-square, CVaR, etc.)
 - Flexible constrained maximization (best pool, long-only, etc.)
- Consistent across non-linear products/derivatives (full conditional distribution of Z_k)

EXECUTIVE SUMMARY

TRADITIONAL MULTI-PURPOSE FACTOR MODELS

FACTORS ON DEMAND – THEORY

FACTORS ON DEMAND – APPLICATIONS

REFERENCES

1. Stocks return estimation

$$R_n = \sum_k b_{n,k} F_k + U_n \qquad \begin{cases} R_n &= \text{security return} \\ b_{n,k} &= \text{loading} \\ F_k &= \text{systematic factor} \\ U_n &= \text{idiosyncratic shock} \end{cases}$$

Risk Estimation Rationales

Estimate the joint distribution of security returns, imposing structure with factor model

Traditional Risk Estimation Techniques

Regression analysis

1. Stocks return estimation

$$R_n = \sum_k b_{n,k} F_k + U_n \qquad \begin{cases} R_n = \text{security return} \\ b_{n,k} = \text{loading} \\ F_k = \text{systematic factor} \\ U_n = \text{idiosyncratic shock} \end{cases}$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = w'\left[b\Sigma_{F}b' + diag\left(\sigma_{U}^{2}\right)\right]w$$

$$VaR\left\{R_{w}\right\} = \text{Normal assumption}$$

Risk Estimation Rationales

- Estimate the joint distribution of security returns, imposing structure with factor model
- Use the portfolio positions w to determine aggregated portfolio return distribution
- Define and compute risk: standard deviation, Value at Risk (tail risk), etc.

Traditional Risk Estimation Techniques

- Regression analysis
- Dimension reduction
- Parametric assumptions

Attilio Meucci

1. Stocks return estimation

$$R_n = \sum_k b_{n,k} F_k + U_n \qquad \begin{cases} R_n = \text{security return} \\ b_{n,k} = \text{loading} \\ F_k = \text{systematic factor} \\ U_n = \text{idiosyncratic shock} \end{cases}$$

Pricing

$$R_n = g\left(X_1, \dots, X_S\right)$$

Traditional modeling of non-linear securities

For non-equity securities such as bonds and derivatives, the returns *R* are not "invariants", i.e. they do not behave identically and independently across time

Example: bond
$$R = \frac{P\left(X_{1}, X_{2}\right)}{P_{0}} - 1$$

$$\begin{cases} P : \text{discount formula} \\ X_{1} : \text{govt curve changes} \\ X_{2} : \text{spread changes} \end{cases}$$

$$R = rac{BS\left(X_1, X_2
ight)}{P_0} - 1 egin{bmatrix} BS : \mathsf{Black} \ X_1 : \mathsf{log} \ X_2 : \mathsf{log} \ X_2 : \mathsf{log} \ X_3 : \mathsf{log} \ X_3 : \mathsf{log} \ X_4 : \mathsf{log} \ X_5 : \mathsf{lo$$

Example: option $R = \frac{BS\left(X_{1}, X_{2}\right)}{P_{0}} - 1 \begin{cases} BS : \text{Black-Scholes formula} \\ X_{1} : \text{log-return of underlying} \\ X_{2} : \text{log-return of implied vol.} \end{cases}$

Traditional Multi-Purpose Factor Models

Estimation

Risk Estimation

Attilio Meucci

1. Stocks return estimation

$$R_n = \sum_k b_{n,k} F_k + U_n \quad \begin{cases} R_n = \text{security return} \\ b_{n,k} = \text{loading} \\ F_k = \text{systematic factor} \\ U_n = \text{idiosyncratic shock} \end{cases} \quad X_s = \sum_k b_{s,k} F_k + U_s \quad \begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{systematic factor} \\ U_n = \text{idiosyncratic shock} \end{cases}$$

1. Risk drivers estimation

$$R_n = g$$

Therefore, estimation cannot be performed on returns, but rather on risk drivers X, which are "invariants"

Example: bond
$$R = \frac{P\left(X_{1}, X_{2}\right)}{P_{0}} - 1$$

$$\begin{cases} P : \text{discount formula} \\ X_{1} : \text{govt curve changes} \\ X_{2} : \text{spread changes} \end{cases}$$

Example: option anges
$$R = \frac{BS\left(X_1, X_2\right)}{P_0} - 1 \begin{bmatrix} BS : \text{Black-Scholes formula} \\ X_1 : \text{log-return of underlying} \\ X_2 : \text{log-return of implied vol.} \end{bmatrix}$$

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s \qquad \begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{systematic factor} \\ U_n = \text{idiosyncratic shoot} \end{cases}$$

$$R_n = g\left(X_1, \dots, X_S\right)$$

Traditional modeling of non-linear securities

- For non-equity securities such as bonds and derivatives, the returns *R* are not "invariants", i.e. they do not behave identically and independently across time
- Therefore, estimation cannot be performed on returns, but rather on risk drivers X, which are "invariants"

Example: bond
$$R = \frac{P(X_1, X_2)}{P_0} - 1$$

$$\begin{cases} P : \text{discount formula} \\ X_1 : \text{govt curve changes} \\ X_2 : \text{spread changes} \end{cases}$$

$$X_1$$
: govt curve changes X_2 : spread changes

 U_n = idiosyncratic shock

$$R = \frac{BS(X_1, X_2)}{P_0} - 1$$

Example: option $R = \frac{BS\left(X_{1}, X_{2}\right)}{P_{0}} - 1 \begin{cases} BS : \text{Black-Scholes formula} \\ X_{1} : \text{log-return of underlying} \\ X_{2} : \text{log-return of implied vol.} \end{cases}$

 U_n = idiosyncratic shock

Estimation

FACTORS ON DEMAND

Risk Estimation

1. Risk drivers estimation

1. RISK drivers estimation
$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{systematic factor} \\ U_n = \text{idiosyncratic shock} \end{cases}$$

$$R_n pprox \sum_s \delta_{n,s} X_s$$

Traditional modeling of non-linear securities

- For non-equity securities such as bonds and derivatives, the returns *R* are not "invariants", i.e. they do not behave identically and independently across time
- Therefore, estimation cannot be performed on returns, but rather on risk drivers X, which are "invariants"
- Then, risk drivers X are transformed into returns R by "delta" or "duration" coefficients δ

Example: bond
$$\delta_1$$
: curve duration δ_2 : spread duration X_1 : govt curve changes X_2 : spread changes

Example: option
$$\delta_1:$$
 delta $\delta_2:$ vega $K_1:$ log-return of underlying $K_2:$ log-return of implied vol

$$X_1$$
: log-return of underlying X_2 : log-return of implied vol.

ivicuc

Risk Estimation

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{systematic factor} \\ U_n = \text{idiosyncratic shock} \end{cases}$$
 $R_n \approx \sum_s \delta_{n,s} X_s$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = w'\delta\left[b\Sigma_{F}b' + diag\left(\sigma_{U}^{2}\right)\right]\delta'w$$

$$VaR\left\{R_{w}\right\} = \text{Normal assumption}$$

Traditional modeling of non-linear securities

- For non-equity securities such as bonds and derivatives, the returns *R* are not "invariants", i.e. they do not behave identically and independently across time
- Therefore, estimation cannot be performed on returns, but rather on risk drivers *X*, which are "invariants"
- Then, risk drivers X are transformed into returns R by "delta" or "duration" coefficients δ
- The risk computations follow

Attilio Meucci

Risk Estimation

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{systemation} \end{cases}$$

$$X_s$$
 = risk driver
 $b_{n,k}$ = loading
 F_k = systematic factor

 U_n = idiosyncratic shock

2. Pricing

$$R_n pprox \sum_s \delta_{n,s} X_s$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = w'\delta\left[b\Sigma_{F}b' + diag\left(\sigma_{U}^{2}\right)\right]\delta'w$$

$$VaR\left\{ R_{w}
ight\} =$$
 Normal assumption

Risk Attribution

5. Attribution factors

$$F_k$$

6. Security-level attribution

$$R_n = \sum_k b_{n,k} F_k + U_n$$

$$b_{n,k} = \sum_s \delta_{n,s} b_{s,k}$$

Risk Attribution Rationales

- After obtaining aggregate portfolio risk (Sdev, VaR, CVaR, etc.), attribute it to individual factors
- Purpose: see how factors contributed to portfolio risk and make hedging decision

Traditional Risk Attribution Techniques

- Use same factors for attribution as for estimation
- Perform linear operations to define security-level risk attribution

Attilio Meucci

Risk Estimation

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{systematic factor} \\ U_n = \text{idiosyncratic shock} \end{cases}$$

2. Pricing

$$R_n pprox \sum_s \delta_{n,s} X_s$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = w'\delta\left[b\Sigma_{F}b' + diag\left(\sigma_{U}^{2}\right)\right]\delta'w$$

$$VaR\left\{R_{w}\right\} = \text{Normal assumption}$$

Risk Attribution

5. Attribution factors

$$F_k$$

6. Security-level attribution

$$R_n = \sum_k b_{n,k} F_k + U_n$$

$$b_{n,k} = \sum_s \delta_{n,s} b_{s,k}$$

7. Portfolio risk attribution: bottom up

$$R_w = \sum_k b_{w,k} F_k + U_w$$

$$b_{w,k} = \sum_n w_n b_{n,k}$$

Risk Attribution Rationales

- After obtaining aggregate portfolio risk (Sdev, VaR, CVaR, etc.), attribute it to individual factors
- Purpose: see how factors contributed to portfolio risk and make hedging decision

Traditional Risk Attribution Techniques

- Use same factors for attribution as for estimation
- Perform linear operations to define security-level risk attribution
- Perform bottom-up aggregation for portfolio-level risk attribution

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{systematic factor} \\ U_n = \text{idiosyncratic shock} \end{cases}$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = w'\delta\left[b\Sigma_{F}b' + diag\left(\sigma_{U}^{2}\right)\right]\delta'w$$

$$VaR\left\{R_{w}\right\} = \text{Normal assumption}$$

Risk Attribution

5. Attribution factors

$$F_k$$

6. Security-level attribution

Security-level attribution
$$R_n = \sum_k b_{n,k} F_k + U_n$$

$$b_{n,k} = \sum_s \delta_{n,s} b_{s,k}$$
 Portfolio risk attribution: bottom up

7. Portfolio risk attribution: bottom up

$$R_{w} = \sum_{k} b_{w,k} F_{k} + U_{w}$$

$$b_{w} = \mathbb{C}ov\{R_{w}, F\}/\mathbb{C}ov\{F\}$$

$$= \underset{\circ}{\operatorname{argmin}} \mathbb{V}ar\{R_{w} - \sum_{k} \beta_{k} F_{k}\}$$

Pitfalls

- Same factors used for both estimation and attribution: choice neither optimizes the estimation power nor the interpretability or practicality for hedging
- As an estimation model, b and F maximize r-square
- As an attribution model, b and F maximize r-square (CAPM)
- "delta" assumption can be inappropriate
- Bottom-up aggregation not flexible: small exposures better in residual

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{systematic factor} \\ U_n = \text{idiosyncratic shock} \end{cases}$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = w'\delta\left[b\Sigma_{F}b' + diag\left(\sigma_{U}^{2}\right)\right]\delta'w$$

$$VaR\left\{R_{w}\right\} = \text{Normal assumption}$$

Risk Attribution

5 Enhanced attribution factors

$$\widetilde{F}_j = \sum_k a_{j,k} F_k \qquad F_k = \sum_j a_{k,j}^{-1} \widetilde{F}_j$$

6. Security-level attribution

Security-level attribution
$$R_n = \sum_j \widetilde{b}_{n,j} \widetilde{F}_j + U_n \widetilde{b}_{n,j} = \sum_{k,s} \delta_{n,s} b_{s,k} a_{k,j}^{-1}$$

7. Portfolio risk attribution: bottom up

$$R_w = \sum_j \widetilde{b}_{w,j} \widetilde{F}_j + U_w \\ \widetilde{b}_{w,j} = \sum_n w_n \widetilde{b}_{n,j}$$

Pitfalls

- Similar factors used for both estimation and attribution: choice neither optimizes the estimation power nor the interpretability or practicality for hedging
- Factors restricted by the "systematic + idiosyncratic" assumption
- As an estimation model, b and F maximize r-square
- As an attribution model, b and F maximize r-square (CAPM)
- "delta" assumption can be inappropriate
- Bottom-up aggregation not flexible: small exposures better in residual

EXECUTIVE SUMMARY

TRADITIONAL MULTI-PURPOSE FACTOR MODELS

FACTORS ON DEMAND – THEORY

FACTORS ON DEMAND – APPLICATIONS

REFERENCES

1. Risk drivers estimation

$$\sum_{k} F_{k}$$

 $F_k = \text{dominant factor}$

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s \qquad \begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U_n = \text{residual} \end{cases}$$

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s \qquad \begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U_n = \text{residual} \end{cases}$$

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

$$\begin{cases} X_s &= \text{risk driver} \\ b_{n,k} &= \text{loading} \\ F_k &= \text{dominant factor} \\ U_n &= \text{residual} \end{cases}$$

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$R_n = g_n\left(X_1,\ldots,X_S\right)$$

$$\begin{cases} X_s &= \text{risk driver} \\ b_{n,k} &= \text{loading} \\ F_k &= \text{dominant factor} \\ U_n &= \text{residual} \end{cases}$$

1. Risk drivers estimation

 X_s = risk driver

 $F_k = \text{dominant factor}$

 $\exists b_{n,k} = \text{loading}$

 $U_n = residual$

$$X_s = \sum_k b_{s,k} F_k + U_s$$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U_n = \text{residual} \end{cases}$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =$$
 exact

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

1. Risk drivers estimation

 X_s = risk driver

 U_n = residual

 F_k = dominant factor

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\mathsf{exact}$$

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

\$5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

4 Diels drive

1. Risk drivers estimation

 X_s = risk driver

 F_k = dominant factor

 $d b_{n,k} =$ loading

 U_n = residual

$$X_s = \sum_k b_{s,k} F_k + U_s$$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

 $Sdev\left\{ R_{w}\right\} =\mathsf{exact}$

 $VaR\left\{ R_{w}\right\} =\mathsf{exact}$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

1. Risk drivers estimation

 X_s = risk driver

 U_n = residual

 F_k = dominant factor

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =$$
 exact

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

\$5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

1. Risk drivers estimation

 X_s = risk driver

 F_k = dominant factor

 $d b_{n,k} =$ loading

 U_n = residual

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =$$
 exact

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

1. Risk drivers estimation

 X_s = risk driver

 U_n = residual

 $F_k = \text{dominant factor}$

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\mathsf{exact}$$

$$VaR\left\{ R_{w}\right\} =$$
 exact

Risk Attribution

\$5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

$$R_w = \sum_k d_{w,k} Z_k + \eta_w \qquad \begin{cases} R_w = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_k = \text{attribution factor} \\ \eta_w = \text{residual} \end{cases}$$

1. Risk drivers estimation

 X_s = risk driver

 U_n = residual

 F_k = dominant factor

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\mathsf{exact}$$

$$VaR\left\{ R_{w}\right\} =$$
 exact

Risk Attribution

\$5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

$$R_w = \sum_k d_{w,k} Z_k + \eta_w \begin{cases} R_w = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_k = \text{attribution factor} \\ d_w = \operatorname{argmin} \mathbb{E}\{(R_w - \sum_k d_k Z_k)^2\}^{-\eta_w} = \operatorname{residual} \end{cases}$$

1. Risk drivers estimation

 X_s = risk driver

 U_n = residual

 $F_k = \text{dominant factor}$

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\mathsf{exact}$$

$$VaR\{R_w\} = \mathsf{exact}$$

Risk Attribution

\$5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

$$R_w = \sum_k d_{w,k} Z_k + \eta_w \begin{cases} R_w = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_k = \text{attribution factor} \\ \eta_w = \text{residual} \end{cases}$$

1. Risk drivers estimation

 X_s = risk driver

 U_n = residual

 $F_k = \text{dominant factor}$

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\mathsf{exact}$$

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

\$5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w}$$

$$\begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

1. Risk drivers estimation

 X_s = risk driver

 U_n = residual

 $F_k = \text{dominant factor}$

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =$$
 exact

$$VaR\left\{ R_{w}\right\} =$$
 exact

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

†7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \qquad \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

1. Risk drivers estimation

 X_s = risk driver

 U_n = residual

 $F_k = \text{dominant factor}$

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =$$
 exact

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k \tilde{d}_{n,k} \tilde{Z}_k + \eta_n$$

$$R_{w} = \sum_{k} \widetilde{d}_{w,k} \widetilde{Z}_{k} + \widetilde{\eta}_{w} \qquad \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U_n = \text{residual} \end{cases}$$

$$A_s = \sum_k o_{s,k} r_k$$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =$$
 exact

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \qquad \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

$$d_w = \operatorname*{argmax}_{d \in \mathcal{C}} \mathcal{T}(R_w, \sum_k d_k Z_k)$$

Factors on Demand - Features

Estimation factors F and loadings b are chosen to optimize the explanation power

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

2. Pricing

$$R_n = g_n(X_1, \dots, X_S) \nearrow \sum_s \delta_{n,s} X_s$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} =$$
exact $VaR\left\{R_{w}\right\} =$ exact

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \qquad \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Factors on Demand - Features

- 1. Estimation factors *F* and loadings *b* are chosen to optimize the explanation power
- 2. Exact risk numbers through exact pricing

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s \qquad \begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U_n = \text{residual} \end{cases}$$

$$A_s = \text{risk driver}$$

 $b_{n,k} = \text{loading}$
 $F_k = \text{dominant}$

 U_n = residual

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = \mathsf{exact}$$

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \qquad \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Factors on Demand - Features

- Estimation factors *F* and loadings *b* are chosen to optimize the explanation power
- Exact risk numbers through exact pricing
- Attribution factors Z are chosen to be interpretable and practical for hedging 3.

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U = \text{residual} \end{cases}$$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\text{exact}$$

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w}$$

$$\begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Factors on Demand - Features

- Estimation factors *F* and loadings *b* are chosen to optimize the explanation power
- Exact risk numbers through exact pricing
- Attribution factors Z are chosen to be interpretable and practical for hedging

 U_n = residual

3. Attribution loadings d are chosen to optimize r-square, CVaR, downside risk, etc

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \end{cases}$ 2. Pricing

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\text{exact}$$

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w}$$

$$\begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Factors on Demand - Features

- Estimation factors F and loadings b are chosen to optimize the explanation power
- Exact risk numbers through exact pricing
- Attribution factors Z are chosen to be interpretable and practical for hedging
- Attribution loadings d are chosen to optimize r-square, CVaR, downside risk, etc
- Constraints allow for long-only, best-few-out-of-many, etc 4.

 X_s = risk driver

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \end{cases}$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\text{exact}$$

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w}$$

$$d_{w} = \underset{d \in \mathcal{C}}{\operatorname{argmax}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right)$$

$$= \frac{1}{2} R_{w} = \text{portfolio return}$$

$$d_{w,k} = \text{attribution loading}$$

$$Z_{k} = \text{attribution factor}$$

$$\eta_{w} = \text{residual}$$

Factors on Demand - Features

- Estimation factors F and loadings b are chosen to optimize the explanation power
- Exact risk numbers through exact pricing
- Attribution factors Z are chosen to be interpretable and practical for hedging
- Attribution loadings d are chosen to optimize r-square, CVaR, downside risk, etc 3.
- Constraints allow for long-only, best-few-out-of-many, etc

 X_s = risk driver

 U_n = residual

Exact Linear interpretation/hedge of non-linear securities 5.

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U_n = \text{residual} \end{cases}$$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = \mathsf{exact}$$
 $VaR\left\{R_{w}\right\} = \mathsf{exact}$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \qquad \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Factors on Demand - Features

- Estimation factors *F* and loadings *b* are chosen to optimize the explanation power
- Exact risk numbers through exact pricing
- Attribution factors Z are chosen to be interpretable and practical for hedging 3.
- Attribution loadings d are chosen to optimize r-square, CVaR, downside risk, etc 3.
- Constraints allow for long-only, best-few-out-of-many, etc

- Exact Linear interpretation/hedge of non-linear securities 5.
- 6. No linear relationship between Z and F: connection created by conditional distribution

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U = \text{residual} \end{cases}$$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\text{exact}$$

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$\widetilde{Z}_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k \widetilde{d}_{n,k} \widetilde{Z}_k + \widetilde{\eta}_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} \widetilde{d}_{w,k} \widetilde{Z}_{k} + \widetilde{\eta}_{w} \qquad \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Factors on Demand - Features

- Estimation factors *F* and loadings *b* are chosen to optimize the explanation power
- Exact risk numbers through exact pricing
- Attribution factors Z are chosen to be interpretable and practical for hedging 3.
- Attribution loadings d are chosen to optimize r-square, CVaR, downside risk, etc 3.
- Constraints allow for long-only, best-few-out-of-many, etc

- Exact Linear interpretation/hedge of non-linear securities 5.
- No linear relationship between Z and F: connection created by conditional distribution 6.
- 7. Conditional distribution -> one estimation method, several possible interpretations/hedges

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\text{exact}$$

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \qquad \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Factors on Demand - Features

- Estimation factors *F* and loadings *b* are chosen to optimize the explanation power
- Exact risk numbers through exact pricing
- Attribution factors Z are chosen to be interpretable and practical for hedging 3.
- Attribution loadings d are chosen to optimize r-square, CVaR, downside risk, etc 3.
- Constraints allow for long-only, best-few-out-of-many, etc 4.

 X_s = risk driver

 $U_n = residual$

 $F_k = \text{dominant factor}$

- Exact Linear interpretation/hedge of non-linear securities 5.
- 6. No linear relationship between Z and F: connection created by conditional distribution
- Conditional distribution -> one estimation method, several possible interpretations/hedges 7.
- Systematic + idiosyncratic -> dominant + residual 8.

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =$$
 exact

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

†7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w}$$

$$d_{w} = \underset{d \in \mathcal{C}}{\operatorname{argmax}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right)$$

$$R_{w} = \text{portfolio return}$$

$$d_{w,k} = \text{attribution loading}$$

$$Z_{k} = \text{attribution factor}$$

$$\eta_{w} = \text{residual}$$

Factors on Demand - Features

- Estimation factors *F* and loadings *b* are chosen to optimize the explanation power
- Exact risk numbers through exact pricing 2.
- Attribution factors Z are chosen to be interpretable and practical for hedging 3.
- Attribution loadings d are chosen to optimize r-square, CVaR, downside risk, etc 3.
- Constraints allow for long-only, best-few-out-of-many, etc 4.

 X_s = risk driver

 U_n = residual

 $F_k = \text{dominant factor}$

- Exact Linear interpretation/hedge of non-linear securities 5.
- 6. No linear relationship between Z and F: connection created by conditional distribution
- Conditional distribution -> one estimation method, several possible interpretations/hedges 7.
- Systematic + idiosyncratic -> dominant + residual 8.
- 9. Top-down attribution provides portfolio-specific best model

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \end{cases}$ 2. **Pricing** $\begin{cases} X_s = \text{risk driver} \\ D_{n,k} = \text{loading} \\ D_{n,k} = \text{dominant factor} \end{cases}$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = \mathsf{exact}$$

$$VaR\{R_w\} = exact$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w}$$

$$\begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Factors on Demand - Features

- Estimation factors *F* and loadings *b* are chosen to optimize the explanation power
- Exact risk numbers through exact pricing
- Attribution factors Z are chosen to be interpretable and practical for hedging 3.
- Attribution loadings d are chosen to optimize r-square, CVaR, downside risk, etc. 3.
- Constraints allow for long-only, best-few-out-of-many, etc 4.

- Exact Linear interpretation/hedge of non-linear securities 5.
- 6. No linear relationship between Z and F: connection created by conditional distribution
- Conditional distribution -> one estimation method, several possible interpretations/hedges 7.
- Systematic + idiosyncratic -> dominant + residual 8.
- Top-down attribution provides portfolio-specific best model 9.

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \end{cases}$ 2. Pricing

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = \mathsf{exact}$$

$$VaR\{R_w\} = exact$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \\ d_{w} = \underset{d \in \mathcal{C}}{\operatorname{argmax}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{argmax}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right)$$

$$\begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Factors on Demand – Frequently Asked Questions

Q: Why not run a regression of portfolio returns R vs. attribution factors Z?

 X_s = risk driver

 U_n = residual

A: R and Z are not necessarily "invariants"

Q: Why abandon "systematic + idiosyncratic" model?

A: U is where managers look for "alpha" factors -> $\Sigma_X \neq b\Sigma_F b' + diag (\sigma_U^2)$

A: otherwise we cannot merge irrelevant "systematic" factors with "idiosyncratic" residual to obtain more efficient attribution/hedging

A: in powerful estimation approaches (PCA,RMT) residual *U* is never idiosyncratic

A: that model is not a consequence of APT/CAPM

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}
ight\} =$$
 exact

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w}$$

$$d_{w} = \underset{d \in \mathcal{C}}{\operatorname{argmax}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right)$$

$$R_{w} = \underset{d \in \mathcal{C}}{\operatorname{portfolio return}}$$

$$d_{w,k} = \underset{d \in \mathcal{C}}{\operatorname{attribution loading}}$$

$$Z_{k} = \underset{d \in \mathcal{C}}{\operatorname{attribution factor}}$$

$$\eta_{w} = \underset{residual}{\operatorname{residual}}$$

Factors on Demand – Frequently Asked Questions

 X_s = risk driver

 $F_k = \text{dominant factor}$

 $\exists b_{n,k} = \text{loading}$

 U_n = residual

Q: Why should we not use delta approximation?

A: Risk of derivatives or non linear instruments at multi-day horizon is distorted

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s \qquad \begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U_n = \text{residual} \end{cases}$$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\text{exact}$$

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w}$$

$$\begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Factors on Demand – Frequently Asked Questions

Q: Do we have to generate conditional scenarios for *Z*?

A: Not always: if using historical scenarios, use historical (drivers for) Z

Q: Does FOD recommend specific estimation/attribution factors/techniques?

A: No, FOD proposes a flexible, modular methodology that hosts all techniques

Q: Does FOD dismiss traditional multi-purpose factor models

A: No, all traditional model are special cases of FOD

EXECUTIVE SUMMARY

TRADITIONAL MULTI-PURPOSE FACTOR MODELS

FACTORS ON DEMAND – THEORY

FACTORS ON DEMAND – APPLICATIONS

REFERENCES

Attilio Meucci

Risk Estimation

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U = \text{residual} \end{cases}$$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = \mathsf{exact}$$
 $VaR\left\{R_{w}\right\} = \mathsf{exact}$

b, F: high statistical power

- Principal Component Analysis and Random Matrix Theory can be applied
- Factors and loadings are determined to minimize estimation error although they might be difficult to interpret.

 $X_s = \text{risk driver}$

 U_n = residual

Risk Attribution

\$5. Attribution factors

$$Z_k$$
 X_1,\ldots,X_S

7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \qquad \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Z: high interpretability/tradability

Attribution factors examples

- GICS Sectors: Material, Technology, Financials
- Macro: S&P500, 10 year yield, Gold price, MSCI EM Index, Russell 2000

FOD Application #1:

Attilio Meucci Optimize Factor Choice for Risk and Portfolio Mgmt.

Risk Estimation

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =\text{exact}$$

$$VaR\left\{R_w\right\} = \mathsf{exact}$$

Risk Attribution

5. Attribution factors

$$Z_k$$
 X_1,\ldots,X_S

7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \qquad \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

 X_s = risk driver

 $F_k = \text{dominant factor}$

 $b_{n,k} = loading$

FOD Application #2:

Custom attribution factors on the fly

Risk Estimation

Attilio Meucci

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$Z. \text{ Pricing}$$

$$R_n = q_n(X_1, \dots, X_S)$$

$$X_s = \text{risk driver}$$

$$b_{n,k} = \text{loading}$$

$$F_k = \text{dominant factor}$$

$$U_n = \text{residual}$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}
ight\} =$$
 exact $VaR\left\{ R_{w}
ight\} =$ exact

X: historical

- No factor modes for X, pure historical realization of risk drivers
- R is not the time series of the returns
- Explicitly no idiosyncratic term

Risk Attribution

5. Attribution factors

$$Z_k X_1, \ldots, X_S$$

7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \\ d_{w} = \underset{d \in \mathcal{C}}{\operatorname{argmax}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} T\left(R_{w}, \sum_{k} d_{k} Z_{k}\right) \\$$

Z: g(X)

- Attribution factors are deterministic functions of risk drivers
- For instance, Z can be user-supplied definitions of value/momentum factors
- FOD then allows to compare in real time the attribution to different, user-supplied factor models Z and \tilde{Z}
- All models share the same risk statistics

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U_n = \text{residual} \end{cases}$$

$$R_n = g_n \left(X_1, \dots, X_S \right)$$

$$R_n = g_n \left(X_1, \dots, X_S \right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = \mathsf{exact}$$
 $VaR\left\{R_{w}\right\} = \mathsf{exact}$

b, F: regional equity factor model

- Regional factors F constructed by crosssectional regression on given loadings b
- e.g. US Model: US sector factors

$$\mathbf{R}^{(\alpha)} \equiv \mathbf{B}^{(\alpha)}\mathbf{F}^{(\alpha)} + \mathbf{U}^{(\alpha)}$$

e.g. UK Model: UK financial, UK utilities,...)

$$\mathbf{R}^{(\omega)} \equiv \mathbf{B}^{(\omega)}\mathbf{F}^{(\omega)} + \mathbf{U}^{(\omega)}$$
.

Risk Attribution

\$5. Attribution factors

$$Z_k$$
 X_1, \ldots, X_S

7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_w = \sum_k d_{w,k} Z_k + \eta_w \\ d_w = \underset{d \in \mathcal{C}}{\operatorname{argmax}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{de$$

Z: global equity factors

 Global factors Z are deterministic, linear functions (aggregations) of the regional factors

$$\mathbf{Z} \equiv \mathbf{A} \left(\begin{array}{c} \mathbf{F}^{(\alpha)} \\ \vdots \\ \mathbf{F}^{(\omega)} \end{array} \right)$$

e.g. global financial, global utilities,...

Attilio Meucci

Risk Estimation

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driv} \\ b_{n,k} = \text{loading} \end{cases}$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = \mathsf{exact}$$

$$VaR\left\{ R_{w}\right\} =\mathsf{exact}$$

Risk Attribution

∤5. Attribution factors

$$Z_k X_1, \dots, X_S$$

7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \begin{cases} R_{w} = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_{k} = \text{attribution factor} \\ \eta_{w} = \text{residual} \end{cases}$$

Z: returns of hedging instruments; d: attribution target as CVaR

 $X_s = \text{risk driver}$

 U_n = residual

 F_k = dominant factor

- For hedging, the attribution factors must be the linear returns Z=P(t+1)/P(t)-1 of tradables
- Linear attribution (6) is important for hedging: only portfolios, i.e. linear combinations, are traded
- Profits and losses of hedged p&I η play a non-symmetrical role: non-linear pricing (2) properly induces asymmetries on R; downside target CVaR in (6) accounts for asymmetries in η
- Thus FOD hedging (full-pricing/CVaR) and Black-Scholes hedging (delta/r-square) are different

Example: units of underlying
to hedge call options

	100 days		200 days	$250 \mathrm{days}$	300 days
FOD	5.8	5.3	5.0	4.9	4.8
BS	5.7	5.4	5.2	5.1	5.0

Attilio Meucci

Risk Estimation

1. Risk drivers estimation

I. RISK UTIVELS ESTIMATION

$$X_s = \sum_k b_{s,k} F_k + U_s$$

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}\right\} =$$
 exact

$VaR\{R_w\} = exact$

d: constraint "few relevant out of many" in top-down attribution

 X_s = risk driver

 $F_k = \text{dominant factor}$

 $d b_{n,k} =$ loading

 U_n = residual

- For hedging, traders prefer to put on fewer hedges. Therefore the selection of the best few trades should be optimized
- For factor modeling, it does not make sense to include minimally represented factors in analysis. Better to add them to residual
- Other constraints can be added (e.g. long only, sum-to-one, etc.)

Risk Attribution

5. Attribution factors

$$Z_k|X_1,\ldots,X_S$$

7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_w = \sum_k d_{w,k} Z_k + \eta_w \\ d_w = \underset{d \in \mathcal{C}}{\operatorname{argmax}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{deg}} \, T \left(R_w, \sum_k d_k Z_k \right) \\ = \underset{d \in \mathcal{C}}{\operatorname{de$$

Attilio Meucci

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s \qquad \begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \\ U_n = \text{residual} \end{cases}$$

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = \mathsf{exact}$$
 $VaR\left\{R_{w}\right\} = \mathsf{exact}$

Risk Attribution

∤5. Attribution factors

$$Z_k$$
 X_1,\ldots,X_S

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_{w} = \sum_{k} d_{w,k} Z_{k} + \eta_{w} \\ d_{w} = \underset{d \in \mathcal{C}}{\operatorname{argmax}} \mathcal{T}(R_{w}, \sum_{k} d_{k} Z_{k}) \\ = \underset{d \in \mathcal{C}}{\operatorname{argmax}} \mathcal{T}(R_{w}, \sum_{k} d_{k} Z_{k})$$

Z: returns of sub-portfolios; portfolios: past holdings

 U_n = residual

• The attribution of the current holdings to the past holdings allows the portfolio manager to evaluate the turnover (half-life) of their positions

$$\begin{cases}
Z_1 &= w'_{t-1}R \\
\vdots \\
Z_K &= w'_{t-K}R
\end{cases}$$

 $\begin{cases} Z_1 &= w'_{t-1}R \\ \vdots \\ Z_K &= w'_{t-K}R \end{cases}$

Risk Estimation

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$

$$\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \end{cases}$$
 2. **Pricing**

2. Pricing

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{R_{w}\right\} = \mathsf{exact}$$
 $VaR\left\{R_{w}\right\} = \mathsf{exact}$

Risk Attribution

5. Attribution factors

$$Z_k X_1, \ldots, X_S$$

7. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_w = \sum_k d_{w,k} Z_k + \eta_w \begin{cases} R_w = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_k = \text{attribution factor} \\ \eta_w = \text{residual} \end{cases}$$

Z: returns of sub-portfolios; portfolios: past holdings

 U_n = residual

- The attribution of the current holdings to the past holdings allows portfolio managers to evaluate the turnover (half-life) of their positions
- If the attribution target in (6) is set as the r-square and the attribution optimization is unconstrained we obtain the analytical solution in Grinold (2006)

$$d_w = (W'\Sigma_R W)^{-1} W'\Sigma_R w_t$$

 FOD allows portfolio managers to customize their analysis, with arbitrary targets and constraints

Attilio Meucci

Risk Estimation

1. Risk drivers estimation

$$X_s = \sum_k b_{s,k} F_k + U_s$$
 $\begin{cases} X_s = \text{risk driver} \\ b_{n,k} = \text{loading} \\ F_k = \text{dominant factor} \end{cases}$ 2. **Pricing**

$$R_n = g_n\left(X_1, \dots, X_S\right)$$

3. Aggregation

$$R_w = \sum_n w_n R_n$$

4. Portfolio risk estimation

$$Sdev\left\{ R_{w}
ight\} =$$
 exact $VaR\left\{ R_{w}
ight\} =$ exact

Risk Attribution

\$5. Attribution factors

$$Z_k X_1, \dots, X_S$$

17. Security-level attribution

$$R_n = \sum_k d_{n,k} Z_k + \eta_n$$

6. Portfolio risk attribution: top down

$$R_w = \sum_k d_{w,k} Z_k + \eta_w \\ d_w = \underset{d'}{\operatorname{argmax}} T(R_w, \sum_k d_k Z_k) \\ d'1 = 1, d \geq 0 \\ \end{array} \qquad \begin{cases} R_w = \text{portfolio return} \\ d_{w,k} = \text{attribution loading} \\ Z_k = \text{attribution factor} \\ \eta_w = \text{residual} \end{cases}$$

Z: style factors; constraints: long-only, sum-to-one

- Traditional style analysis a-la-Sharpe runs a constrained regression of portfolio returns Rp(t) on style factors Z(t)
- In traditional style analysis the past returns are affected by the past allocation decisions Rp(t-k)= $w(t-k) \times R(t-k)$ includes a component due to rebalancing w(t-k)
- FOD allows to perform point-in-time style analysis based only the current exposures w(t)

EXECUTIVE SUMMARY

TRADITIONAL MULTI-PURPOSE FACTOR MODELS

FACTORS ON DEMAND – THEORY

FACTORS ON DEMAND – APPLICATIONS

REFERENCES

> Article

Attilio Meucci - "Factors on Demand"

Risk, July 2010, p 84-89

available at http://ssrn.com/abstract=1565134

> MATLAB examples

MATLAB Central Files Exchange (see above article)

> This presentation

www.symmys.com > Teaching > Talks