<u>Dashboard</u> / My courses / <u>Numerical Analysis (CEN), 23s</u> / <u>Apr 3 - Apr 9 (Week 7)</u> / <u>HW #3 (due Apr 14, 18:00)</u>

Question 1

Partially correct

Marked out of 15

(Horner's Method). Use Horner's method to evaluate the polynomial

$$f(x) = x^6 - 2x^5 - 3x^4 - 4x^3 + 5x^2 + 6x + 7$$

at the specified points. All numerical answers should be rounded to 7-digit floating-point numbers.

(i) Evaluate the polynomial f(x) at the point lpha=1.15:

k	a_k		b_k
6	1	0	1
5	-2	1.15	-0.85
4	-3	-0.9775	-3.9775
3	-4	-4.574125	-8.574125
2	5	-9.860244 ✓	-4.860244
1	6	-5.589281	0.410719
0	7	0.4723269	7.472327

Accordingly,

$$f(1.15) \doteq 7.472327$$

(i) Evaluate the polynomial f(x) at the point lpha=-1.15:

k	a_k				b_k	
6	1	~	0	~	1.0	~
5	-2	~	-1.15	~	-3.15	~
4	-3	~	3.6225	~	0.6225	~
3	-4	~	-0.715875	~	-4.715875	~
2	5	~	5.423256	~	10.42326	~
1	6	~	-11.98675	~	-5.98675	✓
0	7	~	6.884763		13.88475	~

Accordingly,

$$f(-1.15) \doteq$$
 13.88475

Check

Previous Activity

Jump to...

Next Activity