Утвержден РЭ 26.51.63.130-061-89558048-2018-ЛУ

СЧЕТЧИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ СТАТИЧЕСКИЕ «Меркурий 204», «Меркурий 208», «Mercury 204», «Mercury 208» «Меркурий 234», «Меркурий 238», «Мегсигу 234», «Мегсигу 238» РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ РЭ 26.51.63.130-061-89558048-2018

Содержание

1	Описание и работа	
	1.1 Назначение	
	1.2 Модификации счетчиков	6
2	Технические характеристики	0
_	2.1 Метрологические характеристики	
	2.1.1 Основные метрологические характеристики	9
	2.1.2 Пределы погрешностей	9
	2.1.3 Характеристики измерения ПКЭ	
	2.1.4 Измеряемые параметры	
	2.1.5 Характеристики ведения времени	
	2.2 Основные технические характеристики	
	2.3 Характеристики интерфейсов и протоколов обмена	
	2.4 Характеристики каналов ввода-вывода	
	2.5 Характеристики надежности	
	2.6 Характеристики безопасности	
	2.7 Комплектность	
	2.8 Маркировка	
	2.9 Упаковка	18
	2.10 Пломбирование	18
2	Устройство и работа	20
J	3.1 Устройство счетчиков	
	3.2 Работа счетчиков	
	3.2.1 Формирование событий	
	3.2.2 Хранение информации	
	3.2.3 Интерфейсы и протоколы обмена	
	3.2.4 Управление нагрузкой	
	3.2.5 Защита от несанкционированного доступа	
	3.2.6 Работа счетчика с функциями телемеханики	
	3.2.7 Работа счетчика с интерфейсом NB-IoT или GSM DUAL SIM	21
4	Использование по назначению	30
	4.1 Эксплуатационные ограничения	30
	4.2 Схемы подключения счетчиков	30
	4.3 Подготовка к работе	
	4.3.1 Монтаж счетчика	31
	4.3.2 Монтаж антенны	32
	4.3.3 Рекомендации по использованию SIM-карт	33
	4.3.4 Рекомендации по подключению интерфейсов	
	4.3.5 Сетевой адрес и пароли доступа	
	4.3.6 Переключение протокола	
	4.3.7 Заводские настройки	
	4.4 Использование	
	4.4.1 Индикация и управление	
	4.4.2 Использование счетчиков с выносным дисплеем	
	4.4.3 Использование в составе системы учета	
	4.4.4 Контроль работоспособности	
	· ·	
	Поверка	
	Техническое обслуживание	
	Текущий ремонт	
8	Транспортирование и хранение	
	8.1 Транспортирование	Οl

8.2 Хранение	51
9 Правила и условия реализации и утилизации	52
Приложение А	53
Приложение Б	56
Приложение В	62
Приложение Г	63

Настоящее руководство по эксплуатации распространяется на счетчики электрической энергии статические однофазные «Меркурий 204», «Меркурий 208», «Мегсигу 204», «Мегсигу 208» и счетчики электрической энергии статические трехфазные «Меркурий 234», «Меркурий 238», «Мегсигу 234», «Мегсигу 238» (далее – счетчики).

В документе знаками выделены следующие места:

Важная информация

Рекомендации, несоблюдение которых может привести к частичному нарушению работоспособности счетчика

Информация и требования безопасности

Счетчики выпускаются с разными торговыми марками: «Меркурий» для продаж с русскоязычной торговой маркой и «Мегсигу» – для продаж с англоязычной торговой маркой. Далее по тексту документа приведены только русскоязычные торговые марки счетчика, описание и технические характеристики распространяются на обе торговые марки, если иное не указано дополнительно.

При проведении работ по монтажу и обслуживанию счетчиков должны соблюдаться требования ГОСТ 12.2.007.0-75, «Правила технической эксплуатации электроустановок потребителей» и «Правила по охране труда при эксплуатации электроустановок».

К работам по монтажу, техническому обслуживанию и ремонту счетчиков допускаются лица, прошедшие инструктаж по технике безопасности и имеющие квалификационную группу по электробезопасности не ниже III до 1000 В.

ВНИМАНИЕ! Все работы, связанные с монтажом счетчиков, должны производиться при отключенной сети

Если в формуляре на счетчик в разделе «Особые отметки» не приведено иное, счетчики поставляются с предприятия-изготовителя запрограммированными на тарифное расписание

г. Москва, время московское:

Время включения тарифа 1 – 07 ч 00 мин.

Время включения тарифа 2 – 23 ч 00 мин.

В связи с постоянным совершенствованием счетчиков, в конструкцию и метрологически незначимое (прикладное) программное обеспечение могут быть внесены изменения, не влияющие на технические и метрологические характеристики.

Страница 4 из 64 Версия 06.2022

1 Описание и работа

1.1 Назначение

Счетчики «Меркурий 204», «Меркурий 208», «Мегсигу 204», «Мегсигу 208» (далее по тексту — однофазные счетчики) предназначены для работы в однофазных двухпроводных сетях переменного тока.

Счетчики «Меркурий 234», «Меркурий 238», «Мегсигу 234», «Мегсигу 238» (далее по тексту – трехфазные счетчики) предназначены для работы в трехфазных трех- и четырехпроводных сетях переменного тока.

Счетчики предназначены для многотарифного измерения активной и реактивной электрической энергии прямого и обратного направлений (таблица 1.1), активной, реактивной и полной мощности, коэффициентов мощности, частоты, напряжения и силы тока, а также для измерения параметров качества электрической энергии.

Счетчики соответствуют требованиям Постановления Правительства Российской Федерации от 19.06.2020 № 890 "О порядке предоставления доступа к минимальному набору функций интеллектуальных систем учета электрической энергии (мощности)" и могут использоваться как автономно, так и в составе автоматизированной системы сбора данных.

Прямое направление активной энергии: углы сдвига фаз между током и напряжением от 0° до 90° и от 270° до 360° , реактивной энергии – от 0° до 90° и от 90° до 180° .

Обратное направление активной энергии: углы сдвига фаз между током и напряжением от 90° до 180° и от 180° до 270°, реактивной энергии – от 180° до 270° и от 270° до 360°.

Таблица 1.1 – Каналы	учета счетчиков
----------------------	-----------------

Двунаправ	вленный учет	Однонаправленный учет		
С учетом знака	По модулю	С учетом знака	По модулю	
A1+A4	A1+A2+A3+A4	A1+A4	A1+A2+A3+A4	
A2+A3	0	-	-	
R1+R2	R1+R3	R1	R1+R3	
R3+R4	R2+R4	R4	R2+R4	
R1	R1+R3	R1	R1+R3	
R2	0	0	0	
R3	0	0	0	
R4	R2+R4	R4	R2+R4	
	С учетом знака A1+A4 A2+A3 R1+R2 R3+R4 R1 R2 R3	A1+A4 A1+A2+A3+A4 A2+A3 0 R1+R2 R1+R3 R3+R4 R2+R4 R1 R1+R3 R2 0 R3 0	С учетом знака По модулю С учетом знака A1+A4 A1+A2+A3+A4 A1+A4 A2+A3 0 - R1+R2 R1+R3 R1 R3+R4 R2+R4 R4 R1 R1+R3 R1 R2 0 0 R3 0 0	

Примечания

- 1 A+, R+: активная и реактивная энергия прямого направления
- 2 A-, R-: активная и реактивная энергия обратного направления
- 3 A1, A2, A3, A4, R1, R2, R3, R4: активная и реактивная составляющие вектора полной энергии первого, второго, третьего и четвертого квадрантов соответственно
- 4 По каналам учета A+, A-, R+, R- возможно отображение учтенной энергии на ЖКИ, ведение профилей мощности, формирование импульсов на импульсном выходе

Счетчики «Меркурий 204» и «Меркурий 234» предназначены для эксплуатации внутри помещений, а также могут быть использованы в местах, имеющих дополнительную защиту от влияния окружающей среды (установлены в помещении, в шкафу, в щитке).

Счетчики «Меркурий 208» и «Меркурий 238» предназначены для эксплуатации внутри и снаружи помещений, в том числе, с установкой на опоры линий электропередачи.

Версия 06.2022 Страница 5 из 64

1.2 Модификации счетчиков

Счетчики имеют модификации, отличающиеся номинальным напряжением, номинальным и максимальным током, классом точности, а также конструкцией и функциональными возможностями, связанными с метрологически незначимым (прикладным) программным обеспечением.

Счетчики «Меркурий 204» и «Меркурий 234» имеют встроенный дисплей для отображения измеряемых параметров, счетчики «Меркурий 208» и «Меркурий 238» не имеют встроенного дисплея и могут комплектоваться выносным дисплеем для отображения измеряемых параметров. Чтение измеряемых параметров со счетчиков возможно по любому из имеющихся интерфейсов обмена данными.

Все счетчики имеют оптопорт с механическими и оптическими характеристиками по ГОСТ 61107.

Структура кода счетчиков приведена в таблице 1.2.

Код, определяющий номинальный ток (для счетчиков трансформаторного включения), базовый ток (для счетчиков прямого включения), максимальный ток и номинальное напряжение, а также возможные варианты классов точности приведены в таблице 1.3.

Счетчики с кодами -01, -02, -08, -09 по таблице 1.3 являются счетчиками прямого включения по току, остальные счетчики являются счетчиками трансформаторного включения по току.

Модификации счетчиков, доступные для выбора и заказа, размещены в прайс-листе на сайте предприятия-изготовителя.

Страница 6 из 64 Версия 06.2022

Таблица 1.2 – Структура кода счетчиков

Меркурий	234	ART	M	2	-xx	DPOKxBHW	RLxGxEFxC .	. RLxGxEFxCQx	
Mercury								Тип сменного модуля	
								R – RS485	
								Lx – PLC (L2-PLCII, L4-PRIME,	
								L5-G3PLC)	
								Gx – GSM (G, G1, G6 – GSM\GPRS,	
								G3-UMTS 3G, G4-LTE 4G, G5-NBIOT)	
								E – Ethernet TX	
								Fx – RF (F03-Zigbee, F04-LoRaWAN	
								Лартех, F05-ISM868, F06-Aypa360,	
								F07-LoRaWAN Вега, F08-Комета,	
								F09-XNB, F10-OrionM2M)	
								C – CAN	
								Qx – многофункциональный модуль	
								. разделитель кода	
								го интерфейса	
							R – RS485	I OIL LA DDIME LE CODI O	
								LCII, L4-PRIME, L5-G3PLC)	
							G4-LTE 4G, G5	G1, G6 – GSM\GPRS, G3-UMTS 3G,	
							E – Ethernet T	,	
								Ligbee, F04-LoRaWAN Лартех, F05-ISM868,	
							C – CAN	,	
						Функционалы	ные возможнос	ти	
						D – протокол СПОДЭС/DLMS			
						Р – расширенные программные функции			
						О – встроенно	ре силовое рел	е отключения	
						Кх – многофу	нкциональные і	входы\выходы	
						В – подсветка	ЖКИ		
								элемента в цепи нейтрали	
								сплея в комплекте поставки	
								ояжения, класса точности по таблице 1.3	
						направленный	•		
							менных модуле	ей	
						і энергии			
						ной энергии			
	20.4					арификатор			
	204	– одно	фа	ЗНЫ	и сче	етчик, корпус д	ля установки в	помещении, в шкафу, в щитке	
							ля наружной ус		
								помещении, в шкафу, в щитке	
Topropag		– ipex	фαз	зныі	и сче	нчик, корпус д	ля наружной ус	тановки	
Торговая марка Меркурий – для продаж с русскоязычной торговой маркой									
Mercury - n	меркурии – для продаж с русскоязычной торговой маркой Mercury – для продаж с англоязычной торговой маркой								
Ivioroury — д	легому для продаж о аптиоловичной торговой маркой								

Примечания

- 1 Отсутствие буквы кода означает отсутствие соответствующей функции
- 2 При наличии выносного дисплея в комплекте поставки символ «W» отсутствует на корпусе счетчика и наносится только на упаковку счетчика

Версия 06.2022 Страница 7 из 64

Таблица 1.3 – Коды тока и напряжения

Код	Номинальный (базовый)/ максимальный ток Іном(Іб)/Імакс, А	Номинальное напряжение (Ином), В	Класс точности
-00	5/10	57,7 для однофазных счетчиков 3×57,7/100 для трехфазных счетчиков	0,2S/0,5 0,5S/1
-01	5/60	230 для однофазных счетчиков 3×230/400 для трехфазных счетчиков	0,55/1 1/2
-02	5/100	230 для однофазных счетчиков 3×230/400 для трехфазных счетчиков	0,5/1 1/2
-03	5/10	230 для однофазных счетчиков 3×230/400 для трехфазных счетчиков	0,2S/0,5 0,5S/1
-04	1/10	57,7 для однофазных счетчиков 3×57,7/100 для трехфазных счетчиков	0,2S/0,5 0,5S/1
-05	1/10	230 для однофазных счетчиков 3×230/400 для трехфазных счетчиков	0,2S/0,5 0,5S/1
-06	1/2	57,7 для однофазных счетчиков 3×57,7/100 для трехфазных счетчиков	0,2S/0,5 0,5S/1
-07	1/2	230 для однофазных счетчиков 3×230/400 для трехфазных счетчиков	0,2S/0,5 0,5S/1
-08	5/80	230 для однофазных счетчиков 3×230/400 для трехфазных счетчиков	0,5/1 1/2
-09	10/100	230 для однофазных счетчиков 3×230/400 для трехфазных счетчиков	0,5/1 1/2

Примечания

1 Для счетчиков активной энергии прямого включения класса точности 0,5 (код -01, -02, -08, -09) требования ГОСТ 31819.21 не установлены. Для этих счетчиков настоящими ТУ установлены следующие требования: диапазоны токов и значения влияющих величин соответствуют требованиям, предусмотренным ГОСТ 31819.21, характеристики точности и допускаемые значения дополнительных погрешностей, вызываемых влияющими величинами, соответствуют требованиям ГОСТ 31819.21 для счетчиков класса точности 1,0 с коэффициентом 0,5

2 Класс точности определяется при заказе счетчика, задается на предприятииизготовителе, указывается на лицевой панели счетчика и в разделе «Свидетельство о приемке» формуляра счетчика

Страница 8 из 64 Версия 06.2022

2 Технические характеристики

2.1 Метрологические характеристики

2.1.1 Основные метрологические характеристики

Счетчики удовлетворяют требованиям ГОСТ 31818.11, ГОСТ 31819.21, ГОСТ 31819.22, ГОСТ 31819.23 в части требований к счетчикам электрической энергии, ГОСТ 30804.4.30 в части измерения качества электрической энергии, ГОСТ 12.2.007.0, ГОСТ 12.2.091 в части требований безопасности, а также требованиям ТУ 26.51.63.130-061-89558048-2018.

Для счетчиков активной энергии прямого включения класса точности 0,5 (код -01, -02, -08, -09 по таблице 1.3) требования ГОСТ 31819.21 не установлены. Для этих счетчиков диапазоны токов и значения влияющих величин соответствуют требованиям, предусмотренным ГОСТ 31819.21, характеристики точности соответствуют требованиям ГОСТ 31819.21 для счетчиков класса точности 1,0 с коэффициентом 0,5.

Диапазоны напряжения счетчиков приведены в таблице 2.1.

Таблица 2.1 – Диапазоны напряжения

Диапазон напряжения	Значение диапазона
Установленный рабочий диапазон	от 0,9 до 1,1 Uном
Расширенный рабочий диапазон	от 0,7 до 1,2 Uном
Предельный рабочий диапазон	от 0,0 до 1,2 Uном
Примечание — При напичии в счетчика	ах интерфейсов связи их работоспособность

Примечание – При наличии в счетчиках интерфейсов связи, их работоспособность гарантируется в диапазоне от 0,8 до 1,15 Uном

2.1.2 Пределы погрешностей

Пределы допускаемой основной относительной погрешности счетчиков при измерении среднеквадратичных значений фазных и линейных напряжений (для трехфазных счетчиков) и фазного напряжения (для однофазных счетчиков) в рабочем диапазоне температур и в диапазоне измеряемых напряжений от 0,7 до 1,2 Uhom $\pm 0,5$ %.

Пределы допускаемой основной относительной погрешности счетчиков при измерении фазных токов (для трехфазных счетчиков), токов фазы и нейтрали (для однофазных счетчиков) приведены в таблице 2.2.

Таблица 2.2 – Пределы погрешности при измерении фазных токов

Класс точности счетчика	Диапазон токов	Предел погрешности
0,2S, 0,5S	от 0,02Іном до Імакс	$\delta i = \pm \left[0.5 + 0.005 \left(\frac{I \textit{Makc}}{I x} - 1 \right) \right]$
1	0,051б до Іб	$\delta i = \pm \left[1 + 0.01 \left(\frac{I\delta}{Ix} - 1 \right) \right]$
1	от Іб до Імакс	$\delta i = \pm \left[0.6 + 0.01 \left(\frac{I \textit{Makc}}{I x} - 1\right)\right]$

Пределы допускаемой основной абсолютной погрешности счетчиков при измерении частоты питающей сети в диапазоне от 45 до 55 Гц: $\pm 0,02$ Гц.

Средний температурный коэффициент счетчиков при измерении активной и реактивной энергии, активной и реактивной мощности, не превышает значений, приведенных в таблицах 2.3 и 2.4 соответственно в диапазоне температур от минус 45 до плюс 70 °C.

Версия 06.2022 Страница 9 из 64

Таблица 2.3 – Средний температурный коэффициент при измерении активной энергии и мощности

трехфазных	для счетчиков (для счетчиков – при нной нагрузке)	Коэффициент	Средний температурный коэффициент, %/К, для счетчиков класса точности		
прямого включения	трансформаторного включения	мощности	0,2S	0,5\$	1
0,1Іб ≤ І ≤ Імакс	0,05Іном ≤ І ≤ Імакс	1,0	0,01	0,03	0,05
0,2Іб ≤ І ≤ Імакс	0,10Іном ≤ І ≤ Імакс	0,5 (при индуктивной нагрузке)	0,02	0,05	0,07

Таблица 2.4 – Средний температурный коэффициент при измерении реактивной энергии и мощности

Значение тока д	іля счетчиков (для	Коэффициент	Средні	ий темпера	турный
	счетчиков – при	мощности sin φ (при	коэфф	рициент, %/	К, для
симметрич	ной нагрузке)	индуктивной или	счетчик	ов класса т	очности
прямого	трансформаторного	емкостной	0,5	1	2
включения	включения	нагрузке)	0,5		
$0,10$ × $Iб \le I \le I$ макс	0,051ном ≤ I ≤ Імакс	1,0	0,03	0,05	0,10
0,20×Iб ≤ I ≤ Iмакс	0,10Іном ≤ І ≤ Імакс	0,5	0,05	0,07	0,15

Средний температурный коэффициент при измерении полной мощности, напряжений, токов не превышает значений, указанных в таблице 2.5 в диапазоне температур от минус 45 до плюс 70 °C.

Таблица 2.5 – Средний температурный коэффициент при измерении полной мощности, напряжений, токов

трехфазных	ля счетчиков (для счетчиков –при ной нагрузке)	Средний температурный коэффициент при измерении полной мощности, токов, %/К, для счетчиков класса точности по активной/реактивной энергии			
прямого включения	трансформаторного включения	0,2\$/0,5	0,5\$/1	0,5/1	1/2
0,1Іб ≤ І ≤ Імакс	0,051ном ≤ I ≤ Імакс	0,03	0,05	0,05	0,10

Пределы допускаемой дополнительной относительной погрешности счетчиков при воздействии внешних факторов соответствуют требованиям ГОСТ 31818.11, ГОСТ 31819.21, ГОСТ 31819.22, ГОСТ 31819.23.

2.1.3 Характеристики измерения ПКЭ

Счетчики обеспечивают измерение показателей качества электроэнергии (далее – ПКЭ) по ГОСТ 30804.4.30, класс S, с формированием событий и индикацией факта нарушения на ЖКИ:

- положительное и отрицательное отклонение напряжения;
- положительное и отрицательное отклонение частоты;
- длительность и глубина провала напряжения;
- длительность перенапряжения и коэффициент перенапряжения;
- коэффициент искажения синусоидальности фазных напряжений.

Измерение среднеквадратических значений напряжения при измерении ПКЭ производится на одном периоде основной частоты.

Пределы допускаемой относительной погрешности измерения остаточного напряжения, глубины провалов напряжения, максимального значения перенапряжения, коэффициента перенапряжения не превышают $\pm 1~\% \times \text{U}$ ном.

Неопределенность измерения длительностей провалов, прерываний, перенапряжений не превышает 2 периода частоты сети.

Страница 10 из 64

При измерении провалов напряжения, перенапряжения и прерывания напряжения для каждого события в журнале событий фиксируются значение напряжения, дата и время перехода порогового значения напряжения.

Трехфазные счетчики имеют функцию обнаружения нарушения порядка чередования фаз с формированием событий и индикацией факта нарушения на ЖКИ (отображение индикатора наличия событий, отображение времени события нарушения чередования фаз, одновременное мигание трех индикаторов фаз **В ©**.

Трехфазные счетчики обеспечивают измерение напряжений прямой, обратной и нулевой последовательностей (симметричных составляющих), неопределенность измерения значений напряжений в диапазоне напряжений $(0,2\div1,2)\times$ Uном не превышает $\pm0,5~\%\times$ Uном.

2.1.4 Измеряемые параметры

Счетчики обеспечивают измерение параметров:

- учтенная активная и реактивная энергия прямого и обратного направления, в том числе по тарифам, нарастающим итогом и на начало отчетных периодов, включая энергию потерь;
- мгновенные (за один период частоты сети) и усредненные значения фазных и линейных напряжений (для трехфазных счетчиков);
- мгновенные (за один период частоты сети) и усредненные значения фазного напряжения (для однофазных счетчиков);
- мгновенные (за один период частоты сети) и усредненные значения фазных токов (для трехфазных счетчиков);
- мгновенные (за один период частоты сети) и усредненные значения токов фазы, нейтрали и их разницы (для однофазных счетчиков);
- значения фазных и суммарной активной, реактивной и полной мощностей (для трехфазных счетчиков);
- значения активной, реактивной и полной мощностей (для однофазных счетчиков);
- значения фазных и суммарного коэффициентов мощности (для трехфазных счетчиков);
- значения коэффициента мощности (для однофазных счетчиков);
- значения соотношения реактивной и активной мощностей суммарно и по каждой фазе (tg ф для трехфазных счетчиков);
- значения соотношения реактивной и активной мощностей (tg φ для однофазных счетчиков);
- значения максимумов мощности;
- значения частоты сети;
- значения температуры внутри счетчика (контрольный, метрологически ненормированный параметр);
- значения коэффициентов несимметрии фазных напряжений;
- ПКЭ, перечень по п.2.1.3;
- текущее время и дата;
- время работы (наработка) счетчика.

Алгоритмы вычисления мгновенных и усредненных значений параметров, включая интервалы расчета и усреднения, соответствуют классу S по ГОСТ 30804.4.30. Все вспомогательные параметры энергии, напряжения, тока, мощности, частоты, времени (например, значение небаланса токов, значение максимума мощности и т. п.) измеряются в соответствии с классом точности и нормированными в п.2.1 метрологическими характеристиками.

Версия 06.2022 Страница 11 из 64

2.1.5 Характеристики ведения времени

Точность хода часов при нормальной температуре (20 \pm 5) °C не хуже \pm 0,5 с/сут, в рабочем диапазоне температур не хуже \pm 5 с/сут. Точность хода часов при отключенном питании не хуже \pm 5 с/сут.

Счетчики имеют возможность плавной коррекции времени встроенных часов в пределах ± 4 мин для протокола «Меркурий» и ± 15 мин для протокола «СПОДЭС» по команде от интерфейса связи без нарушения хронологии функционирования. Плавную коррекцию (сдвиг) времени рекомендуется выполнять в процессе эксплуатации счетчика.

Также в счетчиках имеется возможность прямой (принудительной) установки времени. Прямую установку времени рекомендуется выполнять перед началом ввода счетчика в эксплуатацию.

ПЕРЕД ПОДАЧЕЙ КОМАНДЫ ПРЯМОЙ УСТАНОВКИ ВРЕМЕНИ РЕКОМЕНДУЕТСЯ ПРОВОДИТЬ ПОЛНОЕ ЧТЕНИЕ И СОХРАНЕНИЕ ПРОФИЛЕЙ МОЩНОСТИ.

ПОСЛЕ ПРОВЕДЕНИЯ ПРОЦЕДУРЫ ПРЯМОЙ УСТАНОВКИ ВРЕМЕНИ ВПЕРЕД/НАЗАД СЛЕДУЕТ ВЫПОЛНИТЬ ИНИЦИАЛИЗАЦИЮ (ОЧИСТКУ) АРХИВНЫХ МАССИВОВ (СУТОЧНЫХ, МЕСЯЧНЫХ), ПРОФИЛЕЙ МОЩНОСТИ, МАКСИМУМОВ, А ТАКЖЕ ЖУРНАЛОВ (ДОСТУПНЫХ ДЛЯ ОЧИСТКИ).

2.2 Основные технические характеристики

Счетчики устойчивы к климатическим условиям в соответствии с таблицей 2.6.

Таблица 2.6 – Климатические условия

Вид требований	Допустимые значения	
Установленный рабочий диапазон	от минус 45 до плюс 70 °C	
Предельный рабочий диапазон	от минус 45 до плюс 70 °C	
Предельный диапазон хранения и транспортирования	от минус 50 до плюс 70 °C	
Относительная влажность среднегодовая	менее 75 %	
Относительная влажность 30-суточная, распределенная	95 %	
естественным образом в течение года	95 %	
Относительная влажность воздуха при транспортировании и	до 95 % при 30 °C	
хранении.	до 95 % при 30 С	
Атмосферное давление в рабочих условиях	(84-106,7) кПа	
Атмосферное давление в условиях транспортирования и	((630-800) мм рт. ст.)	
анения		

Габаритные размеры счетчиков приведены в приложении А.

Масса счетчиков «Меркурий 204» не более 1,1 кг.

Масса счетчиков «Меркурий 208» не более 1,0 кг.

Масса счетчиков «Меркурий 234» не более:

- корпус без сменных модулей 1,4 кг;
- корпус со сменным модулем 2,1 кг.

Масса счетчиков «Меркурий 238» не более 1,4 кг.

Счетчики «Меркурий 204» и «Меркурий 234» устойчивы к проникновению пыли и воды в соответствии с требованиями ГОСТ 14254 для степеней защиты IP51 и IP54 (по спецзаказу на сайте предприятия-изготовителя).

Счетчики «Меркурий 208» и «Меркурий 238» устойчивы к проникновению пыли и воды в соответствии с требованиями ГОСТ 14254 для степени защиты IP54.

По спецзаказу доступны модификации счетчиков с повышенной степенью защиты корпуса.

Постоянная счетчиков указана в таблице 2.7.

Таблица 2.7 – Постоянная счетчиков

Код	Постоянная счетчиков в режиме телеметрия/поверка, имп./(кВт·ч) [имп./(квар·ч)]
-00	5000/160000
-01	500 или 1000/32000
-02	250 или 1000/16000
-03	1000/160000
-04	5000/160000
-05	1000/160000
-06	5000/160000
-07	1000/160000
-08	500 или 1000/32000
-09	250 или 1000/16000

Примечание — Значение постоянной счетчиков с кодом -01, -02, -08, -09 (250, 500, 1000) определяется при заказе счетчика, задается на предприятии-изготовителе и указывается на лицевой панели и в формуляре счетчика

Счетчики нормально функционируют не позднее чем через 5 с после того, как к зажимам счетчика будет приложено номинальное напряжение.

Счетчики при измерении активной и реактивной энергии начинают и продолжают регистрировать показания при коэффициенте мощности, равном 1, при симметричной нагрузке и при значениях тока приведенных в таблице 2.8 для однофазных счетчиков и таблице 2.9 для трехфазных счетчиков (стартовый ток).

Таблица 2.8 – Стартовый ток для однофазных счетчиков

Код	Класс точности при измерении активной/ реактивной энергии	Номинальное напряжение, (Uном), В	Номинальный (базовый)/ максимальный ток Іном(Іб)/Імакс, А	Стартовый ток (чувствитель- ность), мА
-01	1/2	230	5(60)	20 (0,004lb)
-02	1/2	230	5(100)	20 (0,00416)
-08	1/2	230	5(80)	20 (0,004Іб)
-09	1/2	230	10(100)	40 (0,004Іб)

Таблица 2.9 – Стартовый ток для трехфазных счетчиков

Код	Класс точности при	Номинальное	Номинальный (базовый)/	Стартовый ток
	измерении активной/	напряжение,	максимальный ток	(чувствитель-
	реактивной энергии	(Ином), В	Іном(Іб)/Імакс, А	ность), мА
-00	0,2\$/0,5, 0,5\$/1	3×57,7/100	5/10	5 (0,001Іном)
-01	0,5/1	3×230/400	5/60	10 (0,002lб)
	1/2	3×230/400	5/60	20 (0,004 ნ)
-02	0,5/1	3×230/400	5/100	10 (0,002Іб)
	1/2	3×230/400	5/100	20 (0,004Іб)
-03	0,2\$/0,5, 0,5\$/1	3×230/400	5/10	5 (0,001Іном)
-04	0,2\$/0,5, 0,5\$/1	3×57,7/100	1/10	1 (0,001Іном)
-05	0,2\$/0,5, 0,5\$/1	3×230/400	1/10	1 (0,001Іном)
-06	0,2\$/0,5, 0,5\$/1	3×57,7/100	1/2	1 (0,001Іном)
-07	0,2\$/0,5, 0,5\$/1	3×230/400	1/2	1 (0,001Іном)

Активная и полная потребляемая мощность в каждой цепи напряжения счетчика при номинальном напряжении, номинальной частоте и нормальной температуре не превышает:

- 1,5 Вт и 9 В·А для счетчика «Меркурий 204»;
- 2 Вт и 9 В⋅А для счетчика «Меркурий 208»;
- 1,5 Вт и 9 В·А для счетчика «Меркурий 234», кроме модификаций с кодом «-00»;
- 1,5 Вт и 2 В·А для счетчика «Меркурий 234» модификаций с кодом «-00», включая встроенный интерфейс RS485;
- 2 Вт и 9 В·А для счетчика «Меркурий 238».

Версия 06.2022 Страница 13 из 64

При наличии модема, в том числе в сменном модуле (наличие одного из индексов «RLxGxEFxCQx» в названии счетчика), активная и полная мощность, потребляемая цепями напряжения счетчика при номинальном напряжении, номинальной частоте и нормальной температуре не превышает 6 Вт и 30 В-А соответственно.

Счетчик имеет встроенный тарификатор. Максимальное число действующих тарифов – четыре, до 16 тарифных зон в сутки.

Полная мощность, потребляемая каждой цепью тока счетчиков при номинальном (базовом) токе, номинальной частоте и нормальной температуре не превышает 0,1 В·А.

Счетчики имеют встроенную (основную) батарею питания. Срок службы батареи составляет не менее 10 лет.

Замена встроенной (основной) батареи питания производится в условиях единого сервисного центра ООО «НПК «ИНКОТЕКС».

Счетчики «Меркурий 204», «Меркурий 234» имеют возможность установки дополнительной (сменной) батареи питания на объекте эксплуатации без вскрытия основной крышки корпуса и нарушения поверочных пломб.

Пломбы предприятия-изготовителя на верхней крышке счетчиков «Меркурий 204», «Меркурий 234» могут быть удалены эксплуатирующей организацией с целью получения доступа к сменному модулю связи, сменной батарее, а также для установки SIM-карты с последующей обязательной пломбировкой эксплуатирующей организацией.

Счетчики «Меркурий 234» имеют возможность резервного питания. Напряжение источника резервного питания должно быть от 6 до 12 В постоянного тока, мощность не менее 6 Вт.

Счетчики «Меркурий 204» и «Меркурий 234» со сменным модулем имеют электрический импульсный испытательный выход. Счетчики «Меркурий 234» без сменного модуля с индексом «Fx» в коде, а также счетчики «Меркурий 208» и «Меркурий 238» — оптический импульсный испытательный выход. Испытательный выход функционирует как основной (функция телеметрии) или как поверочный при измерении активной и реактивной энергии. Переключение режима выхода осуществляется по команде через интерфейс связи.

Характеристики электрического импульсного выхода счетчиков «Меркурий 204» и «Меркурий 234» соответствуют п.9.1 ГОСТ 31819.21, ГОСТ 31819.22. Характеристики оптического импульсного испытательного выхода счетчиков «Меркурий 208» и «Меркурий 238» соответствуют п.5.11 ГОСТ 31818.11.

Счетчики со встроенным силовым реле обеспечивают включение и отключение нагрузки без приваривания контактов встроенного реле при токах коммутации до 1,1×Імакс.

Максимальные значения коэффициентов трансформации по напряжению и току соответственно 2200 и 120.

2.3 Характеристики интерфейсов и протоколов обмена

Счетчики обеспечивают обмен информацией с оборудованием вышестоящего уровня управления через встроенные интерфейсы связи (модемы).

Счетчики содержат несколько независимых интерфейсов связи в соответствии с модификацией по таблице 1.2.

Счетчики с индексом «R» обеспечивают обмен данными по интерфейсу RS485. Технические характеристики интерфейса RS485 соответствуют спецификации EIA-485. Скорость передачи данных по интерфейсу RS485 может быть выбрана из стандартного ряда от 1200 до 115200 бит/с.

Счетчики с индексом «Lx» обеспечивают обмен данными по силовой сети (PLC), возможные модификации:

- L2, технология связи PLC II:
- L4, технология связи PLC PRIME.

Технология связи PLC II является собственной разработкой НПК «Инкотекс» и обеспечивает обмен данными на скорости до 1000 бит/с. Технология использует несколько узкополосных каналов с временным разделением в разрешенном частотном диапазоне CENELEC A и обеспечивает лучшую помехоустойчивость по сравнению с другими технологиями за счет снижения скорости передачи данных.

Технология связи PLC PRIME стандартизована в рамках альянса PRIME Alliance. В счетчиках используется реализация стандарта версии v.1.3.6, 1.4. Скорость передачи данных при использовании PLC PRIME выбирается автоматически в соответствии со стандартом в диапазоне от 5400 до 128600 бит/с. Счетчики имеют требуемые сертификаты, информация о которых размещена, в том числе, на сайте www.prime-alliance.org.

Счетчики с индексом «L4» в части работы по PLC совместимы с любым оборудованием, использующим технологию PRIME

Счетчики с индексом «Gx» обеспечивают обмен данными по интерфейсу GSM, возможные модификации:

- G, технология связи GSM/GPRS с возможностью передачи данных в режиме GSM-DATA (CSD) и GPRS/EDGE;
- G1, технология связи GSM/GPRS с возможностью передачи данных только в режиме GPRS/EDGE, использование двух SIM-карт;
- G3, технология связи UMTS (Universal Mobile Telecommunications System), сети 3G, обеспечивается преемственность в разработках решений для сетей стандарта GSM;
- G4, технология связи LTE (Long-Term Evolution) стандарт связи с увеличенной пропускной способностью и скоростью передачи данных;
- G5, технология связи NBIOT (Narrow Band Internet of Things):
- G6, технология связи GSM/GPRS с возможностью передачи данных только в режиме GPRS/EDGE, использование одной SIM-карты.

Счетчики с модификацией «G» обеспечивают работу в режимах CSD (по дозвону), кроме модификаций «G1», и в режимах GPRS-клиент, GPRS-сервер. После установления соединения модем счетчика переходит в «прозрачный» режим, обмен данными производится по выбранному протоколу счетчика.

Счетчики с модификацией «G5» обеспечивают работу по сетям NBIOT. Протокол обмена по сетям NBIOT является собственной разработкой НПК «Инкотекс» и оптимизирован для передачи инициативной информации от счетчика. Кроме передачи инициативной информации, возможна работа в режиме запрос-ответ, включая конфигурирование счетчика и управление нагрузкой.

Разработчикам ПО верхнего уровня для интеграции счетчиков по сетям NBIOT по запросу может быть предоставлен протокол обмена и SDK клиентской части протокола в исходных кодах.

Счетчики с индексом «Е» обеспечивают обмен данными по интерфейсу Ethernet. Для обмена данными по интерфейсу Ethernet могут использоваться протоколы обмена «СПОДЭС», «Меркурий», а также протокол в соответствии с ГОСТ Р МЭК 60870-5-104.

Технические характеристики интерфейса Ethernet соответствуют стандарту IEEE802.3u, интерфейс поддерживает автоматическое определение скорости 10/100 Мбит/с.

Счетчики с индексом «Fx» обеспечивают обмен данными по радиоинтерфейсу. Возможные модификации, поддерживаемые инфраструктуры сетей связи и их основные характеристики:

Версия 06.2022 Страница 15 из 64

- F03, технология связи Zigbee, инфраструктура сетей «ТелеПозиционный Проект», рабочий диапазон частот 2400-2483,5 МГц, скорость обмена 250 кбит/с;
- F04, технология связи LoRaWAN, инфраструктура сетей «Лартех», рабочий диапазон частот 868,0-868,2 МГц или 868,7-869,2 МГц, скорость обмена от 293 до 9380 бит/с;
- F05, технология связи IEEE 802.15.4 SUN, рабочий диапазон частот 868,0-868,2 МГц или 868,7-869,2 МГц, скорость обмена 50 кбит/с;
- F06, технология связи LPWAN, инфраструктура сетей «РиА Групп», рабочий диапазон частот 868,7-869,2 МГц, скорость обмена не менее 10 кбит/с;
- F07, технология связи LoRaWAN, инфраструктура сетей «Вега-Абсолют», рабочий диапазон частот 868,0-868,2 МГц или 868,7-869,2 МГц, скорость обмена от 293 до 9380 бит/с;
- F08, технология связи LoRaWAN, инфраструктура сетей «Комета», рабочий диапазон частот 868,0-868,2 МГц или 868,7-869,2 МГц, скорость обмена от 293 до 9380 бит/с;
- F09, технология связи XNB, открытый протокол, рабочий диапазон частот 863-865 МГц или 868,0-868,2 МГц или 868,7-869,2 МГц или 874-875 МГц, скорость обмена от 50 до 10000 бит/с;
- F10, технология связи LoRaWAN, инфраструктура сетей «OrionM2M», скорость обмена не менее 10 кбит/с, рабочий диапазон частот 868,0-868,2 МГц или 868,7-869,2 МГц.

2.4 Характеристики каналов ввода-вывода

Счетчики трансформаторного включения и счетчики с функциями телемеханики обеспечивают управление внешними устройствами включения/отключения нагрузки или управление входами других устройств через дискретный выход (выходы). Счетчики с функциями телемеханики дополнительно обеспечивают отслеживание состояния внешних цепей через дискретные входы.

Счетчики с индексом «К1» обеспечивают отслеживание состояний датчиков типа «сухой контакт» по четырем каналам дискретного ввода. Фиксация изменения состояния ТС происходит при изменении сопротивления датчика, подключенного между контактом общего входа +24 В и контактом соответствующего дискретного входа.

Счетчики с индексом «K2» в дополнение к функциям счетчиков с индексом «K1» обеспечивают управление нагрузками или сигнализацию о смене состояния на входах других устройств по двум нормально разомкнутым каналам дискретного вывода.

Технические характеристики дискретных входов и выходов приведены в таблице 2.10.

Таблица 2.10 – Технические характеристики дискретных входов и выходов

Наименование характеристики	Значение
Параметры дискретных входов:	
– максимальный ток опроса датчиков дискретных входов, мА на канал	5
– напряжение опроса датчиков дискретных входов, В, общий провод	24
положительный	
Время подавления дребезга контактов, программируемое, мс	от 0 до 10000
Коммутационная способность выходов телеуправления:	
– максимальный ток, А	3
– максимальное напряжение постоянное, В	30
– максимальное напряжение переменное, В	250
– время переключения, мс, не более	8
– число циклов срабатывания при максимальном токе и напряжении	10000

2.5 Характеристики надежности

Счетчики обеспечивают непрерывную работу в течение срока службы, средний срок службы счетчиков не менее 30 лет.

Средняя наработка счетчиков на отказ не менее 320 000 ч.

Срок хранения всех данных в энергонезависимой памяти не менее 5 лет, срок хранения параметров настройки и встроенного ПО – на весь срок службы счетчиков.

Коммутационная стойкость встроенного силового реле не менее 5000 циклов включения/отключения под максимальной нагрузкой, механическая стойкость не менее 100 000 циклов включения/отключения.

2.6 Характеристики безопасности

Счетчики удовлетворяют требованиям безопасности по ГОСТ 12.2.091, класс защиты II, ГОСТ 12.2.007.0 и ГОСТ 31818.11, требованиям ТР ТС 004/2011 «Технический регламент Таможенного союза «О безопасности низковольтного оборудования»» и ТР ТС 020/2011 «Технический регламент Таможенного союза «Электромагнитная совместимость технических средств».

Изоляция между всеми соединенными цепями тока и напряжения с одной стороны, «землей» и соединенными вместе вспомогательными цепями с другой стороны, при закрытом корпусе счетчика и крышке зажимов выдерживает в течение 1 мин воздействие напряжения переменного тока величиной 4 кВ (среднеквадратическое значение) частотой 45 – 65 Гц. «Землей» является проводящая пленка из фольги, охватывающая счетчик.

Изоляция между цепями, которые не предполагается соединять вместе во время работы (импульсным выходом, цепями интерфейсов в любых комбинациях) в нормальных условиях выдерживает в течение 1 мин воздействие напряжения переменного тока величиной 2 кВ (среднеквадратическое значение) частотой 50 Гц.

2.7 Комплектность

Комплект поставки счетчиков приведен в таблице 2.11.

Таблица 2.11 – Комплект поставки

T.	1
Наименование	Количество
Счетчик в потребительской таре	1
Выносной дисплей (при наличии в	1
,	
(поставляется только со счетчиками	1
«Меркурий 208», «Меркурий 238»)	
Программное обеспечение	
«Конфигуратор счетчиков Меркурий»	1
на магнитном носителе или CD-диске*	
Руководство по эксплуатации*	1
Формуляр	1
MOTORIAKO ROBODKIA**	1
тистодика поверки	ļ
	Счетчик в потребительской таре Выносной дисплей (при наличии в комплекте со счетчиком) Скоба для установки на опоре (поставляется только со счетчиками «Меркурий 208», «Меркурий 238») Программное обеспечение «Конфигуратор счетчиков Меркурий» на магнитном носителе или CD-диске* Руководство по эксплуатации*

^{*} Допускается по согласованию с потребителем размещение руководства по эксплуатации, методики поверки и программного обеспечения в электронном виде на сайте предприятия-изготовителя счетчика www.incotexcom.ru

Версия 06.2022 Страница 17 из 64

^{**} Поставляется по отдельному заказу организациям, производящим поверку и эксплуатацию счетчиков

2.8 Маркировка

Маркировка счетчиков соответствует ГОСТ 31818.11, ГОСТ 31819.22, ГОСТ 31819.21, ГОСТ 31819.23, ГОСТ 12.2.091, ГОСТ 22261 и КД предприятия-изготовителя.

На лицевую часть счетчиков «Меркурий 204» и «Меркурий 234» и на торцевую часть счетчиков «Меркурий 208» и «Меркурий 238» нанесена маркировка:

- условное обозначение типа счетчика;
- серийный номер счетчика по системе нумерации предприятия-изготовителя;
- товарный знак предприятия-изготовителя;
- год изготовления счетчика;
- номинальный (или базовый) и максимальный ток;
- другие символы, предусмотренные ГОСТ 31818.11, ГОСТ 31819.22, ГОСТ 31819.21, ГОСТ 31819.23, ГОСТ 12.2.091, ГОСТ 22261.

На лицевой части счетчиков «Меркурий 208», «Меркурий 238» нанесены последние 6 цифр заводского номера счетчика для облегчения его идентификации. Высота цифр 40 и 44 мм для «Меркурий 208» и «Меркурий 238» соответственно.

2.9 Упаковка

Упаковка счетчиков соответствует ГОСТ 22261, ГОСТ 23170, ОСТ 45.070.011 и документации предприятия-изготовителя.

2.10 Пломбирование

Корпуса счетчиков опломбированы проволочными пломбами предприятияизготовителя и организации, проводящей первичную поверку счетчиков. Знак поверки наносится давлением на навесную пломбу.

Верхняя крышка счетчиков «Меркурий 204», «Меркурий 234» пломбируется на предприятии-изготовителе с целью контроля несанкционированного доступа к модулю связи. Данная пломба не является пломбой поверителя и может быть удалена эксплуатирующей организацией с целью получения доступа к модулю связи и установки SIM карты. В дальнейшем эксплуатирующая организация должна опломбировать верхнюю крышку встроенного модуля самостоятельно.

Общий вид счетчиков с указанием мест пломбирования и нанесения знака поверки приведены на рисунках 2.1 – 2.4.

Рисунок 2.1 – Общий вид счетчиков «Меркурий 204» с указанием мест пломбирования и нанесения знака поверки

Рисунок 2.2 – Общий вид счетчиков «Меркурий 208» с указанием мест пломбирования и нанесения знака поверки

Рисунок 2.3 – Общий вид счетчиков «Меркурий 234» с указанием мест пломбирования и нанесения знака поверки

Рисунок 2.4 — Общий вид счетчиков «Меркурий 238» с указанием мест пломбирования и нанесения знака поверки

Версия 06.2022 Страница 19 из 64

3 Устройство и работа

3.1 Устройство счетчиков

Счетчики выполнены в пластиковом корпусе, не поддерживающем горение. Корпус счетчиков «Меркурий 204», «Меркурий 234» предназначен для монтажа на панель (щит), корпус счетчиков «Меркурий 208», «Меркурий 238» предназначен для монтажа на опору линии электропередач или иную поверхность с использованием кронштейна, входящего в состав счетчиков. Габаритные размеры приведены в приложении А.

Счетчики состоят из корпуса с крышками, клеммной колодкой и установленными внутри печатными платами с радиоэлементами. Клеммные крышки счетчиков выполнены из прозрачного пластика для контроля несанкционированного подключения к измерительным и интерфейсным цепям.

Счетчики имеют светодиодные индикаторы функционирования, являющиеся одновременно индикаторами импульсов учета электроэнергии.

Модификации счетчиков «Меркурий 204» и «Меркурий 234» с буквой «М» в коде имеют сменные модули интерфейсов.

Сменные модули, а также батарею дополнительного энергонезависимого питания счетчиков «Меркурий 204», «Меркурий 234» можно заменить на объекте эксплуатации без вскрытия основной крышки корпуса и нарушения поверочных пломб.

3.2 Работа счетчиков

Основным узлом счетчиков является микроконтроллер. На вход микроконтроллера поступают электрические сигналы от датчиков тока и напряжения. Микроконтроллер выполняет расчет мгновенных и усредненных значений параметров сети, производит подсчет количества активной и реактивной электроэнергии с учетом тарификатора, вычисление ПКЭ, анализ и формирование событий, формирование профилей мощности и архивов показаний на начало периодов и сохранение всей информации в энергонезависимой памяти.

Измеренные и накопленные данные и события могут быть просмотрены на ЖКИ, а также переданы на верхний уровень управления по интерфейсам связи.

3.2.1 Формирование событий

Счетчики обеспечивают формирование и хранение в энергонезависимой памяти следующих событий:

- дата и время вскрытия клеммной крышки;
- дата и время вскрытия корпуса прибора учета;
- дата последнего перепрограммирования (включая фиксацию факта связи со счетчиком, приведшего к изменению данных);
- изменение направления перетока мощности;
- дата и время воздействия сверхнормативного магнитного воздействия;
- отклонение напряжения в измерительных цепях от заданных пределов;
- включение и отключение счетчика (пропадание и восстановление напряжения);
- отсутствие напряжения при наличии тока в измерительных цепях с конфигурируемыми порогами (для трехфазных счетчиков);
- нарушение фазировки (для трехфазных счетчиков);
- инициализация прибора учета, время последнего сброса, число сбросов нарастающим итогом;
- выход за граничное значение температуры внутри корпуса с конфигурируемым порогом;
- результаты непрерывной самодиагностики;
- изменение текущих значений времени и даты при синхронизации времени.

Глубина хранения журналов событий составляет 10 событий каждого типа при работе по протоколу «Меркурий» и не менее 256 событий в каждом журнале при работе по протоколу «СПОДЭС» с разделением событий по журналам в соответствии со спецификацией протокола «СПОДЭС».

Все события в журналах сохраняются с присвоением метки времени события.

События вскрытия клеммной крышки и корпуса формируются и сохраняются, в том числе, при отключенном электропитании счетчиков.

3.2.2 Хранение информации

Счетчики обеспечивают хранение в энергонезависимой памяти:

- два профиля активной и реактивной мощности нагрузки прямого и обратного направлений с программируемым интервалом времени интегрирования от 1 до 60 минут и глубиной хранения не менее 170 суток при времени интегрирования 30 минут;
- тарифицированные данные по активной и реактивной электроэнергии нарастающим итогом (для трехфазных счетчиков включая пофазный учет), в том числе в прямом и обратном направлениях, на начало текущих суток и 123 предыдущих суток, на начало текущего месяца и на начало предыдущих 36 месяцев, на начало текущего года и на начало предыдущих двух лет;
- измерительные данные, параметры настройки, встроенное ПО.

На заводе-изготовителе устанавливаются интервалы интегрирования основного и дополнительного профилей мощности 60 минут для счетчиков прямого включения и 30 минут для счетчиков косвенного включения.

ВНИМАНИЕ! ИНДИКАЦИЯ НАКОПЛЕННОЙ ЭНЕРГИИ НА ЖКИ ПРОИЗВОДИТСЯ <u>ЗА ПРЕДЫДУЩИЕ ПЕРИОДЫ</u> В ВИДЕ РАСХОДОВ ЗА СУТКИ (МЕСЯЦ, ГОД)

ПЕРЕДАЧА ДАННЫХ ПО ИНТЕРФЕЙСАМ ПРОИЗВОДИТСЯ <u>НА НАЧАЛО КАЛЕНДАРНОГО ПЕРИОДА</u> В ВИДЕ ПОКАЗАНИЙ НА НАЧАЛО СУТОК (МЕСЯЦА, ГОДА)

ПЕРЕД ПОДАЧЕЙ КОМАНДЫ ПРЯМОЙ УСТАНОВКИ ВРЕМЕНИ РЕКОМЕНДУЕТСЯ ПРОВОДИТЬ ПОЛНОЕ ЧТЕНИЕ И СОХРАНЕНИЕ ПРОФИЛЕЙ МОЩНОСТИ.

ПОСЛЕ ПРОВЕДЕНИЯ ПРОЦЕДУРЫ ПРЯМОЙ УСТАНОВКИ ВРЕМЕНИ ВПЕРЕД/НАЗАД СЛЕДУЕТ ВЫПОЛНИТЬ ИНИЦИАЛИЗАЦИЮ (ОЧИСТКУ) АРХИВНЫХ МАССИВОВ (СУТОЧНЫХ, МЕСЯЧНЫХ), ПРОФИЛЕЙ МОЩНОСТИ, МАКСИМУМОВ, А ТАКЖЕ ЖУРНАЛОВ (ДОСТУПНЫХ ДЛЯ ОЧИСТКИ).

3.2.3 Интерфейсы и протоколы обмена

Счетчики обеспечивают обмен информацией с оборудованием вышестоящего уровня управления через встроенные интерфейсы связи (модемы).

Счетчики содержат от 2 до 4 независимых интерфейсов связи в соответствии с модификацией по таблице 1.2.

Интерфейсы связи RS485 (индекс R в коде), CAN (C), GSM (Gx), радиоинтерфейс (Fx), Ethernet (E) являются вспомогательными цепями по ГОСТ 31818.11-2012 с рабочим напряжением ниже 40 В. Значения рабочего напряжения приведены в соответствующих стандартах на интерфейсы связи.

Обмен данными по всем интерфейсам может производиться одновременно и независимо друг от друга, включая оптопорт.

Обмен данными по интерфейсам связи осуществляется по протоколу «СПОДЭС» на основе и в соответствии с IEC 62056 DLMS/COSEM (далее – «СПОДЭС») или по протоколу «Меркурий». Выбор протокола осуществляется программно.

Версия 06.2022 Страница 21 из 64

При работе по протоколу «СПОДЭС» счетчики совместимы с ПО ИВК «Пирамида 2.0» и «Пирамида-сети».

При работе по протоколу «СПОДЭС» счетчики имеют идентификатор производителя «INC», зарегистрированный в ассоциации DLMS UA.

Счетчики имеют защиту от несанкционированного доступа к данным по интерфейсам:

- при работе по протоколу «СПОДЭС» в соответствии со спецификацией протокола;
- при работе по протоколу «Меркурий»:
- 1 уровень доступа для считывания данных;
- 2 уровень доступа для конфигурирования.

Счетчики имеют возможность программирования и чтения по интерфейсам параметров в соответствии со спецификацией протокола «СПОДЭС».

Счетчики имеют возможность программирования по интерфейсам следующих параметров по протоколу «Меркурий», в скобках указан уровень доступа для программирования:

- параметры обмена по интерфейсу (1, 2);
- смена паролей первого (потребителя энергии) и второго (продавца энергии) уровня доступа к данным (1, 2);
- индивидуальные параметры счетчика (2);
- текущее время и дата (2);
- тарифное расписание (2);
- параметры перехода сезонного времени (2);
- параметры ведения профилей мощности (2);
- режимы индикации (1, 2);
- параметры контроля за превышением установленных лимитов активной мощности и энергии (2);
- инициализация регистров накопленной энергии (2);
- перезапуск счетчика («горячий» сброс) без выключения питания сети (2);
- ПКЭ (2);
- расписание контроля за утренними и вечерними максимумами мощности (1, 2).

Счетчики имеют возможность чтения по интерфейсам следующих параметров по протоколу «Меркурий», в скобках указан уровень доступа для чтения:

- учтенная активная и реактивная энергия прямого и обратного направления, в том числе по тарифам, нарастающим итогом и на начало отчетных периодов (1, 2);
- мгновенные и усредненные значения измеряемых параметров (2);
- текущее время и параметры встроенных часов счетчика (1, 2);
- параметры тарификатора (2);
- параметры ведения профиля мощности (2);
- индивидуальные параметры счетчика (2);
- режимы индикации (2);
- параметры контроля лимитов активной энергии и мощности (1, 2);
- журналы событий (2);
- журнал перепрограммирования (включая изменение конфигурационных параметров) (2);
- журналы ПКЭ (2);
- значения максимумов мощности, при наличии расписания контроля (2);
- слово состояния и данные самодиагностики счетчика (2).

Счетчики могут быть запрограммированы на инициативную передачу служебной и технологической информации по последовательному интерфейсу.

В счетчиках предусмотрена фиксация следующих внутренних данных и параметров по адресному/широковещательному запросу (функция «защелка» или «стоп-кадр»):

- время и дата фиксации;
- энергия A+, R+ по сумме тарифов;
- энергия A+, R+ по тарифу 1;
- энергия A+, R+ по тарифу 2;
- энергия A+, R+ по тарифу 3;
- энергия A+, R+ по тарифу 4;
- активная мощность по каждой фазе (для трехфазных счетчиков и по сумме фаз):
- реактивная мощность по каждой фазе (для трехфазный счетчиков и по сумме фаз);
- полная мощность по каждой фазе (для трехфазный счетчиков и по сумме фаз);
- напряжение по каждой фазе;
- ток по каждой фазе (для однофазных счетчиков по фазе и нейтрали);
- коэффициент мощности по каждой фазе (для трехфазный счетчиков и по сумме фаз);
- частота;
- углы между основными гармониками фазных напряжений.

3.2.4 Управление нагрузкой

Счетчики имеют возможность управления нагрузкой с помощью встроенного силового реле и с помощью управления внешним устройством отключения.

В счетчиках предусмотрены следующие режимы (команды) управления включением/отключением нагрузки:

- режим нагрузка «отключена» по команде от интерфейса «отключить нагрузку»;
- режим нагрузка «включена» по команде от интерфейса «включить нагрузку»;
- режим управления по заранее запрограммированным лимитам измеряемых величин;
- режим управления по заранее запрограммированным событиям несанкционированного доступа;
- режим автоматического повторного включения с заранее запрограммированным периодом.

Управление внешними устройствами включения/отключения нагрузки в счетчиках «Меркурий 204», «Меркурий 234» производится с помощью изменения состояния импульсного выхода (контакты 9 – 10, 12 – 13) и дополнительного выхода (контакты 18 – 19). Параметры встроенного реле для управления внешними устройствами включения/отключения нагрузки приведены в таблице 2.10.

Счетчики имеют переключатель блокировки управления нагрузкой. При выпуске из производства переключатель блокировки установлен в положение «Отключен». Переключатель находится в опломбированной части счетчика под верхней крышкой рядом с ЖКИ («Меркурий 204», «Меркурий 234», см. рисунок 3.1) или под крышкой зажимов рядом с электронной пломбой («Меркурий 208», «Меркурий 238», см. рисунок 3.2).

Версия 06.2022 Страница 23 из 64

Рисунок 3.1 — Расположение переключателя блокировки управления нагрузкой счетчиков «Меркурий 204» (слева) и «Меркурий 234» (справа)

Рисунок 3.2 – Расположение переключателя блокировки управления нагрузкой счетчиков «Меркурий 208» (слева) и «Меркурий 238» (справа)

Для блокировки управления нагрузкой следует установить переключатель в положение «ON» (все контактные группы). При этом программно устанавливается режим управления нагрузкой «0».

Для разрешения управления нагрузкой следует установить переключатель в исходное положение и программно изменить режим управления «0» на требуемый.

Счетчики имеют функцию автовключения нагрузки — осуществление перехода из состояния «Готов к включению» в состояние «Включено», осуществляемое локально самим счетчиком. Конфигурирование параметров автовключения осуществляется в режимах управления нагрузкой «5» и «6» для следующих ограничителей:

- «Превышение лимита мощности»;
- «Превышение максимального тока»;
- «Превышение максимального напряжения»;
- «Превышение дифференциального тока»;
- «Превышение температуры».

После локального отключения нагрузки счетчиком, автоматически устанавливается значение попыток автовключения 10.

После ручного отключения нагрузки пользователем с помощью кнопок на корпусе, автовключение отменяется путем установки значения попыток автовключения 0.

Функция автовключения не предусмотрена для следующих ограничителей:

- «Воздействие магнитного поля»;
- «Вскрытие клеммной и приборной крышек»;
- «Превышение лимита энергии» по тарифам.

Контроль возникновения события, вызывающего отключение нагрузки для ограничителя «Вскрытие клеммной и приборной крышек», осуществляется независимо от наличия основного питания счетчика от сети переменного тока. В случае возникновения такого события при питании от батареи, физическое отключение нагрузки произойдет через 30 с после перехода счетчика в режим питания от сети.

ВНИМАНИЕ! Счетчики со встроенным силовым реле имеют защитную функцию отключения нагрузки при превышении максимального тока в любой из фаз.

ВНИМАНИЕ! Защитная функция отключения нагрузки при превышении максимального тока может быть отключена при конфигурировании, однако предприятие-изготовитель не рекомендует отключать защиту во избежание перегрева счетчиков и не несет ответственности за возможные неисправности в случае перегрева счетчиков при отключении защиты.

ВНИМАНИЕ! Запрещается использовать защитную функцию отключения нагрузки в счетчике в качестве функции вводного автоматического выключателя нагрузки.

Счетчики с максимальным током 60 A автоматически отключают нагрузку при токе 63 A, счетчики с максимальным током 100 A — при токе 106 A. Повторное включение возможно как дистанционно подачей команды по любому из интерфейсов, так и кнопками на лицевой панели счетчика.

В случае автоматического отключения нагрузки для повторного включения нагрузки необходимо:

- 1. Устранить причину отключения (снизить потребляемую мощность или увеличить лимиты мощности и/или энергии).
- 2. Подать команду на включение нагрузки по интерфейсу связи.

Для ручного включения одновременно нажать и удерживать обе кнопки счетчика более 3 с (при условии, что ручное включение разрешено для данного режима управления нагрузкой).

В счетчиках «Меркурий 208», «Меркурий 238» перевод телеметрии (оптический выход/светодиод) в режим "Управление нагрузкой" невозможен, для управления нагрузкой может использоваться только встроенное реле.

3.2.5 Защита от несанкционированного доступа

Счетчики оснащены энергонезависимыми электронными пломбами вскрытия/закрытия крышки клемм и корпуса. Срабатывание электронных пломб, вызванное вскрытием/закрытием крышки клемм/корпуса, фиксируется в журнале событий и отображается на ЖКИ.

Счетчики имеют неразъемный корпус, попытки вскрытия корпуса приводят к визуальному нарушению целостности защитных элементов корпуса.

Счетчики обнаруживают воздействие постоянного и переменного магнитного поля со значением модуля вектора магнитной индукции свыше 150 мТл. Начало и окончание воздействия фиксируется в журнале событий, факт воздействия отображается на ЖКИ. Дополнительно счетчики ведут учет суммарной длительности воздействия магнитным полем.

Счетчики обеспечивают разграничение уровней доступа на программном уровне с помощью системы паролей в соответствии с протоколами «Меркурий» и «СПОДЭС».

3.2.6 Работа счетчика с функциями телемеханики

Счетчик с функциями телемеханики (индексы К1 или К2 в коде счетчика) может работать в режиме контроллера ТМ и АИИС КУЭ, выполняя задачи технического и коммерческого учета электроэнергии, аварийного контроля, телемеханики (ТМ).

В режиме контроллера ТМ и АИИС КУЭ счетчик выполняет следующие функции:

- организация сети RS485 для обмена данными со счетчиками электроэнергии и MODBUS устройствами;
- сбор данных со счетчиков электроэнергии и другого оборудования, подключенного по интерфейсам RS485;

Версия 06.2022 Страница 25 из 64

- обмен данными по интерфейсам Ethernet, GSM с оборудованием вышестоящего уровня управления (УСПД, промышленными контроллерами, серверами сбора, облачными платформами и т.п.);
- обеспечение прямого обмена данными между счетчиками электроэнергии и другим оборудованием с одной стороны, и оборудованием вышестоящего уровня управления с другой стороны (функция туннелирования или прямого канала);
- контроль состояния технологического объекта по каналам дискретных датчиков, телесигнализация (TC);
- трансляция команд телеуправления (ТУ) на исполнительные механизмы;
- локальное чтение данных, конфигурирование и диагностика подключенных счетчиков и других устройств.

В режиме контроллера ТМ и АИИС КУЭ обеспечивается сбор информации с устройств следующих типов:

- счетчики электроэнергии, обеспечивающие передачу по протоколу «СПОДЭС»;
- счетчики электроэнергии «Меркурий»;
- счетчики электроэнергии других производителей, перечень которых приведен на сайте предприятия-изготовителя;
- устройства, поддерживающие стандартный протокол MODBUS;
- дискретные датчики типа «сухой контакт».

Максимально может опрашиваться 256 счетчиков электроэнергии и MODBUS устройств.

Обеспечивается взаимодействие с системами вышестоящего уровня управления по каналам Ethernet, GSM:

- для систем АИИС КУЭ обеспечивается прямой канал доступа к счетчикам и интеллектуальным устройствам, подключенным по двум интерфейсам RS485;
- для систем телемеханики и SCADA обеспечивается передача данных измерений счетчиков, параметров, полученных от интеллектуальных устройств, и состояний дискретных каналов ввода-вывода по протоколам 60870-5-104 и OPC UA.

Возможная схема работы счетчика с функциями телемеханики в составе систем АИИС КУЭ, телемеханики, SCADA на трансформаторных подстанциях/ трансформаторных пунктах распределительных сетей приведена на рисунке 3.3.

Рисунок 3.3 – Схема работы в составе автоматизированных систем

При вводе в эксплуатацию в составе AC счетчик с функциями телемеханики необходимо настроить для работы в составе системы (конфигурировать) в соответствии с эксплуатационной документацией на AC.

Конфигурирование должно осуществляться подготовленным техническим персоналом, владеющим навыками работы с вычислительной техникой и знакомым с задачами AC.

Изменение параметров конфигурации выполняется в Веб-интерфейсе, сведения по конфигурированию приведены в документе «Веб-интерфейс. Руководство пользователя» https://www.incotexcom.ru/support/docs/manual.

Если счетчик с функциями телемеханики имеет «серый» IP-адрес, то для обеспечения канала связи с устройством управления верхнего уровня необходимо использовать ПО «Меркурий Коммуникатор», см. «Меркурий Коммуникатор. Руководство пользователя» https://www.incotexcom.ru/support/docs/manual.

Счетчик с функциями телемеханики можно конфигурировать для работы в режиме защищенного канала (VPN).

3.2.7 Работа счетчика с интерфейсом NB-IoT или GSM DUAL SIM

Счетчик со встроенным интерфейсом NB-IoT или GSM DUAL SIM (индексы G5 или G1 в коде счетчика, соответственно) может работать в режиме контроллера АИИС КУЭ, выполняя задачи технического и коммерческого учета электроэнергии. Счетчики с интерфейсом NB-IoT или GSM DUAL SIM могут работать в двух режимах передачи данных:

- режим инициативной передачи данных;
- режим прямого канала.

Версия 06.2022 Страница 27 из 64

Если нет обмена по прямому каналу и при этом сконфигурирован канал инициативной передачи данных, счетчик начинает работать в режиме инициативной передачи данных.

В режиме инициативной передачи данных счетчик является инициатором передачи данных:

- архивов показаний на начало отчетного периода;
- текущих значений параметров электропитания;
- журналов событий;
- оперативных событий, при наступлении которых выполняется отправка данных.

Для счетчика с интерфейсом NB-IoT режим инициативной передачи данных, который оптимизирован для минимизации трафика, является основным режимом работы. Режим прямого канала является опциональным.

В целях минимизации трафика при настройке режима инициативной передачи данных можно выбрать расписание передачи данных и состав передаваемых данных и событий. Полный перечень параметров и событий, доступных для выбора, приведен в документе «LpWAN Конфигуратор. Руководство пользователя» https://www.incotexcom.ru/support/docs/manual. Выполняется оценка суточного трафика, кроме того, можно установить лимит суточного трафика. Если максимальный объем суточного трафика выбран, счетчик прекращает передачу данных, что важно для ограничения количества передаваемых данных в нештатных ситуациях.

С вышестоящего уровня управления доступны функции конфигурирования счетчика и управления счетчиком.

Для снижения средних затрат на точку учета, к счетчику с интерфейсом NB-IoT можно подключить по интерфейсу RS485 ведомые счетчики для опроса через ведущий счетчик по NB-IoT. К ведущему счетчику можно подключить не более трех ведомых счетчиков. Для каждого из ведомых счетчиков доступна индивидуальная настройка режима инициативной передачи данных.

Схема работы счетчика с интерфейсом NB-IoT в составе системы АИИС КУЭ в режиме инициативной передачи данных приведена на рисунке 3.4.

Рисунок 3.4 — Схема работы счетчика NB-IoT в составе АИИС КУЭ

В режиме прямого канала счетчики передают данные по запросу из системы верхнего уровня, независимо от используемого протокола обмена. Настройка объема запрашиваемых данных, времени запросов данных и прочих параметров обмена данными выполняется в системе верхнего уровня.

Для счетчика с интерфейсом GSM DUAL SIM основным режимом работы является режим прямого канала. Режим инициативной передачи данных является опциональным. Для работы в режиме прямого канала к счетчику с интерфейсом GSM DUAL SIM можно подключить по интерфейсу RS485 64 и более ведомых счетчиков. В режиме инициативной передачи данных к ведущему счетчику можно подключить не более трех ведомых счетчиков.

Счетчик с интерфейсом GSM DUAL SIM обеспечивает стабильный и надежный обмен данными, так как может работать по каналам разных операторов сотовой связи. При настройке назначается приоритетный оператор связи, а в процессе работы выполняется автоматический переход в сеть другого оператора, если невозможно передать данные из-за неудовлетворительного качества связи или низкого уровня сигнала. После определенного интервала времени, заданного при настройке, выполняется возврат в сеть приоритетного оператора.

Схема работы счетчика с интерфейсом GSM DUAL SIM в составе системы АИИС КУЭ приведена на рисунке 3.5.

Рисунок 3.5 – Схема работы счетчика DUAL SIM в составе АИИС КУЭ

При вводе в эксплуатацию в составе АС счетчик с интерфейсом NB-IoT или GSM DUAL SIM необходимо настроить для работы в составе системы (сконфигурировать).

Изменение параметров конфигурации выполняется в приложении «LpWAN Конфигуратор», сведения по конфигурированию приведены в документе «LpWAN Конфигуратор. Руководство пользователя».

Конфигурирование следует выполнить в соответствии с эксплуатационной документацией на AC и руководствуясь инструкциями, приведенными в документе «LpWAN Конфигуратор. Руководство пользователя».

Конфигурирование должно осуществляться подготовленным техническим персоналом, владеющим навыками работы с вычислительной техникой и знакомым с задачами AC.

Версия 06.2022 Страница 29 из 64

4 Использование по назначению

4.1 Эксплуатационные ограничения

К работам по монтажу, техническому обслуживанию и ремонту счетчика допускаются лица, прошедшие инструктаж по технике безопасности и имеющие квалификационную группу по электробезопасности не ниже III до 1000 В.

ВНИМАНИЕ: Все работы, связанные с монтажом счетчиков, должны производиться при отключенной сети.

При проведении работ по монтажу и обслуживанию счетчика должны соблюдаться требования ГОСТ 12.2.007.0-75, «Правила технической эксплуатации электроустановок потребителей» и «Правила по охране труда при эксплуатации электроустановок».

При монтаже счетчика на месте эксплуатации диаметр подключаемых к счетчику проводов должен выбираться в зависимости от величины максимального тока нагрузки в соответствии с ПУЭ.

Максимальный ток нагрузки не должен превышать максимальный ток счетчика в соответствии с модификацией по таблице 1.3.

Слабая затяжка винтов клеммной колодки, а также использование многожильного провода без наконечников может явиться причиной выхода счетчика из строя и причиной пожара.

4.2 Схемы подключения счетчиков

Схемы подключения счетчиков приведены в приложении Б.

Счетчики «Меркурий 234» имеют возможность соединения цепей тока и напряжения (для использования в счетчиках прямого включения». Для соединения цепей тока и напряжения необходимо установить винты «1», «2» и «3» как показано на рисунке 4.1.

Рисунок 4.1 – Винты для соединения цепей тока и напряжения счетчика «Меркурий 234»

ВНИМАНИЕ! ПЕРЕД МОНТАЖОМ СЧЕТЧИКА «МЕРКУРИЙ 234» НЕОБХОДИМО УСТАНОВИТЬ ИЛИ СНЯТЬ ВИНТЫ «1», «2», «3» В ЗАВИСИМОСТИ ОТ СХЕМЫ ВКЛЮЧЕНИЯ СЧЕТЧИКА В СООТВЕТСТВИИ С ПРИЛОЖЕНИЕМ Б.

Подключение счетчиков к измерительным цепям тока и напряжения на объекте эксплуатации, включая цепи измерительных трансформаторов тока и напряжения, должно производиться в соответствии со схемой объекта эксплуатации и документацией на измерительные трансформаторы.

(модификации ARTM -01, -02) питание на сменный модуль (NBIOT, DUAL SIM, модуль телемеханики и т. п.) поступает от фазы С. Если фаза С не подключена к счетчику (при подключении только фазы А и/или фазы В), питание на сменный модуль не поступает и связь со счетчиком через данный модуль связи не устанавливается.

В трехфазных счетчиках трансформаторного включения со сменным модулем (модификации ARTM кроме -01, -02) питание на сменный модуль поступает от линейного напряжения ВС. Если фаза В или С не подключена к счетчику, питание на сменный модуль не поступает и связь со счетчиком через данный модуль связи не устанавливается.

4.3 Подготовка к работе

4.3.1 Монтаж счетчика

Перед монтажом счетчика извлечь счетчик из транспортной упаковки и произвести внешний осмотр, убедиться в отсутствии видимых повреждений, наличии и сохранности пломб.

При монтаже счетчиков «Меркурий 208», «Меркурий 238» на опоре:

- 1. Закрепить скобу для монтажа счетчика на опоре с помощью дюбелей или стальной монтажной ленты.
- 2. Совместить направляющие на задней стенке счетчика и скобы.
- 3. Надеть счетчик на скобу движением сверху вниз.
- 4. Подключить силовые провода к клеммной колодке снизу.

Допускается возможность монтажа и подключения счетчиков «Меркурий 208», «Меркурий 238» с использованием прокалывающих зажимов.

Установить счетчик на место эксплуатации клеммной колодкой вниз.

Подключить к счетчику снизу цепи напряжения и тока в соответствии со схемой объекта эксплуатации, схемой, приведенной на клеммной крышке, и схемам, приведенным в приложении Б настоящего документа.

- Для обеспечения надежного контакта рекомендуется после первичной затяжки винтов клемм спустя несколько минут повторно протянуть винты.
- Максимальный внешний диаметр токоведущей части одножильного провода или диаметр наконечника для подключения к силовым клеммам счетчика 7 мм.

После подключения цепей тока и напряжения установить клеммную крышку, зафиксировать ее винтами (для счетчиков «Меркурий 204», «Меркурий 234»).

Подать на счетчик напряжение и убедиться в его работоспособности:

• на ЖКИ счетчиков «Меркурий 204», «Меркурий 234» отображается значение учтенной энергии по текущей тарифной зоне;

Версия 06.2022 Страница 31 из 64

- индикаторы фаз **A**, **B**, **C** на ЖКИ счетчика «Меркурий 234» отображаются непрерывно (не должны мигать);
- индикатор функционирования счетчиков «Меркурий 208», «Меркурий 238» светится.

ВНИМАНИЕ! Подключение счетчиков «Меркурий 234» со сменными модулями при отсутствии подключения цепи нейтрали может привести к выходу из строя сменного модуля. Рекомендуется для данных счетчиков проконтролировать наличие и значение напряжения между контактами фазы С и нейтрали после подачи напряжения.

Опломбировать клеммную крышку счетчика, сделать отметку в формуляре о дате установки и ввода в эксплуатацию.

4.3.2 Монтаж антенны

При использовании счетчиков с радиоинтерфейсами GSM, NBIOT, LoRaWAN, XNB в случае применения внешних антенн рекомендуется использовать антенны с магнитным или клейким креплением. Антенна должна устанавливаться в месте, не экранированном металлом и обеспечивающим лучшие условия для прохождения радиоволн.

Счетчик может комплектоваться «лепестковой» или «штыревой» антенной. Примеры антенн приведены на рисунке 4.2.

Рисунок 4.2 – «Лепестковая» (слева) и «штыревая» (справа) антенны

Использование антенны, подключаемой непосредственно в антенное гнездо счетчика без дополнительного кабеля и размещаемой под клеммной крышкой счетчика, рекомендуется только в местах надежного приема радиосигнала.

Счетчики модификаций «F0x» и «Gx» могут иметь размещенные внутри счетчика встроенные антенны соответствующих интерфейсов.

ВНИМАНИЕ! В связи со значительным ослаблением радиосигналов металлическими поверхностями, не рекомендуется размещать в металлических шкафах счетчики со встроенными антеннами и счетчики с антеннами под клеммной крышкой.

При необходимости на объекте эксплуатации для счетчиков модификаций «Gx» могут быть использованы любые серийно выпускаемые антенны GSM/NBIOT со следующими параметрами:

- рабочий диапазон частот 900 и 1800 МГц;
- коэффициент усиления не менее 3 dBi;
- минимально достаточная на конкретном объекте длина антенного кабеля, желательно не более 3 м;
- разъем на кабеле для подключения к антенному входу счетчика SMA-M.

ВНИМАНИЕ! Имеющиеся в свободной продаже антенны различных частотных диапазонов могут выглядеть одинаково, но иметь разные технические характеристики.

При монтаже антенны следует выполнять рекомендации:

- 1. Антенну любого типа располагать как можно выше от поверхности земли (пола).
- 2. «Лепестковую» антенну на клейкой основе располагать вертикально, питающим проводом наклеивать вертикально расположенное вниз, т. е. на неметаллическое основание (дерево, пластик, стекло и т. п.). При отсутствии неметаллических допускается поверхностей наклеивать антенну металлические поверхности, при этом ожидается незначительное ухудшение качества приема.
- 3. Лицевую сторону «лепестковой» антенны (противоположную клеевому слою и поверхности, на которую антенна наклеена) направить на ближайшую базовую станцию соответствующего оператора связи.
- 4. Штыревую антенну на магнитном/клейком основании размещать на металлическом основании вертикально, штырем вверх.
- ВНИМАНИЕ! Крепление антенны на металлическую поверхность приводит к значительному ухудшению приема сигнала в этом направлении.
- ВНИМАНИЕ! Скрутка неиспользуемого кабеля в бухту «виток к витку» не допускается.

Возможные причины плохого качества связи при использовании беспроводных интерфейсов связи:

- 1. Ошибки в планировании радиопокрытия при размещении базовых станций.
- В случае разворачивания сети базовых станций собственными силами или с привлечением подрядных организаций следует обратиться в компанию-разработчик соответствующей радиотехнологии для получения рекомендаций по радиопланированию, в том числе, по изменению местоположения и/или ориентации базовых станций.
 - 2. Неудачное местоположение или неверная ориентация антенны.
- В случае неудачного расположения антенны следует смонтировать антенну в другом месте с соблюдением приведенных выше рекомендаций.

4.3.3 Рекомендации по использованию SIM-карт

Требования к SIM-карте:

- формат miniSIM;
- стандарт GSM (900/1800 МГц);
- отключен контроль PIN-кода;
- активирована услуга GPRS;
- положительный баланс счета.

Для отключения PIN-кода и активации услуги GPRS следует предварительно установить SIM-карту в любой мобильный телефон и действовать согласно инструкции к телефону.

ВНИМАНИЕ: УСТАНОВКА И ЗАМЕНА SIM-КАРТ ДОПУСКАЕТСЯ ТОЛЬКО ПРИ ОТКЛЮЧЕННОМ ЭЛЕКТРОПИТАНИИ.

ВНИМАНИЕ: При использовании счетчиков с радиоинтерфейсами GSM или NBIOT рекомендуется использовать специализированные термостойкие M2M SIM-карты, доступные для приобретения через сотовых операторов. Использование «обычных» SIM-карт может привести к отсутствию связи при колебаниях температуры.

Версия 06.2022 Страница 33 из 64

ВНИМАНИЕ: Счетчики с индексом «G1» в коде не имеют возможности работы по CSD и обеспечивают передачу данных только по GPRS/EDGE.

4.3.4 Рекомендации по подключению интерфейсов

ВНИМАНИЕ: ЗАПРЕЩАЕТСЯ ПРОИЗВОДИТЬ РАБОТЫ ПО ПОДКЛЮЧЕНИЮ ИНТЕРФЕЙСНЫХ КАБЕЛЕЙ ПРИ ВКЛЮЧЕННОМ ЭЛЕКТРОПИТАНИИ.

Подключение интерфейсов RS485 или CAN производить в соответствии со схемами, приведенными на рисунках Б.10, Б.11 приложения Б.

Счетчики имеют внутреннее питание интерфейса RS485.

При необходимости для питания интерфейса RS485 можно использовать внешний источник постоянного тока или источник резервного питания счетчика. Требования к источнику внешнего питания интерфейса RS485:

- напряжение питания 6-12 В;
- выходной ток не менее 250 мА;
- рекомендуется встроенная защита источника питания от перегрузки и короткого замыкания.

При подключении нескольких счетчиков в сеть по интерфейсам RS485 или CAN необходимо использовать топологию сети «общая шина».

Для улучшения качества связи рекомендуется для интерфейсов RS485 или CAN применять согласующие резисторы. Согласующие резисторы должны устанавливаться на обоих концах линии RS485 или CAN. Согласующие резисторы должны иметь сопротивление 120 Ом ± 10 %. При суммарной длине линии RS485 или CAN менее 5 метров применение согласующих резисторов не обязательно.

ВНИМАНИЕ! ПРИ ПОДКЛЮЧЕНИИ НЕСКОЛЬКИХ СЧЕТЧИКОВ В СЕТЬ ПО ИНТЕРФЕЙСАМ RS485 ИЛИ CAN НЕ РЕКОМЕНДУЕТСЯ ДЕЛАТЬ ОТВЕТВЛЕНИЯ ЛИНИИ ДЛИНОЙ БОЛЕЕ 1 М

Вид счетчика «Меркурий 204» (со снятой крышкой) с элементами подключения приведен на рисунке 4.3.

Рисунок 4.3 Вид счетчика «Меркурий 204» с элементами подключения

Вид счетчика «Меркурий 234» с функциями телемеханики (со снятой крышкой) с элементами подключения приведен на рисунке 4.4.

Рисунок 4.4 Вид счетчика «Меркурий 234» с функциями телемеханики с элементами подключения

Схемы подключения приведены в приложении Б настоящего руководства.

Подключение интерфейсов RS485 производить в соответствии со схемой Б.12. При подключении используется розетка типа ECH350R-5P, входящая в состав счетчика. Контакт NC не используется.

Для подключения должен использоваться 2-х жильный кабель типа витая пара категории 3 и выше с сечением жил от 0,4 до 0,5 мм² с использованием наконечников.

В случае использования интерфейса RS485 для подключения 32 и более устройств рекомендуется использовать повторители интерфейса RS485.

Вид счетчика с модулем RS485 с элементами подключения приведен на рисунке 4.5. Схема подключения указана на шильдике модуля сверху.

Рисунок 4.5 – Вид счетчика «Меркурий 234» с модулем RS485 с элементами подключения

Вид счетчика с модулем GSM с элементами подключения приведен на рисунке 4.6. Схема подключения указана на шильдике модуля сверху. Порт RS485 модуля GSM предназначен для подключения других счетчиков к модулю GSM.

Версия 06.2022 Страница 35 из 64

Рисунок 4.6 – Вид счетчика «Меркурий 234» с модулем GSM с элементами подключения

Подключение интерфейса Ethernet производить в соответствии со схемой Б.13. При подключении к сети Ethernet используется разъем типа ТЈ8Р8С (RJ45). Подключение производится прямым кабелем типа витая пара категории 5 и выше.

Подключение внешних датчиков типа «сухой контакт» производить в соответствии со схемой Б.14. При подключении датчиков используется розетка типа ECH350R-5P. Монтаж сигнальных линий от датчиков дискретных сигналов выполняется на клеммы с креплением «под винт». Для подсоединения должен использоваться кабель сечением жил от 0,5 до 1,5 мм² с использованием наконечников.

Подключение управляемых устройств производить в соответствии со схемой Б.15. При подключении управляемых устройств используется розетка типа ECH350R-5P. Для подсоединения должен использоваться кабель сечением жил от 0,5 до 1,5 мм² с использованием наконечников.

4.3.5 Сетевой адрес и пароли доступа

- Сетевой адрес счетчиков без индекса «D» в коде находится в интервале от 1 до 239 включительно и при выпуске с завода-изготовителя соответствует трем последним цифрам заводского номера. В случае если три последние цифры больше 239, то сетевой адрес соответствует двум последним цифрам. Сетевой адрес 0, заменяется на 1.
- Сетевой адрес счетчиков с индексом «D» в коде находится в интервале от 17 до 124 включительно и при выпуске с завода-изготовителя соответствует трем последним цифрам заводского номера. В случае если три последние цифры больше 124, то адрес соответствует двум последним цифрам. В случае если сетевой адрес меньше 17, то к нему прибавляется 10 до тех пор, пока адрес не станет 17 или больше.
- ВНИМАНИЕ: Перед запуском счетчика в эксплуатацию рекомендуется изменить сетевой адрес и пароль счетчика, установленный на предприятии-изготовителе, с целью предотвращения несанкционированного доступа к программируемым параметрам счетчика через интерфейсы связи.

Пароль доступа одинаков для всех интерфейсов счетчика, т. е. при изменении пароля для одного интерфейса, этот же пароль будет установлен для остальных интерфейсов.

Паролем для протокола «Меркурий» являются первые шесть символов пароля для протокола «СПОДЭС». При изменении пароля для протокола «СПОДЭС» (включая первые шесть символов) также изменяется пароль для протокола «Меркурий» на эти первые шесть символов.

Восстановление пароля для протокола «СПОДЭС» (при его утрате) осуществляется только в условиях сервисного центра на заводе-изготовителе.

4.3.6 Переключение протокола

В счетчике реализован обмен данными по двум протоколам связи: «Меркурий» и «СПОДЭС».

Пароль для подключения к счетчику по протоколу «Меркурий» может иметь кодировку как в двоичных символах НЕХ, так и в символах ASCII.

Пароль для подключения к счетчику по протоколу «СПОДЭС» может иметь кодировку только в символах ASCII.

Переводимый на протокол «СПОДЭС» счетчик должен иметь кодировку пароля ASCII.

Если счетчик имеет кодировку пароля HEX, следует изменить кодировку пароля на ASCII по методике п.6 инструкции по переключению протоколов. Инструкция доступна на странице https://www.incotexcom.ru/support/docs/instruction.

Сетевой адрес переводимого на протокол «СПОДЭС» счетчика должен иметь значение от 17 до 124 включительно (диапазон разрешенных адресов «СПОДЭС»).

Если значение сетевого адреса находится вне этого диапазона, необходимо изменить сетевой адрес по методике п.7 инструкции по переключению протоколов.

4.3.7 Заводские настройки

Заводские настройки счетчика приведены в приложении В.

4.4 Использование

4.4.1 Индикация и управление

Счетчики «Меркурий 204» и «Меркурий 234» имеют ЖКИ и две кнопки управления навигацией по меню для отображения измеряемых величин и состояния счетчика.

Для отображения измеряемых величин счетчиков «Меркурий 208» и «Меркурий 238» используется выносной дисплей «Меркурий 258», отображение и навигация по меню которого соответствуют ЖКИ счетчиков «Меркурий 204», «Меркурий 234» и более подробно описаны в паспорте выносного дисплея.

Значения учтенной энергии по тарифным зонам и другие параметры могут быть считаны как с ЖКИ счетчика, так и через интерфейсы связи. Счетчики «Меркурий 204» и «Меркурий 234» обладают возможностью снятия показаний и прочей информации на встроенном ЖКИ без подключения электропитания.

Счетчики выдают показания непосредственно в инженерных единицах, в частности, в кВт-ч при измерении активной энергии и в квар-ч при измерении реактивной энергии.

При включении счетчиков «Меркурий 204» и «Меркурий 234» производится включение всех сегментов индикатора. Счетчики «Меркурий 204» и «Меркурий 234» могут выпускаться с тремя модификациями ЖКИ, отличающимися расположением вспомогательных сегментов счетчика.

Внешний вид ЖКИ приведен на рисунке 4.7. Все надписи на ЖКИ выводятся на русском языке, исключая значение «Соѕф». При продажах с англоязычной торговой

Версия 06.2022 Страница 37 из 64

маркой «Mercury» возможна поставка счетчиков с надписями на ЖКИ на русском или на английском языке, в зависимости от заказа.

Рисунок 4.7 – Внешний вид ЖКИ

Описание символов ЖКИ приведено в таблице 4.1. В основном поле ЖКИ отображается до 8 цифр значения выбранного параметра с единицами измерения, в дополнительном поле — до 8 цифр его OBIS-кода (тип по международной классификации IEC 62056-61). Высота цифр значения параметра и его OBIS-кода 12 и 8 мм соответственно.

Таблица 4.1 – Описание назначения символов ЖКИ

Символ	Описание	
ТАРИФ, СУММА или Σ Т 8	Текущий отображаемый тариф (цифры 14). При отображении символа СУММА отображается информация по сумме тарифов	
ДЕНЬ МЕСЯЦ ГОД ПРЕД Текущий отображаемый период. Например, отображение МЕСЯ ПРЕД означает, что отображаются данные измерений за предыд месяц, отображение ДЕНЬ – за текущий день		
ДАТА или 🛗	Дата	
время или О	Время	
Cos φ	Коэффициент мощности	
Гц	Индикатор частоты электросети	
лим	Причина отключения встроенного реле – превышение лимита мощности либо энергии	
ДИСТ Причина отключения встроенного реле – дистанционное с энергоснабжающей компанией		
AB©	Индикатор фаз (для трехфазного счетчика). При отображении основных параметров индикатор фаз указывает на наличие напряжения в каждой из фаз. Мигание какого-либо индикатора свидетельствует о снижении уровня напряжения в соответствующей фазе ниже 10% от номинального значения. При отображении остальных параметров индикатор показывает, к какой из фаз относится отображаемая информация. Одновременное мигание трех индикаторов означает нарушение порядка чередования фаз	

Страница 38 из 64

Символ	Описание		
ПОТЕРИ	Индикатор отображения технических потерь (в трансформаторах и линиях электропередач)		
М или МАКС	Индикатор отображения максимумов мощностей		
-	Направление потока энергии при индикации значений потребленной энергии, направление вектора полной мощности при индикации тока, напряжения, мощности		
	Обнаружено вскрытие корпуса, электронная пломба крышки счетчика		
Ü	Обнаружено воздействие магнита		
<u></u>	Обнаружен небаланс токов фазы и нейтрали		
	Встроенное реле отключено		
🗓 или 📧	Уровень заряда элементов питания		
<u></u>	Уровень сигнала (качество связи с выносным дисплеем)		
₩	Выход параметров качества электроэнергии за допустимые пределы		
_ мли ⊙	Индикатор наличия событий (нарушения ПКЭ, несанкционированного доступа, включая магнитное воздействие, диагностики, самодиагностики)		

Полный перечень отображаемых параметров с соответствующими OBIS-кодами приведен в таблице 4.2 для основных параметров и в таблице 4.3 для вспомогательных параметров. Состав параметров, которые выводятся в автоматическом режиме, задается в настройках параметров индикации счетчика.

Таблица 4.2 – Список основных параметров по группам

OBIS-код	Параметр		
	ергия нарастающим итогом		
1.0.1.8.0	Накопленная активная энергия потребления нарастающим итогом по сумме тарифов		
1.0.1.8.N	Накопленная активная энергия потребления нарастающим итогом по тарифу номер N, здесь и далее N может принимать значения 1, 2, 3, 4		
1.0.2.8.0	Накопленная активная энергия отдачи нарастающим итогом по сумме тарифов*		
1.0.2.8.N	Накопленная активная энергия отдачи нарастающим итогом по тарифу N*		
1.0.3.8.0	Накопленная реактивная энергия потребления нарастающим итогом по сумме тарифов		
1.0.3.8.N	Накопленная реактивная энергия потребления нарастающим итогом по тарифу N		
1.0.4.8.0	Накопленная реактивная энергия отдачи нарастающим итогом по сумме тарифов		
1.0.4.8.N	Накопленная реактивная энергия отдачи нарастающим итогом по тарифу N		
1.0.5.8.0	Накопленная реактивная энергия первого квадранта		
1.0.5.8.N	Накопленная реактивная энергия первого квадранта по тарифу N		
1.0.6.8.0	Накопленная реактивная энергия второго квадранта		
1.0.6.8.N	Накопленная реактивная энергия второго квадранта по тарифу N		
1.0.7.8.0	Накопленная реактивная энергия третьего квадранта		
1.0.7.8.N	Накопленная реактивная энергия третьего квадранта по тарифу N		
1.0.8.8.0	Накопленная реактивная энергия четвертого квадранта		
1.0.8.8.N	Накопленная реактивная энергия четвертого квадранта по тарифу N		
Максимумы	мощности за текущий месяц, за 1 предыдущий месяц за 3 предыдущих		
месяца	<u></u>		
	месяц в формате ММ_ГГ		
1.0.1.6.1.X	Утренний максимум активной мощности потребления за расчетный период		
1.0.1.6.2.X	Вечерний максимум активной мощности потребления за расчетный период		
1.0.2.6.1.X	Утренний максимум активной мощности отдачи за расчетный период		
1.0.2.6.2.X	Вечерний максимум активной мощности отдачи за расчетный период		
1.0.3.6.1.X	Утренний максимум реактивной мощности потребления за расчетный период		
1.0.3.6.2.X	Вечерний максимум реактивной мощности потребления за расчетный период		

Версия 06.2022 Страница 39 из 64

OBIO					
ОВІЅ-код	Параметр				
1.0.4.6.1.X	Утренний максимум реактивной мощности отдачи за расчетный период				
1.0.4.6.2.X					
•	есяца от 0 до 3, 0 – текущий месяц				
	нергия за текущий день				
1.0.1.9.0.30	Накопленная активная энергия потребления за текущий день по сумме тарифов				
1.0.1.9.N.30	Накопленная активная энергия потребления за текущий день тарифу N				
1.0.2.9.0.30 1.0.2.9.N.30	Накопленная активная энергия отдачи за текущий день по сумме тарифов*				
1.0.3.9.0.30	Накопленная активная энергия отдачи за текущий день тарифу N* Накопленная реактивная энергия потребления за текущий день по сумме тарифов				
1.0.3.9.N.30	Накопленная реактивная энергия потреоления за текущий день по сумме тарифов Накопленная реактивная энергия потребления за текущий день тарифу N				
1.0.4.9.0.30	Накопленная реактивная энергия потреоления за текущий день тарифу м				
1.0.4.9.N.30	Накопленная реактивная энергия отдачи за текущий день по сумые тарифов				
1.0.5.9.0.30	Накопленная реактивная энергия первого квадранта				
1.0.5.9.N.30	Накопленная реактивная энергия первого квадранта по тарифу N				
1.0.6.9.0.30	Накопленная реактивная энергия второго квадранта				
1.0.6.9.N.30	Накопленная реактивная энергия второго квадранта по тарифу N				
1.0.7.9.0.30	Накопленная реактивная энергия третьего квадранта				
1.0.7.9.N.30	Накопленная реактивная энергия третьего квадранта по тарифу N				
1.0.8.9.0.30	Накопленная реактивная энергия четвертого квадранта				
1.0.8.9.N.30	Накопленная реактивная энергия четвертого квадранта по тарифу N				
	ергия за предыдущий день				
	Накопленная активная энергия потребления за предыдущий день по сумме				
1.0.1.9.0.31	тарифов				
1.0.1.9.N.31	Накопленная активная энергия потребления за предыдущий день тарифу N				
1.0.2.9.0.31	Накопленная активная энергия отдачи за предыдущий день по сумме тарифов*				
1.0.2.9.N.31	1 Накопленная активная энергия отдачи за предыдущий день тарифу N*				
1.0.3.9.0.31	Накопленная реактивная энергия потребления за предыдущий день по сумме тарифов				
1.0.3.9.N.31	Накопленная реактивная энергия потребления за предыдущий день тарифу N				
1.0.4.9.0.31	Накопленная реактивная энергия отдачи за предыдущий день по сумме тарифов				
1.0.4.9.N.31	Накопленная реактивная энергия отдачи за предыдущий день тарифу N				
1.0.5.9.0.31	Накопленная реактивная энергия первого квадранта				
1.0.5.9.N.31	Накопленная реактивная энергия первого квадранта по тарифу N				
1.0.6.9.0.31	Накопленная реактивная энергия второго квадранта				
1.0.6.9.N.31	Накопленная реактивная энергия второго квадранта по тарифу N				
1.0.7.9.0.31	Накопленная реактивная энергия третьего квадранта				
1.0.7.9.N.31	Накопленная реактивная энергия третьего квадранта по тарифу N				
1.0.8.9.0.31	Накопленная реактивная энергия четвертого квадранта				
1.0.8.9.N.31	Накопленная реактивная энергия четвертого квадранта по тарифу N				
учтенная эн	ергия за текущий месяц, за 1 предыдущий месяц за 11 предыдущий месяц				
4.0.4.0.0.1/	месяц в формате ММ_ГГ				
1.0.1.9.0.X	Накопленная активная энергия потребления за месяц X по сумме тарифов				
1.0.1.9.N.X	Накопленная активная энергия потребления за месяц X по тарифу N				
1.0.2.9.0.X	Накопленная активная энергия отдачи за месяц X по сумме тарифов*				
1.0.2.9.N.X	Накопленная активная энергия отдачи за месяц X по тарифу N*				
1.0.3.9.0.X 1.0.3.9.N.X	Накопленная реактивная энергия потребления за месяц X по сумме тарифов Накопленная реактивная энергия потребления за месяц X по тарифу N				
1.0.3.9.N.X 1.0.4.9.0.X	Накопленная реактивная энергия потреоления за месяц X по тарифу N Накопленная реактивная энергия отдачи за месяц X по сумме тарифов				
1.0.4.9.N.X	Накопленная реактивная энергия отдачи за месяц X по сумме тарифов Накопленная реактивная энергия отдачи за месяц X по тарифу N				
1.0.5.9.0.X	Накопленная реактивная энергия первого квадранта				
1.0.5.9.N.X	Накопленная реактивная энергия первого квадранта по тарифу N				
1.0.6.9.0.X	Накопленная реактивная энергия второго квадранта				
1.0.6.9.N.X	Накопленная реактивная энергия второго квадранта по тарифу N				
1.0.7.9.0.X	Накопленная реактивная энергия третьего квадранта				
1.0.7.9.N.X	Накопленная реактивная энергия третьего квадранта по тарифу N				
1.0.8.9.0.X	Накопленная реактивная энергия четвертого квадранта				

Страница 40 из 64

OBIS-код	Параметр				
1.0.8.9.N.X	Накопленная реактивная энергия четвертого квадранта по тарифу N				
	X – номер месяца от 0 до 12, 0 – текущий месяц				
Учтенная энергия за текущий год					
1.0.1.9.0.90					
1.0.1.9.N.90	Накопленная активная энергия потреоления за текущий год по сумме тарифов Накопленная активная энергия потребления за текущий год тарифу N				
1.0.2.9.0.90	Накопленная активная энергия отдачи за текущий год по сумме тарифов*				
1.0.2.9.N.90	Накопленная активная энергия отдачи за текущий год тарифу N*				
1.0.3.9.0.90	Накопленная реактивная энергия потребления за текущий год по сумме тарифов				
1.0.3.9.N.90	Накопленная реактивная энергия потребления за текущий год тарифу N				
1.0.4.9.0.90	Накопленная реактивная энергия отдачи за текущий год по сумме тарифов				
1.0.4.9.N.90	Накопленная реактивная энергия отдачи за текущий год по сумме тарифов				
1.0.5.9.0.90	Накопленная реактивная энергия первого квадранта				
1.0.5.9.N.90	Накопленная реактивная энергия первого квадранта по тарифу N				
1.0.6.9.0.90	Накопленная реактивная энергия второго квадранта по тарифу н				
1.0.6.9.N.90	Накопленная реактивная энергия второго квадранта по тарифу N				
1.0.7.9.0.90	Накопленная реактивная энергия второго квадранта по тарифу п				
1.0.7.9.N.90	Накопленная реактивная энергия третьего квадранта Накопленная реактивная энергия третьего квадранта по тарифу N				
1.0.8.9.0.90	Накопленная реактивная энергия третвего квадранта по тарифу м				
1.0.8.9.N.90	Накопленная реактивная энергия четвертого квадранта Накопленная реактивная энергия четвертого квадранта по тарифу N				
	ергия за предыдущий год				
1.0.1.9.0.91	Накопленная активная энергия потребления за предыдущий год по сумме тарифов				
1.0.1.9.N.91	Накопленная активная энергия потреоления за предыдущий год по сумме тарифов Накопленная активная энергия потребления за предыдущий год тарифу N				
1.0.2.9.0.91					
1.0.2.9.N.91					
1.0.2.3.14.31	Накопленная реактивная энергия отдачи за предыдущий год гарифу год по сумме				
1.0.3.9.0.91	ттакопленная реактивная энергия потреоления за предыдущий год по сумме тарифов				
1.0.3.9.N.91	тарифов Накопленная реактивная энергия потребления за предыдущий год тарифу N				
1.0.4.9.0.91	Накопленная реактивная энергия потреоления за предыдущий год по сумме тарифов				
1.0.4.9.N.91	Накопленная реактивная энергия отдачи за предыдущий год тарифов N				
1.0.5.9.0.91	Накопленная реактивная энергия отдачи за предвідущий год тарифу ту				
1.0.5.9.N.91	Накопленная реактивная энергия первого квадранта по тарифу N				
1.0.6.9.0.91	Накопленная реактивная энергия первого квадранта по тарифу н				
1.0.6.9.N.91	Накопленная реактивная энергия второго квадранта по тарифу N				
1.0.7.9.0.91	Накопленная реактивная энергия второго квадранта по тарифу м				
1.0.7.9.N.91	Накопленная реактивная энергия третьего квадранта Накопленная реактивная энергия третьего квадранта по тарифу N				
1.0.8.9.0.91	Накопленная реактивная энергия третьего квадранта по тарифу м Накопленная реактивная энергия четвертого квадранта				
1.0.8.9.N.91					
Лимит мощности 1.0.1.35.0 Пороговая величина активной мощности для ограничения режима потребления					
Лимит энерг					
•	ии Пороговая величина активной энергии по тарифу N для ограничения режима				
1.0.1.35.N	потребления				
* Отображае ⁻	гся только для счетчиков с двунаправленным учетом электроэнергии				

Таблица 4.3 – Список вспомогательных параметров по группам

OBIS-код	Параметр			
Активная мощность				
1.0.1.7.0	Активная мощность по сумме фаз			
1.0.21.7.0	Активная мощность по фазе А (для трехфазных счетчиков)			
1.0.41.7.0	Активная мощность по фазе В (для трехфазных счетчиков)			
1.0.61.7.0	Активная мощность по фазе С (для трехфазных счетчиков)			
Реактивная мощность				
1.0.3.7.0	Реактивная мощность по сумме фаз			
1.0.23.7.0	Реактивная мощность по фазе А (для трехфазных счетчиков)			
1.0.43.7.0	Реактивная мощность по фазе В (для трехфазных счетчиков)			
1.0.63.7.0	Реактивная мощность по фазе С (для трехфазных счетчиков)			

Версия 06.2022 Страница 41 из 64

OBIS-код	Параметр			
Полная мощн				
1.0.9.7.0	Полная мощность по сумме фаз			
1.0.29.7.0	Полная мощность по фазе А (для трехфазных счетчиков)			
1.0.49.7.0	Полная мощность по фазе В (для трехфазных счетчиков)			
1.0.69.7.0	Полная мощность по фазе С (для трехфазных счетчиков)			
Напряжение с				
1.0.12.7.0	Напряжение сети для однофазных счетчиков			
1.0.32.7.0	Напряжение сети по фазе А (для трехфазных счетчиков)			
1.0.12.7.1	Межфазное напряжение АВ (для трехфазных счетчиков)			
1.0.52.7.0	Напряжение по фазе В (для трехфазных счетчиков)			
1.0.12.7.2	Межфазное напряжение ВС (для трехфазных счетчиков)			
1.0.72.7.0	Напряжение по фазе С (для трехфазных счетчиков)			
1.0.12.7.3	Межфазное напряжение АС (для трехфазных счетчиков)			
	разными напряжениями (для трехфазных счетчиков)			
1.0.81.7.1	Угол между фазами А и В			
1.0.81.7.2	Угол между фазами В и С			
1.0.81.7.12	Угол между фазами А и С			
Ток нагрузки	1 · · · · · · · · · · · · · · · · · · ·			
1.0.11.7.0	Ток (для однофазных счетчиков)			
1.0.31.7.0	Ток фазы А (для трехфазных счетчиков)			
1.0.51.7.0	Ток фазы В (для трехфазных счетчиков)			
1.0.71.7.0	Ток фазы С (для трехфазных счетчиков)			
1.0.91.7.0	Ток нейтрали (для однофазных счетчиков)			
1.0.91.7.131	Дифференциальный ток (величина небаланса токов фазы и нейтрали)			
Коэффициен				
	Коэффициент мощности (для однофазных счетчиков) или коэффициент			
1.0.13.7.0	мощности по сумме фаз (для трехфазных)			
1.0.33.7.0	Коэффициент мощности по фазе А (для трехфазных счетчиков)			
1.0.53.7.0	Коэффициент мощности по фазе В (для трехфазных счетчиков)			
1.0.73.7.0	Коэффициент мощности по фазе С (для трехфазных счетчиков)			
Частота сети				
1.0.14.7.0	Частота сети			
	т искажения фазных напряжений			
1.0.12.7.124	Коэффициент искажения напряжения для однофазных счетчиков			
1.0.32.7.124	Коэффициент искажения напряжения фазы А (для трехфазных счетчиков)			
1.0.52.7.124	Коэффициент искажения напряжения фазы В (для трехфазных счетчиков)			
1.0.72.7.124	Коэффициент искажения напряжения фазы С (для трехфазных счетчиков)			
Время	(4			
0.0.0.9.1	Время ЧЧ-ММ-СС			
Дата	1 1			
0.0.0.9.2	Дата ДД ММ ГГГГ			
Модем PLC	·····			
0.0.96.99.0	Идентификатор модема			
	внутри корпуса			
0.0.96.9.0	Температура внутри корпуса счетчика			
Журналы соб				
0.0.96.20.1				
0.0.96.20.6	Метка последнего вскрытия крышки клеммной колодки			
0.0.96.2.1	Дата и время последнего изменения конфигурации			
0.0.96.80.1	Дата и время последнего события самодиагностики			
0.0.96.20.16	Дата и время последнего соовтия самодиагностики Дата и время последнего воздействия магнитного поля			
0.0.96.83.1	Дата и время последнего выхода напряжения за минимальное ПДЗ по фазе А			
0.0.96.83.2	Дата и время последнего выхода напряжения за минимальное НДЗ по фазе А			
0.0.96.83.3	Дата и время последнего выхода напряжения за максимальное НДЗ по фазе А			
0.0.96.83.4	Дата и время последнего выхода напряжения за максимальное ПДЗ по фазе А			
0.0.96.84.1	Дата и время последнего выхода напряжения за минимальное ПДЗ по фазе В			

Страница 42 из 64

OBIS-код	Параметр	
	(для трехфазных счетчиков)	
0.0.96.84.2	Дата и время последнего выхода напряжения за минимальное НДЗ по фазе В	
	(для трехфазных счетчиков)	
0.0.96.84.3	Дата и время последнего выхода напряжения за максимальное НДЗ по фазе В	
0.0.30.04.3	(для трехфазных счетчиков)	
0.0.96.84.4	Дата и время последнего выхода напряжения за максимальное ПДЗ по фазе В	
0.0.30.04.4	(для трехфазных счетчиков)	
0.0.96.85.1	Дата и время последнего выхода напряжения за минимальное ПДЗ по фазе С	
0.0.30.03.1	(для трехфазных счетчиков)	
0.0.96.85.2	Дата и время последнего выхода напряжения за минимальное НДЗ по фазе С	
0.0.00.00.2	(для трехфазных счетчиков)	
0.0.96.85.3	Дата и время последнего выхода напряжения за максимальное НДЗ по фазе С	
0.0.30.03.3	(для трехфазных счетчиков)	
0.0.96.85.4	Дата и время последнего выхода напряжения за максимальное ПДЗ по фазе С	
	(для трехфазных счетчиков)	
0.0.96.86.1	Дата и время последнего выхода частоты сети за минимальное ПДЗ	
0.0.96.86.2	Дата и время последнего выхода частоты сети за минимальное НДЗ	
0.0.96.86.3	Дата и время последнего выхода частоты сети за максимальное НДЗ	
0.0.96.86.4	Дата и время последнего выхода частоты сети за максимальное ПДЗ	
0.0.96.87.1	Дата и время последнего события провалов, прерываний, перенапряжений по	
0.0.90.07.1	фазе А	
0.0.06.97.2	Дата и время последнего события провалов, прерываний, перенапряжений по	
0.0.96.87.2	фазе В (для трехфазных счетчиков)	
0.0.96.87.3	Дата и время последнего события провалов, прерываний, перенапряжений по	
0.0.90.07.3	фазе С (для трехфазных счетчиков)	

Для индикации значений параметров все параметры разделены на основные и вспомогательные и собраны по группам. К основным параметрам относятся показания электроэнергии нарастающим итогом и за определенные периоды. К вспомогательным параметрам относятся мгновенные текущие значения параметров (мощности, токи, напряжения и т. п.), а также диагностические параметры.

В счетчиках «Меркурий 204» и «Меркурий 234» используется два режима индикации:

- режим автоматической смены информации по циклу (циклической индикации);
- ручной режим смены информации с помощью кнопок, расположенных на лицевой панели.

Верхняя кнопка счетчика «Меркурий 204» соответствует левой кнопке «Меркурий 234», нижняя кнопка «Меркурий 204» соответствует правой кнопке «Меркурий 234».

Режимы индикации и переходы между ними приведены на рисунке 4.8. На рисунке показаны кнопки счетчика «Меркурий 234», для «Меркурий 204», поведение кнопок аналогично.

Версия 06.2022 Страница 43 из 64

Рисунок 4.8 – Режимы индикации и переходы между ними

В автоматическом режиме на ЖКИ последовательно выводится информация группы «главный экран». Состав параметров, которые выводятся в автоматическом режиме, зависит от настройки параметров индикации счетчика. Настройку можно выполнить с помощью ПО «Конфигуратор СПОДЭС» (при работе по протоколу «СПОДЭС») или «Универсальный конфигуратор» (при работе по протоколу «Меркурий»).

Полный перечень параметров автоматической индикации:

- параметры, приведенные в разделе «Учтенная энергия нарастающим итогом» таблицы 4.2;
- параметры, приведенные в таблице 4.3.

Для перехода к группам параметров используется длительное (более трех секунд) нажатие кнопок, для выбора параметра в группе – короткое нажатие.

Пример перехода к ручному режиму и выбора группы основных параметров «Учтенная энергия за текущий день»: длинное нажатие левой кнопки пять раз до появления символа «ДЕНЬ», выбор показания по требуемому тарифу — короткие нажатия левой кнопки.

Пример перехода к отображению напряжения по фазе A и выбора группы дополнительных параметров «Напряжение»: длинное нажатие правой кнопки три раза до появления символа «В», выбор фазных напряжений — короткие нажатия правой кнопки.

Индикация основных параметров (учтенной активной и реактивной энергии по каждому тарифу и суммы по всем тарифам) производится с указанием номера тарифа, с дискретностью 0,01 кВт.ч или квар.ч (два знака после запятой).

Счетчики, запрограммированные в однотарифный режим, обеспечивают вывод на ЖКИ значения потребляемой электроэнергии только по одному тарифу.

Пример отображения на ЖКИ учтенной активной энергии по первому тарифу приведен на рисунке 4.9.

Рисунок 4.9 – Отображение учтенной энергии

Пример отображения на ЖКИ текущего времени приведен на рисунке 4.10.

Рисунок 4.10 – Отображение текущего времени

Пример отображения на ЖКИ значения напряжения по фазе А приведен на рисунке 4.11.

Рисунок 4.11 – Отображение значения напряжения по фазе А

GSM модуль счетчиков «Меркурий 204» и «Меркурий 234» имеет светодиодную индикацию режимов работы. Назначение индикаторов указано на крышке отсека сменного модуля. В счетчике «Меркурий 204» индикаторы GSM расположены под лицевой панелью. Описание элементов индикации приведено в таблице 4.4.

Таблица 4.4 – Описание элементов индикации GSM модуля

Тип GSM модуля	Индикатор	Цвет свечения	Состояние	Описание
G	Питание	Зеленый	Отключен	GSM модуль отключен
			Включен	GSM модуль включен
	Режим работы	Красный	Одна вспышка	Есть регистрация в сети GSM, уровень сигнала 25 %
			Две вспышки	Есть регистрация в сети GSM, уровень сигнала 50 %
			Три вспышки	Есть регистрация в сети GSM, уровень сигнала 75 %
			Четыре вспышки	Есть регистрация в сети GSM, уровень сигнала 100 %
G1,	Питание	Зеленый	Отключен	GSM модуль отключен
G5, G6			Включен	GSM модуль включен
	Режим работы		Мигает равномерно 1 раз в 0,8 с	Нет регистрации в сети GSM
			Мигает редко 1 раз в 2 с	Есть регистрация в сети GSM
			Мигает часто 1 раз в 0,6 с	Идет обмен данными по GSM

4.4.2 Использование счетчиков с выносным дисплеем

При работе счетчиков с выносным дисплеем «Меркурий 258» следует ознакомиться с паспортом на выносной дисплей, содержащим указания по использованию дисплея.

Версия 06.2022 Страница 45 из 64

При поставке выносного дисплея в комплекте со счетчиком настройка их совместной работы не требуется. В случае замены выносного дисплея или счетчика на месте эксплуатации требуется процедура сопряжения счетчика и выносного дисплея, описанная в паспорте на выносной дисплей.

4.4.3 Использование в составе системы учета

Для работы счетчика в составе автоматизированной системы учета необходимо провести конфигурирование параметров счетчика по любому из интерфейсов с помощью ПО «Конфигуратор СПОДЭС» (при работе по протоколу «СПОДЭС») или «Универсальный конфигуратор» (при работе по протоколу «Меркурий»). ПО доступно на сайте предприятия-изготовителя https://www.incotexcom.ru/support/soft/service. Перечень и значения конфигурируемых параметров определяются эксплуатирующей организацией.

Для уменьшения затрат времени при пусконаладочных работах на объекте эксплуатации, рекомендуется проводить конфигурирование счетчика в условиях эксплуатирующей организации.

4.4.4 Контроль работоспособности

Признаками работоспособности счетчика являются:

- наличие индикации на ЖКИ счетчиков «Меркурий 204», «Меркурий 234»;
- наличие связи между счетчиками и выносными дисплеями;
- наличие свечения/мигания индикатора активной энергии;
- наличие связи по интерфейсам обмена данными.

При наличии на ЖКИ счетчика или выносного дисплея символов несанкционированного доступа и/или сообщений о событиях самодиагностики необходимо обратиться в эксплуатирующую организацию.

Счетчики фиксируют, в том числе, следующие неисправности по результатам самодиагностики:

- неисправность измерительного блока, включая неверные контрольные суммы метрологических коэффициентов;
- неисправность вычислительного блока, включая неверные контрольные суммы результатов вычислений;
- неисправность таймера, включая функционирование часов реального времени и неверные контрольные суммы конфигурационных параметров времени;
- неисправность блока питания;
- неисправность блока памяти с определением неисправной аппаратной части и поврежденного блока данных.

Перечень кодов событий самодиагностики приведен в приложении Г.

5 Поверка

Счетчик подлежит государственному метрологическому контролю и надзору.

Поверка счетчика осуществляется органами Государственной метрологической службы или аккредитованными метрологическими службами юридических лиц.

Поверка счетчика производится в соответствии с методикой поверки РЭ1 26.51.63.130-061-89558048-2018 с изменением № 1.

Счетчик при выпуске из производства подвергается первичной поверке.

В процессе эксплуатации счетчик подвергается периодической и внеочередной поверке.

Межповерочный интервал – 16 лет.

Межповерочный интервал на территории Республики Казахстан – 8 лет.

Межповерочный интервал на территории Республики Беларусь – 4 года.

Межповерочный интервал на территории Республики Узбекистан – 4 года.

Результаты периодических и внеочередных поверок заносятся в формуляр.

После ремонта счетчик подлежит обязательной поверке.

Версия 06.2022 Страница 47 из 64

6 Техническое обслуживание

Счетчики предназначены для непрерывной круглосуточной эксплуатации без обязательного присутствия обслуживающего персонала.

К работам по техническому обслуживанию счетчика допускаются лица, прошедшие инструктаж по технике безопасности и имеющие квалификационную группу по электробезопасности не ниже III для электроустановок до 1000 В.

Перечень работ по техническому обслуживанию и периодичность технического обслуживания приведены в таблице 6.1.

Таблица 6.1 – Работы по техническому обслуживанию

Перечень работ по техническому обслуживанию	Периодичность		
Удаление пыли с корпуса и лицевой панели счетчика	*		
Проверка надежности подключения силовых и интерфейсных цепей	*		
счетчика			
Проверка исправности батареи резервного питания и отсутствия ошибок	1 раз в 6 лет		
работы счетчика	i pas a o ne i		
* В соответствии с графиком планово-предупредительных работ	эксплуатирующей		
организации			

Удаление пыли с поверхности счетчика производится чистой, мягкой обтирочной ветошью.

Для проверки надежности подключения силовых и интерфейсных цепей счетчика необходимо:

- обесточить счетчик;
- снять пломбу крышки клеммной колодки и снять крышку;
- удалить пыль с клеммной колодки;
- подтянуть винты клеммной колодки;
- установить крышку клеммной колодки, зафиксировать защелками и / или винтами и опломбировать;
- сделать отметку в формуляре счетчика.

ВНИМАНИЕ: ЗАПРЕЩАЕТСЯ ПРОВОДИТЬ РАБОТЫ ПО ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ СЧЕТЧИКА, НАХОДЯЩЕГОСЯ ПОД НАПРЯЖЕНИЕМ.

В случае разряда встроенной батареи питания часов реального времени, на объекте эксплуатации в счетчиках «Меркурий 204», «Меркурий 234» может быть установлена дополнительная батарея питания, которая устанавливается внутри корпуса отдельно и независимо от основной встроенной батареи.

Для установки дополнительной батареи необходимо произвести следующие действия:

- обесточить счетчик;
- удалить пломбу предприятия-изготовителя, вскрыть прозрачную верхнюю крышку счетчика;
- удалить защитную пластину батарейного отсека;
- установить батарею питания в держатель, соблюдая полярность;
- закрыть крышку счетчика;
- опломбировать прозрачную верхнюю крышку пломбой электросетевой или энергосбытовой компании;
- сделать соответствующую запись в формуляре счетчика в разделе «Особые отметки».

ВНИМАНИЕ: ЗАПРЕЩАЕТСЯ ПРОИЗВОДИТЬ УСТАНОВКУ БАТАРЕИ В СЧЕТЧИК, НАХОДЯЩИЙСЯ ПОД НАПРЯЖЕНИЕМ.

Дополнительные батареи возможно приобрести на предприятии-изготовителе или в специализированных магазинах. Требуемые технические характеристики батареи:

- типоразмер батареи 1/2АА (14250)
- номинальное напряжение 3.6 В;
- электрохимическая система LiSOCI2.

Рекомендуемые типы и производители батарей: SB-AA02 (TEKCELL), ER14250 (EEMB), LS14250 (SAFT), TL-4902 (TADIRAN).

ВНИМАНИЕ: ИСПОЛЬЗОВАНИЕ БАТАРЕЙ ПИТАНИЯ С НОМИНАЛЬНЫМ НАПРЯЖЕНИЕМ 3.0 В НЕ ДОПУСКАЕТСЯ.

Версия 06.2022 Страница 49 из 64

7 Текущий ремонт

Текущий ремонт счетчика осуществляется предприятием-изготовителем или юридическими и физическими лицами, имеющими лицензию на проведение ремонта счетчика.

После проведения ремонта счетчик подлежит поверке.

8 Транспортирование и хранение

8.1 Транспортирование

Условия транспортирования счетчиков в транспортной таре предприятияизготовителя должны соответствовать ГОСТ 31819.11, ГОСТ 22261 группа 4 с дополнениями:

- температура окружающего воздуха от минус 50 до плюс 70 °C;
- относительная влажность воздуха до 95 % при температуре 30 °C.

Вид отправок – мелкий малотоннажный.

Счетчики должны транспортироваться в крытых железнодорожных вагонах, перевозиться автомобильным транспортом с защитой от дождя и снега, водным транспортом, а также транспортироваться в герметизированных отапливаемых отсеках самолетов в соответствии с документами:

- «Правила перевозок грузов автомобильным транспортом»;
- «Правила перевозок грузов»;
- «Технические условия погрузки и крепления грузов»;
- «Руководство по грузовым перевозкам на воздушных линиях».

При погрузочно-разгрузочных работах и транспортировании должны соблюдаться требования манипуляционных знаков на упаковке счетчика.

8.2 Хранение

Счетчик должен храниться в упаковке в складских помещениях потребителя (поставщика), условия хранения должны соответствовать ГОСТ 31819.11, ГОСТ 22261 группа 4 с дополнениями:

- температура окружающего воздуха от минус 50 до плюс 70 °C;
- относительная влажность воздуха до 95 % при температуре 30 °C.

В местах хранения счетчика воздух не должен содержать токопроводящей пыли и примесей, вызывающих коррозию металлов и разрушающих изоляцию.

Версия 06.2022 Страница 51 из 64

9 Правила и условия реализации и утилизации

Реализация счетчика осуществляется через розничные и оптовые дилерские сети торговых партнеров, заключивших с изготовителем договор о реализации продукции.

При реализации счетчика должны соблюдаться правила обращения на рынке, установленные статьей 3 ТР ТС 004/2011 «О безопасности низковольтного оборудования», требования к реализации товаров потребителям, установленные в Законе РФ от 07.02.1992 № 2300-1 «О защите прав потребителей».

Утилизации подлежит счетчик, выработавший ресурс и непригодный для дальнейшей эксплуатации (сгоревший, разбитый, значительно увлажненный и т. п.).

После передачи на утилизацию и разборки счетчика, детали конструкции, годные для дальнейшего употребления, не содержащие следов коррозии и механических воздействий, допускается использовать в качестве запасных частей.

Свинцовые пломбы и литиевые батареи подлежат сдаче в соответствующие пункты приема.

Остальные компоненты счетчика являются неопасными отходами класса V, не содержат веществ и компонентов, вредно влияющих на окружающую среду и здоровье человека, поэтому особых мер по защите при утилизации не требуется.

Счетчик не содержит драгметаллов.

Детали корпуса счетчика сделаны из ABS-пластика и поликарбоната и допускают вторичную переработку.

Электронные компоненты, извлеченные из счетчика, дальнейшему использованию не подлежат.

Приложение А

(Справочное)

Габаритные чертежи счетчиков

Рисунок А.1 – Габаритный чертеж счетчика «Меркурий 204»

Рисунок А.2 – Габаритный чертеж счетчика «Меркурий 208»

Версия 06.2022 Страница 53 из 64

Рисунок А.3 – Габаритный чертеж счетчика «Меркурий 234», модификации с символом «М»

Рисунок А.4 – Габаритный чертеж счетчика «Меркурий 234», модификации без символа «М»

Рисунок А.5 – Габаритный чертеж счетчика «Меркурий 238»

Приложение Б

(Обязательное)

Схемы подключения счетчиков

Рисунок Б.1 – Схема подключения счетчиков «Меркурий 204», «Меркурий 208», прямое включение

Рисунок Б.2 – Схема подключения счетчика «Меркурий 238», прямое включение

Рисунок Б.3 – Схема подключения счетчика «Меркурий 234», прямое включение

Рисунок Б.4 – Схема подключения счетчика «Меркурий 234», включение через три трансформатора тока

Версия 06.2022 Страница 57 из 64

Рисунок Б.5 – Схема подключения счетчика «Меркурий 234», включение через два трансформатора тока

Рисунок Б.6 – Схема подключения счетчика «Меркурий 234», включение через три трансформатора напряжения и три трансформатора тока

Рисунок Б.7 – Схема подключения счетчика «Меркурий 234», включение через три трансформатора напряжения и два трансформатора тока

Рисунок Б.8 – Схема подключения счетчика «Меркурий 234», включение через два трансформатора напряжения и два трансформатора тока

Версия 06.2022 Страница 59 из 64

Примечание — Схема подключения трехфазного счетчика с подключением только одного проводника цепи нейтрали (см. рисунок Б.9) допускается, но не рекомендуется к использованию, т. к. при обрыве проводника к счетчику потребитель останется под нагрузкой, а счетчик лишится нейтрали, что может привести к недостоверному учету электроэнергии и обесточиванию модуля связи.

Рисунок Б.9 – Схема с подключением только одного проводника нейтрали

Рисунок Б.10 – Схема подключения интерфейсов и вспомогательных цепей счетчика «Меркурий 204»

Рисунок Б.11 – Схема подключения интерфейсов и вспомогательных цепей счетчика «Меркурий 234»

Рисунок Б.12 – Схема подключения интерфейсов RS485 счетчика «Меркурий 234» с функциями телемеханики

Рисунок Б.13 – Схема подключения интерфейса Ethernet счетчика «Меркурий 234» с функциями телемеханики

Рисунок Б.14 — Схема подключения дискретных входов счетчика «Меркурий 234» с функциями телемеханики

Рисунок Б.15 – Схема подключения дискретных выходов счетчика «Меркурий 234» с функциями телемеханики

Версия 06.2022 Страница 61 из 64

Приложение В

(Справочное)

Заводские настройки счетчика

Параметр	Значение
Тип протокола:	
– для счетчиков без индекса «D» в коде	«Меркурий»
– для счетчиков с индексом «D» в коде	«СПОДЭС»
Пароль уровня доступа 1:	
– для счетчиков без индекса «D» в коде	111111 (HEX)
– для счетчиков с индексом «D» в коде	111111 (ASCII)
Пароль уровня доступа 2:	,
– для счетчиков без индекса «D» в коде	222222 (HEX)
– для счетчиков с индексом «D» в коде	2222222222222222 (ASCII)
Часовой пояс	(UTC+3) Москва
Прямая установка времени	Разрешена
Время включения тарифа 1	07 ч 00 мин
Время включения тарифа 2	23 ч 00 мин
Расчетное число месяца	1
Интервал интегрирования основного и дополнительного	
профилей мощности, мин:	
– для счетчиков прямого включения	60
– для счетчиков косвенного включения	30
– для счетчиков с индексом «F04» в коде	30
Параметры качества электроэнергии	по ГОСТ 32144-2013
Управление нагрузкой:	110 1 00 1 02 144-2010
– номер режима	4
– помер режима– состояние элемента управления	Вкл
состояние злемента управлениясостояние выхода	Вкл
– автовключение	Откл
Параметры ограничителей:	OTRI
– «Превышение лимита мощности»	неактивен
– «Превышение лимита мощности» – «Превышение максимального тока»	1,05×Імакс
– «Превышение максимального тока» – «Превышение максимального напряжения»	1,20×UHOM
– «Превышение максимального напряжения» – «Превышение дифференциального тока»	неактивен
– «Превышение дифференциального тока» – «Превышение температуры», °С	100
– «Превышение температуры», С – «Превышение лимита энергии» по тарифу 1	неактивен
– «Превышение лимита энергии» по тарифу т – «Превышение лимита энергии» по тарифу 2	
	неактивен Активиза опортия
Режим телеметрического выхода	Активная энергия
Поромотры наприконная	потребления
Параметры индикации:	AUTHRUSS IA DOCUTARUSS
– отображаемые параметры в автоматическом и ручном режимах	
	энергия суммарно и по
TODIAGE OF LODGO HAS AN ENVOLVED.	тарифам 1 и 2
 период обновления индикации, с 	1
– длительность индикации текущего тарифа, с	10
– длительность индикации нетекущего тарифа, с	10
– время возврата в автоматический режим, с	30
Коэффициенты трансформации:	
– по напряжению	1
— по току	1
– учет коэффициентов трансформации	Нет
– учет коэффициентов трансформации при индикации	Нет

Страница 62 из 64 Версия 06.2022

Приложение Г

(Рекомендуемое)

Рекомендации по действиям при возникновении ошибок самодиагностики в счетчиках

Код			
ошибки	Описание	Рекомендации	
E-01	Напряжение основной батареи менее 2,2 В	Заменить батарею	
E-02	Нарушено функционирование памяти №2	Уточнить наличие сопутствующих кодов ошибок	
E-03	Нарушено функционирование UART	Отправить счетчик на предприятие- изготовитель	
E-04	Нарушено функционирование АЦП	Отправить счетчик на предприятие- изготовитель	
E-05	Нарушено функционирование памяти №1	Уточнить наличие сопутствующих кодов ошибок	
E-06	Нарушено функционирование RTC	Переустановить время счетчика	
E-07	Нарушено функционирование памяти №3	Уточнить наличие сопутствующих кодов ошибок	
E-08	Резерв		
E-09	Ошибка CRC программы	Отправить счетчик на предприятие- изготовитель	
E-10	Ошибка CRC массива	Отправить счетчик на предприятие-	
E-10	калибровочных коэффициентов	изготовитель	
E-11	Ошибка CRC массива регистров	Отправить счетчик на предприятие-	
<u></u> 11	накопленной энергии	изготовитель	
E-12	Ошибка CRC адреса счетчика	Выполнить запись адреса счетчика	
E-13	Ошибка CRC серийного номера	Отправить счетчик на предприятие- изготовитель	
E-14	Ошибка CRC пароля	Отправить счетчик на предприятие- изготовитель	
E-15	Ошибка CRC массива варианта исполнения счетчика	Отправить счетчик на предприятие- изготовитель	
E-16	Ошибка CRC тарификатора	Отправить счетчик на предприятие- изготовитель	
E-17	Ошибка CRC конфигурации управления нагрузкой	Выполнить запись параметров управления нагрузкой	
E-18	Ошибка CRC лимита мощности	Выполнить запись лимита мощности	
E-19	Ошибка CRC лимита энергии	Выполнить запись лимита энергии	
E-20	Ошибка CRC байта параметров UART	Выполнить запись параметров связи	
E-21	Ошибка CRC параметров индикации (по тарифам)	Выполнить запись параметров индикации	
E-22	Ошибка CRC параметров индикации (по периодам)	Выполнить запись параметров индикации	
E-23	Ошибка CRC множителя тайм-аута	Выполнить запись значения множителя таймаута	
E-24	Ошибка CRC программируемых флагов	Перезапустить счетчик	
E-25	Ошибка CRC массива праздничных дней	Выполнить запись расписания праздничных дней	
E-26	 Ошибка CRC массива тарифного расписания	Выполнить запись годового тарифного расписания	
E-27	Ошибка CRC массива таймера	Перезапустить счетчик	

Код		
ошибки	Описание	Рекомендации
E-28	Ошибка CRC массива сезонных	Выполнить запись параметров сезонных
	переходов	переходов
E-29	Ошибка CRC массива	Выполнить запись местоположения счетчика
	местоположения счетчика	
E-30	Ошибка CRC массива	Выполнить запись коэффициентов
	коэффициентов трансформации	трансформации
E-31	Ошибка CRC массива регистров накопления по периодам времени	Выполнить инициализацию регистров энергии
E-32	Ошибка CRC параметров среза	Выполнить инициализацию профиля мощности
E-33	Ошибка CRC регистров среза	Выполнить инициализацию профиля
		мощности
E-34	Ошибка CRC указателей журнала	Отправить счетчик на предприятие-
	событий	изготовитель
E-35	Ошибка CRC записи журнала событий	Перезапустить счетчик
E-36	Ошибка CRC регистра учета	Выполнить запись параметров учета тех.
	технических потерь	потерь
E-37	Ошибка CRC мощностей	Выполнить запись параметров учета тех.
	технических потерь	потерь
E-38	Ошибка CRC массива регистров	Отправить счетчик на предприятие-
	накопленной энергии потерь	ИЗГОТОВИТЕЛЬ
E-39	Ошибка CRC регистров энергии	Отправить счетчик на предприятие-
E-40	пофазного учета Флаг поступления	изготовитель
	широковещательного сообщения	Считать слово состояния счетчика
E-41	Ошибка CRC указателей журнала	Отправить счетчик на предприятие-
	ПКЭ	изготовитель
E-42	Ошибка СВС записи журнала ПКЭ	Отправить счетчик на предприятие-
		изготовитель
E-43	Ошибка поквадрантного учета	Отправить счетчик на предприятие-
	R1 – R4	изготовитель
E-44	Ошибка записи в журналах	Отправить счетчик на предприятие-
	перенапряжений	изготовитель
E-45	Резерв	
E-46	Резерв	
E-47	Флаг выполнения процедуры	Дождаться завершения процедуры коррекции
	коррекции времени	времени
E-48	Напряжение основной батареи	Перезапустить счетчик. В случае устойчивого
	менее 2,65 В	возникновения ошибки заменить батарею

Примечание — В случае невозможности устранения ошибок самодиагностики счетчиков при помощи приведенных рекомендаций, счетчики подлежат отправке на предприятие-изготовитель

Страница 64 из 64 Версия 06.2022