Financial Engineering & Risk Management

The Multi-Period Binomial Model

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

A 3-period Binomial Model

Recall R = 1.01 and u = 1/d = 1.07.

Just a series of 1-period models spliced together!

- all the results from the 1-period model apply
- just need to multiply 1-period probabilities along branches to get probabilities in multi-period model.

Pricing a European Call Option

Assumptions: expiration at t=3, strike = \$100 and R=1.01.

Pricing a European Call Option

• We can also calculate the price as

$$C_0 = \frac{1}{R^3} \mathsf{E}_0^{\mathbb{Q}} \left[\max(S_T - 100, \ 0) \right] \tag{1}$$

- this is risk-neutral pricing in the binomial model
- avoids having to calculate the price at every node.
- How would you find a replicating strategy?
 - to be defined and discussed in another module.

Financial Engineering & Risk Management What's Going On?

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

What's Going On?

Stock ABC

Stock XYZ

Question: What is the price of a call option on ABC with strike K = \$100?

Question: What is the price of a call option on XYZ with strike K=\$100?

What's Going On?

Saw earlier

$$C_0 = \frac{1}{R} \left[\frac{R - d}{u - d} C_u + \frac{u - R}{u - d} C_d \right]$$

$$= \frac{1}{R} \left[q C_u + (1 - q) C_d \right]$$

$$= \frac{1}{R} \mathsf{E}_0^{\mathbb{Q}} [C_1]$$

- So it appears that p doesn't matter!
- This is true ...
- ... but it only appears surprising because we are asking the wrong question!

Another Surprising Result?

R = 1.02

	Stock Price				European Option Price: K = 95				
			119.10					24.10	
		112.36	106.00				19.22	11.00	
	106.00	100.00	94.34			14.76	7.08	0.00	
100.00	94.34	89.00	83.96		11.04	4.56	0.00	0.00	
t=0	t=1	t=2	t=3		t=0	t=1	t=2	t=3	

R = 1.04

Stock Price				European Option Price: K = 95				
			119.10				24.10	
		112.36	106.00			21.01	11.00	
	106.00	100.00	94.34		18.19	8.76	0.00	
100.00	94.34	89.00	83.96	15.64	6.98	0.00	0.00	
t=0	t=1	t=2	t=3	t=0	t=1	t=2	t=3	

Question: So the option price increases when we increase R. Is this surprising?

(See "Investment Science" (OUP) by D. G. Luenberger for additional examples on the binomial model.)

Existence of Risk-Neutral Probabilities ⇔ No-Arbitrage

Recall our analysis of the binomial model:

- no arbitrage $\Leftrightarrow d < R < u$
- ullet any derivative security with time T payoff, C_T , can be priced using

$$C_0 = \frac{1}{R^n} \mathsf{E}_0^{\mathbb{Q}}[C_T] \tag{2}$$

where q>0, 1-q>0 and n=# of periods. (If Δt is the length of a period, then $T=n\times \Delta t$.)

In fact for any model if there exists a risk-neutral distribution, \mathbb{Q} , such that (2) holds, then arbitrage cannot exist. Why?

Reverse is also true: if there is no arbitrage then a risk-neutral distribution exists.

Together, these last two statements are often called the first fundamental theorem of asset pricing.