Groups and Rings - SF2729

Homework 6

Jim Holmström - 890503-7571

March 1, 2012

Exercise 1. Let $H=\langle (12)\rangle \leq S_3$ and $K=\langle (123)\rangle \leq S_3$ Consider the S_3 -set given by $S_3/H\times S_3/K$ Write this S_3 -set as a disjoint union of transitive S_3 -sets.

Solution. h = (12) and k = (123)

General rules used:

$$b\langle b\rangle = \langle b\rangle b^{-1}\langle b\rangle = \langle b\rangle$$

$$S_3/H = \{H, (13)H, (23)H\}$$

$$S_3/K = \{K, (12)K\}$$

$$S_3/H \times S_3/K =$$

$$\{(H, K), (H, (12)K), ((13)H, K), ((23)H, K), ((23)H, (12)K), ((23)H, (12)K)\}$$

Transitive if $\forall x_1, x_2 \in S_3$ -set $\exists g \in S_3 : gx_1 = x_2$

$$h(aH, K) = (ahH = ah\langle h \rangle, hK) = (aH, hK) \text{ for } a = \{e, (13), (23)\}$$

$$(13)((13)H, (12)K) = (H, (13)(12)K = (123)K = K)$$

$$(23)((23)H, (12)K) = (H, (23)(12)K = (132)K = (132)(123)K = K)$$

Since G is closed under the operation one can take any combination of these elements

above to get from $\forall x_1$ to $\forall x_2$ with some $g = g_1g_2 \in G$ and all elements are therefore transitive.

So the resulting disjoint union of transitive S_3 -sets being simply (without union):

$$S_3/H \times S_3/K =$$
 { (H, K) , $(H, (12)K)$,
 $((13)H, K)$, $((13)H, (12)K)$,
 $((23)H, K)$, $((23)H, (12)K)$ }