	A. 95%;
	B. 68%;
	C. 50%;
	D. 58%.
	D. 30/0.
2.	От каких параметров зависит коэффициент Стьюдента?
	А. От объема выборки;
	В. От температуры;
	С. От объема;
	D. От доверительного интервала.
3.	Как зависит от объема выборки коэффициент Стьюдента?
٥.	А. Обратно пропорционально;
	В. Прямо пропорционально;
	С. Квадратично;
	D. Гиперболически.
	В. Типероолически.
4.	Как зависит коэффициент Стьюдента от надежности выборки?
	А. Прямо пропорционально;
	В. Обратно пропорционально;
	С. Линейно;
	D. Квадратично.
	-
5.	<i>y</i> A
	А. Слабая связь;
	В. Сильная связь;
	С. Нейтральная связь;
	D. Средняя связь.
6.	Какой вид тесноты связи в статистике, если ${f 0,3} \le {f R_{XV}} < 0.7?$
	А. Средняя связь;
	В. Нейтральная связь;
	С. Сильная связь;
	D. Слабая связь.
7	
7.	Ay .
	А. Связь отсутствует;
	В. Средняя связь;
	С. Сильная связь;
	D. Слабая связь.
	8. Какой вид тесноты связи в статистике, если $0, 7 \leq \mathbf{R}_{\mathbf{X}\mathbf{y}} \leq 1$?
	А. Сильная связь;
	В. Нейтральная связь;

С. Средняя связь;

1. Укажите доверительную вероятность, используемую в медицине:

D. Слабая связь.

- 9. Какая связь называется прямой?
 - А. Если с ростом одного параметра растет другой;
 - В. Если с ростом одного параметра убывает другой;
 - С. Положительная;
 - D. Отрицательная.
- 10. Какая связь называется обратной?
 - А. Если с ростом одного параметра убывает другой;
 - В. Если с ростом одного параметра растет другой;
 - С. Положительная;
 - D. Отрицательная.
- 11. Назовите точечные оценки случайной величины в выборке:
 - А. Среднее квадратическое отклонение;
 - В. Плотность распределения;
 - С. Коэффициент Стьюдента;
 - D. Доверительный интервал;
- 12. Какой коэффициент определяет тесноту связи между двумя случайнымивеличинами?
 - А. Коэффициент линейной корреляции;
 - В. Коэффициент объемного расширения;
 - С. Коэффициент линейного расширения;
 - D. Коэффициент линейной регрессии.
- 13. Какой коэффициент определяет силу связи между двумя случайнымивеличинами?
 - А. Коэффициент объемного расширения;
 - В. Коэффициент линейной корреляции и регресии;
 - С. Коэффициент линейного расширения;
 - D. Коэффициент нелинейного расширения.
- 14. В результате эксперимента получена следующая выборочная совокупность: 1;2;3;4;2;6;4;7;8. Выберите верные ранжированный ряд дляэтой совокупности.
 - A. 1;2;2;3;4;4;6;7;8
 - B. 1;2;3;4;6;7;8
 - C. 1;2;3;4;5;6;7;8
 - D. 1;2;3;4;5;7;8
- 15. В результате эксперимента получена следующая выборочная совокупность:
 - 1;2;3;4;2;6;4;7;8. Рассчитаете выборочное среднее, дляпредставленного ряда
 - A. 3.7
 - B. 6
 - C. 4
 - D. 4,23
- 16. В результате эксперимента получена следующая выборочная совокупность:

1;5;3;4;2;6;4;7;8. Укажите правильное значение моды, дляпредставленного ряда	
A. 4	
B. 5	
C. 1	
D. 8	
17. В результате эксперимента получена следующая выборочная совокупность: 1;5;3;4;2;6;4;7;8. Укажите правильное значение медианы,для представленного ряда	
A. 4	
B. 4,5	
C. 5	
D. 9	
18. Если вероятность события стремится к нулю, то количество информации стремится к а. ∞ b. 1 C. 0,5 D. 0	
19. Количество информации о событии, вероятность которого стремится к нулю, стремится	R
K .	
A. ∞	
B. 1	
C. 0,5	
D. 0	
20. В соответствии иерархическим принципом медицинские информационные системы (МИС) делятся на	1
А. уровни: базовый, учреждений и территориальный	
В. первую, вторую и третью категории	
С. простые, сложные и смешанные информационные системы	
D. детерминированные, стохастические и смешанные МИС	
21. На что делятся медицинские информационные системы (МИС) в соответствии с	
иерархическим принципом	
а. уровни: базовый, учреждений и территориальный	
b. первую, вторую и третью категории	
с. простые, сложные и смешанные информационные системы	
d. детерминированные, стохастические и смешанные МИС	
22. Медицинские информационные системы (МИС), в соответствии с иерархическим принципом, делятся на	
а. уровни: базовый, учреждений и территориальный	
b. первую, вторую и третью категории	

с. простые, сложные и смешанные информационные системы d. детерминированные, стохастические и смешанные МИС

23. Общая структура медицинской приборно-компьютерной системы включает в себя

- а. аппаратуру съема информации, вычислительное средство и аппаратуру реализации лечебных воздействий
- b. устройство съема информации, приемник, устройство регистрации
- с. устройства съема информации, усилитель и устройство регистрации
- d. генератор сигнала, усилитель и устройство контроля уровня сигнала
- 24. Что включает в себя общая структура медицинской приборно-компьютерной системы
 - А. аппаратуру съема информации, вычислительное средство и аппаратуру реализации лечебных воздействий
- В. устройство съема информации, приемник, устройство регистрации
- С. устройства съема информации, усилитель и устройство регистрации
- D. генератор сигнала, усилитель и устройство контроля уровня сигнала
- 25. Перечень приборов, входящих в общую структуру медицинской приборно- компьютерной системы
- А. аппаратуру съема информации, вычислительное средство и аппаратуру реализации лечебных воздействий
- В. устройство съема информации, приемник, устройство регистрации
- С. устройства съема информации, усилитель и устройство регистрации
- D. генератор сигнала, усилитель и устройство контроля уровня сигнала
- 26. Для преобразования непрерывного электрического сигнала в серию цифровых сигналов, как правило, используют
- А. аналогово-цифровой преобразователь
- В. усилитель электрических сигналов
- С. декодирующее устройство
- D. кодирующее устройство

Как правило, используют для преобразования непрерывного электрического сигнала всерию цифровых сигналов

- А. аналогово-цифровой преобразователь
- В. усилитель электрических сигналов
- С. декодирующее устройство
- D. кодирующее устройство
- 27. Медицинские информационно-справочные системы предназначены для
 - А. поиска и выдачи медицинской информации по запросу пользователя
 - В. создание справочников путем упорядочивания медицинской информации
 - С. обработки медико-биологических данных
 - D. обработки лабораторных исследований
- 28. Для чего предназначены медицинские информационно-справочные системы
 - А. поиска и выдачи медицинской информации по запросу пользователя
 - В. создание справочников путем упорядочивания медицинской информации
 - С. обработки медико-биологических данных
 - D. обработки лабораторных исследований
- 29. Предназначение медицинских информационно-справочные систем для

- а. поиска и выдачи медицинской информации по запросу пользователя
- b. создание справочников путем упорядочивания медицинской информации
- с. обработки медико-биологических данных
- d. обработки лабораторных исследований
- 30. Информационные системы для исследования органов дыхания, нервной системы, головного мозга, органов чувств, системы кровообращения, УЗИ-диагностика относятся к
 - а. системам для проведения функциональных и морфологических исследований
 - b. мониторным системам
 - с. системам управления лечебным процессом
 - d. информационно-справочным системам
- 31. К каким системам относятся информационные системы для исследования органов дыхания, нервной системы, головного мозга, органов чувств, системы кровообращения, УЗИ-диагностика
 - а. системам для проведения функциональных и морфологических исследований
 - b. мониторным системам
 - с. системам управления лечебным процессом
 - d. информационно-справочным системам
- 32. При исследования органов дыхания, нервной системы, головного мозга, органов чувств, системы кровообращения, УЗИ-диагностика используют информационныесистемы, которые относятся к
 - а. системам для проведения функциональных и морфологических исследований
 - b. мониторным системам
 - с. системам управления лечебным процессом
 - d. информационно-справочным системам
- 33. Системы, предназначенные для информационной поддержки и автоматизации диагностического и лечебного процессов, осуществляемых при непосредственном контакте с организмом больного, называются
 - а. медицинскими аппаратно-программными комплексами (МАПК)
 - b. статистическими системами
 - с. административно-управленческими системами
 - d. банками информации медицинских учреждений
- 34. Как называются системы, предназначенные для информационной поддержки и автоматизации диагностического и лечебного процессов, осуществляемых при непосредственном контакте с организмом больного
 - а. медицинскими аппаратно-программными комплексами (МАПК)
 - b. статистическими системами
 - с. административно-управленческими системами
 - d. банками информации медицинских учреждений
- 35. Название систем, предназначенных для информационной поддержки и автоматизации диагностического и лечебного процессов, осуществляемых при непосредственном контакте с организмом больного
 - а. медицинскими аппаратно-программными комплексами (МАПК)
 - b. статистическими системами

- с. административно-управленческими системами
- d. банками информации медицинских учреждений
- е. скрининговыми системами
- 36. МИС, создающие единое информационное пространство в сфере здравоохранения, называются
 - а. компьютерными телекоммуникационными сетями
 - b. банками информации медицинских учреждений
 - с. медицинскими информационно-справочными системами
 - d. медицинскими консультативно-диагностическими системами
 - е. АРМ-ами врача
- 37. Как называются МИС, создающие единое информационное пространство в сфере здравоохранения
 - а. компьютерными телекоммуникационными сетями
 - b. банками информации медицинских учреждений
 - с. медицинскими информационно-справочными системами
 - d. медицинскими консультативно-диагностическими системами
- 38. Название МИС, создающие единое информационное пространство в сфере здравоохранения
 - а. компьютерные телекоммуникационные сети
 - b. банки информации медицинских учреждений
 - с. медицинские информационно-справочные системы
 - d. медицинские консультативно-диагностические системы
- 39. Представление информации об объекте в виде алгоритма называется
 - а. формализацией
 - b. алгоритмизацией
 - с. классификацией
 - d. аппроксимацией
- 40. Если информация об объекте отображена в виде последовательности действий, в результате выполнения которых приходим к искомому результату, то такой процесс представления информации называется
 - а. формализацией
 - b. алгоритмизацией
 - с. классификацией
 - d. аппроксимацией
- 41. Медицинская классификационная система ICPC является
 - а. двухосевой системой
 - b. одноосевой системой
 - с. трехосевой системой
 - d. многоосевой системой
- 42. Система кодирования записи о больном в ІСРС является
 - а. двухосевой системой
 - b. одноосевой системой
 - с. трехосевой системой

- d. многоосевой системой
- 43. Как классифицируются исследования по своей цели?
 - а. выдвигающие и проверяющие гипотезу
 - b. одномоментные и динамические
 - с. пассивные и активные
 - d. проспективные и ретроспективные
- 44. По своей цели исследования имеют следующую классификацию:
- а. выдвигающие и проверяющие гипотезу
- b. одномоментные и динамические
- с. пассивные и активные
- d. проспективные и ретроспективные
- 45. Выберите классификацию исследования по своей цели
 - а. выдвигающие и проверяющие гипотезу
 - b. одномоментные и динамические
 - с. пассивные и активные
 - d. проспективные и ретроспективные
- 46. Выберите, по какому принципу исследования делятся на активные и пассивные в соответствии с современной классификацией медицинских научных исследований
- а. по отсутствию или наличию вмешательства
- b. по временным параметрам
- с. по цели исследования
- d. по соотношению времени сбора данных и формирования выборок
- 47. К основным понятиям иерархической структуры организации баз данных не относится
- а. ядро
- b. уровень
- с. узел
- d. связь
- 48. Медицинское 2D изображение не может быть получено в результате проведениятакого исследования как
 - а. электрокардиография
 - b. цифровая радиология
 - с. компьютерная томография
 - d. ядерный магнитный резонанс
- 49. Как называется исследование, при котором в организм вводится радиоактивная метка, измерение которой фиксируется камерой?
 - а. радионуклидное исследование
 - b. цифровой ангиографией
 - с. ЯМР-исследованием
 - d. компьютерной томографией
 - е. рентгенографией
- 50. К радиологическим методам исследования относятся?

- а. рентгенография, радионуклидные исследования и компьютерная томография
- b. рентгенография, радионуклидные исследования, компьютерная томография и MPтомография
- с. электрокардиография
- d. ультразвуковой метод
- 51. При радиологических методах получения медицинского изображения используют
 - а. излучения электромагнитной природы
 - b. механические волны
 - с. звуковые волны
 - d. инфразвук
 - 52. При получении медицинского изображения с помощью радиологических методов используют
 - а. излучения электромагнитной природы
 - b. механические волны
 - с. звуковые волны
 - d. инфразвук
- 53. Аналоговые изображения несут в себе информацию
 - а. непрерывного характера
 - b. дискретного характера
 - с. в цифровой форме
 - d. в матричной форме
- 54. Информацию какого характера несут в себе аналоговые изображения?
 - а. непрерывного характера
 - b. дискретного характера
 - с. в цифровой форме
 - d. в матричной форме
- 55. Выберите исследование, при котором получаются аналоговые изображения
 - а. получение обычных рентгенограмм
 - b. компьютерная томография (KT)
 - с. цифровая рентгенография
 - d. MP-томография
- 56. Что выполняет аналогово-цифровой преобразователь (АЦП)?
 - а. преобразует аналоговые изображения в матричные
 - b. преобразует матричные изображения в аналоговые
 - с. преобразует электронный сигнал в механический
 - d. преобразует световой сигнал в электрический
- 57. Аналогово-цифровые преобразователи (АЦП) преобразуют
 - а. аналоговые изображения в матричные
 - b. матричные изображения в аналоговые
 - с. электронный сигнал в механический
 - d. световой сигнал в электрический

- 58. Выберите название элементарной единицы памяти дисплейного процессора, которая организована в виде матрицы, каждому элементу которой соответствует свойучасток лисплея
 - а. пиксель
 - b. бит
 - с. рендеринг
 - d. триангуляция
- 59. Элементарная единица памяти дисплейного процессора, которая организована ввиде матрицы, каждому элементу которой соответствует свой участок дисплея, называется
 - а. пиксель
 - b. бит
 - с. рендеринг
 - d. триангуляция
- 60. Что относится к методам томографической интроскопии?
 - а. магнитная резонансная томография
 - b. анатомическое вскрытие
 - с. аускультация
 - d. рентгенография
- 61. Выберите метод, который относится к томографической интроскопии
 - а. магнитная резонансная томография
 - b. анатомическое вскрытие
 - с. аускультация
 - d. рентгенография
- 62. Медицинское изображение не является матричным
 - а. при электрокардиографии
 - b. при MP-томографии
 - с. при компьютерной томографии
 - d. при цифровой рентгенографии
 - 63. Выберите, при каких исследованиях медицинское изображение не является матричным
 - а. при электрокардиографии
 - b. при MP-томографии
 - с. при компьютерной томографии
 - d. при цифровой рентгенографии
 - 64. В результате проведения, какого медицинского исследования нельзя получить 2D изображение?
 - а. электрокардиография
 - b. цифровая радиология
 - с. компьютерная томография
 - d. ядерный магнитный резонанс
 - 65. 2D изображение не может быть получено в результате проведения такого исследования как
 - а. электрокардиография

- b. цифровая радиология
- с. компьютерная томография
- d. ядерный магнитный резонанс
- 66. Радиологические методы исследования это
 - а. рентгенография, радионуклидные исследования и компьютерная томография
 - b. рентгенография, радионуклидные исследования, компьютерная томография и MPтомография
 - с. электрокардиография
 - d. ультразвуковой метод
- 67. Обработка биосигналов включает в себя
 - а. измерение, преобразование в цифровую форму, отбор и интерпретацию сигнальных параметров
 - b. измерение, преобразование в цифровую форму, отбор, интерпретацию, кодирование и передачу
 - с. только отбор сигналов, которые диагностически существенны
 - d. только преобразование сигналов
- 68. Что включает в себя обработка биосигналов?
 - а. измерение, преобразование в цифровую форму, отбор и интерпретацию сигнальных параметров
 - b. измерение, преобразование в цифровую форму, отбор, интерпретацию, кодирование и передачу
 - с. только отбор сигналов, которые диагностически существенны
 - d. только преобразование сигналов
- 69. Что из ниже перечисленного входит в обработку биосигналов
 - а. измерение, преобразование в цифровую форму, отбор и интерпретацию сигнальных параметров
 - b. измерение, преобразование в цифровую форму, отбор, интерпретацию, кодирование и передачу
 - с. только отбор сигналов, которые диагностически существенны
 - d. только преобразование сигналов
 - 70. Повторяющиеся биопроцессы (например, сердцебиение, дыхание) генерируютсигналы, которые являются
 - а. детерминированными
 - b. стохастическими
 - с. цифровыми
 - d. всегда электрическими
 - 71. Биопроцессы, которые повторяются (например, сердцебиение, дыхание) генерируют сигналы, они являются
 - а. детерминированными
 - b. стохастическими
 - с. цифровыми
 - d. всегда электрическими
 - 72. Сигналы, которые генерируют повторяющиеся биопроцессы (например, сердцебиение, дыхание), являются

- а. детерминированными
 - b. стохастическими
 - с. цифровыми
 - d. всегда электрическими
- 73. Клетки мышц или нервные клетки в коре головного мозга, которые деполяризуются случайным образом, генерируют сигналы, которые являются
- а. стохастическими
- b. детерминированными
- с. постоянными
- d. цифровыми
- 74. Нервные клетки в коре головного мозга или клетки мышц, которые деполяризуются случайным образом, генерируют сигналы, которые являются
- а. стохастическими
 - b. детерминированными
 - с. постоянными
 - d. цифровыми
 - е. периодическими
- 75. Что из ниже перечисленного с точки зрения типов генерируемых сигналов можноотнести к случаю «только выходной сигнал»?
- а. электрокардиография без внешней стимуляции пациента
- b. электроэнцефалография при анестезии
- с. электрокардиография при физической нагрузке
- d. стимулированные отклики при исследовании энцефалограммы
- 76. Выберите, что из ниже перечисленного с точки зрения типов генерируемых сигналов можно отнести к случаю «только выходной сигнал»?
- а. электрокардиография без внешней стимуляции пациента
 - b. электроэнцефалография при анестезии
 - с. электрокардиография при физической нагрузке
 - d. стимулированные отклики при исследовании энцефалограммы
- 77. К случаю «только выходной сигнал», с точки зрения типов генерируемых сигналов, можно отнести:
- а. электрокардиография без внешней стимуляции пациента
 - b. электроэнцефалография при анестезии
 - с. электрокардиография при физической нагрузке
 - d. стимулированные отклики при исследовании энцефалограммы
- 78. Биосигнал, являющийся откликом нервных волокон на электрическое стимулирование, это
- а. вызванный сигнал
- b. синусоидальный сигнал
- с. только выходной сигнал
- d. результат испытания во время стимуляции
- 79. Из ниже перечисленного выберите биосигнал, являющийся откликом нервных волокон на электрическое стимулирование.

- а. вызванный сигнал
 - b. синусоидальный сигнал
 - с. только выходной сигнал
 - d. результат испытания во время стимуляции
- 80. Какой биосигнал является откликом нервных волокон на электрическое стимулирование?
- а. вызванный сигнал
 - b. синусоидальный сигнал
 - с. только выходной сигнал
 - d. результат испытания во время стимуляции
- 81. Если свойства сигнала не меняются со временем, то он называется
 - а. стационарным
 - b. стохастическим
 - с. периодическим
 - d. нестационарным
- 82. Сигнал, свойства которого не меняются со временем, называется
 - а. стационарным
 - b. стохастическим
 - с. периодическим
 - d. нестационарным
- 83. Как называется сигнал, свойства которого не меняются со временем?
 - а. стационарным
 - b. стохастическим
 - с. периодическим
 - d. нестационарным
 - 84. Лишним звеном в цепочке этапов анализа биологических сигналов является процесс получения
 - а. программного кода
 - b. данных
 - с. информации
 - d. диагноза
 - 85. В цепочке этапов анализа биологических сигналов, лишним звеном является,процесс получения
 - а. программного кода
 - b. данных
 - с. информации
 - d. диагноза
 - 86. Из ниже перечисленного, лишним звеном в цепочке этапов анализа биологических сигналов, является процесс получения
 - а. программного кода
 - b. данных
 - с. информации
 - d. диагноза

- 87. Сигналы, параметры которых могут описываться только статистически, называются
- а. стохастическими
- b. детерминированными
- с. точечными
- d. периодическими
- 88. Как называются сигналы, параметры которых могут описываться только статистически?
- а. стохастическими
 - b. детерминированными
 - с. точечными
 - d. периодическими
- 89. Из ниже перечисленного выберите сигналы, параметры которых могут описываться только статистически.
- а. стохастические
 - b. детерминированные
 - с. точечные
 - d. периодические
- 90. Основной целью математической статистики является
 - а. создание методов сбора, обработки и анализа статистических данных для получения научных и практических выводов
 - b. создание математических моделей процессов и систем
 - с. обоснование способов сбора и группировки статистических данных
 - d. оценка зависимости случайной величины от одной или нескольких случайных величин
- 91. Случайной величиной называется величина
 - а. которая в результате испытания принимает одно из множества возможных значений, причем появление того или иного значения этой величины является случайным событием
 - b. которая в результате испытания принимает все значения с вероятностью >1
 - с. которая в результате испытания принимает все значения с вероятностью 1
 - d. которая всегда имеет конечное множество возможных значений
- 92. Дискретной случайной величиной называется случайная величина
 - а. с конечным или счетным множеством возможных значений
 - b. возможные значения которой невозможно определить точно
 - с. которая принимает строго ограниченное число значений
 - d. которая может принимать любое значение из некоторого интервала
- 93. Непрерывной случайной величиной называется случайная величина
 - а. которая может принимать любое из значений, принадлежащих интервалу (интервалам), в котором она существует
 - b. с известными вероятностями ее значений
 - с. с конечным или счетным множеством возможных значений
 - d. которая принимает хотя бы одно значение с вероятностью 1

- 94. Примером непрерывной случайной величины является
 - а. количество сахара в крови человека
 - b. количество мальчиков, родившихся в роддоме в какой-либо день
 - с. количество больных на приеме у врача
 - d. количество заболевших во время эпидемии какой-либо болезни
- 95. Примером дискретной случайной величины является
 - а. количество больных на приеме у врача
 - b. количество сахара в крови человека
 - с. температура тела человека
 - d. уровень гормонов в крови человека
- 96. Задать закон распределения дискретной случайной величины это значит
 - а. указать все возможные ее значения и соответствующие им вероятности
 - b. задать функцию распределения
 - с. задать функцию плотности вероятности
 - d. указать наименьшее и наибольшее значения этой величины
- 97. Биномиальное распределение это
 - а. распределение числа появлений некоторого события в серии из n независимых испытаний, причем в каждом из этих испытаний вероятность события постоянна
 - b. распределение вероятностей зависимых исходов при большом количестве испытаний
 - с. распределение вероятностей т зависимых исходов при п испытаниях
 - d. зависимость вероятности случайного события A от числа испытаний n
 - 98. График плотности вероятности f(x) случайной величины x, распределенной по нормальному закону
 - а. имеет форму колокола
 - b. имеет форму параболы
 - с. зависит от природы изучаемой величины
 - d. не зависит от математического ожидания случайной величины
- 99. Выборочная совокупность это
 - а. часть генеральной совокупности, выбранная для изучения
 - b. объекты генеральной совокупности, обладающие каким-либо свойством
 - с. совокупность любых, не имеющих общего свойства, объектов
 - d. наибольшая совокупность, объединяющая все элементы, обладающие общим свойством
- 100. Какие цели ставит перед собой математическая статистика?
 - а. создание методов сбора, обработки и анализа статистических данных для получения научных и практических выводов
 - b. создание математических моделей процессов и систем
 - с. обоснование способов сбора и группировки статистических данных
 - d. оценка зависимости случайной величины от одной или нескольких случайных величин
 - 101. Для нормально распределенной случайной величины график ее плотности

вероятности

- а. имеет форму колокола
- b. имеет форму параболы
- с. зависит от природы изучаемой величины
- d. не зависит от математического ожидания случайной величины
- 102. Под выборочной совокупностью понимают
 - а. часть генеральной совокупности, выбранную для изучения
 - b. объекты генеральной совокупности, обладающие каким-либо свойством
 - с. совокупность любых, не имеющих общего свойства, объектов
 - d. наибольшую совокупность, объединяющую все элементы, обладающие общим свойством

103. Выборкой называют

- а. часть генеральной совокупности, выбранная для изучения
- b. объекты генеральной совокупности, обладающие каким-либо свойством
- с. совокупность любых, не имеющих общего свойства, объектов
- d. наибольшая совокупность, объединяющая все элементы, обладающие общим свойством
 - 104. Выборка является репрезентативной, если
 - а. ее состав и структура по своим существенным характеристикам соответствуют составу и структуре генеральной совокупности
 - b. объèм еè больше 30
 - с. все еè объекты объединены не меньше чем двумя общими признаками
 - d. число объектов в ней не превышает 100
 - 105. Общая площадь прямоугольников, образующих гистограмму вариационного ряда, равна
 - а. единице
 - b. нулю
 - с. объему выборки
 - d. дисперсии случайной величины
- 106. Какие цели ставит перед собой математическая статистика?
 - а. создание методов сбора, обработки и анализа статистических данных для получения научных и практических выводов
 - b. создание математических моделей процессов и систем
 - с. обоснование способов сбора и группировки статистических данных
 - d. оценка зависимости случайной величины от одной или нескольких случайных величин
- 107. Математическая статистика как наука ставит своей целью
 - а. создание методов сбора, обработки и анализа статистических данных для получения научных и практических выводов
 - b. создание математических моделей процессов и систем
 - с. обоснование способов сбора и группировки статистических данных
 - d. оценка зависимости случайной величины от одной или нескольких случайных величин
- 108. Величина называется случайной величиной, если

- а. в результате испытания она принимает одно из множества возможных значений, причем появление того или иного значения этой величины является случайным событием
- b. она в результате испытания принимает все значения с вероятностью >1
- с. она в результате испытания принимает все значения с вероятностью 1
- d. она всегда имеет конечное множество возможных значений
- 109. В математической статистике случайной величиной называется величина,
 - а. которая в результате испытания принимает одно из множества возможных значений, причем появление того или иного значения этой величины является случайным событием
 - b. которая в результате испытания принимает все значения с вероятностью >1
 - с. которая в результате испытания принимает все значения с вероятностью 1
 - d. которая всегда имеет конечное множество возможных значений
- 110. Случайная величина называется дискретной случайной величиной, если
 - а. она имеет конечное или счетное множество возможных значений
 - b. ее возможные значения нельзя определить точно
 - с. она принимает строго ограниченное число значений
 - d. она может принимать любое значение из некоторого интервала
- 111. Для дискретной случайной величины
 - а. существует конечное или счетное множество возможных значений
 - b. возможные значения нельзя определить точно
 - с. верно то, что она принимает строго ограниченное число значений
 - d. верно то, что она может принимать любое значение из некоторого интервала
- 112. Для непрерывной случайной величины
 - а. верно то, что она может принимать любое из значений, принадлежащих интервалу (интервалам), в котором она существует
 - b. известны вероятности всех ее значений
 - с. существует конечное или счетное множество возможных значений
 - d. верно то, что она принимает хотя бы одно значение с вероятностью
- 113. Случайная величина называется непрерывной случайной величиной, если
 - а. она может принимать любое из значений, принадлежащих интервалу (интервалам), в котором она существует
 - b. для нее известны вероятности ее значений
 - с. она имеет конечное или счетное множество возможных значений
 - d. она принимает хотя бы одно значение с вероятностью 1
- 114. Одним из примеров непрерывной случайной величины является
 - а. количество сахара в крови человека
 - b. количество девочек, родившихся в роддоме в какой-либо день
 - с. число больных на приеме у врача
 - d. количество заболевших во время эпидемии какой-либо болезни
- 115. В качестве примера непрерывной случайной величины можно назвать
 - а. количество сахара в моче человека

- b. количество мальчиков, родившихся в роддоме в какой-либо день
- с. количество больных на приеме у врача
- d. количество заболевших во время эпидемии какой-либо болезни
- 116. Одним из примеров дискретной случайной величины является
 - а. число больных на приеме у врача
 - b. количество сахара в крови человека
 - с. температура тела человека
 - d. уровень гормонов в крови человека
- 117. В качестве примера дискретной случайной величины можно назвать
 - а. число отличников в группе
 - b. количество сахара в крови человека
 - с. температура тела человека
 - d. уровень гормонов в крови человека
- 118. Чтобы задать закон распределения дискретной случайной величины, надо
 - а. указать все возможные ее значения и соответствующие им вероятности
 - b. указать функцию распределения этой величины
 - с. задать функцию плотности вероятности этой величины
 - d. указать наименьшее и наибольшее значения этой величины
- 119. Закон распределения дискретной случайной величины задается путем
 - а. указания всех ее возможных значений и соответствующих им вероятностей
 - b. указания функции распределения величины
 - с. задания функции плотности вероятности
 - d. указания наименьшего и наибольшего значений этой величины
- 120. Под биномиальным распределением понимают
 - а. распределение числа появлений некоторого события в серии из n независимых испытаний, причем в каждом из этих испытаний вероятность события постоянна
 - b. распределение вероятностей зависимых исходов при большом количестве испытаний
 - с. распределение вероятностей т зависимых исходов при п испытаниях
 - d. зависимость вероятности случайного события A от числа испытаний n
- 121. Распределение называют биномиальным, если это
 - а. распределение числа появлений некоторого события в серии из n независимых испытаний, причем в каждом из этих испытаний вероятность события постоянна
 - b. распределение вероятностей зависимых исходов при большом количестве испытаний
 - с. распределение вероятностей m зависимых исходов при n испытаниях
 - d. зависимость вероятности случайного события A от числа испытаний n
 - 122. Если случайная величины распределена по нормальному закону, то график ее плотности вероятности
 - а. имеет форму колокола
 - b. имеет форму параболы
 - с. зависит от природы изучаемой величины

- d. не зависит от математического ожидания случайной величины
- 123. Для нормально распределенной случайной величины график ее плотности вероятности
- а. имеет форму колокола
- b. имеет форму параболы
- с. зависит от природы изучаемой величины
- d. не зависит от математического ожидания случайной величины