Teoría de Galois

Hoja 3. Extensiones de Galois.

Escribiremos E/K para denotar que E es una extensión del cuerpo K. Decimos que E/K es normal si E es el cuerpo de escisión (descomposición) de algún polinomio $f \in K[x]$, y escribimos E = K(f).

- 1. Construye cuerpos de escisión sobre \mathbb{Q} de los polinomios $x^3 1$, $x^4 + 5x^2 + 5$ y $x^6 8$ y calcula el grado de la extensión correspondiente.
- **2.** Sean $f(x) = (x^2 3)(x^3 + 1) \in \mathbb{Q}[x]$ y $g(x) = (x^2 2x 2)(x^2 + 1) \in \mathbb{Q}[x]$. Demuestra que $\mathbb{Q}(\sqrt{3}, i)$ es cuerpo de escisión de f y g sobre \mathbb{Q} .
- **3.** Demuestra que $\mathbb{Q}(\sqrt{2},i)$ es un cuerpo de escisión de $x^2 2\sqrt{2}x + 3$ sobre $\mathbb{Q}(\sqrt{2})$.
- **4.** Demuestra que $K = \mathbb{F}_2[y]/(y^3 + y + 1)$ es el cuerpo de escisión de $x^3 + x + 1$ y $x^3 + x^2 + 1$ sobre \mathbb{F}_2 .
- **5.** Decide si las siguientes extensiones son normales: $\mathbb{Q}(\sqrt{5}i)/\mathbb{Q}$, $\mathbb{Q}(\sqrt{5})/\mathbb{Q}$ y $\mathbb{Q}(\sqrt[4]{5})/\mathbb{Q}$.
- **6.** Demuestra que $\mathbb{Q}(\sqrt[3]{2})$ no es una extensión normal de \mathbb{Q} . Encuentra una extensión normal de \mathbb{Q} que contenga a $\mathbb{Q}(\sqrt[3]{2})$ como un subcuerpo.
- 7. Demuestra que $\mathbb{Q}(\xi)$, donde $\xi \in \mathbb{C}$ es una raíz primitiva quinta de la unidad, es una extensión normal de \mathbb{Q} .
- 8. Prueba que toda extensión de grado 2 es normal.
- **9.** Si E/L y L/K son extensiones normales, demuestra E/K no es necesariamente normal. Sugerencia: considera $E = \mathbb{Q}(\sqrt[4]{2})$ y $L = \mathbb{Q}(\sqrt{2})$.
- 10. Decide justificadamente si cada una de las siguientes afirmaciones es verdadera o falsa:
 - a) Sea K un cuerpo y sea $p(x) \in K[x]$. Entonces existe una extensión de K donde p(x) tiene una raíz.
- b) Sea K un cuerpo y $p(x) \in K[x]$. Entonces existe una extensión de K donde p(x) se descompone como producto de polinomios de grado 1.
- c) Supongamos que $f \in K[x]$ se descompone en K[x], supongamos que $p \in K[x]$ no es constante y que p divide a f en K[x]. Entonces p se descompone en K[x].
- d) Supongamos que $K \subseteq L \subseteq E$ son extensiones de cuerpos. Sea $f \in K[x]$ no constante. Si E es cuerpo de escisión de f sobre K, entonces E es cuerpo de escisión de f sobre L.
 - e) Si $E = K(a_1, \ldots, a_n)$ y $\sigma \in Gal(E/K)$ tal que $\sigma(a_i) = a_i$ para todo i, entonces $\sigma = 1_E$.
- f) Sean E/L y L/K extensiones normales. Si todo $\sigma \in \operatorname{Gal}(L/K)$ se puede extender a un automorfismo de E, entonces E es normal sobre K.
- 11. Calcula los siguientes grupos de Galois.
 - a) Prueba que $\operatorname{Aut}(\mathbb{Q}) = 1$ y $\operatorname{Aut}(\mathbb{R}) = \operatorname{Gal}(\mathbb{R}/\mathbb{Q}) = 1$.
- **b)** Definimos $\sigma: \mathbb{C} \to \mathbb{C}$ como $\sigma(a+bi) = a-bi$. Prueba que $\operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \{1, \sigma\}$. Sugerencia: para el primer apartado, si $f \in \operatorname{Aut}(\mathbb{R})$ y $0 < x \in \mathbb{R}$, entonces $x = y^2$ luego f(x) > 0. Deduce que x < y implica que f(x) < f(y) y usa que entre dos números reales siempre hay un racional.

- **12.** Indica cuáles de los siguientes polinomios son separables sobre \mathbb{Q} , \mathbb{F}_2 , \mathbb{F}_3 y \mathbb{F}_5 : x^3+1 , x^2+x+1 , $x^4+x^3+x^2+x+1$.
- 13. Sea $K = \mathbb{F}_2[x]/(x^2 + x + 1)$. Demuestra que K/\mathbb{F}_2 es separable.
- **14.** Demuestra que $\mathbb{F}_2(t)/\mathbb{F}_2(t^2)$ no es separable.
- 15. ¿Cuántas raíces distintas tiene $x^{12} + 2x^6 + 1 \in \mathbb{F}_3[x]$ en su cuerpo de escisión?
- 16. Construye cuerpos finitos con 8, 9, 25 y 27 elementos.
- 17. Prueba que para cada primo p y para cada entero positivo n, existe al menos un polinomio irreducible $f \in \mathbb{F}_p[x]$ de grado n.
- **18.** Sea $f(x) = x^q x \in \mathbb{F}_p[x]$ con $q = p^n$.
 - a) Demuestra que cualquier polinomio irreducible en $\mathbb{F}_p[x]$ de grado n divide a f.
 - b) Demuestra que el grado de todos los factores irreducibles de f divide a n.
- 19. Responde, de manera razonada, a las siguientes preguntas:
- a) Si en $\mathbb{F}_2[x]$ consideramos $f(x) = x^3 + x + 1$, demuestra que $K = \mathbb{F}_2[x]/(f)$ es un cuerpo finito y enumera sus elementos. Halla el inverso del elemento $x^2 + x + 1 + (f) \in K$. Comprueba que el grupo multiplicativo de K es cíclico.
- b) Halla un generador del grupo multiplicativo del cuerpo $K = \mathbb{F}_3[x]/(x^2+1)$ y expresa todo elemento de K^{\times} como potencia de dicho generador.
- **20.** Sea E/K una extensión de grado 2. Si la característica de K no es 2, prueba que existe un $u \in E$ de modo que E = K(u) y $u^2 \in K$. Muestra que la hipótesis sobre la característica es necesaria. Sugerencia: para la segunda parte, considera el cuerpo de 4 elementos.
- **21.** Sea K es un cuerpo de característica p y $a \in K$. Demuestra que el polinomio $p(x) = x^p x + a$ o bien se se escinde en K[x] o bien es irreducible.
- **22.** Demuestra que los polinomios de Artin-Schreier x^p-x+a donde p no divide a $a\in\mathbb{Z}$ son irreducibles. Sugerencia: usa reducción de coeficientes módulo p, considera un cuerpo de escisión sobre \mathbb{F}_p y aplica el pequeño teorema de Fermat para obtener todas las raíces.