INVESTIGATE WORLD UNIVERSITY RANKING

Task: 1 generate a bar chart of the distribution students on the country by using ggplot.

.

First what is "ggplot2" so it is a one kind of package which is used for data visualization and also used for semantic grammar of graphics.

so now we have to install ggplot2 package by below code

>install.packages("ggplot2")

>library(ggplot2)

now we have to load the data by below code

>mydata <- read.csv("D:/LAKEHEAD WINTER 2019/DATA SCI/project/timesData.csv")

>View(mydata)

Now bar chart of the distribution of students on the country.

>ggplot(mydata[1:100,]) + geom_bar(aes(country))

here we are using geom_bar() which is used to define geometric object for barchart.

Task 2: using scatter plot compare students's teaching and research ratio.

 $> ggplot(mydata[1:50,], aes(teaching, research)) + geom_point(size=3.5, shape=18) + coord_cartesian(xlim = c(58,86)) + scale_x_continuous(breaks = seq(60,85,5)) \\$

Here geom_point is define object of scatter plot.

Task: 3 modify the teaching and research ratio by including smooth regression.

> ggplot(mydata[1:100,], aes(teaching, research)) + geom_point(size=3.5,shape=18) + coord_cartesian(xlim = c(58,86)) + scale_x_continuous(breaks = seq(60,85,5)) + geom_smooth()

Geom_smooth is used for adding extra line on scatter plot.

Task 4: visualize student_staff_ratio by using a histogram with density distribution function.

We are using geom_histogram for defining histrogram. Also we are using geom_density for define density curve as object.

Geom_rug can be used for tick marks on x-axes.

#Histogram with density distribution function

>mydata <- read.csv("D:/LAKEHEAD WINTER 2019/DATA SCI/project/timesData.csv")
>View(mydata)

>a<- ggplot(data=mydata, aes(student_staff_ratio)) + geom_histogram(aes(y=..density..)) +
geom_density(aes(x=student_staff_ratio)) + geom_rug(aes(x=student_staff_ratio))
>a


```
Task: 5 find out how many universities have teaching ratio less than 50.

> mydata <- read.csv("D:/LAKEHEAD WINTER 2019/DATA SCI/project/timesData.csv")

> View(mydata)

#data has teching < 50

> a<- nrow(mydata[mydata$teaching< 50,])

> a

| > a<- nrow(mydata[mydata$teaching< 50,])

> a

[1] 2073
```

Task: 6 find out canadian institution names with world rank and national rank in year 2015.

```
> install.packages("tidyverse")
```

>library(tidyverse)

>x <- read.csv("D:/LAKEHEAD WINTER 2019/DATA SCI/project/cwurData.csv")

>x

> |

```
>data canada<- filter(x, country=="Canada")
```

>a1<-filter(data_canada, year=="2015")

>a1<- select(a1, world_rank,national_rank,institution)

>a1

```
Console C:/Users/Bhavin/AppData/Local/Temp/ AppData/Local/Temp/
> al<- select(al, world_rank,national_rank,institution)
   world_rank national_rank
                                                                             institution
1
           32
                            1
                                                                  University of Toronto
                            2
2
           42
                                                                      McGill University
3
           62
                            3
                                                        University of British Columbia
4
          107
                                                                  University of Alberta
5
                            5 Western University (The University of Western Ontario)
          133
                                                                    McMaster University
6
          150
7
          151
                                                                 University of Montreal
                            8
8
          167
                                                                  University of Calgary
9
          193
                            9
                                                                   University of Ottawa
10
           222
                           10
                                                                 University of Manitoba
11
          229
                           11
                                                                       Laval University
12
           269
                           12
                                                                 University of Waterloo
13
          284
                           13
                                                                     Queen's University
```

<i>₫</i> =	ppData/Local/Temp/ 🙈	C:/Users/Bhavin/A	Console
Dalhousie University	14	286	14
York University	15	337	15
University of Victoria	16	352	16
Simon Fraser University	17	362	17
University of Guelph	18	368	18
Concordia University	19	417	19
University of Saskatchewan	20	455	20
University of Sherbrooke	21	502	21
University of Windsor	22	538	22
Carleton University	23	593	23
Memorial University of Newfoundland	24	611	24
University of QuÂ@bec at Montreal	25	663	25
École Polytechnique de Montréal	26	781	26
University of Regina	27	836	27
Brock University	28	861	28
University of New Brunswick	29	870	29
University of New Prunswick	29	8/0	29
University of New Brunswick			
Wilfrid Laurier University	30	907	30
Trent University	31	910	31
University of Lethbridge	32	917	32
Ryerson University	33	994	33

Task 7: Make histograms of the variable "research" using different numbers of bars.

>hist(mydata\$research, breaks = 10, main = 'Histogram of research', xlab = "research")
Here x-axes will be research and it will break out at interval 10.

Task 8: Print out from times_teaching_score object all the observations which have teaching>88 and student_staff_ratio >10.

```
> install.packages("tidyverse")
```

>library(tidyverse)

#create the object times_teaching_tscore containing the column name income and students staff ratio

```
>times_teaching_score = mydata %>%
```

> select(teaching , student_staff_ratio)

>times_teaching_score

#print out from times_income_tscore object all the observation having teaching > 88 and student staff ratio > 10

>times_teaching_score %>% filter(teaching > 88, student_staff_ratio > 10)

```
> times_teaching_score %>% filter(teaching > 88, student_staff_ratio > 10)
  teaching student_staff_ratio
1
       90.5
                           11.8
2
       88.2
                           11.6
3
       89.2
                           11.7
4
       89.5
                           11.6
5
       90.5
                           11.8
6
       88.8
                           11.7
7
       89.7
                           11.6
8
       91.2
                           11.8
9
       89.0
                           11.6
10
       90.6
                           11.8
11
       88.6
                           11.6
12
                           11.8
       89.7
13
       88.2
                           11.8
```

Task 9: Use the wordcloud library to visualize which country has mentioned most in 2011.

Here we are using two packages called "tm", "wordcloud". with the help of wordcount words can visually show up in content information such as word scatterd around the figure. Words seeming all the more frequently in the text are appeared in a bigger text style, while less basic terms are appeared littler textual styles.

> install.packages("tm")

>install.packages("wordcloud")

>library(wordcloud)

#use the wordcloud library to visualize which country is mentioned most in year 0f 2011

>a <- mydata\$country[mydata\$year == 2011]

>wordcloud(a, min.freq = 500, random.order = FALSE)

Task 10: find out distribution for number of universities in Canada with respect to the year.

> mydata <- read.csv("D:/LAKEHEAD WINTER 2019/DATA SCI/project/timesData.csv")

>View(mydata)

>mydata %>% group_by(year, country) %>% summarise(count = n()) %>% filter(country == "Canada") %>%

>ggplot(aes(country, count, fill = country)) + geom_bar(stat = "identity") + facet_wrap(~year) + geom_text(aes(label = count), vjust = -0.2) + labs(title = "Number of Universities in Canada", y = "Number of Universities")

Number of Universities in Canada

Task 11: generate a decision tree for CWURDATA using rpart and tree packages.

```
> x <- read.csv("D:/LAKEHEAD WINTER 2019/DATA SCI/project/cwurData.csv")
>f <- x[sample(nrow(x)),]
>x_train <- f[1:2000, ]
>x_test <- f[2001:2200, ]
>library(rpart)
>model <- rpart(x$world_rank ~ x$patent +x$alumni_employment +x$citations +x$publications , data = x_train)
>install.packages("rpart.plot")
>install.packages("tree")
>library(tree)
>library(rpart.plot)
>rpart.plot(model, digits = 2)
```


Task 12: produce decision tree using "rpart", "tree", "rattle", "RColorBrewer" library for CWURDATA.

> x <- read.csv("D:/LAKEHEAD WINTER 2019/DATA SCI/project/cwurData.csv")

>Data<-na.omit(x)

```
>library(rpart)
>library(tree)
>set.seed(101)
>alpha<-0.7
>train<-sample(1:nrow(Data),alpha*nrow(Data))
>train.set<-Data[train,]
>test.set<-Data[-train,]
>tree.model<-rpart(Data$world_rank ~
Data$score+Data$quality_of_education+Data$national_rank)
>install.packages("rattle")
>install.packages("RColorBrewer")
>library(rattle)
>library(RColorBrewer)
>plot(tree.model)
>text(tree.model)
```

>fancyRpartPlot(tree.model)

Rattle 2019-Mar-24 11:28:47 Bhavin