

VisRL: Intention-Driven Visual Perception via Reinforced Reasoning

Zhangquan Chen, Xufang Luo, Dongsheng Li

Contact: xufluo@microsoft.com

1. Overview

Goal: Learn intention-driven visual perceptron

- Common models process entire image uniformly
- > Human focus on different aspects of a scene depending on their goals
- ➤ Intelligent models should also adapt their focus based on the task at hand

Multimodal large language models (MLLMs) can help

- The intension can now be expressed in a highly flexible way, nature language. MLLMs generate the location of the focusing area as the intermedia step.
- Disadvantages
 - Huge annotation complexity (image × query)
 - Not a human-like learning

Solution: developing an intrinsic reinforced reasoning

Contributions:

- VisRL: the first RL-based framework for intention-driven visual perception, removing reliance on dense annotations.
- Self-Evolution Pipeline: a novel data generation pipeline, integrating a diversity controller and step-level DPO optimization.
- Effectiveness: outperforms strong baselines and generalizes well.

2. Method

Schematic illustration of VisRL

We first conduct a small-scale SFT warm-up, then perform RL training on large-scale data without bounding box annotations. The RL phase iterates between self-evolution data generation and step-level DPO optimization, ensuring reasoning improvement without external models or annotations.

Data Generation

VisRL self-evolves by sampling M_{SFT} for diverse CoT data and using M_{org} for self-criticism.

This enables intrinsic learning, refining probability distributions without external dependencies

$$P_{win} = \{p_i \mid s_i^b \geq \mathcal{T}_{\max}^b \text{ and } s_i^r \geq \mathcal{T}_{\max}^r \}$$

 $P_{lose} = \{p_i \mid s_i^b < \mathcal{T}_{\min}^b \text{ and } s_i^r < \mathcal{T}_{\min}^r \}$

Step-level DPO

VisRL uses a step-level DPO method in two stages.

Stage 1: optimizes the bounding box

 $\mathcal{L}_{stage1}(\theta) = -\mathbb{E}_{(x, B_{win}, B_{lose}) \sim D_P}(P_B(\theta))$

$$P_B(\theta) = \log \sigma \left(\beta_1 \log \frac{\pi_\theta \left(B_{win} \mid x \right)}{\pi_{ref} \left(B_{win} \mid x \right)} - \beta_1 \log \frac{\pi_\theta \left(B_{lose} \mid x \right)}{\pi_{ref} \left(B_{lose} \mid x \right)} \right)$$

Stage 2: optimizes both the bounding box and the final response

$$P_{R}(\hat{\theta}) = \log \sigma \left(\beta_2 \log \frac{\pi_{\hat{\theta}} \left(R_{win} \mid \hat{x} \right)}{\pi_{\hat{ref}} \left(R_{win} \mid \hat{x} \right)} - \beta_2 \log \frac{\pi_{\hat{\theta}} \left(R_{lose} \mid \hat{x} \right)}{\pi_{\hat{ref}} \left(R_{lose} \mid \hat{x} \right)} \right)$$

$$\mathcal{L}_{stage2}(\hat{\theta}) = -(\lambda_B \mathcal{L}_B(\hat{\theta}) + \lambda_R \mathcal{L}_R(\hat{\theta}))$$

3. Results

Comparison with different baselines

Method	LLM	Vision Encoder	MME	MMBench	POPE	Dataset Num.
LLaVA [B] [34]	Vicuna-7B [13]	CLIP-ViT-L-14-224 [44]	1051.2	34.4	76.5	558K
SEAL [D] [61]	Vicuna-7B	CLIP-ViT-L-14-224	1128.9	33.1	82.4	558K + 387K [D]
LLaVA + P2G [T] [8]	Vicuna-7B	CLIP-ViT-L-14-224	1223.0	_	_	558K + 427K [D]
LLaVA + VisRL	Vicuna-7B	CLIP-ViT-L-14-224	1183.8	<u>37.5</u>	78.2	558K + 30K [D]+180K
LLaVA + VisRL- Iter1	Vicuna-7B	CLIP-ViT-L-14-224	1238.3	38.6	<u>80.4</u>	180K
LLaVA-1.5 [B] [33]	Vicuna-7B	CLIP-ViT-L-14-336	1510.7	64.3	85.8	558K
VisCoT [D] [48]	Vicuna-7B	CLIP-ViT-L-14-336	1453.6	67.9	86.0	558K + 376K [D]
LLaVA-1.5 + VisRL	Vicuna-7B	CLIP-ViT-L-14-336	<u>1526.3</u>	<u>70.1</u>	<u>87.5</u>	558K + 30K [D]+180K
LLaVA-1.5 + VisRL-Iter1	Vicuna-7B	CLIP-ViT-L-14-336	1560.0	71.7	88.8	180K
LLaVA-NeXT [B] [35]	Vicuna-7B-1.5 [72]	CLIP-ViT-L-14-336	1611.1	72.3	_	558K
VisionLLM v2 [D] [60]	Vicuna-7B-1.5	CLIP-ViT-L-14-336	1512.5	77.1	87.5	892K
Insight-V-LLaVA [T] [15]	Vicuna-7B-1.5	CLIP-ViT-L-14-336	1583.9	81.7	_	558K + 215K [D]
LLaVA-NeXT + VisRL	Vicuna-7B-1.5	CLIP-ViT-L-14-336	<u>1619.2</u>	78.8	<u>88.4</u>	558K + 30K [D]+180K
LLaVA-NeXT + VISRL-Iter1	Vicuna-7B-1.5	CLIP-ViT-L-14-336	1637.0	<u>80.0</u>	89.3	180K

VisRL over multiple iterations

Performance on the VisCoT dataset across different LMMs

				oc/Text			Chart	General VQA		lation Reason	_	Fine-grained	
LMM	Training Phase	DocVQA	TextCaps	TextVQA	DUDE	SROIE	InfogVQA	Flickr30k	GQA	Open images	VSR	CUB	Avg
	Base (w/o CoT)	0.244	0.597	0.588	0.290	0.136	0.400	0.581	0.534	0.412	0.572	0.530	0.444
LLaVA-1.5-7B [33]	VisCoT [438k] [48]	0.355	0.610	0.719	0.279	0.341	0.356	0.671	0.616	0.833	0.682	0.556	0.547
	SFT [30k]	0.336	0.597	0.715	0.270	0.308	0.336	0.671	0.617	0.833	0.676	0.559	0.538
	SFT+RL1	0.382	0.612	0.724	0.300	0.378	0.406	0.674	0.639	0.838	0.715	0.579	0.568
	SFT+RL1+RL2	0.419	0.641	0.759	0.394	0.411	0.497	0.675	0.666	0.848	0.748	0.598	0.605
	Base (w/o CoT)	0.431	0.586	0.570	0.332	0.114	0.361	0.525	0.559	0.462	0.594	0.520	0.459
LLaVA-NeXT-7B [35]	SFT [30k]	0.423	0.580	0.722	0.330	0.293	0.356	0.589	0.684	0.821	0.767	0.551	0.556
	SFT+RL1	0.474	0.611	0.728	0.373	0.350	0.447	0.592	0.707	0.826	0.837	0.573	0.593
	SFT+RL1+RL2	0.508	0.655	0.743	0.474	0.379	0.525	0.592	0.738	0.837	0.871	0.587	0.628
	Base (w/o CoT)	0.797	0.771	0.879	0.588	0.629	0.637	0.601	0.484	0.335	0.589	0.674	0.635
Llama-3.2-V-11B [39]	SFT [30k]	0.776	0.762	0.880	0.584	0.634	0.633	0.712	0.683	0.728	0.720	0.855	0.724
	SFT+RL1	0.811	0.791	0.890	0.599	0.698	0.688	0.724	0.707	0.731	0.738	0.864	0.749
	SFT+RL1+RL2	0.844	0.835	0.897	0.638	0.733	0.714	0.731	0.757	0.794	0.822	0.884	0.786
	Base (w/o CoT)	0.528	0.504	0.548	0.125	0.114	0.220	0.534	0.561	0.462	0.585	0.529	0.428
MiniCPM-o-2.6-8B [66]	SFT [30k]	0.518	0.498	0.551	0.134	0.133	0.239	0.615	0.727	0.789	0.787	0.715	0.519
	SFT+RL1	0.551	0.533	0.561	0.150	0.182	0.286	0.630	0.737	0.799	0.824	0.734	0.544
	SFT+RL1+RL2	0.596	0.600	0.565	0.209	0.251	0.353	0.639	0.793	0.870	0.864	0.756	0.591
	Base (w/o CoT)	0.017	0.498	0.536	0.129	0.114	0.197	0.529	0.558	0.486	0.543	0.541	0.377
PaliGemma2-10B [50]	SFT [30k]	0.110	0.498	0.544	0.134	0.133	0.225	0.611	0.718	0.800	0.770	0.724	0.479
	SFT+RL1	0.169	0.527	0.549	0.163	0.179	0.272	0.621	0.731	0.811	0.822	0.736	0.507
	SFT+RL1+RL2	0.303	0.585	0.560	0.229	0.248	0.336	0.639	0.789	0.884	0.847	0.764	0.562
	Base (w/o CoT)	0.115	0.522	0.551	0.130	0.122	0.205	0.522	0.561	0.468	0.587	0.497	0.389
Yi-VL-6B [67]	SFT [30k]	0.168	0.521	0.598	0.139	0.152	0.247	0.606	0.721	0.772	0.792	0.695	0.492
	SFT+RL1	0.208	0.564	0.610	0.174	0.182	0.294	0.613	0.747	0.799	0.844	0.713	0.523
	SFT+RL1+RL2	0.318	0.611	0.627	0.234	0.280	0.358	0.620	0.804	0.853	0.871	0.726	0.573
Qwen2.5-VL-7B [3]	Base (w/o CoT)	0.836	0.760	0.847	0.606	0.789	0.685	0.601	0.467	0.289	0.581	0.583	0.640
	SFT [30k]	0.807	0.720	0.886	0.580	0.719	0.635	0.630	0.626	0.764	0.782	0.876	0.730
	SFT+RL1	0.842	0.768	0.895	0.600	0.784	0.692	0.642	0.669	0.788	0.822	0.888	0.763
	SFT+RL1+RL2	0.874	0.819	0.897	0.640	0.829	0.753	0.675	0.700	0.814	0.864	0.892	0.796

Referring Expression Comprehension (REC) tasks

Method	Res.	RefCOCO [31]			RefCOCO+ [49]			RefCOCOg [49]		
Method	Res.	val	test-A	test-B	val	test-A	test-B	val-u	test-u	
UNINEXT [S] [84]	640^{2}	92.64	94.33	91.46	85.24	89.63	79.79	88.73	89.37	
G-DINO-L [S] [45]	384^{2}	90.56	93.19	88.24	82.75	88.95	75.92	86.13	87.02	
OFA-L [G] [74]	480^{2}	79.96	83.67	76.39	68.29	76.00	61.75	67.57	67.58	
Shikra 7B [G] [10]	224^{2}	87.01	90.61	80.24	81.60	87.36	72.12	82.27	82.19	
MiniGPT-v2-7B [G] [8]	448^{2}	88.69	91.65	85.33	79.97	85.12	74.45	84.44	84.66	
Qwen-VL-7B [G] [2]	448^{2}	89.36	92.26	85.34	83.12	88.25	77.21	85.58	85.48	
Ferret-7B [G] [88]	336^{2}	87.49	91.35	82.45	80.78	87.38	73.14	83.93	84.76	
u-LLaVA-7B [G] [83]	224^{2}	80.41	82.73	77.82	72.21	76.61	66.79	74.77	75.63	
SPHINX-13B [G] [40]	224^{2}	89.15	91.37	85.13	82.77	87.29	76.85	84.87	83.65	
VisCoT-7B [62]	336^{2}	91.77	94.25	87.46	87.46	92.05	81.18	88.38	88.34	
LLaVA-1.5-7B [42] + VisRL	336^{2}	92.72	96.18	90.21	90.23	94.10	85.77	91.17	89.28	

Ablation on data generation

	WP-LP	WP-LN	WN-LP	WN-LN	Data Num.
w GPT-4o-2024-11-20	0.00%	65.31%	1.32%	33.37%	47k
w SFTed Model	0.00%	54.68%	0.00%	45.32%	3k
w/o Bounding Box Critics	5.42%	31.02%	10.04%	53.51%	86k
w/o Diversity Controller	4.53%	52.02%	4.68%	38.77%	19k
VisRL-Full	0.43%	64.64%	1.64%	33.29%	30k
VisRL-Full-Iter1	0.45%	67.82%	0.82%	30.91%	33k
VisRL-Full-Iter2	0.47%	70.12%	0.00%	29.41%	35k