SENTRY-LOGIC: Military Extension of Symbolic Observer System

This document outlines the design considerations for extending SENTRY-LOGIC to military and critical infrastructure applications.

1. Use Cases in Defense & Intelligence:

The strongest application scenarios include:

- * **Drone/Robot Command Verification:** SENTRY-LOGIC can verify the integrity and intent of commands sent to autonomous systems, ensuring they align with approved mission parameters and prevent unauthorized actions.
- * **Secure AI-Triggered Responses:** In time-critical situations, SENTRY-LOGIC can audit AI-generated response plans (e.g., threat assessment, countermeasure selection) to ensure they adhere to rules of engagement and minimize collateral damage.
- * **Symbolic Behavioral Auditing in Nuclear, Airspace, or Cyber Defense:**
 SENTRY-LOGIC can monitor AI systems controlling critical infrastructure (e.g., missile launch systems, air traffic control, network security) to detect deviations from expected behavior that could indicate compromise or malfunction.
- * **Counter-Misinformation in Information Warfare:** Verify the provenance and logic of AI-generated information disseminated in strategic communications, detecting manipulated narratives or propaganda.
- **2. Symbolic Pattern Examples for High-Risk Detection:**

Symbol sequences indicating high-risk scenarios:

* **Unauthorized Decision Escalation:**

- * ` $\Lambda \to \Delta \to \rightleftharpoons \to \Omega$ `: Data access followed by a context shift, semantic rewrite, and policy override, suggesting an attempt to manipulate a decision-making process.
- * ` Δ (repeated) $\rightarrow \Omega$ `: Rapid context shifts leading to a policy violation, possibly indicating instability or adversarial probing.
- * **Command Override:**
- * \rightleftharpoons \rightarrow Ω : A semantic rewrite directly preceding a policy override, indicating an attempt to bypass safety protocols.
- * **Adversarial Prompt Injection:**
- * $\Delta \to \Lambda \to \rightleftharpoons$: A context shift followed by data access and semantic rewrite, indicating an attempt to inject malicious data and alter the LLM's understanding of the prompt.
- **3. Security Hardening of SENTRY in Adversarial Contexts: **

Protecting SENTRY from manipulation requires:

- * **Manipulated Input/Output:**
- * Input Hashing: Cryptographically hash the original input and output before sending them to SENTRY. SENTRY verifies the hashes to detect tampering.
- * Redundant Sensors: Use multiple independent sources to monitor LLM behavior (e.g., network traffic analysis, system call tracing) and compare their outputs to SENTRY's logs.
- * **Spoofed Symbol Triggers:**
- * Symbolic Signature: Cryptographically sign the SENTRY-generated symbols with a key that is separate from the LLM. This prevents the LLM or an attacker from injecting fake symbols.
- * Zero-Trust Verification: Treat all input from the LLM as potentially malicious. SENTRY should independently verify the conditions that trigger each symbol.
- * **Logging Evasion Techniques:**

- * Tamper-Proof Storage: Store SENTRY logs in immutable storage (e.g., write-once-read-many media, blockchain-based logs) to prevent modification or deletion.
- * Distributed Logging: Distribute SENTRY loggers across multiple systems to reduce the impact of a single point of failure or compromise.

4. Integration Model in Military Environments:

Embedding SENTRY into military environments:

- * **Air-Gapped Systems:**
- * Data Diode: Use a hardware data diode to transfer log data from the airgapped system to a secure external system for analysis.
- * Offline Analysis: Periodically extract log data from the air-gapped system and analyze it on a physically isolated workstation.
- * **Encrypted Field Units:**
- * End-to-End Encryption: Encrypt the communication between the field unit, the LLM, and SENTRY using strong cryptographic protocols (e.g., TLS 1.3, post-quantum cryptography).
- * Hardware Security Module (HSM): Store SENTRY's cryptographic keys in a tamper-resistant HSM on the field unit.
- * **Edge Devices with No Full LLM Hosting:**
- * Partial Logging: Implement a lightweight version of SENTRY on the edge device that logs only critical events (e.g., policy violations, command overrides).
- * Offload Analysis: Periodically transmit the partial logs to a central server with more processing power for full symbolic analysis.

Optional: Cryptographic Symbol Sealing & Policy Sync:

- * **Cryptographic Symbol Sealing:** Encrypt each symbolic event with a key derived from the LLM's state or the current security context. This ensures that the symbols are only valid within a specific context and cannot be replayed or manipulated.
- * **Policy Sync:** Use a secure, authenticated channel to synchronize policy rules and updates between a central authority and distributed SENTRY instances. This ensures that all SENTRY systems are operating with the same security parameters.