

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 5

Дисциплина Моделирование.

Тема Исследование математической модели на основе

технологии вычислительного эксперимента

 Студент
 Сиденко А.Г.

 Группа
 ИУ7-63Б

Оценка (баллы)

Преподаватель Градов В.М.

Цель работы: Получение навыков проведения исследований компьютерной математической модели, построенной на квазилинейном уравнении параболического типа. Исследование проводится с помощью программы, созданной в лабораторной работе №4.

Все величины как в лабораторной 4, кроме

$$F(t) = \frac{F_{max}}{t_{max}} t \cdot exp\left(-\left(\frac{t}{t_{max}} - 1\right)\right)$$

где

 F_{max} – амплитуда импульса потока

 t_{max} – время достижения амплитуды

Результаты

1. Провести исследование по выбору оптимальных шагов по времени и пространству. Шаги должны быть максимально большими при сохранении устойчивости разностной схемы и заданной точности расчета.

Точность расчета будем оценивать, уменьшая шаги и наблюдая сходимость решений, как это делалось в лабораторной работе №1.

Шаг по пространству:

1	1	0.1	Τ	0.01	1	0.001	Τ
300.000	1	300.000	1	300.000	1	300.000	Τ
300.384	1	302.618	Τ	304.048	Τ	304.054	Τ
301.086	Τ	307.290	Τ	310.032	Τ	310.035	Τ
302.097	Τ	313.573	Τ	317.372	Τ	317.370	Τ
303.405	Τ	321.131	Τ	325.761	Τ	325.753	Τ
305.002	Τ	329.710	Τ	334.998	Τ	334.982	Τ
306.877	Τ	339.120	Τ	344.939	Τ	344.914	Τ
309.019	Τ	349.215	Τ	355.473	Τ	355.437	Τ
311.418	Τ	359.888	Τ	366.513	Τ	366.466	Τ
314.063	Τ	371.052	Τ	377.990	Τ	377.929	Τ
316.943	Τ	382.639	Τ	389.843	Τ	389.767	Τ
320.048	Ϊ	394.594	Τ	402.024	Τ	401.932	Τ
323.369	Τ	406.872	Τ	414.491	Τ	414.383	Τ
326.895	1	419.432	1	427.208	1	427.082	1
330.617	1	432.242	1	440.143	1	439.998	1
334.526	١	445.271	1	453.270	1	453.105	1

Таким образом, оптимальный шаг h=0.01.

Шаг по времени:

Рассмотрим для различных t_{max} .

Для $t_{max}=10$

1	T	0.1	Ī	0.01	Ī	0.001	T
851.968	Τ	637.082	1	461.155	Τ	460.595	Τ
832.182	Τ	616.048	1	439.611	Τ	439.064	Τ
813.054	Τ	596.128	1	420.660	Τ	420.124	Τ
794.562	Τ	577.294	1	404.031	Τ	403.510	Τ
776.688	Τ	559.516	1	389.479	Τ	388.973	Τ
759.414	1	542.755	1	376.775	Τ	376.285	Τ
742.721	Τ	526.974	1	365.712	Τ	365.240	Τ
726.593	1	512.130	1	356.101	Τ	355.649	Τ
711.011	Τ	498.180	1	347.772	Τ	347.341	Τ
695.959	1	485.082	1	340.572	Τ	340.163	Τ
681.421	Τ	472.791	1	334.364	Τ	333.977	Τ
667.380	1	461.264	1	329.025	Τ	328.660	Τ
653.823	1	450.460	1	324.445	1	324.104	Τ
640.732	١	440.337	١	320.528		320.210	Ī
628.094		430.857	١	317.187		316.892	
615.895	٦	421.982	١	314.346	٦	314.073	1

Оптимальный шаг au=0.01.

Для $t_{max}=100$

1	1	0.1	1	0.01	1	0.001	1
353.894		319.287		318.711	١	318.652	Ī_
351.334	Τ	316.797	Τ	316.224	\perp	316.166	Т
348.879	1	314.599	Τ	314.032	1	313.975	Τ
346.527	Τ	312.661	Τ	312.104	1	312.047	Τ
344.272	Τ	310.958	Τ	310.413	Τ	310.358	Τ
342.113	1	309.464	Τ	308.934	Τ	308.879	Τ
340.045	Τ	308.156	Τ	307.643	Τ	307.590	Τ
338.066	1	307.015	Τ	306.520	Τ	306.469	Τ
336.172	Τ	306.020	Τ	305.546	1	305.497	Τ
334.360	Τ	305.155	Τ	304.703	Τ	304.657	Τ
332.628	1	304.406	Τ	303.977	1	303.933	Τ
330.972	Τ	303.757	Τ	303.352	Τ	303.311	Τ
329.391	1	303.198	Τ	302.817	Τ	302.778	Τ
327.880	Τ	302.716	Τ	302.360	Τ	302.323	Τ
326.438	1	302.302	1	301.970	1	301.937	1
325.061	1	301.947	1	301.640	1	301.609	1

Оптимальный шаг au=0.1.

Таким образом, шаг по времени зависит от задаваемой длительности импульса $au pprox rac{t_{max}}{1000}.$

Рассмотрим влияние на получаемые результаты амплитуды импульса и времени.

$$F_{max} = 100$$

$$t_{max} = 10$$

$$F_{max} = 1000$$

$$t_{max} = 10$$

Время, с

2000 -

1000 -

Таким образом, при увеличении F_{max} возрастает и максимальная температура стержня. При изменении t_{max} меняется время импульса, соответственно меняется время достижения точки с максимальной температурой.

2. График зависимости температуры при 3-4 значениях параметров a_2, b_2 теплоемкости.

 a_2, b_2 меняются попарно значениями из массивов:

$$a_2 = [0.5, 1, 2, 5]$$

$$b_2 = [0.0005, 0.001, 0.005, 0.01]$$

Соотвественно, с каждым шагом значение теплоемкости увеличивается.

Графики по порядку:

- ullet синий $a_2=0.5,\,b_2=0.0005$
- \bullet оранжевый $a_2=1,\,b_2=0.001$
- ullet зеленый $a_2=2,\ b_2=0.005$
- \bullet красный $a_2 = 5, b_2 = 0.01$

Получается, что с увеличением теплоемкости темп роста и максимальное значение температуры уменьшаются.

3. График зависимости температуры в частотном режиме теплового нагружения. Импульсы следуют один за другим с заданной частотой ν и длительностью t_u .

Для начала рассмотрим при $F_{max}=150,\ t_{max}=100.$ И будем уменьшать частоту и длительность импульса.

•
$$\nu = \frac{1}{10}, t_u = 5$$

•
$$\nu = \frac{1}{2}, t_u = 1$$

Теперь установим $F_{max}=150,\,t_{max}=10.$ Продолжаем уменьшать частоту и длительность импульса.

•
$$\nu = \frac{1}{10}, t_u = 5$$

•
$$\nu = \frac{1}{5}, t_u = 3$$

•
$$\nu = 1, t_u = 0.9$$

По мере роста частоты импульсов размах колебаний температуры уменьшается.

Уменьшается вплоть до нуля в этот момент в торец поступает постоянный поток.

Рассмотрим данный график и график из лабораторной работы 3 при всех одинаковых параметрах модели.

На левом рисунке представлен график из 3 работы, а на правом из текущей.

Полученное температурное поле совпало с результатом расчета T(x).