First, we show T is linear. For any $x,y,z\in\mathbb{R}^n$ and $a,b\in\mathbb{R},$

$$[T(ax+by)]z = \langle ax+by,z\rangle = a\langle x,z\rangle + b\langle y,z\rangle = [aT(x)+bT(y)]z$$

Next, by way of contradiction assume $\exists x,y \in \mathbb{R}^n, x \neq y : Tx = Ty$.

$$\implies \forall z \in \mathbb{R}^n, \langle x, z \rangle = \langle y, z \rangle.$$

Choose n vectors to be z. The standard basis vectors e_1, \ldots, e_n .

$$\langle x, e_i \rangle = x_i, \langle y, e_i \rangle = y_i$$

 $\implies \forall i = 1, \dots, n, x_i = y_i$
 $\therefore x = y$

This is a contradiction thus T is one-to-one. For linear transformations from \mathbb{R}^n to \mathbb{R}^n , injective, surjective, and bijective are equivalent.