Разработка системы автоматизации обработки данных для переносного мюонного плотномера

Выполнил: Сизов М. М.

Научный руководитель: к.т.н. Зюбин В. Е.

Актуальность

- Один из основных параметров грунта, от которых зависит количество проектных работ его плотность
- Текущий повсеместно используемый метод(контактный) обладает следующими недостатками:
 - Локальный характер измерения
 - Большой объем бурильных работ

Устройство мюонного плотномера

- (1) Сцинтиллятор
- (2) Оболочка
- (3) Стеклянное окно
- (4) ФЭУ
- (5) Усилитель
- (6) Пульт управления

Способ измерения

Мюонный плотномер измеряет поток естественной космической радиации (мюонов) на разных глубинах.

Средняя плотность грунта рассчитывается по тарировочной кривой ослабления радиации от глубины в воде (в метрах водного эквивалента).

Цель и задачи

Разработка системы автоматизации обработки данных для мюонного плотномера

Задачи:

- Анализ специфики измерений мюонным плотномером
- Формулировка требований к системе автоматизации
- Определение способов генерации синтетических данных
- Определение алгоритмов построения тарировочных кривых
- Разработка архитектуры системы автоматизации и интерфейса пользователя
- Реализация системы автоматизации обработки данных плотномера

Выбор аппроксимирующей функции

- Данные тарировочных измерений показывают:
 - интенсивность монотонно убывает с глубиной
 - вторая производная функции монотонна
- Экспоненциальный характер поглощения излучения в веществе

Поиск тарировочных кривых ведется в виде суммы экспонент

$$\sum_{i=0}^{N} a_i e^{-b_i t}$$

Определение алгоритмов генерации данных

Программный пакет MUSIC (MUon SImulation Code), основанный на методе Монте-Карло для симуляции одиночных мюонов

Генерация на основе известной целевой функции (случайная генерация коэффициентов экспонент с добавлением шума)

Метод наименьших гиперболизированных квадратов

$$err = f[a,b,x_j] - y_j$$
, где err – это разность

$$s[a,b] = \sum_{j=0}^{M} \frac{\|err\|^2}{min[f[a,b,x_j],y_j]}$$

- Штраф отрицательной разности выше, чем штраф положительной
- Штраф для большего значения интенсивности меньше, чем штраф для меньшего значения интенсивности (меньшие погрешности от «мягкой» компоненты излучения, большие погрешности при небольших интенсивностях)

Подходы к аппроксимации функций и их недостатки

- Подход основанный на алгоритме Прони
 - Возникновение комплексных гармоник
- Подход на основе жадного алгоритма
 - Ошибки на данных без шума
- Численный перебор коэффициентов экспонент
 - Экспоненциальная зависимость от количества экспонент
- Подход на основе решения нелинейной задачи минимальных квадратов
 - Неустойчивость к локальным минимумам

Результаты тестирования

Комбинированный алгоритм

Архитектура системы автоматизации обработки данных

Метод учёта взаимовлияния измерений

- При проведении серии измерений каждое измерение влияет на результаты следующего
- Ограничения модели:
 - Задача симметрична
 - Однородность плотности
 - Объем измеренной породы определяется телесным углом

$$p_{i+1} = \frac{1}{3} \frac{\rho_{i+1} (h+1)^2 \cot(\theta_{i+1}) - \rho_i h^2 \cot(\theta_i)}{(h+1)^2 \cot(\theta_{i+1}) - h^2 \cot(\theta_i)}$$

Реализация системы автоматизации обработки данных

Результаты

Разработан и реализован алгоритм тарировки мюонного плотномера на базе комбинированного алгоритма

Предложен метод позволяющий учитывать взаимовлияние измерений

Разработан и реализован пилотный вариант системы автоматизированной обработки данных, измеряемых мюонным плотномером

В будущем планируется интегрировать разработанную систему с системой управления мюонным плотномером

Публикации по теме работы

- Зюбин В.Е., Сизов М.М.: «Алгоритм аппроксимации тарировочных данных переносного плотномера» XVII Международная открытая научная конференция «Современные проблемы информатизации-2013»
- Сизов М.М.: «Разработка алгоритма построения тарировочной кривой для переносного мюонного плотномера» 51 Международная научная студенческая конференция