DATA EXPLORATION

Working with datasets and producing descriptive statistics

A few basic things first...

Working directory

- ☐ The working directory is the directory in which you are working in.
- To check your current working directory, use the function getwd().
- □ To change your working directory, use the function setwd(directory_path).
- □ Tips: running "setwd(choose.dir())" allows you to select the directory interactively.

Using packages

- Packages are a collection of codes and functions written by a third party and is not included in the base R.
- □ To install and download a package, use the function install.packages("package name").
- □ Then to load the package, use the function library (package name).

Using functions

- □ For built-in functions, using help(function_name) will give the documentation of the function which includes:
 - Description of the function
 - Arguments and its default value
 - Values the function returns
- The argument of a function takes the default value if it is not specified.
- When running a function, you can specify the argument by writing fn(argument_name=value), or just setting f(value).
- If you do not specify the argument name, then R will specify the argument by position.

Using functions

□ Suppose we have:

```
fn_name(arg1 = value1, arg2 = value2)
```

- The name of the function is fn name.
- Two arguments: arg1 and arg2.
- Default value for arg1 is value1, default value for arg2 is value2.
- Running fn_name() is equivalent to running fn_name(arg1=value1, arg2=value2).
- Running fn_name (a) is equivalent to fn_name (arg1=a, arg2=value2).
- Running fn name (a, b) is equivalent to fn name (arg1=a, arg2=b).
- Running fn_name (arg2=a, arg1=b) is equivalent to fn_name (arg1=b, arg2=a) or fn_name (b, a).

Datasets in R

Data frames

- A data frame is a table or a two-dimensional array-like structure in which each column contains values of one variable and each row contains one set of values from each column.
- □ What this basically mean:
 - Data frames are like a combination of matrix and list (which we will explore later), each column corresponds to a variable and each row corresponds to a sample/observation.
 - One sample or observations has multiple variables.
 - E.g.:
 - Row corresponds to each student.
 - Column 1 is students' assignment marks.
 - Column 2 is students' test marks.
 - Like matrix: has columns and rows.
 - But unlike matrix, each columns can be of different class.
 - Like list: has variable names and can call them.

Creating data frame

- □ Use data.frame() function.
- Example:

You can also convert a matrix to a data frame using as.data.frame().

Pulling out contents of a data frame

- We use dollar sign \$ to extract the variable nested inside of a data frame.
- Example:

```
> x <- 1:10
> y <- x^2
> dat <- data.frame(col1=x, col2=y)
> print(dat$col1)
  [1] 1 2 3 4 5 6 7 8 9 10
> print(dat$col2)
  [1] 1 4 9 16 25 36 49 64 81 100
```

Selecting a subset of observations with some criteria

- If you want to select/print observations with some conditions/criteria, you can use the [] notation like we did for matrix.
- □ Alternatively, you can use the subset() function.

```
subset(data_frame_name, condition)
```

Selecting a subset of observations with some criteria

Selecting a subset of observations with some criteria


```
> dat[dat$col2<=25, ]</pre>
  col1 col2
      4 16
           25
 subset (dat, col2<=20)</pre>
  coll col2
            9
           16
```


Some functions for data frames

str() function

- □ The function str() can be used to quickly look into the structure of an object, including a data frame.
- It will give the number of observation as well as variable's names and classes

names() function

- □ The function names () can be used to list down all variable names (or column names) in a data frame.
- It can also be used to modify the column names

```
> names(dat)
[1] "col1" "col2"
> names(dat) <- c("x","y") #change the var names
> names(dat)
[1] "x" "y"
```

Row and column names

- You can also use colnames() to get the column names, and rownames() to get the row names of a data frame/matrix.
- □ Like the names () function, you can also use these to modify the column or row names.


```
> colnames(dat)
    "x" "y"
> rownames(dat)
        "2" "3"
                      "4" "5" "6"
                                                   11911
> rownames(dat)[1] <- "No.1"</pre>
> dat
      X
No.1
          16
          25
          36
6
          49
          64
          81
10
        100
> rownames(dat)[1] <- "1"</pre>
```

View() and fix() functions

- □ You can use View() function (capital V) to view the whole data frame on a separate window. But you can't edit it.
- □ If you want to edit it interactively, you can use fix() function.

- > View(dat)
- > fix(dat)

head() and tail() functions

- Sometimes you don't want to view all the dataset, but only a few just to see what it looks like.
- \square You can use the head() or tail() functions to print out the first or the last n rows in the dataset.
- □ The default value for n is 6, but you can modify it by specifying n=value in the argument of the functions.


```
> head(dat)
    36
> tail(dat)
      25
       36
      49
       64
       81
   10 100
```

More functions for data frames

- □ data():
 - R has built-in datasets. To load these datasets, use data(dataset name)
 - E.g.: data(mtcars)
- □ na.omit():
 - Remove rows with missing values (coded as NA in the dataset).
 - Useful for analysis if you want to remove them.

More functions for data frames

- merge():
 - Merge two data frames by common columns or row names.
 - In some ways similar to rbind() and cbind() but better as it merge based on column or row names.
- □ lapply()/sapply:
 - Apply function to each variables in the data frame.
 - lapply() returns a list. sapply() returns a vector.
 - **■** E.g.:
 - lapply(dat, FUN=mean)
 - sapply(dat, FUN=mean)

More functions for data frames

- □ which():
 - Used to determine which rows satisfy a condition.
 - **■** E.g.:

```
> which(dat$y > 60)
[1] 8 9 10
> which(dat$x < 5)
[1] 1 2 3 4</pre>
```

- attach():
 - Attach a data frame to R search path.
 - When a data frame is attached, there is no need to use \$ to call the variable.
 - The function detach() must be used to detach the data frame.

Importing and exporting data

Importing data into R

- □ We can type them down manually and use the data.frame().
- For large amount of data, this is inefficient.
- It might be better to have the data in a separate txt, csv or excel file.

Reading from CSV or TXT file

- □ Use read.table(...) function.
- Argument: read.table(file location, header, sep)
 - file_location: The location of the txt or csv. File location uses "/", not "\".
 - header: TRUE if there is a header (column name) in the file. Otherwise, FALSE.
 - sep: The separator between items in the file.

- Open the file with notepad first to see the structure.
- □ In this case, we have header for each column.
 - header=TRUE
- And columns are separated with a comma ",".
 - sep=","

```
TestScore.csv - Notepad
                                                X
File Edit Format View Help
Student, Score, IQ, StudyHours, GPA, Class
1,100,125,30,3.9,A
2,95,104,40,2.6,B
3,92,110,25,2.7,A
4,90,105,20,3,A
5,85,100,20,2.4,B
6,80,100,20,2.2,B
7,78,95,15,2.1,A
8,75,95,10,2.1,B
9,72,85,0,1.5,B
10,65,90,5,1.8,A
```


Reading from CSV or TXT file

```
> TestScore <- read.table("C:/Users/Hilmi</pre>
  Majid/OneDrive/PnP/2021 Sem
   1/STQD6214/datasets/TestScore.csv",
  header=TRUE, sep=",")
> head(TestScore)
 Student Score IQ StudyHours GPA Class
           100 125
                           30 3.9
       2 95 104
                           40 2.6
       3 92 110
                           25 2.7
       4 90 105
                           20 3.0
       5 85 100
                           20 2.4
            80 100
                           20 2.2
> names(TestScore)
   "Student" "Score"
                             "IO"
   "StudyHours" "GPA"
                             "Class"
```

Tips and tricks

- □ You can choose the file interactively using file.choose().
 - Eg: TestScore <- read.table(file.choose(), header=TRUE, sep=",")
- □ For CSV file, an easier function to use is read.csv() function.
 - Eg: TestScore <- read.csv(file.choose())
- If your CSV file is large, you can use read_csv() function in readr package for faster loading time.
- Lastly, you can use RStudio to import data interactively.

Reading from MS Excel file

□ Reading from Excel file (xls or xlsx) requires readx1 package:

```
> install.packages("readxl")
> library(readxl)
> oxygen <- read_excel("C:/Users/Hilmi
Majid/OneDrive/PnP/1920 Sem 1/STQS3113/Slides/R
tutorial/oxygen.xlsx")</pre>
```

Exporting csv file from R

- □ To save a data frame into a CSV file, use write.csv() function
 - Example:

- □ If the data frame is too large, you can use write_csv() function from the readr package.
- □ (If you want to save any object in R, use the save () function)

Numerical descriptive statistics

Mean, median, mode, variance, standard deviation, etc

Summary statistics

- The summary() function when applied to vector or data frame gives the mean, min, max, first quarter, median, third quarter of each variables.
- □ If we want more summary statistics, we can use describe() function in the psych package.


```
> summary(TestScore)
   Student
                   Score
                                    IO
Min. : 1.00
             Min. : 65.00
                               Min. : 85.0
1st Qu.: 3.25 1st Qu.: 75.75
                               1st Qu.: 95.0
Median : 5.50
             Median : 82.50
                               Median:100.0
             Mean : 83.20
                              Mean :100.9
Mean : 5.50
3rd Ou.: 7.75 3rd Ou.: 91.50
                              3rd Qu.:104.8
Max. :10.00
               Max. :100.00
                              Max. :125.0
  StudyHours
                              Class
                    GPA
Min. : 0.00
               Min. :1.500
                              A:5
1st Qu.:11.25
               1st Qu.:2.100
                            B:5
Median :20.00
               Median :2.300
Mean :18.50
              Mean :2.430
3rd Qu.:23.75
               3rd Qu.:2.675
Max. :40.00
               Max. :3.900
```



```
> install.packages("psych")
> library(psych)
> describe(TestScore)
                            sd median trimmed
                                              mad
                                                     min
          vars n
                    mean
                                  5.5
                                         5.50
                                               3.71
                                                     1.0
Student
             1 10
                  5.50 3.03
             2 10
                   83.20 11.10
                                82.5 83.38 12.60 65.0
Score
             3 10 100.90 11.22
                                        99.88
                                100.0
                                               7.41 85.0
IO
                   18.50 11.80
                                20.0
                                        18.12 11.12
StudyHours
             4 10
                                                     0.0
                                              0.52
             5 10
                  2.43 0.68
                                2.3
                                       2.36
GPA
                                                    1.5
Class*
                    1.50
                         0.53
                                  1.5
                                         1.50
             6 10
                                               0.74
                                                    1.0
                       skew kurtosis
            max range
                                       se
           10.0
                 9.0
                       0.00
                               -1.560.96
Student
Score
          100.0
                 35.0 -0.06
                               -1.43 3.51
                      0.65
IO
          125.0
                 40.0
                               -0.323.55
           40.0
                 40.0 0.14
                               -0.993.73
StudyHours
GPA
             3.9
                 2.4 0.73
                               -0.270.21
                               -2.19 0.17
Class*
            2.0
                  1.0 0.00
```

Table of frequency

□ If the vector or variable is discrete, use table() function to create a table for the frequency of each value.

```
> x <- c(3,2,2,4,2,1,2,2,3,4)
> table(x)
x
1 2 3 4
1 5 2 2
```


Measures of central tendency

Mean, median, mode

Mean

- □ What it is:
 - The sum of all the data entries divided by the number of entries.

Mean,
$$\bar{x} = \frac{\sum x}{n}$$

Mean

□ Use mean () function to calculate the mean of a vector.

```
> mean(TestScore$Score)
[1] 83.2
> mean(TestScore$IQ)
[1] 100.9
> mean(TestScore$StudyHours)
[1] 18.5
```

Median

- □ What it is:
 - The value that lies in the middle of the data when the data set is ordered.

Median

□ Use median () function to calculate the median of a vector.

```
> median(TestScore$Score)
[1] 82.5
> median(TestScore$IQ)
[1] 100
> median(TestScore$StudyHours)
[1] 20
```

Mode

- □ What it is:
 - The data entry that occurs with the highest number of frequency.
- □ If no entry is repeated the data set has no mode.
- If two entries occur with the same greatest frequency, each entry is a mode (bimodal).

Mode

If the vector or variable is discrete, we can use the table() function to find the frequency of each value and find the one with the highest frequency.

```
> x <- c(3,2,2,4,2,1,2,2,3,4)
> table(x)
x
1 2 3 4
1 5 2 2
> names(table(x))[which.max(table(x))]
[1] "2"
```


Measures of position

Quartiles, quantiles

Quartile

- What it is:
 - Quartiles divide the distribution into four equal groups.
- The boundaries for the groups are denoted by Q_1 , Q_2 , Q_3 .

- Eg: Approximately 75% of values in a ranked data set are more than Q_1 .
- □ Note that the median is equal to Q_2 .

Quartile

- The quantile() function by default gives the min, Q_1 , Q_2 , Q_3 , and the max of a vector.
- But the argument can be modified to find any quantiles.

```
> quantile(TestScore$Score)

0% 25% 50% 75% 100%

65.00 75.75 82.50 91.50 100.00

> quantile(TestScore$Score, probs=c(0.1,0.9))

10% 90%

71.3 95.5
```


Measures of dispersion

Variance, standard deviation, range, interquartile range

Variance & standard deviation

- □ What it is:
 - The values tell how closely the observations are to the mean.
 - Variance and standard deviation are the most used measures of dispersion.
- Sample variance and sample standard deviation:

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n - 1}, \qquad s = \sqrt{\frac{\sum (x - \bar{x})^{2}}{n - 1}}$$

The lower the value, the closer the observations are to the sample mean.

Variance & standard deviation

☐ The var() and sd() functions calculate these values.

Example:

```
> var(TestScore$Score)
[1] 123.2889
> sd(TestScore$Score)
[1] 11.10355
```

Note that these are sample variance and standard deviation, not population variance and standard deviation.

Range

- □ What it is: Range = Largest value smallest value
- □ We can use max() and min() to get the largest and smallest values respectively to calculate range.
- □ The function range () also gives the largest and smallest value.

```
> max(TestScore$Score) - min(TestScore$Score)
[1] 35
> range(TestScore$Score)
[1] 65 100
```

Interquartile range

- What it is:
 - The difference between Q_1 and Q_3 .
 - \square IQR = $Q_3 Q_1$
- □ The IQR() function calculates the interquartile range.
- Example:

```
> quantile(TestScore$Score, c(0.25,0.75))
    25%    75%
75.75    91.50
> IQR(TestScore$Score)
[1] 15.75
```


Shape of the distribution

Skewness and kurtosis

Skewness

Skewness measures the degree of asymmetry exhibited by the data.

skewness =
$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{ns^3}$$

- □ Skewness:
 - zero: data is symmetric about the mean
 - negative: data is skewed to the left
 - positive: data is skewed to the right

Skewness

□ We can use skewness() function from e1071 package to calculate this value.

```
> library(e1071)
> skewness(TestScore$Score)
[1] -0.05638212
```

Kurtosis

- Kurtosis is a measure of the heaviness of the tail of a distribution.
- It is often used to represent how often outliers occur
- Excess kurtosis is the tailedness of a distribution relative to a normal distribution.
- Excess kurtosis:
 - High/positive (leptokurtic): fat tails
 - Low/negative (platykurtic): thin tails
 - Medium/zero (mesokurtic): medium tails

Kurtosis


```
> library(e1071)
> kurtosis(TestScore$Score)
[1] -1.434192
```


Function	Description
data.frame()	Creates a new data frame class object.
str()	Gives the structure of an object.
subset()	Creates a subset of the data frame based on the specified condition.
names()	Gives the available variable names in the data frame/list.
<pre>colnames(), rownames()</pre>	Gives the column and row names in the data frame/matrix.
head(), tail()	Gives the first few rows and last few rows in the data frame.
<pre>getwd(), setwd()</pre>	Gives and sets the location of current working directory.
read.table()	Imports CSV or TXT files as data frame.
read.csv()	Imports CSV files as data frame.
write.csv()	Exports a data frame into a CSV file.

Function	Description
summary()	When the argument/input is a vector, it gives some summary statistics including min, max, mean, and the quartiles.
describe()	Gives more summary statistics. This function requires psych package to be loaded first.
table()	Gives a table of frequency.
<pre>mean(), median()</pre>	Calculates the mean and median of a vector.
quantile()	Gives the sample quantiles. By default, it gives min, \mathbf{Q}_1 , \mathbf{Q}_2 , \mathbf{Q}_3 and max.
IQR()	Calculates the interquartile range of a vector.
var(), sd()	Calculates the (sample) variance and standard deviation of a vector.
<pre>skewness(), kurtosis()</pre>	Gives skewness and kurtosis measures of a vector. These functions require e1071 package to be loaded first.