工科数学分析期末试题(A卷)

学号 姓名 班级

(本试卷共6页, 十一个大题. 解答题必须有解题过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.)

题号	 1 1	11.	四	五.	六	七	八	九	+	+ -	总分
得分											
签名											

- 一. 填空题 (每小题 4 分, 共 20 分)
- 1、极限 $\lim_{x\to 0} \frac{\int_0^{x^2} \ln(1+\sin t)dt}{\cos x^2 1} = \underline{\hspace{1cm}}$ 。
- 2、设 y = f(x) 是由方程 $y x = e^{x(2-y)}$ 确定,则 $\lim_{n \to \infty} n[f(\frac{1}{n}) 1] = ______$ 。
 3、 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\frac{x^3 \sin^2 x}{1 + \cos x} + |x|) dx = ______$ 。
- 4、曲线 $y = \frac{x^3}{1+x^2} + \arctan(1-x^2)$ 的斜渐近线方程为______
- 5、设函数 f(x) 在 $(-\infty,+\infty)$ 上连续,其二阶导数 f''(x)的图形如右图所示,则曲线 y = f(x) 在 $(-\infty, +\infty)$ 上 拐点坐标为:

- 二、(8分) 设 $f(x) = 2\arctan x + \arcsin \frac{2x}{1+x^2}$ 。 (1) 当 x > 0 时,求 f'(x);
 - (2) 证明当 $x \ge 1$ 时,f(x) 恒等于常数,并确定此常数值。

三. (8 分) 已知 $f(x) = \begin{cases} x+1 & x<0 \\ x & x \ge 0 \end{cases}$, 求 $F(x) = \int_{-1}^{x} f(x) dx$ 在[-1,1]上的表达式,并讨论 F(x)在[-1,1]上的连续性。

四. (8 分) (1) 求不定积分
$$\int \frac{\ln(1+e^x)}{e^x} dx$$
; (2) 求广义积分 $\int_1^{+\infty} \frac{dx}{(1+x)\sqrt{x}}$

五、
$$(8\,
ho)$$
 设曲线方程为 $\rho=1+\cos\theta$ 。 (1) 求曲线在 $\theta=\frac{\pi}{2}$ 处的切线方程;
$$(2)$$
 求曲线在 $\theta=\frac{\pi}{2}$ 处的曲率。

六. (8分) 求微分方程 $xy' + y(\ln x - \ln y) = 0$ 满足条件 $y(1) = e^3$ 的解。

七. (8分) 求曲线 $y=4\arctan x$ 和直线 $y=x-\frac{4\pi}{3}+\sqrt{3}$ 交点的个数。

八. $(8\, \mathcal{G})$ 已知一个高温物体放到一个温度较低的恒温环境中,物体的冷却速度与该物体与环境的温度之差成正比。现将室温 $24^{\circ}C$ 下的一瓶苏打汽水放入冰箱,冰箱内的温度为 $4^{\circ}C$,30 分钟后汽水冷却到 $14^{\circ}C$ 。问还需要经过多长时间汽水能冷却到 $9^{\circ}C$?

九. $(8 \, f)$ 设函数 f(x) 连续,且满足方程 $\int_0^x (t-x)f(t)dt = f(x) + \cos 2x$,求 f(x) 的表达式。

十. (8分) 设
$$D$$
 是由曲线 $y = \sqrt{1-x^2}$ ($0 \le x \le 1$) 与星形线 $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ ($0 \le t \le \frac{\pi}{2}$) 所围成的平面区域,(1) 求 D 的面积;(2) 求 D 绕 x 轴旋转一周所得旋转体的体积。

- +一.(8分) 设函数 f(x) 在区间[-a,a](a>0)上有二阶连续导数,且 f(0)=0,
 - (1) 写出 f(x) 的带拉格朗日余项的一阶麦克劳林公式;
 - (2) 证明至少存在一点 $\eta \in [-a,a]$, 使 $a^3 f''(\eta) = 3 \int_{-a}^a f(x) dx$ 。