SM Quiz 1

Due No due date **Points** 14 **Questions** 7 **Available** Nov 2 at 9:25am - Nov 2 at 10am 35 minutes

Time Limit 20 Minutes

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	16 minutes	9 out of 14

! Correct answers are hidden.

Score for this quiz: **9** out of 14 Submitted Nov 2 at 9:42am This attempt took 16 minutes.

Question 1	2 / 2 pts
SM-SI.009. Decision trees	
split the nodes along attributes that has the lowest impurity	/
are in every case hard to construct manually, and always hard	I to interpret
create a tree structure, that is always balanced, that is each let the same distance from the root nodes.	eaves are in
use measurements of impurity, such as Gini and entropy	
split the nodes along attributes that provides the biggest decre	ease of

Partial

Question 2

1 / 2 pts

SM-SI.012. We want to monitor, that users of a search engine how many times issue the same query more than once (2 times for simplicity). We have a storage space limited to approximately 1/10 of the expected number of queries. Which sampling method can help us achieving this? For each incoming query we generate a uniformly random number between 0 and 1 and if it is less then 0.1, then we store the query. At the end, to get a good approximation, enough to calculate how many, issued by the same user occurs twice. We store all the queries of 1/10 of the users. At the end, to get a good approximation, enough to calculate how many, issued by the same user occurs twice. We hash the user with a hash function, that has 10 buckets, and store the query and the user if the user is mapped into a predefined bucket. At the end, to get a good approximation, enough to calculate how many, issued by the same user occurs twice. For each incoming guery we generate a uniformly random number between 0 and 1 and if it is greater then 0.9, then we store the guery. At the end, to get a good approximation, enough to calculate how many, issued by the same user occurs twice.

Incorrect

SM-SI.004. Mark the most important challenges in stream mining: It might only be possible to perform a single pass during stream analysis Streams are complete Streams adhere to a common statistical deviation It might not be possible to store data stream history

Streams are unbounded in nature

Question 4	2 / 2 pts
SM-SI.002. The Bloom filter	
relies on the use of multiple hash functions	
never produces true positives	
is always 100% precise	
is not used in the context of stream mining	
never makes false positives	

Question 5	2 / 2 pts
SM-SI.001. Sampling in the context of stream mining	
is often based on fixed fraction sampling	
relies on the use of data stream shards	
always relies on the use of data stream partitions	
is often based on the creation of a representative sample	

Question 6	2 / 2 pts
SM-SI.006. Cluster features	
are used in stream clustering	

can be relevant in the context of anomaly detection
consist of data points, linear sums and big data
consist of data points, linear sums and sums of squares

Incorrect

Question 7 0 / 2 pts

SM-SI.007. The **Count Min Sketch** (a table that contains multiple arrayS and uses multiple hash functions)

... is used to count the number of occurrences of the different elements (aaabbbc ->a:3, b:3,c:1)

... is used to count how many different elements is in the stream (aaabbbc ->3)

... gives us either the correct answer or an underestimation, but never overestimate.

... gives us an overestimation of the right answer

... is mapping each incoming elements to each array using all hash functions.

Quiz Score: 9 out of 14

~