Stefan Fischer Benjamin Neidhardt Merle Kammer

Übungsblatt Nr. 3

(Abgabetermin 11.05.2017)

Aufgabe 1

- a)
- b)
- c)
- d)

Aufgabe 2

Aufgabe 3

- a)
- b)
- c)
- d)

Aufgabe 4

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

- a)
 - (a) Die Wahrscheinlichkeit für das Ereignis $A=\{2\}$ ist: $P(A)=\frac{|A|}{|\Omega|}=\frac{1}{6}$
 - (b) Die Wahrscheinlichkeit für das Ereignis $A=\{2,4,6\}$ ist: $P(A)=\frac{|A|}{|\Omega|}=\frac{3}{6}$

b)

Zu zeige: Falls $A \cap B = \emptyset$, dann gilt $P(A \cap B) = P(A) + P(B)$ (1)

$$P(A \cup B) \stackrel{(*)}{=} P((A \setminus B) \dot{\cup} (A \cap B) \dot{\cup} (B \setminus A))$$

$$= P(A \setminus B) + P(A \cap B) + P(B \setminus A) \leftarrow \sigma\text{-additivität}$$

$$= \underbrace{P(A \setminus B) + P(A \cap B)}_{=P(A)} + \underbrace{P(B \setminus A) + P(A \cap B)}_{=P(B)} - P(A \cap B)$$

$$= P(A) + P(B) + P(A \cap B)$$
für $A \cap B = \emptyset$ gilt somit
$$= P(A) + P(B)$$

(*):
$$A \cup B = (A \setminus B) \dot{\cup} (A \cap B) \dot{\cup} (B \setminus A)$$

Für
$$A \cap B \neq \emptyset$$
 gilt $P(A \cup B) \leq P(A) + P(B)$ denn:
 $P(A \cup B) = P(A) + P(B) - P(A \cap B) \leftarrow$ siehe Beweis (1)
 $\Rightarrow P(A \cup B) \leq P(A) + P(B)$

c)

$$\Omega = \{1, 2, 3, 4, 5, 6\}^3$$

Das Ereignis, dass Älle drei Würfel ein Auge zeigen ist $A = \{(1,1,1)\}$. Die Wahrscheinlichkeit für dieses Ereignis ist: $P(A) = P(\{(1,1,1)\}) = \frac{|\{(1,1,1)\}|}{|\Omega|} = \frac{1}{6^3} = \frac{1}{216}$

d)

$$\Omega = \{1,2,3,4,5,6\}^2$$

(a)

$$[X = 4] = \{(x, y) \in \Omega \mid X(x, y) = 4\}$$
$$= \{(4, 4), (4, 4), (4, 5), (5, 4), (4, 6), (6, 4)\}$$

Es werden zwei Würfel geworfen. Das Ereignis [X=4] tritt ein, wenn einer der Würfel eine 4 zeigt und die Augenzahl des anderen Würfels ≥ 4 ist. Das heißt das Minimum der gewürfelten Augenzahlen muss 4 sein, damit das Ereignis [X=4] eintrifft.

(b)
$$P([X=4]) = P(\{(4,4),(4,4),(4,5),(5,4),(4,6),(6,4)\}) = \frac{|\{(4,4),(4,4),(4,5),(5,4),(4,6),(6,4)\}|}{|\Omega|} = \frac{6}{6^2} = \frac{6}{36} = \frac{1}{6}$$

Unter Annahme der Gleichverteilung der Ereignisse ist $P([X=4]) = \frac{1}{6}$.