《大学物理 AI》作业 No.07 电势

班级	学号	姓名	成绩	
******	 **************本章	 ⁻ 教学要求******	******	**
1、理解静电力做功的特点 2、掌握静电场的环路定理 3、理解电势、电势差的概 4、理解电势梯度的意义, 5、掌握点电荷、均匀带电	; 念,掌握利用场强积 并能利用它求电场强	分和叠加原理求电势的 度;		
 一、填空题				
1.以无穷远为电势零点 处的电势为		立导体球电势为30	0V,则距离导体球中	心 30cm
2. 当导体表面电场强度导体表面原有的电场强 9.8 m 的球形导体能达到 势点)	度。已知空气的击	穿场强为3 MV/m,	则处于空气中的一个	半径为
3. 金原子核可看做均匀 粒子的荷质比 α=4.78% 从很远处射向金原子核	×10 ⁷ C/kg,己知该	粒子沿着二者连线	方向以 1.50×10 ⁷ m/s	的速度
(基本电荷 e=1.60×1	0 ⁻¹⁹ C,真空介电常	岩量 $\varepsilon_0 = 8.85 \times 10^{-12}$	$C^2 N^{-1} m^{-2}$	
4. 图中所示为静电场的电场强度的方向,并比	$\frac{\alpha}{\longrightarrow}$ 力等势线图,已知 U 较它们的大小。 E_{a}	金核 ✓/ ₁ >U ₂ >U ₃ 。在图上正 	U ₁ 加出 <i>a、b</i> 两点 上填<、=、>)	/ /
5. 一半径为 R 的均匀带势 $U =$ 。	芳电球面,带有电 荷	f Q。若设该球面上E	电势为零,则球面内名	子点的电
6. 真空中有一半径为 0 穷远处为电势零点,将 处,则电场力做功	一电量为 10 ⁻¹⁰ C 的	方点电荷从无穷远处	移到该细环圆心	R = O

7.设有 <i>n</i> 个分散的很开的球状小水滴,具有相同半径并带相同电荷。若将他们聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的
(设电荷分布在水滴表面上,水滴聚集时总电荷无损失。)
8. 真空中一 "无限大"均匀带电平面,其电荷面密度 $\sigma = 5.1 \times 10^{-7} \text{C·m}^2$ 。在平面附近有一个质子。则当质子在电场力作用下从静止开始垂直于平面方向运动了 $l = 26 \text{cm}$ 时的速率为m/s。设重力的影响可以忽略不计。(真空介电常量 $\varepsilon_0 = 8.85 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$,质子的荷质比 $\alpha = 9.58 \times 10^7 \text{C/kg}$)
9.已知某静电场的电势函数 $U=6x-6x^2y-7y^2$ (SI). 由场强与电势梯度的关系式可得点(2,3,0)处的电场强度 $\vec{E}=_{}$ \vec{i} + \vec{j} + \vec{k} (SI).
10.一质量为 $0.01 kg$ 、电荷为 $6.5 \times 10^9 C$ 的小球,在电场力的作用下,从电势为 $5000V$ 的 a 点移动到电势为 0 的 b 点。若已知小球在 b 点的速率为 $0.18 m/s$,则小球在 a 点的速率为
m/s。 11.在静电场中取一任意闭合环路,将检验电荷从环路上任意点出发,沿着该环路移动一周又回到原点。在这一过程中,电场力做功为,即静电场中电场强度沿任意闭合环路的线积分(选填:恒等于零、无穷大、结果不确定),它说
明静电场是 场,它是反映静电场基本性质的两条基本定理之一。

二、简答题

1.在电荷为Q的点电荷的静电场中,把电荷为-q的点电荷从a点移动到b点,如图所示。

有人这样计算电场力的功: $A = \int_a^b - q\vec{E} \cdot d\vec{l} = -q \int_a^b E dl \cos \pi = q \int_a^b E dl$

$$= q \int_{r_a}^{r_b} \frac{Q}{4\pi\varepsilon_0 r^2} dr = \frac{Qq}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right) < 0$$

你认为上述计算过程和所得结果是否正确?如有错误请指出并改正。

- 2.在"孤立"的半径为R的带电导体球外作一个半径为r的同心球面。则下列说法是否正确?如有错误请改正。
- ① 球面上电场均匀
- ② 通过球面上任一单位面积的电场强度通量相等。
- ③ 一检验电荷从球面上各个不同点沿着任意路径移动到无穷远处,电场力做功不相等。

三、计算题

1.电荷以相同的面密度 σ 分布在半径为 10cm 和 20cm 的两个同心球面上。设无限远处电势为零,球心处的电势为 300V。求

- (1) 电荷面密度 σ
- (2) 若要使球心处的电势也为零,外球面上应放掉多少电荷?
- (真空介电常量 $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 \,\mathrm{N}^{-1} \,\mathrm{m}^{-2}$)

2.一半径为R的"无限长"圆柱形带电体,其电荷体密度为 $\rho = Ar(r \le R)$,式中A为常量。试求:圆柱体内、外各点的电势分布。(利用场强积分法解此题,以圆柱体表面为零电势面)

3.图示一个均匀带电的球壳,其电荷体密度为 ρ ,球层内表面半径为 R_1 ,外表面半径为 R_2 。设无穷远处为电势零点,求球层中半径为r处的电势。 (利用电势叠加原理解此题)