

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP2 2° semestre de 2014 GABARITO CORRIGIDO

Observações:

- A prova é acompanhada de uma tabela da distribuição Normal
- É permitido o uso de máquina de calcular
- Todos os cálculos devem ser mostrados passo a passo para a questão ser considerada
- Utilize em todos os cálculos pelo menos três casas decimais
- Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas
- Você pode usar lápis para responder as questões
- Os desenvolvimentos e respostas devem ser escritas de forma legível
- Ao final da prova devolva as folhas de questões e as de respostas
- Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

1 - Primeira questão (1,5 pontos)

Verifique quais das funções abaixo são distribuições de probabilidade.

Resolução:

Os itens abaixo devem verificar se a função proposta é não negativa no intervalo de definição [a, b] e que se integral desta função dentro do intervalo de definição seja 1.

a)
$$f(x) = \frac{x^2}{21}$$
; $x \in [1,5]$

Resolução:

Observe que a função é positiva dentro do intervalo e, portanto, cumpre a primeira exigência. Calculando a integral

$$\int_{1}^{5} \frac{x^{2}}{21} dx = \frac{1}{21} \int_{1}^{5} x^{2} dx = \frac{1}{21} \frac{x^{3}}{3} \Big|_{1}^{5} = \frac{5^{3} - 1}{63} = \frac{124}{63} ,$$

o que indica que a função deveria ser normalizada para ser função de distribuição. Portanto, assim como está não é função de distribuição.

b)
$$f(x)=x; x \in [0,2]$$

Resolução:

Observe que a função é não negativa dentro do intervalo e, portanto, cumpre a primeira exigência. Vejamos a segunda exigência:

$$\int_{0}^{2} x \, dx = \frac{x^{2}}{2} \Big|_{0}^{2} = \frac{2^{2} - 0}{2} = 2 \quad ,$$

portanto também não é função de distribuição.

c)
$$f(x) = \frac{2}{3}(3x - x^2); x \in [1,4]$$

Resolução:

Com um breve exame da função fica fácil perceber que ela toma valores negativos para x > 3. Portanto, não é função de distribuição.

2 – Segunda questão (2,5 pontos) No gráfico abaixo temos uma função,

onde a curva é dada por $-\frac{3}{4}x^2 + 3x - \frac{9}{4}$ e consideraremos somente o intervalo [1, 3].

a) Prove que esta função é uma distribuição de probabilidade;

Resolução:

Pela figura vemos que a função é não negativa no intervalo. Integremos a função:

$$\int_{1}^{3} \left(-\frac{3}{4}x^{2} + 3x - \frac{9}{4} \right) dx = -\frac{3}{4} \int_{1}^{3} x^{2} dx + 3 \int_{1}^{3} x dx - \frac{9}{4} \int_{1}^{3} dx = -\frac{3}{4} \frac{x^{3}}{3} |_{1}^{3} + 3 \frac{x^{2}}{2} |_{1}^{3} - \frac{9}{4}x |_{1}^{3} ,$$

ou

$$\int_{1}^{3} \left(-\frac{3}{4}x^{2} + 3x - \frac{9}{4} \right) dx = -\frac{3^{3} - 1}{4} + \frac{3}{2} (3^{2} - 1) - \frac{9}{4} (3 - 1) = -\frac{13}{2} + 12 - \frac{9}{2} = 1$$

b) Ache a média desta distribuição;

Resolução:

$$\mu = \int_{1}^{3} x \left(-\frac{3}{4}x^{2} + 3x - \frac{9}{4} \right) dx = -\frac{3}{4} \int_{1}^{3} x^{3} dx + 3 \int_{1}^{3} x^{2} dx - \frac{9}{4} \int_{1}^{3} x dx = -\frac{3}{4} \frac{x^{4}}{4} \Big|_{1}^{3} + 3 \frac{x^{3}}{3} \Big|_{1}^{3} - \frac{9}{4} \frac{x^{2}}{2} \Big|_{1}^{3} ,$$

ou

$$\mu\!=\!-\frac{3}{16}(3^4\!-\!1)\!+\!(3^3\!-\!1)\!-\!\frac{9}{8}(3^2\!-\!1)\!=\!-15\!+\!26\!-\!9\!=\!2 \text{ ,}$$

o que não é nenhuma surpresa pela simetria da distribuição em torno do ponto 2.

c) Determine a variância

Resolução:

Pela definição de variância

$$\sigma^2 = \int_a^b x^2 f(x) dx - \mu^2 ,$$

só necessitamos calcular a integral abaixo:

$$\int_{1}^{3} x^{2} \left(-\frac{3}{4}x^{2} + 3x - \frac{9}{4} \right) dx = -\frac{3}{4} \int_{1}^{3} x^{4} dx + 3 \int_{1}^{3} x^{3} dx - \frac{9}{4} \int_{1}^{3} x^{2} dx = -\frac{3}{4} \frac{x^{5}}{5} |_{1}^{3} + 3 \frac{x^{4}}{4} |_{1}^{3} - \frac{9}{4} \frac{x^{3}}{3} |_{1}^{3} ,$$

ou

$$\int_{1}^{3} x^{2} \left(-\frac{3}{4}x^{2} + 3x - \frac{9}{4} \right) dx = -\frac{3}{20} (3^{5} - 1) + \frac{3}{4} (3^{4} - 1) - \frac{3}{4} (3^{3} - 1) = -36,3 + 60 - 19,5 = 4,2$$

logo

$$\sigma^2 = 4.2 - 2^2 = 0.2$$

d) Determine a moda.

Resolução:

Como a moda são os pontos nos quais a probabilidade é máxima, basta verificarmos na figura que a moda é 2.

3 - Terceira questão (2,0 pontos)

Calcule as probabilidades solicitadas:

a) P(X < 2,9) para uma distribuição Normal de média 4,2 e variância 13,69.

Resolução:

Usaremos fórmula

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$
,

que para este caso dará

$$P(X<2,9) = P\left(Z<\frac{2,9-4,2}{\sqrt{13,69}}\right) = P\left(Z<-\frac{1,3}{3,7}\right) \approx P(Z<-0,3513) \approx 0,5 - P(Z>0,35) = 0,5 - 0,1368 = 0,3632$$

b) P(2,5 < X < 5,1) para a mesma distribuição do item a;

Resolução:

$$P(2,5 < X < 5,1) = P\left(\frac{2,5-4,2}{3,7} < Z < \frac{5,1-4,2}{3,7}\right) = P\left(\frac{-1,7}{3,7} < Z < \frac{0,9}{3,7}\right) \approx P(-0,4595 < Z < 0,2432),$$

ou

$$P(2,5 \le X \le 5,1) \approx P(Z \le 0,46) + P(Z \le 0,24) = 0,1772 + 0,0948 = 0,272$$
.

c) P(1,2 < X < 2,3) para a distribuição da segunda questão;

Resolução:

Usaremos aqui

$$P(a < X < b) = \int_{a}^{b} \left(-\frac{3}{4}x^2 + 3x - \frac{9}{4} \right) dx$$
.

Assim teremos

$$P(1,2 < X < 2,3) = -\frac{3}{4} \int_{1,2}^{2,3} x^2 dx + 3 \int_{1,2}^{2,3} x dx - \frac{9}{4} \int_{1,2}^{2,3} dx = -\frac{3}{4} \frac{x^3}{3} \Big|_{1,2}^{2,3} + 3 \frac{x^2}{2} \Big|_{1,2}^{2,3} - \frac{9}{4} x \Big|_{1,2}^{2,3} ,$$

ou

$$P(1,2 < X < 2,3) = \frac{-10,439}{4} + \frac{3}{2}3,85 - \frac{9}{4}1,1 \approx 0,6902$$
.

d) P(0,9 < X < 1,3) para a distribuição Exponencial com α =0,49 .

Resolução:

Aqui usaremos

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b} .$$

No caso desta questão teremos

$$P(0,9 < X < 1,3) = e^{-0,49 \times 0,9} - e^{-0,49 \times 1,3} = e^{-0,441} - e^{-0,637} \approx 0,1145$$
 .

4 – Quarta questão (2,0 ponto)

Um fabricante de sabonetes artesanais estava avaliando uma de suas linhas de produção. Colheu 10 sabonetes e verificou como média amostral 88g. Estimava-se que a variância relacionada fosse de 144g². Pergunta-se: Qual é a probabilidade de que um sabonete desta linha de produção tenha menos de 89g de peso?

Resolução:

Usaremos novamente a fórmula de probabilidade para a distribuição Normal

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma / \sqrt{n}} < Z < \frac{b - \mu}{\sigma / \sqrt{n}}\right)$$
.

Com os valores dados na questão teremos

$$P(X<89)=P\left(Z<\frac{89-88}{\sqrt{144}/\sqrt{10}}\right)=P\left(Z<\frac{1}{3,7947}\right)\approx P(Z<0,2635)\approx P(Z<0,26)=0,5+0,1026=0,6026$$
.

5 – Quinta questão (2,0 pontos)

Na mesma fábrica de sabonetes da questão anterior, o valor declarado de uma linha de sabonetes era de 90g. Foram recolhidas 20 barras desta máquina e foi obtida a média de 88g.

Resolução:

Usaremos a fórmula

$$IC(\mu,\gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right].$$

Para ambos os itens teremos

$$\frac{\sigma}{\sqrt{n}} = \sqrt{\frac{144}{20}} = \sqrt{7.2} \approx 2,6833$$

assim ficamos com

$$IC(\mu,\gamma) = [88 - z_{\gamma/2} 2,6833;88 + z_{\gamma/2} 2,6833]$$
.

a)Sabendo que a variância para este tipo de produto é de 144g² estabeleça, com coeficiente de confiança de 75%, o intervalo de confiança para a média (1,5 ponto); **Resolução:**

Aqui, usando a tabela de distribuição Normal, tiramos

$$z_{\gamma/2} = z_{0.75/2} = z_{0.375} = 1.15$$
,

o que nos leva a

$$IC(\mu,\gamma)=[88-1,15\times2,6833;88+1,15\times2,6833]\approx[84,91;91,09]$$
.

b)Faça o mesmo mas agora com 95% de confiança (0,5 ponto).

Resolução:

Usando a tabela de distribuição Normal obtemos

$$z_{y/2} = z_{0.95/2} = z_{0.475} = 1.96$$
 ,

o que nos leva a

$$IC(\mu,\gamma)=[88-1,96\times2,6833;88+1,96\times2,6833]\approx[82,74;93,26]$$

ou seja, ao exigirmos um intervalo de confiança maior, a amplitude do intervalo cresce.

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{c}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
		,	,	,	,	,	ĺ	,	,	Ź
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.