CSE 101 Practice Problems - big-O notation

Running-Time Analysis

For the pseudo-code below, give the asymptotic running time in Θ notation:

```
1. for i = 1 to n do j = i while j < n do j = j + 3
```

Answer: The running time is approximately the following sum: $\sum_{i=1}^{n} (n-i)/3$ which is $\Theta(n^2)$.

```
2. for i = 1 to n do
for j = 2*i to n do
s = s+1
```

Answer: The running time is approximately the following sum: $\sum_{i=1}^{n/2} n - 2i + \sum_{i=n/2+1}^{n} 1$ which is $\Theta(n^2)$.

3. for
$$i = 1$$
 to n do $j = i$ while $j < n$ do $j = 2*j$

Answer: The running time is approximately the following sum: $\sum_{i=1}^{n} 1 + \log(n/i)$ which is $\Theta(n)$.

4. for
$$i = 1$$
 to n do $j = n$ while $i*i < j$ do $j = j - 1$

Answer: The running time is approximately the following sum: $\sum_{i=1}^{\sqrt{n}} n - i^2 + \sum_{i=\sqrt{n}+1}^n 1$ which is $\Theta(n\sqrt{n})$.

5. for
$$i = 1$$
 to n do
 $j = 2$
while $j < i$ do
 $j = j * j$

Answer: The running time is approximately the following sum: $\sum_{j=2}^{n} log log i = log \prod_{i=2}^{n} log i$ The log of the product can be approximated with $\Theta(nlog log n)$.

(source: Berkeley CS 170, Fall 2009, HW 1)