	COMPUTER SCI CIAL INTELLIG		DEPARTMENT OF COMPUTER SCIENC ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab Academic Year: 202		Academic Year: 2025-26
Course Coordin	nator Name	Dr.Vairachilai S	r.Vairachilai Shenbagavel	
Instructor(s) Na	ame	Srinivas Komak	omakula	
Course Code	23CA201SE402	Course Title	Explainable AI (P)	
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00PM	
Duration	2 Hours	Applicable to Batch	23CSBTB31	

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	FitFuel – Linear Regression with SHAP Analysis	

Objective:

Analyze the impact of influencer marketing on product sales for **FitFuel**, a health drink brand, by performing **Linear Regression and SHAP value interpretation**.

Requirements:

1. Perform Linear Regression Analysis

• Use the given dataset with Number of Influencer Posts (x) as the independent variable and Bottles Sold (y) as the dependent variable.

Number of Influencer Posts (x)	Bottles Sold (y)
1	120
2	150
3	180
1	130
2	160

2. Calculate the Baseline Value

Compute the **mean** of all y values (i.e., average number of bottles sold).

3. Calculate SHAP Values

- Identify the difference between model prediction and baseline to compute SHAP values for each observation.
- Attribute the contribution of the independent variable (x) to the output.

4. Compute Final Prediction for each record

Use the linear regression equation to calculate predicted y.

Verify that: Final Prediction=Baseline+SHAP Value

5. Interpret the Results

- Explain how each input (number of influencer posts) influenced the final prediction.
- Compare predicted vs actual value for each row.
- Identify if the model **underpredicted or overpredicted** and explain why.

Deliverables:

A notebook or document with:

- Linear regression implementation and coefficients
- Baseline calculation
- Table of SHAP values and final predictions
- Interpretation of each result (in simple terms)
- A summary analysis of model behavior (SHAP interpretation)

Q. No.	Question	Expected Time to complete
2	Study Boost – Multiple Linear Regression with SHAP Analysis	

Objective:

Analyze how IQ and Study Hours impact student test scores using Multiple Linear Regression and interpret the results using SHAP value analysis.

Requirements:

1. Perform Multiple Linear Regression Analysis

- Use the given dataset with:
 - \circ IQ (x_1) and Study Hours (x_2) as independent variables
 - o Test Score (y) as the dependent variable

IQ (X ₁)	Study Hours (x ₂)	Test Score (y)
110	40	100
120	30	90
100	20	80
90	0	70
80	10	60

2. Calculate the Baseline Value

• Compute the mean of all y values (i.e., average test score).

3. Calculate SHAP Values

• Compute SHAP values for each record:

4. Compute Final Prediction for Each Record

Final Prediction = Baseline + SHAP value (sum of SHAP values for IQ and StudyHours)

5. Interpret the Results

For each row:

• Explain how IQ and Study Hours contributed to the final prediction

- Compare predicted vs actual value
- Indicate if the model overpredicted or underpredicted and suggest why

Deliverables:

Prepare a notebook or report containing:

- Multiple Linear Regression equation and coefficients
- Baseline calculation
- Table with SHAP values and final predictions
- Simple interpretation of each prediction
- Summary analysis of how IQ and Study Hours influenced outcomes (SHAP interpretation)

Q. No.	Question	Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.
 - Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value
 - Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - Comment on whether the model overpredicted or underpredicted and why, based on SHAP values.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

1. Perform Multiple Linear Regression Analysis

- Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
- Fit a regression model to predict the **final exam score**.

2. Calculate the Baseline Value

- Compute the **mean of the final exam scores** from the training set.
- This serves as the **baseline prediction** (expected value).

3. Calculate SHAP Values

- Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
- Distribute the prediction deviation from the baseline among the features.