Statistical Theory II: Chapter 8 - Estimation

Chris Hayduk

February 24, 2019

Problem 8.12.

a)
$$E(\hat{\theta}) = \overline{Y} = \frac{\theta + (\theta + 1)}{2} = \theta + \frac{1}{2}$$

 $B(\hat{\theta}) = E(\hat{\theta}) - \theta = \theta + \frac{1}{2} - \theta = \frac{1}{2}$

b) Let
$$E(\hat{\theta}) = \overline{Y} - \frac{1}{2} = \theta$$

Then,

$$B(\hat{\theta}) = E(\hat{\theta}) - \theta = \theta - \theta = 0$$

c)
$$MSE(\overline{Y}) = V(\overline{Y}) + [B(\overline{Y})]^2 = \frac{1}{12n} + \frac{1}{2}$$

Problem 8.22.

Let
$$b = 2\sigma_{\mu} = 2(\frac{\sigma}{\sqrt{n}}) \approx 2(\frac{\sigma_{\mu}}{\sqrt{2}}) = \frac{5.6}{\sqrt{200}} \approx 0.791960$$
.

Thus, the probability that $\epsilon \leq 0.791960$ is approximately 0.95. As a result, we expect the mean to fall in the range [6.40804, 7.99196] with 95% certainty.

Problem 8.46.

a)
$$m_U(t) = E(e^{tU}) = E(e^{t\frac{2Y}{\theta}}) = m_Y(\frac{2t}{\theta})$$

Since Y is distributed exponentially with mean θ , we know from Example 6.12 that $m_Y(t) = (1 - t\theta)^{-1}$

Thus,

$$m_Y(\frac{2t}{\theta}) = (1 - \frac{2t}{\theta}\theta)^{-1} = (1 - 2t)^{-1}$$

This is the moment generating function for a χ^2 -distribution with two degrees of freedom. As a result, U has the same distribution. U is also a pivotal quantity because the distribution does not depend on θ .

b) From Appendix 3, Table 6 with two degrees of freedom: $P(0.102587 \le \frac{2Y}{\theta} \le 5.99147) = 0.9$

This yields,
$$\big(\frac{2Y}{5.99147},\frac{2Y}{0.102587}\big)$$
 as the 90% confidence interval for θ .

c)
$$\frac{2Y}{5.99147} \approx \frac{Y}{2.996}$$
 and $\frac{2Y}{0.102587} \approx \frac{Y}{0.051}$

Thus, the two confidence intervals are equivalent.

Problem 8.60.

a) From Example 8.6:

$$\hat{\theta}_L = \hat{\theta} - z_{\alpha/2}\sigma_{\hat{\theta}}$$
 and $\hat{\theta}_U = \hat{\theta} + z_{\alpha/2}\sigma_{\hat{\theta}}$

Thus, with $\alpha = 0.01$,

$$\hat{\theta}_L = 98.25 - 2.576(\frac{0.73}{\sqrt{130}}) \approx 98.0851$$
 and $\hat{\theta}_U = 98.25 + 2.576(\frac{0.73}{\sqrt{130}}) \approx 98.4149$

b) This confidence interval does not contain the value 98.6 degrees. Thus, we can say with 99% confidence that 98.6 degrees is not an accurate estimate for the average body temperature of a healthy human.

Problem 8.102.

$$s^{2} = \left[\frac{1}{n-1}\right] \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$
$$= \left[\frac{1}{4}\right] \sum_{i=1}^{5} (Y_{i} - 57)^{2}$$
$$= \frac{289}{2} = 144.5$$

Thus, with $s^2=144.5$, $\frac{\alpha}{2}=0.005$, and df=4, Table 6, Appendix 3 gives $\chi^2_{0.995}=0.206990$ and $\chi^2_{0.005}=14.8602$. Hence, the 90% confidence interval for σ^2 is,

$$\left(\frac{(4)(144.5)}{14.8602}, \frac{(4)(144.5)}{0.206990}\right) \approx (38.896, 2792.405)$$

Since we are looking for the 90% confidence interval for $\sqrt{\sigma^2} = \sigma$, we take the square root of both endpoints of the above confidence interval, yielding:

$$(\sqrt{38.896}, \sqrt{2792.405}) \approx (6.237, 52.843)$$