## K- Means Algorithm

```
In [2]: import warnings
warnings.filterwarnings('ignore')

In [3]: # importing Libraries
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt

In [4]: # importing dataset

dataset=pd.read_csv(r"C:\Users\Jan Saida\OneDrive\Documents\Desktop\Excel sheets\Mall_Customers.csv")

dataset
```

| Out[4]: |     | CustomerID | Genre  | Age | Annual Income (k\$) | Spending Score (1-100) |
|---------|-----|------------|--------|-----|---------------------|------------------------|
|         | 0   | 1          | Male   | 19  | 15                  | 39                     |
|         | 1   | 2          | Male   | 21  | 15                  | 81                     |
|         | 2   | 3          | Female | 20  | 16                  | 6                      |
|         | 3   | 4          | Female | 23  | 16                  | 77                     |
|         | 4   | 5          | Female | 31  | 17                  | 40                     |
|         | ••• |            |        |     |                     |                        |
|         | 195 | 196        | Female | 35  | 120                 | 79                     |
|         | 196 | 197        | Female | 45  | 126                 | 28                     |
|         | 197 | 198        | Male   | 32  | 126                 | 74                     |
|         | 198 | 199        | Male   | 32  | 137                 | 18                     |
|         | 199 | 200        | Male   | 30  | 137                 | 83                     |

200 rows × 5 columns

In [5]: x=dataset.iloc[:,[3,4]].values
x

```
Out[5]: array([[ 15, 39],
              [ 15, 81],
              [ 16, 6],
              [ 16, 77],
              [ 17, 40],
              [ 17, 76],
              [ 18, 6],
              [ 18, 94],
              [ 19, 3],
              [ 19, 72],
              [ 19, 14],
              [ 19, 99],
              [ 20, 15],
              [ 20, 77],
              [ 20, 13],
              [ 20, 79],
              [ 21, 35],
              [ 21, 66],
              [ 23, 29],
              [ 23, 98],
              [ 24, 35],
              [ 24, 73],
              [ 25, 5],
              [ 25, 73],
              [ 28, 14],
              [ 28, 82],
              [ 28, 32],
              [ 28, 61],
              [ 29, 31],
              [ 29, 87],
              [ 30, 4],
              [ 30, 73],
              [ 33, 4],
              [ 33, 92],
              [ 33, 14],
              [ 33, 81],
              [ 34, 17],
              [ 34, 73],
              [ 37, 26],
              [ 37, 75],
              [ 38, 35],
              [ 38, 92],
              [ 39, 36],
              [ 39, 61],
              [ 39, 28],
```

```
[ 39, 65],
```

- [ 40, 55],
- [ 40, 47],
- [ 40, 42],
- [ 40, 42],
- [ 42, 52],
- [ 42, 60],
- [ 43, 54],
- [ 43, 60],
- [ 43, 45],
- [ 43, 41],
- [ 44, 50],
- [ 44, 46],
- [ 46, 51],
- [ 46, 46],
- [ 46, 56],
- [ 46, 55],
- [ 47, 52],
- [ 47, 59],
- [ 48, 51],
- [ 48, 59],
- [ 48, 50],
- [ 48, 48],
- [ 48, 59],
- [ 48, 47],
- [ 49, 55],
- [ 49, 42],
- [ 50, 49],
- [ 50, 56],
- [ 54, 47],
- [ 54, 54],
- [ 54, 53],
- [ 54, 48],
- [ 54, 52],
- [ 54, 42],
- [ 54, 51],
- [ 54, 55],
- [ 54, 41],
- [ 54, 44],
- [ 54, 57],
- [ 54, 46],
- [ 57, 58],
- [ 57, 55],
- [ 58, 60],
- [ 58, 46],

```
[ 59, 55],
```

- [ 59, 41],
- [ 60, 49],
- [ 60, 40],
- [ 60, 42],
- [ 60, 52],
- [ 60, 47],
- [ 60, 50],
- [ 61, 42],
- [ 61, 49],
- [ 62, 41],
- [ 62, 48],
- [ 62, 59],
- [ 62, 55],
- [ 62, 56],
- [ 62, 42],
- [ 63, 50],
- [ 63, 46],
- [ 63, 43],
- [ 63, 48],
- [ 63, 52],
- [ 63, 54],
- [ 64, 42],
- [ 64, 46],
- [ 65, 48],
- [ 65, 50],
- [ 65, 43],
- [ 65, 59],
- [ 67, 43],
- [ 67, 57],
- [ 67, 56],
- [ 67, 40],
- [ 69, 58],
- [ 69, 91],
- [ 70, 29],
- [ 70, 77],
- [ 71, 35],
- [ 71, 95],
- [ 71, 11],
- [ 71, 75],
- [ 71, 9],
- [ 71, 75],
- [ 72, 34],
- [ 72, 71],
- [ 73, 5],

```
[ 73, 88],
[ 73, 7],
```

[ 73, 73],

[ 74, 10],

[ 74, 72],

[ 75, 5],

[ 75, 93],

[ 76, 40],

[ 76, 87],

[ 77, 12],

[ 77, 97],

[ 77, 36],

[ 77, 74],

[ 78, 22],

[ 78, 90],

[ 78, 17],

[ 78, 88],

[ 78, 20],

[ 78, 76],

[ 78, 16],

[ 78, 89],

[ 78, 1],

[ 78, 78],

[ 78, 1],

[ 78, 73],

[ 79, 35],

[ 79, 83],

[ 81, 5], [ 81, 93],

[ 85, 26],

[ 85, 75],

[ 86, 20],

[ 86, 95],

[ 87, 27],

[ 87, 63],

[ 87, 13],

[ 87, 75],

[ 87, 10],

[ 87, 92],

[ 88, 13],

[ 88, 86],

[ 88, 15],

[ 88, 69],

[ 93, 14],

[ 93, 90],

```
[ 97, 32],
               [ 97, 86],
               [ 98, 15],
               [ 98, 88],
               [ 99, 39],
               [ 99, 97],
               [101, 24],
               [101, 68],
               [103, 17],
               [103, 85],
               [103, 23],
               [103, 69],
               [113, 8],
               [113, 91],
               [120, 16],
               [120, 79],
               [126, 28],
               [126, 74],
               [137, 18],
               [137, 83]], dtype=int64)
In [6]: # using elbow method to find the optimal number of clusters
        from sklearn.cluster import KMeans
In [7]: wcss=[]
        for i in range(1,11):
            kmeans=KMeans(n clusters=i,init="k-means++",random state=0)
            kmeans.fit(x)
           wcss.append(kmeans.inertia_)
        plt.plot(range(1,11),wcss)
        plt.title('The Elbow Method')
        plt.xlabel('Number Of Clusters')
        plt.ylabel('WCSS')
        plt.show()
        # wcss we have very good parameter called inertia credit goes to sklearn , that computes the sum of square , formula it will compute
```





```
Out[9]: array([3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 
                                       3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 6,
                                       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 2, 1,
                                       0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
                                       2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
                                       2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
                                       2, 11)
In [10]: # visualising the clusters
                      plt.scatter(x[y \text{ kmeans} == 0, 0], x[y \text{ kmeans} == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
                      plt.scatter(x[y kmeans == 1, 0], x[y kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
                      plt.scatter(x[y \text{ kmeans} == 2, 0], x[y \text{ kmeans} == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
                     plt.scatter(x[y \text{ kmeans} == 3, 0], x[y \text{ kmeans} == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
                      plt.scatter(x[y kmeans == 4, 0], x[y kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
                      plt.scatter(kmeans.cluster centers [:, 0], kmeans.cluster centers [:, 1], s = 300, c = 'yellow', label = 'Centroids')
                      plt.title('Clusters of customers')
                     plt.xlabel('Annual Income (k$)')
                     plt.ylabel('Spending Score (1-100)')
                      plt.legend()
                      plt.show()
```



```
dataset['cluster']=y_kmeans

In [12]: y_kmeans

Out[12]: array([3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,
```

In [11]: y kmeans=kmeans.labels

```
In [13]: # pickling the file
    import pickle
    filename='Mall_prediction.pkl'
    with open (filename,'wb') as file:
        pickle.dump(kmeans,file)
    print('Model has been saved and Pickled as Mall_prediction.pkl')

Model has been saved and Pickled as Mall_prediction.pkl

In [14]: import os
    os.getcwd()
Out[14]: 'C:\\Users\\Jan Saida'
```

#### Streamlit\Mall\_Customer\_Segmentation\_app.py

```
1 import streamlit as st
   import pandas as pd
 2
   import numpy as np
   import matplotlib.pyplot as plt
   from sklearn.cluster import KMeans
   import pickle
   # Load pre-trained KMeans model
   filename = 'C:\\Users\Jan Saida\Mall prediction.pkl'
10
   with open(filename, 'rb') as file:
11
       kmeans = pickle.load(file)
12
13
   # Function to load dataset and show initial preview
14
   def load data():
15
       dataset = pd.read csv(r"C:\Users\Jan Saida\OneDrive\Documents\Desktop\Excel sheets\Mall Customers.csv")
16
       return dataset
17
18
19 # Title for Streamlit app
   st.title("Mall Customer Segmentation Using K-Means Clustering")
21
22 # Dataset display
   st.header("Dataset Preview")
23
   dataset = load data()
24
   st.dataframe(dataset.head())
25
26
27
   # Allow user to input custom values for clustering
   st.sidebar.header("Input Parameters for Clustering")
28
29
   # Taking input for annual income and spending score
30
   annual income = st.sidebar.slider("Annual Income (k$)", float(dataset['Annual Income (k$)'].min()), float(dataset['Annual Income (k$)'].max()))
31
   spending score = st.sidebar.slider("Spending Score (1-100)", 1, 100)
32
33
   # Display the user's input
34
   st.write(f"User Input - Annual Income: {annual income}k$ | Spending Score: {spending score}")
35
36
   # Predict the cluster based on the user input
37
   user input = np.array([[annual income, spending score]])
38
   cluster prediction = kmeans.predict(user input)
```

```
40
41
   st.write(f"The customer is predicted to belong to Cluster {cluster prediction[0] + 1}")
42
43
   # Visualize the clusters with the user's input
   st.header("Cluster Visualization")
44
45
   # Get the coordinates of the clusters
46
47
   x = dataset.iloc[:, [3, 4]].values
48
   v kmeans = kmeans.predict(x)
49
50 # Plotting the clusters
51
   plt.figure(figsize=(10, 6))
   plt.scatter(x[v \text{ kmeans} == 0, 0], x[v \text{ kmeans} == 0, 1], x[v \text{ kmeans} == 0, 1], x[v \text{ kmeans} == 0, 1]
53 plt.scatter(x[y kmeans == 1, 0], x[y kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
   plt.scatter(x[y \text{ kmeans} == 2, 0], x[y \text{ kmeans} == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
55 plt.scatter(x[y kmeans == 3, 0], x[y kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
   plt.scatter(x[y \text{ kmeans} == 4, 0], x[y \text{ kmeans} == 4, 1], s = 100, c = \text{'magenta'}, label = 'Cluster 5')
56
57
58 # Plotting the centroids
   plt.scatter(kmeans.cluster centers [:, 0], kmeans.cluster centers [:, 1], s = 300, c = 'yellow', label = 'Centroids')
59
60
61 # Labels and title
62 plt.title('Clusters of customers')
   plt.xlabel('Annual Income (k$)')
63
   plt.ylabel('Spending Score (1-100)')
64
65
   plt.legend()
66 st.pyplot(plt)
67
68 # Running the app
69 if name == ' main ':
        st.write("This is a simple app that predicts which customer cluster a person falls into based on their annual income and spending score.")
70
71
```



# Mall Customer Segmentation Using K-Means Clustering

### **Dataset Preview**

| CustomerID | Genre  | Age | Annual Income (k\$) | Spending Score (1-100) |
|------------|--------|-----|---------------------|------------------------|
|            | Male   | 19  | 15                  | 39                     |
| 2          | Male   | 21  | 15                  | 81                     |
| 3          | Female | 20  | 16                  | 6                      |
| 4          | Female | 23  | 16                  | 77                     |
|            | Female | 31  | 17                  | 40                     |

User Input - Annual Income: 15.0k\$ | Spending Score: 39

The customer is predicted to belong to Cluster 4

## **Cluster Visualization**





# Mall Customer Segmentation Using K-Means Clustering

### **Dataset Preview**

| CustomerID | Genre  | Age | Annual Income (k\$) | Spending Score (1-100) |
|------------|--------|-----|---------------------|------------------------|
|            | Male   | 19  | 15                  | 39                     |
| 2          | Male   | 21  | 15                  | 81                     |
| 3          | Female | 20  | 16                  | 6                      |
| 4          | Female | 23  | 16                  | 77                     |
| 5          | Female | 31  | 17                  | 40                     |

User Input - Annual Income: 27.71k\$ | Spending Score: 55

The customer is predicted to belong to Cluster 5

## **Cluster Visualization**





# Mall Customer Segmentation Using K-Means Clustering

### **Dataset Preview**

| CustomerID | Genre  | Age | Annual Income (k\$) | Spending Score (1-100) |
|------------|--------|-----|---------------------|------------------------|
|            | Male   | 19  | 15                  | 39                     |
| 2          | Male   | 21  | 15                  | 81                     |
| 3          | Female | 20  | 16                  | 6                      |
| 4          | Female | 23  | 16                  | 77                     |
|            | Female | 31  | 17                  | 40                     |

User Input - Annual Income: 58.63k\$ | Spending Score: 17

The customer is predicted to belong to Cluster 3

## **Cluster Visualization**





# Mall Customer Segmentation Using K-Means Clustering

### **Dataset Preview**

| CustomerID | Genre  | Age | Annual Income (k\$) | Spending Score (1-100) |
|------------|--------|-----|---------------------|------------------------|
|            | Male   | 19  | 15                  | 39                     |
| 2          | Male   | 21  | 15                  | 81                     |
| 3          | Female | 20  | 16                  | 6                      |
| 4          | Female | 23  | 16                  | 77                     |
| 5          | Female | 31  | 17                  | 40                     |

User Input - Annual Income: 69.22k\$ | Spending Score: 33

The customer is predicted to belong to Cluster 1

## **Cluster Visualization**



| CustomerID Gender | Age Annı | ial Income Spend | ling Score   kmeans | s Prediction |
|-------------------|----------|------------------|---------------------|--------------|
| 1 Male            | 19       | 15               | 39                  | 4            |
| 2 Male            | 21       | 15               | 81                  | 3            |
| 3 Female          | 20       | 16               | 6                   | 4            |
| 4 Female          | 23       | 16               | 77                  | 3            |
| 5 Female          | 31       | 17               | 40                  | 4            |
| 6 Female          | 22       | 17               | 76                  | 3            |
| 7 Female          | 35       | 18               | 6                   | 4            |
| 8 Female          | 23       | 18               | 94                  | 3            |
| 9 Male            | 64       | 19               | 3                   | 4            |
| 10 Female         | 30       | 19               | 72                  | 3            |
| 11 Male           | 67       | 19               | 14                  | 4            |
| 12 Female         | 35       | 19               | 99                  | 3            |
| 13 Female         | 58       | 20               | 15                  | 4            |
| 14 Female         | 24       | 20               | 77                  | 3            |
| 15 Male           |          | 20               | 13                  | 4            |
| 16 Male           | 37<br>22 | 20               | 79                  | 3            |
| 17 Female         |          | 21               | 7 <i>9</i><br>35    | 4            |
| 18 Male           | 35       |                  |                     |              |
|                   | 20       | 21               | 66<br>30            | 3            |
| 19 Male           | 52<br>25 | 23               | 29                  | 4            |
| 20 Female         | 35       | 23               | 98                  | 3            |
| 21 Male           | 35       | 24               | 35                  | 4            |
| 22 Male           | 25       | 24               | 73                  | 3            |
| 23 Female         | 46       | 25               | 5                   | 4            |
| 24 Male           | 31       | 25               | 73                  | 3            |
| 25 Female         | 54       | 28               | 14                  | 4            |
| 26 Male           | 29       | 28               | 82                  | 3            |
| 27 Female         | 45       | 28               | 32                  | 4            |
| 28 Male           | 35       | 28               | 61                  | 3            |
| 29 Female         | 40       | 29               | 31                  | 4            |
| 30 Female         | 23       | 29               | 87                  | 3            |
| 31 Male           | 60       | 30               | 4                   | 4            |
| 32 Female         | 21       | 30               | 73                  | 3            |
| 33 Male           | 53       | 33               | 4                   | 4            |
| 34 Male           | 18       | 33               | 92                  | 3            |
| 35 Female         | 49       | 33               | 14                  | 4            |
| 36 Female         | 21       | 33               | 81                  | 3            |
| 37 Female         | 42       | 34               | 17                  | 4            |
| 38 Female         | 30       | 34               | 73                  | 3            |
| 39 Female         | 36       | 37               | 26                  | 4            |
| 40 Female         | 20       | 37               | 75                  | 3            |
| 41 Female         | 65       | 38               | 35                  | 4            |
| 42 Male           | 24       | 38               | 92                  | 3            |
| 43 Male           | 48       | 39               | 36                  | 4            |
| 44 Female         | 31       | 39               | 61                  | 1            |
| 45 Female         | 49       | 39               | 28                  | 4            |
| 46 Female         | 24       | 39               | 65                  | 1            |

| 47 | Female | 50 | 40 | 55 | 1 |
|----|--------|----|----|----|---|
| 48 | Female | 27 | 40 | 47 | 1 |
|    | Female | 29 | 40 | 42 | 1 |
|    | Female | 31 | 40 | 42 | 1 |
|    | Female | 49 | 42 | 52 | 1 |
|    |        |    |    |    |   |
|    | Male   | 33 | 42 | 60 | 1 |
|    | Female | 31 | 43 | 54 | 1 |
|    | Male   | 59 | 43 | 60 | 1 |
| 55 | Female | 50 | 43 | 45 | 1 |
| 56 | Male   | 47 | 43 | 41 | 1 |
| 57 | Female | 51 | 44 | 50 | 1 |
| 58 | Male   | 69 | 44 | 46 | 1 |
| 59 | Female | 27 | 46 | 51 | 1 |
| 60 | Male   | 53 | 46 | 46 | 1 |
|    | Male   | 70 | 46 | 56 | 1 |
|    | Male   | 19 | 46 | 55 | 1 |
|    | Female | 67 | 47 | 52 | 1 |
|    | Female | 54 | 47 | 59 | 1 |
|    |        |    |    |    |   |
|    | Male   | 63 | 48 | 51 | 1 |
|    | Male   | 18 | 48 | 59 | 1 |
|    | Female | 43 | 48 | 50 | 1 |
|    | Female | 68 | 48 | 48 | 1 |
| 69 | Male   | 19 | 48 | 59 | 1 |
| 70 | Female | 32 | 48 | 47 | 1 |
| 71 | Male   | 70 | 49 | 55 | 1 |
| 72 | Female | 47 | 49 | 42 | 1 |
| 73 | Female | 60 | 50 | 49 | 1 |
| 74 | Female | 60 | 50 | 56 | 1 |
| 75 | Male   | 59 | 54 | 47 | 1 |
|    | Male   | 26 | 54 | 54 | 1 |
|    | Female | 45 | 54 | 53 | 1 |
|    | Male   | 40 | 54 | 48 | 1 |
|    |        |    |    |    |   |
|    | Female | 23 | 54 | 52 | 1 |
|    | Female | 49 | 54 | 42 | 1 |
|    | Male   | 57 | 54 | 51 | 1 |
|    | Male   | 38 | 54 | 55 | 1 |
| 83 | Male   | 67 | 54 | 41 | 1 |
| 84 | Female | 46 | 54 | 44 | 1 |
| 85 | Female | 21 | 54 | 57 | 1 |
| 86 | Male   | 48 | 54 | 46 | 1 |
| 87 | Female | 55 | 57 | 58 | 1 |
|    | Female | 22 | 57 | 55 | 1 |
|    | Female | 34 | 58 | 60 | 1 |
|    | Female | 50 | 58 | 46 | 1 |
|    | Female | 68 | 59 | 55 | 1 |
|    | Male   | 18 | 59 | 41 | 1 |
|    |        |    |    |    |   |
| 33 | Male   | 48 | 60 | 49 | 1 |

| 94  | Female | 40 | 60 | 40 | 1 |
|-----|--------|----|----|----|---|
| 95  | Female | 32 | 60 | 42 | 1 |
|     | Male   | 24 | 60 | 52 | 1 |
|     |        |    |    |    |   |
|     | Female | 47 | 60 | 47 | 1 |
| 98  | Female | 27 | 60 | 50 | 1 |
| 99  | Male   | 48 | 61 | 42 | 1 |
| 100 | Male   | 20 | 61 | 49 | 1 |
|     | Female | 23 | 62 | 41 | 1 |
|     |        |    |    |    |   |
|     | Female | 49 | 62 | 48 | 1 |
| 103 | Male   | 67 | 62 | 59 | 1 |
| 104 | Male   | 26 | 62 | 55 | 1 |
| 105 | Male   | 49 | 62 | 56 | 1 |
|     | Female | 21 | 62 | 42 | 1 |
|     |        |    |    |    |   |
|     | Female | 66 | 63 | 50 | 1 |
| 108 | Male   | 54 | 63 | 46 | 1 |
| 109 | Male   | 68 | 63 | 43 | 1 |
| 110 | Male   | 66 | 63 | 48 | 1 |
| 111 | Male   | 65 | 63 | 52 | 1 |
|     | Female | 19 | 63 | 54 | 1 |
|     |        |    |    |    |   |
|     | Female | 38 | 64 | 42 | 1 |
| 114 | Male   | 19 | 64 | 46 | 1 |
| 115 | Female | 18 | 65 | 48 | 1 |
| 116 | Female | 19 | 65 | 50 | 1 |
| 117 | Female | 63 | 65 | 43 | 1 |
|     | Female | 49 | 65 | 59 | 1 |
|     |        |    |    |    |   |
|     | Female | 51 | 67 | 43 | 1 |
|     | Female | 50 | 67 | 57 | 1 |
| 121 | Male   | 27 | 67 | 56 | 1 |
| 122 | Female | 38 | 67 | 40 | 1 |
| 123 | Female | 40 | 69 | 58 | 1 |
|     | Male   | 39 | 69 | 91 | 2 |
|     | Female | 23 | 70 | 29 |   |
|     |        |    |    |    | 1 |
|     | Female | 31 | 70 | 77 | 2 |
| 127 | Male   | 43 | 71 | 35 | 1 |
| 128 | Male   | 40 | 71 | 95 | 2 |
| 129 | Male   | 59 | 71 | 11 | 0 |
|     | Male   | 38 | 71 | 75 | 2 |
|     | Male   | 47 | 71 | 9  | 0 |
|     |        |    |    |    |   |
|     | Male   | 39 | 71 | 75 | 2 |
| 133 | Female | 25 | 72 | 34 | 1 |
| 134 | Female | 31 | 72 | 71 | 2 |
| 135 | Male   | 20 | 73 | 5  | 0 |
|     | Female | 29 | 73 | 88 | 2 |
|     | Female | 44 | 73 | 7  | 0 |
|     |        |    |    |    |   |
|     | Male   | 32 | 73 | 73 | 2 |
|     | Male   | 19 | 74 | 10 | 0 |
| 140 | Female | 35 | 74 | 72 | 2 |
|     |        |    |    |    |   |

| 141 | Female    | 57              | 75  | 5  | 0 |
|-----|-----------|-----------------|-----|----|---|
| 142 | Male      | 32              | 75  | 93 | 2 |
| 143 | Female    | 28              | 76  | 40 | 1 |
| 144 | Female    | 32              | 76  | 87 | 2 |
|     | Male      | 25              | 77  | 12 | 0 |
|     | Male      | 28              | 77  | 97 | 2 |
|     | Male      | 48              | 77  | 36 | 1 |
|     | Female    | 32              | 77  | 74 | 2 |
|     | Female    | 34              | 78  | 22 | 0 |
|     | Male      |                 |     |    |   |
|     |           | 34              | 78  | 90 | 2 |
|     | Male      | 43              | 78  | 17 | 0 |
|     | Male      | 39              | 78  | 88 | 2 |
|     | Female    | 44              | 78  | 20 | 0 |
|     | Female    | 38              | 78  | 76 | 2 |
| 155 | Female    | 47              | 78  | 16 | 0 |
| 156 | Female    | 27              | 78  | 89 | 2 |
| 157 | Male      | 37              | 78  | 1  | 0 |
| 158 | Female    | 30              | 78  | 78 | 2 |
| 159 | Male      | 34              | 78  | 1  | 0 |
| 160 | Female    | 30              | 78  | 73 | 2 |
| 161 | Female    | 56              | 79  | 35 | 1 |
| 162 | Female    | 29              | 79  | 83 | 2 |
|     | Male      | 19              | 81  | 5  | 0 |
|     | Female    | 31              | 81  | 93 | 2 |
|     | Male      | 50              | 85  | 26 | 0 |
|     | Female    | 36              | 85  | 75 | 2 |
|     | Male      | 42              | 86  | 20 | 0 |
|     | Female    | 33              | 86  | 95 | 2 |
|     |           |                 |     |    |   |
|     | Female    | 36              | 87  | 27 | 0 |
|     | Male      | 32              | 87  | 63 | 2 |
|     | Male      | 40              | 87  | 13 | 0 |
|     | Male      | 28              | 87  | 75 | 2 |
|     | Male      | 36              | 87  | 10 | 0 |
|     | Male      | 36              | 87  | 92 | 2 |
| 175 | Female    | 52              | 88  | 13 | 0 |
| 176 | Female    | 30              | 88  | 86 | 2 |
| 177 | Male      | 58              | 88  | 15 | 0 |
| 178 | Male      | 27              | 88  | 69 | 2 |
| 179 | Male      | 59              | 93  | 14 | 0 |
| 180 | Male      | 35              | 93  | 90 | 2 |
| 181 | Female    | 37              | 97  | 32 | 0 |
| 182 | Female    | 32              | 97  | 86 | 2 |
|     | Male      | 46              | 98  | 15 | 0 |
|     | Female    | 29              | 98  | 88 | 2 |
|     | Female    | 41              | 99  | 39 | 0 |
|     | Male      | 30              | 99  | 97 | 2 |
|     | Female    | 54              | 101 | 24 | 0 |
| 10/ | i ciliaic | J <del>-1</del> | 101 | 44 | U |

| 188 Male   | 28 | 101 | 68 | 2 |
|------------|----|-----|----|---|
| 189 Female | 41 | 103 | 17 | 0 |
| 190 Female | 36 | 103 | 85 | 2 |
| 191 Female | 34 | 103 | 23 | 0 |
| 192 Female | 32 | 103 | 69 | 2 |
| 193 Male   | 33 | 113 | 8  | 0 |
| 194 Female | 38 | 113 | 91 | 2 |
| 195 Female | 47 | 120 | 16 | 0 |
| 196 Female | 35 | 120 | 79 | 2 |
| 197 Female | 45 | 126 | 28 | 0 |
| 198 Male   | 32 | 126 | 74 | 2 |
| 199 Male   | 32 | 137 | 18 | 0 |
| 200 Male   | 30 | 137 | 83 | 2 |