Program No:11

Aim:Program to implement k-means clustering technique using any standard dataset available in the public domain

Program

```
import numpy as np
import matplotlib.pyplot as mtp
import pandas as pd
dataset=pd.read csv('Mall Customers.csv')
x=dataset.iloc[:,[3,4]].values
print(x)
from sklearn.cluster import KMeans
wcss_list = []
for i in range(1, 11):
      kmeans = KMeans(n_clusters=i, init='k-means++')
      kmeans.fit(x)
      wcss_list.append(kmeans.inertia_)
mtp.plot(range(1,11), wcss list)
mtp.title('The elbow method Graph')
mtp.xlabel('Number of clusters (k)')
mtp.ylabel('wcss list')
mtp.show()
kmeans = KMeans(n_clusters=5,init='k-means++',random_state=42)
y_predict=kmeans.fit_predict(x)
print(y_predict)
mtp.scatter(x[y_predict == 0,0], x[y_predict == 0,1], s=100, c='blue', label='Cluster0')
mtp.scatter(x[y_predict == 1,0], x[y_predict == 1,1], s=100, c='green', label= 'Cluster1')
mtp.scatter(x[y\_predict == 2,0], x[y\_predict == 2,1], s=100, c='red', label= 'Cluster2')
mtp.scatter(x[y_predict == 3,0], x[y_predict == 3,1], s=100, c='cyan', label= 'Cluster3')
mtp.scatter(x[y_predict == 4,0], x[y_predict == 4,1], s=100, c='magenta', label= 'Cluster4')
mtp.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1], s = 300,)
mtp.title('clusters of customers')
mtp.xlabel('annual incmome (k$')
mtp.ylabel('spending score (1-100)')
mtp.legend()
mtp.show()
```

OUTPUT

```
C:\Users\ajcemca\AppData\Local\Programs\Python\Python39\python.exe C:/Users/ajcemca
[[ 15 39]
[ 15 81]
 [ 16
      6]
 [ 16 77]
 [ 17 40]
 [ 17 76]
 [ 18 6]
 [ 18 94]
[ 19
      3]
 [ 19 72]
 [ 19 14]
 [ 19 99]
 [ 20 15]
 [ 20 77]
 [ 20 13]
 [ 20 79]
 [ 21 35]
 [ 21 66]
 [ 23 29]
 [ 23 98]
 [ 24 35]
 [ 24 73]
 [ 25
      5]
 [ 25 73]
 [ 28 14]
```

[20 /0] [28 14] [28 82] [28 32] [28 61] [29 31] [29 87] [30 4] [30 73] 4] [33 [33 92] [33 14] [33 81] [34 17] [34 73] [37 26] [37 75] [38 35] [38 92] [39 36] [39 61] [39 28] [39 65] [40 55] 47] [40 [40 42]

[42 52]

[42 60]

[43 54]

[43 60]

[43 45]

[43 41]

[44 50]

[44 46]

[46 51]

[46 46]

[46 56]

[46 55]

[47 52]

[47 59]

[48 51]

[48 59]

[48 50]

[48 48]

[48 59]

[48 47]

[49 55]

[49 42]

[50 49]

[50 56]

[54 47]

[54 54]

[54 51] [54 55] [54 41] [54 44] [54 57] [54 46] [57 58] [57 55] [58 60] [58 46] [59 55] [59 41] [60 49] [60 40] [60 42] [60 52] [60 47] [60 50]

[61

[61

[62

[62

[62

[62

[62

[62 42]

42]

49]

41]

48]

59]

55]

56]

[63 46]

[63 43]

[63 48]

[63 52]

[63 54]

[64 42]

[64 46]

[65 48]

[65 50]

[65 43]

[65 59]

[67 43]

[67 57]

[67 56]

[67 40]

[69 58]

[69 91]

[70 29]

[70 77]

[71 35]

[71 95]

[71 11]

[71 75]

[71 9]

[71 75]

[72 34]

```
[ 97 86]
[ 98 15]
[ 98 88]
[ 99 39]
[ 99 97]
[101 24]
[101 68]
[103 17]
[103 85]
[103 23]
[103 69]
[113 8]
[113 91]
[120 16]
[120 79]
[126 28]
[126 74]
[137 18]
[137 83]]
414141414141414]
```


