III. LISTING OF THE CLAIMS

The following listing of claims replaces all prior versions, and listings, of claims in the application:

1. (Original) A method for polishing a wafer, the method comprising the steps of:

providing a semiconductor wafer having a topography including a first topography location and a different second topography location;

applying a slurry that includes an additive for forming a polishing inhibiting layer in situ across the topography, the polishing inhibiting layer creating a polishing rate for the topography that is non-linear with polishing pressure; and

chemical mechanical polishing the topography.

- 2. (Original) The method of claim 1, wherein the additive to form the polishing inhibiting layer includes one of: an anionic surfactant and a cationic surfactant.
- 3. (Original) The method of claim 2, wherein the cationic surfactant includes a chemical structure selected from the group consisting of:
- a) $[CH_3(CH_2)_xN(R)]M$, wherein M is selected from the group consisting of: Cl, Br and I, x equals an integer between 2 and 24, and the R includes three carbon-based functional groups, each having less than eight carbon atoms; and
- b) C_pH_qQN , where Q is selected from the group consisting of: Cl, Br and I, and p > 8 and q > 20.

- 4. (Original) The method of claim 1, wherein the carbon-based functional groups are selected from the group consisting of: CH₃, CH₂OH, C₂H₄OH, C₂H₅, C₃H₆OH and C₃H₇.
- 5. (Original) The method of claim 1, wherein the cationic surfactant includes C_pH_qQN , and Q is Cl, p = 21, and q = 38, resulting in cetylpyridinium chloride ($C_{21}H_{38}ClN$).
- 6. (Original) The method of claim 1, wherein the cationic surfactant includes one of: cetyltrimethyl ammonium bromide (CTAB), [CH₃(CH₂)₁₅N(CH₃)₃]Br; cetyldimethylethyl ammonium bromide (CDB), [CH₃(CH₂)₁₅N(CH₃)₂CH₂OH]Br; [CH₃(CH₂)_xN(CH₃)₃]Br, where x equals an integer between 2 and 24; and [CH₃(CH₂)_xN(CH₃)(C₂H₅)(C₃H₇)]Br, where x equals an integer between 2 and 24.
- 7. (Original) The method of claim 1, wherein the anionic surfactant includes at least one of: sodium sulfate, sodium dodecyl sulfate, sodium lauryl sulfate, sodium stearate and sodium tetradecyl sulfate.
- 8. (Original) The method of claim 1, wherein the polishing inhibiting layer decreases a polishing rate of one of the topography locations to a level defined according to: $PR = k * (P P_{crit})$,

where PR is the polishing rate, k is a coefficient of friction of a slurry, P is a polishing pad polishing pressure at one of the topography locations, and P_{crit} is a critical removal polishing

pressure to be applied for removal of the polishing inhibiting layer.

- 9. (Original) The method of claim 8, further comprising the step of removing the polishing inhibiting layer by polishing at a pressure greater than the critical removal polishing pressure.
- 10. (Original) The method of claim 8, wherein the critical removal polishing pressure P_{crit} is no less than approximately 2 psi and no greater than approximately 20 psi.
- 11. (Original) The method of claim 8, wherein the polishing step includes applying a downforce of no more than 4 psi above the critical removal polishing pressure P_{crit} , and no less than 4 psi below the critical removing polishing pressure P_{crit} .
- 12. (Original) The method of claim 1, further comprising the step of controlling a pH level of the slurry to be between an isoelectric point of the topography and an isoelectric point of a polishing particle of the slurry to ensure adhesion of the polishing inhibiting layer to a surface of the topography, wherein the controlling step includes adding at least one of an acid and a base.
- 13. (Original) The method of claim 12, wherein the acid is selected from the group consisting of: nitric acid, hydrochloric acid, phosphoric acid and sulfuric acid, and the base selected from the group consisting of: potassium hydroxide and sodium hydroxide.
- 14. (Original) The method of claim 1, wherein the difference in topography between the first

topography location and the second topography location is at least one of: height and pattern density.

- 15. (Original) The method of claim 1, wherein the topography includes silicon dioxide, the slurry includes a polishing particle including ceria, the additive includes cetyltrimethyl ammonium bromide (CTAB) [CH₃(CH₂)₁₅N(CH₃)₃]Br, and a pH level of the slurry is no less than approximately 2 and no more than approximately 7.
- 16. (Original) The method of claim 1, wherein the topography includes silicon nitride, the slurry includes a polishing particle including silica, the additive includes sodium dodecylsulfate, and a pH level of the slurry is no less than approximately 3 and no more than approximately 9.
- 17. (Withdrawn) A wafer polishing slurry, comprising:
 - a plurality of polishing particles;
 - a solvent in which the polishing particles are suspended; and
- a polishing inhibiting layer forming additive for forming a layer on a surface of a wafer in situ to inhibit a polishing rate thereof, the polishing inhibiting layer creating a polishing rate for the topography that is non-linear with polishing pressure.
- 18. (Withdrawn) The slurry of claim 17, wherein the polishing inhibiting layer forming additive includes one of: an anionic surfactant and a cationic surfactant.

- 19. (Withdrawn) The slurry of claim 18, wherein the cationic surfactant includes a chemical structure selected from the group consisting of:
- a) [CH₃(CH₂)_xN(R)]M, wherein M is selected from the group consisting of: Cl, Br and I, x equals an integer between 2 and 24, and the R includes three carbon-based functional groups, each having less than eight carbon atoms; and
- b) C_pH_qQN , where Q is selected from the group consisting of: Cl, Br and I, and p > 8 and q > 20.
- 20. (Withdrawn) The slurry of claim 19, wherein the carbon-based functional groups are selected from the group consisting of: CH₃, CH₂OH, C₂H₄OH, C₂H₅, C₃H₆OH and C₃H₇.
- 21. (Withdrawn) The slurry of claim 19, wherein the cationic surfactant includes C_pH_qQN , and Q is Cl, p = 21, and q = 38, resulting in cetylpyridinium chloride ($C_{21}H_{38}ClN$).
- 22. (Withdrawn) The slurry of claim 18, wherein the cationic surfactant includes one of: cetyltrimethyl ammonium bromide (CTAB), [CH₃(CH₂)₁₅N(CH₃)₃]Br; cetyldimethylethyl ammonium bromide (CDB), [CH₃(CH₂)₁₅N(CH₃)₂CH₂OH]Br; [CH₃(CH₂)_xN(CH₃)₃]Br, where x equals an integer between 2 and 24; and [CH₃(CH₂)_xN(CH₃)(C₂H₅)(C₃H₇)]Br, where x equals an integer between 2 and 24.
- 23. (Withdrawn) The slurry of claim 18, wherein the anionic surfactant includes at least one of: sodium sulfate, sodium dodecyl sulfate, sodium lauryl sulfate, sodium stearate and sodium

tetradecyl sulfate.

- 24. (Withdrawn) The slurry of claim 17, wherein the polishing inhibiting layer is removable from the surface at a critical removal polishing pressure P_{crit} that is no less than approximately 2 psi and no greater than approximately 20 psi.
- 25. (Withdrawn) The slurry of claim 17, wherein the slurry has a pH level between an isoelectric point of the surface and an isoelectric point of the plurality of polishing particles to cause adhesion of the layer to the surface.
- 26. (Withdrawn) A polishing inhibiting layer forming additive for a chemical mechanical polishing slurry, the additive comprising:

a surfactant having a chemical structure selected from the group consisting of:

- a) [CH₃(CH₂)_xN(R)]M, wherein M is selected from the group consisting of: Cl, Br and I, x equals an integer between 2 and 24, and the R includes three carbon-based functional groups, each having less than eight carbon atoms; and
- b) C_pH_qQN , where Q is selected from the group consisting of: Cl, Br and I, and p ≥ 8 and $q \geq 20$,

wherein the surfactant forms a polishing inhibiting layer creating a polishing rate that is non-linear with polishing pressure.

27. (Withdrawn) The additive of claim 26, wherein the surfactant includes one of:

cetyltrimethyl ammonium bromide (CTAB), [CH₃(CH₂)₁₅N(CH₃)₃]Br and cetyldimethylethyl ammonium bromide (CDB), [CH₃(CH₂)₁₅N(CH₃)₂CH₂OH]Br.

- 28. (Withdrawn) The additive of claim 26, wherein the polishing inhibiting layer is removable at a critical removal polishing pressure P_{crit} that is no less than approximately 2 psi and no greater than approximately 20 psi.
- 29. (Withdrawn) The additive of claim 26, wherein the slurry has a pH level between an isoelectric point of a surface to be polished and an isoelectric point of a plurality of polishing particles therein to cause adhesion of the layer to the surface.
- 30. (Withdrawn) The additive of claim 26, wherein the surfactant includes C_pH_qQN , and Q is Cl, p=21, and q=38, resulting in cetylpyridinium chloride ($C_{21}H_{38}ClN$).