BMS INSTITUTE OF TECHNOLOGY & MANAGEMENT

Yelahanka, Bengaluru – 560 064

Department of Computer Science and Engineering

Synopsis for the Project work

"Gun Detection System using YOLOv3"

Submitted By:

- 1. Gunavathi R Bhat 1BY18CS059
 - 2. Hiranmayi R 1BY18CS063
- 3. Janani Dharshini P A 1BY18CS067

Under the Guidance of

Dr. Radhika K R

2021-2022

BMS INSTITUTE OF TECHNOLOGY & MANAGEMENT

Avalahalli, Yelahanka, Bengaluru-560064

Department of Computer Science and Engineering

Project Synopsis (18CSP77)

Academic Year 2021-22

Batch No:	Guide Name:	Submission Date:
В3	Dr. Radhika K R	15-11-2021

Project Title

Gun Detection System using YOLOv3

Sl No	USN	Name
1	1BY18CS059	Gunavathi R Bhat
2	1BY18CS063	Hiranmayi R
3	1BY18CS067	P A Janani Dharshini
Project Execution Place		In college under the guidance of project guide
Project Category		Research and Societal

1. Abstract:

The project is to study the application of the YOLOv3 algorithm to create a gun detection system, demonstrating its effectiveness in this task. Individuals carrying guns in public places are a strong indicator of dangerous situations. Many people have been killed indiscriminately using handguns in different countries. Terrorist acts, online fighting games and mentally disturbed people are considered the common reasons for these crimes. Studies show that a rapid response from law enforcement agents is the main factor in reducing the number of victims. Based on current situation around the world, there is major need of automated visual surveillance for security to detect handgun. The identification of handguns from surveillance cameras and images requires monitoring by human supervisor that can cause errors. To overcome this issue, the designed detection system sends an alert message to the supervisor when a weapon is detected. Proposed detection system has improved result; we have created our own dataset of handguns with all possible angles and merged it with an existing dataset. Hence the dataset needs to be prepared for guns and train it so that it should not send false alarm to authorities when similar item is detected. By using Raspberry pi and Alert signal/message needs to be sending to nearby police station and security officials of that building or area. The merged data is trained using YOLOv3 algorithm for gun detection.

2.Introduction:

The number of crimes involving guns violence is increasing in many parts of the world, especially in that places where the possession of guns is legal. [1] Reported incidents caused by guns violence in America in year 2015, 2016 and 2017 were 333752, 58908 and 61721 respectively. Another study ranked Malaysia in top 10 countries having highest gun violence in East, South East and South Asia in year 2016 [2]. From these statistics, it can be assumed that violence rate concerning guns are increasing every year, it is becoming a challenge for law enforcement agencies to overwhelm this issue timely. The solution of this problem is monitoring and early detection using control camera or surveillance systems which can help to prevent this kind of violence and assist policemen or security agents to act timely. Recently, the area of machine learning mainly in detection and classification of objects and image segmentation has been revolutionized by deep learning. You look only once (YOLO) outperformed other detection algorithm at predict in images what objects they are [3]. In this project, we present an automatic gun detection system using deep learning mainly YOLOv3 which is compared with the results of existing system [4]. Detecting gun in a scene is very challenging issue because of various subtleties linked with it. The challenges in gun detection are particularly caused by occlusion. Gun to scene and gun to object are the two types of gun occlusion. Real time processing is another main problem in gun detection system that arises during detection.

3. Motivation:

- ➤ The imaging studies, video related gun detection have been used for many years to detect the different images.
- Accidental gun firing has frequently occurred in many places, including superstores, communities, malls, and hotels, yielding huge loss to production and human life. After several decades of development, virtual reality technology has matured quickly and has changed people's lifestyles by being widely applied in many field.
- The main motivation to develop this system is to protect human life and avoid such illegal actions which harm human being and society.
- ➤ Hence Machine learning technique is used to predict the different gun angles.

4.Literature Survey:

Paper	Literature Review	Advantages	Disadvantages
1.Fire and Gun Violence	• Real-time object detection		
based Anomaly Detection	• Applications of	Faster prediction	High training time
System Using Deep	Convolutional Neural		
Neural Networks	Networks (CNNs).		
	• The proposed work has		
Author:	built a deep learning		
Parth Mehta, Atulya	model based on the		
Kumar, Shivani	YOLOv3 algorithm.		
Bhattacharjee	• Has fast detection rate that		
	can be deployed indoor as		
Year:	well as outdoors		
2020			
2. Weapon Detection	• Computer based fully	• Superb speed – it's	Struggle to detect
using YOLOv3 for Smart	automated	incredibly fast.	close objects
Surveillance System	• Implemented on YOLO	• Accurate	
Author:	v3	prediction of	
Sanam Narejo , 1	• Results confirm that	objects.	
Bishwajeet Pandey, 2	YOLO V3 outperforms		
Doris Esenarrovargas, 3	YOLO V2 and traditional		
Ciro Rodriguez, 4 and	convolutional neural		
M. RizwanAnjum 5	network (CNN).		
	• Can also be implemented		
Year:	in high-end surveillance		
2021	and security.		
3. A novel approach for	Based on Convolutional	• Faster prediction.	High training time.
identifying Gun and Fire	Neural Networks (CNNs).	Accurate in image	High computational
using deep neural	Weapon viciousness plus	classification.	cost.

networks	mass shootings be		
	furthermore on ascent in		
Author:	specific pieces of world.		
Shubangini Patil [1],	• Work has assembled a		
Ashwini Gururaj	profound learning replica		
Tikotekar [2]	reliant on YOLOv3		
	computation to way a		
Year:	video outline via-edge to		
2021	recognize such		
	abnormalities.		
4. A Handheld Gun	Based on Convolution	• Good performance	Possibility of false
Detection using Faster R-	Neural Network (CNN)		alarm
CNN Deep Learning	Deep learning.		
	Achieved best results so		
Author:	far in classical image		
G. K. Verma and A.	processing problems such		
Dhillon	as image segmentation,		
	classification, and		
Year:	detection in several		
2017	applications.		
5. A Computer Vision	Hybrid approach of	• It is robust to	• Less robust to
based Framework for	colour-based segmentation	partial occlusion,	illumination change
Visual Gun Detection	and interest point detector.	scale, rotation,	High time and space
using Harris Interest	• Used combination of	affine variation.	complexity
Point Detector	Harris interest point	• Can detect the	
	detectors and FREAK	presence of	
Author:	descriptor for detecting	multiple guns in an	
R. K. Tiwari and G. K.	interest point and	image.	
Verma	extracting features which		

	is used for matching with		
Year:	gun descriptor.		
2015	• Colour based		
	segmentation is performed		
	using k-means clustering		
	algorithm to eliminate		
	unrelated colour or object		
	present in the image.		
6.Web Based Home	• Home automation system	This paper deals	More space and time
Automation using IoT	on Raspberry Pi through	with web	complexity
	accessing a web address	connectivity using	
Author:	and controlling the	IoT and energy	
Satyam H. Nalawade#1,	appliances.	efficient control of	
Nilesh kumar K. Verma	• The algorithm for the	the home appliances	
*2, Ravindra N. Rathod	same has been developed	in a user-friendly	
	in python environment	manner. The	
Year:	• The algorithms are linked	connectivity	
2018	to the GUI via html / php	achieved by use of	
	platform.	Raspberry Pi.	
	• Deals with web		
	connectivity using IoT and		
	energy efficient control.		
7.Batik Image	Based on Automatic batik	Image classification	Very slow training
Classification Using	image	in this study. The	process.
SIFT Feature Extraction,	• Combination of Bag of	experimental	
Bag of Features and	Features (BOF) extracted	results show that	
Support Vector Machine	using Scale-Invariant	average accuracy	
Author:	Feature Transform (SIFT)		
Ryfial Azhara, Desmin	Support Vector Machine		

Tuwohingidea,b, Dasrit	(SVM) classifier which		
Kamudia,b, Sarimuddina	had been successfully		
c, Nanik	implemented.		
Year:			
2015			
8. Yolov3: An	• YOLOv3 is pretty good.	• YOLOv3 is a good	• It has worse
incremental improvement	• In terms of COCOs weird	detector	performance on
	average mean AP metric it	• It's fast	Medium and larger
Author:	is on par with the SSD	• It's accurate	size objects
J. Redmon, A. Farhadi,	variants but is 3× faster.		• Less model stability
	• It is still quite a bit behind		
Year:	other models like Retina		
2018	Net in this metric though.		
	• YOLOv3 is almost on par		
	with Retina Net and far		
	above the SSD variants.		
9You only look once:	• Fast, accurate algorithms	Good accuracy.	YOLO imposes
Unified, real-time object	for object detection would	• Faster object	strong spatial
detection.	allow computers to drive	detection.	constraints on
	cars without specialized	• Simple to	bounding box
Author:	sensors	construct.	predictions since
Redmon, Joseph, Santosh	• Enable assistive devices to		each grid cell only
Divvala, Ross Girshick,	convey real-time scene		predicts two boxes
and Ali	information to human		and can only have
Farhadi.	users, and unlock the		one class.
	potential for general		Our model struggles
Year:	purpose, responsive		with small objects
2016	robotic systems.		that appear in
	Systems like deformable		groups, such as
	parts models (DPM) use a		flocks of birds

	sliding window approach		
	where the classifier is run		
	at evenly spaced locations		
	over the entire image.		
10. Automatic handgun	•Based on Deep learning	Greater Accuracy	Higher time and
detection alarm in videos	and Convolution Neural	• The best detector	space complexity
using deep learning.	Networks (CNNs).	has shown a high	
	• Instead of manually	potential even in	
Author:	selecting features, deep	low quality	
Olmos, Roberto, Siham	learning CNNs	YouTube videos	
Tabik, and Francisco	automatically discover	and provides very	
Herrera	increasingly higher-level	satisfactory results	
	features from data.	as automatic alarm	
Year:	• Aim at developing a good	system.	
2018	gun detector in videos		
	using CNNs		

5.Existing System:

In existing systems, they have deployed surveillance system or control cameras with automatic handheld gun detection and alert system. They have used Convolutional neural networks (CNN) for image processing. In some system, they have used a method for detection visual guns in images using colour-based segmentation and Harris interest point detector. Then FREAK features of each Harris interest points are used to find out similarity of each segmented object with the gun descriptor.

And in other few systems, they sought to improve ViF(variance inflation factor) using different optical flow algorithms as IRLS(Iterative Reweighted Least Squares), Horn-Schunck and Lucas Kanade, their performance in different datasets and different sub sampling video frames were

evaluated. This evaluation concluded that the ViF's accuracy with the original optical flow algorithm (IRLS) had better results, but in the case of Hockey dataset ViF's with Horn-Schunck was better. In few systems, they have used Web Based Home Automation using IoT.

6. Limitations of Existing System:

- 1. Inaccurate prediction.
- 2. Time consuming.
- 3. Complex process.
- 4. No hardware implementation.

7. Objective:

- 1. Make through literature survey
- 2. Create dataset for the application
- 3. Study the working of Raspberry-Pi
- 4. To minimize false positive using YOLOv3 algorithm

8. Proposed System:

We are using the video and image data. The video/image is passed to the algorithm. Then the YOLO algorithm processes the input data. Hence the dataset needs to be prepared for guns and train it so that it should not send false alarm to authorities when similar item is detected, by using Raspberry pi and Alert signal/ message needs to be send to nearby police station.

8.1 System Architecture:

9.System Requirement Specifications:

9.1 H/W System Configuration:

Processor	Above i3.
Speed	1.1 G Hz.
RAM	4 GB
Hard Disk	500 GB.

9.2 S/W System Configuration:

Operating System	Windows 10.
Technology	Machine Learning.
IDLE	Python 3.7 or higher.

9.3 Functional Requirements

The necessities are user interfaces. The outside clients are the customers. Every one of the customers can utilize this product for ordering and looking.

- Hardware Interfaces: The outside equipment interface utilized for ordering and looking is
 PCs of the customers. The PC's might be portable PCs with remote LAN as the web
 association gave will be remote.
- Software Interfaces: The working Frameworks can be any rendition of windows.
- Performance Prerequisites: The PC's utilized must be at least Pentium 4 machine with the goal that they can give ideal execution of the item

9.4 Non-Functional Requirements

Non utilitarian necessities are the capacities offered by the framework. It incorporates time imperative and requirement on the advancement procedure and models. The non-useful prerequisites are as per the following:

- Speed: The framework ought to prepare the given contribution to yield inside fitting time.
- Ease of utilization: The product thought to be easy to understand. At that point the clients

can utilize effortlessly, so it doesn't require much preparing time.

- Reliability: The rate of disappointments ought to be less than just the framework is more solid.
- Portability: It thought to be anything but difficult to actualize in any framework

10. Proposed Methodology

- 1. Give the input data.
- 2. Capturing the input objects
- 3. Applying YOLOv3 algorithm
- 4.Detection of objects

11. Conclusion:

We have used YOLOv3 algorithm for guns detection. Image-type fire flame recognition methods are unconventional for early gun recognition. This study has investigated image-type gun recognition using a YOLOv3 and required training to recognize and extract images regions.

Gun detection system developed using YOLOv3 has greater efficiency than using Faster R-CNN technique. The advantage of YOLOv3 over Faster RCNN is its speed. The processing speed of YOLOv3 is 45 frames per seconds while Faster RCNN has 8 frame per seconds. Two out of four videos showed better accuracy than Faster RCNN algorithm.

12. References:

- [1] Gun Violence Archive, "Past Summary Ledgers: Gun Violence Archive," [Online].
- [2] Muhammad Amin, B., K. Mohammad Rahim, and M. S. GeshinaAyu."A trend analysis of violent crimes in Malaysia."*Health*5, no. 2 (2014): 41-56.
- [3] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look once: Unified, real-time object detection." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 779-788. 2016.
- [4] Olmos, Roberto, Siham Tabik, and Francisco Herrera. "Automatic handgun detection alarm in videos using deep learning." *Neurocomputing* 275 (2018): 66-72.
- [5] Tiwari, Rohit Kumar, and Gyanendra K. Verma. "A computer vision-based framework for visual gun detection Benchmark using harris interest point detector." *Procedia Computer Science* 54 (2015): 703-712.
- [6] Arceda, V. Machaca, K. Fernández Fabián, and Juan Carlos Gutíerrez. "Real time violence detection in video." (2016): 6-7.
- [7] Akcay, Samet, Mikolaj E. Kundegorski, Chris G. Willcocks, and Toby P. Breckon. "Using Deep Convolutional Neural Network Architectures for Object Classification and Detection Within X-Ray Baggage Security Imagery." *IEEETransactions on Information Forensics and Security* 13, no. 9 (2018): 2203-2215.
- [8]Parth Mehta, Atulya Kumar, Shivani Bhattacharjee. "Fire and Gun Violence based Anomaly Detection System Using Deep Neural Networks" 2020
- [9] Sanam Narejo, 1 Bishwajeet Pandey, 2 Doris Esenarrovargas, 3 Ciro Rodriguez, 4 and M. RizwanAnjum 5"Weapon Detection using YOLOv3 for Smart Surveillance System" 2021
- [10] G. K. Verma and A. Dhillon "A Handheld Gun Detection using Faster R-CNN Deep Learning" 2017
- [11] Ryfial Azhara, Desmin Tuwohingidea,b, Dasrit Kamudia,b, Sarimuddina c Nanik "Batik Image Classification Using SIFT Feature Extraction, Bag of Features and Support Vector Machine" 2015

[12] J. Redmon, A. Farhadi, "Yolov3: An incremental improvement," arXiv2018 arXiv:1804.02767.

[13] Satyam H. Nalawade#1, Nilesh kumar K. Verma *2, Ravindra N. Rathod "Web Based Home Automation using IoT" 2018

Signature of Guide