БДЗ (ТРАНД)

Корсачев Антон

Датасет: https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

Датасет содержит 958 кортежей и он охарактеризован 9-ю признаками:

- значение в верхней левой ячейке игрового поля(крестик, нолик, пусто)
- значение в верхней ячейке игрового поля(крестик, нолик, пусто)
- значение в верхней правой ячейке игрового поля(крестик, нолик, пусто)
- значение в средней левой ячейке игрового поля(крестик, нолик, пусто)
- значение в средней ячейке игрового поля(крестик, нолик, пусто)
- значение в средней правой ячейке игрового поля(крестик, нолик, пусто)
- значение в нижней левой ячейке игрового поля(крестик, нолик, пусто)
- значение в нижней ячейке игрового поля(крестик, нолик, пусто)
- значение в нижней правой ячейке игрового поля(крестик, нолик, пусто)

Целевой признак: выигрышная комбинация для игрока, играющая за крестики(1 - победа, 0 - пройгрыш)

Рассмотрим задачу бинарной классификации. В качестве положительных примеров будем использовать те кортежи, у которых целевой признак = 1(победа), а в качестве отрицательных - 0(пройгрыш).

Шкалирование

Поскольку в кортежах задействованы не бинарные признаки, то произведем шкалирование по принципу:

любая ячейка игрового поля имеет три значения => зададим 3 новых признака для каждой ячейки - крестик в n-й ячейке (0 - нет, 1 - да), нолик в n-ой ячейке (0 - нет, 1 - да), пусто в n-ой ячейки (0 - нет, 1 - да).

Алгоритм 1.

Алгоритм основан на нормированной сумме мощности пересечения признаков неизвестного примера с примерами-(+) и примерами-(-).

$$Pos = \frac{1}{|G^+|} \sum_{i \in G^+} |g'| \cap |g_i^+|$$

$$Neg = \frac{1}{|G^-|} \sum_{i \in G^-} |g' \cap g_i^-|$$

Неизвестный пример относится к тому набору, где эта сумма больше, т.е. если Pos > Neg то положительно классифицируем, иначе отрицательно.

Алгоритм 2.

Пересечение признаков неизвестного примера с положительным и проверка чтобы пересечение не вкладывалось ни в одно отрицательное. Если все так, то начисляем голос в виде "относительной мощности пересечения". То же самое для отрицательных.

$$\operatorname{Pos} = \frac{1}{|G^+|} \sum_{i \in G^+} \left\{ \frac{1}{|g'|} \mid g' \cap g_i^+|, \, \operatorname{если}|(g^- \cap g_i^+) \cap g_k^-| == 0, k \in G^- \right.$$
 О, Иначе

$$\mathrm{Neg} = rac{1}{|G^-|} \sum_{i \in G^-} \left\{ rac{1}{|g'|} \left| \begin{array}{ccc} g' & \cap & g_i^- \end{array} \right|, \ \mathrm{ec}$$
ли $|(g^{'} & \cap & g_i^-) & \cap & g_k^+ \end{array} \right\} == 0$, $k \in G^+$ 0, Иначе

Где сумма накопленных "голосов" больше - туда и классифицируем, т.е. если Pos > Neg то положительно классифицируем, иначе если Neg > Pos то классифицируем отрицательно.

Проверка валидности

В качестве метрик качества были использованы все предлагаемые в руководстве метрики:

True Positive

- True Negative
- False Positive
- False Negative
- True Positive Rate
- True Negative Rate
- Negative Predictive Value
- False Positive Rate
- False Discovery Rate
- Accuracy
- Precision
- Recall

Сравнение качества производилось по усредненным (средним арифметическим) метрикам на основании использования метода кросс-валидации (K=5).

Результаты:

В таблице приведены значения метрик алгоритмов 1 и 2, а также наиболее популярных алгоритмов - Random forests, k-Nearest Neighbor.

Метрика	Алгоритм 1	Алгоритм 2	k-Nearest Neighbor	Random forests
True Positive	34	60	57	90
True Negative	24	32	165	183
False Positive	8	0	19	1
False Negative	27	1	47	14
True Positive Rate	0.5573770491 803278	0.9836065573 770492	0.5480769230 769231	0.8653846153 846154

True Negative	0.75	0.9629629629	0.8967391304	0.9945652173
Rate		629629	347826	913043
Negative Predictive Value	0.4705882352 9411764	0.9696969696 969697	0.7783018867 924528	0.9289340101 522843
False Positive	0.25	0.0370370370	0.1032608695	0.0054347826
Rate		37037035	6521739	08695652
False Discovery Rate	0.1904761904 7619047	0.0161290322 58064516	0.25	0.0109890109 8901099
Accuracy	0.659	0.99	0.7708	0.9479166666 666666
Precision	0.7346938775	0.9859154929	0.7783018867	0.9289340101
	510204	577465	924528	522843
Recall	0.6101694915	0.9838709677	0.8967391304	0.9945652173
	254238	419355	347826	913043