Combinationics Homework 01

DarkSharpness

2023.09.17

目录

Problem 1

30000

Problem 2

81

Problem 3

 $1 + 10n + 100\binom{n}{2}$

Problem 4

对于初始分班,假设一开始 k+1 个班级人数分别为 x_i $(i\in[1,k+1])$ 。此时,我们为第 i 个班级的每个人赋予权值 $a=\frac{1}{x_i}$,那么一个班级内所有人的权值和 $\sum a=1$,所有人的权值和 $\sum a=k+1$ 。那么,在分完班之后,第 i $(i\in[1,2023])$ 个人的权值同理设为 b ,那么同理 $\sum b_i=k$ 。

因此, $\sum (a_i-b_i)=1$ 。 设原来第 i 个人班级里人数为 c_i ,现在班变为了 d_i ,那么 $a_i=\frac{1}{c_i}$ 且 $b_i=\frac{1}{d_i}$ 。若至多一个人其同学人数变多,若存在不妨设其为 1 号,那么 $c_i>d_i$ $(i\in[2,2023])$ 。又因为人数为正整数,所以满足 $a_1-b_1=\frac{1}{c_1}-\frac{1}{d_1}<1-0=1$,而 $a_i-b_i=\frac{1}{c_i}-\frac{1}{d_i}<0$ $(i\in[2,2023])$,所以 $\sum (a_i-b_i)<1+0+...+0=1$,矛盾。

综上,至少有两个人同学人数变多。