# **Equilíbrio Ácido-Base**

#### **Gabriel Braun**

Colégio e Curso Pensi, Coordenação de Química



# Nível I

#### **PROBLEMA 1.1**

2H01

Assinale a alternativa que mais se aproxima do pH de uma solução  $0,02 \text{ mol } L^{-1}$  em ácido clorídrico.

- 1,7
- 3,5
- 4,4

### **PROBLEMA 1.2**

2H02

Assinale a alternativa que mais se aproxima do pH de uma solução  $0,04 \, \text{mol} \, \text{L}^{-1}$  em hidróxido de potássio.

- 9,3
- 10,4
- **c** 11,5

2,6

- 12,6
- 13,7

#### **PROBLEMA 1.3**

2H03

Assinale a alternativa que mais se aproxima do pH de uma solução  $0.08 \text{ mol } L^{-1} \text{ em ácido acético.}$ 

- 0,8
- 1,6
- 2,4

- 3,2
- 4,0

# **Dados**

•  $K_a(CH_3COOH) = 1.8 \times 10^{-5}$ 

# **PROBLEMA 1.4**

2H04

O pH de uma solução de 0,01 mol  $L^{-1}$  um ácido carboxílico é 4. Assinale a alternativa que mais se aproxima do pKa desse ácido carboxílico.

- 3

- 7

#### **PROBLEMA 1.5**

2H05

Assinale a alternativa que mais se aproxima do pH de uma solução 0,1 mol  $L^{-1}$  em metilamina.

- 9,7
- 10,6
- 11,8

- 12,4
- 13,3

#### **Dados**

•  $K_b(CH_3NH_2) = 0,00036$ 

# **PROBLEMA 1.6**

2H06

A fração de nicotina protonada em uma solução  $0.01 \, \text{mol} \, \text{L}^{-1}$ 

Assinale a alternativa que mais se aproxima da constante de ionização do ácido conjugado da nicotina.

- $1 \times 10^{-10}$
- $1 \times 10^{-9}$
- $1 \times 10^{-8}$
- $1 \times 10^{-7}$
- $1 \times 10^{-6}$

#### **PROBLEMA 1.7**

2H07

1,0

Assinale a alternativa que mais se aproxima do pH de uma solução  $0,1 \, \text{mol} \, L^{-1}$  em ácido tricloroacético.

0,8

1,1

- 1,2

#### **Dados**

•  $K_a(CCl_3COOH) = 0.3$ 

Assinale a alternativa que mais se aproxima da concentração de hidróxido de uma solução 0,02 mol  $\rm L^{-1}$  em trietilamina.

- $3.5 \,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $4.0 \,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $4,5 \,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $5.0 \,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $5.5 \,\mathrm{mmol}\,\mathrm{L}^{-1}$

#### **Dados**

•  $K_b(,C2H5) = 0,001$ 

#### **PROBLEMA 1.9**

2H09

Considere soluções aquosas dos sais:

- 1. Ba(NO<sub>2</sub>)<sub>2</sub>
- 2. CrCl<sub>3</sub>
- 3. NH<sub>4</sub>NO<sub>3</sub>
- **4.** KNO<sub>3</sub>

Assinale a alternativa que relaciona as soluções ácidas.

2

- 3
- 2 e 3
- 1, 2 e 3
- 2, 3 e 4

# PROBLEMA 1.10

2H10

Considere soluções aquosas dos sais:

Assinale a alternativa que relaciona as soluções ácidas.

- CH<sub>3</sub>NH<sub>3</sub>Cl
- $K_3PO_4$
- FeCl<sub>3</sub>
- NaH<sub>2</sub>PO<sub>4</sub>

#### **PROBLEMA 1.11**

2H11

Considere soluções aquosas dos sais:

- 1. NH<sub>4</sub>Br
- 2. NaHCO<sub>3</sub>
- **3.** KF
- **4.** KBr

Assinale a alternativa que relaciona as soluções básicas.

2

- 3
- 2 e 3
- 1, 2 e 3
- 2, 3 e 4

- Considere soluções aquosas dos sais:
  - 1. Na<sub>2</sub>S
  - 2. NaCH<sub>3</sub>CO<sub>2</sub>

PROBLEMA 1.12

- 3. NaHSO<sub>4</sub>
- 4. NaHPO<sub>4</sub>

Assinale a alternativa que relaciona as soluções básicas.

1 e 4

**3** e **4** 

- 1, 3 e 4
- 1, 2, 3 e 4

# **PROBLEMA 1.13**

2H13

Assinale a alternativa que mais se aproxima do pH de uma solução  $0,2 \text{ mol } L^{-1}$  em nitrato de cobre (II).

- 2,3
- 3,2
- 4,1

- 5,2
- 6,3

#### **Dados**

• 
$$K_a(Cu^{2+}) = 3.2 \times 10^{-8}$$

#### PROBLEMA 1.14

2H14

Assinale a alternativa que mais se aproxima da concentração de hidrônio em uma solução 0,07 mol L<sup>-1</sup> em cloreto de ferro

- $12\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $14\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $16\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $18\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $20\,\mathrm{mmol}\,\mathrm{L}^{-1}$

#### **Dados**

•  $K_a(Fe^{3+}) = 0.0035$ 

#### **PROBLEMA 1.15**

2H15

Assinale a alternativa que mais se aproxima de uma solução  $0,18\,\mathrm{mol}\,\mathrm{L}^{-1}$  em cloreto de amônio.

- 2 Α
- C
- 5



# **Dados**

•  $K_b(NH_3) = 1.8 \times 10^{-5}$ 

**Assinale** a alternativa que mais se aproxima do grau de desprotonação de uma solução  $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$  em cloreto de anilínio

- **A** 0,01%
- **B** 0,02%
- **c** 0,03%

- **D** 0,04%
- **E** 0,05%

#### **Dados**

•  $K_b(C_6H_5NH_2) = 4.3 \times 10^{-10}$ 

#### **PROBLEMA 1.17**

2H17

**Assinale** a alternativa que mais se aproxima do pH de uma solução  $0.09 \, \text{mol} \, L^{-1}$  em acetato de cálcio.

- **A** 8
- В
- **c** 10

- **D** 11
- **E** 12

#### **Dados**

•  $K_a(CH_3COOH) = 1.8 \times 10^{-5}$ 

#### PROBLEMA 1.18

2H18

**Assinale** a alternativa que mais se aproxima da concentração de ácido fluorídrico em uma solução  $0,07 \, \text{mol} \, \text{L}^{-1}$  em fluoreto de potássio.

- **A**  $1.4 \times 10^{-8} \, \text{mol} \, L^{-1}$
- **B**  $1.4 \times 10^{-7} \, \text{mol} \, L^{-1}$
- $1.4 \times 10^{-6} \, \text{mol} \, L^{-1}$
- D  $1.4 \times 10^{-5} \, \text{mol} \, L^{-1}$
- $1.4 \times 10^{-4} \, \text{mol} \, \text{L}^{-1}$

#### **Dados**

•  $K_a(HF) = 0.00035$ 

#### PROBLEMA 1.19

2H19

**Assinale** a alternativa que mais se aproxima do pH de uma solução  $0.5 \text{ mol } L^{-1}$  em cianeto de amônio.

- A 2,3
- **B** 5,0
- **c** 7,0

- **D** 9,2
- **E** 10

#### Dados

- $K_a(HCN) = 4.9 \times 10^{-10}$
- $K_h(NH_3) = 1.8 \times 10^{-5}$

**Assinale** a alternativa que mais se aproxima do pH de uma solução  $0,1 \text{ mol } L^{-1}$  em acetato de piridínio.

- A 2,3
- **B** 5,0
- **c** 7,0

- **D** 9,2
- **E** 10

#### **Dados**

- $K_a(CH_3COOH) = 1.8 \times 10^{-5}$
- $K_b(C_5H_5N) = 1.8 \times 10^{-9}$

#### PROBLEMA 1.21

2H21

**Assinale** a alternativa que mais se aproxima do pH de uma solução  $0,023 \, \text{mol} \, L^{-1}$  em ácido carbônico.

- **A** 1
- В
- C
- D
- **E** 5

#### Dados

- $K_{a1}(H_2CO_3) = 4.3 \times 10^{-7}$
- $K_{a2}(H_2CO_3) = 5.6 \times 10^{-11}$

#### PROBLEMA 1.22

2H22

**Assinale** a alternativa que mais se aproxima da concentração de íon hidrônio em uma solução  $0,2\,\mathrm{mol}\,\mathrm{L}^{-1}$  em ácido sulfídrico.

- $\mathbf{A}$  0.08 mmol L<sup>-1</sup>
- **B**  $0,16 \, \text{mmol} \, \text{L}^{-1}$
- $\mathbf{c}$  0,24 mmol L<sup>-1</sup>
- $\mathbf{D}$  0,32 mmol L<sup>-1</sup>
- $E = 0.40 \, \text{mmol} \, \text{L}^{-1}$

#### **Dados**

- $K_{a1}(H_2S) = 1.3 \times 10^{-7}$
- $K_{a2}(H_2S) = 7.1 \times 10^{-15}$

# PROBLEMA 1.23

2H23

1,23

Assinale a alternativa que mais se aproxima do pH de uma solução 0,05 mol  $L^{-1}$  em ácido sulfúrico.

**A** 1,00

1,30

- **B** 1,12
- E
- **E** 1,45

#### **Dados**

 $\bullet \ K_{a2}(H_2SO_4) = 0,012$ 

Como o ácido sulfúrico, o ácido selênico é forte na primeira desprotonação e fraco na segunda. Uma solução  $0,01 \, \text{mol} \, \text{L}^{-1}$ em ácido selênico apresenta pH igual a 1,82.

Assinale a alternativa que mais se aproxima da constante da segunda ionização do ácido selênico.

- A  $1,2 \times 10^{-5}$
- $1,2 \times 10^{-4}$
- $1,2 \times 10^{-3}$
- $1,2 \times 10^{-2}$
- $1.2 \times 10^{-1}$

#### PROBLEMA 1.25

2H25

2H24

Assinale a alternativa que mais se aproxima do pH de uma solução  $0,1 \text{ mol } L^{-1}$  em bicarbonato de sódio.

- 5,35
- 6,37

**c** 7,66

- 8,31
- 10,3

#### **Dados**

- $pK_{a1}(H_2CO_3) = 6,37$
- $pK_{a2}(H_2CO_3) = 10,3$

# PROBLEMA 1.26

2H26

Assinale a alternativa que mais se aproxima do pH de uma solução 0,2 mol L<sup>-1</sup> em dihidrogenofosfato de sódio, NaH<sub>2</sub>PO<sub>4</sub>.

- 2,12
- 3,52
- **c** 4,66

- 6,87
- 7,21

#### **Dados**

- $pK_{a1}(H_3PO_4) = 2,12$
- $pK_{a2}(H_3PO_4) = 7,21$
- $pK_{a3}(H_3PO_4) = 12,7$

# PROBLEMA 1.27

2H27

Assinale a alternativa que mais se aproxima da concentração de  $SO_3^{2-}$  em uma solução 0,2 mol  $L^{-1}$  em ácido sufuroso.

- **A**  $1.2 \times 10^{-7} \, \text{mmol} \, \text{L}^{-1}$
- **B**  $1.2 \times 10^{-6} \, \text{mmol} \, \text{L}^{-1}$
- $1.2 \times 10^{-5} \, \text{mmol} \, \text{L}^{-1}$
- $1.2 \times 10^{-4} \, \text{mmol} \, \text{L}^{-1}$
- $1.2 \times 10^{-3} \, mmol \, L^{-1}$

# **Dados**

- $K_{a1}(H_2SO_3) = 0.015$
- $K_{a2}(H_2SO_3) = 1.2 \times 10^{-7}$

Assinale a alternativa que mais se aproxima da concentração de  $PO_4^{3-}$  em uma solução 0,1 mol  $L^{-1}$  em ácido fosfórico.

- $5,4 \times 10^{-21}$
- **B**  $5.4 \times 10^{-19}$
- $5.4 \times 10^{-17}$
- **D**  $5.4 \times 10^{-15}$
- $5.4 \times 10^{-13}$

#### **Dados**

- $K_{a1}(H_3PO_4) = 0,0076$
- $K_{a2}(H_3PO_4) = 6.2 \times 10^{-8}$
- $K_{a3}(H_3PO_4) = 2.1 \times 10^{-13}$

#### **PROBLEMA 1.29**

2H29

Assinale a alternativa que mais se aproxima do pH de uma solução  $8 \times 10^{-8} \, \text{mol} \, L^{-1}$  em ácido clorídrico.

- 6,6
- 6,8
- **c** 7,0

- 7.1
- 7.2

### PROBLEMA 1.30

2H30

7,2

Assinale a alternativa que mais se aproxima do pH de uma solução  $1.5 \times 10^{-7}$  mol L<sup>-1</sup> em hidróxido de sódio.

6,8

7,4

- 7,0
  - 7.6

# Nível II

PROBLEMA 2.1

2H31

Uma alíquota de  $25\,\mathrm{mL}$  de uma solução  $0,018\,\mathrm{mol}\,\mathrm{L}^{-1}$  em hidróxido de potássio é deixada em um ambiente aquecido por dois dias. Como resultado do aquecimento, o volume da solução se reduz a  $18\,\mathrm{mL}$ .

**Assinale** a alternativa que mais se aproxima do pH da solução após a evaporação.

- A 9,7
- **B** 10,6
- **c** 11,5

- **D** 12,4
- **E** 13,3

# PROBLEMA 2.2

2H32

A concentração de uma solução de ácido clorídrico foi diluída a 10% de seu valor inicial por diluição.

Assinale a alternativa que mais se aproxima da variação de pH da solução.

- **A** 0
- **B** 1
- C
  - **c** 2
- **D** 3
- **E** 4

# **Gabarito**

# Nível I

| 1. B        | 2. D        | 3. D  | 4. D  | 5. C  |
|-------------|-------------|-------|-------|-------|
| 6. <b>C</b> | 7. <b>D</b> | 8. B  | 9. C  | 10. D |
| 11. C       | 12. D       | 13. C | 14. B | 15. D |
| 16. B       | 17. C       | 18. C | 19. D | 20. B |
| 21. D       | 22. B       | 23. C | 24. D | 25. D |
| 26. C       | 27. A       | 28. B | 29. B | 30. E |

# Nível II

1. D 2. B