A Appendix

This document contains only the appendix.

Case	3	3.3	Total	% (3/Total)
A	258	3,266	3,524	7.3
В	332	1,648	1,980	16.8
C	282	1,362	1,644	17.2
D	100	1,012	1,112	9.0
Total	972	7,288	8,260	11.8

Table 1: Number of messages generated with each version of Llama used, broken down by case

Table 2: Advantages and Disadvantages of Each Scenario in Cyberbullying Detection

Scenario	Advantages	Disadvantages	
Baseline (Gold-Standard	High-quality, reliable data	High costs and scalability chal-	
Only)		lenges; Requires significant time	
		and expert annotation effort.	
LLM as Classifier	No need for labeled data or train-	Computationally expensive;	
	ing; Quick deployment; Handles	May be less accurate than	
	nuanced language patterns.	fine-tuned classifiers on domain-	
		specific data.	
Synthetic Labels for Unla-	Utilizes existing unlabeled data;	Label quality depends on LLM	
beled Data	Cost-effective dataset creation.	performance; May require vali	
		dation to ensure consistency and	
		accuracy.	
Fully Synthetic Data	Enables training when no au-	Synthetic data may lack diver-	
	thentic data is available; Suitable	sity and realism; Risk of overfit-	
	for low-resource domains.	ting to generated patterns.	

		Develop	ment Set	Test		
Size	Sampling	Accuracy	Macro-F1	Accuracy	Macro-F1	Rep.
100%	up	$79.8\% \pm 1.5$	$76.3\% \pm 1.8$	$80.8\% \pm 1.5$	$77.3\% \pm 1.5$	50
20%	none	$74.2\% \pm 2.8$	$68.1\% \pm 3.4$	$73.7\% \pm 2.7$	$67.7\% \pm 2.5$	65
50%	none	$78.8\% \pm 2.1$	$74.0\% \pm 2.6$	$79.4\% \pm 1.7$	$74.5\% \pm 2.1$	65
80%	none	$80.0\% \pm 1.8$	$75.6\% \pm 2.2$	$80.4\% \pm 1.5$	$75.8\% \pm 1.7$	65
100%	none	$80.9\% \pm 1.6$	$76.8\%\pm1.8$	$81.5\% \pm 1.2$	$77.0\% \pm 1.6$	85
200%	none	$80.8\% \pm 1.6$	$76.6\% \pm 2.0$	$81.7\% \pm 1.2$	$77.2\% \pm 1.4$	50

Table 3: Development and test set results in scenario 1: training BERT-based classifiers on the training split of the authentic data; at least 45 repetitions with different random seeds; also shown for comparison results for training on samples from 20% to 80%, as well as two copies (200%) of the data; both the training set and the development set are sampled to the given relative size of the authentic data split; "Sampling" refers to the strategy for addressing class imbalance in the training data

Rel.		Develop	ment Set	Test		
Size	Sampling	Accuracy	Macro-F1	Accuracy	Macro-F1	Rep.
100%	up	$71.5\% \pm 5.7$	$62.5\% \pm 4.4$	$71.4\% \pm 4.3$	$61.8\% \pm 3.0$	50
100%	none	$72.2\% \pm 3.9$	$58.6\% \pm 4.5$	$72.1\% \pm 3.2$	$58.9\% \pm 3.7$	50
120%	none	$72.8\% \pm 3.1$	$59.6\% \pm 4.3$	$72.8\% \pm 2.7$	$59.8\% \pm 4.3$	65
140%	none	$73.7\% \pm 3.2$	$61.2\% \pm 4.1$	$73.5\% \pm 2.3$	$61.1\% \pm 4.0$	65
160%	none	$74.4\% \pm 3.0$	$62.8\% \pm 3.5$	$74.0\% \pm 2.2$	$62.3\% \pm 3.0$	65
180%	none	$74.7\% \pm 2.8$	$63.3\% \pm 3.8$	$74.2\% \pm 2.2$	$62.5\% \pm 3.5$	65
200%	none	$75.2\% \pm 2.2$	$64.0\% \pm 3.0$	$74.5\% \pm 1.9$	$63.1\% \pm 2.9$	65

Table 4: Development and test set results for **Llama3 with default "not harmfull" label** in scenario 3: training a BERT-based classifier on synthetic data matching 100% to 200% of the size available in scenario 1. "Sampling" refers to the strategy for addressing class imbalance in the training data; at least 45 repetitions with different random seeds;

Rel.		Develop	ment Set	Test		
Size	Sampling	Accuracy	Macro-F1	Accuracy	Macro-F1	Rep.
100%	up	$72.9\% \pm 4.8$	$64.7\% \pm 4.0$	$72.7\% \pm 3.5$	$64.0\% \pm 3.1$	50
200%	up	$75.1\% \pm 3.3$	$68.1\% \pm 2.7$	$74.9\% \pm 2.8$	$67.5\% \pm 2.3$	45
100%	none	$73.6\% \pm 4.1$	$63.8\% \pm 3.8$	$73.4\% \pm 3.0$	$63.3\% \pm 3.3$	50
120%	none	$74.8\% \pm 3.6$	$65.3\% \pm 3.4$	$74.5\% \pm 2.5$	$64.7\% \pm 3.0$	65
140%	none	$75.2\% \pm 3.4$	$65.9\% \pm 3.6$	$75.0\% \pm 2.3$	$65.4\% \pm 3.0$	65
160%	none	$76.1\% \pm 2.6$	$67.3\% \pm 3.1$	$75.3\% \pm 2.2$	$66.0\% \pm 2.8$	65
180%	none	$76.0\% \pm 2.7$	$67.2\% \pm 2.9$	$75.6\% \pm 1.9$	$66.3\% \pm 2.4$	65
200%	none	$76.6\% \pm 2.5$	$68.3\% \pm 2.8$	$75.8\% \pm 2.1$	$67.0\% \pm 2.4$	65

Table 5: Development and test set results for **Llama3 with unlabelled messages removed** in scenario 3: training a BERT-based classifier on synthetic data matching 100% to 200% of the size available in scenario 1. "Sampling" refers to the strategy for addressing class imbalance in the training data; at least 45 repetitions with different random seeds

Rel.		Develop	ment Set	Test		
Size	Sampling	Accuracy	Macro-F1	Accuracy	Macro-F1	Rep.
100%	up	$69.5\% \pm 1.8$	$50.7\% \pm 3.2$	$71.7\% \pm 1.6$	$53.6\% \pm 4.8$	50
100%	none	$69.7\% \pm 0.8$	$44.4\% \pm 3.1$	$70.2\% \pm 0.9$	$45.1\% \pm 4.1$	50
120%	none	$69.8\% \pm 0.7$	$44.3\% \pm 2.7$	$70.3\% \pm 1.0$	$44.9\% \pm 3.9$	65
140%	none	$69.9\% \pm 0.8$	$44.2\% \pm 3.0$	$70.2\% \pm 1.0$	$44.5\% \pm 3.7$	65
160%	none	$69.9\% \pm 0.8$	$44.3\% \pm 3.1$	$70.3\% \pm 0.9$	$44.9\% \pm 3.7$	65
180%	none	$70.0\% \pm 0.7$	$45.1\% \pm 3.0$	$70.4\% \pm 0.9$	$45.5\%\pm3.9$	65
200%	none	$70.1\% \pm 0.7$	$44.9\% \pm 3.0$	$70.4\% \pm 0.9$	$45.2\%\pm3.7$	65

Table 6: Development and test set results for **GPT-40** in scenario 3: training a BERT-based classifier on synthetic data matching 100% to 200% of the size available in scenario 1. "Sampling" refers to the strategy for addressing class imbalance in the training data; at least 45 repetitions with different random seeds

Rel.		Develop	ment Set	Test	t Set	
Size	Sampling	Accuracy	Macro-F1	Accuracy	Macro-F1	Rep.
100%	up	$51.3\% \pm 8.2$	$50.7\% \pm 8.1$	$53.5\% \pm 7.8$	$52.9\% \pm 7.5$	50
100%	none	$49.9\% \pm 8.5$	$49.2\% \pm 8.5$	$52.2\% \pm 8.0$	$51.6\% \pm 7.7$	50
120%	none	$50.7\% \pm 8.6$	$50.0\% \pm 8.7$	$52.9\% \pm 8.1$	$52.4\% \pm 7.9$	65
140%	none	$50.7\% \pm 8.9$	$50.0\% \pm 9.0$	$52.9\% \pm 8.1$	$52.4\% \pm 7.9$	65
160%	none	$51.2\% \pm 8.9$	$50.6\% \pm 9.0$	$53.5\% \pm 8.1$	$52.9\% \pm 7.9$	65
180%	none	$51.4\% \pm 8.8$	$50.8\% \pm 8.9$	$53.7\% \pm 8.3$	$53.2\% \pm 8.1$	65
200%	none	$52.3\% \pm 8.3$	$51.8\% \pm 8.3$	$54.2\% \pm 7.8$	$53.7\% \pm 7.5$	65

Table 7: Development and test set results for **Grok** in scenario 3: training a BERT-based classifier on synthetic data matching 100% to 200% of the size available in scenario 1. "Sampling" refers to the strategy for addressing class imbalance in the training data; at least 45 repetitions with different random seeds

			Development Set		Test Set		
Labels	Size	Sampling	Accuracy	Macro-F1	Accuracy	Macro-F1	Rep.
D0	20%	up	$72.3\% \pm 4.3$	$59.2\% \pm 12.0$	$71.0\% \pm 3.8$	$58.0\% \pm 11.2$	50
D0	100%	up	$78.7\% \pm 1.1$	$74.0\% \pm 1.4$	$77.9\% \pm 0.9$	$72.6\% \pm 1.3$	50
D0	20%	none	$74.9\% \pm 1.9$	$64.0\% \pm 5.0$	$73.1\% \pm 2.0$	$61.8\% \pm 4.8$	85
D0	50%	none	$78.3\% \pm 1.7$	$71.2\% \pm 2.6$	$76.4\%\pm1.7$	$68.3\% \pm 2.5$	85
D0	80%	none	$79.7\% \pm 1.4$	$73.7\% \pm 1.9$	$77.3\% \pm 0.9$	$70.0\% \pm 1.2$	85
D0	100%	none	$80.0\% \pm 1.2$	$73.9\% \pm 1.6$	$77.6\% \pm 0.9$	$70.3\%\pm1.3$	85
D0	200%	none	$80.0\% \pm 1.2$	$74.2\% \pm 1.6$	$77.5\% \pm 0.9$	$70.4\% \pm 1.4$	50
FU	20%	up	$73.0\% \pm 3.5$	$61.0\% \pm 12.4$	$72.3\% \pm 3.0$	$60.5\% \pm 12.1$	50
FU	100%	up	$79.6\% \pm 1.0$	$75.3\% \pm 1.1$	$79.2\% \pm 0.7$	$74.3\% \pm 0.9$	50
FU	20%	none	$74.8\% \pm 1.9$	$66.9\% \pm 2.9$	$73.7\% \pm 1.7$	$65.7\% \pm 2.5$	85
FU	50%	none	$79.3\% \pm 1.5$	$74.2\% \pm 1.9$	$78.0\% \pm 1.3$	$72.1\% \pm 1.7$	85
FU	80%	none	$80.1\% \pm 0.9$	$75.5\% \pm 1.0$	$78.8\% \pm 1.0$	$73.2\% \pm 1.2$	85
FU	100%	none	$80.4\% \pm 1.0$	$75.9\% \pm 1.2$	$79.1\% \pm 1.0$	$73.5\% \pm 1.2$	85
FU	200%	none	$80.2\% \pm 1.1$	$75.7\% \pm 1.2$	$78.8\% \pm 0.8$	$73.4\% \pm 1.0$	50
СН	20%	up	$71.9\% \pm 3.0$	$57.1\% \pm 10.6$	$72.5\% \pm 3.2$	$58.6\% \pm 11.6$	50
CH	100%	up	$77.5\% \pm 0.9$	$71.3\% \pm 1.3$	$78.3\% \pm 0.8$	$72.5\% \pm 1.1$	50
СН	20%	none	$72.0\% \pm 1.7$	$55.3\% \pm 6.7$	$72.6\% \pm 1.6$	$56.9\% \pm 7.1$	85
CH	50%	none	$75.1\% \pm 1.7$	$64.4\% \pm 3.7$	$76.4\% \pm 1.3$	$66.9\% \pm 2.7$	85
CH	80%	none	$76.2\% \pm 1.1$	$67.2\% \pm 2.0$	$77.2\% \pm 0.9$	$69.0\% \pm 1.7$	85
CH	100%	none	$77.1\% \pm 0.9$	$68.7\% \pm 1.5$	$77.9\% \pm 0.9$	$70.2\%\pm1.4$	85
CH	200%	none	$77.1\% \pm 1.0$	$68.6\% \pm 2.1$	$78.0\% \pm 0.7$	$70.2\%\pm1.3$	50
GR	20%	up	$70.5\% \pm 3.4$	$67.3\% \pm 3.2$	$69.4\% \pm 3.3$	$66.6\% \pm 2.6$	50
GR	100%	up	$75.6\% \pm 1.4$	$73.0\% \pm 1.4$	$74.6\% \pm 1.8$	$71.7\% \pm 1.4$	50
GR	20%	none	$71.3\% \pm 2.6$	$67.3\% \pm 2.5$	$70.4\% \pm 3.0$	$66.9\% \pm 2.2$	85
GR	50%	none	$75.0\% \pm 1.6$	$72.0\% \pm 1.7$	$74.2\% \pm 2.0$	$71.0\% \pm 1.7$	85
GR	80%	none	$76.1\% \pm 1.1$	$73.3\% \pm 1.2$	$74.4\% \pm 1.6$	$71.3\% \pm 1.3$	85
GR	100%	none	$76.3\% \pm 1.2$	$73.7\% \pm 1.2$	$75.2\% \pm 1.7$	$72.1\% \pm 1.4$	85
GR	200%	none	$76.3\% \pm 1.2$	$73.6\% \pm 1.2$	$75.1\% \pm 1.5$	$72.1\% \pm 1.3$	50

Table 8: Development and test set results in scenario 4: training BERT-based classifiers on the training split of the authentic data with synthetic labels predicted by (a) D0 = Llama3, assuming "Not Harmful" when no label is found in the LLM output, (b) FU = Llama3, removing dataset items for which no label is found in the LLM output, (c) CH = ChatGPT and (d) GR = Grok; at least 45 repetitions with different random seeds; also shown for comparison results for training on samples from 20% to 80%, as well as tewo copies (200%) of the data; both the training set and the development set are sampled to the given relative size of the authentic data split; "Sampling" refers to the strategy for addressing class imbalance in the training data