

Si risolvano i seguenti esercizi, <u>motivando tutti i passaggi e scrivendo le definizioni</u> che si ritengono opportune:

- [.../6] 1. Siano $A = \{1, 2\}$ e $B = \{a, b\}$ e sia $\mathcal{R} = \{(a, 1), (b, 2), (2, b)\}$ una relazione su $A \cup B$.
 - (a) Quanti elementi ha $\mathcal{P}(A \times \mathcal{P}(B))$? E quanti elementi ha $\mathcal{P}(A \times (A \cap B))$?
 - (b) Scrivere la più piccola relazione d'equivalenza che contenga \mathcal{R} e determinare le sue classi d'equivalenza.
 - (c) Dire se la funzione $f: A \times B \to A \cup B$ tale che

$$f(x,y) = \begin{cases} x & \text{se } y = a \\ b & \text{se } x = 1, y = b \\ a & \text{se } x = 2, y = b. \end{cases}$$

è iniettiva e/o suriettiva e motivare la risposta.

[.../3] 2. Provare per induzione che, per $n \ge 1$:

[.../4]

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

- [.../3] 3. Scrivere la tabella moltiplicativa di \mathbb{Z}_5 e determinare gli elementi invertibili di \mathbb{Z}_5 . Che struttura algebrica è (\mathbb{Z}_5, \cdot) ? E $(\mathbb{Z}_5 \setminus \{[0]_5\}, \cdot)$?
- [.../5] 4. Si considerino i seguenti sottoinsiemi di \mathbb{R}^2 : $U_1 = \{(x+2,x) \mid x \in \mathbb{R}\}, U_2 = \{(3x,x) \mid x \in \mathbb{R}\}, U_3 = \{(x,0) \mid x \in \mathbb{R}\}.$
 - Dire se U_1 , U_2 e U_3 sono sottospazi di \mathbb{R}^2 , motivando la risposta.
 - Data la funzione $f:(x,y) \in \mathbb{R}^2 \mapsto (2x,x+y) \in \mathbb{R}^2$, provare che f è una applicazione lineare e calcolare l'immagine $f(U_2)$ di U_2 .
 - Rappresentare graficamente nel piano cartesiano sia U_2 che $f(U_2)$ e scrivere una base di U_2 e di $f(U_2)$.
 - 5. Utilizzando il metodo di Gauss dire quante e quali soluzioni ha il seguente sistema di 3 equazioni in 4 incognite:

$$\begin{cases} x + z + h = 1 \\ x + y + z = 0 \\ x + y + h = 2 \end{cases}$$

[.../7] 6. Si consideri l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da

$$f(x, y, z) = (4x + 3y, x + 2y, x + 2z)$$
.

- Trovare la dimensione di Im f e Ker f.
- Trovare gli autovalori di f, e per ogni autovalore calcolare la molteplicità algebrica e geometrica e l'autospazio corrispondente.
- Dire se esiste una base di \mathbb{R}^3 formata da autovettori di f.