A Design Study Approach to Classical Control

Randal W. Beard Timothy W. McLain Brigham Young University

Updated: July 3, 2017

Homework B.e

Adding an integrator to obtain PID control for the outer loop of the inverted pendulum system, put the characteristic equation in Evan's form and use the Matlab **rlocus** command to plot the root locus verses the integrator gain k_I . Select a value for k_I that does not significantly change the other locations of the closed loop poles.

Solution

The closed loop block diagram for the outer loop of the inverted pendulum including an integrator is shown in Figure 1. The closed loop transfer function

Figure 1: PID control for the outer loop of the inverted pendulum.

is given by

$$\tilde{Z}(s) = \frac{gk_{DC_{\theta}}(k_{P_z}s + k_{I_z})}{s^3 + gk_{DC_{\theta}}k_{D_z}s^2 + gk_{DC_{\theta}}k_{P_z}s + gk_{DC_{\theta}}k_{I_z}}\tilde{Z}_r(s).$$

The characteristic equation is therefore

$$s^{3} + gk_{DC_{\theta}}k_{Dz}s^{2} + gk_{DC_{\theta}}k_{Pz}s + gk_{DC_{\theta}}k_{Iz} = 0.$$

In Evan's form we have

$$1 + k_{I_z} \left(\frac{g k_{DC_{\theta}}}{s^3 + g k_{DC_{\theta}} k_{D_z} s^2 - g k_{DC_{\theta}} k_{P_z} s} \right) = 0.$$

The appropriate Matlab command is therefore

```
1 >> L = tf([g*kDCth],[1,g*kDCth*kd),g*kDCth*kp,0]);
2 >> figure(1), clf, rlocus(L);
```