Report on AI Lab Manuals

By Khuram Iqbal (2022-CS-48)

1 Introduction

This report summarizes the key learnings and observations from two manuals provided as part of my lab work. The manuals cover essential concepts in data analysis using Python, with a focus on libraries like *NumPy*, *Pandas*, and *Matplotlib*. Below is a detailed reflection on what I learned from each manual and the insights gained.

2 Manual 1: AI Lab with Numpy, Pandas, and Matplotlib

2.1 Outcome

After going through this manual, I gained hands-on experience with data analysis using Python. The manual introduced various case studies to apply concepts in real-world situations. Some of the key tasks I worked on included:

- Data Generation: Using NumPy and Pandas to create fake datasets such as random weather data or employee salaries. This was useful for practicing on data that resembles real-world scenarios.
- Data Processing: I learned to convert data into arrays using *NumPy* and performed basic statistics like calculating the mean, median, and standard deviation.
- Data Filtering and Grouping: With *Pandas*, I filtered data based on conditions (like finding days with temperatures over 30°C) and grouped data to calculate summaries, such as average sales or total quantities sold.
- Visualization with Matplotlib: I created various plots, such as line graphs showing temperature changes and bar charts representing different sales categories.

2.2 Observations

The main observation from this manual is how powerful and efficient these tools are when used together. *NumPy* handles complex calculations, *Pandas* is excellent for organizing data, and *Matplotlib* makes it easy to visualize the results. The combination of these tools allows for a smooth workflow when analyzing data.

3 Manual 2: Lab 6 - Data Preprocessing and Visualization

3.1 Outcome

This second manual focused more on preparing data for analysis, emphasizing the importance of cleaning and processing data before diving into the actual analysis. Here's what I learned:

- Handling Missing Data: I learned how to identify missing values in datasets and fill them with appropriate values, like the median or mean.
- Encoding and Scaling Data: Categorical data (like *Gender*) needs to be converted into numeric values for machine learning. I also practiced scaling numeric columns, such as income and age, to keep them consistent.
- Visualization for Insight: I created scatter plots and box plots to understand the relationships between different features. For instance, plotting performance ratings against years of experience helped me see if experience impacts performance.
- Feature Engineering: I practiced creating new features, such as *Income per Age*, to enhance the data for analysis.

3.2 Observations

This manual showed me that data cleaning is a critical step. Without cleaning and preparing data properly, analysis can give misleading results. I also realized that understanding the relationships between features, like through correlation analysis, can help improve the quality of insights.

4 Conclusion

Overall, these two manuals taught me a great deal about the data analysis process—from data generation and preprocessing to visualization and feature engineering. The first manual gave me hands-on experience with core Python libraries, while the second manual highlighted the importance of preparing data correctly for analysis. These skills are essential for real-world data science tasks, and I now feel more confident in using these tools in my own projects.