TRACCE ESERCITAZIONE 16

- 1. Dimostrare che il minimo rapporto dei raggi catione/anione per un numero di coordinazione pari a 6 è 0.414.
- 1) Quale dei cationi in tabella pensate possano formare fluoruri con numero di cationi e anioni uguale, quindi del tipo AX (cubica semplice tipo Cloruro di Cesio).

Cation	Ionic Radius (nm)			
Al ³⁺	0.053	Br ⁻	0.196	
Ba ²⁺	0.136	Cl ⁻	0.181	
Ca ²⁺	0.100	\mathbf{F}^{-}	0.133	
Cs ⁺	0.170	I^-	0.220	
Fe ²⁺	0.077	O^{2-}	0.140	
Fe ³⁺	0.069	S^{2-}	0.184	
K^+	0.138			
Mg^{2+}	0.072			
Mn ²⁺	0.067			
Na ⁺	0.102			
Ni ²⁺	0.069			
Si ⁴⁺	0.040			
Ti ⁴⁺	0.061			

	Structure Type	Anion Packing	Coordination Numbers		
Structure Name			Cation	Anion	Examples
Rock salt (sodium chloride)	AX	FCC	6	6	NaCl, MgO, FeO
Cesium chloride	AX	Simple cubic	8	8	CsCl
Zinc blende (sphalerite)	AX	FCC	4	4	ZnS, SiC
Fluorite	AX_2	Simple cubic	8	4	CaF ₂ , UO ₂ , ThO ₂
Perovskite	ABX_3	FCC	12(A) 6(B)	6	BaTiO ₃ , SrZrO ₃ , SrSnO ₃
Spinel	AB_2X_4	FCC	4(A) 6(B)	4	MgAl ₂ O ₄ , FeAl ₂ O ₄

- 3) Calcolare il fattore di addensamento atomico per la struttura cristallina del cloruro di cesio.
- 4) L'ossido di magnesio ha la struttura AX tipo salgemma con densità 3,58 g/cm³. Determinare la lunghezza della costante reticolare della cella unitaria.
- 5) Quando la caolinite, idrata, [Al2(Si2O5)(OH)4] viene riscaldata a una temperatura sufficientemente alta, l'acqua chimica viene espulsa.
- (a) In queste circostanze, qual è la composizione del prodotto rimanente (in percentuale di peso Al₂O₃)?
- (b) A che temperature questo materiale è completamente liquido o completamente solido?

6) Calcola il numero di difetti di Schottky per metro cubo in cloruro di potassio a 500°C. L'energia richiesta per formare ogni difetto di Schottky è 2.6 eV, mentre la densità per KCl (a 500°C) è 1.955 g/cm³