Assignment7

Aravind A Anil

March 14, 2021

Problem Statement:(6.17):A person plays a game of tossing a coin thrice. For each head, he is given Rs 2 by the organiser of the game and for each tail, he has to give Rs 1.50 to the organiser. Let X_i , i=0,1,2, be the value at the end of each toss. Then $X_i=X_{i-1}+Y$, Where $Y\in\{2,-1.5\}$ find the distribution of X2.

Solution:,here we are tossing a coin three times so,

$$X_0 = Y$$

$$X_1 = X_0 + Y$$

$$X_2 = X_1 + Y$$

 $Z \in 0, 1$, where 0 represent getting a tail and 1 represents getting a head

	head	tail
Z	1	0

1 X_0 can have two values

1.1 Case-i

- When **Z=0**, $X_0 = -1.5$ $Pr(X_0|Z=0) = \frac{1}{2}$
- **1.2** Case-*ii*
 - When **Z=1**, $X_0 = 2$ $Pr(X_0|Z=1) = \frac{1}{2}$

2 X_1 can have four values

2.1 Case-i

• When
$$X_0 = -1.5 \& Z = 0$$

$$X_1 = -1.5 - 1.5$$
$$= -3$$

$$Pr(X_1|Z=0, X_0=-1.5) = \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{4}$

- **2.2** Case-*ii*
 - When $X_0 = 2\&Z = 0$

$$X_1 = 2 - 1.5$$

= .5

$$Pr(X_1|Z=0, X_0=2) = \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{4}$

- **2.3** Case-*iii*
 - When $X_0 = -1.5 \& Z = 1$

$$X_1 = -1.5 + 2$$

= .5

$$Pr(X_1|Z=1, X_0=-1.5) = \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{4}$

$\mathbf{2.4}$ Case-iv

• When
$$X_0 = 2\&\ Z = 1$$

$$X_1 = 2 + 2$$
$$= 4$$

$$Pr(X_1|Z=1, X_0=2) = \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{4}$

3 X_2 can have eight values

3.1 Case-i

• When
$$X_1 = -3 \& Z = 0$$

$$X_2 = -3 - 1.5$$

= -4.5

$$Pr(X_2|X_1 = -3, Z = 0) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

3.2 Case-*ii*

• When $X_1 = -3 \& Z = 1$

$$X_2 = -3 + 2$$
$$= -1$$

$$Pr(X_2|X_1 = -3, Z = 1) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

3.3 Case-iii

• When $X_1 = .5 \& Z = 0$

$$X_2 = .5 + -1.5$$

= -1

$$Pr(X_2|X_1 = .5, Z = 0) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

3.4 Case-iv

• When $X_1 = .5 \& Z = 1$

$$X_2 = .5 + 2$$

= 2.5

$$Pr(X_2|X_1 = .5, Z = 1) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

3.5 Case-v

Case-v will be same as Case-iii since $X_1 = .5$ is occurring two times

$$X_2 = .5 - 1.5$$

= -1

$$Pr(X_2|X_1 = .5, Z = 0) = \frac{1}{8}$$

3.6 Case-vi

Case-vi will be same as Case-iv since $X_1 = .5$ is occurring two times

$$X_2 = .5 + 2$$

= 2.5

$$Pr(X_2|X_1 = .5, Z = 1) = \frac{1}{8}$$

3.7 Case-*vii*

• When $X_1 = 4 \& Z = 0$

$$X_2 = 4 - 1.5$$
$$= 2.5$$

$$Pr(X_2|X_1 = 4, Z = 0) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

3.8 Case-viii

• When $X_1 = 4 \& Z = 0$

$$X_2 = 4 + 2$$
$$= 6$$

$$Pr(X_2|X_1 = 4, Z = 1) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

X_2	-4.5	-1	2.5	6
$Pr(X_2)$	$\frac{1}{8}$	უ[∞	$\frac{3}{8}$	$\frac{1}{8}$

Table 1: Probability Distribution of X_2

Figure 1: CDF

Figure 2: PMF