

lox

 Ap^R

FIG. 2B

GC GGC CGC GGT ACC ATA ACT TCG TAT AGC ATA CAT TAT ACG AAG TTA TCT

Ecori Smai Xhoi Ndei Ncoi Bamhi Noti

GGA ATT CCC CGG GCT CGA GAA CAT ATG GCC ATG GGG ATC CGC GGC CGC

AAT TGT TAA CAG ATC CGT CGA CGA GCT CGC TA (530)

DRAFTS: 1 S. S. CUBDLASS

FIG. 3

CONSTRUCTION OF pGst-lox:

V

CONSTRUCTION OF pVL1392-lox:

4/35 LINKER: GG CCG GAC GTC ATA ACT TCG TAT AGC ATA CAT TAT ACG AAG TTA TG (SEQ ID NO: 6)
C CTG CAG TAT TGA AGC ATA TCG TAT GTA ATA TGC TTC AAT AC CTAG (SEQ ID NO: 7) BamHI BgllI/PstI/NotI/XmaI/EcoRI/XbaI/SmaI/BamHI Not MCS: B

Polyhedrin (9.3kb)

CONSTRUCTION OF pGAP24-lox:

CONSTRUCTION OF pGAL14-lox:

LINKER: T CGA GAC GTC ATA ACT TCG TAT AGC ATA CAT TAT ACG AAG TTA TGC (SEQ ID NO: 8)
CTG CAG TAT TGA AGC ATA TCG TAT GTA ATA TGC TTC AAT ACG CCGG (SEQ ID NO: 9) NotI **Zho**I

6/35

FIG. 11

FIG. 9B

SS SUBCLASS

ny Drafts_{er}

APP.

FIG. 10A

FIG. 10B

12)	ଳୁ 11/35	14)	15)
TATACGAAGTTAT (SEQ 1D NO: 13121110 9 8 7 6 5 4 3 2 1	T A T A C G A A G T T A T (SEQ 1D NO: 13121110 9 8 7 6 5 4 3 2 1	TATACGAAGTTAT (SEQ 1D NO: 13121110 9 8 7 6 5 4 3 2 1 T	 T A T A C G A A G T T A T (SEQ 1D NO: 13121110 9 8 7 6 5 4 3 2 1
GCATACAT	GCATACAT	GCATACAT	GCATACAT
A T A A C T T C G T A T A 1 2 3 4 5 6 7 8 910111213 T C	A T A A C T T C G T A T A 1 2 3 4 5 6 7 8 910111213	A T A A C T T C G T A T A 1 2 3 4 5 6 7 8 910111213 T C	
loxP:	I oxP2:	loxP3:	l oxP23:

FIG. 15

GST-Cre	NUMBER OF Ap ^R	NUMBER OF KnR	KnR/ApR (%)
(µg)	TRANSFORMANTS	TRANSFORMANTS	
0 0.02 0.04 0.06 0.08 0.10 0.20 0.40 0.60	4.0 x 10 ⁵ 3.0 x 10 ⁵ 2.3 x 10 ⁵ 2.4 x 10 ⁵ 3.3 x 10 ⁵ 6.0 x 10 ⁴ 7.8 x 10 ⁴ 5.8 x 10 ⁴ 9.2 x 10 ⁴	0 231 406 868 1,336 594 580 1,910	0 0.1 0.2 0.4 0.4 1.0 0.7 3.3 11.7
0.80	3.1 x 10 ⁵	28,660	9.2
1.00	1.0 x 10 ⁵	16,840	16.8

$$GST-Skp1$$
 $GST-lox-Skp1$
 $1 2 3$
 $IPTG: - + - + - + - +$
 $1 2 3 4 5 6 7 8$
 $coomassie$

FIG. 16A

FIG. 17

APPLO FIG.

GT_ROUSS_ROUSS ROUSS ROUSS

1 2 3 4 5 6 insect cell

FIG. 18

Control 3-lox-F3

nammalian

FIG. 19

FIG. 21

Pvu II restriction analysis of recombinant plasmids made by one—step POT

M P1 P2 I 1 2 3 4 5 6 7 8 9 10

APPRIL ..

ORAFTS!

17/35 FIG. 23A

PUNI 10 POLYLINKER SEQUENCE

BssH II

(1335)

<u>(401) </u>	<u>VotI</u>	_Kp	nI				L	OX_					
GC GGC	CGC	GGT	ACC	ATA	ACT	TCG	TAT	AGC	ATA	CAT	TAT	ACG	A
		<u> E</u> c	oRI	Sn	naI		XhoI	 -		deI_		NcoI	
AG TT	A TCT	GGA	ATT	CCC	CGG	GCT	CGA	GAA	CAT	ATG	GCC	ATG	G
BamH	<u> </u>	NotI				Hpa I	_		<u></u>	alI	Sac	I (53	<i>50)</i>
GG AT	CGC	GGC	CGC	AAT	TGT	TAA	CAG	ATC	CGT	CGA	CGA	GCT	

TERM

HpaI (503)

SalI (515)

SacI (521)

Xba I (750)

EcoR V (890)

BstH I (1051)

PIe I (1061)

18/35

FIG. 23B

PUNI 20 POLYLINKER SEQUENCE

CGC GGC CGC

GGT ACC ATA ACT TCG TAT AGC ATA CAT TAT ACG AAG TTA T

EcoR I Smal Xhol Nde I Nco I BamHI

CT GGA ATT CCC CGG GCT CGA GAA CAT ATG GCC ATG GGG ATC

Not I (246)

19/35

FIG. 23C

PUNI 30 POLYLINKER SEQUENCE

(37)	<u>Kpn</u> I							L	<u> </u>				
GGT	ACC	ATA	ACT	TCG	TAT	AGC	ATA	CAT	TAT	ACG	AAG	TTA	TC
	Eco	oR I	Sr	naI	<u>. x</u>	(hoI	_		Ec	oIIII	I		
Τ	GGA A	ATT (ccc (CGG (GCT (CGA (GCC /	AGT (CCA	GCG	CTC	ACA-	ATT
											half	Iac0	
	Not .	<u> </u>			lpaI	_		<u>_S</u>	al I	<u>Sa</u>	cI (1	' <u>5</u> 5)	
GC	G GG	C GC	A AT	r gt	T AA	C AG	A TC	C GT	C GA	C GA	G CT	C GC	
		_	M	n T									

APPRO IG.

APPER I LE.

U. ASS SUBCLASS

DRAFTS....

FIG. 26A-1

SEQUENCE DESCRIPTION: SEQ ID NO:1:

GTTCCTGTGT CACTGAAAT TGCTTTGAGA GGCTCTAAGG AATTCTGTCA GCCGTTAAGT 9 GCTTCTCAGT GCGTTACATC CCTGGCTTGT TGTCCACAAC CGTTAAACCT TAAAAGCTTT

AAAAGCCTTA TATATTCTTT TTTTTTTT AAAACTTAAA ACCTTAGAGG CTATTTAAGT 180

TGCTGATTTA TATTAATTTT ATTGTTCAAA CATGAGAGCT TAGTACGTGA AACATGAGAG 240

CTTAGTACGT TAGCCATGAG AGCTTAGTAC GTTAGCCATG AGGGTTTAGT TCGTTAAACA

TGAGAGCTTA GTACGTTAAA CATGAGAGCT TAGTACGTGA AACATGAGAG CTTAGTACGT

ACTATCAACA GGTTGAACTG CTGATCAACA GATCCTCTAC GCGGCCGCGG TACCATAACT

TCGTATAGCA TACATTATAC GAAGTTATCT GGAATTCCCC GGGCTCGAGA ACATATGGCC

ATGGGGATCC GCGCCGCAA TTGTTAACAG ATCCGTCGAC GAGCTCGCTA TCAGCCTCGA

FIG. 26A-2

CTGTGCCTTC TAGTTGCCAG CCATCTGTTG TTTGCCCCTC CCCCGTGCCT TCCTTGACCC

TGGAAGGTGC CACTCCCACT GTCCTTTCCT AATAAAATGA GGAAATTGCA TCGCATTGTC

CTGGGGGGTG GGGTGGGGCA GGACAGCAAG GGGGAGGATT TGAGTAGGTG TCATTCTATT

GGGAAGACAA TAGCAGGCAT GCTGGGGATT CTAGAAGATC CGGCTGCTAA CAAAGCCCGA 780

AAGGAAGCTG AGTTGGCTGC TGCCACCGCT GAGCAATAAC TAGCATAACC CCTTGGGGCC

TCTAAACGGG TCTTGAGGGG TTTTTTGCTG AAAGGAGGAA CTATATCCGG ATATCCCGGG 006

CGGCGTCCCG GTGGGCGAAG AACTCCAGCA TGAGATCCCC GCGCTGGAGG ATCATCCAGC 096 GAAAACGATT CCGAAGCCCA ACCTTTCATA GAAGGCGGCG GTGGAATCGA AATCTCGTGA

TGGCAGGTTG GGCGTCGCTT GGTCGGTCAT TTCGAACCCC AGAGTCCCGC TCAGAAGAAC 1080

FIG. 26A-3

TCGTCAAGAA GGCGATAGAA GGCGATGCGC TGCGAATCGG GAGCGGCGAT ACCGTAAAGC

ACGAGGAAGC GGTCAGCCCA TTCGCCGCCA AGCTCTTCAG CAATATCACG GGTAGCCAAC

GCTATGTCCT GATAGCGGTC CGCCACACCC AGCCGGCCAC AGTCGATGAA TCCAGAAAAG

CGGCCATTTT CCACCATGAT ATTCGGCAAG CAGGCATCGC CATGGGTCAC GACGAGATCC

TCGCCGTCGG GCATGCGCGC CTTGAGCCTG GCGAACAGTT CGGCTGGCGC GAGCCCCTGA

TGCTCTTCGT CCAGATCATC CTGATCGACA AGACCGGCTT CCATCCGAGT ACGTGCTCGC

TCGATGCGAT GTTTCGCTTG GTGGTCGAAT GGGCAGGTAG CCGGATCAAG CGTATGCAGC 1500 CGCCGCATTG CATCAGCCAT GATGGATACT TTCTCGGCAG GAGCAAGGTG AGATGACAGG 1560 AGATCCIGCC CCGGCACTIC GCCCAAIAGC AGCCAGICCC ITCCCGCTIC AGIGACAACG

TCGAGCACAG CTGCGCAAGG AACGCCCGTC GTGGCCAGCC ACGATAGCCG CGCTGCCTCG

FIG. 26A-4

TCCTGCAGTT CATTCAGGGC ACCGGACAGG TCGGTCTTGA CAAAAAGAAC CGGGCGCCCC

TGCGCTGACA GCCGGAACAC GGCGGCATCA GAGCAGCCGA TTGTCTGTTG TGCCCAGTCA

TAGCCGAATA GCCTCTCCAC CCAAGCGGCC GGAGAACCTG CGTGCAATCC ATCTTGTTCA

ATCATGCGAA ACGATCCTCA TCCTGTCTCT TGATCAGATC TTGATCCCCT GCGCCATCAG

ATCCTTGGCG GCAAGAAGC CATCCAGTTT ACTTTGCAGG GCTTCCCAAC CTTACCAGAG

GGCGCCCCAG CTGGCAATTC CGGTTCGCTT GCTGTCCATA AAACCGCCCA GTCTAGCTAT

CGCCATGIAA GCCCACTGCA AGCIACCIGC ITICICITITG CGCITGCGII ITCCCTIGIC

CAGATAGCCC AGTAGCTGAC ATTCATCCGG GGTCAGCACC GTTTCTGCGG ACTGGCTTTC

TACGTGTTCC GCTTCCTTTA GCAGCCCTTG CGCCCTGAGT GCTTGCGGCA GCGTGAAGCT

APPIGE FIG.

FIG. 26B-1

SEQUENCE DESCRIPTION: SEQ ID NO:10:

Pro CCC CAA Gln CTA GGT TAT TGG AAA ATT AAG GGC CTT GTG Gly Leu Val Lys11e 10 Trp Lys TyrLeu Gly Ile CCT ATA Pro Ser ATG Met

Len CAT His Glu Glu 30 TAT GAA GAG TyrGAA GAA AAA Glu Glu Lys 25 Len TTG GAA TAT CTT Leu Leu Glu Tyr CTTLen CTTCGA Arg

Len GAT GAA GGT GAT AAA TGG CGA AAC AAA AAG TTT GAA TTG Glu Phe Lys Lys 45 Arg Asn Trp Glu Gly Asp Lys Asp Glu Arg GAG CGC 144 Tyr

TIT CCC AAT CIT CCI TAT TAT AIT GAT GGT GAT GTT AAA Tyr Tyr Ile Asp Gly Asp Val Lys 60 Pro Asn Leu Pro 55 Phe TTG GAG Leu Glu 192 Gly

Ser Met Ala Ile Ile Arg Tyr Ile Ala Asp Lys His Asn 70 ACA CAG TCT ATG GCC ATC ATA CGT TAT ATA GCT GAC AAG CAC AAC Gln Thr

DRAFTS: ...; SUBCLASS

FIG. 26B-2

GAA	Glu
CTT	Leu 95
ATG	Met
TCA ATG	Ser
ATT	Ile
GCA GAG	Ala Glu 90
	Ala 90
CGT	Arg
GAG	. Glu
AAA	Lys
CCA AAA	Pro
\mathtt{TGT}	Cys 85
GGT GGT TGT	. Gly
GGT	Gly
TTG	Leu
ATG	288 Met

AGT	Ser
TAT	a Tyr
GCA TAT	Ala 110
AGA ATT	Ile Ala 110
AGA	Arg
\mathtt{TCG}	Ser
GTT	Val
GGT	G1y 105
TAC	Tyr
AGA TAC	Arg
ATT	Ile
GAT ATT	Asp
TTG	Leu 100
\mathtt{GTT}	Val
BDB	Ala
GGA 336	Gly

GAA		Lys Leu Pro Glu	
CTA CCT GAA		Pro	
CTA		Leu	
AAG		Lys	125
AGC		Phe Leu Ser	
CTT		Leu	
TTT		Phe	
GAT		Asp	
\mathtt{GTT}		Val	120
AAA		Lys	
GAA ACT CTC AAA GTT GAT TTT CTT AGC AAG		Thr Leu Lys Val Asp	
ACT		Thr	
GAA		Glu	
TTT		Phe	115
GAC		Asp	
AAA	384	Lys	ı

AAT	Asn
TTA AAT	Leu
TAT	Tyr
ACA TAT	Thr
AAA	Lys 140
CAT AAA	His Lys 140
TTA TGT	Cys
\mathtt{TTA}	Arg Leu Cys
CGT	Arg
GAT	135 135
GAA	Glu
\mathtt{TTC}	Phe
ATG	Met
AAA	Lys
CTG	Leu 130
ATG	432 Met

CCT CTT GAT		Asp	160
CTT		Leu	
GCT		Ala	
GAC		Asp	
TAT GAC		Tyr	
TTG		Leu	ر در در
ATG		Met	
TTC ATG		Phe	
GAC		Asp	
CCT		Pro	
CAT		His	150
ACC		Thr	
GTA		Val	
CAT		His	
GAT		4sp	
GGT	480	Gly A	145

	13.	SUBCLASS		
Althor		DRAFTS	1000	

FIG. 26B-3

TTA	Leu
TTC CCA AAA TTA	Pro Lys 175
CCA	Pro
TTC	Phe
929	Ala
GAT	Asp Ala Phe
TG	Leu 170
TGC C	Cys
ATG	Met
CCA ATG	Pro Met
GAC	Asp
ATG	Met 165
TAC	Tyr
TTA	Leu
GTT TTA	Val
GTT 528	Val

	4.
TAC	Туг
AAG	Lys Tyr
ATT GAT AAG TAC	Asp 190
ATT	Ile
CAA	Gln
CCA	Pro
ATC	Ile
GÇT	Ala 185
GAA	Glu
ATT	Ile
CGT	Arg
A AAA	Lys
AAA	Lys 180
TTT	Phe
TGT TTT	Cys
GTT 576	Val

225	Ala
	Gln ,
TGG CAA	Trp
CCC	G1y 205
CAG	Pro Leu Gln
CCT TTG CAG	Leu
CCI	Pro
AAG TAT ATA GCA TGG	Trp
GCA	Ala 200
ATA	Ile
TAT	Tyr
AAG	Lys Tyr
AGC	Ser
TCC	Ser 195
AAA	Lys
TTG 624	Leu

CGT	Arg
CAT CCT CCA AAA TCG GAT CTG GTT CCG CGT	Leu Val Pro Arg
GTT	Val
CTG	Leu
GAT	: Asp 1 220
TCG	Ser
AAA	Lys
CCA	His Pro Pro Lys Ser 215
CCT	Pro
CAT	His 215
GAC	Asp
SGC	G1y
GGT GGC	Gly Gly
GGT	G1y
TTT	Phe 210
ACG	672 Thr

TTA	Leu 240
AAT	Asn
CCC	Ala
ATG	Pro Met
CCC	Pro
ATG	Met 235
CAT ATG CCC ATG GCC AAT	His
${\tt TCG}$	Ser
GGA TCG	G1y
GTT	Val
GCA TCT GTT	Ser 230
GCA	Ala
CGT	Arg
CGT	Arg
TCT	Ser Arg
GGA TCT CGT 720	Gly 225

AGT		Ser	
GGA ACG		Thr	255
GCA		Ala	
GTC GAT		Asp	
GTC		Val	
SCG		Pro Val	
\mathtt{TTA}		Leu	250
GCA		Ala	
CCT		Pro	
TTG		Leu Pro Ala	
AAT		Asn	
CAA		Gln	245
CAC		His	
\mathtt{GTA}		Val	
CTG ACC GTA CAC		Leu Thr Val	
CTG	768	Leu	

APPTER THE FIG. DRAFTSTANGE AND SUBCLASS

FIG. 26B-4

GCG Ala CAG Gln CGC Arg 270 Asp GAT AGG Arg TTCPhe ATG Met Asp 265 AAC CTG ATG GAC Leu Met Asn AAG LysCGC Arg 260 GTT Val GAG Glu Asp

TGG Trp TCGSer SSS Arg $_{\mathrm{TGC}}$ Cys 285 GLL Val $\mathbf{I}^{\mathbf{C}\mathbf{C}}$ Ser CTGLeu CTTLeu ATG Met 280 AAA Lys TGG TrpACC Thr CAT His GAG Glu 275 Ser $_{
m TCT}$ Phe

CCT Pro GAA Glu GCA Ala CCC Pro Phe 300 TTTTrp TGG AAA Lys CGG Arg Asn AAT AAC Asn 295 TTGLeu AAG Lys TGC Cys Trp TGG GCA Ala 290 Ala GCG

Ala 320 GCA Len CTGGGT Gly CGC Arg gce Ala Gln CAG 315 CTTLea TAT TyrCTALen Leu CTTTyr 310 TAT Asp GAT CGC Arg GTT Val Asp GAT Glu 305 GAA 096

Arg CGT CAT His 335 CLI Leu Leu Asn Met GGC CAG CTA AAC ATG Gln 330 G1yCAA CAT TTG Leu His Gln Gln GTA AAA ACT ATC CAG 325 Ile Thr Val Lys

GTT Val Leu CTG TCA Ser 350 GTTVal Asn Ala GAC AGC AAT GCT Ser Asp 345 Ser CGA CCA AGT Pro Arg Pro CCA CTGGly Leu 340 CGG TCC GGG Arg Ser

APPTER 15. 1G. SUBCLASS

FIG. 26B-5

Lys GCC GGT GAA CGT GCA AAA Ala Arg Glu 365 Gly Ala GAT Asp GTT Val Asn 360 AAC GAA Glu CGG CGG ATC CGA AAA Lys Arg Ile Arg 355 Met Arg

CTC Leu CGT TCA Ser Arg Val GTTACT GAT TTC GAC CAG Thr Asp. Phe Asp Gln 380 Arg 375 CTA GCG TTC GAA CGC Glu Phe Ala Leu CAG GCT Gln Ala 1152

Leu 400 CIG Phe GCA Ala Len CTGAsn CGT AAT Arg 395 TGC CAG GAT ATA Ile Gln Asp Cys CGC Arg 390 Asp . AGC GAT Ser ATG GAA AAT Glu Asn Met

ATC Ile AGG Arg 415 CCC Ala Ile GCC GAA ATT Glu Ala ATA Ile 410 TTA CGT Leu Leu Arg CIG Thr AAC ACC Asn 405 TAT TyrGCT Ala GGG ATT Gly Ile

His CAT ATC Ile TTA Len 430 Met ATG AGA Arg 999 Gly G1yGGTAsp 425 GAC Thr ACT CGTArg TCA Ser ATC Ile GAT Asp 420 Lys AGG GTT AAA Arg Val

GCA Ala Lys AAG Glu GAG GTA Gly Val 445 GGT Ala GCA ACC Thr AGC Ser GTTLeu Val 440 CTG Thr ACG AAA Lys ACG Thr AGA Ile Gly Arg ATT GGC

APPRETE CONTRACTOR OBAFTSIGNS

FIG. 26B-6

Ser TCTCGA TGG ATT TCC GTC Val Ser Ile TrpArg Glu GTC GAG Leu Val CTG GGG GTA ACT AAA CTG Leu Gly Val Thr Lys 455 AGC Leu Ser

Lys 480 AAA Arg AGA Val TGC CGG GTC Arg Cys TTTPhe CTG Leu TyrCCG AAT AAC TAC Asn Asn Pro Asp GAT GAT Asp GCT Ala GTA Gly Val 465 GGT

GCC Ala Arg 495 SSS Thr TCA ACT Ser CAG CTA Leu Gln AGC Ser 490 Thr GCC ACC Ala TCTSer CCA Pro CCG Ala 485 CCC Ala GTTVal Gly AAT GGT Asn

AAG Lys GCT Ala Gly 510 GGC TAC TyrATT Ile TTGLeu Arg CGA His CAT 505 \mathtt{Thr} ACT GCA Ala GAA Glu TTT Phe Ile. 500 ATT 999 Gly CTG GAA Leu Glu

CGT CCCAla Ser AGT CAC His 525 GGA Gly TCTSer TGGTrpCCCAla Leu 520 CTG TyrTAC AGA Arg Gln CAG Gly GGT Ser $_{
m TCT}$ Asp Asp GAT GAC 1584

GAG Glu Pro SSS ATA Ile TCA Ser Val GTT 540 Gly GGA GCT Ala Arg CGC Ala CCC Met ATG Asp GAT Arg CG.A. gce Ala GCC Ala Gly GGA Val

APPLOTE FOR FIG.

FIG. 26B-7

Tyr 560 ATC ATG CAA GCT GGT GGC TGG ACC AAT GTA AAT ATT GTC ATG AAC TAT Met Asn Ile Val Asn 555 Asn Val Thr Trp Gly Gly 550 Gln Ala 1680 Ile Met (545

Leu Leu Glu ATC CGT AAC CTG GAT AGT GAA ACA GGG GCA ATG GTG CGC CTG CAA Ser Glu Thr Gly Ala Met Val Arg Ile Arg Asn Leu Asp

GAT GGC GAT TAG

1740

Asp Gly Asp

FIG. 26C-1

SEQUENCE DESCRIPTION: SEQ ID NO:11:

Gln Pro 15 Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val 5 Ser Met

Leu Glu Lys Tyr Glu Glu His Thr Arg Leu Leu Glu Tyr Leu Glu 20

Len Trp Arg Asn Lys Lys Phe Glu Glu Arg Asp Glu Gly Asp Lys 35

Lys Pro Asn Leu Pro Tyr Tyr Ile Asp Gly Asp Val 55 Leu Glu Phe 50

Asn Tyr Ile Ala Asp Lys His 75 Ile Arg Thr Gln Ser Met Ala Ile Leu 65

Glu Ser Met Leu Leu Gly Gly Cys Pro Lys Glu Arg Ala Glu Ile 85 Met

Tyr Ser Gly Ala Val Leu Asp Ile Arg Tyr Gly Val Ser Arg Ile Ala 100

Lys Asp Phe Glu Thr Leu Lys Val Asp Phe Leu Ser Lys Leu Pro 115

ORAFTS. DAY

FIG. 26C-2

Asn	Asp 160	Leu	Tyr	Ala	Arg	Leu 240	Ser	Ala
Leu	Leu	Lys 175	Lys	Gln	Pro	Asn	Thr 255	Gln
Tyr	Ala	Pro	Asp 190	Trp	Val	Ala	Ala	Arg 270
\mathtt{Thr}	Asp	Phe	Ile	Gly 205	Leu	Met	Asp	Asp
Lys 140	Tyr	Ala	Gln	Gln	Asp 220	Pro	Val	Arg
His	Leu 155	Asp	Pro	Leu	Ser	Met 235	Pro	Phe
Cys	Met	Leu 170	Ile	Pro	Lys	His	Leu 250	Met
Leu	Phe	Cys	Ala 185	Trp	Pro	Ser	Ala	Asp 265
Arg	Asp	Met	Glu	Ala 200	Pro	Gly	Pro	Met
Asp 135	Pro	Pro	Ile	Ile	His 215	Val	Leu	Leu
Glu	His 150	Asp	Arg	Tyr	Asp	Ser 230	Asn	Asn
Phe	Thr	Met 165	Lys	Lys	G1y	Ala	Gln 245	Lys
Met	Val	Tyr	Lys 180	Ser	G1y	Arg	His ·	Arg 260
Lys	His	Leu	Phe	Ser 195	G1y	Arg	Val	Val
Leu 130	Asp	Val	Cys	Lys	Phe 210	Ser	Thr	Glu
Me t	G1y 145	Val	Val	Leu	Thr	G1y 225	Leu	Asp

DRAFIS.....

FIG. 26C-3

Val	285
Ser	
Leu	•
Leu	
Met	280
Lys	
Trp	
Thr	
His	
Glu	275
Ser	
Phe	

	Lys	
•	Ala L	
	Arg A	
	Glu A	365
	Gly G	٠,
	Ala (
	Asp ,	
	Val	
	Asn	760
	Glu	
	Lys	
	Ile Arg Lys	
	Ile	
	Arg	ر م م
	Arg	
	Met	

Arg Met Leu Ile His	430
Asp Gly Gly	425
Arg Thr	
Asp Ile Ser	20
Arg Val Lys A	

ARTHUR C. C. F. T. C. . ORAFTS. LTG.

FIG. 26C-4

Ala Glu Lys Ala Gly Val 445 Thr Ser Lys Thr Leu Val \mathtt{Thr} Gly Arg ' Ile

Ser Val Ser Ile Trp 460 Glu Arg Val Leu Lys 455 Gly Val Thr Leu Ser 450 Leu

Arg Cys Arg Val Phe 475 Len TyrAsn Asn Pro 470 Asp Asp Ala Val Gly 465

Ala Arg 495 Thr Leu Ser Gln Ser 490 Thr Ala Ser Pro Ala 485 Ala Val Gly

Asn

Lys Ala Gly 510 TyrIle Leu Arg His 505 Thr Ala Glu Phe Ile 500 G1yGlu Leu

Arg Ala Ser His 525 Gly Ser Trp Ala Leu 520 TyrGln Arg G1ySer 515 Asp Asp

Glu Pro Ile Ser Val 540 Gly Ala Arg Ala Met 535 Asp Arg Ala Ala 530 Val

Tyr 560 Asn Met Val Ile Asn 555 Val Asn Thr TrpGly 550 Gly Ala Gln Met Ile 545

Glu Leu 575 Len Arg Val Met Ala GlyThr Glu Ser Asp 565 Leu Asn Ile

Asp Gly Asp