演習8

学号:_____

姓名:_____

(演習8-1)

1. WWW	(f)
2. HTML文書	(k)
3. Mosaic	(n	
4. ウェブアプリケーション	(d	
5. 動的ウェブページ	(j)
6. マッシュアップ	(a)
7. REST	(h	
8. SOAP	(i)
9. XML	(0)
10. CRM	(е)

```
さまざまなウェブサービスを組合せて、あたかも1つの機能として動
マッシュアッフ
         作するアプリケーションを作成すること
e-commerce h
         コンピュータネットワーク上での電子的な情報通信によって商品や
         サービスを売買したり分配したりすること
         インターネットのドメインネームシステム(Domain Name System,
         DNS)に対応する世界で唯一の識別子
ウェブアプリケーション ターネットなどの<u>ネットワークを介して</u>使用するアプリケーショ
         顧客満足度を向上させるために、顧客との関係を構築することに力点
      e.
   CRM
         を置く経営手法
         地球規模のハイパーテキスト
  WWW
         World Wide Webで使用される各種技術の標準化を推進する為に設立
   W3C
         された標準化団体、非営利団体のこと
         Webサービスのためのメッセージ技術であり、HTTPのメソッド
      h.
   REST
         (GETなど)を組合せてサーバ上のデータを操作する
         Webサービスのための<u>メッセージ技術で</u>あり、<mark>リクエストおよびレス</mark>
         ポンスともにXMLフォーマットのデータで行う
         リクエストごとにウェブページを牛成して返すページ
         利用者が発信したい情報を載せたWebページ
HTML文書
         ネットワーク経由でアクセスし、何がしかのサービスを提供する機器
  サーバ
         インターネットの標準技術を使ってネットワーク上に分散したアプリ
Webサービス
         ケーションを連携させる技術のこと
         Webページを閲覧するための<mark>最も最初に開発されたブラウザ</mark>
  Mosaic
      n.
         文書やデータの意味や構造を記述するためのマークアップ言語の一つ
         であり、拡張可能なマーク付け言語で、インターネット上の文書や
         データを記述・交換するためにW3Cが制定した技術のこと
```

(演習8-2)

- (1 o. 推薦システムは、ユーザの好みに合わせて、おすすめのアイテムを提示してくれるシステムであり、主にアイテムの内容(属性)にもとづいて推薦を行う(2. e. 内容ベースフィルタリング評価・行動履歴にもとづいて推薦を行う(3. h. 協調フィルタリングれる。後者の推薦は、アイテム評価の類似性にもとづいて推薦する(4. f. アイテムベース 嗜好が類似しているユーザが好むアイテムを推薦する(5. f. ユーザベース けられる。
- ウェブマイニングとは、社会的表象としてのウェブから、実世界での主体の実像やソーシャルな関係性を読み解く分析のことである。
 (6.j. テキスト) マイニングは、ウェブページの文書を解析する手法あり、ウェブマイニングのなかの一つである(7.g. ウェブ内容) イニングのひとつである。(8.p. 形態素解析) は、文書を分解して用語を抽出することである。文書を比較する際には、文書をベクトルで表現し、その類似度を(9. n. コサイン) 類似度によって計算する。なお、ベクトルの重みには単語の出現頻度や、(10. T. TF・IDF) を用いるのが一般的である。

$$PR(pi) = (1 - d) + d \sum_{pj \in M(pi)} \frac{PR(pj)}{L(pj)}$$

ノードi	PR(i)
A	0.58
В	
С	
D	

- ・PR(pi) はページ (ノード) piの PageRank
- · d は減退係数 (damping factor)
- ・(今回は0.85)
- •M(pi)はページ (ノード) piにリンクを張っているページ (ノード) の集合
- •L(pj)はページ(ノード) pj から他のページ(ノード) に張っているリンクの数
- ・Nはページ (ノード)数

$$PR(A) = (1-0.85) + 0.85((PR(C)) / L(C))$$

= $(1-0.85) + 0.85((1.0) / (2)) = 0.575$

$$PR(pi) = (1 - d) + d \sum_{pj \in M(pi)} \frac{PR(pj)}{L(pj)}$$

ノードi	PR(i)
A	0.58
В	0.43
С	
D	

- ・*PR(pi)* はページ (ノード) *pi* の PageRank
- · d は減退係数(damping factor)
- ・(今回は0.85)
- ・M(pi)はページ (ノード) pi にリンクを張っているページ (ノード) の集合
- ・L(pj)はページ(ノード) pj から他のページ(ノード) に張っているリンクの数
- Nはページ (ノード)数

$$PR(B) = (1-0.85) + 0.85((PR(A)) / L(A))$$
$$= (1-0.85) + 0.85((1.0) / (3)) = 0.4333... 6$$

$$PR(pi) = (1 - d) + d \sum_{pj \in M(pi)} \frac{PR(pj)}{L(pj)}$$

ノードi	PR(i)
Α	0.58
В	0.43
С	1.28
D	

- ・PR(pi)はページ(ノード) piの PageRank
- · d は減退係数(damping factor)
- ・(今回は 0.85)
- ・M(pi)はページ (ノード) pi にリンクを張っているページ (ノード) の集合
- ・L(pj)はページ (ノード) pj から他のページ (ノード) に張っているリンクの数
- Nはページ (ノード)数

$$PR(C) = (1-0.85) + 0.85(((PR(A)) / L(A)) + (PR(B) / L(B)))$$

$$= (1-0.85) + 0.85(((1.0) / (3)) + ((1.0) / (1))) = \mathbf{1.2833...}$$

$$PR(pi) = (1 - d) + d \sum_{pj \in M(pi)} \frac{PR(pj)}{L(pj)}$$

ノードi	PR(i)
Α	0.58
В	0.43
С	1.28
D	0.86

- ・PR(pi)はページ(ノード) piの PageRank
- · d は減退係数 (damping factor)
- ・(今回は 0.85)
- ・M(pi)はページ (ノード) pi にリンクを張っているページ (ノード) の集合
- ・L(pj)はページ(ノード) pj から他のページ(ノード) に張っているリンクの数
- Nはページ (ノード)数

$$PR(D) = (1-0.85) + 0.85(((PR(A)) / L(A)) + (PR(C) / L(C)))$$

$$= (1-0.85) + 0.85(((1.0) / (3)) + ((1.0) / (2))) = \mathbf{0.8583...}$$

viを含む三角形の数 $C_i = \frac{1}{vi}$ から出る2本のエッジの組合せ k (k-1) / 2

ノード i	Ci
A	1/2
В	
С	
D	
E	
F	
C _A =	= 3/6 - 1 /2

$$C_A = 3/6$$
$$= 1/2$$

$$C_i = \frac{vi$$
を含む三角形の数 vi から出る2本のエッジの組合せ

$$C_i = \frac{vi$$
を含む三角形の数 vi から出る2本のエッジの組合せ

ノード i	Ci
A	1/2
В	2/3
С	2/3
D	
E	
F	
C_{C}	= <u>2/3</u>

 $C_i = \frac{vi$ を含む三角形の数 viから出る2本のエッジの組合せ

ノード i	Ci
A	1/2
В	2/3
С	2/3
D	2/3
Е	
F	
C_D	= 4/6 $= 2/3$

$$C_i = \frac{vi$$
を含む三角形の数 vi から出る2本のエッジの組合せ

ノード i	Ci
A	1/2
В	2/3
С	2/3
D	2/3
E	1/1
F	
$C_E = 1/1$	

viを含む三角形の数viから出る2本のエッジの組合せ

ノード i	Ci
A	1/2
В	2/3
С	2/3
D	2/3
E	1
F	1/2
C _F =	= 3/6
	= <u>1/2</u>

(演習8-5)

最短距離法

最短距離法での樹形図 (デンドログラム)

最長距離法

最長距離法

