

RoBERTa

A Robustly Optimized BERT Pretraining Approach

Table of Contents

Introduction

Results Analysis

Data & Evaluation

Related Work

Implementation & Training

Conclusion

Introduction

Original BERT and Motivation

Microsoft Turing NLG

Fig. 1: Development of Number of Parameters in NLP Transformer models with time. <u>Source</u>

Transformer based models were a game changer.

However, they require huge training datasets and billions of parameters.

Motivation

The effort required for (pre) training leads to less fine tuning and less time for experimenting overall, which leads to suboptimal models.

BERT In Sum

Book Corpus: 11,000 unpublished books scraped from the Internet (-800M words)

English Wikipedia (-2500M words)

Autoencoding model
[base(large)]:
12(24) layers
12(16) attention heads

Optimization: ADAM optimizer

<u>Input:</u> 2 segments (> 1 natural sentence)

Tasks: NSP (Next Sentence Prediction); MLM Masked Language Model

RoBERTa's goal

The researchers behind RoBERTa hypothesize that **BERT was severely undertrained** and propose an **improved recipe for training BERT** models

More Intense Training

No NSP Task + Different Approach for MLM Longer
Sequences +
Different
Encoding

2 — Data & Evaluation

Datasets and benchmarks used

RoBERTa Datasets: BERT + ...

- Stories: CommonCrawl data filtered to match the story-like style of Winograd schemas - Trinh and Le, 2018
- Open Web Text: web content extracted from URLs shared on Reddit with at least three upvotes - Gokaslan and Cohen, 2019
- CC-News: collected from the English portion of the CommonCrawl Newsdataset; 63 million English news articles crawled between 2016 and 2019 - Nagel, 2016

Comparison

Evaluation Benchmarks

GLUE

General Language Understanding Evaluation

Origin: 9 datasets:

CoLA, SST-2, MNLI, QNLI, WNLI, RTE, MRPC, QQP, STS-B

Single and sentence-pair classification;

SQuAD

Stanford Question Answering Dataset

Origin: questions posed by crowdworkers on a set of Wikipedia articles

SOuAD 1.1: 100k answerable questions

<u>SOuAD 2.0:</u> +50k unanswerable questions

RACE

Reading and
Comprehension from
Examinations

Origin: English exams for middle and high school Chinese students

28,000 passages;

- 100,000 questions

Implementation and Training

Preprocessing, training method, implementation, etc.

Implementation & Hyperparameters

Reimplemented BERT in <u>Fairseq</u>

Peak Learning Rate and No. of Warmup Sets - vary for each setting

 Found training to be very sensitive to <u>epsilon</u> <u>term</u>

Unlike BERT:

- pretrain with sequences < T = 512 tokens
- do not randomly inject short sequences
- do **not train with a reduced sequence length** for the first 90% of updates. Train only with full-length sequences.

Trained on DGX-1 machines, each with 8 × 32GB Nvidia V100 GPUs

Masked Language Model

I would love to go to the cinema with you. - Training

I would love to go to the cinema you. - <u>Testing</u>

I would love to go to the cinema with you.

generated text

BERT: masking once during data preprocessing – single static mask. To avoid using the same mask for each training instance in every epoch, training data was duplicated 10 times –> each training sequence was seen with the same mask 4 times during training.

RoBERTa: <u>dynamic masking</u> – generate the masking pattern every time a sequence is fed to the model.

Masking	SQuAD 2.0	MNLI-m	SST-2					
reference	76.3	84.3	92.8					
Our reimplementation:								
static	78.3	84.3	92.5					
dynamic	78.7	84.0	92.9					

 Table 1: Dynamic vs Static Masking.

Dynamic Masking: better effectiveness (better results shown in table 1) and better efficiency (faster) -> Researchers' choice

Next Sentence Prediction

Hypothesis: the NSP task might not be useful and may actually hinder performance, (Lample & Conneau, 2019;

Yang et.al, 2019)

Input Text Sequences and NSP

4 Different Setups Experimented: With NSP

SEGMENT- PAIR + NSP: pair of segments, each contain multiple natural sentences, total combined length < 512 token – <u>original</u> **SENTENCE - PAIR + NSP:** pair of natural sentences, contiguous portion of one document or separate documents; inputs significantly shorter -> increase the batch size -> tot. no. tokens remains similar

4 Different Setups Experimented: Without NSP

FULL - SENTENCES: full sentences sampled contiguously from one or more documents, total length < 512 tokens.

DOC - SENTENCES: similar to FULL - SENTENCES, except that they may not cross document boundaries; when shorter than 512 -> dynamically increase the batch size

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE
Our reimplementation	on (with NSP loss):	•		
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0
Our reimplementation	on (without NSP lo	ss):		
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6
$\overline{\mathrm{BERT}_{\mathrm{BASE}}}$	88.5/76.3	84.3	92.8	64.3
$XLNet_{BASE} (K = 7)$	-/81.3	85.8	92.7	66.1
$XLNet_{BASE} (K = 6)$	-/81.0	85.6	93.4	66.7

Table 2: Comparison of Input Sequences. Pretrained over BOOK CORPUS and WIKIPEDIA. F1 for SQuAD and accuracy for MNLI-m, SST-2 and RACE. Source

Input and NSP Decision

NSP Strategies were outperformed:

DOC-SENTENCES: Best Result but needs variable batch sizes

FULL-SENTENCES: Almost as good and fixed batch size -> Researchers' choice

Batches

Hypothesis: training with very large mini-batches can both improve optimization speed and end-task performance when the learning rate is increased appropriately (Ott et al., 2018) (You et al., 2019)

bsz	steps	lr	ppl	MNLI-m	SST-2
256	1 M	1e-4	3.99	84.7	92.7
2K	125K	7e-4	3.68	85.2	92.9
8K	31K	1e-3	3.77	84.6	92.8

Table 3: Perplexity on held-out training data (ppl) and development set accuracy for BERT base models trained over BOOK CORPUS and WIKIPEDIA with varying batch sizes (bsz). Source

Large batches:

- improved
 perplexity for
 MLM and
 end-task
 accuracy
- easier to
 parallelize via
 distributed data
 parallel training
- Decision: train with batches of 8K sequences.

Middle range between

- using characters long sequences and less meaningful tokens
- using words very large vocabulary size

Byte-Pair Encoding

In contrary to the name, classical BPE uses Unicode Characters as the base of the vocabulary.

Base BERT: Classical BPE

RoBERTa: follows technique introduced in *Radford et al. (2019)* – uses bytes instead of Unicode Characters

Byte-Pair Encoding

Unicode characters
Unicode Characters (~150,000)

4 — Results Analysis

Training data and benchmarks' results

Impact of adding training data:

 RoBERTa shows massive improvement when compared to BERT-Large which reaffirms the importance of the design choices.

Training data quality:

 Removing low quality examples and pretraining the models for longer led to improvements in performance.

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13GB	256	1M	90.9/81.8	86.6	93.7
XLNet _{LARGE}						
with BOOKS + WIKI	13GB	256	1M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

Table 4: Development set results for RoBERTa pretrained over more and more data. Source

Benchmarks Results - GLUE

- On the first case it performs better that the other models, achieving state-of-the-art results on all 9 of the GLUE task development sets
- On the other side, even though RoBERTa did not obtain the best results for each of the 9 tasks, it scored the highest average result to the date when compared to the other models (88.5%)

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	ngle models	on dev	1111		1811	300 100	1911	111		
BERTLARGE	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	70
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	83
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	test (from le	eaderboa	rd as of	July 25,	2019)	. 111111	1905		19.00	
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

Table 5: Results on GLUE for each of the 9 tasks for single-task single models and ensembles. <u>Source</u>

Benchmarks Results - SQuAD

- On the first version RoBERTa matched the state-of-art set by XLNet. On the other hand in the second version, RoBERTa achieved a new state-of-the-art improving over XLNet by 0.4 points (EM) and 0.6 points (F1).
- RoBERTa model outperforms all but one of the single model submissions, and is the top scoring system among those that do not rely on data augmentation

M- 4-1	SQuA	AD 1.1	SQuAD 2.0			
Model	EM	F1	EM	F1		
Single models	on dev	, w/o do	ita augm	entation		
BERTLARGE	84.1	90.9	79.0	81.8		
XLNet _{LARGE}	89.0 94.5		86.1	88.8		
RoBERTa	88.9	94.6	86.5	89.4		
Single models	on test	(as of .	July 25,	2019)		
XLNet _{LARGE}			86.3 [†]	89.1 [†]		
RoBERTa			86.8	89.8		
XLNet + SG-	Net Ve	rifier	87.0 [†]	89.9 [†]		

Table 6: Results on SQuAD for single models for the both versions of SQuAD.

<u>Source</u>

Benchmarks Results - RACE

When it comes to the RACE benchmark RoBERTa achieved the state-of-the-art results on both the Middle and High School settings

Model	Accuracy	Middle	High
Single models	s on test (as o	of July 25, 2	2019)
$BERT_{LARGE}$	72.0	76.6	70.1
$XLNet_{LARGE}$	81.7	85.4	80.2
RoBERTa	83.2	86.5	81.3

Table 7: Results on RACE for single models for both Middle and High School settings. Source

5 Related Work

How much have new models improved until now?

ALBERT

The ALBERT method focuses heavily on the parameter efficiency. Some of the introduced changes:

- Cross-Layer Parameter Sharing: Layers can share parameters between them, opposing the previous paradigma in which each of these had its own set of parameters.
- Sentence-Order Prediction: Pre-training task to predict permuted sentences order. Improves the model ability to find reasoning between multiple sentences.

Comparison to BERT and RoBERTa:

Published in 2020, achieved SOTA results and is generally better than RoBERTa.

Models	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single	models on	dev	100000	V-RC-EVED	00.00000	0.000	A () () ()			1747
BERT-large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet-large	89.8	93.9	91.8	83.8	95.6	89.2	63.6	91.8	2	-
RoBERTa-large	90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	2	_
ALBERT (1M)	90.4	95.2	92.0	88.1	96.8	90.2	68.7	92.7	_	_
ALBERT (1.5M)	90.8	95.3	92.2	89.2	96.9	90.9	71.4	93.0	_	-
Ensembles on test	(from lead	lerboard	as of Sep	t. 16, 20	019)					
ALICE	88.2	95.7	90.7	83.5	95.2	92.6	69.2	91.1	80.8	87.0
MT-DNN	87.9	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5
Adv-RoBERTa	91.1	98.8	90.3	88.7	96.8	93.1	68.0	92.4	89.0	88.8
ALBERT	91.3	99.2	90.5	89.2	97.1	93.4	69.1	92.5	91.8	89.4

Table 10: State-of-the-art results on the GLUE benchmark. For single-task single-model results, we report ALBERT at 1M steps (comparable to RoBERTa) and at 1.5M steps. The ALBERT ensemble uses models trained with 1M, 1.5M, and other numbers of steps.

Glue Leaderboard Today

Rank	(Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP
1	Microsoft Alexander v-team	Turing ULR v6	♂	91.3	73.3	97.5	94.2/92.3	93.5/93.1	76.4/90.9
2	JDExplore d-team	Vega v1		91.3	73.8	97.9	94.5/92.6	93.5/93.1	76.7/91.1
3	Microsoft Alexander v-team	Turing NLR v5	♂	91.2	72.6	97.6	93.8/91.7	93.7/93.3	76.4/91.1
4	DIRL Team	DeBERTa + CLEVER		91.1	74.7	97.6	93.3/91.1	93.4/93.1	76.5/91.0
5	ERNIE Team - Baidu	ERNIE	♂	91.1	75.5	97.8	93.9/91.8	93.0/92.6	75.2/90.9
6	AliceMind & DIRL	StructBERT + CLEVER	♂	91.0	75.3	97.7	93.9/91.9	93.5/93.1	75.6/90.8
7	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4	♂	90.8	71.5	97.5	94.0/92.0	92.9/92.6	76.2/90.8
8	HFL IFLYTEK	MacALBERT + DKM		90.7	74.8	97.0	94.5/92.6	92.8/92.6	74.7/90.6
9	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6	73.5	97.2	94.0/92.0	93.0/92.4	76.1/91.0
10	T5 Team - Google	T5	♂	90.3	71.6	97.5	92.8/90.4	93.1/92.8	75.1/90.6
21	Facebook Al	RoBERTa		88.1	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2

Table 8: Current Glue leaderboard. Information taken from: Source

6 Conclusion

Conclusion

The key changes RoBERTa introduced are:

- Bigger batches, with more data.
- Removing NSP
- Longer sequences training
- Dynamically masking.

Conclusion

- The paper lacks novelty in model architecture and technical contributions,
- However, RoBERTa's proposal to change the training setup (hyperparameters, data size, etc) definitely improves the performance when comparing the results to previous alternatives.
- It may benefit future search on the topic.

Thanks!

Any questions?

Processamento de Linguagem Natural - FEUP, M.EIC 22/23 - Group A

- Marcelo Henriques Couto up201906086@up.pt
- André Lino dos Santos up201907879@up.pt
- João Afonso Andrade up201905589@up.pt

References

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler, S. (2015). Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In Proceedings of the IEEE international conference on computer vision (pp. 19–27).

Sebastian Nagel. 2016. Cc-news.

- References

<u>Aaron Gokaslan and Vanya Cohen. 2019. Openwebtext corpus.</u>

Trieu H Trinh and Quoc V Le. 2018. A simple method for commonsense reasoning. arXiv preprint arXiv:1806.02847.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019b. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In International Conference on Learning Representations (ICLR).

References

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for machine comprehension of text. In Empirical Methods in Natural Language Processing (EMNLP).

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. Race: Large-scale reading comprehension dataset from examinations. arXiv preprint arXiv:1704.04683.

Guillaume Lample and Alexis Conneau. 2019. Crosslingual language model pretraining. arXiv preprint arXiv:1901.07291.

- References

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. Technical report, OpenAI.

References

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 2019. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 2020. DeBERTa: Decoding-enhanced BERT with Disentangled Attention

Barun Patra, Saksham Singhal, Shaohan Huang, Zewen Chi, Li Dong, Furu Wei, Vishrav Chaudhary, Xia Song. 2022. Beyond English-Centric Bitexts for Better Multilingual Language Representation Learning.