School Management Project SQL (Education Analytics)

Datasets Used:

select * from employee_d select * from course_d select * from class_d select * from student_d select * from ratings_d

#Identify the age of the employee when they joined the school within the Employee table. [Hint: Use Employee_Birthdate and Employee_since columns].

select *, (Employee_since - Year(Employee_Birthdate)) as Employee_joined_age from employee_d

#Calculate the total employees belonging to each age/age-group.

select age, count(*) as Employee_total from employee_d group by age order by age asc

#Calculate the min and max of age of employees.

select min(age) as minimum_age, max(age) as maximum_age from employee_d

#Identify the time spent by employees in school grouped by #Their designation

select Employee_designation, sum(age-Employee_joined_age) as Time_spend from (select *, (Employee_since - Year(Employee_Birthdate)) as Employee_joined_age from employee_d) t1 group by Employee designation

#Calculate following feedback statistics: #Total number of feedbacks for an employee on employee id

select a.Employee_Id, count(b.Rating) as Total_feedback from employee_d_a a join ratings_d b on a.Employee_Id = b.Employee_Id group by a.Employee_Id order by Total_feedback desc

#Average rating of an employee having at least 3 feedbacks.

```
select a.Employee_Id, avg(b.rating) as Average_ratings
from employee_d a
join ratings_d b
on a.Employee_Id = b.Employee_Id
    join (select count(Rating) as Total_feedback , Employee_Id
        from ratings_d
        group by Employee_Id) c
    on b.Employee_Id = c.Employee_Id
where c.Total_feedback >= 3
group by a.Employee_Id
order by Average_ratings desc
```


#Identify the total number of students by #Class_Id

```
select Class_Id, count(Student_Id) as Total_students from student_d group by Class_Id
```


#Class_Id and Student_Class

select Class_Id, Student_Class, count(Student_Id) as Total_students from student_d group by Class_Id, Student_Class

#Total number of employees by Employee designation

select Employee_designation, count(*) as Total_Employees from employee_d group by Employee_designation

#Total number of students by each city

select Student_City, count(*) as Total_students from student_d group by Student_City

#Class 8A student from Gurgaon has been a stellar performer whole year. Get the name of the student.

select Student_Id, Student_Name
from student_d
where Student_City = 'Gurgaon' and (Class_Id = 8 and Student_Class = 'A')

#Class 9A and 10B students from Delhi are fantastic musicians and just gave an outstanding performance in a national level event. Get the name of the students.

#(Try to solve this query using only AND, OR operation as well. Try to explain where it could fail by applying IN operation)

select Student_Id, Student_Name from student_d where Student_City = 'Delhi' and ((Class_Id = 9 and Student_Class = 'A') or (Class_Id = 10 and Student_Class = 'B'))

#Professor from Gurgaon who are with us since 2006 and 2020 has been a fantastic duo to carry out the science projects

#on state level with school students and got prize from state CM. Get the name of professors.

select Employee_Id, Employee_Name, Employee_since from employee_d where Employee_City = 'Gurgaon' and (Employee_since = 2006 or Employee_since = 2020)

#School management wants to identify all the professor names and their lds that are not mapped with any courses as of now.

#Also, identify professor info who are currently mapped to a course. [Hint: Use DISTINCT with JOINs and IS NULL in WHERE for matching up null values]

select DISTINCT a.Employee_Id, a.Employee_Name, b.Course_Paper from employee_d a left join course_d b on a.Employee_Id = b.Professor_Id where b.Course_Paper is NULL

#Get the total professors that are currently a class teacher.

```
select count(*)
from
(select a.Employee_Id, b.ClassTeacher, b.Class_Name
from employee_d a
left join class_d b
on a.Employee_Id = b.ClassTeacher
where a.Employee_Id = b.ClassTeacher) t1
```

3

#Get the id and name of professors who are currently a class teacher.

select a.Employee_Id, a.Employee_Name, b.ClassTeacher, b.Class_Name from employee_d a left join class_d b on a.Employee_Id = b.ClassTeacher where a.Employee_Id = b.ClassTeacher

#Find the total Assignments and paper by each class teacher in a class.

select a.Employee_Id, a.Employee_Name, sum(c.Course_Assignments) as
Total_course_assignment, sum(Course_Paper) as Total_course_paper
from employee_d a
join class_d b
on a.Employee_Id = b.ClassTeacher
join course_d c
on c.Professor_Id = b.ClassTeacher
group by a.Employee_Id, a.Employee_Name

#School management wants to know the employees having the birth date on the same day to plan for the leaves they provide to employees.

#Please check which of the 2 employees in employee table have birth date on the same day. [Hint: Use Self JOIN]

select a.Employee_Id, b.Employee_Name, a.Employee_Birthdate, b.Employee_Birthdate from employee_d a join employee_d b on a.Employee_Id = b.Employee_Id where a.Employee Birthdate = b.Employee Birthdate

#Get the TOP 2 employees name and their ratings who got the best overall ratings from students.

```
select a.Employee_Id, avg(b.rating) as Average_ratings
from employee_d a
join ratings_d b
on a.Employee_Id = b.Employee_Id
join (select count(Rating) as Total_feedback, Employee_Id
from ratings_d
group by Employee_Id) c
on b.Employee_Id = c.Employee_Id
where c.Total_feedback >= 3
group by a.Employee_Id
order by Average_ratings desc
limit 2
```

Employee_Id	Average_ratings	
9	5	
19	4.33	
2	4	
21	3.75	
12	3.67	

#Get the professors that aren't involved in any courses as of now.

select DISTINCT a.Employee_Id, a.Employee_Name, b.Course_Paper from employee_d a left join course_d b on a.Employee_Id = b.Professor_Id where b.Course_Paper is NULL

#Professors are busy with assignments and papers they have given to students and may not have the time to attend counselling.

#Get the employee name where the average paper >= 3 and assignments >20.

```
select a.Employee_Name, b.Course_Assignments, b.Course_Paper from employee_d a join course_d b on a.Employee_Id = b.Professor_Id join (select avg(Course_Paper) as Average_course_paper, Professor_Id from course_d group by Professor_Id) c on b.Professor_Id = c.Professor_Id where c.Average_course_paper >= 3 and b.Course_Assignments > 20
```

Course Assignments

24

#Get the employees that are rated by students. [Solve below 2 with IN and EXIST both operators]

#Get the employees with more than 2 students ratings. [Note: Identify number of students]

3

```
select Employee_Id, Employee_Name
from
(select count(b.Student_Id) as voted_students, a.Employee_Id, a.Employee_Name
from employee_d a
join ratings_d b
on a.Employee_Id = b.Employee_Id
group by a.Employee_Id) t1
where voted_students > 2
```

#Alternate coding_invaders

Employee Name V

Amrinder

19

Amrinder

#Get the employees with an average rating of more than 4 and are rated by more than 3 students.