Department of Mathematics Indian Institute of Technology Patna MA - 201:Autumn Semester: 2013-14

Assignment-3: Complex Analysis

1. Prove that the following functions are nowhere differentiable:
(i) $f(z) = z $ (ii) $f(z) = Re(z)$ (iii) $f(z) = Im(z)$ (iv) $f(z) = \bar{z}$ (v) $f(z) = z - \bar{z}$ (vi) $f(z) = 2x + ixy^2$ (vii) $f(z) = e^x e^{-iy}$
(v) $f(z) = z - \bar{z}$ (vi) $f(z) = 2x + ixy^2$ (vii) $f(z) = e^x e^{-iy}$
2. Prove that in each of the following cases U is a harmonic function. Further find a function V such
that $f(z) = U + Vi$ is analytic.
(i) $U = e^x(x\cos y - y\sin y)$, (ii) $U = x^3 - 3xy^2 - 3x^2 - 3y^2 + 1$,
(i) $U = e^x(x\cos y - y\sin y),$ (ii) $U = x^3 - 3xy^2 - 3x^2 - 3y^2 + 1,$ (iii) $U = \sin x \cosh y + 2\cos x \sinh y + x^2 - y^2 + 4xy,$ (iv) $U = 4xy - x^3 + 3xy^2,$
3. Prove that an analytic function with constant modulus is constant.
4. Show that if $u(x,y)$ and $v(x,y)$ are harmonic functions in a domain D then the function $f(z) =$
$(u_y - v_x) + i(u_x + v_y)$ is analytic in D .
5. Verify the validity of the statement: "If the function $f(z) = u(x,y) + iv(x,y)$ is analytic at a point z,
then necessarily the function $f(z) = v(x,y) - iu(x,y)$ is analytic at z."
6. Prove that if $f'(z) = 0$ everywhere in a domain D then $f(z)$ must be constant throughout D.
7. Use Cauchy-Riemann equations to check whether or not the function $f(z) = e^{\bar{z}}$ is analytic anywhere.
8. Verify the following inequalities.
(i) $ e^{2z+i} + e^{iz^2} \le e^{2x} + e^{-2xy}$ (ii) $ e^{z^2} \le e^{ z ^2}$ (iii) $ e^{-2z} < 1$ iff $Re(z) > 0$
9. Find all values of z such that:
(i) $e^z = 2$ (ii) $e^z = 1 + \sqrt{3} i$ (iii) $e^{2z-1} = 1$ (iv) $e^z = -4$ (v) $e^z = \sqrt{3} - i$
10.
(i) Show that $\exp(iz) = \exp(i\overline{z})$ if and only if $z = n\pi$, $(n = 0, \pm 1, \pm 2,)$
(ii) e^z is real then what restriction is placed on z .
(iii) e^z is imaginary then what restriction is placed on z.
11. Show that:
(i) $\overline{\sin(z)} = \sin \bar{z}$ (ii) $\overline{\cos(z)} = \cos \bar{z}$ (iii) $\overline{\cos(iz)} = \cos i\bar{z}$
(iv) $\sin(iz) = \sin i\bar{z} \text{ iff } z = n\pi i, \ (n = 0, \pm 1, \pm 2,)$
(v) $\sin \bar{z}$ and $\cos \bar{z}$ is nowhere analytic
12. Find the roots of the following equations:
(i) $\sin z = \cosh 4$ (ii) $\cos z = 2$ (iii) $\sin z = i \sinh 1$ (iv) $\sinh z = -1$ (v) $\sinh z = e^z$
$ (vi) \cosh z = -2 (vii) \sinh z = i $
13. Show that: (i) $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$ (ii) $\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2$
(iii) $ \sin z \ge \sin x $ and $ \cos z \ge \cos x $ (iv) $ \sinh y \le \sin z \le \cosh y$
$ \sin z \ge \sin x \arcsin \cos z \ge \cos x \qquad (\text{iv}) \sin y \le \sin z \le \cos y \qquad (\text{vi}) \sinh x \le \cosh x \le \cos x $
(vi) $\cosh^2 z - \sinh^2 z = 1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(i) $Log(1+i)^2 = 2Log(1+i)$
(ii) $Log(-1+i)^2 \neq 2Log(-1+i)$
(iii) $log(i^2) = 2log(i)$ when $log(z) = ln(r) + i\theta(r > 0, \frac{\pi}{4} < \theta < \frac{9\pi}{4})$ (iv) $log(i^2) \neq 2log(i)$ when $log(z) = ln(r) + i\theta(r > 0, \frac{3\pi}{4} < \theta < \frac{11\pi}{4})$
(v) the set of values for $log(i^{1/2})$ and $(1/2)log(i)$ are same also find that common values
(vi) if $Re(z_1) > 0$ and $Re(z_2) > 0$ then $Log(z_1 z_2) = Log(z_1) + Log(z_2)$
15. Find:
(i) the values of $(1+i)^i$ (ii) the values of $(-1)^{1/\pi}$
(iii) principal value of i^i (iv) principal value of $[(e/2)(-1-\sqrt{3}\ i)]^{3\pi i}$
(v) all z for which $Log(z) = 1 - (\pi/4)i$ (vi) all z for which $e^z = -ie$
16. Derive formula for $\sin^{-1} z$, $\cos^{-1} z$, $\tan^{-1} z$, $\sinh^{-1} z$, $\cosh^{-1} z$, $\tanh^{-1} z$.
17. Find values of $\tan^{-1}(2i)$, $\cosh^{-1}(-1)$, $\tanh^{-1}0$.
18. Solve the equations $\sin z = 2$ and $\cos z = \sqrt{2}$

18. Solve the equations $\sin z = 2$ and $\cos z = \sqrt{2}$.