

SAIRAM DIGITAL RESOURCES

YEAR

MA8351

DISCRETE MATHEMATICS (COMMON TO CSE & IT)

ALGEBRAIC STRUCTURES

4.1 SEMIGROUPS AND MONOIDS

SCIENCE & HUMANITIES

ALGEBRAIC STRUCTURE:

A non- empty set G together with one or more n-ary operations say " * " (binary) is called an algebraic structure. We denote it by [G,*].

Note: $+, -, \cdot, \times, *, \cup, \cap$, etc. are some of binary operations.

Properties of Binary operations:

- Closure Property: $a * b \in G$, for all $a, b \in G$.
- 2. Commutativity: a * b = b * a, for all $a, b \in G$.
- 3. Associativity: (a * b) * c = a * (b * c), for all $a, b, c \in G$.

4. Identity element:

a * e = e * a = a, for all $a \in G$ 'e' is called the identity element.

5. Inverse element:

If a * b = b * a = e(identity), then 'b' is called the inverse of 'a' and it is denoted by $b = a^{-1}$.

6. Distributive Properties:

$$a*(b\cdot c)=(a*b).(a*c)$$
 [Left distributive law]
 $(b\cdot c)*a=(b*a)\cdot(c*a)$ [Right distributive law]

7. Cancellation Properties:

$$a*b = a*c \implies b = c$$
 [left cancellation law]
 $b*a = c*a \implies b = c$ [Right cancellation law]

Examples: $(Z, +), (Z, -), (Z, \times), (R, +)$ and (R, \times) is an algebraic system.

Semigroup:

If a non-empty set S together with the binary operation '*' satisfying the following two properties:

(i) Closure Property:

$$a * b \in S$$
; for all $a, b \in S$

(i) Associative Property:

$$(a*b)*c = a*(b*c); a,b,c \in S$$

Then (S,*) is called a semigroup.

Examples: (i) Let $N = \{1,2,3,.....\}$ be the set of natural numbers, then (N,+) and (N,\times) are semigroups, since both + and \times satisfies closure and associative property.

- (ii) (Z, +) and (Z, \times) is a semigroup since it satisfies both the properties of semigroup.
- (ii) Let $E = \{2,4,6,8,....\}$ be the set of all even numbers, then (E,+) and (E,\times) is a semigroup since it satisfies both the properties of semigroup.

Monoid:

A semigroup (S,*) with an identity element with respect to '*' is called Monoid.

A non-empty set 'M' with respect to * is said to be a monoid, if * satisfies the following properties:

For $a, b, c \in M$

(i) Closure Property:

$$a * b \in S$$
; for all $a, b \in S$

(i) Associative Property:

$$(a*b)*c = a*(b*c)$$

(i) Identity Property:

$$\forall a \in M, \exists e \in M \text{ such that } a * e = e * a = a;$$

Examples: (i) Let $N = \{1,2,3,....\}$, then (N,\times) is a monoid since it satisfies closure, associative property and 1 is the identity element.

(ii) (Z, +) and (Z, \times) is a monoid since it satisfies both Closure and Associative property and '0' and '1' is the identity element under addition and multiplication.

Note: (i) (N, +) is not a monoid since the identity element '0' does not belongs to N.

(ii) Let $E = \{2,4,6,8,....\}$ be the set of all even numbers, then (E,+) and (E,\times) is not a monoid since the identity element '0' and '1' under addition and multiplication does not belongs to E.

Problem 1: Show that the set N = [0,1,2,....] is a semigroup under the operations $x * y = \max\{x,y\}$. Is it monoid?

Proof: (1) Closure Property:

$$x * y = \max\{x, y\} = \begin{cases} x; & \text{if } x > y \\ y; & \text{if } x < y \end{cases}$$
$$\Rightarrow \forall x, y \in N \Rightarrow x * y \in N$$

Since $\max\{x, y\}$ is in N whenever $x, y \in N$

∴ ' * ' is closed.

(2) Associative Property:

$$x * (y * z) = \max\{x, (y * z)\} = \max\{x, y, z\}$$
(A)

$$(x * y) * z = \max\{(x * y), z\} = \max\{x, y, z\}$$
(B)

From (A) and (B), we get

$$(x*y)*z = x*(y*z)$$

- ∴ '*' satisfies Associative property.
- \therefore (*N*,*) is a semigroup.

(3) Identity element:

Since $0 \in N$, satisfies

$$x * 0 = \max\{x, 0\} = x = \max\{0, x\} = 0 * x$$

The identity element is '0'.

 \therefore N is a monoid.

Problem 2: Let X^X be the set of all functions $f: X \to X$. For $f, g, h \in X^X$, define the composition of f and g by $(f \circ g)(x) = f(g(x))$. Show that (X^X, \circ) is a semigroup. Is it a monoid?

Proof: (1) Associative property:

Let $f, g, h \in X^X$. Then we have

$$((f \circ g) \circ h)(x) = (f \circ g)(h(x)) = f(g(h(x))) = f((g \circ h)x) = (f \circ (g \circ h)(x))$$

$$\therefore (f \circ g) \circ h = f \circ (g \circ h)$$

 \therefore $(X^X, 0)$ is a semigroup.

(2) Identity element:

The identity map $i \in X^X$ defined by i(x) = x for all $x \in X$ satisfies

$$(f \circ i)(x) = f(i(x)) = f(x) = i(f(x)) = (i \circ f)(x)$$

$$\therefore f \circ i = i \circ f$$

 \therefore " i " is the identity element. Hence, (X^X, \circ) is a monoid.

Homomorphism of semigroups:

Let (S,*) and (T, \cdot) be two semi groups. A mapping $f: S \to T$ is called homomorphism if $f(a*b) = f(a) \cdot f(b); \ \forall \ a,b \in S$

Example: Consider the semigroups (N, +) and $(Z_m, +_m)$. Define $f: N \to Z_m$ by

$$f(a) = [a]$$
 then, $f(a + b) = [a + b] = [a] +_m [b] = f(a) +_m f(b)$

 \therefore f is a semigroup homomorphism.

Monoid homomorphism:

Let (M,*) be a monoid with identity e and (T, \cdot) be a monoid with identity e'. A mapping $f: M \to T$ is called a homomorphism of monoids if $f(a*b) = f(a) \cdot f(b)$;

 $\forall a, b \in M \text{ and } f(e) = e'.$

Problem 1: Let (S,*) be a semigroup and S^s be the set of all functions from S to S. Then (S^s, \cdot) is a semigroup under composition of functions. Prove that there is a homomorphism $g: S \to S^s$.

Proof: For each $a \in S$, we shall define a function,

$$f_a: S \to S \text{ by } f_a(x) = a * x ; \forall x \in S$$

$$f_a \in S^s$$

Define $g: S \to S^s$ by $g(a) = f_a$; $\forall a \in S$

Let $a, b \in S$ be any two elements, then $a * b \in S$

$$\therefore g(a*b) = f_{a*b}$$

But for any $x \in S$, $f_{a*b}(x) = (a*b)*x = a*(b*x) = f_a(b*x) = f_a(f_b(x)) = (f_a \cdot f_b)(x)$

$$\therefore f_{a*b} = f_a \cdot f_b = g(a) \cdot g(b)$$

 \therefore g is a homomorphism of (S,*) into (S^s, \cdot)

Problem 2: Let $S = N \times N$, the set of ordered pairs of positive integers with the operation * defined by (a,b)*(c,d) = (ad+bc,bd) and if $f:(S,*) \to (Q,+)$ is defined by $f(a,b) = \frac{a}{b}$, then show that 'f' is a semi-group homomorphism.

Proof: We have the semigroups (S, *) and (Q, +)

Given $f:(S, *) \to (Q, +)$ is defined by $f(a, b) = \frac{a}{b}$

Let $x, y \in S$ be any two elements, then x = (a, b), y = (c, d) for integers a, b, c, d.

Now x * y = (a, b) * (c, d) = (ad + bc, bd)

$$f(x*y) = f(ad+bc,bd) = \frac{ad+bc}{bd} = \frac{a}{b} + \frac{c}{d} = f(a,b) + f(c,d)$$
$$f(x*y) = f(x) + f(y)$$

 \therefore *f* is semigroup homomorphism.

Problem 3: Let $S = Z^+ \times Z^+, Z^+$ being set of positive integer and * be an operation on S given by (a,b)*(c,d) = (a+c,b+d), $\forall a,b,c,d \in Z^+$. Show that S is semigroup. Also show that f is a homomorphism, if $f:(S,*) \to (Z,+)$ defined by f(a,b) = a-b.

Proof: Let x, y, z be the ordered pairs (a, b), (c, d) and (e, f) respectively in $Z^+ \times Z^+$.

Then
$$(xy)z = (x * y) * z = [(a,b) * (c,d)] * (e,f) = [(a+c,b+d) * (e,f)]$$

= $[(a+c) + e,(b+d) + f]$
 $(xy)z = [a+c+e,b+d+f]$ (A)

x(yz) = x * (y * z) = (a, b) * [(c, d) * (e, f)] = (a, b) * [c + e, d + f] = [a + (c + e), b + (d + f)]

$$(xy)z = [a + c + e, b + d + f]$$
(B)

From (A) and (B), we get,

$$(xy)z = x(yz)$$

∴ '*' is Associative.

Obviously * satisfies closure property.

 \therefore S is a semigroup.

Claim:
$$f: (S,*) \to (Z,+)$$
 by $f(a,b) = a - b$ is a homomorphism. $\forall x,y \in X$

$$f(x*y) = f[(a,b)*(c,d)] = f[a+c,b+d] = (a+c) - (b+d)$$

$$= (a-b) + (c-d)$$

$$= f(a,b) + f(c,d) = f(x) + f(y)$$

$$f(x * y) = f(x) + f(y)$$

 \therefore f is a homomorphism

