Breaking a Gaussian Graphical Model

Supervisors: Dr Jack Jewson, Dr Ruben Loaiza-Maya

Mashaal Chowdhry Yusufi

Notation for the Problem I

Denote *i*th data vector as

$$y_i = egin{pmatrix} y_{i1} \ \cdots \ \cdots \ y_{ip} \end{pmatrix}$$

where the i th observation of the j th variable is y_{ij} and each Y_{ij} follows a multivariate normal distribution:

$$Y_{ij} \sim \mathcal{N}_p(\mu,\Omega^{-1})$$

where $\Sigma=\Omega^{-1}$

Notation for the Problem II

Complete information from the data is defined as:

$$Y=\left(egin{array}{c} y_1' \ dots \ y_n' \end{array}
ight)$$

Likelihood Function

$$L(y_i|\Omega) = \prod_{i=1}^n \pi(y_i|\mu=0,\Omega)$$

$$L(y_i|\Omega) = rac{\det(\Omega)^{n/2}}{(2\pi)^{n/2}} imes \expigg(-\sum_{i=1}^n rac{y_i^T\Omega y_i}{2}igg)$$

Ωij Introduction

$$X_i \perp \!\!\! \perp X_j \mid X_{V\setminus \{i,j\}}$$

 $\Omega_{ij} = \mathbf{0}$

x_i: Ice Cream Sales

y_i: Temperature

x_i: Number of Boats

Reasons for Bayesian Approach to Precision Matrix Estimation

- Focusing on dependence of pairs of variables conditional on the remaining variables
- Control weight given to sparsity in Precision Matrix via prior
- Selects best posterior model i.e model with highest posterior probability via a Sampling Algorithm

Precision Matrix Prior

$$\pi(\Omega) \propto \prod_{j=1}^p \pi(\omega_{jj}) imes \prod_{j < k} \pi(\omega_{jk})$$

subject to $1_{\Omega\succ 0}$

Off-Diagonals Prior: Spike and Slab

Given v $\sim Bernoulli(w)$: if v=1, then $\omega_{jk}\sim N(0,s^2)$ if v=0, then $\omega_{jk}=0$ $\pi(\omega_{jk})=(1-w)\delta_0+wN(\omega_{jk},0,s^2)$

Diagonals Prior: Exponential Distribution

Posterior Distribution

posterior ∝ Prior × Likelihood

$$\pi(\Omega|Y) \propto L(Y|\Omega) imes \pi(\Omega)$$

Particularly interested in $\pi(\omega_{jk}=0|Y)$

Results I: Assumptions

MCMC Gibbs Sampling Algorithm

MCMC Specifications: p=3, n=1000, iterations=2000, burn-in=1000

$$Y_{ij} \sim \mathcal{N}_p(\mu,\Omega)$$

$$\mu = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}, \quad \Omega = \Sigma^{-1} = egin{bmatrix} 1 & 0.5 & 0 \ 0.5 & 1 & 0.5 \ 0 & 0.5 & 1 \end{bmatrix}$$

Results II: Posterior Edge Inclusion Probabilities of Offdiagonals with Gaussian Data

w_{slab}	ω_{12}	ω_{13}	ω_{23}
0.2	1	0.008	1
0.5	1	0.049	1
0.8	1	0.124	1

Results III: Posterior Histogram of Off-Diagonals with Gaussian Data (slab weight = 0.2)

Caveats about Simulation Results

- However, much real data is not Normally Distributed
- What if the data has Student-t margins?

Introducing a Gaussian Copula

i = 1...n

$$Y_{ij} \sim \mathcal{N}_p(\mu,\Omega^{-1})$$

which corresponds to the i-th observation and j-th variable transform the observed data into a uniform distribution: $U_{ij}=\Phi(Y_{ij})$ for j=1...p and

$$U_{ij} \sim Uniform(0,1)$$

Transform the uniforms into Student-t margins using the quantile function of student-t at u $Z_{ij} = T_
u^{-1}(U_{ij})$

Construct a joint distribution that is Gaussian with Student-t margins: $C(U_1 \dots U_p)$

Results IV: Posterior Graph Inclusion Probabilities for Student-t(df = 5)

Table 1: Gaussian {#tbl-second}

(a) t_5	(b) Gaussian
-----------	--------------

w_{slab}	ω_{12}	ω_{13}	ω_{23}
0.2	1	0.009	1
0.5	1	0.037	1
0.8	1	0.135	1

w_{slab}	ω_{12}	ω_{13}	ω_{23}
0.2	1	0.008	1
0.5	1	0.049	1
0.8	1	0.124	1

Results V: Graph Inclusion Probabilities for Student-t(df = 3) vs Gaussian

Tab	le	2:	t_3
-----	----	----	-------

w_{slab}	ω_{12}	ω_{13}	ω_{23}
0.2	1	0.506	0.577
0.5	1	0.610	0.622
0.8	1	0.760	0.729

Table 3: Gaussian

w_{slab}	ω_{12}	ω_{13}	ω_{23}
0.2	1	0.008	1
0.5	1	0.049	1
0.8	1	0.124	1

Results VI: Posterior Histograms for Student-t(df = 5) slab weight = 0.2

Omega_33

Results VII: Posterior Histograms for Student-t(df = 3) slab weight = 0.2

Conclusion and Goal

Gaussian Graphical Model breaks when data is not Gaussian Use a Gaussian Copula to create a more flexible model