

Book Website:

https://github.com/Mathemodica/ ModelicaPowerSystemBook

Copyright © 2021 Atiyah Elsheikh (Mathemodica.com)

This book is provided under the terms of CC BY-NC-SA 4.0 license, cf.

https://creativecommons.org/licenses/by-nc-sa/4.0/

Basically, you are free to:

- 1. **Share**, copy and redistribute the material in any medium or format
- 2. **Adapt**, remix, transform, and build upon the material

under the terms:

- 1. **Attribution**: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- 2. **NonCommercial**: You may not use the material for commercial purposes.
- 3. **ShareAlike**: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

First Edition (V1.0) to appear 1st of Sep. 2021

Pre-order a free (electronic) edition 1.0 @

https://gum.co/mathemodica-powsys-free

Sponsor the maintenance and progress by the first author through

I. Pre-ordering the book for as-much-as-you-think-this-book-deserves @

https://gum.co/mathemodica-powsys

II. Get a continuous access to the actual version: through sponsorship

A. Single-time sponsorship @

https://www.paypal.com/paypalme/mathemodica

B. Periodic sponsorship @

https://gum.co/mathemodica-powsys-sponsorship https://github.com/sponsors/AtiyahElsheikh

Subscripe to newsletters and posts from Mathemodica.com @

https://gumroad.com/mathemodica

About

This is a comprehensive but a concise and educational (e-)book aiming at advertising Modelica-based technologies particularly useful for power system modeling applications. We hope that this book is useful not only for power system modelers desiring to get a quick idea about the benefits of employing Modelica but also for those Modelica modelers desiring a starting guide into the world of Power System.

Involvement & Conditions

If you are clearly involved in power-system related activities using the Modelica language, you are highly encouraged to actively improve the state of this book whenever and/or wherever possible. For this reason, this book is available on the platform Overleaf which allows collaborative writing. Your useful scientific involvement, in whichever form, shall be acknowledged, unless explicitly communicated that this is not desired.

However, it is important to note that, any suggested enhancement should be valuable, concise, accurate and elegant. The authors have the right to reject or to ask for specific corrections or improvements to any suggested enhancement.

Overleaf.com

In case you don't have an account on overleaf.com, to this book benefit's consider creating an account using the following referral link:

https://www.overleaf.com?r=e7d83309&rm=d&rs=b

Contact

Consider contacting atiyah.elsheikh -at- mathemodica.com if you would like to:

- contribute to the text: Consider providing a brief summary in advance of the purpose of your desired involvement
- provide suggestions or pdf-annotated review, suggested corrections, suggested text, etc.
- provide a general feedback
- provide suggested topics or materials that this book should cover
- have access to the latex sources for whatever purpose you need, e.g. project proposals, user guides, etc.

About Mathemodica.com

By the time of relasing version 0.5 of the book (July 2021), Mathemodica.com is currently a virtual organization. It currently reflects the main hobby-based (but occoasionally professional) activites of the first author ususally on his free-time.

One of the idea behind Mathemodica.com, which is still evolving and subject to continuous improvement, is to provide a transparent, collaborative and independent platform for those who would like to sponsor their own ideas and works concerning Modelica-like technologies (libraries, tools, educational e-books, tutorials, etc.).

It is hoped that the resulting products to be open-source and free. If you'd like to become a part of this and contribute to the evolve of Mathemodica.com consider viewing:

http://mathemodica.com/modelicans/

Sponsorship

Sponsorship (cf. to the quick urls given at the beginning of the book) is appreciated as an aid and accelerator for

- financing the continuation of maintaining, actualizing and progressing this book
- executing similar initiatives for establishing educational contents (tutorials, books and libraries)
- among other similar activities by members of Mathemodica.com, cf.

http://mathemodica.com/projects

These activities are in conformance with the spirit of open science initiative.

Acknowledgment

We are acknowledging our former employer, Austrian Institute of Technology GmbH. This book has started initially as a technical report during our roles there. The early version was still in a primitive state until it was recently decided to re-write it as a comprehensive book.

Moreover, couple of capitals of this book has been written by others. Without their contribution, the book would be definitely less valuable. Thus, we'd like to thank (in alphabetical order of family names):

- Prof. Andrea Benigni, RWTH Aachen and Research Center Jülich, with his great help, this book was further tuned for Electrical Engineers. Particularly, major parts of Chapter 2 and Section 10.1 were originally written by him.
- Assoc. Prof. Omar Faruque, Florida State University, for presenting this initiative at a PES general meeting
- Prof. Antonello Monti, RWTH Aachen, being the initiator of the idea of having a comprehensive report that gathers all useful aspects Modelica can provide for power system modeling applications. The first chapter was originally written by him.

We believe that online Modelica educational materials need to be gathered together and since the idea of having a freely accessible book that is meanwhile sponsored (or to be sponsored) by any one on the basis of pay-as-much-as-you-think-this-book-deserve is inspired by the author of the book "Modelica by Examples", thus, special appreciation goes to Dr. Michael Tiller, for:

• his initial agreement in hosting or linking a possible future html-based version of this book to the platform

https://modelica.university

• his technical tips, recommendations and his willing to help us (despite apparently being a very busy person with his own duties)

We hope to have enough energy in near future to learn the technology needed to bring this book to the platform modelica.university and to establish url-links to adequate materials in his book whenever more in-depth clarification of Modelica syntax is needed. In that way, the focus of this book can remain on the applications side of power systems rather than attempting to illustrate the tiniest details of the Modelica language ¹

We also would like to thank

¹By the release version 0.5, I still did not invest enough time in this issue. Moreover, I am not so sure about a good way to convert and synchrnoize latex code to html. If anyone with proper technical knowledge would like to get engaged he/she is thankfully encouraged to contact us

• Dr. Mathias Legrand for allowing to employ this wonderful latex template accessible under

https://www.latextemplates.com/template/the-legrand-orange-book

The pictures in this book come from:

- Dietmar Rabich / Wikimedia Commons / "Dülmen, Rorup, Windenergieanlage 2015 – 5972" / CC BY-SA 4.0
- Dietmar Rabich / Wikimedia Commons / "Schöppingen, Schöppinger Berg 2015 8513" / CC BY-SA 4.0
- Peter Haas / Wikimedia Commons / Windpark Höflein, Niederösterreich / CC BY-SA 3.0
- J. E. Wolters / Wikimedia Commons / Wasserkraftwerk and der Isar bei Niederaichbach / CC BY-SA 4.0
- Kreuzschnabel / Wikimedia Commons / Das Kraftwerk Heilbronn / CC BY-SA 3.0
- Dmitry Makeev / Wikimedia Commons / Stung Hav Coal Power Plant / CC BY-SA 4.0

Anyone who made his own nice pictures and would like to share it here is encouraged to contact us.

	Introduction		
1	Motivation and Outline	15	
2	Modeling Challenges	19	
2.1	Terminologies of power systems	19	
2.2	Traditional power system simulation studies	20	
2.2.1	Load-flow studies	20	
2.2.2	Transient stability simulation		
2.2.3	Electromagnetic / Electromechanical transient stability simulation	21	
2.3	Modern aspects in power system modeling applications	22	
2.3.1	Monitoring and control	22	
2.3.2	Complexity		
2.3.3	Variety of time scales		
2.3.4	Stochastic effects		
2.3.5	Communication aspects		
2.3.6	Design process	23	
3	The Rise of Modelica	25	
3.1	Pre-era Modelica	25	
3.1.1	Block diagrams	25	
3.1.2	Bond graphs	26	

3.2	The evolve of the Modelica language	27	
3.2.1	In the beginning it was Dymola	. 27	
3.2.2	Hardware technologies		
3.2.3	·		
3.2.4	The differential index problem		
3.2.5	And then Modelica came		
3.3	Advantages of the Modelica language	29	
Ш	Designing a Modelica library		
4	Basic concepts	. 33	
4.1	Equation identifiers	33	
4.2	Physical units	34	
4.3	Packages	35	
4.4	Organization of packages and subpackages	37	
4.5	Connections	38	
4.6	Model components	40	
4.7	A simple electrical network	42	
5	Object-Oriented features	. 45	
5.1	Abstract models and inheritance	45	
5.2	Arbitrary phase systems by an abstract packages	46	
5.3	Function interfaces	47	
5.4	Implementation of function interfaces	49	
5.5	Generic connectors	51	
5.6	Generic components	52	
6	Examples	. 55	
6.1	A power flow study	55	
6.2	Power generation and consumption	58	
111	Actual Aspects		
- 111	Acidal Aspects		
7	Current state of Modelica	. 63	
7.1	Language specification	63	
7.2	The Modelica standard library	64	
7.3	The functional mockup interface	66	
7.4	Projects	68	
7.5	Modelica simulation environments	69	

7.6	Conferences and user groups	70
7.7	Modelica association membership	70
7.8	Modelica newsletters	71
7.9	Books	71
7.10	Education efforts	72
8	Relevant Modelica Libraries	75
8.1	Open-source power systems libraries	75
8.2	Energy in buildings and/or districts open-source libraries	79
8.3	Useful open-source libraries	81
8.4	Commercial libraries	85
IV	Advanced Aspects	
9	Sociability and runtime performance	90
_	Scalability and runtime performance	
9.1	Limitations Translation to an asimple big block of a questions	89
9.1.1 9.1.2	Translation to one single big block of equations	
9.1.3	No exploitation of sparsity patterns	
9.1.4	Insignificant local events cause tremendous computation	
9.2	Active research agenda for improving runtime performance	92
9.2.1	Exploiting sparsity patterns and sparse solvers	
9.2.2	Multi-rate numerical solvers	
9.2.3	Solvers for massive number of state-events	93
10	Summary and Outlook	95
10.1	Advantages of the Modelica language	95
	Object-oriented paradigm	
	Domain-independent multi-physical modeling concepts	
	Advanced methods for efficient runtime simulation	
	Code generation capabilities	
	Various open-source and commercial libraries in power-system (relate	
	domain(s)	97
	Further useful libraries	
	Modelica for power system modeling applications	
10.2	Challenges and future directions	98
A	Bibliography	01
	Bibliography	01

Introduction

1	Motivation and Outline 15
2 2.1 2.2 2.3	Modeling Challenges
3.1 3.2 3.3	The Rise of Modelica