Post-COVID Daten teilen – Ein innovatives Datenökosystem



## Digitalisierung schreitet voran

## Datennutzung hält nicht Schritt











#### Digitalisierung schreitet voran

#### Datennutzung hält nicht Schritt





99% der heutigen Daten digital



80% der Daten nicht verwendet



#### Gemeinsame Datenlandschaft

Bedarf nach Einbindung verschiedenster Akteure und Datenhaltenden

<sup>01</sup> Fortschritt durch Datennutzung - Strategie für mehr und bessere Daten für neue, effektive und zukunftsweisende Datennutzung. Bundesministerium für Digitales und Verkehr, Bundesministerium für Wirtschaft und Klimaschutz, Bundesministerium des Innern und für Heimat, August 2023

<sup>02</sup> Gesundheitsforschungsdaten: gemeinsam erschließen, effizienter forschen. Deutschen Zentren der Gesundheitsforschung (DZG), November 2024

#### **Der Datennexus**

## Unsere Lösung für eine gemeinsame Datenlandschaft









Akute COVID-19 Infektion





























## Einflussfaktoren und Probleme bei der Erforschung von Post-Covid





#### Einflussfaktoren und Probleme bei der Erforschung von Post-Covid





# Evolution: Ständige Änderung des Erregers, >600 Lineages in >40 Clades



#### Behandlung: >50 unterschiedliche Medikamente mit grundlegend unterschiedlichen Wirkansätzen

#### Einflussfaktoren und Probleme bei der Erforschung von Post-Covid





#### Evolution: Ständige Änderung des Erregers, >600 Lineages in >40 Clades



#### Behandlung:

>50 unterschiedliche Medikamente mit grundlegend unterschiedlichen Wirkansätzen

#### Impfung:

Mehr als 180 unterschiedliche Impfstoffe in klinischen Studien



#### Einflussfaktoren und Probleme bei der Erforschung von Post-Covid





#### Evolution: Ständige Änderung des Erregers, >600 Lineages in >40 Clades



Externe Einflussgrößen: Globale Krisen, Pandemiefolgen, soziale Entwicklungen



#### Behandlung:

>50 unterschiedliche Medikamente mit grundlegend unterschiedlichen Wirkansätzen

#### Impfung:

Mehr als 180 unterschiedliche Impfstoffe in klinischen Studien



#### Einflussfaktoren und Probleme bei der Erforschung von Post-Covid





# Evolution: Ständige Änderung des Erregers, >600 Lineages in >40 Clades



Externe Einflussgrößen: Globale Krisen, Pandemiefolgen, soziale Entwicklungen



#### Behandlung:

>50 unterschiedliche Medikamente mit grundlegend unterschiedlichen Wirkansätzen



# Definition & Diagnose: Mangel biologischer Marker, Überlappung mit anderen Krankheitsbildern

#### Impfung:

Mehr als 180 unterschiedliche Impfstoffe in klinischen Studien



#### Einflussfaktoren und Probleme bei der Erforschung von Post-Covid





# Evolution: Ständige Änderung des Erregers, >600 Lineages in >40 Clades



Externe Einflussgrößen: Globale Krisen, Pandemiefolgen, soziale Entwicklungen



# **Behandlung:** >50 unterschiedliche Medikamente mit grundlegend unterschiedlichen



Definition & Diagnose: Mangel biologischer Marker, Überlappung mit anderen Krankheitsbildern

#### Impfung:

Mehr als 180 unterschiedliche Impfstoffe in klinischen Studien

Wirkansätzen





#### Risikofaktoren: Internistische und neuropsychiatrische Vorerkrankungen, genetische Prädisposition

#### Daten als Schlüssel zum Erfolg



Gesetzliche Register

Details zu Vor- und Folgeerkrankungen

#### Daten als Schlüssel zum Erfolg



Gesetzliche Register

Details zu Vor- und Folgeerkrankungen Krankheitskohorten

Gesundheitsverlauf, Bioproben, sozioök. Status, Bildung

#### Daten als Schlüssel zum Erfolg



Gesetzliche Register

Details zu Vor- und Folgeerkrankungen Krankheitskohorten

Gesundheitsverlauf, Bioproben, sozioök. Status, Bildung Melderegister

Bewegungsdaten, Überleben

#### Daten als Schlüssel zum Erfolg



Gesetzliche Register

Details zu Vor- und Folgeerkrankungen Krankheitskohorten

Gesundheitsverlauf, Bioproben, sozioök. Status, Bildung Melderegister

Bewegungsdaten, Überleben Rentenversicherung

Erwerbsfähigkeit, Erwerbsbiographie, Reha

#### Daten als Schlüssel zum Erfolg



Gesetzliche Register

Details zu Vor- und Folgeerkrankungen Krankheitskohorten

Gesundheitsverlauf, Bioproben, sozioök. Status, Bildung Melderegister

Bewegungsdaten, Überleben Rentenversicherung

Erwerbsfähigkeit, Erwerbsbiographie, Reha

Populationskohorten

#### Daten als Schlüssel zum Erfolg



Gesetzliche Register

Details zu Vor- und Folgeerkrankungen Krankheitskohorten

Gesundheitsverlauf, Bioproben, sozioök. Status, Bildung Melderegister

Bewegungsdaten, Überleben Rentenversicherung

Erwerbsfähigkeit, Erwerbsbiographie, Reha

Mobile Health

Daten zu Aktivität und körperlicher Belastbarkeit Populationskohorten

#### Daten als Schlüssel zum Erfolg



Gesetzliche Register

Details zu Vor- und Folgeerkrankungen Krankheitskohorten

Gesundheitsverlauf, Bioproben, sozioök. Status, Bildung Melderegister

Bewegungsdaten, Überleben Rentenversicherung

Erwerbsfähigkeit, Erwerbsbiographie, Reha

Krankenkassen

Arbeitsfähigkeit, Arztkontakte, frühere Diagnosen Mobile Health

Daten zu Aktivität und körperlicher Belastbarkeit Populationskohorten

#### Daten als Schlüssel zum Erfolg



Gesetzliche Register

Details zu Vor- und Folgeerkrankungen Krankheitskohorten

Gesundheitsverlauf, Bioproben, sozioök. Status, Bildung Melderegister

Bewegungsdaten, Überleben Rentenversicherung

Erwerbsfähigkeit, Erwerbsbiographie, Reha

Elektronische Patientenakte

Labor, Komorbiditäten, Medikation, Behandlungen Krankenkassen

Arbeitsfähigkeit, Arztkontakte, frühere Diagnosen Mobile Health

Daten zu Aktivität und körperlicher Belastbarkeit Populationskohorten

#### Daten als Schlüssel zum Erfolg



Gesetzliche Register

Details zu Vor- und Folgeerkrankungen

Elektronische

Patientenakte

Labor, Komorbiditäten, Medikation, Behandlungen Krankheitskohorten

Gesundheitsverlauf, Bioproben, sozioök. Status, Bildung Melderegister

Bewegungsdaten, Überleben Rentenversicherung

Erwerbsfähigkeit, Erwerbsbiographie, Reha

Krankenkassen

Arbeitsfähigkeit, Arztkontakte, frühere Diagnosen Mobile Health

Daten zu Aktivität und körperlicher Belastbarkeit Populationskohorten

#### Daten als Schlüssel zum Erfolg







#### Der Paradigmenwechsel





#### Koalitionsvertrag

"[Die Bundesdatenschutzbeauftragte] soll [...] Bundesbeauftragte für **Datennutzung**, Datenschutz und Informationsfreiheit sein."

## Der Paradigmenwechsel





#### **Koalitionsvertrag**

"[Die Bundesdatenschutzbeauftragte] soll [...] Bundesbeauftragte für **Datennutzung**, Datenschutz und Informationsfreiheit sein."



#### Der Paradigmenwechsel





#### **Koalitionsvertrag**

"[Die Bundesdatenschutzbeauftragte] soll [...] Bundesbeauftragte für **Datennutzung**, Datenschutz und Informationsfreiheit sein."





Der Datennexus ist ein technisches Werkzeug, um Regulatorik in einen **Möglichkeitenraum** zu verwandeln.

#### Regulatorik in der medizinischen Datenökonomie Beispiel: Technologie als Enabler der DSGVO-Erfüllung



#### Heraus geber

Professor Dr. Dr. Eric Hilgendorf, Würzburg Professor Dr. Matthias Jestaedt, Freiburg i Br. Professor Dr. Florian Möslein, LL.M. (London), Marburg Professor Dr. Dr. h.c. Astrid Stadler, Konstanz

#### Redaktion

Martin Idler, Tübingen

Mohr Siebeck



Professor Dr. Johannes Buchheim, L.L.M. (Yale) und Professor Dr. Steffen Augsberg, Marburg/Gießen\*

Von der Verarbeitung personenbezogener Daten zur personenbezogenen Datenverarbeitung

 Zugleich eine datenschutzrechtliche Erläuterung und Einordnung des Modells der transaktionsbasierten Datentreuhand – ufsätze

#### Beispiel: Technologie als Enabler der DSGVO-Erfüllung



#### Heraus geber

Professor Dr. Dr. Eric Hilgendorf, Würzburg Professor Dr. Matthias Jestaedt, Freiburg i Br. Professor Dr. Florian Möslein, LL.M. (London), Marburg Professor Dr. Dr. h.c. Astrid Stadler, Konstanz

#### Redaktion

Martin Idler, Tübingen

Mohr Siebeck





Prozessbezogene Betrachtung der DSGVO

Professor Dr. Johannes Buchheim, L.L.M. (Yale) und Professor Dr. Steffen Augsberg, Marburg/Gießen\*

## Von der Verarbeitung personenbezogener Daten zur personenbezogenen Datenverarbeitung

 Zugleich eine datenschutzrechtliche Erläuterung und Einordnung des Modells der transaktionsbasierten Datentreuhand – .....

#### Beispiel: Technologie als Enabler der DSGVO-Erfüllung



#### Heraus geber

Professor Dr. Dr. Eric Hilgendorf, Würzburg Professor Dr. Matthias Jestaedt, Freiburg i Br. Professor Dr. Florian Möslein, LL.M. (London), Marburg Professor Dr. Dr. h.c. Astrid Stadler, Konstanz

#### Redaktion

Martin Idler, Tübingen

Mohr Siebeck





Prozessbezogene Betrachtung der DSGVO



Automatisierbare Einhaltung des Datenschutzes

Professor Dr. Johannes Buchheim, L.L.M. (Yale) und Professor Dr. Steffen Augsberg, Marburg/Gießen\*

## Von der Verarbeitung personenbezogener Daten zur personenbezogenen Datenverarbeitung

 Zugleich eine datenschutzrechtliche Erläuterung und Einordnung des Modells der transaktionsbasierten Datentreuhand –

#### Beispiel: Technologie als Enabler der DSGVO-Erfüllung



#### Heraus geber

Professor Dr. Dr. Eric Hilgendorf, Würzburg Professor Dr. Matthias Jestaedt, Freiburg i Br. Professor Dr. Florian Möslein, LL.M. (London), Marburg Professor Dr. Dr. h.c. Astrid Stadler, Konstanz

#### Redaktion

Martin Idler, Tübingen

Mohr Siebeck

9 79. Jahrgang
3. Mai 2024
Seiten 365–416

Juristen Zeitung



Prozessbezogene Betrachtung der DSGVO



Automatisierbare Einhaltung des Datenschutzes



Aufsätze

Integration von Technik und Regulatorik

Professor Dr. Johannes Buchheim, L.L.M. (Yale) und Professor Dr. Steffen Augsberg, Marburg/Gießen\*

Von der Verarbeitung personenbezogener Daten zur personenbezogenen Datenverarbeitung

 Zugleich eine datenschutzrechtliche Erläuterung und Einordnung des Modells der transaktionsbasierten Datentreuhand –

#### Beispiel: Technologie als Enabler der DSGVO-Erfüllung



#### Heraus geber

Professor Dr. Dr. Eric Hilgendorf, Würzburg Professor Dr. Matthias Jestaedt, Freiburg i Br. Professor Dr. Florian Möslein, LL.M. (London), Marburg Professor Dr. Dr. h.c. Astrid Stadler, Konstanz

#### Redaktion

Martin Idler, Tübingen

Mohr Siebeck

9 79. Jahrgang
3. Mai 2024
Seiten 365–416

Juristen Zeitung

Professor Dr. Johannes Buchheim, L.L.M. (Yale) und Professor Dr. Steffen Augsberg, Marburg/Gießen\*

## Von der Verarbeitung personenbezogener Daten zur personenbezogenen Datenverarbeitung

 Zugleich eine datenschutzrechtliche Erläuterung und Einordnung des Modells der transaktionsbasierten Datentreuhand –



Prozessbezogene Betrachtung der DSGVO



Automatisierbare Einhaltung



Aufsätze

Integration von Technik und Regulatorik



Positive Reaktion der Datenschutzbeauftragten

#### Beispiel: Technologie als Enabler der DSGVO-Erfüllung



#### Heraus geber

Professor Dr. Dr. Eric Hilgendorf, Würzburg Professor Dr. Matthias Jestaedt, Freiburg i Br. Professor Dr. Florian Möslein, LL.M. (London), Marburg Professor Dr. Dr. h.c. Astrid Stadler, Konstanz

#### Redaktion

Martin Idler, Tübingen

Mohr Siebeck

9 79. Jahrgang
3. Mai 2024
Seiten 365-416

Juristen Zeitung

Prozessbezogene Betrachtung der DSGVO

Automatisierbare Einhaltung des Datenschutzes

Integration von Technik und Regulatorik

Positive Reaktion der Datenschutzbeauftragten

Professor Dr. Johannes Buchheim, L.L.M. (Yale) und Professor Dr. Steffen Augsberg, Marburg/Gießen\*

## Von der Verarbeitung personenbezogener Daten zur personenbezogenen Datenverarbeitung

 Zugleich eine datenschutzrechtliche Erläuterung und Einordnung des Modells der transaktionsbasierten Datentreuhand –



Technologie ermöglicht eine ebenso datenschutzkonforme wie chancengerechte Datennutzung.

Aufsätze

#### Anstehende Themenfelder



Weitergehende Regelwerke



Zulässigkeit der Datenweitergabe









Konkrete Vertragsgestaltung



Ethische Unbedenklichkeit

#### Anstehende Themenfelder



Weitergehende Regelwerke



Zulässigkeit der Datenweitergabe











Konkrete Vertragsgestaltung

Ethische Unbedenklichkeit



Der Datennexus adressiert die wichtigen Fragen und bietet eine **Zukunftsperspektive für die Datenökonomie**.

#### Ein Datenraum als zentrales Element





## Das technisch implementierte Wertversprechen





#### Einfach nutzbare Interaktionsfläche





#### Einfach nutzbare Interaktionsfläche



Nutzende können den Datennexus einfach erreichen.





https://post-covid.dateninstitut.d-fine.dev/

### Einfache Nutzung dank standardisierter Schnittstellen





#### Einfache Datensuche



Forschende finden relevante Daten über den Datenkatalog.





#### Einfache Kontrolle und Datensouveränität



Datengebende entscheiden souverän über ihre Daten.





#### Einfacher Zugang zu komplexen Auswertungen



Start-ups und Unternehmen bieten Data Science Lösungen im Research Hub an.







### Einfaches Data Linkage dank standardisierter Prozesse





#### Einfaches Data Linkage mit Personendaten



## Der Treuhänder ermöglicht die rechtssichere Verknüpfung.



| Algorithmus                               | Funktionsweise                                                                                                                                                                                                                 | Vorteile                                                                                              | Nachteile                                                                                                               | Wann nutzen?                                                                                                  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Hamming-Distanz                           | Zählt die Anzahl der<br>unterschiedlichen Bits zwischen<br>zwei Bloom-Filtern                                                                                                                                                  | •Sehr schnell<br>•Einfach zu implementieren                                                           | <ul> <li>Sensibel gegenüber kleinen<br/>Änderungen</li> <li>Funktioniert schlecht bei<br/>verrauschten Daten</li> </ul> | Wenn eine exakte<br>Übereinstimmung notwendig<br>ist und die zugrundeliegenden<br>Daten kaum verrauscht sind. |
| Jaccard Similarity                        | Berechnet das Verhältnis der<br>gemeinsamen Bits zu allen<br>gesetzten Bits.<br>Jaccard(A,B) =  A∩B  AUB                                                                                                                       | •Gut für unscharfe Vergleic* •Kann gut mit Bloom-Fil* unterschiedlicher Läp umgehen                   | •Unterschätzt Ähnlichkeit,<br>wenn wenige Bits gesetzt<br>sind                                                          | Wenn Daten leichte<br>Abweichungen aufweisen (z.B.<br>Tippfehler,<br>Formatierungsfehler)                     |
| Dice-Koeffizient<br>(Sørensen-Dice Index) | Berechnet die Ähnlichkeit basierend auf der Anzahl gemeinsamer gesetzter Bits. Dice(A,B)=2 A∩B  A + B                                                                                                                          | Messere Gewich and mente als  Jaccard ann quant sicheren oder  Le ven De numgehen                     | •Kann durch falsch-positive<br>Bits in Bloom-Filtern<br>verfälscht werden                                               | Wenn eine robuste aber<br>tolerante Ähnlichkeitsmessung<br>benötigt wird                                      |
| Cosine Similarity                         | Misst den Winkel zwischen zwei<br>Bloom-Filtern als Vektoren.<br>Cosine(A,B)= A∩B  A · B                                                                                                                                       | •Idea vir Datei<br>gesetzten Bits                                                                     | •Rechenintensiv<br>•Nicht ideal für sehr kleine<br>Bloom-Filter                                                         | Wenn Bloom-Filter groß und<br>Datensätze hochdimensional<br>sind.                                             |
| Levenshtein Distanz                       | Vergleicht zwei Werte anhand ihrer Levenshtein-Distanz. Dabei werden durch Einfügen oder Löschen von Bits zwei Zeichenketten aneinander angeglichen. Je weniger Operationen nötig sind, desto ähnlicher sind sich zwei Filter. | •Robust gegen verrauschte<br>Daten und fehlerhafte Einträge<br>•Hilfreich für unscharfe<br>Vergleiche | Rechenintensiv Nicht so effizient für große Mengen Schwierig bei sehr stark besetzten Bloom-Filtern                     | Wenn Daten leichte<br>Abweichungen aufweisen (z.B.<br>Tippfehler,<br>Formatierungsfehler)                     |

## **Einfache Nachnutzung**





## **Einfache Nachnutzung**



Die Community kann den Code als Open Source nachnutzen.





https://github.com/d-fine/Post-COVID-Dateninstitut

#### **Durchführung einer Datentransaktion im Datennexus**

## Am Beispiel einer Forschungsfrage







## Forschung aktiv fördern

#### Mehrwerte für Forschende





## Forschung aktiv fördern

#### Mehrwerte für Forschende



#### **Post-COVID Datenraum**

Use & Access





Datensouveränität Kontrolle & Management

Data Linkage







Datentaxonomie

Linkage

 $0\rightarrow0$ 

Incentivierung







Support

Interaktionsfläche





Metadatenbrowser



Verknüpfungs-Historie

- Variable Datenauswahl keine Einschränkungen bzg. Thematik und Datenschutz
- Datensouveränität Datenhaltende
- Record Linkage eröffnet völlig neue Forschungsmöglichkeiten
- Daten können zugänglich gemacht werden auch ohne TRE
- Geringer Aufwand für die Datenhaltenden, keine Doppelstruktur
- Erweiterbar um beliebige Daten und Funktionalitäten
- Nachnutzung von Verknüpfungen
- Research Hub
- Community-Effekte mit zunehmender **Nutzung**

## Forschung aktiv fördern

#### Mehrwerte für Forschende



#### **Post-COVID Datenraum**

Use & Access





Datensouveränität Kontrolle & Management

Data Linkage





Datentaxonomie

 $0\rightarrow0$ Linkage

Incentivierung







Support

Interaktionsfläche



Metadatenbrowser



Verknüpfungs-Historie

- Variable Datenauswahl keine Einschränkungen bzg. Thematik und Datenschutz
- Datensouveränität Datenhaltende
- Record Linkage eröffnet völlig neue Forschungsmöglichkeiten
- Daten können zugänglich gemacht werden auch ohne TRF
- Geringer Aufwand für die Datenhaltenden, keine Doppelstruktur
- Erweiterbar um beliebige Daten und Funktionalitäten
- Nachnutzung von Verknüpfungen
- Research Hub
- Community-Effekte mit zunehmender **Nutzung**

#### Bereit für die Zukunft

- Betriebsmodelle erstellt und ausgearbeitet
- Sektor-agnostisches Modell, dass jederzeit erweitert oder übertragen werden kann
- Zukunftsperspektive

#### Ein mehrdimensionaler Blick in die Zukunft





#### Eine Community entsteht

Erfolgreiche Praxisanwendungen





Forschung

Engagement

Sparring mit den Akteuren





DaTNet-Workshop

Direkte Gespräche

#### Ein mehrdimensionaler Blick in die Zukunft





#### Eine Community entsteht

Erfolgreiche Praxisanwendungen





Forschung

**Engagement** 

Sparring mit den Akteuren





DaTNet-Workshop

Direkte Gespräche



#### Geschäftsmodelle sind vorbereitet

Öffentliche Trägerschaft





Digitalministerium

Bundesbehörde

Private Trägerschaft







Monetarisierung

#### Ein mehrdimensionaler Blick in die Zukunft





Eine Community entsteht

Erfolgreiche Praxisanwendungen





Forschung

Engagement

Sparring mit den Akteuren





DaTNet-Workshop

Direkte Gespräche



Geschäftsmodelle sind vorbereitet

Öffentliche Trägerschaft





Digitalministerium

Bundesbehörde

Private Trägerschaft



Förderung



Monetarisierung



Mehrwert über die Challenge hinaus

Andere Sektoren





Treuhänder

Datenökosysteme

Datenökonomie in Deutschland





Prozess-Blaupausen

Datenmodellierung

## Von Daten in Silos zur soliden und nachnutzbaren Datennutzung









#### Zusammen mehr erreichen

## Akteure, die den Projekterfolg geprägt haben

#### **Datengeber**



Prof. Janne Vehreschild Karin Fiedler



Sebastian Ellert Tatjana Mika



Leo Panreck Daniel Kraft

#### **Infrastruktur & Forschung**



Prof. Iris Pigeot Prof. Juliane Fluck Johannes Darms





Dana Stahl

#### **Öffentliche Gestalter**

Netzwerk DaT

Marlin Mayer Till Seidemann



Datenzugangs- und Koordinierungsstelle Dr. Katharina Schmidt

#### Zusammen mehr erreichen

### Unser Projektteam



Dr. R. Görke



Dr. F. Mackenroth



Dr. I. Tihaa



Prof. Dr. J. Vehreschild



Prof. Dr. S. Augsberg



Dr. M. Bercx



B. Bohmann



C. Hörandtner



Prof. Dr. M. Vehreschild



Dr. R. Link



Dr. V. Mengling



O. Siccha



K. Fiedler

# Vielen Dank für Ihre Aufmerksamkeit! Fragen?



**Dr. Irina Tihaa** Managerin Expertin für Health Data



**Dr. Robert Goerke**Partner
Leitung d-fine Healthcare
Healthcare@d-fine.com



Dr. Felix Mackenroth Manager Experte für öffentliche Datenräume PublicSector@d-fine.com

d-fine GmbH An der Hauptwache 7 D-60313 Frankfurt/Main Deutschland

| Frankfurt | Berlin  | Düsseldorf | Hamburg   |
|-----------|---------|------------|-----------|
| London    | Mailand | München    | Stockholm |
| Utrecht   | Wien    | Zürich     |           |



analytisch. technologisch. quantitativ.