# Recap

- We have some dataset of (x,y)
- We have a **score function**:  $s=f(x;W)\stackrel{\text{e.g.}}{=}Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$  $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$  Full loss



# Recap

### How do we find the best W?

- We have some dataset of (x,y)
- We have a score function:  $s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$  $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$  Full loss



# Optimization



This image is CC0 1.0 public domain



Walking man image is CC0 1.0 public domain

### Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
   bestloss = loss
   bestW = W
 print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

### Lets see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~95%)

### Strategy #2: Follow the slope



### Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient** 

### [0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 70 April 10, 2018

gradient dW:

current W:

-1.11, -1.11, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...0.33,...] ?,...] loss 1.25347 loss 1.25322 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 71 April 10, 2018

gradient dW:

W + h (first dim):

[0.34 + 0.0001]

current W:

[0.34,

#### [0.34,[0.34 + 0.0001][-2.5, -1.11, -1.11, 0.78, 0.78, 0.12, 0.12, (1.25322 - 1.25347)/0.00010.55, 0.55, = -2.52.81, 2.81, $\frac{df(x)}{dx} = \lim \frac{f(x+h) - f(x)}{dx}$ -3.1, -3.1, -1.5, -1.5, [0.33,...]0.33,...] ?,...] loss 1.25347 loss 1.25322

**W + h** (first dim):

current W:

gradient dW:

[-2.5, -1.11, -1.11 + 0.00010.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...0.33,...] ?,...] loss 1.25347 loss 1.25353 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 73 April 10, 2018

gradient dW:

**W + h** (second dim):

[0.34,

current W:

[0.34,

#### **W + h** (second dim): gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11 + 0.00010.6, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, (1.25353 - 1.25347)/0.00012.81, 2.81, = 0.6-3.1, -3.1, -1.5, -1.5, [0.33,...]0.33,...] ?,...] loss 1.25347 loss 1.25353

current W:

[0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78 + 0.00010.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...0.33,...] ?,...] loss 1.25347 loss 1.25347 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 75 April 10, 2018

gradient dW:

**W** + **h** (third dim):

current W:



#### current W: **W** + h (third dim): gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78 + 0.00010.78, 0, 0.12, 0.12, 0.55, 0.55, **Numeric Gradient** 2.81, 2.81, - Slow! Need to loop over -3.1, -3.1, all dimensions -1.5, -1.5, - Approximate 0.33,...0.33,...**7**,... loss 1.25347 loss 1.25347

Lecture 3 - 77

April 10, 2018

Fei-Fei Li & Justin Johnson & Serena Yeung

# This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \ L_i &= \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

# This is silly. The loss is just a function of W:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2$$

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

want  $\nabla_W L$ 

Use calculus to compute an analytic gradient







This image is in the public domain

#### [0.34, [-2.5, dW = ... -1.11, 0.6, (some function 0.78, 0, data and W) 0.12, 0.2, 0.55, 0.7, 2.81, -0.5, -3.1, 1.1, -1.5, 1.3, 0.33,...**-**2.1,...] loss 1.25347 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 80 April 10, 2018

gradient dW:

current W:

# In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

<u>In practice:</u> Always use analytic gradient, but check implementation with numerical gradient. This is called a **gradient check.** 

### **Gradient Descent**

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```



# Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

### Interactive Web Demo time....



http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/