CS11-711 Advanced NLP

Debugging and Understanding NLP Models

Graham Neubig

A Typical Situation

- You've implemented an NLP system based on neural networks
- You've looked at the code, and it looks OK
- It has low accuracy, or makes incomprehensible errors
- What do I do?

Three Model Understanding Dimensions

- Debugging Implementation: Identifying problems in your implementation (or assumptions)
- Actionable Evaluation: Identifying typical error cases and understanding how to fix them
- Interpreting Predictions: Examining individual predictions to dig deeper

Debugging

In Neural Net Models, Debugging is Paramount!

- Models are often complicated and opaque
- Everything is a hyperparameter (network size, model variations, batch size/strategy, optimizer/ learning rate)
- Non-convex, stochastic optimization has no guarantee of decreasing/converging loss

Possible Causes

Training time problems

- Lack of model capacity
- Poor training algorithm
- Training time bug
- Test time problems
 - Disconnect between training and test
 - Failure of search algorithm
- Overfitting
- Mismatch between optimized function and eval

Don't debug all at once! Start top and work down.

Debugging at Training Time

Identifying Training Time Problems

- Look at the loss function calculated on the training set
 - Is the loss function going down?
 - Is it going down basically to zero if you run training long enough (e.g. 20-30 epochs)?
 - If not, does it go down to zero if you use very small datasets?

Is My Model Too Weak?

 Larger models tend to perform better, esp. when pre-trained (e.g. Raffel et al. 2020)

Model	GLUE Average	CoLA Matthew's	SST-2 Accuracy	MRPC F1	MRPC Accuracy	STS-B Pearson	STS-B Spearman
Previous best	89.4^a	69.2^b	97.1^a	93.6^b	91.5^b	92.7^{b}	92.3^b
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92.8

• Larger models can learn with fewer steps (Kaplan et al. 2020, Li et al. 2020)

The optimal model size grows smoothly with the loss target and compute budget

Trouble w/ Optimization

- If increasing model size doesn't help, you may have an optimization problem
- Check your
 - optimizer (Adam? standard SGD?)
 - learning rate (is the rate you're using standard, are you using decay?)
 - initialization (uniform? Glorot?)
 - minibatching (are you using sufficiently large batches?)
- Pay attention to these details when replicating previous work

Debugging at Test Time

Training/Test Disconnects

- Usually your loss calculation and prediction will be implemented in different functions
- Especially true for structured prediction models (e.g. encoder-decoders)
- Like all software engineering: duplicated code is a source of bugs!
- Also, usually loss calculation is minibatched, generation not.

Debugging Minibatching

- Debugging mini-batched loss calculation
 - Calculate loss with large batch size (e.g. 32)
 - Calculate loss for each sentence individually and sum
 - The values should be the same (modulo numerical precision)
- Create a unit test that tests this!

Debugging Structured Generation

- Your decoding code should get the same score as loss calculation
- Test this:
 - Call decoding function, to generate an output, and keep track of its score
 - Call loss function on the generated output
 - The score of the two functions should be the same
- Create a unit test doing this!

Debugging Search

- As you make search better, the model score should get better (almost all the time)
- Search w/ varying beam sizes and make sure you get a better overall model score with larger sizes
- Create a unit test testing this!

Mismatch b/t Optimized Function and Evaluation Metric

Loss Function, Evaluation Metric

- It is very common to optimize for maximum likelihood for training
- But even though likelihood is getting better, accuracy can get worse

Example w/ Classification

Loss and accuracy are de-correlated (see dev)

Why? Model gets more confident about its mistakes.

Managing Loss Function/ Eval Metric Differences

- Most principled way: use structured prediction techniques to be discussed in future classes
 - Structured max-margin training
 - Minimum risk training
 - Reinforcement learning
 - Reward augmented maximum likelihood

A Simple Method: Early Stopping w/ Eval Metric

Actionable Evaluation

Look At Your Data!

- Both bugs and research directions can be found by looking at your model outputs
- Your model is repeating all the time
 - > I thought it was bad bad bad bad bad bad bad
 - → need a new inference algorithm?
- The model is consistently failing on named entities
 - → need a better model of named entities?

Which Data to Look At?

- Random examples
- Low-scoring examples (low eval (y))
- Comparatively low examples (low eval (y_1) eval (y 2))

Slicing

- Create a subset of your examples where you expect one model to do better than others
 - Long sentences
 - Sentences that contain a word
 - Sentences that belong to a cluster
 - etc. etc.

Example: Zeno

http://zenoml.com

Interpretation of Predictions and Model Internals

Why Interpret Model Predictions?

- e.g. You want to know
 - which words were used in making a decision to verify its accuracy.
 - whether your model has learned a difficult pattern, or is focused on spurious correlations.
 - understand what information a pre-trained model has captured internally.

LIME: Local Perturbations

weight	prob	;)	channel!	my	visit	Song	Christmas	For
0.57	0.17	1	0	0	1	1	0	1
0.71	0.17	1	0	1	1	1	1	0
0.71	0.99	1	1	1	1	0	0	1
0.86	0.99	1	1	1	1	1	0	1
0.57	0.17	1	0	0	1	1	1	0

label_prob	feature	feature_weight
0.9939024	channel!	6.180747
0.9939024	For	0.000000
0.9939024	;)	0.000000

Explanation Technique: Gradient-based Scores

Gradient * Input

Integrated Gradient

 ϵ -LRP

DeepLIFT

Attribution $R_i^c(x)$

$$x_i \cdot \frac{\partial S_c(x)}{\partial x_i}$$

$$(x_i - \bar{x_i}) \cdot \int_{\alpha=0}^{1} \frac{\partial S_c(\tilde{x})}{\partial (\tilde{x_i})} \bigg|_{\tilde{x}=\bar{x}+\alpha(x-\bar{x})} d\alpha$$

$$x_i \cdot \frac{\partial^g S_c(x)}{\partial x_i}, \quad g = \frac{f(z)}{z}$$

$$(x_i - \bar{x_i}) \cdot \frac{\partial^g S_c(x)}{\partial x_i}, \ g = \frac{f(z) - f(\bar{z})}{z - \bar{z}}$$

Figure from Ancona et al, ICLR 2018

Explanation Technique: Attention

Entailment Rocktäschel et al, 2015

why does zebras have stripes ?
what is the purpose or those stripes ?
who do they serve the zebras in the
wild life ?
this provides camouflage - predator
vision is such that it is usually difficult
for them to see complex patterns

Document classification Yang et al, 2016

A <u>stop</u> sign is on a road with a mountain in the background.

BERTViz Vig et al, 2019

Probing

Edge Probing

(Tenney et al. 2019)

 A general framework that allows for probing of many types of information

Issues with probing

- Did I interpret the representation or my probing classifier learn the task itself (Hewitt et al. 2019)
 - Solution information theoretic probing that controls for classifier complexity (Voita et al. 2020)
- Can only probe for properties you have supervision for
- Correlation doesn't imply causation
- and more...

Questions?