1.2 The Definite Integral

1 Definition and Notation

We saw that in section 1.1 we defined the area under a curve in terms of Riemann Sums:

$$A = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \cdot \Delta x$$
 where x_i^* is any sample point in the

subinterval $[x_{i-1}, x_i]$. However, this definition is satisfied if f(x) is a continuous and non-negative function. But, this doesn't model all real-world situations.

Definition:

If f(x) is a function defined on the closed interval [a, b], the definite integral of f from a to b is given by

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x,$$

provided that the limit exists.

Theorem 1.1:

If f is continuous on [a, b], then f is integrable on [a, b].

1.1 Evaluating an Integral Using the Definition

1. Use the definition of the definite integral to evaluate $\int_0^1 (x^3 - 3x^2) dx$.

2 Area and the Definite Integral

2.1 Net Signed and Total Area

Net Signed Area

If f takes on positive and negative values, then the Riemann sum is the sum of the areas of the rectangles that lie above the x-axis and the sum of the areas of rectangles lie below the x-axis. A definite integral can be interpreted as a net area, that is, a difference of areas:

$$\int_{a}^{b} f(x) \, dx = A_1 - A_2,$$

where A_1 is the area of region above the x-axis and below the graph of f, and A_2 is the area of region below the x-axis and above the graph of f.

Total Area

Similar to Net Signed Area, Total Area converts the negative areas into positive areas. So the total area between f(x) and the x-axis is given by,

$$\int_{a}^{b} |f(x)| \, dx = A_1 + A_2.$$

2.2 Net Signed and Total Area Practice Question

- 1. Find the total area between f(x) = x 2 and the x-axis over the interval [0,6].
- 2. Evaluate the following integral by interpreting each in terms of area.

$$\int_0^3 (x-1) \ dx$$
.

3 Properties of the Definite Integral

- 1. $\int_a^a f(x) dx = 0$ (a singular point has no width, thus no area)
- 2. $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$
- 3. $\int_a^b [f(x) \pm g(x) \, dx] = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx$
- 4. $\int_a^b c \cdot f(x) \, dx = c \cdot \int_a^b f(x) \, dx$
- 5. for $c \in [a, b]$, $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$
- 6. if C is some constant, $\int_a^b C dx = C(b-a)$

3.1 Comparison Properties of Integrals

Theorem 1.2: Comparison Theorem

1. If $f(x) \ge 0$ for $a \le x \le b$, then

$$\int_{a}^{b} f(x) \, dx \ge 0$$

2. If $f(x) \ge g(x)$ for $a \le x \le b$, then

$$\int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$$

3. If m and M are constants such that $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

3.2 Properties of Integrals Practice

1. If $\int_1^5 f(x) dx = 12$ and $\int_4^5 f(x) dx = 3.6$, find $\int_1^4 f(x) dx$.

3.3 Comparison Theorem Practice

1. Show that $\int_0^1 \sqrt{1+x^3} \, dx \le \int_0^1 \sqrt{1+x^2} \, dx$

4 Solutions to Practice Questions

1.1.1 Solution:

Recall that by definition
$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \left[\sum_{i=1}^n f(x_i^*) \Delta x \right]$$
. So $\int_0^1 \left(x^3 - 3x^2 \right) = \lim_{n \to \infty} \left[\sum_{i=1}^n f(x_i^*) \Delta x \right]$. We will now find $\Delta x, x_i^*, f(x_i^*)$. $\Delta x = \frac{1-0}{n} = \frac{1}{n}$

$$x_i^* = x_i = a + i\Delta x = 0 + \frac{i}{n} = \frac{i}{n}$$

$$f(x_i^*) = \left(\frac{i^3}{n^3} - \frac{3i^2}{n^2} \right)$$
.
$$\Rightarrow \int_0^1 \left(x^3 - 3x^2 \right) = \lim_{n \to \infty} \left[\sum_{i=1}^n \left(\frac{i^3}{n^3} - \frac{3i^2}{n^2} \right) \frac{1}{n} \right]$$

$$\Rightarrow \int_0^3 \left(x^3 - 3x^2 \right) \, dx = \lim_{n \to \infty} \left[\frac{1}{n} \sum_{i=1}^n \frac{i^3}{n^3} - \frac{3}{n} \sum_{i=1}^n \frac{i^2}{n^2} \right]$$

$$\Rightarrow \int_0^3 \left(x^3 - 3x^2 \right) \, dx = \lim_{n \to \infty} \left[\frac{1}{n^4} \frac{n^2(n+1)^2}{4} - \frac{3}{n^3} \frac{n(n+1)(2n+1)}{6} \right]$$

$$\Rightarrow \int_0^3 \left(x^3 - 3x^2 \right) \, dx = \lim_{n \to \infty} \left[\frac{1}{n^2} \frac{(n+1)^2}{4} - \frac{1}{n^2} \frac{(n+1)(2n+1)}{2} \right]$$

$$\Rightarrow \int_0^3 \left(x^3 - 3x^2 \right) \, dx = \lim_{n \to \infty} \left[\frac{(n+1)^2}{4n^2} - \frac{(n+1)(2n+1)}{2n^2} \right]$$

$$\Rightarrow \int_0^3 \left(x^3 - 3x^2 \right) \, dx = \lim_{n \to \infty} \left[\frac{(n+1)^2 - 2(n+1)(2n+1)}{4n^2} \right]$$

$$\Rightarrow \int_0^3 \left(x^3 - 3x^2 \right) \, dx = \lim_{n \to \infty} \left[\frac{-3n^2 - 4n - 1}{4n^2} \right]$$

$$\Rightarrow \int_0^3 \left(x^3 - 3x^2 \right) \, dx = \lim_{n \to \infty} \left[\frac{-3n^2 - 4n - 1}{4n^2} \right]$$

$$\Rightarrow \int_0^3 \left(x^3 - 3x^2 \right) \, dx = \frac{-3}{4}.$$
Therefore, $\int_0^1 \left(x^3 - 3x^2 \right) \, dx = \frac{-3}{4}.$

2.2.1 Solution:

In order to find the total area, we need to evaluate $\int_0^6 |x-2| \, dx$. Let's visualize the graph of y=|x-2|.

Figure 1: The graph of y = |x - 2| on [0, 6]

Now to evaluate $\int_0^6 |x-2| dx$, we just need to add the areas A_1+A_2 . So $A_1=\frac{4\cdot 4}{2}=8$ and $A_2=\frac{2\cdot 2}{2}=2$.

$$\implies \int_0^6 |x - 2| \, dx = A_1 + A_2 = 8 + 2 = 10.$$

6

2.2.2 Solution:

Now notice that in Figure 1, $A_2 < 0$ and $A_1 > 0$.

Figure 2: The graph of y = x - 1 on [0, 3]

Thus, $\int_0^3 (x-1) dx = A_1 - A_2$. In order to figure out the areas of A_1 and A_2 we can use the area of a triangle.

So
$$A_1 = \frac{2 \cdot 2}{2} = 2$$
 and $A_2 = \frac{1 \cdot 1}{2} = \frac{1}{2}$, which means, $A_1 - A_2 = 2 - \frac{1}{2} = \frac{3}{2}$.
 $\implies \int_0^3 (x - 1) \ dx = \frac{3}{2}$.

3.2.1 Solution:

Using property 5 of integrals, we can rewrite $\int_1^5 f(x) dx$ as the following,

 $\int_{1}^{5} f(x) \, dx = \int_{1}^{4} f(x) \, dx + \int_{4}^{5} f(x) \, dx. \text{ rearranging for } \int_{1}^{4} f(x) \, dx,$

$$\int_{1}^{4} f(x) dx = \int_{1}^{5} f(x) dx - \int_{4}^{5} f(x) dx.$$

 $\implies \int_1^4 f(x) dx = 12 - 3.6 = 8.4$ as needed.

3.3.1 *Proof.* Let $f(x) = \sqrt{1+x^3}$ and $g(x) = \sqrt{1+x^2}$ both be functions over the closed interval [0,1].

Let's first show that $f(x) \leq g(x)$ for all $x \in [0,1]$.

So we have the following inequality, $\sqrt{1+x^3} \le \sqrt{1+x^2}$.

 $\implies 1 + x^3 \le 1 + x^2$ by squaring both sides since $0 \le x \le 1$

$$\implies x^3 \le x^2$$

$$\implies x^2(x-1) \le 0.$$

Notice that for this inequality to hold $x-1 \le 0$ for all $x \in [0,1]$ since $x^2 \ge 0$ for all x. Since for all $x \in [0,1]$, the product is indeed less than or equal to zero, we conclude that $\sqrt{1+x^3} \le \sqrt{1+x^2}$ for all $x \in [0,1]$. Thus, by the comparison theorem, we can conclude that $\int_0^1 \sqrt{1+x^3} \, dx \le \int_0^1 \sqrt{1+x^2} \, dx$ as required.