

Genesys Logic, Inc.

GL830

USB 2.0 to SATA Bridge Controller

Datasheet Revision 1.02 Aug. 21, 2007

Copyright:

Copyright © 2007 Genesys Logic Incorporated. All rights reserved. No part of the materials may be reproduced in any form or by any means without prior written consent of Genesys Logic, Inc.

Disclaimer:

ALL MATERIALS ARE PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NO LICENSE OR RIGHT IS GRANTED UNDER ANY PATENT OR TRADEMARK OF GENESYS LOGIC INC.. GENESYS LOGIC HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS IN REGARD TO MATERIALS, INCLUDING ALL WARRANTIES, IMPLIED OR EXPRESS, OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY. IN NO EVENT SHALL GENESYS LOGIC BE LIABLE FOR ANY DAMAGES INCLUDING, WITHOUT LIMITATION, DAMAGES RESULTING FROM LOSS OF INFORMATION OR PROFITS. PLEASE BE ADVISED THAT THE MATERIALS MAY CONTAIN ERRORS OR OMMISIONS. GENESYS LOGIC MAY MAKE CHANGES TO THE MATERIALS OR TO THE PRODUCTS DESCRIBED THEREIN AT ANY TIME WITHOUT NOTICE.

Trademarks:

GENESYSis a registrated trademark of Genesys Logic, Inc.
All trademarks are the properties of their respective owners.

Office:

Genesys Logic, Inc.

12F, No. 205, Sec. 3, Beishin Rd., Shindian City,

Taipei, Taiwan

Tel: (886-2) 8913-1888 Fax: (886-2) 6629-6168 http://www.genesyslogic.com

Revision History

Revision	Date	Description
1.00	06/14/2007	First Formal Release
1.01	7/17/2007	Add 48 and 128pin description
1.02	08/21/2007	Modify LQFP48/64/128 description

TABLE OF CONTENTS

CHAPTER 1 GENERAL DESC	CRIPTION8
CHAPTER 2 FEATURES	9
CHAPTER 3 PIN ASSIGNMEN	NT10
3.1 PINOUTS	10
3.2 PIN LIST	
3.3 PIN DESCRIPTIONS	
CHAPTER 4 BLOCK DIAGRA	AM22
CHAPTER 5 FUNCTION DES	CRIPTION23
5.1 UTM	23
5.2 SIE	23
5.3 EP0/EP3 FIFO AND BULK B	UFFER23
5.4 OPERATION REGISTER	23
5.5 SPI INTERFACE	23
5.6 PHY LAYER	23
5.7 LINK LAYER	23
5.8 TRANSPORT LAYER	23
5.9 APPLICATION LAYER	23
CHAPTER 6 ELECTRICAL C	HARACTERISTICS24
6.1 ABSOLUTE MAXIMUM RATIN	IGS24
6.2 TEMPERATURE CONDITIONS	24
6.3 DC CHARACTERISTICS	24
6.3.1 I/O Type digital pins	24
	racteristics25
	aracteristics25
•	Requirement25
	uirement25
	25
	racteristics25
6.4.2 SATA Interface AC Ch	aracteristics25

CHAPTER 7	PACKAGE DIMENSION	. 26
CHAPTER 8	ORDERING INFORMATION	. 29

LIST OF FIGURES

FIGURE 3.1 - 48 PIN LQFP PINOUT DIAGRAM	10
FIGURE 3.2 - 64 PIN LQFP PINOUT DIAGRAM	11
FIGURE 3.3 - 128 PIN LQFP PINOUT DIAGRAM	12
FIGURE 4.1 - BLOCK DIAGRAM	22
FIGURE 7.1 – GL830 48 PIN LQFP PACKAGE	26
FIGURE 7.2 - GL830 64 PIN LQFP PACKAGE	27
FIGURE 7.3 - GL830 128 PIN LOFP PACKAGE	28

LIST OF TABLES

TABLE 3.1 – 48 PIN LIST	13
TABLE 3.2 – 64 PIN LIST	13
TABLE 3.3 – 128 PIN LIST	14
TABLE 3.4 – 48 PIN DESCRIPTIONS	15
TABLE 3.5 – 64 PIN DESCRIPTIONS	16
TABLE 3.6 – 128 PIN DESCRIPTIONS	18
TABLE 6.1 - MAXIMUM RATINGS	24
TABLE 6.2 - TEMPERATURE CONDITIONS	24
TABLE 6.3 - I/O TYPE DIGITAL PINS	24
TABLE 6.6 - REFERENCE CLOCK INPUT REQUIREMENT	25
TABLE 6.7 - REFERENCE RESISTOR REQUIREMENT	25
Table 8.1 - Ordering Information	29

CHAPTER 1 GENERAL DESCRIPTION

The GL830 is a highly-compatible, low cost USB 2.0 to SATA bridge controller, which integrates Genesys Logic own design high speed UTMI (USB 2.0 Transceiver Macrocell Interface) transceiver/receiver and Serial ATA PHY. As a one-chip solution which complies with Universal Serial Bus specification rev. 2.0 and Serial ATA specification rev. 2.6. There are totally 4 endpoints in the GL830 controller, Control (0), Bulk In (1), Bulk Out (2), and Interrupt (3). By complies with the USB Storage Class specification ver.1.0 (Bulk only protocol), the GL830 can support not only plug and play but also Windows Vista/ XP/ 2000/ ME default driver. The GL830 uses 25MHz crystal and slew-rate controlled pads to reduce the EMI issue. With 64-pin LQFP (7mmX7mm) package, the GL830 is the best cost/ performance solution to fit different situations in the USB 2.0 high speed storage class applications such as SATA HDD and ODD.

CHAPTER 2 FEATURES

- · Complies with Universal Serial Bus specification rev. 2.0.
- · Complies with USB Storage Class specification ver.1.0. (Bulk only protocol)
- · Operating system supported: Win Vista/ Win XP / 2000 / Me / 98 / 98SE; Mac OS 9.X / X.
- · Integrated USB 2.0 Transceiver Macrocell Interface (UTMI) transceiver and Serial Interface Engine (SIE).
- · Support 4 endpoints: Control (0) / Bulk Read (1) / Bulk Write (2) / Interrupt (3).
- · 64 / 512 bytes Data Payload for full / high speed Bulk Endpoint.
- · Complies with Serial ATA specification rev. 2.6.
- · Support SATA hot-plug
- · Support Spread Spectrum Clocking to reduce EMI
- · Support Partial/Slumber power management
- · Provide adjustable TX signal amplitude and pre-emphasis level
- · Provide specified OOB signal detection and transmission
- · Embedded Turbo 8051.
- · ROM size: 12k words; RAM size: 1280 bytes. (Bulk Buffer: 512 words, MC RAM: 256 bytes)
- · Supports Power Down mode and USB suspend indicator.
- · Supports USB 2.0 TEST mode features.
- \cdot Supports 4 PIO and 4GPIO for programmable AP.
- · Supports device power control for power on/off when running suspend mode.
- · Provides LED indicator for Full Speed and High Speed .
- · using 25 MHz external clock to provide better EMI.
- · 3.3V power input; 5V tolerance pad.
- · Supports Wakeup ability.
- · Embedded Regulator (3.3V to 1.8V).
- · Embedded Regulator (5V to 3.3V).
- · Provides SPI interface for Finger Print (only for 64 pin package).
- · Available in 48/64/128-pin LQFP.

CHAPTER 3 PIN ASSIGNMENT

3.1 Pinouts

Figure 3.1 - 48 Pin LQFP Pinout Diagram

Figure 3.2 - 64 Pin LQFP Pinout Diagram

Figure 3.3 - 128 Pin LQFP Pinout Diagram

3.2 Pin List

Table 3.1 – 48 Pin List

Pin#	Pin Name	Type									
1	GND	P	13	GND	P	25	DM	В	37	RTERM	A
2	GPIO0	В	14	VDD	P	26	DP	В	38	PLLVDD	P
3	GPIO3	В	15	V5	P	27	AVDD	P	39	PLLVSS	P
4	PIO3	В	16	NC	-	28	AGND	P	40	TXVSS	P
5	HRST_	I	17	GPIO2	В	29	CVDD	P	41	TXVDD	P
6	CVDD	P	18	PIO2	В	30	VDD	P	42	TXP	О
7	VDD	P	19	NC	-	31	GND	P	43	TXN	О
8	GND	P	20	GPIO1	В	32	VDD	P	44	RXN	Ι
9	TEST	I	21	NC	-	33	X2	В	45	RXP	I
10	PIO0	В	22	AVDD	P	34	X1	I	46	RXVDD	P
11	PIO1	В	23	RREF	A	35	CVDD	P	47	RXVSS	P
12	CVDD	P	24	AGND	P	36	GND	P	48	CVDD	P

Table 3.2 – 64 Pin List

Pin#	Pin Name	Type									
1	GPIO0	В	17	NC	-	33	AVDD	P	49	PLLVDD	P
2	GPIO3	В	18	NC	-	34	RREF	A	50	PLLVSS	P
3	PIO3	В	19	NC	-	35	AGND	P	51	RXPEXT	I
4	NC	-	20	CVDD	P	36	DM	В	52	RXNEXT	I
5	HRST_	I	21	GND	P	37	DP	В	53	TXNEXT	О
6	NC	-	22	VDD	P	38	AVDD3	P	54	TXPEXT	О
7	NC	-	23	V5	P	39	AGND3	P	55	TXVSS	P
8	CVDD	P	24	NC	-	40	CVDD	P	56	TXVDD	P
9	VDD	P	25	GPIO2	В	41	VDD	P	57	TXP	О
10	MODE	I	26	NC	-	42	GND	P	58	TXN	О
11	GND	P	27	PIO2	В	43	VDD	P	59	RXN	I
12	TEST	I	28	NC	-	44	X2	В	60	RXP	I
13	NC	-	29	NC	-	45	X1	I	61	RXVDD	P

14	NC	-	30	GPIO1	В	46	CVDD	P	62	RXVSS	P
15	PIO0	В	31	NC	-	47	GND	P	63	CVDD	P
16	PIO1	В	32	NC	-	48	RTERM	A	64	GND	Р

Table 3.3 – 128 Pin List

Pin#	Pin Name	Type	Pin#	Pin Name	Туре	Pin#	Pin Name	Type	Pin#	Pin Name	Type
1	GPIO0	В	33	PIO0	В	65	AINTRQ	В	97	NC	-
2	GPIO3	В	34	PIO1	В	66	AVDD	P	98	NC	-
3	PIO4	В	35	ROM_A0	О	67	AVDD	P	99	NC	-
4	PIO3	В	36	DD2	В	68	RREF	A	100	NC	-
5	ROM_A5	О	37	ROM_D0	В	69	AGND	P	101	NC	-
6	DD7	В	38	DD13	В	70	AGND	P	102	NC	-
7	ROM_A11	О	39	ROM_D7	В	71	DM	В	103	NC	-
8	DD8	В	40	DD1	В	72	DP	В	104	PLLVDD	P
9	HRST_	I	41	ROM_D1	В	73	AVDD	P	105	PLLVDD	P
10	DD6	В	42	DD14	В	74	AGND	P	106	PLLVSS	P
11	ROM_A4	О	43	ROM_D6	В	75	GND	P	107	RXPEXT	I
12	DD9	В	44	DD0	В	76	GND	P	108	RXNEXT	I
13	ROM_A12	О	45	ROM_D2	В	77	CVDD	P	109	TXNEXT	О
14	DD5	В	46	DD15	В	78	DA1	В	110	TXPEXT	О
15	ROM_A3	0	47	CVDD	P	79	DA0	В	111	TXVSS	P
16	CVDD	P	48	GND	P	80	NC	1	112	TXVDD	P
17	CVDD	P	49	MODE1	I	81	DA2	В	113	TXP	О
18	VDD	P	50	VDD	P	82	ROM_D3	В	114	TXN	О
19	MOD0	I	51	VDD	P	83	CS0_	В	115	RXN	I
20	GND	P	52	V5	I	84	ROM_D4	В	116	RXP	I
21	DD10	В	53	ROM_D5	В	85	CS1_	В	117	RXVDD	P
22	ROM_A13	О	54	DMARQ	В	86	GND	P	118	RXVSS	P
23	TEST	I	55	GPIO2	В	87	VDD	P	119	CVDD	P
24	TXD	О	56	DIOW_	В	88	VDD	P	120	GND	P
25	RXD	В	57	PIO2	В	89	GND	P	121	NC	-

26	DD4	В	58	DIOR_	В	90	GND	P	122	ROM_A8	О
27	ROM_A2	О	59	T_ROM	I	91	VDD	P	123	ROM_A7	О
28	DD11	В	60	IORDY	В	92	X2	В	124	ROM_A9	О
29	ROM_A14	О	61	GPIO1	В	93	X1	I	125	ROM_A6	О
30	DD3	В	62	DMACK_	В	94	VDD	P	126	ROM_A10	О
31	ROM_A1	О	63	PHYRDY	О	95	GND	P	127	ARESET_	В
32	DD12	В	64	GPIO4	В	96	RTERM	A	128	SPDSEL	I

3.3 Pin Descriptions

Table 3.4 – 48 Pin Descriptions

	USB Interface									
Pin Name	Pin#	Type	Description							
RREF	23	A	Reference resistor							
DM	25	В	HS D-							
DP	26	В	HS D+							
AVDD	22,27	P	USB Analog 3.3V power							
AGND	24,28	P	USB Analog Ground							

			SATA Interface
Pin Name	Pin#	Type	Description
RTERM	37	A	Reference resistor
PLLVDD	38	P	1.8V Power Supplies for internal PLL
PLLVSS	39	P	Ground for internal PLL
TXVSS	40	P	Ground for transceiver part
TXVDD	41	P	1.8V Power Supplies for transceiver part
TXP	42	О	SATA Differential Transmit TX+
TXN	43	О	SATA Differential Transmit TX-
RXN	44	I	SATA Differential Receive RX-
RXP	45	I	SATA Differential Receive RX+
RXVDD	46	P	1.8V Power Supplies for receiver part
RXVSS	47	P	Ground for receiver part

Digital Power and Ground			
Pin Name	Pin#	Type	Description

CVDD	6,12,29, 35,48	P	1.8V Digital Power
VDD	7,14 30, 32	P	3.3V Digital Power
GND	1,8,13, 31,36	P	Digital Ground
V5	15	p	5V Power Input

Miscellaneous Interface					
Pin Name	Pin#	Type	Description		
TEST	9	I (pd)	Test Mode Input		
X2	33	В	Crystal Output		
X1	34	I	Crystal Input		
HRST_	5	I (pu)	Reset Pin		
GPIO0~3	2,20,17,3	B (pu)	General Purpose I/O #0~#3		
PIO0~3	10,11,18,	B (pd)	Programmable I/O #0~#3		
NC	16,19,21	-	No connection		

Table 3.5 – 64 Pin Descriptions

USB Interface					
Pin Name	Pin#	Type	Description		
RREF	34	A	Reference resistor		
DM	36	В	HS D-		
DP	37	В	HS D+		
AVDD	33,38	P	USB Analog 3.3V power		
AGND	35,39	P	USB Analog Ground		

SATA Interface				
Pin Name	Pin#	Type	Description	
RTERM	48	A	Reference resistor	
PLLVDD	49	P	1.8V Power Supplies for internal PLL	
PLLVSS	50	P	Ground for internal PLL	
RXPEXT	51	I	eSATA Differential Receive RX+	
RXNEXT	52	I	eSATA Differential Receive RX-	

GL830 USB2.0 to SATA Bridge Controller

TXNEXT	53	О	eSATA Differential Transmit TX-
TXPEXT	54	О	eSATA Differential Transmit TX+
TXVSS	55	P	Ground for transceiver part
TXVDD	56	P	1.8V Power Supplies for transceiver part
TXP	57	О	SATA Differential Transmit TX+
TXN	58	О	SATA Differential Transmit TX-
RXN	59	I	SATA Differential Receive RX-
RXP	60	I	SATA Differential Receive RX+
RXVDD	61	P	1.8V Power Supplies for receiver part
RXVSS	62	P	Ground for receiver part

Digital Power and Ground						
Pin Name	Pin#	Type	Description			
CVDD	8,20,40, 46,63	Р	1.8V Digital Power			
VDD	9,22,41,	Р	3.3V Digital Power			
GND	11,21,42, 47,64	Р	Digital Ground			
V5	23	p	5V Power Input			

Miscellaneous Interface				
Pin Name	Pin#	Type	Description	
TEST	12	I (pd)	Test Mode Input	
X2	44	В	Crystal Output	
X1	45	I	Crystal Input	
HRST_	5	I (pu)	Reset Pin	
MODE	10	I (pd)	Mode Select (0=> USB to SATA; 1=> eSATA to SATA)	
GPIO0~3	1,30,25,2	B (pu)	General Purpose I/O #0~#3	
PIO0~3	15,16,27, 3	B (pd)	Programmable I/O #0~#3	
NC	4,6,7,13, 14,17,18, 19,24,26, 28,29,31, 32	-	No connection	

Table 3.6 – 128 Pin Descriptions

USB Interface					
Pin Name	Pin#	Type	Description		
RREF	68	A	Reference resistor		
DM	71	В	HS D-		
DP	72	В	HS D+		
AVDD	66,67,73	P	USB Analog 3.3V power		
AGND	69,70,74	P	USB Analog Ground		

SATA Interface					
Pin Name	Pin#	Type	Description		
RTERM	96	A	Reference resistor		
PLLVDD	104,105	P	1.8V Power Supplies for internal PLL		
PLLVSS	106	P	Ground for internal PLL		
RXPEXT	107	I	eSATA Differential Receive RX+		
RXNEXT	108	I	eSATA Differential Receive RX-		
TXNEXT	109	О	eSATA Differential Transmit TX-		
TXPEXT	110	О	eSATA Differential Transmit TX+		
TXVSS	111	P	Ground for transceiver part		
TXVDD	112	P	1.8V Power Supplies for transceiver part		
TXP	113	О	SATA Differential Transmit TX+		
TXN	114	О	SATA Differential Transmit TX-		
RXN	115	I	SATA Differential Receive RX-		
RXP	116	I	SATA Differential Receive RX+		
RXVDD	117	P	1.8V Power Supplies for receiver part		
RXVSS	118	P	Ground for receiver part		

Digital Power and Ground				
Pin Name	Pin#	Type	Description	
CVDD	16,17,47, 77,119	P	1.8V Digital Power	
VDD	18,50,51 87,88,91, 94	Р	3.3V Digital Power	
GND	20,48,75, 76,86,89, 90,95, 120	Р	Digital Ground	

V5	52 p	5V Power Input	Ī
----	------	----------------	---

		ATA	A/ ATAPI Interface (Host mode)
Pin Name	Pin#	Type	Description
DD0~15	44,40,36, 30,26,14, 10,6,8,12, 21,28,32, 38,42,46	В	IDE Data Bus
ARESET_	127	I (pu)	Device Reset
CS1_, CS0_	85, 83	I (pu)	Chip Select #1,#0
DA0~2	79,78,81	I (pd)	IDE Address #2,#1,#0
INTRQ	65	О	IDE interrupt input
DMACK_	62	I (pu)	IDE Acknowledge
IORDY	60	О	IDE Ready
DIOR_	58	I (pu)	IDE read signal
DIOW_	56	I (pu)	IDE write signal
DMARQ	54	О	IDE request

		ATA	ATAPI Interface (Device mode)
Pin Name	Pin#	Type	Description
DD0~15	44,40,36, 30,26,14, 10,6,8,12, 21,28,32, 38,42,46	В	IDE Data Bus
ARESET_	127	O	Device Reset
CS1_, CS0_	85, 83	О	Chip Select #1,#0
DA0~2	79,78,81	О	IDE Address #2,#1,#0
INTRQ	65	I (pd)	IDE interrupt input
DMACK_	62	О	IDE Acknowledge
IORDY	60	I (pu)	IDE Ready
DIOR_	58	О	IDE read signal
DIOW_	56	О	IDE write signal
DMARQ	54	I (pd)	IDE request

	Miscellaneous Interface						
Pin Name	Pin#	Type	Description				
TEST	23	I (pd)	Test Mode Input				
X2	92	В	Crystal Output				
X1	93	I	Crystal Input				
HRST_	9	I (pu)	Reset Pin				
MODE0,1	19,49	I (pd)	Mode Select 00=> USB to SATA; 10=> eSATA to SATA; 01=> USB to PATA; 11=> SATA to PATA When MODE0,1=11, PIO1=0 is device mode. When MODE0,1=11, PIO1=1 is host mode.				
GPIO0~4	1,61,55,2, 64	B (pu)	General Purpose I/O #0~#4				
PIO0~4	33,34,57, 4,3	B (pd)	Programmable I/O #0~#4				
TXD	24	O (pu)	8051 UART TXD				
RXD	25	B (pu)	8051 UART RXD				
SPDSEL	128	I (pd)	0 => force in 1.5G; 1 => negotiate interface speed with attached device (1.5G or 3G)				
PHYRDY	63	О	SATA PHY ready				
T_ROM	59	I (pd)	0 => Internal ROM; 1 => External ROM				
ROM_A0~14	35,31,27, 15,11,5, 125,123, 122,124, 126,7,13, 22,29	О	ROM Address #0~#14				
ROM_D0~7	37,41,45, 82,84,53, 43,39	B (pd)	ROM Data #0~#7				
NC	80,97,98, 99,100, 101,102, 103	-	No connection				

Notation:

10000		
Type	0	Output
	I	Input
	В	Bi-directional
	B/I	Bi-directional, default input
	B/O	Bi-directional, default output
	P	Power / Ground
	A	Analog

GL830 USB2.0 to SATA Bridge Controller

SO Automatic output low when suspend

pu Internal pull uppd Internal pull down

odpu Open drain with internal pull up

CHAPTER 4 BLOCK DIAGRAM

Figure 4.1 - Block Diagram

CHAPTER 5 FUNCTION DESCRIPTION

5.1 UTM

The USB 2.0 Transceiver Macrocell, it's the analog circuitry that handles the low level USB protocol and signaling, and shifts the clock domain of the data from the USB 2.0 rate to one that is compatible with the general logic.

5.2 SIE

The Serial Interface Engine, which contains the USB PID and address recognition logic, and other sequencing and state machine logic to handle USB packets and transactions.

5.3 EP0/EP3 FIFO and Bulk Buffer

Endpoint 0/3 FIFO: The Control and Interrupt FIFO. It is composed of TX03FIFO and RX03FIFO, with 64-byte FIFO each, and it is used for endpoint 0/3 data transfer.

Bulk Buffer: It is constructed in interleaved architecture and composed by two data buffers which is used to store data transferred between USB host and IDE device.

5.4 Operation Register

It is a register space to store status information and to control the functions of GL830 by 8051.

5.5 SPI Interface

The Serial Peripheral Interface is a serial, synchronous communication protocol. It is compatible with Motorola's SPI specifications.

5.6 PHY Layer

It has elastic buffer and supports receiver detection, data serialization and de-serialization.

5.7 Link Layer

The Link layer transmits and receives frames, transmits primitives based on control signals from the Transport layer, and receives primitives from the Phy layer which are converted to control signals to the Transport layer.

5.8 Transport Layer

The Transport layer constructs Frame Information Structures for transmission and decomposes received Frame Information Structure

5.9 Application Layer

The Application Layer translates the ATA operation onto internal protocols.

CHAPTER 6 ELECTRICAL CHARACTERISTICS

6.1 Absolute Maximum Ratings

Table 6.1 - Maximum Ratings

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{IO}	Digital I/O pad power supply voltage	3.0	3.3	3.6	V
Vcore	Digital power supply voltage	1.62	1.8	1.98	V
V _{AUSB}	Analog power supply voltage for USB PHY	3.0	3.3	3.6	V
V _{ASATA}	Analog power supply voltage for SATA PHY	1.62	1.8	1.98	V
V_{ESD}	Static discharge voltage	4000			V
T_{A}	Ambient Temperature	0		100	°C

6.2 Temperature Conditions

Table 6.2 - Temperature Conditions

Item	Value			
Storage Temperature	-50°C ~ 150 °C			
Operating Temperature	0 °C ~ 70 °C			

6.3 DC Characteristics

6.3.1 I/O Type digital pins

Table 6.3 - I/O Type digital pins

Parameter	Min.	Тур.	Max.	Unit
Current sink @ $V_{OL} = 0.4V$	10.58	14.21	16.87	mA
Current output @ V _{OH} = 2.4V (TTL high)	14.74	27.46	43.0	mA
Falling slew rate at 30 pF loading capacitance	0.56	0.91	1.28	V/ns
Rising slew rate at 30 pF loading capacitance	0.58	0.91	1.72	V/ns
Schmitt trigger low to high threshold point	1.4	1.5	1.6	V
Schmitt trigger low to high threshold point	1.4	1.5	1.6	V
Pad internal pull up resister	37.87K	64.7K	108.11K	Ohms
Pad internal pull down resister	29.85K	59.45K	134.26K	Ohms

6.3.2 USB Interface DC Characteristics

The GL830 conforms to DC characteristics for Universal Serial Bus specification rev. 2.0. Please refer to this specification for more information.

6.3.3 SATA Interface DC Characteristics

The GL830 conforms to DC characteristics for Serial ATA specification rev. 2.6. Please refer to this specification for more information.

6.3.4 Reference Clock Input Requirement

Table 6.6 - Reference Clock Input Requirement

Parameter	Min.	Тур.	Max.	Unit
X1 crystal frequency		25		MHz
X1 cycle time		40		ns

6.3.5 Reference Resistor Requirement

Table 6.7 - Reference Resistor Requirement

Parameter	Min.	Тур.	Max.	Unit
USB Reference Resistor		680		Ohms
SATA Reference Resistor		5.1K		Ohms

6.4 AC Characteristics

6.4.1 USB Interface AC Characteristics

The GL830 conforms to all timing diagrams and specifications for Universal Serial Bus specification rev. 2.0. Please refer to this specification for more information.

6.4.2 SATA Interface AC Characteristics

The GL830 conforms to all timing diagrams and specifications for Serial ATA specification rev. 2.6. Please refer to this specification for more information.

CHAPTER 7 PACKAGE DIMENSION

NOTES :

- DIMENSIONS DI AND EI DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DI AND EI ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- 2. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM 6 DIMENSION BY MORE THAN 0.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07mm.

CONTROL	CONTROL DIMENSIONS ARE IN MILLIMETERS.							
SYMBOL	MI	LLIMET	ER		INCH			
SIMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
A	_	_	1.60	_	_	0.063		
A1	0.05	_	0.15	0.002	_	0.006		
A2	1.35	1.40	1.45	0.053	0.055	0.057		
D	9.	00 BAS	[C	0.3	354 BAS	IC		
Е	9.	00 BAS	[C	0.3	354 BAS	IC		
D1	7.	00 BAS	[C	0.2	276 BAS	IC		
E1	7.	00 BAS	[C	0.2	276 BAS	IC		
D2	5.	50 BASI	[C	0.2	217 BAS	IC		
E2	5.	50 BAS	[C	0.217 BASIC				
R1	0.08	_	_	0.003	_	_		
R2	0.08	_	0.20	0.003	_	0.008		
θ	0°	3.5°	7°	0°	3.5°	7°		
0 1	0°	_	_	0°	_	_		
0 2	11°	12°	13°	11°	12°	13°		
0 3	11°	12°	13°	11°	12°	13°		
С	0.09	_	0.20	0.004	_	0.008		
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1		1.00 REI	?		.039 RE	F		
S	0.20			0.008		_		
b	0.17	0.20	0.27	0.007	0.008	0.011		
e	0.50 BASIC			0.020 BASIC				
TO	LERAN	CES OF	FORM 2	AND PC	SITION			
aaa	0.20			0.008				
bbb	0.20			0.008				
ccc		0.08		0.003				
ddd	0.08			0.003				

Figure 7.1 - GL830 48 Pin LQFP Package

Figure 7.2 - GL830 64 Pin LQFP Package

SYMBOL

S

b

aaa

bbb

ccc

ddd

0.20

0.16

0.40 BASIC

0.20

0.20

0.08

0.07

MIN.

NOTES:

- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- 2. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM b DIMENSION BY MORE THAN 0.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

A1	0.05	_	0.15	0.002	_	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
D	16	.00 BAS	IC	0.630 BASIC			
E	16	.00 BAS	IC	0.630 BASIC			
D1	14	.00 BAS	IC	0.5	551 BAS	IC	
E1	14	.00 BAS	IC	0.5	551 BAS	IC	
D2	12	.40 BAS	IC	0.488 BASIC			
E2	12.40 BASIC			0.488 BASIC			
R1	0.08	_	_	0.003	_	_	
R2	0.08	_	0.20	0.003	_	0.008	
θ	0	3.5	7	0	3.5	7	
θ1	0	_	_	0	_	_	
Θ_2	11	12	13	11	12	13	
0 3	11	12	13	11	12	13	
c	0.09	_	0.20	0.004	_	0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00 REF	7	0	.039 RE	F	

0.23

TOLERANCES OF FORM AND POSITION

0.008

0.005 | 0.006 | 0.009

0.016 BASIC

0.008

0.008

0.003

0.003

CONTROL DIMENSIONS ARE IN MILLIMETERS. MILLIMETER

NOM. MAX.

1.60

INCH

NOM.

MAX.

0.063

Figure 7.3 - GL830 128 Pin LQFP Package

CHAPTER 8 ORDERING INFORMATION

Table 8.1 - Ordering Information

Part Number	Package	Green	Version	Status
GL830-MNGXX	48-pin LQFP	Green Package	XX	Available
GL830-MSGXX	64-pin LQFP	Green Package	XX	Available
GL830-MXGXX	128-pin LQFP	Green Package	XX	Available