Algoritmo di Inferenza

Un algoritmo per decidere se una λ -espressione è ben tipata e per inferirne il tipo automaticamente.

E' diviso in 3 fasi:

- 1. Costruzione dell'albero sintattico della λ -espressione
- 2. Annotazione dell'albero e generazione dei vincoli
 - variabili di tipo: tipo sconosciuto
 - espressioni di tipo: tipo (parzialmente) sconosciuto
 - **vincolo:** relazione di uguaglianza tra tipi espressa nella regola di tipo
- 3. Risoluzione dei vincoli
 - Determinare se il sistema ammette almeno una soluzione
 - Calcolare la soluzione più generale, da cui derivare tutte le altre

Costruzione dell'albero sintattico

Prima di tutto, rappresentiamo la λ -espressione come un **albero.** I nodi **interni** e le **foglie** vengono opportunamente etichettati. Inoltre indichiamo con T[M] l'albero corrispondente alla λ -espressione M

$$T[x] \stackrel{\text{def}}{=} x$$
 foglia

 $T[c] \stackrel{\text{def}}{=} c$ foglia

 $T[\lambda x.M] \stackrel{\text{def}}{=} \frac{\lambda x}{T[M]}$
 $T[M] T[M]$
 $T[M] T[N]$
 $T[M] T[N]$

Esempio di albero sintattico:

"@" è l'operatore invisibile di applicazione

Annotazione e generazione dei vincoli

Ogni nodo dell'albero viene etichettato con una **espressione di tipo** utilizzando una strategia **bottom-up**(dalle foglie verso la radice.)

Espressioni di tipo

Definiamo un insieme $TVar = \{\alpha, \beta, \gamma, \dots\}$ infinito di **variabili di tipo**; α rappresenta un tipo sconosciuto, ancora da determinare.

Sintassi espressioni di tipo

Un **vincolo** è una coppia di espressioni di tipo scritta come $au=\sigma$

Generazione dei vincoli

Per annotare e generare i vincoli, guardiamo le **regole di tipo**, ricordandosi di usare una strategia **BOTTOM-UP!!**

Note
lpha è nuova, avendo cura di usare la stessa $lpha$ per
tutte le occorrenze della stessa x
Altre costanti richiederanno tipi diversi

$$\lambda x: \alpha \to \tau$$
 $\alpha \in A$ a variabile di tipo usata per annotare $\alpha \in A$ in $\alpha \in A$ se $\alpha \in A$ compare in $\alpha \in A$ o è nuova altrimenti

Procedendo dal basso, annoto l'albero T(corpo dell'astrazione) con il tipo τ .

Salendo, incontro l'astrazione che ha tipo della forma $t \to s$. In questo caso, il codominio è τ stesso, mentre il dominio è α . Quindi in sintesi, il tipo di un'astrazione(λx) è dato da $t \to s$ dove t è il tipo dell'argomento(s) e s il tipo del corpo(T)

Secondo la regola di tipo t-app, sappiamo che:

 T_1 è una funzione e quindi ha tipo t o s

 T_2 è l'argomento e quindi ha tipo t che corrisponde al dominio di T_1

Quindi generico il **vincolo** $au=\sigma o lpha$ dove σ è il dominio di T_1 che è uguale al tipo di T_2 mentre lpha è nuova

Ottimizzazione facoltativa del caso precedente che evita l'introduzione di una nuova α Generare il vincolo $\tau_1=\sigma$

Evito l'introduzione di una variabile di tipo nuova.

Sappiamo già che il tipo di T_1 è una o quindi possiamo subito annotare $au_1 o au_2$.

Sappiamo inoltre il tipo del codominio(vedere annotazione di un'astrazione), quindi posso annotare la radice dell'albero con τ_2 .

Generiamo infine il **vincolo** $au_1=\sigma$ visto che il dominio di T_1 deve coincidere con quello di au_2

Possiamo applicare questa annotazione solo se sappiamo già il tipo di T_1

 T_1 deve avere tipo Bool quindi genero il **vincolo** $au_1=$ Bool Inoltre il tipo di T_2 deve essere lo stesso di T_3 quindi genero il **vincolo** $au_2= au_3$

Risoluzione dei vincoli

La fase di generazione dei vincoli genera un **sistema** della forma: $\{ au_i = \sigma_i\}_{1 \le i \le n}$

Bisogna determinare se tale sistema ammetta una soluzione.

Definizione (sostituzione)

Una **sostituzione** θ è una funzione da variabili di tipo a espressioni di tipo. Scriviamo $\theta(\tau)$ per l'espressione ottenuta da τ sostituendo ogni α con $\theta(\alpha)$.

Ricordandoci che una espressione di tipo è della forma $au o \sigma$

Definizione (soluzione)

Dato un sistema di vincoli $\{\tau_i = \sigma_i\}_{1 \leq i \leq n}$ e una sostituzione θ diciamo che θ è **soluzione** (o **unificatore**) del sistema se $\theta(\tau_i) = \theta(\sigma_i)$ per ogni $1 \leq i \leq n$. Diciamo inoltre che θ è l'**unificatore più generale** del sistema se ogni soluzione del sistema è ottenibile componendo θ con un'altra sostituzione.

Algoritmo di risoluzione

Se c'è un vincolo	e	allora
$\tau = \tau$	_	eliminare il vincolo

Banalmente, è un vincolo sempre vero, quindi lo eliminiamo

L'idea di fondo è di arrivare ad un sistema della forma $\alpha_i = \tau_i$ dove α_i è una variabili di tipo e τ_i è un'espressione di tipo.

$$\tau \to \tau' = \sigma \to \sigma' \qquad | \qquad \qquad | \text{rimpiazzare il vincolo} \\ \operatorname{con} \tau = \sigma \ \operatorname{e} \tau' = \sigma' \\$$

Dividiamo il vincolo in due.

I due vincoli risultanti sono dati dall'uguaglianza rispettivamente dei due domini e codomini

$$\begin{array}{c|cccc} \tau \to \sigma = \text{Bool} & - & & & & & & & & \\ \text{O Bool} = \tau \to \sigma & & & & & & & \\ \end{array}$$
 (type error)

Banalmente, una costante come Bool non può essere uguale ad una espressione di tipo/una funzione.

Prendiamo il vincolo d'esempio $\alpha=\alpha\to\beta$. Sono chiaramente due termini diversi, ma il termine a sinistra compare anche in quello a destra, il che è ovviamente impossibile

Se ho due vincoli: $\alpha=\beta$ e $\beta=\gamma$, applicando questa trasformazione avrò: $\alpha=\gamma$ e $\beta=\gamma$ (quest'ultimo vincolo rimane)

Quando nessuna trasformazione diventa applicabile, l'algoritmo termina con **successo.**

Dunque, applicando l'algoritmo ad un sistema di vincoli abbiamo che:

- 1 Prima o poi l'algoritmo fallisce o ha successo.
- 2 Se l'algoritmo fallisce, allora il sistema iniziale è insoddisfacibile.
- 3 Se l'algoritmo ha successo, allora:
 - il sistema finale ha la forma $\{\alpha_i = \rho_i\}_{1 \leq i \leq m}$ in cui ciascuna α_i compare una sola volta nel sistema
 - la sostituzione $\theta \stackrel{\text{def}}{=} \{\alpha_i \mapsto \rho_i\}_{1 \le i \le m}$ è l'unificatore più generale del sistema iniziale, in particolare $\theta(\tau_i) = \theta(\sigma_i)$ per ogni $1 \le i \le n$

Estensioni

Numeri interi

Aggiungiamo alle costanti i numeri interi:

$$c \in \{ ext{FALSE}, ext{TRUE}, 0, 1, \ldots\}$$

e aggiungiamo il tipo Int anche alle espressioni di tipo $au, \sigma := \ldots |\operatorname{Int}|$

Per le **fasi 1 e 2** dell'algoritmo, non cambia niente Per la **fase 3** invece aggiungiamo un'altra condizione di errore: Se c'è un vincolo $\tau \to \sigma = {\tt Int} \ {\tt O} \ {\tt Int} = \tau \to \sigma \ {\tt O} \ {\tt Int} = {\tt Bool} \ {\tt O}$ Bool = Int l'algoritmo fallisce (type error)

Liste

Aggiungiamo alle costanti i costruttori canonici di liste :

$$c \in \{\ldots,[],(:)\}$$

e aggiungiamo il tipo *lista* anche alle espressioni di tipo

$$\tau, \sigma ::= \dots | [\tau]$$

Per la **fase 1** dell'algoritmo, non cambia niente Per la **fase 2 ogni** occorrenza di un costruttore fa uso di **nuove** variabili di tipo

Per la **fase 3** aggiungo un'altra condizione di errore Se c'è un vincolo $[\tau]$ = Bool o Bool = $[\tau]$ o $[\tau]$ = $\sigma_1 \rightarrow \sigma_2$ o ... l'algoritmo fallisce (type error)

Funzioni di libreria

Aggiungiamo alle costanti le funzioni di libreria:

```
c \in \{\ldots, \mathrm{id}, \mathrm{head}, \mathrm{tail}, \ldots\}
```

Nessuna variazione per la fase 1.

Per la **fase 2** invece **ogni** occorrenza di una funzione di libreria fa uso di nuove variabili di tipo

Nessuna variazione per la fase 3

Definizioni ricorsive

f=M dove f può comparire in M

Fase 1: il nome f è trattato come ogni altra variabile

Fase 2: il nome f è trattato come ogni altra variabile, inoltre alla fine dell'annotazione, generare il vincolo $\alpha=\tau$ dove α è la variabile di tipo associata a f mentre τ è l'annotazione di M

Fase 3: nessuna variazione