# On word frequency information and negative evidence in Naïve Bayes text classification

#### **Authors**

Karl-Michael Schneider

#### **Abstract**

Naïve Bayes有很多版本。其中一个版本叫Multi-variate Bernoulli NB(也叫做 binary independence model),因为它用的是binary value嘛,就是看这个词有无出现。还有一个版本是叫multinomial NB,用的是TF来做values,就是说看这个词出现了多少次。经过对比,multinomial NB的性能比较好,有些人认为性能好的原因是用了word frequency的原因。作者认为不是这样子的。他们把word frequency information移除之后,发现multinomial NB性能更好了。作者认为出现这个差异的原因是negative evidence incorporate到model中。因此呢,这篇论文就是为了帮助我们理解这两个NB版本之间的差异。

#### 1 Introduction

在text classification任务上,NB是一个很流行的方法,因为简单且有效。NB有很多不同的版本,主要是看这个document或者说是message是怎么表示的,是TF呢,还是binary。如果这个document是用binary的,就是我们选定vocabulary(假设选了3000个词之类的),然后就看这些词有没有在document中出现过,出现了,那么就是1,没有出现就是0,使用的model是multi-variate Bernoulli NB。因为这个document的组成可以看做是多次的Bernoulli trails的组成。另外一个版本呢,就是document用TF来组成,就是看某个词出现了多少次。然后就用multinomial NB。因为这个document就是相当于多项式分布嘛。

之前的文献中就有人发现multinomial NB的效果会比multi-variate Bernoulli NB好,分类准确率高。很多人认为multinomial NB效果较好的原因是document使用的是TF来表示的,使用TF的话会capture到更多的information,而使用binary value capture到的information不是很多。所以multi-variate Bernoulli NB性能一般。

这篇论文主要是argue multinomial NB性能好的原因不是因为用了TF作为attributes的值导致的。作者呢,把word frequency的information给移除了,multinomial NB性能非但没有降,还提升了。作者呢,还argue说这两个版本之所以性能不一样,是因为处理negative evidence的方式不一样,negative evidence的意思就是document里没有出现的词(假设fixed attributes有3000词,不是说这所有的3000词都在document中有出现的)

# 2 Naïve Bayes

- 2.1 Multi-variate Bernoulli Model
- 2.2 Multinomial Model

## 3 Word frequency information

https://www.bilibili.com/video/BV16Z4y1V7uE/

在之前的文献中,就发现multinomial NB的性能要比Multi-variate Bernoulli NB要好,特别是当 vocabulary size变得更加大的时候。所以很多人就认为multinomial NB性能好的原因是attributes用了 TF。但是作者认为这个word frequency information不是导致multinomial NB性能好的主要原因

于是作者就在三个public的数据集上做了实验,然后把attributes的TF value transform 成  $x_t'=min\{x_t,1\}$ ,其实就是变成了binary values。我们来看看效果如何,因为有三个不同的数据集,所以就为我们展示了三幅图





我们会发现,把TF换成binary value之后,multinomial NB效果更佳。作者选择vocabulary size的方法是通过mutual information来选择的(这里我们当做information gain来看,差不多的意思)。我们发现vocabulary size其实也是有一定的影响的。然后我们发现,两个model的差距在vocabulary size小的时候,差距更大。

# **4 Negative evidence**

为什么multinomial NB会比multi-variate Bernoulli NB效果要好呢?作者用其中一个数据集(ling-spam)作为学习参考。作者呢,把ling class recall和spam class recall给我们画出来了,我们看看,如下图

这个是ling-class recall,recall就是求全率,希望把所有的ling-class给找出来,这里假设spam是positive,毕竟是要找spam email。所以这里的ling-class recall就是  $\frac{TN}{TN+FP}$ .



然后我们再看spam-class recall。我们希望把所有的spam-class给找出来,所以就是 $\frac{TP}{TP+FN}$ .



我们对比会发现Multi-variate Bernoulli NB有着较高的ling-class recall但是spam recall却很低。而 multinomial NB却相对比较平衡,两者都差不多。作者认为造成multi-variate Bernoulli NB相差比较大的一个原因是数据集的问题。我们来看下ling-spam dataset的构成,我们可以看到,spam email占的比例较低。然后我们再看下vocabulary,只有8.3%的词是没有出现在Ling class的,然而spam email中,却有81.2%的词是没出现的。

|            | Total      | Ling                | Spam                |
|------------|------------|---------------------|---------------------|
| Documents  | 2893       | 2412 (83.4%)        | 481 (16.6%)         |
| Vocabulary | $59,\!829$ | $54,860 \ (91.7\%)$ | $11,250 \ (18.8\%)$ |

我们回忆一下multi-variate Bernoulli distribution,它的公式如下

$$p(\overrightarrow{x}|c) = \prod_{i=1}^{m} p(t_i|c)^{x_i} (1 - p(t_i|c))^{(1-x_i)}$$

我们可以看到每一个词都是要去算概率的,不管这个词有无出现。如果出现了(positive evidence),其概率为 $p(t_i|c)^{x_i}$ , 如果没有出现(negative evidence) 其概率为 $(1-p(t_i|c))^{(1-x_i)}$ .

我们还是得看下ling-spam dataset的average distribution,如下表所示,vocabulary 那一列指的是vocabulary size。这张表为我们展示的是平均下来每个document有多少个distinct word和一个单词平均出现在多少个document中

| Vocabulary | Total |           | Ling  |           | Spam  |           |
|------------|-------|-----------|-------|-----------|-------|-----------|
|            | Words | Documents | Words | Documents | Words | Documents |
| Full       | 226.5 | 11.0      | 226.9 | 9.1       | 224.5 | 1.8       |
| MI 5000    | 138.5 | 80.2      | 133.8 | 64.5      | 162.5 | 15.6      |
| MI 500     | 44.0  | 254.5     | 39.6  | 190.9     | 66.2  | 63.7      |

我们可以看到平均每个文档,大约有226.5个distinct words,大约占总词汇的0.38%。每个词平均出现在11个document中。如果仅仅只是用mutual information 选出来的5000个词,那么平均下来每个document大约有138.5个词,约占2.77%。然后每个词也平均出现在80.2个document中。如果我们再减少到500个词,distinct word的比例增加到了8.8%, (44 out of 500). 然后,我们仍旧可以知道,还是有大部分的词是没有出现在一个document中的。也就是说不管是TF还是binary value,很多位置的值还是0的。

这个发现表明, $p(\overrightarrow{x}|c)$ 的概率极大可能是基于没有出现的词的概率的,也就是说,这个文档的分类要很大地依赖于negative evidence,也就是文档中没有出现的词。如果一篇空文档会出现什么样的概率呢?如下表所示

| Vocabulary | Total            | Ling      | Spam      |
|------------|------------------|-----------|-----------|
| Full       | 3.21e-137        | 1.29e-131 | 5.2e-174  |
| MI 5000    | $6.44e	ext{-}78$ | 8.4e-76   | 1.45e-96  |
| MI 500     | 5.21e-24         | 1.41e-22  | 3.59 e-37 |

我们可以看到,如果是空文档,那么是spam的概率很低。都是划分到ling-class中。这可以有如下解释,ling-class占的词比较多,毕竟占80%多呢。但是,ling-class的distinct word却不比spam-class 的distinct占比高,特别是当vocabulary size减到5000,500的时候。因此呢,在ling-class的每一个词的概率都是低于spam class的。因为Multi-variate Bernoulli NB中的p(t|c)的计算方式如下

$$p(t|c) = rac{1+M_{t,c}}{2+M_c}$$

这里, $M_{t,c}$ 就是指类别c中包含token t 的message有多少个。 $M_c$ 代表的意思就是类别c一共有多少个。在ling-class中, $M_c$ 比较大,但是 $M_{t,c}$ 比较小。在一个document在被划分的时候,也就是算概率的时候,大多数的词都是negative evidence的,都是没在这个document出现过的。因此呢,划分到ling-class的时候,negative evidence会有一定的主导,因为条件概率会更低一些。即使p(t|c)这个先验概率可以忽略不计,但是很多的词连乘之后,效果就显而易见了。

我们可以可视化negative evidence的impact,其实就是可视化每个词的weight,如下图所示,分别可视化当选了500个词和5000个词后的情况。x轴是spam class的attributes,这个attributes是没有出现在spam document中的,然后把每一个词的weight都给可视化出来。y轴就是ling-class 的attributes,也是没有出现在ling document中的。至于计算weight的方法是  $p(t|c)=\frac{1+M_{t,c}}{2+M_c}$ .

#### 下图是500词的





这两幅图给我们展示了multi-variate Bernoulli NB给negative evidence多少weight。我们可以发现所有选择出来的词通常要么是属于Ling-class的negative evidence,要么是属于Spam-class 的negative evidence,(这里的意思是更偏向于出现在哪一个class),因为要么在对角线以上(更偏向出现在spam-class),要么就在对角线以下(更偏向出现在ling-class)。这张图呢,越小的value表示这个evidence越强烈,也就表示几乎没有出现在document中。我们可以看到对角线以上的数量比较多,说明很多词就不怎么出现在Ling-class document中。

### 5 Discussion

之前就有文献证明multinomial NB其实是Naïve Bayes Poisson model改编过来的,需要assume 这个document length跟class无关,也就是相互独立。在Naïve Bayes Poisson model中,每一个词,token  $t_i$ 都会用一个值来表示,取非负数值来表示这个词在document出现的次数,因此是直接把词频incorporate到model中,但是这个token,也就是这个特征里所有的值,得服从Poisson distribution。当然了,token与token之间也是independence的,这是NB的正常的assumption啦。但是,之前的文献中就有发现NB Poisson model并没有表现地比multinomial NB要好。这个multinomial NB也是assume 这个词频是服从Poisson distribution的。

那为啥multinomial NB把词频的attributes换成binary之后,性能提升了呢?之前就有文献讨论 documents的词的分布,发现呢,一个词在同一篇document中第二次出现的概率会大于一个词只出现一次的概率。Poisson distribution不能在这种情况中表现好。还有其他文献把更为复杂的分布(mixture of Poisson distribution)给应用在模型中,这样更贴合词语在document中的分布。然而,也有文献表示把词频做一个简单的transformation,就是 $x_t' = log(d+x_t)$ ,就足以提升multinomial NB的分类性能。这种简单的变换能够把大的词频变小,因此在multinomial NB中,就是documents中如果出现很多相同的词,这个document得到的probability也会高一些(因为小数的次方,次方越大,值越小。把这个文档中的经常出现的词给降低了,整体的值就不会变得很小,所以才说是higher probability)。

作者把TF改成binary之后,分类性能也提升上去了。使用TF的话,主要是不服从Poisson distribution,导致性能变差。multinomial TF需要assume每个词的出现是independence的,但这是不可能的。就像刚刚说的,一个词在同一篇document中第二次出现的概率会大于一个词只出现一次的概率。就是这个词出现了一次,就还有可能继续出现,且概率很大。因此呢,multinomial TF对于处理这样的data效果是很差的。但是改成binary之后,会减小这种影响。

那么,multi-variate Bernoulli NB和multinomial NB的区别在哪呢?Multi-variate对positive 和 negative evidence都是一样处理,可以说是没有区别对待。但是multinomial对每个词,positive还是 negative的对待方式是不一样的,根据词频变化而变化。如果一个词没有出现的话,它是没有直接 contribute 到  $p(\overrightarrow{x}|c)$ ,而且,它是0次方,不怎么有影响。这样子计算的话,negative evidence的影响

会小于在multi-variate Bernoulli NB中negative evidence的影响。

# **6 Conclusion**

这篇论文是主要是对比两个model,使得我们更加理解这两个model。multinomial NB会比multivariate Bernoulli NB性能好不是因为TF的原因,而是因为对negative evidence的处理方式不同。事实上,只要经过一些小小的变化,比如说加log,或者变成binary,都能提升性能。

我们发现multi-variate Bernoulli NB中大部分的evidence都是negative evidence,而且,不同的 class,negative evidence的分布也很不均衡,这也就导致multivariate Bernoulli NB更容易倾向于某一个class因为这个model给negative evidence的weight太高,导致正确分类率不高。