Quiz

Topological Gates

Q1. How do you write the following braiding sequence as a Python list for the course's simulator?

$$\sigma_1 \sigma_2^{-1} \sigma_1^{-1} \sigma_2$$

- 1. [[2, 1], [1, -1], [2, -1], [1, 1]] (True)
- 2. [[1, 1], [2, -1], [1, -1], [2, 1]]
- 3. [[1, 2], [1, 1], [-1, 2], [1, 1]]
- 4. [[1, 1], [1, 2], [-1, 1], [1, 2]]

Q2. What is the inverse of this braiding sequence?

$$\sigma_1 \sigma_2^{-1} \sigma_1^{-1} \sigma_2$$

- 1. $\sigma_2^{-1} \sigma_1 \sigma_2 \sigma_1^{-1}$ (True)
- 2. $\sigma_1 \sigma_2^{-1} \sigma_1^{-1} \sigma_2$
- $3. \ \sigma_1^{-1}\sigma_2\sigma_1\sigma_2^{-1}$
- 4. $\sigma_1 \sigma_2 \sigma_1 \sigma_2$

Q3. σ_1 is:

- 1. the braiding between anyon 1 and anyon 2 in the clockwise direction. (True)
- 2. the braiding between anyon 1 and anyon 2 in the counterclockwise direction.
- 3. the braiding between anyon 2 and anyon 3 in the clockwise direction.
- 4. the braiding between anyon 2 and anyon 3 in the counterclockwise direction.

Q4. σ_3^{-1} is:

- 1. the braiding between anyon 3 and anyon 4 in the counterclockwise direction. (True)
- 2. the braiding between anyon 3 and anyon 4 in the clockwise direction.
- 3. the braiding between anyon 2 and anyon 3 in the clockwise direction.
- 4. the braiding between anyon 2 and anyon 3 in the counterclockwise direction.

Q5. What could we say about braiding operations?

(Check The correct statements)

- 1. Braiding operator can be represented as a unitary matrix. (True)
- 2. It is possible to braid anyon 1 with anyon 3.
- 3. Braiding operators are self-adjoint matrices $(\sigma_i = \sigma_i^{\dagger})$.
- 4. Given 4 anyons, there are 6 elementary braiding operations. (True)

Q6. Check The correct statements:

- 1. Fibonacci braiding operations are universal.(True)
- 2. We can approximate a Hadamard gate using 3 Fibonacci anyons. (True)
- 3. We cannot approximate T gate using 3 Fibonacci anyons.
- 4. We cannot approximate the F matrix using 3 Fibonacci anyons.

Q7. Which one of these relations is the Yang-Baxter relation?

- 1. $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$ (True)
- 2. $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$
- 3. $\sigma_1 = F \sigma_2 F^{\dagger}$
- 4. $\sigma_1^{10} = 1$

Q8. What is the periodicity of Fibonacci braiding operations?

- 1. $\sigma_1^{10} = \sigma_2^{10} = I$ (True)
- 2. $\sigma_1^5 = \sigma_2^5 = I$
- 3. $\sigma_1^2 = \sigma_2^2 = I$
- 4. $\sigma_1^9 = \sigma_2^9 = I$

Q9. Which one of these algorithms can approximate a quantum gate in a polylogarithmic time: $O(\log^c(1/\epsilon))$?

- 1. Solovay-Kitaev algorithm. (True)
- 2. Brute-force algorithm.
- 3. Machine Learning algorithm.
- 4. Systematic algorithm.

Q10. $\sigma_1 \sigma_2 \sigma_1^2 \sigma_2 \sigma_1 =$

- 1. $\sigma_2 \sigma_1 \sigma_2^2 \sigma_1 \sigma_2$.(True)
- 2. $\sigma_1^{-1}\sigma_2^{-1}\sigma_1^{-2}\sigma_2^{-1}\sigma_1^{-1}$.
- 3. $\left(\sigma_1\sigma_2\sigma_1^2\sigma_2\sigma_1\right)^{10}$
- 4. $\sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_1$

Q11. $\sigma_1 \sigma_2 \sigma_1 \sigma_2 =$

- 1. $F\sigma_2\sigma_1\sigma_2\sigma_1F^{\dagger}$.(True)
- 2. $\sigma_2 \sigma_1 \sigma_2 \sigma_1$.
- 3. $(\sigma_1 \sigma_2 \sigma_1 \sigma_2)^{10}$
- 4. $(\sigma_1 \sigma_2)^2$

Q12. Check The correct statements:

- 1. Weaving sequence is another name for braiding sequence.
- 2. Weaving sequences are universal, just like braiding sequences. (True)
- 3. Given 3 anyons, a weaving sequence is a combination of $\sigma_1^2,\,\sigma_2^2$ and their inverses. (True)
- 4. Weaving sequences are easier to implement in experiment than braiding sequences.(True)