

Matija Hamer

UPORABA LIDAR TEHNOLOGIJE ZA SKENIRANJE OBALE I ANALIZU PROMJENA STANIŠTA ZAŠTIĆENE VRSTE KAMOTOČCA (*Pholas dactylus*) UZ KORIŠTENJE PROGRAMA CLOUDCOMPARE

Projektni rad

JMBAG: 0246075353, redoviti student

Studijski smjer: Informatika Kolegij: Razvoj IT Rješenja

Mentor: doc. dr. sc. Nikola Tanković Komentor: prof. dr. sc. Bojan Hamer

Sadržaj:

1
1
4
4
4
6
8
8
9
9
.10
.11
.12
. 15
.16

1. UVOD

Suvremene tehnologije omogućuju precizno mapiranje i modeliranje površina, a s novijim verzijama iPhone uređajima, takve mogućnosti postale su dostupne i široj javnosti. U ovom projektu smo istražili mogućnost Lidar funkcije mobilnog uređaja iPhone (ver. Pro 12 – 15) za 3D skeniranje obale te analizu promjena staništa zaštićene vrste kamotočca (*Pholas dactylus*) kroz vrijeme koristeći program CloudCompare.

1.1. Zaštićena vrsta školjkaša - kamotočac Pholas dactylus

U sklopu aktivnosti sufinancirane od strane INA Zeleni pojas 2022. godine postavljen je informativni pano u maloj luci Specijalne bolnice za ortopediju i rehabilitaciju "Martin Horvat" u svrhu informiranje javnosti i posjetitelja o lokaciji zaštićene i ugrožene vrste školjkaša kamotočca (*Pholas dactylus*) (**Slika 1-3**). Projekt obilježavanja i zaštite lokalnog staništa je pokrenula Talijanska srednja škola Rovinj-Rovigno u suradnji sa Strukovnom školom Eugen Kumičić Rovinj, Javnom ustanovom Natura Histrica Istarske županije, gradom Rovinjom i Centrom za istraživanje mora Instituta Ruđer Bošković (Zeleni pojas INA 2023)

Slika 1. Javno predstavljanje informativnog panoa u maloj luci Specijalne bolnice za ortopediju i rehabilitaciju "Martin Horvat" u svrhu informiranje javnosti i posjetitelja o lokaciji zaštićene i ugrožene vrste školjkaša kamotočca (*Pholas dactylus*) dana 26.06.2023.

Slika 2. Vanjski izgled ljušture i žive jedinke kamotočca.

Slika 3. Karta rovinjskog priobalja s označenom lokacijom staništa zaštićene vrste kamotočca *Pholas dactylus* u zoni plime i oseka u maloj lučici specijalne ortopedske bolnice Martin Horvat, Rovinj.

Zbog neposredne blizine marine i turističkih plaža koje se nadohranjuju riječnim šljunkom, ova jedinstvena lokacija s staništem zaštićene vrste školjkaša biva svake godine tijekom jakih valova za vrijeme oluja zatrpana materijalom s susjednih plaža. Tijekom jedne organizirane akcija uklanjanja nanesenog materijala, pojavila se ideja da pokušamo 3D mapirati stanište i kvantificirati volumen nanešenog materijala u svrhu utvrđivanja ugroženosti i predlaganja mjera daljnje zaštite kamotočca na ovoj lokaciji. (Slika 3).

Slika 4. Uklanjanje nanesenog materijala na lokaciju staništa zaštićene vrste kamotočca tijekom 2022. godine.

1.2. Tehnologija LiDAR na iPhoneu

LiDAR (engl. *Light Detection and Ranging*) senzor na iPhoneu koristi laserske impulse za mjerenje udaljenosti do objekata i stvaranje trodimenzionalnih (3D) modela (**Slika 5**). Ovaj senzor, ugrađen u modele kao što su iPhone 12 Pro i noviji, omogućuje visoku preciznost u mapiranju okoliša. LiDAR na ovom Apple mobilnom uređaju radi u kombinaciji s ugrađenom kamerom i naprednim algoritmima za obradu podataka, pružajući detaljne i približno točne modele objekte i površina.

Slika 5. Prikaz LiDAR senzora na iPhoneu i vizualizacija snimanja senzora.

1.3. Metodologija skeniranja obale

- 1. Priprema: Odabir lokacije i granica područja na obali koja će se skenirati i definiranje točnih koordinata za ponovljena mjerenja. Posebna pažnja se posvećuje području staništa kamotočca u zoni plime i oseke.
- 2. Skeniranje: Korištenje aplikacije koja podržava LiDAR skeniranje na iPhoneu (npr. 3D Scanner App, Polycam) za stvaranje 3D modela obale.
- 3. Prijenos podataka: Eksportiranje skeniranih podataka u kompatibilan format za daljnju obradu (npr. .ply, .obj, .xyz).

2. Kamotočac (Pholas dactylus)

Kamotočac *Pholas dactylus* Linnaeus, 1758 (red Myoida, porodica Pholadidae), školjkaš je koji se ubušuje u podlogu. Ljušture su tanke i krhke, približno eliptičnog oblika, s kljunovitim prednjim krajem. Izvana su tamno bijele ili sive boje, a periostracum žućkast i često bezbojan (**Slika 6**). Naraste do 10-12 cm. Izdužene ljušture su otvorene u trbušnom dijelu, prekrivene strijama rasta i zubima; ova hrapavost zadržava sitne čestice supstrata koje im daju boju morskog dna. Tijelo životinje izvana pokazuje samo dva sifona kojima filtrira morsku vodu. Sifoni su spojeni i najmanje jedan do dva puta duži od školjke,

bijele do svijetle boje bjelokosti. Kamotočac ima fosforescentna svojstva, izlučuje svjetleću sluz (luciferin) te obrisi životinje svijetle zeleno-plavim svjetlom u mraku. Vrsta je rasprostranjena u Sredozemlju i istočnom Atlantiku. Naseljava mediolitoral i plitki sublitoral, a može se naći na i dubinama do 35 m. Obitava u širokom rasponu supstrata, uključujući razne meke stijene poput pješčenjaka, gline, treseta i vrlo rijetko u potopljenom drvu. Živi u kanalima dubokim od 40 do 50 cm (**Slika 6**).

Slika 6. Crtež mehaničkog bušenja kamotočca u glinenoj podlozi (lijevo) i fotografija sifona kamotočca koji vire iz podloge prekrivene sitnim šljunkom (desno).

Kamotočac *P. dactylus* je nekada bio rasprostranjen duž istočne i zapadne jadranske obale. Recentno se populacija ove vrste neprestano smanjuje uslijed antropogenog pritiska: izlov radi upotrebe za ljudsku prehranu, korištenja u svrhu ribarskih mamca, intervencija u priobalju i zagađenja okoliša. Pritisak je toliki da ga IUCN uvrstio na popis ranjivih vrsta. Kamotočac je također zaštićen Bernskom Konvencijom (1979) i Barcelonskom Konvencijom za Sredozemno more (1995). Kamotočac kao i daleko poznatiji prstac *Lythophaga lithophaga* (Lynnaeus, 1758) su visoko cijenjene delicije i jedini način da se izvade iz bušotina je potpuno uništavanje stijene, podloge, odnosno obale u koje su ubušeni. Kamotočac kao i prstac su zakonom zaštićene vrste školjkaša u RH. Zakonom o zaštiti prirode (NN 80/13, 15/18, 14/19, 127/19) vrste su zaštićene u kategoriji strogo zaštićenih divljih vrsta.

Uz obale grada Rovinja Kamotočac je pronađen samo u maloj luci Specijalne bolnice za ortopediju i rehabilitaciju "Martin Horvat" u zoni plime i oseke (intertidal) s kompaktnom crvenom glinovitom podlogom (**Slika 3**). Zadnjih je nekoliko godinama zabilježeno konstantno smanjenje staništa s glinovitom površinom zbog suspendiranih čestica te nanosa pijeska i šljunka s lokalne plaže, koji su se taložili u cul de sac lučice, iznad postojeće populacije kamotočca. S obzirom na ugroženost, ograničenu lokalnu rasprostranjenost i stalno smanjenje staništa jedine preostale kolonije kamotočca (**Slika 7**).

Slika 7. Obale male luke s staništem zaštićene vrste kamotočca

"Prisutnost kamotočca Pholas dactylus u obalnom području Rovinja" bio je uz edukaciju učenika, informirati i senzibilizirati lokalnu zajednicu, očuvati i proširiti stanište mehaničkim uklanjanjem materijala (šljunka), kako bi se povećala raspoloživa glinena podloga za prihvat ličinki kamotočca novih generacija.

3. 3d Scanner App

Pretragom dostupnih alata za 3D skeniranje malih objekata-predmeta, uvidio sam da moj mobitel iPhone 15 pro (Apple corp., USA) zadovoljava uvjete postavljenog zadatka. U Appstore trgovini dostupno je više programa koji koriste LiDAR senzor za više-manje uspješno 3D skeniranje predmeta, objekata i površina srednje do velike veličine.

Proučavanjem recenzija i dostupne literature, izabrao sam aplikaciju 3d Scanner App. (https://apps.apple.com/hr/app/3d-scanner-app/id1419913995) (Slika 8).

Slika 8. 3d Scanner App™ aplikacija.

3D Scanner App™ je aplikacija razvijena za iOS uređaje koja može koristiti LiDAR tehnologiju za stvaranje trodimenzionalnih (3D) modela objekata i prostora, omogućujući korisnicima skeniranje i mapiranje okoline s visokom preciznošću.

Aplikacija uključuje dizajn s jednostavnim i intuitivnim korisničkim sučeljem, što olakšava korištenje čak i korisnicima koji nisu stručnjaci za tehnologiju. Korisnici mogu lako upravljati procesom skeniranja, pregledavati, uređivati i izvoziti modele.

Izvoziti 3D modele je moguće u različitim formatima kao što su .ply, .obj, .stl, .xyz, i drugi. Što je korisno za daljnju obradu i analizu podataka u specijaliziranim softverima poput CloudCompare.

U svoje svrhe sam izvozio skenirane scene u point cloud obliku, srednje gustoće i formata XYZ sa bojom. Zbog dobrog omjera kvalitete, preciznosti i performansa.

4. Program CloudCompare

Za analizu i 3D usporedbu obale i staništa kamotočca, kao i procjenu ugroženosti zbog nanosa i utvrđivanje razlika, odnosno prikazivanje predjela i količine nanosa koristio sam besplatan (GNU/GPL licenca) program ClaudCompare za Windows operativni sustav (Slika 9).

Slika 9. Službena web stranica Projekta CloudCompare koji omogućava usporedbu različitih 3D objekata (https://www.cloudcompare.org/).

Nakon učitavanja .xyz datoteka u aplikaciju, skenirane lokacije staništa kamotočca (11.11.2023 i 30.5.2024) su pripremljene za usporedbu:

- Izrezivanjem viška plohe-područja izvan lučice i potopljenog djela obale,
- Postavljanjem broja točaka,
- Uključivanjem parametara,
- Sama usporedba i
- Završni prikaz razlike nanosa materijala,
- Izračun nanesenog materijala obzirom na početno stanje.

5. Računalo

Za obradu je korišteno poslovno računalo sa i7 procesorom (Intel), 32 gigabajta ram memorije, GTX 760 (Nvidia) grafičkom karticom i Windows 11 (Microsoft) operacijskim sustavom.

6. Rezultati

U svrhu određivanja nanosa materijala s susjedne plaže na istraživano područje staništa zaštićene vrste kamotočca, odrađeno je 3D skeniranje obale početnog (11.11.2023.) (**Slika 10 i 11**) i završnog stanja obale (30.5.2024.) (**Slika 12 i 13**) tijekom oseke i povoljnih uvjeta (sunčano vrijeme, bez valova i vjetra).

6.1. Početno stanje (11.11.2023.)

Slika 10. 3D skenirana (iPhone) obala tijekom oseke i povoljnih vremenskih uvjeta dana 11.11.2023. (početno stanje).

Slika 11. Prikaz 3D skenirane obale (Cloud compare) u odnosu pa zamišljenu horizontalnu plohu 11.11.2023. (početno stanje).

6.2. Završno stanje (30.5.2024.)

Slika 12. 3D skenirana obala tijekom oseke i povoljnih vremenskih uvjeta dana 30.5.2024. (završno stanje).

Slika 13. Prikaz 3D skenirane obala u odnosu pa zamišljenu horizontalnu plohu 30.5.2024. (početno stanje).

6.3. Provjera mjernih jedinica iPhone i Cloud Compare programa

Provjera i usporedba jedinica mjerenja 3d Scan App (Lidar iPhone) i Cloud Compare programa napravljena je ozačavanjem iste površine pomoću tri točke u aplikaciji za iPhone (npr. $20,5 \times 12,3 \times 20,7 \text{ m} = 120,9 \text{ m}^2$) i PC-u ($20,40 \times 20,72 \times 12,37 \text{ m} = 121,33 \text{ m}^2$) (**Slika 14**).

Slika 14. Usporedba jedinica (udaljenosti i površine) prikaza aplikacije 3d Scan App i Claud compare programa.

Utvrđeno je da jedinice dobivene nakon Cloud compare (PC) analize razlike visne nanosa i volumena šljunka odgovaraju stvarnim jedinicama izmjerenim *in situ* 1:1 (cm, m, cm², m², odnosno cm³, m³). Mala razlika u površini 120,9 m² vs 121,33 m² je rezultat ručnog-vizualnog označavanja mjernih točki.

6.4. Određivanje nanesenog materijala

Usporedbom početnog stanja (3D oblika) istraživanog područja i završnog stanja (11.11.2023. vs 30.5.2024.) utvrđena je razlika u volumenu na odabranom transektu – profilu (**Slika 15**) i ukupnoj površini obalnog djela male lučice (**Slika 16**).

Slika 15. Utvrđene promjene na području staništa kamotočca (11.11.2023. vs 30.5.2024.) odabranog profila duljine 13,0 m.

Slika 16. Utvrđene promjene na istraživanom području staništa kamotočca (11.11.2023. vs 30.5.2024.) s prikazom razlika: slika gore 0 – 25 cm; slika dolje 5 - 25 cm.

3D analiza obale je omogućila identifikaciju područja (**Slika 16**) na kojima se nanesen materijal značajnije nakuplja (zeleno – narančasto obojeno područje).

Slika 17. Histogram razlike volumena uspoređenih površina početnog i završnog stanja obale s utvrđenom maksimalnom razlikom visine od <0,3 m.

Cloud compare analizom uspoređenih površina i volumena početnog i završnog stanja obale (**Slika 16 i 17**) utvrđena je razlika, pozitivni nanos materijala s područjima maksimalne visine od <0,3 m i ukupnim volumenom 4063 222 cm³ odnosno ca 4,06 m³.

7. Zaključak

Upotreba LIDAR tehnologije pomoću iPhone uređaja (iPhone >12) i odabrane aplikacije (3d scanner App) za *in situ* mjerenja i skeniranje 3d oblika obale predstavlja zadovoljavajuću metodologiju za praćenje promjena u okolišu.

Cloud compare analiza uspoređenog početnog (11.11.2023.) i završnog (30.05.2024.) stanja obale staništa kamotočca u maloj lučici pokazala je razliku, tj. pozitivni nanos materijala s susjedne plaže, maksimalne visine od <0,3 m i ukupnim volumenom ca 4,06 m³.

Korištenjem programa CloudCompare za analizu 3d podataka moguće je dobiti detaljan uvid u dinamiku obalnog područja i identificirati ključne promjene koje mogu utjecati na stanište zaštićene vrste kamotočca (*Pholas dactylus*).

8. Literatura

Apple Inc. - iPhone Technical Specifications. (https://www.apple.com/iphone-15-pro/specs/) (pristupljeno dana 20.07.2024.)

CloudCompare - 3D point cloud and mesh processing software. (https://www.danielgm.net/cc/) (pristupljeno dana 20.07.2024.)

Rutkowski, W.; Lipecki, T. 2023. Use of the iPhone 13 Pro LiDAR Scanner for Inspection and Measurement in the Mineshaft Sinking Process. Remote Sens. 15,5089. https://doi.org/10.3390/ rs15215089

Wikipedia https://en.wikipedia.org/wiki/Pholas (pristupljeno dana 20.07.2024.)

World Register of Marine Species (WORMS) https://www.marinespecies.org/aphia.php?p=taxdetails&id=138343 (pristupljeno dana 20.07.2024.)

https://zelenipojas.ina.hr/prisutnost-kamotocca-pholas-dactylus-u-obalnom-podrucju-rovinja/ (pristupljeno dana 20.07.2024.)

https://www.istra.hr/hr/dozivljaji/zelena-istra/zivotinjski-svijet/zasticeni-skoljkasi-istarskog-podmorja?chapter=4 (pristupljeno dana 20.07.2024.)

