Basics of Wawelet Transformation

·
-> Real would data or signals frequently exhibits
-> Real would data or signals frequently exhibits slowly changing trends or oscillations were puntuated with transitions.
ounterated with transitions.
wanted A North May 14 14
-> On the other hand images have smooth regions
-> On the other hand crimpes in contrast-
interupted by cages
Sudden sharper are often
parts of data. Doorn factor
un information They product.
The fourier transformation is powerful tool for data analysis. However, it doesn't supresent about
analysis. 11000000
olliciently
He again for that is that the towner in
- in sues which
The reason for that is that the fourier transformation The reason for that is that the fourier transformation Represent data as a sum of sine waves which are not localized in the time or space
and an analysis and an an and an and and and and and an
111 + MM = MM/M
These sing waves oscillates forever.

> Therefore to accurately analyze signals & images.

That have about changes.

→ We need to use new class of fun that are well localized in time & frequency. This bring us to the topic of Wavelets.

-> Wavelet is a stapidly decaying wave like oscillation that has zero mean.

Unlike Sinsusoids which extends to a a waveled exists for a finite duration.

-> Wandet some in different sizes I shapes.

The availability of wide range of wavelets is a key strength of wavelet analysis

To choose the right wavelet you will need to consider the application you will use it for

Morlet

Daubechies

frequency

which corresponds to a high

frequency.

Scanned by CamS

- -> A stretched wowelet helps in capturing the slowly vaujing changes in a signals. while compressed wavelet helps in capturing the aboupt changes.
- (i) Shifting: Shifting a would simply means delaying or advancing the onset & H wavelet along the length of the signal.
 - -> A Shifted wavelet represented using this notation means that the wavelet is shifted a centered at K. $\phi(t-K)$
- -> We need to shift wavelet to align with.

 the feature we are looking for a signal.

Two Major Transforms in Wouldt Analysis.

- 1 Continous Wavelet Transform
- 2) Discrete Lawelet Transform.
- → These transforms differ based on how the wavelets are scaled & shifted.

- 2 Discrete Wavelet Analysis.
 - > The key applications for discrete would analysis are denoising & compression of signals & images.
 - -> Wavelet towns form docomposes a signal into a set of basis transform functions. These basis fun are called wavelets.
 - -> Discrete Wavelet Transform (DWT), which transforms a discrete time signal to a discrete wavelet representation.
 - \rightarrow DNT convects an image series $x_0, x_1, x_2...x_m$ into one high pass wouldt co-efficient series ℓ one low pass would co-efficient series ℓ on

$$H_i = \sum_{m=0}^{K-1} \chi_{2i-m} \cdot S_m(z)$$

$$Li = \sum_{m=0}^{k-1} 2(2i-m \cdot t_m(2))$$

where, Sm(Z) & tm(Z) are called Wavelet filters, K is the length of the filter & $i=0,1-\frac{n}{2}$

-> Such transformation will be applied ne cursively on the low-pass series until the desired no. iteration is mached.