UE Plan d'expérience et analyse d'incertitude TP 1 : les fonctions de covariance de Matérn et la simulation de processus gaussiens

Enseignant: François Bachoc

Language suggéré: R.

1 Les fonctions de covariance de Matérn

Durant ce TP, on travaille sur [0,1] (d=1). On définit les fonctions de covariance stationnaires suivantes. Ces fonctions dépendent de x et sont paramétrées par $\sigma^2 \geq 0$ appelé paramètre de variance et $\ell > 0$, appelé longueur de corrélation.

nom	expression
exponentielle	$\sigma^2 e^{-rac{ x }{\ell}}$
Matérn $\frac{3}{2}$	$\sigma^2(1+\sqrt{6}\frac{ x }{\ell})e^{-\sqrt{6}\frac{ x }{\ell}}$
Matérn $\frac{5}{2}$	$\sigma^{2}(1+\sqrt{10}\frac{ x }{\ell}+\frac{10}{3}\frac{ x ^{2}}{\ell^{2}})e^{-\sqrt{10}\frac{ x }{\ell}}$
Gaussienne	$\sigma^2 e^{-rac{x^2}{\ell^2}}$

Montrer que (lorsque $\sigma^2 = 1$ et $\ell = 1$)

- La fonction de covariance exponentielle (en tant que fonction de \mathbb{R} dans \mathbb{R}) est continue mais n'est pas deux fois dérivable.
- La fonction de covariance Matérn 3/2 (en tant que fonction de \mathbb{R} dans \mathbb{R}) est deux fois dérivable mais n'est pas quatre fois dérivable.
- La fonction de covariance gaussienne (en tant que fonction de \mathbb{R} dans \mathbb{R}) est infiniment dérivable.

On admet que la fonction de covariance Matérn 5/2 (en tant que fonction de \mathbb{R} dans \mathbb{R}) est quatre fois dérivable mais n'est pas six fois dérivable.

2 Simulation de processus gaussiens

On considère une processus gaussien Z sur [0,1] et un ensemble de points $\{x_1,...,x_n\}$. On veut simuler le vecteur gaussien $z:=(Z(x_1),...,Z(x_n))^t$. Ce vecteur à un vecteur moyenne m et une matrice de covariance Σ : $\Sigma=K^tK$. Soit v un vecteur aléatoire de taille $n\times 1$ composé de n variables gaussiennes centrées réduites indépendantes. Montrer que le vecteur $m+K^tv$ à la même loi que z. Notons, pour la suite, que K^t peut être calculée numériquement à partir de Σ , par exemple par décomposition de Cholesky.

3 Problèmes de conditionnement

On considère le processus gaussien Z de fonction moyenne nulle et de fonction de covariance gaussienne avec $\sigma^2 = 1$ et $\ell = 0.5$. Simuler des réalisations de Z sur n points équiréparties de [0,1] pour n = 10. Faite la même chose en augmentant la valeur de n, par exemple 20, 50, 100, 500. Vous devriez obtenir un message d'erreur. Interprétez le brièvement.

Soit maintenant Σ la matrice de covariance de $Z(x_1),...,Z(x_n)$. Tracer le logarithme (base 10) du conditionnement de Σ par rapport à n, pour n valant 10, 50, 100, 500. Effectuer le même tracé pour les fonctions de covariance Matérn 5/2, Matérn 3/2 et exponentielle. Comparer les tracés et interpréter.

Effectuer les mêmes simulations qu'au paragraphe 1 avec la fonction de covariance exponentielle et discuter brièvement la différence de comportement numérique.

4 Effet nugget numérique

Soit Σ une des matrices de covariance ayant retourné un message d'erreur lors des simulations précédentes. Remplacer la par $\Sigma_2 = \Sigma + \delta I_n$, avec $\delta = 10^{-8}$ et I_n la matrice identité de taille n. Comparer les conditionnements de Σ et Σ_2 . La matrice Σ_2 permet-elle maintenant de mettre la méthode de simulation de vecteur gaussien en œuvre?

Cet ajout du terme δI_n s'appelle l'ajout d'un effet nugget numérique. Dans tout les TP restants, vous pouvez mettre cela en œuvre à chaque fois que c'est nécessaire.

5 Illustration de l'effet de la fonction de covariance

Prendre une grille de n=1000 points équiré parties sur [0,1] et tracer des trajectoires de 3 processus gaussiens, de fonctions moyennes nulles et de fonctions de covariance respectives exponentielle, Matérn 3/2 et gaussienne, avec $\sigma^2=1$ et $\ell=0.5$. Interpréter les différences entre ces trajectoires d'après le cours.

Faites les mêmes simulations de trajectoires qu'au paravant, lorsque les trois processus gaussiens ont des fonctions de covariance Matérn 3/2, avec respectivement $\ell=0.2,0.5,1$. Interpréter le rôle du paramètre ℓ .