Models and contrasts in R/DESeq2

In collaboration with:

Outline

- How to interpret linear models coefficients
 - o categorical variables & model matrix

How to specify models in R using the "formula syntax"

- How to interpret the results of different model designs
 - One factor, 3 levels
 - Two factors, additive
 - Two factors, interaction

• How DESeq2 reports its results and how to interpret them

Linear Model

A model is a simplified representation of how we think different variables relate to each other.

Linear models are the most commonly used in statistical inference.

$$Y = \beta_0 + \beta_1 X + \epsilon$$
Intercept Slope Errors

X = Independent variable

Y = Dependent variable

Linear Model assumptions

• Important assumptions

- Errors / residuals are normally distributed around the fit line
- Homoscedasticity: Error is constant along the values of the dependent variable.

Generalized Linear models (GLMs) in r

 In GLMs, linear model is generalized such that it can handle non-normal distribution of errors and heteroscedasticity.

Linear Models in R | Categorical Variables

Linear Models in R | Categorical Variables

	X
	<factor></factor>
sample1	А
sample2	А
sample3	A
sample4	В
sample5	В
sample6	В

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Linear Models in R | Categorical Variables

	Х	хB
	<factor></factor>	
sample1	A	0
sample2	A	0
sample3	A	0
sample4	В	1
sample5	В	1
sample6	В	1

Indicator / Dummy variable

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Example:

$$\beta_0 = 5; \ \beta_1 = 3$$
 $Y = 5 + 3 * X_B$

$$Y = 5 + \begin{cases} 3 * \mathbf{0} = 5 & \text{if "A"} \\ 3 * \mathbf{1} = 8 & \text{if "B"} \end{cases}$$

Linear Models in R | Null Hypothesis Testing

How compatible is my data with a "boring" hypothesis?

Null hypothesis: $\beta_1 = 0$

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Test statistic: $\beta_1 / \sigma_{\beta 1}$

(our estimate divided by the uncertainty in that estimate)

P-value calculated from the test statistic

• Low p-value indicates that the data are not very compatible with the null hypothesis.

Linear Models in R | Null Hypothesis Testing

How compatible is my data with a "boring" hypothesis?

Null hypothesis: $\beta_1 = 0$

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Exercise 1

Test statistic: $\beta_1 / \sigma_{\beta 1}$

(our estimate divided by the uncertainty in that estimate)

P-value calculated from the test statistic

• Low p-value indicates that the data are not very compatible with the null hypothesis.

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 β_0 = average of the reference group β_1 = difference to the reference group

Formula syntax in R:

outcome ~ predictors

Formula syntax in R:

outcome ~ predictors

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Formula syntax in R:

outcome ~ predictors

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Example in R worksheet: "Model Specification - Formula Syntax"

Formula syntax in R:

outcome ~ predictors

Model:

$$Y = \beta_0 + \beta_1 X_B$$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Common Designs

- Define our model with formula syntax
- Categorical variables are encoded as indicator variables in a model matrix
 - R does this for us
- Interpret coefficients to define hypothesis of interest

Common Designs | One factor, 3 levels

sample1 Pink sample2 Pink sample3 Pink sample4 Yellow sample5 Yellow sample6 Yellow		drug
sample3 Pink sample4 Yellow sample5 Yellow	sample1	Pink
sample4 Yellow sample5 Yellow	sample2	Pink
sample5 Yellow	sample3	Pink
-	sample4	Yellow
sample6 Yellow	sample5	Yellow
	sample6	Yellow
sample7 White	sample7	White
sample8 White	sample8	White
sample9 White	sample9	White

Null hypothesis:

Pink vs White $\beta_1 = 0$

Yellow vs White $\beta_2 = 0$

Yellow vs Pink $\beta_2 - \beta_1 = 0$

Design:

~ drug

Model matrix

	(Intercept)	drugPink	drugYellow
1	1	1	0
2	1	1	0
3	1	1	0
4	1	0	1
5	1	0	1
6	1	0	1
7	1	0	0
8	1	0	0
9	1	0	0

Expr = β_0 + β_1 drug_{Pink} + β_2 drug_{Yellow}

Model Designs | Two factors - additive model

	drug	genotype
	arug	genocype
sample1	Pink	WT
sample2	Pink	WT
sample3	Pink	MUT
sample4	Pink	MUT
sample5	White	WT
sample6	White	WT
sample7	White	MUT
sample8	White	MUT

Design:

Null hypothesis:

Pink vs White drug $\beta_1 = 0$

WT vs MUT genotype $\beta_2 = 0$

Model Matrix:

(Int	ercept)	drugPink	
genoty	peMUT		
1	1	1	0
2	1	1	0
3	1	1	1
4	1	1	1
5	1	0	0
6	1	0	0
7	1	0	1
8	1	0	1

Expr =
$$\beta_0$$
 + β_1 drug_{Pink} + β_2 genotype_{MUT}

Model Designs | Two factors - interaction model

	drug	genotype
sample1	Pink	∇T
sample2	Pink	WT
sample3	Pink	MUT
sample4	Pink	MUT
sample5	White	WT
sample6	White	WT
sample7	White	MUT
sample8	White	MUT

Design:

Expr = β_0 + β_1 drug_{Pink} + β_2 genotype_{MUT} + β_3 drug_{Pink}genotype_{MUT}

Null hypothesis:

Pink vs White (WT) $\beta_1 = 0$

Pink vs White (MUT)

 $\beta_1 + \beta_3 = 0$

WT vs MUT (White)

 $\beta_2 = 0$

WT vs MUT (Pink)

 $\beta_2 + \beta_3 = 0$

Interaction ("Difference of differences"):

 $\beta_3 = 0$

Model Specification in *DESeq2*

- Create DESeqDataSet object
- Add model design:

```
design(dds) \leftarrow \sim treatment
```

- Fit the statistical model

```
dds \leftarrow DESeq(dds)
```

- Check coefficients for hypothesis testing

resultsNames(dds)

Model Specification in *DESeq2*

- Create DESeqDataSet object
- Add model design:

```
design(dds) \leftarrow \sim treatment
```

- Fit the statistical model

$$dds \leftarrow DESeq(dds)$$

Check coefficients for hypothesis testing

resultsNames(dds)

	Null Hypothesis			
B vs A	β ₁ = O			
C vs A	β ₂ = O			
C vs B	$\beta_2 - \beta_1 = 0$			

DESeq coefficient names:

 $\beta_0 \rightarrow$ Intercept $\beta_1 \rightarrow$ treatment_B_vs_A $\beta_2 \rightarrow$ treatment_C_vs_A

Model Specification in *DESeq2* | **Interpreting the Results**

results(dds, contrast = list("treatment B vs A"))

	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
gene1	32.80405	0.359444	0.598072	0.601004	0.5478372	0.923764
gene2	4.01072	3.407763	1.649827	2.065527	0.0388732	0.641407
gene3	7.01837	0.743337	0.994100	0.747749	0.4546118	0.923764
gene4	1.51006	2.814822	2.464686	1.142061	0.2534287	0.923764
gene5	11.23166	0.480522	0.894709	0.537071	0.5912189	0.923764
gene96	16.21864	0.684962	0.809892	0.845745	0.3976952	0.923764
gene97	2.91349	1.784327	1.790046	0.996805	0.3188590	0.923764
gene98	13.29915	-0.634070	0.768728	-0.824830	0.4094680	0.923764
gene99	82.45653	-0.963147	0.505109	-1.906810	0.0565452	0.799710
gene100	6.25763	1.673078	1.252839	1.335429	0.1817359	0.923764

baseMean \rightarrow Mean across *all* samples

 $log2FoldChange \rightarrow log_2(B/A)$ i.e. the difference between treatments

lfcSE \rightarrow the standard error of the log2FoldChange

stat \rightarrow the test statistic = log2FoldChange/lfcSE

pvalue \rightarrow the p-value of the Wald test

padj \rightarrow the p-value adjusted for multiple testing (false discovery rate)

Model Specification in *DESeq2* | Likelihood-ratio Test

The default test in *DESeq2* is the Wald test, testing for null hypothesis that LFC = O

And alternative is the **Likelihood Ratio Test**

$$LR = -2ln\left(rac{L(m_1)}{L(m_2)}
ight)$$

Example:

Mutant

Conclusions

- Differential expression tests are based on linear models, where the gene expression is modelled as an outcome of several variables of interest (e.g. treatment, genotype, infection status, etc.).
- Linear models use *indicator or dummy variables* to encode categorical variables in a model matrix.
- To define models in R/DESeq2 we use the formula syntax: ~ variables
- Some common models are:
 - Single factor: ~ variable1
 - Two factor, additive: ~ variable1 + variable2
 - Two factor, interaction: ~ variable1 + variable2 + variable1:variable2
- Interpreting our model coefficients allows us to define hypothesis/comparisons/contrasts of interest.
- In DESeq2 we use the `results()` function to obtain the log2(fold-change) in gene expression between groups of interest ("contrast").