[Experiment name]

Conjugate gradient method to solve Rosen brock function

[Purpose]

- 1.Master the solution of Rosenbrock function by FR conjugate gradient method and PRP conjugate gradient method respectively.
- 2. Master and call the precise one dimensional search golden section method

[Experimental principle]

F R Conjugate Gradient Algorithm

PRP Conjugate Gradient Method Algorithm

算法3 PRP共轭梯度法

在算法2的step5中,用PRP公式

$$\beta_k = \frac{\boldsymbol{g}_{k+1}^{\mathrm{T}} (\boldsymbol{g}_{k+1} - \boldsymbol{g}_k)}{\boldsymbol{g}_{k}^{\mathrm{T}} \boldsymbol{g}_k}$$

代替 FR 公式, 就得到 PRP 共轭梯度法.

对于正定的二次函数,FR 共轭梯度法与 PRP 共轭梯度法等价.但是对于一般函数,二者是不同的,因为对于目标函数的 Hesse 阵不是常数矩阵,所以迭代过程中所产生的方向不再是共轭方向了.不过若采用精确一维搜索,两个算法所产生的搜索方向都满足

$$\boldsymbol{p}_{k}^{\mathrm{T}}\boldsymbol{g}_{k} = (-\boldsymbol{g}_{k} + \boldsymbol{\beta}_{k-1}\boldsymbol{p}_{k-1})^{\mathrm{T}}\boldsymbol{g}_{k} = -\boldsymbol{g}_{k}^{\mathrm{T}}\boldsymbol{g}_{k} < 0$$

故两者都是下降算法.

PRP 算法与 FR 算法都是常用的共轭梯度法.从一些实际计算的结果发现,PRP 算法一般优于 FR 算法.

Example 1:

例 3 用 FR 共轭梯度法求解 Rosenbrock 函数
$$\min f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
 问题有唯一极小点,精确解为 $x^* = (1, 1)^T$, $f(x^*) = 0$.

Example 2:

例 5 利用 PRP 共轭梯度法求解 Rosenbrock 函数
$$\min f(x) = 100 (x_2 - x_1^2)^2 + (1 - x_1)^2$$
问题有唯一极小点,精确解为 $x^* = (1, 1)^T$, $f(x^*) = 0$.

[Experimental content]

I use the matlab software to write the experimental code, and successfully demonstrate the algorithm process of the two conjugate gradient methods and print them.

FR method experimental results: (epsilon takes 1 e-6)

	Transcribed experimental results (epsilon ranes 1 e e)					
The g	The golden section takes the interval [0,5]					
k	x1	x2 f(:	x1,x2) gk ^2			
1	0.999932	1.000000	0.000002	0.061098		
2	0.999986	0.999973	0.000000	0.000121		
3	0.999987	0.999973	0.000000	0.000012		
4	0.999987	0.999973	0.000000	0.000052		
5	0.999998	0.999995	0.000000	0.000249		
6	1.000001	1.000001	0.000000	0.000010		
7	1.000001	1.000001	0.000000	0.000001		

The g	The golden section takes the interval [0,0.1]					
k	x1	x2 f(x1,x	(2) gk ^2			
1	0.999932	1.000000	0.000002	0.061098		
2	0.999936	0.999872	0.000000	0.000139		
3	0.999936	0.999873	0.000000	0.000082		
4	0.999941	0.999883	0.000000	0.000197		
5	0.999943	0.999885	0.000000	0.000264		
6	0.999944	0.999887	0.000000	0.000529		
7	1.000001	1.000001	0.000000	0.000341		
8	1.000000	1.000000	0.000000	0.000004		
9	1.000000	1.000000	0.000000	0.000004		
10	1.000000	1.000000	0.000000	0.000000		

P RP experiment results: (epsilon takes 1 e-6)

The	The golden section takes the interval [0,5]					
k	x1	x2 f(>	(1,x2) gk ^2			
1	0.999932	1.000000	0.000002	0.061098		
2	0.999936	0.999872	0.000000	0.000150		
3	0.999936	0.999872	0.000000	0.000057		
4	0.999990	0.999979	0.000000	0.001059		
5	1.000000	1.000000	0.000000	0.000006		
6	1.000000	1.000000	0.000000	0.000006		
7	1.000000	1.000000	0.000000	0.000000		

The g	The golden section takes the interval [0,0.1]					
k	x1	x2 f(x1,x2)	gk ^2			
1	0.999932	1.000000	0.000002	0.061098		
2	0.999936	0.999872	0.000000	0.000139		
3	0.999936	0.999873	0.000000	0.000082		
4	0.999941	0.999883	0.000000	0.000197		
5	0.999943	0.999885	0.000000	0.000264		
6	0.999944	0.999887	0.000000	0.000529		
7	1.000001	1.000001	0.000000	0.000341		
8	1.000000	1.000000	0.000000	0.000004		
9	1.000000	1.000000	0.000000	0.000004		
10	1.000000	1.000000	0.000000	0.000000		

Other function test cases (eg: $f=(1/2)*x1^2+(9/2)*x2^2$; $x0=[9\ 1]$;)

FR method: (epsilon takes 1 e-4)

The	golden section take	es the interval [0	,0.1]		
k	x1	x2	f(x1,x2)	gk ^2	
1	7.199976	-0.800024	28.800000	10.182475	

2	5.904438	-0.656071	19.368123	8.350277
3	4.442956	0.030986	9.874249	4.451699
4	3.583445	0.198382	6.597640	4.003607
5	2.530044	0.155297	3.309089	2.890434
6	1.728076	-0.006876	1.493336	1.729184
7	1.268311	-0.058731	0.819828	1.374047
8	0.851220	-0.038635	0.369004	0.919500
9	0.579349	0.005123	0.167941	0.581181
10	0.412822	0.017995	0.086668	0.443455
11	0.274602	0.009300	0.038092	0.287074
12	0.189228	-0.002711	0.017937	0.190794
13	0.132601	-0.005577	0.008931	0.141784
14	0.088074	-0.002142	0.003899	0.090160
15	0.061265	0.001174	0.001883	0.062169
16	0.042394	0.001695	0.000912	0.045054
17	0.028245	0.000443	0.000400	0.028526
18	0.019750	-0.000457	0.000196	0.020174
19	0.013527	-0.000496	0.000093	0.014245
20	0.009072	-0.000069	0.000041	0.009093
21	0.006349	0.000167	0.000020	0.006525
22	0.004313	0.000138	0.000009	0.004489
23	0.002918	0.000000	0.000004	0.002918
24	0.002037	-0.000058	0.000002	0.002103
25	0.001375	-0.000036	0.000001	0.001414
26	0.000939	0.000006	0.000000	0.000941
27	0.000652	0.000019	0.000000	0.000675
28	0.000439	0.000009	0.000000	0.000446
29	0.000302	-0.000004	0.000000	0.000304
30	0.000208	-0.000006	0.000000	0.000216
31	0.000140	-0.000002	0.000000	0.000141
32	0.000097	0.000002	0.000000	0.000098

PRP method: (epsilon takes 1 e-4)

The	The golden section takes the interval [0,0.3]					
k	x1	x2	f(x1,x2)	gk ^2		
1	7.199976	-0.800024	28.800000	10.182475		
2	3.312444	-0.368102	6.095891	4.684841		
3	3.300493	0.011568	5.447229	3.302135		
4	2.310082	-0.006886	2.668452	2.310913		
5	1.824031	0.015558	1.664633	1.829397		
6	1.355016	-0.030050	0.922097	1.381741		
7	1.022075	0.058221	0.537572	1.148565		

8	0.702244	-0.095441	0.287564	1.109490
9	0.258053	0.050006	0.044548	0.518784
10	0.047801	-0.016743	0.002404	0.158088
11	-0.007284	-0.003326	0.000076	0.030810
12	0.000002	-0.000000	0.000000	0.000004

Attachment: Experimental code (4 files in total)

```
test.m
% Conjugate gradient method test area
% define several functions
syms x1 x2;
x = \{x1, x2\};
% function f
f = 100 * (x2 - x1^2)^2 + (1 - x1)^2;
% initial point x0
x0=[-1 1];
% set epsilon
e=1e-6;
% function call
[result_x] = FR(f, x, x0, e); \% FR method test
%[result_x] = PRP(f, x, x0, e); % PRP method test
% other test data
f=(3/2)*x1^2+(1/2)*x2^2-x1*x2-2*x1;
%x0=[0\ 0];
%f = (1/2) \times x1^2 + (9/2) \times x2^2;
%x0=[9 1];
```

```
gold.m

function [result] = gold(f, a, b)

% golden section method

%Input f: function a, b: [a, b] operation interval

% Default epsilon=1e-4 (can be adjusted below)

syms x x2 f1 f2 xx ah;

flag=1; ratio=0.618; e=1e-4;%epsilon

for i = 1:100

%step1:

if flag == 1

x1 = a + (1-ratio) * (b - a);

f1 = subs(f, ah, x1);

x2 = a + ratio * (b - a);
```

```
f2 = subs(f, ah, x2);
flag = 2;
end
%step2
if flag == 2
if (abs(b - a) \le e)
xx = (a + b) / 2;
break;
else
flag = 3;
end
end
%step3
if flag == 3
if f1 < f2
b = x2;
x2 = x1;
f2 = f1;
x1 = a + 0.382 * (b - a);
f1 = subs(f, ah, x1);
flag = 2; % flag update
elseif f1 == f2
a = x1;
b = x2;
flag = 1; % flag update
elseif f1 > f2
a = x1;
x1 = x2;
f1 = f2;
x2 = a + 0.618 * (b - a);
f2 = subs(f, ah, x2);
flag = 2; % flag update
end
end
end
result = xx;
end
```

```
F
function [result x] = FR(f,x,x0,e)
% Using the "FR conjugate method" of the exact one-dimensional search golden section
method
% Input f: complete function x: independent variable set x0: initial point e: epsilon
% output result x: exact solution approximation result x*
% Define the alpha used in the step size; k is used for counting
syms ah;
k=0:
% Create an n-dimensional cell array (only x1, x2 in the example, ie n=2)
n = length(x);
qx = cell(1, n);
for i = 1 : n
gx{i} = diff(f, x{i});
end
% data initialization
g = subs(gx, x, x0); % partial derivative solution g(x)
g_pre = g;
xx = x0; % Substitute xx for x(i+1) and x pre for x(i) in the later stage
x pre=x0;
p = - g; % p0 reverse direction
% first iteration
xx = xx + ah * p:
phi = subs(f, x, xx);
nphi = double(gold(phi, 0, 2));
aa = nphi;
xx = double(x_pre+aa*p);
g = subs(gx, x, xx);
% Data output format [k x1 x2 f(x1,x2) ||gk||^2]
fprintf('k\t\tx1\t\tx2\t\t(x1,x2)\t||gk||^2\n');
while (norm(g) > e)
% FR core algorithm step5
beta=(sumsqr(g)/sumsqr(g_pre));
p= - g+beta*p;
% Temporary data update
g_pre=g;
x pre=xx;
k=k+1:
% data output
ff=double(subs(f, x, xx)); % f(x1,x2)
```

```
g2=double(norm(g)); % ||gk||^2
fprintf('%d\t\t',k);fprintf('%f\t',xx);fprintf('%f\t%f\n',ff, g2);
% (k-1)th iteration
xx = xx + ah * p;
phi = subs(f, x, xx);
nphi = double(gold(phi, 0, 5)); % golden section search 5
%nphi = double(gold(phi, 0, 0.1)); % Golden section search 0.1
aa = nphi;
xx = double(x pre+aa*p);
q = subs(qx, x, xx);
end
% Last line of data output
ff=double(subs(f, x, xx));
g2=double(norm(g));
fprintf('%d\t',k+1):fprintf('%f\t',xx):fprintf('%f\t',f,g2):
%The function returns the solution result x*
result x=xx;
end
```

```
P RP m
function [result x] = PRP(f,x,x0,e)
% Using the "FR conjugate method" of the exact one-dimensional search golden section
method
% Input f: complete function x: independent variable set x0: initial point e: epsilon
% output result_x: exact solution approximation result x*
% Define the alpha used in the step size; k is used for counting
syms ah;
k=0;
\% Create an n-dimensional cell array (only x1, x2 in the example, ie n=2)
n = length(x);
gx = cell(1, n);
for i = 1 : n
gx{i} = diff(f, x{i});
end
% data initialization
g = subs(gx, x, x0); % partial derivative solution g(x)
q pre = q;
xx = x0; % Substitute xx for x(i+1) and x_pre for x(i) in the later stage
x_pre=x0;
p = - g; % p0 reverse direction
```

```
% first iteration
xx = xx + ah * p;
phi = subs(f, x, xx);
nphi = double(gold(phi, 0, 2));
aa = nphi;
xx = double(x_pre+aa*p);
g = subs(gx, x, xx);
% Data output format [k x1 x2 f(x1,x2) ||gk||^2]
fprintf('k\t\tx1\t\tx2\t\t(x1,x2)\t||gk||^2\n');
while (norm(g) > e)
% PRP core algorithm step5
g1=double((g-g_pre)*(g'));
g2=double(g_pre*(g_pre'));
beta=(g1/g2);
p= - g+beta*p;
% Temporary data update
g_pre=g;
x_pre=xx;
k=k+1;
% data output
ff=double(subs(f, x, xx)); % f(x1,x2)
g2=double(norm(g)); % ||gk||^2
fprintf('%d\t\t',k);fprintf('%f\t',xx);fprintf('%f\t%f\n',ff, g2);
% (k-1)th iteration
xx = xx + ah * p;
phi = subs(f, x, xx);
nphi = double(gold(phi, 0, 5)); % golden section search
%nphi = double(gold(phi, 0, 0.1)); % golden section search
aa = nphi;
xx = double(x pre+aa*p);
g = subs(gx, x, xx);
end
% Last line of data output
ff=double(subs(f, x, xx));
g2=double(norm(g));
fprintf('%d\t\t',k+1);fprintf('%f\t',xx);fprintf('%f\t%f\n',ff, g2);
%The function returns the solution result x*
result_x=xx;
end
```

M a tlab experiment interface;

[Experiment Summary]

Through this experiment, I have a better understanding of the use of the FR conjugate gradient method and the PRP conjugate gradient method in the unconstrained optimization numerical algorithm. I have clarified the algorithm idea by writing the algorithm code, and I have observed and understood the numerical optimization through specific experiments. The process, and the golden section one-dimensional search algorithm is well applied to it, which deepens the learning and understanding of our "Optimization Method" course.