$12a_{0853} (K12a_{0853})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 1.02805 \times 10^{16} u^{42} - 1.52246 \times 10^{16} u^{41} + \dots + 1.26321 \times 10^{17} b - 8.98707 \times 10^{16}, \\ &- 7.21225 \times 10^{16} u^{42} + 3.40792 \times 10^{16} u^{41} + \dots + 1.68428 \times 10^{17} a - 9.26394 \times 10^{16}, \ u^{43} - u^{42} + \dots - u - 10^{16} u^{41} + \dots + 10^{16} u^{41}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 114 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 1.03 \times 10^{16} u^{42} - 1.52 \times 10^{16} u^{41} + \dots + 1.26 \times 10^{17} b - 8.99 \times 10^{16}, \ -7.21 \times 10^{16} u^{42} + 3.41 \times 10^{16} u^{41} + \dots + 1.68 \times 10^{17} a - 9.26 \times 10^{16}, \ u^{43} - u^{42} + \dots - u - 1 \rangle$

(i) Arc colorings

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.428209u^{42} - 0.202336u^{41} + \dots + 4.44451u + 0.550022 \\ -0.0813834u^{42} + 0.120523u^{41} + \dots - 0.596660u + 0.711445 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.240572u^{42} + 0.0861176u^{41} + \dots + 4.10112u + 1.07740 \\ -0.0655795u^{42} - 0.0289657u^{41} + \dots - 0.723711u + 1.05998 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.471566u^{42} - 0.505695u^{41} + \dots + 0.182364u - 0.696209 \\ -0.163705u^{42} + 0.294773u^{41} + \dots + 1.16777u - 0.341990 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.223904u^{42} + 0.101431u^{41} + \dots + 3.27806u + 0.658768 \\ -0.217357u^{42} + 0.0632153u^{41} + \dots - 1.56479u + 0.639998 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0156250u^{41} - 0.0156250u^{40} + \dots + 1.98438u - 0.0156250 \\ -0.0156250u^{41} + 0.0156250u^{40} + \dots - 0.984375u + 0.0156250 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0156250u^{42} - 0.0156250u^{41} + \dots + \frac{1}{64}u + 1 \\ 0.0156250u^{42} - 0.0156250u^{41} + \dots + \frac{1}{64}u + 1 \\ 0.0156250u^{42} - 0.0156250u^{41} + \dots + \frac{1}{64}u + 1 \\ 0.0156250u^{42} - 0.0156250u^{41} + \dots + \frac{1}{64}u + 1 \\ 0.0156250u^{42} - 0.0156250u^{41} + \dots + \frac{1}{64}u + 1 \\ 0.0156250u^{42} - 0.0156250u^{41} + \dots + \frac{1}{64}u + 1 \\ 0.0156250u^{42} - 0.0156250u^{41} + \dots + \frac{1}{64}u + 1 \\ 0.0156250u^{42} - 0.0156250u^{41} + \dots + \frac{1}{64}u + 1 \\ 0.0156250u^{42} - 0.0156250u^{41} + \dots + 1.98438u^{2} - 0.0156250u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $\frac{(11)}{639766218816298439} \frac{(23)}{2100} = \frac{2392691369763753}{5263387278623488} u^{41} + \dots + \frac{3318446060721997959}{336856785831903232} u + \frac{4707724893365783111}{673713571663806464} u^{42} + \frac{11000}{1000} \frac{(11)}{1000} \frac$

Crossings	u-Polynomials at each crossing
c_1	$u^{43} - 7u^{42} + \dots + 108u - 32$
c_{2}, c_{5}	$u^{43} + 2u^{42} + \dots + 209u + 16$
<i>c</i> ₃	$2(2u^{43} - 5u^{42} + \dots - 12267u + 4806)$
c_4	$2(2u^{43} + 7u^{42} + \dots - 383u + 38)$
$c_6, c_7, c_8 \\ c_{10}, c_{11}, c_{12}$	$u^{43} + u^{42} + \dots - u + 1$
<i>c</i> ₉	$u^{43} + 11u^{42} + \dots + 12u + 4$

Crossings	Riley Polynomials at each crossing
c_1	$y^{43} - 3y^{42} + \dots + 2640y - 1024$
c_{2}, c_{5}	$y^{43} - 28y^{42} + \dots + 22305y - 256$
<i>C</i> ₃	$4(4y^{43} + 131y^{42} + \dots + 5.60152 \times 10^8y - 2.30976 \times 10^7)$
c_4	$4(4y^{43} + 163y^{42} + \dots + 133997y - 1444)$
$c_6, c_7, c_8 \\ c_{10}, c_{11}, c_{12}$	$y^{43} + 49y^{42} + \dots - 7y - 1$
<i>C</i> 9	$y^{43} - 11y^{42} + \dots + 56y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.045580 + 0.265073I		
a = 0.422924 + 0.253246I	-0.099165 + 0.197199I	-0.4146 - 26.5252I
b = -1.010750 - 0.070949I		
u = 1.045580 - 0.265073I		
a = 0.422924 - 0.253246I	-0.099165 - 0.197199I	-0.4146 + 26.5252I
b = -1.010750 + 0.070949I		
u = -0.736113 + 0.398028I		
a = 0.84742 - 1.18772I	1.40701 + 9.37887I	-3.20335 - 8.94600I
b = -1.281540 - 0.503412I		
u = -0.736113 - 0.398028I		
a = 0.84742 + 1.18772I	1.40701 - 9.37887I	-3.20335 + 8.94600I
b = -1.281540 + 0.503412I		
u = 0.473228 + 0.484138I		
a = 1.232460 + 0.508002I	-0.90207 - 1.36883I	-10.28742 + 6.03530I
b = -0.614304 + 0.159820I		
u = 0.473228 - 0.484138I		
a = 1.232460 - 0.508002I	-0.90207 + 1.36883I	-10.28742 - 6.03530I
b = -0.614304 - 0.159820I		
u = -0.064164 + 1.323640I		
a = 0.760278 - 0.102506I	5.23305 + 6.33277I	0
b = -0.972506 - 0.725155I		
u = -0.064164 - 1.323640I		
a = 0.760278 + 0.102506I	5.23305 - 6.33277I	0
b = -0.972506 + 0.725155I		
u = -0.628592 + 0.239030I		
a = -0.366369 + 0.658186I	-2.33595 + 4.06686I	-8.11663 - 7.68950I
b = -0.086228 + 0.994383I		
u = -0.628592 - 0.239030I		
a = -0.366369 - 0.658186I	-2.33595 - 4.06686I	-8.11663 + 7.68950I
b = -0.086228 - 0.994383I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.077159 + 0.648817I		
a = 1.42212 - 0.36145I	2.05786 - 5.42765I	-4.51173 + 4.01745I
b = -1.117220 + 0.496513I		
u = -0.077159 - 0.648817I		
a = 1.42212 + 0.36145I	2.05786 + 5.42765I	-4.51173 - 4.01745I
b = -1.117220 - 0.496513I		
u = 0.052827 + 1.379270I		
a = 0.807394 + 0.046202I	4.20635 + 0.15997I	0
b = -0.669512 + 1.007180I		
u = 0.052827 - 1.379270I		
a = 0.807394 - 0.046202I	4.20635 - 0.15997I	0
b = -0.669512 - 1.007180I		
u = 0.581376		
a = 0.597794	-1.12494	-9.33260
b = -0.108975		
u = -0.28872 + 1.45678I		
a = 0.0615459 + 0.1163560I	8.92969 + 6.54162I	0
b = 0.004483 + 0.567870I		
u = -0.28872 - 1.45678I		
a = 0.0615459 - 0.1163560I	8.92969 - 6.54162I	0
b = 0.004483 - 0.567870I		
u = -0.440206 + 0.256952I		
a = -0.48389 + 1.95063I	2.08265 + 2.42825I	-0.56440 - 9.11743I
b = 1.178700 + 0.550685I		
u = -0.440206 - 0.256952I		
a = -0.48389 - 1.95063I	2.08265 - 2.42825I	-0.56440 + 9.11743I
b = 1.178700 - 0.550685I		
u = -0.18031 + 1.48239I		
a = -0.162135 - 0.690521I	10.59230 + 3.84643I	0
b = 0.679167 - 0.418338I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.18031 - 1.48239I		
a = -0.162135 + 0.690521I	10.59230 - 3.84643I	0
b = 0.679167 + 0.418338I		
u = -0.23828 + 1.49528I		
a = -2.57330 + 1.37141I	11.69970 + 5.56941I	0
b = 1.155900 + 0.144649I		
u = -0.23828 - 1.49528I		
a = -2.57330 - 1.37141I	11.69970 - 5.56941I	0
b = 1.155900 - 0.144649I		
u = 0.31669 + 1.48794I		
a = -0.638218 + 0.398587I	8.9461 - 11.3255I	0
b = 0.004964 - 1.358370I		
u = 0.31669 - 1.48794I		
a = -0.638218 - 0.398587I	8.9461 + 11.3255I	0
b = 0.004964 + 1.358370I		
u = 0.14365 + 1.51608I		
a = -0.092566 - 0.461995I	11.60390 - 0.05307I	0
b = 0.669674 + 1.208150I		
u = 0.14365 - 1.51608I		
a = -0.092566 + 0.461995I	11.60390 + 0.05307I	0
b = 0.669674 - 1.208150I		
u = 0.26648 + 1.52137I		
a = -1.73238 - 0.59952I	14.0100 - 8.2907I	0
b = 1.49175 - 0.86241I		
u = 0.26648 - 1.52137I		
a = -1.73238 + 0.59952I	14.0100 + 8.2907I	0
b = 1.49175 + 0.86241I		
u = 0.446586 + 0.089144I		
a = 0.02052 - 5.32611I	0.777033 - 0.264079I	11.3014 - 20.2599I
b = 0.954076 - 0.043831I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.446586 - 0.089144I		
a = 0.02052 + 5.32611I	0.777033 + 0.264079I	11.3014 + 20.2599I
b = 0.954076 + 0.043831I		
u = 0.21380 + 1.53373I		
a = -1.63578 - 0.65528I	14.8100 - 3.8243I	0
b = 1.77518 + 0.39030I		
u = 0.21380 - 1.53373I		
a = -1.63578 + 0.65528I	14.8100 + 3.8243I	0
b = 1.77518 - 0.39030I		
u = 0.38589 + 1.50890I		
a = 1.79076 + 0.95620I	13.5242 - 18.0612I	0
b = -1.43641 + 0.60380I		
u = 0.38589 - 1.50890I		
a = 1.79076 - 0.95620I	13.5242 + 18.0612I	0
b = -1.43641 - 0.60380I		
u = 0.101852 + 0.424949I		
a = 1.026490 + 0.504047I	-0.434486 - 1.281080I	-5.70053 + 4.09830I
b = -0.182737 - 0.500492I		
u = 0.101852 - 0.424949I		
a = 1.026490 - 0.504047I	-0.434486 + 1.281080I	-5.70053 - 4.09830I
b = -0.182737 + 0.500492I		
u = -0.40091 + 1.53270I		
a = 1.54564 - 0.75824I	12.6650 + 9.9628I	0
b = -1.237910 - 0.318743I		
u = -0.40091 - 1.53270I		
a = 1.54564 + 0.75824I	12.6650 - 9.9628I	0
b = -1.237910 + 0.318743I		
u = -0.203608 + 0.274430I		
a = -0.439369 + 1.267360I	2.63309 - 0.39699I	2.68829 - 3.78144I
b = 1.224480 - 0.262463I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.203608 - 0.274430I		
a = -0.439369 - 1.267360I	2.63309 + 0.39699I	2.68829 + 3.78144I
b = 1.224480 + 0.262463I		
u = 0.02078 + 1.67786I		
a = 1.76255 + 0.12189I	18.9757 + 4.3403I	0
b = -1.47476 - 0.22968I		
u = 0.02078 - 1.67786I		
a = 1.76255 - 0.12189I	18.9757 - 4.3403I	0
b = -1.47476 + 0.22968I		

$$\begin{array}{c} \text{II. } I_2^u = \\ \langle 2.50 \times 10^{62} u^{57} - 1.13 \times 10^{62} u^{56} + \cdots + 3.58 \times 10^{63} b - 1.55 \times 10^{63}, \ 3.07 \times 10^{63} u^{57} - 3.20 \times 10^{64} u^{56} + \cdots + 6.08 \times 10^{64} a - 8.19 \times 10^{64}, \ u^{58} - u^{57} + \cdots - 120 u + 17 \rangle \end{array}$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.0504773u^{57} + 0.526372u^{56} + \cdots - 34.1344u + 1.34649 \\ -0.0697872u^{57} + 0.0314792u^{56} + \cdots - 0.190553u + 0.433951 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.265733u^{57} + 0.711612u^{56} + \cdots - 33.4303u + 4.89579 \\ 0.0169308u^{57} - 0.0789094u^{56} + \cdots + 15.7229u - 3.20838 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.327014u^{57} - 0.175535u^{56} + \cdots + 11.9688u - 7.35130 \\ -0.0763146u^{57} - 0.00228602u^{56} + \cdots - 0.511135u + 0.235990 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.247321u^{57} + 0.615412u^{56} + \cdots - 27.6376u + 4.15193 \\ -0.0154154u^{57} - 0.0157421u^{56} + \cdots + 11.8680u - 2.62983 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0588235u^{57} - 0.0588235u^{56} + \cdots + 13.1765u - 7.05882 \\ -0.0641037u^{57} + 0.204261u^{56} + \cdots - 17.3206u + 3.46570 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.344021u^{57} - 0.282487u^{56} + \cdots + 19.4211u - 6.05337 \\ -0.140157u^{57} + 0.142726u^{56} + \cdots + 4.22674u - 2.08976 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.203865u^{57} - 0.139761u^{56} + \cdots + 23.6478u - 7.14313 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.471425u^{57} + 0.710651u^{56} + \cdots + 3.35966u 9.60008$

Crossings	u-Polynomials at each crossing
c_1	$(u^{29} - 5u^{28} + \dots + u - 1)^2$
c_{2}, c_{5}	$(u^{29} + u^{28} + \dots + 5u - 1)^2$
<i>c</i> ₃	$(u^{29} + u^{28} + \dots - u + 19)^2$
c_4	$(u^{29} - u^{28} + \dots + 21u + 11)^2$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^{58} + u^{57} + \dots + 120u + 17$
<i>c</i> ₉	$(u^{29} - 3u^{28} + \dots + u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{29} + 3y^{28} + \dots - 5y - 1)^2$
c_2, c_5	$(y^{29} - 21y^{28} + \dots - 5y - 1)^2$
<i>c</i> ₃	$(y^{29} + 15y^{28} + \dots + 1103y - 361)^2$
c_4	$(y^{29} + 31y^{28} + \dots - 1869y - 121)^2$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^{58} + 47y^{57} + \dots - 6784y + 289$
<i>c</i> ₉	$(y^{29} - 5y^{28} + \dots + 3y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.114956 + 0.991781I		
a = 1.017780 - 0.070177I	-0.330423 - 0.986104I	-7.43918 + 1.15236I
b = -0.328130 - 0.742907I		
u = -0.114956 - 0.991781I		
a = 1.017780 + 0.070177I	-0.330423 + 0.986104I	-7.43918 - 1.15236I
b = -0.328130 + 0.742907I		
u = 0.575655 + 0.782439I		
a = 1.078930 + 0.547115I	4.20559 + 2.15286I	1.11617 - 3.69479I
b = 0.253652 + 0.975036I		
u = 0.575655 - 0.782439I		
a = 1.078930 - 0.547115I	4.20559 - 2.15286I	1.11617 + 3.69479I
b = 0.253652 - 0.975036I		
u = -0.136025 + 1.027380I		
a = 1.46072 + 4.08074I	5.59886	-1.48744 + 0.I
b = 1.16056		
u = -0.136025 - 1.027380I		
a = 1.46072 - 4.08074I	5.59886	-1.48744 + 0.I
b = 1.16056		
u = 0.435379 + 0.848772I		
a = 1.108170 + 0.488561I	2.02393 - 5.18635I	-2.50672 + 7.03100I
b = -1.093360 + 0.383928I		
u = 0.435379 - 0.848772I	0.00000 . # 1000# #	0.50650 5.001007
a = 1.108170 - 0.488561I	2.02393 + 5.18635I	-2.50672 - 7.03100I
$\frac{b = -1.093360 - 0.383928I}{u = 0.986825 + 0.374884I}$		
·	7 40F1 19 0000 T	1.01710 + 0.100117
a = 0.523680 + 1.034500I	7.4851 - 13.0999I	1.01719 + 8.12211I
b = -1.39544 + 0.53455I		
u = 0.986825 - 0.374884I	7 40F1 + 19 0000 T	1.01710 0.100117
a = 0.523680 - 1.034500I	7.4851 + 13.0999I	1.01719 - 8.12211I
b = -1.39544 - 0.53455I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.703908 + 0.609023I		
a = 0.167707 - 0.211198I	7.77622 - 0.55125I	6.94303 + 0.19758I
b = 1.53445 + 0.45405I		
u = 0.703908 - 0.609023I		
a = 0.167707 + 0.211198I	7.77622 + 0.55125I	6.94303 - 0.19758I
b = 1.53445 - 0.45405I		
u = 0.779580 + 0.501957I		
a = -0.238984 - 1.367610I	7.40612 - 4.48763I	5.60010 + 6.67821I
b = 1.43653 - 0.66551I		
u = 0.779580 - 0.501957I		
a = -0.238984 + 1.367610I	7.40612 + 4.48763I	5.60010 - 6.67821I
b = 1.43653 + 0.66551I		
u = 0.839019 + 0.382301I		
a = -0.229288 - 0.881419I	2.90482 - 7.12556I	-1.34557 + 8.10425I
b = 0.059577 - 1.184960I		
u = 0.839019 - 0.382301I		
a = -0.229288 + 0.881419I	2.90482 + 7.12556I	-1.34557 - 8.10425I
b = 0.059577 + 1.184960I		
u = -1.067450 + 0.395502I		
a = 0.530432 - 0.554638I	6.46417 + 4.69569I	0
b = -1.164370 - 0.162769I		
u = -1.067450 - 0.395502I		
a = 0.530432 + 0.554638I	6.46417 - 4.69569I	0
b = -1.164370 + 0.162769I		
u = -0.675231 + 0.482611I		
a = -2.49228 + 1.77640I	5.28092 + 2.23064I	-19.0558 + 8.8774I
b = 1.079220 + 0.058684I		
u = -0.675231 - 0.482611I		
a = -2.49228 - 1.77640I	5.28092 - 2.23064I	-19.0558 - 8.8774I
b = 1.079220 - 0.058684I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.004114 + 1.175970I		
a = 0.630619 + 0.805872I	3.99674 - 1.36069I	0
b = 0.620218 - 0.307429I		
u = -0.004114 - 1.175970I		
a = 0.630619 - 0.805872I	3.99674 + 1.36069I	0
b = 0.620218 + 0.307429I		
u = -0.727738 + 0.348972I		
a = 0.533803 + 0.610441I	3.13199 + 2.80514I	-2.17791 - 1.85203I
b = 0.046849 + 0.301708I		
u = -0.727738 - 0.348972I		
a = 0.533803 - 0.610441I	3.13199 - 2.80514I	-2.17791 + 1.85203I
b = 0.046849 - 0.301708I		
u = 0.774616 + 0.950835I		
a = 0.571035 + 0.357762I	9.18116 + 7.10658I	0
b = -1.37838 - 0.43416I		
u = 0.774616 - 0.950835I		
a = 0.571035 - 0.357762I	9.18116 - 7.10658I	0
b = -1.37838 + 0.43416I		
u = -0.473827 + 0.581130I		
a = 1.56751 - 0.75659I	4.07927 + 1.37762I	1.11267 - 4.75149I
b = 0.460562 - 0.048919I		
u = -0.473827 - 0.581130I		
a = 1.56751 + 0.75659I	4.07927 - 1.37762I	1.11267 + 4.75149I
b = 0.460562 + 0.048919I		
u = 0.026089 + 1.270130I		
a = 0.433342 + 0.790191I	4.07927 - 1.37762I	0
b = 0.460562 + 0.048919I		
u = 0.026089 - 1.270130I		
a = 0.433342 - 0.790191I	4.07927 + 1.37762I	0
b = 0.460562 - 0.048919I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.546601 + 0.418251I		
a = 0.453277 - 0.847452I	2.02393 - 5.18635I	-2.50672 + 7.03100I
b = -1.093360 + 0.383928I		
u = -0.546601 - 0.418251I		
a = 0.453277 + 0.847452I	2.02393 + 5.18635I	-2.50672 - 7.03100I
b = -1.093360 - 0.383928I		
u = -0.805465 + 1.064120I		
a = 0.819276 - 0.467320I	8.43950 + 1.80223I	0
b = -1.211660 - 0.045159I		
u = -0.805465 - 1.064120I		
a = 0.819276 + 0.467320I	8.43950 - 1.80223I	0
b = -1.211660 + 0.045159I		
u = 0.198901 + 1.329080I		
a = 0.333173 - 0.169396I	3.13199 - 2.80514I	0
b = 0.046849 - 0.301708I		
u = 0.198901 - 1.329080I		
a = 0.333173 + 0.169396I	3.13199 + 2.80514I	0
b = 0.046849 + 0.301708I		
u = 0.065480 + 1.347360I		
a = -0.267717 + 0.891512I	4.20559 - 2.15286I	0
b = 0.253652 - 0.975036I		
u = 0.065480 - 1.347360I		
a = -0.267717 - 0.891512I	4.20559 + 2.15286I	0
b = 0.253652 + 0.975036I		
u = 0.116012 + 1.344200I		
a = -4.36296 - 1.77186I	5.28092 - 2.23064I	0
b = 1.079220 - 0.058684I		
u = 0.116012 - 1.344200I		
a = -4.36296 + 1.77186I	5.28092 + 2.23064I	0
b = 1.079220 + 0.058684I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.191636 + 0.606717I		
a = 2.91401 + 0.73543I	3.99674 + 1.36069I	0.42210 - 4.47976I
b = 0.620218 + 0.307429I		
u = -0.191636 - 0.606717I		
a = 2.91401 - 0.73543I	3.99674 - 1.36069I	0.42210 + 4.47976I
b = 0.620218 - 0.307429I		
u = -0.056090 + 1.391240I		
a = -2.41142 + 0.55032I	7.77622 + 0.55125I	0
b = 1.53445 - 0.45405I		
u = -0.056090 - 1.391240I		
a = -2.41142 - 0.55032I	7.77622 - 0.55125I	0
b = 1.53445 + 0.45405I		
u = -0.135451 + 1.404900I		
a = -2.35836 + 0.45643I	7.40612 + 4.48763I	0
b = 1.43653 + 0.66551I		
u = -0.135451 - 1.404900I		
a = -2.35836 - 0.45643I	7.40612 - 4.48763I	0
b = 1.43653 - 0.66551I		
u = -0.22028 + 1.39864I		
a = -0.645746 - 0.645559I	2.90482 + 7.12556I	0
b = 0.059577 + 1.184960I		
u = -0.22028 - 1.39864I		
a = -0.645746 + 0.645559I	2.90482 - 7.12556I	0
b = 0.059577 - 1.184960I		
u = -0.27878 + 1.48013I		
a = 2.11580 - 0.80950I	7.4851 + 13.0999I	0
b = -1.39544 - 0.53455I		
u = -0.27878 - 1.48013I		
a = 2.11580 + 0.80950I	7.4851 - 13.0999I	0
b = -1.39544 + 0.53455I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.14926 + 1.50492I		
a = 2.26623 + 0.33910I	9.18116 - 7.10658I	0
b = -1.37838 + 0.43416I		
u = 0.14926 - 1.50492I		
a = 2.26623 - 0.33910I	9.18116 + 7.10658I	0
b = -1.37838 - 0.43416I		
u = 0.29727 + 1.53685I		
a = 1.66201 + 0.62219I	6.46417 - 4.69569I	0
b = -1.164370 + 0.162769I		
u = 0.29727 - 1.53685I		
a = 1.66201 - 0.62219I	6.46417 + 4.69569I	0
b = -1.164370 - 0.162769I		
u = -0.22879 + 1.54997I		
a = 1.67995 - 0.58369I	8.43950 - 1.80223I	0
b = -1.211660 + 0.045159I		
u = -0.22879 - 1.54997I		
a = 1.67995 + 0.58369I	8.43950 + 1.80223I	0
b = -1.211660 - 0.045159I		
u = 0.214429 + 0.048924I		
a = -2.33130 + 1.05547I	-0.330423 - 0.986104I	-7.43918 + 1.15236I
b = -0.328130 - 0.742907I		
u = 0.214429 - 0.048924I		
a = -2.33130 - 1.05547I	-0.330423 + 0.986104I	-7.43918 - 1.15236I
b = -0.328130 + 0.742907I		

$$I_3^u = \langle -12a^5u + 60a^4u + \cdots - 290a + 125, \ 5a^5u - 25a^4u + \cdots + 34a - 11, \ u^2 + 1
angle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.923077a^{5}u - 4.61538a^{4}u + \dots + 22.3077a - 9.61538 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.923077a^{5}u - 1.07692a^{4}u + \dots + 8.84615a - 2.69231 \\ -0.615385a^{5}u + 3.07692a^{4}u + \dots - 17.5385a + 8.07692 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.307692a^{5}u + 5.23077a^{4}u + \dots - 17.0769a + 7.15385 \\ 1.15385a^{5}u - 5.76923a^{4}u + \dots + 21.3846a - 7.76923 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.53846a^{5}u - 4.15385a^{4}u + \dots + 26.3846a - 10.7692 \\ -0.615385a^{5}u + 3.07692a^{4}u + \dots - 17.5385a + 8.07692 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.30769a^{5}u + 11.5385a^{4}u + \dots + 42.7692a + 13.5385 \\ 2.30769a^{5}u - 11.5385a^{4}u + \dots + 42.7692a - 13.5385 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -10.6154a^{4}u + 42.4615a^{3}u + \dots + 40.3846a - 16.7692 \\ 10.6154a^{4}u - 42.4615a^{3}u + \dots + 40.3846a - 15.7692 \\ 10.6154a^{4}u - 42.4615a^{3}u + \dots + 40.3846a - 15.7692 \\ 10.6154a^{4}u - 42.4615a^{3}u + \dots + 40.3846a - 15.7692 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= -\tfrac{20}{13}a^5u + \tfrac{100}{13}a^4u + \tfrac{92}{13}a^4 - \tfrac{36}{13}a^3u - \tfrac{368}{13}a^3 - \tfrac{292}{13}a^2u + \tfrac{484}{13}a^2 + \tfrac{324}{13}au - \tfrac{232}{13}a - \tfrac{76}{13}u + \tfrac{48}{13}au - \tfrac{368}{13}a^3u - \tfrac$$

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^2$
c_2	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)^2$
c_3	$u^{12} + 3u^{10} + 5u^8 + 4u^6 + 2u^4 + u^2 + 1$
c_4, c_9	$u^{12} - u^{10} + 5u^8 + 6u^4 - 3u^2 + 1$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(u^2+1)^6$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$
c_3	$(y^6 + 3y^5 + 5y^4 + 4y^3 + 2y^2 + y + 1)^2$
c_4, c_9	$(y^6 - y^5 + 5y^4 + 6y^2 - 3y + 1)^2$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(y+1)^{12}$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = 0.901719 - 0.655968I	1.39926 - 0.92430I	-1.71672 + 0.79423I
b = -0.428243 - 0.664531I		
u = 1.000000I		
a = 0.618748 + 0.415113I	3.28987 - 5.69302I	2.00000 + 5.51057I
b = -1.073950 + 0.558752I		
u = 1.000000I		
a = 1.098280 - 0.655968I	1.39926 + 0.92430I	-1.71672 - 0.79423I
b = -0.428243 + 0.664531I		
u = 1.000000I		
a = 1.38125 + 0.41511I	3.28987 + 5.69302I	2.00000 - 5.51057I
b = -1.073950 - 0.558752I		
u = 1.000000I		
a = -0.43225 - 2.25915I	5.18047 + 0.92430I	5.71672 - 0.79423I
b = 1.002190 + 0.295542I		
u = 1.000000I		
a = 2.43225 - 2.25915I	5.18047 - 0.92430I	5.71672 + 0.79423I
b = 1.002190 - 0.295542I		
u = -1.000000I		
a = 0.901719 + 0.655968I	1.39926 + 0.92430I	-1.71672 - 0.79423I
b = -0.428243 + 0.664531I		
u = -1.000000I		
a = 0.618748 - 0.415113I	3.28987 + 5.69302I	2.00000 - 5.51057I
b = -1.073950 - 0.558752I		
u = -1.000000I		
a = 1.098280 + 0.655968I	1.39926 - 0.92430I	-1.71672 + 0.79423I
b = -0.428243 - 0.664531I		
u = -1.000000I		
a = 1.38125 - 0.41511I	3.28987 - 5.69302I	2.00000 + 5.51057I
b = -1.073950 + 0.558752I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.000000I		
a = -0.43225 + 2.25915I	5.18047 - 0.92430I	5.71672 + 0.79423I
b = 1.002190 - 0.295542I		
u = -1.000000I		
a = 2.43225 + 2.25915I	5.18047 + 0.92430I	5.71672 - 0.79423I
b = 1.002190 + 0.295542I		

IV.
$$I_4^u = \langle b-1, 4a+1, u-1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -0.25 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0.75 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0.25 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1\\2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 14.0625

Crossings	u-Polynomials at each crossing
c_1	u
$c_2, c_{10}, c_{11} \\ c_{12}$	u+1
c_3, c_4	2(2u-1)
c_5, c_6, c_7 c_8	u-1
<i>C</i> 9	u-2

Crossings	Riley Polynomials at each crossing
c_1	y
c_2, c_5, c_6 c_7, c_8, c_{10} c_{11}, c_{12}	y-1
c_3, c_4	4(4y-1)
<i>c</i> ₉	y-4

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.250000	0	14.0620
b = 1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u(u^{6} + u^{5} + \dots + u + 1)^{2}(u^{29} - 5u^{28} + \dots + u - 1)^{2} $ $\cdot (u^{43} - 7u^{42} + \dots + 108u - 32)$
c_2	$(u+1)(u^6 - u^5 + \dots - u + 1)^2(u^{29} + u^{28} + \dots + 5u - 1)^2$ $\cdot (u^{43} + 2u^{42} + \dots + 209u + 16)$
c_3	$4(2u-1)(u^{12}+3u^{10}+5u^8+4u^6+2u^4+u^2+1)$ $\cdot ((u^{29}+u^{28}+\cdots-u+19)^2)(2u^{43}-5u^{42}+\cdots-12267u+4806)$
c_4	$4(2u-1)(u^{12}-u^{10}+\cdots-3u^2+1)(u^{29}-u^{28}+\cdots+21u+11)^2$ $\cdot (2u^{43}+7u^{42}+\cdots-383u+38)$
c_5	$(u-1)(u^6 + u^5 + \dots + u + 1)^2(u^{29} + u^{28} + \dots + 5u - 1)^2$ $\cdot (u^{43} + 2u^{42} + \dots + 209u + 16)$
c_6, c_7, c_8	$(u-1)(u^{2}+1)^{6}(u^{43}+u^{42}+\cdots-u+1)(u^{58}+u^{57}+\cdots+120u+17)$
c_9	$(u-2)(u^{12}-u^{10}+\cdots-3u^2+1)(u^{29}-3u^{28}+\cdots+u-1)^2$ $\cdot (u^{43}+11u^{42}+\cdots+12u+4)$
c_{10}, c_{11}, c_{12}	$(u+1)(u^{2}+1)^{6}(u^{43}+u^{42}+\cdots-u+1)(u^{58}+u^{57}+\cdots+120u+17)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y(y^6 - 3y^5 + \dots - y + 1)^2(y^{29} + 3y^{28} + \dots - 5y - 1)^2$ $\cdot (y^{43} - 3y^{42} + \dots + 2640y - 1024)$
c_{2}, c_{5}	$(y-1)(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$ $\cdot ((y^{29} - 21y^{28} + \dots - 5y - 1)^2)(y^{43} - 28y^{42} + \dots + 22305y - 256)$
c_3	$16(4y-1)(y^{6}+3y^{5}+5y^{4}+4y^{3}+2y^{2}+y+1)^{2}$ $\cdot (y^{29}+15y^{28}+\cdots+1103y-361)^{2}$ $\cdot (4y^{43}+131y^{42}+\cdots+560152341y-23097636)$
c_4	
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(y-1)(y+1)^{12}(y^{43}+49y^{42}+\cdots-7y-1)$ $\cdot (y^{58}+47y^{57}+\cdots-6784y+289)$
<i>C</i> 9	$(y-4)(y^6 - y^5 + \dots - 3y+1)^2(y^{29} - 5y^{28} + \dots + 3y-1)^2$ $\cdot (y^{43} - 11y^{42} + \dots + 56y-16)$