ECON 703 - ANSWER KEY TO HOMEWORK 12

BINZHEN WU

1. $Max \ u(x,y) = xy \ s.t.2x + 2y \le 8, \ x \ge 0, \ y \ge 0$

First, solving the problem by applying Kuhn-Tucker Theorem. (All the conditions of Kuhn-Tucker Theorem are satisfied). Let $L = xy + \lambda(8 - 2x - 2y)$, where λ are the Lagrange multipliers of the constraint. We will get the maximizer $x^* = 2, y^* = 2, \lambda^* = 1$. Therefore

 $L(x^*, y^*, \lambda^*) = 4$; $L(x^*, y^*, \lambda) = 4 + \lambda * 0 = 4$; $L(x, y, \lambda^*) = xy + 8 - 2x - 2y$.

Then $L(x^*, y^*, \lambda^*) \leq L(x^*, y^*, \lambda)$. However, $L(x^*, y^*, \lambda^*)$ may be less than $L(x, y, \lambda^*)$. To see this, setting x=1,y=1, then $L(x,y,\lambda^*)=5>L(x^*,y^*,\lambda^*)$. So (x^*,y^*,λ^*) is not a saddle point of L.

The reason of the failure of the saddlepoint theorem is that u(x,y) is only quasiconcave, and concave function is required in the Saddlepoint Theorem. $D^2u(x,y)=\begin{bmatrix}0&1\\1&0\end{bmatrix}$ is not negative semidefinite, and then it is not concave. However, the upper contour set $U(u,\alpha)=(x,y)\in\Re^2_+|u(x,y)>\alpha=(x,y)\in\Re^2_+|xy>\alpha$ is

- convex (see graph 1). So the function is quasiconcave.
- 2. For any $x \in D = \{(x_1, x_2, x_3) \in \Re^3_+ | p_1 x_1 + p_2 x_2 + p_3 x_3 \leq I \}$, we have $x_i \leq \frac{I}{p_i}$ for any $p_i > 0$. We have know that $x \geq 0$. Therefore $D \subset B((0,0,0),r)$ where $r = 2max\{\frac{I}{p_1}, \frac{I}{p_2}, \frac{I}{p_3}\}$ (or, we can set $r = \frac{1}{2max}\{\frac{I}{p_1}, \frac{I}{p_2}, \frac{I}{p_3}\}$) $\sqrt{(\frac{I}{p_1})^2 + (\frac{I}{p_2})^2 + (\frac{I}{p_3})^2}$). Hence D is bounded.

Consider any $\{x^k\}$ in D s.t. $x^k \to x$. $x^k \ge 0$, so $x \ge 0$; $x_i^k \to x_i$, so $p_i x_i^k \to p_i x_i$, so $\sum_{i=1}^3 p_i x_i^k \to \sum_{i=1}^3 p_i x_i$. Since $\sum_{i=1}^3 p_i x_i^k \le I$, we will have $\sum_{i=1}^3 p_i x_i \le I$. Hence $x \in D$. Therefore D is also closed. And then D is

 $x_1^{\frac{1}{3}}$ is continuous because for any $x_1^k \to x_1$, we have $x_1^{k\frac{1}{3}} \to x_1^{\frac{1}{3}}$. Now consider $min\{x_2, x_3\}$. If $x_2^k \to x_2, x_3^k \to x_3$ x_3 , then 2, s.t. for $k \ge N_2$, we have $x_2 - \epsilon \le x_2^k \le x_2 + \epsilon$. And $\exists N_3$, s.t. for any $k \ge N_3$, $x_3 - \epsilon \le x_3^k \le x_3 + \epsilon$. Therefore, there is a $N=\max\{N_2,N_3\}$ s.t. for all $k\geq N$, we have $\min\{x_2,x_3\}-\epsilon\leq \min\{x_2^k,x_3^k\}\leq 1$ $min\{x_2, x_3\} + \epsilon$. So $min\{x_2, x_3\} \rightarrow min\{x_2, x_3\}$. Hence $min\{x_2, x_3\}$ is continuous.

u(.) is sum of the two continuous functions, so u(.) is continuous. By Weierstrass Theorem, we know that the global optimum exists for this problem.

Since the objective $u(x_1, x_2, x_3) = x_1^{\frac{1}{3}} + min\{x_2, x_3\}$ is a continuous function (Leontief function is continuous) and the constraint set $D = (x_1, x_2, x_3) \in \Re^3_+ : p_1 x_1 + p_2 x_2 + p_3 x_3 \le I$ is compact when $p_i > 0 \ \forall i = 1, 2, 3$ by the Weiestrass theorem, we know that a solution to this problem exists. However, since the objective does not belong to C^1 (Leontief is not differentiable, and $x_1^{\frac{1}{3}}$ is not C^1 at $x_1 = 0$), we can not apply the theorem of Kuhn and Tucker to characterize a solution.

However, we can use the following tricks. If $p_i > 0$ for all i, then any optimal solution must involve $x_2 = x_3$ (if $x_2 > x_3$, we can lower x_2 to x_3 without lowering the value of the objective). Let z denote the common value of x_2 and x_3 , and let $p_z = (p_1 + p_2)$. Then the maximization problem becomes:

$$Maxx_1^{\frac{1}{3}} + z \quad s.t. \quad (p_1x_1 + p_2) \le I; z \ge 0; x_1 \ge 0.$$

At the same time, $x_1 = 0$ cannot be maximizer, because the marginal utility of x_1 at $x_1 = 0$ is $+\infty$, but the marginal utility of z is 1, so it is always better to transfer income from z to x_1 . Therefore, the utility is C^1 for all the candidate maxima. And then we can apply the Kuhn and Tucker Theorem to this problem. \Box

3. $\Phi(p,\omega=\{\phi\in\Re^n|p.\phi\leq 0\ and\ y_s(\phi)\geq 0\}$, where $y_s(\phi)=\omega_s+\sum_{i=1}^N\phi_iz_{is}$. To satisfy Slater's condition, we need to make sure there is some Φ s.t. $p.\phi<0$ and $y_s(\phi)>0$, i.e. $\sum_i p_i\phi_i<0$. $w_s+\sum_i \phi_iz_{is}>0$. We have had constraints $p\geq 0$ and $w_s\geq 0$. If there is some p_i which is greater than 0, and all w_s greater than 0, then Slater's condition will be met. The reason is as following:

W.L.O.G, suppose $p_1 > 0$. Consider the portfolio with $\phi_2, ..., \phi_n = 0$, and ϕ_1 defined as follows:

$$\phi_1 = \begin{cases} -1 & \text{, if there is no s s.t. } z_{js} > 0 \text{ (a)} \\ -\frac{1}{2}min_s \frac{w_s}{z_{1s}} & \text{, o/w} \quad \text{(b)} \end{cases}$$

Then in case (a), we have $y_s \ge w_s > 0$ for all s, and in case (b), we have $y_s > \frac{w_s}{2}$ for all s. Furthermore, $\sum_i p_i \phi_i = p_1 \phi_1 < 0$. Therefore, Slater's condition is satisfied.

4.

$$Max \ pf(L^* + L) - w_1L^* - w_2L$$
$$s.t.L \ge 0$$

Let $L=pf(L^*+L)-w_1L^*-w_2L+\lambda L$. Then F.O.C. is

$$pf'(L^* + L) - w_2 + \lambda = 0.$$

$$\lambda L = 0$$
, and $\lambda \geq 0$.

There is some $L \in \Re_+$, say L=1, s.t. L > 0, so Slater's condition is met. And $f(L^* + L)$ is C^1 and concave in L, since f is C^1 and concave in L, and since $h(L) = L^* + L$ is concave and C^1 in L. Furthermore, g(L) = L is C^1 and concave. Therefore, we can apply the Kuhn-Tucker Theorem under convexity. Hence the f.o.c. is necessary and sufficient for a solution.

5. Suppose $a = \lambda a_1 + (1 - \lambda)a_2, \lambda \in [0, 1]$.

$$V(a_1) \equiv f(x_1^*, a_1) \text{ and } g(x_1^*, a_1) \ge 0$$

$$V(a_2) \equiv f(x_2^*, a_2) \text{ and } g(x_2^*, a_2) \ge 0$$

$$V(a) \equiv f(x^*, a)$$
 and $q(x^*, a) > 0$.

$$g(\lambda x_1^* + (1-\lambda)x_2^*, \lambda a_1 + (1-\lambda)a_2) \ge \lambda g(x_1^*, a_1) + (1-\lambda)g(x_2^*, a_2) \ge 0.$$

So
$$\lambda x_1^* + (1 - \lambda) x_2^* \in D(a)$$
.

Then,
$$V(a) = f(x^*, a) \ge f(\lambda x_1^* + (1 - \lambda) x_2^*, a)$$

$$= f(\lambda x_1^* + (1 - \lambda)x_2^*, \lambda a_1 + (1 - \lambda)a_2)$$

$$\geq \lambda f(x_1^*, a_1) + (1 - \lambda) f(x_2^*, a_2)$$

$$= \lambda V(a_1) + (1 - \lambda)V(a_2).$$

Therefore, V(a) is a concave function of a.