Traitement d'images

Polytech Paris-Sud 5ère année

Estimation robuste

Cadre du problème :

- observations fournies par les images
 - points d'intérêt, contours, régions etc.
 - associations : appariements, champs de flot optique, etc.
- lacktriangle une partie importante des observations générée par un modèle mathématique défini par un ensemble $m{ heta}$ de paramètres

Objectif

- ightharpoonup déterminer les paramètres heta
 - en robotique : souvent une information de déplacement
 - suivi de cibles
 - état d'un système physique etc.
- lacktriangle nombre d'observations largement suffisant pour inférer heta mais
- ▶ présence des valeurs aberrantes (outliers) qui ne respectent pas le modèle

E. Aldea (Polytech) Traitement d'images Chap II : Filtrage (2/24)

Exemple jouet

La constante d'élasticité d'un ressort

- ▶ loi de Hooke : F = kx
- ▶ objectif : $\theta = \{k\}$
 - ▶ on varie *N* fois la force appliquée, on mesure la déformation
 - ▶ *N* observations $\{(F_i, x_i)\}$
 - ensemble minimal de mesures pour déterminer θ : K=2
 - en pratique on utilise les N observations pour une estimation par moindres carrés, à cause du bruit de mesure
- ▶ pas de outliers, tout s'explique par le modèle considéré

Exemple en vision

Estimation de l'ego-mouvement

- ▶ *N* observations $\{x_i\}_{1 \le i \le N}$ (une obs. par pixel)
- ensemble minimal de taille K, $N \gg K$
- objectif : $\theta = \{R, t\}$
- un algorithme f qui fournit $\theta = f(x_1, \dots, x_K)$
- problème : hypothèse de scène statique
- lacktriangle éléments dynamiques \Rightarrow observations qui ne respectent pas le modèle $oldsymbol{ heta}$

Objectif : déterminer θ et les observations valides

Traitement d'images

Chap II: Filtrage

Source du problème

Influence des outliers

on ne peut pas ignorer les outliers et déterminer les paramétrés du modèle

les méthodes de type moindres carrés sont très sensibles aux outliers à cause de la fonction d'erreur quadratique $\rho(r_i) = r_i^2$

Deux types d'approches

Analyse de l'ensemble des résidus

 Least Median of Squares (LMedS); on remplace la somme par la médiane des résidus :

$$\min_{\theta} \operatorname{med} \rho(r_i)$$

▶ Least Trimmed Squares (LTS); tri des résidus et sélection des premiers N/2 < M < N

$$\min_{\theta} \sum_{i=1}^{M} \rho(r_i)$$

 \blacktriangleright Recherche exhaustive nécessaire par K-tuples ; breakdown point $\sim 50\%$

Modification de ρ

Utilisation à la place de l'erreur quadratique d'une autre fonction symétrique, définie positive (voir Huber, Tukey etc.) Breakdown point inférieur à $1/\mathcal{K}$ Dans tous les cas, on sépare les inliers et seulement après on peut appliquer une LMS classique.

RANSAC

Random Sample Consensus

- 1. Pour *T* itérations / Tant qu'il reste du temps de calcul
 - sélection aléatoire de K observations
 - ightharpoonup détermination exacte de heta
 - ▶ calcul cardinal du support pour θ : $\{x_i \ t.q \ \rho(x_i, \theta) < \tau\}$
- 2. validation de $\hat{m{ heta}}$ ayant le plus grand support
- 3. calcul de $ilde{ heta}$ par moindres carrés sur le support de $\hat{ heta}$

Paramètres

- ightharpoonup pour l'inclusion dans le support
- ▶ le nombre de tirages P
- dépendent de l'application et de la proportion d'outliers

Fit line - 3 inliers

(9/24)

Fit line - 4 inliers

Fit line - 8 inliers

Fit line - 9 inliers

Estimation finale par moindre carrés

Objectif de l'opération

Traitement d'images Chap II : Filtrage

Problème

- Détection de points d'intérêt et association
- ▶ Observation de type (x, y, x', y') : le coin (x, y) dans la première image est associé au coin (x', y') dans la deuxième image
- ightharpoonup si rotation pure de la camera entre les deux images $\tilde{\mathbf{x}}' = \mathbf{H}\tilde{\mathbf{x}}$ ou :

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

en développant

$$\begin{cases} x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}} \\ y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}} \end{cases}$$

Problème

les inconnues étant les différents hij

$$\begin{cases} x'(h_{20}x + h_{21}y + h_{22}) &= h_{00}x + h_{01}y + h_{02} \\ y'(h_{20}x + h_{21}y + h_{22}) &= h_{10}x + h_{11}y + h_{12} \end{cases}$$

$$\begin{bmatrix} x & y & 1 & 0 & 0 & 0 & -x'x & -x'y & -x' \\ 0 & 0 & 0 & x & y & 1 & -y'x & -y'y & -y' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{00} \end{bmatrix}$$

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 & -x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 & -y'_1 \\ \vdots & \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 & -x'_nx_n & -x'_ny_n & -x'_n \\ 0 & 0 & 0 & x_n & y_n & 1 & -y'_nx_n & -y'_ny_n & -y'_n \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

H est déterminée modulo un facteur multiplicatif, donc on peut fixer h_{22} à 1. On retient donc que pour le problème d'estimation de l'homographie K=4. Il faut donc résoudre $\mathbf{Ah}=\mathbf{0}$.

Si n > 4 le système est surdéterminé. En général pour trouver la solution par moindres carrés de $\mathbf{A}\mathbf{x} = \mathbf{b}$ il faut :

- 1. calculer la décomposition en valeurs singulières (la SVD) de $\mathbf{A} : \mathbf{A} = \mathbf{UDV}^T$
- 2. calculer $\mathbf{b}' = \mathbf{U}^T \mathbf{b}$
- 3. trouver **y** defini par $y_i = b_i'/d_i$
- 4. la solution est $\mathbf{x} = \mathbf{V}\mathbf{y}$

E. Aldea (Polytech) Traitement d'images Chap II : Filtrage (17/24)

Notions préliminaires de géométrie discrète

Partition de l'espace

- pavage : partition de l'espace continu en cellules élémentaires
- ▶ régularité → pavages réguliers : triangulaire, carré, hexagonal :

- ▶ maillage : ensemble des segments entre des cellules ayant une arête commune
- dualite entre pavage et maillage :

Notions préliminaires de géométrie discrète

Topologie discrète

- nombre de composantes connexes, de trous
- représentation hiérarchique des objets

Distances discrètes

- Dimension (e.g. rayon) des composantes connexes
- Distance entre les objets

Connexité

- la topologie dépend de la connexité du graphe de maillage :

 - ▶ 4-chemin : $\{(i_k,j_k)_{\{1 \le k \le n\}} | \forall k \in [1,n-1] \ ||i_{k+1}-i_k|| + ||j_{k+1}-j_k|| \le 1\}$ ▶ 8-chemin : $\{(i_k,j_k)_{\{1 \le k \le n\}} | \forall k \in [1,n-1] \ \max\{||i_{k+1}-i_k|| + ||j_{k+1}-j_k||\} \le 1\}$

Théorème de Jordan

- ► Toute courbe simple fermée sépare l'espace en deux composantes : l'intérieur et l'extérieur de la courbe
- Cas du pavage carré : un 4-chemin (resp. 8-chemin) simple fermé sépare l'espace en deux composantes

Distance

▶ la distance dépend également de la connexité du graphe de maillage

Distance euclidienne dans \mathbb{Z}^2 : $d_E = \sqrt{(x_1-y_1)^2+(x_2-y_2)^2}$

Distance d_4 dans \mathbb{Z}^2 : $d_4 = |x_1 - y_1| + |x_2 - y_2|$ Traitement d'images

Chap II : Filtrage

Distance

▶ la distance dépend également de la connexité du graphe de maillage

Distance euclidienne dans \mathbb{Z}^2 : $d_E = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$

Distance d_8 dans \mathbb{Z}^2 : $d_8 = \max(|x_1-y_1|,|x_2-y_2|)$

$\mathsf{Balayage}\;\mathsf{UL}\to\mathsf{LR}$

```
// initialisation
for (i = 0; i<w; i++)
    for (j = 0; j<h; j++){
        if I(i,j) ∈ X d(i,j) = 0;
            else d(i,j) = ∞;
    }
// calcul de d - etape 1
for (i = 0; i<w; i++)
    for (j = 0; j<h; j++){
        d(i,j) = min(d(i,j),
            d(i-1,j) + 1, d(i,j-1) + 1 );
    }</pre>
```

0	0	0	0	0	0	0	0
0	∞	00	_∞	∞	∞	∞	0
0	00	00	00	00	00	00	0
0	00	00	0	0	00	00	0
0	00	00	00	∞	00	00	0
0	00	60	00	60	00	80	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	2	2	2	2	2	0
0	1	2	0	0	1	2	0
0	1	2	1	1	2	3	0
0	1	2	2	2	3	4	0
0	0	0	0	0	0	0	0

d(i+1,j) + 1, d(i,j+1) + 1);

Balayage LR \rightarrow UL // calcul de d - etape 2 for (i = w-1; i>=0; i--) for (j = h-1; j>=0; j--){ d(i,j) = min(d(i,j),

0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	2	2	2	2	2	0
0	1	2	0	0	1	2	0
0	1	2	1	1	2	3	0
0	1	2	2	2	3	4	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	2	1	1	2	1	0
0	1	1	0	0	1	1	0
0	1	2	1	1	2	1	0
0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0

$\mathsf{Balayage}\;\mathsf{LR}\to\mathsf{UL}$

```
// calcul de d - etape 2
for (i = w-1; i>=0; i--)
  for (j = h-1; j>=0; j--){
    d(i,j) = min(d(i,j),
        d(i+1,j) + 1, d(i,j+1) + 1);
}
```

0	0	0	0	0	0	0	0
	0	0	0	0	U	U	U
0	1	1	1	1	1	1	0
0	1	2	2	2	2	2	0
0	1	2	0	0	1	2	0
0	1	2	1	1	2	3	0
0	1	2	2	2	3	4	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0
1	1	1	1	1	1	0
1	2	1	1	2	1	0
1	1	0	0	1	1	0
1	2	1	1	2	1	0
1	1	1	1	1	1	0
0	0	0	0	0	0	0
	1 1 1 1	1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 1 0 1 2 1 1 1 1	1 1 1 1 1 2 1 1 1 1 0 0 1 2 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 2 1 1 2 1 1 1 0 0 1 1 1 2 1 1 2 1 1 1 1 1 1 1

Exercice:

▶ Prouvez que l'algorithme fonctionne correctement

$\mathsf{Balayage}\;\mathsf{LR}\to\mathsf{UL}$

```
// calcul de d - etape 2
for (i = w-1; i>=0; i--)
  for (j = h-1; j>=0; j--){
    d(i,j) = min(d(i,j),
        d(i+1,j) + 1, d(i,j+1) + 1);
}
```

0	0	0	0	0	0	0	0
	0	0	0	0	U	U	U
0	1	1	1	1	1	1	0
0	1	2	2	2	2	2	0
0	1	2	0	0	1	2	0
0	1	2	1	1	2	3	0
0	1	2	2	2	3	4	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0
1	1	1	1	1	1	0
1	2	1	1	2	1	0
1	1	0	0	1	1	0
1	2	1	1	2	1	0
1	1	1	1	1	1	0
0	0	0	0	0	0	0
	1 1 1 1	1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 1 0 1 2 1 1 1 1	1 1 1 1 1 2 1 1 1 1 0 0 1 2 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 2 1 1 2 1 1 1 0 0 1 1 1 2 1 1 2 1 1 1 1 1 1 1

Exercice:

- Prouvez que l'algorithme fonctionne correctement
- ▶ Proposez un algorithme similaire pour d_8