Лабораторная работа 3.4.4 Петля гестерезиса (статистический метод)

Сафиуллин Роберт 12 ноября 2018 г.

1 Цель работы:

исследование кривых намагничивания ферромагнетиков с помощью баллистического гальванометра.

2 В работе используются:

генератор тока, блок питания, тороид, соленоид, баллистический гальванометр с осветителем и шкалой, амперметры, магазин сопротивлений, ЛАТР, разделительный трансформатор.

3 Экспериментальная установка:

Рис. 4. Схема установки для исследования петли гистерезиса

Рис. 5. Схема установки для калибровки гальванометра

$$\begin{aligned} d_c &= 7cm & R_0 = 50\Omega & R_c = 60\Omega & R_M = 100\Omega & l_c = 80cm \\ N_{C0} &= 825 & N_{C1} = 435 & N_{T1} = 300 & N_{T0} = 1750 \end{aligned}$$

4 Ход работы

- 1) Собрали схему 4
- 2) Установили сопротивление 80 Ω и прошли по всей петле.
- 3) Убедившись, что зайчик нигде не выходит за шкалу, снимем

показания:

Участок СЕ			Участок ЕГ'С'				
I, mA	Δx ,cm	H, A/m	ΔB , Тл	I, mA	Δx ,cm	H, A/m	ΔB , Тл
1470	0	8192	0	0.00032	0	0.002	0
530	12	2954	0.22	0.6	0.1	3.34	0.0018
244	12	1360	0.22	23	12	128	0.22
147	8.6	819	0.16	27	2.9	150	0.053
96	6.6	535	0.12	31	4.1	173	0.07
65	5.1	362	0.092	34	4.6	189	0.083
50	3	279	0.05	40	13.6	223	0.25
40	2	223	0.036	50	23	279	0.42
34	1.2	189	0.022	65	22	362	0.4
31	0,7	173	0.012	96	21.5	535	0.39
27	1	150	0.018	147	16.6	819	0.3
23	0.9	128	0.016	244	15.6	1360	0.28
0.6	7.2	3.34	0.13	540	19.2	2954	0.35
0,00032	0.1	0.002	0.0018	1470	15.4	8192	0.28

Участок С'Е'			Участок ОАС				
I, mA	Δx ,cm	H, A/m	ΔB , Тл	I, mA	Δx ,cm	H, A/m	ΔB , Тл
1470	0	8192	0	0.00032	0	0.002	0
530	12.2	2954	0.22	0.6	0.1	3.34	0.002
244	12.4	1360	0.23	23	12.4	128	0.23
147	9	819	0.16	27	2.9	150	0.05
96	6.7	535	0.12	31	4.1	173	0.074
65	5.1	362	0.09	34	4.6	189	0.08
50	3	279	0.05	40	14	223	0.25
40	2	223	0.036	50	25	279	0.45
34	1.2	189	0.022	65	23	362	0.42
31	0.6	173	0.011	96	23	535	0.42
27	1	150	0.018	147	17.7	819	0.32
23	0.9	128	0.016	244	16.2	1360	0.29
0.6	7.4	3.34	0.13	540	20.8	2954	0.38
0,00032	0.1	0.002	0.002	1470	16.1	8192	0.3

- 4) Для калибровки гальванометра собрали схему 5. Уменьшили на магазине сопротивлений значение R_M на величину R_C : R_M '= 20 Ω . Установили тумблер генератора тока на максимум и , замкнув ключ Π_1 , $I_{max}=1.87A$. Разомкнули ключ Π_1 и измерили отклонение Δx_1 =9.2 ст при $\Delta I_1=I_{max}$.
- 5) Снимем начальную кривую намагничивания с помощью схемы 4. Перед этим размагнитим образец при помощи ЛАТРа.

Участок Е'F'С					
I, mA	Δx ,cm	H, A/m	ΔB , Тл		
0.56	0	3.12	0		
24	5.5	133.8	0.102		
28	2.2	156	0.04		
31.5	3.1	175	0.06		
34.1	3	190	0.56		
50	9.1	279	0.17		
65.2	11.3	363	0.21		
96.4	15.1	537	0.28		
147	14.2	819	0.263		
244	14.9	1360	0.276		
540	18.9	3010	0.35		
1470	15.4	8193	0.286		
40.1	6.5	223.5	0.12		

6) Обработаем результаты, используя формулы:

$$H = I \frac{N_{T0}}{\pi D_{tot}}$$

$$H = I \frac{N_{T0}}{\pi D_{tor}}$$

$$\Delta B[T] = \mu_0 \; (\frac{d_c}{d_T})^2 \frac{R_{tor}}{R_{sol}} \frac{N_{C0}}{N_{T1}} \frac{N_{C1}}{l_C} \Delta I_1 \frac{\Delta x}{\Delta x_1}, d_T = 1cm, D_{tor} = 10cm.$$
Результаты занесем в первые таблицы.

7) Построим петлю гестерезиса:

Отсюда $H_c \approx 580 A/m, B_s = 2.23$ Тл

•	Эксперим.	Табличное
$H_c, \frac{A}{m}$	580	80
B_s, T	2.23	2.15
μ_{dif}	12200	5000