Greek 40 Word Lookup

Brett Bono

November 2024

Sources:

Greek Lookup:

- 1. Bill Mounce
- 2. Liddell, Scott, Jones Ancient Greek Lexicon
- 3. Euclid's Elements of Geometry (Greek Text)

Math Definition Lookup:

1. Introduction To Topology by James R. Munkres

Term	Definition	Greek	Literal Translation
Point	A point is that which has no part.	σημειον	Mark, dot
Line	A line is breadthless length.	γραμμη	Letter, That which is drawn
Straight Line	A straight line is one which lies evenly with the points	ευθεια γραμμη	That which is drawn at once
	on itself.		
Surface	A surface is that which has length and breadth only.	επιφανεια	Appearing at once
Plane Surface	A plane surface is one which lies evenly with the straight	επιπεδος επιφανεια	Appearing at once and level-like
	lines on itself.		
Plane Angle	An angle is the inclination of two lines to one another	επιφανεια γωνια	level corner (angle)
	in a plane, which meet but do not lie in a straight line.		
Circle	A circle is a plane figure contained by one line, such that	κυκλος	Circle, Ring
	all straight lines radiating towards [the circumference]		
	from one point amongst those lying inside the figure are		
	equal to one another.		
Center of a Circle	The center of a circle is the point equidistant from all	κεντρον δε του κυκλου το σημειον καλειται	The Sharp point $(\kappa \epsilon \nu \tau \rho o \nu)$ is called the center of the circle
	points on the circle.		
Radius	A radius is any straight line drawn from the center to	περιβαλλω	Encompassing Encircling
	the circumference of a circle.		
Diameter	A diameter is any straight line drawn through the center	διαμετρος	Diameter
	and terminated at both ends by the circumference.		
Semicircle	A semicircle is the figure contained by the diameter and	Σχηματα ευθυγραμμα	Form of that which is drawn straight
	the part of the circumference cut off by it.		
Parallel Lines	Parallel lines are lines which, being in the same plane,	παραλληλοι	Beside one another
	do not meet however far produced in either direction.		
Triangle	A triangle is a plane figure contained by three straight	τριπλευρα	Three Sides
	lines.		
Quadrilateral	A quadrilateral is a plane figure contained by four	τετραπλευρα	Four-sided
	straight lines.		
Postulate	A claim that is asserted as true.	ομολογημα	That which is agreed upon

Table 1: Euclidean Geometry Definitions

Term	Definition	Greek/Latin	Literal
Relation	A relation R between two sets X and Y is a subset of the	relatio	Connection
	Cartesian product $X \times Y$. For example, $R = \{(x, y) \mid$		
	x is related to y }.		
Function	A function $f: X \to Y$ is a special type of relation	functio	A performance
	where each $x \in X$ is associated with exactly one $y \in Y$.		
	Functions can be characterized by their injectivity and		
	surjectivity.		
Injective (One-to-One)	A function $f: X \to Y$ is injective if distinct elements	in + jacere	To throw into
	in X map to distinct elements in Y. Formally, $f(x_1) =$		
	$f(x_2) \implies x_1 = x_2.$		
Surjective (Onto)	A function $f: X \to Y$ is surjective if every element in	sur + jacere	To throw over
	Y is the image of some element in X. Formally, $\forall y \in$		
	$Y, \exists x \in X \text{ such that } f(x) = y.$		
Inverse	For a bijective function $f: X \to Y$, an inverse function	invertere	To turn upside down
	$f^{-1}: Y \to X$ satisfies $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = y$		
	x.		
Image	For a function $f: X \to Y$, the image is the subset of Y	imago	Copy
	consisting of all outputs of f . Formally, $Im(f) = \{f(x) \mid$		
	$x \in X$.		
Domain	The domain of a function $f: X \to Y$ is the set	domus	House
	of all possible inputs X. Formally, $Dom(f) = \{x \mid$		
	f(x) is defined.		
Codomain	The codomain of a function $f: X \to Y$ is the set Y,	com + domus	Together + House
	which contains all possible outputs of f . Note, not all		
	elements in the codomain need to be in the image.		

Table 2: Pre-Topology

Term	Definition	Greek/Latin	Literal
Topology	A collection T of subsets of X having the fol-	τοπος + λογια	Study of places
1	lowing properties:	,	
	 ∅ and X are in T 		
	 The union of any subcollection of T is in 		
	T		
	3. The intersection of any finite subcollection		
	of T is in T		
Open Set	A set $U \subseteq X$ is called open if for every point	Latin & Greek non. Close to hiatus + secta	Opening + A following
	$x \in U$, there exists an open neighborhood of x		
	entirely contained in U .		
Base / Basis	A basis is a collection of open sets such that	basis or βασις	Foundation or A step that on which one steps, or stands
	every open set can be expressed as a union of		
	these basis elements.		
	 A subset B ⊂ T is a basis if for every 		
	open set U in T , there exists a subset of		
	B whose union is U.		
	Basis elements must satisfy the following:		
	If $B_1, B_2 \in B$, and $x \in B_1 \cap B_2$, then there		
	exists $B_3 \in B$ such that $x \in B_1 \cap B_2$, then there		
	$D_3 \subset D$ but while $D \subset D_3 \subseteq D_1 \cap D_2$.		
Continuous	A function $f : X \rightarrow Y$ is continuous if the	continere	To be uninterrupted
Continuous	preimage of every open set in Y is an open set	Commercia	To be ammeriapeed
	in X.		
Homeomorphism	A continuous function $f : X \rightarrow Y$ with a contin-	ομοιος + μορφη	Same form
Tronncomorpmon	uous inverse $f^{-1}: Y \to X$. Homeomorphisms	ομοιος μορφη	tomic tom
	preserve topological properties such as connect-		
	edness and compactness.		
	 f is a bijection. 		
	f is continuous.		
	 f^{−1} is continuous. 		
Closed Set	A set $C \subseteq X$ is called closed if its complement,	claudere + secta	To close + A following
	$X \setminus C$, is an open set.		
Compact	A space X is compact if every open cover of X	compingere	To fasten together
	has a finite subcover.		
Connected	A space X is connected if it cannot be divided	con + nectere	To bind together
	into two disjoint non-empty open sets.		
Subspace	A subspace is a subset Y of X equipped with	sub + spatium	Under + Room
	the subspace topology, where the open sets in		
	Y are intersections of open sets in X with Y .		
Limit Point	A point x is a limit point of a set $S \subseteq X$ if every	limen + pungere	Threshold + To peirce
	neighborhood of x contains at least one point of		
	S different from x .		
Closure	The closure of a set S is the smallest closed set	claudere	To close
	containing S , which is the union of S and its		
*	limit points.		W. I
Interior	The interior of a set S is the largest open set	intra	Within
	contained in S.		
Boundary	The boundary of a set S is the set of points	bodina + ary	Having the characteristic of limits (medieval latin c. 1300.)
	where every neighborhood intersects both S and		
D 1 . m 1	its complement.		G III I I I
Product Topology	The topology on the Cartesian product of two	$productum + \tau o \pi o \varsigma$	Something produced + Place
	spaces X and Y , where open sets are unions of		
O	products of open sets from X and Y.		Polosilos y Phys
Quotient Topology	The topology on a set of equivalence classes, in-	$quot + \tau o \pi o \varsigma$	Reduction + Place
	duced by a surjective map $f: X \to Y$. A subset		
37	$U \subseteq Y$ is open if $f^{-1}(U)$ is open in X .		V
Metric Space	A set X with a metric $d: X \times X \rightarrow \mathbb{R}$ that	$\mu \epsilon \tau \rho o \nu + spatium$	Measure + Room
	defines a distance between points. Open balls		
D	form a basis for the topology.	<u> </u>	G
Discrete Topology	A topology where every subset is open. It is the	$discretus + \tau o \pi o \varsigma$	Separate + Place
	finest topology on a set.		

Table 3: Topology Terms