initial		max
	7	

	\$tatement	S/E	Frequency	Total
1	int func(int n) {	0	-	0
2	int sum=0;	1	1	1
3	for(int i=n; i> 0; i) {	1	n+1	n+1
4	for(int j=n-1; j>=i; j) {	1	n(n + 1)/2	n(n + 1)/2
5	sum=i+j;	1	n(n - 1)/2	n(n - 1)/2
6	System.out.println(sum);	1	n(n-1)/2	n(n - 1)/2
7	}	0	-	0
8	}	0	-	0
9	}	0	-	0
Total Operation		$\frac{3}{2}n^2 + \frac{1}{2}n + 2$		
Big-Oh		$O(n^2)$		

- 1. This line is not executable, S/E is 0.
- 2. This line is executable (S/E is 1) and it will be executed once (Frequency = 1)
- 3. This line is executable (S/E is 1) and it will be executed n+1 times, we applied the rule for the for statement initial $-\max + 1 = n 0 + 1 = n + 1$

4. int this step the inside for depends in I, see the following table:

i	j (initial)	How many times j >= i	sum=i+j	System.out.println(sum);
n	n-1	n-1 >= n (1 time)	0	0
n-1	n-1	n-1 >= n-1, n-2 >= n-1 (2 times)	1	1
n-2	n-1	n-1 >= n-1 , n-2 >= n-1 (3 times)	2	2
n-3	n-1	n-1 >= n-1 , n-2 >= n-1 (4 times)	3	3
				••••
3	n-1	n-1 >= n-1 , n-2 >= n-1 (n-2 times)	n-3	n-3
2	n-1	n-1 >= n-1 , n-2 >= n-1 (n-1 times)	n-2	n-2
1	n-1	n-1 >= n-1 , n-2 >= n-1 (n times)	n-1	n-1
0	••••		••••	••••

$$j >= i = 1 + 2 + 3 + 4 + \dots + (n-2) + (n-1) + (n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$sum = i + j = 0 + 1 + 2 + 3 + \dots + (n-3) + (n-2) + (n-1)$$

$$= \sum_{i=1}^{n} i = \frac{n(n+1)}{2} - n = \frac{n^2 + n}{2} - n = \frac{n^2 + n}{2} - \frac{n}{1} = \frac{n^2 + n - 2n}{2} = \frac{n^2 - n}{2} = \frac{n(n-1)}{2}$$