પ્રશ્ન 1(અ) [3 ગુણ]

વેવ ફોર્મ સાથે કંટીન્યુઅસ ટાઇમ સિગ્નલ અને ડિસ્ક્રીટ ટાઇમ સિગ્નલ વ્યાખ્યાયિત કરો.

જવાબ:

સિગ્નલ પ્રકાર	વ્યાખ્યા	વેવફોર્મ
કંટીન્યુઅસ ટાઇમ સિગ્નલ	સમયની તમામ કિંમતો માટે વ્યાખ્યાયિત સિગ્નલ જેમાં કોઈ વિરામ નથી	<pre>mermaid graph LR; A[t]> B[x(t)]; style B fill:#fff,stroke:#333,stroke-width:2px</pre>
ડિસ્ક્રીટ ટાઇમ સિગ્નલ	માત્ર અલગ-અલગ સમય અંતરાલો પર વ્યાખ્યાયિત સિગ્નલ	<pre>mermaid graph LR; A[n]> B[x[n]]; style B fill:#fff,stroke:#333,stroke-width:2px</pre>

આકૃતિ:

મેમરી ટ્રીક: "કંટીન્યુઅસમાં કર્વ, ડિસ્ક્રીટમાં ડોટ્સ"

પ્રશ્ન 1(બ) [4 ગુણ]

એનર્જી અને પાવર સિગ્નલ સમજાવો.

પેરામીટર	એનર્જી સિગ્નલ	પાવર સિગ્નલ
વ્યાખ્યા	મર્ચાદિત એનર્જી પરંતુ શૂન્ય સરેરાશ પાવર ધરાવે છે	મર્યાદિત સરેરાશ પાવર પરંતુ અનંત એનર્જી ધરાવે છે
ગાણિતિક સૂત્ર	$\int x(t) ^2 dt < \infty$	$\lim(T\to\infty) (1/2T) \int x(t) ^2 dt < \infty$
ઉદાહરણો	પત્સ, ડિકેઇંગ એક્સપોનેન્શિયલ	સાઇન વેવ, સ્ક્વેર વેવ
પ્રકૃતિ	મર્યાદિત સમયગાળો અથવા ઘટતી એમ્પ્લિટ્યૂડ	પિરિયોડિક અથવા અનંત સમયગાળો

આકૃતિ:

મેમરી ટ્રીક: "એનર્જી ખતમ થાય, પાવર કાયમ રહે"

પ્રશ્ન 1(ક) [7 ગુણ]

ડિજિટલ કોમ્યુનિકેશન સિસ્ટમનો બ્લોક ડાયાગ્રામ સમજાવો.

જવાબ:

બ્લોક	รเช่
Source	પ્રસારિત કરવા માટે સંદેશ ઉત્પન્ન કરે છે
Source Encoder	સંદેશને ડિજિટલ ક્રમમાં રૂપાંતરિત કરે છે, વધારાનું રિડન્ડન્સી દૂર કરે છે
Channel Encoder	ભૂલ શોધવા/સુધારવા માટે નિયંત્રિત રિડન્ડન્સી ઉમેરે છે
Digital Modulator	ડિજિટલ સિમ્બોલ્સને ચેનલ માટે યોગ્ય વેવફોર્મમાં રૂપાંતરિત કરે છે
Channel	પ્રસારણ માધ્યમ, નોઈઝ અને ડિસ્ટોર્શન ઉમેરે છે
Digital Demodulator	પ્રાપ્ત વેવફોર્મને પાછા ડિજિટલ સિમ્બોલ્સમાં રૂપાંતરિત કરે છે
Channel Decoder	ઉમેરેલા રિડન્ડન્સીનો ઉપયોગ કરીને ભૂલોને શોધે/સુધારે છે
Source Decoder	ડિજિટલ ક્રમમાંથી મૂળ સંદેશ પુનઃનિર્માણ કરે છે

મેમરી ટ્રીક: "સંદેશને સૂચના સંરક્ષિત, ડિજિટલ માધ્યમથી ચોક્કસ ડેટા સંચારિત"

પ્રશ્ન 1(ક) અથવા [7 ગુણ]

યુનિટ સ્ટેપ ફંક્શન અને યુનિટ ઈમ્પલ્સ ફંક્શન સમજાવો.

ફંક્શન	ગાણિતિક વ્યાખ્યા	ગુણઘર્મો	ઉપયોગો
યુનિટ સ્ટેપ ફંક્શન (u(t))	u(t) = 0 જ્યારે t < 0 u(t) = 1 જ્યારે t ≥ 0	- અચાનક પરિવર્તન દર્શાવે છે - ઈમ્પલ્સ ફંક્શનનું ઈન્ટિગ્રલ	સિસ્ટમ રિસ્પોન્સ એનાલિસિસ
યુનિટ ઈમ્પલ્સ ફંક્શન (δ(t))	δ(t) = 0 જ્યારે t ≠ 0 ∫δ(t)dt = 1	- અત્યંત સાંકડો પલ્સ - સેમ્પલિંગ પ્રોપર્ટી - સ્ટેપ ફંક્શનનું ડેરિવેટિવ	સેમ્પલિંગ, સિસ્ટમ એનાલિસિસ

આકૃતિઓ:

મેમરી ટ્રીક: "સ્ટેપ શૂન્ય પછી સ્થિર રહે, ઈમ્પલ્સ ક્ષણિક ઉદ્ભવે અને અવૃશ્ય થાય"

પ્રશ્ન 2(અ) [3 ગુણ]

સિગ્નલ 8 બીટ/સિગ્નલ એલીમેન્ટ ઘરાવે છે. જો સેકન્ડ દીઠ 1000 સિગ્નલ એલીમેન્ટ મોકલવામાં આવે છે. બીટ રેટ શોદ્યો.

જવાબ:

પેરામીટર	ਭਿੰਮਰ
સિગ્નલ એલીમેન્ટ દીઠ બિટ્સ	8 બિટ્સ
સેકન્ડ દીઠ સિગ્નલ એલીમેન્ટ્સ	1000
ગણતરી	બિટ રેટ = (સિગ્નલ એલીમેન્ટ દીઠ બિટ્સ) × (સેકન્ડ દીઠ સિગ્નલ એલીમેન્ટ્સ)
બિટ રેટ	= 8 × 1000 = 8000 બિટ્સ/સેકન્ડ અથવા 8 kbps

મેમરી ટ્રીક: "સિગ્નલ દીઠ બિટ્સ × સેકન્ડ દીઠ સિગ્નલ = સેકન્ડ દીઠ બિટ્સ"

પ્રશ્ન 2(બ) [4 ગુણ]

ઈવન અને ઓડ સિગ્નલ સમજાવો.

સિગ્નલ પ્રકાર	ગાણિતિક વ્યાખ્યા	ગુણઘર્મો	ઉદાહરણો
ઈવન સિગ્નલ	x(-t) = x(t)	- y-અક્ષ પર સમમિત - કોસાઇન એક ઈવન ફંક્શન છે	કોસાઇન ફંક્શન, t
ઓંડ સિગ્નલ	x(-t) = -x(t)	- y-અક્ષ પર એન્ટી-સમમિત - સાઇન એક ઓડ ફંક્શન છે	સાઇન ફંક્શન, t

આકૃતિ:

મેમરી ટ્રીક: "ઈવન એકસરખું પ્રતિબિંબિત થાય, ઓડ વિપરીત પ્રતિબિંબિત થાય"

પ્રશ્ન 2(ક) [7 ગુણ]

ASK મોક્યુલેટર અને ડી-મોક્યુલેટરના બ્લોક ડાયાગ્રામને વેવફોર્મ સાથે સમજાવો.

જવાબ:

ASK મોક્યુલેટર:

ASK ડિમોક્યુલેટર:

વેવફોર્મ્સ:

વિષય	นต์า
ASK મોક્યુલેશન	ડિજિટલ ડેટા (0 અથવા 1) અનુસાર એમ્પ્લિટ્યૂડ બદલાય છે
મોડ્યુલેટર ઘટકો	પ્રોડક્ટ મોક્યુલેટર કેરિયરને ડિજિટલ સિગ્નલ સાથે ગુણાકાર કરે છે
ડિમોક્યુલેટર ઘટકો	એન્વેલોપ ડિટેક્ટર એમ્પ્લિટ્યૂડ શોધે છે, કમ્પેરેટર ડિજિટલ સિગ્નલ પુનઃનિર્માણ કરે છે

મેમરી ટ્રીક: "ASK એમ્પ્લિટ્યૂડ સિગ્નલ કાંટાકૂટ"

પ્રશ્ન 2(અ) અથવા [3 ગુણ]

સિગ્નલમાં 4000 બીટ/સેકન્ડનો બીટ રેટ અને 1000 બોદનો બોદ દર હોય છે. દરેક સિગ્નલ એલીમેન્ટ દ્વારા કેટલા ડેટા એલીમેન્ટ વહન કરવામાં આવે છે?

જવાબ:

પેરામીટર	કિંમત
બિટ રેટ	4000 બિટ્સ/સેકન્ડ
બોદ રેટ	1000 બોદ (સિગ્નલ એલીમેન્ટ્સ/સેકન્ડ)
સૂત્ર	ડેટા એલીમેન્ટ્સની સંખ્યા = બિટ રેટ ÷ બોદ રેટ
સિગ્નલ દીઠ ડેટા એલીમેન્ટ્સ	= 4000 ÷ 1000 = 4 બિટ્સ/સિગ્નલ એલીમેન્ટ

મેમરી ટ્રીક: "બિટ્સને બોદથી ભાગતા સિગ્નલ દીઠ બિટ્સ મળે"

પ્રશ્ન 2(બ) અથવા [4 ગુણ]

પિરિઓડિક અને એપિરિઓડિક સિગ્નલ સમજાવો.

સિગ્નલ પ્રકાર	વ્યાખ્યા	ગાણિતિક શરત	ઉદાહરણો
પિરિઓડિક સિગ્નલ	ચોક્કસ સમય પછી પુનરાવર્તન થાય છે	x(t) = x(t+T) દરેક t માટે	સાઇન વેવ, સ્ક્વેર વેવ
એપિરિઓડિક સિગ્નલ	કોઈપણ સમય પછી પુનરાવર્તન થતું નથી	x(t) ≠ x(t+T) કોઈપણ T માટે	પલ્સ, નોઈઝ

आहृति:

મેમરી ટ્રીક: "પિરિઓડિક પરફેક્ટ રીતે પુનરાવર્તિત થાય, એપિરિઓડિક હંમેશા બદલાતું રહે"

પ્રશ્ન 2(ક) અથવા [7 ગુણ]

PSK મોક્યુલેટર અને ડી-મોક્યુલેટરના બ્લોક ડાયાગ્રામને વેવફોર્મ સાથે સમજાવો.

જવાબ:

PSK મોક્યુલેટર:

PSK ડિમોક્યુલેટર:

વેવફોર્મ્સ:

પેરામીટર	વર્ણન
PSK મોક્યુલેશન	ડિજિટલ ડેટા (0 અથવા 1) અનુસાર ફ્રેઝ બદલાય છે
ફેઝ સ્ટેટ્સ	બિટ '1' માટે 0°, બિટ '0' માટે 180°
ફાયદા	ASK કરતાં નોઈઝ સામે વધુ પ્રતિરક્ષા

મેમરી ટ્રીક: "PSK ફેઝ શિફ્ટ કરે જાણકારીથી"

પ્રશ્ન 3(અ) [3 ગુણ]

બ્લોક ડાયાગ્રામ અને આઉટપુટ વેવફોર્મ સાથે FSK મોડ્યુલેટરનું કાર્ય સમજાવો.

જવાબ:

FSK મોક્યુલેટર બ્લોક ડાયાગ્રામ:

FSK વેવફોર્મ્સ:

- **સિદ્ધાંત**: ડિજિટલ બિટ '1' ફ્રિક્વન્સી f1 સાથે કેરિયર મોકલે છે, બિટ '0' ફ્રિક્વન્સી f2 સાથે કેરિયર મોકલે છે
- કાર્યપ્રણાલી: વોલ્ટેજ કંટ્રોલ્ડ ઓસિલેટર ઇનપુટ બિટ મૂત્ય આધારે ફ્રિક્વન્સી બદલે છે

મેમરી ટ્રીક: "ફ્રિક્વન્સી શિફ્ટ કરે જાણકારી સંચાર"

પ્રશ્ન 3(બ) [4 ગુણ]

1010110110 ના ક્રમ માટે PSK મોક્યુલેશન વેવફોર્મ દોરો.

PSK મોક્યુલેશન માટે ટેબલ:

બિટ	ફેઝ
1	0°
0	180°

મેમરી ટ્રીક: "એક-શૂન્ય, ફેઝ-શિફ્ટ, સિગ્નલ મોડ્યુલેટેડ"

પ્રશ્ન 3(ક) [7 ગુણ]

1100110101 ના ક્રમ માટે ASK અને FSK મોડ્યુલેશન વેવફોર્મ દોરો.

જવાબ:

ડિજિટલ ઇનપુટ સિક્વન્સ: 1100110101

તુલના માટે ટેબલ:

બિટ	ASK	FSK
1	કેરિયર ON (ઉચ્ય એમ્પ્લિટ્યૂડ)	ઉચ્ચ ફ્રિક્વન્સી (f1)
0	કેરિયર OFF (શૂન્ય/નીચી એમ્પ્લિટ્યૂડ)	નીચી ફ્રિક્વન્સી (f2)

મેમરી ટ્રીક: "એમ્પ્લિટ્યૂડ જાણકારી દર્શાવે, ફ્રિક્વન્સી જાણકારી બદલાવે"

પ્રશ્ન 3(અ) અથવા [3 ગુણ]

બ્લોક ડાયાગ્રામ અને આઉટપુટ વેવફોર્મ સાથે MSK મોક્યુલેટરનું કાર્ય સમજાવો.

જવાબ:

MSK મોડ્યુલેટર બ્લોક ડાયાગ્રામ:

MSK વિશેષતાઓ:

- કન્ટિન્યુઅસ ફેઝ FSK જેમાં ફ્રિક્વન્સી ડેવિએશન એક્ઝેક્ટલી બિટ રેટના અર્ધા જેટલું હોય છે
- ફેઝમાં ફેરફાર સરળતાથી થાય છે (અચાનક ફેઝ પરિવર્તન નથી)
- FSK કરતાં વધુ સારી સ્પેક્ટ્રલ કાર્યક્ષમતા

મેમરી ટ્રીક: "મિનિમમ શિફ્ટ સ્પેક્ટ્રમને સાંકડું રાખે"

પ્રશ્ન 3(બ) અથવા [4 ગુણ]

8-PSK અને 16-QAM ના નક્ષત્ર રેખાંકિત દોરો.

જવાબ:

8-PSK નક્ષત્ર રેખાંકિત:

16-QAM નક્ષત્ર રેખાંકિત:

મોક્યુલેશન	นต์ฯ
8-PSK	8 પોઇન્ટ્સ વર્તુળ પર સરખા અંતરે, 3 બિટ્સ પ્રતિ સિમ્બોલ
16-QAM	16 પોઇન્ટ્સ થોરસ ગ્રીડમાં, બદલાતા એમ્પ્લિટ્યૂડ અને ફ્રેઝ, 4 બિટ્સ પ્રતિ સિમ્બોલ

મેમરી ટ્રીક: "PSK પોઇન્ટ્સ એક વર્તુળ પર, QAM ચોરસ એમ્પ્લિટ્યૂડ મેટ્રિક્સ"

પ્રશ્ન 3(ક) અથવા [7 ગુણ]

1010101011 માટે BPSK અને QPSK મોક્યુલેશન વેવફોર્મ દોરો.

જવાબ:

BPSK મોક્યુલેશન:

QPSK મોક્યુલેશન (બિટ્સને જોડીમાં વર્ગીકૃત કરીને):

બિટ જોડી	QPSK ફેઝ
10	90°
00	180°
01	270°
11	0°

મેમરી ટ્રીક: "બાઇનરી ફેઝ શિફ્ટ કી, ક્વોડ્રેચર ફેઝ શિફ્ટ કી"

પ્રશ્ન 4(અ) [3 ગુણ]

નીચેના સંભવિત ક્રમ માટે શેનોન ફેનો કોડનો ઉપયોગ કરીને ડેટાને એન્કોડ કરો. P = {0.30, 0.25, 0.20, 0.12, 0.08, 0.05}

જવાબ:

સિમ્બોલ	સંભાવના	શેનોન-ફેનો કોડ
S1	0.30	00
S2	0.25	01
S3	0.20	10
S4	0.12	110
S5	0.08	1110
S6	0.05	1111

પ્રક્રિયા:

- 1. સિમ્બોલ્સને ઘટતી સંભાવના અનુસાર ગોઠવો
- 2. લગભગ સમાન સંભાવના સાથે બે જૂથોમાં વિભાજિત કરો (0.30+0.25=0.55, 0.20+0.12+0.08+0.05=0.45)
- 3. પ્રથમ જૂથને 0, બીજા જૂથને 1 આપો
- 4. દરેક પેટા જૂથ માટે આ પ્રક્રિયા પુનરાવર્તિત કરો

મેમરી ટ્રીક: "વિભાજન, ફેનો વહેંચે, કોડ કાર્યક્ષમ"

પ્રશ્ન 4(બ) [4 ગુણ]

હેમિંગ કોડ સમજાવો.

જવાબ:

પાસું	વર્ણન
વ્યાખ્યા	લિનિયર ઇરર-કરેક્ટિંગ કોડ જે ડબલ ભૂલોને શોધે છે અને સિંગલ ભૂલોને સુધારે છે
પેરિટી બિટ્સ	m ડેટા બિટ્સ માટે, k પેરિટી બિટ્સ જોઈએ જ્યાં 2^k ≥ m+k+1
પોઝિશન	પેરિટી બિટ્સ 1, 2, 4, 8, 16 (2ની પાવર) સ્થાનો પર મુકાય છે
ભૂલ શોધ	ભૂલની સ્થિતિ શોધવા માટે સિન્ડ્રોમ ગણતરી

ઉદાહરણ હેમિંગ(7,4):

```
Positions: 1 2 3 4 5 6 7
P1 P2 D1 P4 D2 D3 D4

Parity check equations:
P1 checks: P1, D1, D2, D4
P2 checks: P2, D1, D3, D4
P4 checks: P4, D2, D3, D4
```

મેમરી ટ્રીક: "હેમિંગ હેન્ડલ બિટ ભૂલો"

પ્રશ્ન 4(ક) [7 ગુણ]

TDMA અને FDMA ની સરખામણી કરો.

જવાબ:

પેરામીટર	TDMA (ટાઇમ ડિવિઝન મલ્ટિપલ એક્સેસ)	FDMA (ફ્રિક્વન્સી ડિવિઝન મલ્ટિપલ એક્સેસ)
મૂળભૂત સિદ્ધાંત	ચેનલને સમય સ્લોટ્સ દ્વારા વિભાજિત કરે છે	ચેનલને ફ્રિક્વન્સી બેન્ડ્સ દ્વારા વિભાજિત કરે છે
રિસોર્સ એલોકેશન	દરેક યુઝરને ટૂંકા સમય માટે સંપૂર્ણ બેન્ડવિડ્થ મળે	દરેક યુઝરને બેન્ડવિડ્થનો ભાગ હંમેશા મળે
ગાર્ડ પીરિયડ	સ્લોટ્સ વચ્ચે ટાઈમ ગાર્ડ બેન્ડ્સ	ચેનલો વચ્ચે ફ્રિક્વન્સી ગાર્ડ બેન્ડ્સ
સિન્ક્રોનાઈઝેશન	ચુસ્ત સમય સિન્ક્રોનાઈઝેશન જરૂરી	સમય સિન્ક્રોનાઈઝેશનની જરૂર નથી
કાર્યક્ષમતા	બર્સ્ટ ટ્રાન્સમિશનને કારણે ઉચ્ચ	ફિક્સ્ડ એસાઇન્મેન્ટને કારણે નીથી
જટિલતા	વધુ જટિલ	તુલનાત્મક રીતે સરળ
ઉદાહરણો	GSM, DECT	FM રેડિયો, પરંપરાગત સેટેલાઇટ સિસ્ટમ્સ

આકૃતિ:

મેમરી ટ્રીક: "સમય વિભાજિત મલ્ટિપલ એક્સેસ, ફ્રિક્વન્સી વિભાજિત મલ્ટિપલ એક્સેસ"

પ્રશ્ન 4(અ) અથવા [3 ગુણ]

નીચેના સંભવિત ક્રમ માટે હફમેન કોડનો ઉપયોગ કરીને ડેટાને એન્કોડ કરો. P = {0.4, 0.2, 0.2, 0.1, 0.1}

જવાબ:

સિમ્બોલ	સંભાવના	હફમેન કોડ
S1	0.4	0
S2	0.2	10
S3	0.2	11
S4	0.1	100
S5	0.1	101

પ્રક્રિયા:

- 1. ક્રમાંકિત સંભાવના સાથે શરૂ કરો
- 2. સૌથી નીચી બે સંભાવનાઓને જોડો (0.1+0.1=0.2)
- 3. ફરીથી ગોઠવો અને માત્ર બે નોડ્સ રહે ત્યાં સુધી પુનરાવર્તન કરો
- 4. ટ્રી પર ફરીને બિટ્સ આપો

ટ્રી કન્સ્ટ્રક્શન:

```
1.0

/ \

0.6 0.4(S1)

/ \

0.4 0.2(S2,S3)

/ \ / \

0.2 0.2 0 1

/ \

0.1 0.1
```

મેમરી ટ્રીક: "હફમેન હાઈ-ફ્રિક્વન્સી ડેટા એન્કોડ કરે"

પ્રશ્ન 4(બ) અથવા [4 ગુણ]

પેરિટી કોડ સમજાવો.

જવાબ:

પાસું	นต์า
વ્યાખ્યા	સરળ ભૂલ શોધ સ્ક્રીમ જે પેરિટી બિટ ઉમેરે છે
પ્રકારો	ઈવન પેરિટી: કુલ 1ની સંખ્યા ઈવન ઓડ પેરિટી: કુલ 1ની સંખ્યા ઓડ
ગણતરી	પેરિટી બિટ ઉત્પન્ન કરવા માટે બધા ડેટા બિટ્સને XOR કરો
क्षभता	ઓડ સંખ્યાની ભૂલોને શોધે, ભૂલોને સુધારી શકતું નથી

ઉદાહરણો:

```
Even Parity:

Data: 1011 → Parity: 0 → Coded: 10110 (Even number of 1s: 4)

Odd Parity:

Data: 1011 → Parity: 1 → Coded: 10111 (Odd number of 1s: 5)
```

મેમરી ટ્રીક: "પેરિટી પ્રાથમિક ભૂલ શોધ પૂરી પાડે"

પ્રશ્ન 4(ક) અથવા [7 ગુણ]

FDMA ટેકનિકને વિગતવાર સમજાવો.

જવાબ:

FDMA (ફિક્વન્સી ડિવિઝન મલ્ટિપલ એક્સેસ):

પેરામીટર	વર્ણન
મૂળભૂત સિદ્ધાંત	કુલ બેન્ડવિડ્થને નોન-ઓવરલેપિંગ ફ્રિક્વન્સી બેન્ડ્સમાં વિભાજિત કરવામાં આવે છે
ચેનલ એસાઇનમેન્ટ	દરેક યુઝરને સમર્પિત ફ્રિક્વન્સી બેન્ડ સોંપવામાં આવે છે
ગાર્ડ બેન્ડ્સ	દખલને રોકવા માટે ચેનલો વચ્ચે નાના ફ્રિક્વન્સી અંતરો
ડુપ્લેક્સિંગ	સામાન્ય રીતે FDD (ફ્રિક્વન્સી ડિવિઝન ડુપ્લેક્સિંગ) સાથે અમલમાં મુકાય છે
ફાયદા	સરળ અમલીકરણ, સિન્ક્રોનાઈઝેશનની જરૂર નથી
ગેરફાયદા	બર્સ્ટી ટ્રાફિક માટે અકાર્યક્ષમ, ફિક્સ્ડ એલોકેશન બેન્ડવિડ્થ બગાડે છે
એપ્લિકેશન્સ	AM/FM રેડિયો, પરંપરાગત કેબલ ટીવી, પ્રથમ પેઢીના મોબાઇલ સિસ્ટમ્સ

ફ્રિક્વન્સી એલોકેશન:

મેમરી ટ્રીક: "ફિક્સ્ડ ડિવિઝન મલ્ટિપલ એક્સેસ"

પ્રશ્ન 5(અ) [3 ગુણ]

E1 કેરીયર સિસ્ટમ સમજાવો.

પેરામીટર	વર્ણન
વર્ણન	યુરોપિયન સ્ટાન્ડર્ડ ડિજિટલ ટ્રાન્સમિશન ફોર્મેટ
क्षभता	2.048 Mbps
ચેનલ સ્ટ્રક્ચર	32 ટાઇમ સ્લોટ્સ (0-31 સુધી ક્રમાંકિત)
વોઇસ ચેનલ્સ	30 વોઇસ ચેનલ્સ (દરેક 64 kbps)
સિગ્નલિંગ	સિગ્નલિંગ માટે ટાઇમ સ્લોટ 16
ફ્રેમ એલાઇન્મેન્ટ	સિન્ક્રોનાઈઝેશન માટે ટાઇમ સ્લોટ 0

આકૃતિ:

મેમરી ટ્રીક: "E1 30 + 2 ટાઇમ સ્લોટ્સ"

પ્રશ્ન 5(બ) [4 ગુણ]

TDMA એક્સેસ ટેકનિક સમજાવો.

જવાબ:

પેરામીટર	વર્ણન
વ્યાખ્યા	મલ્ટિપલ એક્સેસ ટેકનિક જે સમયને વિભિન્ન યુઝર્સ માટે સ્લોટ્સમાં વિભાજિત કરે છે
કાર્ય સિદ્ધાંત	દરેક યુઝરને ટૂંકા સમય માટે સંપૂર્ણ બેન્ડવિડ્થ મળે છે
ફ્રેમ સ્ટ્રક્ચર	સમય ફ્રેમ્સમાં વિભાજિત, ફ્રેમ્સ સ્લોટ્સમાં વિભાજિત
ว แร้	ઓવરલેપ અટકાવવા માટે સ્લોટ્સ વચ્ચે નાનો સમય અંતરાલ
સિન્ક્રોનાઈઝેશન	ચોક્કસ સમય સિન્ક્રોનાઈઝેશનની જરૂર પડે છે

TDMA ફ્રેમ સ્ટ્રક્ચર:

મેમરી ટ્રીક: "સમય વિભાજિત મલ્ટિપલ એક્સેસ"

પ્રશ્ન 5(ક) [7 ગુણ]

IoT – ખ્યાલ, લક્ષણો, ફાયદા અને ગેરફાયદા સમજાવો.

જવાબ:

IoT ખ્યાલ:

પાસું	વર્ણન
ખ્યાલ	ભૌતિક વસ્તુઓનું નેટવર્ક જેમાં સેન્સર્સ, સોફ્ટવેર, અને કનેક્ટિવિટી એમ્બેડ કરેલા હોય
લક્ષણો	- કનેક્ટિવિટી (ઇન્ટરનેટ સાથે જોડાયેલા ડિવાઇસિસ) - ઇન્ટેલિજન્સ (સ્માર્ટ નિર્ણય લેવાની ક્ષમતા) - સેન્સિંગ (પર્યાવરણમાંથી ડેટા એકત્રિત કરવું) - ઓટોમેશન (ન્યૂનતમ માનવ હસ્તક્ષેપ) - સ્કેલેબિલિટી (ઘણા ડિવાઇસિસ સંભાળે)
ફાયદા	- સુધારેલ કાર્યક્ષમતા અને ઉત્પાદકતા - બેહતર સંસાધન વ્યવસ્થાપન - વધુ સારા નિર્ણયો લેવાની ક્ષમતા - સુવિધા અને સમય બચાવ - નવા વ્યાવસાયિક અવસરો
ગેરફાયદા	- સુરક્ષા કમજોરીઓ - ગોપનીયતા સંબંધી ચિંતાઓ - અમલીકરણમાં જટિલતા - સુસંગતતા સમસ્યાઓ - ઇન્ટરનેટ પર નિર્ભરતા

એપ્લિકેશન ક્ષેત્રો:

- સ્માર્ટ હોમ્સ, શહેરો
- હેલ્થકેર મોનિટરિંગ
- ઔદ્યોગિક ઓટોમેશન
- କୃଷ
- પરિવહન

મેમરી ટ્રીક: "ઇન્ટરનેટ ઓફ થિંગ્સ: કનેક્ટેડ, ઓટોમેટેડ, સ્માર્ટર નિર્ણયો"

પ્રશ્ન 5(અ) અથવા [4 ગુણ]

T1 કેરીયર TDM સિસ્ટમ સમજાવો.

પેરામીટર	વર્ણન
વર્ણન	નોર્થ અમેરિકન સ્ટાન્ડર્ડ ડિજિટલ ટ્રાન્સમિશન ફોર્મેટ
क्षभता	1.544 Mbps
યેનલ સ્ટ્રક્ચર	24 ટાઇમ સ્લોટ્સ (ચેનલ્સ) + 1 ફ્રેમિંગ બિટ
વોઇસ ચેનલ્સ	24 વોઇસ ચેનલ્સ (દરેક 64 kbps)
ફ્રેમ સ્ટ્રક્ચર	193 બિટ્સ પ્રતિ ફ્રેમ (24 × 8 + 1)
સિગ્નલિંગ	રોબ્ડ બિટ સિગ્નલિંગ (લીસ્ટ સિગ્નિફિકન્ટ બિટ)

આકૃતિ:

મેમરી ટ્રીક: "T1 24 ચેનલ્સ ટ્રાન્સમિટ કરે"

પ્રશ્ન 5(બ) અથવા [3 ગુણ]

TDM અને FDM ની સરખામણી કરો.

જવાબ:

પેરામીટર	TDM (ટાઇમ ડિવિઝન મલ્ટિપ્લેક્સિંગ)	FDM (ફ્રિક્વન્સી ડિવિઝન મલ્ટિપ્લેક્સિંગ)
મૂળભૂત સિદ્ધાંત	ચેનલને સમય દ્વારા વિભાજિત કરે	ચેનલને ફ્રિક્વન્સી દ્વારા વિભાજિત કરે
સિગ્નલ સેપરેશન	ટાઇમ ડોમેઇનમાં	ફ્રિક્વન્સી ડોમેઇનમાં
ગાર્ડ બેન્ડ્સ	ટાઇમ ગાર્ડ બેન્ડ્સ	ફ્રિક્વન્સી ગાર્ડ બેન્ડ્સ
અમલીકરણ	ડિજિટલ ટેકનિક	એનાલોગ ટેકનિક (મૂળ રીતે)
કોસટોક	ઓછી સંવેદનશીલ	વધુ સંવેદનશીલ
સિન્ક્રોનાઈઝેશન	જરૂરી	જરૂરી નથી

આકૃતિ:

મેમરી ટ્રીક: "સમય વિભાજિત મલ્ટિપ્લેક્સિંગ, ફ્રિક્વન્સી વિભાજિત મલ્ટિપ્લેક્સિંગ"

પ્રશ્ન 5(ક) અથવા [7 ગુણ]

માહિતી સુરક્ષાના સુરક્ષા ઘટકો સમજાવો.

જવાબ:

માહિતી સુરક્ષાનો CIA ત્રિકોણ:

ยวร	વર્ણન	અમલીકરણ પદ્ધતિઓ
ગોપનીયતા (Confidentiality)	અનધિકૃત એક્સેસથી સુરક્ષા	- એન્ક્કિપ્શન - એક્સેસ કંટ્રોલ - ઓથેન્ટિકેશન - સ્ટેગનોગ્રાફી
અખંડિતતા (Integrity)	ડેટા સચોટ અને અપરિવર્તિત છે તેની ખાતરી	- હેશિંગ - ડિજિટલ સિગ્નેચર - વર્ઝન કંટ્રોલ - ચેકસમ
ઉપલબ્ધતા (Availability)	જરૂર પડે ત્યારે સિસ્ટમ્સ એક્સેસિબલ હોવાની ખાતરી	- રિડન્ડન્સી - બેકઅપ - ડિઝાસ્ટર રિકવરી - ફોલ્ટ ટોલરન્સ
ઓથેન્ટિકેશન (Authentication)	ઓળખની ચકાસણી	- પાસવર્ડ - બાયોમેટ્રિક્સ - સ્માર્ટ કાર્ડ્સ - મલ્ટિ-ફેક્ટર
નોન-રીપ્યુડિએશન (Non-repudiation)	ક્રિયાઓના ઇનકાર અટકાવવા	- ડિજિટલ સિગ્નેચર - ઓડિટ લોગ - ટાઇમસ્ટેમ્પ

સુરક્ષા ખતરાઓ:

- માલવેર (વાયરસ, વોર્મ્સ, ટ્રોજન)
- સોશિયલ એન્જિનિયરિંગ
- ડિનાયલ ઓફ સર્વિસ (DoS)
- મેન-ઇન-ધ-મિડલ એટેક્સ
- ઇન્સાઇડર થ્રેટ્સ

મેમરી ટ્રીક: "CIA સર્વ નેટવર્ક ડેટા સુરક્ષિત રાખે"