

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 15: Árvore Geradora Mínima(Kruskal)

Professor Pablo Soares

2022.1

Sumário

- 1. Árvore Geradora Mínima(última aula);
 - a. Motivação;
 - b. Algoritmo Genérico;
 - c. Algoritmo de Prim.
- 2. Arestas seguras(Outra Forma de Escolha)
 - a. Conjuntos Disjuntos;
 - i. Estrutura para conjuntos disjuntos;
 - ii. Funções.
 - b. Algoritmo de Kruskal
 - i. Complexidade do tempo de execução;
 - ii. Exemplo.

Árvore Geradora Mínima (Guloso)

- Algoritmo Guloso para encontrar
 - |V| 1 arestas de *T*

AGM-Genérico(G, w)

- 1. *T*← ∅
- 2. enquanto T não formar uma árvore geradora mínima
- 3. Encontre uma <u>aresta (u, v) que é segura</u> para **T**
- 4. $T \leftarrow T \cup (u, v)$
- 5. fimenquanto
- 6. **Retorne T**Fim

Árvore Geradora Mínima (Arestas Seguras)

- 1. Conjuntos Disjuntos
 - a. Não possuem elementos em comum
 - i. Interseção é o conjunto vazio
- 2. Estrutura de dados para Conjuntos Disjuntos
 - a. Árvore Direcionada
 - i. cada nó representa um elemento do conjunto;
 - ii. cada elemento possui um "pai".
 - b. Funções
 - i. Makeset() → criar conjunto;
 - ii. **Find**(x) \rightarrow encontrar o pai;
 - iii. **Union**(u, v) por $rank \rightarrow$ unir conjuntos.

1. Makeset(u) \rightarrow criar conjunto

Makeset(u)

- 1. *π[u]←u*
- 2. rank[u]← 0 Fim.

Vértice	π	rank
A		
В		
C		
D		
E		
F		

 (A)

 (B)

(c)

 \bigcirc

 (E)

F

Makeset(u) \rightarrow criar conjunto

Makeset(u)

- π[u]←u
 rank[u]← 0 Fim.

Vértice	π	rank
A	A	0
В	В	0
C	С	0
D	D	0
E	Е	0
F	F	0

2. Find(u) \rightarrow encontrar o pai

Find(x)

- 1. enquanto $x \neq \pi[x]$
- 2. $x \leftarrow \pi[x]$
- 3. fimenquanto
- 4. return x Fim.

Vértice	π	rank
A	C	0
В	D	0
C	С	1
D	D	1
E	Е	0
F	F	0

3. Union(u, v) por $rank \rightarrow unir$ conjuntos

C	D
A	B

	,	,
Ilnıanı	/	1/
Union	цu,	<i>v)</i>

- 1. $P_u \leftarrow Find(u)$
- 2. $P_v \leftarrow Find(v)$
- 3. **se** $rank[P_{i,j}] > rank[P_{i,j}]$
- $\pi[P_{\downarrow}] \leftarrow P_{\downarrow\downarrow}$
- senão
- $\pi[P_{i}] \leftarrow P_{v}$ 6.
- se $rank[P_{_{\boldsymbol{v}}}] = rank[P_{_{\boldsymbol{v}}}]$ $rank[P_{_{\boldsymbol{v}}}] \leftarrow rank[P_{_{\boldsymbol{v}}}] + 1$
- fimse
- fimse Fim.

Vértice	π	rank
A	С	0
В	D	0
C	С	1
D	D	1
E	Е	0
F	F	0

3. Union(u, v) por $rank \rightarrow unir$ conjuntos

	,	٠,
Union	(11	V)
	ω,	• /

- 1. $P_u \leftarrow Find(u)$
- 2. $P_v \leftarrow Find(v)$
- 3. $\stackrel{\circ}{\mathbf{se}} rank[P_u] > rank[P_v]$
- *4.* π[P_ν]←P₁₁
- 5. senão
- 6. $\pi[P_{I}] \leftarrow P_{V}$
- 7. **se** $rank[P_u] = rank[P_v]$
- 8. $rank[P_{\downarrow}] \leftarrow rank[P_{\downarrow}] + 1$
- 9. **fimse**
- 10. fimse

Fim.

Vértice	π	rank
A	C	0
В	D	0
C	C	1
D	D	1
E	F	0
F	F	1

3. Union(u, v) por $rank \rightarrow unir$ conjuntos

C	D
A	B

	nio	. /	
, ,	nın	nı	1 \1
()	1110)	,,,,,	IV.
_			•• • /

- 1. $P_u \leftarrow Find(u)$
- 2. $P_v \leftarrow Find(v)$
- 3. **se** rank[P] > rank[P]
- π[P,]←P,,
- senão
- 6. $\pi[P_{\mu}] \leftarrow P_{\nu}$
- **se** $rank[P_{ij}] = rank[P_{ij}]$
- $rank[P_{\downarrow}] \leftarrow rank[P_{\downarrow}] + 1$
- 9. fimse
- 10. fimse

Fim.

Vértice	π	rank
A	С	0
В	D	0
C	С	1
D	D	1
E	F	0
F	F	1

3. Union(u, v) por $rank \rightarrow unir$ conjuntos

Kruskal(G, w) 1. para cada vértice u ← V[G] π[u]←-u *rank[u]*← 0 fimpara $T \leftarrow \varnothing$ OrdenarArestas(G), ordem crescente para cada aresta {u, v} ∈ E na ordem 8. **se** $Find(u) \neq Find(v)$ $T \leftarrow T \cup \{u, v\}$ 10. Union(u, v) 11. fimse 12. fimpara Fim.

Pseudocódigo do Algoritmo de Kruskal Estruturas:

- \circ rank \rightarrow Altura na árvore
- \circ $\pi \rightarrow Pai (representante)$

Complexidade do Tempo de Execução

 \circ O(|V| + |E|)lg|V|

Union(u, v) Kruskal(G, w) 1. para cada vértice u ← V[G] 1. $P_{u} \leftarrow Find(u)$ π[u]←-u 2. $P_v \leftarrow Find(v)$ rank[u]← 0 3. **se** $rank[P_{i,j}] > rank[P_{i,j}]$ fimpara $\pi[P_{\downarrow}] \leftarrow P_{\downarrow\downarrow}$ $T \leftarrow \varnothing$ senão OrdenarArestas(G), ordem crescente 6. $\pi[P_{\mu}] \leftarrow P_{\mu}$ **para cada** aresta {u, v} ∈ E na ordem **se** rank[P,] = rank[P,] 8. **se** $Find(u) \neq Find(v)$ $rank[P_{\downarrow}] \leftarrow rank[P_{\downarrow}] + 1$ $T \leftarrow T \cup \{u, v\}$ fimse 10. Union(u, v) 10. fimse 11. fimse Fim. 12. Find(x)fimpara enquanto $x \neq \pi[x]$ Fim. $X \leftarrow \pi[X]$ fimenquanto return x Fim.

Exercício de Fixação

Encontre a árvore geradora mínima.

Exercício de Fixação

Encontre a árvore geradora mínima.

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 15: Árvore Geradora Mínima(Kruskal)

Professor Pablo Soares

2022.1