SRN						

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE18EC203

DECEMBER 2020: END SEMESTER ASSESSMENT (ESA), B.TECH **CMOS Analog Circuit Design**

Time: 3 Hrs

Answer All Questions

Max Marks: 100

1	l a)	Derive an expression for the drain current of a n-channel MOSFET.	7
	b)	Calculate the bias current of M_1 in Fig. 1.b. Assume $\mu_n C_{ox} = 100 \mu\text{A/V}^2$ and $V_m = 0.4 \text{V}$. If the gate voltage increases by 10 mV, what is the change in the drain voltage? $V_{DD} = 1.8 \text{V}$ $R_D \gtrsim 5 \text{k}\Omega$ $V_{DD} = 1.8 \text{V}$ $R_D \gtrsim 5 \text{k}\Omega$	6
	c)	Based on the value of V _{DS} , write the large signal models of a n-channel MOSFET	7
2	a)	Derive an expression for the small signal gain of a common source amplifier with resistive load.	7
	b)	In the circuit of Fig. 2.b, determine the maximum allowable value of W/L if M_1 must remain in saturation. Assume $\lambda = 0$. Assume $\mu_n C_{ox} = 200 \ \mu\text{A/V}^2$ and $V_m = 0.4 \ \text{V}$. 50 k $\Omega \geqslant 1 \ \text{k} \Omega$	6
	c)	Explain the large signal behavior of a common gate amplifier, hence obtain the transfer characteristics for the same.	7
3	a)	Explain the differential input-output characteristics of a MOSFET differential pair.	
-	b)	With neat circuit diagram obtain an expression for common mode gain of a differential pair sensing Common Mode input.	7.

_		SRN	
	c	The circuit of Fig. 3.c. uses a resistor rather than a current source to define a tail current of 1 mA. Assume that $(W/L)_{1,2} = 25/0.5$, $\mu_n C_{ox} = 50 \mu\text{A/V}^2$, $V_{\tau_H} = 0.6 \text{V}$, $\lambda = \gamma = 0$, and $V_{DD} = 3 \text{V}$. (a) What is the required input CM voltage for which R_{ss} sustains 0.5 V? (b) Calculate R_D for a differential gain of 5. V_{DD} $V_{Out1} \circ V_{DD}$ $V_{DD} \circ V_{Out2}$ $V_{In1} \circ V_{In2}$ $V_{In1} \circ V_{In2}$	
4	a)	With neat circuit diagram explain about the voltage headroom consumed by the cascode current mirror circuit.	7
	b)	In Fig. 4.b, find the drain current of $M4$ if all of the transistors are in saturation. V_{DD}	6
		I _{REF} M ₃ M ₄	
		M ₁ W ₂	
	c)	Derive an expression for the short-circuit transconductance, G_m , and the output resistance, R_{out} for the differential pair with current-source load.	7
	a)	Get an expression for the transfer function of high-frequency model of a common-source stage, using Miller's approximation.	7
	b)	Explain how to determine the loop gain in a simple feedback circuit.	6
	c)	Show that the input impedance will be modified with feedback for a Common-gate circuit.	7