The goal of this project is to automatically identify and group hidden topics within a collection of textual data such as news or research articles. Using unsupervised machine learning (Topic Modeling), the system discovers common themes without any manual labeling.

Tools and Libraries Used

- Python
- Google Colab
- Libraries:
 - nltk for text preprocessing (stopwords, lemmatization)
 - gensim for implementing Latent Dirichlet Allocation (LDA)
 - o pyLDAvis for interactive topic visualization
 - o pandas, re, warnings for data handling and cleaning

Steps Performed in the Project

1. Library Installation

Installed required Python libraries in Colab using:

!pip install nltk gensim pyLDAvis

These libraries were used for text processing, topic modeling, and visualization.

2. Importing Libraries

All necessary modules were imported — pandas for data management, nltk for preprocessing, gensim for model creation, and pyLDAvis for visualization.

Deprecation warnings were safely ignored to maintain a clean output.

3. Loading Dataset

A small custom dataset was created consisting of short news/research-style sentences such as:

• AI in healthcare

- Stock market updates
- Deep learning in cancer analysis
- Political tensions and global trade

The dataset was stored in a pandas DataFrame named df.

4. Text Preprocessing

To make the text ready for modeling:

- All text was converted to lowercase.
- Special characters and punctuation were removed using regex.
- Stopwords (like "the", "is", "in") were removed using NLTK's English stopword list.
- **Lemmatization** was performed using WordNetLemmatizer to convert words to their root form (e.g., "diagnostics" → "diagnostic").

Each cleaned article was stored in a new column Cleaned.

5. Dictionary and Corpus Creation

- A dictionary was created mapping each word to a unique ID.
- A corpus (bag-of-words representation) was generated this is what the LDA model
 uses to identify topics.

dictionary = corpora.Dictionary(df['Cleaned'])
corpus = [dictionary.doc2bow(text) for text in df['Cleaned']]

6. Training the LDA Model

The **Latent Dirichlet Allocation (LDA)** model was trained using:

models.LdaModel(corpus=corpus, id2word=dictionary, num_topics=3, passes=15, random_state=42)

- num topics=3 means the model tries to find 3 distinct themes in the dataset.
- passes=15 ensures good convergence for topic distribution.

7. Viewing Discovered Topics

The model displayed 3 topics with the most important words (keywords) in each.

Output Example:

Topic 0: medical, model, accuracy, machine, ai, improved

Topic 1: sector, stock, market, gain, technology, sustainable, future

Topic 2: learning, pattern, trade, inflation, global, rate, economic

8. Visualization of Topics

An **interactive visualization** was generated using pyLDAvis, where:

- Each bubble represents a topic.
- The distance between bubbles shows how distinct topics are.
- The bar charts show the most frequent keywords in each topic.

This visualization allows for deeper understanding and validation of topic separation.

9. Final Topic Interpretation

Topic	Top Keywords	Interpretation
Topic 0	medical, model, ai, machine,	Technology & Healthcare
	healthcare	
Topic 1	market, sector, stock, gain,	Economy & Trade
	sustainable, future	
Topic 2	learning, inflation, global,	Research & Global Economy
	trade, economic	

Results Summary

• Model Used: Latent Dirichlet Allocation (LDA)

• Number of Topics Extracted: 3

• **Dataset Used:** 7 short news/research-like articles

• Output Type: List of discovered topics and an interactive visualization

Conclusion

This project successfully demonstrated how **unsupervised topic modeling** can uncover hidden themes from unstructured text data.

Using **LDA**, we identified 3 clear topics from a small dataset — Technology & Healthcare, Economy & Trade, and Global Research Themes.

The combination of **NLTK for preprocessing, Gensim for modeling**, and **PyLDAvis for visualization** provided a complete and interpretable topic modeling workflow.

Key Learnings

- Gained hands-on experience in Natural Language Processing (NLP).
- Learned how to preprocess and clean textual data effectively.
- Understood the working of LDA for topic extraction.
- Learned how to visualize and interpret topic distributions in a dataset.

Final Remarks

Project Title: Topic Modeling (News or Research Articles)

Developed by: Shivaya

Tools Used: Python, Google Colab, NLTK, Gensim, PyLDAvis

Status: Successfully Completed