VR-Labor

Einführung...

Organisation

Voraussetzungen

- Solide Programmierkenntnisse
- Etwas Mathe
- Etwas Physik
- . Zeit!

6 LP = 150 Stunden

Im Semester

5 Pflichtvorlesungen = 5 Stunden

Bleiben 145 Stunden...

Ablauf zweigeteilt

- 1. Einführung
- 2. Gruppenphase

1. Einführung

Vom 17. April bis zum 05. Juni

- Wöchentlicher Pflichttermin
- Wöchentliche Pflichtaufgaben
- Keine Gruppenarbeit

Abgaben werden bewertet!

Intern nach Punktesystem

Voller Punkt
 Ordentliche Abgabe

► Halber Punkt Abgabe mit Mängeln Kein Punkt
Abgabe nicht
ausreichend

Insgesamt gibt es 20 Punkte in der Einführung

18 nötig für das Weiterkommen

Es wird Möglichkeiten geben Bonuspunkte zu sammeln

2. Projektphase

Vom 05. Juni bis zum 24. Juli

- Freie Projektwahl
- Gruppenarbeit
- Arbeiten mit wissenschaftlichen Quellen
- Keine regelmäßigen Treffen
- Wenn mit vorherige Ankündigung

Eine Gruppenaufgabe

- Keine Punkte
- Absprache mit Dozent
- Arbeit mit Git verpflichtend
- Kleines Testat

Abschlusspräsentation

Mehr Details später

Bevor wir anfangen

Es gibt viele (teils gute) Bücher.

Ein halbwegs komplettes und verständliches:

Hanke-Bourgeois, Martin. Grundlagen der numerischen Mathematik und des wissenschaftlichen Rechnens. Wiesbaden: Teubner, 2009.

Basics

Differentialgleichungen

Wie gehts weiter...?

Differentialgleichungen

Wie gehts weiter...? lokal!

Differentialgleichungen

Wie gehts weiter...? lokal! infinitesimal...

$$\frac{\partial f}{\partial t} = f \qquad f(t) = ?$$

The easy one!

DGL

$$\frac{\partial f}{\partial t} = f \qquad f(t) = ?$$

The easy one!

DGL

Lösung der DGL ist eine Funktion

$$\frac{\partial f}{\partial t} = f \longrightarrow \underline{f(t)} = ?$$

The easy one!

Analytisch...

$$f(t) = C e^{t}$$

das sollte jeder mal gemacht haben...

das sollte jeder mal gemacht haben...

Meist nicht so leicht!

das sollte jeder mal gemacht haben...

Numerisch!

Numerisch! Meist "irgendwie machbar"

Numerisch! Meist "irgendwie machbar"

oft sogar "recht leicht machbar"

Numerisch...

$$\frac{\partial f}{\partial t} \approx \frac{f(t_1) - f(t_0)}{t_1 - t_0} \approx f(t)$$

$$\frac{\partial f}{\partial t} \approx \frac{f(t_1) - f(t_0)}{t_1 - t_0} \approx f(t)$$

$$\frac{\partial f}{\partial t} \approx \frac{f(t_1) - f(t_0)}{\Delta t} \approx f(t)$$
Zeitschritt!

<u>Umstellen</u>...

Umstellen...

$$f(t_1) \approx \Delta t f(t) + f(t_0)$$

Wird auch Integrationsregel genannt

Umstellen...

$$f(t_1) \approx \Delta t f(t_1) + f(t_0)$$
DGL

Wird auch Integrationsregel genannt

welches t?
$$f(t_1) \approx \Delta t f(t) + f(t_0)$$
DGL

Wird auch Integrationsregel genannt

Expliziter Euler

$$f(t_1) \approx \Delta t f(t_0) + f(t_0)$$
DGL

Wird auch Integrationsregel genannt

Impliziter Euler

$$f(t_1) \approx \Delta t f(t_1) + f(t_0)$$

Wird auch Integrationsregel genannt

Impliziter Euler

$$f(t_1) \approx \Delta t f(t_1) + f(t_0)$$

Ja, das ist unbekannt beim impliziten!

Wird auch Integrationsregel genannt

Demo!

Integration

Frage: Wie gut ist das?

A-Stability...

Gütesiegel...

A-Stability...

Gütesiegel... (mit Vorsicht zu genießen)

A-Stability...

Gütesiegel... (mit Vorsicht zu genießen)

Wie alle Gütesiegel..

A-Stabilität

$$\frac{\partial A}{\partial t} = -kA \qquad A(0) = 1$$

Für welche k und Zeitschritte konvergiert ein Verfahren?

Analytisch...

$$A(t) = e^{-kt}$$

$\lim_{t\to\infty} A(t) = 0$

Analytisch für alle k>0.

A-Stabilität Konvergenz

$$\lim_{n\to\infty} A(t_n) = 0$$

Numerisch für alle k>0.

A-Stabilität Konvergenz

Definition!

$$\lim_{n\to\infty} A(t_n) = 0$$

Numerisch für alle k>0.

Ein Verfahren ist A-Stabil wenn es bei diesem Problem für alle k>0 gegen 0 konvergiert.

Demo!

A-Stabilität

Bis zum nächsten Termin

24.04.2015

- 1. Integrator selber schreiben
- 2. A-Stabilitätstest für explizit / implizit
 - a. durchführen können
 - b. rausfinden was besser ist
- 3. Beschreiben, was A-Stabilität aussagt und was es NICHT aussagt!

JA, es gibt Textaufgaben!

Die sollen auch bearbeitet werden...

Welche Programmiersprache?

Was lesbares... oder C/C++

Welche Programmiersprache?

Lauffähig (kompilierbar) auf Ubuntu (Unsere Rechner hier)!

keine Binaries!

Welche Programmiersprache?

Nutzt die Chance für was tolles! JavaScript / Clojure / Julia / Python ...

Unwichtiges ist unwichtig!

Zeit in sinnvolle Sachen Stecken, ihr wollt was lernen!

Ublicherweise werden Lösungen aller hochgeladen!

Aufgabenzettel im StudIP

Bitte beachten...

Kreativität ist erwünscht!

Ihr stellt vor!

Das ist keine Vorlesung hier!

Lösungen an vrlab15@welfenlab.de bis zum:

23.04.2015

Ein Tag vor unserem nächsten Treffen.