National Stage Entry of PCT/AU2003/001296

Attorney Docket No.: Q86664

# **AMENDMENTS TO THE CLAIMS**

#### **Claims**

1. (original): A method of increasing the sensitivity of cancer cells or a tumour to a chemotherapeutic agent by contacting said cells or tumour with an isoflavonoid compound of formula (I):

$$R_1$$
 $A$ 
 $B$ 
 $(I)$ 

in which

 $R_1$ ,  $R_2$  and Z are independently hydrogen, hydroxy,  $OR_9$ ,  $OC(O)R_{10}$ ,  $OS(O)R_{10}$ , CHO,  $C(O)R_{10}$ , COOH,  $CO_2R_{10}$ ,  $CONR_3R_4$ , alkyl, haloalkyl, arylalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkylaryl, alkoxyaryl, thio, alkylthio, amino, alkylamino, dialkylamino, nitro or halo, or

 $R_2$  is as previously defined, and  $R_1$  and Z taken together with the carbon atoms to which they are attached form a five-membered ring selected from

, or

National Stage Entry of PCT/AU2003/001296

Attorney Docket No.: Q86664

 $R_1$  is as previously defined, and  $R_2$  and Z taken together with the carbon atoms to which they are attached form a five-membered ring selected from

and

W is R<sub>1</sub>, A is hydrogen, hydroxy, NR<sub>3</sub>R<sub>4</sub> or thio, and B is selected from

$$\bigvee_{O}^{R_5} \bigvee_{Y}^{R_5} \bigvee_{O}^{R_5}$$

W is  $R_1$ , and A and B taken together with the carbon atoms to which they are attached form a six-membered ring selected from

, or

$$\begin{array}{c|c} X & R_6 \\ Y & Y & Y \\ R_7 & Q & Y \\ \hline \end{array}$$

National Stage Entry of PCT/AU2003/001296

Attorney Docket No.: Q86664

W, A and B taken together with the groups to which they are associated are selected from

$$R_1$$
 $R_6$ 
 $R_1$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 

W and A taken together with the groups to which they are associated are selected from

and B is selected from

wherein

 $R_3$  is hydrogen, alkyl, arylalkyl, alkenyl, aryl, an amino acid,  $C(O)R_{11}$  where  $R_{11}$  is hydrogen, alkyl, aryl, arylalkyl or an amino acid, or  $CO_2R_{12}$  where  $R_{12}$  is hydrogen, alkyl, haloalkyl, aryl or arylalkyl,

National Stage Entry of PCT/AU2003/001296

Attorney Docket No.: Q86664

R<sub>4</sub> is hydrogen, alkyl or aryl, or

R<sub>3</sub> and R<sub>4</sub> taken together with the nitrogen to which they are attached comprise pyrrolidinyl or piperidinyl,

 $R_5$  is hydrogen,  $C(O)R_{11}$  where  $R_{11}$  is as previously defined, or  $CO_2R_{12}$  where  $R_{12}$  is as previously defined,

 $R_6$  is hydrogen, hydroxy, alkyl, aryl, amino, thio,  $NR_3R_4$ ,  $COR_{11}$  where  $R_{11}$  is as previously defined,  $CO_2R_{12}$  where  $R_{12}$  is as previously defined or  $CONR_3R_4$ ,

 $R_7$  is hydrogen,  $C(O)R_{11}$  where  $R_{11}$  is as previously defined, alkyl, haloalkyl, alkenyl, aryl, arylalkyl or  $Si(R_{13})_3$  where each  $R_{13}$  is independently hydrogen, alkyl or aryl,

R<sub>8</sub> is hydrogen, hydroxy, alkoxy or alkyl,

 $R_9$  is alkyl, haloalkyl, aryl, arylalkyl,  $C(O)R_{11}$  where  $R_{11}$  is as previously defined, or  $Si(R_{13})_3$  where  $R_{13}$  is as previously defined,

R<sub>10</sub> is hydrogen, alkyl, haloalkyl, amino, aryl, arylalkyl, an amino acid, alkylamino or dialkylamino,

the drawing "---" represents either a single bond or a double bond,

T is independently hydrogen, alkyl or aryl,

X is O, NR<sub>4</sub> or S, and

Y is

National Stage Entry of PCT/AU2003/001296

Attorney Docket No.: Q86664

wherein

R<sub>14</sub>, R<sub>15</sub> and R<sub>16</sub> are independently hydrogen, hydroxy, OR<sub>9</sub>, OC(O)R<sub>10</sub>, OS(O)R<sub>10</sub>, CHO,

C(O)R<sub>10</sub>, COOH, CO<sub>2</sub>R<sub>10</sub>, CONR<sub>3</sub>R<sub>4</sub>, alkyl, haloalkyl, arylalkyl, alkenyl, alkynyl, aryl,

heteroaryl, thio, alkylthio, amino, alkylamino, dialkylamino, nitro or halo, or any two of R<sub>14</sub>, R<sub>15</sub>

and R<sub>16</sub> are fused together to form a cyclic alkyl, aromatic or heteroaromatic structure,

and pharmaceutically acceptable salts thereof.

2. (original): A method of claim 1, wherein the sensitivity of the cancer cells or tumour

to the chemotherapeutic agent is restored.

3. (currently amended): A method of claim 1, wherein the compound of formula (I) is

administered to a subject in need of such treatment.

4. (original): A combination therapy for the treatment, prophylaxis, amelioration,

defence against and/or prevention of cell proliferation, cancer or a disease associated with

oxidant stress comprising administering to a subject a therapeutically effective amount of a

compound of formula (1) as defined in claim 1 and a chemotherapeutic agent.

5. (original): A method for the treatment, prophylaxis, amelioration, defence against

and/or prevention of cell proliferation, cancer or a disease associated with oxidant stress which

method includes the step of administering a compound of formula (I) and a chemotherapeutic

agent.

8

National Stage Entry of PCT/AU2003/001296

Attorney Docket No.: Q86664

- 6. (original): A method of claim 5, wherein the cancer is selected from breast cancer, prostatic cancer, testicular cancer, ovarian cancer, uterine cancer and colorectal cancer.
- 7. (original): A method claim 6, wherein the cancer is selected from ovarian cancer, prostatic cancer and pancreatic cancer.
- 8. (original): A method of claim 5, wherein the administration of the compound of formula (1) precedes the administration of the chemotherapeutic agent.
- 9. (original): A method of claim 5, wherein the administration of the compound of formula (I) and the chemotherapeutic agent is simultaneous.
- 10. (original): A method claim 5, wherein the combination therapy follows observed resistance by cancer cells or tumour to a chemotherapeutic agent.
- 11. (original): A method of claim 5, wherein the compound of formula (I) is an isoflav-3-ene of general formula (VIa).
  - 12. (original): A method of claim 11, wherein the compound is dehydroequol.
- 13. (original): A method of claim 5, wherein the chemotherapeutic agent is cisplatin, paclitaxel or carobplatin.
  - 14. (canceled).
- 15. (original): A pharmaceutical agent comprising a compound of formula (I) and an anticancer agent.

National Stage Entry of PCT/AU2003/001296

Attorney Docket No.: Q86664

16. (original): A platinum-isoflavonoid complex or analogue thereof of the general formula (II):

$$\begin{array}{c}
R_A \\
I \\
R_D - Pt - R_B \\
I \\
R_C
\end{array} (II)$$

in which

wherein

 $R_A$ ,  $R_B$ ,  $R_C$ , and  $R_D$  are independently halo, hydroxy,  $XR_E$ , alkoxy,  $OC(O)R_F$ ,  $OS(O)R_F$ , thio, alkylthio, amino, alkylamino or dialkylamino,

X is O, NR<sub>F</sub> or S, and

R<sub>F</sub> is hydrogen, alkyl, arylalkyl, alkenyl, aryl or an amino acid,

at least one of  $R_A$ ,  $R_B$ ,  $R_C$ , and  $R_D$ , and preferably only  $R_A$ , is  $XR_E$  where  $R_E$  is an isoflavonoid compound represented by general formula (I) set out above or is derived from or is a radical or ion of the isoflavonoid compound (I) and ligates to the platinum through any one or more of the heteroatoms X or a radical of the heteroatoms defined as part of  $R_E$  or alternatively by a double bond on the isoflavonoid compound (I)

and

when  $R_A$  is  $XR_E$ ,  $R_B$ ,  $R_C$  and/or  $R_D$  together may form part of a bidentate or tridentate ligand of general formulae (B) and (T) respectively

National Stage Entry of PCT/AU2003/001296

Attorney Docket No.: Q86664

wherein L represents a ligating atom chosen from N, O and S,

n is from 0 to 8, and

each R<sub>6</sub> is independently as defined above or may together form part of a cyclic alkyl, aromatic or heteroaromatic structure,

which platinum-isoflavonoid complexes include pharmaceutically acceptable salts thereof.

17. (original): A method for the treatment, prophylaxis, amelioration, defence against, and/or prevention of cell proliferation, cancer or a disease associated with oxidant stress which method comprises administering to a subject a therapeutically effective amount of one or more platinum-iosoflavanoid complexes of the formula (II) as defined above.

18. (canceled).

19. (original): A pharmaceutical composition comprising one or more platinum-isoflavonoid complexes of the formula (II) in association with one or more pharmaceutical carriers and/or excipients.

11

National Stage Entry of PCT/AU2003/001296

Attorney Docket No.: Q86664

20. (original): A composition comprising a platinum complex of the general formula (IIa),

$$\begin{array}{c}
R_{G} \\
\downarrow \\
R_{J} - Pt - R_{H} \\
\downarrow \\
R_{I}
\end{array}$$
(IIa)

in which

 $R_G$ ,  $R_H$ ,  $R_I$ , and  $R_J$  are independently halo, hydroxy, alkoxy,  $OC(O)R_K$ ,  $OS(O)R_K$ , thio, alkylthio, amino, alkylamino or dialkylamino,

X is O, NR<sub>K</sub> or S, and

 $R_K$  is hydrogen, alkyl, arylalkyl, alkenyl, aryl or an amino acid, in association with an isoflavonoid compound of general formula (I) as defined in claim 1 and pharmaceutically acceptable salts thereof.

21. (original): A method for the treatment, prophylaxis, amelioration, defence against, and/or prevention of cell proliferation, cancer or a disease associated with oxidant stress which comprises administering to a subject a therapeutically effective amount of a composition of claim 20.

#### 22. (canceled).