Requested Patent:

EP1108790A2

Title:

NOVEL POLYNUCLEOTIDES;

Abstracted Patent:

EP1108790;

Publication Date:

2001-06-20 ;

Inventor(s):

MIZOGUCHI HIROSHI (JP); SENOH AKIHIRO (JP); ANDO SEIKO (JP); HAYASHI MIKIRO (JP); IKEDA MASATO (JP); OCHIAI KEIKO (JP); OZAKI AKIÓ (JP); TATEISHI NAOKO (JP); YOKOI HARUHIKO (JP); NAKAGAWA SATOCHI (JP);

Applicant(s):

KYOWA HAKKO KOGYO KK (JP);

Application Number:

EP20000127688 20001218;

Priority Number(s):

JP19990377484 19991216; JP20000159162 20000407; JP20000280988 20000803:

IPC Classification:

C12Q1/68; C07H21/04; C12N15/63; C07K14/34; C12R1/15; G06F17/00; C12R1/13; G01N33/50;

Equivalents:

ABSTRACT:

Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Bulletin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int CI.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chlyoda-ku, Tokyo 100-8185 (JP)

(72) Inventors:

- Nakagawa, Satochi, c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Mizoguchi, Hiroshi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

- Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Hayashi, Mikiro,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Ochial, Kelko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Yokoi, Haruhiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Tatelshi, Naoko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

Description

10

15

30

35

50

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by *Corynebacterium glutamicum* is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus *Corynebacterium* is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (*J. Biochem., 65*: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (*Microbiology, 142*: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli*, *Bacillus subtilis*, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clarified hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia coli, Mycobacterium tuberculosis*, yeast, and the like, have been determined (*Science, 277*: 1453-62 (1997); *Nature, 393*: 537-544 (1998); *Nature, 387*: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

10

20

25

30

35

40

45

50

55

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

15 BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:
 - (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
 - (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
 - (c) detecting any hybridization, and
 - (d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
- (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
- (6) A polynucleotide array, comprising:

10

15

20

25

30

35

40

45

50

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences représented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:
- (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

5

10

15

20

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

EP 1 108 790 A2 (ii) at least temporarily storing said information; (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information. (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following: (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) a data storage device for at least temporarily storing the input information; (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and (iv) an output devices that shows a function obtained by the comparator. (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following: (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information; (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501. (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence

derived from a coryneform bacterium, comprising the following:

- (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence infor-
- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

40

45

50

55

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microor-

- ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (33) The system according to (31), wherein the microorganism belonging to the genus *Corynebacterium* is selected from the group consisting of *Corynebacterium glutamicum*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*, *corynebacterium callunae*, *corynebacterium herculis*, *Corynebacterium lilium*, *Corynebacterium melassecola*, *Corynebacterium thermoaminogenes*, and *Corynebacterium ammoniagenes*.
- (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
- (37) The recording medium or storage device according to

5

10

15

20

25

30

35

40

45

50

55

- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
- (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue.
- (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
- (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
- (45) A DNA encoding the polypeptide of any one of (38) to (44).
- (46) A recombinant DNA comprising the DNA of (45).
- (47) A transformant comprising the recombinant DNA of (46).
- (48) A transformant comprising in its chromosome the DNA of (45).
- (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
- (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
- (51) A method for producing L-tysine, comprising:
 - culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.
- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform

bacterium obtained in (iii).

10

15

20

25

30

35

40

45

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

10

5

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

15

20

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

25

30

45

55

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

35 [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.

- 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryneform bacteria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

10 [0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, tysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 × g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner,

3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

30

35

45

50

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning*, *A laboratory Manual*, Second Edition (1989) (hereinafter referred to as "*Molecular Cloning*, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 μ l of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

(manufactured by Life Technologies) for *Escherichia coli*. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed Escherichia coli is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-8-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time

(3) Production of cosmid library

15

30

35

45

50

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3Al or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions.

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (*Science*, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biornek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

10

20

25

30

35

40

45

55

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 µl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13-EV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 µl of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252. 255-265 (1996) can be used.

[0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

[0082] Ciones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

20

25

30

35

45

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of *Corynebacterium glutamicum* ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

10

20

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a proteinprotein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym.*, 164: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from *Corynebacterium glutamicum* ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

10

20

40

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polypucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

15

30

35

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene *hom* of a lysine-producing B-6 strain of *Corynebacterium glutamicum* (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of *Corynebacterium glutamicum* ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene *pyc* of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of *Corynebacterium glutamicum* free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain.

[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

10

20

40

45

50

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim. P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (*Appl. Microbiol. Biotechnol., 32.* 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain *Corynebacterium glutamicum* ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

20

25

35

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (*Nat. Genet., 21*: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

[0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

(2) Use of polynucleotide array

25

35

40

45

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

(a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science, 280*: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science, 278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999); *Science, 284*: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene

expression amount and the expression profile thereof can be analyzed.

20

35

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like. mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

- [0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.
 - [0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.
- [0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999)); and the like.
- [0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol., 181*: 6425-40 (1999)).
 - [0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (*Nat. Bioctechnol.*, 14: 1675-80 (1996), or the like).
 - [0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.
 - [0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.
- 25 [0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.
 - [0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).
 - [0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.
 - [0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.
- 40 (b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria
 - [0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).
- 45 [0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).
- 8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same
 - [0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).
 - [0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like. of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

10

30

35

40

50

55

9. System based on a computer using the recording medium of the present invention which is readable by a computer

[0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

[0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

[0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

[0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994)), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; *Nuc. Acids. Res., 26*: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (hornology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.

45 [0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

[0192] Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the comparator.

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

10

15

20

25

30

35

55

[0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.

[0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

[0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

[0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

[0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

[0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.

[0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

[0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.

[0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.

[0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as *trp* promoter (P_{trp}), *lac* promoter, P_L promoter, P_R promoter, T7 promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{trp} are linked in series ($P_{+rp} \times 2$), *tac* promoter, *lac*T7 promoter *let*I promoter and the like, can be used.

[0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).

[0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.

[0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

mized, in a known manner, depending on the host cells and environmental conditions utilized.

[0207] Examples of the host cell include microorganisms belonging to the genus Escherichia, the genus Serratia, the genus Bacillus, the genus Brevibacterium, the genus Corynebacterium, the genus Microbacterium, the genus Pseudomonas, and the like. Specific examples include Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli Gl698, Escherichia coli TB1, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amytoliquefaciens, Corynebacterium ammonia genes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium lactofermentum, or Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in *Microbiology*, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA, 69*: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Gene, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

25

35

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF al promoter, CUP 1 promoter, and the like. [0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SRα promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 456 (1973), and the like.

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors, A Laboratory Manual,* W.H. Freeman and Company, New York (1992), *Bio/Technology, 6*: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392; pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

[0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family *Barathra* are infected, and the like.

[0222] Examples of the insect cells include Spodoptera frugiperda oocytes Sf9 and Sf21 (Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)), Trichoplusia ni oocyte High 5 (manufactured by Invitrogen) and the like.

[0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.

[0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.

[0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.

[0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.

[0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.

20

25

30

35

50

. . .

[0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention *per se* rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

[0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.

[0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.

[0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.

[0232] When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.

[0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

[0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).

[0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, com steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.

[0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

[0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.

[0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.

[0239] When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured,

an inducer can be added to the medium, if necessary.

30

35

40

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

50 [0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α -casein promoter, a (β -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15:* 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

10

30

35

50

[0262] The polypeptide of the present invention can be produced by a translation system *in vitro*. There are, for example, two *in vitro* translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an *in vitro* transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the *in vitro* translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. *In vitro* translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λPL(con), λPL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like.

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using armonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, Nuc. Acids. Res.*, 10. 6487 (1982), *Proc. Natl. Acad. Sci. USA*, 79. 6409 (1982), *Gene*, 34: 315 (1985), *Nuc. Acids. Res.*, 13: 4431 (1985), *Proc. Natl. Acad. Sci. USA*, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

10

15

25

30

40

50

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylglycine, t-butylglycine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

45 [0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shirnadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (Molecular Cloning, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of Corynebacterium glutamicum, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

15

20

25

30

35

45

50

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, harnsters, chickens and the like.
[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

- (2) Production of monoclonal antibody
- (a) Preparation of antibody-producing cell
- [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 - [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.
 - [0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.
 - [0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.
- 20 (b) Preparation of myeloma cells

25

30

55

[0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-Agl4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10⁻⁵ mol/l 2-mercaptoethanol, 10 μg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 μg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10⁷ or more of the cells are used for the fusion.

(c) Production of hybridoma

[0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

[0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10⁸ antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.

[0301] After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10^{-4} mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

[0302] The suspension is poured into a 96 well culture plate at 100 μl/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.

[0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual,* Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.

[0304] A specific example of the enzyme immunoassay is described below.

[0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present

invention.

5

20

25

30

35

40

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

- (d) Preparation of monoclonal antibody
- [0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10⁶ to 20×10⁶ cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.
 - [0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.
- [0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.
 - [0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.
 - [0311] The antibody obtained in the above is within the scope of the antibody of the present invention.
 - [0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982), Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies A Laboratory Manual, Cold Spring Harbor laboratory
 - (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).
 - [0313] The antibody of the present invention can be used as it is or after being labeled with a label.
 - [0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem., 18*: 315 (1970); *Meth. Enzym., 62*: 308 (1979); *Immunol., 109*: 129 (1972); *J. Immunol., Meth., 13*: 215 (1979)), and the like.
 - [0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.
 - [0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.
 - 12. Production and use of polypeptide array
 - (1) Production of polypeptide array
- 45 [0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.
 - [0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.
 - [0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.
 - [0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); *Meth.*
- Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.
 - [0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polypeptide array

10

15

25

30

35

40

55

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1):
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

- [0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.
- 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining two

electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474). [0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide

showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred. [0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

Example 1

20

25

30

35

40

45

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of Corynebacterium glutamicum was determined based on the whole genome shotgun method (Science, 269: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 imes g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subjected to iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

5

10

20

25

35

40

55

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were blunt-ended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Smal/*BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of *Corynebacterium glutamicum* ATCC 13032 was partially digested with *Sau*3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the BamH site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into Escherichia coli XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0347] The full nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino *et al.* (*DNA Research*, *5*: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

[0352] The double-stranded DNA plasmid as the template was obtained by the following method.

[0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

[0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

[0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

10

20

25

30

45

50

[0357] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

[0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

[0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of *Corynebacterium glutamicum* ATCC 13032 (*Mol. Gen. Genet., 252*: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] The sequence in the region which was not covered with the contigs was determined by the following method.

[0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

10

25

30

35

40

45

50

55

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO:

1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

EP 1 108 790 A2

																		,				
	Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF protein)	hypothetical protein	DNA topoisomerase (ATP- hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical mambrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
	Matched length (a.a.)	524		390	392	174	704					422			854	112	329	268		265	155	117
	Similarity (%)	8.66		81.8	79.9	58.1	88.9					50.7			88.1	9.69	63.5	62.3		57.4	64.5	70.1
	identity (%)	99.8		50.5	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
Table 1	Homologous gene	Brevibacterium flavum dnaA		Mycobacterium smegmatis dnaN	Mycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
	db Match	gsp:R98523		sp:DP3B_MYCSM	sp:RECF_MYCSM	sp:YREG_STRCO	pir:S44198					sp:YV11_MYCTU			sp:GYRA_MYCTU	pir.E70698	sp:YEIH_ECOLI	gp:A8042619_1		gp:AF156103_2	pir:A49232	pir.F70664
	ORF (bp)	1572	324	1182	1182	534	2133	996	699	510	441	1071	261	246	2568	342	1035	894	420	870	762	369
	Terminal (nt)	1572	1597	3473	4766	5299	7486	8795	8628	10071	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073
	Initial (nt)	-	1920	2532	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251	18729	19497	19705
	SEQ NO.	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
	SEQ NO.	2	က	4	2	ဖ	7	В	თ	5	11	12	13	14	15	16	17	18	19	20	21	22

	Function	hypothetical membrane protein	2,5-diketo-D-gluconic acid reductase	5'-nucleotidase precursor	5'-nucleotidase family protein	transposase	organic hydroperoxide detoxication enzyme	ATP-dependent DNA helicase		glucan 1,4-alpha-glucosidase	lipoprotein	ABC 3 transport family or integral membrane protein	iron(III) dicitrate transport ATP- biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport protein	ribose transport ATP-binding protein	neurofilament subunit NF-180	peptidyl-prolyl cls-trans isomerase A	hypothetical membrane protein
	Matched length (a.a.)	321	28	196	270	51	139	217		449	311	266	222	283	312	236	347	169	226
	Identity Similarity (%)	50.8	88.5	56.1	58.7	72.6	79.9	60.8		54.1	63.7	74.1	70.3	56.5	68.3	76.7	44.4	89.9	53.1
	Identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		26.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	79.9	29.2
Table 1 (continued)	Homologous gene	Mycobacterium leprae MLCB1788.18	Corynebacterium sp. ATCC 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae S288C YIR019C sta1	Erysipeiothrix rhusiopathiae ewlA	Streptococcus pyogenes SF370 mtsC	Escherichia coli K12 fecE	Thermotoga maritima MSB8 TM0114	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon marinus	Mycobacterium leprae H37RV RV0009 ppiA	Bacillus subtilis 168 yqgP
	db Match	gp:MLCB1788_6	pir;140838	sp:5NTD_VIBPA	gp:AE001909_7	prf.2513302C	prf.2413353A	sp:RECG_THIFE		sp:AMYH_YEAST	gp:ERU52850_1	gp:AF180520_3	sp:FECE_ECOLI	pir:A72417	prf:1207243B	sp.RBSA_BACSU	pir:151116	sp:CYPA_MYCTU	sp:YQGP_BACSU
	ORF (bp)	993	180	528	1236	165	435	1413	438	1278	954	849	857	981	1023	759	816	561	687
	Terminal (nt)	21065	21074	22124	23399	23615	24729	24885	26775	26822	28164	29117	30651	31677	32699	33457	33465	34899	35668
	Initial (nt)	20073	21253	21597	22164	23779	24295	26297	26338	28099	29117	29965	29995	30697	31677	32699	34280	34339	34982
	SEQ NO.	3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535	3536	3537	3538	3539	3540
	SEQ NO.	23	24	25	26	27	28	29	8	31	32	33	34	35	36	37	38	39	40

EP 1 108 790 A2

	Function	ferric enterobactin transport system permease protein		ATPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serine/threonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothetical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein
	Matched length (a.a.)	332		253	260	95	648	486	492	375	469	155	526					117	490	242	262
	Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	66.7	9.59	70.8	66.5	38.8					63.3	78.2	57.0	64.1
	identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.8					29.9	46.7	27.3	29.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 fepG		Vibria cholerae viuC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					Trichosporon cutaneum ATCC 48490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschii MJ0441
	db Match	sp:FEPG_ECOU		gp:VCU52150_9	sp:VIUB_VIBVU	sp:YO11_MYCTU	Sp:PKNB_MYCLE	gp:AF094711_1	gp:AF241575_1	1143 sp:SP5E_BACSU	pir:H70699	pir.A70700	pir.B70700					sp:PH2M_TRICU	sp:GABD_ECOL!	sp:YRKH_BACSU	sp:Y441_METJA
	ORF (bp)	978	986	777	822	270	1938	1407	1422	1143	1353	462	864	147	720	219	471	954	1470	1467	789
	Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46689	48024	48505	49455	49897	50754	99605	54008	51626	55546	55629
	Initial (nt)	37221	37242	38202	38978	40458	42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	56417
	SEQ NO.	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
	SEQ NO DNA)	41	42	43	44	45	46	47	48	49	09	51	52	53	54	55	56	57	58	59	9

EP 1 108 790 A2

	Function	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein			magnesium and cobalt (ransport protein		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+)/citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-Isomer specific 2-hydroxyacid dehydrogenase
	Matched length (a.a.)	74	179	62		310			390		400	241	340				497	ຼ ຍອຣ		229	293
	(%) (%)	74.3	70.4	83.9		50.7			59.5		64.8	53.1	60.0				68.8	60.6		63.3	73.7
	identity (%)	40.5	36.3	53.2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
lable 1 (continued)	Homologous gene	Bacillus subtills yrkF	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Salmonella typhimurium pnuC	Mycobacterium tuberculosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB		Escherichia coll K12 criR	Corynebacterium glutamicum unkdh
	db Match	sp:YRKF_BACSU	sp:YC61_SYNY3	pir:G70988		gp:LMFL4768_11			pir:F70952	•	gp:AF179611_12	SP.PNUC_SALTY	sp:PHOL_MYCTU				sp:CITM_BACSU	sp:DPIB_ECOLI		sp:DPIA_ECOLI	gp:AF134895_1
	ORF (bp)	291	591	174	855	840	711	1653	1119	447	1269	069	1122	132	384	765	1467	1653	570	654	912
	Terminal (nt)	56386	56680	57651	58941	59930	60662	62321	62390	63594	65458	65508	67972	68301	68251	69824	68720	72158	71474	72814	72817
	Initial (nt)	56676	57270	57478	58087	59091	59952	69909	63508	64040	64190	66197	66851	68170	68634	09069	70186	70506	72043	72161	73728
	SEQ NO.	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580
	SEQ NO.		i	63	29	65		29	89	69	20	i	72	73	74	7.5	9/	77	78	79	80

Table 1 (confinued) Child Child			_							_		_	~~											
Table 1 (confined) Confined) SEO Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)		Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory;protein	epoxide hydrolase		valanimycin resistant protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/P5C dehydrogenase		aryl-alcohol dehydrogenase (NADP+)	pump protein (transport)	indole-3-acetyl-Asp hydrolase		hypothetical membrane protein	
SEO Initial (at) (nt) (nt) (pp) db Match Homologous gene (%) (%) 3600 93729 (at) (nt) (nt) (pp) Col_251883_4 Corynebacterium glutamicum (%) (%) 3601 93729 (at) 94199 (at) 971 gp:CGL251883_4 ATCC 13032 ureF (%) 3602 94202 (at) 94879 (at) 678 (at) gp:CGL251883_5 Corynebacterium glutamicum (at) 100.0 3603 95517 (at) 95562 (at) 97144 (at) 97123183288 (at) ATCC 13032 ureF Corynebacterium glutamicum (at) 3604 97144 (at) 97521 (at) 97261 (at) 97261 (at) ATCC 13032 ureF 100.0 3605 97521 (at) 97521 (at) 97261 (at) 97261 (at) 4700 (at) 4700 (at) 3604 97521 (at) 97521 (at) 97261 (at) 8726 (at) 8726 (at) 8726 (at) 8726 (at) 8726 (at) 3607 103434 (at) 10493 (at) 1416 (at) 8724 (at) 8726 (at) 8726 (at) 8726 (at) 8726 (at) 3611 10573 (at) 105738 (at) 10584 (at) 8727 (at) 8726 (at)		Matched length (a.a.)	157	226	205	283	279		347			899	481		196		1297		338	513	352		991	
SEO Initial Terminal ORF db Match Homologous gene 1820 91729 94199 471 gp:CGL251883_6 ATCC 13032 ureE 3601 94202 94879 678 gp:CGL251883_5 ATCC 13032 ureE 3602 94899 95513 615 gp:CGL251883_5 ATCC 13032 ureD 3603 95517 96365 649 gp:CGL251883_5 ATCC 13032 ureD 3604 97144 96368 777 prf.23183268 ATCC 13032 ureD 3605 97521 98189 669 gp:CGL251883_5 ATCC 13032 ureD 3606 98470 97319 1152 gp:AM14ECOLI Escherichia coli K12 htpG 3609 103435 101612 1824 sp:HTPG_ECOLI Escherichia coli K12 htpG 3611 105731 10573 579 Escherichia coli K12 htpG 3612 106392 105841 552 pri-E72483 Aeropyrum pernix K1 APE2509 3614 107289 106630 660 Escherichia coli K12 ydaH 3615 111161 111274 114 sp:YDAH_ECOLI Escherichia coli K12 ydaH 3616 111374 112318 945 sp:AD_PHACH Phanerochaete chrysosportum 3617 112470 114684 699 699 699 699 699 690 6			100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		60.7	71.4	49.2		70.8	
SEQ Initial Terminal ORF db Match. NO. (nt) (nt) (nt) (nt) NO. (nt) (nt) (pp.) db Match. 3600 93729 94199 471 gp.CCL251883_4 3601 94202 94879 678 gp.CGL251883_5 3603 95517 96365 849 gp.CGL251883_5 3604 97144 96365 849 gp.CGL251883_5 3605 97521 98189 669 pc.CCL251883_7 3606 97144 96368 777 pt.23183_7 3607 99819 10549 675 pc.CCL251883_7 3608 101582 98189 675 pc.CCL251883_7 3609 101582 98189 675 pc.CCL251883_7 3609 101582 982 877 pr.CCL251883_7 3609 103434 104909 1416 sp.Arth_CCCL1 3610 103494 104909 1416		Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2	36.5	23.0		35.9	
SEQ Initial Terminal ORF (nt) (nt) (nt) (pt) (bp) (nt) (nt) (pt) (bp) (nt) (nt) (pt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (n	Table 1 (continued)	Homologous gane	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vimF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		Salmonella typhlmurium putA		Phanerochaete chrysosporium aad	Escherichla coli K12 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	
SEQ Initial Terminal (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		db Match	gp:CGL251883_4	gp:CGL251883_5	gp:CGL251883_6	gp:CGL251883_7	prf:2318326B		gp:AF148322_1				sp:AMN_ECOLI		pir.E72483		sp:PUTA_SALTY		Sp:AAD_PHACH		prt:2422424A		sp:YIDH_ECOLI	
SEQ Initial Term (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bp)	471	678	615	849	777	699	1152	675	2775	1824	1418	579	225	990	3458	114	945	1614	1332	669	366	315
\$EO NO. 3600 3600 3600 3600 3600 3600 3600 360		Terminal (nt)	94199	<u>~</u>	_	96365	96368		97319		98808	101612	104909				110890	111274				114564		116263
		fnitial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435		105751	106392	107289	107435	111161	111374	112470	114147	115262	115578	115949
SEQ NO. 100 100 100 100 100 100 100 100 100 10		SEQ NO.	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615	3616	3617	3618	3619	3620	3621
		SEQ NO.	100	101	102	103	104	1 05	106	107	108 80	ş	130	=	112	113	114	115	116	13	118	119	120	12

_																-		_	_			· · ·	
	Function		transcriptional repressor	methylglyoxalase	hypothetical protein	mannitol dehydrogenase	D-arabinitol transporter		galactitol utilization operon repressor	xylulose kinase		pantoate-beta-alanine ligase	3-methyl-2-oxobutanoate hydroxymethyltransferase		DNA-3-methyladenine glycosylase		esterase		carbonate dehydratase	xylose operon repressor protein	macrolide efflux protein		
	Matched length (a.a.)		258	126	162	497	435		260	451		279	1.72		188		270		201	357	418		
	Similarity (%)		59.7	78.6	64.8	70.4	68.3		64.6	68.1		100.0	100.0		9.79		69.3		53.2	49.3	61.2		
	identity (%)		29.5	57.9	37.0	43.5	30.3		27.3	45.0		100.0	100.0		42.0		39.3	-	30.9	24.1	21.1		
Table 1 (continued)	Homologous gene		Agrobacterium tumefaciens accR	Bacillus subtilis yurī	Mycobacterium tuberculosis H37Rv Rv1276c	Pseudomonas fluorescens mtlD	Klebsiella pneumoniae dalT		Escherichia coli K12 gatR	Streptomyces rubiginosus xylB		Corynebacterium glutamicum ATCC 13032 panC	Corynebacterium glutamicum ATCC 13032 panB		Arabidopsis thallana mag		Petroleum-degrading bacterium HD-1 hde		Methanosarcina thermophila	Bacillus subtilis W23 xylR	Lactococcus lactis met214		
	db Match		sp:ACCR_AGRTU	pir:C70019	sp:YC76_MYCTU	prf.2309180A	1335 prf.2321326A		sp:GATR_ECOLI	sp:XYLB_STRRU		gp:CGPAN_2	gp:CGPAN_1		Sp:3MG_ARATH		gp:AB029896_1		sp:CAH_METTE	sp:XYLR_BACSU	gp:LLLPK214_12		
	ORF (bp)	2052	780	390	510	1509	1335	189	837	1419	822	837	813	951	630	654	924	627	558	1143	1272	804	444
	Terminal (nt)	116548	118810	120410	120413	120951	122507	124030	124866	126350	127992	126353	127192	128099	129489	130798	130815	132424	132981	132971	134207	135518	136122
	Initial (nt)	118599	119589	120021	120922	122459	123841	123842	124130	124932	127171	127189	128004	129049	130118	130145	131738	131798	132424	134113	135478	136321	136565
	SEQ NO.	3622	3623	3624	3625	3628	3627	3628	3629	3630	3631	3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642	3643
	SEQ NO. (DNA)	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143

EP 1 108 790 A2

_							,		 -		-	_				_	_	- 1					\neg		
	Function				čellulose synthase	hypothetical membrane protein				chloramphenicol sensitive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent helicase		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxorubicin biosynthesis enzyme
	Matched length (a.a.)				420	593				303	198			381	248			829		188	219	166	217	55	284
	Similarity (%)				51.2	51.8				60.7	59.1			62.3	70.2			64.3		0.99	60.7	65.1	61.3	72.7	52.1
	Identity (%)				24.3	25.1				34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0
Table 1 (continued)	Hamologous gene				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichla coli K12 abrB	Escherichia coli K12 yfcA			Escherichia coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1JI nodL	Escherichia coli o373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV
	db Match				pir:139714	sp:HKR1_YEAST				Sp.RARD_PSEAE	sp:YADS_ECOLI			sp.ABRB_ECOLI	sp:YFCA_ECOLI			sp:HRPB_ECOLI		sp:NODL_RHILV	sp.ALKB_ECOLI	sp:3MG1_ECOLI	sp:RHTC_ECOLI	Sp:YAAA_BACSU	prf.2510326B
	ORF (bp)	1941	1539	636	1461	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	9	525	678	291	852
	Terminal (nt)	138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	160013
	Initial (nt)	136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	152410	155613	155853	156821	156848	157614	158154	158869	159162
	SEQ NO.	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	3665	3666	3667
	SEQ NO.	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	168	167

GG
continue
Table 1 (
면

																						_	_
	Function	methyltransferase				ribonuclease			neprilysin-like metallopeptidase 1		transcriptional regulator, GntR family or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothelical protein	methylmalonic acid semialdehyde dahydroganasa	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism protein	myo-inositol 2-dehydrogenase	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance		oxidoreductase	
	Matched length (a.a.)	104				118			727		238	332	962	498	268	286	280	335	282	457		354	
	Similarity (%)	56.7				76.3			57.2		65.6	63.0	80.7	1.98	58.2	8.69	51.0	72.2	72.1	61.5		65.5	
	Identity (%)	35.6				41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		31.1	
lable i (continued)	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c		•		Neisseria meningitidis MC58 NMB0662			Mus musculus nl1		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolar A3(2) SC8F11.03c	Streptomyces coelicalar msdA	Bacillus subtilis iolB	Bacillus subtilis iotD	Rhizobium mellloti mocC	Bacillus subtilis idh or iolG	Bacillus subtilis iolH	Streptomyces glaucescens tomA		Bacillus subtilis yvaA	
	db Match	gp:SPAC1250_3				gp:AE002420_13			gp:AF176569_1		sp:FARR_ECOLI	pir:T14544	gp:SC8F11_3	prt.2204281A	USDAB_BJOI:qs	USOAB_GJOI:qs	Sp:MOCC_RHIME	Sp:Mi20_BACSU	Sp:IOLH_BACSU	sp:TCMA_STRGA		Sp:YVAA_BACSU	-
İ	ORF (bp)	342	930	657	933	405	639	741	2067	963	759	1017	921	1512	888	1728	954	1011	870	1374	621	1023	456
	Terminal (nt)	160370	161360	162352	161363	162867	163603	166457	163689	167419	167837	189991	170916	172444	173355	175275	176272	177318	178203	179658	178461	160711	181297
	Initial (nt)	160029	160431	161696	162295	162463	162965	165717	165755	166457	168595	168975	169996	170933	172468	173548	175319	176308	177334	178285	179081	179689	180842
	SEQ NO (a a.)	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689
	SEQ NO (DNA)	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189

5

	Function		regulatory protein	oxidoreductase	hypothetical protein		cold shock protein			caffeoyl-CoA 3-O-methyltransferase		glucose-resistance amytase regulator regulator			D-xylose proton symporter		transposase (ISCg2)	signal-transducing histidine kinase	glutamine 2-oxoglutarate aminofransferase large subunit	glutamine 2-oxoglutarate eminotransferase small subunit		hypothetical protein	
	Matched length (a.a.)		331	442	303		64			134		338			458		401	145	1510	909		498	
	Similarity (%)		61.9	52.5	64.7		92.2			58.2		62.1			70.5		100.0	60.7	100.0	93.8		72.8	
	Identity (%)		32.0	24.4	33.7		70.3			30.6		28.7			36.0		100.0	27.6	6.86	99.4		44.6	
Table 1 (continued)	Homologous gene		Streptomyces reticuli cebR	Rhizobium sp. NGR234 y4hM	Bacillus subtilis yfiH		Streptomyces coelicolor A3(2) csp			Stellaria longipes		Bacillus subtilis ccpA			Lactobacillus brevis xyIT		Corynebacterium glutamicum ATCC 13032 tnp	Rhizobium meliloti fixL	Corynebacterium glutamicum gltB	Corynebacterium glutamicum gltD		Mycobacterium tuberculosis H37Rv Rv3698	
	db Match		gp:SRE9798_1	SP. Y4HM_RHISN	SP YFIM_BACSU		sp:CSP_ARTGO			prf.2113413A		sp.ccPA_BACSU			sp:XYLT_LACBR		gp. AF189147_1	sp:FIXL_RHIME	gp:AB024708_1	gp:A8024708_2		pir.C70793	
	ORF (bp)	384	993	1233	1011	429	20.	534	308	414	426	066	402	240	1473	300	1203	435	4530	1518	240	1485	369
	Terminal (nt)	181647	181687	184051	185087	185642	186708	187302	187607	188100	188300	188747	190321	190389	190703	192949	194464	194604	199769	201289	201341	201760	205956
	Initial (nt)	181264	182679	182819	184077	185214	186508	186789	187302	187687	188725	189736	189920	190628	192175	193248	193262	195038	195240	199772	201580	203244	205588
	SEQ NO.	3690	3691	3692	3693	3694	3695	3696	3697	3698	3698	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710	3711
	SEO NO.	190	1	192		194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	509	210	21
		·		<u></u>						۰											_		

5

-					_								1			i :				
	Function		arabinosyl transferase	hypothetical membrane protein	acetoacetyl CoA reductase	oxidoreductase				proteophosphoglycan	hypothetical protein		hypothetical protein	rhamnosyl transferase		hypothetical protein	O-antigen export system ATP- binding protein	O-antigen export system permease protein	hypothetical protein	NADPH quinone oxidoreductase
	Matched length (a.a.)		1122	651	223	464				0SE	124		206	302		214	236	262	416	302
	Similarity (%)		70.6	66.1	56.5	85.1				57.4	83.9		73.8	79.1		55.1	78.4	75.8	63.0	71.5
	Identity (%)		39.8	35.0	31.4	0.99				24.3	60.5		43.2	63.6		31.3	47.0	31.3	38.5	41.1
lable 1 (continued)	Homalogous gene		Mycobacterium avium embB	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790				Leishmania major ppg1	Mycobacterium tuberculosis H37Rv Rv3789		Mycobacterium tuberculosis H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 nbE		Agrobacterium tumefaciens plasmid pTI-SAKURA tlorf100	Yersinia enterocolitica rfbE	Yersinla enterocolitica rfbD	Mycobacterium tuberculosis H37Rv Rv3778c	Homo sapiens pig3
	db Match		prf:2224383C	pir.D70697	prf:2504279B	pir:B70697				gp:LMA243459_1	sp:Y0GN_MYCTU		pir.H70666	plr:B70696		gp:AB016260_100	sp:RFBE_YEREN	sp:RFBO_YEREN	pir:F70695	gp:AF010309_1
	ORF (bp)	318	3471	1983	759	1464	234	507	453	1002	396	402	633	939	342	597	789	804	1173	954
	Terminal (nt)	206385	203541	207007	209210	208832	211535	212283	212735	213657	214107	214522	215159	215162	216605	216116	217141	217943	220151	220154
	Initial (nt)	206068	207011	208989	209968	211455	211768	211777	212283	212656	213712	214121	214527	216100	216264	216712	217929	218746	218979	221107
	SEQ NO.	3712	3713	3714	3715	3716	3717	3718	3719	3720	3721	3722	3723	3724	3725	3726	3727	3728	3729	3730
	SEQ NO.	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230

	Function		probable electron transfer protein	amino acid carrier protein		molybdopterin blosynthesis protein moeB (sulfurylase)	molybdopterin synthase, large subunit	molybdenum cofactor biosynthesis protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	molybdate-binding periplasmic protein	molybdopterin converting factor subunit 1	maltose transport protein	hypothetical membrane protein	histidinol-phosphate aminotransferase			
	Matched length (a.a.)		78	475		368	150	158	154	377	227	256	96	365	121	330			
	Similarity (%)		51.0	75.8	_	70.1	75.3	63.3	84.4	58.6	70.5	68.0	70.8	8.09	76.9	65.8			
	identity (%)		35.0	48.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	37.5	34.3	36.4	37.3			
Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv3571	Bacillus subtilis alsT		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotinovorans moaC	Arthrobacter nicotinovorans moeA	Arthrobacter nicotinovorans modB	Arthrobacter nicotinovorans modA	Mycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malK	Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hisC			
	db Match		PIR: A70606	sp.ALST_BACSU	,	gp:SYPCCMOEB_	prf.2403296D	sp:MOCB_SYNP7	prf:2403296C	gp:ANY10817_2	prf.2403296F	prf:2403296E	pir:D70816	prf.2518354A	sp:YPT3_STRCO	sp:HISB_ZYMMO			
	ORF (bp)	582	297	1476	606	1083	456	471	468	1185	723	804	321	912	420	1023	906	294	120
	Terminal (nt)	221131	222207	222210	225244	225242	226312	228760	227218	227703	226891	229711	230928	230931	231848	232260	234818	234910	235409
	Initial (nt)	221712	221911	223685	224336	226324	228767	227230	227685	228887	229613	230514	230608	231842	232267	233282	233913	235203	235290
	SEQ NO.	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743	3744	3745	3746	3747	3748
	SEQ NO. (DNA)	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248

EP 1 108 790 A2

															_				_	_				
5		Function	transcription factor	alcohol dehydrogenase	putrescine oxidase	magnesium ion transporter		Na/dicarboxylate cotransporter	oxidoreductase	hypothetical protein	nitrogen fixation protein			membrane transport protein	queuine tRNA-ribosyltransferase	hypothetical membrane protein			ABC transporter	glutamyl-tRNA synthetase		transposase		
15		Matched length (a.a.)	252	335	451	444		267	317	160	144			997	400	203			929	318		360		
20		Similarity (%)	57.1	66.0	38.1	68.5		59.6	69.1	73.8	70.1			45.7	68.0	62.1			49.6	63.3		55.0		
		identity (%)	29.4	34.0	21.5	30.9		33.2	48.1	48.8	45.1			20.7	41.3	28.1			24.3	34.8		34.2		
25	Table 1 (continued)	s gene	xyR	mophilus	ond st	ri mgtE			berculosis	berculosis	ponicum			berculosis mpL2	lis	JdP			ucescens strW	¥.		ringae tnpA		
30	Table 1 (c	Homologous gene	Brucella abortus oxyR	Bacilius stearothermophilus DSM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterium tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtilis ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA		
35 40		db Match	gp:BAU81286_1	sp.ADH2_BACST	sp:PUO_MICRU	prf:2305239A		prf.2320140A	pir.C70800	pir:B70800	gp:RHBNFXP_1			sp:YV34_MYCTU	Sp.TGT_ZYMMO	sp:YPDP_BACSU			pir.S65588	sp:SYE_BACSU		gp:PSESTBCBAD_		
		ORF (bp)	762 93	1017 sp	801	1350 pi	174	1530 p	1020 p	522 p	417 9	201	351	2403 s	1263 s	738 s	1080	648	1437 p	879 \$	066	1110	303	138
45		Terminal (nt)	235451	237342	238145	239525	239945	241515	241883	243431	243910	244215	244816	247304	248572	248557	250507	249722	251939	252830	252830	254329	255492	256204
50		Initial (nt)	236212	236326	237345	238176	239772	239986	242902	242910	243494	244015	244466	244902	247310	249294	249428	250369	250503	251952	253819	255438	255794	256067
		SEQ NO.	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770
		Q o ₹	49	93	51	52	53	54	55	26	22	58	59	. 69	19	292	63	264	385	992	. 293	568	60	270

5	Function	aspartate transaminase		DNA polymerase III holoenzyme tau subunit		hypothetical protein	recombination protein	cobyric acid synthase	UDP-N-acetylmuramyl tripeptide synthetase	DNA polymerase III epsilon chain	hypothetical membrane proteín	aspartate kinase alpha chain			extracytoplasmic function alternative sigma factor	vegetative catalase			leucine-responsive regulatory protein	branched-chain amino acid transport
15	Matched length (a.a.)	432 asp		642 DN sub		101 hyp	214 rec	248 cot	444 UD syr	346 DN	270 hy	421 88			189 ext	492 ve			143 leu pro	203 bre
20	Similarity Ma (%)	100.0		53.1		74.3	72.4	61.7	60.6	55.2	100.0	98.8			63.5	76.4			72.0	68.0
	Identity S	98.8		31.6		41.6	42.5	38.3	31.3	25.7	100.0	99.5			31.2	52.9			37.1	30.5
39 Table 1 (continued)	Homologous gene	actofermentum		philus dnaX		/ваК	ecR	bills cobQ	bilis murc	luberculosis	n glutamicum flavum) ATCC	n glutamicum			Mycobacterium smegmatis sigE	katA			noniae Irp	1A1 azlC
30 QC	Нотого	Brevibacterium lactofermentum aspC		Thermus thermophilus dnaX		Bacillus subtills yaaK	Bacillus subtilis recR	Heliobacilius mobilis cobQ	Heliobacillus mobilis murC	Mycobacterium tuberculosis H37Rv dnaQ	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum lysC-alpha			Mycobacterium	Bacillus subtills katA			Klebsiella pneumoniae Irp	Bacillus subtilis 1A1 azlC
35	db Match	gsp:W69554		gp.AF025391_1		Sp:YAAK_BACSU	sp:RECR_BACSU	prf:2503462B	prf:2503462C	pir:H70794	sp:YLEU_CORGL	sp:AKAB_CORGL			prf.2312309A	sp.CATV_BACSU			Sp.LRP_KLEPN	sp:AZLC_BACSU
	ORF (bp)	1296 gs	630	2325 91	717	309 sı	654 sp	750 pi	1269 pi	1080	867 8	1263 s	1053	1434	579 p	1506 \$	342	291	462 \$	753 s
45	Terminal (nt)	257894	258529	260875	258596	261295	262055	262546	263298	264599	268258	270633	269524	273194	273542	275871	276232	275957	276302	277581
50	Initial (nt)	256599	257900	258551	259312	260987	261402	263295	264566	265678	269124	269371	270576	271781	274120	274366	275891	276247	276763	276829
	SEO NO.	3771	3772	3773	3774	3775	3776	3777	3778	3779	3780	3781	3782	3783	3784	3785	3786	3787	3788	3789
55	SEQ NO.	27.1	272	273	274	275	276	27.7	278	279	280	281	282	283	284	285	286	287	288	289

EP 1 108 790 A2

| Function | | | metalioregulatory protein | arsenic oxyanion-translocation pump
membrane subunit | arsenate reductase | |
 | | Na+/H+ antiporter or multiple resistance and pH regulation related protein D
 | Na+/H+ antiporter
 | Na+/H+ antiporter or multiple resistance and pH regulation related protein A
 |
 | | | transcriptional activator | two-component system sensor
histidine kinase
 | aikaline phosphatase | | phosphoesterase | hypothetical protein |
|----------------------------|--|---|--|---|--|---
--
---|--|---
--

--
---|--|---|---|---
--|--
--|--|--|
| Matched
length
(a a) | | | 06 | 341 | 119 | |
 | | 503
 | 119
 | 824
 |
 | | | 223 | 521
 | 180 | | 307 | 149 |
| Similarity
(%) | | | 68.9 | 84.2 | 68.9 | |
 | | 70.4
 | 20.6
 | 64.3
 | :

 | | | 70.4 | 56.8
 | 60.0 | | 54.7 | 71.8 |
| Identity
(%) | | | 34.4 | 52.2 | 31.1 | |
 | | 32.4
 | 37.0
 | 34.1
 |
 | | | 38.6 | 26.7
 | 28.3 | | 26.1 | 37.6 |
| Homologous gene | | | Sinorhizobium sp. As4 arsR | Sinorhizobium sp. As4 arsB | Staphylococcus xylosus arsC | |
 | | Bacillus firmus OF4 mrpD
 | Staphylococcus aureus mnhC
 | Bacillus firmus OF4 mrpA
 |
 | | | Alcaligenes eutrophus CH34 czcR | Mycobacterium tuberculosis
mtrB
 | Lactococcus lactis MG1363 apl | | Bacillus subtilis ykuE | Bacillus subtilis yqeY |
| db Match | | | gp:AF178758_1 | gp:AF178758_2 | sp.ARSC_STAXY | |
 | | gp:AF097740_4
 | prf.2504285D
 | gp:AF097740_1
 |
 | | - | sp:czcR_ALCEU | prf.2214304B
 | Sp:APL_LACLA | | pir.B69865 | sp:YQEY_BACSU |
| ORF
(bp) | 324 | 315 | 345 | 1080 | 387 | 318 | 270
 | 453 | 1530
 | 381
 | 2886
 | 1485
 | 603 | 864 | 999 | 1467
 | 603 | .561 | 915 | 453 |
| Terminal
(nt) | 277904 | 277987 | 278388 | 279893 | 280279 | 280349 | 280670
 | 280949 | 281404
 | 282937
 | 283317
 | 287857
 | 287059 | 287966 | 289131 | 289777
 | 292417 | 291273 | 292597 | 293991 |
| Initial
(nt) | 277581 | 278301 | 278732 | 278814 | 279893 | 280666 | 280939
 | 281401 | 282933
 | 283317
 | 286202
 | 286373
 | 287661 | 288829 | 289796 | 291243
 | 291815 | 291833 | 293511 | 293539 |
| SEQ
NO
(a.a.) | 3790 | 3791 | 3792 | 3793 | 3794 | 3795 | 3796
 | 3797 | 3798
 | 3799
 | 3800
 | 3801
 | 3802 | 3803 | 3804 | 3805
 | 3806 | 3807 | 3808 | 3809 |
| SEQ
NO. | 290 | 291 | 292 | 293 | 294 | 295 | 296
 | 297 | 298
 | 299
 | 300
 | 301
 | 302 | 303 | 304 | 305
 | 306 | 307 | 308 | 309 |
| | SEQ Initial Terminal ORF db Match Homologous gene (46) (10) (10) (10) (20) | SEQ Initial (a.a.) Terminal (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) 3790 277581 277904 324 (8a) (aa) 3791 277987 315 (aa) (aa) | SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(b) db Match Homologous gene
(96) Identity
(96) Similarity
(96) Matched
(96) Matched
(96) Matched
(96) Matched
(96) Matched
(96) Matched
(98) Matched
(98) 3790 277581 277987 315 Res 1 | SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) Matched
(%) 3790 277581 277904 324 324 278301 277987 315 278301 278301 278308 345 gp:AF178758_1 Sinorhizobium sp. As4 arsR 34.4 68.9 90 3793 278814 279893 1080 gp:AF178758_2 Sinorhizobium sp. As4 arsB 52.2 84.2 341 | SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match
db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) Matched
(%) 3790 277581 277904 324 SA SA | SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(pt) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) </td <td>SEQ
NO
(nt)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10</td> <td>SEQ
NO
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match
db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) M</td> <td>SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(p) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<!--</td--><td>SEQ (nt) (nt) (nt) (nt) (bp) (bp) (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 3790 (nt) (nt) (nt) 277581 277904 324 27800 277581 379 277881 379 277888 345 GB (%) <t< td=""><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEC (1.11) (1.2) (1.11) (Terminal (1.1) (1.11) (DR (1.1) (1.1) (1.1) (DR (1.1) (1.1) (DR (1.1) (1.1) (1.1) <t< td=""><td>SEC (NT) (NT) (NT) (NT) Terminal (NP) (NT) GBM Match (NT) Homologous gene (%6) (%6) (%6) Maithed (%6)</td><td>SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td><td>SEQ (a.t.) Initial (b.) Terminal (bp) QPF (b) Abalch (balch (bp) Homologous gene (balch (bp)) Identity (bp) (bp) Matched (balch (bp)) Matched (balch (bp)) Matched (balch (bb)) Matched (bb) Matched (bb)</td><td>SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(III) Identity
(SA) Similarity
(SA) Matched
(SA) 3793 277581 277904 324 Per Annel Per Annel</td></t<></td></t<></td></td></td> | SEQ
NO
(nt)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10 | SEQ
NO
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match
db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) M | SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(p) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) <td>SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<!--</td--><td>SEQ (nt) (nt) (nt) (nt) (bp) (bp) (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 3790 (nt) (nt) (nt) 277581 277904 324 27800 277581 379 277881 379 277888 345 GB (%) <t< td=""><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEC (1.11) (1.2) (1.11) (Terminal (1.1) (1.11) (DR (1.1) (1.1) (1.1) (DR (1.1) (1.1) (DR (1.1) (1.1) (1.1) <t< td=""><td>SEC (NT) (NT) (NT) (NT) Terminal (NP) (NT) GBM Match (NT) Homologous gene (%6) (%6) (%6) Maithed (%6)</td><td>SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td><td>SEQ (a.t.) Initial (b.) Terminal (bp) QPF (b) Abalch (balch (bp) Homologous gene (balch (bp)) Identity (bp) (bp) Matched (balch (bp)) Matched (balch (bp)) Matched (balch (bb)) Matched (bb) Matched (bb)</td><td>SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(III) Identity
(SA) Similarity
(SA) Matched
(SA) 3793 277581 277904 324 Per Annel Per Annel</td></t<></td></t<></td></td> | SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) </td <td>SEQ (nt) (nt) (nt) (nt) (bp) (bp) (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 3790 (nt) (nt) (nt) 277581 277904 324 27800 277581 379 277881 379 277888 345 GB (%) <t< td=""><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEC (1.11) (1.2) (1.11) (Terminal (1.1) (1.11) (DR (1.1) (1.1) (1.1) (DR (1.1) (1.1) (DR (1.1) (1.1) (1.1) <t< td=""><td>SEC (NT) (NT) (NT) (NT) Terminal (NP) (NT) GBM Match (NT) Homologous gene (%6) (%6) (%6) Maithed (%6)</td><td>SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td><td>SEQ (a.t.) Initial (b.) Terminal (bp) QPF (b) Abalch (balch (bp) Homologous gene (balch (bp)) Identity (bp) (bp) Matched (balch (bp)) Matched (balch (bp)) Matched (balch (bb)) Matched (bb) Matched (bb)</td><td>SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(III) Identity
(SA) Similarity
(SA) Matched
(SA) 3793 277581 277904 324 Per Annel Per Annel</td></t<></td></t<></td> | SEQ (nt) (nt) (nt) (nt) (bp) (bp) (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 3790 (nt) (nt) (nt) 277581 277904 324 27800 277581 379 277881 379 277888 345 GB (%) (%) <t< td=""><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEC (1.11) (1.2) (1.11) (Terminal (1.1) (1.11) (DR (1.1) (1.1) (1.1) (DR (1.1) (1.1) (DR (1.1) (1.1) (1.1) <t< td=""><td>SEC (NT) (NT) (NT) (NT) Terminal (NP) (NT) GBM Match (NT) Homologous gene (%6) (%6) (%6) Maithed (%6)</td><td>SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td><td>SEQ (a.t.) Initial (b.) Terminal (bp) QPF (b) Abalch (balch (bp) Homologous gene (balch (bp)) Identity (bp) (bp) Matched (balch (bp)) Matched (balch (bp)) Matched (balch (bb)) Matched (bb) Matched (bb)</td><td>SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(III) Identity
(SA) Similarity
(SA) Matched
(SA) 3793 277581 277904 324 Per Annel Per Annel</td></t<></td></t<> | SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEC (1.11) (1.2) (1.11) (Terminal (1.1) (1.11) (DR (1.1) (1.1) (1.1) (DR (1.1) (1.1) (DR (1.1) (1.1) (1.1) <t< td=""><td>SEC (NT) (NT) (NT) (NT) Terminal (NP) (NT) GBM Match (NT) Homologous gene (%6) (%6) (%6) Maithed (%6)</td><td>SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td><td>SEQ (a.t.) Initial (b.) Terminal (bp) QPF (b) Abalch (balch (bp) Homologous gene (balch (bp)) Identity (bp) (bp) Matched (balch (bp)) Matched (balch (bp)) Matched (balch (bb)) Matched (bb) Matched (bb)</td><td>SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(III) Identity
(SA) Similarity
(SA) Matched
(SA) 3793 277581 277904 324 Per Annel Per Annel</td></t<> | SEC (NT) (NT) (NT) (NT) Terminal (NP) (NT) GBM Match (NT) Homologous gene (%6) (%6) (%6) Maithed (%6) | SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched | SEQ (a.t.) Initial (b.) Terminal (bp) QPF (b) Abalch (balch (bp) Homologous gene (balch (bp)) Identity (bp) (bp) Matched (balch (bp)) Matched (balch (bp)) Matched (balch (bb)) Matched (bb) Matched (bb) | SEQ
NO. Initial
(III) Terminal
(III) ORF
(III) db Match
(III) Homologous gene
(III) Identity
(SA) Similarity
(SA) Matched
(SA) 3793 277581 277904 324 Per Annel Per Annel |

5	Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein		long-chain-fatty-acid-CoA ligase	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein	hydrolase			CAMP receptor protein		ultraviolet N-glycosylase/AP lyase	cytochrome c biogenesis protein
15	Matched length (a.a.)	782	7.1		20	149	440		534	127	251	254	394	153	272			207		240	211
20	Similarity (%)	77.1	63.4		96.0	89.9	68.9		59.9	65.4	72.5	52.0	66.5	72.6	72.4			65.7		77.1	58.3
	identity (%)	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	45.8	41.2			30.9		57.5	34.6
S S Table 1 (continued)	Homalogous gene	Mycobacterium leprae pon1	Streptomyces coelicolor A3(2) whiB		Streptomyces coelicolor A3(2) SCH17.10c	Mycobacterium tuberculosis H37Rv Rv3678c	Escherichia coli K12 shiA		Bacillus subtilis IcfA	Streptomyces coelicolor A3(2) SCJ4,28c	Bacillus subtilis fabG	Emericella nidulans fluG	Arabidopsis thaliana atg6	Rhizobium leguminosarum nodN	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
35		Myco	Strep		SCH	Myco H37F	Esch		Bacil	Strep		Ете	Arab		Myc. H37			Vibri			Myc H37
40	db Match	prf:2209359A	pir:S20912		gp:SCH17_10	pir:G70790	sp:SHIA_ECOLI		sp:LCFA_BACSU	gp:SCJ4_28	sp:FABG_BACSU	SP.FLUG EMENI	prf:2512386A	SP:NODN_RHILV	pir.F70790			prf:2323349A		SP: UVEN_MICLU	plr:870790
	ORF (bp)	2385	339	192	153	459	1353	609	1536	525	933	942	1194	471	843	1173	705	681	192	780	558
45	Terminal (nt)	294004	297402	297622	297783	298250	298332	300695	299726	301512	303099	304074	305283	305758	306700	305195	307504	306782	307727	308734	309302
50	Initial (nt)	296388	297064	297431	297631	297792	299684	300087	301261	302036	302167	303133	304070	305288	305858	306367	306800	307462	307918	307955	308745
	SEQ NO.	3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823	3824	3825	3826	3827	3828	3829
55	SEQ NO.		311	312	† · · · · ·	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329
55	SEQ NO.	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329

EP 1 108 790 A2

	Function	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical protein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein				ATP-dependent RNA helicase	cold shock protein		DNA topoisomerase I	
	Matched length (a.a.)	192 hypo	396 serin	280 epox	156 hypo	287 phos	349 hypo	319 conj		262 hyp	201 hyp	59 hyp				764 ATF	67 cold		977 UN	
	Similarity Ma (%)	56.3	71.0	52.1	9.77	65.5	60.2	66.5		63.7	64.2	84.8				66.1	88.1		81.6	
	Identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	
Table 1 (continued)	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis H37Rv Rv3671c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis SI55 csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
	db Match	sp:YEAB_ECOLI	pir:H70789	prf:2411250A	pir:F70789	pir.S72914	pir:E70788	pir.C44020		pir.C70788	pir.B70789	plr.A70788				sp:YPRA_BACSU	sp.csP_ARTGO		pir:G70563	
	ORF (bp)	699	1191	993	549	996	1023	1023	515	816	546	198	318	414	345	2355	201	225	2988	711
	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
	tnitlal (nt)	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318696	318958	318991	321690	322007	322216	322910	325904
	SEO NO (a.a.)	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	3848
	SEQ NO.	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

EP 1 108 790 A2

	Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent formaldehyde dehydrogenase		metallo-beta-lactamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,8-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthetase	UDP-sugar hydrolase	
	Matched length (a.a.)	263	423 t		144	172	314	558	101	362		160	251	415	320	108	230		280	586	
	Similarity (%)	62.4	52.7		59.0	63.4	65.0	60.2	61.4	86.5		47.5	55.8	56.4	66.3	88.9	56.5		57.3	54.4	
	Identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	66.6		32.5	25.9	26.3	33.8	59.3	33.9		25.8	26.1	
Table 1 (continued)	Homologous gene	Stigmatella aurantiaca B17R20 cyaB	Bacillus subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coil K12 rluC	Erwinia chrysanthemi D1 bgxA	Azospirillum irakense salB	Amycolatopsis methanolica		Rhodacoccus erythropolis orf5	Escherichia coli K12 fabG	Streptomyces vindifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Escherichia coli K12 yelJ	Salmonella typhimurium ushA	
	db Match	sp:CYAB_STIAU	sp:DP3X_BACSU		gp:AE002103_3	gp:AE001882_8	sp:RLUC_ECOL!	Sp. BGLX_ERWCH	gp:AF090429_2	sp:FADH_AMYME		sp:YTH5_RHOSN	sp:FABG_ECOLI	gp:AF148322_1	prf.2512357B	pir.A70562	sp:YC22_METJA		sp:YEFJ_ECOLI	sp:USHA_SALTY	
	ORF (bp)	1041	1257	162	444	561	882	1644	1989	1104	621	537	699	1230	933	375	759	1029	1035	2082	162
	Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334953	336112	335185	336748	337449	338768	339725	340195	340569	342375	343451	345717	345814
	initial (nt)	327735	328283	329748	329933	330973	331552	332919	332965	335009	335805	336212	336781	337539	338793	340569	341327	341347	342417	343636	345975
	SEQ NO.	3849	3850	3851	3852	3853	3854	3855	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868
	SEQ NO.	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368

EP 1 108 790 A2

5

	Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	lipopolysaccharide biosynthesis / aminotransferase
	Matched length (a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	102		613	96	394
	Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		68.3	62.5	56.4		46.0	76.6	57.2	68.6		65.7	51.0	68.3
	Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1
Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans rmIC	Streptococcus mutans XC rmIB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A 19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
	db Match		sp.AOH_MYCTU	Sp. RFBA_SALAN	gp:D78182_5	SP. RMLB_STRMU	sp:NOX_THETH	prf:2510361A		sp:Y17M_MYCTU	gp:SC5F2A_19	prf.2502226A		gp:SCF43_2	gsp:W56155	prf:2404346B	prf:2404346A		sp:CAPD_STAAU	PRF:2109288X	prf.2423410L
	ORF (bp)	351	1059	855	1359	1131	579	945	639	1308	1380	2118	573	1092	1095	1434	603	984	1812	942	1155
	Terminal (nt)	346110	346961	348098	348952	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	366838	368643	367701	369801
	Initial (nt)	346460	348019	348952	350310	351443	351948	352693	354387	355906	357228	359354	380334	361905	363151	363824	365250	365855	366832	368642	368647
	SEQ NO.	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887	3888
	SEQ NO.	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388

EP 1 108 790 A2

	Function	pilin glycosylation protein	capsular polysaccharide biosynthesis	lipopolysaccharide biosynthesis / export protein	UDP-N-acetylglucosamine 1- carboxyvinyltransferase	UDP-N- acetylenolpyruvoyiglucosamine reductase	sugar transferase	transposase		transposase (insertion sequence IS31831)		hypothetical protein	acetyltransferase	hypothetical protein B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferase	
	Matched length (a.a.)	196	380	504	427	273	356	53		70		404	354	65	388			243	221	
	Similarity (%)	75.0	69.2	8.69	64.6	68.5	57.3	79.3		94.3	<u>.</u>	57.4	60.2	53.0	89.7			65.0	62.0	
	Identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4		75.7		28.0	34.5	44.0	63.7			32.1	33.0	
Table 1 (continued)	Homologous gene	Neisseria meningitidis pglB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1 psbC	Corynebacterium glutamicum	Escherichia coli ugd			Escherichia coli wbnA	Escherichia coli 0157 wbhH	
	db Match	gp:AF014804_1	sp:CAPM_STAAU	pir.S67859	sp:MURA_ENTCL	sp:MURB_BACSU	gp:VCLPSS_9	prf.2211295A		pir:S43613		pir.G70539	gsp:W37352	PIR: \$60890	sp:UDG8_ECOLI			gp:AF172324_3	gp:AB008676_13	
	ORF (bp)	612	1161	1491	1314	1005	1035	150	135	327	276	1170	993	231	1161	273	1209	822	645	195
	Terminal (nt)	370405	371773	373419	374813	375837	376876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	387200	387463
	Initial (nt)	369794	370613	371929	373500	374833	375842	377683	378093	378185	378562	379837	380842	381265	381948	383768	385190	386195	386556	387657
_	SEQ NO. (a.a.)	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	0068	3901	3902	3903	3904	3905	9066	3907
,	SEQ NO. DNA)	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	

EP 1 108 790 A2

	Function	dihydrolipoamide dehydrogenase	UTPglucose-1-phosphate uridylyltransferase	regulatory protein	transcriptional regulator	cytochrome b subunit	succinate dehydrogenase flavoprotein	succinate dehydrogenase subunit B						hypothetical protein	hypothetical protein			tetracenomycin C transcription repressor		transporter	
	Matched length (a.a.)	469	295	153	477	230	909	258						259	431			197		499	
	Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6	***************************************
	Identity (%)	99.6	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4		38.1	
(papuluon) i piani	Homologous gene	Corynebacterium glutamicum ATCC 13032 ipd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 orfX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2)	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA:0 tcmR		Streptomyces fradiae T#2717 urdJ	
	db Match	gp:CGLPD_1	pir.JC4985	gp:PAU49666_2	pir:E70828	gp:SCM10_12	pir.A27763	gp:BMSDHCAB_4						gp:Scc78_5	sp:YJIN_ECOLI			sp:TCMR_STRGA		gp:AF184961_8	
	ОŖ. (ф.)	1407	921	498	1422	771	1875	837	336	261	630	96	339	975	1251	450	303	678	204	1647	
	Terminal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	625666	400017	400341	401150	401253	402796	
	Initial (nt)	387692	389248	390233	392208	392705	393639	395428	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401150	
	SEQ NO.	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3926	
	SEQ NO.	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	ĺ

EP 1 108 790 A2

			36							Se B			E		tein		İ	Γ		
	Function	transporter	formyitetrahydrofolate deformylase	deoxyribose-phosphate aldolase			hypothetical protein	hypothetical protein		cation-transporting P-type ATPase		glucan 1,4-alpha-glucosidase	hemin-binding periplasmic protein	ABC transporter	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			
	Matched length (a.a.)	508	286	208			280	92		748		626	348	330	254	266	258			
	Similarity (%)	74.6	72.7	74.0			53.6	85.9		75.3		56.1	83.6	90.3	85.0	56.4	61.6			
	Identity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			
lable 1 (confinued)	Homologous gene	Streptomyces fradiae T#2717 urdJ	Corynebacterium sp. P-1 purU	Bacillus subtilis deoC			Mycobacterium avium GIR10 mav346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprae ctpB		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtheriae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtherlae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A, 17c			
	db Match	gp:AF164961_8	sp:PURU_CORSP	sp.DEOC_BACSU			prf.2413441K	pir.A70907		Sp.CTPB_MYCLE		sp:AMYH_YEAST	gp:AF109162_1	gp:AF109162_2	gp:AF109162_3	gp:SCC75A_17	gp:SCC75A_17			
	ORF (bp)	1632	912	999	150	897	867	300	900	2265	450	1863	1077	1068	813	957	637	810	813	201
	Terminal (nt)	404430	404508	408145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	419257
	initial (nt)	402799	405419	405480	406310	406417	406550	407708	408546	409975	410476	410683	412557	413643	414714	415643	416603	418354		419757
	SEQ NO.	3927	3928	3929	3930	3931	3932	3933	3934	3832	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945
	SEQ NO. DNA)	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445

5

EP 1 108 790 A2

	_														,			,		
5		Function	UDP-N-acetylpyruvoyiglucosamine reductase			•	long-chain-fatty-acidCoA ligase	Ð	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	ne P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
			UDP-N-ac reductase				long-chain	transferase	phosphog	two-component histidine kinase	two-comp		ABC trans	cytochrome P450	exopolyph	hypothetic	pyrroline-	membran	hypothetic	
15		Matched length (a.a.)	356				558	416	246	417	231		921	569	306	302	569	394	99	
20		Similarity (%)	58.4				68.1	58.7	84.2	74.8	6.08		60.7	6.99	57.8	57.3	100.0	52.0	94.6	
		Identity (%)	30.1				35.5	33.9	70.7	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
25	linued)	ene	312 murB					lor	lor A3(2)	senX3	все		lor A3(2)	culosis	nosa ppx	culosis	amicum	ORF71	60	
<i>30</i>	Table 1 (continued)	Homologous gene	Escherichia coli RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolar SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis senX3	Mycobacterium bovis BCG regX3	-	Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium giutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae B2168_C1_172	
40		db Match	gp:ECOMURBA_1				sp:LCFA_BACSU	9p:SC2G5_6	sp.PMGY_STRCO	prf.2404434A	prf.2404434B		gp:SCE25_30	sp:YV21_MYCTU	prf:2512277A	sp:YV23_MYCTU	sp:PROC_CORGL	gp:D88733_1	pir:S72921	
		ORF (bp)	1101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	810	1122	198	219
45		Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
50		Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434010	434886	434986	435940	436321
		SEQ NO. (a.a.)	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963
55		SEQ NO.	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463

EP 1 108 790 A2

5		Function	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase		cat operon transcriptional regulator	shikimate transport protein	3-dehydroshikimate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein		periplasmic-iron-binding protein	uroporphyrin-III C-methyltransferase	
15		Matched length (a.a.)	29			296	74		455	308		321	417	309	282		363		878		347	486	
20		Similarity (%)	100.0			77.4	66.2		74.3	75.3		57.6	72.2	57.9	98.6		9.89		55.2		59.9	71.6	
		identity (%)	89.7			51.0	40.5		44.4	20.7		27.1	35.5	28.2	98.2		34.7		25.1		25.1	46.5	
25	led)						sis		mA	ım3b		. Sna			icum		(0		3		ae bitA	sG	
	lable 1 (confinded)	Homologous gene	Streptomyces coelicolor SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catM	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 potG		Serratia marcescens sfuB		Brachyspira hyodysenteriae bitA	Mycobacterium leprae cysG	
40		db Match	gp:SCE68_25			pir.S72914	sp:YV35_MYCTU		sp:HEM1_MYCLE	pir.S72887		sp.CATM_ACICA	Sp.SHIA_ECOLI	sp:3SHD_NEUCR	gp:AF124518_2		sp:POTG_ECOLI		sp:SFUB_SERMA		gp:SHU75349_1	pir:S72909	
		ORF (bp)	66	192	618	1065	246	258	1389	906	372	882	1401	1854	849	273	1050	615	1644	1113	1059	1770	426
4 5		Terminal (nt)	436561	436764	437850	436980	438424	438037	439904	440814	441591	441601	444158	446038	447388	447398	448130	449100	449183	451961	450837	454430	454875
50		Initial (nt)	436463	436573	437233	438044	438179	438294	438516	439909	441220	442482	442758	444185	446538	447670	449179	449714	450826	450849	451895	452661	454450
	!	SEQ NO.	3964	3962	3966	3967	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983	3984
55		SEQ NO.	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484

				_	,				,	_										
	Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxylase	protoporphyrlnogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biagenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenytransferase
	Matched length (a.a.)	337			858		364	464	425	161	208	245	533	338		144	96		82	301
	Similarity (%)	83.1			56.5		7.97	59.9	83.5	62.7	71.2	85.3	76.0	97.7		69.4	72.2		78.1	61.5
	Identity (%)	8.09			27.4		92.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hem Y	Mycobacterium leprae hemt.	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
	db Match	sp:HEM2_STRCO			2544 sp:CTPB_MYCLE		sp.DCUP_STRCO	sp.PPOX_BACSU	sp:GSA_MYCLE	sp:PMG2_ECOL1	pir.A70545	pir:B70545	pir.C70545	pir:D70545		pir:G70790	pri:2420312A		pir.F70545	sp:MENA_ECOLI
	ORF (bp)	1017	582	510	2544	843	1074	1344	1311	606	621	792	1623	1011	801	471	357	300	333	894
	Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
	Initial (nt)	454967	456016	456841	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEQ NO. (a.a.)	3985	3986	3987	3988	6866	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
	SEQ NO. (DNA)	485	486	487	488	489		491	492	493	494	495	496	497	498	499	200	501	502	503
										_										

5	Function	glycosyl transferase	malonyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyde dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein	hypothetical protein		2-pyrone-4,6-dicarboxyllc acid				low-affinity inorganic phosphate transporter			naphthoate synthase	peptidase E	pterin-4a-carbinolamine dehydratase	muconate cycloisomerase
15	Matched length (a.a.)	238	421	139	520	303	293	96		267				410			293	202	77	335
20	Similarity (%)	62.6	51.5	65.5	76.0	75.6	86.2	64.9		54.7				83.2			70.3	82.7	68.8	76.7
•	Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1				0.09			48.5	67.9	37.7	54.0
ss 52 Table 1 (continued)	us gene	s wcgB	nat8	12 yajF	ida	ida KDGDH	8 alsR	berculosis		LB126 fldB				berculosis			en8	durans	F5 phhB	berculosis enC
Table 1	Homalogaus gene	Bacteroides fragilis wcgB	Rhizoblum trifolii matB	Escherichia coli K12 yqlF	Pseudomonas putida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. LB126 fldB				Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans DR1070	Aquifex agolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
40	db Match	gp:AF125164_6	prf:2423270B	sp:YQJF_ECOU	pir:S27612	sp:KDGD_PSEPU	sp:ALSR_BACSU	pir.B70547		gp:SSP277295_9				pir.D70547			SP: MENB_BACSU	gp:AE001957_12	pir.C70304	1014 pir.D70548
	ORF (bp)	864	1323	411	1560	948	879	315	444	750	417	378	261	1275	222	306	957	603	309	1014
45	Terminal (nt)	473811	473814	474997	475489	477048	478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	485077	487014
50	Initiat (nt)	472948	475136	475407	477048	477995	478970	479303	480154	480201	480624	481001	481391	482668	483587	483942	485062	485384	485385	486001
	SEQ NO.	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022
55	SEQ NO. (DNA)	504	505	909	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	525

5

		· · · · · · · · · · · · · · · · · · ·		,											
	Function	2-oxoglutarate decarboxylase and 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase	hypothetical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methytransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransferase
	Matched length (a.a.)	909	148	408	447	237		412	316	Ξ	318	145	236	564	443
	Similarity (%)	54.0	64.9	54.2	89.9	2.99		7.87	67.1	100.0	100.0	100.0	100.0	50.2	82.4
	Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100.0	100.0	100.0	23.1	60.5
Table 1 (continued)	Homologous gene	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0558	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0581c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rpIK	Corynebacterium glutamicum ATCC 13032 rplA	Streptomyces coelicalor SCSH4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
	db Match	1629 sp:MEND_BACSU	pir:G70548	pir.H70548	sp:CYCA_ECOLI	sp:UBIE_ECOLI		pir.D70549	sp:HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5	gp.SC5H4_2	1344 sp.GABT_MYCTU
	ORF (bp)	1629	44	1239	1359	069	699	1272	1050	333	954	435	708	1512	1344
	Terminal (nt)	488656	489100	490447	491938	492855	493583	492645	495110	497142	498327	499032	499869	499925	502920
	Initial (nt)	487028	488660	489209	490580	491966	492915	493916	494061	496810	497374	498598	499162	501436	501577
	SEQ NO.	4023	4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
	SEQ NO.	523	524	525	526	527	528	529	530	531	532	533	534	535	536
							_								

EP 1 108 790 A2

			_						_		,						
Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase	,	50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothetical membrane protein	DNA-directed RNA polymerase beta chain	DNA-directed RNA polymerase beta chain	hypothetical protein		DNA-binding protein	hypothetical protein	
Matched length (a.a.)	461	150	447	615	468		170	130		283	1180	1332	169		232	215	
Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	88.7	52.0		63.8	57.7	-
Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3	
Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coii K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A, 15c	Mycobacterium tuberculosis H37Rv RV2908C	
db Match	sp:GABD_ECOLI	GP:ABCARRA_2	sp:TYRP_ECOLI	sp:CTPG_MYCTU	sp:P49_STRUI		sp:RL10_STRGR	sp:RL7_MYCTU		pir.A70962	sp:RPOB_MYCTU	sp:RPOC_MYCTU	GP:AF121004_1		gp:SCJ9A_15	sp:YT08_MYCTU	
ORF (bp)	1359	468	1191	1950	1413	603	513	384	138	972	3495	3899	285	180	780	798	
Terminat (nt)	504283	503272	505569	507647	509081	969609	510510	510974	510989	512507	516407	520492	518696	520850	521644	521679	
(nt)	502925	503739	504379	505698	507669	509094	509998	510591	511126	511536	512913	516494	519277	520671	520865	522476	
SEQ NO.	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	404B	4049	4050	4051	4052	
SEQ NO.	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	

EP 1 108 790 A2

																 -	—,						
5		Function	30S ribosomal protein S12	30S ribosomal protein S7	elongation factor G			lipoprotein			ferric enterobactin transport ATP- binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA acetate coenzyme A transferase	30S rlbosomal protein S10	50S ribosomal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	30S ribosomal protein S19	
15		Matched length (a.a.)	121	154	709			44			258	329	335	145	101	212		212	96		280	92	
20		Similarity (%)	97.5	94.8	88.9			78.0			83.7	8.77	80.6	79.3	99.0	9.68		90.1	90.6		92.9	98.9	
		Identity (%)	90.9	81.8	71.7			58.0			56.2	45.6	48.1	58.8	84.2	66.5		71.2	74.0		80.7	87.0	
25	Table 1 (continued)	s gene	racellulare	egmatis	s fusA			natis			12 fepC	12 fepG	12 fepD	terium Ilcum actA	a ATCC	vis BCG rplC		ivis BCG rpID	ivis BCG rpfW		wis BCG rplB	berculosis sS	
30	Table 1 (c	Homalogous gene	Mycobacterium Intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus luteus fusA			Chiamydia trachomatis			Escherichia coll K12 fepC	Escherichia coli K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rpID	Mycobacterium bovis BCG rpfW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
35								0					Ì										
40		db Match	sp:RS12_MYCIT	sp:RS7_MYCSM	sp.EFG_MICLU			GSP:Y37841			sp:FEPC_ECOLI	sp.FEPG_ECOLI	Sp. FEPD_ECOLI	gp.CTACTAGEN_1	sp:RS10_PLARO	SP:RL3_MYCBO		SP:RL4_MYCBO	SP:RL23_MYCBO		sp:RL2_MYCLE	Sp.RS19_MYCTU	
	į	ORF (bp)	366	465	2115	2160	144	228	153	729	792	1035	1035	516	303	654	687	654	303	327	840	276	285
45		Terminal (nt)	523059	523533	526010	523911	526013	526894	527607	528768	528779	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
50		Initial (nt)	522694	523069	523896	526070	526156	527121	527759	528040	529570	530628	531782	532008	533099	533437	534087	534090	534746	535072	535076	535935	536183
		SEQ NO.	4053	4054	4055	4056	4057	4058	4059	4060	4061	4082	4063	4084	4065	4066	4067	4068	4069	4070	4071	4072	4073
55		SEQ NO. (DNA)	553	554	555	929	557	558	559	999	561	562	563	564	565	266	567	568	569	570	571	572	573

					—-·		,	,	,				, ,	$\overline{}$	_					_				
5		Function	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S rlbosomal protein L29	30S ribosomal protein S17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluconic acid reductase		formate dehydrogenase chain D	molybdopterin-guanine dinucleotide biosynthesis protein	formate dehydrogenase H or alpha chain			ABC transporter ATP-binding protein		
15		Matched length (a.a.)	109	239	137	49	82				122	105	183		260		298	84	758			624		
20		Similarity (%)	91.7	91.2	88.3	88.1	89.0				95.1	91.4	92.3		74.2		59.7	68.1	53.4			52.8		
		Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	76.2	73.6		52.3		28.9	37.2	24.3			26.9		
25	Table 1 (continued)	us gene	berculosis NV	ovis BCG rpsC	ovis BCG rpIP	ovis BCG rpmC	ovis BCG rpsQ				iberculosis SIN	iberculosis siX	ıs rplE		sp.		genes fdhD	elicolor A3(2)	븀			sperculosis oppD		
<i>30</i>	Table 1 (Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rpIP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rplE		Conynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichla coll fdf			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
40		db Match	Sp.RL22_MYCTU	sp:RS3_MYCBO	Sp.RL16_MYCBO	Sp.RL29_MYCBO	Sp.RS17_MYCBO				sp:RL14_MYCTU	sp.RL24_MYCTU	sp:RL5_MICLU		sp:2DKG_CORSP (Sp: FDHO_WOLSU	gp:SCGD3_29	sp.FDHF_ECOU			sp:YC81_MYCTU		
		ORF (bp)	360 sr	744 SF	414 Sg	228 \$1	278 81	294	318	969	366 sı	312 s	573 s ₁	1032	807 8	492	915 sl	336 g	2133 8	756	904	1662 s	1148	1074
4 5		Terminal (nt)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550899	551854
50		Initial (nt)	536217	536579	537328	537744	537977	538267	538698	539413	539741	540112	540426	541048	542896	543412	544329	544670	546889	547329	548990	550651	551844	552927
		SEQ NO.	4074	4075	4076	4077	4078	4079	4080	4081	4082	4083	4084	4085	4088	4087	4088	4089	4090	4091	4092	4093	4094	4095
		O o ₹	74	12	18	12	2	79	8	20	82	23	2	န္တ	မွ	87	88	683	8	160	26	93	394	395

phosphoenolpyruvate synthetase

629

45.0

p-cumic alcohol dehydrogenase

257

70.8 56.0

35.8 50.0 22.9

Aeropyrum pernix K1 APE0029

Pseudomonas putida cymB

744 gp:PPU24215_2

562993

213 PIR:H72754 1740 pir.JC4176

564083

614

565471

Pyrococcus furiosus Vc1 DSM 3638 ppsA

hypothetical protein

ន

phosphoenolpyruvate synthetase

378

66.7

38.6

Pyrococcus furiosus Vc1 DSM 3638 ppsA cytochrome P450

422

65.2

34.8

Rhodocaccus erythrapalis thcB

1290 prf.2104333G

1080 pir.JC4176

565680

616 4116 566759

5	Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S rlbosomal protein L6	50S ribosomal protein L18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase			reductase	2Fe2S ferredoxin
15	Matched length (a.a.)	405	150	132	179	110	121	99	143		128	i	125	487			409	107
20	Similarity (%)	50.4	66.7	7.79	7.78	6.08	88.3	76.4	87.4		68.8		52.0	71.5			71.8	66.4
:	Identity (%)	24.7	42.7	75.8	59.2	67.3	8'29	54.6	66.4		46.9		47.0	41.7			41.1	47.7
8 52 72 Table 1 (continued)	Homologous gene	Archaeoglobus fulgidus AF1398	diodurans	teus	teus	teus rpIR	teus rpsE	ii K12 rpmJ	teus rplO		Streptomyces coelicolor msdA		asilense carR	rhodochrous I orf5			s sp. redA2	Rhodobacter capsulatus fdxE
Table 1	Homolo	Archaeoglobus	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rplR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rplO		Streptomyces		Azospirlium brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter c
35 40	db Match	pir.E69424	gp:AE001931_13	pir.S29885	pir.S29886	sp:RL18_MICLU	Sp:RS5_MICLU	sp:RL30_ECOLI	sp:RL15_MICLU		prf.2204281A		GP:ABCARRA_2	prt.2518398E			prt.24112578	prf:2313248B
	ORF (bp)	1182 pi	468 91	396 pi	534 pi	402 51	633 s _l	183 s _l	444 SI	729	321 p	363	456 G	1491 p	735	306	1266 p	318 p
45	Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	092099	559144	560634	562937	561368	562646
50	Initial (nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588	558517	558969	559805	560634	561368	562632	562633	562963
	SEQ NO.	4096	4097	4098	4099	4100	4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112
55	SEQ NO.	596	597	298	299	8	6	602	603	604	605	909	607	809	609	610	611	612

					_																
	Function	transcriptional repressor	adenylate kinase		methionine aminopeptidase		translation initiation factor IF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein			hypothetical protein	cell elongation protein	cyclopropana-fatty-acyl-phospholipid synthase	hypothetical membrane protein
	Matched length (a.a.)	256	184		253		72	122	134	132	311		122	265	786			485	505	423	100
	Similarity (%)	66.0	81.0		74.7		0.98	91.0	93.3	93.9	77.8		77.1	61.1	51.2			53.8	50.9	56.0	29.0
	Identity (%)	28.5	48.9		43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
Table 1 (continued)	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacilius subtilis 168 map		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicator A3(2) SC6G4.06. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rpIQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis theliana CV DIM	Escherichia coli K12 cfa	Streptomyces coelicolor A3(2) SCL2.30c
	db Match	prf.2512309A	sp:KAD_MICLU		sp:AMPM_BACSU		pir.F69644	prf;2505353B	sp:RS11_STRCO	prf.2211287F	sp.RPOA_BACSU		sp:RL17_ECOLI	sp:TRUA_ECOLI	pir.G70695			pir.A70836	Sp.DIM_ARATH	sp:CFA_ECOU	gp:SCL2_30
	ORF (bp)	804	543	612	792	828	216	366	402	603	1014	156	489	867	2397	456	303	1257	1545	1353	426
	Terminal (nt)	568272	571318	570756	572267	573176	573622	574181	574588	575217	576351	575211	576898	577923	580429	580436	580919	582662	584228	585620	586248
	Initial (nt)	569075	570774	571387	571476	572349	573407	573816	574187	574615	575338	575366	576410	577057	578033	580891	581221	581406	582684	584268	585823
	SEQ NO SO	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137
	SEQ NO.	618	619	620	621	622	623	624	625	929	627	628	629	630	631	632	633	634	635	636	637

EP 1 108 790 A2

SEC SEC Initial Terminal ORF																_				
Table 1 (confinued) CRF db Match Homologous gene CRF C		Function	nigh-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein				hypothetical protein	early secretory antigen target ESAT-6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothetical protein	alanine racemase	hypothetical protein
SEQ Initial Terminal ORF db Match Homologous gene A139 589015 586399 1359 sp.ELYA_BACAO Bacillus alcalophilus A139 589015 587845 1371 pir.T10930 Straptomyces coelicolor A3(2) A140 589286 592862 3567 pir.E70977 Mycobacterium tuberculosis A141 590411 589590 822 B22 A142 B3784 Rv3447c A144 593935 594289 863 A144 593935 594289 863 A145 S94293 S94289 863 A146 S94293 S94289 B41 Spir.C70977 Mycobacterium tuberculosis A146 S94393 S94289 S95379 A44 Spir.C70977 Mycobacterium tuberculosis A146 S94392 S94289 S95379 A44 Spir.C70977 Mycobacterium tuberculosis A147 S95382 S95379 A44 Spir.C70977 Mycobacterium tuberculosis A148 S98199 S97449 T341 prt.2320260A Straptomyces coelicolor A3(2) A150 S98194 S99702 S99392 S9878 S789932 S94297 S989932 S94297 S94297 S98993 S94297 S98993 S94297 S98993 S94297 S9429 S94297 S9429 S		Matched length (a.a.)		516					103		145	181	450		318			259	368	154
SEQ Initial Terminal ORF db Match Homologous gene		Similarity (%)	58.0	50.6	38.4				69.9	81.3	82.1	72.4	76.4		45.8			72.2	68.5	78.6
SEQ Initial Terminal ORF db Match (a.a.) (nt) (nt) (bp) (bp) db Match (a.a.) (nt) (nt) (pp) (bp) db Match (a.a.) (nt) (nt) (pp) db Match (a.a.) (a.a.		Identity (%)	31.3	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7
SEQ Initial Terminal (bp) (bp) db Match (bp) 4138 587757 586399 1359 sp.ELYA_BACAO 4139 589015 587645 1371 pir.T10930 4140 589296 592862 3567 pir.E70977 4141 590411 589590 822 4142 599560 589898 663 4144 593935 594258 324 pir.C70977 4144 593935 594268 441 sp.RL13_STRCO 4146 594399 595376 441 sp.RL13_STRCO 4147 595382 595927 546 sp.RL13_STRCO 4148 596109 595927 546 sp.RL3_STRCO 4149 59582 595927 546 sp.RS9_STRCO 4149 59789 598194 303 4150 pir.S75138 4150 598194 599702 1509 pir.S73000 4153 600876 600022 855 pir.S	Table 1 (continued)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 slr1753			Mycobacterium teprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Mycobaderium tuberculosis H37Rv Rv3422c
SEQ Initial Terminal (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		db Match							pir.C70977	prf:2111376A	sp:RL13_STRCO	sp:RS9_STRCO	prf:2320260A					pir:S73000		
SEQ Initial Terminal NO. (nt)	ORF (bp)	1359	1371	3567	822	663	900	324	288	441	546	1341	303	1509	573	234	855	1083	495	
SEO NOO. (a.a.) 4138 4139 4140 4144 4145 4145 4155 4155 4155 4155		_	586399		592862	589590	589898	593781	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
		Initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	<u> </u>	598194	599350	689669	600876	600971	
		SEQ NO.	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
		SEQ NO (DNA)	1		1	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655

EP 1 108 790 A2

												_							
5	Function	nbrane protein	idase	ein	-alanine N-	O-sialoglycoprotein endopeptidase	ein			in groES	in groEL	ein	ein	u	sigma factor		ein	988	ein
10	Fu	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetytransferase	O-siatoglycoprot	hypothetical protein			heat shock protein groES	heat shock prolein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
15	Matched length (a.a.)	550	411	207	132	319	571			100	537	26	138	94	174		116	504	146
20	Similarity (%)	66.2	77.6	75.4	59.9	75.2	59.4			94.0	85.1	56.0	45.0	88.3	81.6		69.8	93.9	53.0
	Identity (%)	28.9	51.3	52.2	30.3	46.1	38.4			78.0	63.3	50.0	34.0	64.9	55.2		41.4	80.8	39.0
25 (panujiuo) (panujiuo) (panujiuo)	Homologous gene	K12 yidE	m shermanii pip	uberculosis	K12 riml	nofytica gcp	tuberculosis			tuberculosis C mopB	leprae IroE1	tuberculosis	tuberculosis	smegmatis	tuberculosis sigD		leprae	n ATCC 6872	koshii PH0308
	Homologo	Escherichia coli K12 yidE	Proplonibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 rim	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae B229_C3_248 groE1	Mycobacterium tuberculosis	Mycobacterium 1	Mycobacterium smegmatis whi83	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 guaB	Pyrococcus horikoshii PH0308
35 40	db Match	sp:YIDE_ECOLI	gp:PSJ00161_1		sp:RIMI_ECOLI	sp.GCP_PASHA	sp:Y115_MYCTU			sp:CH10_MYCTU	sp.CH61_MYCLE	GP:MSGTCWPA_1	GP:MSGTCWPA_3 Mycobacterium tuberculosis	gp:AF073300_1	sp.Y09F_MYCTU		sp:Y09H_MYCLE	gp:AB003154_1	PIR:F71456
	ORF (bp)	1599 s	1239 g	875 8	507	1032	1722	429	453	297	1614	255 (1158 (297	564	1026	378	1518	627
45	Terminal (nt)	604409	605708	606392	606898	607936	609679	610175	609816	610644	612272	610946	611109	612418	613719	614747	614803	616853	615605
50	Initial (nt)	602811	604470	605718	606392	606905	607958	609747	610268	610348	610659	611200	612266	612714	613156	613722	615180	615336	616231
	SEQ NO.		4157	4158	4159	4160	4161	4162	4163	4164	4165	4166	4167	4168	4169	4170	4171	4172	4173
55	SEQ NO.		657	658	629	099	661	662	663	664	999	999	299	899	699	670	671	672	673

EP 1 108 790 A2

Name Name
Table 1 (continued) Continued Contin
Table 1 (continued) SEG Initial Terminal ORF db Match Homologous gene (%) (nt) (ht) (
SEG Initial Terminal ORF db Match Homologous gene (a.a.)
SEQ (nt) (nt) (hp) (hp) db Match (a.a.) (nt) (nt) (nt) (hp) (hp) db Match (a.a.) (nt) (nt) (nt) (nt) (hp) db Match (a.a.) (nt) (nt) (nt) (hp) db Match (a.a.) (nt) db Match (a.a.
SEQ Initial Terminal ORF (a.a.) (nt) (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) 4174 616973 618094 1122 4175 619013 618093 921 4175 619086 619994 909 4177 620004 621572 1569 4179 622157 441 4181 6226926 620264 663 4181 623635 622460 1176 4182 623800 624939 1140 4182 62558 625674 690 4185 62558 626570 489 4186 627539 626571 863 4186 627539 626571 863 4189 630810 630151 680 4190 630949 631809 861 4191 632684 631824 861
SEQ Initial Terminal ORF (a.a.) (nt) (nt) (nt) (pp) (ht) (nt) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (h
SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)
SEQ NO. NO. NO. 4174 4175 4176 4179 4181 4185 4185 4186 4186 4187 4188 4188 4186 4187 4188 4188 4189 4189
SEQ NO. (DNA) 674 674 675 676 677 678 681 682 685 685 686 687 689 689 689 689 689 689 689 689 689 689

20,

5

5

Table 1 (continued)	Function	hypothetical membrane protein	phytoene desaturase	phytoene synthase	transmembrane transport protein	geranyigeranyi pyrophosphate (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein	DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipoprotein	DNA polymerase III	hypothetical protein
	Matched length (a.a.)	95	524	288	722	367	188	145	462	497	205	897	223		206		346	268	1101	159
	Similarity (%)	67.4	76.2	71.2	75.6	63.8	68.1	62.1	74.2	63.2	53.7	54.9	72.2		75.2		75.4	67.2	57.5	62.3
	Identity (%)	36.8	50.4	42.0	48.6	32.7	38.3	33.1	48.7	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5
	Homalogous gene	Mycobacterlum marinum	Brevibacterium linens ATCC 9175 crtl	Brevibacierium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A.29c	Brevibacterium linens cdE	Brevibacterium Ilnens	Citrobacter freundii bic OS60 bic	Brevibacterium linens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Helicobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11
	db Match	gp:MMU92075_3	gp:AF139916_3	gp:AF139916_2	gp:SCF43A_29	gp:AF138916_11	gp:AF139916_14	sp.BLC_CITFR	gp:AF139916_1	gp:AF138916_5	gp:AF155804_7	gp:SCE25_30	prf:2420410P		prf:2320284D		sp:ABC_ECOLI	sp:HLPA_HAEIN	prf:2517386A	gp:SCE126_11
	ORF (bp)	396	1644	912	2190	1146	585	648	1425	1404	753	2415	717	153	999	846	1080	897	3012	447
	Terminal (nt)	633079	633532	635178	636089	638317	640208	640232	642557	642556	844778	645176	647593	648315	648440	650187	649114	650392	654612	655122
	Initial (nt)	633474	635175	636089	638278	639462	639624	640879	641133	643959	644028	647590	648309	648467	649105	649342	650193	651288	651601	654676
	SEQ NO.	4193	4194	4195	4196	4197	4198	4199	4200	4201	4202	4203	4204	4205	4206	4207	4208	4209	4210	4211
	SEQ NO.	693	694	695	969	697	869	669	8	701	702	703	704	705	706	707	708	709	7.5	711

EP 1 108 790 A2

	u C	ne protein		isor			stor (Sir2 family)		otein precursor		ıfolate	ane protein			itransferase	sulfhydrylase	otein			
	Function	hypothetical membrane protein		transcriptional repressor	hypothetical proteln		transcriptional regulator (Sir2 family)	hypothetical protein	iron-regulated lipoprotein precursor	rRNA methylase	methylenetetrahydrofolate dehydrogenase	hypothetical membrane protein	hypothetical protein		homoserine O-acetyltransferase	O-acetythomoserine sulfhydrylase	carbon starvation protein		hypothetical protein	
	Matched length (a.a.)	468		203	264		245	157	357	151	278	80	489		379	429	069		90	
	Similarity (%)	56.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	76.3	63.2		99.5	76.2	78.4		66.0	
	Identity (%)	26.1		50.3	34.9		42.5	45.2	31.1	62.9	70.9	31.3	34.0		99.5	49.7	53.9		40.0	
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCE9.01		Mycobacterium tuberculosis H37Rv Rv2788 sirR	Streptomyces coelicolor A3(2) SCGBA,05c		Archaeoglobus fulgidus AF1676	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3366 spoU	Mycobacterium tuberculosis H37Rv Rv3356c folD	Mycobacterium leprae MLCB1779.16c	Streptomyces caelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	Leptospira meyeri metY	Escherichia coli K12 cstA		Escherichia coli K12 yjiX	
	db Match	gp:SCE9_1		pir.C70884	gp:SCG8A_5		pir.C69459	gp:SC5H1_34	gp:CDU02617_1	pir.E70971	pir.C70970	gp:MLCB1779_8	gp:SC68T3_18		gp:AF052652_1	prf.2317335A	sp.CSTA_ECO⊔		sp:YJIX_ECOLI	
	ORF (bp)	1413	738	699	798	138	774	492	966	471	852	255	1380	963	1131	1311	2202	609	201	609
	Terminal (nt)	656534	655097	657215	657205	658142	658928	659424	660538	660650	662017	662374	862382	664126	665183	666460	670465	669445	670672	671045
	Initial (nt)	655122	655834	656547	658002	658005	658155	658933	659543	661120	661166	662120	663761	665088	666313	022299	668264	670053	670472	671653
-	SEQ NO (a.a.)	4212	4213	4214	4215	4216	4217	4218	4219	4220	4221	4222	4223	4224	4225	4226	4227	4228	4229	4230
	SEQ NO.	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730

EP 1 108 790 A2

	Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrate synthase		hypothetical protein		L-malate dehydrogenase	regulatory pratein		vibriobactin utilization protein	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chloramphenicol resistance protein	catabolite repression control protein	hypothetical protein	
	Matched length (a.a.)	317	281	380		53		338	226	 	284	269	339	330	356	395	303	219	
	Similarity (%)	86.4	76.2	81.3		62.3		67.5	62.8		54.2	85.1	86.4	88.2	82.3	9.69	58.1	85.8	
	Identity (%)	71.0	41.6	56.1		34.0		37.6	26.1		25.4	55.4	56.3	63.0	53.1	32.2	30.4	56.2	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 607 gltA		Escherichia coli K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxuR		Vibrio cholerae OGAWA 395 viu8	Corynebacterium diphtheriae irp1D	Corynebacterium diphiheriae Irp1C	Corynebacterium diphtheriae irp18	Corynebacterium diphtheriae irp1	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus Influenzae Rd Hi1240	
	db Match	pir.C70539	prf. 1902224A	sp:CISY_MYCSM		Sp:YNEC_ECOLI		1041 SP:MOH_METFE	prf:2514353L		sp:ViUB_VIBCH	gp:AF176902_3	gp:AF176902_2	gp:AF176902_1	gp:CDU02617_1	pr.2202262A	prf:2222220B	sp:YICG_HAEIN	
	ORF (bp)	954	912	1149	930	192	672	1041	720	702	897	807	1059	966	1050	1272	912	657	195
	Terminal (nt)	672653	673576	674756	672710	674799	675846	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	688335
	Initial (nt)	671700	672665	673608	673639	674990	675175	676122	676937	677748	681027	681846	682904	683866	684925	685109	686435	687351	688141
	SEQ NO.	4231	4232	4233	4234	4235	4236	4237	4238	4239	4240	4241	4242	4243	4244	4245	4246	4247	4248
	SEQ NO.	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748

EP 1 108 790 A2

	Function		ferrichrome ABC transporter	hemin permease	tryptophanyl-tRNA synthetase	hypothetical protein		peniciliin-binding protein 6B precursor	hypothetical protein	hypothetical protein			uracil phosphoribosyltransferase	bacterial regulatory protein, lacl family	N-acyl-L-amino acid amidohydrolase or peptidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
	Matched length (a.a.)		244	346	331	278		301	417	323			209	77	385	561	468	1140	263	127
:	Similarity (%)		73.8	69.1	79.8	72.3		57.5	70.7	52.6			72.3	66.2	80.5	53.8	65.0	100.0	60.1	6.99
	Identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4			46.4	41.8	51.4	22.1	31.6	100.0	28.2	30.7
Table 1 (continued)	Homologous gene		Corynebacterium diphtherlae hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			Lactococcus lactis upp	Streptomyces coelicolor A3(2) SC1A2.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicalor A3(2) SCF11.30
	db Match		gp:AF109162_3	pir.S54438	sp:SYW_ECOLI	sp:YHJD_ECOU		sp:DACD_SALTY	plr.F70842	gp:SC6G10_8			Sp:UPP_LACLA	gp:SC1A2_11	pir:H70841	sp:MANB_MYCPI	sp:DLDH_HALVO	prf:2415454A	sp:YD24_MYCTU	gp:SCF11_30
	ORF (bp)	975	780	1017	1035	1083	903	1137	1227	858	195	351	633	384	1182	1725	1407	3420	870	486
	Terminal (nt)	688916	689917	907069	692916	694110	695074	695077	696769	698065	992669	698922	699913	700381	703262	700384	704811	708630	709708	710278
	Initial (nt)	689890	969069	691722	691882	693028	694172	696213	697995	698922	699072	699272	699281	866669	702081	702108	703405	705211	708839	709793
	SEQ NO.	4249	4250	4251	4252	4253	4254	4255	4256	4257	4258	4259	4260	4261	4262	4263	4264	4265	4266	4267
	SEQ NO (DNA)	749	750	751	752	753	754	755	756	757	758		760	761	762	763	764	765	992	792

EP 1 108 790 A2

 -	_														1			
Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabollsm	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	detergent sensitivity rescuer or carboxyl transferase	detergent sensitivity rescuer or carboxyl transferase
Matched length (a.a.)	381	305	521	278	96	383		456			225	352	133	718	192	63	537	543
Similarity (%)	69.0	59.3	49.5	74.5	47.0	78.9		72.6			100.0	8.62	7.97	63.4	66.2	69.8	100.0	100.0
Identity (%)	44.6	24.8	24.0	42.5	0.66	54.6		40.8			100.0	61.1	51.1	35.1	31.8	33.3	83.8	93.6
Homologous gene	Bacillus subtilis 168 yciC	Bacillus subtilis IS58 trxB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gitA		Mycobacterium tuberculosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium glutamicum AJ11060 dtsR1
db Match	pir:B69760	sp:TRXB_BACSU	sp:PRPO_SALTY	prf.1902224A	PIR:E72779	sp:CISY_MYCSM		pir.B70539			Sp:THTR_CORGL	gp:CJ11168X1_62	gp:MLCB4_16	pir.G70539	sp:YCEF_ECOLI	prf.2323363CF	gp:AB018531_2	1629 pir.JC4991
ORF (bp)	1086	924	1494	888	378	1182	375	1323	246	1359	903	1065	414	2148	591	246	1611	1629
Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
Initial (nt)	711605	711724	712738	714258	714757	715102	716660	718009	718105	718658	721449	721777	723338	723412	726462	726715	728352	730324
SEQ NO.	4268	4269	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
SEQ NO. (DNA)	768	769	770	771	772	773	774	775	776	777	872	622	780	781	782	783	784	785
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (aa.)	SEQ Initial Terminal NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (bp) db Match Homologous gene (%) (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (b) db Match (b) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) <td>SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<</td> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<</td> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (pp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene Identity (96) Similarity (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) (96)</td> <td>SEQ 1.11itial (nt) (nt) (nt) (nt) Terminal (nt) (nt) (nt) CNF (nt) (nt) (nt) About (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt</td> <td>SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEQ (nt) (nt) (nt) (bp) (bp) (bp) db Match Homologous gene (96) Identity (96) Similarity (14) (14) Matched (14) (14) Matched (14) (14) Matched (14) Implie (14) (14) Matched (14) Implie (14) Impli</td> <td>SEQ (ni) (ni) (ni) (ni) (ni) (ni) (ni) (ni)</td> <td>SEQ NO. Initial (INI) Terminal (INI) CRF (bp) db Match (bp) Homologous gene (96) Identity (96) Similarity (96) Matched (96) Matche</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similariny (%) Matched (%)<td>SEQ Initial Terminal GNF db Match Homologous gene (%) (%) (%) (%) Homologous gene (%)</td></td>	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<	SEQ NO. Initial (nt) Terminal (nt) ORF (pp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene Identity (96) Similarity (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) (96)	SEQ 1.11itial (nt) (nt) (nt) (nt) Terminal (nt) (nt) (nt) CNF (nt) (nt) (nt) About (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) (nt) (nt) About (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (bp) (bp) (bp) db Match Homologous gene (96) Identity (96) Similarity (14) (14) Matched (14) (14) Matched (14) (14) Matched (14) Implie (14) (14) Matched (14) Implie (14) Impli	SEQ (ni) (ni) (ni) (ni) (ni) (ni) (ni) (ni)	SEQ NO. Initial (INI) Terminal (INI) CRF (bp) db Match (bp) Homologous gene (96) Identity (96) Similarity (96) Matched (96) Matche	SEQ Initial Terminal ORF db Match Homologous gene Identity Similariny (%) Matched (%) <td>SEQ Initial Terminal GNF db Match Homologous gene (%) (%) (%) (%) Homologous gene (%)</td>	SEQ Initial Terminal GNF db Match Homologous gene (%) (%) (%) (%) Homologous gene (%)

EP 1 108 790 A2

						Table 1 (continued)				
S O S	SEO NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
	4286	730436	731299	884	sp.BIRA_ECOLI	Escherichia coli K12 birA	28.7	61.8	293	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)
16	4287	731312	731797	486	pir.G70979	Mycobacterium tuberculosis H37Rv Rv3278c	23.0	58.8	165	hypothetical membrane protein
888	4288	731857	733017	1161	sp:PURK_CORAM	Corynebacterium ammoniagenes ATCC 6872 purK	69.0	83.8	394	5'-phosphoribosyl-5-amino-4- imidasol carboxylase
68	4289	733072	734943	1872	sp:KUP_ECOLI	Escherichia coli K12 kup	41.1	73.6	628	K+-uptake protein
8	4290	733797	733183	615						
79.1	4291	734984	735340	357					ļ	
792	4292	735402	735896	495	sp.PUR6_CORAM	Corynebacterium ammoniagenes ATCC 6872 purE	85.7	93.2	147	5'-phosphoribosyl-5-amino-4- imidasol carboxylase
793	4293	735899	738351	453	gp:APU33059_5	Actinosynnema pretiosum	36.2	60.5	152	hypothetical protein
79.4	4294	736413	737204	792	gp:SCF43A_36	Streptomyces coelicolor A3(2) SCF43A.36	42.8	9.07	255	hypothetical protein
795	4295	738529	737218	1314	sp:NTAA_CHEHE	Chelatobacter heintzil ATCC 29600 ntaA	43.2	73.0	426	nitrilotriacetate monooxygenase
796	4296	740172	738673	1500	pir.A69428	Archaeoglobus fulgidus	23.4	52.5	303	transposase (ISA0963-5)
797	4297	741016	740228	789	sp:DHG2_BACME	Bacillus megaterium IAM 1030 gdhli	31.3	64.8	256	glucose 1-dehydrogenase
798	4298	741397	741765	369	pir.A72258	Thermotoga maritima MSB8 TM1408	29.2	68.8	96	hypothetical membrane protein
799	4299	741854	742195	342			_			
80	4300	742384	741818	567	sp:YWJB_BACSU	Bacillus subtills 168 ywjB	28.6	86.3	175	hypothetical protein
801	4301	742409	742828	420	gp:SCJ9A_21	Streptomyces coelicolor A3(2) SCJ9A.21	35.9	76.8	142	hypothetical protein
802	4302	743052	742831	222						

EP 1 108 790 A2

	Function	trehalose/maltose-binding protein	trehalose/makose-binding protein		trehalose/mattose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA helicase			hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
	Matched length (a.a.)	271	906		417		332		1783			240	720	701					2033	698	873
	Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1					45.8	53.2	48.6
	Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23.1
Table 1 (continued)	Homologous gene	Thermococcus litoralis malG	Thermococcus litoralis malF		Thermococcus litoralis malE		Streptomyces reticuli msIK		Deinococcus radiodurans R1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Hellcobacter pytori J99 jhp0462	Escherichia coli K12 uvrD					Streptomyces caelicolor SCH5.13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
	db Match	prf 2406355C	prf.2406355B		prf.2406355A		prf.2308356A		pir.B75633			pir.E70978	plr:C71929	sp:UVRD_ECOLI					pir.T36671	pir.T08313	2886 SP:HEPA_ECOLI
	ORF (bp)	834	1032	468	1272	423	986	369	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
	Terminal (nt)	743067	743900	745046	745622	748442	747031	748814	748886	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
	Initial (nt)	743900	744931	745513	746893	748020	748026	748446	753685	757063	757395	758262	760798	762468	762497	762730	762977	768191	769443	774142	777035
	SEO NO (a.a.)	4303	4304	4305	4306	4307	4308	4309	4310	4311	4312	4313	4314	4315	4318	4317	4318	4319	4320	4321	4322
	SEQ NO.	+		805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822

					Table 1 (continued)				
SEQ Initial Termina NO. (nt) (nt)	T. E.	t)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
778711	177	777158	1554	pir:D70978	Mycobacterium tuberculosis H37Rv Rv3267	45.5	71.4	527	hypothetical protein
4324 779014 779	778	779910	897	gp:AF187550_1	Mycobacterium smegmatis mc2155 wbbL	56.4	77.9	289	dTDP-Rha:a-D-GlcNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase
4325 780128 78	78	781171	1044	sp:MPG1_YEAST	Saccharomyces cerevisiae YDL055C MPG1	29.8	6.99	353	mannose- 1-phosphate guanyiyitransferase
4326 781468 78	, R	781875	408	gp:AF164439_1	Mycobacterium smegmatis whmD	73.4	61.9	94	regulatory protein
4327 782617 78	~	782162	456	pir:B70847	Mycobacterium tuberculosis H37Rv Rv3259	48.9	74.8	139	hypothetical protein
4328 782712 7		783101	390	gp:SCE34_11	Streptomyces coelicolor A3(2) SCE34.11c	51.5	71.3	136	hypothetical protein
4329 783184 7	^	784557	1374	Sp:MANB_SALMO	Salmonella montevideo M40 manB	38.0	66.3	460	phosphomannomutase
4330 784635 7		785639	1005	pir:B70594	Mycobacterium tuberculosis H37Rv Rv3256c	31.2	56.3	327	hypothetical protein
4331 785643 7	7	786824	1182	sp:MANA_ECOLI	Escherichia coli K12 manA	36.9	66.2	420	mannose-6-phosphate isomerase
4332 785896 7	4	787045	150						
4333 787624 7	'	787983	360						
4334 787733		787170	564	prf:1804279K	Enterococcus faecalis plasmid pCF10 prgC	35.6	57.8	180	pheromone-responsive protein
4335 788196		788546	351						
4336 788672		790093	1422	sp:SAHH_TRIVA	Trichomonas vaginalis WAA38	29.0	83.0	476	S-adenosy-L-homocysteine hydrolase
4337 789426 7	_	788719	708						
4338 789721 7	_	789002	720		-				
4339 790096 7		790704	609	sp:KTHY_ARCFU	Archaeoglobus fulgidus VC-16 AF0061	25.8	56.0	209	thymidylate kinase

EP 1 108 790 A2

	Function	two-component system response regulator		two-component system sensor histidine kinase	lipoprotein	hypothetical protein		30S ribosomal protein or chloroplast precursor	preprotein translocase SecA subunit		hypothetical protein	hypothetical protein	5-enolpyruvyishikimate 3-phosphate synthase	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	RNA polymerase sigma factor
	Matched length (a.a.)	224		484	595	213		203	845		170	322	461	180	23	380	188
	Similarity (%)	90.6		78.9	65.6	72.8		61.6	9.66		78.8	82.9	99.0	63.9	100.0	42.4	87.2
	Identity (%)	73.7		53.1	29.6	38.0		34.5	99.1		47.1	64.6	98.0	38.3	100.0	21.6	61.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis H37Rv Rv3244c lpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterlum flavum (Corynebacterlum glutamicum) MJ-233 secA		Mycobacterium tuberculosis H37Rv Rv3231c	Mycobacterium tubercutosis H37Rv Rv3228	Corynebacterium glutamicum ASO19 aroA	Mycobacterium tuberculosis H37Rv Rv3228c	Corynebacterium glutamicum	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis sigH
	db Match	prf:2214304A		prt.2214304B	pir.F70592	pir:D70592		sp:RR30_SPIOL	gsp:R74093		pir.A70591	pir.F70590	gp:AF114233_1	pir:D70590	GP:AF114233_1	pir.G70506	pri:2515333D
	ORF (bp)	678	684	1497	1704	588	156	663	2535	672	504	987	1413	480	123	1110	618
	Terminal (nt)	791409	790738	793008	794711	795301	795292	796110	798784	799691	800200	800208	801190	803128	802565	803131	805025
	initial (nt)	790732	791421	791512	793008	794714	795447	795448	796250	799020	799697	801194	802602	802649	802687	804240	804408
	SEQ NO.	4340	4341	4342	4343	4344	4345	4346	4347	4348	4349	4350	4351	4352	4353	4354	4355
	SEQ NO.	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855

5

	Function	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent DNA helicase		potassium channel	hypothetical protein	DNA helicase II		hypothetical protein	
	Matched length (a.a.)	48	129	415	458		291	249	1155		1126		302	230	099		280	
	Similarity (%)	96.4	65.1	62.2	64.0		69.8	62.9	48.9		65.7		64.2	58.3	58.8		49.3	i
	Identity (%)	78.6	33.3	29.6	37.3		48.4	37.0	23.9		41.4		26.2	30.4	32.6		26.8	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	Mycobacterium tuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus jannaschli JAL- 1 MJ0138.1.	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis H37Rv Rv3196	
	db Match	pir.D70596	pir.870596	pir.E70595	sp:DEAD_KLEPN		pir:H70594	pir:F70594	pir.G70951		pir:G70951		sp:Y13B_METJA	pir:E70951	sp:UVRD_ECOLI		pir:B70951	
	ORF (bp)	258	420	1200	1272	225	846	759	3048	780	3219	1332	1005	714	2034	591	816	603
	Terminal (nt)	805535	806737	806740	807946	809510	810394	811163	814217	811386	817422	814210	818523	819236	821287	822669	821290	823391
	Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	814204	815541	817519	818523	819254	822079	822105	822789
	SEQ NO.	4356	4357	4358	4359	4360	4361	4362	4363	4364	4365	4366	4367	4368	4369	4370	4371	4372
	SEQ NO DNA)	856	857	828	859	860	861	862	863	864	965	986	867	868	698	970	871	872

EP 1 108 790 A2

					_															
	Function	hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hypothetical protain		alpha-lytic proteinase precursor		DNA-directed DNA polymerase	major secreted protein PS1 protein precursor					monophosphatase
	Matched length (a.a.)	474	350			1023	463	301	81	201		408		208	363					255
	(%) (%)	76.4	74.9			73.5	57.7	89.0	53.0	73.6		44.4		51.4	51.5					74.9
	Identity (%)	42.8	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	27.0					51.8
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tubercutosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er1	Aeropyrum pernix K1 APE0247	Bacillus subtilis 168 yaaE		Lysobacter enzymogenes ATCC 29487		Neurospora intermedia LaBelle- 15 mitochondrion piasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					Streptomyces alboniger pur3
i	db Match	plr.A70951	pir.H70950			pir.G70950	gp:AE001938_5	sp:ER1_HEVBR	PIR:F72782	sp:YAAE_BACSU		pir.TRYX84		pir.S03722	1581 sp.CSP1_CORGL					prf.2207273H
	ORF (bp)	1446	1050	675	522	2955	1359	951	345	8	363	1062	501	585	1581	429	510	222	309	780
	Terminal (nt)	822680	825239	825242	825996	829570	829627	831971	831578	832570	832795	834633	835388	835837	838892	839353	840139	840210	840437	841517
	Initial (nt)	824125	824190	825918	826517	826616	830985	831021	831922	831971	833157	833572	834888	835253	837312	838925	839630	840431	840745	842296
	SEQ NO (e.e.	4373	4374	4375	4376	4377	4378	4379	4380	4381	4382	4383	4384	4385	4386	4387	4388	4389	4390	4391
	SEQ NO. (DNA)	873	874	875	876	877	878	879	88	981	882	883	884	885	886	887	888	889	890	168

5

Function	myo-inositol monophosphatase	peptide chain release factor 2	cell division ATP-binding protein	hypothetical protein	cell division pratein	small protein B (SSRA-binding protein)	hypothetical protein				vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP-binding protein)
Matched length (a.a.)	243	359	226	72	301	145	116				272	319	191	325	313	312	250
Similarity (%)	59.3	88.6	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	61.5	80.8	76.0	82.0
identity (%)	33.7	68.0	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO				Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacilius subtilis 168 yclN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yciP
db Match	gp:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir.D70919	sp.SMPB_ECOL!	sp:YEAO_ECOLI				sp:VIUB_VIBCH	prf.2510361A	gp:MLCB1243_5	sp:FATB_V!BAN	pir.B69763	pir.C69763	pir.D69763
ORF (bp)	819	1104	687	264	006	492	351	537	30	405	825	918	588	1014	666	942	753
Terminal (nt)	842306	844360	845181	844842	846097	846628	846982	846269	848026	847718	848499	849326	850412	852364	853616	854724	855476
Initial (nt)	843124	843257	844495	845105	845198	846137	846632	846805	847727	848122	849323	850243	850999	851351	852618	853783	854724
SEO NO.	4392	4393	4394	4395	4396	4397	4398	4399	4400	4401	4402	4403	4404	4405	4406	4407	4408
SEQ NO.	892	893	894	895	896	897	868	899	900	901	905	903	904	995	906	907	908
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (as.)	SEQ (nt) Initial (a.a.) Terminal (hb) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (a.a.) 4392 843124 842306 819 gp:U70376_9 Streptomyces flavopersicus spcA 33.7 59.3 243	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (nt) db Match (bp) Homologous gene Streptomyces flavopersicus Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Streptomyces flavopersicus Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Streptomyces flavopersicus identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match (pp) Homologous gene Streptomyces flavopersicus Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match (nt) Homologous gene (%) Identify (%) Similarity (%) Matched (%) Matched (%)<	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (96) Identity (96) Similarity (96) Matched (96) Matched	SEQ NO. (a.a.) Initial (ht) Terminal (nt) ORF (ht) db Match (ba) Homologous gene (sp.) Identity (%) Similarity (%) Matched (%) Mat	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (n1) (n1) (n1) (n2) (n2) (n2) (n3) (n3) (n3) (n3) (n4) (n	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matchel (%) NO. (nt) (nt) (nt) (pp) ORF db Match Homologous gene (%) (SEQ Initial Terminal ORF db Match Homologous gene (%) (%	SEQ Initial Terminal ORF db Match Homologous gene (%) Smillanthy length length length length Matched (%) (SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)

EP 1 108 790 A2

						Table 1 (continued)				
O O O	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
606	4409	860224	860078	147	PIR:F81737	Chlamydia muridarum Nigg TC0129	66.0	72.0	48	hypothetical protein
5	4410	860745	860473	273	GSP: Y35814	Chlamydia pneumoniae	61.0	66.0	84	hypothetical protein
116	4411	861544	862752	1209	pir.S66270	Rattus norvegicus (Rat)	33.5	64.9	442	kynurenine aminotransferase/glutamine transaminase K
912	4412	863391	862753	639						
913	4413	865066	863396	1671	sp:RA25_YEAST	Saccharomyces cerevisiae S288C YIL143C RAD25	30.7	62.3	613	DNA repair helicase
914	4414	867317	865119	2199	pir.F70815	Mycobacterium tuberculosis H37Rv Rv0862c	36.1	65.2	764	hypothetical protein
915	4415	867353	867571	219	pir.G70815	Mycobacterium tuberculosis H37Rv Rv0863	44.0	62.0	57	hypothetical protein
916	4416	867788	868830	843	•					
917	4417	868399	867803	597	prf.2420502A	Micrococcus luteus rpf	39.4	64.7	198	resuscitation-promoting factor
918	4418	868938	869318	381	prt.2320271A	Lactococcus lactis cspB	42.6	75.4	61	cald shack protein
919	4419	869903	869379	525	gp:MLCB57_11	Mycobacterium leprae MLCB57.27c	28.3	58.5	159	hypothetical protein
920	4420	870691	869918	774	gp:AE001874_1	Deinococcus radiodurans DR0112	41.8	67.8	273	glutamine cyclotransferase
921	4421	871419	870721	669						
922	4422	871523	871660	138						
923	4423	871738	873210	1473	6_52625:qg	Streptomyces coelicolor A3(2) SC6C5.09	43.6	79.3	477	permease
924	4454	872927	872018	912						
925	4425	873213	874040	828	sp:TSNR_STRAZ	Streptomyces azureus tsnR	27.9	51.7	319	rRNA(adenosine-2'-0-)- methyltransferase
926	4426	874944	874069	876						

EP 1 108 790 A2

																			_	
	Function	hypothetical protein	phosphoserine transaminase	acetyl-coenzyme A carboxytase carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter	•	hypothetical protein	fatty-acid synthase			homoserine O-acetyltransferase			glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidina-DNA glycosidase
	Matched length (a.a.)	316	374	236	103	549		243	3026			335			62	171	261	202	1715	298
	Similarity (%)	55.1	6.23	69.5	80.6	58.1		77.4	83.4			265			72.6	62.0	88.9	56.4	68.1	51.0
	Identity (%)	32.6	21.9	36.0	51.5	28.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2
Table 1 (continued)	Homologous gene	Mycobacterium tubercutosis H37Rv Rv0883c	Bacillus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCIB.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			Leptospira meyeri metX			Deinococcus radiodurans DR2085	Mycobacterium avium folA	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2) SC7C7.16c	Synechococcus elongatus naegeli mutM
	db Match	sp:YZ11_MYCTU	pir:S71439	sp:ACCD_ECOLI	gp:SCI8_8	pir.JC2382	. ,	pir.A70657	pir. S55505			prf:2317335B			gp:AE002044_8	prt:2408256A	sp:TYSY_ECOLI	sp:CYSQ_ECOL!	gp:SC7C7_16	sp:FPG_SYNEN
	ORF (bp)	933	1128	1473	339	1653	816	840	8907	489	186	1047	426	267	237	456	798	756	4560	768
İ	Terminal (nt)	874951	875985	879642	881985	883647	884541	884549	894578	895191	895593	895598	896719	897689	897727	897979	898434	899253	904602	905382
	Initial (nt)	875883	877112	881114	881647	881995	883726	885388	885672	894703	895408	896642	897144	897423	897963	898434	899231	900006	900043	904615
	SEQ NO (a a)	4427	4428	4429	4430	4431	4432	4433	4434	4435	4436	4437	4438	4439	4440	4441	4442	4443	4444	4445
	SEQ NO.	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945

EP 1 108 790 A2

	Function	hypothelical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peptidase	hypothetical protein		5'-phosphoribosylglycinamide formyltransferase	5'-phosphoribosyl-5-aminoimidazole- 4-carboxamide formyltransferase	citrate lyase (subunit)
	Matched length (a.a.)	128	196	403		557	195		78	763	885	217		236	434		189	525	217
	Similarity (%)	86.7	71.9	67.0		77.0	52.3		85.9	73.1	48.6	71.4		73.3	60.8		96.2	87.8	100.0
	identity (%)	52.5	38.8	33.8		52.4	24.6		59.0	46.1	21.8	43.8		43.6	31.1		64.6	74.5	100.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicalor A3(2) SC128.08c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purN	Corynebacterium ernmonisgenes purH	Corynebacterium glutamicum ATCC 13032 citE
	db Match	pir.F70816	Sp:APL_LACLA	pir.T36776		1620 pir.NUEC	pir:G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp:SCE25_30	prf.2420410P		pir.D70716	sp:YT19_MYCTU		gp:AB003159_2	gp.AB003159_3	gp:CGL133719_3
	ORF (bp)	408	009	1173	717	1620	1176	381	309	2289	2223	999	507	711	1425	228	627	1560	818
	Terminal (nt)	905796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921528	922412
	Initial (nt)	905389	908391	907731	908612	909378	910696	910843	911163	911226	915699	916364	916874	917680	917928	918054	919330	919967	921594
	SEO NO (8.8)	4446	4447	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
	SEQ NO. (DNA)	946	947	948	949	950	951	952	953	954	955	928	957	958	626	960	561	962	963

5

					,													_			
	Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothetical protein		30S ribosomal protein S18	30S ribosomal protein S14	50S ribosomal protein L33	50S ribosomal protein L28	transporter (sulfate transporter)	Zn/Co transport repressor	50S ribosomal protein L31	50S ribosomal protein L32		copper-inducible two-component regulator	two-component system sensor	proteinase DO precursor	motybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyma cnx1)		large-conductance mechanosensitive channel	hypothetical protein	5-formyltetrahydrofolate cyclo-ligase
	Matched length (a.a.)	222	109		67	100	49	11	529	80	78	99		227	484	406	188		131	210	191
	Similarity (%)	. 100.0	100.0		76.1	0.08	83.7	81.8	71.1	77.5	65.4	78.2		73.6	60.1	59.9	54.3		177.1	9.09	59.7
	identity (%)	100.0	100.0		52.2	54.0	55.1	52.0	34.4	37.5	37.2	60.0		48.0	24.4	33.3	27.7		50.4	28.6	25.1
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophora paradoxa rps18	Escherichia coli K12 rpsN	Escherichia coli K12 rpmG	Escherichia coli K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyi rpmE	Streptomyces coelicolor A3(2) SCF51A, 14		Pseudomonas syringae copR	Escherichia coli K12 baeS	Escherichia coli K12 htrA	Arabidopsis thallana CV cnx1		Mycobacterium tubercutosis H37Rv Rv0985c mscL	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS
	db Match	gp:CGL133719_2	gp:CGL133719_1		sp:RR18_CYAPA	sp:RS14_ECOLI	sp:RL33_ECOLI	pir.R5EC28	pir:B70033	prf.2420312A	SP:RL31_HAEDU	gp:SC51A_14		sp:COPR_PSESM	Sp:BAES_ECOLI	pir.S45229	sp:CNX1_ARATH		sp:MSCL_MYCTU	pir.A70601	pir.JC4389
	ORF (bp)	999	327	321	249	303	162	234	1611	312	264	171	447	969	1365	1239	585	198	405	159	570
	Terminal (nt)	922396	923138	923981	924159	924425	924734	924901	925325	926931	927737	927922	927339	928812	930248	931648	932290	932487	932570	933060	933733
	Initial (nt)	923061	923464	923661	924407	924727	924895	925134	926935	927242	927474	927752	927785	928117	928884	930410	931706	932290	932974	933710	934302
	SEQ NO. (a.a.)	4464	4465	4466	4467	4468	4469	4470	4471	4472	4473	4474	4475	4476	4477	4478	4479	4480	4481	4482	4483
	NO.	964	965	996	967	998	696	970	971	972	973	974	975	976	977	978	979	980	981	982	983

20 ·

5

																		\neg
	Function	UTPglucose-1-phosphate uridylyltransferase	molybdapterin biosynthesis protein	ribosomal-protein-alanine N- acetyttransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypothetical membrane protein	hypothelical protein	methionyl-tRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
	Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363		96
	Similarity (%)	68.9	62.6	54.9	54.8	62.4		9.09	59.6	53.6	75.2	78.3	66.7	49.0	53.3	59.0		59.6
	Identity (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		33.0
Table 1 (continued)	Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H11602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
	db Match	pir:JC4985	prf.2403296B	sp:RIMJ_ECOLI	pir.G70601	Sp.CYNX_ECOLI		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp:CDAS_BACSH	pir.E70602	sp:Y19J_MYCTU	SP:SYM_METTH	prf: 1306383A	pir. B69206	sp:YXAG_BACSU		gp:AF029727_1
:	ORF (bp)	897	1257	999	1020	1200	1419	405	714	1167	1560	825	1830	2049	633	1158	531	294
	Terminal (nt)	935319	936607	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
	Initial (nt)	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791	951460	952991	953573	953973
	SEQ NO.	4484	4485	4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	4496	4497	4498	4499	1000 4500
	SEO NO.		985	986	987	988		066	991	992	993	994	995	966	266	866	666	1000

EP 1 108 790 A2

-				- 1		— т					- 1	- 1					— τ				
	Function	transposase	transposase subunit		D-isctate dehydrogenase	site-specific DNA-methyltransferase		transposase	transposase	transcriptional regulator	cadmlum resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl manophasphate kinase		ABC transporter	pyridoxine kinase	hypathetical protein	hypothetical protein
	Matched length (a.a.)	139	112		565	231		94	139	91	205		263	362	265	315		478	242	159	108
	Similarity (%)	67.6	88.4		75.6	62.8		59.6	67.6	84.6	66.8		70.7	63.5	65.3	67.0		82.8	67.4	58.5	7.87
	Identity (%)	41.7	73.2		46.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
Table 1 (continued)	Hamologous gene	Escherichia coli K12	Brevibacterium linens tnpA		Escherichia coll did	Klebsiella pneumoniae OK8 kpnIM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis H37Rv Rv2874	Streptomyces coelicolor A3(2) SCF1,02
	db Match	pir.TQECI3	gp:AF052055_1		prf.2014253AE	sp:MTK1_KLEPN		gp AF029727_1	pir TQEC13	sp:YJ94_MYCTU	prf.2514387A		pir:C70603	pir.D70603	Sp:KSGA_ECOLI	pir.F70603		plr.S47441	SP PDXK_ECOLI	sp:YX05_MYCTU	gp;SCF1_2
	ORF (bp)	477	414	864	1713	840	219	294	477	357	621	342	831	1071	879	933	642	1833	792	480	321
	Terminal (nt)	954753	955354	956774	955686	957844	959185	960374	960861	961653	962249	961321	963639	964934	965852	966784	965950	968660	969458	969461	970349
	Initial (nt)	954277	954941	955911	957398	958683	959403	960081	960385	961297	961629	961662	962809	963864	964974	965852	966591	966828	968667	969940	970029
	SEQ NO (a.a.)	4501	4502	4503	4504	4505	4508	4507	4508	4509	4510	4511	4512	4513	4514	4515	4516	4517	4518	4519	1020 4520
	SEQ NO.			-	1004		1006		1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020

EP 1 108 790 A2

						_	_							_			_	
	Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein
	Matched length (a.a.)	107	261	278	337				440	100	802	157		121	482		546	404
	Similarity (%)	69.2	88.1	59.1	6:02				56.8	70.0	70.0	75.8		63.6	48.3		68.0	72.8
	identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
Table 1 (continued)	Homologous gene	Streptomyces coeficolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1.15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87.17c	Haemophilus influenzae Rd H10508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
	db Match	gp:SCF1_2	gp:SCJ1_15	sp:YXEH_BACSU	pir:E70893				1386 sp.CSP1_CORGL	gp:SCF56_6	gp:SCE87_17	sp:MENG_HAEIN		gp:NMA622491_21	pir.A70539		pir:159305	1269 prf:2406311A
	ORF (bp)	321	960	792	1017	654	777	1212	1386	579	2373	498	999	381	1551	936	1647	1269
	Terminal (nt)	970738	971823	972244	974155	973304	974962	974965	977734	008776	978368	981490	982287	982294	984650	985845	984864	988007
	Initial (nt)	970418	970864	973035	973139	973957	974186	976176	976349	978378	980740	£66086	981622	982674	983100	984910	986510	986739
	SEQ NO.	4521	4522	4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537
	SEQ NO. (DNA)	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037

						_				_					_			
-	Function	amide-urea transport protein	amide-urea transport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyi-tRNA hydrolase	50S ribosomal protein L25	lactoyiglutathione iyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufi protein precursor	nodulation ATP-binding protein I
	Matched length (a.a.)	77	234	253	236	187	361	342	51	174	194	143	208	316	452		905	310
	Similarity (%)	61.0	68.0	0.07	69.1	9.07	54.0	72.8	61.0	63.2	65.0	54.6	62.5	79.1	71.9		61.7	64.8
	Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
Table 1 (continued)	Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufi	Rhizobium sp. N33 nodl
	db Match	prf:2406311B	prt:2406311C	sp:BRAF_PSEAE	sp:BRAG_PSEAE	sp:PTH_ECOLI	SP:2NPD_WILMR	sp:G3P_ZYMMO	GSP:Y75094	sp:PTH_ECOLI	pir.870622	sp:LGUL_SALTY	prf:2516401BW	sp:KPRS_BACCL	pir.S66080		sp:SUFI_ECOLI	Sp:NODI_RHIS3
	ORF (bp)	882	1077	726	669	612	1023	1065	369	531	900	429	624	975	1455	1227	1533	918
	Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	1000016	1002864	1003930
	Initia! (nt)	988023	988904	989980	990716	992028	992058	993549	994474	995375	996126	996402	997456	998440	606666	1001242	1001332	1003013
	SEQ NO.	4538	4539	4540	4541	4542	4543	4544	4545	4546	4547	4548	4549	4550	4551	4552	4553	4554
	SEQ NO. (DNA)		1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1951	1052	1053	1054
											_		_					

EP 1 108 790 A2

	Function	hypothetical membrane protein	two-component system sensor histidine kinase	two component transcriptional regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-glutamyltranspeptidase precursor					transposase protein fragment	transposase (IS1628 TnpB)				transcriptional regulator (TetR- family)	transcription/repair-coupling protein	
	Matched length (a.a.)	272	459	202		349	535		573	999					37	236				183	1217	
	Similarity (%)	63.2	48.4	67.3		64.5	57.0		74.0	58.6					72.0	100.0				59.6	65.1	
	identity (%)	30.2	24.6	36.6		31.5	28.6		44.0	32.4					64.0	93.6				23.0	36.2	
Table 1 (continued)	Homologous gene	Streptomyces lividans ORF2	Escherichia coli K12 uhpB	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt					Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coli tetR	Escherichia coli mfd	:
	db Match.	pir.JN0850	.sp:UHPB_ECOL!	prf.2107255A		gp:SCF15_7	pir.S65587		pir.T14180	sp.GGT_ECOLI					GPU:AF164956_23	gp:AF121000_8				sp:TETC_ECOU	sp:MFD_ECOLI	
	ORF (bp)	831	1257	609	204	1155	1440	153	1734	1965	249	519	192	606	243	708	462	297	312	651	3627	1224
	Terminal (nt)	1004783	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015118	1016560	1015450	1015145	1017018	1017274	1018393	1019066	1022716	1019390
	Initial (nt)	1003953	1004829	1006089	1006937	1006998	1008622	1008686	1010057	1013761	1014016	1014861	1014925	1015652	1015692	1015852	1016557	1017870	1018082	1018416	1019090	1020613
	SEQ NO.	\div	4556	4557	4558	4559	4560	4561	4562	4563	4564	4565	4566	4567	4568	4569	4570	4571	4572	4573	4574	4575
	SEO NO SNO			1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075

5

	Function	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	multidrug resistance-like ATP- binding protein, ABC-type transport protein	ABC transporter	hypothetical membrane protein		hypothetical protein			lpqU protein	enolase (2-phosphoglycerate dehydratase)(2-phospho-D- glycerate hydro-lyase)	hypothetical protein	hypothelical protein	hypothetical protein	guanosine pentaphosphatase or exopolyphosphatase		threonine dehydratase	
	Matched length (a.a.)	76	632	574	368		183			241	422	41	191	153	329		314	
	Similarity (%)	0.69	62.7	81.9	100.0		57.4			68.9	96.0	58.0	55.0	77.8	55.0		64.7	
	Identity (%)	48.0	31.3	50.2	100.0		33.4			46.5	64.5	68.0	31.9	59.5	25.2		30.3	
Table 1 (continued)	Homologous gene	Neisseria gonomboeae	Escherichia coli mdlB	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebacterium glutemicum ATCC 13032 orf3		Bacillus subtilis yabN			Mycobacterium tuberculosis H37Rv Rv1022 lpqU	Bacillus subtills eno	Aeropyrum pernix K1 APE2459	Mycobacterium tuberculosis H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coli gppA		Escherichia coli tdcB	
	db Match	GSP:Y75301	sp:MDLB_ECOLI	sp:YC73_MYCTU	sp:YLi3_CORGL		SP. YABN_BACSU			pir:A70623	1275 sp.ENO_BACSU	PIR:872477	pir.C70623	pir:D70623	sp.GPPA_ECOLI		sp:THD2_ECOLI	
	ORF (bp)	228	1968	1731	2382	297	585	426	378	786	1275	144	240	546	963	984	930	195
	Terminal (nt)	1021078	1022699	1024666	1026505	1032181	1032780	1032780	1033269	1034739	1036223	1036016	1036855	1037445	1038410	1036498	1038721	1039977
	Initial (nt)	1021305	1024666	1028396	1028886	1031885	1032196	1033185	1033646	1033954	1034949	1036159	1036316	4588 1036900	1037448	1037481	1039650	4592 1039783
	SEQ NO.		4577	4578	4579	4580	4581	4582	4583	4584	4585	4586	4587		4589	4590	4591	4592
	SEO NO.	 _	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092

EP 1 108 790 A2

5	Function		hypothetical protein	transcription activator of L-rhamnose operon	hypothetical protein		hypothetical protein	transcription elongation factor	hypothetical protein	lincomycln-production		3-deoxy-D-arabino-heptulosonate-7- phosphate synthase		hypothetical protein or undecaprenyl pyrophosphate synthetase	hypothetical protein			pantothenate kinase	serine hydroxymethyi transferase	p-aminobenzoic acid synthase	
15	ъ		hypoth											hypoth pyroph							
	Matched length (a.a.)		56	242	282		140	143	140	300		367		97	28			308	434	969	
20	Similarity (%)		74.1	55.8	80.1		57.1	60.1	72.1	56.3		99.5		97.3	100.0			79.9	100.0	70.1	
	Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2		96.0	100.0			53.9	99.5	47.6	
25 (panuiti	gene		MSB8		rculosis		olor A3(2)		rculosis	ensis ImbE		ıtamicum		ıtamicum	ıtamicum um)			Ą	Im MJ-233	s pabS	
s Table 1 (continued)	Homologous gene		Thermotoga maritima MSB8	Escherichla coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE		Corynebacterium glutamicum aroG		Corynebacterlum glutamicum CCRC18310	Corynebacterium glutamicum (Brevibacterium flavum)			Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
<i>40</i>	db Match		pir:B72287	Sp.RHAR_ECOL!	pir:F70893		gp:SCF55_39	sp.GREA_ECOLI	pir.G70894	pir:S44952		sp:AROG_CORGL		SP.YARF_CORGL	SP:YARF_CORGL			sp.coaa_Ecoli	gsp:R97745	sp:PABS_STRGR	
	ORF (bp)	330	189	993	816	387	450	522	483	873	318	1098	633	675	174	519	318	936	1302	1860	723
45	Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	1046030	1046390	1047707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
50	Initial (nt)	1039996	1040494	1040925	1042027	1043236	1043747	1044295	1044959	1045158	1046073	1046610	1047452	1047827	1048356	1048525	1049385	1050362	1050624	1052021	1053880
	SEQ NO. (a.a.)	4593	4594	4595	4596	4597	4598	4599	4600	4601	4602	4603	4604	4605	4606	4607	4608	4609	4610	4611	4612
55	SEQ NO (DNA)	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112

EP 1 108 790 A2

,					.⊑															e.	n ase)	n ase)		
5		uo			istance prot				tein	ane protein			ator		precursor	Ž				esulfurizatio	esulfurizatio fur diaxygen	esutfurizatio fur dioxygen		
10		Function			phosphinothricin resistance protin	hypothetical protein		hypothetical protein	lactam utilization protein	hypothetical membrane protein			transcriptional regulator		fumarate hydratase precursor	NADH-dependent FMN oxydoreductase			reductase	dibenzothlophene desulfurization enzyme A	dibenzothiophene desulfurtzation enzyme C (DBT sulfur dioxygenase)	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)		
15		Matched length (a.a.)			165	300		225	276	165			204		456	159			184	443	372	391		
20		Similarity (%)			58.8	59.0		57.8	52.2	81.2			63.2		79.4	65.4			81.0	67.7	51.3	61.6		
		Identity (%)			30.3	30.3		37.8	30.8	40.6			26.0		52.0	32.7			55.4	39.1	25.8	28.9		
<i>25</i>	(2)	ne			8	i			Б				,		t) fumH	olis			or A3(2)	SB soxA	SB soxC	S8 soxC		
30 September (Continue)	MICO) - DIGE!	Homologous gene			Alcaligenes faecalis ptcR	Escherichia coli ybgK		Escherichia coli ybgJ	Emericella nidulans lamB	Bacillus subtilis ycsH			Bacillus subtilis ydhC		Rattus norvegicus (Rat) fumH	Rhodococcus erythropolis IGTS8 dszD			Streptomyces coelicolor A3(2) StAH10.16	Rhodococcus sp. IGTS8 soxA	Rhodococcus sp. IGTS8 soxC	Rhodococcus sp. IGTS8 soxC		
35					٧								\vdash		Œ									
40		db Match			gp:A01504_1	SP:YBGK_ECOLI		sp:YBGJ_ECOLI	SP:LAMB_EMENI	sp:YCSH_BACSU			Sp. YDHC_BACSU		SP.FUMH_RAT	gp:AF048979_1			gp:SCAH10_16	sp:SOXA_RHOSO	sp:SOXC_RHOSO	sp:SOXC_RHOSO		
		ORF (bp)	864	393	537	879	1056	699	756	591	672	603	1881	1278	1419	489	261	447	564	1488	1080	1197	780	069
45		Terminal (nt)	1055722	1054640	1056319	1056322	1058628	1057200	1057843	1058624	1059889	1059962	1060792	1062146	1062211	1064424	1064478	1064754	1065304	1067570	1068649	1069845	1068913	1069119
50		Initial (nt)	1054859	1055032	1055783	1057200	1057573	1057868	1058598	1059214	1059218	4622 1059360	1060112	1060869	1063629	1063936	1064738	1065200	1065867	4630 1086083	1067570	1068649	1069692	1134 4634 1069808
		SEQ NO.	4613	4614	4615	4616	4617	4618	4619	4620	4621	4622	4623	4624	4625	4626	4627	4628	4629	4630	4631	4632	4633	4634
55		SEQ NO.	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134

	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exodeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamoyltransferase	hypothetical protein
	Matched length (a.a.)	397	325	211	227		82	62	466	311	131		338		552	412	361	75	301	143
	Similarity (%)	73.1	75.7	56.4	1.99		78.1	67.7	55.6	78.8	47.0		63.9		61.4	60.0	88.6	80.0	58.8	6.69
	Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	20.5	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2
Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichia coli K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeaa		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
·	db Match	gp:ECO237695_3	sp:GLPX_ECOLI	pir:B70897	pir:H70062		gp:SCH24_37	sp:EX7S_ECOLI	sp:EX7L_ECOLI	Sp.LYTB_ECOU	GSP: Y75421		sp:PERM_ECOLI		sp:NTPR_RAT	sp.CSP1_CORGL	sp:YYAF_BACSU	sp:VAPI_BACNO	sp.OTCA_PSEAE	sp:YKKB_BACSU
	ORF (bp)	1176	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	501
	Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080788	1080972	1082951	1085462	1086087	1086917	1087044
	Initial (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079146	1080540	1080965	1082708	1084183	1084380	1085791	1086096	1087544
	SEQ NO (a a)	4635	4636	4637	4638	4639	4640	4641	4642	4643	4644	4645	4648	4647	4648	4649	4650	4651	4652	4653
	SEQ NO.	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151		1153

EP 1 108 790 A2

											,				,			
5	Function	rogenasa or	ase (IS110)	orane protein	inyltransferase			rtion sequence						morpyine-6- aloxone	lactone			ster protein licin biosynthetic
10	Func	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyltransferase			transposase (insertion sequence IS31831)	transposase	transposase				oxidoreductase or morpyina-6- dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase			frenolicin gene cluster protein involved in frenolicin biosynthetic
15	Matched length (a.a.)	198	396	1153	259			26	125	48				264	108			146
20	Similarity (%)	9.09	73.0	52.2	47.1			93.8	94.4	95.8				66.3	63.9			66.4
	Identify (%)	33.8	42.2	23.0	22.8			82.5	79.2	87.5				37.5	33.3			34.9
52 52 Table 1 (continued)	us gene)H4	elicolor	(12 yegE	ti nodC			glutamicum	glutamicum actofermentum)	glutamicum actofermentum)				utida M10 norA	lcoaceticus			seofulvus frnS
% Table 1 (Homologous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869				Pseudomonas putida M10 norA	Acinetobacter calcoaceticus dc4c			Streptomyces roseofulvus frnS
35 40	db Match	gp:AF013288_1	sp:YIS1_STRCO	sp:YEGE_ECOLI [SP:NODC_RHIME I			pir.S43813	pir.JC4742	pir.JC4742				sp:MORA_PSEPU	sp.DC4C_ACICA			gp:AF058302_19
	ORF (bp)	630 gp:	1206 sp:	3042 sp:	765 sp:	219	333	291 pir.	375 pir.	144 pir.	141	366	498	843 sp:	321 sp.	683	195	654 gp.
45	Terminal (nt)	1087664 6	1088535 1	1093216 3	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	1099750	1099015	1099115
50	Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052	1095677	1096093	1096331	1096471	1097111	1097229	1097750	1098609	1099088	1099209	4670 1099768
	SEQ NO.	4654	4655	4656	4657	4658	4659	4660	4661	4662	4663	4684	4665	4668	4667	4658	4669	
55	SEQ NO.	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170

EP 1 108 790 A2

							_	_											,
5		Function	biotin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothetical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (Insertion sequence IS31831)
15		Matched length (a.a.)	563						655	329	160	262	248	593	136	111	134	296	436
20		Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	8.66
		Identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
25	Table 1 (continued)	us gene	o. PCC 7942						berculosis	seroides ATCC	thanolica pgm	berculosis	roscopicus	liae tirC	berculosis	12 MG1655	38 ухаD	eumoniae	glutamicum ictofermentum)
30	Table 1 (Homologous gene	Synechococcus sp. accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF1293 BcpA	Streptomyces fradiae ttrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
35		db Match											+		sp:Y06C_MYCTU H		sp:YXAD_BACSU B		
40		₹ qp	gp:SPU59234_3						sp:YT15_MYCTU	sp:BCHI_RHOSH	gp:AMU73808_1	plr:A70577	gp:STMBCPA_	sp:TLRC_STRFR	sp:Y06C	sp:PHNA_ECOL!	sp:YXAD	gp:SPN7367_1	pir.S43613
		ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
45		Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
50		Initial (nt)	1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	1108993	1109792	1111820	1111889	1112957	1113102	1114486
		SEQ NO.	4671	4672	4673	4674	4675	4676	4677	4678	4679	4680	4681	4682	4683	4684	4685	4686	4687
55		SEQ NO.	11711	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187

EP 1 108 790 A2

5	Function	cysteine desulphurase	nicotinate-nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein ligase A	alkylphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4- hydroxybenzoate 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ antiporter ChaA	hypothelical protein	hypothetical membrane protein
15	Matched length (a.a.)	376 cy!	283 nic	361 qu	235 DN	192 hy	214 hy	108 hy	216 lip	148 all	420 tre	395 hy	191 hy	532 A	250 hy		339 C	236 hy	221 hy
20	Similarity (%)	73.4	68.9	77.6	6.09	54.7	66.4	74.1	60.7	80.8	64.3	9'89	9.69	47.6	61.6		0.69	57.6	61.1
	Identity (%)	43.9	42.1	49.3	37.0	23.4	36.0	41.7	30.1	29.7	28.8	40.8	36.7	24.8	25.6		33.3	28.4	27.6
os os continued)	s gene	vefaciens rase gene	berculosis	ΑÞI	licolor	odurans R1	ilicolor	12 MG1655	K12 lplA	.12 phnB	tida pcaK	ruginosa phhy	58 ykoE	关	58 ykoC		haA	si Orsay	waF
7able 1 (0)	Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC5B8.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 ybdF	Escherichia coll K	Escherichla coll K12 phnB	Pseudomonas putida pcaK	Pseudomonas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
35			1	BB	रह रह		<u> </u>			·		i	65		8			0.0	М
40	db Match	gp:RFAJ3152_2	sp:NADC_MYCTU	pir.E69663	gp:SC5B8_7	gp:AE001961_5	gp:SC3A7_8	sp:YBDF_ECOLI	gp:AAA21740_1	sp:PHNB_ECOLI	sp:PCAK_PSEPU	sp:PHHY_PSEAE	pir.A69859	Sp:YJJK_ECOLI	pir.G69858		SP:CHAA_ECOL	pir.C75001	sp:YWAF_BACSU
	ORF (bp)	1074	837	1182	642	900	900	342	789	1.1	1293	1185	588	1338	753	531	1050	708	723
45	Terminal (nt)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	1121818	1123461	1123534	1124836	1127009	1128350	1129102	1129632	1130704	1131428	1131401
50	Initial (nt)	1116905	1117744	1118932	1119727	1120205	1121432	1121809	1122606	1123051	1124826	1126020	1126422	1127013	1128350	1129102	1129655	1130721	4705 1132123
	SEQ NO.	4688	4689	4690	4691	4692	4693	4694	4695	4696	4697	4698	4699	4700	4701	4702	4703	4704	4705
55	SEQ NO ONA)	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205

EP 1 108 790 A2

5

										,	_									_	
	Function	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membrane protein	oxidoreductase or thiamin biosynthesis protein					chymotrypsin Bli	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin [4Fe-4S]
,	Matched length (a.a.)	946	164			318	282					271	111	340	147	221	614	506	315		103
	Similarity (%)	58.7	81.7			72.0	49.0					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9		91.3
	Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6
Table 1 (continued)	Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedL	Streptomyces coelicalar A3(2)			-		Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tubercutosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
	db Match	Sp:UVRA_THETH	sp:TPX_MYCTU			sp:YEDI_ECOLI	gp:SCF76_2				,	sp:CTR2_PENVA	sp:ARC2_ECOLI	sp:YYAD_BACSU	plr.F70559	pir.F70555	sp:TYPA_ECOLI	pir.F70874	pir.B70875		sp:FER_STRGR
	ORF (bp)	2340	495	218	1778	954	900	368	297	261	387	834	345	1200	537	714	1911	1506	870	438	315
	Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1149267
	Initial (nt)	1134472	1134561	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1140021	1140861	1141245	1141273	1143015	1143739	1144118	1146097	1147592	1148445	1148953
	SEQ NO. (a.a.)	4706	4707	4708	4709	4710	4711	4712	4713	4714	4715	4716	4717	4718	4719	4720	4721	4722	4723	4724	4725
	SEQ NO. DNA)	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1218	1217	1218	1219	1220	1221	1222	1223	1224	1225

EP 1 108 790 A2

5

Table 1 (confinued)																			
Table 1 (confined) CRF Che Match Homologous gene CRF C		Function	aspartate aminotransferase			tetrahydrodipicolinate succinylase or succinylation of piperidine-2,6- dicarboxylate		hypothetical protein	dihydropteroate synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPglucosestarch(bacterial glycogen) glucosyltransferase	glucose-1-phosphate adenylyitransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
Table 1 (confinued) SEQ Initial Terminal ORF db Match Homologous gene (%) (11) (10) (10) sp.AAT_BACSP Bacillus sp. strain VM-2 aat 25.9 4722 1150208 1151028 621 ATCC 13022 dapD ATCC 13032 dapD 4731 1156902 1152373 891 gp.CGAJ4934_1 ATCC 13032 dapD 4732 1156902 1158874 4835 4831 gp.CGAJ4934_1 ATCC 13032 dapD 4733 1158974 1158572 4831 gp.CGAJ4934_1 ATCC 13032 dapD 4734 1159572 4735 1159655 1159729 4736 1159857 4736 4736 4736 4736 4736 4736 4737 4736 4737 4738 4738 4738 4738 4738 4738 4739 4738 4738 4739 4738 4739 4730		Matched length (a.a.)	397					211	273	245	66	47	286	524	433	400	93	194	
SEQ Initial Terminal ORF db Match Homologous gene A726 1150279 1150379 1101 Sp.:AAT_BACSP Bacillus sp. strain YM-2 aat A728 1151028 623 A729 1150370 1185875 663 A720 1156902 1157669 768 pir.S60064 A720 A730 1156902 1157669 768 pir.S60064 A731 ATCC 13032 dap0 A731 A7CC 13032 dap0 A732 A733 A734 A7350 A735 A7		Similarity (%)	52.9			100.0		100.0	0.69	73.1	67.7	91.5	67.8	51.0	51.3	81.8	62.4	57.2	
SEQ Initial Terminal ORF db Match (a.a.) (nt) (nt) (bp) (bp) db Match (a.a.) (nt) (nt) (nt) (bp) (bp) db Match (a.a.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt		Identity (%)	25.9			100.0		100.0	29.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
SEQ Initial Terminal ORF db Match (a.a.) (nt) (nt) (bp) (bp) dd Match (a.a.) (nt) (nt) (pp) (bp) dd Match (a.a.) 4726 1149279 1151028 621 4728 1151186 1152370 1185 4729 1153263 1152373 891 gp:CGAJ4934_1 4730 1156902 1157669 768 pir.S60064 4731 1156902 1157669 768 pir.S60064 4733 1156324 1159252 729 gp:MLU15180_14 4734 1159267 1159572 306 pir.G70609 4734 1159267 1159572 306 pir.G70609 4735 1159865 1150728 864 sp:MYRA_MICGR 4737 1162231 1160738 1494 sp:SCRB_PEDPE 4739 1163702 1164974 639 sp:MDMC_STRMY 4740 1165512 1164974 639 sp:RPOE_ECOLI	Table 1 (continued)	Homologous gene	Bacillus sp. strain YM-2 aat			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coelicolor A3(2) dhpS	Mycobacterium leprae u1756i	Mycobacterium tuberculosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospora griseorubida myrA	Pediococcus pentosaceus scrB	Escherichia coli K12 MG1655 glgA	Streptomyces coelicalor A3(2) glgC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
SEQ Initial Terminal ORF (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		db Match						pir.S60064	gp:SCP8_4	gp:MU15180_14	pir:G70609	gsp:W32443	sp:MYRA_MICGR		sp:GLGA_ECOLI		sp:MDMC_STRMY	sp:RPOE_ECOLI	
SEQ Initial Termin (a.a.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) 4726 1150408 115105 4727 1150408 115105 4730 1156537 11558 4731 1156902 115764 4732 1156902 115764 4735 11595635 11507 4735 1159635 11607 4736 1159605 11607 4738 1163605 11607 4739 1163702 11649 4739 1165746 11663		ORF (bp)		621	1185		663	768	831	729	306	165	864	1494	1227	1215	639	639	492
SEQ NO. (a.a.) 4726 4727 4730 4731 4733 4734 4735 4735 4736 4736 4736 4736 4737 4739		Terminal (nt)	1150379	1151028	1152370	1152373		1157669	1158524	1159252			1160728		I N.		11649	1166384	1167067
SEQ NO. (a.a.) 4726 4727 4729 4731 4733 4734 4735 4739 4739 4739 4739 4739 4739 4739 4739		Initial (nt)	1149279	1150408	1151186		1156537	1156902	1157694					-		·			1166576
		SEQ NO.	i				4730	4731	4732	4733	4734	4735		4737	473B		•		4742
			_		-	+	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242

EP 1 108 790 A2

							_								_				
	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or multidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenase	para-nitrobenzyi esterase				tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
	Matched length (a.a.)	112	257	154	434	140			1257	1288	240	255	501				409	444	
	Similarity (%)	73.2	72.0	83.8	77.0	87.1			93.8	60.4	72.1	61.2	64.7				61.4	64.2	
	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterlum tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coll aroE	Bacillus subtilis pubA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tcmA	
	db Match	pir.C70508	sp:MRP_ECOLI	pir.B70509	pir.C70509	pir.A70952			prt.2306367A	sp:MDR2_CRIGR	pir:H70953	Sp:AROE_ECOLI	sp:PNBA_BACSU				sp:TCR1_ECOLI	sp.TCMA_STRGA	
	ORF (bp)	468	1125	579	1290	518	999	594	3771	3741	717	804	1811	651	876	525	1215	1347	795
	Terminal (nt)	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	1183603	1184257	1185155	1185218	1187039	1188389	1190526
	Initial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1172462	1176271	1180048	1180837	1181675	1181993	1183607	1184280	1185742	1185825	1187043	1189822
	SEQ NO.	4743	4744	4745	4746	4747	4748	4749	4750	4751	4752	4753	4754	4755	4756	4757	4758	4759	4760
	SEO NO.	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

EP 1 108 790 A2

5	Function	5- methyltetrahydropteroyltriglutamate- -homocysteine S-methyltransferase		thiophene biotransformation protein						ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunit II	cytochrome bd-type menaquinol oxidase subunit l	helicase		mutator mutT protein ((7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTP pyrophosphohydrolase)		proline-specific permease
15	Matched length (a.a.)	774		444						, 526	551	333	512	402		86		433
20	Similarity (%)	72.2		79.5						63.5	58.4	93.0	99.0	55.0		65.6		85.0
	Identity (%)	45.2		55.2						28.7	29.4	92.0	96.6	26.4		36.9		51.3
8 5 7 2 1 Table 1 (continued)	ns gene	eus metE		des strain KGB1						K12 MG1655	K12 MG1855	n glutamicum Iactofermentum)	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	K12 MG1655		mutT		murium proY
S Table 1 (Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1	:					Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1855 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium glutamicum (Brevibacterium lactofermentu cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgaris mutT		Salmonella typhimurium proY
<i>35</i>	db Match	pir.S57636		gsp:Y29930						sp:CYDC_ECOLI	sp.CYDD_ECOLI	gp:AB035086_2	gp:AB035086_1	sp.YEJH_ECOL!		sp:MUTT_PROVU		SP.PROY_SALTY
	ORF (bp)	2235 pir	456	1398 gs	324	945	792	1647	192	1554 sp	1533 sp	16 666	1539 9	2265 sp	342	393	765	1404 ST
45	Terminal (nt)	1188388	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990	1199543	1201090	1202094	1203916	1206657	1206831	1208138	1208212
50	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316	1207223	1207374	1209615
	SEQ NO.	4761	4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774	4775	4776	4777
55	SEQ NO (DNA)	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277

EP 1 108 790 A2

5

	Function	short-chain fatty acids transporter	regulatory protein			fumarate (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:GTP 3'-pyrophosphotransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase gamma chain	nitrate reductase delta chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
	Matched length (a.a.)	122	166			228	81	605	137	601			24			220	175	505	137	83	1271	461
	Similarity (%)	69.7	9.99			67.9	66.7	70.6	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	67.9
	Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	56.6	36.0	36.0	46.9	32.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis nari	Bacillus subtilis narJ	Bacillus subtills narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
	db Match	sp:ATOE_ECOLI	Sp:PECS_ERWCH	-		sp:FNR_ECOLI	sp:MERP_SHEPU	sp:ATZN_ECOLI	sp.RELA_VIBSS	gsp:R80504			GSP:P61449			Sp:NARI_BACSU	sp:NARJ_BACSU	SP:NARH_BACSU	PIR:D72603	PIR:B72803	sp:NARG_BACSU	1350 Sp:NARK_ECOLI
	ORF (bp)	537	486	222	519	750	234	1875	630	1581	603	120	108	1260	9	777	732	1593	594	273	3744	
	Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232838	1234881	1235612	1236545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	1247199	1250444	1251817	1248794	1252557
	(nitial	1229716	1229995	1230610	1231432	1231730	1232603	1233007	4802 1234983	1238125	1242156	1242275	4806 1243621	1245201	4808 1245532	1246496	1247239	1248791	1249851	1251545	1252537	4815 1253906
	SEQ SO SO SEQ	4795	4796	4797	4798	4799	4800	4801	4802	4803	4804	4805		4807		4809	4810	4811	4812	4813	4814	4815
	SEQ NO.		1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315

					_						_			_	_	_	,		
	Function	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor		hypothetical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucleotide synthase	molybdoptein biosynthesis protein	molybdopterin biasynthsisi protein Maybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acid-CoA ligase	Rho factor				peptide chain release factor 1	protoporphyrinogen oxidase		hypothetical protein	undecaprenyi-phosphate alpha-N-acetylglucosaminyltransferase
	Matched length (a.a.)	157	738		334	472	178	990	354	572	753				363	280		215	322
	Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		0'98	58.4
	Identity (%)	32.5	21.1		30.B	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
Table 1 (continued)	Homologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rha				Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherichia coli K12 rfe
	db Match	sp:CNX1_ARATH	sp:PRTS_SERMA		sp:Y0D3_MYCTU	sp:YOD2_MYCTU	gp:PPU242952_2	sp:MOEA_ECOLI	1131 Sp.CNX2_ARATH	sp:ALKK_PSEOL	sp:RHO_MICLU				sp:RF1_ECOLI	Sp:HEMK_ECOLI		sp:YD01_MYCTU	1146 Sp.RFE_ECOLI
	ORF (bp)	489	1866	684	1008	1401	561	1209	1131	1725	2286	603	969	1023	1074	837	774	648	1146
	Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	1262886	1267427	1268267	1265611	1265427	1268503	1269343	1268267	1270043	1271192
	Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	1264610	1265142	1265665	1266306	1266449	1267430	1268507	1269040	1269396	1270047
	SEQ NO.	4816	4817	4818	4819	4820	4821	4822	4823	4824	4825	4826	4827	4828	4829	4830	4831	4832	4833
	SEQ NO. (DNA)	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333
															_				

EP 1 108 790 A2

	Function		hypothetical protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- binding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	H+-transporting ATP synthase gamma chain	H+-transporting ATP synthase beta chain	H+-transporting ATP synthase epsiton chain	hypothetical protein	hypothetical protein	putative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	thioredoxin
	Matched length (a.a.)		80	245	1.2	151	274	516	320	483	122	132	230	95	134	101	301
	Simitarity (%)		0'66	2.95	85.9	6.99	2.78	88.4	9:92	100.0	73.0	67.4	85.7	56.0	68.7	79.2	71.4
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.9	46.3	99.8	41.0	38.6	70.0	45.0	35.8	54.5	37.9
Table 1 (continued)	Homologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12 atpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yajo	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
	db Match		GPU:AB046112_1	sp:ATP6_ECOLI	sp.ATPL_STRLI	sp:ATPF_STRUI	sp:ATPD_STRL!	sp:ATPA_STRUI	sp:ATPG_STRLI	sp:ATPB_CORGL	sp:ATPE_STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5_35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
	ORF (bp)	486	249	810	240	564	813	1674	975	1449	372	471	069	285	453	312	921
	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280951	1281714	1281794	1282194
	SEQ NO.	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
	SEQ NO. (DNA)	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349

EP 1 108 790 A2

	[e l										J.		
5	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-alpha-glucan branching enzyme (glycogen branching enzyme)	alpha-amyiase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron Iransfer flavoprotein beta- subunit	electron transfer flavoprotein alpha subunit for various dehydrogenases		nitrogenase cofactor sythesis protein		hypothetical protein
		FMIN	alph pern	alph pern	sulfe	1,4 (gl)	alph		ferri bind ATP	hyp	hyp		electror subunit	elec		nitro		A ye
15	Matched length (a.a.)	366	240	228	311	710	467		211	260	367		244	335		375		397
20	Similarity (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	70.0		64.8	61.8		67.7		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29.5
of ntinued)	gene	Coss	ssuC	ssuB	ssuA	erculosis B	ophilum		2 fepC	erculosis	erculosis		ixA	1×B		dii nifS		234 plasmid
8 Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meliloti fixA	Rhizobium meliloti fixB		Azotobacter vinelandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
35 40	db Match	gp.ECO237695_3	sp:SSUC_ECOL!	sp:SSUB_ECOL!	sp:SSUA_ECOLI	sp.GLGB_ECOLI	sp.AMY3_DICTH		sp.FEPC_ECOLI	pir.C70860	pir.H70859		sp.FIXA_RHIME	sp:FIXB_RHIME		sp:NIFS_AZOVI		SP:Y4ME_RHISN
	<u> </u>	:			i —			80				2			2	_	2	te sp
	ORF (bp)	1143	768	729	957	2193	1494	348	879	804	1058	612	786	951	615	1128	312	1146
45	Terminal (nt)	1284466	1285284	1286030	1286999	1287281	1289514	1291373	1292577	1294025	1295206	1294436	1296220	1297203	1297093	1298339	1298342	1299000
50	Initial (nt)	1283324	1284517	1285302	1286043	1289473	1291007	1291026	1291699	1293222	1294151	1295047	1295435	1296253	1296479	1297212	1298653	4866 1300145
	SEQ NO.	4850	4851	4852	4853	4854	4855	4856	4857	4858	4859	4860	4861	4862	4863	4864	4865	4366
55	SEQ NO.		1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

EP 1 108 790 A2

5	Function	transcriptional regulator	acetyltransferase				tRNA (5-methylaminomethyl-2- thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyrłbonucleotide synthase [NAD+]	hypothetical protein	glutamyl-tRNA(GIn) amidotransferase subunit C	glutamyl-tRNA(GIn) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphate-fructose 6- phosphate 1-phosphotransrefase
15	Matched length (aa)	59	181				361		332	200		677	220	46	484	263	96	358
20	Similarity (%)	76.3	55.3				80.9		66.0	65.8		70.6	70.9	64.0	83.0	54.0	79.2	77.9
	identity (%)	47.5	34.8				61.8		33.7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
30 (Sable 1 (Continued)	Homologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	I K12 MG1655				l luberculosis c		i tuberculosis ic	Streptomyces glaucescens tcmA		marinus dnlJ	tuberculosis	Streptomyces coelicolor A3(2) gatC	tuberculosis	s viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
·	Homolo	Rhizoblum sp. NG pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces SCE6.24	Amycolatopsis
35 40	db Match	SP:Y4MF_RHISN	sp:YHBS_ECOLI				pir.C70858		pir:B70857	sp.TCMA_STRGA		sp:DNLJ_RHOMR	pir:H70856	sp:GATC_STRCO	sp:GATA_MYCTU	sp:VIUB_VIBVU	gp:SCE6_24	sp:PFP_AMYME
	ORF (bp)	225	504	942	1149	396	1095	654	066	1461	735	2040	663	297	1491	849	306	6083 1071
45	Terminal (nt)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314470	1316083
50	Initial (nt)	1300369	1300552	1301929	1303123	1303299	4872 1303829	4873 1304536	1304932	1307384	1308196	1308330	1311097	1311320	1311625	1313270	1314775	1315013
	SEQ NO (a.a.)	4867	4868	4869	4870	4871	4872	4873	4874	4875	4876	4877	4878	4879	4880	4881	4882	4883
55	SEQ NO.	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383

EP 1 108 790 A2

	Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding protein	high affinity ribose transport protein	hypothetical protein	iron-siderophore binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothatical membrane protein		dihydroxy-acid dehydratase	hypothetical protein
	Matched length (a.a.)		328	499	329	305	139	200	354	268	485	172	317	234	325		613	105
	Similarity (%)		31.4	76.2	6.92	7.77	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	68.6
	Identity (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		89.2	33.3
Table 1 (continued)	Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coll K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichla coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34 13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU 29 ratB	Methanococcus jannaschii MJ1501 f4re	Escherichia coll K12 yajG	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 iND	Mycobacterium tuberculosis H37Rv Rv3004
	db Match		sp:CCPA_BACME	sp:RBSA_ECOLI	sp:RBSC_ECOLI	sp:RBSB_ECOLI	sp:RBSD_ECOLI	sp:YIW2_YEAST	gp:SCF34_13	sp:NTCI_RAT	gsp:W61467	sp:F4RE_METJA	sp:YQJG_ECOLI	pir.A70672	pir:H70855		gp:AJ012293_1	pir.G70855
	ORF (bp)	630	1107	1572	972	942	369	636	1014	1005	1479	672	1077	774	1056	237	1839	564
	Terminal (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
	Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330967	1331102	1331953	1333424	1335280	1335975
ĺ	SEQ NO. (a.a.)	4884	4885	4886	4887	4888	4889	4890	4891	4892	4893	4894	4895	4896	4897	4898	4899	4900
	SEQ NO.	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400

			. <u>E</u>			potein	t ATP-				ase.	e)L						ء				<u> </u>
10		Function	hypothetical membrane protein	hypothetical protein		nitrate transport ATP-binding potein	maltose/maltodextrin transport ATP-binding protein	nitrate transporter protein			actinorhodin polyketide dimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		D-3-phosphoglycerate dehydrogenase	hypothetical serine-rich protein			hypothetical protein	
15		Matched length (a.a.)	, 62	99		167	48	324			142	304			642		530	105			620	
20		Similarity (%)	100.0	95.0		80.8	78.2	56.8			73.2	72.7			53.7		100.0	52.0			63.1	
		Identity (%)	100.0	45.0		6.03	46.0	28.1			39.4	39.1			22.9		93.8	29.0			32.9	
25	olikilidea)	s gene	lutamicum	sno		. nrtD	jenes anes) malK	n PCC 7120			icolor	CzcD			naschii		/um serA	rces pombe			ulatus strain	
30 4 de F	a) i aige i	Homologous gene	Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. nrtD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA	W)		Streptomyces coelicolor	Ralstonia eutropha czcD			Methanococcus Jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacter capsulatus strain SB1003	
40		db Match	sp:YILV_CORGL	GP:SSU18930_26		SP NRTD_SYNP7	Sp:MALK_ENTAE	SP.NRTA_ANASP			sp:DIM6_STRCO	sp.CZCD_ALCEU			sp:Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO			pir.T03476	
		ORF (bp)	1473 s	231	909	498 s	267 \$	882 s	447	369	486 s	954 8	153	690	1815 s	1743	1590 g	327 S	867	1062	1866 p	402
45		Terminal (nt)	1336095	1338379	1342677	1341980	1342461	1342794	1344464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
50		Initial (nt)	1337567	1338609	1342072	1342457	1342727	1343675	1344018	1344440	1344935	1345486	1345487	1346331	1346458	1348334	1350855	1352053	1352585	1355601	1355689	1356452
		SEQ NO. (a.a.)	4901	4902	4903	4904	4905	4906	4907	4908	4909	4910	4911	4912	4913	4914	4915	4916	4917	4918	4919	4920
<i>55</i>		SEQ NO. (DNA)	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420

EP 1 108 790 A2

						_	_				-	_								_
5	Function		homoprotocatechivate catabolism bifunctional isomerase/decarboxylase [includes: 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(hhdd isomerase); 5- carboxymethyl-2-oxo-hex-3-ene-1,7- dioate decarboxylase(opet	methyltransferase or 3- demethylubiquinone-9 3-O- methyltransferase	isochorismate synthase	glutamyHRNA synthetase	transcriptional regulator													thiamin biosynthesis protein
15	ed h									-									$\neg \uparrow$	\neg
	Matched length (a.a.)		228	192	371	485	9	İ			_									599
20	Similarity (%)		59.2	55.7	70.4	69.7	90.0													81.0
	Identity (%)		33.3	23.4	38.0	37.3	77.0													65.1
25 6	ene		ä				lor A3(2)													rthic
30 Section 1	Homologous gene		Escherichia coli C hpcE	Escherichia coli K12	Bacillus subtilis dhbC	Bacillus subtilis gltX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
35		\vdash																		
40	db Match		sp:HPCE_ECOLI	sp:UBIG_ECOLI	1128 SP. DHBC_BACSU	1488 SP. SYE_BACSU	gp:SCJ33_10													1761 sp. THIC_BACSU
	ORF (bp)	654	804	618	i 		213	516	522	342	621	303	180	330	213	183	318	1152	324	
45	Terminal (nt)	1358210	1359062	1359669	1360168	1362848	1362926	1363142	1363732	1365256	1384340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
50	Initial (nt)	1357557	1358259	4923 1359052	1361295	1361361	1363138	1363657	1364253	1384915	1364960	1365180	1365396	1365808	1367293	1368070	1368078	1368400	1369551	4939 1371637
	SEO NO (a.a.)	4921	4922	4923	4924	4925	4926	4927	4928	4929	4930	4931	4932	4933	4934	4935	4936	4937	4938	
55	SEQ NO.	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

EP 1 108 790 A2

	Function			lipoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein		guanosine 3',5'-bls(diphosphate) 3'- pyrophosphatase	acetate repressor protein	3-isopropyimalate dehydratase large subunit	3-isopropylmalate dehydratase small subunit		mutator mutT protein ((7,8-dihydro- 8-oxoguanine-triphosphatase)(8- oxo-dGTPase)(dGTP pyrophosphohydrolase)		NAD(P)H-dependent dihydroxyacetone phosphate reductase	D-alanine-D-alanine ligase
	Matched length (a.a.)			44		797			299	256		178	257	473	195		294		331	374
	Similarity (%)			74.0		74.0			52.8	64.8		60.1	60.7	87.5	89.2		71.4		72.2	67.4
	Identity (%)			61.0		44.2			25.4	25.4		29.8	78.1	68.1	67.7		45.9		45.0	40.4
Table 1 (continued)	Homologous gene			Chlamydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus jannaschil Y441		Escherichia coli K12 spoT	Escherichia coli K12 iclR	Actinoplanes teichomyceticus leu2	Salmonella typhimurium		Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1655 ddlA
	db Match			GSP: Y37857		sp:PHS1_RAT			sp:YRKH_BACSU	Sp:Y441_METJA		sp:SPOT_ECOL!	sp:ICLR_ECOLI	sp:LEU2_ACTTI	sp:LEUD_SALTY		gp:MLCB637_35		sp:GPDA_BACSU	1080 SP:DDLA_ECOLI
	ORF (bp)	348	531	132	936	2427	183	156	1407	750	477	564	705	1443	591	318	954	156	966	
,	Terminal (nt)	1371979	1373131	1373929	1375491	1373350	1375805	1375933	1376149	1377666	1378466	1379566	1379555	1381882	1382492	1382502	1382845	1384085	1385125	1386232
	Initial (nt)	1372326	1372601	1373798	1374556	1375776	1375987	1378088	1377555	1378415	1378942	1379003	1380259	1380440	1381902	1382819	1383798	1383930	1384130	1385153
i	SEQ NO.	4940	4941	4942	4943	4944	4945	4948	4947	4948	4949	4950	4951	4952	4953	4954	4955	4956	4957	4958
	SEQ NO.	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458

5	Function		thiamin-phosphate kinase	uracit-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	Ilpopolysaccharide core biosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
15	Matched length	(8.8)	335 tt	245 u	568 h	693 A	108 a	q 29	167 п	155 Pp		65	252 tr	220 n	234 g		322 h		223 p
20	Similarity (%)		57.6	59.6	56.3	0.09	48.0	67.2	63.5	78.7		74.0	78.6	75.0	59.0		6.03		52.5
	identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		0.78	56.4	32.7	27.4		28.6		26.9
30 F	Homologous gene		Escherichia coli K12 thil.	Mus musculus ung	Mycoplasma genitalium (SGC3) MG389	Escherichia coli K12 recG	Neisseria meningitidis	Propionibacterium freudenreichii subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia coli K12 MG1655 kdtB		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens nocM	Escherichia coli K12 MG1655 glnH		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
	db Match		Sp:THIL ECOLI	w	sp:Y389_MYCGE	sp:RECG_ECOLI	GSP:Y75303	sp.BCCP_PROFR	sp:YHHF_ECOL!	sp:KDTB_ECOLI		GSP:Y75358	sp:GLNQ_BACST	sp:NOCM_AGRT5	Sp:GLNH_ECOLI		pir:H69160		sp:VINT_BPL54
	ORF (bp)	978	993	762	1581	2121	324	213	582	480	1080	204	750	843	961	807	978	408	756
45	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1400185
50	Initial (nt)	1387270	1387332	1388312	1389208	1390796	1391951	1392939	1393154	1393742	1394854	1394894	1395549	1396410	1397421	1397662	1399534	1400926	1400940
	SEO	4959	4960	4961	4962	4963	4964	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974	4975	4976
55		1459	-+	•	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474		1476

EP 1 108 790 A2

	Function						insertion element (IS3 related)		hypothetical protein										DNA polymerase (cephamycin export protein	DNA-binding protein	morphine-6-dehydrogenase	B
	Matched length (a.a.)						26		37										968	456	283	284	
	Similarity (%)						96.2		97.0										80.8	67.8	65.4	76.1	
	Identity (%)						88.5		89.0										56.3	33.8	41.3	46.5	
Table 1 (continued)	Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium glutamicum										Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A, 15c	Pseudomonas putida morA	
	db Match						pir.S60890		PIR:S60890										sp:DPO1_MYCTU	1422 Sp.CMCT_NOCLA	gp:SCJ9A_15	sp:MORA_PSEPU	
	ORF (bp)	744	432	204	864	219	192	855	111	369	315	321	375	948	306	564	222	291	2715	1422	606	873	159
	Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
	Initial (nt)	1401333	4978 1402272	1402874	1403128	1403997	1404885	1406174	4984 1407109	1407535	4986 1407873	1409023	1409802	4989 1411011	1411424	4991 1412000	4992 1412351	4993 1412916	4994 1413745	1417883	1417962	4997 1418876	1420036
	SEQ NO. (a.a.)	4977		4979	4980	4981	4982	4983		4985		4987	4988		4990	4991	4992	4993	4994	4995	4996	4997	4998
	SEQ NO.	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

10	
15	
20	
25	
30	
35	
40	
45	

	Function	hypothetical protein	30S ribosomal protein S1		hypothetical protein					inosine-undine preferring nucleoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criptic asc operon repressor, ranscription regulator		excinuclease ABC subunit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hydrolase
	Matched length (a.a.)	163	451		195					310	517	293	337		671	152	121	279		839	150	214
	Similarity (%)	58.3	71.4		93.9	:				81.0	53.8	9.79	65.6		83.3	59.2	80.2	17.1		47.2	0.89	58.4
	Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32.7	30.4
Table 1 (continued)	Hamologous gene	Streptomyces coelicolor SCH5.13 yafE	Escherichla coli K12 rpsA		Brevibacterium lactofermentum ATCC 13869 yacE					Crithidia fasciculata iunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 yttH	Escherichia coli K12 yttG		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escherichia coli K12 ycbL
	db Match	sp:YAFE_ECOLI	sp:RS1_ECOLI		sp:YACE_BRELA					sp:IUNH_CRIFA	SP. QACA_STAAU	Sp: RBSK_ECOLI	sp. ASCG_ECOLI		sp:UVRB_STRPN	sp:Y531_METJA	SP:YTFH_ECOLI	sp:YTFG_ECOLI		pir.H70040	gp:SC9H11_26	sp:YCBL_ECOLI
	ORF (bp)	654	1458	1476	900	1098	282	246	957	936	1449	921	1038	798	2097	441	381	848	684	2349	912	88
	Terminal (nt)	1420071	1422556	1421096	1425878	1427354	1427378	1427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	1436869	1438201	1440028	1438212	1440675	1441793
	Initial (nt)	1420724	1421099	1422571	1425279	1428257	1427957	5005 1428049	1428290	1429159	1430642	1431579	5010 1432612	1432750	1434105	1436335	1437249	1437356	1439343	1440560	1441586	1442392
	SEO NO (a.e.)	4999	2000	5001	5005	5003	5004	5005	5006	5007	5008	5009		5011	5012	5013	5014	5015	5018	5017	5018	5019
	SEO NO. (DNA)	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

EP 1 108 790 A2

								_											
	Function	excinuclease ABC subunit A	hypothetical protein 1246 (uvrA region)	hypothetical protein 1248 (uvrA region)			translation initiation factor IF-3	50S ribosomal protein L35	50S ribosomal protein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	hypothetical protein	glycerophosphoryl diester phosphodiesterase	tRNA(guanosine-2-0-)- methlytransferase	phenylalanyi-tRNA synthetase alpha chain
	Matched length (a.a.)	952	100	142			179	09	117			292	270	436	393	74	244	153	
	Similarity (%)	80.6	67.0	47.0			78.2	1.97	7.28			71.6	70.4	97.6	71.3	26.0	50.0	71.2	
	Identity (%)	56.2	40.0	31.0			52.5	41.7	75.0			33.2	33.3	26.6	44.0	47.0	26.2	34.0	
Table 1 (continued)	Homologous gene	Escherichia coli K12 uvrA	Micrococcus luteus	Micrococcus luteus	A		Rhodobacter sphaeroides infC	Mycoplasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coil K12 MG1655 ugpA	Escherichia coli K12 MG1655 upgE	Escherichia coli K12 MG1655 ugpB	Escherichia coli K12 MG1655 ugpC	Aeropyrum pernix K1 APE0042	Bacillus subtilis glpQ	Escherichia coli K12 MG1655 trmH	Bacillus subtilis 168 syfA
•	db Match	2847 sp:UVRA_ECOLI	PIR:JQ0406	PIR:JQ0406			sp:IF3_RHOSH	SP:RL35_MYCFE	sp:RL20_PSESY			sp:UGPA_ECOL!	sp:UGPE_ECOL!	sp:UGPB_ECOLI	sp:UGPC_ECOL!	PIR:E72756	sp.GLPQ_BACSU	sp:TRMH_ECOLI	1020 sp.SYFA_BACSU
	ORF (bp)	2847	306	450	717	2124	567	192	381	822	267	603	834	1314	1224	249	717	594	1020
	Terminal (nt)	1445333	1443810	1444944	1446874	1445323	1448358	1448581	1449025	1449119	1450692	1451820	1452653	1454071	1455338	1454102	1455350	1456948	1458066
	Initial (nt)	1442487	1444115	1445393	1446158	1447446	1447792	1448390	1448645	1449940	1450126	1450918	1451820	1452758	5033 1454115	1454350	1456086	1456355	5037 1457047
	SEO (a. a.)	5020	5021	5022	5023	5024	5025	5026	5027	5028	5029	5030	5031	5032	5033	5034	5035	5036	
	SEO NO.	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537

EP 1 108 790 A2

																				$\overline{}$
	Function	phenylalanyi-tRNA synthetase beta chain		esterase	macrolide 3-O-acytransferase		N-acetylglutamate-5-semialdehyde dehydrogenase	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyase	,			hypothetical protein	tyrosyl-tRNA synthase (tyrosine tRNA ligase)	hypothetical protein		hypothetical protein
ļ	Matched length (a.a.)	343	Ì	363	423		347	388	391	401		478				20	417	149		42
	Similarity (%)	71.7		55.1	56.3		99.1	2.66	99.2	99.5		0.09		_		72.0	79.8	64.4		75.0
	Identity (%)	42.6		26.5	30.0		98.3	99.5	99.0	99.5		83.3				48.0	48.4	26.9		71.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1855 syfB		Streptomyces scabies estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum ASO19 argC	Corynebacterium glutamicum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH				Escherichia coll K12 ycaR	Bacillus subfilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum Nigg TC0129
	db Match	2484 sp.SYFB_ECOLI		sp.ESTA_STRSC	sp:MDMB_STRMY		gp:AF005242_1	sp:ARGJ_CORGL	sp:ARGD_CORGL	sp:ASSY_CORGL		gp:AF048764_1				sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR:F81737
	ORF (bp)	2484	12.	972	1383	402	2	1164	1173	1203	1209	1431	1143	1575	612	177	1260	465	88	141
	Terminal (nt)	1460816	1458196	1462128	1463516	1463934	1465123	1466373	1468548	1471413	1470154	1472907	1474119	1475693	1476294	1476519	1477809	1477929	1478503	1483335
	initial (nt)	1458133	1458966	5040 1461157	5041 1462134	1463533	5043 1464083	1465210	5045 1467376	1470211	1471362	1471477	5049 1472977	1474119	1475683	1476343	1476550	1478393	1478892	1483475
	SEQ NO.		5039	5040	5041	5042	5043	5044	5045	5046	5047	5048	5049	5050	5051	5052	5053	5054	5055	5056
	SEO NO DNA)	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556

EP 1 108 790 A2

ſ			$\neg \neg$		\neg												_			
	Function	cytidylate kinase	GTP binding protein			methyltransferase	ABC transporter	ABC transporter		hypothetical membrane protein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxohepta-2,4-dienoate hydrolase	preprotein translocase SecA subunit	signal transduction protein	hypothetical protein	hypothetical protein
	Matched length (a.a.)	220	435			232	499	602		257		499			130	210	805	132	234	133
	Similarity (%)	736	74.0			67.2	60.1	58.3		73.2		61.5			57.7	63.8	61.7	93.2	74.4	63.2
	identity (%)	38.6	42.8			36.2	29.7	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
Table 1 (continued)	Hamologous gene	Bacillus subtilis cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium striatum M82B tetB	-	Escherichia coli K12 ygiE		Bacillus subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
İ	db Match	sp:KCY_BACSU	sp.YPHC_BACSU			sp:YX42_MYCTU	1554 prf.2513302B	prf.2513302A		sp:YGIE_ECOLI		gp:AB029555_1			sp:YCHJ_ECOLI	pir.C69334	sp:SECA_BACSU	gp:AF173844_2	sp:Y0DF_MYCTU	sp:Y0DE_MYCTU
	ORF (bp)	069	1557	999	498	813	1554	1767	825	789	189	1548	186	420	375	1164	2289	429	756	633
	Terminal (nt)	1504945	1506573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	1519458	1520029	1520945	1521589
	Initial (nt)	1504256	1505017	1507327	1507902	1508729	1508813	1510366	1511667	1512189	1514505	1514527	1515159	1515396	5089 1515782	5090 1516962	1517170	1519601	1520190	1520957
	SEQ NO.	5076	5077	5078	5079	5080	5081	5082	5083	5084	5085	5086	5087	5088	5089	2090	5091	5092	5093	5094
	SEQ NO (DNA)	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1589	1589	1590	1591	1592	1593	1594

5	
10	
15	
<i>2</i> 0	
25	
30	
35	
40	
45	
50	

SEO.

Function thioesterase hemolysin hemolysin Matched length (a.a.) 342 374 245 492 121 65 Similarity 69.0 69.5 67.8 84.3 65.5 66.1 99.2 Identity (%) 99.0 33.9 34.3 31.4 41.2 39.7 Table 1 (continued) Mycobacterium tuberculosis H37Rv Rv1847 Mycobacterium tuberculosis H37Rv Rv1348 Mycobacterium tuberculosis H37Rv Rv1828 Thermus thermophilus herA Homologous gene Brevibacterium flavum Bacillus subtilis yhdP 1380 sp:YHDT_BACSU Bacillus subtilis yhdT gp:TTHERAGEN_1 1062 Sp:YHDP_BACSU sp:YODE_MYCTU SP YD48_MYCTU db Match gsp:W27813 pir:G70684 1476 510 1449 900 930 1344 735 462 675 유(현 1526534 1528186 1525473 1530341 1523052 1525973 1527987 1530220 1532394 1532996 1522432 1524568 Terminal 1522343 E Initial E

phosphonates transport ATP-binding protein ABC transporter ATP-binding protein 6-phosphogluconate dehydrogenase nodulation ATP-binding protein I phosphonates transport system permease protein phosphonates transport system permease protein hypothetical membrane protein **DEAD box RNA helicase** transcriptional regulator hypothetical protein 235 232 277 268 250 281 63.9 68.1 76.3 63.4 72.0 62.3 39.6 43.1 26.7 44.8 27.2 Mycobacterium tuberculosis H37Rv Rv1686c Escherichia coli K12 phnE Escherichia coli K12 phnE Escherichia coli K12 phnC Escherichia coli K12 yfhH Rhizobium sp. N33 nod! Sp.PHNE_ECOLI SP.PHNE_ECOL! sp:PHNC_ECOLI SP:YFHH ECOU 741 Sp. NODI_RHIS3 pir.E70501 1050 741 873 846 210 804 804 1537870 1533781 1534521 1538968 1534529 1537030 1535382 1536227 1533041 5114 1538759 1538919 5105 1531816 5106 1531933 5107 1532322 5109 1533781 1535401 1537030 1537833 1522941 1524500 1525374 1526534 1527913 1527968 1529486 1536227 1529330 1521771 1525497 5110 5100 5104 5108 5115 5095 5097 5098 5099 5101 5102 5112 5113 5096 5103 5111 1614 1615 1613 1605 1608 1600 1603 1610 1596 1597 1598 1599 1601 1602 1604 1607 1612

	_							_				$- \neg$	\neg	\neg	$\neg r$	т		1	$\overline{}$			-	\neg
5		Ę		idine kinase	dnase	cyl-phospholipid	4-methyl-o- sermease	ytransferase		nstocation pump										nannose	/Itransferase		
10		Function		phosphomethylpyrimidine kinase	hydoxyethytthiazole kinase	cyclopropane-fatty-acyl-phospholipid synthase	sugar transporter or 4-methyl-o- phthalate/phthalate permease	purine phosphoribosytransferase	hypothetical protein	arsenic oxyanion-transfocation pump membrane subunit		hypothetical protein	sulfate permease	hypothetical protein					hypothetical protein	dolichol phosphate mannose synthase	apolipoprotein N-acyltransferase		secretory lipase
15		Matched length (a.a.)		262	249	451	468	156	206	381		222	469	97					110	217	527		392
20		Similarity (%)		70.2	77.5	55.0	6.99	98.0	68.5	54.8		83.8	83.6	20.0					87.3	71.0	55.6		55.6
		Identity (%)		47.3	46.6	28.6	32.5	36.5	39.8	23.3		62.2	51.8	39.0					71.8	39.2	25.1	_	23.7
<i>25</i>	(nanului	gene		rlum thiD	rium LT2	erculosis	la Pc701	-62 gpt	2 yebN	As4 arsB		color A3(2)	R9 ORFA	R9 ORFG					erculosis	ces pombe	2 Int		191
·	lable 1 (confinued)	Homologous gene		Salmonella typhimurlum thiD	Salmonella typhimurium LT2 thiM	Mycobacterium tuberculosis H37Rv ufaA1	Burkholderia cepacia Pc701 mopB	Thermus flavus AT-62 gpt	Escherichia coli K12 yebN	Sinorhizobium sp. As4 arsB		Streptomyces coelicolor A3(2) SCI7.33	Pseudomonas sp.	Pseudomonas sp. R9 ORFG					Mycobacterlum tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe dpm1	Escherichia coli K12 Int		Candida albicans lip1
40		db Match		Sp.THID_SALTY	Sp.THIM_SALTY	pir.H70830	prf.2223339B	prf.2120352B	Sp:YEBN_ECOLI	gp:AF178758_2		gp:SCI7_33	gp:PSTRTETC1_6	GP.PSTRTETC1_7					pir:A70945	prf.2317468A	sp:LNT_ECOLI		50437 1224 gp:AF188894_1
		ORF (bp)	702	1584	804	1314	1388	474	669	966	483	693	1455	426	615	207	189	750	396	810	1635	741	1224
45		Terminal (nt)	1538963	1539820	1542119	1546289	1546307	1547987	1549349	1550398	1550951	1552237	1553972	1553297	1554070	1555067	1554891	1555088	1226771	1557014	1557859	1559497	15
50		Initial (nt)	1539664	1541403	1542922	1544978	1547692	1548440	1548651		1550469	1551545	1552518	1553722	5128 1554684	1554861	1555079	1555835	1558376	1557823	1559483	1560237	1561660
		SEQ NO.	5116	_		5119	5120	5121	5122	5123	5124	5125	5126	5127		5129	5130	5131	5132	5133	5134	5135	5136
		N O E	616		818	619	620	621	622	623	624	625	929	627	628	629	630	1631	1632	1633	1634	1835	1636

EP 1 108 790 A2

| | | | | _

 |

 |
 |
 | | | | | |
 | | | |
 |
|-----------------------------|--|--|--
--
--

--

--
---|---
--|--|---|---|--
---|--
--|--|--|
| Function | precorrin 2 methyltransferase | precorrin-6Y C5, 15-
methyltransferase | |

 | oxidoreductase

 | dipeptidase or X-Pro dipeptidase
 |
 | ATP-dependent RNA helicase | sec-independent protein translocase protein | hypothetical protein | hypothetical protein | hypothetical protein | hypothetical protein
 | | hypothetical protein | hypothetical protein | hypothetical protein
 |
| Matched
length
(a.a.) | 291 | 411 | |

 | 244

 | 382
 |
 | 1030 | 268 | 85 | 317 | 324 | 467
 | | 61 | 516 | 159
 |
| Similarity
(%) | 56.7 | 60.8 | |

 | 75.4

 | 61.3
 |
 | 55.7 | 62.7 | 69.4 | 61.2 | 64.8 | 77.3
 | | 80.3 | 74.2 | 50.0
 |
| Identity
(%) | 31.3 | 32.4 | |

 | 54.1

 | 36.1
 |
 | 26.5 | 28.7 | 44.7 | 31.9 | 32.4 | 53.1
 | | 54.1 | 48.6 | 45.0
 |
| Homologous gene | Mycobacterium tuberculosis
H37Rv cobG | Pseudomonas denitrificans
SC510 cobL | |

 | Mycobacterium tuberculosis
H37Rv RV3412

 | Streptococcus mutans LT11 pepQ
 |
 | Saccharomyces cerevisiae
YJL050W dob1 | Escherichia coli K12 tatC | Mycobacterium leprae
MLCB2533.27 | Mycobacterium tuberculosis
H37Rv Rv2095c | Mycobacterium leprae
MLCB2533.25 | Mycobacterium tuberculosis
H37Rv Rv2097c
 | | Mycobacterium tuberculosis
H37Rv Rv2111c | Mycobacterium tuberculosis
H37Rv Rv2112c | Aeropyrum pernix K1 APE2014
 |
| db Match | pir:C70764 | sp:COBL_PSEDE | |

 | sp:YY12_MYCTU

 | gp:AF014460_1
 |
 | sp:MTR4_YEAST | sp:TATC_ECOLI | sp:YY34_MYCLE | sp:YY35_MYCTU | sp:YY36_MYCLE | sp:YY37_MYCTU
 | | pir.B70512 | pir:C70512 | PIR:H72504
 |
| ORF
(bp) | 774 | 1278 | 366 | 246

 | 738

 | 1137
 | 639
 | 2787 | 1002 | 315 | 981 | 972 | 1425
 | 249 | 192 | 1542 | 480
 |
| Terminal
(nt) | 1562553 | 1562525 | 1564237 | 1564482

 | 1564565

 | 1565302
 | 1567106
 | 1567117 | 1569932 | 1571068 | 1571508 | 1572492 | 1573491
 | 1575205 | 1574945 | 1575406 | 1577806
 |
| Initial
(nt) | 1561780 | 1563802 | 1563872 | 1564237

 | 1565302

 | 1566438
 | 1566468
 | 1569903 | 1570933 | 1571382 | 1572486 | 1573463 | 1574915
 | 1574957 | 1575136 | 1576947 | 1577327
 |
| SEO
NO. | 5137 | 5138 | 5139 | 5140

 | 5141

 | 5142
 | 5143
 | 5144 | 5145 | 5146 | 5147 | 5148 | 5149
 | 5150 | 5151 | 5152 | 5153
 |
| SEQ
NO
(DNA) | 1637 | 1638 | 1639 | 1640

 | 1641

 | 1642
 | 1643
 | 1644 | 1645 | 1646 | 1647 | 1648 | 1649
 | 1650 | 1651 | 1652 | 1653
 |
| | SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (bp) (aa.) | SEQ Initial NO. (nt) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity length (ea.) Matched (ea.) 5137 1561780 1562553 774 pir.C70764 Mycobacterium tuberculosis 31.3 56.7 291 | SEQ Initial NO. (nt) (nt) (nt) (bp) (a.a.) db Match (bp) (a.a.) Homologous gene (%) (%) (%) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg | SEQ
NO.
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) </td <td>SEQ
NO.
(nt) Terminal
(nt) QRF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<!--</td--><td>SEQ
NO.
(nt) Terminal
(nt) QRF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<!--</td--><td>SEQ
NO.
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td><td>SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<</td><td>SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) QRF
(nt) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<</td><td>SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ 1nitial (nt) (nt) (nt) (nt) Terminal (nt) (bp) db Match Homologous gene (%) Identity (%) Similarity (legh) (hg) Matched (hg) 5137 1561780 (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ
(nJ) Initial
(nJ) Terminal
(nJ) QRF
(nJ) db Match
(nJ) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) Matched (nt) (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) <t< td=""><td>SEQ
(a.a.) Initial
(ml) Terminal
(ml) ORF
(bp) db Match
(ml) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(</td><td>SEQ (nt) (nt) Terminal (nt) (nt) (bp) Ab Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)</td><td>SEQ
(a.1) Initial
(nt) Terminal
(b) ORF
(b) db Match
(b) Homologous gene
(c) Identity
(b) Similarity
(b) Matched
(c) 5.13 156.1780 156.255.3 774 pir.C70764 Mycobacterium fuberculosis 31.3 56.7 291 5.13 156.1780 156.255.3 1278 pir.C70764 Mycobacterium fuberculosis 32.4 60.8 411 5.13 156.255.3 1278 sp.COBL_PSEDE Pseudomonas dentitificans 32.4 60.8 411 5.14 156.2630 156.4237 366 157.000L Mycobacterium fuberculosis 54.1 75.4 244 5.14 156.430 156.711 278 sp.YY12_MYCTU Mycobacterium fuberculosis 54.1 75.4 244 5.14 1566.438 1567.10 278 sp.YY12_MYCTU Mycobacterium fuberculosis 56.1 75.4 244 5.14 1566.438 1567.102 377 Mycobacterium fuberculosis 31.9 61.2 31.7 5.14</td><td> SEC Initial Terminal CRF db Match Homologous gene (%s) (</td></t<></td></td></td> | SEQ
NO.
(nt) Terminal
(nt) QRF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) </td <td>SEQ
NO.
(nt) Terminal
(nt) QRF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<!--</td--><td>SEQ
NO.
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td><td>SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<</td><td>SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) QRF
(nt) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<</td><td>SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ 1nitial (nt) (nt) (nt) (nt) Terminal (nt) (bp) db Match Homologous gene (%) Identity (%) Similarity (legh) (hg) Matched (hg) 5137 1561780 (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ
(nJ) Initial
(nJ) Terminal
(nJ) QRF
(nJ) db Match
(nJ) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) Matched (nt) (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) <t< td=""><td>SEQ
(a.a.) Initial
(ml) Terminal
(ml) ORF
(bp) db Match
(ml) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(</td><td>SEQ (nt) (nt) Terminal (nt) (nt) (bp) Ab Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)</td><td>SEQ
(a.1) Initial
(nt) Terminal
(b) ORF
(b) db Match
(b) Homologous gene
(c) Identity
(b) Similarity
(b) Matched
(c) 5.13 156.1780 156.255.3 774 pir.C70764 Mycobacterium fuberculosis 31.3 56.7 291 5.13 156.1780 156.255.3 1278 pir.C70764 Mycobacterium fuberculosis 32.4 60.8 411 5.13 156.255.3 1278 sp.COBL_PSEDE Pseudomonas dentitificans 32.4 60.8 411 5.14 156.2630 156.4237 366 157.000L Mycobacterium fuberculosis 54.1 75.4 244 5.14 156.430 156.711 278 sp.YY12_MYCTU Mycobacterium fuberculosis 54.1 75.4 244 5.14 1566.438 1567.10 278 sp.YY12_MYCTU Mycobacterium fuberculosis 56.1 75.4 244 5.14 1566.438 1567.102 377 Mycobacterium fuberculosis 31.9 61.2 31.7 5.14</td><td> SEC Initial Terminal CRF db Match Homologous gene (%s) (</td></t<></td></td> | SEQ
NO.
(nt) Terminal
(nt) QRF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) </td <td>SEQ
NO.
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched</td> <td>SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<</td> <td>SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) QRF
(nt) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<</td> <td>SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEQ 1nitial (nt) (nt) (nt) (nt) Terminal (nt) (bp) db Match Homologous gene (%) Identity (%) Similarity (legh) (hg) Matched (hg) 5137 1561780 (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEQ
(nJ) Initial
(nJ) Terminal
(nJ) QRF
(nJ) db Match
(nJ) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td> <td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) Matched (nt) (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) <t< td=""><td>SEQ
(a.a.) Initial
(ml) Terminal
(ml) ORF
(bp) db Match
(ml) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(</td><td>SEQ (nt) (nt) Terminal (nt) (nt) (bp) Ab Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)</td><td>SEQ
(a.1) Initial
(nt) Terminal
(b) ORF
(b) db Match
(b) Homologous gene
(c) Identity
(b) Similarity
(b) Matched
(c) 5.13 156.1780 156.255.3 774 pir.C70764 Mycobacterium fuberculosis 31.3 56.7 291 5.13 156.1780 156.255.3 1278 pir.C70764 Mycobacterium fuberculosis 32.4 60.8 411 5.13 156.255.3 1278 sp.COBL_PSEDE Pseudomonas dentitificans 32.4 60.8 411 5.14 156.2630 156.4237 366 157.000L Mycobacterium fuberculosis 54.1 75.4 244 5.14 156.430 156.711 278 sp.YY12_MYCTU Mycobacterium fuberculosis 54.1 75.4 244 5.14 1566.438 1567.10 278 sp.YY12_MYCTU Mycobacterium fuberculosis 56.1 75.4 244 5.14 1566.438 1567.102 377 Mycobacterium fuberculosis 31.9 61.2 31.7 5.14</td><td> SEC Initial Terminal CRF db Match Homologous gene (%s) (</td></t<></td> | SEQ
NO.
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched | SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)< | SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) QRF
(nt) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)< | SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ 1nitial (nt) (nt) (nt) (nt) Terminal (nt) (bp) db Match Homologous gene (%) Identity (%) Similarity (legh) (hg) Matched (hg) 5137 1561780 (nt) (nt) (nt) (nt) (nt) (nt) | SEQ
(nJ) Initial
(nJ) Terminal
(nJ) QRF
(nJ) db Match
(nJ) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) | SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) (nt) CRF (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) (nt) Matched (nt) (nt) (nt) Matched (nt) (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) (nt) Matched (nt) <t< td=""><td>SEQ
(a.a.) Initial
(ml) Terminal
(ml) ORF
(bp) db Match
(ml) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(</td><td>SEQ (nt) (nt) Terminal (nt) (nt) (bp) Ab Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)</td><td>SEQ
(a.1) Initial
(nt) Terminal
(b) ORF
(b) db Match
(b) Homologous gene
(c) Identity
(b) Similarity
(b) Matched
(c) 5.13 156.1780 156.255.3 774 pir.C70764 Mycobacterium fuberculosis 31.3 56.7 291 5.13 156.1780 156.255.3 1278 pir.C70764 Mycobacterium fuberculosis 32.4 60.8 411 5.13 156.255.3 1278 sp.COBL_PSEDE Pseudomonas dentitificans 32.4 60.8 411 5.14 156.2630 156.4237 366 157.000L Mycobacterium fuberculosis 54.1 75.4 244 5.14 156.430 156.711 278 sp.YY12_MYCTU Mycobacterium fuberculosis 54.1 75.4 244 5.14 1566.438 1567.10 278 sp.YY12_MYCTU Mycobacterium fuberculosis 56.1 75.4 244 5.14 1566.438 1567.102 377 Mycobacterium fuberculosis 31.9 61.2 31.7 5.14</td><td> SEC Initial Terminal CRF db Match Homologous gene (%s) (</td></t<> | SEQ
(a.a.) Initial
(ml) Terminal
(ml) ORF
(bp) db Match
(ml) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(| SEQ (nt) (nt) Terminal (nt) (nt) (bp) Ab Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) | SEQ
(a.1) Initial
(nt) Terminal
(b) ORF
(b) db Match
(b) Homologous gene
(c) Identity
(b) Similarity
(b) Matched
(c) 5.13 156.1780 156.255.3 774 pir.C70764 Mycobacterium fuberculosis 31.3 56.7 291 5.13 156.1780 156.255.3 1278 pir.C70764 Mycobacterium fuberculosis 32.4 60.8 411 5.13 156.255.3 1278 sp.COBL_PSEDE Pseudomonas dentitificans 32.4 60.8 411 5.14 156.2630 156.4237 366 157.000L Mycobacterium fuberculosis 54.1 75.4 244 5.14 156.430 156.711 278 sp.YY12_MYCTU Mycobacterium fuberculosis 54.1 75.4 244 5.14 1566.438 1567.10 278 sp.YY12_MYCTU Mycobacterium fuberculosis 56.1 75.4 244 5.14 1566.438 1567.102 377 Mycobacterium fuberculosis 31.9 61.2 31.7 5.14 | SEC Initial Terminal CRF db Match Homologous gene (%s) (|

EP 1 108 790 A2

5	Function		AAA family ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinolon resistance protein	aspartate ammonia-lyase	ATP phosphoribosyltransferase	beta-phosphoglucomutase	5-methyltetrahydrofolate homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase	arsenate reductase		cysteinyi-tRNA synthetase
15	Matched	(a.a.)	545	281	436	269	69	385	526	281	195	1254		366	386	129	123		387
20	្រ	(%)	78.5	79.0	67.2	71.4	72.5	61.0	8.66	97.5	63.1	62.4		49.5	63.9	64.3	75.6		64.3
	Identity	(%)	51.6	57.3	38.1	45.4	40.6	21.8	8.66	96.8	30.8	31.6		22.4	33.0	32.6	47.2		35.9
25	(pa	•	olis arc	pimT		ulosis	s A198	aureus norA23	amicum h) MJ233	amicum	MSB8	netH		stris ahpF	/isiae :3	plasmid sr	culosis		cysS
·	labie 1 (continued)	S enogonious	Rhodococcus erythropolis arc	Mycobacterium leprae pimT	Homo sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureu	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 aspA	Corynebacterium glutamicum ASO19 hlsG	Thermotoga maritima MSB8 TM1254	Escherichia coli K12 metH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmid pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS
35	45,554	do Maicii	prf.2422382Q	pir.S72844	gp:AF005050_1		sp:VAPI_BACNO	prf:2513299A	sp.ASPA_CORGL	gp:AF050168_1	plr:H72277	sp:METH_ECOL!		sp.AHPF_XANCH	sp:ACR3_YEAST	sp.ARSC_STAAU	pir:G70964		1212 sp.SYC_ECOLI
	ORF	(dq)	1581	834	1323	834	264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212
45	Terminal	(nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1585603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	1596249
50	-	(jr)	1578531	1579400	1580771	1580807	1581851	1583481	1585490	1586445	1587504	1591235	1591343	1592966	1593337	1594532	1595030	1596221	1597460
	SEO	O e	 -	5155	5156		5158	5159	5160	5161	5162	5163	5164	5165	5166	5167	5168	5169	5170
55		O 8		1655	1656		1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670

EP 1 108 790 A2

5		noj	e protein			drogenase					olotin blosynthetic	ides predicted to for vaccines and						transferase	e, and ilne and system kinase	mutase alpha
10		Function	bacitracin resistance protein	oxidoreductase	lipoprotein	dihydroorotate dehydrogenase			transposase		bio operon ORF I (blotin blosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)transport system kinase	methylmalonyl-CoA mutase alpha subunit
15		Matched length (a.a.)	255	326	359	334			360		152	198		597		535		56	338	741
20		Similarity (%)	69.4	62.6	53.5	67.1			55.3		0.27	33.0		68.7		67.1		58.4	72.3	87.5
	·	Identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
25	(per	m	A	su	sis				hpA		8			m M82B		m M82B)ac	K	ensis
30	Table 1 (continued)	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe aegerita ura1			Pseudomonas syringae tnpA		Escherichia coli K12 ybhB	Neisseria meningitidis		Corynebacterium striatum M82B tetB	٠, -	Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis A3823.5 mutB
35 40		db Match	sp:BACA_ECOLI	prf.2214302F	pir:F70577	sp.PYRD_AGRAE			gp:PSESTBCBAD_		sp:YBHB_ECOL!	GSP:Y74829		prf.2513302A		prf.2513302B		pir.JU0052	sp.ARGK_ECOLI	2211 sp:MUTB_STRCM
		ORF (bp)	879	948	666	1113	351	807	1110	486	531	729	603	1797	249	1587	351	609	1089	
45		Terminal (nt)	1597745	1599614	1600677	1601804	1601931	1603466	1604629	1604830	1605281	1606689	1608248	1605861	1609335	1607661	1609842	1510944	1611150	1612234
50		initial (nt)	1598623	1598667	1599679	1600692	1602281	1602660	1603520	1605315	1605811	1605961	1607648	1607657	1609087	1609247	1610192	1610236	1612238	1614444
		SEO NO.	5171	5172	5173	5174	5175	5176	5177	5178	5179	5180	5181	5182	5183	5184	5185	5188	5187	5188
55	4.	SEQ NO.	1671	1672	1673	1874	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688

EP 1 108 790 A2

										$\neg \top$	$\neg \top$		$ \tau$			—-г		
5		utase beta	e protein		e protein	ne protein							tor					
10	Function	methylmalonyl-CoA mutase beta subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
15	Matched length (a.a.)	610	224		370	141	281		364	611		959	174	235	22.1	98		446
20	Similarity (%)	68.2	70.1		87.0	78.7	72.8		65.7	58.5		85.9	81.6	51.9	62.0	80.2		96.1
	Identity (%)	41.6	39.7		64.1	44.7	51.0		38.8	25.5		6.69	54.8	21.3	32.6	37.2		61.2
<i>25</i>	9	nensis	losis		losis	losis	r A3(2)		denreichil H			losis	ulosis	schli	or A3(2)	schil		MC58
& S Table 1 (continued)	Hemologous gene	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichil subsp. Shermanii hemH	Streptococcus faeclum		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschli MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschil MJ1558		Neisseria meningitidis MC58 NMB1652
35	db Match	SP.MUTA_STRCM	sp:YS13_MYCTU		sp:YS09_MYCTU	pir:B70711	gp:SCC77_24		sp:HEMZ_PROFR	sp:P54_ENTFC		pir:F70873	pir.E70873	pir.F64496	gp:SCD82_4	pir.E64494		gp:AE002515_9
	ORF (bp)	1848	723	597	1296	435	843	783	1110	1800	498	2829	564	756	663	267	383	1392
45	Terminal (nt)	1614451	1617300	1617994	1618321	1619672	1520167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	1633324
50	Initial (nt)	1616298	1616578	1817398	1619616	1620106	1621009	1621056	1622950	1624826	1625925	5199 1626279	1629298	1629913	1631329	1631660	1631745	1631933
	SEO		5190	5191	5192	5193	5194	5195	5196	5197	5198		5200	5201	5202	5203	5204	5205
55		1689	1690	1691	:	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705

EP 1 108 790 A2

5	Function	antigenic protein	antioepic protein	1	cation-fransporting ATPase P		hypothetical protein					host cell surface-exposed lipoprotein	integrase	ABC transporter A I P-binding protein		sialidase	transposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitrogen fixation protein
15	Matched length	(a.a.)	Ī	丅	883		120					107	4 <u>2</u> 5	497		387	236	37	88		107	149
20	Similarity (%)	(%)	2 6	2.80	73.2		58.3					73.8	60.4	64.4		72.4	100.0	72.0	43.0		70.1	85.2
	Identity (%)	(0)	3 3	38.0	42.6		35.8					43.0	34.4	32.8		51.9	99.6	64.0	32.0	-	32.7	63.8
25 (panul)	gene	7000	ae ORF2*	ae	CC6803		olor A3(2)					nophilus	int	2 yijK		ndifaciens	lutamicum AG1 tnpB	lutamicum			Orsay	orae 17
8 Sapple 1 (Continued)	Homologous gene		Neisseria gonofrioeae URT 24	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sll1614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 yijK		Micromonospora viridifaciens ATCC 31146 nadA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum TnpNC	Plasmid NTP16		Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7
35	db Match	_		GSP: Y38838 N	SP.ATA1_SYNY3		gp:SC3D11_2					prf:2408488H	prt.2510491A	Sp:YJJK_ECOLI		SP:NANH_MICVI	gp:AF121000_8	GPU:AF164956_23	GP:NT1TNIS_5		pir:B75015	pir.S72754
	ORF	(gg)	480	458	2676	783	489	1362	357	156	162	375	458	1629	1476	1182	708	243	261		423	447
45	70	(tr)	1632109	1632682	1636241	1633781	1636244	1638442	1638778	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1646063	1645601	1647133	1647212	1647651
50		(ut)	1632588	1633137	1633566	1634563	5210 1636732	1637081		1639365	1639656	1639781	1640546			1645499	1645661	1645821	1645861	1646549	1647634	1648097
	SEO	(a. 6)	5206	5207	5208	5209	5210	5211	5212	5213	5214		5216			5219	5220	5221	5222			5225
55	SEO		1706	1707		1709		1711		1713	1714	1715	1716	17.1	1718	1719	1720	1721	1722	1723	1724	1725

EP 1 108 790 A2

. 25

	Function	hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ubiquinol oxidase assembly factor / heme O synthase	transketolase	transaidolase	
	Matched length (a.m.)	52	411	252	377	493	217	518	317	266	291		418	323	295	875	358	
	Similarity (%)	57.0	84.4	89.3	83.0	73.0	71.4	87.8	77.3	74.8	74.8		51.0	70.9	66.8	100.0	85.2	
	identity (%)	48.0	64.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0	62.0	
Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803 slr0074	Streptomyces coelicolor A3(2) SCC22.08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PH0450	Escherichia coli K12 qor	Nitrobacter winogradskyi coxC	Corynebacterium glutamicum ATCC 31833 tkt	Mycobacterium leprae MLCL536.39 tal	
	db Match	PIR:C72506	pir.S72781	gp:SCC22_4	plr.A70872	sp:Y074_SYNY3	gp:SCC22_8	pir.F70871	plr:S72783	pir:S72778	pir.C70871		pir.C71156	Sp: GOR_ECOL!	gp:NWCOXABC_3	gp:AB023377_1	1080 SP.TAL_MYCLE	
	ORF (bp)	162	1263	758	1176	1443	693	1629	1020	804	666	357	1629	975	696	2100	1080	1164
	Terminal (nt)	1648709	1648100	1649367	1650249	1651433	1652894	1655871	1656700	1657515	1658675	1659140	1661136	1662552	1662630	1666502	1667752	1666601
	Initial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	1654043	1655681	1656712	1857677	1659496	1659508	1661578	1663598	1664403	1666673	1667764
	SEQ NO.	5226	5227	5228	5229	5230	5231	5232	5233	5234	5235	5236	5237	5238	5239	5240	5241	5242
	SEQ NO.		1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742

_				$\overline{}$		1		$\neg \tau$	\neg	\neg	- 1	- 1		J	- 1	j	1	
	Function	glucose-6-phosphate dehydrogenase	oxppcycle protein (glucose 6- phosphate dehydrogenase assembly protein)	8-phosphogluconolactonase	sarcosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate Isomerase	probable membrane protein	phosphoglycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	excinuclease ABC subunit C
	Matched length (a.a.)	484	318	258	128	200	205				259	128	405	333	324	308	281	707
	Similarity (%)	100.0	7.17	58.1	57.8	46.6	100.0				9.66	51.0	98.5	99.7	87.4	82.5	76.2	61.5
	identity (%)	9.66	40.6	28.7	35.2	24.8	100.0				99.2	37.0	98.0	99.1	63.9	56.3	52.0	34.4
Table 1 (continued)	Homologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W sol3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebacterium glutamicum ATCC 13032 soxA				Corynebacterium glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Conynebacterium glutamicum AS019 ATCC 13059 pgk	Conynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium tuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechocystis sp. PCC6803
	db Match	gsp:W27612	pir.A70917	sp.SOL3_YEAST	SD:SAOX BACSN	gp.AF126281_1	gp:CGL007732_5				sp:TPIS_CORGL	SP:YCQ3_YEAST	sp.PGK_CORGL	sp:G3P_CORGL	pir.D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	2088 SP.UVRC_PSEFL
	ORF (bp)	1452	957	705	405	-	-	174	687	981	777	408	1215	1002	186	1023	927	+
	Terminat (nt)	1669401	1670375	1671099	1871273	1673123		1677384	1678070	1680128	1680332	1681670	1681190	1682624	1684117	1685110	1686152	1687103
	Initial (nt)	1667950		1670395	1671877			1677211		1679148		1681263	1682404	1683625	1685097	7 1686132	1687078	1689190
	SEO	(8.8.)	5244	5245	534E	5247	5248	5249				5253	5254	5255	5258	5257	5258	5259
	ធ្លីខ្			745	37.6	_		749	1750	751	1752	1753	1754	1755	1756	1757	1758	1759

EP 1 108 790 A2

_									i	- 1	1		i	1	1	- 1	- 1				- 1	ı	
5				umazine	by rib operon	protein	by rib operon	II and 3, 4-	e 4-phosphate synthesis)	Ipha chain	aminase	3-epimerase	JL1/NOP2	nyltransferase	,	988/	2	ne synthetase	netabolism			lor	
10		Function	hypothetical protein	8,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin biosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3,	dihydraxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	ribulose-phosphate 3-epimerase	nucleolar protein NOL 1/NOP2	mothion 4 PNA formyltansferase	ine Chich-rendered	polypeptide deformylase	primosomal protein n	S-adenosylmethionine synthetase	DNA/pantothenate metabolism flavoprotein	hypothetical protein	guanylate kinase	integration host factor	-
15	Matched	length (a.a.)	150	154	27	217	106		404	211	385	234	448	900	900	150	725	407	409	26	186	103	
20	<u> </u>	Similarity (%)	68.7	72.1	68.0	48.0	52.0		84.7	79.2	62.7	73.1	60.7	1	8./0	72.7	48.3	99.5	80.9	87.7	74.7	90.3	
		Identity (%)	32.7	43.5	59.0	28.0	44.0		65.6	47.4	37.3	43.6	30.8	:	41.6	44.7	22.9	99.3	58.0	70.4	39.8	80.6	
<i>25</i>	r		sis						sis ribA	178 ribE		30			sa fmt			MJ-233	losis	losis	siae guk1	losis	
© Table 1 (Continued)		Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escherichia coli K12	Dacillus subfilis	Davillus subtills	Dacillus subtilis		Mycobacterium tuberculosis ribA	Actinobacillus oleuroppeumoniae ISU-178 ribE	Facherichia coli K12 ribD	Saccharomyces cerevisiae	Szeso tourziolper		Pseudomonas aeruginosa fmt	Bacillus subtilis 168 def	Escherichla coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis H37Rv Rv1390	Saccharomyces cerevisiae guk1	Mycobacterium tuberculosis H37Rv Rv1388 mIMF	
35			ΣI	E S	lå	<u> </u>		8	_₹_	A S	L ŭ	8	<u> </u>	<u>.</u>	ď	ä	<u>ü</u>	ă	ΣÏ	\vdash	1	≥I	+
40		db Match	Sp:YR35_MYCTU	SD RISB ECOLI	-1	GSP. 1832/3	GSP. 1632/2	GSP. 1832/3	gp:AF001929_1	sp:RISA_ACTPL	LICOS COGO	Sp. RDF YEAST		Sp. SON_ECOLI	SP.FMT_PSEAE	SP. DEF BACSU	Sp. PRIA_ECOL!	qsp:R80060		sp:YD90_MYCTU	PICKIBYGU		⊣
	ŀ	ORF (bp)	579	477	-+-	-	-	3	1266	633	300	557		1332	945	507	2064	1221	1260	29.	627	3.8	
45		Terminal C (nt) (1689201	0860		-+-	-+-	1691347	1690360	1691639	3500007	1603262		1693967	1695499	1696466	1697084	1699177	1700508	1702032	1702411	-	
50		Initial (nt)	1889779			_		1691012	1691625	1692271		1693258		1695298	1696443	1696972				1702322	1703037		
		SEQ.	+	į	0	_		5264	5265	5266	_1		0070	5269	5270	5274	5272	5273	5274	5275	6776	5277	:
55		NO SEO				$\overline{}$	-	1764	1765	1766	_		$\overline{}$	1769	1770	_	_		1774	1775	3775	1777	: :j

EP 1 108 790 A2

_										_							
	Function	orolidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyi-phosphate synthase small chain	dihydroorotase	aspartate carbamoytransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	cell division inhibitor				N utilization substance protein B (regulation of rRNA biosynthesis by transcriptional antitermination)	elongation factor P	cytoplasmic peptidase	3-dehydroquinate synthase	shikimate kinase	type IV prepilin-like protein specific
	Matched length (a.a.)	276	1122	381	402	311	176	297				137	187	212	361	166	142
	Similarity (%)	73.6	77.5	70.1	67.7	7.87	80.1	73.4				69.3	98.4	100.0	2.68	100.0	0 42
	Identity (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	99.5	98.6	100.0	35.2
	Hamologous gene	Mycobacterium tuberculosis H37Rv uraA	Escherichia coil carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2218				Bacillus subtilis nus B	Brevibaderium lactofermentum ATCC 13869 efp	Corynebacterium glutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum AS019 aroK	Agramonae hydronhila tan
	db Match	sp:DCOP_MYCTU	pir:SYECCP	sp:CARA_PSEAE	sp.PYRC_BACCL	sp.PYRB_PSEAE	sp.PYRR_BACCL	sp:Y00R_MYCTU				sp:NUSB_BACSU	Sp.EFP_BRELA	gp:AF124600_4	gp.AF124600_3	gp:AF124600_2	SPI COS ACOUX
	ORF (bp)	834	3339	1179	1341	936	576	1164	477	462	210	681	561	1089	1095	492	1 1
	Terminal (nt)	1703517	1704359	1707706	1709017	1710413	1711352	1713759	1714306	1714780	1714950	1715382	1716132	1716780	1717938	1719107	1720071
	initial (ni)	1704350	1707697	1708884	1710357	1711348	1711927	1712596	1713830	1714289	1714741	1716062	1716692	1717868	1719032	1719598	1771381
	SEQ NO (a.a.)	5278	5279	5280	5281	5282	5283	5284	5285	5286	5287	5288	5289	5290	5291	5292	5
i	SEQ NO. (DNA)	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1702

EP 1 108 790 A2

	Function	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimata 5-dahydrogenase	hypothetical protein	hypothetical protain	alanyl-tRNA synthetase	hypothetical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
	Matched length (a.a.)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
	Similarity (%)	68.7	73.2		50.7	71.7	0.09	70.1	69.6	71.8	84.8		89.2	74.1	53.6	54.0		62.0
	Identity (%)	45.8	35.9		23.6	38.3	50.0	41.8	52.8	43.3	65.4		7.	46.1	26.1	23.1		29.2
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU		Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fnuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv RvZ575	Saccharomyces cerevislae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
	db Match	gp:SC1A2_22	gp:AF109162_2		pir.A75169	sp:FHUC_BACSU	pir:D70660	pir.E70660	pir:F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		1824 SP.SYD_MYCLE	sp:Y08Q_MYCTU	2878 SP.AMYH_YEAST	sp:YHGE_BACSU		gp:SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
	Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1726625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
	Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	1740569	1741219	1741313
	SEO NO.	5294	5295	5296	5297	5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	5308	5309	5310
	SEQ		1795	1798		1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

EP 1 108 790 A2

	Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	histidyl-tRNA synthetase	hydrolase	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
	Matched length (a.a.)		371		116	462		598	421	211	175		128		760	185	49	558	332	
	Similarity (%)		88.1		77.6	71.4		53.9	72.2	62.1	61.1		100.0		6.66	100.0	98.8	6.09	57.2	
	Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		6.96	99.5	98.0	30.7	25.9	
Table 1 (continued)	Homalogaus gene		Streptomyces coelicolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 sifA	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter Jejuni NCTC11168 Cj0809c	Streptomyces chrysomalius sccypB		Corynebacterium giutamicum ATCC 13032 orf4		Corynebacterium giutamicum ATCC 13032 rei	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 ddAE	Mycobacterium tuberculosis H37Rv Rv2585c	Escherichia coli K12 secF	
	db Match		gp:SCE15_13		sp:SLFA_PSEAE	sp:SDHL_ECOL!		pf:2423362A	sp.SYH_STAAU	gp:CJ11168X3_12 7	prf:2313309A		gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	Sp. Y08G_MYCTU	sp. SECF_ECOLI	
;	ORF (bp)	714	1113	126	495	1347	861	1686	1287	639	507	237	555	342	2280	555	150	1743	1209	830
!	Terminal (nt)	1742608	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760338
	Initial (nt)	1741893	1742701	1743843	5314 1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	5323 1752186	1754894	1755479	1755748	1757228	1758797	1759707
į	SEQ NO. (a.a.)	5311	5312	5313		5315	5316	5317	5318	5319	5320	5321	5322		5324	5325	5326	5327		5329
	SEQ NO. (DNA)	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

EP 1 108 790 A2

						_			$\overline{}$							1		T -	$\overline{}$	
5		Function	protein-export membrane protein	hypothetical protein	holliday junction DNA hellcase	holiiday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiofesterase	hypothetical protein	hypothetical protein	hexosyllransferase or N- acetylglucosaminyl- phosphatidylinositol biosynthetic protein	acyltransferase	CDP-diacylglycerol-glycerol-3- phosphate phosphalidyltransferase	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein			
15		Matched length (a.a.)	618	106	331	210	180	250	283	111	170	414	295	78	194	647	400			
20		Similarity (%)	52.0	0.88	81.9	74.3	63.3	78.4	68.6	61.3	61.2	49.3	8.78	0'82	78.4	68.9	81.8			
		Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3			
25	Table 1 (continued)	Homologous gene	Rhodobacter capsulatus secD	um leprae 34	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coll K12 tesB	Streptomyces coelicolor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C spt14	Streptomyces coelicolor A3(2) SCL2,16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2813c	tills thrZ	tilis ywbN			
	Tabl	Hom	Rhodobacte	Mycobacterium leprae MLCB1259.04	Escherichia	Mycobacteri	Escherichia	Escherichia yebC	Escherichia	Streptomyce SC10A5.09c	Mycobacteri H37Rv Rv26	Saccharomy S288C spt1	Streptomyce SCL2, 16c	Mycobacteri H37Rv Rv26	Mycobacteri H37Rv Rv26	Bacillus subtilis thrZ	Bacillus subtills ywbN			İ
35		db Match	prf.2313285A	sp:Y0BD_MYCLE	sp:RUVB_ECOLI	SP:RUVA_MYCLE	sp:RUVC_ECOL!	sp:YEBC_ECOLI	sp:TESB_ECOLI	gp:SC10A5_9	pir.H70570	1083 sp.GPI3_YEAST	gp:SCL2_16	pir.C70571	pir.070571	sp.SYT2_BACSU	sp:YWBN_BACSU			
		ORF (bp)	1932	363	1080	618	663	753	846	474	462	1083	963	857	980	2058	1206	564	546	735
45		Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1783990	1765015	1766442	1766487	1766948	1768034	1769022	1789681	1770327	1772658	1774444	1773893	1774457
50		Initial (nt)	1760734	1761367	1762498	1763134	1763839	1784742	1765860	1765969	1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	1775191
		SEQ NO.	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343	5344	5345	5348	5347
		SEQ NO (DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847

EP 1 108 790 A2

		5 <i>0</i>	45		40	35	25 30		20	15	5
		į					Table 1 (continued)				
SEQ NO DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match		Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
848	5348	1777269	1777646	378		_		_			
849	5349	1777444	1778037	594		-					
1850	5350	1779508	1778102	1407		_		_			
1851	5351	1780168	1779554	615							
1852	5352	1780905	1780507	399		_					
853	5353	1781585	1781019	567	SP. PUAC_STRLP		Streptomyces anulatus pac	36.3	64.2	190	puromycin N-acetyltransferase
854	5354	1781705	1782790	1086							
855	5355	1783281	1784381	1101							
856	5356	1784080	1783382	669							
857	_	5357 1785473	1782894	2580							
828	5358	1786844	1785732	1113							
859	5359	1788829	1786907	1923							
860	5360	1789080	1789562	483							
1981	5361	1789580	1789768	189							
862	5362	1789746	1790057	312							
863	5363	1790889	1790461	429							
1864	5364	1791842	1792438	597	SP:AFUC_ACTPL		Actinobacillus pleuropneumoniae afuC	28.7	28.7	202	ferric transport ATP-binding protein
865	5365	1792428	1793426	888							
998	5366	1793654	1793496	159		_				<u> </u> 	
867	5367	1793714	1794820	1107		-					
868	5368	1795202	1795621	420							
869	5369	1795591	1796181	591	gp:AF088896_20		Zymomonas mobilis díp	27.1	66.7	129	pantothenate metabolism flavoprotein
870		1796186	1797049	864							
871	5371	5371 1797350	1797789	420		\vdash					
								1			

EP 1 108 790 A2

						Γ.	_	Τ	Ţ. <u> </u>	Г			Γ	Γ		ļ _	Т	Γ	Г	Ţ	Г	Т	<u> </u>	T	
5	Function																			1 resolvase			phosphatase		
10	ű.																			transposon TN21 resolvas			protein-tyrosine phosphatase		
15	Matched length (a.a.)																			186		 	164		
20	Similarity (%)																			78.0		 	51.8		
	Identity (%)																			51.1			29.3		
52 Table 1 (continued)	us gene																			P _P			erevisiae /vh1		
Table 1 (Homologous gene																			Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
35	db Match																			sp:TNP2_ECOLI E			sp:PVH1_YEAST		
40	용																			sp:TNP			sp:PVH1		
	OR (bp)	120	735	225	894	156	474	753	423	289	429	465	237	681	960	480	68	285	375	612	1005	375	477	726	423
45	Terminal (nt)	1797850	1798023	1799406	1800368	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	1811936	1812691	1813606	1812460
50	Initial (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	5390 1809761	1810541	1811564	1812215	1812881	1812882
	SEQ NO.	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385		5387	5388	5389		5391	5392	5393	5394	5395
55	SEQ NO.	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

EP 1 108 790 A2

								Т	_	ТТ	ī			Г	П		_			Т	ī	· · · · · ·	T	
5		. Function	sporulation transcription factor	•								hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		рrimase
15		Matched length (a.a.)	216									545					166	298	101			622		381
20		Similarity (%)	65.7									55.2					75.0	95.6	84.2			50.6		64.3
		Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8
25	itinued)	Jene	ilor A3(2)									MS88	:				tamicum	tamicum	tamicum			i recJ		phi-O1205
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSBB TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
40		db Match	gp:SCA32WHIH_6									pir.C72285					PIR:S60891	pir.\$60890	pir.S60889			sp:RECJ_ERWCH		pir.T13302
•		ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1748	219	144	429	534	894	294	213	1299	1878	780	1650
45		Terminal (nt)	1814517	1815651	1816128	1815636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
50		Initial (nt)	1813780	1814863	1815573	1816451	5400 1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	5417 1836675
		SEQ NO.	5396	5397	5398	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
55		SEQ NO.	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917

EP 1 108 790 A2

								_					_	_	$\overline{}$										
5		Function				helicase		phage N15 protein gp57										actin binding protein with SH3 domains					ATP/GTP binding protein		ATP-dependent Clp proteinase ATP-binding subunit
15		Matched length (a.a.)				620		109										422					347		630
20		Similarity (%)				44.7		64.2										49.8					52.5		61.0
		Identity (%)				22.1		36.7										28.7					23.6		30.2
25	ontinued)	s gene				noniae ATCC		gene57										ces pombe					icolor		12 clpA
<i>30</i>	Table 1 (continued)	Homologous gene				Mycoplasma pneumoniae ATCC 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					Streptomyces coelicolor SCSC7.14		Escherichia coli K12 clpA
35 40		db Match				sp:Y018_MYCPN		pir.T13144										gp:SPAPJ760_2					gp:SC5C7_14		sp:CLPA_ECOLI
		ORF (bp)	3789	447	534	1839	375	336	366	618	537	528	798	186	372	438	576	1221	852	1395	594	180	1257	1854	1965
45		Terminal (nt)	1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
50		initial (nt)	1838349	1842235	1842804	1843518	1845483	1845872	1846698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049	1851220	1851473	1852479	1854261	1855058	1855532	1856885	1858763
		SEQ NO.	5418	5419	5420	5421	5422	5423	5424	5425	5426	5427	5428	5429	5430	5431	5432	5433	5434	5435	5438	5437	5438	5439	5440
55		NO (AN	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	1935	1938	937	938	1939	1940

EP 1 108 790 A2

,			$\overline{}$	_	τ-	-			$\overline{}$	\neg	$\neg \tau$		$\neg \Gamma$	T	Т	П			7	\Box	1	1
5	tion					licase					r.	nonophospnate						endonuclease			in	
10	Function					ATP-dependent helicase					hypothelical protein	deoxynucleotide monophosphate kinase					type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothetical protein	
15	Matched length (a.a.)					693					224	208					363	358			56	
20	Similarity (%)					45.9					47.8	61.5					99.7	99.7		_	45.8	
	Identity (%)					21.4					25.9	31.7					99.2	99.7			24.6	
<i>25</i> (panu						s SA20					lor A3(2)	31 gp52					tamicum	tamicum			olor A3(2)	
& Table 1 (continued)	Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52					Corynebacterium glutamicum ATCC 13032 cgltM	Corynebacterium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
<i>35</i>			-								တ် တ	<u> </u>					O «	O &				
40	db Match					Sp.PCRA_STAAU					gp:SCH17_7	prf:2514444Y					prf:2403350A	pir.A55225			gp:SC1A2_16	
	ORF (bp)	474	156	324	312	2355	558	378	465	564	777	702	225	2166	273	6507	1089	1074	1521	717	1818	186
45	Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50	Initial (nt)	1860752	1861320	1861842	1862088	1862945	1865265	1865842	1866328	1866832		1867886	1858895		1871373	1877886	1878312	1879412	1883990	1884936		1887405
	SEO NO.	+	5442	5443	5444	5445	5446	5447	5448		5450	5451	5452		5454	5455		5457	5458	5459		5461
55	SEQ NO.				1944		1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961

EP 1 108 790 A2

5	Function	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein									
15	Matched length (a.a.)	90 pr	163 hy		537 hy				724 ef							1004]								
20	Similarity (%)	70.0	56.4		47.9				52.5							49.1									
	Identity (%)	46.7	33.1		20.7				25.3							20.1	_								
% 52 Table 1 (continued)	ous gene	iodurans	ige phi-gle		s pXO2-16				арв							umA									
Se Table 1	Homologous gene	Deinococcus radiodurans DR 1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichla coil clpB							Homo sapiens numA									
35	db Match	gp:AE001973_4	pir.T13226		gp:AF188935_16				sp:CLPB_ECOU							plr.S23647		-							
40	ORF (bp)	351 gp:A	864 pir.T	330	1680 gp:A	1206	1293	2493	1785 sp.C	621	1113	846	981	879	198	2766 plr.5	900	1251	696	714	1008	1659	1488	399	1509
45	Terminal O	1887688 3	1888231 8	1889859 3	1890028 16	1891832 12	1893388 12	1894739 24	1897374 1	1899233 6	1899804 1	1901066	1902955 9	1902005 8	1903225 1	1903113 2	1905973 6	1906664	1907965 6	1908785 7	1909501	1910642 1	1912333 1	1913973	1914725 1
50	Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900918	1901911	1901975	1902883	1903028	5476 1905878	1906572	1907914	1908660	1909498	1910508	1912300	1913820	1914371	1916233
	SEQ NO.	5462	5463	5464	5465	5466		5468	5469	5470	5471	5472	5473	5474	5475		5477	5478	5479	5480	5481	5482	5483	5484	5485
55	SEQ NO (DNA)	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985

EP 1 108 790 A2

		\top	1	7	Т	\top	$\overline{}$	7	\neg	\top	-T-	7	Т		\neg	Т	_	1					-	_	_
5	Function										Submaxillary anomucin			modification methylase	Deal (including the party)				hypothetical protein			hypothetical protein			
15	Matched length	(1)									1408	T	-	61	T				114 h)	-	-	328 hy			
20	Similarity (%)										49.2			65.6					58.8			54.6			
	Identity (%)										23.2			42.6					38.6			27.1			
25 (pencitor	gene										80			2					rculosis			aschii			
8 8 Table 1 (continued)	Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
35	db Match										pir. T03099			sp:MTE1_ECOLI					pir.H70638			Sp.Y137_METJA			
40	ORF (bp)	360	222	312	645	759	549	930	306	357	4464 pir.T	579	945	171 sp:M	375	1821	201	468	381 pir.H	507	837	942 sp: Y1	624	210	534
45	Terminat ()	1916733	1917165 2	1917329 3	1917564 6	1918703 7	1919646 5	1920347 9	1925695 3	1926038 3	1921547 44	1926259 5	1927245 9	1928381 1	1928908 3	1929059 18	1930990 2	1931421 4	1931935 3	1932373 5	1933522 8:	1934971 9,	1936849 67	1937411 2	1937486 5:
50	Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
	SEQ.	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496		5498	5499	5500	5501	5502	5503	5504	5505	5506	5507	5508	5509
55	SEQ NO (DNA)	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

EP 1 108 790 A2

																							_		
5		Function										surface protein				major secreted protein PS1 protein precursor			DNA toppisomerase III					major secreted protein PS1 protein precursor	
15		Matched length (a.a.)										304				270			597	!				344	
20		Similarity (%)								İ		44.1				54.4			50.9					54.7	
		Identity (%)							_			23.0				30.7			23.8					29.7	
25	tinued)	ene										esp				amicum n) ATCC								micum) ATCC	
30	Table 1 (continued)	Homologous gene										Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli top8					Corynebacterlum glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
35 40		db Match			1							prf:2509434A	i			sp:CSP1_CORGL			sp:TOP3_ECOLI					sp:CSP1_CORGL	
		ORF (bp)	1191	534	588	444	753	303	216	309	885	828	297	381	429	1581	2430	867	2277	2085	891	432	744	1887	291
4 5		Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952546	1956203	1958450	1959765	1960371	1961114	1963139
50		Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	5520 1945891	1946332	1947037	1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114	1963000	1963429
		SEQ NO.	5510	5511	2155	5513	5514	5515	5516	5517	5518	5519	5520	5521	5522	5523	5524	5525	5526	5527	5528	5529	5530	5531	5532
55		SEQ NO.	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022		2024	2025		2027	2028	2029	2030	2031	2032

EP 1 108 790 A2

														-	- -	_	_								$\overline{}$		$\overline{}$
5				ļ										- - - - - - - - - - - - - - - - - - -	binding protein						ļ						
10	Function				thermonuclease	1									single stranded DNA-binding protein								serine protease				
15	Matched length				227					į					225								249				
20	Similarity (%)				57.7										59.1								52.6				
	Identity (%)				30.4					_					24.9								25.7				_
<i>25</i> (panu	976				S nuc						_												gSP24D				
8 Sapple 1 (continued)	Homologous gane				Staphylococcus aureus nuc										Shewanella sp. ssb								Anopheles gambiae AgSP24D				
35	db Match				Sp:NUC_STANU							·			prf.2313347B								sp:S24D_ANOGA				·
	ORF (bp)	1230	1176	357	684	147	564	1452	459	1221	1419	591	396	237	624	579	462	507	588	333	558	570	912	693	366	747	<u>8</u>
45	Terminat (nt)	1963514	1964727	1965911	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1873737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979808	1980885	1981657	1982028	1982817	1981912
50	Initial (nt)	1964743	1965902	1966267	1966301	1967435	1967604	1968264	1969745	1970254	1971672	1973147	1973809	1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	1980965	1981663		1982091
	SEO	5533		5535	5536	5537	5538	5539	5540	5541	5542	5543	5544	5545	5546	5547	5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	5558
55		2033		2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058

EP 1 108 790 A2

5	Function								integrase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase					major secreted protein PS1 protein precursor	integrase
15	Matched length (a.a.)								406	124	117		31	43	270			_		153	223
20	Similarity (%)								55.9	94.4	84.6		86.8	88.4	53.7					37.0	56.1
	Identity (%)								29.6	83.9	70.9		80.7	74.4	31.1					25.0	28.7
S S Table 1 (continued)	Homologous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL 2005 ISaB 1	Brevibacterium lactofermentum CGL2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutarnicum orf1	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
35	db Match	-							Sp.VINT_BPML5 My	gsp:R23011 Bre	gsp:R23011 Bre		gsp:R21601 Bre	pir.S60889 Cory	gp:SCJ11_12 Str					1584 sp.CSP1_CORGL (Br	sp:VINT_BPML5 My
	ORF (bp)	363	273	264	234	342	273	303	1149	390	417	207	114	135	828	354	891	432	744		687
45	Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985364	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
50	Initial (nt)	1983186	1983611	1983918	5562 1984217	5563 1984387	1985092	1985373	1986590	5567 1987896	1988303	1988383	1988483	1988664	1989605	1990667	1990764	1991620	1992538	1994121	1995294
	SEQ NO.	5559	5580	5561	5562		5564	5999	5566	5567	5568	5569	5570	5571	5572	5573	5574	5575	5576	2257	5578
55	SEQ NO.	2059	2060	2061	2082	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078

	1	orter				Stein	C.	uctase					osphate					hate		
	Function	sodium-dependent transporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase	0	hypothetical protein	hypothetical protein	ribonuctease D	1-deoxy-D-xylulose-5-phosphate	synthase	RNA methytransferase		hypothetical protein	deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein	
	Matched length (a.a.)	88	92			233	384	128		232	201	371	8.8		472		268	140	150	
	Similarity (%)	76.1	81.5			64.4	71.9	67.5		77.2	78.6	52.8	78.5		52.3		82.7	82.1	7.07	
	identity (%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7	25.9	, s	3	25.4		38.1	55.0	48.0	
Table 1 (conlinued)	Homologous gene	Helicobacter pylori 26695 HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis	Haemophilus influenzae Rd	KWZU MIOSSO IIIO	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9.09 dut	Mycobacterium tuberculosis H37Rv RV2698	
	db Match	pir.F64546	SD:YXAA BACSU			pir.C70968	pir.E70968	gp:AF128284_2		pir:H70968	pir.C70528	MARIN		gp:AB026631_1	pir.E72298		pir.C70530	sp.DUT_STRCO	pir.E70530	
	ORF (bp)	308	432		336	989	1254	408	426	969	624	1261		1908	1236	282	86.	447	549	207
	Terminal (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1999949	1999707	2000521	2002112	2002334	1000001	2003402	2005462	2006979	8	2007738	2008798	2008876
	Initial (nt)	1996088			1997168	1997545	1998289	1999542		2001216	2001489	20000	2002012	2005309	2006697	2006698		2008184	2008250	5596 2009082
	SEO	5579 1					5584	5585					200	5590	5591	5592		5594	5835	5596
	SEQ	(DNA)		2087	2082		2084			2087	20AB	3	5083	2090	2091	2092	2093	2094	2095	2096

EP 1 108 790 A2

	_										-					_ [
5		Function	ein	essor protein	lucokinase	sigma factor or RNA polymerase transcription factor	mbrane protein		tein	mbrane protein	tein		ıtein	repressor or repressor	ition protein	-epimerase		stein	t RNA helicase	
10		J.	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RN transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporufation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase	
15		Matched length (a.a.)	100	198	248	200	422		578	127	76	523	144	228	11	329		305	661	
20		Similarity (%)	81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	98.6	64.0	99.1		79.0	50.7	
		Identity (%)	58.0	38.4	54.4	98.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		45.3	24.4	
25	ntinuea)	gene	erculosis	2 suhB	erculosis 3K	lutamicum	0		erculosis	erculosis	erculosis	icolor A3(2)	gutamicum 1	glutamicum	ofaciens	glutamicum vibacterium alE		berculosis	erevisiae	
<i>30</i>	lable 1 (confinued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamlcum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 db:R	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1	
35 40		db Match	pir.F70530	SP.SUHB_ECOLI	sp.PPGK_MYCTU	prf.2204286A	sp:YRKO_BACSU		sp:Y065_MYCTU	pir.H70531	plr:G70531	gp:SCH5_8	prf.2204286C	pir:140339	GP:AF010134_1	sp.GALE_BRELA		pir.E70532	2550 sp.MTR4_YEAST	
		ORF (bp)	291	818	828	1494	1335	537	1710	636	237	1533	432	684	234	987	1323	957	-	
45		Terminal (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	2023945	2023948	2026379	2029043	
50		Initial (nt)	2009570	2010539	2010555	2011863	2015496	2016121	2017966	2018119	2018202	2018744	2020293	2022266	2022548	2022959	2025270		2026494	-
		SEQ NO.	+	5598		2600	5601	5602		5604	5605	9099	5607	5608	5609		5611	5612	5613	 -
55		SEQ NO.		2098	+	2100	2101	i		2104	2105	2106	2107	2108	2109	2110	2111	2112	2113	

EP 1 108 790 A2

5	Function	hydrogen peroxide-inducible genes activator		ATP-dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uradi permease	ATP/GTP-binding protein			dlaminopimelate epimerase
15	Matched length (a.a.)	299		1298	145		222	245	320	592	262	345	549	84		407	419			269
20	Similarity (%)	65.6		76.2	86.2		71.8	67.8	55.6	64.0	62.6	55.7	9.69	71.6		70.5	0.08			64.7
	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
52 Table 1 (continued)	us gene	жуR		ırpA	wuligerus nrdR		inR	K12 gatR	elicolor A3(2)	ermophilus ptsl	<12 glpR	sulatus fruK	<12 fruA	ermophilus XL-		cus pyrP	diae orf11*			uenzae Rd IpF
•	Homologous gene	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophilus XL-65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 HI0750 dapF
40	db Match	sp.OXYR_ECOLI		Sp.HRPA_ECOLI	gp:SCAJ4870_3		sp:LEXA_BACSU	Sp.GATR_ECOLI	gp:SCE22_14	sp:PT1_BACST	sp.GLPR_ECOLI	sp:K1PF_RHOCA	sp:PTFB_ECOLI	sp:PTHP_BACST		Sp.PYRP_BACCL	gp:AF145049_8			831 SP.DAPF_HAEIN
	ORF (bp)	981 \$	1089	3906	450 g	420	s 969	777 s	960	1704 s	792 s	s 066	1836 5	287	582	1287	1458 g	786	537	831 \$
45	Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051106	2051842	2051845
50	Initial (nt)	2029177	2031365	2031478	2035880	2036409	2036812	5620 2037815	2038591	2041321	2041728	2042519	2043736	2045762	2047295	2048606	2050107	2050321	2051306	2052675
	SEQ NO.	5614	5615	5616	5617	5618	5619		5621	5622	5823	5624	5625	5626	5627	5628	5629		5631	5632
55	SEQ NO (DNA)	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

EP 1 108 790 A2

							_											
	Function	tRNA delta-2. isopentenylpyrophosphate transferase		hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transport ATP-binding protein	hypothetical membrane protein
	Matched fength (a.a.)	300		445			190	494	242	1.1	225	273	142	29		197	223	228
	Similarity (%)	68.7		7.5.7			63.7	86.4	9.66	73.0	100.0	9.68	6.98	71.6		61.4	69.5	58.8
	identity (%)	40.0		48.5			29.0	68.4	99.6	66.0	100.0	99.3	34.5	40.3		33.0	33.2	24.6
Table 1 (continued)	Homologous gene	Escherichia coli K12 miaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicum ATCC 13032 gluA	Neisserla gonorrhoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
	db Match	sp:MIAA_ECOL!		pir:870506			pir.C70506	sp:Y195_MYCLE	sp:GLUA_CORGL	GSP:Y75358	sp:GLUC_CORGL	sp:GLUD_CORGL	sp:RECX_MYCLE	pir:A70878		sp:BIOY_BACSH	sp:POTG_ECOLI	pir.F69742
	ORF (bp)	903	675	1359	1020	1023	689	1566	726	219	684	819	597	234	738	576	669	609
	Terminal (nt)	2052684	2053609	2055761	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866	2068474
	Initial (nt)	2053586	2054283	2054403	2055743	2055765	2057788	2059420	2059774	5641 2060414	2061629	5643 2062441	5644 2063894	2065627	2066404	2066566	2067168	5649 2067866
	SEQ NO. (a.a.)	5633	5634	5635	5836	5637	5638	5639	5640	5641	5642	5643	5644	5645	5646	5647	5648	5649
	SEQ NO. (DNA)	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149

												Т	Т	Т			_		- 1	- 1		•	- 1	- 1	
5		-		35kD protein)		ng protein)	e induced	phosphate		Imococcal		rotoin	- 13	protein E	_						nosphate		tein S15	356	
10		Function	hypothetical protein	Langibatical profeto (35kD protein)	אלאסווופוורפו אייייי	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal	surface protein A)		(ellurite resistance protein	stage III sporulation protein	hypothetical protein		hypothetical protein	hypothetical protein			quanosine pentaphosphate	synthetase	30S ribosomal protein	nucleoside hydrolase	
15	Matched	length (a.a.)	228		ñg.	83	165	160	117	;	3		328	845	216		645	250			1	/42	68	319	
20		Similarity (%)	78.5	1	89.6	78.3	68.5	72.5	52.1		0.0		59.8	64.6	61.0		99.4	9.66				85.3	88.8	63.3	l l
		Identity (%)	41.7		72.5	54.2	41.8	38.8	24.8		90.0		31.0	38.0	33.3	3	99.1	99.2				65.4	64.0	35.1	
25 G			+	\dagger	250	sis	ae R6X	pgsA		9	9			IE	A3(2)		nicum	nicum mentum)				sdb sno			
30	lable 1 (continued)	Homologous gene	sisolucial militarcialosis	בייים בייים ווייים ביים בייים בייים בייים בייים בייים בייים בייים בייים בייים בייים בייים בייים בייים בייים בייים	Mycobacterium tuberculosis H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X	Streptococcus pyagenes pgsA	Arabidopsis thallana	1 37.1 101 10.20	Streptococcus predingings DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spolliE	Streptomyces coelicolor	SC4G6.14	Corynebacterium glutemicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2				Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	Leishmania malor	
35				٤		ΣÏ	<u> </u>	1	4 4	<u> </u>				\top	1					1					
40		db Match		pir:B60176	sp:35KD_MYCTU	pir:H70878	SP.CINA STRPN	prt.2421334D	plr.T10688		gp:AF071810_1		742110295D	PILE PACSI	sp.or.or	gp:SC4G6_14	sp.YOR4_CORGL	Sp:YOAP_BRELA				prf:2217311A	pir sha700		pii. 63 10300
		ORF (hp)	-+	069	828 s	321 p	5.18			-	117	813	-	_	7/03	633	2154	750		8	264	2259	787	+	240
45		Terminal	-+	2069392	2068556	2089616	2080007	2070519		- 1	2071740	ACACCAC.	202103	207702	2073294	2076392	2077122	2080387		2082813	2082105	2082932		≼ [≀	2085879
50		Initial		2068703 2	2069383 2	2069936		2070312		C151/07	2071624	9900400	2007/07	2072905	2076056	2077024	2079275	2081136		2082115	2082368	2085190		2085/02	5667 2086826
		SEO		5650 20		5652 20	- -	5653 2		2655	5656				5659	9999	5661	5662		5663	5664	5865	_		
<i>ee</i>		SEQ SI		2150 56		2152	_			2155	2156		_	$\overline{}$	2159	2160	2161			2163	2164	2165		2166	2167
55		I is Z	. 😐	10	, C	1 0	٧		~ L_'		<u> </u>											_			

EP 1 108 790 A2

ſ		9	П	T	T									اء				<u> </u>	-	1	
5	uo.	rahoflavin kina	(a)	synthase B				ucible protein f		actor A	n factor IF-2			ince protein mination facto		ė.	otein	ystem permea	lease	system ABC- sinding protein	
10	Function	esecial cive Bodin, die fore longitum 4:4	and FAD synthetase)	tRNA pseudouridine synthase	hypothetical protein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	ribosome-binding factor	translation initiation factor IF-2	of profession	nypornetical protein	n-utilization substance protein (transcriptional termination/antitermination factor)		hypothetical protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC- transporter ATP-binding protein	
15	Matched	(B.B)	329	303	47	237	273	433	308	108	1103	1	63	352		165	534	337	292	552	
20	₹	<u>\$</u>	79.0	61.7	73.0	62.5	68.9	78.8	70.8	70.4	62.9		66.3	71.0		65.5	60.9	69.4	69.2	81.3	
	≥	£	56.2	32.7	65.0	42.2	46.9	51.0	36.7	32.4	37.7	4	44.6	42.3		34.8	25.3	37.7	38.4	57.6	
<i>25</i>	,	2	C 6872 ribF	truB		olor A3(2)	rculosis	erculosis F	erculosis	rbfA	Pro DW4 infB	20 Per A 2(2)	color As(2)	3 nusA	i	erculosis	8 dppE	12 dppB	90KC	ppD	
30 salet	SON DESCRIPTION OF THE PROPERTY OF THE PROPERT	Post sondown	Corynebacterium ammonisgenes ATCC 6872 ribF	Bacillus subtilis 168 truB	Corynebacterium ammoniagenes	Streptomyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis H37Rv Rv2837c	Bacillus subtilis 168 rbfA	Stlomotella aurantiaca DW4 infB	Stigmateria adianic	Streptomyces coelicolor A3(2) SC5H4,29	Bacillus subtilis 168 nusA		Mycobacterium tuberculosis H37Rv Rv2842c	Bacillus subtilis 168 dppE	Escherichia coli K12 dppB	Racillus subtilis spo0KC	Mycobacterium tuberculosis H37Rv Rv3663c dppD	
35		db Metch	SP.RIBF_CORAM	1_	-	gp:SC5A7_23	pir:870885	pir:G70693	plr:H70693	110040	\top	sp:IF2_STIAU	gp:SC5H4_29	sp:NUSA_BACSU		pir:E70588	SO DPPE BACSU	I COS REGOVE	34.4700330C	pir.H70788	
40	<u> </u>				1				996 pir.			3012 sp.	336 gp:	.ds 966	1254	534 pir	1602 50				$\frac{1}{2}$
	1 00		1023	1891	+	1 651	98	1305		+	\neg	一		+	+-	┼	+-	-			1
45	lan ima	(ut)	2086919	2088863	2087954	2089218	2089861	2090751	2092051		2083055	2093712	2096844	2097380	2099815	 -	_	ع إ	7 0	2105703	
50	13.7	int)	2087941	20087073	2088181	5671 2089868	2090664	2092055	2093046		2093501	5676 2096723	2097179	2098375	2098562		0400040	_		2102973	
	SEO	9	- -			5671	5672	5673	5674		5675	5676	5677	5678	5679		 -	- +		5683	-
55	SEO		_ - -		2170			2173	2174		2175	2176	2177	2178	2179	2180		1812	2182	2183	_

EP 1 108 790 A2

5		Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase				methionine aminopeptidase	penicitin binding protein	response regulator (two-component	system response regulator)	two-component system sensor	hypothetical membrane protein
15	Matched		976	243		342	237	488	151	338	466				252	830		216	424	360
20	_	Similarity (%)	84.6	65.0	60.7	69.6	73.8	68.7	62.3	65.7	76.8				75.8	2 4 4 4	3	72.2	56.8	58.1
		identity (%)	67.0	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0				,1,		67.3	44.0	29.5	24.4
25 (9 25	liminaca)	gene	erculosis oS	color A3(2)	roides ATCC	s bchl	freudenreichii	gens NCIB	icolor A3(2)	serculosis	cia AC 1100			į		.12 map	voligerus pcok	diphtheriae	diphtheriae	iodurans
30 sider	anne i	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicalor A3(2) SC5H1,10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100 gor					Escherichia coll K12 map	Streptomyces clavuligerus pcok	Corynebacterium diphtherlae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279
35	-			क क	-						+				_				4	3_70
40		db Match	sp:SYP_MYCTU	gp:Scc30_5	Sp. BCHD_RHOSH	or 2503462AA	prf:2108318B	1422 Sp:YPLC_CLOPE	gp:SC5H1_10	pir.A70590	sp.GSHR_BURCE						prf.222426BA	prf:2518330B	prf.2518330A	gp:AE001863_70
		ORF (bp)	1764	735	759	1101		1422	906	1014	1395	942	474	357	729	789	1886	630	1149	5 957
45		Terminal (nt)	2105801	2108386	2108389	2400155	2110434	2112659	2112717	2116774	2118310	2117015	2119080	2119495	2120356	2120359	2121298	2123219	2123848	2126045
50		Initial (nt)	4		2109147	-+-	2111183	2111238	2113616	2115761	2116916	2117956	2118607	5696 2119139	2119628	2121147	2123161		2124996	5702 2125089
		SEO					5686 2						5695		5697	5698	-		5701	
55		SEQ				—÷−	2188			2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202

EP 1 108 790 A2

5		Function	ABC transporter		hypothetical protein (gcpc protein)		hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachometis	1-deoxy-D-xylulose-5-phosphate reductoisomerase				ABC transporter ATP-binding protein	pyruvate formate-iyase 1 aclivating enzyma	hypothetical membrane protein	phosphatidate cytidylyltransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2
15	-		ABC	1	Ě	+				\dashv	+	\dashv	$\neg \uparrow$			\neg	\neg		-	7	\neg
		Matched length (a.a.)	225		329		405	147	312				245	356	96	294	£8	5		280	254
20		Similarity (%)	71.1		73.8		73.6	43.0	42.0				75.1	78.0	74.5	56.5	84.3	43.1		76.8	83.5
		Identity (%)	37.3		44.3		43.0	36.0	22.8				37.1	66.0	41.5	33.3	47.0	28.4		49.6	54.7
25	(g)	<u>-</u> -		j			sis						388	sis	osis	e e		sa pyrH		A3(2)	
30 .	Table 1 (continued)	Homologous gene	Bacillus subtilis 168 yvrO		Escherichia coli K12 gcpE		Mycobacterium tuberculosis H37Rv Rv2869c	Chlamydia trachomatis	Escherichia coli K12 dxr				Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2) SC2E1.42 tsf	Bacillus subtilis rpsB
35			8				ΣI	-0-						\vdash			Ī				
40		db Match	prf.2420410P		Sp:GCPE_ECOLI		pir:G70886	GSP:Y37145	sp.DXR_ECOLI				pir:B72334	sp:YS80_MYCTU	pir.A70801	sp:CDSA_PSEAE	SP.RRF BACSU	1		sp:EFTS_STRCO	pir.A69699
		ORF (bp)	980	162	1134	612	1212	645	1176	441	88	1578	-i	1098	258	855	555	╌	86	952	816
45		Terminal (nt)	2126753	2126926	2127350	2129461	2128669	2130950	2129903	2131762	2131247	2131825	2133406	2134454	2136141	2136235	2137286	2137936	2139854	2139003	2140071
50		Initial (nt)	2126064	2127087	+	+		2130306	2131078	2131322	2131726			2135551	2135884	2137089	2137840	2138664	2138994		2140886
		SEO	5703					5708	5709	5710	5711	57.12	5713	5714	5715	5718	5717	\rightarrow			5721
55			(UNA)			2208		2208	2209	2210	2211	2212	22.13	2214	2215	2216	2217	2218	2219	2220	2221

EP 1 108 790 A2

		T	T	T												ည်	ဋ	tein	
5	Function	hypothetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII		signal peptidase	Fe-regulated protein		50S ribosomal protein L19	thiamine phosphate pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyme thiS (thIG1) protein	thiamine biosynthetic enzyme thiG protein	molybdopterin biosynthesis protein	
15	Matched length (a.a.)	120	297	395	504	119	101	190		285	323		=	225	376	62	251	437	
20	Similarity (%)	58.0	68.7	66.8	75.8	72.3	96.0	69.5		61.1	59.1		88.3	6.09	64.1	74.2	76.9	56.8	
	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.6		32.3	25.4		70.3	28.4	34.0	37.1	48.2	30.2	
25 (D		sis		sis	osis	osis	osis	Rd		K21	sirA		Sids solic	1.1	r A3(2)	S	ပ္ထ	ų	
& Samuel (Continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd H11059 rnhB		Streptomyces lividans TK21 sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rplS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2) SC6E10.01	Escherichia coll K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF	
<i>35</i>		i	-					-					CST	CSU	-	F	O.L.	4	
40	db Match	sp:YS91_MYCTU	prf:2417318A	sp:YX27_MYCTU	sp:YX28_MYCTU	sp:YX29_MYCTU	sp:YT01_MYCTU	sp:RNH2_HAEIN		prf.2514288H	prf.2510361A		sp:RL19_BACST	SP:THIE_BACSU	gp:SC6E10_1	sp:THIS_ECOLI	sp:THIG_ECOLI	1134 prf.2417383A	
	ORF (bp)	504	924	1182	1521	366	303	627	792	786	936	213	339	663	1080	185	780	 -	
45	Terminal (nt)	2141760	2141763	2142885	2144066	2145576	2146264	2146566	2148022	2147261	2149166	2149359	2149634	2150997	2152118	2152329	2153113	2154191	
50	Initial (nt)	2141257	2142686	\	2145586	2145941	2146586	2147192	2147231		2148231	2149571	2149972	5734 2150335	2151039	2152135	5737 2152334	5738 2153058	
	SEG	\div	5723		5725	5726	5727	5728	5729		5731	5732	5733	+	5735	5736	<u> </u>	5738	: -
55		(UNA)	2223	-	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238	<u>:</u> نــ

EP 1 108 790 A2

5		Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-muconate cyclolsomerase				fRNA (guanine-N1)- methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein				cell division protein
15		Matched length (aa)	776	334	456	65	350				273	210	172	69	83	198	258	318	559				505
20	į	Similarity (%)	78.7	65.3	78.3	80.0	66.3				64.8	57.6	72.1	68.7	79.5	61.7	69.1	63.8	78.2				66.1
		Identity (%)	58.6	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	28.6	35.5	58.7				37.0
25	Table 1 (continued)	Homologous gene	Bordetella pertussis TOHAMA I	Bacillus subtills 168 degA	ihila pneumoniae bhl	Spinacia oleracea chloroplast	Pseudomonas putida pcaB				Escherichia coll K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 Jhp0839	Bacillus subtilis 168 rpsP	ılus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshil OT3 mtrA	Bacillus subtilis 168 ffh				Escherichia coli K12 ftsY
	Tal	Hor	Bordetella tex	Bacillus su	Chlamydophila p CWL029 ybhl	Spinacia ol	Pseudomo				Escherichi	Streptomyc SCF81.27	Mycobacterium lepr MLCB250.34. rimM	Helicobacto	Bacillus su	Mus musculus inv	Streptococ	Pyrococcus	Bacillus su				Escherichia
<i>35</i>		db Match	sp.TEX_BORPE	pir.A36940	pir:H72105	prf:2108268A	sp:PCAB_PSEPU				sp:TRMD_ECOLI	gp:SCF81_27	SP.RIMM_MYCLE	pir:B71881	pir:C47154	pir.T14151	prf.2512328G	prf:2220349C	sp:SR54_BACSU				1530 SP.FTSY_ECOLI
		ORF (bp)	2274 sp	975 pi	1428 pi	219 pr	1251 sp	66	393	069	819 sp	648 gp	513 sp	348 pir	495 pir	576 pir	867 pr	876 pr	1641 sp	633	417	699	1530 sp
45		Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2182198	2163745	2163748	2164737	2164815	2166098	2166124	2166990	2167944	2171058	2172131	2172877	2173759
50		Initial (nt)	2156733	2157721	2159181	2159237	2160537	2160670	2161503	2162196	2163014	2163098	2164260	2164390	2165309	2165523	2166990	2167865	2169584	2170426	2171715	2172209	2175288
		SEQ NO. (a.a.)	5739	5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750	5751	5752	5753	5754	5755		5757	5758	5759
55		SEQ NO.	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254		2256	2257	2258	2259

EP 1 108 790 A2

							$\overline{}$		_	\neg					- 1	- T	1		- 1	- 1		
5		E		20 000	precursor		ation protein			tor	ane protein			protein	P-DNA					İ		
10		Function			glucam 1,4-aipna-glucosidase or glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein	hypothetical protein	transport protein	ABC transporter	hypothetical protein	
15	100000	Matched length (a.a.)			1144		1206	92		305	257			188	285	221	176	238	559	541	388	
20		Similarity (%)			46.2		72.6	73.9		0.09	73.5			76.6	66.7	76.5	62.5	76.9	55.6	58.8	62.6	
		Identity (%)			22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8	50.0	28.3	28.6	35.3	
25 3							sis	sis						də	M or	-	sis	sis	:	ပ္က	A3(2)	
·	lable 1 (confinued)	Hamologous gene			Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581,28c			Dichelobacter nodosus gep	Escherichla coli K12 mutM or fpg	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escharichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
35 40		db Match			SP. AMYH_YEAST		SP:Y068_MYCTU	sp.ACYP_MYCTU		SP:YFER ECOLI	pir:S72748			gp:DNINTREG_3	sp:FPG_ECOLI	pir.869693	sp:Y06F_MYCTU	sp:Y06G_MYCTU	orf.2104280G			
		ORF (bp)	159	702	3393	963	3465	282	1854	858	831	183	1	615	828	741	534	789	1644	1530		441
4 5		Terminal (nt)	2175888	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187692	2188313	2189166	2189906	2190540	2103165	2	216	2198007
<i>50</i>		Initial (nt)	2176046	2176402	2179502	2180918	├	2183391	2185258	2186208	5768 2186299	2187160	2187679	2188306	2189170	2189906		2191328	2101522			5779 2198447
		SEQ NO.	+	•		5763	5764	5765	5766		5768	5769		5771	5772	5773	5774	5775	£77E			
55		SEQ NO.		- -	-	2263		2265	22RB	_		2269	2270	2271	2272	2273	2274	2275	37.00	2277	2278	2279

EP 1 108 790 A2

	_				_	\neg	<u> </u>	$\neg \tau$	Т				Τ	9	I			j	ا≘ے
5					ten		, , ,	sylase /		liyceryl	sphate ite synthase	ane protein		cyclohydrolas		nate	imino-5- ooxamide	ısferase	sistance proteir rensport protei
10		Function	hypothetical protein	peptidase	sucrose transport protein			maltodextrin prospriorylase glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein		phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenical resistance protein or transmembrane transport protein
15		Matched length (a a)	405	353	133			814	295	564	169	228		68	258	241	245	210	402
20	İ	Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8		79.8	7.78	94.0	97.6	92.4	54.0
		Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	. 29.6	29.4	_	52.8	97.3	94.0	95.9	86.7	25.6
<i>25</i>	Jed)	a)	SB8	ည	5			nalP	ļ 	FDA 485	0	losis		les ATCC	micum	micum	micum	micum	66 cmlR
<i>30</i>	Table 1 (conlinued)	Homologous gine	Thermotoga maritima MSB8 TM0896	Campylobacter Jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485	Emericella nidulans trpC	Mycobacterium tuberculosis	137Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 his!	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum ASO19 hisH	Streptomyces lividans 66 cmlR
35			₽₽	25	₹		_	F	č	\ \(\text{S} \)	T	- ≥	픠		0 4	104	100		\top
40		db Match	pir.A72322	sp:HIPO_CAMJE	pir.S38197			prf.2513410A	SP.YFIE BACSU	SP.LGT STAAU	Sp:TRPG_EMENI		pir:H/USSS	SP.HIS3_RHOSH	sp.HIS6_CORG	prt:2419176B	gp:AF051846_1	gp:AF060558_1	S SP:CMLR_STRU
		ОЯР (Фр)	1284	1263	336	135	276	2550	000	948	5		657	354	774	825	738	633	1266
45		Terminal (nt)	2199758 1	2201070	2201073	2201450	2201594	2201992	2004601	2207302	2208367		2209232	2209920	2210273	2211051	2211882	2212641	2214321
50		Initial T	2198475	2199808	2201408	\div	i –	 -	-	2203490			2209888	2210273	2211046	2211875		2213273	
		S O S		5781 2	5782 2					5787			5789	5790	5791	5792	5793	5794	5795
55			2280 5	2281 5	2282 5				<u>-</u> -	2280			2289	2290	2291	- 		2294	2295

EP 1 108 790 A2

		_	,																	
5	Function		imidazoleglycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothetical protein
15	Matched length (aa)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
20	Similarity (%)		81.8	79.3	85.7	54.4			59.7	60.8	75.5	76.0	55.2	60.9	64.4	68.3	71.1	0.89	9.79	73.5
;	Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
25 D	_		(3(5)	43(2)	sı	mbe			cP-1	4P1	treX	sis	43(2)	Ą						
S S Table 1 (continued)	Hamologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium melitoti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtills 168 yvrC	Escherichia coll K12 ytfH
40	db Match		sp:HIS7_STRCO	sp:HISB_STRCO	sp:HISX_MYCSM	gp:SPBC215_13			pri:2321269A	pir RPECR1	prf:2307203B	pir.E70572	72_23238:dg	prf. 2503399A	Sp:GALR_ECOLI	sp:FHUC_BACSU	prf:2423441E	pir:G70046	pir:G70046	sp:YTFH_ECOLI
	ORF (bp)	225	606	1098	1326	1200	651	309	642	561	2508	801	774	1011	966	798	1038	348	594	441
45	Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
50	Initial (nt)	2215863	2216474	2217591	2218925	2219159	2221109	2221611	2221828	2221958	2222528	2225149	2226763	2227779	2227906	2229896	2230937	2231294	2231932	2232456
	SEQ NO. (a.a.)	96/9	5797	5798	5799	5800	5801	5802	5803	5804	5805	5806	5807	5808	5809	5810	5811	5812	5813	5814
55	SEQ NO.	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

EP 1 108 790 A2

		· I	Т	丁	$\neg \neg$	Т	Т	丁	T	ے	$\neg \neg$	T		7		\Box	丁	6		\neg		\neg
5	uo.	epsilon chain		se synthase						nase alpha cha			.se		951			utamicum AS0		nsitive protein	tein precursor	ane protein
10	Function	DNA polymerase III epsilon chain		maltooligosyl trehalose synthase	hypothetical protein					alkanal monooxygenase alpha chain	hypothetical protein		maltooligosyttrehalose trehalohydrolase	hypothetical protein	threonine dehydratase			Corynebacterium glutamicum AS019	DNA polymerase III	chloramphenicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein
15	Matched length (a.a.)	355		814	322					375	120		568	214	438			415	1183	279	149	198
20	Similarity (%)	50.1		58.6	52.8					54.4	79.2		72.4	72.4	99.3			49.6	80.5	73.8	55.7	64.7
	Identity (%)	23.4		42.0	27.6					20.5	58.3		46.3	36.5	99.3			22.7	53.3	37.6	21.5	22.7
25 D		13(2)								ns	A3(2)		7		icum			ų.	A3(2)	0	.72 hisJ	AF2388
& Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCIB.12		Arthrobacter sp. Q36 treY	Deinococcus radiodurans DR1631					Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.05		Arthrobacter sp. Q36 treZ	Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 ilvA			Catharanthus roseus metE	Streptomyces coeticolor A3(2) dnaE	Escherichia coli K12 rarD	Campylobacter jejuni DZ72 hisJ	Archaeoglobus fulgidus AF2388
35		S St		₹		!					<u> </u>		¥					O	Ø €			▼
40	db Match	gp:SCI8_12		pir:S85789	gp:AE002006_4					sp:LXA1_PHOLU	gp:SC7H2_5		plr:S65770	SP:YVYE_BACSU	sp:THD1_CORGI			pir:S57636	prf.2508371A	SP. RARD_ECOL	sp:HISJ_CAMJE	pir:D69548
	ORF (bp)	1143	909	2433	1023	399	198	189	1056	1044	378	231	1785	651	1308	507	156	1203	3582	940	468	918
45	Terminal (nt)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	2241738	2242129	2244819	2242393	2244864	2246892	2246295	2247008	2248358	2252856	2253659	2254642
50	Initial (nt)	2232828	2234158	2234852	2237331	2239092	2320 5820 2240042	5821 2240246	2240563	2240681	2242115	2242359	2243035	2243043	2246171	2246386	2246450	2248208	2251939	5833 2252017	5834 2253192	5835 2253725
	SEQ NO.	5815	5816	5817	5818	5819	5820	5821	5822	5823	5824	5825	5826	5827	5828	5829	5830	5831	5832	-		
55	SEQ NO (DNA)	 -	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335

					-			\neg	\neg	\top	T	\neg	\neg	\neg		\neg			$\neg \top$	╗
5	Function	short chain dehydrogenase or general stress protein	dlaminoplmelate (DAP) decarboxylase	cysteine synthase		ribosomal large subunit pseudouridine synthase D	lipoprotein signal peptidase		oleandomycin resistance protein		hypothetical protein	L-asparaginase	DNA-damage-inducible protein P	hypothetical membrane protein	transcriptional regulator		hypothetical protein	isoleucyHRNA synthetase		
15 .	Matched length (a.a.)	280	445	314		326	154		550		158	321	371	286	334		212	1066		
20	Similarity (%)	80.0	47.6	64.3		61.0	61.7		64.0		57.6	62.0	60.7	61.5	73.1		67.0	65.4		
	identity (%)	48.2	22.9	32.8		36.5	33.8		36.4		36.7	31.2	31.8	31.5	44.3	_	42.0	38.5		
% (bennilined)	us gene	38 ydaD	ruginosa lysA	phus CH34		(12 rluD	orescens NCIB		tibloticus ofeB		thropolis or17	rmis	412 dinP	K12 ybiF	elicolar A3(2)		elicolor A3(2)	cerevisiae : ILS1		
30 Table 1	Homologous gene	Bacillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 lspA		Streptomyces antibioticus ofeB		Rhodococcus erythropolis or117	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolar A3(2) SCF51.08		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
35	db Match	sp:GS39_BACSU E	SP.DCOA_PSEAE F	SPICYSM_ALCEU		sp:RLUD_ECOLI	sp.LSPA_PSEFL		pir.S67863		prf.2422382P	sp:ASPG_BACLI	Sp.DINP_ECOU	sp:YBIF_ECOLI	gp:SCF51_6		gp:SCF51_5	sp:SYIC_YEAST		
	ORF (bp)	876 sp:	1287 sp.	951 sp:	579	- ds	534 sp	1002	1650 pir	303	900	975 sp	1401 sp	858 sp	1002 95	132	627 9	3162 sp	216	1095
45	Terminal (2254683	2255738	2258362	2259421	2260002	2260934	2262689	2264499	2265298	2264509	2266394	2266897	2268388	2269260	2270435	2270258	2270988	2274473	2274767
50	Initial (nt)	1 %	2257024	2259312	2259999	2260931	2261467	5842 2261688	5843 2262850	5844 2264996	2265108	2265420		2269245	2270261	2270304		2274149	2274688	2275861
	SEO	5836	5837	5838	5839	5840	5841	5842	5843			5846	5847	5848	5849	5850		5852	5853	5854
55	<u> </u>	(DNA) 2336	2337	2338	2339	-	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354

_				_					i		- 1	- 1	- 1	- 1		i
5	Function	hypothetical membrane protein	hypothetical protein (putative YAK 1 protein)	ırotein	rotein	vrotein	rotein	cell division initiation protein or cell division protein	UDP-N-acetylmuramatealanine ligase	UDP-N-acetylglucosamine-N- acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N- acetylglucosamine pyrophosphoryl- undecaprenol N-acetylglucosamine	ırotein	UDP-N-acetylmuramoylalanine-D- glutamate ligase			phospho-n-acetylmuramoyi- pentapeptide	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-atanyl ligase
10		hypothetical m	hypothetical p protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initi division protein	UDP-N-acety ligase	UDP-N-acety acetylmuram) pyrophospho acetylglucosa undecapreno	cell division protein	UDP-N-acetylmu glutamate ligase	1		phospho-n-ac pentapeptide	UDP-N-acetylmuramo glutamyl-2,8-diaminop alanyl-D-alanyl ligase
15	Matched length (a.a.)	82	152	221	248	117	442	222	486	372	490	110			365	494
20	Similarity (%)	73.2	99.3	9.66	100.0	51.0	98.6	100.0	99.8	99.5	98.6	99.1			63.8	64.2
	Identity (%)	46.3	99.3	7.76	99.2	39.0	98.6	93.6	99.4	98.9	4.99	99.1			38.6	35.0
25 (panuluu	gene	rculosis	fermentum	ntamicum	fermentum	1)n	dermentum	utamicum	utamicum	ofermenturn	ofermentum	ofermentum			2 mraY	2 murf
8 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2146c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum fts Z	Corynebacterium glutamicum ttsQ	Corynebacterium glutamicum murC	Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 fts/V	Brevlbacterium lactofermenlum ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coli K12 murf
<i>35</i>		ΣI			8 7	T		U #								<u> </u>
40	db Match	pir.F70578	gp:BLFTSZ_6	sp:YFZ1_CORGL	prt:2420425C	GP. AB028868_1	sp:FTSZ_BRELA	gsp:W70502	gp:AB015023_1	gp:BLA242646_3	gp:BLA242646_2	gp:BLA242646_1			SP:MRAY_ECOLI	1542 Sp.MURF_ECOLI
	ORF (bp)	285	456	663	738	486	1326	999	1458	1116	1650	468	384	333	1098	
45	Terminal (nt)	2276353	2276881	2277416	2278122	2279640	2278890	2280470	2281168	2282661	2283782	2285437	2286655	2286831	2	2287969
50	Initial (nt)	2276637	2277336	2278078	2278859	2279155	5860 2280215	2281135	2282623	2283776	2285431	2285904	2286272	2286499		5869 2289510
	SEQ NO.	5855	5856	5857	5858	5859	5860	5861	5862	5863	5864	5885	5866	5867		
55	SEQ NO.		2356	2357		2359		2361	2362	2363	2364	2365	2366	2367	2368	2369

EP 1 108 790 A2

_												-		\neg			\neg	$\overline{}$
	Function	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,8-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5,10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
	Matched length (a.a.)	491	57	650		323	143	137		190	303	329	484		125	684		411
	Similarity (%)	67.6	100.0	58.8		79.3	88.8	69.3		65.3	70.6	62.0	9.69		68.8	62.4		58.4
	Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.8	30.1	35.7		43.2	34.2		30.7
Table 1 (continued)	Homologous gene	Bacillus subtills 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268.11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividens 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23
	db Match	sp:MURE_BACSU	GSP:Y33117	pir:S54872		pir:A70581	gp:MLCB268_11	pir.C70935		gp:MLCB268_13	SP:METF_STRLI	pir.S32168	gp:MLCB268_16		pir:A70936	gp:AB019394_1		gp:MLCB268_21
	ORF (bg)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470	204	369	2148	651	1236
	Terminal (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980	2303040	2306218
	initial (nt)	2291073	2291197	2293164	2294117	2295127	2295804	2296898	2297653	2297868	2299428	2299524	2300706	2302179	2302619	2302833	2303690	2304983
	SEO		5871	5872	5873	5874	5875	5876	5877	5878	5879	5880	5881	5882	5883	5884	5885	5886
	SEO		2371	2372			2375	2376	2377	2378	2379	2380	2381	2382	2383	2384	2385	2386

	Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor			hypothetical membrane protein	acytransferase	glycosyl transferase	protein P60 precursor (invasion-associated-protein)	protein P60 precursor (Invasion-associated-protein)	ubiquinol-cytochrome c reductase cytochrome b subunit	ubiquinol-cytochrome c reductase iron-sulfur subunit (Rleske [eFe-2S] iron-sulfur protein cyoB	ubiquinal-cytochrome c reductase cytochrome c
	Matched length (a.a.)	434	462	166	428	440			248	245	383	296	191	201	203	278
	Similarity (%)	62.0	87.9	77.7	64.5	57.1		1	100.0	100.0	75.7	60.8	61.3	84.7	57.1	83.1
	(%)	30.4	6.99	58.4	35.1	28.2			100.0	100.0	50.1	26.4	33.0	34.3	37.9	58.6
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae MLC8268.21c	Mycobacterium tuberculosis H37Rv Rv2181	Corynebacterium giutamicum (Brevibacterium flavum) ATCC 17965 csp1			Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii lap	Listeria grayi iap	Heliobacilius mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
	db Match	pir:G70936	gp:AF280581_2	gp:MLCB268_20	pir:G70936	1449 sp.CSP1_CORGL			gp:AF096280_3	gp:AF096280_2	gp:SC6G10_5		sp:P60_LISGR	pri.2503462K	gp:AF107888_1	sp:Y005_MYCTU
	ORF (bp)	1308	1386	504	2418	1449	204	177	1188	735	1143	1047	627	1602	672	885
	Terminal (nt)	2307621	2307697	2309173	2312252	2313808	2314038	2313916	2314236	2315678	2317633	2318804	2319968	2321472	2323088	2324311
	Initial (nt)	2306314	2309082	2309676	2309835	2312380	2313833	2314092	2315423	2316412	2318775				2323759	2325195
	SEO			5889	5890	5891	5892			5895	5896	5897	5898		2900	5901
	SEO NO.	2387 5			2380	2391	2392			2395	2396	2397	2398	2399	2400	2401

EP 1 108 790 A2

								,	_		_								
5	Function	cytochrome c oxidese subunit III		hypothetical membrane protein	cytochrome c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothetical membrane protein	cobinamide kinase	nicotinate-nucleotide- dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		lipoyitransferase
15	Matched length (a.a.)	1		145 hy	317 cy	640 an	114 hy	246 hy	172 00	341 giring	305 50	T	241 cla	364 bri	493 leu	97 hy	691 dil	-	210 lip
20	Similarity (%)	70.7		71.0	53.9	8.66	100.0	60.2	64.0	6.99	49.8		68.5	70.3	62.9	67.0	68.5		65.7
	Identity (%)	36.7		38.6	28.7	99.7	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
<i>25</i> (panulju	gene	Sanus		rculosis	oides ctaC	utamicum	ıtamicum	e e	atus cobP	rificans	rificans cobV		igerus car	rı	putida ATCC	erythraea	ensis pdhB		
s Table 1 (continued)	Homologous gene	Synechococcus vulcanus		Mycobacterium tubercutosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 itsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae, MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putid 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seculensis pdhB		Arabidopsis thaliana
35 40	db Match	sp:cox3_SYNVU &		SP:Y00A_MYCTU	sp:COX2_RHOSH F	gp:AB029550_1	gp:AB029550_2	gp:MLCB22_2	pir.S52220 F	sp:coBU_PSEDE	sp:COBV_PSEDE F		prf:2414335A s	SP:ILVE_MYCTU N	gp:PPU010261_1	prf:2110282A S	gp:AF047034_2 S		9p:AB020975_1 A
	ORF (bp)	615 sp	153		1077 sp	1920 gp	342 gp	768 gp	522 pir	1089 sp	921 sp	237	714 prf	1137 sp.	1500 gp.	393 prf	2025 gp.	1365	753 gp.
45	Terminal (nt)	2325273	2326121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	2341293	2339440	2342164
50	Initial (nt)	2325887	2326273	2326900	2327997	2328516	2330927	2331200	2331974	2332512	5911 2333615	5912 2334717	2335741	2337051	2337235	2339140	2339269	2340804	2341412
	SEQ NO.	_	5903	5904	5905	5906	5907	5908	5909	5910	_	_	5913	5914	5915	5916	5917		5919
55	SEQ NO.	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2418	2417	2418	2419

EP 1 108 790 A2

SEQ S	SEO NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologaus gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
	; 	2342304	2343347	1044	sp:LIPA_PELCA	Pelobacter carbinolicus GRA BD 1 lipA	44.6	70.9	285	lipoic acid synthetase
2421 5	5921	2343479	2344258	780	sp:Y00U_MYCTU	Mycobacterium tuberculosis H37Rv Rv2219	45.5	76.7	257	hypothetical membrane protein
2422	5922	2344431	2346047	1617	Sp:YIDE_ECOLI	Escherichia coli K12 yidE	32.9	67.8	559	hypothetical membrane protein
	5923	2347491	2346289	1203	gp.AF189147_1	Corynebacterium glutamicum ATCC 13032 tnp	100.0	100.0	401	(ransposase (ISCg2)
2424	5924	2347505	2347804	300						
	5925	2348548	2348078	471	gp.SC5F7_34	Streptomyces coelicolor A3(2) SC5F7.04c	41.4	63.7	157	hypothetical membrane protein
2426	5926	2350620	2350408	213						
	5927	2351022	2351896	975			31.0	44.0	145	mutator mutT domain protein
	5928	2351310		388	pir. B72308	Thermotoga maritima MSB8 TM1010	36.7	65.6	128	hypothetical protein
2429	5929	2351909	2351310	900						
2430	5930	2351980	2352828	849	sp:LUXA_VIBHA	Vibrio harveyi luxA	25.0	6.09	220	alkanal monooxygenase alpha chain (bacterial luciferase alpha chain)
2431	5931	2352833	2353225	393	pir.A72404	Thermotoga maritima MSB8 TM0215	40.5	73.0	111	protein synthesis inhibitor (translation initiation inhibitor)
2432	5932	2355156	2355398	243						
2433	5933	2355440	2355180	261						
2434	5934	2355521	2356843	1323	рл:2203345Н	Escherichia coli hpaX	21.9	53.4	433	4-hydroxyphenylacetate permease
2435	5835	2356794	2357354	261	gp:SCGD3_10	Streptomyces coelicolor A3(2) SCGD3.10c	42.4	72.8	158	transmembrane transport protein
2436	5936	2357264	2357707	444	gp:SCGD3_10	Streptomyces coelicolor A3(2) SCGD3.10c	31.4	66.1	118	transmembrane transport protein
2437	5937	2357484	2357290	195						
2438	5938	5938 2357726	2358130	405						

Г		Т				1	ı	í	- 1	- 1	- 1:	T		- [- 1	- 1	- 1	- 1	- 1	
	Function		heme oxygenase	glutamate-ammonla-ligase adenylytransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokinase	virulence-associated protein		bifunctional protein (ribonuclease H and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosina-phosphatasa	hypothetical protein	Insertion element (IS402)	
	Matched length (a.a.)		214	809	441	392	109	54	374	358		382		249	378	204	156	281	129	
	Similarity (%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	83.5	65.5	56.6	
	identity (%)		57.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	49.2	28.0	46.2	40.9	32.6	
Table 1 (continued)	Homologous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) ginE	Thermotoga maritima MSB8 glnA	Streptomyces coelicolor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A,11c.	Homo sapiens galk1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2228c	Mycobacterium tuberculosis H37Rv RV2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia	
	db Match		Sp:HMUO_CORDI	gp:SCY17736_4	SP.GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	Sp. GALT HUMAN	gp;AF174645 1		sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	SPIGPH ECOLI	sp:PTPA_STRCO	sp:Y01G_MYCTU	sp:YI21_BURCE	
	ORF (bp)	543	645	3135	1338	1104	1827	180	1203	1266	486	1146	729	717	1140	924	471	954	393	-
	Terminal (nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2380083	2369116	2370908	2371412	2373289	2372573	2373323	2375197	23	2378720	2376998	_
	Initial (nt)	2358695	+	2362748	2364155	2364352	2365587	2367652	1027300			2372557	2372561		2374462	2374544		2375767	2456 5956 2377390	
	SEQ NO (a.a)	+-		5941	5942	5943	5944	5945		5047		5949	5950	5951	5952	5953		5955	5956	
	SEO NO NO NO NO NO NO NO NO NO NO NO NO NO			2441	2442	2443	2444	2445	_	2440		2449	2450	2451	2452	2453	2454	2455	2456	

EP 1 108 790 A2

	Function		transcriptional regulator		hypothetical protein		pyruvate dehydrogenase component		ABC transporter or glutamine transport ATP-binding protein		ribose transport system permease protein	hypothetical protein	calcium binding protein		lipase or hydrolase	acyl carier protein	N-acetylglucosamine-6-phosphate deacetylase	hypothetical protein	
	Matched length (a.a.)		135		134		910		261		283	286	125		352	75	253	289	
	Similarity (%)		87.8		77.6		78.9		62.8		58.7	62.9	55.2		55.7	80.0	75.5	65.7	
	Identity (%)		30.4		55.2		55.9		33.7		25.4	26.2	41.6		29.6	42.7	43.9	33.6	
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) SC8F4.22c		Mycobacterium tuberculosis H37Rv Rv2239c		Streptomyces seoulensis pdhA		Escherichia coli K12 glnQ		Bacillus subtilis 168 rbsC	Rickettsla prowazekii Madrid E RP367	Dictyostelium discoldeum AX2 cbpA		Streptomyces coelicolor A3(2) SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 nagD	Deinococcus radiodurans DR1192	
	db Match		gp:SC8F4_22		sp:Y01K_MYCTU		gp:AF047034_4		sp:GLNQ_ECOLI		sp:RBSC_BACSU	pir:H71693	sp.CBPA_DICDI		gp:SC6G4_24	sp.ACP_MYXXA	sp:NAGD_ECOL!	gp:AE001968_4	
	ORF (bp)	243	378	198	429	345	2712	1478	789	963	888	939	810	372	1014	291	825	1032	471
	Terminal (nt)	2377484	2378276	2378489	2378884	2379770	2382744	2380765	2382827	2385426	2383622	2384509	2386580	2385913	2386614	2387957	2388821	2389869	2390434
	initial (nt)	2377726	2377899	2378292	2379312	2379426	2380033	2382240	2383615	2384464	2384509	2385447	2385771	2386284	2387627	2387667	2387997	2388838	5974 2390904
	SEO NO (a.a.)	5957	5958	5959	5960	5961	5965	5963	5964	5965	5966	5967	5968	5969	5970	5971	5972	5973	
	SEQ NO.	2457	2458	2459	2460	2461	2462	2463	2464	2465	2466	2467	2468	2469	2470	2471	2472	2473	2474

EP 1 108 790 A2

			_			_															
	Function	hypothetical protein						alkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine: D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
	Matched length (a.a.)	27.1						530		594	99		633	86			636			414	171
	Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
	Identity (%)	52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.6	30.4
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Nelsseria meningitidis NMA0251
	db Match	gp:SC4A7_8						sp.PPBD_BACSU		gp:SCI51_17	pir:G70661		prf:2413330B	gp:XXU39467_1			gp:AF058788_1			prf.2413330A	gp:NMA1Z2491_23
	ORF (bp)	825	492	171	546	465	342	1560	714	1836	240	675	1899	482	243	636	1869	324	1152	1272	675
	Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
	Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671	2406258	5994 2406936
	SEO NO.	5975	5976	5977	8265	5979	5980	5981	5982	5983	5984	5985	5986	5987	5988	5989		5991	5992	5993	5994
	SEQ NO.	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

EP 1 108 790 A2

5		Function	hypothelical protein	hypothetical protein		glycyl-tRNA synthetase	bacterial regulatory protein, arsR family	ferric uptake regulation protein	hypothetical protein (conserved in C.glutamicum?)	hypothetical membrane protein	undecaprenyl diphosphate synthase	hypothetical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	hypothetical protein	
15	hadahad	Matched length (a.a.)	592	138		508	89	132	529	224	233	245	296	432	157	85	344	248	
20		Similarity (%)	63.6	54.4		6.69	73.0	70.5	46.7	67.0	71.2	74.3	70.3	82.4	86.0	50.0	84.6	75.4	
		Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	65.0	45.0	61.1	44.0	
25	lable 1 (continued)	บร gene	rberculosis	nogaster		us HB8	uberculosis urB	K12 fur	uberculosis	elicolor A3(2)	Micrococcus luteus B-P 28 uppS	luberculosis	neumoniae era	tuberculosis	tubercutosis	ıgitidis	tuberculosis c phoH	oelicalor A3(2)	
30	lable 1	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HBB	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2) h3u	Micrococcus lute	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv RV2366	Mycobacterium tuberculosis H37Rv Rv2367c	Neisseria meningitidis	Mycabacterium tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2) SCC77.19c.	
35 40		db Match	pir.B70662	gp:AE003565_26		pir.S58522	pir.E70585	SP.FUR ECOLI	pir.A70539	gp:AF162938_1	Sp.UPPS_MICLU	pir.A70586	gp:AF072811_1	sp:Y1DE_MYCTU	sp:YN67_MYCTU	GSP:Y75650	Sp.PHOL_MYCTU	gp:SCC77_19	
	}	ORF (bp)	2037 pir	486 gp	582	1383 pir	369 pir	432 Sp	1551 pii	792 95	729 55	726 pi	915 9	1320 sp	588 st	264 G	1050	723 g	942
45		Terminal C (nt)	2409029 2	2409779	2410280	${}^{+}$	948	2413423	1	2415298	2416371	2417222	2417969	0668	2420313	2421236	2420900	2421975	2423791
50		initial (nt)	2406993	2410264	2410861	+	 	2412992	2413568	2416089	2417099	2417947	2418883	2420309	2420900	2420973	2421949	2422697	2422850
		SEQ.	+	5996 2	5997			0009		6002	6003	6004	6005	9009	6007	8009	6009	6010	6011
55	!	SEQ.		2496	2497			2500		2502	2503	2504	2505	2506	2507	2508	2509	2510	2511

EP 1 108 790 A2

	Function	heat shock protein dnaJ	heat-inducible transcriptional repressor (groEL repressor)	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-acidCoA Ilgase	4-alpha-glucanotransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose synthase	hypothetical protein
	Matched length (a.a.)	380	334	320	134			611	738	604	89	107			990	453	594	449
	Similarity (%)	77.4	79.6	64.1	64.9			75.1	55.4	64.4	51.0	53.0			68.3	45.7	84.9	58.8
	Identity (%)	47.1	48.2	33.1	36.6			48.0	28.3	29.5	44.0	47.0			40.3	24.1	65.2	32.1
Table 1 (continued)	Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces caelicolor A3(2) SC6G10.04	Escherichia coil K12 malQ	Lactobacillus brevis plasmid horA	Neisseria gonorrhoeae	Neisserla meningitidis			Salmonella typhimurium dcp	Anisopteromalus calandrae	Mycobacterium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
	db Match	ort2421342B	prf.2421342A	prf.2318256A	sp:AGA1_YEAST			gp:SC6G10_4	Sp. MALQ ECOLI		GSP:Y74827	GSP:Y74829			SP.DCP_SALTY	gp:AF064523_1		1089 pir.H70983
	ORF (gg)	1146		980	519	693	378	1845	2118	1863	255	333	180	204	2034	1179		Ļ
	Terminal (nt)	2422700	2423915	2424965	2428699	2426776	2427807	2428184	2432413	2434370	2433814	2433875	2434440	2434573	2434805	2438049		2440994
	Initial (nt)	2427645		2425954	2428181	2427468	2428184	2430028	2410206			2434207	2434619		2436838	2436871		6028 2439906
	SEO.	5,50		6014	8015	6016	5017	6018	6010	6020	6021	6022	6023		_			
		(AND)	-	2514	2515	2516			25.10	2520	2521	2522	2523	2524	2525	25.26	2527	2528

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

1			_	$\overline{}$	$\overline{}$	_		r	T	_					,		_				_
	Function	Isopenienyi-diphosphate Delta- isomerase						beta C-S lyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (isoleucine uptake)	alkanal monooxygenase alpha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein
	Matched length (a.a.)	189						325	426	343		324	483	203		467		546	315	172	372
	Similarity (%)	57.7						100.0	100.0	49.0		60.5	55.1	65.0		57.6		55.5	73.3	74.5	66.4
	Identity (%)	31.8						99.4	99.8	21.8		25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
Table 1 (continued)	Homologous gene	Chlamydomonas reinhardtii ipi1						Corynebacterium glutamicum ATCC 13032 aecD	Corynebacterium glutamicum ATCC 13032 brnQ	Vibrio harveyi luxA		Sinorhizobium meliloti mdcF	Escherichia coli K12 glcD	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK		Haemophilus influenzae Rd HI0853 hbpA	Bacillus subtilis 168 appB	Escherichia coll K12 dppC	Escherichia coli K12 oppD
	db Match	pir. T07979						gp:CORCSLYS_1	1278 sp.BRNQ_CORGL	sp:LUXA_VIBHA		gp:AF155772_2	sp:GLCD_ECOLI	sp:YDFH_ECOLI		sp:YGIK_SALTY		sp:HBPA_HAEIN	sp:APPB_BACSU	sp:DPPC_ECOU	1437 prf.2308258MR
	ORF (bp)	585	222	438	1755	660	519	975	1278	978	522	927	2844	711	282	1347	423	1509	968	828	1437
	Terminal (nt)	2441005	2441890	2442792	2441602	2443356	2444033	2445709	2446993	2447998	2450323	2450859	2451794	2455435	2455452	2455720	2457337	2459371	2460336	2461167	2462599
	Initial (nt)	2441589	2441669	2442355	6032 2443356	6033 2444015	2444551	2444735	2445716	2447021	2450844	6039 2451785	2454837	6041 2454725	6042 2455733	6043 2457066	6044 2457759	2457863	2459371	2460340	6048 2461163
	SEQ NO.	6039	6030	6031	6032	6033	6034	6035	6036	6037	6038		6040	6041	6042	6043	6044	6045	6046	6047	6048
	SEQ NO. (DNA)	2529	2530	2531		2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548

EP 1 108 790 A2

ı	7	\neg		7															<u> </u>	\Box
	Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine blosynthesis protein x	hypothetical protein	glycine betains transporter				large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin l	GTP-binding protein
	Matched length (a.a.)	106	. 157	300	468		284	295		133	197	601				448	118	227	46	803
	Similarity (%)	44.0	≥ 0.85	65.0	64.6		61.6	51.2		100.0	65.5	7.1.7				71.9	73.7	29.0	73.0	83.6
	Identity (%)	35.0	29.3	41.0	39.9		31.3	28.5		100.0	42.6	39.8				34.6	33.9	28.2	63.0	58.7
Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium etil rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens	Chlamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
	db Match	PIR:G72536	plr:D70367	prt:2514301A	gp:SCM2_16		sp:NTCI_HUMAN	gp:AF195243_1		SP:THIX_CORGL	sp:VG66_BPMD	sp:BETP_CORGL				pri:2320266C	gp:AF186091_1	sp:DCTP_RHOCA	PRF:1806416A	1845 sp:LEPA_BACSU
	ORF (bp)	507	549	903	1425	303	972	846	998	0/9	588	1890	966	1608	384	1311	480	747	243	1845
	Terminal (nt)	2481543	2462602	2464143	2465768	2465465	2466038	2467922	2470678	2472819	2472893	2475542	2477482	2479251	2479762	2479898	2481213	2481734	2484087	2482548
	Initial (nt)	2462049	2463150	2463241	2464344	2465767	2467009	2467077	2470313	2472250	2473480	6059 2473653	6060 2476497	6051 2477644	6062 2479379	2481208	2481692	2482480	2483845	2484392
	SEQ NO.	6049	6050	6051	6052	6053	6054	6055	9509	6057	8058	6029	6060	6061	8062	6063	6064	6065	9909	6067
	SEQ NO.	2549	2550	2551	2552	2553	2554	2555		2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567

EP 1 108 790 A2

Function	hypothetical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for DNA binding and uptake		hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyl phosphate reductase or glutamate-5- semialdehyde dehydrogenase	D-Isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
Matched length (a.a.)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
Similarity (%)	69.7	72.9	67.1	80.6	74.1	49.7	63.6		66.3	66.4	86.3	85.3		98.8	100.0		78.2
Identity (%)	41.6	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.8	55.6	68.0		99.1	99.3		58.9
Homologous gene	Mycobacterium tuberculosis H37Rv Rv2405	Escherichla coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv RvZ420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obg
db Match	pir:H70683	sp:RS20_ECOLI	sp.RHTC_ECOLI	gp:SC6D7_25	pir.H70684	sp:CME3_BACSU	sp:CME1_BACSU		gp:SCC123_7	pir:F70685	pir:G70685	gp:SCC123_17		sp:PROA_CORGL	sp.YPRA_CORGL		1503 gp:D87915_1
ORF (bp)	609	261	699	405	975	1539	582	822	822	708	471	878	1023	1296	912	711	1503
Terminal (nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495698	2497513	2498009
Initial (nt)	2484661	2485473	2486469	2486881	2487884	2489450	2490154	2490911	2491111	2491858	2492343	2493178	2494237	2495634	2496607	2496803	2499511
SEQ NO (a.a.)	8909	6909	0209	6071	6072	6073	6074	6075	6076	6077	6078	6029	6080	6081	6082	6083	6084
SEQ NO (DNA)	2568	2569	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2582	2583	2584
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (hp) (bp) db Match	SEQ Initial No. (nt) Terminal (bp) QRF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (ength (a.a.)) (a.a.) (nt) (nt) (hpp) (hpp) (hpp) 6068 2484661 2485269 609 pir.H70683 Mycobacterium tuberculosis 41.6 69.7 185 hypothetical p	SEQ NO. (nt) Initial (nt) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Hength (%)	SEQ Initial NO. (nt) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Match	SEQ Initial (a.a.) Terminal (th) (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Ma	SEQ Initial NO. Initial (nt) Terminal (bp) ORF (bp) db Match Homologous gene (%b) Identity (%b) Similarity (%b) Matched (%b) Match	SEQ Initial NO. Terminal (nt) ORF (b) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)	SEQ Initial NO. (nt) Terminal (nt) QRF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Match	SEQ Initial NO. Initial (nt) (nt) Terminal (DRF (nt)) db Match Homologous gene (96) Identity (96) Matched (96)	SEQ (4.1) Initial (1.1) Terminal (1.1) ORF (b) db Match Homologous gene (96) Identity (96) (97) (183)	SEC (ALI) Initial (Int) Terminal (Int) ORF (Int) 4b Match Homologous gene (PA) Identity (PA) Similarity (PA) Matched (PA) Homologous gene (PA) Identity (PA) Similarity (PA) Matched (PA) Inpital (PA)	SEC NO. Initial (III) Terminal (III) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%) Identity (%) Similarity (%) Matched (%) Identity (%) Similarity (%) Matched (%) Identity (%) Similarity (%) Matched (%) Identity (%) r>NO. Initial (rtt) Terminal (ltt) ORF (ltt) db Match (ltt) Homologous gene (ltt) Identity (ltt) Similarity (ltt) Matched (ltt) 6086 2484661 2485269 609 pir.H70683 Mycobacterium tuberculosis 41.6 69.7 185 185 6006 2485473 2485733 281 sp.RSZ0_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 1 6071 2486469 2485473 269 sp.RHTC_ECOLI Escherichia coli K12 rhtC 30.0 67.1 210 1 6071 2486891 378 pir.H70684 Mycobacterium tuberculosis 46.0 74.1 313 6072 2487884 2486910 975 pir.H70684 Mycobacterium tuberculosis 46.0 74.1 313 6072 2489450 2489573 582 sp.CME1_BACSU Bacillus subtilis 168 comEA 30.8 63.6 195 6075 2490154 2489573 582 sp.CME1_BACSU Bacillus subtilis 168 comEA 30.8	SEQ Initial Terminal ORF db Match Homologous gene (%) Smillarity Matched (%) (%)<	SEQ NO. Initial (III) Terminal (III) ORF (III) db Match (III) Homologous gene (Yb) Identity (Yb) Matched (Yb) Matched	SEQ Initial Terminal (PP) ORF (PM) Ab Match Homologous gene Identity (%) Matched (%) Matc	SEQ Initial Terminal (PR) ORF db Match Homologous gene (%) (%) (%) Homologous gene (%)	

EP 1 108 790 A2

5

_										<u></u>										
	Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
	Matched length (a.a.)	422	276			19	101	886				195	436	117	143	134		92	112	118
	Similarity (%)	77.3	91.9			92.6	82.2	9.99				82.6	100.0	76.9	67.8	89.6		67.4	64.3	68.8
	Identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	70.9		34.8	36.8	33.9
Table 1 (continued)	Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne	-			Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
	db Match	Sp. PBUX_BACSU				sp:RL27_STRGR	prf.2304263A	sp:RNE_ECOLI				gp:SCF76_8	pir:S43613	9p:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir:H70515	pir.E70863
	ORF (bp)	1887	843	621	396	264	303	2268	549	573	747	608	1308	378	450	408	360	342	465	423
	Terminal (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
	Initial (nt)	2499783		2502735	2503870	2504247	2504602	6091 2507098	6092 2507115	6093 2507138	2508094	2508922	2510830	6097 2511046	2511427	2512356	2512768	2512803	2513618	2603 6103 2514114
	SEO NO (a.a.)	+		6087	6088	6809	0609	6091	6092	6093	6094	6095	8096	6097	6098	6099	6100	6101	6102	6103
	SEO NO NO			2587	2588	2589	2590	2591	2692	2593		2595	2596	2597	2598	2599	2600	2601	2602	2603

EP 1 108 790 A2

	Function	folyl-polyglutamate synthetase				valyi-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP-dependent protease	hypothetical protein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
	Matched length (a.a.)	451				915	521	208	170	319	207	208	357	338	444	286	430	366	210	251
	identity Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	85.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) folc				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis cipX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2065 pcaJ	Streptomyces sp. 2065 pcal
	db Match	prf.2410252B				sp:SYV_BACSU	pir:A38447	sp.DNAK_BACSU	gp:ECU89166_1	sp:MDH_THEFL	gp:SC4A10_33	gp:AF065442_1	prf.2513416F	gp:FSU12290_2	prf.2513416G	gp:KPU95087_7	prf:2303274A	gp:SCF55_28	gp:AF109388_2	gp:AF109386_1
	ORF (bp)	1374	612	714	663	2700	1575	1452	585	984	777	578	1128	975	1425	930	1278	1086	633	750
	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209	6111 2522251	2523248	2523561	2524915	2525099	2526233	2527135	2529480	2530761	2530891	2532601	6122 2533353
	SEO NO.		6105	6108	6107	6108	6109	6110		6112	6113	6114	6115	6116	6117	6118	6119	6120	6121	
	SEQ NO.		2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

EP 1 108 790 A2

EP 1 108 790 A2

			Table 1 (continued)				
ORF db Match (bp)	db Match		Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
492 gp.AF134348_2 pDK1	۲.	Pseu PDK1	Pseudomonas putida plasmid pDK1 xylY	60.3	83.2	161	toluate 1,2 dioxygenase subunit
1536 gp:AF134348_3 pDK		PSeu	Pseudomonas putida plasmid pDK1 xylZ	51.5	81.0	342	toluate 1,2 dloxygenase subunit
828 gp.AF134348_4 pDK1 xylL		Pseuc pDK1	Pseudomonas putida plasmid pDK1 xylL	30.7	61.4	277	1,2-dihydroxycyclohexa-3,5-dlene carboxylate dehydrogenase
2685 gp.REU95170_1 Rhodo		Rhodo	Rhodocaccus erythropolis thcG	23.3	48.6	979	regulator of LuxR family with ATP-binding site
1380 sp:PCAK_ACICA Acinet		Acinet pcaK	Acinetobacter calcoaceticus pcaK	31.3	64.4	435	transmembrane transport protein or 4-hydroxybenzoate transporter
1242 sp.BENE_ACICA Acineto		Acineto benE	Acinetobacter calcoaceticus benE	29.9	66.2	388	benzoate membrane transport protein
624 gp.AF071885_2 clpP2		Strepto clpP2	Streptomyces coelicolor M145 clpP2	69.5	88.3	197	ATP-dependent Clp protease proteolytic subunit 2
603 gp:AF071885_1 Strepto		Strepto clpP1	Streptomyces coelicolor M145 clpP1	62.1	85.9	198	ATP-dependent Clp protease proteaslytic subunit 1
150 gp:SIS243537_4 Sulfolo		Sulfolo	Sulfolobus islandicus ORF154	42.9	71.4	42	hypothetical protein
1347 sp:TIG_BACSU Bacillu		Bacillu	Bacillus subtills 168 tig	32.1	66.4	417	trigger factor (prolyl isomerase) (chaperone protein)
495 gp:SCD25_17 Streptomy		Strept SC02	Streptomyces coelicolor A3(2) SCD25.17	32.5	63.1	160	hypothelical protein
975 sp:PBP4_NOCLA pbp		Nocar pbp	Nocardia factamdurans LC411 pbp	25.3	50.9	336	penicillin-binding protein
456 prf:2301342A Mus n		Mus n	Mus musculus Moa1	27.8	58.3	115	hypothetical protein
249							
438 prf.2513302C Coryr		Cory	Corynebacterlum striatum ORF1	54.2	73.2	142	transposase
150							
126 prf.2513302C Cor			+ TOO mericiate mericatorio		000	3.0	h. motholical acceptain
2078 264 art 2513302C Corvnehacterium striatum ORE1		ន	Colynepactellum striatum Orr 1	3/.1	67.9	S	nypomencal protein

5

EP 1 108 790 A2

5		Function			galactose-6-phosphate isomerase	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthase	multidrug resistance transporter		ABC transporter ATP-binding protein	dipeptide transport system permease protein	nickel transport system permease protein		
15		Matched length (a.a.)			140	248	199	890	358				104			381	290	392		538	286	318		
20		Similarity (%)			71.4	58.1	80.9	70.5	58.1				81.7	_		63.8	58.6	47.7		71.6	73.8	62.0		
		Identity (%)			40.0	26.2	56.8	47.5	25.1				81.5			31.2	31.4	25.8		41.3	38.8	33.2		
25	Table 1 (continued)	Homologous gene			aureus NCTC	Ilulyticus ORF2	uberculosis	idans pepN	feri BB0852				linens ATCC			1thus DK1050	riseus JA3933	togenes IItB		elongatus	JF4 dppC	K12 nikB		
30	Table 1	Homolog			Staphylococcus aureus NCTC 8325-4 lacB	Bacillus acidopullulyticus ORF2	Mycobacterium tuberculosis H37Rv Rv2466c	Streptomyces lividans pepN	Borrelia burgdorferi BB0852				Brevibacterium linens ATCC 9175 crtl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 ort8	Listeria monocytogenes litB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB		
35 40		db Match			sp:LACB_STAAU	sp:YAMY_BACAD	pir.A70868	SP. AMPN_STRLI	pir:870206				gp:AF139916_3			sp:CRTJ_MYXXA	sp.CRTB_STRGR	gp:LMAJ9627_3		gp:SYOATPBP_2	sp:DPPC_BACFI	pir.S47696		
		ORF (bp)	390	985	471 \$	969	609	2601 \$	1083 p	1152	999	156	327 g	171	378	1206	876	1119	1233	1641	882	636	1707	
45		Terminal (nt)	2562387	2563847	2563932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232	2578879	2579769	2580711	
50		Initial (nt)	2562776	2562963	2564402	2565245	2566231	2566345	2569211	2571460	2571510	2572193	2572677	2572977	2573770	2573864	2574718	2575898	2577213	2578872	2579760	2580707	6:79 2582417	
		SEQ NO.	6159	6160	6161	8162	6163	6164	6165	6166	6167	6168	6169	6170	6171	6172	6173	6174	6175	6176	6177	6178		
55		SEQ NO.	2659	2660	2661	2862	2663	2664	2665	2666	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679	

EP 1 108 790 A2

																			_
	Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacetyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromate transport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
	Matched length (a.a.)		411	482	218	235	240	94	238	128	396	196	127	j	55	583	172	700	536
!	Similarity (%)		63.5	47.9	79.4	60.0	65.0	47.0	65.1	77.0	60.4	68.9	61.4		0.09	79.6	62.2	56.7	52.6
	Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.0	28.0
Table 1 (continued)	Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D phbB	Streptomyces coelicolor actil	Neisseria meningitidis	Pseudomonas putida GM73 ttg2A	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10, 19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yijK	Mycobacterium tuberculosis H37Rv RV2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
	db Match		sp:ARGD_CORGL	pir.A70539	sp:YA26_MYCTU	sp:PHBB_CHRVI	pir.A40046	GSP:Y74375	gp:AF106002_1	gp:MLCB1610_9	sp:CHRA_PSEAE	pir.A70867	gp:SC6D10_19		pir.872589	1668 sp:YJJK_ECOLI	pir.E70867	Sp:Y05L_MYCLE	1419 pir.C69676
	ORF (bp)	1941	1314	1584	747	708	738	441	792	393	1128	627	465	621	162	1668	615	2103	
	Terminal (nt)	2584504	2585928	2587763	2588722	2588725	2590302	2591137	2591574	2592794	2593965	2593968	2594597	2595188	2595822	2596048	2597869	2598662	2602879
	Initial (nt)	2582564	2584613	2586180	2587976	2589432	2589565	2590697	2592365	2592402	2592838	2594594	2595061	2595808	2595983	2597715	2598483	2600764	2601461
	SEO NO.	6180	6181	6182	6183	6184	6185	6186	6187	6188	6189	6190	6191	6192	6193	6194	6195	6196	6197
	SEQ NO.		2681	2682	2683	2684	2685	2686	2687	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697

EP 1 108 790 A2

Table 1 (continued) Particle					_		,				,		_							$\overline{}$
SEC	5	Function			nultiple sugar-binding transport ystem permease protein	nuitiple sugar-binding transport ystem permease protein		naltose-binding protein		ABC transporter ATP-binding protein ABC-type sugar transport protein) in cellobiose/maltose transport rotein		olichol phosphate mannose ynthase		idehyde dehydrogenase	ircadian phase modifier		ypothetical membrane protein	lyoxylate-induced protein	etoacyi reductase	ligoribonuclease
SEC	15	Matched length (a.a.)																		П
SEQ Initial Terminal ORF db Match Table 1 (continued)	20				76.3	67.5		63.2		79.8		72.7		89.4	73.8		64.8	69.4	57.0	78.8
SEC		identity (%)			39.1	27.4		28.8		59.1		37.7		67.2	48.6		35.0	41.2	40.0	48.0
SEG Initial Terminal ORF db Match (19.8) (10.9) (10		91						_		siK		ombe		sno	C7942		SB8		losis	
SEG Initial Terminal ORF db Match (19.8) (10.9) (10	8 Table 1 (contin	Homologous ger			Streptococcus mutans NGBRITT msmG	Streptococcus mutans NGBRITT msmF		Thermoanaerobacteriun hermosul amyE		Streptomyces reticuli m		Schizosaccharomyces p		Rhodococcus rhodochro plasmid pRTL1 orf5	Synechococcus sp. PC(cpmA		Thermotoga maritima M TM0964	Escherichia coli K12 gip	Mycobacterium tubercu H37Rv Rv1544	Escherichia coli K12 orr
SEG Initial Terminal (nt) (a.a.) (nt) (a.a		db Match						prt.2206392C		prf.2308356A							pir.A72312			
SEQ Initial Ter NO. (nl) (10.2) (nl) (nl) (nl) (nl) (nl) (nl) (nl) (nl		ORF (bp)	930	639	912	843	1674	1329	1242	1128	750	684	690	789	762	345	1182	750	798	657
SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	45	Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185		2812272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2618869	2619538
SEQ SEQ NO. (DNA) (3.8.) 2698 6198 2699 6199 2700 6200 2701 6200 2704 6204 6208 2705 6208 2705 6208 2709 6209 2710 6210 2711 6211 2711 27	50			2604583		2606369	2606444	2607889		2610639				2613712					2618072	2618882
SEQ NO. (DNA) 2698 2698 2700 2700 2700 2700 2700 2700 2700 270		SEQ NO.	6198		6200	6201	6202	6203	6204		8206	6207	6208	6209	6210	6211	6212	6213	6214	6215
	55	SEQ NO. (DNA)			2700						$\overline{}$		2708	2709	2710	2711		2713		

EP 1 108 790 A2

														- 1	-	—-т				
5	Function	ferric enterochalin esterase	lipoprotein				transposase (IS1207)			transcriptional regulator	glutaminase	sporulation-specific degradation regulator protein		uronate Isomerase		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comignatory protein	bacterial regulatory protein, tetR family
15	Matched length (a a)	454	398				436			131	358	26		335		291	185	75	141	114
20	Similarity (%)	50.9	71.9				93.8			63.4	69.3	72.2		60.9		45.0	74.6	80.0	73.8	61.4
	Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3		29.0		32.0	48.1	42.7	46.8	32.5
<i>25</i>	83		osis				icum			KP1001	AGUE-	Ą		ည္ထ		nial	ncA	losis	a.	r A3(2)
30 (benuitued) t eldeT	Hamologous gene	Salmonella enterica iroD	Mycobacterium tuberculosis H37Rv Rv2518c tppS				Corynebacterlum glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE- DAWLEY KIDNEY	Bacillus subtilis 168 dagA		Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicolor A3(2) SCI11.01c
40	db Match	prf.2409378A	pir:C70870				gp:SCU53587_1			gp:AF085239_1	sp:GLSK_RAT	pir.A36940		sp:UXAC_ECOLI		prf:1814452C	prf.232444A	pir.E70870	sp:BCP_ECOLI	gp:SCI11_1
	ORF (bp)	1188	1209	645	150	246	1308	207	639	453	1629	477	555	1554	501	1197	558	273	465	638
45	Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633146	2634064	2634751
50	Initial (nt)	2620728	2622181	2622961	6219 2623770	2623803	2625358	2625600	2626447	2627924	2628121	2628376	2628878	6228 2628926	2630636	2631270	2632543	2833418	2633600	2634116
	SEO NO.	+	6217	6218	6219	6220	6221	6222	6223	6224	6225	6228	6227	6228	6229	6230	6231	6232	6233	6234
55	SEQ NO.	2716	+	2718	2719	2720		2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734

EP 1 108 790 A2

5	Function	phosphopantethiene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		arylsufatase
15	Matched Jength (a.a.)	145	473	113		3029	404	230	112	113	202	236				428	175		250
20	Similarity (%)	75.9	85.6	54.0		83.6	55.2	6.09	67.9	0.69	76.7	81.4				58.2	87.2		74.4
	Identity (%)	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		48.0
25 (panuliuned)	ans gene	ATCC 6871 ppt1	glutamicum	5. PCC6803		as	elicolor A3(2)	uberculosis	uberculosis	eprae	uberculosis	eruginosa				uberculosis 9c	glutamicum pAG1 tnpB		eprae ats
	Homologous gene	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PCC6803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SC8A6.09c	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB		Mycobacterium leprae ats
40	db Match	gp:BAY15081_1	gp:AF237667_1	pir:S76537		pir.S2047	gp:SC4A7_14	pir:070716	sp:Y077_MYCT	sp:Y076_MYCLE	sp:Y03Q_MYCTU	sp:RNPH_PSEAE				sp:Y029_MYCTU	gp:AF121000_8		sp:Y030_MYCLE
	ORF (pg)	405	1425	324	414	8979	1182	615	462	354	618	735	246	693	585	1362	534	099	765
4 5	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	2657736
50	Initia! (nt)	2635151	2636589	6237 2636845	2637653	2647627	2649416	2649550	2650441	2650986	2652037	2652801	2653254	2654018	2654660	2656238	2656452	2657633	2658500
	SEQ NO.	6235	6236	6237	6238	6239	6240	6241	6242	6243	6244	6245	6246	6247	6248	6249	6250	6251	6252
<i>55</i>	SEQ NO.	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752

EP 1 108 790 A2

										$\overline{}$							_	_	:
5	Function	D-glutamate racemase		bacterial regulatory protein, marR family	hypothetical membrane protein		endo-type 6-aminohexanoate oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain I	
15	D	D-gluta	_	bacter family	hypoth		endo-t	hypoth	hypoth		hypoth		ATP-d	hypoth	hypoth	phosp		cytoch	
	Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310		575	-
20	Similarity (%)	99.3		70.8	69.3		58.3	58.5	17.1		80.8	ļ	53.3	60.1	52.0	61.0		74.4	
	Identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
25 (pantinned)	s gene	lutamicum		icolor A3(2)	erculosis		. nylC	serculosis	oerculosis		serculosis		D _L	oerculosis	icolor A3(2)	12 serB		perculosis	
& Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13869 murl		Streptomyces caelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coelicolor A3(2) SC185.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
40	db Match	prf.2516259A		gp:SCE22_22	Sp.Y03M_MYCTU		pir.A47039	Sp.Y03H_MYCTU	Sp:Y03G_MYCTU		sp:Y03F_MYCTU		prf:1816252A	sp:Y0A8_MYCTU	pir.T34684	sp. SERB_ECOL!		pir.D45335	
	ORF (bp)	852	929	492	747	168	096	537	300	624	1338	306	1740	891	723	1017	1596	1743	306
45	Terminal (nt)	2658608	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2672721	2671063	2673255
50	Initial (nt)	2659457	2659496	2660638	2661417	2661565	2662376	2662867	2663182	2663437	2664060	2665687	6264 2666115	2668760	2669561	2670573	2671126	2672805	2672950
	SEO O O G	6253	6254	6255	6256	6257	6258	6229	6260	6261	6262	6263	-	6265	9929	6267	6268	6269	6270
55	SEQ NO.	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770

EP 1 108 790 A2

										_	_							_		_	
5	Function	ribonucleotide reductase beta-chain	ferritin	sporulation transcription factor	iron dependent repressor or diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleotide reductase alpha- chain		50S ribosomal protein L36	NH3-dependent NAD(+) synthetase	***************************************		hypothetical protein	hypothetical protein	alcohol dehydragenase	Bacillus subtills mmg (for mother cell metabolic genes)	hypothetical protein		phosphoglucomutase	
15	Matched length (a.a.)	334	159	256	225	124	50	707		41	279			257	96	337	459	284		256	
20	Similarity (%)	99.7	64.2	60.2	60.4	62.1	96.0	100.0		79.0	78.1			56.4	68.8	52.8	56.0	68.2		90.6	
	Identity (%)	99.7	31.5	32.8	27.6	24.2	90.09	6.66		58.0	55.6			30.7	41.7	26.1	27.0	33.8		61.7	
25 (panulju	gene	ıtamicum	ftnA	olor A3(2)	ıtamicum	evisiae TIR2	dus AF0251	utamicum		ij.	nadE			CC8803	erculosis	nophilus	mmgE	a T6K22.50		2 pgm	
8 Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 nrdF	Escherichia coli K12 finA	Streptomyces coelicolor A3(2) whiH	Corynebacterium glutamicum ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum ATCC 13032 nrdE		Rickettsia prowazekii	Bacillus subtilis 168 nadE			Synechocystis sp. PCC6803 slr1563	Mycobacterium tuberculosis H37Rv Rv3129	Bacillus stearothermophilus DSM 2334 adh	Bacillus subtilis 168 mmgE	Arabidopsis thaliana T6K22.50		Escherichia coli K12 pgm	
40	db Match	gp:AF112536_1	SP:FTNA_ECOLI E	gp:SCA32WHIH_4	pir:140339 A	sp:TIR2_YEAST S	pir.C69281	gp:AF112535_3		SP:RL36_RICPR F	Sp:NADE_BACSU E			pir.S76790	pir.G70922	sp:ADH2_BACST	sp:MMGE_BACSU	plr:T05174		sp:PGMU_ECOLI	
•	ORF (bp)	1002	486	750	099	438	276	2121	315	141	831	93	498	747	288	1020	1371	834	792	1662	
4 5	Terminal (nt)	2673338	2675289	2676240	2676243	2677377	2676918	2677478	2680784	2681223	2682378	2681464	2683616	2682379	2683131	2683627	2686289	2687148	2687449	2688389	
50	Initial (nt)	2674339	2674804	2675491	2676902	2676940	2677193	2679598	2680470	2681363	2681546	6281 2681556	2683119	2683125	2683418	2684646	2684919	2686315	2688240	2690050	
	SEQ NO (a.a.)	6271	6272	6273	6274	6275	6276	6277	6278	6279	6280		6282	6283	6284	6285	6286	6287	6288	6289	
55	SEQ NO.	2771	2772	2773	2774	2775	2776	2777	2778	2779	2780	2781	2782	2783	2784	2785	2786	2787	2788	2789	

EP 1 108 790 A2

5		
10		
15		
20		
25		uned)
30		Table 1 (continued)
35		
40		
45		
50		

PEC Initial Terminal ORF December Touring Continued Touring Continued				_		_	, 				7			_			_				
SEG Initial Terminal CRF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)		Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	major secreted protein PS1 protein precursor				transposase (IS1876)		proton/sodium-glutamate symport protein		ABC transporter		ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase
SEG		Matched length (a.a.)	84	122	254	496	355				200		438		873		218	84	42		196
SEG		Similarity (%)	64.3	61.5	79.1	48.6	49.8				46.8		66.2		69.0		79.8	67.0	75.0		54.1
SEQ Initial Terminal ORF db Match (a.a.) (nt) (nt) (bp) (bp) db Match (5290 2690150 2690437 286 pir.F70650 6291 2690437 2690760 324 pir.D71843 6292 2690773 2691564 792 sp.YCSL_BACSU 6293 2691689 2693053 1385 gp.AF126281_1 6294 2693299 2694918 1620 sp.CSP1_CORGL 6295 2694926 2695279 354 6296 2694926 2695279 354 6296 2699531 2699518 165 6296 2698150 2697383 768 6300 2699531 2698194 1338 sp.GLTT_BACCA 6301 2700920 2701612 693 6302 2702466 2699926 2541 gp.SCE25_30 6303 2702466 2703356 891 6304 2703194 2704586 273 PIR.F81516 6305 2704835 2704875 141 PIR.F81737 6307 2709878 2710555 678		Identity (%)	41.7	25.4	51.2	24.2	24.8				24.6		30.8		33.0		45.4	60.0	71.0		28.1
SEO Initial Terminal ORF (nt) (nt) (nt) (nt) (nt) (nt) (ht) (bp) (nt) (nt) (nt) (nt) (nt) (ht) (bp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	ומחום (כסווווומבם)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3069	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 yesl	Rhodococcus erythropolis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				Rhodococcus erythropolis		Bacillus subtilis 168		Streptomyces coelicalor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg TC0129		Streptomyces coilinus Tu 1892 ansG
SEO Initial Terminal (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		db Match	pir:F70650	pir:D71843	sp:YCSI_BACSU	gp:AF126281_t	sp.CSP1_CORGL				gp:AF126281_1		sp:GLTT_BACCA		gp:SCE25_30	٠	gp:SAU18641_2	PIR:F81516	PIR:F81737		prf:2509388L
SEQ Initial (n) (n) (n) (n) (n) (n) (n) (n) (n) (n)		ORF (bp)	286	324	792	1365	1620	354	165	447	1401	768	1338	693	2541	169	708	273	141	678	672
SEO Initial (n.) (n.) (n.) (n.) (n.) (n.) (n.) (n.)		Terminal (nt)	2690437	2690760	2691564	2693053	2694918.	2695279	2695718	2695320	2697212	2697383	2698194	2701612	2699926	2703356	2702487	2704586	2704975	2710555	2711308
		Initial (nt)	2690150		2690773		2693299	2694926	2695554						2702468			2704314			2710637
				6291	6292		6294	6295	6296	6297	6298	6539	6300	6301	6302	6303	5304	6305	9069	6307	6308
			2790			2793				2797		2799	2800	2801	2802	2803			2806	2807	2808

EP 1 108 790 A2

5	Function	methyltransferase	hypothetical protein	hypothetical protein		UDP-N-acetylglucosamine 1- carboxyvinyltransferase	hypothetical protein	transcriptional regulator		cysteine synthase	O-acetylserine synthase	hypothetical protein	succinyl-CoA synthetase alpha chain	hypothetical protein	succinyl-CoA synthetase beta chain		frenolicin gene E product		succinyl-CoA coenzyme A transferase	transcriptional regulator
15	Matched length (a.a.)	205	84	42		417	190	281		305	172	83	291	75	400		213		501	321
20	Similarity (%)	51.2	0.99	75.0		75.3	84.2	0.69		84.6	79.7	65.1	79.4	43.0	73.0		71.8		8.77	68.5
	identity (%)	25.9	61.0	71.0		44.8	66.3	45.9		57.1	61.1	36.1	52.9	42.0	39.8		38.5		47.9	38.6
<i>25</i> Q		sis		66		sno	sis	A3(2))	/sE2	8 R1	le Ph I	E1069			is frnE		cat1	NTCC
7 Table 1 (continued)	Homologous gene	Mycobacterlum tuberculosis H37Rv Rv0089	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Acinetobacter calcoaceticus NCIB 8250 murA	Mycobaclerium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c		Bacillus subtilis 168 cysK	Azotobacter vinelandii cysE2	Deinococcus radiodurans R1 DR1844	Coxiella burnetii Nine Mile Ph sucD	Aeropyrum pernix K1 APE1069	Bacillus subtilis 168 sucC		Streptomyces roseofulvus frnE		Clostridium kluyveri cat1 cat1	Azospirilum brasilense ATCC 29145 ntrC
40	db Match	sp:Y089_MYCTU	GSP: Y35814	PIR:F81737		sp:MURA_ACICA	sp:Y02Y_MYCTU	gp:SC2G5_15		sp:CYSK_BACSU	prf:2417357C	gp:AE002024_10	sp:Sucp_coxBu	PIR:F72708	sp:SUCC_BACSU		gp:AF058302_5		Sp:CAT1_CLOKL	sp:NIR3_AZOBR
	ORF (bp)	525	273	141	195	1254	570	843	408	924	546	288	882	225	1194	360	735	819	1539	1143
45	Terminal (nt)	2712374	2713453	2713842	2717993	2718436	2720319	2720385	2721295	2722857	2723609	2723770	2724478	2725843	2725384	2726786	2727399	2728207	2729378	2732518
50	Initial (nt)	2711850	2713181	2713702	2718187	2719689	2719750	2721227	2721702	6317 2721934	2723064	2724057	2725359	2725619	2726577	2727145	2728133	2729025	2730916	2731376
	S NO (e e)	6309	6310	6311	6312	6313	6314	6315	6316	6317	6318	6319	6320	6321	6322	6323	6324	6325	6326	6327
55	SEQ NO.		2010	2811	2812	2813	2814	2815	2816	2817	2818	2819	2820	2821	2822	2823	2824	2825	2826	2827

EP 1 108 790 A2

						l			<u> </u>			<u> </u>		ļ	e e	
	Function		phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferasa	hypothetical protein	hypothetical protein	5'-phosphoribosyl-5-aminoimidazole synthetase	атіdophosphoribosyl transferase
	Matched length (a.a.)		213	255	292	325	369	315		344	225	528	352	58	347	482
	Similarity (%)		81.7	82.8	82.2	78.5	96.0	0.09		55.2	74.2	96.0	79.0	81.0	94.2	89.0
	Identity (%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
Table 1 (continued)	нотороване gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Salanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purF
	db Match		pir.E70810	pir.S68595	gp:MTPSTA1_1	pir.A70584	pir.H70583	gp:SCD84_18		sp:BMRU_BACSU	pir.E70809	gp:AF193846_1	gp:AB003158_6	pir.B70809	gp:AB003158_5	gp:AB003158_4
	ORF (bp)	807	732	1897	921	1014	1125	876	783	1095	687	942	1101	213	1074	1482
	Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739558	2741356	2741636	2743785	2744222	2744881	2746083
	Initial (nt)	2732230	2732636	2734351	2735184	2736215	2737538	2738711	2738771	2740650	2740670	2742577	2742685	2744010	2745954	2747564
	SEQ NO. (a.a.)	6328	6329	6330	6331	6332	6333	6334	6335	6336	6337	6338	6339	6340	6341	6342
	SEQ NO. (DNA)	2828	2829	2830	2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842

EP 1 108 790 A2

5		Function	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5'-phosphonbosyl-N- formylglycinamidine synthetase		5'-phospharibosyl-N- formylglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
15		Matched length (a.a.)	124 h	315 h	217 h	42 h	783 fc		223 ft	79 h		158 g	965 e		211 h	414 0	697
20		Similarity (%)	75.8	94.0	87.1	71.0	99.5		93.3	93.7		77.9	51.5		68.7	81.6	70.6
		Identity (%)	57.3	75.9	67.7	64.0	77.6		80.3	81.0		46.2	28.0		37.4	49.0	41.8
25 30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammonlagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	solfataricus	Corynebacterlum ammoniagenes ATCC 6872 purL		Corynebacterium ammoniagenes ATCC 6872 purd	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
35	Tab	Нон	Mycobacterium H37Rv Rv0807	Corynebacterium ammonlagenes A ORF2	Corynebacterium ammoniagenes A ORF1	Sulfolobus solfataricus	Corynebacterium ammoniagenes A purl.		Corynebacterium ammoniagenes A purd	Corynebacterium ammoniagenes A purorf		Lactococcu	Aeromonas nucH		Mycobacterium H37Rv Rv0784	Salmonella dctA	Pseudomo
40		db Match	pir:H70536	gp:AB003158_2	gp:AB003158_1	GP:SSU18930_21 4	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf:2420329A	prf.2216389A		pir.C70709	sp:DCTA_SALTY	2118 prf:2408266A
		ORF (bp)	375	1017	741	186	2286	720	699	243	225	477	2748	276	687	1338	2118
45		Terminal (nt)	2747683		2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
50		Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402	2752995	2753237	2753298	2753804	2753992	2756851	2757815	2759200	2761649
		SEQ NO.	6343	6344	6345	6346	6347	6348	6349	6350	6351	6352	6353	6354	6355	6356	6357
55		SEQ NO.	2843	2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2856	2857

		_						_								
	Function		5-phosphoribosyl-4-N- succinocarboxamida-5-amino imidazola synthelase	adenylosuccino lyase	aspartate aminotransferase	5-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthelase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
i	Matched length (a.a.)		294	477	395	425	136		243	469	423	224	335	231	249	382
	Similarity (%)		89.1	95.0	62.3	86.4	80.2		56.4	67.6	98.8	93.6	70.5	72.7	69.5	53.9
	Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
Table 1 (continued)	Hamologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfotobus solfataricus ATCC 49255	Corynebacterium ammoniagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosardna barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioD	Lactococcus lactis M71plasmid pND306	Thermotoga maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
	db Match		gp:AB003161_3	1428 gp:AB003161_2	sp:AAT_SULSO	1263 gp:AB003161_1	sp:YHIT_MYCLE		pir:S62195	sp:DTPT_LACLA	sp:BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3	prf:2222216A	sp:TIPA_STRLI	prf.2419350A
	ORF (bp)	624	891	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740
	Initial (nt)	2762452	2762675	2764931	2766135	2767420	2767580	2768137	2769095	2770511	2770714	2771989	2774098	2774814	2775689	2776879
	SEQ NO.	6358	6328	6350	6361	6362	6363	6384	6365	6366	6367	6368	6369	6370	6371	6372
	SEQ NO.	2858	2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869	2870	2871	2872

EP 1 108 790 A2

5				_	e protein		enase	or, LysR family					e protein	factor sigma	synthase		60	ıylase	e system
10	Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein	!	3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc upteke system protein
15	Matched length (a.a.)	574	504	92	421		303	232	278	288		140	464	155	487		245	344	353
20	Similarity (%)	75.8	68.9	68.5	78.4		62.1	0.69	52.9	55.6		50.7	64.0	50.3	66.7		57.6	60.2	46.7
	Identity (%)	46.3	33.3	30.4	45.6		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8		27.4	24.7	22.4
25 Q			lasmid		sis		s SQ1		sis			dney	sis	98	ошре		_	⋖	Rd
% % % % % % % % % % % % % % % % % % %	Homologous gene	Escherichia coli K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtills 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c lpqC	Bacillus subtilis 188 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schlzosaccharomyces pombe tps1		Escherichia coli K12 otsB	Bacillus megaterium ccpA	Haemophilus influenzae Rd Hi0119 znuA
40	db Match	gp:ECOPOX88G_	prf:2212334B	sp:YCDC_ECOLI	pir.D70551		gp:AF096929_2	SP. ALSR_BACSU	pir.C70982	pir.C69862		pir.A45264	pir.B70798	pir:S41307	sp:TPS1_SCHPO		sp:OTSB_ECOLI	sp:CCPA_BACME	sp:ZNUA_HAEIN
	ORF (bp)	1737	1482	531	1320	2142	096	705	813	813	459	399	1503	327	1455	513	768	1074	942
45	Terminal (nt)	2776768	2780446	2780969	2782315	2782340	2784656	2785651	2788594	2788597	2789477	2790550	2792448	2792857	2794327	2794812	2795637	2795676	2797808
50	Initial (nt)	2778504	2778965	2780439	2780996	2784481	2785615	2786355	2787782	2789399	2789935	2790152	2790946	2792531	2792873	2794300	2794870	2796749	2796865
	SEQ NO.		6374	6375	6376	6377	6378	6379	6380	6381	6382	6383	6384	6385	6386	6387	6388	6389	6390
55	SEQ NO.	· • · · · · · · · · · · · · · · · · · ·	2874	2875	2876	2877	2878	2879	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890

EP 1 108 790 A2

										_							
Function	3C transporter	pothetical membrane protein	ansposase (ISA0963-5)		ketosteroid dehydrogenase		opolysaccharide biosynthesis otein or oxidoreductase or shydrogenase	shydrogenase or myo-inositol 2- shydrogenase	ikimate transport protein	likimate transport protein	anscriptional regulator	osomal RNA ribose methylase or NA/rRNA methyltransferase	steinyl-tRNA synthetase	IS system, enzyme II sucrose otein (sucrose-specific IIABC mponent)	crose 6-phosphate hydrolase or crase	ucosamine-6-phosphate omerase	N-acetylglucosamine-6-phosphate deacetylase
atched ength (a.a.)	223 AI	135 hy	303 tra		561 3-	† 	lip 204 pr de	128 de	292 st	130 st	212 tra	334 rib	464 cy	668 pr	473 SL	248 gl	388 de Z
	63.2	87.4	52.5		62.0		56.4	69.5	67.5	80.8	55.7	47.3	88.8	0.77	56.9	69.4	60.3
Identity (%)	31.4	60.0	23.4		32.1		34.3	35.2	30.5	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2
	325-4	sis			s SQ1		188	r iolG			43(2)	9	,		ε	m	anD
Homologous gene	Staphylococcus aureus 8 nreA	Aycobacterium tuberculo 137Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropoli cstD1		rhermotoga maritima MS	Sacillus subtilis 168 idh o	scherichia coli K12 shlA	scherichla coli K12 shlA	Streptomyces coelicolor / 3C5A7.19c	Saccharomyces cerevisia YOR201C PET56	Scherichia coll K12 cys	actococcus lactis sacB	Slostridium acetobutylicu ATCC 824 scrB	scherichia coli K12 nagl	Vibrio furnissii SR1514 manD
db Metch	gp.AF121672_2	pir.E70507			gp:AF096929_2		pir.872359	sp:MI2D_BACSU	Sp. SHIA_ECOLI	Sp.SHIA_ECOLI	gp:SC5A7_19	sp:PT56_YEAST	sp:SYC_ECOLI	pri:2511335C	gp:AF205034_4	sp:NAGB_ECOLI	sp:NAGA_VIBFU
ORF (bp)	069	555	1500	201	1689	747	618	435	855	426	654	939	1380	1983	1299	759	1152
Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676	2805113	2806016	2806599	2807426	2808399	2809824	2811980	2813279	2814081
Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996	2804691	2805110	2805967	2806441	2807252	2808364	2809778	2811806	2813258	2814037	2815232
SEQ NO (a.a.)	6391	6392	6393	6394	9395	9629	6397	6398	6388	6400	6401	6402	6403	6404	6405	6406	6407
SEQ NO. (DNA)	2891	2892	2893	2894	2895	2896	2897	2898	2899	2900	2901	2902	2903	2904	2905	2906	2907
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (bp) (bp) (aa)	SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity length length (%) Matched (%) (a.a.) (nt) (nt) (bp) nitial NO. (nt) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity length length (%) Matched (%)	SEQ Initial (a.a.) Terminal ORF (bp) db Match Homologous gene (%) Identity (%) Abit (%) Matched (%) 6391 2797820 2798509 690 gp:AF121672_2 Staphylococcus aureus 8325-4 31.4 63.2 223 6392 2798837 2799391 555 pir.E70507 Mycobacterium tuberculosis 60.0 87.4 135 6393 2799535 2801034 1500 pir.A69426 Archaeoglobus fulgidus 23.4 52.5 303	SEQ (nt) (nt) (nt) (nt) (bp) CAPE (pp) Matched (pp) Homologous gene (pp) Identity (pp) Imilarity (pp) Matched (pp) 6391 2797820 2798509 690 gp:AF121672_2 Staphylococcus aureus 8325-4 31.4 63.2 223 6392 2798837 2799391 555 pir.E70507 Mycobacterium tuberculosis 60.0 87.4 135 6394 2801034 1500 pir.A69428 Archaeoglobus fulgidus 23.4 52.5 303 6394 2801113 2801313 201 archaeoglobus fulgidus 23.4 52.5 303	SEQ Initial NO. (nt) Terminal ORF (nt) db Match Homologous gene (%) Identity (%) Imiliarity (%) Matched (%) 8391 2797820 2798837 2799891 555 pir.E70507 Mycobacterium tuberculosis 60.0 87.4 135 6394 2801113 2801313 201 Archaeoglobus fulgidus 23.4 52.5 303 6395 2803246 1689 gp:AF096929_2 Rhodococcus erythropolis SQ1 32.1 62.0 561	SEQ Initial NO. Terminal ORF (nt) (nt) db Match Homologous gene (%) Identity (%) Author (%) Matched (%) Ma	SEQ Initial (a.a.) Terminal (bp) (bp) db Match (bp) (bp) Homologous gene (%) Identity (%) Author (hg) (hg) (hg) Matched (a.a.) 6391 2797820 2798509 690 gp:AF121672_2 Staphylococcus aureus 8325-4 (%) 31.4 63.2 223 6392 2798837 2798509 690 gp:AF121672_2 Mycobacterium tuberculosis 60.0 87.4 135 6394 2809535 2801034 1500 pir.E70507 Mycobacterium tuberculosis 60.0 87.4 135 6394 2801113 2801313 201 Archaeoglobus fulgidus 23.4 52.5 303 6395 2803246 2801558 1689 gp:AF096929_2 Rhodococcus erythropolis SQ1 32.1 62.0 561 6396 2803296 2804691 2804074 618 pir.B72359 Thermotoga maritima MSB8 34.3 56.4 204	SEQ Initial (a.a.) Terminal (bp) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Ma	SEQ NO (mt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (9%) Identity (9%) Similarity (9%) Matched (9%) Matched (SEQ NO (ml) Initial (ml) Terminal (ml) ORF (ml) db Metch (ml) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ NO Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) >NO Initial (nt) Terminal (nt) ORF (nt) db Metch (pb) Homologous gene (94) Identity (94) Similarity (94) Matched (94) Matched (SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) >SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO (nl) (nl) (nb) (nb) db Match Homologous gene (%)</td> <td>SEQ (nt) (101) Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td>	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO (nl) (nl) (nb) (nb) db Match Homologous gene (%)	SEQ (nt) (101) Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)			

_																	
	Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		slalidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	transcription factor
	Matched length (a.a.)	298	321	220		439	222	095	342	314	258	193	142		152	235	157
	Identity Similarity (%)	62.1	57.6	68.6		50.3	57.2	51.4	64.3	78.3	78.7	82.7	66.2		86.2	71.5	91.1
	identity (%)	28.2	28.7	38.4		24.8	26.8	22.5	31.9	48.5	43.4	28.5	31.0		55.9	48.4	73.3
Table 1 (continued)	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora vindifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppO	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
	db Match	sp:DAPA_ECOLI	sp:GLK_STRCO	prf.2516292A		sp:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp:DPPB_BACFI	sp:OPPD_BACSU	SP:OPPF_LACLA	sp.RHTB_ECOLI	pri:2309303A		pir:C70607	sp:Y18T_MYCTU	pir:H70803
	ORF (bp)	938	606	969	177	1215	729	1608	951	1068	816	621	483	360	480	768	594
	Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
	Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146	6423 2829749
	SEQ No (a.a.)	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
	SEQ NO.	2908	2909	2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

EP 1 108 790 A2

5		Function	two-component system response regulator	two-component system sensor histidine kinase		DNA repair protein RadA	hypothetical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate dehydratase beta	A/G-specific adenine glycosylase			L-2.3-butanediol dehydrogenase				hypothetical protein	virulence factor	virulence factor
15		Matched length (a a)	223 two	341 two		463 DN	345 hy	231 hy	471 p-1		210 mi	283 A/			258 L-:				97 hy	99 vir	72 vir
20		Similarity Ma (%)	20.0	67.7		74.3	73.3	53.3	85.1		66.2	7.07			93.6				69.1	63.0	55.0
		Identity Si (%)	43.5	29.3		41.5	40.3	29.4	59.5		38.7	48.4			99.2				48.5	57.0	54.0
25	ed)		ŝ	σ.				sis	IMB		dtii ca 1	s IMRU			lyticum				sis	100	æ
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtilis 168 yacK	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca 1	Streptomyces antibioticus IMRU 3720 mutY			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
35			ΣΫ́		_			ΣÏ			ช								ΣÏ	٥٥	٥٥
40		db Match	prf:2214304A	sp:BAES_ECOLI		SP:RADA_ECOLI	Sp:YACK_BACSU	pir.D70804	gp.PPU96338_1		pir:T08204	gp:AF121797_1			gp:AB009078_1				pir.E70552	GSP:Y29188	GSP:Y29193
		ORF (bp)	723	1116	582	1392	1098	687	1452	147	621	879	1155	306	774	324	741	312	291	420	213
45		Terminal (nt)	2830779	2831894	2832666	2834181	2835285	2835283	2836048	2837591	2837956	2839521	2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2848101
50		Initial (nt)	2830057	·	2832085	2832790	2834188	2835969	2837499	2837737	2838576	2838643	2839562	2841063	2841075	6437 2842130	6438 2842493	6439 2843405	2843722	2845139	2845889
		SEQ NO.	6424	6425	6426	6427	6428	6429	6430	6431	6432	6433	6434	6435	6436	6437	6438	6439	6440	6441	6442
55		SEQ NO.	2924	2925	2926	2927	2928		2930	2931		2933	2934	2935	2936	2937	2938	2939	2940	2941	2942

EP 1 108 790 A2

					r			_	-						_	_			_	
5	ų.		osphatase / se	ate		nase					protein		9	ne ligase			ne protein	opteridina	olase	nase
10	Function	virulence factor	CIpC adenosine triphosphatase ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-monooxygenase					lincomycin resistance protein	hypothetical protein	lysyl-tRNA synthetase	pantoate-beta-alanine ligase			hypothetical membrane protein	2-amino-4-hydroxy-6- hydroxymethyldihydropteridina pyrophosphokinasa	dihydroneopterin aldolase	dihydropteroate synthase
15	Matched length (a.a.)	55	832	469	316	680					481	240	511	268			138	158	118	268
20	Similarity (%)	75.0	2.88	70.2	62.7	6.09					100.0	55.8	71.2	52.6			69.6	69.0	69.5	75.0
	Identity (%)	74.0	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9			29.0	42.4	38.1	51.5
<i>25</i>		æ	80	£	us nitR	ATCC					icum	sis	lus lysS	icum				nens		<u>G</u>
& & Table 1 (Continued)	Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtills 168 mecB	Bacillus cereus ts-4 Impdh	Rhodococcus rhodochrous nitR	Trichosporon cutaneum ATCC 46490			•		Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folK	Bacillus subtilis 168 folB	Mycobacterium leprae folP
35		12.0	i		L.							~ +								
40	db Match	GSP: Y29193	sp:MECB_BACSU	gp: AB035643_1	pir.JC6117	sp:PH2M_TRICU					gp:AF237667_1	pir:G70807	gp:AB012100_1	gp:CGPAN_2			gp:MLCB2548_4	sp:HPPK_METEX	SP:FOLB_BACSU	gp:AB028656_1
	ORF (bp)	321	2775	1431	1011	1785	1716	1941	1722	162	1443	951	1578	798	693	798	465	477	390	837
45	Terminal (nt)	2846506	2844166	2848659	2849779	2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867	2865346	2865731
50	Initial (nt)	2846186	2846940	2847229	2848769	2850031	2852017	6449 2853769	2855795	2859044	2859055	6453 2860145	2862082	2862929	2863621	2864421	2864848	2865343	2865735	2866567
	SEQ NO.	6443	6444	6445	6446	6447	6448		6450	6451	6452		6454	6455	6456	6457		6459	6460	6461
55	SEQ NO.	2943	2944	2945	2946	2947	2948	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959	2960	2961

EP 1 108 790 A2

	Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine phosphoribosyltransferase	cell cycle protein MesJ or cytosine deaminase-related protein	D-alanyl-D-alanine carboxypeptidase	Inorganic pyrophosphatase		spermidine synthase	hypothetical membrane protein	hypothelical protein	hypothetical protein	hypothetical protein	PTS system, beta-glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	bacterial regulatory protein, marR family	
	Matched length (a.e.)	188		782	165	310	459	159		507	132	144	173	202	68		411	97	135	
	Similarity (%)	86.2		69.0	83.0	66.8	51.4	73.6		80.7	86.4	63.2	60.1	72.3	59.8		69.8	73.2	59.3	
	Identity (%)	60.6		56.0	51.5	41.0	27.2	49.7		26.0	38.6	36.8	36.4	44.6	30.3		38.0	46.4	26.7	
Table 1 (continued)	Hamologous gune	Bacillus subtilis 168 mtrA			Salmonella typhimurium GP660 hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac	Escherichia coli K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis H37Rv Rv2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacitlus subtilis 168 bglP		Nocardioides sp. KP7 phdD	Streptomyces coelicolar A3(2) SCH69.09c	Burkholderla pseudomaitel ORF E	
	db Match	sp.GCH1_BACSU			gp:AF008931_1	sp:YZC5_MYCTU	sp.DAC_ACTSP	sp:IPYR_ECOLI		pir:H70886	sp:Y0B1_MYCTU	sp:Y0B2_MYCTU	sp:Y083_MYCTU	sp:Y0B4_MYCTU	sp:PTBA_BACSU		gp:A8017795_2	gp:SCH69_9	prf:2516298U	
	ORF (bp)	588	915	2580	582	891	1233	474	219	1539	399	<u>+</u>	498	609	249	264	1233	288	444	İ
	Terminat (nt)	2866586	2868385	2867169	2869863	2870499	2871445	2873399	2873393	2873905	2875434	2875870	2876280	2876777	2877455	2877595	2878478	2880252	2880987	
	tnitial (nt)	2867173	2867471	2869748	6465 2870444	2871389	2872677	2872926	2873611	2875443	2875832	2876280	2876777	2877385	2877703	6476 2877858	2879710	2879965	2880544	
	SEQ NO (a.a)	_	6483	6464	6465	6466	6467	6468	6469	6470	6471	6472	6473	6474	6475	-	6477	6478	6479	
	SEO NO.	2962	2963	2964		2966	2967	2968		2970	2971	2972	2973	2974	2975	2976	2977	2978	2979	

5

Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase

68.3

35.6

Staphylococcus aureus mnhA

peptidase

68.0

37.1

Mycobacterium tuberculosis H37Rv Rv2522c

5	טי			dehydrogenase				chaperon or							•		
10	Function	peptide synthase		phenylacetaldehyde dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or groEL protein							hypothetical protein		
15	Matched length (a.a.)	1241		488	241	54	31	548							1236		
20	Identity Similarity (%)	51.6		63.7	7.67	63.0	80.0	100.0							42.3		
	Identity (%)	28.4		35.0	57.3	62.0	74.0	99.5							21.7		
<i>25</i> (pan	16	rus cpsB		ΑA	0604	losis	losis	MJ-233									
s & S Table 1 (continued)	Homologous gene	Streptomyces roseosporus cpsB		Escherichia coli K12 padA	Campylobacter jejuni Cj0604	GP:MSGTCWPA_1 Mycobacterium tuberculosis	GP:MSGTCWPA_1 Mycobacterium tubercutosis	Brevibacterium flavum MJ-233							Homo saplens MUC5B		
40	db Match	prf:2413335A		prf.2310295A	gp:CJ11168X2_25	GP:MSGTCWPA_1	GP:MSGTCWPA_1	gsp:R94368							prf.2309326A		
	ORF (bp)	3885	1461	1563	918	162	177	1644	180	1209	963	1986	2454	2799	3591	2775	612
45	Terminal (nt)	2884882	2881844	2884935	2886916	2890346	2890553	2888897	2890751	2890930	2892138	2893100	2895072	2897528	2900330	2903964	2906839
· 50	tnitiat (nt)	2880998	6481 2883304	2886497	2887833	2890185	2890377	2890540	2890930	2892138	2893100	6490 2895085	2897525	2900328	2903920	2906738	2907250
	SEQ NO.	6480	6481	6482	6483	6484	6485	6486	6487	6488	6489		6491	6492	6493	6494	6495
55	SEQ NO.	2980	2981	2982	2983	2984	2985	2986	2987	2988	2989	2990	2991	2992	2993	2994	2995

EP 1 108 790 A2

1			 ,			_		-					_			
5	Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or muttiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	ein	ein		mylase	ein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			lease III or	lse
10	JUP.	Na+/H+ antiporter or multiple resistance and pH regulation protein C or cation transport protein	Na+/H+ antiporter or multiple resistance and pH regulation protein D	Na+/H+ antiporter or multiple resistance and pH regulation protein E	K+ efflux system or muttiple resistance and pH regulation protein F	Na+/H+ antiporter or multiple resistance and pH regulation protein G	hypothetical protein	hypothetical protein		polypeptide deformylase	hypothetical protein	acetyltransferase N terminal acetyl			exonoclease III or	cardiolipin synthase
15	Matched length (a.a.)	104	523	161	11	121	178	334		184	1.1	339			31	513
20	Similarity (%)	81.7	72.1	60.9	66.2	63.6	54.5	61.7		60.9	70.4	54.2			59.9	62.0
	Identity (%)	44.2	35.2	26.7	32.5	25.8	24.7	27.0		37.5	47.9	31.3			30.8	27.9
<i>25</i> (pen	ev	O	a	ш		nnhG	sisc	×			osis	osis			LT2	
% % Table 1 (continued)	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurlum LT2 xthA	Bacillus firmus OF4 cls
40	db Match	gp:AF097740_3 E	gp:AF097740_4 E	gp:AF097740_5	prf.2416476G	prf.2504285H	pir:D70594	sp:YBDK_ECOLI		sp.DEF_BACSU E	pir.D70631	pir:870631			gp:AF108767_1 s	1500 gp.BFU88888_2
(ORF (bp)	489	1668	441	273	378	594	1128	683	579	252	1005	699	630	789	1500
45	Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920250	2922108	2923617
50	Initial (nt)	2913235	2913749	2915482	2915929	2916205	2917617	2918757	2919481	2919715	2919741	2920286	2920476	2920849	2921320	2922118
	SEQ NO. (a.a.)	6500	6501	6502	6503	6504	6505	9059	6507	6508	6203	6510	6511	6512	6513	6514
55	SEQ NO. (DNA)	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014

EP 1 108 790 A2

	Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothetical membrane protein	glutamine-binding protein precursor	serine/threonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylglycinamide formyttransferase	
	Matched length (a.a.)		393	382	269		255	308	168	423	270	805		457	156				379	
	Similarity (%)		67.2	6'89	56.4		80.8	66.3	68.5	70.2	64.8	63.5		67.8	60.3				82.6	
	Identity (%)		31.6	28.5	38.8		24.3	36.9	47.8	35.0	31.5	41.2		37.2	34.0				59.1	
Table 1 (continued)	Homologous gene		Escherichia coli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30-84 phzC		Streptomyces coelicolor A3(2) SCE8.18c	Bacilius licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tubercutosis H37Rv Rv0412c	Bacilius stearothermophilus NUB36 glnH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos taurus	Escherichia coli K12 elaA				Baciltus subtilis 168 purT	
	db Match		sp:BCR_ECOLI	gp:VCAJ10968_1	sp:PHZC_PSEAR		gp:SCEB_16	sp:BCRA_BACI.I	pir:C70629	pir:B70629	sp:GLNH_BACST	plr:H70628		sp:ADRO_BOVIN	Sp.ELAA_ECOLI				sp:PURT_BACSU	
	ORF (bp)	654	1194	1164	840	633	768	936	501	1386	1032	2253	747	1365	546	1062	1029	398	1194	888
	Terminal (nt)	2924844	2923954	2926704	2926707	2927651	2927551	2928302	2929258	2931336	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	2943012	2945639
	Initial (nt)	2924191	2925147	2925541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398	2938403	2939907	2941508	2942500	2943007	2944205	2946526
	SEQ NO.	6515	6516	6517	6518	6519	6520	6521	6522	6523	6524	6525	6526	6527	6528	6259	6530	6531	6532	6533
	SEQ NO.	3015	3016	3017	3018	3019	3020	3021	3022	3023	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033

	Function	insertion element (IS3 related)	insertion element (IS3 related)	two-component system sensor histidine kinase	transcriptional regulator	4/	adenylosuccinate synthetase	hypothetical protein		hypothetical membrane protein	fructose-bisphosphate aldolase	hypothetical protein	methyltransferase	orotate phosphoribosyltransferase	hypothetical protein	3-mercaptopyruvate sulfurtransferase		-	
	Matched length (a.a.)	295 ins	89 ins	349 tw	218 tra		427 ad	204 hy		359 hy	344 fr.	304 hy	182 m	174 or	250 hy	294 3-			
	Similarity N	90.9	84.3	51.3	65.6		95.3	59.3		100.0	100.0	100.0	91.2	65.5	60.0	58.1			
	(%)	77.6	67.4	22.4	31.7		89.7	34.3		100.0	99.7	100.0	76.9	39.1	27.6	29.6			
Table 1 (continued)	Homologous gene	Corynebacterlum głutamicum orf2	Corynebacterium giutamicum orf1	Streptomyces thermoviolaceus opc-520 chiS	Bacillus brevis ALK36 degU		Corynebacterlum ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		Corynebacterium glutamicum AS019 ATCC 13059 ORF3	Corynebacterium glutamicum AS019 ATCC 13059 fda	Corynebacterium glutamicum AS019 ATCC 13059 ORF1	Mycobacterium tuberculosis H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis H37Rv Rv0383c	Homo sapiens mpsT			
	db Match	pir.S60890	pir.S60889	gp:AB016841_1	sp.DEGU_BACBR		gp:AB003160_1	pir.G70575		sp:YFDA_CORGL	pir:S09283	gp:CGFDA_1	plr:G70833	gp:AF058713_1	plr:870834	sp:THTM_HUMAN			
	ORF (bp)	894	267	1140	618	225	1290	759	264	1167	1032	951	618	552	972	852	720	279	388
	Terminat (nt)	2946698	2947620	2948049	2949265	2950431	2950434	2952691	2952972	2952975	2954241	2955523	2956830	2957485	2958139	2959520	2960468	2962730	2963198
	Initial (nt)	2947591	2947886	2949188	2949882	2950207	2951723	2951933	2952709	2954141	2955272	2956473	2957447	2958036	2959110	2960371	2961187	2963008	2963596
	SEQ.	6534	6535	6536	6537	6538	6239	6540	6541	6542	6543	6544	6545	6546	6547	6548	6549	6550	6551
	SEQ NO. (DNA)		3035	3036	3037	3038	3039	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051

	Function	virulence factor	virulence factor	virulence factor	sodium/glutamate symport carrier protein	cadmium resistance protein	cation efflux system protein (zinc/cadmlum)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-lyase	bacterial regulatory protein, lacl family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreductase
	Matched length (a.a.)	59	200	132	489	108	283	476	388		375	184	88	56	381	204	386
	Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	58.2	64.7	80.6
	Identity (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9
Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechocystis sp. PCC6803 slr0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay PAB0462	Rhadacoccus rhadachrous IFO3338	Kryptophanaron alfredi symbiont luxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coelicolor A3(2) SCE20,34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0838c	Mycobacterium tuberculosis H37Rv Rv0385
	db Match	GSP:Y29188	GSP: Y29182	GSP: Y29193	pir.S76683	SP.CADF_STAAU	pir.H75109	gp:AB010439_1	sp:LUXA_KRYAS		SP:METB_ECOLI	gp:SC1A2_11	gp:SCE20_34	gp:SCE20_34	pir:E70812	pir:D70812	pir:D70834
	ORF (bp)	177	762	396	1347	387	828	1170	1041	762	1146	567	240	183	1125	732	1179
	Terminal (nt)	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
	Initial (nt)	2964258	2965076	2965188	2967804	2968403	2968951	2969834	2971017	2972099	2973205	2973796	2973961	2974200	2974467	2975629	2976596
	SEQ. NO.	6552	6553	6554	6555	6556	6557	6558	6559	9959	6561	6562	6563	6564	6585	6566	/959
	SEQ NO.	3052	3053	3054	3055	3056		3058	3059	3060	3081	3062	3063	3064	3065	3066	3067
							•										. –

														\neg		-			
5	uo	10 acid			nt regulatory	nase	ition regulator	lnaJ	e factor grpE 9 ATPase domain aperone DnaK	dnaK	ane protein	sine iine nucleosidase			gation protein			1856	
10	Function	N-carbamoy!-D-amino acid amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	5-methylthioadenosine nucleosidase and S- adenosylthomocysteine nucleosidase			chromosome segregation protein			alcohol dehydrogenase	
15	Matched length	275		289	108	202	135	397	212	618	338	195			1311			334	
20	Similarity (%)	67.3		55.4	44.0	90.3	70.4	80.1	66.5	8.66	79.0	0.09			48.4			81.7	
	Identity (%)	32.0		28.0	38.0	69.6	47.4	56.7	38.7	8.66	42.6	27.2			18.9			20.0	
25 G		I		3(2)	æ	thcA	æ	S IS	7PE	-233	3(2)	19 mtn			mbe			sn	
30	Homologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirillum brasilense carR	Rhodococcus erythrapolis thcA	Streptomyces albus G hspR	Mycobacterium tuberculosis H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233 dnaK	Streptomyces coelicolor A3(2) SCF6.09	Helicobacter pylori HP0089 mtn			Schizosaccharomyces pombe cut3			Bacillus stearothermophilus DSM 2334 adh	
35		Meth		Strep SC4,	Azos	S. Po	Stre		· · · · · · · · · · · · · · · · · · ·	Brevit dnaK	Stra	ij							
40	db Match	pir.B69109		gp:SC4A7_3	GP:ABCARRA_2	prf:2104333D	gp.SAU43299_2	sp:DNAJ_MYCTU	sp:GRPE_STRCO	gsp:R94587	gp:SCF6_8	sp.PFS_HELPÝ			sp:CUT3_SCHPO			1035 sp. ADH2_BACST	
	ORF	798	243	1134	330	1518	438	1185	636	1854	1332	633	1200	885	3333	838	1485		
45	Terminal	2977847	2978979	2980115	2981216	2980181	2982023	2982495	2983887	2984544	2988164	2988214	2988846	2992602	2989954	2993286	2993921	2995747	
50	Initiat	~	2978737	2978982	2980887	2981698	2982460		2984522	2986397	2986833	2988846	2990045	2991718	2993286	2993921	2995405	2996781	
	SEO	(a.a.) 6568	6569	6570	6571	6572			6575	6576	8577	6578	6229	6580	6581	6582	6583	6584	i
55	SEO	(DNA)	3069	3070	3071	3072	3073	3074	3075	3076	3077	3078	3079	808	3081	3082	3083	3084	r

EP 1 108 790 A2

_				_	_												_				
	Function					hypothetical membrane protein	hypothetical protein		sulfate adenylyltransferase, subunit 1	sulfate adenylyltransferase small chain	phosphoadenosine phosphosulfate reductase	ferredoxin-nitrate reductase	ferredoxin/ferredoxin-NADP reductase	huntingtin interactor			alkylphosphonate uptake protein and C-P lyase activity	hypothetical protein	ammonia monooxygenase		
	Matched length (a.a.)					301	252		414	80E	212	205	487	144			142	80	161		
	Similarity (%)					70.1	53.2		78.3	70.1	64.2	65.5	61.4	59.7			59.9	66.3	76.4		
	identity (%)					43.5	32.5		47.3	46.1	39.2	34.5	30.8	32.6			26.8	20.0	39.1		
Table 1 (continued)	Homologous gene					Bacillus subtilis ytnM	Streptomyces coelicolor A3(2) SC7A8:10c		Escherichia coli K12 cysN	Escherichia coli K12 cysD	Bacillus subtilis cysH	Synechococcus sp. PCC 7942	Saccharomyces cerevisiae FL200 arh1	Homo saplens hypE			Escherichia coli K12 phnB	Streptomyces coelicolor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
	db Match					pir:F69987	gp:SC7A8_10		sp:CYSN_ECOL!	sp:cysp_EcoLI	sp:CYH1_BACSU	Sp:NIR_SYNP7	sp:ADRO_YEAST	prf:2420294J			sp:PHNB_ECOLI	gp:SCE68_10	gp:PPAMOA_1		
	ORF (bp)	218	202	189	261	927	723	915	1299	912	693	1683	1371	1083	237	534	414	366	522	321	486
	Terminal (nt)	2997366	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542	3002453	3003480	3006915	3008376	3008453	3009303	3008749	3009607	3009710	3010979	3010441
	Initial (nt)	2997151	2997687	2997688	6588 2998223	2999454	3000200	3001512	3001539	3002453	3003145	3005162	3005545	3007294	6598 3008689	3008770	6600 3009162	3009242	3010231	3010659	3010926
	SEO NO (a.a.)	6585	6586	6587	6588	6289	6590	6591	6592	6593	6594	6595	6596	6597	6598	6233		6601	6602	6603	6604
	SEQ NO.	3085	3086	3087	3088	3089	3090	3091	3092	3083	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103	3104

EP 1 108 790 A2

ام

5		Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homoto			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATF
15		Matched length (a.a.)	68		337	199	211	416			466				114	373
20		Identity Similarity (%)	58.0		57.9	64.8	73.0	67.8			48.5				48.0	50.1
		identity (%)	41.0		192	35.7	39.3	30.8			21.5				33.0	24.9
25	itinued)	gene	RF23		s H16	ae hmcB	ae hmcB				msgB					mal X
30	Table 1 (continued)	Homologous gene	Agrobacterium vitis ORFZ3		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK
35 40		db Match	SP.YTZ3_AGRVI /		1002 sp:YGB7_ALCEU	gp:HIU68399_3	gp:HIU68399_3	pir:A69778 E			1323 SP.DAPE_ECOLI				GPU:DCA297422_	1068 SP.MALK_ECOLI
		ORF (bp)	285	564		693	714	1209	822	687	1323	1905	774	762	954	
45		Terminal (nt)	3011273	3011242	3011808	3013108	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542
50		Initial (nt)	3010989	3011805	6607 3012809	6608 3013798	6609 3014550	3014616	6611 3015469	3016238	3017149	3017316	3017539	3018181	3019076	3020609
		SEO NO (a.a.)	6605	9099			6099	6610		6612	6613	6614	6615	6616	6617	6618
55		SEQ NO.	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118

Inosine-uridine preferring nucleoside hydrolase DNA-3-methyladenine glycosylase hypothetical membrane protein NADPH-flavin oxidoreductase coball transport protein **Navohemoprotein** binding protein 179 276 408 179 231 317 71.4 63.6 67.6 59.3 59.4 78.8 33.5 37.2 50.3 30.2 28.4 31.2 Alcaligenes eutrophus H18 fhp Streptomyces coelicolor A3(2) SCE20.08c Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM Crithidla fasciculata lunH Escherichia coli K12 tag Vibrio harveyi MAV frp 3124 6624 3025552 3026139 588 sp.3MG1_ECOLI 3125 6625 3027299 3026142 1158 sp.HMPA_ALCEU Sp:IUNH_CRIFA 618 gp:AF036485_6 816 sp:FRP_VIBHA gp:SCE20_8 975 903 642 3123 | 6623 | 3024379 | 3025353 6621 3022928 3022113 3120 6620 3021825 3021208 3022998 3020561 6622 3023900 6619 3021202

3121

EP 1 108 790 A2

_																				
	Function		oxidoreductase		transcription antiterminator or beta- glucoside positive regulatory protein		6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase		transposase (ISCg2)	hypothetical membrane protein		UDP-glucose dehydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetylglucosaminidase
	Matched length (a.a.)		210		192		167		99	402		401	399		442	188		229		410
	Identity Similarity (%)		63.8		69.3		59.9		78.8	6.08		100.0	70.2		72.2	72.3		59.4		58.1
	Identity (%)		34.8		28.1		43.7		43.9	53.7		100.0	33.6		40.5	43.6		30.6		28.5
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagelfatus aat		Corynebacterium glutamicum ATCC 13032 tnp	Streptomyces caelicolor A3(2) SCQ11.10c		Sinorhizobium meliloti rkpK	Escherichia coli K12 dcd		Streptomyces coelicolor A3(2) SCC75A.16c		Streptomyces thermoviolaceus nagA
	db Match		gp:SCO276673_18	-	sp:BGLG_ECOLI		sp:ABGA_CLOLO		sp:ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf.2422381B	sp:DCD_ECOLI		gp:SCC75A_16		gp:AB008771_1
	ORF (bp)	603	624	156	591	279	360	381	240	1257	300	1203	1257	183	1317	567	237	122	1689	1185
	Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
	Initial (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155	3030340	3030723	3032647	3032661	3034181	3034287	3036756	3037411	3037675	3038172	3040681	6644 3041932
	SEQ NO.	9299	6627	6628	6299	6630	6631	6632	6633	6634	6635	6636	6637	6638	6639	6640	6641	6642	6643	
	SEQ NO. (DNA)	3126	3127	3128	3129	3130	3131	3132	3133	3134	3135	3136	3137	3138	3139	3140	3141	3142	3143	3144

																			_
	Function			hypothetical protein			hypothetical membrane protein	acytransferase or macrolide 3-O- acytransferase		hypothetical membrane protein		hexosyltransferase	methyl transferase	phosphoenolpyruvate carboxykinase (GTP)	C4-dicarboxylate transporter	hypothetical protein	hypothetical protein	mebrane transport protein	
	Matched length (a.a.)			1416			363	408		529		369	251	601	332	241	207	768	
	Similarity (%)			49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	0:58	72.3	
	Identity (%)			29.6			24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
lable 1 (confinued)	Homologous gene			Mycobacterium leprae MLCB1883.13c			Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLCB1883.04:		Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocallimastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichia coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	
	db Match			gp:MLCB1883_7			gp:MLCB1883_4	pir.JC4001		gp:MLCB1883_3		plr:G70961	pir.F70961	SP. PPCK_NEOFR	plr.E75125	Sp. YGGH_ECOLI	pir.E70959	pir:C70839	
	ORF (bp)	444	201	3129	621	195	903	1068	708	1422	699	1137	171	1830	1011	785	705	2316	1422
	Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049456	3051964	3052062	3055769	3056631	3057317	3059643	3058096
	Initial (nt)	3041994	3042503	3042660	3043642	3045796	3047146	3047189	3047904	3048058	3050522	3050592	3051194	3053891	3054759	3055887	3056613	3057328	3059517
	SEQ NO (a a.)	6645	6646	6647	6648	6649	6650	6651	6652	6653	6654	8655	9999	6657	6658	6829	0999	6661	8662
	SEQ NO. (DNA)	3145	3146	3147	3148	3149	3150	3151	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162

EP 1 108 790 A2

-																		
	Function	hypothetical membrane protein	hypothetical membrane protein	propionyl-CoA carboxylase complex B subunit	polyketide synthase	acyl-CoA synthase	hypothetical protein		major secreted protein PS1 protein precursor			antigen 85-C	hypothetical membrane protein	nodulation protein	hypothetical protein	hypothetical protein		phosphatidic acid phosphatase
	Matched length (a.a.)	364	108	523	1747	592	319		657		ļ	331	667	295	168	656		170
	Similarity (%)	62.9	69.4	76.9	54.2	62.3	67.4		99.5			62.5	61.2	51.5	75.0	74.7		58.5
	Identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6			36.3	37.5	27.1	51.2	55.6		28.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces caelicolor A3(2) pccB	Streptomyces erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis ERDMANN RV0129C fbpC	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizobium caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Baciltus licheniformis ATCC 9945A bcrC
	db Match	pir.A70839	pir:H70633	gp:AF113605_1	sp.ERY1_SACER	prf:2310345A	pir:F70887		1971 sp.CSP1_CORGL			sp:A85C_MYCTU	pir.A70888	sp:NOEC_AZOCA	pir.C70888	pir:D70888		sp:BCRC_BACL!
	ORF (bp)	1083	363	1548	4830	1788	927	498	1971	1401	219	1023	2058	986	504	1968	1494	477
	Terminal (nt)	3060733	3061095	3061380	3062951	3068143	3070214	3071147	3071650	3075447	3073857	3075540	3076715	3078853	3079848	3080344	3083960	3083935
	Initial (nt)	3059651	3060733	3062927	3067780	3069930	3071140	3071644	3073620	6671 3074047	6672 3074075	3076562	3078772	3079848	3080351	3082311	3082467	3084411
	SEQ NO.	6663	6664	9999	9999	2999	6668	6999	6670	6671	6672	6673	6674	6675	6676	6677	8299	6299
	SEQ NO (DNA)	3163	3164	3165	3166	3167	3168	3169	3170	3171	3172	3173	3174	3175	3176	3177	3178	3179

EP 1 108 790 A2

	Function			dimethylaniline monooxygenase (N- oxide-forming)		UDP-galactopyranose mutase	hypothetical protein	glycerol kinase	hypothetical protein	acyltransferase	seryi-tRNA synthetase	transcriptional regulator, GntR family or fatty acyl-responsive regulator	hypothetical protein	hypothetical protein		2,3-PDG dependent phosphoglycerate mutase		nicotinamidasa or pyrazinamidase	
	Matched length (a.a.)			377		377	629	499	279	261	419	235	356	113		218		460	
	Similarity (%)			50.4		72.9	47.8	78.8	70.3	72.0	87.6	61.7	61.2	79.7		62.8		50.9	
	Identity (%)			24.4		43.2	29.6	51.7	41.6	48.7	70.2	27.7	32.6	46.0		37.2		27.4	
Table 1 (continued)	Homologous gene			Sus scrofa fmo1		Escherichia coli K12 gif	Mycobacterium tuberculosis H37Rv Rv3811 csp	Pseudomonas aeruginosa ATCC 15692 glpK	Mycobacterium tuberculosis H37Rv Rv3813c	Mycobacterium tuberculosis H37Rv Rv3816c	Mycobacterium tuberculosis H37Rv	Escherichia coli K12 farR	Mycobacterium tuberculosis H37Rv Rv3835	Mycobacterium tuberculosis H37Rv Rv3836		Amycolatopsis methanolica pgm		Mycobacterium smegmatis pzaA	i
	db Match			sp:FMO1_PIG		sp:GLF_ECOLI	pir:G70520	sp:GLPK_PSEAE	pir:A70521	pir:D70521	gsp:W26465	sp:FARR_ECOU	pir.H70652	pir.A70653		gp:AMU73808_1		prf:2501285A	
	ORF (bp)	777	510	1302	612	1203	2049	1527	834	876	1268	714	1113	342	66	699	630	1143	729
	Terminal (nt)	3084424	3085218	3087048	3088276	3087101	3090664	3090760	3092342	3093175	3094078	3096287	3097423	3097764	3097780	3097904	3099454	3100698	3101426
	Initial (nt)	3085200	3085727	3085747	3087665	3088303	3088616	3092286	3093175	3094050	3095343	3095574	3096311	3097423	3097878	3098572	3098825	3099556	3100698
	SEO NO (e.e.)	9999	6681		6683	6684	6685	9899	6687	6688	6899	0699	6691	6692	6693	6694	6695	9699	6697
	SEQ NO.		3181		3183	3184	3185	3186	3187	3188	3189	3190	3191	3192	3193	3194	3195	3196	3197

EP 1 108 790 A2

	Function	transcriptional regulator				hypothetical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconate permease			pyruvate kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase	shikimate transport protein
	Matched length (a.a.)	380				107	432		259	456			491	314	526	224	188	221	255	422
	Similarity (%)	57.1				81.3	55.3		54.1	71.9		_	47.7	99.7	64.8	58.5	67.6	57.0	68.6	74.4
	Identity (%)	31.6				43.9	28.7		29.0	37.3			25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC6G4.33				Streptomyces favendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Bacillus subtilis glpQ	Bacillus subtilis gntP			Corynebacterium glutamicum AS019 pyk	Brevibacterium flavum ictA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
	db Match	gp:SC6G4_33				pir:826872	SP.AMYH_YEAST		sp.GLPQ_BACSU	sp.GNTP_BACSU			sp:KPYK_CORGL	gsp:Y25997	pir.C70893	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	plr:B70885	1299 sp:SHIA_ECOLI
	ORF (bp)	1035	120	552	870	327	1314	918	819	1389	642	159	1617	942	1776	636	543	693	786	1299
٠	Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121	3119582
	Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970	3107789	3108131	3109484	3109845	3112080	3113390	3113619	3115407	3116079	3116640	3117336	6716 3118284
	SEQ NO (a.a.)	 -	6699	6700	6701	6702	6703	6704	6705	6706	6707	6708	6029	6710	6711	8712	6713	6714	6715	
	SEQ NO.		3199	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215	3216

	Function	L-factate dehydrogenase or FMN-dependent dehydrogenase		Immunity repressor protein			phosphatase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	multidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
1	Matched length (a.a.)	376		55			569		122		210	164	292	384				218	447	137	212
	Similarity (%)	68.9		80.0			51.3		63.1		69.1	92.7	65.8	49.0				64.8	59.3	65.0	75.5
	Identity (%)	40.4		45.5			29.5		36.9		47.6	82.3	32.5	23.4			:	33.8	27.3	37.2	50.9
Table 1 (continued)	Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1			Caenorhabditis elegans Y51B11A.1		Arabidopsis thaliana ill1		Escherichia coli 8 msrA	Corynebacterium pseudodlphtheriticum sod	Bacillus subtilis gttC	Corynebacterium glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus land	Bacillus subtilis 168 yxaD	Corynebacterium diphtherlae chrA
	db Match	prf.2219306A		sp:RPC_BPPH1			gp:CELY51B11A_1		Sp:ILL1_ARATH		sp.PMSR_ECOLI	pir:140858	sp:GLTC_BACSU	gp:AF121000_10				pir.G70654	prf:2508244AB	sp:YXAD_BACSU	prf.2518330B
	ORF (bp)	1215	405	312	138	711	1617	546	402	150	651	909	924	1134	1811	Ξ	1521	633	1491	458	636
	Terminal (nt)	3120879	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
	Initial (nt)	3119665	3120909	3121598	3122129	3123222	3124172	6723 3124885	3125298	3125343	3126145	3126392	3128417	3128606	3129785	3132920	3133028	3133115	3135268	3135297	3136491
	SEQ (a.a.)	6717	6718	6719	6720	6721	6722	6723	6724	6725	6726	6727	6728	6729	6730	6731	6732	6733	6734	6735	6736
	SEQ NO.		3218	3219	3220	3221		3223	3224	3225		3227	3228	3229	3230	3231	3232	3233	3234	3235	3236

-							 					$\overline{}$		$ \tau$	-			1	
	Function			two-component system sensor histidine kinase	hypothetical protein	hypothetical protein	stage III sporufation protein	transcriptional repressor	transglycosylase-associated protein	hypothetical protein	hypothetical protein	RNA pseudouridylate synthase	hypothetical protein	hypothetical protein		bacterial regulatory protein, gntR family or gic operon transcriptional activator	hypothetical protein	hypothetical protein	
ļ	Matched length (a.a.)			408	48	772	265	192	87	296	314	334	2	42		109	488	267	
	Similarity (%)			64.5	79.2	59.2	53.6	6.09	71.3	9.69	73.9	51.2	66.0	75.0		56.0	48.2	78.7	:
	Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	28.4	61.0	71.0		30.3	26.0	48.3	
Table 1 (continued)	Homologous gene			Corynebacterium diphtherlae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coelicolor A3(2) SCH69.20c	Bacillus subtilis spolliJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Mycobacterium tuberculosis H37Rv Rv2005c	Escherichia coli K12 MG1655 yhbW	Chlorobium vibrioforme ybc5	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis H37Rv Rv2744c	
	db Match			pri:2518330A	gp:SCH69_22	gp:SCH69_20	sp:SP3J_BACSU	pir.C70948	sp:TAG1_ECOLI	sp:YW12_MYCTU	Sp.YHBW_ECOLI	sp:YBC5_CHLVI	GSP:Y35814	PIR:F81737		sp:GLCC_ECOL!	gp:SC4G6_31	sp.35KD_MYCTU	
	ORF (bp)	639	588	1311	150	822	1302	639	261	903	987	988	273	<u> </u>	207	363	1416	873	
	Terminal (nt)	3137558	3138471	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496	3145626	3146841	3147230	3151369	3151842	3153828	3153894	
	Initial (nt)	3136920	3137884	3137903	3138630	3139455	3139651	3141523	3141969	3143356	3144482	3144661	3146569	3147090	3151575	3152204	3152413	3154766	
	SEO NO.		6738	6239	6740	6741	6742	6743	6744	6745	6746	6747	6748	6749	6750		6752	6753	
	SEQ NO.		3238	3239	3240	3241	3242		3244	3245	3246	3247	3248	3249	3250	3251	3252	3253	

EP 1 108 790 A2

5												Se					nent		ate ene)		rting	
10	Function						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment		glyceraldehyde-3-phosphate dehydrogenase (pseudogena)	lipoprotein	copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
15	Matched length (a.a.)						217	241				58		62	55	27	46		38	180	717	
20	Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	90.0		84.2	59.4	73.4	
	identity (%)						32.3	26.1			<u> </u>	48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
55 - Zable 1 (continued)	ons gene						elicolor A3(2)					eruginosa TNP5		ora enythraea fer	elicolor A3(2)	ı glutamicum	ı glutamicum		sel gap). PCC6803	ılgidus AF0152	
Table 1	Homologous gene						Streptomyces coelicolor A3(2) SCD35,11c	soybean NO21				Pseudomonas aeruginosa TNP5		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum		Pyrococcus woesel gap	Synechocystis sp. PCC6803 \$110788	Archaeogiobus fulgidus AF0152	
<i>35</i>	db Match						gp:SCD35_11	sp:NO21_SOYBN				sp.TNP5_PSEAE		SP.FER_SACER	gp:SCD31_14	GPU:AF184956_8	GPU:AF164956_23		sp.G3P_PYRWO	pir.S77018	pir. H69268	
	ORF (bp)	153	1452	1068	249	308	711 gp	720 sp	204	378	1 86	216 sp	483	321 sp	333 gp	± <u>0</u>	162 GF	1038	126 sp	660 pir	2217 pir	12
45	Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
50	Initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	3160216	3160688	3160816	3160938	3161219	3161407	3162014	3162694	3162710	3162852	3162983	3163733	3166005	3166437
	SEO SE		6755	6756	6757	6758	6229	8760	6761	6762	6763	6764	6765	9929	2929	6768	6929	6770	6771	6772	6773	6774
55	SEQ NO.	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

	Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol:disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)-translocating p-type ATPase	hypothetical protein		transposase	transposase
	Matched length (a.a.)		301		233		930	101	325		78			909	72		13	7.0
	Similarity (%)		71.4		72.1		47.9	63.4	60.9		66.7			68.5	54.0		73.0	0.77
į	Identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0
Table 1 (continued)	Homologous gene		Escherichia coli K12 baeS		Bacilius subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium Japonicum ttpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coil K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
	db Match		sp:BAES_ECOLI		sp:PHOP_BACSU		sp.COPA_PSESM	sp:TLPA_BRAJA	sp.QOR_MOUSE		sp:ATZN_SYNY3			1875 sp.ATZN_ECOLI	PIR:E72491		GPU:AF164956_8	GPU:AF164956_8
i	ORF (bp)	192	1197	828	756	672	1479	363	918	471	234	315	207	1875	390	309	216	258
	Terminal (nt)	3167169	3166450	3168566	3167646	3169340	3170892	3171616	3171619	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
	initial (nt)	3166978	3167646	3167739	3168401	3168669	3169414	3171254	3172536	3172995	3173624	3174066	3174990	3175027	3175643	3177174	3177304	3177565
	SEQ NO. (a.a.)	6775	6776	7779	8778	6119	6780	6781	6782	6783	6784	6785	6786	6787	6788	6789	6790	6791
	SEQ NO. (DNA)	3275	3276	3277	3278	3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

EP 1 108 790 A2

					_	_	_	_	_	_		_	_		_								
	Function	transposase (IS1628)	thioredoxin		transmembrane transport protein or 4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6		hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
	Matched length (a.a.)	53	901		421		208	481		154	229	92		480		647	107	137	296		7	298	433
	Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		68.3		60.1	72.0	65.0	61.8		70.4	63.8	64.0
	Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 thi2		Pseudomonas putida pcaK		Escherichia coli K12 yqji	Escherichia coli K12 dnaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF		Bacillus subtills yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
	db Match	gp:AF121000_8	sp:THI2_ECOLI		sp:PCAK_PSEPU		sp:YQJI_ECOLI	sp:DNAB_ECOLI		Sp:RL9_ECOLI	sp:SSB_ECOLI	sp:RS6_ECOLI		gp:AF187306_1		sp:PBPA_BACSU	sp:YOHC_MYCTU	pir:B70912	sp:Y0FF_MYCTU		sp:YHGC_BACSU	sp:YCEA_ECOLI	sp:YBJZ_ECOU
	ORF (bp)	159	447	264	1344	159	576	1530	516	450	675	285	189	1458	882	2160	357	471	942	495	321	936	1263
	Terminal (nt)	3177525	3178112	3178872	3180392	3180946	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192286	3193252
	initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126	3182866	3183469	3183927	3184661	3184985	3185536	3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	3193201	3194514
	SEQ NO.	6792	6793	6794	6795	9629	6797	6798	6229	6800	6801	6802	6803	6804	6805	9089	6807	6808	6809	6810	6811	6812	6813
	SEQ NO. (DNA)	3292	3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304 6804	3305	3306	3307	3308	3309	3310	3311	3312	3313

										_									$\overline{}$
	Function	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			DNA protection during starvation protein	formamidopynimidine-DNA glycosylase	hypothetical protein			methylated-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogensse or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoreductase [NAD] (malic enzyme)	gluconokinase or gluconate kinase	telcoplanin resistance protein	teicoplanin resistance protein
	Matched length (a.a.)	221	237	360			154	268	404			166	231		398	392	486	169	159
	Similarity (%)	80.1	42.0	90.0			64.9	55.6	66.6			83.3	63.6		66.3	99.5	53.7	60.4	159.0
	Identity (%)	48.9	18.0	77.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobaclerium tuberculosis H37Rv Rv0048c			Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			sp:MGMT_HUMAN Homo sapiens mgmT	Cavla porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faecium vanZ	Enterococcus faecium vanZ
	db Match	sp:YBJZ_ECOLI	pir.E81408	pir:F70912			sp:DPS_ECOLI	sp:FPG_ECOLI	sp:RTCB_ECOLI			sp:MGMT_HUMAN	1011 sp.:QOR_CAVPO		sp:YDEA_ECOLI	gp:AF234535_1	SP.GNTK_BACSU	Sp.VANZ_ENTFC	sp:VANZ_ENTFC
	ORF (bp)	980	1977	1089	909	1485	495	813	1149	1089	573	474	1011	E	1176	1176	1482	591	525
	Terminal (nt)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3206758	3208024	3209454	3209705	3211246	3211904
	Initial (nt)	3195203	3197186	3197412	3199187	3200686	3201754	3201900	3202952	3204067	3204156	3205204	6825 3206232	3206646	3206849	3208279	3211186	6830 3211836	8831 3212428
	SEQ NO.	6814	6815	6816	6817	8818	6819	6820	6821	6822	6823	6824	6825	6826	6827	6828	6829	6830	
	SEO NO.		3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327	3328	3329	3330	3331

[\neg							\neg		$\neg \neg$	[_		
	Function	mercury(!!) reductasa	D-amino acid dehydrogenase small subunit				NAD(P)H nitroreductase			leucyl-tRNA synthetase	hypothetical membrane protein	virulence-associated protein		hypothetical protein	bifunctional protein (homoprotocatechuate catabolism bifunctional Isomerase/decarboxylase) (2- hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7dioate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, laci family or pectin degradation repressor protein	transmembrane transport protein or 4-hydroxybenzoate transporter
	Matched length (a.a.)	448	444				194			943	104	98		247	298	339	228	454
	Similarity (%)	65.6	54.5				55.2			68.1	40.4	81.4		53.8	50.3	64.3	60.7	80.8
	Identity (%)	29.8	27.3				25.8			47.7	40.4	55.8		31.6	28.5	34.2	25.3	27.5
Table 1 (continued)	Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xinE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
	db Match	sp:MERA_STAAU	sp:DADA_ECOLI				sp:NOX_THETH			2858 sp:SYL_BACSU	sp:YBAN_ECOL!	Sp:VAPI_BACNO		gp:SCC54_19	sp:HPCE_ECOLI	gp:AF173167_1	sp.KDGR_ERWCH	1356 sp:PCAK_PSEPU
	ORF (bp)	1344	1230	1503	330	321	609	924	1452	2858	429	357	774	723	837	1125	780	
	Terminal (nt)	3213931	3213934	3215257	3216886	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	3225563	3226910	3229079
	Initial (nt)	3212588	3215163	3216759	3217215	6838 3217777	3217993	3218777	3221044	6840 3222633	3222722	3223445	3224601	3224714	3225554	3226687	3227689	3227724
	SEQ NO.	6832	6833	6834		6838	6837	6838	6839	6840	6841	6842	6843	6844	6845	6846	6847	6848
	SEQ NO.	3332	3333	3334	3335	3338	3337	3338	3339	3340	3341	3342	3343	3344	3345	3346	3347	3348

EP 1 108 790 A2

		<u> </u>							 ,						
Function	salicytate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component I		anthranilate synthase component ii	anthranilate phosphoribosytransferase	indole-3-glycerol phosphate synthese (IGPS) and N-{5· phosphoribosyl) anthranilate isomerase(PRAl)		tryptophan synthase beta chain	tryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
Matched length (a.a.)	476	507	170	515		208	348	474		417	283	521	152	. 305	547
Similarity (%)	49.4	54.4	99.4	99.8		100.0	99.4	98.3 8.3		97.9	96.5	86.8	71.7	63.6	57.2
Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		87.6	95.4	66.6	30.3	32.5	25.2
Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE	1	Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trp8	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21, 17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
db Match	prf.1706191A		plr.JC2328	sp:TRPE_BRELA		TRPG_BRELA	sp:TRPD_CORGL	sp:TRPC_BRELA		sp:TRPB_BRELA	sp:TRPA_BRELA	gp:SCJ21_17	sp:PTXA_ECOLI	Sp:NOSF_PSEST	gp:SCH10_12
ORF (bp)	1326	1251	510	1554	171	624	1044	1422	969	1251	840	1539	B 10	906	1584
Terminal (nt)	3230444	22	3233105	3234958	3233250	3235579	3236645	3238062	3236518	3239332	3240171	3240313	3241879	3243759	3245342
Initial (nt)	3229119	3232304	3232596	3233403	3233420	3234956	3235602	3236641	3237213	3238082	3239332	3241851	3242688	3242854	6863 3243759
SEQ NO.		6850	6851	6852	6853	6854	6855	6856	6857	6858	6859	0989	6861	6862	6863
SEO NO.			3351	3352	3353	3354	3355	3356	3357		3359	3360	3361	3362	
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) length length (a.s.) (nt) (bp) (bp) db Match	SEQ Initial NO. (nt) (nt) (nt) (nt) (as.) (hp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEQ (nt) (nt) Initial (nt) Terminal (bp) db Match (bp) Homologous gene (sa.) Identity (sa.) Similarity length (sa.) Matched (sa.) 6849 3229119 3230444 1251 sp.EAT2_HUMAN Homo sapiens eat2 3232304 25.4 54.4 507	SEQ Initial NO. (at) Terminal (bp) ORF (bp) db Match Homologous gene (case) Identity (case) Imilarity (case) Matched (case) 6849 3229119 3230444 1326 prf.1706191A Pseudomonas putida 28.2 49.4 476 6850 3232304 3231054 1251 sp:EAT2_HUMAN Homo sapiens eat2 25.4 54.4 507 6851 3232596 3233105 510 pir.JC2326 AS019 ORF1 99.4 170	SEQ (at) (at) (at) (at) (at) (at) (bp) (bp) (at) (bp) (bp) (at) (bp) (bp) (at) (at) (at) (at) (at) (at) (at) (at	SEQ Initial No. (at) (at) (at) (bp) OPF (bp) db Match Homologous gene (%) Identity (%) Matched (%) Matched (%) NO. (at) (at) (at) (at) (at) (at) (bp) 4b Match Homologous gene (%) (%)	SEQ (at.) Initial (at.) Terminal (at.) ORF (bp) db Match Homologous gene (%) Identity (%) Matched (%)	SEQ Initial NO. (nt) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) NO. (nt) (nt) (nt) (bp) ht 1706191A Pseudomonas putida 28.2 49.4 476 6859 3232019 32310S4 1251 sp:EAT2_HUMAN Homo sapiens eat2 25.4 54.4 507 6851 323250B 32310S 510 pir.JC232B Groynebacterium glutamicum 99.4 170 6852 3233403 32349SB 1554 sp:TRPE_BRELA Brevibacterium lactofermentum 99.2 99.8 515 6853 3233420 323550 171 Brevibacterium lactofermentum 99.0 100.0 208 6854 3235602 3236645 1044 sp:TRPD_CORGL Corynebacterium glutamicum 99.4 99.4 348	SEC NO. (a1s.a.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 6849 3229119 3230444 1326 prt.1706191A Preudomonas putida 28.2 49.4 478 6850 32232304 323105 1251 sp:EAT2_HUMAN Homo sapiens eat2 25.4 50.7 476 6851 3232596 3233105 510 pir.JC2326 Corynebacterium glutamicum 99.4 170 6852 3233403 3234956 1554 sp:TRPE_BRELA Brevibacterium lactofermentum 99.0 100.0 208 6853 3235509 524 TRPG_BRELA Grynebacterium glutamicum 99.0 100.0 208 6855 3235602 3236645 1044 sp:TRPC_BRELA Brevibacterium glutamicum 99.1 99.4 348 6856 3236641 3236645 1044 sp:TRPC_BRELA Brevibacterium glutamicum 99.3 99.4 3474	SEC NO. (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) r>NO. (nt) Initial (nt) Terminal (nt) ORF (bb) db Match (bb) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEG Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length (%) Matched (%) Matc	SEG Initial Terminal ORF db Match Homologous gene (%) SIMIlarity (%) Impliation (%) Matched (%) Matched (%) Matched (%) Impliation (%) Imp	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%)	SEG Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) Matched (%) (%) (%) (%) (%) Matched (%) (%) (%) (%) (%) Matched (%) (%) (%) (%) (%) Matched (%) (%) (%) (%) (%) Matched (%) (%) (%) (%) (%) Matched (%) (%) (%) (%) Matched (%) (%) (%) (%) Matched (%) (%) (%) (%) Matched (%) (%) (%) (%) Matched (%) (%) (%) Matched (%) Matched (%) (%) Matched (%) <th< td=""></th<>	

EP 1 108 790 A2

									_	•	_	_						
	Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-/tripeptide transpoter		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dioxygenase
	Matched length (a.a.)	305	336	328	282	102	347	228					238	58	469		188	246
	Similarity (%)	63.6	64.3	74.7	54.8	79.4	64.3	69.5					52.9	84.5	71.6		50.5	82.2
	Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		28.1	31.7
Table 1 (continued)	Homologous gene	Chlorobium limicola petC	Thermognaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SC111.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis		Escherichia coli K12 acrR	Acinetobacter calcoaceticus catA
	db Match	SP:UCRI_CHLLT	sp:NADO_THEBR	Sp:YFEH_ECOLI	gp:SC111_36	pir.A29606	1092 sp:NADO_THEBR	Sp:YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU	sp:DTPT_LACLA		Sp:ACRR_ECOLI	sp:CATA_ACICA
	ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	180	1359	171	555	903
	Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251468	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
	Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549	3256298	3257373
	SEQ NO. (a.a.)	6864	6865	9989	6867	6868	6989	6870	6871	6872	6873	6874	6875	6876	6877	6878	6879	6880
·	SEQ NO (DNA)	3364	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380
										-							`	

EP 1 108 790 A2

5	Function	maleyiacetate reductase	sugar transporter or D-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductasa	diagnostic fragment protein sequence	myo-inositol 2-dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase or streptomycin biosynthesis protein	phosphoesterase				stomatin		DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyrimidine kinase	mercuric ton-binding protein or heavy-metal-associated domain containing protein	ectoine/proline uptake protein
15	Matched length (a.a.)	351	513	280	258	270	332	343	1242				206		1660	141		125	29	297
20	Similarity (%)	75.5	6.83	2.09	2:25	58.2	59.6	62.4	62.7				57.3		80.2	61.0		76.8	70.1	62.3
	Identity (%)	43.0	31.4	25.7	27.2	25.9	26.5	34.1	33.3				28.6		58.4	34.8		50.4	46.3	29.9
S S S S S S S S S S S S S S S S S S S	ıs gene	P51	12 xylE	urium iciR	12 ydgJ	rain 4450	iloti idhA	eus stri	nB.				egans unc1		ovis BCG	prae u2266k		Q	γgΥ	glutamicum
88 Table 1 (C	Homologous gene	Pseudomonas sp. P51	Escherichia coli K12 xylE	Salmonella typhimurium IclR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizoblum meliloti idhA	Streptomyces griseus strl	Bacillus subtilis yvnB				Caenorhabditis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k		Bacilius subtilis thiD	Bacillus subtills yvgY	Corynebacterium glutamicum proP
40	db Match	sp:TCBF_PSESQ	Sp:XYLE_ECOLI	sp:ICLR_SALTY	sp:YDGJ_ECOLI		sp:Mi2D_BACSU		pir:C70044	·			sp:UNC1_CAEEL		gp:MBO18605_3	prt:2323363AAM		sp:THID_BACSU	pir.F70041	prf:2501295A
	ORF (bp)	1089 S	1524 sı	861 54	1077 sy	879 g	1005 sı	1083 S	4032 p	645	618	1086	744 5	696	4929 g	507 p	360	e000	243 p	837 p
45	Terminat (nt)	3257403	3258561	3261989	3263221	3264115	3265146	3266266	3271093	3267913	3268618	3272477	3274488	3275602	3276671	3281866	3283101	3282347	3283383	3283473
50	Initial (nt)	3258491	3260084	3261129	3262145	3263237	3264142	3265184	3267062	6889 3268557	3269235	3271392	3275231	3276570	3281599	3282172	3282742	3282946	3283141	3284309
	SEQ NO.	6881	6882	6883	6884	6885	6886	6887	6888	6889	6890	6891	6892	6893	6894	6895	9689	6897	6898	6889
55	SEQ NO. (DNA)	3381	3382	3383	3384	3385	3386	3387	3388	3389	3390	3391	3392	3393	3394	3395	3396	3397	3398	3399

							_			_	_				_			_		$\overline{}$
5		Function	iron(III) dictrate-binding periplasmic protein precursor or Iron(III) dictrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphomethylpyrimidine kinase		mercuric lon-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	otein	syltransferase	protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	luctase
10		IL.	iron(III) dicitrate protein precurs transport syste	mitochondrial respirate protein or zinc-binding dehydrogenase or NAI oxidoreductase			phosphomethy		mercuric ton-bindi heavy-metal-asso containing protein	branched-chai	branched-chal	hypothetical protein	tRNA nucleotidyltransferase	mutator mutT protein		hypothetical m	hypothetical m		RNA polymera sigma-70 facto	thioredoxin reductase
15		Matched tength (a.a.)	279	324			248		29	102	212	169	471	234		858	1201		189	308
20		Similarity (%)	60.6	58.0			75.5		70.1	65.7	67.0	56.2	51.8	69.2		54.3	60.1		60.9	82.5
		Identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	26.8	43.6		25.8	35.7		30.2	60.4
<i>25</i>	linued)	ene	ecB	s pombe								/qgE	ca	culosis		culosis	cutosis		nosa algU	erus trxB
30	Table 1 (continued)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe mrf1			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis aziD	Bacillus subtilis aziD	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tubercutosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus txB
<i>35</i>		db Match	sp:FECB_ECOU	sp:MRF1_SCHPO			sp:THID_BACSU		pir.F70041	sp:AZLD_BACSU	sp:AZLC_BACSU	sp:Yage_Ecoll	sp:ccA_Ecoti	pir.E70600		pir:F70600	pir:G70600		SP:RPSH_PSEAE	Sp:TRXB_STRCL
		ORF (bp)	196	1122	384	219	798	345	201	345	711	587	1320	968	273	2511	3249	723	603	951
45		Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292810	3296007	3299404	3298428	3300263	3301321
50		Initial (nt)	3285355	3285455	3286622	3287297	6904 3288190	3288265	3288685	3289315	3290021	3290591	3291942	3292532	3292882	3293497	3296156	3297706	3299661	3300371
		SEO NO (a.a.)	9069	6901	6902	6903	6904	6905	9069	6907	8069	6909	6910	6911	6912	6913	6914	6915	6916	6917
		SEO NO (DNA)	3400	3401	3402	3403	3404	3405	3406	3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417

EP 1 108 790 A2

			$\overline{}$			_			_					·		T					
5		Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropyimalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
15		Matched length (a.a.)		119	196			212	367	272	153	313	123	47			138	616	85	344	149
20		Similarity (%)		78.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
		Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
25	ontinued)	s gene		sinhardtii thi2	æ			erculosis	da ygi2	erculosis	2 gidB	erculosis	¥	um rpmH			lutamicum	lutamicum	lutamicum vum) ATCC	utamicum	lutamicum
30	Table 1 (continued)	Homologous gene		Chlamydomonas reinhardtii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichla coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
35		db Match		sp:THI2_CHLRE	sp.CWLB_BACSU			pir:D70851	sp:YGI2_PSEPU	sp:YGI1_PSEPU	sp:GIDB_ECOLI	plr:A70852	sp:RNPA_BACSU	gp:MAU19185_1			gp:AF116184_1	sp:LEU1_CORGL	sp:YLEU_CORGL	sp.DHAS_CORGL	gp:AF124518_1
		ORF (bp)	1185	372	1242	111	1041	618	1152	837	699	951	399	336	294	222	408	1848	255	1032	447
45		Terminal (nt)	3300119	3301729	3302996	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
50		Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787	3305671	3306532	3307632	3308369	3308747	3309028	3309043	147980	268001	269068	270660	446075
	į	SEQ NO. (a.a.)	6918	6919	6920	6921	6922	6923	6924	6925	6928	6927	6928	6959	6930	6931	6932	6933	6934	6935	6936
		SEQ NO. (DNA)	3418	3419	3420	3421	3422	3423	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436

EP 1 108 790 A2

						Table 1 (continued)				
SEQ (DNA)	SEO NO (a. a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (a.a.)	Function
3437	6937	526376	527563	1188	sp:EFTU_CORGL	Corynebacterium glutamicum ATCC 13059 tuf	100.0	100.0	960	elongation factor Tu
3438	6938	569452	570771	1320	1320 sp. SECY_CORGL	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	100.0	100.0	440	preprotein translocase secY subuit
3439	6633	680044	677831	2214	2214 sp:IDH_CORGL	Corynebacterium glutamicum ATCC 13032 icd	100.0	100.0	738	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)
3440	6940	720352	718580	1773	prf.2223173A	Corynebacterium glutamicum ATCC 13032 accBC	100.0	100.0	591	acyl-CoA carboxylase or biotin- binding protein
3441	6941	877838	879148	1311	sp:CISY_CORGL	Corynebacterium glutamicum ATCC 13032 gltA	100.0	100.0	437	citrate synthase
3442	6942	879278	879629	354	sp:FKBP_CORGL	Corynebacterium glutamicum ATCC 13032 fkbA	100.0	100.0	118	putative binding protein or peptidyl- prolyl cis-trans isomerase
3443	6943	944996	946780	1785	1785 sp.BETP_CORGL	Corynebacterium glutamicum ATCC 13032 betP	100.0	100.0	595	glycine beteine transporter
3444	6944	1030283	1029006	1278	sp:YLIZ_CORGL	Corynebacterium glutamicum ATCC 13032 orf2	100.0	100.0	428	hypothetical membrane protein
3445	6945	1031871	1030369	1503	sp:LYSI_CORGL	Corynebacterium glutamicum ATCC 13032 lysl	100.0	100.0	501	L-lysine permease
3446	6946	1154683	1153295	1389	1389 SP.AROP_CORGL	Corynebacterium glutamicum ATCC 13032 aroP	100.0	100.0	463	aromatic amino acid permease
3447	6947	1155676	1154729	948	pir.S52753	Corynebacterium giutamicum ATCC 13032 orf3	100.0	100.0	316	hypothetical protein
3448 (6948	1155731	1156837	1107	prf.2106301A	Corynebacterium glutamicum ATCC 13032 dapE	100.0	100.0	369	succinyl diaminopimelate desuccinylase
3449 (6949	1219602	1218031	1572	gp:CGPUTP_1	Corynebacterium glutamicum ATCC 13032 putP	100.0	100.0	524	proline transport system
3450	6950	6950 1238274	1239923	1650	1650 sp:SYR_CORGL	Corynebacterium glutamicum AS019 ATCC 13059 argS	100.0	100.0	950	arginyl-tRNA synthetase

	Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropyimalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylgtutamate kinase	ornithine carbamoyltransferase	arginine repressor
	Matched length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 iivB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
	db Match	1335 sp:DCDA_CORGL	sp.DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	sp:ILVB_CORGL	pir:B48648	pir.C48648	sp:LEU3_CORGL	prf.2014259A	sp:ARGB_CORGL	sp.OTCA_CORGL	gp:AF041436_1
İ	ORF (bp)	1335	1335	927	627	708	870	1878	516	1014	1020	2049	882	957	513
	Terminal (nt)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
	Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468555	1469528
	SEQ NO.	6951	6952	6953	6954	6955	6956	6957	6958	6969	0969	6961	6962	6963	6964
	SEQ NO. (DNA)	3451	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

	Function	NADH dehydrogenase	phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinale synthase	dihydrodipicolinate reductase	L-malate dehydrogenase (acceptor)
	Matched length (a.a.)	467	87	362	452	77	919	410	832	331	295	376	301	248	200
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	(%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cgillR	Corynebacterium glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum R127 mgo
	db Match	gp:CGL238250_1	gp:AF086704_1	gp:CGL007732_4	gp:CGL007732_3	gp:CGL007732_2	prf.1509267A	1230 gp:AF124600_1	pir:85525	prf.2204286D	sp:GLUB_CORGL	sp:RECA_CORGL	sp:DAPA_BRELA	sp:DAPB_CORGL	gp:CGA224946_1
	ORF (bp)	1401	261	1086	1356	231	2757	1230	1896	993	885	1128	903	744	1500
	Terminal (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
	Initial (nt)	1544554	1586725	1675208	6968 1676623	1677279	1680143	1720898	1880490	2020854	2060620	2065116	2080183	2081934	2115363
	SEQ NO.	6965	9969	6967	6968	6969	6970	6971	6972	6973	6974	6975	6976	7.69	6978
	SEQ NO.	3465	3466	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

EP 1 108 790 A2

_															_	
	Function	uridilylyltransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glutaredoxin
	Matched length (a.a.)	692	112	438	447	475	323	477	481	615	739	432	69£	386	148	11
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium glutamicum ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 sceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
	db Match	gp:CAJ10319_4	gp:CAJ10319_3	gp:CAJ10319_2	pir:S32227	1425 SP:KPYK_CORGL	gp:AF096280_1	pri.2322244A	sp:THRC_CORGL	prt;2501295B	pir.140715	pir:140713	sp:PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
	ORF (bp)	2078	336	1314	1341	1425	696	1431	1443	1845	2217	1296	1107	1158	444	231
	Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
	Initial (nt)	2171741	2172086	2173467	2196082	2207022	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
	SEQ NO (a.a.)	6979	0869	6981	6982	6983	6984	6985	9869	6987	6989	6869	0669	6991	2669	6993
	SEQ NO. (DNA)	3479	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493

EP 1 108 790 A2

_									
	Function	meso-diaminopimelate D- dehydrogenase	porin or cell wall channel forming protein	acelate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux pump or drug:proton antiporter	ATP-dependent protease regulatory subunit	prephenate dehydratase	ectoine/proline uptake protein
	Identity Similarity Matched (%) (%) (aa)	320	45	397	329	459	852	315	504
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
lable 1 (continued)	Homologous gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
	db Match	960 sp:DDH_CORGL	135 gp:CGL238703_1	1191 sp.ACKA_CORGL	prf.2516394A	718 1377 prf.2309322A	2556 sp:CLPB_CORGL	945 prf.1210266A	1512 prf.2501295A
	ORF (bp)	096	135	1191	286	1377	2556	945	1512
	Terminal (nt)	2786756	2887944	2935315	2938508	2962718	2963606	3098578	3272563
	Initial (nt)	2787715	2888078	2936505	2937494	6998 2961342	2966161	3099522	3501 7001 3274074
	SEQ NO. (a.a.)	6994	6995	9669	6997	6998	6669	7000	7001
	SEQ. NO. DNA)	3494		3496	3497	3498	3499	3500	3501

Example 2

20

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a tysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA. hom and hysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in IysE, IysG, ddh, dapA, and the like. whereas amino acid replacement mutations were found in hom, lysC, pyc, zwl, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196*: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6*: 1195-1204 (1992)) were each digested with (*Pst*). Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters*, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*1 site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, *hom* and *pyc*, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with *Bami*HI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end

10

15

30

35

40

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of Ikeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda *et al.* (*Microbiology, 144:* 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated *hom* or *pyc* genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito *et al.* PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the *hom* gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the *pyc* gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the *hom* or *pyc* gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated *hom* gene and *pyc* gene, respectively.

(3) Lysine production test of HD-1 and No. 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the hom gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the pyc gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined. [0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β-alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331Ile in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

20

25

30

35

55

45 Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in hom, a mutation, Thr311lle, in hysC, a mutation, Pro458Ser, in pyc and a mutation, Ala213Thr, in zwf were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

(2) Construction of plasmid for gene replacement having mutated gene

10

25

30

35

45

55

[0389] The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement, pCpyc458, having the mutated pyc gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated lysC and zwl were produced as described below.

[0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwf* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method; and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.

(3) Introduction of mutation, Thr311lle, in IysC into one point mutant HD-1

[0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.

(4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2

[0394] The mutation, Pro458Ser, in *pyc* was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated *pyc* gene in addition to the mutated *hom* gene and *lysC* gene.

(5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3

[0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated zwf gene in addition to the mutated hom gene, hysC gene and pyc gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g//h, the APZ-4 strain showing a high productivity of 3.0 g//h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

5

10

15

20

30

35

40

45

50

55

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

[0405] As the oligo DNA primers used for the PCR,

25

35

[0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

[0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

as the respective primer set.

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QlAquick Gel Extraction Kit (manufactured by QlAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

10

15

35

40

45

50

55

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmot/I ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 µl of 0.1 mol/l DTT, 1.5 µl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l I dTTP), 1.5 µl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 µl of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 µJ of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 µl.

(3) Hybridization

[0433] UltraHyb (110 μl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

Table 5 (continued)

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology*, 168: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

10

15

20

25

30

35

40

45

50

55

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swissprot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

10

20

25

30

35

45

55

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)
ATCC 13032	0
FERM BP-7134	45
FERM BP-158	60

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmol/i Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l I magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supermatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

5

10

30

35

40

45

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/I urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

- step 1: 1 hour under a gradient mode of 0 to 500V;
- step 2: 1 hour under a gradient mode of 500 to 1,000 V;
- step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
- step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmo/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmo/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

10

25

30

40

45

[0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis*, 9: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.

[0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.

- (4) In-gel digestion of detected protein spot
- [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μl of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μl of a hysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/μl) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μl of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation in vacuo to halve the liquid volume. To the concentrate, 20 μl of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μl of α-cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
 - (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying:
- [0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.
- [0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.
- [0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.
- [0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.
- (6) Identification of protein spot
- [0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.
- [0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.
- (a) Search and identification of gene encoding high-expression protein
- [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method. [0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

- 5 [0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).
- [0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.
 - [0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.
- 20 (b) Search and identification of modified protein
 - [0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.
- 25 [0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from Corynebacterium glutamicum FERM BP-7134 was modified after the translation.
 - [0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - (c) Search and identification of expressed protein effective in lysine production
 - [0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.
 - [0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
- 40 [0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.
- 45 [0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

50 Claims

55

30

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected
 from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium
 acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium
 melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

10

15

20

25

30

35

45

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- 7. A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- 40 8. A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A method for producing a polypeptide, comprising:

1. 100

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in the medium, and recovering the polypeptide from the medium.

- 5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
 - 16. A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
 - 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
 - 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

45

50

- at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 22. A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information:
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 40 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- 30. A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

10

15

25

30

35

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 20 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 32. The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 40 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
- 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- 38. A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 15 46. A recombinant DNA comprising the DNA of claim 45.

10

20

30

35

40

55

- 47. A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 51. A method for producing L-lysine, comprising:

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- 52. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
- (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 56. The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 57. The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 35 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - 61. The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- 40 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - **63.** A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

5

10

20

25

30

35

40

45

50

55

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382) .

FIG. 4

₹. \$,

