Outline

Title: Bayesian Inference and MCMC Methods in Astrophysics

1. Introduction

- Explain how Quantitative analysis is the backbone of research in modern Astrophysics.
- Paragraph about the history of QA in physics (perferably astro), and the trend of problems coming into modern day.
- Explain why this review will be focusing spcifically on Bayesian and MCMC: Their popularity in the field, flexibility, and compatibility with many types of problems.
- Explain the structure of the rest of the paper.
 - Methodology section will cover the mathematical theory behind BI and MCMC. It will also explain how to implement them using Python using simple problems as examples.
 - For each case study, include a paragraph or so sumary about the general background, the problem, and how QA is helping solve it or advance research in the field.
- 2. Methodology (citing vonToussant, Brewer)
 - (a) Bayesian Statistics
 - Review of Bayesian statistics and BI.
 - Include some example problems.
 - (b) Markov Chain Monte Carlo
 - Explain the math and methodology of Monte Carlo methods.
 - Show how Markov Chain Monte Carlo builds off it.
 - Provide examples and the implementation of simple MCMC algoritms (like the Metropolis Algorithm)

3. Case Studies

- (a) Bayesian Frameworks for Exoplanet detection (Ruffio)
 - Problem

- Methods
- Pros/Cons
- Extensions
- (b) Cosmological Parameter Estimation with MCMC Methods (Akeret)

Notes: Make this even more specialized. Read some more about it

(c) Bayesian approach to Gravity wave detection (Littenberg)

Notes: Don't go too deep into this. Only talk about detection, don't get into fitting the graviatational waveform.

4. Conclusion

- State of the field
- Areas for future work

•

References