ReasoNet: Learning to Stop Reading in Machine Comprehension

Yelong Shen, Po-Sen Huang, Jianfeng Gao, Weizhu Chen Microsoft Research

Motivation

Task

Cloze-style dataset (CNN datasets)

1	Step	Termination Probability	Attention Sum
Ī	1	0.0011	0.4916
	2	0.5747	0.5486
L	3	0.9178	0.5577

Query: passenger @placeholder 36, died at the scene

Passage: (@entity0) what was supposed to be a fantasy sports car ride at @entity3 turned deadly when a @entity4 crashed into a guardrail, the crash took place sunday at the @entity8, which bills itself as a chance to drive your dream car on a racetrack. the @entity4's passenger, 36 - year - old @entity14_1 of @entity15, @entity16, died at the scene, @entity13 said. the driver of the @entity4, 24 - year - old @entity18. of @entity19, @entity16, lost control of the vehicle, the @entity13 said. he was hospitalized with minor injuries.

@entity24, which operates the @entity8 at @entity3, released a statement sunday night about the crash. " on behalf of everyone in the organization, it is with a very heavy heart that we extend our deepest sympathies to those involved in today 's tragic accident in @entity36, " the company said. @entity24_ also operates the @entity3 -- a chance to drive or ride in @entity39 race cars named for the winningest driver in the sport 's history. @entity0 's @entity43 and @entity44 contributed to this report.

Answer: @entity14 ---- Step 1 — — Step 2 —— Step 3

Motivation

• Related work

- 1. Single-turn reasoning
 - ➤utilize attention mechanisms to emphasize specific parts of the document which are relevant to the query
- 2. Multi-turn reasoning
 - ➤ By repeatedly processing the document and the question after digesting intermediate information, multi-turn reasoning can generally produce a better answer
 - > pre-defined number of hops or iterations in their inference without regard to the complexity of each individual query or document
- 3. ReasoNet

ReasoNets introduce a termination state in the inference. This state can decide whether to continue the inference to the next turn

Model (Memory)

 $M = (M^{query}, M^{doc}),$

are extracted from query bidirectional—GRU encoder and passage bidirectional—GRU encoder respectively.

Model (Internal State)

Model (Attention)

sine similarity function as the attention module. The attention score $a_{t,i}^{doc}$ on memory m_i^{doc} given the state s_t is computed as follows: $a_{t,i}^{doc} = \operatorname{softmax}_{i=1,...,|M^{doc}|} \gamma \cos(W_1^{doc} m_i^{doc}, W_2^{doc} s_t),$ where γ is set to 10. W_1^{doc} and W_2^{doc} are weight vectors associated with m_i^{doc} and s_t , respectively, and are joint trained in the ReasoNet. Thus, the attention vector on passage is given by $x_t^{doc} = \sum_{i}^{|M^{doc}|} a_{t,i}^{doc} m_i^{doc}$. Similarly, the attention vector on query is $x_t^{query} = \sum_{i=1}^{|M^{query}|} a_{t,i}^{query} m_i^{query}$. The final attention vector is the concatenation of the query attention vector and the passage attention vector $x_t = (x_t^{query}, x_t^{doc})$. The attention module is parameterized by $\theta_x = (W_1^{query}, W_2^{query}, W_1^{doc}, W_2^{doc});$

Model (Termination Gate and Answer)

$$t_t \sim p(\cdot|f_{tg}(s_t;\theta_{tg}))).$$

$$a_t \sim p(\cdot|f_a(s_t;\theta_a)).$$

Algorithm

Algorithm 1: Stochastic Inference in a ReasoNet

Input :Memory M; Initial state s_1 ; Step t = 1; Maximum Step T_{max}

Output: Termination Step T, Answer a_T

- 1 Sample t_t from the distribution $p(\cdot|f_{tq}(s_t;\theta_{tq}))$;
- 2 if t_t is false, go to Step 3; otherwise Step 6;
- ³ Generate attention vector $x_t = f_{att}(s_t, M; \theta_x)$;
- 4 Update internal state $s_{t+1} = \text{RNN}(s_t, x_t; \theta_s)$;
- 5 Set t = t + 1; if $t < T_{\text{max}}$ go to Step 1; otherwise Step 6;
- 6 Generate answer $a_t \sim p(\cdot | f_a(s_t; \theta_a));$
- 7 Return T = t and $a_T = a_t$;

Training Details

the total expect reward. The expected reward for an instance is defined as:

$$J(\theta) = \mathbb{E}_{\pi(t_{1:T}, a_T; \theta)} \left[\sum_{t=1}^{T} r_t \right]$$

The reward can only be received at the final termination step when an answer action a_T is performed. We define $r_T = 1$ if $t_T = 1$ and the answer is correct, and $r_T = 0$ otherwise. The rewards on intermediate steps are zeros, $\{r_t = 0\}_{t=1...T-1}$. J can be maximized by directly applying gradient based optimization methods. The

Motivated by the REINFORCE algorithm [31], we compute $\nabla_{\theta}J(\theta)$:

$$\mathbb{E}_{\pi(t_{1:T}, a_T; \theta)} \left[\nabla_{\theta} \log \pi(t_{1:T}, a_T; \theta) r_T \right] =$$

$$\sum_{(t_{1:T}, a_T) \in \mathbb{A}^{\dagger}} \pi(t_{1:T}, a_T; \theta) \left[\nabla_{\theta} \log \pi(t_{1:T}, a_T; \theta) (r_T - b_T) \right]$$

Experimental results

Table 1: The performance of Reasoning Network on CNN and Daily Mail dataset.

	CNN		Daily Mail	
	valid	test	valid	test
Deep LSTM Reader [7]	55.0	57.0	63.3	62.2
Attentive Reader [7]	61.6	63.0	70.5	69.0
MemNets [8]	63.4	66.8	-	-
AS Reader [9]	68.6	69.5	75.0	73.9
Stanford AR [3]	72.2	72.4	76.9	75.8
DER Network [12]	71.3	72.9	-	-
Iterative Attention Reader [21]	72.6	73.3	-	-
EpiReader [25]	73.4	74.0	-	-
GA Reader [6]	73.0	73.8	76.7	75.7
AoA Reader [5]	73.1	74.4	-	-
ReasoNet	72.9	74.7	77.6	76.6