LEKCIJA NR. 3 ROBEŽAS II

Robežas unitāte Aritmētiskās darbības ar robežām Robežpāreja nevienādībās 3.mājas darbs

- **3.1. TEOREMA** (robežas unitātes teorēma). Ja funkcijai f(x) punktā x_0 eksistē robeža, tad tā ir viena vienīga.
 - □ Pieņemsim pretējo, proti, ka

$$\lim_{x \to x_0} f(x) = A \neq B = \lim_{x \to x_0} f(x).$$

Pieņemsim, ka $|A - B| = 2\varepsilon > 0$.

No $\lim_{x\to x_0} f(x) = A$ eksistences seko, ka

$$\varepsilon > 0 \ \exists \delta_1 > 0 \ \forall x \in Dom(f) \ [0 < |x - x_0| < \delta_1 \Rightarrow |f(x) - A| < \varepsilon].$$

No $\lim_{x \to x_0} f(x) = B$ eksistences seko, ka

$$\varepsilon > 0 \ \exists \delta_2 > 0 \ \forall x \in Dom(f) \ [0 < |x - x_0| < \delta_2 \Rightarrow |f(x) - B| < \varepsilon].$$

Izvēlamies $\delta = \min\{\delta_1; \delta_2\}.$

Tad
$$\forall x \in Dom(f) [0 < |x - x_0| < \delta \Rightarrow$$

 $2\varepsilon = |A - B| = |(A - f(x)) + (f(x) - B)| \le$
 $\le |f(x) - A| + |f(x) - B| < \varepsilon + \varepsilon = 2\varepsilon].$

Iegūtā pretruna $2\varepsilon < 2\varepsilon$ parāda, ka pieņēmums $A \neq B$ ir bijis aplams.

Robežas unitātes teorēmas lietojums parasti saistās ar iespējām atsevišķos gadījumos pierādīt, ka funkcijai f(x) robeža $x \to x_0$ nemaz neeksistē. Ievērojiet, ja divas reizes, rēķinot funkcijas f(x) robežu punktā x_0 , iegūti divi atšķirīgi rezultāti, tad vismaz vienreiz izdarīta kļūda.

3.2. TEOREMA. Ja $X \subseteq Y$ un $\lim_{\substack{x \to x_0 \\ x \in Y}} f(x) = A$, tad

$$\lim_{\substack{x \to x_0 \\ x \in X}} f(x) = A.$$

 \square Brīvi izvēlēsimies $\varepsilon > 0$, tad saskaņā ar doto atrodams tāds $\delta > 0$, ka $\forall x \in Y \cap Dom(f)$ izpildās nosacījums:

$$|x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon$$
.

Ja reiz tā, tad arī $\forall x \in X \cap Dom(f)$ izpildās nosacījums:

$$|x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon$$
,

kas arī nozīmē, ka
$$\lim_{\substack{x \to x_0 \\ x \in X}} f(x) = a$$
.

3.3. Piemērs. Apskatīsim Dirihlē funkciju:

$$D(x) = \left\{ \begin{array}{ccc} -1 & , & \text{ja} & x \in \mathbb{Q}; \\ 1 & , & \text{ja} & x \notin \mathbb{Q}. \end{array} \right.$$

3.1. zīm. Dirihlē funkcija.

Tā kā robeža no konstantas funkcijas ir konstante, tad

$$\lim_{\substack{x\to 0\\x\in\mathbb{Q}}}D(x)=-1\,,\qquad \text{bet}\qquad \lim_{\substack{x\to 0\\x\notin\mathbb{Q}}}D(x)=1\,.$$

Balstoties uz 3.2. teorēmu, varam apgalvot: ja vispār eksistē $\lim_{x\to 0} D(x)$, tad

$$\lim_{x \to 0} D(x) = \lim_{\substack{x \to 0 \\ x \in \mathbb{Q}}} D(x) = -1.$$

 $\mathbf{T}\bar{\mathbf{a}}\mathbf{p}\mathbf{a}\mathbf{t}$ šī teorēma dod iespēju apgalvot:

$$\lim_{x \to 0} D(x) = \lim_{\substack{x \to 0 \\ x \notin \mathbb{Q}}} D(x) = 1.$$

Savukārt robežas unitātes teorēma spiež mums secināt, ka robeža $\lim_{x\to 0}D(x)$ vispār neeksistē. \blacksquare

3.4. Piemērs. Pierādīsim, ka $\lim_{x\to 0} \sin \frac{1}{x}$ neeksistē.

3.2. $\bar{z_{1}}$ m. $y = \sin \frac{1}{x}$.

Ņemsim vērā iepriekšējā piemērā gūto pieredzi. Izvēlēsimies kopas

$$X_{1} = \left\{ \frac{2}{\pi + 4\pi k} \mid k \in \mathbb{Z}_{+} \right\} \text{ un } X_{2} = \left\{ \frac{2}{-\pi + 4\pi k} \mid k \in \mathbb{Z}_{+} \right\}.$$
Funkcija $\sin \frac{1}{x} | X_{1} = 1$, $t\bar{a}p\bar{e}c$ $\lim_{\substack{x \to 0 \\ x \in X_{1}}} \sin \frac{1}{x} = 1$.

Funkcija $\sin \frac{1}{x} | X_{2} = -1$, $t\bar{a}p\bar{e}c$ $\lim_{\substack{x \to 0 \\ x \in X_{2}}} \sin \frac{1}{x} = -1$.

Līdz ar to $x \to 0$ funkcijai $\sin \frac{1}{x}$ robeža neeksistē.

Aritmētiskās darbības ar robežām

3.5. TEOREMA.

Ja $\lim_{x\to x_0}f(x)=A$ un $\lim_{x\to x_0}g(x)=B,\,k\in\mathbf{R}$ - konstante, tad

1)
$$\lim_{x \to x_0} kf(x) = k \lim_{x \to x_0} f(x) = kA$$
,

2)
$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = A + B$$
,

3)
$$\lim_{x \to x_0} (f(x) - g(x)) = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x) = A - B$$
,

4)
$$\lim_{x \to x_0} (f(x)g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = AB$$
,

5) ja
$$\lim_{x \to x_0} g(x) = B \neq 0$$
, tad $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{A}{B}$.

3.6. Piemers.

1.
$$\lim_{x \to 2} \frac{3x^2 + 7x - 1}{\sqrt{6x + 4}} = \frac{3 \cdot 2^2 + 7 \cdot 2 - 1}{\sqrt{6 \cdot 2 + 4}} = \frac{25}{4}$$
.

2. $\lim_{x\to 1} \frac{5x^2+2x-7}{x^3-1} = \frac{0}{0}$ — situācijas, kurās veidojas šādi dalījumi, sauc par **robežu nenoteiktībām** $\frac{0}{0}$. Izmantojot algebriskus pārveidojumus un aritmētiskās darbības ar robežām, robežu nenoteiktību $\frac{0}{0}$ var novērst, t.i., var atrast daļas robežu. Saīsināšanu drīkst izdarīt, jo pēc robežas definīcijas daļas vērtība netiek apskatīta punktā $x_0=1$.

$$\lim_{x \to 1} \frac{5x^2 + 2x - 7}{x^3 - 1} = \lim_{x \to 1} \frac{5(x - 1)(x + \frac{1}{5})}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1} \frac{5x + 7}{x^2 + x + 1} = \frac{12}{3} = 4.$$

3.
$$\lim_{x \to -2} \frac{2 - \sqrt{6 + x}}{3 - \sqrt{7 - x}} = \lim_{x \to -2} \frac{(2 - \sqrt{6 + x})(2 + \sqrt{6 + x})(3 + \sqrt{7 - x})}{(3 - \sqrt{7 - x})(3 + \sqrt{7 - x})(2 + \sqrt{6 + x})} =$$

$$= \lim_{x \to -2} \frac{(4 - (6 + x))(3 + \sqrt{7 - x})}{(9 - (7 - x))(2 + \sqrt{6 + x})} = \lim_{x \to -2} \frac{(-2 - x)(3 + \sqrt{7 - x})}{(2 + x)(2 + \sqrt{6 + x})} =$$

$$= -\frac{3+3}{2+2} = -\frac{3}{2}.$$

Šīs pēdējās robežas atrašanā izmantojām reizināšanu ar saistītajām izteiksmēm. ■

VINGRINĀJUMS. Atrast robežu $\lim_{x\to 3} \frac{x^2-2x-3}{\sqrt{13-x}-\sqrt{4x-2}}$.

Jāatzīmē, ka teorēmas par aritmētiskām darbībām ar robežām ir spēkā arī vienpusējo robežu gadījumā.

3.7. Piemērs.

$$\lim_{x \to 2^+} \frac{(x^2+1)\lfloor x \rfloor}{(3x-1)^2} = \frac{5 \cdot 2}{25} = \frac{2}{5} \text{ un } \lim_{x \to 2^-} \frac{(x^2+1)\lfloor x \rfloor}{(3x-1)^2} = \frac{5 \cdot 1}{25} = \frac{1}{5}.$$

Kopumā tas nozīmē, ka $\lim_{x\to 2} \frac{(x^2+1)\lfloor x\rfloor}{(3x-1)^2}$ neeksistē, jo vienpusējās robežas ir atšķirīgas. \blacksquare

VINGRINĀJUMS.

- 1. Atrast $\lim_{x \to -3^-} 2^{\lfloor 2x \rfloor}$ un $\lim_{x \to -3^+} 2^{\lfloor 2x \rfloor}$.
- 2. Pierādīt, ka robeža $\lim_{x\to 1} \frac{x^2-1}{|x-1|}$ neeksistē!

Robežpāreja nevienādībās

3.8. TEORĒMA. Ja kādā punkta x_0 apkārtnē

$$f(x) \le g(x) \le h(x)$$
 un $\lim_{x \to x_0} f(x) = A = \lim_{x \to x_0} h(x)$,

tad $\lim_{x\to x_0} g(x) = A$.

3.9. Piemērs. Atradīsim $\lim_{x\to 0} x \sin \frac{1}{x}!$

Atsevišķi ņemot robeža no pirmā reizinātāja ir 0, bet no otrā neeksistē. Taču tā spriest nedrīkst — atsevišķās robežas var neeksistēt, bet reizinājuma robeža var eksistēt. Tā tas ir arī šajā gadījumā. Ievērosim, ka

$$0 \le \left| x \sin \frac{1}{x} \right| \le |x| \cdot 1 = |x|.$$

Tā kā $\lim_{x\to 0} 0=0$ un $\lim_{x\to 0}|x|=0$, tad pēc robežpārejas nevienādībās

$$\lim_{x \to 0} \left| x \sin \frac{1}{x} \right| = 0.$$

Viegli pierādīt, ka

$$\left(\lim_{x\to c} f(x) = 0\right) \iff \left(\lim_{x\to c} |f(x)| = 0\right).$$

Tādējādi $\lim_{x\to 0} x \sin \frac{1}{x} = 0$.

3.MĀJAS DARBS

5. Atrast robežas:

a)
$$\lim_{x \to -1} \frac{3x^2 + 3x}{2x^2 - 3x - 5}$$
 Atbilde: $\frac{3}{7}$

b)
$$\lim_{x\to 2} \frac{\sqrt{x^2+5}-3}{\sqrt{2x+5}-\sqrt{11-x}}$$
 Atbilde: $\frac{4}{3}$

6. Atrast vienpusējās robežas:

a)
$$\lim_{x\to 0^{-}} \frac{5x-|x|}{2x}$$
, b) $\lim_{x\to 0^{+}} \frac{5x-|x|}{2x}$,

c)
$$\lim_{x \to -1^-} \frac{1}{x - \lfloor x \rfloor}$$
, d) $\lim_{x \to -1^+} \frac{1}{x - \lfloor x \rfloor}$.

Atbilde: a) 3, b) 2, c) 1, d) neeksistē