Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 3. Tydzień rozpoczynający się 11. marca

Zadania

- 1. A oraz B są zdarzeniami takimi, że: $P(A \cap B) = 1/4$, $P(A^C) = 1/3$, P(B) = 1/2. Znaleźć $P(A \cup B)$.
- 2. Czy prawdą jest, że 13 dzień miesiąca powiązany jest z piątkiem. (1 stycznia 1601 31 grudnia 2000)

ZAŁOŻENIA: rok numer n jest jest przestępny jeżeli $n \equiv_4 0$, pod warunkiem, że $n \not\equiv_{100} 0$; dodatkowo – jeżeli $n \equiv_{400} 0$ (czyli rok 2000), to wcześniejszy warunek jest nieważny. Ile razy w 400-letnim cyklu 13-tym dniem miesiąca był poniedziałek, wtorek, . . . , niedziela?

Mówimy, że zmienne X,Y są niezależne, wtedy gdy – w wypadku dyskretnym – spełniony jest warunek $P\left(X=x_i,Y=y_k\right)=P\left(X=x_i\right)\cdot P\left(Y=y_k\right).$

- 3. Zmienna X ma rozkład $B(n_1, p)$ a zmienna Y rozkład $B(n_2, p)$. Zmienne są niezależne. Wykazać, że zmienna Z = X + Y ma rozkład $B(n_1 + n_2, p)$.
- 4. Niezależne zmienne losowe X, Y mają rozkład Poissona z parametrami λ_1 i λ_2 . Wykazać, że zmienna Z = X + Y ma rozkład Poissona z parametrem $\lambda_1 + \lambda_2$.
- 5. Wiadomo, że E(X) = 1 i V(X) = 5. Obliczyć wartości $E((2+X)^2)$ i V(3X+2)
- 6. Prawdopodobieństwo sukcesu w pojedynczej próbie jest równe p. Wykonujemy doświadczenie do momentu uzyskania 2 sukcesów. Zmienna losowa X to liczba przeprowadzonych prób. Wyznaczyć rozkład zmiennej X, tzn. podać jej funkcję gęstości (ppb). Obliczyć wartość oczekiwaną zmiennej X.
- 7. Czytelnie i starannie bez korzystania z notatek napisać wielkie i małe greckie litery: alfę α , betę β , (d)zetę ζ , etę η , lambdę λ , chi χ , ksi ξ .
- 8. Losujemy jedną kartę z talii 24 kart (jak w dawnej grze w "tysiąca"). Oznaczmy przez X zmienną losową o wartościach

natomiast przez Y zmienną o wartościach

- (a) Podać rozkład zmiennej (X,Y) oraz rozkłady brzegowe.
- (b) Sprawdzić, czy zmienne X i Y sa niezależne.
- (c) Podać rozkład zmiennej Z = X + Y.
- 9. Niech X będzie zmienną o rozkładzie geometrycznym $(X \sim \text{Geom}(p))$. Sprawdzić, że $V(X) = \frac{1-p}{p^2}$.
- 10. Zbiory A_1, \ldots, A_4 mają moc odpowiednio 40, 32, 20, 50. Losowo wybieramy pewien element (z całości). Wartością zmiennej losowej X jest moc zbioru z którego pochodzi wybrany element. Następnie losowo wybieramy jeden ze zbiorów. Wartością zmiennej losowej Y jest moc wybranego zbioru. Obliczyć $\mathrm{E}(X)$ i $\mathrm{E}(Y)$.