Tillämpad matematik - Linjära system FMAF10

 $\begin{array}{c} {\rm Emil~Wihlander} \\ {\rm dat15ewi@student.lu.se} \end{array}$

22 februari 2017

Kapitel 1: Svängningar och komplexa tal

1.1 a) Allmänna funktionen för odämpad harmonisk svängning är $u(t) = A\sin(\omega t + \alpha)$ där ω är vinkelfrekvensen.

$$u(t) = 3\sin(2t - 5) \Rightarrow \omega = 2$$

$$T = \frac{2\pi}{\omega} \implies T = \frac{2\pi}{2} = \pi$$

$$f = \frac{1}{T} \implies f = \frac{1}{\pi}$$

Svar: vinkelfrekvens: 2, period: π , frekvens: $\frac{1}{\pi}$

b) Allmänna funktionen för odämpad harmonisk svängning är $u(t) = A \sin(\omega t + \alpha)$ där ω är vinkelfrekvensen.

$$u(t) = 50\sin(100\pi t + 1) \Rightarrow \omega = 100\pi$$

$$T = \frac{2\pi}{\omega} \implies T = \frac{2\pi}{100\pi} = \frac{1}{50}$$

$$f = \frac{1}{T} \implies f = 50$$

Svar: vinkelfrekvens: 100π , period: $\frac{1}{50}$, frekvens: 50

- 1.2 a)
 - **b**)
 - **c**)
 - d)
 - **e**)
 - f)
 - 1.3 Använd regeln $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ från formelbladet.

$$u(t) = 6\sin(3t + \frac{\pi}{4}) = 6(\sin(3t)\cos(\frac{\pi}{4}) + \cos(3t)\sin(\frac{\pi}{4})) =$$
$$= 6\frac{1}{\sqrt{2}}\sin(3t) + 6\frac{1}{\sqrt{2}}\cos(3t) = 3\sqrt{2}\cos(3t) + 3\sqrt{2}\sin(3t)$$

Svar: $a = b = 3\sqrt{2}, \omega = 3 \implies 3\sqrt{2}\cos(3t) + 3\sqrt{2}\sin(3t)$

1.4 a) låt $u(t) = A\sin(\omega t + \alpha) = A\sin\alpha\cos(\omega t) + A\cos\alpha\sin(\omega t) = \sqrt{3}\cos(\omega t) - \sin(\omega t)$ där A är amplituden och α är fasförskjutningen.

$$\begin{cases} A \sin \alpha = \sqrt{3} \\ A \cos \alpha = -1 \end{cases} \Leftrightarrow \sqrt{(A \sin \alpha)^2 + (A \cos \alpha)^2} = \sqrt{(\sqrt{3})^2 + (-1)^2} \Leftrightarrow \sqrt{A^2} \sqrt{\sin \alpha^2 + \cos \alpha^2} = \sqrt{4} \Rightarrow A\sqrt{1} = 2 \Leftrightarrow A = 2$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{A \sin \alpha}{A \cos \alpha} = \frac{\sqrt{3}}{-1} \Rightarrow$$

$$\Rightarrow \alpha = \arctan(-\frac{\sqrt{3}}{1}) + \pi = -\frac{\pi}{6} + \pi = \frac{2\pi}{3} \quad (+\pi \text{ ty } -4 < 0)$$

eller:

$$u(t) = \sqrt{3}\cos(\omega t) - \sin(\omega t) = 2(\frac{\sqrt{3}}{2}\cos(\omega t) - \frac{1}{2}\sin(\omega t)) =$$
$$= 2(\sin\frac{2\pi}{3}\cos(\omega t) + \cos\frac{2\pi}{3}\sin(\omega t)) = \sin(\omega t + \frac{2\pi}{3})$$

Svar: Amplitud: 2 och fasförskjutning: $\frac{2\pi}{3}$

1.4 b) låt $u(t) = A\sin(\omega t + \alpha) = A\sin\alpha\cos(\omega t) + A\cos\alpha\sin(\omega t) = -2\cos(\omega t) - 4\sin(\omega t)$ där A är amplituden och α är fasförskjutningen.

$$\begin{cases} A \sin \alpha = -2 \\ A \cos \alpha = -4 \end{cases} \Leftrightarrow \sqrt{(A \sin \alpha)^2 + (A \cos \alpha)^2} = \sqrt{(-2)^2 + (-4)^2} \Leftrightarrow \\ \Leftrightarrow \sqrt{A^2} \sqrt{\sin \alpha^2 + \cos \alpha^2} = \sqrt{4 + 16} \Rightarrow A\sqrt{1} = \sqrt{20} \Leftrightarrow A = 2\sqrt{5} \end{cases}$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{A \sin \alpha}{A \cos \alpha} = \frac{-2}{-4} \implies$$
$$\Rightarrow \alpha = \arctan \frac{1}{2} + \pi \ (+\pi \ \text{ty} \ -4 < 0)$$

Svar: Amplitud: $2\sqrt{5}$ och fasförskjutning: $\arctan \frac{1}{2} + \pi$

1.5 a) Eftersom $|a + bi| = \sqrt{a^2 + b^2}$.

$$|i| = \sqrt{0^2 + 1^2} = 1$$

Svar: |i| = 1

b) Eftersom $|a + bi| = \sqrt{a^2 + b^2}$.

$$|-i| = \sqrt{0^2 + (-1)^2} = 1$$

Svar: |-i| = 1

c) Eftersom $|e^{i\phi}| = 1$ oberoende av vad vinkeln ϕ är.

Svar: $|e^{5\pi i/7}| = 1$

1.6 a) låt $e^{i\phi}=e^{5\pi i/7} \Leftrightarrow \phi=\frac{5\pi}{7}$. Eftersom $\frac{\pi}{2}<\phi<\pi \Rightarrow e^{5\pi i/7}$ ligger i andra kvadranten.

Svar: andra kvadranten

- b) Låt $e^{i\phi}=e^{-34\pi i/7}\Leftrightarrow \phi=-\frac{34}{7}\pi=-\frac{35}{7}\pi+\frac{1}{7}\pi=-6\pi+\pi+\frac{1}{7}\pi\Rightarrow \phi=\pi+\frac{1}{7}\pi.$ Eftersom perioden är $2\pi\Rightarrow e^{i\phi}=e^{i\phi}$ vilket innebär $\pi<\phi<\frac{3}{2}\pi\Rightarrow e^{-34\pi i/7}$ ligger i tredje kvadranten. Svar: tredje kvadranten
- c) Låt $e^{i\phi}=e^{2000\pi i/13}\Leftrightarrow \phi=\frac{2000}{13}\pi=\frac{1989}{13}\pi+\frac{11}{13}\pi=152\pi+\pi+\frac{11}{13}\pi\Rightarrow \phi=\pi+\frac{11}{13}\pi.$ Eftersom perioden är $2\pi\Rightarrow e^{i\phi}=e^{i\phi}$ vilket innebär $\frac{3}{2}\pi<\phi<2\pi\Rightarrow e^{2000\pi i/13}$ ligger i fjärde kvadranten.

Svar: fjärde kvadranten

1.7 a) Absolutbelopp:

$$|2-2i| = \sqrt{2^2 + (-2)^2} = \sqrt{8}$$

Argument:

$$\arctan\left(\frac{-2}{2}\right) + 2k\pi = -\frac{\pi}{4} + 2k\pi, \quad k \in \mathbb{Z}$$

b) Absolutbelopp:

$$\left|\sqrt{3} - i\right| = \sqrt{\sqrt{3}^2 + (-1)^2} = \sqrt{4} = 2$$

Argument:

$$\arctan\left(\frac{-1}{\sqrt{3}}\right) + 2k\pi = -\frac{\pi}{6} + 2k\pi, \quad k \in \mathbb{Z}$$

c) Absolutbelopp:

$$|1| = 1$$

Argument:

$$\arctan\left(\frac{0}{1}\right) + 2k\pi = 2k\pi, \quad k \in \mathbb{Z}$$

d) Absolutbelopp:

$$|-1| = 1$$

Argument:

$$\arctan\left(\frac{0}{1}\right) + 2k\pi = \pi + 2k\pi, \quad k \in \mathbb{Z}$$

1.8 a) Låt $z = -1 - i = re^{i\phi}$ där r är absolutbeloppet och ϕ är argumentet.

$$r = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$

$$\phi = \arctan\left(\frac{\operatorname{Im} z}{\operatorname{Re} z}\right) + 2k\pi, \quad k \in \mathbb{Z} \qquad \Rightarrow$$

$$\phi = \arctan\left(\frac{-1}{-1}\right) + 2k\pi = \frac{\pi}{4} + \pi + 2k\pi = \frac{5}{4}\pi + 2k\pi, \quad k \in \mathbb{Z}$$

$$z = \sqrt{2}e^{i(3\pi/4 + 2k\pi)}, \quad k \in \mathbb{Z}$$

Partikulärlösning:

$$z = \sqrt{2}e^{i3\pi/4}$$

Svar: $z = \sqrt{2}e^{i3/4\pi}$

b) Låt $z = i = re^{i\phi}$ där r är absolutbeloppet och ϕ är argumentet.

$$r = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} = \sqrt{0^2 + 1^2} = 1$$

Eftersom Re z=0 och Im z>0 är $\phi=\frac{\pi}{2}+2k\pi,\quad k\in\mathbb{Z}$

$$z = e^{i(\pi/2 + 2k\pi)}, \quad k \in \mathbb{Z}$$

Partikulärlösning:

$$z = e^{i\pi/2}$$

Svar: $z = e^{i\pi/2}$

1.9 Utnyttja sambandet $e^{i\theta} = \cos \theta + i \sin \theta$.

$$5e^{2\pi i/3} = 5\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right) = 5\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = -\frac{5}{2} + i\frac{5\sqrt{3}}{2}$$

Svar: $-\frac{5}{2} + i \frac{5\sqrt{3}}{2}$

1.10 a) Låt $z = re^{i\phi}, r \ge 0$

$$z^{4} + 1 = 0 \Leftrightarrow (re^{i\phi})^{4} = -1 \Leftrightarrow r^{4}e^{i4\phi} = e^{\pi + 2k\pi}, \quad k \in \mathbb{Z} \Leftrightarrow \begin{cases} 4\phi = \pi + 2k\pi, & k \in \mathbb{Z} \\ r^{4} = 1 \end{cases} \Leftrightarrow \begin{cases} \phi = \frac{\pi}{4} + \frac{k\pi}{2}, & k \in \mathbb{Z} \\ r = 1 \end{cases}$$

 $k = \{0, 1, 2, 3\}$ ger alla unika lösningar.

Svar: $e^{\pi i/4 + k\pi i/2}$ $k = \{0, 1, 2, 3\}$

Eller:

Använd
$$\sqrt{i} = (e^{\pi i/2})^{1/2} = e^{\pi i/4} = \frac{1}{\sqrt{2}}(1+i) \text{ och } \sqrt{-i} = (e^{-\pi i/2})^{1/2} = e^{-\pi i/4} = \frac{1}{\sqrt{2}}(1-i)$$

$$z^4 + 1 = 0 \iff z^4 = -1 \iff \sqrt{z^4} = \pm \sqrt{-1} \iff z^2 = \pm i \iff \sqrt{z^2} = \pm \sqrt{\pm i} \iff z = \pm \frac{1}{\sqrt{2}}(1\pm i) = \frac{1}{\sqrt{2}}(\pm 1 \pm i)$$

b) Låt $z = re^{\phi i}, \quad r \ge 0$

$$z^{5} = 32 \Leftrightarrow (re^{\phi i})^{5} = 32 \Leftrightarrow r^{5}e^{5\phi i} = 32e^{2k\pi i}, \quad k \in \mathbb{Z} \Leftrightarrow \begin{cases} 5\phi = 2k\pi, & k \in \mathbb{Z} \\ r^{5} = 32 \end{cases} \Leftrightarrow \begin{cases} \phi = \frac{2k\pi}{5}, & k \in \mathbb{Z} \\ r = 2 \end{cases}$$

 $k = \{0, 1, 2, 3, 4\}$ ger alla unika lösningar.

Svar: $e^{2k\pi i/5}$ $k = \{0, 1, 2, 3, 4\}$

1.11

$$e^{3ix} = (e^{ix})^3 = (\cos x + i\sin x)^3 = \cos^3 x + i3\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$$
$$\cos 3x = \operatorname{Re} e^{3ix} = \cos^3 x - 3\cos x \sin^2 x = \cos^3 x - 3\cos x (1 - \cos^2 x) =$$
$$= \cos^3 x - 3\cos x + 3\cos^3 x = 4\cos^3 x - 3\cos x$$

Svar: $4\cos^3 x - 3\cos x$

 $C = b + ai \, \operatorname{d\ddot{a}r} \, a \cos \omega t + b \sin \omega t$

$$\sqrt{3}\cos\omega t - \sin\omega t \iff \begin{cases} a = \sqrt{3} \\ b = -1 \end{cases} \iff C = -1 + i\sqrt{3}$$

Svar:
$$C = -1 + i\sqrt{3}$$

 $C = b + ai \, \operatorname{d\ddot{a}r} \, a \cos \omega t + b \sin \omega t$

$$-2\cos\omega t - 4\sin\omega t \iff \begin{cases} a = -2\\ b = -4 \end{cases} \iff C = -4 - 2i$$

Svar:
$$C = -4 - 2i$$

1.13 Period:
$$2 \cdot 2 = 4$$

Frekvens: $\frac{1}{4}$

Vinkelfrekvens: $\frac{2\pi}{4} = \frac{\pi}{2}$

Fas:
$$-\frac{\pi}{2} \cdot \frac{3}{2} = -\frac{3\pi}{4}$$

1.14 a) Låt
$$z = 3.15 - 8.88i = re^{\phi i}$$

$$r = |z| = \sqrt{3.15^2 + (-8.88)^2} \approx 9.42$$

$$A\sin\phi = -8.88$$

$$A\cos\phi = 3.15$$

$$\tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{A \sin \phi}{A \cos \phi} = \frac{-8.88}{3.15}$$
$$\phi = \arctan \frac{-8.88}{3.15} \approx -1.23$$

Svar:
$$9.42e^{-1.23i}$$

b) Låt
$$z = -99 - 118i = re^{\phi i}$$

$$r = |z| = \sqrt{(-99)^2 + (-118)^2} \approx 154.03$$

$$A\sin\phi = -118$$

$$A\cos\phi = -99$$

$$\tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{A \sin \phi}{A \cos \phi} = \frac{-118}{-99}$$
$$\phi = \arctan \frac{118}{99} + \pi \approx 4.01$$

Svar:
$$9.42e^{4.01i}$$
 eller $9.42e^{-2.27i}$ (pga period 2π)

1.15 a) Använd regeln
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\begin{split} u(t) = & A \sin(\omega t + \delta) = A \sin \delta \cos \omega t + A \cos \delta \sin \omega t = \\ = & 22.4 \cos \omega t + 11.3 \sin \omega t \iff \begin{cases} A \sin \delta = 22.4 \\ A \cos \delta = 11.3 \end{cases} \Leftrightarrow \\ \Leftrightarrow & \sqrt{(A \sin \delta)^2 + (A \cos \delta)^2} = \sqrt{22.4^2 + 11.3^2} \Leftrightarrow \\ \Leftrightarrow & \sqrt{A^2 (\sin^2 \delta + \cos^2 \delta)} \approx 25.09 \Leftrightarrow A \approx 25.09 \end{split}$$

$$\tan \delta = \frac{\sin \delta}{\cos \delta} = \frac{A \sin \delta}{A \cos \delta} = \frac{22.4}{11.3}$$
$$\delta = \arctan \frac{22.4}{11.3} \approx 1.10$$

$$C = b + ai \iff \begin{cases} a = A\sin\delta \\ b = A\cos\delta \end{cases} \Leftrightarrow C = 11.3 + 22.4i$$

Svar: $u(t) = 25.09\sin(\omega t + 1.10), 11.3 + 22.4i$

b) Använd regeln
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\begin{split} u(t) = & A \sin(\omega t + \delta) = A \sin \delta \cos \omega t + A \cos \delta \sin \omega t = \\ = & 5.19 \sin \omega t - 3.14 \cos \omega t \iff \begin{cases} A \cos \delta = 5.19 \\ A \sin \delta = -3.14 \end{cases} \Leftrightarrow \\ \Leftrightarrow & \sqrt{(A \sin \delta)^2 + (A \cos \delta)^2} = \sqrt{5.19^2 + (-3.14)^2} \Leftrightarrow \\ \Leftrightarrow & \sqrt{A^2 (\sin^2 \delta + \cos^2 \delta)} \approx 6.07 \Leftrightarrow A \approx 6.07 \end{split}$$

$$\tan \delta = \frac{\sin \delta}{\cos \delta} = \frac{A \sin \delta}{A \cos \delta} = \frac{-3.14}{5.19}$$
$$\delta = \arctan \frac{-3.14}{5.19} \approx -0.54$$

$$C = b + ai \Leftrightarrow \begin{cases} a = A \sin \delta \\ b = A \cos \delta \end{cases} \Leftrightarrow C = 5.19 - 3.14i$$

Svar: $u(t) = 6.07 \sin(\omega t - 0.54)$, 5.19 - 3.14i

1.16 Låt y vara en funktion av t där s är en konstant.

$$y(t)' + 2y(t) = e^{st}$$

Integrerande faktor:

$$g(t) = 2 \implies G(t) = 2t \implies \text{i.f. } e^{2t}$$

Multiplicera med den integrerande faktorn:

$$e^{2t}y(t)' + 2e^{2t}y(t) = e^{2t}e^{st} \iff (e^{2t}y)' = e^{2t}e^{st} \iff e^{2t}y = \int e^{(2+s)t} dt \iff$$

$$\Leftrightarrow y = \frac{1}{e^{2t}} \int e^{(2+s)t} dt = \frac{1}{e^{2t}} \frac{1}{2+s} e^{(2+s)t} + C = \frac{1}{e^{2t}} e^{2t} \frac{1}{2+s} e^{st} + C =$$

$$= \frac{1}{2+s} e^{st} + C, \quad s \neq -2$$

Partikulärlösning (C = 0): $\frac{1}{2+s}e^{st}$, $s \neq -2$

Svar: $y = \frac{1}{2+s}e^{st}, \quad s \neq -2$

1.17 Låt $s=i\omega$ och då ger **1.16** $y=\frac{1}{2+i\omega}e^{i\omega t}$ och eftersom $\sin\omega t={\rm Im}\,e^{i\omega t}$:

$$y = \operatorname{Im}\left(\frac{1}{2+i\omega}e^{i\omega t}\right) = \operatorname{Im}\left(\frac{2-i\omega}{\omega^2+4}(\cos\omega t + i\sin\omega t)\right) = \frac{1}{\omega^2+4}(2\sin\omega t + \omega\sin\omega t)$$

Svar: $y = \frac{1}{\omega^2 + 4} (2\sin\omega t + \omega\sin\omega t)$

Kapitel 2: Steg och impulsfunktioner

- 2.1 a) b) **c**) d) e) 2.22.3 a) $\theta(t-1)\theta(3-t)$ eller $\theta(t-1) - \theta(t-3)$ b) Funktionen som syns är -0.5t+1.5, stegfunktioner som skärmar in]1,3[är (se **a**)) $\theta(t-1)-\theta(t-3)$ vilket medför: **Svar:** $(-0.5t + 1.5)(\theta(t - 1) - \theta(t - 3))$ 2.4 a) Funktionen i intervallet]0,1[är t. Stegfunktion: $\theta(t) - \theta(t-1)$. Funktionen i intervallet]1,2[är 1. Stegfunktion: $\theta(t-1) - \theta(t-2)$. Funktionen i intervallet [2,3] är 3-t. Stegfunktion: $\theta(t-2)-\theta(t-3)$ vilket ger: Svar: $t(\theta(t) - \theta(t-1)) + \theta(t-1) - \theta(t-2) + (3-t)(\theta(t-2) - \theta(t-3))$
 - b) Funktionen i intervallet]0,1[är t. Stegfunktion: $\theta(t) \theta(t-1)$. Funktionen i intervallet]1,2[är t-1. Stegfunktion: $\theta(t-1) - \theta(t-2)$ vilket ger: Svar: $t(\theta(t) - \theta(t-1)) + (t-1)(\theta(t-1) - \theta(t-2))$

2.5

$$p_b(t) = \frac{1}{b}(\theta(t) - \theta(t - b))$$

Om stegfunktioner finns som en faktor i en integral kan dessa ersätta integrationsgränserna eftersom de evaluerar till noll utanför intervallet.

$$\int_{-\infty}^{+\infty} (\theta(t-a) - \theta(t-b))t \, dt = \int_{a}^{b} t \, dt$$

Lös med hjälp av ovanstående samband:

$$\int_{-\infty}^{+\infty} p_b(t)e^{-st} dt = \int_{-\infty}^{+\infty} \frac{1}{b} (\theta(t) - \theta(t-b))e^{-st} dt = \int_0^b \frac{1}{b}e^{-st} dt =$$

$$= \left[-\frac{1}{sb}e^{-st} \right]_0^b = -\frac{e^{-sb}}{sb} - \left(-\frac{1}{sb} \right) = \frac{1 - e^{-sb}}{sb}, \quad s \neq 0$$

Om s = 0:

$$\int_{-\infty}^{+\infty} p_b(t) \cdot 1 \, dt = 1 \qquad \text{enligt def., se boken}$$

'Svar:
$$\int_{-\infty}^{+\infty} p_b(t)e^{-st} dt = \frac{1}{sb}(1-e^{-sb}), \quad s \neq 0 \text{ och } 1, \quad s = 0$$

2.6 Räknelag (se boken s. 21):

$$\int_{-\infty}^{+\infty} \delta(t-a)f(t) dt = f(a), \quad \text{om } f \text{ är kontinuerlig i } t = a$$

Eftersom e^{-st} är kontinuerlig för alla t använd räknelagen:

$$\int_{-\infty}^{+\infty} \delta(t-a)e^{-st} dt = e^{-sa}$$

Svar: e^{-sa}

2.7 Räknelag (se boken s. 21):

$$\frac{d}{dt}(\theta(t-a)) = \delta(t-a)$$

Använd räknelagen:

$$\frac{d}{dt}p_b = \frac{1}{b}\frac{d}{dt}(\theta(t) - \theta(t-b)) = \frac{1}{b}\left(\frac{d}{dt}\theta(t) - \frac{d}{dt}\theta(t-b)\right) = \frac{1}{b}\left(\delta(t) - \delta(t-b)\right)$$

Svar: $\frac{1}{b} \left(\delta(t) - \delta(t-b) \right)$

2.8 a) Räknelag (se boken s. 21):

$$f(t)\delta(t) = f(0)\delta(t)$$
, om f är kontinuerlig i $t = 0$

Låt f(t) = t, eftersom t är kontinuerlig använd räknelagen:

$$t\delta(t) = f(t)\delta(t) = f(0)\delta(t) = 0 \cdot \delta(t) = 0$$

Svar: 0

b) Räknelag (se boken s. 21):

$$f(t)\delta(t-a) = f(a)\delta(t-a)$$
, om f är kontinuerlig i $t=a$

Låt f(t) = t, eftersom t är kontinuerlig använd räknelagen:

$$t\delta(t-1) = f(t)\delta(t-1) = f(1)\delta(t-1) = 1 \cdot \delta(t-1) = \delta(t-1)$$

Svar: $\delta(t-1)$

c) Räknelag (se boken s. 21):

$$f(t)\delta(t-a) = f(a)\delta(t-a)$$
, om f är kontinuerlig i $t=a$

Låt $f(t) = e^{-t}$, eftersom e^{-t} är kontinuerlig använd räknelagen:

$$e^{-t}\delta(t-2) = f(t)\delta(t-2) = f(2)\delta(t-2) = e^{-2}\delta(t-1)$$

Svar: $e^{-2}\delta(t-1)$

d) Räknelag (se boken s. 21):

$$f(t)\delta(t-a)=f(a)\delta(t-a), \quad \text{om } f \text{ är kontinuerlig i } t=a$$

Låt $f(t) = \sin t$, eftersom $\sin t$ är kontinuerlig använd räknelagen:

$$\sin t\delta(t-\pi) = f(t)\delta(t-\pi) = f(\pi)\delta(t-\pi) = 0 \cdot \delta(t-\pi) = 0$$

Svar: 0

2.9 Använd sats 2.1 (s. 22):

$$f(t) = t^{2}(\theta(t) - \theta(t-1)) + (2-t)(\theta(t-1) - \theta(t-2))$$

Eftersom funktionen saknar språng är $(\frac{d}{dt}t^2 = 2t \text{ och } \frac{d}{dt}(2-t) = -1)$:

$$f'(t) = f'_n(t) = 2t(\theta(t) - \theta(t-1)) - (\theta(t-1) - \theta(t-2))$$

Eftersom f'(t) har språng i t=1 och t=2 måste storleken på dessa beräknas (högra funktionen minus den vänstra):

$$t = 1 \implies (-1) - 2 \cdot 1 = -3$$

$$t = 2 \implies 0 - (-1) = 1$$

f'(t) är deriverbar i alla punkter utom $t = \{0, 1, 2\}, t = 0$ saknar dock språng.

$$f''(t) = f_p''(t) + b_1 \delta(t - a_1) + b_2 \delta(t - a_2)$$
 där $a_1 = 1, b_1 = -3, a_2 = 2, b_2 = 1$

 $\frac{d}{dt}2t = 2 \text{ och } \frac{d}{dt}(-1) = 0$:

$$f''(t) = 2(\theta(t) - \theta(t-1)) + 0 \cdot (\theta(t-1) - \theta(t-2)) - 3\delta(t-1) + 1 \cdot \delta(t-2) = 2(\theta(t) - \theta(t-1)) - 3\delta(t-1) + \delta(t-2)$$

Svar:

$$f'(t) = 2t(\theta(t) - \theta(t-1)) - (\theta(t-1) - \theta(t-2))$$

$$f''(t) = 2(\theta(t) - \theta(t-1)) - 3\delta(t-1) + \delta(t-2)$$

2.10 a) Sinus med amplitud 2 och vinkelfrekvensen 2, samt från 0 till $\pi/2$:

$$f(t) = 2\sin 2t(\theta(t) - \theta(t - \pi/2))$$

b) Använd sats 2.1 (s. 22):

$$f(t) = 2\sin 2t(\theta(t) - \theta(t - \pi/2))$$

Eftersom funktionen saknar språng är $(\frac{d}{dt} 2 \sin 2t = 4 \cos 2t)$:

$$f'(t) = f_p'(t) = 4\cos 2t(\theta(t) - \theta(t - \pi/2))$$

Eftersom f'(t) har språng i t=0 och $t=\pi/2$ måste storleken på dessa beräknas (högra funktionen minus den vänstra):

$$t=0 \Rightarrow 4\cos(2\cdot 0) - 0 = 4$$

$$t = \pi/2 \implies 0 - 4\cos(2 \cdot \pi/2) = 4$$

f'(t) är deriverbar i alla punkter utom $t = \{0, \pi/2\}.$

$$f''(t) = f_p''(t) + b_1 \delta(t - a_1) + b_2 \delta(t - a_2)$$
 där $a_1 = 0, b_1 = 4, a_2 = \pi/2, b_2 = 4$

 $\frac{d}{dt}4\cos 2t = -8\sin 2t$:

$$f''(t) = -8\sin 2t(\theta(t) - \theta(t - \pi/2)) + 4\delta(t) + 4\delta(t - \pi/2)$$

Svar:

$$f'(t) = 4\cos 2t(\theta(t) - \theta(t - \pi/2))$$

$$f''(t) = -8\sin 2t(\theta(t) - \theta(t - \pi/2)) + 4\delta(t) + 4\delta(t - \pi/2)$$

2.11 Beskriv |x| med hjälp av stegfunktioner:

$$f(x) = |x| = -x(1 - \theta(x)) + x\theta(x)$$

Eftersom funktionen saknar språng är $(\frac{d}{dx}x=1)$:

$$f'(x) = f'_n(x) = -1 \cdot (1 - \theta(x)) + 1 \cdot \theta(x) = -1 + \theta(x) + \theta(x) = 2\theta(x) - 1$$

Eftersom f'(x) har språng i x = 0 måste storleken på denna beräknas (högra funktionen minus den vänstra):

$$x = 0 \Rightarrow (2 - 1) - (-1) = 2$$

f'(x) är deriverbar i alla punkter utom x=0.

$$f''(x) = f_n''(x) + b\delta(x - a)$$
 där $a = 0, b = 2$

 $\frac{d}{dt}1 = 0$:

$$f''(x) = -0 \cdot (1 - \theta(x)) + 0 \cdot \theta(x) + 2\delta(x - 0) = 2\delta(x)$$

Svar:

$$f'(t) = 2\theta(x) - 1$$

$$f''(t) = 2\delta(x)$$

2.12 Använd sambandet på s. 17:

$$v(t) = \int_{-\infty}^{t} \tau^{a} \theta(\tau) d\tau = \begin{cases} 0, & t \le 0 \\ \int_{0}^{t} \tau^{a} d\tau, & t > 0 \end{cases} = \left(\int_{0}^{t} \tau^{a} d\tau \right) \theta(t) =$$

$$= \left(\left[\frac{\tau^{a+1}}{a+1} \right]_{0}^{t} \right) \theta(t) = \left(\frac{t^{a+1}}{a+1} - \frac{0^{a+1}}{a+1} \right) \theta(t) = \frac{t^{a+1}}{a+1} \theta(t), \quad a > -1$$

Svar: $v(t) = \frac{t^{a+1}}{a+1}\theta(t), \quad a > -1$

2.13 a) Använd sambandet på s. 17:

$$\begin{split} &\int_{-\infty}^t e^{-\tau} \theta(\tau) \, d\tau = \left(\int_0^t e^{-\tau} \, d\tau \right) \theta(t) = \\ &= \left(\left[-e^{-\tau} \right]_0^t \right) \theta(t) = \left(-e^{-t} - \left(-e^{-0} \right) \right) \theta(t) = \left(1 - e^{-t} \right) \theta(t) \end{split}$$

Svar: $(1 - e^{-t}) \theta(t)$

b) Använd sambandet på s. 17:

$$\begin{split} & \int_{-\infty}^{t} e^{-\tau} \theta(\tau - 1) \, d\tau = \left(\int_{-1}^{t} e^{-\tau} \, d\tau \right) \theta(t - 1) = \\ & = \left(\left[-e^{-\tau} \right]_{-1}^{t} \right) \theta(t - 1) = \left(-e^{-t} - \left(-e^{-1} \right) \right) \theta(t - 1) = \left(e^{-1} - e^{-t} \right) \theta(t - 1) \end{split}$$

Svar: $(e^{-1} - e^{-t}) \theta(t-1)$

c) Använd sambandet på s. 17:

$$\int_{-\infty}^{t} e^{\tau} (1 - \theta(\tau)) d\tau = \int_{-\infty}^{t} e^{\tau} d\tau - \int_{-\infty}^{t} e^{\tau} \theta(\tau) d\tau = [e^{\tau}]_{-\infty}^{t} - \left(\int_{0}^{t} e^{\tau} d\tau\right) \theta(t) = e^{t} - e^{t} - \left([e^{\tau}]_{0}^{t}\right) \theta(t) = e^{t} - \left(e^{t} - e^{0}\right) \theta(t) = e^{t} - \left(e^{t} - 1\right) \theta(t) = e^{t} - e^{t} \theta(t) + \theta(t) = e^{t} (1 - \theta(t)) + \theta(t)$$

Svar: $e^t(1-\theta(t)) + \theta(t)$

d) Använd sambandet på s. 17:

$$\int_{-\infty}^{t} e^{\tau} \theta(1-\tau) d\tau = \int_{-\infty}^{t} e^{\tau} (1-\theta(\tau-1)) d\tau = \int_{-\infty}^{t} e^{\tau} d\tau - \int_{-\infty}^{t} e^{\tau} \theta(\tau-1) d\tau = \int_{-\infty}^{t} e^{\tau} \theta(\tau-1) d\tau = \int_{-\infty}^{t} e^{\tau} \theta(\tau-1) d\tau = \int_{-\infty}^{t} e^{\tau} d\tau - \int_{$$

Svar: $e^{t}\theta(1-t) + e\theta(t-1)$

2.14 a) Låt $f(t) = e^{2t}\theta(t)$:

$$\begin{split} F(t) &= \int e^{2t} \theta(t) \, dt = \theta(t) \int_0^t e^{2t} \, dt + C = \theta(t) \left[\frac{1}{2} e^{2t} \right]_0^t + C = \\ &= \frac{1}{2} (e^{2t} - e^{2 \cdot 0}) \theta(t) + C = \frac{1}{2} (e^{2t} - 1) \theta(t) + C \end{split}$$

Svar: $F(t) = \frac{1}{2}(e^{2t} - 1)\theta(t) + C$

b) Låt
$$f(t) = (t-1)\theta(t)$$
:

$$F(t) = \int (t-1)\theta(t) dt = \theta(t) \int_0^t t - 1 dt + C = \theta(t) \left[\frac{t^2}{2} - t \right]_0^t + C =$$

$$= \left(\frac{t^2}{2} - t - \left(\frac{0^2}{2} - 0 \right) \right) \theta(t) + C = \left(\frac{t^2}{2} - t \right) \theta(t) + C$$

Svar: $F(t) = (\frac{t^2}{2} - t)\theta(t) + C$

c) Låt
$$f(t) = (t-1)\theta(t-1)$$
:

$$F(t) = \int (t-1)\theta(t-1) dt = \theta(t-1) \int_1^t t - 1 dt + C = \theta(t-1) \left[\frac{t^2}{2} - t \right]_1^$$

Svar: $F(t) = \frac{(t-1)^2}{2}\theta(t-1) + C$

d) Låt
$$f(t) = t\theta(t-3)$$
:

$$F(t) = \int t\theta(t-3) dt = \theta(t-3) \int_3^t t dt + C = \theta(t-3) \left[\frac{t^2}{2} \right]_3^t + C =$$

$$= \left(\frac{t^2}{2} - \frac{3^2}{2} \right) \theta(t-3) + C = \frac{1}{2} \left(t^2 - 9 \right) \theta(t-3) + C$$

Svar: $F(t) = \frac{1}{2}(t^2 - 9)\theta(t - 3) + C$

e) Låt
$$f(t) = \sin t\theta(t-\pi) + \delta(t-1)$$
:

$$F(t) = \int \sin t \theta(t - \pi) + \delta(t - 1) dt = \int \sin t \theta(t - \pi) dt + \int \delta(t - 1) dt =$$

$$= \theta(t - \pi) \int_{\pi}^{t} \sin t dt + \theta(t - 1) + C = \theta(t - \pi) [-\cos t]_{\pi}^{t} + \theta(t - 1) + C =$$

$$= (-\cos t - (-\cos \pi)) \theta(t - \pi) + \theta(t - 1) + C =$$

$$= -(\cos t + 1) \theta(t - \pi) + \theta(t - 1) + C$$

Svar: $F(t) = -(\cos t + 1) \theta(t - \pi) + \theta(t - 1) + C$

2.15

$$f(t) = (-2t+1)(1-\theta(t-1)) + (t-2)\theta(t-1)$$

Eftersom funktionen saknar språng är $(\frac{d}{dx}(-2t+1) = -2 \text{ och } \frac{d}{dx}(t-2) = 1)$:

$$f'(x) = f'_p(x) = -2(1 - \theta(t - 1)) + 1 \cdot \theta(t - 1) = -2(1 - \theta(t - 1)) + \theta(t - 1) = 3\theta(t - 1) - 2\theta(t - 1)$$

Eftersom f'(t) har språng i t = 1 måste storleken på denna beräknas (högra funktionen minus den vänstra):

$$t = 1 \implies (3 - 2) - (-2) = 3$$

f'(t) är deriverbar i alla punkter utom t=1.

$$f''(t) = f_p''(t) + b\delta(t - a)$$
 där $a = 1, b = 3$

 $\frac{d}{dt}k = 0$ där k är en konstant:

$$f''(t) = -0 \cdot (1 - \theta(t - 1)) + 0 \cdot \theta(t - 1) + 3\delta(t - 1) = 3\delta(t - 1)$$

Beräkna g(t), använd $f(t)\delta(t-a) = f(a)\delta(t-a)$:

$$\begin{split} g(t) = & (1+t^2)f''(t) - tf'(t) + f(t) = \\ = & (1+t^2)3\delta(t-1) - t(3\theta(t-1)-2) + (-2t+1)(1-\theta(t-1)) + (t-2)\theta(t-1) = \\ = & (1+t^2)3\delta(t-1) - 3t\theta(t-1) + 2t - 2t + 2t\theta(t-1) + 1 - \theta(t-1) + t\theta(t-1) - 2\theta(t-1) = \\ = & (1+t^2)3\delta(t-1) + 1 - 3\theta(t-1) = 3\delta(t-1) + 3t^2\delta(t-1) + 1 - 3\theta(t-1) = \\ = & 3\delta(t-1) + 3 \cdot 1^2\delta(t-1) + 1 - 3\theta(t-1) = 6\delta(t-1) + 1 - 3\theta(t-1) \end{split}$$

Svar: $6\delta(t-1) + 1 - 3\theta(t-1)$

2.16

2.17

Kapitel 3: Laplacetransformationer

3.1 a)
$$f(t) = e^{-2t}\theta(t)$$

Se definitionen av Lapacetransformen i boken.

$$\mathcal{L}f(s) = \int_{-\infty}^{+\infty} e^{-st} f(t) dt = \int_{-\infty}^{+\infty} e^{-st} e^{-2t} \theta(t) dt = \int_{0}^{+\infty} e^{-(s+2)t} dt = \left[-\frac{e^{-(s+2)t}}{s+2} \right]_{0}^{+\infty} = \lim_{T \to \infty} \frac{1}{s+2} (1 - e^{-(s+2)T})$$

Om s > -2 gäller att $e^{-(s+2)T} \to 0$ när $T \to \infty$ vilket medför:

$$\mathcal{L}\,f(s) = \frac{1}{s+2}, \quad s > -2$$

Om s = -2:

$$\mathcal{L} f(s) = \int_0^{+\infty} 1 \, dt = [t]_0^{+\infty} \to \infty$$

Om s<-2 gäller att $e^{-(s+2)T}\to\infty$ när $T\to\infty$ vilket medför:

$$\mathcal{L} f(s) \to -\infty$$

Detta medför att $\mathcal{L} f(s)$ endast är konvergent när s > -2 och därmed är Laplacetransformen för $e^{-2t}\theta(t)$ endast definierad i det intervallet.

Låt nu s vara ett komplext tal, s = a + bi:

$$\left| e^{-(a+bi+2)t} \right| = \left| e^{-(a+2)t} \right| \underbrace{\left| e^{-ibt} \right|}_{=1} = e^{-(a+2)t}$$

Här ser vi att $e^{-(s+2)t} \to 0$ då $t \to \infty$ om $a = \text{Re}\, s > -2$ vilket utvidgar Laplacetransformen att inkludera hela planet $\text{Re}\, s > -2$.

Svar:
$$\mathcal{L} f(s) = \frac{1}{s+2}$$
, Re $s > -2$

3.1 b) $f(t) = \theta(t) - \theta(t-1)$

Se definitionen av Lapacetransformen i boken.

$$\mathcal{L}f(s) = \int_{-\infty}^{+\infty} e^{-st} f(t) dt = \int_{-\infty}^{+\infty} e^{-st} (\theta(t) - \theta(t-1)) dt = \int_{0}^{1} e^{-st} dt = \left[-\frac{e^{-st}}{s} \right]_{0}^{1} =$$

$$= -\frac{e^{-s}}{s} + \frac{1}{s} = \frac{1 - e^{-s}}{s}, \quad s \neq 0$$

Om s = 0 gäller att $e^{-st} = 1$ vilket medför:

$$\mathcal{L} f(0) = \int_0^1 1 \, dt = [t]_0^1 = 1 - 0 = 1$$

Svar:
$$\mathcal{L} f(s) = \frac{1}{s}(1 - e^{-s}), \quad s \neq 0 \text{ och } \mathcal{L} f(0) = 1$$