ANSWER KEY

McGill University Faculty of Engineering

OURSE: ECSE200 - Fundamentals of Electrical Engineering

FINAL EXAMINATION

Examiner: Thomas Szkopek
Date: 14 June 2007 Time: 10:00 - 13:00
INSTRUCTIONS
A) Read all four exam questions very carefully.
B) Answer all four (×4) questions in this exam paper in the space provided. Use the reverse side of exam sheets if necessary. Show <i>all</i> solution steps and indicate your final answer <i>clearly</i> .
C) Individual question values are indicated in the margin at the start of each question. Partial marks of <i>at most</i> 50% will be given for correct solution technique, but incorrect answer. Total exam value is 70 points.
D) Closed book examination. Only "Faculty Standard" calculators are permitted.
IDENTIFICATION
NAME:
ID NUMBER:

(16/70) 1. Consider the four networks below. Assume *ideal op-amp* behaviour holds for all applied voltages and currents. Answer the four question parts below:

- (4/16) (a) Is the terminal I-V behaviour of network 1 *equivalent* to that of an ideal resistor? If so, state the equivalent resistance. If not, justify why the behaviour is not that of an ideal resistor.
- (4/16) (b) Is the terminal I-V behaviour of network 2 *equivalent* to that of an ideal resistor? If so, state the equivalent resistance. If not, justify why the behaviour is not that of an ideal resistor.
- (4/16) (c) Is the terminal I-V behaviour of network 3 *equivalent* to that of an ideal resistor? If so, state the equivalent resistance. If not, justify why the behaviour is not that of an ideal resistor.
- (d) Is the terminal I-V behaviour of network 4 *equivalent* to that of an ideal resistor? If so, state the equivalent resistance. If not, justify why the behaviour is not that of an ideal resistor. [Hint: Consider carefully the flow of current.]

No, since
$$R=V/I<0$$

Yes, $R=V/I=-140\pi$

(19/70) 2. Consider the circuit below. The spark gap can be modeled as an open circuit. Answer the five question parts below.

- (2/19) (a) With the switch in position 1, what is the steady state current through the inductor?
- (2/19) (b) How long must the switch remain in position 1 so that the current flowing through the inductor is 99% of its final value?
- (4/19) (c) Under steady state conditions with the switch in position 1, how long will it take to dissipate an energy in the 1Ω resistor equal to the energy that is stored in the inductor?
- (10/19) (d) The switch has remained in position 1 sufficiently long that steady state conditions have been achieved, then at t=0, the switch moves to position 2 instantaneously, where it stays indefinitely. Calculate $v_g(t)$ for 0 < t, assuming still that the spark gap remains an open circuit.
- (1/19) (e) Plot $v_g(t)$ for all t. The plot need not be to scale.

$$\Delta$$
) $I_L = 12A$

b)
$$2 \ln (100) = 46.05 \text{ ms}$$

 $\frac{\text{or}}{52} = 50 \text{ ms}$

$$t = \frac{E}{P} = 5 \text{ ms}$$

(18/70) 3. Consider the circuit network illustrated below. Answer the four question parts below.

- (6/18) (a) Find the Thévenin equivalent of the network with respect to the terminals A and B, assuming no electrical connection is made to the node C. Indicate in a drawing the source polarity and the node labels A and B.
- (b) Find the Norton equivalent of the network with respect to the terminals A and C, assuming no electrical connection is made to the node B. Indicate in a drawing the source polarity and the node labels A and C.
- (4/18) (c) Can more power be extracted from the network when a load resistor is connected across terminals A and B, *or* when a load resistor is connected across terninals A and C? Consider the optimal load in each case.
- (2/18) (d) A non-ideal ammeter with 10Ω internal resistance is used to measure the short circuit current between terminals A and C. What is the percentage error in this measurement?

AB can deliver more power since Voc > Voc and RTM (RTM AB AC AB AC

d)
$$\frac{1}{7} \times \frac{1}{7} \times \frac{1}{9} = -\frac{1}{4.3}$$

(17/70) 4. Consider the circuit network below. The values of the ideal resistors R₁, R₂ and ideal capacitor C inside the network N have been obscured. The only available information about the circuit is the power delivered by the voltage source when the switch closes instantaneously at t=0s (illustrated below), along with the fact that the switch was open sufficiently long that the capacitor had zero charge separation at t=0s. Answer the three question parts below.

- (12/17) (a) Determine the resistances R_1 and R_2 , and the capacitance C.
- (2/17) (b) As $t\to\infty$, what is the charge separation developed across the capacitor? Indicate the polarity of charge separation in the diagram above.
- (3/17) (c) At what time does the capacitor store 25% of the final energy stored?

$$R_1 = 50 \text{ s}$$

 $R_2 = 450 \text{ s}$
 $C = 200 \text{ s}$