Sampling Based Inference

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn basic sampling methods
 - Understand the concept of Markov chain Monte Carlo
 - Able to apply MCMC to the parameter inference of Bayesian networks
 - Know the mechanism of rejection sampling
 - Know the mechanism of importance sampling
- Learn sampling based inference
 - Understand the concept of Metropolis-Hastings algorithm
 - Know the mechanism of Gibbs sampling
- Know a case study of sampling based inference
 - Understand the latent Dirichlet allocation model
 - Know the collapsed Gibbs sampling
 - Know how to derive Gibbs sampling formula for LDA

Rejection Sampling

- P(E=T|MC=T,A=F)=?
- RejectionSampling
 - Iterate many times
 - Generate a sample from the Bayesian network
 - Buglary → false
 - Earthquake → true
 - Alarm|B=F,E=T→true
 - If the sample does not follow MC=T, A=F, reject the sampling procedure, and repeat
 - JC|A=T→true
 - $MC|A=T \rightarrow false$
 - Return Count(E=T,MC=T,A=F)/# of Samples
- Any problem?

В	E	P(A B,E)
T	T	0.95
T	F	0.94
F	T	0.29
F	F	0.001

A	P(J A)
T	0.90
F	0.05

A	P(M A)
T	0.70
F	0.01

Rejection Sampling from Numerical View

- count = 0
- while count < N
 - Sample $x_{(i)} \sim q(x)$
 - Sample $u \sim Unif(0,1)$
 - If $u < \frac{p(x_{(i)})}{Mq(x_{(i)})}$
 - Accept $x_{(i)}$
 - Increase count
 - Else
 - Reject and resample

Rejection Sampling in GMM

 $P(x) = \sum_{k=1}^{K} P(z_k) P(x|z)$ $= \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$

- Sample z from {1, 2, 3} with 1/3 change each
- Sample x from $N(\mu_{q(z)}, \Sigma_{q(z)})$
 - q(x) = The probability drawing x from $N(\mu_{q(z)}, \Sigma_{q(z)})$
- Sample u from Uniform(0,1)
- If $M \times u \times q(x) < p(x)$
 - Accept the sample of (z, x)
- Else
 - Discard the sample

Q Mixture

= 1/3*N(-2,1), 1/3*N(1,1), 1/3*N(5,1)

P Mixture = 0.35*N(-2,0.9), 0.45*N(1,0.3), 0.2*N(5,0.8)

Q Mixture = 3 * (1/3 * N(0,1))

