Free Hopf algebras generated by coalgebras

By Mitsuhiro TAKEUCHI

(Received Oct. 20, 1970)

Introduction

If H is a commutative or cocommutative Hopf algebras over a field k, it is well known that the antipode of H is of order 2. If H is a finite dimensional Hopf algebra over k, then the antipode of H is a bijection. Is the antipode of a Hopf algebra always a bijection? In this paper we construct some Hopf algebras whose antipodes are not bijective. In order to do so, we introduce the concept of free Hopf algebras generated by coalgebras.

Let C be a coalgebra over a field k. The free Hopf algebra (H(C), i) generated by C is characterized by the following universal property:

- (1) $i: C \rightarrow H(C)$ is a coalgebra map
- (2) Hom (i, H): Hopf $(H(C), H) \rightarrow \text{Coalg}(C, H)$ is a bijection for any Hopf algebra H.

H(C) is constructed in § 1. One of our main results is the following Theorem. The antipode of H(C) is bijective if and only if the \bar{k} -coalgebra $\bar{k} \otimes C$ is pointed, where \bar{k} is the algebraic closure of k.

Some important consequences are obtained as corollaries to this theorem. It is interesting to consider the algebra structure of H(C) and to give a k-basis for H(C) explicitly. We present a partial answer to this problem in Chapter III. In Chapter IV we consider the corresponding problem in the category of commutative algebras. The definition of the free commutative Hopf algebra $H_c(C)$ generated by a coalgebra C is similar to that of H(C). In the category of commutative algebras, there is an interesting relation between norms and antipodes. This relation leads to a simple construction of $H_c(C)$. A consequence of this construction is

THEOREM. A commutative bialgebra H has an antipode if and only if the grouplike elements of H are invertible in H.

This is a generalization of [5, Prop. 9.2.5] in the category of commutative algebras.

Throughout this paper, we shall adopt the terminology and utilize theorems in [5].

Chapter I. Free Hopf algebras; basic concepts

In this chapter we construct the free Hopf algebra H(C) generated by a coalgebra C and characterize it in the category of algebras.

§ 1. The construction of H(C)

Let k be a field. If A is an algebra and C is a coalgebra over k, then their structure maps are denoted by

$$A \otimes A \xrightarrow{\mu} A$$
, $k \xrightarrow{\eta} A$
 $C \xrightarrow{\Delta} C \otimes C$, $C \xrightarrow{\varepsilon} k$.

The multiplication $f*g = \mu \circ (f \otimes g) \circ \Delta$ defines an algebra structure on Hom (C, A). The unit is $\eta \circ \varepsilon$. In particular $C*= \operatorname{Hom}(C, k)$ is an algebra. The algebra $\operatorname{Hom}(C, A)$ is functorial in C and A. G(C) denotes the set of all grouplike elements of C. If A is finite dimensional, then A^* is a coalgebra. The tensor algebra T(C) has a natural bialgebra structure.

If G is a group, the group algebra k[G] has a natural bialgebra structure. Let H be a bialgebra over k. If the identity 1_H is invertible in the algebra $\operatorname{End}(H)$, H is said to be a Hopf algebra and $S=(1_H)^{-1}$ is said to be the antipode of H.

Alg(A, B), Coalg(A, B), Bialg(A, B) and Hopf(A, B) denote the set of algebra maps from A to B etc.

Now let us begin to construct H(C). Let C be a coalgebra over k. Let $(V_i)_{i\geq 0}$ be a sequence of coalgebras as follows

$$V_0 = C$$
, $V_{i+1} = V_i^{op}$.

Let $V = \sum_{i=0}^{\infty} V_i$ be the direct sum of coalgebras. Let $S: V \to V^{op}$ be the coalgebra map $(x_0, x_1, x_2, \cdots) \to (0, x_0, x_1, x_2, \cdots)$. S induces a bialgebra map $S: T(V) \to T(V)^{op}$. Let I be the 2-sided ideal of T(V) generated by $\sum x_{(1)}S(x_{(2)}) - \varepsilon(x)1$ and $\sum S(x_{(1)})x_{(2)} - \varepsilon(x)1$ for $x \in V$. Then it is easy to see that

$$\Delta(I) \subset I \otimes T(V) + T(V) \otimes I$$

$$\varepsilon(I) = 0$$

$$S(I) \subset I.$$

H(C) = T(V)/I is therefore a bialgebra and S induces a bialgebra map $S: H(C) \to H(C)^{op}$. Let $i: C \to H(C)$ be the composite $C = V_0 \to V \to T(V) \to H(C)$. Then we have

LEMMA 1. S is an antipode of H(C) and

$$\operatorname{Hom}(i, H) : \operatorname{Hopf}(H(C), H) \longrightarrow \operatorname{Coalg}(C, H)$$

is a bijection for any Hopf algebra H.

PROOF. The intersection of the kernels of $1*S-\eta\circ\varepsilon$ and $S*1-\eta\circ\varepsilon$ is a subalgebra of H(C) which contains V. Since V generates H(C) as an algebra, we have $1*S=S*1=\eta\circ\varepsilon$. Let H be a Hopf algebra. We construct the inverse of H(C) Let $f:C\to H$ be a coalgebra map. Let $f_i:V_i\to H$ be a coalgebra map as follows:

$$f_0 = f$$

$$f_{i+1} = f_i^{-1}$$
 in the algebra $\text{Hom}(V_i, H)$.

 $(f_i)_{i\geq 0}$ determines a coalgebra map $V\to H$ and it induces a bialgebra map $T(V)\to H$. This map is zero on I by the construction of $(f_i)_{i\geq 0}$. Therefore a bialgebra map $\bar{f}:H(C)\to H$ is induced. It is clear that the correspondence $f\mapsto \bar{f}$ is an inverse of Hom (i,H).

DEFINITION 2. H(C) is said to be the free Hopf algebra generated by C.

$\S 2$. H(C) as an algebra

Let C be a coalgebra and A be an algebra over k.

DEFINITION 3. L(C, A) is the set of sequences $(f_i)_{i\geq 0}$ of elements of Hom(C, A) which satisfy the following condition:

$$f_{i+1} = f_i^{-1}$$
 in Hom (C, A) if i is even

$$f_{i+1} = f_i^{-1}$$
 in Hom (C^{op}, A) if i is odd.

Proposition 4. Alg $(H(C), A) \rightarrow L(C, A)$

$$f \longmapsto (f \circ S^j \circ i)_{j \geq 0}$$

is a bijection, where S is the antipode of H(C).

PROOF. It is clear that $(f \circ S^j \circ i)_{j \geq 0}$ belongs to L(C,A). We construct the inverse map. Let $(f_i)_{i \geq 0}$ be an element of L(C,A). Let $V = \sum_{i=0}^{\infty} V_i$ be as in §1. Then $f_i \colon V_i \to A$ determines a linear map $V \to A$ and it induces an algebra map $T(V) \to A$. This map is zero on I by the definition of L(C,A). Hence an algebra map $\bar{f} \colon H(C) \to A$ is induced. It is clear that the correspondence $(f_i)_{i \geq 0} \mapsto \bar{f}$ is the required inverse map.

COROLLARY 5. Hom (i, A): Alg $(H(C), A) \rightarrow \text{Hom } (C, A)$ is injective.

PROOF. $(f_i)_{i\geq 0} \mapsto f_0: L(C, A) \to \operatorname{Hom}(C, A)$ is injective.

COROLLARY 6. The coalgebra structure on H(C) is unique such that H(C) is a bialgebra and that $i: C \rightarrow H(C)$ is a coalgebra map.

COROLLARY 7. The following statements are equivalent:

- (a) The antipode of H(C) is a bijection.
- (b) For any algebra A and for any element $(f_i)_{i\geq 0}$ of L(C, A), f_0 is invertible in $Hom(C^{op}, A)$.

PROOF. $S: H(C) \rightarrow H(C)^{op}$ is a bijection if and only if

$$Alg(S, A): Alg(H(C), A) \longrightarrow Alg(H(C)^{op}, A)$$

is a bijection for any algebra A. If we identify Alg(H(C), A) with L(C, A), then we have

Alg
$$(S, A): L(C, A) \longrightarrow L(C, A^{op})$$

$$(f_0, f_1, f_2, \cdots) \longmapsto (f_1, f_2, \cdots).$$

This map is a bijection if and only if the condition (b) is satisfied.

COROLLARY 8. Let K/k be a field extension. Let $H_K(K \otimes C)$ denote the free Hopf algebra over K generated by the K-coalgebra $K \otimes C$. There exists a natural isomorphism of Hopf algebras over K:

$$K \otimes H(C) \approx H_K(K \otimes C)$$
.

PROOF. Let A be a K-algebra. Then we have

$$\operatorname{Hom}_K(K \otimes C, A) \approx \operatorname{Hom}_k(C, A)$$
 as k-algebras.

It follows that $L_K(K \otimes C, A) \approx L(C, A)$. So we have

$$Alg_{\kappa}(K \otimes H(C), A) \approx Alg_{\kappa}(H(C), A) \approx L(C, A)$$

$$\approx L_K(K \otimes C, A) \approx \text{Alg}_K(H_K(K \otimes C), A)$$

natural in C and A. Therefore we have

$$K \otimes H(C) \approx H_K(K \otimes C)$$
 as K-algebras.

But then, from the commutativity of

$$K \otimes C$$

$$K \otimes H(C) \approx H_K(K \otimes C)$$

and Corollary 6, it follows that the isomorphism:

$$K \otimes H(C) \approx H_K(K \otimes C)$$

commutes also with Δ and ε .

COROLLARY 9. $i: C \rightarrow H(C)$ is injective.

PROOF. We may assume $C \neq 0$. Let g be an element of C such that $\varepsilon(g) = 1$. Then we have $C = kg + C^+$, where $C^+ = \text{Ker}(\varepsilon)$. Let $A = k + C^+$ be the following algebra:

$$(a+x)(b+y) = ab+(ay+bx)$$
 for $a, b \in k$ and $x, y \in C^+$.

Put $f_i: ag+x\mapsto a+(-1)^i x$, $C\to A$, where $a\in k$ and $x\in C^+$. Since we have

$$\Delta(g) \equiv g \otimes g \bmod C^+ \otimes C^+$$

$$\Delta(x) \equiv g \otimes x + x \otimes g \mod C^+ \otimes C^+$$
 for $x \in C^+$,

 $(f_i)_{i\geq 0}$ belongs to L(C, A). Therefore f_0 is factorized as

$$C \longrightarrow H(C) \longrightarrow A$$
.

Because f_0 is injective, so is i.

COROLLARY 10. If C is a finite dimensional coalgebra, then L(C, A) is the set of sequences $(x_i)_{i\geq 0}$ of elements of $C^*\otimes A$ which satisfy the following condition:

$$x_{i+1} = x_i^{-1}$$
 in $C* \otimes A$ if i is even

$$x_{i+1} = x_i^{-1}$$
 in $C^* \otimes A^{op}$ if i is odd.

PROOF. We have Hom $(C, A) \approx C^* \otimes A$ as k-algebras.

Chapter II. The antipode of H(C)

In this chapter we prove the main result about the antipode of H(C).

§ 3. Case
$$C = M_m(k)^*$$

Let $M_m(k)$ be the $m \times m$ matrix algebra over k. $C = M_m(k)^*$ is a coalgebra. The purpose of this section is to prove

THEOREM 11. If m > 1, then the antipode of $H(M_m(k)^*)$ is not bijective.

LEMMA 12. Let A be a k-algebra. Then $L(M_m(k)^*, A)$ can be identified with the set of sequences $(X_i)_{i\geq 0}$ of elements of $M_m(A)$ which satisfy the following condition:

$$X_{i+1} = X_i^{-1}$$
 if i is even

$${}^{t}X_{i+1} = ({}^{t}X_{i})^{-1}$$
 if i is odd,

where ${}^{t}X$ denotes the transpose of X.

PROOF. Because of $M_m(k) \otimes A \approx M_m(A)$, this is an immediate consequence of Corollary 10.

PROOF OF THEOREM 11. By Corollary 7, it suffices to find an algebra A and an element $(X_i)_{i\geq 0}$ of $L(M_m(k)^*,A)$ such that tX_0 is not invertible in $M_m(A)$. Let t be a transcendental element over k. Let $k(t)\{y,z\}$ denote the free k(t)-algebra generated by y and z. Let J be the 2-sided ideal of $k(t)\{y,z\}$ generated by $yz-t^2zy-t$. Put $B=k(t)\{y,z\}/J$. We claim B is non zero. Indeed let

$$V = \sum_{i=-\infty}^{\infty} k(t)e_i$$

be a free k(t)-module with basis $\{e_i\}$. Let y and z be elements of $\operatorname{End}_{k(t)}(V)$ as follows

$$y(e_i) = e_{i-1}$$
, $z(e_i) = f(i)e_{i+1}$
 $f(n) = t + t^3 + \dots + t^{2n-1}$ for $n > 0$
 $f(0) = 0$
 $f(-n) = -t^{-1} - t^{-3} - \dots - t^{-2n+1}$ for $n > 0$.

Then it is clear that $yz-t^2zy-t=0$.

Now under the k(t)-algebra automorphism of $k(t)\{y, z\}$:

$$y \longmapsto ty$$
, $z \longmapsto t^{-1}z$

the element $yz-t^2zy-t$ is invariant. So a k(t)-algebra automorphism of B is induced. Let

$$A = B \# k(t) [\langle x \rangle]$$

be the smash product over k(t), where $\langle x \rangle$ denotes the free group generated by x. A has the following properties:

- (1) A is a non zero k(t)-algebra.
- (2) A contains elements y and z such that

$$vz-t^2zv-t=0$$
.

(3) A contains an invertible element x such that

$$x^{-1}yx = ty$$
, $x^{-1}zx = t^{-1}z$.

Let A be such an algebra. Let $(a_i)_{i\geq 0}$ be a sequence of elements of k(t) defined by

$$a_0 = 1$$
, $a_n a_{n+1} = \left(\sum_{i=0}^n t^{2i}\right)^{-1}$.

Now we set

$$X_{2n} = a_{2n} \begin{pmatrix} x & t^{2n}y & 0 \\ t^{2n}z & (t^{4n+1}zy + \sum_{i=0}^{2n} t^{2i})x^{-1} & 0 \\ 0 & 0 & I_{m-2} \end{pmatrix}$$

$$X_{2n+1} = a_{2n+1} \begin{pmatrix} (t^{4n+3}zy + \sum_{i=0}^{2n+1} t^{2i})x^{-1} & -t^{2n+1}y & 0 \\ -t^{2n+1}z & x & 0 \\ 0 & 0 & I_{m-2} \end{pmatrix},$$

where I_{m-2} denotes the unit of $M_{m-2}(A)$. Then it is easy to see that $(X_i)_{i\geq 0}$

belongs to $L(M_m(k)^*, A)$. Since we have

$$\begin{pmatrix} 1 & 0 & 0 \\ -yx^{-1} & 1 & 0 \\ 0 & 0 & I_{m-2} \end{pmatrix}^{t}X_{0} = \begin{pmatrix} x & z & 0 \\ 0 & 0 & 0 \\ 0 & 0 & I_{m-2} \end{pmatrix},$$

 ${}^{t}X_{0}$ is not invertible in $M_{m}(A)$.

REMARK 13. If k is of characteristic zero, A and $(X_i)_{i\geq 0}$ can be constructed more easily. There exists a non zero k-algebra A which contains elements y and z such that

$$yz-zy=1$$
.

For example let $V = \sum_{i=-\infty}^{\infty} ke_i$ be a vector space with basis $\{e_i\}$. Let y and z be elements of End (V) as follows

$$y(e_i) = e_{i-1}, \quad z(e_i) = ie_{i+1}.$$

Then we have yz-zy=1. Let A be such an algebra. Put

$$a_{2n} = \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots 2n} , \quad a_0 = 1$$

$$a_{2n+1} = \frac{2 \cdot 4 \cdots 2n}{3 \cdot 5 \cdots (2n+1)} , \quad a_1 = 1$$

$$X_{2n} = a_{2n} \begin{pmatrix} 1 & y & 0 \\ z & 2n + yz & 0 \\ 0 & 0 & I_{m-2} \end{pmatrix}$$

$$X_{2n+1} = a_{2n+1} \begin{pmatrix} 2n + 1 + yz & -y & 0 \\ -z & 1 & 0 \\ 0 & 0 & I_{m-2} \end{pmatrix} .$$

Then it is easily verified that $(X_i)_{i\geq 0}$ belongs to $L(M_m(k)^*, A)$. Because we have

$$\begin{pmatrix} 1 & 0 & 0 \\ -y & 1 & 0 \\ 0 & 0 & I_{m-2} \end{pmatrix} {}^{t}X_{0} = \begin{pmatrix} 1 & z & 0 \\ 0 & 0 & 0 \\ 0 & 0 & I_{m-2} \end{pmatrix},$$

 $^{{}^{}t}X_{0}$ is not invertible.

§ 4. Coradicals and antipodes

Let $(C_i)_{i\geq 0}$ be the coradical filtration of a k-coalgebra C. Let A be an algebra.

LEMMA 14. For any element f of Hom(C, A), f is invertible if and only if $f|C_0$ is invertible in $Hom(C_0, A)$.

PROOF. Assume $f|C_0$ is invertible in $\operatorname{Hom}(C_0,A)$. There is an element g of $\operatorname{Hom}(C,A)$ such that

$$f * g = \eta \circ \varepsilon = g * f$$
 on C_0 .

If f*g and g*f are both invertible in Hom (C, A), then f is invertible. So we may assume that $f = \eta \circ \varepsilon$ on C_0 . Put

$$h = \eta \circ \varepsilon - f$$
.

Because h=0 on C_0 , we have $h^{n+1}=0$ on C_n , where h^{n+1} is (n+1)-th power of h in the algebra Hom(C, A). Therefore $\sum_{n=0}^{\infty} h^n$ can be well defined. This is an inverse of f.

PROPOSITION 15. The antipode of H(C) is bijective if and only if the antipode of $H(C_0)$ is bijective.

PROOF. Let A be an algebra. We have shown that the natural algebra map: $\operatorname{Hom}(C, A) \to \operatorname{Hom}(C_0, A)$ induces a surjection: $\operatorname{Reg}(C, A) \to \operatorname{Reg}(C_0, A)$, where $\operatorname{Reg}(C, A)$ is the group of units in $\operatorname{Hom}(C, A)$. It follows that the natural map: $L(C, A) \to L(C_0, A)$ is surjective.

Suppose the antipode of H(C) is bijective. Let $(f_i)_{i\geq 0}$ be an element of $L(C_0, A)$. There exists an element $(g_i)_{i\geq 0}$ of L(C, A) such that $g_i|_{C_0}=f_i$. Since g_0 is invertible in $\text{Hom }(C^{op}, A)$, f_0 is invertible in $\text{Hom }(C^{op}, A)$. Therefore the antipode of $H(C_0)$ is bijective. The converse is similarly proved.

LEMMA 16. Let $C = \sum C_{\alpha}$ be a direct sum of coalgebras. Then the antipode of H(C) is bijective if and only if the antipode of $H(C_{\alpha})$ is bijective for any α . PROOF. For any algebra A, we have

Hom
$$(C, A) \approx \prod \text{Hom } (C_{\alpha}, A)$$
 as algebras,

from which it follows that $L(C, A) \approx \prod L(C_{\alpha}, A)$. The lemma follows immediately from Corollary 7, if we notice that L(C, A) is non-empty. Indeed the algebra map $\eta \circ \varepsilon : H(C) \to A$ belongs to L(C, A).

PROPOSITION 17. The antipode of H(C) is bijective if and only if the antipode of H(R) is bijective for any simple subcoalgebra R of C.

PROOF.
$$C_0 = \sum R$$
.

§ 5. Main results

Let \bar{k} be the algebraic closure of k.

THEOREM 18. Let C be a coalgebra over k. The antipode of H(C) is bijective if and only if the \bar{k} -coalgebra $\bar{k} \otimes C$ is pointed.

PROOF. Let S be the antipode of H(C). S is bijective if and only if $\bar{k} \otimes S$ is bijective. But then $\bar{k} \otimes S$ is the antipode of $\bar{k} \otimes H(C) \approx H_{\bar{k}}(\bar{k} \otimes C)$. Hence $\bar{k} \otimes S$ is bijective if and only if the antipode of $H_{\bar{k}}(R)$ is bijective for any simple subcoalgebra R of $\bar{k} \otimes C$. But then R^* is a finite dimensional simple algebra over \bar{k} . So R^* is of the form $M_n(\bar{k})$. If n > 1, then the antipode of $H_{\bar{k}}(R)$ is not bijective. If n = 1, then R is cocommutative and so is $H_{\bar{k}}(R)$. Therefore the antipode of $H_{\bar{k}}(R)$ is bijective. Henceforth the antipode of H(C) is bijective if and only if all simple subcoalgebras of $\bar{k} \otimes C$ are 1-dimensional, i. e. $\bar{k} \otimes C$ is pointed.

DEFINITION 19. A coalgebra C is said to be separable if R^* is a separable algebra in the sense of [2, p. 90] for any simple subcoalgebra R of C.

COROLLARY 20. Let C be a separable coalgebra. Then the antipode of H(C) is bijective if and only if the coradical of C is cocommutative.

PROOF. By Proposition 17, we may assume C is simple. Because C^* is a separable algebra, $\bar{k} \otimes C^*$ has no radical. So the coradical of $\bar{k} \otimes C$ is $\bar{k} \otimes C$ itself. Therefore $\bar{k} \otimes C$ is pointed if and only if $\bar{k} \otimes C$ is cocommutative.

COROLLARY 21. If k is a perfect field, then the antipode of H(C) is bijective if and only if the coradical of C is cocommutative.

COROLLARY 22. If D is a finite dimensional central simple algebra, the antipode of $H(D^*)$ is bijective if and only if D=k.

Chapter III. The algebra structure of H(C)

In this chapter we consider the algebra structure of H(C) and give a k-basis of H(C) for some special C.

§ 6. The fundamental theorem

Let C and D be coalgebras, A be an algebra and H be a bialgebra over k. LEMMA 23. If $f \in \text{Hom}(C, A)$ and $g \in \text{Hom}(D, A)$ are invertible, then the $map: x \otimes y \mapsto f(x)g(y)$ is invertible in $\text{Hom}(C \otimes D, A)$.

PROOF. $x \otimes y \mapsto g^{-1}(y) f^{-1}(x)$ is an inverse.

COROLLARY 24. If $f \in \text{Hom}(C, A)$ is invertible, then the algebra map $\bar{f}: T(C) \to A$ induced by f is invertible.

PROOF. We have $T(C) = \sum_{n=0}^{\infty} {n \choose n} C$ as a coalgebra.

and

LEMMA 25. If $f \in Alg(H, A)$ is invertible in Hom(H, A), then the inverse f^{-1} belongs to $Alg(H, A^{op})$.

The proof is similar to that of [5, Proposition 4.0.1].

Let C be a coalgebra with coradical C_0 . Put

$$C = C_0 \oplus V$$

in the category of k-vector spaces. Let $B = T(V) \coprod H(C_0)$ be the direct sum of T(V) and $H(C_0)$ in the category of k-algebras. Let $i: C \to B$ be the linear map induced by $V \to T(V) \to B$ and $C_0 \to H(C_0) \to B$.

LEMMA 26. There exists a unique coalgebra structure on B such that B is a bialgebra and that $i: C \rightarrow B$ is a coalgebra map.

PROOF. By the definition of direct sums, we have

$$\operatorname{Alg}(T(V)\coprod H(C_0), A) \approx \operatorname{Hom}(V, A) \times \operatorname{Alg}(H(C_0), A),$$

for any algebra A. Let $\Delta \in Alg(B, B \otimes B)$ and $\varepsilon \in Alg(B, k)$ be defined by

$$((i \otimes i) \circ (\Delta \mid V), \ (j \otimes j) \circ \Delta) \in \operatorname{Hom}(V, B \otimes B) \times \operatorname{Alg}(H(C_0), B \otimes B)$$
$$(\varepsilon \mid V, \varepsilon) \in \operatorname{Hom}(V, k) \times \operatorname{Alg}(H(C_0), k)$$

respectively, where $j: H(C_0) \to B$ is the canonical map. Then it is easy to see that (Δ, ε) is the unique coalgebra structure on B which satisfies the condition in Lemma 26.

LEMMA 27. The bialgebra B has an antipode.

PROOF. Consider the following commutative diagram

$$\begin{array}{ccc}
C & \xrightarrow{i} & B \\
\uparrow & & \uparrow j \\
C_0 & \xrightarrow{H(C_0)} & H(C_0)
\end{array}$$

Because j is invertible and $C_0 \to H(C_0)$ is a coalgebra map, i is invertible. So the algebra map $\bar{i}: T(C) \to B$ induced by i is invertible. Let P and Q be the inverse of \bar{i} and j respectively. Then the diagram:

$$T(C) \xrightarrow{P} B^{op}$$

$$\uparrow \qquad \qquad \uparrow Q$$

$$C_0 \xrightarrow{} H(C_0)$$

commutes and P and Q are algebra maps. Let $S \in \text{Alg}(B, B^{op})$ be defined by $(P|T(V), Q) \in \text{Alg}(T(V), B^{op}) \times \text{Alg}(H(C_0), B^{op})$. Then we have $S \circ \overline{i} = P$ and $S \circ j = Q$. Put

$$M = \operatorname{Ker} (1 * S - \eta \circ \varepsilon) \cap \operatorname{Ker} (S * 1 - \eta \circ \varepsilon)$$
.

Since $S: B \to B^{op}$ is an algebra map, M is a subalgebra of B. If we notice that \bar{i} and j are also coalgebra maps, the equalities $S \circ \bar{i} = P$ and $S \circ j = Q$ mean that M contains the images of \bar{i} and j. A fortiori M contains the image of $T(V) \to B$. So the identity $1_B: B \to B$ is factorized by $M \to B$. Hence we have M = B. Therefore S is an antipode of B.

LEMMA 28. For any Hopf algebra H

$$\operatorname{Hom}(i, H) : \operatorname{Hopf}(B, H) \longrightarrow \operatorname{Coalg}(C, H)$$

is a bijection.

PROOF. It is clear from the definition.

PROPOSITION 29. Let C be a coalgebra with coradical C_0 . Write $C = C_0 \oplus V$ as a vector space. Let $T(V) \coprod H(C_0)$ be the direct sum in the category of algebras. Then the element of $Alg(T(V) \coprod H(C_0), H(C))$ determined by

$$(i|V, i|C_0) \in \text{Hom}(V, H(C)) \times \text{Coalg}(C_0, H(C))$$

is an algebra isomorphism, where $i: C \rightarrow H(C)$ is the canonical coalgebra map.

LEMMA 30. Let (H_{α}) be a family of bialgebras. Let $\coprod H_{\alpha}$ be the direct sum as algebras.

- (1) $\coprod H_{\alpha}$ has a unique coalgebra structure such that it becomes a bialgebra and that the natural maps $H_{\alpha} \rightarrow \coprod H_{\alpha}$ are all bialgebra maps.
 - (2) Then $\coprod H_{\alpha}$ is the direct sum of (H_{α}) in the category of bialgebras.
 - (3) If each H_{α} has an antipode, then $\coprod H_{\alpha}$ has an antipode.

PROPOSITION 31. Let $C = \sum C_{\alpha}$ be a direct sum of coalgebras. $\coprod H(C_{\alpha})$ has a natural Hopf algebra structure. Let $i: C \to \coprod H(C_{\alpha})$ be the coalgebra map determined by the natural maps: $C_{\alpha} \to H(C_{\alpha}) \to \coprod H(C_{\alpha})$. Then $(\coprod H(C_{\alpha}), i)$ is the free Hopf algebra generated by C.

PROOF. It is clear.

THEOREM 32. Let (R_{α}) be the set of all simple subcoalgebras of C. Write $C = V \oplus (\sum R_{\alpha})$ as a vector space. Let $(\coprod H(R_{\alpha})) \coprod T(V)$ be the direct sum in the category of algebras. Then the element of $\operatorname{Alg}((\coprod H(R_{\alpha})) \coprod T(V), H(C))$ determined by $(i|R_{\alpha}) \in \operatorname{Coalg}(R_{\alpha}, H(C))$ and $(i|V) \in \operatorname{Hom}(V, H(C))$ is an algebra isomorphism, where $i: C \to H(C)$ is the canonical coalgebra map.

COMMENT 33. The coalgebra structure of H(C) is determined by that of C and the algebra structure of H(C) in view of Corollary 6. If we are concerned with the algebra structure of H(C), it suffices to consider the case C is simple. If furthermore C is cocommutative, then C^* is a finite field extension of k. In the following two sections we study this case. The general case is an open problem.

\S 7. Case C is pointed

Let C be a coalgebra and G(C) be the set of grouplike elements of C. Then kG(C) is a subcoalgebra of C. Let $\langle G(C) \rangle$ be the free group generated by G(C). Then the group algebra $k[\langle G(C) \rangle]$ has a natural Hopf algebra structure. It is easy to see the natural map: $kG(C) \rightarrow k[\langle G(C) \rangle]$ satisfies the universal property for free Hopf algebras. So we have

LEMMA 34. $H(kG(C)) = k[\langle G(C) \rangle]$.

THEOREM 35. Let C be a pointed coalgebra. Let $G(C) \cup B$ be a k-basis for C. Put $X = (G(C) \times \{\pm 1\}) \cup B$. Let Y be the set of finite sequences (x_1, \dots, x_n) of elements of X and of length ≥ 0 such that (x_i, x_{i+1}) is not of the form $((g, \pm 1), (g, \mp 1))$. We put

$$i(g, \pm 1) = i(g)^{\pm 1}$$
 for $g \in G(C)$
 $\bar{x} = i(x_1) \cdots i(x_n)$ for $x = (x_1, \dots, x_n) \in Y$,

where $i: C \to H(C)$ is the canonical map. Then $\{\bar{x}; x \in Y\}$ forms a k-basis for H(C).

PROOF. We have

$$H(C) = H(kG(C)) \coprod T(kB)$$
$$= k [\langle G(C) \rangle] \coprod T(kB)$$

as algebras. It is well known that $k[\langle G(C)\rangle]\coprod T(kB)$ has such a k-basis as described in the theorem.

REMARK 36. A pointed bialgebra has an antipode if and only if its group-like elements are all invertible.

PROOF. This is an application of Lemma 14 and a generalization of [5, Proposition 9.2.5].

COMMENT 37. If C has a cocommutative coradical, then the \bar{k} -algebra $\bar{k} \otimes C$ is pointed. Indeed let $\{C_i\}_{i \geq 0}$ be the coradical filtration of C. Then $\{\bar{k} \otimes C_i\}_{i \geq 0}$ defines a filtered coalgebra structure on $\bar{k} \otimes C$. So $\bar{k} \otimes C_0$ contains the coradical of $\bar{k} \otimes C$ by [5, Proposition 11.1.1]. Because $\bar{k} \otimes C_0$ is cocommutative, the coradical of $\bar{k} \otimes C$ is cocommutative. Hence $\bar{k} \otimes C$ is pointed. So $\bar{k} \otimes H(C) \approx H_{\bar{k}}(\bar{k} \otimes C)$ has a \bar{k} -basis described in Theorem 35. From this point of view we study the structure of H(C) in the next section.

§ 8. A basis for H(C) for some C

We give a k-basis for H(C) and the multiplication table for coalgebras C which satisfy the following conditions:

(Z1) There is a finite field extension K/k with a k-galois Hopf algebra

H such that K is a free H-module of rank one.

- (Z2) There is a pointed k-coalgebra D and a K-coalgebra isomorphism $j: K \otimes C \approx K \otimes D$.
- (Z3) $K \otimes C$ is a left *H*-module by $h(x \otimes y) = hx \otimes y$ for $h \in H$, $x \in K$ and $y \in C$. Under the identification $j: K \otimes C \approx K \otimes D$, we have $HD \subset D$.

Let's recall the definition of galois Hopf algebras. Let K/k be a finite field extension and H be a pointed cocommutative Hopf algebra over k. H is said to be a k-galois Hopf algebra of K/k if K is a left H-module algebra over k such that

$$k = K^H$$

$$\dim_k(H) = [K:k].$$

First we consider what coalgebras satisfy the condition (Z). We are chiefly concerned with the case $C = K^*$, where K is a finite field extension of k.

PROPOSITION 38. Let K/k be a finite field extension which satisfies one of the following conditions. Then K^* satisfies (Z).

- (1) K/k is normal modular in the sense of [3].
- (2) K/k is separable.

PROOF. Case (1). K/k has a k-galois Hopf algebra H [1, p. 250].

LEMMA 39. If H is a k-galois Hopf algebra of K/k, the K-linear map:

$$K \otimes H \longrightarrow K \otimes K^*$$

induced by the H-module structure: $H \rightarrow \operatorname{End}(K) \approx K \otimes K^*$ is a K-coalgebra isomorphism.

PROOF. The module algebra structure on K is defined by a k-algebra map

$$K \longrightarrow \text{Hom}(H, K)$$
.

It is known [5, Theorem 10.1.1] that this induces a K-algebra isomorphism

$$K \otimes K \approx \operatorname{Hom}_{K}(K \otimes H, K)$$
.

If we apply the functor $\operatorname{Hom}_K(-, K)$, we get the K-coalgebra isomorphism in the lemma.

LEMMA 40. $K \otimes H$ and $K \otimes K^*$ are left H-modules by

$$h(a \otimes g) = \sum h_{(1)} a \otimes h_{(2)} g$$

$$h(a \otimes b^*) = ha \otimes b^*$$
,

for $g, h \in H$, $a \in K$ and $b^* \in K^*$. Then the isomorphism

$$K \otimes H \approx K \otimes K^*$$

defined in Lemma 39 is H-linear.

Proof. It is easy.

By the above two lemmas, the conditions (Z2) and (Z3) are satisfied. Now by the hypothesis K is of the form

$$K_0 \otimes K_1 \otimes \cdots \otimes K_n$$
,

where K_0/k is a finite galois extension with group G and $K_i = k \lceil x_i \rceil$ is purely inseparable over k. If H_i is a k-galois Hopf algebra of K_i/k , then $H_0 \otimes H_1 \otimes \cdots \otimes H_n$ is a k-galois Hopf algebra of K/k. If K_i is a free H_i -module of rank one, then K is a free $H_0 \otimes \cdots \otimes H_n$ -module of rank one. The following lemma completes the proof of Proposition 38 in case (1).

LEMMA 41. If K/k is a finite galois extension with group G or purely inseparable with one generator x, then K/k has a k-galois Hopf algebra H such that K is a free H-module of rank one.

PROOF. If K/k is galois, we can take $H = k \lceil G \rceil$. Then a normal basis of K/k is a basis of K over H. Suppose k is of characteristic p > 0 and $K = k \lceil x \rceil$ is purely inseparable over k. Let $X^{p^n} - a$ be the minimal polynomial of x. We may assume n > 0. By $\lceil 1$, p. 251 \rceil K/k has the following k-galois Hopf algebra:

$$H = ky_0 + \cdots + ky_{p^{n-1}}$$

$$\Delta(y_m) = \sum y_i \otimes y_{m-i}$$

$$\varepsilon(y_m) = \delta_{0m}$$

$$y_i y_j = {i+j \choose i} y_{i+j}$$

$$y_0 = 1$$

$$y_0(x) = x, \quad y_1(x) = 1, \quad y_2(x) = \cdots = y_{p^{n-1}}(x) = 0.$$

Put $z=(x-1)^{-1}$. If we apply y_m to (x-1)z=1, then we have

$$(x-1)y_m(z)+y_{m-1}(z)=0$$
.

It follows $y_m(z) = (-1)^m (x-1)^{-m-1}$. Hence $\{y_m(z)\}$ are linearly independent over k. Thus z is a basis of K over H.

PROOF OF PROPOSITION 38 (continued). Case (2). Let K/k be a finite separable extension. Let L/k be a finite galois extension with group G which contains K. $L \otimes K^*$ is an L-coalgebra. Then

LEMMA 42. $G(L \otimes K^*) = \text{Alg}_k(K, L)$.

PROOF. $G(L \otimes K^*) = G(\operatorname{Hom}_L(L \otimes K, L)) = \operatorname{Alg}_L(L \otimes K, L) = \operatorname{Alg}_k(K, L)$.

LEMMA 43. For any $g \in G$ the diagram

$$L \otimes K^* \supset \operatorname{Alg}(K, L)$$

$$\downarrow g \otimes 1 \qquad \downarrow \operatorname{Alg}(K, g)$$

$$L \otimes K^* \supset \operatorname{Alg}(K, L)$$

commutes.

If we notice that $L \otimes K^* = L \cdot \text{Alg}(K, L)$ (: [K: k] = # Alg(K, L)), the proof of Proposition 38 is complete in case (2) by the existence of a normal basis for L/k.

Let C be a coalgebra which satisfies (Z). Let K, H, D and j be as in (Z). In particular D is a left H-module.

LEMMA 44. The action $H \otimes D \rightarrow D$ is a k-coalgebra map.

PROOF. If M and N are left K # H-modules, then $M \underset{K}{\bigotimes} N$ is a left K # H-module by

$$h(m \otimes n) = \sum h_{(1)}(m) \otimes h_{(2)}(n)$$

for $h \in H$, $m \in M$ and $n \in N$, by the cocommutativity of H. Now $K \otimes C$ is a left K # H-module and the maps

$$\Delta: K \otimes C \longrightarrow (K \otimes C) \underset{K}{\otimes} (K \otimes C)$$

$$\varepsilon: K \otimes C \longrightarrow K$$

are K # H-linear. Since $j: K \otimes C \approx K \otimes D$ is a K # H-module isomorphism and commutes with Δ and ε , the maps

$$\Delta: K \otimes D \longrightarrow (K \otimes D) \underset{K}{\otimes} (K \otimes D)$$
$$\varepsilon: K \otimes D \longrightarrow K$$

are also K # H-linear. This means that the maps

$$\Delta: D \longrightarrow D \otimes D$$
$$\varepsilon: D \longrightarrow k$$

are H-linear. This is equivalent to Lemma 44.

Lemma 45. Let E and F be coalgebras and A be an algebra over k. The natural isomorphism

$$\operatorname{Hom}(E \otimes F, A) \approx \operatorname{Hom}(F, \operatorname{Hom}(E, A))$$

is a k-algebra isomorphism. If E is cocommutative, then

$$\text{Hom } (E, A)^{op} = \text{Hom } (E, A^{op}),$$

and we can identify

$$L(E \otimes F, A) \approx L(F, \text{Hom } (E, A))$$
.

PROOF. It is trivial.

LEMMA 46. H(D) has a unique left H-module algebra structure such that

 $i: D \rightarrow H(D)$ is H-linear.

PROOF. Since H is cocommutative, we have natural isomorphisms

Alg
$$(H(D), \text{ Hom } (H, H(D))) \approx L(D, \text{ Hom } (H, H(D)))$$

$$\approx L(H \otimes D, H(D))$$

$$\approx \text{Alg } (H(H \otimes D), H(D)).$$

The coalgebra map $H \otimes D \to D$ in Lemma 44 induces a bialgebra map $H(H \otimes D) \to H(D)$. This can be identified with a k-algebra map $p: H(D) \to H(D) \to H(D)$. p is a unique algebra map which makes the following diagram commutative

$$H(D) \xrightarrow{p} \operatorname{Hom} (H, H(D))$$

$$\uparrow i \qquad \uparrow \operatorname{Hom} (H, i)$$

$$D \xrightarrow{q} \operatorname{Hom} (H, D),$$

where q is the H-module action on D. By the uniqueness it is clear that p defines an H-module structure on H(D).

Define the action of H on $K \otimes H(C)$ and $K \otimes H(D)$ as

$$h(a \otimes x) = ha \otimes x$$

$$h(a \otimes y) = \sum h_{(1)} a \otimes h_{(2)} y$$

for $h \in H$, $a \in K$, $x \in H(C)$ and $y \in H(D)$. $K \otimes H(C)$ and $K \otimes H(D)$ clearly become $K \sharp H$ -modules and H-module algebras over k.

LEMMA 47. The K-coalgebra isomorphism

$$K \otimes H(C) \approx H_K(K \otimes C) \overset{H_K(j)}{\approx} H_K(K \otimes D) \approx K \otimes H(D)$$

commutes with the action of H.

PROOF. Let A be a K-algebra. Hom (H, A) is a k-algebra. If we define

$$(af)(h) = \sum h_{(1)}(a) f(h_{(2)})$$

for $a \in K$, $f \in \operatorname{Hom}(H, A)$ and $h \in H$, then $\operatorname{Hom}(H, A)$ becomes a K-algebra, by the cocommutativity of H. Suppose A has a left H-module algebra structure with $p:A \to \operatorname{Hom}(H,A)$ its structure map. Then p is a K-algebra map if and only if A is a K # H-module. Now $K \otimes H(C)$ and $K \otimes H(D)$ are K-algebras and H-module algebras over k such that they are K # H-modules. Hence their H-module algebra structure maps are K-algebra maps. Thus the commutativity of the diagram

follows immediately from Corollaries 5 and 8 and the assumption (Z3).

COROLLARY 48. We have $H(C) \approx (K \otimes H(D))^H$ as k-algebras. K is a left H-module. So K^* is a right H-module. If we put

$$hx^* = x^*S(h)$$

for $h \in H$ and $x^* \in K^*$, where S is the antipode of H, then K^* is a left H-module.

LEMMA 49. (1) Under the natural k-algebra isomorphism

$$K \otimes H(D) \approx \text{Hom}(K^*, H(D))$$
,

 $(K \otimes H(D))^H$ corresponds to $Hom_H(K^*, H(D))$.

(2) K^* is a free H-module of rank one.

PROOF. (1) f belongs to Hom $(K^*, H(D))^H$ if and only if

$$\sum h_{(2)} \circ f \circ S(h_{(1)}) = \varepsilon(h) f$$

for any $h \in H$. This is equivalent to $h \circ f = f \circ h$.

(2) We have $K \approx H$ as left H-modules. So we have $K^* \approx H^*$ as right H-modules. But H^* is a free H-module of rank one [5, Lemma 16.0.1].

COROLLARY 50. Hom_H(K^* , H(D)) is a subalgebra of the k-algebra Hom(K^* , H(D)) and we have

$$H(C) \approx \operatorname{Hom}_{H}(K^*, H(D))$$

as k-algebras.

THEOREM 51. Let C be a coalgebra which satisfies (Z). Let D, K, H and f be as in (f). Let f0 be a basis of f1 over f1. Put

$$\Delta(a^*) = \sum_i g_i(a^*) \otimes h_i(a^*)$$
,

where g_i and h_i are some elements of H. Then there exists an isomorphism of k-vector spaces

$$P: H(C) \approx H(D)$$

such that we have

$$P(xy) = \sum_{i} g_i(P(x))h_i(P(y))$$

$$P(1) = \varepsilon(a^*)1$$

for $x, y \in H(C)$.

PROOF. It suffices to put

$$P(x) = x(a^*)$$

for $x \in H(C) \approx \operatorname{Hom}_H(K^*, H(D))$

COMMENT 52. A k-basis for H(D) is given in Theorem 35. So Theorem 51 gives a multiplication table for H(C).

Chapter IV. Free commutative Hopf algebras

First we notice a role of norms in the theory of commutative bialgebras. Then we construct the free commutative Hopf algebra generated by a coalgebra by a quite different method from that of the preceding chapters.

§ 9. A role of norms

Let A be a fixed finite dimensional algebra over k. For any commutative algebra B let

$$N_B:A\otimes B\longrightarrow B$$

be the norm function of the B-algebra $A \otimes B$ [2, p. 136].

LEMMA 53. (1) N_B is natural in B

(2) We have

$$N(xy) = N(x)N(y)$$

$$N(1) = 1$$

for $x, y \in A \otimes B$

- (3) $x \in A \otimes B$ is invertible if and only if $N(x) \in B$ is invertible.
- (4) Let B and B' be two commutative algebras. We define

$$t: (A \otimes B) \otimes (A \otimes B') \longrightarrow A \otimes (B \otimes B')$$

$$(x \otimes a) \otimes (y \otimes b) \longmapsto xy \otimes (a \otimes b)$$
.

Then we have

$$N_B(u) \otimes N_{B'}(v) = N_{B \otimes B'}(t(u \otimes v))$$

for any $u \in A \otimes B$ and $v \in A \otimes B'$.

PROOF. (1) N_B can be factorized as

$$A \otimes B \longrightarrow \operatorname{End}(A) \otimes B \approx M_n(B) \stackrel{\operatorname{det}}{\longrightarrow} B$$
.

These are natural maps. (2) and (3) are classical.

(4) Write

$$u = \sum x_i \otimes a_i$$
 and $v = \sum y_i \otimes b_i$.

Then we have

$$t(u \otimes v) = \sum x_i y_j \otimes a_i \otimes b_j$$

$$= (\sum x_i \otimes a_i \otimes 1)(\sum y_j \otimes 1 \otimes b_j)$$

$$N(t(u \otimes v)) = (N(u) \otimes 1)(1 \otimes N(v))$$

$$= N(u) \otimes N(v).$$

Let X be a subset of a commutative algebra B. The ring of quotients of B with respect to the multiplicatively closed subset of B generated by X

is denoted by $B[X^{-1}]$.

LEMMA 54. Let H be a commutative bialgebra. Let X be a subset of H consisting of grouplike elements. Then the ring of quotients $H[X^{-1}]$ has a unique coalgebra structure such that $H[X^{-1}]$ is a bialgebra and that the natural map $H \rightarrow H[X^{-1}]$ is a bialgebra map.

PROOF. It is clear from the universal property for $H[X^{-1}]$. In the following we shall identify

$$A \otimes B = \text{Hom}(A^*, B)$$

as k-algebras.

PROPOSITION 55. Let H be a commutative bialgebra. If $f \in A \otimes H = \text{Hom } (A^*, H)$ is a coalgebra map, then the norm $N_H(f) \in H$ is a grouplike element. Hence $H[N(f)^{-1}]$ is a bialgebra. The coalgebra map $f: A^* \to H[N(f)^{-1}]$ is invertible.

PROOF. $\Delta \circ f = (f \otimes f) \circ \Delta$ is equivalent to

$$(1 \otimes \Delta)(f) = t(f \otimes f),$$

where $t: (A \otimes H) \otimes (A \otimes H) \rightarrow A \otimes (H \otimes H)$ is defined in Lemma 53 (4). So we have

$$N(f) \otimes N(f) = N(t(f \otimes f)) = \Delta(N(f))$$
,

by Lemma 53 (1) and (4). Now $\varepsilon \circ f = \varepsilon$ is equivalent to

$$(1 \otimes \varepsilon)(f) = 1$$
.

Hence we have $1 = N(1) = \varepsilon(N(f))$. Thus N(f) is grouplike. The element f of $A \otimes H[N(f)^{-1}]$ is invertible because N(f) is invertible in $H[N(f)^{-1}]$ (Lemma 53 (3)). This completes the proof.

§ 10. An interpretation of $G(S(A^*))$

Let A be a finite dimensional algebra. The symmetric algebra $S(A^*)$ has a natural bialgebra structure. There is a bijection from the set of grouplike elements $G(S(A^*))$ onto the set of norm functions on A.

DEFINITION 56. N is said to be a norm function on A if it satisfies the following conditions.

(1) For any commutative algebra B a function

$$N_B:A\otimes B\longrightarrow B$$

is defined.

(2) We have

$$N_B(xy) = N_B(x)N_B(y)$$
 and $N_B(1) = 1$

for $x, y \in A \otimes B$

(3) N_B is natural in B.

The set of all norm functions on A is denoted by NF(A).

LEMMA 57. Let N be a norm function on A. Let B and B' be two commutative algebras. Let $t: (A \otimes B) \otimes (A \otimes B') \to A \otimes (B \otimes B')$ be defined as in Lemma 53 (4). Then we have

$$N_{B\otimes B'}(t(x\otimes y)) = N_B(x)\otimes N_{B'}(y)$$

for any $x \in A \otimes B$ and $y \in A \otimes B'$.

LEMMA 58. Let H be a commutative bialgebra. If

$$f \in A \otimes H = \text{Hom } (A^*, H)$$

is a coalgebra map, then N(f) is a grouplike element of H for any norm function N on A.

The proofs are similar to those of Lemma 53 and Proposition 55. Let

$$i \in A \otimes S(A^*) = \text{Hom}(A^*, S(A^*))$$

be the natural injection. This is a coalgebra map. So N(i) is a grouplike element of $S(A^*)$ for any norm function N on A.

PROPOSITION 59. The map $N \mapsto N(i)$ is a bijection from NF(A) onto $G(S(A^*))$.

PROOF. Let g be a grouplike element of $S(A^*)$. For any commutative algebra B, we have

$$A \otimes B = \text{Hom}(A^*, B) = \text{Alg}(S(A^*), B)$$
.

Under this identification put

$$N_g: A \otimes B \longrightarrow B$$

$$f \longmapsto f(g).$$

 N_g is clearly natural in B. Since $i: A^* \to S(A^*)$ is a coalgebra map, this induces an algebra map

$$\operatorname{Hom}(A^*, B) \longleftarrow \operatorname{Hom}(S(A^*), B)$$
.

Hence we have

$$N_{g}(xy) = x * y(g) = x(g)y(g) = N_{g}(x)N_{g}(y)$$

$$N_{\mathfrak{g}}(1) = \varepsilon(g) = 1$$

for $x, y \in A \otimes B$. So N_g is a norm function. $g \mapsto N_g$ is clearly the inverse of $N \mapsto N(i)$.

REMARK 60. In the following two sections we only use the special norm function given in § 9.

§ 11. Free commutative Hopf algebras

Let S(V) be the symmetric algebra on a vector space V. If C is a coalgebra, then S(C) has a natural bialgebra structure. For any finite dimensional subcoalgebra D of C, we shall associate with it a grouplike element of S(C). Since D^* is a finite dimensional algebra and S(C) is a commutative algebra, we can define the norm function

$$N: D^* \otimes S(C) \longrightarrow S(C)$$

as in § 9. Let $i: D \to S(C)$ be the natural injection. Then by Proposition 55, g(D) = N(i) is a grouplike element of S(C) and the natural map

$$D \longrightarrow S(C) \lceil g(D)^{-1} \rceil$$

is invertible.

THEOREM 61. Let C be a coalgebra. Let $\{D_{\alpha}\}$ be a family of finite dimensional subcoalgebras such that $\sum D_{\alpha}$ contains the coradical of C. Let X be a set of grouplike elements of S(C) which contains $g(D_{\alpha})$ for any α . Then

- (1) $S(C)[X^{-1}]$ has an antipode and
- (2) For any commutative Hopf algebra H, we have

Hopf
$$(S(C)[X^{-1}], H) \approx \text{Coalg}(C, H)$$
.

PROOF. Let R be a simple subcoalgebra of C. Then R is contained in some D_{α} [5, Proposition 8.0.3]. Hence the canonical map $R \to S(C)[X^{-1}]$ is invertible because it is factorized by the invertible map $D_{\alpha} \to S(C)[X^{-1}]$. By Lemma 14, the natural map $i: C \to S(C)[X^{-1}]$ is invertible and so is the algebra map $\overline{i}: T(C) \to S(C)[X^{-1}]$ induced by i. But the inverse of \overline{i} , which is also an algebra map, is factorized by $T(C) \to S(C)$. Hence the natural map $f: S(C) \to S(C)[X^{-1}]$ has an inverse F which is an algebra map. Then it is clear that

$$P(x) = x^{-1}$$

for $x \in X$. Therefore P induces an algebra map from $S(C)[X^{-1}]$ to $S(C)[X^{-1}]$ which is clearly an antipode of $S(C)[X^{-1}]$. (2) is clear by the definition.

DEFINITION 62. The free commutative Hopf algebra $H_c(C)$ generated by a coalgebra C is defined by the universal property (2) in Theorem 61.

COROLLARY 63. Let C be a coalgebra. Let $\{R_{\alpha}\}$ be the family of all simple subcoalgebras. Then we have

$$H_c(C) = S(C)[g(R_\alpha)^{-1}; \alpha].$$

COROLLARY 64. If C has a finite dimensional coradical Co, then we have

$$H_c(C) = S(C)[g(C_0)^{-1}].$$

§ 12. An application

Let H be a commutative bialgebra. For any finite dimensional subcoalgebra D of H let g(D) be the norm of the natural injection $D \rightarrow H$, which is viewed as an element of the H-algebra $D^* \otimes H$. Then g(D) is a grouplike element of H and the natural map

$$D \longrightarrow H[g(D)^{-1}]$$

is invertible. Just as in the preceding section we have

Theorem 65. Let H be a commutative bialgebra over k. Let $\{D_{\alpha}\}$ be a family of finite dimensional subcoalgebras of H such that $\sum D_{\alpha}$ contains the coradical of H. Let X be a set of grouplike elements of H which contains $g(D_{\alpha})$ for any α . Then

- (1) $H[X^{-1}]$ has an antipode and
- (2) For any commutative Hopf algebra H', we have

Hopf
$$(H[X^{-1}], H') \approx \text{Bialg } (H, H')$$
.

DEFINITION 66. The free commutative Hopf algebra $HP_c(H)$ generated by a commutative bialgebra H is defined by the universal property (2).

COROLLARY 67. Let $\{R_{\alpha}\}$ be the family of all simple subcoalgebras of a commutative bialgebra H. Then we have

$$HP_c(H) = H \lceil g(R_{\alpha})^{-1}; \alpha \rceil.$$

COROLLARY 68. If a commutative bialgebra H has a finite dimensional coradical H_0 , then we have

$$HP_c(H) = H \lceil g(H_0)^{-1} \rceil$$
.

COROLLARY 69. A commutative bialgebra H has an antipode if and only if its grouplike elements are all invertible.

The last corollary is a generalization of [5, 9.2.5] in the category of commutative algebras.

University of Tokyo

References

- [1] H.P. Allen and M.E. Sweedler, A theory of linear descent based upon Hopf algebraic techniques, J. Algebra, 12 (1969), 242-294.
- [2] N. Bourbaki, Algèbre, Chap. VIII, Herman, Paris, 1958.
- [3] M.E. Sweedler, Structure of inseparable extensions, Ann. of Math., 87 (1968), 401-410.
- [4] M.E. Sweedler, The Hopf algebra of an algebra applied to field theory, J. Algebra, 8 (1968), 262-275.
- [5] M.E. Sweedler, Hopf algebras, Benjamin, New York, 1969.