POLUIÇÃO ATMOSFÉRICA

CONCEITOS CHAVE:

- ESPECTRO ELETROMAGNÉTICO
- VIBRAÇÕES MOLECULARES E RADIAÇÃO TÉRMICA
- RADIAÇÃO DE CORPO NEGRO

TÓPICOS EM QUÍMICA CONTEMPORÂNEA

MÓDULO 02: MUDANÇAS CLIMÁTICAS E AQUECIMENTO GLOBAL

EIXO: MEIO AMBIENTE

TÓPICOS EM QUÍMICA CONTEMPORÂNEA PROF. ZÉ HÉLCIO, ABRIL, 2021

Conceito chave:

ESPECTRO ELETROMAGNÉTICO

rais cosmicos Alta raids . X Média energia infravernelho microondas Bouxa energia

Espectro

Estrutura interna do núcleo

Movimento dos **elétrons** (transições eletrônicas)

Movimentos dos **núcleos** (transições vibracionais, rotacionais e translacionais)

3

Fenômeno envolvido na interação com a matéria, estudados neste curso:

Movimento dos **elétrons** (transições eletrônicas)

Movimentos dos **núcleos** (transições vibracionais, rotacionais e translacionais)

A RADIAÇÃO ATMOSFÉRICA E O ESPECTRO ELETROMAGNÉTICO

Conceito chave:

VIBRAÇÕES MOLECULARES E RADIAÇÃO TÉRMICA

RADIAÇÃO TÉRMICA:

Radiação térmica corresponde à faixa do espectro infravermelho térmico.

Na interação da superfície e da atmosfera da Terra com a radiação do Sol, a parcela de radiação emitida pela superfície do planeta corresponde ao infravermelho térmico.

Região que vai de 5 a 50 μm

Obs: 1 micrometro

 $1 \mu m = 10^{-6} m = 10^{-3} nm$

O que faz uma molécula ser ativa no infravermelho?

- Quando o há variação no tempo do seu momento de dipolo, a molécula é capaz de absorver no IV.
- Moléculas polares são ativas no IV. Moléculas pequenas e polares, comuns na atmosfera são ativas no IV, em particular espécies diatômicas heteroatômicas (CO, NO, OH, etc.) e poliatômicas (H₂O, N₂O, CFC, HFC, H₂S, etc.).
- Moléculas apolares com três átomos ou mais em geral são ativas no IV, como o CO_2 e o CH_4 , pois alguns de seus modos de vibração possuem dipolos variantes no tempo.

Para entender o que significa **momento de dipolo elétrico**, consulte a seção de conceito chave sobre **estrutura molecular e eletrônica**, com a revisão de **ligação química** covalente e estruturas de Lewis.

Modos vibracionais moleculares

$$3N - 5$$

N° de modes

3N-6 para moléculas não lineares.

3N-5 para moléculas lineares.

onde "N" é o n° de dismos da molécula.

Exemplos:

$$H_2O \Rightarrow N=3/nas$$
 linear

Exemplos:

$$H_{20} \Rightarrow N=3 / \text{não linear}$$
 $\begin{cases} CO_2 \Rightarrow N=3 / \text{linear} \\ 3N-6=3\times3-6=3 \text{ modes}// \end{cases}$ $\begin{cases} 3N-5=3\times3-5=4 \text{ modes}// \end{cases}$

MODOS VIBRACIONAIS DA ÁGUA

MODO: Estiramento Simétrico

MODO: Estiramento Assimétrico

Ambos os estiramentos da água caem fora do IV térmico < <mark>5 μm</mark>

MODO: Deformação angular

Este é o modo que mais contribui para o IV térmico

MODOS VIBRACIONAIS DO CO₂

Estiramento Simétrico

Estiramento antissimétrico

Deformação angular

FIGURE 5-6 The infrared absorption spectrum for carbon dioxide. The scale for wavelength is linear when expressed in wavenumbers, which have units of cm⁻¹; wavenumber = 10,000/wavelength in nm. [Source: Redrawn from A.T. Schwartz et al., Chemistry in Context: Applying Chemistry to Society, American Chemical Society (Dubuque, IA: Wm. C. Brown, 1994).]

Espectro IV do CO_2 : picos em **4,3 e 15** μ m.

Conceito chave:

RADIAÇÃO DE CORPO NEGRO

"Todo corpo aquecido acima de OK emite radiação eletromagnética continuamente, perdendo energia."

RADIAÇÃO DO CORPO NEGRO

Um aquecido emite radiação corpo eletromagnética.

Em temperaturas altas, uma apreciável fração dessa radiação está na região visível e a proporção de luz azul (menor λ) aumenta quando a temperatura se eleva.

CORPO NEGRO:

Emissor ideal que absorve e emite uniformemente em todas as frequências de radiação.

Lei de Wien (Séc. XIX)

Wien mediu o espectro de vários corpos aquecidos e observou o padrão das curvas acima. Descobriu a relação do λ_{max} com a temperatura:

$$\lambda_{\text{max}} = 2,897 / T$$

Exemplo:

Espectro do Sol e de uma lâmpada incandescente

Mas como explicar o formato da curva?

A teoria clássica não era capaz de explicar. Várias tentativas foram feitas por físicos teóricos, mas ninguém conseguiu...

Tudo indicava que uma teoria nova deveria ser criada...

ORIGENS DA TEORIA QUÂNTICA

Tudo começou em 1900, com Max Planck, quando tentava elucidar o fenômeno da radiação de corpo negro...

A energia da luz emitida dependia das frequências de vibração (v) dos corpos microscópicos constituntes do corpo negro. Planck supôs que estas só podiam assumir valores discretos (quantizados):

$$E = nh v$$
 com $n = 0, 1, 2,...$

h, uma constante fundamental, a constante de Planck.

Planck chegou a seguinte distribuição:

$$dE = \rho d\lambda \qquad \rho = \frac{8\pi hc}{\lambda^5 \left(e^{hc/\lambda kT} - 1\right)}$$

O valor de h é obtido do ajuste com os dados experimentais:

$$h = 6,626 \times 10^{-34} \,\mathrm{J} \,\mathrm{s}.$$

Distribuição de Planck

O mecanismo do efeito estufa (trecho do livro de Collin Baird, Química Ambiental, Cap. 5)

5.1 A Fonte de Energia da Terra

A superfície e a atmosfera da Terra são mantidas quentes quase exclusivamente pela energia do Sol, que irradia energia como luz de vários tipos. Em suas características de irradiação, o Sol se comporta como um "corpo negro", ou seja, um objeto que é 100% eficiente na emissão e absorção de luz. O comprimento de onda, $\lambda_{\rm max}$ (em micrômetros), no qual ocorre a máxima emissão de energia por um corpo negro radiante, diminui de maneira inversa com o aumento da temperatura T (em Kelvin) de acordo com a relação

$$\lambda_{\text{max}} = 2.897 / T$$
 Lei de Wien (Séc. XIX)

No caso da superfície do Sol, a partir da qual a estrela emite luz, a temperatura T é cerca de 5800 K. A partir da equação segue que λ_{max} é cerca de 0,50 μ m, um comprimento de onda que fica na região visível do espectro (luz verde). Na verdade, a produção solar máxima observada ocorre na faixa da luz visível, ou seja, nos comprimentos de onda entre 0,40 e 0,75 μ m.

O máximo do espectro de emissão do sol situa-se no verde!

Visite o site da **Química Nova Interativa** e explore as ferramentas de aprendizado sobre o efeito estufa

http://qnint.sbq.org.br/

Visite o site PhET (Univ. Colorado) e explore as ferramentas de aprendizado sobre radiação de corpo negro

http://phet.colorado.edu/

