

7 de abril de 2025

Universidad Nacional de Colombia

Oscar Guillermo Riaño Castañeda

Andrés David Cadena Simons acadenas@unal.edu.co

# Problema 1:

Sea  $(E,\|\cdot\|)$  un espacio vectorial normado. Defina

$$\mathcal{K} = \{ x \in E : ||x|| = 1 \}.$$

Demuestre que E es de Banach si y solamente si  $\mathcal K$  es completo.

## Solución:

## Problema 2:

Sea  $(E, \|\cdot\|_E)$ ,  $(F, \|\cdot\|_F)$  espacios vectoriales normados. Considere  $T: E \to F$  una transformación lineal. Muestre que las siguientes afirmaciones son equivalentes:

- (I) T es continua.
- (II) T es continua en cero.
- (III) T es acotada. Es decir, existe M > 0 tal que para todo  $x \in E$ ,

$$||Tx||_F \le M||x||_E.$$

(IV) Si  $\overline{B(0,1)} = \{x \in E : ||x|| \le 1\}$ , entonces la imagen directa  $T\left(\overline{B(0,1)}\right)$  es un conjunto acotado de F.

### Solución:

## Problema 3:

Demuestre que si  $T \in L(E, F)^1$ , entonces

- (I)  $||Tx||_F \le ||T|| ||x||_E$ , para todo  $x \in E$ .
- (II)  $||T|| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{||Tx||_f}{||x||_E}.$
- (III)  $||T|| = \sup_{\substack{x \in E \\ ||x||_E = 1}} ||Tx||_F.$
- $\text{(iv) } \|T\| = \inf\{M>0: \|Tx\|_F \leq M \|x\|_E, \text{ para todo } x \in E\}.$

### Solución:

 $<sup>^1</sup>$ Recuerde que L(E,F) denota el conjunto de operadores lineales de E en F. Dado  $T\in L(E,F)$  definimos la norma de T como  $\|T\|=\sup_{\substack{x\in E\\ \|x\|_E\leq 1}}\|Tx\|_F.$ 

## Problema 4:

Sean  $(E, \|\cdot\|_E)$ ,  $(F, \|\cdot\|_F)$  espacios vectoriales normales. Suponga que F es un espacio de Banach. Muestre que L(E, F) es un espacio de Banach con la norma usual de L(E, F). En particular,  $E^* = L(E, \mathbb{R}), E^{**} = L(E^*, \mathbb{R})$  son espacios de Banach.

### Solución:

## Problema 5:

Sean E y F espacios vectoriales normados. Suponga que E es de dimensión finita (F no necesariamente de dimensión finita).

- (I) Muestre que todas las normas asignadas a E son equivalentes<sup>2</sup>.
- (II) Muestre que toda transformación lineal  $T:E\to F$  es continua.
- (III) De un ejemplo donde se verifique que (II) puede ser falsa si E es de dimensión infinita.

## Solución:

<sup>&</sup>lt;sup>2</sup>Sean  $\|\cdot\|_1$  y  $\|\cdot\|_2$  dos normas sobre E. Recordemos que dos normas son equivalentes si existen constantes positivas  $c_1$  y  $c_2$ , tales que  $c_1\|x\|_1 \le \|x\|_2 \le c_2\|x\|_1$ , para todo  $x \in E$ .

## Problema 6:

Considere  $E = c_0$  donde

$$c_0 = \{u = \{u_n\}_{n \ge 1} : \text{ tales que } u_n \in \mathbb{R}, n \ge 1, \lim_{n \to \infty} u_n = 0\}.$$

Es decir,  $c_0$  es el conjunto de las secuencias reales que tienden a 0. Dotamos a este espacio con la norma  $\|u\|_{l^{\infty}} = \sup_{n \in \mathbb{Z}^+} |u_n|$ . Considere el funcional  $f : E \to \mathbb{R}$  dado por

$$f(u) = \sum_{n=1}^{\infty} \frac{1}{2^n} u_n.$$

- (I) Muestre que  $f \in E^*$  y calcule  $||f||_{E^*}$ .
- (II) ¿Es posible encontrar  $u \in E$  tal que ||u|| = 1 y  $f(u) = ||f||_{E^*}$ ?

#### Solución: