

Ruang Vektor Umum

Pertemuan ke 15 – 16

Diadopsi dari sumber:

Sub-CPMK

 Mahasiswa dapat melakukan operasi hitung menggunakan konsep ruang vektor umum (C3, A3)

Materi

- 1. Ruang vektor real
- 2. Subruang
- 3. Kebebasan linier
- 4. Basis dan dimensi
- 5. Koordinat relatif terhadap basis
- 6. Ruang baris, ruang kolom dan ruang null
- 7. Rank dan nulitas

1. Ruang Vektor Real

1.1. Aksioma Ruang Vektor (1)

- Andaikan V adalah himpunan tak kosong dengan operasi
 penjumlahan dan perkalian skalar. Penjumlahan disini adalah
 aturan yang menghubungkan setiap pasangan u, v ∈ V yang
 dinotasikan dengan u + v. Perkalian skalar adalah aturan yang
 menghubungkan setiap skalar k dengan setiap objek u ∈ V
 dengan notasi ku.
- Himpunan V disebut sebagai ruang vektor dan elemen dalan V disebut vektor, jika aksioma berikut dipenuhi oleh semua objek u, v, w ∈ V dan semua skalar k dan l.
 - 1. Jika \mathbf{u} dan $\mathbf{v} \in V$, maka $\mathbf{u} + \mathbf{v} \in V$
 - 2. u + v = v + u

1.1. Aksioma Ruang Vektor (2)

- 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- Terdapat elemen 0 ∈ V yang disebut vektor nol untuk V, sedemikian sehingga 0 + u = u + 0 = u untuk setiap u ∈ V.
- 5. Untuk setiap $\mathbf{u} \in V$, terdapat $-\mathbf{u} \in V$ yang disebut negatif dari \mathbf{u} , sedemikian sehingga $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = \mathbf{0}$.
- 6. Jika k adalah sembarang skalar dan $\mathbf{u} \in V$, maka $k\mathbf{u} \in V$.
- 7. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- 8. $(k+l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$
- 9. $k(l\mathbf{u}) = (kl)\mathbf{u}$
- 10. 1u = u

1.1. Aksioma Ruang Vektor (3)

Langkah untuk membuktikan suatu himpunan dengan operasi penjumlahan dan perkalian merupakan ruang vektor.

- **Langkah 1.** Identifikasi himpunan *V* yang berisi objek yang merupakan vektor.
- **Langkah 2.** Identifikasi operasi penjumlahan dan perkalian skalar pada *V*.
- Langkah 3. Buktikan untuk aksioma 1 dan 6; yakni penjumlahan dua vektor di V menghasilkan vektor di V, dan perkalian vektor di V dengan skalar menghasilkan vektor di V.
- Langkah 4. Buktikan bahwa aksioma 2, 3, 4, 5, 7, 8, 9 dan 10 berlaku.

Contoh 1.1. Andaikan V berisi satu objek, yang dinotasikan oleh **0**, dan didefinisikan

$$0 + 0 = 0 \text{ dan } k0 = 0$$

untuk semua skalar k. Semua aksioma ruang vektor dipenuhi oleh vektor tersebut. Ruang vektor ini disebut **ruang vektor nol**.

Contoh 1.2. Andaikan $V = \mathbb{R}^n$, dan didefinisikan operasi ruang vektor pada V sebagai operasi penjumlahan dan perkalian skalar

$$\mathbf{u} + \mathbf{v} = (u_1, ..., u_n) + (v_1, ..., v_n) = (u_1 + v_1, ..., u_n + v_n)$$
$$k\mathbf{u} = (ku_1, ku_2, ..., ku_n)$$

Dapat dibuktikan bahwa himpunan $V=\mathbb{R}^n$ memenuhi semua aksioma ruang vektor. Jadi \mathbb{R}^n merupakan ruang vektor.

1.2. Sifat-Sifat Vektor

Jika V adalah suatu ruang vektor, \mathbf{u} merupakan vektor di V dan k adalah suatu skalar, maka

- 1. $0\mathbf{u} = \mathbf{0}$
- 2. k0 = 0
- 3. $(-1)\mathbf{u} = -\mathbf{u}$
- 4. Jika $k\mathbf{u} = \mathbf{0}$, maka k = 0 atau $u = \mathbf{0}$

2. Subruang

2. Subruang

Jika W merupakan himpunan elemen-elemen ruang vektor V, maka W merupakan **subruang** dari V jika dan hanya jika memenuhi

- Jika \mathbf{u} dan $\mathbf{v} \in W$, maka $\mathbf{u} + \mathbf{v} \in W$
- Jika k adalah skalar dan $\mathbf{u} \in W$, maka $k\mathbf{u} \in W$

Contoh 2.1. Jika V sembarang ruang vektor dan $W = \{0\}$ adalah sub-himpunan dari V yang berisi vektor nol saja, maka W tertutup terhadap penjumlahan dan perkalian skalar karena

$$0 + 0 = 0 \text{ dan } k0 = 0$$

untuk semua skalar k. Sehingga W disebut **subruang nol** dari V.

2.1. Membentuk Subruang (1)

- Jika W₁, W₂, ..., W_r merupakan subruang dari ruang vektor V, maka irisan dari semua subruang tersebut juga merupakan subruang dari V.
- Pada materi sebelumnya diketahui definisi kombinasi linier di \mathbb{R}^n , berikut definisi untuk ruang vektor V:

Jika \mathbf{w} adalah vektor dalam ruang vektor V, maka \mathbf{w} merupakan **kombinasi linier** dari vektor-vektor $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r \in V$ jika \mathbf{w} dapat dituliskan sebagai

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r$$

dimana $k_1, k_2, ..., k_r$ adalah skalar. Skalar-skalar tersebut disebut **koefisien** dari kombinasi linier.

2.1. Membentuk Subruang (2)

- Jika S = {w₁, w₂, ..., w_r} adalah himpunan tak kosong vektorvektor di ruang vektor V, maka:
 - a) Himpunan W yang berisi demua kombinasi linier dari vektor-vektor di S merupakan subruang dari V.
 - b) Himpunan W di bagian a) merupakan subruang "terkecil" dari V yang berisi semua vektor di S, yang artinya setiap subruang lainnya berisi vektor-vektor dalam W.

Contoh 2.2. Misalkan vektor $\mathbf{u}=(1,2,-1)$ dan $\mathbf{v}=(6,4,2)$ di \mathbb{R}^3 . Tunjukkan apakah $\mathbf{w}_1=(9,2,7)$ dan $\mathbf{w}_2=(4,-1,8)$ merupakan kombinasi linier dari \mathbf{u} dan \mathbf{v} .

Solusi. Misalkan $\mathbf{w}_1 = k_1 \mathbf{u} + k_2 \mathbf{v}$ $(9,2,7) = k_1(1,2,-1) + k_2(6,4,2) = (k_1 + 6k_2, 2k_1 + 4k_2, -k_1 + 2k_2)$ diperoleh: $9 = k_1 + 6k_2$... (1) (1) + (3) $8k_2 = 16$ $2 = 2k_1 + 4k_2$... (2) $k_2 = 2$ $7 = -k_1 + 2k_2$... (3) $(3) -k_1 + 2(2) = 7$ $k_1 = -3$

Cek ke pers(2) $2(-3) + 4(2) = -6 + 8 = 2 \Rightarrow$ Benar. Jadi, $\mathbf{w}_1 = -3\mathbf{u} + 2\mathbf{v}$.

Contoh 2.2 (lanjutan). Misal:
$$w_2 = k_1 u + k_2 v$$

 $(4, -1,8) = k_1(1,2,-1) + k_2(6,4,2)$
 $(4, -1,8) = (k_1 + 6k_2, 2k_1 + 4k_2, -k_1 + 2k_2)$
diperoleh: $4 = k_1 + 6k_2$... (1) (1) + (3) $8k_2 = 12$
 $-1 = 2k_1 + 4k_2$... (2) $k_2 = \frac{3}{2}$
 $8 = -k_1 + 2k_2$... (3) (3) $-k_1 + 2(\frac{3}{2}) = 8$
 $k_1 = -5$

Cek ke pers(2) $2(-5) + 4(^3/_2) = -10 + 6 = 4 \Rightarrow Salah$ Jadi, \mathbf{w}_2 bukan merupakan kombinasi linier dari \mathbf{u} dan \mathbf{v} .

2.1. Membentuk Subruang (3)

- Jika S = {w₁, w₂, ..., w_r} merupakan himpunan tak kosong yang berisi vektor-vektor di ruang vektor V, maka subruang W dari V terdiri dari semua kombinasi linier vektor-vektor pada S disebut sebagai ruang yang direntang oleh S, dan vektor w₁, w₂, ..., w_r merupakan rentang (span) dari W.
- Subruang tersebut didefinisikan sebagai

$$W = \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_r\} \operatorname{atau} W = \operatorname{span}(S)$$

Contoh 2.3. Ingat vektor satuan standar di \mathbb{R}^n adalah

$$\mathbf{e}_1 = (1,0,0,...,0), \mathbf{e}_2 = (0,1,0,...,0), ..., \mathbf{e}_n = (0,0,0...,1)$$

Vektor-vektor tersebut merentang di \mathbb{R}^n karena setiap vektor

$$\mathbf{v} = (v_1, v_2, ..., v_n)$$
 di \mathbb{R}^n dapat dituliskan sebagai

$$\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$

yang merupakan kombinasi linier dari \mathbf{e}_1 , \mathbf{e}_2 , ..., \mathbf{e}_n .

Sehingga, sebagai contoh, vektor

$$\mathbf{i} = (1,0,0), \quad \mathbf{j} = (0,1,0), \quad \mathbf{k} = (0,0,1)$$

merentang di \mathbb{R}^3 karena setiap vektor $\mathbf{v}=(a,b,c)$ dalam ruang vektor ini dapat dituliskan sebagai

$$\mathbf{v} = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

Contoh 2.4. Tentukan apakah vektor $\mathbf{v}_1 = (1,1,2)$, $\mathbf{v}_2 = (1,0,1)$, dan $v_3 = (2,1,3)$ merupakan rentang ruang vektor \mathbb{R}^3

Solusi. Diambil sembarang vektor $\mathbf{b} = (b_1, b_2, b_3) \in \mathbb{R}^3$ dan tuliskan sebagai kombinasi linier dari vektor $\mathbf{v}_1, \mathbf{v}_2$ dan \mathbf{v}_3 .

$$\mathbf{b} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3$$

$$(b_1, b_2, b_3) = k_1 (1, 1, 2) + k_2 (1, 0, 1) + k_3 (2, 1, 3)$$

$$(b_1, b_2, b_3) = (k_1 + k_2 + 2k_3, k_1 + k_3, 2k_1 + k_2 + 3k_3)$$

sehingga diperoleh:

Contoh 2.4 (lanjutan). SPL tersebut dapat dibentuk menjadi matriks. SPL konsisten jika determinan matriks koefisien (A) tidak nol.

$$\det(A) = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{vmatrix} = 0 + 2 + 2 - 0 - 1 - 3 = 0$$

Karena det(A) = 0, maka $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ bukan rentang/span dari \mathbb{R}^3

2.2. Ruang Penyelesaian Sistem Homogen

• Himpunan penyelesaian dari SPL homogen $A\mathbf{x} = \mathbf{0}$ dari m persamaan dan n variabel merupakan subruang dari \mathbb{R}^n .

Contoh 2.5. Tentukan penyelesaian dari sistem berikut, kemudian berikan deskripsi geometrik dari himpunan penyelesaian tersebut.

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solusi. Penyelesaian SPL homogen diatas adalah

$$x=2s-3t, \qquad y=s, \qquad z=t$$
 sehingga diperoleh $x=2y-3z$ atau $x-2y+3z=0$.

Persamaan diatas merupakan persamaan bidang yang melalui titik asal dengan $\mathbf{n} = (1, -2, 3)$ sebagai vektor normal.

3. Kebebasan Linier

3.1. Kebebasan dan Ketergantungan Linier

- Jika S = {v₁, v₂, ..., v_r} adalah himpunan dua atau lebih vektor di ruang vektor V, maka S dikatakan himpunan bebas linier jika tidak ada vektor di S yang dapat dituliskan sebagai kombinasi linier dari vektor-vektor lainnya.
- Himpunan yang tidak bebas linier disebut bergantung secara linier.
- Himpunan tak kosong $S=\{{\bf v}_1,{\bf v}_2,\dots,{\bf v}_r\}$ di ruang vektor V bebas linier jika dan hanya jika koefisien yang memenuhi persamaan

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_r\mathbf{v}_r = \mathbf{0}$$

adalah $k_1 = 0, k_2 = 0, ..., k_r = 0.$

Contoh 3.1. Tentukan apakah vektor-vektor

$$\mathbf{v}_1 = (1, -2, 3), \quad \mathbf{v}_2 = (5, 6, -1), \quad \mathbf{v}_3 = (3, 2, 1)$$

bebas linier atau bergantung secara linier di \mathbb{R}^3 .

Solusi. Untuk membuktikan kebebasan liner, kita buktikan solusi dari

$$k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3 = 0$$

adalah nol untuk setiap koefisien k.

$$k_1(1,-2,3) + k_2(5,6,-1) + k_3(3,2,1) = (0,0,0)$$

diperoleh:

Contoh 3.1 (lanjutan).

$$\det(A) = 6 + 30 + 6 - 54 + 2 + 10 = 0$$

Karena det(A) = 0 maka solusi SPL diatas tidak tunggal. Jadi vektor \mathbf{v}_1 , \mathbf{v}_2 , dan \mathbf{v}_3 tidak bebas linier.

Karena \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 tidak bebas linier, maka salah satu vektor merupakan kombinasi liner vektor-vektor lainnya.

Dapat dicek bahwa

$$\mathbf{v}_3 = \frac{1}{2}\mathbf{v}_1 + \frac{1}{2}\mathbf{v}_2$$

3.2. Himpunan dengan Satu atau Dua Vektor

- Himpunan terhingga yang berisi 0 bebas linier.
- Himpunan dengan satu elemen bebas linier jika dan hanya jika vektor tersebut bukan 0.
- Himpunan dengan dua elemen bebas linier jika dan hanya jika tidak ada vektor yang merupakan kelipatan skalar dari vektor lainnya.

Contoh 3.2. Fungsi $\mathbf{f}_1 = x \operatorname{dan} \mathbf{f}_2 = \sin x$ adalah vektor bebas linier di $F(-\infty,\infty)$ karena tidak ada fungsi yang merupakan kelipatan fungsi lainnya. Sedangkan fungsi $\mathbf{g}_1 = \sin 2x \operatorname{dan} \mathbf{g}_2 = \sin x \cos x$ tidak bebas linier karena identitas trigonometri $\sin 2x = 2 \sin x \cos x$ membuktikan bahwa $\mathbf{g}_1 \operatorname{dan} \mathbf{g}_2$ merupakan kelipatan satu sama lain.

3.3. Interpretasi Geometris dari Kebebasan Linier (1)

- Kebebasan linier berguna dalam interpretasi geometris di R² dan R³.
- Dua vektor di R² dan R³ bebas linier jika dan hanya jika keduanya tidak berada pada garis yang sama saat titik awal vektor diletakkan pada titik asal.
- Jika tidak, salah satu vektor merupakan kelipatan yang lain.

3.3. Interpretasi Geometris dari Kebebasan Linier (2)

- Tiga vektor di R³ bebas linier jika dan hanya jika ketiganya tidak berada pada bidang yang sama saat titik awal vektor diletakkan pada titik asal.
- Jika tidak, setidaknya satu vektor merupakan kombinasi linier dari dua vektor lainnya.

3.3. Interpretasi Geometris dari Kebebasan Linier (3)

- Tiga koordinat di R² berlebihan untuk menentukan kombinasi linier vektor-vektor di R².
- Hal tersebut menunjukkan bahwa terdapat paling banyak n vektor dalam himpunan bebas linier \mathbb{R}^n .
- Misalkan $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ merupakan himpunan vektor di \mathbb{R}^n . Jika r > n, maka S tidak bebas linier.

4. Basis dan Dimensi

4.1. Basis Ruang Vektor

- Suatu ruang vektor V dikatakan berdimensi terhingga jika ada himpunan terhingga vektor di V yang merentang di V dan dikatakan berdimensi tak terhingga jika tidak ada himpunan rentang.
- Jika $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ adalah himpunan vektor di ruang vektor berdimensi terhingga V, maka S disebut **basis** untuk V jika:
 - a) S merentang dalam V,
 - b) S bebas linier

Contoh 4.1. Pada contoh 2.3 vektor satuan standar

$$\mathbf{e}_1 = (1,0,0,...,0), \mathbf{e}_2 = (0,1,0,...,0), ..., \mathbf{e}_n = (0,0,0...,1)$$

merentang di \mathbb{R}^n dan bebas linier. Sehingga vektor-vektor tersebut merupakan basis untuk \mathbb{R}^n yang disebut **basis standar untuk** \mathbb{R}^n .

Secara khusus, $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, $\mathbf{k} = (0,0,1)$ merupakan basis standar untuk \mathbb{R}^3 .

Contoh 4.2. Tunjukkan bahwa vektor $v_1 = (1,2,1), v_2 = (2,9,0)$ dan $v_3 = (3,3,4)$ membentuk basis dari \mathbb{R}^3 .

Solusi. Akan dibuktikan bahwa vektor-vektor tersebut bebas linier dan merentang dalam \mathbb{R}^3 .

Contoh 4.2 (lanjutan). Untuk membuktikan kebebasan linier, akan dibuktikan persamaan vektor $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = 0$ mempunyai solusi tunggal.

Untuk membuktikan vektor-vektor tersebut merentang di \mathbb{R}^3 , akan dibuktikan bahwa untuk setiap vektor $\mathbf{b} = (b_1, b_2, b_3)$ dalam \mathbb{R}^3 dapat dituliskan dalam bentuk $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{b}$.

Dengan menyamakan setiap elemen pada kedua ruas, kedua persamaan tersebut dapat dituliskan dalam bentuk SPL berikut

$$c_1 + 2c_2 + 3c_3 = 0$$
 $c_1 + 2c_2 + 3c_3 = b_1$
 $2c_1 + 9c_2 + 3k_3 = 0$ dan $2c_1 + 9c_2 + 3k_3 = b_2$
 $c_1 + 4c_3 = 0$ $c_1 + 4c_3 = b_3$

Contoh 4.2 (lanjutan). Akan dibuktikan bahwa sistem homogen memiliki solusi trivial dan penyelesaian SPL non-homogen konsisten untuk setiap nilai b_1 , b_2 dan b_3 .

Kedua SPL memiliki matriks koefisien yang sama

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{bmatrix}$$

$$\det(A) = 36 + 6 + 0 - 27 - 0 - 16 = -1.$$

Karena $\det(A) \neq 0$, maka terbukti bahwa SPL homogen memiliki solusi trivial dan SPL nonhomogen memiliki penyelesaian konsisten. Jadi vektor \mathbf{v}_1 , \mathbf{v}_2 dan \mathbf{v}_3 merupakan basis di \mathbb{R}^3

4.2. Jumlah Vektor dalam Basis (1)

- Misalkan V merupakan suatu ruang vektor dimensi-n dan $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ sembarang basis.
 - a) Jika suatu himpunan di V memiliki lebih dari n vektor, maka himpunan tersebut bebas linier.
 - b) Jika suatu himpunan di V memiliki kirang dari n vektor, maka himpunan tersebut tidak merentang di V.
- Dimensi dari suatu ruang vektor berdimensi terhingga V dinotasikan oleh dim(V) dan merupakan jumlah vektor pada basis V.
- Ruang vektor nol memiliki dimensi nol.

4.2. Jumlah Vektor dalam Basis (2)

- Misalkan V merupakan suatu ruang vektor dimensi-n dan S merupakan suatu himpunan di V yang beranggotakan n vektor.
 Maka S adalah basis dari V jika dan hanya jika S merentang di V atau S bebas linier.
- Jika W adalah subruang dari ruang vektor berdimensi hingga V, maka
 - a) W berdimensi terhingga.
 - b) $\dim(W) \leq \dim(V)$.
 - c) W = V jika dan hanya jika $\dim(W) = \dim(V)$.

Contoh 4.3. Jelaskan mengapa vektor $\mathbf{v}_1 = (-3, 7)$ dan $\mathbf{v}_2 = (5, 5)$ merupakan basis untuk \mathbb{R}^2 .

Solusi. Karena kedua vektor bukan merupakan kelipatan satu sama lain, keduanya bebas linier di \mathbb{R}^2 . Sehingga \mathbf{v}_1 dan \mathbf{v}_2 merupakan basis untuk \mathbb{R}^2 .

Contoh 4.4. Jelaskan mengapa vektor-vektor $\mathbf{v}_1 = (2, 0, -1)$, $\mathbf{v}_2 = (4, 0, 7)$ dan $\mathbf{v}_3 = (-1, 1, 4)$ merupakan basis dari \mathbb{R}^3 .

Solusi. Vektor \mathbf{v}_1 dan \mathbf{v}_2 membentuk himpunan bebas linier pada bidang-xz. Vektor \mathbf{v}_3 berada diluar bidang-xz, sehingga himpunan $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ juga bebas linier. Karena \mathbb{R}^3 memiliki dimensi-3, maka himpunan $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ merupakan basis untuk ruang vektor \mathbb{R}^3 .

5. Koordinat Relatif terhadap Basis

5.1. Sistem Koordinat dalam Aljabar Linier (1)

 Dalam geometri analitik, digunakan sistem koordinat persegi panjang untuk membuat korespondensi satu-satu antara titiktitik dalam ruang dimensi-2 dan pasangan berurutan bilangan real dan antara titik-titik dalam ruang dimensi-3 dan pasangan berurut tiga elemen bilangan real.

Koordinat *P* pada sistem koordinat persegi panjang di ruang dimensi-2.

Koordinat *P* pada sistem koordinat persegi panjang di ruang dimensi-3.

5.1. Sistem Koordinat dalam Aljabar Linier (2)

 Meski sistem koordinat persegi panjang sering digunakan, sistem ini tidak wajib digunakan. Sebagai contoh gambar berikut menunjukkan sistem koordinat di ruang dimensi-2 dan dimensi-3 dengan sumbu koordinat yang tidak saling tegak lurus.

Koordinat *P* pada sistem koordinat non-persegi panjang di ruang dimensi-2.

Koordinat *P* pada sistem koordinat non-persegi panjang di ruang dimensi-3.

5.1. Sistem Koordinat dalam Aljabar Linier (3)

- Dalam aljabar linier sistem koordinat biasanya ditentukan dengan menggunakan vektor dibandingkan sumbu koordinat.
- Sebagai contoh, gambar berikut merupakan sistem koordinat dengan vektor satuan menunjukkan arah positif dari sumbunya.
- Koordinat P dapat dituliskan dengan menggunakan koefisien skalar dari persamaan

$$\overrightarrow{OP} = a\mathbf{u}_1 + b\mathbf{u}_2 \operatorname{dan} \overrightarrow{OP} = a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$$

5.2. Koordinat Relatif terhadap Basis

• Jika $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ adalah basis untuk ruang vektor V, maka setiap vektor \mathbf{v} di V dapat dituliskan dalam bentuk

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

Sehingga skalar $c_1, c_2, ..., c_n$ merupakan **koordinat** dari **v** relatif terhadap basis S.

• Vektor $(c_1, c_2, ..., c_n)$ di \mathbb{R}^n yang terbentuk dari koordinat ini disebut **vektor koordinat dari v relatif terhadap** S, yang dinotasikan oleh

$$(\mathbf{v})_S = (c_1, c_2, ..., c_n)$$

Contoh 5.1. Diketahui vektor-vektor $\mathbf{v}_1 = (1,2,1)$, $\mathbf{v}_2 = (2,9,0)$, dan $\mathbf{v}_3 = (3,3,4)$ merupakan basis pada \mathbb{R}^3 .

- a. Tentukan koordinat vektor $\mathbf{v} = (5, -1, 9)$ terhadap basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- b. Tentukan vektor \mathbf{v} di \mathbb{R}^3 yang memiliki vektor koordinat relatif terhadap S, $(\mathbf{v})_S = (-1,3,2)$.

Solusi.

a. Untuk mencari $(\mathbf{v})_S$, dicari kombinasi linier \mathbf{v} dari vektor-vektor di S; yakni dicari nilai c_1, c_2, c_3 sedemikian sehingga

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$
 atau
$$(5, -1, 9) = c_1 (1, 2, 1) + c_2 (2, 9, 0) + c_3 (3, 3, 4)$$

Contoh 5.1 (lanjutan). Dengan menyamakan kedua ruas, diperoleh

$$c_1 + 2c_2 + 3c_3 = 5$$

 $2c_1 + 9c_2 + 3k_3 = -1$
 $c_1 + 4c_3 = 9$

Penyelesaian sistem diatas adalah $c_1 = 1$, $c_2 = -1$, $c_3 = 2$. Sehingga $(\mathbf{v})_S = (1, -1, 2)$.

b. Dengan menggunakan definisi $(\mathbf{v})_S$, diperoleh

$$\mathbf{v} = (-1)\mathbf{v}_1 + 3\mathbf{v}_2 + 2\mathbf{v}_3$$

= $(-1)(1,2,1) + 3(2,9,0) + 2(3,3,4)$
= $(11,31,7)$

6. Ruang Baris, Ruang Kolom dan Ruang Null

hm: 6. Ruang Baris, Ruang Kolom dan Ruang Null (1)

Pada matriks $m \times n$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Vektor

$$\mathbf{r}_{1} = [a_{11} \quad a_{12} \quad \cdots \quad a_{1n}]$$
 $\mathbf{r}_{2} = [a_{21} \quad a_{22} \quad \cdots \quad a_{2n}]$
 $\vdots \quad \vdots \quad \vdots$
 $\mathbf{r}_{m} = [a_{m1} \quad a_{m2} \quad \cdots \quad a_{mn}]$

di \mathbb{R}^n yang terbentuk dari baris matriks A disebut **vektor**-vektor **baris** dari A.

6. Ruang Baris, Ruang Kolom dan Ruang Null (2)

Vektor

$$\mathbf{c}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \qquad \mathbf{c}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \qquad \dots, \qquad \mathbf{c}_n = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

di \mathbb{R}^m yang terbentuk dari kolom matriks A disebut **vektor-vektor kolom** dari A.

Contoh 6.1. Misalkan
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 3 & -1 & 4 \end{bmatrix}$$
. Vektor baris dari A adalah $\mathbf{r}_1 = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}$ dan $\mathbf{r}_2 = \begin{bmatrix} 3 & -1 & 4 \end{bmatrix}$ dan vektor kolom dari A adalah $\mathbf{c}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ dan $\mathbf{c}_3 = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$.

6. Ruang Baris, Ruang Kolom dan Ruang Null (3)

- Andaikan A adalah matriks m × n.
- Subruang dari \mathbb{R}^n yang direntangkan oleh vektor-vektor baris matriks A disebut **ruang baris** dari A.
- Subruang dari \mathbb{R}^m yang direntangkan oleh vektor-vektor kolom matriks A disebut **ruang kolom** dari A.
- Ruang penyelesaian dari sistem homogen $A\mathbf{x} = \mathbf{0}$, yang merupakan subruang dari \mathbb{R}^n disebut **ruang null** dari A.
- Sistem persamaan linier Ax = b dikatakan konsisten jika dan hanya jika b ada di dalam ruang kolom dari A.

Contoh 6.2. Andaikan $A\mathbf{x} = \mathbf{b}$ merupakan sistem linier

$$\begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ 3 \end{bmatrix}$$

Tunjukkan bahwa \mathbf{b} berada dalam ruang kolom A dengan menuliskan \mathbf{b} sebagai kombinasi linier dari vektor kolom matriks A.

Solusi. Dengan eliminasi Gauss, diperoleh penyelesaian

$$x_1 = 2$$
, $x_2 = -1$, $x_3 = 3$

Sehingga

$$2\begin{bmatrix} -1\\1\\2 \end{bmatrix} - \begin{bmatrix} 3\\2\\1 \end{bmatrix} + 3\begin{bmatrix} 2\\-3\\-2 \end{bmatrix} = \begin{bmatrix} 1\\-9\\-3 \end{bmatrix}$$

6. Ruang Baris, Ruang Kolom dan Ruang Null (4)

- Jika \mathbf{x}_0 adalah sembarang penyelesaian dari SPL konsisten $A\mathbf{x} = \mathbf{0}$, dan jika $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ adalah basis ruang null A, maka setiap penyelesaian dari $A\mathbf{x} = \mathbf{b}$ dapat dituliskan sebagai $x = x_0 + c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_k\mathbf{v}_k$
- Sebaliknya, untuk semua pilihan skalar $c_1, c_2, ..., c_k$, vektor \mathbf{x} dalam rumus ini merupakan penyelesaian dari $A\mathbf{x} = \mathbf{b}$.
- Vektor \mathbf{x}_0 disebut sebagai **penyelesaian khusus** dari $A\mathbf{x} = \mathbf{b}$, dan penyelesaian lainnya merupakan **penyelesaian umum** dari $A\mathbf{x} = \mathbf{0}$.

Contoh 6.3. Penyelesaian x dari SPL non-homogen

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 5 \\ 6 \end{bmatrix}$$

dapat dituliskan sebagai jumlahan penyelesaian khusus dari $A\mathbf{x} = \mathbf{b}$ dan penyelesaian umum SPL homogen $A\mathbf{x} = \mathbf{0}$.

Dengan menggunakan matriks augmented dan eliminasi Gauss, diperoleh penyelesaian

$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 1/3$

Contoh 6.3 (lanjutan). Penyelesaian tersebut dapat dituliskan dalam bentuk vektor sebagai berikut.

$$\underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}}_{\mathbf{X}} = \begin{bmatrix} -3r - 4s - 2t \\ r \\ -2s \\ s \\ t \\ 1/3 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1/3 \end{bmatrix}}_{\mathbf{X}_0} + r \underbrace{\begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{\mathbf{X}_0} + s \underbrace{\begin{bmatrix} -4 \\ 0 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}}_{\mathbf{X}_h} + t \underbrace{\begin{bmatrix} -2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}}_{\mathbf{X}_h}$$

dengan \mathbf{x}_0 merupakan penyelesaian khusus sistem non-homogen $A\mathbf{x} = \mathbf{b}$ dan \mathbf{x}_h merupakan penyelesaian umum dari sistem homogen $A\mathbf{x} = \mathbf{0}$.

6.1. Basis Ruang Baris, Ruang Kolom dan Ruang Null

- OBE pada matriks augmented [A | b] dari SPL tidak mengubah himpunan penyelesaian dari sistem tersebut. OBE juga tidak mempengaruhi kolom nol, maka himpunan penyelesaian dari Ax = 0 tidak berubah saat dilakukan OBE pada matriks A.
- Maka diperoleh teorema sebagai berikut:
 - a) Operasi baris elementer (OBE) tidak mengubah ruang null dari suatu matriks.
 - Operasi baris elementer (OBE) tidak mengubah ruang baris dari suatu matriks.
- Hal ini tidak berlaku untuk ruang kolom suatu matriks.

Contoh 6.4. Tentukan basis ruang null dari matriks berikut.

$$A = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

Solusi. Ruang null dari A adalah ruang penyelesaian dari sistem homogen $A\mathbf{x} = \mathbf{0}$, dari contoh 6.3 diperoleh basis

$$\mathbf{v}_{1} = \begin{bmatrix} -3\\1\\0\\0\\0\\0 \end{bmatrix}, \qquad \mathbf{v}_{2} = \begin{bmatrix} -4\\0\\-2\\1\\0\\0 \end{bmatrix}, \qquad \mathbf{v}_{3} = \begin{bmatrix} -2\\0\\0\\0\\1\\0 \end{bmatrix}$$

Contoh 6.5. Tentukan basis ruang baris dari matriks di contoh 6.4.

Solusi. Dengan OBE diperoleh matriks eselon baris

$$R = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 0 & 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Karena OBE tidak mengubah ruang baris suatu matriks, maka basis ruang baris A adalah

$$\mathbf{r}_1 = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \end{bmatrix}$$

 $\mathbf{r}_2 = \begin{bmatrix} 0 & 0 & 1 & 2 & 0 & 3 \end{bmatrix}$
 $\mathbf{r}_3 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

6.2. Basis Ruang Kolom suatu Matriks

- Basis ruang kolom dari matriks A sulit dicari karena OBE dapat mengubah ruang kolom matriks A. Namun OBE tidak mengubah hubungan ketergantungan antara vektor kolom.
- Jika A dan B adalah matriks ekuivalen baris, maka
 - a) Suatu himpunan vektor kolom dari A bebas linier jika dan hanya jika vektor kolom dari B yang berpadanan bebas linier.
 - b) Suatu himpunan vektor kolom dari A membentuk basis untuk ruang kolom A jika dan hanya jika vektor kolom dari B yang berpadanan membentuk basis untuk ruang kolom B.

Contoh 6.6. Carilah basis ruang kolom dari matriks di contoh 6.4.

Solusi. Dengan OBE diperoleh matriks eselon baris

$$R = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 0 & 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Karena kolom pertama, ketiga dan keenam memiliki awalan 1, maka basis ruang kolom R adalah

$$\mathbf{c}_1' = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \mathbf{c}_3' = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \mathbf{c}_6' = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 0 \end{bmatrix}$$

Contoh 6.6 (lanjutan). Sehingga kolom yang berpadanan di matriks A, yaitu

$$\mathbf{c}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 2 \end{bmatrix}, \qquad \mathbf{c}_3 = \begin{bmatrix} -2 \\ -5 \\ 5 \\ 0 \end{bmatrix}, \qquad \mathbf{c}_6 = \begin{bmatrix} 0 \\ -3 \\ 15 \\ 18 \end{bmatrix}$$

merupakan basis untuk ruang kolom dari A.

7. Rank dan Nulitas

7.1. Ruang Baris dan Kolom Memiliki Dimensi yang Sama

 Pada contoh 6.5 dan 6.6, diperoleh ruang baris dan ruang kolom dari matriks

$$A = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

memiliki tiga vektor basis, maka keduanya berdimensi-3.

 Hal ini bukan kebetulan, karena ruang baris dan kolom dari suatu matriks A memiliki dimensi yang sama.

7.2. Rank dan Nulitas

- Dimensi ruang baris, ruang kolom dan ruang null dari suatu matriks merupakan nilai yang penting sehingga terdapat beberapa notasi dan terminologi yang terkait.
- Dimensi yang sama dari ruang baris dan kolom A disebut rank dari A dan dinotasikan rank(A) dan dimensi ruang nol A disebut nulitas dari A dan dinotasikan dengan nulitas(A).
- Jika A merupakan matriks dengan n kolom, maka rank(A) + nulitas(A) = n
- Jika A adalah matriks $m \times n$, maka
 - a) rank(A) = jumlah variabel bebas pada solusi umum <math>Ax = 0.
 - b) nulitas(A) = jumlah parameter pada solusi umum $A\mathbf{x} = \mathbf{0}$.

Contoh 7.1. Carilah rank dan nulitas dari matriks

$$A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$$

Solusi. Matriks eselon baris dari A adalah

Karena matriks tersebut memiliki dua awalan 1, ruang abris dan kolomnya berdimensi-2 dan rank(A) = 2.

Contoh 7.1 (lanjutan). Untuk mencari nulitas, akan dicari dimensi ruang penyelesaian dari sistem homogen $A\mathbf{x} = \mathbf{0}$.

Dari matriks eselon baris diperoleh persamaan

$$x_1 - 4x_3 - 28x_4 - 37x_5 + 13x_6 = 0$$

$$x_2 - 2x_3 - 12x_4 - 16x_5 + 5x_6 = 0$$

sehingga
$$x_1 = 4x_3 + 28x_4 + 37x_5 - 13x_6$$
 dan

$$x_2 = 2x_3 + 12x_4 - 16x_5 - 5x_6$$

Diperoleh solusi umum:
$$x_1 = 4r + 28s + 27t - 13u$$

$$x_2 = 2r + 12s + 16t - 5u$$

$$x_3 = r$$
 $x_5 = t$

$$x_4 = s$$
 $x_6 = u$

Contoh 7.1 (lanjutan). Atau dalam bentuk vektor kolom

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = r \begin{bmatrix} 4 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 28 \\ 12 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 37 \\ 16 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -13 \\ -5 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Karena terdapat empat vektor pada ruas kanan yang membentuk basis dari ruang penyelesaian, maka nulitas(A) = 4.

SOAL 1

Misalkan V merupakan himpunan pasangan berurutan bilangan real, dengan penjumlahan dan perkalian skalar untuk $\mathbf{u}=(u_1,u_2)$ dan $\mathbf{v}=(v_1,v_2)$ didefinisikan oleh

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1 + 1, u_2 + v_2 + 1), \qquad k\mathbf{u} = (ku_1, ku_2)$$

- a. Hitunglah $\mathbf{u} + \mathbf{v}$ dan $k\mathbf{u}$ untuk $\mathbf{u} = (0, 4), \mathbf{v} = (1, -3)$ dan k = 2.
- b. Tunjukkan bahwa $(0,0) \neq \mathbf{0}$.
- c. Tunjukkan bahwa $(-1, -1) = \mathbf{0}$.
- d. Carilah aksioma ruang vektor yang tidak dipenuhi.

SOAL 2

Gunakan definisi subruang untuk menentukan apakah himpunan berikut merupakan sub ruang dari \mathbb{R}^3 .

- a. Semua vektor dengan bentuk (a, 0, 0).
- b. Semua vektor dengan bentuk (a, 1, 1).
- c. Semua vektor dengan bentuk (a, b, c) dimana b = a + c.

SOAL 3

Tuliskan vektor berikut sebagai kombinasi linier dari $\mathbf{u} = (2, 1, 4)$, $\mathbf{v} = (1, -1, 3)$ dan $\mathbf{w} = (3, 2, 5)$.

a. (-9, -7, -15)

- b. (6, 11, 6)
- c. (0,0,0)

SOAL 4

Tentukan apakah vektor-vektor berikut merentang di \mathbb{R}^3 .

a.
$$\mathbf{v}_1 = (2, 2, 2), \ \mathbf{v}_2 = (0, 0, 3), \ \mathbf{v}_3 = (0, 1, 1).$$

b.
$$\mathbf{v}_1 = (2, -1, 3), \ \mathbf{v}_2 = (4, 1, 2), \ \mathbf{v}_3 = (8, -1, 8).$$

SOAL 5

Tentukan apakah ruang penyelesaian sistem $A\mathbf{x} = \mathbf{0}$ adalah garis yang melalui titik asal, bidang yang melalui titik adal, atau hanya titik asal. Tentukan persamaan parameternya (jika ada).

a.
$$A = \begin{bmatrix} 1 & -3 & 1 \\ 2 & -6 & 2 \\ 3 & -9 & 3 \end{bmatrix}$$
 b. $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ c. $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 4 \\ 3 & 1 & 11 \end{bmatrix}$

SOAL 6

Tentukan apakah vektor-vektor berikut bebas linier di \mathbb{R}^4 .

- a. (3,8,7,-3), (1,5,3,-1), (2,-1,2,6), (4,2,6,4).
- b. (3,0,-3,6), (0,2,3,1), (0,-2,-2,0), (-2,1,2,1).

SOAL 7

Tentukan apakah himpunan vektor $\{(2,1),(3,0)\}$ membentuk basis di \mathbb{R}^2 .

SOAL 8

Tentukan apakah himpunan vektor $\{(3, 1, -4), (2, 5, 6), (1, 4, 8)\}$ membentuk basis di \mathbb{R}^3 .

SOAL 9

Tentukan koordinat vektor \mathbf{v} relatif terhadap basis $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ di \mathbb{R}^3 .

a.
$$\mathbf{v} = (2, -1, 3); \ \mathbf{v}_1 = (1, 0, 0), \ \mathbf{v}_2 = (2, 2, 0), \ \mathbf{v}_3 = (3, 3, 3)$$

b.
$$\mathbf{v} = (5, -12, 3); \ \mathbf{v}_1 = (1, 2, 3), \ \mathbf{v}_2 = (-4, 5, 6), \ \mathbf{v}_3 = (7, -8, 9)$$

SOAL 10

Carilah basis ruang baris, ruang kolom dan ruang null dari matriks

$$A = \begin{bmatrix} 1 & -2 & 5 & 0 & 3 \\ -2 & 5 & -7 & 0 & -6 \\ -1 & 3 & -2 & 1 & -3 \\ -3 & 8 & -9 & 1 & -9 \end{bmatrix}$$

SOAL 11

Carilah rank dan nulitas dari matriks A dengan mencari matriks eselon baris tereduksi.

a.
$$A = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 4 & -2 & 2 \\ 3 & 6 & -3 & 3 \\ 4 & 8 & -4 & 4 \end{bmatrix}$$

c.
$$A = \begin{bmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & -1 & -3 & 1 & 3 \\ -2 & -1 & 1 & -1 & 3 \\ 0 & 1 & 3 & 0 & -4 \end{bmatrix}$$

b.
$$A = \begin{bmatrix} 1 & 3 & 1 & 3 \\ 0 & 1 & 1 & 0 \\ -3 & 0 & 6 & -1 \\ 3 & 4 & -2 & 1 \\ 2 & 0 & -4 & -2 \end{bmatrix}$$

- Suatu himpunan V merupakan ruang vektor jika penjumlahan vektor dan perkalian skalar elemen-elemennya tertutup di V.
- Jika W adalah himpuan elemen-elemen ruang vektor V, maka W merupakan subruang dari V jika penjumlahan vektor dan perkalian skalar elemen-elemennya tertutup di W.
- Suatu vektor merupakan kombinasi linier dari vektor-vektor lainnya jika dapat dituliskan ulang dalam bentuk penjumlahan vektor lainnya.
- Jika elemen-elemen himpunan tak kosong S membentuk kombinasi linier semua elemen ruang vektor V, maka S dikatakan merentang di V.

- Himpunan **penyelesaian sistem homogen** dengan m persamaan dan n variabel merupakan subruang dari \mathbb{R}^n .
- Himpunan tak kosong S di ruang vektor V bebas linier jika tidak ada vektor di S yang dapat dituliskan sebagai kombinasi linier dari vektor-vektor lainnya.
- Himpunan yang tak bebas linier dapat dikatakan bergantung secara linier.
- Dua vektor di R² dan R³ bebas linier jika dan hanya jika keduanya tidak berada pada garis yang sama saat titik awal vektor diletakkan pada titik asal.

- Tiga vektor di R³ bebas linier jika dan hanya jika ketiganya tidak berada pada bidang yang sama saat titik awal vektor diletakkan pada titik asal.
- Himpunan S disebut basis untuk V jika S merentang dalam V dan S bebas linier.
- Dimensi dari suatu ruang vektor berdimensi terhingga V dinotasikan oleh dim(V) dan merupakan jumlah vektor pada basis V.
- Koefisien skalar c₁, c₂, ..., c_n yang merupakan kombinasi linier suatu vektor dari basis S merupakan koordinat relatif vektor tersebut terhadap basis S.

- Jika A adalah matriks $m \times n$, **ruang baris** A adalah subruang dari \mathbb{R}^n yang berisi vektor-vektor baris matriks A.
- Sedangkan **ruang kolom** A adalah subruang dari \mathbb{R}^m yang berisi vektor-vektor kolom matriks A.
- Ruang penyelesaian dari sistem homogen $A\mathbf{x} = \mathbf{0}$, yang merupakan subruang dari \mathbb{R}^n disebut **ruang null** A.
- Basis ruang null A adalah penyenyelesaian umum sistem homogen Ax = 0.
- Basis ruang baris A adalah baris dengan awalan 1 dari matriks eselon baris dari A.

- Basis ruang kolom A adalah kolom yang berpadanan dengan kolom awalan 1 di matriks eselon baris dari A.
- Ruang baris dan ruang kolom suatu matriks A memiliki dimensi yang sama. Dimensi ini disebut **rank** dari A dan dinotasikan dengan $\operatorname{rank}(A)$ yang merupakan jumlah **variabel bebas** pada penyelesaian umum $A\mathbf{x} = \mathbf{0}$
- Dimensi ruang nol mariks A disebut nulitas dari A dan dinotasikan dengan nulitas(A) yang merupakan jumlah parameter pada penyelesaian umum Ax = 0.
- Jumlah dari rank dan nulitas suatu matriks sama dengan jumlah kolomnya.

Terima Kasih