Correction exercice 8

Dans l'espace rapporté à un repère orthonormé $(O; \vec{\iota}, \vec{\jmath}, \vec{k})$, on considère :

- le plan \mathcal{P}_1 dont une équation cartésienne est 2x + y z + 2 = 0,
- le plan \mathscr{P}_2 passant par le point B(1; 1; 2) et dont un vecteur normal est $\overrightarrow{n_2} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.
- 1. (a) Le vecteur $\overrightarrow{n_1} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ est normal au plan \mathscr{P}_1 d'équation 2x + y z + 2 = 0.
 - (b) $\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 2 \times 1 + 1 \times (-1) + (-1) \times 1 = 0$ donc $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ sont orthogonaux. On en déduit que les plans \mathcal{P}_1 et \mathcal{P}_2 sont perpendiculaires.
- (a) Le plan \mathscr{P}_2 a pour vecteur normal $\overrightarrow{n_2}\begin{pmatrix}1\\-1\\1\end{pmatrix}$, donc il a une équation cartésienne de la forme x - y + z + d = 0 où d est un réel à déterminer. $B \in \mathcal{P}_2$ donc $x_B - y_B + z_B + d = 0$, autrement dit 1 - 1 + 2 + d = 0 donc d = -2. Le plan \mathcal{P}_2 a donc pour équation cartésienne x - y + z - 2 = 0.
 - (b) On note Δ la droite dont une représentation paramétrique est : $\begin{cases} x = 0 \\ y = -2 + t \\ z = t \end{cases}$ On cherche l'intercention la la droite dont une représentation paramétrique est : $\begin{cases} x = 0 \\ z = -2 + t \\ z = t \end{cases}$

On cherche l'intersection des plans \mathcal{P}_1 et \mathcal{P}_2 est l'ensemble des points de coordonnées (x; y; z)

vérifiant le système :
$$\begin{cases} 2x + y - z + 2 = 0 \\ x - y + z - 2 = 0 \end{cases}$$

$$\begin{cases} 2x + y - z + 2 = 0 \\ x - y + z - 2 = 0 \end{cases} \iff \begin{cases} 2x + y = z - 2 \\ x - y = -z + 2 \end{cases} \iff \begin{cases} 3x = 0 \\ 2x + y = z - 2 \end{cases}$$

On aboutit donc à x = 0, y = z - 2 et z quelconque égal à t

Les plans \mathcal{P}_1 et \mathcal{P}_2 ont donc pour intersection la droite de représentation paramétrique $\begin{cases} x = 0 \\ y = -2 + t \quad t \in \mathbb{R} \text{, c'est-à-dire la droite } \Delta. \\ z = t \end{cases}$

On considère le point A(1; 1; 1) et on admet que le point A n'appartient ni à \mathcal{P}_1 ni à \mathcal{P}_2 . On note H le projeté orthogonal du point A sur la droite Δ .

3. On rappelle que, d'après la question 2. b, la droite Δ est l'ensemble des points M_t de coordonnées (0; -2+t; t), où t désigne un nombre réel quelconque.

(a)
$$AM_t^2 = (0-1)^2 + (-2+t-1)^2 + (t-1)^2 = 1 + (9-6t+t^2) + (t^2-2t+1) = 2t^2 - 8t + 11$$

Donc $AM_t = \sqrt{2t^2 - 8t + 11}$.

(b) Le point H est le projeté orthogonal de A sur la droite Δ , donc la longueur AH réalise le minimum des longueurs AM_t où M_t est un point de Δ .

Il faut donc chercher le minimum de $\sqrt{2t^2-8t+11}$, donc le minimum de $2t^2-8t+11$.

D'après les propriétés de la fonction du second degré, le minimum de $f(x) = ax^2 + bx + c$ quand a > 0, est réalisé pour $x = -\frac{b}{2a}$ et vaut $f\left(-\frac{b}{2a}\right)$.

Donc le minimum de $2t^2 - 8t + 11$ est réalisé pour $t = -\frac{-8}{2 \times 2} = 2$, et vaut $2 \times 2^2 - 8 \times 2 + 11 = 3$. On en déduit que AH = $\sqrt{3}$.

- 4. On note \mathcal{D}_1 la droite orthogonale au plan \mathcal{P}_1 passant par le point A et H_1 le projeté orthogonal du point A sur le plan \mathcal{P}_1 .
 - (a) Déterminer une représentation paramétrique de la droite \mathcal{D}_1 .

La droite \mathcal{D}_1 est orthogonale au plan \mathcal{P}_1 donc le vecteur $\overline{n_1}$, normal au plan \mathcal{P}_1 est un vecteur directeur de la droite \mathcal{D}_1 . De plus la droite \mathcal{D}_1 passe par le point A. Elle a donc pour représentation paramétrique :

$$\left\{ \begin{array}{l} x = x_{\rm A} + 2t \\ y = y_{\rm A} + t \quad t \in \mathbb{R} \quad \text{c'est-\`a-dire} \left\{ \begin{array}{l} x = 1 + 2t \\ y = 1 + t \quad t \in \mathbb{R} \\ z = 1 - t \end{array} \right. \right.$$

(b) La droite \mathcal{D}_1 est orthogonale au plan \mathcal{P}_1 donc le projeté orthogonal de A sur \mathcal{P}_1 est le point d'intersection de \mathcal{D}_1 et de \mathcal{P}_1 ; ses coordonnées vérifient le système :

$$\begin{cases} x = 1 + 2x \\ y = 1 + t \\ z = 1 - t \\ 2x + y - z + 2 = 0 \end{cases}$$

Donc t vérifie 2(1+2t) + (1+t) - (1-t) + 2 = 0, soit 2+4t+1+t-1+t+2 = 0, ce qui donne $t = -\frac{2}{3}$.

$$x = 1 + 2t = 1 - \frac{4}{3} = -\frac{1}{3}$$
, $y = 1 + t = 1 - \frac{2}{3} = \frac{1}{3}$ et $z = 1 - t = 1 + \frac{2}{3} = \frac{5}{3}$

Le point H_1 a donc pour coordonnées $\left(-\frac{1}{3}; \frac{1}{3}; \frac{5}{3}\right)$.

5. Soit H_2 le projeté orthogonal de A sur le plan \mathcal{P}_2 .

On admet que H_2 a pour coordonnées $\left(\frac{4}{3}; \frac{2}{3}; \frac{4}{3}\right)$ et que H a pour coordonnées (0; 0; 2).

Sur le schéma ci-contre, les plans \mathcal{P}_1 et \mathcal{P}_2 sont représentés, ainsi que les points A, H_1 , H_2 , H.

Le vecteur $\overrightarrow{AH_1}$ a pour coordonnées $\begin{pmatrix} -\frac{1}{3} - 1 \\ \frac{1}{3} - 1 \\ \frac{5}{3} - 1 \end{pmatrix} = \begin{pmatrix} -\frac{4}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$

Le vecteur $\overrightarrow{H_2H}$ a pour coordonnées $\begin{pmatrix} 0 - \frac{4}{3} \\ 0 - \frac{2}{3} \\ 2 - \frac{4}{3} \end{pmatrix} = \begin{pmatrix} -\frac{4}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$.

 $\overrightarrow{AH_1} = \overrightarrow{H_2H}$ donc la quadrilatère AH_1HH_2 est un parallélogramme.

La droite (AH₁) est orthogonale au plan \mathscr{P}_1 et H₁ appartient à ce plan; donc (AH₁) est perpendiculaire à toutes les droites de \mathscr{P}_1 passant par H₁, en particulier la droite (HH₁).

Le parallélogramme AH₁HH₂ possède un angle droit donc c'est un rectangle.