I-CONVEX: De Novo Transcriptome Sequencing from Long Reads

Sina Baharlouei

Daniel J. Epstein Department of Industrial Engineering

Meisam Razaviyayn ISE, USC

Elizabeth Tseng
PacBio

David Tse EE, Stanford

Overview

What is Genome Sequencing?

- The process of determining the complete DNA/RNA sequence of an organism
- Complicated and expensive
- > Fast progress

Transcriptome Sequencing and its Importance

- > Can fundamentally change our understanding of organisms and diseases
 - > Snapshot of cell state (health, type, ...)
 - Personalized medicine
 - Understanding and detection of diseases such as cancer, Alzheimer, Diabetes
 - Virology, Immunology

How to Read a Single Sequence?

Transcripts

ACCGAAGTAATCCTTATGAATCAGAT

GAACGTACCTGCTGTAGCTTCA

GTCCTACAGCTACTCCTGCACTACTC

Abundance	Transcripts
0.58	ACCGAAGTAATCCTTATGAATCAGAT
0.17	GAACGTACCTGCTGTAGCTTCA
0.25	GTCCTACAGCTACTCCTGCACTACTC

Abundance	Transcripts	Reads
		ACCAAGTAATCCATTATGAATAGAT
0.58	ACCGAAGTAATCCTTATGAATCAGAT	ACAAGTAGTCTTATGTCAGAT
0.56	ACCOARGIRATCCTIATOAATCAGAT	ACCAGAAGTAATCCTTATGAACCAGAT
		CCAAGTATCCTTATGAATCAGAT
0.17	GAACGTACCTGCTGTAGCTTCA <	→ GACGTACCTGCTTAGCTTA
		GAACAGTACCTGCTGTGCTTCA
		GTCCTACGCTACATCCTGCATACTC
0.25	GTCCTACAGCTACTCCTGCACTACTC	GTCTATAGCTACTCCTGCACACTC
		GTCTAACAGCTACTCCTGCTACTACTC

Abundance	Transcripts	Reads
0.58	ACCGAAGTAATCCTTATGAATCAGAT	ACCAAGTAATCCATTATGAATAGAT ACAAGTAGTCTTATGTCAGAT ACCAGAAGTAATCCTTATGAACCAGAT CCAAGTATCCTTATGAATCAGAT
0.17	GAACGTACCTGCTGTAGCTTCA	→ GACGTACCTGCTTAGCTTA → GAACAGTACCTGCTGTGCTTCA
0.25	GTCCTACAGCTACTCCTGCACTACTC	GTCCTACGCTACATCCTGCATACTC GTCTATAGCTACTCCTGCACACTC GTCTAACAGCTACTCCTGCTACTACTC

Abundance	Transcripts	Reads
		ACCAAGTAATCCATTATGAATAGAT
0.58	ACCGAAGTAATCCTTATGAATCAGAT	ACAAGTAGTCTTATGTCAGAT
0.56	ACCOAAGTAATCCTTATGAATCAGAT	ACCAGAAGTAATCCTTATGAACCAGAT
		CCAAGTATCCTTATGAATCAGAT
0.17	GAACGTACCTGCTGTAGCTTCA <	→ GACGTACCTGCTTAGCTTA
		GAACAGTACCTGCTGTGCTTCA
		GTCCTACGCTACATCCTGCATACTC
0.25	GTCCTACAGCTACTCCTGCACTACTC	GTCTATAGCTACTCCTGCACACTC
		GTCTAACAGCTACTCCTGCTACTACTC

Abundance	Transcripts	Reads
		ACCAAGTAATCCATTATGAATAGAT
0.58	ACCGAAGTAATCCTTATGAATCAGAT	ACAAGTAGTCTTATGTCAGAT
0.56	ACCOARGIRATCCTIATGAATCAGAT	ACCAGAAGTAATCCTTATGAACCAGAT
		CCAAGTATCCTTATGAATCAGAT
	How →	?
0.17	GAACGTACCTGCTGTAGCTTCA	GACGTACCTGCTTAGCTTA
		GAACAGTACCTGCTGTGCTTCA
		GTCCTACGCTACATCCTGCATACTC
0.25	GTCCTACAGCTACTCCTGCACTACTC	GTCTATAGCTACTCCTGCACACTC
		GICIAIAGCIACICCIGCACACIC
		GTCTAACAGCTACTCCTGCTACTACTC

Identifiability of Long Read Sequencing Problem

 \blacktriangleright A family of distributions $P = \{P_{\theta} | \theta \in \Theta\}$ is identifiable if it satisfies the following condition:

$$P_{\theta_1} = P_{\theta_2} \Rightarrow \theta_1 = \theta_2 \quad \theta_1, \theta_2 \in \Theta$$

➤ What are the parameters and distributions in long read sequencing?

Idea of Clustering

- Need to compute pairwise distances to create a similarity graph
- Edit distance (Largest Common Subsequence)
 - \triangleright Time Complexity: O(N²L²)
 - N: Number of reads
 - L: Length of reads

- For a dataset with 1M reads and average length 10000:
 - ➤ Need 10²⁰ Operations!
 - No statistical guarantee for optimality of this method

Sahlin, Kristoffer, et al. "Deciphering highly similar multigene family transcripts from Iso-Seq data with IsoCon." *Nature communications* 9.1 (2018): 1-12. Gordon, Sean P., et al. "Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing." *PloS one* 10.7 (2015): e0132628.

Reminder (Dynamic Programming for Computing Edit Distance)

$$L(m,n) = \min \begin{cases} L(m-1,n-1) + \delta(m,n) \\ L(m,n-1) + 1 \\ L(m-1,n) + 1 \end{cases}$$

$$L(i,0) = L(0,i) = 0$$

-	0	Е	X	Ε	С	U	Т	1	0	N
0	0	1	2	3	4	5	6	7	8	9
1	1	1	2	3	4	5	6	6	7	8
N	2	2	2	3	4	5	6	7	7	7
Т	3 \	3	3 \	3	4	5	5	6	7	8
E	4	3	4	3	4	5	6	6	7	8
Ν	5	4	4	4	4	5	6	7	7	7
Т	6	5	5	5	5	5	5	6	7	8
1	7	6	6	6	6	6	6	5	6	7
0	8	7	7	7	7	7	7	6	5	6
N	9	8	8	8	8	8	8	7	6 (5

A Maximum Likelihood Estimation

$$P(r; \rho, t) = \prod_{i=1}^{N} P(r_i; \rho, t) = \prod_{j=1}^{N} \left(\sum_{j=1}^{m} \alpha_{ij} \rho_j\right)$$

- $ightharpoonup r = \{r_1, r_2, ..., r_N\}$: Set of noisy reads
- \geq **t** = {t₁, t₂, ..., t_m} : Set of unknown transcripts
- $\triangleright \mathbf{p} = {\rho_1, \rho_2, ..., \rho_m}$: Set of abundances of unknown transcripts
- $\triangleright \alpha_{ij}$: Probability of observing the read r_i from transcript t_j

Is it a concave problem?

$$\hat{\rho}_{ML}, \hat{t}_{ML} = \underset{\rho, t}{\operatorname{argmax}} \sum_{i=1}^{N} \log(\sum_{j=1}^{m} \alpha_{ij} \rho_{j}) \quad s. t \qquad \sum_{j=1}^{m} \rho_{j} = 1, \quad \rho_{j} \geq 0$$

> Definition of convex set:

$$\mathcal{X}$$
 is convex $\Leftrightarrow \forall x, y \in \mathcal{X}, 0 \leq \alpha \leq 1 : \alpha x + (1 - \alpha)y \in \mathcal{X}$

It makes sure we stay inside the set by choosing a point between any two given points.

> Definition of convex function:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \forall \quad x, y \in D_f, 0 \le \alpha \le 1$$

First-order definition:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \quad \forall x, y \in D_f$$

> Second-order definition:

$$\nabla^2 f(x) \succeq 0 \quad \forall x \in D_f$$

➤ How many of these functions are convex?

$$-log(x)$$
 $x^T x$ $x^T Q x$ $a^T x$ $\|A - x x^T\|_F^2$ $\max(f_1, f_2)$ $f_1 + f_2$ $f_1 - f_2$ $\min(f_1, f_2)$ $\log\left[e^{x_1} + \dots + e^{x_n}\right]$

Convex problems:

$$\min_{x} f(x) \quad \text{s.t. } x \in \mathcal{X}$$

- \triangleright Function f must be a convex function.
- \triangleright Set \mathcal{X} must be a convex set.

First-order optimality condition:

$$\nabla f(x^*)^T (x - x^*) \ge 0 \quad \forall x \in D_f$$

> Second-order optimality condition:

$$\nabla^2 f(x^*) \succeq 0$$

- > All local minima of a convex problem are global minima.
 - > We can find local minima of convex problem and we are done!

- Methods for solving convex optimization problem:
 - ➤ Gradient-free approaches (Genetic, Particle Swarm)
 - First-order methods (gradient descent, acceleration method of Nesterov)
 - Second-order methods (Newton method)
 - ➤ Majorization-Minimization
 - ► Block Coordinate Descent and ADMM
- > Convergence rates:

$$\mathcal{O}(rac{LD^2}{\epsilon})$$

$$\mathcal{O}(\frac{LD^2}{\epsilon})$$
 $\mathcal{O}(\kappa \log(\frac{1}{\epsilon}))$

GD

$$\mathcal{O}\left(\sqrt{\frac{LD^2}{\epsilon}}\right) \mid \mathcal{O}(\sqrt{\kappa}\log(\frac{1}{\epsilon}))$$

$$\mathcal{O}(\sqrt{\kappa}\log(\frac{1}{\epsilon}))$$

Concavity of Maximum Likelihood

Is it a concave problem?

$$\hat{\rho}_{ML}, \hat{t}_{ML} = \underset{\rho, t}{\operatorname{argmax}} \sum_{i=1}^{N} \log(\sum_{j=1}^{m} \alpha_{ij} \rho_{j}) \quad s. t \quad \sum_{j=1}^{m} \rho_{j} = 1, \quad \rho_{j} \geq 0$$

Concavity of Maximum Likelihood

Is it a concave problem?

$$\hat{\rho}_{ML}, \hat{t}_{ML} = \underset{\rho, t}{\operatorname{argmax}} \sum_{i=1}^{N} \log(\sum_{j=1}^{m} \alpha_{ij} \rho_{j}) \quad s. t \quad \sum_{j=1}^{m} \rho_{j} = 1, \quad \rho_{j} \geq 0$$

- ➤ What if the set of transcripts is given?
 - ➤ We can consider all possible transcripts
 - Estimating the abundances and keeping non-zero ones.
 - ➤ Is this approach efficient?

A Brute Force Approach

Abundances			Transcripts	Reads			
	?		AAAAAAAA	ACCAGTACT			
	?		AAAAAAAAC	CCGAGTCC			
	?		AAAAAAAAG	AGCCGAGTC			
				•••			
	,		ACCGAGTCT	CTAAAGATA			
	?		 CTCAAGATA	CTCAAGATA			
	•			GCTCAAGAAA			
	?		GGTCATTAC				
				GGCATTAC			
	3		TTTTTTTTT	GCTCATTAA			

A Brute Force Approach

Abundances		ces	Transcripts	Reads	Ab	oundances	3	Transcripts
	?		AAAAAAAA	ACCAGTACT		0		AAAAAAAA
	?		AAAAAAAAC	CCGAGTCC		0		AAAAAAAAC
	?		AAAAAAAAG	AGCCGAGTC		0.001		AAAAAAAAG
			•••	•••	Estimating Abundances			
	?		ACCGAGTCT	CTAAAGATA		0.25		ACCGAGTCT
			•••	CTCAAGATA				•••
	?		CTCAAGATA			0.18		CTCAAGATA
			•••	GCTCAAGAAA				•••
	?		GGTCATTAC			0.12		GGTCATTAC
			•••	GGCATTAC				•••
	?		TTTTTTTTT	GCTCATTAA		0		TTTTTTTTT

A Brute Force Approach

Abundances		Transcripts	Reads	Ab	oundances	Transcripts
?		AAAAAAAA	ACCAGTACT		0	AAAAAAAA
?		AAAAAAAAC	CCGAGTCC		0	AAAAAAAAC
?		AAAAAAAAG	AGCCGAGTC		0.001	AAAAAAAAG
		•••	•••	Estimating Abundances		•••
?		ACCGAGTCT	CTAAAGATA		0.25	ACCGAGTCT
		•••	CTCAAGATA			•••
3		CTCAAGATA			0.18	CTCAAGATA
		···	GCTCAAGAAA			•••
?		GGTCATTAC			0.12	GGTCATTAC
			GGCATTAC			
		TTTTTTTTT	GCTCATTAA		0	TTTTTTTTT

Total number of transcripts with length L: 4^L

Abundances

?

?

?

?

.

?

AAAAA

AAAAC

AAAAG

•••

ACCGA

•••

CTCAA

•••

GGTCA

•••

TTTTT

Reads

ACCAGTA...CT

CCGAGT...CC

AGCCGAGT...C

• • •

CTAAAGA...TA

CTCAAGA...TA

GCTCAAGA...AA

TCCAGAAGA...

TCCGAGAAA...

Abundances	Prefixes with length 5	Reads
0	AAAA	ACCAGTACT
0.001	AAAAC	CCGAGTCC
0.002	AAAAG	AGCCGAGTC
	•••	•••
0.25	ACCGA	CTAAAGATA
0.40	CTC A A	CTCAAGATA
0.19	CTCAA 	GCTCAAGAAA
0.16	GGTCA	
		TCCAGAAGA
?	TTTTT	TCCGAGAAA

4	Abundances	Prefixes with length 5	Reads
	0	AAAAA	ACCAGTACT
	0.001	AAAAC	CCGAGTCC
	0.002	AAAAG	AGCCGAGTC
	0.25	ACCGA	CTAAAGATA
	0.19	CTCAA	CTCAAGATA
			GCTCAAGAAA
	0.16	GGTCA	
	Ş	TTTTT	TCCAGAAGA
		11111	TCCGAGAAA

Abundances		Prefixes with length 5	Reads	
	0	AAAA	ACCAGTACT	
	0.001	AAAAC	CCGAGTCC	
	0.002	AAAAG	AGCCGAGTC	Futand by one base
			•••	Extend by one base
	0.25	ACCGA	CTAAAGATA	
		•••	CTCAAGATA	
	0.19	CTCAA 	GCTCAAGAAA	
	0.16	GGTCA		
			TCCAGAAGA	
	?	TTTTT	TCCGAGAAA	

Abundances	Prefixes with length 6	Reads
?	•••	ACCAGTACT
?	ACCGAA	CCGAGTCC
?	ACCGAC	AGCCGAGTC
?	ACCGAG	•••
?	ACCGAT	CTAAAGATA
		CTCAAGATA
?	CTCAAA	
?	CTCAAC	GCTCAAGAAA
?	CTCAAG	
?	CTCAAT	TCCAGAAGA
?		TCCGAGAAA

Abundances		Prefixes with length 6	Reads
	0	•••	ACCAGTACT
	0.05	ACCGAA	CCGAGTCC
	0.04	ACCGAC	AGCCGAGTC
	0.27	ACCGAG	•••
	0.01	ACCGAT	CTAAAGATA
		•••	CTCAAGATA
	0.02 0.01	CTCAAA CTCAAC	GCTCAAGAAA
	0.19	CTCAAG	
	0.03	CTCAAT	TCCAGAAGA
	?	•••	TCCGAGAAA

Abundances	Prefixes with length 6	Reads
0	•••	ACCAGTACT
0.05	ACCGAA	CCGAGTCC
0.04	ACCGAC	AGCCGAGTC
0.27	ACCGAG	•••
0.01	ACCGAT	CTAAAGATA
		CTCAAGATA
0.02	CTCAAA	
0.01	CTCAAC	GCTCAAGAAA
0.19	CTCAAG	
0.03	CTCAAT	TCCAGAAGA
?		TCCGAGAAA

	Reads	refixes with length 6	es	Abundances	
	ACCAGTACT	•••		0	
	CCGAGTCC	ACCGAA		0.05	
	AGCCGAGTC	ACCGAC		0.04	
Extend by one base	•••	ACCGAG		0.27	
	CTAAAGATA	ACCGAT		0.01	
	CTCAAGATA	•••			
		CTCAAA		0.02	
	GCTCAAGAAA	CTCAAC		0.01	
		CTCAAG		0.19	
	TCCAGAAGA	CTCAAT		0.03	
	TCCGAGAAA	•••		?	

Abundances		Prefixes with length 6	Reads	A	bundance	S	Transcripts
	0	•••	ACCAGTACT		0		AAAAAAAA
	0.05	ACCGAA	CCGAGTCC		0		AAAAAAAAC
	0.04	ACCGAC	AGCCGAGTC		0.001		AAAAAAAAG
	0.27	ACCGAG	•••	•••			
	0.01	ACCGAT	CTAAAGATA		0.25		ACCGAGTCT
		•••	CTCAAGATA				•••
	0.02	CTCAAA			0.18		CTCAAGATA
	0.01	CTCAAC	GCTCAAGAAA				
	0.19	CTCAAG			0.12		GGTCATTAC
	0.03	CTCAAT	TCCAGAAGA				
	?	•••	TCCGAGAAA		0		TTTTTTTTT

How to Solve the Abundance Estimation Problem?

- \triangleright Majorization-Minimization (MM)
 - Find a tight local upper-bound at each iteration
 - Find the minimum value of the upper-bound
 - > Repeat until a convergence criteria is satisfied.

- \blacktriangleright Equal at that point: $f(x_k) = g(x_k)$
- \blacktriangleright Equality of gradients: $\nabla f(x_k) = \nabla g(x_k)$
- ightharpoonup Upper-bound: $f(x) \leq g(x) \quad \forall x \in D_f$
- ➤ Non-increasing sequence of points (why?)

How to Solve the Abundance Estimation Problem?

$$\hat{\rho}_{ML} = \underset{\rho}{\operatorname{argmin}} - \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \alpha_{ij} \rho_{j} \right)$$
 subject to $\rho \ge 0$, $\sum_{j=1}^{m} \rho_{j} = 1$

Minimizing a tight local upper-bound at each iteration:

$$\rho^{t+1} = \underset{\rho}{\operatorname{argmin}} - \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\alpha_{ij} \rho_{j}^{t}}{\sum_{j'=1}^{m} \alpha_{ij'} \rho_{j'}^{t}} \log \left(\frac{\rho_{j}}{\rho_{j}^{t}}\right) - \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \alpha_{ij} \rho_{j}\right)$$
subject to $\rho \geq 0$, $\sum_{j=1}^{m} \rho_{j} = 1$

> Lagrangian function:

$$L(\rho, \lambda) = -\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\alpha_{ij} \rho_{j}^{t}}{\sum_{j'=1}^{m} \alpha_{ij'} \rho_{j'}^{t}} \log \left(\frac{\rho_{j}}{\rho_{j}^{t}}\right) - \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \alpha_{ij} \rho_{j}\right) + \lambda \left(\sum_{j=1}^{m} \rho_{j} - 1\right)$$

> Dual Problem:

$$\max_{\lambda} \min_{\rho} L(\rho, \lambda)$$

How to Solve the Abundance Estimation Problem?

$$L(\rho, \lambda) = -\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\alpha_{ij} \rho_{j}^{t}}{\sum_{j'=1}^{m} \alpha_{ij'} \rho_{j'}^{t}} \log \left(\frac{\rho_{j}}{\rho_{j}^{t}}\right) - \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \alpha_{ij} \rho_{j}\right) + \lambda \left(\sum_{j=1}^{m} \rho_{j} - 1\right)$$

> Stationarity condition:

$$\nabla L_{\rho}(\rho,\lambda) = 0$$

$$-\sum_{i=1}^{n} \frac{\alpha_{ik} \rho_k^t}{\sum_{j'=1}^{m} \alpha_{ij'} \rho_{j'}^t} \frac{1}{\rho_k^*} + \lambda^* = 0, \quad \forall k = 1, \dots, m.$$

ightharpoonup Complementary slackness: $\lambda^*(\sum_{k=0}^m \rho_k^* - 1) = 0$

ightharpoonup Thus: $\lambda^*=n$

 $\rho_k^{t+1} = \frac{1}{n} \sum_{i=1}^n \frac{\alpha_{ik} \rho_k^t}{\sum_{j'=1}^m \alpha_{ij'} \rho_{j'}^t} \quad \forall k = 1, \dots, m.$

Add Sparsity Regularizer:

$$L(\rho, \lambda) = -\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\alpha_{ij} \rho_{j}^{t}}{\sum_{j'=1}^{m} \alpha_{ij'} \rho_{j'}^{t}} \log \left(\frac{\rho_{j}}{\rho_{j}^{t}}\right) - \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \alpha_{ij} \rho_{j}\right) + \lambda \left(\sum_{j=1}^{m} \rho_{j} - 1\right)$$

- ightharpoonup For adding sparsity, we need to approximate ℓ_0 regularizer:
- \blacktriangleright Can we use ℓ_1 regularizer?
- > Thus:

$$\rho^{t+1} = \underset{\rho}{\operatorname{argmin}} - \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\alpha_{ij} \rho_{j}^{t}}{\sum_{j'=1}^{m} \alpha_{ij'} \rho_{j'}^{t}} \log \left(\frac{\rho_{j}}{\rho_{j}^{t}}\right) - \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \alpha_{ij} \rho_{j}\right)$$
subject to $\rho \geq 0$, $\|\rho\|_{q} \leq 1$

> Update rule:

$$\rho_k^{t+1} = \left(\frac{1}{n} \sum_{i=1}^n \frac{\alpha_{ik} \rho_k^t}{\sum_{j'=1}^m \alpha_{ij'} \rho_{j'}^t}\right)^{\frac{1}{q}}, \quad \forall k = 1, \dots, m.$$

Parallelization:

- Assume that the reads are distributed over different cores:
 - > Updating the abundances for each core:

$$\rho_j^l \leftarrow \frac{1}{n} \sum_{i \in R_l} \frac{\alpha_{ij} \rho_j}{\sum_{k=1}^m \alpha_{ik} \rho_k} \quad \forall j = 1, \dots, m,$$

Aggregating the computed abundances:

$$\rho_j \leftarrow \left(\sum_{l=1}^c \rho_j^l\right)^{\frac{1}{q}} \quad \forall j = 1, \dots, m.$$

Pre-clustering Module:

- \triangleright O(NL min{C, m})
 - N: Number of Reads
 - L: Maximum Length of the reads
 - m: Number of Transcripts
 - C: Number of comparisons per read at each iteration

How to Improve it?

➤ Pre-clustering the reads

How to Do Pre-clustering Efficiently:

- > Reduce the dimension of the reads with a hash function called MinHash:
 - > Project the reads to a lower dimension space
 - The distance between the reads are preserved with high probability.
 - ➤ Needs O(NL) operations.
 - Some of the detected candidate pairs are false positive.

Pre-clustering Module:

- > K-mer representation
- Min Hash: A hash function for transformation of data
 - > Reduce the dimension (length) of the reads
 - Preserve the Jaccard similarity between the reads
 - > Determine the candidate pairs in O(NL)
 - Some of the candidate pairs are false positive.

sequence ATGGAAGTCGCGGAATC

7mers

@dataaspirant.com

@dataaspirant.com

Connection of Jaccard Similarity and MinHash:

- It is easy to show that the probability of having equal MinHash with respect to a permutation for two given k-mer sets is their Jaccard similarity.
- Number of matches between two MinHash signatures with length h:
 - \triangleright A binomial distribution with h trials
 - ➤ What is the expectation of number of matches?
 - ➤ What is the variance of number of matches?
- > LSH: probability of mapping to the same bucket with
 - **b** bands
 - \triangleright d rows

Connection of Jaccard Similarity and MinHash:

- Figure 3. Generating a training dataset by imitating the sequencing procedure.
- > Training a Convolutional Neural Network using generated dataset.
- ➤ Validating Candidate Pairs to eliminate false positives.

Layer	Input	Filter Size	Filters	Stride	Activation
Convolution 1	8X400	8X8	32	1	Relu
Max Pool 1	8X400X32	2X2	-	2	-
Convolution 2	8X100X32	5X5	64	1	Relu
Max Pool 2	8X100X64	2X2	-	2	-
Fully connected 1	4X50X64		50		Relu
Fully connected 2	50		1		Linear

Results:

➤ Recovery accuracy on SIRV datasets:

	SIRV1		SIRV2			SIRV3			SIRV4			
	Recall	Precision	F-score									
I-CONVEX	95.65%	27.61%	0.42	95.65%	21.29%	0.34	95.65%	16.25%	0.27	88.40%	15.13%	0.25
ICE	97.10%	7.46%	0.13	95.65%	5.11%	0.09	94.20%	9.48%	0.17	79.71%	7.23%	0.13
IsoCon	95.65%	14.60%	0.25	97.10%	11.71%	0.20	97.10%	9.43%	0.17	92.75%	9.07%	0.16

> Recovery accuracy on synthetic datasets:

	200K			400K			1M			
	Recall	Precision	F-score	Recall	Precision	F-score	Recall	Precision	F-score	
I-CONVEX	93.4 %	96.88 %	0.95	97.0 %	99.18 %	0.98	97.0 %	98.18 %	0.98	
ICE	74.2 %	8.68 %	0.15	80.6 %	5.92 %	0.11	No Results After Two Days			
IsoCon	98.4 %	75.11 %	0.85	98.8 %	51.94 %	0.68				

Time Comparison:

Time comparison of I-CONVEX on real and synthetic datasets:

Potential Challenges:

> Can we use neural networks for hashing sequences?

- > Sample complexity: How many samples we need to recover transcripts?
 - > Lower-bound: proved by information theory tools (Fano's inequality)
 - > I-CONVEX: can recover transcripts with minimal number of samples (in progress ...)

Cao, Zhangjie, et al. "Hashnet: Deep learning to hash by continuation." Proceedings of the IEEE international conference on computer vision. 2017.

References (Long-read Sequencing):

- Roberts, Adam, and Lior Pachter. "Streaming fragment assignment for real-time analysis of sequencing experiments." *Nature methods* 10.1 (2013): 71-73.
- Rajaraman, Anand, and Jeffrey David Ullman. *Mining of massive datasets*. Cambridge University Press, 2011.
- Kannan, Sreeram, et al. "Shannon: an information-optimal de Novo RNA-Seq assembler." *BioRxiv* (2016): 039230.
- Amarasinghe, Shanika L., et al. "Opportunities and challenges in long-read sequencing data analysis." *Genome biology* 21.1 (2020): 1-16.

References (Optimization):

- Nesterov, Yurii. *Introductory lectures on convex optimization: A basic course*. Vol. 87. Springer Science & Business Media, 2013.
- Eneronal, Aharon, and Arkadi Nemirovski. *Lectures on modern convex optimization: analysis, algorithms, and engineering applications*. Society for industrial and applied mathematics, 2001.
- Hong, M., Razaviyayn, M., Luo, Z. Q., & Pang, J. S. (2015). A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing. *IEEE Signal Processing Magazine*, 33(1), 57-77
- Nouiehed, Maher, Jong-Shi Pang, and Meisam Razaviyayn. "On the pervasiveness of difference-convexity in optimization and statistics." *Mathematical Programming* 174.1-2 (2019): 195-222
- Baharlouei, S., Nouiehed, M., Beirami, A., & Razaviyayn, M. R\'enyi Fair Inference. *International Conference on Learning Representations (ICLR), 2020.*