Tutorial for using TRAP web application

1. Choose whether to use pathogenic vs. self-antigen model

TRAP: Deep learning platform for CD8+ T-cell epitope prediction

The pathogenic model predicts the immunogenicity of peptides derived from bacteria, viruses, or other pathogens. In contrast, the self-antigen model is intended to predict the immunogenicity of self-peptides in the context of cancer, autoimmunity, or other peptides derived from humans.

2. Insert test dataset

TRAP: Deep learning platform for CD8+ T-cell epitope prediction

The minimal requirements of the test dataset include: 1) peptide sequences, and 2) their -log transformed NetMHCpan4.1 rank score for HLA alleles of interest. Please use the same column names as shown in the example dataset below.

Example input dataset:

Peptide	nlog2Rank				
AAIESFVSV	1.493296513				
ALAGGLYEY	-0.722728309				
ALFCHQYDI	0.199089749				
ALGALLILQL	-0.725348533				
ALKSDFKLV	-0.480885503				
ALQEEQNIL	0.982505621				
ALQQLTTHM	0.050203631				

3. Easy! The TRAP application will predict and plot results using pre-trained models!

TRAP: Deep learning platform for CD8+ T-cell epitope prediction

Making predictions...

gbm_example_test_data.csv

	EXPORT					
Peptide		otide	nlog2Rank	TRAP	MCDropout	Confidence
	VLLY	CIAAL	-0.614	0.99988	6.58	0.871
	TLCV	ADFGL	-0.404	0.99987	5.362	0.834
	YLDA	TFSPCL	-0.019	0.99985	6.662	0.874
	ILFQC	MPVPV	-0.568	0.99981	7.448	0.897
	ALFC	HQYDI	0.199	0.99947	2.636	0.753
	WLSE	DEIML	4.658	0.99886	5.756	0.846
	FLLIC	GLQQV	0.907	0.99786	5.844	0.849