

Being competitive from the perspectives of company and driver

Business Problem

- Predicting trip price to remain competitive amongst ride-share companies
- Estimating Uber drivers upcoming trip duration to help them better manage their schedule

Analyzing variability of price

Main factors affecting price

Solution

Multi-Linear Regression Model

- Input features
 - Day of the Week
 - Hour of the Day
 - Trip Distance
 - Trip Duration

- Output
 - Fare Amount

- Training Data
 - January

- Testing Data
 - February

Results

- Mean absolute error: 7.6e-7
- Mean square error: 1.2e-6

Trip Duration Estimation

- Datasets: Weather and Trip Data
- Period: January 2018 December 2018
- Merge two datasets based on Date
- Calculate Duration for each trip
- Retrieve Time Details into 3 new features
- 8759874 Trips in January 2018

MonthDayNum	DayOfWeekNum	pickup_time
1	0 Sunday	00:21:05
1	0	00:44:55
1	0	00:08:26
1	0	00:20:22
1	0	00:09:18

Multi-Linear Regression Model

- Training Feature
 - Trip_distance, Passenger_count
 - Weather (AWND, PRCP, SNOW, SNWD, TMAX, TMIN)
- Target Feature
 - Duration
- Training dataset January 2018 / Testing dataset February 2018
- Mean Absolute Error (MAE)
 - 7.353581824993934e-05
- Root Mean Square Error (RMSE)
 - 0.00044689055700656904

Estimate Duration Result

```
# Customize ['trip distance', 'passenger count', 'DayOfWeekNum', 'AWND', 'PRCP', 'SNOW', 'TMAX', 'TMIN']
x 1 = [[5, 3.0, 6, 7.83, 5.0, 3.0, 22.0, 13.0]]
y 1 = model.predict(x 1)
print(y 1)
[[1237.54185227]]
# Customize ['trip distance', 'passenger count', 'DayOfWeekNum', 'AWND', 'PRCP', 'SNOW', 'TMAX', 'TMIN']
x 1 = [[10, 1.0, 3, 7.83, 3.0, 1.0, 15.0, 4.0]]
y 1 = model.predict(x 1)
print(y 1)
[[1062.98795181]]
# Customize ['trip distance', 'passenger count', 'DayOfWeekNum', 'AWND', 'PRCP', 'SNOW', 'TMAX', 'TMIN']
x 1 = [[1.4, 3.0, 6, 7.83, 0.0, 2.0, 22.0, 13.0]]
y 1 = model.predict(x 1)
print(y 1)
[[976.36505681]]
```


Thank You