WYKŁAD II: Klasyfikacja logistyczna

MiNI PW, semestr letni 2013/2014

Rozpatrywane dotąd metody klasyfikacji:

- LDA Fishera (liniowa reguła klasyfikacyjna);
- Reguła Bayesowska (jej wersja empiryczna dla rozkładów normalnych ze wspólną macierzą Σ pokrywa się z LDA).

Inne metody liniowe?
Klasyfikacja logistyczna oparta na modelu regresji logistycznej.
Jedno z zastosowań: reklamy pojawiające się na stronie są dobierane na podstawie modelu regresji logistycznej/probitowej gdzie zmiennymi objaśniajacymi są słowa kluczowe.

Regresja logistyczna

Bardzo częsta sytuacja: odpowiedź Y jest zerojedynkowa, chcemy stwierdzić, jak zależy od wektora zmiennych objaśniających \mathbf{x} . Najczęstsza sytuacja Y: 'sukces' (figuratywnie pojmowany) lub 'porażka' Z reguły nie stosujemy bezpośrednio modelu regresji liniowej (Y w modelu regresji liniowej jest cechą ilościową): problem estymacji prawd. aposteriori, maskowania się klas.

$$P(Y = 1|\mathbf{x}) = \pi(\mathbf{x}) = E(Y|\mathbf{x}) \quad \mathbf{x} \in R^p$$

 $\pi(\mathbf{x})$ – modelujemy zależność π od \mathbf{x} , a nie Y od \mathbf{x} . Regresja logistyczna

$$\pi(\mathbf{x}) = \frac{\exp(\beta'\mathbf{x})}{1 + \exp(\beta'\mathbf{x})} = \frac{1}{1 + \exp(-\beta'\mathbf{x})}$$

Niech p=1 i $\beta=s$, popatrzmy na zachowanie się funkcji $1/(1+\exp(-sx))$

Dla małych s główna część krzywej w przybliżeniu liniowa, dla dużych s - indykator zbioru $(0,\infty)$.

Dlaczego taka funkcja? Dowolna dająca $0 \le \pi(\mathbf{x}) \le 1$ jest dobra. Ale ..

$$\operatorname{logit}(\pi(\mathbf{x})) := \operatorname{log}(rac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}) = eta'\mathbf{x},$$

logarytm szansy (szansa (odds): $\pi/(1-\pi)$) jest kombinacją liniową predyktorów.

Mamy zatem (dla $\mathbf{x} = (1, x)'$)

$$logit(\pi(x+1)) - logit(\pi(x)) = \beta_0 + \beta_1(x+1) - (\beta_0 + \beta_1 x) = \beta_1$$

$$\exp(\beta_1) = \frac{\pi(x+1)}{1 - \pi(x+1)} \left(\frac{\pi(x)}{1 - \pi(x)}\right)^{-1}$$

 $\exp(\beta_1)$ jest równa ilorazowi szans.

Estymacja $oldsymbol{eta}$

Założenia:
$$Y_1, Y_2, \ldots, Y_n$$
 – niezależne, $Y_i \sim \textit{Bin}(1, \pi(\mathbf{x}_i))$

$$f_{i}(Y_{i}) = \pi_{i}^{Y_{i}} (1 - \pi_{i})^{1 - Y_{i}}$$

$$\prod_{i=1}^{n} f_{i}(Y_{i}) = \prod_{i=1}^{n} \pi_{i}^{Y_{i}} (1 - \pi_{i})^{1 - Y_{i}} =: L$$

$$\mathcal{L} = \log L = \sum_{i=1}^{n} Y_{i} \log(\frac{\pi_{i}}{1 - \pi_{i}}) + \sum_{i=1}^{n} \log(1 - \pi_{i}) = \sum_{i=1}^{n} Y_{i} \beta' \mathbf{x}_{i} - \sum_{i=1}^{n} \log\{1 + \exp(\beta' \mathbf{x}_{i})\}$$

Iteracyjne szukanie 0 pochodnej $\mathcal L$ metodą Raphsona–Newtona.

Inne możliwości: inaczej modelowana zależność $\pi(\mathbf{x})$ od \mathbf{x} . Regresja probitowa:

$$\Phi^{-1}(\pi(\mathbf{x})) = \boldsymbol{\beta}'\mathbf{x}$$

 Φ – dystrybuanta N(0,1).

Zbior danych bliss dane dotyczący skuteczności środka owadobójczego. Dopasowanie modelu regresji logistycznej procedura **glm**, opcja family="binomial".


```
dead alive conc
1
    2
         28
2
 8 22
3
  15 15
4 23 7
5
          3
  27
g <- glm(cbind(dead,alive) ~ conc, family=binomial, data=bliss)
gp <- glm(cbind(dead,alive) ~ conc, family=binomial(link=probit),</pre>
data=bliss)
pl= g$fit
                        3
  1
                                             5
0.08917177 0.23832314 0.50000000 0.76167686 0.91082823
ilogit(g$coef[1]+g$coef[2]*bliss$conc) # otrzymujemy to samo
pp=gp$fit
x \leftarrow seq(-2,8,0.2)
plot(x,pl,type="l",ylab="Probability",xlab="Dose")
lines(x,pp,lty=2)
```


Praktycznie bez różnicy dopasowania, poza ogonami.

Odchylenie modelu od modelu, testy istotności współczynników

Niech ω będzie modelem regresji logistycznej o zmiennych x_1,\ldots,x_q . $\omega\subset\Omega,~\Omega$ - większy model zawierający dodatkowo zmienne x_{q+1},\ldots,x_p . Chcemy testować hipotezę, czy zmienne x_{q+1},\ldots,x_p wnoszą istotną wiedzę do modelu.

 H_0 : ω (model ω jest adekwatny)

przeciwko

 H_1 : Ω (model Ω jest adekwatny, a ω nie jest).

Testowanie hipotezy opiera się o statystykę odchylenia modelu Ω od ω wynoszącą

$$D_{\omega,\Omega} = 2 \ln \left\{ rac{L(\hat{eta}^{\Omega})}{(L(\hat{eta}^{\omega})}
ight\} \geqslant 0,$$

gdzie $L(\hat{\beta}^\Omega)$ jest funkcją wiarogodności policzoną w estymatorze największej wiarogodności w modelu Ω .

<u>Fakt</u> Przy spełnieniu hipotezy H_0 zmienna D ma dla dużych liczności próby rozkład χ^2 z p-q stopniami swobody.

Typowe zastosowania:

- Istotność zestawu zmiennych: $\omega: y \sim 1, \Omega: y \sim x_1 + \ldots + x_p$.
- Istotność pojedynczej zmiennej dodanej do modelu:

$$\omega : y \sim x_1 + \ldots + x_q, \ \Omega : y \sim x_1 + \ldots + x_{q+1}.$$

Sprawdźmy, czy zmienna conc istotnie wpływa na prawdopodobieństwo, że środek jest skuteczny. Wystarczy odwołać się do obiektu g i wywołać jego statystyki zbiorcze (summary).

```
> summary(g)
Call:
glm(formula = cbind(dead, alive) ~ conc, family = binomial,
data = bliss)
Coefficients:
         Estimate Std. Error z value Pr(>|z|)
1.1619 0.1814 6.405 1.51e-10 ***
conc
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Null deviance: 64.76327 on 4 degrees of freedom Residual deviance: 0.37875 on 3 degrees of freedom ATC: 20.854

Odchylenie obliczamy jako różnicę między null deviance i residual deviance, D = 64.7 - 0.4 = 64.3, wieksze od kwantyla $q_{0.01}$ rozkładu χ^2 z jednym stopniem swobody (= 6.63). Odrzucamy hipotezę o nieistotności zmiennej conc. Sprawdźmy jeszcze, czy do modelu warto dołączyć kwadrat tej zmiennej.

```
g2 <- glm(cbind(dead,alive) ~ conc +I(conc^2), family=binomial,
data=bliss)
> summary(g2)
Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.49589 0.59869 -4.169 3.06e-05 ***
conc 1.41018 0.61696 2.286 0.0223 *
I(conc<sup>2</sup>) -0.06117 0.14319 -0.427 0.6692
```

Null deviance: 64.76327 on 4 degrees of freedom Residual deviance: 0.19549 on 2 degrees of freedom

Odchylenie modelu z dwiema zmiennymi od modelu z jedną zmienną liczymy jako różnicę odchyleń resztowych (D=0.38-0.20=0.18), wartość jest nieistotna przy porównaniu z kwantylem rozkładu chi kwadrat z jednym stopniem swobody. Oba wyniki potwierdzane przez statystykę Walda $t=\hat{\beta}/SE(\hat{\beta})$ (wartość z-value, trzecia kolumna zbioru wynikowego).

 $\underline{\text{Uwaga}}$ Wartość residual deviance jest odchyleniem między rozpatrywanym modelem a tzw. modelem nasyconym, w którym liczba parametrów jest równa liczbie obserwacji. Residual deviance jest czasami wykorzystywana do testowania adekwatności modelu w schemacie $H_0: \omega$ vs $H_1: \Omega_{nasycony}$.

Statystyka D ma w przybliżeniu rozkład chi kwadrat z n-p stopniami swobody, ale tylko dla danych grupowanych, takich jak dane bliss, gdy liczba obserwacji dla ustalonej wartości zmiennych wynosi co najmniej 5.

Uogólnienie na $g \geqslant 2$.

Wbieramy populację referencyjną np. ostatnią (o numerze g)

$$\log rac{
ho(1|\mathbf{x})}{
ho(g|\mathbf{x})} = eta_1'\mathbf{x}$$

$$\log \frac{p(2|\mathbf{x})}{p(g|\mathbf{x})} = \beta_2' \mathbf{x}$$

$$\log \frac{p(g-1|\mathbf{x})}{p(g|\mathbf{x})} = \beta_{g-1}'\mathbf{x}$$

$$eta_i' = (eta_{i0}, eta_{i1}, \dots, eta_{ip})'$$

Nieznane parametry: $eta_1', \dots, eta_{g-1}' \in R^{p+1}$, łacznie $(g-1)(p+1)$ parametrów jednowymiarowych.

Uwaga W pakiecie R jako populacja referencyjna wybierana jest ta, której nazwa jest pierwsza w porządku leksykograficznym.

Estymacja parametrów metodą NW: $\hat{\boldsymbol{\beta}}_1,\dots,\hat{\boldsymbol{\beta}}_{g-1}\longrightarrow\hat{p}(1|\mathbf{x}),\dots,\hat{p}(g|\mathbf{x})$

$$\hat{p}(k|\mathbf{x}) = \frac{\exp(\hat{\boldsymbol{\beta}}_k'\mathbf{x})}{1 + \sum_{i=1}^{g-1} \exp(\hat{\boldsymbol{\beta}}_i'\mathbf{x})} \quad k = 1, \dots, g-1$$

$$\hat{p}(g|\mathbf{x}) = \frac{1}{1 + \sum_{i=1}^{g-1} \exp(\hat{\boldsymbol{\beta}}_i'\mathbf{x})}$$

Reguła dyskryminacyjna

Reguła bayesowska oparta na estymatorach otrzymanych w modelu logistycznym:

Klasyfikuj do populacji
$$I$$
 gdzie $I = \underset{i}{\operatorname{argmax}} \hat{p}(i|\mathbf{x})$

Zauważmy, że w modelu logistycznym w naturalny sposób otrzymujemy oszacowania interesujących prawdopodobieństw aposteriori i nie ma potrzeby oddzielnej estymacji π_i i p(x|i).

Nota bene

Jeśli $p(\mathbf{x}|i)$: gęstość rozkładu $N(\mathbf{m}_i, \Sigma)$ $i=1,\ldots,k$. to

$$\log \frac{p(k|\mathbf{x})}{p(g|\mathbf{x})} = \frac{1}{2}(\mathbf{x} - \mathbf{m}_g)' \Sigma^{-1}(\mathbf{x} - \mathbf{m}_g) - \frac{1}{2}(\mathbf{x} - \mathbf{m}_k)' \Sigma^{-1}(\mathbf{x} - \mathbf{m}_g) + \log \frac{\pi_k}{\pi_g} = \frac{1}{2}(\mathbf{m}_k - \mathbf{m}_g)' \Sigma^{-1} \mathbf{x} - \frac{1}{2}(\mathbf{m}_k + \mathbf{m}_g)' \Sigma^{-1}(\mathbf{m}_k - \mathbf{m}_g) + \log \frac{\pi_k}{\pi_g}$$

ma postać $\beta'_k \mathbf{x}$.

Ta zależność była również wykorzystywana w metodzie LDA.

Czym zatem różnią się te dwie metody?

Sposobem estymacji parametrów.

W regresji logistycznej maksymalizujemy (g=2)

$$L = \prod_{i=1}^{n} P(Y = 1 | X = \mathbf{x}_{i})^{y_{i}} (1 - P(Y = 1 | X = \mathbf{x}_{i}))^{1-y_{i}}$$

To jest <u>warunkowa</u> funkcja wiarogodności $p(y_1, ..., y_n | \mathbf{X} = \mathbf{x})$ wykorzystująca jedynie warunkowy rozkład Y pod warunkiem \mathbf{X} . (brzegowy rozkład \mathbf{X} nie odgrywa tu roli, nic o nim nie zakładamy!)

W przypadku LDA gęstość $p(\mathbf{X} = \mathbf{x}, Y = k)$ ma postać

$$p(\mathbf{x},k) = \phi(\mathbf{x},\boldsymbol{\mu}_k,\boldsymbol{\Sigma})\pi_k$$

Maksymalizacja pełnej funkcji wiarogodności o postaci

$$\tilde{L} = \prod_{i=1}^n p(\mathbf{x}_i, y_i)$$

prowadzi do rozpatrywanych poprzednio estymatorów

$$\hat{\mu}_i = \bar{\mathbf{x}}_i$$

$$\hat{\Sigma} = \frac{1}{n-g} \sum_{k=1}^g (n_k - 1) S_k$$

$$\hat{\pi}_i = \frac{n_i}{n}$$

Można spodziewać się, że regresja logistyczna nie jest tak czuła na duże odstępstwa od normalności i równość macierzy kowariancji jak LDA.

Wykres rozproszenia danych earthquake z obszarami klasyfikacji wyznaczonymi przy użyciu klasyfikacji logistycznej (linia ciągła) i LDA (linia przerywana).

Dane earthquake

Dopasujemy model logistyczny popn \sim body + surface. Tworzymy nową ramkę danych z zero-jedynkową zmienną y zamiast popn. Dla dopasowania modelu logistycznego y \sim body + surface wykorzystywana funkcja glm.

glm (skrót od *generalized linear model*) pozwala na dopasowanie modelu z klasy uogólnionych modeli liniowych.

Opcja family=binomial specyfikuje model logistyczny.

```
earthquake = read.table("earthquake.txt", header=TRUE)
equake = data.frame(y=ifelse(earthquake$popn=="equake", 0, 1),
body=earthquake$body, surface=earthquake$surface)
g2 = glm(y~ body + surface, data=equake, family=binomial)
```


Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1151.09 1000874.08 -0.001 0.999
body 276.21 190711.00 0.001 0.999
surface -98.01 118520.53 -0.001 0.999
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3.5924e+01 on 28 degrees of freedom Residual deviance: 3.7043e-09 on 26 degrees of freedom AIC: 6

Wartość odchylenia resztowego (residual deviance) jest bardzo mała i wskazuje na bardzo dobre dopasowanie, gdy jednocześnie wyniki testu t mówią o nieistotności obu zmiennych. Taka paradoksalna sytuacja występuje często przy liniowej separowalności klas, gdy estymatory współczynników w modelu regresji logistycznej i ich błędy standardowe zachowują się niestabilnie ($p(1|\mathbf{x}_i) \approx 1,0,\ i=1,\ldots,n \Rightarrow ||\hat{\beta}||$ -duża).

Tabelka i procent poprawnych reklasyfikacji.

```
Ypred =ifelse(g2$fitted.values < 0.5, 0, 1)
# klasyfikacja do klasy 1 dla prawd. aposteriori klasy 1 < 0,5.
print(kl =table(equake$y, Ypred))
print(procent= sum(diag(kl)) / sum(kl))
  Ypred
  0 20 0
  1 0 9
[1] 1
```

Działanie klasyfikatora logistycznego różni się od klasyfikatora LDA: pierwszy z nich klasyfikuje bezbłędnie wszystkie elementy próby uczącej (sytuacja liniowo separowalnych klas). *Nie* należy wyciągać stąd wniosku, że klasyfikator logistyczny będzie działał lepiej dla nowych obserwacji.

Dane urine, wybór zmiennych w klasyfikacji.

Zmienna presence jest zmienną grupującą, pozostałe atrybuty: wartości pomiarów fizyko-chemicznych moczu. Model logistyczny presence \sim sg+ph+mosm+mmho+urea+calcium

urine.glm=glm(presence ~ ., family = binomial, data = urine)

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -355.33771 222.76696 -1.595 0.11069
sg 355.94379 222.11004 1.603 0.10903
ph -0.49570 0.56976 -0.870 0.38429
mosm 0.01681 0.01782 0.944 0.34536
mmho -0.43282 0.25123 -1.723 0.08493
urea -0.03201 0.01612 -1.986 0.04703
calcium 0.78369 0.24216 3.236 0.00121
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 105.17 on 76 degrees of freedom Residual deviance: 57.56 on 70 degrees of freedom

AIC: 71.56

$$Dev_{null,\omega} = Dev_{null} - Dev_{resid}$$
.

Duża różnica odchylenia zerowego (null deviance) i resztowego (residual deviance) wskazuje na występowanie istotnych zmiennych w modelu, odpowiednia *p*-wartość, uzyskana na podstawie rozkładu chi kwadrat z 6 stopniami swobody wynosi pchisq(105.17- 57.56,7-1,lower=F). i jest mniejsza od 0.001. Tabelka reklasyfikacji i procent poprawnej reklasyfikacji

kl 0 1 no 40 4 yes 8 25

[1] 0.8441558

Dokonajmy redukcji zmiennych w modelu metodą eliminacji wstecz, sprawdźmy, czy mniejszy model można uznać za adekwatny i jak wygląda reklasyfikacja.

```
\label{eq:urine.glm} \begin{split} & \text{urine.glm} = \text{glm} \big( \text{presence} \sim ., \ \text{data=urine, family=binomial} \big) \\ & \text{urine.step} = \text{step} \big( \text{urine.glm, direction="backward"} \big) \\ & \text{print} \big( \text{urine.step} \big) \end{split}
```

.

Coefficients:

(Intercept) sg mmho urea calcium -500.01090 497.12038 -0.20547 -0.01783 0.72232

Degrees of Freedom: 76 Total (i.e. Null); 72 Residual

Null Deviance: 105.2

Residual Deviance: 59.07 AIC: 69.07

Otrzymany podzbiór zmiennych objaśniających: calcium, mmho, sg, urea uzyskuje się również stosując metodę dołączania.

Przetestujmy teraz, czy model mniejszy jest adekwatny, przy użyciu statystyki równej różnicy odchyleń, która przy hipotezie H_0 (model mniejszy jest adekwatny) ma dla dużych liczności w przybliżeniu rozkład χ^2 z 7-5=2 stopniami swobody

```
Analysis of Deviance Table

Model 1: presence ~ sg + mmho + urea + calcium

Model 2: presence ~ sg + ph + mosm + mmho + urea + calcium

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 72 59.071

2 70 57.560 2 1.511 0.470
```

print(anova(u2.glm, u.glm, test="Chi"))

Porównując model mniejszy i większy nie odrzucamy hipotezy, że model mniejszy jest adekwatny. Dopasowujemy mniejszy model i przeprowadzamy reklasyfikację.

```
u2.glm = glm(presence \sim sg + mmho + urea + calcium, data=urine, family=binomial)
```

```
kl2
0 1
no 40 4
yes 8 25
```

[1] 0.8441558

Otrzymaliśmy dokładnie takie same wyniki reklasyfikacji, jak dla większego zbioru atrybutów.

Model proporcjonalnych szans

Przypuśćmy, że zmienna Y jest zmienną nominalną o g uporządkowanych kategoriach (np. kategorie wiekowe, kategorie klienta: spłaty terminowe, spłaty z opóźnieniem, brak spłat). Informacja o uporządkowaniu klas powinna być wykorzystana w modelu. Oznaczmy kategorie jako $1,2,\ldots,g$. W modelu proporcjonalnych szans dla $j=1,2,\ldots,g-1$

$$\log \frac{Pr(y \le j|\mathbf{x})}{1 - Pr(y \le j|\mathbf{x})} = \alpha_j - \beta' \mathbf{x}, \qquad (\star)$$

gdzie $\mathbf{x}=(x_1,\ldots,x_p)'$ jest wektorem predyktorów. Funkcja logitowa $\log(p/(1-p))\uparrow$ dla $p\uparrow$ i $Pr(y\leqslant j|x)\uparrow$ gdy $j\uparrow\Rightarrow\alpha_1\leqslant\alpha_2\cdots\leqslant\alpha_{g-1}.$ Dla ustalonego j model (\star) jest modelem logistycznej regresji dla odpowiedzi binarnej 1 gdy $\{y\leqslant j\}$, i 0 gdy $\{y>j\}.$ Dla g=2 otrzymujemy model regresji logistycznej.

Waz ze zmianą j in (\star) wyraz wolny α_j się zmienia, podczas gdy wektor β pozostaje taki sam. Dla $\gamma_j(\mathbf{x}) = Pr(y \leqslant j|\mathbf{x})$ założenie modelowe oznacza, że funkcja $\gamma_j(\cdot)$ jest przesunięciem funkcji $\gamma_k(\cdot)$. Mianowicie, np. dla jednowymiarowego predyktora mamy

$$\gamma_k(x) = \frac{\exp(\alpha_j - \beta(x - (\alpha_k - \alpha_j)/\beta))}{1 + \exp(\alpha_j - \beta(x - (\alpha_k - \alpha_j)/\beta))} = \frac{\gamma_j(x - (\alpha_k - \alpha_j)/\beta)}{\gamma_j(x - (\alpha_k - \alpha_j)/\beta)}$$

Х

Nazwa 'model proporcjonalnych szans' (proportional odds) związana z faktem, że założenie modelowe implikuje:

$$\frac{\gamma_i(\mathbf{x}_1)/(1-\gamma_i(\mathbf{x}_1))}{\gamma_i(\mathbf{x}_2)/(1-\gamma_i(\mathbf{x}_2))} = \exp(-\beta'(\mathbf{x}_1-\mathbf{x}_2)).$$

Tak więc powyższy iloraz szans nie zależy od i. Konwencja znków β : dla $x_1 < x_2$ przy $\beta > 0$ chcemy, aby powyższy stosunek był > 1 (Uwaga: procedura GENMOD (SAS) używa β zamiast $-\beta$ w (\star).

Parametry modelu estymowane przy użyciu metody największej wiarogodności.

Procedury: polr w R i Genmod w SAS.

Inne modele: model proporcjonalnych hazardów

$$\log(-\log(1-\gamma_j(\mathbf{x})) = \alpha_j + \beta'\mathbf{x}$$

Założenie implikuje, że $P(Y > j | \mathbf{x}_1) = P(Y > j | \mathbf{x}_2)^{\exp(\beta'(\mathbf{x}_1 - \mathbf{x}_2))}$.

Inne metody dyskryminacji liniowej:

- perceptron Rosenblatta (sieci neuronowe);
- metoda oparta na regresji wielowymiarowej.

Druga metoda:

etykieta klasy kodowana jest jako wektor g-wymiarowy

$$y = (y^{(1)}, \dots, y^{(g)})$$

dla klasy k, $y = (0, 0, \dots, 0, 1, 0, \dots, 0)$ (1 na k-tym miejscu)

X – macierz eksperymentu $n \times (p+1)$

Y – macierz odpowiedzi

$$\begin{pmatrix}
y_1^{(1)} & \cdots & y_1^{(g)} \\
\vdots & & \vdots \\
y_n^{(1)} & \cdots & y_n^{(g)}
\end{pmatrix}$$

Szukamy macierzy $\hat{\mathbf{B}}_{(p+1)\times g}$ minimalizującej

$$\sum_{i=1}^{n} ||y_i - [1, \mathbf{x}_i']\mathbf{B}||^2$$

– równoważne rozwiązaniu g problemów regresji wielokrotnej oddzielnie. Macierz $\hat{\mathbf{B}}$ składa się z kolumn parametrów dla kolejnych problemów regresji.

Okazuje się, że prognoza $\hat{y}(\mathbf{x}) = [1, \mathbf{x}']\mathbf{B}$ ma własność

$$\sum_{i=1}^n \hat{y}^{(k)}(\mathsf{x}) = 1$$

Reguła klasyfikacyjna

$$\delta(\mathbf{x}) = \underset{k=1,2,...,g}{\operatorname{argmax}} \hat{y}^{(k)}(\mathbf{x})$$

Komentarz: $\delta(\cdot)$ dopuszcza uogólnienie nieliniowe – dyskryminacja giętka (flexible discrimination)

Kwestia skal pomiarowych atrybutów

Dotąd milcząco zakładaliśmy, że atrybuty przyjmują wartości rzeczywiste. Nie ma problemu dla zmiennych ilościowych dyskretnych ze stosowaniem LDA, dyskryminacji logistycznej, empirycznej metody bayesowskiej.

Wartości nominalne

x — przyjmuje r wartości i—ta wartość \longrightarrow $(0,0,\ldots,0,1,0,\ldots,0)'$ (1 na i—tym miejscu) musimy mieć dane zawierające obserwacje dla każdego układu atrybutów, aby metoda była stabilna

wartości nominalne na skali porządkowej: metoda *ad hoc*

$$i$$
—ta wartość $\longrightarrow (i-1)/n$

Inna metoda postępowania dla atrybutów nominalnych oparta na naiwnej metodzie bayesowskiej (zakładającej niezależność atrybutów)

$$\frac{p(2|\mathbf{x})}{p(1|\mathbf{x})} = \frac{\pi_2}{\pi_1} \frac{p(\mathbf{x}|2)}{p(\mathbf{x}|1)} = \frac{\pi_2}{\pi_1} \prod_{i=1}^{p} \frac{p(x^{(i)}|2)}{p(x^{(i)}|1)}$$

$$\mathbf{x} = (x^{(1)}, \dots, x^{(p)})'$$

$$\log \frac{p(2|\mathbf{x})}{p(1|\mathbf{x})} = \log \frac{\pi_2}{\pi_1} + \sum_{i=1}^{p} \log \frac{p(x^{(i)}|2)}{p(x^{(i)}|1)}$$

atrybut $\mathbf{x}^{(i)}$ – poziomy $l=1,\ldots,m_i$

$$\hat{P}(\mathbf{x}^{(i)} = I|k) = \frac{n_{ik}(I)}{n_k}$$

 $n_{ik}(I)$ – # elementów klasy k, dla których i-ty atrybut jest równy I

$$\frac{p(\mathbf{x}^{(i)} = I|2)}{p(\mathbf{x}^{(i)} = I|1)} \text{ estymujemy przez } \frac{n_{i2}(I)}{n_{i1}(I)} \cdot \frac{n_1}{n_2}$$

Uwaga Naiwna metoda bayesowska działa często dobrze nawet w przypadku, gdy atrybuty są zależne!