Técnicas de acceso al medio

Motivación

- Recursos escasos en un sistema de telecomunicación
 - Ancho de banda
 - Potencia
 - Número de portadoras disponibles
- ¿Qué se hace cuando varios usuarios quieren acceder a estos recursos?
 - Dividir y asignar dichos recursos
 - Frecuencia
 - Tiempo
 - Código

Varias aproximaciones

- MAC (Multiple-Access Channel)
 - Ej.: GSM, Wi-Fi

- BC (Broadcast Channel)
 - Ej.: Radio, TV

- IC (Interference Channel)
 - Ej.: Redes militares

Intuitivamente

A cada usuario se le asigna una frecuencia **FDMA**

A cada usuario se le asigna un slot de tiempo **TDMA**

A cada usuario se le asigna un código CDMA

Si vemos la telefonía móvil...

• 1G: FDMA

• 2.xG: TDMA (con alguna variación)

• 3.xG: CDMA

• **4G**: OFDMA + MIMO

• 5G: NOMA

FDMA

Frequency Division Multiple Access)

FDMA – Full Duplex

FDMA - Ventajas e inconvenientes

Ventajas:

- Compatibles con modulaciones analógicas y digitales
- Implementación muy sencilla

Inconvenientes:

- No aprovecha bien el espectro disponible (en comparación con TDMA y CDMA)
- Es un sistema rígido
- Posible interferencia entre subcanales

Aplicaciones:

- FM comercial: BW=150kHz, guarda de 25kHz
- Fibra óptica

TDMA

(Time Division Multiple Access)

• TDMA: Time Division Multiple Access

TDMA – Parámetros importantes

- B_{TRAMA} , T_{TRAMA} : No de bits y duración de la trama
- N: Nº de slots por trama
- B_{SLOT} : No de bits en cada slot
- B_{BURST} : Nº de bits de información por burst:
 - $B_{BURST} = B_{SLOT} G$
- *H*: Bits de Overhead por slots
- G: Bits/Tiempo de guarda

Ejemplo: GSM (I)

156,25 bits = 148 + 8,25 $576,92 \mu s = 546,12 + 30,80$

Ejemplo: GSM (II)

- $B_{SLOT} = 156,25 \ bits$
- $B_{BURST} = 148 \ bits$
- $H = 34 \ bits$
- $G = 8,25 \ bits$
- $T_{SLOT} = 576,92 \,\mu s$
- $T_{BURST} = 546,12 \,\mu s$
- $T_{TRAMA} = 4,615 ms$

$$C = \frac{B_{BURST}}{T_{BURST}} = \frac{148}{546,12} = 271 \text{ kbps}$$

$$R_{b_U} = \frac{B_{BURST} - H}{T_{TRAMA}} = \frac{114}{4,615ms} = 24,7 \text{ kbps}$$

Ejemplo: Enlace ascendente PON

TDMA – Ventajas e inconvenientes

Ventajas:

- Versatilidad. Se pueden asignar más o menos slots a cada usuario
- Buen rendimiento espectral

Inconvenientes:

- Complejidad. Requiere sincronización estricta
- Limitada a sistemas digitales
- Aplicaciones:
 - Telefonía móvil 2.xG (en combinación con FDMA)

SDMA

(Spatial Division Multiple Access)

 Se utilizan antenas directivas para cubrir distintas zonas del espacio con distintos haces de radiación.

CDMA

(Code Division Multiple Access)

- Los usuarios transmiten simultáneamente y en las mismas frecuencias.
- ¿Cómo se separa cada comunicación?
 - Técnicas de espectro ensanchado (SS, Spread Spectrum):
 - DS: Direct Sequence
 - FH: Frequency Hoping
 - TH: Time Hoping

Técnicas DS (I)

 Cada usuario dispone de un código que utiliza para "codificar" la señal enviada:

Técnicas DS (II)

- Sólo aquellos usuarios con el código correcto podrán interpretar la señal recibida. Para el resto será indistinguible del ruido.
- La probabilidad de error para un sistema con M usuarios es:

$$P_e=Q\left(rac{1}{\sqrt{rac{M-1}{3P_g}+rac{N_0}{2E_b}}}
ight)$$
 Si no hay ruido
$$P_e=Q\left(\sqrt{rac{3P_g}{M-1}}
ight)$$

$$P_g = \frac{W_c}{W_x}$$
: ganancia del proceso

Problema cerca-lejos

- Es uno de los principales problemas de los sistemas CDMA.
- Caso típico: telefonía móvil
- Puede haber problemas al detectar una señal débil en presencia de otras de mayor potencia
- Solución: técnicas de control de potencia
- Ventaja adicional: ahorro de batería

Técnicas FH

- Surgieron en la II Guerra Mundial como técnicas para guiar torpedos sin poder ser detectados por el enemigo
- La señal va saltando de una frecuencia a otra siguiendo una secuencia pseudoaleatoria.

CDMA – Ventajas e inconvenientes

Ventajas:

- Señal transmitida con baja densidad espectral de potencia -> afecta poco a otros sistemas
- Privacidad
- No existen slots de transmisión
- Uso eficiente del espectro
- Disminución de problemas por multitrayecto -> Receptor RAKE

Inconvenientes:

- El rendimiento se degrada al aumentar los usuarios
- Problema de cerca-lejos

OFDMA

(Orthogonal Frequency Division Multiple Access)

• Los datos se reparten entre varias sub-portadoras ortogonales, equiespaciadas en frecuencia.

$$\int_0^T \cos(2\pi f_k t) \cos(2\pi f_i t) = 0 \quad \forall k \neq i$$

- Cada una de ellas funciona como un canal que transporta sus propios datos.
- Puede verse como una técnica de espectro ensanchado.

OFDMA

- ¿Cómo se aplica esta idea al acceso múltiple?
- Se asigna a cada usuario un cierto número de portadoras entre las que reparte el flujo total de datos
- Cada subflujo, modula a cada portadora.
- A cada usuario se le puede asignar, en cada slot de tiempo, un cierto número de portadoras ortogonales.

OFDMA (II)

• Ejemplo: espectro de 8 señales OFDM

OFDMA (III)

- Ventajas:
 - Se reduce el riesgo de interferencia entre subcanales
 - Robusto frente a multitrayecto
 - No es necesario utilizar filtros pasobanda como en FDMA
- Inconvenientes:
 - Es necesaria una sincronización estricta
- Aplicaciones:
 - Wi-Fi (IEEE 802.11)
 - WiMax (IEEE 802.16)

OFDMA (IV)

Alternativas:

- No asignar los pulsos de forma permanente. Técnicas CSMA/CD (Carrier Sense Multiple Access with Collision Detection) (e.g. Ethernet)
- Usar señales "casi" ortogonales -> Interferencia multiacceso (MAI)

OFDMA vs. FDMA

- OFDMA es más eficiente en ancho de banda
- OFDMA permite mayor velocidad de datos que FDMA
- OFDMA es **menos robusto** frente a interferencia multitrayecto.

OFDMA vs. CDMA

- En OFDMA la información se transmite utilizando varias **portadoras ortogonales**.
- En CDMA, todos los usuarios comparten frecuencias, y se utilizan códigos.
- CDMA permite comunicaciones más seguras en entornos ruidosos

NOMA

(NonOrthogonal Multiple Access)

NOMA vs OMA

- En OMA, cada frecuencia se asigna a un usuario, aunque tenga malas condiciones de canal -> Afecta a todo el sistema
 - NOMA comparte la misma frecuencia con todos los usuarios
- En OMA, los usuarios con mejores condiciones de canal tienen mayor prioridad -> Problema con conexiones masivas
 - NOMA proporciona mejores condiciones y menor latencia
- NOMA es prácticamente compatible con las arquitecturas actuales.

NOMA vs. OFDMA

