## **CHE261A Patent Application**

Applicant: QuantiVex

**Inventors: Arnav Harshit, Om Jee Singh** 

Chemical Formula: R-C6H4-SO3Na

Chemical Name: Linear Alkylbenzene Sulphonate (LABS)

**Process Title: EHS** 

### 1. Introduction

This report presents the Environmental, Health, and Safety (EHS) assessment of Linear Alkylbenzene Sulfonate (LABS) production. LABS is a key surfactant in household and industrial detergents. The assessment evaluates environmental impact, health hazards, safety measures, regulatory compliance, and mitigation strategies.

### 2. Waste Generation & Quantities

### **Waste Generated in LABS Production:**

### 1. Residual Sulfuric Acid (H<sub>2</sub>SO<sub>4</sub>):

- Generated during sulfonation.
- $\circ$  Quantity: ~0.01 0.02 kg per kg of LABS (since  $H_2SO_4$  content in the sulfonic acid product is 1-2%).

### 2. Unreacted Linear Alkylbenzene (LAB):

Quantity: ~0.01 kg per kg of LABS (since ~1% of unsulfonated matter remains).

### 3. Wastewater (Containing Neutralized Sulfonic Acid & Impurities):

- Generated during neutralization and washing processes
- Quantity: ~0.8 1.5 kg per kg of LABS.

## 4. Sulfur Oxides (SO<sub>2</sub>, SO<sub>3</sub>) Emissions:

- Generated during sulfonation using SO<sub>3</sub> gas.
- o Quantity: <0.05 kg per kg of LABS.

### 5. Volatile Organic Compounds (VOCs):

- o Includes benzene traces, aldehydes, and residual solvents.
- Quantity: ~0.01 kg per kg of LABS.

# 3. Regulatory Limits & Disposal Standards

| Waste Component       | Regulatory Limit (ppm) Disposal Method                     |                                   |  |
|-----------------------|------------------------------------------------------------|-----------------------------------|--|
| Sulfuric Acid (H₂SO₄) | <100 ppm in effluent                                       | Neutralization & Recycling        |  |
| LAB Residue           | Should not exceed 0.1% in final Recycle in process product |                                   |  |
| Wastewater BOD        | <30 ppm                                                    | Treatment via activated carbon    |  |
| SOx Emissions         | <500 mg/m <sup>3</sup> Scrubbing & Adsorption              |                                   |  |
| VOCs                  | <10 ppm                                                    | Adsorption on Activated<br>Carbon |  |

# 4. Waste Treatment & Zero Liquid Discharge Measures

### 4.1 Acid Neutralization & Recovery

#### **Process:**

- Residual sulfuric acid is neutralized using NaOH or Ca(OH)<sub>2</sub>.
- By-product (Na<sub>2</sub>SO<sub>4</sub> or CaSO<sub>4</sub>) is collected and used in the cement industry.

### **4.2 Water Treatment Process**

- **Primary Treatment:** Sedimentation & filtration to remove suspended solids.
- Secondary Treatment: Activated sludge process for organic compound removal.
- **Tertiary Treatment:** Reverse osmosis for achieving zero liquid discharge.

### 4.3 Gas Treatment for SOx & VOC Emissions

- **SOx Removal:** Scrubbers using lime slurry (Ca(OH)<sub>2</sub>) or ammonia (NH<sub>3</sub>).
- **VOC Control:** Activated carbon adsorption & biofiltration.

### Flowchart: Zero Liquid Discharge System

LABS Production → Wastewater Collection → Neutralization (NaOH) → Filtration →

Reverse Osmosis → Sludge Separation → Water Reuse → Zero Liquid Discharge

## **Processing Steps in LAB-LAS Production**



# 5. Health & Safety Concerns

## **5.1 Occupational Exposure Limits (OELs)**

| Chemical              | TWA(8hr) | STEL(15min) | Health Risks                                    |
|-----------------------|----------|-------------|-------------------------------------------------|
| Sulfuric Acid (H₂SO₄) | 1 mg/m³  | 3 mg/m³     | Skin & eye irritation, respiratory issues       |
| LAB Vapors            | 5 ppm    | 10 ppm      | Irritation, dizziness, long-term exposure risks |
| Benzene (Trace)       | 0.5 ppm  | 2.5 ppm     | Carcinogenic, bone marrow suppression           |
| VOCs (General)        | 50 ppm   | 100 ppm     | Neurological effects, respiratory issues        |

### 5.2 Personal Protective Equipment (PPE) Requirements

- **Eye Protection:** Chemical-resistant safety goggles with face shields.
- **Respiratory Protection:** N95 masks or respirators for airborne chemicals.
- **Skin Protection:** Chemical-resistant gloves & full-body PPE.
- Emergency Measures:
  - Eye wash stations and safety showers.
  - Fire extinguishers (CO<sub>2</sub>, foam type) in storage areas.

# 6. Risk Assessment & Mitigation

### **Hazard Identification & Control Measures:**

| Hazard            | Risk Level | Control Measure                       |
|-------------------|------------|---------------------------------------|
| Chemical Spillage | Medium     | Secondary containment & spill kits    |
| Acidic Vapors     | High       | Scrubber system & PPE                 |
| Fire/Explosion    | Medium     | Proper ventilation & ignition control |
| Waste Handling    | Medium     | Automated handling systems            |

# 7. Emergency Response Plan

## 7.1 Spill response Protocol

- Use **spill kits** for sulfuric acid and LAB containment.
- Isolate and neutralize acid spills using lime or soda ash.

## 7.2 Fire & Explosion Response

- Evacuation procedures and fire containment measures.
- Fire extinguishers and automated suppression systems in high-risk areas.

### 7.3 First Aid Measures

- Immediate washing for acid exposure.
- Oxygen therapy for VOC inhalation incidents.

## 8. Process Safety Measures

- **Hazardous Reaction Control**: Safe handling of sulfonation exothermic reactions.
- Pressure & Temperature Monitoring: Automated detection of pressure surges.
- Leak Detection Systems: Real-time monitoring of pipeline leaks.

# 9. Sustainability & Green Chemistry Approach

- Alternative Green Surfactants: Bio-based LABS alternatives to reduce environmental footprint.
- **Energy Optimization**: Waste heat recovery and renewable energy utilization.
- Carbon Footprint Reduction: Strategies to minimize greenhouse gas emissions.

# 10. Training & Compliance Audits

- **Employee Training Programs**: Ensuring workers understand EHS risks and mitigation.
- Regular Audits & Compliance Checks: Internal and third-party audits for regulatory adherence

## 11. Conclusion & Recommendations

- Adopt closed-loop wastewater treatment to achieve zero liquid discharge.
- Improve SOx & VOC mitigation by implementing multi-stage scrubbers.
- Strengthen workplace safety through real-time monitoring & PPE compliance.
- Comply with national & international safety standards for environmental impact reduction.

## References

- https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www .heraproject.com/files/HERA-LAS%2520revised%2520April%25202013%2520Final1.p df&ved=2ahUKEwivjo6p7aeMAxXLcGwGHYBkD34QFnoECAQQAQ&usg=AOvVaw3zET XHOXVXDXf0gB7mfbrk
- 2. Technical Analysis of LABS (2025).
- 3. Market & Patent Analysis for LABS (2025).

#### List the contributions of each author:

- Arnav Harshit led the EHS assessment, structured the report, and ensured regulatory compliance. He verified waste generation data and developed risk assessment and mitigation measures. He also outlined OELs, PPE requirements, and integrated sustainability strategies.
- Om Jee Singh conducted the literature review, identified separation processes, and researched scrubbing techniques for SO<sub>x</sub> and VOC control. He assisted in waste disposal planning, formulated training and compliance audits, and refined the risk assessment and emergency response plan.

### Sign the pdf and upload.

| Name          | Roll No | Signature      |
|---------------|---------|----------------|
| Nithin TM     | 230709  | Nith Pu        |
| Arnav Harshit | 230200  | Arnar hanshill |
| Om Jee Singh  | 230718  | Qva.           |