

Blatt 3: Funktionen

Mittelwert Ihrer Selbsteinschätzung:

- -1: "hab nicht mal die Aufgabe gelesen"
- 0: "weiß nicht wie ich anfangen soll"
- 1: "habe begonnen, bin dann aber hängen geblieben"
- 2: "konnte alles rechnen, bin aber unsicher, ob es stimmt"
- 3: "alles klar hier"

Definitionsbereich und Graphen von Funktionen

Aufgabe 1:_

Definitions- und Bildbereich

Geben Sie von den folgenden Funktionen f jeweils den Definitionsbereich ${\rm I\!D}_f$ an. Überlegen Sie sich anhand von Skizzen welches Bild von den jeweiligen Definitionsbereichen unter den entsprechendne Abbildungen f Sie erwarten.

$$(a) f(x) = x + 2$$

$$(b) f(x) = \sqrt{x}$$

(a)
$$f(x) = x + 2$$
 (b)
$$f(x) = \sqrt{x}$$

(c)
$$f(x) = \frac{1}{\sqrt{x+2}}$$
 (d)
$$f(x) = \ln x$$

$$(d) f(x) = \ln x$$

$$(e) f(x) = \frac{1}{\ln x}$$

(c)
$$f(x) = \frac{1}{\sqrt{x+2}}$$
 (d) $f(x) = \ln x$
(e) $f(x) = \frac{1}{\ln x}$ (f) $f(x) = \frac{\sqrt{x(4-x)}}{\log_2(|2x+3|-|x-5|)}$
(g) $f(x) = \tan x$ (h) $f(x) = \cot(x-\pi)$

$$(g) f(x) = \tan x$$

$$(h) f(x) = \cot(x - \pi)$$

Selbsteinschätzung:

Lösung auf Seite 8

Aufgabe 2:

Um eine reelle Zahl x in Vorzeichen, Vor- und Nachkommastellen aufzuteilen, werden die Funktionen "Signum" (Vorzeichen) und "Gaußklammer" (ganzer Teil, "Entier") durch

$$\operatorname{sig} x = \left\{ \begin{array}{ll} +1\,, & x > 0 \\ 0\,, & x = 0 \\ -1\,, & x < 0 \end{array} \right. \quad \text{und} \quad \lfloor x \rfloor = z \in \mathbb{Z}\,, \; z \leq x < z + 1$$

eingeführt. Skizzieren Sie die Graphen folgender Funktionen:

$$f(x) = \operatorname{sig} x$$

$$(b) f(x) = \lfloor x \rfloor$$

$$f(x) = \operatorname{sig} x$$
 (b) $f(x) = \lfloor x \rfloor$ (c) $f(x) = x - \lfloor x \rfloor$

$$(d) f(x) = \operatorname{sig}\lfloor |x| \rfloor$$

$$f(x) = \operatorname{sig}[|x|]$$
 (e) $f(x) = |x - \operatorname{sig}[|x|]|$

Selbsteinschätzung:

Lösung auf Seite 10

Aufgabe 3:_____e

Ordnen Sie Graphen und Funktionen einander zu:

Ordnen Sie Graphen und Funktionen einander zu:

Grenzwerte bestimmen / (hebbare) Unstetigkeitsstellen

Aufgabe 5: Verhalten im Unendlichen

Untersuchen Sie folgende Ausdrücke:

(a)
$$\lim_{x \to 2} x^3 - 2x + 4x^2 - 1$$
 (b) $\lim_{x \to \infty} \frac{x}{x^2}$

(c)
$$\lim_{x \to \infty} \frac{x^2}{x}$$
 (d)
$$\lim_{x \to \infty} \frac{2x}{x}$$
 (e)
$$\lim_{x \to \infty} \frac{x^2}{x}$$
 (f)
$$\lim_{x \to \infty} \frac{-2}{x}$$

(e)
$$\lim_{x \to -\infty} \frac{x^2}{x}$$
 (f)
$$\lim_{x \to \infty} \frac{-2x}{x}$$

(g)
$$\lim_{x \to \infty} \frac{2x^2 - 4}{(3x - 1)(x + 3)}$$
 (h)
$$\lim_{x \to \infty} \frac{x^3 - 4x^2}{(1 - x^2)2x}$$

Selbsteinschätzung:

Lösung auf Seite 12

Aufgabe 6:_ ((hebbare) Unstetigkeitsstellen)

(a)
$$\lim_{x \to 5} \frac{x^2 - 5}{x^2 + x - 10}$$
 (b)
$$\lim_{x \to 0} \frac{x^3 + 2x}{x}$$
 (c)
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 - 3x + 2}$$
 (d)
$$\lim_{x \to 1} \frac{x^3 - 6x^2 + 11x - 6}{x - 1}$$
 (e)
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3}$$
 (f)
$$\lim_{x \to 2} \frac{-x^2 - 3x + 10}{2x^2 + x - 10}$$
 (g)
$$\lim_{x \to -3} \frac{x^2}{x^2 + 6x + 9}$$
 (h)
$$\lim_{x \to 2} \frac{2x}{x^2 - 4}$$

(d)
$$\lim_{x \to 1} \frac{x^3 - 6x^2 + 11x - 6}{x - 1}$$
 (e) $\lim_{x \to -3} \frac{x^2 - 9}{x + 3}$ (f) $\lim_{x \to 2} \frac{-x^2 - 3x + 10}{2x^2 + x - 10}$

$$(g)$$
 $\lim_{x \to -3} \frac{x^2}{x^2 + 6x + 9}$ (h) $\lim_{x \to 2} \frac{2x}{x^2 - 4}$

Selbsteinschätzung:

Lösung auf Seite 13

Aufgabe 7:__ (Un-) Stetigkeiten

Gibt es bei den folgenden Funktionen Unstetigkeitsstellen? Wenn ja, wo und von welcher Art sind diese? Geben Sie zunächst den Definitionsbereich der Funktion an und untersuchen Sie dann (Grenzwert!) die jeweilige Funktion an den Stellen, wo diese nicht definiert ist. Machen Sie sich Skizzen der Funktionsgrafen.

(a)
$$f(x) = \frac{1-x}{1-\sqrt{x}}$$
 (b) $g(t) = \frac{t}{|t|}$

(a)
$$f(x) = \frac{1-x}{1-\sqrt{x}}$$
 (b)
$$g(t) = \frac{t}{|t|}$$
 (c)
$$h(s) = \frac{1}{|s|-1}$$
 (d)
$$v(\alpha) = \frac{\alpha-4}{\sqrt{\alpha}-2}$$

Selbsteinschätzung:

Lösung auf Seite 15

Laboraufgabe 8:_

__Batragsungleichung und Geometrische Reihe

• Ermitteln Sie graphisch mit Matlab die Lösungsmenge

$$M = \{x \in \mathbb{R} \mid |2x + 3| - |x - 5| > 0\}.$$

$$p(x) = \sum_{k=0}^{N} x^k \approx \frac{1}{1-x} = f(x)$$

Untersuchen Sie die Näherung von p(x) an f(x) graphisch und fokusieren Sie auf interessante Punkte/Polstellen.

Selbsteinschätzung:

Umkehrabbildungen

Aufgabe 9:_

Bestimmen Sie für die folgenden Funktionen den Definitionsbereich in ${\rm I\!R}$ und Teilmengen Aauf die eingeschränkt die Funktion umkehrbar ist und das entsprechende Bild B, so dass $f:A \to B$ bijektiv ist. Berechnen Sie die Umkehrfunktion

$$f(x) = 2x - 1$$

$$f(x) = x^2 + 12x - 4$$

(iii)
$$f(x) = \frac{1}{x}$$
 (iv)
$$f(x) = \frac{x+3}{2x}$$
 (v)
$$f(x) = |x|$$
 (vi)
$$f(x) = \sqrt{x}$$

$$f(x) = \frac{x+3}{2x}$$

$$f(x) = |x|$$

$$(vi) f(x) = \sqrt{x}$$

Selbsteinschätzung:

Lösung auf Seite 16

Lösung auf Seite 16

Aufgabe 10:___

Berechnen Sie die Umkehrfunktion f^{-1} aus

$$(a) f(x) = a^x$$

$$(b) f(x) = 1 - a^x$$

$$(c) f(x) = a^{x-2}$$

$$(d) f(x) = 2a^{1-x}$$

und vereinfachen Sie den Ausdruck $(f^{-1} \circ f)(x)$. Selbsteinschätzung:

Komposition (Aufgaben zum Tutorial)

Aufgabe 11:_

(a) Gegeben sind die Funktionen

$$f(x) = 2x - 1$$
, $g(x) = x^3$ and $h(x) = |x| + 1$.

Berechnen Sie

$$(i) (f+g)(2)$$
 $(ii) (f \cdot g)(-3)$ $(iii) (h-g)(1)$ $(iv) \left(\frac{g}{h}\right) (4)$

- (b) Berechnen Sie für die Funktionen f , g und h aus Aufgabenteil (a) die folgenden Ausdrücke:

 - (i) $(f \circ g)(2)$ (ii) $(g \circ f)(2)$

 (iii) $(g \circ h)(-3)$ (iv) $(h \circ g)(-3)$

 (v) $(h \circ g \circ f)(3)$ (vi) $(f \circ f)(4)$
- (c) Zerlegen Sie folgende Funktionen in Kompositionen aus elementaren Funktionen, bzw. Linearkombination von elementaren Funktionen:
 - (i) $(f \circ g \circ h)(x) = \sqrt{\frac{1}{x+3}}$ (ii) $(g \circ h \circ f)(x) = (5x)^2 1$
 - (iii) $(l \circ h \circ g \circ f)(x) = |7x + 2| + 5$ (iv) $(h \circ f \circ g)(x) = \frac{1}{(3x^7 + 1)^{\frac{1}{7}}}$

gilt.

(d) Königsetappe: noch mal

$$f(x) = \cos\left(\tan^2\left(\frac{\sqrt{x}}{2-x}\right)\right)$$

(e) und noch eins

$$f(x) = \frac{\log_a \left((e^x + 2x^2)^2 - 1 \right)}{\sqrt[13]{x^4}}$$

Selbsteinschätzung:

Lösung auf Seite 16

Laboraufgabe 12:

_Komposition & Umkehrung im Kino

In einem Kino beginnt die Filmvorführung um 20:00 Uhr. Der Ansturm auf die Kassen beginnt gegen 19:20 für die reservierten Karten, hat seinen Höhepunkt gegen 19:50 und flacht dann ab. Einige verzichten auf die Werbung zu Beginn und kommen bis 20:20 Uhr verspätet und dann sind da noch die, die ohnehin immer spät dran sind. Insgesamt kann man die Anzahl am Kino ankommender Besucher*innen mit der Funktion

$$b(t) = \alpha e^{-\beta (t-\gamma)^2}, [t] = \sec$$

beschreiben, wobei

$$\alpha = 2 \cdot 10^{-2}$$
, $\beta = 2 \gamma^{-2}$, $\gamma = 2100$.

 $ar{t}=(t_i)_i\in\mathbb{N}_0^{4201}$ Zeitpunkte in Sekunden des betrachteten Bereichs $ar{b}=(b_i)_i=(b(t_i))_i\in\mathbb{R}^{4201}$ Anzahl ankommende Besucher zu diesen Zeitpunkten.

- 1. In einem Programm Kino.m: Belegen Sie die Felder t und b.
- 2. Belegen Sie das Feld B mit **ganzzahligen** Werten **anwesender** Besucher aus den Werten von b und die zugehörigen Zeitpunkte

$$T(i)=T(B(i))$$
.

Plotten Sie die diskreten Funktionen T(B) und B(T). Wieviele Besucher sind am Ende des betrachteten Zeitraums im Kino?

Tipp: Elegante Berechnung mit den Matlabfunktionen find, cumsum und round möglich.

3. Die Kassen (K) öffnen je nach Anzahl anwesender Besucher gemäß

$$K(B) = |\log(B) + 0.5|$$
.

Zur besseren Planung der Kassendienste wollen wir wissen zu welchen Uhrzeiten jeweils eine neue Kasse eröffnet werden muss.

Hinweis: Wir vernachlässigen die Tatsache, dass die Schlangen an den Kassen sich bei der Abfertigung auch wieder verkürzen.

Selbsteinschätzung:	
---------------------	--

(a)

$$\mathbb{D}_f = \mathbb{R}, \quad f(\mathbb{D}_f) = \mathbb{R}$$

(b)

$$\mathbb{D}_f = \mathbb{R}_0^+, \quad f(\mathbb{D}_f) = \mathbb{R}_0^+$$

(c) Der Nenner darf nicht verschwinden und das Argument der Wurzel darf nicht negativ werden, muss also echt größer Null sein, d.h. x+2>0 bzw. x>-2. Daraus und mit der Eigenschaft, dass der Wert von f nie Null wird ergibt sich

$$\mathbb{D}_f = (-2, \infty), \quad f(\mathbb{D}_f) = \mathbb{R}^+.$$

(d)

$$\mathbb{D}_f = \mathbb{R}^+, \quad f(\mathbb{D}_f) = \mathbb{R}$$

(e)

$$\mathbb{D}_f = \mathbb{R}^+ \setminus \{1\}, \quad f(\mathbb{D}_f) = \mathbb{R} \setminus \{0\}$$

(f) Hier stückeln wir das Problem und betrachten Zähler und Nenner getrennt. Erst der Zähler: Das Argument der Wurzel darf nicht negativ sein, also muss

$$x\left(4-x\right) > 0$$

gelten, was gerade für $x \in [0,4] =: \mathbb{L}_Z$ erfüllt ist.

Jetzt der Nenner: Das Argument des Logarithmus muss positiv sein:

$$|2x+3| > |x-5|$$

Der 1. Fall: $2x + 3 \ge 0$ und $x - 5 \ge 0$ liefert die Lösungesmenge $\mathbb{L}_1 = [5, \infty)$.

Der 2. Fall: $2x + 3 \ge 0$ und x - 5 < 0 liefert die Lösungesmenge $\mathbb{L}_2 = \binom{2}{3}, 5$.

Der 3. Fall: 2x + 3 < 0 und $x - 5 \ge 0$ liefert die Lösungesmenge $\mathbb{L}_3 = \emptyset$.

Der 4. Fall: 2x + 3 < 0 und x - 5 < 0 liefert die Lösungesmenge $\mathbb{L}_4 = (-\infty, -8)$.

Wir erhalten damit die Lösungsmenge der Betragsungleichung

$$\mathbb{L} = \mathbb{L}_1 \cup \mathbb{L}_2 \cup \mathbb{L}_3 \cup \mathbb{L}_4 = \mathbb{R} \setminus \left[-8, \frac{2}{3} \right].$$

Für $x\in\mathbb{L}$ ist also das Argument des Logarithmus positiv. Da dieser aber im Nenner des Bruchs steht darf auch sein Wert nicht 0 sein, d.h. das Argument darf nicht 1 sein. Kurzum: Es muss

$$|2x+3| - |x-5| \neq 1$$

gelten, wozu abermals eine Fallunterscheidung nötig ist. Jaja. ;) Wann ist der Asudruck gleich 1? Wir greifen die Fälle von oben wieder auf:

Der 1. Fall:
$$2x + 3 \ge 0$$
 und $x - 5 \ge 0$: $x = -7 \notin \mathbb{L}_1$

Der 2. Fall:
$$2x + 3 \ge 0$$
 und $x - 5 < 0$: $x = 1 \in \mathbb{L}_2$

Der 4. Fall:
$$2x + 3 < 0$$
 und $x - 5 < 0$: $x = -9 \in \mathbb{L}_4$

Die Werte $x \in \{-9,1\}$ müssen ausgeschlossen werden. Damit ergibt sich der Definitionsbereich für eins durch den Nenner

$$\mathbb{D}_N = \mathbb{L} \setminus \{-9, 1\} = \mathbb{R} \setminus \left(\left\lceil -8, \frac{2}{3} \right\rceil \cup \{-9, 1\} \right) .$$

Insgesamt ist dann der Definitionsbereich für f alles was im Zähler UND alles was im Nenner erlaubt ist und da UND mengentheoretisch immer einen Schnitt der Mengen bedeutet führt uns das auf folgendes Endergebnis:

$$\mathbb{D}_f = \mathbb{D}_N \cap \mathbb{D}_Z = [0, 4] \cap \left(\mathbb{R} \setminus \left(\left[-8, \frac{2}{3} \right] \cup \{ -9, 1 \} \right) \right) = \left(\frac{2}{3}, 4 \right] \setminus \{ 1 \}$$

Und für das Bild gilt

$$f(\mathbb{D}_f) = \mathbb{R}$$

(g) Es ist ja

$$\tan x = \frac{\sin x}{\cos x}.$$

Dann ist der Definitionsbereich vom Tangens gerade der Bereich, indem der Kosinus nicht verschwindet:

$$\mathbb{D}_f = \mathbb{R} \setminus \left\{ x \mid x = \frac{(1+2k)\pi}{2}, \ k \in \mathbb{Z} \right\}$$

Weiter ist

$$f(\mathbb{D}_f = \mathbb{R})$$
.

(h) Es ist

$$\cot(x - \pi) = \frac{\cos(x - \pi)}{\sin(x - \pi)}$$

und der Sinus verschwindet für $x=k\,\pi$, d.h. $\sin(x-\pi)$ verschwindet für $x=(k+1)\,\pi$. Dementsprechend lautet der Definitionsbereich des Kotangens

$$\mathbb{D}_f = \mathbb{R} \setminus \left\{ x \in \mathbb{R} \mid x = (k+1)\pi, \ k \in \mathbb{Z} \right\}.$$

Weiter ist

$$f(\mathbb{D}_f = \mathbb{R})$$
.


```
I = (-105);
DIM = 100;

x=linspace(I(1),I(2),DIM);

% Der Graph selbst:
%f = @(x) sqrt(x.*(4-x))*log(2)./log(abs(2*x+3)-abs(x-5));
% Argument vom Logarithmus darf nicht 1 oder 0 und nicht negativ sein.
f = @(x) abs(2*x+3)-abs(x-5);

plot(x,f(x),',b-',x,zeros(length(x),1),',k-',x,ones(length(x),1),',k-');
grid on
```


$$(4) \leftrightarrow e^{x}, (1) \leftrightarrow e^{-x}, (2) \leftrightarrow e^{3-x}, (5) \leftrightarrow e^{0.5x}, (3) \leftrightarrow e^{0.5(3+x)}$$

Lösung 4

$$(3) \leftrightarrow \frac{\ln(2x)}{x}, \ (4) \leftrightarrow \ln(x), \ (5) \leftrightarrow \ln(x-3), \ (1) \leftrightarrow \ln(\frac{1}{x}), \ (2) \leftrightarrow \ln(\frac{1}{x+1})$$

(a)
$$\lim_{x \to 2} x^3 - 2x + 4x^2 - 1 = 8 - 4 + 16 - 1 = 19$$
(b)
$$\lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0$$
(c)
$$\lim_{x \to \infty} \frac{x^2}{x} = \lim_{x \to \infty} \frac{x}{1} = \infty$$
(d)
$$\lim_{x \to \infty} \frac{2x}{x} = \lim_{x \to \infty} \frac{2}{1} = 2$$
(e)
$$\lim_{x \to \infty} \frac{x^2}{x} = \lim_{x \to \infty} \frac{x}{1} = -\infty$$
(f)
$$\lim_{x \to \infty} \frac{-2x}{x} = \lim_{x \to \infty} \frac{-2}{1} = -2$$
(g)
$$\lim_{x \to \infty} \frac{2x^2 - 4}{(3x - 1)(x + 3)} = \lim_{x \to \infty} \frac{2x^2 - 4}{3x^2 + 8x - 3}$$

$$= \lim_{x \to \infty} \frac{2x^2 (1 - 4\frac{1}{2x^2})}{3x^2 (1 + \frac{81}{3x} - \frac{1}{x^2})} = \frac{2}{3}$$
(h)
$$\lim_{x \to -\infty} \frac{x^3 - 4x^2}{(1 - x^2)2x} = \lim_{x \to -\infty} \frac{x^8 (1 - 4\frac{1}{x})}{-2x^8 (1 - \frac{1}{x^2})} = \frac{-1}{2}$$

(a)
$$\lim_{x \to 5} \frac{x^2 - 5}{x^2 + x - 10} = \lim_{x \to 5} \frac{20}{20} = 1$$
 (einfach einsetzen)

(b)
$$\lim_{x \to 0} \frac{x^3 + 2x}{x} = \lim_{x \to 0} \frac{x^2 + 2}{1} = 2$$
 (Typ $\left[\frac{0}{0}\right]$)

(c)
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{\cancel{(x-1)}(x-3)}{\cancel{(x-1)}(x-2)} = 2 \qquad -"-$$

(e)
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = \lim_{x \to -3} \frac{\cancel{(x + 3)}(x - 3)}{\cancel{x + 3}} = -6 \qquad -"-$$

(f)
$$\lim_{x \to 2} \frac{-x^2 - 3x + 10}{2x^2 + x - 10} = \lim_{x \to 2} \frac{-(x-2)(x+5)}{2(x-2)(x+\frac{5}{2})} = -\frac{7}{9} \quad -\text{"}$$

(g)
$$\lim_{x \to -3} \frac{x^2}{x^2 + 6x + 9} = \lim_{x \to -3} \frac{x^2}{(x+3)^2} = \infty$$
 (Zähler, Nenner positiv)

(h)
$$\lim_{x\to 2} \frac{2x}{x^2-4} \text{ex. nicht, denn}$$

$$\lim_{x \to 2} \frac{2x}{x^2 - 4} = \lim_{x \to 2} \frac{\underbrace{2x}^{>0}}{\underbrace{(x - 2)}_{<0} \underbrace{(x + 2)}_{>0}} = -\infty$$

$$\lim_{x \searrow 2} \frac{2x}{x^2 - 4} = \lim_{x \searrow 2} \underbrace{\frac{2x}{2x}}_{>0} = \infty$$

-2

-3 ∟ -2

Lösung 7

	D - 4 - 11 1		.1 - 111 11	O	- · 1' · · · · · ·
x_0			tetigkeit	Grenzwert (b	ozw. $\lim_{x \to x_0}$)
(a) 1	$\mathbb{D} = \mathbb{R} \setminus \{1\}$	} het	obar	2	
(b) 0	$\mathbb{D} = \mathbb{R} \setminus \{0\}$	} nic	ht hebbar	"±1"	
(c) \pm	$1 \mathbb{D} = \mathbb{R} \setminus \{ \pm 1 \}$	1 } Pole	Э	" $\pm\infty$ "	
(d) 4	$\mathbb{D} = \mathbb{R} \setminus \{4\}$	}	obar	4	
6	1		ı	ı	f(x) ——
5 -					h(x)
					V(X)
4 -					····• <u></u>

3 -					-
2 -					=
ممرا			San		
1 1			****	New York Control of the Control of t	
	1 !!			***************************************	***********

$$\mathbb{D}_f = \mathbb{R}, \quad f^{-1}(x) = \frac{1}{2}(x+1), \quad \mathbb{D}_{f^{-1}} = \mathbb{R}$$

$$\mathbb{D}_{f} = \mathbb{R} , \quad \mathbb{D}_{f_{1}} := (-\infty, -6] , \quad \mathbb{D}_{f_{2}} := [-6, \infty)$$

$$f_{1}^{-1}(x) = -\sqrt{x + 40} - 6 , \quad f_{2}^{-1}(x) = \sqrt{x + 40} - 6$$

$$\mathbb{D}_{f_{1}^{-1}} = [-40, \infty) , \quad \mathbb{D}_{f_{2}^{-1}} = [-40, \infty)$$

$$\mathbb{D}_f = \mathbb{R} \setminus \{0\}, \quad f^{-1}(x) = \frac{1}{x}, \quad \mathbb{D}_{f^{-1}} = \mathbb{R} \setminus \{0\}$$

$$\mathbb{D}_f = \mathbb{R} \setminus \{0\}, \quad f^{-1}(x) = \frac{3}{2x - 1}, \quad \mathbb{D}_{f^{-1}} = \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$$

$$\mathbb{D}_{f} = \mathbb{R}, \quad \mathbb{D}_{f_{1}} := \mathbb{R}_{0}^{-}, \quad \mathbb{D}_{f_{2}} := \mathbb{R}_{0}^{+}$$

$$f_{1}^{-1}(x) = -x, \quad f_{2}^{-1}(x) = x$$

$$\mathbb{D}_{f_{1}^{-1}} = \mathbb{R}_{0}^{+}, \quad \mathbb{D}_{f_{2}^{-1}} = \mathbb{R}_{0}^{+}$$

$$\mathbb{D}_f = \mathbb{R}_0^+, \quad f^{-1}(x) = x^2, \quad \mathbb{D}_{f^{-1}} = \mathbb{R}$$

Lösung 10

$$(a) f^{-1}(x) = \log_a x$$

(b)
$$f^{-1}(x) = \log_a(1-x)$$

(c)
$$f^{-1}(x) = \log_a(xa^2)$$

(d)
$$f^{-1}(x) = \log_a(\frac{2a}{x})$$

Lösung 11

(a)

(i)
$$(f+g)(2) = 11$$

$$(ii) \qquad (f \cdot g)(-3) = 189$$

$$(iii) (h-g)(1) = 1$$

$$\left(\frac{g}{h}\right)(4) = 12.8$$

SG Angewandte Informatik

(b)

(i)
$$(f \circ g)(2) = f(g(x))|_{x=2} = 2g(x) - 1|_{x=2} = 2x^3 - 1|_{x=2} = 15$$

(ii)
$$(g \circ f)(2) = g(f(x))|_{x=2} = f(x)^3|_{x=2} = (2x-1)^3|_{x=2} = 27$$

(iii)
$$(g \circ h)(-3) = g(h(x))\big|_{x=-3} = h(x)^3\big|_{x=-3} = (|x|+1)^3\big|_{x=-3} = 64$$

$$(iv) \qquad (h \circ g)(-3) = h(g(x))\big|_{x=-3} = |g(x)| + 1\big|_{x=-3} = |x^3| + 1\big|_{x=-3} = 28$$

(v)
$$(h \circ g \circ f)(3) = (h(g(f(x))))|_{x=3} = |g(f(x))| + 1|_{x=3} = |f(x)^3| + 1|_{x=3}$$

= $|(2x-1)^3| + 1|_{x=3} = 126$

(vi)
$$(f \circ f)(4) = f(f(x))|_{x=4} = 2f(x) - 1|_{x=4} = 2(2x - 1) - 1|_{x=4}$$

= $4x - 3|_{x=4} = 13$

(c) (i)
$$h(x)=x+3\,,\quad g(x)=\frac{1}{x}\,,\quad f(x)=\sqrt{x}$$

(ii)
$$f(x) = 5x, \quad h(x) = x^2, \quad g(x) = x - 1$$

(iii)
$$f(x) = 7x + 2$$
, $g(x) = x^2$, $h(x) = \sqrt{x}$, $l(x) = x + 5$

(iv)
$$g(x)=3\,x^7+1\,,\quad f(x)=\frac{1}{x}\,,\quad h(x)=\sqrt[7]{x}$$

(Die Lösungen sind nicht eindeutig!)

(d)

$$f(x) = \cos\left(\tan^2\left(\frac{\sqrt{x}}{2-x}\right)\right)$$

Definiere:

$$s(x) = \sin x, \qquad v(x) = \sqrt{x}, \qquad w(x) = 2 - x$$

$$g(x) = x + \frac{\pi}{2}, \qquad u(x) = \cos x = (s \circ g)(x), \qquad q(x) = x^2$$

Dann gilt

$$\cos\left(\tan^2\left(\frac{\sqrt{x}}{2-x}\right)\right) = \left(s \circ g \circ q \circ \frac{s \circ \frac{v}{w}}{s \circ g \circ \frac{v}{w}}\right)(x)$$

(e) $f(x) = \frac{\log_a \left((e^x + 2x^2)^2 - 1 \right)}{\frac{13\sqrt{a^4}}{2}}$

Definiere:

$$g(x) = x^{\frac{4}{13}},$$
 $p(x) = 2x^{2},$ $v(x) = e^{x}$
 $b(x) = x^{2},$ $c(x) = x - 1,$ $u(x) = a^{x}$

Dann gilt

$$\frac{\log_a \left((e^x + 2x^2)^2 - 1 \right)}{\sqrt[13]{x^4}} = \left(\frac{u^{-1} \circ c \circ b \circ (v+p)}{g} \right) (x)$$