Group Project 2 Percolation

Yuanyuan Xu, Matthew Epland, Xiaqing Li, Wesley Cohen

Duke University

April 8, 2016

Introduction – Part A

Percolation transition on a $N \times N$ lattice:

- Sites are subsequently and randomly occupied
- A cluster a collection of interconnection occupied sites
 - A spanning cluster touches all four edges of the lattice
 - Percolation transition when the spanning cluster occurs
- Occupation probability:

$$p = \frac{\text{number of occupied sites}}{N^2} \tag{1}$$

• At the **critical concentration** p_c percolation transition occurs

Extract p_c of infinitely large 2D square lattice

- ullet Determine the value of p_c for 2D square lattice of different lengths
 - N = 5, 10, 15, 20, 30, 50, 80
- For each lattice size: average the results for 50 different simulations
- Plot $p_c(N^{-1})$ to extrapolate to the infinite lattice limit
 - $N^{-1} \to 0$, $p_c \to p_c$ of infinitely large lattice

Group Project 2 April 8, 2016

Union-Find Algorithms

- Data structure
 - Integer array label[i] of size $N \times N$.
 - Interpretation: p and q are connected if they have the same label.
- Find: Check if p and q have the same label.
- Union: To merge components containing p and q, change all entries with label[p] to label[q].

Percolation

Initialization

0	0	0
0	0	0
0	0	0

• Generate a random sequence from 0 to $N^2 - 1$: arr = shuffle([0, 1, 2, ..., N*N-1])

- Occupy a site given by arr[i].
- Union: Choose a common unique label and update label.
- Percolation
 - Data structure: TreeSet.
 - $S = \{ \text{Edge}_1 \} \cap \{ \text{Edge}_2 \} \cap \{ \text{Edge}_3 \} \cap \{ \text{Edge}_4 \} \{ 0 \}$
 - \bullet S =unconnected, connected, \boldsymbol{x} is the same label of the spanning cluster.
- Animation

Result

Introduction - Part B

Fraction of sites in percolating cluster

Definition:

$$F(p > p_c) = \frac{\text{number of sites in spanning cluster}}{\text{number of occupied sites}}$$
 (2)

• F near p_c satisfies power law:

$$F = F_0 (p - p_c)^{\beta} \tag{3}$$

- Extract β
 - Linear fitting on the log-log scale plot

Result

Result

