Joe Stanley

ECE 522 - Homework 3

Example: (Session 5, Handout C)

```
In [8]:
          # Define Terms
        1
         2
           Ncp = 60
        3
          Nslots = 18
        4
         5
           # Define Sigma (Slot Pitch)
        6
           sigma = 2*np.pi/Nslots
        7
           print("Slot Pitch (sigma):",np.degrees(sigma),"o")
        8
        9
           # Define Beta (Slot Opening)
        10 beta = 0.5*sigma
           print("Slot Opening (beta):",np.degrees(beta),"o")
        11
        12
        13 # Define Coil Pitch
          CPslots = 7
        14
          CPrad = CPslots*np.pi*2/Nslots
        15
           print("Coil Pitch (CPrad):",np.degrees(CPrad),"°")
        16
        17
        18 # Define Gamma
        19
           gamma = np.pi - CPrad
           print("Gamma:", round(np.degrees(gamma), 2), "o")
        20
        21
        22 | # Define Harmonic Array
        23 h = np.arange(1,102,2)
           print("Harmonic Set:\n",h,"\n")
        24
        25
        26
           27
        28
           # Evaluate F.S. Coefficient of Full Pitch Concentrated Coil Winding
        29
           ach = (2*Ncp) / (np.pi*h) * np.sin(h*np.pi/2)
        30
        31
           # Evaluate Pitch Factor
        32
          kph = np.cos(h*(gamma/2))
        33
           # Distribution Factor
        34
        35
           kdh = np.sinc(h*(beta/2))
        36
        37
           38
        39
           # Combine Terms to Evaluate ah
           ah = kph * kdh * ach
        40
        41
        42 # Evaluate Summation
        43
           data = np.array([])
           for i, h i in enumerate(h):
        44
        45
               row = [h i, ah[i], kph[i], kdh[i], ach[i]]
        46
              data = np.append(data, row)
        47
           data = np.around(np.reshape(data, (len(data)//5,5)),3)
        48
           print(tabulate(data,headers=['h', 'ah', 'kph', 'kdh', 'ach']))
        49
        50
           51
        52 # Evaluate Terms for Plot
        53 | alpha = np.linspace(0,2*np.pi,1000)
        54 NFuPCC = np.zeros(len(alpha))
        55
           for i, AH in enumerate(ah):
        56
              NFuPCC += AH * np.cos(h[i]*alpha)
```

```
57 # Generate Plot
58 plt.plot(alpha,NFuPCC)
59 plt.title("N (Full-Pitch, Uniformly Distributed)")
60 plt.show()
```

Slot Pitch (sigma): 20.0 ° Slot Opening (beta): 10.0 ° Coil Pitch (CPrad): 140.0 °

Gamma: 40.0 ° Harmonic Set:

[1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

73 75 77 79 81 83 85 87 89 91 93 95 97 99 101]

, ,	75 77	// 01	05 05	07 05
h	ah	kph	kdh	ach
1	35.446	0.94	0.988	38.197
3	-5.672	0.5	0.891	-12.732
5	-0.948	-0.174	0.715	7.639
7	2.047	-0.766	0.49	-5.457
9	-1.074	-1	0.253	4.244
11	0.111	-0.766	0.042	-3.472
13	0.059	-0.174	-0.115	2.938
15	0.256	0.5	-0.201	-2.546
17	-0.452	0.94	-0.214	2.247
19	0.319	0.94	-0.169	-2.01
21	-0.079	0.5	-0.087	1.819
23	0.001	-0.174	0.004	-1.661
25	-0.092	-0.766	0.079	1.528
27	0.172	-1	0.122	-1.415
29	-0.126	-0.766	0.125	1.317
31	0.02	-0.174	0.094	-1.232
33	0.024	0.5	0.041	1.157
35	0.018	0.94	-0.018	-1.091
37	-0.063	0.94	-0.065	1.032
39	0.044	0.5	-0.089	-0.979
41	0.014	-0.174	-0.086	0.932
43	-0.041	-0.766	-0.06	-0.888
45	0.016	-1	-0.018	0.849
47	0.015	-0.766	0.024	-0.813
49	-0.008	-0.174	0.057	0.78
51	-0.026	0.5	0.071	-0.749
53	0.043	0.94	0.064	0.721
55	-0.025	0.94	0.039	-0.694
57	0.002	0.5	0.005	0.67
59	-0.003	-0.174	-0.028	-0.647
61	0.024	-0.766	-0.051	0.626
63	-0.035	-1	-0.058	-0.606
65	0.022	-0.766	-0.048	0.588
67	-0.002	-0.174	-0.025	-0.57
69	0.001	0.5	0.004	0.554
71	-0.015	0.94	0.03	-0.538
73	0.023	0.94	0.046	0.523
75	-0.012	0.5	0.048	-0.509
77	-0.003	-0.174	0.037	0.496
79	0.006	-0.766	0.015	-0.484
81	0.005	-1	-0.01	0.472
·· /EOEE	00 // 0 4 // 40 // 0 4			

83	-0.011	-0.766	-0.03	-0.46	
85	0.003	-0.174	-0.041	0.449	
87	0.009	0.5	-0.04	-0.439	
89	-0.011	0.94	-0.027	0.429	
91	0.003	0.94	-0.007	-0.42	
93	0.003	0.5	0.014	0.411	
95	0.002	-0.174	0.03	-0.402	
97	-0.011	-0.766	0.037	0.394	
99	0.013	-1	0.033	-0.386	
101	-0.006	-0.766	0.02	0.378	

Assignment Question:

Repeat the (above) example for a Fractional-Pitch, Concentrated-Coil winding.

```
In [12]:
           # Define Terms
         1
          2
            Ncp = 60
         3
           Nslots = 18
         4
          5
            # Define Sigma (Slot Pitch)
            sigma = 2*np.pi/Nslots
         6
         7
            print("Slot Pitch (sigma):",np.degrees(sigma),"o")
         8
         9
            # Define Beta (Slot Opening)
            beta = 0 # Concentrated Coil
         10
            print("Slot Opening (beta):",np.degrees(beta),"o")
         11
         12
         13 # Define Coil Pitch
           CPslots = 7
         14
           CPrad = CPslots*np.pi*2/Nslots
         15
            print("Coil Pitch (CPrad):",np.degrees(CPrad),"°")
         16
         17
         18 # Define Gamma
         19
            gamma = np.pi - CPrad
            print("Gamma:", round(np.degrees(gamma), 2), "o")
         20
         21
         22 | # Define Harmonic Array
         23 h = np.arange(1,102,2)
            print("Harmonic Set:\n",h,"\n")
         24
         25
         26
            27
         28
            # Evaluate F.S. Coefficient of Full Pitch Concentrated Coil Winding
         29
            ach = (2*Ncp) / (np.pi*h) * np.sin(h*np.pi/2)
         30
         31
            # Evaluate Pitch Factor
         32
           kph = np.cos(h*(gamma/2))
         33
            # Distribution Factor
         34
         35
            kdh = np.sinc(h*(beta/2))
         36
         37
            38
         39
            # Combine Terms to Evaluate ah
            ah = kph * kdh * ach
         40
         41
         42 # Evaluate Summation
         43
            data = np.array([])
            for i, h i in enumerate(h):
         44
         45
                row = [h i, ah[i], kph[i], kdh[i], ach[i]]
         46
               data = np.append(data, row)
         47
            data = np.around(np.reshape(data, (len(data)//5,5)),3)
         48
            print(tabulate(data,headers=['h', 'ah', 'kph', 'kdh', 'ach']))
         49
         50
            51
         52 # Evaluate Terms for Plot
         53 | alpha = np.linspace(0,2*np.pi,1000)
         54 NFuPUD = np.zeros(len(alpha))
         55
            for i, AH in enumerate(ah):
               NFuPUD += AH * np.cos(h[i]*alpha)
         56
```

```
57 # Generate Plot
58 plt.plot(alpha,NFuPUD)
59 plt.title("N (Fractional-Pitch, Concentrated-Coil)")
60 plt.show()
```

Slot Pitch (sigma): 20.0 ° Slot Opening (beta): 0.0 ° Coil Pitch (CPrad): 140.0 °

Gamma: 40.0 ° Harmonic Set:

[1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

73 75 77 79 81 83 85 87 89 91 93 95 97 99 101]

, ,	,,,,,	, ,, 01	05 0.	, 0, 0,
h	ah	kph	kdh	ach
1	35.894		1	38.197
3	-6.366		1	-12.732
5	-1.327		1	7.639
7	4.18	-0.766	1	-5.457
9	-4.244		1	4.244
11	2.66	-0.766	1	-3.472
13	-0.51	-0.174	1	2.938
15	-1.273		1	-2.546
17	2.111		1	2.247
19	-1.889		1	-2.01
21	0.909		1	1.819
23	0.288		1	-1.661
25 27	-1.17	-0.766 -1	1 1	1.528
27 29	1.415 -1.009		1	-1.415 1.317
31	0.214		1	-1.232
33	0.579		1	1.157
35	-1.026		1	-1.091
37	0.97	0.94	1	1.032
39	-0.49	0.5	1	-0.979
41	-0.45		1	0.932
43	0.68	-0.766	1	-0.888
45	-0.849		1	0.849
47	0.623		1	-0.813
49	-0.135		1	0.78
51	-0.374		1	-0.749
53	0.677		1	0.721
55	-0.653		1	-0.694
57	0.335		1	0.67
59	0.112		1	-0.647
61	-0.48	-0.766	1	0.626
63	0.606	-1	1	-0.606
65	-0.45	-0.766	1	0.588
67	0.099	-0.174	1	-0.57
69	0.277	0.5	1	0.554
71	-0.506	0.94	1	-0.538
73	0.492	0.94	1	0.523
75	-0.255		1	-0.509
77	-0.086	-0.174	1	0.496
79	0.37	-0.766	1	-0.484
81	-0.472		1	0.472
83	0.353	-0.766	1	-0.46

85	-0.078	-0.174	1	0.449
87	-0.22	0.5	1	-0.439
89	0.403	0.94	1	0.429
91	-0.394	0.94	1	-0.42
93	0.205	0.5	1	0.411
95	0.07	-0.174	1	-0.402
97	-0.302	-0.766	1	0.394
99	0.386	-1	1	-0.386
101	-0.29	-0.766	1	0.378

In []: 1