ANÁLISIS DE MEDICIONES

ÍNDICE DE LA PRESENTACIÓN

- 1.- Introducción
- 2.- Índices de centralización Tipos, propiedades, selección
- 3.- Índices de dispersión Tipos, propiedades, selección
- 4.- Estimación de la distribución de mediciones

INTRODUCCIÓN AL ANÁLISIS DE MEDICIONES

Los experimentos de evaluación del funcionamiento de los computadores basados en mediciones generan <u>muchos datos</u>

Es necesario <u>resumir</u> los datos medidos Este proceso se denomina ANÁLISIS DE DATOS No confundir con el ANÁLISIS DEL FUNCIONAMIENTO

Después de tomar una muestra de una variable $\{x_1 ... x_n\}$ Hay que caracterizar la muestra mediante 2 valores:

```
Su valor medio ⇒ Índices de centralizaciónSu dispersión ⇒ Índices de dispersión
```

Es muy importante ...

- 1) Saber cuándo/cómo usar índices de centralización/dispersión
- 2) Reconocer si se han usado correctamente los índices

ÍNDICES DE CENTRALIZACIÓN

Un <u>índice de centralización</u> es un número que representa de un modo la tendencia central que siguen las observaciones de una muestra

Media

Suma de las observaciones / número de Obs

$$x = \frac{1}{n} \sum_{i=1}^{n} x_i$$

<u>Mediana muestral</u>

Valor que cae en el centro de las observaciones tras ordenarlas Si nº Obs es par tomar la media de las 2 Obs centrales

Moda muestral

Es el centro de la clase con mayor frecuencia en un histograma Es el valor (categoría) que aparece con mayor frecuencia

PROPIEDADES DE ÍNDICES DE CENTRALIZACIÓN

Existencia y Unicidad

La Media y la Mediana EXISTEN siempre y son ÚNICAS La Moda puede NO EXISTIR y puede haber VARIAS modas

Relaciones y diferencias

PROPIEDADES DE ÍNDICES DE CENTRALIZACIÓN

Efecto de observaciones anómalas (outliers) sobre los índices

MEDIA

Usa todas las Obs de la muestra ponderándolas por igual Le afectan MUCHO las Obs anómalas (más con pocas Obs)

MEDIANA y MODA

Ignoran mucha información sobre las observaciones Les afecta POCO la presencia de Obs anómalas

```
Tiempos de ejecución { 10, 20, 15, 18, 16 }
 media = 15.8
 mediana de \{10, 15, 16, 18, 20\} = 16
```

Al añadir la 6^a observación (anómala) { 200 } media = 46.5 que supera a casi todas las observaciones mediana de { 10, 15, <u>16, 18, 20, 200 } = (16+18) / 2= 17</u>

SELECCIÓN DE UN ÍNDICE DE CENTRALIZACIÓN

El mejor índice = f(tipo + características) de los datos

ÍNDICES DE DISPERSIÓN

Un <u>índice de dispersión</u> es un número que representa de un modo la variabilidad de las observaciones de una muestra

Rango

Rango = $máx(x_i) - min(x_i)$

Varianza

Desviación estándar

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$
 $s = \sqrt{s^{2}}$

Coef de Variación

$$COV = \frac{S}{\overline{x}}$$

ÍNDICES DE DISPERSIÓN

Percentiles

El percentil α es el valor de la variable observada x_{α} tal que el α % de las observaciones son $\leq x_{\alpha}$ Pr($x \leq x_{\alpha}$) = α %

Percentiles 5 y 95 (ó 10 y 90) ⇔ Mínimo y Máximo Ventaja: Calculables para todas las variables (pj. las inacotadas)

Cuartiles

Q1, Q2, Q3 = Percentiles 25, 50 y 75 Semirango Intercuartílico SRI = (Q3-Q1) / 2 = $(x_{0.75} - x_{0.25})$ / 2 Indica el rango que concentra el 50% de las observaciones

Desviación absoluta media

$$DAM = \frac{1}{n-1} \sum_{i=1}^{n} \left| x_i - \overline{x} \right|$$

PROPIEDADES DE ÍNDICES DE DISPERSIÓN

Efecto de observaciones anómalas (outliers) sobre los índices

Índice	Efecto o impacto
Rango	Muchísimo: las anomalías definen el propio rango
Varianza	Mucho: al elevar al cuadrado las desviaciones
DAM	Moderado: al usar el valor absoluto de las desviaciones
SRI	Poco impacto: al afectar poco una Obs a los cuartiles

Si la distribución es muy sesgada ⇒ Hay muchas Obs con dispersión alta

Entonces: (Mediana + SRI) es mejor que (Media + Desviación estándar)

En general, si se usa la mediana como IC se usa el SRI como ID

SELECCIÓN DE UN ÍNDICE DE DISPERSIÓN

El mejor índice = f(tipo + características) de los datos

ESTIMACIÓN DE LA DISTRIBUCIÓN DE MEDICIONES 1. Introducción

Problema: Los modelos necesitan datos de entrada.

Ej.: cadencia de llegadas, tamaño de las peticiones, etc.

Solución: Medir datos de entrada y utilizarlos para especificar una distribución. Aproximaciones (de peor a mejor):

- Utilizar directamente los **valores medidos**. Problema: limitados a los datos disponibles, que habitualmente son escasos
- Utilizar los datos para definir una distribución empírica. Problemas:
 - a) Sólo hay valores entre el máx. y el mín. medidos
 - b) Posibles irregularidades (cuando hay pocos datos)
- Utilizar una técnica estándar de inferencia para ajustar los valores a una distribución teórica.

Ventaja: forma compacta de representar los datos.

Problema: a veces no se encuentra una distribución teórica que ajuste

ESTIMACIÓN DE LA DISTRIBUCIÓN DE MEDICIONES 2. Distribuciones de probabilidad útiles

Consultar tablas para conocer uso y parámetros de distribuciones útiles en simulación. Ej.: Exponencial para tiempo entre llegadas

Parámetros de las distribuciones continuas:

- De localización: indican la posición en el eje x de la distribución.
 Habitualmente se da la media o el extremo inferior
- De escala: determinan la escala de la distribución. Un cambio en este parámetro comprime o expande
- De forma: determinan la forma de la distribución

ESTIMACIÓN DE LA DISTRIBUCIÓN DE MEDICIONES 2. Distribuciones de probabilidad útiles

Distribuciones empíricas

Se usan cuando no se puede ajustar ninguna distribución teórica, se construye:

- 1°) Se ordenan los *n* valores disponibles en orden creciente
- 2°) Se calcula su probabilidad asociada $F(X_{(i)}) = (i-1)/(n-1)$
- 3°) Se unen por tramos lineales

Siendo $X_{(i)}$ el valor más pequeño de las observaciones. La distribución empírica F viene dada por:

$$F(x) = \begin{cases} \frac{0 \text{ si } x < X_{(1)}}{i-1} \\ \frac{i-1}{n-1} + \frac{x - X_{(i)}}{(n-1)(X_{(i+1)} - X_{(i)})} \text{ si } X_{(i)} \le x < X_{(i+1)} \ \forall i = 1, 2, ..., n-1 \\ 1 \text{ si } x \ge X_{(n)} \end{cases}$$

ESTIMACIÓN DE LA DISTRIBUCIÓN DE MEDICIONES 2. Distribuciones de probabilidad útiles

Ejemplo distribución empírica

Se tienen los siguientes valores: 7, 13, 8, 16, 14, 10, 9, 11, 19 y 20

G					
i	Valores ordenados	Probabilidad: F(X) =(i-1)/(n-1)			
1	7	0			
2	8	0,11111111			
3	9	0,22222222			
4	10	0,33333333			
5	11	0,44444444			
6	13	0,55555556			
7	14	0,666666667			
8	16	0,77777778			
9	19	0,88888889			
10	20	1			

 $F(12) = (5-1)/(10-1)+(12-11)/[(10-1)\times(13-11)] = 0.5$

ESTIMACIÓN DE LA DISTRIBUCIÓN DE MEDICIONES

3. Técnicas para establecer la independencia de las muestras

Necesidad de estas técnicas: los métodos de estimación de distribuciones necesitan en muchos casos que los datos sean independientes

Técnica 1: Gráfico de correlación

$$\hat{p}_j = \text{correlación de la muestra} = \frac{\hat{C}_j}{S^2(n)} \qquad \text{donde} \qquad \hat{C}_j = \frac{\sum\limits_{i=1}^{n-j} (X_i - \overline{X}(n))(X_{i+j} - \overline{X}(n))}{n-j}$$

Cuanto más se aleje \hat{p}_i de cero, más correladas estarán las muestras

Ejemplo: Gráfico de correlación para datos exponenciales independientes

ESTIMACIÓN DE LA DISTRIBUCIÓN DE MEDICIONES

3. Técnicas para establecer la independencia de las muestras

Técnica 2: Diagrama de dispersión

Representar los pares (x_i, x_{i+1}) para i=1, 2, 3, ..., n-1

Si son independientes, entonces distribución aleatoria

Si son dependientes, entonces siguen una línea

Tres pasos:

- 1) Seleccionar una distribución o familia de distribuciones
- 2) Obtener parámetros para la distribución
- 3) Contrastar que se ajusta razonablemente a los datos de partida

Paso 1: Selección de una familia de distribuciones

Usar conocimiento del problema y técnicas heurísticas

Técnica 1: Resumen estadístico

Estadístico	Tipo de distr.	Uso
Mínimo, máximo	C, D	Aproximación del rango
Media (μ), mediana ($x_{0.5}$)	C, D	Si coinciden, entonces dist. simétrica
Varianza (σ^2)	C, D	Medida de la variabilidad
Coeficiente de variación	C	CV tiende a 1 sugiere exponencial
$(CV=_{\sigma}/\mu)$		CV > 1 sugiere Weibull o Gamma
Razón de Lexis $(\tau = \sigma^2/\mu)$	D	$\tau = 1$ sugiere Poisson
		τ < 1 sugiere Binomial
		$\tau > 1$ sugiere Binomial negativa
Coeficiente de asimetría (v)	C, D	v = 0 implica distr. simétrica
		v > 0 implica distr. sesgada a la dcha.
		v < 0 implica distr. sesgada a la izda.

C=Continua D=Discreta

Técnica 2: Histogramas y gráficos de líneas

Comparar histogramas y gráficos de líneas con los de las dist. teóricas

Problema de los histogramas: seleccionar ancho de celda. Directrices:

- Todos los intervalos deben ser iguales
- Han de eliminarse los puntos muy dispersos
- No utilizar tamaño ni muy grande ni muy pequeño

Regla empírica: N^0 de intervalos = $k = 1 + \log_2 n$ con n = número de datos

Utilidad dudosa de esta regla. Solución: Probar con varios intervalos

Técnica 3: Resumen de cuantiles y representación por cajas

Objetivo: determinar si la distr. es simétrica o desviada a dcha. o izda.

Cuantil q de $F(x) \equiv X_q$ tal que $F(X_q)=q$

Cuantil	Profundidad	ValoresPunto medio		
Mediana	i=(n+1)/2	X _{0.5}		
Cuartiles	j=(Ĺi∐+1)/2	$X_{0.25}$ $X_{0.75}$	$(x_{0.25} + x_{0.75})/2$	
Octiles	k=(Ĺj∐+1)/2	$X_{0.125} X_{0.875}$	$(x_{0.125} + x_{0.875})/2$	
Extremos	1	$X_{(1)}$ $X_{(n)}$	$(x_{(1)} + x_{(n)})/2$	

Si los puntos medios son similares, entonces la distr. es simétrica

Paso 2: Estimación de parámetros

Se utiliza el estimador de máxima verosimilitud (MLE) Para algunas distribuciones se calcula de forma sencilla:

- Obtener función de probabilidad : $L(\theta)$ (θ representa el estimador)
- Obtener la función de probabilidad logarítmica: $l(\theta)=Ln[L(\theta)]$
- Derivar con respecto al parámetro: dl/dθ
- Igualar a cero y resolver la ecuación: $(dl/d\theta)=0$

Cuando no es sencillo -> mirarlo en las tablas

Se utiliza el MLE porque ···

··· cumple ciertas propiedades estadísticas convenientes

Paso 3: Determinar la representatividad del ajuste

Se utilizan métodos heurísticos y técnicas de análisis de hipótesis

Técnica 1: Comparación de frecuencias

Representar histograma de la distribución real y de la teórica para el mismo número de intervalos y tamaño de intervalos

$$dist. real = \frac{n^{\circ} de datos en el intervalo}{n^{\circ} de datos total}$$

dist. teórica en el intervalo j =
$$\int_{b_{j-1}}^{b_j} \hat{f}(x)dx$$

Técnica 2: Gráficos de probabilidades

2.1 Gráfico cuantil-cuantil (Q-Q) Siendo F(x) la dist. teórica, F(x) la dist. real y q_i =(i-0.5)/n para i=1, 2,..., n Se dibuja:

eje-y:
$$x_{q_i}^M = \hat{F}^{-1}(q_i)$$

2.2 Gráfico Probabilidad-Probabilidad (P-P) Para diversos x_i se dibuja:

eje-x: $\tilde{F}(x_{(i)})$

eje-y: $F(x_{(i)})$

Técnica 3: Comparación de gráficos de cajas

Los gráficos de cajas tienen que ser similares. Para la distr. teórica usar como extremos inicial y final 1/(2n) y 1-(1/(2n)) respectivamente

Técnica 4: Comparación mediante test de ajuste (test Chi²)

Se basa en realizar un contraste de hipótesis, se prueba H₀

H₀: Las X_i son variables aleatorias IID con función de distribución F

- Un fallo al rechazar no debe interpretarse como "H₀ es cierta" porque para n pequeño el test no es muy sensible a las diferencias
- Rechazar la hipótesis tampoco debe interpretarse como "H₀ es falsa" porque para n grandes rechaza casi siempre

Pasos para aplicar el test Chi²:

- Se dividen los valores en k intervalos adyacentes (no necesariamente iguales) : $[a_0,a1),...,[a_{k-1},a_k)$ donde a_0 puede ser $-\infty$ y a_k puede ser $+\infty$
- Se eligen los extremos de los intervalos para que sean equiprobables y valor p_i , que cumplan: $p_i = 1/k \ \forall k, \ k \geq 3 \ y \ np_i \geq 5$
- Se calcula $N_j=n^0$ de X_i que pertenecen a cada intervalo $[a_{j-1},a_j)$, $j=1,2,\ldots k$

$$n = \sum_{j=1}^{k} N_j$$

•Se calcula el estadístico del test: $\chi^2 = \sum_{j=1}^k \frac{(N_j - np_j)^2}{np_j}$

Cuanto menor sea χ^2 mayor la semejanza de la distr. real a la teórica

Se rechaza si $\chi^2 > \chi^2_{k-1,1-\alpha}$