

MINIMUM RESIDUAL AFFINE SUBSPACES

Why

We want to find a low-dimensional affine set into which we can project some high-dimensional data.

Problem

For $a \in \mathbb{R}^n$ and $U \in \mathbb{R}^{n \times k}$, the set $W(a, U) = \{a + Uz\}z \in \mathbb{R}^n$ is an affine set. Denote the projection of $x \in \mathbb{R}^n$ onto W(a, U) by $\operatorname{proj}_{W(a, U)}(x)$.

Given $x^{(1)}, \ldots, x^{(m)} \in \mathbf{R}^n$, and a dimension k, we want to choose a and U to minimize

$$\sum_{i=1}^{m} ||x - \operatorname{proj}_{W(a,U)}(x)||^{2},$$

the sum of squares of the distance from x to its projection in W(a, U).

Express $\operatorname{proj}_{W(a,U)}(x)$ as $UU^{\top}x + (I - UU^{\top})a$ (see Projections on Affine Sets).

