# Chap. 5 Confidence intervals

### Introduction

#### Definition:

Confidence interval (CI) = interval supposed to contain true value of the parameter of interest with high probability

- $\rightarrow$  This definition is very vague
- → Purposes of this chapter:
  - Understand what this means exactly
  - 2 Learn methods to find confidence intervals

#### Examples of CI:

- $\bullet$  Fraction of left-handed people  $\in [9.1\%; 10.2\%]$  @ 90% CL
- • Fraction of people with no access to clean water  $\in$  [0.10; 0.12] @ 99% CL
- Higgs mass  $\in$  [124.94; 125.36] GeV @ 95% CL

#### Introduction

☐ CI always have the following structure:



- $\theta_{\min}$  and  $\theta_{\max}$  called **lower** and **upper bound**
- If either of the two bounds is equal to the parameter limit, interval said to be one-sided
- Otherwise, interval said to be two-sided
- ullet Confidence level lpha reflects how confident we are that the true parameter is in the quoted interval
- Quoting a result as follows makes no sense

$$\theta \in [\theta_{\mathsf{min}}; \theta_{\mathsf{max}}]$$

#### Introduction

 $\square$  **CI** are random objects (bounds are functions of the data x):

$$[\theta_{\mathsf{min}}(\mathbf{x}); \theta_{\mathsf{max}}(\mathbf{x})]$$

☐ If you repeat the measurement, you'll get different intervals



- → CI can contain the true value or not
- → You're never 100% sure that the CI contains the true value
- Bayesian approach already described → Will focus on frequentist approach

### Frequentist approach

- ☐ In frequentist approach, building of CI based on coverage notion
- ☐ Coverage = probability that CI contains true value

coverage = 
$$P(\theta_0 \in [\theta_{\mathsf{min}}(x); \theta_{\mathsf{max}}(x)])$$



This probability should not be misunderstood:

- It is not the probability that  $\theta_0$  belongs to the interval you compute from your measurement
- It is the probability that, if you repeat the measurement many many times, the intervals you get contain  $\theta_0$

### Frequentist approach

- ☐ CI built in order to have coverage as close as possible to a predefined value
  - $\rightarrow$  This predefined value is called **confidence level** ( $\alpha$ )
- $\square$  Typical values of  $\alpha$ : 68%, 90%, 95%, 99%
- Confidence level and coverage are not the same thing:
  - Confidence level = objective we try to attain
  - Coverage = what we actually reach when trying to attain the objective

Goal: coverage  $\simeq \alpha$ 

## More on coverage

- $\square$  coverage =  $\alpha$  can be difficult to achieve in realistic cases
- ☐ 3 cases must be distinguished:
  - $P(\theta_0 \in [\theta_{\min}(x); \theta_{\max}(x)]) = \alpha$ : ideal case (perfect coverage)
  - $P(\theta_0 \in [\theta_{\min}(x); \theta_{\max}(x)]) > \alpha$ : not ideal but acceptable (overcoverage)
  - $P(\theta_0 \in [\theta_{min}(x); \theta_{max}(x)]) < \alpha$ : should be avoided (undercoverage)
- ☐ A good frequentist method is a method that has no undercoverage and minimal overcoverage

# Approximate methods



Methods described here in general don't have known coverage

- $\rightarrow$  Can undercover
- $\rightarrow$  Use with caution !
- $\square$  Simplest way to build CI is to start from an estimator  $\hat{\theta}$ :

$$CI = \left[\hat{\theta} - d\sqrt{\operatorname{var}\left[\hat{\theta}\right]}; \hat{\theta} + d\sqrt{\operatorname{var}\left[\hat{\theta}\right]}\right]$$

#### where

- ullet  $\sqrt{\mathrm{var}\left[\hat{ heta}
  ight]}$  is the "uncertainty" on the estimate
- d is a real number used to adjust the size of the interval (and thus the coverage)
  - $\rightarrow$  If you want high confidence level, use large d (example: d = 3)
  - ightarrow If you want low confidence level, use small d (example: d=1)

### Unbiased normal case

☐ In this case, possible to achieve perfect coverage

$$\begin{split} \hat{\theta} &\sim \mathcal{N}\left(\theta_0, \sqrt{\mathrm{var}\left[\hat{\theta}\right]}\right) \\ \Rightarrow \mathsf{coverage} &= P\left(\theta_0 \geq \hat{\theta} - d\sqrt{\mathrm{var}\left[\hat{\theta}\right]} \cap \theta_0 \leq \hat{\theta} + d\sqrt{\mathrm{var}\left[\hat{\theta}\right]}\right) \\ &= P\left(\theta_0 \geq \hat{\theta} - d\sqrt{\mathrm{var}\left[\hat{\theta}\right]}\right) + P\left(\theta_0 \leq \hat{\theta} + d\sqrt{\mathrm{var}\left[\hat{\theta}\right]}\right) - 1 \\ &= P\left(\hat{\theta} \leq \theta_0 + d\sqrt{\mathrm{var}\left[\hat{\theta}\right]}\right) + P\left(\hat{\theta} \geq \theta_0 - d\sqrt{\mathrm{var}\left[\hat{\theta}\right]}\right) - 1 \\ &\Rightarrow \mathsf{coverage} = 2\Phi(d) - 1 \quad \mathsf{or} \quad d = \Phi^{-1}\left(\frac{1 + \mathsf{coverage}}{2}\right) \end{split}$$

□ **Conclusion:** coverage known once d fixed (we can thus achieve coverage= $\alpha$ )

# The "number of sigma" way of speaking

- $\Box$  d called in jargon the "number of sigma"
  - ightarrow Example: a  $2\sigma$  confidence interval is an interval with a confidence level of 95.45%
- Note: "number of sigma" terminology used even when problem is not normal
  - → Quoting an interval with its corresponding "number of sigma" doesn't mean that underlying estimator is gaussian
  - ightarrow Underlying estimator can have any distribution (e.g. gamma distribution)
  - → The number of sigma is just a number that tells what the confidence level is

# Approximate methods

- ☐ In cases other than the unbiased normal one, coverage in general not known
- ☐ However, the following holds in unbiased case:

Leading to:

| d               | 1 | 2    | 3    | 4      | 5    |
|-----------------|---|------|------|--------|------|
| $coverage \geq$ | 0 | 0,75 | 0,88 | 0,9375 | 0,96 |

□ Note: this is true **in general** for unbiased estimators!

#### Bienaymé-Tchebichev inequality

☐ Bienaymé-Tchebichev inequality:

$$P(|X - \mathbb{E}[X]| \ge \varepsilon) \le \frac{\operatorname{var}[X]}{\varepsilon^2} \qquad \forall \varepsilon > 0$$

or equivalently

$$P(|X - \mathbb{E}[X]| \ge \varepsilon \sigma[X]) \le \frac{1}{\varepsilon^2}$$

- ☐ 2 important consequences:
  - Coverage bounded from below (result under discussion)
  - 2 Law of large numbers:

$$\mathbb{E}[M] = \mathbb{E}[X] \quad \text{and} \quad \text{var}[M] = \frac{\text{var}[X]}{n}$$
$$\Rightarrow P(|M - \mathbb{E}[X]| \ge \varepsilon) \le \frac{\text{var}[X]}{n\varepsilon^2}$$

# coverage $\geq 1 - 1/d^2$ : the proof

Bienaymé-Tchebichev inequality:

$$P(|X - \mathbb{E}[X]| \ge \varepsilon \sigma[X]) \le \frac{1}{\varepsilon^2}$$

☐ In unbiased case, this leads to:

$$\begin{split} P\left(\left|\hat{\theta} - \theta_{0}\right| \geq \varepsilon \sqrt{\mathrm{var}\left[\hat{\theta}\right]}\right) \leq \frac{1}{\varepsilon^{2}} \\ \Leftrightarrow P\left(\left|\hat{\theta} - \theta_{0}\right| \leq \varepsilon \sqrt{\mathrm{var}\left[\hat{\theta}\right]}\right) \geq 1 - \frac{1}{\varepsilon^{2}} \\ \Leftrightarrow P\left(\hat{\theta} - \varepsilon \sqrt{\mathrm{var}\left[\hat{\theta}\right]}\right) \leq \theta_{0} \leq \hat{\theta} + \varepsilon \sqrt{\mathrm{var}\left[\hat{\theta}\right]}\right) \geq 1 - \frac{1}{\varepsilon^{2}} \end{split}$$

## Approximate methods

☐ If variance not known, can use an estimator:

$$\boxed{\boldsymbol{\theta} \in \left[\hat{\boldsymbol{\theta}} - d\sqrt{\widehat{\mathrm{var}}\left[\hat{\boldsymbol{\theta}}\right]}; \hat{\boldsymbol{\theta}} + d\sqrt{\widehat{\mathrm{var}}\left[\hat{\boldsymbol{\theta}}\right]}\right]}$$

- ☐ Can be **very risky** to do so:
  - → Coverage in general not known
  - → Can lead to large undercoverage
- ☐ Typical situations where such intervals are computed: calculation of proportions and efficiencies
  - $\rightarrow$  What is the fraction of left-handed people in population ?
  - $\rightarrow$  What percentage will such or such candidate get at the next presidential election ?
  - → What is the detection efficiency of your device ?

☐ Statistical model: binomial law of probability

$$P(k; N, p) = {N \choose k} p^{k} (1-p)^{N-k}$$

- $\square$  **Goal:** find confidence interval for p
- $\square$  **Possible solution:** start from ML estimator of p

$$\hat{p} = \frac{k}{N}$$

□ Variance of  $\hat{p}$  is:

$$\operatorname{var}\left[\hat{p}\right] = \frac{p(1-p)}{N}$$

 $\square$  Problem: variance depends on unknown parameter of interest p  $\rightarrow$  Rather than true variance, use an estimate:

$$\widehat{\operatorname{var}}\left[\widehat{p}\right] = \frac{\widehat{p}\left(1-\widehat{p}\right)}{N}$$

☐ Following previous reasoning, the CI is:

$$p \in \left[\hat{p} - d\sqrt{\frac{\hat{p}\left(1 - \hat{p}\right)}{N}}; \hat{p} + d\sqrt{\frac{\hat{p}\left(1 - \hat{p}\right)}{N}}\right] \quad \text{(Wald interval)}$$

■ What is the coverage of this CI?





- $\rightarrow$  Very large variations (in particular as a function of p)
- $\rightarrow$  As you don't know p, you don't know coverage

- $\square$  Other issue with Wald interval: leads to empty set when  $\hat{p} \rightarrow 0$  or 1
- **Example:** Suppose you ask N = 2 people whether they are left-handed or not
  - If both say no (k = 0), then the CI is:  $0 \pm 0$
  - If both say yes (k = 2), then the CI is:  $1 \pm 0$
  - $\Rightarrow$  Even though sample size very small (N=2), we arrive at certain conclusions (uncertainty on estimated proportion is 0)

Because of these issues, better intervals have been proposed over the years:





### Exercice

Let's consider the following sample:

$$(20.4, 25.4, 25.6, 25.6, 26.6, 28.6, 28.7, 29, 29.8, 30.5, 30.9, 31.1)$$

We assume that these values are realizations of a normal random variable with mean  $\mu$  and standard deviation  $\sigma$  (both unknown)

ightarrow Find a confidence interval for  $\mu$  at 95% CL

#### Exercice

For the exercice of the previous slide, is it possible to find a better interval than the one you found ?

In order to address this question, consider the fact that

$$t = \frac{\sqrt{n-1}(M - \mathbb{E}[X])}{s}$$
, with  $s^2 = \frac{\sum_{i} (X_i - M)^2}{n}$ 

follows a Student distribution with n-1 degrees of freedom.

#### Quantiles of Student distribution

|    |       |       |       |       |       | $\gamma$ |       |       |        |        |        |
|----|-------|-------|-------|-------|-------|----------|-------|-------|--------|--------|--------|
| k  | 0.25  | 0.20  | 0.15  | 0.10  | 0.05  | 0.025    | 0.010 | 0.005 | 0.0025 | 0.0010 | 0.0005 |
| 1  | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71    | 31.82 | 63.66 | 127.3  | 318.3  | 636.6  |
| 2  | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303    | 6.965 | 9.925 | 14.09  | 22.33  | 31.60  |
| 3  | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182    | 4.541 | 5.841 | 7.453  | 10.21  | 12.92  |
| 4  | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776    | 3.747 | 4.604 | 5.598  | 7.173  | 8.610  |
| 5  | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571    | 3.365 | 4.032 | 4.773  | 5.893  | 6.869  |
| 6  | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447    | 3.143 | 3.707 | 4.317  | 5.208  | 5.959  |
| 7  | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365    | 2.998 | 3.499 | 4.029  | 4.785  | 5.408  |
| 8  | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306    | 2.896 | 3.355 | 3.833  | 4.501  | 5.041  |
| 9  | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262    | 2.821 | 3.250 | 3.690  | 4.297  | 4.781  |
| 10 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228    | 2.764 | 3.169 | 3.581  | 4.144  | 4.587  |
| 11 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201    | 2.718 | 3.106 | 3.497  | 4.025  | 4.437  |
| 12 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179    | 2.681 | 3.055 | 3.428  | 3.930  | 4.318  |
| 13 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160    | 2.650 | 3.012 | 3.372  | 3.852  | 4.221  |
| 14 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145    | 2.624 | 2.977 | 3.326  | 3.787  | 4.140  |
| 15 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131    | 2.602 | 2.947 | 3.286  | 3.733  | 4.073  |

## Neyman construction

- Method for building CI with good frequentist properties (i.e. no undercoverage, minimal overcoverage): Neyman construction
- □ Principle:
  - **①** For each  $\theta$ , build acceptance region with probability  $\alpha$ :

$$[x_{\min}(\theta); x_{\max}(\theta)]$$

- From all acceptance regions, build confidence belt
- **1** Determine CI for  $\theta$  from observed value  $x_{\text{obs}}$

$$[\theta_{\min}(x_{\text{obs}}); \theta_{\max}(x_{\text{obs}})]$$

 $\rightarrow$  Resulting interval has confidence level =  $\alpha$ 

# Neyman construction



## Neyman construction

#### Remarks:

- Perfect coverage in continuous case
- Impossible to achieve perfect coverage in discrete case
  - ightarrow Choose narrower CI that has coverage > lpha (i.e. minimal overcoverage)
- Choice of how to build acceptance region free
  - If  $x_{\min}(\theta) = -\infty$  or  $x_{\max}(\theta) = +\infty$ : **one-sided** interval
  - If  $x_{\min}(\theta) \neq -\infty$  and  $x_{\max}(\theta) \neq +\infty$ : **two-sided** interval  $\rightarrow$  If  $P(x < x_{\min}(\theta); \theta) = P(x > x_{\max}(\theta); \theta) = (1 \alpha)/2$ : **central** interval

### Neyman construction: discrete example

 Neyman construction for one-sided and two-sided intervals in Poisson case:

$$P(n;s) = \frac{(s+b)^n}{n!}e^{-(s+b)}$$



