

FIG.1

FIG.2

FIG.3

FIG.4

FIG.5

4/30

FIG. 6
VACANCY DOMINATED, 6

FIG. 7

6/30

7/30

FIG. 9

8/30

FIG. 10

FIG. 11

9/30

FIG. 12

FIG. 13

10/30

FIG. 14

SEED LIFT (mm/min.)

320 mm 525 mm 700 mm

FIG. 15

12/30

FIG. 16a

13/30

FIG. 16b

FIG. 17

FIG. 18

FIG.19

17/30

FIG. 20

AXIAL POSITION V// BOUNDARY, 2 (VACANCY DOMINATED, 8 PULL RATE
235 mm

350 mm

AGGLOMERATED INTERSTITIAL DEFECTS, 28

FIG. 21

19/30

FIG. 22

FIG. 23

AXIAL
POSITION
600mm

AGGLOMERATED
(INTERSTITIAL DEFECTS, 28
PULL RATE

640mm

665mm

730mm

VACANCY
DOMINATED, 8

20/30

FIG.24

FIG.25

TEMPERATURE PROFILES FOR VARIOUS HOT ZONES

FIG. 26

LPD RADIAL DISTRIBUTION
BEFORE/AFTER Ar ANNEALING ($LPDs > 0.09 \mu m$)

FIG. 27

LPD RADIAL DISTRIBUTION
(BEFORE Ar ANNEALING: 0.09–0.11 μm)

FIG. 28

LPD RADIAL DISTRIBUTION
(AFTER Ar ANNEALING: 0.09–0.11 μm)

FIG. 29

LPD RADIAL DISTRIBUTION
(BEFORE: 0.11–0.13 μm)

FIG. 30

LPD RADIAL DISTRIBUTION
(AFTER Ar ANNEALING: 0.11-0.13 um)

FIG. 31

LPD RADIAL DISTRIBUTION
(BEFORE: 0.13-0.15 um)

FIG. 32

LPD RADIAL DISTRIBUTION
(AFTER Ar ANNEALING: 0.13–0.15 μm)

FIG. 33a

FIG. 33b

FIG. 33c

