Since the rref of A^{\top} is

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix},$$

the above system is equivalent to

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} u_1 + u_2 \\ u_3 + u_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

where the free variables are associated with u_2 and u_4 . Thus to determine a basis for the kernel of A^{\top} , we set $u_2 = 1$, $u_4 = 0$ and $u_2 = 0$, $u_4 = 1$ and obtain a basis for V^0 as

$$(1 \quad -1 \quad 0 \quad 0), \qquad (0 \quad 0 \quad 1 \quad -1).$$

Problem 2. Let us now consider the problem of finding a basis of the hyperplane H in \mathbb{R}^n defined by the equation

$$c_1x_1 + \dots + c_nx_n = 0.$$

More precisely, if $u^*(x_1, \ldots, x_n)$ is the linear form in $(\mathbb{R}^n)^*$ given by $u^*(x_1, \ldots, x_n) = c_1x_1 + \cdots + c_nx_n$, then the hyperplane H is the kernel of u^* . Of course we assume that some c_j is nonzero, in which case the linear form u^* spans a one-dimensional subspace U of $(\mathbb{R}^n)^*$, and $U^0 = H$ has dimension n - 1.

Since u^* is not the linear form which is identically zero, there is a smallest positive index $j \leq n$ such that $c_j \neq 0$, so our linear form is really $u^*(x_1, \ldots, x_n) = c_j x_j + \cdots + c_n x_n$. We claim that the following n-1 vectors (in \mathbb{R}^n) form a basis of H:

Observe that the $(n-1) \times (n-1)$ matrix obtained by deleting row j is the identity matrix, so the columns of the above matrix are linearly independent. A simple calculation also shows that the linear form $u^*(x_1, \ldots, x_n) = c_j x_j + \cdots + c_n x_n$ vanishes on every column of the above