Convex Optimization II

Lecture 1: Linear Programming

Hamed Shah-Mansouri

Department of Electrical Engineering Sharif University of Technology

1400-2

1/24

OUTLINE

- Preliminaries
- Linear Programming
- Problem Types and Equivalent Form
- Application 1: Multicommodity Flow Problem
- Application 2: Lifetime Maximization Problem in Wireless Sensor Networks
- Basic Properties
- Summary

Acknowledgement: Vincent Wong and Stephen Boyd. Some materials and graphs are from Boyd and Vandenberghe.

PRELIMINARIES AND HISTORY

- Programming: Used traditionally to describe the process of operations planning and resource allocation.
- In 1940s, it was realized that planning process could be aided by solving optimization problems involving linear objective and constraints.
- Initial impetus, in the aftermath of World War II, within the context of military planning problems.
- In 1947, Dantzig proposed simplex method to solve linear programming (LP) problems.
- Early work goes back to Fourier, who in 1824 developed an algorithm for solving systems of linear inequalities.
- In late 1930s, Kantorovich worked on problems on resource allocation and developed LP formulations. He also provided a solution method, but his work was not widely known at that time.
- Others included Koopmans, who shared a Nobel Prize in economic science with Kantorovich in 1975.

LINEAR PROGRAMMING (LP)

• Minimize a linear objective function of a variable $x \in \mathbb{R}^n$ over linear inequality and equality constraints

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $G\mathbf{x} \leq \mathbf{h}$
 $A\mathbf{x} = \mathbf{b}$

The problem data are vectors $\mathbf{c} \in \mathbf{R}^n$, $\mathbf{h} \in \mathbf{R}^m$, $\mathbf{b} \in \mathbf{R}^p$, as well as matrices $G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$.

Standard form LP

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \succeq \mathbf{0}$

- Computationally more convenient representation.
- Can solve dense problems with thousand of variables and ten thousand constraints.

4/24

EQUIVALENT PROBLEMS

I

- Informally, two problems are equivalent if the solution of one problem is readily obtained from the solution of the other, and vice versa.
- Given a feasible solution of one problem, we can construct a feasible solution to the other, with the same cost.
- In particular, the two problems have the same optimal cost and given an optimal solution to one problem, we can construct an optimal solution to the other.

TRANSFORMATION TO STANDARD FORM

• Elimination of inequality constraints: Introduce slack variables s_i for inequality constraints.

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $G\mathbf{x} + \mathbf{s} = \mathbf{h}$
 $A\mathbf{x} = \mathbf{b}$
 $\mathbf{s} \succeq \mathbf{0}$

• Elimination of free variables: Express \mathbf{x} as difference between two nonnegative vectors \mathbf{x}^+ , $\mathbf{x}^- \succeq \mathbf{0}$. That is, $\mathbf{x} = \mathbf{x}^+ - \mathbf{x}^-$.

minimize
$$\mathbf{c}^T \mathbf{x}^+ - \mathbf{c}^T \mathbf{x}^-$$

subject to $G\mathbf{x}^+ - G\mathbf{x}^- + \mathbf{s} = \mathbf{h}$
 $A\mathbf{x}^+ - A\mathbf{x}^- = \mathbf{b}$
 $\mathbf{x}^+, \mathbf{x}^-, \mathbf{s} \succeq \mathbf{0}$

• Now in LP standard form with variables x^+ , x^- , and s.

PIECEWISE LINEAR FUNCTION

• A function of the form $\max_{i=1,...,m} (\mathbf{c}_i^T \mathbf{x} + d_i)$ is called a piecewise linear function.

Example: absolute value function $f(x) = |x| = \max\{x, -x\}$

 Consider a generalization of LP, where the objective function is piecewise linear rather than linear

minimize
$$\max_{i=1,...,m} (\mathbf{c}_i^T \mathbf{x} + d_i)$$

subject to $A\mathbf{x} \succeq \mathbf{b}$

- Note that $\max_{i=1,...,m} (\mathbf{c}_i^T \mathbf{x} + d_i)$ is equal to the smallest number z that satisfies $z \ge \mathbf{c}_i^T \mathbf{x} + d_i$ for all i.
- The above problem can be transformed as

minimize
$$z$$
 subject to $z \geq \mathbf{c}_i^T \mathbf{x} + d_i, \quad i = 1, \dots, m$ $A\mathbf{x} \succeq \mathbf{b}$

where the variables are scalar z and vector \mathbf{x} .

NORM MINIMIZATION PROBLEMS

- l_1 norm: $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$
 - \bullet Minimize $||A{\bf x}-{\bf b}||_1$ is equivalent to the following LP in ${\bf x}\in {\bf R}^n,$ ${\bf s}\in {\bf R}^p$

minimize subject to
$$\begin{cases} \mathbf{1}^T \mathbf{s} \\ A\mathbf{x} - \mathbf{b} \leq \mathbf{s} \\ A\mathbf{x} - \mathbf{b} \succeq -\mathbf{s} \end{cases}$$

- l_{∞} norm: $||\mathbf{x}||_{\infty} = \max_{i} \{|x_{i}|\}$
 - Minimize $||A\mathbf{x} \mathbf{b}||_{\infty}$ is equivalent to the following LP in $\mathbf{x} \in \mathbf{R}^n$, $t \in \mathbf{R}$

minimize
$$t$$
 subject to $A\mathbf{x} - \mathbf{b} \leq t$ $A\mathbf{x} - \mathbf{b} \succeq -t$

LINEAR FRACTIONAL PROGRAMMING

• Minimize the ratio of linear functions

minimize
$$\frac{\mathbf{c}^T \mathbf{x} + d}{\mathbf{e}^T \mathbf{x} + f}$$
subject to
$$G\mathbf{x} \leq \mathbf{h}$$
$$A\mathbf{x} = \mathbf{b}$$

- Domain of the objective function: $\{\mathbf{x} \mid \mathbf{e}^T \mathbf{x} + f > 0\}$
- Not an LP. If the feasible set is non-empty, we can transform it into an equivalent LP with variables $y = \frac{x}{e^T x + f}$ and $z = \frac{1}{e^T x + f}$

minimize
$$\mathbf{c}^T \mathbf{y} + dz$$

subject to $G\mathbf{y} - \mathbf{h}z \leq \mathbf{0}$
 $A\mathbf{y} - \mathbf{b}z = \mathbf{0}$
 $\mathbf{e}^T \mathbf{y} + fz = 1$
 $z \geq 0$

• See [pp. 151, Boyd and Vandenberghe] for the proof of equivalence.

APPLICATION 1: MULTICOMMODITY FLOW PROBLEM

- ullet Consider a communication network with N nodes.
- Nodes are connected by communication links.
- A link from node i to node j is an ordered pair (i, j).

Ci; U;

- Let A be the set of all links.
- Each link $(i, j) \in \mathcal{A}$ can carry up to u_{ij} bits per second.
- Positive charge c_{ij} per bit transmitted along link (i, j).
- Each source node k generates data, at the rate of b^{kl} bits per second, that have to be transmitted to destination node l.
- Problem: Choose paths along which all data reach their intended destinations, while minimizing the total cost.
- We allow data with the same origin/source and destination to be split and be transmitted along different paths.

MULTICOMMODITY FLOW PROBLEM (CONT.)

- Let variables x_{ij}^{kl} denote the amount of data with source k and destination l that traverse link (i,j).
- b_i^{kl} is the net flow at node i, of data with source k and destination l

$$b_i^{kl} = \begin{cases} b^{kl}, & \text{if } i = k, \\ -b^{kl}, & \text{if } i = l, \\ 0, & \text{otherwise} \ . \end{cases}$$

• We have the following LP formulation

$$\begin{array}{ll} \text{minimize} & \sum\limits_{(i,j) \in \mathcal{A}} \sum\limits_{k=1}^{N} \sum\limits_{l=1}^{N} c_{ij} x_{ij}^{kl} \\ \text{subject to} & \sum\limits_{\{j \; | \; (i,j) \in \mathcal{A}\}} x_{ij}^{kl} - \sum\limits_{\{j \; | \; (j,i) \in \mathcal{A}\}} x_{ji}^{kl} = b_i^{kl}, \quad i,k,l = 1, \ldots N, \\ & \sum\limits_{k=1}^{N} \sum\limits_{l=1}^{N} x_{ij}^{kl} \leq u_{ij}, & (i,j) \in \mathcal{A} \\ & x_{ij}^{kl} \geq 0, & (i,j) \in \mathcal{A}, \; k,l = 1, \ldots N. \end{array}$$

MULTICOMMODITY FLOW PROBLEM (CONT.)

- The first constraint is a flow conservation constraint at node i for data with source k and destination l.
- The summation below represents the amount of data with source and destination k and l, respectively, that leave node i along some link.

$$\sum_{\{j \mid (i,j) \in \mathcal{A}\}} x_{ij}^{kl}$$

• The summation below represents the amount of data with source and destination k and l, respectively, that enter node i through some link.

$$\sum_{\{j \mid (j,i) \in \mathcal{A}\}} x_{ji}^{kl}$$

• The constraint below expresses the requirement that the total traffic through a link (i, j) cannot exceed the link's capacity.

$$\sum_{k=1}^{N} \sum_{l=1}^{N} x_{ij}^{kl} \le u_{ij}, \quad (i,j) \in \mathcal{A}$$

APPLICATION 2: WIRELESS SENSOR NETWORKS

A wireless sensor network consists of

- many wireless sensor nodes
- one/multiple sink nodes

APPLICATION 2: WIRELESS SENSOR NETWORKS

APPLICATION 2: WIRELESS SENSOR NETWORKS

- R. Madan and S. Lall, "Distributed Algorithms for Maximum Lifetime Routing in Wireless Sensor Networks," *IEEE Trans. on Wireless Comm.*, Aug. 2006.
- Problem: Compute an optimal routing scheme that maximizes the time at which the first node in the sensor network drains out of energy.
- ullet Consider a wireless sensor network with the set of nodes V and set of links L.
- Sensor nodes are connected by communication links.
- Each link $(i, j) \in L$ can carry up to R_{ij} bits per second.
- Each sensor node $i \in V$ has an initial battery energy B_i .
- Let S_i be the rate at which information is generated at node i; this information needs to be communicated to the sink node.
- We write $S_{\text{sink}} = -\sum_{i \in V, i \neq \text{sink}} S_i$.
- Energy spent by node i to transmit a unit of information directly to node j is E_{ij} .
- Variables: Let r_{ij} denote the rate of information flow from node i to node j.

Hamed Shah-Mansouri (Sharif) Convex Optimization II 15/24

WIRELESS SENSOR NETWORKS (CONT.)

• The lifetime of node i under flow $\mathbf{r} = \{r_{ij}\}$ is given by

$$T_i(\mathbf{r}) = \frac{B_i}{\sum_{j \in N_i} E_{ij} r_{ij}},$$

where N_i is the set of nodes connected to node i by a link.

• The network lifetime $T_{net}(\mathbf{r})$ under flow \mathbf{r} is defined as the time when the first sensor node runs out of energy, i.e.,

$$T_{\text{net}}(\mathbf{r}) = \min_{i \in V} T_i(\mathbf{r}).$$

• We have the following lifetime maximization problem

$$\begin{array}{ll} \text{maximize} & T_{\text{net}}(\mathbf{r}) \\ \text{subject to} & \sum_{j \in N_i} (r_{ij} - r_{ji}) = S_i, \quad i \in V \\ & 0 \leq r_{ij} \leq R_{ij}, \qquad \quad i \in V, \ j \in N_i \end{array}$$

which can be transformed as an LP.

16/24

OTHER APPLICATIONS

- A. Demiriz, K.P. Bennett, J. Shawe-Taylor, "Linear programming boosting via column generation", *Machine Learning*. Vol. 46, no.1, pp.225–254, Jan 2002.
- C.V. Rao and J.B. Rawlings, "Linear programming and model predictive control", *Journal of Process Control*. vol. 10, no. 1, pp.283–289, Apr 2000.
- K. Li and X. Wang, "Cross-Layer Design of Wireless Mesh Networks with Network Coding," *IEEE Trans. on Mobile Computing*, Nov. 2008.
 - ▶ Network code construction scheme based on LP.

BASIC PROPERTIES

• **Definition:** \mathbf{x} in polyhedron P is an extreme point if there does not exist two other points \mathbf{y} , $\mathbf{z} \in P$ such that $\mathbf{x} = \theta \mathbf{y} + (1 - \theta) \mathbf{z}$ for some $\theta \in (0, 1)$.

Theorem

Assume that an LP in standard form is feasible and the optimal value is finite. There exists an optimal solution which is an extreme point.

ALGORITHMS

- Simplex method
 - Very efficient in practice but specialized for LP.
 - ▶ Move from one vertex to another without enumerating all the vertices.
- Cutting-plane method
- Ellipsoid method
- Interior-point method
 - Commonly used to solve convex optimization problems as well.
- The complexity in practice is of order n^2m (assuming $m \ge n$).

SOLVING AN LP USING MATLAR

Example:

minimize
$$-5x_1 - 4x_2 - 6x_3$$

subject to $x_1 - x_2 + x_3 \le 20$, $3x_1 + 2x_2 + 4x_3 \le 42$
 $3x_1 + 2x_2 \le 30$
 $x_1, x_2, x_3 \ge 0$
 $f = [-5: -4: -6]$

In Matlab, we have

$$f = [-5; -4; -6];$$

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 3 & 2 & 4 \\ 3 & 2 & 0 \end{bmatrix};$$

$$b = [20; 42; 30];$$

$$b = zeros(3, 1);$$

lb = zeros(3,1);

[x, fval, exitflag, output, lambda] = linprog(f, A, b, [], [], lb);

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ ug/linprog.html 4 日 5 4 周 5 4 3 5 4 3 5 6 3 B

20/24

SOLVING AN LP USING CVX

Using CVX, the same problem can be solved as follows:

```
n=3;
\operatorname{cvx\_begin}
\operatorname{variable} x(n);
\operatorname{minimize}(f'*x);
\operatorname{subject} \operatorname{to}
A*x <= b;
x>= lb;
\operatorname{cvx\_end}
```

• http://cvxr.com/cvx/

SUMMARY

- Linear programming (LP) covers a wide range of interesting problems in different areas.
- There are very useful special structures in LP. But most of the important ones (computational efficiency, global optimality, Lagrange duality) can be generalized to convex optimization.
- Reading: Chapter 1 and Section 4.3 of Boyd and Vandenberghe.

APPENDIX

Mathematical Background

NORM

A norm is a measure of the *length* of a vector \mathbf{x} .

A function $f: \mathbf{R}^n \to \mathbf{R}$ with $\operatorname{\mathbf{dom}} f = \mathbf{R}^n$ is called a norm if

- f is nonnegative: $f(\mathbf{x}) \ge 0$ for all $\mathbf{x} \in \mathbf{R}^n$.
- f is finite and $f(\mathbf{x}) = 0$ only if $\mathbf{x} = \mathbf{0}$.
- f is homogeneous: $f(t\mathbf{x}) = |t| f(\mathbf{x})$ for all $\mathbf{x} \in \mathbf{R}^n$ and $t \in \mathbf{R}$.
- f satisfies the triangle inequality: $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$.

Examples

- l_p -norm is given by $||\mathbf{x}||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$, with $p \ge 1$.
- l_{∞} -norm is given by $||\mathbf{x}||_{\infty} = \max\{|x_1|, \dots, |x_n|\}.$

Question: Obtain l_{∞} -norm from the definition of l_p -norm, when $p \to \infty$.