FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN COMPLEMENTOS DE MATEMÁTICA II

Práctica 2: Conjuntos ordenados

1. Considerar las relaciones \mathcal{R}_1 y \mathcal{R}_2 en $A = \{1, 2, 3, 4, 5\}$ cuyas matrices asociadas son

$$M(\mathcal{R}_1) = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}, \quad M(\mathcal{R}_2) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Determinar los grafos dirigidos asociados a \mathcal{R}_1 , \mathcal{R}_2 y a las relaciones $\mathcal{R}_3 = \mathcal{R}_1 \cup \mathcal{R}_2$, $\mathcal{R}_4 = \mathcal{R}_1 \cap \mathcal{R}_2$ y $\mathcal{R}_5 = \mathcal{R}_2 \circ \mathcal{R}_1$.

2. Considerar las relaciones \mathcal{R}_1 y \mathcal{R}_2 cuyos grafos dirigidos asociados son los grafos G_1 y G_2 de la siguiente figura:

Determinar los grafos dirigidos asociados a las relaciones $\mathcal{R}_3 = \mathcal{R}_1 \circ \mathcal{R}_2$ y $\mathcal{R}_4 = \mathcal{R}_2 \circ \mathcal{R}_1$.

3. Sea \mathcal{R} la relación sobre $A = \{1, 2, 3, 4, 5, 6, 7\}$ cuyo grafo dirigido asociado es

- a) Si $\mathcal{R}^1 = \mathcal{R}$, $\mathcal{R}^2 = \mathcal{R} \circ \mathcal{R}$ y $\mathcal{R}^n = \mathcal{R}^{n-1} \circ \mathcal{R}$ para cada $n \in \mathbb{N}$, $n \geq 3$, encontrar el número natural $n \geq 2$ más pequeño tal que $\mathcal{R}^n = \mathcal{R}$.
- b) ¿Cuál es el $n \in \mathbb{N}$ más pequeño para el cual el grafo de \mathbb{R}^n contiene al menos un lazo?
- c) ¿Existe $n \in \mathbb{N}$ tal que el grafo de \mathbb{R}^n consta sólo de lazos?
- 4. Lema de Yoneda. Sea (P, \mathcal{R}) un conjunto preordenado. Probar que

$$(x \mathcal{R} y) \iff (\forall z \in P, (z \mathcal{R} x) \Rightarrow (z \mathcal{R} y))$$

5. Sea (A, \mathcal{R}) un conjunto preordenado. Probar:

- a) Si existe un elemento máximo, entonces todos los maximales son máximos.
- b) Sea $B \subseteq A$. Si $a \in B$ es cota superior de B, entonces a es un elemento maximal de B. ¿Vale la recíproca?
- **6.** Decimos que un conjunto preordenado (A, \mathcal{R}) satisface el **axioma del supremo** si todo subconjunto no vacío de A acotado superiormente tiene un supremo.
 - a) Mostrar que $(\mathcal{P}(X), \subseteq)$ satisface el axioma del supremo.
 - b) ¿El axioma del supremo es una propiedad hereditaria? Es decir, si (A, \mathcal{R}) es un conjunto preordenado que satisface el axioma del supremo y $B \subseteq A$, ¿ $(B, \mathcal{R}_{|B \times B})$ también lo satisface?
 - c) Sea (A, \mathcal{R}) un conjunto preordenado. Decimos que (A, \mathcal{R}) satisface el **axioma del ínfimo** si todo subconjunto no vacío de A acotado inferiormente tiene ínfimo. Probar que (A, \mathcal{R}) satisface el axioma del supremo si y solo si (A, \mathcal{R}) satisface el axioma del ínfimo.
- 7. Sea $A = \{a, b, c, d, e, v, w, x, y, z\}$ y sea \leq el orden parcial en A cuyo diagrama de Hasse es el siguiente:

Determinar, si existen,

- a) $\inf\{b,c\}$
- c) $\inf\{e, x\}$
- e) $\sup\{c,b\}$
- g) $\sup\{c,e\}$

- **b)** $\inf\{b, w\}$
- d) $\inf\{b,e\}$
- f) $\sup\{d,x\}$
- **h**) $\sup\{a,v\}$
- 8. ¿Cuántas relaciones posibles hay en $A = \{a, b, c\}$? Responder la misma pregunta para: preórdenes, órdenes parciales, órdenes totales, y relaciones de equivalencia. ¿Y para un conjunto finito de n elementos?
- 9. Sea (A, \preceq) un poset. Un subconjunto $B \subset A$ se denomina una anticadena si para cada $x, y \in B$ se verifica que

$$x \leq y \implies x = y.$$

Probar que el conjunto de todos los elementos maximales (resp. minimales) de un conjunto ordenado, es una anticadena.

10. Sean (A, \leq_1) y (A, \leq_2) posets. Determinar si las siguientes relaciones determinan un orden parcial en A:

2

Página 2

a)
$$\leq_1 \cup \leq_2$$
.

b)
$$\leq_1 \cap \leq_2$$
.

c)
$$\leq_1 \circ \leq_2$$

- 11. Sean (A, \leq_A) y (B, \leq_B) posets. Probar que los siguientes conjuntos son posets:
 - a) $(A \times B, \preceq_{prod})$ donde:

$$(a,b) \leq_{prod} (a',b') \iff (a \leq_A a' \land b \leq_B b').$$

b) $(A \times B, \preceq_{lex})$, donde

$$(a,b) \preceq_{lex} (a',b') \iff (a \prec_A a' \lor (a = a' \land b \preceq_B b')).$$

- c) Si además (A, \preceq_A) y (B, \preceq_B) son conjuntos totalmente ordenados, ¿lo son también $(A \times B, \preceq_{prod})$ y $(A \times B, \preceq_{lex})$?
- d) Para cada uno de los siguientes posets (A, \leq_A) y (B, \leq_B) , construir los diagramas de Hasse de (A, \leq_A) , (B, \leq_B) , $(A \times B, \leq_{prod})$ y $(A \times B, \leq_{lex})$. Encontrar en cada caso los elementos maximales, minimales, máximos y mínimos si los hubiera.

i.
$$A = \mathcal{P}(\{0\}), \prec_A = \subset V B = \mathcal{P}(\{1,2\}), \prec_B = \subset$$
.

ii.
$$A = B = \{1, 2, 4, 6\}, \preceq_A = \preceq_B = |_{A \times A}$$

- e) Mostrar que $(\mathcal{P}(\{0\}) \times \mathcal{P}(\{1,\ldots,n\}), \preceq_{prod}) \simeq (\mathcal{P}(\{0,\ldots,n\}), \subseteq).$
- 12. Sea (P, \mathcal{R}) un conjunto preordenado.
 - a) Probar que la relación \sim en P dada por

$$x \sim y \iff (x \mathcal{R} y \wedge y \mathcal{R} x)$$

es una relación de equivalencia en P.

- b) Construir un poset $(P/\sim, \preceq)$ tal que la proyección al cociente $\pi: P \to P/\sim$ (dada por $\pi(p) = [p]$) sea un morfismo de orden.
- c) Aplicar esta construcción a los siguientes conjuntos preordenados:
 - i. Una relación de equivalencia \sim en un conjunto X vista como preorden.
 - ii. $(\mathbb{Z} \{0\}, |)$. Mostrar que la construcción es isomorfa a $(\mathbb{N}, |)$.
 - iii. (Prop, D), donde Prop son las fórmulas del cálculo proposicional y $\phi D\psi \Leftrightarrow \{\phi\} \vdash \psi$. Para este caso particular, la construcción se llama álgebra de Lindenbaum-Tarski.
- 13. Sean (X, \leq_X) y (Y, \leq_Y) posets. Probar que son equivalentes:
 - a) $(X, \preceq_X) \simeq (Y, \preceq_Y)$.
 - b) Existe $f:(X, \preceq_X) \to (Y, \preceq_Y)$ morfismo de orden sobreyectivo tal que

$$f(a) \preceq_Y f(b) \Rightarrow a \preceq_X b.$$

c) Existen $f:(X, \preceq_X) \to (Y, \preceq_Y)$ y $g:(Y, \preceq_Y) \to (X, \preceq_X)$ morfismos de orden tales que $f \circ g = id_Y$ y $g \circ f = id_X$, es decir, $g = f^{-1}$.

3

Página 3

14. Sea (A, \preceq) poset. Para todo $a \in A$ se define:

$$A_a \doteq \{x \in A : x \le a\}$$

Sea $\mathcal{A} = \{A_a : a \in A\}$, mostrar que $(\mathcal{A}, \subseteq) \simeq (A, \preceq)$.

- **15.** Definir un morfismo de orden biyectivo entre $(\mathbb{N}, |)$ y (\mathbb{N}, \leq) . ¿Son posets isomorfos?
- **16.** ¿Existe algún conjunto con dos órdenes totales distintos (salvo isomorfismo)? Ayuda: pensar en (\mathbb{N}, \leq) y (\mathbb{N}, \geq) . ¿Existe un orden total diferente a \leq y \geq para \mathbb{N} ? ¿Cuántos órdenes totales hay en \mathbb{N} ?
- 17. Sean (X, \preceq_X) y (Y, \preceq_Y) posets. Una conexión de Galois es un par de funciones (f, g) con $f: X \to Y$ y $g: Y \to X$ tales que:

$$f(x) \preceq_Y y \iff x \preceq_X g(y) \ \forall \ x \in X, y \in Y.$$

- a) Probar que todo isomorfismo de orden f induce una conexión de Galois (f, f^{-1}) .
- **b)** Dada una función $f: A \to B$, probar que se puede construir una conexión de Galois entre $\mathcal{P}(A)$ y $\mathcal{P}(B)$ utilizando los operadores que calculan la imagen de f sobre un subconjunto de A y la imagen inversa de f sobre un subconjunto de B.
- c) Encontrar una conexión de Galois (id, g) entre (\mathbb{N}, \leq) y (\mathbb{Q}_0^+, \leq) , donde id es la inclusión.
- d) Dada una conexión de Galois (f,g) entre (X,\preceq_X) y (Y,\preceq_Y) , probar que

$$x \preceq_X g(f(x))$$
 y $f(g(y)) \preceq_Y y$

para todo $x \in X, y \in Y$.

- e) Dada una conexión de Galois (f,g) entre (X, \preceq_X) y (Y, \preceq_Y) , probar que f y g son morfismos de orden.
- 18. Determinar si los siguientes posets están bien ordenados:
 - a) (\mathbb{Z}, \leq) .

c) (\mathbb{R}, \leq) .

e) (N, |).

b) (\mathbb{N}, \geq) .

d) (\mathbb{R}_0^+, \leq) .

f) $(\mathcal{P}(X),\subseteq), X \neq \emptyset.$