Inferences in Bayesian Networks

Yuqing Tang

Doctoral Program in Computer Science The Graduate Center City University of New York ytang@cs.gc.cuny.edu

October 6, 2010

Outline

- Introduction
- 2 Exact inference by enumeration
- Simple Bayesian Network Inferences
- Exact inference in polytrees
- 5 Summary

Inference tasks

- Simple queries: compute posterior marginal $P(X_i|\mathbf{E} = \mathbf{e})$ e.g., P(P = low|S = T, X = pos, D = T)
- Conjunctive queries: $P(X_i, X_i | \mathbf{E} = \mathbf{e}) = P(X_i | \mathbf{E} = \mathbf{e}) \times P(X_i | X_i, \mathbf{E} = \mathbf{e})$
- Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence)
- Value of information: which evidence to seek next?
- Sensitivity analysis: which probability values are most critical?
- Explanation: why do I need a new starter motor?

Outline

- Introduction
- 2 Exact inference by enumeration
- Simple Bayesian Network Inferences
- Exact inference in polytrees
- Summary

Inference by enumeration

$$\begin{array}{lcl} P(X|\mathbf{E}=\mathbf{e}) & = & \Sigma_{\mathbf{y} \in Domain(\mathbf{Y})} P(X,\mathbf{Y}|\mathbf{E}=\mathbf{e}) \\ & = & \alpha \Sigma_{\mathbf{y} \in Domain(\mathbf{Y})} P(X,\mathbf{Y},\mathbf{E}=\mathbf{e}) \\ P(X_1,X_2|\mathbf{E}=\mathbf{e}) & = & \Sigma_{\mathbf{y} \in Domain(\mathbf{Y})} P(X_1,X_2,\mathbf{Y}|\mathbf{E}=\mathbf{e}) \\ & = & \alpha \Sigma_{\mathbf{y} \in Domain(\mathbf{Y})} P(X_1,X_2,\mathbf{Y},\mathbf{E}=\mathbf{e}) \end{array}$$

where $\alpha = \frac{1}{P(\mathbf{E} = \mathbf{e})}$.

• Recursive depth-first enumeration: O(n) space, $O(|Domain(X_i)|^n)$ time

Inference by enumeration (example)

Simple query on the lung cancer example

$$P(P|X = pos, D = T)$$

$$= P(P, X = pos, D = T)/P(X = pos, D = T)$$

$$= \alpha P(B, X = pos, D = T)$$

$$= \alpha \sum_{v_c \in \{T,F\}} \sum_{v_s \in \{T,F\}} P(P, S = v_s, C = v_c, X = pos, D = T)$$

where $\alpha = \frac{1}{P(X = pos, D = T)}$ is the normalizer.

(ロト 4回ト 4 E ト 4 E ト E りの

Inference by enumeration (example cont.)

Rewrite full joint entries using product of CPT entries:

$$P(P|X = pos, D = T)$$
= $\alpha \sum_{v_c \in \{T,F\}} \sum_{v_s \in \{T,F\}} \{P(P) \times P(S = v_s) \times P(C = v_c | P, S = v_s) \times P(X = pos | C = v_c) \times P(D = T | C = v_c)\}$
= $\alpha \times P(P)$
\times \sum_{v_s \in \{T,F\}} \{P(S = v_s) \times \sum_{v_c \in \{T,F\}} \{P(C = v_c | P, S = v_s) \times P(X = pos | C = v_c) \times P(D = T | C = v_c)\}
\times P(D = T | C = v_c)\}

Evaluation tree

Reduced evaluation tree

Outline

- Introduction
- 2 Exact inference by enumeration
- 3 Simple Bayesian Network Inferences
- Exact inference in polytrees
- Summary

Inference for two node network

- P(B|A) can be read from the CPTs
- $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ by Bayes' rule

 - ▶ P(A), P(B|A) can be read from the CPTs
 ▶ $\alpha = \frac{1}{P(B)}$ can be computed by $\Sigma_{a \in Domain(A)} P(A = a|B) = 1$.

Inference for three node chain network I

- P(B|A) and P(C|B) can be read from the tables
- P(A|B) and P(C|B) can be computed with the Bayes' rule
- P(C|A) can be computed by $\sum_{b \in Domain(B)} P(B|A) P(C|B,A) = \sum_{b \in Domain(B)} P(B|A) P(C|B)$
- P(A|C) can be computed by $P(A|C) = \alpha P(C|A) P(A)$
- P(C|A,B) = P(C|B) since C is independent of A given B
- $P(B|A, C) = \alpha P(C|A, B)P(B|A) = \alpha P(C|B)P(B|A)$ first apply Bayes' rule conditional on A, and then simplify P(C|A, B) by the condtional indepenence in the network
- $P(A|B,C) = \alpha P(C|A,B)P(A|B) = \alpha P(C|B)P(A|B)$ first apply Bayes' rule conditional on B, and then simplify P(C|A,B) into P(C|B); P(A|B) are computed above.

Inference for three node chain network II

- $P(A, B|C) = \alpha P(C|A, B)P(A, B) = \alpha P(C|B)P(B|A)P(A)$ first apply Bayes' rule by taking A, B and C as two events, and then simplify.
- $P(A, C|B) = P(A|B)P(C|B) = \alpha P(B|A)P(A)P(C|B)$ first apply conditional independence of A and C given B, and apply Bayes' rule on P(A|B)
- P(B, C|A) = P(B|A)P(C|A, B) = P(B|A)P(C|B) apply chain rule contional on A, and the conditional independence

Outline

- Introduction
- 2 Exact inference by enumeration
- Simple Bayesian Network Inferences
- Exact inference in polytrees
- Summary

Polytrees ("forest")

- Polytrees have at most one path between any pair of nodes
- Also called singly-connected networks

Earthquake Example

The query

$$P(X|\mathbf{E}) = \frac{P(X,\mathbf{E})}{P(\mathbf{E})}$$

= $\alpha P(X,\mathbf{E})$

Look at the neighbors, marginalize, and re-organize the variables

$$P(X, \mathbf{E}) = \Sigma_{U_1, \dots, U_m} \left[P(X, U_1, \mathbf{E}_{U_1 \setminus X}, \dots, U_m, \mathbf{E}_{U_m \setminus X}, \mathbf{E}_{Y_1 \setminus X}, \dots, \mathbf{E}_{Y_n \setminus X}) \right]$$

$$= \Sigma_{U_1, \dots, U_m} \left[P(U_1, \mathbf{E}_{U_1 \setminus X}, \dots, U_m, \mathbf{E}_{U_m \setminus X}, X, \mathbf{E}_{Y_1 \setminus X}, \dots, \mathbf{E}_{Y_n \setminus X}) \right]$$

Chain rule

$$P(U_{1}, \mathbf{E}_{U_{1}\setminus X}, \dots, U_{m}, \mathbf{E}_{U_{m}\setminus X}, X, \mathbf{E}_{Y_{1}\setminus X}, \dots, \mathbf{E}_{Y_{n}\setminus X}) =$$

$$P(U_{1}, \mathbf{E}_{U_{1}\setminus X})$$

$$P(U_{2}, \mathbf{E}_{U_{2}\setminus X}|U_{1}, \mathbf{E}_{U_{1}\setminus X})$$

$$P(U_{3}, \mathbf{E}_{U_{3}\setminus X}|U_{1}, \mathbf{E}_{U_{1}\setminus X}, U_{2}, \mathbf{E}_{U_{2}\setminus X})$$

$$\dots$$

$$P(U_{m}, \mathbf{E}_{U_{m}\setminus X}|U_{1}, \mathbf{E}_{U_{1}\setminus X}, \dots, U_{m-1}, \mathbf{E}_{U_{m-1}\setminus X})$$

$$P(X|U_{1}, \mathbf{E}_{U_{1}\setminus X}, \dots, U_{m}, \mathbf{E}_{U_{m}\setminus X})$$

$$P(\mathbf{E}_{Y_{1}\setminus X}|X, U_{1}, \mathbf{E}_{U_{1}\setminus X}, \dots, U_{m}, \mathbf{E}_{U_{m}\setminus X})$$

$$P(\mathbf{E}_{Y_{2}\setminus X}|X, U_{1}, \mathbf{E}_{U_{1}\setminus X}, \dots, U_{m}, \mathbf{E}_{U_{m}\setminus X}, \mathbf{E}_{Y_{1}\setminus X})$$

$$\dots$$

$$P(\mathbf{E}_{Y_{n}\setminus X}|X, U_{1}, \mathbf{E}_{U_{1}\setminus X}, \dots, U_{m}, \mathbf{E}_{U_{m}\setminus X}, \mathbf{E}_{Y_{1}\setminus X}, \dots, \mathbf{E}_{Y_{n}\setminus X})$$

Independence/conditional independence

```
P(U_1, \mathbf{E}_{U_1 \setminus X}, \dots, U_m, \mathbf{E}_{U_m \setminus X}, X, \mathbf{E}_{Y_1 \setminus X}, \dots, \mathbf{E}_{Y_n \setminus X}) =
         P(U_1, \mathbf{E}_{U_1 \setminus X})
          //U_i, \mathsf{E}_{U_i \setminus X} is independent of U_1, \mathsf{E}_{U_1 \setminus X}, \ldots, U_{i-1}, \mathsf{E}_{U_{i-1} \setminus X}:
         P(U_2, \mathbf{E}_{U_2 \setminus X})
         P(U_m, \mathbf{E}_{U_m \setminus X})
          //X is independent of \mathbf{E}_{U_i \setminus X} given U_i (i = 1, \dots, m):
         P(X|U_1,U_2,\ldots,U_m)
          // \mathbf{E}_{Y_k \setminus X} is independent of U_i s, \mathbf{E}_{U_i \setminus X} s and \mathbf{E}_{Y_i \setminus X} (k' \neq k) given X:
         P(\mathbf{E}_{Y_1 \setminus X} | X)
         P(\mathbf{E}_{Y_2 \setminus X} | X)
         P(\mathbf{E}_{Y_n \setminus X} | X)
```

One more re-write with the definition of conditionals

$$P(U_{1}, \mathbf{E}_{U_{1} \setminus X}, \dots, U_{m}, \mathbf{E}_{U_{m} \setminus X}, X, \mathbf{E}_{Y_{1} \setminus X}, \dots, \mathbf{E}_{Y_{n} \setminus X})$$

$$= P(U_{1} | \mathbf{E}_{U_{1} \setminus X}) P(\mathbf{E}_{U_{1} \setminus X})$$

$$P(U_{2} | \mathbf{E}_{U_{2} \setminus X}) P(\mathbf{E}_{U_{2} \setminus X})$$

$$\dots$$

$$P(U_{m} | \mathbf{E}_{U_{m} \setminus X}) P(\mathbf{E}_{U_{m} \setminus X})$$

$$P(X | U_{1}, U_{2}, \dots, U_{m})$$

$$P(\mathbf{E}_{Y_{1} \setminus X} | X)$$

$$P(\mathbf{E}_{Y_{2} \setminus X} | X)$$

$$\dots$$

$$P(\mathbf{E}_{Y_{n} \setminus X} | X)$$

$$= P(X | U_{1}, U_{2}, \dots, U_{m})$$

$$\cdot \Pi_{i=1,\dots,m} P(\mathbf{E}_{U_{i} \setminus X}) \cdot \Pi_{i=1,\dots,m} P(U_{i} | \mathbf{E}_{U_{i} \setminus X}) \cdot \Pi_{k=1,\dots,n} P(\mathbf{E}_{Y_{k} \setminus X} | X)$$

Back to the query

$$P(X|\mathbf{E})$$

$$= \alpha \Sigma_{U_1,...,U_m} \{$$

$$P(U_1, \mathbf{E}_{U_1 \setminus X}, ..., U_m, \mathbf{E}_{U_m \setminus X}, X, \mathbf{E}_{Y_1 \setminus X}, ..., \mathbf{E}_{Y_n \setminus X}) \}$$

$$= \alpha \Sigma_{U_1,...,U_m} \{ P(X|U_1, U_2, ..., U_m) \}$$

$$\Pi_{i=1,...,m} P(\mathbf{E}_{U_i \setminus X}) \cdot \Pi_{i=1,...,m} P(U_i|\mathbf{E}_{U_i \setminus X}) \cdot \Pi_{k=1,...,n} P(\mathbf{E}_{Y_k \setminus X}|X) \}$$

$$= \alpha \cdot \Pi_{i=1,...,m} P(\mathbf{E}_{U_i \setminus X}) \cdot \Sigma_{U_1,...,U_m} \{ P(X|U_1, U_2, ..., U_m) \}$$

$$\Pi_{i=1,...,m} P(U_i|\mathbf{E}_{U_i \setminus X}) \cdot \Pi_{k=1,...,n} P(\mathbf{E}_{Y_k \setminus X}|X) \}$$

As $\Pi_{i=1,...,m}P(\mathbf{E}_{U_i\setminus X})$ doesn't change when X takes different values, we can put it into the normalizing constant α :

$$P(X|\mathbf{E}) = \alpha \Sigma_{U_1,\dots,U_m} \left\{ P(X|U_1, U_2, \dots, U_m) \right.$$

$$\Pi_{i=1,\dots,m} P(U_i|\mathbf{E}_{U_i \setminus X}) \cdot \Pi_{k=1,\dots,n} P(\mathbf{E}_{Y_k \setminus X}|X) \right\}$$

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - かくで

Recursively compute $P(U_i|\mathbf{E}_{U_i\setminus X})$ and $P(\mathbf{E}_{Y_k}|X)$

$$P(X|\mathbf{E}) = \alpha \Sigma_{U_1,...,U_m} \{$$

$$P(X|U_1, U_2, ..., U_m)$$

$$\Pi_{i=1,...,m} P(U_i|\mathbf{E}_{U_i \setminus X})$$

$$\Pi_{k=1,...,n} P(\mathbf{E}_{Y_k \setminus X}|X) \}$$

- $P(X|U_1, U_2, ..., U_m)$ can be looked from the CPTs
- Let $BN_X^{\pi}(U_i)$ be a sub-BN composed of U_i and all the nodes connecting to X through U_i .
 - ▶ Within $BN_X^{\pi}(U_i)$, $P(U_i|\mathbf{E}_{U_i\setminus X})$ can be computed recursively in the same manner
- Let $BN_{Y_k}^{\lambda}(X)$ be a sub-BN composed of Y_k and all the nodes connecting to X through Y_k .
 - Within $BN_{Y_k}^{\lambda}(X)$, $P(\mathbf{E}_{Y_k\setminus X}|X) = \Sigma_{Y_k}P(Y_k,\mathbf{E}_{Y_k\setminus X}|X)$ can be computed recursively in the same manner

Recursively compute $P(U_i|\mathbf{E}_{U_i\setminus X})$

Within $BN_X^{\pi}(U_i)$,

$$\begin{split} P(U_i|\mathbf{E}_{U_i\setminus X})) &= \alpha \Sigma_{Parents}^{BN_X^{\pi}(U_i)}(U_i) \, \{ \\ P(U_i|Parents^{BN_X^{\pi}(U_i)}(U_i)) \cdot \\ \Pi_{Z_j \in Parents}^{BN_X^{\pi}(U_i)}(U_i) P(Z_j|\mathbf{E}_{Z_j\setminus U_i}) \cdot \\ \Pi_{Y_k \in Children}^{BN_X^{\pi}(U_i)}(U_i) P(\mathbf{E}_{Y_k\setminus X}|U_i) \Big\} \end{split}$$

- Parents $BN_X(U_i)(U_i)$ are the parents of U_i in $BN_X(U_i)$
- Children $BN_X(U_i)(U_i)$ are the children of U_i in $BN_X(U_i)$
- When U_i is one of the evidence input
 - ▶ $P(U_i = u_{i,e} | \mathbf{E}_{U_i \setminus X}) = 1$ if $u_{i,e}$ is the evidence value entered
 - ▶ $P(U_i = u_{i,e} | \mathbf{E}_{U_i \setminus X}) = 0$ if $u_{i,e}$ is not the evidence value entered

Recursively compute $P(\mathbf{E}_{Y_k}|X)$ I

Take $P(\mathbf{E}_{Y_k}|X)$ as a joint probability on the evidences connecting to X through Y_k and all the probabilities in $BN_{Y_k}^{\lambda}(X)$ as conditional on X

$$\begin{split} &P(\mathbf{E}_{Y_k \setminus X} | X) = \sum_{Y_k} P(Y_k, \mathbf{E}_{Y_k \setminus X} | X) \\ &P(Y_k, \mathbf{E}_{Y_k \setminus X} | X) = \alpha \sum_{Parents} {}^{BN_{Y_k}^{\lambda}(X)}(Y_k), Children {}^{BN_{Y_k}^{\lambda}(X)}(Y_k) \ \\ &P(Y_k | Parents {}^{BN_{Y_k}^{\lambda}(X)}(Y_k), X) \cdot \\ &\Pi_{Z_{k,j} \in Parents} {}^{BN_{Y_k}^{\lambda}(X)}(Y_k) P(Z_{k,j} | \mathbf{E}_{Z_{k,j} \setminus Y_k}, X) \cdot \\ &\Pi_{W_{k,l} \in Children} {}^{BN_{Y_k}^{\lambda}(X)}(Y_k) P(\mathbf{E}_{W_{k,l} \setminus Y_k} | Y_k, X) \bigg\} \end{split}$$

- Observations
 - $ightharpoonup P(Y_k|Parents^{BN_{Y_k}^{\lambda}(X)}(Y_k),X)$ is in the CPTs

Recursively compute $P(\mathbf{E}_{Y_k}|X)$ II

- ▶ $P(Z_{k,j}|\mathbf{E}_{Z_{k,j}\setminus Y_k},X) = P(Z_{k,j}|\mathbf{E}_{Z_{k,j}\setminus Y_k})$ by conditional independence ($Z_{k,j}$ and X are marginal independence and there is no path between $Z_{k,j}$ and X through $\mathbf{E}_{Z_{k,j}}$)
- ▶ $P(\mathbf{E}_{W_{k,l} \setminus Y_k} | Y_k, X) = P(\mathbf{E}_{W_{k,l} \setminus Y_k} | Y_k)$ by conditional independence (Given Y_k , $\mathbf{E}_{W_{k,l}}$ and X are independence)

$$\begin{split} P(\mathbf{E}_{Y_k \backslash X} | X) &= \alpha \Sigma_{Y_k} \Sigma_{Parents} S_{N_{Y_k}^{\lambda}(X)}(Y_k), Children S_{Y_k}^{BN_{Y_k}^{\lambda}(X)}(Y_k) \left. \left\{ P(Y_k | Parents S_{Y_k}^{BN_{Y_k}^{\lambda}(X)}(Y_k), X) \cdot \right. \\ & \Pi_{Z_{k,j} \in Parents} S_{N_{Y_k}^{\lambda}(X)}(Y_k) P(Z_{k,j} | \mathbf{E}_{Z_{k,j} \backslash Y_k}) \cdot \\ & \Pi_{W_{k,l} \in Children} S_{N_{Y_k}^{\lambda}(X)}(Y_k) P(\mathbf{E}_{W_{k,l} \backslash Y_k} | Y_k) \right\} \end{split}$$

Recursively compute $P(\mathbf{E}_{Y_k}|X)$ III

• When Y_k is one of the evidence input, let $y_{k,e}$ be the evidence value entered, the marginalization over Y_k is replaced by setting $Y_k = y_{k,e}$ in the calculation.

$$\begin{split} P(\mathbf{E}_{Y_k \setminus X} | X) &= \alpha \sum_{Parents} {}^{BN_{Y_k}^{\lambda}(X)}(Y_k), Children } {}^{BN_{Y_k}^{\lambda}(X)}(Y_k) \left\{ \\ P(Y_k = y_{k,e} | Parents {}^{BN_{Y_k}^{\lambda}(X)}(Y_k), X) \cdot \\ \Pi_{Z_{k,j} \in Parents} {}^{BN_{Y_k}^{\lambda}(X)}(Y_k) P(Z_{k,j} | \mathbf{E}_{Z_{k,j} \setminus Y_k}) \cdot \\ \Pi_{W_{k,l} \in Children} {}^{BN_{Y_k}^{\lambda}(X)}(Y_k) P(\mathbf{E}_{W_{k,l} \setminus Y_k} | Y_k = y_{k,e}) \right\} \end{split}$$

Shorten the notation for $\pi_X(U_i)$

Let

$$\pi_{X}(U_{i}) = P(U_{i}|\mathbf{E}_{U_{i}\setminus X}))$$

$$\lambda_{Y_{k}}(X) = P(\mathbf{E}_{Y_{k}\setminus X}|X)$$

$$\pi_{X}(U_{i})$$

$$= P(U_{i}|\mathbf{E}_{U_{i}\setminus X}))$$

$$= \alpha \Sigma_{Parents}^{BN_{X}^{\pi}(U_{i})}(U_{i}) \left\{ P(U_{i}|Parents}^{BN_{X}^{\pi}(U_{i})}(U_{i}) \cdot \Pi_{Z_{j} \in Parents}^{BN_{X}^{\pi}(U_{i})}(U_{i})^{\pi}U_{i}(Z_{j}) \cdot \Pi_{Y_{k} \in Children}^{BN_{X}^{\pi}(U_{i})}(U_{i})^{\lambda}Y_{k}(U_{i}) \right\}$$

When U_i is one of the evidence input

- $\pi_X(U_i = u_{i,e}) = 1$ if $u_{i,e}$ is the evidence value entered
- $\pi_X(U_i = u_{i,e}) = 0$ if $u_{i,e}$ is not the evidence value entered

Shorten the notation for $\pi_X(U_i)$ (cont.)

Let

$$\pi_X(U_i) = P(U_i|\mathbf{E}_{U_i\setminus X}))$$

 $\lambda_{Y_k}(X) = P(\mathbf{E}_{Y_k\setminus X}|X)$

$$\pi_{X}(U_{i})$$

$$= P(U_{i}|\mathbf{E}_{U_{i}\setminus X}))$$

$$= \alpha \Sigma_{Parents(U_{i})} \{$$

$$P(U_{i}|Parents(U_{i})) \cdot$$

$$\Pi_{Z_{j} \in Parents(U_{i})} \pi_{U_{i}}(Z_{j}) \cdot$$

$$\Pi_{Y_{k} \in Children(U_{i})\setminus \{X\}} \lambda_{Y_{k}}(U_{i}) \}$$

When U_i is one of the evidence input

- $\pi_X(U_i = u_{i,e}) = 1$ if $u_{i,e}$ is the evidence value entered
- $\pi_X(U_i = u_{i,e}) = 0$ if $u_{i,e}$ is not the evidence value entered

Shorten the notation for $\lambda_{Y_k}(X)$

Let

$$\pi_{X}(U_{i}) = P(U_{i}|\mathbf{E}_{U_{i}\setminus X}))$$

$$\lambda_{Y_{k}}(X) = P(\mathbf{E}_{Y_{k}\setminus X}|X)$$

$$\lambda_{Y_{k}}(X)$$

$$= \sum_{Y_{k}} \sum_{Parents} P(Y_{k}, \mathbf{E}_{Y_{k}\setminus X}|X)$$

$$= \sum_{Y_{k}} \sum_{Parents} P(Y_{k}|X) = P(Y_{k}|Parents) \left\{ P(Y_{k}|Parents) \left\{ P(Y_{k}|Y_{k}, X) \cdot \prod_{Z_{k,j} \in Parents} P(Y_{k}, X) \cdot \prod_{Z_{k,j} \in Parents} P(Y_{k}, X) \cdot \prod_{W_{k,l} \in Children} P(Y_{k}, X) \cdot \prod_{W_{k,l} \in Children}$$

When Y_k is one of the evidence input, let $y_{k,e}$ be the evidence value entered, the marginalization over Y_k is replaced by setting $Y_k = y_{k,e}$ in the calculation.

Shorten the notation for $\lambda_{Y_k}(X)$ (cont.) I

Let

$$\pi_X(U_i) = P(U_i|\mathbf{E}_{U_i\setminus X}))$$

 $\lambda_{Y_k}(X) = P(\mathbf{E}_{Y_k\setminus X}|X)$

$$\begin{array}{ll} \lambda_{Y_k}(X) \\ &= & \Sigma_{Y_k} P(Y_k, \mathbf{E}_{Y_k \setminus X} | X) \\ &= & \Sigma_{Y_k} \Sigma_{Parents(Y_k) \setminus \{X\}} \left\{ \\ & & P(Y_k | Parent(Y_k)) \cdot \\ & & \Pi_{Z_{k,j} \in Parents(Y_k) \setminus \{X\}} \pi_{Y_k}(Z_{k,j}) \cdot \\ & & \Pi_{W_{k,l} \in Children(Y_k)} \lambda_{W_{k,l}}(Y_k) \right\} \end{array}$$

Shorten the notation for $\lambda_{Y_{k}}(X)$ (cont.) II

When Y_k is one of the evidence input, let $y_{k,e}$ be the evidence value entered, the marginalization over Y_k is replaced by setting $Y_k = y_{k,e}$ in the calculation.

$$\begin{array}{ll} \lambda_{Y_k}(X) \\ &= P(Y_k = y_{k,e}, \mathbf{E}_{Y_k \setminus X} | X) \\ &= \sum_{Parents(Y_k) \setminus \{X\}} \left\{ \\ P(Y_k = y_{k,e} | Parent(Y_k)) \cdot \\ \Pi_{Z_{k,j} \in Parents(Y_k) \setminus \{X\}} \pi_{Y_k}(Z_{k,j}) \cdot \\ \Pi_{W_{k,l} \in Children(Y_k)} \lambda_{W_{k,l}}(Y_k) \right\} \end{array}$$

Message passing (bottom-up instead of recursion) I

Query decomposition

$$P(X|\mathbf{E}) = \alpha \Sigma_{U_1,...,U_m} \{$$

$$P(X|U_1, U_2, ..., U_m) \cdot$$

$$\Pi_{i=1,...,m} \pi_{U_i}(X) \cdot$$

$$\Pi_{k=1,...,n} \lambda_{Y_k}(X) \}$$

- Message passing:
 - Start with the nodes that don't need any messages to compute π
 - lacksquare Start with the nodes that don't need any messages to compute λ
 - ightharpoonup Once a node gets the π and λ messages required to compute its own messages sent to its children or parents, compute the messages and send them out. Notice that
 - * U_i send to its child X: $\pi_X(U_i)$ computing $\pi_X(U_i)$ only requires messages from nodes in $BN_X^{\pi}(U_i)$
 - * Y_k send to its parent $X: \lambda_{Y_k}(X)$ computing $\lambda_{Y_k}(X)$ only requires messages from nodes in $BN_{Y_k}^{\lambda}(X)$

Message passing (bottom-up instead of recursion) II

- X computes query $P(X|\mathbf{E})$ using its conditional table P(X|Parents(X)), and the message $\pi_{U_i}(X)$ received from its parents, the message $\lambda_{Y_k}(X)$ received from its children
- For queries other than $P(X|\mathbf{E})$, X send messages
 - ▶ X send message $\pi_{Y_k}(X)$ to its child Y_k
 - X send message $\lambda_X(U_i)$ to its parent U_i

Earthquake Example

Message passing – No Evidence

Message passing – No Evidence

Message passing – No Evidence

Message passing - No Evidence

Message passing – Evidence Example

Message passing - Evidence Example

Message passing - Evidence Example

Message passing - Evidence Example

Overview of message passing

Message passing complexity

- ullet Rounds of message passing: The maxium length of paths from X to roots (bounded by the number variables in the BN)
- Number of summations: It can be exponentional in the number of parents and children of each node

Outline

- Introduction
- 2 Exact inference by enumeration
- Simple Bayesian Network Inferences
- Exact inference in polytrees
- **5** Summary

Summary

 Probabilistic inference: compute the probability distribution for query variables, given evidence variables

$P(X|\mathbf{E})$

- BN Inference is very flexible: can enter evidence about any node and update beliefs in any other nodes.
- The speed of inference in practice depends on the structure of the network: how many loops; numbers of parents; location of evidence and query nodes.
- Inference methods
 - Exact inference by enumeration
 - Polytree message passing
 - Junction tree algorithms for general BNs (next lecture)
 - ► Approximation inference with stochastic simulation (next lecture)

Acknowledgments

Lecture 5 is composed the instructor's own understanding of the subject, and materials from [Korb and Nicholson, 2003, Chapter 3] and [Russell and Norvig, 2009, Chapter 16] with the instructor's own interpretations. The instructor takes full responsibility of any mistakes in the slides.

References I

K. Korb and A. E. Nicholson. *Bayesian Artificial Intelligence*. Chapman & Hall /CRC, 2003.

Stuart J. Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach (3nd Edition).

Prentice Hall, December 2009.