### **ECE1371 Advanced Analog Circuits** Lecture 10

### **NOISE IN SC CIRCUITS**

**Richard Schreier** richard.schreier@analog.com

**Trevor Caldwell** trevor.caldwell@utoronto.ca

#### **Course Goals**

Deepen Understanding of CMOS analog circuit design through a top-down study of a modern analog system

The lectures will focus on Delta-Sigma ADCs, but you may do your project on another analog system.

 Develop circuit insight through brief peeks at some nifty little circuits

The circuit world is filled with many little gems that every competent designer ought to recognize.

ECE1371 10-2

| Date       | Lecture                   |                       |                           | Ref                | Homework         |  |  |
|------------|---------------------------|-----------------------|---------------------------|--------------------|------------------|--|--|
| 2008-01-07 | RS                        | 1                     | Introduction: MOD1 & MOD2 | S&T 2-3, A         | Matlab MOD2      |  |  |
| 2008-01-14 | RS                        | 2                     | Example Design: Part 1    | S&T 9.1, J&M 10    | Switch-level sim |  |  |
| 2008-01-21 | RS                        | 3                     | Example Design: Part 2    | J&M 14, S&T B      | Q-level sim      |  |  |
| 2008-01-28 | тс                        | 4                     | Pipeline and SAR ADCs     | J&M 11,13          | Pipeline DNL     |  |  |
| 2008-02-04 | ISSCC – No Lecture        |                       |                           |                    |                  |  |  |
| 2008-02-11 | RS                        | 5                     | Advanced ΔΣ               | S&T 4, 6.6, 9.4, B | CTMOD2; Proj.    |  |  |
| 2008-02-18 | Reading Week – No Lecture |                       |                           |                    |                  |  |  |
| 2008-02-25 | RS                        | 6                     | Comparator and Flash ADC  | J&M 7              |                  |  |  |
| 2008-03-03 | тс                        | 7                     | SC Circuits               | Raz 12, J&M 10     |                  |  |  |
| 2008-03-10 | тс                        | 8                     | Amplifier Design          |                    |                  |  |  |
| 2008-03-17 | тс                        | 9                     | Amplifier Design          |                    |                  |  |  |
| 2008-03-24 | тс                        | 10                    | Noise in SC Circuits      | S&T C              |                  |  |  |
| 2008-03-31 | RS                        | 11                    | Switching Regulator       |                    |                  |  |  |
| 2008-04-07 |                           | Project Presentations |                           |                    |                  |  |  |
| 2008-04-14 | тс                        | 12                    | Matching & MM-Shaping     |                    | Project Report   |  |  |

ECE1371 10-3

### **NLCOTD: Gain Booster CMFB**

Need CMFB for Gain Booster

One option is to use standard CT CMFB (Lecture 9) Is there an easier way with less circuitry?



ECE1371 10-4

# **Highlights**

(i.e. What you will learn today)

- 1. How to analyze noise in switched-capacitor circuits
- 2. Significance of switch noise vs. OTA noise Power efficient solution Impact of OTA architecture
- 3. Design example for  $\Delta\Sigma$  modulator

#### **Review**

Previous analysis of kT/C noise (ignoring OTA/opamp noise)

Phase 1: kT/C<sub>1</sub> noise (on each side)

Phase 2: kT/C<sub>1</sub> added to previous noise (on each side)

Total Noise (input referred): 2kT/C<sub>1</sub>

Differentially: 4kT/C



#### **Review**

#### · SNR

Total noise power: 4kT/C<sub>1</sub>

Signal power: V<sup>2</sup>/2 SNR: V<sup>2</sup>C<sub>1</sub>/8kT

#### SNR (single-ended)

Total noise power: 2kT/C<sub>1</sub> (sampling capacitor C<sub>1</sub>)

Signal power: V<sup>2</sup>/2 (signal from -V to V)

SNR: V2C<sub>1</sub>/4kT

#### Thermal Noise in OTAs

Single-Ended Example

Noise current from each transistor is  $\overline{I_n^2} = 4kT\gamma g_m$ Assume  $\gamma = 2/3$ 



ECE1371 10-7 ECE1371 10-8

### **Thermal Noise in OTAs**

#### · Single-Ended Example

Thermal noise in single-ended OTA

Assuming paths match, tail current source  $\mathrm{M}_{\mathrm{5}}$  does

not contribute noise to output

PSD of noise voltage in  $M_1$  (and  $M_2$ ):  $\frac{\partial N}{\partial g_n}$ 

PSD of noise voltage in  $M_3$  (and  $M_4$ ):  $\frac{8kTg_{m3}}{3g_{m1}^2}$ 

Total input referred noise from M<sub>1</sub> - M<sub>4</sub>

$$S_{n,eq} = \frac{16kT}{3g_{m1}} \left( 1 + \frac{g_{m3}}{g_{m1}} \right) = \frac{16kT}{3g_{m1}} n_f$$

Noise factor n, depends on architecture

# **OTA** with capacitive feedback

Analyze output noise in single-stage OTA
 Use capacitive feedback in the amplification / integration phase of a switched-capacitor circuit



ECE1371 10-9 ECE1371 10-10

# **OTA** with capacitive feedback

#### · Transfer function of closed loop OTA

$$H(s) = \frac{V_{out}}{V_{n,eq}} = \frac{G}{1 + s/\omega_o}$$

where the DC Gain and 1st-pole frequency are

$$G \approx \frac{1}{\beta} = 1 + C_1 / C_2$$
  $\omega_o = \frac{\beta g_{m1}}{C_o}$ 

Load capacitance  $C_O$  depends on the type of OTA – for a single-stage, it is  $C_L + C_1 C_2 / (C_1 + C_2)$ , while for a two-stage, it is the compensation capacitor  $C_C$ 

## OTA with capacitive feedback

· Integrate total noise at output

$$\overline{V_{OUT}^2} = \int_0^\infty S_{n,eq}(f) |H(j2\pi f)|^2 df$$

$$= \frac{16kT}{3g_{m1}} n_f \frac{\omega_o}{4} G^2$$

$$= \frac{4kT}{3\beta C_o} n_f$$

Minimum output noise for  $\beta$ =1 is  $\frac{4kT}{3C_o}n_f$ 

Not a function of  $g_{m1}$  since bandwidth is proportional to  $g_{m1}$  while PSD is inversely proportional to  $g_{m1}$ 

### **OTA** with capacitive feedback

· Graphically...

ECE1371

ECE1371



Noise is effectively filtered by the equivalent brick wall response with a cut-off frequency of  $\pi f_o/2$ Total noise at  $V_{OUT}$  is the integral of the noise within the brick wall filter (area is simply  $\pi f_o/2 \times 1/\beta^2$ )

10-13

**Sampled Thermal Noise** 

What happens to noise once it gets sampled?
 Total noise power is the same

Noise is aliased – folded back from higher frequencies to lower frequencies

PSD of the noise increases significantly



ECE1371 10-14

## **Sampled Thermal Noise**



Same total area, but PSD is larger from 0 to f<sub>s</sub>/2

$$S_{vout}(f) = \frac{G^2 S_{n,eq}}{4\tau f_S / 2} = \frac{\overline{V_{OUT}^2}}{f_S / 2} = \frac{4kT}{3\beta C_o} n_f \frac{1}{f_S / 2}$$

Low frequency PSD  $G^2S_{n,eq}$  is increased by  $\frac{1}{2\tau f_S} = \frac{\pi f_{3dB}}{f_S}$ 

### Sampled Thermal Noise

 1/f<sub>3dB</sub> is the settling time of the system, while 1/2f<sub>S</sub> is the settling period for a two-phase clock

$$e^{\frac{-1/2f_s}{r}} < 2^{-(N+1)}$$
 $\frac{\pi f_{3dB}}{f_s} > (N+1) \ln 2$ 

PSD is increased by at least  $(N+1)\ln 2$ If N = 10 bits, PSD is increased by 7.6, or 8.8dB

 This is an inherent disadvantage of sampleddata compared to continuous-time systems
 But noise is reduced by oversampling ratio after digital filtering

ECE1371 10-16

# Noise in a SC Integrator

· Using the parasitic-insensitive SC integrator



- · Two phases to consider
  - 1) Sampling Phase

Includes noise from both  $\phi_1$  switches

2) Integrating Phase

Includes noise from both  $\phi_2$  switches and OTA

# Noise in a SC Integrator

Phase 1: Sampling



Noise PSD from two switches:  $S_{Ron}(f) = 8kTR_{ON}$ Time constant of R-C filter:  $\tau = 2R_{ON}C_1$ PSD of noise voltage across  $C_1$ 

$$S_{C1}(f) = \frac{8kTR_{ON}}{1 + (2\pi f\tau)^2}$$

## Noise in a SC Integrator

Phase 1: Sampling

ECE1371

Integrated across entire spectrum, total noise power in  $\mathbf{C}_1$  is

$$\overline{V_{\text{C1,sw1}}^2} = \frac{8kTR_{\text{ON}}}{4\tau} = \frac{kT}{C_1}$$

Independent of  $R_{ON}$  (PSD is proportional to  $R_{ON}$ , bandwidth is inversely proportional to  $R_{ON}$ )
After sampling, charge is trapped in  $C_1$ 

# Noise in a SC Integrator

Phase 2: Integrating

C2

RON
VRONZ
Vn,eq
VRONZ
Vn,eq

• Two noise sources - switches and OTA

Noise PSD from two switches:  $S_{Ron}(f) = 8kTR_{ON}$ Noise PSD from OTA:  $S_{vn,eq}(f) = \frac{16kT}{3g_{m1}}n_f$ 

Noise voltage across C<sub>1</sub> charges to  $\sqrt{2V_{Ron} - V_{n,eq}}$ 

## Noise in a SC Integrator

· What is the time-constant?



Analysis shows that  $Z_{IN} = \frac{1/sC_2 + R_L}{1 + g_{...}R_L}$ 

For large  $R_L$ , assume that  $Z_{IN} = \frac{1}{g_{m1}}$ 

Resulting time constant  $\tau = (2R_{ON} + 1/g_{m1})C_1$ 

## Noise in a SC Integrator

 Total noise power with both switches and OTA on integrating phase

$$\overline{V_{C1,op}^2} = \frac{S_{vn,eq}(f)}{4\tau} \qquad \overline{V_{C1,sw2}^2} = \frac{S_{Ron}(f)}{4\tau} \\
= \frac{16kT}{3g_{m1}} \frac{n_f}{4(2R_{ON} + 1/g_{m1})C_1} = \frac{8kTR_{ON}}{4(2R_{ON} + 1/g_{m1})C_1} \\
= \frac{4kT}{3C_1} \frac{n_f}{(1+x)} = \frac{kT}{C_1} \frac{x}{(1+x)}$$

Introduced extra parameter  $x = 2R_{ON}g_{m1}$ 

ECE1371 10-21 ECE1371 10-22

10-19

# Noise in a SC Integrator

Total noise power on C₁ from both phases

$$\overline{V_{C1}^2} = \overline{V_{C1,op}^2} + \overline{V_{C1,sw1}^2} + \overline{V_{C1,sw2}^2} 
= \frac{4kT}{3C_1} \frac{n_f}{(1+x)} + \frac{kT}{C_1} \frac{x}{(1+x)} + \frac{kT}{C_1} 
= \frac{kT}{C_1} \left( \frac{4n_f/3 + 1 + 2x}{1+x} \right)$$

Lowest possible noise achieved if  $x \to \infty$ 

In this case, 
$$\overline{V_{C1}^2} = \frac{2kT}{C_1}$$

What was assumed to be the total noise was actually the least possible noise!

# **Noise Contributions**

 Percentage noise contribution from switches and OTA (assume n<sub>f</sub>=1.5)



### **Noise Contributions**

- When g<sub>m1</sub> >> 1/R<sub>ON</sub> (x >> 1)...
   Switch dominates both bandwidth and noise
   Total noise power is minimized
- When g<sub>m1</sub> << 1/R<sub>ON</sub> (x << 1)...</li>
   OTA dominates both bandwidth and noise

  Power-efficient solution

Minimize  $g_{m1}$  (and power) for a given settling time and noise

$$g_{m1} = \frac{kT}{\tau \overline{V_{C1}^2}} \left( \frac{4}{3} n_f + 1 + 2x \right)$$

Minimized for x=0

#### Maximum Noise

How much larger can the noise get?
 Depends on n<sub>f</sub>... (table excludes cascode noise)

| Architecture             | Relative V <sub>EFF</sub> 's              | n <sub>f</sub> | Maximum<br>Noise (x=0) | +dB  |
|--------------------------|-------------------------------------------|----------------|------------------------|------|
| Telescopic/<br>Diff.Pair | V <sub>EFF,1</sub> =V <sub>EFF,n</sub> /2 | 1.5            | 3·kT/C₁                | 1.76 |
| Telescopic/<br>Diff.Pair | V <sub>EFF,1</sub> =V <sub>EFF,n</sub>    | 2              | 3.67·kT/C <sub>1</sub> | 2.63 |
| Folded<br>Cascode        | V <sub>EFF,1</sub> =V <sub>EFF,n</sub> /2 | 2.5            | 4.33·kT/C <sub>1</sub> | 3.36 |
| Folded<br>Cascode        | V <sub>EFF,1</sub> =V <sub>EFF,n</sub>    | 4              | 6.33·kT/C <sub>1</sub> | 5.01 |

ECE1371 10-25 ECE1371 10-26

## **Separate Input Capacitors**

Using separate input caps increases noise
 Each additional input capacitor adds to the total noise
 Separate caps help reduce signal dependent
 disturbances in the DAC reference voltages



### Differential vs. Single-Ended

All previous calculations assumed single-ended operation

For same settling time,  $g_{m1,2}$  is the same, resulting in the same total power <code>[0dB]</code>

Differential input signal is twice as large [gain 6dB] Differential operation has twice as many caps and therefore twice as much capacitor noise (assume same size per side –  $C_1$  and  $C_2$ ) [lose ~1.2dB for  $n_f$ =1.5, x=0... less for larger  $n_f$ ]

Net Improvement: ~4.8dB

ECE1371 10-27 ECE1371 10-28

# Differential vs. Single-Ended

Single-Ended Noise

$$\overline{V_{C1,se}^2} = \frac{kT}{C_1} \left( \frac{4n_f/3 + 1 + 2x}{1 + x} \right)$$

· Differential Noise

$$\overline{V_{C1,diff}^2} = \overline{V_{C1,op}^2} + \overline{V_{C1,sw1}^2} + \overline{V_{C1,sw2}^2}$$

$$= \frac{4kT}{3C_1} \frac{n_f}{(1+x)} + \frac{2kT}{C_1} \frac{x}{(1+x)} + \frac{2kT}{C_1}$$

$$= \frac{kT}{C_1} \left( \frac{4n_f/3 + 2 + 4x}{1+x} \right)$$

• Relative Noise (for n<sub>f</sub>=1.5, x=0)

$$\frac{\overline{V_{C1,diff}^2}}{\overline{V_{C1,se}^2}} = \frac{4n_f/3 + 2 + 4x}{4n_f/3 + 1 + 2x} = \frac{4}{3}$$

## Noise in an Integrator

What is the total output-referred noise in an integrator?

Assume an integrator transfer function

$$H(z) = \frac{kz^{-1}}{1 + \mu(1 + k) - (1 + \mu)z^{-1}}$$
where  $k = \frac{C_1}{C_2}$  and  $\mu = \frac{1}{A}$ 

$$V_{1} \longrightarrow \begin{array}{c} \phi_1 \\ \phi_2 \end{array} \longrightarrow \begin{array}{c} C_2 \\ \phi_2 \end{array} \longrightarrow \begin{array}{c} C$$

# Noise in an Integrator

Total output-referred noise PSD

$$S_{INT}(f) = S_{C1}(f)|H(z)|^2 + S_{OUT}(f)$$

where 
$$\overline{V_{OUT}^2} = \frac{4kT}{3\beta C_0} n_f$$

and 
$$\overline{V_{C1}^2} = \frac{kT}{C_1} \left( \frac{4n_f/3 + 1 + 2x}{1 + x} \right)$$

Since all noise sources are sampled, white PSDs

$$S_{x} = \frac{\overline{V_{x}^{2}}}{f_{s}/2}$$

To find output-referred noise for a given OSR  $\overline{V_{INT}^2} = \int_{0}^{\infty} \int_{0}^{\infty} S_{INT}(f) df$ 

$$\overline{V_{INT}^2} = \int_{0}^{f_S/(2 \cdot OSR)} S_{INT}(f) df$$

10-31

10-33

# Noise in a $\Delta\Sigma$ Modulator

- How do we find the total input-referred noise in a  $\Delta\Sigma$  modulator?
  - 1) Find all thermal noise sources
  - 2) Find PSDs of the thermal noise sources
  - Find transfer functions from each noise source to the output
  - Using the transfer functions, integrate all PSDs from DC to the signal band edge f<sub>s</sub>/2:OSR
  - Sum the noise powers to determine the total output thermal noise
  - Input noise = output noise (assuming STF is ~1 in the signal band)

ECE1371 10-32

### Noise in a $\Delta\Sigma$ Modulator

Example:

ECE1371

 $f_s = 100MHz, T = 10ns, OSR = 32$ SNR = 80dB (13-bit resolution)

Input Signal Power = 0.25V2 (-6dB from 1V2)

Noise Budget: 75% thermal noise Total input referred thermal noise:

$$\overline{V_{TH}^2} = 0.75 * 10^{(-6-SNR)/10} = (43.4 \mu V)^2$$



Noise in a  $\Delta\Sigma$  Modulator

1) Find all thermal noise sources



### Noise in a $\Delta\Sigma$ Modulator

2) Find PSDs of the thermal noise sources For each of the mean square voltage sources,

$$S_{x} = \frac{\overline{V_{x}^{2}}}{f_{s}/2}$$

3) Find transfer functions from each noise source to the output

Assume ideal integrators

$$H_A(z) = H_B(z) = \frac{z^{-1}}{1 - z^{-1}}$$

$$NTF(z) = (1-z^{-1})^2 = \frac{1}{1+2H(z)+H(z)^2}$$

#### Noise in a $\Delta\Sigma$ Modulator

3) Find transfer functions from each noise source to the output

From input of  $H_{\Delta}(z)$  to output...

$$NTF_{i1}(z) = (2H(z) + H(z)^{2})NTF(z)$$

$$= \frac{2H(z) + H(z)^{2}}{1 + 2H(z) + H(z)^{2}} = 2z^{-1} - z^{-2}$$

From output of  $H_{\Delta}(z)$  to output...

$$NTF_{o1}(z) = (2 + H(z)) NTF(z)$$

$$= \frac{2 + H(z)}{1 + 2H(z) + H(z)^{2}} = (1 - z^{-1})(2 - z^{-1})$$

ECE1371 10-35 ECE1371 10-36

### Noise in a $\Delta\Sigma$ Modulator

Find transfer functions from each noise source to the output

From input of  $H_B(z)$  to output...

$$NTF_{12}(z) = H(z)NTF(z)$$

$$= \frac{H(z)}{1 + 2H(z) + H(z)^{2}} = z^{-1}(1 - z^{-1})$$

From output of  $H_B(z)$  to output (equal to transfer function at input of summer to output)...

$$NTF_{02}(z) = NTF(z) = (1-z^{-1})^2$$

ECE1371 10-37

#### Noise in a $\Delta\Sigma$ Modulator

Find transfer functions from each noise source to the output

Most significant is NTF<sub>i1</sub>



ECE1371 10-38

### Noise in a $\Delta\Sigma$ Modulator

4) Using the transfer functions, integrate all PSDs from DC to the signal band edge f<sub>s</sub>/2·OSR

Use MATLAB/Maple to solve the integrals...

$$\overline{N_{i1}^{2}} = \frac{\overline{V_{ni1}^{2}}}{f_{s}/2} \int_{0}^{f_{s}/(2 \cdot OSR)} |NTF_{i1}(f)|^{2} df$$

$$= \frac{\overline{V_{ni1}^{2}}}{f_{s}/2} \left[ \frac{5f_{s}}{2 \cdot OSR} - \frac{2f_{s}}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right]$$

$$\overline{N_{o1}^{2}} = \frac{\overline{V_{no1}^{2}}}{f_{s}/2} \int_{0}^{f_{s}/(2 \cdot OSR)} |NTF_{o1}(f)|^{2} df$$

$$= \frac{\overline{V_{no1}^{2}}}{f_{s}/2} \left[ \frac{7f_{s}}{OSR} + \frac{2f_{s}}{\pi} \sin\left(\frac{\pi}{OSR}\right) \cos\left(\frac{\pi}{OSR}\right) - \frac{9f_{s}}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right]$$

#### Noise in a $\Delta\Sigma$ Modulator

4) Using the transfer functions, integrate all PSDs from DC to the signal band edge  $f_{\rm s}/2$ -OSR

$$\begin{split} \overline{N_{i2}^2} &= \frac{\overline{V_{ni2}^2}}{f_{\rm S}/2} \left[ \frac{f_{\rm S}}{OSR} - \frac{f_{\rm S}}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right] \\ \overline{N_{o2}^2} &= \frac{\overline{V_{no2}^2} + \overline{V_{n3}^2}}{f_{\rm S}/2} \left[ \frac{3f_{\rm S}}{OSR} + \frac{f_{\rm S}}{\pi} \sin\left(\frac{\pi}{OSR}\right) \cos\left(\frac{\pi}{OSR}\right) \right. \\ &\left. - \frac{4f_{\rm S}}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right] \end{split}$$

(Some simplifications can be made for large OSR)

10-39 ECE1371 10-40

#### Noise in a $\Delta\Sigma$ Modulator

5) Sum the noise powers to determine the total output thermal noise

Assume 
$$x_A = x_B = 0.1$$
 and  $n_{fA} = n_{fB} = 1.5$ 

$$\overline{V_{TH}^2} \approx \frac{2.9kT}{C_{1A}} \frac{1}{OSR} + \frac{2kT}{\beta_A C_{OA}} \frac{\pi^2}{3OSR^3} + \frac{2.9kT}{C_{1B}} \frac{\pi^2}{3OSR^3} + \frac{2kT}{\beta_B C_{OB}} \frac{\pi^4}{5OSR^5} + \frac{8kT}{C_{f1}} \frac{\pi^4}{5OSR^5}$$

With an OSR of 32, first term is most significant (assume  $\beta_A = \beta_B = 1/3$ )

$$\overline{V_{7H}^2} \approx 9.1 \times 10^{-2} \frac{kT}{C_{1A}} + 6.0 \times 10^{-4} \frac{kT}{C_{0A}} + 2.9 \times 10^{-4} \frac{kT}{C_{1B}} + \dots$$

#### Noise in a $\Delta\Sigma$ Modulator

6) Input noise = output noise (assuming STF is ~1 in the signal band)

$$\overline{V_{TH}^2} \approx 9.1 \times 10^{-2} \frac{kT}{C_{1A}} = (43.4 \mu V)^2$$
  
=>  $C_{1A}$  = 200fF

Assuming other capacitors are smaller than  $\mathbf{C}_{1A}$ , then subsequent terms are insignificant and the approximation is valid

If lower oversampling ratios are used, other terms may become more significant in the calculation

## Noise in a Pipeline ADC

- Similar procedure to  $\Delta\Sigma$  modulator, except transfer functions are much easier to compute
- Differences...

Input refer all noise sources

Gain from each stage to the input is a scalar

Noise from later stages will be more significant since typical stage gains are as low as 2

Sample-and-Hold adds extra noise which is input referred with a gain of 1

Entire noise power is added since the signal band is from 0 to  $f_s/2$  (OSR=1)

ECE1371 10-43

### Noise in a Pipeline ADC

Example

If each stage has a gain G<sub>1</sub>, G<sub>2</sub>, ... G<sub>N</sub>

$$\overline{N_i^2} = \overline{V_{ni1}^2} + \frac{\overline{V_{no1}^2} + \overline{V_{ni2}^2}}{G_1^2} + \frac{\overline{V_{no2}^2} + \overline{V_{ni3}^2}}{G_1^2 G_2^2} + \dots + \frac{\overline{V_{noN}^2}}{G_1^2 G_2^2 \cdots G_N^2}$$

S/H stage noise will add directly to V<sub>ni1</sub>



ECE1371 10-44

#### NLCOTD: Gain Booster CMFB

### What You Learned Today

- 1. Noise analysis for switched-capacitor circuits
- 2. Contributions of both switch noise and OTA noise

Finding a power efficient solution Significance of OTA architecture

3.  $\Delta\Sigma$  modulator design example

ECE1371 10-45 ECE1371 10-46

## Some Project Guidelines

- General:
  - 1) Corners: Do not need to simulate
  - 2) Noise analysis: use calculations to size the capacitors, but use Cadence to find OTA noise
  - 3) Clock Generator: don't need to design nonoverlapping clock generator, but buffer the ideal clocks and take into account the buffer size for power calculations (if you have other clock phases – not just  $\phi_1$  and  $\phi_2$  – you should indicate how you would generate these)
  - 4) Biasing: Ideal voltage source for VDD/VSS and reference ladder edges; Ideally one current source from which all currents are derived (at least use only one current source per circuit block)

# **Some Project Guidelines**

Presentation: 15-20 minutes

12 Slides (1 title, 11 content)

Focus on major design issues and circuit blocks (what you consider the most important design decisions)

Report

We should be able to replicate your circuit with the information provided in the report

Give transistor sizes, preferably annotated on figures Try to avoid Cadence schematics (if you use them, make them more readable without all the unnecessary annotations)

ECE1371 ECE1371 10-47 10-48