Graphs

Atanu Saha atanu.saha@flame.edu.in

FLAME University, Pune School of Computing and Data Sciences

August 23, 2025

Let's draw the graph of f(x) = x + 1.

Atanu Saha Graphs August 23, 2025 2/17

Let's draw the graph of f(x) = x + 1.

Step 1: At first draw the

X-axis and Y-axis,

Let's draw the graph of f(x) = x + 1.

Step 1: At first draw the

X-axis and Y-axis,

Step 2: Now, take a point x = 1. From that we get f(1)=2

Let's draw the graph of f(x) = x + 1.

Step 3: Similarly for each values of x we will get a point. For example, if we take x = 1.2 then f(x) = f(1.2) = 1.2 + 1 = 2.2

Straight Lines

Let's observe some functions:

$$2x + 7, -x + 5, 2x$$

All of them looks similar, We are just multiplying a number (m) with x and then adding a constant (c)

So we can say that these functions are of the form :

$$f(x) = mx + c$$

Question 1

Check if the function is of the form mx + c or not then find the values of m and c.

- 2x + 5
- -x + 500
- $x^2 + 5x + 2$
- x
- $(x+1)^2 x^2$

Graphs of $f(x) = x^n$ for n = 2, 6, 8

- All graphs are U-shaped and symmetric about y-axis.
- For |x| < 1, higher powers are flatter (closer to x-axis).
- For |x| > 1, higher powers grow faster.

Graphs of $f(x) = x^n$ for n = 3, 5, 7

- All graphs are symmetric about the origin.
- For |x| < 1, higher powers are flatter.
- For |x| > 1, higher powers grow faster.
- Negative x gives negative y, positive x gives positive y.

Graphs of e^x , $\log x$, $\frac{1}{x}$, |x|

Atanu Saha Graphs August 23, 2025 8 / 17

Trigonometric Graphs

Horizontal Shifts: f(x+a) vs f(x-a)

Rule

- $f(x+a) \Rightarrow \text{shift left by } a \text{ units}$
- $f(x-a) \Rightarrow \text{shift right by } a \text{ units}$

Vertical Shifts: f(x) + k vs f(x) - k

Rule

- $f(x) + k \Rightarrow \text{shift } \mathbf{up} \text{ by } k \text{ units}$
- $f(x) k \Rightarrow \text{shift down by } k \text{ units}$

Question

Try to draw the graphs of :

•
$$f(x) = |x+4| + 5$$

•
$$f(x) = (x+4)^2 + 5$$

•
$$f(x) = \frac{1}{x+2} + 2$$

Horizontal Scaling: f(ax)

- f(ax) compresses/stretch the graph horizontally.
- If a > 1, graph is **compressed** (period decreases).
- If 0 < a < 1, graph is **stretched** (period increases).

Vertical Scaling: af(x)

- af(x) stretches or compresses the graph **vertically**.
- If a > 1, amplitude increases.
- If 0 < a < 1, amplitude decreases.
- If a < 0, also reflects across x-axis.

14 / 17

Reflection: f(-x)

Key Idea

- f(-x) reflects the graph of f(x) across the y-axis.
- Negative x values are mapped to positive ones (and vice versa).
- Shape remains the same, but the curve is mirrored horizontally.

Reflection: -f(x)

Key Idea

- -f(x) reflects the graph of f(x) across the x-axis.
- Positive y-values become negative, and vice versa.
- Shape of the curve remains unchanged, only orientation flips.

16 / 17

Inverse Function: $f^{-1}(x)$

Key Idea

- The graph of $y = f^{-1}(x)$ is the reflection of y = f(x) across the line y = x.
- Domain of f becomes range of f^{-1} , and range of f becomes domain of f^{-1} .

Atanu Saha Graphs August 23, 2025 17 / 17