Calcul Moulien, Arborification, Symétries et Applications

Jordy Palafox

Sous la direction de Jacky Cresson (Université de Pau)

Université de Pau et des Pays de l'Adour

25 Juin 2018

- Calcul moulien
- Partie 1 • Arborification
 - Linéarisation de champs de vecteurs
 - Problème du centre

- Tissus du plan
- Groupe de symétries
 - Polynômes de Darboux

Partie 2 -

Calcul Moulien, Arborification et Champs de vecteurs

Normalisation des champs de vecteurs

Prenons un champ de vecteurs analytique dans \mathbb{C}^d :

$$X = X_{lin} + P$$
,

avec $\lambda \in \mathbb{C}^d$ le spectre de X_{lin} .

Existe-t-il un changement de variables (analytique) qui ramène X à sa partie linéaire?

H. Poincaré 1854-1912

A.D. Brjuno 1940- 1

^{1.} Analytical form of differential equations (I, II). Trans. Moscow Math. Soc. 25, 131–288 (1971), 26, 199–239 (1972)

Le Théorème de Poincaré (1899)

Théorème de H. Poincaré

Soit X un champ de vecteurs, non résonant et dont le spectre est dans le domaine de Poincaré alors X est analytiquement linéarisable.

- Non résonant : il n'existe pas de relation $<\lambda, m>=\lambda_i, m\in\mathbb{N}^d$ et $|m|\geq 2$
- Domaine de Poincaré : enveloppe convexe ne contenant pas 0.

La démonstration de H. Poincaré

Analyse directe du changement de variables.

→ Une démonstration par le formalisme du **Calcul Moulien** de J. Ecalle.

Eléments de Calcul Moulien

Forme préparée d'un champ

$$X = X_{lin} + \sum_{n \in \mathbf{A}(X)} B_n,$$

où :

- X_{lin} est la partie linéaire du champs (diagonale), de spectre λ ,
- $n \in \mathbf{A}(X) \subset \mathbb{Z}^d$ l'alphabet,
- B_n un opérateur différentiel homogène de degré n, i.e. $\exists \beta_{n,m} \in \mathbb{C}$ tel que $B_n(x^m) = \beta_{n,m} x^{n+m}$.

Exemple de forme préparée

On considère le champ quadratique :

$$X = X_{lin} + X_2$$

où
$$X_2 = \left(p_{1,0}x^2 + p_{0,1}xy + p_{-1,2}y^2\right)\partial_x + \left(q_{-1,2}x^2 + q_{1,0}xy + q_{0,1}y^2\right)\partial_y,$$

Les opérateurs et l'alphabet sont donnés par :

•
$$B_{(1,0)} = x(p_{1,0}x\partial_x + p_{0,1}y\partial_y),$$

•
$$B_{(2,-1)} = p_{2,-1}x^2\partial_y$$

•
$$B_{(0,1)} = y(p_{0,1}x\partial_x + p_{0,1}y\partial_y),$$

•
$$B_{(-1,2)} = p_{-1,2}y^2\partial_x$$
.

•
$$A(X) = \{(2,-1), (1,0), (0,1), (-1,2)\},\$$

Eléments de Calcul Moulien

Automorphisme de substitution

Soit h un changement de variables, l'automorphisme de substitution Θ_h est défini par :

$$\mathbb{C}\{x\} \to \mathbb{C}\{y\}$$
$$\varphi \mapsto \Theta_h(\varphi) = \varphi \circ h.$$

Développement moulien de Θ_h :

$$\Theta_h = \sum_{\mathbf{n} \in \mathbf{A}(X)^*} \Theta^{\mathbf{n}} B_{\mathbf{n}},$$

οù

- n est un mot de l'ensemble $A(X)^*$ construit sur l'alphabet A(X) par concaténation,
- Θ^{ullet} est un moule, i.e. une application de $\mathbf{A}(X)^* o \mathbb{C}$,
- $B_n = B_{n_1} \circ \cdots \circ B_{n_r}$ est un comoule, i.e. une application de $A(X)^*$ dans \mathcal{B} .

Equation de conjugaison

Conjugaison et linéarisation

$$\begin{split} \Theta_h^{-1} X \Theta_h &= X_{lin}, \\ &(\sum_{\mathbf{n} \in \mathbf{A}(X)^*} (\Theta^{-1})^{\mathbf{n}} B_{\mathbf{n}}) (X_{lin} + \sum_{n \in \mathbf{A}(X)} B_n) (\sum_{\mathbf{n} \in \mathbf{A}(X)^*} \Theta^{\mathbf{n}} B_{\mathbf{n}}) = X_{lin}, \end{split}$$

plus précisément,

$$\nabla \Theta^{\bullet} = I^{\bullet} \times \Theta^{\bullet}$$
,

où $\nabla \Theta^{\bullet} = \omega(\bullet) \Theta^{\bullet}$ avec $\omega(n) = \langle \lambda, n \rangle$ le **poids** de $n \in A(X)$ et I^{\bullet} est le moule $I^{n} = 1$ si $\ell(n) = 1$ et 0 sinon.

- Le moule Θ• est une solution d'une équation moulienne,
- Aspect universel du moule Θ[•].

Démonstration du théorème de Poincaré

Le moule Θ[•] est donné explicitement par :

$$\Theta^{\mathbf{n}} = \frac{1}{\omega(\mathbf{n})\cdots\omega(n_{r-1}n_r)\omega(n_r)},$$
 pour tout $\mathbf{n} = n_1\cdots n_r$, $\ell(\mathbf{n}) = r$.

• On a $\|\cdot\|_U$ norme du sup et on introduit la norme d'opérateur différentiel $\|B_n\|_{U,V} = \sup_{\phi \in \mathbb{C}\{x\}, \|\phi\|_U \le 1} \|B_n \cdot \phi\|_V$.

•
$$|\Theta^{\mathbf{n}}| \leq \frac{1}{r! C_1^r}$$
,

•
$$|| B_{\mathbf{n}} ||_{U,V} \le r! C_{U,V}^{p(\mathbf{n})} C_2^r$$
,

où $C_1, C_2, C_{U,V}$ constantes positives et $p(n_i) = \sum_{j=1}^d n_i^d$ est la **profondeur** de la lettre n_i .

$$\|\sum_{\mathbf{n}\in A(X)^*,\ell(\mathbf{n})=r}\Theta^{\mathbf{n}}B_{\mathbf{n}}\|_{U,V}\leq \sum_{\mathbf{n}\in A(X)^*,\ell(\mathbf{n})=r}C_{U,V}^{p(\mathbf{n})}C^r<+\infty.$$

Théorème de Brjuno (1971)

Condition diophantienne de Brjuno

On définit $\omega(k) = \inf\{\langle \lambda, \mathbf{n} \rangle, p(\mathbf{n}) < 2^{k+1} \ \text{et} \ \langle \lambda, \mathbf{n} \rangle \neq 0\}$. La condition de Brjuno est :

La série
$$S = \sum_{k \geq 0} \frac{log(\frac{1}{\omega(k)})}{2^k}$$
 est convergente.

Théorème de Brjuno

Soit X un champ dont le spectre satisfait la condition de Brjuno alors X est analytiquement linéarisable.

- Démonstration de Brjuno : méthode classique et très technique,
- On va suivre la démarche proposée par J. Ecalle.
- 1. J. Ecalle, *Singularités non abordables par la géométrie*, Ann. Inst. Fourier, 42 (1-2), p. 73-164 (1992)

Une approche directe?

$$ullet$$
 $|\Theta^{f n}| \leq C_1^{p({f n})},$ (estimation polynomiale)

 $\bullet \parallel B_{\mathbf{n}} \parallel_{U,V} \leq r! C_{U,V}^{p(\mathbf{n})},$

$$\|\sum_{\mathbf{n}\in A(X)^*,\ell(\mathbf{n})=r}\phi^{\mathbf{n}}B_{\mathbf{n}}\|_{U,V}\leq \sum_{\mathbf{n}\in A(X)^*,\ell(\mathbf{n})=r}\frac{r!(C_1C_{U,V})^{p(\mathbf{n})}.$$

- \Rightarrow On ne peut pas conclure!
- ⇒ J. Ecalle propose la méthode d'arborification.

Arborification

Arbres et Forêts

Un arbre enraciné T est un graphe orienté non planaire avec un nombre fini de sommets avec un sommet particulier : la racine. Une forêt est une collection d'arbres enracinés.

Un arbre est décoré par un ensemble **A** si on associe à chaque sommet un élément de **A**

Algèbre de Hopf de Connes-Kreimer

L'algèbre de Hopf de Connes-Kreimer $\mathscr{H}_{CK}^{\mathbf{A}}$ est l'algèbre des arbres enracinés décorés par \mathbf{A} .

F. Fauvet, F. Menous, *Ecalle's arborification-coarborification transforms and Connes-Kreimer Hopf algebra*, Annales scientifiques de l'ENS 50, fascicule 1, 39-83, (2017)

Arborification

Arborification

L'arborification est un morphisme π_0 d'algèbres de Hopf de $\mathscr{H}_{CK}^{\mathbf{A}}$ dans $\mathscr{H}_{\square}^{\mathbf{A}}$.

$$\pi_0 (\bigcap_{n_1}^{n_2} \bigcap_{n_1}^{n_3}) = n_1 n_2 n_3 + n_1 n_3 n_2.$$

ullet On note $\mathcal{L}(\mathcal{T})$ l'ensemble des mots apparaissant dans l'expression de $\pi_0(\mathcal{T})$.

Moules, comoules et Arborification

Un moule étant donné, on peut définir son équivalent sur les arbres dit moule arborifié.

$$\begin{split} \Theta^T &= \sum_{\mathbf{n} \in \mathcal{T}} & \Theta^{\mathbf{n}}, (\textit{arborification}) \\ B_{\mathbf{n}} &= \sum_{T \in \mathscr{H}^{\mathbf{A}}_{CK}(X)} & B^{<}_{T}. (\textit{coarborification}) \end{split}$$

En regroupant les termes, on a :

$$\sum_{\boldsymbol{n}\in\boldsymbol{A}(X)^*}\Theta^{\boldsymbol{n}}\mathcal{B}_{\boldsymbol{n}}=\sum_{T\in\mathscr{H}_{CK}^{\boldsymbol{A}(X)}}\Theta^T\mathcal{B}_T.$$

1. R. Grossman, R. J. Larson, *Hopf-algebraic structure of combinatorial objects and differential operators*, Israel J. Math., Vol 72, 1990, no 1-2,109-117.

Que donne cette réécriture?

- $||B_F||_{U,V} \le C_2^r C_{U,V}^{p(T)}$,
- $|\Theta^T| \leq C_1^{p(T)}$,

où $p(T) = p(\mathbf{n})$ si T est décoré par \mathbf{n} , C_1 , C_2 , $C_{U,V}$ des constantes et $r = \ell(T)$ nombre de sommets.

Conclusion

L'arborification restaure la convergence!

Comment expliquer ce phénomène?

Suivant J. Ecalle:

- "Il n'y a pas d'accroissement concomitant du nombre de termes",
- Le moule arborifié vérifie une équation de même nature que le moule classique.
 - \Rightarrow Un moule peut-il être invariant par arborification?
 - ⇒ Quand une équation sur les moules est-elle préservée par arborification ?

L'invariance de forme

- \bullet $\ell(T) = \ell(n)$,
- $\omega(T) = \omega(\mathbf{n})$,
- p(T) = p(n),

où $\mathbf{n} \in \mathcal{L}(T)$.

Théorème (J. Cresson, D. Manchon, J. P.)

Soit M^{\bullet} ne dépendant que de la longueur $\ell(\bullet)$, du poids $\omega(\bullet)$ ou de la profondeur $p(\bullet)$, autrement dit :

$$M^{\bullet} = F(\ell(\bullet), \omega(\bullet), p(\bullet)),$$

où $F: \mathbb{N} \times \mathbb{C} \times \mathbb{N} \to \mathbb{C}$. Alors le moule arborifié $M_<^{ullet}$ est donné par :

$$M_{\leq}^T = \sharp \mathcal{L}(T) F(\ell(T), \omega(T), p(T)).$$

Le moule I^{\bullet} ne dépend que de la longueur, $I^{\mathbf{n}} = f(\ell(\mathbf{n}))$ donc $I_{<}(T) = f(\ell(T))$.

Jordy Palafox

L'invariance d'équations fonctionnelles

On a démontré que l'équation :

$$\nabla \Theta^{\bullet} = I^{\bullet} \times \Theta^{\bullet},$$

s'arborifie:

$$\nabla^{<}\Theta_{<}^{\bullet}=I_{<}\times\Theta_{<}^{\bullet}.$$

 $\bullet
abla^< M^T_< = \omega(T) M^T_< ext{ et } I^ullet$ invariant donc :

$$\Theta^{\mathbf{n}} = \frac{1}{\omega(\mathbf{n})\cdots\omega(n_{r-1}n_r)\omega(n_r)},$$

$$\Theta^{T} = \sum_{(i_{1},...,i_{r-1})} \frac{1}{w(T)w(T_{i_{1}}^{>1})w((T_{i_{1}}^{>1})_{i_{2}}^{>1})\cdots w((...(((T_{i_{1}}^{>1})_{i_{2}}^{>1})...)_{i_{r-1}}^{>1}}.$$

Couvre la plupart des exemples connus.

^{1.} Lemme 13 p.43 du manuscrit

Retour au Théorème de Brjuno

On en déduit :

Théorème

Sous la condition de Brjuno, si le moule Θ^{\bullet} satisfait :

$$|\Theta^{\mathbf{n}}| \leq c_0 c^{p(\mathbf{n})},$$

alors son arborifié vérifie :

$$|\Theta_{<}^{\mathbf{n}}| \leq c_1 c^{p(T)}.$$

On ne peut pas encore conclure à la convergence!

Le passage au moule inverse : un Lemme fondamental

Soit M^{\bullet} un moule avec $M^{\emptyset} \neq 0$ satisfaisant l'estimation polynomiale :

 $|M^{\mathbf{n}}| \leq c_0 c^{\rho(\mathbf{n})},$

avec c, c_0 des constantes positives. Alors le moule N^{\bullet} inverse de M^{\bullet} pour la multiplication de moules satisfait :

$$|N^{\mathbf{n}}| \leq \tilde{c_0} c^{p(\mathbf{n})}.$$

Soit un moule arborifié $M_{<}^{\bullet}$ avec $M_{<}^{1} \neq 0$, satisfaisant :

$$|M_{<}^{\mathbf{n}}| \leq c_0 c^{\rho(\mathbf{n})},$$

avec c, c_0 des constantes positives. Alors le moule $N_<^{\bullet}$ inverse de $M_>^{\bullet}$ pour la multiplication de moules arborifiés satisfait :

$$|\mathcal{N}_{\leq}^{\mathbf{n}}| \leq \tilde{c_0} c^{p(\mathbf{n})}.$$

Conclusion

L'estimation polynomiale est préservée et l'arborification restaure la convergence!

Vers le problème du centre

Le calcul moulien fait apparaître :

- une partie universelle : le moule,
- une partie dépendante des coefficients du champ : le comoule.

Cette représentation permet d'analyser le rôle spécifique de la forme de la perturbation du champ.

 \Rightarrow C'est le cas dans le problème du centre.

Le problème du centre

On considère **représentation complexe** d'un *champ de vecteur du plan réel* avec un centre en 0 :

$$X_{lin}=i(x\partial_x-y\partial_y)$$

où $x,y\in\mathbb{C}$ avec $y=ar{x}$.

Figure – Le point d'équilibre 0 est un centre

Problème du centre

Quelles sont les propriétés préservées par une perturbation polynomiale de X_{lin} ?

$$X = X_{lin} + P(x, y)\partial_x + Q(x, y)\partial_y$$

Problème du centre

Quelles conditions sont nécessaires sur P et Q pour préserver la propriété d'être un centre?

 Un centre est dite <u>isochrone</u> si toutes les orbites ont la même période.

Problème du centre isochrone

Quelles conditions sur P et Q sont nécessaires pour conserver l'isochronisme?

Conjecture de Jarque-Villadelprat

Si X est en plus <u>Hamiltonien</u>, on a la conjecture suivante :

Conjecture de Jarque-Villadelprat (2002)²

Tout centre d'un champ réel planaire polynomial Hamiltonien de degré pair est non isochrone.

- Loud (1964) : dans le cas quadratique,
- Schuman (2001) : dans le cas homogène,
- Jarque-Villadelprat (2002) : dans le cas quartique.

^{2.} X. Jarque, J. Villadelprat, *Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four*, Journal of Differential Equations 180, 334–373, (2002).

• Chen, Romanovski, Zhang (2008) :

Conjecture, version faible

Un champ de vecteurs X Hamiltonien réel de degré pair 2n de la forme $X = X_{lin} + X_2 + X_4 + \cdots + X_{2n}$ n'est pas isochrone.

 Autres cas : la conjecture est toujours <u>ouverte</u>! La complexité des méthodes classiques augmente trop vite avec le degré!

Condition d'isochronisme 3

L'isochronisme est équivalent à la linéarisabilité du champ.

Comment étudier cette propriété?

^{3.} M. Sabatini, J. Chavarriga, A survey of Isochronous centers, Qualitative Theory of Dynamical Systems 1 (1999)

Correction et calcul moulien

 La <u>Correction</u> d'un champ de vecteurs est un champ de vecteurs formel solution de ⁴:

Soit X un champ analytique et X_{lin} sa partie linéaire. Trouver un champ de vecteurs Z solution du problème suivant :

• X - Z formellement conjugué à X_{lin} ,

•
$$[X_{lin}, Z] = 0$$
.

Critère de linéarisation [J. Ecalle, B. Vallet]

Un champ de vecteurs est linéarisable si et seulement sa correction est nulle.

^{4.} J. Ecalle, B. Vallet, Correction and linearization of resonant vector fields and diffeomorphisms, Math. Z. 229, 249-318, (1998).

^{4.} F.Menous, From dynamical systems to renormalization, J. Math. Phys. 54, no. 9, 092702, 24 p.,(2013).

Nos résultats

Notations

On considère une perturbation polynômiale de la forme :

$$X = X_{lin} + \sum_{r=k}^{l} X_r,$$

avec

- $X_r = P_r(x, y)\partial_x + Q_r(x, y)\partial_y$,
- $P_r(x,y) = \sum_{j=0}^r p_{r-j-1,j} x^{r-j} y^j$, $Q_r(x,y) = \sum_{j=0}^r q_{r-j,j-1} x^{r-j} y^j$.
- $p_{r-j-1,j}, q_{r-j,j-1} \in \mathbb{C}$ avec les conditions suivantes :

Condition de réalité : $p_{j,k} = \bar{q}_{k,j}$ avec j+k=r-1,

Condition Hamiltonienne : $p_{j-1,r-j} = -\frac{r-j+1}{j}q_{j-1,r-j}$ avec j=1,...r.

Soit X un champ de vecteurs Hamiltonien réel de degré 2n de la forme :

 $X = X_{lin} + \sum_{r=2}^{2n} X_r,$

Si X satisfait l'une des conditions suivantes :

- ① il existe $1 \leq j < n-1$ tel $p_{i,i} = 0$ pour i = 1,...,j-1 et $\mathcal{I}m(p_{j,j}) > 0$,
- ② $p_{i,i} = 0$ pour i = 1, ..., n-1,

Alors le champ X n'est pas isochrone.

- $\bullet \ \boxed{X = X_{lin} + X_2} \ ,$
- $\overline{X = X_{lin} + X_2} + X_3 + X_4$ avec $\mathcal{I}m(p_{1,1}) > 0$,
- $X = X_{lin} + X_2 + X_3 + X_4 + X_5 + X_6$ avec $\mathcal{I}m(p_{1,1}) > 0$ ou $p_{1,1} = 0$ et $Im(p_{2,2}) > 0$,
- etc...

sont non isochrones.

Un champ réel Hamiltonien polynomial de la forme :

$$X = X_{lin} + X_i + ... + X_{2n}$$

pour $j \ge 2$ et $n \le j - 1$, n'est pas isochrone.

$$\bullet \ | X = X_{lin} + X_2 |,$$

•
$$X = X_{lin} + X_3 + X_4$$
,

•
$$X = X_{lin} + X_4 + X_5 + X_6$$
,

•
$$X = X_{lin} + \sum_{r=47}^{92} X_r$$
,

• etc...

sont non isochrones.

Soit X un champ de vecteurs Hamiltonien réel non trivial de la forme :

$$X = X_{lin} + X_k + \cdots + X_{2l} + X_{2l+1} + \sum_{n=1}^{m} \sum_{j=c_n}^{2(c_n-1)} X_j,$$

où $k \ge 2, l \le k-1$ et la suite (c_n) est donnée par $c_1 = 4l$ et $\forall n \ge 2, c_n = 4(c_{n-1}-1)$ alors X n'est pas isochrone.

Un exemple donné par ce théorème est :

$$X = X_{lin} + X_2 + X_4 + X_5 + X_6$$
.

Soient $k \ge 2$ et $l \le k-1$. Soit X un champ Hamiltonien polynomial réel de l'une des deux formes :

i)
$$X = X_{lin} + X_k + \cdots + X_{2l} + X_{2l+1} + \sum_{m=r}^{r+n} X_m$$

 $\text{avec } r \geq 2I+2 \text{ et } \mathcal{I}\textit{m}(p_{I,I}) \geq 0,$

ii)
$$X = X_{lin} + X_k + \cdots + X_{2l} + X_{4l-1} + \sum_{m=r}^{l+n} X_m$$

où X_{2l} est non trivial, $r \ge 4l$ et $\mathcal{I}m(p_{2l-1,2l-1}) > 0$, alors X n'est pas isochrone.

Démonstrations

Correction et développement moulien

Théorème [J .Ecalle, B. Vallet]

La correction peut s'écrire :

$$Carr(X) = \sum_{\mathbf{n} \in A^*(X)} Carr^{\mathbf{n}} B_{\mathbf{n}} = \sum_{k \ge 1} \frac{1}{k} \sum_{\substack{\mathbf{n} \in A^*(X) \\ \ell(\mathbf{n}) = k}} Carr^{\mathbf{n}} [B_{\mathbf{n}}]$$

, où : • Carr• est le moule de la correction, calculable par récurrence grâce à la formule (règle de la variance) :

$$\omega(n_1) Carr^{n_1 \cdot n_2 \cdot \dots \cdot n_r} + Carr^{n_1 + n_2 \cdot n_3 \cdot \dots \cdot n_r} = \sum_{n_1 \cdot \mathbf{b} \cdot \mathbf{c} = \mathbf{n}} Carr^{n_1 \cdot \mathbf{c}} Carr^{\mathbf{b}},$$

• $[B_n] = [B_{n_1, \dots, n_r}] = [[\dots, [[B_{n_1}, B_{n_2}], B_{n_2}], \dots], B_{n_r}]$

Si
$$\omega(\mathbf{n}) \neq 0$$
, $\mathit{Carr}^{\mathbf{n}} = 0$. Pour $\omega(\mathbf{n}) = 0$, si $\ell(\mathbf{n}) = 1$, $\mathit{Carr}^{\mathbf{n}} = 1$, et pour $\ell(\mathbf{n}) = 2$, $\mathit{Carr}^{\mathbf{n}} = \frac{-1}{\omega(n_1)}$.

Jordy Palafox

Correction via la profondeur

Forme des crochets

Pour tout mot \mathbf{n} , $[B_{\mathbf{n}}] = (xy)^{\frac{p(\mathbf{n})}{2}} [P(\mathbf{n})x\partial_x + Q(\mathbf{n})y\partial_y].$

Structure algébrique

Pour tout $p \in \mathbb{N}^*$, le terme $Carr_{2p}(X)$ de la correction est :

$$Carr_{2p}(X) = (xy)^p [Ca_{2p}x\partial_x + \overline{Ca_{2p}}y\partial_y],$$

οù

$$Ca_{2p} = \sum_{k=1}^{2p} \frac{1}{k!} \sum_{\substack{\mathbf{n} \in \mathbf{A}(X)^* \\ p(\mathbf{n}) = 2p, \ell(\mathbf{n}) = k}} Carr^{\mathbf{n}} P(\mathbf{n}).$$

Idée de la preuve

• Considérons $X = X_{lin} + \sum\limits_{r=m}^{2n} X_r$,

Deux cas : m = 2l ou m = 2l + 1.

• Comment calculer $Carr_{2p}(X)$?

Perturbation	X ₂₁	X_{2l+1}	 X_{2n}
Profondeur	2 <i>I</i> – 1	21	 2n - 1

Pour une profondeur p donnée, quels X_r contribuent à $Carr_{2p}(X)$?

• Notation : $Carr_{p,\ell}(X_i)$ la contribution de X_i en profondeur p et ℓ la longueur du mot associé.

Formes explicites

$$Carr_{2m,1}(X_{2m+1}) = p_{m,m}(xy)^m(x\partial_x - y\partial_y),$$

$$Carr_{2m,2}(X_{m+1}) = \frac{1}{2} \sum_{n \in A(X_{m+1})} Carr^{n,ping(n)} [B_n, B_{ping(n)}],$$
où $ping(n) = ping(n^1, n^2) = (n^2, n^1).$

En utilisation les conditions de réalité et Hamiltonienne, on a :

$$Carr_{2m}(X) = F \times (xy)^k (x\partial_x - y\partial_y)$$
 avec :

$$F = p_{m,m} + i \left(\sum_{j=\lfloor \frac{2l+1}{2} \rfloor + 1}^{2l} \frac{2l(2l+1)}{(2l-j+1)^2} |p_{j-1,2l-j}|^2 + \frac{2l}{2l+1} |p_{-1,2l}|^2 \right)$$

- Si $Carr_{2m}(X) = 0$, on a une sphère de Birkhoff liant X_{2l} et $X_{2m+1} = X_{4l-1} \Rightarrow$
- (C1) Si $\mathcal{I}m(p_{m,m}) > 0$, on a une obstruction à la linéarisation! (C2) Si $p_{m,m} = 0$, la sphère est réduite à $0 \Rightarrow X_{2l} = 0$.

Démonstration du Théorème 1

Soit
$$X = X_{lin} + \sum_{r=2}^{2n} X_r$$
:

- Si il existe un entier $1 \le m < n-1$ tel que $p_{j,j} = 0$ pour j = 0, ..., m-1 et $\mathcal{I}m(p_{m,m}) > 0$, \Rightarrow par (C1), X ne peut être isochrone.
- ② Si $p_{m,m} = 0$ pour $1 \le k \le n-1$, \Rightarrow La condition **(C2)** implique X non isochrone ou X_r est trivial.

Démonstration du Théorème 2

Considérons $X = X_{lin} + X_m + ... + X_{2n}$ pour $m \ge 2$ et $n \le m - 1$.

• Si m est pair, comme $n \leq m-1$ on a :

Perturbation	X_m	X_{m+1}	 X_{2n}
Profondeur	m-1	m	 2n - 1

On a: $2(m-1) \ge 2n > 2n-1$,

- ⇒ Pas d'interaction entre les longueurs 1 et 2 pour une profondeur donnée,
- \Rightarrow Chaque X_r est trivial ou X est non isochrone.
- Si k est impair, on a un résultat analogue.

Les Tissus du plan

Les tissus

Définition d'un d-tissu

Un d-tissu $\mathcal{W}(F_1,...,F_d)$ est une collection de d feuilletages holomorphes F_i de codimension 1 dans $(\mathbb{C}^2,0)$ tels que les espaces tangents sont en position générale.

Figure – 2-tissu

Figure – 3-tissu

Une classe particulière de tissus

Tissus implicites

Un d-tissu implicite de $(\mathbb{C}^2,0)$ est donné par l'équation différentielle analytique :

$$F(x,y,y') = a_0(x,y)(y')^d + a_1(x,y)(y')^{d-1} + \dots + a_d(x,y) = 0,$$

= $a_0(x,y) \prod_{i=1}^d (y' - p_i(x,y)),$

avec
$$F \in \mathcal{O}[y']$$
, $y' = \frac{dy}{dx}$, $a_i \in \mathcal{O} = \mathbb{C}\{x,y\}$ et

$$Result_{y'}(F, \partial_{y'}F) = (-1)^{\frac{d(d-1)}{2}}\Delta \neq 0.$$

$$p_i$$
 racines $\iff X_i = \partial_x + p_i(x,y)\partial_y$ ou $y' = p_i(x,y),$ \iff feuilletages de courbes intégrales F_i avec $p_i = -\frac{\partial_x(F_i)}{\partial_y(F_i)}.$

Le problème de classification : l'équivalence de tissus

 $\mathcal{W}_1 \sim \mathcal{W}_2 \Leftrightarrow \text{il existe un germe de biholomorphismes de}(\mathbb{C}^2,0)$ qui envoie \mathcal{W}_1 sur \mathcal{W}_2 .

Tissu linéaire et linéarisation

Si toutes les feuilles d'un tissu sont des droites, on parle de tissus linéaires.

 $\mathcal{W}_1 \sim \mathcal{W}_2$ avec \mathcal{W}_2 d-tissu linéaire $\Leftrightarrow \mathcal{W}_1$ est linéarisable.

Classification par les symétries de Lie

Groupes de symétries

Soit $\mathscr S$ un système d'équations différentielles. Un groupe de symétrie de $\mathscr S$ est un groupe local de transformation G_{ε} agissant sur un sous ensemble ouvert M du produit $D\times U$ avec les variables indépendantes dans D et les dépendantes dans U tel que si $f:M\to U$ est une solution de $\mathscr S$ alors $g_{\varepsilon}\cdot f$ est encore une solution.

$$G_{\varepsilon}: x \in M \mapsto g_{\varepsilon} \cdot (x, f(x)) \iff X = \frac{d(g_{\varepsilon} \cdot x)}{d\varepsilon}|_{\varepsilon=0} \partial_x + \frac{d(g_{\varepsilon} \cdot y(x))}{d\varepsilon}|_{\varepsilon=0} \partial_y.$$
 avec $y = y(x)$.

Le champ X est appelé **générateur infinitésimal** de G_{ε} .

Jordy Palafox

^{4.} P.J. Olver, Applications of Lie groups to Differential Equations, Second Edition, Springer, (1998).

Prolongement d'une symétrie

On définit $pr^{(n)}X$ le prolongateur d'un générateur infinitésimal comme un nouveau champ prenant en compte les dérivées des solutions f.

Critère d'invariance

Soit $\Omega_i(x,f(x)^{(k)})=0$ avec i=1,...,d et k=1,...,n un système d'équations différentielles de rang maximal sur $M\subset D\times U$. Si G_ε est un groupe de transformation local agissant sur M et

$$pr^{(n)}X[\Omega_i(x,f(x)^{(k)})] = 0, \ i = 1,...,d,$$
 whenever $\Omega_i(x,f(x)^{(k)}) = 0$

pour tout générateur infinitésimal X de G_{ε} , alors G_{ε} est un groupe de symétrie du système.

Théorème de structure

L'ensemble des générateurs infinitésimaux forme une algèbre de Lie dite des symétries.

Symétries des tissus et critère d'invariance

Définition

Soit \mathcal{W} un d-tissu, un groupe de symétrie de \mathcal{W} est un groupe local de transformations qui laisse invariant chaque feuilles des feuilletages.

Théorème des symétries

Un champ de vecteurs $X=\alpha_1(x,y)\partial_x+\alpha_2(x,y)\partial_y$ est une symétrie du système d'équations différentielles equations :

$$y' = p_i(x, y(x)), i = 1, ..., d,$$

si et seulement

$$\alpha_1 \partial_x(p_i) + \alpha_2 \partial_y(p_i) - \partial_x(\alpha_2) - (\partial_y(\alpha_2) + \partial_x(\alpha_1))p_i + \partial_y(\alpha_1)p_i^2 = 0,$$

 $i = 1, ..., d.$

Tissus parallèles

Définition

Un *d*-tissu est dit **parallèle** s'il est donné par la superposition de *d* pinceaux de droites parallèles en position générale :

$$\mathcal{W}(a_1x-b_1y,...,a_dx-b_dy), (a_i,b_i) \in \mathbb{C}^2.$$

Les pentes $p_i = -\frac{a_i}{b_i}$ sont constantes.

Lemme

L'algèbre des Lie des symétries d'un d-tissu parallèle est :

$$\mathfrak{g} = \{\partial_x, \ \partial_y, \ x\partial_x + y\partial_y\}.$$

Le tissu de Clairaut

Définition

Le 3-tissu de Clairaut est donné par les feuilletages $F_1(x, y) = y - x$, $F_2(x, y) = x + y$ et $F_3(x, y) = \frac{y}{y}$.

Lemm<u>e</u>

L'algèbre des symétries du tissu de Clairaut est de dimension 3 et donnée par :

$$\begin{split} X &= x \partial_x + y \partial_y, \quad Y = y \partial_x + x \partial_y, \\ Z &= \left(x \, \ln(|x^2 - y^2|) + y \, \ln(|\frac{x + y}{x - y}|) \right) \partial_x \\ &+ \left(y \, \ln(|x^2 - y^2|) + x \, \ln(|\frac{x + y}{x - y}|) \right) \partial_y. \end{split}$$

Le Tissu de Zariski

Définition

Le 3-tissu de Zariski est implicitement définie par l'équation différentielle $F(x, y, y') = (y')^3 + x^m y^n = 0$.

Lemme

Le 3-tissu de Zariski admet l'algèbre de Lie des symétries suivantes :

• si
$$n \neq 3$$
, $\mathfrak{g} = \{x^{-\frac{m}{3}}\partial_x, y^{\frac{n}{3}}\partial_y, (3-n)x\partial_x + (m+3)y\partial_y\}$,

• si
$$n = 3$$
, $\mathfrak{g} = \{x^{-\frac{m}{3}}\partial_x, y\partial_y, \frac{3x}{m+3}\partial_x + y \ln(y)\partial_y\}.$

A propos de la dimension de l'algèbre de Lie des symétries

Théorème [A. Hénaut]

La dimension de l'algèbre de Lie des symétries d'un d-tissu, $d \geq 3$, est égale à 0,1 ou 3.

Supposons que l'algèbre soit générée par deux champs X_1 et X_2 . On les redresse pour considérer ∂_x et ∂_y .

Le système des symétries est alors $\partial_x(p_i) = \partial_y(p_i) = 0$, les pentes p_i sont des constantes \Rightarrow C'est un tissu parallèle $\Rightarrow dim(\mathfrak{g}) = 3$.

Théorème [A. Hénaut]

Pour un 3-tissu implicite \mathcal{W} de $(\mathbb{C}^2,0)$,

$$dim(\mathfrak{g}) = 3 \Leftrightarrow \mathcal{W} \sim \mathcal{W}(x, y, x + y).$$

Tissus, modules de dérivations et polynômes de Darboux

Module de dérivation

Soit $\mathscr C$ une courbe algébrique définie par un polynôme g dans $\mathbb C[x,y].$

$$Der(\mathscr{C}) = \{X \in Der(\mathscr{C}) \mid \exists K \in \mathbb{C}[x, y] \ X.g = K.g\},$$

gest appelé Polynôme de Darboux et K le cofacteur.

Théorème [A. Hénaut]

Soit \mathcal{W} un d-tissu implicitement défini par $F=a_0p^d+...+a_d$. Si le champ de vecteurs $X=\alpha_1\partial_x+\alpha_2\partial_y$ est une symétrie de \mathcal{W} alors X appartient à $Der(\Delta)$.

Théorème

L'algèbre de Lie des symétries est une sous-algèbre de Lie de $Der(\Delta)$.

Perspectives

Arborification et convergence

- Equations différentielles rugueuses (M.Gubinelli, K. Ebrahimi-Fard, F.Patras, D.Manchon),
- Equations aux dérivées partielles stochastiques (M. Hairer),
- Les séries Gevrey.

Vers une résolution de la conjecture de Jarque-Villadelprat

- Analyse la répercussion des sphères de Birkhoff quand la profondeur augmente,
- Des aspects plus géométrique : la variété du centre isochrone.

Les Tissus

- Les G-strutures et méthode d'équivalence de Cartan,
- Nature des symétries et théorèmes de type Maillet.

Merci de votre attention!