

M8257 PROGRAMMABLE DMA CONTROLLER

Military

- Military Temperature Range: -55°C to + 125°C (T_{CASE})
- 4-Channel DMA Controller
- Priority DMA Request Logic
- Channel Inhibit Logic

- Terminal Count and Modulo 128
 Outputs
- **Single TTL Clock**
- Single +5V Supply
- Auto Load Mode

The Intel M8257 is a 4-channel direct memory access (DMA) controller. It is specifically designed to simplify the transfer of data at high speeds for the Intel microcomputer systems. Its primary function is to generate, upon a peripheral request, a sequential memory address which will allow the peripheral to read or write data directly to or from memory. Acquisition of the system bus is accomplished via the CPU's hold function. The M8257 has priority logic that resolves the peripherals requests and issues a composite hold request to the CPU. It maintains the DMA cycle count for each channel and outputs a control signal to notify the peripheral that the programmed number of DMA cycles is complete. Other output control signals simplify sectored data transfers. The M8257 represents a significant savings in component count for DMA-based microcomputer systems and greatly simplifies the transfer of data at high speed between peripherals and memories.

Figure 2. Pin Configuration

ABSOLUTE MAXIMUM RATINGS*

 NOTICE: This is a production data sheet. The specifications are subject to change without notice.

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
T _C	Case Temperature (Instant On)	-55	+ 125	°C
V _{CC}	Digital Supply Voltage	4.50	5.50	٧

D.C. CHARACTERISTICS (Over Specified Operating Conditions)

Symbol	Parameter	Min	Max	Unit	Comments
V _{IL}	Input Low Voltage	-0.5	0.8	V	
V _{IH}	Input High Voltage	2.2	V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage		0.45	V	I _{OL} = 1.6 mA
V _{OH}	Output High Voltage	2.4	V _{CC}	٧	$I_{OH} = -150 \mu A$ for AB, DB and AEN $I_{OH} = -80 \mu A$ for Others
V _{HH}	HRQ Output High Voltage	3.3	V _{CC}	V	$I_{OH} = -80 \mu\text{A}$
Icc	V _{CC} Current Drain		150	mA	
I _{IL}	Input Leakage		± 10	μΑ	$V_{SS} \leq V_{IN} \leq V_{CC}$
l _{OFL}	Output Leakage During Float		± 10	μΑ	V _{SS} + 0.45 ≤ V _{OUT} ≤ V _{CC}

CAPACITANCE $T_C = 25^{\circ}C$, $V_{CC} = GND = 0V$

Symbol	Parameter	Min	Тур	Max	Unit	Comments
C _{IN}	Input Capacitance			10	pF	fc = 1 MHz
C _{I/O}	I/O Capacitance			20	pF	Unmeasured Pins Returned to GND

A.C. CHARACTERISTICS-DMA (MASTER) MODE

(Over Specified Operating Conditions)

TIMING REQUIREMENTS

Symbol	Parameter	Min	Max	Unit
T _{CY}	Cycle Time (Period)	0.320	4	μs
Τ _θ	Clock Active (High)	120	0.8 T _{CY}	ns
T _{QS}	DRQ ↑ Setup to θ ↓ (S1, S4)	120		ns
T _{QH}	DRQ ↓ Hold from HLDA ↑ (4)	0		ns
T _{HS}	HLDA ↑ or ↓ Setup to θ ↓ (S1, S4)	100		ns
T _{RS}	READY Setup Time to θ ↑ (S3, Sw)	30		ns
TRH	READY Hold Time from θ ↑ (S3, Sw)	30		ns

A.C. CHARACTERISTICS-DMA (MASTER) MODE

(Over Specified Operating Conditions)

TIMING RESPONSES

Symbol	Parameter	Min	Max	Unit
T _{DQ}	HRQ↑ or ↓ Delay from θ↑ (SI, S4) (Measured at 2.0V) ⁽¹⁾		180	ns
T _{DQ1}	HRQ \uparrow or \downarrow Delay from $\theta \uparrow$ (SI, S4) (Measured at 3.3V) ⁽³⁾	·	270	ns
TAEL	AEN \uparrow Delay from $\theta \downarrow$ (S1)(1)		300	ns
T _{AET}	AEN ↓ Delay from θ ↑ (SI)(1)		200	ns
TAEA	Adr(AB)(Active) Delay from AEN ↑ (S1)(4)	20		ns
TFAAB	Adr(AB)(Active) Delay from $\theta \uparrow (S1)^{(2)}$		270	ns
TAFAB	Adr(AB)(Float) Delay from θ ↑ (SI)(2)		200	ns
TASM	Adr(AB)(Stable) Delay from θ ↑ (S1)(2)		250	ns
T _{AH}	Adr(AB)(Stable) Hold from θ ↑ (S1)(2)	T _{ASM} - 50		ns
T _{AHR}	Adr(AB)(Valid) Hold from Rd ↑ (S1, SI)(4)	60		ns
T _{AHW}	Adr(AB)(Valid) Hold from Wr ↑ (S1, SI)(4)	300		ns
T _{FADB}	Adr(DB)(Active) Delay from θ ↑ (S1)(2)		300	ns
T _{AFDB}	Adr(DB)(Float) Delay from $\theta \uparrow (S2)^{(2)}$	T _{STT} + 20	250	ns
TASS	*Adr(DB) Setup to AdrStb ↓ (S1-S2)(4)	100		ns
TAHS	Adr(DB)(Valid) Hold from AdrStb ↓ (S2)(4)	50		ns
T _{STL}	AdrStb↑ Delay from θ↑ (S1)(1)		200	ns
TSTT	AdrStb ↓ Delay from θ ↑ (S2) ⁽¹⁾		160	ns
T _{SW}	AdrStb Width (S1-S2)(4)	T _{CY} - 100		ns
TASC	Rd ↓ or Wr(Ext) ↓ Delay from AdrStb ↓ (S2) ⁽⁴⁾	70		ns
T _{DBC}	Rd ↓ or Wr(Ext) ↓ Delay from Adr(DB) (Float)(S2) ⁽⁴⁾	20		ns
T _{AK}	DACK \uparrow or \downarrow Delay from $\theta \downarrow$ (S2, S1) and TC/Mark \uparrow Delay from $\theta \uparrow$ (S3) and TC/Mark \downarrow Delay from $\theta \uparrow$ (S4)(1)(5)		270	ns
T _{DCL}	\overline{Rd} \downarrow or $\overline{Wr}(Ext)$ \downarrow Delay from θ \uparrow (S2) and \overline{Wr} \downarrow Delay from θ \uparrow (S3)(2)(6)		250	ns
T _{DCT}	$\overline{\mathrm{Rd}} \uparrow \mathrm{Delay} \mathrm{from} \theta \downarrow (\mathrm{S1}, \mathrm{SI}) \mathrm{and}$ $\overline{\mathrm{Wr}} \uparrow \mathrm{Delay} \mathrm{from} \theta \uparrow (\mathrm{S4})^{(2)(7)}$		200	ns
TFAC	\overline{Rd} or $\overline{Wr}(Active)$ from $\theta \uparrow (S1)^{(2)}$		300	ns
T _{AFC}	Rd or Wr(Float) from θ ↑ (SI)(2)		170	ns
TRWM	Rd Width (S2-S1 or SI)(4)	$2T_{CY} + T_{\theta} - 50$		ns
T _{WWM}	Wr Width (S3-S4)(4)	T _{CY} - 50		ns
TwwmE	Wr(Ext) Width (S2-S4)(4)	2T _{CY - 50}		ns

NOTES:

^{1.} Load = 1 TTL.

^{2.} Load = 1 TTL + 50 pF.

^{3.} Load = 1 TTL + ($R_L = 3.3K$), $V_{OH} = 3.3V$.

^{5.} $\Delta T_{\mbox{\scriptsize AK}}$ < 50 ns.

^{6.} ΔT_{DGL} < 50 ns. 7. ΔT_{DCT} < 50 ns.

A.C. CHARACTERISTICS—PERIPHERAL (SLAVE) MODE

(Over Specified Operating Conditions)

M8080A BUS PARAMETERS

READ CYCLE

Symbol	Parameter	Min	Max	Unit	Comments
TAR	Adr or CS ↓ Setup to RD ↓	0		ns	
T _{RA}	Adr or CS↑ Hold from RD↑	0		ns	
T _{RD}	Data Access from RD ↓	0	300	ns	(Note 2)
T _{DF}	DB → Float Delay from RD↑	20	150	ns	
T _{RR}	RD Width	250		ns	

WRITE CYCLE

Symbol	Parameter	Min	Max	Unit	Comments
T _{AW}	Adr Setup to WR ↓	20		ns	-
T _{WA}	Adr Hold from WR↑	35		ns	
T _{DW}	Data Setup to WR↑	200		ns	
T _{WD}	Data Hold from WR↑	10		ns	
Tww	WR Width	175		ns	

OTHER TIMING

Symbol	Parameter	Min	Max	Unit	Comments
T _{RSTW}	Reset Pulse Width	300		ns	
T _{RSTD}	Power Supply ↑ (V _{CC}) Setup to Reset ↓	500		μs	
T _r	Signal Rise Time		20	ns	
T _f	Signal Fall Time		20	ns	
T _{RSTS}	Reset to First I/OWR	2		tcy	

NOTES:

1. All timing measurements are made at the following reference voltages unless specified otherwise: Input "1" at 2.0V, "0" at 0.8V.

Output "1" at 2.0V, "0" at 0.8V.

2. M8257: $C_L = 100 pF$.

TRACKING PARAMETERS

Signals labeled as Tracking Parameters (footnotes 4–7 under A.C. Specifications) are signals that follow similar paths through the silicon die. The propagation speed of these signals varies in the manufacturing process but the relationship between all these parameters is constant. The variation is less than or equal to 50 ns.

Suppose the following timing equation is being evaluated,

$$T_{A(MIN)} + T_{B(MAX)} \le 150 \text{ ns}$$

and only minimum specifications exist for T_A and T_B . If $T_{A(MIN)}$ is used, and if T_A and T_B are tracking parameters, $T_{B(MAX)}$ can be taken as $T_{B(MIN)} + 50$ ns.

 $T_{A(MIN)} + (T_{B(MIN)}^* + 50 \text{ ns}) \le 150 \text{ ns}$

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. TESTING LOAD CIRCUIT

WAVEFORMS

NOT READY SEQUENCE

CONTROL OVERRIDE

17

WAVEFORMS-DMA MODE

CONSECUTIVE CYCLES AND BURST MODE SEQUENCE

The clock waveform is duplicated for clarity. The M8257 requires only one clock input.

WAVEFORMS-PERIPHERAL MODE

