Operativsystem, DVA315 (1 av 4)

TENTAMEN

Operativsystem DVA315, 2022-06-08 Ansvarig lärare: Mats Björkman

Max poäng: 30

Betygsgränser: 3: 15p, 4: 23p, 5: 27p

Hjälpmedel: -

Om du är osäker på vad som efterfrågas, gör rimliga antagen och motivera dessa antaganden innan du löser uppgiften.

Påbörja varje uppgift på ett nytt papper!

Lycka till!

Begreppsdel

Uppgift 1 (4p) Allmänt

Förklara kortfattat följande operativsystemsrelaterade begrepp:

	J 1 J U 11	
a)	Pseudoparallellism (till skillnad från sann parallellism)	(0.5p)
b)	Relokerbarhet (Ability of relocation) för processer	(0.5p)
c)	Race condition (i processammanhang)	(0.5p)
d)	Intern fragmentering (i minnessammanhang)	(0.5p)
e)	Osäkert tillstånd (i baklåssammanhang)	(0.5p)
f)	Master Boot Record	(0.5p)
g)	Thrashing (i processammanhang)	(0.5p)
h)	DMA (Direct Memory Access)	(0.5p)

Uppgift 2 (4p) Synkronisering

Ett sätt för processer att kommunicera är via meddelandesystem.

- a) Förklara skillnaderna mellan *indirekt* och *direkt* kommunikation. (2p)
- b) Förklara skillnaderna mellan *asynkron* och *synkron* kommunikation. Ge även exempel på hur dessa fungerar rent implementationstekniskt. (2p)

Uppgift 3 (4p) Baklås

Man brukar säga att det krävs fyra villkor för att ett system skall kunna vara i baklås.

1/1 mil et mil in the men and the men and the effective entire in the mil it emiliants	
a) Ange, samt förklara kort innebörden av, dessa 4 villkor.	(2p)
Ge två konkreta exempel på hur man kan omöjliggöra baklås i ett system genom	
att eliminera något av de fyra villkoren.	(2p)

Problemdel

Uppgift 4 (6p) Schemaläggning

Ett system har 6 processer A-F som med följande aktiverings- och exekveringstider:

Process	Aktiveringstid	Exekveringstid
A	0	3
В	1	1
С	2	1
D	2	5
Е	8	3
F	10	1

När processer har samma aktiveringtid antas de komma till skeduleraren i bokstavsordning. Om aktivering av en ny process sker vid samma tid som en omskedulering p.g.a. preemption, antas att den nyaktiverade processen placeras i kön *innan* processen som råkat ut för preemption placeras i kön.

- a) Schemalägg processerna enligt algoritmen *shortest job first* (SJF). Algoritmen är preemptiv, har ett tidskvantum på 1, och schemaläggs enligt kortast kvarvarande exekveringstid vid varje givet tillfälle. (1p)
- b) Beräkna medelomloppstiden för processerna schemalagda med SJF. (1p)
- c) Schemalägg processerna enligt algoritmen Round Robin (RR). Algoritmen är preemptiv och har ett tidskvantum på 1. Vid aktivering ställs den nya processen sist i ready-kön.
- d) Beräkna medelomloppstiden för processerna schemalagda med RR. (1p)
- e) Schemalägg processerna enligt den preemptiva algoritmen *multipla köer* (MK). Schemaläggaren har tre köer: HÖG med kvantum 1, MELLAN med kvantum 2 samt LÅG med kvantum 4. Vid aktivering ställs den nya processen sist i kön HÖG. Efter att ha exekverat sitt kvantum i HÖG byter processen till kön MELLAN. Efter att ha exekverat sitt kvantum i MELLAN byter processen till LÅG. När en process byter kö ställs den sist i den nya kön.
- f) Beräkna medelomloppstiden för processerna schemalagda med MK. (1p)

Eventuella antaganden måste motiveras!

Uppgift 5 (4p) Virtuellt minne

En process har tre tillgängliga ramar i primärminnet och fem sidor i det virtuella minnet. Primärminnet är initialt tomt. Hur många sidfel genererar följande sidaccess-sekvens:

12151232342451234235

om man använder följande sidutbytesstrategier (Visa hur du kommer fram till detta):

- a) First in first out (FIFO)? (1p)
- b) Least recently used (LRU)? (1p)
- c) Optimal utkastningsstrategi (OPT)? (1p)
- d) Varför kan OPT inte implementeras? (1p)

Eventuella antaganden måste motiveras!

Uppgift 6 (4p) Bankers Algoritm

Vi har ett system med 10 stycken enheter av en viss resurs. Dessa är allokerade till processer enligt följande:

Process A har 4st resurser

Process B har 2st resurser

Process C har 1st resurser

Resten är oallokerade. Det maximala antalet resurser som var och en kan allokera är:

Process A max 8st resurser

Process B max 9st resurser

Process C max 3st resurser

Visa hur Bankers algoritm hanterar följande sekvens av allokeringsbegäran:

B begär ytterligare en resurs

A begär ytterligare en resurs

C begär ytterligare en resurs

A begär ytterligare en resurs

Visa också hur du kom fram till detta.

Eventuella antaganden måste motiveras!

Uppgift 7 (4p) Filhantering

I filhantering finns många olika tekniker för att hålla reda på vilka block på disken som tillhör vilken fil. Två av dessa tekniker är **i-noder** och **länkade listor med index (t.ex. FAT-tabeller)**.

I ett system med en tom disk med 16 lediga block och tre olika filer (A, B och C), sker följande förfrågningar efter diskutrymme:

- 1. Fil A begär 1 block
- 2. Fil B begär 3 block
- 3. Fil C begär 2 block
- 4. Fil B begär 1 block
- 5. Fil C begär 2 block
- 6. Fil A begär 2 block
- a) Visa hur en teknik med i-noder hanterar ovanstående förfrågningar om diskutrymme (och hur den håller reda på de allokerade blocken). Kom ihåg att visa tillståndet efter varje förfrågan!
- b) Visa hur en teknik med **länkade listor med index (t.ex. FAT-tabeller)** hanterar ovanstående förfrågningar om diskutrymme (och hur den håller reda på de allokerade blocken). Kom ihåg att *visa tillståndet efter varje förfrågan*! (2p)

Kom ihåg att förklara, för var och en av teknikerna, vilken fil de allokerade blocken tillhör *efter* varje förfrågan. Om teknikerna använder några speciella datastrukturer för att hålla reda på blocken, beskriv även dessa strukturers tillstånd *efter varje förfrågan*.

Eventuella antaganden måste motiveras!