PCT

(). KNAUF, Rüdiger [/]; ().

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51)	(51) International Patent Classification: B01D 71/52, B01D 61/14, B01D 61/42, B01J 39/18, C08J 5/22, C08L 71/00, H01M 8/02		1	tional Publication Number: tional Publication Date:	WO 00/27513 18 May 2000 (18.05.2000)		
(21)	International Application Number:	PCT	/EP99/08084.				
(22)	International Filing Date: 26 October 1999 (26.10.1999)			Published			
(30)	Priority Data: 198 51 498.0 09 November 1998 (09	9.11.1	1998) DE				
(60)	Parent Application or Grant AXIVA GMBH [/]; (). SOCZKA-GUTH, T (). FRANK, Georg [/]; (). BAURMEISTER (). PAWLIK, Jürgen [/]; (). KNAUF, Rüdig (). SOCZKA-GUTH, Thomas [/]; (). FRAN (). BAURMEISTER, Jochen [/]; (). PAWLI	R, Jock ger [/]; JK, Go	nen [/]; ; ; eorg [/];				

- (54) Title: POLYMER COMPOSITION, MEMBRANE CONTAINING SAID COMPOSITION, METHOD FOR THE PRODUCTION AND USE THEREOF
- (54) Titre: COMPOSITION POLYMERE, MEMBRANE LA CONTENANT, SON PROCEDE DE PRODUCTION ET SON UTILISATIONUSE THEREOF

(57) Abstract

Disclosed is a composition containing 30-95 wt.% sulphonated aromatic polyether ketone with an ion exchanger capacity of 1.3-4.0. meq (-SO₂3H)/g polymer, and 0.5-70 wt.% polybenzimidazol. The inventive composition can be processed into membranes like the PEK-type of sulphonated polyether ketone. Preferably, said membranes are used in fuel cells.

(57) Abrégé

L'invention concerne une composition contenant 30 à 99,5 % en poids d'un polyéthercétone aromatique sulfoné présentant une capacité d'échangeur d'ions de 1,3 à 4,0 milliéquivalents de (-SO¿3H) par gramme de polymère, et 0,5 à 70 % en poids d'un polybenzimidazole. On peut transformer la composition selon l'invention, tout comme un polyéthercétone sulfoné de type PEK, en membranes utilisées, de préférence, dans des piles à combustible.

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

B01D 71/52, C08L 71/00, C08J 5/22, H01M 8/02, B01J 39/18, B01D 61/14, 61/42

(11) Internationale Veröffentlichungsnummer:

WO 00/27513

(43) Internationales Veröffentlichungsdatum:

18. Mai 2000 (18.05.00)

(21) Internationales Aktenzeichen:

PCT/EP99/08084

A2

(22) Internationales Anmeldedatum: 26. Oktober 1999 (26.10.99)

(81) Bestimmungsstaaten: BR, CA, CN, CZ, IN, JP, KR, MX, RU, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

198 51 498.0

DE 9. November 1998 (09.11.98)

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): AXIVA GMBH [DE/DE]; D-65926 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SOCZKA-GUTH, Thomas [DE/DE]; Sophie-Reinheimer-Strasse 12, D-65719 Hofheim (DE). FRANK, Georg [DE/DE]; Stäudach Hofheim (DE). FRANK, Georg [DE/DE]; Stäudach 164, D-72074 Tübingen (DE). BAURMEISTER, Jochen [DE/DE]; Wiesenredder 15a, D-24340 Eckernförde (DE). PAWLIK, Jürgen [DE/DE]; Geierskopfweg 18, D-65931 Frankfurt (DE). KNAUF, Rüdiger [DE/DE]; Amselweg 2a, D-65582 Aull (DE).

(54) Title: POLYMER COMPOSITION, MEMBRANE CONTAINING SAID COMPOSITION, METHOD FOR THE PRODUCTION AND USE THEREOF

(54) Bezeichnung: POLYMERZUSAMMENSETZUNG, MEMBRAN ENTHALTEND DIESE, VERFAHREN ZU DEREN HERSTEL-LUNG UND DEKEN VERWENDUNG

(57) Abstract

Disclosed is a composition containing 30-95 wt.% sulphonated aromatic polyether ketone with an ion exchanger capacity of 1.3-4.0. meq (-SO₃H)/g polymer, and 0.5-70 wt.% polybenzimidazol. The inventive composition can be processed into membranes like the PEK-type of sulphonated polyether ketone. Preferably, said membranes are used in fuel cells.

(57) Zusammenfassung

Beschrieben wird eine Zusammensetzung, enthaltend 30-99,5 Gew.-% eines sulfonierten aromatischen Polyetherketons, das eine lonenaustauscherkapazität von 1,3 bis 4,0 meq (-SO₃H)/g Polymer aufweist, und 0,5-70 Gew.-% eines Polybenzimidazols. Diese Zusammensetzung läßt sich, ebenso wie ein sulfoniertes Polyetherketon vom Typ PEK zu Membranen verarbeiten, welche vorzugsweise in Brennstoffzellen zum Einsatz kommen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffendlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litanen	SK	Słowakci
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
вв	Barbados	CH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Turkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	ıs	Island	MW	Malawi	US	Vereinigte Staaten vo
CA	Kanada	IT	Italien	MX	Mexiko		Amerika .
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	υZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam ·
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
Cl	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portuga!		
CU	Kuba	KZ	Kasachstan	RO	Rumanien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LŔ	Liberia	SG	Singapur		

Description

	WO 00/27513 PCT/EP99/0808	4
5	1	
	Beschreibung	
10	Polymerzusammensetzung, Membran enthaltend diese, Verfahren zu deren	
	Herstellung und deren Verwendung	

10

15

20

25

30

15

20

25

30

35

40

45

50

55

Die vorliegende Erfindung betrifft eine Polymerzusammensetzung, die sich insbesondere zur Herstellung von Membranen eignet sowie den Einsatz dieser Membranen in Brennstoffzellen, Hochleistungskondensatoren, Dialysegeräten und der Ultrafiltration.

Brennstoffzellen sind elektrochemische Energieumwandler, die sich besonders durch ihren hohen Wirkungsgrad auszeichnen. Polymerelektrolyt-Brennstoffzellen (nachstehend PEM genannt) zeichnen sich unter den verschiedenen Arten von Brennstoffzellen durch ihre hohe Leistungsdichte und ihr geringes Leistungsgewicht aus.

Herkömmliche Brennstoffzellen arbeiten in der Regel mit Membranen auf der Basis von fluorhaltigen Polymeren, beispielsweise mit dem Material Nafion®.

Für die Kommerzialisierung der Brennstoffzellentechnologie insbesondere für Anwendungen in größerem Maßstab ist es notwendig, die Herstellkosten der zum Einsatz kommenden Materialien zu reduzieren ohne daß dabei eine Einbuße an Leistungsfähigkeit gegenüber den herkömmlich verwendeten Materialien in Kauf genommen werden muß.

Protonenleitende Membranen auf Basis von sulfonierten Polyetherketonen sind bekannt, beispielsweise aus einem Bericht Artikel von A. Steck in Proc. 1st Inter. Symp. On New Materials For Fuel Cell Systems, Montreal 1995, pp 74. oder aus einem Artikel von C.A. Linkous et al. in Int. J. Hydrogen Energy, Vol. 23, No. 7, pp. 525-9 (1998).

In den WO-A-96/29359 und WO-A-96/29360 werden Polymerelektrolyte aus sulfonierten aromatischen Polyetherketonen und die Herstellung von Membranen

aus diesen Materialien beschrieben.

In der EP-A-0152161 werden überwiegend aus der Wiederholungseinheit -O-Ar-CO-Ar- bestehende Polyetherketone (nachfolgend PEK genannt) und daraus hergestellte geformte Gebilde beschrieben.

Sulfonierte, streng alternierende Polyetherketone mit der Wiederholungseinheit -O-Ar-CO-Ar- werden in J. Polym. Sci.: Vol. 23, 2205-2222, 1985 beschrieben. Der Aufbau der Polyetherketone geschieht hier durch elektrophilen, und nicht wie in EP-A-0152161 beschrieben, durch nucleophilen Angriff. Die Polymeren wurden durch Sulfurtrioxid unter Verwendung von Triethylphosphat in Dichlorethan sulfoniert. Eine weitere, in dieser Literaturstelle verwendete Sulfonierungsmethode ist die Chlorsulfonierung mit Chlorsulfonsäure. Allerdings wird bei dieser Methode, abhängig vom Grad der Sulfonierung, auch ein Abbau des Molekulargewichtes beobachtet. Es schließt sich die Amidierung des Säurechlorides an. Als mögliches Einsatzgebiet derartiger Polymere wird die Verwendung als Ionenaustauscher oder als Entsalzer angegeben. Der Einsatz in Brennstoffzellen wird nicht beschrieben. Eigenschaftsprofile, die den Einsatz in Brennstoffzellen nahelegen, kommen ebenso nicht vor.

Membranen aus homogenen Polymerlegierungen auf Basis von sulfonierten, aromatischen Polyetherketonen, Polyethersulfonen und einem dritten, hydrophilen Polymer sind aus der EP-A-0688824 auch für den Einsatz in elektrochemischen Zellen erwähnt.

Aus der WO-A-98/07164 sind Mischungen aus hochmolekularen Säuren (beispielsweise sulfonierten Polyetherketonen) und hochmolekularen Basen (beispielsweise Polybenzimidazolen) bekannt. Allerdings werden hier nicht die notwendigen Eigenschaftskombinationen aufgezeigt, die erst einen Betrieb in der Brennstoffzelle möglich machen. Auch zielt die dort beschriebene Erfindung auf einen wasserfreien Leitfähigkeitsmechanismus ab, der durch die Wechselwirkung Säure/Base zustande kommt, und der deshalb einen Einsatz dieser Materialien bei Temperaturen über 100° C unter Normaldruck möglich macht.

10

15

Die Anwendung von Polybenzimidzolen in der Brennstoffzelle wird bereits von Savinell et al. in J. Electrochemical Soc., 141, 1994, S. L46-L48 beschrieben. Mischungen von verschiedenen Polymeren mit Polybenzimidazolen sind ebenfalls bekannt, z.B. aus der US-A-5,290,884.

5

15

20

25

30

Die Eignung aromatischer, nicht fluorierter Polymerer, wozu auch aromatische Polyetherketone gehören, für den Einsatz in Brennstoffzellen wird in der Literatur in Frage gestellt (A. Steck, Proc. 1st Inter. Symp. On New Materials For Fuel Cell Systems, Montreal 1995, pp 74).

10 20

Die Eigenschaften von polymeren Materialien durch die Beimischung von weiteren Komponenten zu verändern ist ein allgemein bekanntes Verfahren. Allerdings ist das Eigenschaftprofil von Polymermischungen nur schwer vorherzusehen. Es wird bezweifelt, daß es irgendeine Theorie gibt, die die komplexe Natur von Polymer-Polymer-Wechselwirkungen widerspiegelt (Macomolecules, Vol. 16, 1983, p 753-7).

25

30

leistungsfähige Membranen aus kostengünstigen Materialien hergestellt werden können. Mit den erfindungsgemäßen Zusammensetzungen wird darüber hinaus ein Material bereitgestellt, daß die Leistungsfähigkeit der herkömmlich eingesetzten fluorierten Standard-Materialien übertrifft. Ferner wird mit den erfindungsgemäßen Zusammensetzungen ein Material bereitgestellt, aus dem sich Membranen mit guten mechanischen Eigenschaften und gleichzeitig ausgezeichneter Protonenleitfähigkeit

Mit der Erfindung werden Zusammensetzungen bereitgestellt, aus denen

35

herstellen lassen.

40

Diese Eigenschaftskombination ist nicht zu erwarten gewesen und tritt bei anderen Polymermischungen nicht auf. So findet man beispielsweise von Zusammensetzungen aus sulfoniertem Polyetherketon und Polyethersulfon, daß bereits die Zugabe von geringen Mengen an Polyethersulfon zu einem deutlichen Absinken der Protonenleitfähigkeit der Membranen aus diesem Material führt.

45

50

Die vorliegende Erfindung betrifft Zusammensetzungen enthaltend 30 - 99,5 Gew.%

10

15

20

25

30

35

40

45

50

55

10

15

20

30

PCT/EP99/08084 WO 00/27513

4

eines sulfonierten aromatischen Polyetherketons, das eine lonenaustauscherkapazität von 1,3 bis 4,0 meq (-SO₃H)/g Polymer) aufweist, und 0,5-70 Gew.% eines Polybenzimidazols.

Die lonenaustauscherkapazität (nachstehend auch "IEC" genannt) wird durch 5 Elementaranalyse des gewaschenen und getrockneten Polymeren durch die Bestimmung des Verhältnisses von Kohlenstoff zu Schwefel (C/S-Quotient) ermittelt.

Unter aromatischen Polyetherketonen werden im Rahmen dieser Erfindung alle Polymere verstanden, die Struktureinheiten -Ar-O- und -Ar-CO- aufweisen, worin Ar für einen aromatischen Rest steht. Diese Struktureinheiten können auf verschiedene Art und Weise miteinander verknüpft sein, insbesondere in p-Stellung. Gemäß dem allgemeinen Sprachgebrauch bezeichnet man die erste Einheit als "E" (Ether) und die zweite Einheit als "K" (Keton). Je nach Abfolge der Ether- und Ketoneinheiten unterscheidet man z.B zwischen PEK, PEEK, PEKK oder PEEKK-Typen. Alle diese Polymertypen sind vom Begriff Polyetherketone im Sinne dieser Erfindung umfaßt. Bei den erfindungsgemäß zum Einsatz kommenden sulfonierten aromatischen Polyetherketonen kann es sich um beliebige Polymere handeln, beispielsweise um PEEK, PEKK, PEEKK oder insbesondere um PEK, solange diese die oben definierte Ionenaustauscherkapazität aufweisen.

Besonders bevorzugt werden Zusammensetzungen, bei denen das sulfonierte Polyetherketon die wiederkehrende Einheit der Formel I aufweist

-[Ar1-O-Ar2-CO]-(l), 25

> worin Ar1 und Ar2 unabhängig voneinander zweiwertige aromatische, gegebenenfalls mit ein oder mehreren unter Einsatzbedingungen inerten einwertigen organischen Gruppen substituierte Reste sind, und wobei zumindest ein Teil der Reste Ar1 und Ar² mit Resten der Formel –(SO₃)_wM substituiert ist, wobei M ein Metallkation der Wertigkeit w, ein Ammoniumkation oder insbesondere Wasserstoff ist, und w eine ganze Zahl bedeutet, insbesondere 1 oder 2. M ist vorzugsweise ein Kation eines

WO 00/27513 PCT/EP99/08084

. 5

5 Alkali- oder Erdalkalimetalls. Bedeuten irgendwelche Reste zweiwertige aromatische Reste, so handelt es sich 10 dabei um ein- oder mehrkernige aromatische Kohlenwasserstoffreste oder um 5 heterocyclisch-aromatische Reste, die ein oder mehrkernig sein können. Im Falle von heterocyclisch-aromatischen Resten weisen diese insbesondere ein oder zwei Sauerstoff-, Stickstoff- oder Schwefelatome im aromatischen Rest auf. 15 Mehrkernige aromatische Reste können miteinander kondensiert sein oder über C-10 C-Bindungen oder über Brückengruppen, wie -O-, -S-, -CO-, -SO₂- oder -C_nH_{2n}-20 miteinander verbunden sein, wobei n eine ganze Zahl von 1 bis 10 bedeutet. Bei den zweiwertigen aromatischen Resten können die Valenzbindungen sich in para- oder in vergleichbarer koaxialer oder paralleler Position oder in meta- oder in 25 15 vergleichbarer gewinkelter Position zueinander befinden. Die Valenzbindungen, die in koaxialer oder parallel zueinander befindlicher Stellung 30 stehen, sind entgegengesetzt gerichtet. Ein Beispiel für koaxiale, entgegengesetzt gerichtete Bindungen sind Biphenyl-4,4'-en-Bindungen. Ein Beispiel für parallel, 20 entgegengesetzt gerichtete Bindungen sind die Naphthalin-1,5- oder -2,6-Bindungen, während die Naphthalin-1,8-Bindungen parallel gleichgerichtet sind. 35 Beispiele für bevorzugte zweiwertige aromatische Reste Ar¹ und Ar², deren Valenzbindungen sich in para- oder in vergleichbarer koaxialer oder paralleler 25 Position zueinander befinden, sind einkernige aromatische Reste mit zueinander 40 para-ständigen freien Valenzen, insbesondere 1,4-Phenylen, oder zweikernige kondensierte aromatische Reste mit parallelen, entgegengesetzt gerichteten Bindungen, insbesondere 1,4-, 1,5- und 2,6-Naphthylen, oder zweikernig über eine 45 C-C Bindung verknüpfte aromatische Reste mit koaxialen, entgegengesetzt 30 gerichteten Bindungen, insbesondere 4,4'-Biphenylen.

Die Valenzbindungen, die sich in meta- oder in vergleichbarer gewinkelter Position

		WO 00/2/313
5		6
		zueinander befinden, sind gewinkelt angeordnet.
10		Beispiele für bevorzugte zweiwertige aromatische Reste Ar ¹ und Ar ² , deren
70	•	Valenzbindungen sich in meta- oder in vergleichbarer gewinketter Position
	5	zueinander befinden, sind einkernige aromatische Reste mit zueinander meta-
		ständigen freien Valenzen, insbesondere 1,3-Phenylen, oder zweikernige
15	•	kondensierte aromatische Reste mit zueinander gewinkelt gerichteten Bindungen,
		insbesondere 1,6- und 2,7-Naphthylen, oder zweikernig über eine C-C Bindung
		verknüpfte aromatische Reste mit zueinander gewinkelt gerichteten Bindungen,
20	10	insbesondere 3,4'-Biphenylen.
		Bevorzugte Reste Ar ¹ und Ar ² sind 1,3-Phenylen oder insbesondere 1,4-Phenylen.
25		Die aromatischen Reste der erfindungsgemäß zum Einsatz kommenden Polymeren
	15	können mit inerten Gruppen substituiert sein. Darunter sind Substituenten zu
		verstehen, die die ins Auge gefaßte Anwendung nicht negativ beeinflussen.
30		Beispiele für solche Substituenten sind Alkyl-, Alkoxy-, Aryl-, Amino-, Alkohol-, Ether,
		Sulfonyl-, Phosphonyl-, Acyl-, Nitro-, Carbonsäure-, Carbonsäureester oder
	20	Carbonsäure-amidgruppen oder Halogen.
35		
		Unter Alkylgruppen sind verzweigte oder vorzugsweise geradkettige Alkylreste zu
		verstehen, beispielsweise Alkyl mit ein bis sechs Kohlenstoffatomen., insbesondere
40	25	Methyl.
70	23	Unter Alkoxygruppen sind verzweigte oder vorzugsweise geradkettige Alkoxyreste zu
		verstehen, beispielsweise Alkoxyreste mit ein bis sechs Kohlenstoffatomen,
		insbesondere Methoxy.
45		
	30	Unter Aminogruppen sind Reste der Formel -NH ₂ , -NHR ¹ oder -NR ¹ R ² zu verstehen,
		worin R ¹ und R ² unabhängig voneinander Alkyl- oder Arylreste, vorzugsweise Methyl,

darstellen.

5		,
		Unter Alkoholgruppen sind Reste der Formel -OH zu verstehen.
10	. 5	Unter Ethergruppen sind Reste der Formel R ¹ -O- zu verstehen, worin R ¹ die oben angegebene Bedeutung besitzt.
; 15	,	Unter Sulfonylgruppen sind Reste der Formel - SO_2R^1 zu verstehen, worin R^1 die oben definierte Bedeutung besitzt.
20	10	Unter Phosphonylgruppen sind Reste der Formel - $P(OR^3)_3$ zu verstehen, worin die Reste R^3 unabhängig voneinander Wasserstoff, Alkyl oder Aryl sind.
		Unter Acylgruppen sind Reste der Formel -CO-R³ zu verstehen, worin R³ die oben definierte Bedeutung besitzt.
25 .	15	Unter Carbonsäuregruppen sind Reste der Formel -COOH zu verstehen.
30		Unter Carbonsäureestergruppen sind Reste der Formel -COOR¹ zu verstehen, worin R¹ die oben definierte Bedeutung besitzt.
35	20	Unter Carbonsäureamidgruppen sind Reste der Formel -CONH ₂ , -CONHR ¹ oder - $CONR^1$ R^2 zu verstehen, worin R^1 und R^2 die oben definierte Bedeutung besitzen.
40	25	Bedeuten irgendwelche Reste Halogen, so handelt es sich dabei beispielsweise um Fluor, Brom oder insbesondere um Chlor.
70	ک مند	Bevorzugt werden Zusammensetzungen, worin Ar ¹ und Ar ² Naphthylen oder insbesondere Phenylen sind.
4 5	30	Bevorzugt werden Zusammensetzungen, worin Ar ¹ und Ar ² mit ein bis vier Amino-, Alkohol-, Ether, Alkyl-, Aryl-, Sulfonyl-, Phosphonyl-, Acyl, Nitro-, Carbonsäure-, Carbonsäureester und/oder Carbonsäureamidgruppen substitutiert sind und/oder
50		worin die Stickstoffatome des Polybenzimidazols mit diesen Gruppen substituiert

5

sind.

10

5

10

15

20

25

15

20

25

30

35

40

45

50

55

Besonders bevorzugt werden Zusammensetzungen, worin das sulfonierte Polyetherketon eine lonenaustauscherkapazität von 1,6 bis 2,9 meq (-SO₃H)/g Polymer) aufweist.

Unter Polybenzimidazolen werden im Rahmen dieser Erfindung alle Polymere verstanden, die wiederkehrenden Struktureinheiten der Formel II aufweisen,

worin Ar`` ein vierwertiger aromatischer Rest, Ar' ein zweiwertiger aromatischer Rest und R Wasserstoff oder ein einwertiger inerter organischer Rest ist.

Bei den zweiwertigen aromatischen Resten Ar' kann es sich wie bei Ar1 und Ar2 um ein- oder mehrkernige aromatische Kohlenwasserstoffreste oder um heterocyclischaromatische Reste, die ein- oder mehrkernig sein können, handeln. Bei Ar' können sich die Valenzbindungen in para- oder in vergleichbarer koaxialer oder paralleler Position oder in meta- oder in vergleichbarer gewinkelter Position zueinander befinden. Beispiele für Reste Ar' sind bereits weiter oben bei der Beschreibung der Reste Ar gegeben worden.

Bevorzugte Reste Ar' sind 1,3-Phenylen oder insbesondere 1,4-Phenylen.

Bei den vierwertigen aromatischen Resten Ar" kann es sich ebenfalls um ein- oder mehrkernige aromatische Kohlenwasserstoffreste oder um heterocyclischaromatische Reste, die ein- oder mehrkemig sein können, handeln. Bei Ar" sind die Valenzbindungen jeweils paarweise so angeordnet, daß sich die beiden Imidazolringe ausbilden können.

WO 00/27513 PCT/EP99/08084

		100027313
5		9
		Vorzugsweise befinden sich die jeweils zwei Valenzbindungen in ortho-Position
10	. 5	zueinander und diese Paare wiederum befinden sich in gegenüberliegender Position am aromatischen Ring oder am Ringsystem. Beispiele für bevorzugte Reste Ar´´ sind Phen-1,2,4,5-ylen, oder Biphen-3,4,3´,4´-ylen.
	,	y.c.i.
15	٠	Weitere Polybenzimidazole und bevorzugte Reste Ar" und Ar'sind in der US-A-5,290,884 beschrieben, deren Beschreibung als Teil der vorliegenden Beschreibung gilt.
	10	
20		Die aromatischen Reste Ar' und/oder Ar'' der erfindungsgemäß zum Einsatz kommenden Polybenzimidazole können mit inerten Gruppen substituiert sein. Darunter sind Substituenten zu verstehen, die die ins Auge gefaßte Anwendung nicht
		negativ beeinflussen. Beispiele dafür sind weiter oben bereits für die sulfonierten
25	15	Polyetherketone bereits aufgezählt.
		Besonders bevorzugt wird ein Polybenzimidazol der Formel II, worin Ar Phen-
30		1,2,4,5-ylen oder Biphen-3,4,3´,4´-ylen ist, Ar´1,3- oder 1,4-Phenylen bedeutet und R Wasserstoff ist.
	20	
35		Besonders bevorzugt sind Zusammensetzungen, worin der Anteil des Polybenzimidazols in Abhängigkeit vom Sulfonierungsgrad des sulfonierten Polyetherketons ausgewählt wird. Es wurde gefunden, daß es ein optimales
		Mischungsverhältnis zwischen sulfoniertem Polyetherketon und Polybenzimidazol
40 45	25	gibt, das abhängig von der Ionenaustauscherkapazität des verwendeten Polyetherketons ist. Membranen, die aus derartigen Polymermischungen hergestellt wurden, weisen eine optimale Eigenschaftskombination zwischen E-Modul bei 80°C in Wasser, Quellverhalten bei 80°C und Protonenleitfähigkeit auf.
.•	20	Figure Manifesta DEM Tempor des Formal Legende de Grande de Calabra de Calabr
	30	Für sulfonierte PEK-Typen der Formel I wurde gefunden, daß der Anteil des

Polybenzimidazols in Abhängigkeit vom Sulfonierungsgrad des sulfonierten

Polyetherketons vorzugsweise nach folgender Formel III ausgewählt werden sollte:

Gewichtsprozent Polybenzimidazol = $9.4 \times -12.4 \pm (9.4 \times -12.4) \times 0.5$ (III).

10

5

10

15

20

25

30

Dabei bedeutet x die Ionenaustauscherkapazität des sulfonierten Polyetherketons in meq (-SO₃H)/g Polymer.

15

Das Molekulargewicht der in den erfindungsgemäßen Zusammensetzungen zum Einsatz kommenden Polymeren muß ausreichend sein, daß die Ausbildung von Polymerlösungen möglich ist, aus denen Formkörper, vorzugsweise Membranen ausgebildet werden können.

20

Die sulfonierten Polyetherketone weisen vorzugsweise Molekulargewichte (Zahlenmittel) im Bereich von 45.000 - 70.000 g/Mol auf, bestimmt durch Gelpermeationschromatographie in NMP mit Salzen unter Polystyrol-Eichung.

25

Die Polybenzimidazole weisen vorzugsweise eine intrinsische Viskosität im Bereich von 0,8 - 1,2, gemessen bei 25°C, auf.

30

Die erfindungsgemäßen Zusammensetzungen eignen sich besonders gut zur Herstellung von Membranen mit hervorragenden Gebrauchseigenschaften. Die Erfindung betrifft auch Membranen enthaltend die oben definierten Zusammensetzungen.

35

40

Die erfindungsgemäßen Membranen weisen üblicherweise eine Dicke von größer gleich 5 μ m, vorzugsweise von mehr als 10 μ m, besonders bevorzugt von 10 bis 100 μ m. Für Anwendungen in der Brennstoffzelle beträgt die Dicke der Membranen in der Regel wenigstens 30 μ m, für Anwendungen als Dielektrikum in Kondensatoren beträgt die Dicke der Membranen in der Regel wenigstens 5 μ m.

45

In Abhängigkeit von der gewünschter Dicke der Membran kommen vorzugsweise Polymerlösungen mit unterschiedlicher Viskosität zum Einsatz. Für Membranen von 5 bis 50 µm Dicke verwendet man vorzugsweise Polymerlösungen mit einer

PCT/EP99/08084 WO 00/27513

11

Viskosität von 500 bis 2000 mPas (gemessen bei 80°C in einer Lösung der Polymeren in dem betreffenden Lösungsmittel). Für Membranen von 10 bis 100 μm Dicke verwendet man vorzugsweise Polymerlösungen mit einer Viskosität von 1500 bis 5000 mPas (gemessen bei 80°C in einer Lösung der Polymeren in dem betreffenden Lösungsmittel).

15

20

25

10

5

Die so hergestellten Membranen wurden vor allem im Hinblick auf ihre mechanische Stabilität im trockenen und im naßen Zustand, ihre Protonenleitfähigkeit und ihre Leistungen in der Brennstoffzelle überprüft.

10

5

Es wurde gefunden, daß sich die erfindungsgemäßen Membranen durch hervorragende elektrische Eigenschaften auszeichnen. Dazu zählen eine lonenleitfähigkeit von nicht unter 50 mS/cm (gemessen in Kontakt mit flüssigem Wasser bei Raumtemperatur mit Hilfe der 4-Pol Impedanzspektroskopie bei einem Phasenwinkel |Θ| < 1°).

15

20

30

Es wurde gefunden, daß die Protonenleitfähigkeit bei hervorragenden mechanischen Eigenschaften im Bereich von 120-200 mS/cm bei 80°C liegt (gemessen mit Impedanzspektroskopie in 4-Pol-Technik in reinem Wasser).

30

Die erfindungsgemäßen Membranen zeichnen sich durch hervorragende mechanische Eigenschaften aus. Dazu zählen ein E-Modul im trocknen Zustand bei 23°C und 50% rel. Feuchte von mindestens 600 MPa, ein E-Modul in Wasser bei 60°C von mindestens 90 MPa, ein E-Modul in Wasser bei 80°C von mindestens 50 MPa und eine Reißdehnung von über 200 %. Die E-Module wurden dabei jeweils als Steigung der Tangente bei 1,2 MPa bestimmt.

40

35

25

Verhältnisse gefunden worden.

45

steigt das im Wasser festgestellte E-Modul (Steigung der Tangente bei 1,2 MPa) bis auf einen Wert von 350 N/mm² bei 80°C an. Das im Vergleich dazu bei reinen Materialien festgestellte E-Modul betrug lediglich 4-5 N/mm². Erstaunlicherweise sind bei Mischungen mit PES und PEEK (IEC 1,54 mmol/g Polymer) keine solchen

Es wurde also gefunden, daß eine Erhöhung der mechanischen Stabilität eintritt. So

WO 00/27513 PCT/EP99/08084

5		12
		Die erfindungsgemäßen Membranen zeichnen sich ferner durch hervorragende
		Kochwasserbeständigkeit aus. So wurde gefunden, daß erfindungsgemäßen
10 .		Membranen auf Basis von sulfoniertem PEK nach einer 72-stündigen Behandlung in
		kochendem Wasser bei 100°C mechanisch stabil blieben.
	5	
		Die erfindungsgemäße Membran weist vorzugsweise einen Restgehalt an
15		Lösungmittel von weniger als 0,5 Gew.% auf.
		Es wurde gefunden, daß Membranen aus sulfonierten PEEK mit einem IEC ab 1,5
	10	meq (-SO₃H)/g (Polymer) (auf Basis von Victrex 450 PF) in kochendem Wasser nur
20		für etwa 2-3 Stunden stabil sind. Überraschenderweise sind Membranen aus
		sulfonierten Polyetherketonen, z.B. auf Basis von Victrex PEK mit einem
		vergleichbarem IEC, in kochendem Wasser für mehr als 50 h stabil. Die Erfindung
25		betrifft daher auch ein Polyetherketon vom Typ PEK, das eine
20	15	lonenaustauscherkapazität von 1,3 bis 4,0 meq (-SO ₃ H)/g Polymer) aufweist sowie
		eine daraus hergestellte Membran.
30		Ferner wurde gefunden, daß die infolge des Fehlens von -O-Ar-O- Einheiten
		elektronenarme Struktur des Polyetherketon-Polymerrückgrates besonders geeignet
	20	für Brennstoffzellenanwendungen zu sein scheint.
35		Sulfonierte Polyetherketone mit der Wiederholungseinheit -O-Ar-CO-Ar- lassen sich
		derzeit im technischen Maßstab bis etwa zu einem IEC von 4,0 meg (-SO ₃ H)/g
		(Polymer) herstellen.
40	25	
		Es wurde gefunden, daß Membranen aus solchen hochsulfonierten Polymeren oder
		Membranen aus Zusammensetzungen enthaltend solche hochsulfonierte Polymere
		und Polybenzimidazole besonders für Brennstoffzellen mit niedriger oder keiner
45		Befeuchtung, aber auch für sogenannte Super-Caps, also Kondensatoren mit extrem
	30	hoher Kapazität zum Einsatz kommen können. Ferner kann die Membran in der
		Elektrodialyse oder in der Ultrafiltration angewendet werden. Die Erfindung betrifft
50		auch die Verwendung der Membranen für diese Anwendungen.

WO 00/27513
PCT/EP99/08084

13

5

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der oben

beschriebenen Membranen. Das Verfahren ist dadurch gekennzeichnet, daß 10 a) eine Lösung enthaltend 30 - 99,5 Gew.% eines Salzes eines sulfonierten 5 Polyetherketons und 0,5-70 Gew.% eines Polybenzimidazols durch Auflösen der beiden Polymeren in einem geeigneten organischen Lösungsmittel, insbesondere Dimethylsulfoxid, N,N-Dimethylformamid, N,N-Dimethyl-15 acetamid oder N-Methyl-2-pyrrolidon hergestellt wird, und b) diese Lösung nach an sich bekannten Verfahren, wie Gießen, Rakeln, 10 20 Sprühen oder Schleudern zu einer Membran verformt wird. Mischungen von Polybenzimidazolen und sulfonierten Polyetherketonen neigen, durch die vorhandene Säure-Base Wechselwirkung zur spontanen Gelation und 25 15 können daher auch bei erhöhter Temperatur nicht oder nur schwer zu flächigen Gebilden wie Membranen weiterverarbeitet werden. Eine homogene Lösung von sulfonierten Polytherketonen und Polybenzimidazolen 30 kann man durch Einsatz der Salze, vorzugsweise der Li-, Na-, K- und Ammoniumsalze, der Sulfonsäuren und Polybenzimidazol in trocknen organischen 20 Lösungsmitteln, bevozugt DMSO, DMF, DMAc, NMP, herstellen. Die so erhaltene Lösung des Blends kann auf einen Träger aufgebracht werden und bei 35 Temperaturen bis zu 160°C getrocknet werden. Trotz des beschriebenen Umweges über die Salze der Sulfonsäure ist die 25 beschriebene Herstelltechnik von großem Interesse, da mit dieser Membranen mit 40 der Eigenschaftskombination hohe Protonenleitfähigkeit und hohes E-Modul bei 80°C in Wasser sowie geringem Quellverhalten hergestellt werden können. 45 Phaseninversionsmembranen für den Einsatz in der Ultrafiltration werden 30 üblicherweise durch Einbrigen der Lösung des Polymers oder des Polymergemisches (z.B. sulfoniertes PEK/PBI in NMP oder in DMAc) und Ausfällen

WO 00/27513 PCT/EP99/08084

5		14
10	5	Die Membran wird üblicherweise durch Konditionieren mit einer verdünnten Säure, bevorzugt eine verdünnte Mineralsäure, wie einer 0,1 - 20 % igen Säure (Schwefelsäure, Phosphorsäure, Salpetersäure), in die Säureform der Sulfonsäure überführt. Gleichzeitig werden durch diese Behandlung ionische (Salze) und organische Verunreinigungen (Lösungsmittelreste) entfernt.
15		Alternativ kann die Ammoniumform der Membran durch thermische Spaltung der Ammoniumgruppe (Freisetzung von NH ₃) in die Säureform übergeführt werden.
20	10	Wahlweise kann die nach der oben beschriebenen Vorbehandlung erhaltene Membran noch mit Wasser gespült werden.
25	15	Danach kann die Membran durch Erhitzen getrocknet werden, bis z.B. der Restgehalt an Lösungmittel kleiner als 0,5 Gew.% beträgt. Eine weitere bevorzugte Variante des erfindungsgemäßen Verfahrens betrifft die Herstellung einer Membran, worin die Lösung enthaltend 30 - 99,5 Gew.% des
30	20	Salzes des sulfonierten Polyetherketons und 0,5 - 70 Gew.% des Polybenzimidazols in ein saugfähiges Vlies eingebracht wird, und das Lösungsmittel anschließend durch Verdampfen entfernt wird.
35	20	Die erfindungsgemäßen Membranen können naß und trocken zur Weiterverarbeitung eingesetzt werden.
40	25	Die folgenden Beispiele erläutern die Erfindung ohne diese zu begrenzen. Beispiel 1:
45	30	Es wurden die Werte für die Protonenleitfähigkeit von Mischungen mit sulfoniertem PEK und PBI ermittelt. Das PEK wies einen IEC von 2,12 meq (-SO ₃ H)/g (Polymer) auf. Die Protonenleitfähigkeit wurde mit einer 4-Pol Anordnung gemessen. Das verwendete Elektrodenmaterial war Platin. Die Membran wurde während der
50		Messung mit temperierten, vollentsalztem Wasser überströmt. Dicke und Breite der Membran wurden im naßen Zustand bei Raumtemperatur, nach der Behandlung mit

10 %iger Salpetersäure bei 40°C und Waschen mit vollentsalztem Wasser bei Raumtemperatur, bestimmt.

10

Das verwendete Meßgerät war ein Zahner IM 5d, umgerüstet für die Messung in einer 4-Pol Anordnung.

15

Die nachfolgende Tabelle zeigt die ermittelten Leitfähigkeitswerte für Membranen aus unterschiedlichen erfindungsgemäße Zusammensetzungen an.

20

25

30

35

40

Tem-5%PBI 6%PBI 7,5%PBI 10%PBI 20%PBI peratur in PEKT2 in PEKT2 in PEKT2 in PEKT2 in PEKT2 (°C) Leitf. (S/cm) Leitf. (S/cm) Leitf. (S/cm) Leitf. (S/cm) Leitf. (S/cm) 0,056282855 0,032303263 0,020937892 0,013605442 0,003425338 23 0,037894398 0,025139398 0,016196955 0,004068961 0,06373923 30 0,075557805 0,045612115 0,030444042 0,019729946 0,004964972 40 0,023627396 0,005839962 0,090157708 0,053875319 0,035936192 50 0,072562358 60 0,120093433 0,043677182 0,028423626 0,00668619 70 0,165000165 0,104427736 0,065316573 0,03554655 0,007445129 80 0,212844755 0,153029799 0,094613645 0,044791579 0,008032903 0,047391961 0,007758072 80 0,21159084 0,162716718 0,101837142 70 0,193606813 0,146548329 0,0927432 0,046527588 0,006821236 0,178111123 0,131412736 0,082758164 0,037013218 0,006063031 60 0,073186886 0,033942891 0,005317593 50 0,159793228 0,063428635 0,028582862 0,004400614 40 0,143398472 0,101506097 0,00363643 30 0,12434795 0,053606943 0,023420644 0,02159594 0,003248673 25 0,116734811 0,077666133 0.046482549

10

5

50

45

16 5 Herstellung der Blends am Beispiel der unter 1. eingesetzten Membran Das gemahlene sulfonierte Polymer wurde in einen Überschuß an 1 molarer Natronlauge eingetragen und bis auf eine Temperatur von 40 - 80°C erwärmt. Das 10 Natriumsalz des sulfonsauren Polymers wurde über eine Nutsche abgesaugt und 5 überschüssige Natronlauge abgepreßt. Schließlich wurde das Polymer neutral gewaschen und bis zur Gewichtskonstanz getrocknet. 15 Mit dem trocknen Polymer wurde mit Hilfe eines Zahnscheibenrührers eine 15-20 %ige Lösung in NMP hergestellt. Die klare Lösung wurde mit dem entsprechendem Anteil einer 15%igen Lösung von PBI in DMAc (hergestellt nach EP-A-816,415) 10 20 versetzt und für mindestens 1 h mit einem Zahnscheibenrührer gerührt. Nach der Filtration über ein PET-Tiefenfilter mit einer mittleren Porenweite von 0,7 μm bei 80°C wurde die Lösung auf eine Glasplatte durch Rakeln aufgebracht und in einem Umlufttrockenschrank bei Temperaturen zwischen 80 und 140°C über Nacht 25 15 getrocknet. Nach der Trocknung wurde die Folie von der Glasplatte getrennt und das 30 Natriumsalz durch Behandlung mit 1 molarer Schwefelsäure bei 40°C entfernt. Die Membranen wurden mit vollentsalztem Wasser neutral gewaschen und getrocknet. 20 Beispiel 3: Sulfonierung von PEK 35 3,49 kg 98%ige Schwefelsäure wurden in einem beheizbaren Doppelmantelreaktiongefäß vorgelegt. Unter Rühren mit einer Zahnscheibe wurden möglich schnell 400 g Victrex PEK in die Lösung eingetragen. Die Temperatur wurde 25 auf 50°C erhöht. Sobald eine klare, rote Lösung erhalten worden war, wurden 2,40 40 kg Oleum (20 % freies SO₃) zugegeben. Sobald der gewünschte Sulfonierungsgrad (bei einem IEC von 2,12 meq (-SO₃H)/g (Polymer) etwa nach 1-2 Stunden) erreicht

Wasser ausgefällt.

Das Polymer wurde abgesaugt, neutral gewaschen (Test mit BaCl₂-Lösung) und bei 60 − 120°C im Umlufttrockenschrank getrocknet.

worden war, wurde die Lösung auf 20°C abgekühlt und das Polymer in destilliertem

50

45

WO 00/27513 PCT/EP99/08084

Beispiel 4: Mechanische Daten der nach Beispiel 3 hergestellten Membranen

IEC	Gehalt	E-Modul, 23°C,	Reißdehnung	E-Modul 60°C,	Reißdehnung
des PEK	an PBI [%]	50 % rel. Feuchte [MPa]	[%]	Wasser* [MPa]	[%]
2.12	0	695	121	7	200
2.12	5	1140	72	536	284
2.12	7.5	725	30	158	288
2.12	10	646	28	195	300
2.12	12.5	1445	111	124	370
2.12	17.5	636	26	110	231
2.12	20	1058	40	100	235

^{*}gemessen in Wasser, E-Modul in Wasser bestimmt als Steigung der Tangente bei 5 1,2 MPa

Claims

PCT/EP99/08084

18

5

Patentansprüche

10

 Zusammensetzung enthaltend 30 - 99,5 Gew.% eines sulfonierten aromatischen Polyetherketons, das eine lonenaustauscherkapazität von 1,3 bis 4,0 meq (-SO₃H)/g Polymer aufweist, und 0,5-70 Gew.% eines Polybenzimidazols.

15

 Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das sulfonierte Polyetherketon die wiederkehrende Einheit der Formel I aufweist

20

$$-[Ar^{1}-O-Ar^{2}-CO]-$$
 (I),

25

30

35

worin Ar¹ und Ar² unabhängig voneinander zweiwertige aromatische oder heteroaromatische, gegebenenfalls mit ein oder mehreren unter Einsatzbedingungen inerten einwertigen organischen Gruppen substituierte Reste sind, und wobei zumindest ein Teil der Reste Ar¹ und Ar² mit Resten der Formel –(SO₃)_WM substituiert ist, wobei M ein Metallkation der Wertigkeit w, ein Ammoniumkation oder insbesondere Wasserstoff ist und w eine ganze Zahl bedeutet, insbesondere 1 oder 2 ist.

20

25

30

5

10

15

3. Zusammensetzung nach Anspruch 2, dadurch gekennzeichnet, daß Ar¹ und Ar² Naphthylen oder insbesondere Phenylen sind.

40

4. Zusammensetzung nach Anspruch 2, dadurch gekennzeichnet, daß Ar¹ und Ar² mit ein bis vier Amino-, Alkohol-, Ether-, Alkyl-, Aryl-, Sulfonyl-, Phosphonyl-, Carbonyl-, Nitro-, Carbonsäuregruppen substitutiert sind und/oder daß die Stickstoffatome des Polybenzimidazols mit diesen Gruppen substituiert sind.

45

 Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das sulfonierte Polyetherketon eine Ionenaustauscherkapazität von 1,6 bis 2,9 meq (~SO₃H)/g Polymer aufweist.

5

 Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das Polybenzimidazol die wiederkehrenden Struktureinheiten der Formel II aufweist

10

15

5

10

15

20

25

worin Ar`` ein vierwertiger aromatischer Rest, Ar' ein zweiwertiger aromatischer Rest und R Wasserstoff oder ein einwertiger inerter organischer Rest ist.

25

20

7. Zusammensetzung nach Anspruch 6, dadurch gekennzeichnet, daß Ar"
Phen-1,2,4,5-ylen oder Biphen-3,4,3′,4′-ylen ist, Ar'1,3- oder 1,4-Phenylen
bedeutet und R Wasserstoff ist.

30

Zusammensetzung nach Anspruch 2, dadurch gekennzeichnet, daß der Anteil
des Polybenzimidazols in Abhängigkeit vom Sulfonierungsgrad des
sulfonierten Polyetherketons nach folgender Formel III ausgewählt wird:

35

Gewichtsprozent Polybenzimidazol = $9.4 \times -12.4 \pm (9.4 \times -12.4) \times 0.5$ (III),

40

wobei x die lonenaustauscherkapazität des sulfonierten Polyetherketons in meq (-SO₃H)/g Polymer) bedeutet.

45

9. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß Art und Menge des Polybenzimidazols und des sulfonierten Polyetherketons so ausgewählt werden, daß sich eine Lösung in N-Methylpyrrolidon mit einer Viskosität von 500 - 5000 mPas (gemessen bei 80°C in einer Lösung des Polymeren in NMP mit einem Rotationsviskosimeter nach Couette) herstellen

PCT/EP99/08084 WO 00/27513

_			20
5			läßt.
		10.	Sulfoniertes aromatisches Polyetherketon vom Typ PEK, das eine
10			lonenaustauscher-kapazität von 1,3 bis 4,0 meq (-SO₃H)/g Polymer aufweist.
	5	11.	Membran enthaltend das Polyetherketon nach Anspruch 10 oder die
15		• • •	Zusammensetzung nach Anspruch 1.
		12.	Membran nach Anspruch 11, dadurch gekennzeichnet, daß diese eine Dicke
	10	12.	von wenigstens 5 μm, insbesondere von wenigstens 30 μm aufweist.
20			
		13.	Membran nach Anspruch 11, dadurch gekennzeichnet, daß diese eine
			Ionenleitfähigkeit, gemessen in Kontakt mit flüssigem Wasser bei Raumtemperatur mit Hilfe der 4-Pol Impedanzspektroskopie bei einem
25	15		Phasenwinkel \O < 1°, von nicht unter 50 mS/cm aufweist.
		4.4	Manufusa nach Ananyish 44 dadurah akanyasiahast da@ disaa nach sinas
30		14.	Membran nach Anspruch 11, dadurch gkennzeichnet, daß diese nach einer 72-stündigen Behandlung in kochendem Wasser bei 100°C mechanisch stabil
			bleibt.
	20		
35		15.	Membran nach Anspruch 11, dadurch gekennzeichnet, daß diese einen E- Modul (bestimmt als Steigung der Tangente bei 1,2 MPa) im trocknen Zustand
			bei 23°C und 50% rel. Feuchte von mindestens 600 MPa aufweist.
40	. 25	16.	Membran nach Anspruch 11, dadurch gekennzeichnet, daß diese einen E-
,0		10.	Modul (bestimmt als Steigung der Tangente bei 1,2 MPa) in Wasser bei 60°C
			von mindestens 90 MPa und eine Reißdehnung von über 200 % aufweist.
45		17.	Membran nach Anspruch 11, dadurch gekennzeichnet, daß diese einen
	30		Restgehalt an Lösungmittel von weniger als 0,5 Gew.% aufweist.
50		18.	Membran nach Anspruch 11, dadurch gekennzeichnet, daß diese eine
50		10.	memorali naon Anspraon 11, adduron generinzeloniet, das diese eine

ein saugfähiges Vlies eingebracht wird, und daß das Lösungsmittel

WO 00/27513

PCT/EP99/08084

anschließend durch Verdampfen entfernt wird.

 Verwendung der Membran nach Anspruch 11 f
ür den Einsatz in Brennstoffzellen, insbesondere f
ür den Einsatz in Direkt-Methanol-Brennstoffzellen.

22

- Verwendung der Membran nach Anspruch 11 f
 ür den Einsatz in Hochleistungs-kondensatoren.
- 25. Verwendung der Membran nach Anspruch 11 für den Einsatz in der
 Elektrodialyse oder in der Ultrafiltration.

25

5

10

15

5

30

35

40

45

50

		•
		•