Ratchainant Thammasudjarit, Ph.D.

Learning Objectives

- Understand the concepts of classification problem
- Understand the theory and applications of Logistic Regression
- Understand the classification model evaluation
- Understand how to build classifier and conduct machine learning experiment using sklearn

- Classification is the task of categorization in which ideas or objects are
 - Recognizable
 - Differentiable
 - Understandable

- Churn Prediction
 - Will this customer decide to stay or leave our business

AccTypes	nComplaints
Premium	5

Disease Detection

Is this patient healthy or having diabetes

ВМІ	Sex	LDL
35	Male	133

- Fraud Detection
 - Is this a normal or fraudulent transaction

- Bank Loan
 - Is this application ended up with NPL

Notations

Let $\mathcal{D} = \langle \mathbf{X}, \mathbf{y} \rangle$ be a dataset.

 $\mathbf{X} = \langle \mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_m \rangle$ be *n* feature vectors with dimension $n \times m$.

 \mathbf{x}_{j} be a column vector with dimension $n \times 1$ that represents the feature j where j = 1, 2, ..., m.

 \mathbf{x}_i is the row vector with dimension $1 \times m$ that represents the feature vector i where i = 1, 2, ..., n.

y be a column vector with dimension $n \times 1$ than represents the target class

y be any possible value in y

	\mathbf{x}_1	\mathbf{x}_2	у		\mathbf{x}_1	x ₂	у	
	3	yes	no	X	3	yes	no	y
v	5	no	yes		5	no	yes	
Λ	• •		•••	y	•	••		
	0	yes	no		0	yes	no	

Example: Disease Detection Smoking Frequency Weekly $(\mathbf{x}_1): x \in I^0$ or $x \in I^+$

Chest pain (\mathbf{x}_2) : $x \in \{\text{yes, no}\}$ Lung Cancer (\mathbf{y}) : $y \in \{\text{yes, no}\}$

- Goal: (For classification task) To learn a mapping function from \mathbf{x} to y
- Two types of machine learning
 - Parametric Machine Learning
 - Non-parametric Machine Learning

Parametric Machine Learning

Given $\langle \mathbf{X}, \mathbf{y} \rangle$, learn the optimum parameters $\boldsymbol{\theta}^*$ of a model $y = f(\mathbf{x}; \boldsymbol{\theta})$

Example: Logistic Regression

• Example: Decision Tree

Non-parametric Machine Learning

Given $\langle \mathbf{X}, \mathbf{y} \rangle$, learn the mapping function $y = f(\mathbf{x})$

Methodologies

Tuning

Strategies

Prediction

- Given a sample **x** and a decision threshold τ
 - Estimate the probability of target class $P(y|\mathbf{x}; \boldsymbol{\theta}^*)$ for parametric ML
 - Estimate the probability of target class $P(y|\mathbf{x})$ for non-parametric ML
 - Infer the most likely target class \hat{y}

Example: Disease detection from Smoking frequency weekly (\mathbf{x}_1) and Chest pain or not (\mathbf{x}_2)

x ₁	x_2
2	yes

$$P(y|\mathbf{x}; \boldsymbol{\theta}^*) = \frac{1}{1 + e^{-(0.1 + 0.45x_1 + 0.2x_2)}}$$

$$P(y|\mathbf{x}; \boldsymbol{\theta}^*) = \frac{1}{1 + e^{-(0.1 + 0.45(2) + 0.2(1))}}$$

$$= 0.769$$

Given decision threshold (τ): 0.5

$$P(y|\mathbf{x}; \boldsymbol{\theta}^*) \ge \tau$$
$$\therefore \hat{y} = \text{yes}$$

Inference: This patient is highly likely to have lung cancer.

- There are 3 types of classification problem
 - $_{\circ}$ Binary Classification: There are 2 possible values for y which are **mutually** exclusive
 - $_{\circ}$ Multiclass Classification: There are more than 2 possible values for y which are **mutually exclusive**
 - Multilabel Classification: There are at least 2 possible values for y which are
 NOT mutually exclusive

Binary Classification

\mathbf{x}_1	 \mathbf{x}_{j}	 \mathbf{x}_m	у
<i>x</i> _{1,1}	 $x_{1,j}$	 $x_{1,m}$	y_1
$x_{i,1}$	 $x_{i,j}$	 $x_{i,m}$	y_i
$x_{n,1}$	 $x_{n,j}$	 $x_{n,m}$	y_n

Example: Disease detection

A customer decision is either sick or healthy, e.g., $\mathbf{y} = \langle y | y \in \{yes, no\} \rangle$

Multiclass Classification

\mathbf{x}_1	 \mathbf{x}_{j}	 \mathbf{x}_m	у
<i>x</i> _{1,1}	 $x_{1,j}$	 $x_{1,m}$	y_1
$x_{i,1}$	 $x_{i,j}$	 $x_{i,m}$	y _i
$x_{n,1}$	 $x_{n,j}$	 $x_{n,m}$	y_n

Example: Flower classification

A flower is only one of k possible species, e.g., $\mathbf{y} = \langle y | y \in \{\text{Serosa, Versicolor, Virginica}\} \rangle$

Multilabel Classification

\mathbf{x}_1	 \mathbf{x}_{j}	 \mathbf{x}_m	\mathbf{y}_1	 \mathbf{y}_k
<i>x</i> _{1,1}	 $x_{1,j}$	 $x_{1,m}$	y _{1,1}	 <i>y</i> _{1,k}
$x_{i,1}$	 $x_{i,j}$	 $x_{i,m}$	$y_{i,1}$	 $y_{i,k}$
$x_{n,1}$	 $x_{n,j}$	 $x_{n,m}$	$y_{n,1}$	 $y_{n,k}$

Example: Lesion detection

One chest X-ray is possible to detect up to k radiology findings, e.g., Fibrosis, Edema, Cardiomegaly, ..., etc.

$$\mathbf{y}_1 = \langle y | y \in \{0, 1\} \rangle$$

$$\mathbf{y}_2 = \langle y | y \in \{0, 1\} \rangle$$
...
$$\mathbf{y}_k = \langle y | y \in \{0, 1\} \rangle$$

Summary

- The key concepts to take away
 - Classification is the task to predict categorical values
 - Parametric Machine Learning Algorithm learns the optimum model parameters θ^* for $y = f(\mathbf{x}; \theta)$
 - Non-parametric Machine Learning Algorithm learns the mapping function y = f(x)
 - Classification attempt to predict $P(y|\mathbf{x}; \boldsymbol{\theta}^*)$
 - Use a decision threshold τ to infer \hat{y} from $P(y|\mathbf{x}; \boldsymbol{\theta}^*)$
 - The type of classification problem depends on the target class y

- Logistic Regression was originally designed to solve binary classification problems
 - Will this customer leave our business (Churn or Stay)
 - Is this patient healthy (Sick or Healthy)
 - Is this loan application profitable (NPL, non-NPL)
 - Etc.

Model

- A feature is either $\mathbf{x}_i = \langle x | x \in \mathbb{R} \rangle$ or categorical variable
- The target class $\mathbf{y} = \langle y | y \in \{0,1\} \rangle$
- $z = \theta \cdot x$ is the dot product between model parameters θ and feature vector x
- \circ g(z) is the logistic function (a.k.a sigmoid)

Linear Combination $\theta_1 x_1 + \dots + \theta_m x_m$

Interception θ_0

Parameters

$$\theta = \langle \theta_0, \theta_1, \dots, \theta_m \rangle$$

Training Data

\mathbf{x}_{smk}	\mathbf{x}_{cp}	y_{lc}			
3	1	0			
5	0	1			
•••					
2	1	0			

$$P(y|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{1 + e^{-z}}$$
$$= \frac{1}{1 + e^{-(\theta_0 + \theta_{smk}\mathbf{X}_{smk} + \theta_{cp}\mathbf{X}_{cp})}}$$

A sample use case

$$\begin{bmatrix}
\boldsymbol{\theta}^* \\
\theta_0 = 0.2 \\
\theta_{cmp} = 0.1 \\
\theta_{prm} = 0.5
\end{bmatrix}
P(y|\mathbf{x}; \boldsymbol{\theta}^*) = \frac{1}{1 + e^{-(0.2 + 0.1\mathbf{X}_{smk} + 0.5\mathbf{X}_{cp})}}$$

$$P(y|\mathbf{x}; \boldsymbol{\theta}^*) = \frac{1}{1 + e^{-(0.2 + 0.1\mathbf{X}_{smk} + 0.5\mathbf{X}_{cp})}}$$

$$smk = 3$$

$$cp = yes$$

$$smk = 3$$

$$cp = yes$$

$$P(y|\mathbf{x}; \boldsymbol{\theta}^*) = \frac{1}{1 + e^{-(0.2 + 0.1(3) + 0.5(1))}}$$

$$= 0.73$$

This patient is more likely to have lung cancer. Treatment must be given.

• The original form of logistic regression

$$P(y|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m)}}$$
(1)

$$Odds(x) = \frac{P(x)}{1 - P(x)}$$

• The odds of an event x is defined as follows

Rewrite the original form of logistic regression

$$1 - P(y|\mathbf{x}; \boldsymbol{\theta}) = 1 - \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m)}}$$

$$= \frac{e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m)}}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m)}}$$
(2)

$$\frac{P(y|\mathbf{x};\boldsymbol{\theta})}{1 - P(y|\mathbf{x};\boldsymbol{\theta})} = \frac{\frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m)}}}{\frac{e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m)}}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m)}}$$

• Divide (1) by (2)

Odds
$$(y|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m)}}$$

The inverse of the standard logistic regression.

$$=e^{(\theta_0+\theta_1x_1+\theta_2x_2+\cdots+\theta_mx_m)}\tag{3}$$

The logit model also called log-odds since it is equal to the logarithm of the odds p/(1-p) where p is the probability.

Therefore, logit is a function that maps probability values from (0, 1) to real numbers (-inf, inf).

$$\ln \text{Odds}(y|\mathbf{x};\boldsymbol{\theta}) = \ln e^{(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m)}$$

$$logitP(y|\mathbf{x};\boldsymbol{\theta}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m$$
 (4)

Take the natural logarithmic function to (3)

- The model parameters of logistic regression are θ_0 , θ_1 , ..., θ_m
- The θ_0 can be interpreted in 2 ways
 - o θ_0 indicates the $\ln Odds(y|\mathbf{x}; \boldsymbol{\theta}^*)$ when all features are equal to zero the result lies in the decision boundary since theta = 0
 - \circ θ_0 indicates the baseline natural log Odds when all features are unknown or ignored
- Interpretation of any $heta_j$ for j=1,2,...,m depends on the data type
 - The weight of the feature, example: y=2+1.5x_age. This can be interpreted as 1.5 is the weight where y increases with 1.5 since it is directly proportional to y
 - \circ If \mathbf{x}_j is a numerical feature, the θ_j indicates its contribution to the change of $\ln \mathrm{Odds}(y|\mathbf{x};\boldsymbol{\theta}^*)$
 - The model creates a decision boundary. For instance, if the patient is male (1) then all males have 1. The other values will be on the other side of the decision boundary.
 - o If \mathbf{x}_j is a categorical feature, the θ_j indicates the difference of $\ln \mathrm{Odds}(y|\mathbf{x};\boldsymbol{\theta}^*)$ compared to the baseline of \mathbf{x}_j

Note: The baseline of \mathbf{x}_i is any value x encoded as zero for dummy variable of \mathbf{x}_i

Risk Ratio

- \bullet Given a feature \mathbf{x}_i while other features were known and fixed
 - \circ Risk Ratio (RR) describes the difference contribution to the outcome for \mathbf{x}_j

Example:

A patient without chest pain smokes 2 times a week

Recently this patient found himself with chest pain

Risk Ratio

• The risk of lung cancer at time t_1 is

$$P(y = \text{yes}|\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{1 + e^{0.2 - 0.1(2) - 0.5(0)}} = 0.598$$

• The risk of lung cancer at time t_2 is

$$P(y = \text{yes}|\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{1 + e^{0.2 - 0.1(2) - 0.5(1)}} = 0.711$$

• The estimated risk ratio (\widehat{RR}) is

$$\widehat{RR} = \frac{P(y = \text{yes}|\text{smk}=2, cp = 1)}{P(y = \text{yes}|\text{smk}=2, cp = 0)} = \frac{0.711}{0.598} = 1.189$$

Therefore, the patient with chest pain have 1.189 times risk to lung cancer compared to patient without chest pain assuming all patients smokes 2 times a week

Odds Ratio

• The odds ratio compares between 2 group based on a feature \mathbf{x}_j where **other features were** fixed but unspecified

Example: What is the effect of chest pain to lung cancer considering patients who have the same smoking frequency regardless its values?

smk were the same but unspecified

Odds Ratio

Relationship between Odds and Probability

Let x be an event

$$Odds(x) = \frac{P(x)}{1 - P(x)}$$

$$P(x) = \frac{\text{Odds}(x)}{1 + \text{Odds}(x)}$$

Odds Ratio

Recall the logit transformation

$$logitP(y|\mathbf{x};\boldsymbol{\theta}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m$$

ullet Each $heta_j$ indicates the different of natural log odds compared to the baseline

Example:
$$logitP(y|\mathbf{x}; \theta) = 0.2 + 0.1\mathbf{x}_{smk} + 0.5\mathbf{x}_{cp}$$

• The odd ratio of premium users to the ordinary users is

$$\widehat{OR} = e^{\theta_{cp}}$$
$$= e^{0.5}$$
$$= 1.648$$

Therefore, the odds to lung cancer of patient with chest pain is 1.648 times higher than patient without chest pain assuming those patient have the same smoking frequency.

• Consider a coin flipping problem, flipping a coin one time is called an **experiment**

- Let θ be a parameter of getting Head (H) from a single experiment
- Let X be a random variable that represents the outcome of coin flipping
- $P(x; \theta)$ represents the probability of outcome $x \in \{H, T\}$ based on the coin parameter

- If a coin is fair $(\theta = 0.5)$
 - The probability of getting Head $P(x = H; \theta) = 0.5$
 - Simplify version for the probability notation is $P(H; \theta) = 0.5$

- If a coin is unfair, e.g., $\theta = 0.7$
 - The probability of getting Tail $P(x = T; \theta) = 1 0.7 = 0.3$
 - Simplify version for the probability notation is $P(T; \theta) = 0.3$

• Let $\mathcal{L}_{\mathbf{X}}(\theta)$ be the likelihood of parameter (θ) given observations (\mathbf{x})

Example: Flipping a coin 5 times yields H, H, T, H, T

Q: How much likely does that coin bias to H

Let x = 1 be the Head, x = 0 be the Tail

The likelihood function of flipping a coin 1 time follows Bernoulli Distribution as follows

$$\mathcal{L}_{\mathbf{X}}(\theta) = P(x; \theta)$$
$$= \theta^{x} (1 - \theta)^{1 - x}$$

- Assume that each flipping is independent each other
 - \circ The likelihood function of flipping a coin n times is defined as

$$\mathcal{L}_{\mathbf{X}}(\theta) = P(\mathbf{x}; \theta)$$

$$= P(x_1; \theta)P(x_2; \theta) \dots P(x_n; \theta)$$

$$= \prod_{i=1}^{n} P(x_i; \theta)$$

$$= \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

• The likelihood function of observations H, H, T, H, T is

$$\mathcal{L}_{\mathbf{X}}(\theta) = \theta^{1}(1 - \theta)^{(1-1)} \cdot \theta^{1}(1 - \theta)^{(1-1)} \cdot \theta^{0}(1 - \theta)^{(1-0)} \cdot \theta^{1}(1 - \theta)^{(1-1)} \cdot \theta^{0}(1 - \theta)^{(1-0)}$$

$$= \theta \cdot \theta \cdot (1 - \theta) \cdot \theta \cdot (1 - \theta)$$

$$= \theta^{3}(1 - \theta)^{2}$$

- Apply logarithmic function on both side does not change the θ that maximizes $\mathcal{L}_{\mathbf{X}}(\theta)$
- Let $L_{\mathbf{X}}(\theta)$ be the log-likelihood of θ

$$\ln \mathcal{L}_{\mathbf{X}}(\theta) = \ln \theta^{3} (1 - \theta)^{2}$$
$$L_{\mathbf{X}}(\theta) = 3 \ln \theta + 2 \ln(1 - \theta)$$

• Finding the θ that maximize $L_{\mathbf{X}}(\theta)$ requires the 1st order derivative with respect to θ and set it to zero

$$\frac{d}{d\theta} L_{\mathbf{X}}(\theta) = 0$$

$$\frac{d}{d\theta} 3 \ln \theta + \frac{d}{d\theta} 2 \ln(1 - \theta) = 0$$

$$\frac{3}{\theta} - \frac{2}{1 - \theta} = 0$$

$$\therefore \theta = \frac{3}{5}$$

- Applying the Maximum Likelihood Estimation (MLE) to Logistic Regression
 - \circ For any sample \mathbf{x}_i that has training label equals to 1

$$P(y = 1 | \mathbf{x}; \boldsymbol{\theta}) = f(\boldsymbol{\theta}^T \cdot \mathbf{x})$$

 \circ For any sample \mathbf{x}_i that has training label equals to 0

$$P(y = 0 | \mathbf{x}; \boldsymbol{\theta}) = 1 - f(\boldsymbol{\theta}^T \cdot \mathbf{x})$$

where

$$f(\theta^T \cdot \mathbf{x}) = \frac{1}{1 + e^{-\theta^T \cdot \mathbf{x}}}$$

For any training label y

$$P(y|\mathbf{x};\boldsymbol{\theta}) = f(\boldsymbol{\theta}^T \cdot \mathbf{x})^y \cdot (1 - f(\boldsymbol{\theta}^T \cdot \mathbf{x}))^{(1-y)}$$

- For the dataset of *n* samples, assume that each sample is independent
 - The likelihood function is defined as

\mathbf{x}_1	 \mathbf{x}_{j}	 \mathbf{x}_m	у
<i>x</i> _{1,1}	 $x_{1,j}$	 $x_{1,m}$	y ⁽¹⁾
$x_{i,1}$	 $x_{i,j}$	 $x_{i,m}$	$y^{(i)}$
$x_{n,1}$	 $x_{n,j}$	 $\chi_{n,m}$	$y^{(n)}$

$$\mathcal{L}_{\mathbf{X}}(\boldsymbol{\theta}) = P(\mathbf{y}|\mathbf{X};\boldsymbol{\theta})$$

$$= \prod_{i=1}^{n} f(\boldsymbol{\theta}^{T} \cdot \mathbf{x})^{y^{(i)}} \cdot (1 - f(\boldsymbol{\theta}^{T} \cdot \mathbf{x}))^{(1-y^{(i)})}$$

From the likelihood function, the log-likelihood function is

$$L_{\mathbf{X}}(\boldsymbol{\theta}) = \ln \prod_{i=1}^{n} f(\boldsymbol{\theta}^{T} \cdot \mathbf{x})^{y^{(i)}} \cdot (1 - f(\boldsymbol{\theta}^{T} \cdot \mathbf{x}))^{(1-y^{(i)})}$$

$$= \sum_{i=1}^{n} \ln \left[f(\boldsymbol{\theta}^{T} \cdot \mathbf{x})^{y^{(i)}} \cdot (1 - f(\boldsymbol{\theta}^{T} \cdot \mathbf{x}))^{(1-y^{(i)})} \right]$$

$$= \sum_{i=1}^{n} \left[\ln f(\boldsymbol{\theta}^{T} \cdot \mathbf{x})^{y^{(i)}} + \ln(1 - f(\boldsymbol{\theta}^{T} \cdot \mathbf{x}))^{(1-y^{(i)})} \right]$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \ln f(\boldsymbol{\theta}^{T} \cdot \mathbf{x}) + (1 - y^{(i)}) \ln(1 - f(\boldsymbol{\theta}^{T} \cdot \mathbf{x})) \right]$$

• Learning any θ_i requires partial derivative of $L_{\mathbf{X}}(\theta)$ with respect to θ_i and set to zero

Fitting the model to data using MLE shows improvement of the log-likelihood

Multinomial Logistic Regression

- ullet The original logistic regression is applicable when y is dichotomous
- Multinomial Logistic Regression (a.k.a. Softmax Regression) is designed for categorical target class

Multinomial Logistic Regression

Model

$$z = \theta \cdot x$$

$$t = e^{z}$$

$$a = g(z)$$

$$= \frac{e^{z}}{\sum_{i=1}^{k} t_{i}}$$

Example: Suppose there are 4 classes (k = 4)

Assume that we get **z** as follows

$$\mathbf{z} = \begin{bmatrix} 5 \\ 2 \\ -1 \\ 3 \end{bmatrix} \quad \therefore \mathbf{t} = \begin{bmatrix} e^5 \\ e^2 \\ e^{-1} \\ e^3 \end{bmatrix} \quad = \begin{bmatrix} 148.4 \\ 7.4 \\ 0.4 \\ 20.1 \end{bmatrix} \quad \therefore \sum_{i=1}^k t_i = 176.3$$

Note: Summation of a is always equal to 1

 \hat{y} is inferred from the maximum probability

Summary

- The key concepts to take away
 - Original logistic regression is applicable for dichotomous outcome
 - \circ A model parameter θ_0 can be interpreted as
 - $\ln \text{Odds}(y|\mathbf{x}; \boldsymbol{\theta}^*)$ when all features are equal to zero
 - Baseline natural log Odds when all features are unknown or ignored
 - \circ A model parameter $heta_j$ where j=1,2,...,m can be interpreted as
 - Numerical feature: Contribution of \mathbf{x}_i to the change of $\ln \mathrm{Odds}(y|\mathbf{x};\boldsymbol{\theta}^*)$
 - Categorical feature: Difference of $\ln Odds(y|\mathbf{x}; \boldsymbol{\theta}^*)$ compared to the baseline of \mathbf{x}_i

Summary

- The risk ratio describes the difference contribution to the outcome for \mathbf{x}_j when other features were known and fixed
- The odds ratio compares between 2 group based on a feature \mathbf{x}_j where other features were fixed but unspecified