

NLP

Word Embeddings

Dr. Rodrigo Cardenas Szigety rodrigo.cardenas.sz@gmail.com

Programa de la materia

- Clase 1: Introducción a NLP, Vectorización de documentos.
- Clase 2: Preprocesamiento de texto, librerías de NLP, bots de información.
- Clase 3: Word Embeddings, CBOW y SkipGRAM, entrenamiento de embeddings.
- Clase 4: Redes recurrentes (RNN), problemas de secuencia y estimación de próxima palabra.
- Clase 5: Redes LSTM, análisis de sentimientos.
- Clase 6: Modelos Seq2Seq, traductores y bots conversacionales.
- Clase 7: Celdas con Attention. Transformers, BERT & ELMo, fine tuning.
- Clase 8: Cierre del curso, NLP hoy y futuro, deploy.
- *Unidades con desafíos a presentar al finalizar el curso.
- *Último desafío y cierre del contenido práctico del curso.

Problemas con CountVectorizer/OHE/TF-IDF

3

Textos de significado similar pueden ser "ortogonales"

Viajando en colectivo

Voy arriba del bus

La dimensión de los vectores depende del tamaño del vocabulario

La representación es esparsa

Embeddings

Un embedding es la representación numérica densa de tamaño fijo de un dato estructurado o no estructurado (mapear imagenes, entidades ó palabras a vectores)

Word Embeddings

Las palabras que tienen un significado similar tendrán una representación similar

como embeddings

http://projector.ten
 sorflow.org/

Para qué podemos utilizar word Embeddings

N-GRAM

"Subsecuencia de N elementos de una secuencia dada"

Otra forma de agrupar las palabras distinto a word2vec (N=1, unigram) en donde se busca aumentar el poder de generalización y a su vez poder hacer más variado el vocabulario.

Character-level ur	igrams	
<u>Text</u>	Token Sequence	Token Value
Dogs	1	D
Dogs	2	0
Dogs	3	g
Dogs	4	S
Character-level bi	grams	
<u>Text</u>	Token Sequence	Token Value
Dogs	1	Do
Dogs	2	og
Dogs	3	gs
Character-level tri	grams	
<u>Text</u>	Token Sequence	Token Value
Dogs	1	Dog
Dogs	2	ogs

7

GloVe y fastText

Embeddings pre-entrenados basados en diferentes topologías:

GloVe

Entrenado con textos de Wikipedia, Common Crawl y GigaWord 5

Se basa en calcular la matriz de co-ocurrencia de palabras y estimar el cociente de probabilidad de aparición.

Tokenización basada en palabras

fastText

Tokenización basada en N-Grams de caracteres. Mejora la interpretación de sufijos y prefijos

Entrenado con una colección de 8 corpus (portales de noticias, reviews, Wlkipedia)

Permite crear mejores embeddings para palabras "raras" (basado CBOW o Skip-Gram)

Puede crear un embedding de una palabra que nunca vió

Operaciones con Embeddings: tests de analogías

Una forma de testear la calidad de embeddings es probar su desempeño en tests de analogías:

París es a Francia lo que Madrid es a España. Madrid y París corresponden a España y Francia

$$\overrightarrow{Paris} - \overrightarrow{Francia} \approx \overrightarrow{Madrid} - \overrightarrow{Espana}$$
 $simcos(\overrightarrow{Paris} - \overrightarrow{Francia}, \overrightarrow{Madrid} - \overrightarrow{Espana}) \approx 1$

Embeddings Glove y Fasttext

¿Dónde utilizaremos Embeddings?

Serán los pilares de todo lo que construyamos en el resto del curso

¿Cómo podemos crear nuestros word Embeddings?

Aprendiendo (con redes neuronales) vectores para cada palabra que maximicen la relación entre las palabras de contexto y la palabra objetivo. Esto es lo que se implementó en la librería **word2vec**.

Continuous Bag of Words Model (CBOW)

Utiliza como entrada el contexto de la palabra objetivo (palabras a izquierda y derecha de ella). El tamaño de la ventana determina cuántas palabras se tomarán para contextualizar el embedding.

CBOW - Entrenamiento

LINK

Para entrenar necesitamos tener el vocabulario del corpus y las sentencias organizadas por el tamaño de la ventana de entrada.

Los embeddings de cada palabra son el embedding promedio de todas las veces que se utilizó en el corpus.


```
cbow = Sequential()
cbow.add(Embedding(input_dim=vocab_size, output_dim=embed_size, input_length=window_size*2))
cbow.add(Lambda(lambda x: K.mean(x, axis=1), output shape=(embed_size,)))
cbow.add(Dense(vocab_size, activation='softmax'))
cbow.compile(loss='categorical_crossentropy', optimizer='rmsprop')
```

CBOW - Entrenamiento

Con tan solo un corpus de 12425 palabras distintas y embedding de 100 dimensiones hay que entrenar **2.5 Millones de parámetros**

Layer (type)	Output	Shape	Param #
embedding_1 (Embedding)	(None,	4, 100)	1242500
lambda_1 (Lambda)	(None,	0	
dense_1 (Dense)	(None,	12425)	1254925
Total params: 2,497,425 Trainable params: 2,497,425 Non-trainable params: 0			

Skip-Gram

Al contrario de CBOW, este modelo intenta predecir las palabras que rodean (contexto) a una palabra objetivo. Se divide el output como pares [target, context]

Skip-Gram - Entrenamiento LINK

Por cada par [target, context] el sistema determina si las palabras tiene significado en contexto (1) o no lo tiene (0), buscando así acercar las palabras que tienen significado juntas (que se espera que estén juntas en el texto)

```
word model = Sequential()
word_model.add(Embedding(vocab_size, embed_size,
                         embeddings initializer="glorot uniform",
                         input_length=1))
word model.add(Reshape((embed size, )))
context model = Sequential()
context model.add(Embedding(vocab size, embed size,
                  embeddings_initializer="glorot_uniform",
                  input_length=1))
context_model.add(Reshape((embed_size,)))
model = Sequential()
model.add(Merge([word model, context model], mode="dot"))
model.add(Dense(1, kernel initializer="glorot uniform", activation="sigmoid"
```


Skip-Gram - Entrenamiento

Skip-Gram requiere más datos para lograr un buen resultado pero obtiene más información sobre el contexto del corpus en sus embeddings.

Layer (type)	Output	Shape	Param #		
merge_2 (Merge)	(None,	1)	0		
dense_3 (Dense)	(None,	1)	2		
Total params: 2,485,002 Trainable params: 2,485,002 Non-trainable params: 0					

Negative sampling

En SkipGram/CBOW la cantidad de parámetros a entrenar en la softmax es enorme:

Parametros = vocab_size * embedding_size → millones de parámetros

Negative Sampling

W_output (old)		d) Learning R. grad_W_output		put			W_output (new)			
-0.560	0.340	0.160	- 0.05 X				_	-0.560	0.340	0.160
-0.910	-0.440	1.560	^				-	-0.910	-0.440	1.560
-1.210	-0.130	-1.320		Note		all		-1.210	-0.130	-1.320
1.670	-0.150	-1.030		NOT	compute	a:		1.670	-0.150	-1.030
1.720	-1.460	0.730						1.720	-1.460	0.730
0.000	1.390	-0.12054	4048.github.io			aegis4	048.gith	ub. 0:000	1.390	-0.120
-0.060	1.520	-0.790						0.060	1.520	0.790
0.800	1.850	-1.670	Positive sample, w_o	0.031	0.030	0.041		0.798	1.849	-1.672
-1.370	1.320	-0.480	Negative sample, k=1	-0.090	0.031	-0.065		-1.366	1.318	-0.477
0.670	1.990	-1.850	Negative sample, k=2	0.056	0.098	-0.061		0.667	1.985	-1.84
-1.520	-1.740	-1.860	Negative sample, k=3	0.069	0.084	-0.044		-1.523	-1.744	-1.858

En cada iteración se observa la palabras [target, contexto] y "K" palabras aleatorias del corpus El objetivo es optimizar cómputo. Además funciona como regularización. Para corpus pequeños, el muestreo debe ser mayor.

Visualizar embeddings en baja dimensionalidad:

t-SNE (t-distributed stochastic neighbor embedding)

Técnica de reducción de dimensionalidad no-lineal (a diferencia de PCA).

Intenta reproducir en baja dimensionalidad, la localidad de los datos en alta dimensionalidad.

Es estocástica, a priori los resultados no se repiten.

Por su carácter estocástico es sólo recomendable como herramienta de visualización y exploratoria.

Gensim - Doc2Vec paragraph embeddings

LINK

Utilizaremos esta librería que nos facilita generar embeddings tipo Skip-Gram o CBOW de nuestros corpus

- Librería de Python
- Existe desde 2009 y nació originalmente para topic modelling
- Muy popular y muy simple de utilizar

21

Generación de embeddings con Gensim

Desafío

Crear sus propios vectores con Gensim basado en lo visto en clase con otro dataset.

Probar términos de interés y explicar similitudes en el espacio de embeddings. Intentar plantear y probar tests de analogías. Graficar los embeddings

resultantes.

Sacar conclusiones.

Algunos recursos para descargar corpora de texto

Project Gutenberg

Compilación de literatura completa de dominio público principalmente en inglés.

Textos.info

Compilación de literatura completa de dominio público en español.