ТИПОВОЙ РАСЧЕТ

по курсу «Комплексный анализ» для студентов КМБО-19 (лектор Шатина А.В.)

Задача №1. Найти все значения параметра α , при которых сходится интеграл:

$1) \int_{e}^{+\infty} \frac{\ln^2 x}{x^{\alpha}} dx$	11) $\int_{0}^{+\infty} \frac{arctg^{\alpha} x dx}{\left(x^2 + 2\right)\left(e^x - 1\right)^3}$
$2) \int_{1}^{+\infty} \frac{\sqrt{\ln x}}{x^{\alpha}} dx$	11) $\int_{0}^{+\infty} \frac{arctg^{\alpha} x dx}{\left(x^{2} + 2\right)\left(e^{x} - 1\right)^{3}}$ 12) $\int_{0}^{+\infty} \frac{\ln\left(x^{2} + 1\right) - 2\ln x}{\left(\sqrt[4]{x + 1} - 1\right)^{\alpha} \cdot arctgx} dx$
$3) \int_{e}^{+\infty} \frac{dx}{x \cdot \ln^{\alpha} x}$	$13) \int_{0}^{1} x^{\alpha} \ln \frac{1}{x} dx$
4) $\int_{2}^{+\infty} \frac{e^{\alpha x} dx}{(x-1)^{\alpha} \ln x}$	$14) \int_{0}^{1} \frac{x^{\alpha} \ln x}{1-x} dx$
$\int_{0}^{\infty} \frac{arcig2x}{x^{\alpha}} dx$	$15) \int_{0}^{1} \frac{x^{\alpha} \ln x}{1-x} dx$
6) $\int_{3}^{+\infty} \frac{e^{-x} - \ln x}{\left(1 + x^{\alpha}\right)^{\alpha - 2}} dx$	$16) \int_{0}^{0.5} \frac{\ln^{\alpha} \left(1/x\right)}{tgx} dx$
6) $\int_{3}^{+\infty} \frac{e^{-x} - \ln x}{\left(1 + x^{\alpha}\right)^{\alpha - 2}} dx$ 7) $\int_{e}^{+\infty} \frac{\ln^{2} x}{\left(\exp\left(1/x^{2}\right) - 1\right)^{\alpha}} dx$	17) $\int_{0}^{1} \frac{x^{\alpha} \ln x}{\sqrt[3]{(1-x)^{2}}} dx$
$8) \int_{2}^{+\infty} \frac{\ln^{\alpha} x \cdot \sqrt[3]{arctg(1/x)}}{\sqrt[3]{x^2}} dx$	$18) \int_{0}^{0.5} \frac{\ln^{\alpha} (1/x)}{\sqrt{tgx}} dx$
$9) \int_{1}^{+\infty} \frac{dx}{x^{\alpha} \sqrt{\ln x}}$	$19) \int_{0}^{1} (1-x)^{\alpha} \sin \frac{\pi}{1-x} dx$
$10) \int_{1}^{+\infty} \frac{dx}{x^{\alpha} \cdot \sqrt[3]{\ln^2 x}}$	$20) \int_{1}^{+\infty} \frac{dx}{x^{\alpha} \cdot \sqrt[4]{\ln^3 x}}$

Задача №2. Исследовать на равномерную сходимость интеграл на указанном множестве:

Указание: в вариантах 1,2,8,9,16 показать, что интеграл сходится равномерно на указанном множестве. В остальных вариантах показать, что интеграл сходится неравномерно на указанном множестве.

Задача №3. Вычислить интегралы, используя метод дифференцирования по параметру, а также значения известных интегралов (интегралов Лапласа (5.11), Эйлера-Пуассона, Френеля):

$1) \int_{-\infty}^{+\infty} \frac{\cos \alpha x}{x^2 + 2x + 2} dx$	$11) \int_{-\infty}^{+\infty} e^{-3x^2} \cosh 6x dx$
$2) \int_{-\infty}^{+\infty} \frac{\cos \alpha x}{x^2 + 4x + 5} dx$	12) $\int_{1}^{+\infty} \frac{\arctan \alpha x}{x^2 \cdot \sqrt{x^2 - 1}} dx$
3) $\int_{0}^{+\infty} \frac{\sin^2 \alpha x}{x^2 (1+x^2)} dx, \ \alpha > 0$	13) $\int_{0}^{1} \frac{\ln(1-\alpha^2 x^2)}{x\sqrt{1-x^2}} dx, \alpha < 1$
4) $\int_{0}^{+\infty} \frac{\cos \alpha x}{\left(1+x^2\right)^2} dx, \ \alpha > 0$	$14) \int_{0}^{1} \frac{\ln(1-\alpha^2 x^2)}{\sqrt{1-x^2}} dx, \alpha < 1$
$\int_{-\infty}^{+\infty} \frac{\sin^2 \alpha x}{x^2 - 2x + 5} dx, \ \alpha > 0$	$15) \int_{0}^{1} \frac{\ln\left(\alpha^{2} + x^{2}\right)}{\sqrt{1 - x^{2}}} dx$
6) $\int_{-\infty}^{+\infty} \frac{\cos^2 \alpha x}{x^2 - 6x + 10} dx, \ \alpha > 0$	$16) \int_{0}^{1} \frac{\ln(1+\alpha^2 x^2)}{\sqrt{1-x^2}} dx, \alpha < 1$
$7) \int_{-\infty}^{+\infty} \frac{\cos 2\alpha x}{4x^2 + 4x + 5} dx, \ \alpha > 0$	$\int_{0}^{+\infty} \frac{e^{-\alpha x} \cdot \sin^{3} \beta x}{x^{2}} dx, \alpha > 0, \beta > 0$
$8) \int_{-\infty}^{+\infty} \left(x^2 + 2x\right) e^{-\left(x^2 - 4x\right)} dx$	$18) \int_{-\infty}^{+\infty} \sin\left(x^2 + 4x + 5\right) dx$
9) $\int_{-\infty}^{+\infty} (x^2 - 2x)e^{-4x^2 + 12x} dx$	$19) \int_{-\infty}^{+\infty} \cos x^2 \cdot \cos 2x dx$
$10) \int_{-\infty}^{+\infty} e^{-2x^2} \cosh 3x dx$	$20) \int_{-\infty}^{+\infty} \sin x^2 \cdot \cos 4x dx$

Задача №4. Используя эйлеровы интегралы, вычислить следующие интегралы:

Задача № 5. Используя функции Бесселя первого рода, найти решение задачи Коши:

1)
$$x^2y'' + 8xy' + 4x^2y = 0$$
, $y(0) = 1$, $y'(0) = 0$.

2)
$$x^2y'' + 8xy' + 9x^2y = 0$$
, $y(0) = 1/3$, $y'(0) = 0$.

3)
$$x^2y'' + 4xy' + 5x^2y = 0$$
, $y(0) = 1/2$, $y'(0) = 0$.

4)
$$x^2y'' + 4xy' + 6x^2y = 0$$
, $y(0) = 2$, $y'(0) = 0$.

5)
$$x^2y'' + 2xy' + 3x^2y = 0$$
, $y(0) = 1$, $y'(0) = 0$.

6)
$$x^2y'' + 2xy' + 4x^2y = 0$$
, $y(0) = 3$, $y'(0) = 0$.

7)
$$x^2y'' + 10xy' + 2x^2y = 0$$
, $y(0) = 1/2$, $y'(0) = 0$.

8)
$$x^2y'' + 10xy' + 5x^2y = 0$$
, $y(0) = 1/3$, $y'(0) = 0$.

9)
$$x^2y'' + 6xy' + 2x^2y = 0$$
, $y(0) = 4$, $y'(0) = 0$.

10)
$$x^2y'' + 6xy' + 3x^2y = 0$$
, $y(0) = 2$, $y'(0) = 0$.

11)
$$x^2y'' + 2xy' + (3x^2 - 2)y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

12)
$$x^2y'' + 2xy' + (9x^2 - 2)y = 0$$
, $y(0) = 0$, $y'(0) = 2$.

13)
$$x^2y'' + 4xy' + (5x^2 - 4)y = 0$$
, $y(0) = 0$, $y'(0) = 1/2$.

14)
$$x^2y'' + 4xy' + (5x^2 - 4)y = 0$$
, $y(0) = 0$, $y'(0) = 3$.

15)
$$x^2y'' + 2xy' + (4x^2 - 2)y = 0$$
, $y(0) = 0$, $y'(0) = 1/3$.

16)
$$x^2y'' + 6xy' + (3x^2 - 6)y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

17)
$$x^2y'' + 6xy' + (4x^2 - 6)y = 0$$
, $y(0) = 0$, $y'(0) = 4$.

18)
$$x^2y'' + 2xy' + (7x^2 - 2)y = 0$$
, $y(0) = 0$, $y'(0) = 3$.

19)
$$x^2y'' + 4xy' + (9x^2 - 4)y = 0$$
, $y(0) = 0$, $y'(0) = 1/2$.

20)
$$x^2y'' + 6xy' + (2x^2 - 6)y = 0$$
, $y(0) = 0$, $y'(0) = 1/5$.

Задача №6. Выразить через полные эллиптические интегралы следующие интегралы:

	T
$1) \int_{0}^{4} \frac{x^2 dx}{\sqrt{36 - x^2} \cdot \sqrt{16 - x^2}}$	$11) \int_{2}^{+\infty} \frac{dx}{\sqrt{5+x^2} \cdot \sqrt{x^2-4}}$
$2) \int_{0}^{3} \frac{\sqrt{9-x^2}}{\sqrt{12-x^2}} dx$	12) $\int_{0}^{3} \frac{dx}{\sqrt{81+x^2} \cdot \sqrt{9-x^2}}$
3) $\int_{6}^{+\infty} \frac{dx}{\sqrt{1+x^2} \cdot \sqrt{x^2-36}}$	$13) \int_{0}^{6} \frac{x^2 dx}{\sqrt{36 - x^2} \cdot \sqrt{48 - x^2}}$
$4) \int_{0}^{2} \frac{dx}{\sqrt{49 + x^{2}} \cdot \sqrt{4 - x^{2}}}$	$14) \int_{0}^{6} \frac{\sqrt{36 - x^2}}{\sqrt{64 - x^2}} dx$
$5) \int_{0}^{5} \frac{x^2 dx}{\sqrt{25 - x^2} \cdot \sqrt{50 - x^2}}$	15) $\int_{5}^{+\infty} \frac{dx}{\sqrt{144 + x^2} \cdot \sqrt{x^2 - 25}}$
$6) \int_{0}^{4} \frac{\sqrt{16 - x^2}}{\sqrt{30 - x^2}} dx$	$16) \int_{0}^{11} \frac{x^2 dx}{\sqrt{169 - x^2} \cdot \sqrt{121 - x^2}}$
$7) \int_{3}^{+\infty} \frac{dx}{\sqrt{4+x^2} \cdot \sqrt{x^2-9}}$	17) $\int_{3}^{+\infty} \frac{dx}{\sqrt{x^2 - 9} \cdot \sqrt{x^2 - 4}}$
$8) \int_{7}^{+\infty} \frac{dx}{\sqrt{x^2 - 49} \cdot \sqrt{x^2 - 1}}$	$18) \int_{0}^{5} \frac{\sqrt{25 - x^2}}{\sqrt{225 - x^2}} dx$
9) $\int_{0}^{3} \frac{x^{2} dx}{\sqrt{9 - x^{2}} \cdot \sqrt{12 - x^{2}}}$	19) $\int_{0}^{4} \frac{dx}{\sqrt{25 + x^2} \cdot \sqrt{16 - x^2}}$
$10) \int_{0}^{2} \frac{\sqrt{4-x^2}}{\sqrt{8-x^2}} dx$	$20) \int_{0}^{10} \frac{\sqrt{100 - x^2}}{\sqrt{121 - x^2}} dx$

Задача №7. Представить функцию интегралом Фурье (*N* – номер варианта): Вар. 1,2,3,4

$$f(x) = \begin{cases} 1 - \frac{|x|}{N}, & |x| \le N, \\ 0, & |x| > N. \end{cases}$$

Bap. 5,6,7,8

$$f(x) = \begin{cases} -x + N \operatorname{sgn} x, & |x| \le N, \\ 0, & |x| > N. \end{cases}$$

Bap. 9,10,11,12

$$f(x) = \begin{cases} N \operatorname{sgn} x, & |x| \le N, \\ 0, & |x| > N. \end{cases}$$

Bap. 13,14,15,16

$$f(x) = \begin{cases} 2x + N, & x \in [-N/2;0], \\ N, x \in (0; N/2], \\ 0, & |x| > N/2. \end{cases}$$

Bap. 17,18,19,20

$$f(x) = \begin{cases} \sin Nx, & |x| \le 4\pi/N, \\ 0, & |x| > 4\pi/N. \end{cases}$$

Задача №8. Используя свойства ортогональных многочленов Лежандра, Эрмита, Чебышева, Лагерра, решить следующие задачи.

В задачах 1)-4), найти функцию y(x), удовлетворяющую данному дифференциальному уравнению, если задано значение этой функции в точке x=1:

1)
$$\frac{d}{dx}[(1-x^2)y'(x)] = -20y(x), y(1) = 4.$$

2)
$$\frac{d}{dx} [(1-x^2)y'(x)] = -30y(x), y(1) = 8.$$

3)
$$\frac{d}{dx} [(1-x^2)y'(x)] = -42 y(x), y(1) = 3.$$

4)
$$\frac{d}{dx} [(1-x^2)y'(x)] = -56 y(x), y(1) = 2.$$

В задачах 5)-8) вычислить интеграл, используя свойства многочленов Лежандра:

5)
$$\int_{-1}^{1} \left[(x+1) P_7(x) \right]^2 dx$$
.

6)
$$\int_{-1}^{1} \left[(x-1) P_8(x) \right]^2 dx$$
.

7)
$$\int_{-1}^{1} \left[(x+2) P_9(x) \right]^2 dx$$
.

8)
$$\int_{-1}^{1} \left[(x-2) P_{10}(x) \right]^{2} dx.$$

В задачах 9)-12) разложить заданные функции в ряд по многочленам Эрмита:

9)
$$f(x) = \cos 2x$$
.

10)
$$f(x) = \sin 2x$$
.

11)
$$f(x) = \cos 4x$$
.

12)
$$f(x) = \sin 4x$$
.

В задачах 13)-16) вычислить интеграл, используя свойства многочленов Чебышева:

13)
$$\int_{0}^{1} \frac{xT_{13}(x)}{\sqrt{1-x^2}} dx.$$
 14)
$$\int_{-1}^{1} \frac{[(2x+1)T_{14}(x)]^2}{\sqrt{1-x^2}} dx.$$

15)
$$\int_{0}^{1} \frac{xT_{15}(x)}{\sqrt{1-x^2}} dx$$
.

16)
$$\int_{-1}^{1} \frac{\left[(2x-1)T_{16}(x) \right]^{2}}{\sqrt{1-x^{2}}} dx.$$

В задачах 17)-20) вычислить интеграл, используя свойства многочленов Лагерра:

17)
$$\int_{0}^{+\infty} e^{-x} x^{5/2} \left[L_{10}^{1/2}(x) \right]^{2} dx.$$
19)
$$\int_{0}^{+\infty} e^{-x} x^{3} \left[L_{10}^{1}(x) \right]^{2} dx.$$

18)
$$\int_{0}^{+\infty} e^{-x} x^{3/2} \left[L_{10}^{-1/2}(x) \right]^{2} dx$$

19)
$$\int_{0}^{+\infty} e^{-x} x^{3} \left[L_{10}^{1}(x) \right]^{2} dx$$
.

18)
$$\int_{0}^{+\infty} e^{-x} x^{3/2} \left[L_{10}^{-1/2}(x) \right]^{2} dx$$
20)
$$\int_{0}^{+\infty} e^{-x} x^{3/2} \left[L_{8}^{-1/2}(x) \right]^{2} dx$$