

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт Искусственного Интеллекта Кафедра Промышленной Информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №6

по дисциплине «Автоматное программирование систем реального времени»

Выполнил студент группы КВМО-01-22

Торгун И.В.

Принял

Хлебников А.А.

Практическая работа работы выполнена «7» октября 2022 г.

Содержание

Ход работы	3
Самостоятельная работа	6
Вывод	8

Ход работы

В текущей работе произведем генерацию кода на языке Си для контроллеров В&R по примеру простейшей модели.

Рисунок 1

Результатом работы будет данный график:

В связи с ограничениями именования в Automation Studio версии 4.5.2.102, мы изменили имя выходного объекта генерации кода на «constgen».

Рисунок 3

Изменили шаблон кодогеренатора Си на «Automation Studio FB».

Рисунок 4

Сгенерировали исходные коды блока:

[Ошибка]: "Модуль генерации кода не зарегистрирован. Максимальное допустимое количество блоков для схемы: 200"
[Ошибка]: "Количество блоков в проекте: 5"
[Информация]: "Исходный текст сохранён в C:\Users\Xiaomi\Desktop\Учебники и методички\Хлебников\6\код\constgen_fb.c"
[Информация]: "Исходные тексты программы сгенерированы"
[Информация]: "Используется шаблон кода C:\Program Files\SimInTech64\bin\CodeTemplates\Automation_Studio_FB\"
[[Информация]: "Запуск сборочного скрипта "C:\Program Files\SimInTech64\bin\CodeTemplates\Automation_Studio_FB\compile.bat" "C:\Us

Рисунок 5

Запустили Automation Studio, создали новый проект, выбрав в качестве контроллера «System X20». Добавили в качестве внешней библиотеке сгенерированный блок SimInTech и произвели вызов функции библиотеки.

Рисунок 6

Далее добавили необходимую переменную «const_i» в «Variables.var».

Собрали проект. Для этого в окне Automation Studio выбрали пункт меню «Project – Build Configuration». После сборки конфигурации, произвели ее установку на контроллер в режиме симуляции. После этого произошла повторная сборка проекта. После создания структуры перезагрузили симулятор.

В режиме мониторинга добавили окно просмотра состояния переменных блока «Watch» и окно отслеживания «Trace», куда добавили отслеживание интересующего нас параметра. После отслеживания получили график, который соответствует графику, полученному в SimInTech.

Рисунок 7

Самостоятельная работа

В качестве самостоятельной работы предлагается сгенерировать и проверить генерацию библиотеки клапана, описанного в предыдущих работах.

Рисунок 8

Данной работе соответствует следующий график:

Рисунок 9

По аналогии с первой частью сгенерировали код и подключили библиотеку, назвав ее «valve» и добавили вызов функции данной библиотеки

Рисунок 10

Собрали проект. После сборки конфигурации, произвели ее установку на контроллер в режиме симуляции. После этого произошла повторная сборка проекта. После создания структуры перезагрузили симулятор, добавили «Watch» и «Trace».

Работа программы меняется при изменении значений переменных «cmdopen» и «error».

] 🧼 C	onst_i	valve_fb	local	
⊢ ◆	timestep	LREAL		0.001
⊢ ◆	timesec	LREAL		1.192999999999994
- 🥟	cmdopen	LREAL		1.0
⊢ ◆	error	LREAL		0.0
⊢ ◆	valve_pos	LREAL		0.003200000000000001
⊢ ◆	openalarm	BOOL		FALSE
⊢ ◆	openrun	BOOL		TRUE
⊢ ◆	closerun	BOOL		FALSE
⊢ ◆	closealarm	BOOL		FALSE
⊢ ◆	valvev4_out_0	LREAL		1.0
⊢ ◆	valvev5_out_0	LREAL		0.0
⊢ ◆	valvev9_out_0	LREAL		0.003200000000000001
⊢ ◆	valvev17_t	LREAL		6.983999999999947
⊢ ◆	valvev18_t	LREAL		0.0
⊢ ◆	valvev17_out_0	BOOL		FALSE
⊢ ◆	valvev17_timer	BOOL		TRUE
⊢ ◆	valvev18_out_0	BOOL		FALSE
⊢ ◆	valvev18_timer	BOOL		FALSE
⊢ ◆	valvev6_out_0	LREAL		0.0
⊢ ◆	valvev7_out_0	LREAL		1.0
⊢ ◆	valvev8_out_0	BOOL		FALSE

Рисунок 11

После отслеживания интересующих нас параметров получили данный график, который соответствует полученному раннее в SimInTech.

Рисунок 12

Вывод

В текущей работе мы произвели генерацию кода на языке Си для конроллеров В&R по примеру простейшей модели. В данной работе была рассмотрена работа с «Automation_Studio». Мы получили два совпадающих графика, один из SimInTech, а другой из «Automation_Studio». Также самостоятельно подключили другую библиотеку и проверили ее работоспособность, сравнив полученные графики из SimInTech и Automation Studio