

Course Code: BCSE353E

Course Name: Information Security Analysis and Audit

Assessment - 1

Name: Shivam Dave

Reg. No.: 21BCB0107

Experiment 1: -

Designing a Network with 3 Desktop, 3 switches (2960) and 3 Routers (2811) as shown below and do the <u>Network Trouble shooting using Packet Tracer Tool.</u> Use the Network Commands using CLI options of the Cisco Packet Tracer.

Steps:

1) First, we set up 3 PC PT 3 2811 and 2 2960-24TT routers as shown below

2) We connect with 2 network device Switches(Switch Number 2960)

3) We place 3 routers (Router number 2811)

- 4) We need to make sure to add serial port interface to the given routers. It involves the following steps:
 - a. Turn off the router to add serial port

b. Turn on the router again.

5) Make correct wire connections with each end device, network device and router as shown.

6) We finally create our circuit as follows:

7) We configure the IP addresses of each PC

For Router 1:

CLI commands are as follows:

For router 2:

CLI commands are as follows:

For Router 3:

IP V.4 Address is set as 13.10.10.10 for the PC-3 and default Gateway is set as 13.10.10.1

8) We configure the IP V.4 address of each router as follows:

Router 1:

```
Router(config-if) #int serial 0/0/0
Router(config-if) #ip ad 10.0.0.2 255.0.0.0
Router(config-if) #no shut

%LINK-5-CHANGED: Interface Serial0/0/0, changed state to down
Router(config-if) #ex
Router(config) #
Router(config) #
Router(config) #
Router(config) #interface Serial0/0/0
Router(config-if) #

Powter(config-if) #
```

Router 2:

```
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/0, changed state to up

Router(config-if) #interface serial 0/0/1
Router(config-if) #ip ad 11.0.0.2 255.0.0.0
Router(config-if) #no shut

Router(config-if) #
%LINK-5-CHANGED: Interface Serial0/0/1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/1, changed state to up
```

Router 3:

Observation and results:

Finally, after configuring everything. We use the Ping command to transmit data in form of Packets.

a) From PC0 to PC1 & PC2

```
Physical
                      Desktop
                                                        Attributes
             Config
                                     Programming
Command Prompt
                                                                                                                             X
 Packet Tracer PC Command Line 1.0
 C:\>ping 192.168.5.10
 Pinging 192.168.5.10 with 32 bytes of data:
Request timed out.
Reply from 192.168.5.10: bytes-32 time-55ms TTL-125
 Reply from 192.168.5.10: bytes-32 time-2ms TTL-125
Reply from 192.168.5.10: bytes-32 time-2ms TTL-125
 Ping statistics for 192.168.5.10:
 Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
      Minimum = 2ms, Maximum = 55ms, Average = 19ms
 C: \>
```

```
C:\>ping 192.168.3.10

Pinging 192.168.3.10 with 32 bytes of data:

Request timed out.
Reply from 192.168.3.10: bytes=32 time=1ms TTL=126
Reply from 192.168.3.10: bytes=32 time=1ms TTL=126
Reply from 192.168.3.10: bytes=32 time=2ms TTL=126

Ping statistics for 192.168.3.10:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 2ms, Average = 1ms
```

b) From PC1 to PC0 and PC2

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.10
Pinging 192.168.1.10 with 32 bytes of data:
Reply from 192.168.1.10: bytes=32 time=18ms TTL=126
Reply from 192.168.1.10: bytes=32 time=3ms TTL=126
Reply from 192.168.1.10: bytes=32 time=1ms TTL=126
Reply from 192.168.1.10: bytes=32 time=3ms TTL=126
Ping statistics for 192.168.1.10:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 18ms, Average = 6ms
C:\>ping 192.168.5.10
Pinging 192.168.5.10 with 32 bytes of data:
Reply from 192.168.5.10: bytes=32 time=3ms TTL=126
Reply from 192.168.5.10: bytes=32 time=1ms TTL=126
Reply from 192.168.5.10: bytes=32 time=3ms TTL=126
Reply from 192.168.5.10: bytes=32 time=4ms TTL=126
Ping statistics for 192.168.5.10:
  Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 4ms, Average = 2ms
C:\>
```

c) From PC2 to PC1 & PC0

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.3.10
Pinging 192.168.3.10 with 32 bytes of data:
Reply from 192.168.3.10: bytes=32 time=1ms TTL=126
Reply from 192.168.3.10: bytes=32 time=2ms TTL=126
Reply from 192.168.3.10: bytes=32 time=1ms TTL=126
Reply from 192.168.3.10: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.3.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 2ms, Average = 1ms
C:\>ping 192.168.1.10
Pinging 192.168.1.10 with 32 bytes of data:
Reply from 192.168.1.10: bytes=32 time=4ms TTL=125
Reply from 192.168.1.10: bytes=32 time=2ms TTL=125
Reply from 192.168.1.10: bytes=32 time=2ms TTL=125
Reply from 192.168.1.10: bytes=32 time=2ms TTL=125
Ping statistics for 192.168.1.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 2ms, Maximum = 4ms, Average = 2ms
C:\>
```