LaPIS Diagnostic Test Workbook - Mathematics

Name : Varun S

Class: 7

Section : C

School : AKV Public School

Login ID : AKV184

Varun S's Performance Report

Score: 14/40 Percentage: 35.0%

Varun S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princ	ipal Signature	

Mensuration

Topics to be Improved			
Area	Area of rectangle		

.....

Hi, here in this video you will learn **Area**

Question: 1

Find which of the shaded portion in the given shape represent it's area.

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

..... Question: 2

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____

The area of garden = $\underline{\qquad}$ x $\underline{\qquad}$ = $\underline{\qquad}$ cm^2

Question: 3

Shade the possible dimension of the door whose area is 500 m^2

$$25 m \times 20 m$$

 $30 \ m \times 20 \ m$

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25m \times 25m$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved			
Range	Finding the range		
Chance of probability	Sample space in probability, Basis of probability		

Hi,	here	in	this	video	vou	will	learn	Range
,	11010		CIII	11400	,, 0 01	* * * * * *	100111	

Question:	1.
Question.	4

Answer:

The difference between highest value and lowest value is _____

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}, Lowest value = \underline{\hspace{1cm}}.$

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 5

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20 + 51$$

$$\frac{-38-51}{2}$$
 51 + 38

$$51 + 38$$

.....

.....

.....

......

$$\frac{51+20}{2}$$

Answer:

 $Range = \bot$

Arranging the data in ascending order, _____

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Question: 6

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of 5 =

Therefore,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Basics of probability

Question: 7

Which of the following contains list of all possible outcomes.

Sample space

Sure events

Impossible events

4		
\boldsymbol{A}	nswer:	•

Probability is the mea	asure of	(chance /nw	mber) of an events	s happenings.
Sample space consists	s of	(possible/ imposs	sible) outcomes.	
Sure events always	(occı	urs/don't occurs).		
Impossible events	(occur	rs/ don't occurs).		
Therefore,	contains list of	of possible outcome	es.	
Question: 8				

Write the possible outcomes while spinning the given wheel.

Answer:			
Outcomes are (possible/in	mpossible) results of	an experiment.	
The possible outcomes while spinning whe	eel are ₹0, ₹10,		
Question: 9			
A bag contains three balss of colour blue, are taken out.	green and red. Write	e the possible outcomes if two b	palls
Answer:			
A bag contains,	and	balls.	
If one of the ball is blue in colour, then ot	her ball can be	or	
If one of the ball is green in colour, then o	other ball can be	or	
If one of the ball is red in colour, then oth	ıer ball can be	or	
Therefore, if two balls are taken out then	possible outcomes ar	re blue +,	
1	1		

Hi, here in this video you will learn Basics of probability	
Question: 10	
Identify the sure events and impossible events	
(i) The sun rises in the west.	
(ii) Water is colourless.	
(iii) Clock rotates in clock wise direction.	
(iv) Ball is square in shape.	
Answer:	
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is	
event. Clock rotates in clock wise direction is event. Ball is square in shape is event.	
Question: 11	
Probability of sure events is (greater / smaller) than probability of im	possible events.
Answer:	
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.	
Question: 12	
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his bor probability of getting a pen from his box.	x. What is the
Answer:	
Things Raju have Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)	

Geometry

Topics to be Improved		
Related angles	Basic of angles, Complementary angles	
Transversal angle made by transversal	Basics of Transversal angle	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Angle sum property of triangle	Angle sum property of triangle	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Types of triangle	Basics of types of triangle (sides)	

Hi,	here in this video you will learn Related Angles
Que	stion: 13
(i)	When two rays of an angle are perpendicular, then the angle formed between them is a angle .
(ii)	When two rays of an angle are in opposite sides, then the angle formed between them is a $____$ angle .
Ans	wer:
A	(line segment /ray) begins from one point and travels endlessly in a direction.
(i)	The angle formed between two perpendicular rays is° and it is called angle.
(ii)	If two rays starting at same point moves in opposite direction, they form a (straight / perpendicular) line. The measure of the angle formed is °and it is called angles.

Question: 14

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 15

Find the complementary angles in the given diagram.

.....

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ _____, and its complement angle is _____

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Basics of Transversal angle

Question: 16

.....

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
\angle a and \angle g , \angle b and \angle h,	\angle a and \angle e, \angle b and \angle f,

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 19

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

 $Side AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 20

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are _____ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is _____ than the other side of the triangle.

Example: In triangle XYZ,

Question: 21

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be _____ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

I herefore, length of the third side is greater than ______ but less than _____

Hi, here in this video you will learn Basics of 3D model

Question: 22

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the number	of vertex,	edges and	faces in a	cube.	
Cube have	. vertices,	ed	$lges and _{-}$		faces.

Question: 24

How many vertices, edges and faces does dices have?

Answer:
The shape of dice is
Dices have vertices, edges and faces.
Hi, here in this video you will learn Pythagoras property
<i>Question:</i> 25
In a right angled triangle, square of the = sum of the squares of legs.
Answer:
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs).
Pythagoras theorem states that
Question: 26
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.
Answer:
A m C
Pythagoras theorem states that square of the = sum of the squares of its
$\overline{Given: Base} = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$
Base and altitude are (hypotenuse/ legs) of the triangle.

......

Therefore, hypotenuse of the triangle is _____.

Question: 27

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Angle sum property

Question: 28

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

.....

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question:	29
Q ucoulon.	\sim

Which of the following triangle satisfy the angle sum property.

Answer:

Question: 30

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is ______ Let's consider the angles of triangle be 8x, ____ and ____ We know sum of the angles of a triangle is ____ Therefore, 8x +___ +__ $= 180^{\circ}$. The value of x =_____ The angles of the triangle are _____

Hi, here in this video you will learn Criteria of congruence

Question: 31

Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if they are _____ (identical/non-identical) in shapes and size.

Example: Square and Rectangle are (congruent/not congruent).
Question: 32
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $___$ (SSS/ASA/SAS) criteria .
$\underline{Answer:}$
Two triangle are (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, and
1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal/not equal) to the three corresponding sides of the other triangle.
2. In SAS Congruence criteria - $(2/3/5)$ sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
3. In ASA Congruence criteria (2/ 3/ 5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SS	SS	sides and angles are equal
SA	AS	sides and angles are equal
AS	SA	sides and angles are equal

Question: 33

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Related Angles

Question: 34

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

Answer:

- 1. When sum of the two angles is equal to 90° , they are called as _____ angle. Example : 45° and 45° , ____, and ____.
- 2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

Question: 35

Shade the complementary angles.

......

.....

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

$$85^{\circ}+95^{\circ}=$$
 _____ and this is _____ (a / not a) complementary angles.

$$45^{\circ} + 45^{\circ} =$$
 and this is _____ angles.

$$6^{\circ} + 84^{\circ} =$$
 and this is _____ angles.

$$73^{\circ} + 107^{\circ} =$$
 _____ and this is ____ angles.

$$36^{\circ} + 64^{\circ} =$$
 _____ and this is ____ angles.

$$90^{\circ} + 90^{\circ} =$$
 and this is angles.

Question: 36

Find the complement and supplement of 15° and 90°

Answer:

One angle is $___$ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

One angle is (complements / supplements) to other angle, when sum of the twangles is equal to 180°.
Complement of $15^{\circ} = \underline{\hspace{1cm}}$, Complement of $90^{\circ} = \underline{\hspace{1cm}}$. Supplement of $15^{\circ} = \underline{\hspace{1cm}}$, Supplement of $90^{\circ} = \underline{\hspace{1cm}}$.
Hi, here in this video you will learn Types of triangle
<u>Question: 37</u>
Polygon with three sides is called as
Answer:
A polygon is a simple (open / closed) curve made up of only line segments.

Question: 38

Identify the types of triangles.

Polygon with three sides is called

Draw a diagram of polygon with three sides :

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called ______ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 39

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be
Answer:
The shape of the park is
The shapes has sides and this shape has sides of equal length.
Given: length of sides of park is
The possible length of third side is

Number system

Topics to be Improved		
Operations on rational numbers	Division of rational numbers	
Law of Exponents	Law of Exponents	
Fractions	Multiplication of fractions, Division of fraction	
Exponents	Solving exponents	
Properties of integers	Associative property	

 Hi , here in this video you will learn **Operation on rational numbers**

Question: 40

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 41

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

18		=	18	×	=	
7	•		7			

Question: 42

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____.

Hi, here in this video you will learn Law of exponents

 $(x)^0$ is equal to ______.

Answer:

Question: 43

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In
$$(x)^0$$
 base = _____

Any number or variable with power zero is equal to ______. Therefore, $(x)^0$ equal to _____.

Question: 44

i. $a^m \times a^n =$ ______

ii.
$$a^m \div a^n =$$

Answer:

Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted)

Division of two numbers with same base with different power, their exponents are _____ (added/ subtracted).

.....

......

Question: 45

Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$

$$a+n+x$$
 bmy 1 $ab+mn+xy$ 0 anx $b+m+y$

$$0 \qquad anx \qquad b +$$

Answer:

Any number with power zero is equal to______(One/ Zero). Any number with power one is equal to ______ (same/ different) number.

$$(a^{0} \times b^{1}) + (m^{1} \times n^{0}) + (x^{0} \times y^{1}) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{O} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

Hi, here in this video you will learn Multiplication on fractions

Question: 46

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

.....

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as _____ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 47
There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.
Answer:
Total number of students = Fraction of students who are girls = Number of girls = =
Question: 48
Solve: $2\frac{7}{4} \times \frac{2}{3}$
Answer:
$2\frac{7}{4}$ is a (proper / mixed) fraction. Here, 2 is, 7 is and 4 is
To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}})+\text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$ $2\frac{7}{4} \times \frac{2}{3} = \underline{\hspace{1cm}} \times \frac{2}{3} = \underline{\hspace{1cm}}$
Hi, here in this video you will learn Exponents and power Question: 49
Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $ 10 is raised to the power of = (10)
Question: 50 Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ × ___ = ___.

Question: 51

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is ____ ($(k)^5$ or $(5)^k$).

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn **Properties of integers**

Question: 52

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
С	15 + 17 = 32
d	1 + 99 = 99 + 1

......

Answer:

(i) Closure property:

The sum of integers is always _____(integer / not a integer).

Therefore, _____ + ____ = ____

From the given option ______ satisfies the closure property.

(ii) Associative property:

Rearranging the parentheses (brackets) $____$ (does not/ does) change the sum.

Therefore, (a + b) + c =______.

From the given option ______ satisfies the Associative property.

(iii)	Commutative property: Changing the order of the addend		oes not/ does) change t	he sum.
	Therefore, $a + b = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$ From the given option $\underline{\hspace{1cm}}$		s the Commutative prop	perty.
. ,	Identity property: The sum of = a			ns same number.
	From the given option	satisfie	s the Identity property.	
Ques	stion: 53			
Mark	the operations in which commuta	tive property	holds true for any two	integers.
	Addition Subt	traction	Multiplication	Division
Ansv	<u>ver:</u>			
For a The control	mmutative property, changing the (does not/ does) chang my two integers, commutative property for addition commutative property for multiplication: 54 dditive identity and multiplicative	e the result. perty holds to is cation is	rue for	
$oldsymbol{Ansi}$		racinary one	Same. (165 of 170)	
Identi The I	ity property holds only fordentity property for addition isdentity property for multiplication		$_{-}$ and additive identity i	
There	efore, additive identity is((equal / not	equal) to multiplicative	e identity.
Hi,	here in this video you will le	earn Divis	ion on fractions	
Ques	stion: 55			
Find	the shape which contains the impr	roper fraction	a of $5\frac{2}{7}$.	
	<u>10</u> 35	$\frac{10}{7}$	$ \begin{array}{c c} \hline 37 \\ \hline 7 \end{array} $	

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 56

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 57

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Comparing Quantities

Topics to be Improved		
Percentage	Basic of percentage	
Conversion of fraction into percentage	Conversion of fraction into percentage	
Equivalent ratios	Basic of proportion	

Hi, here in this video you will learn Basics of pe	ercentage
--	-----------

Question: 58

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

......

.....

Question: 59

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks.

75 % can be written in fraction form

Then the mark scored by Arun = Total mark \times 75% = ____ \times ___ = ____

Question: 60

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.

Answer:

There are _____ apples in a basket.

Number of rotten apples are Fraction form of rotten apples in a basket = ${}$	
Convert it into a percent= x% =	
Hi, here in this video you will learn Converting fraction into percentage	
Question: 61	
Complete the box in the given equation.	
$5\% = \frac{5}{\Box}$	
Answer:	
Percentage are the fraction with the denominator	
Therefore, 5% can be expressed as	
Question: 62	
Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.	
(i) $\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$	
(ii) $\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$	
(iii) $\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$	
Answer:	
To convert fraction into percentage, the value of (denominator / nume 100 or (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is	erator)should be
Question: 63	
Find the percentage of shaded part of square.	

Answer:				
The square shape is divided intoNumber of shaded part of square is	-			
Shaded part of square in fraction is				
To Convert into percenta	.ge ,	x 100		
Hi, here in this video you will learn	Basics of p	roportic	on	
Question: 64				
If a:b and c:d are equivalent ratio, then it ca	n be expressed	as	_	
Answer:				
A (proportion / ratio) is used to exp Standard form to express proportion is		one/two)	equivalent ra	atios.
Question: 65				
Find the ratio of shaded part to unshaded pa	art of A and B.	Are the tv	wo ratios eq	uivalent?
				٦
				†
				\dashv
				_
A				
		В		
Answer:				
Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part Ratio of shaded to unshaded parts of A is $\underline{\hspace{1cm}}$ Shaded part of $B = \underline{\hspace{1cm}}$, Unshaded part of $B = \underline{\hspace{1cm}}$. Ratio of shaded to unshaded parts of B is $\underline{\hspace{1cm}}$ Fractional form $= \underline{\hspace{1cm}}$. Fraction form of A $\underline{\hspace{1cm}}$ (equal/ not equal	Fraction	nal form =		
Question: 66				

If a:b::c:d is proportion, shade the correct expression

$$a = \frac{bc}{d}$$

$$c = \frac{ad}{b}$$

Answer:

Two equivalent ratio which are proportion, it can be written as a : b :: c : d or $___$ = $___$ (in fraction) .

First and fourth term are called _____ and second and third term are called ____. In proportion, product of extreme terms is ____ (equal to/ not equal to) product of middle terms.

Therefore, $a \times d = \underline{\hspace{1cm}}$, then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$

Algebra

Topics to be Improved				
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			
subtraction of algebraic expressions	subtraction of algebraic expressions			
Basics of simple equation	Solving of simple equation, Formating of simple equation			

Hi, here in this video you will learn Addition on expression

Question: 67

Shade the like terms.

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are ______

Question: 68

Complete the expression $7r^2 + r \Box - 2 \Box = \underline{} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + _ -_{2})_{r^2} = _$$

Question: 69

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

(i) Total chocolates Ram and Sam have: _____

$\underline{Answer:}$						
		I	1	\neg		
	- C	Chocolates	Icecream			
	Sam					
	Italii					
(i) Total chocolates Ram's	Ram and Sam has chocolate + San		=	=	=	
(ii) How many icecre	eams Sam have m icecream			=	=	
Hi, here in this vi	aco you will le	am Subira	COLOII OII	eybre221	IOII IN A	SAUPRICA
	vpressions a + b				— ē Ÿ	
Find the sum of two ex					— ē Ÿ	
Find the sum of two examples of two expressions. The given two expressions will get the sum of two expressions.	ions area added only if the	+ c and b + c and ey are	e + d		— ē Ÿ	
Question: 70 Find the sum of two examples: The given two express: The two terms will get The sum of two express The answer is Question: 71	ions area added only if the	+ c and b + c and ey are	e + d		— ē Ÿ	
Find the sum of two examples of two examples of two expressions. The two terms will get the sum of two expressions of two expressions of two expressions.	ions area added only if the	+ c and b + c and ey are	c + d _(Like/ Unli		— ē Ÿ	
Find the sum of two examples of two examples of two expressions. The two terms will get the sum of two expressions of two expressions of two expressions.	ions area added only if the	+ c and b + c and ey are + School	c + d _(Like/ Unli	ke) terms.	— ē Ÿ	
Find the sum of two examples of two examples of two expressions. The two terms will get the sum of two expressions of two expressions of two expressions.	ions are a added only if the ssions =	+ c and b + c and ey are + School a	e + d _(Like/ Unli	ke) terms.	— ē Ÿ	

(i) Total number of boys in school A and B is _____

Number of teachers

- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

$\underline{Answer:}$

25t

45t

(i) Number of boys in school A = _____,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is $___$ + $___$ = $___$

(ii) Number of boys in school B = _____,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___+$ $___=$ $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$

Question: 72

Solve the following:

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

......

 Hi , here in this video you will learn $\operatorname{\mathbf{Solving}}$ an $\operatorname{\mathbf{equation}}$

Question: 73

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley ② is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 74

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \boxed{} + 3 = -4$$

Answer:

The given equation is 7—+3 =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times$$
 ____+ $3 =$ ____

 $7 \times$ ____+3 = ____

 $7 \times __+3 = _$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 75

......

Arrange the terms in the descending order when the value of x is 2.

 $5x \times 1$

x+3 2x-4 $\frac{1}{2}x$

Answer:

The given expression are _____

The value of x is __ substituting value of x

 $2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

 $2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

Arranging in descending order: ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____,

Hi, here in this video you will learn Solving an equation using application

Question: 76

.....

......

Box B contains _____ times the number of chocolates in Box A

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 77

Write the equation for the following statement.

Subtracting four times of m from 4 is n

Answer:

Subtracting four times of m from $4 = \underline{\hspace{1cm}}$
The equation is
Question:~78
Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 Add 9 to the product of a and 2
$\underline{Answer:}$
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$
Product of a and $2 = \underline{\hspace{1cm}}$
Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and 9 Add 9 to the product of a and 2

Four times of $m = \underline{\hspace{1cm}}$