Цифровая обработка сигналов в мобильной связи. Примеры обработки сигналов в системе LTE

Лидия Варукина, к.т.н.

Технологический офис региона Европа

19 мая 2015

Математическое представление радиосигнала

- Переносчик сигнала S электромагнитное колебание частоты F
- Информация Iмодулирует амплитуду A и фазу ϕ радиосигнала S

Пример алфавита из 16 символов - 16-позиционная квадратурная амплитудная модуляция (16-КАМ)

Системы с несколькими передающими и приемными антеннами (МІМО)

- Один передатчик и один приемник
- Традиционная схема для систем GSM и 3G

Multiple-Input-Multiple-Output

- Несколько передающих трактов на базовой станции и несколько приемных трактов в абонентском терминале
- Используется в системе LTE, максимальный размер 4х4 (типовая схема MIMO 2х2)
- Увеличение скорости передачи

Мультиплексирование сигналов в пространстве

 θ_i – информационный символ, передаваемый через i-й тракт

- Сигналы через М антенн передаются одновременно и в одной полосе частот
- Переданные сигналы поступают в N приемных трактов, в каждый из трактов поступает смесь из M переданных сигналов
- Скорость передачи в системе MIMO можно увеличить в M раз по сравнению с системой SISO, если M≤N

Математическая модель системы МІМО

• Процесс декодирования сводится к решению уравнения относительно θ при известной матрице канала \mathbf{H} (оценивание канала осуществляется по известным пилот-сигналам)

В системе присутствует случайный шум - традиционные методы решения систем уравнений приводят к ошибкам

Методы декодирования МІМО

$$\mathbf{Y} = \mathbf{H}\,\mathbf{\theta} + \mathbf{\eta}$$

1. Метод обнуления (Zero Forcing)

Не учитывает характеристики шума

В случае квадратной матрицы канала **H** (M=N)

$$\hat{\theta} = H^{-1}Y$$

В общем случае (M≠N)
$$\hat{\boldsymbol{\theta}} = (\mathbf{H'H})^{-1}\mathbf{H'Y}$$
 используется псевдообратная матрица $(\mathbf{H'H})^{-1}\mathbf{H'}$

2. Метод минимума среднеквадратической ошибки (МСКО) $\hat{\mathbf{\theta}} = (\mathbf{H'H} + \sigma^2 \mathbf{1})^{-1} \mathbf{H'Y}$ Учитывает характеристики шума (среднюю мощность σ^2) и позволяет получить более точные оценки

Вычислительная сложность пропорциональна М^3.

М – число антенн.

Методы декодирования МІМО

3. Метод последовательного исключения декодированных компонент (ПИК)

Каждая компонента вычисляется по методу МСКО Вычислительная сложность пропорциональна М^4

4. Метод максимального правдоподобия (МП)

Перебор по всем возможным значениям вектора $oldsymbol{arTheta}$

Вычислительная сложность пропорциональна K^M. К – число символов в алфавите, M – число антенн.

$$\hat{\mathbf{\theta}} = \arg\min_{\mathbf{\theta}} \|\mathbf{Y} - \mathbf{H}\mathbf{\theta}\|^2$$

Характеристики методов декодирования

- Метод максимального правдоподобия обеспечивает наилучшие характеристики системы за счет высоких вычислительных затрат
- Реализовать алгоритм в реальном времени, например, для МІМО 4х4 и 64-символьного алфавита, затруднительно, необходимо осуществить перебор 64⁴ = 16 777 216 символов на интервале следования одного символа (~70 мкс в LTE)

Метод декодирования	МСКО	ПИК	МΠ
Вычислительная сложность пропорциональна	M^3	M^4	K^M
Число операций при K=64, M=4 пропорционально	64	256	16 777 216

МСКО - минимум среднеква дратической ошибки

ПИК - последовотельное исключение декодирированных компонент

МП - максимальное правдоподобие

Нужны математические методы декодирования МІМО с малой вычислительной сложностью, по эффективности приближающие к характеристиками метода максимального правдоподобия

Задачи следующего десятилетия

- Использование см- и мм-диапазонов частот в 5G
- Размеры антенных элементов сравнимы с размерами кристаллов
- Массивное МІМО ≥ 16х16
- Расширенный алфавит К ≥ 256

Нужны новые эффективные методы обработки сигналов МІМО

Цифровая обработка сигналов – наука на стыке радиотехники и прикладной математики.

Роль цифровой обработки сигналов в телекоммуникациях возрастает с каждым годом.

Радиотехника + математика = эффективные телекоммуникации

Литература:

Бакулин М.Г., Варукина Л.А., Крейнделин В.Б. Технология МІМО: принципы и алгоритмы. Москва, Горячая Линия – Телеком, 2014

https://networks.nokia.com/about-us/contact-us

Пример схемы МІМО с обратной связью

$$\mathbf{Y} = \mathbf{H}\mathbf{\theta} + \mathbf{\eta}$$
 $\mathbf{H} = \mathbf{U}\mathbf{D}\mathbf{V}$
 $\mathbf{Y} = \mathbf{U}\mathbf{D}\mathbf{V}\mathbf{\theta} + \mathbf{\eta}$
 $\mathbf{\Omega} = \mathbf{V}\mathbf{\theta}$
 $\mathbf{Z} = \mathbf{U}^{-1}\mathbf{Y}$
 $\mathbf{Z} = \mathbf{D}\mathbf{\Omega} + \mathbf{U}^{-1}\mathbf{\eta}$

- Передав от приемника к передатчику матрицу канала **H,** можно сформировать на передающей и приемной сторонах оптимальные диаграммы направленности
- Сингулярное разложение матрицы канала: $\mathbf{H} = \mathbf{U} \mathbf{D} \mathbf{V}$ где \mathbf{U} и \mathbf{V} унитарные матрицы; \mathbf{D} диагональная матрица

• Канал MIMO в эквивалентной системе описывается диагональной матрицей ${f D}$, то есть может быть представлен как совокупность неинтерферирующих пространственных каналов ${f Z} = {f D} {f \Omega} + {f U}^{-1} {f \eta}$

В LTE используется фиксированный набор прекодирующих матриц, абонентский терминал передает на базовую станцию номер выбранной матрицы – согласование системы с каналом неидеальное. Требуется оптимизация.