Mozilla Firefox is recommended for best experience

Moodle - Learning Management System (LMS)

<u>Dashboard</u> / My courses / <u>2CSDE61</u> / <u>3 February - 9 February</u> / <u>2CSDE61-Deep Learning-Quiz 1-3rd Feb 2022-2pm to 2:20pm</u>

Chambard	Thursday 2 February 2022, 2:02 DM			
Started on				
State				
	Thursday, 3 February 2022, 2:22 PM 20 mins 1 sec			
	6.00 out of 15.00 (40 %)			
Grade	6.00 out of 15.00 (40%)			
Correct Mark 2.00 out of 2.00	Ground truth (target) labels (1-hot encoded) for a binary classification problem for some input data is [0 1]. Predicted values are [0.3 0.7]. What would be binary cross-entropy loss? Answer: 0.5145			
	The correct answer is: 0.52			
Question 2 If value of 4 output neurons before softamx is [2.9 1.5 0.4 0.2] (neuron 1 to neuron 4 in sequence), what wo score of the third neuron (select the closest value)?				
Mark 2.00 out of 2.00	Select one:			
	a. 0.06 ✓			
	O b. 0.04			
	o. 0.07			
	C. 0.07			
	The correct answer is: 0.06			
	Assume spatial extent of the input volume and max-pooling filter to be 599×399 and 3×3 respectively. Assume stride=2. What would be total number of activation (neurons) in the resultant volume after this pooling operation?			
2.00	Answer: 59004 ×			
	The correct answer is: 59501			
Incorrect	Assume size of the input image and convolution filter to be $600 \times 400 \times 3$ and $11 \times 11 \times 3$ respectively. If we wish to produce 10 feature maps as the output of this valid convolution operation (stride=1), how many connections are involved? Assume that each convolutional filter has an associated bias.			
	Answer: 238004 ×			
	The correct answer is: 837564000			

Question $\mathbf{5}$ Assume size of the input image and convolution filter to be 600 x 400 x 3 and 11 x 11 x 3 respectively. If we wish to Incorrect produce 10 feature maps as the output of this convolution operation, how many parameters are involved? Ignore bias parameters in calculation. Mark 0.00 out of 2.00 Answer: 28004 The correct answer is: 3630 Question **6** In transfer learning, if the new dataset is large and similar to original dataset: Correct Select one: Mark 1.00 out of 1.00 a. we can fine-tune through the full network b. the best idea might be to train a linear classifier on the CNN codes c. we can afford to train a ConvNet from scratch d. it might work better to train the SVM classifier from activations somewhere earlier in the network The correct answer is: we can fine-tune through the full network Question 7In transfer learning, if the new dataset is large but very different from the original dataset: Incorrect Select one: Mark 0.00 out of 1.00 a. we can fine-tune through the full network X b. it might work better to train the SVM classifier from activations somewhere earlier in the network c. the best idea might be to train a linear classifier on the CNN codes d. we can afford to train a ConvNet from scratch The correct answer is: we can afford to train a ConvNet from scratch Question ${\bf 8}$ A convolutional operation basicaly performs _____ operation window-wise. Correct Select one: Mark 1.00 out of 1.00 a. None of these b. Sum of Square c. Sum of Product d. Sum of Differences The correct answer is: Sum of Product Question $\bf 9$ The popular choice of a weight function in perceptron/multilayer perceptron is Incorrect Select one: Mark 0.00 out of 1.00 a. Sum function

b. Sum of product function X

c. Product function

d. None of these

	Question 10 Incorrect	Which function is the best as the activation function if you wish to treat its output as probability values?				
	Mark 0.00 out of 1.00	Select one:				
		a. log-sigmoid				
		b. ReLU X				
		o c. linear				
		od. tan-sigmoid				
		The correct answer is: log-s	igmoid			
→ Practical 2 - CNN MNIST		- CNN MNIST	Jump to	Transfer Learning Presentation ►		