Advanced Algebra II

Assignment 2

Solution

1. Let V be the vector space of all real functions over \mathbb{R} . Prove that $1, \cos^2 t, \cos 2t$ are linearly dependent.

Proof. Note that

$$\cos 2t = 2\cos^2 t - 1,$$

which means

$$1 + (-2) \cdot \cos^2 t + 1 \cdot \cos 2t = 0.$$

This completes the proof.

2. Let $\mathbb{P}[x]$ be a vector space over \mathbb{P} . Assume $f_1(x), f_2(x), f_3(x)$ are co-prime, and any two of them are not co-prime. Prove that they are linearly independent.

Proof. Assume

$$k_1 f_1 + k_2 f_2 + k_3 f_3 = 0.$$

If there exist k_i such that $k_i \neq 0$, then we will prove there is contradiction. Without loss of generality, we assume $k_1 \neq 0$. Then

$$f_1 = -\frac{k_2}{k_1} f_2 - \frac{k_3}{k_1} f_3.$$

Since any two of f_1, f_2, f_3 are not co-prime, we assume $d(x) = (f_2, f_3)$. Note $\partial(d(x)) \geq 1$. By the above equality, we know $d(x)|f_1$. This implies that d(x) is a common divisor of f_1, f_2, f_3 , which is a contradiction, because f_1, f_2, f_3 are co-prime. Therefore, we have $k_1 = k_2 = k_3 = 0$, which means f_1, f_2, f_3 are linearly independent.

- 3. Find the dimension of the following vector spaces and find a basis.
 - (1) The vector space $\mathbb{P}^{n\times n}$ over \mathbb{P} . (The notation $\mathbb{P}^{n\times n}$ is the set of all $n\times n$ matrices with entries in \mathbb{P} .)

Solution:

Let N_{ij} be denote the matrix with the (i,j)-entry being 1 and other entries being 0. Then N_{ij} , $1 \le i, j \le n$ is a basis.

In fact, you can easily prove that N_{ij} , $1 \le i, j \le n$ are linear independent, and each matrix can be linear represented by N_{ij} , $1 \le i, j \le n$, and .

The dimension is clearly n^2 .

(2) Let

$$V = \mathbb{R}_{>0}.$$

The operations are as follows:

$$a \oplus b = ab$$
,

$$k \otimes a = a^k$$

for any $k \in \mathbb{R}$ and any $a, b \in V$.

(Hint: What is the additive identity of V?)

Solution:

The additive identity is 1 since $a \oplus 1 = a \cdot 1 = a$ for any a.

The element e is a basis. In fact, e itself is linear independent, and for any a, $a = e^{\ln a} = (\ln a) \otimes e$ (This means a can be linearly represented by e).

The dimension is 1.

4. Let $\mathbb{P}[x]_n$ be a vector space. Prove that

$$f_i = (x - a_1) \cdots (x - a_{i-1})(x - a_{i+1}) \cdots (x - a_n), \qquad i = 1, 2, \cdots, n$$

is a basis. Here a_1, a_2, \dots, a_n are pair-wisely distinct.

Proof. Recall

$$\mathbb{P}[x]_n = \{ f(x) \in \mathbb{P}[x] \mid \partial(f) < n \}.$$

Observe that for each f_i , we have $f_i(a_j) = 0$ when $j \neq i$, and $f_i(a_j) \neq 0$ when j = i since $a_1, \dots a_n$ are pair-wisely distinct.

Now assume

$$k_1 f_1(x) + k_2 f_2(x) + \cdots + k_n f_n(x) = 0.$$

Take $x = a_1$. Then we have

$$k_1 f_1(a_1) + k_2 f_2(a_1) + \dots + k_n f_n(a_1) = 0.$$

By our previous observation, we know

$$f_1(a_1) \neq 0$$
, $f_i(a_1) = 0$, $i = 2, \dots, n$.

The above two facts imply

$$k_1 f_1(a_1) = 0.$$

Since $f_1(a_1) \neq 0$, we know $k_1 = 0$.

Similarly, in the above process, we can take $x = a_j$, $j = 2, 3, \dots, n$, which lead to $k_2 = k_3 = \dots = k_n = 0$. This concludes the proof.

5. (1) In \mathbb{P}^3 , find the transition matrix from the basis $\epsilon_1, \epsilon_2, \epsilon_3$ to the basis η_1, η_2, η_3 .

$$\epsilon_1 = (1,0,0), \quad \epsilon_2 = (1,1,0), \quad \epsilon_3 = (1,1,1);$$

 $\eta_1 = (1,1,0), \quad \eta_2 = (0,0,1), \quad \eta_3 = (3,2,1).$

Solution:

Observe

$$\eta_1 = 0\epsilon_1 + \epsilon_2 + 0\epsilon_3;$$

$$\eta_2 = 0\epsilon_1 - \epsilon_2 + \epsilon_3;$$

$$\eta_3 = \epsilon_1 + \epsilon_2 + \epsilon_3.$$

Write $\mathcal{B} = \{ \epsilon_1, \epsilon_2, \epsilon_3 \}$, and $\mathcal{B}' = \{ \eta_1, \eta_2, \eta_3 \}$. Hence,

$$M_{\mathcal{B}\to\mathcal{B}'} = \begin{bmatrix} 0 & 0 & 1\\ 1 & -1 & 1\\ 0 & 1 & 1 \end{bmatrix}.$$

Note that we have

$$(\boldsymbol{\epsilon}_1, \boldsymbol{\epsilon}_2, \boldsymbol{\epsilon}_3) = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \boldsymbol{\eta}_3) M_{\mathcal{B} \to \mathcal{B}'}.$$

(2) Find the coordinate of $\alpha = (5, 4, 2)$ with respect to the bases $\epsilon_1, \epsilon_2, \epsilon_3$ and η_1, η_2, η_3 , respectively. Also, show the relation between these two coordinates.

Solution:

It is easy to check

$$\alpha = \epsilon_1 + 2\epsilon_2 + 2\epsilon_3,$$

 $\alpha = 2\eta_1 + \eta_2 + \eta_3.$

Hence the coordinate of α with respect to the basis $\epsilon_1, \epsilon_2, \epsilon_3$ is (1, 2, 2), and the the coordinate of α with respect to the basis η_1, η_2, η_3 is (2, 1, 1).

The relation between these two coordinates is

$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}.$$