数学入門 A 定期試験問題

2013年8月2日第4時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず. 解答用紙のみを提出し、問題用紙は持ち帰ること.

全間について答えよ.

問題 1.

次の各問いに答えよ. ただし. 答えのみでよい.

- (1) 集合 $A := \{1, 2, \{3, 4\}\}, B = \{3, 4\}$ について、下記の問いに答えよ.
 - (a) $A \cup B$ を求めよ.
 - (b) *A* \ *B* の元の個数を答えよ.
 - (c) $A \times B$ の元をすべて答えよ.
- (2) 空でない集合 X, Y に対して、写像 $f: X \to Y$ を考える. 次の問い に答えよ.
 - (a) f が単射であることの定義を答えよ.
 - (b) f が全射であることの定義を答えよ.
 - (c) $a \in Y$ に対して, $f^{-1}(\{a\})$ の定義を答えよ.
- (3) $f: \mathbb{R} \to \mathbb{R}$ を任意の $x \in \mathbb{R}$ に対して

$$f(x) := e^x$$

で定める. 次の問いに答えよ.

- (a) f は全射かどうか答えよ.
- (b) f は単射かどうか答えよ.

問題 1の解答とコメント.

- (1) (a) $A \cup B = \{1, 2, 3, 4, \{3, 4\}\}$
 - (b) 3
 - (c) $(1,3), (1,4), (2,3), (2,4), (\{3,4\},3), (\{3,4\},4)$
 - (c) の間違いが多かった. 括弧は (\cdots) と $\{\cdots\}$ で意味が異なることにも注意せよ.
- (2) (a) 任意の $x_1, x_2 \in X$ に対して $x_1 = x_2$ ならば $f(x_1) = f(x_2)$
 - (b) 任意の $y \in Y$ に対して、ある $x \in X$ が存在して y = f(x)
 - (c) $f^{-1}(\{a\}) = \{x \in X : f(x) \in \{a\}\}$. ただし、この問題については、 $f^{-1}(\{a\}) = \{x \in X : f(x) = a\}$ でも正解とする.
 - (c) の出来がよくなかった. $B \subset Y$ に対する $f^{-1}(B)$ の定義は答えられたとしても, $B = \{a\}$ のときの定義がどうなるか?はきちんと答えられるようにしなければいけない.
- (3) (a) 全射でない.

(b) 単射である.

 $x \in \mathbb{R}$ に対して, e^x は正の値しかとらないから全射にはならない. log を考えれば, 単射であることはすぐわかる. もしくは e^x が x について狭義単調増加であることを使ってもよい.

問題 2.

空でない集合 X, Y に対して、写像 $f: X \to Y$ を考える. 次の事柄を証明せよ.

- (1) $B_1, B_2 \subset Y$ に対して $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.
- (2) $A_1, A_2 \subset X$ に対して, $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$.
- (3) (2) で f が単射ならば $f(A_1) \cap f(A_2) \subset f(A_1 \cap A_2)$.

問題 2 のコメント.

(1) と (2) は比較的よくできていた. (3) について, f が単射でないと証明はできないので, どこかで単射の条件を使うはずである. 単射がないとどこで証明がうまくいかなくなるか?まで考えることが望ましい.

なお、逆写像と逆像は同じ f^{-1} を使うが意味が異なる. この問題では全単射は仮定していないので、逆写像を使った証明は無条件で 0 点とした. つまり、この証明の途中で、 $x \in X$ や $y \in Y$ に対して $f^{-1}(y)$ とか $f^{-1}(f(x))$ などが出てきたら、像と逆像を理解していないということである. また、集合と元の関係を理解していないと思われる解答 (例えば「 $f(A_1) = f(A_2)$ ならば $A_1 = A_2$ 」とか)、定義域と値域を混同している解答もあった. 例えば、間違いではないが $y \in f^{-1}(B_1 \cup B_2)$ と書いてある答案はたいていの場合、証明に間違いがある.

問題 3.

 $f: \mathbb{R} \to [0, \infty)$ を任意の $x \in \mathbb{R}$ に対して

$$f(x) := x^2 + 2x + 1$$

で定義する. 次を示せ.

- (1) f は単射ではない.
- (2) f は全射である.

問題 3 のコメント.

f が単射でないことについても f が全射であることについても, たとえば f(0) = f(-2) とするだけではなくて, f(0) = 1, $f(-2) = (-2+1)^2 = 1$ と計算をみせて欲しかった. だいたいの人は何をすればよいかわかっているようであったが, 計算結果だけを書くのではなく, どうしてその結果になるのかを少し見せた方がよい.

問題 4.

次のどちらかの問いに答えよ. 但し, 両方に答えた場合, 得点がよい方で評価する.

- (1) $\bigcap_{n\in\mathbb{N}} \left(0,1+rac{1}{n}
 ight) = (0,1]$ を示せ.
- (2) X,Y を空でない集合, $f:X\to Y$ を写像, $\{B_n\}_{n\in\mathbb{N}}\subset 2^Y$ を Y 上の集合族とする. このとき

$$f^{-1}\left(\bigcap_{n\in\mathbb{N}}B_n\right) = \bigcap_{n\in\mathbb{N}}f^{-1}(B_n)$$

を示せ.

問題 4 のコメント.

(1) については、完答者はいなかった. 関係のないところで「Archimedes の原理より」と書いてある答案がとても多かった. この問題では「存在」ではなくて「任意」を扱うので、Archimedes の原理はほとんど役にたたない. 証明は次のようにして行う.

任意の $x \in \bigcap_{n \in \mathbb{N}} \left(0, 1 + \frac{1}{n}\right)$ に対して、すべての $n \in \mathbb{N}$ について $x \in \left(0, 1 + \frac{1}{n}\right)$ となるから、 $0 < x < 1 + \frac{1}{n}$ が成り立つ。 $n \to \infty$ とすると 0 < x < 1 となる¹から $x \in (0, 1]$ が成り立つ。

逆に、任意の $x \in (0,1]$ に対して、すべての $n \in \mathbb{N}$ について、 $0 < x \le 1 < 1 + \frac{1}{n}$ より $x \in \left(0, 1 + \frac{1}{n}\right)$ となるから $x \in \bigcap_{n \in \mathbb{N}} \left(0, 1 + \frac{1}{n}\right)$ が成り立つ。

(2) は、問題 $2 \circ (1)$ ができれば、それほど難しくない問題である.実際、この問題に手をつけていた解答はたいてい正解していた. \square

¹極限をとると、<が≤にかわってしまうことに注意せよ.