Plan du cours

I.	Air	es	1
н.	Vol	umes de solide	3
	1.	Le pavé droit et le cube	3
	2.	Le prisme droit	3
	3.	Le cylindre	4
	4.	Le cône de révolution	5
	5.	La pyramide	6
	6.	Une boule	7
Ш.	Air	es latérales de solide	8
IV.	Vol	ume et équations	10

Mes objectifs:

- → Je dois savoir calculer le volume d'un parallélépipède rectangle, d'un prisme droit, d'un cylindre de révolution, d'une pyramide et d'un cône de révolution à l'aide d'une formule.
- → Je dois savoir calculer l'aire d'une sphère de rayon donné.
- → Je dois savoir calculer le volume d'une boule de rayon donné.

I. Aires

Les différentes formules de calculs d'aires :

Dans chaque cas, @ désigne l'aire de la figure

Exercice d'application 1

1. Détermine l'aire des deux surfaces grisées (Les figures ne sont pas en vraie grandeur).

......

.....

2. Calculer l'aire violette.

.....

.....

II. Volumes de solide

1. Le pavé droit et le cube

Le pavé droit :

L: Longueur

l: largeur

$$V = L \times l \times h$$

h: hauteur

Un pavé droit particulier, le cube :

Exercice d'application 2 —

	olume d'un pavé de droit de longueur 1 dm, de largeur 5 cm et de hauteur 30 mm?	
. Quel est le v	olume d'un cube de côté 3 m?	
	olume d'un cube de côté 3 m?	

2. Le prisme droit

Définition

Un prisme droit est un solide dont :

- Deux faces sont des polygones superposables et parallèles ; on les appelle **les bases** ;
- Les autres faces sont des rectangles ; on les appelle les faces latérales.

Exemple: Un prisme droit à base triangulaire.

Le volume d'un prisme droit est le produit de l'aire de sa base par sa hauteur : $\mathscr{V} = \mathscr{B} \times h$

Calculer le volume du prisme ci-contre.

3. Le cylindre

Définition

Un cylindre de révolution est un solide qui possède :

- deux bases sont deux disques superposables et parallèles,
- une face latérale qui s'enroule autour des bases et qui est perpendiculaire aux bases.

R = OM

h = 00

Propriété

Le volume du cylindre est le produit de l'aire de sa base par sa hauteur : $\mathscr{V}=\mathscr{B}\times h=\pi r^2\times h$

Exercice d'application 4

ercice a application 4	
a. 6 cm	(a) Calculer le volume du cylindre ci-contre.
E ()	
(b) Calculer le volume du cylindre ci-dessus.	

4. Le cône de révolution

Définition

Un cône de révolution est un solide formé :

- d'un disque appelé **base**;
- d'une surface courbe appelé face latérale;
- d'un point appelé sommet du cône.

Le volume d'un cône de révolution est le tiers du produit de l'aire de sa base par sa hauteur :

$$\mathscr{V} = \frac{\mathscr{B} \times h}{3} = \frac{\pi r^2 \times h}{3}$$

Exercice d'application 5

	5 cm
12 cm	12

(a)	Calculer	le	volume	du	cône	de	révolution	ci-contre.

•	٠		٠	٠	٠	٠	٠				٠	٠	•	٠			٠	٠			٠		•	٠	٠	٠	٠		٠	٠			•		•	•		٠	٠	٠		٠	٠	٠		٠	
		•						٠	٠	٠			٠		٠	٠	٠	٠				•	٠					٠			٠	٠		•			٠	٠			٠				٠	٠	

(b)	Calculer	le vo	olume	du	cône	de	révolution	ci-contre.	

5. La pyramide

Définition

Une pyramide est un solide dont :

- toutes les faces latérales sont des triangles ayant un sommet commun appelé **sommet de la pyramide** ,
- l'autre face est un polygone quelconque appelé base de la pyramide.

Le volume d'une pyramide est le tiers du produit de l'aire de sa base par sa hauteur : $\mathscr{V} = \frac{\mathscr{B} \times h}{3}$

Exercice d'application 6

s
5,5 cm
4 cm
E
3 cm 5 cm
G

ſ.	12	
//	g \	
15 cm	72	

(a)	Calculer	le volume	de la	pyramide	ci-contre.
-----	----------	-----------	-------	----------	------------

(b) Calculer	le volume de la	a pyramide ci-contre.	

6. Une boule

Définition

La boule de centre O et de rayon R est l'ensemble des points de l'espace dont la distance à O est inférieure ou égale à R.

Le volume d'une boule de rayon R est : $\mathscr{V} = \frac{4}{3}\pi r^3$

Exercice d'application 7

	(C)
AC = 16 cm	/ *#:·#:×
	S
	<i>"</i> //
	Y

• •	 	
• •	 	

(b) Calculer le vo	olume de la figure ci-contre.	

	•		•	٠	٠		•	•	٠	٠					٠	٠									•	٠	٠	٠		 	•	٠

III. Aires latérales de solide

Attention à bien différencier l'aire totale d'un solide et l'aire latérale d'un solide.

Définition

Une aire latérale (d'un cylindre, d'une pyramide etc) est la surface délimitant ce solide privée de sa (ou ses) base(s).

Exercice	e d'application 8
1.	(a) Calculer l'aire latérale du prisme droit ci-contre :
	s
(b) Calculer l'aire totale de ce solide :
	$M \stackrel{\uparrow}{\longleftarrow} N$
	La sphère de centre O et de rayon R est l'ensemble des points de l'espace dont la distance à O est égale à R. ropriété $ \text{L'aire d'une sphère de rayon r est égale à } 4\pi r^2. $
_	
Exem	
1. Ca	culer l'aire d'une sphère de diamètre 200 cm.

2. Calculer l'aire de la sphère ci-contre :

					•												·	۰									•										
٠	٠	٠	 							 		٠		٠			٠	٠	٠	٠					 ٠				٠	٠		٠			٠	٠	
٠	٠			٠	٠		٠	٠	٠		٠	٠	٠		•						 	٠	٠		•	٠		٠	٠	•	٠		٠		•	٠	
	٠			٠			٠	٠	٠		٠	•	٠		•	 	٠	٠				٠	٠		•	٠		٠	•	•	٠		٠				
			 			 				 						 			٠	٠										٠					٠	٠	

IV. Volume et équations

Problème 1:

Problème 2 : Calculer le rayon d'une boule dont le volume est égal à $36cm^3$.

Problème 3 : On considère le pavé droit ci-dessous, avec x un nombre positif :

- 1. Exprimer en fonction de x le volume de ce pavé droit sous forme développée.
- 2. Exprimer en fonction de x l'aire totale de ce pavé droit sous forme développée.

Problème 3 bis : Quel est le ray	yon d'une sphère dont l'aire	est égale à 200 <i>c m</i> 2 ?	