Chapitre2: GENERALITES SUR LES FONCTIONS

Exercice 1: $f(x) = x^3 - 3x^2 + 4$

1. Variation de f et Tableau de variation ?

- * $D_f = \mathbb{R}$.
- * f étant une fonction polynôme, f est continue et dérivable sur \mathbb{R} et $f'(x) = 3x^2 - 6x = 3x(x-2).$

х	-∞	0		2		+∞
f'(x)	+	0	-	0	+	
f		× ⁴ ~		→ (→ ^{+∞}

$$* f(0) = 4$$
; $f(2) = 0$.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty.$$

$$* \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty.$$

a) f admet une bijection réciproque ?

f étant continue et strictement croissante sur $[2; +\infty[$, donc f est une bijection de $[2; +\infty[$ vers $f([2; +\infty[$, $) = [0; +\infty[$; par conséquent f admet une bijection réciproque f^{-1} définie sur [0; $+\infty[$.

b) Dérivabilité de f^{-1} en 0 ?

0 = f(2); f est dérivable en 2, mais f'(2) = 0 donc f^{-1} n'est pas dérivable en 0.

3. f(x) = 1 admet une unique solution dans $[2; +\infty[$?

f est une bijection de $[2; +\infty[$ vers $[0; +\infty[$; de plus 1 appartient à $[0; +\infty[$, donc l'équation f(x) = 1 admet une unique solution α appartenant à $[2; +\infty[$.

4. Points d'intersection avec

- l'axe des ordonnées ?
- f(0) = 4 donc on a le point A(0; 4)
 - l'axe des abscisses ?

f(x) = 0 ssi x^3 -3 x^2 +4 = 0; l'équation étant de degré 3, cherchons une racine évidente de f(x).

$$f(-1) = 0$$
 donc $f(x) = (x+1)g(x)$;

déterminons g(x) avec la méthode de Horner :

	1	-3	0	4
(-1)		-1	4	-4
	1	-4	4	0

$$\int f(x) = (x+1)(x^2-4x+4)$$

$$f(x) = 0$$

$$x = -1 \text{ ou } x^2-4x+4 = 0$$

$$x = -1 \text{ ou } x = 2;$$

donc on a les points B(-1; 0) et C(2; 0).

5. Equation de la tangente en 1 ?

- (T): $y = f'(x_0)(x-x_0) + f(x_0)$; $x_0 = 1$ donc
- (T): y = f'(1)(x-1) + f(1). Or f'(1) = -3 et f(1) = 2 donc
- (T): y = -3x + 5.
 - 6. Tracé de C_f , de (T) et de $C_{f^{-1}}$?

Soit (d):
$$y = x$$

- * (C) la courbe de la bijection passe par les points A(2; 0), son symétrique $C_{f^{-1}}$ passera par A'(0; 2).
- * (C) admet en A une demi-tangente horizontale, son symétrique $\mathcal{C}_{f^{-1}}$ admet en A' une demi- tangente verticale.
- * f étant croissante sur $[2;+\infty[,f^{-1}]$ est aussi décroissante sur $f([2;+\infty[)]=[0;+\infty[;]$ d'où le tracé de $C_{f^{-1}}$.

<u>Légende</u>: _ Tracé de C_f — Tracé de $C_{f^{-1}}$

7. Résolution graphique de l'équation f(x) = m?

- -Si $m \in]-\infty;0[$, on a une solution.
- -Si m = 0, on a deux solutions.

- -Si $m \in [0]$; 4[, on a trois solutions.
- -Si m = 4, on a deux solutions.
- -Si $m \in]4$; $+\infty[$, on a une solution.

Exercice 2: $f(x) = \frac{x^2}{1-x}$.

1. D_f et a, b, c tels que $f(x) = ax + b + \frac{c}{1-x}$?

►
$$f(x)$$
 existe ssi $x-1\neq 0$; $D_f =]-\infty$; 1[\cup]1; $+\infty[$.

$$f(x) = ax + b + \frac{c}{1 - x} = \frac{(ax + b)(1 - x) + c}{1 - x}$$
$$= \frac{-ax^2 + (a - b)x + b + c}{x - 1} = \frac{x^2}{1 - x};$$

par identification $\begin{cases} -a = 1 \\ a - b = 0 \\ b + c = 0 \end{cases} \text{ ssi } \begin{cases} a = -1 \\ b = -1 \\ c = 1 \end{cases}$

d'où
$$f(x) = -x-1 + \frac{1}{1-x}$$
.

(on pouvait obtenir ce résultat par la division euclidienne).

2. Asymptote oblique et position par rapport à C_f ?

$$Montrons que \lim_{x\to\infty} [f(x)-(-x-1)]=0?$$

$$\lim_{x \to \infty} [f(x) - (-x - 1)] = \lim_{x \to \infty} \frac{1}{1 - x} = 0;$$

d'où (d) : y = -x-1 est une asymptote oblique à C_f .

Etudions le signe de h(x) = f(x) - (-x - 1)?

$$h(x) = \frac{1}{1-x}.$$

h(x) > 0 ssi 1-x > 0 ssi x < 1. Donc

- Sur]- ∞ ; 1[, h(x) > 0 d'où C_f au dessus de (d).
- Sur] 1; $+\infty$ [, h(x) < 0 d'où C_f en dessous de (d).

3.

 \triangleright Variation de f?

* f étant une fonction rationnelle, f est continue et dérivable sur D_f et $f'(x) = \frac{2x(1-x)-(-1)(x^2)}{(1-x)^2} = \frac{-x(x-2)}{(1-x)^2}$.

*f'(x) a le même signe que son numérateur.

Х	-∞	0	1		2	+∞
f'(x)	-	0 -	+	+	0	-
f	+ ∞		+ ∞	- 8	, -4 <	- ∞

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{-x} = \lim_{x \to -\infty} -x$$

$$= +\infty.$$

$$* \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x = -\infty.$$

$$* \lim_{x \to 1} f(x) = \frac{1}{0} ?$$

signe du dénominateur :

х	-∞	1	+∞
1- <i>x</i>	+	0	-

*
$$\lim_{x \to 1^{-}} x^2 = 1$$
 et $\lim_{x \to 1^{-}} (1 - x) = 0^{+}$, par quotient $\lim_{x \to 1^{-}} f(x) = +\infty$.

*
$$\lim_{x \to 1^{+}} x^{2} = 1$$
 et $\lim_{x \to 1^{+}} (1 - x) = 0^{-}$ par quotient $\lim_{x \to 1^{+}} f(x) = -\infty$.

d'où (Δ): x = 1 est une asymptote parallèle à l'axe (y'y).

 \triangleright Tracé de C_f ?

4. Point d'intersection des asymptotes centre de symétrie ?

Soit I ce point, ces coordonnées sont les solutions du système $\begin{cases} x=1\\ v=-x-1 \end{cases}$; d'où I(1;-2).

Montrons que $\forall x \in D_f$, $2a-x \in D_f$ et f(2a-x) + f(x) = 2bC'est-à-dire $\forall x \in D_f$, $2-x \in D_f$ et f(2-x) + f(x) = -4?

• $x \in D_f$ ssi $x \ne 1$ ssi $-x \ne -1$ ssi $2-x \ne 1$ d'où $2a-x \in D_f$.

•
$$f(2-x) = \frac{(2-x)^2}{1-(2-x)} = \frac{4-4x+x^2}{-1+x}$$

 $= \frac{-4+4x-x^2}{1-x}$;
 $f(2-x) + f(x) = \frac{-4+4x-x^2}{1-x} + \frac{x^2}{1-x} = \frac{-4(1-x)}{1-x}$
 $= -4$;

donc f(2-x) + f(x) = -4 d'où I est centre de symétrie de C_f.

5. Tracé de
$$C_g$$
? $g(x) = \frac{x^2}{1+x}$;

$$g(x) = \frac{(-x)^2}{1-(-x)} = f(-x);$$

d'où C_g est le symétrique de C_f par rapport à l'axe des ordonnées.

Exercice 3:
$$f(x) = \begin{cases} \frac{2-\sqrt{4-x^2}}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
; D = [-2; 2].

1.

\triangleright Continuité de f en 0?

$$*f(0)=0.$$

*
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2 - \sqrt{4 - x^2}}{x} = \lim_{x \to 0} \frac{4 - (4 - x^2)}{x(2 + \sqrt{4 - x^2})}$$

= $\lim_{x \to 0} \frac{x}{(2 + \sqrt{4 - x^2})} = 0.$

 $\lim_{x\to 0} f(x) = f(0) \text{ donc } f \text{ est continue en } 0.$

\triangleright Dérivabilité de f en 0?

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{2 - \sqrt{4 - x^2}}{x^2} = \lim_{x \to 0} \frac{4 - (4 - x^2)}{x^2 (2 + \sqrt{4 - x^2})}$$
$$= \lim_{x \to 0} \frac{1}{(2 + \sqrt{4 - x^2})} = \frac{1}{4}.$$

 $\frac{1}{4}$ étant fini, f est dérivable en 0 et C_f admet au point d'abscisse 0 une tangente de coefficient directeur $\frac{1}{4}$.

➤ Continuité de f en 2?

$$*f(2) = \frac{2-\sqrt{4-4}}{2} = 1.$$

*
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{2 - \sqrt{4 - x^2}}{x} = 1.$$

 $\lim_{x\to 2} f(x) = f(2) \text{ donc } f \text{ est continue en 2.}$

\triangleright Dérivabilité de f en 2 ?

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{\frac{2 - \sqrt{4 - x^2}}{x} - 1}{x - 2} = \lim_{x \to 2} \frac{2 - \sqrt{4 - x^2} - x}{x(x - 2)}$$

$$= \lim_{x \to 2} \frac{2 - x}{x(x - 2)} - \frac{-\sqrt{4 - x^2}}{x(x - 2)}$$

$$= \lim_{x \to 2} \frac{-(x - 2)}{x(x - 2)} - \frac{-(x - 2)(x + 2)}{x(x - 2)\sqrt{4 - x^2}}$$

$$= \frac{-1}{2} + (+\infty) = +\infty ;$$

donc f n'est pas dérivable en 2 et C_f admet au point d'abscisse 2 une demi-tangente verticale.

Remarque: f étant définie sur [-2; 2], c'est la continuité et la dérivabilité à gauche de 2 qu'on a étudiées.

2.

\triangleright Parité de f?

• $\forall x \in D$, montrons que - $x \in D$?

 $x \in D \operatorname{ssi} - 2 \le x \le 2 \operatorname{ssi} - 2 \le -x \le 2 \operatorname{ssi} - x \in D$.

•
$$f(-x) = \frac{2-\sqrt{4-(-x)^2}}{(-x)} = -\frac{2-\sqrt{4-x^2}}{x}$$
;

f(-x) = -f(x), donc f est impaire.

Par conséquent on peut l'étudier sur $D \cap [0; +\infty[= [0; 2] \text{ et compléter le tracé de } C_f \text{ sur } [-2; 0] \text{ par symétrie par rapport à l'origine du repère.}$

\triangleright Variation de f sur[0; 2]

f est le quotient de fonctions continues et dérivables sur]0; 2[; la fonction $x \rightarrow x^2$ étant non nulle sur]0; 2[, f est continue et dérivable sur]0; 2[et

$$f'(x) = \frac{\frac{-(-2x)}{2\sqrt{4-x^2}}(x) - (1)(2-\sqrt{4-x^2})}{x^2} = \frac{-2\sqrt{4-x^2} + 4}{x^2\sqrt{4-x^2}}.$$

$$f'(x) \ge 0 \text{ ssi } -2\sqrt{4-x^2} + 4 \ge 0 \text{ ssi } \sqrt{4-x^2} \le 2$$

ssi $4 - x^2 \le 4 \text{ ssi } x^2 \ge 0$; toujours vrai.

0	2
+	
0	1
	0 +

3. Tracé de C_f sur [-2; 2]

f étant impaire, la portion de courbe sur [-2; 0] est obtenue par symétrie par rapport à l'origine O du repère.

Exercice 4: $f(x) = \cos 4x + 2\sin 2x$

1.

> Domaine d'étude ?

 $D_f = \mathbb{R}$. Les fonctions $x \to cos4x$ et $x \to 2sin2x$ étant périodiques de périodes respectives $\frac{\pi}{2}$ et π , montrons que π (qui est un multiple de $\frac{\pi}{2}$) est la période de f.

*
$$\forall x \in \mathbb{R}$$
, on a $x + \pi \in \mathbb{R}$.

$$*f(x+\pi) = \cos 4(x+\pi) + 2\sin 2(x+\pi)$$

= \cos(4x+4\pi) + 2\sin(2x+2\pi)
= \cos4x + 2\sin2x = f(x).

Donc f est périodique de période π et par conséquent on peut l'étudier sur $De = \mathbb{R} \cap [0; \pi] = [0; \pi]$.

\triangleright Dérivée de f?

f étant une somme de fonctions continues et dérivables sur \mathbb{R} , f est continue et dérivable sur \mathbb{R}

$$f'(x) = -4\sin 4x + 4\cos 2x = -4(2\sin 2x\cos 2x) + 4\cos 2x$$

= $4(\cos 2x)(1-2\sin 2x)$.

2.

Solution de l'équation f'(x) = 0?

$$f'(x) = 0 \text{ ssi } \cos 2x = 0 \text{ ou } \sin 2x = \frac{1}{2}$$

$$\cos 2x = \cos \frac{\pi}{2} \text{ ou } \sin 2x = \sin \frac{\pi}{6}$$

$$2x = \frac{\pi}{2} + 2k\pi \text{ ou } 2x = -\frac{\pi}{2} + 2k\pi \text{ ou } 2x = \frac{\pi}{6} + 2k\pi \text{ ou } 2x = \pi - \frac{\pi}{6} + 2k\pi$$

$$\text{ssi } x = \frac{\pi}{4} + k\pi \text{ ou } x = -\frac{\pi}{4} + k\pi \text{ ou } x = \frac{\pi}{12} + k\pi \text{ ou } x = \frac{5\pi}{12} + k\pi, \ k \in \mathbb{Z}$$

$$S_{[0; \pi]} = \left\{ \frac{\pi}{4}; \frac{3\pi}{4}; \frac{\pi}{12}; \frac{5\pi}{12} \right\}.$$

\triangleright Variation de f sur $[0; \pi]$?

= 1;
$$f(\frac{\pi}{12}) = \frac{3}{2}$$
; $f(\frac{\pi}{4}) = 1$; $f(\frac{5\pi}{12}) = \frac{3}{2}$; $f(\frac{3\pi}{4}) = -3$; $f(\pi) = 1$.

3. $x = \frac{\pi}{4}$ est axe de symétrie ?

• $\forall x \in \mathbb{R}$, montrons que $2a - x \in \mathbb{R}$?

$$2a-x = \frac{\pi}{2} - x$$
; $x \in \mathbb{R}$ donc $\frac{\pi}{2} - x \in \mathbb{R}$.

•
$$f(2a-x) = f(\frac{\pi}{2} - x) = \cos 4(\frac{\pi}{2} - x) + 2\sin 2(\frac{\pi}{2} - x)$$

= $\cos(2\pi - 4x) + 2\sin(\pi - 2x) = \cos(-4x) + 2\sin 2x$
= $\cos 4x + 2\sin 2x = f(x)$;

donc la droite d'équation $x = \frac{\pi}{4}$ est axe de symétrie de C_f .

4. Tracé de C_f sur $[-\pi; \pi]$?

