МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Фихтех-школа радиотехники и компьютерных технологий

Лабораторная работа 2.1.3

Определение C_p/C_v по скорости звука в газе

Автор: Черниенко Владислав Антонович Группа Б01-110 **Цель работы:** 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где R — газовая постоянная, T — температура газа, а μ — его молярная масса. Преобразуя эту формулу, найдём

$$\gamma = \frac{\mu}{RT}c^2. \tag{1}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отражённых волн и, вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\frac{\lambda}{2},\tag{2}$$

где λ — длина волны звука в трубе, а n — любое целое число. Если условие (2) выполнено, то волна, отражённая от торца трубы, вернувшаяся к её началу и вновь отражённая, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

Скорость звука связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f. \tag{3}$$

При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (4)

Из (3) и (4) имеем

$$f_1 = \frac{c}{\lambda_1} = \frac{c}{2L}n, \quad f_2 = \frac{c}{\lambda_2} = \frac{c}{2L}(n+1) = f_1 + \frac{c}{2L}, \dots, \quad f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k.$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

Экспериментальная установка

В установке (рис. 1) звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчётах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Установка содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре воды, омывающей трубу. На этой установке измеряется зависимость скорости звука от температуры.

Рис. 1: Установка для изучения зависимости скорости звука от температуры

Ход работы

1. Запишем значения комнатной температуры и длины используемой трубы:

$$T_{\rm k}=21,9^{\circ}C,\ L=(800\pm1)$$
 mm.

- 2. Включим электронный осцилограф ЭО и звуковой генератор ГЗ и дадим им прогреться 5-7 минут. Включим на осцилографе тумблер «луч» и ручками управления добьёмся прямой линии на экране. Установим нуль на звуковом генераторе.
- 3. Подберём напряжение на выходе генератора так, чтобы при резонансе на осциллографе наблюдались колебания достаточной амплитуды.
- 4. Примем скорость звука в воздухе при комнатной температуре равной табличному значению $c_{\text{табл}} = 343 \, \frac{\text{м}}{\text{c}}$ и оценим значение частоты для первого резонанса по формуле (3):

$$f_{
m ou}=rac{c_{
m {\scriptsize табл}}}{2L}=rac{343}{1,6}=214,3$$
 Гц.

- 5. Плавно увеличивая частоту генератора, получим ряд последовательных резонансых значений частоты. Результаты будем заносить в табл. 1.
- 6. Включим термостат и настроим его на температуру $25^{\circ}C$. повторим измерения п. 5 при данном значении температуры. Результаты занесём в табл. 1.
- 7. Будем повышать температуру на $\Delta T = 2^{\circ}C$ до $48^{\circ}C$. Для каждого значения температуры повторим измерения п. 5. Результаты будем вносить в табл. 1.
- 8. При последнем измерении резонансных частот измерим действительное значение температуры трубы и сравним его со значением на термостате:

$$\sigma_T = T_{\text{посл}} - T_{\text{трубы}} = 4,7^{\circ}C.$$

T, K	k	f_{k+1} , Гц	T, K	k	f_{k+1} , Гц	T, K	k	f_{k+1} , Гц	T, K	k	f_{k+1} , Гц
294,9	0	206	298	0	206,5	300,1	0	203,4	302,1	0	204,7
	2	659		2	660,7		2	662,3		2	664,4
	4	1086		4	1089,4		4	1091,7		4	1095,3
	6	1518		6	1522,9		6	1526,2		6	1531,8
	8	1949		8	1956,8		8	1961,2		8	1967,1
	0	204,3	306,9	0	204,6	308,9	0	204,6	311	0	204,9
	2	665,9		2	669,4		2	669,8		2	671,6
305,2	4	1098,9		4	1103,6		4	1105,1		4	1107,2
	6	1536,7		6	1543,1		6	1545		6	1548,6
	8	1973		8	1981,6		8	1984,2		8	1988,9
	0	205,8	315,1	0	207,1	317	0	206,8	319,1	0	205,5
	2	672,4		2	674,8		2	676,3		2	677,3
313,1	4	1109,1		4	1112,9		4	1115		4	1117,2
	6	1551,2		6	1556,3		6	1559,8		6	1562,3
	8	1992,6		8	1998,3		8	2002,8		8	2006,7
321	0	207,2									
	2	679,4									
	4	1120,1									
	6	1566,8									
	8	2012,1									

Таблица 1: Резонансые значения частоты звуковой волны для различных температур

Обработка результатов измерений

1. Проведём наилучшие прямые через точки зависимости номера резонанса k и разницы частоты при данном резонансе f_{k+1} и частоты при k=0, т.е. f_1 при данных температурах. Результат приведён на рис. 2.

Рис. 2: Графики зависимости $f_{k+1}-f_1$ от k при разных значениях T

2. На каждом графике величина коэффициента наклона β равна значению $\frac{c}{2L}$, где c — скорость звука в воздухе при данной температуре T. Найдём случайную погрешность этой величины по формуле:

$$\sigma_{\beta} = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - \beta^2},$$

Найденные результаты занесём в табл. 2.

T, K	β , c ⁻¹	σ_{β}, c^{-1}	ε_{eta}
294,9	217,25	11,20	0,052
298	218,14	10,96	0,050
300,1	218,98	11,92	0,054
302,1	219,61	11,85	0,054
305,2	220,41	12,06	0,055
306,9	221,39	12,4	0,056
308,9	221,72	12,37	0,056
311	222,25	12,43	0,056
313,1	222,62	12,20	0,055
315,1	223,20	12,25	0,055
317	223,78	12,41	0,055
319,1	224,37	12,78	0,057
321	224,86	12,59	0,056

Таблица 2: Коэффициенты наклона β и их погрешности при данных температурах

3. Из $\beta = c/2L \Rightarrow c = \beta \cdot 2L$. Тогда погрешность значения скорости звука c рассчитаем по формуле:

$$\sigma_c = c \cdot \sqrt{\left(\frac{\sigma_\beta}{\beta}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2}.$$

Заметим, что погрешность величины длины трубы пренебрежима мала. Тогда наша формула примет вид:

$$\sigma_c = c \cdot \frac{\sigma_\beta}{\beta}.$$

Результаты занесём в табл. 3.

T, K	с, м/с	σ_c , м/с	ε_c
294,9	347,6	17,92	0,052
298	349,02	17,54	0,050
300,1	350,37	19,07	0,054
302,1	351,38	18,96	0,054
305,2	352,66	19,30	0,055
306,9	354,22	19,84	0,056
308,9	354,75	19,72	0,056
311	355,60	19,89	0,056
313,1	356,19	19,52	0,055
315,1	357,12	19,60	0,055
317	358,05	19,86	0,055
319,1	358,99	20,45	0,057
321	359,78	20,14	0,056

Таблица 3: Скорости звука c и их погрешности при данных температурах

4. По формуле (1) вычислим показатель адиабаты γ для воздуха. Молярную массу воздуха примем за $\mu=28,97\cdot 10^{-3}$ кг/моль, универсальная газовая постоянная $R=8,31\,\frac{\text{Дж}}{\text{моль·K}}$. Погрешности расчитаем по формуле:

$$\sigma_{\gamma} = \gamma \cdot \sqrt{4 \cdot (\frac{\sigma_c}{c})^2 + (\frac{\sigma_T}{T})^2}.$$

Результаты занесём в табл. 4.

T, K	294,9	298	300,1	302,1	305,2	306,9	308,9	311	313,1
γ	1,428	1,425	1,426	1,425	1,421	1,425	1,420	1,417	1,413
σ_{γ}	0,149	0,145	0,157	0,155	0,157	0,161	0,160	0,160	0,156

T, K	315,1	317	319,1	321
γ	1,411	1,410	1,408	1,406
σ_{γ}	0,156	0,158	0,162	0,159

Таблица 4: Показатели адиабаты для воздуха

5. Расчитаем среднее значение показателя адиабаты γ и его погрешность. Среднее значение посчитаем по формуле:

$$\langle \gamma \rangle = \frac{1}{n} \sum_{i=1}^{n} \gamma_i,$$

а погрешность:

$$\sigma_{\langle \gamma \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\gamma_i - \langle \gamma \rangle)^2}.$$

Получаем значение показателя адиабаты для воздуха:

$$\gamma = 1,418 \pm 0,026, \ \varepsilon_{\gamma} \sim 2\%$$

Вывод

В ходе данной работы мы сумели с достаточно большой точностью определить показатель адиабаты γ для воздуха при температурах близких к комнатной ($20^{\circ}C-50^{\circ}C$). Сравнивая полученный результат с табличным ($\gamma_{\text{табл}}=1,4$), можем с уверенностью сказать, что наши результаты сходятся с табличными.