PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS TEMPORADA ACADÉMICA DE VERANO 2018

MAT1620 * CÁLCULO II SOLUCIÓN INTERROGACIÓN 3

1. Determine la constante $c \in \mathbb{R}$ de modo que

$$\iint_D cxy \ dA = 1,$$

donde D es el trapezoide de vértices $P_1(0,0)$, $P_2(0,1)$, $P_3(1,1)$ y $P_4(2,0)$.

Solución. Notamos que la región D tiene la siguiente forma por lo que conviene verla

como una región de tipo II, es decir, $D=\{(x,y)\in\mathbb{R}^2\ :\ 0\leq y\leq 1, 0\leq x\leq 2-y\}.$ Luego

$$\iint_D cxy \ dA = c \int_0^1 \int_0^{2-y} xy dx dy = \frac{c}{2} \int_0^1 (2-y)^2 y dy$$
$$= \frac{c}{2} \int_0^1 (y^3 - 4y^2 + 4y) dy = \frac{c}{2} \left(\frac{1}{4} - \frac{4}{3} + 2 \right) = \frac{11c}{24},$$

con lo que podemos concluir que c=24/11.

2. Determine

$$\iint_D 5x \ dA,$$

donde D es la región acotada comprendida entre las curvas: $2y=1+x, \ x-y=1$ y $y=x^2-1.$

Solución. Notamos que la región D tiene la siguiente forma por lo que conviene verla

como la suma de tres integrales sobre regiones del tipo I, esto es, $D = D_1 \cup D_2 \cup D_3$ donde $D_1 = \{(x,y) \in \mathbb{R}^2 : -1 \le x \le 0, x^2 - 1 \le y \le (1+x)/2\}, D_2 = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, x - 1 \le y \le (x+1)/2\}$ y $D_3 = \{(x,y) \in \mathbb{R}^2 : 1 \le x \le 3/2, x^2 - 1 \le y \le (x+1)/2\}$. Por lo tanto

$$\iint_{D} 5x \ dA = \int_{-1}^{0} \int_{x^{2}-1}^{(1+x)/2} 5x dy dx + \int_{0}^{1} \int_{x-1}^{(1+x)/2} 5x dy dx + \int_{1}^{3/2} \int_{x^{2}-1}^{(1+x)/2} 5x dy dx
= \frac{5}{2} \int_{-1}^{0} (x^{2} - 2x^{3} + 3x) dx + \frac{5}{2} \int_{0}^{1} (3x - x^{2}) dx + \frac{5}{2} \int_{1}^{3/2} (x^{2} - 2x^{3} + 3x) dx
= \frac{5}{2} \left(-\frac{2}{3} + \frac{7}{6} + \frac{61}{96} \right) = \frac{545}{192}.$$

3. Determine el volumen del sólido que está dentro del cilindro $x^2+y^2=1$ y la esfera $x^2+y^2+z^2=4$.

Solución. Por la naturaleza del problema, lo más conveniente es utilizar coordenadas cilíndricas, dado que el volumen que se quiere calcular corresponde a un cilindro el cual tiene como tapas cascos esféricos. Luego, la región en coordenadas cilíndricas se escribe por

$$D = \{ (r, \theta, z) : 0 \le r \le 1, 0 \le \theta \le 2\pi, -\sqrt{1 - r^2} \le z \le \sqrt{1 - r^2} \}.$$

Por lo tanto,

Volumen(D) =
$$\iiint_{D} 1 dV$$
=
$$\int_{0}^{2\pi} \int_{0}^{1} \int_{-\sqrt{1-r^{2}}}^{\sqrt{1-r^{2}}} r dz dr d\theta$$
=
$$\int_{0}^{2\pi} \int_{0}^{1} 2r \sqrt{1-r^{2}} dr d\theta$$
=
$$2\pi \int_{0}^{1} 2r \sqrt{1-r^{2}}$$
=
$$2\pi \left[-\frac{2}{3} (1-r^{2})^{3/2} \right]_{0}^{1} = \frac{4}{3}\pi.$$

4. La siguiente expresión representa la integral de una función continua f(x,y,z) sobre una región en el espacio

$$\int_{-1}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) \ dz dy dx.$$

Escriba la integral anterior en el orden dydzdx.

Solución. Si D es la región del plano XY acotada por la parábola $y=x^2$, el eje X y las rectas x=1 y x=-1, la región de integración $E=\{(x,y,z):(x,y)\in D,\ 0\leq z\leq y\}$. Luego para encontrar la integral pedida observemoa que x avría entre -1 y 1, para cada valor de x, z varía entre 0 y x^2 y para cada z, y varía entre z y x^2 . Entonces

$$\int_{-1}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) \ dz dy dx = \int_{-1}^{1} \int_{0}^{x^{2}} \int_{z}^{x^{2}} f(x, y, z) \ dy dz dx$$

5. Calcule

$$\iiint_{E} (9 - x^2 - y^2) \ dV,$$

donde Ees la semiesfera sólida $x^2+y^2+z^2\leq 9,\,z\geq 0.$

Solución. Notamos que utilizando coordenadas esféricas, tendremos que la región E puede ser escrita por

$$E = \{(r, \theta, \phi) : 0 \le r \le 3, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi/2\},\$$

por lo que

$$\iiint_{E} (9 - x^{2} - y^{2}) dV = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{3} (9 - r^{2} \sin^{2}(\phi)) r^{2} \sin(\phi) dr d\phi d\theta$$

$$= 2\pi \int_{0}^{\pi/2} \int_{0}^{3} (9r^{2} \sin(\phi) - r^{4} \sin^{3}(\phi)) dr d\phi$$

$$= 2\pi \int_{0}^{\pi/2} [81 \sin(\phi) - \frac{243}{5} \sin^{3}(\phi)] d\phi$$

$$= 162\pi - \frac{486\pi}{5} \int_{0}^{\pi/2} (1 - \cos^{2}(\phi)) \sin(\phi) d\phi$$

$$= 162\pi - \frac{486\pi}{5} \int_{0}^{1} (1 - u^{2}) du$$

$$= 162\pi - \frac{324\pi}{5} = \frac{486\pi}{5}.$$

6. Mediante un cambio de variables apropiado, calcule

$$\iint_{R} \frac{x - 2y}{3x - y} \ dA,$$

donde R es la región encerrada por las rectas $x-2y=0,\ x-2y=4,\ 3x-y=1$ y 3x-y=8.

Solución. Notamos que si utilizamos el cambio de variables

$$\begin{cases} u = x - 2y \\ v = 3x - y \end{cases}$$

entonces la región de integración se cambia a $R' = \{(u, v) : 0 \le u \le 4, 1 \le v \le 8\}$. Luego, calculando el Jacobiano

$$\left| \frac{\partial x, y}{\partial u, v} \right| = \left| \begin{array}{cc} -\frac{1}{5} & \frac{2}{5} \\ \frac{3}{5} & -\frac{1}{5} \end{array} \right| = \left| -\frac{5}{25} \right| = \frac{1}{5}.$$

Finalmente,

$$\iint_{R} \frac{x - 2y}{3x - y} dA = \frac{1}{5} \int_{0}^{4} \int_{1}^{8} \frac{u}{v} dv du = \frac{1}{5} \left(\int_{0}^{4} u du \right) \left(\int_{1}^{8} \frac{1}{v} dv \right) = \frac{1}{5} (\ln(8) + 8).$$