Metody nieparametryczne w statystyce

Tomasz Wójtowicz

Wydział Zarządzania AGH Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie Niech $X_1, ..., X_n$ będzie próbą losową prostą z pewnego rozkładu F. Niech $\hat{\theta} = T(X_1, ..., X_n)$ będzie pewną statystyką.

Stosując metodę **Monte Carlo** można oszacować rozkład statystyki $\hat{\theta}$ poprzez wygenerowanie odpowiednio dużej próby wartości $\hat{\theta}_1, \dots, \hat{\theta}_k$.

Warunek:

znajomość rozkładu F próby losowej X_1, \ldots, X_n .

Problem:

- często nie znamy tego rozkładu,
- dysponujemy jedynie wartościami x_1, \dots, x_n .

Metoda bootstrap

Niech:

- $X_1, ..., X_n$ będzie próbą losową prostą z pewnego (nieznanego) rozkładu F,
- x_1, \ldots, x_n będą wartościami próby losowej X_1, \ldots, X_n ,
- \widehat{F} będzie dystrybuantą empiryczną zdefiniowaną na podstawie próby x_1, \dots, x_n ,

wtedy

dystrybuanta \hat{F} jest przybliżeniem rozkładu F.

Możemy więc zastosować \widehat{F} zamiast F do estymacji rozkładu statystyki $\widehat{\theta}$, tzn. ocenić rozkład $\widehat{\theta}$ na podstawie wielu prób wygenerowanych z rozkładu \widehat{F} zamiast z rozkładu F.

Definicja

Próbę losową prostą $X^* = (X_1^*, ..., X_n^*)$ z rozkładu \hat{F} dla ustalonej realizacji $x_1, ..., x_n$ nazywamy **próbą typu bootstrap** (**próbą bootstrap**).

pull oneself up by one's bootstraps

wybobyć się z opresji używając własnych sił

Bradley Efron, "Bootstrap Methods: Another Look at the Jackknife", The Annals of Statistics, 1979, Vol. 7, No. 1, 1-26.

W celu otrzymania realizacji próby bootstrap dokonuje się n-krotnego losowania **ze zwracaniem** spośród elementów oryginalnej próby x_1, \dots, x_n .

Uwagi:

- losowość związana jest tylko z wyborem elementu spośród x_1, \dots, x_n ,
- próbkę x_1, \dots, x_n traktujemy jako populację, z której czerpiemy próby losowe,
- próba bootsrtap składa się z elementów próby x_1, \dots, x_n , przy czym niektóre wartości mogą się powtarzać (a niektóre mogą nie występować),
- w próbie bootstrap elementy z reguły się powtarzają,
- prawdopodobieństwo, że każdy element x_1, \dots, x_n wystąpi dokładnie jeden raz wynosi $n!/n^n$.

Uzasadnienie:

szacowany parametr θ jest pewną funkcją dystrybuanty F, a jego estymator $\widehat{\theta}$ otrzymujemy podstawiając do tej funkcji \widehat{F} zamiast F.

Przykład:

Spróbujmy oszacować wartość dystrybuanty F w pewnym punkcie t_0 .

W tym przypadku $\theta = F(t_0)$, dla pewnego ustalonego t_0 .

Estymatorem $F(t_0)$ jest oczywiście wartość dystrybuanty empirycznej $\widehat{F}(t_0)$,

$$tzn. \ \widehat{\theta} = \widehat{F}(t_0).$$

Zasada:

Rozkład statystyki $T(X^*) - \hat{\theta}$ dla próby bootstrap przy ustalonych wartościach realizacji x_1, \dots, x_n jest dla regularnych statystyk T bliski rozkładowi $T(X) - \theta$.

To oznacza, że:

- dla ustalonych $x_1, ..., x_n$ kształt $T(X^*)$ jest bliski kształtowi T(X),
- ullet położenie rozkładu statystyki $T(X^*)$ jest przesunięte względem położenia rozkładu statystyki T(X) o wielkość $\hat{ heta}- heta.$

Kolejne kroki:

- ullet na podstawie realizacji x_1,\dots,x_n obliczyć wartość $\widehat{\theta}$,
- ullet na podstawie realizacji x_1,\dots,x_n wylosować niezależne próby bootstrap $X_1^*,\dots,X_k^*,$
- obliczyć wartości $\hat{\theta}_1^* = T(X_1^*) \hat{\theta}$, $\hat{\theta}_2^* = T(X_2^*) \hat{\theta}$,..., $\hat{\theta}_k^* = T(X_k^*) \hat{\theta}$,
- skonstruować histogram wartości $\hat{\theta}_1^*,\dots,\hat{\theta}_k^*$, który jest przybliżeniem rozkładu statystyki $\hat{\theta}-\theta$.

Uzyskany rozkład jest przybliżeniem rozkładu błędów estymacji parametru θ .

Nazywamy go estymatorem rozkładu $\hat{ heta}$ uzyskanym metodą bootstrap.

Mając rozkład $\hat{\theta}_1^*$, ..., $\hat{\theta}_k^*$ możemy oszacować zmienność estymatora $\hat{\theta} = T(X)$, co nie jest możliwe przy wykorzystaniu tylko wartości x_1 , ..., x_n .

Definicja

Błędem standardowym typu bootstrap estymatora $\widehat{\theta}$ nazywamy:

$$S_{\widehat{\theta}} = \sqrt{\frac{1}{k-1} \sum_{i=1}^{k} (\widehat{\theta}_i^* - \bar{\theta}^*)^2},$$

gdzie

$$\bar{\theta}^* = \frac{1}{k} \sum_{i=1}^k \hat{\theta}_i^*$$

Uwaga

Metoda bootstrap nie zawsze daje dobre wyniki

Przykład:

Niech $x_1, ..., x_n$ będzie realizacją próby losowej $X_1, ..., X_n$ z rozkładu jednostajnego na przedziale $[0, \theta]$, gdzie θ jest nieznanym parametrem.

Naturalnym estymatorem θ jest $\hat{\theta} = X_{(n)}$ czyli największa wartość w próbie losowej.

Przedziały ufności

Przedział ufności oparty na przybliżeniu normalnym

Jeżeli możemy przyjąć, że rozkład $\hat{\theta}_1^*, \dots, \hat{\theta}_k^*$ jest w przybliżeniu normalny, to wtedy również rozkład $\hat{\theta}$ jest w przybliżeniu normalny. Wtedy, dla współczynnika ufności $1-\alpha$, przedział ufności dla θ ma postać:

$$(\hat{\theta} - u_{\alpha}\sigma_{\hat{\theta}}, \hat{\theta} + u_{\alpha}\sigma_{\hat{\theta}})$$

Zastępując nieznane odchylenie standardowe estymatora $\sigma_{\widehat{\theta}}$ bliskim mu błędem standardowym $S_{\widehat{\theta}}$ uzyskujemy przedział ufności

$$(\hat{\theta} - u_{\alpha}S_{\widehat{\theta}}, \hat{\theta} + u_{\alpha}S_{\widehat{\theta}})$$

dla przybliżonego współczynnika ufności $1-\alpha$.

Przedziały ufności

Percentylowy przedział ufności typu bootstrap

Jeżeli przez q_{lpha}^* oznaczymy kwantyl rzędu lpha z rozkładu $\hat{ heta}^* - \hat{ heta}$, to wtedy

$$P_{\widehat{F}}(q_{\alpha/2}^* \le \widehat{\theta}^* - \widehat{\theta} \le q_{1-\alpha/2}^*) = 1 - \alpha$$

Na podstawie zasady bootstrap mamy więc:

$$P_F(q_{\alpha/2}^* \le \hat{\theta} - \theta \le q_{1-\alpha/2}^*) = 1 - \alpha$$

czyli:

$$P_F(\hat{\theta} - q_{1-\alpha/2}^* \le \theta \le \hat{\theta} - q_{\alpha/2}^*) = 1 - \alpha$$

czyli przedział ufności postaci:

$$\left(\widehat{ heta}-q_{1-lpha/2}^*,\widehat{ heta}-q_{lpha/2}^*
ight)$$

Percentylowy przedział ufności typu bootstrap

basic bootstrap

$$\left(\widehat{ heta}-q_{1-lpha/2}^*,\widehat{ heta}-q_{lpha/2}^*
ight)$$

gdzie q_{lpha}^{*} oznacza kwantyl rzędu lpha z rozkładu $\hat{ heta}^{*}-\hat{ heta}$,

percentile

$$\left(q_{\alpha/2}^*, \quad q_{1-\alpha/2}^*\right)$$

gdzie q_{lpha}^{*} oznacza kwantyl rzędu lpha z rozkładu $\widehat{ heta}^{*}$,

Studentyzacja

Powyższy schemat można też zastosować do statystyk studentyzowanych, tzn. statystyk postaci:

$$\frac{\widehat{\theta} - \theta}{S_{\widehat{\theta}}}$$

gdzie $S_{\widehat{\theta}}$ jest bootstrapowym odchyleniem stand. $\widehat{\theta}$.

Takie statystyki maja w przybliżeniu rozkład N(0,1).

Z zasady bootstrap wynika, że rozkłady zmiennych:

$$rac{\widehat{ heta} - heta}{S_{\widehat{ heta}}}$$
 i $rac{\widehat{ heta}^* - \widehat{ heta}}{S_{\widehat{ heta}^*}}$

są bliskie.

W celu wyznaczenia przedziału ufności obliczamy dla i = 1, ... k:

$$t_i^* = \frac{\widehat{\theta}_i^* - \widehat{\theta}}{S_{\widehat{\theta}_i^*}}$$

Uwaga!

Obliczenie $S_{\widehat{\theta}_i^*}$ wymaga zastosowania metody bootstrap do próby bootstrapowej. Próba ta może mieć dużo mniejszą liczność.

Wyznaczamy kwantyle $q_{\alpha/2}^*$ i $q_{1-\alpha/2}^*$ rozkładu t_1^* , ..., t_k^* .

Wtedy, przedział ufności ma postać:

$$\left(\widehat{\theta}-q_{1-\alpha/2}^{*}S_{\widehat{\theta}},\widehat{\theta}-q_{\alpha/2}^{*}S_{\widehat{\theta}}\right)$$

W tym przypadku kwantyle rozkładu normalnego zostały zastąpione przez kwantyle empiryczne.

Przykład:

Na podstawie poniższych wyników egzaminu:

38.9, 55.6, 53.7, 48.1, 56.5, 44.4, 54.6, 53.7, 43.5, 56.5, 50.0, 1.9, 31.5, 27.8

wyznaczyć przedział ufności dla wartości oczekiwanej. Przyjąć $1-\alpha=0.95$.

Rozwiązanie:

$$\bar{X} = 44.5$$

Przedziały ufności

normalny: (36,4; 51,7)

bootstrapowy: (37,3; 51,5)

percentylowy: (36,6; 50,8)

studentyzowany: (38,2; 58,7