HEP NTUA Weekly Report

4/1/2021

George Bakas

Summary

Angular Distributions, Z' analysis:

- Significance plots:
 - 1TeV 2TeV mJJ Cut every 250GeV
 - Significance vs mJJ Cut for every Zprime mass, width pair
 - Full Run II (2016, 2017, 2018)
 - Search for the maximum significance for every mJJ Cut
- $Significance = \frac{Signal}{\sqrt{Signal + Background}}$, where signal is the Zprime events and bkg \rightarrow ttbar, qcd, subdominant

Significance Plots 2016, width 1%

Significance Plots 2016, width 10%

mJJCut (GeV)

0.004

mJJCut (GeV)

Significance Plots 2016, width 30%

Significance_M2000_W600

Significance Plots 2017, width 1%

Significance Plots 2017, width 10%

Significance Plots 2017, width 30%

mJJCut (GeV) mJJCut (GeV)

Significance Plots 2018, width 1%

Significance Plots 2018, width 10%

NTUA G. BAKAS

1800

2000

mJJCut (GeV)

Significance Plots 2018, width 30%

Significance_M3500_W1050

Significance_M3000_W900

Significance_M4000_W1200

BACKUP

Summary

Angular Distributions, Z' analysis:

- New Signal Region:
 - $SR_C = SR + mJJ > 1.5TeV$
- Stack histograms for SR_C
- Asymptotic Limits (Brazilian plots) for 2016, 2017, 2018
 - Total Cross section x BR
 - Total Cross section = $\sum_{i=1}^{N} S_i$, where S_i is the signal yield in the reconstructed level
- X distributions show a different slope than the B2G-16-015
 - Recreated Brazilian plot using mJJ variable (only for 2016 and Zprime 1% width)
 - Tried to increase mass cut from 1.5 TeV to 2 TeV to improve sensititvity → not enough events coming from signal extraction
 - If I use ttbar MC (χ dists) as input, the shape is the same as with the 1.5 TeV cut
 - Maybe sliding mass cuts? For each Z' use a different mJJ cut

Signal Selection

Variables	Selected Cut
pT (both leading jets)	> 400 GeV
Njets	> 1
N leptons	= 0
eta (both leading jets)	< 2.4
mJJ	> 1000 GeV
jetMassSoftDrop (only for fit)	(50,300) GeV
Top Tagger	> 0.2, 0, 0.1
B tagging (2 btagged jets)	> Medium WP
Signal Trigger	

Control Region Selection

Variables	Selected Cut
pT (both leading jets)	> 400 GeV
Njets	> 1
N leptons	= 0
eta (both leading jets)	< 2.4
mJJ	> 1000 GeV
jetMassSoftDrop (only for fit)	(50,300) GeV
Top Tagger	> 0.2, 0, 0.1
B tagging (0 btagged jets)	< Medium WP
Control Trigger	

Signal Extraction

$$S_{1.5TeV}(x_{reco}) = D_{1.5TeV}(x_{reco}) - QCD_{1.5TeV}(x_{reco}) - Sub_{1.5TeV}(x_{reco}) \rightarrow$$
 Where
$$QCD_{1.5TeV}(x_{reco}) = D_{1.5TeV,shape}^{0-btag}(x_{reco}) \mathbf{x} N_{SR(1.5TeV)} \mathbf{x} C_{closure}^{shape SF}$$
 and
$$N_{SR(1.5TeV)} = R_{yield}^{1TeV \rightarrow 1.5TeV} \mathbf{x} N_{SR(1TeV)}^{QCD} = R_{yield}^{1TeV \rightarrow 1.5TeV} \mathbf{x} R_{yield}^{SR_A \rightarrow SR} \mathbf{x} N_{SR_A}^{QCD}$$

- The variable of interest here: $x_{reco} \rightarrow \chi$
- 1.5 TeV refers to the mJJ cut
- We deploy a fit in the Signal Region (2btag) to extract the N_{QCD}^{fit} in SRA (mJJ > 1TeV)

$$D(m^t)^{(i)} = N_{tt}^{(i)} T^{(i)}(m^t, k_{MassScale}, k_{MassResolution}) + N_{bkg}^{(i)} B(m^t) (1 + k_1 x) + N_{sub}^{(i)} O^{(i)}(m^t)$$

Top Angular Distributions

- We employ the dijet angular variable χ from the rapidities of the two leading jets
- Why χ?
 - The distributions associated with the final states produced via QCD interactions are relatively flat in comparison with the distributions of the BSM models or new particles, which typically peak at low values of x
- We can measure the variable χ in two ways
 - 1. By measuring the difference of the rapidities of the two leading jets such as the corresponding rapidity in the ZMF is:

$$y^* = \frac{1}{2}(y_1 - y_2)$$

X is defined as $\chi = e^{|y^*|} = e^{|y_1 - y_2|}$ (1) and can be measured by creating the TLorentzVector, boost it to the ZMF and find the rapidity difference of the two leading jets

2. By measuring the scattering angle θ^* (angle between top quark and z-axis in the Zero Momentum Frame) We define as $y^* = \frac{1}{2} \ln(\frac{1 + |cos\theta^*|}{1 - |cos\theta^*|})$ and from (1) we can find that:

$$\chi = \frac{1 + |\cos\theta^*|}{1 - |\cos\theta^*|}$$

Stack Distributions vs B2G-16-015 Mz=2TeV, w 1%

2016

2017

2018

Stack Distributions vs B2G-16-015 Mz=2TeV, w 10%

2016

2017

2018

Stack Distributions Mz = 2.5TeV, w 1%

2018

2017

2016