AGENT-ORIENTED PLANNING IN MULTI-AGENT SYSTEMS

Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, Yaliang Li Published: October 2024

Problem Statement:

How to effectively decompose user queries into sub-tasks and allocate them to suitable agents in multi-agent systems, ensuring solvability, completeness, and non-redundancy?

Methodology:

Feedback Loop

Results and Findings:

Method	Accuracy (%)	Prompt Tokens (M)	Completion Tokens (M)
Proposed Framework	43.7	1.12	0.38
HUSKY	39.6	0.83	0.15
REACT	37.6	2.47	0.19
GPT-40	33.3	0.02	0.09

Key Findings:

- Improved accuracy by 4.1% compared to the best baseline (HUSKY)
- Effective task decomposition and allocation with LLMs as meta-agents
- Reward model successfully evaluates sub-task solvability without execution

Key Takeaways:

- 1. Novel framework for agent-oriented planning improves task accuracy and system robustness
- 3. Feedback loop integration enhances system adaptability and continuous improvement

- 2. Reward model effectively evaluates sub-task solvability without actual execution
- 4. Design principles of solvability, completeness, and non-redundancy ensure effective task execution

Limitations and Future Work:

Limitations:

- Increased computational costs compared to single-agent systems
- Assumes comprehensive and accurate agent descriptions

Future Work:

- Optimize computational efficiency and scalability
- Implement dynamic agent capability updates
- Conduct real-world deployment studies for validation