МГТУ им. Н.Э. Баумана

Дисциплина: Архитектура ЭВМ

Лабораторный практикум №1 по теме:

«Синхронные одноступенчатые триггеры
со статическим и динамическим управлением записью»

Работу выполнила: студентка группы ИУ7-45 Овчинникова Анастасия

Работу проверила:

Крыгина Т.Д.

Цель работы — изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

1. Исследование работы асинхронного RS-триггера с инверсными входами.

Асинхронный RS - триггер сохраняет одно из устойчивых состояний независимо от многократного изменения информационного сигнала на одном входе при нулевом значении информационного сигнала на другом входе.

Асинхронный RS -триггер - это простейший триггер, который используется как запоминающая ячейка. Состояния RS-триггера, соответствующие различным сочетаниям сигналов на его входах R и S, приведены в таблице переходов.

S	R	Qn	Q_{n+1}	Название
0	0	0	0	Режим хранения
0	0	1	1	Режим хранения
0	1	0	0	Режим установки 0
0	1	1	0	Режим установки 0
1	0	0	1	Режим установки 1
1	0	1	1	Режим установки 1
1	1	0	X	Запрещенное состояние
1	1	1	X	Запрещенное состояние

Схема RS-триггера

Работа асинхронного RS-триггера с инверсными входами поясняется его таблицей переходов.

Врем	Время, t _{n+1}	
$\overline{\mathcal{S}}_{\mathrm{n}}$	$ar{R}_{ m n}$	Q _{n+1}
0	0	X
0	1	1
1	0	0
1	1	Qn

При S R = = 1 триггер сохраняет прежнее внутреннее состояние. При S = 0 и R = 1 триггер переходит в состояние "1". При S = 1 _и R = 0 триггер переходит в состояние "0". Комбинация сигналов Sn = Rn = 0 является запрещенной, так как ЛЭ 1 и 2 выключаются, т.е Q = 1 и \overline{Q} = 1, и схема не выполняет функцию триггера. После того, как сигналы S или R одновременно станут равны 1, RS -триггер с равной вероятностью может перейти в состояние "0" или "1". Таким образом, состояние триггера после снятия сигналов будет неопределенным

2. Исследование работы синхронного RS-триггера в статическом режиме.

Синхронный RS-триггер имеет два информационных входа R и S и вход синхронизации C.

Синхронный RS - триггер при C=0 сохраняет предыдущее внутреннее состояние, т.е. $Q_{n+1}=Q_n$. Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации C. При C=1 синхронный триггер переключается как асинхронный. Одновременная подача сигналов C=S=R= 1 запрещена. При S=R=0 триггер не изменяет своего состояния.

Таблица переходов

Таблица переходов:

С	S	R	Q_n	Q_{n+1}
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	X
1	1	1	1	X

Схема триггера

3. Исследование работы синхронного D-триггера в статическом режиме. Синхронный D -триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы. Поэтому D - триггер — элемент задержки (хранения) входных сигналов на один такт. Схему синхронного D -триггера можно получить из схемы синхронного RS — триггера, подавая сигнал D на вход S, а сигнал, т.е. с выхода инвертора сигнала D, на вход R.

D-триггер лучше предыдущих двух тем, что он не имеет запрещенных состояний.

Таблица переходов

С	D	Qn	Q_{n+1}	Название
0	0	0	0	Хранение
0	0	1	1	Хранение
0	1	0	0	Хранение
0	1	1	1	Хранение
1	0	0	0	Установка 0
1	0	1	0	Установка 0
1	1	0	1	Установка 1

1	1	1	1	Установка 1

Схема

4. Исследование работы синхронного D-триггера с динамическим управлением памятью в статическом режиме.

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на С - входе из "0" в "1" или из "1" в "0", т.е. перепадом синхросигнала.

Таблица переходов

Таблица переходов синхронных D- и Т-триггеров

Таблица 4

	Время t _n		Время t_{n+1}	
C_n	D_n, T_n	Q_n	Q_{n+1}	
			D-триггер	Т-триггер
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

Схема

Временная диаграмма

5. Т-триггер

Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала. Таким образом Т-триггер реализует счет по модулю 2.

Синхронный Т-триггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1.

Таблица переходов

Таблица переходов синхронных D- и Т-триггеров

Таблица 4

	Время t _n		Время t_{n+1}		
C_n	C_n D_n, T_n Q_n			Q_{n+1}	
			D-тригтер	Т-триггер	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	1	1	1	
1	0	0	0	0	
1	0	1	0	1	
1	1	0	1	1	
1	1	1	1	0	

Схема

Временная диаграмма

