Signaux & Systèmes I

Examen Blanc de Mi-Semestre - Novembre 2020 Problèmes

Nous vous conseillons vivement de réaliser cet examen blanc dans les conditions de l'exam final. En particulier

- durée : 1h40 (n.b. : l'exam final sera plus long, 3h dont 2h40 pour les problèmes)
- documents autorisés : le formulaire, un formulaire de notes personnelles de 2 feuilles A4 recto-verso (soit 4 pages A4).
- calculatrices interdites.

Problème I

Soient ψ la fonction définie sur \mathbb{R} par

$$\psi(t) = \begin{cases} -1, & \text{si } t \in [0, \frac{1}{2}[, \\ 1, & \text{si } t \in [\frac{1}{2}, 1], \\ 0, & \text{sinon,} \end{cases}$$

et ψ_0, ψ_1, ψ_2 les fonctions définies sur [0,1] par

$$\psi_0(t) = \alpha_0 \psi(t), \quad \psi_1(t) = \alpha_1 \psi(2t), \quad \psi_2(t) = \alpha_2 \psi(2t - 1),$$

où $\alpha_0, \alpha_1, \alpha_2 \in \mathbb{R}$.

On rappelle que $L_2([0,1])$ est l'espace des fonctions définies sur [0,1] à valeurs réelles et d'énergie finie. Il est muni du produit scalaire $\langle f,g\rangle=\int_0^1 f(t)g(t)dt$ et l'énergie de $f\in L_2([0,1])$ est la quantité $\|f\|_2^2=\langle f,f\rangle$.

Partie I

1) On suppose, dans cette question uniquement, que $\alpha_i = 1$ pour $i \in \{0, 1, 2\}$. Tracer ψ_0 , ψ_1 et ψ_2 sur leur graphe respectif.

2) Déterminer les coefficients $\alpha_i > 0$ tels que $\|\psi_i\|_2^2 = 1$ pour $i \in \{0, 1, 2\}$.

On considèrera désormais que $\alpha_0=1$ et $\alpha_1=\alpha_2=\sqrt{2}.$

3) Le système de fonctions (ψ_0, ψ_1, ψ_2) est-il orthonormal? Justifier.

Partie II

Soit f la fonction définie par $f(t)=\pi\sin(2\pi t)$ sur [0,1], de période T=1.

1) Tracer f sur le graphe ci-dessous.

2)	(a)	Donner les coefficients $(c_n)_{n\in\mathbb{Z}}$ de la série de Fourier complexe de la fonction f .
	(b)	Calculer l'énergie $\ f\ _2^2$ de la fonction f .
3)	(a)	Donner l'expression générale de \tilde{f} , l'approximation aux moindres carrés de f dans l'espace engendré par le système de fonctions (ψ_0, ψ_1, ψ_2) , à l'aide des éléments de (ψ_0, ψ_1, ψ_2) et de leur produit scalaire avec f .
	(b)	Calculer \tilde{f} .

(c) Tracer f et \tilde{f} sur le même graphe ci-dessous.

(d) Calculer l'erreur d'approximation $\|f - \tilde{f}\|_2$. Indication : on pensera à utiliser les calculs réalisés dans les questions précédentes.

Problème II

Soit le schéma-bloc suivant :

Ici, un échantillonnage de période $T_e \in \mathbb{R}$ du signal x(t) est effectué, ce qui produit le signal $x_{\operatorname{\acute{e}ch}}(t)$. Ce signal échantillonné passe ensuite dans un système de réponse impulsionnelle h(t) pour donner le signal y(t).

On considère les deux signaux suivants :

$$x(t) = 3 \cdot \cos\left(\frac{\pi t}{2}\right)$$

$$h(t) = \frac{3}{4} \cdot \operatorname{sinc}\left(\frac{3t}{4}\right).$$

1) Donner $X(\omega)$, la transformée de Fourier de x(t).

2) Représenter $X(\omega)$ sur le graphe ci-dessous, en veillant à graduer l'axe des ordonnées.

3) Donner le pas d'échantillonnage maximal T_{\max} qui garantisse qu'une reconstruction parfaite du signal d'entrée x(t) après échantillonnage soit possible.

4) Donner $X_{\operatorname{\acute{e}ch}}(\omega),$ la transformée de Fourier de $x_{\operatorname{\acute{e}ch}}(t).$

5) Sur les graphes ci-dessous, représenter $X_{\operatorname{\acute{e}ch}}(\omega)$, la transformée de Fourier de $x_{\operatorname{\acute{e}ch}}(t)$, pour les pas d'échantillonnage T_e indiqués. Veiller à graduer l'axe des ordonnées.

6) Observe-t-on un phénomène de recouvrement spectral (aliasing) pour $T_e=1$? Et pour $T_e=4$? Justifier.

7) Donner $H(\omega)$, la transformée de Fourier de h(t).

8) Représenter $H(\omega)$ sur le graphe ci-dessous, en veillant à graduer l'axe des ordonnées.

9) Caractériser le comportement fréquentiel du filtre h(t). Justifier.

10) Le filtre h(t) permet-il d'effectuer une reconstruction parfaite de x(t) à partir du signal échantillonné $x_{\text{éch}}(t)$ pour le pas d'échantillonnage $T_e=1$? Justifier.

Problème III

On considère le schéma-bloc suivant.

Prenez soin de bien observer le schéma bloc afin d'identifier correctement les entrées et sorties de chaque sous-système!

A. Analyse de S_1

1) La fonction de Green causale de l'opérateur S_1 est donnée par $\phi_1(t) = 2\delta'(t) + \delta(t)$. Exprimer le système S_1 sous forme d'opérateur et donner sa réponse impulsionnelle $h_1(t)$.

2) Le système S_1 est-il RIF? Causal? BIBO-stable? Justifier.

3) Donner l'expression de $H_1(\omega)$, la réponse fréquentielle de S_1 .

B. Analyse de S_2

Le système \mathbf{S}_2 est caractérisé par l'équation suivante

$$S_2: 4x_2''(t) + 4x_2'(t) + x_2(t) = x(t)$$

4) Donner l'expression de $h_2(t)$, la réponse impulsionnelle de \mathcal{S}_2 .

5) Le système S_2 est-il BIBO-stable? Justifier.

6) Donner l'expression de $H_2(\omega)$, la réponse fréquentielle de S_2 .

C. Analyse du système S_A

7) Donner l'expression de $H_A(\omega)$, la réponse fréquentielle de \mathcal{S}_A et indiquer les pôles et zéros de \mathcal{S}_A .

D. Analyse du système S_3

Le système S_3 est caractérisé par la réponse impulsionnelle suivante

$$S_3: h_3(t) = 2te^{-t}u(t)$$

8) Donner l'équation différentielle reliant $x_3(t)$ et y(t).

9) Donner l'expression de $H_3(\omega)$, la réponse fréquentielle de S_3 .

E. Analyse complète

10) Montrer que la réponse fréquentielle de S est donnée par $H(\omega) = \frac{1}{(j\omega + \frac{1}{2})^2(j\omega + 1)}$. Quels sont les pôles et zéros du système complet S?

11) Calculer la réponse impulsionelle h(t) du système complet S.