Uncapacitated lot-sizing problem with setups

Comparaison de formulations pour le problème de Lot-Sizing sans capacité avec setups

La problématique

Une entreprise désire définir la production de son produit pour les n prochains mois afin de satisfaire chaque mois la demande de ses clients donnée par d_i pour i = 1, ..., n. La production de chaque mois peut servir à satisfaire la demande du mois en cours, mais également la demande des mois suivants.

Produire durant le mois $i, i \in \{1, ..., n\}$ engendre un coût c_i par unité produite. De plus, la production nécessite l'utilisation d'une machine complexe devant être configurée à chaque utilisation. Cette configuration engendre un coût f_i payé une seule fois au début de chaque mois où l'on produit. Enfin, stocker un produit pour le mois suivant implique un coût de stockage h par produit stocké.

Le directeur de l'entreprise souhaite donc savoir pour chaque mois, combien de produits il doit produire et combien de produits il devra stocker pour les mois suivants, tout en satisfaisant la demande et en minimisant le coût total.

Les données

Les fichiers instances contiennent chacun un jeu de données pour le problème étudié. La première ligne du fichier indique le nombre n de périodes. La seconde ligne indique la demande d_i à satisfaire pour chaque période i. La troisième ligne indique le coût de production c_i d'un produit lors de la période i. La ligne suivante donne le coût de setup f_i pour chaque période i tandis que la dernière ligne indique le coût unitaire h de stockage.

Premier modèle

Un premier modèle peut être écrit en utilisant les variables

```
y_i = \left\{ \begin{array}{l} 1 \text{ si on produit pendant la période } i, \forall i \in \{1, \dots, n\} \\ 0 \text{ sinon,} \end{array} \right.
```

 $x_i = \text{quantit\'e produite le mois } i, \forall i \in \{1, \dots, n\},\$

 $s_i = \text{quantité stockée à la fin du mois } i, \forall i \in \{1, \dots, n\}.$

Question 1. Ecrire le modèle PLNE pour le problème en s'appuyant sur les variables précédentes. Si votre modèle fait intervenir des constantes M, proposez une valeur ajustée et valide pour celles-ci.

Question 2. En partant du fichier joint contenant la lecture des fichiers de données, implementez ce modèle mathématique et résolvez-le. Vous pouvez limiter le temps de résolution à 3 minutes.

Question 3. Pour chacune des instances, notez/calculez:

- la valeur de la solution de la relaxation linéaire du modèle;
- le statut de la meilleure solution trouvée (optimale, réalisable, aucune);
- la valeur de la meilleure solution trouvée;
- l'écart en % entre la valeur de la relaxation linéaire et la valeur de la meilleure solution trouvée;
- le nombre de nœuds de l'arbre de branchement;
- le temps de résolution.

Deuxième modèle

Lorsqu'il n'y a pas de limite de capacité sur les quantités produites chaque mois, on peut montrer mathématiquement que tous les produits permettant de satisfaire la demande de la période j, sont fabriqués lors d'une **unique** période i, $i \le j$.

Ainsi un second modèle peut-être obtenu en utilisant les variables suivantes.

```
x_{ij} = \begin{cases} 1 & \text{si on fabrique à la période } i \text{ les produits pour la demande de la période } j, \\ \forall i \in \{1, \dots, n\}, \ \forall j \in \{1, \dots, n\}, \ i \leq j, \\ 0 & \text{sinon.} \end{cases} y_i = \begin{cases} 1 & \text{si on produit pendant la période } i, \forall i \in \{1, \dots, n\}, \\ 0 & \text{sinon.} \end{cases}
```

Question 4. Ecrire le modèle PLNE pour le problème en s'appuyant sur les variables précédentes. Si votre modèle fait intervenir des constantes M, proposez une valeur ajustée et valide pour celles-ci.

Question 5. En partant du fichier joint contenant la lecture des fichiers de données, implementez ce modèle mathématique et résolvez-le. Vous pouvez limiter le temps de résolution à 3 minutes.

Question 6. Pour chacune des instances, notez/calculez:

- la valeur de la solution de la relaxation linéaire du modèle;
- le statut de la meilleure solution trouvée (optimale, réalisable, aucune);
- la valeur de la meilleure solution trouvée;
- l'écart en % entre la valeur de la relaxation linéaire et la valeur de la meilleure solution trouvée;
- le nombre de nœuds de l'arbre de branchement;
- le temps de résolution.

Conclusion

Question 7. Ecrivez un court rapport contenant :

- une présentation des deux modèles mathématiques (expliquez bien vos variables, objectifs et contraintes);
- un(des) tableau(x) contenant les résultats obtenus;
- une rapide analyse de ces résultats.