Prácticas de Matlab

Resolución de EDO con métodos implícitos Hoja 5 A

1.1 Práctica 3 (Ecuación no rígida con Euler implícito)

1.1.1 Objetivo

Vamos a comparar, mediante diagramas de eficiencia, diferentes implementaciones del método del Trapecio

$$y_{k+1} = y_k + \frac{h}{2} \left(f(t_k, y_k + f(t_{k+1}, y_{k+1})) \right)$$
(1)

mediante:

- Punto fijo
- Punto fijo+Euler (PC)
- Newton
- Newton + Euler (PC)

Lo vamos a hacer para una ecuación no rígida y una rígida.

1.1.2 Caso no rígido

Consideramos el siguiente sistema

$$y'(t) = Ay(t) + B(t) \quad t \in [0, 10]$$
 (2)

$$A = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \qquad B(t) = \begin{pmatrix} 2\sin(t)\\ 2(\cos(t) - \sin(t)) \end{pmatrix}$$
 (3)

$$y(0) = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{4}$$

La solución exacta es:

$$y = 2e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$$
 (5)

1.1.3 Resultados de los errores

h_{vect}	0.05	0.025	0.0125	0.00625	0.003125	0.0015625	0.00078125	0.000390625
err_{trapfx}	0.000236914	0.000395344	9.72549e-05	2.41208e-05	6.00635 e-06	1.49863e-06	0.000418266	0.000266932
$err_{trapfxpc}$	0.000444279	0.000152768	3.76766e-05	9.35613e-06	2.33123e-06	5.81838e-07	1.45339e-07	3.63196e-08
$err_{trapnwt}$	0.000219132	5.47935e-05	1.36975e-05	3.4243e-06	8.56072e-07	2.14018e-07	5.35045e-08	1.33761e-08
$err_{trapnwtpc}$	0.000219132	5.47935e-05	1.36975e-05	3.4243e-06	8.56072e-07	2.14018e-07	5.35045e-08	1.33761e-08

1.1.4 Gráficas

Figure 1: El método del Trapecio punto fijo vs PC

Figure 2: El método del Trapecio-punto-fijo-PC vs Trapecio-Imp-Nwt

Figure 3: El método del Trapecio Nwt vs Trapecio Nwt-PC

1.2 Práctica 6 (Ecuación rígida con el trapecio)

1.2.1 Objetivo

Vamos a comparar, mediante diagramas de eficiencia, diferentes implementaciones del método del Trapecio

$$y_{k+1} = y_k + \frac{h}{2} \left(f(t_k, y_k + f(t_{k+1}, y_{k+1})) \right)$$
(6)

mediante:

- Punto fijo
- Punto fijo+Euler (PC)
- \bullet Newton
- Newton + Euler (PC)

Lo vamos a hacer para una ecuación no rígida y una rígida.

1.2.2 Caso rígido

$$y'(t) = Ay(t) + B(t) \quad t \in [0, 10]$$
 (7)

$$\begin{pmatrix} A = -2 & 1\\ 998 & -999 \end{pmatrix} \quad B(t) = \begin{pmatrix} 2\sin(t)\\ 999(\cos(t) - \sin(t)) \end{pmatrix} \qquad B(t) = \begin{pmatrix} 2\sin(t)\\ 2(\cos(t) - \sin(t)) \end{pmatrix} \tag{8}$$

$$y(0) = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{9}$$

La solución exacta es:

$$y = 2e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$$
 (10)

1.2.3 Resultados de los errores

h_{vect}	0.01	0.005	0.0025	0.00125	0.000625	0.0003125	0.00015625	7.8125e-05
$err_{elimpfxpc}$	Inf	Inf	Inf	Inf	Inf	Inf	3.49729e-06	2.46885e-07
$err_{elimpnwt}$	0.00103055	0.000256162	6.43522 e-05	1.61356e-05	4.37391e-06	1.51784e-06	0.000474986	0.000604019
$err_{elimpnwtpc}$	0.00153939	0.00114131	0.000566578	0.000197086	2.92383e-05	5.89155e-06	1.20884e-06	3.022e-07

1.2.4 Gráficas

Sistema rigido intv= $[0\ 10]$ Error maximo vs h M= $8\ N_0=200$ orden orden TapFij=Inf
Tol= $0.001\ n_{max}=10$ Metodo de Trapecio Fix+PC

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
h

Figure 4: Trapecio Punto fijo+ PC

Figure 5: Trapecio Newton+ Newton-PC