Lecture #2: Input Representation, Abstract ML Algorithm, and Supervised Learning Settings

Janardhan Rao (Jana) Doppa

School of EECS, Washington State University

Learning for Simple Outputs

- In ML, our input examples (emails, text documents, images) are often represented as real-valued vectors: $x \in \mathbb{R}^d$
 - ightharpoonup each co-ordinate of x is called a feature

- Some examples
 - Bag-of-words representation of text
 - Histograms of colors in image
 - Sound frequency histogram

- Bag-of-words model
 - sentences to points
 - 1. To be, or not to be,
 - 2. To be a woman,
 - 3. To not be a man

To	be	or	not	woman	a	man
2	2	1	1	0	0	0
1	1	0	0	1	1	0
1	1	0	1	0	1	1

Histogram of colors in image

Sound frequency histogram

Recap of last lecture

- Different learning paradigms
 - Supervised, semi-supervised, unsupervised, active, and reinforcement learning
- Representation of Input objects
 - set of features or feature vectors
 - some examples (e.g., Bag-of-Words for text)
- Abstract machine learning algorithm

Overview of ML Algorithms

There are lot of machine learning algorithms

- Every machine learning algorithm has three components
 - Representation
 - Evaluation
 - Optimization

Representation: Examples

- Linear hyper-planes
- Decision trees
- Sets of conjunctive / logical rules
- Graphical models (Bayes/Markov nets)
- Neural Networks

• • •

Evaluation: Examples

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Cost / Utility
- Margin
- Entropy

• • •

Optimization: Examples

Combinatorial Optimization

greedy search, dynamic programming

Convex Optimization

gradient descent, co-ordinate descent

Constrained Optimization

linear programming, quadratic programming

• • •

Generative vs. Discriminative Learning

- Training data: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ drawn from a joint distribution P(X, Y)
- Generative learning: learn the distribution P(X, Y)
 - "what controls the rise and fall of the stock prices?"
- Discriminative learning: learn the conditional distribution P(Y|X)
 - "will there be a rise in the stock prices today evening?"

$$P(Y|X) = \frac{P(X,Y)}{P(X)}$$

Parametric vs. Non-Parametric Learning

Parametric learning

- define a space of models parameterized by a fixed number of parameters
- find model that best fits the data (by searching over the parameters)
- Example: logistic regression

Non-Parametric learning

- define a space of models that can grow in size with data
- find model that best fits the data
- "Non-parametric" means "Not-fixed"
- Example: decision trees

Non-Bayesian vs. Bayesian Learning

Non-Bayesian learning

Bayesian learning

⊕* is a point estimate.

 $\hat{p}(\Theta)$ is a distribution over possible worlds

Machine Learned Programs: Errors

Approximation Error

Error due to restricted hypothesis class (representation)

Estimation Error

Error due to finite training samples

Optimization Error

Error due to not finding a global optimum to the optimization problem