Examenul național de bacalaureat 2021 Proba E. c) Matematică *M pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$5 = \frac{1}{2} + 3r \Leftrightarrow r = \frac{3}{2}$, unde r este rația progresiei	2p
	$a_1 + a_2 + a_3 = 3a_1 + 3r = 6$	3 p
2.	f(1) = 2a - 2, $f(-2) = -a - 2$, pentru orice număr real a	2p
	2a-2-a-2=0, deci $a=4$	3p
3.	$\log_6(2x+6) = 2 \Rightarrow 2x+6 = 6^2$	3 p
	$2x + 6 = 36 \Rightarrow x = 15$, care convine	2p
4.	Sunt 10 de numere naturale de o cifră, deci sunt 10 cazuri posibile	2p
	Sunt 3 numere naturale de o cifră care pot fi scrise sub forma n^3 , deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{10}$	1p
5.	D(2,4)	2p
	Ecuația dreptei AD este $y = x + 2$	3 p
6.	$\sin 30^{\circ} = \frac{1}{2}$, $\cos 60^{\circ} = \frac{1}{2}$, $\cos 120^{\circ} = -\frac{1}{2}$	3p
	$2\sin 30^{\circ}\cos 60^{\circ} - \cos 120^{\circ} = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} = 1$	2p

SUBIECTUL al II-lea

1. $2*(-5) = \frac{(2-1)(-5-1)}{2} + 1 = 2$ 2p 2. $x*3 = \frac{(x-1)(3-1)}{2} + 1 = x - 1 + 1 = x$, pentru orice număr real x 2p $3*x = \frac{(3-1)(x-1)}{2} + 1 = x - 1 + 1 = x$, pentru orice număr real x, deci e=3 este elementul neutru al legii de compoziție ,,*"

3. a*5 = 2(a-1) + 1 = 2a - 1, pentru orice număr real a 3p 2a - 1 = 3, deci a = 2 2p

4. $x*(1-x) = \frac{-x^2 + x + 2}{2}$, pentru orice număr real x 2p $\frac{-x^2 + x + 2}{2} \ge -5 \Leftrightarrow -x^2 + x + 12 \ge 0$, de unde obținem $x \in [-3,4]$ 3p

(30 de puncte)

5.	$N = (\sqrt{n} + 1) * (\sqrt{n} + 1) = \frac{n}{2} + 1$, pentru orice număr natural n	2p
	De exemplu, pentru $n = 4k + 2$, unde $k \in \mathbb{N}$, obținem că $N = 2(k+1)$, care este număr natural par	3 p
6.	$m*n*p = \frac{(m-1)(n-1)(p-1)}{4} + 1$, pentru orice numere naturale m , n şi p	3p
	$\frac{(m-1)(n-1)(p-1)}{4} + 1 = 8 \Leftrightarrow (m-1)(n-1)(p-1) = 28 \text{si, cum } m, n \text{si} p \text{sunt numere}$	2p
	naturale, cu $m < n < p$, obținem tripletele (2,5,8) și (2,3,15)	

SUBIECTUL al III-lea

(30 de puncte)

1.	$\det A = \begin{vmatrix} 1 & 3 \\ -1 & 1 \end{vmatrix} = 1 \cdot 1 - (-1) \cdot 3 =$	3p
	=1+3=4	2p
2.	$A + xI_2 = \begin{pmatrix} 1+x & 3 \\ -1 & 1+x \end{pmatrix} \Rightarrow \det(A + xI_2) = \begin{vmatrix} 1+x & 3 \\ -1 & 1+x \end{vmatrix} = (1+x)(1+x) - 3 \cdot (-1) =$	3 p
	$=(1+x)^2+3 \ge 3$, pentru orice număr real x	2p
3.	$A \cdot A = \begin{pmatrix} -2 & 6 \\ -2 & -2 \end{pmatrix}, \ B(3) = (A \cdot A) \cdot A = \begin{pmatrix} -8 & 0 \\ 0 & -8 \end{pmatrix} = -8I_2$	3 p
	$-8I_2 = aI_2$, de unde obţinem $a = -8$	2p
4.	$\det(2mA + I_2) = \begin{vmatrix} 2m+1 & 6m \\ -2m & 2m+1 \end{vmatrix} = 16m^2 + 4m + 1 \text{ si } 2m\det(A - I_2) = 6m \text{, pentru orice număr}$	3 p
	real m	
	$16m^2 + 10m + 1 = 0$, de unde obținem $m = -\frac{1}{2}$ sau $m = -\frac{1}{8}$	2p
5.	$A \cdot M = \begin{pmatrix} x+3z & y+3t \\ -x+z & -y+t \end{pmatrix}, M \cdot A = \begin{pmatrix} x-y & 3x+y \\ z-t & 3z+t \end{pmatrix}, \text{ unde } x, y, z \text{ si } t \text{ sunt numere reale}$	2p
	$A \cdot M = M \cdot A \Rightarrow 3z = -y$ și $t = x$, de unde obținem $x + y + 3z - t = x + y - y - x = 0$	3p
6.	$B(3) = -8I_2$, deci $B(6n) = \underbrace{A \cdot A \cdot A \cdot A \cdot A \cdot A}_{\text{de } 6n \text{ ori } A} = \underbrace{B(3) \cdot B(3) \cdot \dots \cdot B(3)}_{\text{de } 2n \text{ ori } B(3)} = (-8)^{2n} I_2$, unde n	3 p
	este număr natural nenul	
	$B(6n) = 64^n I_2$, deci $B(6n)$ are toate elementele numere naturale, pentru orice număr natural nenul n	2p