CS 530: High-Performance Computing Seminar 1: Computational Physics

Nathan Chapman

Department of Computer Science, Central Washington University

April 13, 2024

Contents

1	Intr	roduction	3
2	Mat	thematical Methods	4
	2.1	Taylor Series	5
	2.2	Fourier Analysis	5
		2.2.1 Fourier Series	5
		2.2.2 The Fourier Transform	5
	2.3	Properties of Differential Equations	5
		2.3.1 Order	5
		2.3.2 Linearity	5
		2.3.3 Homogeneity	5
		2.3.4 Chaos & Entropy	5
	2.4	Ordinary Differential Equations	5
	2.5	Partial Differential Equations	5
		2.5.1 Parabolic PDEs	5
		2.5.2 Hyperbolic PDEs	5
		2.5.3 Sturm-Liouville Theory	5
		2.5.4 Green's Functions	5
	2.6	Differential Equations with Conditions	5
		2.6.1 Initial Conditions	5
		2.6.2 Boundary Conditions	5
	2.7	Systems of Differential Equations	5
		2.7.1 Coupled Systems	5
	2.8	Eigenvalue Problems	5
	2.9	Optimization	5
3	Cor	mputational Methods	6
U	3.1	Programming Language	6
	0.1	3.1.1 Fortran	6
		3.1.2 Julia	6
		3.1.3 Python	6
		3.1.4 Matlab & Mathematica	6
	3.2	Finite-Differences	6
	0.2	3.2.1 Order	6
		3.2.2 Accuracy	6
	3.3	Runge-Kutta Methods	6
	3.4	Symplectic Integrators	6
	3.5	Parareal - Parallel-in-Time Integration	6
	3.6	The Fast Fourier Transform	6
	5.0	3.6.1 FFTW	6
		- ··· == = · · · · · · · · · · · · · ·	0

	3.7	Finite-Element Methods	6				
	3.8	Markov Chains & Monte-Carlo Methods	6				
4	Phy	Physical Context					
	4.1	Orbital Dynamics	7				
		4.1.1 The N-Body Problem	7				
	4.2	Fluid Dynamics	7				
		4.2.1 The Lattice Boltzmann Method	7				
	4.3	Electrodynamics & Magnetohydrodynamics	7				
		4.3.1 Fringing Electric Fields of Non-Ideal Capacitors	7				
	4.4	Many-Body Quantum Mechanics	7				
		4.4.1 Quadrupole-Quadrupole Interactions in a BEC	7				
	4.5	Numerical Relativity	7				
		4.5.1 Mercury's Perihelion Shift	7				
		4.5.2 Gravitational Waves	7				
	4.6	Chaotic Systems	7				
		4.6.1 Atmospheric Physics	7				
		4.6.2 Forced Oscillators	7				
	4.7	Honorable Mentions	7				
		4.7.1 Projectile Motion with Drag	7				
5	Nur	nerical Analysis	8				
	5.1	Error	8				
	5.2	Lax Equivalence Theorem	8				
	5.3	Courant-Friedrichs-Lewy condition	8				
	5.4	Von Neumann Stability	8				
	5.5	Energy Drift	8				
	5.6	Stiff Differential Equations	8				
	5.7	Grids & Meshes	8				
	5.8	Numerical Diffusion	8				
			-				

Introduction

Mathematical Methods

2.1	Taylor	Series

- 2.2 Fourier Analysis
- 2.2.1 Fourier Series
- 2.2.2 The Fourier Transform

2.3 Properties of Differential Equations

- 2.3.1 Order
- 2.3.2 Linearity
- 2.3.3 Homogeneity
- 2.3.4 Chaos & Entropy

Poincaré Sections

2.4 Ordinary Differential Equations

2.5 Partial Differential Equations

2.5.1 Parabolic PDEs

The Heat Equation

2.5.2 Hyperbolic PDEs

The Wave Equation

- 2.5.3 Sturm-Liouville Theory
- 2.5.4 Green's Functions

2.6 Differential Equations with Conditions

- 2.6.1 Initial Conditions
- 2.6.2 Boundary Conditions
- 2.7 Systems of Differential Equations

3.7

3.8

Computational Methods

3.1	Programming Language
3.1.1	Fortran
3.1.2	Julia
3.1.3	Python
3.1.4	Matlab & Mathematica
3.2	Finite-Differences
3.2.1	Order
3.2.2	Accuracy
3.3	Runge-Kutta Methods
3.4	Symplectic Integrators
3.5	Parareal - Parallel-in-Time Integration
3.6	The Fast Fourier Transform
3.6.1	\mathbf{FFTW}
CUDA	FFTW

Finite-Element Methods

Markov Chains & Monte-Carlo Methods

Physical Context

Forced Oscillators

Honorable Mentions

Projectile Motion with Drag

4.6.2

4.7

4.1	Orbital Dynamics	
4.1.1	The N-Body Problem	
4.2	Fluid Dynamics	
4.2.1	The Lattice Boltzmann Method	
4.3	Electrodynamics & Magnetohydrodynamics	
4.3.1	Fringing Electric Fields of Non-Ideal Capacitors	
4.4	Many-Body Quantum Mechanics	
4.4.1	Quadrupole-Quadrupole Interactions in a BEC	
4.5	Numerical Relativity	
4.5.1	Mercury's Perihelion Shift	
Effects of Eccentricity		
Gravitational Wave Chirp		
4.5.2	Gravitational Waves	
4.6	Chaotic Systems	
4.6.1	Atmospheric Physics	

Numerical Analysis

- 5.1 Error
- 5.2 Lax Equivalence Theorem
- 5.3 Courant-Friedrichs-Lewy condition
- 5.4 Von Neumann Stability
- 5.5 Energy Drift
- 5.6 Stiff Differential Equations
- 5.7 Grids & Meshes
- 5.8 Numerical Diffusion