Introduction to Quantum Computing

Exercise Sheet 0 (not to be handed over)

LM Informatica, a.a. 2023-2024.

Paolo Pistone

Exercise 1. Express the following complex numbers in standard algebraic form a + bi (suggestion: to simplify a number of the form $\frac{a+bi}{c+di}$, multiply it by $1 = \frac{c-di}{c-di}$). Then compute their absolute value:

- 1. $1+i-\frac{i}{1-5i}$;
- 2. $(2+i)(2-i)(1+\sqrt{3}i)$;
- 3. $\left(\frac{1+i}{1-i}-1\right)^2$.

Exercise 2. Express the following complex numbers in trigonometric and exponential forms:

- 1. z = 1 + i;
- 2. $z = \frac{1}{3+3i}$.

Express the complex number $z=e^{-i\frac{\pi}{4}}+e^{-i\frac{\pi}{3}}$ in algebraic form.

Exercise 3. Compute the three 3rd roots of unity and check that they satisfy $z^3 = 1$.

Exercise 4. Show that for an arbitrary vector $|\psi\rangle\in\mathbb{C}^2$ and for any real number θ ,

$$||e^{i\theta}|\psi\rangle|| = |||\psi\rangle||.$$

Exercise 5. Express the vectors of \mathbb{C}^8 corresponding to the following expressions:

$$|010\rangle$$
 $|110\rangle$ $|011\rangle$.

Exercise 6. Consider the following two vectors

$$|\psi\rangle = \frac{1}{\sqrt{3}}(|0\rangle - 2i|1\rangle)$$
 $|\phi\rangle = i|0\rangle + \frac{\pi}{6}|1\rangle.$

Compute:

- the complex number $\langle \psi | \phi \rangle$;
- the vector $|\psi\rangle \otimes |\phi\rangle \in \mathbb{C}^4$;
- the matrix $|\psi\rangle\langle\phi|\in\mathbb{C}^4$.

Exercise 7. Express the vector

$$|\psi\rangle = \frac{3}{5}|0\rangle + 2i|1\rangle$$

as a linear combination of the vectors of the Hadamard basis $|+\rangle, |-\rangle$.

Exercise 8. Consider the following vector:

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle).$$

Show that there exist no complex numbers $\alpha_1, \alpha_2, \beta_1, \beta_2$ such that

$$|\psi\rangle = (\alpha_1|0\rangle + \alpha_2|1\rangle) \otimes (\beta_1|0\rangle + \beta_2|1\rangle).$$

Exercise 9. Decide if the following vectors can be decomposed via tensors, or if they are entangled.

$$\frac{1}{\sqrt{2}}(|01\rangle+|00\rangle) \qquad \qquad \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \qquad \qquad \frac{1}{\sqrt{3}}(|011\rangle+|000\rangle+|101\rangle).$$

Exercise 10. Consider the following matrices

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

Are they unitary? Hermitian? Projections?

For each of the two matrices, find an orthonormal basis composed of eigenvectors, as well as the associated eigenvalues.