Université de Tours 2019-2020

L2-S3 UE 3-1 Algèbre

Feuille d'exercices 3

Exercice 1

Vérifier que les ensembles suivants sont des sous-espaces vectoriels d'un espace vectoriel à préciser puis donner une base et la dimension de chacun d'eux :

$$E = \{(x, x, y, y, z) : (x, y, z) \in \mathbb{R}^3\} \qquad F = \{a + aX + aX^3 + bX^5 : (a, b) \in \mathbb{R}^2\}$$

$$G = \left\{(x, y, z, t) \in \mathbb{R}^4 : \left\{ \begin{array}{c} x + z &= 0 \\ y + t &= 0 \end{array} \right\} \qquad H = \left\{ \left(\begin{array}{ccc} a & b & 0 \\ 0 & a & b \\ c & 0 & a + b \end{array} \right) : (a, b, c) \in \mathbb{R}^3 \right\}$$

$$I = \{f \in \mathcal{A}(\mathbb{R}, \mathbb{R}) : f(x) = ae^x + bx, \ a, b \in \mathbb{R}\}.$$

Exercice 2

Dans l'espace vectoriel réel $E = \mathbb{R}^4$, on considère les cinq vecteurs suivants :

$$u_1 = (1, -1, 0, 2), u_2 = (2, 1, 3, 1), u_3 = (4, 5, 9, -1), v_1 = (1, 1, 1, 1), v_2 = (0, 1, 0, 0)$$

- 1. Définir $F = \text{Vect}(u_1, u_2, u_3)$, puis en donner une base et un système d'équations.
- 2. Donner une base de $G = \text{Vect}(v_1, v_2)$ puis définir l'un de ses supplémentaires dans E, qu'on notera G_1 , ainsi qu'un système d'équations qui le définit.
- 3. Définir F + G puis en donner une base.
- 4. Prouver que $F \cap G$ est une droite vectorielle de E dont on donnera un vecteur directeur.

Exercice 3

Considérons les sous-espaces vectoriels F et G de \mathbb{R}^4 définis par:

$$F = \text{Vect}((1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1)), G = \text{Vect}((1, -2, 1, 2), (2, 1, -2, 1), (-4, -7, 8, 1))$$

Déterminer une base de : $F, G, F \cap G, F + G$. Avons-nous $\mathbb{R}^4 = F \oplus G$?

Exercice 4

Soit
$$E = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_3 = 0 \text{ et } x_2 + x_4 = 0\}.$$

Soient $u_1 = (1, 1, 1, 1), u_2 = (1, -1, 1, -1), u_3 = (1, 0, 1, 0).$ Soit $F = \text{Vect}(u_1, u_2, u_3).$

- 1. Donner une base de E et en déduire sa dimension.
- 2. Déterminer une base de F.
- 3. Donner une ou plusieurs équations qui caractérisent F.
- 4. Donner une famille génératrice de E + F.
- 5. Montrer que $E \oplus F = \mathbb{R}^4$.

Exercice 5

Soit F le sous-espace vectoriel de \mathbb{R}^5 engendré par les vecteurs $v_1 = (1, 3, -2, 2, 3), v_2 = (2, 7, -5, 6, 5)$ et $v_3 = (1, 2, -1, 0, 4)$ et G le sous-espace vectoriel de \mathbb{R}^5 engendré par $w_1 = (1, 3, 0, 2, 1), w_2 = (2, 7, -3, 6, 3)$ et $w_3 = (1, 1, 6, -2, -1)$.

- 1. Déterminer une base de F, une base de G, une base de F + G et une base de $F \cap G$.
- 2. Déterminer les équations de F + G.

Exercice 6

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et tA la matrice dont les lignes sont les colonnes de A. Par exemple,

si
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 8 & 1 & -1 \end{pmatrix}$$
 alors ${}^{t}A = \begin{pmatrix} 1 & 0 & 8 \\ 2 & 1 & 1 \\ -1 & 3 & -1 \end{pmatrix}$

 tA est dite transposée de A. On dit que A est symétrique (resp. anti-symétrique) si ${}^tA = A$ (resp. ${}^tA = -A$).

- 1. Montrer que les ensembles $\mathcal{S}_n(\mathbb{K})$ (resp. $\mathcal{A}_n(\mathbb{K})$) des matrices symétriques (resp. anti-symétriques) sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{K})$.
- 2. Déterminer une base et la dimension de $\mathcal{S}_n(\mathbb{K})$ et de $\mathcal{A}_n(\mathbb{K})$ pour n=3. Généraliser à n quelconque.
- 3. Montrer que $\mathcal{M}_n(\mathbb{K}) = \mathcal{S}_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K})$.

Exercice 7

Soient $E = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z - t = 0 \text{ et } x - 2y + 2z + t = 0 \text{ et } x - y + z = 0\}$ et $F = \{(x, y, z, t) \in \mathbb{R}^4 : 2x + 6y + 7z - t = 0\}.$ Soient a = (2, 1, -1, 2), b = (1, 1, -1, 1), c = (-1, -2, 3, 7), d = (4, 4, -5, -3) quatre vecteurs de \mathbb{R}^4 .

- 1. Déterminer une base de E et en déduire la dimension de E.
- 2. Compléter cette base en une base de \mathbb{R}^4 .
- 3. Montrer que E et F sont des sous-espaces vectoriels.
- 4. Déterminer une base de F .
- 5. Est-ce-que $E \oplus F = \mathbb{R}^4$?
- 6. Montrer que F = Vect(b, c, d).
- 7. Soit $u = (x, y, z, t) \in F$; exprimer u comme une combinaison linéaire de b, c et d.