資工導論 Data Representation in Computer Systems

李哲榮

What are data?

• 文字 text

ABC天地玄黄

Inside computer

01100001011000...

• 數字 number

123 3.14159

0000001000000...

• 聲音 sound

01001100010101...

• 圖像 image

10001001010100...

• 影片 video

00110000001001...

Binary system

- Computers use a binary system, 0 and 1, to represent and store all kinds of data.
- Why binary?
 - We need to find physical objects/phenomenon to store, transmit, and process data. Binary is the most straightforward representation.

Some jargons

- **Bit:** a binary digit (0 or 1)
- Byte: 8 bits
 - Basic storage unit in computer system

Hexadecimal notation:

- Represents each 4 bits by a single symbol
- Example: A3 denotes 1010 0011

Bit pattern	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	E
1111	F

More jargons

- Kilobyte (KB): 2^{10} bytes = 1024 bytes $\approx 10^3$ bytes
 - Example: $3 \text{ KB} \approx 3 \times 10^3 \text{ bytes}$
- Megabyte (MB): 2^{20} bytes $\approx 10^6$ bytes
 - Example: $3 \text{ MB} \approx 3 \times 10^6 \text{ bytes}$
- Gigabyte (GB): 2^{30} bytes $\approx 10^9$ bytes
 - Example: $3 \text{ GB} \approx 3 \times 10^9 \text{ bytes}$
- Terabyte (TB): 2^{40} bytes $\approx 10^{12}$ bytes
 - Example: $3 \text{ TB} \approx 3 \times 10^{12} \text{ bytes}$
- Petabyte (PB): 2^{50} bytes $\approx 10^{15}$ bytes
 - Example: $3 \text{ PB} \approx 3 \times 10^{15} \text{ bytes}$

Text data

- Each character is assigned to a unique bit pattern.
- ASCII code
 - American Standard Code for Information Interchange
 - Uses **7-bits** to represent most symbols used in English text

```
!"#$%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_
`abcdefghijklmno
pqrstuvwxyz{|}~
```


• Quiz: how many different bit patterns can be represented by 7 bits?

Big5 code

- For Chinese character encoding
- Uses 16 bits to represent a Chinese character
- Example

我	身	騎	白	馬
A7DA	A8AD	C34D	A5D5	B0A8

1010 0111 1101 1010

Unicode

• Uses 16-bits to represent the major symbols used in languages worldwide

• Quiz: how many different bit patterns can be represented by 16 bits?

Encoding

- You need correct encoding to read meaningful texts.
- For example, on browser, you can choose the encoding.
- Most webpages have specified their encoding.

```
æ¹æ"šè□¯é,¦æ³•院æ—
‡ä»¶é;¯ç¤°ï¼Œå□°ç□£é‡□é‡□ç′šä
¼□æ¥å®¶ã€□ä,—
界知å□□手機大å»
「å®□é□"é>»ã€□(HTC)å...¬å□,
è'£ä°‹é•·ç□‹é›³ç′...,é□-
å^°æ•™æœf䰰士æ...^å—
```


Display characters

• Computer doesn't show the codes directly to us. It displays what we can read.

- Those images for displaying characters are called fonts.
 - We will talk about images later.

Numbers

- Like texts, we can use 4 bits to represent decimal digits 0,1,2,3,4,5,6,7,8,9
 - This is called "Binary-coded decimal" (BCD)
 - EX: 123 is coded 0001 0010 0011
- Problems
 - 4 bits binary can have 16 different patterns, but BCD only uses 10. It wastes 6 bit-patterns.
 - Difficult to do calculation (+-*/)

	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Example of adding BCDs

Using lookup table

• EX: 5+7

• In BCD:

0101

+0111

0001 0010

а	b	carry	sum
•••	:	:	:
0101	0110	0001	0001
0101	0111	0001	0010
0101	1000	9001	Ø011
0101	1001	0001	0100
		:	:

Binary numeral system

• Uses bits to represent a number in base-2 system

- We put a subscript b to a number for binary, and a subscript d for decimal.
 - 10_d is number ten, and 10_b is number two.

Binary to decimal

• What is the decimal number of 100101_b?

- What is the binary number representation of 13_d?
- First, how many bits do we need for 13.
 - Since $2^3=8<13<16=2^4$, we need at least 4 bits.

- Remember b_3 , b_2 , b_1 , b_0 are either 0 or 1.
- Can we decide what b_0 is? 0 or 1.
 - Because $b_3 \times 8 + b_2 \times 4 + b_1 \times 2$ is an even number, and 13 is an odd number, b_0 must be 1.

• What is
$$b_1$$
?

13 = $b_3 \times 8 + b_2 \times 4 + b_1 \times 2 + b_0 \times 1$

- b_0 = $b_3 \times 8 + b_2 \times 4 + b_1 \times 2$

÷ 2 = ÷ 2

6 = $b_3 \times 4 + b_2 \times 2 + b_1 \times 1$

- It becomes to decide the binary representation of 6.
 - Since 6 is an even number, b₁ must be 0.

- What is b_2 ?
- We can follow the same procedure.

• Since 3 is an odd number, b₂ must be 1.

• What is b_3 ?

- It shows b_3 is 1.
- So $13_d = b_3b_2b_1b_0 = 1101_b$.

Algorithm for decimal to binary

- An algorithm is a procedure to describe the steps for computers to solve some problems.
- Let x be the decimal number in question and y is the corresponding binary number representation.
- What we did can be described as the following steps.

```
Step 1 If x equals to 0 or 1, y = x \circ y.

Step 2 If x is even, b is 0. Otherwise b is 1. Let y = b \circ y.

Step 3 Let x = (x - b)/2 and go to step 1.
```

- The initial value of y is an empty bit pattern.
- The operator means concatenation.

Algorithm for decimal to binary

- Problem: how a computer knows a number is even or odd?
- Use "integer division"
 - $x \operatorname{div} 2 = q \times 2 + r$, where q is quotient and r is remainder.
- The previous algorithm can be modified as follows

```
Step 1 If x equals to 0 or 1, y = x \circ y.

Step 2 Let x div 2 = q \times 2 + r and y = r \circ y.

Step 3 Let x = q and go to step 1.
```

Example

Binary number calculations

- Binary number representations are easy for calculations
- For example, the one bit addition

• So, what is 5_d+9_d in the binary number form?

Another example

• Remember the rules of one bit addition

• What is $00111010_b + 00011011_b$?

Negative numbers

- How to represent -1, -2, ... on a computer?
- Solution 1: use an extra bit to represent the negatives sign.
 - It is called *the sign bit*, in front of numbers.
 - Usually, 0 is for positives; 1 is for negatives.
 - Example: 1 0001 is -1 and 0 0100 is +4
- Problem 1: It will have 2 zeros, +0 and -0.
- Problem 2: how can we to do the addition (-1) + (4) efficiently using the signed notation?

Example of -1+4 with sign notation

One bit subtraction

It can be very complicated!!

Solution 2

- The negative sign "—" just means the "opposite" or the "inverse".
 - Ex, the opposite of East is West.
- For addition, the inverse of a number d, denoted I(d), has the property: I(d)+d=0.
- We can use this property to define negative numbers.
 - For example, let x be the representation of -1. It should satisfy the property x + 1 = 0.

What is -1?

- If we use four bits to represent a number, zero is 0000, and one is 0001. What is -1?
- Find b_3 , b_2 , b_1 , b_0 such that
 - 1 1 1 1 b₃ b₂ b₁ b₀
- b_0 must be 1, and it will create a carry 1.
- b1 must be 1, and it will create a carry 1.
- + 0 0 0 1 b2 must be 1, and it will create a carry 1.
 - b3 must be 1, and it will create a carry 1.

This 1 will be "truncated" since it is a 4 bits numbering system.

Finite digit systems

- One common example of finite digit system is clocks.
- What is the next second after 23:59:59?

Two's complement

- Such number representation for negative numbers is called two's complement.
- The right table lists 4 bits 2's complement representation.
- Only one zero.
- Easy for addition.
- The leading bit of negative numbers is 1. (signed bit)

Bit pattern	Values	
0111	7	
0110	6	
0101	5	
0100	4	
0011	3	
0010	2	
0001	1	
0000	0	
1111	-1	
1110	-2	
1101	-3	
1100	-4	
1011	-5	
1010	-6	
1001	-7	
1000	-8	

Calculation with 2's complement

• Calculation can be made easily for two's complement representation.

Problem in base ten	Problem in two's complement	Answer in base ten
3 + 2	0011 + 0010 0101	5
- 3 - 2	1101 + 1110 1011	-5
7 <u> </u>	0111 + 1011 0010	2

Computing 2's complement

- A simple algorithm to compute the 2's complement of a number
 - 1. Change each bit 0 to 1 and bit 1 to 0
 - 2. Add 1.

$$6_{d} = 0110_{b} + 0001_{b} + 1010_{b} + 1010_{b} + 1010_{b} + 1010_{b} + 10000_{b}$$

Exercises

• What are the decimal numbers for the following 2's complement representations?

```
(a) 00000001 (b) 01010101 (c) 11111001 (d) 1010101 (e) 10000000 (f) 00110011
```

• Find the negative value represented in 2's complement for each number

Overflow

• What is 5+4?

$$5_d + 4_d = 0101_b + 0100_b = 1001_b$$

- This is called overflow
 - Adding two positive numbers results a negative number; or adding two negative numbers results a positive number.
 - A 4 bits 2's complement system can only represent $-8\sim7$

Bit pattern	Values
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

Data types

- How do we know 1001_b is 9 or -7?
- In computer system, every datum needs a data type, which describes the format of the data.
- For example, in C, there are many data types for integers.

Data types	Size	Range
char	1 byte	-128 to 127
unsigned char	1 byte	0 to 255
int	4 bytes	-2147483648 to 2147483647
unsigned int	4 bytes	0 to 4294967295

Numbers with the decimal point

• Real numbers can be represented by the binary system too.

Fixed point representation

• This representation is called fixed point, because the decimal point is at the fixed position.

- Fixed point representation is good for calculations, but the representable range is very limited.
 - Think about 1000000 or 0.0001. They will be all 0 for 6 bit fixed point representation.

Floating point

- To represent a wide range of numbers, we allow the decimal point to "float".
- It uses the scientific notation of numbers.

$$40.1_{d} = 4.01_{d} \times 10^{1} = 401_{d} \times 10^{-1} = 0.401_{d} \times 10^{2}$$
$$101.101_{b} = +1.01101_{b} \times 2^{2_{d}} = +1.01101_{b} \times 2^{\frac{10}{b}}.$$

• This is called the floating point representation of real numbers.

Ex: floating point of $2^5/_8$

Why excess notation?

- Why excess notation?
- Why moving the exponent in front of the fraction?
- Both are for the same reason: easy to compare the numbers.
 - For two normalized numbers x and y, if x's exponent is larger than y's exponent, x is larger than y.

Excess notation	Bit pattern
3	111
2	110
1	101
0	100
-1	011
-2	010
-3	001
-4	000

• We can use the circuit of comparing integers to compare floating point numbers

Truncation error

- Consider the decimal number 0.1_d.
 - $0.1 = \frac{1}{16} + \frac{1}{32} + \frac{1}{256} + \frac{1}{512} + \dots$
 - So the binary representation of 0.1 is 0.000110011...
 - It is a infinite sequence in the binary notation.
- After normalization, it is $+1.10011...\times 2^{-4}$. The 8 bit floating point format can only represent $+1.1001\times 2^{-4} = 25/256 = 0.09765625$
- The difference |0.1 0.09765625| = 0.00234375 is called truncation error.

IEEE Standard 754

• IEEE (Institute of Electrical and Electronics Engineers) has made a floating point number standard, IEEE-754, so that different computers can have a common ground.

William Morton Kahan

Two commonly used formats of floating numbers

	Sign	Exponent	Fraction	Total
Single	1 bit	8 bits	23 bits	32 bits
Double	1 bit	11 bits	52 bits	64 bits

Exercises

- What are the fractions for the following floating number representations?
 - Suppose 1 bit for sign, 3 bits for exponent (using excess notation), 4 bits for mantissa
 - (a) 01001010 (b) 01101101 (c) 11011100 (d) 10101011
- If direct truncation is used, what are the ranges of their possible values?