Supplemental Lecture: Trade, Foreign Direct Investment, and Development

Natalia Ramondo

BU and NBER

STEG Virtual Course

Definitions

- Multinational Enterprise (MNE)
 - A firm with operations in more than one country, with 10% or more ownership
 - Parent and affiliate firms
- Foreign Direct Investment (FDI)
 - A (financial) flow in the Balance of Payment of countries
 - Equity stake of 10% or more
- Multinational Production (MP)
 - The activity of parents and affiliates (e.g., sales, employment)
 - MP by country i in I = sales of affiliates belonging to parents in i operating in I

Outline

- Some facts
- Models of trade and MP
 - Melitz/Chaney: Helpman, Melitz & Yeaple (04)
 - EK: Ramondo & Rodríguez-Clare (13)
 - Krugman/Melitz/Chaney/EK: Arkolakis, Ramondo, Rodríguez-Clare & Yeaple (18)
 - Subsequent literature
 - Not today: MNE boundaries and contracts (Ántras's work)
- Empirical evidence on spillovers: state-of-the-art
 - Greenstone, Hornbeck, & Moretti (10)
 - Setzler & Tintelnot (21); Alfaro-Ureña, Manelici, & Vasquez (19, 20); Van Patten (20)

Fact I: Bilateral MP, Market Size, and Bilateral Distance

Source: Ramondo, Rodríguez-Clare, & Tintelnot (15). Bilateral MP share = MP by i in l as a share of l's gross output. Non-financial sectors.

Fact II: Trade and MP

Source: Ramondo, Rodríguez-Clare, & Tintelnot (15). Correlation is 0.72.

Fact III: MNE Advantage

Source: Ántras and Yeaple (14) for Spain. Flaeen (15) for the United States.

Affiliate Activities: Taxonomy

- Horizontal Activities
 - Sales to the host market
 - The median US affiliate sells 66% to host market (Ramondo et al., 15)
- Export-Platform Activities
 - Sales outside the host market
 - The median US affiliate sells 34% outside host market (Ramondo et al., 15)
- Vertical Activities
 - Sales to parent company and other related parties
 - The median US affiliate sells zero to the parent (Ramondo et al., 15)

Why Do Firms Engage in International Activities?

The Proximity-Concentration Tradeoff

- How to serve a foreign market?
 - Export from domestic plant vs set up foreign affiliate
 - Exports and FDI are substitute ways of serving a foreign market
- Tradeoff
 - MP: High sunk and fixed of creating a new plant, but proximity to consumer
 - Exports: Concentrate production in one location, but far-away from consumer

The Proximity-Concentration Tradeoff

- How to serve a foreign market?
 - Export from domestic plant vs set up foreign affiliate
 - Exports and FDI are substitute ways of serving a foreign market
- Tradeoff
 - MP: High sunk and fixed of creating a new plant, but proximity to consumer
 - Exports: Concentrate production in one location, but far-away from consumer
- Evidence: Robust at the aggregate level; mixed at the firm level
 - X_{ij} : Exports from i. S_{ij} : sales of foreign affiliates of MNEs from i. Industry j.

$$\log \frac{X_{ij}}{X_{ij} + S_{ij}} = \underbrace{\alpha_1}_{(-)} \log trade \ costs_{ij} + \underbrace{\alpha_2}_{(+)} \log plant \ scale_j + \beta_1 Z_i + \beta_2 Y_j + u_{ij}$$

Multinational Production into Melitz-Chaney Model

- Proximity-concentration tradeoff at the firm and aggregate level
- Firms can transfer their productivity abroad (knowledge capital, Markusen 84)
 - Bloom, Sadun & Van Reenen (07); Giroud (13); Bilir & Morales (20)
- ullet Firms are heterogenous in productivity o Most productive firms choose MP
- Firms' response to the PC tradeoff is different across firms
 - Ratio of MP to export sales increases with firm heterogeneity

Helpman, Melitz, and Yeaple (04): Set up

- N countries. Only labor.
- Continuum of varieties. CES preferences with $\sigma > 1$.
- Firm productivity drawn from Pareto distribution

$$\mathbb{P}\left(\Phi \leq \varphi\right) = 1 - \varphi^{-\kappa} \quad \text{ with } \quad \varphi \geq 1 \quad \text{ and } \kappa + 1 - \sigma > 0$$

• Monopolistic competition

$$p(\varphi) = \frac{\sigma}{\sigma - 1} \frac{W_i}{\varphi}$$

- Variable trade costs from country i to j: $au_{ij} \geq 1$ with $au_{ii} = 1$
- Fixed export costs for country j: $f_j^x > 0$. Fixed MP costs for country j: $f_j^m > 0$.
- \bullet Additionally: fixed domestic cost $f_i^d>0$ and entry cost $f_i^e>0$

Profits and Zero-Profit Conditions

CES profits

- From sales to domestic market: $\pi_i^d(\varphi) = (W_i/\varphi)^{1-\sigma}B_i W_if_i^d$
- From exports to market j: $\pi^{\rm x}_{ij}(\varphi)=(au_{ij}W_i/arphi)^{1-\sigma}B_j-W_jf_j^{\rm x}$
- From MP sales to market j: $\pi^m_{ij}(\varphi) = (W_j/\varphi)^{1-\sigma}B_j W_jf_j^m$
- Zero-profit conditions and cutoff productivities
 - Domestic: $(W_i/\varphi_i^d)^{1-\sigma}B_i=W_if_i^d$ for all i
 - Export: $(W_i au_{ij}/arphi_{ij}^{ imes})^{1-\sigma} B_j = W_j f_j^{ imes}$ for all i
 eq j
 - $\ \mathsf{MP} \colon \left[1 (\tfrac{W_i}{W_j} \tau_{ij})^{1-\sigma}\right] (W_j/\varphi_{ij}^m)^{1-\sigma} B_j = W_j f_j^m W_j f_j^x \text{ for all } i \neq j$

Profits Under Symmetry

Key assumptions: $f^d < \tau^{\sigma-1} f^x < f^m$. Only horizontal flows, no export-platforms.

Heterogeneity and the Proximity-Concentration Tradeoff

$$\frac{\textit{Export sales}}{\textit{MP sales}} = \tau^{1-\sigma} \left[\frac{\textit{V}(\varphi^{\texttt{x}})}{\textit{V}(\varphi^{\textit{m}})} - 1 \right] = \tau^{1-\sigma} \left[\left(\frac{f^{\textit{m}} - f^{\texttt{x}}}{f^{\texttt{x}}} \frac{1}{\tau^{\sigma-1} - 1} \right)^{\kappa+1-\sigma} - 1 \right]$$

$$V(arphi^m) \equiv \int_{\infty}^{arphi^m} arphi^{\sigma-1} d {\cal G}(arphi) \quad ext{ and } \quad V(arphi^{\mathsf{x}}) \equiv \int_{arphi^m}^{arphi^{\mathsf{x}}} arphi^{\sigma-1}$$

Multinational Production into EK Model

- Quantitative general equilibrium EK model for trade and MP
 - Trade and MP are alternative ways to serve a market
 - Foreign affiliates import intermediates
 - A does MP in B and exports to C ("bridge" MP, BMP)
- Calibrate model to match bilateral trade and MP data
- Quantify gains from openness, trade, and MP
 - Other counterfactual exercises

EK Trade

- N countries of size L_n
- ullet Continuum of tradable goods, $v \in [0,1]$, CES aggregator with $\sigma > 1$
- Productivity $z_l(v)$ is independent Fréchet over v and across countries l

$$\mathbb{P}\left[Z_{I}(v) \leq z\right] = \exp\left[-T_{I}z^{-\theta}\right]$$

• Iceberg trade costs $au_{ln} \geq 1$, with $au_{ll} = 1$. Unit cost in n of good v produced in l

$$p_{ln}(v) = \tau_{ln} \frac{W_l}{z_l(v)}$$

Lowest cost producer of good v in country n (head-to-head competition)

$$p_n(v) = \min_{l} p_{ln}(v)$$

Multinational Production (MP)

• Good v can be produced in country I with technologies from i and sold in n

Multinational Production (MP)

- Good v can be produced in country l with technologies from i and sold in n
- Unit cost of good v produced in I with technology from i for n

$$p_{iln}(v) = \tau_{ln} \frac{c_{il}}{z_{il}(v)}$$

- $-c_{il}$ = unit cost of the input bundle for MP by i in l
- $-z_{il}(v)$ = productivity of producing good v in l with technologies from i

Multinational Production (MP)

- Good v can be produced in country l with technologies from i and sold in n
- Unit cost of good v produced in I with technology from i for n

$$p_{iln}(v) = \tau_{ln} \frac{c_{il}}{z_{il}(v)}$$

- $-c_{il}$ = unit cost of the input bundle for MP by i in l
- $-z_{il}(v)$ = productivity of producing good v in l with technologies from i
- Lowest cost producer of good v in country n (head-to-head competition)

$$p_n(v) = \min_{i,l} p_{iln}(v)$$

Multinational Input Bundle: Sourcing

• Unit cost of the input bundle for MP by *i* in *l*

$$c_{il} = \left[\sum_{k
eq l} a_{kl} \left(W_k au_{kl}
ight)^{1-\xi} + a_{ll} \left(W_l \gamma_{il}
ight)^{1-\xi}
ight]^{rac{1}{1-\xi}} \quad ext{with} \quad \sum_k a_{kl} = 1$$

- Home sourcing

$$c_{ii} = \left[a (W_i \tau_{ii})^{1-\xi} + (1-a) (W_i \gamma_{ii})^{1-\xi} \right]^{\frac{1}{1-\xi}}$$

- No sourcing

$$c_{il} = W_l \gamma_{il} \quad \rightarrow \quad p_{iln}(v) = \tau_{ln} \gamma_{il} \frac{W_l}{z_{il}(v)}$$

• 'MP cost' by i in I: $\gamma_{il} \geq 1$ with $\gamma_{ll} = 1$

Distributional Assumption (for Aggregation)

• Productivity is symmetric multivariate Fréchet across I, for each i

$$\mathbb{P}\left[Z_{i1}(v) \leq z_1, \dots, Z_{iN}(v) \leq z_N\right] = \exp\left[-\left(\sum_{l=1}^N \left(T_{il}z_l^{-\theta}\right)^{\frac{1}{1-\rho}}\right)^{1-\rho}\right]$$

- $\rho = 0$ corresponds to independent draws
- ho
 ightarrow 1 corresponds to perfectly correlated draws
- Productivity is i.i.d. over v and across i

MV Max-Stable Fréchet and Correlation Function

$$\mathbb{P}[Z_1(v) \leq z_1, \dots, Z_N(v) \leq z_N] = \exp\left[-G\left(T_1z_1^{-\theta}, \dots, T_Nz_N^{-\theta}\right)\right]$$

ullet Key property: G is homogeneous of degree $1 \implies \mathsf{max} ext{-stability}$

$$\mathbb{P}\left[\max_{l} Z_{l}(v) \leq z\right] = \exp\left[-G\left(T_{1}, \ldots, T_{N}\right)z^{-\theta}\right]$$

- The conditional and unconditional probability of the max coincide
- Key implication: probabilities equal expenditure shares
- Other properties: unboundedness; differentiability. Normalization.
- Special cases: independence (additive G); symmetry (CES G)
- MV max-stable Fréchet is equivalent to Generalized Extreme Value (GEV) expenditure

$$\frac{X_{ln}}{X_n} = \frac{T_{ln}W_l^{-\theta}G_l(T_{1n}W_1^{-\theta}, \dots, T_{Nn}W_N^{-\theta})}{G(T_{1n}W_1^{-\theta}, \dots, T_{Nn}W_N^{-\theta})} \quad \text{where} \quad G_l(x_1, \dots, x_N) \equiv \frac{\partial G(x_1, \dots, x_N)}{\partial x_l}$$

MV Max-Stable Fréchet and Correlation Function

$$\mathbb{P}[Z_1(v) \leq z_1, \dots, Z_N(v) \leq z_N] = \exp\left[-G\left(T_1z_1^{-\theta}, \dots, T_Nz_N^{-\theta}\right)\right]$$

ullet Key property: G is homogeneous of degree $1 \implies \max$ -stability

$$\mathbb{P}\left[\max_{I} Z_{I}(v) \leq z\right] = \exp\left[-G\left(T_{1}, \ldots, T_{N}\right)z^{-\theta}\right]$$

- The conditional and unconditional probability of the max coincide
- Key implication: probabilities equal expenditure shares
- Other properties: unboundedness; differentiability. Normalization.
- Special cases: independence (additive G); symmetry (CES G)
- MV max-stable Fréchet is equivalent to Generalized Extreme Value (GEV) expenditure

$$\frac{X_{ln}}{X_n} = \frac{T_{ln}W_l^{-\theta}\,G_l(T_{1n}W_1^{-\theta},\ldots,T_{Nn}W_N^{-\theta})}{G(T_{1n}W_1^{-\theta},\ldots,T_{Nn}W_N^{-\theta})} \quad \text{where} \quad G_l(x_1,\ldots,x_N) \equiv \frac{\partial G(x_1,\ldots,x_N)}{\partial x_l}$$

MV Max-Stable Fréchet and Correlation Function

$$\mathbb{P}[Z_1(v) \leq z_1, \dots, Z_N(v) \leq z_N] = \exp\left[-G\left(T_1 z_1^{-\theta}, \dots, T_N z_N^{-\theta}\right)\right]$$

• Key property: G is homogeneous of degree $1 \implies \max$ -stability

$$\mathbb{P}\left[\max_{I} Z_{I}(v) \leq z\right] = \exp\left[-G\left(T_{1}, \ldots, T_{N}\right)z^{-\theta}\right]$$

- The conditional and unconditional probability of the max coincide
- Key implication: probabilities equal expenditure shares
- Other properties: unboundedness; differentiability. Normalization.
- Special cases: independence (additive G); symmetry (CES G)
- MV max-stable Fréchet is equivalent to Generalized Extreme Value (GEV) expenditure

$$\frac{X_{ln}}{X_n} = \frac{T_{ln}W_l^{-\theta}G_l(T_{1n}W_1^{-\theta}, \dots, T_{Nn}W_N^{-\theta})}{G(T_{1n}W_1^{-\theta}, \dots, T_{Nn}W_N^{-\theta})} \quad \text{where} \quad G_l(x_1, \dots, x_N) \equiv \frac{\partial G(x_1, \dots, x_N)}{\partial x_l}$$

Correlation Through Multinational Production

• Correlation function is cross-nested CES (CNCES)

$$\mathbb{P}\left(Z_{i1n}(v) \leq z_1, \dots, Z_{iNn}(v) \leq z_N\right) = \exp\left[-\sum_i \left(\sum_l (T_{iln}z_l^{-\theta})^{\frac{1}{1-\rho_i}}\right)^{1-\rho_i}\right]$$

- Relax assumptions
 - Different correlation for each home country i
 - More general MP and trade cost not necessarily iceberg
 - Unit cost of producing good v in I with technologies from i to deliver to n

$$\frac{W_l}{Z_{iln}(v)}$$
 instead of $\gamma_{il}\tau_{ln}\frac{W_l}{Z_{il}(v)}$

- Keep assumptions
 - Productivity is i.i.d. over v and across i
- See Lind and Ramondo (20)

Expenditure Shares

Expenditure in n of goods produced in I with technologies from i

$$\frac{X_{iln}}{X_n} = \underbrace{\left(\frac{P_{iln}}{P_{in}}\right)^{-\frac{\theta}{1-\rho_i}}}_{within-i \ expenditure} \times \underbrace{\left(\frac{P_{in}}{P_n}\right)^{-\theta}}_{between-i \ expenditure}$$

$$P_{iln}^{-\theta} \equiv T_{iln}W_l^{-\theta} \qquad P_{in}^{-\frac{\theta}{1-\rho_i}} \equiv \sum_l P_{iln}^{-\frac{\theta}{1-\rho_i}} \qquad P_n^{-\theta} \equiv \sum_i P_{in}^{-\theta}$$

- Special case (RRC,13): $P_{iln}^{-\theta} \equiv T_{il}(\gamma_{il}\tau_{ln}W_l)^{-\theta}$ and $\rho_i=\rho$
- Bilateral trade: $X_{ln} = \sum_{i} X_{iln}$
- Bilateral MP: $X_{il} = \sum_n X_{iln}$
- Total expenditure: $X_n = \sum_i \sum_l X_{iln}$

Gains from Trade: Sufficient-Statistic Approach

Gains from trade for GEV class

$$GT_n \equiv \frac{W_n/P_n}{W_n^A/P_n^A} = \left(\frac{X_{nn}/X_n}{G_{nn}}\right)^{-\frac{1}{\theta}} \quad \text{where} \quad G_{nn} \equiv \frac{\partial G(P_{1n}^{-\theta}, \dots, P_{Nn}^{-\theta})}{\partial P_{1n}^{-\theta}}$$

- Gains from trade are lower than under independence
- Under independence, $G(x_1,\ldots,x_N)=\sum_l x_l$ and $G_{nn}=1 o \mathsf{CES} ext{-ACR}$

Gains from Trade: Sufficient-Statistic Approach

• Gains from trade for GEV class

$$GT_n \equiv \frac{W_n/P_n}{W_n^A/P_n^A} = \left(\frac{X_{nn}/X_n}{G_{nn}}\right)^{-\frac{1}{\theta}} \quad \text{where} \quad G_{nn} \equiv \frac{\partial G(P_{1n}^{-\theta}, \dots, P_{Nn}^{-\theta})}{\partial P_{1n}^{-\theta}}$$

- Gains from trade are lower than under independence
- Under independence, $G(x_1,\ldots,x_N)=\sum_l x_l$ and $G_{nn}=1\to\mathsf{CES}\text{-ACR}$
- Gains from trade for CNCES subclass

$$GT_{n} = \left(\frac{\sum_{i} X_{inn}}{X_{n}}\right)^{-\frac{1}{\theta}} \left[\sum_{i} \left(\frac{X_{inn}}{\sum_{i'} X_{i'nn}}\right) \left(\frac{X_{inn}}{\sum_{l} X_{iln}}\right)^{-\rho_{i}}\right]^{-\frac{1}{\theta}}$$

Gains from Trade, MP, and Openness

• Gains from trade* (isolation to trade) and Gains from MP* (isolation to MP)

$$GT_n^* = \left(\frac{X_{nnn}}{\sum_{l} X_{nln}}\right)^{-\frac{1}{\theta}} \qquad GMP_n^* = \left(\frac{X_{nnn}}{\sum_{l} X_{lnn}}\right)^{-\frac{1}{\theta}}$$

• Gains from trade (only MP to trade and MP)

$$GT_n = \left(\frac{\sum_{i} X_{inn}}{X_n}\right)^{-\frac{1}{\theta}} \left[\sum_{i} \left(\frac{X_{inn}}{\sum_{i'} X_{i'nn}}\right) \left(\frac{X_{inn}}{\sum_{l} X_{iln}}\right)^{-\rho_i}\right]^{-\frac{1}{\theta}}$$

• Gains from MP (only trade to trade and MP)

$$GMP_n = \frac{GT_n}{GT_n^*}GMP_n^*$$

• Gains from openness (isolation to trade and MP)

$$GO_n = \left(\frac{X_{nnn}}{X_n}\right)^{-\frac{1-\rho_n}{\theta}} \left(\frac{\sum_l X_{nln}}{X_n}\right)^{-\frac{\rho_n}{\theta}}$$

Trade and MP: Complements or Substitutes?

- Definitions
 - Trade is MP-complement when $GT_n > GT_n^*$
 - Trade is MP-substitute when $GT_n < GT_n^*$
 - Trade is MP-independent when $GT_n = GT_n^*$
- For intuition, calculate gains in a symmetric world (with home imports)
 - For a=0: $\rho=0$: Trade is MP-independent
 - For a=0: $0<\rho<1$: Trade is MP-substitute
 - For a > 0: $\rho = 0$: Trade is MP-complement
 - For $\xi \to 1$ ($\xi \to \infty$): Trade is MP-complement (MP-substitute)

Full Quantitative Model

- Tradable intermediate goods $v \in [0,1]$, CES aggregator with price index P_n^g
 - unit cost of MP by i in n is c_{in} (imports from home)
- ullet Non-tradable final goods $u\in[0,1]$, CES aggregator with price index P_n^f
 - unit cost of MP by i in n is $c_n^f \gamma_{in}^f$ (no imports from Home), with $\gamma_{in}^f = \mu \gamma_{il}^g$
- Input-output loop

$$c_n^g = BW_n^\beta (P_n^g)^{1-\beta}$$
 and $c_n^f = AW_n^\alpha (P_n^g)^{1-\alpha}$

Calibration Procedure

- Bilateral trade and MP costs
- Alt. 1 Trade and MP costs are functions of, e.g., distance. Target observed bil. trade and MP
- Alt. 2 Set trade and MP costs to exactly match observed bil trade and MP
- Alt. 3 Given MP & trade shares, unique set of Xiln. Assume symmetric costs and compute

$$\left(\sqrt{\frac{X_{iln}X_{ill}}{X_{iln}X_{iln}}}\right)^{\frac{1-\theta}{\rho}} = \tau_{ln}\tau_{nl} \qquad \left(\sqrt{\frac{X_{iin}X_{lln}}{X_{iln}X_{lin}}}\right)^{\frac{1-\theta}{\rho}} = \gamma_{li}\gamma_{il}$$

Calibration Procedure

- Bilateral trade and MP costs
- Alt. 1 Trade and MP costs are functions of, e.g., distance. Target observed bil. trade and MP
- Alt. 2 Set trade and MP costs to exactly match observed bil trade and MP
- Alt. 3 Given MP & trade shares, unique set of Xiln. Assume symmetric costs and compute

$$\left(\sqrt{\frac{X_{inn}X_{ill}}{X_{iln}X_{inl}}}\right)^{\frac{1-\theta}{\rho}} = \tau_{ln}\tau_{nl} \qquad \left(\sqrt{\frac{X_{iin}X_{lln}}{X_{iln}X_{lin}}}\right)^{\frac{1-\theta}{\rho}} = \gamma_{li}\gamma_{il}$$

• For θ , target 'unrestricted' gravity OLS coefficient $\beta^u \neq \theta$

$$\ln X_{ln} = I_l + I_n + \beta^u \ln \tau_{ln} + u_{ln}$$

• For ρ , target 'restricted' gravity (to origin i) OLS coefficient $\beta^r = -\frac{\theta}{1-\rho}$

$$\ln X_{iln} = I_{il} + I_{in} + \beta^r \ln \tau_{ln}$$

Calibration Procedure

- Bilateral trade and MP costs
- Alt. 1 Trade and MP costs are functions of, e.g., distance. Target observed bil. trade and MP
- Alt. 2 Set trade and MP costs to exactly match observed bil trade and MP
- Alt. 3 Given MP & trade shares, unique set of Xiln. Assume symmetric costs and compute

$$\left(\sqrt{\frac{X_{iln}X_{ill}}{X_{iln}X_{inl}}}\right)^{\frac{1-\theta}{\rho}} = \tau_{ln}\tau_{nl} \qquad \left(\sqrt{\frac{X_{iin}X_{lln}}{X_{iln}X_{lin}}}\right)^{\frac{1-\theta}{\rho}} = \gamma_{li}\gamma_{il}$$

• For θ , target 'unrestricted' gravity OLS coefficient $\beta^u \neq \theta$

$$\ln X_{ln} = I_l + I_n + \beta^u \ln \tau_{ln} + u_{ln}$$

• For ρ , target 'restricted' gravity (to origin i) OLS coefficient $\beta^r = -\frac{\theta}{1-\rho}$

$$\ln X_{iln} = I_{il} + I_{in} + \beta^r \ln \tau_{ln}$$

- Set $T_i = \phi_i L_i$ where ϕ_i is R&D employment share and L_i equipped labor in the data
- ullet For CES weights in MP input bundle (a's), target affiliates' intermediate (intra-firm) imports
- Remaining parameters from the literature (important: MP input-bundle CES elasticity ξ)

Krugman-Melitz-Chaney Meets EK: Motivation

- Goods increasingly produced far from where ideas are created
 - Key: the rise of multinational production (MP)
- Some countries specialize in innovation; others specialize in production
 - Countries specialized in production worry about low innovation rates
 - Countries specialized in innovation worry about loss of production jobs

Krugman-Melitz-Chaney Meets EK: Motivation

- Goods increasingly produced far from where ideas are created
 - Key: the rise of multinational production (MP)
- Some countries specialize in innovation; others specialize in production
 - Countries specialized in production worry about low innovation rates
 - Countries specialized in innovation worry about loss of production jobs
- Quantitative general equilibrium model with innovation and production
 - Specialization reflects comparative advantage & home market effects
 - Expansion of production may trigger deterioration of ToT (Venables, 87)
 - Countries may lose from openness

• L_i workers allocated to innovation (L_i^e) vs production (L_i^p) — Roy-Fréchet

- L_i workers allocated to innovation (L_i^e) vs production (L_i^p) Roy-Fréchet
- Firms pay a fixed cost to 'innovate'
 - Entry cost = $W_i^e f^e$. Endogenous entry of M_i firms (thus, $W_i^p = W_i^e = W_i$)
 - Firms own the idea (e.g., blueprint) to produce a good

- L_i workers allocated to innovation (L_i^e) vs production (L_i^p) Roy-Fréchet
- Firms pay a fixed cost to 'innovate'
 - Entry cost = $W_i^e f^e$. Endogenous entry of M_i firms (thus, $W_i^p = W_i^e = W_i$)
 - Firms own the idea (e.g., blueprint) to produce a good
- Firm outcome of innovation effort is stochastic
 - Multivariate Pareto Distribution (MVP) of firm productivity $\mathbf{z} = (z_1, ..., z_N)$
 - Countries differ in their productivity across goods (CA in goods)
 - Countries differ in their quality of ideas (CA innovation vs CA production)

- L_i workers allocated to innovation (L_i^e) vs production (L_i^p) Roy-Fréchet
- Firms pay a fixed cost to 'innovate'
 - Entry cost = $W_i^e f^e$. Endogenous entry of M_i firms (thus, $W_i^p = W_i^e = W_i$)
 - Firms own the idea (e.g., blueprint) to produce a good
- · Firm outcome of innovation effort is stochastic
 - Multivariate Pareto Distribution (MVP) of firm productivity $\mathbf{z} = (z_1, ..., z_N)$
 - Countries differ in their productivity across goods (CA in goods)
 - Countries differ in their quality of ideas (CA innovation vs CA production)
- Firms choose where to produce given geographic barriers to trade & MP
 - Iceberg trade τ_{In} and MP costs γ_{il} . Fixed export costs, W_nF_n

- L_i workers allocated to innovation (L_i^e) vs production (L_i^p) Roy-Fréchet
- Firms pay a fixed cost to 'innovate'
 - Entry cost = $W_i^e f^e$. Endogenous entry of M_i firms (thus, $W_i^p = W_i^e = W_i$)
 - Firms own the idea (e.g., blueprint) to produce a good
- · Firm outcome of innovation effort is stochastic
 - Multivariate Pareto Distribution (MVP) of firm productivity $\mathbf{z} = (z_1, ..., z_N)$
 - Countries differ in their productivity across goods (CA in goods)
 - Countries differ in their quality of ideas (CA innovation vs CA production)
- Firms choose where to produce given geographic barriers to trade & MP
 - Iceberg trade τ_{ln} and MP costs γ_{il} . Fixed export costs, $W_n F_n$
- Continuum of varieties $v \in [o, 1]$. CES preferences with $\sigma > 1$. Monopolistic competition.

The Multivariate Pareto Distribution

$$\mathbb{P}\left(z_{1},...,z_{N}\right)=1-\left(\sum_{l=1}^{N}\left[T_{il}z_{l}^{-\theta}\right]^{\frac{1}{1-\rho}}\right)^{1-\rho}$$

where
$$z_l \geq \widetilde{T}_i^{1/\theta}$$
 and $\widetilde{T}_i \equiv \left[\sum_l T_{il}^{1/(1-\rho)}\right]^{1-\rho}$

- $\theta > \sigma 1$ regulates heterogeneity over varieties (firms)
- $ho \in [0,1)$ regulates heterogeneity across locations
- $T_{il} = T_i^e T_l^p$: Country i has CA in innovation if T_i^e / T_i^p is relatively high

Firm's Problem and Aggregation

Unit cost for firm z from country i serving n from I:

$$C_{iln} = \frac{\gamma_{il} W_l \tau_{ln}}{z_l}$$

• Firm *i* chooses cheapest production location for each *n*:

$$I = \arg\min_{v} C_{ivn}$$

• Firm i chooses to serve market n if

$$\pi_n(C_{iln}) - w_n F_n \ge 0 \implies C_{iln} \le c_n^*$$

- MVP gives us closed-form for $\mathbb{P}(\arg\min_k C_{ikn}|\min_k C_{ikn} \leq c_n^*)$ and $(\operatorname{aggregate})$ flows
- Firm level: proximity-CA tradeoff. Aggregate level: proximity-concentration tradeoff

Innovation Shares, Specialization, and Trade Imbalances

Innovation share

$$r_i \equiv \frac{W_i L_i^e}{X_i} = \eta + \frac{\sigma - 1}{\sigma} \frac{X_i - Y_i}{X_i}$$

- Y_i : total production in i. X_i : total expenditure of i
- $-\eta$: sales' share of profits (net of marketing costs)
- $-r_i = \eta$ in autarky (or MP-autarky)

Innovation Shares, Specialization, and Trade Imbalances

Innovation share

$$r_i \equiv \frac{W_i L_i^e}{X_i} = \eta + \frac{\sigma - 1}{\sigma} \frac{X_i - Y_i}{X_i}$$

- Y_i : total production in i. X_i : total expenditure of i
- η : sales' share of profits (net of marketing costs)
- $-r_i = \eta$ in autarky (or MP-autarky)
- A trade deficit $(X_i > Y_i)$ implies specialization in innovation $(r_i > \eta)$
 - Import goods to repatriate profits from MP. Innovation hub
- A trade surplus $(X_i < Y_i)$ implies specialization in production $(r_i < \eta)$
 - Export goods to send profits from MP abroad. Production hub.

The Gains from Openness

$$GO_n = \underbrace{\left(\frac{\sum_{l} X_{nln}}{X_n}\right)^{-\frac{\rho}{\theta}} \left(\frac{X_{nnn}}{\sum_{l} X_{nln}}\right)^{-\frac{1-\rho}{\theta}}}_{\text{Direct Effect}} \times \underbrace{\left(1 + \theta \frac{X_n - Y_n}{Y_n}\right)^{1/\theta}}_{\text{Indirect Effect}}$$

- Indirect effect (due to innovation) can induce losses: $GO_n < 1$
 - Countries that lose innovation experience ToT deterioration
- Additional results
 - Countries can lose from more openness to trade or MP
 - Both production and innovation workers can lose from more liberalization

Useful Isomorphisms (Online Appendix in ARRY)

1. MV Pareto productivity \equiv Firm-specific Pareto productivity \times Firm-location-specific independent Fréchet productivity: φz_l

$$\varphi z_l$$
: $\mathbb{P}(\Phi \leq \varphi) = 1 - \varphi^{-\kappa}$ and $\mathbb{P}(Z_l \leq z_l) = \exp(-T_{il}z_l^{-\theta})$

- 2. Krugman-meets-EK model of MP & trade \equiv Two-sector trade model
 - Krugman free-entry monopolistic sector. EK head-to-head competition sector
- 3. Product innovation \equiv Process innovation
 - (Uncertain) Investment to lowering unit costs of production
- 4. For $\rho=$ 0: ARRY model \equiv model with plant-level location-specific fixed costs

Quantitative GE Models of Trade and MP

- Irrarazabal, Moxnes, & Opromolla (13) HMY with intra-firm trade
- Garetto (13) MP sourcing
- Tintelnot (17) plant-level fixed costs
- Alviarez (19) many sectors
- Head & Mayer (19) HQ gravity
- Eaton & Kortum (19) trade in services
- Sun (20) MP with non-neutral technologies
- Fan (21) Offshore R&D
- Wang (21) bounds approach

Spillovers: State-of-the-Art

'Incumbent firms increase TFP when more productive firm locates nearby'

- Traditionally, regression of domestic-firm outcome on 'nearby' MP presence
 - Many papers (80s', 90s'), mixed results
- More recently, refinements to include channels for spillovers
 - e.g. Backward linkages: Javorcik (04) and literature thereafter
- Now, very detailed data allow for much better identification
 - Firm-to-firm; employer-employee; natural experiments

Large Plant Openings: Greenstone et al. (10)

- Effects of new large plants on incumbent plants across US counties
- Use information from SITE Selection magazine
 - Report counties chosen by new million-dollar plants
 - ... And counties that almost got chosen
- Identification strategy
 - Compare incumbent plants in winning vs almost-winning counties
 - Ex-ante: counties are similar; incumbent plants are similar
- Results
 - Incumbent plants increase TFP by 8% after a large plant locates nearby
 - Entry of new plants increases, as do local wages
 - Incumbent firms that are economically less "distant" gain most
- Abebe et al. (2018): Effects of FDI spillovers on domestic plants in Ethiopia
 - Foreign-plant openings are allocated to regions by the government

Employer-Employee Data: Setzler and Tintelnot (21)

- Corporate tax fillings merged with W-2 for the US (1999-2017)
- Effects of MNEs in the US
 - Direct effect: Identify MNE wage premium
 - Indirect effect: Identify MNE effects on domestic firms (e.g., wages)
- Identification strategy
 - Use movers from domestic to foreign firms and two-way fixed effect
 - IV based on the spatial clustering of foreign firms by origin
- Results
 - The average foreign firm wage premium is 7% higher for skilled workers
 - One more job created by a foreign MNE generates in the same labor market:
 - o approx. 0.5 jobs and 139,000\$ in value added in a domestic firms;
 - o avg annual aggregate wage gain for incumbent workers of approx. 13,400\$
 - Tradeoff: the cost of mega-deals

The Case of Costa Rica

- 1. The effect of MNEs on workers (Alonso-Ureña, Manelici, and Vasquez, 19)
 - Employer-employee + firm-to-firm data for Costa Rica
 - Identify wage premium for MNEs (9%) and effects on domestic firms (1%)
 - o "Movers" design and two-way fixed effects
 - Dig deeper on the mechanisms: better outside options; input-output linkages
- 2. The effect of MNEs on suppliers (Alonso-Ureña, Manelici, and Vasquez, 20)
 - Firm-to-firm data for Costa Rica
 - Event-study strategy to identify effects of starting supplying an MNE
 - o Also: "winner vs loser" policy event; placebo strategies; survey to managers
 - Results reveal strong and persistent gains in performance by domestic firms
- 3. The effects of monopsony power on development (Van Patten, 20)
 - Exploit a quasi-random assignment of land to the United Fruit Co.

What's Next?

- MNE dynamics
- Taxation and MNEs
- Cross-border Mergers & Acquisitions
- Automation and MNEs
- Global value chains in production and R&D

Appendix

Property of Pareto Used for Estimation in HMY(04)

$$\mathbb{P}\left[Z \ge z\right] = \left(\frac{z}{\underline{z}}\right)^{-\gamma} \quad \to \quad \log\left(\mathbb{P}\left[Z \ge z\right]\right) = \gamma \log \underline{z} - \gamma \log z$$

- The log of the mass of the upper tail above z is linear in log z
 - e.g. if the number of employees in a randomly selected firm, Z, is Pareto distributed, the share of firms in the population with more than z (log) employees is linear in the (log) number of employees
- Regression of log firm size ranking on firm size identifies the shape parameter
- In this case: $\gamma = \kappa + 1 \epsilon$

Symmetry: Set Up

- $L_n = L$, $T_n = T$; $\tau_{ln} = \tau > 1$, $\gamma_{il} = \gamma > 1$, for all $l \neq n$.
 - Wages, costs, prices are equal across countries. W=1.
 - Unit cost of the multinational input bundle

$$m = \left[(1-a)\gamma^{1-\xi} + a\tau^{1-\xi} \right]^{\frac{1}{1-\xi}}$$

– Unit cost of the multinational input bundle when $\tau \to \infty$

$$\widetilde{m}=(1-a)^{\frac{1}{1-\xi}}\,\gamma$$

Symmetry: Real Wages

Isolation

$$T^{\frac{1}{\theta}}$$

• Only trade

$$\left[1+({\it N}-1) au^{- heta}
ight]^{rac{1}{ heta}}\,{\it T}^{rac{1}{ heta}}$$

Only MP

$$\left[1+(\mathsf{N}-1)\widetilde{\mathsf{m}}^{-\theta}\right]^{rac{1}{\theta}}\,\mathsf{T}^{rac{1}{\theta}}$$

Trade and MP

$$\left[\Delta_0 + (\mathit{N}-1)\Delta_1
ight]^{rac{1}{ heta}} \, \mathit{T}^{rac{1}{ heta}}$$

$$\Delta_0 \equiv \left(1 + (\mathit{N}-1)(\mathit{m}\tau)^{-\frac{\theta}{1-\rho}}\right)^{1-\rho} \qquad \Delta_1 \equiv \left(\tau^{-\frac{\theta}{1-\rho}} + \mathit{m}^{-\frac{\theta}{1-\rho}} + (\mathit{N}-2)(\mathit{m}\tau)^{-\frac{\theta}{1-\rho}}\right)^{1-\rho}$$

Symmetry: Gains

$$GT = \left[rac{\Delta_0 + (\mathit{N}-1)\Delta_1}{1 + (\mathit{N}-1) ilde{m}^{- heta}}
ight]^{rac{1}{ heta}}$$

$$\textit{GMP} = \left[rac{\Delta_0 + (\textit{N} - 1)\Delta_1}{1 + (\textit{N} - 1) au^{- heta}}
ight]^{rac{1}{ heta}}$$

$$GO = \left[\Delta_0 + (N-1)\Delta_1\right]^{rac{1}{ heta}}$$

$$\Delta_0 \equiv \left(1 + (\textit{N}-1)(\textit{m}\tau)^{-\frac{\theta}{1-\rho}}\right)^{1-\rho} \qquad \Delta_1 \equiv \left(\tau^{-\frac{\theta}{1-\rho}} + \textit{m}^{-\frac{\theta}{1-\rho}} + (\textit{N}-2)(\textit{m}\tau)^{-\frac{\theta}{1-\rho}}\right)^{1-\rho}$$

Multivariate Pareto Distribution: Two-Country Simulation

Note: N = 2, $T_{il} = T_{ii}$

ARRY: Taking the Model to the Data

Sample: 26 OECD countries, including China & Brazil

Match key trade elasticities (detailed data on MP activity)

• Match bilateral trade and MP patterns

Match country's GDP, productive labor, and innovation share

ARRY: Estimation of Model Elasticities

• 'Unrestricted' gravity regression does not recover θ but β^u

$$\ln X_{ln} = I_l + I_n + \beta^u \ln \tau_{ln}$$

• Same regression **'restricted'** to origin i can be used to recover $-\frac{\theta}{1-\rho}$:

$$\ln X_{iln} = \underbrace{\ln T_l^{\rho} \left(\gamma_{il} W_l \right)^{-\theta/(1-\rho)}}_{l_{il}} + \underbrace{\ln T_i^{e} \lambda_{in}^{E} \left(\Psi_{in} \right)^{-1/(1-\rho)}}_{l_{in}} - \frac{\theta}{1-\rho} \ln \tau_{ln}$$

- We use BEA data for X_{iln} for i = US and selected I, n pairs
 - Model implies $\beta^u \approx -\theta > -\frac{\theta}{1-\theta}$

ARRY: Calibration of Trade and MP costs, and Technology

- Step 1: Given MP & trade shares, the model implies a unique set of X_{iln}
 - Trade and MP shares are constructed with data from WIOD & UNCTAD
 - Calculate symmetric trade and MP costs using a generalized HR index
 - Remark: the procedure is "over-identified"

$$\left(\sqrt{\frac{X_{inn}X_{ill}}{X_{iln}X_{inl}}}\right)^{(1-\theta)/\rho} = \tau_{ln}\tau_{nl}, \ \left(\sqrt{\frac{X_{iin}X_{lln}}{X_{iln}X_{lin}}}\right)^{(1-\theta)/\rho} = \gamma_{li}\gamma_{il}$$

- **Step 2:** Set $T_{l}^{p} = L_{l}^{1-\rho}$
 - L_l is equipped labor (K-RC, 05) \times the employment share in mfg (UNIDO)
- **Step 3:** T_i^e matches r_i constructed from data on (implied) trade imbalances

ARRY Results: CA vs HMEs

Specialization due to Comparative Advantages	
Benelux	Innovation
Canada	Production
Denmark	Innovation
Sweden	Innovation
Ireland	Production
China	Production

Germany	
	Innovation
Mexico F	Production
United States	Innovation