Optimal Risk Weights

Alex von Hafften

UW-Madison

May 16, 2022

Recap from March Presentation

- Moral hazard from deposit insurance creating limited liability
- Regulators address with risk-weighted capital requirements:

$$E > \mathbf{A} \cdot \mathbf{w}$$

where E is shareholder equity, \mathbf{A} is assets, \mathbf{w} is risk weights

- ullet How ullet is determine has changed across time and Basel accords
- Key tradeoff:
 - ▶ Banks have better information about their riskiness than regulators
 - Banks have an incentive to underreport risk
- Question: How to design risk weights?

How are risk weights determined?

- Standardized Approach (SA)
 - Regulators stipulate buckets for assets and a risk weight for each bucket
- Internal Ratings Based Approach (IRB)
 - Bank develops credit risk model then approved by regulator
 - ▶ Estimates loan-level probability of default (PD) and loss given default

Problem with SA Risk Weights

- SA risk weights lack risk sensitivity (may not reflect economic risks)
- Result in asset substitution and capital misallocation:
 - Across buckets where banks make riskier loans across buckets
 - Within bucket where banks make riskier loans within a bucket
- Basel I risk weight on mortgages was 0.5 and corporate debt was 1.0
 - ightharpoonup Across: If 0.5 is too low and 1 is too high \implies hold more mortgages
 - lacktriangle Within: Risk weight not sensitive to LTV \Longrightarrow hold riskier mortgages

Problem with IRB Risk Weights

- Bank can manipulate IRB risk weights by underreporting risk
- Behn, Haselmann, and Vig (JF, 2022) find evidence of banks gaming
 - Delays in IRB model approval result in loans under both SA and IRB
 - ▶ In absolute terms, banks underreport PD when using IRB risk weights
 - And no downward bias in implied PD for SA loans
 - ▶ So, IRB loans have lower capital requirement *relative* to SA loans
 - Despite IRB loans having higher realized losses than SA loans
 - lacktriangle Higher interest rates on IRB loans \Longrightarrow bank aware IRB loans riskier
- BHV also find that lending by IRB banks grew relative to SA banks (consistent with effectively a lower capital requirement)

What do I want to do?

Welfare analysis weighing costs and benefits of risk weight approaches

- An approach "closer" to IRB:
 - More underreporting
 - Lower capital requirements
- An approach "closer" to SA:
 - More capital misallocation

Outline

- Introduction
- 2 Literature Review
- Model
 - Environment
 - Full Information
 - Private Information
 - How does private information affects requirements and allocation?
 - Naive regulator
- 4 Conclusion
- 6 Appendix

Related Literature

- Quantitative GE model of banking
 - ► Corbae and Levine (2022), Begenau and Landvoigt (2021), Bianchi and Bigio (2021), Corbae and D'Eramso (2021), Pandolfo (2021), Faira e Castro (2020), De Nicolo et al (2014), Van den Heuvel (2008)
- Risk weights
 - Begley, Purnanandam, Zheng (2017), Berg and Koziol (2017), Acharya, Engle, Pierret (2014), Gordy and Heifield (2012), Demirguc-Kunt et al (2010), Blum (2007), Gordy (2003)
- Bank opacity
 - ▶ Dang et al (2017)

How does the quantitative GE banking model risk weights?

- Most recent paper proxy for risk-weighted capital ratio with equity-to-loans ratio
- Equivalent to unit risk weight on loans and zero on other assets
- E.g. the risk-weighted capital requirement from Pandolfo (2021):

$$\frac{\ell + s + c - [a + d]}{\ell} \ge \phi^{cr}$$

where ℓ is loans, s is securities, c is cash, a is wholesale funding, and d is deposits

Note: 100 largest commercial banks by total assets. Averages over 1990-2010.

Point size and color depend on total assets.

• $\beta \approx 0.5$, $R^2 \approx 0.8$, size is significant and negative

Outline

- Introduction
- 2 Literature Review
- Model
 - Environment
 - Full Information
 - Private Information
 - How does private information affects requirements and allocation?
 - Naive regulator
- 4 Conclusion
- 6 Appendix

What do I do?

- Build simple 2-period model in the spirit of Allen and Gale (2004)
- Bank is funded by insured deposits and invests in risky technology
- Optimal capital requirements with private info about loan riskiness
- How does private information change allocations and requirements?
- What do allocation look like if regulators ignore private information?

Outline

- Introduction
- 2 Literature Review
- Model
 - Environment
 - Full Information
 - Private Information
 - How does private information affects requirements and allocation?
 - Naive regulator
- 4 Conclusion
- 6 Appendix

Environment

- Risky technology
- Insured deposits
- Unit mass of banks
- Regulator

Risky Technology

- ullet Linear technology riskiness $S \in [0,1]$
- In period 0, bank invests in X into the risky technology at S
- In period 1, the risky technology returns
 - ▶ $A \cdot S \cdot X$ with probability p(S)
 - ▶ Zero with probability 1 p(S).

with A > 0

• Assume p'(S) < 0 and $p''(s) \ge 0 \implies$ risk-return trade-off

Deposits

- Let $D \equiv \int_0^1 D_i di$ be aggregate deposits
- Inverse deposit supply curve is r(D)
- Assume $r'(D) > 0 \implies$ interior solution
- ullet Deposits are insured \Longrightarrow limited liability

Bank i

- Bank *i* is born with equity $E_i > 0$ with $E \equiv \int_0^1 E_i di$
- Chooses its deposits quantity D_i and is a price-taker
- Chooses its loan riskiness S_i
- Invests $E_i + D_i$ into risky technology at S_i
- Maximizes expected equity holder return subject to limited liability

Regulator

The regulator can subject banks to risk-weighted capital requirements:

$$\frac{E_i}{w(X)(D_i+E_i)} \geq \theta(X)$$

where

- $X \in \mathcal{X}$ is the vector of observables
- $w: \mathcal{X} \to \mathbb{R}$ is the risk weight
- $\theta: \mathcal{X} \to \mathbb{R}$ is the minimum ratio
- Equivalently,

$$\tilde{\theta}(X)E_i \geq D_i$$

where
$$ilde{ heta}(X) \equiv rac{1-w(X) heta(X)}{w(X) heta(X)}$$

Information Structure

Full information:

• Regulator observes everything

$$X = \{(E_i, D_i, S_i)\}_{\forall i}$$

Partial information:

- Regulator observes E_i and D_i and does not observe S_i
- Bank i reports \hat{S}_i to regulator

$$X = \{(E_i, D_i, \hat{S}_i)\}_{\forall i}$$

• Bank i can privately consume some output

Functional Forms and Parameters

- Risky technology: $p(S) = 1 S^{\eta}$ and $\eta = A = 1$
- Inverse deposit supply curve: $r(D) = \gamma D^2 + \alpha$ with $\gamma = 1$ and $\alpha = 0$
- Representative bank: $E_i = E$

Outline

- Introduction
- 2 Literature Review
- Model
 - Environment
 - Full Information
 - Private Information
 - How does private information affects requirements and allocation?
 - Naive regulator
- 4 Conclusion
- 6 Appendix

Full Information Problems

Planners problem

$$\max_{S,D} p(S)AS(D+E) - r(D)D$$

• Bank i problem

$$\max_{S_i,D_i} p(S_i)[AS_i(D_i + E_i) - r(D)D_i]$$

s.t. $\tilde{\theta}(X)E_i \ge D_i$

Solutions¹

Efficient allocation

$$S^* = \frac{1}{2}$$
$$D^* = \frac{1}{8}$$

ullet Unregulated bank choice (i.e. $ilde{ heta}(X)=\infty)$

$$S^{U}(E) = D^{U}(E) = \frac{1}{2} \left(\sqrt{4E^{2} + 1} - 2E + 1 \right)$$

Full Information Allocation (F.S.) (F.D.)

- Unregulated banks choose to be larger and riskier than is efficient.
- Banks take on less excessive risk with higher E.

Optimal Capital Requirements

Capital requirements can implement the efficient allocation:

$$\tilde{\theta}(S_i, E) = \begin{cases} \frac{D^*}{E}, & \text{if } S_i = S^* \\ 0, & \text{otherwise.} \end{cases}$$

• One possible way to split up $\tilde{\theta}(S_i, E)$ is

$$w(S_i) = \begin{cases} 1, & \text{if } S_i = S^* \\ \infty, & \text{if } S_i \neq S^* \end{cases}$$
 $\theta(E) = \frac{E}{D^* + E}$

Outline

- Introduction
- 2 Literature Review
- Model
 - Environment
 - Full Information
 - Private Information
 - How does private information affects requirements and allocation?
 - Naive regulator
- 4 Conclusion
- 6 Appendix

Constrained Planner Problem

- Assume representative bank $E = E_i$
- Constrained planners problem

$$\max_{S,D} p(S)AS(D+E) - r(D)D$$

s.t. $S = \max_{\tilde{S}} \{p(\tilde{S})[A\tilde{S}(D+E) - r(D)D]\}$

- Isomorphic problem with limited commitment
 - ▶ I.e., bank cannot commit to S before planner give them D

Solution²

Incentive compatibility constraint

$$S = \frac{1}{2} \left[\frac{D^2 + D + E}{D + E} \right]$$

Constrained efficient allocation

$$D^{**}(E) = \left\{ D \middle| \frac{D^4}{4(D+E)^2} - \frac{D^3}{D+E} - 2D + \frac{1}{4} = 0 \right\}$$
$$S^{**}(E) = \left\{ S \middle| S = \frac{1}{2} \left[\frac{D^2 + D + E}{D+E} \right], D = D^*(E) \right\}$$

 $^{^{2}}p(S) = 1 - S$, A = 1, $r(D) = D^{2}$, and $E_{i} = E$.

Private Information Allocation (P.E.S) (P.E.D)

- Constrained efficient has higher S and lower D than efficient
- Constrained efficient converge to the efficient as $E \to \infty$

Optimal Capital Requirements

Capital requirements can implement the efficient allocation:

$$\tilde{\theta}(D_i, E) = \begin{cases} \frac{D^{**}(E)}{E}, & \text{if } D_i = D^{**}(E) \\ 0, & \text{otherwise.} \end{cases}$$

• One possible way to split up $\tilde{\theta}(D_i, E)$ is

$$w(D_i, E) = \begin{cases} 1, & \text{if } D_i = D^{**}(E) \\ \infty, & \text{if } D_i \neq D^{**}(E) \end{cases}$$
$$\theta(E) = \frac{E}{D^{**}(E) + E}$$

Outline

- Introduction
- 2 Literature Review
- Model
 - Environment
 - Full Information
 - Private Information
 - How does private information affects requirements and allocation?
 - Naive regulator
- 4 Conclusion
- 6 Appendix

Optimal Capital Requirements

• Optimal capital requirements are higher with partial information

Expected Bank Profit

• Expected bank profit is lower with partial information

Expected Deposit Insurance Payout

• Expected deposit insurance payout is lower with partial information

Outline

- Introduction
- 2 Literature Review
- Model
 - Environment
 - Full Information
 - Private Information
 - How does private information affects requirements and allocation?
 - Naive regulator
- 4 Conclusion
- 6 Appendix

Naive regulator

- What is the allocation if the regulator neglects private information?
- Regulator imposes full info requirement taking report of \hat{S}_i as true
- Deposits are pinned to full information allocation

$$D^{MR} = 1/8$$

Incentive compatibility pins down loan riskiness

$$S^{MR} = \frac{1}{2} \left[\frac{(1/2)^2 + (1/2) + E}{(1/2) + E} \right]$$

Allocation with Naive Regulator (*(E. S) (*(E. D)

• Allocation is efficient quantity of deposit but excessively risky

Capital Requirements

• By construction, capital requirements are the same as full info

Expected Bank Profit

• Expected bank profits are (slightly) higher than under full info

Expected Deposit Insurance Payout

• Expected deposit insurance payout are higher than with full info

Outline

- Introduction
- 2 Literature Review
- Mode
 - Environment
 - Full Information
 - Private Information
 - How does private information affects requirements and allocation?
 - Naive regulator
- 4 Conclusion
- 6 Appendix

Next Steps

- Current approach does not really speak to risk weights
- Options for moving forward:
 - ► Take current framework and introduce second risky technology
 - ▶ Banks observe private noisy signal of return before making loan

Outline

- Introduction
- 2 Literature Review
- Mode
 - Environment
 - Full Information
 - Private Information
 - How does private information affects requirements and allocation?
 - Naive regulator
- 4 Conclusion
- 6 Appendix

Full Information Allocation in (E, S)

Full Information Allocation in (E, D)

Private Information Allocation in (E, S)

Private Information Allocation in (E, D)

Private Information Allocation in (E, S)

Private Information Allocation in (E, D)

