Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №8 Экспериментальное построение областей устойчивости линейной системы на плоскости двух параметров Вариант - 3

Выполнил	(фамилия, и.о.)	(подпись)
Проверил	(фамилия, и.о.)	(подпись)
"" 20г.	Санкт-Петербург,	20г.
Работа выполнена с оценкой		
Дата защиты ""	_ 20г.	

Цель работы. Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

Исходные данные. Необходимо исследовать систему при g=0, y(0)=1 и $T_1=1$. Сама система представлена на следующем рисунке.

Рис. 1 – Исследуемая система.

Устойчивость системы

На риунке 2 показаны преходные характеристики системы при различный k и $T_2 = 0.1$. Соответственно на рисунке 1 (a) при k = 1, (b) при k = 0, (c) при k = 11, (d) при k = 25.

Рис. 2 – Устойчивость системы.

Анализ устойчивости системы

Предаточная функция исходной сисемы выглядит следющим образом:

$$W(s) = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K}$$
(1)

Для анализа устойчивости системы составим матрицу Гурвица.

$$H_3 = \begin{bmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & 1 \end{bmatrix}$$
 (2)

Из этой матрицы можем, исользуя условие Гурвица, получить уравнение для системы на границы устойчивости колебательного типа.

$$\begin{cases}
T_1 + T_2 - KT_1T_2 = 0 \\
T_1 + T_2 > 0 \\
K > 0
\end{cases}$$
(3)

А также можно получить условие для системы на границе устойчивости нейтрального типа.

$$K = 0 (4)$$

Получив все необходимые уравнения мы можем построить график зависимости $K(T_2), T_2 \in [0.1, 5]$. Как видно из уравнения (2) - эта зависимость является гиперболой, в случае же уравнения (3) - просто прямой $K=0, T_2 \in (-\infty, +\infty)$. График данной зависимости представлен ниже на рисунке 3.

Рис. 3 – График границы устойчивости $K(T_2)$.

Выводы

В данной работе мы экспериметнально и аналитически оценили устойчивость систему варьируя ее параметры K и T_2 , зафиксировав при этом T_1 . Аналитическую оценку позволил получить критерий Гурциа. Соотвественно по составленной матрице (2) мы смогли получить и составить условия границы устойчивоси (3) и (4), после чего убедились в правильности полученных экспериментальных значений.