ESc201, Lecture 34: (Digital) Sequential Circuits SR Latch: invalid input

The inputs do not change simultaneously and arises a situation of $11 \rightarrow 01^* \rightarrow 00$ $Q = 0 \rightarrow 1$ and 00 input holds Q=1, whereas it should have held 00

SR Latch: gate delays

ESc201, Lecture 34: (Digital) Sequential Circuits SR Latch: gate delays

On the other hand if gate-2 is faster.

Again the output is, in general, unpredictable.

So although output is well defined when RS = 11 is applied, it becomes unpredictable once the inputs are switched to the latch-hold state by applying RS=00. That is why RS=11 is not

used as an input. Use Enable Or Clock.

	S	Q	
_	ΕN		
	R	Q	

Enable	S R	р	State
0	хх	a	Hold
1	1 0	1 0	Set
1	0 1	0 1	Reset
1	0 0	Q Q	Hold
1	1 1	0 0	Invalid

ESc201, Lecture 34: (Digital) Sequential Circuits D-FlipFlop

D

Ck/EN-

For the inputs S and R never to show up as 1, 1 one might make sure that one input is invert of the other by using a NOT or i-input NAND gate.

Enable	S R	Q Q	State		
0	хх	Q	Hold]	
1	1 0	1 0	Set		Q 一
1	0 1	0 1	Reset	∫Ck —	
1	0 0	Q Q	Hold		_Q
1	1 1	0 0	Invalid		

As long as Ck=0, the output Q, Q holds. The input D is only sampled at the arrival of the Ck pulse. If D=0, Q=0, Q=1. If at the next Ck pulse the input has changed to D=1, then the output switches to Q=1, Q=0. Sometimes called gated D-Latch.

R

So the D-Flip-Flop just transfers the data for storage with a delay of one Ck cycle.

Positive edge triggered flipflop

Negative edge triggered flipflop

ESc201, Lecture 34: (Digital) Sequential Circuits JK-FlipFlop

To remove the ambiguity faced in SR-flipflop a feedback is required from the complimentary output to the additional AND gate used for the clock.

107770	E OF TECHNOL		P	I (I	ack) and	dKA	(ilhy) are the	input states for the	a IK flir	-flon
Q_n	JK	Q_{n+1}	Q_{n+1}	•	•	u ix (i J	chby) are the	input states for the	ic oix imp	,-11 0p.
$\overline{0}$	0 0	0	$\overline{\mathbf{Q_n}}$	Q _n is the oat the n th	olook	v		\rightarrow		
0	0 1	0	Q_n	pulse						Q
0	1 0	1	$ar{\overline{Q}}_n \ ar{\overline{Q}}_n$	•		Ck				
0	1 1	1	$\overline{\mathbf{Q}}_{\mathbf{n}}^{-}$	$J_n K_n$	Q_{n+1}	CK				
1	0 0	1	Q_n	0 0	$\mathbf{Q_n}$				\	_
1	0 1	0	\overline{Q}_{n}	$\begin{array}{c c} 0 & 1 \\ 1 & 0 \end{array}$	0 1	K				Q
1	1 0	1	Q_n	1 1	<u></u>	IX				
1	1 1	0	\overline{Q}_{n}		$\overline{\mathbf{Q}}_{\mathbf{n}}$		od J (Set	S (Se	et)	
A	hiani	l Avr Dame			Not a ve	• •				
	_	•	oved: Th		ample w					•
line	gives	s a new	T-flipflo		es out o					
T -				11	nput NC	JK ga	te.			
					\rightarrow	, 	K (C)	lear) R(Re	2 0- eset)	<u> </u>
		OI-					T-flinflon	is supposed to	Q_n T	Q_{n+1}
		Ck		X				each clock	0 0	0
							_ 00	e input T is 1,	0 1	1
			4		>		~	input is 0.	1 0	1
			」						1 1	0
							Q_{n^+}	$= T \oplus Q_n$	1 1	1 0

ESc201, Lecture 34: (Digital) Sequential Circuits JK Master-Slave

All worries over? ---- Not quite. Technology comes into play.

Q_n	J	K	Q_{n+1}	Q_{n+1}
0	0	0	0	$\overline{\mathbf{Q_n}}$
0	0	1	0	$\mathbf{Q_n}$
0	1	0	1	\overline{Q}_n
0	1	1	1	\overline{Q}_n
1	0	0	1	Q _n
1	0	1	0	$\overline{\mathbf{Q}}_{\mathbf{n}}$
1	1	0	1	Q_n
1	1	1	0	\bar{Q}_n

For J=1, K=1 if the it is positive edge triggered, as soon as the clock arrives the output state toggles after two NAND gate delays (Δt).

If the clock pulse is t_p and $t_p < \Delta t$, then no problem. However, if $t_p > \Delta t$, then J & K being still held at 1, the output will toggle again. This sets a race around condition. So the final state of the output after the end of the clock pulse is unknown.

сьоск	J	к	SET	RESET	Q	α
-	-	-	0	1	1	0
-	-	-	1	0	0	1
7_	0	0	1	1	Q	Ō
7_	1	0	1	1	1	0
	0	1	1	1	0	1
	1	1	1	1	Q	Q

Analysis of clock sequential circuits-

- 1. The behavior of sequential circuit is determined from the inputs, the outputs and the states of its flip flops. Both the outputs and the next state are the function of the inputs and the present state.
- 2. The Analysis of sequential circuits consists of obtaining a table or a diagram for the time sequence of inputs, outputs and the internal states. It is also possible to write Boolean expression that describe the behavior of sequential circuits. However these expressions must include the necessary time sequence.
- 3. A clocked sequential circuit has one input variable X, one output variable Y and two clocked RS flip flops labeled A and B.

3. Another way is to use the master slave configuration.

Note that when the slave is activated the master is disabled and vice-versa.