REPUBLIQUE TUNISIENNE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2011

Corrigé du Concours Mathématiques et Physique Epreuve de Physique

	0.5	0.5	0.5					0.5
Problème I Partie I	Resistivité quasi nulle, conductivité quasi infini donc puissance dissipée par effet Joule quasi-nulle : $\frac{dP}{d\tau} = \gamma E^2 \xrightarrow{p} 0$ donc $\vec{E} = \vec{0} \Rightarrow r \vec{\sigma} t \vec{E} = -\frac{\partial \vec{B}}{\partial t} = \vec{0} \Rightarrow \vec{B} = \vec{c} t \vec{e} = \vec{0}$ (on n'a pas un courant permanent)	$\vec{E}_{2}(M_{0},t) - \vec{E}_{1}(M_{0},t) = \frac{\sigma(M_{0})}{\varepsilon_{0}} \vec{\pi}_{12}$ $\vec{B}_{2}(M_{0},t) - \vec{B}_{1}(M_{0},t) = \mu_{0}\vec{J}_{s}(M_{0}) \wedge \vec{\pi}_{12}$	Le milieu I est un conducteur parfait $\Rightarrow \vec{E}_1 = \vec{0}$ et $\vec{B}_1 = \vec{0} \Rightarrow \vec{E}_2(M_0, t) = \frac{\sigma(M_0)}{\epsilon_0} \vec{n}_{ext} \Rightarrow$ $\sigma(M_0) = \epsilon_0 \cdot \vec{E}_2(M_0, t) \cdot \vec{n}_{ext}$ $\vec{B}_2(M_0, t) = \mu_0 \vec{I}_s(M_0) \wedge \vec{n}_{12} \Rightarrow \vec{J}_s(M_0) = \frac{1}{\mu_0} \vec{n}_{ext} \wedge \vec{B}_2(M_0, t) \text{ avec } : \vec{n}_{ext} = \vec{n}_{12}$	$ div\vec{E} = 0 $	$\vec{\Delta \vec{E}} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \vec{0} \text{ (démonstration)}$ $\vec{\Delta \vec{B}} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \vec{0} c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3.10^8 \text{ m. s}^{-1}$	Partie II	Une OPPM polarisée rectilignement en incidence normale ne vérifre pas les C.L.	0. S'exprime en $rad.s^{-1}$, k s'exprime en $rad.m^{-1}$ $f(x,y,z)$ s'exprime en $V.m^{-1}$
	<u> </u>	2.a	2.b	3.a	3.b		=	1.2.

I.3.a	$div\vec{E} = \frac{\partial f}{\partial x} = 0 \Rightarrow f = f(y, z).$	-
1.3.6	Les parois du guide sont des conducteurs parfait, il n'y a pas dissipation de l'énergie au cours de la propagation $\Rightarrow f(y,z) = f(y)$.	-
1.4.a	$\vec{\Delta}\vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \vec{0} \Rightarrow \frac{d^2 f}{dy^2} + \left(\frac{\omega^2}{c^2} - k^2\right)f = 0$	
1.4.b	$Si \frac{\omega^2}{c^2} - k^2 \le 0$ la solution ne vérifie pas les C.L.	_
	Soit $\alpha^2 = \frac{\omega^2}{c^2} - k^2 \implies f(y) = A \sin(\alpha y + \varphi)$ $f(0) = 0 \implies \varphi = 0 \implies f(y) = A \sin(\alpha y)$	0.5
I.4.c	$f(y=b) = A \sin(\alpha b) = 0 \implies \alpha = \frac{n\pi}{b}$	0.5
L.5.a	$f(y) = A \sin(\frac{n\pi}{b}y) \implies \vec{E}_n = E_{0n} \sin(\frac{n\pi}{b}y)e^{i(\omega t - kz)}\vec{u}_x$	0.5
1.5.b	L'onde guidée n'est pas plane, elle est stationnaire suivant (oy) progressive suivant $z>0$.	1.5
I.6.a	$k^2 = \frac{\omega^2}{c^2} - \alpha^2$; $\alpha^2 = (\frac{n\pi}{b})^2 \Rightarrow k^2 = \frac{\omega^2}{c^2} - (\frac{n\pi}{b})^2$ Pour qu'il y ait propagation, il faut que $k^2 > 0 \Rightarrow \omega > \omega_{nc}$; $\omega_{nc} = \frac{n\pi c}{b}$	
1.6.b	$\sin \omega < \omega_{\rm nc}$ alors l'onde est évanescente.	-
l.6.c	$k = \frac{\omega}{k}$ Non dispersif $Dispersif$ ω_{nc}	_
	- Si ω est proche de $\omega_{\rm hc}$ on obtient dispersion dans le guide. - Si ω >> $\omega_{\rm hc}$ il n'ya pas dispersion.	
I.7.a	$v_{\varphi} = \frac{c}{\sqrt{1 - \frac{\omega_{\Pi_c}^2}{\omega_d^2}}} \; ; v_g = c. \; \sqrt{1 - \frac{\omega_{\Pi_c}^2}{\omega^2}} \Longrightarrow v_{\varphi}, v_g = c^2.$	1.5

$\begin{array}{c} c \\ c$
1.7.b 11.3 11.3 11.4

-	le 2	-	_							0.5	-	2
	L'onde (point I) se déplace en zigzag entre les parois $y=0$ et $y=b$ à une vitesse c .en réalité elle n'avance suivant (az) (point B) qu'a une vitesse $v_g < c$. Le point A apparait comme l'ombre du point I sur $y=b$ se déplace à une vitesse $v_g < c$ qui n'est pas liée à un déplacement d'une particule matérielle donc elle n'est pas concernée par la restriction relativiste	$\vec{E}_n = E_{0n} \sin\left(\frac{n\pi}{b}y\right) \cos\left(\omega t - kz\right) \vec{u}_x \Rightarrow \vec{B}_n = \begin{vmatrix} \frac{k}{\omega} E_{0n} \sin\left(\frac{n\pi}{b}y\right) \cos\left(\omega t - kz\right) \\ \frac{n\pi}{b\omega} E_{0n} \cos\left(\frac{n\pi}{b}y\right) \sin\left(\omega t - kz\right) \end{vmatrix}$	$y = 0, b \Longrightarrow \sigma_1 = \sigma_2 = 0$	$y = 0 \ , j_{s1} = \frac{1}{\mu_0} \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix} \frac{n\pi}{\mu_0} \sum_{\text{lon sin}} \left(\omega t - kz \right) \vec{u}_x$	$y = b , j_{s2} = \frac{1}{\mu_0} \begin{vmatrix} 0 \\ 1 \end{vmatrix} \left(-1 \right)^n \frac{n\pi}{b\omega} \frac{0}{E_{0n} \sin(\omega t - kz)} \Longrightarrow j_{s2} = (-1)^{n+1} \frac{\ln nE_{0n}}{b\omega \mu_0} \sin(\omega t - kz) \vec{1}_x$	En réalité le courant existe sur une épaisseur appelée « épaisseur de peau »	Un observateur voie le champ passe d'une valeur (\vec{E}, \vec{B}) à zéro. \Rightarrow le champ senti est donc $\frac{1}{2}(\vec{E}, \vec{B})$.	$d\vec{F}_2 = \frac{1}{2} (-1)^{n+1} \frac{n\pi E_{0n}}{b\omega \mu_0} \sin(\omega t - kz) \vec{u}_x \wedge (-1)^n \frac{n\pi}{b\omega} E_{0n} \sin(\omega t - kz) \vec{u}_z ds$	$\Rightarrow d\vec{F_2} \approx \frac{1}{2\mu_0} \left(\frac{ntE_{0n}}{b\omega\mu_0} \right)^2 \sin^2(\omega t - kz) ds \vec{u}_z$	$\langle d\vec{F_2} \rangle = \frac{\epsilon_0 E_0^2}{4} \left(\frac{\omega_{\rm hc}}{\omega} \right)^2 ds \vec{u}_{\rm y}$	$\langle d\overline{F_2} \rangle \perp ds \Longrightarrow \text{force pressente} \Longrightarrow \Pi_2 = \frac{\epsilon_0 E_0^2}{4} \left(\frac{\omega_{\text{nc}}}{\omega} \right)^2$	$d\overline{F_1} = \frac{1}{2} j_{s1} \wedge \overline{B}_n(y=0) ; j_{s1} = (-1)^{n+1} j_{s2} \text{ et } \overline{B}_n(y=0) = (-1)^n \overline{B}_n(y=b)$ $= -\frac{1}{2} j_{s2} \wedge \overline{B}_n(y=b) = -d\overline{F}_2 \implies \ \langle d\overline{F}_1 \rangle\ = \ \langle d\overline{F}_2 \rangle\ \implies \Pi_1 = \Pi_2$
	II.5.b	111.1	111.2			III.3.a		11.3.Ь			Ш.3.с	III.4

IC rayon qui correspond à $\vec{E}_2 \implies IC = c \cdot T \implies$ la vitesse de balayage est c. $\frac{IC}{AC} = \cos \theta = \frac{k}{k_0} = \frac{\omega l \nu_0}{\omega / c} = \frac{\nu_0}{c} \implies AC = IC \cdot \frac{\nu_0}{c} = T \cdot \nu_\phi \implies$ la vitesse de balayage est ν_0 . $\frac{IB}{IC} = \cos \theta = \frac{c}{\nu_\phi} \implies IB = IC \cdot \frac{c}{\nu_\phi} = T \cdot \nu_g \implies$ la vitesse de balayage est ν_g .

II.5.a

page3/9

Corrigé du concours Mathématiques et Physique - Session Juin 2011

Page 4/9

	$\overline{R} = R_0(\overline{B}) \wedge R_0(\overline{B})$ C est le vecteur densité volumique de courant d'énergie ou bien c'est le vecteur dont son thus à travers une surface est épul à la missance ravonnée.	0.5	
	$\vec{R} = \frac{1}{H_0} \begin{vmatrix} E_{h_0} \sin\left(\frac{n\pi}{b}y\right) \cos(\omega t - kz) \\ \frac{1}{h_0} \cos\left(\frac{n\pi}{b}y\right) \cos(\omega t - kz) \\ \frac{1}{h_0} \left[\frac{n\pi}{b\omega} E_{0\mu} \cos\left(\frac{n\pi}{b\omega}y\right) \sin(\omega t - kz)\right] \end{vmatrix}$		
	$\Rightarrow \vec{R} = \frac{1}{H_0} \left -\frac{nt}{b_{tot}} E_{0n}^2 \sin\left(\frac{n\pi}{b}y\right) \cos\left(\frac{nt}{b}y\right) \sin(\omega t - kz) \cos(\omega t - kz)}{\frac{k}{b_{tot}} t^2 \sin^2(\omega t - kz) \cos^2(\omega t - kz)} \right $	<u>-</u>	
	$\langle \vec{R} \rangle = \frac{k E_{0n}^2}{2 \mu_0 \omega} \sin^2 \left(\frac{n \pi}{b} y \right) \vec{u}_z$ 1. Onche se monare suivant $z > 0 \Longrightarrow \langle \vec{R} \rangle = \langle R \rangle \vec{u}_z$	0.5	
İ	$P_{n_1} = \iint \langle \vec{R} \rangle ds \Longrightarrow P_{n_1} = \frac{\kappa \alpha b E_{0,n_1}^2}{4 H_{0,0}}$	<u> </u>	
IV.3.a	$u_{\theta 111} = \frac{E^2 \epsilon_0}{2} + \frac{B^2}{2H_0} =$	0.5	2
	$\frac{\varepsilon_0 E_{011}^2}{2} \left\{ s_{111}^2 \left(\frac{111t}{b} y \right) \cos^2(\omega t - kz) + \left(\frac{kc}{\omega} \right)^2 \sin^2\left(\frac{111t}{b} y \right) \cos^2(\omega t - kz) + \left(\frac{\omega_0 rc}{\omega} \right)^2 \cos^2\left(\frac{111t}{b} y \right) \sin^2(\omega t - kz) \right\}$	0.5	
[V.3.6	$\langle u_{em} \rangle = \frac{\varepsilon_0 \mathcal{E}_{un}^2}{4} \left\{ \sin^2 \left(\frac{n\pi}{b} y \right) + \left(\frac{kC}{\omega} \right)^2 \sin^2 \left(\frac{n\pi}{b} y \right) + \left(\frac{\omega_{nc}}{\omega} \right)^2 \cos^2 \left(\frac{n\pi}{b} y \right) \right\}$	 °	0.5
	$\left(\frac{ kc }{\omega}\right)^2 = 1 - \left(\frac{\omega_{nc}}{\omega}\right)^2$ $\langle u_{em} \rangle = \frac{\varepsilon_0 E_{0n}^2}{4} \left\{ 1 + \left(\left(\frac{\omega_{nc}}{\omega}\right)^2 - 1 \right) \cos\left(\frac{2\pi\pi}{b}y \right) \right\}$		1.5
IV.4 .a	d'une part : $\delta\omega_{em}$	<u> </u>	
	d'autre part : $\delta\omega_{em}=\iiint\{u_{em}\}dxdydz=\frac{\epsilon_0\epsilon_{0a}^2}{4}abv_edt$		
	The second secon		-

10.5		-
:	L'onde sera amortic.	
	Partie III	
L.1.a	$div\vec{E} = \frac{\rho}{\epsilon_0} \ , \ div\vec{B} = 0, \ \ \overrightarrow{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t} \ , \overrightarrow{rot}\vec{B} = \mu_0\vec{J} + \mu_0\epsilon_0\frac{\partial \vec{E}}{\partial t}$	_
1.1.6	$div(\overline{rotB}) = 0 \Longrightarrow div\vec{j} + \frac{\partial \rho}{\partial t} = 0$	_
I.I.c	$\frac{\partial \rho}{\partial t} + \frac{\gamma}{\epsilon_0} \rho = 0 \text{ soit } \frac{\gamma}{\epsilon_0} = \frac{1}{\tau} \Rightarrow \frac{\partial \rho}{\partial t} + \frac{\rho}{\tau} = 0 \Rightarrow \rho = \rho_0 e^{-t/\tau}$	1.5
1.2	$\frac{\ j_{\Omega}\ }{\ j\ } = \frac{\varepsilon_{0}\omega}{r} << 1 \text{pour} \omega \equiv 1GHz$	-
£13	$\overline{rot}(\overline{rot}\vec{E}) = -\frac{\partial}{\partial t}(\overline{rot}\vec{B}) \Longrightarrow \Delta \vec{E} - \mu_0 V \frac{\partial \vec{E}}{\partial t} = \vec{0}$	-
L.d.a	к' сотрієхе	_
1.4.b	$-k'^2 - i\omega\mu_0\gamma = 0 \Longrightarrow k' = \pm \frac{1-i}{6} \text{ où } \delta = \sqrt{\frac{2}{\mu_0 r \omega}}$	
	$k' = -\frac{1-i}{\delta} \sim \text{ propagation suivant } y < 0 \Longrightarrow \text{ inacceptable} \Longrightarrow k' = \frac{1-i}{\delta}$	-
1.4.c	Profondeur de pénétration de l'ordre de µm.	_
	Le champ crée par le mouvement des électrons s'oppose à sa cause (pénétration de l'onde dans le mètal) d'où $\omega \nearrow \Rightarrow \delta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
1.5.a	$\vec{j} = \gamma \vec{E} = \gamma E_{0t} e^{-y/\delta} e^{i(\omega t - y/\delta)} \vec{u}_{x}$	0.5
	En notation réclie $\vec{j}=\gamma\vec{E}=\gamma E_{0t}e^{-\gamma/\delta}\cos\omega t-\gamma/\delta\vec{u}_{x}$	0.5
1.5.6	$\langle P_j \rangle = \iiint \langle \gamma E^2 \rangle dx dy dz = \frac{\gamma E_{\rm tr}^2}{2} S \int_0^{+\infty} e^{-2\gamma/\delta} dy$ $\Longrightarrow \langle P_i \rangle = \frac{\delta S \gamma}{E_{\rm tr}} E_{\rm tr}^2$	-
1.6.a	$dl = j_s dz \ \vec{u}_x \text{ ct } d^2 l = j \ dy dz \ \vec{u}_x \Longrightarrow j_s = \int_0^{+\infty} j \ dy$	0.5

0.5

 $\frac{\epsilon_0 E_{0n}^2}{4} ab v_e dt = \frac{kab E_{0n}^2}{4 \mu_0 \omega}, dt \Longrightarrow v_e = \frac{k}{\epsilon_0 \mu_0 \omega} \Longrightarrow v_e = \frac{c^2}{v_\varphi} = v_g$ [1. 'éncrgic sc propage à la vitesse de groupe.

IV.4.b

Corrigé du concours Mathématiques et Physique - Session Juin 2011

Corrigé du concenty Multémanques et Physique - Session Juin 2011

Epireuve de plivsique

$P_{m}(z) \xrightarrow{r_{P}} \qquad \qquad \xrightarrow{r_{P}} P_{m}(z + dz)$ $P_{m}(z) - P_{m}(z + dz) = dP$ $\frac{kab}{4\mu_{0}\mu} \left(E_{0}^{2}(z) - E_{0}^{2}(z + dz) \right) = \frac{n^{2}\pi^{2}a\delta}{2b^{2}\mu_{0}\omega} \frac{E_{0}^{2}(z)}{E_{0}n(z)} = \frac{dE_{0}^{2}(z)}{dz} + \frac{2n^{2}\pi^{2}\delta}{kb^{3}} \frac{E_{0}^{2}(z)}{dz}$ $\frac{dE_{0}^{2}(z)}{dz} = \frac{4\mu_{0}\omega}{kab} \cdot \frac{n^{2}\pi^{2}a\delta}{2b^{2}\mu_{0}\omega} \frac{E_{0}^{2}(z)}{E_{0}n(z)} \Rightarrow \frac{dE_{0}^{2}(z)}{dz} + \frac{2n^{2}\pi^{2}\delta}{kb^{3}} \frac{E_{0}^{2}(z)}{E_{0}n(z)} = 0$ $E_{0}n(z) = E_{0}ne^{-z/L} \text{ ou } L = \frac{b^{3}k}{n^{2}\pi^{2}\delta}$ If faut que L soit grande \Longrightarrow n la plus petite $\text{Soit } n = 1$
, i !

La diffraction de Fraunhofer est observable torsque la source primaire et l'écran de l'observation sont très éloignés de l'objet difractant

.) objet plan, de taille petite, placé perpendiculairement à l'axe optique.

Conditions de Gauss:

.) on ne considère que les rayons paraxiaux.

 $\vec{k} \cdot \overrightarrow{OP} = \frac{2\pi}{\lambda} x \sin \theta \text{ or } \sin \theta \approx \theta$

 $=2\pi\frac{\theta}{\lambda} \times \text{soit } \mu = \frac{\theta}{\lambda}$

Contribution de Huygens: tous point de l'ouverture atteint par la lumière peut être considérer comme une source secondaire qui émet des ondes sphériques

Principe de Huygens-Fresnel

Contribution de Fregnel: les ondes issues des différentes sources secondaires sont cohérentes entre elles.

0.5

 $\implies \underbrace{S} = S_0 \left\{ \int_{-a}^{a} e^{-i2\pi \mu x} dx + \frac{1}{2} \int_{-a}^{a} e^{-i2\pi(\mu - \frac{1}{\epsilon})x} dx + \frac{1}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} e^{-i2\pi(\mu + \frac{1}{\epsilon})x} dx \right\}$ $\underbrace{S} = \alpha S_0 \left\{ \operatorname{sinc}(\pi a \mu) + \frac{1}{2} \operatorname{sinc}\left(\pi \alpha \left(\mu - \frac{1}{\epsilon}\right)\right) + \frac{1}{2} \operatorname{sinc}\left(\pi \alpha \left(\mu + \frac{1}{\epsilon}\right)\right) \right\}$

 $\underline{S} = S_2 + S_3 + S_1$ cl $\mu_0 = \frac{1}{\ell}$

7

 μ est inversement proportionnel à $\lambda\Longrightarrow$ fréquence spatiale

 $t(x) = 1 + \frac{1}{2}e^{\frac{12\pi x}{t}} + \frac{1}{2}e^{-\frac{12\pi x}{t}}$

Corryc du conceans. Mathematiques et Physique - Session Jun 2011 Epireuxe de physique

Page 7/9

Currigé du toucours Mathématiques et Physique - Session Juin 2011

paye 8.79

Epicave de physaque

7.a	$I_1 = I_0 \operatorname{sinc}^2(\pi a \mu)$	0.5
	$I_2 = \frac{I_0}{2} \operatorname{sinc}^2 \left(\pi a (\mu - \frac{1}{2}) \right)$	0.5
	$I_3 = \frac{I_0}{4} \operatorname{sinc}^2 \left(\pi a (\mu + \frac{1}{\ell}) \right)$	0.5
7.b	Comme il n'y a pas chevauchement des sinus cardinaux alors $I = I_1 + I_2 + I_3$ et $\theta \simeq \tan \theta = \frac{x}{2} \Longrightarrow \mu = \frac{x}{2}$	-
	$\Rightarrow I = I_0 \left\{ \operatorname{sinc}^2\left(\frac{\pi a X}{\lambda f}\right) + \frac{1}{4} \operatorname{sinc}^2\left(\pi a\left(\frac{X}{\lambda f} - \frac{1}{\ell}\right) + \frac{1}{4} \operatorname{sinc}^2\left(\pi a\left(\frac{X}{\lambda f} + \frac{1}{\ell}\right)\right) \right\} \right\}$	0.5
7.c	1 <u>1</u>	
		-
	673	
	N N N N N N N N N N N N N N N N N N N	
	е Т	-
00	$\frac{1}{d'} = \frac{1}{d} + \frac{1}{f} \implies d' = \frac{f \cdot d}{f + d}$	1
9.a	$b_f = \frac{2\lambda f}{\ell} - \frac{2\lambda f}{\alpha} \approx \frac{2\lambda f}{\ell}$	1
9.6	On observe sur l'écran l'image géométrique de la fente diffractante (bande uniformément éclairée)	1
	Les basses fréquences correspondent à des éclairements quasi-uniformes de l'objet.	4
10.a	$b_{max} = \frac{2M_s}{l} - \frac{2M_s}{a} \simeq \frac{2M_s}{l}$ et $b_{min} = \frac{2M_s}{a}$	-

Corrigé du concours Mathématiques et Physique - Session Juin 2011

Epreuve de physique

6/608ed