

2.

Roll No: Subject Code: KEC602

Printed Page: 1 of 3

BTECH (SEM VI) THEORY EXAMINATION 2021-22 CONTROL SYSTEM

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. A	ttemp	ot all questions in brief.	2*10 = 20
	Q.	Questions	CO
	No		
	(a)	Define Loop and Self Loop with suitable diagram	1
	(b)	Draw the Elementary Block Diagram of close loop system.	1
	(c)	Enlist the condition for a system to be Observable.	2
	(d)	Enlist any two properties of state transition matrix.	2
	(e)	Define Settling time and Maximum peak overshoot.	3
	(f)	Define Rise time and Peak Time.	3
	(g)	Define Centroid.	4
	(h)	Describe the Angle of Departure.	4
	(i)	Define Gain Cross Over Frequency.	5
	(j)	Define the term Gain Margin and Phase Margin.	5

SECTION B

44	SECTION B	4.2
	opt any three of the following: 10 Ouestions	*3 =
Q. No	Questions	CO
(a)	Obtain overall Transfer function for the given block diagram shown in Figure using Block reduction Method:	1
(b)	Find out the Response for the given systems using parallel decomposition method also sketch its associated state space model. $\frac{Y(S)}{U(S)} = \frac{1}{(s+2)(s+3)(s+4)}$	2
(c)	Consider a unity feedback system with a closed transfer function $\frac{C(s)}{R(s)} = \frac{KS+b}{s^2+as+b}.$ Determine open loop transfer function. Show that the steady state error with unit ramp input is given by $\frac{a-K}{b}$.	3

Roll No: Subject Code: KEC602

Printed Page: 2 of 3

BTECH (SEM VI) THEORY EXAMINATION 2021-22 CONTROL SYSTEM

(d)	The characteristic equation of a feedback control system is	4
	$S^4+20s^3+15s^2+2s+k=0$	
	Determine the range of k for the system to be stable.	
(e)	A single loop feedback control system has open loop transfer function .Sketch the Polar Plot.	5
	$G(s)H(s) = \frac{1}{s(s+3)}$	

SECTION C

3. Attempt any one part of the following: $\begin{array}{c|cccc}
Q & Questions & CO \\
\hline
Q & Questions & CO \\
\hline
(a) & Find the C/R and C/D ratio for the given System: & 1
\end{array}$

INO		
(a)	Find out the Response for the given systems using parallel	2
	decomposition method also sketch its associated state space model.	
	$Y(S) = 2s^2 + 8s + 7$	
	$\frac{1}{U(S)} = \frac{2s + 6s + 7}{(s+1)(s+2)^2}$	
	$U(S) = (s+1)(s+2)^2$	
(b)	Examine the Controllability and Observability of the following system:	2
` /		
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} S = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$	
	l-6 -11 -6J l1J	
		1

7.

Roll No: Subject Code: KEC602

Printed Page: 3 of 3

BTECH (SEM VI) THEORY EXAMINATION 2021-22 CONTROL SYSTEM

5.	Atten	npt any <i>one</i> part of the following:	0*1 = 10
	Q.	Questions	CO
	No		
	(a)	The open loop transfer function of a unity feedback system is given by	3
		$G(S) = \frac{K}{S(1+ST)}$	
		Where 'K' & 'T' are positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step response of the system is reduced from 80% to 20%	

Evaluate the unit step response with proper derivation for a Critically damped 3

Atten	npt any <i>one</i> part of the following:	10*	1 = 10
Q.	Questions		CO
No			
(a)	For a unity feedback system of O.L.T.F is given by		4
	$G(s)H(s) = \frac{1}{S(S+1)(S+3)}$		
	a) Sketch the Root locus for $0 \le K \le \infty$.		N
	b) At what value of K, the system become unstable.		.0.
			SXV
(b)	For a unity feedback system of O.L.T.F is given by	,	4
` '	$G(S)H(S) = \frac{K}{S(S+6)(S^2+4S+13)}$	150	
	a) Sketch the Root locus for $0 \le K \le \infty$.		
	b) At what value of K, the system become stable.		

Attem	pt any <i>one</i> part of the following:	1 = 10
Q.	Questions	CO
No		
(a)	Sketch the Bode Plot for the given system and comment on stability of the used systems: $G(s)H(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$	5
(b)	Find out the Gain Cross Over Frequency, Phase cross over Frequency, Gain Margin and Phase Margin for the given system: $G(s)H(s) = \frac{1}{s(1+s)(1+2s)}$	5