CLAIMS

1	1.	A computer programmed to undertake method acts for querying for data using a
2	query, the me	thod acts undertaken by the computer including:
3		for at least some data vectors in a data space, generating respective approximations
4	in pola	r coordinates; and
5		based on the approximations, returning "k" nearest neighbors to the query.
1	2.	The computer of Claim 1, wherein the method acts further comprise:
□ 2		dividing the data space into plural cells; and
1 3		representing at least one data point in at least one cell in polar coordinates with
13 13 14 14 14	respect	to the at least one cell.
2 2 3	3.	The computer of Claim 2, wherein the data space has "d" dimensions and the
2	method acts for	urther comprise:
3		determining a number of "b" bits to be assigned to each cell; and
4		dividing the data space into 2 ^{bd} cells.
1	4.	The computer of Claim 1, wherein each approximation defines a lower bound \boldsymbol{d}_{\min}
2	and the metho	od acts further comprise:
3		generating a candidate set of approximations based at least on the lower bounds
4	d_{min} of	the approximations.

5
1
1
2
1
2
4 5
6

1	5. The computer of Claim 4, wherein the query can be represented by a query vector
2	q, and the method acts further comprise:
3	adding a first approximation having a first lower bound d_{min1} to the candidate set
4	if $d_{min1} < k-NN^{dist}$ (q), wherein k-NN ^{dist} (q) is the k th largest distance between the query
5	vector q and nearest neighbor vectors p.

- 6. The computer of Claim 5, wherein the method acts further comprise using the candidate set to return "k" nearest neighbors vectors **p** to the query vector **q**.
- 7. The computer of Claim 6, wherein not all vectors **p** corresponding to approximations in the candidate set are examined to return the "k" nearest neighbors.
 - 8. A computer program product including a program of instructions having: computer readable code means for generating approximations including local polar coordinates of at least some data vectors p in at least one data set having a dimensionality of "d", the local polar coordinates being independent of "d"; and

computer readable code means for using the approximations to return "k" nearest neighbors to a query.

2	generates respective approximations of data vectors p in local polar coordinates.
1	10. The computer program product of Claim 9, further comprising:
2	computer readable code means for dividing the data space into plural cells; and
3	computer readable code means for representing each approximation in polar
4	coordinates with respect to one of the cells.
1	11. The computer program product of Claim 10, wherein the data space has "d"
3 2	dimensions, further comprising:
13 13 14 15 15	computer readable code means for determining a number of "b" bits to be assigned
1 4	to each cell; and
5	computer readable code means for dividing the data space into 2 ^{bd} cells.
5 U 1 1 2 2	12. The computer program product of Claim 9, wherein each approximation defines a lower bound d_{min} and an upper bound d_{max} , and the product further comprises:
3	computer readable code means for generating a candidate set of approximations
4	based at least on the lower bounds d_{min} and upper bounds d_{max} of the approximations.
1	13. The computer program product of Claim 12, further comprising:
2	computer readable code means for adding a first approximation having a first
3	lower bound d_{min1} to the candidate set if $d_{min1} < k-NN^{dist}(q)$, wherein k-NN ^{dist} (q) is the

The computer program product of Claim 8, wherein the means for generating

1

9.

5	with approxi	mations in the candidate set.
1	14. The c	computer program product of Claim 13, further comprising computer readable
2	code means for using	ng the candidate set to return "k" nearest neighbors vectors p to the query
3	vector q.	
1	15. A co	mputer-implemented method for finding, in a data space, "k" closest data
2	vectors p to a query	vector q, comprising:
3 1 1 1 1 5 6	rende coordinates;	ering approximations of at least some of the data vectors p using local polar
14 5 12 5	filter	ing the approximations; and
	after	filtering, returning the "k" closest data vectors p.
	16. The 1	method of Claim 15, further comprising:
<u>2</u>	divid	ing the data space into plural cells; and
3	repre	senting each approximation in polar coordinates with respect to one of the
4	cells.	
1	17. The	method of Claim 16, wherein the data space has "d" dimensions and the
2	method further com	prises:
3	deter	mining a number of "b" bits to be assigned to each cell; and

 k^{th} largest distance between the query vector ${\bf q}$ and nearest neighbor vectors ${\bf p}$ associated

4

2

1

2

4

1

2

3

1

dividing the data space into 2^{bd} cells.

18.	The method of Claim 15, wherein each approximation defines a lower bound d_{mi}
and the metho	od further comprises:

generating a candidate set of approximations based at least on the lower bounds d_{min} of the approximations.

19. The method of Claim 18, further comprising:

adding a first approximation having a first lower bound d_{min1} to the candidate set if $d_{min1} < k$ -NN^{dist} (**q**), wherein k-NN^{dist} (**q**) is the kth largest distance between the query vector **q** and nearest neighbor vectors **p** associated with approximations in the candidate set.

- 20. The method of Claim 19, further comprising using the candidate set to return "k" nearest neighbors vectors **p** to the query vector **q**.
- 21. The method of Claim 20, wherein not all data vectors **p** corresponding to approximations in the candidate set are examined to return the "k" nearest neighbors vectors **p**.
- 22. The computer of Claim 4, wherein each approximation defines an upper bound d_{max} , and the method acts further comprise:

3	generating a candidate set of approximations based at least on the upper bounds
4	d _{max} of the approximations.
1	23. The computer program product of Claim 12, wherein each approximation defines
2	an upper bound d_{max} , and the product further comprises:
3 -	computer readable code means for generating a candidate set of approximations
4	based at least on the upper bounds d_{max} of the approximations.
1	24. The computer of Claim 1, wherein each approximation defines an upper bound
2	d _{max} , and the method acts further comprise:
2 3	generating a candidate set of approximations based at least on the upper bounds
4	d _{max} of the approximations.
=	
1	
mile minde	