In [1]:

```
import pandas as pd
import numpy as np
```

In [2]:

```
dataset = pd.read_csv(r"C:\Users\kotha\Downloads\student_scores.csv")
```

In [3]:

dataset

Out[3]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

```
In [4]:
dataset.isnull().any()
Out[4]:
Hours
          False
Scores
          False
dtype: bool
In [5]:
x = dataset.iloc[:,0:1].values
y = dataset.iloc[:,1:2].values
In [6]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state=0)
In [7]:
x_train.shape
Out[7]:
(20, 1)
In [8]:
y_train.shape
Out[8]:
(20, 1)
In [9]:
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train,y_train)
Out[9]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
se)
In [10]:
y_pred = regressor.predict(x_test)
```

```
In [11]:
x_test
Out[11]:
array([[1.5],
       [3.2],
       [7.4],
       [2.5],
       [5.9])
In [12]:
y_test
Out[12]:
array([[20],
       [27],
       [69],
       [30],
       [62]], dtype=int64)
In [13]:
y_pred
Out[13]:
array([[16.88414476],
       [33.73226078],
       [75.357018],
       [26.79480124],
       [60.49103328]])
In [14]:
from sklearn.metrics import r2_score
accuracy = r2_score(y_test,y_pred)
In [15]:
accuracy
Out[15]:
0.9454906892105356
In [19]:
yp = regressor.predict([[25]])
In [20]:
ур
Out[20]:
array([[249.78457206]])
```

In [17]:

```
import matplotlib.pyplot as plt
plt.scatter(x_train,y_train,color = "blue")
plt.plot(x_train, regressor.predict(x_train))
```

Out[17]:

[<matplotlib.lines.Line2D at 0x136101a8948>]

In []: