Predicting Car Accidents' Severity

Lecture 1 Group K - Gary Ramos, Marlyn Tanuwandi, Thi Nguyen, Juhyeon Seo

CAR ACCIDENTS

6,000,000

CAR ACCIDENTS

38,368
DEATHS

Car Accident Data Set

TO NG

WALL NG

WALL

TEST 15,000 OBSERVATIONS

44VARIABLES

METHODOLOGY

01 Clean Data

03 Analyze Models

02 Model Data

Q4Compare Models

Exploratory Data Analysis (EDA)

Car Accident Data Set

Exploratory Data Analysis (EDA)

	Total	Percentage
MILD	31482	90%
SEVERE	3518	10.1%

Exploratory Data Analysis (EDA)

Clean Data: Exploratory Data Analysis (training)

Variables	# of NAs
City	1
Zipcode	18
Timezone	51
Airport_Code	117
Weather_Timestamp	569
Temperature.F	804
Wind_Chill.F	5666
Humidity	847

Pressure.in	671
Visibility.mi	822
Wind_Direction	845
Wind_Speed.mph	1870
Weather_Condition	810
Sunrise_Sunset	30
Civil_Twilight	30
Nautical_Twilight	30
Astronomical_Twilight	30

13211NAs total

Clean Data: Exploratory Data Analysis (testing)

Variables	# of NAs
Zipcode	4
Timezone	15
Airport_Code	36
Weather_Timestamp	264
Temperature.F	357
Wind_Chill.F	2485
Humidity	373
Pressure.in	312

Visibility.mi	358
Wind_Direction	376
Wind_Speed.mph	843
Weather_Condition	371
Sunrise_Sunset	12
Civil_Twilight	12
Nautical_Twilight	12
Astronomical_Twilight	12

5842NAs total

Clean Data: Impute missing variables using mice

METHOD

 Use information from other variables in the dataset to predict and impute the missing values

	Training Data	Testing Data
# of NAs	2531	1114

- Run 5 imputations
- Create a dataset after the imputation

Clean Data

- Merge data based on County and State
- Features engineering
 - Split the time from the start_time and end_time of the dataset and create the time each accident took place
 - Creating new variables based on Description predictor in which using the common words that appears the most in the description variable

Data Visualization

Data Visualization

Clean Data: Remove insignificant variables and variables with missing values

Weather_Timestamp	Wind_Direction	index	Start_Time
Airport_Code	Wind_Speed.mph.	Transit_County	End_Time
Timezone	Visibility.mi.	Wind_Chill.F.	Country
Walk_County	Sunrise_Sunset	End_Lat	Street
City	Civil_Twilight	End_Lng	County
Description	Nautical_Twilight	Weather_Condition	new_date
Zipcode	Astronomical_Twilight	MedianHouseholdIncome_County	is.blocked

Clean Data: Updated Data

TO NG

STATIONS

STATIONS

15,000
OBSERVATIONS

33 VARIABLES

Clean Data: Add New Variables

- Merge fatal data
- Encode variables (convert Severity, Side, State, year to factors)
- Assign median to NAs (Population_County, Drive_County, Humidity..., Pressure.in.)

Clean Data: Remove logical predictors

Bump	Station
Roundabout	Side
Amenity	Railway
Give_Way	Traffic_Signal
No_Exit	Crossing
Traffic_Calming	Junction
Turning_Loop	Drive_County
Stop	

Clean Data: New Data Set

H 35,000

OBSERVATIONS

TEST 15,000 OBSERVATIONS

18
VARIABLES

Model Data: Random Forest Model (Full)

model.rf 18

Variable Importance Plot mtry = 4 18 predictors

METHOD

Construct random forest model using all the predictors from training data.

Model Data: Random Forest Model (Full)

CONFUSION MATRIX		
	MILD	SEVERE
MILD	31079	403
SEVERE	1530	1988

MISCLASSIFICATION ERROR RATE: 5.52%

Variable Importance Plot mtry = 4 18 predictors

METHOD

Construct random forest model using all the predictors from training data.

Model Data: Random Forest Model (10 predictors)

Variable Importance Plot
mtry = 4
10 predictors

METHOD

Construct random forest model using 10 predictors from training data.

Model Data: Random Forest Model (10 predictors)

CONFUSIO	on Matrix	
	MILD	SEVERE
MILD	30917	565
SEVERE	1543	1975

MISCLASSIFICATION ERROR RATE: 6.02%

Variable Importance Plot mtry = 4 10 predictors

METHOD

Construct random forest model using 10 predictors from training data.

Model Data: Random Forest Model (6 predictors)

Variable Importance Plot mtry = 4 6 predictors

METHOD

Construct random forest model using 6 predictors from training data.

Model Data: Random Forest Model (6 predictors)

CONFUSION MATRIX		
	MILD	SEVERE
MILD	30681	801
SEVERE	1624	1894

MISCLASSIFICATION ERROR RATE: 6.93%

Variable Importance Plot
mtry = 4
6 predictors

METHOD

Construct random forest model using 6 predictors from training data.

Model Data: Number of important predictors us error rate

Model Data:

Graph of geographic dispersion of accidents by severity levels

Model Pata: Generalized Linear Model (GLM)

— Confusion Matrix		
	MILD	SEVERE
MILD	31009	1906
SEVERE	473	1612

MISCLASSIFICATION ERROR RATE: 6.78%

Model Data: Final Model

	RF 18	RF 11	RF 6	GLM
MCR	5.52%	6.02%	6.93%	6.78%

CHOOSING THE MODEL

When choosing the model, we observe the misclassification rates. Comparing our models' MCRs, we decided to choose the random forest model using 18 predictors.

RESULTS &

DISCUSSION

Final Model Key Points

Model

Random Forest (mtry = 4)

MCR

5.52%

Observations

35000 Accidents

Rank

2nd Place

Predictors

18 Predictors

Final Kaggle Score

0.9459

Most Important Predictors

is.road

Logical variable:
Did the word road
appear in description
variable

Year

Categorical Variable: Year the accident occured

is.closed

Logical variable:
Did the word closed
appear in description
variable

LIMITATIONS & CONCLUSION

Limitations

Increasing accuracy required more trees

Computationally expensive

Conclusion

Low misclassification rate

Predictive model

Detailed relationship between key factors and accident severity can be further studied.

References

- Almohalwas Stats 101C Lectures and Discussions
- Almohalwas, Akram. "Predicting Car Accidents' Severity."
 https://www.kaggle.com/competitions/predicting-car-accidents-severiy
- Insurance Institute for Highway Safety (IIHS) –
 https://www.iihs.org/about-us

THANKYOU