What is claimed is:

5

- 1. A method of inhibiting activation of a human α_{1d} adrenergic receptor which comprises contacting the receptor with a compound so as to inhibit activation of the receptor, wherein the compound binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least ten-fold higher than the binding affinity with which the compound binds to (i) a human α_{1a} adrenergic receptor and (ii) a human α_{1b} adrenergic receptor, and the compound binds to the human α_{1d} adrenergic receptor with a binding affinity which is greater than the binding affinity with which the compound binds to a human 5-HT_{1a} receptor.
- The method of claim 1, wherein the compound binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least 25-fold higher than the-binding affinity with which the compound binds to (i) the human α_{1a} adrenergic receptor and (ii) the human α_{1b} adrenergic receptor, and the compound binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least ten-fold higher than the binding affinity with which the compound binds to the human 5-HT_{1a} receptor.
- The method of claim 2, wherein the compound binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least 25-fold higher than the binding affinity with which the compound binds to (i) the human α_{1a} adrenergic receptor, (ii) the human α_{1b} adrenergic receptor, and (iii) the human 5-HT_{1a} receptor.
 - 4. The method of claim 3, wherein the compound binds to

the human α_{1d} adrenergic receptor with a binding affinity which is at least 100-fold higher than the binding affinity with which the compound binds to (i) the human α_{1a} adrenergic receptor, (ii) the human α_{1b} adrenergic receptor, and (iii) the human 5-HT_{1a} receptor.

5. A method of inhibiting activation of a human α_{1d} adrenergic receptor which comprises contacting the receptor with a compound so as to inhibit activation of the receptor, wherein the compound has the structure:

wherein m is an integer from 0 to 2; wherein n is an integer from 0 to 2;

wherein Y is

wherein Z is

wherein R1 and R2 (i) are independently H, branched or unbranched C_1 - C_6 alkyl or alkoxy, branched or unbranched C_2 - C_6 alkenyl or alkynyl, branched or

15

5

unbranched C_1 - C_6 hydroxyalkyl, hydroxy, substituted or unsubstituted aryl or aryl- $(C_1$ - $C_6)$ -alkyl, or substituted or unsubsti- tuted heteroaryl or heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the substituent if present is a halogen, CN, nitro, hydroxy, branched or unbranched C_1 - C_6 alkyl or alkoxy group, or branched or unbranched C_2 - C_6 alkenyl or alkynyl group; or (ii) taken together form a substituted or unsubstituted cycloalkyl ring containing 3-10 carbons, wherein the substituent if present is a branched or unbranched C_1 - C_6 alkyl group or branched or unbranched C_2 - C_6 alkenyl or alkynyl group;

wherein R3 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkylalkyl, aryl, heteroaryl, aryl- $(C_1$ - $C_6)$ -alkyl, heteroaryl- $(C_1$ - $C_6)$ -alkyl, substituted C_1 - C_6 alkyl, substituted C_3 - C_7 cycloalkyl, substituted aryl, substituted heteroaryl, substituted aryl- $(C_1$ - $C_6)$ -alkyl, or substituted heteroaryl- $(C_1$ - $C_6)$ -alkyl, or substituted heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the substituent if present is a halogen, CN, nitro, C_1 - C_6 alkyl, OR14, SR14, $N(R14)_2$, SO₂ $N(R14)_2$, CO₂R14, SO₃R14, $N(R14)_2$, CON(R14)₂, or $N(R14)_2$ CON(R14)₂;

wherein R4 is H or CH3;

5

10

15

20

25

30

wherein R5 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkylalkyl, aryl, heteroaryl, aryl- $(C_1$ - $C_6)$ -alkyl, heteroaryl- $(C_1$ - $C_6)$ -alkyl, substituted C_3 - C_7 cycloalkyl, substituted aryl, substituted heteroaryl, substituted aryl- $(C_1$ - $C_6)$ -alkyl, or substituted heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the substituent if

present is a halogen, CN, nitro, C_1 - C_6 alkyl, OR14,. SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14, N(R14)COR14, CON(R14)₂, or N(R14)CON(R14)₂;

wherein R6 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkylalkyl, aryl, heteroaryl, aryl- $(C_1$ - $C_6)$ -alkyl, heteroaryl- $(C_1$ - $C_6)$ -alkyl, substituted C_1 - C_6 alkyl, substituted C_3 - C_7 cycloalkyl, substituted aryl, substituted heteroaryl, substituted aryl- $(C_1$ - $C_6)$ -alkyl, or substituted heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the substituent if present is a halogen, CN, nitro, C_1 - C_6 alkyl, OR14, SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14, N(R14)COR14, CON(R14)₂, or N(R14)CON(R14)₂;

wherein R7 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, aryl, aryl- $(C_1$ - $C_6)$ -alkyl, CO_2 R14, $CON(R14)_2$, substituted C_1 - C_6 alkyl, substituted aryl, wherein the substituent is $N(R14)_2$, halogen, OR14 or SR14;

wherein R8 is H or CH3;

wherein R9 is H, F, Cl, Br, branched or unbranched C_1 - C_6 alkyl or alkoxy, CN; wherein R10 is H or F; wherein R11 is H, F, Cl, Br, I, CN, branched or unbranched C_1 - C_6 alkyl or alkoxy; wherein R12 is H, F, Cl, CN, branched or unbranched C_1 - C_6 alkyl or alkoxy; wherein R13 is H or F; wherein X is N or CH; with the proviso that when R11 and R12 are each H, then R9 is F;

and wherein R14 is independently H or branched or

5

-10

15

20

unbranched C1-C6 alkyl.

6. The method of claim 5, wherein the compound has the structure:

7. The method of claim 6, wherein the compound has the structure:

8. The method of claim 7, wherein the compound has the structure:

$$\begin{array}{c} R1 \\ R2 \\ \end{array}$$

$$\begin{array}{c} Y \\ R5 \\ R6 \\ \end{array}$$

$$\begin{array}{c} R4 \\ R7 \\ R8 \\ \end{array}$$

$$\begin{array}{c} F \\ R11 \\ \end{array}$$

9. The method of claim 8, wherein the compound has the structure:

$$\begin{array}{c|c}
R1 & & & \\
N & & & \\
R2 & & & \\
N & & & \\
R3 & & & \\
R4 & & & \\
R7 & & & \\
R7 & & & \\
R11 & & \\$$

10. The method of claim 9, wherein the compound has the structure:

11. The method of claim 10, wherein the compound has the structure:

$$\mathbb{Z}_{\mathbb{Q}}^{\mathbb{Q}}$$
 $\mathbb{Z}_{\mathbb{Q}}^{\mathbb{Q}}$
 $\mathbb{Z}_{\mathbb{Q}}^{\mathbb{Q}}$
 $\mathbb{Z}_{\mathbb{Q}}^{\mathbb{Q}}$
 $\mathbb{Z}_{\mathbb{Q}}^{\mathbb{Q}}$

12. The method of claim 11, wherein the compound has the structure:

13. A compound having the structure:

wherein n is an integer from 0 to 2; wherein m is an integer from 0 to 2;

wherein Y is

5

wherein Z is

wherein R1 and R2 (i) are independently H, branched or unbranched C_1 - C_6 alkyl or alkoxy, branched or unbranched C_2 - C_6 alkenyl or alkynyl, branched or unbranched C_1 - C_6 hydroxyalkyl, hydroxy, substituted or unsubstituted aryl or aryl- $(C_1$ - $C_6)$ -alkyl, or substituted or unsubsti- tuted heteroaryl or heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the substituent if present is a halogen, CN, nitro, hydroxy, branched or unbranched C_1 - C_6 alkyl or alkoxy group, or branched or unbranched C_2 - C_6 alkenyl or alkynyl group; or (ii) taken together form a substituted or unsubstituted cycloalkyl ring containing 3-10 carbons, wherein the substituent if present is a branched or unbranched C_1 - C_6 alkyl group or branched or unbranched C_2 - C_6 alkenyl or alkynyl group;

wherein R3 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkylalkyl, aryl, heteroaryl, aryl- $(C_1$ - $C_6)$ -alkyl, heteroaryl- $(C_1$ - $C_6)$ -alkyl, substituted C_3 - C_7 cycloalkyl, substituted aryl, substituted heteroaryl, substituted aryl- $(C_1$ - $C_6)$ -alkyl, or substituted heteroaryl- $(C_1$ - $C_6)$ -alkyl, or substituted heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the substituent if present is a halogen, CN, nitro, C_1 - C_6 alkyl, OR14, SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14, N(R14) COR14, CON(R14)₂, or N(R14) CON(R14)₂;

wherein R4 is H or CH3;

wherein R5 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkylalkyl, aryl, heteroaryl, aryl- $(C_1$ - $C_6)$ -alkyl, heteroaryl- $(C_1$ - $C_6)$ -alkyl, substituted C_1 - C_6 alkyl, substituted C_3 - C_7 cycloalkyl,

5

10

15

20

25

substituted aryl, substituted heteroaryl, substituted aryl- (C_1-C_6) -alkyl, or substituted heteroaryl- (C_1-C_6) -alkyl, wherein the substituent if present is a halogen, CN, nitro, C_1-C_6 alkyl, OR14, SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14, N(R14)COR14, CON(R14)₂, or N(R14)CON(R14)₂;

wherein R6 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkylalkyl, aryl, heteroaryl, aryl- $(C_1$ - $C_6)$ -alkyl, heteroaryl- $(C_1$ - $C_6)$ -alkyl, substituted C_1 - C_6 alkyl, substituted C_3 - C_7 cycloalkyl, substituted aryl, substituted heteroaryl, substituted aryl- $(C_1$ - $C_6)$ -alkyl, or substituted heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the substituent if present is a halogen, CN, nitro, C_1 - C_6 alkyl, OR14, SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14, N(R14)COR14, CON(R14)₂, or N(R14)CON(R14)₂;

wherein R7 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, aryl, aryl- $(C_1$ - $C_6)$ -alkyl, CO_2 R14, $CON(R14)_2$, substituted C_1 - C_6 alkyl, substituted aryl, wherein the substituent is $N(R14)_2$, halogen, OR14 or SR14;

wherein R8 is H or CH3;

5

10

15

20

25

30

wherein R10 is H or F; wherein R11 is H, F, Cl, Br, I, CN, branched or unbranched C_1 - C_6 alkyl or alkoxy; wherein R12 is H, F, Cl, CN, branched or unbranched C_1 - C_6 alkyl or alkoxy; wherein R13 is H or F; wherein X is N or CH; and wherein R14 is independently H or branched or unbranched C_1 - C_6 alkyl.

- 14. A compound of claim 13, wherein the compound comprises the (+) enantiomer.
- 15. A compound of claim 13, wherein the compound comprises the (-) enantiomer.
- 5 16. A compound of claim 13, wherein the compound has the structure:

17. A compound of claim 16, wherein the compound has the structure:

18. A compound of claim 17, wherein the compound has the structure:

19. A compound of claim 18, wherein the compound has the structure:

20. A compound of claim 19, wherein the compound has the structure:

5 21. A compound of claim 20, wherein the compound has the structure:

$$\begin{array}{c|c}
 & F \\
 & R3 \\
 & F
\end{array}$$

22. A pharmaceutical composition comprising a therapeutically effective amount of the compound of claim 13 and a pharmaceutically acceptable carrier.

- 23. The pharmaceutical composition of claim 22, wherein the amount of the compound is an amount from about 0.01 mg to about 800 mg.
- 24. The pharmaceutical composition of claim 23, wherein the amount of the compound is from about 0.1 mg to about 300 mg.

- 25. The pharmaceutical composition of claim 24, wherein the amount of the compound is from about 1 mg to about 20 mg.
- 10 26. The pharmaceutical composition of claim 22, wherein the carrier is a liquid.
 - 27. The pharmaceutical composition of claim 22, wherein the carrier is a solid.
- 28. The pharmaceutical composition of claim 22, wherein the carrier is a gel.
 - 29. A pharmaceutical composition obtained by combining a therapeutically effective amount of a compound of claim 13 and a pharmaceutically acceptable carrier.
- 20 A process for making a pharmaceutical composition comprising combining a therapeutically effective amount of a compound of claim 13 and a pharmaceutically acceptable carrier.

31. A process of making a compound with structure:

which comprises reacting a compound with structure:

with a compound

$$+N \underbrace{\hspace{1cm}}_{N} \underbrace{\hspace{1cm}}_{F}$$

to form the compound,

wherein Y is

5

wherein Z is

wherein R1 and R2 (i) are independently H, branched or unbranched C_1 - C_6 alkyl or alkoxy, branched or unbranched C_2 - C_6 alkenyl or alkynyl, branched or unbranched C_1 - C_6 hydroxyalkyl, hydroxy, substituted or unsubstituted aryl or aryl- $(C_1$ - C_6)-alkyl, or substituted or unsubsti- tuted heteroaryl or heteroaryl- $(C_1$ - C_6)-alkyl, wherein the substituent if present is a halogen, CN, nitro, hydroxy, branched or unbranched C_1 - C_6 alkyl or alkoxy group, or branched or unbranched C_2 - C_6 alkenyl or alkynyl group; or (ii) taken together form a substituted or unsubstituted cycloalkyl ring containing 3-10 carbons, wherein the substituent if present is a branched or unbranched C_1 - C_6 alkyl group or branched or unbranched C_2 - C_6 alkenyl or alkynyl group;

wherein R3 is H, branched or unbranched C₁-C₆ alkyl, branched or unbranched C₂-C₆ alkenyl or alkynyl, C₃-C₇ cycloalkyl, C₃-C₇ cycloalkylalkyl, aryl, heteroaryl, aryl-(C₁-C₆)-alkyl, heteroaryl-(C₁-C₆)-alkyl, substituted C₁-C₆ alkyl, substituted C₃-C₇ cycloalkyl, substituted aryl, substituted heteroaryl, substituted aryl-(C₁-C₆)-alkyl, or substituted heteroaryl-(C₁-C₆)-alkyl, wherein the substituted if present is a halogen, CN, nitro, C₁-C₆ alkyl, OR14, SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14, N(R14) COR14, CON(R14)₂, or N(R14)CON(R14)₂;

wherein R4 is H or CH3;

5

10

25

30

wherein R5 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkylalkyl, aryl, heteroaryl, aryl- $(C_1$ - $C_6)$ -alkyl, heteroaryl- $(C_1$ - $C_6)$ -alkyl, substituted C_1 - C_6 alkyl, substituted C_3 - C_7 cycloalkyl, substituted aryl, substituted heteroaryl, substituted aryl- $(C_1$ - $C_6)$ -alkyl, or substituted heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the

substituent if present is a halogen, CN, nitro, C_1-C_6 alkyl, OR14, SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14, N(R14) COR14, CON(R14)₂, or N(R14) CON(R14)₂;

wherein R6 is H, branched or unbranched C₁-C₆ alkyl,

branched or unbranched C₂-C₆ alkenyl or alkynyl, C₃-C₇

cycloalkyl, C₃-C₇ cycloalkylalkyl, aryl, heteroaryl, aryl(C₁-C₆)-alkyl, heteroaryl-(C₁-C₆)-alkyl, substituted C₁-C₆

alkyl, substituted C₃-C₇ cycloalkyl, substituted aryl,

substituted heteroaryl, substituted aryl-(C₁-C₆)-alkyl, or

substituted heteroaryl-(C₁-C₆)-alkyl, wherein the

substituent if present is a halogen, CN, nitro, C₁-C₆

alkyl, OR14, SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14,

N(R14)COR14, CON(R14)₂, or N(R14)CON(R14)₂; and wherein

R14 is independently H or branched or unbranched C₁-C₆

alkyl.

- 32. A method of treating a subject afflicted with a disease which is susceptible to treatment by antagonism of the human α_{1d} adrenergic receptor which comprises administering to the subject an amount of the compound of claim 13 effective to treat the disease.
- 33. A method of treating a subject afflicted with hypertension which comprises administering to the subject an amount of the compound of claim 13 effective to treat hypertension.

20

25

- 34. A method of treating a subject afflicted with Raynaud's disease which comprises administering to the subject an amount of the compound of claim 13 effective to treat Raynaud's disease.
- 35. A method of claim 34, wherein the compound

additionally does not cause hypotension at dosages effective to treat Raynaud's disease.

36. A method of treating a subject afflicted with urinary incontinence which comprises administering to the subject an amount of the compound of claim 13 effective to treat urinary incontinence.

5

25

- 37. A method of claim 36, wherein the compound additionally does not cause hypotension at dosages effective to treat urinary incontinence.
- A method of treating urinary incontinence in a 38. 10 subject which comprises administering to the subject a therapeutically effective amount of a α_{1d} antagonist which binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least ten-fold higher than the binding affinity with which 15 the α_{1d} antagonist binds to (i) a human α_{1a} adrenergic receptor and (ii) a human α_{1b} adrenergic receptor, and the α_{1d} antagonist binds to the human α_{1d} adrenergic receptor with a binding affinity which is greater than the binding affinity with which the α_{1d} 20 antagonist binds to a human 5-HT12 receptor.
 - 39. The method of claim 38, wherein the α_{1d} antagonist binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least 25-fold higher than the binding affinity with which the α_{1d} antagonist binds to (i) the human α_{1e} adrenergic receptor and (ii) the human α_{1e} adrenergic receptor, and the α_{1d} antagonist binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least ten-fold higher than the binding affinity with which the α_{1d} antagonist binds to the human 5-

HT1a receptor.

- 40. The method of claim 39, wherein the α_{1d} antagonist binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least 25-fold higher than the binding affinity with which the α_{1d} antagonist binds to (i) the human α_{1a} adrenergic receptor, (ii) the human α_{1b} adrenergic receptor, and (iii) the human 5-HT_{1a} receptor.
- The method of claim 40, wherein the α_{1d} antagonist binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least 100-fold higher than the binding affinity with which the α_{1d} antagonist binds to (i) the human α_{1a} adrenergic receptor, (ii) the human α_{1b} adrenergic receptor, and (iii) the human $5-HT_{1a}$ receptor.
 - 42. A method of claim 38, wherein the α_{1d} antagonist additionally does not cause hypotension at dosages effective to treat urinary incontinence.