Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux **2003 Examen partiel**

Vendredi le 24 octobre 2003; durée: 8h30 à 10h20 Une feuille de documentation permise; une calculatrice permise

Problème 1 (10 points sur 40)

A. (9 points) Trouvez la transformée de Fourier de la fonction

$$f(t) = \begin{cases} .5(t+1) & -1 < t < 1 \\ 2-t & 1 < t < 2 \\ 0 & \text{ailleurs} \end{cases}$$

B. (1 point) Quelle est la vitesse de convergence de la transformée de Fourier?

Problème 2 (18 points sur 40)

A. (8 points) Trouvez la transformée de Fourier de la fonction périodique donnée dans le graphique

- B. (4 points) Donnez une expression pour le pourcentage de puissance dans la bande de fréquence $-2\omega_0 \le \omega \le 2\omega_0$, c'est-à-dire, incluant DC, la fondamentale et la deuxième harmonique.
- C. (2 points) Évaluez le pourcentage de puissance de partie B pour les trois cas : α =.01, α =.1, α =.4
- D. (4 points) i) Donnez des esquisses de l'enveloppe du spectre d'amplitude pour décrire le comportement quand $\alpha \rightarrow \frac{1}{2}$.
 - ii) Expliquez l'évolution du pourcentage de la puissance contenue dans la bande de fréquence $-2\omega_0 \le \omega \le 2\omega_0$ en fonction de α lorsque $\alpha \rightarrow \frac{1}{2}$.
 - iii) Expliquez ce qui se passe quand $\alpha=\frac{1}{2}$.

Problème 3 (12 points sur 40)

- A. (10 points) Trouvez la transformée de $f(t) = \frac{t}{(1+t^2)^2}$.
- B. (2 points) Trouvez la valeur DC de la transformée.

2003 Examen partiel

Fonction	Transformée de Fourier
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$e^{jbt}f(t)$	$F(\omega - b)$
$t^n f(t)$	$(j)^n\frac{d^n}{d\omega^n}F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$
$\operatorname{Rect}(t/ au)^{1}$	$ au\operatorname{Sa}ig(\omega au/2ig)$
$\operatorname{Tri}(t/\tau)$ 2	$ au \operatorname{Sa}^2\left(\omega au/2\right)$
δ(<i>t</i>)	1
1	2πδ(ω)
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
U(<i>t</i>)	$1/j\omega + \pi\delta(\omega)$
Sgn(t)	$2/j\omega$
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$
$e^{-\beta t} U(t)$	$\frac{1}{\beta + j\omega}$
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$

rectangle de hauteur un, centré $_2$ Tri $\left(\frac{t-t_0}{\tau}\right)$ longueur τ .

triangle de hauteur un, centré sur $t=t_0$, avec un base de longueur 2τ .