

CFRM 410: Probability and Statistics for Computational Finance

Week 7 Multivariate Random Variables

Jake Price

Instructor, Computational Finance and Risk Management
University of Washington
Slides originally produced by Kjell Konis

Outline

Outline

An *n-dimensional random vector* is a function from the sample space S into \mathbb{R}^n (*n*-dimensional Euclidean space)

An *n-dimensional random vector* is a function from the sample space S into \mathbb{R}^n (*n*-dimensional Euclidean space)

Example

▶ Consider the random experiment of rolling two 6-sided dice

An *n-dimensional random vector* is a function from the sample space S into \mathbb{R}^n (*n*-dimensional Euclidean space)

Example

- ► Consider the random experiment of rolling two 6-sided dice
- \triangleright For each of the 36 possible elementary outcomes in S let

X = sum of the two dice and Y = |difference of the two dice|

An *n-dimensional random vector* is a function from the sample space S into \mathbb{R}^n (*n*-dimensional Euclidean space)

Example

- ▶ Consider the random experiment of rolling two 6-sided dice
- ▶ For each of the 36 possible elementary outcomes in *S* let

X = sum of the two dice and Y = |difference of the two dice|

▶ The vector (X, Y) is a bivariate random vector

Let X and Y be two random variables with supports S_X and S_Y

Let X and Y be two random variables with supports S_X and S_Y

The vector (X, Y) is a bivariate random vector with support S_{XY}

Let X and Y be two random variables with supports S_X and S_Y

The vector (X, Y) is a bivariate random vector with support S_{XY}

The function

$$F_{X,Y}(x,y) = P(X \le x, Y \le y)$$

is called the joint distribution function of X and Y

Let X and Y be two random variables with supports S_X and S_Y

The vector (X, Y) is a bivariate random vector with support S_{XY}

The function

$$F_{X,Y}(x,y) = P(X \le x, Y \le y)$$

is called the *joint distribution function* of X and Y

Discrete Case: The joint probability of X and Y is described by the *joint mass function*

$$f_{X,Y}(x_i,y_j) = P(X = x_i, Y = y_j)$$

for all possible pairs $(x_i, y_j) \in S_{XY}$

Let X and Y be two random variables with supports S_X and S_Y

The vector (X, Y) is a bivariate random vector with support S_{XY}

The function

$$F_{X,Y}(x,y) = P(X \le x, Y \le y)$$

is called the joint distribution function of X and Y

Discrete Case: The joint probability of X and Y is described by the *joint mass function*

$$f_{X,Y}(x_i,y_j) = P(X = x_i, Y = y_j)$$

for all possible pairs $(x_i, y_j) \in S_{XY}$

Continuous Case: The joint density of X and Y is described by the *joint density function*

$$f_{X,Y}(x,y)$$

The joint distribution function is

$$P(X \le x, Y \le y) = F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) du dv$$

The joint distribution function is

$$P(X \le x, Y \le y) = F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) du dv$$

Properties:

• $f_{X,Y}(x,y) \ge 0$ for all points $(x,y) \in \mathbb{R}^2$

The joint distribution function is

$$P(X \le x, Y \le y) = F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) du dv$$

Properties:

- $f_{X,Y}(x,y) \ge 0$ for all points $(x,y) \in \mathbb{R}^2$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$

The joint distribution function is

$$P(X \le x, Y \le y) = F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) du dv$$

Properties:

- $f_{X,Y}(x,y) \ge 0$ for all points $(x,y) \in \mathbb{R}^2$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$
- $f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$

The joint distribution function is

$$P(X \le x, Y \le y) = F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) du dv$$

Properties:

- $f_{X,Y}(x,y) \ge 0$ for all points $(x,y) \in \mathbb{R}^2$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$
- $f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$
- $P(a_1 \le X \le b_1, a_2 \le Y \le b_2) = \int_{a_2}^{b_2} \int_{a_1}^{b_1} f_{X,Y}(x,y) \, dx \, dy$

Marginal Distribution

Let (X, Y) be a bivariate random vector with joint density (mass) function $f_{X,Y}(x,y)$, then the function

Discrete:
$$f_X(x_i) = \sum_{y_j \in S_Y} f_{X,Y}(x_i, y_j)$$

Continuous:
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

is called the marginal density (mass) functions of X

Marginal Distribution

Let (X, Y) be a bivariate random vector with joint density (mass) function $f_{X,Y}(x,y)$, then the function

Discrete:
$$f_X(x_i) = \sum_{y_j \in S_Y} f_{X,Y}(x_i, y_j)$$

Continuous:
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

is called the marginal density (mass) functions of X

The marginal cumulative distribution function of X is

Discrete:
$$F_X(x) = \sum_{x_i \le x} f_X(x_i)$$

Continuous:
$$F_X(x) = \int_{-\infty}^x f_X(u) du$$

Suppose the random vector (X, Y) takes values in the set

$$\{(1,2),(1,4),(2,3),(3,2),(3,4)\}$$

each with equal probability

Suppose the random vector (X, Y) takes values in the set

$$\{(1,2),(1,4),(2,3),(3,2),(3,4)\}$$

each with equal probability

What are $f_X(x)$ and $f_Y(y)$?

Suppose the random vector (X, Y) takes values in the set

$$\{(1,2),(1,4),(2,3),(3,2),(3,4)\}$$

each with equal probability

What are $f_X(x)$ and $f_Y(y)$?

$$f_X(x) = \begin{cases} 0.4 & x = 1 \\ 0.2 & x = 2 \\ 0.4 & x = 3 \end{cases} \qquad f_Y(y) = \begin{cases} 0.4 & y = 2 \\ 0.2 & y = 3 \\ 0.4 & y = 4 \end{cases}$$

Expected Value

Let (X, Y) be a bivariate random vector with joint pdf $f_{X,Y}(x,y)$

Expected Value

Let (X, Y) be a bivariate random vector with joint pdf $f_{X,Y}(x, y)$

The expected value of a function g(X, Y) is

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$$

Expected Value of the Sum of Two Random Variables

Suppose (X, Y) is a bivariate random vector with joint pdf $f_{X,Y}(x,y)$

Expected Value of the Sum of Two Random Variables

Suppose (X, Y) is a bivariate random vector with joint pdf $f_{X,Y}(x,y)$

What is the expected value of (X + Y)?

Outline

Two discrete random variables X and Y are independent if

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

holds for all pairs $(x_i, y_j) \in S_{XY}$

Two discrete random variables X and Y are independent if

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

holds for all pairs $(x_i, y_j) \in S_{XY}$

In general, X and Y are independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
 for all $x,y \in \mathbb{R}$

Two discrete random variables X and Y are independent if

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

holds for all pairs $(x_i, y_j) \in S_{XY}$

In general, X and Y are independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
 for all $x, y \in \mathbb{R}$

Also implies that

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$
 for all $x, y \in \mathbb{R}$

Two discrete random variables X and Y are independent if

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

holds for all pairs $(x_i, y_i) \in S_{XY}$

In general, X and Y are independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
 for all $x, y \in \mathbb{R}$

Also implies that

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$
 for all $x, y \in \mathbb{R}$

The notation $X, Y \stackrel{iid}{\sim} f$ means that X and Y are independent and identically distributed, that is $f_X(x) = f_Y(y) = f$

Recall the previous example

$$\{(1,2), (1,4), (2,3), (3,2), (3,4)\}$$

$$f_X(x) = \begin{cases} 0.4 & x = 1 \\ 0.2 & x = 2 \\ 0.4 & x = 3 \end{cases} \qquad f_Y(y) = \begin{cases} 0.4 & y = 2 \\ 0.2 & y = 3 \\ 0.4 & y = 4 \end{cases}$$

Recall the previous example

$$\{(1,2), (1,4), (2,3), (3,2), (3,4)\}$$

$$f_X(x) = \begin{cases} 0.4 & x = 1 \\ 0.2 & x = 2 \\ 0.4 & x = 3 \end{cases} \qquad f_Y(y) = \begin{cases} 0.4 & y = 2 \\ 0.2 & y = 3 \\ 0.4 & y = 4 \end{cases}$$

Are *X* and *Y* independent?

Recall the previous example

$$\{(1,2), (1,4), (2,3), (3,2), (3,4)\}$$

$$f_X(x) = \begin{cases} 0.4 & x = 1 \\ 0.2 & x = 2 \\ 0.4 & x = 3 \end{cases} \qquad f_Y(y) = \begin{cases} 0.4 & y = 2 \\ 0.2 & y = 3 \\ 0.4 & y = 4 \end{cases}$$

Are X and Y independent?

$$P(X = 1, Y = 4) = 0.2 \neq 0.16 = P(X = 1)P(Y = 4)$$

Conditional Density

Let (X, Y) be a bivariate random vector with joint pdf $f_{X,Y}(x,y)$

Conditional Density

Let (X, Y) be a bivariate random vector with joint pdf $f_{X,Y}(x, y)$

The conditional density of X given that Y = y such that $f_Y(y) > 0$ is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

Conditional Density

Let (X, Y) be a bivariate random vector with joint pdf $f_{X,Y}(x, y)$

The conditional density of X given that Y = y such that $f_Y(y) > 0$ is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

If X and Y are independent

$$f_{X|Y}(x|y) = f_X(x)$$
 $f_{Y|X}(y|x) = f_Y(y)$ for all x, y

Let (X, Y) be a bivariate random vector with joint pdf

$$f_{X,Y}(x,y) =$$

$$\begin{cases} x+y & 0 < x < 1, & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Let (X, Y) be a bivariate random vector with joint pdf

$$f_{X,Y}(x,y) =$$

$$\begin{cases} x+y & 0 < x < 1, & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Find the conditional density X|Y

Let (X, Y) be a bivariate random vector with joint pdf

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, & 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

Find the conditional density X|Y

First, compute the marginal density of Y

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_{0}^{1} (x+y) dx = \frac{1}{2}x^2 + xy\Big|_{0}^{1} = y + \frac{1}{2}$$

Let (X, Y) be a bivariate random vector with joint pdf

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, & 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

Find the conditional density X|Y

First, compute the marginal density of Y

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_{0}^{1} (x+y) dx = \frac{1}{2}x^2 + xy\Big|_{0}^{1} = y + \frac{1}{2}$$

By the definition of conditional probability

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)} = \frac{x+y}{y+\frac{1}{2}}$$
 $0 < x < 1, \ 0 < y < 1$

Outline

The covariance is a measure of the (linear) dependence between two random variables X and Y

The $\it covariance$ is a measure of the (linear) dependence between two random variables $\it X$ and $\it Y$

$$Cov(X, Y) = E([X - E(X)][Y - E(Y)])$$

The $\it covariance$ is a measure of the (linear) dependence between two random variables $\it X$ and $\it Y$

$$Cov(X, Y) = E([X - E(X)][Y - E(Y)])$$

= $E(XY) - E(X)E(Y)$

The $\it covariance$ is a measure of the (linear) dependence between two random variables $\it X$ and $\it Y$

$$Cov(X, Y) = E([X - E(X)][Y - E(Y)])$$

= $E(XY) - E(X)E(Y)$

Properties:

 $\mathsf{Cov}(X,Y) = \mathsf{Cov}(Y,X)$

The $\it covariance$ is a measure of the (linear) dependence between two random variables $\it X$ and $\it Y$

$$Cov(X, Y) = E([X - E(X)][Y - E(Y)])$$

= $E(XY) - E(X)E(Y)$

- $\triangleright \mathsf{Cov}(X,Y) = \mathsf{Cov}(Y,X)$
- $\blacktriangleright \ \mathsf{Cov}(X,X) = \mathsf{Var}(X)$

The covariance is a measure of the (linear) dependence between two random variables \boldsymbol{X} and \boldsymbol{Y}

$$Cov(X, Y) = E([X - E(X)][Y - E(Y)])$$

= E(XY) - E(X)E(Y)

- $\triangleright \mathsf{Cov}(X,Y) = \mathsf{Cov}(Y,X)$
- ightharpoonup Cov(X,X) = Var(X)
- $\mathsf{Cov}(X+Y,Z) = \mathsf{Cov}(X,Z) + \mathsf{Cov}(Y,Z)$

The *covariance* is a measure of the (linear) dependence between two random variables X and Y

$$Cov(X, Y) = E([X - E(X)][Y - E(Y)])$$

= E(XY) - E(X)E(Y)

- $\mathsf{Cov}(X,Y) = \mathsf{Cov}(Y,X)$
- ightharpoonup Cov(X,X) = Var(X)
- $ightharpoonup \operatorname{Cov}(aX+b,cY+d) = \operatorname{ac}\operatorname{Cov}(X,Y)$ a, b, c, d constant

The $\it covariance$ is a measure of the (linear) dependence between two random variables $\it X$ and $\it Y$

$$Cov(X, Y) = E([X - E(X)][Y - E(Y)])$$

= E(XY) - E(X)E(Y)

- $\triangleright \mathsf{Cov}(X,Y) = \mathsf{Cov}(Y,X)$
- ightharpoonup Cov(X,X) = Var(X)
- $\mathsf{Cov}(X+Y,Z) = \mathsf{Cov}(X,Z) + \mathsf{Cov}(Y,Z)$
- $ightharpoonup \operatorname{Cov}(aX+b,cY+d) = \operatorname{ac}\operatorname{Cov}(X,Y)$ a, b, c, d constant
- ▶ If X and Y are independent then Cov(X, Y) = 0

The covariance is a measure of the (linear) dependence between two random variables \boldsymbol{X} and \boldsymbol{Y}

$$Cov(X, Y) = E([X - E(X)][Y - E(Y)])$$

= E(XY) - E(X)E(Y)

- $\mathsf{Cov}(X,Y) = \mathsf{Cov}(Y,X)$
- $\triangleright \mathsf{Cov}(X,X) = \mathsf{Var}(X)$
- $\mathsf{Cov}(X+Y,Z) = \mathsf{Cov}(X,Z) + \mathsf{Cov}(Y,Z)$
- $ightharpoonup \operatorname{Cov}(aX+b,cY+d) = \operatorname{ac}\operatorname{Cov}(X,Y)$ a, b, c, d constant
- ▶ If X and Y are independent then Cov(X, Y) = 0
- ightharpoonup Cov(X, Y) = 0 does NOT imply X and Y are independent

Let X and Y be random variables with joint density

$$f_{X,Y}(x,y) =$$

$$\begin{cases} x+y & 0 < x < 1, & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Let X and Y be random variables with joint density

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Let X and Y be random variables with joint density

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\mathsf{E}(X) = \int_{-\infty}^{\infty} x \, f_X(x) \, dx = \int_{0}^{1} x (x + \frac{1}{2}) \, dx = \frac{1}{3} x^3 + \frac{1}{4} x^2 \bigg|_{0}^{1} = \frac{7}{12}$$

Let X and Y be random variables with joint density

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x(x + \frac{1}{2}) dx = \frac{1}{3}x^3 + \frac{1}{4}x^2 \Big|_0^1 = \frac{7}{12}$$

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_0^1 x^2 (x + \frac{1}{2}) = \frac{1}{4}x^4 + \frac{1}{6}x^3 \Big|_0^1 = \frac{5}{12}$$

Let X and Y be random variables with joint density

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x(x + \frac{1}{2}) dx = \frac{1}{3}x^3 + \frac{1}{4}x^2 \Big|_0^1 = \frac{7}{12}$$

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_0^1 x^2(x + \frac{1}{2}) = \frac{1}{4}x^4 + \frac{1}{6}x^3 \Big|_0^1 = \frac{5}{12}$$

$$Var(X) = E(X^2) - (E(X))^2 = \frac{5}{12} - \left[\frac{7}{12}\right]^2 = \frac{11}{144}$$

$$\mathsf{E}(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f_{X,Y}(x,y) \, dx \, dy$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f_{X,Y}(x,y) \, dx \, dy$$
$$= \int_{0}^{1} \left[\int_{0}^{1} xy \, (x+y) \, dx \right] dy$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f_{X,Y}(x,y) \, dx \, dy$$
$$= \int_{0}^{1} \left[\int_{0}^{1} xy \, (x+y) \, dx \right] dy$$
$$= \int_{0}^{1} \left[\frac{1}{3} x^{3} y + \frac{1}{2} x^{2} y^{2} \Big|_{x=0}^{x=1} \right] dy$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f_{X,Y}(x,y) \, dx \, dy$$

$$= \int_{0}^{1} \left[\int_{0}^{1} xy \, (x+y) \, dx \right] dy$$

$$= \int_{0}^{1} \left[\frac{1}{3} x^{3} y + \frac{1}{2} x^{2} y^{2} \Big|_{x=0}^{x=1} \right] dy$$

$$= \int_{0}^{1} \frac{1}{3} y + \frac{1}{2} y^{2} \, dy$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f_{X,Y}(x,y) \, dx \, dy$$

$$= \int_{0}^{1} \left[\int_{0}^{1} xy \, (x+y) \, dx \right] \, dy$$

$$= \int_{0}^{1} \left[\frac{1}{3} x^{3} y + \frac{1}{2} x^{2} y^{2} \Big|_{x=0}^{x=1} \right] \, dy$$

$$= \int_{0}^{1} \frac{1}{3} y + \frac{1}{2} y^{2} \, dy$$

$$= \left. \frac{1}{6} y^{2} + \frac{1}{6} y^{3} \Big|_{y=0}^{y=1} = \frac{1}{3} \right]$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f_{X,Y}(x,y) \, dx \, dy$$

$$= \int_{0}^{1} \left[\int_{0}^{1} xy \, (x+y) \, dx \right] dy$$

$$= \int_{0}^{1} \left[\frac{1}{3} x^{3} y + \frac{1}{2} x^{2} y^{2} \Big|_{x=0}^{x=1} \right] dy$$

$$= \int_{0}^{1} \frac{1}{3} y + \frac{1}{2} y^{2} \, dy$$

$$= \left. \frac{1}{6} y^{2} + \frac{1}{6} y^{3} \Big|_{y=0}^{y=1} = \frac{1}{3} \right]$$

$$Cov(X, Y) = E(XY) - E(X)E(Y) = \frac{1}{3} - \left[\frac{7}{12}\right] \left[\frac{7}{12}\right] = -\frac{1}{144}$$

Let (X, Y) be a bivariate random vector with joint pdf $f_{X,Y}(x,y)$

$$Var(X+Y) = E[(X+Y)^2] - [E(X+Y)]^2$$

$$Var(X + Y) = E[(X + Y)^{2}] - [E(X + Y)]^{2}$$
$$= E(X^{2} + 2XY + Y^{2}) - [E(X) + E(Y)]^{2}$$

$$Var(X + Y) = E[(X + Y)^{2}] - [E(X + Y)]^{2}$$

$$= E(X^{2} + 2XY + Y^{2}) - [E(X) + E(Y)]^{2}$$

$$= E(X^{2}) + E(2XY) + E(Y^{2})$$

$$- [E(X)]^{2} - 2E(X)E(Y) - [E(Y)]^{2}$$

$$Var(X + Y) = E[(X + Y)^{2}] - [E(X + Y)]^{2}$$

$$= E(X^{2} + 2XY + Y^{2}) - [E(X) + E(Y)]^{2}$$

$$= E(X^{2}) + E(2XY) + E(Y^{2})$$

$$- [E(X)]^{2} - 2E(X)E(Y) - [E(Y)]^{2}$$

$$= E(X^{2}) - [E(X)]^{2}$$

$$+ 2[E(XY) - E(X)E(Y)]$$

$$+ E(Y^{2}) - [E(Y)]^{2}$$

$$Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y)$$

$$Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y)$$

More generally,

$$\mathsf{Var}(aX+bY+c)=a^2\,\mathsf{Var}(X)+b^2\,\mathsf{Var}(Y)+2ab\,\mathsf{Cov}(X,Y)$$

Correlation

The *correlation* is a unit-free measure of the (linear) dependence between two random variables X and Y

Correlation

The *correlation* is a unit-free measure of the (linear) dependence between two random variables X and Y

$$\rho = \rho_{X,Y} = \rho(X,Y) = \mathsf{Corr}(X,Y) = \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{Var}(X)\,\mathsf{Var}(Y)}}$$

The *correlation* is a unit-free measure of the (linear) dependence between two random variables X and Y

$$\rho = \rho_{X,Y} = \rho(X,Y) = \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

Properties:

 $\mathsf{Corr}(X,Y) = \mathsf{Corr}(Y,X)$

The *correlation* is a unit-free measure of the (linear) dependence between two random variables X and Y

$$\rho = \rho_{X,Y} = \rho(X,Y) = \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

- $\mathsf{Corr}(X,Y) = \mathsf{Corr}(Y,X)$
- $\mathsf{Corr}(X,X) = 1$

The *correlation* is a unit-free measure of the (linear) dependence between two random variables X and Y

$$\rho = \rho_{X,Y} = \rho(X,Y) = \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

- $\mathsf{Corr}(X,Y) = \mathsf{Corr}(Y,X)$
- ightharpoonup Corr(X,X)=1
- $\operatorname{Corr}(X, -X) = -1$

The *correlation* is a unit-free measure of the (linear) dependence between two random variables X and Y

$$\rho = \rho_{X,Y} = \rho(X,Y) = \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

- $\mathsf{Corr}(X,Y) = \mathsf{Corr}(Y,X)$
- ightharpoonup Corr(X,X)=1
- ightharpoonup Corr(X, -X) = -1
- ▶ $-1 \le Corr(X, Y) \le 1$ (Cauchy-Schwarz inequality)

The *correlation* is a unit-free measure of the (linear) dependence between two random variables X and Y

$$\rho = \rho_{X,Y} = \rho(X,Y) = \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

- $\mathsf{Corr}(X,Y) = \mathsf{Corr}(Y,X)$
- ightharpoonup Corr(X,X)=1
- ightharpoonup Corr(X, -X) = -1
- ▶ $-1 \le Corr(X, Y) \le 1$ (Cauchy-Schwarz inequality)
- ▶ If X and Y are independent then Corr(X, Y) = 0

The *correlation* is a unit-free measure of the (linear) dependence between two random variables X and Y

$$\rho = \rho_{X,Y} = \rho(X,Y) = \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

- $\mathsf{Corr}(X,Y) = \mathsf{Corr}(Y,X)$
- ightharpoonup Corr(X,X)=1
- ightharpoonup Corr(X, -X) = -1
- ▶ $-1 \le Corr(X, Y) \le 1$ (Cauchy-Schwarz inequality)
- ▶ If X and Y are independent then Corr(X, Y) = 0
- ▶ Correlation ≠ Causality!

Let X and Y be random variables with joint density

$$f_{X,Y}(x,y) =$$

$$\begin{cases} x+y & 0 < x < 1, & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Let X and Y be random variables with joint density

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, & 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

Find Corr(X, Y)

Let X and Y be random variables with joint density

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Find Corr(X, Y)

Already know that
$$\mathsf{Cov}(X,Y) = -\frac{1}{144} \qquad \mathsf{Var}(X) = \mathsf{Var}(Y) = \frac{11}{144}$$

Let X and Y be random variables with joint density

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Find Corr(X, Y)

Already know that $\mathsf{Cov}(X,Y) = -\frac{1}{144} \qquad \mathsf{Var}(X) = \mathsf{Var}(Y) = \frac{11}{144}$

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{-\frac{1}{144}}{\sqrt{\frac{11}{144}\frac{11}{144}}} = -\frac{1}{11}$$

Let $\{X_t, t \in \mathbb{Z}\}$ be a sequence of time-ordered random variables

Let $\{X_t, t \in \mathbb{Z}\}$ be a sequence of time-ordered random variables $\{X_t\}$ is called a *time series model*

Let $\{X_t, t \in \mathbb{Z}\}$ be a sequence of time-ordered random variables

 $\{X_t\}$ is called a *time series model*

The mean and covariance functions of $\{X_t\}$ are given by

$$\mu_X(t) = \mathsf{E}(X_t)$$

Let $\{X_t, t \in \mathbb{Z}\}$ be a sequence of time-ordered random variables $\{X_t\}$ is called a *time series model*

The mean and covariance functions of $\{X_t\}$ are given by

$$\mu_X(t) = \mathsf{E}(X_t)$$

$$\gamma_X(r,s) = \mathsf{Cov}(X_r,X_s) = \mathsf{E}[(X_r - \mu_X(r))(X_s - \mu_X(s))]$$

Let $\{X_t, t \in \mathbb{Z}\}$ be a sequence of time-ordered random variables $\{X_t\}$ is called a *time series model*

The mean and covariance functions of $\{X_t\}$ are given by

$$\mu_X(t) = \mathsf{E}(X_t)$$

$$\gamma_X(r,s) = \mathsf{Cov}(X_r,X_s) = \mathsf{E}[(X_r - \mu_X(r))(X_s - \mu_X(s))]$$

A time series model is called *stationary* if $\mu_X(t) = \mu_X$ and if $\gamma(r,s)$ depends only on h = r - s

Let $\{X_t, t \in \mathbb{Z}\}$ be a sequence of time-ordered random variables $\{X_t\}$ is called a *time series model*

The mean and covariance functions of $\{X_t\}$ are given by

$$\mu_X(t) = \mathsf{E}(X_t)$$

$$\gamma_X(r,s) = \mathsf{Cov}(X_r, X_s) = \mathsf{E}[(X_r - \mu_X(r))(X_s - \mu_X(s))]$$

A time series model is called *stationary* if $\mu_X(t) = \mu_X$ and if $\gamma(r,s)$ depends only on h = r - s

For a stationary times series model, the autocovariance function is

$$\gamma_X(h) = \mathsf{Cov}(X_{t+h}, X_t)$$

Let $\{X_t, t \in \mathbb{Z}\}$ be a sequence of time-ordered random variables $\{X_t\}$ is called a *time series model*

The mean and covariance functions of $\{X_t\}$ are given by

$$\mu_X(t) = \mathsf{E}(X_t)$$

$$\gamma_X(r,s) = \mathsf{Cov}(X_r,X_s) = \mathsf{E}[(X_r - \mu_X(r))(X_s - \mu_X(s))]$$

A time series model is called *stationary* if $\mu_X(t) = \mu_X$ and if $\gamma(r,s)$ depends only on h = r - s

For a stationary times series model, the autocovariance function is

$$\gamma_X(h) = \mathsf{Cov}(X_{t+h}, X_t)$$

For a stationary times series model, the autocorrelation function is

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \operatorname{Corr}(X_{t+h}, X_t)$$

A realization $\{x_1, x_2, \dots, x_n\}$ of $\{X_t\}$ is called a *time series*

A realization $\{x_1, x_2, \dots, x_n\}$ of $\{X_t\}$ is called a *time series*

The sample mean of a time series is

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

A realization $\{x_1, x_2, \dots, x_n\}$ of $\{X_t\}$ is called a *time series*

The sample mean of a time series is

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

The sample autocovariance function is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+h} - \bar{x})(x_t - \bar{x}) \qquad -n < h < n$$

A realization $\{x_1, x_2, \dots, x_n\}$ of $\{X_t\}$ is called a *time series*

The sample mean of a time series is

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

The sample autocovariance function is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+h} - \bar{x})(x_t - \bar{x}) \qquad -n < h < n$$

The sample autocorrelation function is

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)} - n < h < n$$

Let X and Y be independent random variables

Let X and Y be independent random variables

Let g(x) be a function of only x and h(y) a function of only y

Let X and Y be independent random variables

Let g(x) be a function of only x and h(y) a function of only y

The random variables U = g(X) and V = h(Y) are independent

Let X and Y be independent random variables

Let g(x) be a function of only x and h(y) a function of only y

The random variables U = g(X) and V = h(Y) are independent

Recall: independence implies uncorrelated

▶ The returns on Dell appear uncorrelated

- ▶ The returns on Dell appear uncorrelated
- ▶ If the returns are independent, then any transformation of the returns should also be uncorrelated

- ▶ The returns on Dell appear uncorrelated
- ▶ If the returns are independent, then any transformation of the returns should also be uncorrelated
- Consider the Dell returns squared . . .

Outline

A random variable X has a *mixture distribution* if its distribution depends on a quantity that also has a distribution

A random variable X has a *mixture distribution* if its distribution depends on a quantity that also has a distribution

Example: Model for asset returns that allows for extreme events in the lower tail

A random variable X has a *mixture distribution* if its distribution depends on a quantity that also has a distribution

Example: Model for asset returns that allows for extreme events in the lower tail

Let . . .

 $Y \sim Binomial(1, 0.05)$

A random variable X has a *mixture distribution* if its distribution depends on a quantity that also has a distribution

Example: Model for asset returns that allows for extreme events in the lower tail

Let . . .

$$Y \sim \text{Binomial}(1, 0.05)$$

 $X|Y = 1 \sim \mathcal{N}(-12, 6^2)$

Mixture Distributions

A random variable X has a *mixture distribution* if its distribution depends on a quantity that also has a distribution

Example: Model for asset returns that allows for extreme events in the lower tail

Let . . .

$$Y \sim \text{Binomial}(1, 0.05)$$

 $X|Y = 1 \sim \mathcal{N}(-12, 6^2)$
 $X|Y = 0 \sim \mathcal{N}(3, 3^2)$

Mixture Distributions

A random variable X has a *mixture distribution* if its distribution depends on a quantity that also has a distribution

Example: Model for asset returns that allows for extreme events in the lower tail

Let . . .

$$Y \sim \text{Binomial}(1, 0.05)$$

 $X|Y = 1 \sim \mathcal{N}(-12, 6^2)$
 $X|Y = 0 \sim \mathcal{N}(3, 3^2)$

The distribution of X depends on Y and Y has a distribution $\implies X$ has a mixture distribution

Density of X

Let X and Y be any 2 random variables, then

$$\mathsf{E}(X) = \mathsf{E}\left[\mathsf{E}(X|Y)\right]$$

provided that the expectations exist

Let X and Y be any 2 random variables, then

$$\mathsf{E}(X) = \mathsf{E}\left[\mathsf{E}(X|Y)\right]$$

provided that the expectations exist

Example: Expected value of the random variable X from the last slide

$$\mathsf{E}(X|Y=1) = -12$$

$$E(X|Y=0) = 3$$

Let X and Y be any 2 random variables, then

$$\mathsf{E}(X) = \mathsf{E}\left[\mathsf{E}(X|Y)\right]$$

provided that the expectations exist

Example: Expected value of the random variable X from the last slide

$$\mathsf{E}(X|Y=1) = -12$$

$$E(X|Y=0) = 3$$

$$E(X) = E(X|Y=1) P(Y=1) + E(X|Y=0) P(Y=0)$$

Let X and Y be any 2 random variables, then

$$\mathsf{E}(X) = \mathsf{E}\left[\mathsf{E}(X|Y)\right]$$

provided that the expectations exist

Example: Expected value of the random variable X from the last slide

$$\mathsf{E}(X|Y=1) = -12$$

$$\mathsf{E}(X|Y=0) = 3$$

$$E(X) = E(X|Y=1) P(Y=1) + E(X|Y=0) P(Y=0)$$

= -12 \times 0.05 + 3 \times 0.95 = 2.25

Let X and Y be any 2 random variables, then

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

provided that the expectations exists

Let X and Y be any 2 random variables, then

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

provided that the expectations exists

Example: Variance of the random variable X

Let X and Y be any 2 random variables, then

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

provided that the expectations exists

Example: Variance of the random variable X

For the first term:

$$Var(X|Y = 1) = 6^2$$

$$Var(X|Y=0) = 3^2$$

Let X and Y be any 2 random variables, then

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

provided that the expectations exists

Example: Variance of the random variable *X*

For the first term:

$$Var(X|Y = 1) = 6^2$$

$$Var(X|Y=0) = 3^2$$

$$E[Var(X|Y)] = Var(X|Y=1) P(Y=1) + Var(X|Y=0) P(Y=0)$$

Let X and Y be any 2 random variables, then

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

provided that the expectations exists

Example: Variance of the random variable *X*

For the first term:

$$Var(X|Y = 1) = 6^{2}$$

 $Var(X|Y = 0) = 3^{2}$

$$E[Var(X|Y)] = Var(X|Y = 1) P(Y = 1) + Var(X|Y = 0) P(Y = 0)$$

= $36 \times 0.05 + 9 \times 0.95 = 10.35$

For the second term:

- ► E(X|Y=1)=-12
- ► E(X|Y=0)=3

For the second term:

- ► E(X|Y=1)=-12
- ► E(X|Y=0)=3

$$Var(E(X|Y)) = Var(3-15Y)$$

For the second term:

- ► E(X|Y=1)=-12
- ► E(X|Y=0)=3

$$Var(E(X|Y)) = Var(3-15Y) = (-15)^2 Var(Y)$$

For the second term:

- ► E(X|Y=1)=-12
- ► E(X|Y=0)=3

$$Var(E(X|Y)) = Var(3 - 15Y) = (-15)^{2} Var(Y)$$
$$= 15^{2} \times 0.05 \times (1 - 0.05) = 10.6875$$

For the second term:

- ► E(X|Y=1)=-12
- ► E(X|Y=0)=3

$$Var(E(X|Y)) = Var(3 - 15Y) = (-15)^{2} Var(Y)$$
$$= 15^{2} \times 0.05 \times (1 - 0.05) = 10.6875$$

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

For the second term:

- ► E(X|Y=1)=-12
- ► E(X|Y=0)=3

$$Var(E(X|Y)) = Var(3 - 15Y) = (-15)^{2} Var(Y)$$
$$= 15^{2} \times 0.05 \times (1 - 0.05) = 10.6875$$

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

= 10.85 + 10.6875 = 21.5375

Outline

Let (X, Y) be a bivariate random vector with a known pdf

Let (X, Y) be a bivariate random vector with a known pdf Define a new random vector (U, V)

$$U = g_1(X, Y)$$
$$V = g_2(X, Y)$$

Let (X, Y) be a bivariate random vector with a known pdf

Define a new random vector (U, V)

$$U = g_1(X, Y)$$
$$V = g_2(X, Y)$$

Let
$$S_{XY} = \{(x, y) \in \mathbb{R}^2 : f_{X,Y}(x, y) > 0\}$$

Let (X, Y) be a bivariate random vector with a known pdf

Define a new random vector (U, V)

$$U = g_1(X, Y)$$
$$V = g_2(X, Y)$$

Let
$$S_{XY} = \{(x, y) \in \mathbb{R}^2 : f_{X,Y}(x, y) > 0\}$$

Let
$$S_{UV} = \{(u, v) : u = g_1(x, y), v = g_2(x, y) \text{ for } (x, y) \in S_{XY} \}$$

Let (X, Y) be a bivariate random vector with a known pdf

Define a new random vector (U, V)

$$U = g_1(X, Y)$$
$$V = g_2(X, Y)$$

Let
$$S_{XY} = \{(x, y) \in \mathbb{R}^2 : f_{X,Y}(x, y) > 0\}$$

Let
$$S_{UV} = \{(u, v) : u = g_1(x, y), v = g_2(x, y) \text{ for } (x, y) \in S_{XY} \}$$

The joint pdf $f_{U,V}(u,v)$ is positive on the set $S_{U,V}$

Let (X, Y) be a bivariate random vector with a known pdf

Define a new random vector (U, V)

$$U = g_1(X, Y)$$
$$V = g_2(X, Y)$$

Let
$$S_{XY} = \{(x, y) \in \mathbb{R}^2 : f_{XY}(x, y) > 0\}$$

Let
$$S_{UV} = \{(u, v) : u = g_1(x, y), v = g_2(x, y) \text{ for } (x, y) \in S_{XY} \}$$

The joint pdf $f_{U,V}(u,v)$ is positive on the set $S_{U,V}$

The map from S_{XY} to S_{UV} must be one-to-one and onto, that is

$$(u, v) = (g_1(x, y), g_2(x, y))$$

can be inverted

$$(x,y) = (h_1(u,v), h_2(u,v))$$

Bivariate Change of Variables Formula (continued)

The bivariate change of variables formula is given by

$$f_{U,V}(u,v) = f_{X,Y}[h_1(u,v), h_2(u,v)]|J|$$

Bivariate Change of Variables Formula (continued)

The bivariate change of variables formula is given by

$$f_{U,V}(u,v) = f_{X,Y}[h_1(u,v), h_2(u,v)]|J|$$

The quantity J is called the Jacobian of the transformation

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}$$

Bivariate Change of Variables Formula (continued)

The bivariate change of variables formula is given by

$$f_{U,V}(u,v) = f_{X,Y}[h_1(u,v), h_2(u,v)]|J|$$

The quantity J is called the Jacobian of the transformation

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}$$

The partial derivatives are

$$\frac{\partial x}{\partial u} = \frac{\partial h_1(u, v)}{\partial u} \qquad \frac{\partial x}{\partial v} = \frac{\partial h_1(u, v)}{\partial v}$$

$$\frac{\partial y}{\partial u} = \frac{\partial h_2(u, v)}{\partial u} \qquad \frac{\partial y}{\partial v} = \frac{\partial h_2(u, v)}{\partial v}$$

Let X and Y be independent standard normal random variables

Let X and Y be independent standard normal random variables

Make the transformation

$$U = X + Y$$
$$V = X - Y$$

Let X and Y be independent standard normal random variables

Make the transformation

$$U = X + Y$$
$$V = X - Y$$

In the notation of the previous slide

$$U = g_1(X, Y)$$
 where $g_1(x, y) = x + y$
 $V = g_2(X, Y)$ where $g_2(x, y) = x - y$

Let X and Y be independent standard normal random variables

Make the transformation

$$U = X + Y$$
$$V = X - Y$$

In the notation of the previous slide

$$U = g_1(X, Y)$$
 where $g_1(x, y) = x + y$
 $V = g_2(X, Y)$ where $g_2(x, y) = x - y$

These are easily solved for

$$x = h_1(u, v) = \frac{1}{2}(u + v)$$

 $y = h_2(u, v) = \frac{1}{2}(u - v)$

Let X and Y be independent standard normal random variables

Make the transformation

$$U = X + Y$$
$$V = X - Y$$

In the notation of the previous slide

$$U = g_1(X, Y)$$
 where $g_1(x, y) = x + y$
 $V = g_2(X, Y)$ where $g_2(x, y) = x - y$

These are easily solved for

$$x = h_1(u, v) = \frac{1}{2}(u + v)$$

$$y = h_2(u, v) = \frac{1}{2}(u - v)$$

X and Y can take any real values $\implies S_{XY} = \mathbb{R}^2$

Let X and Y be independent standard normal random variables

Make the transformation

$$U = X + Y$$
$$V = X - Y$$

In the notation of the previous slide

$$U = g_1(X, Y)$$
 where $g_1(x, y) = x + y$
 $V = g_2(X, Y)$ where $g_2(x, y) = x - y$

These are easily solved for

$$x = h_1(u, v) = \frac{1}{2}(u + v)$$

 $y = h_2(u, v) = \frac{1}{2}(u - v)$

X and Y can take any real values $\implies S_{XY} = \mathbb{R}^2$

The transformation is one-to-one

Let X and Y be independent standard normal random variables

Make the transformation

$$U = X + Y$$
$$V = X - Y$$

In the notation of the previous slide

$$U = g_1(X, Y)$$
 where $g_1(x, y) = x + y$
 $V = g_2(X, Y)$ where $g_2(x, y) = x - y$

These are easily solved for

$$x = h_1(u, v) = \frac{1}{2}(u + v)$$

 $y = h_2(u, v) = \frac{1}{2}(u - v)$

X and Y can take any real values $\implies S_{XY} = \mathbb{R}^2$

The transformation is one-to-one

$$S_{UV} = \mathbb{R}^2$$

Have:
$$x = h_1(u, v) = \frac{1}{2}(u + v)$$
 and $y = h_2(u, v) = \frac{1}{2}(u - v)$

Have:
$$x = h_1(u, v) = \frac{1}{2}(u + v)$$
 and $y = h_2(u, v) = \frac{1}{2}(u - v)$

The Jacobian of the transformation

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}$$

Have:
$$x = h_1(u, v) = \frac{1}{2}(u + v)$$
 and $y = h_2(u, v) = \frac{1}{2}(u - v)$

The Jacobian of the transformation

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} = \frac{1}{2} \left(-\frac{1}{2} \right) - \frac{1}{2} \frac{1}{2}$$

Have:
$$x = h_1(u, v) = \frac{1}{2}(u + v)$$
 and $y = h_2(u, v) = \frac{1}{2}(u - v)$

The Jacobian of the transformation

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} = \frac{1}{2} \left(-\frac{1}{2} \right) - \frac{1}{2} \frac{1}{2} = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}$$

Have:
$$x = h_1(u, v) = \frac{1}{2}(u + v)$$
 and $y = h_2(u, v) = \frac{1}{2}(u - v)$

The Jacobian of the transformation

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} = \frac{1}{2} \left(-\frac{1}{2} \right) - \frac{1}{2} \frac{1}{2} = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}$$

The joint density of X and Y

$$f_{X,Y}(x,y) = \frac{1}{2\pi} \exp\left[-\frac{x^2 + y^2}{2}\right]$$

Have:
$$x = h_1(u, v) = \frac{1}{2}(u + v)$$
 and $y = h_2(u, v) = \frac{1}{2}(u - v)$

The Jacobian of the transformation

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} = \frac{1}{2} \left(-\frac{1}{2} \right) - \frac{1}{2} \frac{1}{2} = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}$$

The joint density of X and Y

$$f_{X,Y}(x,y) = \frac{1}{2\pi} \exp \left[-\frac{x^2 + y^2}{2} \right]$$

The change of variables formula says that

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v),h_2(u,v))|J|$$

Have:
$$x = h_1(u, v) = \frac{1}{2}(u + v)$$
 and $y = h_2(u, v) = \frac{1}{2}(u - v)$

The Jacobian of the transformation

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} = \frac{1}{2} \left(-\frac{1}{2} \right) - \frac{1}{2} \frac{1}{2} = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}$$

The joint density of X and Y

$$f_{X,Y}(x,y) = \frac{1}{2\pi} \exp\left[-\frac{x^2 + y^2}{2}\right]$$

The change of variables formula says that

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v),h_2(u,v))|J|$$

Substitute expressions for h_1 , h_2 , and J ...

Joint density of $\it U$ and $\it V$

$$f_{U,V}(u,v) = f_{X,Y}(x,y)|J|$$

$$f_{U,V}(u,v) = f_{X,Y}(x,y)|J|$$

$$= \frac{1}{2\pi} \exp \left[-\frac{\left(\frac{1}{2}(u+v)\right)^2 + \left(\frac{1}{2}(u-v)\right)^2}{2} \right] \left| -\frac{1}{2} \right|$$

$$f_{U,V}(u,v) = f_{X,Y}(x,y)|J|$$

$$= \frac{1}{2\pi} \exp\left[-\frac{\left(\frac{1}{2}(u+v)\right)^2 + \left(\frac{1}{2}(u-v)\right)^2}{2}\right] \left|-\frac{1}{2}\right|$$

$$= \frac{1}{2} \frac{1}{2\pi} \exp\left[-\frac{(u^2 + 2uv + v^2) + (u^2 - 2uv + v^2)}{2^3}\right]$$

$$f_{U,V}(u,v) = f_{X,Y}(x,y)|J|$$

$$= \frac{1}{2\pi} \exp\left[-\frac{\left(\frac{1}{2}(u+v)\right)^2 + \left(\frac{1}{2}(u-v)\right)^2}{2}\right] \left|-\frac{1}{2}\right|$$

$$= \frac{1}{2} \frac{1}{2\pi} \exp\left[-\frac{(u^2 + 2uv + v^2) + (u^2 - 2uv + v^2)}{2^3}\right]$$

$$= \frac{1}{2} \frac{1}{2\pi} \exp\left[-\frac{2u^2 + 2v^2}{2^3}\right]$$

$$f_{U,V}(u,v) = f_{X,Y}(x,y)|J|$$

$$= \frac{1}{2\pi} \exp\left[-\frac{\left(\frac{1}{2}(u+v)\right)^2 + \left(\frac{1}{2}(u-v)\right)^2}{2}\right] \left|-\frac{1}{2}\right|$$

$$= \frac{1}{2} \frac{1}{2\pi} \exp\left[-\frac{(u^2 + 2uv + v^2) + (u^2 - 2uv + v^2)}{2^3}\right]$$

$$= \frac{1}{2} \frac{1}{2\pi} \exp\left[-\frac{2u^2 + 2v^2}{2^3}\right]$$

$$= \frac{1}{\sqrt{2\pi}\sqrt{2}} \exp\left[-\frac{u^2}{2(\sqrt{2})^2}\right] \frac{1}{\sqrt{2\pi}\sqrt{2}} \exp\left[-\frac{v^2}{2(\sqrt{2})^2}\right]$$

Random variables \it{U} and \it{V} are independent if the joint density is the product of the marginal densities

$$f_{U,V}(u,v) = f_U(u) f_V(v)$$

Random variables \it{U} and \it{V} are independent if the joint density is the product of the marginal densities

$$f_{U,V}(u,v) = f_U(u) f_V(v)$$

Condition for independence can be stated more generally . . .

Random variables \it{U} and \it{V} are independent if the joint density is the product of the marginal densities

$$f_{U,V}(u,v) = f_U(u) f_V(v)$$

Condition for independence can be stated more generally ...

Let (X, Y) be a bivariate random vector with joint density $f_{X,Y}(x, y)$

Random variables \it{U} and \it{V} are independent if the joint density is the product of the marginal densities

$$f_{U,V}(u,v) = f_U(u) f_V(v)$$

Condition for independence can be stated more generally ...

Let (X, Y) be a bivariate random vector with joint density $f_{X,Y}(x, y)$

X and Y are independent iff there exist g(x) and h(y) such that

$$f_{X,Y}(x,y) = g(x) h(y)$$

for all $x \in \mathbb{R}$ and $y \in \mathbb{R}$

Outline

The bivariate normal distribution is parameterized by

The bivariate normal distribution is parameterized by

• μ_X and μ_Y : the means of the marginal distributions

The bivariate normal distribution is parameterized by

- μ_X and μ_Y : the means of the marginal distributions
- $ightharpoonup \sigma_X^2$ and σ_Y^2 : the variances of the marginal distributions

The bivariate normal distribution is parameterized by

- \blacktriangleright μ_X and μ_Y : the means of the marginal distributions
- $ightharpoonup \sigma_X^2$ and σ_Y^2 : the variances of the marginal distributions
- ightharpoonup ho: the correlation between X and Y

The bivariate normal distribution is parameterized by

- \blacktriangleright μ_X and μ_Y : the means of the marginal distributions
- $ightharpoonup \sigma_X^2$ and σ_Y^2 : the variances of the marginal distributions
- ρ: the correlation between X and Y

The joint density function for the bivariate normal is

$$f_{X,Y}(x,y) = \begin{cases} -\left[\frac{x-\mu_X}{\sigma_X}\right]^2 - 2\rho \left[\frac{x-\mu_X}{\sigma_X}\right] \left[\frac{y-\mu_Y}{\sigma_Y}\right] + \left[\frac{y-\mu_Y}{\sigma_Y}\right]^2 \\ 2(1-\rho^2) \end{cases}$$

where the normalization constant

$$k = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}$$

Bivariate Normal Density

The joint density can be written compactly in matrix notation

$$f_{X,Y}(\mathbf{x}) = rac{1}{(\sqrt{2\pi})^2 |\mathbf{\Sigma}|^{rac{1}{2}}} \exp\left\{-rac{1}{2} \left[\mathbf{x} - oldsymbol{\mu}
ight]^{\mathsf{T}} \mathbf{\Sigma}^{-1} \left[\mathbf{x} - oldsymbol{\mu}
ight]
ight\}$$

where

$$\mathbf{x} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \qquad \boldsymbol{\mu} = \begin{bmatrix} \mu_{X} \\ \mu_{Y} \end{bmatrix} \qquad \text{and} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\ \rho \sigma_{Y} \sigma_{X} & \sigma_{Y}^{2} \end{bmatrix}$$

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \mathcal{N}(\gamma, \tau^2)$ be independent RVs

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \mathcal{N}(\gamma, \tau^2)$ be independent RVs

What is the distribution of X + Y?

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \mathcal{N}(\gamma, \tau^2)$ be independent RVs

What is the distribution of X + Y?

Let
$$U = X + Y$$
 and $V = k(X - Y)$ for some $k \in \mathbb{R}$

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \mathcal{N}(\gamma, \tau^2)$ be independent RVs

What is the distribution of X + Y?

Let
$$U = X + Y$$
 and $V = k(X - Y)$ for some $k \in \mathbb{R}$

Gives transformation

$$u = g_1(x, y) = x + y$$
 $v = g_2(x, y) = kx - ky$

with inverse transformation

$$x = h_1(u, v) = \frac{ku + v}{2k}$$
 $y = h_2(u, v) = \frac{ku - v}{2k}$

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \mathcal{N}(\gamma, \tau^2)$ be independent RVs

What is the distribution of X + Y?

Let
$$U = X + Y$$
 and $V = k(X - Y)$ for some $k \in \mathbb{R}$

Gives transformation

$$u = g_1(x, y) = x + y$$
 $v = g_2(x, y) = kx - ky$

with inverse transformation

$$x = h_1(u, v) = \frac{ku + v}{2k}$$
 $y = h_2(u, v) = \frac{ku - v}{2k}$

The Jacobian of the transformation is

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} = \frac{1}{2} \left(-\frac{1}{2k} \right) - \frac{1}{2} \frac{1}{2k} = -\frac{1}{2k}$$

Choose $k = \frac{1}{2}$

Choose
$$k = \frac{1}{2}$$

Gives
$$x = h_1(u, v) = \frac{1}{2}u + v$$
 and $y = h_2(u, v) = \frac{1}{2}u - v$

Choose
$$k = \frac{1}{2}$$

Gives
$$x = h_1(u, v) = \frac{1}{2}u + v$$
 and $y = h_2(u, v) = \frac{1}{2}u - v$

More importantly: |J| = 1

Choose
$$k = \frac{1}{2}$$

Gives
$$x = h_1(u, v) = \frac{1}{2}u + v$$
 and $y = h_2(u, v) = \frac{1}{2}u - v$

More importantly: |J| = 1

The joint density of X and Y is the product of the marginals

$$f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

Choose
$$k = \frac{1}{2}$$

Gives
$$x = h_1(u, v) = \frac{1}{2}u + v$$
 and $y = h_2(u, v) = \frac{1}{2}u - v$

More importantly: |J| = 1

The joint density of X and Y is the product of the marginals

$$f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \frac{1}{\sqrt{2\pi}\tau} \exp\left[-\frac{(y-\gamma)^2}{2\tau^2}\right]$$

Choose
$$k = \frac{1}{2}$$

Gives
$$x = h_1(u, v) = \frac{1}{2}u + v$$
 and $y = h_2(u, v) = \frac{1}{2}u - v$

More importantly: |J| = 1

The joint density of X and Y is the product of the marginals

$$f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \frac{1}{\sqrt{2\pi}\tau} \exp\left[-\frac{(y-\gamma)^2}{2\tau^2}\right]$$

$$= \frac{1}{2\pi\sigma\tau} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2} - \frac{(y-\gamma)^2}{2\tau^2}\right]$$

Choose
$$k = \frac{1}{2}$$

Gives
$$x = h_1(u, v) = \frac{1}{2}u + v$$
 and $y = h_2(u, v) = \frac{1}{2}u - v$

More importantly: |J| = 1

The joint density of X and Y is the product of the marginals

$$f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \frac{1}{\sqrt{2\pi}\tau} \exp\left[-\frac{(y-\gamma)^2}{2\tau^2}\right]$$

$$= \frac{1}{2\pi \sigma \tau} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2} - \frac{(y-\gamma)^2}{2\tau^2}\right]$$

Recall ρ (correlation coefficient) is zero when X and Y independent

hmmm ...

hmmm ...

The rest seems like a good homework question

http://computational-finance.uw.edu