

Zadanie J: Anteny

Limit czasowy: 8s, limit pamięciowy: 512MB.

W tajnej bazie wojskowej testowana jest nowa technologia komunikacji radiowej. Na potrzeby eksperymentu w obrębie bazy postawiono m anten nadawczo-odbiorczych. Teren bazy jest całkowicie płaski i ma z lotu ptaka kształt wielokąta wypukłego. Wzdłuż brzegu tego wielokąta przebiega specjalny mur, który między innymi zabezpiecza fale radiowe przed podsłuchem. Z powodu przebudowy architektury bazy konieczne będzie wyburzenie fragmentów muru odpowiadającym pewnym dwu bokom wielokąta. To niestety wystawi testowaną technologię na ryzyko podsłuchu: jeżeli można rozmieścić na zewnątrz bazy dwóch szpiegów w taki sposób, by w linii prostej pomiędzy nimi znalazły się dwie anteny i by linii tej nie przedzielił żaden fragment muru, to komunikację między tymi dwiema antenami można przechwycić. Rozważasz różne scenariusze usunięcia dwu fragmentów muru. Twoim zadaniem jest wyznaczyć dla każdego z tych scenariuszy, ile par anten będzie zagrożonych podsłuchem w tym scenariuszu.

Powyższy rysunek przedstawia przykładową bazę, której teren jest pięciokątem, i w obrębie której znajdują się cztery anteny oznaczone krzyżykami. Liniami przerywanymi zaznaczono wszystkie proste przechodzące przez pary różnych anten. Rysunek odpowiada pierwszemu zestawowi danych z przykładowego wejścia przedstawionego w dalszej części treści.

Wejście

Pierwsza linia wejścia zawiera liczbę zestawów danych z ($1 \le z \le 200\,000$). Potem kolejno podawane są zestawy w następującej postaci:

Pierwsza linia zestawu zawiera liczbę całkowitą n ($3 \le n \le 10$) – liczbę wierzchołków wielokąta określającego teren bazy. Następne n linii zawiera n par liczb całkowitych – współrzędne

Zadanie J: Anteny

Kraków 2019-10-27

kolejnych wierzchołków wielokąta zgodnie z ruchem wskazówek zegara. Wierzchołki numerujemy od 0 zgodnie z ich kolejnością pojawiania się na wejściu. Kolejna linia zestawu zawiera liczbę całkowitą m ($2 \le m \le 50\,000$) – liczbę anten. Dalsza część zestawu składa się z m linii, każda zawierająca parę liczb całkowitych – są to współrzędne anten. W następnej linii znajduje się liczba całkowita q ($1 \le q \le 10$) – liczba zapytań. Ostatnie q linii zestawu zawiera q par liczb całkowitych (a_1,b_1),..., (a_q,b_q) ($0 \le a_i < b_i \le n-1$), opisujących q zapytań. Para (a_i,b_i) oznacza zapytanie o liczbę nieuporządkowanych par różnych anten, takich że przechodząca przez nie prosta przecina bok między wierzchołkami o numerach a_i oraz $a_i + 1$, a także bok między wierzchołkami o numerach b_i oraz ($b_i + 1$) mod n.

Wszystkie współrzędne są liczbami całkowitymi nieprzekraczającymi na moduł 10⁹. W obrębie zestawu danych, wszystkie pojawiające się punkty są różne i nie ma trzech współliniowych. Między każdymi dwoma zestawami danych oraz przed pierwszym zestawem znajduje się pusta linia.

Suma wartości m we wszystkich zestawach danych nie przekracza $300\,000$.

Wyjście

Dla każdego zestawu danych wypisz w osobnej linii odpowiedzi na kolejne zapytania, oddzielając je spacjami.

Zadanie J: Anteny

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:		
2	4 1 0		
	0 1 0 0 0 0		
5			
0 0			
0 5			
3 7			
6 5			
6 0			
4			
1 2			
1 3			
5 2			
5 3			
3			
0 3			
1 4			
1 2			
4			
-1 -1			
-1 1			
2 1			
2 -1			
2			
0 0			
1 0			
6			
0 1			
0 2			
0 3			
1 2			
1 3			
2 3			

Zadanie J: Anteny 3/3