A folheação de Jouanolou em característica p

Wodson Mendson

 $\begin{array}{c} {\bf Universidade\ Federal\ Fluminense\ -\ UFF} \\ {\bf V\ CBJME} \end{array}$

12 de Setembro, 2024

Estrutura

- Parte I: Introdução
- \bullet Parte II: Folheações em característica p
- \bullet Parte III: A folheação de Jouanolou em característica p

Parte I: Introdução

Folheações

Hoje: folheações em
$$\mathbb{P}^2_K$$

$$K=\overline{K}$$

Folheações

Hoje: folheações em \mathbb{P}^2_K

$$K = \overline{K}$$

Seja $d \in \mathbb{Z}_{>0}$

Uma folheação, \mathcal{F} , de grau d no plano projetivo \mathbb{P}^2_K é dada, módulo K^* , por elemento não-nulo $\omega \in \mathrm{H}^0(\mathbb{P}^2_K, \Omega^1_{\mathbb{P}^2_K}(d+2))$ com conjunto singular finito.

Folheações

Hoje: folheações em \mathbb{P}^2_K

$$K = \overline{K}$$

Seja $d \in \mathbb{Z}_{>0}$

Uma folheação, \mathcal{F} , de grau d no plano projetivo \mathbb{P}^2_K é dada, módulo K^* , por elemento não-nulo $\omega \in \mathrm{H}^0(\mathbb{P}^2_K, \Omega^1_{\mathbb{P}^2_K}(d+2))$ com conjunto singular finito.

Explicitamente:

 \bullet Pela sequencia exata de Euler, podemos ver ω como uma 1-forma projetiva:

$$\omega = Adx + Bdy + Cdz$$

em \mathbb{A}^3_K tais que $A,B,C\in K[x,y,z]$ são homogêneos de grau d+1 e Ax+By+Cz=0com

$$sing(\omega) = \mathcal{Z}(A, B, C) = \{ p \in \mathbb{P}^2_K \mid A(p) = B(p) = C(p) = 0 \}$$

finito.

Folheações via campos

Suponha que a característica de Knão divide $d+2. \label{eq:kindow}$

Folheações via campos

Suponha que a característica de K não divide d + 2.

• Uma folheação de grau d em \mathbb{P}^2_K é determinada, modulo $K^*,$ por um campo homogêneo em $\mathbb{A}^3_K\colon$

$$v = A_0 \partial_x + A_1 \partial_y + A_2 \partial_z \in \mathfrak{X}_d(\mathbb{A}_K^3)$$

onde $A_0, A_1, A_2 \in K[x,y,z]$ são homogêneos de grau d com

$$\mathbf{div}(v) = \partial_x A_0 + \partial_y A_1 + \partial_z A_2 = 0$$

Folheações via campos

Suponha que a característica de K não divide d+2.

• Uma folheação de grau d em \mathbb{P}^2_K é determinada, modulo K^* , por um campo homogêneo em \mathbb{A}^3_K :

$$v = A_0 \partial_x + A_1 \partial_y + A_2 \partial_z \in \mathfrak{X}_d(\mathbb{A}_K^3)$$

onde $A_0, A_1, A_2 \in K[x, y, z]$ são homogêneos de grau d com

$$\mathbf{div}(v) = \partial_x A_0 + \partial_y A_1 + \partial_z A_2 = 0$$

O seguinte resultado demonstra a equivalência:

Proposição

^a Existe uma bijeção entre o conjunto de 1-formas projetivas em \mathbb{A}^3_K de grau d+1 e campos homogêneos de grau d com divergente nulo.

^aJouanolou - Equations de Pfaff algébriques

Suponha que \mathcal{F} seja dada pela 1-forma:

$$\omega = Adx + Bdy + Cdz$$

e escreva

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

Suponha que \mathcal{F} seja dada pela 1-forma:

$$\omega = Adx + Bdy + Cdz$$

e escreva

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

O campo homogêneo de grau d com divergente zero associado é:

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Suponha que \mathcal{F} seja dada pela 1-forma:

$$\omega = Adx + Bdy + Cdz$$

e escreva

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

O campo homogêneo de grau d com divergente zero associado é:

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Exemplo: Seja $\alpha \in K^*$ e considere:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Suponha que \mathcal{F} seja dada pela 1-forma:

$$\omega = Adx + Bdy + Cdz$$

e escreva

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

O campo homogêneo de grau d com divergente zero associado é:

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Exemplo: Seja $\alpha \in K^*$ e considere:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

 ω define uma folheação de grau um em \mathbb{P}^2_K e o campo associado é dado por:

$$v = \left(\frac{2\alpha - 1}{3}\right)x\partial_x + \left(\frac{2 - \alpha}{3}\right)y\partial_y + \left(\frac{-1 - \alpha}{3}\right)z\partial_z$$

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ dada por uma 1-forma $\omega.$

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ dada por uma 1-forma $\omega.$

Seja
$$C=\{F=0\}\subset \mathbb{P}^2_K$$
uma curva algébrica dada por um polinômio irredutível $F\in K[x,y,z].$

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ dada por uma 1-forma $\omega.$

Seja $C=\{F=0\}\subset \mathbb{P}^2_K$ uma curva algébrica dada por um polinômio irredutível $F\in K[x,y,z].$

Definição

A curva C é \mathcal{F} -invariante se existe uma 2-forma homogênea σ em \mathbb{A}^3_K tal que

$$dF \wedge \omega = F\sigma$$

Seja $\mathcal F$ uma folheação em $\mathbb P^2_K$ dada por uma 1-forma $\omega.$

Seja $C=\{F=0\}\subset \mathbb{P}^2_K$ uma curva algébrica dada por um polinômio irredutível $F\in K[x,y,z].$

Definição

A curva C é \mathcal{F} -invariante se existe uma 2-forma homogênea σ em \mathbb{A}^3_K tal que

$$dF\wedge\omega=F\sigma$$

Exemplo: folheações com curvas algébricas invariantes

• a folheação dada por

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

possui $\{x=0\},\,\{y=0\}$ e $\{z=0\}$ como curvas algébricas invariantes.

Exemplo: folheações com curvas algébricas invariantes

• a folheação dada por

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

possui $\{x=0\}$, $\{y=0\}$ e $\{z=0\}$ como curvas algébricas invariantes.

• folheações logarítmicas: sejam $d_1, d_2, \ldots, d_r \in \mathbb{Z}_{>0}$ e $F_1, \ldots, F_r \in K[x, y, z]$ polinômios homogêneos com $d_i = \deg(F_i)$. Suponha que F_1, \ldots, F_r são irredutíveis e coprimos. Sejam $\alpha_1, \ldots, \alpha_r \in K^*$ tais que $\sum_{i=1}^r \alpha_i d_i = 0$ e considere a 1-forma

$$\Omega = F_1 F_2 \cdots F_{r-1} F_r \sum_{i=1}^r \alpha_i \frac{dF_i}{F_i}.$$

A 1-forma Ω define, \mathcal{F}_{Ω} , uma folheação de grau $d = \sum_i d_i - 2$ em \mathbb{P}^2_K . Dizemos que \mathcal{F}_{Ω} é uma **folheação logarítmica** de tipo (d_1, \ldots, d_r) . As curvas $C_i = \{F_i = 0\}$ são \mathcal{F}_{Ω} -invariantes.

Jouanolou: folheações sem curvas algébricas invariantes

Seja $d \in \mathbb{Z}_{>1}$ e considere a folheação em \mathbb{P}^2_K dada pela 1-forma:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Jouanolou: folheações sem curvas algébricas invariantes

Seja $d \in \mathbb{Z}_{>1}$ e considere a folheação em \mathbb{P}^2_K dada pela 1-forma:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Teorema (Jouanolou)

^a Se $K = \mathbb{C}$ a folheação \mathcal{F}_d não tem curvas algébricas invariantes

^aJouanolou - Equations de Pfaff algébriques

Jouanolou: folheações sem curvas algébricas invariantes

Seja $d \in \mathbb{Z}_{>1}$ e considere a folheação em \mathbb{P}^2_K dada pela 1-forma:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Teorema (Jouanolou)

^a Se $K = \mathbb{C}$ a folheação \mathcal{F}_d não tem curvas algébricas invariantes

^aJouanolou - Equations de Pfaff algébriques

O resultado implica, em particular, que em $\mathbb{P}^2_{\mathbb{C}}$ quase toda folheação não tem curva algébrica invariante

Parte II: Folheações em característica p>0

 $K = \overline{K}$ de característica p > 0.

 $K = \overline{K}$ de característica p > 0.

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ de grau d definida por

$$\omega = Adx + Bdy + Cdz$$

e suponha que $p \nmid d + 2$.

 $K = \overline{K}$ de característica p > 0.

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ de grau d definida por

$$\omega = Adx + Bdy + Cdz$$

e suponha que $p \nmid d+2$. Escreva $d\omega=(d+2)(Ldy\wedge dz-Mdx\wedge dz+Ndx\wedge dy)$ e seja v_ω o campo de grau d associado a $\mathcal F$ dado por

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

 $K = \overline{K}$ de característica p > 0.

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ de grau d definida por

$$\omega = Adx + Bdy + Cdz$$

e suponha que $p \nmid d+2$. Escreva $d\omega=(d+2)(Ldy\wedge dz-Mdx\wedge dz+Ndx\wedge dy)$ e seja v_ω o campo de grau d associado a $\mathcal F$ dado por

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

O p-divisor é definido pondo

$$\Delta_{\mathcal{F}} = \{i_{v_{\omega}^p} \omega = 0\} \in \operatorname{Div}(\mathbb{P}^2_K).$$

Note que $\Delta_{\mathcal{F}}$ possui grau p(d-1)+d+2.

 $K = \overline{K}$ de característica p > 0.

Seja ${\mathcal F}$ uma folheação em ${\mathbb P}^2_K$ de grau d definida por

$$\omega = Adx + Bdy + Cdz$$

e suponha que $p \nmid d+2$. Escreva $d\omega=(d+2)(Ldy\wedge dz-Mdx\wedge dz+Ndx\wedge dy)$ e seja v_ω o campo de grau d associado a $\mathcal F$ dado por

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

O p-divisor é definido pondo

$$\Delta_{\mathcal{F}} = \{i_{v_{\omega}^p} \omega = 0\} \in \operatorname{Div}(\mathbb{P}^2_K).$$

Note que $\Delta_{\mathcal{F}}$ possui grau p(d-1)+d+2.

Definição

A folheação \mathcal{F} é p-fechada se $\Delta_{\mathcal{F}} = 0$.

Seja $\alpha \in K^*$ e considere

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Seja $\alpha \in K^*$ e considere

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

 ω define uma folheação de grau 1 em $\mathbb{P}^2_K.$ O campo associado é:

$$v = \left(\frac{2\alpha - 1}{3}\right)x\partial_x + \left(\frac{2 - \alpha}{3}\right)y\partial_y + \left(\frac{-1 - \alpha}{3}\right)z\partial_z$$

Seja $\alpha \in K^*$ e considere

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

 ω define uma folheação de grau 1 em $\mathbb{P}^2_K.$ O campo associado é:

$$v = \left(\frac{2\alpha - 1}{3}\right) x \partial_x + \left(\frac{2 - \alpha}{3}\right) y \partial_y + \left(\frac{-1 - \alpha}{3}\right) z \partial_z$$

Por iteração, obtemos

$$v^p = \left(\frac{2\alpha^p - 1}{3}\right)x\partial_x + \left(\frac{2 - \alpha^p}{3}\right)y\partial_y + \left(\frac{-1 - \alpha^p}{3}\right)z\partial_z$$

Seja $\alpha \in K^*$ e considere

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

 ω define uma folheação de grau 1 em $\mathbb{P}^2_K.$ O campo associado é:

$$v = \left(\frac{2\alpha - 1}{3}\right)x\partial_x + \left(\frac{2 - \alpha}{3}\right)y\partial_y + \left(\frac{-1 - \alpha}{3}\right)z\partial_z$$

Por iteração, obtemos

$$v^{p} = \left(\frac{2\alpha^{p} - 1}{3}\right)x\partial_{x} + \left(\frac{2 - \alpha^{p}}{3}\right)y\partial_{y} + \left(\frac{-1 - \alpha^{p}}{3}\right)z\partial_{z}$$

e o p-divisor é:

$$i_{v^p}\omega = yzv^p(x) - \alpha xzv^p(y) + (\alpha - 1)xyv^p(z) = (\alpha^p - \alpha)xyz$$

Seja $\alpha \in K^*$ e considere

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

 ω define uma folheação de grau 1 em \mathbb{P}^2_K . O campo associado é:

$$v = \left(\frac{2\alpha - 1}{3}\right) x \partial_x + \left(\frac{2 - \alpha}{3}\right) y \partial_y + \left(\frac{-1 - \alpha}{3}\right) z \partial_z$$

Por iteração, obtemos

$$v^{p} = \left(\frac{2\alpha^{p} - 1}{3}\right)x\partial_{x} + \left(\frac{2 - \alpha^{p}}{3}\right)y\partial_{y} + \left(\frac{-1 - \alpha^{p}}{3}\right)z\partial_{z}$$

e o p-divisor é:

$$i_{v^p}\omega = yzv^p(x) - \alpha xzv^p(y) + (\alpha - 1)xyv^p(z) = (\alpha^p - \alpha)xyz$$

Se $\alpha \notin \mathbb{F}_n$:

$$\Delta_{\mathcal{F}} = \{x = 0\} + \{y = 0\} + \{z = 0\}.$$

O p-divisor

Principal propriedade:

O p-divisor

Principal propriedade:

Proposição

- a Sejam ${\mathcal F}$ uma folheação não p-fechada em ${\mathbb P}^2_k$ e $C\subset{\mathbb P}^2_k$ uma curva algébrica
 - Se C é \mathcal{F} -invariante então $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;

O p-divisor

Principal propriedade:

Proposição

- a Sejam ${\mathcal F}$ uma folheação não p-fechada em ${\mathbb P}^2_k$ e $C\subset {\mathbb P}^2_k$ uma curva algébrica
 - Se $C \notin \mathcal{F}$ -invariante então $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;
 - Se $\operatorname{ord}_C(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ então $C \notin \mathcal{F}$ -invariante.

^aW.Mendson - Foliations on smooth algebraic surface in positive characteristic

Principal propriedade:

Proposição

- a Sejam ${\mathcal F}$ uma folheação não p-fechada em ${\mathbb P}^2_k$ e $C\subset {\mathbb P}^2_k$ uma curva algébrica
 - Se $C \notin \mathcal{F}$ -invariante então $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;
 - $Se \operatorname{ord}_C(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ então $C \notin \mathcal{F}$ -invariante.

^aW.Mendson - Foliations on smooth algebraic surface in positive characteristic

Corolário

No plano projetivo sobre característica p>0 qualquer folheação de grau d com $p\nmid d+2$ possui uma curva algébrica invariante.

Principal propriedade:

Proposição

- a Sejam ${\mathcal F}$ uma folheação não p-fechada em ${\mathbb P}^2_k$ e $C\subset {\mathbb P}^2_k$ uma curva algébrica
 - Se C é \mathcal{F} -invariante então $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;
 - Se $\operatorname{ord}_C(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ então $C \notin \mathcal{F}$ -invariante.
 - $^{a}\mathrm{W.Mendson}$ Foliations on smooth algebraic surface in positive characteristic

Corolário

No plano projetivo sobre característica p>0 qualquer folheação de grau d com $p\nmid d+2$ possui uma curva algébrica invariante.

Proposição (J.V.Pereira)

^a Seja $\mathcal F$ uma folheação $\mathbb P^2_K$ e suponha que $\deg(\mathcal F) < p-1$. Então, $\mathcal F$ possui uma curva algébrica invariante.

^aJ.V.Pereira - Invariant Hypersurfaces for Positive Characteristic Vector Fields

Corolário

No plano projetivo sobre característica p>0 qualquer folheação não p-fechada possui uma curva algébrica invariante de grau menor do que ou igual a p(d-1)+d+2.

Corolário

No plano projetivo sobre característica p>0 qualquer folheação não p-fechada possui uma curva algébrica invariante de grau menor do que ou igual a p(d-1)+d+2.

Problema: Seja \mathcal{F} em \mathbb{P}^2_K . Quantas soluções \mathcal{F} tem?

Corolário

No plano projetivo sobre característica p>0 qualquer folheação não p-fechada possui uma curva algébrica invariante de grau menor do que ou igual a p(d-1)+d+2.

Problema: Seja \mathcal{F} em \mathbb{P}^2_K . Quantas soluções \mathcal{F} tem?

Proposição

^a Uma folheação é p-fechada se e somente se ela possui uma infinidade de curvas algébricas invariantes.

^aBrunella, Nicolau - Sur les hypersurfaces solutions des équations de Pfaff

Exemplos curiosos

Exemplo

Suponha que K possui característica 3 e considere a folheação de Jouanolou de grau 2 sobre K. Etão o 3-divisor é irredutível com $sing(\Delta_{\mathcal{F}}) \not\subset sing(\mathcal{F})$.

Exemplo (F.Touzet)

Considere a folheação 5-fechada:

$$\omega = 2z(x+y)dx + z(2z+x)dy + 4(2x^2 + 3xy + 2yz)dz$$

A curva $C = \{-x^4 + x^3y + x^2yz + y^2z^2\}$ is \mathcal{F} -invariante com $[0:0:1] \in \text{sing}(C)$ mas $n\~{a}o$ em $\text{sing}(\mathcal{F})$.

Considere o caso onde $K=\mathbb{C}.$ Seja $\mathcal F$ uma folheação $\mathbb{P}^2_{\mathbb{C}}$ de grau d definida pela 1-forma projetiva:

$$\omega = Adx + Bdy + Cdz \qquad A, B, C \in \mathbb{C}[x, y, z]_{d+1}$$

Considere o caso onde $K=\mathbb{C}.$ Seja $\mathcal F$ uma folheação $\mathbb{P}^2_{\mathbb{C}}$ de grau d definida pela 1-forma projetiva:

$$\omega = Adx + Bdy + Cdz$$
 $A, B, C \in \mathbb{C}[x, y, z]_{d+1}$

e seja $\mathbb{Z}[\mathcal{F}]$ a \mathbb{Z} -álgebra de tipo finito obtida por junção de todos os coeficientes, e seus inversos, que ocorrem A,Be C

Considere o caso onde $K=\mathbb{C}.$ Seja \mathcal{F} uma folheação $\mathbb{P}^2_{\mathbb{C}}$ de grau d definida pela 1-forma projetiva:

$$\omega = Adx + Bdy + Cdz$$
 $A, B, C \in \mathbb{C}[x, y, z]_{d+1}$

e seja $\mathbb{Z}[\mathcal{F}]$ a \mathbb{Z} -álgebra de tipo finito obtida por junção de todos os coeficientes, e seus inversos, que ocorrem A,Be C

Exemplo

Seja \mathcal{F} a folheação em $\mathbb{P}^2_{\mathbb{C}}$ dada pela 1-forma:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

para algum $\alpha \in \mathbb{C} - \mathbb{Q}$. Então, a álgebra associada é $\mathbb{Z}[\alpha, \alpha^{-1}]$

Considere o caso onde $K=\mathbb{C}.$ Seja \mathcal{F} uma folheação $\mathbb{P}^2_{\mathbb{C}}$ de grau d definida pela 1-forma projetiva:

$$\omega = Adx + Bdy + Cdz$$
 $A, B, C \in \mathbb{C}[x, y, z]_{d+1}$

e seja $\mathbb{Z}[\mathcal{F}]$ a \mathbb{Z} -álgebra de tipo finito obtida por junção de todos os coeficientes, e seus inversos, que ocorrem A,Be C

Exemplo

Seja \mathcal{F} a folheação em $\mathbb{P}^2_{\mathbb{C}}$ dada pela 1-forma:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

para algum $\alpha \in \mathbb{C} - \mathbb{Q}$. Então, a álgebra associada é $\mathbb{Z}[\alpha, \alpha^{-1}]$

Para a folheação de Jouanolou, $A,B,C\in\mathbb{Z}[x,y,z]$ de modo que $\mathbb{Z}[\mathcal{F}_d]=\mathbb{Z}.$

Fato: Para cada ideal maximal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ o corpo residual $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ é finito, em particular, de característica p > 0.

Fato: Para cada ideal maximal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ o corpo residual $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ é finito, em particular, de característica p > 0.

Denote por $\omega_{\mathfrak{p}}$ a 1-forma sobre $\overline{\mathbb{F}}_{\mathfrak{p}}$ obtida via redução módulo \mathfrak{p} dos coeficientes que aparecem em $A, B \in C$. Assim, obtemos um elemento não nulo de $\mathrm{H}^0(\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \Omega^1_{\mathbb{P}^2_{\mathbb{F}_{\mathfrak{p}}}} \otimes \mathcal{O}_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}}(d+2))$ e $\omega_{\mathfrak{p}}$ determina uma folheação em $\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}$:

$$\omega_{\mathfrak{p}} = Adx + Bdy + Cdz \mod \mathfrak{p}$$

Fato: Para cada ideal maximal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ o corpo residual $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ é finito, em particular, de característica p > 0.

Denote por $\omega_{\mathfrak{p}}$ a 1-forma sobre $\overline{\mathbb{F}}_{\mathfrak{p}}$ obtida via redução módulo \mathfrak{p} dos coeficientes que aparecem em $A, B \in C$. Assim, obtemos um elemento não nulo de $\mathrm{H}^0(\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \Omega^1_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}} \otimes \mathcal{O}_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}}(d+2))$ e $\omega_{\mathfrak{p}}$ determina uma folheação em $\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}$:

$$\omega_{\mathfrak{p}} = Adx + Bdy + Cdz \mod \mathfrak{p}$$

Definição

A folheação determinada por $\omega_{\mathfrak{p}}$ é denotada por $\mathcal{F}_{\mathfrak{p}}$ e chamada de a **redução módulo** p **de** \mathcal{F} .

Questão natural:

Questão natural:

Problema

Suponha que uma propriedade abstrata P vale para $\mathcal{F}_{\mathfrak{p}}$ para uma infinidade de primos (ou quase-todos primos) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. O que podemos dizer sobre \mathcal{F} ?

Questão natural:

Problema

Suponha que uma propriedade abstrata P vale para $\mathcal{F}_{\mathfrak{p}}$ para uma infinidade de primos (ou quase-todos primos) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. O que podemos dizer sobre \mathcal{F} ?

- infinidade de primos = primos num subconjunto denso de $\mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$;
- quase-todos primos = primos num aberto não vazio de $Spm(\mathbb{Z}[\mathcal{F}])$.

Questão natural:

Problema

Suponha que uma propriedade abstrata P vale para $\mathcal{F}_{\mathfrak{p}}$ para uma infinidade de primos (ou quase-todos primos) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. O que podemos dizer sobre \mathcal{F} ?

- infinidade de primos = primos num subconjunto denso de $Spm(\mathbb{Z}[\mathcal{F}])$;
- quase-todos primos = primos num aberto não vazio de $\mathbf{Spm}(\mathbb{Z}[\mathcal{F}]).$

Quando $\mathbb{Z}[\mathcal{F}]=\mathbb{Z}$ as noções: infinidade de primos e quase-todos são as noções usuais.

A propriedade \mathbf{P} pode ser:

• a existência de curvas $\mathcal{F}_{\mathfrak{p}}$ -invariantes;

A propriedade \mathbf{P} pode ser:

- a existência de curvas $\mathcal{F}_{\mathfrak{p}}$ -invariantes;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ é p-fechada;

A propriedade P pode ser:

- a existência de curvas $\mathcal{F}_{\mathfrak{p}}$ -invariantes;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ é p-fechada;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ possui p-divisor irredutível/reduzido;

A propriedade P pode ser:

- a existência de curvas $\mathcal{F}_{\mathfrak{p}}$ -invariantes;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ é p-fechada;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ possui p-divisor irredutível/reduzido;

Proposição

Seja $\mathcal F$ uma folheação em $\mathbb P^2_{\mathbb C}$ e suponha que $\mathcal F_{\mathfrak p}$ tem uma curva algébrica invariante de grau menor do que $\mathbf d$ para quase-todos primos $\mathfrak p$. Então, $\mathcal F$ possui uma curva algébrica invariante de grau menor do que $\mathbf d$.

A propriedade **P** pode ser:

- a existência de curvas $\mathcal{F}_{\mathfrak{p}}$ -invariantes;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ é p-fechada;
- a folheação $\mathcal{F}_{\mathfrak{p}}$ possui p-divisor irredutível/reduzido;

Proposição

Seja $\mathcal F$ uma folheação em $\mathbb P^2_{\mathbb C}$ e suponha que $\mathcal F_{\mathfrak p}$ tem uma curva algébrica invariante de grau menor do que d para quase-todos primos $\mathfrak p$. Então, $\mathcal F$ possui uma curva algébrica invariante de grau menor do que d.

Ideia: o conjunto $S(\mathcal{F},K,d)$ de folheações em \mathbb{P}^2_K que possuem curvas algébricas de grau $\leq d$ é uma variedade algébrica sobre K. Em particular, $S(\mathcal{F},\mathbb{C},d) \neq \emptyset$ se e somente se $S(\mathcal{F},\overline{\mathbb{F}}_{\mathfrak{p}},d) \neq \emptyset$ para quase-todos primos \mathfrak{p} .

Soluções algébricas

Objetivo: usar redução módulo p para provar não-algebricidade de folheações holomorfas

 $^{^{1}\}mathrm{Carnicer}$ - The Poincare problem in the nondicritical case

Soluções algébricas

Objetivo: usar redução módulo p para provar não-algebricidade de folheações holomorfas

Proposição

 a Seja ${\mathcal F}$ uma folheação não dicrítica em ${\mathbb P}^2_{\mathbb C}$ definida pela 1-forma $\omega = Adx + Bdy + Cdz \ com \ A, B, C \in \mathbb{Z}[x, y, z]$. Seja p um primo tal que p > d + 2. Se $\Delta_{\mathcal{F}_n}$ é irredutível então \mathcal{F} não possui soluções algébricas.

^aW.Mendson - Foliations on smooth algebraic surfaces in position characteristic

¹Carnicer - The Poincare problem in the nondicritical case

Soluções algébricas

Objetivo: usar redução módulo p para provar não-algebricidade de folheações holomorfas

Proposição

^a Seja $\mathcal F$ uma folheação não dicrítica em $\mathbb P^2_{\mathbb C}$ definida pela 1-forma $\omega = Adx + Bdy + Cdz$ com $A, B, C \in \mathbb Z[x,y,z]$. Seja p um primo tal que p > d+2. Se $\Delta_{\mathcal F_p}$ é irredutível então $\mathcal F$ não possui soluções algébricas.

^aW.Mendson - Foliations on smooth algebraic surfaces in position characteristic

Ideia: Suponha que existe uma curva invariante $C=\{F=0\}$. Podemos assumir $F\in\mathbb{Z}[x,y,z]$. A cota de Carnicer ¹ implica que $\deg(C)\leq d+2$. Reduzindo módulo p e usando a irredutibilidade de $\Delta_{\mathcal{F}_p}$ chegamos numa contradição.

¹Carnicer - The Poincare problem in the nondicritical case

Aplicações

Corolário

A folheação de Jouanolou de grau 2 ou 3 não possui soluções algébricas.

Aplicações

Corolário

A folheação de Jouanolou de grau 2 ou 3 não possui soluções algébricas.

Seja $\mathcal F$ uma folheação em $\mathbb P^2_{\mathbb C}.$

Proposição

Se o p-divisor $\Delta_{\mathcal{F}_{\mathfrak{p}}}$ é irredutível para quase todo primo \mathfrak{p} então \mathcal{F} não possui soluções algébricas.

Aplicações

Corolário

A folheação de Jouanolou de grau 2 ou 3 não possui soluções algébricas.

Seja \mathcal{F} uma folheação em $\mathbb{P}^2_{\mathbb{C}}$.

Proposição

Se o p-divisor $\Delta_{\mathcal{F}_{\mathfrak{p}}}$ é irredutível para quase todo primo \mathfrak{p} então \mathcal{F} não possui soluções algébricas.

Ideia: Suponha que exista uma curva algébrica invariante $C=\{F=0\}$ de grau e. Para primos grandes p obtemos $C \mod p = \Delta_{\mathcal{F}_p}$, uma contradição visto que o grau do p-divisor depende de p.

Usando ideias parecidas podemos provar o seguinte resultado (Jouanolou)

Teorema

Uma folheação muito genérica em $\mathbb{P}^2_{\mathbb{C}}$ de grau d>1 com $d\not\equiv 1\mod 3$ não tem soluções algébricas

Usando ideias parecidas podemos provar o seguinte resultado (Jouanolou)

Teorema

Uma folheação muito genérica em $\mathbb{P}^2_{\mathbb{C}}$ de grau d>1 com $d\not\equiv 1\mod 3$ não tem soluções algébricas

Ideia: É suficiente mostrar que a folheação \mathcal{F}_d dada pela 1-forma

$$\mathcal{F}_d : \Omega_d = (x^d z - y^{d+1}) dx + (xy^d - z^{d+1}) dy + (z^d y - x^{d+1}) dz$$

não tem soluções algébricas.

Usando ideias parecidas podemos provar o seguinte resultado (Jouanolou)

Teorema

Uma folheação muito genérica em $\mathbb{P}^2_{\mathbb{C}}$ de grau d>1 com $d\not\equiv 1\mod 3$ não tem soluções algébricas

Ideia: É suficiente mostrar que a folheação \mathcal{F}_d dada pela 1-forma

$$\mathcal{F}_d: \Omega_d = (x^d z - y^{d+1}) dx + (xy^d - z^{d+1}) dy + (z^d y - x^{d+1}) dz$$

não tem soluções algébricas.

• Suponha que exista uma solução algébrica $C = \{F = 0\}$ dada por um irredutível $F \in \mathbb{C}[x,y,z]$.

Usando ideias parecidas podemos provar o seguinte resultado (Jouanolou)

Teorema

Uma folheação muito genérica em $\mathbb{P}^2_{\mathbb{C}}$ de grau d>1 com $d\not\equiv 1\mod 3$ não tem soluções algébricas

Ideia: É suficiente mostrar que a folheação \mathcal{F}_d dada pela 1-forma

$$\mathcal{F}_d: \Omega_d = (x^d z - y^{d+1}) dx + (xy^d - z^{d+1}) dy + (z^d y - x^{d+1}) dz$$

não tem soluções algébricas.

- Suponha que exista uma solução algébrica $C = \{F = 0\}$ dada por um irredutível $F \in \mathbb{C}[x, y, z]$.
- Um lema técnico (via automorfismos de \mathcal{F}_d) garante que podemos construir uma curva irredutível $D=\{G=0\}$ definida sobre \mathcal{O}_L para algum corpo de número L com $\deg(D)=d+2\equiv 1\mod 2$.

Usando ideias parecidas podemos provar o seguinte resultado (Jouanolou)

Teorema

Uma folheação muito genérica em $\mathbb{P}^2_{\mathbb{C}}$ de grau d>1 com $d\not\equiv 1\mod 3$ não tem soluções algébricas

Ideia: É suficiente mostrar que a folheação \mathcal{F}_d dada pela 1-forma

$$\mathcal{F}_d \colon \Omega_d = (x^d z - y^{d+1}) dx + (xy^d - z^{d+1}) dy + (z^d y - x^{d+1}) dz$$

não tem soluções algébricas.

- Suponha que exista uma solução algébrica $C=\{F=0\}$ dada por um irredutível $F\in\mathbb{C}[x,y,z].$
- Um lema técnico (via automorfismos de \mathcal{F}_d) garante que podemos construir uma curva irredutível $D=\{G=0\}$ definida sobre \mathcal{O}_L para algum corpo de número L com $\deg(D)=d+2\equiv 1\mod 2$.
- Redução módulo 2 e comparação de graus (o 2-divisor é irredutível!) implica numa contradição

Folheação de Jouanolou em característica p

Teorema

Seja p > 2 um número primo tal que $7 \nmid p + 4$ e tal que $p \not\equiv 1 \mod 3$. Então, a folheação de Jouanolou de grau dois \mathcal{F}_2 definida sobre um corpo de característica p possui p-divisor irredutível.

Folheação de Jouanolou em característica p

Teorema

Seja p > 2 um número primo tal que $7 \nmid p + 4$ e tal que $p \not\equiv 1 \mod 3$. Então, a folheação de Jouanolou de grau dois \mathcal{F}_2 definida sobre um corpo de característica p possui p-divisor irredutível.

Na prova, usamos um automorfismo particular de \mathcal{F}_2 .

Automorfismos de folheações:

$$\mathcal{F} = \langle \omega \rangle$$

Folheação de Jouanolou em característica p

Teorema

Seja p > 2 um número primo tal que $7 \nmid p + 4$ e tal que $p \not\equiv 1 \mod 3$. Então, a folheação de Jouanolou de grau dois \mathcal{F}_2 definida sobre um corpo de característica p possui p-divisor irredutível.

Na prova, usamos um automorfismo particular de \mathcal{F}_2 .

Automorfismos de folheações:

$$\mathcal{F} = \langle \omega \rangle$$

Um automorfismo de \mathcal{F} é um automorfismo, Φ , de \mathbb{P}^2_K que preserva \mathcal{F} no seguinte sentido:

$$\Phi^*\omega = \sigma(\Phi)\omega$$

para algum $\sigma(\Phi) \in K^*$. O grupo de automorfismo de \mathcal{F} é denotado por $\operatorname{Aut}(\mathcal{F})$.

Seja \mathcal{F}_d definida por

$$\Omega_d = (x^d z - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^d y - x^{d+1})dz.$$

²aqui, assumimos que p não divide $d^2 + d + 1$

Seja \mathcal{F}_d definida por

$$\Omega_d = (x^d z - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^d y - x^{d+1})dz.$$

Seja γ uma raiz primitiva (d^2+d+1) -ésima da unidade da unidade e considere

$$\Phi \colon \mathbb{P}^2_K \longrightarrow \mathbb{P}^2_K \qquad [x:y:z] \mapsto [\gamma^{d^2+1}x:\gamma y:z]$$

²aqui, assumimos que p não divide $d^2 + d + 1$

Seja \mathcal{F}_d definida por

$$\Omega_d = (x^d z - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^d y - x^{d+1})dz.$$

Seja γ uma raiz primitiva (d^2+d+1) -ésima da unidade² da unidade e considere

$$\Phi \colon \mathbb{P}^2_K \longrightarrow \mathbb{P}^2_K \qquad [x:y:z] \mapsto [\gamma^{d^2+1}x:\gamma y:z]$$

Então $\Phi \in \operatorname{Aut}(\mathcal{F})$ possui ordem $d^2 + d + 1$ e $\Phi^*\Omega_d = \gamma\Omega_d$.

²aqui, assumimos que p não divide $d^2 + d + 1$

Seja \mathcal{F}_d definida por

$$\Omega_d = (x^d z - y^{d+1}) dx + (xy^d - z^{d+1}) dy + (z^d y - x^{d+1}) dz.$$

Seja γ uma raiz primitiva (d^2+d+1) -ésima da unidade da unidade e considere

$$\Phi \colon \mathbb{P}^2_K \longrightarrow \mathbb{P}^2_K \qquad [x:y:z] \mapsto [\gamma^{d^2+1}x:\gamma y:z]$$

Então $\Phi \in \operatorname{Aut}(\mathcal{F})$ possui ordem $d^2 + d + 1$ e $\Phi^*\Omega_d = \gamma\Omega_d$.

Proposição

 $\textit{Seja \mathcal{F} uma folheaç\~ao em \mathbb{P}^2_K n\~ao p-fechada e $\Phi \in \operatorname{Aut}(\mathcal{F})$. $Ent\~ao$, $\Phi^*\Delta_{\mathcal{F}} = \Delta_{\mathcal{F}}$.}$

²agui, assumimos que p não divide $d^2 + d + 1$

$$\mathcal{F}_2$$
: $\Omega_2 = (x^d z - y^3) dx + (xy^2 - z^3) dy + (z^2 y - x^3) dz$.

ideia da prova da irredutibilidade do p-divisor de $\mathcal{J} := \mathcal{F}_2$:

$$\mathcal{F}_2: \Omega_2 = (x^d z - y^3) dx + (xy^2 - z^3) dy + (z^2 y - x^3) dz.$$

ideia da prova da irredutibilidade do p-divisor de $\mathcal{J} := \mathcal{F}_2$:

• As condições $7 \nmid p + 4$ e $p \not\equiv 1 \mod 3$ implicam que $\Delta_{\mathcal{J}} \not\equiv 0$. Assuma que existe uma curva \mathcal{J} -invariante $C = \{F = 0\}$ com $\deg(C) < \deg(\Delta_{\mathcal{J}})$;

$$\mathcal{F}_2: \Omega_2 = (x^d z - y^3) dx + (xy^2 - z^3) dy + (z^2 y - x^3) dz.$$

ideia da prova da irredutibilidade do p-divisor de $\mathcal{J} := \mathcal{F}_2$:

- As condições $7 \nmid p+4$ e $p \not\equiv 1 \mod 3$ implicam que $\Delta_{\mathcal{J}} \not\equiv 0$. Assuma que existe uma curva \mathcal{J} -invariante $C = \{F = 0\}$ com $\deg(C) < \deg(\Delta_{\mathcal{J}})$;
- podemos escrever:

$$dF \wedge \omega = F\left(\left(\frac{\deg(C)}{4}\right)d\omega + i_R\beta\right)$$

com $\beta \neq 0$ uma 3-forma homogênea em \mathbb{A}^3_K de grau 1;

Caso
$$d=2$$

$$\mathcal{F}_2: \Omega_2 = (x^d z - y^3) dx + (xy^2 - z^3) dy + (z^2 y - x^3) dz.$$

ideia da prova da irredutibilidade do p-divisor de $\mathcal{J} := \mathcal{F}_2$:

- As condições $7 \nmid p + 4$ e $p \not\equiv 1 \mod 3$ implicam que $\Delta_{\mathcal{J}} \not\equiv 0$. Assuma que existe uma curva \mathcal{J} -invariante $C = \{F = 0\}$ com $\deg(C) < \deg(\Delta_{\mathcal{J}})$;
- podemos escrever:

$$dF \wedge \omega = F\left(\left(\frac{\deg(C)}{4}\right)d\omega + i_R\beta\right)$$

com $\beta \neq 0$ uma 3-forma homogênea em \mathbb{A}^3_K de grau 1;

- Temos dois casos:
 - ${\bf 0}\,$ alguma potência Φ^l fixa a curva C: computações implicam $\beta=0,$ contradição;

$$\mathcal{F}_2: \Omega_2 = (x^d z - y^3) dx + (xy^2 - z^3) dy + (z^2 y - x^3) dz.$$

ideia da prova da irredutibilidade do p-divisor de $\mathcal{J} := \mathcal{F}_2$:

- As condições $7 \nmid p + 4$ e $p \not\equiv 1 \mod 3$ implicam que $\Delta_{\mathcal{J}} \not\equiv 0$. Assuma que existe uma curva \mathcal{J} -invariante $C = \{F = 0\}$ com $\deg(C) < \deg(\Delta_{\mathcal{J}})$;
- podemos escrever:

$$dF \wedge \omega = F\left(\left(\frac{\deg(C)}{4}\right)d\omega + i_R\beta\right)$$

com $\beta \neq 0$ uma 3-forma homogênea em \mathbb{A}^3_K de grau 1;

- Temos dois casos:
 - \bullet alguma potência Φ^l fixa a curva C: computações implicam $\beta = 0$, contradição;
 - ② Φ^l não fixa C para todo $l \in \{1, \ldots, 6\}$: em tal caso para qualquer primo P no suporte de $\Delta_{\mathcal{J}}$ temos: $P, \Phi^*P, \ldots, (\Phi^6)^*P$ distintos, o que implica $7 \mid p+4$, uma contradição;

Folheação de Jouanolou

Corolário

Nas condições do teorema, uma folheação genérica de grau dois no plano projetivo em característica p>0 possui p-divisor irredutível.

• \mathcal{F}_d em $\mathbb{P}^2_{\mathbb{C}}$:

$$\omega_d=(x^dz-y^{d+1})dx+(xy^d-z^{d+1})dy+(z^dy-x^{d+1})dz$$

$$v_d=z^d\partial_x+x^d\partial_y+y^d\partial_z$$

$$\begin{array}{l} \bullet \quad (p,d) = (5,2): \\ \\ \Delta_{\mathcal{F}_{5,2}} = [i_{v_5^5}\omega_2] = \{X^5Z^4 + X^4Y^5 + 2X^3Y^3Z^3 + Y^4Z^5 = 0\} \in \mathrm{Div}(\mathbb{P}^2_{\mathbb{F}_{\pi}}) \\ \end{array}$$

Jouanolou II

Para d > 2:

Teorema

 a Seja K um corpo algebricamente fechado e de característica p>0. Seja $d\in\mathbb{Z}_{>0}$ tal que

- $p < d \ e \ p \not\equiv 1 \mod 3$;
- $d^2 + d + 1$ is primo.

Então a folheação de Jouanolou, \mathcal{F}_d , possui p-divisor irredutível ou

$$\Delta_{\mathcal{F}_d} = C + pR$$

 $com \deg(C) = pl + d + 2, l > 0 \ e \ R \ n\~{ao} \ \mathcal{F}_d$ -invariante.

 $^a\mathrm{W.Mendson}$ - Arithmetic aspects of the Jouannlou foliation

Jouanolou II

Para d > 2:

Teorema

 a Seja K um corpo algebricamente fechado e de característica p>0. Seja $d\in\mathbb{Z}_{>0}$ tal que

- $p < d \ e \ p \not\equiv 1 \mod 3$;
- $d^2 + d + 1$ is primo.

Então a folheação de Jouanolou, \mathcal{F}_d , possui p-divisor irredutível ou

$$\Delta_{\mathcal{F}_d} = C + pR$$

 $com \deg(C) = pl + d + 2, l > 0 \ e \ R \ n\~{ao} \ \mathcal{F}_d$ -invariante.

Consequência: folheação de Jouanolou \mathcal{F}_d possui única curva algébrica invariante

 $[^]a\mathrm{W.Mendson}$ - Arithmetic aspects of the Jouannlou foliation

Jouanolou II

Para d > 2:

Teorema

^a Seja K um corpo algebricamente fechado e de característica p > 0. Seja $d \in \mathbb{Z}_{>0}$ tal que

- $p < d \ e \ p \not\equiv 1 \mod 3$:
- $d^2 + d + 1$ is primo.

Então a folheação de Jouanolou, \mathcal{F}_d , possui p-divisor irredutível ou

$$\Delta_{\mathcal{F}_d} = C + pR$$

 $com \deg(C) = pl + d + 2, l > 0 \ e \ R \ n\~{ao} \ \mathcal{F}_d$ -invariante.

^aW.Mendson - Arithmetic aspects of the Jouannlou foliation

Consequência: folheação de Jouanolou \mathcal{F}_d possui única curva algébrica invariante

Observação

a É esperado que $d^2 + d + 1$ é primo para uma infinidade de $d \in \mathbb{Z}_{>0}$. Isso é um caso particular da Conjectura de Bunyakovsky (1857).

^ahttps://mathoverflow.net/questions/438807/primes-of-the-form-d2d1

característica p=5e $d\leq 100$

d	$d^2 + d + 1$	$\deg(C)$	l	R
6	43	18	2	$\{xyz=0\}$
12	157	39	5	$\{xyz = 0\}$
17	307	54	7	$\{xyz = 0\}$
21	463	63	8	$\{xyz = 0\}$
27	757	84	11	$\{xyz = 0\}$
41	1723	123	16	$\{xyz = 0\}$
57	3307	174	23	$\{xyz = 0\}$
62	3907	189	25	$\{xyz = 0\}$
66	4423	198	26	$\{xyz = 0\}$
71	5113	213	28	$\{xyz = 0\}$
77	6007	234	31	$\{xyz = 0\}$

• para $d \in \{2, 14, 24, 54, 59, 69, 89, 99\}, \Delta_{\mathcal{F}_d}$ é irredutível;

• outros casos: $\Delta_{\mathcal{F}_d} = 0$.

Obrigado ;-)