The feasible region of consecutive occurrences of permutations is a cycle polytope

I-Math Institute of Mathematics

Raul Penaguiao and Jacopo Borga

Institut für Mathematik, Universität Zürich

Part 1: Feasible regions and overlap graphs

Permutation patterns

A permutation of size n is an arrangement of points in an $n \times n$ grid, in such a way that each column and each row has exactly one point.

Permutation pattern

By selecing a set of columns I on a permutation τ , and disregarding resulting empty rows, we obtain a new permutation $\pi = \tau|_I$, which is called a **pattern** of τ . The set I is called an **occurrence** of π in τ , and **interval occurrence** if it is a set of consecutive columns.

Figure 1: An occurrence of 231 in 2413. $\operatorname{occ}(\pi,\tau) = \#\{ \text{ occurrences of } \pi \text{ in } \tau \}$ $\operatorname{coc}(\pi,\tau) = \#\{ \text{ interval occurrences of } \pi \text{ in } \tau \}$

The proportion of (consecutive) occurrences is defined as $\cot(\pi, \tau) = \cot(\pi, \tau)$

$$\widetilde{\operatorname{occ}}(\pi,\tau) = \frac{\operatorname{occ}(\pi,\tau)}{|\tau|^{|\pi|}}, \quad \widetilde{\operatorname{coc}}(\pi,\tau) = \frac{\operatorname{coc}(\pi,\tau)}{|\tau|}.$$

Feasible region

For a fixed k, a given sequence of permutations $\{\sigma^{(n)}\}_{n\geq 0}$ such that $|\sigma^{(n)}| \to \infty$ gives rise to a **feasible point** $\vec{x} = (x_{\pi})_{\pi \in \mathcal{S}_k}$ in $\mathbb{R}^{\mathcal{S}_k}$ defined by

$$x_{\pi} \coloneqq \lim_{n \to \infty} \widetilde{\operatorname{coc}}(\pi, \sigma^{(n)}).$$

The feasible region of consecutive occurrences

The **feasible region** P_k is the set of feasible points in \mathbb{R}^{S_k} , that is:

$$\left\{ \vec{x} \in \mathbb{R}^{\mathcal{S}_k} | \exists \sigma^{(n)} \text{ s.t. } \vec{x} = (\lim_{n \to \infty} \widetilde{\operatorname{coc}}(\pi, \sigma^{(n)}))_{\pi \in \mathcal{S}_k} \right\}$$

Example: for k = 2, the sequence $\sigma^{(n)} = 21^{\oplus n}$ gives rise to the limit point $(\frac{1}{2}, \frac{1}{2})$.

Figure 2: The permutation $\sigma^{(3)}$ from the example above, with $\cos(12, \sigma^{(3)}) = 2$ and $\cos(21, \sigma^{(3)}) = 3$.

The overlap graph

The overlap graph is the central tool that will allow us to decode the structure of P_k .

The overlap graph

The **overlap graph** $\mathcal{O}v(k)$ is an oriented graph on the vertex set \mathcal{S}_{k-1} and such that for each $\pi \in \mathcal{S}_k$ there is an edge from $\pi|_{\{1,...,k-1\}}$ to $\pi|_{\{2,...,k\}}$.

Figure 3: The overlap graph $\mathcal{O}v(4)$.

Part 2: Cycle polytopes and face structure

Cycle polytopes

A simple cycle in an oriented graph is a cycle with no (non-trivial) repeated vertices.

The cycle polytope of a graph

Let G be an oriented graph and \mathcal{C} one of its simple cycles. We define the vector $\vec{a}_{\mathcal{C}} \in \mathbb{R}^{E(G)}$ as $(\vec{a}_{\mathcal{C}})_e = |\mathcal{C}|^{-1}$ if $e \in \mathcal{C}$, and 0 otherwise. The **cycle polytope** of G is defined as $P(G) := \text{conv}\{\vec{a}_{\mathcal{C}}|\ \mathcal{C} \text{ is a simple cycle of } G\}$.

We have combinatorial characterisations of the geometric properties of P(G).

Theorem (see [1])

If G is strongly connected, then P(G) is a polytope of dimension #E(G)-#V(G), given by the equations

$$\sum_{e \in E(G)} x_e = 1,$$

$$\sum_{be(e)=v} x_e = \sum_{en(e)=v} x_e \text{ for all } v \in V(G),$$

where we denote by be(e) and en(e) the beginning vertex (resp. ending) vertex of an edge e. Furthermore, to each face it corresponds a unique subgraph of G.

Characterization of feasible regions

In the following theorem, we find that the feasible region for consecutive patterns, unlike classical patterns, is a convex polytope.

Theorem (see [1])

The feasible region P_k is the cycle polytope of the overlap graph $\mathcal{O}v(k)$. From this, it results that dim $P_k = k! - (k-1)!$, and the vertices of P_k correspond to simple cycles in $\mathcal{O}v(k)$.

Figure 4: The feasible region for k=3 drawn in a 4-dimensional space.

Pattern avoiding permutations

Given a set of permutations \mathcal{P} , we define the family $\operatorname{Av}(\mathcal{P})$ of permutations τ that have no occurrences of any permutation $\pi \in \mathcal{P}$. Such families are called **permutation classes**.

The restricted feasible region

Fix k, and let \mathcal{A} be a permutation class. A sequence of permutations $\{\sigma^{(n)}\}_{n\geq 0} \subseteq \mathcal{A}$ such that $|\sigma^{(n)}| \to \infty$ gives rise to an \mathcal{A} -feasible point in $\mathbb{R}^{\mathcal{S}_k}$. We define $P_k^{\mathcal{A}}$ as the set of \mathcal{A} -feasible points in $\mathbb{R}^{\mathcal{S}_k}$.

Figure 5: The Av(321)-feasible region for k = 3.

Partial results for: Av(231), Av(n...1) for any $n \ge 2$, see [2].

References