

Universidade Federal do Paraná Laboratório de Estatística e Geoinformação - LEG

Introdução

Profs.: Eduardo Vargas Ferreira Walmes Marques Zeviani

O que é Machine Learning?

Métodos

Ciência da **Machine Learning** Estatística computação

aplicados a

problemas

Definição

 Área de estudo que dá aos computadores a habilidade de aprender sem serem explicitamente programados (Arthur Samuel, 1959).

Definição

 Estamos interessados em capacitar os algoritmos para desenvolverem ações inteligentes a partir dos dados;

Definição

Machine learning successes

- Machine Learning é mais bem sucedido quando aumenta o conhecimento do especialista, ao invés de substituir;
- Qualquer organização que gere ou agregue dados, provavelmente emprega ao menos um algoritmo de ML para fazer sentido aos mesmos.
- Embora seja impossível listar todas as utilizações dessas técnicas, um levantamento de sucessos recentes inclui aplicações em:
 - * Identificação de mensagens de e-mail indesejadas com spam;
 - * Segmentação dos clientes para publicidade direcionada;
 - * Redução de transações fraudulentas de cartão de crédito;
 - * Desenvolvimento de algoritmos para self-driving cars;
 - ⋆ Descobertas de sequências gênicas ligadas à doença etc.

Visão do self-driving car

Nos dias de hoje ...

• Quando o DNA virou número;

Nos dias de hoje ...

• A vida virou informação.

Expressão gênica que diferencia pacientes

Mercado de novas possibilidades

Serviços Financeiros

- Detecção de Fraude
- Visão 360°do cliente

Utilidades

- Smart Meter Analytics
- Gerenciamento dos Ativos

Transporte

- otimização logística
- congestionamento do tráfego

Midia Digital

 Segmentação de anúncios em tempo real

- · Análise de registros médicos
- · Monitoramento de doenças

Varejo

- Omni-channel Marketing
- · Real-time promotions

Telecomunicação

- · Perfil de Cliente
- · Análise e Otimização de redes

Segurança

- · Vigilância Multimodal
- Detecção de segurança cibernética

Os limites do Machine Learning

- Embora ML seja amplamente utilizado e tenha um grande potencial de aplicação, é importante entender seus limites;
- Ele tem pouca flexibilidade para extrapolar os parâmetros de aprendizagem e não conhece o senso comum!
- ML é tão bom quanto os dados são para ensinar. É um paradigma "Garbage in, garbage out!"

Exemplo: qual dessas imagens é uma girafa? (eg)

Como as máquinas aprendem?

- Machine Learning é a ciência de descobrir estruturas e fazer predições em conjunto de dados;
- O aprendizado é efetuado a partir de raciocínio sobre exemplos fornecidos por um processo externo ao sistema de aprendizado;

Como as máquinas aprendem?

- Armazenamento dos dados: utiliza a observação para fornecer uma base para o raciocínio adicional;
- Abstração: envolve a tradução dos dados armazenados em representações e conceitos;
- Generalização: cria conhecimento e inferência que direcionam ações em novos contextos;
- Avaliação: fornece um mecanismo de feedback para medir a utilidade do conhecimento adquirido e informar potenciais melhorias.

Machine Learning na prática

- Coleta dos dados: envolve a coleta de material que o algoritmo utilizará para gerar conhecimento;
- Exploração e preparação dos dados: é exigido um trabalho adicional na preparação desses, recodificando-os de acordo com os inputs esperados;
- Formação do modelo: depois dos dados preparados, o pesquisador já é capaz de dizer o que é possível aprender deles, e como;
- Avaliação dos modelos: avaliamos a qualidade do aprendizado, não pode ser pouco (underfitting) nem decorar os dados (overfitting);
- Melhoria do modelo: se necessário, podemos melhorar o desempenho do modelo através de estratégias avançadas (p. ex., combinando modelos);

Entendendo a "Formação do modelo"

- Os algoritmos de aprendizado são divididos em duas categorias segundo sua finalidade:
 - Aprendizado supervisionado: é fornecido um conjunto de exemplos para os quais o rótulo da classe associada é conhecido;
 - Dadas as medições $(x_1, y_1), \dots, (x_n, y_n)$, ensinamos o modelo a **prever** um novo y baseado em x;
 - Ou seja, o objetivo é construir um classificador que possa determinar corretamente a classe de exemplos não rotulados;
 - Para rótulos discretos, esse problema é conhecido como classificação e para valores contínuos como regressão.

Exemplo de aprendizado supervisionado

Detecção de Spams

- x_i: e-mail;
- y_i: spam/não spam;

Predição de Alzheimer

- x_i: imagem do cérebro;
- y_i: Paciente com/sem Alzheimer;

Entendendo a "Formação do modelo"

- **Aprendizado não-supervisionado:** a partir dos exemplos (x's) fornecidos tenta-se determinar algum agrupamento desses.
 - Dado x_1, \ldots, x_n , descobrir alguma estrutura baseada na similaridade.

Exemplo de aprendizado não-supervisionado

- Recomendação de amizades
 - $\star x_i$: existe um link entre dois usuários do Facebook;

Entendendo a "Avaliação dos modelos"

- Suponha que estamos interessados em estudar a relação entre X e Y;
- Podemos definir varias funções, h(x), mas qual fornece a melhor predição? Resposta: a que apresentar menor custo (ou risco).

Função custo

- A Função custo descreve o quão bem a superfície de resposta h(x) ajustou-se aos dados.
 - * Soma de quadrado dos desvios (SQD)

$$J(y_i, h(x)) = \frac{1}{n} \sum_{i=1}^{n} [y_i - h(x_i)]^2$$

* Soma dos desvios absolutos (SDA)

$$J(y_i, h(x)) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h(x_i)|$$

* Huber-M cost

$$J(y_i, h(x)) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} \frac{1}{2} [y_i - h(x_i)]^2, & \text{para } |y - h(x_i)| \leq \delta, \\ \delta |y_i - h(x_i)| - \frac{1}{2} \delta^2, & \text{caso contrário.} \end{cases}$$

Função custo

Abaixo, a curva azul representa a SQD e verde a Função Huber-M.

- Ela combina as qualidades da SQD e SQA.
- O parâmetro δ é obtido automaticamente para um específico percentil dos erros absolutos.

Treinamento vs Teste

- Fase de treino:
 - * Entra com os dados e os verdadeiros níveis;
 - * Obtém um "classificador".

- Fase de teste (ou aplicação do modelo):
 - ★ Entra com os dados;
 - ⋆ Obtém seu nível (de acordo com o "classificador").

Exemplo

- ATCCGTATAGTCGATCAGTCAGCTACTATGCGTAT CANCER
- TGCATGCATGCAGATCGATCGCCAACGTAC NO CANCER
- ATTATATTCTGCGATCGAAGCTATGCGATCGTCGA CANCER
- TATGCGCGCGAGTTTTATGAGGCGATCGATGCTA CANCER
- ATCGCATCGACGTACGATGCTGATTATTATAGCCG NO CANCER
- GATCATGCTGCGAGAGGAGATTTTATGCGATAGA CANCER

•••

ATCGTCTGATGCAGCGAGCTATGCGTACGTAGCA????

Exemplo

- Valores pequenos da função custo corresponde à melhores ajustes;
- No gráfico da direita, a linha cinza representa os dados de treinamento e a vermelha de teste.

Predição versus Inferência

- Em inferência em geral assume-se que o modelo é correto.
- Isso ocorre pois o principal objetivo está na interpretação dos parâmetros.
- P. ex., quais parâmetros são significantes? Qual o efeito do aumento da dose do remédio no medicamento? etc.
- Já em predição, o nosso objetivo maior é simplesmente criar h(x) que tenha bom poder preditivo.
- P. ex., não estamos assumindo que a verdadeira regressão é linear!!
- Podemos continuar interpretando os resultados, mas esse em geral não é o foco das análises.

Predição versus Inferência

As duas culturas

- Duas culturas no uso de modelos estatísticos:
 - Data Modeling Culture: Domina a comunidade estatística. Testar suposições é fundamental. Foco em inferência;
 - Algorithmic Modeling Culture: Domina a comunidade de machine learning. O modelo é utilizado apenas para criar bons algoritmos preditivos.

L. Breiman. Statistical modeling: The two cultures. Statistical Science, 16(3):199-231, 2001.