Rule 0.19 (Limit Number of Functions)

```
[\ldots]
\operatorname{\mathbf{contract}}\ A\ \{\ [\ldots]
\operatorname{\mathbf{function}}\ f_1(pds_1)\ \{\ stmts_1\ \}\ 
\operatorname{\mathbf{function}}\ f_2(pds_2)\ \{\ stmts_2\ \}\ 
\ldots
\operatorname{\mathbf{function}}\ f_n(pds_n)\ \{\ stmts_n\ \}\ [\ldots]\ \}
```

```
[...] contract A' {
[...] function g(op, pds) {
    if (op == op_1) {
        stmts_1
    } else if (op == op_2) {
        stmts_2
    } ...
    else if (op == op_n) {
        stmts_n
    }
    }
    [...]
```

where

 f_1, f_2, \ldots, f_n are related functions in contract A with similar purposes;

g is the consolidated function in contract A' that combines the functionality;

op is an operation selector parameter (e.g., enum or integer) that determines which logic to execute;

 op_i represents the selector value corresponding to function f_i ;

 pds_i are the parameter declarations of function f_i ;

pds are the unified parameter declarations in function g;

 $stmts_i$ represents the statement sequence of function f_i .

provided

Functions f_1, \ldots, f_n are semantically related and operate on similar data;

The consolidated function g maintains all functionality of the original functions;

The operation selector op unambiguously identifies which logic path to execute;

The consolidation reduces deployment costs without sacrificing security or readability;

Access control and validation logic remain equivalent in the consolidated version;

The number of external function selectors is reduced, lowering contract size.

Invariant:

Let s_i and s'_i be the initial state of A and A', respectively.

Let s_f and s_f' be the state reached by A and A', respectively, after $A.f_k()$ and $A'.g(op_k,...)$ are executed from s_i and s_i' , respectively.

Then, the coupling invariant is

$$\forall s_i, s'_i, k \in \{1, \dots, n\} : (s_i = s'_i) \to (s_f = s'_f)$$