(9)日本国特許庁

①特許出願公開

公開特許公報

昭52-129716

⑤ Int. Cl².C 03 C 3/14

C 03 C

識別記号

101

❸日本分類 21 A 22 庁内整理番号 7417--41 砂公開 昭和52年(1977)10月31日

発明の数 1 審査請求 有

(全 3 頁)

砂光学ガラス

②特

頭 昭51-47552

②出 !

願 昭51(1976)4月26日

⑫発 明 者 相楽弘治

3/30

秋川市小川589-5

切出 願 人 株式会社保谷硝子

東京都新宿区中落合2丁目7番

5号

個代 理 人 弁理士 旦六郎治

外1名

明 細 1

1.発明の名称 光学ガラス

2.特許請求の範囲

重量まで、B₀O₃ 14~19、SiO₂ 0~5、
La₁O₃ 39~51、Y₁O₃ 1~5、ZrO₃ 2~7、
WO₃ 2~27、Ta₂O₆ + Nb₂O₆ + TiO₂ 7~24、但し、Ta₁O₆ 0~20、Nb₂O₆ 0~13、TiO₂ 0~9、
ZnO + PbO + アルカリ土類酸化物 0~3、
GeO₂ + Yb₂O₃ 0~25 からなる光学ガラス。

3.発明の詳細な説明

本発明は屈折率nd1.85~1.96,アッペ数vd 29~41なる光学恒数を有し、ThO,及びCdOを 含まないことを特徴とする高屈折率・低分散光 学ガラスに関する。

との範囲の光学恒数を有するガラスは既に数多く知られているが、それ等の多くは、例えば特公昭38-10719号や特公昭42-23027号のように、人体に有容なThO。やCdOを含むものである。又、ThO。やCdOを含まないものも思つか知られているが、例えば特公昭47-

1 6 8 1 1 号は比較的多量の SiO₂と A4O₂ とを含み、難容性でかつ脱泡が困難であると言う欠点を有する。更に例えば仏国特許第1 5 2 9 3 3 7 号のように、多量の希少希士類酸化物 Gd₂O₂ を含むものが知られているが、高価であるばかりでなく耐失透性に難点がある。

本発明の目的はとれらの欠点を改善するとと
にある。

本発明の光学ガラスは重量がで、B_aO_a 14~
19、SiO_a 0~5、La_aO_b 3.9~51、Y_aO_b 1~5、
2rO_a 2~7、WO_a 2~27、Ta_aO_b +Nb_aO_b +TiO_a
7~24、但し、Ta_aO_b 0~20、Nb_aO_b 0~13、
TiO_a 0~9、ZnO + PbO + アルカリ土類酸化物
0~3、GeO_b + Yb_aO_b 0~25 なる組成を有する。

本発明ガラスの特徴は、人体に有害な ThO,及び CdO を含まないばかりでなく、雌帝性と難消 歴性との原因となる多量の SiO。と A4O。とを排除し、少景の SiO。しか含まないこと、及び本発明ガラスの光学恒数範囲で、耐失透性の改善に WO,及び少量の Y,O,が顕著な効果を持つこと

特別 昭52-129716(2)

を見い出した点にあり、従つて本発明によるか ラスは工業的規模で大量生産する際に必要な秀 れた耐失透性及び良好な溶胎性と清雅性とを有 し、かつ比較的安価である。

特に、本発明によるガラスが前記の特公昭 47-16811号のものに比べて溶験性が良いことを示す為に、次の実験を行つた。

製」に示す原料組成で秤をし、良く混合したパッチを白金坩堝中で1300℃に保持すると、紙1組成のものは数分でガラス化する。一方、紙2組成のものは2時間でもガラス化しない、紙1組成は後半の表』一版1に相当し、紙2組成は特公昭47-16811号の表』一指標59に相当する。

K1 (グラム)		M62 (グラム)	
硅 酸	139	硼 酸	7. 0
硅石粉	2.0	硅石粉	3.9
酸化ランタン	2 1.6	酸化ランタン	3 1.3
酸化イツトリウム	2.0	水散化アルミニウム	2.2
酸化ジルコン	25	酸化ジルコン	. 26
酸化タングステン	3.5	酸化タンタル	6.4
酸化タンタル	9. 1	氷 晶 石	0.5
硝酸鉛	1.5		
炭酸パリウム	0.6		
合 計	5 6 7	合 計	5 3.9

次に各成分の限定理由を述べると、 B₂O₂ は 1 4 多以下では失透傾向が増大し、 1 9 多以上 では所認の高屈折率を維持できない。 SiO₂は 5 多以上では難溶性になるばかりでなく、分相 傾向を生じる。 La₂O₂ は 3 9 多以下では所望の 高屈折率と低分散を維持できず、 5 1 多以上で では失透傾向が増大する。 Y₂O₂ は耐失透性の改善

に効果的であり、19以上必要だが、59を越えるとその効果が減少するはかりでなく、高価になる。同様に ZrO。及びWO。は耐失透性の改善に効果的で、夫々29以上必要だが、夫々79及び279以上では失透傾向が強くなる。 特に失透に対して安定なガラスを得るには、

B₂O₃ + SiO₃量の減少化伴つて、WO₃ 量を増大させることが肝要である。Ta₃O₆ , Nb₂O₆ 及びTiO₇ は高屈折率の維持の為に合置で 7 多以上必要だが、2 4 多以上では失透傾向を増大する。これらの内、Ta₃O₆ 及びNb₃O₆ は夫々20 多及び13 多以上では失透傾向を増大させ、TiO₂は9 多以上では着色を強くするので好なしくない。又主として、光学恒数の調整及び溶験性の改善の目的で、ZnO , PbO 及びアルカリ土類酸化物を合量で3 多以下の範囲で加えることができる。

次に本発明の実施例(成分は重量が)とその 光学恒数を示す。

番号	<i>1</i> 6.1	<i>Л</i> б. 2	<i>1</i> 6. 3	Æ 4	<i>1</i> € 5	№ 6
в,О,	1 5.7	163	1 7. 0	1 6.9	1 5.5	1 7.0
SiO,	4,0	3.0	3.0	1.0		
La 20,	4 3.2	4 5.0	484	48.5	4 4.4	4 1.0
Y, O,	4.0	2.0	2.0	3.0	4.0	3.0
ZrO2	5.0	5.0	3.0	4.0	5.0	4.0
wo,	7. 0	8.7	103	9.0	1 5.5	230
Ta,O,	181	1 1.0	6.3		2.8	2.0
Nb,O,		3.0	4.0	9. 6	2.8	3.0
TiO,		3.0	6.0	8.0	7.5	7. 0
GeO,					2.5	
Yb, O,	-	2.0				
ZnO		1, 0				
РЬО	2.0			7		
BaO	1.0					- · · · · · · · · · · · · · · · · · · ·
n d	1.8720	1.8 9 6 5	1,9067	1.9492	1.9437	1.9 3 3 0
νd	388	3 5.5	334	306	3 1.0	303

とれ等の光学ガラスは硼酸,硅石粉,酸化ランタン,酸化イツトリウム,酸化ジルコン,酸

特弱 昭52-129716(3)

化タングステン、酸化タンタル、酸化ニオブ、酸化チタン、亜鉛華、硝酸鉛、炭酸パリウム、酸化イツテルピウム等の原料の混合物を白金製るつぼ中で1200~ 1300℃で落触し、提拌して充分均質化、泡切れを行つた後、適当な温度で予熱した金型内に誘込み、徐冷するととによつて得られる。

 特許出願人
 株式会社 保 谷 硝 子

 代 理 人
 且
 六 郎 治

 同
 且
 範 之