7.4 Partial Fractions
"Finding easier denominators" "Reversing the process of finding a common denomination."
$\frac{3}{\chi + 5} + \frac{2}{2x-1} = \frac{3(2x-1)}{(x+5)(2x-1)} + \frac{2(x+5)}{(x+5)(2x-1)}$
= 3(2x-1) + 2(x+s) $(x+s)(2x-1)$
$= \frac{6x - 3 + 2x + 10}{2x^2 + 10x - x - 5}$
$= \frac{8x+7}{2x^2+9x-5}$
$\frac{1}{x} + \frac{3}{x^2} + \frac{5}{x-1} = \frac{1 \cdot x(x-1)}{x^2(x-1)} + \frac{3(x-1)}{x^2(x-1)}$
$+ \frac{\int x^2}{x^2(x-1)}$
$= \frac{\chi^2 - \chi + 3\chi - 3 + I\chi^2}{\chi^2(\chi - 1)}$
$= \frac{6x^2 + 2x - 3}{\chi^3 - \chi^2}$

	Now reverse it! Why?
Find	$\int \frac{8x+7}{2x^2+9x-s} dx$
クチ	actor Lenon, nator:
	$\frac{8x+7}{2x^2+9x-5} = \frac{8x+7}{(2x-1)(x+5)}$
2)	Since the factors are both linear (un squares)
	we can assume it came from tractions with constants on top:
	$\frac{8x+7}{(2x-1)(x+s)} = \frac{A}{2x-1} + \frac{B}{x+s}$
3)	Recall how we all toy gotting common denominators:
	$\frac{3 \times 1^{7}}{(2 \times 1) (2 \times 1)} = \frac{A(x+5)}{(2 \times 1) (x+5)} + \frac{B(2 \times 1)}{(2 \times 1) (x+5)}$
(۲	Set the numerators equal:
	8x+7 = A(x+s) + B(2x-1)
	8x+7 = Ax +5A +2Bx -B
	8x+7 = (A+2B) x + 5A-B

c\ 1.	
3) Nov	since this must be the for all x,
11	umow:
	7 = 5A - B
and so	
6) Solve!	(substitute, or add equations to eliminate a variable)
	14 = 10A - 2B + $8 = A + 2B$ $8 = 2 + 2B$
	+8=A+2B $= 2+2B$
	$22 = 11A$ $\frac{6 - 28}{13 = 8}$
	$\frac{1}{2^2 + 1} = \frac{1}{3} = \frac{1}{3}$ $\frac{1}{3} = \frac{1}{3}$ $\frac{1}{3} = \frac{1}{3}$ $\frac{1}{3} = \frac{1}{3}$ $\frac{1}{3} = \frac{1}{3}$
	[2-A]
11.	
	we know:
-	$\frac{8x+7}{2x^2+9x-5} = \frac{3}{x+5} + \frac{2}{2x-1}$ (easy to check: Rho example 1)
50	$\frac{8x+7}{2x^2+9x-5} dx = \sqrt{\frac{3}{x+5}} + \frac{2}{2x-1} dx$
	$= 3 \ln x+s + 2 \ln 2x-1 + c$
	= 3 ln/x+s/+ ln/2x-1/+C
	every power of
In ge	neval: For 1 a Factor of denominator,
9	vess a numerator with
1	less degree.

Ex: Just find the form for partial functions $\frac{\chi^3 + \chi^2 + 1}{\chi(\chi^{-1})(\chi^{2+3k} + 5)(\chi^{2+7})^3}$ $\frac{A}{x} + \frac{B}{x-1} + \frac{Cx+D}{x^2+3x+5} + \frac{Ex+F}{x^2+7} + \frac{Gx+H}{(x^2+1)^2} + \frac{Tx+F}{(x^2+1)^3}$ $\frac{3x^{2}+5x+1}{(x^{2}+2x)(x^{2}-4)(x+1)^{2}} = \frac{3x^{2}+5x+1}{\chi(x+2)(x+2)(x+2)(x+2)(x+1)^{2}}$ $\frac{A}{\chi} + \frac{B}{\chi + 2} + \frac{C}{\chi - 2} + \frac{D}{\chi + 1} + \frac{E}{(\chi + 2)^2} + \frac{F}{(\chi + 1)^2}$