Détaillez vos réponses, prouvez vos affirmations. Les étoiles marquent les questions difficiles.

IMPORTANT : Pensez à noter le numéro du sujet sur votre copie.

Durée : 2h. Documents autorisés. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

Question 1

Calculer la valeur en base 10 de l'expression suivante

$$\frac{(101000)_4 - (540)_{16}}{2^6}$$

Question 2

Prouver que

$$p \to r \models (p \land q) \to r$$
.

Question 3

En utilisant exclusivement les symboles $+,-,\times,=,\leq$, les constantes $0,1,2,\ldots$ et le calcul des prédicats, écrire en langage logique l'affirmation « tout nombre peut s'écrire comme somme de deux nombres non nuls ».

Question 4

Montrer par induction que $\sum_{k=0}^{n} (9k-1) = \frac{1}{2}(n+1)(9n-2)$ pour tout $n \ge 0$.

Question 5

Pour chacune des fonctions suivantes dire si elle est injective et/ou surjective. Donner une justification dans le cas affirmatif, ou un contre-exemple dans le cas négatif.

- (a) La tangente, $tan : \mathbb{R} \to \mathbb{R}$,
- (b) La fonction $f: \mathbb{N} \to \mathbb{N}$ définie par f(n) = n!,
- (c) La fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$.

Question 6

Soit A l'ensemble $\{0,1,2,3\}$. Pour chacune des relations binaires sur A ci-dessous (exprimées comme des sous-ensembles de $A \times A$), dire si elle est réflexive, symétrique, anti-symétrique, transitive.

- (a) $\mathcal{R} = \{(0,0), (0,1), (1,0), (1,1), (2,2), (2,3), (3,2), (3,3)\},\$
- (b) $S = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,3)\},\$
- (c) $\mathcal{T} = \{(0,2), (0,3), (1,1), (1,2), (2,3)\}.$

Suggestion: dessinez les diagrammes des relations.

(d) Y a-t-il des relations d'équivalence? Quelles sont les classes d'équivalence?

Question 7

Soient

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 1 & 3 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 2 & 5 \end{pmatrix}.$$

- (a) Calculer $\sigma_1 \circ \sigma_2$ et σ_1^{-1} .
- (b) Calculer les décompositions en cycles de σ_1 , σ_2 , σ_1^{-1} et σ_2^{-1} .

Question 8

On s'intéresse au nombre de façons d'écrire un entier n comme une somme de k entiers positifs. Par exemple, 4 peut s'écrire de trois façons différentes comme une somme de trois entiers :

$$1+1+2$$
, $1+2+1$, $2+1+1$

On va noter S(n,k) ce nombre, donc S(4,3)=3.

- (a) Énumérer toutes les possibilités pour $1 \le k \le n \le 4$. Combien vaut S(n,k) dans ces cas?
- (b) Pour un n quelconque, combien valent S(n, 1) et S(n, n)?
- (c) Pour un n quelconque, combien valent S(n, 2) et S(n, n 1)?
- (d) Combien de façons y a-t-il d'écrire n comme une somme de k entiers positifs commençant par $1+\cdots$? (Dans l'exemple, on voit que le seules possibilités pour $n=4,\ k=3$ sont 1+1+2 et 1+2+1.)
- (e) Combien de façons y a-t-il d'écrire n comme une somme de k entiers positifs ne commençant pas par $1 + \cdots$? (Dans l'exemple, on voit que la seule possibilité pour n = 4, k = 3 est 2 + 1 + 1.)
- (f) En déduire une définition récursive de S(n, k).
- (g) Prouver par induction que $S(n,k) = \binom{n-1}{k-1}$.
- (h) (**) Combien de façons y a-t-il de d'écrire un entier n comme une somme de k entiers positifs ou nuls?

Solutions

Solution 1 En passant par la base 4 on a

$$\frac{(101000)_4 - (540)_{16}}{2^6} = \frac{(101000)_4 - (111000)_4}{2^6} = \frac{(-10000)_4}{2^6} = (-10)_4 = -4.$$

Solution 2 Il suffit d'écrire les tables de vérité.

p	q	r	$p \rightarrow r$	$(p \land q) \to r$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

On remarque qu'à chaque fois que la proposition de gauche est vraie, celle de droite l'est aussi. Donc $(p \land q) \to r$ est bien une conséquence logique de $p \to r$. On remarque, par contre, que les deux propositions ne sont pas sémantiquement équivalentes.

Solution 3

$$\forall x. \exists y. \exists z. (x = y + z) \land \neg (y = 0) \land \neg (z = 0).$$

Solution 4 On procède par induction. Le cas de base est immédiat. Pour la récurrence on a

$$\sum_{k=0}^{n+1} (9\,k-1) = 9\,n + 8 + \sum_{k=0}^{n} (9\,k-1) = 9\,n + 8 + \frac{9}{2}\,n^2 + \frac{7}{2}\,n - 1 = \frac{9}{2}\,n^2 + \frac{25}{2}\,n + 7 = \frac{1}{2}\,(n+2)(9\,n + 7).$$

Solution 5

- (a) La tangente prend toutes les valeurs entre $-\infty$ et $+\infty$, elle est donc surjective. Par contre, elle est périodique de période 2π , c'est à dire que $\tan(x) = \tan(x + 2\pi)$ pour tout x; elle n'est donc pas injective.
- (b) On a 0! = 1! = 1, la fonction factorielle n'est donc pas injective. Il est facile de voir que la fonction factorielle est croissante, en effet $n! = n \cdot (n-1)! \ge n-1!$. On a 2! = 2 et 3! = 6, puisque la factorielle est croissante, elle ne peut prendre aucune valeur entre 3 et 5; elle n'est donc pas surjective.
- (c) On a $(-1)^2 = 1^2 = 1$, la fonction n'est donc pas injective. Elle ne prend aucune valeur négative, elle n'est donc pas non plus surjective.

Solution 6

(a) Le graphe de la relation \mathbb{R} est

Elle est réflexive, symétrique et transitive. Elle n'est pas anti-symétrique, car il y a une double flèche, par exemple, entre 0 et 1.

(b) Le graphe de la relation S est

Elle est réflexive, symétrique et transitive. Elle n'est pas anti-symétrique, car il y a une double flèche, par exemple, entre 0 et 1.

(c) Le graphe de la relation \mathcal{T} est

$$\stackrel{0}{\underset{3}{\smile}} 2$$

Elle n'est pas symétrique, ni réflexive, ni transitive (on a un chemin $1 \to 2 \to 3$, mais pas $1 \to 3$). Elle est anti-symétrique (pas de double flèches entre éléments distincts).

(d) Les relations \mathcal{R} et \mathcal{S} sont réflexives, symétriques et transitives, elles sont donc des relations d'équivalence. Dans le premier cas, il y a deux classes d'équivalence : $\{0,1\}$ et $\{2,3\}$. Dans le second cas, il y a deux classes d'équivalence : $\{0,1,2\}$ et $\{3\}$.

Solution 7

(a)
$$\sigma_1 \circ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 6 & 3 & 5 & 1 \end{pmatrix}, \qquad \sigma_1^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 6 & 4 & 2 & 1 \end{pmatrix}.$$

(b)
$$\sigma_1 = (1 \ 6 \ 3 \ 2 \ 5), \ \sigma_2 = (1 \ 4 \ 6 \ 5 \ 2 \ 3), \ \sigma_1^{-1} = (1 \ 5 \ 2 \ 3 \ 6), \ \sigma_2^{-1} = (1 \ 3 \ 2 \ 5 \ 6 \ 4).$$

Solution 8

(a) Voici la liste des possibilités :

$$\begin{array}{lll} 1 = 1, \\ 2 = 2, & 2 = 1 + 1, \\ 3 = 3, & 3 = 1 + 2 = 2 + 1, & 3 = 1 + 1 + 1, \\ 4 = 4, & 4 = 1 + 3 = 3 + 1, & 4 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1, & 4 = 1 + 1 + 1 + 1. \end{array}$$

Ce qui donne les premières lignes du triangle de Pascal:

- (b) On voit bien que la seule façon d'écrire n comme une somme de 1 terme est n=n. La seule façon d'écrire n comme une somme de n termes est $n=1+1+\cdots+1$. Donc S(n,1)=S(n,n)=1.
- (c) Les façons d'écrire n comme une somme de 2 termes sont :

$$1 + (n-1), \quad 2 + (n-2), \quad \dots, \quad (n-1) + 1.$$

Ceci correspond à écrire n = a + b, avec a = m et b = n - m, où les valeurs de m comprises entre 1 et n - 1 sont acceptables. Il y a donc n - 1 façons possibles.

Les façons d'écrire n comme une somme de n-1 termes sont :

$$1+1+\cdots+1+2$$
, $1+1+\cdots+2+1$, ..., $2+1+\cdots+1$.

Le terme 2 peut être placé à n'importe laquelle des n-1 positions, il y a donc n-1 possibilités. Donc S(n,1) = S(n,n-1) = n-1.

- (d) Supposons que n est écrit comme un somme de k termes $n=1+\cdots$. Si on enlève le premier 1, il reste k-1 termes qui somment à n-1. Il y a donc S(n-1,k-1) façons différentes d'écrire n ainsi.
- (e) Supposons que n est écrit comme une somme de k termes $n=a+\cdots$, avec a>1. Puisque a>1, on peut enlever 1 de a et obtenir une somme de k termes positifs

$$n-1=(a-1)+\cdots.$$

Il y a donc S(n-1,k) façons différentes d'écrire n ainsi.

- (f) Des deux points précédents, on déduit S(n,k) = S(n-1,k) + S(n-1,k-1).
- (g) On a déjà vérifié au premier point que $S(1,1) = \binom{0}{0} = 1$. Par induction sur n, on déduit du point précédent

$$S(n,k) = S(n-1,k) + S(n-1,k-1) = \binom{n-2}{k-1} + \binom{n-2}{k-2} = \binom{n-1}{k-1},$$

où la deuxième égalité vient de l'hypothèse de récurrence, et la troisième de l'égalité fondamentale sur les coefficients binomiaux.

(h) Considérons une somme de k termes positifs ou nuls, par exemple

$$4 = 0 + 1 + 2 + 0 + 1$$
.

En ajoutant 1 à chacun des k termes on obtient k termes strictement positifs qui somment à n+k, par exemple

$$4+5=1+2+3+1+2$$
.

Deux sommes différentes pour n donneront lieu à deux sommes différentes pour n+k par cette transformation, et toute somme pour n+k peut s'obtenir de cette façon. Autrement dit, on a établi une bijection entre les sommes de k entiers positifs ou nuls pour n et les sommes de k entiers positifs pour n+k. On en déduit qu'en général il y a $S(n+k,k)=\binom{n+k-1}{k-1}$ façons d'écrire n comme une somme de k entiers positifs ou nuls.