Assignment 2 30 Marks

Deadline: Jul 15, 2025 (Tuesday)

1. Consider the following table of data points/nodal points:

Time (sec)	Velocity (m/s)
t	v(t)
10	24
15	31
18	43

- (a) [3+2 marks] Find an interpolating polynomial of velocity that goes through the above data points by using **Vandermonde Matrix** method. Also compute an approximate value of acceleration at Time, **t = 17 sec.**
- (b) [5 marks] Find an interpolating polynomial of velocity that goes through the above data points by using **Lagrange** method.
- 2. Read the following and answer accordingly:
 - (a) [4 marks] Consider the nodes $[-\pi/4, 0, \pi/4]$. Find an interpolating polynomial of appropriate degree by using **Newton's Divided-Difference** method for $f(x) = -x^2 \cos(x)$.
 - (b) [2 marks] Use the interpolating polynomial to find an approximate value at $\pi/3$, and compute the percentage relative error at $\pi/3$.
 - (c) [4 marks] Add a new node π to the above nodes, and find the interpolating polynomial of appropriate degree.
- 3. [10 Marks] The function **f(x)** = **e**^{3x}-**e**^{-3x} has been interpolated at the nodes at **(-2, 0, 2)** using Lagrange method. Evaluate the upper bound of the interpolation error for the interval **[-5, 1]** using Cauchy's theorem. Keep up to 8 significant figures.