Problem 1:

DNA sequence: GCATTGC and GATTAGC

Match: +2

Mismatch: -1

Gap penalty: 2(each gap column contributes -2)

Dynamic programming matrix:

		G	C	A	T	T	\mathbf{G}	C
	0	-2	-4	-6	-8	-10	-12	-14
G	-2	2 —	0	-2	-4	-6	-8	-10
A	-4	0	1	2	0	-2	-4	-6
Т	-6	-2	-1	0	4	2	0	-2
Т	-8	-4	-3	-2	2	6	4	2
A	-10	-6	-5	-1	0	4	5	3
G	-12	-8	-7	-3	-2	2	6	4
C	-14	-10	-9	-5	-4	0	2	8

The optimal alignment score will be 8.

Optimal: GCATT-GC

G-ATTAGC

Problem 2:

Using 2 $\times k$ matrix (k >= m, n)

Sequences: TCTGCCTCTGC and ACTGACCACTGAC

V = TCTGCCTTCTGC, n = 11

W = ACTGACCACTGAC, m = 13

Match: +2

Mismatch: -1

Gap: -2

Global: requiring end-to-end alignment

V	T	C	T	G	-	C	C	T	C	T	G	-	C
W	A	C	T	G	A	C	C	A	C	T	G	A	C
	-1	+2	+2	+2	-2	+2	+2	-1	+2	+2	+2	-2	+2

The optimal score will be 12.

Problem 3:

(A) Sequences: ATC and ATATCTC.

The scoring function is:

MATCH: 5.

MISMATCH: -10.

GAP: -5.

		A	T	A	T	C	T	C
	0	-5	-10	-15	-20	-25	-30	-35
A	-5	5	0	-5	-10	-15	-20	-25
Т		0			0			
С	-15	-5	5	0	-5	5 -	-0-	 -5

The optimal score is -5

Optimal alignment:

AT--C--

ATATCTC

(B) optimal local alignment:

The scoring function is: MATCH: 5. MISMATCH:-10.

GAP: -5.

		A	T	A	T	С	T	С
	0	0	0	0	0	0	0	0
A	0	5	0	5	0	0	0	0
T	0	0	10	5		5	5	0
С	0	0	5	0	5	15	10	10

The optimal alignment score will be 15.

Optimal alignment:

(C) (B) will have the better performance in optimal alignment for these two sequences because it has the high score.

Problem 4:

1. Write down a dynamic programming algorithm for global pairwise alignment with the affine gap penalty. You can assume that the match score and mismatch score are also given.

$$g(n) = g_{open} + (n-1) \times g_{extend}$$

$$OPT(i,j) = max \begin{cases} score(x_i, y_j) + OPT(i-1, j-1) \\ OPT(k, j) + g(i-k) \\ OPT(i, k) + g(j-k) \end{cases}$$

2. O(nm), it is optimal.