Behavioral Economics Exercise 4 Time Preferences

経済学研究科 23A18014 Reio TANJI 丹治伶峰

Question 1 (a) Solve by backward induction.

• Period 2

By $\beta = \delta = 1$, t = 2 agent's intertemporal utility is :

$$-c(e_2) + B(e_1, e_2)$$
 where e_1 is given

Then, the best-response of the t=2 agent, depending on the parameters is derived as follows:

If
$$B \ge kc \Leftrightarrow c \le \frac{B}{k}$$

$$BR(e_1) = \begin{cases} 2 & \text{if } e_1 = 0 \\ 1 & \text{if } e_1 = 1 \\ 0 & \text{if } e_1 = 2 \end{cases}$$

and if $kc > B > 2c \Leftrightarrow c > \frac{B}{k}$

$$BR(e_1) = \begin{cases} 1 & \text{if } e_1 = 1 \\ 0 & \text{if } e_1 = 0, 2 \end{cases}$$

• Period 1

Now by $\beta = \delta = 1$, t = 1 agent's intertemporal utility is:

$$-c(e_1)-c(\mathsf{BR}(e_1))+B(e_1,\mathsf{BR}(e_1))$$

By the assumption kc > 2c and B > 2c and the derived best-response of the t = 2 agent, e_1 is the dominant strategy for each case of the parameters.

Therefore, the perception-perfect equilibria is :

If
$$c \le \frac{B}{k}$$

$$(e_1^*, e_2^*) = (1, e_2)$$
where $e_2 = \begin{cases} 2 & \text{if } e_1 = 0\\ 1 & \text{if } e_1 = 1\\ 0 & \text{if } e_1 = 2 \end{cases}$

If
$$c > \frac{B}{k}$$

$$(e_1^*, e_2^*) = (1, e_2)$$
where $e_2 = \begin{cases} 1 & \text{if } e_1 = 1 \\ 0 & \text{if } e_1 = 0, 2 \end{cases}$

(b) • Period 2

The intertemporal utility is:

$$-c(e_2) + \beta B(e_1, e_2)$$

- When $e_1 = 0$

For t=2 agent, $e_2=1$ is strictly dominated by $e_2=0$, since both of them result in $B(0,e_2)=0$.

Then, the agent prefer $e_2 = 2$ iff

$$-kc + \beta B \ge 0$$
$$c \le \frac{\beta B}{k}$$

Otherwise, $e_2 = 0$ is chosen.

– When $e_1 = 1$

 $e_2 = 2$ is strictly dominated by $e_2 = 1$, since $e_2 = 1$ is enough to satisfy B(.,.) = B. The agent prefer $e_2 = 1$ iff

$$-c + \beta B \ge 0$$
$$c \le \beta B$$

• Period 1

- When
$$c \le \frac{\beta B}{k}$$

Even if $e_1 = 0$, $t = 2$ agent choose $e_2 = 2$ and so $B(e_1, e_2) = B$ realizes.
Then, $t = 1$ agent prefer $e_1 = 2$ to $e_1 = 0$ iff

$$(1-\beta)kc \leq 0$$

which never hold since β < 1, so e_1 = 2 is strictly dominated by e_1 = 0. Then, $e_1 = 1$ is preferred iff

$$-c - \beta c + \beta B \ge -kc + \beta B$$
$$(1 + \beta - \beta k)c \le 0$$
which holds iff $k \ge \frac{1 + \beta}{\beta}$

Otherwise,
$$e_1=0$$
 is chosen.
- When $\frac{\beta B}{k} < c \ge \beta B$
 $e_2=2$ is never chosen, which implies that if $e_1=0$, $B(.,.)=0$.
 $t=1$ agent prefer $e_1=2$ to $e_1=0$ iff

$$-kc + \beta B \ge 0$$
$$c \le \frac{\beta B}{k}$$

which never holds, by $c>\frac{\beta B}{k}$. $e_1=1$ is preferred to $e_1=0$ iff

$$-c - \beta c + \beta B \ge 0$$
$$c \le \frac{\beta B}{1 + \beta}$$

Note that $\left(\frac{\beta B}{k}, \frac{\beta B}{1+\beta}\right]$ is not empty interval.

$$-\beta B < \alpha$$

Both t = 1, 2 agent choose $e_t = 0$, rather than any positive e_t .

Therefore, the perception-perfect equilibria is:

$$(e_1^*, e_2^*) = (e_1, e_2)$$

If
$$c \in (\frac{\beta B}{k}, \frac{\beta B}{1+\beta})$$
,

$$e_1 = 1$$

$$e_2 = \begin{cases} 1 & \text{if } e_1 = 1 \\ 0 & \text{otherwise} \end{cases}$$

If
$$(c \leq \frac{\beta B}{k}) \wedge (k \geq \frac{1+\beta}{\beta})$$
,

$$e_1 = 1$$

$$e_2 = \begin{cases} 2 & \text{if } e_1 = 0 \\ 1 & \text{if } e_1 = 1 \\ 0 & \text{otherwise} \end{cases}$$

If
$$(c \leq \frac{\beta B}{k}) \wedge (k < \frac{1+\beta}{\beta})$$
,

$$e_1 = 0$$

$$e_2 = \begin{cases} 2 & \text{if } e_1 = 0 \\ 0 & \text{otherwise} \end{cases}$$

If $\beta B < c$,

$$e_1 = 0$$
$$e_2 = 0$$