4F7-STATISTICAL SIGNAL ANALYSIS

Examples Paper 2

3

1

Question 1: Consider the following hidden Markov model,

$$X_{k+1} = aX_k + bW_{k+1},$$

$$(0.1) Y_k = cX_k + dV_k, k = 0, 1, ...$$

- where $\{V_k\}$ and $\{W_k\}$ are independent and identically distributed 4
- $\mathcal{N}(0,1)$ and X_0 is $\mathcal{N}(0,b^2)$. Give the expressions for the tran-5
- sition probability density function $f(x_k, x_{k+1})$ and the observa-6
- tion probability density function $g(x_k, y_k)$. 7
- **Question 2:** Henceforth, let a = 0 and c = 1. Find the expres-8
- sion for $p(x_0, \ldots, x_n \mid y_0, \ldots, y_n)$. What happens as $d \to 0$? 9
- Question 3: Construct a self-normalizing importance sampling 10
- estimate of $p(x_0, \ldots, x_n \mid y_0, \ldots, y_n)$ and an importance sam-11
- pling estimate of $p(y_0, \ldots, y_n)$. Show that the estimate of $p(y_0, \ldots, y_n)$ 12
- is unbiased. 13
- Question 4: Find the variance σ^2/N of the self-normalizing im-14
- portance sampling of $p(x_0, \ldots, x_n \mid y_0, \ldots, y_n)$. Find the vari-15
- ance σ_0^2/N of the estimate that uses N independent samples 16
- from $p(x_0, ..., x_n | y_0, ..., y_n)$. 17

- Question 5: Find the number of samples N_1 such that $\sigma^2/N_1 =$
- 19 σ_0^2/N . Discuss what happens to the ratio N_1/N_0 as $d \to 0$?
- Question 6: Construct importance sampling estimates of $p(y_0), \ldots, p(y_n)$
- and calculate the variance of the estimate of $p(y_k)$.
- Question 7: Show that the product of the importance sampling
- estimates of $p(y_0), \ldots, p(y_n)$ is also an unbiased estimate of
- $p(y_0,\ldots,y_n)$. Compare the variance of this new estimate with
- that of the importance sampling estimate of $p(y_0, \ldots, y_n)$ from
- Question 3.
- 27 S.S. Singh, Department of Engineering, University of Cambridge,
- 28 Cambridge, CB1 7AT, UK
- 29 Email address: sss40@cam.ac.uk