1.

Solution: i)
$$(2x + 5x^2)^6$$
: $6(2x + 5x^2)^5 \cdot (2 + 10x)$

ii)
$$\frac{\sqrt{x}}{x+1}$$
: $\frac{1}{2\sqrt{x}(x+1)} - \frac{\sqrt{x}}{(x+1)^2}$

iii)
$$\sqrt[3]{\frac{3x^2+1}{x^2+1}}$$
 : $\frac{1}{3}(\frac{3x^2+1}{x^2+1})^{-2/3} \cdot \frac{4x}{(x^2+1)^2}$

3.

Proof: The key is to construct a differentiable function, denoted by f. Furthermore, instead of proving $|a+b|^n \le 2^{n-1}(|a|^n + |b|^n)$, we would like to prove $(|a| + |b|)^n \le 2^{n-1}(|a|^n + |b|^n)$ first.

If |a|+|b|=0, then the inequality holds trivially. Otherwise $(|a|+|b|\neq 0)$, without losing generality let's suppose that $|b|\neq 0$, |a|=t|b| for some $t\geq 0$. Fix arbitrary $p\geq 1$. Construct our f be a function $f:[0,+\infty)\to\mathbb{R}$, $f(t)=(t+1)^p-2^{p-1}(t^p+1)$; so f(1)=0. Since $f'(t)=p(t+1)^{p-1}-2^{p-1}\cdot(pt^{p-1})=p(t+1)^{p-1}-p(2t)^{p-1}$, we know

$$\begin{cases} f' > 0 \text{ when } t \in [0,1) \\ f' = 0 \text{ when } t = 1 \\ f' < 0 \text{ when } t > 1 \end{cases}$$

It follows that f is increasing on [0,1) and decreasing on $[1,+\infty)$, which means that f(1) is the maximum of our f. Therefore, $f \le 0$. It follows that for any n (which is just a specific number p), $|b|^p \cdot f = (|a| + |b|)^n - 2^{n-1}(|a|^n + |b|^n) \le 0$. The rest follows from $|a+b|^n \le (|a|+|b|)^n \le 2^{n-1}(|a|^n + |b|^n)$.

5.

Proof: Let the two points where f attains zero be a and b, namely, f(a) = f(b) = 0. Let I = (a,b), $\bar{I} = [a,b]$. Suppose the maximum of f on \bar{I} , denoted by $f(x_0)$ is strictly greater than zero. Then $f'(x_0) = 0$ Since $f(x_0) > 0$, $f''(x_0) = -f'(x_0)g(x_0) + f(x_0) = f(x_0) > 0$. But this means there exists some $\varepsilon > 0$ such that on the neighborhood $(x_0 - \varepsilon, x_0 + \varepsilon)$, $f(x_0)$ is a strict local minimum. It follows that $f(x_0)$ is not the maximum point of f, leading to a contradiction. Suppose the maximum of f on \bar{I} , denoted by $f(x_0)$ is strictly smaller than zero. A similar proof shows that this assumption fails. $\max_{x \in \bar{I}} f(x) = \min_{x \in \bar{I}} f(x) = 0$. It follows that f is 0 on the interval between f(a) and f(b).

Proof: i) First we would like to show that $\forall \lambda_1, \lambda_2 > 0, \lambda_1 + \lambda_2 = 1, \{x_1, x_2\} \subseteq [a, b], f(\lambda_1 x_1 + \lambda_2 x_2) \le \lambda_1 f(x_1) + \lambda_2 f(x_2)$: Without losing generality suppose $x_1 < x_2$. Now, since $\lambda_1 x_1 + \lambda_2 x_2 \in (x_1, x_2)$, by convexity we have $\frac{f(\lambda_1 x_1 + \lambda_2 x_2) - f(x_1)}{(\lambda_1 x_1 + \lambda_2 x_2) - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}$. This inequality is equivalent to

$$\begin{split} (x_2 - x_1) \Big(f(\lambda_1 x_1 + \lambda_2 x_2) - f(x_1) \Big) &\leq ((\lambda_1 x_1 + \lambda_2 x_2) - x_1) (f(x_2) - f(x_1)) \\ \Leftrightarrow & f(\lambda_1 x_1 + \lambda_2 x_2) - f(x_1) \leq \lambda_2 \Big(f(x_2) - f(x_1) \Big) \\ \Leftrightarrow & f(\lambda_1 x_1 + \lambda_2 x_2) \leq \lambda_1 f(x_1) + \lambda_2 f(x_2) \end{split}$$

Therefore, the case of Jensen's inequality for n=1,2 is trivial. Suppose Jensen's inequality holds for n=k, we would like to show that it holds for n=k+1. Let $\{x_1,x_2,...,x_k,x_{k+1}\}\subseteq [a,b]$ be a set of k+1 points, and fix arbitrary positive " λ_i "s, $i\in\{1,2,...,k+1\}$, such that $\sum_{i=1}^{k+1}\lambda_i=1$. Moreover, let $y\coloneqq\sum_{i=2}^{k+1}\frac{\lambda_i}{\sum_{i=1}^{k+1}\lambda_i}x_i$.

Of course, $\sum_{i=2}^{n} \frac{\lambda_i}{\sum_{i=2}^{n} \lambda_i} = 1$. Then we have

$$\begin{split} f\bigg(\sum\nolimits_{i=1}^{k+1}\lambda_{i}x_{i}\bigg) &= f\bigg(\frac{\sum\nolimits_{i=1}^{k+1}\lambda_{i}x_{i}}{\sum\nolimits_{i=1}^{k+1}\lambda_{i}}\bigg) \\ &= f\bigg(\frac{\lambda_{1}x_{1}}{\sum\nolimits_{i=1}^{k+1}\lambda_{i}} + \frac{\sum\nolimits_{i=2}^{k+1}\lambda_{i}x_{i}}{\sum\nolimits_{i=1}^{n}\lambda_{i}}\bigg) \\ &= f\bigg(\frac{\lambda_{1}}{\sum\nolimits_{i=1}^{k+1}\lambda_{i}}x_{1} + \frac{\sum\nolimits_{i=2}^{k+1}\lambda_{i}}{\sum\nolimits_{i=1}^{n}\lambda_{i}}y\bigg) \\ &\leq \frac{\lambda_{1}}{\sum\nolimits_{i=1}^{k+1}\lambda_{i}}f(x_{1}) + \frac{\sum\nolimits_{i=2}^{k+1}\lambda_{i}}{\sum\nolimits_{i=1}^{k+1}\lambda_{i}}f(y) \dots \dots by \text{ convexity} \\ &\leq \frac{\lambda_{1}}{\sum\nolimits_{i=1}^{k+1}\lambda_{i}}f(x_{1}) + \frac{\sum\nolimits_{i=2}^{k+1}\lambda_{i}}{\sum\nolimits_{i=1}^{k+1}\lambda_{i}}\cdot\bigg(\sum\nolimits_{i=2}^{k+1}\frac{\lambda_{i}}{\sum\nolimits_{i=2}^{k+1}\lambda_{i}}f(x_{i})\bigg) \dots by \text{ induction} \end{split}$$

$$\begin{split} &= \frac{\lambda_1}{\sum_{i=1}^{k+1} \lambda_i} f(x_1) + \frac{\lambda_2}{\sum_{i=1}^{k+1} \lambda_i} f(x_2) + \dots + \frac{\lambda_{k+1}}{\sum_{i=1}^{k+1} \lambda_i} f(x_{k+1}) \\ &= \sum_{i=1}^{k+1} \lambda_i f(x_i) \dots \dots \sum_{i=1}^{k+1} \lambda_i = 1 \end{split}$$

This proves Jensen's inequality.

ii) (If you don't know that the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$ is convex, you can skip this exercise) The case for $a_i = 0$ for some i is trivial, since the left-hand side equals to zero and the right-hand side is always no less than zero. Now, suppose $a_i > 0$ for all i. For each a_i we can assign some $x_i \in \mathbb{R}$ such that $e^{x_i} = a_i$. Since e^x is a convex function, by i) we have $e^{\sum_{i=1}^n \lambda_i x_i} \leq \sum_{i=1}^n \lambda_i e^{x_i}$. So,

$$\prod_{i=1}^{n} a_i^{\lambda_i} = e^{\sum_{i=1}^{n} \lambda_i x_i} \le \sum_{i=1}^{n} \lambda_i e^{x_i} = \sum_{i=1}^{n} \lambda_i a_i$$

This proves the inequality.

8.

Proof: Since f is continuous on a closed interval [a,b], f attains its minimum on it, so f has at least one local minimum. Then we would like to show that f cannot have finitely many local minimums: suppose $\{f(x_1), f(x_2), f(x_3), ..., f(x_n)\}$ are all of f's local minimums, and $n \ge 2$. Between two adjacent points $f(x_i), f(x_{i+1})$, since f is continuous, f attains a maximum, denoted by $f(y_i)$, on $[x_i, x_{i+1}]$. Furthermore, $f(y) > max\{f(x_i), f(x_{i+1})\}$. It follows that

$$\frac{f(x_i) - f(y)}{x_i - y} > 0 > \frac{f(x_{i+1}) - f(y)}{x_{i+1} - y}$$

So f is not convex, leading to a contradiction. Third we need to show that f can have

infinitely many local minimums: the example is f: [-2,2], $f(x) = \begin{cases} -x, -2 \le x < -1 \\ 1, -1 \le x \le 1 \\ x, 1 < x \le 2 \end{cases}$.

9.

Proof: If $f(0) = f(1) = \cdots = f(n-1)$, then f(i) = 1, $i \in \{0,1,2,...n\}$. This means for any interval [i,i+1], $i \in \{0,1,2,...,n-1\}$, there is some $c_i \in (i,i+1)$ with $f'(c_i) = 0$. If "f(i)"s are not all equal, then there is some f(i) > 1 and some gf(j) < 1. Without losing generality we assume that i < j. By Mean Value Theorem of continuous function, there is some point $x \in (i,j)$ such that f(x) = 1. Thus, on the interval (x,n), there is some $c \in (x,n)$ such that f'(c) = 0.

10.

Proof: i) Given $\varepsilon > 0$, choose $\delta < \left(\frac{1}{k} \cdot \varepsilon\right)^{\frac{1}{\alpha}}$. Fix $x \in \Omega$, $\forall y \in \Omega$ with $|x - y| < \delta$,

we have the following:

$$|T(x) - T(y)| \leq k \cdot |x - y|^{\alpha} < k \cdot \left(\frac{1}{k} \cdot \epsilon\right) = \epsilon$$

Therefore, T is continuous.

ii) Fix
$$x \in \Omega$$
, $\forall y \neq x$, $\left| \frac{T(x) - T(y)}{x - y} \right| \leq k \cdot |x - y|^{\alpha - 1}$. Thus, when $y \to x$, $|x - y| \to 0$, $\left| \frac{T(x) - T(y)}{x - y} \right| \to 0$. But this means $T'(x) = 0$. Since this is true for all $x \in \Omega$, $T' = 0$ on Ω . It follows that $T = C$ for some $C \in \mathbb{R}$.