Methoden der Algorithmik WS1011 Prof. Dr. Michael Kaufmann

Christian Kniep

November 17, 2010

1 Vorlesung 10.11.2010

1.1 Wiederholung

- Anzahl sättigende Pushes : $\leq n * m$
- Anzahl nichtsättigende Pushes : $\leq O(n^2 * m)$
- Anzahl Relabel: < 2n

1.2 Lemma

Wir haben höchstens $\leq O(n^2 * m)$ nichtsättigende Pushes.

1.3 Beweis

Benutzen Potentialfunktion $\phi = \sum_{v \in A} d(v)$.(A=Menge aller aktiven Knoten)

Da $|A| \le n$, $d(v) \le$ für alle v inV und $\phi \le 2n^2$ anfangs. Am Ende ist $\phi = 0$.

1. Relabel

 ϕ steigt um $\leq \epsilon$, wenn d(v) um ϵ steigt. Insgesamt steigt d(v) um $\leq 2n$, also insgesamt steigt ϕ um $\leq 2n^2$.

2. sättigende Pushes

Diese erzeugen über (v,w) vtl. neuen Überfluss an w, w wird somit aktiv, ϕ steigt um $d(w) \le 2n$. Also steigt ϕ durch sättigende Pushes um $\le 2n^2 * m$.

3. nichtsättigende Pushes

 ϕ wird um d(v) erniedrigt, evtl. jedoch noch um d(w) erhöht, falls w vorher nicht aktiv war.

Es gilt jedoch $d(v) \ge d(w) + 1 \Rightarrow \phi$ erniedrigt sich um ≥ 1 .

Insgesammt:

Erhöhung von ϕ von $\leq 2n^2$ um $2n^2 + 2n^2 * m$ und k Erniedrigungen von ϕ um ≥ 1 , führen zusammen zu 0-Potential.

 $\Rightarrow k = O(n^2 * m), k = \#$ nichtsättigende Pushes

1.4 Satz

Der generische Preflow-Push-Algorithmus läuft in $O(n^2 * m)$.

1.5 Varianten

Wahl der aktiven Knoten.

1. **FIFO**

Warteschlange aktiver Knoten $O(n^3)$

2. Highest Label

'höchster' Knoten im Netz $O(n^2 \sqrt{m})$

3. Excess Scaling

'höchster' Füllstand zuerst O(n * m + logc), c=grösste Kapazität

1.6 FIFO

1.6.1 Regel

Wende Push/Relabel solange auf denselben Knoten an, bis entweder e(v)=0 oder Relabel-Operation angewendet wurde.

DIe Liste der Knoten wird als FIFO-Queue gehalten.

Wird v relabelt, wird es hinten wieder angefügt.

1.6.2 Phasen

Arbeiten die Liste ab, bis um ersten Mal ein Knoten erscheint, der an dieser Phase schon teilgenommen hat.

1.6.3 Behauptung

Es gibt $\leq 4n^2 + 2n$ Phasen

1.6.4 Beweis

Betrachte jeweils die Änderung der Potentialfunktion. $\phi = max\{d(v)|vistaktiv\}$

1. Fall 1

Während einer Phase gibt es mindestens eine Relabel-Operation. ϕ steigt höchstens so viel wie der d-Wert max. (?). $\Rightarrow \phi$ steigt in solchen Fällen um $\leq 2n^2$.

2. Fall 2

Alle aktiven Knoten mit max. Distanz werden inaktiv, der maximale Distanzwert sinkt um mindestens 1.

Insgesamt gibt es also $\leq \underbrace{n + 2n^2 + (n + 2n^2)}_{2n+4n^2}$ Pushes.

1.6.5 Satz

Der FIFO-Preflow-Push-Algorithmus läuft in $O(n^3)$

1.7 Highest-Label

1.7.1 **Regel**

Schicke immer Fluss von einem aktiven Knoten mit höchstem Distanzwert.

1. Es gibt $O(n^3)$ nichtsättigende Pushes.

Sei $h = max\{d(v)|vaktiv\}$

Zuerst werden aktive Knoten v mit d(v) = h betrachtet,

dann h - 1, h - 2, usw. Bei Relabelings fängt das ganze neu an.

Es gibt jedoch nur $\leq 2n^2$ Relabelings.

Gibt es n nichtsättigende Pushes hintereinander, dann sind wir fertig. Alle Knoten sind dann inaktiv.

Wie findet man aktive Knoten mit höchstem DIstanzlabel?

Halten Liste (k) = v|vaktivundd(v) = k.

Merken max. Index der den höchsten d-Wert angibt. Betrachte Listen (max), Listen (max - 1), usw...

Relabel erhöht max.

1.8 Satz

Der Highest-Label-Preflow-Push macht $O(n^2 \sqrt{m})$ nichtsättigende Pushes und hat somit $O(n^3)$ Gesamtlaufzeit.

2 Vorlesung 17.11.2010

2.1 Überblick randomisierte Algorithmen

2.1.1 Definition

Ein Algorithmusder Entscheidungen zufällig trifft heisst Randomisierter Algorithmus

2.1.2 Vorteile

- Die Randomisierter Algorithmussind oft schneller als die deterministischen.
- sind (oft) viel einfacher
- keine oder wenige Worst-Case Eingaben

Es gibt zwei Typen von Randomisierter Algorithmus:

- Las-Vegas-Algorithmen Liefern immer das korrekte Ergebnis!
 Durch zufällig getroffene Entscheidung variiert die Laufzeit.
 Ziel der Analyse: Laufzeit des LV Algorithmus ist mit hoher Wahrscheinlichkeit (m.h.W.) ≤ X.
- Monte-Carlo Algorithmus Knnen falsches Ergebnis liefern!
 Ziel der Analyse: Wahrscheinlichkeit für falsches Ergebnis ≤ X mit hoher Wahrscheinlichkeit (m.h.W.) .

Für Entscheidungsprobleme gibt es 2 Arten von Monte-Carlo Algorithmen.

- einseitiger Fehler: Algorithmus kann sich nur in eine Richtung irren.
 Z.B. ist Ergebnis von Algo. 'Ja' ist dies immer korrekt (Fehlerwahrscheinlichkeit ist 0).
 - ist Ergebnis 'Nein', dann ist die Fehlerwahrscheinlichkeit ≥ 0 .
- **b**eidseitiger Fehler Algorithmus kann sich in beide Richtungen irren. Fehlerwahrscheinlichkeit in beiden Fällen > *o*.

2.1.3 Wahrscheinlichkeitstheorie

Sei Ω Ereignisraum. Ein Ereignis ist ELement aus Ω .

Wahrscheinlichkeit ist Abbilsung von Ereignissen auf reelle Zahlen, so dass die Summe über alle Ereignisse = 1.

$$prob: \Omega \to \mathbb{R}_0^+ \sum_{w \in \Omega} prob(w) = 1$$

Ist Ω endlich und es gilt $prob(w) = \frac{1}{|\Omega|}$ so heisst prob Gleichverteilung.

2.1.4 Beispiel

$$\Omega=1,2,3,4,5,6$$
 und $prob(w)=\frac{1}{6}$ für alle $w\in\Omega$. $\Omega_{gerade}=2,4,6$ und $prob(w)\in\Omega_{gerade}=3\frac{1}{6}=\frac{1}{2}$

2.1.5 Markovsche Ungleichung

Für bestimmtes Ereignis X und dessen Erwartungswert E(X) gilt: $prob(X \ge k * E(X)) \le \frac{1}{k}$

2.2 Random Walk

BILD

2.2.1 Frage

 $t_n(i) = E(AnzahlS chrittebisAbgrunderreicht)$ für n = Feld, i = PositionderPerson

2.2.2 Analyse

$$t(0) = 0$$

$$t(1) = 1 + \frac{1}{2}t(0) + \frac{1}{2}t(2)$$

$$t(2) = 1 + \frac{1}{2}t(1) + \frac{1}{2}t(3)$$

$$t(2) = 1 + \frac{1}{2}t(1) + \frac{1}{2}t(3)$$

$$t(n-1) = 1 + \frac{1}{2}t(n-2) + \frac{1}{2}t(n) \ t(n) = 1 + t(n-1)$$

$$t(n-1) \le 1 + \frac{1}{2}t(n-2) + \frac{1}{2}[1 + t(n-1)] = \frac{3}{2} + \frac{1}{2}t(n-2) + \frac{1}{2}t(n-1)$$

Gleichung *2 * t(n - 1):

$$t(n-1) \le 3 + t(n-2)$$

$$t(n-2) \le 1 + \frac{1}{2}t(n-3) + \frac{1}{2}[3 + t(n-2)] = \frac{5}{2} + \frac{1}{2}t(n-3) + \frac{1}{2}t(n-2)$$

$$\leq 5 + t(n-3)$$

Allgemein:

$$t(i) \le 2(n-1) + 1 + t(i-1)$$

$$t(2) \le 2(n-2) + 1 + t(1) = 2n - 3 + t(1)$$

$$t(1) \le 2(n-1) + 1 + \underbrace{t(0)}_{0} = 2n - 1$$

Ш

$$t(1) \le 2n - 1$$

$$t(2) \le 2n - 3 + 2n - 1 = 4n - 4$$

$$t(3) \le 2n - 5 + 4n - 4 = 6n - 9$$
 Vermutung: $t(i) \le 2in - i^2$

Vollständige Induktion über i

IA: gezeigt für i = 0, 1, 2, 3

IS:
$$t(i+1) \le 2(n-(i+1)) + 1 + t(i)$$

$$\leq 2n - 2i - 1 + 2ni - i^2$$

 $\leq 2n(i+1) - (i+1)^2$

 \Rightarrow Also gilt: $t_n(n) \le 2n^2 - n^2 = n^2$

Klar ist, dass $t_n(i-1) \le t_n(i) \forall i$, daher ist $t_1(i) \le n^2 \forall i \le n$

 \Rightarrow Random Walk terminiert in $O(n^2)$ Schritten mit hoher Wahrscheinlichkeit (m.h.W.)

Einfache Anwendung von Random Walk: 2-SAT.

Gegeben: Boolscher Term in KNF, wobei alle Klauseln ≤ 2 Literale haben.

Beispiel: $(a_1 \lor a_2) \land (\bar{a}_3 \lor a_4) \land (a_5) \land \dots$ Gesucht: Variablenbelegung aller a_i mit

true/false, so dass alle Klauseln erfüllt sind. A1: $a_1 = t$, $a_2 = f$, $a_3 = t$

A2: $a_1 = t$, $a_2 = t$, $a_3 = t$

Hamming Abstand von zwei Variablenbelegungen ist die Anzahl der Variablen an denen sich die Belegung unterscheidet.

Frage Ist F erfüllbar?

2-SAT von Papadimitriou (1991)

- 1. Rate Variablenbelegung $a_1...a_n =: A$
- 2. Wiederhole (2n² Mal)
 if (A erfüllt alle Klauseln) return true
 while zufällig eine Klausel C, die von A nicht erfüllt wird
 und wähle einen der beidenen Literale aus C und negiere den Wert.

 ⇒ dies ist neues A
- 3. return false; (mit hoher Wahrscheinlichkeit (m.h.W.) nicht erfüllbar)

Analyse

(richtige Belegung e ist 'Abgrund', \bar{e} ist ganz links an der Wand und hat grössten Hamming Abstand.)

Angenommen es flipt erfüllende Belegung e (nur eine, falls mehr ist sogar besser =i, mehr Abgründe)

 \bar{e} ist Belegung mit dem Hammingabstandn zu e (alle Variablen geflipt).

• Da der Algo immer eine unerfüllte Klausel wählt ist klar, dass mindestens eines der beiden Literale den entgegengesetzten Wert haben muss.

D.h. beim Ändern des richtigen Literals kommt man e um einen Schritt näher, verkürzt somit den Hammingabstand. $\Rightarrow prob$ hierfür $\geq frac$ 12.

• Belegung \bar{e} (ganz links) führt jeder Flip zu einer besseren Belegung.

```
\Rightarrow entspricht Random Walk X:= bedeutet die Anzahl der Schleifendurchläufe für erfüllbare Instanzen E(X) \le n^2 Mit Mavkov-Ungleichung gilt: prob(X \ge k*E(X)) \le \frac{1}{k} In unserem Fall: prob(X \ge 2n^2) \le \frac{1}{2}
```