8 Dérivabilité et étude de fonctions

I- Dérivée en un point

1 - Nombre dérivé

Définition 8.1 – Soient f une fonction définie sur intervalle I et $a \in I$ un réel. La fonction f est dite **dérivable en** a si le taux d'accroissement $\frac{f(x)-f(a)}{x-a}$ admet une limite **finie** lorsque x tend vers a. Cette limite est alors appelée **nombre dérivé** de f en a et est notée f'(a):

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Exemple 8.2 –

- Montrer que la fonction f définie sur \mathbb{R} par $f(x) = x^2$ est dérivable en 1.
- Plus généralement, montrer que la fonction f est dérivable en tout $a \in \mathbb{R}$.
- Montrer que la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$ est dérivable en tout $a \in \mathbb{R}^*$.

Remarque 8.3 -

• En posant h = x - a et sous réserve d'existence, on peut également écrire que

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

• En pratique, on utilise la définition seulement pour montrer la dérivabilité aux *"points à problèmes"*. En dehors de ces points, on justifie la dérivabilité à l'aide des propriétés de la Section II.

2 – Interprétation géométrique

Soient f une fonction définie sur un intervalle I et $a \in I$. On note A le point de coordonnées (a, f(a)) et M le point de coordonnées (x, f(x)) pour $x \in I$.

Alors le taux d'accroissement $\frac{f(x) - f(a)}{x - a}$ correspond au coefficient directeur de la droite (*AM*).

- Si f est dérivable en a, ce coefficient directeur tend vers f'(a) lorsque x tend vers a. Par ailleurs, la droite (AM) tend vers une position limite qui est la tangente à la courbe représentative de f au point A. Le nombre dérivé f'(a) est alors le coefficient directeur de la tangente à la courbe représentative de f au point A.
- Si la limite du taux d'accroissement est infinie, alors la courbe représentative de f possède en A une tangente verticale d'équation x = a.

Proposition 8.4

Soient f une fonction définie sur un intervalle I et $a \in I$.

• Si f est dérivable en a, alors f'(a) est le coefficient directeur de la tangente à la courbe représentative \mathcal{C}_f de f au point d'abscisse a. L'équation de cette tangente est donnée par

$$y = f'(a)(x-a) + f(a).$$

• Si $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = \pm \infty$, alors f n'est pas dérivable en a et la courbe \mathcal{C}_f admet une tangente verticale au point d'abscisse a.

Exemple 8.5 –

- Puisque la fonction f définie sur \mathbb{R} par $f(x) = x^2$ est dérivable en a = 1, de dérivée f'(1) = 2, alors la courbe représentative de f admet au point A de coordonnées (1,1) une tangente d'équation
- Au contraire, la fonction définie sur \mathbb{R} par $f(x) = \sqrt{|x|}$ n'est pas dérivable en 0 et la courbe représentative de f admet une tangente verticale au point de coordonnées (0,0).

3 – Approximation affine

Soient f une fonction définie sur un intervalle I, dérivable en a, \mathcal{C}_f sa courbe représentative et A le point de \mathcal{C}_f d'abscisse a. Au voisinage de a, la tangente en A ressemble beaucoup à la courbe \mathcal{C}_f . On dit que la tangente est une **approximation affine** de la courbe \mathcal{C}_f au voisinage du point d'abscisse a.

Théorème 8.6

Soient f une fonction définie sur un intervalle I et $a \in I$. On suppose que f est dérivable en a. Alors pour h proche de 0, une valeur approchée de f(a+h) est donnée par

$$f(a+h) \approx f(a) + hf'(a)$$
.

Exemple 8.7 – Calculer une valeur approchée de $\sqrt{1.02}$.

Corollaire 8.8

Soient f une fonction définie sur un intervalle I et $a \in I$. Si f est dérivable en a, alors f est continue en a.

Remarque 8.9 – La réciproque n'est pas vraie : une fonction peut être continue en un point sans être dérivable en ce point. Par exemple, la fonction valeur absolue est continue en 0 mais n'y est pas dérivable.

II - Fonction dérivée

Définition 8.10 – Soit f une fonction définie sur un intervalle I. On dit que f est **dérivable sur** I, si f est dérivable en tout point $x \in I$. Alors la fonction

$$f': \begin{array}{ccc} I & \to & \mathbb{R} \\ x & \mapsto & f'(x) \end{array}$$
 avec $\forall a \in I, \quad f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

est appelée la **fonction dérivée** de la fonction f.

Exemple 8.11 -

- La fonction carrée est dérivable sur \mathbb{R} .
- La fonction inverse est dérivable sur \mathbb{R}^* .
- La fonction $\sqrt{\cdot}$ est dérivable sur $]0, +\infty[$.

1 - Dérivée des fonctions usuelles

Le tableau suivant indique les dérivées des fonctions usuelles. $(k \in \mathbb{R} \text{ est une constante et } n \in \mathbb{N}^* \text{ un entier positif non nul})$

f est définie sur	f(x)	f'(x)	f est dérivable sur
\mathbb{R}	k	0	\mathbb{R}
\mathbb{R}	x	1	\mathbb{R}
\mathbb{R}	x^n	nx^{n-1}	\mathbb{R}
\mathbb{R}^*	$\frac{1}{x}$	$-\frac{1}{x^2}$	ℝ*
\mathbb{R}^*	$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	ℝ*
$[0,+\infty[$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0,+∞[

Remarque 8.12 – Seule la fonction racine carrée n'est pas dérivable sur son ensemble de définition : en effet, elle est définie en 0 mais n'y est pas dérivable.

2 – Opérations sur les fonctions dérivables

Soient u et v deux fonctions dérivables sur un intervalle I.

Opération	Dérivée
Somme	(u+v)'=u'+v'
Multiplication par une constante k	$(ku)' = k \times u'$
Produit	(uv)' = u'v + uv'
Quotient	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
Composition	$(v \circ u)' = u' \times (v' \circ u)$

Remarque 8.13 – La formule de dérivation de la composition de deux fonctions permet de déterminer de nombreuses autres formules de dérivation.

Fonction	Dérivée	
u^n pour $n > 0$	$\left(u^{n}\right)' = nu'u^{n-1}$	
\sqrt{u}	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$	
$\frac{1}{u}$	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$	

Proposition 8.14

- Une fonction polynomiale est dérivable sur \mathbb{R} .
- Une fraction rationnelle est dérivable sur son ensemble de définition.

Méthode 8.15 - Calculer la dérivée d'une fonction

Pour calculer la dérivée d'une fonction f:

- 1. On commence par repérer sous quelle forme est donnée la fonction f. Est-ce une somme de fonctions usuelles u + v? Un produit $u \times v$? Un quotient $\frac{u}{v}$?
- 2. On identifie les différentes fonctions u et v puis on calcule les dérivées u' et v'.
- 3. On applique la formule adéquate pour obtenir la dérivée f'.

Exemple 8.16 - Calculer la dérivée des fonctions suivantes.

- $f(x) = 2x^2 x + 5$
- $g(x) = (x+3)\sqrt{x}$

•
$$h(x) = \frac{2x-5}{x^2+3}$$

$$\bullet \quad i(x) = \frac{1}{2x^2 + 3}$$

•
$$j(x) = \sqrt{x^2 + 1}$$

Remarque 8.17 – Il est très important de prendre l'habitude de toujours simplifier au maximum les calculs de dérivées. Cela facilite ensuite l'étude de son signe. Il faut notamment penser à factoriser au maximum et à regrouper les différents termes (fractions à mettre au même dénominateur).

III – Application à l'étude des variations d'une fonction

1 - Monotonie et signe de la dérivée

Théorème 8.18

Soit f une fonction définie et dérivable sur un intervalle I. Alors

f est constante sur I si et seulement si $\forall x \in I$, f'(x) = 0.

ATTENTION! Le résultat est faux si I n'est pas un intervalle. Ainsi la fonction définie sur \mathbb{R}^* par f(x) = -1 si x < 0 et f(x) = 1 si x > 0, vérifie f'(x) = 0 pour tout $x \in \mathbb{R}^*$ mais f n'est pas constante.

Théorème 8.19

Soit f une fonction définie et dérivable sur un intervalle I.

- La fonction f est croissante (resp. décroissante) sur I si et seulement si $\forall x \in I$, $f'(x) \ge 0$ (resp. $f'(x) \le 0$).
- La fonction f est strictement croissante (resp. strictement décroissante) sur I si et seulement si f' est strictement positive (resp. strictement négative) sur I sauf éventuellement en un nombre fini de points où f' peut s'annuler.

Exemple 8.20 – Étudier les variations de la fonction f définie sur \mathbb{R} par $f(x) = x^3$.

Méthode 8.21 – Étudier les variations d'une fonction

Pour étudier les variations d'une fonction :

- 1. On justifie que la fonction est bien dérivable.
- 2. On calcule la dérivée de la fonction.
- 3. On étudie le signe de la dérivée.
- 4. On en déduit les variations de la fonction.

Exemple 8.22 – Étudier les variations de la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 - 15x^2 + 36x + 7$.

Remarque 8.23 – On prend par ailleurs l'habitude de compléter les tableaux de variation par les limites de f aux bornes de l'intervalle et par les valeurs de f(x) en les abscisses où f change de variation.

2 - Extrema locaux

On rappelle qu'un **extremum** est un *maximum* ou un *minimum*.

Théorème 8.24

Soient f une fonction dérivable sur un intervalle I de \mathbb{R} et a un réel appartenant à I.

- Si f admet un extremum local en a, alors f'(a) = 0.
- Si la dérivée f' s'annule en a en changeant de signe, alors f admet un extremum local en a.

Exemple 8.25 – Donner les extrema de la fonction précédente $f(x) = 2x^3 - 15x^2 + 36x + 7 \text{ sur } \mathbb{R}$.

3 - Représentation graphique

Grâce à la méthode du chapitre précédent, qui permet de tracer l'allure d'une courbe à partir du tableau de variation de la fonction, l'étude de la fonction f permet donc de connaître l'allure de la courbe. Parfois, le tracé d'une tangente en un point peut aider à obtenir un tracé plus précis.

Méthode 8.26 - Calculer l'équation de la tangente en un point

Pour calculer l'équation de la tangente en un point A, d'abscisse a :

- 1. Si ce n'est pas déjà fait, on calcule l'expression de la dérivée f'(x).
- 2. On calcule ensuite les images f(a) et f'(a).
- 3. On utilise la formule de la Proposition 8.4 :

$$y = f'(a)(x-a) + f(a).$$

Exemple 8.27 – On considère à nouveau la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 - 15x^2 + 36x + 7$. Calculer l'équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 0.

Méthode 8.28 - Tracer une droite lorsque l'on en connait l'équation

Pour tracer une droite à partir de son équation y = ax + b, il suffit de déterminer les coordonnées de deux points appartenant à cette droite. Pour cela, on remplace successivement x dans l'équation par deux valeurs x_1 et x_2 puis on calcule les ordonnées correspondantes y_1 et y_2 . On obtient ainsi les coordonnées de deux points $A(x_1, y_1)$ et $B(x_2, y_2)$ appartenant à la droite. On place alors ces deux points dans un repère et on trace la droite passant par ces deux points.

Exemple 8.29 – Tracer dans un repère la droite \mathcal{D} d'équation y = 2x + 1.

- Je place les deux points A(-2, -3) et B(3, 7).
- Je trace la droite passant par les deux points.

4 - Exemple : étude d'une fonction

Exemple 8.30 – Soit f la fonction définie sur \mathbb{R} par $f(x) = 1 - \frac{4x - 3}{x^2 + 1}$.

1. Calculer f'(x).

2. Étudier les variations de la fonction f.

3. Tracer l'allure de la courbe représentative de f .

