

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań				
Egzamin:	Egzamin maturalny				
Przedmiot:	Matematyka				
Poziom:	Poziom podstawowy				
Formy arkusza:	EMAP-P0-100-2208, EMAP-P0-200-2208, EMAP-P0-300-2208, EMAP-P0-400-2208, EMAP-P0-600-2208, EMAP-P0-700-2208, EMAP-P0-Q00-2208				
Termin egzaminu:	23 sierpnia 2022 r.				
Data publikacji dokumentu:	9 września 2022 r.				

ZADANIA ZAMKNIĘTE

Zadanie 1. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 2. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 3. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 4. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 5. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 6. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 7. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 8. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 9. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 10. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 11. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 12. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 13. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 14. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 15. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 16. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 17. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 18. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 19. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 20. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 21. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 22. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 23. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 24. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 25. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 26. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 27. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 28. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

ZADANIA OTWARTE

Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 29. (0-2)

Zasady oceniania

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap to wyznaczenie pierwiastków trójmianu kwadratowego $3x^2 - 8x - 3$. **Drugi etap** to zapisanie zbioru rozwiązań nierówności kwadratowej $3x^2 - 8x - 3 \ge 0$.

• poda zbiór rozwiązań nierówności: $(-\infty, -\frac{1}{3}) \cup (3, +\infty)$ lub $x \in (-\infty, -\frac{1}{3}) \cup (3, +\infty)$ ALBO

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Uwagi:

1. Jeżeli zdający, realizując pierwszy etap rozwiązania zadania, popełni błędy (ale otrzyma dwa różne pierwiastki) i konsekwentnie do popełnionych błędów zapisze zbiór rozwiązań nierówności, to otrzymuje **1 punkt** za całe rozwiązanie.

- 2. Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy błędnie obliczony przez zdającego wyróżnik ∆ jest ujemny, to otrzymuje **0 punktów** za całe rozwiązanie.
- 3. Jeżeli zdający, rozpoczynając realizację pierwszego etapu rozwiązania, rozpatruje inny niż podany w zadaniu trójmian kwadratowy, który nie wynika z błędu przekształcenia (np. $3x^2 - 8x$) i w konsekwencji rozpatruje inna nierówność (np. $3x^2 - 8x \ge 0$), to oznacza, że nie podjął realizacji 1. etapu rozwiązania i otrzymuje 0 punktów za całe rozwiązanie.
- 4. Akceptowane jest zapisanie pierwiastków trójmianu w postaci $a + b\sqrt{c}$, gdzie a, b, c są liczbami wymiernymi.
- 5. Jeżeli zdający poda zbiór rozwiązań w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów oraz zapisze: $x \in \left(-\infty, -\frac{1}{3}\right) \cup (3, +\infty)$, to otrzymuje **1 punkt** za całe rozwiązanie.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $(-\infty, 3) \cup \left(-\frac{1}{3}, +\infty\right), (+\infty, 3) \cup \left(-\frac{1}{3}, -\infty\right)$, to otrzymuje **2 punkty**.

Przykładowe pełne rozwiązanie

Pierwszy etap rozwiązania

Zapisujemy nierówność w postaci $3x^2 - 8x - 3 \ge 0$ i obliczamy pierwiastki trójmianu

Obliczamy wyróżnik tego trójmianu: $\Delta=100\,$ i stąd $x_1=-\frac{1}{3}\,$ oraz $x_2=3\,$

podajemy pierwiastki trójmianu bezpośrednio, zapisując je lub zaznaczając je na wykresie:

 $x_1 = -\frac{1}{3}$ oraz $x_2 = 3$.

Drugi etap rozwiązania

Podajemy zbiór rozwiązań nierówności: $(-\infty, -\frac{1}{3}) \cup (3, +\infty)$ lub $x \in (-\infty, -\frac{1}{3}) \cup (3, +\infty)$, lub zaznaczamy zbiór rozwiązań na osi liczbowej

Zadanie 30. (0-2)

Zasady oceniania

Zdający otrzymuje 1 pkt gdy:

• zapisze dwa równania z niewiadomymi x i y wynikające z warunków zadania, np. (y-4)-x=y-(y-4) i x+(y-4)+y=6 LUB $\frac{x+y}{2}=y-4$ i x+(y-4)+y=6

ALBO

• poda/obliczy różnicę $\,r\,$ ciągu arytmetycznego: $\,r=4\,$ lub przyjmuje w rozwiązaniu, że $\,r=4\,$,

ALBO

bez zapisania obliczeń poda poprawną odpowiedź: (−2, 2, 6).

Uwaga:

Jeśli zdający myli ciąg arytmetyczny z geometrycznym, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Ponieważ trzeci wyraz tego ciągu jest o 4 większy od drugiego wyrazu, więc różnica ciągu jest równa 4. Zatem ciąg możemy zapisać w postaci (x, x + 4, x + 8). Suma wszystkich wyrazów ciągu jest równa 6, więc x + (x + 4) + (x + 8) = 6. Stąd

$$3x + 12 = 6$$
$$3x = -6$$
$$x = -2$$

Szukany ciąg to (-2, 2, 6).

Sposób 2.

Korzystamy z definicji ciągu arytmetycznego i otrzymujemy (y-4)-x=y-(y-4), czyli y-4-x=4.

Suma wszystkich wyrazów ciągu jest równa 6, więc x+(y-4)+y=6. Rozwiązujemy układ równań $\begin{cases} y-4-x=4\\ x+(y-4)+y=6 \end{cases}$:

$$\begin{cases} -x + y = 4 + 4 \\ x + y + y = 6 + 4 \end{cases}$$

$$+ \frac{\begin{cases} -x + y = 8\\ x + 2y = 10 \end{cases}}{3y = 18}$$
$$y = 6$$

Zatem -x + 6 = 8 i stąd x = -2. Szukany ciąg to (-2, 2, 6).

Sposób 3.

Z własności ciągu arytmetycznego otrzymujemy $\frac{x+y}{2}=y-4$. Suma wszystkich wyrazów ciągu jest równa 6, więc x+(y-4)+y=6. Z równania $\frac{x+y}{2}=y-4$ wyznaczamy x:

$$x + y = 2(y - 4)$$
$$x + y = 2y - 8$$
$$x = y - 8$$

i podstawiamy wyrażenie $y-8\,$ w miejsce $x\,$ do równania x+(y-4)+y=6, otrzymując kolejno

$$(y-8) + (y-4) + y = 6$$

 $3y - 12 = 6$
 $y = 6$

Zatem x = y - 8 = -2 i szukany ciąg to (-2, 2, 6).

Zadanie 31. (0-2)

Zasady oceniania

Zdający otrzymuje 1 pkt gdy:

• przekształci nierówność $2a^2-4ab+5b^2>0$ do postaci $2(a-b)^2+3b^2>0$ lub $a^2+(a-2b)^2+b^2>0$

ALBO

• obliczy wyróżnik trójmianu $2a^2 - 4ab + 5b^2$ zmiennej a (lub zmiennej b) i zapisze, że jest on ujemny dla każdej liczby rzeczywistej b różnej od 0 (lub – odpowiednio – dla każdej liczby rzeczywistej a różnej od 0).

• spełni kryterium określone w zasadach oceniania w pierwszej kropce za 1 pkt oraz sformułuje poprawny wniosek z powołaniem się na założenie

ALBO

• spełni kryterium określone w zasadach oceniania w drugiej kropce za 1 pkt oraz zapisze, że wykres funkcji $f(a)=2a^2-4ab+5b^2$ (lub funkcji $g(b)=5b^2-4ab+2a^2$ określonej dla każdego $b\neq 0$) leży powyżej osi odciętych i na tej podstawie sformułuje poprawny wniosek.

Uwaga:

Jeśli zdający sprawdza prawdziwość nierówności tylko dla wybranych wartości a i b, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Przekształcamy równoważnie nierówność $2a^2 - 4ab + 5b^2 > 0$:

$$a^{2} + a^{2} - 4ab + 4b^{2} + b^{2} > 0$$

 $a^{2} + (a - 2b)^{2} + b^{2} > 0$

Ponieważ kwadrat każdej liczby rzeczywistej jest nieujemny oraz kwadrat każdej liczby różnej od zera jest liczbą dodatnią, więc $a^2 + (a-2b)^2 + b^2$ jest dodatnie, jako suma liczb dodatnich a^2 oraz b^2 i liczby nieujemnej $(a-2b)^2$.

Zatem nierówność $a^2+(a-2b)^2+b^2>0$ jest prawdziwa dla każdych liczb a i b różnych od zera. Stąd nierówność $2a^2-4ab+5b^2>0$ jest również prawdziwa dla każdych liczb a i b różnych od zera. To należało pokazać.

Sposób 2.

Wyrażenie $2a^2-4ab+5b^2$ traktujemy jako trójmian kwadratowy zmiennej np. a. Obliczamy wyróżnik trójmianu: $\Delta=(-4b)^2-4\cdot2\cdot5b^2=-24b^2<0$ dla każdej liczby $b\neq 0$. Zatem funkcja f określona wzorem $f(a)=2a^2-4ab+5b^2$ dla każdego

 $a \neq 0$ nie ma miejsc zerowych, a ponieważ współczynnik przy drugiej potędze zmiennej jest dodatni, więc wykres funkcji f leży powyżej osi odciętych. Zatem ta funkcja przyjmuje tylko wartości dodatnie.

Oznacza to, że dla każdych liczb $\,a\,$ i $\,b\,$ różnych od zera prawdziwa jest nierówność $2a^2-4ab+5b^2>0.$ To należało pokazać.

Zadanie 32. (0-2)

Zasady oceniania

Uwagi:

- 1. Jeżeli zdający nie zapisze zastrzeżenia $x \neq -2$, ale poprawnie przekształci równanie wymierne do równania kwadratowego i poprawnie to równanie kwadratowe rozwiąże, to może otrzymać **2 punkty**.
- 2. Jeżeli zdający popełni błędy rachunkowe przy przekształcaniu równania, otrzyma równanie kwadratowe (które ma dwa rozwiązania rzeczywiste) i konsekwentnie rozwiąże je do końca, to może otrzymać za całe rozwiązanie **1 punkt**.
- 3. Jeżeli zdający, przekształcając równanie wymierne do równania kwadratowego, zastosuje błędną metodę i zapisze np. 4(x+2)=(x-1)(x+2) albo $4=(x+2)\cdot x-1$, nie uzyskując poprawnego równania, to otrzymuje **0 punktów** za całe rozwiązanie.
- Jeżeli zdający odgadnie jedno z rozwiązań równania, to otrzymuje 0 punktów; jeżeli odgadnie dwa rozwiązania równania i nie uzasadni, że są to jedyne rozwiązania, to otrzymuje 1 punkt.
- 5. Jeżeli zdający poprawnie przekształci równanie do równania kwadratowego, uzyska poprawne wartości pierwiastków, lecz traktuje równanie jako nierówność (rysuje parabolę i podaje przedział(y) jako rozwiązanie), to otrzymuje **1 punkt**. Podobnie, jeżeli zdający poprawnie przekształci równanie do równania kwadratowego, uzyska poprawne wartości pierwiastków, lecz poda odpowiedź w postaci przedziału/sumy przedziałów o końcach (-3) i 2, to otrzymuje **1 punkt**.

Przykładowe pełne rozwiązanie

Równanie ma sens liczbowy dla $x \neq -2$.

Przekształcamy równanie:

$$\frac{4}{x+2} = x - 1$$

$$4 = (x-1)(x+2)$$

$$4 = x^2 + x - 2$$

$$x^2 + x - 6 = 0$$

Rozwiązujemy otrzymane równanie kwadratowe.

Obliczamy wyróżnik Δ trójmianu kwadratowego x^2+x-6 : $\Delta=1^2-4\cdot 1\cdot (-6)=25$ i stąd $x_1=2$ oraz $x_2=-3$.

Otrzymane pierwiastki są różne od liczby (-2), więc są rozwiązaniami danego równania.

Zadanie 33. (0-2)

Zasady oceniania

Zdający otrzymuje 1 pkt gdy:

• obliczy długość odcinka ED: |ED| = 6

ALBO

• obliczy długość odcinka DS: $|DS| = 6\sqrt{3}$,

ALBO

• obliczy długość odcinka ES: |ES| = 12,

ALBO

• obliczy długość odcinka SF: |SF| = 6 (sposób 3.).

Uwaga:

Jeśli zdający zapisze tylko |EF| = 18, to otrzymuje **1 punkt** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Ponieważ $ES \parallel AC$, więc $| \not \perp CAD | = | \not \perp SED | = 60^\circ$ i $| \not \perp ACD | = | \not \perp ESD | = 30^\circ$. Zatem trójkąty prostokątne ACD i ESD są podobne (na podstawie cechy kkk podobieństwa trójkątów). Stąd $\frac{|AD|}{|ED|} = \frac{|CD|}{|SD|}$, więc $\frac{12}{|ED|} = 2$, czyli |ED| = 6.

Trójkąt EFB jest równoboczny, więc |EF| = |EB| = |ED| + |DB| = 6 + 12 = 18.

Sposób 2.

Wysokość trójkąta równobocznego ABC jest równa $\frac{24\sqrt{3}}{2}$, więc $|SD| = \frac{1}{2} \cdot \frac{24\sqrt{3}}{2} = 6\sqrt{3}$. Ponieważ $\frac{|SD|}{|ES|} = \sin 60^\circ$, więc $\frac{6\sqrt{3}}{|ES|} = \frac{\sqrt{3}}{2}$ i stąd |ES| = 12.

Niech K będzie środkiem odcinka CS.

Ponieważ $| \not \perp BCD | = 30^\circ$ i $| \not \perp CSF | = | \not \perp DSE | = 30^\circ$, więc trójkąt CSF jest równoramienny i FK jest wysokością tego trójkąta. Stąd $|KS| = \frac{1}{2} \cdot |CS| = \frac{1}{2} \cdot |SD| = 3\sqrt{3}$. Ponieważ $\frac{|KS|}{|SF|} = \cos | \not \perp CSF |$, więc $\frac{3\sqrt{3}}{|SF|} = \frac{\sqrt{3}}{2}$, czyli |SF| = 6. Obliczamy długość odcinka EF: |EF| = |ES| + |SF| = 12 + 6 = 18.

Sposób 3.

Niech G będzie punktem na boku BC, takim, że $DG \parallel AC$.

Wtedy trójkąt DBG jest równoboczny i |DG|=12. Ponieważ $DG \parallel EF$, więc $| \not = GDC | = | \not = FSC |$ oraz $| \not = SFC | = | \not = DGC |$. Zatem trójkąty SFC i DGC są podobne (na podstawie cechy kkk podobieństwa trójkątów). Stąd $\frac{|DG|}{|SF|} = \frac{|CD|}{|CS|}$, więc $\frac{12}{|SF|} = 2$, czyli |SF|=6.

Wysokość trójkąta równobocznego ABC jest równa $\frac{24\sqrt{3}}{2}$, więc $|SD|=\frac{1}{2}\cdot\frac{24\sqrt{3}}{2}=6\sqrt{3}$. Ponieważ $\frac{|SD|}{|ES|}=\sin 60^\circ$, więc $\frac{6\sqrt{3}}{|ES|}=\frac{\sqrt{3}}{2}$ i stąd |ES|=12. Obliczamy długość odcinka $EF\colon |EF|=|ES|+|SF|=12+6=18$.

Zadanie 34. (0-2)

Zasady oceniania

Zdający otrzymuje 1 pkt gdy:

- wypisze wszystkie zdarzenia elementarne lub obliczy/poda ich liczbę: $|\Omega|=5\cdot 5$ ALBO
 - przedstawi poprawny sposób wyznaczenia wszystkich elementów zbioru A lub wypisze (zaznaczy w tabeli) wszystkie zdarzenia elementarne sprzyjające zdarzeniu A i nie wypisze żadnego niewłaściwego:

$$(-5,1), (-5,2), (-5,3), (-4,1), (-4,2), (-4,3), (1,-5), (2,-5), (3,-5), (1,-4), (2,-4), (3,-4),$$

ALBO

- poda liczbę wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=12, ALBO
 - sporządzi fragment drzewa stochastycznego, które zawiera wszystkie gałęzie sprzyjające zdarzeniu A oraz zapisze prawdopodobieństwo $\frac{1}{5}$ na co najmniej jednym odcinku każdego z etapów doświadczenia,

ALBO

• zapisze $|A| = 2 \cdot 3 + 3 \cdot 2$ (lub $|A| = 2 \cdot 2 \cdot 3$),

ALBO

• zapisze tylko $P(A) = \frac{12}{25}$.

$$P(A) = \frac{|A|}{|\Omega|} = \frac{12}{25}.$$

Uwagi:

- 1. Jeżeli zdający zapisuje tylko liczby 12 lub 25 i z rozwiązania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów** za całe rozwiązanie.
- Jeżeli zdający sporządzi jedynie tabelę o 25 pustych polach, to otrzymuje 0 punktów za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1. (klasyczna definicja prawdopodobieństwa)

Zdarzeniami elementarnymi są wszystkie uporządkowane pary liczb (a, b), gdzie $a, b \in \{-5, -4, 1, 2, 3\}$.

Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 5 \cdot 5 = 25$.

Zdarzeniu A sprzyjają następujące zdarzenia elementarne:

$$(-5,1), (-5,2), (-5,3), (-4,1), (-4,2), (-4,3),$$

$$(1,-5)$$
, $(2,-5)$, $(3,-5)$, $(1,-4)$, $(2,-4)$, $(3,-4)$, wiec $|A|=12$.

Prawdopodobieństwo zdarzenia A jest równe: $P(A) = \frac{|A|}{|\Omega|} = \frac{12}{25}$.

Sposób 2.

Zdarzeniami elementarnymi są wszystkie uporządkowane pary liczb (a, b), gdzie $a, b \in \{-5, -4, 1, 2, 3\}$.

Jest to model klasyczny. Budujemy tabelę ilustrującą sytuację opisaną w zadaniu.

		I losowanie						
		-5	-4	1	2	3		
Il Iosowanie	-5			×	×	×		
	-4			×	×	×		
	1	×	×					
) 	2	×	×					
	3	×	×					

Symbolem \times oznaczono pola odpowiadające zdarzeniom elementarnym sprzyjającym zdarzeniu A.

Wszystkich zdarzeń elementarnych w tym doświadczeniu jest 25.

Wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A jest 12.

Stąd
$$P(A) = \frac{|A|}{|\Omega|} = \frac{12}{25}$$
.

Sposób 3. (drzewo stochastyczne)

Rysujemy fragment drzewa stochastycznego rozważanego doświadczenia z uwzględnieniem wszystkich istotnych gałęzi.

Prawdopodobieństwo zdarzenia $\,A\,$ jest równe

$$P(A) = 12 \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{12}{25}$$

Zadanie 35. (0-5)

Zdający otrzymuje 4 pkt gdy:

- obliczy objętość V graniastosłupa: $V=1296\sqrt{3}$ ALBO
 - obliczy pole P_h powierzchni bocznej graniastosłupa: $P_h = 504\sqrt{3}$.

Uwaqi:

- 1. Jeżeli zdający poda (bez stosownych obliczeń) długości boków podstawy *ABCD*, lecz dalej zapisze, że trójkąt o bokach 9, 12, 15 jest prostokątny (lub sprawdzi rachunkiem, że taki trójkąt jest prostokątny) i bez błędu doprowadzi rozwiązanie do końca, to otrzymuje **5 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający poda (bez stosownych obliczeń) długości boków podstawy *ABCD* i nie zapisze, że trójkąt o bokach 9, 12, 15 jest prostokątny ani nie sprawdzi tego rachunkiem, to może otrzymać co najwyżej **4 punkty** za całe rozwiązanie.
- 3. Jeżeli zdający popełni jeden błąd rzeczowy, np.: przyjmie |CG|=2|CD| lub $|CG|=\frac{|CD|}{\sqrt{3}}$, niepoprawnie zastosuje twierdzenie Pitagorasa, niepoprawnie zastosuje wzory skróconego mnożenia, i rozwiąże zadanie konsekwentnie do końca, to może otrzymać co najwyżej **3 punkty** za całe rozwiązanie.
- 4. Jeżeli zdający odgadnie długości boków podstawy *ABCD* i na tym zakończy, to otrzymuje **1 punkt**.

Przykładowe pełne rozwiązanie

Wprowadźmy następujące oznaczenia: b – długość krótszej krawędzi podstawy ABCD, h – wysokość graniastosłupa ABCDEFGH opuszczona na podstawę ABCD (zobacz rysunek).

Obliczamy długość krótszej krawędzi podstawy ABCD, stosując do trójkąta BCD twierdzenie Pitagorasa:

$$b^{2} + (b+3)^{2} = 15^{2}$$

$$b^{2} + b^{2} + 6b + 9 = 225$$

$$2b^{2} + 6b - 216 = 0$$

$$\Delta = 6^{2} - 4 \cdot 2 \cdot (-216) = 49 \cdot 36$$

$$b = \frac{-6 - 42}{2 \cdot 2} < 0 \quad \text{lub} \quad b = \frac{-6 + 42}{2 \cdot 2} = 9$$

wiec |CD| = 3 + b = 3 + 9 = 12.

Obliczamy wysokość h graniastosłupa:

$$\frac{h}{|CD|} = \text{tg } 60^{\circ}$$

$$\frac{h}{12} = \sqrt{3}$$

$$h = 12\sqrt{3}$$

Obliczamy objętość V graniastosłupa: $V=b\cdot(b+3)\cdot h=9\cdot 12\cdot 12\sqrt{3}=1296\sqrt{3}$. Obliczamy pole P_b powierzchni bocznej graniastosłupa:

$$P_b = 2 \cdot (b+b+3) \cdot h = 2 \cdot (9+12) \cdot 12\sqrt{3} = 504\sqrt{3}$$

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. ogólnych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.)
- II. dodatkowych szczegółowych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią matura z matematyki, poziom podstawowy, termin poprawkowy 2022.

I. Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzona dyskalkulia

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania,
 - przestawienia cyfr,
 - zapisania innej cyfry, ale o podobnym wyglądzie,
 - przestawienia położenia przecinka.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.
- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.

- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.
- II. <u>Dodatkowe szczegółowe zasady oceniania zadań otwartych w przypadku</u> arkuszy osób ze stwierdzoną dyskalkulią

Zadanie 29.

Zdający otrzymuje 1 pkt, jeżeli:

• stosuje poprawną metodę obliczenia pierwiastków trójmianu kwadratowego $3x^2 - 8x - 3$, tzn. stosuje wzory na pierwiastki trójmianu kwadratowego i oblicza te pierwiastki, popełniając błędy tylko o charakterze dyskalkulicznym

ALBO

• w wyniku obliczeń otrzyma wyróżnik ujemny, ale konsekwentnie narysuje parabolę,

ALBO

• poprawnie rozwiązuje nierówność $3x^2 - 8x \ge 0$ (tzn. stosuje się punkt 6. ogólnych zasad oceniania),

ALBO

• dla wyznaczonych przez siebie pierwiastków oraz rozpatrywanego trójmianu i nierówności konsekwentnie wyznaczy zbiór rozwiązań tej nierówności.

Zdający otrzymuje 2 pkt, jeżeli:

spełni jeden z warunków określonych w zasadach oceniania za 1 pkt oraz przedstawi rozwiązanie w postaci graficznej z poprawnie narysowaną parabolą, zaznaczonymi miejscami zerowymi oraz zaznaczeniem przedziałów, w których funkcja przyjmuje wartości nieujemne.

Uwagi:

- 1. Jeżeli zdający zapisze zbiór rozwiązań nierówności w postaci sumy przedziałów otwartych, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.
- 2. Jeżeli zdający, rozwiązując nierówność, pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $(-\infty,3) \cup \left(-\frac{1}{3},+\infty\right)$, $(+\infty,3) \cup \left(-\frac{1}{3},-\infty\right)$, to może otrzymać **2 punkty** za całe rozwiązanie.
- 3. Nie stosuje się uwag 2. i 3. z zasad oceniania arkusza standardowego.

Zadanie 30.

Zdający otrzymuje 1 pkt, jeżeli:

zapisze równanie z niewiadomymi x i y wynikające z warunków zadania, np.

$$(y-4)-x=y-(y-4)$$
 lub $x+(y-4)+y=6$, lub $\frac{x+y}{2}=y-4$, lub $x+(y-4)+y=6$.

Zadanie 31.

Zdający otrzymuje 1 pkt, jeżeli:

obliczy wyróżnik trójmianu $2a^2 - 4ab + 5b^2$ zmiennej a (lub zmiennej b).

Zadanie 32.

Zdający otrzymuje 1 pkt, jeżeli:

 przekształca równanie wymierne do postaci równania kwadratowego, popełniając przy tym błędy tylko o charakterze dyskalkulicznym

ALBO

• popełnia błąd przy przekształceniu równania $\frac{4}{x+2} = x-1$ do prostszej postaci, lecz dalej stosuje poprawną metodę rozwiązania otrzymanego równania i konsekwentnie oblicza pierwiastki tego równania.

Uwaga:

W ocenie rozwiązania zadania 32. (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwagi nr 3 do zadania ze standardowych zasad oceniania.

Zadanie 33.

Zdający otrzymuje 1 pkt, jeżeli:

zapisze równanie, w którym jedyną niewiadomą jest długość odcinka $\it ED$ (lub odcinka $\it ES$,

lub
$$SF$$
), np. $\frac{12}{|ED|} = \frac{12\sqrt{3}}{6\sqrt{3}}, \ \frac{6\sqrt{3}}{|ES|} = \frac{\sqrt{3}}{2}, \frac{12}{|SF|} = \frac{12\sqrt{3}}{6\sqrt{3}}.$

Zadanie 34.

Zdający otrzymuje 1 pkt, jeżeli:

 zapisze jedynie liczbę 25 (należy traktować to jako wyznaczenie liczby wszystkich zdarzeń elementarnych)

ALBO

 wyznaczy wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, popełniając przy tym tylko błędy o charakterze dyskalkulicznym.

Zdający otrzymuje 2 pkt, jeżeli:

wyznaczy wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, popełniając przy tym tylko błędy o charakterze dyskalkulicznym, i konsekwentnie rozwiąże zadanie do końca.

Uwaga:

W ocenie rozwiązania zadania 34. (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwagi nr 1 ze standardowych zasad oceniania.

Zadanie 35.

Stosuje się zasady oceniania arkusza standardowego.

