

מבוא למערכות לומדות (236756)

סמסטר אביב תשפ"א – 11 באוקטובר 2021

מרצה: ד"ר ניר רוזנפלד

<u>מבחן מסכם מועד ב' – פיתרון חלקי</u>

הנחיות הבחינה:

- **משך הבחינה:** 3 שעות. •
- **חומר עזר:** המבחן בחומר סגור (ללא ספרים, מחברות, דפי נוסחאות).
 - אין צורך במחשבון. •
 - מותר לכתוב בעט או בעיפרון, כל עוד הכתב קריא וברור.
- יש לכתוב את תשובותיכם **על גבי שאלון זה** בכתב יד קריא. תשובה בכתב יד שאינו קריא לא תיבדק.
- במבחן 13 עמודים ממוספרים סה"כ, כולל עמוד שער זה שמספרו 1 ושלושה עמודי טיוטה בסוף הגיליון.
 - אין בחירה בין השאלות.
 - נא לכתוב רק את המבוקש ולצרף הסברים קצרים עפ"י ההנחיות.
 - בתום המבחן יש להגיש את שאלון זה בלבד.

מבנה הבחינה:

- **חלק א' [72 נק']:** 4 שאלות פתוחות [כל אחת 18 נק']
- **חלק ב' [28 נק']:** 7 שאלות סגורות (אמריקאיות) [כל אחת 4 נק'] •

בהצלחה!

חלק א' – שאלות פתוחות [72 נק']

שאלה 1: ההשפעה של נירמול על מסווגים שונים [18 נק']

 $x_i \in \mathbb{R}^d, y_i \in \{-1,1\}$ בעל מאפיינים (פיצ'רים) רציפים <u>לא מנורמלים</u> ותיוגים בינאריים, משמע (train set) נתון סט אימון

- בשלב הראשון לומדים מסווג על סט האימון ובודקים את דיוק האימון על סט האימון.
- כעת, מנרמלים כל מאפיין (feature) בעזרת min-max scaling, כך שכל הערכים באותו מאפיין יהיו בין 0 ל-1.
 - בשלב השני מאמנים מסווג <u>חדש</u> על סט האימון המנורמל, ובודקים את דיוק האימון על סט האימון המנורמל.

עבור כל אלגוריתם למידה, סמנו האם דיוק **האימון** של המסווג החדש לאחר הנירמול זהה בהכרח לזה של המסווג המקורי. רק אם סימנתם שהדיוק **לא בהכרח זהה**, הסבירו בקצרה מדוע.

הניחו שאין צעדים סטוכסטיים (אקראיים) בריצת האלגוריתמים.

דיוק האימון: זהה בהכרח / לא בהכרח זהה	1 <u>D3 המשתמש באנטרופיה ובונה עץ בעומק מירבי</u>	א.
דיוק האימון: זהה בהכרח / לא בהכרח זהה	AdaBoost with decision stumps	ב.
דיוק האימון: זהה בהכרח / <u>לא בהכרח זהה</u>	(דוגמת אימון לא נחשבת שכנה של עצמה) $k=1$ כאשר k-NN	ג.
ושקול של הפיצ'רים משתנה לחלוטין. כל השכנויות	הסבר (אם "לא בהכרח"): <u>המרחקים לא משתנים בקבוע כפלי. הנ</u>	
	אווענינת לבעוקנים	

ד. Log. regression הומוגני כשהדאטה המקורי פריד ליניארית הומוגנית דיוק האימון: זהה בהכרח / לא בהכרח זהה הסבר (אם "לא בהכרח"): פרידות הומוגנית לאו דווקא נשמרת דיוק האימון: זהה בהכרח / לא בהכרח זהה לא הומוגני כשהדאטה המקורי פריד ליניארית Hard-SVM דיוק האימון: זהה בהכרח / לא בהכרח זהה $\lambda = 1$ לא הומוגני כאשר Soft-SVM .ה.

w הסבר (אם "לא בהכרח"): $\frac{1}{1}$ הסקאלה של כל פיצ'ר משתנה בגלל הנרמול וזה גורם למשקול שונה בנורמה של

שאלה 2: ההשפעה של מיפוּיים על פרידוּת ליניארית [18 נק']

 $y \in \{-1, +1\}$ ותיוגים בינאריים בינאריים דו-ממדיים רציפים $x \in \mathbb{R}^2$ ותיוגים בינאריים

 $b \in \mathbb{R}$ נתון bias נתון שורכיב bias ידוע כי אוסף הדוגמאות <u>פריד ליניארית</u> ע"י וקטור נתון

.2-בעת נסתכל על פונקציות מיפוי $\phi:\mathbb{R}^2 o\mathbb{R}^k$ ונבחן את השפעתן על אוסף הדוגמאות. k יכול להיות גדול/קטן/שווה ל

עבור כל אחת מפונקציות המיפוי הבאות, סמנו האם אוסף הדוגמאות אחרי המיפוי עדיין פריד ליניארית בהכרח.

. המפרידים את האוסף אחרי המיפוי bias אם כן: השתמשו ב-w,b כדי להציע וקטור חדש ש $w'\in\mathbb{R}^k$ ורכיב

. אם לא: ציירו אוסף דוגמאות מתוייגות במרחב במרחב המקורי \mathbb{R}^2 שהמיפוי המוצע הופך ל $\frac{d}{d}$

א. $[6 \ \text{נק'}] \phi$ היא הורדת ממד ליניארית בעזרת PCA א. א. והיא הורדת ממד ליניארית בעזרת

 $\underline{k}=1$ מטריצת ההטלה של PCA, אזי המיפוי הינו של $\underline{\mathbf{U}} \in \mathbb{R}^{2 imes 1}$ מטריצת ההטלה של

אוסף הדוגמאות אחרי המיפוי: **בהכרח / <u>לא בהכרח</u>** פריד ליניארית (סמנו).

ב. $[6] \, \mathrm{tgr}]$ מורידה ליניארית לממד יחיד בעזרת PCA ואז מחזירה את הקלט לדו-ממד בעזרת המטריצה "ההופכית". k=2 מטריצת ההטלה של PCA, אזי המיפוי הינו $\psi(x)=UU^{\mathsf{T}}x$ ומתקיים $U\in\mathbb{R}^{2\times 1}$ מטריצת ההטלה של אוסף הדוגמאות אחרי המיפוי: בהכרח / לא בהכרח פריד ליניארית (סמנו).

<u>אותה דוגמה כמו בסעיף הקודם. אינפורמציה שאובדת בהורדת הממד לא יכולה "לחזור" בשחזור לממד הקלט.</u>

(3 נק'] ϕ היא מיפוי פולינומיאלי ממעלה (כל המונומים $\underline{\mathsf{v}}$ מעלה ϕ

k=10 ומתקיים $\phi(x)=[1,\;x_1,\;x_2,\;x_1x_2,\;x_1^2,\;x_2^2,\;x_1^2x_2,\;x_1x_2^2,\;x_1^3,\;x_2^3]$ ומתקיים $\phi(x)=[1,\;x_1,\;x_2,\;x_1x_2,\;x_1^2$

$$\mathbb{R}^{10} \ni \mathbf{w}' = [0, w_1, w_2, 0, 0, 0, 0, 0, 0, 0, 0, 0] \qquad \qquad \mathbb{R} \ni b' = b$$

שאלה 3: אופטימיזציה [18 נק']

.ElasticNet ורגולריזציה מסוג L1 ורגולריזציה מסוג בוקראת L2 נקראת $(\lambda_1,\lambda_2>0)$:

$$\operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} \underbrace{(\|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda_1 \|\boldsymbol{w}\|_1 + \lambda_2 \|\boldsymbol{w}\|_2^2)}_{\triangleq p(\boldsymbol{w})}$$

בשאלה זו נבחן את הקמירות של בעיה זו.

תזכורת: תהא \mathcal{C} קבוצה קמורה.

הפונקציה אם מתקיים נקראת פונקציה $f\colon \mathcal{C} \to \mathbb{R}$ הפונקציה

$$\forall x_1, x_2 \in \mathcal{C}, \ \forall t \in [0,1] \colon \ tf(x_1) + (1-t)f(x_2) \ge f(tx_1 + (1-t)x_2)$$

. היא פונקציה קמורה ($a \in \mathbb{R}$ הוכיחו לפי הגדרה שפונקציית הערך המוחלט |a| (עבור סקלאר) היא פונקציה קמורה.

		הוכחה:

ב. [6] נק'] הוכיחו שפונקציית המטרה [w] קמורה ב-w.

באפשרותכם להשתמש בתכונות שנלמדו בהרצאה או בתרגול (אך עליכם לכתוב אותן במפורש). או באפשרותכם להשתמש בכך שהראיתם בתרגיל בית שהפונקציה $\|\mathbf{A}\mathbf{w}+\mathbf{b}\|_2^2$ קמורה ב \mathbf{w} לכל לכל מו כן, תוכלו להשתמש בכך שהראיתם בתרגיל בית שהפונקציה ב

הוכחה: <mark>יש להשתמש בסעיף הקודם</mark>

p(w) לפונקציית המטרה לפי w לפונקציית המטרה subgradient ג. [6 נק'] כתבו וקטור שמהווה

תשובה סופית (לרשותכם עמודי טיוטה בסוף השאלון):

$$\nabla_{w}(\|\mathbf{X}w - y\|_{2}^{2} + \lambda_{1}\|w\|_{1} + \lambda_{2}\|w\|_{2}^{2}) = \frac{2\mathbf{X}^{\mathsf{T}}(\mathbf{X}w - y) + 2\lambda_{2}w + \lambda_{1}h(w)}{2}$$

$$h_i(\mathbf{w}) = \begin{cases} -1, & w_i < 0 \\ 1, & w_i > 0 \\ 0 & w_i = 0 \end{cases}$$

שאלה 4: פונקציות Kernel וז נק'ן

חוקי אמ"מ (kernel) היא קרנל $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ חוקי אמ

 $. orall m{u}, m{v} \in \mathbb{R}^d : K(m{u}, m{v}) = m{\phi}(m{u})^{ op} m{\phi}(m{v})$ ניתן למצוא פונקציית מיפוי $m{\phi} : \mathbb{R}^d \to \mathbb{R}^p$ עבורה מתקיים התנאי ($p \in \mathbb{N}$ עבור)

d=2 א. [6] נק'] בסעיף זה הניחו מרחב דוגמאות דו-ממדי, משמע .(2 ממעלה פולינומיאלי מרנל חוקי (זהו קרנל חוקי $K_0(\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{u}^{\mathsf{T}} \boldsymbol{v})^2$ נוכיח שהפונקציה

 K_0 עם עם התנאי התנאי התנאי שמקיימת $\phi\colon\mathbb{R}^2 o\mathbb{R}^3$ עם פונקציית מיפוי

 $\sqrt{2}u_1u_2$]^T

 u_2^2

 $\phi(\mathbf{u}) = \begin{bmatrix} u_1^2 \end{bmatrix}$

 $.\psi,\psi':\mathbb{R}^d o\mathbb{R}^2$ שתי פונקציות מיפוי ממרחב הדוגמאות למרחב דו-ממדי, משמע ψ,ψ' שתי פונקציות מיפוי ממרחב הדוגמאות למרחב דו $K_1(\boldsymbol{u}, \boldsymbol{v}) = \psi'(\boldsymbol{u})^{\mathsf{T}} \psi'(\boldsymbol{v})$ וגם $K_1(\boldsymbol{u}, \boldsymbol{v}) = \psi(\boldsymbol{u})^{\mathsf{T}} \psi(\boldsymbol{v})$ היי משמע מתקיים ע"י ψ, ψ', ψ' , משמע מתקיים מאנדרים ע"י

. ב. $K_3(\pmb{u},\pmb{v}) = \underbrace{K_1(\pmb{u},\pmb{v})}_{\in\mathbb{R}} + \underbrace{K_2(\pmb{u},\pmb{v})}_{\in\mathbb{R}}$ הינה קרנל חוקי.

.(עליכם להסיק את p בעצמכם) אום במפורש עם און התנאי הענאי את שמקיימת לווע שמקיימת $\phi\colon\mathbb{R}^d o \mathbb{R}^p$ שמקיימת עם במפורש פונקציית מיפוי

$$\phi(\mathbf{u}) = [\psi_1(u), \psi_2(u), {\psi'}_1(u), {\psi'}_2(u)]^{\mathsf{T}}$$

. ג. עוביח שהפונקציה $K_4(\pmb{u},\pmb{v}) = \underbrace{K_1(\pmb{u},\pmb{v})}_{\in\mathbb{R}} \cdot \underbrace{K_2(\pmb{u},\pmb{v})}_{\in\mathbb{R}}$ הינה קרנל חוקי.

 K_4 עם שמקיימת את התנאי הנדרש עם $\phi\colon\mathbb{R}^d o\mathbb{R}^4$ שמקיימת את התנאי הנדרש עם $\phi\colon\mathbb{R}^d$

 $\phi(\mathbf{u}) = [\psi_1(u)\psi'_1(u), \ \psi_2(u)\psi'_1(u), \ \psi_1(u)\psi'_2(u), \ \psi_2(u)\psi'_2(u)]^{\mathsf{T}}$

חלק ב' – שאלות אמריקאיות [28 נק']

סמנו את התשובות המתאימות (לפי ההוראות). בחלק זה אין צורך לכתוב הסברים.

- א. [4 נק'] מה מבין ההיפר-פרמטרים הבאים עשוי להשפיע על מספר המאפיינים (פיצ'רים) שהמודל הסופי ישתמש בהם? סמנו את **בל** התשובות הנכונות.
 - k-NN באלגוריתם k .a
 - L1 מקדם הרגולריזציה λ ברגרסיה ליניארית עם רגולריזציית .b
 - <u>העומק המרבי max depth באלגוריתם c</u>
 - עם Decision stump כמסווג חלש AdaBoost מספר האיטרציות המקסימלי T באלגוריתם d
 - ב. [4 נק'] מבין הטענות הבאות הקשורות ל-Kernel-SVM, סמנו את הטענה **השגויה**.
 - a. בחירת סוג הקרנל עשויה להשפיע על מידת ה-overfitting של המודל
 - <u>מספר המשתנים בבעיית האופטימיזציה של Kernel-SVM הוא כמספר המאפיינים d (במקרה ההומוגני) .b</u>
 - c. קיימים אוספי נתונים שאינם פרידים לינארית ש-Kernel-SVM יכול להפריד בצורה מושלמת
 - d. של Kernel הדוגמאות מופיעות רק במכפלות פנימיות learning objective מתאפשר כי ב-Kernel-SVM של dearning objective
- $(x_i \in \mathbb{R}^d, \ y_i \in \mathbb{R})$. ביפים ותיוגים רציפים ותיוגים רציפים (עד מעלה p) ומקדמי רגולריזציה λ שונים. פותרים בעיית בערים עם דרגות שונות למיפויים פולינומיאליים (עד מעלה p) ומקדמי רגולריזציה p שונים. השורה הראשונה בטבלה שלפניכם מתארת את ביצועי האימון והמבחן של רגרסיה ליניארית (p=1) ללא רגולריזציה.

השורות האחרות מתארות את הביצועים של ריצות שונות על אותו דאטה, אך עם ערכי λ, p שונים. חלק מהשורות מתארות תוצאות אפשריות וחלק מתארות תוצאות בלתי אפשריות. לכל אחת מארבע השורות, סמנו האם היא אפשרית או לא.

L2 Regular. strength	Polynomial Degree	Train MSE	Test MSE	?האם אפשרית
$\lambda = 0$	p=1 (linear)	20	30	(נתון) אפשרית
$\lambda = 1$	p = 1	22	4	<mark>כן</mark> / לא
$\lambda = 1$	p = 1	4	20	כן / <mark>לא</mark>
$\lambda = 0$	p=2	<u>22</u>	24	כן / <mark>לא</mark>
$\lambda = 0$	p = 9	4	32	<mark>בן</mark> / לא

ד. (מטרת ה-Cross-entropy loss מטרת ה-multinomial logistic regression הינה: 4] ד. (סמנו את התשובה הנכונה)

- a. לאפשר מִיקבוּל (parallelization) של הלמידה
 - 2. לאפשר רגרסיה פולינומיאלית ממעלה λ
- 0- לקרב את הניבוי ההסתברותי של התיוג הנכון ל-1 ושל התיוגים האחרים ל-c
 - סופי epochs לוודא שהאלגוריתם יעצור אחרי מספר d
- e. לנרמל את הפלט של פונקציות ה-score של כל מחלקה באופן שיצרו התפלגות

ה. [4 נק'] בתרגול הגדרנו את מחלקת ההיפותזות $\mathcal{H}_{
m rect}$ של $rac{m{adectric}}{m{adectric}}$ של $\mathcal{H}_{
m rect}$ של $\mathcal{H}_{
m rect}$ האינו שמחלקת המלבן מסווג באופן חיובי, והשטח שמחוץ למלבן שלילי). $\mathcal{H}_{
m sqr}$ של $\mathcal{H}_{
m sqr}$

כתבו את ממד ה-VC של המחלקה החדשה (בין 1 ל-5).

- ? agnostic PAC learnability לזו של PAC learnability? . [4 נק'] על איזו הנחה מוותרים במעבר מההגדרה של PAC learnability? סמנו את התשובה הנכונה.
 - a. <u>הנחת ה-realizability</u>
 - b. הנחת דיוק המבחן
 - (identically distributed) ההנחה שהנתונים מפולגים זהה .c
 - d. ההנחה שהנתונים בלתי תלויים (independent)
 - (linear separability) ההנחה שהדאטה פריד ליניארית. e
- ז. [4 נק'] נתון דאטה עם תיוגים בינאריים ("+" או "-"). מריצים AdaBoost עם Decision stump כמסווג חלש.
 גדלי הצורות בתרשימים מסמלים את ההסתברויות שהאלגוריתם מקצה לדוגמאות (הסתברות גבוהה = צורה גדולה).
 רק אחד מהתרשימים הבאים מתאר התפלגות שניתן לקבל אחרי איטרציה אחת של AdaBoost.
 הקיפו את האות שמתאימה לתרשים זה.

