

TENSORFLOW FOR DEEP LEARNING

SHUYUE JIA

MANY OF YOU ARE AHEAD OF ME IN ACADEMIA SO I PROBABLY NEED MORE OF YOUR HELP THAN YOU DO MINE

Model Establishment for Supervised Learning

Gradient Descent Algorithm

Loss Function = $|g(x) - f(x)|_{minimize}$

$$\alpha = \frac{\partial(|g(x) - f(x)|)}{\partial x}$$
$$x^{k+1} = x^k - \eta \alpha$$

Gradient Descent Algorithm for Neural Networks

$$y = \sum_{i} w_i x_i + b$$

$$f(y) = \frac{1}{1 + e^{-y}}$$

The parameters that we are training are W (weights) and b (biases).

$$\alpha = \frac{\partial (\frac{1}{2} (g(x) - f(x))^2)}{\partial x}$$

$$y = \sum_{i} w_i x_i + b$$

$$f(y) = \frac{1}{1 + e^{-y}}$$

$$dw = \frac{\partial (\frac{1}{2} (g(x) - f(x))^2)}{\partial w}$$

$$db = \frac{\partial (\frac{1}{2} (g(x) - f(x))^2)}{\partial b}$$

$$w^{k+1} = w^k - \eta dw$$
$$b^{k+1} = b^k - \eta db$$

Back-propagation Algorithm (Chain Rule) for Neural Networks

$$dw = \frac{\partial (\frac{1}{2} (g(x) - f(x))^2)}{\partial w}$$

$$db = \frac{\partial (\frac{1}{2} (g(x) - f(x))^2)}{\partial b}$$

$$y = \sum_{i} w_i x_i + b$$

$$f(y) = \frac{1}{1 + e^{-y}}$$

$$L = \frac{1}{2} (g(x) - f(x))^2$$

$$y = \sum_i w_i x_i + b$$

$$f(y) = \frac{1}{1 + e^{-y}}$$

$$dw = \frac{\partial L}{\partial f(y)} \times \frac{\partial f(y)}{\partial y} \times \frac{\partial y}{\partial w}$$
$$= [g(x) - f(y)] \times [f(y) \times (1 - f(y))] \times X$$

FIRSTLY, INSTALL TENSORFLOW

- conda create --name tensorflow python=3.7 numpy scipy
- conda activate tensorflow
- pip install tensorflow-gpu==1.14.0
- Recommended Python Package:
- numpy (Data Manipulation), pandas (Data Analyze), scipy (Scientific Computation)
- matplotlib and seaborn (Drawing Figures)
- scikit-learn (Machine Learning)

import tensorflow as tf

GRAPHS AND SESSIONS

DATA FLOW GRAPHS

- Phase I: assemble a graph
- Phase 2: use a session to execute operations in the graph.

Nodes: operators, variables, and constants

Edges: tensors

Tensors are data.

TensorFlow = tensor + flow = data + flow

DATA FLOW GRAPHS

```
import tensorflow as tf
a = tf.add(3, 5)
print(a)
```



```
>> Tensor("Add:0", shape=(), dtype=int32)
(Not 8)
```

HOW TO GET THE VALUE OF A?

- Create a **session**, assign it to variable sess so we can call it later
- Within the session, evaluate the graph to fetch the value of a

```
import tensorflow as tf
a = tf.add(3, 5)
sess = tf.Session()
print(sess.run(a)) >> 8
sess.close()
```



```
# -*- coding: utf-8 -*-
# Hide the Configuration and Warning
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3'
```

1. Set up

Import the Used Packages import pandas as pd import numpy as np import tensorflow as tf import random

Clear the Stack
tf.reset_default_graph()

Training Set

The data in each row is a sample

4 8	Α	8	С	D	E	F	G	н
3	0.2372	20.025	0.3764	2.1013	0.5093	19.985	24.171	28.265
2	0.212	22.565	0.3469	2.2506	0.4827	25.451	26.75	37,381
3	0.2257	21.5	0.3665	2.1906	0.5013	22.191	25.926	30.769
4	0.2326	21.6	0.3563	1.6426	0.4759	21.038	26.155	29.859
5	0.2219	22.327	0.3568	2.0485	0.487	23.096	27.017	31.314
5	0.8398	1.6629	0.7627	1.0149	0.7404	2.5631	3.8825	2.2916
	0.2147	21.888	0.3571	2.2763	0.49	23.487	26,58	33.482
	0.4368	7.0138	0.4137	1.0933	0.4296	11.228	17.911	13.444
	0.2449	20.812	0.3717	1.8044	0.5041	20.823	22.926	24.154
0	0.2454	20.061	0.3838	2.0129	0.5244	20.325	21.665	24.7
1	0.188	25.573	0.3344	2.7091	0.4729	29.258	29.299	42.045
2	0.2352	20.735	0.3705	2.0397	0.5003	20.709	24.759	29.256
3	0.238	19.386	0.3632	1.6607	0.4879	18.627	23.465	27.54
4	0.2302	19.547	0.3586	1.7941	0.4869	19.175	23.573	30.018
5	0.2188	19.874	0.3528	1.9407	0.4862	20.384	23.502	33.319
6	0.2057	23.402	0.3355	1.946	0.462	25.138	27.915	38.507
7	0.2228	21.516	0.3505	1.8321	0.4783	22.742	25.487	31.98
8	0.2221	20.387	0.365	2.1787	0.5006	21.274	24.692	30.558
9	0.2328	18.202	0.3724	1.9627	0.5067	18.202	21.747	29.85
0	0.201	20.624	0.3421	2.4204	0.4784	23.448	25.044	41.80
1	0.2252	18.438	0.3644	2.0561	0.4944	18.758	22.164	32.417
2	0.2039	23.166	0.3442	2.3844	0.4802	27.522	27.208	38.720
3	0.2321	20.381	0.3689	2.0549	0.5009	20.349	24.468	30.20
4	0.9997	0.9969	0.9952	0.9989	0.9928	0.9952	1.0202	0.999
5	0.2278	21.095	0.3702	2.2041	0.5061	21.916	25.582	30.275
6	0.2201	20.901	0.3624	2.3663	0.4951	22.661	24.721	35.252
7	0.2292	20.929	0.37	2.1833	0.5026	21.765	24.963	30.558
8	0.2364	18.883	0.3724	1.8717	0.5082	18.704	22.102	27.799
9	0.283	16.623	0.3673	1.1996	0.4479	15.571	25.425	21.70
0	0.2206	21.699	0.3507	1.8797	0.4801	21.371	25.513	30.835
1	0.2118	21.239	0.3545	2.263	0.4977	24.407	24.762	36.78
2	0.2267	21.249	0.3603	1.9852	0.4895	21.243	25.761	30.203
3	0.2292	20.494	0.3698	2.1416	0.505	20.668	24.341	31.357
4	0.2323	18.619	0.3712	2.0372	0.5078	18.728	22.259	30.292
5	0.2148	20.526	0.3478	1.9827	0.4732	21.694	24.78	34.61
6	0.2397	20.615	0.3599	1.5438	0.4766	20.038	24.585	27.29
7	0.2232	22.592	0.3538	1.8945	0.4802	23.24	27.444	30.92
8	0,2005	20.504	0.3426	2.4367	0.4787	23.56	24.924	42.05

Training Labels

4	A	В
1	1	
2 3	2	
3	1	
4 5 6 7 8	2	
5	1	
6	0	
7	1	
8	1	
9	0	
10	0	
111	1	
12	2	
13	0	
14	0	
15	0	
16	2	
17	0	
18	1	
19	0	
20	2	
21	0	
22	2	
23	2	
24	1	
25	1	
26	2	
27	2	
28	0	
29	0	
30	1	
31	0	
32	1	
33	2	
34	0	
35	0	
36	0	
37	1	
38 😑	z	om work re
	tra	aining_label

2. Read the Dataset

```
# Read Training Data
train_data = pd.read_csv('training_set.csv', header=None)
train data = np.array(train data).astype('float32')
# Read Training Labels
train labels = pd.read csv('training label.csv', header=None)
train labels = np.array(train labels).astype('float32')
train labels = tf.one hot(indices=train labels, depth=4)
train labels = tf.squeeze(train labels).eval(session=sess)
# Read Testing Data
test data = pd.read csv('test_set.csv', header=None)
test data = np.array(test data).astype('float32')
# Read Testing Labels
test labels = pd.read csv('test_label.csv', header=None)
test labels = np.array(test labels).astype('float32')
test labels = tf.one hot(indices=test labels, depth=4)
test_labels = tf.squeeze(test_labels).eval(session=sess)
```

3. INITIATION

```
#初始化权重Weights函数
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.01)
  return tf.Variable(initial)
#初始化偏置Bigses函数
def bias variable(shape):
  initial = tf.constant(0.01, shape=shape)
  return tf. Variable (initial)
# 定义卷积网络 stride== I , padding='SAME'输出大小等于输入大小
def conv2d(x,W):
  return tf.nn.conv2d(x,W, strides=[1, 1, 1, 1], padding='SAME')
# 定义池化为最大池化 kernel大小为2*2,stride==1,padding='SAME'为尺寸减小一半
def max pool 2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
```

4. Design a graph

```
# First Fully Connected Layer
x Reshape = tf.reshape(tensor=x, shape=[-1, 32, 20, 1])
                                                                                                                                                                                    W fc1 = weight variable([5 * 8 * 64, 128])
                                                                                                                                                                                    b fc1 = bias variable([128])
                                                                                                                                                                                    h_{pool2_flat} = tf.reshape(h_{pool2_flat} = tf.reshape(
# First Convolutional Layer
                                                                                                                                                                                    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
W conv1 = weight variable([3, 3, 1, 32])
b conv1 = bias variable([32])
                                                                                                                                                                                    h fc1 drop = tf.nn.dropout(h fc1, keep prob)
h conv1 = tf.nn.relu(conv2d(x Reshape, W conv1) + b conv1)
h pool1 = max pool 2x2(h conv1)
                                                                                                                                                                                    # Second Fully Connected Layer
                                                                                                                                                                                    W fc2 = weight_variable([128, 64])
# Second Convolutional Layer
                                                                                                                                                                                    b fc2 = bias variable([64])
W conv2 = weight variable([3, 3, 32, 64])
                                                                                                                                                                                    h fc2 = tf.nn.relu(tf.matmul(h fc1 drop, W fc2) + b fc2)
                                                                                                                                                                                    h fc2 drop = tf.nn.dropout(h fc2, keep prob)
b conv2 = bias variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h pool2 = max pool 2x2(h conv2)
                                                                                                                                                                                    # Output Layer: Thrid Fully Connected Layer
                                                                                                                                                                                    W fc3 = weight variable([64, 4])
                                                                                                                                                                                     b fc3 = bias variable([4])
                                                                                                                                                                                     prediction = tf.nn.softmax(tf.matmul(h_fc2_drop, W_fc3) + b_fc3)
```

5. LOSS FUNCTION, OPTIMIZER, AND ACCURACY

```
# Define Loss Function
loss = tf.reduce_mean(tf.square(y - prediction))

# Define Training Optimizer
train_step = tf.train.AdamOptimizer(le-5).minimize(loss)

# Calculate Accuracy
correct_prediction = tf.equal(tf.argmax(prediction, l), tf.argmax(y, l))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
```

6. USE THE SUMMARY TO SAVE ALL THE PARAMETERS THAT YOU WANT

tf.summary.scalar('loss', loss)

```
# Merge all the summaries
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(SAVE + '/train_Writer', sess.graph)
test_writer = tf.summary.FileWriter(SAVE + '/test_Writer')
```

7. Use a session to execute

```
sess.run(tf.global variables initializer())
for epoch in range(num_epoch + 1):
  #Train the model
  for batch index in range(n batch):
     random_batch = random.sample(range(train_data.shape[0]), batch_size)
     batch_xs = train_data[random_batch]
     batch_ys = train_labels[random_batch]
     sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: keep_rate})
  # Show Accuracy and Loss on Training and Test Set
  train_accuracy, train_loss = sess.run([accuracy, loss], feed_dict={x: train_data, y: train_labels, keep_prob: 1.0})
  Test_summary, test_accuracy, test_loss = sess.run([merged, accuracy, loss], feed_dict={x: test_data, y: test_labels, keep_prob: 1.0}
  test_writer.add_summary(Test_summary, epoch)
  print("Iter" + str(epoch) + ", Testing Accuracy: " + str(test_accuracy) + ", Training Accuracy: " + str(train_accuracy))
  print("Iter" + str(epoch) + ", Testing Loss: " + str(test_loss) + ", Training Loss: " + str(train_loss))
  print('\n')
```



```
Terrandibound 2.13.3 at 9756()/f277.8.8.318884 (Proces ETRLAS to socit)
*Chane) BEMile Wathor Projector Driver Shound terestours -- legote- //were/whoses/Desetos/test_writer -- hout-LIF, #. #. 1
 Nobels/Markets/Control | Transfer | Transfer
version of numby. It will be understood as (type, 11,12 if "61,35ype"
     _nu_gints = no.dtypetititeletst...np.lnck, 1111
 Nameth/aboyumi/.local/138/ogthord.S/allocaskagma/teraceflox/python/framemode/stypes_sychile.in Titues 1 as a symmum of type is deposisted; in a future
version of numby, it will be understood as itype, it. If i'll itype.
        Chicagolistik w missifianskilli Parkelli, na relistik, 1931
 Finally Ambigues / Lacal / Lik/pythons .5/elfa-packages /tensor/law/python/finasecting: Funally Atype. 13 or "Atype" as a symmum of type is deprecised: in a future
version of numbe, it will be understood as ityps, it, it / 'It, Ityps'
        ne gintin + no.dtepe([t/aSeti84] +p.Seti8, 133)
 Treary/shapped/.long2/13b/mythord.8/site-markages/tensorTime/mythord.10/sper. as a synonym of type in magnesated; in a future
 version of humay. it will be understood as (type. 11.1) / "fi.)type".
     pp_mulatio of an engineerit? quicktor, soculation till
 Wests/Abusto3/.local/lik/pythod.5/alte-gathages/sensorflee/pythod/freesent5/ftypes.guill#: FutureMaching: Fassing thips: As a symmyw of type Is depretated; in a future
version of numery. It will be understood as itype: (2.1) / (t.)type:
      _ns_gint[3] = np.dtuse[[("gint32", np.int32, 13]]
 Paramer's Paramer's Annie 1 - Annie 
version of number. It will be understood as (type, 11.1) ? "Il. Hype".
     no resource × ng. Otypec[["Descurse", np. obyte. [1]]]
 Numers/shayund/.lama5713h/python5.5/mits-pankagas/tereschoand/compat/terescrflow_atus/dtypes.pyt542; futurowering; Fasking (type, 'I) or "liype' as a symmym of
Future version of number, it will be understood as trying, it. if 'CL, itype'
     _re_aints = re.stypei(("aints", re.ints, 1)))
 Nimeta/shapped/.insai/lik/oythod.5/site-packages/leverstoard/compat/leversflow_atub/styres.ay/fel/: Paturementing: Passing flows. 1) or "https://www.ay.styres/award/compat/leversflow_atub/styres/ay/styres/auditalia/styres/award/compat/leversflow_atub/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/auditalia/styres/aud
 future carries of momey, it will be underested as irres. (1.5) / 115,19900
       THE GOODER + NO. OTHERS [ TOURNEY, NO. CONTR. 11]
 Prografish your 27-3 seed 713 h 7 py third . 67 h 1.1 a representation of the compact fluorestation for a standard for the compact fluorestation for a standard for the compact fluorestation fluo
future variable of manay, it will be understood as itype, 11.11 / "il. type"
        re-siette - es disselfitanciat, es lette, 1111
 Finers/should/lis/pythod.5/site-dackages/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoard/compat/tensorBoar
 future version of manage, it will be understand so (type, 43,31 / 745,37pps)
      _ma_appintid = ma.dryow([("quintid", my.mintid, 1)])
 Procestably and Albert Albert State and Agent and Agent Agen
 future version of numby, it will be understood as Those, (1.1) / (1.1)your.
     _ep_gintSI = ep.stypel[[7qSetS2*, sp.intSI, 111]
  Hasts/shured/.local/13b/pythor2.5/site-mackages/tersoctioned/compat/tensoction.py:588/ Futurementing: Passing Itume. 11 of "Stape" as a synctym of tupe in depositated: in a
 future extulor of nummer. It will be understood as lives, it is not recommend
    remember a recommendation of the section of the sec
 TensorBoard 1.13.1 of BENGLISTERS BUILDINGS Press CTW.+C.1
8. 使用以下指令去可视化训练结果
INDMY LE:18:65.##64FE 122546458174386 _59140941 py:1227 127
11287 13:13:13:17 ABBRES 122145453659136 _ivtarnal_sp:122] 127
$1200 LT(10:00.00109 10054000074000 10:00001.09(120) 127
                                                                                                                                                                                                                                                             tensorboard --logdir="路径绝对地址" --host=127.0.0.1
$1287 12:516161 #80548 139546450294472 _5rtornal_apit221 127
T1247 12:153:53.000723-132148444078448 .internal_scitt? 127
```

ILDAY 12:15:85.18999% 12:140-44578-444 [Internal_prit2:1 12:40-44578-444 [Internal_prit2:1 12:40-44578-444 [Internal_prit2:1 12:40-4578-444 [Internal_prit2:1 12:40-4

\$1267 \$2:55:65,964575 \$2354645557472 _Setembel @y15221 \$27

GENERATIVE ADVERSARIAL NETWORKS - GANS

The Architecture of the DCGANs

https://github.com/znxlwm/tensorflow-MNIST-GAN-DCGAN

https://github.com/sheqi/GAN_Review

https://sthalles.github.io/intro-to-gans/

THANKS

https://github.com/SuperBruceJia/EEG-Motor-Imagery-Classification-CNNs-TensorFlow