### Segurança da Informação – GBC083

Prof. Rodrigo Sanches Miani – FACOM/UFU

## Aulas passadas

Segurança da Informação-GBC083

### Diffie-Hellman (Ideia)



### Elementos





### Requisitos

A ideia é construir uma função que tenha a seguinte propriedade:

- $ightharpoonup C = E(PU_b, M) fácil de calcular$
- $ightharpoonup M = D(PR_b, C) fácil de calcular, se eu souber PR_b$ 
  - Note que D é a inversa de E. A notação poderia ser E=f e D = f-1
- M = D(?, C) − inviável se eu não souber PR<sub>b</sub>



### Requisitos

- A função f deve ser uma trapdoor function;
- Fácil de se calcular em uma direção e inviável na outra, a menos que certa informação adicional seja conhecida.





## Tópicos da aula

Segurança da Informação – GBC083

# Tópicos da aula – Criptografia de chave pública

- ı. Ideia
- 2. Descrição do algoritmo
- 3. Por que funciona?

### Ideia

Segurança da Informação – GBC083

### Histórico

- Em 1978, três professores do MIT (Ron Rivest, Adi Shamir e Len Adleman) publicaram uma proposta de um algoritmo de criptografia de chave pública;
- O algoritmo, teoricamente, satisfazia as cinco condições de funcionamento de criptografia de chave pública.



### Requisitos

- I. É computacionalmente fácil\* para uma entidade B gerar um par  $(PU_b PR_b)$ ;
- É computacionalmente fácil\* que um emissor A, conhecendo a chave pública e a mensagem a ser cifrada, M, gere o texto cifrado: C = E(PU<sub>b</sub>, M);
- É computacionalmente fácil\* que o receptor B decifre o texto cifrado C usando a sua chave privada;
- \* Fácil significa um problema que pode ser resolvido em tempo polinomial como função do tamanho da entrada.



### Requisitos

- 4. É computacionalmente inviável\* que um atacante, conhecendo a chave pública,  $PU_b$ , determine a chave privada  $PR_b$ ;
- 5. É computacionalmente inviável\* que um atacante, conhecendo a chave pública,  $PU_b$  e um texto cifrado C recupere a mensagem original M.
- \* Um problema é inviável se o esforço para solucioná-lo aumentar mais rapidamente do que o tempo polinomial em função do tamanho da entrada



### Ideia

 A função f, trapdoor, escolhida foi baseada em uma série de argumentos de uma área da matemática conhecida como teoria dos números;

► Tal área estuda propriedades de números inteiros como divisibilidade, primalidade e fatoração.



### Ideia

### Relembrando...A função f, trapdoor:

- Arr C = E(PU<sub>b</sub>, M) fácil de calcular
- $M = D(PR_b, C) fácil de calcular, se eu souber PR_b$ 
  - Note que D é a inversa de E.A notação poderia ser E=f e D = f⁻¹

## A cifragem e decifragem no RSA devem ser feitas da seguinte forma:

- $ightharpoonup C = M^e \mod n$
- $M = C^d \mod n$
- Ou seja, e seria a chave pública e d a chave privada;
- O grande "truque" é definir uma função tal que i) e,d sejam inversos e ii) dado somente e, é inviável para um atacante descobrir d.



## Descrição do algoritmo

Segurança da Informação-GBC083

### Características

- RSA é uma cifra de bloco em que o texto claro e o cifrado são inteiros entre 0 e n-1 para algum n;
- Até 2015, um tamanho típico para n era 1024 bits, ou 309 dígitos decimais (1+(1024)\*log(2));
  - Desde 2015, o NIST recomenda que o tamanho de n seja 2048 bits.
  - I + (2048)\*log(2) = aproximadamente 6 I 7 dígitos!



### Descrição do algoritmo

- ▶ O RSA pode ser descrito em três etapas:
  - Criação das chaves;
  - 2. Cifrar;
  - 3. Decifrar.



### Descrição do algoritmo - Geração de chaves

Lembrem-se que precisamos encontrar e,d tal que:

 $C = M^e \mod n$ 

 $M = C^d \mod n$ 

A grande tarefa aqui será entender as características de e,d.



 $C = M^e \mod n$  $M = C^d \mod n$ 

Na prática isso significa que se eu cifrar um número elevando a e-ésima potência módulo n, eu consigo recuperar tal número elevando o resultado a d-ésima potência módulo n.



- 2^6 mod 10 = 4 (resto da divisão de 64 por 10 é 4)
- Se M = 2 e C = 4 será que não existe algum número tal que:
- ▶ 4^x mod I0 = 2?
- Ou seja, será que eu consigo recuperar M à partir do texto cifrado? Quem deveria ser x?



### Descrição do algoritmo - Geração de chaves

#### Geração de chave por Alice

Selecione p, q  $p \in q$  são primos,  $p \neq q$ 

Calcule  $n = p \times q$ 

Calcule  $\phi(n) = (p-1)(q-1)$ 

Selecione o inteiro e  $\operatorname{mdc}(\phi(n), e) = 1; 1 < e < \phi(n)$ 

Calcule  $d \equiv e^{-1} \pmod{\phi(n)}$ 

Chave pública  $PU = \{e, n\}$ 

Chave privada  $PR = \{d, n\}$ 



#### Geração de chave por Alice

```
Selecione p, q p \in q são primos, p \neq q Calcule n = p \times q Calcule \phi(n) = (p-1)(q-1) Selecione o inteiro e p \in q são primos, p \neq q Calcule q \in q são primos, p \neq q Calcule q \in q são primos, p \neq q Calcule q \in q são primos, p \neq q Calcule q \in q são primos, p \neq q Calcule q \in q são primos, p \neq q Selecione o inteiro q \in q são primos, p \neq q Calcule q \in q são primos, p \neq q Selecione o inteiro q \in q são primos, p \neq q Selecione o inteiro q \in q são primos, p \neq q Selecione o inteiro q \in q são primos, p \neq q Selecione o inteiro q \in q são primos, p \neq q Selecione o inteiro q \in q são primos, p \neq q Selecione o inteiro q \in q são primos, p \neq q Selecione o inteiro q \in q são primos, p \neq q
```

Quem é  $\phi(n)$ ? É a **função totiente de Euler**, que é definida como o número de inteiros positivos menores que n e relativamente primos de n. Ela vai ajudar a encontrar a relação entre e, d.

Quem é  $\phi(n)$  se n for um primo p?

$$\phi(p)=p-1$$
 É possível demonstrar que se n=p\*q,  $\phi(n)$  =  $\phi(pq)$  =  $\phi(p)*\phi(q)$  =  $(p-1)*(q-1)$ 



#### Geração de chave por Alice

Selecione p, q  $p \in q$  são primos,  $p \neq q$ 

Calcule  $n = p \times q$ 

Calcule  $\phi(n) = (p-1)(q-1)$ 

Selecione o inteiro e  $\operatorname{mdc}(\phi(n), e) = 1; 1 < e < \phi(n)$ 

Calcule  $d \equiv e^{-1} \pmod{\phi(n)}$ 

Chave pública  $PU = \{e, n\}$ Chave privada  $PR = \{d, n\}$ 

#### Lembrando que:

 $C = M^e \mod n$ 

 $M = C^d \mod n$ 

Para que a relação acima seja satisfeita, é preciso que e,d sejam inversos multiplicativos. É possível demonstrar que se

$$\mathsf{ed} \equiv 1 \ (mod \ \phi(n))$$

então a relação acima é verdadeira. A demonstração envolve propriedades de aritmética modular e dois teoremas. Um deles é conhecido como o Pequeno Teorema de Fermat e o outro como Teorema de Euler.



### Geração de chave por Alice

Selecione p, q  $p \in q$  são primos,  $p \neq q$ 

Calcule  $n = p \times q$ 

Calcule  $\phi(n) = (p-1)(q-1)$ 

Selecione o inteiro e  $mdc(\phi(n), e) = 1; 1 < e < \phi(n)$ 

Calcule  $d \equiv e^{-1} \pmod{\phi(n)}$ 

Chave pública  $PU = \{e, n\}$ Chave privada  $PR = \{d, n\}$ 

$$ed \equiv 1 \pmod{\phi(n)}$$

Para que a relação acima seja verdadeira, e,d devem ser co-primos com  $\phi(n)$ .

Por exemplo, considere e=3 e  $\phi(n)=32$ . Qual seria o inverso multiplicativo de e=3? Ou seja, qual deve ser o valor de d para que e\*d seja congruente a I mod 32?



#### Geração de chave por Alice

```
Selecione p, q
                                                                p e q são primos, p \neq q
Calcule n = p \times q
Calcule \phi(n) = (p-1)(q-1)
Selecione o inteiro e
                                                                mdc(\phi(n), e) = 1; 1 < e < \phi(n)
Calcule d
                                                                d \equiv e^{-1} \pmod{\phi(n)}
Chave pública
                                                                PU = \{e, n\}
Chave privada
                                                                PR = \{d, n\}
```

$$ed \equiv 1 \pmod{\phi(n)}$$

Para que a relação acima seja verdadeira, e,d devem ser co-primos com  $\phi(n)$ .

Por exemplo, considere e=3 e  $\phi(n) = 32$ . Qual seria o inverso multiplicativo de e=3? Ou seja, qual deve ser o valor de d para que e\*d seja congruente a 1 mod 32?

Se d = 11, teremos que 3\*11 = 33. 33 mod 32 = I... Achamos o inverso de e! Note que para isso acontecer, e=3 e d=11 precisam ser co-primos com 32.



## Descrição do algoritmo - Cifrar/Decifrar

#### Encriptação por Bob com chave pública de Alice

Texto claro:

M < n

Texto cifrado:

 $C = M^e \mod n$ 

#### Decriptação por Alice com a chave privada de Alice

Texto cifrado:

C

Texto claro:

 $M = C^d \mod n$ 



### RSA - Exemplo

- 1. Selecione dois números primos, p = 17 e q = 11.
- 2. Calcule  $n = pq = 17 \times 11 = 187$ .
- 3. Calcule  $\phi(n) = (p-1)(q-1) = 16 \times 10 = 160$ .
- 4. Selecione e, tal que e seja relativamente primo de  $\phi(n)$  = 160 e menor que f(n); escolhemos e = 7.
- Determine d, tal que de ≡ I (mod 160) e d < 160. O valor correto é d = 23, pois 23 × 7 = 161 = (1 × 160) + 1; d pode ser calculado usando o algoritmo de Euclides estendido.</li>
- 6. Ou seja, PU = (7,187) e PR = (23,187).



### RSA - Exemplo



## Por que funciona?

Segurança da Informação – GBC083

### Funcionamento e segurança do RSA

- Por que o RSA funciona?
- Onde está o segurança do RSA?
- Como deve ser feita a escolha dos parâmetros?
- Até quando podemos confiar em tal algoritmo?



### Por que o RSA funciona?

- ▶ O par (n,e) é acessível a qualquer usuário ou seja, o RSA só será seguro se for difícil calcular d quando apenas (n,e) são conhecidos;
- Para encontrar d, precisamos aplicar o algoritmo euclidiano estendido a  $\phi(n)$ e e, porém para encontrar  $\phi(n)$  precisamos conhecer p e q, ou seja, só podemos "quebrar" o RSA se soubermos fatorar n.
  - O que acontece se n for muito grande?



### Por que o RSA funciona?

- $\triangleright$  O par (n,e) é acessível a qualquer usuário ou seja, o RSA só será seguro se for difícil calcular d quando apenas (n,e) são conhecidos;
- Para encontrar d, precisamos aplicar o algoritmo euclidiano estendido a  $\phi(n)$  e e, porém para encontrar  $\phi(n)$  precisamos conhecer p e q, ou seja, só podemos quebrar o RSA se soubermos fatorar n.
  - O que acontece se n for muito grande?
  - Nenhum algoritmo atualmente disponível/publicado consegue fatorar números em tempo polinomial (acredita-se que esse seja um problema NP-completo);
  - Um número de 768 bits formado por dois fatores primos, foi fatorado com sucesso no fim de 2009 pesquisadores levaram 2 anos para se fazer isso!



- Além do tamanho n, outros parâmetros precisam ser escolhidos com cuidado:
- 1. p e q deverão diferir em tamanho por apenas alguns dígitos;
- 2. Tanto (p I) quanto (q I) deverão conter um fator primo grande;
- 3. mdc(p I, q I) deverá ser pequeno;
- 4. se e < n e  $d < n^{1/4}$ , então d pode ser determinado com facilidade.



Como escolher p e q?



Como escolher p e q?

Existe alguma técnica para "gerar" números primos?



Como escolher p e q?

Existe alguma técnica eficiente para "gerar" números primos?

**Resposta**: não! A ideia é escolher um número ímpar e testar se ele é primo...

Existem diversos testes de primalidade que podem ser usados para escolher p e q.

A grande maioria dos testes implementados na prática são probabilísticos\*...Alguém sabe o porquê disso?



Será que existe algum algoritmo determinístico eficiente para mostrar que um dado número é primo?



Será que existe algum algoritmo determinístico eficiente para mostrar que um dado número é primo?

Sim! Em 2004\* três pesquisadores indianos propuseram um algoritmo determinístico que define com eficiência se um dado número é primo. Contudo, outras técnicas probabilísticas continuam sendo usadas...

\* Agrawal, Manindra, Neeraj Kayal, and Nitin Saxena. "PRIMES is in P." Annals of mathematics (2004): 781-793.



### Até quando podemos confiar no RSA?

- A maioria das discussões da criptoanálise do RSA tem focado na tarefa de fatorar n em seus dois fatores primos;
  - Com os algoritmos atualmente conhecidos, econtrar d, dados e e n, parece ser pelo menos tão demorado quanto o problema de fatoração.
- Logo, podemos usar o **desempenho da fatoração** como um benchmark contra o qual avaliaremos a segurança do RSA.



### Até quando podemos confiar no RSA?

| NÚMERO DE DÍGITOS DECIMAIS | NÚMERO DE BITS | DATA EM QUE FOI ALCANÇADO |  |  |
|----------------------------|----------------|---------------------------|--|--|
| 100                        | 332            | abril de 1991             |  |  |
| 110                        | 365            | abril de 1992             |  |  |
| 120                        | 398            | junho de 1993             |  |  |
| 129                        | 428            | abril de 1994             |  |  |
| 130                        | 431            | abril de 1996             |  |  |
| 140                        | 465            | fevereiro de 1999         |  |  |
| 155                        | 512            | agosto de 1999            |  |  |
| 160                        | 530            | abril de 2003             |  |  |
| 174                        | 576            | dezembro de 2003          |  |  |
| 200                        | 663            | maio de 2005              |  |  |
| 193                        | 640            | novembro de 2005          |  |  |
| 232                        | 768            | dezembro de 2009          |  |  |



# A segurança pelo tamanho das chaves (Recomendação Ecrypt/2011)

|   | Date                    | Security<br>Strength | Symmetric<br>Algorithms | Factoring<br>Modulus |     | crete<br>arithm<br>Group | Elliptic<br>Curve | Hash (A)                           | Hash (B)                                                                                    |
|---|-------------------------|----------------------|-------------------------|----------------------|-----|--------------------------|-------------------|------------------------------------|---------------------------------------------------------------------------------------------|
|   | Legacy (1)              | 80                   | 2TDEA                   | 1024                 | 160 | 1024                     | 160               | SHA-1 (2)                          |                                                                                             |
| ı | 2019 - 2030             | 112                  | (3TDEA) (3)<br>AES-128  | 2048                 | 224 | 2048                     | 224               | SHA-224<br>SHA-512/224<br>SHA3-224 |                                                                                             |
|   | 2019 - 2030<br>& beyond | 128                  | AES-128                 | 3072                 | 256 | 3072                     | 256               | SHA-256<br>SHA-512/256<br>SHA3-256 | SHA-1<br>KMAC128                                                                            |
| ı | 2019 - 2030<br>& beyond | 192                  | AES-192                 | 7680                 | 384 | 7680                     | 384               | SHA-384<br>SHA3-384                | SHA-224<br>SHA-512/224<br>SHA3-224                                                          |
|   | 2019 - 2030<br>& beyond | 256                  | AES-256                 | 15360                | 512 | 15360                    | 512               | SHA-512<br>SHA3-512                | SHA-256<br>SHA-512/256<br>SHA-384<br>SHA-512<br>SHA3-256<br>SHA3-384<br>SHA3-512<br>KMAC256 |

### Roteiro de estudos

- Leitura da seção 9.2 do livro "Criptografia e segurança de redes. Princípios e práticas". William Stallings;
- 2. Estudo da vídeo-aula referente ao tópico 10;
- 3. Resolução do TP-5.
- 4. Referências complementares:
  - https://medium.com/@jryancanty/understanding-cryptography-with-rsa-74721350331f
  - https://medium.com/dataseries/rsa-cryptography-behind-the-scenesfeelel389f7f

