Quantum Mechanics

Mark Benazet Castells

May 15, 2024

Week 9

Quantum Mechanics

Exercise Material

Webpage

Week 9

Review

Exercises

Quantum Mechanics

Review of Last Week

- Any questions on last week's topics?
- Feedback on the previous session?

Atomic Number and Electron Interactions

In an atom, the atomic number Z defines the number of protons in the nucleus and, in a neutral atom, also the number of electrons orbiting the nucleus. Each electron in the atom contributes to its overall properties through:

- Kinetic energy due to its motion.
- Coulombic interaction with the nucleus.
- Interactions with other electrons.

Hamiltonian for Multi-Electron Atoms

The Hamiltonian for a multi-electron atom can be expressed as:

$$\hat{H} = \sum_{i=1}^{Z} \left(\frac{-\hbar^2}{2m} \nabla_i^2 \right) - \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{Z} \frac{Ze^2}{r_i} + \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \sum_{\substack{i=1\\k \neq i}}^{Z} \frac{e^2}{|r_i - r_k|}$$
(1)

where:

- The first term represents the kinetic energy.
- The second term is the electron-nucleus interaction.
- The third term is the electron-electron repulsion.

- The $\frac{1}{2}$ factor avoids double counting of electron-electron interactions.
- Simplifications often ignore spin-spin and spin-orbit interactions.
- This simplified model is useful for introductory understanding.

Handling Electron-Electron Interactions

- For simplification, electron-electron interactions are sometimes ignored.
- Electrons are considered in single-particle hydrogenic states $\psi_{n\ell m_\ell m_s}$.
- This provides a basic, though not entirely accurate, model for atomic structure.

Quantum Numbers: Defining Electron States in Atoms

Quantum Number	Symbol	Description	
Principal	n	Main energy level or shell. Influences	
		size and relative distance of orbital.	
Azimuthal	ℓ	Subshell or shape of the orbital.	
		Ranges from 0 (s) to $n-1$ (p, d, f).	
Magnetic	m_ℓ	Orientation of the orbital in 3D space.	
		Values range from $-\ell$ to $+\ell$.	
Spin	m_s	Electron's intrinsic spin. Values are	
		+1/2 (spin-up) or $-1/2$ (spin-down).	

Orbital Arrangement: Shell, Subshells, and Electron Count

- Shell (n):
 - Each shell can contain up to $2n^2$ electrons.
 - Labeled K, L, M, N, etc.

Subshell (ℓ):

- Electrons fill subshells (s, p, d, f) in order of increasing energy.
- Number of subshells equals principal quantum number n.

• Electron Count:

- Each orbital holds up to 2 electrons with opposite spins.
- Total electrons per subshell: $2(2\ell+1)$.

n	Shell	Subshell	# Orbitals	# Electrons	
				Per Subshell	Per Shell
1	K	S	1	2	$\Rightarrow 2$
2	L	S	1	2	⇒ 8
		р	3	6	
3	М	S	1	2	$\Rightarrow 18$
		р	3	6	
		d	5	10	
4	N	S	1	2	$\Rightarrow 32$
		р	3	6	
		d	5	10	
		f	7	14	

Hydrogenic Atoms

- Simplified model: one electron orbiting the nucleus.
- ullet Energy of each level: function of principal quantum number n.

$$E_n = -\frac{1}{n^2} \left[\frac{m}{2\hbar^2} \left(\frac{Ze^2}{4\pi\varepsilon_0} \right)^2 \right] \tag{2}$$

- Z: atomic number
- m: electron mass
- ullet Degeneracy: Orbitals of different ℓ but same n share identical energy.
- Ground state is when the electron is in the 1s orbital, any other state is excited state.

Multi-electron Atoms

- Electron configuration is more complex due to electron-electron interactions.
- Spin-orbit coupling leads to energy level splitting.
- ullet Orbitals like 2s and 2p diverge in energy.
- \bullet Higher n and ℓ values show increasing energy variation.

Filling Order in Multi-electron Atoms

- Diagram shows systematic filling from the lowest energy level.
- ullet Electrons fill s, p, d, and f subshells in the given order.

Orbital Filling Exceptions

- Chromium (Z=24):
 - Configuration: $[Ar]4s^13d^5$
 - ${\ -\ }$ Half-filled d subshell provides stability instead of full s subshell.
- Copper (Z = 29):
 - Configuration: $[Ar]4s^13d^{10}$
 - Completely filled d subshell.
- Exceptions due to minimal energy differences between orbitals.
- Highlights the complex interplay of electronic repulsions and orbital energies.

Valence Electrons: Reactivity and Solid State Physics

• Valence electrons: Outer electron shells.

• Roles:

- 1. Chemical bonds: Ionic, covalent, metallic.
- 2. Reactivity: Strive for stable electronic configuration.
- 3. Electrical conductivity: Free valence electrons in metals.
- 4. Band structure: Energy levels for valence electrons.

Electron Configuration Ambiguities

- Electron configuration does not fully specify quantum state.
- Example: Carbon (Z=6), configuration: $[C]=1s^22s^22p^2$

$$[C] = 1s^2 2s^2 2p^2$$

The 2p orbtial can look like:

- \uparrow
- **†**

- Each configuration affects chemical properties.
- Energetically favorable configuration determined by angular momentum principles.

Remark: Beyond the three configurations depicted, there are additional possible arrangements for electrons. To determine which configuration is energetically most favorable, we must consider the principles of angular momentum in multi-electron atoms.

Define New Quantum Numbers

- Analogous to l, m_{ℓ}, s, m_s
- ullet $L\Rightarrow$ total orbital angular momentum with projection $M_L=\sum_i m_{\ell,i}$
- ullet $S\Rightarrow$ total spin angular momentum with projection $M_S=\sum_i m_{s,i}$
- \bullet $J\Rightarrow$ total angular momentum, combines L and S with projection $M_J=M_L+M_S$

Think of this as the multi-electron system quantum numbers.

Addition Rule for Angular Momentum

$$J = j_1 \oplus j_2$$

$$J = (j_1 + j_2), (j_1 + j_2 - 1), \dots, |j_1 - j_2|$$

Example:

- $j_1 = 3, j_2 = 1$
- Possible values of J: 4, 3, 2

Term Symbols and the Role of Filled Subshells

Term Symbols: Represent quantum states of atoms.

$$^{2S+1}L_J$$
 where $L=\ell_1\oplus\ell_2\oplus\ldots\oplus\ell_n,$ $S=s_1\oplus s_2\oplus\ldots\oplus s_n,$ $J=L\oplus S.$

- Example: $^2P_{3/2}$ for a state with S=1/2, L=1 (P), and J=3/2.
- ullet Letters S, P, D, F, G correspond to L=0,1,2,3,4 respectively.
- Note: Filled subshells do not contribute as their angular momenta are pairwise neutralized.

Hund's Rules

- Hund's Rules are empirical guidelines.
- Help predict ground state electron configurations.
- Important for the periodic table and atomic spectra.

Hund's First Rule: Maximum Spin Multiplicity

- Derived from the Pauli exclusion principle.
- Electrons occupy orbitals to maximize total spin quantum number (S).
- ullet Results in the lowest energy state with the greatest spin multiplicity (2S+1).

Maximized Multiplicity: 2S + 1

The state with the largest S is most stable.

Hund's Second Rule: Orbit-Orbit Interaction

- Addresses electron repulsion in degenerate orbitals.
- ullet Configurations with the highest total orbital angular momentum (L) are favored energetically.
- Electrons with parallel spins (parallel orbital motion) avoid each other more, reducing repulsion.

For equal S, largest L is most stable.

Hund's Third Rule: Minimum Energy J-State

- Addresses spin-orbit coupling in atoms.
- For a given term:
 - If the shell is less than half-filled, the level with the lowest total angular momentum (J) lies lowest in energy.
 - If the shell is more than half-filled, the level with the highest J is favored.

```
Same S and L: \begin{cases} \mathsf{smallest}\ J \ \mathsf{is}\ \mathsf{most}\ \mathsf{stable}\ \mathsf{for}\ \mathsf{subshells}\ \leqslant\ \mathsf{half}\ \mathsf{full} \\ \mathsf{largest}\ J\ \mathsf{is}\ \mathsf{most}\ \mathsf{stable}\ \mathsf{for}\ \mathsf{subshells}\ >\ \mathsf{half}\ \mathsf{full} \end{cases}
```

- **Hund's First Rule**: Maximize total spin (S) for the most stable state.
- Hund's Second Rule: For equal S, maximize total orbital angular momentum (L).
- Hund's Third Rule: For equal S and L, stability depends on the filling of the subshell:
 - Smallest J for subshells \leq half full.
 - Largest J for subshells > half full.

Recipe

1. Determine Electron Configuration

Start by determining the electron configuration using the Aufbau principle.

2. Identify Quantum Numbers

Identify the quantum numbers for each electron in partially filled subshells:

- Spin (s_i)
- Orbital (ℓ_i)

3. Calculate L, S, J

Calculate total orbital angular momentum (L) and total spin angular momentum (S):

$$L = \ell_1 \oplus \ell_2 \oplus \ldots \oplus \ell_n$$

$$S = s_1 \oplus s_2 \oplus \ldots \oplus s_n$$

Determine J using vector addition rules:

$$J = L \oplus S$$

4. Derive Term Symbols

Construct term symbols in the format:

$$^{2S+1}L_J$$

5. Apply Hund's Rules

Rule 1: Maximize S for the highest total spin angular momentum.

Rule 2: For equal S, maximize L for the highest total orbital angular momentum.

Rule 3: For equal S and L:

- Smallest J is most stable for subshells \leq half full.
- ullet Largest J is most stable for subshells > half full.

Example Carbon Z=6

Exercises

Exercise 1

Important to understand today's topics, must-do!

Exercise 2

Also important, but 2b does not fall within the scopes of this course (see Moodle Announcements).