IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

08.10.2025

Hoy...

Relaciones: órdenes parciales y totales.

Órdenes

Definición

Sea A un conjunto y R una relación sobre A. Entonces, R es un **órden** si R es refleja, antisimétrica y transitiva, es decir:

- a) aRa para todo $a \in A$;
- b) $(aRb \land bRa) \rightarrow a = b \text{ para todos } a, b \in A;$
- c) $(aRB \land bRc) \rightarrow aRc$ para todos $a, b, c \in A$.

Órdenes

Definición

Sea A un conjunto y R una relación sobre A. Entonces, R es un **órden** si R es refleja, antisimétrica y transitiva, es decir:

- a) aRa para todo $a \in A$;
- b) $(aRb \land bRa) \rightarrow a = b \text{ para todos } a, b \in A;$
- c) $(aRB \land bRc) \rightarrow aRc$ para todos $a, b, c \in A$.

Definición

Sea R un orden sobre un conjunto A. Entonces, R es un orden total (o lineal) si aRb \lor bRa para todos a, b \in A.

Ejemplos

Ejercicio

Verifique que las siguientes relaciones son órdenes

- a) \subseteq sobre $\mathcal{P}(A)$ para un conjunto A (orden de inclusión)
- b) | sobre \mathbb{N}
- c) la relación \leq sobre $\mathbb{R}[x]$ (conjunto de polinomios reales de una variable x), donde

$$p \leq q \iff \exists c \in \mathbb{R} \ p(x) \leq q(x) \ para \ todo \ x \geq c.$$

¿Cuáles son lineales?

Órdenes y DAGs

Proposición

Sea G un grafo dirigido acíclico con el conjunto de los vértices V. Entonces, la relación

 $uRv \iff existe \ un \ camino \ dirigido \ de \ v \ a \ u, v \in V$

es un orden sobre V

Ejercicios DAG

Ejercicio

Retratar el orden de inclusión sobre $\mathcal{P}(\{1,2,3\})$ como un DAG.

Ejercicios DAG

Ejercicio

Retratar el orden de inclusión sobre $\mathcal{P}(\{1,2,3\})$ como un DAG.

Ejercicio

Dar un ejemplo de un orden en cual la relación "ser comparable" no es transitiva.

Universalidad del orden de inclusión

Proposición

Sea A un conjunto $y \leq$ un orden sobre A. Define $S_a = \{b \in A \mid b \leq a\}$. Entonces,

$$x \leq y \iff S_x \subseteq S_y$$

para todos $x, y \in A$.

¿El orden de las palabras en un diccionario?

Agua Barra

Barrio Barra

Barraca Barra

Notation:

Notation:

▶ Sea $\Sigma = \{\sigma_1, \ldots, \sigma_m\}$ un alfabeto;

Notation:

- ▶ Sea $\Sigma = \{\sigma_1, \ldots, \sigma_m\}$ un alfabeto;
- Sea u_i la letra número i de la palabra u sobre Σ;

Notation:

- ▶ Sea $\Sigma = \{\sigma_1, \ldots, \sigma_m\}$ un alfabeto;
- Sea u_i la letra número i de la palabra u sobre Σ;
- (si *i* es mayor que el largo de u, ponemos $u_i = \sigma_0$)

Notation:

- Sea $\Sigma = \{\sigma_1, \dots, \sigma_m\}$ un *alfabeto*;
- Sea u_i la letra número i de la palabra u sobre Σ;
- (si *i* es mayor que el largo de u, ponemos $u_i = \sigma_0$)

Definición (el orden lexicográfico)

Sean $\Sigma = \{\sigma_1, \ldots, \sigma_m\}$ un alfabeto y u, v dos palabras sobre Σ . Entonces, $u \leq_{lex} v$ si u = v o si existe $k \geq 1$ entero y $i, j \in \{0, 1, \ldots, m\}, i < j$ tal que

$$u_1 = v_1, \ldots, u_{k-1} = v_{k-1}, \qquad u_k = \sigma_i, v_k = \sigma_j.$$

Notation:

- Sea $\Sigma = \{\sigma_1, \dots, \sigma_m\}$ un *alfabeto*;
- Sea u_i la letra número i de la palabra u sobre Σ;
- (si *i* es mayor que el largo de u, ponemos $u_i = \sigma_0$)

Definición (el orden lexicográfico)

Sean $\Sigma = \{\sigma_1, \ldots, \sigma_m\}$ un alfabeto y u, v dos palabras sobre Σ . Entonces, $u \leq_{lex} v$ si u = v o si existe $k \geq 1$ entero y $i, j \in \{0, 1, \ldots, m\}, i < j$ tal que

$$u_1 = v_1, \ldots, u_{k-1} = v_{k-1}, \qquad u_k = \sigma_i, v_k = \sigma_j.$$

Proposición

 \leq_{lex} es un orden lineal sobre Σ^* .

Proposición

 \leq_{lex} es un orden lineal sobre Σ^* .

Definición

Sea \leq un orden sobre un conjunto A. Entonces, $a \in A$ se llama

- ▶ el elemento mínimo (bajo \leq) si a \leq b para todo b \in A;
- ▶ un elemento minimal (bajo \leq) si no existe $b \in A$ tal que $b \neq a, b \leq a$.

Definición

Sea \leq un orden sobre un conjunto A. Entonces, $a \in A$ se llama

- ▶ el elemento mínimo (bajo \leq) si a \leq b para todo b \in A;
- ▶ un elemento minimal (bajo \leq) si no existe $b \in A$ tal que $b \neq a, b \leq a$.

Así mismo se definen el elemento máximo y un elemento maximal.

Definición

Sea \leq un orden sobre un conjunto A. Entonces, $a \in A$ se llama

- ▶ el elemento mínimo (bajo \leq) si a \leq b para todo b \in A;
- ▶ un elemento minimal (bajo \leq) si no existe $b \in A$ tal que $b \neq a, b \leq a$.

Así mismo se definen el elemento máximo y un elemento maximal.

Proposición

Si un orden \leq tiene el elemento mínimo, entonces ese elemento es un elemento minimal, y no hay otros elementos minimales.

Definición

Sea \leq un orden sobre un conjunto A. Entonces, $a \in A$ se llama

- ▶ el elemento mínimo (bajo \leq) si a \leq b para todo b \in A;
- ▶ un elemento minimal (bajo \leq) si no existe $b \in A$ tal que $b \neq a, b \leq a$.

Así mismo se definen el elemento máximo y un elemento maximal.

Proposición

Si un orden \leq tiene el elemento mínimo, entonces ese elemento es un elemento minimal, y no hay otros elementos minimales.

Proposición

Los elementos minimales de un orden son incomparables entre sí.

Ejercicio mínimo/minimal

Ejercicio

- a) ¿Todos los órdenes totales poseen el elemento mínimo o el elemento máximo?
- b) ¿Cuales son elementos mínimos/minimales y máximos/maximales de | sobre \mathbb{N} ?
- c) $ilde{Y}$ sobre $\mathbb{N} \setminus \{0,1\}$?

iGracias!