Reinforcement Learning Intelligent Systems Series Lecture 4 (Part 1)

Georg Martius
Slides adapted from David Silver, Deepmind

MPI for Intelligent Systems, Tübingen, Germany

November 6, 2018

Markov Decision Processes

1/29 2/29

Markov Process (Reminder)

A Markov process is a memoryless random process, i.e. a sequence of random states S_1, S_2, \ldots with the Markov property.

Reminder: Markov property

A state S_t is Markov if and only if

$$P(S_{t+1} | S_t) = P(S_{t+1} | S_1, ..., S_t)$$

Definition (Markov Process/ Markov Chain)

A Markov Process (or Markov Chain) is a tuple $(\mathcal{S}, \mathcal{P})$

- \bullet $\ensuremath{\mathcal{S}}$ is a (finite) set of states
- \bullet $\, \mathcal{P} \,$ is a state transition 0 probability matrix,

$$P_{ss'} = P(S_{t+1} = s' \mid S_t = s)$$

Example: Student Markov Chain

3/29

Example: Student Markov Chain Transition Matrix

5 / 29

Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition (MRP)

A Markov Reward Process is a tuple $(S, \mathcal{P}, \mathcal{R}, \gamma)$

- ullet ${\cal S}$ is a finite set of states
- ullet ${\mathcal P}$ is a state transition probability matrix,

$$P(S_{t+1} | S_t) = P(S_{t+1} | S_1, ..., S_t)$$

- \mathcal{R} is a reward function, $\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s]$
- ullet γ is a discount factor, $\gamma \in [0,1]$

Note that the reward can be stochastic (\mathcal{R}_s is in expectation)

Example: Student MRP

Return (end of Reminder)

Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The discount $\gamma \in [0,1]$ devaluates future rewards: reward R after k+1 time-steps is counted as $\gamma^k R$.
- Extreme cases:
 - ullet γ close to 0 leads to immidate reward maximization only
 - \bullet γ close to 1 leads to far-sighted evaluation

6/29

Value Function

The value function describes the value of a state (in the stationary state)

Definition

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}[G_t|S_t = s]$$

9 / 29

Bellman Equation (MRP) I

Idea: Make value computation recursive by tearing apart contributions from:

- immediate reward
- and from discounted future rewards

$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$

Mh... need Expectation over S_{t+1}

Use transition matrix to get probabilities of succeeding state:

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'} v(s')$$

Example: Value Function for Student MRP

Example: Bellman Equation for Student MRP

from David Silver

Bellman Equation (MRP) II

Bellman equations in matrix form:

$$\mathbf{v} = \mathcal{R} + \gamma \mathcal{P} \mathbf{v}$$

where $v \in \mathbb{R}^{|S|}$ and \mathcal{R} are vectors

The Bellman equation can be solved directly:

$$v = (\mathbb{I} - \gamma \mathcal{P})^{-1} \mathcal{R}$$

• computational complexity is $O(|S|^3)$

13 / 29

A Markov reward process has no agent, there is no influence on the system. And MRP with an active agent forms a Markov Decision Process.

Agent takes decision by executing actions

Markov Decision Process

• State is Markovian

Definition (MDP)

A Markov Decision Process is a tuple (S, A, P, R, γ)

- ullet ${\cal S}$ is a finite set of states
- \bullet A is a finite set of actions
- ullet ${\mathcal P}$ is a state transition probability matrix,

$$\mathcal{P}_{ss'}^{a} = P(S_{t+1} \mid S_t, A_t = a)$$

- \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- ullet γ is a discount factor, $\gamma \in [0,1]$

14 / 29

Example: Student MDP

from David Silver

How to model decision taking?

The agent has a action function called policy.

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = P(A_t = a \mid S_t = s)$$

- Since it is a Markov process the policy only depends on the current state
- Implication: policies are stationary (independent of time)

An MDP with a given policy turns into a MRP:

$$\mathcal{P}^{\pi}_{ss'} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'}$$

$$\mathcal{R}^\pi_s = \sum_{\mathsf{a} \in \mathcal{A}} \pi(\mathsf{a}|s) \mathcal{R}^\mathsf{a}_s$$

Modelling expected returns in MDP

How good is each state when we follow the policy π ?

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return when starting from state s and following policy π .

$$v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$$

Should we change the policy?

How much does choosing a different action change the value?

Definition

The action-value function $q_{\pi}(s, a)$ of an MDP is the expected return when starting from state s, taking action a, and then following policy π .

$$q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$

17 / 29

19 / 29

Bellman Expectation Equation

Recall: Bellman Equation: decompose expected reward into immediate reward plus discounted value of successor state,

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_{t} = s]$$

The action-value function can be similarly decomposed,

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Example: State-Value function for Student MDP

from David Silver

20 / 29

Bellman Equation: joined update of v_{π} and q_{π}

Value function can be derived from q_{π} :

$$v_\pi(s) = \sum_{\mathsf{a} \in \mathcal{A}} \pi(\mathsf{a}|s) q_\pi(s,\mathsf{a})$$

 \dots and q can be computed from transition model

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

Substituting *q* in *v*:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a} v_{\pi}(s')\right)$$

Substituting v in q:

$$q_{\pi}(s,a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a} \sum_{a' \in A} \pi(a'|s') q_{\pi}(s',a')$$

Example: Bellman update for v in Student MDP

from David Silver

$$\pi(a|s) = 0.5$$

21 / 29

Optimal Value Function

Definition

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Definition

The optimal action-value function $q_*(s,a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

What does it mean?

- \bullet v_* specifies the best possible performance in an MDP
- Knowing v_* solves the MDP (how? we will see...)

Explicit solution for v_{π}

Since a policy induces a MRP v_{π} can be diretly computed (as before)

$$v = (\mathbb{I} - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$$

But do we want v_{π} ?

We want to find the optimal policy and its value function!

22 / 29

Example: Optimal Value Function v_* in Student MDP

Example: Optimal State Function q_{\ast} in Student MDP

from David Silver

Finding an Optimal Policy

Given the optimal action-value function q_* : the optimal policy is given by maximizing it.

$$\pi_*(a|s) = \llbracket a = rg \max_{a \in \mathcal{A}} q_*(s,a)
rbracket$$

 $[\cdot]$ is Iverson bracket: 1 if *true*, otherwise 0.

- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we immediately have the optimal policy (greedy)

Optimal Policy

Actually solving the MDP means we have also the optimal policy. Define a partial ordering over policies

$$\pi \geq \pi'$$
 if $v_{\pi}(s) \geq v_{\pi'}(s), \forall s$

Theorem

For any Markov Decision Process

- There exists an optimal policy π_* that is better than or equal to all other policies, $\pi_* \geq \pi, \forall \pi$
- All optimal policies achieve the optimal state-value function, $v_{\pi_*}(s) = v_*(s)$
- All optimal policies achieve the optimal action-value function, $q_{\pi_*}(s,a)=q_*(s,a)$

26 / 29

Bellman Equation for optimal value functions

Also for the optimal value functions we can use Bellmans optimality equations:

$$v_*(s) = \max_{a \in \mathcal{A}} q_*(s, a)$$

$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_*(s')$$

Substituting *q* in *v*:

$$v_*(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s') \right)$$

Substituting *v* in *q*:

$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \max_{a' \in \mathcal{A}} q_*(s', a')$$

27/29 28/29

Solving the Bellman Optimality Equation

Bellman Optimality Equation is non-linear

- No closed form solution (in general)
- Many iterative solution methods
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - SARSA