BASIC INPUT

Declare a variable: a=5;Continue input on next line

Declare a matrix: $A = [1 \ 2 \ 3; \ 4 \ 5 \ 6];$ Suppress output

BASIC COMMANDS & TOOLS

 $help\ fn$ Invoke help on function fn Toggle output detail format short

doc fn

clc Clear command window tic Start timer Stop timer toc

			·			
COMPARISON OPERATORS		MATHEMATICAL OPERATORS				
==	equal to	ELEM	ENTWISE OPERATORS	LINEA	AR-ALGEBRAIC OPERATORS	
~=	not equal to	+	addition			
>	greater than	_	subtraction			
<	less than	• *	multiplication	*	multiplication	
>=	greater than or equal to	./	right division	/	right division B/A=B*inv(A)	
<=	less than or equal to	.\	left division	\	left division A\B=inv(A)*B	
LOGIC	CAL OPERATORS	+	unary plus (positive)			
& &	and	_	unary minus (negative)			
	or	:	range			
~	unary not	.^	exponentiation	^	exponentiation	
xor	exclusive or (either)	.'	transpose	1	complex conjugate transpose	

format long

ARRAY FUNCTIONS	AR	RAY	' FU	NCT	ON	ıs
-----------------	----	-----	------	-----	----	----

CREATION		MANIPULATION	
eye(n) eye(m,n)	$n \times n$ identity matrix $m \times n$ identity matrix	cat(dim,A,B)	Concatenate arrays A and B along dimension dim .
ones()	Matrix of 1s	horzcat(A,B)	Concatenate arrays horizontally
rand()	Random matrix [0,1)	vertcat(A,B)	Concatenate arrays vertically
zeros()	Matrix of 0s	reshape(A, x, y)	Arrange A into new shape $x \times y$
<pre>linspace(a,b,n)</pre>	Return linearly-spaced vector of n points between values a and b	MATHEMATICAL	
meshgrid(xv,yv)	Return 2 grids based on xv , yv	inv(A)	Invert matrix A
a:b	Span range from a to b	linsolve(A,b)	Return solution of A*x=b
a:d:b	Span from a to b in steps of d	eig(A)	Return eigenvalues of A

PROGRAMMING CONSTRUCTS

for index = values Execute code a specific Execute alternate blocks of

end

statements

while *expr*

values may be a range

number of times.

or columns of an array.

Execute statements repeatedly while *expr*

holds true.

if expr

statements elseif expr

statements else

statements

end

statements end

continue Jump to next iteration of for or while loop

break Terminate for or while loop function Declare new function (type "help function")

Return control to invoking function return

code based on logical

expressions expr.

TRIGONOMETRIC & SPECIAL FUNCTIONS						
sin(x)	Sine	sinh(x)	Hyp. sine	sqrt(x)	Square root	
cos(x)	Cosine	cosh(x)	Hyp. cosine	nthroot (x)	Real <i>n</i> th root of <i>x</i>	
tan(x)	Tangent	tanh(x)	Hyp. tangent	besselj (<i>nu,x</i>)	Bessel function of the first kind of order nu	
exp(x)	Exponential	log(x)	Natural logarithm (ln)	erf(x)	Error function	
expm1(x)	$\exp(x)-1$ (accurate for small x)	log10(x)	Logarithm base 10	erfc(x)	Complementary error function	
abs(x)	Absolute value	log1p(x)	log(1+x) (accurate for small x)	gamma(x)	Γ function	
(append "d" aft	ter any trigonometric name to y	i	Imaginary unit			

SYMBOLIC COMMA	ANDS		
sym('x')	Declare vars x as sym objs	int(f,x)	Indefinite integral of f w.r.t. x
syms x		int(f,x,a,b)	Definite integral of f w.r.t. x over
sym('#')	Convert number # to sym objs	(, , , , , ,	range a to b
<pre>sym('expr')</pre>	Convert expression expr to sym obj		
symvar(g)	List sym vars in g	diff(f,x)	Derivative of f w.r.t. x
formula(f)	Return formula for f	diff(f,x,n)	nth derivative of f w.r.t. x
double(x)	Calculate numerical value of x	solve(f, x)	Analytically solve equation f
Use the Symbolic Toolbox for anything more complicated than this.			

PLOTTING	
plot(x,y) plot(x,y,)	Plot 2D data, y versus x. "help plot" for full details.
fplot(@fn,rng)	Plot 2D function fn over range $rng = [lo hi]$
plot3(x,y,z)	Plot 3D data as line
surf(Z) surf(x,y,Z)	Plot 3D data as surface
ezsurf('fn')	Plot 3D function as surface
hold on hold off	Toggle persistence of previous plots

POLYNOMIALS	
poly(v)	Return coefficients of polynomial with roots \boldsymbol{v}
roots(v)	Return roots of a polynomial with coefficients \boldsymbol{v}
polyder(v)	Return derivative coefs of poly v
polyval(v,x)	Evaluate polynomial with coefficients v at value x
polyint(v)	Return integral coefs of poly v
polyfit(x,y,n)	Returns polynomial of n th degree which fits data in x,y best

NUMBER THEORY				
factor(x)	Return list of factors of x			
isprime(x)	Return primeness of \mathbf{x}			
primes(x)	Return list of primes from zero up to and including x			

FITTING	
spline(x,y,xx)	Return cubic-spline interpolation of x, y at xx
<pre>interp2(X,Y,V, Xq,Yq)</pre>	Return 2D linear interpolation at Xq, Yq based on values V on grid X, Y

ORDINARY DIFFERENTIAL EQUATIONS