

Errata: An Approach to Gravitational Radiation by a Method of Spin Coefficients

E. Newman and R. Penrose

Citation: Journal of Mathematical Physics 4, 998 (1963); doi: 10.1063/1.1704025

View online: http://dx.doi.org/10.1063/1.1704025

View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/4/7?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

The direct approach to gravitation and electrostatics method for periodic systems

J. Chem. Phys. 132, 024102 (2010); 10.1063/1.3291027

Approach to Gravitational Radiation Scattering

J. Math. Phys. 8, 1355 (1967); 10.1063/1.1705349

Rapid Method for Measuring Seebeck Coefficient as ΔT Approaches Zero

Rev. Sci. Instrum. 33, 992 (1962); 10.1063/1.1718048

An Approach to Gravitational Radiation by a Method of Spin Coefficients

J. Math. Phys. 3, 566 (1962); 10.1063/1.1724257

Errata: A New Method for the Measurement of Hall Coefficients

Rev. Sci. Instrum. 22, 309 (1951); 10.1063/1.1745917

Errata: An Approach to Gravitational Radiation by a Method of Spin Coefficients

E. NEWMAN
University of Pittsburgh, Pittsburgh, Pennsylvania
AND
R. PENROSE

Kings College, University of London, London, England [J. Math. Phys. 3, 566 (1962)]

Page 568: The next-to-the-last term in Eq. (3.14) should read $\Lambda \epsilon_{e'b'} (\epsilon_{cd} \epsilon_{af} + \epsilon_{ad} \epsilon_{cf})$;

Page 569: The last term in the first equation of (3.17) should read $2\Lambda \xi_{(A} \epsilon_{B)C}$;

Page 570: The third term from the end of Eq. (4.2g) should read $-v\bar{\kappa}$;

The third term from the end of Eq. (4.2k) should read $+(\mu - \bar{\mu})\kappa$;

The first term after the equals sign in Eq. (4.2m) should read $+(\rho - \bar{\rho})\nu$;

The third term from the end of Eq. (4.2r) should read $+(\bar{\gamma} - \bar{\mu})\alpha$;

The third equation of (4.3a) should read $\Psi_2 = -\frac{1}{2}(C_{1212} - C_{1234}) = -\frac{1}{2}C_{\alpha\beta\gamma\delta} \times (l^{\alpha}n^{\beta}l^{\gamma}n^{\delta} - l^{\alpha}n^{\beta}m^{\gamma}\bar{m}^{\delta}) = \Psi_{0011}.$

Page 572: The second sentence after Eq. 6.3 should read "Sachs uses a "luminosity" parameter \tilde{r} , satisfying $D\tilde{r} = -\tilde{r}\rho$, which \cdots ,"

Page 574: In footnote 26, the second sentence should read, " \cdots affine parameter \tilde{r} and tangent vector $l_a \cdots$ ".

Page 575: The lemma should read, "Let the $(n \times n)$ matrix A be independent of r and have no eigenvalue with positive real part. Suppose, also that any eigenvalue of A with vanishing real part is regular (i.e. its multiplicity is equal to the number of linearly independent eigenvectors corresponding to it). Then all the solutions \cdots ".

Page 578: In Eqs. (A3) of the Appendix, the differentiated terms on the right-hand side all appear with the wrong sign. Also the δ 's on the right-hand sides of the third, fifth, and seventh equations should be $\bar{\delta}$'s. The equality symbol on the left in the seventh equation should, of course, be a minus sign. As an example this seventh equation should be correctly written

$$(D - 3\rho)\Psi_2 + 2\kappa\Psi_3 - (\bar{\delta} + 2\pi - 2\alpha)\Psi_1 + \lambda\Psi_0 = -\bar{\Phi}_0\Delta\Phi_0 + \bar{\Phi}_1\bar{\delta}\Phi_0 + 2(\bar{\Phi}_0\Phi_0 \gamma - \bar{\Phi}_1\Phi_0\alpha - \bar{\Phi}_0\Phi_1\tau + \bar{\Phi}_1\Phi_1\rho).$$

Errata: Cluster Sums for the Ising Model

G. S. RUSHBROOKE* AND H. I. Scoins
University of Durham, King's College, Newcastle upon Tyne,
England
[J. Math. Phys. 3, 176 (1962)]

The following misprints should be noted, on pp. 183-4:

Simple Cubic Lattice β_5 : $871\frac{1}{2}f^5$ should read $871\frac{1}{5}f^5$;

Body-centered Lattice β_5 : $16f^2$ should read $16f^3$; \bar{b}_5 : $+9072\eta^{34}$ should read $-9072\eta^{34}$;

Equation (29) should read $\ln \Lambda(1, \eta) = 3 \ln (1 + \eta) - 2 \ln 2 + 3u^4 + 22u^6 + 187\frac{1}{2}u^8 + \cdots;$

rofessor, Chemistry Department, ne, Oregon. and in the expression for b_l in terms of β_k , l! should read l^2 .

^{*} At present, Visiting Professor, Chemistry Department, University of Oregon, Eugene, Oregon.