CS 771A: Introduction to Machine Learning		Quiz I (14 Aug 2019)			
Name			30 marks		
Roll No Dept.			Page 1 of 2		
Instructions: 1. This question paper contains 1 page (2 sides of pape 2. Write your name, roll number, department above in 3. Write your final answers neatly with a blue/black per 4. Don't overwrite/scratch answers especially in MCQ. 5. Do not rush to fill in answers. You have enough time	block letters neaten. Pencil marks m We will entertain	ay get smudged.	су.		
Q1. Write T or F for True/False (write only in the	ne box on the ri	ght hand side)	(5x2=10 marks		
Classifying natural numbers into prime vs problem that can be solved using machin		=			
2 Learning with prototypes cannot be used	Learning with prototypes cannot be used if there are more than two classes				
If $f,g:\mathbb{R}\to\mathbb{R}$ are two convex functions (not necessarily differentiable), then the average function $h(x)\triangleq \big(f(x)+g(x)\big)/2$ must always be convex as well					
Let $f: \mathbb{R} \to \mathbb{R}$ be a doubly differentiable function (i.e. first and second derivatives exist). If $f'(x^0) = 0$ at $x^0 \in \mathbb{R}$, then it must always be true that $f''(x^0) = 0$					
5 The boundary of the unit 2D circle i.e. {(2	$(x,y) \in \mathbb{R}^2 : x^2$	$+y^2=1$ } is a conv	ex set		
Q2. Fill the circle (don't tick) next to all the cor	rect options (m	any may be correct	:).(4x3=12 marl		
2.1 Suppose f , g : $\mathbb{R} \to \mathbb{R}$ are two convex function $g(x) = f(x) + g(x)$ and $g(x) = f(x) - g(x)$					
Claim 1: $p(x) + q(x)$ must always be convex	A Claim	1 is TRUE, claim 2 i	s FALSE		
Claim 2: $q(x)$ must always be convex	B Claim	1 is FALSE, claim 2	is TRUE		
	C Both of	claims are TRUE			
	D Both o	claims are FALSE			
2.2 Let $f(x) = \sin(x)$. Which of the following A $f(x)$ has more than one local minima					
statements is true about the function $f(x)$? B $f''''(x) = f(x)$					
	c $f(x)$ is	a convex function			
	D $f(x)$ is	a concave function			
2.3 Which of the following statements is true a	bout the kNN a	gorithm?			
A	nen used for binary classification, the kNN algorithm always produces decision				
boundaries that are linear (i.e. a line or a	undaries that are linear (i.e. a line or a hyperplane)				
	he kNN algorithm can be used to solve regression problems				
·	The value k in kNN must always be a positive integer There exists no dataset, nor any value of k , for which kNN has linear decision boundary				

2.4 Which of the following statements is true?

Α	In held-out validation, the validation set is a subset of the test set
В	In held-out validation, the validation set is a subset of the training set
С	Using cross validation is more expensive than held-out validation
D	Using cross validation is less expensive than held-out validation

Q3 Consider the following optimization problem.

(2+2=4 marks)

At which point in \mathbb{R}^2 is the solution to this optimization problem achieved? Write your answer in space below.

At which point in \mathbb{R}^2 would the solution have been achieved, had the objective function instead been $(-x^2 - y^2)$ (but constraints remained the same)?

Q4. Let $\mathbf{a} \in \mathbb{R}^d$ be a constant vector and $b \in \mathbb{R}$ be a constant scalar. For $\mathbf{x} \in \mathbb{R}^d$, let us define the function $f(\mathbf{x}) = \ln(1 + \exp(-b \cdot \mathbf{a}^\mathsf{T} \mathbf{x}))$ (where \ln is the natural logarithm). Find $\nabla f(\mathbf{x})$ and briefly show all major steps in your derivation. Write only in the space provided. (4 marks)

--- END OF QUIZ ---