

# **Capstone Project**

# Predicting The Effectiveness of Bank Marketing Campaigns

- 1. Vilas Sonawane
- 2. Bhavika Gaurkar
- 3. Soumya Ranjan Dash

# **Point for Discussion**



- About Portugal Banking Institution
- Project Road Map
- Business Problem
- Purpose of the Project
- Data Pipeline
- Data Summary
- Data Cleaning
- Feature Engineering
- Exploratory Data Analysis
  - i) Univariate Analysis
  - ii) Bivariate Analysis
- Feature Selection
- Preparing Dataset for Modelling
- Machine Learning Models
- Model Validation and Selection
- Conclusion



# **Portugal Banking Institution**

Portugal has a modern banking system that includes one of the most advanced inter-bank networks in the world through <u>Multibanco</u>. There are currently over 150 banks in Portugal.

The majority of banks in Portugal belong to the <u>Portuguese Banking Association</u>. The central bank in Portugal is the <u>Banco de Portugal</u>, which also serves as the regulatory authority for Portuguese banks. It is a full member of the Euro system and the <u>European System of Central Banks</u>.





# **Project Road Map**





# **Business Problems**



The Portuguese banking institution want to predict the Effectiveness of their Marketing Campaign (Subscribe a Term Deposit)?



# **Purpose of The Project**



The main purpose of Our project is to build Machine Learning classification model which can predict the Effectiveness of Marketing Campaign to subscribe a term deposit of one of the Portuguese banking institution.

# **Data Pipeline**



- Data Processing: In this part we have explore dataset and identified inconsistency in dataset if any and take necessary action on it wherever it was necessary. Since there were some columns which were not directly important so we have converted them into proper format, So we have also created some new features based on exited feature in dataset.
- **EDA:** In this part we explored the data and identified outlier and inconsistent data and removed outlier and modified data whenever required and obtained some useful insights and trends from the data.
- Data Preparation: After cleaning data we have prepared data for implementation of classification models by creation of some new features and removing features which are having high multicollinearity between each other. Then selected dependent features and normalized data and make it ready for application of machine learning model.
- Machine Learning Classification Modelling: After preparation of data we have applied different classification model on the dataset. Applying the model is not an easy task. It's also an iterative process. We have started with simple classification model, then slowly used complex models for better performance.

# **Data Summary**

| Al |
|----|
|    |

| age          | Age of the customers                                                              |
|--------------|-----------------------------------------------------------------------------------|
| Job          | Types of jobs of customers                                                        |
| marital      | Marital status                                                                    |
| education    | Type of education                                                                 |
| housing loan | Customer has housing loan or not                                                  |
| loan         | Personal loan or not                                                              |
| contact      | Communication type cellular or telephone                                          |
| month        | Last contact month of year                                                        |
| day          | Last contact day of a week                                                        |
| duration     | Last contact duration                                                             |
| default      | Has credit in default?                                                            |
| age          | Number of contacts performed during this campaign and for this client             |
| campaign     | Number of contacts performed during this campaign and for this client             |
| pdays        | Number of days that passed by after the client was last contacted from a previous |
| Previous     | Number of contacts performed before this campaign and for this client             |
| poutcome     | Outcome of the previous marketing campaign                                        |
| У            | has the client subscribed a term deposit? (binary: yes/no)                        |

# **Data Cleaning**



## **Dealing with Missing Values / Null / Nan & Outliers**

The data also has some outliers in following attributes Balance, Duration, Campaign, Previous column. Here in the below table, we can easily identify the presence of outliers (highlighted) Balance, Duration, Campaign, Previous column.

|       | age          | balance       | day          | duration     | campaign     | pdays        | previous     | Outcome_y    |
|-------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|
| count | 45211.000000 | 45211.000000  | 45211.000000 | 45211.000000 | 45211.000000 | 45211.000000 | 45211.000000 | 45211.000000 |
| mean  | 40.936210    | 1362.272058   | 15.806419    | 258.163080   | 2.763841     | 40.197828    | 0.580323     | 0.116985     |
| std   | 10.618762    | 3044.765829   | 8.322476     | 257.527812   | 3.098021     | 100.128746   | 2.303441     | 0.321406     |
| min   | 18.000000    | -8019.000000  | 1.000000     | 0.000000     | 1.000000     | -1.000000    | 0.000000     | 0.000000     |
| 25%   | 33.000000    | 72.000000     | 8.000000     | 103.000000   | 1.000000     | -1.000000    | 0.000000     | 0.000000     |
| 50%   | 39.000000    | 448.000000    | 16.000000    | 180.000000   | 2.000000     | -1.000000    | 0.000000     | 0.000000     |
| 75%   | 48.000000    | 1428.000000   | 21.000000    | 319.000000   | 3.000000     | -1.000000    | 0.000000     | 0.000000     |
| max   | 95.000000    | 102127.000000 | 31.000000    | 4918.000000  | 63.000000    | 871.000000   | 275.000000   | 1.000000     |



1. Balance

Success of Subscription (Current Campaign & Previous Campaign)









# 2. Duration









Before Removal of Outliers















# **Univariate Analysis Bivariate Analysis** Variation International Intern

# **Based on Age Group**





Clients of age above 60 years and under 30 years have a higher probability of subscribed term deposit.

# **Types of Job**



% of Bank Customer Having Job Type



Students and retired clients account are having average more than 50% of subscription rate.

# **Marital Status**





Single clients account are having average more than 14 % of subscription rate.

# **Based on the Account Balance**





Clients with negative balances only returned a subscription rate of 6.9% while clients with average or high balances had significantly higher subscription rates of average 15%.

# **Education Qualification**







Customer who are highly educated subscribed more to term deposit plan.

# **Default in loan payment**



% of Bank Customer Having Personal Loan





The Customer who haven't default loan account are having high subscription rate.

# **Housing loan**





The Customer who haven't active housing/loan are having high subscription rate.

# Month







- The bank contacted most clients between May and August & least in March, September, October, and December.
- The highest subscription rate occurred in March, which is over 50%, and all subscription rates in September, October, and December are over 40%.

# Outcome of previous campaign





The Clients **who have subscribed in previous campaign** also have higher probability to subscribed current product as well.

# **Total call duration**





The duration of the last call in seconds, is more than twice for the customers who subscribed the products than for customers who didn't.

# **Feature Engineering**



### Creation of New Feature by Label Encoding & One hot Encoding

- I. Convert Categorical Feature which are having two class output (Yes/No)
  - 1. default: has credit in default? (Categorical: Yes/No)
- **2. housing**: has housing loan? (Categorical: Yes/No)
- **3. loan**: has personal loan? (Categorical: Yes/No)
- **4. y**: Has the client subscribed a term deposit? (Binary:: Yes/No)

### II. By Using One hot Encoding create Dummy Variable of following Multiclass Features

- 4. job: type of job (categorical: admin, blue-collar, entrepreneur, housemaid etc.)
- **5. marital :** marital status (categorical: divorced, married ,single)
- **6.education :** education (categorical: primary , secondary , tertiary, unknown)
- **7.contact:** contact communication type (categorical: cellular, telephone, unknown)
- **8. poutcome**: outcome of the previous campaign (categorical: failure, nonexistent, success)

### III. Convert Categorical Feature into Numerical Features by label Encoding

9. month: last contact month of year (categorical: jan, feb, mar, ..., nov, dec)

# **Preparing Dataset for Modeling**



### 1. Normalization of Dataset

Name: y, dtype: int64

- Normalizing the Dataset using MinMaxScaler Technique.
- MinMaxScaler scales all the data features in the range [0, 1].

### 2. Dealing With Class Imbalance

### Synthetic Minority Oversampling Technique (SMOTE)

```
from imblearn.over_sampling import SMOTE
smote = SMOTE()
# fit predictor and target variable
x_smote, y_smote = smote.fit_resample(scaled_df.iloc[:,0:-1], scaled_df['y'])
print('Original dataset shape', len(scaled_df))
print('Resampled dataset shape', len(y_smote))

C. Original dataset shape 44988
Resampled dataset shape 79422

# So now class is balanced
y_smote.value_counts()

0.0 39711
1.0 39711
```

% of Customer Subscribed Term Deposit Yes/ No



# **Feature Correlation**





# **Feature Importance**





|    | Features         | Importances |
|----|------------------|-------------|
| 6  | duration         | 0.347661    |
| 36 | Month            | 0.114472    |
| 7  | campaign         | 0.080380    |
| 2  | balance          | 0.068840    |
| 5  | day              | 0.061938    |
| 0  | age              | 0.054817    |
| 34 | poutcome_success | 0.034522    |
| 3  | housing          | 0.032668    |
| 9  | previous         | 0.025494    |
| 31 | contact_unknown  | 0.023071    |
| 8  | pdays            | 0.022013    |
| 29 | contact_cellular | 0.017281    |
| 4  | loan             | 0.013376    |
| 35 | poutcome_unknown | 0.007648    |

# **Feature Importance**





|    | Features            | Importances |
|----|---------------------|-------------|
| 6  | campaign            | 0.162973    |
| 35 | Month               | 0.157483    |
| 2  | balance             | 0.115728    |
| 5  | day                 | 0.112326    |
| 0  | age                 | 0.097296    |
| 3  | housing             | 0.038552    |
| 8  | previous            | 0.034235    |
| 33 | poutcome_success    | 0.033878    |
| 7  | pdays               | 0.027634    |
| 30 | contact_unknown     | 0.026863    |
| 4  | loan                | 0.021565    |
| 28 | contact_cellular    | 0.017665    |
| 25 | education_secondary | 0.010642    |
| 10 | job_blue-collar     | 0.010546    |
| 22 | marital_married     | 0.009996    |

# **Feature Selection**





### **CASE I**

- Duration
- campaign
- month
- balance
- day
- age
- housing
- poutcome success
- previous
- contact unknown
- loan

### **CASE II**

- campaign
- month
- balance
- day
- age
- housing
- poutcome success
- previous
- contact unknown
- loan
- education secondary
- marital married
- job blue collar

Feature Importance > 0.01



# **Preparing Dataset (Train Test Split)**

```
independent variables= final df[final df.Importances>0.005].Features.to list()
print(f'independent variables are {independent variables}')
dependent variables = 'y'
print(f'independent variables are {dependent variables}')
independent variables are ['duration', 'Month', 'campaign', 'balance', 'day', 'age', 'poutcome success', 'housing', 'previous', 'contact unknown', 'pdays', 'contact of
independent variables are v
# Creating the dataset with all independent variables
X = x smote[independent variables]
# Creating the dataset with the dependent variable
Y = y \text{ smote}
print(X.shape,Y.shape)
(79422, 22) (79422,)
#Lets Split The dataset Into Test & Train dataset
from sklearn.model selection import train test split
# Splitting the dataset into the Training set and Test set
X train, X test, y train, y test = train test split(X, Y, test size=0.25, random state=0,stratify= Y)
```

# **Machine Learning Models**





# 1. Random Forest Classifier



| Evaluation<br>Metrics | Class | With Duration |           | Without    | Duration  |
|-----------------------|-------|---------------|-----------|------------|-----------|
| Score                 |       | Train Data    | Test Data | Train Data | Test Data |
| Accuracy              |       | 0.9181        | 0.9012    | 0.8664     | 0.8624    |
| Roc_Auc_Score         |       | 0.9180        | 0.9012    | 0.8664     | 0.8624    |
| Precision             | 0     | 0.95          | 0.94      | 0.83       | 0.82      |
|                       | 1     | 0.89          | 0.87      | 0.90       | 0.89      |
| Recall                | 0     | 0.88          | 0.86      | 0.91       | 0.90      |
|                       | 1     | 0.96          | 0.95      | 0.82       | 0.80      |
| F1 Score              | 0     | 0.91          | 0.90      | 0.87       | 0.86      |
|                       | 1     | 0.92          | 0.91      | 0.86       | 0.84      |

# 2. Naive Bayes Algorithm



| Evaluation<br>Metrics | Class | With Duration |           | Class With Duration |           | Without | Duration |
|-----------------------|-------|---------------|-----------|---------------------|-----------|---------|----------|
| Score                 |       | Train Data    | Test Data | Train Data          | Test Data |         |          |
| Accuracy              |       | 0.7839        | 0.7850    | 0.6893              | 0.6945    |         |          |
| Roc_Auc_Score         |       | 0.7839        | 0.7850    | 0.6893              | 0.6945    |         |          |
|                       | 0     | 0.75          | 0.75      | 0.67                | 0.67      |         |          |
| Precision             | 1     | 0.83          | 0.83      | 0.72                | 0.71      |         |          |
|                       | 0     | 0.86          | 0.85      | 0.75                | 0.75      |         |          |
| Recall                | 1     | 0.71          | 0.71      | 0.63                | 0.63      |         |          |
| F1 Score              | 0     | 0.80          | 0.80      | 0.71                | 0.71      |         |          |
|                       | 1     | 0.77          | 0.77      | 0.67                | 0.67      |         |          |

# 3. Support vector classifier



| Evaluation<br>Metrics | Class | With Duration |           | Class With Duration Without Duration |           | Duration |
|-----------------------|-------|---------------|-----------|--------------------------------------|-----------|----------|
| Score                 |       | Train Data    | Test Data | Train Data                           | Test Data |          |
| Accuracy              |       | 0.8711        | 0.8668    | 0.7310                               | 0.7327    |          |
| Roc_Auc_Score         |       | 0.8711        | 0.8668    | 0.7310                               | 0.7327    |          |
| Precision             | 0     | 0.90          | 0.90      | 0.71                                 | 0.71      |          |
|                       | 1     | 0.85          | 0.84      | 0.77                                 | 0.76      |          |
| Recall                | 0     | 0.84          | 0.83      | 0.79                                 | 0.78      |          |
|                       | 1     | 0.91          | 0.90      | 0.68                                 | 0.68      |          |
| F1 Score              | 0     | 0.87          | 0.86      | 0.75                                 | 0.75      |          |
|                       | 1     | 0.88          | 0.87      | 0.72                                 | 0.72      |          |

# 4. K-Neighbours Classifier



| Evaluation<br>Metrics | Class | With Duration |           | Without    | Duration  |
|-----------------------|-------|---------------|-----------|------------|-----------|
| Score                 |       | Train Data    | Test Data | Train Data | Test Data |
| Accuracy              |       | 1.0           | 0.9207    | 0.9999     | 0.8681    |
| Roc_Auc_Score         |       | 1.0           | 0.9207    | 0.9999     | 0.8681    |
| Precision             | 0     | 1.00          | 0.95      | 1.00       | 0.89      |
|                       | 1     | 1.00          | 0.89      | 1.00       | 0.85      |
| Recall                | 0     | 1.00          | 0.89      | 1.00       | 0.84      |
|                       | 1     | 1.00          | 0.95      | 1.00       | 0.89      |
| F1 Score              | 0     | 1.00          | 0.82      | 1.00       | 0.86      |
|                       | 1     | 1.00          | 0.92      | 1.00       | 0.87      |

# **5. Neural Network**



| Evaluation<br>Metrics | Class | With Duration |           | Without    | Duration  |
|-----------------------|-------|---------------|-----------|------------|-----------|
| Score                 |       | Train Data    | Test Data | Train Data | Test Data |
| <b>Accuracy Score</b> |       | 0.8637        | 0.8593    | 0.7333     | 0.7327    |
| Roc_Auc_Score         |       | 0.8637        | 0.8593    | 0.7333     | 0.7327    |
|                       | 0     | 0.90          | 0.90      | 0.72       | 0.72      |
| Precision             | 1     | 0.85          | 0.84      | 0.78       | 0.77      |
|                       | 0     | 0.83          | 0.83      | 0.80       | 0.80      |
| Recall                | 1     | 0.91          | 0.91      | 0.69       | 0.69      |
| F1 Score              | 0     | 0.87          | 0.86      | 0.76       | 0.75      |
|                       | 1     | 0.88          | 0.87      | 0.73       | 0.73      |



| Al |
|----|
|----|

| Evaluation<br>Metrics | Class | With Duration |           | Without    | Duration  |
|-----------------------|-------|---------------|-----------|------------|-----------|
| Score                 |       | Train Data    | Test Data | Train Data | Test Data |
| Accuracy              |       | 0.9607        | 0.9403    | 0.9411     | 0.9282    |
| Roc_Auc_Score         |       | 0.9607        | 0.9403    | 0.9411     | 0.9282    |
| Precision             | 0     | 0.96          | 0.94      | 0.91       | 0.90      |
|                       | 1     | 0.96          | 0.94      | 0.98       | 0.97      |
| Recall                | 0     | 0.96          | 0.94      | 0.98       | 0.80      |
|                       | 1     | 0.96          | 0.94      | 0.90       | 0.89      |
| F1 Score              | 0     | 0.96          | 0.94      | 0.94       | 0.93      |
|                       | 1     | 0.96          | 0.94      | 0.94       | 0.93      |

# **Model Validation and Selection**



| Γ | Model Name                | Train_Accuracy_Score | Test_Accuracy_Score | Train_Roc_Auc_Score | Test_Roc_Auc_Score |
|---|---------------------------|----------------------|---------------------|---------------------|--------------------|
| 0 | Random Forest Classifier  | 0.918091             | 0.901239            | 0.918091            | 0.901239           |
| 1 | Naive Bays Algorithem     | 0.783988             | 0.785052            | 0.783988            | 0.785052           |
| 2 | Support Vector Machine    | 0.871168             | 0.866841            | 0.871168            | 0.866841           |
| 3 | KNeighborsClassifier      | 1.000000             | 0.920780            | 1.000000            | 0.920780           |
| 4 | Sequential Neural Network | 0.863731             | 0.859337            | 0.863731            | 0.859337           |
| 5 | XGBoost Classifier        | 0.960783             | 0.940320            | 0.960783            | 0.940320           |

# **Case I With Duration Feature**



# **Model Validation and Selection**



|   | Model Name                | Train_Accuracy_Score | Test_Accuracy_Score | Train_Roc_Auc_Score | Test_Roc_Auc_Score |
|---|---------------------------|----------------------|---------------------|---------------------|--------------------|
| 0 | Random Forest Classifier  | 0.866451             | 0.862460            | 0.866451            | 0.862460           |
| 1 | Naive Bays Algorithem     | 0.689319             | 0.694551            | 0.689319            | 0.694551           |
| 2 | Support Vector Machine    | 0.731004             | 0.732726            | 0.731004            | 0.732726           |
| 3 | KNeighborsClassifier      | 0.999966             | 0.868100            | 0.999966            | 0.868100           |
| 4 | Sequential Neural Network | 0.733388             | 0.732776            | 0.733388            | 0.732776           |
| 5 | XGBoost Classifier        | 0.941141             | 0.928233            | 0.941141            | 0.928233           |
|   |                           |                      |                     |                     |                    |

# Case II Without Duration Feature



# Conclusion



Clients of age above 60 years and under 30 years have a higher probability of subscribed term deposit.

The Customer who haven't active housing/loan are having high subscription rate.

The Clients **who have subscribed in previous campaign** also have higher probability to subscribed current product as well.

The **duration of the last call in seconds, is more than twice** for the customers who subscribed the products than for customers who didn't.

Clients with negative balances only returned a subscription rate of 6.9% while **clients with** average or high balances had significantly higher subscription rates of average 15%.

However, in this campaign, more than 50% of clients contacted those who have a low balance. So in the future, the bank should have to shift its marketing focus on high-balance customers to secure more term deposits.

# Continue...



The bank contacted most clients between May and August. The highest contact rate is around 30%, which happened in May, while the contact rate is low in March, September, October, and December.

However, the subscription rate showed a different trend. The highest subscription rate occurred in March, which is over 50%, and all subscription rates in September, October, and December are over 40%.

To improve the marketing campaign, the bank should consider initiating the telemarketing campaign in fall and spring when the subscription rate tends to be higher.

By applying Random Forest Classifier, KNN Neighbours classifiers & XGB Classifier classification model were successfully built with descent results. With help of these three models, the bank will be able to predict a customer's response to its telemarketing campaign before calling this customer.

The best machine learning model is XGBoost Classifier, which resulted in best AUC score & one of the best Precision & Recall Value among the all classification model in both the cases.

# Continue...



In this way, the bank can allocate more marketing efforts to the clients who are classified as highly likely to accept term deposits, and call less to those who are unlikely to make term deposits.

Increase the efficiency of the bank's telemarketing campaign, saving time and efforts, prevents some clients from receiving undesirable advertisements, raising customer satisfaction.

With the aid of above Machine Learning models, the bank can enter a virtuous cycle of effective marketing, more investments and happier customers.





