

11 171 20 41 61 0			
HW+Lab			
D+2			

การบ้านปฏิบัติการ 10 Iterations - Part I (20 คะแนน)

g/	0			
ขอ	กา	เหเ	น	0

- การเรียกใช้ฟังก์ชันเพื่อการทดสอบ ต้องอยู่ภายใต้เงื่อนไข if __name__ == '__main__' : เพื่อความ
 สะดวกในการ import จาก Script อื่น ๆ
- ii. <u>ไม่</u>อนุญาตให้ใช้ Data Type อื่น ๆ ที่ยังไม่สอนในบทเรียน เช่น **dict** หรือ **set** ในการแก้ปัญหา
- iii. นักศึกษาสามารถสร้างฟังก์ชันย่อยต่าง ๆ เพิ่มเติมได้ตามความเหมาะสม
- iv. ในข้อที่ระบุว่ามี [Attachments] ให้ Download ไฟล์ Template จาก Grader ลงมา implement

Hint: ควรใช้ Statement assert เพื่อทำการทดสอบฟังก์ชันที่เขียนกับข้อมูลทดสอบหลายๆ ชุดโดยอัตโนมัติ

1) **4 คะแนน (Lab10_1_6XXXXXXX.py)** ก้อยต้องการส่งข้อความลับหาดาว เพื่อป้องกันไม่ให้ดิวรู้ก้อยจึงเลือกส่ง ข้อความด้วยการเข้ารหัสอย่างง่าย ทุก ๆ เช้าก้อยจะส่งตารางรหัส (code table) ให้ดาว โดยตารางรหัสจะเป็น ตัวอักษรยาว *n* ตัว หลังจากนั้นก้อยจะส่งข้อความเป็นตัวเลขหาดาวทีละ 1 บรรทัด โดยตัวเลขแต่ละตัว จะเป็น index ของตัวอักษรในตารางรหัส

ให้เขียนฟังก์ชัน decode(code_table, text) เพื่อช่วยดาวถอดรหัสข้อความจากก้อยและ<u>แสดงผล</u> โดยใช้ ตาราง code_table ที่อยู่ในรูปของสายอักขระ และถอดรหัสข้อความ text ที่ประกอบด้วยข้อความที่ก้อยส่งมาใน ลักษณะ สายอักขระของตัวเลขคั่นด้วยอักขระ space ซึ่งอาจมีมากกว่า 1 บรรทัด ทั้งนี้หากตัวเลขที่ส่งมา<u>ไม่</u>สามารถ แสดงผลได้ (เช่นกรณีอยู่นอกขอบเขตของตารางรหัส) ให้แสดงเป็นอักขระ underscore แทน '_'

Function Call		<u>Output</u>	
<pre>decode("aceiklmr-",' 3 5 3 4 2 3 1 2 8 1 7 20 86</pre>	PUTEF	i like ice-crea_	ENCE
''')	Chiang Mai	Universit	V

• การวิเคราะห์ปัญหา

Input:		จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
	(คืนค่า)	จำนวนข้อมูล	ชน <mark>ิ</mark> ดข้อมูล	

2) 4 คะแนน (Lab10_2_6XXXXXXX.py) ให้เขียนฟังก์ชัน float_to_base_b(x, b) เพื่อ<u>คืนค่าสายอักขระ</u>แทน เลขทศนิยม x ($x \neq 0$) ในฐาน 10 เมื่อถูกแปลงให้อยู่ในฐาน b ($2 \leq b \leq 16$) โดยให้คำนวณและคืนค่าผลลัพธ์ทศนิยม เพียง 6 ตำแหน่งแรก (ตัดส่วนที่เหลือทิ้งโดยวิธีปัดเข้าหา 0) เช่น $44.1875_{10} = 101100.001100_2$

Hint: พิจารณาตรวจสอบคำตอบได้ที่ https://www.wolframalpha.com/

44.1875	101100.001100
0.9999999	0.111111
-3.1415	-10.010211

Output

0.F00000

0.9375

(คืนค่า)

•	การวิเครา	ะห์ปัญหา

Input

ชนิดข้อมูล_ จำนวนข้อมูล_ • Input: ____ชนิดข้อมูล_ จำนวนข้อมูล___ · Output: (แสดงค่า) ___ชนิดข้อมูล_ จำนวนข้อมูล___

3) 4 คะแนน (HW10 1 6XXXXXXXX.py) ให้เขียนฟังก์ชัน common prime factor(a, b, show_list=False) เพื่อคืนค่า list ของตัวประกอบเฉพาะร่วม (common prime factor) ของจำนวนเต็มบวก a และ b เพื่อใช้หาตัวหาร ร่วมมาก (gcd) ของ a และ b โดยมี Optional Parameter show list เพื่อแสดง/ไม่แสดง list ของตัวประกอบ เฉพาะของ a และ b

การหา gcd (ตัวหารร่วมมาก) ด้วยวิธีการหาตัวประกอบเฉพาะร่วม ทำได้โดยการนำตัวเลขทั้งสอง มาหา prime factor (ตัวประกอบเฉพาะ) ก่อน เช่น

$$180 = 2 \times 2 \times 3 \times 3 \times 5$$

$$48 = 2 \times 2 \times 2 \times 2 \times 3$$

แล้วจึงนำมาตัวประกอบเฉพาะร่วม จากตัวอย่างด้านบนตัวประกอบเฉพาะร่วมของทั้งสองจำนวนได้แก่ 2, 2 และ 3 ดังนั้น gcd ของ 180 และ $48 = 2 \times 2 \times 3 = 12$

Hint: พิจารณาการใช้ Merge Algorithm

Function Call

Output

```
x = common_prime_factor(180, 48)
print('----')
print(x)

x = common_prime_factor(180, 48, True)
print('-----')
print('----')
print(x)

a: [2, 2, 3, 3, 5]
b: [2, 2, 2, 2, 3]
------
[2, 2, 3]
```

• การวิเคราะห์ปัญหา

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
	(คืนค่า)	• จำนวนข้อมูล	ชนิดข้อมูล	

4) **4 คะแนน** (HW10_2_6XXXXXXXX.py) ให้เขียนฟังก์ชัน eratosthenes(*n*, *show_step*=False) เพื่อ<u>คืนค่า</u> list ของจำนวนเฉพาะตั้งแต่ 2 ถึง<u>จำนวนเต็มบวก</u> *n* ตามวิธี 'Sieve of Eratosthenes' ในบทเรียนโดยมี Optional Parameter *show_step* เพื่อแสดง/ไม่แสดงขั้นตอนในแต่ละ Iteration ดังแสดงด้านล่าง

Function Call

Output

<pre>result = eratosthenes(20, True) print('') print(result)</pre>	2: [2, 3, 5, 7, 9, 11, 13, 15, 17, 19] 3: [2, 3, 5, 7, 11, 13, 17, 19] [2, 3, 5, 7, 11, 13, 17, 19]
<pre>result = eratosthenes(20) print('') print(result)</pre>	[2, 3, 5, 7, 11, 13, 17, 19]

• การวิเคราะห์ปัญหา

• Input:		จานวนขอมูล	ชนดขอมูล	
Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	

5) **4 คะแนน** (HW10_3_6XXXXXXXX.py) ให้เขียนฟังก์ชัน polynomial_addition(p1, p2) เพื่อทำการบวกพหุ นามตัวแปรเดียว 2 จำนวนตัวอย่างเช่น

$$a = 6x^2 + 34x - 8$$

$$b = -6x^2 + x + 2$$

จะได้ผลลัพธ์ a+b=35x-6 หรือ [(1, 35), (0, -6)] โดย p1 และ p2 จะเป็น list ของ tuple ที่อยู่ใน รูป (กำลัง, สัมประสิทธิ์) หรือ (power, coefficient) โดย power จะเป็นจำนวนเต็มที่มากกว่าหรือเท่ากับ 0 ในขณะที่ coefficient เป็นจำนวนจริง ทั้งนี้ฟังก์ชันจะต้องทำงานแบบ Non-destructive และคืนค่า list ผลลัพธ์เรียงตามกำลัง จากมากไปน้อย

Hint: พิจารณาการใช้ฟังก์ชัน sorted() เพื่อเรียงลำดับ tuple ภายใน list ก่อนทำการบวก

<u>Input</u>	<u>Output</u>
[(2, 6), (1, 34), (0, -8)] [(2, -6), (0, 2), (1, 1)]	[(1, 35), (0, -6)]

• การวิเคราะห์ปัญหา

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	

การส่งงาน

- 1. ลักษณะ/ลำดับข้อความของการรับค่า/แสดงผล จะ**ต้องเป็นไปตามที่ระบ**ุในตัวอย่างการ run
- 2. ไฟล์งานที่ส่ง จะต้องมีการแทรก comment ที่ต้นไฟล์ตามข้อกำหนดใน canvas รายวิชา
- 3. ไฟล์งานโปรแกรมที่ส่ง จะต้องมีการแทรก pseudocode เป็น comment ในแต่ละขั้นตอน
- 4. Upload ไฟล์ source code ตามที่ระบุในแต่ละข้อ ไปยังระบบตรวจให้คะแนนอัตโนมัติ https://cmu.to/gdr111

COMPUTER SCIENCE

Chiang Mai University