第一次习题课

1(作业题 4): 设 G 是一个半群, 如果:

- (1) G 中含有左幺元 e, 即 $\forall x \in G, ex = x$;
- (2) G 的每个元素 x 有 (关于 e) 左逆元 x^{-1} 使得 $x^{-1}x = e$. 试证 G 是群.

证明: 我们欲说明 e 是幺元,那么应该证明 $xe = x(x^{-1}x) = (xx^{-1})x = ex = x, \forall x \in G$,因此我们只需要证明 $xx^{-1} = e, \forall x \in G$,而 $xx^{-1} = e(xx^{-1}) = (ex)x^{-1} = (((x^{-1})^{-1}x^{-1})x)x^{-1} = ((x^{-1})^{-1}(x^{-1}x))x^{-1} = ((x^{-1})^{-1}e)x^{-1} = (x^{-1})^{-1}(ex^{-1}) = (x^{-1})^{-1}x^{-1} = e$. 因此 e 是 G 中幺元,而且同时说明了 G 中任意一个元素有逆元.

2(作业题 8): 举例:

- (1) 举出一个半群的例子, 其中存在元素有左逆元但是没有右逆元;
- (2) 举出一个半群的例子, 其中存在元素至少有两个左逆元;
- (3) 举出一个半群的例子, 其中存在元素有无数个左逆元.

证明: 大多数时候我们谈论左右逆元, 都是在幺半群的情况下, 因为此时只有唯一一个幺元, 性质相对会好些. 我们分别看一些例子:

(a): 右零半群.

设 S 是一个非空子集, 定义其中乘法: $a \cdot b = b, \forall a, b \in S$, 易证 S 是半群, 而且任一元素都是左 幺元, 且任一元素 a 都是元素 b 的相对于左幺元 b 的左逆元. 因此 b 有 |S| 个相对于 b 的左逆元. 同时, 任一元素 b 都是元素 a 的相对于左幺元 b 的左逆元

注意: 右零半群构成一个群 $\Longrightarrow ae = a = e, \forall a \in S \Rightarrow |S| = 1.$

(b): 集合的全变换半群 $\mathcal{T}(X)$ (幺半群).

例: $f: \mathbb{N} \to \mathbb{N}, n \longmapsto n+1$, 没有右逆元因为其不是满射.f 有无限个左逆: $g_a: \mathbb{N} \to \mathbb{N}$,

$$g_a(n) = \begin{cases} n-1 & n \ge 1 \\ a & n = 0 \end{cases} \quad \forall a \in \mathbf{N}.$$

或者 $f(n) = n^2$.

也可以考虑 R^{∞} 上的线性变换: $f:(a_1,a_2,\cdots,a_n,\cdots)=(0,a_1,a_2,\cdots,a_n,\cdots)$. \square Remark:

- (a): 固定右零半群里的一个左幺元, 记为 e, 那么 $\forall a \in G, ab = b = e$ 意味着每个元素关于 e 都有唯一的右幺元 e, 但是 G 一般不是群.
- (b) 若半群 G 有唯一的右幺元 e 并且每个元素都有关于 e 的左逆元, 那么 G 是一个群. 事实上: $e=(a^{-1})^{-1}a^{-1}=(a^{-1})^{-1}(a^{-1}a)a^{-1}=eaa^{-1}$, 所以 $\forall b\in G, b=be=beaa^{-1}=baa^{-1}\Rightarrow e=aa^{-1}$, 进一步 $ea=(aa^{-1})a=ae=a$. 因此, G 是群.
- (c) Kaplansky 定理: 含幺环中一元素若有至少两个右逆元, 则其有无限个右逆元 $(x_0 + (1 x_0 x)x^k)$.
- (d) 定义 $f: \mathbf{N} \to \mathbf{N}$:

$$f(n) = \begin{cases} n-1 & n > 1 \\ 0 & 0 \le n \le 1 \end{cases}$$

易验证 f 只有两个右逆元, 因此 $\mathcal{T}(X)^{op}$ 中 f 恰有两个左逆元.

3(作业题 9): 令 S 是一非空集. 定义 S 上的运算: $a \cdot b = a(a \cdot b = b)$. 则 (S, \cdot) 是一个半群, 称 其为左 (右) 零半群. 若 S 是一半群, 证明如下三款等价:

- (1) S 是一左零半群, 或者 S 是一右零半群;
- (2) $ab = cd \Rightarrow a = c$ 或者 b = d;

(3) 任意映射 $f: S \to S, f(ab) = f(a)f(b)$.

证明: (1)⇒(3): 显然;

 $(3)\Rightarrow(2)$: 先证明 $\forall a,b \in S, ab = a$ 或者 b. 若 $ab \neq a$, 做 S 上的变化 $f(x) = a(x = ab), f(x) = ab(x \neq ab) \Rightarrow a = f(ab) = f(a)f(b) = (ab)f(b)$, 若 f(b) = ab, 那么 a = (ab)(ab) = ab(考虑到独点的映射), 矛盾, 因此 $f(b) = \neq ab$, 即 ab = a. 现证明命题, 设 ab = cd, 若 a = b, 那么 ab = aa = a = b = cd = c(d), 若 $a \neq b$, 那么 ab = a(b), 若 ab = a, 做 ab = a, 他 ab = a, 他

4(作业题 10): 今 G 是一个半群. 则 G 是一个群当且仅当

$$\forall a \in G, \exists! b \in G, (ab)^2 = ab.$$

证明: 第一步: 记上述 b 为 a', 那么有 $(aa'aa')^2 = aa'aa' \Rightarrow a'aa' = a' \Rightarrow (a'a)^2 = a'a$. 若存在另一个 a'' 满足 $(a''a)^2 = a''a$, 即 a = (a'')', 那么 $(aa'')^2 = aa'' \Rightarrow a'' = a'$. 第二步: 任意 $a,b \in G,((ba')'(ba'))^2 = (((ba')'b)a'))^2 = ((ba')'b)a') \Rightarrow (ba')'b = a$. 即 xb = a 有解, 类似的 ay = b 有解, 故 G 是群.

5:(一些小维典型群)

(1):SO(2)≅U(1)(课堂上说过);

(2): $SU(2) \rightarrow SO(3)$.

证明: (1):SO(2) =
$$\left\{ \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \in M_2(R) | 0 \le \varphi < 2\pi \right\} \to U(1)$$

$$\begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \mapsto e^{i\varphi}.$$

(2): 旋转群 SO(3). 在 \mathbb{R}^3 上给定标准内积. \mathbb{R}^3 的原点表示成 O,\mathbb{R}^3 上的旋转 (rotation) 是一个光滑映射 $R:\mathbb{R}^3\to\mathbb{R}^3$,其保持原点 O、角度、距离和定向. 考虑 \mathbb{R}^3 中任意两点 A,B,由于 R 保持距离和角度,则四边形 OABC 和四边形 R(O)R(A)R(B)R(C) 全等,因此 OR(A)+OR(B)=OR(C),也就是 R(C)=R(A+B)=R(A)+R(B). 而且我们有 R(rA)=rR(A),因此 R 是一个线性映射. (如果觉得该描述不够数学,也可以利用内积得到更严格的数学证明). 因为:

$$cos(\mathbf{a}, \mathbf{b}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\sqrt{\mathbf{a} \cdot \mathbf{a}} \mathbf{b} \cdot \mathbf{b}}$$

一个旋转保持距离和角度当且仅当其保持内积.

为了保持定向, 只需要其保持外积 $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = det(\mathbf{a}, \mathbf{b}, \mathbf{c}), R$ 对应的矩阵同样记为 R, 则有 $sgn(det R \cdot det(\mathbf{a}, \mathbf{b}, \mathbf{c})) = sgn(det(\mathbf{a}, \mathbf{b}, \mathbf{c}))$. 因此 det R > 0.

综上,一个旋转对应于一个线性变换, 其满足: $R^TR = I_3$, det R = 1, 即 SO(3). 而我们又知道三阶特殊正交矩阵必有一个实特征根, 且可知其是 $1(\lambda_1\lambda_2\bar{\lambda}_2 = 1)$. 因此存在 e_r 使得 $Re_R = e_R$. 若 R 不是恒等矩阵, 则其属于 1 的特征子空间的维数为一, 其在 R 的作用下是不变的. 我们称改不变子空间为旋转轴 (the axis of rotation),R 可以视作绕着该轴的旋转 (角度记为 ϕ , 旋转 R 记为 $R(e_R, \phi)$). 我们能通过一个坐标变换使得 R 轴变成 R0, 例如:记 R1 在 R2 平面的投影和 R2 轴的夹角为 R3, 则:

$$R(e_R,\phi) = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\varphi & 0 & \sin\varphi\\ 0 & 1 & 0\\ -\sin\varphi & 0 & \cos\varphi \end{pmatrix} \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & 0 & \cos\phi\\ 0 & 0 & 1 \end{pmatrix}$$

上述矩阵分别记为 $R_z(\theta)$, $R_y(\varphi)$, $R_z(\phi)$, 因此 $R = R_z(\theta)R_y(\varphi)R_z(\phi)$.

类似的有
$$R_x(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & -\sin\alpha \\ 0 & \sin\alpha & \cos\alpha \end{pmatrix}$$
. 故 SO(3) 可以由初等旋转矩阵 $R_x(\alpha), R_y(\varphi), R_z(\phi)$

生成.

复旋转. 在 \mathbb{C}^2 给定标准内积. 我们有群同态 $\det:U(2)\longrightarrow U(1)$, 显然这是一个满同态, 且其 kernel 是 SU(2). 特别的, 我们有 $U(2)\cong U(1)\times SU(2)$ ($U(1)\cong \begin{pmatrix} e^{i\varphi/2} & 0 \\ 0 & e^{i\varphi/2} \end{pmatrix}$).

 $\forall U \in SU(2), U^*U = I_2$, 且 $\det U = 1$, 因此可以得到如下等式

$$\begin{aligned} |a|^2 + |c|^2 &= 1, \quad |b|^2 + |d|^2 &= 1, \\ \bar{a}b + \bar{(}c)d &= 0, \quad ad - bc &= 1. \end{aligned}$$

故 $U^{-1}=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, 所以 $d=\bar{a}, c=-\bar{b}$. 因此 SU(2) 中的任意一个元素都可以写成如下形式:

$$U(x,y) = \begin{pmatrix} x & y \\ -\bar{y} & \bar{x} \end{pmatrix}$$
 $|x|^2 + |y|^2 = 1,$

特别的我们有流形间的同构 $SU(2) \cong S^3$.

泡利矩阵. 定义如下矩阵:

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

注意到 $M_0=\mathbb{R}\sigma^1+\mathbb{R}\sigma^2+\mathbb{R}\sigma^3$ 是所有迹零的二阶复 Hermitian 矩阵、 $\forall (x_1,x_2,x_3)^T\in\mathbb{R}^3, (x_1,x_2,x_3)^T\leftrightarrow H_x:=\sum_{i=1}^3x_i\sigma^i,$ 由于在 M_0 上具有矩阵 $A(基:\ \sigma^1,\sigma^2,\sigma^3)$ 的线性变换对应到 \mathbb{R}^3 同样具有矩阵 $A(\&:\ e_1,e_2,e_3)$ 的线性变换,因此我们可以简单地将这两个空间等同起来.

令 $g \in SU(2)$, 定义如下映射: $\Phi_g: H_x \mapsto gH_xg^{-1}, tr(gH_xg^{-1}) = tr(H_x) = 0$, $(gH_xg^{-1})^* = (g^{-1})^*H_x^*g^* = gH_xg^{-1} \Rightarrow \Phi_g(H_x) = gH_xg^{-1} \in M_0$. 又有 $\Phi_g(H_{\alpha x} + H_{\beta y}) = \alpha\Phi_g(H_x) + \beta\Phi_g(H_y)$, 即 $\Phi \not\in M_0$ 上的线性算子.

设 $\Phi_g(H_x) = H_y$,我们说明 Φ 是 \mathbb{R}^3 上的正交变换 $\Phi_g(x) \cdot \Phi_g(x) = y \cdot y = y_1^2 + y_2^2 + y_3^2 = -\det H_y = -\det g(H_x) = -\det gH_xg^{-1} = -\det H_x = x_1^2 + x_2^2 + x_3^2 = x \cdot x$.

容易证明 $\Phi_{gh} = \Phi_g \circ \Phi_h$, 因此 $\Phi: g \mapsto \Phi_g$ 是 SU(2) 到 O(3) 的同态, 其 kernel 满足 $gH = Hg, \forall H \in M_0$, 即 $g\sigma^i = \sigma^i g, 1 \leq i \leq 3 \Rightarrow g = \pm I_2$. 又因为:

$$U(e^{i\gamma/2}, 0)\sigma^{1}U(e^{i\gamma/2}, 0)^{-1} = \cos\varphi\sigma^{1} + \sin\varphi\sigma^{2},$$

$$U(e^{i\gamma/2}, 0)\sigma^{2}U(e^{i\gamma/2}, 0)^{-1} = -\sin\varphi\sigma^{1} + \cos\varphi\sigma^{2},$$

$$U(e^{i\gamma/2}, 0)\sigma^{3}U(e^{i\gamma/2}, 0)^{-1} = \sigma^{3}.$$

因此 $\Phi(U(e^{-i\gamma/2},0)) = R_z(\gamma)$.

而我们又有 $g = hU(e^{-i\gamma/2}, 0)h^{-1}, h$ 是某个酉矩阵. 因此 $\det \Phi_g = \det(\Phi_h \Phi_{U(e^{-i\gamma/2}, 0)} \Phi_{h^{-1}}) = 1$ (此时的 Φ_h 的定义和上面是一样的).

同样可以计算 $\Phi(U(\cos\alpha/2, -i\sin\alpha/2)) = R_x(\alpha), \Phi(U(\cos\beta/2, -\sin\beta/2)) = R_x(\alpha).$ 综上 $SU(2)/Z_2 \cong SO(3).$