Lecture 6: Logistic Regression & PyTorch for Deep Learning

Haiping Lu

YouTube Playlist: https://www.youtube.com/c/HaipingLu/playlists

COM4059/6059: MLAI21@The University of Sheffield

Week 6 Contents / Objectives

- Machine Learning Recap
- Motivation for Logistic Regression
- Logistic Regression
- Computational Graph
- PyTorch: A Deep Learning Library

Week 6 Contents / Objectives

- Machine Learning Recap
- Motivation for Logistic Regression
- Logistic Regression
- Computational Graph
- PyTorch: A Deep Learning Library

Learning algorithms are the seeds, data is the soil, and the learned programs are the grown plants. The machinelearning expert is like a farmer, sowing the seeds, irrigating and fertilizing the soil, and keeping an eye on the health of the crop but otherwise staying out of the way.

Machine Learning Ingredients

- Data: + pre-processing (& visualisation), e.g., $\mathcal{N}(0,1)$
- Model
 - Structure ~ Architecture ← expert knowledge
 - Must specify before ML, can optimise via cross validation (CV)
 - **Hyper-parameter**, e.g., prior, #degree, layer ← knowledge
 - Must specify (choices) and can optimise via CV (tuning)
 - Parameters (theta)
 - Compute/learn parameter, e.g., **weights**, bias ← optimisation alg.
- Evaluation metric (what's best): loss/error function
- Optimisation: (how to find the best) learnable parameters

ML API without Standardization

Machine Learning Pipeline

• PyKale: a library defined in this pipeline

 PyTorch library built by us (week 10): https://github.com/pykale/pykale

Load	Preprocess	Embed	Predict	Evaluate	Interpret	
Load digits	Standardise images	Learn CNN features	Predict digit class	Compute accuracy	Visualise patterns	
Load MRIs	Standardize MRIs	Learn MPCA features	Predict MRI class	Compute accuracy	Visualise patterns	
Load BindingDB	Chem chars → sequence	Drug/target embedding	Predict binding	Concord index	Visualise relations	

Reproducibility -> Trustworthy

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

https://www.ucl.ac.uk/pals/research/experimental-psychology/wp-content/uploads/2016/03/reproducibility-small-496x300.jpg

- Reproducible machine learning
 - Make it modular to help understanding & tracing
 - Keep a record of all assumptions and settings
 - Set a seed when there is randomness.

Start Simple & Small

- The simplest prediction task: binary classification
 - Input (to predict from): feature vectors
 - Output (to predict): 0 or 1
 - Difficulty determined by the distribution of the input

Week 6 Contents / Objectives

- Machine Learning Recap
- Motivation for Logistic Regression
- Logistic Regression
- Computational Graph
- PyTorch: A Deep Learning Library

The Question

"To click or not to click that is the question."

William Shakespeare

Click-Through Rate (CTR) Prediction

- Estimating click probabilities: What is the probability that user i will click on ad j
 - Not important just for ads:
 - Optimize search results
 - Suggest news articles
 - Recommend products
- Logistic regression is used by many internet companies, making lots of money for them
 - E.g., Facebook (Meta) ad matching

A Binary Classification Problem

Table 1: Age and signs of coronary heart disease (CD)

Age	CD	Age	CD	Age	CD
22	0	40	0	54	0
23	0	41	1	55	1
24	0	46	0	58	1
27	0	47	0	60	1
28	0	48	0	60	0
30	0	49	1	62	1
30	0	49	0	65	1
32	0	50	1	67	1
33	0	51	0	71	1
35	1	51	1	77	1
38	0	52	0	81	1

Prediction question: a particular age \rightarrow CD Linear regression?

Dot-plot: Data from Table 1

Transform the Data >> Probability

Table 2 Prevalence (%) of signs of CD according to age group

		Diseased		
Age group	# in group	#	%	
20 - 29	5	0	0	
30 - 39	6	1	17	
40 - 49	7	2	29	
50 - 59	7	4	57	
60 - 69	5	4	80	
70 - 79	2	2	100	
80 - 89	1	1	100	
	•		•	

Dot-plot: Data from Table 2

Logistic Function

Week 6 Contents / Objectives

- Machine Learning Recap
- Motivation for Logistic Regression
- Logistic Regression
- Computational Graph
- PyTorch: A Deep Learning Library

Probabilistic Classification

- Training classifiers: estimating f: X → Y, or P(Y|X)
- **Discriminative** classifiers
 - Assume some functional form for P(Y|X)
 - Estimate parameters of P(Y|X) directly from training data
- Generative classifiers
 - Assume some functional form for P(X|Y), P(X)
 - Estimate parameters of P(X|Y), P(X) directly from training data
 - Use Bayes rule to calculate $P(Y|X=x_i)$

Log Odds

• Odds: the ratio of π , the probability of a positive outcome $P(y=1|\mathbf{x})$, to $(1-\pi)$, the probability of a negative outcome $P(y=0|\mathbf{x})$.

$$\overline{1-\pi}$$

• Probability: [0, 1]

• → Odds: [0, ∞]

• \rightarrow Log odds (**logit**): [- ∞ , ∞]

$$logit(\pi) = log \frac{\pi}{1 - \pi}$$

Logit Function >> Logistic Function

• Linear regression on logit function = logistic regression

$$\operatorname{logit}(\pi) = \log \frac{\pi}{1 - \pi} = \mathbf{w}^{\top} \mathbf{x} = w_0 + w_1 x_1 + \cdots$$

• More generally, we can use basis function as

$$\operatorname{logit}(\pi) = \log \frac{\pi}{1-\pi} = \mathbf{w}^{\top} \phi(\mathbf{x}) = w_0 + w_1 \phi(x_1) + \cdots$$

In the following, we use the simpler first form above

• Logistic function (sigmoid)= inverse of logit

$$P(y=1|\mathbf{x}) = \mathrm{logit}^{-1}(\mathbf{w}^{\top}\mathbf{x}) = \mathrm{logistic}(\mathbf{w}^{\top}\mathbf{x}) = \frac{1}{1+e^{-\mathbf{w}^{\top}\mathbf{x}}}$$
• Exercise: verify the odds using the above equation

How to Estimate w? (Learning algo)

- Assumption: Conditional independence of data
- \rightarrow Likelihood: $P(\mathbf{y}|\mathbf{X}) = \prod_{i=1}^{n} P(y_i|\mathbf{x}_i)$
- Bernoulli distribution for binary classification
 - $P(y=1) = \pi$; $P(y=0) = 1 \pi$ (coin flipping)
 - Write the above as a single equation: using y as a switch

$$P(y) = \pi^y (1 - \pi)^{(1-y)}$$
 $\pi_i = P(y_i = 1 | \mathbf{x}_i)$

Log likelihood (negative log likelihood → <u>cross entropy</u>)

$$\log P(\mathbf{y}|\mathbf{X}) = \sum_{i=1}^{n} \log P(y_i|\mathbf{x}_i) = \sum_{i=1}^{n} y_i \log \pi_i + \sum_{i=1}^{n} (1 - y_i) \log(1 - \pi_i)$$

- MLE: no closed form solution
 - → SGD on negative log likelihood (minimisation)

Machine Learning Ingredients

- Data: + pre-processing (& visualisation), e.g., $\mathcal{N}(0,1)$
- Model
 - Structure ~ Architecture ← expert knowledge
 - Must specify before ML, can optimise via cross validation (CV)
 - **Hyper-parameter**, e.g., prior, #degree, layer ← knowledge
 - Must specify (choices) and can optimise via CV (tuning)
 - Parameters (theta)
 - Compute/learn parameter, e.g., **weights**, bias ← optimisation alg.
- Evaluation metric (what's best): loss/error function
- Optimisation: (how to find the best) learnable parameters

Logistic Regression Ingredients

- Data: + pre-processing, e.g., $\mathcal{N}(0,1)$
- Model
 - Structure/Architecture: linear relationship

$$P(y=1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{\top}\mathbf{x}}}$$

- Hyper-parameter: no (unless + regularisation)
- Parameters (theta): weights and bias
- Evaluation metric: max likelihood (min NLL)
- Optimisation: SGD or the like

Logistic Regression – The Simplest Neural Network

https://missinglink.ai/wp-content/uploads/2018/12/graph3.png

Multiclass Classification

- A simple way: one-vs-rest logistic regression
 - Run binary classification for all possible classes
 - Pick the one with the highest value
- More mathematical: multinomial logistic regression, also known as softmax
 - Generalise logistic regression to multiple classes
 - Binomial → multinomial distribution
 - Sigmoid function → softmax function
 - A linear classifier for multiple classes

Summary on Logistic Regression (LR)

- Discriminative classifiers directly model the likelihood P(Y/X)
- A simple linear classifier that retains a probabilistic semantics (see lab)
- Parameters in LR are learned by iterative optimization (e.g. SGD), no closed-form solution
- The simplest neural network

Week 6 Contents / Objectives

- Machine Learning Recap
- Motivation for Logistic Regression
- Logistic Regression
- Computational Graph
- PyTorch: A Deep Learning Library

Computational Graph

• Linear regression y = Wx + b

Source: Nelson Liu: https://colab.research.google.com/drive/11iLtGFDpnIuHj5B0rQDGG51qq6BQ8FRh

Computational Graph: w/t Reg.

Fei-Fei Li & Justin Johnson & Serena Yeung

2017

Multilayer Perceptron (NN) vs LR

Activation functions

Question: How many model parameters?

4 + 2 = 6 bi 4 + 2 = 6 neurons (not counting inputs)

26 learnable pa

 $[3 \times 4] + [4 \times 2] = 20$ weights 4 + 2 = 6 biases 26 learnable parameters

Computational Graph: DL

Weights (60 million parameters)

ImageNet I Fancy feature

extraction

Logistic Regression!

Dataset: 1.2 million /representation 1000 cl: Softmax: sigmoid **CNN for Image Class**

learning

evsky, S

for multiclass

Hinton, 2011) → 17.5% error

Input image (pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way softmax

Week 6 Contents / Objectives

- Machine Learning Recap
- Motivation for Logistic Regression
- Logistic Regression
- Computational Graph
- PyTorch: A Deep Learning Library

PyTorch

- An open source deep learning library by Facebook
 - Tensor computing with GPU acceleration
 - Deep neural networks built on autodiff

torch.Tensor

- multidimensional data structures/arrays for programming
- Scalar: 0-D tensor; Vector: 1-D tensor; Matrix: 2-D tensor

Key Modules in PyTorch

torch.autograd

 Automatic differentiation. A recorder records what operations have performed, and then it replays it backward to compute the gradients.

torch.optim

 Implementation of various optimization algorithms used for building neural networks (and other ML algorithms).

torch.nn

 High-level definition of the computational graphs (architecture) of complex neural networks (and other ML algorithms)

Dynamic Computational Graph

A graph is created on the fly


```
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1, 10)
prev_h = torch.randn(1, 20)
```


Training

Optimize (min. or max.) objective/cost function $J(\theta)$ Generate error signal that measures difference between predictions and target values

Use error signal to change the **weights** and get more accurate predictions

Subtracting a fraction of the **gradient** moves you towards the (local) minimum of the cost function

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39

Acknowledgement

• The slides used materials from: Colin Bernet, Ismini Lourentzou, Fei-Fei Li & Justin Johnson & Serena Yeung, Rui Zhang, Nelson Liu, Matt Gormley, Rachid Salmi, Jean-Claude Desenclos, Thomas Grein, Alain Moren, Christophe Giraud-Carrier, Bart Selman, Sham Kakade, Raymond J. Mooney, Neil Lawrence, and Andrew Ng

Recommended Reading

 Notes Logistic Regression by Andrew Ng

 Wikipedia entries on topics, e.g. multiclass classification, softmax, multinomial logistic regression,

PyTorch documentations

• The lab notebook and references