Analysis Notes

Rishav Bhagat

August 16, 2019

Chapter 1

The Real Numbers

1.1 Discussion: the Irrationality of $\sqrt{2}$

THEOREM 1.1.1. There is no rational number whose square is 2.

Proof. A rational number can be written in the form $\frac{p}{q}$ where p and q are integers. We will use an indirect proof. First, assume there is a rational so that its square is 2. It can be written that

$$(\frac{p}{q})^2 = 2$$

We can assume p and q have no common factors since they would cancel anyways and give us a new p and q. Now we can written

$$p^2 = 2q^2$$

which implies that p^2 is an even number, which implies p is an even number. So we can let p = 2r. Plugging this in

$$2r^2 = q^2$$

With the same logic as for with p, q is also even. So p and q share a common factor of 2 which contradicts the assumption made in the beginning that they share no common factors.

Important number systems as sets

Natural Numbers

$$\mathbf{N} = \{1, 2, 3, 4, 5, \dots\}$$

Addition works well he, but there is no additive identity or inverse.

Integers

$$\mathbf{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

This includes the additive identity (0) and the additive inverses, which define subtraction. The multiplicative identity is 1, but for multiplicative inverses we need to extend to ...

Rational Numbers

$$\mathbf{Q} = \{\text{all fractions } \frac{p}{q} \text{ where } p \text{ and } q \text{ are integers and } q \neq 0\}$$

The multiplicative inverses define division. All of these properties of \mathbf{Q} make it into a *field*. A field is any set where addition and multiplication are well-defined operations that are commutative, associative, and obey the distributive property: a(b+c)=ab+bc. There must be an additive and multiplicative identity, and each element must have an additive and multiplicative inverse.

The set \mathbf{Q} has a natural *order*. Given two rational numbers r and s, one of the following is true:

$$r < s, r = s, \text{ or } r > s$$

This ordering is transitive: if r < s and s < t, then r < t. Also, between any two rational numbers, r and s, there is a rational number between them: $\frac{r+s}{2}$, which implies that rational numbers are densely packed.

Q is has holes in the spots of irrationals, such as $\sqrt{2}$ and $\sqrt{3}$. To fill these we add ...

Real Numbers

$$\mathbf{R} = \{\text{all real numbers}\}\$$

Just like Q, R is a field. R is added as a superset of Q. $N \subseteq Z \subseteq Q \subseteq R$.

1.2 Some Preliminaries

Sets

A set is a collection of object, usually real numbers. The objects that make up the set are elements.

Notation

- $x \in A$ means x is in A
- $A \cup B$ (union of A and B) is defined by: if $x \in A \cup B$ then $x \in A$ or $x \in B$ (or both)
- \bullet $A\cap B$ (intersection of A and B) is defined by: if $x\in A\cap B$ then $x\in A$ and $x\in B$
 - \emptyset is an *empty set*, or a set without any elements in it
 - if $A \cap B = \emptyset$, then A and B are disjoint
- $A \supseteq B$ or $B \subseteq A$ every element of B is in A so for each $x \in B$, $x \in A$. So B is a *subset* of A, or A *contains* B
- ullet A=B means each element of $A\subseteq B$ and $B\subseteq B$. So the sets are the same.

- $\bigcup_{n=1}^{\infty} A_n$ or $\bigcup_{n \in \mathbf{N}} A$ means $A_1 \cup A_2 \cup \cdots \cup A_{\infty}$ $\bigcap_{n=1}^{\infty} A_n$ or $\bigcap_{n \in \mathbf{N}} A$ means $A_1 \cap A_2 \cap \cdots \cap A_{\infty}$ $A^c = \{x \in \mathbf{R} : x \notin A\}$

You can define a set by listing items $(N = \{1, 2, 3, \dots\})$, with words (let E be all even natural numbers), or with a rule or algorithm $(S = \{r \in \mathbf{Q} : r^2 < 2\})$.

De Morgan's Laws

$$(A \cap B)^c = A^c \cup B^c$$
 and $(A \cup B)^c = A^c \cap B^c$

Functions

Given two sets A and B, a function from A to B is a rule or mapping that takes each element $x \in A$ to a single element in B. We can write $f: A \to B$. Given $x \in A$, f(x) represents an element of B associated with x by f. A is the domain of f. The range is a subset of B.

Triangle Inequality

Absolute Value Function:

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

The Absolute Value Function satisfies:

$$|ab| = |a||b|$$

$$|a+b| \le |a| + |b|$$

Logic and Proofs

A type of indirect proof previously used is proof by contradiction, which starts by negating what we are proving and then finding a contradiction. Most proofs are direct, which means it starts from a true statement and then gets to the theorems conclusion.

THEOREM 1.2.1. Two real numbers a and b are equal if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$

Proof. Must prove both:

 \Rightarrow If a = b, then for every real number ϵ it follows that $|a - b| < \epsilon$. If a = b, then |a - b| = 0, and $|a - b| < \epsilon$ for any $\epsilon > 0$.

 \Leftarrow If for every real number $\epsilon > 0$ if follows that $|a - b| < \epsilon$, then we must have a = b.

Assume $a \neq b$,

let $\epsilon_0 = |a-b| > 0$ since $a \neq b$ But $|a-b| = \epsilon_0$ contradicts $|a-b| < \epsilon_0$, which was given. So $a \neq b$ is unacceptable, and a must equal b.

Induction

The fundamental principle behind induction is that if S is a subset of **N** so that S contains 1 and if S contains n, then S contains n+1, then by induction $S = \mathbf{N}$.

1.3 The Axiom of Completeness

Chapter 2

Sequences and Series