Generative Adversarial Networks

The success of deep learning thus far

- So far, we've been talking about deep learning in the context of classification
- Today we will see that
 - They aren't as good at classification as it might seem
 - They can't generate images at all

Deep Neural Networks are Easily Fooled

Left: correctly classified; Right: Incorrectly classified

Generative Adversarial Networks

- We are going to address both of these in one algorithm:
 - Learn to generate images
 - Stop being susceptible to adversarial examples

Generative Adversarial Networks

- We will define two networks
 - \circ G(z; θ_{q}) is a generator
 - lacktriangle Takes input noise z and has parameters $heta_{
 m g}$
 - \circ D(x; θ_d) is a pre-trained discriminator, 0-1 probability
 - \blacksquare Takes input x and has parameters θ_d
- We train D to maximize probability of correctly classifying training examples vs. data generated by G
- We train G to minimize log(1 D(G(z)))

Generative Adversarial Networks

- We train D to maximize probability of correctly classifying training examples vs. data generated by G; i.e. D(G(z))
- We train G to minimize log(1 D(G(z)))
- So D(G(z)) is trying to reach 1
- But log(1 D(G(z))) is trying to reach -∞
 - In other words, the two networks play a minimax game with value function V(D, G). This is just an version of continuous <u>cross-entropy loss</u> with two mini-batches rather than 1.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

We first consider the optimal discriminator D for any given generator G.

Global Optimality of $p_q = p_{data}$

Proposition 1. For G fixed, the optimal discriminator D is

$$D_G^*(\boldsymbol{x}) = \frac{p_{data}(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_q(\boldsymbol{x})}$$

quantity
$$V(G, D)$$

$$V(G, D) = \int_{x}$$

$$= \int_{x}^{x} p_{\text{data}}(x) \log(D(x)) + 1$$

For any
$$(a,b) \in \mathbb{R}^2 \setminus \{0,0\}$$

 $[0,1]$ at $\frac{a}{a}$. The discrim

For any
$$(a,b) \in \mathbb{R}^2 \setminus \{0,0\}$$
 $[0,1]$ at $\frac{a}{a+b}$. The discriming concluding the proof.

For any $(a,b) \in \mathbb{R}^2 \setminus \{0,0\}$, the function $y \to a \log(y) + b \log(1-y)$ achieves its maximum in [0,1] at $\frac{a}{a+b}$. The discriminator does not need to be defined outside of $Supp(p_{data}) \cup Supp(p_g)$,

Note that the training objective for D can be interpreted as maximizing the log-likelihood for estimating the conditional probability P(Y = y|x), where Y indicates whether x comes from p_{data} (with y = 1) or from p_q (with y = 0). The minimax game in Eq. 1 can now be reformulated as:

 $= \int p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) + p_g(\boldsymbol{x}) \log(1 - D(\boldsymbol{x})) dx$

 $V(G, D) = \int p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) d\boldsymbol{x} + \int p_{\boldsymbol{z}}(\boldsymbol{z}) \log(1 - D(g(\boldsymbol{z}))) d\boldsymbol{z}$

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the

(3)

(2)

Further Proofs

- They then go on to prove that given the algorithm, the generated data will converge to the true data samples
- Steps:
 - Show that the function V(D, G) is convex
 - Show that its global optima is at the location where p_g = p_{data}
 - \blacksquare p_g is the probability distribution of samples G(z)
 - $\mathbf{z} \sim \mathbf{p}_z = \mathbf{p}$ probability distribution of random seeds

Model Architecture

What are potential shortcomings of this architecture?

Results

BE-GAN

(b) Our results (128x128)

Impact

- Discriminators are less susceptible to adversarial examples
- Generators are 'as good' as the true data samples
 - At least in the eyes of the discriminators
- Still not great at regular every day images

- Ian Goodfellow's work at OpenAl has since been focusing on expanding GANs to work on very large datasets
- This one was trained on the ImageNet, which has 10 million samples
- Much harder task than just learning faces
- Is the generator the problem?

Further Reading by Ian Goodfellow at OpenAl

What we've learned over the semester

- Machine Learning Basics
- Neural Network Math
 - Backpropagation and optimization
 - Batch normalization, dropout, L2 norm
- Neural Network Architectures
 - LSTM, ConvNet, Auto-Encoder
- 5 Difficult (!!!) Papers

If the material from this course makes sense...

- Then you're basically ready for a full-time job working in deep learning
- May need some practice writing the code and learning TensorFlow or Theano
- Next steps for deep learning proficiency
 - Read papers!!!!! I have a GoogleDoc of some interesting ones I can share, just email me.
 - Reddit.com/r/machinelearning
 - Just look at this thread from today for example
 - o Participate in Github projects, keep up with the latest code
 - Take linear algebra, probability, math-statistics, calculus