C*-ALGEBRAS, THE GELFAND-NAIMARK THEOREM, AND [OTHER THING]

LUKE ARMITAGE

1. Introduction

1.1. **History of C*-Algebras.** The noncommutative nature of W. Heisenberg's work in [?] lead to Born and Jordan (find reference) developing the matrix mechanics required to concisely convey the new quantum mechanical model. From 1930-1943, J. von Neumann, together with F. J. Murray, developed the theory of rings of operators acting on a Hilbert space in [?], [?], [?], [?], in an attempt to establish a general framework for this matrix mechanics. These rings of operators are now considered part of the theory von Neumann algebras, a subsection of C*-algebra theory. In [?], Gelfand and Naimark established an abstract characterisation of C*-algebras, free from dependence on the operators acting on a Hilbert space. The Gelfand-Naimark, which we will be considering here at length, gives the link between these abstract C*-algebras and the rings of operators previously studied.

- 1.2. C^* -Algebras. A brief overview of what a C^* -algebra is.
 - banach space
 - banach algebra
 - *-algebra
 - C* algebra
 - representations

Definition 1. A C*-algebra is a Banach algebra $(A, \|\cdot\|)$ with involution $*: A \to A$ with the condition that

$$||x^*x|| = ||x||^2 \text{ for all } x \in A.$$

This condition is known as the C^* axiom. The study of C^* -algebras started with the consideration of matrix mechanics by H

There are many statements of the theorem; this here comes from [ref].

Theorem (Gelfand-Naimark, Commutative). Every commutative, unital C^* -algebra A is isometrically *-isomorphic to the algebra of continuous functions on the algebra of characters on A.

The theorem first appeared in [gelfand-naimark] in a form relating 'normed rings' and a closed subrings of the set of bounded operators on a Hilbert space.

- 1.3. **Aims.** The aims for my project are, provisionally:
 - Take the Gelfand-Naimark theorem, and understand its contents and proof.
 - Consider the representation theory of C*-algebras, using the Gelfand-Naimark-Segal construction as a starting point.
 - (as 'further reading') Give an overview of areas in which operator algebra theory can be taken (for example, Cuntz algebras and operator K-theory, von Neumann algebras and Factors, abstract harmonic analysis).

References