

Swarm intelligence

Assignment 3

Abdel Aziz Taha
Institut für Softwaretechnik & Interaktive Systeme
taha@ifs.tuwien.ac.at

Assignment 3

- Group Work (maximum 3 students per group)
- Using the NetLogo framework: A powerful multi-agent modeling environment
- Assignment requirements
 - I. Implementing PSO algorithms
 - II. Experiments performed on the implemented algorithms
 - III. Reporting the implementation and the experiment results
- Detailed information will be provided
- Submission deadline: 31.12.2019

I. Implementing PSO Algorithms

- We recommend to start with provided NetLogo template
 - User Interface for setting configurations
 - Incomplete PSO algorithm
 - Some functionalities are dummy or missing
- Implement PSO algorithms with extensions
 - According to the description (to be provided)
- You will be given a pool of options, from which you can select
 - different objective functions
 - Different exception handling options

Example of objective function

2. Shubert function

$$f(x,y) = \left(\sum_{i=1}^{5} i\cos((i+1) * x + i)\right) \left(\sum_{i=1}^{5} i\cos((i+1) * y + i)\right)$$

$$with - 100 < x, y < 100$$

Shubert function

II. Experiments

- Perform experiments on the algorithms, you have implemented
- Your experiments should cover topics covered in the lecture
 - Especially <u>PSO parameter tuning</u>
 - E.g. influence of parameter on the performance
 - E.g. Convergence behavior of the PSO
- You will be given only the general frame
 - Start with playing with different
 - settings
 - options
 - parameter
 - Think about experiments suitable for the options, you have selected
 - Relate your experiment design to the topics covered in the lecture:
 - Construct scenarios, comparisons of cases, etc. that <u>explain facts related to lecture topics</u>

II .Experiments

- Think about statistical confidence
- I.e. repeat your experiments sufficient number of times
- The template provides possibilities to
 - repeat the same experiment with different sittings
 - Save / load particular experiments
 - Switch between different modus

III. Reporting

- Your report should consist of at least
 - An abstract describing the main concern
 - Description of your implementation
 - Don't copy your code in the report
 - Rather a high-level description:
 - ✓ The methods you used
 - ✓ Why
 - ✓ your experience, etc.
 - Description of your experiments
 - Describe your experiments clearly
 - State the goal of each experiment
 - Explain your choice of experiments
 - Relate your choice and explanation
 - to the options you have selected
 - To the topics of the lecture

Report

- Result and Analysis
 - you don't need to report all of the individual results
 - Rather averages and summaries
 - Analyze these results related to the lecture topics
 - Conclude your work

NetLogo Framework

- More info about NetLogo: https://ccl.northwestern.edu/netlogo/
 - Many videos
 - Many Samples
- NetLogo simulation considers three aspects
 - Environment (it calls it world)
 - Agents (it calls them turtles)
 - A time progress (it calls it tick)
- NetLogo provides programable interface that enables
 - Configuring the world
 - Creating arbitrary number of turtles
 - Defining how turtles behave
 - Interaction with each others
 - With world
 - Over time

Environment

- The world simulates the environment
- Consists of a grid of cells
- Grid cells are called patches
- Dimensions of the grid are configurable
- Patches can be assigned values
 - This is how topology is defined
- Environment topologies can be realized by
 - assigning the desired values to the patches
 - In our assignment this simulates fitness functions
- NetLogo provides easy interface accessing patches
 - Individual access
 - Collective access

Agents

- Agents are called turtles
- Arbitrary number of turtles can be created, using simple function calls,
- Each turtle is automatically assigned a data structure
 - With basic information like coordinate, color, ect.
 - It can be easily extended to other own information
- NetLogo provides easy interface accessing turtles
 - Individual access
 - Collective access

Demo - NetLogo

<u>Demo - NetLogo</u>

- Demo Swarm Particles Optimization (NetLogo)
- <u>Assignment Template</u> (to be downloaded from TUWEL)