Expedia Kaggle Competition

Anyway, in that competition, we worked with lots of customer behavior.

Important thing here is prediction target the hotel group. In other words, characteristics of actual hotel, remember it.

Expedia

Data leakage

- destination_distance user_city pair is a leak to true hotel location. A lot of matches between train and test.
- How to improve on that?
- Features based on counts on corteges of such nature
- Try to find the true coordinates

Spherical geometry

$$d = 2r rcsin\Bigl(\sqrt{ ext{hav}(arphi_2 - arphi_1) + \cos(arphi_1)\cos(arphi_2) ext{hav}(\lambda_2 - \lambda_1)}\Bigr) \ = 2r rcsin\Biggl(\sqrt{\sin^2\Bigl(rac{arphi_2 - arphi_1}{2}\Bigr) + \cos(arphi_1)\cos(arphi_2)\sin^2\Bigl(rac{\lambda_2 - \lambda_1}{2}\Bigr)}\Biggr)$$

First of all, we need to understand how to calculate the distance. Here, we work with geographical coordinates so the distances are geodesic. It's done via Haversine formula, not a pleasant one.

Hotel cities. Old version

Hotels cities. New version

User cities. New version

Trying to find the true coordinates of hotels (fail?)

Trying to find the true coordinates of hotels (fail?)

Counters in grid cells

For every city, let's create a grid around its center. Something like 10 kilometers times 10 kilometers with step size of 100 meters. TRAIN

INFERENCE

Final model

- Out-of-fold feature generation. 2013<->2014
- Xgboost
- 16 hours of training

Results

- Public 3rd
- Private 4th

#	△pub	Team Name	Kernel	Team Members	Score ?	Entries	Last
1	_	idle_speculation			0.60219	1	1y
2	_	beluga			0.53218	64	1y
3	^ 1	Victor			0.53134	50	1y
4	± 1	Ala Mode			0.52995	26	1y