Лабораторная работа №3 ИССЛЕДОВАНЕ ЗАВИСМОСТИ ПОЛНОЙ МОЩНОСТИ, ПОЛЕЗНОЙ МОЩНОСТИ И К.П.Д. ИСТОЧНИКА ТОКА ОТ НАГРУЗКИ

- Цель работы: научиться определять зависимость полной мощности, полезной мощности и КПД источника тока от нагрузки и определить оптимальные условия эксплуатации источников.
- Схема:

• Измерения:

I, MA	U, B	R, Ом	Р, мВт	η, %
32,0	2,63	82,2	84,2	98
38,0	2,62	68,9	99,6	98
43,3	2,61	60,3	113,0	97
48,6	2,60	53,5	126,4	97
58,6	2,59	44,2	151,8	97
61,9	2,58	41,7	159,7	96
64,5	2,57	39,8	165,8	96
71,3	2,56	35,9	182,5	95
81,4	2,55	31,3	207,6	95
86,6	2,54	29,3	220,0	95
90,9	2,53	27,8	230,0	94
96,8	2,52	26,0	243,9	94
103,8	2,51	24,2	260,5	94
107,5	2,50	23,3	268,8	93
115,8	2,49	21,5	288,3	93
121,6	2,48	20,4	301,6	92
127,4	2,47	19,4	314,7	92
133,2	2,46	18,5	327,7	92

ЭДС с помощью вольтметра: $\varepsilon = 2,69(B)$.

• Рассчет погрешностей:

$$R = \frac{U}{I}; \quad \Delta R_{i} = R_{i} \sqrt{\left(\frac{\Delta U}{U_{i}}\right)^{2} + \left(\frac{\Delta I}{I_{i}}\right)^{2}}$$

$$P = UI; \quad \Delta P_{i} = P_{i} \sqrt{\left(\frac{\Delta U}{U_{i}}\right)^{2} + \left(\frac{\Delta I}{I_{i}}\right)^{2}}$$

$$\eta = \frac{U}{\varepsilon}; \quad \Delta \eta_{i} = \eta_{i} \sqrt{\left(\frac{\Delta U}{U_{i}}\right)^{2} + \left(\frac{\Delta U}{\varepsilon}\right)^{2}}$$

ε(из графика), В	ε(вольтметр), В	ΔR, Ом	ΔР, мВт	Δη, %
2,683	2,69	0,4	0,4	0,5
∆Uпр, В	∆Іпр, мА	0,3	0,5	0,5
0,01	0,1	0,3	0,5	0,5
		0,2	0,6	0,5
		0,2	0,6	0,5
		0,2	0,7	0,5
		0,2	0,7	0,5
		0,1	0,8	0,5
		0,1	0,9	0,5
		0,1	0,9	0,5
		0,1	0,9	0,5
		0,1	1,0	0,5
		0,1	1,1	0,5
		0,1	1,1	0,5
		0,1	1,2	0,5
		0,1	1,2	0,5
		0,1	1,3	0,5
		0,1	1,4	0,5 0,5

• Вывод: теоретические зависимомти P(I), P(R), U(I), $\eta(R)$ совпали с экспериментально полученнной связью между этими величинами, следовательно представление элементов питания как цепи из источника напряжения и внутреннего сопротивления позволяет с высокой точностью описывать процессы в реальных цепях.