Espresso

... mankamenty

Funkcja 7 argumentów

	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	f
1	1	0	0	0	1	0	1	0
2	1	0	1	1	1	1	0	0
3	1	1	0	1	1	1	0	0
4	1	1	1	0	1	1	1	0
5	0	1	0	0	1	0	1	1
6	1	0	0	0	1	1	0	1
7	1	0	1	0	0	0	0	1
8	1	0	1	0	1	1	Q	
9	1	1	1	0	1	0	1	

	X ₂	X ₄	X ₆	X ₇	f
1	0	0	0	1	0
2	0	1	1	0	0
3	1	1	1	0	0
4	1	0	1	1	0
5	1	0	0	1	1
6	0	0	1	0	1
7	0	0	0	0	1
8	0	0	1	0	1
9	1	0	0		1

Pamiętamy . . . z ekspansji $f = \overline{x}_4 \overline{x}_7 + x_2 \overline{x}_6$

$$f = \overline{x}_4 \overline{x}_7 + x_2 \overline{x}_6$$

Czy można przewidzieć od jakich argumentów funkcja istotnie zależy ???

Przykład z Synteza układów logicznych str 65

Funkcja 10 argumentów

$$f = \overline{x}_5 \overline{x}_6 x_8 + \overline{x}_1 \overline{x}_2 \overline{x}_5 + x_5 \overline{x}_6 \overline{x}_8 \overline{x}_{10} + x_4 \overline{x}_7 x_{10} + x_7 \overline{x}_9 + x_6 x_7 x_{10}$$

Brak x₃ - 9 argumentów

Zagadka...

.e

Można wykazać, że funkcja ta jest zależna od...

...zaledwie 7 argumentów!

Wniosek

Espresso redukuje składniki iloczynowe

Nie redukuje argumentów!!!

PROBLEM:

Obliczania minimalnej liczby argumentów od których funkcja istotnie zależy

...jest bardzo istotny w redukowaniu złożoności obliczeniowej procedur minimalizacji funkcji boolowskich, a w konsekwencji może się przyczynić do uzyskiwania lepszych rezultatów.

Nowy sposób opisu funkcji: rachunek podziałów

Elementy rachunku podziałów

Podziałem na zbiorze S jest system zbiorów $P = \{B_i\}$, którego bloki są rozłączne, czyli

$$B_i \cap B_i = \emptyset$$
, jeśli tylko $i \neq j$.

Dla $S = \{1,2,3,4,5,6\}, P = \{\{1,2\}, \{3,5\}, \{4,6\}\}\}$ jest podziałem na S.

$$\Pi = (\overline{1,2}; \overline{3,5}; \overline{4,6})$$

Podzbiory nazywamy blokami

Podstawowe pojęcia:

Iloczyn podziałów oraz relacja ≤.

Elementy rachunku podziałów...

Powiemy, że podział P_a jest *nie większy* od P_b (co oznaczamy: $P_a \le P_b$), jeśli każdy blok z P_a jest zawarty w pewnym bloku z P_b .

$$\Pi_{a} = (\overline{1,2,4}; \overline{3,5,6})$$
 $\Pi_{b} = (\overline{1,4}; \overline{2,6}; \overline{3,5})$ $\Pi_{c} = (\overline{1,2}; \overline{4}; \overline{6}; \overline{3,5})$

$$\Pi_{c} \leq \Pi_{a}$$
 Tak

$$\Pi_{c} \not < \Pi_{b}$$
 NIE!

 $\Pi(0)$ – podział najmniejszy

 $\Pi(1)$ – podział największy

Elementy rachunku podziałów...

Iloczynem podziałów $\Pi_{\rm a}$ • $\Pi_{\rm b}$ nazywamy największy (względem relacji \leq) podział, który jest nie większy od $\Pi_{\rm a}$ oraz $\Pi_{\rm b}$.

$$\Pi_a = (\overline{1,2,4}; \overline{3,5,6})$$
 $\Pi_b = (\overline{1,4}; \overline{2,6}; \overline{3,5})$

$$\Pi_a \cdot \Pi_b = (\overline{1,4}; \overline{2}; \overline{6}; \overline{3,5})$$

Nowy sposób opisu funkcji - podziały

Funkcja f

$$P_1 = \{\overline{5}; 1,2,3,4,6,7,8,9\}$$

$$P_2 = \{\overline{1,2,6,7,8}; \overline{3,4,5,9}\}$$

$$P_3 = \{\overline{1,3,5,6}; \overline{2,4,7,8,9}\}$$

$$P_4 = \{\overline{1,4,5,6,7,8,9}; \overline{2,3}\}$$

$$P_5 = \{ \overline{7}; \overline{1,2,3,4,5,6,8,9} \}$$

$$P_6 = \{\overline{1,5,7,9}; \overline{2,3,4,6,8}\}$$

$$P_7 = \{\overline{2,3,6,7,8}; \overline{1,4,5,9}\}$$

$$P_f = \{1,2,3,4; 5,6,7,8,9\}$$

	X ₁	\mathbf{X}_{2}	X ₃	X ₄	X ₅	X ₆	X ₇	f
1		0	0	0	1	0	1	0
2		0	1	1	1	1	0	0
3			0	1	1	1	0	0
4			1	0	1	1	1	0
5	0		0	0	1	0	1	
6		0	0	0	1	1	0	Ī
7		0	1	0	0	0	0	
8		٩	1	0	1	1	0	
9			1	0	1	0	1	

Pojęcie zmiennej niezbędnej

Jeżeli wektory X_a oraz X_b : $f(X_a) \neq f(X_b)$, różnią się dokładnie dla jednej zmiennej to zmienną taką nazywamy niezbędną

Wyjaśnienie i interpretacja w książce:

Warto przeczytać rozdział 3.4

Redukcja argumentów – przykład

Funkcja f

	X ₁	$\mathbf{X_2}$	X ₃	X ₄	X ₅	X ₆	X ₇	f
1	1	0	0	0	1	0	1	0
2	1	0	1	1	1	1	0	0
3	1	1	0	1	1	1	0	0
4	1	1	1	0	1	1	1	0
5	0	1	0	0	1	0	1	1
6	1	0	0	0	1	1	0	1
7	1	0	1	0	0	0	0	1
8	1	0	1	0	1	1	0	1
9	1	1	1	0	1	0	1	1

X₄ X₆ – zmienne niezbędne

ponieważ wiersze 2 i 8 różnią się na pozycji X4

a wiersze 4 i 9 na pozycji X₆

$$P_4 = \{\overline{1,4,5,6,7,8,9}; \overline{2,3}\}$$

$$P_6 = \{\overline{1,5,7,9}; \overline{2,3,4,6,8}\}$$

Dalej liczymy iloczyn
$$P_4 P_6$$

 $P_4 \cdot P_6 = (\overline{1,5,7,9}; \overline{4,6,8}; \overline{2,3})$

$$P_f = \{\overline{1,2,3,4}; \overline{5,6,7,8,9}\}$$

Redukcja argumentów – przykład

Iloczyn podziałów wyznaczonych przez zmienne niezbędne ma bardzo ważną interpretację

$$P_4 \bullet P_6 = (\overline{1,5,7,9}; \overline{4,6,8}; \overline{2,3})$$

$$P_f = \{\overline{1,2,3,4}; \overline{5,6,7,8,9}\}$$

...ale teraz systematycznie...

ZPT

Redukcja argumentów – przykład c.d.

 $X_1 X_2$ X_3 X_5 X_7 X_2 X_3 X_2 X_7

$$(x_1 + x_2) (x_3 + x_5 + x_7)(x_2 + x_3)(x_2 + x_7) =$$

$$= (x_2 + x_1)(x_2 + x_3)(x_2 + x_7)(x_3 + x_5 + x_7) =$$

$$= (x_2 + x_1x_3x_7)(x_3 + x_5 + x_7) =$$

$$= x_2x_3 + x_2x_5 + x_2x_7 + x_1x_3x_7 + \dots$$

$$= x_4, x_6$$

$$= x_2x_3 + x_2x_5 + x_2x_7 + x_1x_3x_7 + \dots$$

$$= x_4, x_6$$

 $\{x_2, x_3, x_4, x_6\} \{x_2, x_4, x_5, x_6\} \{x_2, x_4, x_6, x_7\}$

...ale gdybyśmy wiedzieli o tym wcześniej, że

funkcja ta zależy tylko od {x₂,x₄,x₆,x₇}

	X	1 X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	f
1	•	0	þ	0	1	0	1	0
2	•	0	1	1	þ	1	0	0
3	•	1	þ	1	1	1	0	0
4	•	1	1	0	1	1	1	0
5	(1	þ	0	ı	0	1	1
6	•	0	þ	0	ı	1	0	1
7	•	0	1	0	þ	0	0	1
8	•	0	ł	0	1	1	0	1
9	•	1	1	0	1	0	1	1

	X ₂	X ₄	X ₆	X ₇	f
1	0	0	0	1	0
2	0	1	1	0	0
3	1	1	1	0	0
4	1	0	1	1	0
5	1	0	0	1	1
6	0	0	1	0	1
7	0	0	0	0	1
8	0	0	1	0	1
9	1	0	0	1	1

A taką funkcję można łatwo zminimalizować nawet na tablicy Karnaugha

Redukcja argumentów

Wprowadzenie redukcji argumentów do procedury ekspansji daje – w rozsądnym czasie – wyniki lepsze niż słynne Espresso

Przykład z Synteza układów logicznych str 65

0100111000 1

.e

Funkcja TL27 10 argumentów

Espresso

9 argumentów 6 termów

Funkcja TL27

W

ZPT

Przykład TL27

Funkcja 10 argumentów, 25 wektorów w TP

Wynik Espresso – 9 argumentów, 6 termów

Wynik Pandora po RedArg – 7 argumentów, 5 termów

$$f = \overline{x}_1 \overline{x}_2 \overline{x}_7 + x_1 x_2 x_4 + \overline{x}_1 x_{10} + \overline{x}_1 \overline{x}_4 \overline{x}_6 + x_7 \overline{x}_9$$

Funkcja KAZ

Przed redukcją

.end

Jedno z wielu rozwiązań po redukcji argumentów

Przykład KAZ

Silnie nieokreślona funkcja 21 argumentów, 31 wektorów w TP

Wynik Espresso – 9 argumentów, 3 termy

$$f = \overline{x}_2 x_{14} \overline{x}_{19} x_{21} + x_7 \overline{x}_8 \overline{x}_{12} + x_5 x_8 \overline{x}_{20}$$

Wynik Pandora – 5 argumentów, 3 termy

$$f = \overline{x}_2 \overline{x}_4 x_9 \overline{x}_{19} + \overline{x}_2 x_4 \overline{x}_9 + x_2 x_{19} \overline{x}_{20}$$