IFT 6135: Representation Learning

Michael Noukhovitch

Winter 2019

Notes written from Aaron Courville's lectures.

Contents

1		ural Networks			
	1.1	Artificial Neuron	,		
	1.2	Activation Functions			
	1.3	Neural Networks	;		
		1.3.1 Single Layer	;		
		1.3.2 Multi Layer	;		
	1.4	Biological Inspiration	4		
		Training Neural Networks			
	2.1	Empirical Risk Minimization			
	2.2	Stochastic Gradient Descent			
	2.3	Gradient Computation			
	2.4	Backpropogation			
	2.5	Flow Graph			

1 Neural Networks

1.1 Artificial Neuron

$$g(b + w^T x)$$

pre-activation $b + w^T x$

connection weights w

neuron bias b

activation function g

1.2 Activation Functions

linear a

sigmoid $\frac{1}{1+\exp(-a)}$

 $tanh \frac{\exp a - \exp - a}{\exp(a) + \exp(-a)}$

ReLU $\max(0, a)$

maxout $\max_{j \in [1,k]} a_j$

softmax $\frac{\exp(a_i)}{\sum_c \exp(a_c)} \forall i$

1.3 Neural Networks

1.3.1 Single Layer

neuron capacity a single neuron can do binary classification iff linearly separable

universal approximation theorem (Hornik, 1991) a single-layer NN can approximate any continuous function given enough hidden units

1.3.2 Multi Layer

input
$$h^{(0)} = x$$

hidden layer pre $a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}(x)$

hidden layer activation $h^{(k)} = g(a^{(k)}(x))$

output $h^{(L+1)}(x) = o(a^{(L+1)}(x))$

1.4 Biological Inspiration

2 Training Neural Networks

2.1 Empirical Risk Minimization

learning as optimization

$$\underset{\theta}{\operatorname{argmin}} \frac{1}{T} \sum_{t} l(f(x^{(t)}; \theta), y^{(t)}) + \lambda \Omega(\theta)$$

loss function l is a surrogate for what we truly want (upper bound) regularizer Ω penalizes certain values of θ

2.2 Stochastic Gradient Descent

$$\begin{split} & \text{initialize } \theta \\ & \textbf{for } n \text{ epochs } \textbf{do} \\ & \begin{vmatrix} & \textbf{foreach training example } x^{(t)}, y^{(t)} \textbf{ do} \\ & \begin{vmatrix} & \Delta \leftarrow -\nabla_{\theta} l(f(x^{(t)};\theta), y^{(t)}) - \lambda \nabla_{\theta} \Omega(\theta) \\ & \theta \leftarrow \theta + \alpha \Delta \end{vmatrix} \\ & \textbf{end} \\ & \textbf{end} \\ \end{aligned}$$

where ∇ is the gradient, α is the learning rate

2.3 Gradient Computation

given a categorical output with classes c, let softmax output be $f(x)_c = p(y = c|x)$

gradients for output

$$\frac{\partial}{\partial f(x)_c} - \log f(x)_y = \frac{-1_{(y=c)}}{f(x)_y}$$

$$\nabla_{f(x)} - \log f(x)_y = \frac{-1}{f(x)_y} \begin{bmatrix} 1_{(y=0)} \\ \dots \\ 1_{(y=C-1)} \end{bmatrix}$$

$$= \frac{-e(y)}{f(x)_y}$$

gradients for pre-activation

$$\frac{\partial}{\partial a^{(L+1)}(x)} - \log \sigma(a^{(L+1)}(x))_y = -(1_{(y=c)} - f(x)_y)$$
$$\nabla_{f(x)} - \log f(x)_y = -(e(y) - f(x))$$

where e(y) gives the one-hot vector of length C with 1 at index y, and σ is the sigmoid function

2.4 Backpropogation

To simplify things, use the chain rule to rewrite gradients in terms of in terms of the layers above them

```
 \begin{array}{l} \text{compute output gradient } \nabla_{a^{(L+1)}(x)} - \log f(x)_y = -(e(y) - f(x)) \\ \text{for } k = L + 1 \to 1 \text{ do} \\ & \text{hidden layer weights} \\ & \nabla_{W^{(k)}(x)} - \log f(x)_y = (\nabla_{a^{(k)}(x)} - \log f(x)_y) h^{(k-1)}(x)^T \\ & \text{hidden layer biases} \\ & \nabla_{b^{(k)}(x)} - \log f(x)_y = \nabla_{a^{(k)}(x)} - \log f(x)_y \\ & \text{output below} \\ & \nabla_{h^{(k-1)}(x)} - \log f(x)_y = W^{(k)}{}^T (\nabla_{a^{(k)}(x)} - \log f(x)_y) \\ & \text{pre-activation below} \\ & \nabla_{a^{(k-1)}(x)} - \log f(x)_y = (\nabla_{h^{(k-1)}(x)} - \log f(x)_y) \bigodot [\dots, g'(a^{(k-1)}(x)_j, \dots] \\ \text{end} \end{array}
```

2.5 Flow Graph