Artificial Bee Colony Algorithm

Warley Almeida Silva¹

¹Exchange student from UFJF Supervised by Dr. Gordon Fraser Universität Passau

February, 2018

Outline

- Description
- The algorithm
- Implementation
- 4 ABC in Software Engineering

What is it?

The Artificial Bee Colony (ABC) algorithm is a swarm-based algorithm inspired by the foraging behavior of honey bees proposed by Karaboga [1]. It aims to optimize multidimensional and multimodal functions.

What is it?

The Artificial Bee Colony (ABC) algorithm is a swarm-based algorithm inspired by the foraging behavior of honey bees proposed by Karaboga [1]. It aims to optimize multidimensional and multimodal functions.

what is a swarm?

What is it?

The Artificial Bee Colony (ABC) algorithm is a swarm-based algorithm inspired by the foraging behavior of honey bees proposed by Karaboga [1]. It aims to optimize multidimensional and multimodal functions.

- what is a swarm?
- what is foraging?

What is it?

The Artificial Bee Colony (ABC) algorithm is a swarm-based algorithm inspired by the foraging behavior of honey bees proposed by Karaboga [1]. It aims to optimize multidimensional and multimodal functions.

- what is a swarm?
- what is foraging?
- what is multimodal?

What is it?

The Artificial Bee Colony (ABC) algorithm is a swarm-based algorithm inspired by the foraging behavior of honey bees proposed by Karaboga [1]. It aims to optimize multidimensional and multimodal functions.

- what is a swarm?
- what is foraging?
- what is multimodal?

Many variations

There are many changed versions of the algorithm for specific needs. It all depends on the problem you are willing to solve. The survey in [2] shows different variations and applications.

They organize themselves in three groups and work in a cycle:

They organize themselves in three groups and work in a cycle:

• Employed bees: memorize and exploit specific food sources;

They organize themselves in three groups and work in a cycle:

- Employed bees: memorize and exploit specific food sources;
- Onlookers: exploit already known good food sources;

They organize themselves in three groups and work in a cycle:

- Employed bees: memorize and exploit specific food sources;
- Onlookers: exploit already known good food sources;
- Scouts: search for new food sources around without prior information.

• Each food source represents a possible solution.

- Each **food source** represents a possible **solution**.
- Each **coordinate** represents **parameters** of the solution.

- Each **food source** represents a possible **solution**.
- Each **coordinate** represents **parameters** of the solution.
- The **nectar amount** of a food source represents its **fitness value**.

- Each **food source** represents a possible **solution**.
- Each coordinate represents parameters of the solution.
- The nectar amount of a food source represents its fitness value.
- Each **type of bee** represents a **step** of the algorithm.

Pseudocode

```
procedure ABC(population_size, maximum_cycle_number, limit)
   initialize population_size food_sources
   generate random position for food_sources
   while maximum_cycle_number is not met do
      send employed bees
      calculate the probabilities
      send onlookers
      send scouts
      memorize the best food source
   end while
end procedure
```

Employed bees phase

- Each food source will be exploited once. The exploitation process generates modifications in the parameters of the food source, hoping that a better solution will be found.
- If a better food source is found, the old one is forgotten.

Employed bees phase

- Each food source will be exploited once. The exploitation process generates modifications in the parameters of the food source, hoping that a better solution will be found.
- If a better food source is found, the old one is forgotten.

Equation 1

Given the number of food sources F and the dimension of the problem D, each food source f_i will generate a possible new food source v_i following the formula:

$$\mathsf{v}_{ij} = \mathsf{f}_{ij} + \phi_{ij}(\mathsf{f}_{ij} - \mathsf{f}_{kj})$$

where $i \in [1, 2, 3, ..., F]$, $j \in [1, 2, 3, ..., D]$, $k \in [1, 2, 3, ..., F]$ and ϕ_{ij} is a random number $\in [-1, 1]$.

Onlookers phase

 The algorithm iterates through the food sources array and selects food sources based on probability until the established amount of onlookers is reached.

Onlookers phase

 The algorithm iterates through the food sources array and selects food sources based on probability until the established amount of onlookers is reached.

Equation 2

Given the number of food sources F, the probability p_i for a food source i will be calculated by the formula:

$$p_i = \frac{fit_i}{\sum\limits_{n=1}^{F} fit_n}$$

where $i \in [1, 2, 3, ..., F]$.

Onlookers phase

 The algorithm iterates through the food sources array and selects food sources based on probability until the established amount of onlookers is reached.

Equation 2

Given the number of food sources F, the probability p_i for a food source i will be calculated by the formula:

$$p_i = \frac{fit_i}{\sum\limits_{n=1}^{F} fit_n}$$

where $i \in [1, 2, 3, ..., F]$.

• The chosen food sources will be exploited. If a new food source with better fitness is found, the old one is forgotten.

Scouts phase

- If a food source was not changed in a cycle, its trial counter will rise.
- At the end of every cycle, the food source with the biggest trial counter will receive a random solution if its trial counter is bigger than the parameter *limit*.

Pseudocode

```
procedure ABC(population_size, maximum_cycle_number, limit)
   initialize population_size food_sources
   generate random position for food_sources
   while maximum_cycle_number is not met do
      send employed bees
      calculate the probabilities
      send onlookers
      send scouts
      memorize the best food source
   end while
end procedure
```

Why does it work?

- As said by [3] the ABC algorithm performs different selection process:
 - a global selection process performed by the onlookers;
 - a local selection process performed by onlookers and employed bees;
 - a random selection process performed by scouts.

Why does it work?

- As said by [3] the ABC algorithm performs different selection process:
 - a global selection process performed by the onlookers;
 - a local selection process performed by onlookers and employed bees;
 - a random selection process performed by scouts.
- The employed bees and onlookers are responsible for the exploitation process in the search space, while the scouts are responsible for the exploration process.

Implementation

• You can find the python code on https://goo.gl/B6tTgv.

Implementation

- You can find the python code on https://goo.gl/B6tTgv.
- To validate my implementation, I will test the algorithm with a function from [3] using the same parameters and compare the results.

Rastrigin function

$$f(x_1 \cdots x_n) = 10n + \sum_{i=1}^n (x_i^2 - 10\cos(2\pi x_i))$$

• It is a multimodal function with locations of the minima regularly distributed. The interval is $-15 \le x_i \le 15$ and the function has its global minimum at $f(0, \dots, 0) = 0$.

Griewank function

$$f(x_1 \cdots x_n) = 1 + \frac{1}{4000} \sum_{i=1}^n x_i^2 - \prod_{i=1}^n \cos(\frac{x_i}{\sqrt{i}})$$

• It is a multimodal function with locations of the minima regularly distributed. The function has a interdependence between variables. The interval is $-600 \le x_i \le 600$ and the function has its global minimum at $f(0, \cdots, 0) = 0$.

Parameters

- 50% of employed bees, 50% of onlookers, one scout.
- population_size: 125.
- maximum_cycle_number: 500.
- dimension: 10.
- limit: 50.
 - The author did not write about this parameter in [3].
- Each experiment was repeated 30 times.

Results

Table: Comparison of results

	Results from [3]		My results	
	Mean	SD	Mean	SD
Rastrigin	0	0	$1.76 * 10^{-12}$	$2.83367 * 10^{-12}$
Griewank	0.000870	0.002535	0.000142	0.000497

Examples of applications

As showed by [2], the ABC algorithm has already been successfully applied to Search-based Software Engineering problems. Some examples are:

- software test case optimization;
- automated generation of structural tests;
- automated software refactoring;

References

- [1] Dervis Karaboga. An idea based on honey bee swarm for numerical optimization. Technical report, 2005.
- [2] Dervis Karaboga, Beyza Gorkemli, Celal Ozturk, and Nurhan Karaboga. A comprehensive survey: Artificial bee colony (abc) algorithm and applications. Artif. Intell. Rev., 42(1):21–57, June 2014.
- [3] Dervis Karaboga and Bahriye Basturk. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (abc) algorithm. *J. of Global Optimization*, 39(3):459–471, November 2007.

Thank you for your attention! https://goo.gl/B6tTgv almeida.warley@outlook.com