Devoir facultatif n° 8

Dans tout le problème, on confondra un polynôme à coefficients réels avec la fonction polynomiale définie dans \mathbb{R} qui lui est associée.

A). Irrationalité de e^r

Dans cette partie, on admet que pour tout entier naturel n, il existe des polynômes A_n et B_n à coefficients dans \mathbb{Z} et de degré inférieur ou égal à n tels que l'application

$$f_n: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto A_n(x) + B_n(x)e^x$

vérifie:

$$\forall k \in [0, n] \quad f_n^{(k)}(0) = 0$$
$$\forall x \in \mathbb{R} \quad f_n^{(n+1)}(x) = x^n e^x$$

- 1) Calculer des polynômes A_n et B_n satisfaisant aux conditions pour n égal à 1 ou 2.
- 2) a) Calculer, à l'aide de la formule de Leibniz, la dérivée n+1 ème de la fonction $x \mapsto x^{2n+1} e^x/(n+1)!$.

Montrer que le coefficient de $x^n e^x$ est un entier à préciser.

b) Montrer:

$$\forall x > 0$$
 $0 < f_n(x) < \frac{x^{2n+1}e^x}{(n+1)!}$

(on pourra utiliser des tableaux de variations et des dérivations successives)

- 3) Soit r un rationnel non nul. On suppose que e^r est rationnel. Montrer qu'il existe alors deux entiers naturels m et q non nuls tels que qe^m soit entier.
- 4) Montrer qu'alors pour tout entier n, on a $qf_n(m) \in \mathbb{Z}$.
- 5) En déduire une contradiction et conclure.

B). Généralisation de la formule du binôme.

Pour tout couple $(m,k) \in \mathbb{Z} \times \mathbb{N}$, on définit des nombres $c_{m,k}$ par les relations

$$\forall m \in \mathbb{Z}$$

$$\forall k \geqslant 1$$

$$\forall k \geqslant 1$$

$$c_{m,0} = 1$$

$$c_{0,k} = 0$$

$$c_{m,k} = c_{m-1,k} + c_{m-1,k-1}$$

- 1) Former le tableau des $c_{m,k}$ avec m comme numéro de la ligne et k comme numéro de la colonne pour m entre -4 et +4 et k entre 0 et 4. Formulez des remarques intéressantes relativement à ces coefficients.
- 2) On considère un anneau A dont le neutre additif est noté 0_A et le neutre multiplicatif (élément unité) est noté i. Cet anneau A contient un élément d (dit nilpotent) pour lequel il existe un entier $n \ge 1$ vérifiant $d^{n+1} = 0_A$.
 - a) Calculer

$$\left(\sum_{k=0}^{n} c_{-1,k} d^{k}\right) (i+d)$$

En déduire que i + d est un élément inversible de A.

b) Montrer que pour tout $m \in \mathbb{Z}$, on a

$$(i+d)^m = \sum_{k=0}^n c_{m,k} d^k$$

C). Existence de A_n et B_n .

On désigne par $\mathbb{R}_n[X]$ l'espace des polynômes à coefficients réels et dont le degré est inférieur ou égal à n. On considère l'anneau des endomorphismes de $\mathbb{R}_n[X]$. On rappelle que, dans cet anneau, la loi multiplicative est la composition \circ des endomorphismes. L'unité est l'application linéaire identité notée ici i:

$$i: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

 $P \mapsto P$

L'élément nilpotent considéré est la dérivation notée ici d:

$$d: \ \mathbb{R}_n[X] \to \ \mathbb{R}_n[X]$$
$$P \mapsto P'$$

- 1) Montrer que i + d est un automorphisme de $\mathbb{R}_n[X]$.
- 2) Pour tout entier n on pose $B_n = (i+d)^{-(n+1)}(X^n)$ et

$$\beta_n: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto B_n(x)e^x$

- a) Préciser, à l'aide d'une puissance de i + d la dérivée m ième de β_n pour un entier naturel m quelconque. Que se passe-t-il pour m = n + 1?
- **b)** Pour $m \in [0, n]$, montrer qu'on a $\beta_n^{(m)}(0)/m! \in \mathbb{Z}$. Conclure.