

TABLE OF CONTENTS

01

Background

02

Datasets

03 Related Work

04

Method

05

Experiment

06

Conclusion

Background

Our world revolves around constant communication and clarity.

Many translators exist for written and spoken communication.

Communication by signing and hand gestures is an emerging product in computer vision.

Data Availability

To classify a hand gesture from an image, a ML model will require a large dataset.

Gathering our sample and testing data requires extracting features from an image.

The HaGRID datasets provide classified images for testing, training, and validation.

Our Problem

Hand gesture classification is minimal for ASL translators.

We wanted to build a model to optimally classify a variety of hand gestures.

We will use different machine learning techniques to find the most optimal model.

HaGRIDv2 Dataset

- Large dataset of hand gestures
- Can extract 21 landmarks from each gesture as features.
- Output will be the class name
 - Ex. "fist" or "thumbs up"

	lmage Count	Percent
Training	410,800 Images	74%
Validation	54,000 Images	10%
Testing	90,000 Images	16%

37,583

Unique People (18-65 years old)

33

Unique Classes

723 GB

Image files

33 Gesture Classes

DeepASL

DeepASL, a system to translate ASL into text or speech, uses a novel hierarchical bidirectional deep recurrent neural network (HB-RNN) to classify and translate hand signs.

ASL signs depend on both past and future context.

Bidirectional LSTMs ensure full contextual understanding.

How it Works:

- 1. Input Features
- 2. Bidirectional RNN (B-RNN) Processing
- 3. Feature Fusion
- 4. High-Level Single-Sign Representation

While CNN and SVMs are great for isolated gestures, HB-RNN can improve performance for dynamic sequences.

Intuition

Our system leverages MediaPipe's real-time hand tracking to capture 3D landmark coordinates, transforming raw gesture data into machine-interpretable features.

We recognized that different model architectures would excel at extracting different patterns:

- 2D CNNs
 - Spatial relations in 2D projections
- 1D CNNs
 - Temporal Sequences
- SVMs
 - Handcrafted features

Finding the optimal live classifier

Feature Extraction - Training

Parse image using Google's Mediapipe

STEP 2

Map 21 hand landmarks into (x,y) coordinates

STEP 3

Flatten coordinates into a 42-feature vector

STEP 4

Input as training values

Live Predictions

STEP 5

Parse hand landmarks from a live feed: Steps 1, 2, 3

STEP 6

Enter as sample data: predict(landmark_vector)

STEP 7

predict() outputs the class and is displayed

Algorithm Details

- The live test subsystem demonstrates real-time capability, processing both hands independently at ~20 FPS while displaying classification results and confidence metrics.
- Our evaluation protocol uses strict train-test splits from HaGRID to ensure realistic performance measurements across all/six gesture classes.
- Additional innovations include dynamic architecture scaling; CNNs adjusting their size and structure automatically based on the task (simpler tasks can shift to fewer layers and more complex tasks can shift to extra layers).

Model Prototypes

Model Type	ype Description	
SVM	A scikit-learn Linear Support Vector Configuration (LinearSVC) - Default parameters L2 Regularization Linear Kernel	
1D CNN	A 1D, sequential convolutional neural network - 10 epochs ReLU Activation .001 Learning Rate	
2D CNN	An adaptive, 2D convolutional neural network - 10 epochs ReLU Activation Adam Optimizer	
DenseNet	DenseNet A 1D convolutional neural network with concatenated Dense Blocks. - 10 epochs ReLU Activation .001 Learning Rate	
DenseNet2D	PenseNet2D A 2D convolutional neural network with concatenated Dense Blocks. - 10 epochs ReLU Activation .001 Learning Rate	
TabNet	TabNet A deep learning architecture to make sequential decisions and a feature transformer. - 100 max epochs Batch Size 1024	

Features to Use:

- Primary Features
 - 2D (x,y) coordinates from 21 hand landmarks
 (42 dimensions total)
- Normalization
 - Automatic coordinate normalization via MediaPipe (0 - 1)

Hyper-parameter Choices:

- number of filters
- kernel size
- dropout
- dynamic pooling

Accuracy Results

Analysis

- For all classes, TabNet and DenseNet dominated with 93.51% and 94.20% accuracy respectively.
- For the six classes, all of the models were able to achieve >93% accuracy.
- Unexpectedly, SVM had a very strong 6-class performance, on par with DenseNet. TabNet also had surprising competitiveness with DenseNet.

• :	Model Type	All-Class Challenges	Six-Class Strengths
	SVM	Struggles with high dimensionality	Excellent linear separability
	1D CNN	Limited temporal feature learning	Adequate for basic gestures
	2D CNN	Better spatial generalization	Overengineered for simple cases
	Dense Net	Optimal feature reuse	Slight overfitting tendency
•	TabNet	Effective feature selection	Maintains interpretability

Our Best Model: DenseNet

- 94.2% accuracy on 33 gesture classes
- 99.36% accuracy on 6 gesture classes
- Ran with 100 epochs with 95.63% accuracy

Future Work:

- Develop an adaptive system that routes simple gestures to SVM and complex cases to DenseNet, optimizing both speed and performance.
- Integrate transformer layers into the 1DCNN to better capture long-range temporal dependencies in hand movements, improving sequential gesture recognition.

