1136 - Division by 3

There is sequence 1, 12, 123, 1234, ..., 12345678910, ... Now you are given two integers **A** and **B**, you have to find the number of integers from \mathbf{A}^{th} number to \mathbf{B}^{th} (inclusive) number, which are divisible by **3**.

For example, let A = 3. B = 5. So, the numbers in the sequence are, 123, 1234, 12345. And 123, 12345 are divisible by 3. So, the result is 2.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case contains two integers A and B ($1 \le A \le B \le 2^{31}$) in a line.

Output

For each case, print the case number and the total numbers in the sequence between A^{th} and B^{th} which are divisible by 3.

Sample Input	Output for Sample Input
2	Case 1: 2
3 5	Case 2: 67
10 110	