Assignment 1

0801CS221114

```
import pandas as pd
df = pd.read_csv('st.csv')
df.head()
```

_		Unnamed: 0)	Gender	EthnicGroup	ParentEduc	LunchType	TestPrep	MathScore	ReadingScore	WritingScore
C)	0)	female	group B	bachelor's degree	standard	none	72	72	74
1	1	1		female	group C	some college	standard	completed	69	90	88
2	2	2	2	female	group B	master's degree	standard	none	90	95	93
3	3	3	3	male	group A	associate's degree	free/reduced	none	47	57	44
4	1	4	ı.	male	aroup C	some colleae	standard	none	76	78	75
4											

df.describe(include='all')

	Gender	EthnicGroup	ParentEduc	LunchTypo	ToctDnon	MathScana	ReadingScore	WritingScore
	dender	Ethnicaroup	Parenteduc	Lunchtype	теѕсегер	Mathistore	Reautingscore	writingscore
count	30641	30641	30641	30641	30641	30641.000000	30641.000000	30641.000000
unique	2	5	6	2	2	NaN	NaN	NaN
top	female	group C	some college	standard	none	NaN	NaN	NaN
freq	15424	9816	7048	19905	20068	NaN	NaN	NaN
mean	NaN	NaN	NaN	NaN	NaN	66.749355	69.624980	68.468327
std	NaN	NaN	NaN	NaN	NaN	15.206049	14.671572	15.307814
min	NaN	NaN	NaN	NaN	NaN	0.000000	10.000000	5.000000
25%	NaN	NaN	NaN	NaN	NaN	56.000000	60.000000	58.000000
50%	NaN	NaN	NaN	NaN	NaN	67.000000	70.000000	69.000000
75%	NaN	NaN	NaN	NaN	NaN	78.000000	80.000000	79.000000
max	NaN	NaN	NaN	NaN	NaN	100.000000	100.000000	100.000000

df.info()

```
<<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 30641 entries, 0 to 30640
     Data columns (total 9 columns):
     # Column
                   Non-Null Count Dtype
         Unnamed: 0 30641 non-null int64
         Gender
                       30641 non-null object
         EthnicGroup
ParentEduc
                      30641 non-null object
                       30641 non-null object
         LunchType
                       30641 non-null object
         TestPrep
                       30641 non-null object
         MathScore
                       30641 non-null int64
         ReadingScore 30641 non-null int64
     8 WritingScore 30641 non-null int64
     dtypes: int64(4), object(5)
     memory usage: 2.1+ MB
if 'Unnamed: 0' in df.columns:
   df = df.drop(columns=['Unnamed: 0'])
X = df.drop(columns=['MathScore', 'ReadingScore', 'WritingScore'])
y = df[['MathScore', 'ReadingScore', 'WritingScore']]
X.head()
y.head()
```

euclidean_distance

```
₹
        MathScore ReadingScore WritingScore
     0
                72
                              72
                                            74
                              90
     1
                69
                                            88
     2
                90
                              95
                                            93
     3
                47
                              57
                                            44
                76
                              78
                                            75
```

```
df.isnull().sum()
<del>_</del>→
                    0
         Gender
                    0
      EthnicGroup
                    0
       ParentEduc
       LunchType
                    0
        TestPrep
                    0
       MathScore
                    0
      ReadingScore 0
      WritingScore 0
unique\_categories = \{col: df[col].nunique() \ for \ col \ in \ ['MathScore', 'ReadingScore', 'WritingScore']\}
{'MathScore': 94, 'ReadingScore': 88, 'WritingScore': 92}
from statistics import mean, median, mode, variance, stdev
mean_value = mean(df['MathScore'])
mean_value
→ 66.74935543879116
median_value = median(df['MathScore'])
median_value
→ 67
mode_value = mode(df['MathScore'])
mode_value
→ 68
variance_value = variance(df['MathScore'])
variance_value
→ 231.22392460084583
std_dev_value = stdev(df['MathScore'])
std_dev_value
→ 15.206048947732802
import random
from math import sqrt
point1 = df.sample(1).iloc[0]
point2 = df.sample(1).iloc[0]
euclidean_distance = sqrt((point1['MathScore'] - point2['MathScore']) ** 2)
```

```
→ 9.0
```

```
point1 = df.sample(1).iloc[0]
point2 = df.sample(1).iloc[0]

manhattan_distance = abs(point1['MathScore'] - point2['MathScore'])
manhattan_distance

19

import matplotlib.pyplot as plt
import seaborn as sns

sns.histplot(df['WritingScore'], kde=True, bins=20, color='blue')
plt.title('Distribution of WritingScore')
```

\rightarrow Text(0.5, 1.0, 'Distribution of WritingScore')

symmetric

sns.histplot(df['MathScore'], kde=True, bins=20, color='blue')
plt.title('Distribution of MathScore')

→ Text(0.5, 1.0, 'Distribution of MathScore')

scores spread out evenly between 40 and 90.

sns.histplot(df['ReadingScore'], kde=True, bins=20, color='blue')
plt.title('Distribution of ReadingScore')

→ Text(0.5, 1.0, 'Distribution of ReadingScore')

The distribution is slightly right-skewed, with most values concentrated between 60 and 90.

sns.boxplot(x=df['WritingScore'])
plt.title('Box Plot of WritingScore')

→ Text(0.5, 1.0, 'Box Plot of WritingScore')

The median is around 74

sns.boxplot(x=df['ReadingScore'])
plt.title('Box Plot of ReadingScore')

→ Text(0.5, 1.0, 'Box Plot of ReadingScore')

few outliers on the lower end, with the median around 75.

sns.boxplot(x=df['MathScore'])
plt.title('Box Plot of MathScore')

Text(0.5, 1.0, 'Box Plot of MathScore')

The median is around 65, with outliers on lower ends.

df['Gender'].value_counts().plot.pie(autopct='%1.1f%%')

→ <Axes: ylabel='count'>

df['EthnicGroup'].value_counts().plot.pie(autopct='%1.1f%%')

df['ParentEduc'].value_counts().plot.pie(autopct='%1.1f%%')

df['LunchType'].value_counts().plot.pie(autopct='%1.1f%%')

→ <Axes: ylabel='count'>

df['TestPrep'].value_counts().plot.pie(autopct='%1.1f%%')

plt.scatter(df['MathScore'], df['ReadingScore'])