

FACULTY OF COMPUTER AND MATHEMATICAL SCIENCES

BACHELOR OF COMPUTER SCIENCE (HONORS) CS230

SPECIAL TOPICS IN COMPUTER SCIENCE (649)

GROUP PROJECT REPORT TITLE:

BIRDS CLASSIFICATION SYSTEM IN MALAYSIA USING CNN

PREPARED FOR:

PROF TS DR. MAZIDAH PUTEH

PREPARED BY:

NAME	STUDENT ID
AFIF HAKIMI SYAHIR BIN MOHD ZULKIFLI	2022604528
MOHAMAD ADAM IMAN BIN MOHAMAD NIZAM	2022815698
MUHAMMAD IZZUDDIN BIN AZMI	2022898002
MUHAMMAD NUR AZRI IRFAN BIN ABDUL	
RAHMAN	2022898182
NOR ANNIS ADILAH BINTI ABDULLAH	2022494848

Contents

No	Content	<u>Page</u>
	Abstract	
	Introduction	
	1.1 Objectives	
	1.2 Project Scope	
	2.0 Related Works	
	Literature Review	
	Methodology / Experiment	
	3.0 Method and implication	
	3.1 Introduction	
	3.2 Data Collection 3.3 Algorithm: CNN	
	3.4 Process Flow	
	3.1110ccss 110W	
	4.0 Project Result and Discussion	
	4.1 Experiment Result	
	4.2 GUI for system application	
	Result Discussion	
_	Conclusion and future	
	Suggestion	
	References	

Abstract - Due to the resemblances of the birds' features and environment images and the insufficient knowledge of the spectators, identifying birds can be a challenging task. So, in order to aid birdwatchers in identifying birds, computer-based photos are required. With convolutional neural networks (CNN) used to extract data from images, this study looks into the potential of deep learning for bird identification. A dataset of 450 species of birds from kaggle.com was used for the inquiry.

Keywords: birds classification, deep learning, convolutional neural networks (CNN).

1.0 Introduction

Nowadays people tend to spend their precious free time doing something that is "back to nature", for example camping, collecting flowers or doing bird watching. It is a good activity to be involved with to appreciate nature and provide relaxation to calm the mind and body. It can also offer health benefits and happiness from enjoying the time with nature.

To enjoy birdwatching, people usually go visiting local zoo to glance at various beautiful bird species or either to gain knowledge about the local bird or with a good chance birdwatcher also found a new gain discovery of the species that offer in the zoo that not only local bird but also the birds that are outside of Malaysia that can be display in the zoo. Understanding such differences between species can enhance our knowledge of exotic birds as well as their ecosystems and biodiversity. However, because of observer constraints such as location, distance, and equipment, identifying birds with the naked eye is based on basic characteristic features, and appropriate classification based on distinct features is often seen as tedious.

Normally, detection of object parts of the birds is challenging because of their complex variations or similar subordinate categories and fringes of objects. Intraclass and interclass variation in the silhouettes and appearances of birds is difficult to identify correctly because certain features are shared among species. To classify the aesthetics of birds in their natural habitats, in this study, our group developed a method using a convolutional neural network (CNN) that extracts information from bird images captured previously or in real time by identifying local features. First, raw input data of myriad semantic parts of a bird were gathered and localized. Second, the feature vectors of each generic part were detected and filtered based on shape, size, and color. Third, a CNN model was trained with the bird pictures by using Anaconda's Python for feature vector extraction with consideration of the aforementioned characteristics, and subsequently the classified, trained data were stored on a local server to identify a target object. Information is obtained by gathering the dataset from online that contains 450 bird species images.

A computer programme or system called a "bird recognition system" is made to recognise birds from pictures. It can be applied to a range of projects, including scientific investigation, environmental protection, and instruction. Birds' visual characteristics, such as the size, color, and shape of their beaks, wings, and tails, are often taken into account by bird recognition systems. The most likely match is then determined by comparing these characteristics to a database of recognised bird species. The variety in appearance of various bird species, the low quality of some photos, and the lack of data are some of the difficulties in creating a trustworthy bird recognition system. Despite these difficulties, researchers have significantly advanced bird recognition systems. In this programme, our group want to achieve these objective:

1. 1 Objectives

- 1. To identify the different kinds of birds that inhabit in Malaysia.
- 2. To use Convolutional Neural Networks (CNN) to solve actual problems.

1.2 Project scope

Type of problem (forecasting/prediction/classification/detection etc.)

As there is hardly any software available for bird species recognition, we decided to develop a bird species identifier which identifies the species of the bird from an uploaded image. This system helps in removing the knowledge barrier and smooths the process on bird species identification. As there are many software that provide the information of birds but none of them provide the information which we will provide.

Data source and the target output

Our data source is from kaggle.com and the target output is the species type of the birds.

Amount the data used (show the sample of dataset)

A total of 70,626 training photos, 22500 test images (five images per species), and 2250 validation images (five images per species) were used.

Data description (list of parameters involved)

The parameters involved in this process include filters (or kernels) which have a small receptive field,

data organization for classifying each image, the size of the images in dataset, number of classes or labels that the CNN need to be able to recognize the image, number of images, image preprocessing(cropping,resizing,normalization and data augmentation).

2.0 Related Works

Machine learning (ML) represents a set of techniques that allow systems to discover the required representations to feature detection or classification from the raw data. The performance of works in the classification system depends on the quality of the features. As such of this study can be categorized under the field of ML; this is to make a search in this area for the studies that belong to birds' identification.

In the literature review, there are number of studies conducted in the field of identifying birds. But they were conducted with different algorithms and different methods. In this field of research, our group uses image methods to recognize bird types. Our research used to recognise bird type using images of 275 types of species with at least 5 images per species. It is using the concept of transfer learning and pre-trained algorithm made feature extraction possible from an image. The results obtained were of high efficiency as the software could easily identify a bird species from an image whose dataset was present in the database. In this project there are four models used, (1) EfficientNet, (2) InseptionNet, (3) ResNet and (4) MobileNet. For this project, our group uses two of four architectures which are (1) and (4). The result was achieved on high accuracy. For EfficientNet the accuracy achieved is 95.56%. For MobileNet, the result shows 95.13%. The flow of this project with the (A) use of the pre-trained model using Anaconda. Next is (2) applying transfer learning for feature extraction. The pre-trained network is used as a starting point to learn a new task. The learned features are transferred using few training images. (3) Classification of the image with support vector machine classifier to supervised machine learning algorithm is used for classification. In this step the Fit Image Classifier and Classify Test Image are used to extract from the pre-trained images are used as predictor variables and are used to fit a multiclass, and need to classify the test images. This is done by the trained model on the basis of features extracted from the test images. Lastly (4) checking the accuracy test fraction of labels predicted by the model correctly.

Literature Review

No.	Title	Algorithm	Objectives	Problem	Result	References
				Statement		
1.	Bird Sound	CNN	to develop a CNN	The specific	The accuracy of the	(Incze et al.,
	Recognitio		system that can	challenges	model was assessed to	2018)
	n Using a		classify bird	include	be 70.9% based on	
	Convolutio		sounds using	recognizing	training on the	
	nal Neural		transfer learning	single audible	ILSVRC-2012-CLS	
	Network		and spectrograms	species as well as	image classification	
			generated from	separating	dataset.	
			the downloaded	multiple overlaid		
			data as input to	sounds in field		
			the neural	recordings.		
			network			

2.	Automated	CNN	1 To develop an	The problem	The specific results of the	(Siri et al.,
 			·	·	•	
	System for		_	addressed in the study	_	2023)
	Bird Species		for the identification	-	performance metrics are not	
	Identification		-	_	explicitly mentioned in the	
	Using CNN			with bird identification.		
					However, the study	
					mentions that the approach	
				_	using Convolutional Neural	
			_		Networks (CNNs) showed	
				·	80% accuracy in predicting	
			as unclear labeling,	difficulty of identifying	the discovery of new bird	
			variations in lighting	birds from	species.	
			and backdrop, and	photographs.		
			the difficulty of	Additionally, the		
			identifying birds	proximity of bird		
			from photographs.	features and the		
			3. To provide a	background of photos,		
			quick and accurate	as well as the typical		
			method for	inexperience of		
			identifying bird	observers, make it		
			species, benefiting	challenging for bird		
			bird watchers and	watchers to identify		
			researchers.	birds accurately.		
			4. To utilize deep			
			learning and			
			powerful texture			
			descriptors in the			
			computer vision			
			field for automating			
			the identification of			
			birds. 5. To raise			
			public awareness			
			of bird watching,			
			bird identification,			
			and the			
			identification of			
			birds' native to			
			India			
			6. To enhance			
			observation by			
			meeting new			
			souring flow			
						_
						7
I						

	identification		
	process		
	optimization		
	requirements.		
	7. To achieve a		
	high level of		
	numerical accuracy		
	in bird species		
	identification using		
	CNNs.		
	8. To predict the		
	discovery of new		
	bird species with		
	80% accuracy		
	using the		
	automated bird		
	species		
	identification		
	system.		

3.	Bird Species	CNN	The main goal of	The problem	The study achieved an	(Dharaniya et
	Identification		the study is to	statement is that	accuracy of 80% in	al., 2022)
	Using CNN		investigate the	identifying bird species	predicting the discovery of	
			utility of deep	from photographs is a	bird species using the	
			learning,	challenging task that	proposed method based on	
			specifically CNNs,	often leads to unclear	the generated findings.	
			for bird	labelling. Even		
			identification. The	professional bird		
			authors aim to	watchers may		
			develop a system	disagree on the		
			that can accurately	species of a bird in a		
			classify various bird	photograph due to the		
			species from a	unique characteristics		
			photograph	of birds, such as their		
			submitted by the	colour, size, and		
			user. Additionally,	viewing angle. This		
			the study aims to	problem puts a load		
			streamline the	on both the visual		
			process of bird	capacities of humans		
			identification, which	and computers.		
			can enhance bird	Therefore, the authors		
			viewing and aid in	propose using CNNs		
			the preservation of	to extract information		
			biodiversity.	from photos and		
				develop a system that		
				can accurately classify		
				various bird species.		

4.	Bird Species	CNN	1. Presenting the	Ornithologists and	The Convolutional Neural	(Siri &
	Identification			researchers face	Network (CNN) achieved an	Rangaraju,
	Using		details of bird	difficulties in	accuracy ranging from 87%	2023)
	Convolutional		species	accurately identifying	to 92% in identifying bird	
	Neural		identification using	bird species due to the	species from input images.	
	Network		a Convolutional	diverse appearances	This demonstrates the	
			Neural Network	of birds, varying	effectiveness of the CNN in	
			(CNN).	backgrounds, and	accurately classifying bird	
			2. Highlighting the	environmental	species.	
			importance of bird	changes. This		
			species	uncertainty can hinder		
			classification in	ecological studies and		
			biodiversity	conservation efforts		
			preservation,			
			ecosystem			
			maintenance, and			
			its applications in			
			various activities			
			like agriculture,			
			landscape			
			formation, and			
			coral reef			
			formation.			
			3. Discussing the			
			challenges in bird			
			species			
			identification due to			
			various			
			appearances of			
			birds, backgrounds,			
			and environmental			
			changes, and how			
			recent			
			developments in			
			deep learning have			
			made the			
			classification of bird			
			species more			
			flexible.			
			4. Demonstrating			
			the process of			
						10

	feature extraction		
	and classification		
	using CNN for bird		
	species		
	identification.		
	5. Providing		
	insights into the		
	accuracy and		
	performance of the		
	model, and		
	discussing future		
	work, including the		
	development of a		
	mobile application		
	for real-time		
	monitoring of bird		
	species in		
	sanctuaries		

5.	Bird Species CNN	1. Developing an	1. The tedious and	Successful implementation	(Jange et al.,
	Identifier	automated system	unreliable nature of	of a deep learning platform	2022)
	using	for identifying bird	manual bird species	using Convolutional Neural	
	Convolutional	species from	identification, which is	Networks (CNN) for	
	Neural	images captured in	often limited by human	identifying bird species	
	Network	their natural	knowledge and local	based on image inputs,	
		habitat, with a	bird species familiarity.	achieving an accuracy of	
		focus on size,	2. The	85%-90%	
		shape, and colour	time-consuming and		
		parameters.	error-prone process of		
		2. Utilizing	using bird audio for		
		Convolutional	species identification,		
		Neural Networks	which requires		
		(CNN) for feature	extensive analysis and		
		extraction and	classification, making		
		image recognition,	large-scale bird		
		aiming to achieve	identification nearly		
		an accuracy of	impossible.		
		85%-90%. 3.	3. The difficulty in		
		Investigating the	recognizing rare bird		
		recognition of many	species, which		
		bird species,	presents a significant		
		addressing the	challenge for accurate		
		challenges posed	prediction and		
		by the similarity	classification.		
		between classes	4. The need for an		
		and the non-rigid	automated system that		
		nature of birds.	can effectively and		
		4. Simplifying the	efficiently identify bird		
		bird identification	species from images,		
		process and	overcoming the		
		making	limitations of manual		
		bird-watching	and audio-based		
		easier, with	identification methods.		
		potential			
		applications in			
		wildlife research,			
		monitoring, and			
		camera trap			
		technology.			

	5. Exp	loring future		
	enhar	cements		
	such a	as developing		
	a mot	ile app for		
	user o	onvenience		
	and in	nplementing		
	the sy	stem using		
	cloud	technology		
	for lar	ge-scale data		
	storag	e and high		
	comp	uting power.		

6.	Bird Image	CNN	1. To develop and	The problem	The ResNet152V2 model	(Manna et al.,
	Classification		evaluate deep	statement for this	provided the highest	2023)
	using		learning models for	paper is the need for	accuracy of 95.45%,	
	Convolutional		accurately	accurate and efficient	followed by DenseNet201	
	Neural		classifying bird	methods for identifying	with an accuracy of 94.55%.	
	Network		species based on	bird species from	InceptionV3 and	
	Transfer		images.	images. With the	MobileNetV2 achieved	
	Learning		2. To assess the	increasing threat of	accuracies of 93.64% and	
	Architectures		effectiveness of	extinction and habitat	92.73%, respectively.	
			transfer learning	loss, it is crucial to		
			architectures, such	monitor and conserve		
			as ResNet152 and	bird populations.		
			VGG16, in	However, traditional		
			classifying bird	methods of identifying		
			images.	bird species based on		
			3. To demonstrate	visual observations		
			the potential of	can be		
			convolutional	time-consuming and		
			neural networks in	prone to errors.		
			contributing to	Therefore, the study		
			wildlife monitoring	aims to develop and		
			and conservation	evaluate deep learning		
			efforts.	models that can		
			4. To explore the	accurately classify bird		
			application of	species based on		
			advanced computer	images, which can		
			science techniques	contribute to wildlife		
			in addressing	monitoring and		
			ecological and	conservation efforts.		
				The research also		
			challenges,	aims to address the		
			particularly related	gap in existing		
			to bird populations.	approaches to bird		
			-	image classification		
				and identify the most		
				effective transfer		
				learning architectures		
			research findings in	for this task.		
			wildlife			
			conservation,			
			ecological			

			research, and			
			biodiversity			
			monitoring.			
7.	Animal image	k-means	1. Developing a	The problem	The paper reports the	(Battu & Reddy
	identification	clustering, deep	reliable learning	addressed in the	accuracy of the proposed	Lakshmi, 2023)
	and	neural networks,	strategy for animal	paper is the challenge	method for classifying	
	classification	annotation	categorization in	of categorizing	animal species from	
	using deep	localization and	naturally inhabited	animals from	camera-trap photos.	
	neural	classification,	areas with noisy	camera-trap photos	Specifically, the accuracy	
	networks	and	labels. 2. Testing	captured in naturally	results are presented for	
	techniques	exemplar-based	the proposed	inhabited areas with	different noise levels and	
		geometric	method using	high densities of	sample fractions of the	
		models	publicly accessible	people and noise.	datasets. For example, the	
			camera-trap picture	Specifically, the	method achieves an	
			datasets.	authors aim to tackle	accuracy of 73.09% for a	
			3. Achieving high	the issue of noisy	noise level of 30% on the	
			accuracy in	labels in the training	Snapshot Serengeti	
			classifying animal	data, which can	dataset. Additionally, the	
			species from	significantly impact the	accuracy results for noise	
			camera-trap photos	accuracy of animal	levels of 50% and 70% are	
			despite high levels	species classification.	also provided,	
			of label noise.		demonstrating the	
					performance of the method	
					under varying levels of label	
					noise.	

8.	Acoustic	CNN	1. to investigate the	1. Insufficient	1. The highest balanced	(Xie & Zhu,
	Classification		use of transfer	annotated training	accuracy achieved for	2023)
	of Bird		learning and	data: The basic	classifying 43 bird species	
	Species		training from	problem of insufficient	using linear SVM was	
ľ	Using an		scratch for bird	annotated training	94.89% ± 1.35%.	
i	Early Fusion		sound classification	data for bird sound	2. VGG16 demonstrated	
	of Deep		using deep learning	classification is a	the best performance in	
l	Features		models.	significant challenge.	terms of balanced accuracy	
			2. to compare the	Transfer learning is	among the pre-trained	
			performance of	used to address this	models used.	
			different pre-trained	issue by leveraging	3. The study also mentioned	
			models, including	pre-trained models	balanced accuracies of	
			VGG16, ResNet50,	and adapting them to	90.94% ± 1.53% and	
			EfficientB0,	the task of bird	90.92% for deep cascade	
			MobileNetV2, and	species classification.	features with different	
			Xception, for bird	2. Feature extraction	numbers of frozen layers	
			sound classification	from spectrograms:		
			using transfer	The study aims to		
			learning.	effectively extract		
				deep cascade features		
				from spectrograms		
				using pre-trained		
				models such as		
				VGG16 and		
				MobileNetV2 to		
				improve the		
				classification		
				performance of bird		
				sounds.		
				3. Classification		
				performance		
				improvement: The		
				study seeks to		
				improve the		
				classification		
				performance of bird		
				sounds by fusing deep		
				cascade features		
				extracted from		
				different pre-trained		
				models and applying		
						16
						10

				data augmentation		
				techniques such as		
				pitch shifting.		
9.	Bird Species	Support Vector	to evaluate simple	the classification of	The proposed colour	(Marini et al.,
	Classification	Machines (SVM)	feature descriptors	bird species based on	segmentation approach	2013)
	Based on		in bird images and	colour features	achieved segmentation	
	Color		assess the	extracted from	rates of 71.0% for RGB	
	Features		expected	unconstrained images.	colour space and 75.0% for	
			classification	The challenge of this	HSV colour space,	
			performance when	problem is due to the	demonstrating favourable	
			dealing with many	variation in the	results compared to	
			bird species.	background and	previous work.	
				illumination, as well as		
				the pose, size, and		
				angle of view of the		
				birds in the images.		
				Additionally, there is a		
				high visual similarity		
				between some bird		
				species, making it		
				difficult to distinguish		
				between them.		

10.	Wild Animal	CNN	to develop a robust	The expansion of	The model achieved a	(Sahil Faizal &
	Classification		and reliable	urban areas has	training accuracy of 95%	Sanjay
	Using CNN		automated system	resulted in the	and a testing accuracy of	Sundaresan,
			for detecting and	displacement of	91% after 40 epochs.	2022)
			classifying wild	habitats in forested		
			animals in	areas, forcing wild		
			real-world	animals to venture into		
			environments.	human settlements.		
				This poses a tangible		
				danger to humans and		
				endangers the lives of		
				endangered animals.		
				The usage of		
				technology and robust		
				cameras is not a new		
				concept in most major		
				biosphere reserves		
				and national parks		
				around the world.		
				However,		
				software-based tools		
				have not been		
				explored to a		
				satisfactory extent in		
				these use cases.		

3.0 Method and implication

Chapter 3: Methodology

3.1 Introduction

This chapter lays the foundation for the development of the Convolutional Neural Networks (CNN) Bird Identification System, emphasizing transparency and reproducibility. The process begins with a detailed discussion of data collection, encompassing diverse dataset acquisition, and preprocessing techniques like image normalization and augmentation. The architecture of the CNN is then introduced, providing insights into layer selection and parameter tuning, followed by a comprehensive description of validation and testing procedures. Ethical considerations and potential biases are also addressed, providing an overview of the methodical approach taken in preparation for more in-depth exploration in subsequent chapters.

In the era of Industry 4.0, where technology has significantly evolved, making daily activities more convenient, leveraging advanced artificial intelligence becomes imperative. Deep learning, a subset of machine learning, emerges as a key player in this project. Deep learning involves multi-layered neural networks learning from vast datasets, drawing inspiration from the structure of the human brain. Among various neural network types, Convolutional Neural Networks (CNNs) stand out for image classification tasks. Specifically suited for bird identification, CNNs excel at detecting and identifying patterns in images. Their capability to break down an image into distinct components facilitates recognizing subtle differences between bird species, such as coloration and patterning. Furthermore, CNNs excel in capturing the context of an image, providing valuable assistance in the intricate process of bird identification.

3.2 Data Collection

A dataset of 450 bird species has been collected. The images total up to 70,626 training photos and 22500 test images. The quality of the dataset is extremely high where the details of the bird can be seen clearly, enhancing feature extraction for the algorithm chosen. In each of the images, the birds occupy more than 50% of the pixels. This allows for a higher accuracy of an object classification prediction,

Table 3.2.1: Classes of birds to be detected

ABBOTTS	ABBOTTS	ABYSSINIAN	AFRICAN	AFRICAN	AFRICAN
BABBLER	BOOBY	GROUND	CROWNED	EMERALD	FIREFINCH
		HORNBILL	CRANE	CUCKOO	

	AFRICAN PYGMY GOOSE	ALBATROSS	·-	BAIKAL TEAL
BALD EAGLE		BALTIMORE ORIOLE		BAND TAILED GUAN
		CABOTS TRAGOPAN		

Table 3.2.1 describes a subset of classes of birds that is used to train the Convolutional Neural Network model. Each of the classes above have 5 images each for testing and training. The table describes 22 species out of 525 species the model is trained on.

The example of the image are as below.

Figure 1

Figure 2

3.3 Algorithm; Convolutional Neural Network

This chapter focuses on the algorithmic foundation of the Bird Identification System, employing Convolutional Neural Networks (CNNs) as the core framework. CNNs have proven to be exceptionally effective in image recognition tasks, making them an ideal choice for the intricate task of bird species identification. The section begins with an in-depth exploration of the CNN architecture, elucidating the choice of layers, activation functions, and the rationale behind the model's design. The convolutional and pooling layers, integral to feature extraction, are explained in detail. Subsequently, the chapter addresses the training process, emphasizing the selection of hyperparameters, such as learning rates and batch sizes, to optimize model performance. Special attention is given to the transfer learning approach, if utilized, and its implications for the bird identification system. Through a systematic breakdown of the CNN algorithm, this chapter provides a clear understanding of the computational framework that underpins the subsequent evaluation and results presented in the following chapters.

Convolutional layers are fundamental building blocks of CNNs that are used to extract features from an image, such as edges, textures, and shapes. Each filter in a CNN slides or convolves across the input image, performing element-wise multiplications and summations to produce feature maps, the depth of which reflects the number of filters applied, capturing various aspects of the input. Convolutional layers are essential to the network's ability to automatically learn and recognize hierarchical representations of visual patterns, which prove particularly effective in image classification tasks like bird identification.

3.4 Process Flow

PREPATION OF THE MODEL

Figure 3 Flowchart of the process flow.

4.0 Project result and Discussion

During prototype development we use a pre-trained model that comes with Keras and then retrained on the Bird Species Dataset.

With a pre-trained model we try to transfer learning and use different kinds of CNN architecture and choose which with the highest accuracy. From all the results we get that EfficientNet and Resnet50 architecture get the most birds that can be identified.

4.1 Experiment result

Transfer learning pre-trained Image Classification Models using:

EfficientNet Architecture

EfficientNet is a convolutional neural network (CNN) architecture that was developed to provide a more efficient and accurate model for image classification. It achieves this by using a series of feature-wise and channel-wise scaling techniques that increase the model's width and depth. These techniques allow EfficientNet to achieve better accuracy and performance than other existing architectures. It is also a good choice for bird identification due to its high accuracy and efficient use of resources.

Feature-wise Efficiency:

Depthwise Convolution: Depthwise convolution is a type of convolution where the input channels are convolved independently. This type of convolution is more efficient than traditional convolution as it reduces the number of parameters in the network and allows for more efficient training.

Group Convolution: Group convolution is similar to depthwise convolution but instead of convolving each channel independently, it involves several channels at once. This allows for more efficient use of the network's parameters and can also help reduce overfitting.

Pointwise Convolution: Pointwise convolution is a type of convolution where each input channel is convolved with its own set of weights. This type of convolution is more efficient than traditional convolution as it reduces the number of parameters in the network and allows for more efficient training.

Compound Scaling: Compound scaling is a novel method used by EfficientNet architectures to scale up the size of the model. This method combines depthwise convolution, group convolution, and pointwise convolution in order to scale up the model while keeping the number of parameters in the network to a minimum.

Channel-wise Efficiency:

Global Average Pooling: Global average pooling is a type of pooling layer commonly used in convolutional neural networks. This layer takes the average of all the inputs in the input layer, thus reducing the dimensionality of the output.

Squeeze-and-Excitation Networks: Squeeze-and-Excitation Networks (SE-Net) are a type of neural network architecture that incorporates a special type of layer known as a squeeze-and-excitation block. This layer helps to improve the network's overall accuracy by allowing the network to focus on important features in the input.

Grouped Convolutions: Grouped convolutions are a type of convolution where the convolutional filters are grouped together rather than being applied independently. This allows for better parameter sharing, which leads to more efficient use of the network's parameters and can also help reduce overfitting.

Depthwise Separable Convolutions: Depthwise separable convolutions are a type of convolution where the input channels are convolved independently and then combined. This helps to reduce the number of parameters in the network and allows for more efficient training.

After we trained and evaluated using EfficientNet architecture with a pre-trained model we got an accuracy of 93.69% on the validation set and an accuracy of 95.87% on the test set.

Figure 4

Efficient Net model has low prediction accuracy on:

- GILDED FLICKER
- TAKAHE
- NORTHERN CARDINAL
- CINNAMON TEAL

Above graph shown the f1 scores follow by bird species and we can make summary that some bird are easy to identified and some are hard.

After that, we try some example picture and create a graph that show 5 top highest f1 score.higher F1 score indicates that the model is correctly identifying more of the relevant data points and correctly rejecting more of the irrelevant ones. F1 score is used to evaluate the performance of a model for a binary classification problem.

Figure 5

Resnet50 Architecture

ResNet50 is a deep convolutional neural network architecture developed by Microsoft that is widely used in computer vision tasks. It is a 50-layer convolutional neural network architecture based on the ResNet architecture. The network is characterized by its skip connections that allow information to pass between layers, which helps to reduce the amount of computation required to train the model. ResNet50 has been used to achieve state-of-the-art performance on several image classification tasks.

```
90/90 [============] - 11s 107ms/step - loss: 0.3155 - accuracy: 0.9098 90/90 [========] - 10s 108ms/step - loss: 0.2303 - accuracy: 0.9293 Validation loss: 0.3155 Accuarcy on validation set is: 90.98 %

Test loss: 0.2303 Accuarcy on test set is: 92.93 %
```

After we trained and evaluate using ResNet50 architecture with pre-trained model we get accuracy of

Figure 6

ResNet50 model has low prediction accuracy on:

- COMMON HOUSE MARTIN
- ANNAS HUMMINGBIRD

Figure 7

4.2 GUI for system application

GUI - Streamlit is a web framework for creation of data science applications. It provides a simple, intuitive interface for creating and sharing interactive data science tools and visualizations. Streamlit simplifies the process of creating data science apps by providing a set of pre-built components that can be quickly customized and shared. Streamlit also enables developers to create their own custom components, making it possible to quickly build complex, interactive applications.

Figure 8

Tutorial on how to run our application

The application only can run one CNN model one at a time. So the default model is efficientNet.

STEP 1- insert sample bird image

Figure 9

After inserting image, image will appear on button of prompt.

STEP 2 - click predict and get result

Figure 10

The application will predict using our trained model and will display the graph of the top 5 most accurate prediction. The result may vary from other trained model. High resolution and clear bird image also give a huge impact on accuracy.

Result Discussion

The results of the experiment to identify bird species offer important new information about how well Convolutional Neural Networks (CNNs) perform the task at hand. Promising outcomes were obtained from the use of two well-known CNN architectures, EfficientNet and ResNet50, demonstrating the potential of deep learning in precisely recognising bird species from photos. Designed for efficient image classification, EfficientNet is a CNN architecture that performed very well, with an excellent accuracy of 95.87% on the test set and 93.69% on the validation set. This high accuracy indicates that the model can generalize effectively to new data, which is important in real-world scenarios when the system comes across unfamiliar bird species.

However, ResNet50, a deeper CNN design with skip connections that help mitigate vanishing gradient problems, performed 92.93% on the test set and 90.98% on the validation set. ResNet50 demonstrated strong performance, while lagging slightly behind EfficientNet, highlighting the adaptability of CNNs in managing challenging image recognition tasks such as identifying different kinds of birds. A thorough analysis of the F1 scores showed subtle differences in the models' performance among different bird species. Higher F1 ratings for some species meant that the models were more accurate in their identification. Alternatively, other species were more difficult to distinguish, maybe because of differences in size, color, or complex patterns. The graphs showing the top 5 greatest F1 scores provide a thorough insight of the model's ability to identify particular species of birds.

These outcomes validate the effectiveness of the transfer learning strategy, which involved fine-tuning pre-trained models on a dataset containing 450 different bird species. The robustness of the selected CNN architectures is demonstrated by the models' ability to correctly identify birds in the face of obstacles such appearance fluctuations. More than just birdwatching lovers will find value in these discoveries since precise species identification has consequences for scientific research, environmental preservation, and educational initiatives.

Conclusion and future suggestions

1 Fine-Tuning

First and foremost, it is imperative to refine the models on a larger and more varied dataset. Adding more photos of different bird species especially ones with varying colors, patterns, and sizes would increase the flexibility and resilience of the system. This would entail working together with communities of birdwatchers and ornithologists to compile a more extensive collection of photos that illustrate a wider range of avian variety.

2 Interactive GUI Enhancements

Second, in order to provide a more engaging and user-friendly experience, the graphical user interface (GUI) may be significantly improved. Including functions like batch processing, picture uploads, and thorough result visualizations will empower users and improve the system's usability and accessibility. Users may additionally receive enhanced information about recognised bird species through a smooth application interaction with external databases or internet platforms.

3 Real-Time Recognition

Another exciting avenue for research is real-time recognition capabilities. It would be easier to identify bird species in outdoor environments on the move if the system could be modified to incorporate live video feeds or cameras on mobile devices. With the ability to quickly identify and record bird species, this would be very helpful for field researchers and birdwatchers.

4 Continuous Model Training

Sustaining the accuracy and relevance of the system over time requires ongoing model training. The system would remain up to date with new bird species traits and variations if fresh photos were added to the models on a regular basis and deep learning techniques were utilized.

5 Collaboration with Ornithologists

Working together with ornithologists and other subject matter experts might yield priceless insights into the unique difficulties associated with bird identification. In addition to improving the models' accuracy, this cooperative approach would guarantee that the system complies with the requirements and guidelines of the ornithological community.

5.0 Conclusion

In conclusion, the Convolutional Neural Networks (CNN) Bird Identification System represents a significant advancement in the realm of bird species recognition, addressing critical challenges through the application of cutting-edge technology. The project's methodology, outlined in Chapter 3, underscored a meticulous approach to data collection, encompassing a diverse dataset of 450 bird species with high-quality images totaling 70,626 training photos and 22,500 test images. Leveraging the power of CNNs, specifically EfficientNet and ResNet50 architectures, the system achieved impressive accuracy levels, with EfficientNet reaching 95.87% on the test set and 93.69% on the validation set, and ResNet50 demonstrating strong performance at 92.93% on the test set and 90.98% on the validation set.

The robustness of the CNN models was further highlighted through the utilization of transfer learning, fine-tuning pre-trained models on the comprehensive dataset. This approach ensured adaptability in overcoming challenges related to appearance fluctuations, contributing to the system's reliability in real-world scenarios and unfamiliar bird species. The graphical user interface (GUI) using Streamlit enhanced user interaction, allowing seamless image uploads and providing visualizations of the top five accurate classifications. The comparison with other studies emphasized the versatility of CNNs in addressing diverse bird identification challenges, showcasing their applicability in scientific research, environmental preservation, and educational initiatives. Future recommendations include expanding the dataset for fine-tuning, enhancing the GUI for user-friendliness, exploring real-time recognition capabilities for outdoor environments, and continuous model training to keep the system updated with new bird species traits. Collaborative efforts with birdwatching communities and ornithologists promise invaluable insights for refining the system and aligning it with the ornithological community's needs. Ultimately, the Bird Identification System emerges as a technological cornerstone, seamlessly merging advancements in deep learning with the intricacies of ornithology, fostering a profound understanding and appreciation for the diverse world of avian species.

6.0 References

- 1. Tayal, Madhuri, Atharva Mangrulkar, Purvashree Waldey, and Chitra Dangra. 2018. "Bird Identification by Image Recognition." Helix 8(6): 4349–4352.
- 2. Satyam Raj, Saiaditya Garyali and Sanu Kumar. 2020. "Image based Bird Species Identification using Convolutional Neural Network".
- 3. Yo-Ping Huang; Haobijam Basanta. 2019 "Bird Image Retrieval and Recognition Using a Deep Learning Platform".
- 4. Alter, Anne L, and Karen M Wang. 2017. "An Exploration of Computer Vision Techniques for Bird Species Classification.".
- Incze, A., Jancsó, H. B., Szilágyi, Z., Farkas, A., & Sulyok, C. 2018. "Bird sound recognition using a convolutional neural network. In 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY):295-300 IEEE".
 - Martinsson, J. (2017). Bird Species Identification using Convolutional Neural Networks. *Odr.chalmers.se*. https://odr.chalmers.se/items/4fde8904-7687-426d-9eaa-191fad405356
- 6. Neo, B. (2022, May 27). *Bird Species Classification with Machine Learning*. Medium. https://towardsdatascience.com/bird-species-classification-with-machine-learning-914cbc0590b
- 7. Network, N. B. (n.d.). *The Importance of Bird Classification in Understanding Avian Biology and Evolution*. Nature Blog Network. Retrieved November 15, 2023, from https://www.hummingbirdsplus.org/nature-blog-network/the-importance-of-bird-classification-in-understanding-avian-biology-and-evolution/.
- 8. Preetham, N., Ganta, S., Reddy, S., & Jyothula. (2021). *Bird Detection System Based on Vision*. https://www.diva-portal.org/smash/get/diva2:1653806/FULLTEXT02
- 9. Wang, K., Yang, F., Chen, Z., Chen, Y., & Zhang, Y. (2023). A Fine-Grained Bird Classification Method Based on Attention and Decoupled Knowledge Distillation. *Animals*, *13*(2), 264. https://doi.org/10.3390/ani13020264
- Battu, T., & Reddy Lakshmi, D. S. (2023). Animal image identification and classification using deep neural networks techniques. *Measurement: Sensors*, 25. https://doi.org/10.1016/j.measen.2022.100611
- 11. Dharaniya, R., Preetha, M., & Yashmi, S. (2022). Bird Species Identification Using

- Convolutional Neural Network. *Advances in Parallel Computing*, *41*, 380–386. https://doi.org/10.3233/APC220053
- Incze, Á., Jancsó, H. B., Szilagyi, Z., Farkas, A., & Sulyok, C. (2018). Bird Sound Recognition
 Using a Convolutional Neural Network. SISY 2018 IEEE 16th International Symposium on
 Intelligent Systems and Informatics, Proceedings, 295–300.
 https://doi.org/10.1109/SISY.2018.8524677
- 13. Jange, A., Kattimani, D., & Patil, Prof. J. (2022). Bird Species Identifier using Convolutional Neural Network. *International Journal for Research in Applied Science and Engineering Technology*, 10(10), 517–523. https://doi.org/10.22214/ijraset.2022.47039
- 14. Manna, A., Upasani, N., Jadhav, S., Mane, R., Chaudhari, R., & Chatre, V. (2023). Bird Image Classification using Convolutional Neural Network Transfer Learning Architectures. International Journal of Advanced Computer Science and Applications, 14(3), 854–864. https://doi.org/10.14569/IJACSA.2023.0140397
- Marini, A., Facon, J., & Koerich, A. L. (2013). Bird species classification based on color features.
 Proceedings 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013, 4336–4341. https://doi.org/10.1109/SMC.2013.740
- 16. Sahil Faizal, & Sanjay Sundaresan. (2022). Wild Animal Classifier Using CNN. *International Journal of Advanced Research in Science, Communication and Technology*, 233–239. https://doi.org/10.48175/ijarsct-7097
- 17. Siri, D., Desu, S., Alladi, K., Swathi, D., Singh, S., & Srilakshmi, V. (2023). Automated System for Bird Species Identification Using CNN. *E3S Web of Conferences*, *430*. https://doi.org/10.1051/e3sconf/202343001057
- 18. Siri, D., & Rangaraju, G. (2023). Bird Species Identification Using CNN INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) Bird Species Identification Using CNN. https://doi.org/10.55041/IJSREM18846
- 19. Xie, J., & Zhu, M. (2023). Acoustic Classification of Bird Species Using an Early Fusion of Deep Features. *Birds*, 4(1), 138–147. https://doi.org/10.3390/birds4010011