#### FINDING CUTS AND SEPARATORS

8.1 minimum cuts

### Graph cutting

Problems related to cutting a graph into parts certain properties or related to separating different parts of the graph from each other of graph theory and combinatorial optimization

- Eg. As applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems(image smoothing)
- Solving a maximum flow problem in a graph[max-flow min-cut theorem]

### **Graph cutting**

Many different versions:- Removing sets of edges or vertices in a directed or undirected graph.

- Most of the problems are NP hard.
- Except:- minimum s-t cut, minimum multiway cut in planar graphs with fixed number of terminals
- We'll see the fixed-parameter tractability of some of these problems parameterized by the size of the solution.
- There are many variants: we can delete vertices or edges, the graph can be directed or undirected, we may add weights.

- We'll be looking at the most general form of these results, we mostly focus on the undirected edge versions, as they are the most intuitive and notationally cleanest.
- A cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition.
- These edges are said to cross the cut.

#### Minimum cuts

- An (X, Y)-cut is a set S of edges that separates X and Y from each other, that is, G\S has no X-Y path.
- Notions of minimality:
- An (X, Y)-cut S is a minimum (X, Y)-cut if there is no (X, Y)-cut
   S' with |S'| < |S|.</li>
- An (X, Y)-cut is (inclusion-wise) minimal if there is no (X, Y)-cut S' with  $S' \subset S$ .



- If G is an undirected graph and  $R \subseteq V(G)$  is a set of vertices, then we denote by  $\Delta_G(R)$  the set of edges with exactly one endpoint in R, and we denote  $d_G(R) = |\Delta_G(R)|$
- Let S be a minimal (X, Y)-cut in G and let R be the set of vertices reachable from X in G \ S
  - $=> X \subseteq R \subseteq V(G)Y$
- Then it is easy to see that S is precisely  $\Delta_G(R)$ .(PROOF)

Every outgoing edge has to be in S (otherwise a vertex of V(G)\R
would be reachable from X)

$$S \subset \Delta_G(R)$$

#### and

 S cannot have an edge with both endpoints in R or both endpoints in V (G)\R, as omitting any such edge would not change the fact that the set is an (X, Y)-cut, contradicting minimality.

$$\Delta_G(R) \subset S$$

### Proposition 8.1.

- <u>Proposition 8.1.:</u> If S is a minimal (X, Y)-cut in G, then S =  $\Delta_G(R)$ , where R is the set of vertices reachable from X in G\S.
- Therefore, we may always characterize a minimal (X, Y)-cut S as  $\Delta(R)$  for some set X, s.t.  $X \subseteq R \subseteq V(G)\backslash Y$ .
- Also note that  $\Delta(R)$  is an (X, Y)-cut for every such set R with
- $X \subseteq R \subseteq V(G)\Y$ , but not necessarily a minimal (X, Y)-cut.

### Maximum flow and minimum cut duality

 The size of the minimum (X, Y)-cut is the same as the maximum number of pairwise edge-disjoint X-Y paths.

 Classical maximum flow algorithms can be used to find a minimum cut and a corresponding collection of edge disjoint X – Y paths of the same size.(PROOF)

 Each round of the algorithm of Ford and Fulkerson takes linear time, and k rounds are sufficient to decide if there is an (X, Y)-cut of size at most k.

 1> Every path on pairwise edge-disjoint paths(pEDP) should have exactly one edge from min-cut

Because if pEDP > 1 edge in S (minimumness) if = 0 (there is no cut)

- 2> For any two edges in S, there exist P<sub>1</sub>, P<sub>2</sub> connecting X and Y
- $P_1 \cap P_2 = \phi$

#### Theorem 8.2.

Given a graph G with n vertices and m edges, disjoint sets X, Y  $\subseteq$  V (G), and an integer k, there is an O(k(n + m))-time algorithm that either:

- correctly concludes that there is no (X, Y)-cut of size at most k,
   or
- returns a minimum (X,Y)-cut  $\Delta(R)$  and a collection of  $|\Delta(R)|$  pairwise edge-disjoint X-Y paths.

### Submodular Inequality

Let  $f: 2^{\vee(G)} \to R$  be a set function assigning a real number to each subset of vertices of a graph G. We say that f is submodular if it satisfies the following inequality for every A, B  $\subseteq$  V (G):

•  $f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$ 

• This function  $d_G(X) = |\Delta_G(X)|$  is sub-modular.

### Theorem 8.3.

Theorem: The function  $d_G$  is submodular for every undirected graph G.



The different types of edges in the proof of Theorem 8.3

Classify each edge e according to the location of its endpoints:

- 1. If both endpoints of e are in A∩B, in A\B, in B \A, or in V (G)\(A∪B),
   then e contributes 0 to both sides.
  - 2. If one endpoint of e is in A  $\cap$  B, and the other is either in A \ B or i B \ A, then e contributes 1 to both sides.
  - 3. If one endpoint of e is in  $V(G) \setminus (A \cup B)$ , and the other is either in  $A \setminus B$  or in B \ A, then e contributes 1 to both sides.
  - 4. If e is between A  $\cap$  B and V (G) \ (A  $\cup$  B), then e contributes 2 to both sides.
  - 5. If e is between A \ B and B \ A, then e contributes 2 to the left-hand side and 0 to the right-hand side.

## Why is submodularity so relevant here?

• If  $\Delta(A)$  and  $\Delta(B)$  are both (X, Y)-cuts, then  $\Delta(A \cap B)$  and  $\Delta(A \cup B)$  are both (X, Y)-cuts.

Therefore, we can interpret **Theorem 8.3** as saying that if we have two (X, Y)-cuts Δ(A), Δ(B) of a certain size, then two new (X, Y)-cuts Δ(A ∩ B), Δ(A ∪ B) can be created and there is a bound on their total size.

### Minimum cut

 The minimum (X, Y)-cut is not necessarily unique; in fact, a graph can have a large number of minimum (X, Y)-cuts. eg...

• There is a unique minimum (X, Y )-cut  $\Delta$ (R  $_{min}$  ) that is closest to X.

#### and

• A unique minimum (X, Y)-cut  $\Delta(R_{max})$  closest to Y.

#### Theorem 8.4.

• **Theorem 8.4.:** Let G be a graph and X, Y  $\subseteq$  V (G) two disjoint sets of vertices. There are two minimum (X, Y)-cuts  $\Delta(R_{min})$  and  $\Delta(R_{max})$  such that :

if  $\Delta(R)$  is a minimum (X, Y)-cut, then  $R_{min} \subseteq R \subseteq R_{min}$ .



PROOF HERE

# <u>To prove</u>: There is a unique inclusion-wise minimal set R<sub>min</sub> and a unique inclusion-wise maximal set R<sub>max</sub> in R.

- Consider the collection R of every set R ⊆ V (G) for which Δ(R) is a minimum (X, Y )-cut.
- Suppose for that  $\Delta(R_1)$  and  $\Delta(R_2)$  are minimum cuts for two inclusion-wise minimal sets  $R_1 \neq R_2$  of R.

$$d_{G}(R_{1}) + d_{G}(R_{2}) \ge d_{G}(R_{1} \cap R_{2}) + d_{G}(R_{1} \cup R_{2})$$

- If  $\lambda$  is the minimum (X, Y)-cut size, then LHS =  $2\lambda$
- Implies, 2λ ≥ RHS (RHS is atmost 2λ)

- $\Delta(R_1 \cap R_2)$  and  $\Delta(R_1 \cup R_2)$  are both (X, Y)-cuts.
- $\lambda$  is the minimum (X,Y)-cut size, the right-hand side is also exactly  $2\lambda$ , with both terms being exactly  $\lambda$ .
- i.e.  $\Delta(R_1 \cap R_2)$  is a minimum (X, Y)-cut.
- Now,  $R_1 \neq R_2$  implies that  $(R_1 \cap R_2) \subset R_1$ ,  $R_2$
- Contradicting the assumption that both R<sub>1</sub> and R<sub>2</sub> are inclusionwise minimal in R.
- The same argument gives a contradiction if R<sub>1</sub> ≠ R<sub>1</sub> are inclusion-wise maximal sets of the collection: then we observe that Δ(R<sub>1</sub>∪R<sub>1</sub>) is also a minimum (X, Y )-cut.

#### Theorem 8.5.

Theorem 8.5.: Let G be a graph with n vertices and m edges, and X, Y ⊆ V (G) be two disjoint sets of vertices. Let k be the size of the minimum (X, Y)-cut. The sets R<sub>min</sub> and R<sub>max</sub> of Theorem 8.4 can be found in time O(k(n +m)).



### [1] Construction of D

- let  $P_1$ , . . . ,  $P_k$  be the pairwise edge-disjoint X–Y paths returned by the algorithm(of theorem 8.2).
- We build the residual directed graph D as follows:
- 1)If edge xy of G is not used by any of the paths P<sub>i</sub>, then we introduce directed edges both (x, y) and (y, x) into D.
- 2)If edge xy of G is used by some P<sub>i</sub> in such a way that x is closer to X on path P<sub>i</sub>, then we introduce the directed edge 1 (y, x) into D.

Simply, We have to show that  $R_{min}$  is the set of vertices reachable from X in the residual graph D and  $R_{max}$  is the set of vertices from which Y is not reachable in D.

- [2] Let Δ<sub>G</sub>(R) be a minimum (X, Y)-cut of G.(all rechable parts of D from X)
- As  $\Delta_G(R)$  is an (X, Y)-cut of size k, each of the k paths  $P_1, \ldots, P_k$  uses exactly one edge of  $\Delta_G(R)$ .
- This means that after  $P_1$  leaves R, it never returns to R. Therefore, if  $P_1$  uses an edge  $ab \in \Delta_G(R)$  with  $a \in R$  and  $b \notin R$ , then a is closer to X on  $P_i$ .
- This implies that (a, b) is not an edge of D(athough (b,a) is edge of D). As this is true for every edge of the cut  $\Delta_G(R)$ , we get that V(G)\R is not reachable from X in D; in particular, Y is not reachable.

## [3]

- Let Rmin be the set of vertices reachable from X in D.
- Since  $R_{min}$  is a cut =>  $X \subseteq R_{min}$  ...[1]
- (from previous) Y is not reachable from X in D HOW?(Proof below) =>
- Suppose Y is rechable from X (in residual graph D)
- Then there exist a path P from X to Y in D
- Where P is a edge-disjoint path of {P, P1, P2...}
- This set of pairwise edge-disjoint paths have reverse edges in D(including P)

Therefore P having reverse edge => There is no path from X to Y

...[2]

- Hence, R<sub>min</sub> ⊆ V (G)\Y
- i.e.  $X \subseteq R_{min} \subseteq V(G)\backslash Y$  ...[from 1, 2]
- Hence,  $\Delta_G(R_{min})$  is an (X, Y)-cut of G.

Now, we have to show that this cut is a minimum (X, Y)-cut:

- We have shown before that if  $\Delta_G(R)$  is a minimum (X, Y)-cut ...[2]
- then V (G)\R is not reachable from X in D
- V(G)\R<sub>min</sub> is largest possible rechable set from X
- implying that  $V(G) \setminus R \subseteq V(G) \setminus R_{min}$
- and hence,  $R_{min} \subseteq R$ .

## [5] To prove: $\Delta_G(R_{min})$ have exactly k edges

- [5.a] There are atleast k edges in  $\Delta_G(R_{min})$
- i,e.  $\Delta_G(R_{min}) > k$
- We have 1 edge from cut per each <u>pairwise Edge-Disjoint</u>
   <u>Path(pEDP)</u>
- Let there exist an edge ∉ any pEDP
- This edge will be bidirectional in residual graph D
- => Vertex outside R<sub>min</sub> is rechable from X
- => It should have been inside Rmin

- [5.b] Every path  $P_i$  uses at least one edge of the (X, Y)-cut from  $\Delta_G(R_{min})$ .
- i.e.  $k > \Delta_G(R_{min})$
- Suppose if P<sub>i</sub> leaves R<sub>min</sub> and later returns to R<sub>min</sub> on an edge ab with a ∉ R<sub>min</sub>, b ∈ R<sub>min</sub> and a closer to X on P<sub>i</sub>, then (b, a) is an edge of D and it follows that a is also reachable from X in D, contradicting a ∈ R<sub>min</sub>.
- Therefore, P<sub>i</sub> cannot use more than one edge of the cut ...[2]
- Therefore, $\Delta_G(R_{min})$  can have at most k edges

- [5.a] and [5.b] concludes  $\Delta_G(R_{min})$  have exactly k edges.
- Therefore, Rmin satisfies the requirements.

 A symmetrical argument shows that the set R<sub>max</sub> containing all vertices from which Y is not reachable in D satisfies the requirements.

#### THANK YOU