Computer Organization & Architecture (COA) GTU # 3140707

Microprogrammed Control

Prof. Krunal D. Vyas
Computer Engineering Department
Darshan Institute of Engineering & Technology,

Rajkot Krunal.vyas@darshan.ac.in

9601901005

- Control Memory
- Address Sequencing
- Microinstruction Code Format
- Questions asked in GTU exam

Control Memory

Microprogrammed Control Organization

Control Memory

- ☐ A computer that employs a microprogrammed control unit will have two separate memories: a main memory and a control memory.
- ☐ The control memory holds a fixed microprogram that can not be altered by the occasional user.
- ☐ The microprogram consists of microinstructions that specify various internal control signals for execution of register microoperation.
- ☐ Microinstructions generates the microoperations to fetch instruction from main memory; to evaluate the effective address, to execute the operation specified by the instruction, and to return control to the fetch of next instruction.

Address Sequencing

Address Sequencing

- ☐ Microinstructions are stored in control memory in groups, with each group specifying a routine.
- ☐ The transformation from the instruction code bits to an address in control memory where the routine is located is referred to as a *mapping* process.
- ☐ The address sequencing capabilities required in a control memory are:
 - 1. Incrementing of the control address register.
 - 2. Unconditional branch or conditional branch, depending on status bit conditions.
 - 3. A mapping process from the bits of the instruction to an address for control memory.
 - 4. A facility for subroutine call and return.

Address Sequencing

Microinstruction Code Format

Microinstruction Code Format

- ☐ F1, F2, F3: Microoperation fields
- ☐ CD: Condition for branching
- ☐ BR: Branch field
- ☐ AD: Address field

Symbols & Binary Code for Microinstruction Fields

F1	Microoperation	Symbol
000	None	NOP
001	$AC \leftarrow AC + DR$	ADD
010	AC ← 0	CLRAC
011	$AC \leftarrow AC + 1$	INCAC
100	AC ← DR	DRTAC
101	AR ← DR(0-10)	DRTAR
110	AR ← PC	PCTAR
111	M[AR]← DR	WRITE

F2	Microoperation	Symbol
000	None	NOP
001	AC← AC - DR	SUB
010	AC← A♥ DR	OR
011	AC← AØ DR	AND
100	DR ← M[AR]	READ
101	DR ← AC	ACTDR
110	DR← DR + 1	INCDR
111	DR(0-10)← PC	PCTDR

Symbols & Binary Code for Microinstruction Fields

F3	Microoperation	Symbol
000	None	NOP
001	AC← A©+ DR	XOR
010	AC← AC'	COM
011	AC ← shl AC	SHL
100	AC← shr AC	SHR
101	PC ← PC + 1	INCPC
110	PC ← AR	ARTPC
111	Reserved	

CD	Symbol	Comments
00	U - 1	Unconditional branch
01	I - DR(15)	Indirect address bit
10	S - AC(15)	Sign bit of AC
11	Z - AC = 0	Zero value in AC

BR	Symbol	Function
00	JMP	$CAR \leftarrow AD \text{ if condition} = 1, CAR \leftarrow CAR+1 \text{ if condition} = 0$
01	CALL	CAR← AD, SBR CAR+1 if condition=1, CAR CAR+1 if condition=0
10	RET	CAR <u>SB</u> R (Return from subroutine)
11	MAP	CAR(2-5) DR(11-14), CAR(0,1,6) 0
Prof. Krunal D. Vyas #3140/0/ (COA) ◆ Unit 4 – Microprogrammed Control		

Questions asked in GTU exam

Questions asked in GTU exam

- 1. Draw and explain flow chart of address sequencing.
- 2. Draw and explain 20 bits microinstruction code format.
- 3. What is micro-programmed control architecture?
- 4. Explain Control Memory.

