Database Management Systems (DBMS)

Lec 17- FDs: Inference Rules, Equivalence, and Minimal Cover

Ramesh K. Jallu IIIT Raichur

Date: 30/03/21

Recap

- Multivalued dependency: The fourth normal form (4NF)
- The join dependency: The fifth normal form (5NF)

Today's plan

- Functional dependency
 - Inference rules
 - Equivalance
 - Minimal cover

Functional dependencies

- So far we illustrated FDs with some examples, and multiple FDs over a single relation
- We identified and discussed problematic functional dependencies
- They can be eliminated by a proper decomposition of a relation. This process was described as *normalization*
- We now study of functional dependencies and show how new dependencies can be inferred from a given set of FDs

Inference Rules for FDs

- Let F denote the set of functional dependencies that are specified on relation schema R
- An FD $X \to Y$ is *inferred from* a set of dependencies F specified on R if $X \to Y$ holds in *every* legal relation state r of R
 - I.e., whenever r satisfies all the dependencies in F, $X \to Y$ also holds in r
- The set of all dependencies that include *F* as well as all dependencies that can be inferred from *F* is called the *closure* of *F*; it is denoted by *F*+

Examples

- $F = \{ Dept_no \rightarrow Mgr_ssn, Mgr_ssn \rightarrow Mgr_phone \}$
 - Dept_no \rightarrow Mgr_phone
- $F = \{Ssn \rightarrow \{Ename, Bdate, Address, Dnumber\},\$ $Dnumber \rightarrow \{Dname, Dmgr_ssn\}\}$
 - $Ssn \rightarrow \{Dname, Dmgr_ssn\}$
 - $Ssn \rightarrow Ssn$
 - Dnumber \rightarrow Dname

Inference Rules for FDs (Contd.)

- The rules we use to infer new dependencies from a given set of dependencies are called *inference rules*
- We use the notation $F \models X \rightarrow Y$ to denote that the functional dependency $X \rightarrow Y$ is inferred from the set of functional dependencies F
- The FD $\{X, Y\} \rightarrow Z$ is abbreviated to $XY \rightarrow Z$
 - The FD $\{X, Y, Z\} \rightarrow \{U, V\}$ is abbreviated to $XYZ \rightarrow UV$

Armstrong's axioms

- *Reflexive rule* (**IR1**): If $X \supseteq Y$, then $X \rightarrow Y$
- Augmentation rule (IR2): $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
- *Transitive rule* (IR3): $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
- Armstrong axioms refer to the *Sound* and *Complete*

Proof of Armstrong's axioms

Proof of IR1. Suppose that $X \supseteq Y$ and that two tuples t_1 and t_2 exist in some relation instance r of R such that $t_1[X] = t_2[X]$. Then $t_1[Y] = t_2[Y]$ because $X \supseteq Y$; hence, $X \to Y$ must hold in r.

Proof of IR2 (by contradiction). Assume that $X \to Y$ holds in a relation instance r of R but that $XZ \to YZ$ does not hold. Then there must exist two tuples t_1 and t_2 in r such that (1) $t_1[X] = t_2[X]$, (2) $t_1[Y] = t_2[Y]$, (3) $t_1[XZ] = t_2[XZ]$, and (4) $t_1[YZ] \neq t_2[YZ]$. This is not possible because from (1) and (3) we deduce (5) $t_1[Z] = t_2[Z]$, and from (2) and (5) we deduce (6) $t_1[YZ] = t_2[YZ]$, contradicting (4).

Proof of IR3. Assume that (1) $X \to Y$ and (2) $Y \to Z$ both hold in a relation r. Then for any two tuples t_1 and t_2 in r such that $t_1[X] = t_2[X]$, we must have (3) $t_1[Y] = t_2[Y]$, from assumption (1); hence we must also have (4) $t_1[Z] = t_2[Z]$ from (3) and assumption (2); thus $X \to Z$ must hold in r.

Secondary axioms

- **Decomposition rule** (IR4): $\{X \rightarrow YZ\} \models X \rightarrow Y, X \rightarrow Z$
 - $X \to \{A_1, A_2, ..., A_n\} \models \{X \to A_1, X \to A_2, ..., X \to A_n\}$
- *Additive* (or) *Union rule* (**IR5**): $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$
 - $\{X \to A_1, X \to A_2, \dots, X \to A_n\} \models X \to \{A_1, A_2, \dots, A_n\}$
- **Pseudo-transitive rule** (**IR6**): $\{X \rightarrow Y, WY \rightarrow Z\} \models WX \rightarrow Z$

Proof of IR5

Proof of IR5 (using IR1 through IR3).

- 1. $X \rightarrow Y$ (given).
- **2.** $X \rightarrow Z$ (given).
- **3.** $X \rightarrow XY$ (using IR2 on 1 by augmenting with X; notice that XX = X).
- **4.** $XY \rightarrow YZ$ (using IR2 on 2 by augmenting with Y).
- **5.** $X \rightarrow YZ$ (using IR3 on 3 and 4).
- *True* or *false*: Justify your answer
 - i. $\{X \rightarrow A, Y \rightarrow B\} \models XY \rightarrow AB$
 - ii. $XY \rightarrow A \models X \rightarrow A \text{ or } Y \rightarrow A$

Clouser of a set of attributes

- WKT, from *F* we can infer FDs by applying the rules
- A systematic way to determine additional FDs is to determine
 - i. each set of attributes X that appears as a left-hand side of some functional dependency in F
 - ii. the set of all attributes that are dependent on X
- For each set of attributes X, we determine the set X^+ of attributes that are functionally determined by X based on F; where X^+ is called the *closure* of X under F

Algorithm to determine X⁺

• Algorithm:

- Input: A set F of FDs on a relation schema R, and a set of attributes X, which is a subset of R
- *Output: X*+
 - 1. $X^+ := X$;
 - 2. for each functional dependency $Y \to Z$ in F do if $X^+ \supseteq Y$ then $X^+ := X^+ \cup Z$;

Example

- Consider the following relation schema about classes held at a university in a given academic year
- **CLASS**(Classid, Course_No, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity)
- $F = \{FD1, FD2, FD3, FD4, FD5\}$, where
 - FD1: Classid → {Course_No, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity}
 - FD2: Course_No → Credit_hrs
 - FD3: {Course_No, Instr_name} \rightarrow {Text, Classroom}
 - FD4: Text \rightarrow Publisher
 - FD5: Classroom → Capacity

Example (Contd.)

- 1. {Classid}+= {Classid, Course_No, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity} = CLASS
- 2. {Course_No}+ = {Course_No, Credit_hrs}
- 3. {Course_No,Instr_name}+={Course_No,Instr_Name, Credit_hrs, Text, Publisher, Classroom, Capacity}

Equivalence between two sets of FDs

- A set of FDs F is said to cover another set of FDs E if every FD in E is also in F⁺
 - I.e., every dependency in **E** can be inferred from **F**
 - Alternatively, we can say that *E* is *covered by F*
- Two sets of FDs E and F are equivalent if $E^+ = F^+$
 - I.e., every FD in *E* can be inferred from *F*, and every FD in *F* can be inferred from *E*
 - We say *E* is *equivalent* to *F* if both the conditions *E* covers *F* and *F* covers *E* hold

Testing of equivalance

- 1. We can determine whether F covers E or not
 - a. by calculating X^+ wrt F for each FD $X \to Y$ in E, and then checking whether this X^+ includes the attributes in Y
 - b. If this is the case for every FD in E, then F covers E
- 2. Similarly we can check whether E covers F or not
- 3. If F covers E and E covers F, then F and E are equivalent

Example

Let $F = \{A \to C, AC \to D, E \to AD, E \to H\}$ and $G = \{A \to CD, E \to AH\}$. Test whether F and G are equivalent or not

- 1. We need to check first whether F covers G or not
 - i. Consider the FD $A \rightarrow CD$
 - $A^+ = \{A, C, D\}; A^+$ contains the attributes C and D
 - ii. Consider the $FD \to AH$
 - $E^+ = \{E, H, A, D, C, D\}$; E^+ contains A and H
 - iii. We can conclude that F covers G

Example (Contd.)

- 2. We need to check now whether G covers F or not
 - i. Consider the FD $A \rightarrow C$
 - $A^+ = \{A, C, D\}$; A^+ includes the attribute C
 - ii. Consider the $FDAC \rightarrow D$
 - $\{A,C\}^+ = \{A, C, D\}; \{A,C\}^+ \text{ contains } D$

$$F = \{A \to C, AC \to D, E \to AD, E \to H\}$$

$$G = \{A \to CD, E \to AH\}$$

- iii. Consider the $FD \to AD$
 - $E^+ = \{E, A, H, C, D\}; E^+ \text{ contains } A \text{ and } D$
- iv. Consider the $FD \to H$
- v. We can conclude that G covers F

Minimal Sets of Functional Dependencies

- We apply inference rules on F to compute its closure F^+
 - I.e., we expand F to F⁺
 - What about the opposite?
 - I.e., can we shrink F to its minimal form so that the minimal set is still equivalent to the original set F
- A *minimal cover* of a set of FDs E is a set of FDs F that satisfies the property that every dependency in E is in the closure F^+ of F
 - In addition, this property is lost if any dependency from the set *F* is removed

Example

- Let $E = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$. The minimal cover of E is $F = \{B \rightarrow D, D \rightarrow A\}$
- The closure of F, $F^+ = \{B \rightarrow D, D \rightarrow A, B \rightarrow A, AB \rightarrow D, ...\}$

Thank you!