1

Assignment 19

Mtech in AI Department Priya Bhatia AI20MTECH14015

Abstract

This document illustrates the concept of orthonormal basis.

Download the latex-tikz codes from

https://github.com/priya6971/matrix theory EE5609/tree/master/Assignment19

1 Problem

Let $\{u_1, u_2, ..., u_n\}$ be an orthonormal basis of C^n as column vectors. Let $M = \{u_1, u_2, ..., u_k\}$ and $N = \{u_{k+1}, u_{k+2}, ..., u_n\}$ and P be the diagonal $k \times k$ matrix with diagonal entries $\alpha_1, \alpha_2, ..., \alpha_k \in R$. Then which of the following is true?

- 1. Rank(**MPM***) = **k** whenever $\alpha_i \neq \alpha_j$, $1 \leq i$, $j \leq k$
- 2. Trace(**MPM***) = $\sum_{i=1}^{k} \alpha_i$
- 3. $\operatorname{Rank}(\mathbf{M}^*\mathbf{N}) = \min(k, n k)$
- 4. $\operatorname{Rank}(\mathbf{MM}^* + \mathbf{NN}^*) < n$

2 **DEFINITIONS**

Orthonormal Basis	$B = \{u_1, u_2,, u_n\}$ is the Orthonormal basis for C^n if it generates every vector C^n and the inner product $\langle u_i, u_j \rangle = 0$ if $i \neq j$. That is the vectors are mutually perpendicular and $\langle u_i, u_j \rangle = 1$ otherwise.
Trace	Trace of a square matrix A , denoted by $\mathbf{tr}(\mathbf{A})$ is defined to be the sum of elements on the main diagonal(from the upper left to lower right) of A Some useful properties of Trace: $\mathbf{tr}(\mathbf{AB}) = \mathbf{tr}(\mathbf{BA})$, where A is the $m \times n$ matrix and B is the $n \times m$ matrix
Basis Theorem	A nonempty subset of nonzero vectors in \mathbb{R}^n is called an orthogonal set if every pair of distinct vectors in the set is orthogonal. Any Orthogonal sets of vectors are automatically linearly independent and if A matrix columns are linearly independent, then it is invertible.

TABLE 1: Definitions

3 Solution

$Rank(\mathbf{MPM}^*) = \mathbf{k}$

M and M^* vectors are linearly independent and thus it is invertible (Since the elementary matrices are invertible, such multiplication does not change the rank of a matrix)

 \implies Rank(**MPM***) = Rank(**P**)

Now **P** be the diagonal $k \times k$ matrix with diagonal entries $\alpha_1, \alpha_2, ..., \alpha_k \in R$. Rank(**P**) is not always k.

It can be less than k if any of the entries in $\alpha_1, \alpha_2, ..., \alpha_k$ is 0.

Thus, $Rank(MPM^*) \neq k$

Thus, the given statement is false

Trace(**MPM***) = $\sum_{i=1}^{k} \alpha_i$

 $Trace(\mathbf{MPM}^*) = Trace(\mathbf{M}^*\mathbf{MP})$

(According to properties of trace mentioned in Definitions)

$$\mathbf{M} = \begin{pmatrix} u_1 & u_2 & u_3 & \dots & u_k \end{pmatrix}$$
$$\begin{pmatrix} u_1^T \\ u_2^T \\ u_2^T \end{pmatrix}$$

$$\mathbf{M}^* = \begin{bmatrix} u_2 \\ u_3^T \\ \vdots \\ \vdots \\ u_k^T \end{bmatrix}$$

$$\mathbf{M}^*\mathbf{M} = \begin{pmatrix} u_1^T u_1 & 0 & 0 & \dots & 0 \\ 0 & u_2^T u_2 & 0 & \dots & 0 \\ 0 & 0 & u_3^T u_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & u_k^T u_k \end{pmatrix}$$

(Refer to Properties mentioned in Orthonormal Basis in Definition section that is $\langle u_i, u_j \rangle = 0$ if $i \neq j$)

$$\mathbf{M}^*\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

(Refer to Properties mentioned in Orthonormal Basis in Definition section that is $\langle u_i, u_j \rangle = 1$ if i = j)

$$\mathbf{M}^*\mathbf{M} = \mathbf{I}^k$$

$$\mathbf{M}^*\mathbf{M}\mathbf{P} = \mathbf{I}^k\mathbf{P} = \mathbf{P}$$

 $\operatorname{Trace}(\mathbf{M}^*\mathbf{MP}) = \operatorname{Trace}(\mathbf{I}^k\mathbf{P}) = \operatorname{Trace}(\mathbf{P}) = \sum_{i=1}^k \alpha_i$

(Refer Definition section of Trace, it is sum of elements on the main diagonal) So, the given statement is true

$$\operatorname{Rank}(\mathbf{M}^*\mathbf{N}) = \min(k, n - k)$$

 $M = \{u_1, u_2, ..., u_k\}$ and $N = \{u_{k+1}, u_{k+2}, ..., u_n\}$ Consider the value of k = 3 and the value of n = 6

$$\mathbf{M}^*\mathbf{N} = \begin{pmatrix} u_{11}^- & u_{21}^- & u_{31}^- \\ u_{12}^- & u_{22}^- & u_{32}^- \\ u_{31}^- & u_{32}^- & u_{33}^- \end{pmatrix} \begin{pmatrix} u_{14} & u_{15} & u_{16} \\ u_{24} & u_{25} & u_{26} \\ u_{34} & u_{35} & u_{36} \end{pmatrix}$$
And, this is clear from above that Rank($\mathbf{M}^*\mathbf{N}$) \neq min($k, n - k$)
Thus, above statement is false
$$\operatorname{Rank}(\mathbf{M}\mathbf{M}^* + \mathbf{N}\mathbf{N}^*) < n$$

$$\operatorname{Rank}(\mathbf{M}) = \operatorname{Rank}(\mathbf{M}^*)$$

$$\operatorname{Rank}(\mathbf{N}) = \operatorname{Rank}(\mathbf{N}^*)$$

$$\operatorname{Rank}(\mathbf{M} + \mathbf{N}) \leq \operatorname{Rank}(\mathbf{M}) + \operatorname{Rank}(\mathbf{N})$$

$$M = \{u_1, u_2, ..., u_k\} \text{ and } N = \{u_{k+1}, u_{k+2}, ..., u_n\}$$

$$\operatorname{Rank}(\mathbf{M}) = k$$

$$\operatorname{Rank}(\mathbf{M}) = n - k$$
Thus, Rank($\mathbf{M}\mathbf{M}^* + \mathbf{N}\mathbf{N}^*$) = n
Thus, above statement is false

TABLE 2: Finding of True and False Statements

4 Conclusion

$Rank(\mathbf{MPM}^*) = \mathbf{k}$	False
$Trace(\mathbf{MPM}^*) = \sum_{i=1}^k \alpha_i$	True
$Rank(\mathbf{M}^*\mathbf{N}) = \min(k, n - k)$	False
$Rank(\mathbf{MM}^* + \mathbf{NN}^*) < n$	False

TABLE 3: Conclusion of above Solutions