

## 代数结构与线性代数

Clonoth

2025.7

### 前言

本课件旨在让大家对基础的代数结构与线性代数有一个总体的认识,避免一些常识性的错误,如  $\mathbb{Z}_n^2$ 。

代数系统

## 代数系统

■ 定义: 代数系统由构成成分(载体+运算)、公理组成。



代数系统

## 代数系统

- 定义: 代数系统由构成成分(载体+运算)、公理组成。
- 在 OI 中一般不讨论一般的代数系统,只关心半群、群、环、域。

### 半群的定义

■ 称代数结构  $\langle S, \circ \rangle$  为半群,若

- 称代数结构  $\langle S, \circ \rangle$  为半群,若
  - $\forall a, b \in S, a \circ b \in S$ .





- 称代数结构  $\langle S, \circ \rangle$  为半群,若
  - $\forall a, b \in S, a \circ b \in S$ .
  - $\qquad \forall a,b,c \in S, (a \circ b) \circ c = a \circ (b \circ c) \circ$





- 称代数结构  $\langle S, \circ \rangle$  为半群,若
  - $\forall a, b \in S, a \circ b \in S$ .
  - $\forall a, b, c \in S, (a \circ b) \circ c = a \circ (b \circ c).$
- 一般将半群 / 群中的运算  $a \circ b$  记为 ab。

- 称代数结构  $\langle S, \circ \rangle$  为半群, 若
  - $\forall a, b \in S, a \circ b \in S$ .
  - $\forall a, b, c \in S, (a \circ b) \circ c = a \circ (b \circ c).$
- 一般将半群 / 群中的运算  $a \circ b$  记为 ab。
- 也就是说,半群满足运算封闭性、结合律。



#### 半群的运算

■ 一般将半群 / 群中的运算  $a \circ b$  记为 ab。



### 半群的运算

- 一般将半群 / 群中的运算  $a \circ b$  记为 ab。
- 定义幂运算  $a^1=a, a^{n+1}=a^na$ 。

## 半群的运算

- 一般将半群 / 群中的运算  $a \circ b$  记为 ab。
- 定义幂运算  $a^1 = a, a^{n+1} = a^n a$ .
- 若存在单位元 e 满足 ae = ea = a, 那么定义  $a^0 = e$ 。

## 半群的运算

- 一般将半群 / 群中的运算  $a \circ b$  记为 ab。
- 定义幂运算  $a^1 = a, a^{n+1} = a^n a$ .
- 若存在单位元 e 满足 ae = ea = a, 那么定义  $a^0 = e$ 。
- 根据半群的定义可以得到,半群满足结合律,所以能用线段 树维护的信息都至少是半群。如〈ℤ,+〉为半群。

## 群的定义

■ 称半群  $\langle G, \circ \rangle$  为群,若

- 称半群  $\langle G, \circ \rangle$  为群,若
  - $\blacksquare \ \exists e \in S, \forall a \in S, ea = ae = a \circ$

- 称半群 ⟨G, ○⟩ 为群, 若
  - $\exists e \in S, \forall a \in S, ea = ae = a.$
  - $\forall a \in S, \exists b \in S, ab = ba = e$ , 此时记  $b = a^{-1}, a = b^{-1}$ , 称 a, b 互为逆元。

- 称半群 ⟨G, ○⟩ 为群, 若
  - $\exists e \in S, \forall a \in S, ea = ae = a.$
  - $\forall a \in S, \exists b \in S, ab = ba = e$ , 此时记  $b = a^{-1}, a = b^{-1}$ , 称 a, b 互为逆元。



- 称半群 〈G,○〉 为群,若
  - $\exists e \in S, \forall a \in S, ea = ae = a.$
  - $\forall a \in S, \exists b \in S, ab = ba = e$ , 此时记  $b = a^{-1}, a = b^{-1}$ , 称 a, b 互为逆元。
- 也就是说,群在半群的基础上满足存在单位元与逆元。如 〈ℤ, +〉为群。

- 称半群 〈G, ○〉 为群, 若
  - $\exists e \in S, \forall a \in S, ea = ae = a.$
  - $\forall a \in S, \exists b \in S, ab = ba = e$ , 此时记  $b = a^{-1}, a = b^{-1}$ , 称 a,b 互为逆元。
- 也就是说,群在半群的基础上满足存在单位元与逆元。如  $\langle \mathbb{Z}, + \rangle$  为群。
- 若 满足交换律、则称 G 为交换群(或 Abel 群)。

- 称半群 〈G,○〉 为群,若
  - $\exists e \in S, \forall a \in S, ea = ae = a.$
  - $\forall a \in S, \exists b \in S, ab = ba = e$ , 此时记  $b = a^{-1}, a = b^{-1}$ , 称 a, b 互为逆元。
- 也就是说,群在半群的基础上满足存在单位元与逆元。如 〈ℤ, +〉为群。
- 若 满足交换律,则称 G 为交换群(或 Abel 群)。
- $\forall x \in G$ ,定义 x 的阶 |x| 为最小的正整数 k 使得  $x^k = e$ 。

- 称半群 〈G, ○〉 为群, 若
  - $\exists e \in S, \forall a \in S, ea = ae = a.$
  - $\forall a \in S, \exists b \in S, ab = ba = e$ , 此时记  $b = a^{-1}, a = b^{-1}$ , 称 a,b 互为逆元。
- 也就是说,群在半群的基础上满足存在单位元与逆元。如  $\langle \mathbb{Z}, + \rangle$  为群。
- 若 满足交換律. 则称 G 为交换群(或 Abel 群)。
- $\forall x \in G$ ,定义 x 的阶 |x| 为最小的正整数 k 使得  $x^k = e$ 。
- 关于子群、置换群的部分将在 Burnside 引理部分展开。

## 环的定义

■ 称代数系统 ⟨R,+,·⟩, 若

- 称代数系统  $\langle R, +, \cdot \rangle$ , 若
  - ⟨R,+⟩ 为 Abel 群。

- 称代数系统  $\langle R, +, \cdot \rangle$ , 若
  - $\blacksquare$   $\langle R, + \rangle$  为 Abel 群。
  - lacksquare  $\langle R,\cdot 
    angle$  为半群。



习题 000 000

环与域

- 称代数系统 〈R,+,·〉, 若
  - ⟨R,+⟩ 为 Abel 群。
  - 【R,·】为半群。
  - ■·关于 + 满足分配律。
- 称 + 为加法, · 为乘法。

- 称代数系统 〈R,+,·〉, 若
  - ⟨R,+⟩ 为 Abel 群。
  - ⟨R,·⟩ 为半群。
  - ■・关于 + 满足分配律。
- 称 + 为加法, · 为乘法。
- 称加法单位元为 0,乘法单位元(如果存在)为 1。可以发现 0x = x0 = 0。



- 称代数系统 〈R,+,·〉, 若
  - ⟨*R*,+⟩ 为 Abel 群。
  - 〈R,·〉为半群。
  - ■·关于 + 满足分配律。
- 称 + 为加法, · 为乘法。
- 称加法单位元为 0,乘法单位元(如果存在)为 1。可以发现 0x = x0 = 0。
- $\forall x \in R$ , 称 x 的加法逆元为负元,记为 -x, 称 x 的乘法 逆元为逆元(若存在),记为  $x^{-1}$ 。



习题 000 000

环与域

### 特殊的环

■ 若乘法单位元存在,称 R 为有 1 的环或含幺环。

- 若乘法单位元存在,称 R 为有 1 的环或含幺环。
- 若乘法可交换, 称 R 为交换环。



- 若乘法单位元存在,称 R 为有 1 的环或含幺环。
- $\blacksquare$  若乘法可交换,称 R 为交换环。
- 若 R 中无零因子,即  $\forall x, y \in R, xy = 0 \Rightarrow x = 0 \lor y = 0$ ,称 R 为无零因子环,



- 若乘法单位元存在,称 R 为有 1 的环或含幺环。
- $\blacksquare$  若乘法可交换,称 R 为交换环。
- 若 R 中无零因子,即  $\forall x, y \in R, xy = 0 \Rightarrow x = 0 \lor y = 0$ ,称 R 为无零因子环,
- 若 R 无零因子、含幺、交换, 称 R 为整环。



- 若乘法单位元存在, 称 *R* 为有 1 的环或含幺环。
- 若乘法可交换, 称 R 为交换环。
- 若 R 中无零因子,即  $\forall x, y \in R, xy = 0 \Rightarrow x = 0 \lor y = 0$ , 称 R 为无零因子环,
- 若 R 无零因子、含幺、交换, 称 R 为整环。
- 若  $\langle R^* = R \setminus \{0\}, \cdot \rangle$  为群,称 R 为除环。



- 若乘法单位元存在,称 R 为有 1 的环或含幺环。
- 若乘法可交换, 称 R 为交换环。
- 若 R 中无零因子,即  $\forall x, y \in R, xy = 0 \Rightarrow x = 0 \lor y = 0$ , 称 R 为无零因子环,
- 若 R 无零因子、含幺、交换, 称 R 为整环。
- 若  $\langle R^* = R \setminus \{0\}, \cdot \rangle$  为群,称 R 为除环。
- 若 R 为交换的除环,则称 R 为域。

## 无零因子环的特征

■ 定理: 对于无零因子环 R, 则 R 中所有非零元的加法阶相等,为  $\infty$  或为某个素数 p。



## 无零因子环的特征

- 定理: 对于无零因子环 R, 则 R 中所有非零元的加法阶相等,为  $\infty$  或为某个素数 p。
- 定义: 对于无零因子环 R, 称 R 中非零元的加法阶为 R 的特征,记为 CharR; 当 R 中非零元的加法阶为  $\infty$  时,定义 CharR=0。



## 无零因子环的特征

- 定理: 对于无零因子环 R,则 R 中所有非零元的加法阶相等,为  $\infty$  或为某个素数 p。
- 定义: 对于无零因子环 R, 称 R 中非零元的加法阶为 R 的特征,记为 Char R; 当 R 中非零元的加法阶为  $\infty$  时,定义 Char R=0。
- 由于域为无零因子环,所以域的特征也如上定义。

环与域

## 无零因子环的特征

- 定理: 对于无零因子环 R,则 R 中所有非零元的加法阶相等,为  $\infty$  或为某个素数 p。
- 定义: 对于无零因子环 R, 称 R 中非零元的加法阶为 R 的特征,记为 Char R; 当 R 中非零元的加法阶为  $\infty$  时,定义 Char R=0。
- 由于域为无零因子环,所以域的特征也如上定义。
- 例:对于素数 p,  $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$  为特征为 p 的域。



### 线性空间

■ 对于集合 V 和域 F 及满足封闭性的运算  $+,\cdot$  (称为加法和数乘),若其满足以下性质,则称之为线性空间(或向量空间)。



- 对于集合 V 和域 F 及满足封闭性的运算  $+,\cdot$  (称为加法和数乘),若其满足以下性质,则称之为线性空间(或向量空间)。



- 对于集合 V 和域 F 及满足封闭性的运算  $+,\cdot$  (称为加法和数乘),若其满足以下性质,则称之为线性空间(或向量空间)。
  - $1 \quad \forall \alpha, \beta \in V, \alpha + \beta = \beta + \alpha \circ$
  - $\forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$



- 对于集合 V 和域 F 及满足封闭性的运算  $+,\cdot$  (称为加法和数乘),若其满足以下性质,则称之为线性空间(或向量空间)。
  - $1 \quad \forall \alpha, \beta \in V, \alpha + \beta = \beta + \alpha \circ$
  - $\forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$
  - $\exists 0 \in V, \forall \alpha \in V, 0 + \alpha = \alpha.$

- 对于集合 V 和域 F 及满足封闭性的运算  $+,\cdot$  (称为加法和数乘),若其满足以下性质,则称之为线性空间(或向量空间)。

  - $\forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$
  - $\exists 0 \in V, \forall \alpha \in V, 0 + \alpha = \alpha.$
  - $\forall \alpha \in V, \exists \beta \in V, \alpha + \beta = 0.$

- 对于集合 V 和域 F 及满足封闭性的运算  $+,\cdot$  (称为加法和数乘),若其满足以下性质,则称之为线性空间(或向量空间)。

  - $\forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$
  - $\exists 0 \in V, \forall \alpha \in V, 0 + \alpha = \alpha.$
  - $\forall \alpha \in V, \exists \beta \in V, \alpha + \beta = 0.$
  - $\forall \alpha \in V, 1\alpha = \alpha.$

- 对于集合 V 和域 F 及满足封闭性的运算  $+,\cdot$  (称为加法和数乘),若其满足以下性质,则称之为线性空间(或向量空间)。
  - $1 \quad \forall \alpha, \beta \in V, \alpha + \beta = \beta + \alpha.$
  - $\forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$
  - $\exists 0 \in V, \forall \alpha \in V, 0 + \alpha = \alpha.$

  - $\forall \alpha \in V, 1\alpha = \alpha.$
  - 6  $\forall \alpha \in V, \forall k, l \in F, k(l\alpha) = (kl)\alpha$ .



- 对于集合 V 和域 F 及满足封闭性的运算  $+,\cdot$  (称为加法和数乘),若其满足以下性质,则称之为线性空间(或向量空间)。
  - 1  $\forall \alpha, \beta \in V, \alpha + \beta = \beta + \alpha$ .
  - $\forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$
  - $\exists 0 \in V, \forall \alpha \in V, 0 + \alpha = \alpha.$

  - $\forall \alpha \in V, 1\alpha = \alpha.$
  - 6  $\forall \alpha \in V, \forall k, l \in F, k(l\alpha) = (kl)\alpha$ .
  - 7  $\forall \alpha \in V, \forall k, l \in F, (k+l)\alpha = k\alpha + l\alpha$ .



- 对于集合 V 和域 F 及满足封闭性的运算  $+,\cdot$  (称为加法和数乘),若其满足以下性质,则称之为线性空间(或向量空间)。
  - 1  $\forall \alpha, \beta \in V, \alpha + \beta = \beta + \alpha$ .
  - $\forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$
  - $\exists 0 \in V, \forall \alpha \in V, 0 + \alpha = \alpha.$

  - $\forall \alpha \in V, 1\alpha = \alpha.$
  - 6  $\forall \alpha \in V, \forall k, l \in F, k(l\alpha) = (kl)\alpha$ .
  - 7  $\forall \alpha \in V, \forall k, l \in F, (k+l)\alpha = k\alpha + l\alpha$ .
  - 8  $\forall \alpha, \beta \in V, \forall k \in F, k(\alpha + \beta) = k\alpha + k\beta$ .



基本定义

#### 线性相关、线性无关与向量组的秩

■ 对于 V 中的向量  $\alpha_1, \ldots, \alpha_n$ , 若存在不全为 0 的  $k_1, \ldots, k_n$  使得  $k_1\alpha_1 + \cdots + k_n\alpha_n = 0$ , 则称  $\alpha_1, \ldots, \alpha_n$  线性相关。



### 线性相关、线性无关与向量组的秩

- 对于 V 中的向量  $\alpha_1, \ldots, \alpha_n$ , 若存在不全为 0 的  $k_1, \ldots, k_n$  使得  $k_1\alpha_1 + \cdots + k_n\alpha_n = 0$ , 则称  $\alpha_1, \ldots, \alpha_n$  线性相关。
- 对于 V 中的向量  $\alpha_1, \ldots, \alpha_n$ ,若不存在不全为 0 的  $k_1, \ldots, k_n$  使得  $k_1\alpha_1 + \cdots + k_n\alpha_n = 0$ ,则称  $\alpha_1, \ldots, \alpha_n$  线性无关。



## 线性相关、线性无关与向量组的秩

- 对于 V 中的向量  $\alpha_1, \ldots, \alpha_n$ , 若存在不全为 0 的  $k_1, \ldots, k_n$  使得  $k_1\alpha_1 + \cdots + k_n\alpha_n = 0$ , 则称  $\alpha_1, \ldots, \alpha_n$  线性相关。
- 对于 V 中的向量  $\alpha_1, \ldots, \alpha_n$ ,若不存在不全为 0 的  $k_1, \ldots, k_n$  使得  $k_1\alpha_1 + \cdots + k_n\alpha_n = 0$ ,则称  $\alpha_1, \ldots, \alpha_n$  线性无关。
- 对于 V 中的向量  $\alpha_1, \ldots, \alpha_n$ ,取  $\alpha_1, \ldots, \alpha_n$  中的极大线性 无关组  $\alpha_{i_1}, \ldots, \alpha_{i_m}$ ,则称 m 为向量组  $\alpha_1, \ldots, \alpha_n$  的秩,记 为  $\operatorname{rank}\{\alpha_1, \ldots, \alpha_n\}$ 。



## 基、维数与坐标

■ 对于 V 中的极大线性无关组  $\alpha_1, \ldots, \alpha_n$ , 称  $\alpha_1, \ldots, \alpha_n$  为 V 的一组基,称 n 为 V 的维数,记为  $\dim V$ 。



## 基、维数与坐标

- 对于 V 中的极大线性无关组  $\alpha_1, \ldots, \alpha_n$ , 称  $\alpha_1, \ldots, \alpha_n$  为 V 的一组基,称 n 为 V 的维数,记为  $\dim V$ 。
- 约定:所有线性空间均为有限维线性空间。无限维线性空间 在 OI 中没有应用。

## 基、维数与坐标

- 对于 V 中的极大线性无关组  $\alpha_1, \ldots, \alpha_n$ , 称  $\alpha_1, \ldots, \alpha_n$  为 V 的一组基,称 n 为 V 的维数,记为  $\dim V$ 。
- 约定: 所有线性空间均为有限维线性空间。无限维线性空间 在 OI 中没有应用。
- 命题: 对于 n 维线性空间 V 的线性无关组  $\alpha_1, \ldots, \alpha_m$ , 存在  $\beta_1, \ldots, \beta_{n-m}$  满足  $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_{n-m}$  为 V 的基。



# 基、维数与坐标

- 对于 V 中的极大线性无关组  $\alpha_1, \ldots, \alpha_n$ , 称  $\alpha_1, \ldots, \alpha_n$  为 V 的一组基,称 n 为 V 的维数,记为  $\dim V$ 。
- 约定:所有线性空间均为有限维线性空间。无限维线性空间 在 OI 中没有应用。
- 命题: 对于 n 维线性空间 V 的线性无关组  $\alpha_1, \ldots, \alpha_m$ ,存在  $\beta_1, \ldots, \beta_{n-m}$  满足  $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_{n-m}$  为 V 的基。
- 对于给定的线性空间 V 中的基  $\alpha_1, \ldots, \alpha_n$ ,对于任意 V 中的向量  $\beta$  总存在唯一的  $k_1, k_2, \ldots, k_n$  使得

$$eta=k_1lpha_1+\cdots+k_nlpha_n$$
,此时称  $egin{pmatrix} k_1 \ dots \ k_n \end{pmatrix}$  为  $eta$  在基

 $\alpha_1,\ldots,\alpha_n$  下的坐标。

### 子空间与生成子空间

■ 对于线性空间 V 的子集  $U \subseteq V$ ,若 U 也为线性空间,则 W 为 W 的子空间。

# 子空间与生成子空间

- 对于线性空间 V 的子集  $U \subseteq V$ ,若 U 也为线性空间,则 称 U 为 V 的子空间。
- 对于线性空间 V 中的向量组  $\alpha_1, \ldots, \alpha_n$ ,令  $U = \{k_1\alpha_1 + \cdots + k_n\alpha_n \mid k_1, \ldots, k_n \in K\}$  为由  $\alpha_1, \ldots, \alpha_n$  生成的子空间,容易验证 U 确实为 V 子空间,记为  $L(\alpha_1, \ldots, \alpha_n)$  或  $\langle \alpha_1, \ldots, \alpha_n \rangle$  或  $\operatorname{span}\{\alpha_1, \ldots, \alpha_n\}$ 。

# 子空间与生成子空间

- 对于线性空间 V 的子集  $U \subseteq V$ ,若 U 也为线性空间,则 称 U 为 V 的子空间。
- 对于线性空间 V 中的向量组  $\alpha_1, \ldots, \alpha_n$ ,令  $U = \{k_1\alpha_1 + \cdots + k_n\alpha_n \mid k_1, \ldots, k_n \in K\}$  为由  $\alpha_1, \ldots, \alpha_n$  生成的子空间,容易验证 U 确实为 V 子空间,记为  $L(\alpha_1, \ldots, \alpha_n)$  或  $\langle \alpha_1, \ldots, \alpha_n \rangle$  或  $\operatorname{span}\{\alpha_1, \ldots, \alpha_n\}$ 。
- 命题: dim  $L(\alpha_1, ..., \alpha_n) = \text{rank}\{\alpha_1, ..., \alpha_n\}$ 。



### 子空间的和与直和、补空间

■ 对于线性空间 V 的子空间  $U_1, U_2$ ,设  $W = \{\alpha + \beta \mid \alpha \in U_1, \beta \in U_2\}$ ,称 W 为  $U_1$  与  $U_2$  的和,记为  $W = U_1 + U_2$ 。若  $U_1 \cap U_2 = \{0\}$ ,则称  $W = U_1 + U_2$  为直和,记为  $W = U_1 \oplus U_2$ 。



- 对于线性空间 V 的子空间  $U_1, U_2$ ,设  $W=\{\alpha+\beta\mid \alpha\in U_1, \beta\in U_2\}$ ,称 W 为  $U_1$  与  $U_2$  的和,记为  $W=U_1+U_2$ 。若  $U_1\cap U_2=\{0\}$ ,则称  $W=U_1+U_2$  为直和,记为  $W=U_1\oplus U_2$ 。
- 命题: 对于  $W = U_1 + U_2$ , 以下命题等价。



- 对于线性空间 V 的子空间  $U_1, U_2$ ,设  $W=\{\alpha+\beta\mid \alpha\in U_1, \beta\in U_2\}$ ,称 W 为  $U_1$  与  $U_2$  的和,记为  $W=U_1+U_2$ 。若  $U_1\cap U_2=\{0\}$ ,则称  $W=U_1+U_2$  为直和,记为  $W=U_1\oplus U_2$ 。
- 命题: 对于  $W = U_1 + U_2$ ,以下命题等价。
  - $1 W = U_1 \oplus U_2 \circ$



- 对于线性空间 V 的子空间  $U_1, U_2$ ,设  $W = \{\alpha + \beta \mid \alpha \in U_1, \beta \in U_2\}$ ,称 W 为  $U_1$  与  $U_2$  的和,记为  $W = U_1 + U_2$ 。若  $U_1 \cap U_2 = \{0\}$ ,则称  $W = U_1 + U_2$  为直和,记为  $W = U_1 \oplus U_2$ 。
- 命题: 对于  $W = U_1 + U_2$ , 以下命题等价。
  - $W = U_1 \oplus U_2 \circ$
  - $2 \quad \dim W = \dim U_1 + \dim U_2.$



- 对于线性空间 V 的子空间  $U_1, U_2$ ,设  $W = \{\alpha + \beta \mid \alpha \in U_1, \beta \in U_2\}$ ,称 W 为  $U_1$  与  $U_2$  的和,记为  $W = U_1 + U_2$ 。若  $U_1 \cap U_2 = \{0\}$ ,则称  $W = U_1 + U_2$ 为直和,记为  $W = U_1 \oplus U_2$ 。
- 命题: 对于  $W = U_1 + U_2$ ,以下命题等价。

  - $2 \dim W = \dim U_1 + \dim U_2 \circ$
  - $oxed{3} U_1$  的基与  $U_2$  的基拼接得到 W 的基。





- 对于线性空间 V 的子空间  $U_1, U_2$  . 设  $W = \{\alpha + \beta \mid \alpha \in U_1, \beta \in U_2\}$ , 称 W 为  $U_1$  与  $U_2$  的和, 记为  $W = U_1 + U_2$ 。若  $U_1 \cap U_2 = \{0\}$ ,则称  $W = U_1 + U_2$ 为直和. 记为  $W = U_1 \oplus U_2$ 。
- 命题: 对于  $W = U_1 + U_2$ . 以下命题等价。
  - 1  $W = U_1 \oplus U_2$ .
  - $2 \operatorname{dim} W = \operatorname{dim} U_1 + \operatorname{dim} U_2$ .
  - $U_1$  的基与  $U_2$  的基拼接得到 W 的基。
- 对于线性空间 V 的子空间  $U \subset V$ ,若子空间 W 满足  $V = U \oplus W$ , 则称 W 为 U 补空间。



### 线性表出与等价

■ 对于线性空间 V 中的向量组  $\alpha_1, \ldots, \alpha_n$  和向量  $\beta$ ,若存在  $k_1, \ldots, k_n$  使得  $k_1\alpha_1 + \cdots + k_n\alpha_n = \beta$ ,则称  $\beta$  可以由  $\alpha_1, \ldots, \alpha_n$  线性表出。

# 线性表出与等价

- 对于线性空间 V 中的向量组  $\alpha_1, \ldots, \alpha_n$  和向量  $\beta$ ,若存在  $k_1, \ldots, k_n$  使得  $k_1\alpha_1 + \cdots + k_n\alpha_n = \beta$ , 则称  $\beta$  可以由  $\alpha_1 \ldots \alpha_n$  线性表出。
- 对于线性空间 V 中的向量组  $\alpha_1, \ldots, \alpha_n$  和  $\beta_1, \ldots, \beta_m$ , 若 对于任意 1 < i < m, $\beta_i$  都可以由  $\alpha_1 \dots \alpha_n$  ,则称  $\beta_1, \ldots, \beta_m$  可以由  $\alpha_1, \ldots, \alpha_n$  线性表出。



## 线性表出与等价

- 对于线性空间 V 中的向量组  $\alpha_1, \ldots, \alpha_n$  和向量  $\beta$ ,若存在  $k_1, \ldots, k_n$  使得  $k_1\alpha_1 + \cdots + k_n\alpha_n = \beta$ ,则称  $\beta$  可以由  $\alpha_1, \ldots, \alpha_n$  线性表出。
- 对于线性空间 V 中的向量组  $\alpha_1, \ldots, \alpha_n$  和  $\beta_1, \ldots, \beta_m$ ,若 对于任意  $1 \le i \le m$ ,  $\beta_i$  都可以由  $\alpha_1, \ldots, \alpha_n$ ,则称  $\beta_1, \ldots, \beta_m$  可以由  $\alpha_1, \ldots, \alpha_n$  线性表出。
- 对于线性空间 V 中的向量组  $\alpha_1, \ldots, \alpha_n$  和  $\beta_1, \ldots, \beta_m$ ,若  $\alpha_1, \ldots, \alpha_n$  可以由  $\beta_1, \ldots, \beta_m$  线性表出,且  $\beta_1, \ldots, \beta_m$  可以 由  $\alpha_1, \ldots, \alpha_n$  线性表出,则称向量组  $\alpha_1, \ldots, \alpha_n$  和  $\beta_1, \ldots, \beta_m$  等价。



# 线性表出与等价

- 对于线性空间 V 中的向量组  $\alpha_1, \ldots, \alpha_n$  和向量  $\beta$ ,若存在  $k_1, \ldots, k_n$  使得  $k_1\alpha_1 + \cdots + k_n\alpha_n = \beta$ ,则称  $\beta$  可以由  $\alpha_1, \ldots, \alpha_n$  线性表出。
- 对于线性空间 V 中的向量组  $\alpha_1,\ldots,\alpha_n$  和  $\beta_1,\ldots,\beta_m$ ,若 对于任意  $1 \leq i \leq m$ ,  $\beta_i$  都可以由  $\alpha_1\ldots,\alpha_n$  ,则称  $\beta_1,\ldots,\beta_m$  可以由  $\alpha_1\ldots,\alpha_n$  线性表出。
- 对于线性空间 V 中的向量组  $\alpha_1, \ldots, \alpha_n$  和  $\beta_1, \ldots, \beta_m$ ,若  $\alpha_1, \ldots, \alpha_n$  可以由  $\beta_1, \ldots, \beta_m$  线性表出,且  $\beta_1, \ldots, \beta_m$  可以 由  $\alpha_1, \ldots, \alpha_n$  线性表出,则称向量组  $\alpha_1, \ldots, \alpha_n$  和  $\beta_1, \ldots, \beta_m$  等价。
- 推论:等价的向量组具有相同的秩。

# 向量

■ 命题: 两个向量空间同构当且仅当它们维数相同。

#### 向量

- 命题: 两个向量空间同构当且仅当它们维数相同。
- 所以我们只需要关心形如  $F^n$  的向量空间,其中 F 为一般的域。

### 向量

- 命题: 两个向量空间同构当且仅当它们维数相同。
- 所以我们只需要关心形如  $F^n$  的向量空间,其中 F 为一般的域。
- 约定: 所有向量均为列向量。

### 矩阵

■ 
$$n \times m$$
 的矩阵  $A = \begin{pmatrix} a_{1,j} \end{pmatrix}_{n \times m} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix}$ ,  $A$  的 转置  ${}^tA = \begin{pmatrix} a_{1,1} & \cdots & a_{n,1} \\ \vdots & \ddots & \vdots \\ a_{1,m} & \cdots & a_{n,m} \end{pmatrix}$ 。

转置 
$${}^t\!A = \begin{pmatrix} a_{1,1} & \cdots & a_{n,1} \\ \vdots & \ddots & \vdots \\ a_{1,m} & \cdots & a_{n,m} \end{pmatrix}$$

#### 矩阵

• 
$$n \times m$$
 的矩阵  $A = (a_{i,j})_{n \times m} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix}$ ,  $A$  的

转置 
$${}^t\!A = \begin{pmatrix} a_{1,1} & \cdots & a_{n,1} \\ \vdots & \ddots & \vdots \\ a_{1,m} & \cdots & a_{n,m} \end{pmatrix}$$
。

■ 
$$A$$
 的列向量组为  $A = (\alpha_1 \dots \alpha_m)$ ,其中  $\alpha_i = \begin{pmatrix} a_{1,i} \\ \vdots \\ a_{n,i} \end{pmatrix}$ 。

### 矩阵

• 
$$n \times m$$
 的矩阵  $A = (a_{i,j})_{n \times m} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix}$ ,  $A$  的

转置 
$${}^t\!A = \begin{pmatrix} a_{1,1} & \cdots & a_{n,1} \\ \vdots & \ddots & \vdots \\ a_{1,m} & \cdots & a_{n,m} \end{pmatrix}$$
。

■ 
$$A$$
 的列向量组为  $A = (\alpha_1 \dots \alpha_m)$ , 其中  $\alpha_i = \begin{pmatrix} a_{1,i} \\ \vdots \\ a_{n,i} \end{pmatrix}$ 。

$$lacksquare A$$
 的行向量组为  $A=egin{pmatrix} {}^{t}eta_1\ dots\ {}^{t}eta_n \end{pmatrix}$ ,其中  $eta_i=egin{pmatrix} a_{i,1}\ dots\ a_{i,m} \end{pmatrix}$ 。

#### 矩阵的秩

■ 矩阵的列向量组  $\alpha_1, \ldots, \alpha_m$  的秩被称为矩阵的列秩。若列向量组线性无关,则称矩阵列满秩。

## 矩阵的秩

- 矩阵的列向量组  $\alpha_1, \ldots, \alpha_m$  的秩被称为矩阵的列秩。若列向量组线性无关,则称矩阵列满秩。
- 矩阵的行向量组  $\beta_1, \ldots, \beta_n$  的秩被称为矩阵的行秩。若行向量组线性无关,则称矩阵行满秩。

## 矩阵的秩

- 矩阵的列向量组  $\alpha_1, \ldots, \alpha_m$  的秩被称为矩阵的列秩。若列向量组线性无关,则称矩阵列满秩。
- 矩阵的行向量组  $\beta_1, \ldots, \beta_n$  的秩被称为矩阵的行秩。若行向量组线性无关,则称矩阵行满秩。
- 定理: 矩阵的行秩等于列秩。于是可以定义矩阵的秩。

# 初等行 / 列变换

■ 以下三种操作被称为初等行变换。

- 以下三种操作被称为初等行变换。
  - 1 交换两行。

- 以下三种操作被称为初等行变换。
  - 1 交换两行。
  - 2 将某一行乘上一个非零数。

- 以下三种操作被称为初等行变换。
  - 1 交换两行。
  - 2 将某一行乘上一个非零数。
  - 3 将某一行的任意倍加到另一行上。

- 以下三种操作被称为初等行变换。
  - 1 交换两行。
  - 2 将某一行乘上一个非零数。
  - 3 将某一行的任意倍加到另一行上。
- 将"行"替换为"列"可定义初等列变换。

- 以下三种操作被称为初等行变换。
  - 1 交换两行。
  - 2 将某一行乘上一个非零数。
  - 3 将某一行的任意倍加到另一行上。
- 将"行"替换为"列"可定义初等列变换。
- 定理: 行向量组与进行初等行变换后的行向量组等价。

- 以下三种操作被称为初等行变换。
  - 1 交换两行。
  - 2 将某一行乘上一个非零数。
  - 3 将某一行的任意倍加到另一行上。
- 将"行"替换为"列"可定义初等列变换。
- 定理: 行向量组与进行初等行变换后的行向量组等价。
- 推论:初等行变换不改变矩阵的秩。

#### 阶梯形与最简阶梯形

■ 若矩阵中所有非零行的第一个非零元素的下标严格单调递增,且零行位于矩阵的最后若干行,则称其为阶梯形矩阵。

## 阶梯形与最简阶梯形

- 若矩阵中所有非零行的第一个非零元素的下标严格单调递 增,且零行位于矩阵的最后若干行,则称其为阶梯形矩阵。
- 在阶梯形矩阵中,若非零行的第一个非零元素全是 1,且非零行的第一个元素 1 所在列的其余元素全为零,则称其为最简形阶梯形矩阵。

## 阶梯形与最简阶梯形

- 若矩阵中所有非零行的第一个非零元素的下标严格单调递 增,且零行位于矩阵的最后若干行,则称其为阶梯形矩阵。
- 在阶梯形矩阵中,若非零行的第一个非零元素全是 1,且非零行的第一个元素 1 所在列的其余元素全为零,则称其为最简形阶梯形矩阵。
- 容易发现在阶梯形中所有非零行是行向量的一个极大线性无 关组,所以非零的行数就是该矩阵的秩。

#### 高斯消元

■ 高斯消元可以用于求出给定矩阵的阶梯形。

#### 高斯消元

- 高斯消元可以用于求出给定矩阵的阶梯形。
- 算法流程: 依次扫描所有列的标号,任取一个以当前列作为 第一个非零元素的行,并利用这个行将其他行的当前列的元 素通过初等行变换变为 0。

#### 高斯消元

- 高斯消元可以用于求出给定矩阵的阶梯形。
- 算法流程: 依次扫描所有列的标号,任取一个以当前列作为 第一个非零元素的行,并利用这个行将其他行的当前列的元 素通过初等行变换变为 0。
- 容易发现执行完该算法的矩阵可以通过若干交换两行的操作 变为阶梯形,且可以简单的得到最简阶梯形。

#### 高斯消元

- 高斯消元可以用于求出给定矩阵的阶梯形。
- 算法流程: 依次扫描所有列的标号,任取一个以当前列作为 第一个非零元素的行,并利用这个行将其他行的当前列的元 素通过初等行变换变为 0。
- 容易发现执行完该算法的矩阵可以通过若干交换两行的操作 变为阶梯形,且可以简单的得到最简阶梯形。
- 对  $n \times m$  的矩阵进行高斯消元的复杂度为  $nm^2$ 。

#### 求线性方程组的唯一解

■ 对于线性方程组 Ax = b,令  $\tilde{A} = (A \ b)$ ,称  $\tilde{A}$  为该方程 组的增广矩阵。容易发现增广矩阵与线性方程组是一一对应 的。

## 求线性方程组的唯一解

■ 对于线性方程组 Ax = b,令  $\tilde{A} = (A \ b)$ ,称  $\tilde{A}$  为该方程 组的增广矩阵。容易发现增广矩阵与线性方程组是——对应 的。

## 求线性方程组的唯一解

- 对于线性方程组 Ax = b,令  $\tilde{A} = (A \ b)$ ,称  $\tilde{A}$  为该方程 组的增广矩阵。容易发现增广矩阵与线性方程组是一一对应 的。
- 命题:该方程组有唯一解当且仅当  $\operatorname{rank}(A) = \operatorname{rank}(\tilde{A})$ 。

#### 求线性方程组的唯一解

- 对于线性方程组 Ax = b,令  $\tilde{A} = (A \ b)$ ,称  $\tilde{A}$  为该方程组的增广矩阵。容易发现增广矩阵与线性方程组是一一对应的。
- 命题:该方程组有唯一解当且仅当  $\operatorname{rank}(A) = \operatorname{rank}(\tilde{A})$ 。
- 所以可以求解一个线性方程组是否有唯一解,且通过高斯消元即可求出方程组的解。

#### 求齐次线性方程组的解集

■ 命题:对于其次线性方程组 Ax = 0,对 A 做初等行变换不改变解集。

- 命题:对于其次线性方程组 Ax = 0,对 A 做初等行变换不改变解集。
- 将 A 变为最简阶梯形,称一个未定元  $x_i$  为关键的若存在 A 的某一行满足该行的第一个为 1 的元素位于第 i 列,否则 称  $x_i$  为非关键的。

- 命题:对于其次线性方程组 Ax = 0,对 A 做初等行变换不改变解集。
- 将 A 变为最简阶梯形,称一个未定元  $x_i$  为关键的若存在 A 的某一行满足该行的第一个为 1 的元素位于第 i 列,否则 称  $x_i$  为非关键的。
- 对于所有非关键的未定元  $x_i$ ,只将  $x_i$  赋值为 1 将其他非关键的未定元赋值为 0,此时存在对关键的未定元赋值的方案  $\eta_i$  使得  $A\eta_i=0$ 。对于关键的未定元定义  $\eta_i=0$ 。

- 命题:对于其次线性方程组 Ax = 0,对 A 做初等行变换不改变解集。
- 将 A 变为最简阶梯形,称一个未定元  $x_i$  为关键的若存在 A 的某一行满足该行的第一个为 1 的元素位于第 i 列,否则 称  $x_i$  为非关键的。
- 对于所有非关键的未定元  $x_i$ ,只将  $x_i$  赋值为 1 将其他非关键的未定元赋值为 0,此时存在对关键的未定元赋值的方案  $\eta_i$  使得  $A\eta_i = 0$ 。对于关键的未定元定义  $\eta_i = 0$ 。
- 那么 Ax = 0 的解集为  $W = L(\eta_1, ..., \eta_m)$ , 称为 A 的核, 记为  $\ker A$ 。

- 命题:对于其次线性方程组 Ax = 0,对 A 做初等行变换不改变解集。
- 将 A 变为最简阶梯形,称一个未定元  $x_i$  为关键的若存在 A 的某一行满足该行的第一个为 1 的元素位于第 i 列,否则 称  $x_i$  为非关键的。
- 对于所有非关键的未定元  $x_i$ ,只将  $x_i$  赋值为 1 将其他非关键的未定元赋值为 0,此时存在对关键的未定元赋值的方案  $\eta_i$  使得  $A\eta_i = 0$ 。对于关键的未定元定义  $\eta_i = 0$ 。
- 那么 Ax = 0 的解集为  $W = L(\eta_1, ..., \eta_m)$ , 称为 A 的核, 记为  $\ker A$ 。
- 定理:  $m = \operatorname{rank} A + \dim \ker A$ .

#### P3812 【模板】线性基

■ 注意到  $[0,2^m)$  的整数与异或运算构成了向量空间,其中  $V = F_2^m, F = F_2, F_2$  为二元域。

#### P3812 【模板】线性基

■ 注意到  $[0,2^m)$  的整数与异或运算构成了向量空间,其中  $V = F_2^m, F = F_2, F_2$  为二元域。

#### P3812 【模板】线性基

- 注意到  $[0,2^m)$  的整数与异或运算构成了向量空间,其中  $V = F_2^m, F = F_2, F_2$  为二元域。
- 考虑求出这 *n* 个数的生成子空间的基:将所有数的二进制表示视为行向量,拼接得到一个矩阵,并求出这个矩阵的阶梯形即可。

#### P3812 【模板】线性基

- 注意到  $[0,2^m)$  的整数与异或运算构成了向量空间,其中  $V = F_2^m, F = F_2, F_2$  为二元域。
- 考虑求出这 *n* 个数的生成子空间的基:将所有数的二进制表示视为行向量,拼接得到一个矩阵,并求出这个矩阵的阶梯形即可。
- $\blacksquare$  在求出这 n 个数的生成子空间的基后,直接按位贪心即可。

#### P3812 【模板】线性基

- 注意到  $[0,2^m)$  的整数与异或运算构成了向量空间,其中  $V = F_2^m, F = F_2, F_2$  为二元域。
- 考虑求出这 *n* 个数的生成子空间的基:将所有数的二进制表示视为行向量,拼接得到一个矩阵,并求出这个矩阵的阶梯形即可。
- 在求出这 n 个数的生成子空间的基后,直接按位贪心即可。
- 时间复杂度  $O(\frac{nm^2}{w}) = O(nm)$ , 其中 m = O(w)。



习题

行列式

#### 行列式的定义

■ 一个 n 阶方阵  $A = (\alpha_1 \dots \alpha_m)$  的行列式  $\det A$  或 |A| 为使  $\det I = 1$  的反对称 n 重线性函数。容易证明该定义下行列式唯一。



行列式

## 行列式的定义

- 一个 n 阶方阵  $A = (\alpha_1 \dots \alpha_m)$  的行列式  $\det A$  或 |A| 为使  $\det I = 1$  的反对称 n 重线性函数。容易证明该定义下行列式唯一。
- 定理:  $\det A = \sum_{p_1,\dots,p_n \in S_n} (-1)^{\tau(p_1,\dots,p_n)} \prod_{i=1}^n a_{i,p_i}$ , 其中  $S_n$  为所有 n 阶置换的集合, $\tau(p_1,\dots,p_n)$  为  $p_1,\dots,p_n$  的逆序对数。



行列式

#### 行列式的定义

- 一个 n 阶方阵  $A = (\alpha_1 \dots \alpha_m)$  的行列式  $\det A$  或 |A| 为使  $\det I = 1$  的反对称 n 重线性函数。容易证明该定义下行列式唯一。
- 定理:  $\det A = \sum_{p_1,\dots,p_n \in S_n} (-1)^{\tau(p_1,\dots,p_n)} \prod_{i=1}^n a_{i,p_i}$ ,其中  $S_n$  为所有 n 阶置换的集合, $\tau(p_1,\dots,p_n)$  为  $p_1,\dots,p_n$  的逆序对数。
- 定理:  $\det A = \det {}^t A$  。



行列式

#### 求解行列式

■ 命题:上三角 / 下三角矩阵的行列式为对角元之和。





行列式

#### 求解行列式

- 命题:上三角 / 下三角矩阵的行列式为对角元之和。
- 根据行列式的定义,可以采用高斯消元的方法使原矩阵变为上三角形,时间复杂度为  $O(n^3)$ 。



### 求解行列式

- 命题: 上三角 / 下三角矩阵的行列式为对角元之和。
- 根据行列式的定义,可以采用高斯消元的方法使原矩阵变为上三角形,时间复杂度为  $O(n^3)$ 。
- 命题:  $\det A \neq 0 \Leftrightarrow A = n$ 。





## 余子式与代数余子式

■ 设  $A = (a_{i,j})_{n \times n}$ ,则  $\forall 1 \leq i, j \leq n$ ,将矩阵 A 去掉第 i 行和第 j 列后的矩阵的行列式称为  $a_{i,j}$  元的余子式。



### 余子式与代数余子式

- 设  $A = (a_{i,j})_{n \times n}$ ,则  $\forall 1 \leq i, j \leq n$ ,将矩阵 A 去掉第 i 行和第 j 列后的矩阵的行列式称为  $a_{i,j}$  元的余子式。
- 将  $a_{i,j}$  元的余子式乘上  $(-1)^{i+j}$  后的结果称为  $a_{i,j}$  的代数 余子式,记为  $A_{i,j}$ 。



## 余子式与代数余子式

- 设  $A = (a_{i,j})_{n \times n}$ ,则  $\forall 1 \leq i, j \leq n$ ,将矩阵 A 去掉第 i 行和第 j 列后的矩阵的行列式称为  $a_{i,j}$  元的余子式。
- 将  $a_{i,j}$  元的余子式乘上  $(-1)^{i+j}$  后的结果称为  $a_{i,j}$  的代数 余子式,记为  $A_{i,j}$ 。
- 定理(一阶 Laplace 展开):

$$\forall 1 \leq i \leq n, \det A = \sum_{j=1}^{n} a_{i,j} A_{i,j}$$
。 对列也成立。



#### 一般的子式、余子式

■ 对于  $1 \le i_1 < \dots < i_k \le n, 1 \le j_1 < \dots < j_k \le n$ ,将只保留  $i_1, \dots, i_k$  行和  $j_1, \dots, j_k$  列的元素的矩阵的行列式称为  $i_1, \dots, i_k$  行和  $j_1, \dots, j_k$  列的子式,记为  $A\begin{pmatrix} i_1, \dots, i_k \\ j_1, \dots, j_k \end{pmatrix}$ 。



### 一般的子式、余子式

- 对于  $1 \le i_1 < \dots < i_k \le n, 1 \le j_1 < \dots < j_k \le n$ ,将只保留  $i_1, \dots, i_k$  行和  $j_1, \dots, j_k$  列的元素的矩阵的行列式称为  $i_1, \dots, i_k$  行和  $j_1, \dots, j_k$  列的子式,记为  $A\begin{pmatrix} i_1, \dots, i_k \\ j_1, \dots, j_k \end{pmatrix}$ 。
- 设  $\{u_1,\ldots,u_{n-k}\}=\{1,\ldots,n\}\setminus\{i_1,\ldots,i_k\},\{v_1,\ldots,v_{n-k}\}=\{1,\ldots,n\}\setminus\{j_1,\ldots,j_k\},1\leq u_1<\cdots< u_{n-k}\leq n,1\leq v_1<\cdots< v_{n-k}\leq n, \text{ 将子式 }A\begin{pmatrix}u_1,\ldots,u_{n-k}\\v_1,\ldots,v_{n-k}\end{pmatrix}$  称为  $i_1,\ldots,i_k$  行和  $j_1,\ldots,j_k$  列的余子式。



# Laplace 展开

■ 定理(Laplace 展开): 对于任意的

$$1 \leq i_1 < \cdots < i_k \leq n, \{u_1, \dots, u_{n-k}\} = \{1, \dots, n\} \setminus \{i_1, \dots, i_k\}, 1 \leq u_1 < \cdots < u_{n-k} \leq n, \det A = \sum_{1 \leq j_1 < \dots < j_k \leq n} A \begin{pmatrix} i_1, \dots, i_k \\ j_1, \dots, j_k \end{pmatrix} (-1)^{(i_1 + \dots + i_k) + (j_1 + \dots + j_k)} A \begin{pmatrix} u_1, \dots, u_{n-k} \\ v_1, \dots, v_{n-k} \end{pmatrix} + \{u_1, \dots, u_{n-k}\} = \{1, \dots, n\} \setminus \{i_1, \dots, i_k\}, \{v_1, \dots, v_{n-k}\} = \{1, \dots, n\} \setminus \{j_1, \dots, j_k\}, 1 \leq u_1 < \dots < u_{n-k} \leq n, 1 \leq v_1 < \dots < v_{n-k} \leq n, \$$
对列也成立。



## Laplace 展开

■ 定理 (Laplace 展开): 对于任意的

 $\cdots < v_{n-k} < n$ 。对列也成立。

$$1 \leq i_1 < \dots < i_k \leq n, \{u_1, \dots, u_{n-k}\} = \{1, \dots, n\} \setminus \{i_1, \dots, i_k\}, 1 \leq u_1 < \dots < u_{n-k} \leq n, \det A = \sum_{1 \leq j_1 < \dots < j_k \leq n} A \begin{pmatrix} i_1, \dots, i_k \\ j_1, \dots, j_k \end{pmatrix} (-1)^{(i_1 + \dots + i_k) + (j_1 + \dots + j_k)} A \begin{pmatrix} u_1, \dots, u_{n-k} \\ v_1, \dots, v_{n-k} \end{pmatrix} = \{u_1, \dots, u_{n-k}\} = \{1, \dots, n\} \setminus \{i_1, \dots, i_k\}, \{v_1, \dots, v_{n-k}\} = \{1, \dots, n\} \setminus \{j_1, \dots, j_k\}, 1 \leq u_1 < \dots < u_{n-k} \leq n, 1 \leq v_1 \leq v_1 \leq v_2 \leq v_2 \leq v_3 \leq$$

■ 推论:

$$\det\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \det\begin{pmatrix} A & 0 \\ D & B \end{pmatrix} = \det\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \det A \det B.$$





## Laplace 展开

■ 定理(Laplace 展开): 对于任意的

$$1 \leq i_1 < \dots < i_k \leq n, \{u_1, \dots, u_{n-k}\} = \{1, \dots, n\} \setminus \{i_1, \dots, i_k\}, 1 \leq u_1 < \dots < u_{n-k} \leq n, \det A = \sum_{1 \leq j_1 < \dots < j_k \leq n} A \begin{pmatrix} i_1, \dots, i_k \\ j_1, \dots, j_k \end{pmatrix} (-1)^{(i_1 + \dots + i_k) + (j_1 + \dots + j_k)} A \begin{pmatrix} u_1, \dots, u_{n-k} \\ v_1, \dots, v_{n-k} \end{pmatrix}$$
其中

$$\{u_1,\ldots,u_{n-k}\}=\{1,\ldots,n\}\setminus\{i_1,\ldots,i_k\},\{v_1,\ldots,v_{n-k}\}=\{1,\ldots,n\}\setminus\{j_1,\ldots,j_k\},1\leq u_1<\cdots< u_{n-k}\leq n,1\leq v_1<\cdots< v_{n-k}\leq n$$
。对列也成立。

■ 推论:

$$\det\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \det\begin{pmatrix} A & 0 \\ D & B \end{pmatrix} = \det\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \det A \det B.$$

■ 命题:对于方阵 A, B,都有  $\det(AB) = \det A \det B$ 。



## 可逆矩阵

■ n 阶方阵 A 可逆,当且仅当存在 n 阶方阵  $A^{-1}$  满足  $AA^{-1} = A^{-1}A = I$ 。



# 可逆矩阵

■ 称 n 阶方阵 A 可逆,当且仅当存在 n 阶方阵  $A^{-1}$  满足  $AA^{-1}=A^{-1}A=I$ 。

■ 
$$A$$
 的伴随矩阵  $A^* = \begin{pmatrix} A_{1,1} & A_{2,1} & \cdots & A_{n,1} \\ A_{1,2} & A_{2,2} & \cdots & A_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1,n} & A_{2,n} & \cdots & A_{n,n} \end{pmatrix}$ , 容易发现

 $AA* = A*A = (\det A)I$ ,所以 A 可逆  $\Leftrightarrow \det A \neq 0 \Leftrightarrow \operatorname{rank} A = n$ ,且若 A 可逆, $A^{-1} = \frac{1}{\det A}A^*$ ,直接求解时间复杂度  $O(n^4)$ 。



## 可逆矩阵

■ 称 n 阶方阵 A 可逆,当且仅当存在 n 阶方阵  $A^{-1}$  满足  $AA^{-1}=A^{-1}A=I$ 。

$$lacksquare$$
  $A$  的伴随矩阵  $A^*=egin{pmatrix} A_{1,1} & A_{2,1} & \cdots & A_{n,1} \\ A_{1,2} & A_{2,2} & \cdots & A_{n,2} \\ dots & dots & \ddots & dots \\ A_{1,n} & A_{2,n} & \cdots & A_{n,n} \end{pmatrix}$ ,容易发现

 $AA* = A*A = (\det A)I$ ,所以 A 可逆  $\Leftrightarrow \det A \neq 0 \Leftrightarrow \operatorname{rank} A = n$ ,且若 A 可逆, $A^{-1} = \frac{1}{\det A}A^*$ ,直接求解时间复杂度  $O(n^4)$ 。

■ 对于矩阵  $C = (A \ B)$ ,则通过初等行变换将 C 的左 n 列变为 I 后,C 的剩下的列为  $A^{-1}B$ ,令 B = I 即可求出  $A^{-1}$ ,时间复杂度  $O(n^3)$ 。

### 正交空间

■ 在 OI 中,我们一般考虑正定(或半正定)的正交空间,即度量为正定(或非退化半正定)对称双线性函数的度量空间,其中该函数称为内积,记为  $(\alpha, \beta)$ 。

- 在 OI 中,我们一般考虑正定(或半正定)的正交空间,即度量为正定(或非退化半正定)对称双线性函数的度量空间,其中该函数称为内积,记为  $(\alpha, \beta)$ 。
- 标准内积的性质:

- 在 OI 中,我们一般考虑正定(或半正定)的正交空间,即度量为正定(或非退化半正定)对称双线性函数的度量空间,其中该函数称为内积,记为  $(\alpha,\beta)$ 。
- 标准内积的性质:
  - 1 非退化:  $\forall \alpha \in V, \exists \beta \in V, (\alpha, \beta) = ne0$ 。



- 在 OI 中,我们一般考虑正定(或半正定)的正交空间,即度量为正定(或非退化半正定)对称双线性函数的度量空间,其中该函数称为内积,记为  $(\alpha,\beta)$ 。
- 标准内积的性质:
  - 1 非退化:  $\forall \alpha \in V, \exists \beta \in V, (\alpha, \beta) = ne0$ 。
  - **2** 对称性:  $(\alpha, \beta) = (\beta, \alpha)$ 。

- 在 OI 中,我们一般考虑正定(或半正定)的正交空间,即度量为正定(或非退化半正定)对称双线性函数的度量空间,其中该函数称为内积,记为  $(\alpha,\beta)$ 。
- 标准内积的性质:
  - 1 非退化:  $\forall \alpha \in V, \exists \beta \in V, (\alpha, \beta) = ne0$ .
  - **2** 对称性:  $(\alpha, \beta) = (\beta, \alpha)$ 。
  - 3 双线性:  $(k\alpha, \beta) = k(\alpha, \beta), (\alpha_1 + \alpha_2, \beta) = (\alpha_1, \beta) + (\alpha_2, \beta),$  对于第二个分量同理。

# 正交

■ 对于向量  $\alpha, \beta$ , 若  $(\alpha, \beta) = 0$ , 则称  $\alpha, \beta$  正交, 记为  $\alpha \perp \beta$ 。



- 对于向量  $\alpha, \beta$ ,若  $(\alpha, \beta) = 0$ ,则称  $\alpha, \beta$  正交,记为  $\alpha \perp \beta$ 。
- 对于向量组  $\alpha_1, \ldots, \alpha_n$ ,若  $\forall 1 \leq i < j \leq n$ ,都有  $\alpha_i \perp \alpha_j$ ,则称  $\alpha_1, \ldots, \alpha_n$  为正交向量组。若  $\alpha_1, \ldots, \alpha_n$  为一组基,则称  $\alpha_1, \ldots, \alpha_n$  为一组正交基。

- 对于向量  $\alpha, \beta$ ,若  $(\alpha, \beta) = 0$ ,则称  $\alpha, \beta$  正交,记为  $\alpha \perp \beta$ 。
- 对于向量组  $\alpha_1, \ldots, \alpha_n$ ,若  $\forall 1 \leq i < j \leq n$ ,都有  $\alpha_i \perp \alpha_j$ ,则称  $\alpha_1, \ldots, \alpha_n$  为正交向量组。若  $\alpha_1, \ldots, \alpha_n$  为一组基,则称  $\alpha_1, \ldots, \alpha_n$  为一组正交基。
- 对于向量  $\alpha$  和子空间  $U \subset V$ ,若  $\forall \beta \in U$  都有  $\alpha \perp \beta$ ,则  $\alpha \perp U$ 。

- 对于向量  $\alpha, \beta$ ,若  $(\alpha, \beta) = 0$ ,则称  $\alpha, \beta$  正交,记为  $\alpha \perp \beta$ 。
- 对于向量组  $\alpha_1, \ldots, \alpha_n$ ,若  $\forall 1 \leq i < j \leq n$ ,都有  $\alpha_i \perp \alpha_j$ ,则称  $\alpha_1, \ldots, \alpha_n$  为正交向量组。若  $\alpha_1, \ldots, \alpha_n$  为一组基,则称  $\alpha_1, \ldots, \alpha_n$  为一组正交基。
- 对于向量  $\alpha$  和子空间  $U \subset V$ ,若  $\forall \beta \in U$  都有  $\alpha \perp \beta$ ,则 称  $\alpha \perp U$ 。
- 对于子空间  $U \subseteq V$ ,定义 U 的正交补  $U^{\perp} = \{\alpha \mid \alpha \perp U\}$ 。

- 对于向量  $\alpha, \beta$ ,若  $(\alpha, \beta) = 0$ ,则称  $\alpha, \beta$  正交,记为  $\alpha \perp \beta$ 。
- 对于向量组  $\alpha_1, \ldots, \alpha_n$ ,若  $\forall 1 \leq i < j \leq n$ ,都有  $\alpha_i \perp \alpha_j$ ,则称  $\alpha_1, \ldots, \alpha_n$  为正交向量组。若  $\alpha_1, \ldots, \alpha_n$  为一组基,则称  $\alpha_1, \ldots, \alpha_n$  为一组正交基。
- 对于向量  $\alpha$  和子空间  $U \subset V$ ,若  $\forall \beta \in U$  都有  $\alpha \perp \beta$ ,则  $\alpha \perp U$ 。
- 对于子空间  $U \subseteq V$ ,定义 U 的正交补  $U^{\perp} = \{\alpha \mid \alpha \perp U\}$ 。
- 命题:  $\dim V = \dim U + \dim U^{\perp}, U^{\perp \perp} = U$ 。

- 对于向量  $\alpha, \beta$ ,若  $(\alpha, \beta) = 0$ ,则称  $\alpha, \beta$  正交,记为  $\alpha \perp \beta$ 。
- 对于向量组  $\alpha_1, \ldots, \alpha_n$ ,若  $\forall 1 \leq i < j \leq n$ ,都有  $\alpha_i \perp \alpha_j$ ,则称  $\alpha_1, \ldots, \alpha_n$  为正交向量组。若  $\alpha_1, \ldots, \alpha_n$  为一组基,则称  $\alpha_1, \ldots, \alpha_n$  为一组正交基。
- 对于向量  $\alpha$  和子空间  $U \subset V$ ,若  $\forall \beta \in U$  都有  $\alpha \perp \beta$ ,则 称  $\alpha \perp U$ 。
- 对于子空间  $U \subseteq V$ ,定义 U 的正交补  $U^{\perp} = \{\alpha \mid \alpha \perp U\}$ 。
- 命题:  $\dim V = \dim U + \dim U^{\perp}, U^{\perp \perp} = U$ .
- 命题:  $U \cap W = (U^{\perp} + W^{\perp})^{\perp}$

# 施密特正交化

■ 施密特正交化用于求出一组与给定向量组等价的正交向量

组,设向量组为 
$$\alpha_1,\ldots,\alpha_n$$
,则 
$$\begin{cases} \beta_1 &= \alpha_1 \\ \beta_2 &= \alpha_2 - \frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 \\ &\vdots \\ \beta_n &= \alpha_n - \sum\limits_{i=1} \frac{(\alpha_n,\beta_i)}{(\beta_i,\beta_i)}\beta_i \end{cases}$$
可以证明  $\forall 1 \leq i < j \leq n, \beta_i \perp \beta_i$ 。

# 施密特正交化

■ 施密特正交化用于求出一组与给定向量组等价的正交向量

组,设向量组为 
$$\alpha_1,\ldots,\alpha_n$$
,则 
$$\begin{cases} \beta_1 &= \alpha_1 \\ \beta_2 &= \alpha_2 - \frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 \\ &\vdots \\ \beta_n &= \alpha_n - \sum\limits_{i=1}^{n} \frac{(\alpha_n,\beta_i)}{(\beta_i,\beta_i)}\beta_i \end{cases}$$

可以证明  $\forall 1 \leq i < j \leq n, \beta_i \perp \beta_j$ 。

■ 推论:正交基总是存在。

## 标准正交基

■ 由于内积为正定或半正定的,所以  $\forall \alpha \in V, (\alpha, \alpha) \geq 0$ ,定义  $\alpha$  的长度  $|\alpha| = \sqrt{(\alpha, \alpha)}$ 。若  $|\alpha| = 1$ ,称  $\alpha$  为单位向量。

- 由于内积为正定或半正定的,所以  $\forall \alpha \in V, (\alpha, \alpha) \geq 0$ ,定义  $\alpha$  的长度  $|\alpha| = \sqrt{(\alpha, \alpha)}$ 。若  $|\alpha| = 1$ ,称  $\alpha$  为单位向量。
- 若一组正交基  $\eta_1, \ldots, \eta_n$  中的向量  $\eta_i$  均为单位向量,则称  $\eta_1, \ldots, \eta_n$  为标准正交基。

- 由于内积为正定或半正定的,所以  $\forall \alpha \in V, (\alpha, \alpha) \geq 0$ ,定义  $\alpha$  的长度  $|\alpha| = \sqrt{(\alpha, \alpha)}$ 。若  $|\alpha| = 1$ ,称  $\alpha$  为单位向量。
- 若一组正交基  $\eta_1, \ldots, \eta_n$  中的向量  $\eta_i$  均为单位向量,则称  $\eta_1, \ldots, \eta_n$  为标准正交基。
- 以下结论均在标准正交基  $\eta_1, \ldots, \eta_n$  的前提下。

- 由于内积为正定或半正定的,所以  $\forall \alpha \in V, (\alpha, \alpha) \geq 0$ ,定义  $\alpha$  的长度  $|\alpha| = \sqrt{(\alpha, \alpha)}$ 。若  $|\alpha| = 1$ ,称  $\alpha$  为单位向量。
- 若一组正交基  $\eta_1, \ldots, \eta_n$  中的向量  $\eta_i$  均为单位向量,则称  $\eta_1, \ldots, \eta_n$  为标准正交基。
- 以下结论均在标准正交基  $\eta_1, \ldots, \eta_n$  的前提下。
- 命题:  $\forall 1 \leq i, j \leq n, (\eta_i, \eta_j) = [i = j]$ 。

- 由于内积为正定或半正定的,所以  $\forall \alpha \in V, (\alpha, \alpha) \geq 0$ ,定义  $\alpha$  的长度  $|\alpha| = \sqrt{(\alpha, \alpha)}$ 。若  $|\alpha| = 1$ ,称  $\alpha$  为单位向量。
- 若一组正交基  $\eta_1, \ldots, \eta_n$  中的向量  $\eta_i$  均为单位向量,则称  $\eta_1, \ldots, \eta_n$  为标准正交基。
- 以下结论均在标准正交基  $\eta_1, \ldots, \eta_n$  的前提下。
- 命题:  $\forall 1 \leq i, j \leq n, (\eta_i, \eta_j) = [i = j]$ 。
- 定理(傅里叶展开):  $\forall \alpha \in V, \alpha = \sum_{i=1}^{n} (\alpha, \eta_i) \eta_i$ 。

- 由于内积为正定或半正定的,所以  $\forall \alpha \in V, (\alpha, \alpha) \geq 0$ ,定义  $\alpha$  的长度  $|\alpha| = \sqrt{(\alpha, \alpha)}$ 。若  $|\alpha| = 1$ ,称  $\alpha$  为单位向量。
- 若一组正交基  $\eta_1, \ldots, \eta_n$  中的向量  $\eta_i$  均为单位向量,则称  $\eta_1, \ldots, \eta_n$  为标准正交基。
- 以下结论均在标准正交基  $\eta_1, \ldots, \eta_n$  的前提下。
- 命题:  $\forall 1 \leq i, j \leq n, (\eta_i, \eta_j) = [i = j]$ 。
- 定理(傅里叶展开):  $\forall \alpha \in V, \alpha = \sum_{i=1}^{n} (\alpha, \eta_i) \eta_i$ 。
- 推论: 对于向量  $\alpha, \beta \in V$ , 设在该基下  $\alpha$  的坐标为  ${}^t(a_1 \ldots a_n)$ ,  $\beta$  的坐标为  ${}^t(b_1 \ldots b_n)$ , 那么  $(\alpha, \beta) = \sum_{i=1}^n a_i b_i$ 。

# 求解正交补

■ 对于 V 的任一子空间 W, 取 W 的基  $\alpha_1, \ldots, \alpha_m$  和 V 的 标准正交基  $\eta_1, \ldots, \eta_n$ , 设  $\beta_i$  为  $\alpha_i$  在  $\eta_1, \ldots, \eta_n$  下的坐标,

$$\diamondsuit A = \begin{pmatrix} {}^t\!eta_1 \ \vdots \ {}^t\!eta_m \end{pmatrix}$$
,则  $W^\perp = \{ \begin{pmatrix} \eta_1 & \dots & \eta_n \end{pmatrix} \gamma \mid \gamma \in \ker A \}$ 。

## 求解正交补

■ 对于 V 的任一子空间 W, 取 W 的基  $\alpha_1, \ldots, \alpha_m$  和 V 的 标准正交基  $\eta_1, \ldots, \eta_n$ , 设  $\beta_i$  为  $\alpha_i$  在  $\eta_1, \ldots, \eta_n$  下的坐标,

标准正交基 
$$\eta_1, \dots, \eta_n$$
,设  $\beta_i$  为  $\alpha_i$  往  $\eta_1, \dots, \eta_n$  下的坐标 令  $A = \begin{pmatrix} {}^t\!\beta_1 \\ \vdots \\ {}^t\!\beta_m \end{pmatrix}$ ,则  $W^\perp = \{ \begin{pmatrix} \eta_1 & \dots & \eta_n \end{pmatrix} \gamma \mid \gamma \in \ker A \}$ 。

■ 在 OI 中, $F = F_2, V = F_2^n$ ,V 的一组单位正交基为仅有第 i 个分量为 1 的向量,其中  $1 \le i \le n$ ,此时向量  $\alpha$  在这组基下的坐标即为  $\alpha$ 。

P4869

#### P4869 albus就是要第一个出场 题意

已知一个长度为 n 的正整数序列 A (下标从 1 开始),令  $S = \{x | 1 \le x \le n\}$ ,S 的幂集  $2^S$  定义为 S 所有子集构成的集合。定义映射  $f: 2^S \to Z$ ,  $f(\emptyset) = 0$ ,  $f(T) = \mathrm{XOR}\{A_t\}$ ,  $(t \in T)$ 。 现在 albus 把  $2^S$  中每个集合的 f 值计算出来,从小到大排成一行,记为序列 B (下标从 1 开始)。

给定一个数,那么这个数在序列 B 中第 1 次出现时的下标是多少呢?

$$n \le 10^5, A_i, Q \le 10^9$$
 o





P4869

### P4869 albus就是要第一个出场 题解

■ 设  $A_1, \ldots, A_n$  的秩为 r, 则 B 中所有数的出现次数均为  $2^{n-r}$  。



P4869

### P4869 albus就是要第一个出场 题解

- 设  $A_1, \ldots, A_n$  的秩为 r, 则 B 中所有数的出现次数均为  $2^{n-r}$  。
- 问题转化为 < Q 的  $L(A_1, ..., A_n)$  中数的个数,而这个是简单的。



## CF1100F Ivan and Burgers 题意

给定长为 n 的序列  $a_1, \ldots, a_n$ ,有 q 次询问,每次给定 l, r,询问  $a_l, a_{l+1}, \ldots, a_r$  的最大异或和。  $n, q \leq 5 \times 10^5, V = \max\{a_i\} \leq 10^6$ 。



**习题** ○○

CF1100F

## CF1100F Ivan and Burgers 题解

■ 可以线性基合并,时间复杂度  $O((n+q\log n)\log V)$ 。



# CF1100F Ivan and Burgers 题解

- 可以线性基合并,时间复杂度  $O((n+q\log n)\log V)$ 。
- 从左到右维护线性基,在线性基内对于每个基维护这个基向 量是什么时候加入的。



## CF1100F Ivan and Burgers 题解

- 可以线性基合并,时间复杂度  $O((n+q\log n)\log V)$ 。
- 从左到右维护线性基,在线性基内对于每个基维护这个基向 量是什么时候加入的。
- 在新加入一个数的时候,若在某个位为1且这个位对应的基加入时间早于当前数,则将这个数加入线性基并将这个基继续插入。

# CF1100F Ivan and Burgers 题解

- 可以线性基合并,时间复杂度  $O((n+q\log n)\log V)$ 。
- 从左到右维护线性基,在线性基内对于每个基维护这个基向 量是什么时候加入的。
- 在新加入一个数的时候,若在某个位为1且这个位对应的基加入时间早于当前数,则将这个数加入线性基并将这个基继续插入。
- 在查询时只保留  $\geq l$  的数即可,时间复杂度  $O((n+q)\log V)$ 。



#### CF1336E2 Chiori and Doll Picking 题意

给定  $a_1, \ldots, a_n, 0 \le a_i < 2^m$ 。

定义一个子序列的权值为子序列中所有数的异或和在二进制表示中 1 的个数。

对于 i = 0, 1, ..., m, 求出有多少子序列权值为 i, 对 998244353 取模。



**■** 
$$\mathcal{U}$$
  $V = L(a_1, \ldots, a_n)$ .



- **■**  $\mathcal{U}$   $V = L(a_1, \ldots, a_n)$ .
- 若 dim  $V \leq \frac{m}{2}$ ,则  $|V| \leq 2^{\frac{m}{2}}$ ,直接暴力枚举即可。

- **■**  $\mathcal{U}$   $V = L(a_1, \ldots, a_n)$ .
- 若 dim  $V \leq \frac{m}{2}$ ,则  $|V| \leq 2^{\frac{m}{2}}$ ,直接暴力枚举即可。
- 若 dim  $V > \frac{m}{2}$ ,考虑求出 V 的正交补  $V^{\perp}$ ,其中内积  $(x,y) = \operatorname{popcount}(x \& y) \mod 2$ 。此时 dim  $V^{\perp} \leq \frac{m}{2}$ 。

- 设  $V = L(a_1, \ldots, a_n)$ .
- 若 dim  $V \leq \frac{m}{2}$ ,则  $|V| \leq 2^{\frac{m}{2}}$ ,直接暴力枚举即可。
- 若 dim  $V > \frac{m}{2}$ ,考虑求出 V 的正交补  $V^{\perp}$ ,其中内积  $(x,y) = \operatorname{popcount}(x \& y) \mod 2$ 。此时 dim  $V^{\perp} \leq \frac{m}{2}$ 。
- 引理:  $[x \in V^{\perp}] = \frac{1}{|V|} \sum_{y \in V} (-1)^{(x,y)}$ 。

- **退** 设  $V = L(a_1, \ldots, a_n)$ 。
- 若 dim  $V \leq \frac{m}{2}$ ,则  $|V| \leq 2^{\frac{m}{2}}$ ,直接暴力枚举即可。
- 若 dim  $V > \frac{m}{2}$ ,考虑求出 V 的正交补  $V^{\perp}$ ,其中内积  $(x,y) = \operatorname{popcount}(x \& y) \mod 2$ 。此时 dim  $V^{\perp} \leq \frac{m}{2}$ 。
- 引理:  $[x \in V^{\perp}] = \frac{1}{|V|} \sum_{y \in V} (-1)^{(x,y)}$ 。
- $\blacksquare$   $\overline{\mathbb{m}}$   $[x\in V]=[x\in V^{\perp\perp}]=\frac{1}{|V^{\perp}|}\sum\limits_{y\in V^{\perp}}(-1)^{(x,y)}$  ,

- **退** 设  $V = L(a_1, \ldots, a_n)$ 。
- 若 dim  $V \leq \frac{m}{2}$ ,则  $|V| \leq 2^{\frac{m}{2}}$ ,直接暴力枚举即可。
- 若 dim  $V > \frac{m}{2}$ ,考虑求出 V 的正交补  $V^{\perp}$ ,其中内积  $(x,y) = \operatorname{popcount}(x \& y) \mod 2$ 。此时 dim  $V^{\perp} \leq \frac{m}{2}$ 。
- 引理:  $[x \in V^{\perp}] = \frac{1}{|V|} \sum_{y \in V} (-1)^{(x,y)}$ 。
- $\bullet$   $\overline{\mathbf{m}}$   $[x\in V]=[x\in V^{\perp\perp}]=\frac{1}{|V^{\perp}|}\sum\limits_{y\in V^{\perp}}(-1)^{(x,y)}$  ,
- 所以在求出了  $V^{\perp}$  里每个数中 1 的数量即可求出 V 中含有 i 个 1 的数的个数了。

- **退** 设  $V = L(a_1, \ldots, a_n)$ 。
- 若 dim  $V \leq \frac{m}{2}$ ,则  $|V| \leq 2^{\frac{m}{2}}$ ,直接暴力枚举即可。
- 若 dim  $V > \frac{m}{2}$ ,考虑求出 V 的正交补  $V^{\perp}$ ,其中内积  $(x,y) = \operatorname{popcount}(x \& y) \mod 2$ 。此时 dim  $V^{\perp} \leq \frac{m}{2}$ 。
- 引理:  $[x \in V^{\perp}] = \frac{1}{|V|} \sum_{y \in V} (-1)^{(x,y)}$ 。
- $\blacksquare$   $\ \overline{\mathbb{m}}\ [x\in V]=[x\in V^{\perp\perp}]=\frac{1}{|V^\perp|}\sum_{y\in V^\perp}(-1)^{(x,y)}$  ,
- 所以在求出了  $V^{\perp}$  里每个数中 1 的数量即可求出 V 中含有 i 个 1 的数的个数了。
- 总时间复杂度  $O(nm + 2^{\frac{m}{2}})$





习题

#### 习题

P4151 [WC2011] 最大XOR和路径 P3292 [SCOI2016] 幸运数字 CF1336E2 Chiori and Doll Picking (hard version) https://uoj.ac/problem/698 https://qoj.ac/contest/1096/problem/5445