

Fondamenti di Data Science e Machine Learning Data Mining - Modelli, metodi ed applicazioni Prof. Giuseppe Polese, aa 2024-25

Overview

I. Tecniche e algoritmi di base per l'estrazione di conoscenza

- 2. Regole di Associazione
- 3. Algoritmo Apriori

Knowledge Discovery

 La maggior parte delle aziende dispone di enormi basi di dati contenenti dati di tipo operativo

 Queste basi di dati costituiscono una potenziale miniera di informazioni utili

Knowledge Discovery

- Processo di estrazione di pattern di informazioni dai dati esistenti:
 - valide
 - precedentemente sconosciute
 - potenzialmente utili
 - comprensibili[Fayyad, Piatesky-Shapiro, Smith 1996]

Esempio

Persone che hanno ricevuto un prestito dalla banca: x: persone che hanno mancato la restituzione di rate o: persone che hanno rispettato le scadenze

Knowledge Discovery

- Un processo di KD si basa sui seguenti elementi:
 - Dati: insieme di informazioni contenute in una base di dati o data warehouse
 - Pattern: espressione in un linguaggio opportuno che descrive in modo succinto le informazioni estratte dai dati
 - regolarita`
 - informazione di alto livello

Esempio estrazione di informazione

IF stipendio < k THEN mancati pagamenti

Caratteristiche dei pattern

- Validità: i pattern scoperti devono essere validi su nuovi dati con un certo grado di certezza
- Novità: misurata rispetto a variazioni dei dati o della conoscenza estratta
- Utilità
 - Esempio: aumento di profitto atteso dalla banca associato alla regola estratta
- Comprensibilità: misure di tipo
 - sintattico
 - semantico

Processo di estrazione

Processo di estrazione

- Il processo di estrazione in genere parte da insiemi di dati eterogenei
- deve garantire adeguata efficienza, ipotizzando che i dati risiedano su memoria secondaria
- deve essere scalabile
- deve associare misure di qualità ai pattern estratti
- deve permettere di applicare criteri di estrazione diversificati

Overview

- I. Tecniche e algoritmi di base per l'estrazione di conoscenza
- 2. Regole di Associazione
- 3. Algoritmo Apriori

Regole di associazione

- Dati del problema:
 - Linsieme di items
 - prodotti venduti da un supermercato
 - \blacktriangleright transazione T: insieme di items $T \subseteq I$
 - oggetti acquistati nella stessa transazione di cassa al supermercato
 - base di dati D: insieme di transazioni

Regole di associazione (2)

- ▶ Regola di associazione $X \Longrightarrow Y$, con $X,Y \subseteq I$
- Supporto (X) = # transazioni che contengono X in D
- ▶ Supporto (X \Longrightarrow Y): supporto(X \cup Y)
 - rilevanza statistica
- ▶ Confidenza($X \Longrightarrow Y$): supporto($X \cup Y$)/supporto(X)
 - significatività dell'implicazione

Esempio

Latte ⇒ Uova

- Supporto: il 2% delle transazioni contiene entrambi gli elementi
- Confidenza: il 30% delle transazioni che contengono latte contiene anche uova

In una base di dati relazionale

- Items: valori associati ad un certo attributo in una certa relazione
- transazione: sottoinsieme di items, raggruppati rispetto al valore di un altro attributo (ad esempio un codice)

	111	201	01/05/1999	ink	1
T1	111	201	01/05/1999	milk	3
	111	201	01/05/1999	juice	6
T	112	105	03/06/1999	pen	1
T2	112	105	03/06/1999	ink	1
	112	105	03/06/1999	milk	1
T3	113	106	10/05/1999	pen	1
_	113	106	10/05/1999	milk	1
T 4	114	201	01/06/1999	pen	2
T4	114	201	01/06/1999	ink	2
	114	201	01/06/1999	juice	4

Applicazioni

- Analisi market basket
 - * ⇒ uova
 - cosa si deve promuovere per aumentare le vendite di uova?
 - \blacktriangleright Latte \Longrightarrow *
 - quali altri prodotti devono essere venduti da un supermercato che vende latte?
- Dimensione del problema:
 - oggetti: 10^4 , 10^5 ; transazioni: > 10^6
 - base di dati: 10-100 GB

Regole di associazione

- Problema:
 - determinare tutte le regole con supporto e confidenza superiori ad una soglia data

Esempio

TRANSACTION ID

OGGETTI ACQUISTATI

1	A,B,0
2	A,C
3	A,D
4	B,E,F

- Assumiamo:
 - supporto minimo 50%
 - confidenza minima 50%

Esempio (continua)

TRANSACTION ID

OGGETTI ACQUISTATI

1		
2		
3		
4		

- Regole ottenute:
 - ► A ⇒ C supporto 50% confidenza 66.6
 - C ⇒ A supporto 50% confidenza 100%

Determinazione regole di associazione

- Decomposizione problema
 - Trovare tutti gli insiemi di item (itemset) che hanno un supporto minimo (frequent itemset)
 - Algoritmo fondamentale: APRIORI [Agrawal, Srikant 1994]
 - Generazione delle regole a partire dai frequent itemset

Esempio

Passo 1: estrazione dei frequent itemset

TRANSACTION ID

OGGETTI ACQUISTATI

1 2 3 4

supporto minimo 50%

A,B,C A,C A,D B,E,F

FREQUENT ITEMSET

{A} {B} {C} {A,C} **SUPPORTO**

75% 50% 50% 50%

Esempio (continua)

- Passo 2: estrazione regole
 - confidenza minima 50%
 - ▶ Esempio: regola A ⇒ C
 - supporto {A,C} = 50%
 - confidenza = supporto {A,C}/supporto{A} = 66.6%
 - regole estratte
 - ► A ⇒ C supporto 50%, conf. 66.6%
 - $ightharpoonup C \implies$ A supporto 50%, conf. 100%

Algoritmo Apriori

Ad ogni passo:

- costruisce un insieme di itemset candidati
- conta il numero di occorrenze di ogni candidato (accedendo alla base di dati)
- determina i candidati che sono frequent itemset

Al passo k:

- C_k: insieme di itemset candidati di dimensione k (potenzialmente frequent itemset)
- L_k: insieme di frequent itemset di dimensione k

Algoritmo Apriori

```
L<sub>1</sub> = {singoli items frequenti}
for (k=1, L_k \neq \{\}, k++)
  begin
  C_{k+1} = nuovi candidati generati da L_k
  foreach transazione t in D do
        incrementa il conteggio di tutti i candidati in C_{k+1}
                che sono contenuti in t
  L_{k+1} = candidati in C_{k+1} con supporto minimo
  end
frequent itemsets = U_k L_k
```

Apriori: generazione candidati

- Proprietà: ogni sottoinsieme di un frequent itemset è un frequent itemset
- Soluzione A:
 - dato L_k, C_{k+1} si genera aggiungendo un item agli itemset in L_k.
- Soluzione B (ottimizzata rispetto ad A)
 - ▶ Da C_k si possono cancellare tutti i candidati che contengono un sottoinsieme non frequent
 - In pratica:
 - calcolo il join di L_k con L_{k,} imponendo che almeno k-1 elementi siano uguali
 - elimino dal risultato gli itemset che contengono sottoinsiemi non frequenti

Esempio

Base di dati D

TID	Items
100	1, 3, 4
200	2, 3, 5
300	1, 2, 3, 5
400	2, 5

- Supporto minimo 50% (cioè almeno 2 transazioni)
- nel seguito con supporto intendiamo il numero di transazioni e non la percentuale per comodità

Esempio: Soluzione A

```
Scansione D (1)
Itemset
           Supporto (*4)
                             Itemset
                                        Supporto
{1}
                             {1}
{2}
                             {2}
{3}
                             {3}
{4}
                             {5}
{5}
```

Esempio (continua)

Itemset

{1, 2} {1, 3}	$C_2 \longrightarrow Sca$	nsione D (2	2)	
{1, 4}		C_2	L_2	
{1, 5}	Itemset	Supporto		
{2, 3}	{1, 2}	1	Itemset	Supporto
$\{2, 4\}$	{1, 3}	2	{1, 3}	2
{2, 5}	{1, 4}	1	{2, 3}	2
{3, 4}	{1, 5}	1	$\{2, 5\}$	3
{3, 5}	{2, 3}	2	{3, 5}	2
	{2, 4}	0	(3, 3)	2
	{2, 5}	3		
	{3, 4}	1		
	{3, 5}	2		

Esempio (continua)

```
Itemset
{1, 3, 2}
{1, 3, 4}
            C_3 — Scansione D (3)
\{1, 3, 5\}
{2, 3, 4}
{2, 3, 5}
                             Supporto
                Itemset
                                         Itemset
                                                      Supporto
{2, 5, 1}
                {1, 3, 2}
                                        {2, 3, 5}
{2, 5, 4}
                {1, 3, 4}
{3, 5, 4}
                {1, 3, 5}
                {2, 3, 4}
                {2, 3, 5}
                {2, 5, 1}
                {2, 5, 4}
                {3, 5, 4}
```

Esempio: Soluzione B

```
Scansione D (1)
Itemset
           Supporto (*4)
                             Itemset
                                         Supporto
\{1\}
                             {1}
{2}
                             {2}
{3}
                             {3}
{4}
                             {5}
{5}
```

Esempio (continua)

Itemset $\{1, 2\}$ → Scansione D (2) {1, 3} $\{1, 5\}$ {2, 3} **Itemset** Supporto {2, 5} **Itemset** Supporto {1, 2} {3, 5} $\{1, 3\}$ $\{1, 3\}$ {2, 3} {1, 5} {2, 5} $\{2, 3\}$ {3, 5} {2, 5} {3, 5}

Esempio (continua)

Itemset

Esempio

- Supporto = 75% (3 transazioni su 4)
- relazione:

Transid	custid	date	item	qty
111	201	01/05/1999	pen	2
111	201	01/05/1999	ink	1
111	201	01/05/1999	milk	3
111	201	01/05/1999	juice	6
112	105	03/06/1999	pen	1
112	105	03/06/1999	ink	1
112	105	03/06/1999	milk	1
113	106	10/05/1999	pen	1
113	106	10/05/1999	milk	1
114	201	01/06/1999	pen	2
114	201	01/06/1999	ink	2
114	201	01/06/1999	juice	4

Esempio: soluzione A

- Level 1:
 - L1: {pen} 1, {ink} 3/4, {milk} 3/4
- Level 2:
 - C2: {pen, ink}, {pen,milk}, {pen, juice}, {ink, milk}, {ink, juice}, {milk, juice}
 - L2: {pen,ink} 3/4, {pen, milk} 3/4
- Level 3:
 - C3: {pen, ink, milk}, {pen, ink, juice}, {pen, milk,juice}
 - ▶ L3: nessuno

Esempio: soluzione B

- Level 1:
 - L1: {pen} 1, {ink} 3/4, {milk} 3/4
- Level 2:
 - C2: {pen, ink}, {pen,milk}, {ink, milk}
 - L2: {pen,ink} 3/4, {pen, milk} 3/4
- Level 3:
 - C3: nessuno

Generazione regole

- Il supporto dei frequent itemset è già superiore ad una certa soglia, vogliamo costruire regole in cui anche la confidenza è maggiore di una certa soglia.
- ▶ Sia X un frequent itemset, dividiamo X in due itemset LHS e RHS tali che X = LHS U RHS e consideriamo la regola LHS → RHS.
- La sua confidenza è supporto(X)/supporto(LHS), ma per la proprietà dei frequent itemset, essendo LHS sottoinsieme di un frequent item set è esso stesso frequent, quindi il suo supporto è stato calcolato nella prima fase dell'algoritmo Apriori. Calcolo quindi la confidenza e verifico se supera il limite posto.

Esempio

- Frequent itemset: {pen} 1, {ink} 3/4, {milk} 3/4, {pen,ink} 3/4, {pen, milk} 3/4
- voglio costruire regole non banali (confidenza = 1)
- considero {pen,milk}
 - supporto({pen,milk}) = 3/4
 - supporto({pen}) =1
 - supporto({milk}) =3/4
 - confidenza(pen => milk) = 3/4 non restituita
 - confidenza(milk => pen) = 1 restituita
- considero {pen,ink}
 - supporto({pen,ink} = 3/4
 - supporto({pen}) =1
 - supporto({ink}) =3/4
 - confidenza(pen => ink) = 3/4
 - confidenza(ink => pen) = 1

non restituita

restituita

In molti casi gli item sono organizzati gerarchicamente

li supporto di un itemset può solo aumentare se un item viene rimpiazzato con un suo antenato nella gerarchia

Supponendo di avere informazioni anche per gli item generalizzati, si possono calcolare le regole nel modo usuale

Transid	custid	date	item	qty
111	201	5/1/99	stationery	3
111	201	5/1/99	beverage	9
112	105	6/3/99	stationery	2
112	105	6/3/99	beverage	1
113	106	5/10/99	stationery	1
113	106	5/10/99	beverage	1
114	201	6/1/99	stationery	4
114	201	6/1/99	beverage	4

Per esercizio: provare a calcolare le nuove regole di associazione

- Determinazione regole di associazione nel contesto di sottoinsiemi di dati che soddisfano determinate condizioni
 - se una penna è acquistata da un certo cliente, allora è probabile che lo stesso cliente comprerà anche latte
 - si considerano solo gli acquisti di un certo cliente
- Pattern sequenziali
 - tutti gli item acquistati da un certo cliente in una certa data definiscono un itemset
 - gli itemset associati ad un cliente possono essere ordinati rispetto alla data, ottenendo una sequenza di itemset (pattern sequenziale)
 - il problema è determinare tutti i pattern sequenziali con un certo supporto

Regole di classificazione e regressione

Regola di classificazione:

$$P_1(X_1) \wedge ... \wedge P_k(X_k) \Longrightarrow Y = c$$

Y attributo dipendente

X_i attributi *predittivi*

 $P_i(X_i)$ condizione su attributo X_i

- Due tipi di attributi:
 - numerici
 - categorici (tipi enumerazione)

Regole di classificazione e regressione(2)

- Se l'attributo dipendente è categorico, si ottiene una regola di classificazione
- se l'attributo dipendente è numerico, si ottiene una regola di regressione
- se X_i è numerico, $P_i(X_i)$ in genere coincide con $I_i \le X_i \le g_i$, con I_i e g_i appartenenti al dominio di X_i
- ▶ X_i è categorico, $P_i(X_i)$ coincide con $X_i \in \{v_{i,...,}, v_n\}$

Esempio

- InfoAssicurazioni(età:int, tipo_auto:string,rischio:{alto,basso})
- Regola di classificazione

età > 25 ∧ tipo_auto ∈ {Sportiva, utilitaria} ⇒ rischio = alto

Supporto e confidenza

- Il supporto di una condizione C è la percentuale di tuple che soddisfano C
- il supporto di una regola $C_1 \Rightarrow C_2$ è il supporto della condizione $C_1 \land C_2$
- la confidenza di una regola $C_1 \Rightarrow C_2$ è la percentuale di tuple che soddisfano C_1 che soddisfano anche C_2

Applicazioni

- Le regole di classificazione/regressione vengono utilizzate in tutte le applicazioni che presentano problematiche di classificazione dei dati:
 - classificazione risultati scientifici, in cui gli oggetti devono essere classificati in base ai dati sperimentali rilevati
 - analisi dei rischi
 - previsioni economiche

Classificazione

- Il problema della classificazione può essere introdotto in un modo più generale
- Dati del problema:
 - insieme di classi (valori per un attributo categorico)
 - insieme di oggetti etichettati con il nome della classe di appartenenza (training set)
- Problema:
 - trovare il profilo descrittivo per ogni classe, utilizzando le feature dei dati contenuti nel training set, che permetta di assegnare altri oggetti, contenuti in un certo test set, alla classe appropriata

Settori di sviluppo

- Statistica
- machine learning
 - alberi di decisione
 - inductive logic programming
- reti neurali
- sistemi esperti
- data mining

Ipotesi di funzionamento

Training set contenuto nella memoria principale del sistema

- Nei DB attuali possono essere disponibili anche Mbyte di training set
 - dimensioni significative del training set possono migliorare l'accuratezza della classificazione

Alberi di decisione

- Gli alberi di decisione rappresentano un approccio alla classificazione molto utilizzato
- permettono di rappresentare con un albero un insieme di regole di classificazione
- Caratteristiche:
 - Veloci rispetto agli altri metodi
 - Facili da interpretare tramite regole di classificazione (una per ogni cammino dell'albero)
 - Possono essere facilmente convertiti in interrogazioni SQL per interrogare la base di dati

Esempio

Costruzione albero

Due fasi:

- fase di build: si costruisce l'albero iniziale, partizionando ripetutamente il training set sul valore di un attributo, fino a quando tutti gli esempi in ogni partizione appartengono ad una sola classe
- fase di pruning: si pota l'albero, eliminando rami dovuti a rumore o fluttuazioni statistiche
 - Esempio: si estraggono campioni multipli dal training set e si costruiscono alberi indipendenti
 - non approfondiamo questo aspetto

Fase di build

```
Builtree(training set T)
{Partition(T)}
Partition(Data set S)
  if (tutti i punti in S sono nella stessa classe) then
        return
  foreach attributo A do
       valuta gli splits su A (usando un algoritmo di split)
  usa split "migliore" per partizionare S in S1 e S2
  Partition(S1)
  Partition(S2)
```

Algoritmi di split

- Dato un attributo A, determinano il miglior predicato di split per un attributo:
- due problemi:
 - scelta predicato
 - determinazione bontà
- scelta predicato:
 - dipende dal tipo dell'attributo
- ottimalità:
 - un buon predicato permette di ottenere:
 - meno regole (meno split, nodi con fan-out più basso)
 - supporto e confidenza alte

Predicati di Split

- Gli split possono essere
 - binari
 - multipli
- per attributi numerici
 - split binario: A <= v, A > v
 - split multiplo: A <= v1, v1 < A <= v2, ..., vn-1 < A <= vn</p>
- per attributi categorici, se il dominio di A è S:
 - ▶ split binario: $A \in S'$, $A \in S S'$ con $S' \subset S$
 - ▶ split multiplo: $A \in S1$, ..., $A \in Sn$

con S1 U ... U Sn = S, Si
$$\cap$$
 Sj = {}

Indici di splitting

- Valutano la bontà di split alternativi per un attributo
- Diverse tipologie di indice
- Indice Gini:
 - dataset T con esempi di n classi

 - con p_i frequenza class i in T
- Se T viene suddiviso in T1 con esempi appartenenti a n1 classi e T2 con esempi appartenenti a n2 classi:
- split con indici più bassi sono giudicati migliori

Esempio

	ETA`	TIPO AUTO	CLASSE
			RISCHIO
t1	40	familiare	basso
t2	65	sportiva	alto
t3	20	utilitaria	alto
t4	25	sportiva	alto
t5	50	familiare	basso

- due classi, n = 2
- Si consideri lo split rispetto a Età <= 25</p>
- ► T1= {t3, t4}, T2={t1, t2, t5}
- \rightarrow gini_split(T) = 1/2 (1 1) + 2/2 (1 (1/9 +4/9)) = 4/9

Split su attributi multipli

gestione training set in memoria secondaria

Metriche per la Valutazione di Classificatori

- Accuratezza della Classificazione
 - Hit rate
- Velocità di classificazione
 - Costruzione del modello di classificazione;
 - Classificazione di nuovi oggetti o casi
- Robustezza:
 - capacità del modello predittivo di effettuare classificazioni abbastanza accurate anche in presenza di valori mancanti o errori nei dati
- Scalabilità
 - capacità di costruire un modello predittivo in modo efficiente a partire da dati molto voluminosi
- Facilità di interpretazione dei risultati
 - Trasparenza
 - Facilità di spiegazione

Accuratezza di Modelli di Classificazione

 Nei problemi di classificazione, la fonte primaria per la stima dell'accuratezza è la confusion matrix

		True Class			
		Positive	Negative		
Predicted Class	Positive	True Positive Count (TP)	False Positive Count (FP)		
	Negative	False Negative Count (FN)	True Negative Count (TN)		

$$Accuratezza = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Tasso True Positive = \frac{TP}{TP + FN}$$

$$Tasso True Negative = \frac{TN}{TN + FP}$$

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

Split di Training e Test Set

Split Semplice

 Suddividere i dati in 2 due insiemi mutuamente esclusivi, di cui ~70% training e ~30% testing

Clustering

- Dati del problema:
 - base di dati di oggetti
- Problema:
 - trovare una suddivisione degli oggetti in gruppi (cluster) in modo che:
 - gli oggetti in un gruppo siano molto simili tra di loro
 - oggetti in gruppi diversi siano molto diversi
 - i gruppi possono essere anche sovrapposti o organizzati gerarchicamente

Applicazioni

- Identificazione di popolazioni omogenee di clienti in basi di dati di marketing
- valutazione dei risultati di esperimenti clinici
- monitoraggio dell'attivita` di aziende concorrenti

Settori di sviluppo

- Statistica
- machine learning
- database spaziali
- data mining
- molti algoritmi assumono che i dati risiedano in memoria
- poco scalabili

Esempio

Stipendio

Cluster Analysis per il Data Mining

- Metodi di Analisi
 - ▶ Metodi Statistici, quali il *k*-means, il *k*-modes, etc
 - Reti Neurali
 - Logica Fuzzy (e.g., fuzzy c-means algorithm)
 - Algoritmi Genetici

Approccio

- La similitudine tra due oggetti si ottiene applicando una funzione di distanza
- la nozione di distanza dipende dagli oggetti considerati e dal tipo di applicazione
- Due tipi di algoritmi:
 - algoritmi di partizionamento:
 - dato il numero di cluster k, partizionare i dati in k cluster in modo che certi criteri di ottimalità siano verificati
 - algoritmi gerarchici:
 - > si parte da una partizione in cui ogni cluster è composto da un singolo oggetto
 - le partizioni vengono combinate, in modo da mettere insieme gli oggetti più simili
 - alternativamente, si parte da un singolo cluster contenente tutti i dati e lo si partiziona fino a raggiungere il numero k di cluster

Metodo k-Nearest Neighbor (k-NN)

- ▶ E' uno dei più semplici algoritmi di machine learning
- Un'alternativa alle reti neurali ed all'algoritmo di machine leaning Support Vector Machine (SVM), computazionalmente troppo complessi
- ▶ *k*-NN è un metodo predittivo utilizzabile sia per la classificazione che per la regressione
- E' un approccio di learning di tipo instance-based (o lazy learning) – gran parte del lavoro è svolto a tempo di classificazione anziché di modellazione
- ▶ *k* : il numero di vicini usati per la classificazione

Funzionamento di k-NN

- Ogni nuovo oggetto viene classificato usando la maggioranza dei suoi k oggetti più vicini
- L'oggetto viene quindi assegnato alla classe più ricorrente tra i k oggetti più vicini
- Se k=1 l'oggetto viene semplicemente inserito nella classe dell'oggetto più vicino
- Oltre al parametro k occorre selezionare una funzione di distanza

Esempio di applicazione di k-NN

Il Processo del Metodo k-NN

Funzioni di Distanza o Similarità

Minkowski distance

$$d(i,j) = \sqrt[q]{(x_{i1} - x_{j1})^q + (x_{i1} - x_{j1})^q + \dots + (x_{ip} - x_{jp})^q}$$

If q=1, then d is called Manhattan distance

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

If q=2, then d is called Euclidean distance

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i1} - x_{j1})^2 + \dots + (x_{ip} - x_{jp})^2}$$

- Dove i e j sono due oggetti nello spazio n-dimensionale
- Funzionano per attributi numerici non per i categorici

Distanza di Jaccard

☐ Il coefficiente di Jaccard misura la similarità tra insiemi campionari, ed è definito come la dimensione della intersezione divisa per la dimensione dell'unione degli insiemi campionari:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}.$$

□ La distanza di Jaccard, che misura la dissimilarità tra insiemi campionari, è complementare al coefficiente di Jaccard e si ottiene sottraendo il coefficiente di Jaccard da I.

Scelta del Parametro k

- ▶ Il miglior valore dipende dai dati in input
- Valori più grandi di k riducono gli effetti distorsivi (errori, valori mancanti) nei dati, ma rendono anche meno marcati i confini tra le classi
- Un valore ottimale viene spesso trovato tramite euristiche
- ▶ La Cross Validation è una delle tecniche più frequentemente utilizzate per trovare il valore ottimale per k e per la misura di distanza

Cross Validation

- Tecnica sperimentale per inferire valori ottimali per parametri di modelli predittivi
- Ad esempio, per trovare il valore ottimale di k nel k-NN o valutare la bontà di un valore di k
 - ▶ si sceglie un numero v in modo casuale e, per ogni valore potenziale di k, si classifica, a turno, uno dei v insiemi usando gli altri v-1 come training set
 - per ognuno di tali v esperimenti si calcola l'errore quadratico metrico, aggregando tali valori
 - ▶ si sceglie il valore di *k che* minimizza l'errore totale

Algoritmo di Clustering k-Means

- ▶ *k* : numero pre-determinato di clusters
- Occorre anche qui una funzione di distanza
- Algoritmo (Step 0: determina valore di k)
 - Step 1: Seleziona in modo casuale *k* punti come centri iniziali dei cluster.
 - Step 2: Assegna ciascun nuovo punto al cluster il cui centro è più vicino.
 - Step 3: Ricalcola i centri dei cluster aggiornati
 - Step di ripetizione: Ripetere gli step 2 e 3 finchè si raggiungerà un dato criterio di convergenza (sostanzialmente, l'assegnamento di punti che rende stabili le classi).

Esempio di Clustering con k-Means

Similarity search

- Dati del problema:
 - base di dati di sequenze temporali

- Problema:determinare
 - sequenze simili ad una sequenza data
 - tutte le coppie di sequenze simili

Applicazioni

- Identificazione delle società con comportamento simile di crescita
- determinazione di prodotti con profilo simile di vendita
- identificazione di azioni con andamento simile
- individuazione di porzioni di onde sismiche non simili per determinare irregolarità geologiche

Settori di sviluppo

- Database temporali
- speech recognition techniques
- database spaziali

Tecniche

- Due tipi di interrogazione
 - match completo: la sequenza cercata e le sequenze della base di dati hanno la stessa lunghezza
 - match parziale: la sequenza cercata puo`essere sottosequenza di quelle recuperate dalla base di dati
- Possibilita`di traslazioni, variazioni di scala
- Diverse misure con cui confrontare le sequenze
 - Esempio: misura euclidea

$$X = \langle x1,...,xn \rangle$$

 $Y = \langle y1,...,yn \rangle \quad | \mid X - Y \mid | = \sum (xi - yi)^2$

Esempio

Software per il Data Mining

- Commerciali
 - ► IBM SPSS Modeler (formerly Clementine)
 - SAS Enterprise Miner
 - ▶ IBM Intelligent Miner
 - StatSoft Statistica Data Miner
 - ... e molti altri
- Free e/o Open Source
 - ▶ R
 - RapidMiner
 - Weka...

Piattaforme Software per Big Data

