

Figure 1: images de l'exercice 8

Examen de traitement numérique du signal

Durée: 1h30

Une copie double manuscrite est autorisée. La calculatrice et le téléphone portable sont interdits.

NOM: Prénom:

θ	0	$\frac{\pi}{10}$	$\frac{\pi}{8}$	$\frac{\pi}{6}$	$\frac{\pi}{5}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \theta$	1	$\sqrt{\frac{5+\sqrt{5}}{8}}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1+\sqrt{5}}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \theta$	0	$\frac{\sqrt{5}-1}{4}$	$rac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{1}{2}$	$\sqrt{\frac{5-\sqrt{5}}{8}}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan \theta$	0	$\sqrt{1-\frac{2}{\sqrt{5}}}$	$\sqrt{2}-1$	$\frac{\sqrt{3}}{3}$	$\sqrt{5-2\sqrt{5}}$	1	$\sqrt{3}$	∞
$e^{j\theta}$	1	·	$\frac{\sqrt{2+\sqrt{2}}}{2}\left(1-j+j\sqrt{2}\right)$	$\frac{\sqrt{3}}{2} + \frac{j}{2}$		$\frac{\sqrt{2}}{2}(1+j)$	$\frac{1}{2} + \frac{j\sqrt{3}}{2}$	j

Exercice 1 () Trouvez en observant la figure 4 la fonction de transfert transformant X(z) en Y(z).

Solution:

$$H(z) = \frac{(1 - \frac{1}{2}z^{-1})^2}{2 - \frac{1}{2}z^{-1}}$$

Exercice 2 () Faites la synthèse d'un filtre numérique passe-bas de Butterworth à l'ordre 1 pour la fréquence de coupure $f_c = 1$ Hz. La fréquence d'échantillonnage est $f_e = 5$ Hz. Donnez la fonction de transfert du filtre ainsi synthétisé et la relation entrée-sortie de ce filtre.

Solution:

$$H(z) = \frac{(1+\sqrt{5})(1-z^{-1})}{(\sqrt{10-2\sqrt{5}}+1+\sqrt{5})+(\sqrt{10-2\sqrt{5}}-(1+\sqrt{5}))z^{-1}} \\ (\sqrt{10-2\sqrt{5}}+1+\sqrt{5})y_n+(\sqrt{10-2\sqrt{5}}-(1+\sqrt{5}))y_{n-1} = (1+\sqrt{5})(x_n-x_{n-1}) \\ \text{t=sqrt} (10-2*\text{sqrt}(5))/(1+\text{sqrt}(5)); \text{ t-tan}(\text{pi/5}), \\ \text{B=} (1+\text{sqrt}(5))*[1-1]; \\ \text{A=} [\text{sqrt} (10-2*\text{sqrt}(5))+(1+\text{sqrt}(5)) \text{ sqrt} (10-2*\text{sqrt}(5))-(1+\text{sqrt}(5))]; \\ \text{H=freqz} (\text{B,A,[0-100-250],500}); \\ \text{H,}$$

Exercice 3 () On considère le filtre défini par la réponse impulsionnelle $h_n=0.5$ si n=0, $h_n=-0.5$ si n=1 et $h_n=0$ sinon. La fréquence d'échantillonnage est de $fe=100 {\rm Hz}$. On considère le signal $x_n=2\delta_n-\delta_{n-4}$

- 1. Quelle est la transformée en Z?
- 2. Quelle est la relation entrée-sortie?
- 3. On applique à ce filtre l'entrée x_n , calculez la sortie y_n ?
- 4. Représentez sur un graphique y_n en indiquant précisément l'échelle des abscisses.

Solution:

- 1. $H(z) = \frac{1}{2} \frac{1}{2}z^{-1}$
- 2. $y_n = \frac{1}{2}x_n \frac{1}{2}x_{n-1}$
- 3. $y_n = \delta_n \delta_{n-1} \frac{1}{2}\delta_{n-4} + \frac{1}{2}\delta_{n-5}$
- 4. fe=100; tn=0:1/fe:6/fe; yn=[1 -1 0 0 -1/2 1/2 0]; figure(1); plot(tn,yn,'s'); axis([-0.1/fe 6.1/fe -1.5 1.5]); line([0 0],ylim); line(xlim,[0 0])

Figure 2: Corrige: signal y_n Exercice 3

Exercice 4 () On considère le signal $x(t) = \mathbf{1}_{[-1,1]}(t)$, calculez l'autocorrélation de ce signal en $t = \frac{1}{2}$

Solution:

$$\gamma_x(1/2) = \int_{-\infty}^{+\infty} x(t)x(t-1/2)dt = 7/4$$