20PCSE59J

Image Processing Techniques Mini Project

Inference Report

Task 1:

Problem Definition:

Choose your desired color image, convert it to a black-and-white (BW) image, and apply any four image enhancement techniques. Also, write your inference.

Methodology (Techniques, Models, Tools Used):

Tools Used:

- Python
- OpenCV
- NumPy
- Matplotlib
- scikit-image
- scikit-learn

Used OpenCV for:

- Grayscale conversion
- Binary thresholding
- Histogram equalization
- Sharpening filter
- Gaussian blurring
- Contrast stretching

Data Description and Preprocessing Steps:

A color image was chosen and transformed into grayscale. Noisy areas and lighting variations were treated using various enhancement operations to ready the image for segmentation or analysis.

Results:

Inference:

- Histogram Equalization: Improved overall contrast
- Sharpening: Highlighted edges and fine structures
- Gaussian Blur: Reduced noise but slightly blurred details
- Contrast Stretching: Boosted intensity range and highlighted low-contrast regions

Task 2:

Problem Definition:

Select any noisy image, apply filters to remove the noise. Using the same image, apply a Fourier transform and implement Ideal High Pass (IHP), Ideal Low Pass (ILP), and Butterworth Pass (BP) filters.

Methodology (Techniques, Models, Tools Used):

- Spatial Filtering: Median, Gaussian, Bilateral
- Frequency Domain: FFT with Ideal High Pass (IHP), Ideal Low Pass (ILP), Butterworth filters

Data Description and Preprocessing Steps:

A noisy grayscale image was selected. Spatial filters were applied to denoise, followed by FFT and masking to apply frequency domain filtering.

Results:

Inference:

- Median Filter: Best at removing salt-and-pepper noise
- Gaussian: Smoothed noise but blurred edges
- Bilateral: Preserved edges while reducing noise
- IHP: Enhanced edges but retained high-frequency noise
- ILP: Smoothed image but removed detail
- Butterworth: Initial output was blank due to mask errors; fixed by tuning cutoff and normalization

Task 3:

Problem Definition:

Choose any image and apply image segmentation techniques such as Thresholding and Clustering. Additionally, perform Morphological Operations over it.

Methodology (Techniques, Models, Tools Used):

- Otsu Thresholding
- K-Means Clustering
- Morphological Operations: Dilation, Erosion, Opening, Closing (OpenCV)

Data Description and Preprocessing Steps:

A grayscale brain MRI image was used. Segmentation was done using Otsu and K-Means. Morphological operations refined the binary masks by removing noise and closing gaps.

Results:

Inference:

- K-Means provided clearer clusters than Otsu
- Dilation provided Expanded region boundaries
- Erosion removed small noise
- Opening smoothed object edges
- Closing filled internal holes

Task 4:

Problem Definition:

Classify MRI images of brain tumors into three categories using extracted structural and textural features.

Methodology (Techniques, Models, Tools Used):

• Feature Extraction: Connected components (structural), GLCM (textural)

• Model: Random Forest Classifier (scikit-learn)

• Tools: OpenCV, scikit-image, Pandas, NumPy, TQDM

Data Description and Preprocessing Steps:

Dataset: Bangladesh Brain Cancer MRI Dataset

6056 images across 3 classes:

• Brain Glioma (2004)

• Brain_Menin (2004)

• Brain_Tumor (2048)

Preprocessing:

- Resize to 256×256
- Convert to grayscale
- Extract 10+ features per image
- Label and compile into a DataFrame

Results:

Classification Report		
-----------------------	--	--

	precision	recall	f1-score	support
Ø	0.85	0.85	0.85	425
1	0.77	0.76	0.77	392
2	0.84	0.85	0.85	395
accuracy			0.82	1212
macro avg	0.82	0.82	0.82	1212
weighted avg	0.82	0.82	0.82	1212

Inference and Evaluation Metrics:

Accuracy: 82%

Classification Report Highlights:

Glioma: Precision 0.85, Recall 0.85
Menin: Precision 0.77, Recall 0.76
Tumor: Precision 0.84, Recall 0.85

Confusion Matrix:

- Menin class showed overlap with Tumor
- Glioma and Tumor were well classified

Challenges Faced and How They Were Addressed:

- Faced Memory errors on Google Colab. Resolved with image resizing
- GLCM feature extraction was slow. It was resolved using batch processing

Conclusion:

Random Forests yielded solid performance from extracted features.

Future Improvements:

- Switch to CNNs for better feature learning
- Use transfer learning (e.g., ResNet, VGG)
- Add explainability (Grad-CAM)
- Deploy as a diagnostic support tool