Residuals

Residuals are used to examine model assumptions and to detect outliers and potentially influential data point. The raw residuals r_{mi} and r_{ci} are usually not well suited for these purposes.

- \bullet Conditional Residuals r_{ci}
- Marginal Residuals r_{mi}

•

Conditional Residuals

Marginal Residuals

Distinction From Linear Models

- The differences between perturbation and residual analysis in the linear model and the linear mixed model are connected to the important facts that b and b depend on the estimates of the covariance parameters, that b has the form of an (estimated) generalized least squares (GLS) estimator, and that is a random vector.
- In a mixed model, you can consider the data in a conditional and an unconditional sense. If you imagine a particular realization of the random effects, then you are considering the conditional distribution Y—
- If you are interested in quantities averaged over all possible values of the random effects, then you are interested in Y; this is called the marginal formulation. In a clinical trial, for example, you may be interested in drug efficacy for a particular patient. If random effects vary by patient, that is a conditional problem. If you are interested in the drug efficacy in the population of all patients, you are using a marginal formulation. Correspondingly, there will be conditional and marginal residuals, for example.

• The estimates of the fixed effects

- depend on the estimates of the covariance parameters. If you are interested in determining the influence of an observation on the analysis, you must determine whether this is influence on the fixed effects for a given value of the covariance parameters, influence on the covariance parameters, or influence on both.
- Mixed models are often used to analyze repeated measures and longitudinal data.
 The natural experimental or sampling unit in those studies is the entity that is repeatedly observed, rather than each individual repeated observation. For example, you may be analyzing monthly purchase records by customer.

- An influential data point is then not necessarily a single purchase. You are probably more interested in determining the influential customer. This requires that you can measure the influence of sets of observations on the analysis, not just influence of individual observations.
- The computation of case deletion diagnostics in the classical model is made simple by the fact that model. Such update formulas are available in the mixed model only if you assume that the covariance parameters are not affected by the removal of the observation in question. This is rarely a reasonable assumption.
- The application of well-known concepts in model-data diagnostics to the mixed model can produce results that are at first counter-intuitive, since our understanding is steeped in the ordinary least squares (OLS) framework. As a consequence, we need to revisit these important concepts, ask whether they are portable to the mixed model, and gain new appreciation for their changed properties. An important example is the ostensibly simple concept of leverage.
- The definition of leverage adopted by the MIXED procedure can, in some instances, produce negative values, which are mathematically impossible in OLS. Other measures that have been proposed may be non-negative, but trade other advantages. Another example are properties of residuals. While OLS residuals necessarily sum to zero in any model (with intercept), this not true of the residuals in many mixed models.

SUMMARY AND CONCLUSIONS

Standard residual and influence diagnostics for linear models can be extended to linear mixed models. The dependence of fixed-effects solutions on the covariance parameter estimates has important ramifications in perturbation analysis. To gauge the full impact of a set of observations on the analysis, covariance parameters need to be updated, which requires refitting of the model.

The experimental INFLUENCE option of the MODEL statement in the MIXED procedure (SAS 9.1) enables you to perform iterative and noniterative influence analysis for individual observations and sets of observations. The conditional (subject-specific) and marginal (population-averaged) formulations in the linear mixed model enable you to consider conditional residuals that use the estimated BLUPs of the random effects, and marginal residuals which are deviations from the overall mean. Residuals using the BLUPs are useful to diagnose whether the random effects components in the model are specified correctly, marginal residuals are useful to diagnose the fixedeffects components. Both types of residuals are available in SAS 9.1 as an experimental option of the MODEL statement in the MIXED procedure. It is important to note that influence analyses are performed under the assumption that the chosen model is correct. Changing the model structure can alter the conclusions. Many other variance models have been fit to the data presented in the repeated measures example. You need to see the conclusions about which model component is affected in light of the model being fit. For example, modeling these data with a random intercept and random slope for each child or an unstructured covariance matrix will affect your conclusions about which children are influential on the analysis and how this influence manifests itself.

0.1 Summary of Paper

Standard residual and influence diagnostics for linear models can be extended to LME models. The dependence of the fixed effects solutions on the covariance parameters has important ramifications on the perturbation analysis. Calculating the

 ${\tt student}_z ed residuals - And influence statistics where a seach software procedure can calculate both conditions and the procedure of the conditions of the conditions of the condition of the conditions of$

LME are flexible tools for the analysis of clustered and repeated measurement data. LME extend the capabilities of standard linear models by allowing unbalanced and missing data, as long as the missing data are MAR. Structured covariance matrices for both the random effects G and the residuals R. missing at Random.

A conditional residual is the difference between the observed valve and the predicted valve of a dependent variable- Influence diagnostics are formal techniques that allow the identification observation that heavily influence estimates of parameters. To alleviate the problems with the interpretation of conditional residuals that may have unequal variances, we consider sealing. Residuals obtained in this manner are called studentized residuals.

0.1.1 ITERATIVE VS. NONITERATIVE INFLUENCE ANAL-YSIS

While the basic idea of influence analysis is straightforward, the implementation in mixed models can be tricky. For example, update formulas for the fixed effects are available only when the covariance parameters are assumed to be known. At most the profiled residual variance can be updated without refitting the model. A measure of total influence requires updates of all model parameters, and the only way that this can be achieved in general is by removing the observations in question and refitting the model. Because this bruteforce method involves iterative reestimation of the covariance parameters, it is termed iterative influence analysis. Reliance on closed-form update formulas for the fixed effects without updating the (un-profiled) covariance parameters is termed a noniterative influence analysis. An iterative analysis seems like a costly, computationally intensive enterprise. If you compute iterative influence diagnostics for all n observations, then a total of n+1 mixed models are fit iteratively. This does not imply, of course, that the procedures execution time increases n-fold. Keep in mind that

- iterative reestimation always starts at the converged full-data estimates. If a data point is not influential, then its removal will have little effect on the objective function and parameter estimates. Within one or two iterations, the process should arrive at the reduced-data estimates.
- if complete reestimation does require many iterations, then this is important information in itself. The likelihood surface has probably changed drastically, and the reduced-data estimates are moving away

from the full-data estimates.