Zad. 1 Niech A={a,b,c,d,e}, B={c,e,f,g}. Wyznacz $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$.

Zad. 2 Udowodnij prawo:

1.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

2.
$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$$

3.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

4.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

5.
$$(A \cap B) \cup (A \setminus B) = A$$

6.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

x€A	x€B	x€C	x€B∪C	L	x€A∩B	x€A∩C	Р
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

L=P

7.
$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$$

x€A	x€B	x€C	х€А∪В	L	x€A\C	x€B\C	Р
1	1	1	1	0	0	0	0
1	1	0	1	1	1	1	1
1	0	1	1	0	0	0	0
1	0	0	1	1	1	0	1
0	1	1	1	0	0	0	0
0	1	0	1	1	0	1	1
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

L=P

$$x \in A' \leftrightarrow x \notin A$$

Udowodnij prawo: $(A \cup B)' = A' \cap B'$

 $x \in (A \cup B)'$ wtw gdy $x \notin (A \cup B)$ wtw gdy $\neg x \in A \cup B$ wtw gdy $\neg (x \in A \lor x \in B)$ wtw gdy $\neg x \in A \land \neg x \in B$ wtw gdy $x \notin A \land x \notin B$ wtw gdy $x \in A' \land x \in B'$ wtw gdy $x \in A' \cap B'$

Zad.3 Niech A={1,2,3}. Wyznacz zbiór potęgowy tego zbioru.

Zad.4 Niech A={a,b,c}, B={d, e}. Wyznacz iloczyn kartezjański $A \times B$ oraz $B \times A$.

Zad. 5 Udowodnij prawo.

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Zad.6 R= $\{(1,3), (1,5), (2,3), (4,1)\}$. Wyznacz DR, D*R, relację odwrotną R⁻¹.

Zad. 7 S={(5,2),(3,1)}, R={(2,4),(1,3)}. Wyznacz $S \circ R$ oraz $R \circ S$.

Zad.8 S={(1,2),(3,2),(3,3)}, R={(3,1),(2,3)}. Wyznacz $S \circ R$ oraz $R \circ S$.

Zad. 9 Sprawdź, które własności posiada relacja:

- 1. $R \subseteq R^2$ $xRy \leftrightarrow x < y$
- 2. $R \subseteq N^2$ $xRy \leftrightarrow x + y = 3$

Zad.10 Sprawdź, czy R jest relacją równoważnośći i jeżeli tak, to wyznacz klasy abstrakcji.

- 1. $R \subseteq R^2$ $xRy \leftrightarrow x \leq y$
- 2. $R \subseteq R^2$ $xRy \leftrightarrow x y = 0$
- 3. $R \subseteq R^2$ $xRy \leftrightarrow x^2 = y^2$