

Licence 1

Sciences et Technologie

Mentions: Sciences pour l'Ingénieur – Mathématiques Informatique

ECO 113

MECANIQUE DU POINT MATERIEL

Session 2: OPERATIONS VECTORIELLES

I. RAPPEL, DIFFERENCE ENTRE SCALAIRES ET VECTEURS

Scalaires : nombres **positifs**, **négatifs** ou **nuls** utilisés pour définir différentes grandeurs.

Vecteurs : définis par une direction (droite d'action, ou droite support), un sens (orientation de l'origine O vers l'extrémité E, indiquée par la flèche), une norme ou un module (scalaire).

Dans un système d'axes, le vecteur est décomposé en composantes scalaires (coordonnées cartésiennes).

Règle n°1:

Addition possible entre vecteurs de même nature (à condition de respecter les règles d'addition vectorielle, voir paragraphe III).

MAIS: interdiction d'additionner des scalaires avec des vecteurs.

« On ne mélange pas des torchons et des serviettes »

Règle n°2:

Multiplication possible d'un scalaire par un vecteur (voir paragraphe III, addition de vecteurs).

Exemple:

II. OUTILS MATHEMATIQUES DE LA MECANIQUE

II.1 Coordonnées cartésiennes d'un vecteur

Ox : axe horizontal (« couché »), sens positif allant de gauche à droite.

Oy: axe vertical (« debout »), sens positif allant de bas en haut.

$$\vec{V} = \overrightarrow{OE} = \overrightarrow{OP} + \overrightarrow{PE}$$
.

$$\left| \vec{V} = V_x \vec{i} + V_y \vec{j} \right| \tag{1}$$

 V_x et V_y : coordonnées cartésiennes, **positives** ou **négatives** en fonction de l'inclinaison de Δ (droite d'action du vecteur \vec{V}).

Norme du vecteur

 $\|ec{V}\|$ (également noté V, attention) : longueur du vecteur $ec{V}$.

$$OE^2 = OP^2 + PE^2$$
 $\|\vec{V}\| = \|\overrightarrow{OE}\| = \sqrt{OE^2} = \sqrt{OP^2 + PE^2}$.

$$\|\vec{V}\| = V = \sqrt{V_x^2 + V_y^2}$$
 (2)

II.2 Relations trigonométriques

Rappel des définitions du sinus, du cosinus et de la tangente de θ .

$$\sin \theta = \frac{AB}{OA}$$

$$\cos \theta = \frac{OB}{OA}$$

$$tan \theta = \frac{AB}{OB}$$

Figure 2

AB: Coté opposé.

OB: Coté adjacent.

OA: Hypoténuse du triangle rectangle.

Technique pour retenir sinus et cosinus remarquables

Etape 1

Angle (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Angle (degrés)	0°	30°	45°	60°	90°
Sinus (sin.)	0	1	2	3	4
Cosinus (cos.)	4	3	2	1	0

On met 0, 1, 2, 3 et 4 sur la ligne des sinus et 4, 3, 2, 1 et 0 sur la ligne des cosinus.

Etape 2.

Angle (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Angle (degrés)	0°	30°	45°	60°	90°
Sinus (sin.)	0/2	1/2	2/2	3/2	4/2
Cosinus (cos.)	4/2	3/2	2/2	1/2	0/2

On multiplie chacune des deux lignes par le même facteur, 1/2 (on a des fractions avec le même dénominateur 2).

Etape 3

Angle (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Angle (degrés)	0°	30°	45°	60°	90°
Sinus (sin.)	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$
Cosinus (cos.)	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$

On remplace chaque numérateur par sa racine carrée.

Pièges à éviter en trigonométrie

• Le sinus de la somme des angles n'est pas égal à la somme des sinus des angles.

$$\sin\left(a+b\right) \neq \sin a + \sin b$$

• Le cosinus de la somme des angles n'est pas égal à la somme des cosinus des angles.

$$\cos(a+b) \neq \cos a + \cos b$$

III. ADDITIONS DE VECTEURS

Addition possible de deux vecteurs \vec{A} et \vec{B} s'ils sont de même

nature, pour former un vecteur \vec{R} (R comme **résultante**), noté :

$$\vec{R} = \vec{A} + \vec{B}$$
.

Exemples: on peut additionner deux vecteurs-forces entre eux, deux vecteurs-vitesses entre eux, deux vecteurs-accélérations entre eux...

MAIS:

Interdiction d'additionner des vecteurs-forces et des vecteursvitesses, des vecteurs-forces et des vecteurs-accélérations...

« On ne mélange pas des torchons et des serviettes ! »

III.1 Addition de deux vecteurs de coordonnées cartésiennes connues

Repère orthonormé [O, x, y] de vecteurs unitaires \vec{i} et \vec{j} .

 \vec{F}_1 , de coordonnées cartésiennes F_{1x} et F_{1y} , donc : $\vec{F}_1 = F_{1x}\vec{i} + F_{1y}\vec{j}$.

 \vec{F}_2 , de coordonnées cartésiennes F_{2x} et F_{2y} , donc : $\vec{F}_2 = F_{2x}\vec{i} + F_{2y}\vec{j}$.

$$\vec{R} = \vec{F_1} + \vec{F_2}$$

$$\vec{R} = F_{1x}\vec{i} + F_{1y}\vec{j} + F_{2x}\vec{i} + F_{2y}\vec{j} = (F_{1x} + F_{2x})\vec{i} + (F_{1y} + F_{2y})\vec{j} = (R_x)\vec{i} + (R_y)\vec{j}.$$

$$\begin{cases} R_x = (F_{1x} + F_{2x}) \\ R_y = (F_{1y} + F_{2y}) \end{cases}$$
 (3.a)

Remarque:

Avec un repère orthonormé [O, x, y, z] de vecteurs unitaires \vec{i} , \vec{j} et \vec{k} , on aurait obtenu la relation suivante :

$$\vec{R} = F_{1x}\vec{i} + F_{1y}\vec{j} + F_{1z}\vec{k} + F_{2x}\vec{i} + F_{2y}\vec{j} + F_{2z}\vec{k}$$

$$\vec{R} = (F_{1x} + F_{2x})\vec{i} + (F_{1y} + F_{2y})\vec{j} + (F_{1z} + F_{2z})\vec{k} .$$

$$\begin{cases} R_x = (F_{1x} + F_{2x}) \\ R_y = (F_{1y} + F_{2y}) \\ R_z = (F_{1z} + F_{2z}) \end{cases}$$
 (3.b).

III.2 Addition de deux vecteurs de coordonnées cartésiennes inconnues

III.2.1 Principe : règle du triangle.

Exemple : vecteurs \vec{F}_1 (incliné) et \vec{F}_2 (horizontal), dans la position géométrique de la Figure 3.

- 1°) On trace (Figure 4) un vecteur parallèle, de même direction, même sens et de même norme que \vec{F}_1 .
- 2°) On porte, à l'extrémité de \vec{F}_1 une reproduction du vecteur \vec{F}_2 (copie conforme, parallèle, de même sens et de même norme).
- 3°) Le vecteur $ec{R}$ relie **l'origine de** $ec{F}_1$ à l'**extrémité de** $ec{F}_2$.

Figure 3

III.2.2 Propriétés de l'addition vectorielle

a) Commutativité

$$\vec{R} = \vec{F_1} + \vec{F_2} = \vec{F_2} + \vec{F_1}$$

Si on trace d'abord le vecteur \vec{F}_2 puis le vecteur \vec{F}_1 (à l'extrémité de \vec{F}_2), on obtient le triangle représenté en pointillé (Figure 5, parallélogramme, montrant les deux trajets.

Règle du triangle (construction), également appelée règle du parallélogramme (commutativité de la somme des vecteurs).

b) Soustraction de deux vecteurs

Tracé du vecteur \vec{S} défini par : $\vec{S} = \vec{F_1} - \vec{F_2}$. Par définition, $\vec{S} = \vec{F_1} + (-\vec{F_2})$. Règle de construction : porter, à l'extrémité de $\vec{F_1}$, une reproduction du vecteur $-\vec{F_2}$ (même droite d'action, même norme, sens contraire à $\vec{F_2}$). Le vecteur \vec{S} relie l'origine de $\vec{F_1}$ à l'extrémité de $-\vec{F_2}$.

Figure 6

c) Produit de scalaires et de vecteurs

Figure 7

IV. PRODUIT SCALAIRE DE DEUX VECTEURS

On appelle **produit scalaire** de deux vecteurs \vec{U} et \vec{V} , le **scalaire** W défini par :

$$W = \vec{U} \cdot \vec{V} = \|\vec{U}\| \cdot \|\vec{V}\| \cos \alpha$$
 (4.a)

 $\alpha = (\vec{U}, \vec{V})$, angle orienté allant de \vec{U} à \vec{V} .

ou par:

$$W = \vec{U} \cdot \vec{V} = u_x \cdot v_x + u_y \cdot v_y + u_z \cdot v_z$$
 (4.b)

 u_x , u_y , u_z : coordonnées cartésiennes de \vec{U} .

 v_x , v_y , v_z : coordonnées cartésiennes de \vec{v}).

Remarque : angle $(\vec{V}, \vec{U}) = -(\vec{U}, \vec{V}) = -\alpha$ (angle allant de \vec{V} à \vec{U}).

Propriété importante du produit scalaire

$$\vec{V}$$
 . $\vec{U} = \|\vec{V}\| \cdot \|\vec{U}\| \cos(-\alpha)$.

Or, $\cos(-\alpha) = \cos \alpha$ (la fonction cosinus est paire).

$$|\vec{V}| \cdot |\vec{U}| = ||\vec{V}|| \cdot ||\vec{U}|| \cos \alpha = |\vec{U}| \cdot |\vec{V}||$$

Le produit scalaire est commutatif.

Propriété encore plus visible en regardant les produits des

coordonnées cartésiennes : $\vec{V} \cdot \vec{U} = v_x \cdot u_x + v_y \cdot u_y + v_z \cdot u_z$

Or,
$$v_x \cdot u_x = u_x \cdot v_x$$
; $v_y \cdot u_y = u_y \cdot v_y$; $v_z \cdot u_z = u_z \cdot v_z$.

Par ailleurs : $\vec{i} \cdot \vec{j} = 0$ et $\vec{j} \cdot \vec{k} = 0$ et $\vec{k} \cdot \vec{i} \cdot = 0$ (cos α nul).

V. PRODUIT VECTORIEL DE DEUX VECTEURS

On appelle **produit vectoriel** du vecteur \vec{U} par le vecteur \vec{V} , le **vecteur** noté $\vec{W} = \vec{U} \wedge \vec{V}$ (on lit « \vec{U} vectoriel \vec{V} ») défini par :

$$|\vec{W} = \vec{U} \wedge \vec{V} = ||\vec{U}|| \cdot ||\vec{V}|| \sin \alpha \cdot \vec{u}_W$$
 (5.a)

 $\alpha = (\vec{U}, \vec{V})$: angle formé par les vecteurs.

 $ec{u}_{W}$: vecteur unitaire de la **perpendiculaire au plan formé** par $ec{U}$ et $ec{V}$.

ou par:

$$\vec{W} = (u_y v_z - u_z v_y) \vec{i} + (u_z v_x - u_x v_z) \vec{j} + (u_x v_y - u_y v_x) \vec{k}$$
 (5.b)

Les vecteurs \vec{U} , \vec{V} et \vec{W} forment, dans cet ordre, un trièdre direct (règle des trois doigts de la main droite).

Pouce
$$\longrightarrow$$
 \vec{i} \longrightarrow 1
Index \longrightarrow \vec{j} \longrightarrow 2
Majeur \longrightarrow \vec{k} \longrightarrow 3.

Règle de base $\vec{i} \wedge \vec{j} = \vec{k}$ et permutations circulaires ($\vec{j} \wedge \vec{k} = \vec{i}$, $\vec{k} \wedge \vec{i} = \vec{j}$).

Propriété importante du produit vectoriel

$$\vec{V} \wedge \vec{U} = \|\vec{V}\| \cdot \|\vec{U}\| \cdot \sin(-\alpha) \cdot \vec{u}_W$$

Or, $\sin(-\alpha) = -\sin\alpha$ (fonction sinus : impaire).

 $\vec{V} \wedge \vec{U} = -\|\vec{V}\| \cdot \|\vec{U}\| \cdot \sin \alpha \cdot \vec{u}_w = -\vec{U} \wedge \vec{V}$ (produit vectoriel anticommutatif).

Conséquences : $\vec{j} \wedge \vec{i} = -\vec{k}$ et $\vec{k} \wedge \vec{j} = -\vec{i}$ et $\vec{i} \wedge \vec{k} = -\vec{j}$.

Par ailleurs : $\vec{i} \wedge \vec{i} = \vec{0}$ et $\vec{j} \wedge \vec{j} = \vec{0}$ et $\vec{k} \wedge \vec{k} = \vec{0}$ (angle α nul).

Technique de calcul de produits vectoriels (produits en croix).

1°) Etape n°1, on positionne les trois composantes de \vec{U} (colonne de gauche) et les trois composantes de \vec{V} (colonne de droite).

- 2°) Etape n°2, on reproduit, sur une quatrième ligne, les premières coordonnées cartésiennes u_x et v_x des deux vecteurs \vec{U} et \vec{V} .
- 3°) Etape n°3, composante suivant \vec{i} : en masquant la 1ère ligne (celle de \vec{i}), on trouve le déterminant : $u_y v_z u_z v_y$ (trajet bleu).
- 4°) Etape n°4, composante suivant \vec{j} : en masquant la 2^{ème} ligne (celle de \vec{j}) on trouve le déterminant : $u_z v_x u_x v_z$ (trajet vert).
- 5°) Etape n°5, composante suivant \vec{k} : en masquant la 3ème ligne (celle de \vec{k}) on trouve le déterminant $u_x v_y u_y v_x$ (trajet rouge).

Voir exercices d'application (feuille d'ExoTests, n° 5 et n°6).

VI. APPLICATION A LA NOTION DE MOMENT D'UNE FORCE VI. 1 Moment d'une force par rapport à un point

On appelle moment d'une force \vec{F} par rapport à un point M (ou moment, au point M, de la force \vec{F}) le vecteur $\vec{M}_{M}(\vec{F})$ défini par le produit vectoriel :

$$\overrightarrow{M}_{M}(\vec{F}) = \overrightarrow{MB} \wedge \vec{F}$$
 (6)

où B est **un point quelconque** de la direction de \vec{F} .

Norme:
$$\|\overrightarrow{M_M}(\vec{F})\| = \|\overrightarrow{MB} \wedge \overrightarrow{F}\|$$

$$||\overrightarrow{M}_{M}(\overrightarrow{F})|| = ||\overrightarrow{MB}|| \cdot ||\overrightarrow{F}|| \cdot |\sin \alpha|$$
, avec $\alpha = (\overrightarrow{MB}, \overrightarrow{F})$.
(m) (sans unité).

Conclusion : l'unité de $\|\overrightarrow{M}_{M}(\overrightarrow{F})\|$ est le **newton.mètre** (N.m).

VI. 2 Moment d'une force par rapport à un axe

On appelle moment d'une force \vec{F} par rapport à un axe Δ (passant par le point M), le scalaire $\overline{M}_{\Delta}(\vec{F})$ défini par le produit scalaire :

$$\overline{M}_{\Delta}(\vec{F}) = \overrightarrow{M}_{M}(\vec{F}) \cdot \vec{u}_{\Delta}$$
 (7)

 \vec{u}_{Δ} : vecteur unitaire de l'axe Δ .

Moment $\overline{M}_{\Delta}(\vec{F})$, mesure algébrique : valeur **positive** (si la force provoque une **rotation dans le sens trigonométrique autour de cet axe**) ou **négative** (si la force provoque une **rotation dans le sens non trigonométrique autour de cet axe**).

Exemple d'application.

Enoncé : La poutre représentée sur la Figure 8 (de longueur OP = 2 m) est soumise à la force exercée au point P. On désire déterminer le moment de cette force par rapport au point O et par rapport aux axes Ox, Oy et Oz, de vecteurs unitaires respectifs \vec{i} , \vec{j} , \vec{k} . L'angle orienté θ a pour valeur : $\theta = (P\vec{i}, \vec{F}) = 135^\circ$ et la norme : $\|\vec{F}\| = 200\sqrt{2} N$.

- 1°) Déterminer les coordonnées cartésiennes de cette force \vec{F} (sous la forme : $\vec{F} =\vec{i} +\vec{j} + ...\vec{k}$).
- 2°) Déterminer le vecteur-moment, par rapport au point \emph{O} , de cette force \vec{F} .
- 3°) Déterminer les moments, par rapport aux axes Ox, Oy, Oz, de cette force \vec{F} .

Résolution

1°) Coordonnées cartésiennes de la force

$$\vec{F} = -\|\vec{F}\| \cdot \frac{\sqrt{2}}{2} \vec{i} + \|\vec{F}\| \cdot \frac{\sqrt{2}}{2} \vec{j} + 0\vec{k}$$

$$\vec{F} = -200.\sqrt{2}.\frac{\sqrt{2}}{2}\vec{i} + 200.\sqrt{2}.\frac{\sqrt{2}}{2}\vec{j} + 0\vec{k}$$

$$\vec{F} = -200\vec{i} + 200\vec{j} + 0\vec{k}$$
 (en N).

2°) Vecteur-moment de la force par rapport au point O

$$\overrightarrow{M_O}(\vec{F}) = \overrightarrow{OP} \wedge \vec{F} .$$

$$\overrightarrow{OP} = 2\vec{i} + 0\vec{j} + 0\vec{k} = 2\vec{i}$$
 (en m)
$$\overrightarrow{M_O}(\vec{F}) = 2\vec{i} \wedge (200\vec{i} + 200\vec{j}) .$$

$$\overrightarrow{M_O}(\vec{F}) = 400\vec{k}$$
 (en *N.m*)

3°) Moment de la force par rapport aux axes Ox, Oy et Oz

$$\overrightarrow{M}_{Ox}(\overrightarrow{F}) = \overrightarrow{M}_{O}(\overrightarrow{F}) \cdot \overrightarrow{i} = 400 \, \overrightarrow{k} \cdot \overrightarrow{i} = 0$$

$$\overrightarrow{M}_{Oy}(\overrightarrow{F}) = \overrightarrow{M}_{O}(\overrightarrow{F}).\overrightarrow{i} = 400 \overrightarrow{k}.\overrightarrow{j} = 0$$

$$\overline{M}_{Oz}(\vec{F}) = \overrightarrow{M}_{O}(\vec{F}).\vec{i} = 400 \vec{k}.\vec{k} = 400$$

Commentaire des résultats trouvés :

La force provoque une rotation, dans le sens trigonométrique, autour de l'axe *Oz* (moment positif), mais ne provoque aucune rotation autour des deux autres axes (moments nuls).

MERCI POUR VOTRE ATTENTION!

Thank you for your attention!

Obrigado!

Danke schoen!

• Grazie mille!

Arigato