SOFTWARE DEFINISI

1.1 Definisi Arsitektur Komputer

Tentang Komputer,pada gambar ini1.1 merupakan struktur dari sebuah komputer modern.Namun komputer ini berawal dari.... Komputer berasal dari bahasa latin Computare yang berarti menghitung(to compute), karena pada awalnya komputer pertama yang dirancang digunakan untuk keperluan perhitungan. Inspirasinya diambil dari alat hitung tertua yaitu bernama Ábaccus(SM 300) atau lebih dikenal dengn sipoa yang berasal dari negeri cina. Konsep komputer yang pertama kali dirancang oleh Howard G.Aitiken, seorang doktor dari Harvard University (1937), bekerja sama dengan IBM (International Business Machine Corp). Yang berhasil membuat sebuah mesin yang bekerja dengan tenaga elektromagnetik yang diberi nama Harvard Mark-1. Komputer pertama di muka bumi ini mempunyai berat setaras sapi yaitu 5 ton dan memiliki kemampuan kalkulassi selama 6 detik mencapai angka 23 digit. ENIAC pada tahun 1942 (dengan sistem binari digit 8bit dan memori),pernah diakui sebagai komputer pertama. Akhir-akhir ini diketahui juga bahwa Konrad Zuse dari jerman pada tahun 1941 sudah membuat mesin komputerýang dapat diprogram dan bekerja menggunakan sistem biner. Namun karena jerman kala itu masih terisolasi saat perang dunia 2, maka ENIAC tetap diakui sebagai komputer pertama

4 DEFINISI

yang memakai prinsip digital dengan sistem memori dan binari digit (8bit) Komputer pribadi (PC) pertama yang dikembangkan oleh Ed Roberts,yaitu Altair 8800 diluncurkan melalui promo majalah Popular Electronics di bulan januari 1975. Altair 8800 sebetulnya sebuah kit yang dirakit menjadi MESIN KOMPUTER. Pada saat itu yang namanya komputer adalah mainframe yang ukurannya raksasa dan harganya jutaan dolar sehingga kit buatan MITS (Microinstrumentation and TelementrySystems,Albuqurerque,New Mexico USA) yang dijual seharga sekitar US\$400 mendapat penggemar yang cukup banyak. Padahal Komputerini tidak memiliki keyboard, screen, ataupun printer. Switch Yang ada kala itu dapat digunakan untuk memasukkan bilangan biner dan outputnya menunjukkan LED yang menyala untuk. Kit Altair 8800 ini lebih populer ketika William Gates (Bill Gates yang dilahirkan di seattle tanggal 28 Oktober 1955) mengembangkan bahasa BASIC untuk Komputer Áltair ini. Banyak orang pada awalnya menyangsikan bahwa,bahasa BASIC tidak akan mampu dimasukkan ke dalam komputerini. Namun Bill Gates membuktikan hal itu bisa dilakukan, setelah penciptaan keyboard dan monitor tentunya. Bill Gates adalah Chairman and Chief Executive Officer(CEO) dari microsoft Corporation, yang didirikannya di tahn 1975. Kini dengan pengatahuan dan pengalamannya, dia merupakan salah satu dari orang terkaya di dunia.[1]

Figure 1.1 Merupakan struktur dari sebuah mesin Komputer/Hardware untuk menggunakan Komputer.

1.1.1 Sejarah

Arsitektur komputer terdokumentasi pertama ada dalam korespondensi antara Charles Babbage dan Ada Lovelace, yang menggambarkan mesin analitis. Saat membangun komputer Z1 pada tahun 1936, Konrad Zuse menjelaskan dalam dua aplikasi paten

untuk proyek masa depannya bahwa instruksi mesin dapat disimpan dalam penyimpanan yang sama yang digunakan untuk data, yaitu konsep program tersimpan. [2] Dua contoh awal dan penting lainnya adalah:

- Makalah karya John von Neumann tahun 1945, Draft Pertama Laporan tentang EDVAC, yang menggambarkan sebuah organisasi elemen logis; [3]
- Kalkulator Elektronik Kalkulator Alan Turing yang lebih rinci untuk Mesin Komputasi Otomatis, juga 1945 dan yang mengutip makalah John von Neumann. [4]

Istilah ärsitekturdalam literatur komputer dapat dilacak pada karya Lyle R. Johnson, Frederick P. Brooks, Jr., dan Mohammad Usman Khan, semua anggota departemen Organisasi Mesin di pusat penelitian utama IBM pada tahun 1959. Johnson telah kesempatan untuk menulis sebuah komunikasi riset eksklusif tentang Stretch, sebuah superkomputer yang dikembangkan IBM untuk Laboratorium Nasional Los Alamos (yang saat ini dikenal sebagai Laboratorium Ilmiah Los Alamos). Untuk menggambarkan tingkat detail untuk membahas komputer mewah, dia mencatat bahwa deskripsi format, jenis instruksi, parameter perangkat keras, dan perangkat tambahan kecepatannya berada pada tingkat ärsitektur sistem= istilah yang nampaknya lebih berguna daripada örganisasi mesin. Ärsitektur komputer, seperti arsitektur lainnya, adalah seni untuk menentukan kebutuhan pengguna suatu struktur dan kemudian merancang untuk memenuhi kebutuhan tersebut seefektif mungkin dalam batasan ekonomi dan teknologi. Brooks melanjutkan untuk membantu mengembangkan IBM System / 360 (sekarang disebut IBM zSeries) baris komputer, di mana ärsitekturmenjadi kata benda yang mendefinisikan äpa yang pengguna perlu ketahui. Kemudian, pengguna komputer menggunakan istilah ini dengan banyak cara yang kurang eksplisit. [5] Arsitektur komputer paling awal dirancang di atas kertas dan kemudian langsung dibangun ke dalam bentuk perangkat keras terakhir. [4] Kemudian, prototip arsitektur komputer secara fisik dibangun dalam bentuk komputer logika transistor-transistor (TTL) - seperti prototip dari 6800 dan PA-RISC yang diuji, dan di-tweak, sebelum melakukan sampai pada bentuk perangkat keras terakhir. Pada tahun 1990an, arsitektur komputer baru biasanya dibangun, diuji, dan di-tweakdi dalam beberapa arsitektur komputer lainnya di simulator arsitektur komputer; atau di dalam FPGA sebagai mikroprosesor yang lembut; atau keduanya-sebelum melakukan ke bentuk perangkat keras terakhir. [5]

1.1.2 Pembahasan Arkom

1.1.3 Survey dari Pararel Arsitektur Komputer

Sebuah usaha dibuat untuk mengganti inovasi arsitektur terbaru,dengan konteks pengembangan arsitektur parael yang lebih luas dengan menyurvei fundamental arsitektur komputer dari yang lebih baru dan lebih mapan dan dengan menempatkan alternatif arsitektur ini dengan kerangka kerja yang koheren. Penekanan utama adalah pada konstruksi arsitektural daripada mesin paralel yang spesifik. Tiga kategori arsitektur yang didefinisikan dan didiskusikan: arsitektur sinkron, terdiri dari vektor,

SIMD (single-instruction-stream, multiple-data-stream) dan mesin sistolik; MIMD (multiple-instruction-stream, multiple-data-stream) dengan memori terdistribusi atau shared; dan paradigma berbasis MIMD, terdiri dari tipe hibrida MIMD / SIMD, dataflow, reduction, dan wavei.[6]

1.1.4 Pengurangan Instruksi Instruksi Komputer untuk VLSI

Sirkuit terintregasi menawarkan implementasi sistem digital yang kompak dan murah dan menyediakan perfoma melalui keuntungan. Komunikasi on-chip bandwidth tinggi terhadap mereka.saat ini teknologi sedang di gunakan membuat tujuan umum von Neumann processor. Sebaiknya integrasikan sebanyak mungkin mengunakan fungsi pada satu chip, sehingga meminimalkan komunikasi off-chip. Bahkan dalam sirkuit Large Scale Integrated (VLSI), transistor yang tersedia di area chip terbatas merupakan sumber daya langka saat digunakan untuk implementasi prosesor atau bahkan komputer yang lengkap, dan karenanya, penggunaannya harus efektif. Disertasi ini menunjukkan bahwa tren baru dalam arsitektur komputer terhadap rangkaian instruksi peningkatan kompleksitas menyebabkan penggunaan sumber daya langka yang tidak efisien. Kami menyelidiki alternatif arsitektur Computer Instruction Instruction Set (RISC) yang memungkinkan penggunaan transistor on-chip secara efektif dalam unit fungsional yang menyediakan akses cepat ke operan dan instruksi yang sering digunakan. Dalam disertasi ini, sifat perhitungan tujuan umum dipelajari, menunjukkan kesederhanaan operasi yang biasanya dilakukan dan frekuensi akses operan yang tinggi, banyak di antaranya dibuat pada beberapa variabel prosedur skalar lokal. Arsitektur prosesor RISC I dan II dipresentasikan. Mereka menampilkan instruksi sederhana dan file register multi-jendela besar, yang jendela tumpang tindihnya digunakan untuk menyimpan argumen dan variabel skalar lokal dari prosedur yang paling baru diaktifkan. Dalam kerangka proyek RISC, yang telah menjadi upaya tim besar di UC Berkeley selama lebih dari tiga tahun, sebuah prosesor single-chip RISC II nMOS dilaksanakan, bekerja sama dengan R. Sherburne. Ersitekturrsitektur mikro-nya dijelaskan dan dievaluasi, diikuti dengan diskusi tentang metode debugging dan pengujian yang digunakan. Teknologi VLSI masa depan akan memungkinkan integrasi sistem yang lebih besar pada satu chip tunggal. Pemanfaatan yang efektif dari transistor tambahan dipertimbangkan, dan diusulkan agar digunakan dalam mengimplementasikan unit pengambilan dan urutan instruksi khusus yang terorganisir dan. Studi dan evaluasi arsitektur RISC II, serta disain, tata letak, dan pengujian setelah fabrikasi, telah menunjukkan kelayakan dan keuntungan dari pendekatan RISC. Prosesor single-chip RISC II terlihat berbeda dari prosesor komersil populer lainnya. transistor ini kurang total, hanya menghabiskan 10% area chip untuk kontrol daripada satu setengah sampai dua pertiga, dan dibutuhkan desain kurang lebih lima kali lipat dan lay-out usaha untuk mendapatkan hasil yang hampir sempurna.[7]

1.1.5 Pemodelan Kinerja Jaringan Komunikasi dan Arsitektur Komputer (Komputer Internasional)

Dalam kemajuan teknologi, kemampuan dalam berkomunikasi menjadi lebih rumit dengan kecepatan dan kapasitas yang semakin besar. dengan semakin berkembangnya ilmu komunikasi, ini dapat membuat perkembangan kinerja arsitektur komputer semakin rumit karena harus dibandingkan dengan kecepatan transfer.[8]

1.1.6 MinneSPEC: Sebuah Benchmark SPEC SPEC untuk Proyek Simulasi Berbasis Arsitektur Komputer

Arsitektur komputer harus menetukan secara dengan benar mengunakan sumber komputasi yaitu algoritma yang di gunakan untuk menemukan suatu cara dalam memacahkan masalah dari sebuah data input Untuk menfasilitasi sebagai benchmarkprogram yang telah di kembangkan inputset MinneSPEC untuk rangkainya adalah benchmark SPEC CPU 2000 untuk beban kerjanya memungkinkan arsitektur komputer mendapat hasil simulasi dengan waktu yang tepat. Ini ada tolak ukurnya yang valid untuk penelitian berbasis simulasi. Dalam proses pengembangan datasheet, MinneSPEC telah mengukur perhitungan,bentuk pola eksekusi tingkat fungsinya, dengan campuran instruksi,dan perilaku memori dibandingkan dengan program SPEC saat dijalankan dengan masukan referensi.[9]

1.1.7 Kebutuhan memori untuk arsitektur komputer yang seimbang

Salahlah satu dari akibatnya arsitektur komputer yang seimbang adalah untuk menyeimbangkan linear rangkaian pe linear untuk melalukakn perhitungan matriks dan matriks trigulzisasi ukuran masing-masing memori lokal PE harus tumbuh secara linier. Jadi, semakin besar arraynya, semakin besar setiap memori lokal PE.[10]

1.1.8 Arsitektur komputer paralel untuk pemrosesan gambar

masalah pengolahan data melibatkan susunan data struktur cukup besar dan kebutuhan pengitungan sangat cepat skema pemrosesan pararel kusus telah berevolusi selama 20 tahun Sistem paralel yang telah dikembangkan untuk pengolahan citra digariskan dan fitur arsitektur. Sebagian besar arsitektur khusus dapat diklasifikasikan secara longgar seperti struktur SIMD atau pipa meskipun beberapa struktur MIMD telah dirancang untuk menganalisis citra tingkat yang tinggi Dalam beberapa tahun terakhir beberapa skema multiple SIMD (MSIMD) telah diusulkan sebagai arsitektur yang sesuai untuk pemrosesan gambar. Pengembangan sistem MSIMD yang efektif dibahas dan model komputasi SIMD / MIMD.[11]

1.1.9 Blok berorientasi pengolahan operasi database relasional di arsitektur komputer modern

Sistem basis data tidak akan sesuai untuk memanfaatkan arsitektur prosesor superscalar yang modern Secara khusus, jam per instruksi (CPI) untuk query database yang agak sederhana cukup buruk dibandingkan dengan kernel ilmiah atau benchmark SPEC. Kurangnya kinerja sistem database disebabkan oleh rendahnya utilisasi cache dan unit fungsi prosesor serta hukuman percabangan yang lebih tinggi teknik pemrosesan yang berorientasi blok untuk evaluasi ekspresi agregasi dan operasi pemilahan sebagai fitur dalam sistem.[12]

1.1.10 Arsitektur komputer RISC dikonfigurasi untuk meniru set instruksi komputer target

komputer arsitektur risc dikonfigurasi untuk meniru set intruksi komputer target untuk menjalankan perangkat lunak yang di tulis untuk komputer target, misalnya intel 80x86, motorola 680x0 atau mips R3000. aparatus terintegrasi dengan komputer risc inti untuk membentuk komputer yang mengeksekusi intruksi risc yang di perluas. intruksi risc yang di perluas berisi bidang data yang menunjuk register tidak langsung yang mengarah ke register emulasi paling tidak sama dengan yang ada di komputer target. namun, bidang dalam intruksi risc yang diperluas membatasi lebar yang ditiru dan dibutuhkan oleh intruksi yang ditiru tertentu. selain itu, intruksi risc yang diperluas berisi bidang yang menunjuk mode emulasi untuk kde kondisi dan memilih logika agar sesuai dengan kode kondisi komputer target. intruksi target diurai dan dikirim ke urutan satu atau lebih intruksi risc yang diperluas untuk meniru setiap intruksi target.[13]

1.1.11 Database Arsitektur Komputer untuk Memanage sebuah program penghargaan dan mendapatkan pembayaran

Sistem distribusi informasi yang canggaih termasuk ke dalam jalur komunikasi yang mempunyai beberapa switching komunikasi selektif. Hal itu menentukan apakah transaksi elektronik tersebut layak diterima atau tidak. Sistem komputer,yang intensif dapat mencakup titik sistem pengolahan yang menghasilkan laporan yang baik sesuai dengan kriteria yang di setujui.[14]

1.1.12 Arsitektur komputer berkinerja tinggi

Sebagian besar aktivitas perancangan komputer telah beralih ke komputer desain berkinerja tinggi,karena komputer desktop single-user mencapai titik pengiriman daya komputer lebih banyak dari pada mainframe yang lama. Karena akan lebih mudah untuk Topik yang dibahas meliputi: Pendekatan arsitektur umum seperti desain memori, teknik pipa, dan struktur paralel. kemacetan mendasar seperti bandwidth memori, bandwidth proses, komunikasi, dan sinkronisasi, teknik evaluasi, contoh aplikasi nyata dan persyaratan arsitekturalnya.[15]

1.1.13 Ifrastruktur untuk pemodelan sistem komputer

Perangcang dapat menjalankan program pemodelan perangkat, model perangkat lunak untuk memvalidasi kinerja dan ketepatan desain perangkat keras. pemrogram dapat menggunakan model untuk mengembangkan dan menguji perangkat lunak sebelum perangkat keras sebenarnya tersedia. Tiga persyaratan penting mendorong penerapan model perangkat lunak: kinerja, fleksibilitas, dan detail. Kinerja menentukan jumlah beban kerja yang dapat dilakukan model mengingat sumber daya mesin tersedia untuk simulasi. perangkat simplecar memiliki sebuah infrastruktur simulasi dan pemodelan arsitektural. Simulator SimpleScalar mereproduksi operasi sebuah perangkat komputer dengan menjalankan instruksi program menggunakan penerjemah. instruktur instruksi telah mendukung :instruksi populer,termasuk alpha,PPC, x86, dan ARM.[16] Bagian bagian arsitektur komputer Ini merupakan bagian-bagian arsitektur komputer1.2 1 Software - perangkat lunak yang menjalankan hardware 2 kernell - jembatan antara software dengan hardware 3 Hardware - perangkat keras untuk menjalankan operasi komputer

Figure 1.2 Bagian dari Arsitektur Komputer

1.1.13.1 PENUTUP

1.1.13.2 Fungsi dari Arsitektur Komputer Sebuah tolak ukur untuk mengevaluasi Arsitektur Komputer berkinerja tinggi pada aplikasi Bioinformatika. Pertumbuhan eksponensia telah mendorong minat yang meningkat dalam informasi genetika berskala besar. aplikasi bioinformatika, adalah aplikasi untuk memudahkan peneliti menyaring data data biologis secara besar besaran dan untuk mengekstrak informasi yang berguna, menjadi beban komputer yang semakin penting. Aplikasi tersebut sebagai perwakilan untuk perancangan dan evaluasi arsitektur komputer berkinerja

tinggi untuk beban kerja yang muncul pada saat ini. saat ini, suite BioPerf berisi kode dari 10 paket bioinformatika yang sudah sangat populer yang mencakup bidang studi utama biologi komputer yaitu perbandingan urutan, rekonstruksi filogenetik,prediksi struktur protein, dan homologi urutan dan penemuan gen.[17]

1.1.13.3 Arsitektur Komputer untuk pemrosesan kecerdasan buatan Artikel ini menilai pendekatan arsitektural yang berbeda terhadap disain komputer untuk aplikasi kecerdasan buatan (artificial intelligence / AI). perbandingan mesin ai dengan komputer numrik Penekanannya adalah pada tiga kelas arsitektural: multiprocessors yang mendukung operasi MIMD (multiple-instruction stream dan multiple-stream data) interaktif melalui ruang memori bersama. multicomputers yang mendukung operasi SISD (single-instruction stream dan single-data stream) melalui pesan yang lewat di antara prosesor terdistribusi dengan kenangan lokal; dan komputer serbaguna yang terdiri dari sejumlah besar node memori prosesor butiran halus yang beroperasi di SIMD (aliran instruksi tunggal dan aliran data ganda), SIMD multipel, atau mode MIMD.[18]

1.1.13.4 KESIMPULAN

1.1.13.5 Kesimpulan Jadi, arsitektur komputer adalah sebuah awal dari terbentuknya software dan hardware dari komputer yang dapat dirubah atau dirancang untuk mengubah logika manusia ke dalam logika atau bahasa komputer. jika kita tidak memahami arsitektur komputer maka komputer tidak akan terbentuk secara sempurna dan arsitektur komputer merupakan awal dari lahirnya mesin komputer untuk membantu pekerjaan manusia.

SOFTWARE SOFTWARE

2.1 Definisi Software

Software secara singkat ialah sebuah aplikasi yang terdapat pada computer maupun perangkat lunak berbasis elektronik lainnya. Fungsi dari Software sendiri cukup beragam dan mampu diterima oleh masyarakat pada umumnya. Dan berikut adalah Definisi, fungsi, bahkan Sejarah dari perkembangan Software itu sendiri.

Software adalah instruksi langsung untuk computer ataupun perangkat elektronik lain yang dapat ditemukan di berbagai tempat dan pemakaian yang beragam seperti Software sebagai pendeteksi detak jantung di rumah sakit ataupun Software hiburan seperti video games. Pada gambar 2.1 terlihat sebuah tampilan software Sistem Operasi. Produk Software sendiri memiliki berbagai macam jumlah kode baik dari yang hanya ratusan kode maupun jutaan kode yang diharapkan dapat melakukan pekerjaan secara efisien untuk para pengguna dari aplikasi tersebut. Software sendiri merupakan inti dari computer karena untuk mengoperasikan sebuah Komputer haruslah dalam computer tersebut memiliki perangkat keras. Software sendiri bersifat bisa terbaca namun tidak berwujud umumnya perangkat keras yang memang pada dasarnya bisa disentuh.

Figure 2.1 Sistem Operasi

Software dibuat oleh seorang Perekayasa Perangkat Lunak atau yang sering disebut sebagai Programmer. Programmer sendiri bertugas membuat sebuah Software sesuai dengan kebutuhan dari seorang klien maupun Programmer itu sendiri dan menerapkan beberapa Teknologi yang ada untuk dipakai oleh Programmer itu sendiri dan juga melakukan pemeliharaan Software yang telah dibuatnya jika Programmer tersebut diposisikan sebagai Pengembang Software. Teknik Rekayasa Software sendiri dapat meningkatkan efisiensi dan memberikan kemudahan bagi Pengembang Software dalam mengembangkan sebuah Software yang telah dibuat.

Pembuatan Software sendiri dibuat menggunakan bahasa pemrograman yang dibuat oleh programmer yang kemudian disusun (compile) sehingga membentuk kode-kode yang bisa dibaca oleh perangkat keras. Software dibuat untuk memenuhi kebutuhan kebutuhan tertentu sesuai dengan perkembangan zaman. Software berfungsi untuk memproses data, Instruksi atau perintah yang nantinya menghasilkan sebuah hasil (Output) sesuai kebutuhan. Selain itu Software juga berfungsi sebagai penghubung antara pengguna dengan perangkat keras.

2.2 Sejarah Perkembangan Software

Software telah berkembang melalui empat era yang terjadi sejak tahun 1950 sampai sekarang. Setiap era memiliki karakteristik khusus dan setiap tahunnya Software mengalami peningkatan, baik dari kompleksitas, ukuran, teknologi, dan efisiensinya dalam melakukan pekerjaan.

Krisis Software pernah terjadi pada tahun 1960 karena praktik Rekayasa Software masih kurang dapat diterima. Tahap awal Software sendiri memunculkan banyak minat pada computer, walaupun banyak kode yang ditulis, tetapi tidak ada standar yang ditetapkan. Lalu pada awal tahun 1970-an, banyak program computer mulai mengalami kegagalan dan banyak orang kehilangan kepercayaan pada sebuah Software sehingga krisis Software diumumkan. Alasan yang mengarah pada krisis adalah sebagai berikut:

Perkembangan perangkat keras yang lebih cepat

- Kemampuan untuk membangun yang dituntut untuk memenuhi kebutuhan secara cepat
- Meningkatnya ketergantungan pada Software
- Desain yang kurang dan minimnya teknologi maupun Sumber Daya Manusia

Walaupun krisis Software teridentifikasi pada awal-awal tahun, tetapi pada tahun-tahun sebelumnya sudah pernah terjadi kegagalan Software di seluruh dunia. Software pada dasarnya di anggap gagal jika proyek pembuatan tersebut dihentikan karena faktor kekurangan biaya atau melewati jadwal yang telah ditentukan atau jika proyek melebihi 50 persen dari perencanaan. Beberapa contoh kegagalan Software mencakup kegagalan system control lalu lintas, kegagalan Software medis, kegagalan Software telekomunikasi, dan sebagainya. Alasan utama kegagalan yang lainnya adalah dikarenakan pengadopsian Praktik Rekayasa Software yang buruk. Beberapa praktik Software yang buruk meliputi :

- Tidak adanya histori pengukuran Software
- Penolakan dari keakuratan perkiraan daya
- Gagalnya penggunaan alat untuk perencanaan dan memperkirakan secara otomatis
- Praktik yang berlebihan
- Jadwal yang tidak logis
- Kegagalan menggunakan desain review dan inspeksi kode

Untuk menghindari kegagalan dan meningkatkan kepercayaan dari masyarakat, dibutuhkan pemahaman yang baik dari proses tersebut, penyusunan jadwal yang ditargetkan untuk pembuatan sebuah Software yang terbaik dan mengukur biaya yang sebanding maupun kualitas yang dibutuhkan. Suatu proses Software merupakan serangkaian kegiatan, metode, dan praktik praktik yang melibatkan transformasi yang dilakukan orang untuk mengembangkan dan memelihara sebuah Software.

Saat ini kebanyakan masalah terjadi dikarenakan adanya proses Software yang kacau dan terkadang keberhasilan Software tergantung pada usaha perorangan. Oleh karena itu, dibutuhkan pengalihan focus dari sebuah produk kepada proses karena terfokus kedalam produk cenderung mengabaikan masalah skalabilitas dan hanya akan melakukan perbaikan pada system yang ada. Selain itu, alasan tersebut bisa berkaitan dengan prinsip prinsip Rekayasa Software apabila kebutuhan teridentifikasi dengan benar. Apabila identifikasinya benar, maka akan memudahkan dalam mengidentifikasi teknik atau praktik terbaik yang dapat diterapkan kepada Software karena satu proses bisa saja cocok untuk satu organisasi dan bisa tidak cocok untuk sebagian lainnya. Perkembangan dari sebuah Software berproses melalui beberapa era, diantaranya:

14 SOFTWARE

1. Era Pioner/Pemula (Tahun 1950-1960)

Dalam era ini, bentuk dari Software masih berbentuk sambungan kabel ke bagian bagian pada computer. Pengaksesan computer sendiri masih dilakukan dengan ¡i¿punched card¡/i¿, yaitu kartu yang dilubangi. Penggunaan computer pada saat itu masih dilakukan secara kontak langsung. Software pada era ini masih menyatu dengan perangkat kerasnya dan hanya menghasilkan sebuah hasil berupa cetakan. Pengaplikasian pada masa ini pun masih terbilang hanya untuk keperluan yang tidak begitu banyak dikarenakan teknologi yang masih terbilang sangat kuno, seperti untuk membuat alat perhitungan matematika yang digunakan oleh ilmuwan untuk menyelesaikan operasi matematika secara cepat.

2. Era Stabil (Tahun 1960-1970)

Dalam era ini, pengguna computer sudah sangat meningkat, tidak hanya oleh kalangan peneliti tetapi juga oleh kalangan industri. Perusahaan Software pun mulai bermunculan dan sebuah Software dapat menjalankan beberapa ini. Di era ini, Software mulai bisa dibilang terpisah dari perangkat kerasnya dan bisa dikenal sebagai sebuah produk. Kode perintah Software yang dijalankan oleh computer pun tidak lagi satu-satu, tetapi sudah menampilkan banyak proses yang dilakukan secara serempak. Sebuah Software juga bisa digunakan oleh banyak pengguna secara cepat. Pada era ini juga basis data yang berfungsi menyimpan sebuah data mulai diperkenalkan.

3. Era Mikro (Tahun 1970-1980)

Pada era ini, Software mulai berkembang sebagai perangkat yang dapat memenuhi kebutuhan perseorangan. Software juga dapat dibedakan menjadi Software system yang bertugas menangani sisi internal seperti Sistem Operasi dan Software aplikasi yang dapat digunakan langsung oleh penggunanya untuk keperluan tertentu.

4. Era Modern (Tahun 1980-Sekarang)

Pada era yang kita alami sekarang, Software sudah dapat dijangkau di berbagai perangkat elektronik, bahkan sebuah computer genggam atau telepon genggam terdapat sebuah aplikasi yang dapat disambungkan atau disinkronkan dengan computer. Bahkan telepon, TV, mesin cuci, dan Oven sekalipun terdapat Software yang berfungsi untuk mengatur operasi dari perangkat keras. Bahkan semua peralatan tersebut bisa dipantau dan diatur hanya menggunakan sebuah telepon genggam. Pembuatan Software bukan lagi pekerjaan yang hanya dilakukan oleh segelintir orang, tetapi telah menjadi pekerjaan banyak orang dengan teknik yang dibilang cukup memadai. Teknologi yang berkembang juga membantu orang awam untuk mempelajari bagaimana cara untuk membuat Software sendiri. Software sendiri sekarang memiliki fitur suara dan tampilan gambar.

2.3 Dampak dari munculnya Software

Software pada masa dulu dan sekarang sudah sangat mempengaruhi masyarakat dan budaya yang selalu dilakukan dalam berinteraksi ataupun melakukan sebuah pekerjaan. Seiring teknologi mulai berkembang, dampak dari munculnya Software mulai sangat drastis dibandingkan dengan tidak adanya Software. Faktor dari Software yang mempengaruhi masyarakat salah satunya yaitu:

1. Faktor Ekonomi

Software pada masa emasnya memimpin produktivitas dan total nilai produksi barang. Seperti di Amerika Serikat, Software memimpin sekitar dari semua peningkatan total nilai produksi barang pada tahun 1990-an (atau sekitar 90 Miliar Dollar per tahun) dan 15 persen dari semua pertumbuhan produktivitas pada akhir tahun 1990-an (atau sekitar 33 Miliar Dollar/tahun).

2. Faktor Sosial

Munculnya Software mulai mengubah budaya masyarakat yang sebagian besar mulai menggunakan computer. Dengan adanya E-mail, World Wide Web, dan pesan singkat memungkinkan orang untuk berinteraksi dengan cepat dari semua tempat terjauh sekalipun dan mengurangi biaya dari sebuah pesan singkat. Kesuksesan dari Software juga telah diterapkan yang mencakup Linux, Space Shuttle Software, dan Automatic Teller Machine (ATM)

2.4 Jenis - Jenis Software

Software adalah sebuah program computer yang berfungsi sebagai penghubung antara pengguna dan perangkat keras. Software juga dapat disebut sebagai penerjemah instruksi yang dijalankan pengguna computer untuk dikirim ke perangkat keras. Software dibagi menjadi tiga bagian, yaitu program Aplikasi, Sistem Operasi, dan Bahasa Pemrograman.

2.4.1 Software Antivirus

Software ini berfungsi untuk mendeteksi dan menghapus virus computer system computer. Software ini juga dapat menentukan apakah sebuah system computer telah terinfeksi atau terdapat adanya sebuah virus atau tidak. Antivirus biasanya melakukan pemindaian secara otomatis pada system computer ke semua berkas yang bisa diakses. Pergerakan mencurigakan dari sebuah aplikasi juga dapat terdeteksi oleh Antivirus dan bisa dicurigai oleh Antivirus sebagai sebuah program yang mencurigakan. Antivirus adalah Software yang termasuk kedalam bagian dari program aplikasi.

2.4.2 Software Bisnis

Software ini berfungsi sebagai program untuk melakukan sebuah pekerjaan kantoran seperti menyiapkan presentasi, membuat sebuah dokumen statistika, dan sebagainya. Aplikasi ini sangat sering digunakan oleh pekerja kantoran bahkan sampai akademisi atau pelajar masa kini. Contoh dari aplikasi yang sering digunakan adalah Microsoft Office dan Open Office.

2.4.3 Software Desain Grafis

Desain Grafis juga dipermudah dengan adanya Software khusus untuk Desain Grafis di computer. Seperti Aplikasi Adobe Photoshop yang mampu mengubah gambar yang ada menjadi sesuatu sesuai keinginan sang editor. Bahkan Foto yang telah di scan dapat di edit memakai Aplikasi ini dan dapat dicetak setelahnya atau dijadikan simpanan di computer.

2.4.4 Software Grafis 3D

Dengan adanya Software ini, sebuah gambar 3 Dimensi dapat dibuat bahkan dapat digerakkan seperti film anak anak yang menggunakan karakter 3 Dimensi atau Pembuatan kerangka bangunan 3 Dimensi. Aplikasi yang sering dipakai saat ini adalah AutoCAD atau 3DS Max yang dikembangkan oleh Autodesk. AutoCAD banyak digunakan oleh Insinyur Sipil, Pengembang lahan, Desainer, Animator, dan lain lain.

2.4.5 Software Grafis

Seperti halnya dengan Software Desain Grafis hanya saja Software Grafis dipakai untuk membuat sebuah grafis visual seperti diagram aliran (flowchart), brainstorm, dan Skema Jaringan. Contoh dari aplikasi Software Grafis seperti Microsoft Visio yang dibuat oleh Visio Corporation yang diakuisisi oleh Microsoft. Sebagian besar yang memakai aplikasi ini adalah seorang perancang sebuah proyek.

2.4.6 Software Jaringan

Dengan ketersediaan sebuah Jaringan membuat informasi yang ada di sebuah Website atau sebuah komunikasi melalui pesan singkat atau surat elektronik (E-Mail) mulai bermunculuan. Bahkan aplikasi Chatting seperti Yahoo! Messengger dan AOL mulai meledak penggunaannya karena dapat melakukan Chatting secara langsung (Realtime). Pemakai dari aplikasi ini sangat banyak digunakan oleh kalangan masyarakat.

2.4.7 Software Kompresi Data

Software ini berfungsi sebagai pengompres sebuah file/data yang besar maupun mengelompokkan file file kecil menjadi satu Archive yang berukuran lebih kecil dari total semua file kecil. Aplikasi ini banyak digunakan karena mampu membuat atau mengorganisir file file biasa menjadi satu file berformat Archive. Contoh aplikasinya seperti WinZip, WinRAR.

2.4.8 Software Musik

Untuk musik pun ada Software yang khusus untuk Memutar bahkan mengubah Musik. Tidak hanya pada computer, bahkan telepon genggam pun terdapat aplikasi Pemutar Musik. Dengan adanya aplikasi ini kita tidak perlu memutar sebuah Tape atau Cakram untuk mendengarkan atau menyimpan musik melainkan cukup menyimpan atau mendownload musik dari Jaringan Internet dan memutarnya menggunakan aplikasi musik. Pengguna aplikasi ini banyak di kalangan masyarakat pengguna computer manapun.

2.4.9 Software Pembaca Gambar

Di setiap Sistem Operasi saat ini sudah banyak memiliki sebuah Software Pembaca Gambar. Gambar sendiri bisa berupa Foto atau Gambar Digital. Dengan aplikasi ini kita dapat melihat gambar di dalam computer. Aplikasi yang sering dipakai untuk melihat gambar seperti Windows Photo Viewer.

2.4.10 Software Sistem Operasi

Pada era sekarang sebuah Software mulai sangat tidak berwujud atau bisa tersentuh melainkan telah diaplikasikan ke dalam computer. Sistem Operasi sendiri adalah penghubung antara sebuah Software program aplikasi dengan Perangkat Keras pada computer. Dengan adanya Sistem Operasi cukup memudahkan seorang pengembang Software untuk mengembangkan aplikasi yang telah dibuat dan mempermudah masyarakat untuk menjalankan banyak Software secara serentak sesuai dengan kemampuan sebuah computer. Sistem Operasi yang sangat dipakai sekarang adalah Sistem Operasi Windows.

2.5 Rangkuman

Software telah berkembang dimulai pada tahun 1950 sampai saat ini yang pernah melalui empat era. Setiap era memiliki peningkatan dan krisis baik dalam ukuran, kompleksitas, maupun kepercayaan masyarakat terhadap Software. Saat ini kebanyakan masalah terjadi dikarenakan proses Software yang kacau bahkan lewatnya jadwal pembuatan membuat sebuah aplikasi dianggap gagal oleh masyarakat. Oleh karena itu, suatu focus pada proses sangat dibutuhkan karena

focus pada produk cenderung hanya memperbaiki system yang ada dan mengabaikan masalah skalabilitas.

Perkembangan Ilmu Pengetahuan dan Teknologi berperan besar sebagai pengubah teknik pembuatan seorang Perekayasa Perangkat Lunak sampai sekarang. Pada saat ini orang tidak perlu sangat mempermasalahkan sebuah perangkat keras untuk membuat sebuah Software melainkan hanya memperlukan Ilmu yang cukup untuk dapat menggunakan bahasa pemrograman yang akan dikonversi ke bahasa computer.

Dengan adanya Software memudahkan masyarakat dalam melakukan pekerjaan tertentu dan bahkan bisa membersihkan sebuah system computer yang terinfeksi oleh sebuah virus. Fungsi dari Software sendiri sudah dipakai oleh Masyarakat biasa sampai Ilmuwan ataupun seorang Dinas social Masyarakat. Jenis jenis Software juga sangatlah beragam dimulai dari Software Antivirus sebagai Pelindung Sistem Komputer sampai Software Sistem Operasi sebagai penghubung antara Software dan perangkat keras.

Sumber dari artikel dipetik dari buku [19]

2.5.1 Pengertian Software

Dalam dunia teknologi informasi sering kita mendangar kata software, nama lain dari software adalah perangkat lunak. Berbeda dengan Hardware atau perangkat keras yang merupakan kompunen yang nyata dan dapat disentuh secara langsung, software tidak dapat disentuh atau dilihat secara fisik. Saat ini, banyak perusahaan bisnis dan organisasi menggunakan ataupun bergantung pada perangkat lunak serta system intensif seperti system otomotif telekomunikasi, layanan keuangan dsb, masih bergantung pada software. Pengembangan perangkat lunak dan system semakin sering dilakukan di berbagai negara dengan banyak hubungan disepanjang rantai pengembangan. Secara historis rekayasa perangkat lunak sebagian besar berkembang secara terpisah dari disiplin ilmu lainnya, seperti methods, teknik, alat, budaya, dan cara memecahkan masalah.

2.5.2 Proses-proses perangkat lunak

Dalam pengembangannya terdapat proses yang digunakan duntuk pengembangan perangkat lunak. Walaupun ada banyak proses perangkat lunak, terdapat kegiatan-kegiatan mendasar yang umum bagi semua proses perangkat lunak, kegiatan tersebut adalah:

- 1. Penspesifikasian perangkat lunak. Fungsionalitas perangkat lunak dan batasan operasinya harus didefinisikan.
- 2. Perangcangan dan implementasi perangkat lunak. Perangkat lunak yang memenuhi persyaratan harus dibuat.

- 3. Pemvalidasian perangkat lunak. Perangkat lunak tersebut harus divalidasi untuk menjamin bahwa perangkat lunak bekerja sesuai dengan apa yang diinginkan pelanggan
- 4. Pengevolusian perangkat lunak. Perangkat lunak harus dapat berkembang untuk menghadapi kebutuhan pelanggan yang berubah.