Taller Raspberry Pi 3: Exploración de Raspbian, Dashboards, Automatización y Auditoría de Red

Miguel Ángel Caro Molano y Samuel Esteban Parra Osorio Universidad Santo Tomás Ingeniería Electrónica

17 de octubre de 2025

Índice

1.	Introducción	2
2.	Instalación y configuración de Raspbian2.1. Descarga e instalación	2 2 2
3.	Dashboard con Streamlit3.1. Instalación del entorno	2 2 3
4.	Exploración de Grafana 4.1. Instalación de Grafana	
5.	Automatización con Cron y Crontab	4
	5.1. Creación de un script de respaldo	
6.	Exploración del entorno de red y auditoría 6.1. Visualización de la IP local	4 5
7 .	Conclusiones	5
8.	Referencias	5

1. Introducción

El presente documento describe el desarrollo del taller sobre el manejo y exploración de la Raspberry Pi 3, abarcando desde la instalación del sistema operativo Raspbian hasta la creación de dashboards con Streamlit y Grafana, la automatización de tareas mediante cron y crontab, y la exploración del entorno de red del dispositivo.

Durante el proceso se documentaron las etapas principales con capturas de pantalla y evidencias, las cuales estarán anexas en la **carpeta de evidencias** dentro del repositorio de GitHub denominado taller.

2. Instalación y configuración de Raspbian

2.1. Descarga e instalación

Se descargó el sistema operativo Raspberry Pi OS (Raspbian) desde la página oficial https://www.raspberrypi.com/software/. Posteriormente, se utilizó la herramienta Raspberry Pi Imager para grabar la imagen en una memoria microSD.

- 1. Seleccionar el sistema operativo: Raspberry Pi OS (32-bit).
- 2. Elegir la tarjeta microSD correspondiente.
- 3. Pulsar en Write para iniciar el proceso de escritura.

Una vez completado, la microSD se insertó en la Raspberry Pi 3, conectando monitor, teclado, mouse y red WiFi. Las capturas del proceso de instalación se encuentran anexas en la carpeta carpeta de evidencias.

2.2. Configuraciones iniciales

Durante el primer arranque se configuraron los parámetros regionales (idioma, zona horaria y teclado), se conectó la red WiFi y se ejecutaron las actualizaciones del sistema mediante:

```
sudo apt update && sudo apt upgrade -y
```

3. Dashboard con Streamlit

3.1. Instalación del entorno

Para el desarrollo del dashboard se instaló la librería **Streamlit** en Python:

```
sudo apt install python3-pip -y pip3 install streamlit pandas numpy
```

3.2. Creación de la aplicación

Se generó un archivo app.py con el siguiente contenido:

```
import streamlit as st
import pandas as pd
import numpy as np

st.title("Dashboard_de_Prueba_con_Streamlit")
st.write("Visualizaci n_de_datos_simulados_en_tiempo_real")

data = pd.DataFrame(
    np.random.randn(10, 3),
    columns=['Temperatura_(C')', 'Humedad_(%)', 'Presi n_(hPa)']
)

st.line_chart(data)
```

La aplicación se ejecuta con:

```
streamlit run app.py
```

Al abrir la dirección local (http://localhost:8501) se visualiza el dashboard generado. Las imágenes de la interfaz de Streamlit y su ejecución se encuentran en la carpeta carpeta de evidencias del repositorio.

4. Exploración de Grafana

4.1. Instalación de Grafana

Para la visualización avanzada de datos, se instaló el sistema Grafana utilizando los siguientes comandos:

```
sudo apt-get install -y apt-transport-https software-properties-
    common wget
sudo mkdir -p /etc/apt/keyrings/
wget -q -0 - https://apt.grafana.com/gpg.key | sudo gpg --dearmor -
    o /etc/apt/keyrings/grafana.gpg
echo "deb_[signed-by=/etc/apt/keyrings/grafana.gpg]_https://apt.
    grafana.com_stable_main" | sudo tee -a /etc/apt/sources.list.d/
    grafana.list
sudo apt-get update
sudo apt-get install grafana -y
```

4.2. Ejecución y configuración

Una vez instalado, el servicio se habilitó y se inició con:

```
sudo systemctl enable grafana-server sudo systemctl start grafana-server
```

Grafana se ejecuta en http://localhost:3000, con usuario y contraseña predeterminados admin / admin. Se cambió la contraseña y se añadió la fuente de datos *TestData*

DB para crear un dashboard de ejemplo con gráficas de tipo línea y gauge. Las capturas de este proceso también están disponibles en la **carpeta de evidencias**.

5. Automatización con Cron y Crontab

5.1. Creación de un script de respaldo

Se elaboró un script de respaldo automático llamado backup.sh:

```
#!/bin/bash
tar -czf /home/pi/respaldo_$(date +%F).tar.gz /home/pi/Documents
```

El script genera un archivo comprimido con fecha actual y lo guarda en el directorio personal del usuario.

5.2. Programación automática con Crontab

Se programó la ejecución automática diaria del script a las 2:00 a.m. mediante:

```
crontab -e
```

Y se agregó la línea:

```
0 2 * * * /home/pi/backup.sh
```

Esto permite ejecutar la tarea sin intervención humana, garantizando la creación diaria de copias de respaldo. Una captura del crontab configurado se encuentra en la **carpeta** de evidencias.

6. Exploración del entorno de red y auditoría

6.1. Visualización de la IP local

Se identificó la dirección IP de la Raspberry Pi con:

```
hostname -I
```

6.2. Exploración de dispositivos vecinos

Para listar los equipos conectados en la misma red se empleó:

```
arp -a
```

y con la herramienta **nmap**:

```
sudo apt install nmap -y nmap -sn 192.168.1.0/24
```

6.3. Exploración de puertos

Para verificar los puertos abiertos localmente:

```
nmap -p 1-1024 localhost
```

El resultado mostró los servicios activos, como SSH y HTTP, lo cual permitió identificar configuraciones seguras y posibles vulnerabilidades.

6.4. Auditoría básica

Se realizó una auditoría sencilla de la red, verificando los puertos más sensibles y los dispositivos conectados. Las evidencias gráficas de los escaneos de red se anexan igualmente en la **carpeta de evidencias**.

7. Conclusiones

- Se logró la instalación completa del sistema Raspbian y la configuración básica de la Raspberry Pi 3.
- Se implementó un dashboard funcional con Streamlit que permite la visualización de datos simulados.
- Grafana se configuró exitosamente como herramienta de monitoreo y visualización.
- Se desarrolló una tarea automatizada mediante cron y crontab, mostrando la capacidad del sistema para ejecutar procesos periódicos sin supervisión.
- Finalmente, se exploró el entorno de red y se realizó una auditoría básica, fortaleciendo los conocimientos sobre seguridad y análisis de red.

8. Referencias

- Raspberry Pi Foundation. (2025). Raspberry Pi OS Documentation. Recuperado de: https://www.raspberrypi.com/software/
- Streamlit Inc. (2025). Streamlit Documentation. Recuperado de: https://docs.streamlit.io/
- Grafana Labs. (2025). *Grafana Documentation*. Recuperado de: https://grafana.com/docs/
- Linux Man Pages. Cron and Crontab. Recuperado de: https://linux.die.net/man/5/crontab
- Nmap Project. (2025). Network Scanning Guide. Recuperado de: https://nmap. org/book/