Bubble Sort and Quick-sort

EECS 233

Previous Lecture

- Method 1: Selection Sort
 - For each position of an array, find the element for it
 - O(n²) comparisons, O(n) moves

0	1	2	3	4	5	6
2	4	7	21	25	10	17

- Method 2: Insertion Sort
 - For each element, find a position to insert it
 - O(n²) comparisons, O(n²) moves
 - O(n) if the array is sorted or nearly sorted

0	1	2	3	4
6	14	19	9	

- Method 3: Shell Sort
 - Based on the observation that insertion sort requires O(n) running time for sorted or nearly sorted array
 - Generalization of insertion sort with larger "jumps", using strides larger than 1 (for insertion sort, the stride = 1)
 - Use a decreasing sequence of strides

0	1	2	3	4	5	6	7	8
99	8	13	2	15	9	4	12	24

Method 4: Bubble Sort

- Perform a sequence of passes through the array.
- On each pass: proceed from left to right, swapping adjacent elements if they are out of order. Larger elements "bubble up" to the end of the array.
- At the end of the kth pass, the k rightmost elements are in their final positions.

0	1	2	3
28	24	27	18
24	27	18	28
24	18	27	28
18	24	27	28

static void bubbleSort(int[] arr, int length) {

0	1	2	3
28	24	27	18
24	27	18	28
24	18	27	28
18	24	27	28

__

```
static void bubbleSort(int[] arr, int length) {
                                                                          3
    for (int i = length - 1; i > 0; i--) {
                                                             24
                                                                          18
         for (int j = 0; j < i; j++) {
              if (arr[j] > arr[j+1])
                                                             27
                                                                   18
                                                                          28
                                                      24
                swap(arr, j, j+1);
                                                             18
                                                                          28
                                                      18
                                                             24
                                                                          28
```

The inner loop performs a single pass

- The inner loop performs a single pass
- The outer loop governs the number of passes, and the ending point of each pass

```
    0
    1
    2
    3

    28
    24
    27
    18

    24
    27
    18
    28

    24
    18
    27
    28

    18
    24
    27
    28
```

- Number of comparisons
 - the k-th pass performs ? comparisons, k=1,2,...,n-1
 - \triangleright so we get C(n) = ?
- Moves: depends on the contents of the array
 - in the worst case: the array is in reverse order, and every comparison leads to a swap (3 moves), so M(n) = ?
 - in the best case: the array is already sorted, and no moves are needed
 - Average: 50% chance a comparison leads to a swap
- Total running time: ?
 - \triangleright C(n) is always $O(n^2)$, M(n) is never worse than $O(n^2)$.

```
    0
    1
    2
    3

    28
    24
    27
    18

    24
    27
    18
    28

    24
    18
    27
    28

    18
    24
    27
    28
```

- Number of comparisons
 - the k-th pass performs n-k comparisons, k=1,2,...,n-1
 - \triangleright so we get C(n) = ?
- Moves: depends on the contents of the array
 - in the worst case: the array is in reverse order, and every comparison leads to a swap (3 moves), so M(n) = ?
 - in the best case: the array is already sorted, and no moves are needed
 - Average: 50% chance a comparison leads to a swap
- Total running time: ?
 - \triangleright C(n) is always $O(n^2)$, M(n) is never worse than $O(n^2)$.

```
    0
    1
    2
    3

    28
    24
    27
    18

    24
    27
    18
    28

    24
    18
    27
    28

    18
    24
    27
    28
```

Number of comparisons

- the k-th pass performs n-k comparisons, k=1,2,...,n-1
- > so we get $C(n) = (n-1) + (n-2) + ... + 1 = n^2/2 n/2 = O(n^2)$
- Moves: depends on the contents of the array
 - in the worst case: the array is in reverse order, and every comparison leads to a swap (3 moves), so M(n) = ?
 - in the best case: the array is already sorted, and no moves are needed
 - Average: 50% chance a comparison leads to a swap
- Total running time: ?
 - \triangleright C(n) is always $O(n^2)$, M(n) is never worse than $O(n^2)$.

```
    0
    1
    2
    3

    28
    24
    27
    18

    24
    27
    18
    28

    24
    18
    27
    28

    18
    24
    27
    28
```

- Number of comparisons
 - the k-th pass performs n-k comparisons, k=1,2,...,n-1
 - > so we get $C(n) = (n-1) + (n-2) + ... + 1 = n^2/2 n/2 = O(n^2)$
- Moves: depends on the contents of the array
 - in the worst case: the array is in reverse order, and every comparison leads to a swap (3 moves), so $M(n) = \frac{3C(n)}{2}$
 - in the best case: the array is already sorted, and no moves are needed
 - Average: 50% chance a comparison leads to a swap
- Total running time: ?
 - \triangleright C(n) is always $O(n^2)$, M(n) is never worse than $O(n^2)$.

```
    0
    1
    2
    3

    28
    24
    27
    18

    24
    27
    18
    28

    24
    18
    27
    28

    18
    24
    27
    28
```

- Number of comparisons
 - the k-th pass performs n-k comparisons, k=1,2,...,n-1
 - > so we get $C(n) = (n-1) + (n-2) + ... + 1 = n^2/2 n/2 = O(n^2)$
- Moves: depends on the contents of the array
 - in the worst case: the array is in reverse order, and every comparison leads to a swap (3 moves), so $M(n) = \frac{3C(n)}{2}$
 - in the best case: the array is already sorted, and no moves are needed
 - Average: 50% chance a comparison leads to a swap
- Total running time: $O(n^2)$
 - \triangleright C(n) is always $O(n^2)$, M(n) is never worse than $O(n^2)$.

Method 5: Quick-Sort

- Like bubble sort, quick-sort uses an approach based on exchanging out-of-place elements, but it's more efficient. Analogy:
 - Insertion sort to Shell sort: jump faster
 - Bubble sort to quick sort: bubble faster
- A divide-and-conquer method:
 - divide: rearrange the elements so that we end up with two sub-arrays such that: each element in the left array <= each element in the right array</p>

- conquer: apply quick-sort recursively to the subarrays, stopping when a subarray has a single element
- combine: nothing needs to be done, because of the criterion used in forming the subarrays

Partitioning An Array

- The process that quick-sort uses to rearrange the elements is known as partitioning the array.
- Partitioning is done using a value known as the pivot. We rearrange the elements to produce two subarrays:
 - left subarray: all values <= pivot</p>
 - right subarray: all values >= pivot

An Example of Partitioning An Array

Pivot = middle element

Maintain indices i and j, starting them "outside" the array:

- Find "out-of-place" elements:
 - increment i until arr[i] >= pivot
 - decrement j until arr[j] <= pivot</p>

Swap arr[i] and arr[j] if necessary

i				j				
7	9	4	9	6	18	15	12	

Partitioning An Array

Return j, indicating two subarrays: arr[first : j] and arr[j+1 : last]

first j i last

7 9 4 6 9 18 15 12

-

Another Example

Return j and we have two subarrays: arr[first : j] and arr[j+1 : last]


```
static void quickSort(int[] arr, int length) {
    qSort(arr, 0, length - 1);
static void qSort(int[] arr, int first, int last) {
     if (arr.length == 1) return;
     int split = partition(arr, first, last);
```

- quickSort() is the methods provided by the Sort class, which calls a recursive method
- The recursive method qSort() stops when the subarray size is 1

```
static void quickSort(int[] arr, int length) {
    qSort(arr, 0, length - 1);
static void qSort(int[] arr, int first, int last) {
     if (arr.length == 1) return;
     int split = partition(arr, first, last);
    qSort(arr, first, split);
    qSort(arr, split+1, last);
```

- quickSort() is the methods provided by the Sort class, which calls a recursive method
- The recursive method qSort() stops when the subarray size is 1

The helper method partition()

}

The helper method partition()

```
static int partition(int[] arr, int first, int last)
     int pivot = arr[(first + last)/2];
     int i = first - 1; // index going from left to right
     int j = last + 1; // index going from right to left
     while (true) {
           do {
                i++;
           } while (arr[i] < pivot);</pre>
           do {
           } while (arr[j] > pivot);
           if (i < j)
                swap(arr, i, j);
           else
                return j; // arr[j] = end of left array
```

Choosing Pivot Values (for Partitioning)

- First element or last element
 - risky, can lead to terrible worst-case behavior
 - especially poor if the array is almost sorted

- Middle element (good if the array is sorted)
- Randomly chosen element
- Median of three elements: to decrease the probability of getting a poor pivot
 - left, center, and right elements
 - three randomly selected elements

Running Time Analysis - Best Case

- Partitioning an array requires n comparisons, because each element is compared with the pivot.
- best case:

Running Time Analysis - Best Case

- Partitioning an array requires n comparisons, because each element is compared with the pivot.
- best case: partitioning always divides the array in half

Running Time Analysis - Best Case

- Partitioning an array requires n comparisons, because each element is compared with the pivot.
- best case: partitioning always divides the array in half

- at each level of the call tree, we perform n comparisons
- > There are $\log_2 n$ levels in the tree. So $C(n) = n \log_2 n = O(n \log n)$
- Similarly, M(n) and running time are both O(n log n)

Running Time Analysis - Worst Case

■ Worst case:

-

Running Time Analysis - Worst Case

Worst case: pivot is always the smallest or largest element one subarray has 1 element, the other has n - 1

Running Time Analysis - Worst Case

- Worst case: pivot is always the smallest or largest element one subarray has 1 element, the other has n - 1
 - call tree for qSort

comparisons

n
$$1 + (n-1) = n$$

$$1 + (n-2) = n-1$$

$$1 + (n-3) = n-2$$

$$...$$

$$1 + 2 = 3$$

$$1 + 1 = 2$$

- \triangleright C(n) is on the order of O(n²). What is M(n)?
- Average case: is harder to analyze. C(n) is still O(n log n)