XV. Espaces vectoriels préhilbertiens et euclidiens

- I. Inégalité de Cauchy-Schwarz et application (banque CCINP MP)
- 1) a) Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire noté (|). On pose $\forall x \in E, ||x|| = \sqrt{(x|x)}$.

Inégalité de Cauchy-Schwarz : $\forall (x,y) \in E^2, \, |\, (x|y) \, | \leqslant ||x|| \, ||y||$

Preuve :

Soit $(x,y) \in E^2$. Posons $\forall \lambda \in \mathbb{R}, P(\lambda) = ||x + \lambda y||^2$.

On remarque que $\forall \lambda \in \mathbb{R}, P(\lambda) \geq 0$.

De plus, $P(\lambda) = (x + \lambda y | x + \lambda y)$.

Donc, par bilinéarité et symétrie de (|), $P(\lambda) = ||y||^2 \lambda^2 + 2\lambda (x|y) + ||x||^2$.

On remarque que $P(\lambda)$ est un trinôme en λ si et seulement si $||y||^2 \neq 0$.

Premier cas : si y = 0

Alors |(x|y)| = 0 et $||x|| \, ||y|| = 0$ donc l'inégalité de Cauchy-Schwarz est vérifiée.

Deuxième cas : $y \neq 0$

Alors $||y|| = \sqrt{(y|y)} \neq 0$ car $y \neq 0$ et (|) est une forme bilinéaire symétrique définie positive.

Donc, P est un trinôme du second degré en λ qui est positif ou nul.

On en déduit que le discriminant réduit Δ est négatif ou nul.

Or
$$\Delta = (x|y)^2 - ||x||^2 ||y||^2$$
 donc $(x|y)^2 \le ||x||^2 ||y||^2$.

Et donc, $|(x|y)| \le ||x|| ||y||$.

b) On reprend les notations de 1. .

Prouvons que $\forall (x,y) \in E^2$, $|(x|y)| = ||x|| ||y|| \iff x$ et y sont colinéaires.

Supposons que |(x|y)| = ||x|| ||y||.

Premier cas : si y = 0

Alors x et y sont colinéaires.

Deuxième cas : si $y \neq 0$

Alors le discriminant de P est nul et donc P admet une racine double λ_0 .

C'est-à-dire $P(\lambda_0)=0$ et comme (|) est définie positive, alors $x+\lambda_0y=0$.

Donc x et y sont colinéaires.

Supposons que x et y soient colinéaires.

Alors $\exists \alpha \in \mathbb{R}$ tel que $x = \alpha y$ ou $y = \alpha x$.

Supposons par exemple que $x = \alpha y$ (raisonnement similaire pour l'autre cas).

$$|\ (x|y)\ | = |\alpha|.|\ (y|y)\ | = |\alpha|\,||y||^2$$
 et $||x||\,||y|| = \sqrt{(x|x)}\,||y|| = \sqrt{\alpha^2(y|y)}||y|| = |\alpha|.||y||^2.$

Donc, on a bien l'égalité.

2) On considère le produit scalaire classique sur $\mathscr{C}([a,b],\mathbb{R})$ défini par :

$$\forall (f,g) \in \mathscr{C}([a,b],\mathbb{R}), (f|g) = \int_{a}^{b} f(t)g(t)dt.$$

On pose
$$A = \left\{ \int_a^b f(t) dt \times \int_a^b \frac{1}{f(t)} dt, f \in E \right\}.$$

 $A \subset \mathbb{R}$.

 $A \neq \emptyset$ car $(b-a)^2 \in A$ (valeur obtenue pour la fonction $t \longmapsto 1$ de E).

De plus, $\forall f \in E, \int_a^b f(t) dt \times \int_a^b \frac{1}{f(t)} dt \ge 0$ donc A est minorée par 0.

On en déduit que A admet une borne inférieure et on pose $m = \inf A$.

Soit $f \in E$.

On considère la quantité $\left(\int_a^b \sqrt{f(t)} \frac{1}{\sqrt{f(t)}} dt\right)^2$.

D'une part,
$$\left(\int_a^b \sqrt{f(t)} \frac{1}{\sqrt{f(t)}} dt\right)^2 = \left(\int_a^b 1 dt\right)^2 = (b-a)^2$$
.

D'autre part, si on utilise l'inégalité de Cauchy-Schwarz pour le produit scalaire (|) on obtient :

$$\left(\int_{a}^{b} \sqrt{f(t)} \frac{1}{\sqrt{f(t)}} dt\right)^{2} \leqslant \int_{a}^{b} f(t) dt \int_{a}^{b} \frac{1}{f(t)} dt.$$

On en déduit que $\forall f \in E$, $\int_a^b f(t) dt \int_a^b \frac{1}{f(t)} dt \ge (b-a)^2$.

Donc $m \geqslant (b-a)^2$.

Et, si on considère la fonction $f: t \longmapsto 1$ de E, alors $\int_a^b f(t) dt \int_a^b \frac{1}{f(t)} dt = (b-a)^2$.

Donc $m = (b - a)^2$.

II. Polynômes de Legendre

- 1) Bilinéarité et positivité évidentes et si $\varphi(P,P)=0$ c'est que P est la fonction nulle car P^2 est une fonction continue positive d'intégrale nulle. On en déduit que P est le polynôme nul car il possède une infinité de racines, d'où la propriété de définie positivité.
- **2)** a) $(x^2-1)^k$ est de degré 2k donc sa dérivée k-ième est de degré 2k-k=k.
 - **b)** En intégrant par parties en posant $v' = \frac{d^k((x^2-1)^k)}{dx^k}$ et $u = x^i$, on a $v = \frac{d^{k-1}((x^2-1)^k)}{dx^{k-1}}$ et $u' = ix^{i-1}$, d'où

$$\varphi(X^{i}, f^{k}) = \int_{-1}^{1} x^{i} \frac{d^{k} \left((x^{2} - 1)^{k} \right)}{dx^{k}} dx$$

$$= \left[x^{i} \frac{d^{k-1} \left((x^{2} - 1)^{k} \right)}{dx^{k-1}} \right]_{-1}^{1} - \int_{-1}^{1} ix^{i-1} \frac{d^{k-1} \left((x^{2} - 1)^{k} \right)}{dx^{k-1}} dx$$

Mais 1 et -1 sont des racines de multiplicité k de $p_k(x) = (x^2 - 1)^k$, donc 1 et -1 annulent p_k jusqu'à sa dérivée k - 1-ième. Ainsi,

$$\varphi(X^{i}, f^{k}) = -\int_{-1}^{1} ix^{i-1} \frac{d^{k-1}((x^{2}-1)^{k})}{dx^{k-1}} dx$$

Une nouvelle intégration par parties donne

$$\varphi(X^{i}, f^{k}) = \left[-ix^{i-1} \frac{d^{k-2} \left(\left(x^{2}-1\right)^{k}\right)}{dx^{k-2}}\right]_{-1}^{1}$$

$$+ \int_{-1}^{1} i(i-1)x^{i-2} \frac{d^{k-2} \left(\left(x^{2}-1\right)^{k}\right)}{dx^{k-2}} dx$$

$$= \int_{-1}^{1} i(i-1)x^{i-2} \frac{d^{k-2} \left(\left(x^{2}-1\right)^{k}\right)}{dx^{k-2}} dx$$

puisque 1 et -1 annulent $\frac{\mathrm{d}^{k-2}\left(\left(x^2-1\right)^k\right)}{\mathrm{d}x^{k-2}}$. Et ainsi de suite : en dérivant i+1 fois, il restera

$$\varphi\left(X^{i}, f^{k}\right) = \left[(-1)^{i} i! \frac{\mathrm{d}^{k-i}\left(\left(x^{2}-1\right)^{k}\right)}{\mathrm{d}x^{k-i}}\right]_{-1}^{1} = 0$$

puisque 1 et -1 annulent $\frac{\mathrm{d}^{k-i}\left(\left(x^2-1\right)^k\right)}{\mathrm{d}x^{k-i}}.$

c) Par définition même du processus d'orthonormalisation de la base $(1, X, ..., X^n)$, on a Vect $(1, X, ..., X^i)$ = Vect $(e_0, e_1, ..., e_i)$, donc chaque e_i est combinaison de $1, X, ..., X^i$. Puisque $\varphi\left(X^j, f_k\right) = 0$ pour tout $j \in \{0, ..., k-1\}$, on a $\varphi\left(e_j, f_k\right) = 0$ lorsque $j \leq k-1$. Enfin, f_k étant de degré k, f_k est combinaison de $(1, X, ..., X^k)$ donc de $(e_0, e_1, ..., e_k)$ et on peut donc écrire

$$f_k = \sum_{j=0}^k \lambda_j e_j$$

et comme (e_0, \ldots, e_n) est une base orthonormée, $\varphi(f_k, e_j) = \lambda_j$. C'est donc que $\lambda_j = 0$ pour tout $j \leq k - 1$ et $f_k = \lambda_k e_k$.

III. Une projection orthogonale (banque CCINP MP)

- 1) D = Vect((1,2,3)). $(1,2,3) \notin P$ car les coordonnées du vecteur (1,2,3) ne vérifient pas l'équation de P. Donc $D \cap P = \{0\}$. (*) De plus, dim $D + \dim P = 1 + 2 = \dim \mathbb{R}^3$. (**) D'après (*) et (**), $\mathbb{R}^3 = P \oplus D$.
- 2) Soit $u=(x,y,z)\in\mathbb{R}^3$. Par définition d'une projection, $p(u)\in P$ et $u-p(u)\in D$. $u-p(u)\in D$ signifie que $\exists \ \alpha\in\mathbb{R}$ tel que $u-p(u)=\alpha(1,2,3)$. On en déduit que $p(u)=(x-\alpha,y-2\alpha,z-3\alpha)$. (***) Or $p(u)\in P$ donc $(x-\alpha)+(y-2\alpha)+(z-3\alpha)=0$, c'est-à-dire $\alpha=\frac{1}{6}(x+y+z)$. Et donc, d'après (***), $p(u)=\frac{1}{6}(5x-y-z,-2x+4y-2z,-3x-3y+3z)$. Soit $e=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 .

Soit *A* la matrice de *p* dans la base *e*. On a $A = \frac{1}{6} \begin{pmatrix} 5 & -1 & -1 \\ -2 & 4 & -2 \\ -3 & -3 & 3 \end{pmatrix}$.

3) On pose $e'_1 = (1, 2, 3), e'_2 = (1, -1, 0)$ et $e'_3 = (0, 1, -1)$. e'_1 est une base de D et (e'_2, e'_3) est une base de P. Or $\mathbb{R}^3 = P \oplus D$ donc $e' = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 . De plus $e'_1 \in D$ donc $p(e'_1) = 0$. $e'_2 \in P$ et $e'_3 \in P$ donc $p(e'_2) = e'_2$ et

$$p(e'_3) = e'_3.$$
Ainsi, $M(p, e') = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

IV. Une distance (banque CCINP MP)

- 1) On a immédiatement $\mathscr{F} = \operatorname{Vect}(I_2, K)$ avec $K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. On peut donc affirmer que \mathscr{F} est un sous-espace vectoriel de $\mathscr{M}_2(\mathbb{R})$. $\mathscr{F} = \operatorname{Vect}(I_2, K) \text{ donc } (I_2, K) \text{ est une famille génératrice de } \mathscr{F}.$ De plus, I_2 et K sont non colinéaires donc la famille (I_2, K) est libre. On en déduit que (I_2, K) est une base de \mathscr{F} .
- 2) Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Comme (I_2, K) est une base de \mathscr{F} , $M \in \mathscr{F}^\perp \iff \varphi(M, I_2) = 0$ et $\varphi(M, K) = 0$. C'est-à-dire, $M \in \mathscr{F}^\perp \iff a+d=0$ et b-c=0. Ou encore, $M \in \mathscr{F}^\perp \iff d=-a$ et c=b. On en déduit que $\mathscr{F}^\perp = \operatorname{Vect}(A, B)$ avec $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. (A, B) est une famille libre et génératrice de \mathscr{F}^\perp donc (A, B) est une base

- 3) On peut écrire $J = I_2 + B$ avec $I_2 \in \mathcal{F}$ et $B \in \mathcal{F}^{\perp}$. Donc le projeté orthogonal de J sur \mathcal{F}^{\perp} est $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- 4) On note d(J, F) la distance de J à F.
 D'après le cours, d(J, F) = ||J p_F(J)|| où p_F(J) désigne le projeté orthogonal de J sur F.
 On peut écrire à nouveau que J = I₂ + B avec I₂ ∈ F et B ∈ F[⊥].
 Donc p_F(J) = I₂.
 On en déduit que d(J, F) = ||J p_F(J)|| = ||J I₂|| = ||B|| = √2.

 $\mathrm{de}\,\mathscr{F}^{\perp}$.

V. Une autre distance

1) Soit P et Q dans E.

La fonction $f: t \mapsto P(t)Q(t)\mathrm{e}^{-t}$ est continue sur $[0,+\infty[$. Donc $f(t)=\int_{t\to+\infty}^{\infty}\left(\frac{1}{t^2}\right)$. Puisque $\int_{1}^{+\infty}\frac{1}{t^2}\,\mathrm{d}t$ converge, l'intégrale $\int_{0}^{+\infty}P(t)Q(t)\mathrm{e}^{-t}\,\mathrm{d}t$ est absolument convergente donc convergente.

2) Par commutativité du produit dans $\mathbb{R}, (P,Q) \mapsto \langle P \mid Q \rangle$ est symétrique. La linéarité de l'intégrale et les règles usuelles de calculs de \mathbb{R} entraînent la linéarité de $P \mapsto \langle P \mid Q \rangle$. Par symétrie on a la linéarité à droite.

Pour tout $P \in E, \langle P \mid P \rangle = \int_0^{+\infty} P(t)^2 \mathrm{e}^{-t} \, \mathrm{d}t$ est positive car $f: t \mapsto P(t)^2 \mathrm{e}^{-t}$ est positive. De plus si $\langle P \mid P \rangle = 0, f$ étant continue, positive et d'intégrale nulle sur $[0, +\infty[$, on a f = 0 sur $[0, +\infty[$. D'où P est nul sur $[0, +\infty[$. Donc P est un polynôme qui a une infinité de racines : P est le polynôme nul.

La forme $(P,Q) \mapsto \langle P \mid Q \rangle$ est symétrique, bilinéaire, définie positive : c'est un produit scalaire sur E.

3) Classiquement $\int_0^{+\infty} e^{-t} dt = \left[-e^{-t} \right]_0^{+\infty} = 1 \operatorname{car} \lim_{t \to +\infty} e^{-t} = 0.$

Pour $p \in \mathbb{N}^*$, on a par intégration par parties :

$$I_p = \int_0^{+\infty} t^p e^{-t} dt = [t^p e^{-t}]_0^{+\infty} + p \int_0^{+\infty} t^{p-1} e^{-t} dt$$

Puisque $\lim_{t\to+\infty} t^p e^{-t} = 0$, on obtient pour tout $p \geqslant 1, I_p = pI_{p-1}$. On en déduit que pour $p \in \mathbb{N}, I_p = \int_0^{+\infty} t^p e^{-t} dt = p!$.

4) Soit $k \in \mathbb{N} \setminus \{0, 1\}$. Notons $P_k = X^k$.

En notant d la distance au sens $de\langle | \rangle de P_k$ à $\mathscr{P} = \text{vect}(P_0, P_1)$, on sait que :

$$m_k = \inf_{(a,b) \in \mathbb{R}^2} \int_0^{+\infty} (t^k - at - b)^2 e^{-t} dt = d^2$$

Base orthonormale de \mathcal{P} (par la méthode de Gram-Schmidt)

$$||P_0||^2 = \int_0^{+\infty} 1^2 e^{-t} dt = I_0 = 1$$
. Donc P_0 est de norme 1

Posons $P = P_1 - \langle P_0 \mid P_1 \rangle P_0$.

$$\langle P_0 \mid P_1 \rangle = \int_0^{+\infty} 1 \cdot t e^{-t} dt = I_1 = 1$$

Donc $P = P_1 - P_0 = X - 1$.

$$||P||^2 = \int_0^{+\infty} (t-1)^2 e^{-t} dt = I_2 - 2I_1 + I_0 = 2 - 2 + 1 = 1$$

Une base orthonormale de \mathscr{P} est $(Q_0, Q_1) = (1, X - 1)$. Projeté orthogonal de $P_k \operatorname{sur} \mathscr{P} = \operatorname{vect}(Q_0, Q_1)$. On a alors si p désigne la projection orthogonale $\operatorname{sur} \mathscr{P}$:

$$p(P_k) = \langle Q_0 \mid P_k \rangle Q_0 + \langle Q_1 \mid P_k \rangle Q_0$$

$$\|p(P_k)\|^2 = \langle Q_0 \mid P_k \rangle^2 + \langle Q_1 \mid P_k \rangle^2$$
Or $\langle Q_0 \mid P_k \rangle = I_k = k!$ et :
$$\langle Q_1 \mid P_k \rangle = \langle X - 1 \mid X^k \rangle$$

$$= \langle X \mid X^k \rangle - \langle 1 \mid X^k \rangle$$

$$= I_{k+1} - I_k$$

$$= (k+1)! - k!$$

$$= k(k!).$$

Donc $||p(P_k)||^2 = (1 + k^2) (k!)^2$. Enfin $||P_k||^2 = \langle X^k | X^k \rangle = I_{2k} = (2k)$! et:

$$m_k = \|P_k\|^2 - \|p(P_k)\|^2 = (2k)! - (1+k^2)(k!)^2$$