一、填空题	Ī: (每空 1 分,本大	题共 15 分)			
1. 给定命题	公式 A、B, 若		,则称 A	和B是逻辑相等	的。
2. 命题公式	$\neg (P \rightarrow Q)$ 的主析取范	瓦式为		,主合	取范式的编
码表示为	与		o		
3. 设 E 为全	集,	,称	为 A 的绝对补,	记作~A,	
且~ (~	~A) =	, ∼E =	, ~Φ=		0
4. 设 $A = \{a$	a,b,c } 考虑下列子集				
$S_1 = \{\{\{a, b\}, b\}\}$	$\{a,b\},\{b,c\}\}$, $S_2 = \{\{a,b\},\{b,c\}\}$	a }, ${a,b}$, ${a,c}$	$\{S_3\}, S_3 = \{\{a\}, a\}$	$\{b,c\}\}, S_4 = \{\{a,c\}\}\}$	$\{a,b,c\}\}$
$S_5 = \{\{$	$a\},\{b\},\{c\}\}$, $S_6 = \{\{a,b\},\{c\}\}$	a }, ${a,c}$ }			
则 A i	的覆盖有		, A 的划分有 _		o
5. 设 S 是非	空有限集,代数系统<]	$\Pi(\mathbf{S}), \cap, \cup$	>中, $\Pi(s)$ 对(的幺元为	,
零元为	。П	(S) 对∪的幺;	元为	,零元为	0
6. 若 <i>G</i> =< \	V, E > 为汉密尔顿图,	则对于结点集	V 的每个非空子绰	į S,均有	
W(G-S)	S 成	立,其中 W(G	-S)是		0
)		t. t m e			
二、	择题:(每小题 1 分	,,,,,	10分)		
		小疋里百八。	$\mathbf{p}_{\mathbf{r}}(\mathbf{p}_{\mathbf{r}},\mathbf{q})$	D	
Α, Q-	$\rightarrow (P \lor Q);$		$B,\ (P \wedge Q) \to$	Γ;	
C、 ¬(<i>I</i>	$(P \land \neg Q) \land (\neg P \lor Q);$		D, $(P \to Q) \leftarrow$	\rightarrow $(\neg P \lor Q)$.	
2. 命题"没	有不犯错误的人"符号	化为()。		
设 <i>M(x)</i> :	x是人, $P(x)$: x 犯错词	旲。			
$A \cdot \forall x$	$(M(x) \wedge P(x));$	$B \cdot \neg (\exists x ($	$M(x) \to \neg P(x)$);	
C、 ¬(∃	$\exists x (M(x) \land P(x)));$	$D_{^{v}} \neg (\exists x ($	$M(x) \wedge \neg P(x)))$	0	
3. 设 <i>A</i> = { d	$\{\Phi\}$, $B = \Pi(\Pi(A))$, \mathbb{T}	列各式中哪个	是错误的()。	

- A, $\Phi \subseteq B$; B, $\{\Phi\} \subseteq B$, C, $\{\{\Phi\}\} \in B$; D, $\{\Phi, \{\Phi\}\} \subseteq \Pi(A)$.
- 4. 对自然数集合 N,哪种运算不是可结合的,运算定义为任 $a,b \in N$ (
 - A, $a*b = \min(a,b)$;

B, a * b = a + 2b;

 $C_{x} a * b = a + b + 3$:

- D, $a*b = a,b \pmod{3}$
- 5. 设 Z 为整数集,下面哪个序偶不够成偏序集()。

 - A < Z, <> (<: 小于关系); $B < Z, \leq> (\leq: 小于等于关系);$

 - $C \times Z = (=:$ 等于关系); $D \times Z = (=: 整除关系).$
- 6. 任意具有多个等幂元的半群,它(
 - A、不能构成群;
- B、不一定能构成群;

)。

- C、不能构成交换群; D、能构成交换群。
- 7. 设 $< A. \le >$ 是一个有界格,它也是有补格,只要满足()。

 - A、每个元素都有一个补元; B、每个元素都至少有一个补元;

 - C、每个元素都无补元; D、每个元素都有多个补元。
- 8. 设 $G = \langle V, E \rangle$ 为无向图,|V| = 7,|E| = 23,则G一定是()。

- A、完全图; B、树; C、简单图; D、多重图。
- 9. 给定无向图 $G = \langle V, E \rangle$,如下图所示,下面哪个边集不是其边割集()。

- B, $\{\langle v_1, v_5 \rangle, \langle v_4, v_6 \rangle\}$;
- C, $\{\langle v_4, v_7 \rangle, \langle v_4, v_8 \rangle\}$;
- $D \setminus \{ \langle v_1, v_2 \rangle, \langle v_2, v_3 \rangle \}$
- 10. 有 n 个结点(n ≥ 3), m 条边的连通简单图是平面图的必要条件 ()。
- A, $n \ge 3m 6$; B, $n \le 3m 6$; C, $m \ge 3n 6$; D, $m \le 3n 6$.

三、判断改正题: (每小题 2 分,本大题共 20 分) 1. 设 A, B 为任意集合,不能 $A \subset B \coprod A \in B$ 。 () 2. 设 R 是集合 A 上的关系,若 R_1 , R_2 是对称的,则 R_1 。 R_2 也是对称的。(3. 群中可以有零元(对阶数大于1的群)。 () (4. 循环群一定是 Abel 群。) 5. 每一个链都是分配格。 6. 不可能有偶数个结点,奇数条边的欧拉图。 7. 图 G 中的每条边都是割边,则 G 必是树。 9. 公式 $\forall x (P(x) \rightarrow Q(x)) \land R(y)$ 中 $\forall x$ 的辖域为 P(x) 。 () 10. 公式 $\forall x P(x) \rightarrow \exists y Q(x, y)$ 的前東范式为 $\forall x \forall y (P(x) \rightarrow Q(x, y))$.) 四、简答题(共20分)

1. 用等值演算法求下面公式的主析取范式,并求其成真赋值。

$$(P \lor O) \to R$$

2. 集合 $A = \{1, 2, 3, 4\}$ 上的关系

$$R = \{<1,1>,<1,3>,<2,2>,<3,3>,<3,1>,<3,4>,<4,3>,<4,4>\},$$
写出关系矩阵 M_R , 画出关系图并讨论 R 的性质。

- 3. 有n个药箱,若每两个药箱里有一种相同的药,而每种药恰好在两个药箱中,问共有多少种药品?
- 4. 一棵树 T 中, 有 3 个 2 度结点, 一个 3 度结点, 其余结点都是树叶。
 - (1) T中有几个结点;
 - (2) 画出具有上述度数的所有非同构的无向图。

五、证明题: (35分)

- 符号化下列各题,并说明结论是否有效(用推理规则)。
 凡 15 的倍数都是 3 的倍数,凡 15 的倍数都是 5 的倍数,所以有些 5 的倍数是 3 的倍数。
- 2. 用推理规则证明:

$$(A \to B) \land (C \to D)$$
, $(\neg B \lor E) \land (\neg D \lor F)$, $\neg (E \land F)$, $A \to C \vdash A$

- 3. 设函数 $f: A \rightarrow B$, $g: B \rightarrow C$, 若 $g \circ f$ 是满射的,则 g 是满射的。
- 4. 当且仅当G的一条边e不包含在G的闭迹中时,e才是G的割边。
- 5. 设 < S , \lor , \land > 是一个分配格, $a \in S$, 令 $f(x) = x \lor a$, 对任意 $a \in S$, 证明: f 是 < S , \lor , \land > 到自身的格同态映射。

一、填空题

- 1. 对于 A, B 中原子变元 P_1 , P_2 , \cdots , P_n 任意一组真值指派, A 和 B 的真值相同。
- 2. $P \wedge \neg Q$, $M_{00} \wedge M_{01} \wedge M_{11}$ \circ
- 3. 集 A 关于 E 的补集 E-A; A; Φ ; E。
- 4. S_1 , S_2 , S_3 , S_4 , S_5 ; S_3 , S_4 , S_5 .
- 5. Φ ; S; S; Φ .
- 6. ≤; G-S 的连通分支数。

二、单项选择题

题号	1	2	3	4	5	6	7	8	9	10
答案	С	D	D	В	A	A	В	D	В	D

三、判断改正题

1. × 可能 $A \subset B$ 且 $A \in B$,如 $A = \{a\}$, $B = \{1, \{1\}, 2\}$ 。

2. × R_1 , R_2 是对称的,则 $R_1 \circ R_2$ 不一定是对称的。

3. × 阶数大于1的群不可能有零元。

4. √ 。 5. √ 。

6. × 可以有偶数个结点、奇数条边的欧拉图。如图

7. × 连通图, 若每条边都是割边,则 G 必是树。

8. × $\neg P$:每一个自然数不都是偶数。

9. \times $\forall x$ 的辖域为 $P(x) \rightarrow Q(x)$ 。

10. \times $\forall x P(x) \rightarrow \exists y Q(x, y)$ 的前東范式为 $\exists x \exists y (P(x) \rightarrow Q(u, y))$ 。

四、简答题

1. 解: 原式

$$\Leftrightarrow \neg (P \lor Q) \lor R \Leftrightarrow (\neg P \land \neg Q) \lor R \Leftrightarrow (\neg P \land \neg Q \land R) \lor (\neg P \land \neg Q \land \neg R) \lor (P \land Q \land R) \lor (P \land \neg Q \land R) \lor (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land R)$$

 $\Leftrightarrow m_{001} \vee m_{000} \vee m_{111} \vee m_{101} \vee m_{001} \vee m_{011}$

: 使其成真赋值为:

$$\begin{cases}
P & 0 \\
Q & 0
\end{cases},
\begin{cases}
P & 0 \\
Q & 0
\end{cases},
\begin{cases}
P & 1 \\
Q & 1
\end{cases},
\begin{cases}
P & 1 \\
Q & 0
\end{cases},
\begin{cases}
P & 0 \\
Q & 0
\end{cases},
\begin{cases}
P & 0 \\
Q & 1
\end{cases}.$$

2. 解:

$$M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} R 的关系图为$$

2) 3

R是自反、对称的。

- 3. 解:用n个结点表示n个药箱,当两种药箱放一种相同药时,则对应的两点连一条边,则得到一个无向完全图,因而所求药品数即为该图边数= $\frac{1}{2}n(n-1)$ 。
- 4. 解: (1) 设该树树叶数为 t,则树 T 的结点数为3+1+t,又边数 = 结点数 -1,

$$\sum \deg(v_i) = 边数2倍, :: 3 \times 2 + 1 \times 3 + t \times 1 = 2(3 + t + 1 - 1)$$

即9+t=6+2t , :: t=3, :: T 中 7 个结点。

(2) 具有3个两度结点,一个3度结点,3片树叶的树(非同构的)共有以下三种:

五、证明题

1. 解:设个体域为整数集, D(x,y): x是y的倍数。则命题符号化为:

 $\forall x(D(x,15) \to D(x,3)), \ \forall x(D(x,15) \to D(x,5)), \ \exists xD \ (x,15)$

 $\vdash \exists x (D(x,5) \land D(x,3))$

证明: (1) $\exists xD$ (x,15)

Р

(2) D(c,15)

ES (1)

 $(3) \quad \forall x (D(x,15) \to D(x,3))$

_

(4) $D(c,15) \to D(c,3)$

US (3)

(5) D(c,3)

T (2) (4) I

(6) $\forall x(D(x,15) \rightarrow D(x,5))$

P

(7) $D(c,15) \to D(c,5)$

US (6)

(8) D(c,5)

T (2) (7) I

(9) $D(c,5) \wedge D(c,3)$

T (5) (8) I

(10) $\exists x (D(x,5) \land D(x,3))$

EG (9)

∴结论有效。

2. 证明: (1) A

P (附加前提)

(2) $A \rightarrow C$

p

(3) C

T (1) (2) I

P

(4) $(A \rightarrow B) \land (C \rightarrow D)$

(5) $C \rightarrow D$ T (4) I

(6) D T (3) (5) I

(7) $(\neg B \lor E) \land (\neg D \lor F)$ P

(8) $(B \rightarrow E) \land (D \rightarrow F)$ T (7) E

 $(9) D \to F \qquad T (8) I$

(10) F T (6) (9) I

 $(11) A \rightarrow B \qquad \qquad T (4) I$

(12) B T (1) (11) I

 $(13) B \to E \qquad T (8) I$

(14) E T (12) (13) I

(15) $E \wedge F$ T (10) (14) I

 $(16) \neg (E \land F) \qquad \qquad P$

(17) $(E \wedge F) \wedge \neg (E \wedge F)$ T (15) (16) I

∴结论有效。

3. 证明: $g \circ f: A \to C$, $\forall c \in C$, $\because g \circ f$ 是满射, $\therefore \exists a \in A$, 使

 $g \circ f(a) = g(f(a)) = c$, $\Leftrightarrow b = f(a) \in B$, \mathfrak{M} g(b) = c,

 $\therefore g: B \to C$ 是满射。

4. 证明: 必要性: 设 e 为割边, 若 e 包含在 G 的一个闭迹中,则从 G 中删去 e 仍连通,此与 e 是割边矛盾。

充分性: 设e = (u, v),不包含 G 的任一闭迹中。假设e 不为割边,则G - e 仍连通,u, v 间存在一条基本回路 C,于是C + e 则为一条闭迹与已知矛盾, $\therefore e$ 为割边。

5. 证明: $\forall x, y \in S$, $\because f(x \lor y) = x \lor y \lor a = (x \lor a) \lor (y \lor a) = f(x) \lor (y)$ (\lor 可结合),

 $f(x \wedge y) = (x \wedge y) \vee a = (x \vee a) \wedge (y \vee a) = f(x) \wedge (y)$ (分配律),

 \therefore f 是 < S, \vee , \wedge > 到自身的格同态映射。