Primitive grafice. Faţa şi spatele unui poligon convex

Mihai-Sorin Stupariu

Sem. I, 2023 - 2024

Condiții pentru poligoane

Condiții pentru poligoane

Codurile sursă 01_04_poligoane_OLD.cpp (funcția RenderFunction3), 02_02_fata_spate_poligon.cpp, 02_03_poligoane3D_ex1_OLD.cpp, 02_04_poligoane3D.cpp.

- Codurile sursă 01_04_poligoane_OLD.cpp (funcția RenderFunction3), 02_02_fata_spate_poligon.cpp, 02_03_poligoane3D_ex1_OLD.cpp, 02_04_poligoane3D.cpp.
- Ce proprietăți geometrice sunt / NU sunt implementate în OpenGL?

- Codurile sursă 01_04_poligoane_OLD.cpp (funcția RenderFunction3), 02_02_fata_spate_poligon.cpp, 02_03_poligoane3D_ex1_OLD.cpp, 02_04_poligoane3D.cpp.
- Ce proprietăți geometrice sunt / NU sunt implementate în OpenGL?
 - ▶ **NU:** reguli pentru aplicarea opțiunii GL_POLYGON se presupune că vârfurile determină un poligon convex (exemplificare: luați $A_1 = (0,0), A_2 = (200,0), A_3 = (200,200), A_4 = (140,60)$ și desenați, folosind modul GL_POLYGON, poligonul $A_1A_2A_3A_4$, apoi poligonul $A_4A_1A_2A_3$)

- Codurile sursă 01_04_poligoane_OLD.cpp (funcția RenderFunction3), 02_02_fata_spate_poligon.cpp, 02_03_poligoane3D_ex1_OLD.cpp, 02_04_poligoane3D.cpp.
- Ce proprietăți geometrice sunt / NU sunt implementate în OpenGL?
 - ▶ **NU:** reguli pentru aplicarea opțiunii GL_POLYGON se presupune că vârfurile determină un poligon convex (exemplificare: luați $A_1 = (0,0), A_2 = (200,0), A_3 = (200,200), A_4 = (140,60)$ și desenați, folosind modul GL_POLYGON, poligonul $A_1A_2A_3A_4$, apoi poligonul $A_4A_1A_2A_3$)
 - ▶ DA: faţa și spatele unui poligon convex

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

1. Punctele trebuie să fie coplanare, dar nu coliniare.

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

- 1. Punctele trebuie să fie coplanare, dar nu coliniare.
- 2. Vârfurile trebuie indicate în ordinea corectă, astfel încât linia poligonală să nu aibă autointersecții.

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

- 1. Punctele trebuie să fie coplanare, dar nu coliniare.
- 2. Vârfurile trebuie indicate în ordinea corectă, astfel încât linia poligonală să nu aibă autointersecții.
- 3. Poligonul trebuie să fie convex.

Se presupune că opțiunea GL_POLYGON este utilizată pentru un șir de vârfuri P_1, P_2, \ldots, P_N , distincte două câte două. Reguli referitoare la vârfurile indicate, pentru ca poligonul să poată fi desenat:

- 1. Punctele trebuie să fie coplanare, dar nu coliniare.
- 2. Vârfurile trebuie indicate în ordinea corectă, astfel încât linia poligonală să nu aibă autointersecții.
- 3. Poligonul trebuie să fie convex.

În continuare primele două subpuncte sunt descrise succint, pentru cel de-al treilea sunt prezentate mai multe detalii (fapt esențial: pentru un poligon convex vom putea defini fața și spatele poligonului).

1. Coplanaritatea

De verificat: condiția de coplanaritate

$$\operatorname{rang} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ x_{P_1} & x_{P_2} & x_{P_3} & \dots & x_{P_N} \\ y_{P_1} & y_{P_2} & y_{P_3} & \dots & y_{P_N} \\ z_{P_1} & z_{P_2} & z_{P_3} & \dots & z_{P_N} \end{pmatrix} = 3$$
 (1)

sau faptul că

$$\dim_{\mathbb{R}}\langle \overrightarrow{P_1P_2}, \overrightarrow{P_1P_3}, \dots, \overrightarrow{P_1P_N} \rangle = 2. \tag{2}$$

Fapt: O condiție alternativă este coliniaritatea vectorilor $\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3}$, $\overrightarrow{P_2P_3} \times \overrightarrow{P_3P_4}, \ldots, \overrightarrow{P_{N-1}P_N} \times \overrightarrow{P_NP_1}, \overrightarrow{P_NP_1} \times \overrightarrow{P_1P_2}$. Altfel spus: punctele P_1, P_2, \ldots, P_N sunt coplanare dacă și numai dacă vectorii $\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}$ $(i=1,\ldots,N,$ cu convenții modulo N) sunt coliniari.

Exemplu

Punctele $P_1 = (7, 1, 1), P_2 = (-3, 3, 9), P_3 = (1, -1, 9), P_4 = (8, -4, 5)$ sunt coplanare.

$$\begin{array}{lll} \overrightarrow{P_{1}P_{2}} \times \overrightarrow{P_{2}P_{3}} = (32,32,32) & \text{vectorii} & \text{sunt proportionali} \\ \overrightarrow{P_{2}P_{3}} \times \overrightarrow{P_{3}P_{4}} = (A6,A6) & \text{deci olimiati} \\ \overrightarrow{P_{3}P_{4}} \times \overrightarrow{P_{4}P_{1}} = (32,32,32) & \text{especial proportionali} \\ \overrightarrow{P_{4}P_{1}} \times \overrightarrow{P_{1}P_{2}} = (48,48,48) & \text{deci olimiati} \\ \overrightarrow{P_{1}P_{2}} \times \overrightarrow{P_{1}P_{2}} = (48,48,48) & \text{coplanare} \\ \overrightarrow{P_{1}P_{2}} \times \overrightarrow{P_{2}P_{3}} = P_{3} - P_{2} = (A,-A,9) - (A,A) = (A,A,B) \\ \overrightarrow{P_{1}P_{2}} \times \overrightarrow{P_{2}P_{3}} = A_{3} - P_{2} = (A,-A,9) - (A,A) = (A,A,B) \\ \overrightarrow{P_{1}P_{2}} \times \overrightarrow{P_{2}P_{3}} = A_{3} - A_{2} = (A,A,B) - (A,A,B) = (A,A,B) \\ \overrightarrow{P_{1}P_{2}} \times \overrightarrow{P_{2}P_{3}} = A_{3} - A_{2} = (A,A,B) - (A,A,B$$

Exemplu

Punctele $P_1 = (7, 1, 1), P_2 = (-3, 3, 9), P_3 = (1, -1, 9), P_4 = (11, -3, 1)$ sunt coplanare.

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = (32, 32, 32)$$

$$\overrightarrow{P_2P_3} \times \overrightarrow{P_3P_4} = (16, 16, 16)$$

$$\overrightarrow{P_3P_4} \times \overrightarrow{P_4P_1} = (32, 32, 32)$$

$$\overrightarrow{P_4P_1} \times \overrightarrow{P_1P_2} = (48, 48, 48)$$

2. Linie poligonală fără autointersecții

De verificat: intersecții de segmente.

Varianta 2 Se folosește reprezentarea segmentelor cu ajutorul combinațiilor afine. Segmentele [AB] și [CD] se intersectează \Leftrightarrow

$$\exists s_0, t_0 \in [0,1]$$
 a.î. $(1-t_0)A + t_0B = (1-s_0)C + s_0D$.

Această variantă poate fi aplicată și în context 3D.

3. Convexitatea poligonului - figura

3. Convexitatea poligonului

De verificat: convexitatea (folosind produse vectoriale).

Observație. (i) Fie $=(P_1, P_2, \dots, P_N)$ un poligon (sensul de parcurgere este important!). Poligonul \mathcal{P} este convex dacă și numai dacă pentru orice trei vârfuri consecutive P_{i-1}, P_i, P_{i+1} (modulo N) ale poligonului sensul vectorul $\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}$ este independent de *i*.

(ii) Vectorii menționați au toți aceeași direcție (perpendiculari pe planul poligonului), deoarece punctele sunt coplanare (vezi condiția 1).

(iii) Pentru un poligon convex, vectorul

$$n = \frac{\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}}{\parallel \overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}} \parallel}$$

este independent de i.

Exemplu. Punctele $P_1 = (7, 1, 1), P_2 = (-3, 3, 9), P_3 = (1, -1, 9),$

 $P_4 = (11, -3, 1)$ determină un poligon convex.

Definiție - vector normal

Lemă. Pentru un poligon convex, vectorul

$$n = \frac{\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}}{\parallel \overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}} \parallel}$$

este independent de i.

Definiție. Fie (P_1, P_2, \dots, P_N) un poligon convex. Se alege $i = 1, \dots, n$. Vectorul

$$n = \frac{\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}}{\|\overrightarrow{P_{i-1}P_i} \times \overrightarrow{P_iP_{i+1}}\|}$$

se numește **vector normal (normală)** la planul poligonului / poligonul (P_1, P_2, \ldots, P_N) .

Convexitatea poligonului - observație

Obs. Fie (P, P2,..., Pn) un poligon convex.

(i) Parcurgerea P,P2....Pn ____ vector normal (n)

(ii) Parcurgerea PnPn-1....P1 ____ -m

Modalitate de calcul (I)

1. Se aleg trei vârfuri consecutive, de exemplu P_1 , P_2 , P_3 , având coordonatele $P_1 = (x_{P_1}, y_{P_1}, z_{P_1})$, $P_2 = (x_{P_2}, y_{P_2}, z_{P_2})$, respectiv $P_3 = (x_{P_3}, y_{P_3}, z_{P_3})$.

Modalitate de calcul (I)

- 1. Se aleg trei vârfuri consecutive, de exemplu P_1, P_2, P_3 , având coordonatele $P_1 = (x_{P_1}, y_{P_1}, z_{P_1}), P_2 = (x_{P_2}, y_{P_2}, z_{P_2}),$ respectiv $P_3 = (x_{P_3}, y_{P_3}, z_{P_3}).$
- 2. Se scrie ecuația planului determinat de cele trei puncte sub forma

$$Ax + By + Cz + D = 0,$$

unde coeficienții A, B, C și D sunt dați de formulele

$$A = \left| \begin{array}{cc|c} y_{P_1} & z_{P_1} & 1 \\ y_{P_2} & z_{P_2} & 1 \\ y_{P_3} & z_{P_3} & 1 \end{array} \right|, \qquad B = - \left| \begin{array}{cc|c} x_{P_1} & z_{P_1} & 1 \\ x_{P_2} & z_{P_2} & 1 \\ x_{P_3} & z_{P_3} & 1 \end{array} \right| = \left| \begin{array}{cc|c} x_{P_1} & 1 & z_{P_1} \\ x_{P_2} & 1 & z_{P_2} \\ x_{P_3} & 1 & z_{P_3} \end{array} \right|,$$

$$C = \left| \begin{array}{cc} x_{P_1} & y_{P_1} & 1 \\ x_{P_2} & y_{P_2} & 1 \\ x_{P_3} & y_{P_3} & 1 \end{array} \right|, \qquad D = - \left| \begin{array}{cc} x_{P_1} & y_{P_1} & z_{P_1} \\ x_{P_2} & y_{P_2} & z_{P_2} \\ x_{P_3} & y_{P_3} & z_{P_3} \end{array} \right|,$$

fiind deduși din condiția de coliniaritate

$$\begin{vmatrix} x & y & z & 1 \\ x_{P_1} & y_{P_1} & z_{P_1} & 1 \\ x_{P_2} & y_{P_2} & z_{P_2} & 1 \\ x_{P_3} & y_{P_3} & z_{P_3} & 1 \end{vmatrix} = 0.$$

Modalitate de calcul (II)

3 Are loc relația

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = (A, B, C).$$

Modalitate de calcul (II)

3 Are loc relația

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = (A, B, C).$$

4 În final:

$$n = \frac{1}{\sqrt{A^2 + B^2 + C^2}}(A, B, C).$$

Modalitate de calcul (II)

3 Are loc relația

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = (A, B, C).$$

4 În final:

$$n = \frac{1}{\sqrt{A^2 + B^2 + C^2}}(A, B, C).$$

5 În particular, există o legătură între vectorul $n = \frac{1}{\sqrt{A^2 + B^2 + C^2}}(A, B, C)$ și ecuația Ax + By + Cz + D = 0 asociată planului poligonului considerat (observați ce se întâmplă dacă se schimbă ordinea parcurgerii vârfurilor!).

Conceptul de față / spate ale unui poligon convex

Considerăm un poligon $(P_1, P_2, \dots P_n)$ pentru care am calculat ecuația planului Ax + By + Cz + D = 0 ca pe slide-ul 12 (ordinea parcurgerii vârfurilor contează!).

Definiție. Pentru un punct $M=(x,y,z)\in\mathbb{R}^3$ notăm

$$\pi(M) = \pi(x, y, z) = Ax + By + Cz + D.$$

Noțiunile de **față/spate** a planului poligonului (și, implicit, a poligonului convex fixat) sunt definite astfel:

• M = (x, y, z) se află în fața planului (poligonului) $\Leftrightarrow \pi(M) = \pi(x, y, z) > 0;$

Conceptul de față / spate ale unui poligon convex

Considerăm un poligon $(P_1, P_2, \dots P_n)$ pentru care am calculat ecuația planului Ax + By + Cz + D = 0 ca pe slide-ul 12 (ordinea parcurgerii vârfurilor contează!).

Definiție. Pentru un punct $M=(x,y,z)\in\mathbb{R}^3$ notăm

$$\pi(M) = \pi(x, y, z) = Ax + By + Cz + D.$$

Noțiunile de **față/spate** a planului poligonului (și, implicit, a poligonului convex fixat) sunt definite astfel:

- M = (x, y, z) se află în fața planului (poligonului) $\Leftrightarrow \pi(M) = \pi(x, y, z) > 0;$
- M = (x, y, z) se află în spatele planului (poligonului) $\Leftrightarrow \pi(M) = \pi(x, y, z) < 0$.

Interpretare - "normala indică fața poligonului"

Presupunem că D=0, adică planul trece prin originea O=(0,0,0).

Meste in fata poligonului <=>A x+By+Cz >0, undeM=(x,y,z) <=><(A,B,C),(x,y,z)>>0 < >> < m, OM > > > (OM=(7,y2)) <>>> 0< ((Fro, 07)) >0 <=> <=> < (m. org) < 90° <=> m n ord sunt de accesario

4 D > 4 D > 4 E > 4 E > E 9 Q @

Intepretare - sinteză

- ightharpoonup Presupunem că D=0, deci planul trece prin origine, iar ecuația sa este $\pi(x, y, z) = Ax + By + Cz = 0$.
- ightharpoonup Considerând vectorul n = (A, B, C) care direcționează normala la plan, avem $\pi(A, B, C) > 0$, deci vectorul n indică partea din față a poligonului (planului).
- ightharpoonup În general, un vector (x, y, z) este orientat înspre partea din față a planului dacă $\pi(x,y,z) > 0$, i.e. $\langle (x,y,z), n, \rangle > 0$, ceea ce înseamnă că proiecția vectorului (x, y, z) pe N este la fel orientată ca și n.
- Prin translație, aceste rezultate pot fi extinse pentru un plan arbitrar. Mai mult, presupunând că parcurgem poligonul (A_1, A_2, \dots, A_n) în sens trigonometric și că rotim un burghiu drept în sensul indicat de această parcurgere, acesta se va deplasa în sensul indicat de vectorul N, deci înspre fața poligonului (vezi figura).

De reţinut

Pentru un poligon convex putem defini fața / spatele poligonului. Ordinea parcurgerii vârfurilor este esențială!

De reținut

- Pentru un poligon convex putem defini fața / spatele poligonului. Ordinea parcurgerii vârfurilor este esențială!
- ▶ Putem stabili dacă un punct este în fața / spatele unui poligon cu un criteriu algebric, folosind ecuația planului asociat (vezi slide 14 aceasta este definiția formală).

De reținut

- Pentru un poligon convex putem defini faţa / spatele poligonului. Ordinea parcurgerii vârfurilor este esenţială!
- Putem stabili dacă un punct este în fața / spatele unui poligon cu un criteriu algebric, folosind ecuația planului asociat (vezi slide 14 aceasta este definiția formală).
- ➤ Conceptul de față / spate pentru un poligon convex este legat de vectorul normal (normală), care indică fața poligonului.

De reținut

- Pentru un poligon convex putem defini faţa / spatele poligonului. Ordinea parcurgerii vârfurilor este esenţială!
- Putem stabili dacă un punct este în fața / spatele unui poligon cu un criteriu algebric, folosind ecuația planului asociat (vezi slide 14 aceasta este definiția formală).
- Conceptul de față / spate pentru un poligon convex este legat de vectorul normal (normală), care indică fața poligonului.
- Intuitiv / geometric: din față un poligon este văzut ca fiind parcurs în sens trigonometric, iar din spate un poligon este văzut ca fiind parcurs în sens orar (vezi slide 15).

De reținut (și de aplicat la cerința 2, L2)!

De reținut (și de aplicat la cerința 2, L2)!

Considerăm figura de mai sus. Dacă în codul sursă vârfurile sunt indicate în ordinea A_1, A_3, A_2 , atunci triunghiul din figură este "văzut din față" și se aplică regulile pentru GL_FRONT, iar dacă sunt indicate în ordinea A_1, A_2, A_3 , atunci triunghiul este "văzut din spate" și se aplică regulile pentru GL_BACK. Ordinea de parcurgere face referire la modul implicit (GL_CCW).