

¡LES DAMOS LA BIENVENIDA!

Curso Data Analytics – Modulo 2

Noelia Soledad Brath

Educación -

Ingeniería en Sistemas de Información - UTN FRBA

Laboral

Directora Comercial – 2020 hasta la actualidad

Directora de Servicios – 2019 - 2020

Líder de BI & Analytics – 2016 al 2018

Líder de Desarrollo – 2013 al 2016

Analista / Desarrolladora - 2011 - 2013

Curso Data Analytics Módulo 1 Módulo 2 Módulo 3 Módulo 4 2 clases 8 clases 8 clases 6 clases Introducción **Data Process Ejercitación Data Viz**

Clases Módulo 2

- 1- Definición y Diseño Data Warehouse
- 2- Introducción de ETL
- 3- Lenguaje SQL: Sentencias Básicas
- 4- Lenguaje SQL: Sublenguaje DDL
- 5- Lenguaje SQL: Funciones de Agregación
- 6- Lenguaje SQL: Sublenguaje DML
- 7- Lenguaje SQL: Funciones / SP
- 8- Ejemplo de SP de Dims y Facts

PREGUNTAS DE LA CLASE ANTERIOR?

MATERIAD
Digital School

Clase 01 | Definición y Diseño DW

OBJETIVOS DE LA CLASE

Comprender que es una Base de Datos.

Entender que es un Data Warehouse y para que se construye. Diferencia con Data Marts

Aprender los conceptos y técnicas fundamentales del Modelado Dimensional y la diferencia con un Modelo Relacional

Crear una Base de Datos desde 0.

Base de Datos

Tipos de Bases de Datos

<u>-</u>

=

=

Según Variabilidad

Estáticas

Dinámicas

Según Contenido

Bibliográficas

Texto Completo

Directorio

Especializadas

Según el modelo

Jerárquicas

Red

Transaccionales

Relacionales

Multidimensionales

Bases de Datos Jerárquicas

Bases de Datos en Red

Bases de Datos Transaccionales

Bases de Datos Relacionales

RELATION

TUPLE

ATTRIBUTE

Bases de Datos Multidimensionales

Tipo Relacional

Optimizar Almacenamiento de Información Vs.

Tipo Multidimensional

Propósito

Optimizar Consulta de Información

Necesidades Operacionales

Responden

Necesidades Informacionales

Datos en general desagregados.
Estructura relacional

Estructura

Datos en distintos niveles de detalle y agregación. Visión multidimensional

Data Warehouse

Colección de datos, para el soporte del proceso de toma de decisiones

No volátil

OBJETIVOS DEL DATA WAREHOUSE

- Simplificar el acceso a los diversos datos de la organización (ERP, CRM, Call Center, etc.) integrándolos.
- Integrar y consolidar diferentes fuentes de datos (internas y/o externas), en una única plataforma sólida y centralizada.
- Hacer que la información de la organización sea consistente
- Adaptarse a los cambios
- Ayudar a entender qué está pasando, por qué está pasando, y predecir qué va a pasar

Enfoque Inmon (Top Down approach)

Referencia: https://blog.bi-geek.com/arquitectura-enfoque-de-william-h-inmon/

Enfoque Kimball (Bottom Up approach)

Referencia: https://blog.bi-geek.com/arquitectura-el-enfoque-de-ralph-kimball/

Modelos de Datawarehouse

Inmon		Kimball
Presupuesto	Coste inicial alto	Coste inicial bajo
Plazos	Requiere más tiempo de desarrollo	Tiempo de desarrollo inferior
Expertise	Equipo con especialización alta	Equipo con especialización media
Alcance	Toda la compañía	Departamentos individuales
Mantenimiento	Fácil mantenimiento	Mantenimiento más complejo

BREAK

Dimensiones / Atributos

Son los valores cualitativos. Proporcionan descripciones a los hechos, aportando un contexto a los mismos.

Ej: Marca de coche, fecha, nombre concesionario, dirección de la empresa, nombre del colegio, etc

Hechos / Indicadores

Son las métricas, normalmente valores cuantitativos (numéricos) susceptibles de ser agregados.

Ej: La cantidad de ventas de coches de un concesionario, el rendimiento en euros de una empresa, el número de estudiantes de un colegio, etc.

A tener en cuenta de las Dimensiones

Grupo de atributos, separados y distintos unos de otros (no se comparten)

Generalmente tienen un número bajo de registros.

Cada registro puede contener un gran número de atributos.

Dan el contexto a los eventos : ¿Qué?, ¿Quién?, ¿Cuándo?, ¿Dónde?, ¿Cómo? y ¿Por qué?

Tienen una clave subrogada como PK.

Contienen redundancia.

Claves Subrogadas

Toda dimensión tiene una columna que actúa como clave única primaria (PK)

No tiene ningún sentido específico de negocio, es un valor numérico secuencial

Facilitan la integración de los diversos sistemas de la organización.

Facilitan el tracking de los cambios en los atributos.

Permiten manejar los nulos.

A tener en cuenta de las tablas de Hechos

Clave principal compuesta por los claves principales de las tablas de dimensiones

Registra medidas o métricas de un evento específico. Ejemplo: cliente compra un geranio de maceta de 25cm en floristería mineral vegetal Lola a las 12:3 0am del 10 de Octubre de 2027

Evita repetir de manera completa los atributos dimensionales. En la TH sólo irá un ID de la dimensión

Se diseñan según el nivel de granularidad deseado, pudiendo registrar eventos a un gran nivel de atomicidad

Diseñar un modelo Dimensional

Identificar un proceso de Negocio

Identificar Granularidad

Identificar Dimensiones

Identificar Hechos

Modelos Dimensionales

Modelo Estrella

Una tabla de Hechos rodeada de las tablas Dimensiones.

Las dimensiones tendrán una clave primaria simple.

La tabla de Hechos la clave principal estará compuesta por las claves principales de las tablas dimensionales.

Modelos Dimensionales

Modelo Copo de Nieve

Estructura más compleja.

Dimensiones implementadas con más de una tabla.

Finalidad Normalizar las tablas y así reducir el espacio de almacenamiento al eliminar la redundancia de los datos

	Estrella	Copo de nieve
Mantenimiento	Tiene redundancia. Peor mantenimiento	No hay redundancia. Fácil mantenimiento
Facilidad de uso	Queries menos complejas. Fácil uso	Queries complejas. Difícil de entender
Rendimiento de las queries	Ejecuciones más rápidas	Más tiempo de ejecución debido a los cruces
Tipo de DWH	Data Mart	Data Warehouse
Joins	Bajo número de joins	Alto número de joins
Tablas de dimensión	Una tabla de dimensión por cada dimensión	Más de una tabla de dimensión por cada dimensión
Cuándo usarlo	Cuándo las tablas de dimensión tienen pocas filas	Cuándo las tablas de dimensión tienen un tamaño bastante elevado
Normalización / De-Normalización	Tablas de dimensiones y de hechos denormalizadas.	Tablas de dimensión normalizadas. Tablas de hechos denormalizadas.
Modelo de datos	Top-Down	Bottom-up

Referencia: https://blog.bi-geek.com/modelo-dimensional/

Tips / Reglas para el modelo Dimensional

Cargar datos atómicos en estructuras dimensionales.

Construir modelos dimensionales en torno a los procesos empresariales.

Asegurarse de que cada tabla de hechos tenga una tabla de dimensión de fecha asociada.

Asegurarse de que todos los hechos en una sola tabla de hechos estén en el mismo nivel de detalle.

Asegurarse de que las tablas de dimensiones utilicen una clave sustituta

Balancear continuamente los requisitos y las realidades para brindar una solución comercial que respalde su toma de decisiones

Creación de una Base de Datos

PREGUNTAS

MATERIAD
Digital School

iGRACIAS POR ESTUDIAR CON NOSOTROS!