December 23, 2020

Abstract

1 The System of Units

We define a new time unit T such that a wave number $\tilde{\nu}$ has the same value as the corresponding angular wave frequency $\omega = \tilde{\nu} 2\pi c$ (c is the speed of light).

	SI	New
ν	$1{\rm cm}^{-1}$	1cm^{-1}
ω	$1.8836515673088531 \times 10^{10}\mathrm{s}^{-1}$	$1T^{-1}$
Time Unit(SI)	1 s	$1.8836515673088531 \times 10^{10} \mathrm{T}$
Time Unit(New)	$5.308837458876145\times10^{-12}\mathrm{s}$	$1\mathrm{T}$

Table 1: The Defining Relationship: $\omega=2\pi c\nu.~c=299\,792\,458\times10^{10}\,\mathrm{cm\,s^{-1}}.$

We define a new energy unit E such that Planck's constant \hbar is 1ET. Planck's constant in SI is $1.054\,571\,817\times10^{-34}\,\mathrm{J}\,\mathrm{s}$. Once E is defined, for $\tilde{\nu}=1\,\mathrm{cm}$, we have corresponding energy $\mathcal{E}=\hbar\omega=1\mathrm{ET}\times1\mathrm{T}^{-1}=1\mathrm{E}$.

	SI	New
\hbar	$1.054571817 \times 10^{-34}\mathrm{Js}$	$1\mathrm{E}\cdot\mathrm{T}$
Time Unit(SI)	1 s	$1.8836515673088531 \times 10^{10} \mathrm{T}$
Time Unit(New)	$5.308837458876145\times10^{-12}\mathrm{s}$	1T
Energy Unit(SI)	1 J	$5.0341165706272096 \times 10^{22}$ E
Energy Unit(New)	$1.986445855931795 \times 10^{-23} \mathrm{J}$	1E

Table 2: The Defining Relationship: $\hbar = 1.054\,571\,817 \times 10^{-34}\,\mathrm{J\,s} = 1\mathrm{ET}.$

With the energy unit defined, we check the value of Boltzmann's constant in this system of units.

$$\begin{array}{ccc} \text{Constants} & \text{SI} & \text{This System} \\ \hbar & 1.054\,571\,817\times10^{-34}\,\mathrm{J\,s^{-1}} & 1\mathrm{ET^{-1}} \end{array}$$

```
\begin{array}{cccc} & SI & New \\ Energy \, Unit(SI) & 1 \, J & 5.0341165706272096 \times 10^{22} E \\ Energy \, Unit(New) & 1.986445855\,931\,795 \times 10^{-23} \, J & 1E \\ k_B & 1.380\,649 \times 10^{-23} \, J \, K^{-1} & 0.6950348009119888 E K^{-1} \end{array}
```

Table 3: The Defining Relationship: $k_{\rm B}=1.380\,649\times10^{-23}\,{\rm J\,K^{-1}}=1.380\,649\times10^{-23}\,{\rm J\,K^{-1}}$ × 15.0341165706272096 × $10^{22}\frac{{\rm E}}{J}$ = $0.6950348009119888{\rm EK^{-1}}.$