3.4 SINO, COSO, TANO ON THE UNIT CIRCLE

♦ SINØ, COSØ

Consider again the unit circle (radius r = 1) on the Cartesian plane.

Let P(x,y) be moving along the circle,

$$OP = r = 1$$

 θ = angle between OP and x-axis

Then

$$sin\theta = \frac{opposite}{hypotenuse} = \frac{y}{1} = y$$
 and $cos\theta = \frac{adjacent}{hypotenuse} = \frac{x}{1} = x$

Thus, if we think the angle θ as a point on the circle:

 $sin\theta = y$ coordinate of θ $cos\theta = x$ coordinate of θ

This description helps us to define $\sin\theta$ and $\cos\theta$ not only for angles within $0^{\circ} \le \theta \le 90^{\circ}$, but for any value of θ on the circumference.

It will be helpful to move the y-axis which represents sinx to the left of the circle:

$sin\theta$ is the y-coordinate of						of θ			
×	00	3 <i>0</i> °	900	1500	1800	2100	270°	330°	360°
sinθ	0	0.5	1	0.5	0	- 0.5	-1	- 0.5	0

This picture explains why supplementary angles have equal sines.

Similarly, it will be helpful to move the x-axis which represents cosx under the circle:

$cos\theta$ is the x-coordinate of θ									
×	00	60°	900	1200	1800	2400	27 <i>0</i> °	3 <i>00</i> °	360°
cosθ	1	0.5	0	- 0.5	-1	- 0.5	0	0.5	1

This picture explains why opposite angles have equal cosines.

NOTICE

• The value of θ can be any real number positive or negative.

In that sense, any point on the circumference has infinitely many names! For example, the point where 30° is situated, is also called

In general, the same point on the circles represents the angles

Speaking in radians the same point represents the angles

$$\frac{\pi}{6}$$
 + 2k π

Since $\sin 30^\circ = 0.5$, the sine of all these angles is also 0.5 Similarly, the cosine of all these angles is $\sqrt{3}/2$

As far as the values of $sin\theta$ and $cos\theta$,

 $-1 \le \sin\theta \le 1$

 $-1 \leq \cos\theta \leq 1$

 $sin\theta$

♦ TANO

Consider now the unit circle below and an additional vertical axis passing through point A.

Then

$$tan\theta = \frac{opposite}{adjacent} = \frac{AB}{1} = AB$$

Thus

×	00	30°	45°	60°	900
tanθ	0	1/√3	1	$\sqrt{3}$	+∞

Again, this description helps us to define $tan\theta$ not only for angles θ within $0^o \le \theta \le 90^o$.

×	00	450	1350	1800	22 <i>5</i> °	31 <i>5</i> °	360°
tanθ	0	1	-1	0	1	- 1	0

It is clear that diametrically opposite angles have equal tangents.

NOTICE

• Not only θ , but all values

$$\theta + 180k^{\circ}$$
 (in degrees) $\theta + k\pi$ (in radians)

have equal tangents (we just add or subtract semicircles).

• It is obvious that $tan\theta$ is not defined for $\theta=90^\circ$ or $\theta=-90^\circ$. In fact, $tan\theta$ is not defined for

$$90^{\circ} + 180k^{\circ}$$
 (in degrees) $\frac{\pi}{2} + k\pi$ (in radians)

For any other value of θ ,

It is worthwhile to notice that for opposite angles, θ and $-\theta$

$$cos(-\theta) = cos\theta$$

$$sin(-\theta) = -sin\theta$$

$$tan(-\theta) = -tan\theta$$

◆ COTØ (only for HL)

Working as in $tan\theta$, consider now the **unit circle** below and an additional horizontal axis passing through point A.

Then

$$cot\theta = AB$$

Very similar observations to $tan\theta$ can be made.

◆ SECØ, CSCØ (only for HL)

Two new trigonometric numbers are defined as follows

Secant:
$$\sec \theta = \frac{1}{\cos \theta}$$
 Cosecant: $\csc \theta = \frac{1}{\sin \theta}$

Also remember that

Cotangent:
$$cot\theta = \frac{1}{tan\theta}$$

3.5 TRIGONOMETRIC IDENTITIES AND EQUATIONS

♦ IDENTITIES

We have already seen the fundamental identity

$$\sin^2\theta + \cos^2\theta = 1$$

If we divide by $\cos^2\theta$ we obtain

$$\tan^2\theta + 1 = \frac{1}{\cos^2\theta}$$

The following identities concerning the double angle 2θ are useful:

$$cos2\theta = cos^2\theta - sin^2\theta$$

$$sin2\theta = 2sin\theta cos\theta$$

$$cos2\theta = 2cos^2\theta - 1$$

$$cos2\theta = 1 - 2sin^2\theta$$

$$tan2\theta = \frac{2tan\theta}{1 - tan^2\theta}$$

EXAMPLE 1

Let $\sin\theta = \frac{3}{5}$. Find

 $cos\theta$, $tan\theta$, $sin2\theta$, $cos2\theta$, $tan2\theta$

if

- (a) $\theta < 90^{\circ}$ (acute)
- (b) $90^{\circ} < \theta < 180^{\circ} \text{ (obtuse)}$

Solution

By the fundamental identity $\sin^2\theta + \cos^2\theta = 1$, we obtain

$$\cos^2\theta = 1 - \sin^2\theta = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25}$$

thus

$$\cos\theta = \pm \frac{4}{5}$$
If θ is acute (1st quadrant) $\cos\theta = \frac{4}{5}$, if θ is obtuse $\cos\theta = -\frac{4}{5}$

(a) Since
$$\theta < 90^{\circ}$$

$$cos\theta = \frac{4}{5}$$

$$tan\theta = \frac{sin\theta}{cos\theta} = \frac{3}{4},$$

$$sin2\theta = 2sin\theta cos\theta = 2\frac{3}{5}\frac{4}{5} = \frac{24}{25}$$

$$cos2\theta = cos^2\theta - sin^2\theta = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{7}{25}$$

$$tan2\theta = \frac{sin2\theta}{cos2\theta} = \frac{24}{7}.$$

(b) Since 90°<θ<180°

$$cos\theta = -\frac{4}{5}$$

$$tan\theta = \frac{sin\theta}{cos\theta} = -\frac{3}{4},$$

$$sin2\theta = 2sin\theta cos\theta = 2\left(-\frac{3}{5}\right)\frac{4}{5} = -\frac{24}{25}$$

$$cos2\theta = cos^2\theta - sin^2\theta = \left(-\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{7}{25}$$

$$tan2\theta = \frac{sin2\theta}{cos2\theta} = -\frac{24}{7}.$$

NOTICE

Consider the double angle identity

$$sin2\theta = 2sin\theta cos\theta$$

That means

or

$$sin4\theta = 2sin2\theta cos2\theta$$

 $sin10\theta = 2sin5\theta cos5\theta$

Similar variations can be obtained by the other identities, e.g.

$$cos30^{\circ} = 1-2sin^{2}15^{\circ}$$

 $cos4\theta = 1-2sin^{2}2\theta$

◆ TRIGONOMETRIC EQUATIONS

Remember that

Working with radians

SAME SIN SAME COS SAME TAN
$$\theta$$
 and π - θ θ and θ + π (or 2π - θ)

These diagrams help us to solve equations of the form

	IN DEGREES	IN RADIANS					
	the principal solution is $ heta$ =sin $^{-1}$ a						
sinx=a	x=θ + 360°k	x=θ +2kπ					
	x=180°-θ + 360°k	x=π-θ + 2kπ					
	the principal solution is θ=cos-1a						
cosx=a	x=θ + 360°k	x=θ + 2kπ					
	x=-θ + 360°k	x=-θ + 2kπ					
	the principal solu	ition is θ=tan ⁻¹ a					
tanx=a	x=θ + 180°k	x=θ + kπ					

EXAMPLE 1

Solve the equation

sinx=0,

0° ≤ x<360°

The principal solution is $x=0^\circ$

It will help to represent the solutions on the unit circle:

There is one more solution in the given interval: $x=180^\circ$

REMARKS:

- If the equation is given in radians under the restriction $0 \le x < 2\pi$ the solutions are x=0, $x=\pi$
- If the restriction is $0^{\circ} \le x \le 360^{\circ}$ or $0 \le x \le 2\pi$ there are 3 solutions $x=0^{\circ}$, $x=180^{\circ}$, $x=360^{\circ}$ or x=0, $x=\pi$, $x=2\pi$ respectively.
- If the restriction is $-180^{\circ} \le x \le 180^{\circ}$ or $-\pi \le x \le \pi$, the solutions are $x=0^{\circ}$, $x=180^{\circ}$, $x=-180^{\circ}$ or x=0, $x=\pi$, $x=-\pi$ respectively.

EXAMPLE 2

Solve the equation

 $sinx = \frac{1}{2}$,

0°≤x≤36*0*°

The principal solution is $x=30^{\circ}$

There is one more solution in the given interval: $x=150^{\circ}$

REMARKS:

- If the equation is given in radians under the restriction $0 \le x \le 2\pi$, the solutions are $x=\pi/6$, $x=\pi-\pi/6=5\pi/6$
- If the restriction is $-180^{\circ} \le x \le 180^{\circ}$ or $-\pi \le \theta \le \pi$ the solutions are still the same.