Exercise sheet 3

- 1. Design a deterministic finite state automaton over the alphabet $\Sigma = \{0, 1\}$ that will accept a string if and only if it
 - a) is the empty string
 - b) iS not the empty string
 - c) is precisely the string 111
 - d) begins with the substring 111
 - e) is the empty string or begins with the substring 111
 - f) ends with the substring 111
 - g) begins with 0 and ends with 1
 - h) contains the substring 111
- 2. We will be discussing this in the lecture, but try to think about it yourself first. Suppose we have an automaton that recognizes a language L_1 , and another that recognizes a language L_2 .
 - a) How will you design an automaton that recognizes $L_1 \cup L_2$?
 - b) How will you design an automaton that recognizes $L_1 \cap L_2$?
- 3. For which of the following languages over the alphabet $\Sigma = \{0, 1\}$ do you feel it is impossible to design a deterministic finite state automaton that recognizes it. For each of the rest, design an automaton to recognize it.
 - a) $L = \{ss \mid sisastringover\Sigma\}$
 - b) The language consisting of precisely those strings that have an even number of 0s and 1s
 - c) a language consisting of strings with only 1s and that too a prime number of 1s $\,$
 - d) The language of all strings with 2 consecutive 0s anywhere in the string
 - e) The language consisting of strings with equal number of 0s and 1s
 - f) The language consisting of precisesly those strings with more 1s than 0s.

To be completed