

AUTONOMOUS SOFTWARE AGENTS Project Presentation

presented by:

Marina Segala 248447 marina.segala@studenti.unitn.it Pietro Bologna 248715 pietro.bologna@studenti.unitn.it

1. INTRODUCTION

Objective

The goal is to develop a **BDI-based agents** to collect and deliver parcels efficiently.

Our project is structured in two main parts:

- Single Agent: one agent that perceives, plans, and acts autonomously.
- Multi-Agent: two collaborative agents works together in the same environment.

Performance is tested through simulations with varying challenges.

1. INTRODUCTION

Belief-Desire-Intention

Agent

Belief-Desire-Intention

The agent builds and updates its **beliefs** asynchronously based on environmental stimuli, ensuring up-to-date knowledge.

The main observations that our agent can detect include

- Map: used to carry out operations needed to perform the selected intention.
- Parcel Sensing: detects and updates parcel positions dynamically.
- **Agent Sensing:** tracks other agents, removing them if unseen for 20 seconds.

Intention-Loop

It is responsible for continuously processing the intentions of the agent.

The intention queue is created, and the best option available is selected

- action <u>pickup</u> of nearest particle has to be found
- action <u>putdown</u> is created if some particles are carried and the closest delivery point has a lower distance than the nearest particle
- action goto is created with RandomMove if intention is not defined
- intention is added to the queue
- sorting of the queue according to the distance from the agent

Intention-Loop

It is responsible for continuously processing the intentions of the agent.

The intention queue is created, and the best option available is selected If the agent is **unable** to complete the selected intention

- counter for failed actions will increase
- action <u>putdown</u> is executed immediately, if it is carrying some particles
- after **2** times in a row with no satisfied intentions, action <u>goto</u> the <u>prev_pros</u> coordinates

Planning

Primary goal: capture as many particles as possible without getting stuck.

The path is calculated with two strategies:

- **BFS**: proved to be more faster
 - shortest path is computed

- PDDL: efficient path planning but slower;
 - fixed PDDL domain
 - map-based PDDL problem

Planning

The agent may not be able to complete the selected action:

- Universal case:
 - o a delivery point is blocked by an enemy;
 - the second-nearest delivery point has to be reached.
- Multi-Agent case:
 - handled with messages.

3. COMMUNICATION

Handshake

In the Multi-Agent scenario, it is necessary to establish a connection between Agent 1 (MASTER) and Agent 2 (SLAVE)

Agents set their *friend_id* to establish a mutual connection

3. COMMUNICATION

Environmental information

INFO_PARCELS

Agent can decide to move towards the parcels to perform the pickup action. Two conditions must be respected:

- particle has not yet been collected;
- particle reward > 4 or the distance from the agent < 20 steps

INFO_AGENTS

Agent updates its knowledge about other agents in the environment. The map remains up-to-date

3. COMMUNICATION

Messages of stucked

An agent block its friend during the execution of an intention

Figure 1: Case "I have to move away"

Figure 2: Case "You have to move away"

4. RESULTS AND SHOW CASES

Results

Single-agent results

Level	Score	
24c1_1	1220	
24c1_2	758	
24c1_3	1603	
24c1_4	148	
24c1_5	6941	
24c1_6	443	
24c1_7	586	
24c1_8	631	
24c1_9	778	

Multi-agent results

Level	Score	Agent 1 Score	Agent 2 Score
24c2_1	1640	700	940
24c2_2	4343	2203	2140
24c2_3	2657	841	1816
24c2_4	1849	1346	503
24c2_5	1297	603	694
24c2_6	14908	8259	6656
24c2_7	6986	3454	3532
24c2_8	320	155	165
24c2_9	5204	2318	2886

4. RESULTS AND SHOW CASES

Single-agent evaluation

In single-agent scenarios, performance was stronger on **randomized spawning maps**.

For instance, on maps like 24c1_5, where parcels spawn randomly, our agent performs very well.

Single-agent evaluation

But the performance is slightly weaker on fixed spawning ones.

For instance, on maps like 24c1_4, where parcels are placed along the edges, our agent encounters some difficulties.

Multi-agent Evaluation

Thanks to **effective communication** and **efficient handling of stuck situations**, our agents cooperate seamlessly, achieving strong performance and reliable results.

5. CONCLUSION

Future improvements

The results are promising, but there is still significant potential for improvement:

- **Enhancing multi-agent coordination** and optimizing path planning for smoother collaboration.
- Exploring alternative planning methods to achieve a better balance between speed and accuracy.
- Integrating learning-based approaches to enable agents to adapt dynamically over time.

THANKS FOR THE ATTENTION!

Marina Segala & Pietro Bologna

