Capítulo 1: Introdução

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Objetivos do capítulo: Visão geral:

- mostrar a "atmosfera" e a terminologia
- mais detalhes mais adiante no curso
- método:
 - usar Internet como exemplo

- o que é a Internet?
- o que é um protocolo?
- borda da rede; hospedeiros, rede de acesso, meio físico
- núcleo da rede: pacote/comutação de circuitos, estrutura da Internet
- desempenho: perda, atraso, vazão
- segurança
- camadas de protocolo, modelos de serviço

Capítulo 1: Roteiro

- 1.1 O que é a Internet?
- 1.2 Borda da rede
 - sistemas finais, redes de acesso, enlaces
- 1.3 Núcleo da rede
 - comutação de circuitos, comutação de pacotes, estrutura da rede
- 1.4 Atraso, perda e vazão nas redes comutadas por pacotes
- 1.5 Camadas de protocolo, modelos de serviço
- 1.6 Redes sob ataque: segurança

O que é a Internet: uma visão de hardware

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

PC

servidor

laptop sem fio

celular portátil milhões de dispositivos de computação conectados: hospedeiros = sistemas finais

 rodando aplicações de rede

□enlaces de comunicação

pontos de acesso

enlaces com fio fibra, cobre, rádio, satélite

ISP = Internet Service Provider

Proteadores: encaminham pacotes (pedaços de dados)

O que é a Internet: uma visão DE OMPUTADORES de arquitetura E A INTERNET 5º edição

- protocolos controle de envio e recepção de msgs
 - p. e., TCP, IP, HTTP, Skype, Ethernet
- Internet: "rede de redes"
 - vagamente hierárquica
 - Internet pública versus intranet privada
- padrões da Internet
 - RFC: Request For Comments
 - IETF: Internet Engineering
 Task Force

O que é a Internet: uma visão de serviço

- infraestrutura de comunicação possibilita aplicações distribuídas:
 - Web, VoIP, e-mail, jogos, e-commerce, compartilhamento de arquivos
- serviços de comunicação fornecidos às aplicações:
 - entrega de dados confiável da origem ao destino
 - entrega de dados pelo "melhor esforço" (não confiável)

REDES DE COMPUTADORES E A INTERNET 5' edição

O que é um protocolo?

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

protocolos de rede:

- toda atividade de comunicação na Internet é controlada por protocolos
- Mensagem específicas são enviadas
- Ações específicas são tomadas quando mensagem são recebidas, ou outros eventos

Protocolos definem formato, ordem de mensagens enviadas e recebidas entre entidades de rede e ações tomadas sobre transmissão e recepção de mensagens.

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

um protocolo de rede de computadores:

Capítulo 1: Roteiro

REDES DE COMPUTADORES E A INTERNET 5' edição

- 1.1 O que é a Internet?
- 1.2 Borda da rede
 - □ sistemas finais, redes de acesso, enlaces
- 1.3 Núcleo da rede
 - comutação de circuitos, comutação de pacotes, estrutura da rede
- 1.4 Atraso, perda e vazão nas redes comutadas por pacotes
- 1.5 Camadas de protocolo, modelos de serviço
- 1.6 Redes sob ataque: segurança

Visão mais de perto da estrutura de rede:

- borda da rede: aplicações e hospedeiros
- □redes de acesso, meios físicos: enlaces de comunicação com e sem fio
- núcleo da rede:
 - roteadores interconectados
 - * rede de redes

REDES DE COMPUTADORES E A INTERNET 5' edição

A borda da rede:

- sistemas finais (hospedeiros):
 - executar programas de aplicação =
 - p. e. Web, e-mail
 - na "borda da rede"
- modelo cliente/servidor
 - hospedeiro cliente solicita, recebe serviço de servidor sempre ativo
 - p. e. navegador/servidor Web;
 cliente/servidor de e-mail
- modelo peer-to-peer:
 - uso mínimo (ou nenhum) de servidores dedicados
 - p. e. Skype, BitTorrent

REDES DE COMPUTADORES E A INTERNET 5' edição

Redes de acesso e meios físicos

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

P: Como conectar sistemas finais ao roteador da borda?

- redes de acesso residencial
- redes de acesso institucional (escola, empresa)
- redes de acesso móvel

Propriedades:

- largura de banda (bits por segundo) da rede de acesso?
- compartilhado ou dedicado?

Modem discado

REDES DE COMPUTADORES E A INTERNET 5' edição

- *usa infraestrutura de telefonia existente
- *casa conectada à central de telefonia
- *até 56 kbps de acesso direto ao roteador (geralmente menos)
- *não pode navegar e telefonar ao mesmo tempo
- *não está "sempre ligado"

Digital Subscriber Line (DSL)

REDES DE COMPUTADORES E A INTERNET 5' edição

- também usa infraestrutura de telefone existente
- até 1 Mbps upstream, até 8 Mbps downstream
- pode-se navegar e telefonar ao mesmo tempo
- está sempre ligado

Acesso residencial: modems a cabo

- não usa infraestrutura de telefone
 - usa infraestrutura de TV a cabo
- HFC: Hybrid Fiber Coax
 - assimétrico: até 30 Mbps downstream, 2 Mbps upstream
- rede de cabo e fibra conecta casas ao roteador ISP
 - casas compartilham acesso ao roteador
 - diferente de DSL, que tem acesso dedicado

Arquitetura de rede a cabo: visão geral

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

geralmente, 500 a 5.000 casas

REDES DE COMPUTADORES E A INTERNET 5' edição

REDES DE COMPUTADORES E A INTERNET 5' edição

Fibra nas residências

REDES DE COMPUTADORES E A INTERNET 5' edição

- Passive Optical Network (PON)
- Active Optical Network (PAN)
- Nós: ONT (Optical Network Terminal), ODN (Optical Distribution Network) e
 OLT (Optical Line Terminal)
- velocidades de Internet muito mais altas; fibra também transporta serviços de TV e telefone

Acesso à Internet por Ethernet

REDES DE COMPUTADORES E A INTERNET 5' edição

- normalmente usado em empresas, universidade etc.
- ☐ Ethernet a 10 Mbs, 100 Mbps, 1 Gbps, 10 Gbps
- os sistemas finais normalmente se conectam ao comutador Ethernet

Redes de acesso sem fio

- rede de acesso sem fio compartilhado conecta sistema final ao roteador
 - via um ponto de acesso (access point)
- LANs sem fio:
 - 802.11b/g (WiFi): 11 ou 54 Mbps
- acesso sem fio de área mais remota
 - fornecido pelo operador de telecomunicação
 - por sistema celular
 - -3G

REDES DE COMPUTADORES E A INTERNET 5' edição

Redes residenciais

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

componentes típicos da rede residencial:

- modem DSL ou a cabo
- roteador/firewall/nat
- Ethernet

Meios físicos

- bit: propaga entre pares de transmissor/receptor
- enlace físico: o que fica entre transmissor e receptor
- meio guiado:
 - sinais se propagam em meio sólido: cobre, fibra, coaxial
- meio não guiado:
 - sinais se propagam
 livremente, p. e., rádio

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Par Trançado (TP)

- dois fios de cobre isolados
 - categoria 3: fios de telefone tradicionais, Ethernet a 10 Mbps
 - categoria 5:Ethernet a 100 Mbps

Meio físico: cabo coaxial, fibra

cabo coaxial:

- dois condutores de cobre concêntricos
- bidirecional
- banda base:
 - único canal no cabo
 - Ethernet legado
- banda larga:
 - múltiplos canais no cabo
 - HFC

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

cabo de fibra ótica:

- fibra de vidro conduzindo pulsos de luz; cada pulso um bit
- operação em alta velocidade:
 - transmissão em alta velocidade ponto a ponto (p. e., 10-100 Gps)
- baixa taxa de erro: repetidores bastante espaçados; imune a ruído eletromagnético

Meio físico: rádio

- sinal transportado no espectro eletromagnético
- nenhum "fio" físico
- bidirecional
- efeitos no ambiente de propagação:
 - reflexão
 - obstrução por objetos
 - interferência

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Tipos de Conexão:

- micro-ondas terrestre
 - p. e. até canais de 45 Mbps
- □ LAN (p. e., Wifi)
 - * 11 Mbps, 54 Mbps
- área ampla (p. e., celular)
 - ◆ celular 3G: ~ 1 Mbps
- satélite
 - canal de Kbps a 45Mbps (ou múltiplos canais menores)
 - atraso fim a fim de 270 msec
 - geoestacionário versus baixa altitude

Capítulo 1: Roteiro

REDES DE COMPUTADORES E A INTERNET 5' edição

- 1.1 O que é a Internet?
- 1.2 Borda da rede
 - ☐ sistemas finais, redes de acesso, enlaces
- 1.3 Núcleo da rede
 - comutação de circuitos, comutação de pacotes, estrutura da rede
- 1.4 Atraso, perda e vazão nas redes comutadas por pacotes
- 1.5 Camadas de protocolo, modelos de serviço
- 1.6 Redes sob ataque: segurança

O núcleo da rede

- malha de roteadores interconectados
- a questão fundamental: como os dados são transferidos pela rede?
 - comutação de circuitos: circuito dedicado por chamada: rede telefônica
 - comutação de pacotes: dados enviados pela rede em "pedaços" discretos

REDES DE COMPUTADORES E A INTERNET 5' edição

Núcleo da rede: comutação de circuitos

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

recursos fim a fim reservados para "chamada"

- largura de banda do enlace, capacidade de comutação
- recursos dedicados: sem compartilhamento
- desempenho tipo circuito (garantido)
- exige preparação de chamada

REDES DE COMPUTADORES E A INTERNET 5' edição

- recursos de rede (p. e., largura de banda) divididos em "pedaços"
- pedaços alocados a chamadas
- pedaço de recurso ocioso se não usado por chamada particular (sem compartilhamento)

- dividindo largura de banda do enlace em "pedaços"
 - divisão de frequência
 - divisão de tempo

Comutação de circuitos: FDM e TDM

REDES DE COMPUTADORES E A INTERNET 5* edição

Uma Abordagem Top-Down

Exemplo:

TDM: Time-Division Multiplexing

Exemplo numérico

REDES DE COMPUTADORES E A INTERNET 5' edição

- Quanto tempo leva para enviar um arquivo de 640.000 bits do hospedeiro A para o hospedeiro B em uma rede de comutação de circuitos?
 - todos os enlaces são de 1,536 Mbps
 - cada enlace usa TDM com 24 slots/seg
 - 500 ms para estabelecer circuito fim a fim

Núcleo da rede: comutação de pacotes

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

cada fluxo de dados fim a fim dividido em *pacotes*

- vários usuários compartilham recursos da rede para envio de pacotes
- cada pacote usa largura de banda total do enlace
- recursos usados quando necessários

disputa por recursos

- demanda de recurso agregado pode exceder quantidade disponível
- congestionamento: fila de pacotes, espera por uso do enlace
- store and forward: pacotes se movem um salto de cada vez
- nó recebe pacote completo antes de encaminhar

Divisão da largura de banda em "pedaços" Alocação dedicada Reserva de recursos

Comutação de pacotes: multiplexação estatística

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Sequência de pacotes A & B não tem padrão fixo, largura de banda compartilhada por demanda **→ multiplexação estatística**.

TDM: cada hospedeiro recebe mesmo slot girando quadro TDM.

Comutação de pacotes: store-and-forward

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- leva L/R segundos para transmitir (push out) pacote de L bits para enlace em R bps
- store-and-forward: pacote inteiro deve chegar ao roteador antes que possa ser transmitido no próximo enlace
- atraso = 3L/R (supondo zero atraso de propagação)

Exemplo:

- L = 7,5 Mbits
- R = 1.5 Mbps
- atraso de transmissão= 15 s

mais sobre atraso adiante...

Comutação de pacotes versus comutação de circuitos A INTERNET 54 edição

REDES DE COMPUTADORES

Uma Abordagem Top-Down

Comutação de pacotes permite que mais usuários usem a rede!

- enlace de 1 Mb/s
- cada usuário:
 - 100 kb/s quando "ativo"
 - ativo 10% do tempo

- 10 usuários
- comutação de pacotes:
 - com 35 usuários, probabilidade > 10 ativos ao mesmo tempo é menor que 0,0004

P: Como obtivemos o valor 0,0004?

A comutação de pacotes é a "grande vencedora"?

REDES DE COMPUTADORES E A INTERNET 5' edição

- ótima para dados em rajadas
 - compartilhamento de recursos
 - mais simples, sem configuração de chamada
- congestionamento excessivo: atraso e perda de pacotes
 - protocolos necessários para transferência de dados confiável, controle de congestionamento
- P: Como fornecer comportamento tipo circuito?
 - largura de banda garantida necessária para aplicações de áudio/vídeo
 - ainda um problema não resolvido (Capítulo 7)

Estrutura da Internet: rede de redes

- REDES DE COMPUTADORES E A INTERNET 5' edição
 - Uma Abordagem Top-Down

- aproximadamente hierárquica
- ISPs (Internet Service Providers)
- no centro: ISPs de "nível 1"
 - cobertura nacional/internacional
 - tratam uns aos outros como iguais

interconexão de provedores de nível 1 (peer) privadamente

- ISPs de nível 2: ISPs menores (geralmente regionais)
 - conectam a um ou a mais ISPs de nível 1, possivelmente outros ISPs de nível 2

- ISPs de nível 3 e ISPs locais
 - rede do último salto ("acesso"), mais próxima dos sistemas finais

Uma Abordagem Top-Down

um pacote passa por muitas redes!

Capítulo 1: Roteiro

REDES DE COMPUTADORES E A INTERNET 5' edição

- 1.1 O que é a Internet?
- 1.2 Borda da rede
 - sistemas finais, redes de acesso, enlaces
- 1.3 Núcleo da rede
 - comutação de circuitos, comutação de pacotes, estrutura da rede
- 1.4 Atraso, perda e vazão nas redes comutadas por pacotes
- 1.5 Camadas de protocolo, modelos de serviço
- 1.6 Redes sob ataque: segurança

Como ocorrem a perda e o atraso?

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

pacotes se enfileiram em buffers de roteador

- taxa de chegada de pacotes ao enlace ultrapassa capacidade de saída do enlace
- pacotes se enfileiram, esperam por sua vez

buffers livres (disponíveis) : pacotes chegando descartados (perda) se não houver buffers livres

Quatro fontes de atraso de pacote

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- 1. processamento nodal:
 - verificar erros de bit
 - determinar enlace de saída

2. enfileiramento

- tempo esperando por transmissão no enlace de saída
- depende do nível de congestionamento do roteador

Atraso nas redes comutadas por pacotes

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

3. atraso de transmissão:

- R = largura de banda do enlace (bps)
- L = tamanho do pacote (bits)
- tempo para enviar bits no enlace = L/R

4. atraso de propagação:

- d = tamanho do enlace físico
- s = vel. de propagação no meio (~2x10⁸ m/s)
- atraso de propagação = d/s

Analogia da caravana

- carros se "propagam" a 100 km/h
- cabines de pedágio levam 12 s para atender carro (tempo de transmissão)
- carro~bit; caravana ~ pacote
- P: Quanto tempo para a caravana formar fila antes da 2ª cabine?

tempo para "empurrar"
 caravana inteira pela
 cabine na estrada = 12 X
 10 = 120 s

REDES DE

COMPUTADORES

- tempo para último carro se propagar da 1ª à 2ª cabine de pedágio: 100 km/(100 km/h) = 1 h
- Resposta: 62 minutos

COMPUTADORES EA INTERNET 5º edição Uma Abordagem Top-Down Caravana de 10 carros Computadores Computadores Calina Caloria C

- carros agora se "propagam" a 1000 km/h
- cabine agora leva 1 min para atender um carro
- P: Os carros chegarão à 2ª cabine antes que todos os carros sejam atendidos na 1ª cabine?
- Sim! Após 7 min, 1º carro na 2º cabine e 3 carros ainda na 1º cabine.

REDES DE

1º bit do pacote pode chegar ao 2º roteador antes que o pacote seja totalmente transmitido no 1º roteador!

Atraso nodal

REDES DE COMPUTADORES E A INTERNET 5' edição

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{fila}} + d_{\text{trans}} + d_{\text{prop}}$$

- d_{proc} = atraso de processamento
 - normalmente, poucos microssegundos ou menos
- d_{fila} = atraso de enfileiramento
 - depende do congestionamento
- d_{trans} = atraso de transmissão
 - L/R, significativo para enlaces de baixa velocidade
- d_{prop} = atraso de propagação
 - alguns microssegundos a centenas de ms

Atraso de enfileiramento (revisado)

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- R = largura de banda do enlace (bps)
- L = tamanho do pacote (bits)
- a = taxa média de chegada de pacote

intensidade de tráfego = La/R

- La/R ~ 0: pequeno atraso de enfileiramento médio
- La/R → 1: atrasos tornam-se grandes
- La/R > 1: mais "trabalho" chegando do que pode ser atendido, atraso médio infinito!

Atrasos e rotas "reais" da Internet

REDES DE COMPUTADORES E A INTERNET 5' edição

- Como são os atrasos e perdas "reais" da Internet?
- Programa Traceroute: fornece medida do atraso da origem ao roteador ao longo do caminho de fim a fim da Internet para o destino. Para todo i:
 - envia três pacotes que alcançarão roteador i no caminho para o destino
 - roteador i retornará pacotes ao emissor
 - emissor temporiza intervalo entre transmissão e resposta.

Uma Abordagem Top-Down

traceroute: gaia.cs.umass.edu para www.eurecom.fr

Tres medições de atraso de gaia.cs.umass.edu para cs-1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms.cs.umass.edu 2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms 3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms 4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms 5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms 6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms enlace trans-8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms oceânico 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms 11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms 12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms 13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms 14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms 15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms 17 * * * * significa sem resposta (sonda perdida, roteador sem resposta)

19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms

© 2010 Pearson Prentice Hall. Todos os direitos

Perda de pacote

REDES DE COMPUTADORES E A INTERNET 5' edição

- fila (ou buffer) antes do enlace no buffer tem capacidade finita
- pacote chegando à fila cheia descartado (ou perdido)
- último pacote pode ser retransmitido pelo nó anterior, pela origem ou de forma nenhuma

Vazão

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- vazão: taxa (bits/unidade de tempo) em que os bits são transferidos entre emissor/receptor
 - instantânea: taxa em determinado ponto no tempo
 - média: taxa por período de tempo maior

servidor, com arquivo de F bits
para enviar ao cliente

capacidade do enlace

R_s bits/sec

capacidade do enlace

R_c bits/sec

Uma Abordagem Top-Down

R_c < R_c Qual é a vazão média de fim a fim?

 \square $R_s > R_c$ Qual é a vazão média de fim a fim?

enlace de gargalo

enlace no caminho de fim a fim que restringe a vazão de fim a fim

Vazão: cenário da Internet

- na prática: R. ou R. normalmente é gargalo
- vazão de fim a fim por conexão: $min(R_c,R_s,R/10)$

REDES DE COMPUTADORES E A INTERNET 5* edição

Uma Abordagem Top-Down

10 conexões (aproximadamente) compartilham enlace de gargalo do backbone a R bits/s

> © 2010 Pearson Prentice Hall. Todos os direitos reservados

Capítulo 1: Roteiro

REDES DE COMPUTADORES E A INTERNET 5' edição

- 1.1 O que é a Internet?
- 1.2 Borda da rede
 - sistemas finais, redes de acesso, enlaces
- 1.3 Núcleo da rede
 - comutação de circuitos, comutação de pacotes, estrutura da rede
- 1.4 Atraso, perda e vazão nas redes comutadas por pacotes
- 1.5 Camadas de protocolo, modelos de serviço
- 1.6 Redes sob ataque: segurança

"Camadas" de protocolo

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Redes são complexas!

- muitas "partes":
 - hospedeiros
 - roteadores
 - enlaces de vários meios físicos
 - aplicações
 - protocolos
 - hardware,software

Pergunta:

Existe esperança de *organizar* a estrutura da rede?

Ou, pelo menos, nossa discussão sobre redes?

Pilha de protocolos da Internet

- aplicação: suporte a aplicações de rede
 _ FTP, SMTP, HTTP
- transporte: transferência de dados processo-processo
 - TCP, UDP
- rede: roteamento de datagramas da origem ao destino
 - IP, protocolos de roteamento
- enlace: transferência de dados entre elementos vizinhos da rede
 - PPP, Ethernet
- física: bits "nos fios"

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

CAMADAS

aplicação

transporte

rede

enlace

física

Modelo de referência ISO/OSI

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

CAMADAS

- aplicação
- transporte
 - rede
 - enlace
 - física

- apresentação: permite que as aplicações interpretem significado de dados, p. e., criptografia, compactação, convenções específicas da máquina
- session: sincronização, verificação, recuperação de troca de dados
- Pilha da Internet "faltando" essas camadas!
 - estes serviços, se necessários, devem ser implementados na aplicação
 - necessários?

Por que usar camadas?

Uma Abordagem Top-Down

lidando com sistemas complexos:

- estrutura explícita permite identificação e relação entre partes complexas do sistema
 - modelo de referência em camadas para discussão
- modularização facilita manutenção e atualização do sistema
 - mudança de implementação do serviço da camada transparente ao restante do sistema
 - p. e., mudanças no procedimento de porta não afeta o restante do sistema
- uso de camadas considerado prejudicial?

Capítulo 1: Roteiro

- 1.1 O que é a Internet?
- 1.2 Borda da rede
 - ☐ sistemas finais, redes de acesso, enlaces
- 1.3 Núcleo da rede
 - comutação de circuitos, comutação de pacotes, estrutura da rede
- 1.4 Atraso, perda e vazão nas redes comutadas por pacotes
- 1.5 Camadas de protocolo, modelos de serviço
- 1.6 Redes sob ataque: segurança

Segurança de rede

- o campo da segurança de rede trata de:
 - como defender as redes contra ataques
 - como maus sujeitos atacam redes de computadores
 - como projetar arquiteturas imunes a ataques
- Internet n\u00e3o criada originalmente com (muita) seguran\u00e7a em mente
 - visão original: "um grupo de usuários mutuamente confiáveis conectados a uma rede transparente"
 - protocolos da Internet são abertos
 - considerações de segurança em todas as camadas!

REDES DE COMPUTADORES Malicious Software (Malwares) A INTERNET 54 edição Uma Abordagem Top-Down

- Maus sujeitos podem colocar malware em hospedeiros via internet
- malware pode entrar em um hospedeiro por vírus, worm ou cavalo de Troia.
- malware do tipo spyware pode registrar toques de teclas, sites visitados na Web, enviar informações para sites de coleta.
- hospedeiro infectado pode ser alistado em um botnet, usado para spam e ataques de DDoS.
- malware normalmente é autorreplicável: de um hospedeiro infectado, busca entrada em outros hospedeiros

Uma Abordagem Top-Down

cavalo de Troia

- parte oculta de algum software útil
- hoje, normalmente em uma página Web
 (Active-X, plug-in)

vírus

- infecção ao receber objeto
 (p. e., anexo de e- -mail),
 executando ativamente
- autorreplicável:
 propagando-se para outros
 hospedeiros, usuários

□worm:

- infecção recebendo passivamente objeto a ser executado
- autorreplicável: propaga-se para outros hospedeiros, usuários

Maus sujeitos podem atacar servidores e infraestrutura de rede

REDES DE COMPUTADORES E A INTERNET 5' edição

- Denial of Service (DoS): atacantes deixam recursos (servidor, largura de banda) indisponíveis ao tráfego legítimo, sobrecarregando recurso com tráfego
- selecionar alvo
- 2.invadir hospedeiros na rede (ver botnet)
- enviar pacotes para o alvo a partir dos hospedeiros comprometidos

Maus sujeitos podem farejar pacotes

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Farejamento de pacotes (sniffing):

- meio de broadcast (Ethernet compartilhada, sem fio)
- interface de rede promíscua lê/registra todos os pacotes (p. e., incluindo senhas!)

 software Wireshark usado para laboratório do farejador de pacotes (gratuito)

Maus sujeitos podem usar endereços de origem falsos

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

 IP spoofing: enviar pacote com endereço de origem falso

Maus sujeitos podem gravar e reproduzir

REDES DE COMPUTADORES E A INTERNET 5' edição

- gravar-e-reproduzir: informação confidencial (p. e., senha) é usada mais tarde
 - quem tem a senha é esse usuário, do ponto de vista do sistema

Introdução: resumo

Vimos muito material!

- visão geral da Internet
- O que é um protocolo?
- borda da rede, núcleo, rede de acesso
 - comutação de pacotes e circuitos
 - estrutura da Internet
- desempenho: perda, atraso e vazão
- camadas, modelos de serviço
- segurança

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

<u>Objetivo:</u>

 contexto, visão geral, "sentido" de rede