Examen final en ANA4.

Durée 2H

DOCUMENTS ET CALCULATRICES INTERDITS.

Rédiger les exercices 2 et 4 sur le cahier et les exercices 1 et 3 sur double feuille.

Exercice 1: 2 points

Calculer
$$\iiint_{\Omega} z^{x^2+y^2} dx dy dz \text{ avec } \Omega = \left\{ (x,y,z) \in \mathbb{R}^3 \ / \ x^2 + y^2 \le a^2; \ 0 \le z \le 1 \right\}$$
 où $a \in \mathbb{R}_+^*$.

Exercice 2: 8 points

I- En utilisant la définition, étudier la nature et donner la valeur éventuelle pour les séries numériques suivantes: $\sum_{n\geq 1} \alpha^{n-1} \sin{(n\alpha)}$ et $\sum_{n\geq 1} \alpha^n \cos{(n\alpha)}$ où $\alpha \in]-1,1[.$

II- Dans toute la suite $x \in E$, E =]-1,1[.

Soit la fonction F donnée par $F(x) = \sum_{n>1} f_n(x)$ où : $f_n(x) = \frac{x^n \sin(nx)}{n}$.

- 1) Montrer que F est bien définie dans E.
- 2) Montrer que F est de classe C^1 dans E.
- 3) Soit $G(x) = Arctg\left(\frac{x\sin x}{1 x\cos x}\right)$, montrer que $G'(x) = \frac{\sin x + x\cos x x^2}{x^2 2x\cos x + 1}$. 4) Calculler F'(x) et en déduire que F(x) = G(x).

Exercice 3: 5,5 points

Les questions sont indépendantes:

1) Soit $\sum_{n=0}^{\infty} a_n x^n$ une série entière de rayon de convergence R et soit $r \in \mathbb{R}$.

Supposons que $\sum_{n\geq 0}a_nr^n$ est semi-convergente. Déterminer R.

2) Montrer que pour tout $\alpha \in \mathbb{R}$ les séries entières $\sum_{n \geq 0} a_n x^n$ et $\sum_{n \geq 0} n^{\alpha} a_n x^n$ ont même rayon de convergence.

3) Calculer le rayon et la somme de la série entière: $\sum_{n>1} (-1)^{n-1} nx^{2n+1}$.

Exercice 4: 4,5 points

Soit la fonction définie sur \mathbb{R} et donnée par: $f(x) = \cos^2 x$ (elle est bien sûr 2π – périodique).

- 1) Développer f en série de Fourier (on rappelle: $\cos^2 x = \frac{1+\cos 2x}{2}$). 2) Calculer $\int_{-\pi}^{\pi} \cos^4 x dx$.

Un corrigé:

Exercice1: Utilisons les CS:
$$\varphi$$
:
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$
;
$$\begin{cases} \det j\varphi = r \\ r = \sqrt{x^2 + y^2} \end{cases}$$
Soit Ω 'le transformé de Ω par les CC.
$$(x,y,z) \in \Omega \iff \begin{cases} \alpha^2 + y^2 < a^2 \\ 0 < z < 1 \end{cases} \iff \begin{cases} 0 < r < a \\ 0 < z < 1 \end{cases} \iff \begin{cases} 0 < r < a \\ 0 < z < 1 \end{cases} \iff \{ 0 < r < a \\ 0 < z < 1 \end{cases} \iff \{ 0 < r < a \\ 0 < z < 1 \end{cases} \iff \{ 0 < r < a \\ 0 < z < 1 \end{cases} \iff \{ 0 < r < a \\ 0 < z < 1 \end{cases} \iff \{ 0 < r < a \\ 0 < z < 1 \end{cases} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \end{cases} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \end{cases} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \end{cases} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \implies \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \iff \{ 0 < z < 1 \} \iff \{ 0 < r < a \\ 0 < z < 1 \} \implies \{ 0 < r < a \\ 0 < z < 1 \} \implies \{ 0 < r < a \\ 0 < z < 1 \} \implies \{ 0 < r < a \\ 0 < z < 1 \} \implies \{ 0 < r < a \\ 0 < z < 1 \} \implies \{ 0 < r < a \\ 0 < z < 1 \} \implies \{ 0 < r < a \\ 0 < z < 1 \} \implies \{ 0 < r < a \\ 0 < z < 1 \} \implies \{ 0 < r < a \\ 0 < z < a \\ 0 < z < 1 \} \implies \{ 0 < r < a \\ 0 < z < a \\ 0$$

Remarque: on peut aussi travailler directement avec les s.n après avoir montrer leur convergence.

II- 1) On a que
$$|f_n(x)| \le |x|^n$$
, $\forall x \in E$ et $\sum_{n\ge 1} |x|^n$ converge car c'est une série

géométrique (0
$$\leq |x| < 1)$$
 donc $\sum_{n \geq 1} f_n$ converge absolument sur E (critére de

comparaison) donc F est bien définie.

- 2) Utilisons le théorème de conservation de la dérivabilité
- \hookrightarrow Toutes les f_n sont de classe C^1 car c'est le produit et la composée de fonc-

$$\hookrightarrow$$
 Etude de la convergence uniforme de $\sum_{n\geq 1} f'_n$, $f'_n(x) = x^{n-1} \sin nx + x^n \cos nx$

$$|f_n'(x)| \le a^{n-1} + a^n \le 2a^{n-1} \ \forall x \in [-a, a] \subset E \text{ et } \sum_{n \ge 1} a^{n-1} \text{ converge car c'est}$$

une série géométrique $(0 \le a < 1)$

donc $\sum_{n\geq 1} f_n'$ converge uniformément sur tout $[-a,a]\subset E,$ on en conclut que F

est C^1 sur tout $[-a, a] \subset E$.

Conclusion:
$$F$$
 est C^1 sur E .
3) $G'(x) = \left[Arctg\left(\frac{x\sin x}{1 - x\cos x}\right)\right]' = \frac{\left(\sin x + x\cos x\right)\left(1 - x\cos x\right) + \left(\cos x - x\sin x\right)\left(x\sin x\right)}{\left(1 - x\cos x\right)^2} \cdot \frac{1}{1 + \left(\frac{x\sin x}{1 - x\cos x}\right)}$

$$G'(x) = \frac{\sin x + x \cos x - x^2}{(1 - x \cos x)^2 + (x \sin x)^2} \text{ ie } G'(x) = \frac{\sin x + x \cos x - x^2}{x^2 - 2x \cos x + 1}.$$
4) On a $F'(x) = \sum_{n \ge 1} f'_n(x) = \sum_{n \ge 1} (x^{n-1} \sin nx + x^n \cos nx)$, utilisons I)

4) On a
$$F'(x) = \sum_{n\geq 1} f'_n(x) = \sum_{n\geq 1} (x^{n-1} \sin nx + x^n \cos nx)$$
, utilisons I)

ie
$$F(x) = \frac{\sin x + x \cos x - x^2}{x^2 - 2x \cos x + 1} = G'(x)$$
 donc $F(x) = G(x) + C$ (C =cte) or $F(0) = 0$

Conclusion:
$$F(x) = G(x) = Arctg\left(\frac{x \sin x}{1 - x \cos x}\right)$$
.

Exercice 3:

1) \bigstar Comme $\sum_{n\geq 0} a_n r^n$ converge alors la s.e $\sum_{n\geq 0} a_n x^n$ converge absolument sur

$$\bigstar$$
 Et $\sum_{n\geq 0}^{\infty} a_n r^n$ diverge absolument alors la s.e $\sum_{n\geq 0}^{\infty} a_n x^n$ diverge sur $]-\infty, -r[\cup]r, +\infty[$

$$n \ge 0$$
 d'après le corollaire du 1
er lemme d'Abel. Donc $R = |r|$.
2) Utilisons le théorème de Hadamard: Soient $\rho_1 = \limsup_{n \longrightarrow +\infty} \sqrt[n]{|a_n|}$ et $\rho_2 = \max_{n \longrightarrow +\infty} \sqrt[n]{|a_n|}$

$$\limsup_{n \longrightarrow +\infty} \sqrt[n]{n^{\alpha} |a_n|}$$

Il suffit de montrer que
$$\rho_1 = \rho_2$$
, or on a $\lim_{n \longrightarrow +\infty} n^{\frac{\alpha}{n}} = \lim_{n \longrightarrow +\infty} e^{\frac{\alpha \log n}{n}} = 1$

Donc
$$\rho_2 = \lim_{n \longrightarrow +\infty} n^{\alpha} . \limsup_{n \longrightarrow +\infty} \sqrt[n]{|a_n|} = \rho_1$$

3) Le rayon: Considérons la s.e
$$x$$
. $\sum_{n\geq 1} \left(-1\right)^{n-1} ny^n$ puis on posera: $y=x^2$

Son rayon:
$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{n+1}{n} = 1 = \rho \Longrightarrow R_y = \frac{1}{\rho} = 1$$

donc: $-1 < y < 1 \Longleftrightarrow 0 \le x^2 < 1 \Longleftrightarrow -1 < x < 1 \Longleftrightarrow R = 1$
Etude aux bornes: $en \pm 1$: posons $u_n(x) = (-1)^{n-1} nx^{2n+1}$ et $\sum_{n \ge 1} u_n(\pm 1)$ di-

verge car la CN n'est pas vérifiée.

Donc D =]-1,1[.

Calcul de la somme:
$$S(x) = \sum_{n>1} (-1)^{n-1} nx^{2n+1} = x^3 \sum_{n>1} n (-x^2)^{n-1}$$
, pour

$$T(y) = \sum_{n \ge 1} ny^{n-1} = \left(\sum_{n \ge 0} y^n\right)' = \left(\frac{1}{1-y}\right)' = \frac{1}{(1-y)^2}$$

Conclusion:
$$S(x) = \frac{x^3}{(1+x^2)^2}$$

Exercice4: Soit la fonction définie sur \mathbb{R} et donnée par: $f(x) = \cos^2 x$ (elle est bien sûr 2π – périodique).

1) Calcul de $\mathcal{F}f$: f est continue donc intégrable sur \mathbb{R} , elle est paire donc il suffit de travailler sur $[0,\pi]$, sa $\mathcal{F}f$ existe et on a: $b_n=0 \ \forall n\geq 1$ et

$$a_n = \frac{2}{\pi} \int_{0}^{\pi} \cos^2 x \cos nx dx \ \forall n \ge 0$$

$$\underline{n=0}: a_0 = \frac{2}{\pi} \int_{0}^{\pi} \cos^2 x dx = \frac{2}{\pi} \int_{0}^{\pi} \frac{1+\cos 2x}{2} dx = \frac{1}{\pi} \left[x + \frac{1}{2} \sin 2x \right]_{0}^{\pi} = 1$$

$$\underline{n \ge 1, \ n \ne 2}$$
: $a_n = \frac{2}{\pi} \int_{0}^{\pi} \cos^2 x \cos nx dx = \frac{1}{\pi} \int_{0}^{\pi} (1 + \cos 2x) \cos nx dx$

$$a_n = \frac{1}{\pi} \int_0^{\pi} \cos nx dx + \frac{1}{\pi} \int_0^{\pi} \cos 2x \cos nx dx = \frac{1}{n} \left[\sin nx \right]_0^{\pi} + \frac{1}{2\pi} \int_0^{\pi} \left(\cos (n+2) x + \cos (n-2) x \right) dx$$

ie
$$a_n = \frac{1}{2\pi} \left[\frac{\sin((n+2)x)}{n+2} + \frac{\sin((n-2)x)}{n-2} \right]_0^{\pi} = 0$$

$$\underline{n=2}: a_2 = \frac{2}{\pi} \int_0^{\pi} \cos^2 x \cos 2x dx = \frac{1}{\pi} \int_0^{\pi} \cos^2 (2x) dx = \frac{1}{2\pi} \int_0^{\pi} (1 + \cos 4x) dx = \frac{1}{2}$$

Donc
$$\mathcal{F}f(x) = \frac{1}{2} + \frac{1}{2}\cos 2x$$

Donc $\mathcal{F}f(x) = \frac{1}{2} + \frac{1}{2}\cos 2x$ Appliquons le théorème de Dirichlet: f est continue et même dérivable sur \mathbb{R}

donc on a:

$$\mathcal{F}f(x) = \frac{1}{2} + \frac{1}{2}\cos 2x = f(x) = \cos^2 x \ \forall x \in \mathbb{R}.$$

2) Utilisons l'égalité de Parseval:
$$\frac{1}{\pi}\int_{-\pi}^{\pi}f^{2}\left(x\right)dx=\frac{a_{0}^{2}}{2}+\sum_{n\geq1}\left(a_{n}^{2}+b_{n}^{2}\right)$$
 ce qui donne
$$\int_{-\pi}^{\pi}\cos^{4}xdx=\pi\left(\frac{1}{2}+\frac{1}{4}\right)=\frac{3}{4}\pi.$$