lab 05 solution

September 16, 2021

1 Lab 5

Optimization Using Newton's Method

In this lab, we'll explore an alternative to gradient descent for nonlinear optimization problems: Newton's method.

1.1 Newton's method in one dimension

Consider the problem of finding the *roots* \mathbf{x} of a nonlinear function $f : \mathbb{R}^N \to \mathbb{R}$. A root of f is a point \mathbf{x} that satisfies $f(\mathbf{x}) = 0$.

In one dimension, Newton's method for finding zeroes works as follows:

- 1. Pick an initial guess x_0
- 2. Let $x_{i+1} = x_i + \frac{f(x_i)}{f'(x_i)}$
- 3. If not converged, go to #2.

Convergence occurs when $|f(x_i)| < \epsilon_1$ or when $|f(x_{i+1}) - f(x_i)| < \epsilon_2$.

Let's see how this works in practice.

```
[17]: import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import pandas as pd
```

```
[18]: # Example 1: Root finding for cubic polynomial

n = 200

x = np.linspace(-3, 3, n)

def fx(x, p):
    f_x = np.polyval(p, x)
    return f_x

# Create the polynomial f(x) = x^3 + x^2

p = np.poly1d([1, 1, 0, 0])
```

```
# Derivative of a polynomial
# This is a convenient method to obtain p_d = np.poly1d([3, 2, 0])
p_d = np.polyder(p)
# Get values for f(x) and f'(x) for graphing purposes
y = fx(x, p)
y_d = fx(x,p_d)
# Try three possible guesses for x0
x0_arr = [-3.0, 1.0, 3.0]
max_iter = 30
threshold = 0.001
roots = []
fig1 = plt.figure(figsize=(8,8))
ax = plt.axes()
plt.plot(x, y, 'g-', label='f(x)')
plt.plot(x, y_d, 'b--', label="f\'(x)")
for x0 in x0 arr:
    # Plot initial data point
    plt.plot(x0, fx(x0,p), '*', label='intial: ' + str(x0))
    i = 0
    while i < max_iter:</pre>
        \# x1 = x0 - f(x0)/f'(x0)
        x1 = x0 - fx(x0, p) / fx(x0, p_d)
        # Check for delta (x) less than threshold
        if np.abs(x0 - x1) <= threshold:</pre>
            roots.append(round(x1,4))
            break;
        # Plot current root after every 5 iterations
        if i % 5 == 0:
            plt.plot(x1, fx(x1, p), '.', label='iteration '+ str(i+1))
        else:
            plt.plot(x1, fx(x1, p), '.')
        x0 = x1
        i = i + 1
    plt.plot(x1, fx(x1, p), 'ko', label='converged at iteration '+ str(i+1))
plt.legend(bbox_to_anchor=(1.5, 1.0), loc ='upper right')
plt.title('Example 1: Newton root finding for a polynomial')
plt.show()
```



```
[19]: # Example 2: Root finding for sine function
n = 200
x = np.linspace(-np.pi, np.pi, n)
def fx(x):
    f_x = np.sin(x)
    return f_x

def fx_d(x):
    return np.cos(x)

# Get f(x) and f'(x) for plotting

y = fx(x)
y_d = fx_d(x)

# Consider three possible starting points

x0_arr = [2.0, 1.0, -2.0]
max_iter = 30
i = 0
```

```
threshold = 0.01
roots = []
fig1 = plt.figure(figsize=(10,10))
ax = plt.axes()
ax.set_aspect(aspect = 'equal', adjustable = 'box')
plt.plot(x, y, 'g-', label='f(x)')
plt.plot(x, y_d, 'b--', label='df(x)')
for x0 in x0_arr:
    plt.plot(x0, fx(x0), 'bo', label='intial: ' + str(x0))
    i = 0;
    while i < max_iter:</pre>
        x1 = x0 - fx(x0) / fx_d(x0)
        if np.abs(x0 - x1) <= threshold:</pre>
            roots.append(x1)
            plt.plot(x1,fx(x1),'ko',label='converged at iteration '+ str(i))
        if i % 5 == 0:
            plt.plot(x1, fx(x1), '*', label='iteration '+ str(i+1))
        else:
            plt.plot(x1, fx(x1), '*')
        x0 = x1
        i = i + 1
plt.legend(bbox_to_anchor=(1.5, 1.0), loc ='upper right')
plt.title('Example 2: Newton root findign for sine function')
plt.show()
print('Roots: %f, %f, %f' % (roots[0], roots[1], roots[2]))
```


Roots: 3.141593, 0.000000, -3.141593

1.2 Newton's method for optimization

Now, consider the problem of minimizing a scalar function $J: \mathbb{R}^n \to \mathbb{R}$. We would like to find

$$\theta^* = \operatorname{argmin}_{\theta} J(\theta)$$

We already know gradient descent:

$$\theta^{(i+1)} \leftarrow \theta^{(i)} - \alpha \nabla I(\theta^{(i)}).$$

But Newton's method gives us a potentially faster way to find θ^* as a zero of the system of equations

$$\nabla_J(\theta^*) = \mathbf{0}.$$

In one dimension, to find the zero of f'(x), obviously, we would apply Newton's method to f'(x), obtaining the iteration

$$x_{i+1} = x_i - f'(x_i)/f''(x_i).$$

The multivariate extension of Newton's optimization method is

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \mathbf{H}_f(\mathbf{x}_i) \nabla_f(\mathbf{x}_i),$$

where $H_f(\mathbf{x})$ is the *Hessian* of f evaluated at \mathbf{x} :

$$\mathbf{H}_{f}(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} x_{1}} & \frac{\partial^{2} f}{\partial x_{n} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

This means, for the minimization of $J(\theta)$, we would obtain the update rule

$$\boldsymbol{\theta}^{(i+1)} \leftarrow \boldsymbol{\theta}^{(i)} - \mathtt{H}_{J}(\boldsymbol{\theta}^{(i)}) \nabla_{J}(\boldsymbol{\theta}^{(i)}).$$

1.3 Application to logistic regression

Let's create some difficult sample data as follows:

Class 1: Two features x_1 and x_2 jointly distributed as a two-dimensional spherical Gaussian with parameters

$$\mu = \begin{bmatrix} x_{1c} \\ x_{2c} \end{bmatrix}, \Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_1^2 \end{bmatrix}.$$

Class 2: Two features x_1 and x_2 in which the data are generated by first sampling an angle θ according to a uniform distribution, sampling a distance d according to a one-dimensional Gaussian with a mean of $(3\sigma_1)^2$ and a variance of $(\frac{1}{2}\sigma_1)^2$, then outputting the point

$$\mathbf{x} = \begin{bmatrix} x_{1c} + d\cos\theta \\ x_{2c} + d\sin\theta \end{bmatrix}$$

Generate 100 samples for each of the classes.

5

```
[20]: # Generate data for class 1
      mu_1 = np.array([1.0, 2.0])
      sigma_1 = 1
      num_sample = 100
      cov_mat = np.matrix([[sigma_1,0],[0,sigma_1]])
      X1 = np.random.multivariate_normal(mean= mu_1, cov=cov_mat, size = num_sample)
      # Generate data for class 2
      angle = np.random.uniform(0, 2*np.pi, num sample)
      d = np.random.normal(np.square(3*sigma_1),np.square(.5*sigma_1),num_sample)
      X2 = np.array([X1[:,0] + d*np.cos(angle), X1[:,1] + d*np.sin(angle)]).T
      # Combine X1 and X2 into single dataset
      X = np.concatenate([X1, X2],axis = 0)
      y = np.append(np.zeros(num_sample),np.ones(num_sample))
[21]: # Plot the data
     fig1 = plt.figure(figsize=(5,5))
      ax = plt.axes()
      plt.title('Sample data for classification problem')
      plt.grid(axis='both', alpha=.25)
      plt.plot(X1[:,0],X1[:,1],'b.', label = 'Class 1')
      plt.plot(X2[:,0],X2[:,1],'g*', label = 'Class 2')
      plt.legend(loc=2)
      plt.axis('equal')
      plt.show()
```



```
idx = np.arange(0,len(X),1)
np.random.shuffle(idx)
idx_train = idx[0:int(.8*len(X))]
idx_test = idx[len(idx_train):len(idx)]

X_train = X[idx_train]
X_test = X[idx_test]
y_train = y[idx_train]
y_test = y[idx_test]
```

```
[23]: # Normalization of data
def normalization(X):
    """
    Take in numpy array of X values and return normalize X values,
    the mean and standard deviation of each feature
    """
    mean=np.mean(X,axis=0)
    std=np.std(X,axis=0)
```

```
X_norm = (X - mean)/std
return X_norm

XX = normalization(X)
X_train_norm = XX[idx_train]
X_test_norm = XX[idx_test]
```

```
[24]: # define class for logistic regression: batch gradient descent
      class Logistic_BGD:
          def __init__(self):
              pass
            def softmax(self, z):
                z = np.max(z)
                return np.exp(z) / np.sum(np.exp(z))
            def\ h(self,\ X,\ theta):
      #
                return self.softmax(np.dot(X, theta))
      #
          def fx(self, X, theta):
              return X@theta
          def h(self, X, theta):
              # sigmoid function
              z = self.fx(X, theta)
              return 1 / (1 + np.exp(-1*z))
          def gradient(self, X, y, y_pred):
              m = len(y)
              return 1/m * np.dot(X.T,(y_pred - y))
          def costFunc(self, theta, X, y):
              m = len(y)
              y_pred = self.h(X, theta)
              error = (y * np.log(y_pred)) + ((1-y)*np.log(1-y_pred))
              cost = -1/m * sum(error)
              grad = self.gradient(X, y, y_pred)
              return cost, grad
          def gradientDescent(self, X, y, theta, alpha, num_iters):
                X = np.insert(X, 0, 1, axis=1)
              m = len(y)
              J_history = []
              theta_history = []
```

```
for i in range(num_iters):
        cost, grad = self.costFunc(theta,X,y)
        theta = theta - alpha * grad
        J_history.append(cost)
        theta_history.append(theta)
    J_min_index = np.argmin(J_history)
    return theta_history[J_min_index] , J_history
def predict(self,X, theta):
    labels=[]
    for i in range(X.shape[0]):
        y1=self.h(X[i], theta)
        if y1 >= 0.5:
            labels.append(1)
        else:
            labels.append(0)
    labels=np.asarray(labels)
    return labels
def checkAccuracy(self,predicted,y):
    predicted=predicted.tolist()
    y = y.tolist()
    correct=0
    for i in range(0,len(predicted)):
        if y[i] == predicted[i]:
            correct+=1
    return (float(correct)/len(predicted))*100
```

1.4 In lab exercises

- 1. Verify that the gradient descent solution given above is correct. Plot the optimal decision boundary you obtain.
- 2. Write a new class that uses Newton's method for the optmization rather than simple gradient descent.
- 3. Verify that you obtain a similar solution with Newton's method. Plot the optimal decision boundary you obtain.
- 4. Compare the number of iterations required for gradient descent vs. Newton's method. Do you observe other issues with Newton's method such as a singular or nearly singular Hessian matrix?

```
[25]: # We define a class for logistic regression (batch gradient descent)
class Logistic_NWT:

    def __init__(self):
        pass
```

```
def fx(self, X, theta):
       return X @ theta
  def h(self, X, theta):
       # sigmoid function
       z = self.fx(X, theta)
       return 1 / (1 + np.exp(-1*z))
  def gradient(self, X, y, y_pred):
       m = len(y)
       return 1/m * np.dot(X.T,(y_pred - y))
  def hessian(self, xi, theta):
       Ref: https://stats.stackexchange.com/questions/68391/
\rightarrow hessian-of-logistic-function
       X is X_i one row of X.
       y_pred = self.h(xi,theta) # sigmoid output (prediction)
       xi = xi.reshape(-1,1) # convert from 1d array to 2d (matrix)
       return xi @ xi.T * (y_pred) * (1-y_pred)
  def costFunc(self, theta, X, y):
       m = len(y)
       y_pred = self.h(X, theta)
       error = (y * np.log(y_pred)) + ((1-y)*np.log(1-y_pred))
       cost = -1/m * sum(error)
       grad = self.gradient(X, y, y_pred)
       return cost, grad
  def newtonMethod(self, X, y, theta, num_iters):
       m = len(y)
       J_history = []
       theta_history = []
       # see error
       found_sigular_matrix = False
       error_msg = None
       for i in range(num_iters):
           hessian_mat = np.zeros((X.shape[1], X.shape[1]))
           # compute hessian matrix of x_i
           for i in range(X.shape[0]):
               hmat_xi = self.hessian(X[i], theta)
```

```
# sum of all matrixs (by element position)
            hessian_mat += hmat_xi
        cost, grad = self.costFunc(theta, X,y)
        # replace gradient descent with newton method
        # follow the formula above.
        try:
            theta = theta - np.linalg.inv(hessian_mat) @ grad
        except Exception as e:
            error_msg = e
            found_sigular_matrix = True
            # leverages SVD to approximate initial matrix.
            theta = theta - np.linalg.pinv(hessian_mat) @ grad
        J_history.append(cost)
        theta_history.append(theta)
    if found_sigular_matrix :
        print('Found error while compute newton method error ! ')
        print(error_msg)
    J_min_index = np.argmin(J_history)
    return theta_history[J_min_index] , J_history
def predict(self,X, theta):
    labels=[]
    for i in range(X.shape[0]):
        y1=self.h(X[i], theta)
        if y1 >= 0.5:
            labels.append(1)
        else:
            labels.append(0)
    labels=np.asarray(labels)
    return labels
def checkAccuracy(self,predicted,y):
    predicted=predicted.tolist()
    y = y.tolist()
    correct=0
    for i in range(0,len(predicted)):
        if y[i] == predicted[i]:
            correct+=1
    return (float(correct)/len(predicted))*100
```

```
[26]: def boundary_points(X, theta):
    theta = theta.reshape(-1,1)
    v_orthogonal = np.array([[theta[1,0]],[theta[2,0]]])
    v_ortho_length = np.sqrt(v_orthogonal.T @ v_orthogonal)
    dist_ortho = theta[0,0] / v_ortho_length
```

```
v_orthogonal = v_orthogonal / v_ortho_length
v_parallel = np.array([[-v_orthogonal[1,0]],[v_orthogonal[0,0]]])
projections = X @ v_parallel
proj_1 = min(projections)
proj_2 = max(projections)
point_1 = proj_1 * v_parallel - dist_ortho * v_orthogonal
point_2 = proj_2 * v_parallel - dist_ortho * v_orthogonal
return point_1, point_2
```

```
[27]: # create X to equal to polynomial function
x_df = pd.DataFrame(X, columns=['X0', 'X1'])

x_df['y'] = y

x_df['X0'] = normalization(x_df.X0)
x_df['X1'] = normalization(x_df.X1)
linX = x_df[['X0','X1']].values
linX = np.insert(linX, 0, 1, axis=1)

X_train = linX[idx_train]
X_test = linX[idx_test]
y_train = y[idx_train]
y_test = y[idx_test]
```

Getting optimal theta sing Logistic Batch Gradient Descent:

```
[28]: alpha = 0.05
iterations = 1000
init_theta = np.ones(X_train.shape[1])

lgx = Logistic_BGD()
theta_x, j_hist_x = lgx.gradientDescent(X_train, y_train, init_theta, alpha,___
iterations)
```

Getting optimal theta using Newton's Method

```
[29]: iterations = 1000
lnx = Logistic_NWT()
theta_xn, j_hist_xn = lnx.newtonMethod(X_train, y_train, init_theta, iterations)
```

```
[30]: plt.title('Cost history')
   plt.plot(j_hist_xn, label='Newton')
   plt.plot(j_hist_x, label='Gradient')

plt.legend()
   plt.show()
```

```
print('Minimum Cost for each method')
print('Gradient :', np.min(j_hist_x))
print('Newton :', np.min(j_hist_xn))
```


Minimum Cost for each method Gradient : 0.6889016406221803 Newton : 0.6889024628224568

```
# Plotting decision boundary for the above classes from solution obtained using batch gradient descent and Newton's method

y0_df = x_df[x_df.y == 0]
y1_df = x_df[x_df.y == 1]

point_1, point_2 = boundary_points(linX[:,1:], theta_x)
point_1n, point_2n = boundary_points(linX[:,1:], theta_xn)

plt.title('Decision Boundary of linear function')
plt.scatter(y0_df.X0, y0_df.X1, c='r', label='class 0')
plt.scatter(y1_df.X0, y1_df.X1, c='b', label='class 1')
plt.legend()
plt.xlabel('X1')
plt.ylabel('X2')
# plot the boundaries for both methods
```



```
[32]: yg_pred = lgx.predict(X_test, theta_x)
yn_pred = lnx.predict(X_test, theta_xn)
g_acc = lgx.checkAccuracy(yg_pred, y_test)
n_acc = lnx.checkAccuracy(yn_pred, y_test)

print("Test Accuracy")
print('Gradient Accuracy : ', g_acc)
print('Newton Accuracy : ', n_acc)
```

Test Accuracy

Gradient Accuracy : 72.5 Newton Accuracy : 72.5

1.5 Take-home exercises

1. Perform a polar transformation on the data above to obtain a linearly separable dataset.

- 2. Verify that you obtain good classification accuracy for logistic regression with GD or Netwon's method after the polar transformation
- 3. Apply Newton's method to the dataset you used for the take home exercises in Lab 03.

1.6 The report

Write a brief report covering your experiments (both in lab and take home) and send as a Jupyter notebook to the TAs, Manish and Abhishek before the next lab.

In your solution, be sure to follow instructions.

1.6.1 Performing Polar Transformations

```
[33]: # Prepare data
# Convert X to angle and radius

df = pd.DataFrame(X, columns=['X0', 'X1'])

df['angles'] = np.arctan(df.X1 / df.X0)

df['radius'] = np.sqrt(df.X0 ** 2 + df.X1 ** 2)

df['y'] = y

newX = df[['angles', 'radius']].values
newX = np.insert(newX, 0, 1, axis=1)

X_train = newX[idx_train]

X_test = newX[idx_test]

y_train = y[idx_train]

y_test = y[idx_test]
```

```
[34]: y0_df = df[df.y == 0]
y1_df = df[df.y == 1]

plt.title('Transformed Data')
plt.scatter(y0_df.angles, y0_df.radius, c='r', label='class 0')
plt.scatter(y1_df.angles, y1_df.radius, c='b', label='class 1')
plt.legend()
plt.xlabel('angle')
plt.ylabel('radius')
```

[34]: Text(0, 0.5, 'radius')


```
[35]: alpha = 0.01
      iterations = 10000
      init_theta = np.ones(newX.shape[1])
      lg = Logistic_BGD()
      theta, j_hist = lg.gradientDescent(X_train, y_train, init_theta, alpha,__
       →iterations)
[36]: iterations = 800
      init_theta = np.ones(newX.shape[1])
      ln = Logistic_NWT()
      theta_n, j_hist_n = ln.newtonMethod(X_train, y_train, init_theta, iterations)
[37]: plt.plot(j_hist_n, label='Newton\'s Method')
      plt.plot(j_hist[:iterations], label='Batch Gradient Descent')
      plt.title('Cost History')
      plt.xlabel('iteration')
      plt.ylabel('cost')
      plt.legend()
      plt.show()
      print('Minimum Cost for each method from polar transformation')
```

```
print('Gradient Descent:', np.min(j_hist))
print('Newton\'s Method :', np.min(j_hist_n))
```


Minimum Cost for each method from polar transformation Gradient Descent: 0.0449652208110658 Newton's Method: 0.0036222957878202957


```
[39]: yg_pred = lg.predict(X_train, theta)
yn_pred = ln.predict(X_train, theta_n)
g_acc = lg.checkAccuracy(yg_pred, y_train)
n_acc = lg.checkAccuracy(yn_pred, y_train)

print("Train accuracy for polar transformation")
print('Gradient Accuracy : ', g_acc)
print('Newton Accuracy : ', n_acc)

yg_pred = lg.predict(X_test, theta)
yn_pred = ln.predict(X_test, theta_n)
g_acc = lg.checkAccuracy(yg_pred, y_test)
n_acc = lg.checkAccuracy(yn_pred, y_test)

print("Test accuracy for polar transformation")
print('Gradient Accuracy : ', g_acc)
```

```
print('Newton Accuracy : ', n_acc)
```

Train accuracy for polar transformation

Gradient Accuracy : 100.0 Newton Accuracy : 100.0

Test accuracy for polar transformation

Gradient Accuracy : 100.0 Newton Accuracy : 100.0

Here we can see, we get the perfect accuracy while performing polar transformation in our dataset.

1.6.2 Using Newton method in Lab 3- Loan prediction dataset

```
[40]: # Import the data

data_train = pd.read_csv('train_LoanPrediction.csv')
data_test = pd.read_csv('test_LoanPrediction.csv')

# Start to explore the data

print('Training data shape', data_train.shape)
print('Test data shape', data_test.shape)

print('Training data:\n', data_train)
```

Training data shape (614, 13) Test data shape (367, 12)

Training data:

	_							
	${\tt Loan_ID}$	Gender	${\tt Married}$	${\tt Dependents}$		${\tt Education}$	Self_Employed	\
0	LP001002	Male	No	0		Graduate	No	
1	LP001003	Male	Yes	1		Graduate	No	
2	LP001005	Male	Yes	0		Graduate	Yes	
3	LP001006	Male	Yes	0	Not	Graduate	No	
4	LP001008	Male	No	0		Graduate	No	
	•••			•••	•••	••	•	
609	LP002978	Female	No	0		Graduate	No	
610	LP002979	Male	Yes	3+		Graduate	No	
611	LP002983	Male	Yes	1		Graduate	No	
612	LP002984	Male	Yes	2		Graduate	No	
613	LP002990	Female	No	0		Graduate	Yes	

	${\tt ApplicantIncome}$	${ t CoapplicantIncome}$	${ t LoanAmount}$	Loan_Amount_Term	\
0	5849	0.0	NaN	360.0	
1	4583	1508.0	128.0	360.0	
2	3000	0.0	66.0	360.0	
3	2583	2358.0	120.0	360.0	
4	6000	0.0	141.0	360.0	
	•••	•••	•••	•••	

609	2900	0.0	71.0	360.0
610	4106	0.0	40.0	180.0
611	8072	240.0	253.0	360.0
612	7583	0.0	187.0	360.0
613	4583	0.0	133.0	360.0

Credit_History Property_Area Loan_Status

0	1.0	Urban		Y
1	1.0	Rural		N
2	1.0	Urban		Y
3	1.0	Urban		Y
4	1.0	Urban		Y
	•••	•••	•••	
609	1.0	Rural		Y
610	1.0	Rural		Y
611	1.0	Urban		Y
612	1.0	Urban		Y
613	0.0	Semiurban		N

[614 rows x 13 columns]

[41]: # Now checking for the missing values of the train and test datasets

```
print('Missing values for train data:\n----\n', data_train.

→isnull().sum())
print('Missing values for test data \n -----\n', data_test.
→isnull().sum())
```

Missing values for train data:

		_
Loan_ID	()
Gender	13	
Married	3	
Dependents	15	
Education	0	
Self_Employed	32	
ApplicantIncome	0	
CoapplicantIncome	0	
LoanAmount	22	
Loan_Amount_Term	14	
Credit_History	50	
Property_Area	0	
Loan_Status	0	
dtype: int64		
Missing values for	test	data

Loan_ID 0 Gender 11

```
Dependents
                          10
     Education
                           0
     Self Employed
                          23
     ApplicantIncome
                           0
     CoapplicantIncome
                           0
     LoanAmount
                           5
     Loan_Amount_Term
                           6
     Credit History
                          29
     Property_Area
                           0
     dtype: int64
[42]: # Filling the missing values
      def fill_martial_status(data, yes_num_train, no_num_train):
          data['Married'].fillna('Yes', inplace = True, limit = yes_num_train)
          data['Married'].fillna('No', inplace = True, limit = no num_train)
      fill martial status(data train, 2, 1)
      fill_martial_status(data_test, 2, 1)
      def fill_dependent_status(num_0_train, num_1_train, num_2_train, num_3_train, __
       →num_0_test, num_1_test, num_2_test, num_3_test):
          data_train['Dependents'].fillna('0', inplace=True, limit = num_0_train)
          data_train['Dependents'].fillna('1', inplace=True, limit = num_1_train)
          data_train['Dependents'].fillna('2', inplace=True, limit = num_2_train)
          data_train['Dependents'].fillna('3+', inplace=True, limit = num_3_train)
          data_test['Dependents'].fillna('0', inplace=True, limit = num_0_test)
          data_test['Dependents'].fillna('1', inplace=True, limit = num_1_test)
          data_test['Dependents'].fillna('2', inplace=True, limit = num_2_test)
          data_test['Dependents'].fillna('3+', inplace=True, limit = num_3_test)
      fill_dependent_status(9, 2, 2, 2, 5, 2, 2, 1)
      data_train['Dependents'].replace('3+', '4', inplace = True)
      data_test['Dependents'].replace('3+', '4', inplace = True)
      loan amount_mean = np.mean(data_train["LoanAmount"])
      data_train['LoanAmount'].fillna(loan_amount_mean, inplace=True, limit = 22)
      data_test['LoanAmount'].fillna(loan_amount_mean, inplace=True, limit = 5)
      # filling Gender by mode
      data train.Gender.fillna(data train.Gender.mode()[0], inplace=True)
      data_test.Gender.fillna(data_test.Gender.mode()[0], inplace=True)
      # filling Self Employed by mode
```

Married

0

[43]: #Now checking for the missing values of the train and test datasets

print('Missing values for train data:\n----\n', data_train.

→isnull().sum())

print('Missing values for test data \n ----\n', data_test.

→isnull().sum())

Missing values for train data:

_____ 0 Loan ID 0 Gender Married 0 Dependents 0 Education Self_Employed ApplicantIncome 0 CoapplicantIncome LoanAmount 0 0 Loan_Amount_Term 0 Credit_History Property_Area 0 Loan_Status dtype: int64 Missing values for test data Loan ID 0 Gender 0 Married 0 Dependents 0 Education 0 Self Employed

```
0
     ApplicantIncome
     CoapplicantIncome
                          0
     LoanAmount
                          0
     Loan_Amount_Term
                          0
     Credit_History
                          0
     Property_Area
                          0
     dtype: int64
[44]: data_test = data_test.iloc[0:,1:]
      data_train = data_train.iloc[0:,1:]
      print(data_test.info())
      print(data_train.info())
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 367 entries, 0 to 366
     Data columns (total 11 columns):
      #
          Column
                             Non-Null Count
                                              Dtype
          _____
                              _____
     ---
                                              ----
      0
          Gender
                              367 non-null
                                              object
      1
          Married
                              367 non-null
                                              object
      2
          Dependents
                              367 non-null
                                              object
      3
          Education
                             367 non-null
                                              object
      4
          Self_Employed
                             367 non-null
                                              object
      5
          ApplicantIncome
                                              int64
                              367 non-null
      6
          CoapplicantIncome
                             367 non-null
                                              int64
      7
          LoanAmount
                              367 non-null
                                              float64
      8
          Loan_Amount_Term
                                              float64
                              367 non-null
          Credit_History
                              367 non-null
                                              float64
      10 Property_Area
                              367 non-null
                                              object
     dtypes: float64(3), int64(2), object(6)
     memory usage: 31.7+ KB
     None
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 614 entries, 0 to 613
     Data columns (total 12 columns):
      #
          Column
                              Non-Null Count
                                              Dtype
          ----
                              _____
      0
          Gender
                             614 non-null
                                              object
      1
          Married
                              614 non-null
                                              object
      2
          Dependents
                                              object
                              614 non-null
      3
          Education
                              614 non-null
                                              object
      4
          Self Employed
                              614 non-null
                                              object
      5
          ApplicantIncome
                              614 non-null
                                              int64
                             614 non-null
      6
          CoapplicantIncome
                                              float64
```

7

8

LoanAmount

Loan_Amount_Term

Credit_History

float64

float64

float64

614 non-null

614 non-null

614 non-null

```
memory usage: 57.7+ KB
     None
[45]: #Converting categorical into 0 and 1
      data_train['Gender'].replace('Male', 0, inplace = True)
      data_train['Gender'].replace('Female', 1, inplace = True)
      data_train['Married'].replace('No', 0, inplace = True)
      data_train['Married'].replace('Yes', 1, inplace = True)
      data_train['Education'].replace('Not Graduate', 0, inplace = True)
      data_train['Education'].replace('Graduate', 1, inplace = True)
      data_train['Self_Employed'].replace('No', 0, inplace = True)
      data_train['Self_Employed'].replace('Yes', 1, inplace = True)
      data_train['Property_Area'].replace('Urban', 0, inplace = True)
      data_train['Property_Area'].replace('Semiurban', 1, inplace = True)
      data_train['Property_Area'].replace('Rural', 2, inplace = True)
      data_train['Loan_Status'].replace('N', 0, inplace = True)
      data_train['Loan_Status'].replace('Y', 1, inplace = True)
      data test['Gender'].replace('Male', 0, inplace = True)
      data_test['Gender'].replace('Female', 1, inplace = True)
      data_test['Married'].replace('No', 0, inplace = True)
      data_test['Married'].replace('Yes', 1, inplace = True)
      data_test['Education'].replace('Not Graduate', 0, inplace = True)
      data_test['Education'].replace('Graduate', 1, inplace = True)
      data_test['Self_Employed'].replace('No', 0, inplace = True)
      data_test['Self_Employed'].replace('Yes', 1, inplace = True)
      data_test['Property_Area'].replace('Urban', 0, inplace = True)
      data_test['Property_Area'].replace('Semiurban', 1, inplace = True)
      data_test['Property_Area'].replace('Rural', 2, inplace = True)
      print(data_train.info())
      print(data_test.info())
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 614 entries, 0 to 613
     Data columns (total 12 columns):
```

614 non-null

614 non-null

object

object

10 Property_Area

dtypes: float64(4), int64(1), object(7)

11 Loan_Status

Column

Gender

Married

Dependents

Self_Employed

Education

0

1 2

3

int64

int64

object

int64

int64

Non-Null Count Dtype

614 non-null

614 non-null

614 non-null

614 non-null

614 non-null

```
5
          ApplicantIncome
                              614 non-null
                                              int64
                                              float64
      6
          CoapplicantIncome
                             614 non-null
      7
          LoanAmount
                              614 non-null
                                              float64
      8
          Loan_Amount_Term
                              614 non-null
                                              float64
      9
          Credit History
                                              float64
                              614 non-null
      10
          Property_Area
                              614 non-null
                                              int64
      11 Loan Status
                              614 non-null
                                              int64
     dtypes: float64(4), int64(7), object(1)
     memory usage: 57.7+ KB
     None
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 367 entries, 0 to 366
     Data columns (total 11 columns):
      #
          Column
                             Non-Null Count
                                              Dtype
     ___
          _____
                              _____
                                              ____
      0
          Gender
                              367 non-null
                                              int64
      1
          Married
                              367 non-null
                                              int64
      2
          Dependents
                             367 non-null
                                              object
      3
          Education
                              367 non-null
                                              int64
      4
          Self Employed
                              367 non-null
                                              int64
                              367 non-null
      5
          ApplicantIncome
                                              int64
      6
          CoapplicantIncome
                             367 non-null
                                              int64
      7
          LoanAmount
                              367 non-null
                                              float64
          Loan Amount Term
                              367 non-null
                                              float64
      9
          Credit_History
                              367 non-null
                                              float64
      10 Property_Area
                              367 non-null
                                              int64
     dtypes: float64(3), int64(7), object(1)
     memory usage: 31.7+ KB
     None
[46]: print(data_train.dtypes)
      data_train['Dependents'] = data_train['Dependents'].astype(str).astype(int)
      data_train['Loan_Amount_Term'] = data_train['Loan_Amount_Term'].astype(int)
      data_train['Credit_History'] = data_train['Credit_History'].astype(int)
      data_train['CoapplicantIncome'] = data_train['CoapplicantIncome'].astype(int)
      data_train['LoanAmount'] = data_train['LoanAmount'].astype(int)
      print(data_train.dtypes)
     Gender
                            int64
     Married
                            int64
     Dependents
                            object
     Education
                             int64
     Self Employed
                             int64
     ApplicantIncome
                             int64
     CoapplicantIncome
                          float64
     LoanAmount
                          float64
```

Loan_Amount_Term

Credit_History

float64

float64

Property_Area	int64
Loan_Status	int64
dtype: object	
Gender	int64
Married	int64
Dependents	int32
Education	int64
Self_Employed	int64
ApplicantIncome	int64
CoapplicantIncome	int32
LoanAmount	int32
Loan_Amount_Term	int32
Credit_History	int32
Property_Area	int64
Loan_Status	int64
dtype: object	

[47]: data_train

[47]:		Gender	Married	Dependents	Education	Self_Emp	loyed	ApplicantIncome	\
	0	0	0	0	1	_	0	5849	
	1	0	1	1	1		0	4583	
	2	0	1	0	1		1	3000	
	3	0	1	0	0		0	2583	
	4	0	0	0	1		0	6000	
		•••	•••	•••	•••	•••		•••	
	609	1	0	0	1		0	2900	
	610	0	1	4	1		0	4106	
	611	0	1	1	1		0	8072	
	612	0	1	2	1		0	7583	
	613	1	0	0	1		1	4583	
		Coappli	cantIncome	LoanAmount		unt_Term	Credi	t_History \setminus	
	0		0	146		360		1	
	1		1508			360		1	
	2		0	66	3	360		1	
	3		2358	120)	360		1	
	4		0	141	-	360		1	
			•••	•••		•••		•••	
	609		0	71	-	360		1	
	610		0	40)	180		1	
	611		240	253	3	360		1	
	612		0	187	•	360		1	
	613		0	133	3	360		0	

Property_Area Loan_Status 0 1 0

```
1
                   2
                                  0
2
                   0
                                  1
3
                   0
                                  1
4
                   0
                                  1
609
                   2
                                  1
610
                   2
                                  1
611
                   0
                                  1
612
                   0
                                  1
613
                   1
                                  0
```

[614 rows x 12 columns]

```
[49]: plt.title('Cost Loan Dataset with Newton\'s Method')
    plt.plot(j_hist_nlab)
    plt.show()

    yn_pred = ln_lab.predict(X_train, theta_nlab)
    n_acc = ln_lab.checkAccuracy(yn_pred, y_train)
    print("Train Set Accuracy From Lab3 dataset")
    print('Newton Accuracy : ', n_acc)

    yn_pred = ln_lab.predict(X_test, theta_nlab)
    n_acc = ln_lab.checkAccuracy(yn_pred, y_test)

    print("Test Set Accuracy From Lab3 dataset")
    print('Newton Accuracy : ', n_acc)
```


Train Set Accuracy From Lab3 dataset

Newton Accuracy: 100.0

Test Set Accuracy From Lab3 dataset

Newton Accuracy: 100.0

[]:	
[]:	