LECTURE 26

Suppose that $f: [a,b] \to \mathbb{R}$ is differentiable on [a,b]. Let $\mathscr{P} = \{a = x_0, x_1, \dots, x_N = b\}$ be a partition of [a,b]. Then the restriction $f|_{[x_{i-1},x_i]}$ is differentiable on $[x_{i-1},x_i]$ for $i=1,\dots,N$ and hence satisfies the hypotheses of the Mean Value Theorem. Therefore, for each $i=1,\dots,N$, there exists $c_i \in (x_{i-1},x_i)$ such that

$$f(x_i) - f(x_{i-1}) = f'(c_i)(x_i - x_{i-1})$$

Therefore, summing from i = 1 to i = N, we find that

$$\sum_{i=1}^{N} (f(x_i) - f(x_{i-1})) = \sum_{i=1}^{N} f'(c_i) \Delta_i(x).$$

The sum on the left telescopes to f(b) - f(a), in other words, all of the terms of the sum cancel, and we are left with $f(x_N) - f(x_0)$, i.e. f(b) - f(a). Hence

$$\sum_{i=1}^{N} f'(c_i) \Delta_i(x) = f(b) - f(a).$$

Suppose that the derivative $f': [a, b] \to \mathbb{R}$ is a bounded function on [a, b]. Then for each i = 1, ..., N we have

$$m_i(f') \le f'(c_i) \le M_i(f').$$

Multiplying these inequalities by the positive number $\Delta_i(x)$ and summing from i = 1 to i = N, we find that

$$L(f', \mathscr{P}) \leq \sum_{i=1}^{N} f'(c_i) \Delta_i(x) \leq U(f', \mathscr{P}).$$

Hence

$$L(f', \mathscr{P}) \le f(b) - f(a) \le U(f', \mathscr{P}).$$

Suppose that f' is an integrable function on [a,b]. Since the partition $\mathscr P$ was arbitrary, we see that f(b)-f(a) is an upper bound for the set $\{L(f',\mathscr P)\}$ and f(b)-f(a) is a lower bound for the set of $\{U(f',\mathscr P)\}$. Therefore

$$L(f) \le f(b) - f(a) \le U(f).$$

Since f is integrable, L(f) = U(f). Hence $\int_a^b f'(x)dx = f(b) - f(a)$.

Summarising this discussion, we have

Theorem 6.19 (The Fundamental Theorem of Calculus II): Let $f: [a, b] \to \mathbb{R}$ be differentiable on \mathbb{R} . If the derivative $f': [a, b] \to \mathbb{R}$ is integrable on [a, b], then

$$\int_a^b f'(x)dx = f(b) - f(a).$$

We usually rewrite this in the following form: suppose that $f:[a,b] \to \mathbb{R}$ is an integrable function, and that there exists a differentiable function $F:[a,b] \to \mathbb{R}$ with F'(x) = f(x) for all $x \in [a,b]$. Then

$$\int_a^b f(x) \ dx = F(b) - F(a).$$

A function F satisfying F' = f is called an *anti-derivative* for f. Not every function has an anti-derivative; for instance the function $f: [0,2] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & x \neq 1, \\ 1 & x = 1 \end{cases}$$

is integrable, but it does not have an anti-derivative. The reason that it does not have an antiderivative is because of the following fact about derivatives: if $g:[a,b] \to \mathbb{R}$ is differentiable on [a,b], then the derivative $g':[a,b] \to \mathbb{R}$ satisfies the Intermediate Value Property, in particular g' cannot have any jump discontinuities.

Remark: Two very good questions that you might ask are the following: are there functions $f: [a,b] \to \mathbb{R}$ which are differentiable on [a,b] but f' is not bounded on [a,b]? and, are there functions $f: [a,b] \to \mathbb{R}$ which are differentiable on [a,b], with a bounded derivative, but f' is not integrable on [a,b]? The answer to both questions turns out to be yes. Here is an example of a function $f: [-1,1] \to \mathbb{R}$ which is differentiable on [-1,1], but whose derivative is unbounded:

$$f(x) = \begin{cases} x^2 \sin(1/x^2) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

It is easy to see that

$$f'(x) = \begin{cases} 2x\sin(1/x^2) - 2\cos(1/x^2)/x & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

The function f' takes arbitrarily large values near the origin (let $x = 1/\sqrt{2n\pi}$, where $n \in \mathbb{N}$). In particular, f' is not integrable on [-1,1]. It turns out that there are differentiable functions $f:[a,b] \to \mathbb{R}$ such that $f':[a,b] \to \mathbb{R}$ is bounded but f' is not integrable on [a,b]. Such functions are much more difficult to describe; the most well-known one is a function called Volterra's function.

Theorem 6.20 (Fundamental Theorem of Calculus I): Let $f:[a,b] \to \mathbb{R}$ be integrable. Define a function $F:[a,b] \to \mathbb{R}$ by setting

$$F(x) = \int_{a}^{x} f(t)dt$$

for $x \in [a, b]$. Then

- (i) F is continuous on [a, b];
- (ii) if f is continuous at $x_0 \in [a, b]$ then F is differentiable at x_0 .

Proof: We prove statement (i). We prove that in fact F is uniformly continuous on [a, b]. Let $x, y \in [a, b]$. Then

$$F(x) - F(y) = \int_{a}^{x} f(t)dt - \int_{a}^{y} f(t)dt.$$

If $y \leq x$ then

$$\int_{a}^{y} f(t)dt + \int_{y}^{x} f(t)dt = \int_{a}^{x} f(t)dt$$

and hence

$$F(x) - F(y) = \int_{y}^{x} f(t)dt.$$

On the other hand, if x < y, then

$$\int_{a}^{x} f(t)dt + \int_{x}^{y} f(t)dt = \int_{a}^{y} f(t)dt$$

and hence

$$F(x) - F(y) = -\int_{x}^{y} f(t)dt = \int_{y}^{x} f(t)dt.$$

Therefore, for all $x, y \in [a, b]$, we have $F(x) - F(y) = \int_y^x f(t) dt$. Since f is integrable on [a, b], f is bounded on [a, b], hence there exists C > 0 such that $|f(t)| \le C$ for all $t \in [a, b]$. Therefore $-C \le f(t) \le C$ for all $t \in [a, b]$. If $x \ge y$ then

$$-C|x - y| = -C(x - y) = \int_{y}^{x} (-C)dt \le \int_{y}^{x} f(t)dt \le \int_{y}^{x} Cdt = C(x - y) = C|x - y|$$

by the comparison property for integrals. If x < y then

$$-C(y-x) = \int_{x}^{y} (-C)dt \le \int_{x}^{y} f(t)dt \le \int_{x}^{y} Cdt = C(y-x)$$

and hence

$$-C|x - y| = -C(y - x) \le \int_{y}^{x} f(t)dt \le C(y - x) = C|x - y|$$

Therefore, for all $x, y \in [a, b]$, we have

$$-C|x - y| \le F(x) - F(y) \le C|x - y|$$

and so

$$|F(x) - F(y)| \le C|x - y|.$$

It is now easy to show that F is uniformly continuous on [a,b]: if $\epsilon > 0$ let $\delta = \epsilon/C$; then for all $x,y \in [a,b]$, if $|x-y| < \delta$ then $|F(x)-F(y)| \le C|x-y| < \epsilon$. Since F is uniformly continuous on [a,b], F is continuous on [a,b].

We prove statement (ii). Let $x \in [a, b], x \neq x_0$. Then

$$\frac{F(x) - F(x_0)}{x - x_0} - f(x_0) = \frac{1}{x - x_0} \int_{x_0}^x f(t)dt - f(x_0).$$

We have

$$f(x_0) = \frac{1}{x - x_0} \int_{x_0}^{x} f(x_0) dt$$

since $\int_{x_0}^x f(x_0)dt = f(x_0)(x-x_0)$ if $x \ge x_0$ and $\int_{x_0}^x f(x_0)dt = -\int_x^{x_0} f(x_0)dt = -(x_0-x)f(x_0) = f(x_0)(x-x_0)$ if $x < x_0$. Therefore

$$\frac{F(x) - F(x_0)}{x - x_0} - f(x_0) = \frac{1}{x - x_0} \int_{x_0}^x (f(t) - f(x_0)) dt.$$

Let $\epsilon > 0$ and choose $\delta > 0$ so that $|t - x_0| < \delta \implies |f(t) - f(x_0)| < \epsilon/2$. Suppose that $|x - x_0| < \delta$. If t is between x and x_0 then we must have $|t - x_0| < \delta$ (if $x < t < x_0$ then $|x_0 - t| = x_0 - t < x_0 - x = |x - x_0|$ while if $x_0 < t < x$ then $|t - x_0| = t - x_0 < x - x_0 = |x - x_0|$ and so $-\epsilon/2 < f(t) - f(x_0) < \epsilon/2$. Therefore, if $|x - x_0| < \delta$ then

$$-\epsilon |x - x_0|/2 \le \int_{x_0}^x (f(t) - f(x_0))dt \le \epsilon |x - x_0|/2$$

by the same argument that was used in the proof of statement (i) above. Therefore,

$$\left| \int_{x_0}^x (f(t) - f(x_0)) dt \right| \le \epsilon |x - x_0|/2$$

and so

$$\left| \frac{F(x) - F(x_0)}{x - x_0} \right| = \frac{1}{|x - x_0|} \left| \int_{x_0}^x (f(t) - f(x_0)) dt \right| \le \epsilon/2 < \epsilon$$

if $|x - x_0| < \delta$. Therefore

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$$

and so F is differentiable at x_0 with $F'(x_0) = f(x_0)$.

Remark: In particular it follows that every continuous function $f:[a,b]\to\mathbb{R}$ has an anti-derivative.

Natural Logarithm and Exponential Functions

Definition 6.21: Define $\ln: (0, \infty) \to \mathbb{R}$ by the formula

$$\ln(x) = \int_{1}^{x} \frac{1}{t} dt$$

for x > 0.

We make the following easy observations about the function ln(x):

- $\ln(1) = 0$ since $\int_1^1 \frac{1}{t} dt = 0$ by definition.
- if x > 1 then $\ln(x) > 0$ since $1/t \ge 1/x$ for $t \in [1, x]$ and hence $\int_1^x \frac{1}{t} dt \ge (x 1)/x > 0$.
- if 0 < x < 1 then $\ln(x) < 0$ since $1/t \ge 1/x$ for $t \in [x, 1]$ and hence $\int_x^1 \frac{1}{t} dt \ge (1 x)/x$; therefore $\ln(x) = -\int_x^1 \frac{1}{t} dt \le (x 1)/x < 0$.
- by FTOC I, $\ln(x)$ is differentiable on $(0, \infty)$ with $\frac{d}{dx} \ln(x) = 1/x$.
- in particular, $\ln(x)$ is continuous on $(0, \infty)$. In fact, $\ln(x)$ is uniformly continuous on any interval of the form $[a, \infty)$ where a > 0.
- since $\frac{d}{dx}\ln(x) = \frac{1}{x} > 0$ for all x, it follows that $\ln(x)$ is strictly increasing on $(0, \infty)$.