

Mining Time Series

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — https://chato.cl/teach

Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

IF YOUR DATA HAS A TIME STAMP

YOU'RE A TIME SERIES ANALYST, HARRY

memegenerator.net

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (chapter 14)
- Introduction to Time Series Mining (2006) <u>tutorial</u> by Keogh Eamonn [<u>alt. link</u>]
- Time Series Data Mining (2006) <u>slides</u> by Hung Son Nguyen

Why do we mine time series? Examples

stock prediction is a common use-case

Seismic data

- Observations = earthquakes
- Goal: characterize when peaks occur

Liquid metal droplets

- = length of hot metal droplet
- = droplet release
 - (chaotic, noisy)

Goal: prediction of release

Stock prices

Goal: find hidden patterns providing an advantage

Video data / gestures

- Series of angles of articulations in the body
- Temporal patterns can reveal gestures

Applications

- Clustering
- Classification
- Motif discovery
- . Event detection
- ...

- All require a reasonable definition of the **similarity** between two time series
- 2. All can be done in **real-time** or **retrospectively**

Context vs Behavior

. Contextual attribute(s)

- $x(i) = t_i = timestamp is the typical one$
- Sometimes other attributes providing context

. Behavioral attribute(s)

what we are monitoring

- $y^{j}(i)$ = temperature, angle, price, sensor reading, ...
- *j* ∈ 1 ... d

What are the difficulties?

- High sampling rate of many series over extended periods of time means ...
 - Tons of data
 - Things are bound to fail at several points (missing data, noisy data)
- . Subjectivity

Preparing a time series

Notation: multivariate time series

- Length n, timestamps t_1, t_2, \ldots, t_n
- Values at time t_i : $(y_i^1, y_i^2, ..., y_i^d)$
- If series is univariate we drop the superscript

Missing values: linear interpolation

Let
$$t_i < t_x < t_j$$

$$y_x = y_i + \left(\frac{t_x - t_i}{t_i - t_i}\right) \cdot (y_j - y_i)$$

Example: make an irregular series regular

Missing values: splines

Cubic polynomials between y_i , y_{i+1} that have the same slope at those points as the original curve.

options to fill in missing values

Noise removal: binning

 Replace series by average of values in bins (subsequences) of length k

$$y'_{i+1} = \frac{1}{k} \sum_{r=1}^{k} y_{i \cdot k + r}$$

http://www.quantatrisk.com/2013/03/22/rebinning-of-financial-time-series/

Noise removal: moving average smoothing

Equivalent to overlapping bins

$$y_i' = \frac{1}{k} \sum_{r=1}^k y_{i-r+1}$$

- Larger k leads to smoother series, but losses more information
- Use smaller k for first k-1 items

think of a sliding window that acts as a moving average

Noise removal: exponential smoothing

alpha is the weight of the point and 1-alpha the weight of the previous point -> tells how smooth data is going to be

Combine previously smoothed point with current point
 if alpha is large current point has weight and otherwise.

$$y_i' = \alpha \cdot y_i + (1 - \alpha) \cdot y_{i-1}'$$

Recursively substituting

Which y' has the larger alpha?

Noise removal: exponential smoothing

 Combine previously smoothed point with current point

$$y_i' = \alpha \cdot y_i + (1 - \alpha) \cdot y_{i-1}'$$

Recursively substituting

Moving average vs exponential smoothing

Exercise: smooth a time series

• Given the following series:

t	1	2	3	4	5	6	7	8	9	10
y(t)	2	4	12	2	1	-2	0	15	3	3
1. y'(t)										
2. y'(t)										

- 1. Moving average with k=3
- 2. Exponential average with alpha=0.5

Spreadsheet link:

https://upfbarcelona.padlet.org/sandrabuda1/theory-exercises-tdmvfhddcnvfj5b8

Answer

• Given the following series:

t	1	2	3	4	5	6	7	8	9	10
y _t	2	4	12	2	1	-2	0	15	3	3
y,'	2	3	6	6	5	0.33	-0.33	4.33	6	7
y _t "	2	3	7.5	4.75	2.88	0.44	0.22	7.61	5.30	4.15

- y_t': moving average with k=3
- y_t": exponential average with alpha=0.5

Answer (code)

```
x = [2, 4, 12, 2, 1, -2, 0, 15, 3, 3]
```

```
k = 3
y = [0] * len(x)
for i in range(len(x)):
    s = 0
    c = 0
    for j in range(k):
        if i-j >= 0:
            s = s + x[i-j]
            c += 1
    y[i] = s / c if c > 0 else 0
```

3		

Summary

Things to remember

- Series preparation
 - Interpolation
 - Smoothing

Exercises for TT27-TT29

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises 14.10 → 1-6