Planche d'exercices nº 1

Exercice 1.1 — Marche aléatoire sur \mathbb{Z} .

Soit $(X_k)_{k\geqslant 1}$ une suite de variables aléatoires indépendantes définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$. Soit $p \in [0, 1]$. On suppose que, pour tout $k \geqslant 1$, on a

$$P(X_k = 1) = p$$
 et $P(X_k = -1) = 1 - p$.

Enfin, pour $n \ge 1$, on note $S_n = X_1 + \cdots + X_n$.

- 1. Pour tout $n \ge 1$, calculer l'espérance et la variance de S_n .
- 2. (a) Rappeler la définition de la convergence presque sûre.
 - (b) En utilisant un résultat célèbre, montrer que $\frac{1}{n}S_n$ converge presque sûrement vers 2p-1.
- 3. (a) Démontrer que si $p > \frac{1}{2}$, alors S_n tend presque sûrement vers $+\infty$. De même, démontrer que si $p < \frac{1}{2}$, alors S_n tend presque sûrement vers $-\infty$.
 - (b) Le même argument permet-il de dire quelque chose lorsque p vaut $\frac{1}{2}$?
- 4. Supposons $p \neq \frac{1}{2}$. On pose

$$A := \{ \omega \in \Omega : \forall x \in \mathbb{Z}, \exists n \geqslant 1, \forall m \geqslant n, S_m(\omega) \neq x \}.$$

Montrer que A est bien un événement, c'est-à-dire qu'il appartient à \mathscr{F} . Le décrire par une phrase en français et établir que sa probabilité vaut 1.

Exercice 1.2 — Passages en zéro.

Conservons les notations de l'exercice 1. On introduit Z la variable aléatoire à valeurs dans $\mathbb{N} \cup \{\infty\}$ qui compte combien de fois la suite $(S_n)_{n\geqslant 1}$ passe en zéro :

$$Z(\omega) := \operatorname{Card} (\{n \geqslant 1 : S_n(\omega) = 0\}).$$

Pour tout $n \ge 1$, on introduit l'événement $A_n := \{S_n = 0\} := \{\omega \in \Omega : S_n(\omega) = 0\}.$

- 1. Pour tout $n \ge 1$, calculer $\mathbf{P}(A_n)$.
- 2. Expliquer pourquoi $Z = \sum_{n=1}^{\infty} \mathbf{1}_{A_n}$.
- 3. Déterminer, pour chaque valeur de p, si l'espérance de Z est finie ou infinie.
- 4. (a) Si $p \neq \frac{1}{2}$, peut-on en déduire que $\mathbf{P}(Z \neq \infty) = 1$? Que $\mathbf{P}(Z \neq \infty) > 0$?
 - (b) Si $p = \frac{1}{2}$, peut-on en déduire que $\mathbf{P}(Z = \infty) = 1$? Que $\mathbf{P}(Z = \infty) > 0$?

Exercice 1.3 — Produits aléatoires.

Soient X_1, X_2, \ldots des variables aléatoire réelles indépendantes identiquement distribuées, de loi exponentielle de paramètre 1. Soit $n \ge 1$. On pose $Y_n := \prod_{i=1}^n X_i$.

- 1. Que vaut $\mathbf{E}[Y_n]$?
- 2. Montrer que $\mathbf{E}[\sqrt{X_1}] = \sqrt{\pi}/2$. En déduire la valeur de $\mathbf{E}[\sqrt{Y_n}]$.
- 3. Montrer que, pour tout t>0, on a $\mathbf{P}(Y_n\geqslant t)\leqslant \frac{1}{\sqrt{t}}(\sqrt{\pi}/2)^n$.

Exercice 1.4 — Le quantificateur "pour presque tout".

Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilité. Soit $(A_i)_{i \in I}$ une famille d'événements. Pensons chaque A_i comme défini par une certaine condition dépendant de ω , qu'on note $\mathcal{P}_i(\omega)$ et qui peut être tantôt vraie tantôt fausse. On a ainsi $A_i = \{\omega \in \Omega : \mathcal{P}_i(\omega)\}$.

Étant donné une propriété $\mathcal{P}(\omega)$ telle que $\{\omega \in \Omega : \mathcal{P}(\omega)\}$ soit mesurable, on définit "pour presque tout ω , on a $\mathcal{P}(\omega)$ " comme signifiant $\mathbf{P}(\{\omega \in \Omega : \mathcal{P}(\omega)\}) = 1$. Cela est raisonnable. En effet, "pour tout ω , on a $\mathcal{P}(\omega)$ " est équivalent à $\{\omega \in \Omega : \mathcal{P}(\omega)\} = \Omega$.

- 1. On suppose que $\bigcap_{i \in I} A_i \in \mathscr{F}$ et que pour presque tout ω , pour tout $i \in I$, on a $\mathcal{P}_i(\omega)$. Montrer que pour tout $i \in I$, pour presque tout ω , on a $\mathcal{P}_i(\omega)$.
- 2. On suppose que I est dénombrable et que pour tout $i \in I$, pour presque tout ω , on a $\mathcal{P}_i(\omega)$. Démontrer que pour presque tout ω , pour tout $i \in I$, on a $\mathcal{P}_i(\omega)$.
- 3. Soit X une variable aléatoire réelle à densité, par exemple de loi uniforme sur [0,1]. Prenons dans cette question $I = \mathbb{R}$ et, pour $i \in I$, posons $\mathcal{P}_i(\omega) = "X(\omega) \neq i$ ". Est-il vrai que, pour tout $i \in I$, pour presque tout ω , on a $\mathcal{P}_i(\omega)$? Que pour presque tout ω , pour tout $i \in I$, on a $\mathcal{P}_i(\omega)$? Quelle leçon tirer de tout cela?

Exercice 1.5 — Toute loi se réalise.

- 1. Soit (E, \mathcal{E}) un espace mesurable. Soit μ une mesure de probabilité sur (E, \mathcal{E}) . Démontrer qu'il existe une variable aléatoire X à valeurs dans E et de loi μ .
- 2. Soit $n \ge 1$. Pour tout $i \in \{1, ..., n\}$, on se donne un espace mesurable (E_i, \mathcal{E}_i) et une mesure de probabilité μ_i sur cet espace mesurable. Construire des variables aléatoires indépendantes $X_1, ..., X_n$ telles que, pour tout $i \in \{1, ..., n\}$, la variable aléatoire X_i soit de loi μ_i .

Exercice 1.6 — Lemmes de Borel-Cantelli.

Soit $(A_n)_{n\geq 0}$ une suite d'événements. On s'intéresse à trois conditions :

- (I) presque sûrement, il existe un rang à partir duquel les A_n n'ont pas lieu,
- (II) il existe un rang tel que presque sûrement, après ce rang, les A_n n'aient pas lieu,
- (III) il existe un rang tel qu'après ce rang, presque sûrement les A_n n'aient pas lieu.
 - 1. (a) Réécrire ces conditions sans utiliser "presque sûrement", en écrivant plutôt que certaines probabilités sont égales à 1.
 - (b) Montrer que (II) implique (I).
 - (c) Montrer que (II) équivaut à (III).
 - (d) Montrer que (I) équivaut à : $\mathbf{P}(\forall n \ge k, A_n \text{ n'a pas lieu}) \xrightarrow[k \to \infty]{} 1.$
 - (e) On se donne X une variable aléatoire à valeurs dans \mathbb{N} telle que, pour tout $n \in \mathbb{N}$, on ait $\mathbf{P}(X \ge n) > 0$ (pourquoi un tel X existe-t-il?). On pose $A_n := \{X \ge n\}$. Montrer que cette construction fournit un contre-exemple à $(I) \Longrightarrow (II)$.
 - (f) (bonus) On pose T le rang aléatoire à partir duquel aucun des A_n n'a lieu, en posant $T(\omega) = \infty$ lorsque ce rang n'est pas défini. Autrement dit, pour tout $\omega \in \Omega$, on pose

$$T(\omega) := \inf\{k \in \mathbb{N} : \forall n \geqslant k, \, \omega \notin A_n\}.$$

Montrer que (I) équivaut à "T est fini presque sûrement" et que (II) équivaut à $||T||_{\infty} < \infty$.

- 2. Démontrer le lemme de Borel-Cantelli. $Indication : \mathbf{P}(\bigcup_{k \geq n} A_k) \leq \sum_{k \geq n} \mathbf{P}(A_k).$
- 3. Pour chaque $n \ge 1$, on lance un dé équilibré à n faces, numérotées de 1 à n^2 , et on pose A_n l'événement "le $n^{\text{ème}}$ dé tombe sur la face 1". Montrer que cette situation vérifie (I) mais pas (II).
- 4. Rappeler l'énoncé du lemme de Borel-Cantelli indépendant. Montrer que cet énoncé devient faux si on enlève l'hypothèse d'indépendance.

 Indication: On pourra s'inspirer de la question 1e.

Exercice 1.7 — Une condition suffisante pour la convergence presque sûre.

Soient $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles et X une variable aléatoire réelle.

1. Montrer que, si pour tout $\varepsilon > 0$, on a

$$\sum_{n=1}^{\infty} \mathbf{P}(|X_n - X| > \varepsilon) < \infty,$$

alors $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$.

- 2. Appliquer la question 1 pour démontrer que, dans le contexte de l'exercice 3, on a la convergence $Y_n \xrightarrow[n \to \infty]{\text{p.s.}} 0$.
- 3. On suppose désormais que les variables aléatoires X_n sont indépendantes et on s'intéresse à la réciproque du résultat précédent.
 - (a) On suppose, pour cette sous-question uniquement, que $X_n \xrightarrow[n \to \infty]{\text{p.s.}} c$, où c est une constante. Démontrer que, pour tout $\varepsilon > 0$, on a $\sum_{n \ge 1} \mathbf{P}(|X_n c| > \varepsilon) < \infty$.
 - (b) On suppose que $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$, pour une certaine variable aléatoire X. Démontrer qu'il existe une constante c à laquelle X est égale presque sûrement.
 - (c) En déduire que si $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$, alors on a $\sum_{n \geqslant 1} \mathbf{P}(|X_n X| > \varepsilon) < \infty$. On rappelle que la réciproque que nous venons d'établir utilise l'hypothèse additionnelle d'indépendance des X_n .

Exercice 1.8 — Convergences de variables aléatoires.

Dans les cas suivants, quels sont les différents modes de convergence que la suite de variables aléatoires réelles $(X_n)_{n\geqslant 1}$ est susceptible de réaliser?

1.
$$\mathbf{P}\left(X_n = 1 - \frac{1}{n}\right) = \mathbf{P}\left(X_n = 1 + \frac{1}{n}\right) = \frac{1}{2};$$

2.
$$\mathbf{P}(X_n = n) = \frac{1}{2^n}, \ \mathbf{P}(X_n = \frac{1}{n}) = 1 - \frac{1}{2^n};$$

3.
$$\mathbf{P}(X_n=0)=1-\frac{1}{n^2}, \mathbf{P}(X_n=n^2)=\frac{1}{n^2};$$

4.
$$\mathbf{P}(X_n = 0) = 1 - \frac{1}{n}, \ \mathbf{P}(X_n = 1) = \frac{1}{n};$$

5.
$$\mathbf{P}(X_n = 0) = 1 - n^{-3/2}, \ \mathbf{P}(X_n = n) = n^{-3/2}.$$

Exercice 1.9 — En extrayant, on peut rendre presque sûre la convergence en probabilité. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles convergeant en probabilité vers une variable aléatoire X. Montrer qu'il existe une extractrice déterministe φ telle que, pour tout $n\geqslant 1$, on ait $\mathbf{P}(|X_{\varphi(n)}-X|>\frac{1}{n})\leqslant \frac{1}{n^2}$. Étant donnée une telle extractrice, montrer que la sous-suite $(X_{\varphi(n)})_{n\geqslant 1}$ converge presque sûrement.

Exercice 1.10 — Ratatiner X_n en le multipliant par un petit réel déterministe a_n .

- 1. Soit X une variable aléatoire réelle. Montrer que $\mathbf{P}(|X| \geqslant k) \xrightarrow[k \to \infty]{} 0$.
- 2. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles. Montrer qu'il existe une suite $(a_n)_{n\geqslant 1}$ de réels strictement positifs telle que $a_nX_n\xrightarrow[n\to\infty]{\text{p.s.}} 0$.

Exercice 1.11 — Récurrence de la marche aléatoire symétrique sur \mathbb{Z} .

On reprend les hypothèses et notations de l'exercice 1. On suppose en outre que $p = \frac{1}{2}$, et on cherche à montrer que presque sûrement, on a liminf $S_n = -\infty$ et $\limsup S_n = +\infty$.

- 1. Pour $K \ge 1$ fixé et $\ell \ge 0$, on pose $A_{\ell} := \{X_{\ell K+1} = \cdots = X_{\ell K+K} = +1\}$. Montrer que pour tout K, presque sûrement, une infinité de A_{ℓ} est réalisée.
- 2. En déduire que pour tout K, on a $\mathbf{P}(\forall n \ge 1, -K/2 < S_n < K/2) = 0$, puis que $\mathbf{P}(\{\limsup S_n = +\infty\} \cup \{\liminf S_n = -\infty\}) = 1$.
- 3. Expliquer pourquoi $\mathbf{P}(\liminf S_n = -\infty) = \mathbf{P}(\limsup S_n = +\infty)$. En déduire que $\mathbf{P}(\liminf S_n = -\infty) = \mathbf{P}(\limsup S_n = +\infty) \geqslant \frac{1}{2}$.
- 4. Montrer que l'événement { $\limsup S_n = +\infty$ } appartient à la tribu queue de la suite (X_n) . On rappelle que cette tribu est par définition $\bigcap_{k\geqslant 1} \sigma(X_i:i\geqslant k)$.
- 5. Utiliser la loi du 0–1 de Kolmogorov pour conclure que $\mathbf{P}(\limsup S_n = +\infty) = 1$ et $\mathbf{P}(\liminf S_n = -\infty) = 1$.
- 6. En déduire que pour presque tout ω , pour tout $x \in \mathbb{Z}$, la trajectoire $(S_n(\omega))_{n\geqslant 1}$ passe une infinité de fois par la valeur x.

Exercice 1.12 — Démonstration de la loi forte des grands nombres dans le cas \mathbf{L}^4 . Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles indépendantes identiquement distribuées vérifiant $\mathbf{E}(X_1^4) < \infty$. Pour tout $n\geqslant 1$, on pose $Z_n=\frac{1}{n}(X_1+\cdots+X_n)$.

- 1. On suppose pour l'instant que $\mathbf{E}[X_1] = 0$.
 - (a) Montrer que les espérances $\mathbf{E}[X_1^3X_2]$, $\mathbf{E}[X_1^2X_2X_3]$ et $\mathbf{E}[X_1X_2X_3X_4]$ sont bien définies et donner leur valeur.
 - (b) Calculer $\mathbf{E}[Z_n^4]$.
 - (c) Montrer que la variable $\sum_{n=1}^{\infty} Z_n^4$ est intégrable et en déduire que Z_n converge presque sûrement vers 0.
- 2. En retirant l'hypothèse $\mathbf{E}[X_1] = 0$, déduire de la question précédente que Z_n converge presque sûrement vers $\mathbf{E}[X_1]$.

Planche d'exercices nº 2

Exercice 2.1 — Somme de deux variables aléatoires de Poisson indépendantes.

Soient X_1 et X_2 des variables aléatoires indépendantes de loi de Poisson de paramètres respectifs λ_1 et λ_2 .

- 1. Déterminer l'espérance conditionnelle $\mathbf{E}[X_1 + X_2 \mid X_1]$.
- 2. Étant donnés des entiers k et n vérifiant $n \ge k \ge 0$, calculer $\mathbf{P}(X_1 + X_2 = n)$ et $\mathbf{P}(X_1 = k \text{ et } X_1 + X_2 = n)$.
- 3. Déterminer l'espérance conditionnelle $\mathbf{E}[X_1 \mid X_1 + X_2]$, puis en calculer l'espérance. Qu'observe-t-on?

Exercice 2.2 — Somme d'un nombre aléatoire de variables aléatoires.

Soit $(X_i)_{i\geqslant 1}$ une famille de variables aléatoires à valeurs dans \mathbb{N} . On suppose ces variables aléatoires indépendantes, de même loi et d'espérance μ . Soit N une variable aléatoire à valeurs dans \mathbb{N} , indépendante de la famille $(X_i)_{i\geqslant 1}$. On pose $S=\sum_{i=1}^N X_i$. Lorsque $N(\omega)=0$, on pose par convention $S(\omega)=0$.

- 1. Quel lien y a-t-il entre S et la quantité $\sum_{i=1}^{\infty} X_i \mathbf{1}_{N \geqslant i}$?
- 2. Pourquoi est-il incorrect d'écrire $\mathbf{E}[S] = \sum_{i=1}^{N} \mathbf{E}[X_i]$?
- 3. Pour $n \in \mathbb{N}$, calculer $\mathbf{E}[S\mathbf{1}_{N=n}]$. En déduire $\mathbf{E}[S \mid N]$, puis $\mathbf{E}[S]$.
- 4. Pour $r \in [0,1]$, calculer $\mathbf{E}[r^S \mid N]$ en fonction de $\varphi_{X_1}(r) = \mathbf{E}[r^{X_1}]$. En déduire la fonction génératrice de S en fonction de celle de X_1 et de celle de N.

Exercice 2.3 — Tribu enqendrée par une partition.

1. Soit $(A_i)_{i\in I}$ une partition de Ω , c'est-à-dire une famille de parties non-vides A_i qui sont disjointes et vérifient $\bigcup_{i\in I} A_i = \Omega$. On suppose dans cette question que I est dénombrable. Montrer que la tribu sur Ω engendrée par cette partition est

$$\sigma(A_i : i \in I) = \left\{ \bigcup_{j \in J} A_j : J \subset I \right\}.$$

En déduire que dans le cas où I est fini de cardinal n, cette tribu a exactement 2^n éléments.

2. Posons $\Omega = \mathbb{R}$, $I = \mathbb{R}$ et $A_i = \{i\}$. On veut démontrer que dans ce cas, on a

$$\sigma(A_i : i \in I) \neq \left\{ \bigcup_{j \in J} A_j : J \subset I \right\}.$$

- (a) Montrer que $\left\{\bigcup_{j\in J} A_j : J\subset I\right\}$ est l'ensemble de toutes les parties de \mathbb{R} .
- (b) Démontrer que $\sigma(A_i : i \in I)$ est l'ensemble de toutes les parties de \mathbb{R} qui sont soit dénombrable, soit de complémentaire dénombrable.

- (c) Donner une partie de $\mathbb R$ qui n'est ni dénombrable, ni de complémentaire dénombrable.
- (d) Conclure. Pourquoi cela ne contredit-il pas la question 1?

Exercice 2.4 — Sujet d'examen (deuxième session, juin 2023).

On munit l'ensemble

$$\Omega = \{a, b, c, d, e, f, g, h, i, j, k, \ell\}$$

de la tribu de toutes ses parties et de la mesure de probabilité uniforme. On considère deux variables aléatoires réelles X et Y sur Ω , définies comme suit :

- 1. Déterminer la loi de X et la loi de Y.
- 2. Les variables aléatoires X et Y sont-elles indépendantes?
- 3. Combien d'éléments a la tribu $\sigma(Y)$? Et la tribu $\sigma(X,Y)$?
- 4. Calculer $\mathbf{E}[X \mid Y]$ et remplir la dernière ligne du tableau. Seul le résultat est demandé.

Exercice 2.5 — Somme finie implique support dénombrable.

On se donne une famille $(A_i)_{i\in I}$ d'événements disjoints qui sont chacun de probabilité non nulle. Montrer que I est nécessairement dénombrable.

Indication: montrer que pour tout $n \ge 1$, il ne peut pas y avoir strictement plus de n indices $i \in I$ vérifiant $\mathbf{P}(A_i) \ge 1/n$.

Exercice 2.6 — Égalités et inégalités.

Soient X et Y deux variables aléatoires réelles intégrables définies sur un espace de probabilité $(\Omega, \mathscr{F}, \mathbf{P})$. Soit \mathscr{G} une sous-tribu de \mathscr{F} .

- 1. Montrer que l'inégalité $\mathbf{E}[X \mid \mathscr{G}] \leq \mathbf{E}[Y \mid \mathscr{G}]$ a lieu presque sûrement si et seulement si pour tout $A \in \mathscr{G}$, on a $\mathbf{E}[X\mathbf{1}_A] \leq \mathbf{E}[Y\mathbf{1}_A]$.
- 2. Montrer que l'égalité $\mathbf{E}[X \mid \mathcal{G}] = \mathbf{E}[Y \mid \mathcal{G}]$ a lieu presque sûrement si et seulement si pour tout $A \in \mathcal{G}$, on a $\mathbf{E}[X\mathbf{1}_A] = \mathbf{E}[Y\mathbf{1}_A]$.

Exercice 2.7 — Variance conditionnelle.

Soit X une variable aléatoire réelle définie sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$. On suppose qu'on a $\mathbf{E}[X^2] < \infty$. Soit \mathcal{G} une sous-tribu de \mathcal{F} . On introduit

$$\operatorname{Var}(X \mid \mathscr{G}) := \mathbf{E}[X^2 \mid \mathscr{G}] - \mathbf{E}[X \mid \mathscr{G}]^2.$$

- 1. Que vaut $\operatorname{Var}(X \mid \mathscr{G})$ lorsqu'on a $\mathscr{G} = \mathscr{F}$? Et quand $\mathscr{G} = \{\varnothing, \Omega\}$?
- 2. Montrer que si X est \mathscr{G} -mesurable, alors $\operatorname{Var}(X \mid \mathscr{G})$ est nulle presque sûrement. Démontrer que cela est toujours vrai si on suppose seulement qu'il existe une variable aléatoire Y qui est \mathscr{G} -mesurable et telle que X = Y presque sûrement.

- 3. On suppose dans cette question que $\operatorname{Var}(X \mid \mathscr{G})$ est nulle presque sûrement. Démontrer qu'il existe une variable aléatoire Y qui est \mathscr{G} -mesurable et telle que X = Y presque sûrement.
- 4. Démontrer que $Var(X) = \mathbf{E}[Var(X \mid \mathcal{G})] + Var(\mathbf{E}[X \mid \mathcal{G}]).$
- 5. Soient \mathcal{G} et \mathcal{H} deux sous-tribus de \mathcal{F} vérifiant $\mathcal{H} \subset \mathcal{G}$. Établir que l'inégalité suivante a lieu presque sûrement :

$$\mathbf{E}[\operatorname{Var}(X \mid \mathscr{G}) \mid \mathscr{H}] \leq \operatorname{Var}(X \mid \mathscr{H}).$$

6. Essayer de comprendre intuitivement, en termes "d'information", ce que signifient certains résultats établis aux questions précédentes. Vous paraissent-ils plutôt naturels ou contre-intuitifs?

Exercice 2.8 — Un cousin de l'exercice 5.

Montrer que toute sous-tribu \mathscr{G} de \mathscr{F} est de la forme $\sigma(X)$, pour une variable aléatoire X bien choisie.

Exercice 2.9 — Envoyons chaque ω sur l'étiquette de son bloc.

Soit $(A_i)_{i\in I}$ une partition dénombrable de Ω par des éléments de \mathscr{F} . Soit

$$Z:(\Omega,\mathscr{F})\to (I,\mathscr{P}(I))$$

la fonction qui, pour tout $i \in I$, est constante égale à i sur le bloc A_i . Montrer que $\sigma(Z) = \sigma(A_i : i \in I)$.

Exercice 2.10 — Du bon usage de la symétrie autour des espérances conditionnelles.

- 1. Soit (X, Y) un couple de variables aléatoires réelles. On suppose que X est intégrable et que $h: \mathbb{R} \to \mathbb{R}$ est une fonction mesurable telle que $\mathbf{E}[X \mid Y] = h(Y)$ presque sûrement. Soit (X', Y') un couple de variables aléatoires ayant même loi que (X, Y). Montrer que $\mathbf{E}[X' \mid Y'] = h(Y')$ p.s.
- 2. Soient m et n deux entiers vérifiant $n \ge m \ge 1$. Soient X_1, \ldots, X_n des variables aléatoires i.i.d. intégrables. Pour tout $k \in \{1, \ldots, n\}$, on pose $S_k := X_1 + \cdots + X_k$.
 - (a) Montrer que pour $i \in \{1, ..., n\}$, on a $\mathbf{E}[X_i \mid S_n] = \mathbf{E}[X_1 \mid S_n]$ presque sûrement.
 - (b) En déduire que $\mathbf{E}[S_m \mid S_n] = \frac{m}{n} S_n$ presque sûrement.

Exercice 2.11 — Deux points de vue sur une même chose.

Soient Ω , E et R trois ensembles. Soit $Z:\Omega\to E$ une fonction. Pour tout $e\in Z(\Omega)$, on pose $A_e=Z^{-1}(\{e\})$. On définit ainsi une partition $(A_e:e\in Z(\Omega))$ de Ω .

Soit maintenant $Y:\Omega\to R$ une fonction. Montrer que les deux assertions suivantes sont équivalentes :

- 1. il existe une fonction $h: E \to R$ telle que $Y = h \circ Z$,
- 2. pour tout $e \in Z(\Omega)$, la fonction Y est constante sur A_e .

Planche d'exercices nº 3

Exercice 3.1 — Gaussienne conditionnée par une somme ou une différence.

Soient $X, Y \sim \mathcal{N}(0, 1)$ indépendantes. Posons S = X + Y et D = X - Y.

- 1. Montrer que (S, D) est gaussien centré et déterminer la matrice de covariance.
- 2. Déterminer $\mathbf{E}[X \mid S]$ et $\mathbf{E}[X \mid D]$.

Exercice 3.2 — Partiel 2016.

Soient X et Y deux variables aléatoires normales centrées réduites $\mathcal{N}(0,1)$ indépendantes. On pose Z = X + 2Y. Montrer qu'il existe un unique a tel que X = aZ + W avec W indépendant de Z. En déduire l'expression de $\mathbf{E}[X \mid Z]$ et $\mathbf{E}[X^2 \mid Z]$.

Exercice 3.3 — Espérance conditionnelle sur l'ordre statistique.

Soient U_1, U_2 i.i.d. de loi uniforme sur [0, 1] et posons $M := \max\{U_1, U_2\}, m := \min\{U_1, U_2\}$. Soit $f : \mathbb{R} \to \mathbb{R}$ mesurable bornée. Le but de cet exercice est de calculer $\mathbf{E}[f(m) \mid M]$.

1. Montrer qu'il existe une fonction mesurable φ telle que, pour toute g mesurable bornée, on ait

$$\mathbf{E}[g(M)f(m)] = \mathbf{E}[g(M)\varphi(M)]. \tag{3.1}$$

2. Établir

$$\mathbf{E}[g(M)f(m)] = 2\int_0^1 g(x) \left(\int_0^x f(y) \, dy \right) dx,$$
$$\mathbf{E}[g(M)\varphi(M))] = \int_0^1 g(x) \left(2x \, \varphi(x) \right) dx.$$

3. En déduire que l'on peut choisir $\varphi(x) = \frac{1}{x} \int_0^x f(y) dy$ (pour x > 0) et conclure :

$$\mathbf{E}[f(m) \mid M] = \frac{1}{M} \int_{0}^{M} f(x) \, \mathrm{d}x \quad \text{p.s.}$$

Exercice 3.4 — Indépendance et conditionnement.

Soient X et Y deux variables aléatoires de Bernoulli indépendantes de même paramètre p. On définit $Z = \mathbf{1}_{\{X+Y=0\}}$. Calculer $\mathbf{E}[X \mid Z]$ et $\mathbf{E}[Y \mid Z]$. Puis, démontrer ou réfuter l'assertion suivante : « Si X et Y sont deux variables aléatoires indépendantes, alors les variables aléatoires $\mathbf{E}[X \mid \mathscr{G}]$ et $\mathbf{E}[Y \mid \mathscr{G}]$ sont indépendantes ».

Exercice 3.5 — Convergence en probabilités vers 0 et conditionnement.

Soit $(X_i)_{i\geqslant 1}$ une suite de variables aléatoires réelles positives et $(\mathscr{F}_i)_{i\geqslant 1}$ une suite de soustribus de \mathscr{F} . On suppose que

$$\mathbf{E}[X_i \mid \mathscr{F}_i] \xrightarrow[i \to \infty]{\mathbf{P}} 0.$$

- 1. Montrer que $(X_i)_{i \ge 1}$ converge en probabilité vers 0.
- 2. Montrer que la réciproque est fausse en général.

Exercice 3.6 — Un théorème de convergence à rebours.

Soit $(\mathscr{G}_n)_{n\geqslant 0}$ une suite décroissante de sous-tribus de \mathscr{F} , c'est-à-dire vérifiant $\mathscr{G}_n\supseteq\mathscr{G}_{n+1}$ pour tout $n\geqslant 0$. On suppose que $\mathscr{G}_0=\mathscr{F}$. Soit X une variable aléatoire appartenant à $\mathbf{L}^2(\mathbf{P}):=\mathbf{L}^2(\Omega,\mathscr{F},\mathbf{P})$. On veut démontrer que si l'on pose $\mathscr{G}_\infty:=\bigcap_{n\geqslant 0}\mathscr{G}_n$, alors la convergence suivante a lieu dans $\mathbf{L}^2(\mathbf{P})$:

$$\lim_{n \to \infty} \mathbf{E}[X \mid \mathscr{G}_n] = \mathbf{E}[X \mid \mathscr{G}_\infty].$$

On rappelle qu'une intersection arbitraire de tribus est toujours une tribu, donc $\mathbf{E}[X \mid \mathscr{G}_{\infty}]$ est bien définie. Pour établir ce résultat, on procède comme suit :

1. Rappelez-vous que l'application

$$\langle Y, Z \rangle := \mathbf{E}[YZ], \quad \mathbf{L}^2(\mathbf{P}) \times \mathbf{L}^2(\mathbf{P}) \to \mathbb{R},$$

définit un produit scalaire sur $\mathbf{L}^2(\mathbf{P})$, et que la norme associée est la norme usuelle de $\mathbf{L}^2(\mathbf{P})$. L'espace $(\mathbf{L}^2(\mathbf{P}), \langle \cdot, \cdot \rangle)$ est un espace de Hilbert.

2. Soit $(X_n)_{n\geqslant 0}$ une suite d'éléments orthogonaux dans $\mathbf{L}^2(\mathbf{P})$, c'est-à-dire vérifiant $\langle X_n, X_m \rangle = 0$ dès que $n \neq m$. Montrer que si

$$\sum_{n\geqslant 0} \langle X_n, X_n \rangle < \infty,$$

alors la suite de sommes partielles $\sum_{k=1}^{n} X_k$, $n \ge 1$, converge dans $\mathbf{L}^2(\mathbf{P})$ vers un élément de $\mathbf{L}^2(\mathbf{P})$. Indication : montrer qu'il s'agit d'une suite de Cauchy.

3. Montrer que les variables aléatoires

$$\mathbf{E}[X\mid \mathscr{G}_n] - \mathbf{E}[X\mid \mathscr{G}_{n+1}], \quad n\geqslant 0,$$

sont orthogonales dans $L^2(\mathbf{P})$.

4. Montrer que la suite

$$\sum_{k=0}^{n} (\mathbf{E}[X \mid \mathscr{G}_k] - \mathbf{E}[X \mid \mathscr{G}_{k+1}]), \qquad n \geqslant 0,$$

converge quand $n \to \infty$ vers un élément de $\mathbf{L}^2(\mathbf{P})$. En déduire que la suite de variables aléatoires $\mathbf{E}[X \mid \mathcal{G}_n]$ converge dans $\mathbf{L}^2(\mathbf{P})$, et vérifier que sa limite est $\mathbf{E}[X \mid \mathcal{G}_\infty]$. Indication : pour ce dernier point, utiliser le résultat de la question 2.

Exercices bonus

Exercice 3.7 — Interprétation de la covariance.

Soit Z = (X, Y) un vecteur aléatoire gaussien à valeurs dans \mathbb{R}^2 . On suppose que $\mathbf{E}[X] = \mathbf{E}[Y] = 0$, $\mathrm{Var}(X) = \mathrm{Var}(Y) = 1$ et que $\mathrm{Cov}(X, Y) = \rho$.

- 1. Montrer que $|\rho| \leq 1$ et calculer $\mathbf{E}(X \mid Y)$.
- 2. On pose $U = X \rho Y$, $V = \sqrt{1 \rho^2} Y$. Quelles sont les lois de U et de V? Les variables U et V sont-elles indépendantes?
- 3. Calculer $\mathbf{E}[U^2V^2]$, $\mathbf{E}[UV^3]$, $\mathbf{E}[V^4]$. En déduire $\mathbf{E}[X^2Y^2]$.

Exercice 3.8 — Coordonnées polaires et gaussiennes.

Soit (X_1, X_2) un couple de variables aléatoires admettant la densité de probabilité

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}(x_1^2 - 2\rho x_1 x_2 + x_2^2)\right),$$

où $\rho \in]-1,1[$.

- 1. Vérifier que f est une densité de probabilité sur \mathbb{R}^2 et trouver les densités marginales de X_1 et X_2 . À quelle condition les variables aléatoires X_1 et X_2 sont-elles indépendantes?
- 2. On introduit les coordonnées polaires (R, Φ) du couple (X_1, X_2) : $R = \sqrt{X_1^2 + X_2^2}$ et $\Phi \in [0, 2\pi[$ est définie par

$$\cos \Phi = \frac{X_1}{R}$$
 et $\sin \Phi = \frac{X_2}{R}$ si $R > 0$, $\Phi = 0$ si $R = 0$.

Déterminer la densité du couple (R, Φ) , puis celle de Φ .

3. Déterminer la densité de R lorsque $\rho=0$. Que peut-on dire des variables aléatoires R et Φ dans ce cas?

Exercice 3.9 — Conditionnement et densités.

1. Considérons un couple de variables aléatoires (U, X) de densité jointe

$$f_{(U,X)}(u,x) := \mathbf{1}_{[0,1]}(u) \, \mathbf{1}_{\mathbb{R}_+}(x) \, ue^{-ux}.$$

Montrer que pour toute fonction mesurable bornée $g: \mathbb{R} \to \mathbb{R}$, on a presque sûrement

$$\mathbf{E}[g(X) \mid U] = \int_{\mathbb{D}} g(x) U e^{-Ux} \mathbf{1}_{R_{+}}(x) dx.$$

On dit que, conditionnellement à U, la variable X suit la loi exponentielle $\mathrm{Exp}(U)$.

On rappelle que la loi gamma de paramètre $(c,\theta)\in(0,\infty)\times(0,\infty)$, notée $\Gamma(2,\theta)$, admet pour densité

$$\frac{\theta^c}{\Gamma(c)} x^{c-1} e^{-\theta x} \mathbf{1}_{\{x>0\}}, \qquad x \in \mathbb{R}.$$

- 2. Soient X, Y deux variables exponentielles indépendantes de paramètre θ , et posons W := X + Y. Calculer la densité jointe $f_{(X,X+Y)}$ et en déduire que X + Y suit la loi $\Gamma(2,\theta)$.
- 3. Montrer que, pour toute fonction mesurable et bornée g, on a presque

$$\mathbf{E}[g(X) \mid W] = \frac{1}{W} \int_0^W g(u) \, \mathrm{d}u \text{ p.s.}$$

On dit que, conditionnellement à W, la variable X est uniformément distribuée sur [0, W].

Exercice 3.10 — Un critère d'indépendance.

Soit \mathscr{G} une sous-tribu de \mathscr{F} . Pour $A \in \mathscr{F}$, on note $\mathbf{P}(A \mid \mathscr{G}) := \mathbf{E}[\mathbf{1}_A \mid \mathscr{G}]$.

- Montrer que deux tribus G, ℋ ⊂ ℱ sont indépendantes si et seulement si, pour tout B ∈ ℋ, on a P(B | G) = P(B).
 Indication : montrer que lorsque cette condition est satisfaite, pour tout A ∈ ℋ et B ∈ G, on a P(A ∩ B) = P(A)P(B).
- 2. Montrer que lorsque cette condition est satisfaite, pour toute variable aléatoire X mesurable par rapport à \mathcal{H} , bornée ou positive, on a $\mathbf{E}[X \mid \mathcal{G}] = \mathbf{E}[X]$. En particulier, deux variables aléatoires X, Y sont indépendantes si et seulement si, pour toute fonction mesurable bornée $h : \mathbb{R} \to \mathbb{R}$, on a

$$\mathbf{E}[h(X) \mid Y] = \mathbf{E}[h(X)].$$

3. Montrer que la condition $\mathbf{E}[X \mid \mathcal{G}] = \mathbf{E}[X]$ n'implique en général pas que X est indépendant de \mathcal{G} .

Exercice 3.11 — Problème de l'embarquement dans l'avion.

Cent passagers font la queue pour monter à bord d'un avion de 100 places. La première personne, Mortdecai, a perdu sa carte d'embarquement et choisit son siège au hasard. Chaque passager suivant prend son siège attribué si celui-ci est libre et choisit sinon un siège libre totalement au hasard. Quelle est la probabilité que le dernier passager s'asseye effectivement à sa place attitrée?

Exercice 3.12 — Strong ratio theorem pour \mathbb{Z} .

Soit μ une loi de support \mathbb{Z} . Dans le même espace de probabilités, on considère $(X_i)_{i\geqslant 1}$ i.i.d. de loi μ et on pose $S_n:=\sum_{i=1}^n X_i$, pour tout $n\in\mathbb{N}$. On fixe $(s_n)_{n\geqslant 1}$ une suite dans \mathbb{Z} telle que

$$\mathbf{P}(S_n = s_n)^{1/n} \xrightarrow[n \to \infty]{} 1$$

Le but de cet exercice est de montrer le strong ratio theorem : pour tout $b \in \mathbb{Z}$, on a :

$$\frac{\mathbf{P}(S_{n-1} = s_n - b)}{\mathbf{P}(S_n = s_n)} \xrightarrow[n \to \infty]{} 1$$

Dans la suite, on fixe la suite (s_n) et $b \in \mathbb{Z}$.

1. Pour tout $n \ge 1$, on pose $N_n := \operatorname{Card}(\{1 \le i \le n : X_i = b\})$. Établir que :

$$\mathbf{E}\left(\frac{N_n}{n} \mid S_n = s_n\right) = \mathbf{P}(X_1 = b) \frac{\mathbf{P}(S_{n-1} = s_n - b)}{\mathbf{P}(S_n = s_n)}$$

2. Montrer que pour tout $\varepsilon > 0$, il existe $c_{\varepsilon} > 0$ et $n_{\varepsilon} > 1$ tel que :

$$\mathbf{P}(\left|\frac{N_n}{n} - \mathbf{P}(X_1 = b)\right| > \varepsilon) \leqslant \exp(-c_{\varepsilon}n),$$

pour tout $n \geqslant n_{\varepsilon}$.

3. Déduire le strong ratio theorem.

Ce résultat est particulièrement utile pour l'étude des limites locales d'objets combinatoires aléatoires, et il joue un rôle actif même dans la recherche actuelle (voir par exemple les notes de cours de Saint-Flour de Nicolas Curien pour des applications aux cartes aléatoires). La méthode de démonstration que nous présentons est due à Jacques Neveu. Le résultat peut être étendu sans difficulté aux lois apériodiques ainsi qu'à \mathbb{Z}^d pour $d \ge 1$. On peut également remplacer S_{n-1} par S_{n-k} pour un $k \ge 0$ fixé.

Exercice 3.13 — Biais par la taille.

On considère une population avec un très grand nombre n de ménages. On modélise la taille des ménages par des variables aléatoires i.i.d. $(X_i)_{1 \leqslant i \leqslant n}$ à valeurs dans \mathbb{N}^* , de loi $\mathbf{P}(X_1 = k) = p_k$ et d'espérance

$$m = \mathbf{E}[X_1] = \sum_{k>1} k p_k < \infty.$$

On note T_n la taille du ménage d'un individu choisi uniformément au hasard dans la population.

1. Justifier que, pour tout $k \ge 1$, on a

$$\mathbf{E}[\mathbf{1}_{T_n=k} \mid X_1, \dots, X_n] = \frac{1}{\sum_{i=1}^n X_i} \sum_{i=1}^n X_i \mathbf{1}_{\{X_i=k\}}.$$

2. Montrer que, pour tout $k \ge 1$, on a

$$\mathbf{P}(T_n = k) \longrightarrow \frac{k}{m} p_k$$
 quand $n \to \infty$.

Exercice 3.14 — Plus petit événement mesurable et positivité.

Soit $\mathcal{A} \subset \mathscr{F}$ une tribu et X une variable aléatoire positive. Montrer que l'événement

$$\{\mathbf{E}[X \mid \mathcal{A}] > 0\}$$

est, à événement négligeable près, le plus petit événement \mathcal{A} -mesurable contenant l'événement $\{X>0\}$.

Exercice 3.15 — Une identité symétrique.

Soit X, Y deux variables aléatoire à valeurs dans \mathbb{R} . On suppose que X et Y sont intégrables et que $\mathbf{E}[X \mid Y] = Y$ et $\mathbf{E}[Y \mid X] = X$ p.s. Montrer que X = Y p.s.

Planche d'exercices n° 4

Exercice 4.1. Montrer que toute filtration est de la forme $\mathscr{F}_n = \sigma(X_0, \dots, X_n)$, pour des variables aléatoires X_i bien choisies.

Exercice 4.2. Soient $(\Omega, \mathscr{F}, (\mathscr{F}_n), \mathbf{P})$ un espace de probabilité filtré, T et S deux temps d'arrêt, \mathscr{F}_T et \mathscr{F}_S les tribus respectives des événements antérieurs à T et S. Montrer que :

- 1. $S \wedge T$, $S \vee T$, S + T sont des temps d'arrêt.
- 2. Si T est un temps d'arrêt constant $(T = p \text{ avec } p \in \mathbb{N})$, alors $\mathscr{F}_T = \mathscr{F}_p$,
- 3. T est \mathcal{F}_T -mesurable,
- 4. Si $S \leq T$, $\mathscr{F}_S \subset \mathscr{F}_T$,
- 5. $\mathscr{F}_{S \wedge T} = \mathscr{F}_S \cap \mathscr{F}_T$,
- 6. T + S est $\mathscr{F}_{S \vee T}$ -mesurable,
- 7. $\{S < T\} \in \mathscr{F}_S \cap \mathscr{F}_T, \{S = T\} \in \mathscr{F}_S \cap \mathscr{F}_T.$

Exercice 4.3. On considère une suite $(X_n)_{n\geq 0}$ de variables aléatoires définies sur un espace de probabilité $(\Omega, \mathscr{F}, \mathbf{P})$, à valeurs dans [0, 1], indépendantes et de même loi uniforme sur [0, 1]. On pose, pour $n \geq 0$, $\mathscr{F}_n = \sigma(X_k, k \leq n)$. On introduit la variable aléatoire

$$T = \inf\{n \ge 1; \ X_n > X_0\},\$$

avec la convention inf $\emptyset = \infty$.

- 1. Montrer que T est un temps d'arrêt de la filtration $(\mathscr{F}_n)_{n\geq 0}$.
- 2. Déterminer la loi de T. Calculer son espérance.

Exercice 4.4. Soit $(M_n)_{n\geq 0}$ une martingale telle que $\mathbb{E}(M_n^2)<+\infty$.

- 1) Montrer que $(M_n)_{n\geq 0}$ est une sous-martingale. On pose $(\langle M\rangle_n)_{n\geq 0}$ le processus croissant $(A_n)_{n\geq 0}$ intervenant dans la décomposition de Doob de la sous-martingale $(M_n^2)_{n\geq 0}$. Ce processus s'appelle le *crochet* de M.
 - 2) Montrer que

$$E((M_{n+p} - M_n)^2) = E(M_{n+p}^2) - E(M_n^2) = E(\langle M \rangle_{n+p}) - E(\langle M_n \rangle)$$

Exercice 4.5. a) Soit $X = (X_n)_{n \ge 0}$ une surmartingale telle que $E(X_n)$ est constante. Montrer que $(X_n)_{n > 0}$ est une martingale.

b) Soit $(X_n)_{n\geq 0}$ un processus adapté à la filtration $(\mathcal{F}_n)_{n\geq 0}$. Montrer que $(X_n)_{n\geq 0}$ est une $\{\mathcal{F}_n\}_n$ -martingale si et seulement si il existe $c\in \mathbf{R}$ telle que pour tout temps d'arrêt borné τ de $(\mathcal{F}_n)_{n\geq 0}$ on a $\mathrm{E}(X_\tau)=c$.

Exercice 4.6. Soit $p \in]0,1[$. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes identiquement distribuées vérifiant $\mathbf{P}(X_1=+1)=p$ et $\mathbf{P}(X_1=-1)=1-p$, et soit la filtration $\mathscr{F}_0=\{\varnothing,\Omega\},\,\mathscr{F}_n=\sigma(X_1,\ldots,X_n)$. On note $\mu=\mathrm{E}[X_1]$ et $\sigma^2=\mathrm{Var}X_1$. On pose, $S_0=0$ et pour $n\geq 1,\,S_n=X_1+\cdots+X_n$.

- 1. Montrer que $S_n n\mu$ et $M_n := (S_n n\mu)^2 n\sigma^2$ sont des martingales relativement à la filtration $(\mathscr{F}_n)_{n \geq 0}$.
- 2. Montrer que $\left(\frac{1-p}{p}\right)^{S_n}$ est une martingale relativement à la filtration $(\mathscr{F}_n)_{n\geq 0}$.
- 3. On définit $\psi(x) = pe^x + (1-p)e^{-x}$, pour $x \in \mathbf{R}$. Montrer que, pour tout $\theta \in \mathbf{R}$, $e^{\theta S_n}/\psi(\theta)^n$ est une martingale relativement à la filtration $(\mathscr{F}_n)_{n \geq 0}$.

Exercice 4.7. Soit $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ un espace de probabilité filtré sur lequel on considère deux martingales $(X_n)_{n\geq 0}$ et $(Y_n)_{n\geq 0}$ de carré intégrable.

- a) Montrer que pour m < n on a $E(X_m X_n \mid \mathcal{F}_m) = X_m^2$
- b) Montrer que $E(X_n Y_n) E(X_0 Y_0) = \sum_{k=1}^n E((X_k X_{k-1})(Y_k Y_{k-1})).$

Exercice 4.8. Montrer que le carré d'une sous-martingale n'est pas nécessairement une sous-martingale.

Exercice 4.9. Montrer que lorsqu'une sur-martingale positive atteint 0, elle y reste.

Exercice 4.10. Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires i.i.d. de loi $\mathbf{P}(X_1=+1)=\mathbf{P}(X_1=-1)=1/2$, et soit la filtration $\mathscr{F}_0=\{\varnothing,\Omega\}, \mathscr{F}_n=\sigma(X_1,\ldots,X_n)$. On fixe un entier $N\geq 1$, et pour $x\in\{0,\ldots,N\}$, on considère la marche aléatoire issue de x: $S_0=x$ et pour $n\geq 1$ $S_n=x+\sum_{k=1}^n X_i$.

- 1. Montrer que S_n et $M_n:=S_n^2-n$ sont des martingales relativement à la filtration $(\mathscr{F}_n)_{n\geq 0}$.
- 2. On considère le temps $T := \inf\{n \; ; \; S_n = 0 \text{ ou } S_n = N\}$. Montrer que T est un temps d'arrêt.
- 3. Pour $m \geq 0$, on introduit l'événement $A_m = \{X_{mN+1} = \cdots = X_{(m+1)N} = +1\}$. Montrer que pour $q \geq 1$, $\{T > qN\} \subset \bigcap_{m=0}^{q-1} A_m^c$, et en déduire une majoration de $\mathbf{P}(T > qN)$. Montrer que $\mathrm{E}[T] = \sum_{j \geq 0} \mathbf{P}(T > j) < +\infty$ et que $T < +\infty$ p.s.
- 4. Calculer $E[S_T]$ et en déduire que $P(S_T = 0) = 1 x/N$.
- 5. Calculer $E[M_T]$ et en déduire E[T].

Exercice 4.11. Soit $(X_n, n \ge 0)$, une suite de variables réelles, indépendantes, centrées et de carrés intégrables : $\mathrm{E}[X_n] = 0$ et $\sigma_n^2 = \mathrm{E}[X_n^2] < \infty$. On pose $S_n = X_0 + \cdots + X_n$ et on définit la filtration $(\mathscr{F}_n)_{n \ge 0}$ par $\mathscr{F}_n = \sigma(X_0, \dots, X_n)$.

- 1. Montrer que $(S_n)_{n\geq 0}$ est une martingale relativement à la filtration $(\mathscr{F}_n)_{n\geq 0}$.
- 2. Montrer que $\tau = \inf\{n : |S_n| \ge x\}$ est un temps d'arrêt.
- 3. En utilisant τ , montrer l'inégalité de Kolmogorov :

$$\mathbf{P}\left(\max_{0 < i < n} |S_i| \ge x\right) \le x^{-2} \operatorname{Var}(S_n) ,$$

valable pour tout réel x > 0 et tout $n \in \mathbb{N}$.

Exercice 4.12. Soit $(X_n, n \ge 1)$ une suite i.i.d. telle que

$$\mathbf{P}(X_n = 1) = \mathbf{P}(X_n = -1) = \frac{1}{2}.$$

Montrer la convergence p.s. de la série

$$\sum_{n=1}^{\infty} \frac{X_n}{n}.$$

Exercice 4.13. Soient les trois affirmations suivantes :

- (i) une surmartingale $(X_n)_{n\geq 0}$ ne peut pas tendre presque sûrement vers $+\infty$ car une telle surmartingale serait minorée et par conséquent convergerait vers une variable aléatoire finie.
- (ii) une surmartingale $(X_n)_{n\geq 0}$ ne peut pas tendre presque sûrement vers $+\infty$ car la suite $(\mathrm{E}(X_n))_{n\geq 0}$ est décroissante, et si $\varliminf_n X_n = \varliminf_n X_n = +\infty$ p.s on aurait par Fatou :

$$+\infty = \mathbb{E}[\underline{\lim}_{n} X_{n}] \le \underline{\lim}_{n} \mathbb{E}[X_{n}] \le \mathbb{E}[X_{0}] < +\infty.$$

(iii) Une surmartingale peut tendre presque sûrement vers $+\infty$. Y a-t-il une affirmation juste ?

Exercice 4.14. Soit $(X_n)_{n\geq 0}$ une suite de v.a. à valeurs [0,1] et posons $\mathcal{F}_n = \sigma(X_0,\ldots,X_n)$. On suppose que $X_0=a\in[0,1]$ p.s. et que

$$P\left(X_{n+1} = \frac{X_n}{2} \mid \mathcal{F}_n\right) = 1 - X_n \qquad P\left(X_{n+1} = \frac{1 + X_n}{2} \mid \mathcal{F}_n\right) = X_n$$

- 1) Montrer que $(X_n)_{n\geq 0}$ est une martingale qui converge p.s. et dans L^2 vers une v.a. Z.
 - 2) Montrer que $E((X_{n+1} X_n)^2) = \frac{1}{4}E(X_n(1 X_n)).$
 - 3) Calculer E(Z(1-Z)). Quelle est la loi de Z?

Exercice 4.15. (Une preuve de la loi 0-1 de Kolmogorov par les martingales) Soit $(Y_n)_{n\geq 1}$ une suite de v.a. indépendantes. On définit

$$\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$$
 $\mathcal{F}_\infty = \sigma(\bigcup_n \mathcal{F}_n)$
 $\mathcal{F}^n = \sigma(Y_n, Y_{n+1}, \dots)$ $\mathcal{F}^\infty = \bigcap_n \mathcal{F}^n.$

- 1) Soit $A \in \mathcal{F}^{\infty}$. En utilisant la martingale $E^{\mathcal{F}_n}(1_A)$, montrer que P(A) = 0 ou 1.
- 2) Montrer que, si X est une v.a.r. \mathcal{F}^{∞} -mesurable, X = a p.s.

Exercice 4.16. Soit $(Z_n)_{n\geq 1}$ une suite de v.a. indépendantes telles que $P(Z_i=1)=P(Z_i=-1)=\frac{1}{2}$ pour $i=1,2,\ldots$ On pose $S_0=0$, $S_n=Z_1+\cdots+Z_n$, $\mathcal{F}_0=\{\Omega,\emptyset\}$ et $\mathcal{F}_n=\sigma(Z_1,\ldots,Z_n)$. Soient a un entier >0 et λ un réel tel que $0<\lambda<\pi/(2a)$. On définit $\tau=\inf\{n\geq 0,|S_n|=a\}$ (avec la convention $\tau=+\infty$ si l'ensemble est vide) le temps de sortie de]-a,a[.

- a) Montrer que $X_n = (\cos \lambda)^{-n} \cos(\lambda S_n)$ est une $(\mathcal{F}_n)_{n\geq 0}$ -martingale.
- b) Montrer que

$$1 = E(X_{n \wedge \tau} \ge \cos(\lambda a) E((\cos \lambda)^{-n \wedge \tau})$$

- c) En déduire que $E((\cos \lambda)^{-\tau}) \le (\cos(\lambda a))^{-1}$.
- e) Montrer que la martingale $(X_{n\wedge\tau})_{n\geq 0}$ est fermée.
- f) Que vaut $E((\cos \lambda)^{-\tau})$? Est-ce que τ est intégrable? Est-ce que $\tau \in L^2$?

Exercice 4.17. Soit $(S_n)_{n\geq 0}$ une marche aléatoire simple sur \mathbb{Z} : $S_0=0$, $S_n=U_1+\cdots+U_n$, où les v.a. U_i sont indépendantes et de même loi et telles que $P\{U_i=1\}=p$, $P\{U_i=-1\}=1-p:=q$.

- a) Soit $Z_n = (\frac{q}{p})^{S_n}$. Montrer que $(Z_n)_{n \ge 0}$ est une martingale positive.
- b) Déduire d'une inégalité maximale appliquée à la martingale $(Z_n)_{n>0}$ que

$$P\Big\{\sup_{n>0} S_n \ge k\Big\} \le \left(\frac{p}{q}\right)^k$$

et que, lorsque q > p,

$$E\Big(\sup_{n\geq 0} S_n\Big) \leq \frac{p}{q-p}$$

Exercice 4.18. Soit $(Y_n, n \geq 0)$ une suite de variables aléatoires réelles positives définies sur un espace de probabilité $(\Omega, \mathscr{F}, \mathbf{P})$ indépendantes et de même espérance 1. On pose, pour $n \geq 0$, $\mathscr{F}_n = \sigma(Y_0, \cdots, Y_n)$ et $X_n = Y_0 \cdots Y_n$.

- 1. Montrer que X_n , resp. $\sqrt{X_n}$, est une (\mathscr{F}_n) -martingale, resp. surmartingale.
- 2. Montrer que le produit infini $\prod_{k=0}^{\infty} \mathrm{E}(\sqrt{Y_k})$ converge dans \mathbf{R}_+ . On note ℓ sa limite.
- 3. On suppose que $\ell=0$. Montrer que $\sqrt{X_n}\to 0$ p.s. La martingale (X_n) est-elle fermée ?
- 4. On suppose $\ell > 0$. Montrer que $\sqrt{X_n}$ est une suite de Cauchy dans \mathbf{L}^2 . En déduire que (X_n) est fermée.

5. Application

Soient p et q deux probabilités distinctes sur un ensemble dénombrable E et (Z_n) une suite de variables aléatoires indépendantes à valeurs dans E et de même loi q.

On suppose que, pour tout $x \in E$, q(x) > 0 (notations : $p(x) := p(\{x\})$ et $q(x) := q(\{x\})$, $x \in E$). On pose

$$X_n = \frac{p(Z_0)}{q(Z_0)} \cdots \frac{p(Z_n)}{q(Z_n)}.$$

À partir de ce qui précède, montrer que $X_n \to 0$ p.s.

Exercice 4.19. Soient Y_1, Y_2, \cdots des variables aléatoires i.i.d. telles que

$$P(Y_1 = -1) = q$$
, $P(Y_1 = 1) = p$, avec $p + q = 1$, $0 .$

On pose $X_0 = 0$, $Z_0 = 1$, et pour $n \ge 1$, $X_n = Y_1 + \dots + Y_n$, $Z_n = \left(\frac{q}{p}\right)^{X_n}$.

- 1. Montrer que (Z_n) est une martingale positive. Montrer que $Z_n \to 0$ p.s.
- 2. On pose, pour $k \in \mathbb{N}^*$, $T_k = \inf\{n \geq 0 ; X_n \geq k\}$. En considérant la martingale $(Z_{T_k \wedge n})$ et la décomposition

$$Z_{T_k \wedge n} = Z_{T_k \wedge n} 1\{T_k < \infty\} + Z_{T_k \wedge n} 1\{T_k = \infty\},$$

montrer que

$$\mathbf{P}(T_k < \infty) = \left(\frac{p}{q}\right)^k.$$

3. En déduire que $\sup_{n\geq 0} X_n$ suit une loi géométrique de paramètre 1-p/q, et ainsi que

$$E(\sup_{n>0} X_n) = \frac{p}{q-p}.$$

Exercice 4.20. Soit $(\Omega, (\mathcal{F}_n)_{n\geq 0}, P)$ un espace de probabilité filtré et ν une mesure finie sur $\mathcal{F} = \mathcal{F}_{\infty}$. On suppose que, pour tout $n\geq 0$, P domine ν sur \mathcal{F}_n et on note X_n la densité de Radon-Nikodym: X_n est donc \mathcal{F}_n -mesurable et

$$\nu(A) = \int_A X_n d\mathbf{P}$$

pour tout $A \in \mathcal{F}_n$ (en particulier $X_n \geq 0$).

- a) Montrer que $(X_n)_{n\geq 0}$ est une martingale intégrable.
- b) Montrer que $(X_n)_{n\geq 0}$ converge vers une variable intégrable X.
- c) Montrer que si P domine ν sur \mathcal{F}_{∞} , X est la densité de Radon-Nikodym correspondante.
- d) On suppose que les deux mesures ν , P sont étrangères sur \mathcal{F}_{∞} : il existe donc $S \in \mathcal{F}_{\infty}$ tel que P(S) = 1 et $\nu(S) = 0$. Montrer qu'alors X = 0, p.s.

Exercice 4.21. (Identité de Wald) Soit $(Y_n)_{n\geq 1}$ une suite de v.a.r. indépendantes, intégrables, de même loi. On pose $m=\mathrm{E}(Y_1),\, S_0=0,\, \mathcal{F}_0=\{\Omega,\emptyset\}$ et, pour $n\geq 1,\, S_n=Y_1+\cdots+Y_n,\, \mathcal{F}_n=\sigma(Y_1,\ldots,Y_n)$. Soit τ un temps d'arrêt intégrable.

1) On pose $X_n = S_n - nm$. Montrer que $(X_n)_{n \ge 0}$ est une martingale.

- 2) Montrer que, pour tout n, $E(S_{n \wedge \tau}) = mE(n \wedge \tau)$.
- 3) Montrer que $E(S_{\tau})$ est intégrable et que $E(S_{\tau}) = E(\tau)$. (considérer d'abord le cas $Y_n \geq 0$).
- 4) Supposons $P(Y_n = -1) = P(Y_n = 1) = \frac{1}{2}$, pour tout n et $\tau = \inf\{n; S_n \ge a\}$, où a est un entier ≥ 1 . Montrer que τ n'est pas intégrable.

Exercice 4.22. Soit $(X_n)_{n\geq 0}$ une martingale intégrable et soit ν un temps d'arrêt vérifiant

$$P(\nu < +\infty) = 1,$$
 $E(|X_{\nu}|) < +\infty$ $\int_{\{\nu > n\}} |X_n| dP \xrightarrow[n \to \infty]{} 0$

1) Montrer que

$$\int_{\{\nu > n\}} |X_{\nu}| \, d\mathbf{P} \underset{n \to \infty}{\longrightarrow} 0$$

- 2) Montrer que $E(|X_{\nu \wedge n} X_{\nu}|) \to 0$.
- 3) En déduire que $E(X_{\nu}) = E(X_0)$.

Exercice 4.23. Soit $(X_n)_{n\geq 0}$ une surmartingale intégrable. On suppose qu'il existe une constante M telle que, pour tout $n\geq 1$,

$$E(|X_n - X_{n-1}|/\mathcal{F}_{n-1}) \le M$$
 p.s.

1) Montrer que, si $(V_n)_{n\geq 1}$ est un processus positif tel que V_n soit \mathcal{F}_{n-1} -mesurable, on a

$$E\left(\sum_{n=1}^{\infty} V_n |X_n - X_{n-1}|\right) \le ME\left(\sum_{n=1}^{\infty} V_n\right)$$

- 2) Soit ν un temps d'arrêt *intégrable* (pas nécessairement borné).
- 2a) Montrer que $E(\nu) = \sum_{n\geq 1} P\{\nu \geq n\}.$
- 2b) Déduire de 1) que $E(\sum_{n\geq 1} 1_{\{\nu\geq n\}} |X_n X_{n-1}|) < +\infty.$
- 2c) Que vaut $\sum_{n\geq 1} 1_{\{\nu\geq n\}} (X_n X_{n-1})$? En déduire que X_{ν} est intégrable.
- 3) Montrer que $(X_{\nu \wedge p})_{p \geq 0}$ tend vers X_{ν} dans L^1 lorsque $p \to +\infty$ 4)
- 4a) Montrer que si $A \in \mathcal{F}_{\nu_1}$, alors $A \cap \{\nu_1 \leq k\} \in \mathcal{F}_{\nu_1 \wedge k}$.
- 4b) En déduire que , si $\nu_1 \leq \nu_2$ sont deux temps d'arrêt avec ν_2 intégrable, on a

$$E(X_{\nu_2} \mid \mathcal{F}_{\nu_1}) \le X_{\nu_1}$$

Exercice 4.24. À l'instant 1, une urne contient une boule blanche et une boule rouge. On tire une boule et on la remplace par deux boules de la même couleur que celle tirée, ce qui donne la nouvelle composition de l'urne à l'instant 2, et ainsi de suite suivant le même procédé.

On note Y_n et $X_n = \frac{Y_n}{n+1}$ le nombre et la proportion de boules blanches dans l'urne à l'instant n. On pose $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$.

- 1) Montrer que $(X_n)_{n\geq 1}$ est une martingale qui converge p.s. vers une v.a. U et que l'on a, pour tout $k\geq 1$, $\lim_{n\to\infty} \mathrm{E}(X_n^k)=\mathrm{E}(U^k)$.
 - 2) On fixe $k \ge 1$. On pose, pour $n \ge 1$,

$$Z_n = \frac{Y_n(Y_n+1)...(Y_n+k-1)}{(n+1)(n+2)...(n+k)}$$

Montrer que $(Z_n)_{n\geq 1}$ est une martingale. Quelle est sa limite? En déduire la valeur de $E(U^k)$.

3) Soit X une v.a. réelle à valeurs dans un intervalle borné p.s. Montrer que sa fonction caractéristique se développe en série de puissances

$$\varphi(t) = \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!} t^k \tag{4.1}$$

pour tout $t \in \mathbf{R}$.

4) Quelle est la loi de U?

Exercice 4.25. On a une population de taille fixée $N \in \mathbb{N}^*$ qui se renouvelle entièrement à chaque génération et dont chaque individu est de type a ou A. Chaque individu de la génération n+1 choisit son (seul) parent de la génération n de façon uniforme et indépendante des autres individus et hérite le type du parent.

On note X_n le nombre d'individus de type a dans la génération n et on pose $\mathscr{F}_n := \sigma(X_0, \cdots, X_n)$. On a alors $\mathbf{P}(X_{n+1} = i \mid \mathscr{F}_n) = \binom{N}{i} (\frac{X_n}{N})^i (1 - \frac{X_n}{N})^{N-i}$, pour tout $i \in \{0, \cdots, N\}$. On suppose que p.s. $X_0 = k \in \{0, \cdots, N\}$.

- 1. Montrer que $(X_n, n \ge 0)$ est une martingale et discuter la convergence de X_n vers une variable X_∞ quand $n \to \infty$.
- 2. Montrer que $M_n := \left(\frac{N}{N-1}\right)^n X_n(N-X_n)$ est une martingale.
- 3. Calculer $E(X_{\infty})$ et $E(X_{\infty}(N-X_{\infty}))$.
- 4. Calculer la loi de X_{∞} et commenter.

Exercice 4.26. Soient $f:[0,1] \to \mathbf{R}$, une fonction Lipschitzienne de constante de Lipschitz L > 0 et X une v.a. à valeurs [0,1], de loi uniforme. On pose

$$X_n = \frac{[2^n X]}{2^n}$$
 et $Z_n = 2^n (f(X_n + \frac{1}{2^n}) - f(X_n))$

- a) Etudier la convergence de $(X_n)_{n\geq 0}$.
- b) Montrer l'égalité de tribus

$$\bigcap_{n\geq 0} \sigma(X_n, X_{n+1}, \dots) = \sigma(X)$$

c) Déterminer la loi conditionnelle de X_{n+1} sachant $(X_k)_{k \le n}$. En déduire que $(Z_n)_{n \ge 0}$ est une martingale bornée.

On note Z_{∞} sa limite p.s. et dans L^1 .

- d) Montrer qu'il existe g telle que $Z_{\infty} = g(X)$.
- e) Calculer la loi conditionnelle de X sachant X_n et montrer que p.s.,

$$Z_n = \int_{X_n}^{X_n + \frac{1}{2^n}} g(u) du$$

f) Déduire que pour tout $k, n,) \le k \le 2^n - 1$,

$$f(\frac{k}{2^n} + \frac{1}{2^n}) - f(\frac{k}{2^n}) = \int_{\frac{k}{2^n}}^{\frac{k+1}{2^n}} g(u)du$$

et conclure que pour tout $x \in [0, 1]$,

$$f(x) - f(0) = \int_0^x g(u)du$$
 (4.2)

g) Conclure que toute fonction Lipschitzienne est primitive (au sens général) d'une fonction mesurable bornée.

Exercice 4.27. Soit $(X_n, n \ge 0)$, une suite de variables aléatoires réelles indépendantes, intégrables telles que $\mathrm{E}[X_n] = 0$, pour tout $n \ge 0$. On fixe $p \ge 1$, on pose $X_0^{(p)} = X_1^{(p)} = \cdots = X_{p-1}^{(p)} = 0$ et pour tout $n \ge p$, on pose

$$X_n^{(p)} = \sum_{1 \le i_1 < i_2 < \dots < i_p \le n} X_{i_1} X_{i_2} \cdots X_{i_p} .$$

Montrer que $(X_n^{(p)}, n \ge 0)$ est une martingale relativement à la filtration (\mathscr{F}_n) , donnée par $\mathscr{F}_n = \sigma(X_1, \cdots, X_n)$ si $n \ge 1$ et $\mathscr{F}_0 = \{\varnothing, \Omega\}$.

Exercice 4.28. 1. Soit $Y_1, Y_2, \dots, Y_n, \dots$ des variables aléatoires réelles définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$ de loi commune : $\mathbf{P}(Y_n = -1) = \mathbf{P}(Y_n = 1) = 1/2$ et indépendantes.

On pose $X_0 = 0$, $\mathscr{F}_0 = \{\Omega, \varnothing\}$ et, pour $n \geq 1$, $X_n = Y_1 + \cdots + Y_n$, $\mathscr{F}_n = \sigma(Y_1, Y_2, \cdots, Y_n)$.

On pose

$$M_0 = 0$$
 et, pour $n \ge 1$, $M_n = \sum_{k=1}^n \operatorname{sgn}(X_{k-1}) Y_k$

où sgn(x) = 1 si x > 0, = -1 si x < 0, = 0 si x = 0.

- (a) Montrer que (M_n) est une martingale de carré intégrable et déterminer la décomposition de Doob de la sous-martingale (M_n^2) .
- (b) Quelle est la décomposition de Doob de la sous-martingale ($|X_n|, n \ge 0$)?
- (c) Montrer que pour tout $n \ge 1$, M_n est $\sigma(|X_1|, \dots, |X_n|)$ -mesurable.

Exercice 4.29. Soit X une variable aléatoire réelle de loi $\mathcal{N}(0, \sigma^2)$, avec $\sigma^2 \in]0, \infty[$. Pour tout $k \in \mathbb{N}$, soit η_k une variable aléatoire de loi $\mathcal{N}(0, \varepsilon_k^2)$, avec $\varepsilon_k > 0$. On suppose que X, η_0 , η_1 , \cdots sont indépendantes. On définit $Y_k = X + \eta_k$, $k \in \mathbb{N}$ et $\mathscr{F}_n = \sigma(Y_0, \cdots, Y_n)$, $n \in \mathbb{N}$, $\mathscr{F}_\infty = \sigma(Y_n, n \geq 0)$.

Nous essayons de mesurer une quantité aléatoire X avec une suite indépendante d'expériences. L'expérience k donne comme résultat $Y_k = X + \eta_k$, où η_k est une erreur qui dépend de la précision des instruments. Après n expériences, la meilleure prévision possible sur X est

$$X_n := \mathrm{E}(X \mid \mathscr{F}_n) = \mathrm{E}(X \mid Y_0, \cdots, Y_n).$$

On se demande s'il est possible d'obtenir la valeur de X quand n tend vers l'infini, et notamment si X_n converge vers X.

- 1. Montrer que (X_n) est une martingale et que X_n converge p.s. et dans \mathbf{L}^1 vers une variable aléatoire X_{∞} . Quelle est la relation entre X et X_{∞} ?
- 2. Montrer que $\sup_n \mathrm{E}(X_n^2) < \infty$. Montrer que les trois propriétés suivantes sont équivalentes :
 - a) $X_n \to X$ dans L^2 ; b) $X_n \to X$ dans L^1 ; c) X est \mathscr{F}_{∞} -mesurable.
- 3. Calculer $E(Y_iY_j)$, $E(Y_i^2)$ et $E(XY_i)$ pour $i, j \ge 0$, $i \ne j$. Montrer que pour tous $n \ge 0$ et $i = 0, \dots, n$, on a $E(Z_nY_i) = 0$, où

$$Z_n := X - \frac{\sigma^2}{1 + \sigma^2 \sum_{k=0}^n \varepsilon_k^{-2}} \sum_{j=0}^n \varepsilon_j^{-2} Y_j.$$

- 4. Montrer que pour tout $n \ge 0$ la variable Z_n est indépendante de $\{Y_0, \cdots, Y_n\}$ et en déduire que $X_n = X Z_n$.
- 5. Calculer $\mathrm{E}((X-X_n)^2)$ et montrer que $X_n\to X$ dans \mathbf{L}^2 si et seulement si $\sum_{i=0}^\infty \varepsilon_i^{-2}=\infty.$
- 6. Discuter le cas $\varepsilon_i=\varepsilon>0$ pour tout $i\geq 0$, notamment les liens avec la loi des grands nombres.