AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) A peptide characterized by Formula I

Formula I

wherein:

Y is attached to the amino-terminus of said peptide and is selected from the group consisting of a hydrogen atom, an acyl group (R—CO—), wherein R is a hydrophobic moiety, or an aroyl group (Ar—CO—), wherein Ar is an aryl group;

Each of AA₁ and AA₂ are independently selected from the group consisting of no residue, isoleucine (Ile), leucine (Leu), and related alpha-amino acids possessing hydrophobic side-chains;

AA₃ is selected from the group consisting of no residue, glycine (Gly), alanine (Ala) and proline (Pro);

AA₄ is selected from the group consisting of histidine (His), phenylalanine (Phe), tyrosine (Tyr), tryptophan (Trp) and related alpha-amino acids possessing hydrophobic sidechains;

AA₅ is selected from the group consisting of arginine (Arg), ornithine (Orn), lysine (Lys), citruline, 2-, 3-, and 4-pyridylalanine, and arginine surrogates;

AA₆ is selected from the group consisting of aspartic acid (Asp), asparagine (Asn), glutamic acid (Glu), glutamine (Gln), serine (Ser), 3-amino-5-phenylpentanoic acid and Phe;

AA₇ is selected from the group consisting of no residue, Tyr, Phe, and related alphaamino acids possessing hydrophobic side-chains, aromatic amines, aliphatic amines and primary arylalkyl amines;

AA₈ is selected from the group consisting of no residue, Lys, Leu, Tyr, alpha-amino acids possessing hydrophobic side-chains, and aromatic and aliphatic amines;

Z is attached to the carboxy-terminus of said peptide and is selected from the group consisting of, a hydroxyl, NH₂, and aromatic and aliphatic amines; and functional derivatives thereof.

- 2. (Original) The peptide of claim 1, wherein said acyl group in the definition of Y is selected from the group consisting of benzoyl, acetyl, tert-butyl acetyl, para-phenyl benzoyl, trifluoroacetyl, cyclohexylcarbonyl and phenylacetyl.
- 3. (Original) The peptide of claim 1, wherein said hydrophobic moiety in the definition of Y is selected from the group consisting of a substituted or non-substituted alkyl, a substituted or non-substituted cycloalkyl, a phenylmethyl, and a saturated or unsaturated hydrocarbon chain.
- **4.** (Original) The peptide of claim 3, wherein said substituted or unsubstituted alkyl is a saturated hydrocarbon chain having from 1 to 18 C atoms.
- 5. (Original) The peptide of claim 3, wherein said substituted or unsubstituted alkyl is a saturated hydrocarbon chain having from 1 to 12 C atoms.
- **6**. (Original) The peptide of claim 3, wherein said substituted or unsubstituted alkyl is a saturated hydrocarbon chain having from 1 to 6 C atoms.
- 7. (Original) The peptide of claim 3, wherein said substituted or unsubstituted alkyl is a saturated hydrocarbon chain having from 1 to 4 C atoms.

- **8.** (Original) The peptide of claim 3, wherein said substituted or unsubstituted alkyl is a linear hydrocarbon chain.
- 9. (Original) The peptide of claim 3, wherein said substituted or unsubstituted alkyl is a branched hydrocarbon chain.
- 10. (Original) The peptide of claim 9, wherein said branched hydrocarbon chain has one or two branches.
- 11. (Original) The peptide of claim 9, wherein said branched hydrocarbon chain has one branch.
- **12**. (Original) The peptide of claim 3, wherein said substituted or unsubstituted alkyl is an unsaturated hydrocarbon chain having 3 to 18 C atoms.
- 13. (Original) The peptide of claim 12, wherein said unsaturated hydrocarbon chain has at least one double bond and/or at least one triple bond.
- 14. (Original) The peptide of claim 12, wherein said unsaturated hydrocarbon chain has two double bonds.
- 15. (Original) The peptide of claim 12, wherein said unsaturated hydrocarbon chain has one double bond.
- **16**. (Original) The peptide of claim 12, wherein said unsaturated hydrocarbon chain has one triple bond.

- 17. (Original) The peptide of claim 3, wherein said substituted alkyl is selected from the group consisting of a mono-, a di-, and a tri-substituted alkyl.
- 18. (Original) The peptide of claim 3, wherein said substituted alkyl is substituted with from 1 to 4 substituents.
- 19. (Original) The peptide of claim 18, wherein said substituent is selected from the group consisting of halo, haloalkyl, hydroxy, aryl, heterocyclyl and heteroaryl.
- **20**. (Original) The peptide of claim 19, wherein said aryl is selected from the group consisting of phenyl, tolyl, alkyloxyphenyl, alkyloxycarbonylphenyl, and halophenyl.
- 21. (Original) The peptide of claim 3, wherein said substituted or unsubstituted cycloalkyl is a saturated ring of from 3 to 8 C atoms.
- 22. (Original) The peptide of claim 3, wherein said substituted or unsubstituted cycloalkyl is selected from the group consisting of cyclopentyl and cyclohexyl.
- 23. (Original) The peptide of claim 3, wherein said substituted cycloalkyl is selected from the group consisting of mono- and di-substituted cycloalkyl.
- 24. (Original) The peptide of claim 3, wherein said substituted cycloalkyl has substituents selected from the group consisting of halo, haloalkyl, hydroxy, aryl, heterocyclyl and heteroaryl.
- **25**. (Original) The peptide of claim 24, wherein said aryl is selected from the group consisting of phenyl, tolyl, alkoxyphenyl, alkoxycarbonylphenyl and halophenyl.

- **26**. (Original) The peptide of claim 3, wherein said saturated or unsaturated hydrocarbon chain is selected from the group consisting of a linear saturated or unsaturated alkyl group, alkenyl group, and branched saturated or unsaturated alkyl group.
- 27. (Original) The peptide of claim 26, wherein said linear saturated alkyl group has from 1 to 18 carbon atoms.
- 28. (Original) The peptide of claim 26, wherein said linear saturated alkyl group has from 1 to 12 carbon atoms.
- 29. (Original) The peptide of claim 26, wherein said linear saturated alkyl group has from 1 to 6 carbon atoms.
- **30**. (Original) The peptide of claim 26, wherein said linear saturated alkyl group has from 1 to 4 carbon atoms.
- 31. (Original) The peptide of claim 3, wherein said alkenyl group has 3 to 8 C atoms.
- **32**. (Original) The peptide of claim 26, wherein said branched saturated or unsaturated alkyl group has from 3 to 18 C atoms.
- 33. (Original) The peptide of claim 26, wherein said branched saturated or unsaturated alkyl has one or two branches.
- 34. (Original) The peptide of claim 26, wherein said branched saturated or unsaturated alkyl has one branch.
- 35. (Original) The peptide of claim 26, wherein said linear unsaturated alkyl or branched unsaturated alkyl has at least one double bond and/or at least one triple bond.

- **36**. (Previously Amended) The peptide of claim 26, wherein said linear unsaturated alkyl or branched unsaturated alkyl has two double bonds.
- 37. (Original) The peptide of claim 26, wherein said linear unsaturated alkyl or branched unsaturated alkyl has one double bond.
- 38. (Original) The peptide of claim 26, wherein said linear unsaturated alkyl or branched unsaturated alkyl has one triple bond.
- 39. (Original) The peptide of claim 1, wherein in the definition of AA₄, said hydrophobic side-chain is selected from the group consisting of cyclohexylalanine and heterocyclic side-chains.
- **40**. (Original) The peptide of claim 39, wherein said heterocyclic side-chain is a pyridylalanine group.
- **41**. (Original) The peptide of claim 1, wherein in the definition of AA₇, AA₈ and Z, said aromatic amine is selected from the group consisting of phenylmethylamine, phenylproplyamine, and an amine comprising a saturated or unsaturated hydrocarbon chain.
- **42**. (Original) The peptide of claim 1, wherein in the definition of AA₇, AA₈ and Z, said aliphatic amine is selected from the group consisting of amines comprising a saturated or unsaturated hydrocarbon chain.
- **43**. (Original) The peptide of claim 41, wherein said amine comprising a saturated or unsaturated hydrocarbon chain is a primary amine.

- 44. (Original) The peptide of claim 41, wherein said saturated or unsaturated hydrocarbon chain is selected from the group consisting of a linear saturated or unsaturated alkyl group, an alkenyl group, and a branched saturated or unsaturated alkyl group.
- . (Original) The peptide of claim 44, wherein said linear saturated alkyl group has from 1 to 18 carbon atoms and said linear unsaturated alkyl group has 3 to 18 C atoms.
- . (Original) The peptide of claim 44, wherein said linear saturated alkyl group has from 1 to 12 carbon atoms and said linear unsaturated alkyl group has 3 to 12 C atoms.
- 47. (Original) The peptide of claim 44, wherein said linear saturated alkyl group has from 1 to 6 carbon atoms and said linear unsaturated alkyl group has 3 to 6 C atoms.
- . (Original) The peptide of claim 44, wherein said linear saturated alkyl group has from 1 to 4 carbon atoms and said linear unsaturated alkyl group has 3 to 4 C atoms.
- . (Original) The peptide of claim 44, wherein said branched saturated or unsaturated alkyl group has from 3 to 18 C atoms.
- . (Original) The peptide of claim 44, wherein said branched saturated or unsaturated alkyl has one or two branches.
- . (Original) The peptide of claim 44, wherein said branched saturated or unsaturated alkyl has one branch.
- . (Original) The peptide of claim 44, wherein said linear unsaturated alkyl or branched unsaturated alkyl has at least one double bond and/or at least one triple bond.

- **53**. (Original) The peptide of claim 44, wherein said linear unsaturated alkyl or branched unsaturated alkyl has two double bonds.
- **54**. (Original) The peptide of claim 44, wherein said linear unsaturated alkyl or branched unsaturated alkyl has one double bond.
- 55. (Original) The peptide of claim 44, wherein said linear unsaturated alkyl or branched unsaturated alkyl has one triple bond.
- **56**. (Original) The peptide of claim 1, wherein in the definitions of AA₁ to AA₈, said amino acids are D- or L-amino acids.
- 57. (Original) The peptide of claim 1, wherein in the definition of AA₇, AA₈ and Z, said aromatic amine is a primary aromatic amine.
- **58.** (Original) The peptide of claim 1, wherein in the definition of AA_7 , said primary arylalkylamine has a ring of from 6 to 10 C atoms.
- **59**. (Original) The peptide of claim 58, wherein in said primary arylalkylamine, said aryl is selected from the group consisting of phenyl, tolyl, alkoxyphenyl, alkoxycarbonylphenyl and halophenyl.
- **60**. (Original) The peptide of claim 57, wherein said primary aromatic amine has a ring of from 6 to 10 C atoms.
- 61. (Original) The peptide of claim 1, wherein in the definition of AA₇, AA₈ and Z said aliphatic amine is a primary aliphatic amine.

. (Original) The peptide of claim 1, wherein said primary aliphatic amine has from 1 to 18 C atoms.

63. (Previously Amended) The peptide of claim 1, wherein said peptide is selected from the group consisting of

Sequence (N to C)	SEQ ID. No.
Ilghrdyk	1
Ghrdyk	2
Ilgardyk	3
Ilghadyk	4
ilgHrayk	6
ilghrDyk	8
Ilahrdyk	9
ilAhrdyk	10
Ilghrdyw	11
Ilgfrdyk	13
Ilghreyk	14
Ilghkdyk	15
Ilghrnyk	16
Ilghrdy	17
Ilphrdyk	18
Ilhrdyk	19
Ilghqdyk	20
Ilghrsyk	21
ilghrdy-amide	22
ilghrdyk-amide	23
Ilgwrdyk	24
Ilgyrdyk	25
ilg-(cha)-rdyk	26
ilg(cha)qdyk	27
ilg(cha)rnyk	28
Kydrhgll	29
ilgh-(3PA)-qdyk	30
ilgh-(4PA)-dyk	31
ilgh(cit)dyk	32

and functional derivatives thereof.

- **64**. (Original) The peptide of claim 63, wherein said peptide and functional derivatives thereof substantially inhibit FP receptor.
- **65**. (Previously Amended) The peptide of claim 64, wherein said FP receptor is from a mammal.
- **66**. (Original) The peptide of claim 65, wherein said mammal is a human.
- 67. (Original) The peptide of claim 64, wherein inhibition of FP receptor is measured in a porcine retinal microvascular contraction assay, wherein a contraction caused by prostaglandin $F_{2\alpha}$ in the presence of the peptide is at least 50% of the contraction produced by the prostaglandin $F_{2\alpha}$ in the absence of the peptide.
- **68**. (previously canceled)
- **69**. (Previously Amended) A pharmaceutical composition comprising a therapeutically effective amount of at least one peptide of claim 1 in association with a pharmaceutically acceptable carrier.
- 70. (Original) The pharmaceutical composition of claim 69, wherein said therapeutically effective amount of said at least one peptide is 0.1-100 mg/Kg body weight.
- 71. (Previously Amended) A method of inhibiting FP receptor, comprising administering to an individual an inhibitory amount of the pharmaceutical composition of claim 69.
- 72. 73. (previously canceled)

74. – 75. (withdrawn)

76. - 148. (previously canceled)

149. (Previously added) The peptide of claim 42 wherein said saturated or unsaturated hydrocarbon chain is selected from the group consisting of a linear saturated or unsaturated alkyl group, an alkenyl group, and a branched saturated or unsaturated alkyl group.

150. (New) A peptide of claim 1 wherein said peptide is ilgh(cit)dyk (SEQ ID NO. 32).