

Устройство фонтанной скважины

Наземное оборудование

Штуцер

Цель моделирования

МАКСИМИЗАЦИЯ ПРИБЫЛИ

- Выбор способа эксплуатации
- Определение оптимального режима работы скважины
- Формирование различных мероприятий

Уравнение градиента давления

$$\frac{dp}{dL} = \left(\frac{dp}{dL}\right)_{\text{грав}} + \left(\frac{dp}{dL}\right)_{\text{тр}} + \left(\frac{dp}{dL}\right)_{\text{уск}}$$

Потери давления на преодоление гравитационных сил

$$\left(\frac{dp}{dL}\right)_{\text{грав}} = -\rho g \sin \theta$$

Потери давления на преодоление сил трения, формула Дарси-Вейсбаха

$$\left(\frac{dp}{dL}\right)_{\rm TD} = f \frac{\rho V^2}{2d}$$

Потери давления на преодоление инерционных сопротивлений

$$\left(\frac{dp}{dL}\right)_{\rm yck} = \rho \cdot v \cdot \frac{dv}{dZ}$$

Моделирование фонтанной скважины

Алгоритм расчета распределения давления в фонтанной скважине

Эксплуатационная колонна

- 1) Выбираем корреляцию. Расчет начинается от известного давления. Задаемся шагом Δh .
- 2) Рассчитываем свойства для известного давления и температуры
- 3) Рассчитываются расходы, скорости фаз, дополнительные параметры корреляции, плотности эмульсии
- 4) По эмпирическим соотношениям в корреляции определяется структура потока в данном сечении
- 5) Рассчитывается трение
- 6) Рассчитываем перепад давления на выбранном шаге и новое давление.
- 7) Возвращаемся к шагу 2 и повторяем процедуру

Алгоритм расчета распределения давления в фонтанной скважине

Штуцер – устройство ограничивающее поток через трубу.

В общем случае скорость потока через сужение увеличивается при увеличении перепада давления.

При течении в сужающейся части скорость потока возрастает и для сжимаемых флюидов может достичь скорости звука.

Поток в таком случае считается **критическим** и **не зависит от давления после штуцера**. До достижения описанного эффекта режим считается **докритическим**

Mukherjee, H. and Brill, J. P
"Liquid Holdup Correlations for Inclined Two-Phase Flow", JPT
(May 1983) 1003-1008.

Рассчитываемый режим течения через штуцер определяется следующими факторами:

- 1. Геометрия штуцера
- 2. Свойства флюида
- 3. Выбранная корреляция для докритического/критического режима
- 4. К-т критического давления $P_{crit} = C_{PR} \cdot P_{up}$

Для расчета большинства корреляций используется к-т потока:

$$c_{v} = \frac{c_{d}}{\sqrt{1 - \delta^{4}}}$$

 δ - отношение диаметра сужения в штуцере к диаметру до штуцера

$$\delta = \frac{d_{bean}}{d_{up}}$$

Докритические корреляции

Ashford & Pierce

Mechanistic

API-14B

Критические корреляции

Ashford & Pierce

Mechanistic

API-14B

AP-Tulsa

Poettman-Beck

Omana

Achong

• • •

Моделирование штуцера. Докритический режим

Ashford-Pierce correlation

$$q_{o} = \frac{c_{1}c_{v}\left(64d_{bean}\right)^{2}}{\sqrt{c_{2}}} \cdot \sqrt{P_{up}} \cdot \frac{\sqrt{1-\varepsilon+R_{L}\left(1-\varepsilon^{k}\right)/k}}{1+R_{L}\varepsilon^{-1/\gamma}} \cdot \frac{1}{\sqrt{B_{o}+F_{wo}}} \cdot \frac{\sqrt{\gamma_{o}+c_{3}\gamma_{G}R_{s}+F_{wo}\gamma_{w}}}{\gamma_{o}+c_{3}\gamma_{G}R+F_{wo}\gamma_{w}}$$

B_o	is the oil formation factor volume factor	bbl / STB
$c_1 = 3.51$	is a constant	
$c_2 = 198.6$	is a constant	
$c_3 = 0.000217$	is a constant	
$c_{_{V}}$	is the flow coefficient	
d _{bean}	is the bean diameter	1 / 64 in
$k = \frac{\gamma - 1}{\gamma}$		dimensionless
F_{wo}	is the upstream water to oil ratio	
	•	

P_{up}	is the upstream pressure	
P_{down}	is the downstream pressure	
q_o	is the oil flow rate at standard conditions	bbl/d
R_s	is the upstream gas oil ratio	scf STB
R	is the gas oil ratio at standard conditions	scf / STB
$R_L = \frac{T_{up} Z_{up} (R - R_s)}{198.6 P_{up}}$	is the upstream gas liquid ratio	dimensionless
$\varepsilon = \frac{P_{down}}{P_{up}}$	is the pressure ratio	dimensionless
	P_{down} q_{o} R_{s} R $R_{L} = \frac{T_{up}Z_{up}(R - R_{s})}{198.6P_{up}}$ $\varepsilon = \frac{P_{down}}{P}$	$P_{down} \qquad \qquad \text{is the downstream pressure} \\ Q_o \qquad \qquad \text{is the oil flow rate at standard conditions} \\ R_s \qquad \qquad \text{is the upstream gas oil ratio} \\ R \qquad \qquad \text{is the gas oil ratio at standard conditions} \\ R_L = \frac{T_{up} Z_{up} (R - R_s)}{198.6 P_{up}} \qquad \text{is the upstream gas liquid ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = \frac{P_{down}}{P} \qquad \qquad \text{is the pressure ratio} \\ \varepsilon = P$

$\gamma = \frac{C_p}{C_V}$	is the ratio of specific heats	
γ_o	is the upstream oil specific gravity	
γ_G	is the upstream gas specific gravity	
γ_w	is the upstream water specific gravity	

Моделирование штуцера. Докритический режим

Mechanistic correlation

Перепад давления при использовании этой корреляции определяется соотношением жидкой и газовой фазы

$$\Delta P = \lambda_L \cdot \Delta p_L + \lambda_G \cdot \Delta p_G$$

Для каждой из фаз перепад давления получается из формулы Бернулли:

$$\Delta p_L = \frac{\rho_n}{2 \cdot c} \left(\frac{v}{c_{vL} \cdot Z_L} \right)^2 \qquad \Delta p_G = \frac{\rho_n}{2 \cdot c} \left(\frac{v}{c_{vG} \cdot Z_G} \right)^2$$

Mechanistic correlation

Докритический режим

$$\Delta P = \frac{\rho_n \cdot v^2}{2 \cdot c} \cdot \left[\frac{\lambda_L}{\left(c_{vL} \cdot Z_L\right)^2} + \frac{\lambda_G}{\left(c_{vG} \cdot Z_G\right)^2} \right]$$

Критический режим

$$\Delta P_{crit} = P_{up} (1 - C_{PR})$$

$v = \frac{q}{A_{bean} \cdot \rho_{_{n}}}$	is the mixture velocity through the choke	ft/s	m/s
q	is the mass flow rate	Ib/ s	kg/s
$A_{bean} = \frac{\pi \cdot d_{bean}^2}{4}$	is the choke area at the constriction	ft^2	m^2
$\rho_n = \lambda_L \cdot \rho_L + \lambda_G \cdot \rho_G$	is the no-slip density	Ib/ ft ³	kg/m^3
λ_L and λ_G	are the liquid and gas phase flowing fractions		
$ ho_L^{}$ and $ ho_G^{}$	are the liquid and gas phase densities	lb/ft ³	kg/m^3
$Z_L = 1$ and	are the liquid and gas compressibilities		
$Z_{G} = 1 - \frac{0.41 + 0.35 \delta^{4}}{\gamma} \cdot \frac{\Delta P}{P_{up}}$			
С	is a conversion factor for engineering units	$c = 144 \cdot g$ $Ib/(ft \cdot s^2)/psi$	<i>c</i> = 1

Critical Pressure Ratio

$$P_{crit} = C_{PR} \cdot P_{up}$$

Однофазный поток

$$C_{PR} = \left[\frac{2}{\gamma + 1}\right]^{\frac{\gamma}{\gamma - 1}}$$

Критические корреляции

Ashford & Pierce Mechanistic API-14B

• • •

VLP. Узловой анализ

Vertical Lift Performance

Зависимость дебита скважины от забойного давления

Inflow Performance Relationship Зависимость дебита из пласта от забойного давления

Устройство газлифтной скважины

Запуск газлифтной скважины

Газлифтный клапан

Запуск газлифтной скважины

Моделирование газлифтной скважины

Алгоритм расчета газлифтной скважины

Расчет забойного давления по линейному и затрубного давления по расходу газлифтного газа

Входные данные:

- 1. Линейное давление (Plin)
- 2. PVT (gliq, wc, rp, и т.д.)
- 3. Распределение температуры
- 4. Расход газлифтного газа (Qinj)
- 5. Диаметр штуцера (dchoke)
- 6. Данные по рабочему клапану:
 - 1. глубина спуска (Hvalve)
 - 2. давление зарядки при стандартных условиях (Pbvalve)
 - 3. диаметр порта (dvalve)
- 7. Данные по конструкции скважины
 - 1. Hcas
 - 2. Htub
 - 3. Dcas
 - 4. dtub

Алгоритм расчета газлифтной скважины

Расчет забойного давления по линейному и затрубного давления по расходу газлифтного газа

Алгоритм:

1. Расчет буферного давления по линейному (через расчет штуцера)

2. Расчет распределения давления по ЭК от забоя (Hcas) до глубины спуска НКТ (Htub). Определение давления на глубине спуска НКТ.

$$P_{tubi} = \int_{H_{cas}}^{H_{tub}} \frac{dP}{dH} f\left(P_{wfi}, q_{liq}, wc, T_{wf}, q_{gas_free}, d_{cas}, ...\right).$$

3. Расчет распределения давления по НКТ от глубины спуска НКТ до глубины спуска клапана (Hvalve). Определение давления на выходе клапана.

$$P_{\text{out(valve)}i} = \int_{H_{\text{tub}}}^{H_{\text{valve}}} \frac{dP}{dH} f\left(P_{\text{tubi}}, q_{\text{liq}}, \text{wc}, T_{\text{tub}}, q_{\text{gas_free}}, d_{\text{tub}}, \dots\right).$$

4. Расчет распределения давления по НКТ от точки ввода газа до устья с учетом газа, прошедшего через клапан. Определение буферного давления.

$$P_{\text{whi}} = \int_{H_{\text{valve}}}^{0} \frac{dP}{dH} f\left(P_{\text{out}(\text{valve})i}, q_{\text{liq}}, \text{wc}, T_{\text{valve}}, q_{\text{gas_free}}, d_{\text{tub}}, \dots\right).$$

Алгоритм расчета газлифтной скважины

Расчет забойного давления по линейному и затрубного давления по расходу газлифтного газа

- 5. Расчет разницы между фактическим и расчетным значениями буферного давления
- 6. Если отклонение выше установленного, то меняем начальное забойное давление в соответствии с получившимся отклонением и повторяем расчет. Если нет, идем дальше
- 7. Найдя такое забойное давление, которое при заданном расходе газлифтного газа обеспечивает заданное буферное давление, можем найти затрубное давление по ранее рассчитанному давлению на выходе из клапана и Qinj.
- 8. Расчет давления на входе в клапан по известному давлению на выходе и расходу газа

$$P_{\text{in(valve)}} = f(P_{\text{out(valve)}}, Q_{\text{inj}}, d_{\text{valve}})$$

9. Расчет распределения давления по ЭК от глубины спуска клапана (Hvalve) до устья. Определение затрубного давления.

$$P_{ann} = \int_{H_{valve}}^{0} \frac{dP}{dH} f(P_{in(valve)}, Q_{inj}, T_{valve}, d_{cas} - d_{tub}, ...)$$

Оптимизация газлифтной скважины

