

Electrical Engingeering, Signal Processing Systems group

Part 1: Random variables and Random Signals

Part 1

Random Variables and Random Signals

Lecture 1: Probability and Random Variables

Lecture 2: Random vectors, Random processes

and random signals

Lecture 3: Rational signal models

Part 1: Random variables and Random Signals

Part 1

Random Variables and Random Signals

Lecture 2: Random vectors, Random processes and random signals

Part A: Pairs of random variables

Part B: Random vectors, random processes and random signals

Pairs of random variables

Lecture 2, Part A

Outline

- Functions of random variables
- Pairs random variables
 - Joint probability distribution and expected values
- Conditional probability distributions
- Marginalization
- Central limit theorem

Functions of random variables

- What happens when I manipulate a random variable?
 - The probability distribution as well as the statistical properties may change

If X is a random a variable and g is a function, then

DISCRETE RVs:
$$E[g(X)] = \sum_{x \in S_Y} g(x)p_X(x)$$

CONTINOUS RVs:
$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)p_X(x)dx$$

Functions of random variables

- What happens when I manipulate a random variable?
 - The probability distribution as well as the statistical properties may change

Example:
$$g(x) = x^m$$

Example:
$$g(x) = x^m$$

$$E[X^m] = \sum_{x \in S_X} x^m p_X(x)$$

Example:
$$g(x) = Y = aX + b$$

a, b deterministic constants

$$E[g(x)] = E[aX + b] = aE[X] + b = a\mu_x + b$$

$$var[g(x)] = var[aX + b] = a^2 var[X]$$

Pairs of random variables: introduction

- A stochastic process may involve multiple random variables
 - Multiple random variables associated to the same stochastic process are called joint random variables
 - The probability model of joint random variables contains properties of the individual random variables and the relationships among them

Pairs of random variables: example

Random process: rolling two dice

Y = [sum of the upward faces] $D_1 = \text{number on first die}$ $D_2 = \text{number on second die}$

$$Y = D_1 + D_2$$

Pairs of random variables: CDF

The joint CDF for a pair of random variables X and Y is given by

$$P_{X,Y}(x,y) = \Pr[X \le x, Y \le y]$$

Properties

- 1. $0 \le P_{x,y}(x,y) \le 1$
- 2. $P_{X,Y}(\infty,\infty) = 1$ and $P_{X,Y}(x,-\infty) = P_{X,Y}(-\infty,y) = 0$
- **3.** $P_X(x) = P_{X,Y}(x,\infty)$ and $P_Y(y) = P_{X,Y}(\infty,y)$
- 4. CDF is non-decreasing, i.e., for $x \le x_0$ and $y \le y_0$ it holds $P_{X,Y}(x,y) \le P_{X,Y}(x_0,y_0)$

Pairs of random variables: PMF and PDF

The joint PMF for a pair of **discrete** random variables X and Y is given by

$$p_{X,Y}(x,y) = \Pr[X = x, Y = y]$$

The joint PDF for a pair of continuous random variables X and Y is given by

$$p_{X,Y}(x,y) = \frac{\partial^2 P_{X,Y}(x,y)}{\partial x \partial y}$$

Statistical description of random vectors

The **covariance** is a measure of the dependence between two random variables

$$Cov[X, Y] = E[(X - \mu_X)(Y - \mu_y)] =$$

DISCRETE RV
$$= \sum_{y \in S_y} \sum_{x \in S_x} (x - \mu_x) (y - \mu_y) p_{X,Y}(x,y)$$

continuous rv
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_x) (y - \mu_y) p_{X,Y}(x,y) dx dy$$

$$X_1 \sim N(0,1)$$

 $X_2 \sim N(0,1)$

$$p^{1}_{X_{1},X_{2}}(x_{1},x_{2})$$

$$X_1 \sim N(0,1)$$

 $X_2 \sim N(0,1)$

$$p^{1}_{X_{1},X_{2}}(x_{1},x_{2})$$

$$X_1 \sim N(0,1)$$

 $X_2 \sim N(0,1)$

$$p^2_{X_1,X_2}(x_1,x_2)$$

Covariance and correlation

The **covariance** is a measure of the dependence between two random variables

$$Cov[X, Y] = E[(X - \mu_X)(Y - \mu_Y)] =$$

$$= E[XY] - \mu_X \mu_Y = r_{X,Y} - \mu_X \mu_Y$$

With $r_{x,y}$ called **correlation** $r_{X,Y} = E[XY]$

X,Y Real-valued random variables

Covariance and correlation (general)

The **covariance** is a measure of the dependence between two random variables

$$Cov[X, Y] = E[(X - \mu_X)(Y - \mu_Y)^*] =$$

$$= E[XY^*] - \mu_X \mu_Y^* = r_{X,Y} - \mu_X \mu_Y^*$$

With $r_{x,y}$ called **correlation** $r_{X,Y} = E[XY^*]$

X,Y Complex-valued random variables

Uncorrelated and orthogonal random variables

Two random variables are uncorrelated if

$$Cov[X, Y] = 0$$

And orthogonal if

$$r_{X,Y} = 0$$

Correlation coefficient

To express the relationship between two random variables independently from their variance, we use the **normalized correlation coefficient**

$$\rho_{X,Y} = \frac{\text{Cov}[X,Y]}{\sqrt{\text{Var}[X]\text{Var}[Y]}} = \frac{\text{Cov}[X,Y]}{\sigma_X \sigma_Y}.$$

The correlation coefficient is bounded between -1 and 1

$$-1 \le \rho_{X,Y} \le 1$$
.

Example: force measurement

Example: force measurement

Joint probability distribution: example

Random process: rolling two dice

 D_1 = number on first die D_2 = number on second die

$$p_{D_1,D_2}(d_1,d_2) = \begin{cases} 1/36 & \text{for } d_1 = 1,...,6; d_2 = 1,...,6 \\ 0 & \text{elsewhere} \end{cases}$$

Conditional probability distributions

Given the a priori knowledge that an event set B, with probability Pr[B], has occurred we can define

Conditional probability function:
$$p_{X,Y}(x,y|B) = \begin{cases} \frac{p_{X,Y}(x,y)}{\Pr[B]} & (x,y) \in B \\ 0 & elsewhere \end{cases}$$

The event set B becomes the sample space!

Conditional probability distributions: example

Random process: rolling two dice

 D_1 = number on first die D_2 = number on second die

$$p_{D_1,D_2}(d_1,d_2) = 1/36$$
 for $d_1 = 1,...,6; d_2 = 1,...,6$

 $B=\{d_1 \text{ even}, d_2 \text{ even}\}$

 d_1 and d_2 are independent: $Pr[B] = Pr[\{d_1 \ even\}] Pr[\{d_2 \ even\}] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

Conditional probability distributions

Given that Y is observed, we can define the following conditional probability distributions

Conditional PMF:
$$p_{X|Y}(x | y) = \Pr[X = x | Y = y] = \frac{\Pr[X = x, Y = y]}{\Pr[Y = y]} = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}.$$

Conditional PDF:
$$p_{X|Y}(x \mid y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

Marginalization

To obtain the probability function of a random variable of interest, we "marginalize" over all other random variables

Discrete RVs
$$p_X(x) = \sum_{y \in S_Y} p_{X,Y}(x,y)$$

Continuous RVs
$$p_X(x) = \int_{-\infty}^{\infty} p_{X,Y}(x,y) dy$$
.

Joint random variables: example

Random process: rolling two dice

 D_1 = number on first die D_2 = number on second die $Y = D_1 + D_2$

$$p_{D_1,Y}(d_1, y) = 1/36$$
 for $d_1 = 1, ..., 6$; $y = 1 + d_1, ..., 6 + d_1$

Joint random variables: example

Random process: rolling two dice

 D_1 = number on first die

 D_2 = number on second die

$$Y = D_1 + D_2$$

$$p_{D_1,Y}(d_1, y) = 1/36$$
 for $d_1 = 1,...,6$; $y = 1 + d_1,...,6 + d_1$

$$D_1 = d_1$$

$$p_{Y|D_1}(y \mid d_1) = \frac{p_{D_1,Y}(d_1,y)}{p_{D_1}(d_1)}$$

Random process: rolling two dice

 D_1 = number on first die

 D_2 = number on second die

$$Y = D_1 + D_2$$

$$p_{D_1,y}(d_1, y) = 1/36$$
 for $d_1 = 1,...,6$; $y = 1 + d_1,...,6 + d_1$

$$p_{D_1}(d_1) = \sum_{y \in S_Y} p_{D_1,Y}(d_1,y)$$

$$p_{D_1}(d_1) = \sum_{y \in S_Y} p_{D_1,Y}(d_1,y)$$

Random process: rolling two dice

 D_1 = number on first die

 D_2 = number on second die

$$Y = D_1 + D_2$$

$$p_{D_1,y}(d_1, y) = 1/36$$
 for $d_1 = 1,...,6$; $y = 1 + d_1,...,6 + d_1$

$$p_{D_1}(d_1) = \sum_{y \in S_Y} p_{D_1,Y}(d_1,y)$$

$$p_{Y}(y) = \sum_{d_{1} \in S_{D_{1}}} p_{D_{1},Y}(d_{1},y)$$

$$p_{Y}(y) = \sum_{d_{1} \in S_{D_{1}}} p_{D_{1},Y}(d_{1},y)$$

Random process: rolling two dice

 D_1 = number on first die

 D_2 = number on second die

$$Y = D_1 + D_2$$

$$p_{D_1,y}(d_1, y) = 1/36$$
 for $d_1 = 1,...,6$; $y = 1 + d_1,...,6 + d_1$

$$p_{D_1}(d_1) = \sum_{y \in S_Y} p_{D_1,Y}(d_1,y)$$

$$p_{Y}(y) = \sum_{d_{1} \in S_{D_{1}}} p_{D_{1},Y}(d_{1},y)$$

Conditional PMF: example

Random process: rolling two dice

 D_1 = number on first die

 D_2 = number on second die

$$Y = D_1 + D_2$$

$$p_{D_1,y}(d_1, y) = 1/36$$
 for $d_1 = 1,...,6$; $y = 1 + d_1,...,6 + d_1$

$$D_1 = d_1$$

$$p_{Y|D_1}(y \mid d_1) = \frac{p_{D_1,Y}(d_1,y)}{p_{D_1}(d_1)}$$

Conditional PMF: example

$$p_{D_1,Y}(d_1, y) = 1/36$$
 for $d_1 = 1, ..., 6$; $y = 1 + d_1, ..., 6 + d_1$

$$D_1 = d_1$$

$$p_{Y|D_1}(y \mid d_1 = 4) = \frac{p_{D_1,Y}(d_1, y)}{p_{D_1}(d_1 = 4)}$$

Conditional PMF: example

$$p_{D_1,Y}(d_1, y) = 1/36$$
 for $d_1 = 1, ..., 6; y = 1 + d_1, ..., 6 + d_1$

$$D_1 = d_1$$

$$p_{Y|D_1}(y \mid d_1 = 4) = \frac{p_{D_1,Y}(d_1, y)}{p_{D_1}(d_1 = 4)}$$

$$p_{Y|D_1}(y \mid d_1) = \begin{cases} \frac{p_{D_1,Y}(d_1,y)}{p_{D_1}(d_1)} = \frac{1/36}{1/6} & \text{for } y = 1+d_1,...,6+d_1\\ 0 & \text{elsewhere} \end{cases}$$

Conditional PMF: example

$$p_{D_0,y}(d_1,y) = 1/36$$
 for $d_1 = 1,...,6$; $y = 1 + d_1,...,6 + d_1$

$$D_1 = d_1$$

$$p_{Y|D_1}(y \mid d_1 = 4) = \frac{p_{D_1,Y}(d_1, y)}{p_{D_1}(d_1 = 4)}$$

$$p_{Y|D_1}(y \mid d_1) = \begin{cases} \frac{p_{D_1,Y}(d_1,y)}{p_{D_1}(d_1)} = \frac{1/36}{1/6} & \text{for } y = 1+d_1,...,6+d_1\\ 0 & \text{elsewhere} \end{cases}$$

Central limit theorem (classic)

Let $X_1, X_2, ..., X_N$ be a set of N independent identically-distributed (i.i.d) random variables and each X_i has an arbitrary probability distribution $p(x_1, x_2, ..., x_n)$ with finite mean $\mu_i = \mu$ and finite standard deviation $\sigma_i = \sigma$.

If the sample size N is "sufficiently large", then the CDF of the sum converges to a Gaussian CDF

Examples

The normalized sum of a **sufficient** number of *i.i.d* random variables tends to a Gaussian distribution.

X~Uniform(2,10)

Uniform distribution

Continous or discrete uniform distribution: used to model equally likely events

$$X^{\sim}$$
Uniform (a,b)

$$p_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$

Examples

The normalized sum of a **sufficient** number of *i.i.d* random variables tends to a Gaussian distribution.

X~Uniform(2,10)

Exponential distribution

 Continuous exponential distribution: used to model the amount of time until some specific event occurs

 X^{\sim} Exponential(λ)

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases} \quad \lambda > 0$$

Example

The normalized sum of a sufficient number of i.i.d random variables tends to a Gaussian distribution.

X~Exponential(4)

Central limit theorem (Lyapunov)

Let $X_1, X_2, ..., X_N$ be a set of N independent and each X_i has an arbitrary probability distribution $p(x_1, x_2, ..., x_N)$ with finite mean μ_i and finite standard deviation σ_i .

If the sample size N is **sufficiently large**, and the **Lyapunov condition is satisfied**, then the CDF of the sum converges to a Gaussian CDF

$$X = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$P_{X} \xrightarrow{N} \mathcal{N} \left(\mu_{X}, \sigma_{X}\right)$$
with:
$$\mu_{X} = \frac{1}{N} \sum_{i=1}^{N} \mu_{i}$$

$$\sigma_{X}^{2} = \frac{1}{N^{2}} \sum_{i=1}^{N} \sigma_{i}^{2}$$

Lyapunov condition

Given $X_1, X_2, ..., X_N$ a set of N **independent** with finite mean μ_i and finite standard deviation σ_i , and defining:

$$S_n^2 = \sum_{i=1}^n \sigma_i^2$$

For some $\delta > 0$, the **Lyapunov condition** is a satisfied when

$$\lim_{n\to\infty} \frac{1}{S_n^{2+\delta}} \sum_{i=1}^n E\left[\left|X_i - \mu_i\right|^{2+\delta}\right] = 0$$

Lyapunov condition

Given $X_1, X_2, ..., X_N$ a set of N **independent** with finite mean μ_i and finite standard deviation σ_i , and defining:

$$S_n^2 = \sum_{i=1}^n$$
 The Lyapunov condition puts a limit on the rate of growth of the moments

$$\lim_{n\to\infty} \frac{1}{S_n^{2+\delta}} \sum_{i=1}^n E\left[\left|X_i - \mu_i\right|^{2+\delta}\right] = 0$$

In simple words..

- All CLT formulations essentially state that the sum of multiple random variables converges to a gaussian distribution, provided that:
 - The number of random variables is "sufficiently large"
 - They are not too correlated
 - The variables are not too large (Lyapunov quantifies this by imposing a condition on the moments)

The normalized sum of a sufficient number of independent random variables tends to a Gaussian distribution.

X~Uniform(a_i,b_i)

The normalized sum of a sufficient number of independent random variables tends to a Gaussian distribution.

 $X^{\sim}Exponential(\lambda_i)$

The normalized sum of a sufficient number of independent random variables tends to a Gaussian distribution.

X ~ mix of uniform and exponential

X ~ mix of uniform and exponential

Application CLT

- If we sum multiple random variables, however distributed, we can apply the central limit theorem to obtain the full probability model (Gaussian with known expected value and variance)
- In practice: any random variable resulting from the sum of multiple random variables (e.g., multiple noise sources affecting a measurement) can be considered gaussian distributed
- From the obtained Gaussian probability model, we can perform easy an accurate calculations

Gaussian (normal) distribution

N (
$$\mu$$
, σ^2): $p_x(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

- μ : mean
- σ : standard deviation

•
$$Pr[-\sigma < T < \sigma] \sim 68.2\%$$

•
$$Pr[-2\sigma < T < 2\sigma] \sim 95.4\%$$

•
$$Pr[-3\sigma < T < 3\sigma] \sim 99.7\%$$

Gaussian (normal) distribution: Q-function

• The **standard** normal distribution, also called **z-distribution** is a normal distribution with *zero-mean* and *unit variance* (standard deviation)

$$Z = \frac{X - \mu_X}{\sigma_X}$$

- *X*, gaussian random variable
- μ_X , mean of X
- σ_X , standard deviation
- The Q-function is the tail distribution function of the standard normal distribution

$$Q(x) = \Pr[X > x] = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{u^{2}}{2}} du$$

Gaussian (normal) distribution: Q-function

$$Q(x) = \Pr[X > x] = \frac{1}{\sqrt{2\pi 1^2}} \int_x^{\infty} e^{-\frac{(u-0)^2}{2 \cdot 1^2}} du$$

Gaussian (normal) distribution: Q-function

$$Q(x) = \Pr[X > x] = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{u^2}{2}} du = 1 - Q(-x) = 1 - \Phi(x)$$
CDF of star normal distr

x

CDF of <u>standard</u> normal distribution

Application CLT: example

A compact disc (CD) contains digitized samples of an acoustic waveform.

- In a CD player with a "one-bit digital to analog converter,"
 each digital sample is represented to an accuracy of ±0.5 mV.
- The CD player "oversamples" the waveform by making eight independent measurements corresponding to each sample.
- The CD player obtains a waveform sample by calculating the average (sample mean) of the eight measurements.

What is the probability that the error in the waveform sample is greater than 0.1 mV?

Application CLT: example

- Each digital sample is represented to an accuracy of ±0.5 mV
- With can model each measurement with a uniform distribution

Application CLT: example

- Approach 1: we don't know the CLT...
 - Calculate exact probability model
 - Eightfold convolution of the uniform PDF [out of scope]
 - Moment generating function method [out of scope]
- Approach 2: use the CLT!
 - Calculate the expected mean and variance of the sum of random variables
 - Model the sum as Gaussian probability function
 - Use Gaussian CDF (or Q function) to calculate probability

Measurements X_i have all uniform distribution between v-0.5 mV and v + 0.5 mV

$$E[X_i] = \frac{a+b}{2}$$

$$Var[X_i] = \frac{1}{12}(b-a)^2$$

Measurements X_i have all uniform distribution between v-0.5 mV and v + 0.5 mV

$$E[X_i] = \frac{a+b}{2} = \frac{v - 0.5 + v + 0.5}{2} = \frac{2v}{2} = v$$

$$Var[X_i] = \frac{1}{12}(b-a)^2 = \frac{1}{12}(v-0.5-(v-0.5))^2 = \frac{1}{12}$$

- Measurements X_i have all uniform distribution between v-0.5 mV and v + 0.5 mV
- Output *U* of CD player:

$$U = \frac{1}{8} \sum_{i=1}^{8} X_i$$

• Using central limit theorem:

$$E[U] = 8E[X_i]/8 = v$$

 $var[U] = 8 var[X_i]/64 = 1/8 \cdot 1/12 = 1/96$

Output U is approximately Gaussian with mean v and variance 1/96

- We want to know Pr[|U-v|>0.1]
- Output U is approximately Gaussian with mean v and variance 1/96

Error random variable U - v is approximately Gaussian with mean 0 and variance 1/96

$$Pr[|U-v| > 0.1]$$

standardization

$$\Pr[|U - v| > 0.1] = 2 \cdot Q\left(\frac{0.1 - 0}{\sqrt{1/96}}\right)$$

standardization

$$\Pr[|U-v| > 0.1] = 2 \cdot Q\left(\frac{0.1-0}{\sqrt{1/96}}\right) = 2 \cdot \left(1 - \Phi\left(\frac{0.1}{\sqrt{1/96}}\right)\right) = 0.3272$$

Wrap up (I)

- If we a apply a function to a random variable, the probability model as well as the moments may change
- Stochastic process involving pairs of random variables can be described by joint probability models
- Given a joint probability distribution, and an observed event or random variable, we can define conditional probability distributions
- The operation of marginalization permits calculating the probability distribution of an individual random variable, given the joint probability distribution

Wrap up (II)

- The central limit theorem allows to assume a gaussian probability distribution as the result of summing "many", "not-to-correlated", "not-too-large" random variables
- The standard normal random variable is defined as a normal random variable with zero mean and unit variance
- The Q-function is the tail distribution function of the standard normal distribution

Electrical Engingeering, Signal Processing Systems group