SEQUENCE LISTING

<110> Steward, Lance E. Aoki, K. Roger Sachs, George

<120> Compositions and Methods for the Treatment of Pancreatitis

<130> 17282 CIP

<140> 09/548,409

<141> 2000-04-13

<150> 09/288,326

<151> 1999-04-08

<160> 12

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 129

<212> PRT

<213> Homo sapiens

<400> 1

Ser Glu Gln Glu Asn Cys Glu Leu Ile Ser Thr Ile Asn Gly Met Asn

Ser Gly Val Cys Leu Cys Val Leu Met/Ala Val Leu Ala Ala Gly Ala

Leu Thr Gln Pro Val Pro Pro Ala Asp Pro Ala Gly Ser Gly Leu Gln 40

Arg Ala Glu Glu Ala Pro Arg Arg Gln Leu Arg Val Ser Gln Arg Thr

Asp Gly Glu Ser Arg Ala His Led Gly Ala Leu Leu Ala Arg Tyr Ile 75 70

Gln Gln Ala Arg Lys Ala Pro Ser Gly Arg Met Ser Ile Val Lys Asn 90 85

Leu Gln Asn Leu Asp Pro Ser/His Arg Ile Ser Asp Arg Asp Tyr Met 105

Gly Trp Met Asp Phe Gly Arg Arg Ser Ala Glu Glu Tyr Glu Tyr Pro 115 120

Ser

<210> 2

<211> 58

<212> PRT

<213> Homo sapi/ens

<400> 2

Val Ser Gln Arg Thr/Asp Gly Glu Ser Arg Ala His Leu Gly Ala Leu

Leu Ala Arg Tyr Ile Gln Gln Ala Arg Lys Ala Pro Ser Gly Arg Met ₉₃ 25 20

RECEIVED

AUG 2 9 2001

TECH CENTER 1600/2900

Steward et al Serial No. 09/548,409

```
Ser Ile Val Lys Asn Leu Gln Asn Leu Asp Pro Ser His Arg Ile Ser
Asp Arg Asp Tyr Met Gly Trp Met Asp Phe
                        55
      <210> 3
      <211> 39
      <212> PRT
      <213> Homo sapiens
      <400> 3
Tyr Ile Gln Gln Ala Arg Lys Ala Pro Ser Gly Arg Met Ser Ile Val
                 5
                                    10
1
Lys Asn Leu Gln Asn Leu Asp Pro Ser His Arg Ile Ser Asp Arg Asp
                                25
Tyr Met Gly Trp Met Asp Phe
       35
      <210> 4
      <211> 33
      <212> PRT
      <213> Homo sapiens
      <400> 4
Lys Ala Pro Ser Gly Arg Met Ser Ile Val Lys Asn Leu Gln Asn Leu
Asp Pro Ser His Arg Ile Ser Asp Arg Asp Tyr Met Gly Trp Met Asp
                                25
            20
Phe
      <210> 5
      <211> 12
      <212> PRT
      <213> Homo sapiens
      <400> 5
Ile Ser Asp Arg Asp Tyr Met Gly Trp Met Asp Phe
     <210> 6
      <211> 9
      <212> PRT
      <213> Homo sapiens
     <400> 6
Arg Asp Tyr Met Gly Trp Met Asp Phe
 1
                 5
     <210> 7
     <211> 448
     <212> PRT
     <213> Clostridium botulinum
Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly
                                    10
```

Steward et al Serial No. 09/548,409

				.,	-										
Val	Asp	Ile	Ala 20	Tyr	Ile	Lys	Ile	Pro 25	Asn	Ala	Gly	Gln	Met 30	Gln	Pro
Val	Lys	Ala 35	Phe	Lys	Ile	His	Asn 40	Lys	Ile	Trp	Val	Ile 45	Pro	Glu	Arg
Asp	Thr 50	Phe	Thr	Asn	Pro	Glu 55	Glu	Gly	Asp	Leu	Asn 60	Pro	Pro	Pro	Glu
Ala 65	Lys	Gln	Val	Pro	Val 70	Ser	Tyr	Tyr	Asp	Ser 75	Thr	Tyr	Leu	Ser	Thr 80
Asp	Asn	Glu	Lys	Asp 85	Asn	Tyr	Leu	Lys	Gly 90	Val	Thr	Lys	Leu	Phe 95	Glu
			100					105				Thr	110		
		115					120					Thr 125			
	130					135					140	Asp	_		_
145					150					155		Ser			160
				165				_	170			Leu		175	
			180					185				Ser	190		
		195					200					Asn 205			
	210					215					220	Leu			
225					230					235		Ile			240
				245					250			Met		255	
			260					265				His	270		
		275					280					Tyr 285			
	290					295					300	Lys			
305					310					315		Phe			320
				325					330			Val		335	
			340					345				Tyr	350		-
		355					360					Thr 365			
	370					375					380	Lys			
385					390					395		Leu			400
				405					410			Phe		415	
			420					425				Leu	430		
GTÅ	тте	435	THE	ser	пур	THE	140	ser	ьeu	ASP	гÀг	Gly 445	TYT	ASN	пÀ2

<210> 8 <211> 423

3

Steward et al Serial No. 09/548,409

<212> PRT <213> Clostridium botulinum

	<4	100>	8												
1			Asp	5					10					15	
Ser	Pro	Ser	Glu 20	Asp	Asn	Phe	Thr	Asn 25	Asp	Leu	Asn	Lys	Gly 30	Glu	Glu
Ile	Thr	Ser 35	Asp	Thr	Asn	Ile	Glu 40	Ala	Ala	Glu	Glu	Asn 45	Ile	Ser	Leu
Asp	Leu 50	Ile	Gln	Gln	Tyr	Tyr 55	Leu	Thr	Phe	Asn	Phe 60	Asp	Asn	Glu	Pro
65			Ser		70					75					80
			Pro	85					90					95	
			Tyr 100					105					110		
		115	Ser				120					125			
	130		Ser			135					140				
145			Lys		150					155					160
			Tyr	165					170					175	
_	_		Ala 180					185					190		
		195	Gly				200					205			
	210		Gly			215					220				
225			Leu		230					235					240
			Val	245					250					255	
_	_		Glu 260					265					270		
		275	Gln				280	-				285			
	290		Ala			295					300				
305			Glu		310					315					320
			Lys	325					330					335	
	_		Leu 340					345					350		
		355	Gly		_	_	360		_		_	365			
	370		Leu			375					380				
385			Arg		390					395					400
			Gln	405			Tyr	Val	Asp 410	Asn	Gln	Arg	Leu	Leu 415	Ser
Thr	Phe	Thr	Glu	Tyr	Ile	Lys	•							n	

4

Docket No. 17282CIP(AOC)

Steward et al Serial No. 09/548,409

420

<210> 9 <211> 382 <212> PRT <213> Clostridium botulinum

<400> 9 Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu Val Ile Leu Lys Asn 10 Ala Ile Val Tyr Asn Ser Met Tyr Glu Asn Phe Ser Thr Ser Phe Trp Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile Ser Leu Asn Asn Glu Tyr 40 Thr Ile Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val Ser Leu 55 Asn Tyr Gly Glu Ile Ile Trp Thr Leu Gln Asp Thr Gln Glu Ile Lys 70 75 Gln Arg Val Val Phe Lys Tyr Ser Gln Met Ile Asn Ile Ser Asp Tyr 90 Ile Asn Arg Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Asn Asn 105 Ser Lys Ile Tyr Ile Asn Gly Arg Leu Ile Asp Gln Lys Pro Ile Ser 120 Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile Met Phe Lys Leu Asp 135 Gly Cys Arg Asp Thr His Arg Tyr Ile Trp Ile Lys Tyr Phe Asn Leu 150 155 Phe Asp Lys Glu Leu Asn Glu Lys Glu Ile Lys Asp Leu Tyr Asp Asn 165 170 Gln Ser Asn Ser Gly Ile Leu Lys Asp Phe Trp Gly Asp Tyr Leu Gln 185 Tyr Asp Lys Pro Tyr Tyr Met Leu Asn Leu Tyr Asp Pro Asn Lys Tyr 200 Val Asp Val Asn Asn Val Gly Ile Arg Gly Tyr Met Tyr Leu Lys Gly 215 220 Pro Arg Gly Ser Val Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser Leu 230 235 Tyr Arg Gly Thr Lys Phe Ile Ile Lys Lys Tyr Ala Ser Gly Asn Lys 245 250 Asp Asn Ile Val Arg Asn Asn Asp Arg Val Tyr Ile Asn Val Val 265 Lys Asn Lys Glu Tyr Arg Leu Ala Thr Asn Ala Ser Gln Ala Gly Val 280 Glu Lys Ile Leu Ser Ala Leu Glu Ile Pro Asp Val Gly Asn Leu Ser 295 300 Gln Val Val Met Lys Ser Lys Asn Asp Gln Gly Ile Thr Asn Lys 310 315 Cys Lys Met Asn Leu Gln Asp Asn Asn Gly Asn Asp Ile Gly Phe Ile 330 325 Gly Phe His Gln Phe Asn Asn Ile Ala Lys Leu Val Ala Ser Asn Trp 340 345 Tyr Asn Arg Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser Trp 360 Glu Phe Ile Pro Val Asp Asp Gly Trp Gly Glu Arg Pro Leu 375

Docket No. 17282CIP(AOC) PATENT

Steward et al Serial No. 09/548,409

<210> 10 <211> 4835 <212> DNA <213> Clostridium botulinum

<400> 10

<400> 10					
aagcttctaa atttaaatta	ttaagtataa	atccaaataa	acaatatgtt	caaaaacttg	60
atgaggtaat aatttctgta	ttagataata	tggaaaaata	tatagatata	tctgaagata	120
atagattgca actaatagat	aacaaaaata	acgcaaagaa	gatgataatt	agtaatgata	180
tatttatttc caattgttta	accctatctt	ataacggtaa	atatatatgt	ttatctatga	240
aagatgaaaa ccataattgg	atgatatgta	ataatgatat	gtcaaagtat	ttgtatttat	300
ggtcatttaa ataattaata	atttaattaa	ttttaaatat	tataagaggt	gttaaatatg	360
ccatttgtta ataaacaatt	taattataaa	gatcctgtaa	atggtgttga	tattgcttat	420
ataaaaattc caaatgcagg	acaaatgcaa	ccagtaaaag	cttttaaaat	tcataataaa	480
atatgggtta ttccagaaag	agatacattt	acaaatcctg	aagaaggaga	tttaaatcca	540
ccaccagaag caaaacaagt	tccagtttca	tattatgatt	caacatattt	aagtacagat	600
aatgaaaaag ataattattt	aaagggagtt	acaaaattat	ttgagagaat	ttattcaact	660
gatcttggaa gaatgttgtt	aacatcaata	gtaaggggaa	taccattttg	gggtggaagt	720
acaatagata cagaattaaa	agttattgat	actaattgta	ttaatgtgat	acaaccagat	780
ggtagttata gatcagaaga	acttaatcta	gtaataatag	gaccctcagc	tgatattata	840
cagtttgaat gtaaaagctt	tggacatgaa	gttttgaatc	ttacgcgaaa	tggttatggc	900
tctactcaat acattagatt	tagcccagat	tttacatttg	gttttgagga	gtcacttgaa	960
gttgatacaa atcctctttt	aggtgcaggc	aaatttgcta	cagatccagc	agtaacatta	1020
gcacatgaac ttatacatgc	tggacataga	ttatatggaa	tagcaattaa	tccaaatagg	1080
gtttttaaag taaatactaa	tgcctattat	gaaatgagtg	ggttagaagt	aagctttgag	1140
gaacttagaa catttggggg	acatgatgca	aagtttatag	atagtttaca	ggaaaacgaa	1200
tttcgtctat attattataa	taagtttaaa	gatatagcaa	gtacacttaa	taaagctaaa	1260
tcaatagtag gtactactgc	ttcattacag	tatatgaaaa	atgtttttaa	agagaaatat	1320
ctcctatctg aagatacatc	tggaaaattt	tcggtagata	aattaaaatt	tgataagtta	1380
tacaaaatgt taacagagat	ttacacagag	gataattttg	ttaagttttt	taaagtactt	1440
aacagaaaaa catatttgaa	ttttgataaa	gccgtattta	agataaatat	agtacctaag	1500
gtaaattaca caatatatga	tggatttaat	ttaagaaata	caaatttagc	agcaaacttt	1560
aatggtcaaa atacagaaat	taataatatg	aattttacta	aactaaaaaa	ttttactgga	1620
ttgtttgaat tttataagtt	gctatgtgta	agagggataa	taacttctaa	aactaaatca	1680
ttagataaag gatacaataa	ggcattaaat	gatttatgta	tcaaagttaa	taattgggac	1740
ttgtttttta gtccttcaga	agataatttt	actaatgatc	taaataaagg	agaagaaatt	1800
acatctgata ctaatataga	agcagcagaa	gaaaatatta	gtttagattt	aatacaacaa	1860
tattatttaa cctttaattt	tgataatgaa	cctgaaaata	tttcaataga	aaatctttca	1920
agtgacatta taggccaatt	agaacttatg	cctaatatag	aaagatttcc	taatggaaaa	1980
aagtatgagt tagataaata	tactatgttc	cattatcttc	gtgctcaaga	atttgaacat	2040
ggtaaatcta ggattgcttt	aacaaattct	gttaacgaag	cattattaaa	tcctagtcgt	2100
gtttatacat ttttttcttc	agactatgta	aagaaagtta	ataaagctac	ggaggcagct	2160
atgtttttag gctgggtaga	acaattagta	tatgatttta	ccgatgaaac	tagcgaagta	2220
agtactacgg ataaaattgc	ggatataact	ataattattc	catatatagg	acctgcttta	2280
aatataggta atatgttata	taaagatgat	tttgtaggtg	ctttaatatt	ttcaggagct	2340
gttattctgt tagaatttat	accagagatt	gcaatacctg	tattaggtac	ttttgcactt	2400
gtatcatata ttgcgaataa	ggttctaacc	gttcaaacaa	tagataatgc	tttaagtaaa	2460
agaaatgaaa aatgggatga					2520
aatacacaga ttgatctaat					2580
gcaacaaagg ctataataaa	ctatcagtat	aatcaatata	ctgaggaaga	gaaaaataat	2640
attaatttta atattgatga	tttaagttcg	aaacttaatg	agtctataaa	taaagctatg	2700
attaatataa ataaattttt	-				2760
ccttatggtg ttaaacggtt	agaagatttt	gatgctagtc	ttaaagatgc	attattaaag	2820
tatatatatg ataatagagg					2880
aataatacac ttagtacaga	tatacctttt	cagctttcca	aatacgtaga	taatcaaaga	2940
ttattatcta catttactga					3000
agatatgaaa gtaatcattt	aatagactta	tctaggtatg	catcaaaaat	aaatattggt	3060
	•				

Docket No. 17282CIP(AOC)

Steward et al Serial No. 09/548,409

<210> 11

aqtaaagtaa attttgatcc aatagataaa aatcaaattc aattatttaa tttagaaagt 3120 agtaaaattg aggtaatttt aaaaaatgct attgtatata atagtatgta tgaaaatttt 3180 agtactagct tttggataag aattcctaag tattttaaca gtataagtct aaataatgaa 3240 3300 tatacaataa taaattgtat ggaaaataat tcaggatgga aagtatcact taattatggt 3360 qaaataatct ggactttaca ggatactcag gaaataaaac aaagagtagt ttttaaatac 3420 agtcaaatga ttaatatatc agattatata aacagatgga tttttgtaac tatcactaat 3480 aatagattaa ataactctaa aatttatata aatggaagat taatagatca aaaaccaatt tcaaatttag gtaatattca tgctagtaat aatataatgt ttaaattaga tggttgtaga 3540 gatacacata gatatatttg gataaaatat tttaatcttt ttgataagga attaaatgaa 3600 3660 aaagaaatca aagatttata tgataatcaa tcaaattcag gtattttaaa agacttttgg 3720 ggtgattatt tacaatatga taaaccatac tatatgttaa atttatatga tccaaataaa tatgtcgatg taaataatgt aggtattaga ggttatatgt atcttaaagg gcctagaggt 3780 agcgtaatga ctacaaacat ttatttaaat tcaagtttgt atagggggac aaaatttatt 3840 ataaaaaaat atgcttctgg aaataaagat aatattgtta gaaataatga tcgtgtatat 3900 attaatgtag tagttaaaaa taaagaatat aggttagcta ctaatgcatc acaggcaggc 3960 gtagaaaaaa tactaagtgc attagaaata cctgatgtag gaaatctaag tcaagtagta 4020 4080 gtaatgaagt caaaaaatga tcaaggaata acaaataaat gcaaaatgaa tttacaagat 4140 aataatggga atgatatagg ctttatagga tttcatcagt ttaataatat agctaaacta 4200 qtaqcaaqta attggtataa tagacaaata gaaagatcta gtaggacttt gggttgctca 4260 tgggaattta ttcctgtaga tgatggatgg ggagaaaggc cactgtaatt aatctcaaac 4320 tacatgagtc tgtcaagaat tttctgtaaa catccataaa aattttaaaa ttaatatgtt taagaataac tagatatgag tattgtttga actgcccctg tcaagtagac aggtaaaaaa 4380 ataaaaatta agatactatg gtctgatttc gatattctat cggagtcaga ccttttaact 4440 4500 tttcttgtat cctttttgta ttgtaaaact ctatgtattc atcaattgca agttccaatt agtcaaaatt atgaaacttt ctaagataat acatttctga ttttataatt tcccaaaatc 4560 cttccatagg accattatca atacatctac caactcgaga catactttga gttgcgccta 4620 tctcattaag tttattcttg aaagatttac ttgtatattg aaaaccgcta tcactgtgaa 4680 4740 aaagtggact agcatcagga ttggaggtaa ctgctttatc aaaggtttca aagacaagga cgttgttatt tgattttcca agtacatagg aaataatgct attatcatgc aaatcaagta 4800 4835 tttcactcaa gtacgccttt gtttcgtctg ttaac

```
CMA .
```