RTミドルウェア環境への 電子デバイスの導入を容易にする ためのUSB-GPIO, シリアル通信変換 コンポーネント

佐々木毅(芝浦工業大学)

1

背景と目的

RTシステムの開発ではセンサやLEDなどの電子部品、 モータなどのアクチュエータを利用

ワンボードコンピュータやワンボードマイコンを利用

2

背景と目的

- ワンボードコンピュータやワンボードマイコンの利用
 - プロトタイピングにおいて手間となる
 - 組込みシステムの知識が必要となり 初学者や専門外の者にとって障壁が高い
 - 教育においては本来学習させたい内容と異なるところに 時間を割く必要が生じる

PCのUSBポートを介してGPIOや シリアル通信機能を利用できる 変換ボードをコンポーネント化

(RTミドルウェアコンテスト作品の1つの見本)

3

5

関連研究 | RTno

- RTno: ArduinoをRTC対応デバイスとするライブラリ
 - RTnoライブラリ(Arduinoで通常のRTCと同様に プログラム記述を行うためのライブラリ)
 - RTnoProxyコンポーネント (PC上でArduinoと通信するコンポーネント)
- ポート入出力などのArduinoプログラムの記述や 回路の製作は開発者が行う必要がある
 - ✓ 自由度が高い
 - 必要に応じてRTCのポート数や型を変更したり、 Arduino側である程度までの処理をさせたりが可能 ※ポートの型やコンフィギュレーションなどに制約もある
 - × Arduinoマイコンのプログラミングの知識が必要
 - 特有の記述、開発言語の限定

4

(参考) 高等学校情報科教科書における プログラミング対応 ※2022年度よりプログラミング教育必修化

出版社	プログラミング言語	備考
東京書籍	Python, JavaScript, Scratch, (VBA, Swift, ドリトル, micro:bit)	・Python & JSと、Python & Scratchの教科書を出版・7種の言語で学べる頁あり
実教出版	Python, JavaScript, Scratch, VBA	・言語ごとに教科書を出版
開隆堂出版	VBA	
数研出版	Python, JavaScript, VBA	
日本文教出版	Python, JavaScript	
第一学習社	VBA, (Python)	

Arduino言語はC/C++ベースの言語だが、 C/C++による開発に必ずしも慣れていない可能性も

関連研究 | HOTMOCKコンポーネント

- (株)ホロンクリエイトのプロトタイピングツール 「HOTMOCK」をコンポーネント化
 - ✓ 電子工作不要(電子部品をコネクタに接続)
 - ✓ プログラミング不要(開発したコンポーネントを利用)
 - × HOTMOCKで用意されている素子に限定
 - × 高価(約10万円)

6

本作品のアプローチ

- USBを介して素子と信号の送受信を行うことができる変換ボードをコンポーネント化
- デバイス入出力(センサ出力の取得やモータへの指令など)まで をコンポーネントの機能として提供

	RTno	нотмоск	USB-GPIO
電子工作	必要	不要	必要 🦳
マイコン プログラミング	必要	不要	不要

素子の種類は制限しない

開発はPCで完結

コンポーネント開発 | ハードウェア

- Adafruit FT232H Breakoutボード
- インタフェース
 - USB Type-CでPCと接続
 - ディジタルI/O: 12 (C0~C7, D4~D7)
 - SPIもしくはI2C通信(スイッチで切り替え)
 - Qwiicコネクタ

□ GPIO

ロシリアル通信用

ポート □ Qwiic

☐ 5V, 3.3V, GND

8

コンポーネント開発 | ハードウェア

- Adafruit MCP2221A Breakoutボード
- インタフェース
 - USB Type-CでPCと接続
 - ディジタルI/O: 4、アナログIN: 3、OUT: 1 (G0~G3)
 - I2C通信、UART通信
 - Qwiicコネクタ

☐ GPIO

ロ シリアル通信用 ポート

☐ Qwiic

コンポーネント開発|設計・実装

- OpenRTM-aist Python版で実装
- PythonでCircuitPython APIを利用可能とする Blinkaライブラリを用いた
 - 様々なOS (Windows, Linux, Mac)で利用可能

(補足)コンポーネント開発 | GPIO機能

- D4~D7に対する入出カポートは、それぞれ Highなら1, Lowなら0を入力もしくは出力
- CO~C7に対する入出力ポートは、C7から順に Highとする場合は1、Lowとする場合は0とした 8ビットの値を入力もしくは出力
 - 例) C7, C5, C4がHigh、他がLowの場合

入力もしくは出力

コンポーネントの利用例

(参考)デバイスの比較

	Arduino Uno	нотмоск	FT2332H Breakout	MCP2221A Breakout
サイズ [mm]	74.9×53.3×12.0	43.5×54.5×21.0*1	23.0×39.0×4.0*2	27.0×17.7×5.0*2
ピンの機能	ディジタルIO アナログ入力 PWM出力 UART, SPI, I ² C	ディジタルIO アナログIO パルス入力 I ² C ^{*3}	ディジタルIO SPI, I ² C, (Qwiic)	ディジタルIO アナログIO UART, I ² C, (Qwiic)
開発	Arduino言語	ソケット通信	CircuitPython	CircuitPython
価格	約3,000円*4 (\$23.00)	99,000円	約2,000円 (\$14.95)	約900円 (\$6.50)

- *1) ディジタルボード、アナログボードのもの
- *2) ピンヘッダ含まず
- *3) 搭載ポートの種類はボードのタイプによる
- *4) 互換ボードは約2,000円

10

コンポーネント開発 | GPIO機能

- C0~C7に対してはまとめて1つの、D4~D7、G0~G3 に対してはピンごとに1つの入出力を割り当て、状況に 応じて使い分けられるようにした
 - いずれもピンの状態(High/Low、アナログ電圧)に対応する 整数を入出力

※Adafruit FT2332H Breakoutの場合の例

コンフィギュレーション変数で各ピンを入力、出力の どちらとして用いるのかを選択

12

コンポーネント開発 | シリアル通信機能

- 入力と出力にそれぞれ1つのTimedOctetSeg型ポート を割り当て
- SPI, I²C, UART通信を利用するかや通信パラメータは コンフィギュレーション変数で指定

※Adafruit FT2332H Breakoutの場合の例

コンフィギュレーション変数で通信パラメータを指定 (例: I2C通信のデバイスアドレス)

14

まとめ

13

• PCのUSBポートに接続することで GPIOやシリアル通信を利用できる 変換ボードのRTコンポーネント

コンポーネント1つでも 良い

RTM普及への貢献

- Adafruitボード各種も使える
- マイコンプログラミングを行うことなく
 - 電子部品を利用可能 - 初学者の導入
 - 異分野の参入
- 各機能の利用例を挙げ、 コンポーネントの汎用性・拡張性 を示した

RTMを使う or RTCとする意味

研究発表でなくても良い ビジネス展開が見えるとなお良い