Documentación del Proyecto ETL con CSV de Nvidia

Tu Nombre

28 de agosto de 2025

Índice general

1	Introducción	2					
2	Dataset de Nvidia2.1 Descripción						
3	Herramientas utilizadas	2					
4	ctura del proyecto						
5	Flujo ETL 5.1 Extract	3					
6	Prompts de ChatGPT más relevantes						
7	Resultados	4					
8	Conclusiones	4					

1 Introducción

El presente proyecto consiste en un flujo ETL (**Extract, Transform, Load**) para procesar datos históricos de acciones de Nvidia. El objetivo principal fue leer un archivo CSV, limpiar y transformar los datos, y finalmente generar un nuevo CSV listo para análisis posteriores.

2 Dataset de Nvidia

El proyecto utiliza un conjunto de datos históricos de las acciones de Nvidia.¹

2.1 Descripción

Este dataset contiene información diaria de las acciones de Nvidia desde 1999 hasta 2024. Es útil para análisis financieros, predicciones de precios y estudios de tendencias del mercado.

2.2 Columnas del dataset

• Date: Fecha de la transacción.

• Open: Precio de apertura de la acción.

• High: Precio máximo alcanzado durante el día.

• Low: Precio mínimo alcanzado durante el día.

• Close: Precio de cierre de la acción.

• Adj Close: Precio de cierre ajustado por dividendos y splits.

• Volume: Número de acciones negociadas.

2.3 Ejemplo de filas

Date	Open	High	Low	Close	Adj Close	Volume
2024-12-31	150.00	155.00	149.00	153.00	153.00	200000
2024-12-30	148.50	151.00	147.00	150.50	150.50	180000

3 Herramientas utilizadas

- Python 3.12 para la implementación del flujo ETL.
- Pandas para manipulación y transformación de datos.
- Vim como editor de código.
- Git y GitHub para control de versiones y gestión de ramas (main, develop, release).
- ChatGPT para apoyo en la programación, depuración de errores y recomendaciones de flujo ETL.

¹https://www.kaggle.com/datasets/ranugadisansagamage/nividia-stock

4 Estructura del proyecto

- Config/config.py
- Extract/extractor.py
- Extract/Files/Nvidia.csv
- Transform/transformer.py
- Load/loader.py
- main.py

5 Flujo ETL

5.1 Extract

Se implementó la clase Extractor en Extract/extractor.py, que lee el CSV original (Nvidia.csv) y retorna un DataFrame de Pandas.

5.2 Transform

La clase Transformer en Transform/transformer.py realiza:

- Conversión de la columna Date a tipo datetime64[ns].
- Ordenación por fecha.
- Relleno de valores nulos.
- Cálculo de nuevas columnas:
 - Daily Change = Close Open
 - Percent Change = $\frac{Close-Open}{Open} \times 100$

5.3 Load

La clase Loader en Load/loader.py guarda el DataFrame final en un nuevo CSV llamado Nvidia_clean.csv en la carpeta Extract/Files/.

6 Prompts de ChatGPT más relevantes

- Depurar errores de rutas y lectura de CSV.
- Ajustar transformaciones de pandas para evitar errores con datetime64.
- Comandos de Git para el trabajo con ramas (main, develop, release).

7 Resultados

Al ejecutar el script principal:

python3 main.py

Se obtiene:

- Archivo limpio: Extract/Files/Nvidia_clean.csv
- Columnas originales más Daily Change y Percent Change
- 5872 filas procesadas correctamente

8 Conclusiones

El proyecto demuestra cómo construir un flujo ETL modular y reproducible usando Python. El uso de ChatGPT facilitó la depuración y la optimización de rutas y transformaciones. La gestión de ramas en Git permite un desarrollo ordenado y preparación de releases.