1. Answer

$$R_{1conv} = 1 / h_1 A_1 = 0.4 \text{ °C/W}$$

$$R_{\text{foam}} = L_{\text{foam}} / k_{\text{foam}} A_1 = 4.6 \text{ °C/W}$$

$$R_{plaster up} = R_{plaster down} = L_{plaster} / k_{plaster} A_{plaster} = 96.9 \text{ °C/W}$$

$$R_{brick} = L_{brick} / k_{brick} A_{brick} = 2 °C/W$$

$$1/\ R_{tot,parallel}$$
 = ($1/\ R_{plaster\,up}$) + ($1/\ R_{plaster\,down}$) + ($1/\ R_{brick}$) = 0,5 W/°C

$$R_{tot.parallel} = 1,9 \text{ °C/W}$$

$$R_{plaster \ left} = R_{plaster \ right} = L_{plaster} \, / \, k_{plaster} \, A_{plaster} = 0.3 \, ^{\circ}C/W$$

$$R_{2conv} = 1 / h_2 A_1 = 0,1 \text{ °C/W}$$

$$R_{\text{wall tot}} = R_{1\text{conv}} + R_{\text{foam}} + R_{\text{plaster left}} + R_{\text{tot parallel}} + R_{\text{plaster right}} + R_{2\text{ conv}} = 7,7 \circ_{\text{C/W}}$$

$$Q_{dot} = (T_1 - T_{\infty}) / R_{wall tot} = 3.8 W$$

If we compare the result with the previous one (16mm) we can observe that:

$$Q_{dot} = (T_1 - T_{\infty}) / R_{wall tot(16mm)} = 4.4 W$$

 $(R_{\text{wall tot}(16\text{mm})} = 6.8 \text{ °C/W})$

The thermal resistance of the wall don't increase significantly just doubling the thickness of the bricks.

2. Answer

	Wood	Insulation
Outside air	0,03	0.03
Wood Bevel (13x200mm)	0.14	0.14
Polywood (13mm)	0.11	0.11
Urethane Rigif foam insulat.(90mm)	-	3.52
Wood studs (90mm)	0.63	-
Gypsum board (13mm)	0.079	0.079
Inside surface	0.12	0.12

$$R'_{wood} = 1.109 \text{ m}^2 \, {}^{\circ}\text{C} / W$$

R'
$$_{insulation}$$
 =4 m^2 °C / W