ANÁLISE DE DECISÃO E RISCO - LISTA 2

Matheus Oliveira Meirim

mmeirim@outlook.com

Os códigos desenvolvidos para realizar a lista estão disponíveis neste repositório do github.

Questão 2

Item (a)

É possível ver, a partir do gráfico que função é côncava, indicando que o funcional de preferência da multinacional é Avesso à Risco.

Item (b)

A árvore de decisão do processo decisório considerando a utilidade \boldsymbol{u} pode ser vista abaixo.

Para econtrar a relação de preferência que maximiza a utilidade esperada, devemos calcular a utilidade esperada para cada uma das opções de investimento:

$$Util_X = U(3000 - 500) \cdot 0.5 + U(500 - 500) \cdot 0.2 + U(-1500 - 500) \cdot 0.3 = -2.1$$

$$Util_Y = U(1000 - 50) \cdot 0.5 + U(300 - 50) \cdot 0.2 + U(-600 - 50) \cdot 0.3 = 0.6$$

Assim, temos que $Y \succeq X$, visto que a utilidade da opção de investimento Y (0.6) é superior à utilidade da opção de investimento Y (-2.1).

Item (c)

Considerando que a utilidade da opção preferida é 0.6, é possível identificar que ela está no segundo trecho da função utilidade, definido por $\frac{x}{250}$.

O trecho 1 compreende o intervalo de utilidades: [-17;-2), o trecho 2 compreende o intervalo de utilidades: [-2;2) e o trecho 3 compreende o intervalo de utilidades: [2;6]

Dessa forma, podemos calcular o Equivalente certo aplicando a inversa desta função:

$$EQ_Certo = 250 \cdot 0.6 = 150$$

O prêmio de risco se dá pela subtração do Valor Esperado da opção que maximia a utilidade pelo seu Equivalente certo:

$$E[Y] = (1000 - 50) \cdot 0.5 + (300 - 50) \cdot 0.2 + (-600 - 50) \cdot 0.3 = 330$$

$$Premio\ Risco = 330 - 150 = 180$$

Item (d)

Para calcular a nova relação de preferência a partir da função de utilidade modificada, basta realizar procedimento análogo ao do item (a) e verificar qual das opções de investimento que maximiza a utilidade.

Assim, temos que $Util_X=-0.5$ e $Util_Y=13.0$, portanto a relação de preferência permanece a mesma: $Y\succeq X$.

Item (e)

Para avaliar qual o menor retorno determinístico que possui dominância estocástica de segunda ordem sobre as opções de investimento X e Y, eu avaliei a dominância com relação à X e à Y, variando o valor determinístico entre 0 e 10000 e selecionei o primeiro que me garantisse dominância com relação à ambas as opções incertas.

Após os cálculos, é possível avaliar que o menor valor que garante dominância estocástica de segunda ordem sobre as opções de investimento X e Y é \$650.0. A partir dos gráficos abaixo, é possível comprovar a dominância, sendo a linha azul o retorno determiístico e as linhas na cor laranja as opções de investimento X (gráfico da esquerda) e Y (gráfico da direita).

Item (f)

Realizando os cálculos no código em julia, obtive:

$$VaR_{70\%}(Y) = -250.0$$

 $CVaR_{70\%}(Y) = 650.0$

Item (a)

Primeiramente devemos calcular os retornos financeiros de cada opção em cada cenário possível. Para a Renda Fixa, o retorno será sempre de \$400, já para a Sociedade, os possíveis retornos são \$1300, \$700 e \$100, para os 3 cenários existentes.

Para verificar se há Dominância Determinística da Renda Fixa sobre a Sociedade, verificamos se o menor retorno da Renda Fixa (\$400) é superior ou igual máximo retorno da Sociedade (\$1300), o quer não ocorre. O análogo é feito para verificar se há Dominância Determinística da Sociedade soobre a Renda Fixa, sendo o menor retorno da Sociedade (\$100) inferior ao máximo retorno da Renda fixa (\$400). **Dessa forma, não há Dominância Determinística**.

Para verificar se há Dominância Estocástica ponto a ponto da Renda Fixa sobre a Sociedade, verificamos se para todos os cenários o retorno da Renda Fixa (\$400) é superior ou igual ao retorno da Sociedade naquele mesmo cenário, o quer não ocorre, visto que no cenário 1 o retorno da Sociedade é (\$1300), sendo superior ao da Renda Fixa. O análogo é feito para verificar se há Dominância Estocástica ponto a ponto da Sociedade soobre a Renda Fixa, sendo possível ver que para o cenário 3 o retorno da Renda Fixa (\$400) é superior ao da Sociedade (\$100). **Dessa forma, não há Dominância Estocástica ponto a ponto**.

Item (b)

Para que exista Dominância Determinística da Sociedade sobre a Renda Fixa o menor recebimento no cenário 3 deve ser \$600, para que o retorno, descontado do investimento inicial (\$200) seja pelo menos igual ao da Renda Fixa (\$400). Assim, o menor retorno da Sociedade (\$400) será igual ao máximo retorno da Renda Fixa (\$400), sendo possível afirmar que Sociedade \succeq_{DD} Renda Fixa

Este valor é suficiente para que exista Dominância Estocástica ponto a ponto, visto que ele garante que o pior retorno da Sociedade é maior do que o melhor retorno da Renda Fixa, analisando todos os cenários conjuntamente. Assim, não é possível existir algum cenário que o retorno da Sociedade é inferior ao da Renda Fixa.

Item (c)

A árvore de decisão do processo decisório e o perfil de risco podem ser vista abaixo.

Após os cálculos realizados, é possível ver que não há Dominância Estocástica de Primeira Ordem da Renda Fixa sobre a Sociedade e nem no sentido oposto. O gráfico apresentado acima, com o perfil de risco também indica isso, nele a a distribuição acumulada da Renda Fixa (linha azul) se cruza com a distribuição acumulada da Sociedade (linha laranja), mostrando dessa forma que não há Dominância Estocástica de Primeira Ordem.

Item (d)

Os valores para que exista Dominância Estocástica de Primeira Ordem podem ser obtidos a partir da análise do gráfico do item anterior:

- Para a Sociedade dominar Renda Fixa, ela deve estar sempre por baixo da Renda Fixa. Para isso, o Rendimento da Renda Fixa deve ser no máximo de \$100.
- Para a Renda fixa dominar a Sociedade, ela deve estar sempre por baixo da Sociedade. Para isso, o Rendimento da Renda Fixa deve ser no mínimo de \$1300.

Os cálculos realizados, variando o valor do Rendimento da Renda Fixa entre 0 e 10000 e testanto a existência de Dominância Estocástica de Primeira Ordem corroboram com a análise do gráfico.

Plotando os gráficos com os novos valores do rendimento da Renda Fixa é possível verificar a Dominância da Renda Fixa sobre a Sociedade (gráfico da esquerda) e da Sociedade sobre a Renda Fixa (gráfico da direita), sendo em ambos os gráficos a Renda Fixa representada pela linha azul e a Sociedade pela linha laranja.

Item (e)

As Funções Duplamente Acumuladas são apresentadas no gráfico abaixo, a Renda Fixa representada pela linha azul e a Sociedade pela linha laranja. É possível ver que não há Dominância Estocástica de Segunda Ordem, por parte de nenhuma das estratégias, visto que as linhas se cruzam.

Item (f)

O Valor Esperado do payoff da opção de Sociedade é calculado multiplicando o retorno de cada cenfio pela sua probabilidade. Sendo assim, o Valor Esperado do payoff da Sociedade é de \$640.

Os cálculos realizados, variando o valor do Rendimento da Renda Fixa entre 0 e 10000 e testanto a existência de Dominância Estocástica de Segunda Ordem indicam que para que a Renda fixa dominar a Sociedade, o seu rendimento da Renda Fixa deve ser no mínimo de \$640, sendo igual ao alor Esperado do payoff da Sociedade.

Esse valor pode ser confirmado no gráfico abaixo, que mostra as Funções Duplamente Acumuladas, a Renda Fixa com o seu retorno igual á \$640 representada pela linha azul e a Sociedade pela linha laranja.

Item (a)

Para mostrar que se $R(Y)=E[\tilde{R}(X)]$, então $Y\succeq_{DESO}X$, primeiro observamos que para que ocorra DESO, é preciso: $F_{R(y)}^{(2)}=E[max\{z-R(y),0\}]\leq E[max\{z-\tilde{R}(x),0\}]=F_{\tilde{R}(x)}^{(2)}$. Sendo a função máximo convexa, temos:

$$\begin{split} F_{\tilde{R}(x)}^{(2)} &= p_1 \cdot \max\{z - R(x,1), 0\} + \ldots + p_n \cdot \max\{z - R(x,n), 0\} \\ &\geq \max\{z - [p_1 \cdot R(x,1) + \ldots + p_n \cdot R(x,n)], 0\} = \max\{z - E[\tilde{R}(x)], 0\} = F_{R(y)}^{(2)} \\ & \text{Assim, } F_{\tilde{R}(x)}^{(2)} \geq F_{R(y)}^{(2)} \text{ , logo } Y \succeq_{DESO} X. \end{split}$$

Item (b)

Podemos justificar de forma intuitiva, observando que graficamente a opção cuja função duplamente acumulada que está mais abaixo é a que domina as demais. Assim, o entendimento é que as perdas financeiras além (inferiores), para todos os valores de z avaliados são menores, ou seja, a opção de investimento que domina as demais é a que possui menores perdas financeiras, para todos os valores de z avaliados, ou seja, a mais avessa ao risco.

Item (c)

O mesmo raciocínio da letra (a) vale para cá:

• Para
$$Y \succeq_{DESO} X : F^{(2)}_{\tilde{R}(x)} \geq F^{(2)}_{R(y)}$$

- Por definição (função convexa): $F_{\tilde{R}(x)}^{(2)} \geq \max\{z-E[\tilde{R}(x)],0\}$
- Logo: $F_{R(y)}^{(2)} \leq \max\{z E[\tilde{R}(x)], 0\}$, para garantir $Y \succeq_{DESO} X$
- Sendo $F_{R(y)}^{(2)}=\max\{x-R(y),0\}$, temos que para garantir $F_{R(y)}^{(2)}\leq\max\{z-E[\tilde{R}(x)],0\}$: $R(Y)\geq E[\tilde{R}(X)]$

Item (a)

A expressão da receita líquida do jornaleiro é apresentada abaixo, sendo a receita dada pelo preço de venda (q) multiplicado pelo mínimo entre o a quantidade de jornais comprados e a demanda somado com o preço residual multiplicaco pela quantidade de jornais que não foram vendidos. A parcela do custo é dada pelo custo de compra do jornal multiplicado pela quantidade de jornais comprados.

$$R(x, \tilde{d}) = q \cdot min(x, \tilde{d}) + r \cdot max(x - d, 0) - c \cdot x$$

Item (b)

Assumindo que a quantidade de jornais comprados foi de $x_1 = 220$, foram gerados 10000 cenários de demanda, seguindo a distribuição uniforme fornecida. Para cada cenário foi calculada a receita líquida do jornaleiro e contabilizados em quantos cenários esta receita foi inferior à \$1500.

Dessa forma, após os cálculos, a probabilidade de a receita líquida ser inferior à \$1500 é de 14.21%

Item (c)

Considerando neutralidade à risco, podemos utilizar o valor esperado como métrica para avaliar a relação de preferência. Calculado o Valor esperado para as opções, temos $E[x_1] = \$2542.10$ e $E[x_2] = \$2189.58$, logo $x_1 \succeq x_2$

Item (d)

O gráfico abaixo apresenta as funções acumuladas para as opções de investimento x_1 e x_2 . É possível ver que as linhas se cruzam, logo não há Dominância Estocástica de Primeira Ordem.

Item (e)

O gráfico abaixo apresenta as funções duplamente acumuladas para as opções de investimento x_1 e x_2 . É possível ver que as linhas não se cruzam e que a função referente à opção x_1 está por baixo, indicando que há Dominância Estocástica de Segunda Ordem de x_1 sobre x_2 .

Item (f)

Realizando os cálculos no código em julia, obtive:

$$VaR_{99\%}(x_1) = -611.31 \le VaR_{99\%}(x_2) = -11.31$$

 $CVaR_{99\%}(x_1) = -507.43 \le CVaR_{99\%}(x_2) = 92.47$

Assim, assumindo que o jornalista preza por opções com menor risco, ou seja, a alternativa que possuir menor VaR é preferida, o mesmo vale para o CVaR. Para ambas as métricas temos que $x_1 \succeq x_2$, mantendo a relação de preferências vista no item (c).

Item (g)

Os gráficos abaixo foram gerados a partir do cálculo da função utilidade variando no intervalo de 0.1 até 1.5, com passos de tamanho 0.5 e verificando qual a quantidade de jornais comprados $(x^*(\theta))$ que gera a utilidade máxima para cada valor de θ .

O gráfico da esquerda, mostrando a variação do da quantidade ótima de jornais comprados($x*(\theta)$) com a evolução do valor de θ indica que conforme o valor de θ aumenta, o valor de $x^*(\theta)$ também aumenta, e este aumento ocorre de forma semelhante ao longo de todo o trecho analisado. Olhando para o gráfico da direitam onde é apresentada a utilidade esperada($u(R(x^*(\theta),\tilde{d}))$), conforme a evolução nos valores de θ indica um crescimento exponencial na utilidade. O comportamento do gráfico indica que com valores de θ próximos à 0.1 a variação no valor de θ não gera incremento relevante na utilidade, conforme o valor de θ se aproxima de 1.0 alterações menores no valor de θ levam a incrementos mais significativos na utilidade. Quando o valor de θ se aproxima de 1.5 o gráfico indica que qualquer pequena mudança no valor de θ gera um impacto elevado na utilidade.

Além do gráfico também foi calculado o $CVaR_{99\%}(R(x^*(\theta),\tilde{d}))$ para $\theta\in\{0.1,1.0,1.5\}$. Sendo possível verificar que quanto maior o valor de θ mais arriscado (maior o CVaR). O que faz sentido, visto que quanto maior o valor de θ , maior foi o $x^*(\theta)$ encontrado e com isso maior o risco de assumido pelo jornaleiro ao comprar um número mais elevado de jornais dado uma demanda incerta.

$$CVaR_{99\%}(R(x^*(0.1), \tilde{d})) = -677.53$$

$$CVaR_{99\%}(R(x^*(1.0), \tilde{d})) = -577.53$$

$$CVaR_{99\%}(R(x^*(1.5), \tilde{d})) = -527.53$$

Seguindo a definição $CVaR_{\alpha}(x)=VaR_{\alpha}(x)+\frac{E[max\{-VaR_{\alpha}(x)-\tilde{R}(x),0\}]}{(1-\alpha)},$ e assumindo que o $CVaR_{\alpha}(x)$ é uma medida de risco coerente, e portanto possui as propriedades de monotonicidade e subadtividade, portanto: Se $X\leq Y$, então $\rho(X)\geq \rho(Y)$ e $\rho(X+Y)\leq \rho(X)+\rho(Y)$. Assim, temos a análise abaixo para provar que $CVaR_{\alpha}(x)$ é uma função convexa:

$$\begin{split} CVaR_{\alpha}(\lambda x + (1-\lambda)y) & \leq \lambda VaR_{\alpha}(x) + \lambda E[max\{-VaR_{\alpha}(x) - \tilde{R}(x), 0\}]/(1-\alpha) + \\ & (1-\lambda)VaR_{\alpha}(y) + (1-\lambda)E[max\{-VaR_{\alpha}(y) - \tilde{R}(y), 0\}]/(1-\alpha) \\ & \leq \lambda (VaR_{\alpha}(x) + E[max\{-VaR_{\alpha}(x) - \tilde{R}(x), 0\}]/(1-\alpha)) + \\ & (1-\lambda)(VaR_{\alpha}(y) + (1-\lambda)E[max\{-VaR_{\alpha}(y) - \tilde{R}(y), 0\}]/(1-\alpha)) \\ & \leq \lambda CVaR_{\alpha}(x) + (1-\lambda)CVaR_{\alpha}(y) \end{split}$$

Item (a)

Caso o prejuízo financeiro supere o valor da franquia(T), o prejuízo financeiro é igual ao valor da franquia (T) e o seguro arca com o restante. Se o prejuízo financeiro for inferior ao valor da franquia (T), a empresa arca com todo prejuízo sozinha.

Foram gerados 10000 cenários de prejuízos financeiros, seguindo a distribuição uniforme e como há certeza de ocorrência do acidente, o valor esperado do prejuízo financeiro, calculado seguindo a regra descrita no parágrafo anterior é: \$37.54.

Item (b)

O gráfico abaixo foi construído variando a quantidade de cenários entre 1 e 10000 com passo 10. Para cada quantidade de cenários foram exectudadas 100 simulações de prejuízos financeiros, seguindo a distribuição uniforme e calculado o prejuízo médiodessas 100 simulações, para cada quantidade de cenários existentes.

É possível ver que com o aumento do número de cenários o valor médio do prejuízo financeiro começa a convergir e se aproxima do valor esperado do prejuízo calculado no item (a). Isso ocorre pois um número pequeno de cenários não consegue representar de forma satisfatória o prejuízo financeiro da emprese e conforme o número de cenários aumenta, é possível ver que há convergência, indicando uma melhor representação do problema.

Item (c)

Considerando agora a existência de incerteza na ocorrência de acidentes, o cálculo do valor esperado se dá de forma semelhante ao item (a), porém realizando a ponderação do payoffs de cada alternativa, seguino as probabilidades fornecidas. Sendo assim, o valor esperado do prejuízo financeiro, considerando incerteza na ocorrência de acidentes é: \$26.28.

Item (d)

O gráfico deste item foi elaborado de forma análoga ao do item(b), considerando as ponderções pela probabilidade de ocorrência de cada cenário.

É possível ver que o gráfico indica que a convergência ocorre mais rápido do que no item(b), visto que a oscilação nos valores do prejuízo médio reduz com um número de cenfios menor. Isso pode ser visto nos valores obtidos com cenários inferiores à 2500.

Item (e)

Para calcular o maior valor de prêmio (β) cobrado pela seguradora é calculado subtraindo o valor esperado do prejuízo quando o seguro é contratado (\$26.28) do valor esperado do prejuízo quando o seguro não é contratado (\$42.18). Portanto o maior valor do prêmio (β) é \$15.90.

Item (f)

Para calcular o valor do prêmio (β) devemos calcular a utilidade esperada quando o seguro é contratado e quando a contratação não é feita. Com as utilidades calculadas, é realizado o cálculo do equivalente certo e verificada a diferença do prejuízo com e sem o seguro.

Seguindo a dica, a utilidade de -x foi calculada e isso também foi considerado para o equivalente certo. Dessa forma, as utilidades (u(-x)) encontradas são: -32.17 e -1948.2, com e sem seguro respectivamente. Os equivalentes certos de x encontrados são: \$35.01 e \$75.75, com e sem seguro respectivamente. Por fim, o maior valor de prêmio (β) considerando a função utilidade é \$40.74

Item (g)

O procedimento é análogo ao do iterm (f), porém incorporando o valor do prêmio (β) . Dessa forma, considerando a contratação do seguro, a utilidade (u(-x)) é -1948.2. O equivalente certo de x encontrado é: \$75.75.

O meu entendimento é que a empresa troca todo o fluxo incerto de prejuízos pelo montante do equivalente certo (\$75.75). Esse valor é menor que o valor da franquia e do prêmio somados, ou seja, ele trocaria o fluxo incerto de prejuízos, por um prejuízo certo de \$75.75 que $\tilde{A} \odot$ inferior ao maior valor de prejuizo possivel no fluxo incerto (\$80). O que faz sentido, visto que não valeria a pena trocar um prejuízo incerto, porém limitado no maximo em \$80 (franquia+premio), por um prejuizo certo superior à este valor.

Item (h)

Para calcular o valor do prêmio (β) devemos calcular o $CVaR_{95\%}(-x)$ quando o seguro é contratado e quando a contratação não é feita. Com os valores calculados, é verificada a diferença do prejuízo com e sem o seguro.

Dessa forma,os $CVaR_{95\%}(-x)$ encontrados são: 40.00 e 100.00, com e sem seguro respectivamente. Por fim, o maior valor de prêmio (β) considerando a função utilidade é \$60.00.

Comparando com os prêmios obstidos anteriormente, é possível ver que o prêmio β está aumentando ao mudar as medidas de risco (Valor Esperado, Utilidade, CVaR), isso significa que a distância entre o prejuízo financeiro com seguro e sem seguro também esta aumentando, ou seja, a empresa esta adotando medidas de risco mais rígidas, mais avessas ao risco, fazendo com que o prejuízo extra (em comparação com o prejuízo obtido quando o seguro é contratado, é mais penalizado, fazendo assim com que mesmo pagando um prêmio mais alto ($\beta_{CVaR} \geq \beta_{Utilidade} \geq \beta_{ValorEsperado}$) seja preferível contratar o seguro.