

Friction Plug Weld Repair Geometric Innovations

**Lockheed Martin Michoud Space Systems
Program & Technology Development
New Orleans, LA**

**Edmond R. Coletta
Materials Engineer
(504) 257-2082**

**Mark A. Cantrell
Project Lead
(504) 257-0553**

Introduction

- Fundamentals of Friction Push Plug Welding
 - Process Overview
- Fundamentals of Friction Pull Plug Welding
 - Process Overview
 - Defect Characterization
 - Geometric and Process Solutions
- FSW Keyhole Closeout

A

Friction Push Plug Overview

- Friction Plug Welding Is a Solid State Weld Repair Technique Aimed at Replacing Small Volumes of Defective Weldment
- Computer Controlled Direct Drive Weld Equipment
 - High Process Repeatability; Successful First Time Repair
 - Thermomechanical, solid state welding process
 - Rotate tapered plug and force into tapered hole.
 - Stop rotation and forge materials together while cooling.
 - Remove excess plug and back side extrusion.

Friction Push Plug Overview

A
-

- Extended Process Capabilities
 - Plugs placed off weld centerline
 - Stitch Welding can be utilized to repair defects larger than one plug diameter
 - FSW closeout holes can be repaired

3 Plug Stitch Weld Repair

Repair for FSW Keyhole

Two Abreast

Stitched Abreast

Off-Center Repair

Friction Push Plug Overview

- The effects of all critical parameters have been characterized
- Process capability is above the specification requirements
- Process automation is superior to the required process control
- Mechanical properties are significantly better than current repair allowables

Friction Pull Plug Overview

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Friction Pull Plug Welding is a solid state welding variant of the push process which is aimed at eliminating all internal tooling for tank wide plug repairs.

Welding Parameters:

- Motor Torque
- Heating Pressure
- Forging Pressure
- RPM
- 2nd Ram Speed
- Heating Displacement
- Pre-Heating Factor
- 1st Ram Speed
- Engineering Plastic Displacement

Friction Pull Plug Overview

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

**Complete bonding
on ISL and OSL**

**Minimal plug material
as heat sink**

**Heating localized
to interface**

**Plug and plate forging
from backing plate**

FPPW: Defect Characterization

Observed Defects

1. Rotational stall during initial plug/plate contact
2. Bottom side lack of bonding (OSL)
3. Rotational stall during welding
4. Top side lack of bonding (ISL)
5. Complete plug pull through
6. Central plug pull through
7. Top Hat separation
8. Weak Interfacial Bonding

FPPW: Surface Rotational Stall

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Matching Plug & Plate Hole Chamfer Angle

Surface Rotational Stall

Pull Plug Necking

FPPW: Surface Rotational Stall

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Dual Chamfered Plate Hole

Process stopped after initial contact

FPPW: OSL Lack of Bonding

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

A

Lack of Bonding Bottom (OSL)

Possible Causes

- Backing plate geometry
- Material geometry
- Weld Parameters
 - High heat input
 - High Forging Pressure

FPPW: Rotational Stall During Welding

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Possible Causes

- Weld Parameters
 - Insufficient Pre-Heating
 - 2nd Ram Speed too high
 - RPM too low
- Backing plate geometry
- Material geometry
- Equipment Limitations

Rotational stall during welding

FPPW: ISL Lack of Bonding

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

The Pull Plug Top Hat provides both pressure and frictional heating to complete ISL bonding.

Pull Plug With Top Hat

Pull Plug Without Top Hat

Pull Plug Designs

With Top Hat Without

FPPW: Chamfered Heat Sink

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Diagram of a Pull Plug with a Large Heat Sink Mass

Diagram of a Pull Plug with a Chamfered Heat Sink

FPPW: Complete Plug Pull Through

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Interfacial Plug Pull-through (Low Angle Pull Plug without a Chamfered Heat Sink)

“Good” Pull Plug Weld (Low Angle Pull Plug with Chamfered Heat Sink)

FPPW: Central Plug Pull Through

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Central Plug Pull-through (High Angle Pull Plug without a Chamfered Heat Sink)

“Good” Pull Plug Weld (High Angle Pull Plug with Chamfered Heat Sink)

FPPW: Top Hat Separation

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Top Hat Separation (Low Angle Top Hat Pull Plug without a Chamfered Heat Sink)

Desired Plug Top position
at completion of weld

“Good” Pull Plug Weld (High Angle Pull Plug with Chamfered Heat Sink)

FPPW: Typical Fractures

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Interfacial Fracture Path

Interfacial / HAZ Fracture Path

FPPW: Weak Bonding

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Bonding observed in all SEM examined locations

PAGE: 19

LOCKHEED MARTIN MICHOUD SPACE SYSTEMS

Edmond R. Coletta
(504)-257-2082
E-Mail: Edmond.R.Coletta@mail.nasa.gov

FPPW: 0.040" Thick Top Hat

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Expected Benefits

- Reduced Edge Heating
 - Increased Axial/Radial Pressure

Results

- Lamellar Tearing @ hat
 - Shear zones along interface
 - Pre/Post Proof NDE Indications
 - 3 samples failed during proof
 - Int. Weld Avg. UTS = 41.2 ksi
 - Avg. UTS = 30.7 ksi
 - Min. UTS = 23.2 ksi

LOCKHEED MARTIN MICHoud SPACE SYSTEMS

Edmond R. Coletta
(504)-257-2082
E-Mail: Edmond.B.Coletta@maf.nasa.gov

FPPW: 0.050" All Around Top Hat

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Expected Benefits

- Reduced Edge Heating
- Increased Axial/Radial Pressure

Results

- Minimal top hat deflection
- Tight recrystallized zone
- Pre-Proof NDE Indications
- 6 samples failed during proof - Test Stopped
- **Min. UTS = 24.4 ksi**

FPPW: Transition Plug (Style #1)

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Expected Benefits

- Variable interfacial angle
- Increased axial compression
- Increased plastic flow
- More frictional heating

Results

- Plug min. diameter too small
- Plug pull through
- Central plug separation
- Minimal OSL flash
- Only macros - Test Stopped

FPPW: 1.100" Diameter Top Chamfer Hole

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

D1 = 1.100"

Expected Benefits

- Line contact closer to ISL
- Increased axial compression
- Increased plastic flow
- More frictional heating

Results

- Tight recrystallized zone
- Pre/Post Proof NDE Indications
- 7 samples failed during proof
- Int. Weld Avg. UTS = 37.0 ksi
- Avg. UTS = 32.3 ksi
- Min. UTS = 22.1 ksi

FPPW: Standard plug from 2219-T8

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Expected Benefits

- Modified heat profile between plug and plate

Results

- Tight recrystallized zone
- Pre/Post Proof NDE Indications
- 3 samples failed during proof
- Int. Weld Avg. UTS = **40.5 ksi**
- Avg. UTS = **33.9 ksi**
- Min. UTS = **22.7 ksi**

FPPW: ISL Compressive Restraint Plug

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Expected Benefits

- Restrained top hat movement - increased axial/radial pressure
- Heat profile modified

Results

- No Top hat bending
- Tight/linear interface
- 7 samples failed during proof - Test Stopped
- Weld Avg. UTS = 43.5 ksi
- Avg. UTS = 28.3 ksi
- Min. UTS = 22.6 ksi

FPPW: Transition Plug (Style #2)

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Expected Benefits

- Variable Interface Angle
 - Increased axial compression
 - Increased plastic flow
 - More frictional heating

Results

- Clean interface btw. plug/plate
- Deformation observed in plug
- **No Pre/Post Proof NDE Indications**
- **Int. Weld Avg. UTS = 44.6 ksi**
- **Avg. UTS = 49.4 ksi**

FPPW of FSW Keyhole

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Transverse and Longitudinal Macro Locations

Pull Plug Repair of Keyhole

Opposite Side
Replaced Volume

FPPW of FSW Keyhole

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Micro-Hardness Traverse through a FSW weld and Pull Plug Weld (transverse section through weld)

Pull Plug and FSW Interface

US Patents Pending: #60/057,111; 153,750; 156,734; 160,131

Conclusions

- Friction Push Welding
 - Proven as a reliable and cost effective method for repairing fusion weld defects
- Friction Pull Plug Welding
 - Laboratory development proceeding quite well in both 2195 and 2219 plate from 0.200" thick up to 0.385" thick
 - An in-depth defect characterization and analysis has led to a robust weld schedule, hole configuration, and pull plug design for repeatable defect free solid state welding
 - Solid state repair welding can be accomplished in a variety of applications through the portability of the technology
 - Repair of Friction Stir Weld Keyhole defects have been successfully completed in the laboratory

