Universität Hannover

Niedersächsisches Studienkolleg

Prüfungsvorschlag Mathematik T-Kurs

Aufgabe 1

Gegeben ist die Funktionenschar $f_k(x) = \frac{k + \ln x}{x}$, $x \in D$, $k \in IR$.

- a) Diskutieren Sie die Funktion f_k allgemein (Definitionsbereich D, Nullstellen, Verhalten an den Rändern des Definitionsbereichs, Extrema und Wendepunkte). Begründen Sie dabei Ihre Überlegungen ausführlich.
- b) Zeichnen Sie den Graf für k = 1 mit Hilfe der Ergebnisse aus Teil a).
- c) Bestimmen Sie die Gleichung derjenigen Kurve C, auf der die Hochpunkte aller Grafen der Schar f_k liegen. Der Graf zu f_k , die x-Achse und die zur y-Achse parallele Gerade durch den Hochpunkt von f_k umschließen eine Fläche A . Berechnen Sie den Inhalt von A.
- d) Die Gerade mit der Gleichung x = 1 schneidet f_k im Punkt P_k und f_{k^*} in P_{k^*} , wobei $k \ge k^*$ gilt. Die Kurventangenten in P_k bzw. P_{k^*} schneiden sich im Punkt Q. Zeigen Sie, dass die Koordinaten von Q unabhängig von k und k^* sind.

Aufgabe 2

Gegeben ist die Funktionenschar $f_k(x) = \frac{4}{x} - \frac{4k}{x^2}$, $x \in D$, $k \in \mathbb{R}^+$.

- a) Diskutieren Sie die Funktion f_k allgemein (Definitionsbereich, Nullstellen, Pole, Lücken, Asymptote, Extrema, Wendepunkte und Krümmung). Begründen Sie dabei Ihre Überlegungen ausführlich.
- b) Zeichnen Sie den Graf für k = 1 mit Hilfe der Ergebnisse aus Teil a).
- c) Berechnen Sie die Gleichung der (allgemeinen) Wendetangente $t_k(x)$. Bestimmen Sie danach den Parameterwert für k so, dass t_k die x-Achse an der Stelle 9 schneidet.

Aufgabe 3

In einem kartesischen Koordinatensystem sind die beiden Geraden

$$g: \vec{x} = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
 und $h: \vec{x} = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$ mit λ , $\mu \in IR$ gegeben.

- a) Zeigen Sie, dass die Geraden g und h eine Ebene E_1 bestimmen. Geben Sie die Ebene E_1 in Parameterform und als Koordinatengleichung an.
- b) Bestimmen Sie die Gleichung einer Ebene E_2 , die g enthält und senkrecht auf E_1 steht (Parameterform und Koordinatengleichung).
- c) Stellen Sie die Gleichung der Kugel K mit dem Mittelpunkt M(1/4/ $\stackrel{>}{\sim}$ 3) auf, welche die Ebene E_1 als Tangentialebene hat.
- d) Die Geraden der Schar $g_t: \vec{x} = \begin{pmatrix} 0 \\ 4 \\ -1 \end{pmatrix} + \nu \begin{pmatrix} 0 \\ 1 \\ t \end{pmatrix}$ mit ν , $t \in IR$ liegen in einer Ebene.

Geben Sie die Gleichung dieser Ebene E3 an. Zeigen Sie dann, dass keine

Gerade dieser Schar eine Tangente für die Kugel $K: \left[\vec{x} - \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix} \right]^2 = 9$ ist.