MKI - apríl

III.U1

i, j, k jsou prvky a=ib=ikvaternionů/bázové vektory

ij = -ji k = -(-k) k = k

Super!

III.U2 - C

$$S = \sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + 5 + \dots$$

$$T = 1 - 1 + 1 - 1 + 1 - 1 \dots$$

$$U = 1 - 2 + 3 - 4 + 5 - 6 \dots$$

$$S - U = 4 + 8 + 12 = 4(1 + 2 + 3 + 4 + \dots)$$

$$\begin{vmatrix} T = 1 - 1 + 1 - 1 + 1 - 1 \dots & | *2 & U = 1 - 2 + 3 - 4 + 5 - 6 \dots & | *2 \\ 2T = 1 - 1 + 1 - 1 + 1 - 1 \dots & 2U = 1 - 2 + 3 - 4 + 5 - 6 \dots \\ & + 0 + 1 - 1 + 1 - 1 + 1 \dots & + 0 + 1 - 2 + 3 - 4 + 5 \dots \\ 2T = 1 + 0 + 0 + 0 + 0 + 0 & 2U = 1 - 1 + 1 - 1 = T \\ 2T = 1 & T = \frac{1}{2} & 2U = \frac{1}{2} & U = \frac{1}{4} \end{aligned}$$

$$S=1+2+3+4+5+...$$

 $S-U=1+2+3+4+5+...$
 $-(1-2+3-4+5...)$

$$S-U=4+8+12=4(1+2+3+4+...)$$

 $S-U=4S$ |-S

Hezky:)

S-U=0+4+0+8+0+12...

 $3S = -U = -\frac{1}{4}$ $S = -\frac{1}{12}$

5/5

Sice jsme ten důkaz chtěli přesně

obráceně, ale kreativita se cení

III.U3

<u> </u>			
Nikola Tesla	zoof lie	William Rowan Hamilton	alkoholismus
Paul Dirac	Aspergerův syndom	Isaac Newton	celoživotní panictví
Albert Einstein	vegetariánství	Alan Turing	homosexualita
Erwin Schrödinger	pedof lie	Emmy Noether	Ženská ident ta
Berhard Riemann	Extrémní stydlivost	5/5	

III.A - Liou Cch'-Sin

III.K - Anihilace elektronu a pozitronu

2. - screenshot z ht ps://en.wikipedia.org/wiki/Majorana equat on

Proof

This form is not entirely obvious, and so deserves a proof. Starting with

$$-i\partial\!\!\!/\psi+m\,\psi_c=0$$

Expand $\psi_c = C \overline{\psi}^\mathsf{T}$:

$$-i\partial \psi + mC\overline{\psi}^{\mathsf{T}} = 0$$

Multiply by $\,C\,$ use $\,C^2=-1\,$:

$$-i\,C\,\partial\!\!\!/ C^{-1}\,C\,\psi-m\,\overline{\psi}^{\mathsf{T}}=0$$

Charge conjugation transposes the gamma matrices:

$$+i \partial^{\mathsf{T}} C \psi - m (\gamma^0)^{\mathsf{T}} \psi^* = 0$$

Take the complex conjugate:

$$-i \partial \!\!\!/^\dagger C^* \, \psi^* - m \left(\gamma^0
ight)^\dagger \psi = 0$$

The matrix γ^0 is Hermitian, $\left(\gamma^0\right)^\dagger=\gamma^0$ in all three representations (Dirac, chiral, Majorana):

$$-i \partial \!\!\!/^\dagger C^* \, \psi^* - m \, \gamma^0 \, \psi = 0$$

It is also an involution, taking the Hermitian conjugate: $\gamma^0 \, \gamma^\mu \, \gamma^0 = (\gamma^\mu)^\dagger$

$$-i\,\gamma^0\,\partial\!\!\!/\gamma^0\,C^*\,\psi^*-m\,\gamma^0\,\psi=0$$

Multiply by γ^0 , note that $\left(\gamma^0\right)^2=I$ and make use of $C^*=C$:

$$-i\partial \gamma^0 C \psi^* - m \psi = 0$$

The above is just the definition of the conjugate, so conclude that

$$i\partial \psi_c - m\psi = 0$$

Skoro jsi vyřešila neřešitelnou aprílovou úlohu. Respekt!

2/5