SMART PARKING SYSTEM

TEAM MEMBERS:-

1:-M.Alagu Sathiya -au951221106003

2:-M.Abirami -au951221106002

3:-S.Rajathi -au951221106030

4:-S.Sasi Rekha -au951221106043

5:-M.Venuka -au951221106052

PHASE-3:-Development Part-1:-

Al based Smart Parking Assistant:-

Ultrasonic, electromagnetic field detection, and infrared are several types of iot smart parking sensors.

1. Ultrasonic:

2. The precision of the smart parking sensor is improved by using ultrasonic wave. The disadvantage of this type of sensor is that it can get clogged with dirt.

4. Electrom agnetic Field Detection:

5. The sensor can detect small changes in the magnetic field when a metal object is near it.

6.

7. Infrared:

8. This type of sensor measures changes in ambient temperature and detects movement.

Coding:-

//TECHATRONIC.COM

// BLYNK LIBRARY

// https://github.com/blynkkk/blynk-library

```
// ESP8266 LIBRARY
// https://github.com/ekstrand/ESP8266wifi
#define TRIGGER D0
#define ECHO D2
// NodeMCU Pin D0 > TRIGGER | Pin D2 > ECHO
#define BLYNK_PRINT Serial // Comment this out to disable prints
and save space
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>
// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
Char auth[] = "Whobi6tSCicbj4W654WdBeo7O4D6Ajw4"; //Auth
code sent via Email
// Your WiFi credentials.
// Set password to "" for open networks.
Char ssid[] = "DESKTOP"; //Wifi name
Char pass[] = "asdfghjkl"; //Wifi Password
Void setup() {
Serial.begin (9600);
Blynk.begin(auth, ssid, pass);
pinMode(TRIGGER, OUTPUT);
 pinMode(ECHO, INPUT);
```

```
pinMode(BUILTIN_LED, OUTPUT);
}
Void loop() {
Long duration, distance;
digitalWrite(TRIGGER, LOW);
delayMicroseconds(2);
digitalWrite(TRIGGER, HIGH);
delayMicroseconds(10);
digitalWrite(TRIGGER, LOW);
duration = pulseIn(ECHO, HIGH);
distance = (duration/2) / 29.1;
 if (distance <=200) {
 Blynk.virtualWrite(V0, 255);
}
Else {
 Blynk.virtualWrite(V0, 0);
If (distance <= 35) {
 Blynk.virtualWrite(V1, 255);
Else {
 Blynk.virtualWrite(V1, 0);
```

```
}
 If (distance <= 30) {
 Blynk.virtualWrite(V2, 255);
}
Else {
 Blynk.virtualWrite(V2, 0);
}
 If (distance <= 25) {
 Blynk.virtualWrite(V3, 255);
}
Else {
 Blynk.virtualWrite(V3, 0);
 If (distance <= 20) {
 Blynk.virtualWrite(V4, 255);
}
Else {
 Blynk.virtualWrite(V4, 0);
}
Serial.print(distance);
Serial.println("Centimeter:");
Blynk.virtualWrite(V5, distance);
```

```
delay(200);
Blynk.run();
Serial.print(distance);
Serial.println("Centimeter:");
Blynk.virtualWrite(V6, distance);
delay(100);
Blynk.run();
}
```