SCC0270/SCC5809 - Redes Neurais Aula 3 - Multi-Layer Perceptron (MLP)

Profa. Dra. Roseli Aparecida Francelin Romero SCC - ICMC - USP

2018

- Introdução
 - Modelo de rede MI P
- 2 Treinamento de redes MLF
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- 4 Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Perceptron multicamadas

- Redes de apenas uma camada representam somente funções linearmente separáveis.
- Redes de múltiplas camadas solucionam essa restrição.
- O desenvolvimento do algoritmo backpropagation foi um dos motivos para o ressurgimento da área de redes neurais [Rumelhart et. al, 1986].

Sumário

Introdução

- Introdução
 - Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- 4 Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Modelo de rede MLP

Modelo de rede neural com múltiplas camadas.

Figura 1: Rede neural feed-forward com múltiplas camadas.

- - Modelo de rede MIP
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

O algoritmo Backpropagation

- Introdução
 - Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

 O esquema de aprendizado da rede pode ser descrito do seguinte modo:

Vetor entrada
$$\rightarrow$$
 vetor saída $\stackrel{\overline{}}{}\stackrel{?}{}\stackrel{=}{}\rightarrow$ aprendizado ocorreu

 Caso contrário, os pesos são modificados para minimizar o erro:

$$E(w) = \sum_{p=1}^{N} E_p(w)$$

onde N é o no. total de padrões e E_p é o erro quadrático referente a cada par p apresentado à rede, sendo dado por:

$$E_p = \frac{1}{2} \sum_j (t_{pj} - y_{pj})^2$$

onde:

- t_{pi}: j-ésima componente do vetor saída desejada.
- y_{pi} : j-ésima componente do vetor obtido pela rede.

Pesos (Gradient Descent Method)

$$w_{ji}(k+1) = w_{ji}(k) - \eta \frac{\partial E_p(w)}{\partial w_{ji}}\Big|_{w(k)}$$

Onde η é uma constante positiva (velocidade de aprendizado).

• Calculando a derivada parcial do E_p , tem-se:

$$\frac{\partial E_p}{\partial w_{ji}} = \frac{\partial E_p}{\partial y_{pj}} \cdot \frac{\partial y_{pj}}{\partial v_{pi}} \cdot \frac{\partial v_{pj}}{\partial w_{ji}}$$

• Para se calcular $\frac{\partial E_p}{\partial v_{oi}}$, dois casos devem ser considerados:

Neurônio j está na camada de saída.

$$\frac{\partial E_p}{\partial y_{pj}} = -(t_{pj} - y_{pj})$$

$$\therefore \frac{\partial E_p}{\partial w_{ji}} = \underbrace{-(t_{pj} - y_{pj}) \cdot \underbrace{y_{pj}(1 - y_{pj})}_{\delta_{pj}} \cdot y_{pi}}_{\delta_{pj}}$$

$$\left\lfloor rac{\partial E_p}{\partial w_{ji}} = -\delta_{pj} \cdot y_{pi}
ight
floor ext{erro na camada de saída}$$

onde
$$-\delta_{pj}=rac{\partial E_p}{\partial v_{pj}}$$

- Neurônio j está na camada oculta (escondida).
 - Nesse caso, não se conhece a expressão do erro.
 - Para obtermos $\frac{\partial E_p}{\partial v_{si}}$, usamos mais uma vez a **regra da cadeia**.

$$\frac{\partial E_{p}}{\partial y_{pj}} = \sum_{k} \frac{\partial E_{p}}{\partial v_{pk}} \cdot \frac{\partial v_{pk}}{\partial y_{pj}} = \sum_{k} \frac{\partial E_{p}}{\partial v_{pk}} \cdot \frac{\partial \left(\sum_{j} w_{kj} y_{pj}\right)}{\partial y_{pj}}$$
$$= \sum_{k} \frac{\partial E_{p}}{\partial v_{pk}} \cdot w_{kj} = \sum_{k} \left(-\delta_{pk} \cdot w_{kj}\right)$$
$$\therefore \frac{\partial E_{p}}{\partial w_{ji}} = \left(\sum_{k} \left(-\delta_{pk} w_{kj}\right)\right) \cdot y_{pj} (1 - y_{pj}) \cdot y_{pi}$$

erro na camada oculta

O algoritmo Backpropagation

Aprendizado da rede

Observação: os erros são computados no sentido backward.
 O erro foi chamado de back-propagado → algoritmo de aprendizado backpropagation (BP).

Algoritmo Backpropagation

- Inicialização: pesos iniciados com valores aleatórios e pequenos ([-1,+1]).
- Treinamento Repita:
 - Considere um novo padrão de entrada x_i e seu respectivo vetor de saída t_i desejado do conjunto de treinamento.
 - Repita:
 - Apresentar o par (x_i, t_i) . (modo padrão)
 - Calcular as saídas dos processadores, começando da primeira camada escondida até a camada de saída.
 - Calcular o erro na camada de saída.
 - Atualizar os pesos de cada processador, começando pela camada de saída, até a camada de entrada.
 - Até que o erro quadrático médio para esse padrão seja <= to/1.
- Até que o erro quadrático médio seja <= to/2 para todos os padrões do conjunto de treinamento.

- Introdução
 - Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- 4 Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Fluxo de Dados

Figura 2: Feed-forward (fase 1), primeira camada escondida.

Fluxo de Dados

Figura 3: Feed-forward (fase 1), segunda camada escondida.

Fluxo de Dados

Figura 4: Feed-forward (fase 1), camada de saída.

Figura 5: Feed-backward (fase 2), cálculo do erro da camada de saída.

Figura 6: Feed-backward (fase 2), atualização dos pesos da camada de saída.

Figura 7: Feed-backward (fase 2), cálculo do erro da segunda camada escondida.

Figura 8: Feed-backward (fase 2), atualização dos pesos da segunda camada escondida.

Figura 9: Feed-backward (fase 2), cálculo do erro da primeira camada escondida.

Figura 10: Feed-backward (fase 2), atualização dos pesos da primeira camada escondida.

Processo de aprendizado

 Este procedimento de aprendizado é repetido diversas vezes, até que, para todos processadores de camada de saída e para todos padrões de treinamento, o erro seja menor do que o especificado.

- Introdução
 - Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- 4 Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Exemplo - XOR

Figura 11: Rede neural inicial. Atualizar os pesos.

Exemplo - XOR

Introdução Treinamento de redes MLP

Taxa aprendizado	0,5					
	t	0	1	2	3	4
Entrada	x_1	1	0	0	1	
	x_2	1	0	1	0	
Saída desejada	у	0	0	1	1	
Pesos	w1_h1	-0,6	-0,5934	-0,5876	-0,5951	-0,6018
	w11_h1	0,4	0,4066	0,4066	0,4066	0,4000
	w21_h1	0,5	0,5066	0,5066	0,4991	0,4991
	w2_h1	-0,2	-0,2097	-0,2217	-0,2092	-0,1968
	w12_h1	0,8	0,7903	0,7903	0,7903	0,8027
	w22_h1	0,8	0,7903	0,7903	0,8028	0,8028
	w1_o	-0,3	-0,3679	-0,4255	-0,3594	-0,2969
	w11_o	-0,4	-0,4390	-0,4595	-0,4278	-0,3995
	w21_o	0,9	0,8456	0,8197	0,8619	0,9020
Camada h ₁	v1_h1(x)	0,3	-0,5934	-0,0809	-0,1885	
	v2_h1(x)	1,4	-0,2097	0,5686	0,5811	
	f[v1_h1(x)]	0,5744	0,3559	0,4798	0,4530	
	f(v2_h1[x])	0,8022	0,4478	0,6384	0,6413	
Camada o (saída)	v1_o(h1)	0,1922	-0,1455	-0,1226	-0,0005	
	$y' = f[v1_o(h1)]$	0,5479	0,4637	0,4694	0,4999	

- Introdução
 - Modelo de rede MI P
- Treinamento de redes MLF
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- 4 Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Teorema da Aproimação Universal (TAU)

- Qual é o número mínimo de camadas em uma MLP que fornece uma aproximação para qualquer mapeamento contínuo?
- Cybenko [1989] mostrou pela primeira vez que uma rede com uma única camada intermediária é suficiente para aproximar uniformemente qualquer função contínua definida em um hipercubo unitário.

Teorema da Aproximação Universal (TAU)

• **Teorema:** seja $g(\cdot)$ uma função contínua limitada estritamente crescente. Seja I_p um hipercubo unitário p-dimensional e $C(I_p)$ o espaço das funções contínuas em I_p . Então, dada qualquer função $f \in C(I_p)$ e $\epsilon > 0$, existe um inteiro M e constantes reais α_i , θ_i e w_{ji} , onde $i = 1, 2, \cdots, M$ e $j = 1, 2, \cdots, p$, tal que se pode definir:

$$F(x_1, \dots, x_p) = \sum \alpha_i g\left(\sum w_{ji} x_j - \theta_i\right) \tag{1}$$

com

$$|F(x_1,\cdots,x_p)-f(x_1,\cdots,x_p)|<\epsilon \qquad \{x_1,\cdots,x_p\}\in I_p$$

- As funções sigmoid ou logística são contínuas, estritamente crescentes e limitadas, portanto satisfazem as condições impostas para a função $g(\cdot)$.
- A equação (1) representa a saída da MLP.
 - A rede tem p nós de entrada e uma única camada intermediária de M nós.
- O neurônio *i* tem pesos w_{1i}, \dots, w_{pi} e limiar θ_i .
- A saída da rede é uma combinação linear das saídas dos neurônios intermediários com α_i .

Teorema da Aproimação Universal (TAU)

- Trata-se de um teorema de **existência**, visto que fornece uma justificativa para a aproximação de funções contínuas. \implies SUFICIENTE
- Entretanto, ele não afirma que uma única camada é um número **ótimo**.
- Na prática, nem sempre se dispõe de uma função contínua e nem de uma camada intermediária de tamanho qualquer.
- Chester [1990] e Funahashi [1989] defendem o uso de duas camadas intermediárias, tornando a aproximação mais maleável.

- Características locais são extraídas na primeira camada.
 - Alguns neurônios na primeira camada são usados para particionar o espaço em várias regiões, e outros aprendem as características locais daquelas regiões.
- Características globais são extraídas na segunda camada.
 - Um neurônio na segunda camada combina as saídas de neurônios da primeira que estão operando numa região particular do espaço de entrada e assim aprende características globais daquela região.

- - Modelo de rede MI P
- - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento.
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

••••••••••

- Introdução
 - Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Velocidade de aprendizado

- O algoritmo BP fornece uma aproximação para a trajetória no espaço dos pesos.
- Quanto menor o valor de η, menores as mudanças nos pesos e mais suave será a trajetória.
 - Aprendizado lento.
- Se η é muito grande, o aprendizado torna-se rápido, porém a rede pode tornar-se **instável**.

Sumário

Introdução

Introdução Treinamento de redes MLP

- Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Introdução

Efeito da constante α

Treinamento de redes MLP

• É um método simples de aumentar a velocidade do aprendizado e evitar o perigo de instabilidade, como mostrado por Rumelhart et al., 1986.

$$\Delta w_{ji}(n) = \eta \delta_j(n) y_i(n) + \alpha \Delta w_{ji}(n-1)$$
 (2)

• Onde α é geralmente um número positivo chamado constante momentum.

A equação (α) é chamada REGRA DELTA GENERALIZADA, Se $\alpha = 0$ ⇒ REGRA DELTA

Introdução Treinamento de redes MLP

- Vamos considerar uma série de tempo com índice t (de 0 a n).
- A equação 2 pode ser vista como uma equação diferencial de primeira ordem em relação a $\Delta w_{ii}(n)$. Resolvendo:

$$\Delta w_{ji}(n) = \eta \sum_{t=0}^{n} \alpha^{n-t} \delta_j(t) y_i(t)$$
 (3)

• Que representa uma série de tempo comprimido n + 1. Mas:

$$\delta_{j}(n)y_{i}(n) = -\frac{\partial E(n)}{\partial w_{ji}(n)}$$

$$\therefore \Delta w_{ji}(n) = -\eta \sum_{t=0}^{n} \alpha^{n-t} \frac{\partial E(t)}{\partial w_{ji}(t)}$$
(4)

Introdução Treinamento de redes MLP

- **1** O ajuste atual $\Delta w_{ii}(n)$ representa a soma de uma série temporal ponderada exponencialmente convergente \implies $0 < |\alpha| < 1$
- **Q** Quando $\frac{\partial E(t)}{\partial w_i(t)}$ tem o mesmo sinal algébrico em iterações consecutivas, então a série cresce em magnitude e os pesos são ajustados por uma quantidade grande. Portanto, o BP tende a acelerar a "descida" nas regiões de descida da superfície do erro.
- **3** Quando $\frac{\partial E(t)}{\partial w_i(t)}$ tem sinais opostos em iterações sucessivas, então a série diminui em magnitude, e $\Delta w_{ii}(n)$ é atualizado por uma quantidade pequena. Então, a inclusão do termo momentum tem o efeito de estabilização nas direções em que o sinal oscila.

- Portanto, o termo momentum pode ter efeitos benéficos no comportamento do aprendizado do algoritmo. Ele pode evitar que o processo termine em um mínimo local na superfície do erro.
- **Observação:** o parâmetro η foi considerado constante.
 - **1** η_{ii} dependente da conexão: fatos interessantes ocorrem se η_{ii} é tomado diferente em diferentes partes do algoritmo.
 - **2** Restringir o número de pesos a serem ajustados: $\eta_{ii} = 0$ para o peso w_{ii} .

Introdução Treinamento de redes MLP

- Modo segundo o qual as camadas ocultas são interconectadas: no procedimento, supomos que cada camada recebe entradas apenas das unidades da camada anterior.
- Não existe uma razão para isso. Se esse não for o caso, existem dois tipos de sinais de erro:
 - Um sinal de erro que resulta de uma comparação direta do sinal de saída daquele neurônio como uma resposta desejada.
 - Um sinal de erro que é passado através de outras unidades cuja ativação ele afeta.'

Sumário

- Introdução
 - Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Modos de treinamento

- Aprendizado BP resulta de muitas apresentações de um conjunto de treinamento de exemplos.
- Uma apresentação completa do conjunto de treinamento corresponde a 1 ciclo (epoch).
- O processo de aprendizado é repetido ciclo após ciclo, até que os pesos sinápticos e níveis threshold se estabilizem.
- Tomar os pesos em uma forma aleatória → pesquisa no espaço dos pesos estocástica.

Introdução Treinamento de redes MLP

(1) Modo padrão:

- Atualização nos pesos é feita após a apresentação de cada exemplo de treinamento.
- Um ciclo consistindo de N exemplos de treinamento. arranjados na ordem:

$$\{[x_1, d_1], [x_2, d_2], \cdots, [x_N, d_N]\}$$

- $[x_1, d_1] \rightarrow c$ álculos forward/backward e atualização dos pesos.
- $[\mathbf{x}_2, \mathbf{d}_2] \rightarrow \text{cálculos}$ forward/backward e atualização dos pesos.

• $[x_N, d_N] \rightarrow c$ álculos forward/backward e atualização dos pesos.

Modo padrão

Introdução Treinamento de redes MLP

Dessa forma, a variação média nas mudanças dos pesos é:

$$\hat{\Delta w_{ji}} = \frac{1}{N} \sum_{n=1}^{N} \Delta w_{ji}(n)$$

$$= -\frac{\eta}{N} \sum_{n=1}^{N} \frac{\partial E(n)}{\partial w_{ji}(n)} \Longrightarrow$$

$$\hat{\Delta w_{ji}} = -\frac{\eta}{N} \sum_{n=1}^{N} e_j(n) \frac{\partial e_j(n)}{\partial w_{ji}(n)}$$
(5)

Modo batch

(2) Modo batch:

- Atualização dos pesos é feita depois da apresentação de todos os exemplos de treinamento que constituem um ciclo.
- Para um ciclo particular, função custo com o erro quadrático médio:

$$\mathcal{E}_{av} = \frac{1}{2N} \sum_{n=1}^{N} \sum_{j \in C} e_j^2(n)$$
 (6)

• Onde C denota o conjunto de índices correspondentes aos neurônios da camada de saída e e; é o sinal do erro do neurônio j correspondente ao exemplo de treinamento w.

$$\Delta w_{ji} = -\eta \frac{\partial \mathcal{E}_{av}}{\partial w_{ii}} \implies$$

$$\Delta w_{ji} = \frac{\eta}{N} \sum_{n=1}^{N} e_j(n) \frac{\partial e_j(n)}{\partial w_{ji}}$$
 (7)

Introdução Treinamento de redes MLP

Modos de treinamento - comparação

- Claramente, Δw_{ii} é diferente de Δw_{ii} .
 - $\Delta \hat{w}_{ii}$ representa uma **estimativa** de Δw_{ii} .
- Do ponto de vista online, o modo padrão é preferido. Além disso, os exemplos de treinamento são aleatoriamente apresentados (atualização nos pesos é **estocástica**) → menos provável o algoritmo BP estacionar em um mínimo local.
- Por outro lado, o modo batch fornece uma estimativa mais precisa do vetor gradiente.
- De qualquer forma, a eficiência dos dois modos depende do problema que se tem em mãos (Hertz, 1991).

Sumário

Introdução

Introdução Treinamento de redes MLP

- Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Critério de parada

- Não se pode, em geral, mostrar a convergência do algoritmo BP, tampouco existem critérios bem definidos para encerrar seu processamento.
- Para formular um critério, devem-se considerar propriedades de mínimo local ou global da superfície de erro.

Critério de parada

Introdução Treinamento de redes MLP

- Seja w* o vetor mínimo local ou global.
- Uma condição necessária para w* ser mínimo:
 - O gradiente (derivada de primeira ordem) da superfície de erro em relação a \mathbf{w} seja zero em $\mathbf{w} = \mathbf{w}^*$, isto é, $\nabla g(w) = 0$ em $\mathbf{w} = \mathbf{w}^*$.
 - Diz-se que o algoritmo BP convergiu se a norma do vetor gradiente é menor que um certo ϵ pequeno arbitrário.
- ② Função custo $\mathcal{E}_{av}(w)$ é estacionária em $\mathbf{w} = \mathbf{w}^*$.
 - Diz-se que o algoritmo BP convergiu se a taxa de mudança no erro quadrático médio por ciclo é suficientemente pequena.
 - Tipicamente, são consideradas pequenas taxas de mudanças no erro de 0.1% a 1% ou de 0.01%.

Critério de parada

 Kramer e Sangiovanni-Vicentelli(1989) sugerem um critério de convergência:

```
O algoritmo BP termina no vetor peso w_{final} quando \parallel g(w_{final}) \parallel \leq \varepsilon, onde \varepsilon é suficiente pequeno, ou \mid\mid \varepsilon_{av} (final ) \mid\mid \leq \tau onde \tau é suficiente pequeno.
```

Sumário

- Introdução
 - Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Generalização

Processo de aprendizado pode ser visto como um Método de Aproximação de Funcões

 efeito de uma boa aproximação não linear dos dados de entrada, tamanho e eficiência do conjunto treinamento, arquitetura da rede, complexidade física do problema

Complexidade da rede

- Problema: determinar o melhor número de nós na camada intermediária.
- Estatisticamente, esse problema é equivalente a determinar o tamanho do conjunto de parâmetros usado para modelar o conjunto de dados. Existe um limite no tamanho da rede.
- Esse limite deve ser tomado lembrando que é melhor treinar a rede para produzir a melhor generalização do que treinar a rede para representar perfeitamente um conjunto de dados.
- Isso pode ser feito usando validação cruzada.

Validação cruzada

Introdução Treinamento de redes MLP

- Conjunto de dados:
 - Treinamento (75%)
 - Teste (25%)
- Conjunto de treinamento:
 - Um subconjunto para validação do modelo.
 - Um subconjunto para treinamento.
- Validar o modelo em um conjunto diferente do usado para estimá-lo.

Validação cruzada

- Usa-se o subconjunto de validação para avaliar o desempenho de diferentes candidatos do modelo (diferentes topologias) e, então, escolhe-se uma delas.
- O modelo escolhido é treinado sobre o conjunto de treinamento inteiro e a capacidade de generalização é medida no conjunto de teste.
- A validação cruzada pode ser usada para decidir quando o treinamento de uma rede deve ser encerrado.

Tamanho do conjunto de treinamento

Em ambos os casos:

Treinamento de redes MLP

- 1 O desempenho do erro na generalização exibe um mínimo.
- ② O mínimo no caso *overfitting* é menor e mais definido.
- Pode-se obter boa generalização se a rede é projetada com muitos neurônios, contanto que o treinamento seja cessado após um número de ciclos correspondente ao mínimo da curva do erro obtida na validação cruzada.

Sumário

- Introdução
 - Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Normalização

Normalização

Consiste em modificar o processo de aprendizado, de modo a favorecer soluções com determinadas propriedades em detrimento de outras.

- Principais técnicas de normalização:
 - Normalização L1
 - Normalização L2
 - Early-stopping

Normalização

Normalização L1/L2

Consiste em colocar um termo adicional na função de perda, punindo parametrizações com pesos mais elevados.

Normalização L1/L2

Se L(θ, D) é a função perda (e.g. erro quadrático médio), θ é
o conjunto de parâmetros livres e D é um exemplo de
treinamento, então a função de perda regularizada será:

$$E(\theta, \mathcal{D}) = \mathcal{L}(\theta, \mathcal{D}) + \lambda R(\theta)$$

Ou, no nosso caso:

$$E(\theta, \mathcal{D}) = \mathcal{L}(\theta, \mathcal{D}) + \lambda ||\theta||_{p}$$

Onde:

$$||\theta||_{p} = \left(\sum_{j=0}^{|\theta|} |\theta_{j}|^{p}\right)^{\frac{1}{p}}$$

• Que é a norma L_p de θ .

Normalização L1/L2

- α é um hiper-parâmetro (i.e. um parâmetro configurado manualmente) que controla a importância relativa do parâmetro de regularização.
- Valores comuns são p = 1 ou p = 2, daí o nome **L1/L2**.
- Adicionar um termo de regularização tende a produzir um mapeamento mais suave, uma vez que valores elevados dos parâmetros são penalizados.
- Pelo princípio da Navalha de Occam, será obtida uma função mais simples.
 - Não significa necessariamente que vai generalizar bem.
 - Empiricamente, constata-se que realizar esse tipo de normalização no contexto de redes neurais melhora a generalização, principalmente em bases de dados pequenas.

Normalização

Normalização

Early-stopping

Consiste em adicionar um coeficiente de paciência e avaliar as parametrizações frequentemente em um conjunto de validação. Quando a melhoria for insignificante ou negativa, retornar a melhor parametrização encontrada até então e encerrar o treinamento.

Early-stopping

- A técnica de early stopping requer que particionemos os exemplos em três conjuntos: de treinamento, de validação e de teste.
- O conjunto de treinamento é usado para aplicação de gradiente descendente estocástico na aproximação diferenciável da função perda.
- Enquanto se executa o gradiente descendente, o conjunto de validação é periodicamente consultado para verificar como o modelo está se desempenhando.
- Pode ser adicionado um coeficiente de **paciência**, segundo o qual o algoritmo pára assim que não houver melhora significativa em sucessivas avaliações com o conjunto de validação.

Sumário

- Introdução
 - Modelo de rede MI P
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo
- Teorema da Aproximação Universal
- Considerações práticas
 - Velocidade de aprendizado
 - Termo Momentum
 - Modos de treinamento
 - Critério de parada
 - Generalização
 - Normalização
 - Inicialização

Inicialização

- O primeiro passo do algoritmo BP é a inicialização da rede.
- Uma boa escolha para os parâmetros livres (pesos sinápticos e threshold) podem contribuir significativamente no sucesso do aprendizado.

Inicialização

- Informação disponível
- Nenhuma informação disponível?
 - Pesos inicializados aleatoriamente, isto é, inicializar os pesos com valores uniformemente distribuídos em um intervalo pequeno.
- Escolha errada ⇒ saturação prematura
 - Esse fenômeno se refere a uma situação na qual o erro quadrático permanece constante por um período de tempo, porém continua a diminuir depois que este período é concluído.

• Fatos interessantes podem ocorrer:

- Suponha que, para um particular padrão de treinamento, o nível de ativação interna de um neurônio saída tenha um valor cuja magnitude é grande (como a função é *sigmoid*, trata-se de um caso em que y=1 ou y=-1). Em tal caso , diz-se que o neurônio está em **saturação**.
- ② Se y está mais próximo de 1 quando a saída desejada é -1, ou vice-versa, o neurônio está **incorretamente saturado**.
 - Quando isso ocorre, o ajuste nos pesos será pequeno, embora o erro seja de magnitude grande, e a rede levará um longo tempo para corrigir essa situação (Lee,1991).
- No estágio inicial do BP, podem existir neurônios não-saturados ou incorretamente saturados.

Inicialização

- Para os não-saturados \rightarrow os pesos mudam rapidamente.
- Para os incorretamente saturados → permanecem saturados por algum tempo.
- Fenômeno da saturação prematura pode ocorrer, com ${\mathcal E}$ permanecendo constante.

• Em Lee(1991), uma fórmula para a probabilidade de saturação prematura foi obtida para o modo batch.

- A essência dessa fórmula pode ser: [Haykin, 1994]
 - Saturação incorreta é evitada escolhendo valores iniciais dos pesos sinápticos e níveis threshold, uniformemente distribuídos em um intervalo pequeno.
 - É menos provável quando o número de neurônios intermediários é mantido baixo.
 - Saramente ocorre quando os neurônios da rede operam em sua regiões lineares.
- Segundo [Haykin,1994], para o modo padrão de atualização dos pesos, os resultados mostram uma tendência similar ao modo batch.