IN310 - Mathématiques pour l'informatique 2^{ieme} contrôle continu 2022-2023

Durée: 1h20.

Les documents sont autorisés. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

IMPORTANT : Pensez à noter votre numéro de groupe sur votre copie.

Question 1

Soit la relation \mathcal{R} sur \mathbb{R} définie comme

$$x\mathcal{R}y$$
 si et seulement si $|x+y| = |x| + |y|$

pour tout $x, y \in \mathbb{R}$, où $|\cdot|$ symbolise la valeur absolue. Est-ce que cette relation est réflexive, symétrique, transitive? Donner une preuve ou un contre-exemple pour chacune des trois propriétés.

Question 2

Soit \mathcal{R} la relation sur l'ensemble $S = \{0, 1, 2, 3, 4, 5, 6, 7, 11, 12\}$ donnée par

 $x\mathcal{R}y$ si et seulement si 3 divise x-y.

Décrire toutes les classes d'équivalences que \mathcal{R} défini sur S.

Question 3

Soient a = 181 et b = 43.

- 1. Calculer le pgcd de a et b.
- 2. Utiliser l'algorithme d'Euclide étendu pour calculer deux entiers u et v tels que pgcd(a, b) = au + bv.
- 3. Calculer l'inverse de b modulo a.

Question 4

- 1. Donner le résultat des calculs ci-dessous. La réponse doit être un entier compris entre 0 et n-1, où n est le module.
 - (a) $12 \cdot 16 + 7 \mod 13$ (b) $36 \cdot 22 \mod 19$ (c) $(27 + 23) \cdot 50 \mod 24$ (d) $566 \cdot 31 \mod 28$
 - (e) $428 \cdot 2115 \mod 21$
- 2. L'élément 10 est-il inversible modulo 13? Même question pour 4 mod 22.
- 3. Calculer $4^4 \mod 10$ et $3^7 \mod 10$.

Question 5 Soit le système linéaire

$$A = \begin{pmatrix} -1 & -3 & -2 & -5 \\ -1 & 2 & -2 & 5 \\ 2 & 6 & 4 & 7 \\ 0 & 5 & 2 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} -11 \\ -6 \\ 19 \\ 5 \end{pmatrix}$$

- (a) Calculer le determinant de la matrice des coefficients du système.
- (b) Résoudre le système suivant la méthode de Gauss.