่ รู้งัง กระ พระนั้ง Binary Search Tree 65010479

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

H

1.

2.

3.

(A)

A R

5.

6.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HARU
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น AHHIRU
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น AIHURH

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
HIPU
```

7.

8.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	HHI
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น	H H I
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	IHH

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree2;
0.
      tree2.insert('G');
1.
      tree2.insert('0');
2.
3.
      tree2.insert('I');
      tree2.insert('N');
      tree2.insert('G');
      tree2.insert('M');
7.
      tree2.insert('E');
      tree2.insert('R');
      tree2.insert('T');
9.
      tree2.insert('Y');
10.
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น <u>5 E 0 I 6 N M 2 T y</u> หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น <u>E 6 6 I M N 0 2 T y</u> หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น <u>E 6 M N I y T P 0 6</u>

4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));
12. delete_node(&((tree2.root->right->left)->right));
13. delete_node(&((tree2.root->right->right)->right));
14. delete_node(&((tree2.root->right->right)->right));
```


 5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
2.
      tree3.insert('A');
      tree3.insert('B');
3.
      tree3.insert('C');
4.
      tree3.insert('D');
5.
      tree3.insert('E');
6.
      tree3.insert('F');
7.
      tree3.insert('G');
      tree3.insert('H');
9.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น ASCOEF 6 H
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น ASCOEF 6 H
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น H G F E O C G A

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```


13. EF E

7.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน
	เนื่องจากอะไร (ขอสั้นๆ)
	りは balance ままれないがかかっかり 1975 11VU では balance のこよから
	rio un âi au l'e mode un nit illu balance
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากัน
	อย่างไร (ขอสั้นๆ)
	1100 balance 1957 - zion m m search gan voi 1100 72 ba lance
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ)
	balance
10.	ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ
	unbalance เนื่องจากอะไร (ขอยาวๆ)
	is cary supports sail applied of the interest in ass for
	trec 05/20 1/11/10 vor balance 210 min 120: 0=0 600 min
	אין אין אוע עופע אין
	NOZA TESSA ISS NOT 11VL 72 bolom ce