Lehrstuhl für STEUERUNGS-UND REGELUNGSTECHNIK

Technische Universität München Prof. Dr.-Ing./Univ. Tokio Martin Buss

OPTIMIERUNGSVERFAHREN IN DER AUTOMATISIERUNGSTECHNIK

Übung 5: Lineare Regression, Kleinste Quadrate

1. Aufgabe

Gegeben ist das folgende Optimierungsproblem

$$\min \frac{1}{2} ||\underline{y} - C\underline{x}||^2 = \min \frac{1}{2} \sum_{j=1}^{N} (y_j - p(z_j, \underline{x}))^2$$

Dabei seien x_i ($i=1,\ldots,n$) Parameter einer Funktion $p(z_j,\underline{x})=\sum_{i=1}^n x_i z_j^{i-1}$ und (z_j,y_j) ($j=1,\ldots,N$) sind Messpaare.

1.1 Geben Sie eine Matrix C an für $p(z_j,\underline{x})=x_1+x_2z_j,\ N=4$ und

z_j	y_j
1	98
2	106
3	96
4	104

Interpretieren Sie das Optimierungsproblem.

- 1.2 Stellen Sie die notwendigen Optimalitätsbedingungen 1. Ordnung auf.
- 1.3 Zeigen Sie, dass die einzige Lösung der Optimalitätsbedingung \underline{x}^* ein Minimum ist.
- 1.4 Berechnen Sie die Parameter x_1 und x_2 für das Problem aus 1.1 und zeichnen Sie die Lösung.
- 1.5 Zusätzlich gelte nun für die Parameter \underline{x}

$$A\underline{x} = \underline{b} \quad \text{mit } A \in \mathbb{R}^{M \times n}, \ \underline{b} \in \mathbb{R}^M, \ \text{rg}(A) = M$$

Berechnen Sie unter Berücksichtigung der GNB einen Ausdruck für das Extremum \underline{x}^* .

- 1.6 Zeigen Sie, dass der Kandidat \underline{x}^* aus 1.5 ein Minimum ist. Was können Sie über die Art des Minimums aussagen?
- 1.7 Betrachten Sie in 1.1 die GNB $A\underline{x}=\underline{b}$ mit $A=(0\ 1)$ und b=0. Berechnen Sie erneut x_1 und x_2 .