# CSE 3521:Bayesian Networks (DAG Probabilistic Graphical Models)





# **Project Submission**

#### Presentation

- Same section group: During class time
- Multi section group: You can choose which time to present
  - (and update it in the project sheet)



#### Report

- Tentatively 4 pages
- 1-2 pages the problem description and dataset description
- 1-2 pages the algorithm description and performance report
- ½ page comparison among the algorithms and conclude

## Today

- Probabilistic graphical models (PGMs)
  - An efficient way to encode conditional independence
  - o From PGMs, we can decompose a joint probability much efficiently
- Probabilistic Inference on PGMs
- Independence in PGMs

## Problems: dependent feature variables

- Most real-world data have high-dimensional and correlated variables
- Examples:
  - Pixels in an image
  - Words in a document
  - Genes in a microarray
- Sometimes, even data instances are not independent
- Examples:
  - Today's stock market and yesterday's stock market

## Questions: how to build probability models?

- How to compactly represent  $p(X = x | \theta)$ , where  $\theta$  are the parameters?
- How can we use this distribution to infer a set of variables given another?
  - o Ex. Given the first 100 pixels, infer the rest
  - o Ex. Given today's stock market, predict tomorrow's
- How can we learn the parameters with a reasonable amount of data?

## The Chain Rule of Probability

$$p(X[1] = x[1], ..., X[D] = x[D]) = P(x[1:D])$$

$$= p(x[1])p(x[2]|x[1]) ... p(x[D]|x[1:D-1]) = \prod_{d} p(x[d]|x[1:d-1])$$

$$p(X_1 = x_1, ..., X_N = x_N) = p(x_{1:N}) = p(x_1)p(x_2|x_1) ... p(x_N|x_{1:N-1}) = \prod_{i} p(x_i|x_{1:i-1})$$

#### We will use x[i] or $x_i$ interchangeably sometimes in this lecture!

- Can represent any joint distribution this way
- Using <u>any ordering</u> of the variables...

Problem: this distribution has O(2<sup>N</sup>) parameters if each of them is a binary random variable

## Conditional Independence

- This is the key to representing large joint distributions
- X and Y are conditionally independent given Z
  - o if and only if the conditional joint can be written as a product of the conditional marginals

$$X \perp Y|Z \iff P(X,Y|Z) = P(X|Z)P(Y|Z)$$

$$P(X|Z,Y) = P(X|Z)$$

$$P(Y|Z,X) = P(Y|Z)$$

#### Markov Models

"The future is independent of the past given the present"

$$x_{t+1} \perp x_{1:t-1} | x_t$$

$$P(x_1, x_2, x_3, \dots, x_n)$$

$$= P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) \dots P(x_n|x_1, x_2, x_3, \dots, x_{n-1})$$

$$= P(x_1)P(x_2|x_1)P(x_3|x_2) \dots P(x_n|x_{n-1})$$

- Only O(N) parameters:
  - Fewer parameters, (1) faster learning, (2) fast inference, (3) and fewer training data required!

## Probabilistic Graphical Models

- First order Markov assumption is useful for 1-D sequence data
  - Sequences of words in a sentence or document
- Q: What about 2-D images, 3-D video
  - Or in general arbitrary collections of variables
    - Gene pathways, etc...

## Probabilistic Graphical Models

- A way to represent a joint distribution by making conditional independence assumptions
- Nodes represent variables
- Edges: can be directed or undirected
   directed acyclic graph (DAG): Bayesian networks
- No edges indicate conditional independence assumptions
  - o Ex: (top) C and B are conditionally independent given A





## **Directed Graphical Models**

- Graphical Model whose graph is a DAG
  - DAG: Directed acyclic graph (no cycles!)
- A.K.A. Bayesian Networks
  - Also known as Bayes network, belief network
  - Nothing inherently Bayesian about them
    - Just a way of defining conditional independence



## **Directed Graphical Models**

- Key properties: Nodes can be ordered so that parents come before children
  - Topological ordering
  - Can be constructed from any DAG



- Generalization of first-order Markov Property to general DAGs
- Node only depends on its parents (not other ancestors)

$$X_s \perp X_{\text{any ancestor}(s)-\text{parents}(s)} \mid X_{\text{parents}(s)}$$

- EX. D ⊥ A | B, C
- Decomposition (nodes are ordered):  $p(x_{1:N}) = \prod_{i} p(x_i \mid parents(i))$



## Example

$$P(x_{1:5}) = P(x_1)P(x_2|x_1)P(x_3|x_1, \mathbf{x_2})P(x_4|\mathbf{x_1}, x_2, x_3)p(x_5|\mathbf{x_1}, \mathbf{x_2}, x_3, \mathbf{x_4})$$
$$= P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_4|x_2, x_3)p(x_5|x_3)$$



- Given the decomposition, you can draw the DAG
- Given the DAG, you can derive the decomposition

#### **Practice**



$$P(A,B,C,D) = P(A)P(B|A)P(C|A)P(D|B,C)$$

#### **Practice**

$$P(A,B,C,D) = P(A|D)P(B|A)P(C|B,A)P(D)$$



#### **Practice**

$$P(A,B,C,D)$$
=  $P(A)P(B|A)P(C|A,B)P(D|A,B,C)$ 



### Naïve Bayes



$$P(y, x_{1:D}) = P(y) \prod_{j=1}^{D} P(x_j|y)$$

- White nodes: unknown
- Gray nodes: observed

## Example: medical Diagnosis (The Alarm Network)



# Another medical diagnosis example: QMR network



## Today

- Probabilistic graphical models (PGMs)
  - An efficient way to encode conditional independence
  - o From PGMs, we can decompose a joint probability much efficiently
- Probabilistic Inference on PGMs
- Independence in PGMs

#### Probabilistic Inference

- Graphical Models provide a compact way to represent complex joint distributions
- Q: Given a joint distribution, what can we do with it?
- A: Main use = probabilistic inference
  - o Estimate unknown variables from known ones
  - Ex. Given P(X, Y), predict the most likely assignment of Y given X=x

#### General Form of Inference

- We have:
  - A correlated set of random variables
  - o Joint distribution:  $P(x_{1:V}|\theta)$ 
    - Assumption: parameters are known
- Partition variables into:
  - $\circ$  Visible (with assignments/observations):  $x_v$
  - $\circ$  Hidden:  $\mathcal{X}_h$
- Goal: compute unknowns from known ones

$$P(x_h|x_v,\theta) = \frac{P(x_h, x_v|\theta)}{P(x_v|\theta)} = \frac{P(x_h, x_v|\theta)}{\sum_{x_h'} P(x_h', x_v|\theta)}$$

#### General Form of Inference

$$P(x_h|x_v,\theta) = \frac{P(x_h,x_v|\theta)}{P(x_v|\theta)} = \frac{P(x_h,x_v|\theta)}{\sum_{x_h'} P(x_h',x_v|\theta)}$$

- Condition data by clamping visible variables to observed values
- Normalize by probability of evidence

#### **Nuisance Variables**

- Partition hidden variables into:
  - $\circ$  Query Variables (interested):  $\mathcal{X}_q$
  - $\circ$  Nuisance variables (not interested):  $x_u$

$$P(x_q|x_v,\theta) = \sum_{x_u} P(x_q, x_u|x_v)$$

#### Inference on PGMs

Burglary







| -e | 0.998 | 3      |  |
|----|-------|--------|--|
|    |       |        |  |
| Α  | M     | P(M A) |  |
| +a | +m    | 0.7    |  |
| +a | -m    | 0.3    |  |
|    |       |        |  |

+m

-m

-a

-a

0.01

0.99

P(E)

0.002

| P(+b, -e, +a, -j, +m) =                 |   |
|-----------------------------------------|---|
| P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) = | _ |

| Eartho | Juake |
|--------|-------|
|--------|-------|



| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -e | +a | 0.94     |
| +b | -e | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -e | -a | 0.999    |
| •  |    |    | -        |

#### Inference on PGMs

**Burglary** 







**Mary Calls** 

| Е  | P(E)  |
|----|-------|
| +e | 0.002 |
| -e | 0.998 |
|    |       |

| Α  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |

$$P(+b, -e, +a, -j, +m) =$$

$$P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) =$$

$$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$$

John Calls

| Earthquake |
|------------|
|------------|



| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -e | +a | 0.94     |
| +b | -e | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -e | -a | 0.999    |
|    |    |    |          |

#### Inference on PGMs

Burglary







| $P(B \mid +j,+m) =$     | P(B,+j,+m)            | <b>—</b> 2 |
|-------------------------|-----------------------|------------|
| $F(D \mid + J, +III) =$ | $\overline{P(+j,+m)}$ | — <b>:</b> |

John Calls

Earthquake

P(E)

0.002

0.998

M

+m

-m

+m

-m

P(M|A)

0.7

0.3

0.01

0.99

Ε

+e

-е

+a

+a

-a

-a

Mary Calls



| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -e | +a | 0.94     |
| +b | -e | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -e | -a | 0.999    |
|    |    |    |          |

## \*\* Inference vs. Learning

- Inference:
  - $\circ$  Compute  $P(x_h|x_v,\theta)$
  - Parameters are assumed to be known
- Learning (parameter estimation):
  - Compute MLE or MAP estimate of the parameters

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{N} P(\boldsymbol{x}_{i,\boldsymbol{v}}; \; \theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log P(\boldsymbol{x}_{i,\boldsymbol{v}}; \; \theta)$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left\{ \prod_{i=1}^{N} P(\boldsymbol{x}_{i,\boldsymbol{v}} \mid \theta) \right\} P(\theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log P(\boldsymbol{x}_{i,\boldsymbol{v}} \mid \theta) + \log P(\theta)$$

## Today

- Probabilistic graphical models (PGMs)
  - An efficient way to encode conditional independence
  - o From PGMs, we can decompose a joint probability much efficiently
- Probabilistic Inference on PGMs
- Independence in PGMs

#### Markov Blanket

#### • Definition:

- The smallest set of "observed" nodes that renders a node t <u>conditionally independent</u> of all the other nodes in the graph.
- Markov blanket in DAG is:
  - Parents
  - o Children
  - Co-parents (other nodes that are also parents of the children)

#### Markov Blanket

- Each node is conditionally independent of all others given its Markov blanket:
  - o parents + children + children's parents

