Dicas e truques de aprendizado de máquina

Afshine AMIDI e Shervine AMIDI 13 de Outubro de 2018

Traduzido por Fernando Santos. Revisado por Leticia Portella e Gabriel Fonseca.

Métricas de classificação

Em um contexto de classificação binária, essas são as principais métricas que são importantes acompanhar para avaliar a desempenho do modelo.

□ Matriz de confusão – A matriz de confusão (confusion matrix) é usada para termos uma cenário mais completa quando estamos avaliando o desempenho de um modelo. Ela é definida conforme a seguir:

Classe prevista

		+	_
Classe real	+	TP True Positives	FN False Negatives Type II error
	-	FP False Positives Type I error	TN True Negatives

 $\hfill \Box$ Principais métricas – As seguintes métricas são comumente usadas para avaliar o desempenho de modelos de classificação:

Métrica	Fórmula	Interpretação	
Acurácia	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Desempenho geral do modelo	
Precisão	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	Quão precisas são as predições positivas	
Revocação Sensibilidade	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Cobertura da amostra positiva real	
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$	Cobertura da amostra negativa real	
F1 score $\frac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}$		Métrica híbrida útil para classes desequilibradas	

□ ROC – A curva de operação do receptor, também chamada ROC (*Receiver Operating Characteristic*), é a área de TPR versus FPR variando o limiar. Essa métricas estão resumidas na tabela abaixo:

Métrica	Fórmula	Equivalente
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Revocação, sensibilidade
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN} + \mathrm{FP}}$	1-specificity

 $\hfill \Box$ AUC – A área sob a curva de operação de recebimento, também chamado AUC ou AUROC, é a área abaixo da ROC como mostrada na figura a seguir:

Métricas de regressão

 \square Métricas básicas – Dado um modelo de regresão f, as seguintes métricas são geralmente utilizadas para avaliar o desempenho do modelo:

S. total dos quadrados	S. explicada dos quadrados	S. residual dos quadrados
$SS_{tot} = \sum_{i=1}^{m} (y_i - \overline{y})^2$	$SS_{reg} = \sum_{i=1}^{m} (f(x_i) - \overline{y})^2$	$SS_{res} = \sum_{i=1}^{m} (y_i - f(x_i))^2$

 $\hfill \Box$ Coeficiente de determinação – O coeficiente de determinação, frequentemente escrito como R^2 ou $r^2,$ fornece uma medida de quão bem os resultados observados são replicados pelo modelo e é definido como se segue:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

 \square Principais métricas – As seguintes métricas são comumente utilizadas para avaliar o desempenho de modelos de regressão, levando em conta o número de variáveis n que eles consideram:

Cp de Mallow	AIC	BIC	R^2 ajustado
$\frac{\mathrm{SS}_{\mathrm{res}} + 2(n+1)\widehat{\sigma}^2}{m}$	$2\Big[(n+2)-\log(L)\Big]$	$\log(m)(n+2) - 2\log(L)$	$1 - \frac{(1 - R^2)(m - 1)}{m - n - 1}$

onde L é a probabilidade e $\widehat{\sigma}^2$ é uma estimativa da variância associada com cada resposta.

Seleção de modelo

 $\hfill\Box$ Vocabulário – Ao selecionar um modelo, nós consideramos 3 diferentes partes dos dados que possuímos conforme a seguir:

Conjunto de treino	Conjunto de validação	Conjunto de teste
- Modelo é treinado	- Modelo é avaliado	- Modelo fornece previsões
- Geralmente 80%	- Geralmente 20%	- Dados não vistos
do conjunto de dados	do conjunto de dados	
	Também chamado de hold-out	

Uma vez que o modelo é escolhido, ele é treinado no conjunto inteiro de dados e testado no conjunto de dados de testes não vistos. São representados na figura abaixo:

 \square Validação cruzada – Validação cruzada, também chamada de CV (Cross-Validation), é um método utilizado para selecionar um modelo que não depende muito do conjunto de treinamento inicial. Os diferente tipos estão resumidos na tabela abaixo:

k-fold	Leave-p-out	
- Treino em $k-1$ partes e teste sobre o restante	- Treino em $n-p$ observações e teste sobre p restantes	
- Geralmente $k = 5$ ou 10	- Caso $p = 1$ é chamado $leave-one-out$	

O método mais comumente usado é chamado k-fold cross validation e divide os dados de treinamento em k partes enquanto treina o modelo nas outras k-1 partes, todas estas em k vezes. O erro é então calculado sobre as k partes e é chamado erro de validação cruzada (cross-validation error).

Parte	Dados	Erro de validação	Erro de validação cruzada
1		$) \qquad \epsilon_1$	
2		$) \qquad \epsilon_2$	$\epsilon_1 + + \epsilon_k$
÷	<u>:</u>	<u>:</u>	k
k		$) \qquad \epsilon_k$	
	Treino Validaç	ăo	

□ Regularização – O procedimento de regularização (regularization) visa evitar que o modelo sobreajuste os dados e portanto lide com os problemas de alta variância. A tabela a seguir resume os diferentes tipos de técnicas de regularização comumente utilizadas:

Diagnóstico

- \square Viés O viés (bias) de um modelo é a diferença entre a predição esperada e o modelo correto que nós tentamos prever para determinados pontos de dados.
- \square Variância A variância (variance) de um modelo é a variabilidade da previsão do modelo para determinados pontos de dados.
- □ Balanço viés/variância Quanto mais simples o modelo, maior o viés e, quanto mais complexo o modelo, maior a variância.

	Underfitting	Just right	Overfitting
Sintomas	 Erro de treinamento elevado Erro de treinamento próximo ao erro de teste Viés elevado 	- Erro de treinamento ligeiramente menor que erro de teste	- Erro de treinamento muito baixo - Erro de treinamento muito menor que erro de teste - Alta variância
Regressão			My

 $\hfill\Box$ Análise de erro – Análise de erro (error analysis) é a análise da causa raiz da diferença no desempenho entre o modelo atual e o modelo perfeito.

 $\hfill \Box$ Análise ablativa — Ablative analysis (ablative analysis) é a análise da causa raiz da diferença no desempenho entre o modelo atual e o modelo base.