One can describe domination by an inequality for the generators in a manner analoguous to the characterization of positive semigroups in Section 1; however, no positive subeigenvectors are needed here.

Theorem 4.2. Let $(T(t))_{t\geq 0}$ be a positive semigroup with generator A and $(S(t))_{t\geq 0}$ a semigroup with generator B . The following assertions are equivalent.

- (i) $|S(t)f| \le T(t)|f|$ for all $f \in E$, $t \ge 0$.
- (ii) Re<(sign \bar{f})Bf, ϕ > \leq <|f|,A' ϕ > for all $f \in D(B)$, $\phi \in D(A')_+$.

Proof. (i) implies (ii). Let
$$f \in D(B)$$
, $\phi \in D(A')_{+}$. Then Re<(sign \overline{f})Bf, ϕ > = Re <(sign \overline{f})lim_{t+0}1/t(S(t)f - f), ϕ > = $< \lim_{t \to 0} 1/t (Re((sign \overline{f}) S(t)f) - |f|), ϕ > $\le \lim_{t \to 0} <1/t(|S(t)f| - |f|), \phi$ > $\le \lim_{t \to 0} <1/t(|T(t)|f| - |f|), \phi$ > = $<|f|, A', \phi$ >.$

- (ii) implies (i). Let $\lambda > \max\{\omega(A), \omega(B)\}$ and $g \in E$. We show that
- $(4.3) |R(\lambda,B)q| \leq R(\lambda,A)|q|.$

Let $\psi \in E_+^{\prime}$. Then $\phi := R(\lambda,A)^{\prime}\psi \in D(A^{\prime})_+$. Setting $f := R(\lambda,B)g \in D(B)$ we obtain by (ii) $\langle R(\lambda,B)g |, \psi \rangle = \langle f |, (\lambda-A^{\prime}) \phi \rangle \leq \langle \lambda | f |, \phi \rangle - Re \langle (sign \ \overline{f}) Bf, \phi \rangle = Re \langle (sign \ \overline{f}) (\lambda f - Bf), \phi \rangle = Re \langle (sign \ \overline{f}) g, \phi \rangle \leq \langle g |, \phi \rangle = \langle R(\lambda,A) | g |, \psi \rangle$. Since $\psi \in E_+^{\prime}$ is arbitrary (4.3) follows.

In order to deduce that (ii) implies (i) in Theorem 4.2, it is not necessary to assume that B is a generator. Merely a range condition is sufficient. The precise formulation is the following.

Theorem 4.3. Let $(T(t))_{t\geq 0}$ be a positive semigroup with generator A . Let B be a densely defined operator such that

(4.4)
$$\begin{array}{c} \operatorname{Re} < (\operatorname{sign} \ \overline{f}) \operatorname{Bf}, \phi > \leq < |f|, A' \phi > \\ \text{for all } f \in D(B), \phi \in D(A')_{\perp}. \end{array}$$

Then B is closable. Moreover, if $(\lambda - B)D(B)$ is dense in E for some $\lambda > \max\{0, s(A)\}$, then \overline{B} (the closure of B) generates a semigroup which is dominated by $(T(t))_{t\geq 0}$.

<u>Proof.</u> 1. We show that B is closable. Let $u_n \in D(B)$ satisfy $u_n \to 0$ and $Bu_n \to v$ $(n \to \infty)$. We have to