Exercice 1 5pt

Soit c un nombre complexe. On cherche à étudier les éventuelles racines carrées de c.

- 1. Soit $z \in \mathbb{C}$ tel que $z^2 = c$. On pose m = |z| et $\theta = \arg(z)$.
 - (a) Montrez que $m^2 = |c|$ et $2\theta \equiv \arg(c)$ modulo 2π .
 - (b) En déduire que l'équation $z^2 = c$ admet en général deux solutions complexes.
- 2. Calculez les nombres complexes dont le carré est égal à -1, à i, et à $-2 + 2i\sqrt{3}$. Donnez leur valeur en forme algébrique et en forme exponentielle.

Exercice 2 7pt

- 1. Justifiez que $P(z) = z^5 1$ se factorise par (z 1) et calculez cette factorisation.
- 2. On pose $\omega = e^{i\frac{2\pi}{5}}$. Justifiez que $P(\omega) = 0$ et montrez que $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.
- 3. Montrez que $\omega^3 = \overline{\omega}^2$ et que $\omega^4 = \overline{\omega}$.
- 4. Soient $u = \omega + \overline{\omega}$ et $v = \omega^2 + \overline{\omega}^2$. Montrez que u + v = -1 et uv = -1.
- 5. Montrez que $u = \frac{-1+\sqrt{5}}{2}$ et $v = \frac{-1-\sqrt{5}}{2}$ et en déduire la valeur de $\cos(\frac{2\pi}{5})$.
- 6. Soit $\theta \in \mathbb{R}$. Exprimez $\cos(2\theta)$ en fonction de $\cos(\theta)$.
- 7. En déduire la valeur de $\cos(\frac{\pi}{5})$.

Exercice 3, extrait du sujet de bac 2015.

8pt

1. Résoudre dans $\mathbb C$ l'équation suivante d'inconnue z :

$$z^2 - 8z + 64 = 0.$$

- 2. On considère les nombres complexes $a = 4 + 4i\sqrt{3}$, $b = 4 4i\sqrt{3}$ et c = 8i.
 - (a) Calculer le module et un argument du nombre a.
 - (b) Donner la forme exponentielle des nombres a et b.
 - (c) Placer dans un repère orthonormé (O, \vec{i}, \vec{j}) les points A, B et C d'affixes respectives a, b et c, puis montrer que les points A, B et C sont sur un même cercle de centre O dont on déterminera le rayon.

Pour la suite de l'exercice, on pourra s'aider de la figure de la question précédente complétée au fur et à mesure de l'avancement des questions.

- 3. On considère les points A', B' et C' d'affixes respectives $a'=ae^{i\frac{\pi}{3}},\ b'=be^{i\frac{\pi}{3}}$ et $c'=ce^{i\frac{\pi}{3}}.$
 - (a) Montrer que b' = 8.
 - (b) Calculer le module et un argument du nombre a'.

Pour la suite on admet que $a' = -4 + 4i\sqrt{3}$ et $c' = -4\sqrt{3} + 4i$.

- 4. Soient M et N deux points du plan d'affixes respectives m et n. Quelle est l'interpretation géométrique du nombre complexe $\frac{m+n}{2}$ et de la quantité |m-n|?
 - (a) On note r, s et t les affixes des milieux respectifs R, S et T des segments [A'B], [B'C] et [C'A]. Calculez r, s et t.
 - (b) Quelle est la nature du triangle RST?

Exercice 4, bonus.

?pt

Montrez que \mathbb{C} est un \mathbb{R} -espace vectoriel de dimension 2.