What This Algorithm Does:

Step Logic

Smooths the data Removes sensor noise to detect true trend

Detects a stable Finds a low-slope, low-noise period — treats it as "normal"

window behavior

Compares slope Measures how fast values are rising now, compared to baseline

Self-learns thresholds No hardcoded values; learns from past system behavior

Classifies state Normal, Warning, or Critical based on trend steepnes

STEP-BY-STEP EXPLANATION

Step 1: Generate or Input the Sensor Data

python

CopyEdit

```
sensor_data = [...100 readings...]
```

You can use real sensor readings, or generate synthetic ones like in this code:

- First 70 readings → **flat/stable**
- Last 30 readings → slowly rising

This simulates a real-world case where your system heats up or degrades over time.

Step 2: Smooth the Sensor Data

python

CopyEdit

```
smoothed = savgol_filter(sensor_data, window_length=11, polyorder=2)
```

Real sensors are noisy, so we smooth the curve to focus on the actual trend, not random jumps.

Smoothing makes slope detection more accurate.

Step 3: Detect a Stable "Baseline" Window Automatically

python

CopyEdit

baseline_start, baseline_end = find_stable_baseline(smoothed)

Here, the algorithm scans the smoothed data to find a window that is:

- Flat (slope ≈ 0)
- Low in noise (low variance)

This window is assumed to be when the system was **behaving normally**.

This is your **reference point** for comparison.

Step 4: Define the Current Window (Recent Data)

python

CopyEdit

```
current_window = smoothed[-24:] # last 2 hours if 5 min interval
```

We look at the last 24 readings (2 hours) to see what's happening now.

Step 5: Calculate Slope for Both Windows

```
python
```

CopyEdit

```
baseline_slope = (baseline_window[-1] - baseline_window[0]) /
window_size
current_slope = (current_window[-1] - current_window[0]) / window_size
```

- The **baseline slope** shows how fast the system was changing when it was healthy.
- The **current slope** shows how fast it's changing now.

Step 6: Define Dynamic Thresholds

```
python
CopyEdit
warning_threshold = 1.5 × baseline_slope
critical_threshold = 2.5 × baseline_slope
```

The algorithm **learns** what's "too fast" by multiplying the baseline slope.

✓ No hardcoded values — this adapts to each system's own behavior.

Step 7: Compare and Classify the System

```
python
CopyEdit
if current_slope > critical_threshold:
    final_state = "Critical"
elif current_slope > warning_threshold:
    final_state = "Warning"
else:
    final_state = "Normal"
```

- If the system is heating up a lot faster than it used to → ⁶/₆ Critical
- If it's warming **a bit faster** than before $\rightarrow \bigwedge$ Warning
- If it's behaving similarly → ✓ Normal

Imagine this:

You're observing a machine's temperature sensor.

You're not just asking:

X "Is the temperature high?"

You're asking:

"Is the machine heating up faster than it usually does when it's okay?"

That's the **core intuition**

You're comparing how fast values are changing now to how fast they used to change when things were normal.

It's like:

- You know how calmly your system normally behaves (baseline slope).
- You notice that it's now speeding up (current slope).
- If the current behavior is too different you raise an alert.

Summary: What Your Algorithm Is Thinking

"I remember how the system behaves when it's calm.

Now I see it's speeding up more than usual.

This could be trouble — better raise a warning or alert!"

That's intelligent behavior — not just reacting to fixed values.

logic

```
START

|
v

[1] Get sensor data (e.g., 100 readings)

|
v

[2] Smooth the data using Savitzky-Golay filter
- Removes noise
```

```
- Reveals the true trend
[3] Find a stable "baseline window"
  - Slide a fixed-size window over data
  - In each window:

    Calculate slope = (last - first) / window_size

    Calculate variance of the values

  - Select window with:
     • Slope ≈ 0 (almost flat)

    Lowest variance (least noisy)

[4] Extract the "current window" (latest N readings)
  - This is what we want to classify
[5] Compute slope in both windows:
  - Baseline Slope = (last - first) / size
  - Current Slope = (last - first) / size
[6] Compute thresholds from baseline:
  - Warning Threshold = 1.5 × baseline slope
  - Critical Threshold = 2.5 × baseline_slope
[7] Compare current slope:
  IF current_slope > critical_threshold:
     → System State = "Critical"
  ELSE IF current_slope > warning_threshold:
     → System State = "Warning"
  ELSE:
     → System State = "Normal"
[8] Output:
  - Print/return system state
  - Optional: Plot smoothed curve
   with baseline and current window highlights
END
```


FMEA

ID	Failure Mode	Possible Cause	Effect	Severit y	Detection	Mitigation
F1	No stable baseline found	All data is noisy, rising, or fluctuating	No valid reference for comparison → misclassification	High	Detected by absence of valid window	Fallback to fixed early window or use median slope
F2	Baseline slope too close to zero	Perfectly flat baseline → thresholds collapse	Even slight rise appears Critical	Mediu m	Check for too-small baseline slope	Add min_slope = 0.01 threshold floor
F3	Over-adapt ing to rising data	Algorithm adapts to slow rising baseline → no alert triggered	Missed early warnings	High	Happens gradually	Add memory: baseline must be pre-current

F4	False Critical during short spike	Current window has a sudden short spike	Unnecessary alert	Mediu m	High slope with no persistence	Use multi-reading average slope or "3 consecutive alerts" rule
F5	Wrong smoothing settings	Window too wide or narrow → trend is distorted	Slope is inaccurate	Mediu m	Slopes behave erratically	Tune smoothing: window ≈ 10–25% of total
F6	Real change masked by noise	Slope change is hidden inside jitter	Missed warning or critical	Mediu m	Slope close to noise-level	Use 2nd derivative or EWMA to detect rising pattern
F7	Thresholds don't generalize	1.5x/2.5x doesn't work for all systems	Over- or under-sensitive alarms	Mediu m	Requires manual tuning	Switch to percentile-ba sed thresholds (e.g., 85%, 95%)
F8	Rolling baseline too old or too recent	Baseline window includes rising or decaying periods	Biased slope learning → wrong threshold	Mediu m	Compare against annotated system states	Use a fixed-length pre-event zone or stable detection logic
F9	Time resolution mismatch	Δt is wrong (e.g., data is not 5-min intervals)	Slope becomes meaningless	High	Unexpectedly high slope	Require timestamp or resample data
F1 0	Data gaps or NaNs	Missing or zeroed sensor values	Slope becomes distorted	Mediu m	Detected by NaN check	Interpolate missing values or discard bad segments

F1 1	Flat system by nature	Some sensors (e.g., voltage) have near-zero slope always	Slope threshold is always breached	Mediu m	High alert frequency	Use absolute change + persistence logic
F1 2	Long system drift	System degrades slowly over days → baseline is no longer valid	Delayed alert or none at all	High	Slope keeps rising but thresholds adapt	Periodically reset or refresh baseline window

High-Risk Items

Risk ID	Why it's critical	How to handle it
F1	Without a stable baseline, system loses reference	Use fixed fallback or robust detection logic
F3	Rising baseline hides abnormal trends	Ensure baseline is <i>before</i> current window and limited in slope
F12	Long-term drift causes silent failure	Refresh baseline weekly or based on anomaly count