136

⑩日本国特許庁(JP)

10特許出願公開

四公開特許公報(A)

昭61-40845

@Int_Cl.4

識別記号

展

庁内整理番号

❷公開 昭和61年(1986)2月27日

C 03 C 17/30

A-8017-4G

審査請求 未請求 発明の数 1 (全6頁)

❷発明の名称

低反射率ガラス

②特 願 昭59-159097

幸

❷出 願 昭59(1984)7月31日

Ø発 明 者 松 尾

仁 横浜市緑区在田南 1 - 20-3-304

の発明者 山岸

横浜市旭区鶴ケ峰2-59-1

砂発 明 者 大 西

啓 一 横浜市旭区鶴ケ峰2-59-1

⑩出 願 人 旭硝子株式会社

東京都千代田区丸の内2丁目1番2号

②代理人 弁理士内田 明 外1名

明細 🕿

1. 発明の名称

低反射率ガラス

2. 特許請求の範囲

- 1. ガラス表面上に又はガラス表面に形成されたプレコート膜面上に、含フッ素シリコーン化合物の紹合体からなる低反射加工剤の立路が形成されてなる低反射率ガラスにおいる工剤の強膜と上記ガラスを含むないのではプレコート膜とが水酸基を2個以上含むのではプレコート膜とが水酸基を2個以上含むのではカウスの存膜を介して結合されていることを特徴とする低反射率ガラス。
- 2 有機多とドロキシ化合物が多価アルコール 類である特許請求の範囲第1項記載の低反射 率ガラス。
- 5. プレコート膜が金属酸化物を含有する縮合体からなる特許請求の範囲第1項記載の低反射率ガラス。

3.発明の詳細な説明

〔産業上の利用分野〕

本発明は、ガラス表面の反射性を低下させた低反射率ガラスに関し、更に詳しくは、ガラス表面に形成されたブレコート膜面上に多価アルコール類の如き特定の水酸基含有化合物からなる薄膜が形成され、酸薄膜上に特定の低反射加工剤が形成されてなる低反射率ガラスに関するものである。

〔従来の技術〕

۵.

従来から、ガラス表面の反射防止は光学部品のレンズを中心に開発が進められてきている。ガラス表面の可視光の反射防止にはMgPz、、氷晶石などからなる単層膜が、また赤外用には810・810・UgPz、三硫化ひ繋ガラス・WOz・氷晶石などからなる複層膜が、更に紫外用には810x、LiPなどからなる単層膜が反射防止膜として真空蒸治法あるいはスペッタリング法によつて形成され、例えば、光学レンズ、メガネレンズ、フィルターなどに実用化されている。

一方、ガラス聚面に高分子物質からなる低反射加工剤を塗布、吹付け、あるいは加工剤中に 設度することにより低反射性の塗膜を形成せしめる低反射加工剤あるいは加工方法が提案されている。

しかしながら、ガラス表面の低反射化方法に おいて、上配の真空蒸療法あるいはスパッタリ ング法は装置の機構上及びコスト面から適応物

[発明が解決しようとする問題点]

従来より、ポリフルオロ基合有化合物はフッ東原子の分極率が小さく、従つて屈折率も低く、例えば Co Fie の屈折率は 1.2 7 1 (25 c、以下同じ)、(Co Fie CFi)の重合体は 1.3 3 0 であり、ガラスや透明ブラスチックなどの透明基体の表面にかかる化合物の強膜を形成せしめることにより低反射率化できることは知られている。而して、透明基体との接着性においてポリフルオ

口蓋含有シラン化合物が好適であり、ポリフル オロ基合有シラン化合物として例えば Rg Oa A BIX: (但しR: はポリフルオロアルキル基、 IはC1、 アルコキシ菇)を主体とした改良低 反射加工剤が本発明と同一出願人によつて、特 開昭 5 8 - 1 6 7 4 4 8 号公報、特開昭 5 8 -2 1 1 7 0 1 号公報、 時開昭 5 9 - 2 6 9 4 4. 号公報などに開示されている。ポリフルオロ基 含有シラン化合物からなる低反射加工剤におい て、カラスとの接着性の向上は、例えばプレコ - ト強膜との被層強膜構造が有効ではあるが、 本発明者は、前配の如き反射防腹の劣化や剝離 という問題点の認識に基づいて、小型精密光学 部品ガラスはもとより、大型ガラスにも応用が 可能であつて、ガラスの透視性、透明性を損な わず、強布、吹付け、浸渍など既知の簡便な方 法によってガラス表面に反射防止加工剤の塗膜 が形成され、その強膜の性能は可視光域を平均 に低反射化せしめ、しかも接着性、耐熱傷性に 優れ、且つその性能が長期に亘つて持続し得る

低反射率ガラスを提供すべく穏々研究、検討を行なつた。その結果、低反射加工剤の強膜形成前に、被強膜形成面を水酸基を有する化合物によつて処理することによつて薄膜を形成した後、含フッ素シリコーン化合物からなる低反射加工剤の強膜を形成せしめると、形成された強膜の接着性はもとより、強膜硬度及び耐损傷性が顕著に向上するという事実を見い出し本発明を完成するに至つたものである。

[問題を解決するための手段]

本発明において、水酸基を2個以上含有する

有根多ヒドロキシ化合物としては多価アルコー ル類であるのが好ましく、かかる多価アルコー ル類としては、例えばポリエチレングリコール、 ポリプロピレングリコール、ペンタエリスリトー ル、トリメチロールブロパンなどが挙げられる。 かかる多価アルコール類は単独または、相格性 を有する水、あるいはメタノール。エタノール などの容供によつて希釈した容赦を用いる。ま た、ポリビニルアルコール。ポリヒドロキシエチ ル (メダ)ア クリレート。ポリヒドロキシブチル(メ. タ) ア ク り レート などの 可密性 쯈 媒 容 液 で あ つ て もよい。更に、ガラス表面またはプレコート膜 との接着性、あるいは上層強膜との接置性を向 上せしめる目的でテトラアルコキシシラン化合 物の縮合体を添加混合せしめることもできる。 テトラアルコキシシラン化合物の縮合体は、例え **ぱテトラアルコキシシラン化合物をエタノール** 容 媒中、1%酢酸水溶液の存在下、反応せしめる

ととによつて調製される。(以下、水酸基を 2 個以上含有する有機多ヒドロキシ化合物は多価 アルコール類を代表して説明する。)

ガラス表面又はガラス表面に形成されたブレ コート膜への多価アルコール類の処理による薄 膜の形成方法は特に限定されない。而して、多 価アルコール類の薄膜は、その厚さがΩΟ1μ 以下、好ましくは単分子層である。多価アルコ ール類の薄膜が光学的膜厚であると低反射率ガ ラスとしての低反射率化は不十分なものとなり、 しかも形成された低反射加工剤の強膜硬度は低 いものとなる。多価アルコール類の薄膜の膜厚 と薄膜形成方法との関係において、薄膜の厚さ ムラは好ましくない。好適な薄膜形成方法は多 価アルコール類への浸漬法、スピニング法など である。ガラス表面は、洗剤及び希釈フツ酸な どで洗浄し、水洗袋、更に純水にて洗浄し、乾 燥して、多価アルコール類の処理により、薄膜 を形成せしめる。

ガラス表面に形成されてなるブレコート膜は、

低反射加工剤の強膜硬度や低反射性能の向上に有用なものであれば限定されないが、好きしいものとして、金属酸化物を含有する縮合体が挙げられる。かかる金属酸化物を含有する縮合体が挙としては TiO2 系化合物、 2rO2 系化合物の縮合体、 あるいは TiO2 系化合物と BiO3 系化合物との共縮合体、 2rO2 系化合物と BiO3 系化合物との共縮合体が好きしいものとして例示され得る。 更に具体的に TiO2 系化合物を代表して例示すれば Ti(OCH₂)4, Ti(OC2H₃)4。

Ti(OC₃H₇)₄, Ti(OC₄H₉)₄ などのテトアルコキ ンチタン及びこれらの低重合物、Ti(O-1C₃H₇)₃ [OC(CH₃)CHOOCH₉]₂, Ti(O-1C₃H₇)_n[OCH₂CH (C₂H₈)CH(OH)C₃H₇)_{4-n} などのチタンキレート 化合物が挙げられる。また金属酸化物と共縮合 体を形成する BiO₂ 系化合物としては、例えば Bi(OCH₃)₂, Bi(OC₂H₅)₄, Bi(OC₃H₇)₄,

B1(OC4H₆)₄ などのテトラアルコキシシラン、 HB1(OCH₅)₃ HS1(OC₂H₆)₃ HS1(OC₃H₇)₃ HB1(OC₄H₉)₃ CH₂B1(OCH₅)₂ CH₂B1(OC₃H₆)₂

CH₃81(OC₃H₇)₂, CH₃81(OC₄H₉)₈ などのトリア ルコキシシラン、 O CH2OC3 H6 81 (OR)4 などの シランカップリング剤が挙げられる。金属酸化 物を含有する縮合体において、上配例示の金属 酸化物の配合割合は、縮合体中少なくとも20 重量の以上、好ましくは30重量の以上配合さ れる。金属酸化物を含有する縮合体は金属酸化 物、810。 系化合物及び必要により添加剂、例 えばポリエチレングリコール。 ペンタエリスリ トールなどの多価アルコール、あるいはメラミ ン樹脂。エポキシ樹脂などを配合した後、エタ ノール。プタノールなどのアルコール系容媒の 単独または混合溶液中で、酢酸,塩酸などの存 在下に加水分解反応せしめることによつて調製 される。ガラス表面には通常の強布方法によつ て強布され、室温にて乾燥後、200m~550 でに加熱して硬化され、厚さ Q. 1 ~ 1 Q μ 程度 のブレコート膜が形成される。

ガラス 表面上 又は ガラス 表面 に 形成 された ブレコート 膜面上 に 処理 されて 形成 された 特定 水

(CH₂O)₃B1C₂H₄(CF₂)₆C₂H₄B1(OCH₃)₃
(CH₂O)₃B1C₂H₄(CF₂)₆C₂H₄B1(OCH₃)₃
(CH₂O)₃B1C₂H₄(CF₂)₁₂C₂H₄B1(OCH₃)₃
Cl₂B1C₂H₄(CF₂)₆C₂H₄B1Cl₃
Cl₂B1C₂H₄(OF₂)₈C₂H₄B1Cl₃
Cl₂B1O₂H₄(OF₂)₁₂O₂H₄B1Cl₃
(C₃H₆O)₂B1C₂H₄(CF₂)₈C₂H₄B1Cl₃
(C₃H₆O)₂B1C₂H₄(CF₂)₈C₂H₄B1(OC₂H₆)₂
(CH₃O)₃B1C₃H₄NHCOOC₂H₄(CF₃)₈C₂H₄OCONHO₃H₆B1(OCH₃)₂
Cl₃B1C₃H₄NHCOOC₂H₄(OF₂)₆C₂H₄OCONHO₃H₆B1Cl₃

ポリフルオロアルキル基含有シラン化合物を 例示すると

CF₂ (CF₂)₂ C₂H₄S1 (OCH₃)₃
CF₂ (CF₂)₄ C₂H₄S1 (OCH₃)₃
OF₂ (CF₂)₇ C₂H₄S1 (OCH₃)₃
OF₃ (CF₃)₁₁ C₂H₄S1 (OCH₃)₃
OF₃ (CF₂)₁₅ C₂H₄S1 (OCH₃)₃
CF₃ (CF₂)₇ C₂H₄S1 (OC₂H₅)₃
CF₃ (CF₂)₇ C₂H₄S1 (OC₂H₅)₃

CF₃(CF₃)₇CONHC₃H₆81(OCH₃)₃
CF₃(CF₂)₇CONHC₂H₆81Cl₃
CF₃(CF₂)₇SO₂NHC₃H₆81(OCH₃)₃
OF₂(CF₂)₇C₃H₄OCONHC₃H₆81(OCH₃)₃
などが挙げられる。また、シランカップリング

OH2 - OH OH2 OC3 H6 B1 (OCH3)2

O C2 H4 81 (OCH2) , 81 (OCH2)4

81(00g氏)4, 81Cl4, H81Cl2. CH381Cl2 などが例示される。

本発明の低反射率ガラスに用いられる含フツ索シリコーン化合物の縮合体からなる低反射加工剤は、アルコール系溶媒、例えばセーブタノール中で触媒として酢酸及び有機鯣化合物の存在下に、ポリフルオロアルキレン基含有ピスシラン化合物及びシランカップリング剤とを室温にて加水分解反応する方法によつて得られる。そ

れぞれの化合物及びシランカップリング剤の配合割合は、好適な低反射率ガラス用の強膜とするために、最適な量が適宜選択される。

次に本発明を実施例により具体的に説明する。 実施例で使用する多価アルコール類、該多価 アルコール類の移膜上に形成される含フツ索シ リコーン化合物の縮合体からなる低反射加工剤 及びブレコート膜用溶液は次の如く調製される。

合成例

A) 多価アルコール類

多価アルコール類の調製において、多価アルコール類と溶媒との配合割合を第1表に示す。 第1表の配合物を室温にて時間提拌して調製する。

簱	•	袋
EEL.	1	æ

多価アル	面アル 配合割合 (9)					
コール類	多価アルコール類	帝 媒	その他			
8.	エチレングリコール 300					
ъ	ベンタエリスリトール 6	水 294				
o	ポリビニルブルコール 6	水 294	· ———			
đ	ポリヒドロキシエチルソタ クリレート 6	+91-n 294	 .			
6	エチレングリコール 3	エタノール 147	テト タアルロキンノ タン 超合体 *) 150			
2	ポリヒドロキシエチルメタ クリレート 3	水 147	テトタブルコキンンタン 紹合体* ⁾ 150			

サトラエトキシシラン1529、エタノール27769、 15-酢酸水浴液729を室温にて1週間撹拌して調製。

エタノール 157.8 n - プタノール 81.0

突施例 1

得られた低反射率ガラスについて、次の方法 により特性を測定した。

反射率:自配分光光度計正反射光測定付属裝

B) 含フッ素シリコーン化合物の縮合体からなる低反射加工剤

次の配合物(タ)を室温にて24時間提押して調製する。

(OH ₃ O) ₃ 81C ₂ H ₄ C ₆ P ₁₂ C ₂ H ₄ 81(OCH ₅) ₅		
Co Fio Ca H4 8 i (OC Ha)a (但し、Co~Cia の混合物で平均値 Co)	5.1	
B1(0CH ₂) ₄	3.8	
1 多一酢酸水溶液	4.4	
ジラウリン酸ジブチル錫	0.1	
t - ブタノー ['] ル	275.1	

c) ブレコート膜用溶液

次の配合物(の)を室温にて1週間攪拌した後、 炉過することによつて調製する。

Si(OC ₂ H ₅) ₄	2 9. 5
T1 (00, H,)4	4 7. 2
アセチルアセトン	2 0.5
*	1 1.0
酢酸	2.1
酢酸エチル	1.8

置(日立製作所製:323型)を使用し、波長400~700 mμの入射角5° における平均反射窓を測定。

鉛盤硬度:鉛盤引かき試験機(JI8-K5401) を使用。

耐擦傷性: ガーゼによりガラス表面を 1 0 0 回摺動し、その前後のタングステン ランプによる光線透過比を測定。

それらの測定結果は、反射率 1.8 %、鉛維硬度 3 H、光線透過比 1 0 0 % (偽がないため、光 線透過量が低下しない) であつた。

夹施例2~6

実施例1における合成例A)の多価アルコール類をNo D~1に変えた他は実施例1と同様に処理して、低反射率ガラスを得た。

得られた低反射ガラスの特性を測定し、それ らの結果を第2象に示した。

第 2 表

		多価アルコー ル類 Na	反射率 (5)	鉛錐硬度	光線透過比
実施例	2	ъ	1.8	4 H	100
,	3	c	1.8	2 H	99
•	4	a .	. 1.8	2 H	99
•	5	θ	1.8	5 H	100
•	6	f	1.8	5 H	100

実施例 7 ~ 8

実施例1と同様に洗浄後、風乾したガラス板を、合成例で)ブレコート膜用溶液にて調製したブレコート膜用溶液に浸漬し、11cm/分の速度で引上げた後、30分間保持して熱硬化せしたで540でにて30分間保持して熱硬化せト膜厚 Q 14 μ、屈折率 1.80のブレコート膜を形成した。次に、とのブレコート膜の形成コール類 M a 及び実施例 6 における多価アルコール類

板にプレコート膜が形成され、次いで、多価ア ルコール類によつて処理することなく、合成例 B) の低反射加工剤に浸漬して、実施例 7 と何

比較例 3

実施例 1 と同様のガラス板を無処理のまま用意した。

様に処理し、低反射率ガラスを得た。

比較例 1 ~ 2 にて得られた低反射率ガラス及び比較例 3 のガラス板について特性を測定し、それらの結果を第 4 要に示した。

第 4 表

	ブレコート 膜	多価アルコ ール類 Na	反射率 (5)	鉛筆硬度	光線透過比 (%)
此較例1	-	_	1.8	НВ	92
/ 2	·有	-	0.8	H .	9.5
<i>i</i> 3	~	-	4.2		100

(発明の効果)

以上の如く、本発明の低反射率ガラスは可視

Na x に同様に浸渍して引上げ、蒸留水にて洗浄 後、 及乾した。 続いて、 実施例 1 及び 6 と同様 に合成例 B) にて調製した低反射加工剤を処理 して低反射率ガラスを得た。

得られた低反射率ガラスの特性を測定し、それらの結果を第3表に示した。

第 3 表

	多価アルコー ル類 M	反射率 (6)	鉛雞硬度	光線透過比 (5)
奥施例7	a. f	0.8 0.8	3 H 5 H	99

比較例 1

実施例1と同様に洗浄後、風乾したガラス板を、多価アルコール類によつて処理することなく、合成例B)の低反射加工剤に浸漉して、実施例1と同様に処理し、低反射率ガラスを得た。 比較例2

実施例1と同様に洗浄洗袋、風乾したガラス

光域における反射率が a 8 ~ 1.8%であり、通常のソーダ石灰ガラスの反射率 4 2 %に対し優れた低反射性を有し、しかも形成された強膜の優度は鉛筆硬度が 2 日~ 5 日であつて、硬度も優れたものである。更に、その強膜は汚れに対しる情格に乗などによつて発生する傷など肌がして優れた耐線偽性を有し、低反射性が長期に亘って持続されるという特徴を有するものである。

本発明の低反射率ガラスの用途は、特に限定されることなく、例えば 超 築物の窓ガラス、ガラスドアー、ショーウインド、ショーケース、車輛の窓ガラス、光学レンズ、メガネレンズ、フイルター、テレビション前面防眩ガラス、時計ガラス、その他のガラス製品などに効果が期待されるものである。

代理人 内 田 明代理人 萩 原 亮 一