Hybrid Monte-Carlo Deterministic Algorithms for Neutron Transport

C. T. Kelley, Jeff Willert, Dana Knoll, NC State University tim_kelley@ncsu.edu Supported by DOE.

2nd Workshop on Computational Mathematics, May 25, 2012

Outline

- 1 Neutron Transport
- 2 Problem Formulation
- 3 Results
- 4 Conclusions

Region of Interest: Heterogeneous

From CASL Image Gallery

Region of Interest II

From CASL Image Gallery

Quarter Core

From CASL Image Gallery

Fuel Assembly

From CASL Image Gallery

Fuel Pin Cross Section (New)

From Maeda et al (2009)

Fuel Pin Cross Section (OLD)

(a) $(Am,Pu,Np,U)O_{2-x}(z/L=0.50)$

(b) MOX (z/L=0.74)

From Núñez-Carrera et al (2004)

Neutron Transport Equation: la

Notation:

- $D \subset R^3$, $r = (x, y, z)^T \in D$
- $\hat{\Omega} \in S^2$
- $\psi(r, E, \hat{\Omega})$ angular flux of Neutrons at r in direction $\hat{\Omega}$ with energy $E \geq 0$.

Boundary conditions on incoming flux.

Neutron Transport Equation: Ib

This is a high-dimensional problem:

- One space dimension is 3D (space+direction+energy)
- Two space dimensions is 4D (space+× direction+energy)
- Three space dimensions is 6D (space+2 × direction+energy)

Why does one space dimension lead to a continuum of directions? Stay tuned.

Neutron Transport Equation: II

Simplifications: round 1

- No time dependence.
 Solve time-independent problems to integrate in time.
- Neglect fission sources.
 Methods don't change much if we put them in.

Neutron Transport Equation: III

$$\begin{split} \hat{\Omega} \cdot \nabla \psi(r, E, \hat{\Omega}) + \Sigma_t(r, E) \psi(r, E, \hat{\Omega}) \\ &= \frac{1}{4\pi} \int_{S^2} d\hat{\Omega}' \int_0^\infty dE' \Sigma_s(r, E' \to E, \hat{\Omega}' \to \hat{\Omega}) \psi(r, E', \hat{\Omega}') \\ &+ q(r, E, \hat{\Omega}) / 4\pi, \end{split}$$

Quantity of interest: scalar flux

$$\phi(r,E) = \frac{1}{4\pi} \int_{S^2} \psi(r,E,\hat{\Omega}') d\hat{\Omega}'$$

Neutron Transport Equation: III

 Σ_t and Σ_s are transmission and scattering cross sections.

They are ugly!

From CASL Image Gallery

Solution Methods: two of many

- S^N : Faster and easier to analyze
 - quadrature in angle,
 - differences/elements/volumes in space,
 - piecewise constant in Energy (multi-group approximation).
 - Solve with standard linear (or nonlinear!!) solvers.
- Monte-Carlo (MC): Slower with better results
 - Let many neutrons randomly scatter via scattering/energy cross sections
 - Accumulate fluxes (and other angular moments) at the end.

More Simplification

This is too much, so we simplify again to

- Monoenergetic (no *E*)
- Isotropic (no $\hat{\Omega}' \rightarrow \hat{\Omega}$)
- One space dimension

You can learn a lot from even this simple case.

1-D Model Problem: version 1

$$\mu \frac{\partial \psi}{\partial r}(r,\mu) + \Sigma_t \psi(r,\mu) = \frac{\Sigma_s}{2} \int_{-1}^1 \psi(r,\mu') \, d\mu' + q(r)/2$$

Change variables:

$$c(x) = \Sigma_s(r)/\Sigma_t(r)$$
 and $r = \int_0^x \Sigma_t(\xi)^{-1} d\xi$

and you get

1-D Model Problem: version 2

$$\mu \frac{\partial \psi}{\partial x}(x,\mu) + \psi(x,\mu) = \frac{c(x)}{2} \int_{-1}^{1} \psi(x,\mu') d\mu' + q(x)/2,$$

Boundary Conditions:

$$\psi(0,\mu) = \psi_I(\mu), \mu > 0; \psi(\tau,\mu) = \psi_r(\mu), \mu < 0.$$

Quantity of interest: $\phi(\mathbf{x}) = \int_{-1}^{1} \psi(\mathbf{x}, \mu') \, d\mu'$

Nonlinear Diffusion Acceleration (NDA): Step 1

Nonlinear compact fixed point problem for ϕ .

Transport sweep: Given input ϕ^{LO} , solve the high-order problem

$$\mu \frac{\partial \psi}{\partial x}(x,\mu) + \psi(x,\mu) = \frac{c(x)}{2} \phi^{LO}(x) + q(x)/2$$

Then compute the high-order flux

$$\phi^{HO}(x) = \int_{-1}^1 \psi(x, \mu') \, d\mu'$$

and current

$$J^{HO}(x) = \int_{-1}^1 \mu' \psi(x,\mu') \, d\mu'$$

Nonlinear Diffusion Acceleration (NDA): Step 2

Define

$$\hat{D} = \frac{J^{HO} + \frac{1}{3} \frac{d\phi^{HO}}{dx}}{\phi^{HO}}.$$

The <u>low-order</u> nonlinear equation for ϕ^{LO} is $\mathcal{F}(\phi^{LO}) = 0$, where

$$\mathcal{F}(\phi) = \frac{d}{dx} \left[\frac{-1}{3} \frac{d\phi}{dx} \right] + (1 - c) \phi + \frac{d}{dx} \left[\hat{D}(\phi^{HO}, J^{HO}) \phi \right]$$

with boundary conditions $\phi^{LO} = \phi^{HO}$.

Equivalent to original formulation!

Preconditioner

Preconditioner inverts

$$Lw = \frac{d}{dx} \left[\frac{-1}{3} \frac{dw}{dx} \right] + (1 - c) w + \hat{D}(\phi^{HO}, J^{HO}) \frac{dw}{dx}$$

with correct boundary conditions to obtain

$$F(\phi) = \mathcal{F}(L^{-1}\phi) = 0.$$

This is a compact fixed point problem.

Compactness

I - F' is compact, and so

- ullet F' is well conditioned for all spatial grids.
- Krylov methods like GMRES perform well when solving

$$F'(\phi)s = -F(\phi)$$

 Computation is mathematically scalable, ie Krylovs/Newton is independent of mesh width.

NDA Hybrid Method

- lacksquare Solve the high-order problem with Monte Carlo for ϕ and J
 - better results + higher cost
 - BUT we are asking MC to solve a scattering-free problem
- Solve the low-order problem in a standard way
- Resolve a few details

Abstract Formulation

We seek to solve a nonlinear equation

$$F(\phi) = 0$$

where F has the decomposition

$$F(\phi) = G(A\phi + Q)$$

where A is linear and Q is known.

Motivation: ϕ^{HO} and J^{HO} are affine functions of ϕ^{LO}

Facts of Interest

- A and Q may come from a Monte Carlo simulation
- The MC simulation of $A\phi$ requires $\phi \ge 0$ componentwise.
- Matrix-vector product with *A* is the expensive part.
- The action of G' on a vector is cheap.
- ullet F' (in exact arithmetic) is very well conditioned.

Newton-GMRES solver

Solve linear equation for Newton step with GMRES. All we need is a Jacobian-vector proeuct:

Deterministic Mat-Vec for A:

$$F'(\phi)v = G'(A\phi + Q)Av$$

MC Mat-Vec: As above but define Av if v is not nonnegative by

$$Av \equiv A(\|v\|_{\infty}\mathbf{1} + v) - A(\|v\|_{\infty}\mathbf{1})$$

where $\mathbf{1} = (1, 1, \dots, 1)^T$.

A finite-difference Jacobian is a very poor idea in this case.

Newton-Iterative Algorithm

```
knl(x, F, \tau_a, \tau_r)
   evaluate F(x); \tau \leftarrow \tau_r |F(x)| + \tau_a.
   while ||F(x)|| > \tau do
      Find d such that ||F'(x)d + F(x)|| < \eta ||F(x)||
      If no such d can be found, terminate with failure.
      \lambda = 1
      while ||F(x + \lambda d)|| > (1 - \alpha \lambda)||F(x)|| do
         \lambda \leftarrow \sigma \lambda where \sigma \in [1/10, 1/2] is computed by minimizing a
         polynomial model of ||F(x_n + \lambda d)||^2.
      end while
      x \leftarrow x + \lambda d
   end while
```

Modifications for Hybrid Method

The inexact Newton condition (INC)

$$||F'(x)d + F(x)|| \le \eta ||F(x)||$$

and the sufficient decrease condition (SDC)

$$||F(x + \lambda d)|| \le (1 - \alpha \lambda)||F(x)||$$

may fail.

Such failures signal that the MC error is dominating the function/Jacobian evaluations.

Quantifying MC Error

Approximate F by

$$F(\phi, N_{MC}) \approx F(\phi)$$

where N_{MC} is the number of trials within the MC. If INC or SDC fail, either accept the results or increase N_{MC} .

Hybrid Solver

```
Evaluate R_{MC} = F(u, N_{MC}): \tau \leftarrow \tau_r ||R_{MC}|| + \tau_a.
while ||R_{MC}|| > \tau do
   Use GMRES with a limit of I_{max} iterations to get INC
   if INC fails then
      N_{MC} \leftarrow 100 * N_{MC}; Evaluate R_{MC} = F(u, N_{MC})
   else
      \lambda = 1; Evaluate R_{Trial} = F(u + \lambda d, N_{MC})
      while ||R_{Trial}|| > (1 - \alpha \lambda) ||R_{MC}|| and \lambda > \lambda_{min} do
          Reduce \lambda and evaluate R_{Trial} = F(u + \lambda d, N_{MC})
      end while
      if \lambda > \lambda_{min} then
         u \leftarrow u + \lambda d: R_{MC} = R_{Trial}
      else
          N_{MC} \leftarrow 100 * N_{MC}: Evaluate R_{MC} = F(u, N_{MC})
      end if
   end if
end while
```

Sample Problem I

Phyiscal parameters:

$$c = .99$$
; $\tau = 10$; $q = .5$;

$$N_{MC} = 10^6, 10^8, 10^{10}$$

Iteration History

Sample Problem II: Slower convergence

Phyiscal parameters:

$$c = .99$$
; $\tau = 100$; $q = .5$;

$$N_{MC} = 10^6, 10^8, 10^{10}$$

Iteration History

Conclusions

- Noisy nonlinear equations.
- Application: neutron transport
- Deterministic/MC Hybrid.