I – Rappels et compléments d'algèbre linéaire, 1ère partie

I. Image d'une base par un endomorphisme

1) Condition nécessaire : Supposons qu'il existe $u \in \mathcal{L}(E)$ tel que Ker u = F et Im u = G. Avec $n = \dim E$, par le théorème du rang dim Ker $u + \dim \operatorname{Im} u = \dim E$, donc dim $E = \dim F + \dim G$ est une conditon nécessaire.

Condition sufisante : Réciproquement, en posant $p = \dim F$, $q = \dim G$, supposons que p + q = n. Nous allons construire u convenable en la définissant sur une base judicieusement choisie de E.

Soit (f_1, \dots, f_p) une base de F, que l'on complète par $(f_{p+1}, \dots, f_{p+q})$ en une base de E: cette base servira de base « de départ » pour u.

Soit (g_1, \dots, g_q) une base de G, on considère la famille « à l'arrivée » $(0, \dots, 0, g_1, \dots, g_q)$, dont les p premiers vecteures sont nuls. Notons cette famille (k_1, \dots, k_n) .

On sait alors qu'il existe un unique endomorpisme u tel que pour tout $i \in [1, n], u(f_i) = k_i$.

Alors: Im $u = \text{Vect}(u(f_1), \dots, u(f_n)) = \text{Vect}(0, \dots, 0, g_1, \dots, g_q) = \text{Vect}(g_1, \dots, g_q) = G.$

En particulier, $\operatorname{rg} u = \dim G = q$.

Or pour tout i de 1 à p, $f_i \in \text{Ker } u$ donc $F = \text{Vect}(f_1, \dots, f_p) \subset \text{Ker } u$. Or avec le théorème du rang, dim $\text{Ker } u = \dim E - \operatorname{rg} u = n - q = p = \dim F$. Donc F = Ker u: la condition était bien suffisante.

2) Une base de F est $\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, que l'on compléte en la base de $\mathbb{R}^3 \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, notée (f_1, f_2, f_3) . Posons $g_1 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$. Cherchons l'expression de l'endomorpisme u tel que $u(f_1) = u(f_2) = 0$ et $u(f_3) = g_1$.

Soit $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Décomposons-le dans la base (f_1, f_2, f_3) . Une résolution de sys-

tème linéaire sans surprise donne $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = zf_1 + (y+z)f_2 + (x+y+z)f_3.$

Ainsi
$$u \begin{pmatrix} x \\ y \\ z \end{pmatrix} = zu(f_1) + (y+z)u(f_2) + (x+y+z)u(f_3) = (x+y+z)g_1.$$
Une application u telle que $\operatorname{Ker} u = F$ et $\operatorname{Im} u = G$ est donc u :
$$\begin{cases} \mathbb{R}^3 & \to \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto & (x+y+z)\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}.$$

II. Une caractérisation des homothéties

1) Pour tout $x \neq 0_E$, il existe $\lambda(x) \in \mathbb{K}$ tel que

$$f(x) = \lambda(x).x$$

et le but est de montrer que $\lambda(x)$ ne dépend pas de x, i.e. que si $x \neq y, \lambda(x) = \lambda(y)$. Pour cela on considère deux vecteurs non nuls x et y, et on examine deux cas : Si (x,y) est liée, il existe μ tel que $y = \mu x$. On a alors

$$f(y) = \mu f(x) = \mu \lambda(x)x = \lambda(x)y$$

et donc $\lambda(x) = \lambda(y)$. Si (x,y) est libre, on passe par l'intermédiaire de x+y. En effet, $f(x+y) = f(x) + f(y) = \lambda(x)x + \lambda(y)y$ d'une part, $f(x+y) = \lambda(x+y)(x+y)$ d'autre part. Comme (x,y) libre, on obtient $\lambda(x) = \lambda(y) = \lambda(x+y)$. Et c'est ce qu'on voulait...

- 2) Une droite est l'intersection de deux plans donc une telle application stabilise aussi les droites : c'est donc une homothétie.
- 3) Une homothétie commute avec tout endomorphisme. Réciproquement, soit f un endomorphisme qui commute avec tout endomorphisme. Si $x \neq 0_E$, soit F un supplémentaire de Vect (x) dans E (C'est pour l'existence de ce supplémentaire qu'on suppose E de dimension finie). Soit p la projection sur Vect(x) parallèlement à F. Alors $f \circ p = p \circ f$. On applique cela en x, on obtient p(f(x)) = f(x), donc f(x) est lié avec x. Et ce, pour tout x. Il ne reste plus qu'à appliquer la question précédente.
- 4) On en déduit que le centre de $\mathcal{M}_n(\mathbb{K})$ est constitué par les homothéties (en utilisant l'isomorphisme canonique entre $\mathcal{M}_n(\mathbb{K})$ et $\mathcal{L}(\mathbb{K}^n)$).
- 5) On retrouve ce résultat en considérant une matrice M du centre et en écrivant

$$\forall (i,j) \in [1,n] \quad ME_{i,j} = E_{i,j}M$$

III. Noyaux itérés

1) Si $f^p(x) = 0_E$, $f(f^p(x)) = 0_E$, i.e. $f^{p+1}(x) = 0_E$. On a donc

$$x \in F_p \Longrightarrow x \in F_{p+1}$$

Ou encore $F_p \subset F_{p+1}$. De plus, si $y \in G_{p+1}$, il existe x tel que $y = f^{p+1}(x)$. Mais alors $y = f^p(f(x))$, donc $y \in G_p$. Et finalement $G_{p+1} \subset G_p$.

- 2) On est en dimension finie : la suite des dimensions des F_p , croissante et majorée, converge vers ℓ . Mais c'est une suite d'entiers naturels. Elle est donc stationnaire et $\ell \in \mathbb{N}$. Il existe donc ℓ tel que pour tout $\ell \geqslant \ell$, $F_k = F_{k+1} = F_{\ell}$ (si un sev est inclus dans un autre et s'ils ont même dimension, ils sont égaux). On peut alors poser $p = \min{\{\ell \in \mathbb{N} : F_{\ell} = F_{\ell+1}\}}$. Alors dim $F_p = \ell$, et comme la suite est croissante, alors pour tout $\ell \geqslant p$, $\ell = \dim F_p = \dim F_k = \dim F_{k+1}$. Par inclusion, alors $\ell = F_k = F_{k+1}$.
- 3) On peut faire le même genre de raisonnement qu'à la question précédente, mais il est plus simple de se souvenir du théorème du rang. En effet, comme pour tout p on a $G_{p+1} \subset G_p$, on a

$$G_p = G_{p+1} \iff \dim(G_p) = \dim(G_{p+1})$$

Mais du théorème du rang on déduit facilement que

$$(\dim (G_p) = \dim (G_{p+1})) \Longleftrightarrow (\dim (F_p) = \dim (F_{p+1}))$$

et on est ramené à utiliser les résultats de la question précédente. On trouve r=s.

4) Comme r = s, le théorème du rang fait qu'il nous suffit de montrer que

$$F_r \cap G_r = \{0_E\}$$

Mais si $x \in F_r \cap G_r$, soit y tel que $x = f^r(y)$; de $f^r(x) = 0_E$ on déduit que $f^{2r}(y) = 0_E$. Donc $y \in F_{2r}$. Mais $F_{2r} = F_r$ d'après 2. Donc $y \in F_r$, donc $x = 0_E$, ce qui conclut.

- IV. « Inégalité triangulaire » et une autre inégalité autour du rang
- 1) a) Il suffit de remarquer que $\operatorname{Im}(u+v)\subset \operatorname{Im} u+\operatorname{Im} v$. En effet, si $y\in \operatorname{Im}(u+v)$, il existe $x\in E$ tel que y=(u+v)(x)=u(x)+v(x). Or $u(x)\in \operatorname{Im} u$ et $v(x)\in \operatorname{Im} v$.

 Attention, l'inclusion réciproque est fausse : essayez de la démontrer, remarquez où la démonsration échoue et cherchez un contre-exemple. On en tire : $\operatorname{rg}(u+v)\leqslant \operatorname{dim}(\operatorname{Im} u+\operatorname{Im} v)\leqslant \operatorname{rg} u+\operatorname{rg} v$, la dernière inégalité découlant de la formule de Grassman.
 - b) Commençons pas remarquer que pour tout $\lambda \in \mathbb{K}^*$, $\operatorname{Im}(\lambda u) = \operatorname{Im} u$. En effet, si $y \in \operatorname{Im}(\lambda u)$, il existe $x \in E$ tel que $y = \lambda u(x) = u(\lambda x) \in \operatorname{Im} u$. L'inclusion réciproque se démontre de la même manière, en utilisant bien que $\lambda \neq 0$. Ainsi

$$rg(u) = rg((u+v) + (-v))$$

 $\leq rg(u+v) + rg(-v)$ grâce à la première question
 $\leq rg(u+v) + rg(v)$ avec la remarque précédente

d'où

$$rg(u) - rg(v) \leqslant rg(u+v) \tag{1}$$

En inversant les rôles de u et v et en écrivant v=(u+v)-u, on obtient de la même manière

$$rg(v) - rg(u) \le rg(u+v)$$
 (2)

Les équations (1) et (2) assurent alors que

$$|\operatorname{rg}(u) - \operatorname{rg}(v)| \le \operatorname{rg}(u+v).$$

2) Nous savons que $\operatorname{Im}(u \circ v) \subset \operatorname{Im} u$ donc $\operatorname{rg}(u \circ v) \leqslant \operatorname{rg} u$. De plus $\operatorname{Im}(u \circ v) = u(\operatorname{Im} v)$. Si \tilde{u} est la restriction de u à $\operatorname{Im} v$, alors $\operatorname{rg}(u \circ v) = \operatorname{rg}(\tilde{u})$. Le théorème du rang assure que $\operatorname{rg}(\tilde{u}) = \dim \operatorname{Im} v - \dim \operatorname{Ker} \tilde{u} \leqslant \operatorname{rg} v$. Ainsi

$$rg(u \circ v) \leq inf(rg u, rg v).$$

D'autre part, en repartant de $\operatorname{rg}(\tilde{u}) = \dim \operatorname{Im} v - \dim \operatorname{Ker} \tilde{u}$, nous avons $\operatorname{Ker} \tilde{u} = \operatorname{Ker} u \cap \operatorname{Im} v \subset \operatorname{Ker} u$ donc $\dim \operatorname{Ker} \tilde{u} \leq \dim \operatorname{Ker} u$. Avec le théorème du rang il vient $\dim \operatorname{Ker} \tilde{u} \leq n - \operatorname{rg} u$, et donc finalement

$$\operatorname{rg} v + \operatorname{rg} u - n \leqslant \operatorname{rg}(u \circ v).$$

V. Endomorphismes nilpotents

- 1) Introduire $\mathscr{E}=\left\{\,k\in\mathbb{N},\ f^k=0\,\right\}$ et montrer qu'il a un min, qui est donc unique.
- 2) Prendre $x \notin \text{Ker } f^{p-1}$, regarder une combinaison nulle non triviale de la famille, poser k le plus petit indice tel que $\lambda_k \neq 0$ et composer par f^{p-k} : on aboutit à une contradiction.
- 3) Une famille libre a toujours moins de n éléments.
- 4) Ligne de 1 en-dessous de la diagonale.
- **5)** $E = \mathbb{R}_{n-1}[X], P \mapsto P'.$