Feedback — III. Linear Algebra

Help

You submitted this quiz on Tue 18 Mar 2014 4:38 PM IST. You got a score of 5.00 out of 5.00.

Question 1

Let two matrices be

$$A = egin{bmatrix} 4 & 3 \ 6 & 9 \end{bmatrix},$$

$$A = egin{bmatrix} 4 & 3 \ 6 & 9 \end{bmatrix}, \qquad B = egin{bmatrix} -2 & 9 \ -5 & 2 \end{bmatrix}$$

What is A - B?

Your	Answer		Score	Explanation
$ullet$ $\begin{bmatrix} 6 \\ 11 \end{bmatrix}$	$\begin{bmatrix} -6 \\ 7 \end{bmatrix}$	~	1.00	To subtract B from A, carry out the subtraction elementwise.

$$\begin{bmatrix} 6 & -12 \\ 11 & 11 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -6 \\ 1 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 12 \\ 1 & 11 \end{bmatrix}$$

Total 1.00 / 1.00

Question 2

Let
$$x = egin{bmatrix} 2 \ 7 \ 4 \ 1 \end{bmatrix}$$

		Quiz Feedback Coursera
What is $\frac{1}{2} * x$?		
Your Answer	Score	Explanation
$\begin{bmatrix} 1 & \frac{7}{2} & 2 & \frac{1}{2} \end{bmatrix}$		
$\begin{bmatrix} 4\\14\\8\\2 \end{bmatrix}$		
$ \begin{bmatrix} 1 \\ \frac{7}{2} \\ 2 \\ \frac{1}{2} \end{bmatrix} $	✓ 1.00	To multiply the vector x by $\frac{1}{2}$, take each element of x and multiply that element by $\frac{1}{2}$.
[4 14 8 2]		
Total	1.00 / 1.00	

Question 3

Let u be a 3-dimensional vector, where specifically

$$u = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$

What is u^{T} ?

Your Answer		Score	Explanation
●[8 1 4]	✓	1.00	
○[4 1 8]			
$\begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$			

Question 4

Let u and v be 3-dimensional vectors, where specifically

$$u=\left[egin{array}{c} 1 \ 3 \ -1 \end{array}
ight]$$
 and $v=\left[egin{array}{c} 2 \ 2 \ 4 \end{array}
ight]$

What is $u^T v$?

(Hint: u^T is a 1x3 dimensional matrix, and v can also be seen as a 3x1 matrix. The answer you want can be obtained by taking the matrix product of u^T and v.)

You entered:

4

Your Answer		Score	Explanation
4	~	1.00	
Total		1.00 / 1.00	

Question 5

Let A and B be 3x3 (square) matrices. Which of the following must necessarily hold true?

Your Answer		Score	Explanation
$\blacksquare \ A*B = B*A$	~	0.25	We saw in the lecture that matrix multiplication is not commutative in general.
$\ensuremath{\mathscr{S}}$ If B is the 3x3 identity matrix, then $A*B=B*A$	~	0.25	Even though matrix multiplication is not commutative in general ($A*B \neq B*A$ for general matrices A,B), for the special case

	Quiz Fee	Quiz Feedback Coursera		
		where $B=I$, we have $A\ast B=A\ast I=A$, and also $B\ast A=I\ast A=A$. So, $A\ast B=B\ast A$.		
~	0.25	This true by the associative property of matrix multiplication. More generally, $(A*B)*C=A*(B*C), \text{ and here we have just set } C=A.$		
~	0.25	Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m\times n$. matrix, and B a $n\times o$ matrix, then C would be $m\times o$. (In our example, $m=n=o=3$.)		
	1.00 / 1.00			
	~	✓ 0.25✓ 0.25✓ 1.00 /		