

20 Megapixel global shutter CMOS image sensor

Datasheet

Change record

Issue	Date	Modification		
1	24/11/211	Origination		
1.1	24/5/2013	Changed VDD20 from 2.0V to 2.1V		
2	19/06/2013	Removed draft, confidential and preliminary annotations		
2.1	12/08/2013	Updated:		
		- FOT, Read out time and exposure time calculations		
		- SPI read out delay (left - right)		
		- VDD20 maximum range to 2.2V		
		- CLK_IN is optional		
		Added:		
		- Angular response		
		- Digital test signals		
		- Detailed frame timing		
		- LVDS output skew		
2.2	05/06/2014	Updated:		
		 QE and spectral response for mono devices 		
		- Remarks in register overview		
		Added:		
		- QE and spectral response for color devices		

Disclaimer

CMOSIS reserves the right to change the product, specification and other information contained in this document without notice. Although CMOSIS does its best efforts to provide correct information, this is not warranted.

Since the CMV20000 started its design life as a custom imager for traffic applications, the sale of the imager for these applications is excluded.

Table of Contents

1	Intro	oduction	6
	1.1	Overview	6
	1.2	features	6
	1.3	Specifications	6
2	Sens	sor architecture	7
	2.1	Pixel array	8
	2.2	Analog front-end electronics (AFE)	8
	2.3	LVDS block	8
	2.4	Sequencer	8
		SPI	
		Temperature sensor	
3		ing the CMV20000	
,		Supply settings	
	3.2	Biasing	
	3.3	Digital input pins	
	3.4	electrical IO specifications	
		3.4.2 LVDS receiver specifications	
		3.4.3 LVDS driver specifications	
	3.5	Input clock	10
	3.6	Frame rate calculation	11
	3.7	Start-up sequence	11
	3.8	Reset sequence	12
	3.9	SPI programming	12
		3.9.1 SPI write	
		3.9.2 SPI read	13
	3.10	Requesting a frame	14
		3.10.1 Internal exposure control	14
		3.10.2 External exposure control	14
4	Read	ding out the sensor	15
	4.1	LVDS low-level pixel timing	15
	4.2	LVDS readout timing	15
		4.2.1 16 output channels	
		4.2.2. 9 output channels	16

CMV20000 Datasheet

5	4.5 4.6 Ima 5.1	4.3.1 16 outputs	
5	4.5 4.6 Ima 5.1	Control channel 4.4.1 DVAL, LVAL, FVAL 4.4.2 Digital Test pins Training data Test pattern ge sensor programming. Exposure modes 5.1.1 Frame timing. High dynamic range mode 5.2.1 Piecewise linear response	
5	4.5 4.6 Ima 5.1	4.4.1 DVAL, LVAL, FVAL	
5	4.6 Ima ք 5.1	4.4.2 Digital Test pins Training data Test pattern ge sensor programming Exposure modes 5.1.1 Frame timing High dynamic range mode 5.2.1 Piecewise linear response	
5	4.6 Ima ք 5.1	Training data Test pattern	18202020
5	4.6 Ima ք 5.1	Test pattern ge sensor programming Exposure modes 5.1.1 Frame timing High dynamic range mode 5.2.1 Piecewise linear response	202020
5	Ima լ 5.1	Exposure modes 5.1.1 Frame timing High dynamic range mode 5.2.1 Piecewise linear response	202020
	5.1	Exposure modes	20 20
		5.1.1 Frame timing High dynamic range mode 5.2.1 Piecewise linear response	20
	5.2	High dynamic range mode	20
	5.2	5.2.1 Piecewise linear response	
		5.2.1 Piecewise linear response	
		5.2.1.1 Piecewice linear response with internal exposure mode	
		5.2.1.1 Freeewise linear response with internal exposure mode	22
		5.2.1.2 piecewise linear response with external exposure mode	22
	5.3	Windowing	23
		5.3.1 Single window	2 3
		5.3.2 Multiple windows	24
	5.4	Image flipping	25
	5.5	Image subsampling	25
		5.5.1 Simple subsampling	25
		5.5.2 Advanced subsampling	26
	5.6	Number of frames	27
	5.7	Output mode	27
	5.8	FOT multiplier	27
	5.9	Training pattern	28
		Test pattern	
		Data rate	
		Power control	
	5.13	Offset and gain	
		5.13.1 Offset	
		5.13.2 Gain	
	5.14	Temperature	29
6	Regi	ister overview	30
7	Med	chanical specifications	33
	7.1	Package drawing	33
	7.2	Assembly drawing	34
	7.3	Cover glass	35

CMV20000 Datasheet

	7.4 Color filters	35
	7.5 QE and Spectral Response	36
	7.6 Angular Response	37
8	B Pin list	38
9	9 Specification overview	41
10	10 Ordering info	42
11	11 Handling and soldering procedure	43
	11.1 Soldering	43
	11.1.1 Wave soldering	43
	11.1.2 Reflow soldering	43
	11.1.3 Soldering recommendations	43
	11.2 Handling image sensors	44
	11.2.1 ESD	44
	11.2.2 Glass cleaning	44
	11.2.3 Image sensor storing	44
12	12 Additional information	45
_		

1 Introduction

1.1 OVERVIEW

The CMV20000 is a global shutter CMOS image sensor with 5120 by 3840 pixels. The image array consists of 6.4µm x 6.4µm pipelined global shutter pixels which allow exposure during read out, while performing CDS operation. The image sensor has sixteen 12-bit digital LVDS outputs (serial). The image sensor also integrates a programmable gain amplifier and offset regulation. Each channel runs at 480 Mbps maximum which results in 30 fps frame rate at full resolution. Higher frame rates can be achieved in row-windowing mode or row-subsampling mode. These modes are all programmable using the SPI interface. All internal exposure and read out timings are generated by a programmable on-board sequencer. External triggering and exposure programming is also possible. Extended optical dynamic range can be achieved by multiple integrated high dynamic range modes. Features

1.2 FEATURES

- 5120 * 3840 active pixels on a 6.4um pitch
- frame rate 30 Frames/sec
- row windowing capability
- Window, X-Y mirroring function
- Master clock 40MHz
- 16 LVDS-outputs @ 480MHz, or 8 LVDS-outputs at 15FPS
- LVDS control line with frame and line information
- LVDS DDR output clock to sample data on the receiving end
- 12 bit ADC output
- High Dynamic Range mode supported
- Power dissipation control
- On chip temperature sensor
- On chip timing generation
- SPI-control
- Ceramic PGA package (143 pins)

1.3 SPECIFICATIONS

- Full well charge: 15Ke⁻
- Sensitivity: 8.3 V/lux.s (with microlenses @ 550nm)
- Dark noise: 8e⁻ RMS
- Conversion factor: 110μV/e (@ pixel); 0.25DN/e
- Dynamic range: 66 dB
- Extended dynamic range: Piecewise linear response
- Parasitic light sensitivity: 1/50 000
- Dark current: 125 e/s (@ 25C die temp)
- Fixed pattern noise: <0.2% of full swing, standard deviation on full image
- Power consumption: 1100mW

2 Sensor architecture

Figure 1 shows the image sensor architecture. The internal sequencer generates the necessary signals for image acquisition. The image is stored in the pixel (global shutter) and they are read out sequentially, row-by-row into the analog front-end electronics (AFE) of the columns. On the pixel output, an analog gain of x2.0, x2.4, x2.8 and x3.2 is possible (or 1.6, 1.9, 2.25, 2.55 when column calibration is on). The pixel value then passes to a column ADC cell, in which ADC conversion is performed. The digital signals are then read out over multiple LVDS channels. Each LVDS channel reads out 640 adjacent columns of the array. The AFE and LVDs drivers are doubled on opposite sides of the sensor, resulting in 2 rows being read out at the same when all 16 outputs are used. In the Y-direction, rows of interest are selected through a row-decoder which allows a flexible windowing. Control registers are foreseen for the programming of the sensor. These register parameters are uploaded via a four-wire SPI interface. A temperature sensor which can be read out over the SPI interface is also included.

FIGURE 1: BASIC SENSOR ARCHITECTURE

The most important blocks are described more in detail in the following sections.

2.1 PIXEL ARRAY

The CMV20000 sensor has 5120*3840 active pixels with a 6.4um pitch surrounded by two dummy rows and columns. These dummy pixels at the side will ensure that the optical performance, of the active pixels at the edges, is the same as the one in the active array. These dummy pixels cannot be read out and will be set permanent into reset. The pixels are designed to achieve maximum sensitivity with low noise and low PLS specifications. Micro lenses are placed on top of the pixels for improved fill factor and quantum efficiency.

2.2 Analog front-end electronics (AFE)

The analog front end consists of 2 major parts, a column amplifier block and a column ADC block.

The column amplifier prepares the pixel signal for the column ADC and applies analog gain if desired (programmable using the SPI interface). The column ADC converts the analog pixel value to a 12 bit value and can apply a gain. A digital offset can also be applied to the output of the column ADC's. All gain and offset settings can be programmed using the SPI interface.

2.3 LVDS BLOCK

The LVDS block converts the digital data coming from the column ADC into standard serial LVDS data running at maximum 480Mbps. The sensor has 18 LVDS output pairs:

- 16 data channels
- 1 control channel
- 1 clock channel

The 16 data channels are used to transfer 12-bit data words from sensor to receiver. The output clock channel transports a DDR clock, synchronous to the data on the other LVDS channels. This clock can be used at the receiving end to sample the data. The data on the control channel contains status information on the validity of the data on the data channels, among other useful sensor status information. Details on the LVDS timing and format can be found in section 4 of this document.

2.4 SEQUENCER

The on-chip sequencer will generate all required control signals to operate the sensor from only a few external control clocks. This sequencer can be activated and programmed through the SPI interface. A detailed description of the SPI registers and sensor (sequencer) programming can be found in section 5 of this document.

2.5 SPI

The SPI interface is used to load the sequencer registers with data. The data in these registers is used by the sequencer while driving and reading out the image sensor. Features like windowing, sub sampling, gain and offset are programmed using this interface. The data in the on-chip registers can also be read back for test and debug of the surrounding system. Section 5 contains more details on register programming and SPI timing.

2.6 TEMPERATURE SENSOR

A 16-bit digital temperature sensor is included in the image sensor and can be controlled by the SPI-interface. The on-chip temperature can be obtained by reading out a dedicated SPI register (address 101-102).

A calibration of the temperature sensor is needed by the surrounding system (for absolute temperature measurements).

3 Driving the CMV20000

3.1 SUPPLY SETTINGS

The CMV20000 image sensor has the following supply settings:

Supply name Recommended		Absolute Min - Max	Current nominal	Current peak
	Value	Range		
VDD20	2.1V	1.6 - 2.2V	250mA	1A
VDD33	3.3V	3V - 3.6V	150mA	0.6A
VDDpix	3.0V	2.3V - 3.6V	50mA	8A
Vres_h	3.3V	3.0V - 3.6V	N/A	0.5A

See pin list for exact pin numbers for every supply.

The peak current of 8.0 A for the VDDpix supply is drawn during the frame overhead time (once per frame just before readout). The pulse width for this peak current will be 1us to 10 us and should therefore be decoupled enough.

3.2 BIASING

For optimal performance, some pins need to be decoupled to ground or to VDD. Please refer to the pin list for a detailed description for every pin and the appropriate decoupling if applicable.

3.3 DIGITAL INPUT PINS

The table below gives an overview of the external pins used to drive the sensor

Pin name	Description	
CLK_IN	Master input clock, frequency range is (LVDS_CLK /	
	12). This clock is optional.	
LVDS_CLK_N/P	High speed LVDS input clock, frequency range	
	between 120 and 480 MHz	
SYS_RES_N	System reset pin, active low signal. Resets the on-	
	board sequencer and must be kept low during start-	
	up	
FRAME_REQ	Frame request pin. When a rising edge is detected	
	on this pin the programmed number of frames is	
	captured and sent by the sensor	
SPI_IN	Data input pin for the SPI interface. The data to	
	program the image sensor is sent over this pin.	
SPI_EN	SPI enable pin. When this pin is high the data should	
	be written/read on the SPI	
SPI_CLK	SPI clock. This is the clock on which the SPI runs	
(max 20Mz)		
T_EXP1	Input pin which can be used to program the	
	exposure time externally. Optional	

3.4 ELECTRICAL IO SPECIFICATIONS

3.4.1 DIGITAL IO CMOS/TTL DC SPECIFICATIONS

Parameter	Description	Conditions	min	typ	max	Units
V _{IH}	High level input		2.0		VDD33	V
	voltage					
V_{IL}	Low level input		GND		0.8	V
	voltage					
V _{OH}	High level	VDD=3.3V	2.4			V
	output voltage	I _{OH} =-2mA				
V _{OL}	Low level output	VDD=3.3V			0.4	V
	voltage	I _{OL} =2mA				

3.4.2 LVDS RECEIVER SPECIFICATIONS

Parameter	Description	Conditions	min	typ	max	Units
V_{ID}	Differential	Steady state	100	350	600	mV
	input voltage					
V _{IC}	Receiver	Steady state	0.0		2.4	V
	input range					
I _{ID}	Receiver	V _{INP INN} =1.2V±50mV,			20	μΑ
	input current	0≤ V _{INP INN} ≤2.4V				
ΔI_{ID}	Receiver	$ I_{INP} - I_{INN} $			6	μΑ
	input current					
	difference					

3.4.3 LVDS DRIVER SPECIFICATIONS

Parameter	Description	Conditions	min	typ	max	Units
V _{OD}	Differential	Steady State, RL	247	350	454	mV
	output voltage	= 100Ω				
ΔV_{OD}	Difference in	Steady State, RL			50	mV
	V _{oD} between	= 100Ω				
	complementary					
	output states					
V _{oc}	Common mode	Steady State, RL	1.125	1.25	1.375	V
	voltage	= 100Ω				
ΔV_{OC}	Difference in	Steady State, RL			50	mV
	V _{oc} between	= 100Ω				
	complementary					
	output states					
I _{OS,GND}	Output short	V _{OUTP} =V _{OUTN} =GND			24	mA
	circuit current					
	to ground					
I _{OS,PN}	Output short	V _{OUTP} =V _{OUTN}			12	mA
	circuit current					

3.5 INPUT CLOCK

The high speed LVDS input clock (LVDS_CLK_N/P) defines the output data rate of the CMV20000. The master clock (CLK_IN) must be 12 times slower and this clock but is optional. The maximum data rate of the output is 480Mbps which results in a LVDS_CLK_N/P of 480MHz (and a CLK_IN of 40MHz). The minimum frequencies are 10MHz for CLK_IN and 120MHz for LVDS_CLK_N/P. Any frequency between the minimum and maximum can be applied by the user and will result in a corresponding output data rate.

3.6 Frame rate calculation

The frame rate of the CMV20000 is defined by 2 main factors.

- 1. Exposure time
- 2. Read out time

For ease of use we will assume that the exposure time is shorter than the read out time. By assuming this, the frame rate is completely defined by the read out time (because the exposure time happens in parallel with the read-out time). The read-out time (and thus the frame rate) is defined by:

- 1. Output clock speed: max 480Mbps
- 2. Number of lines read-out
- 3. Number of outputs used: max 16 LVDS outputs (8 on the top and 8 on the bottom)

This means that if any of the parameters above is changed, it will have an impact on the frame rate of the CMV20000. In normal operation (16 outputs @ 480Mbps, 12 bit and full resolution) this will result in 30 fps.

Total readout time is composed of two parts: FOT (frame overhead time) + image readout time.

$$FOT = \left(\left(80 * reg82 + \frac{reg82}{8} \right) + (2 * 641) \right) * clk_per$$

So for reg82 = 80 and running at 480MHz this becomes:

$$FOT = (6410 + 1282) * 25ns = 192.3 \mu s$$

The image read out time equals to

Read Out Time =
$$641 * clk_per * \frac{nr_lines}{\# sides used}$$

So for full resolution and running at 480MHz with both output sides used this becomes:

Read Out Time =
$$641 * 25ns * \frac{3840}{2} = 30.768ms$$

This results in a total frame time of:

$$Frame\ time = FOT + Read\ Out\ time$$

So for the default settings this becomes:

Frame time =
$$192.3\mu s + 30768 \mu s = 30.96ms$$

And the frame rate becomes:

Frame rate =
$$\frac{1}{Frame\ time} = \frac{1}{0.03096s} = 32.3 fps$$

See chapter 5.1.1 for detailed frame timing. Clk_per is the period of the pixel clock. This pixel clock frequency is equal to $1/12^{th}$ (40MHz) of the LVDS input clock frequency (480MHz).

3.7 START-UP SEQUENCE

The following sequence should be followed when the CMV20000 is started up in default output mode (480Mbps, 12bit resolution).

FIGURE 2: START-UP SEQUENCE FOR 480MBPS @ 12-BIT

The CLK_IN and LVDS_CLK_N/P should only start after the rise time of the supplies (VDD33, VDD20, Vddpix and Vres_h go high together). The external reset pin should be released at least 1μ s after the supplies have become stable. The first frame can be requested 1μ s after the reset pin has been released. An optional SPI upload (to program the sequencer) is possible 1μ s after the reset pin has been released. In this case the FRAME_REQ pulse must be postponed until after the SPI upload has been completed.

3.8 RESET SEQUENCE

If a sensor reset is necessary while the sensor is running the following sequence should be followed.

The on-board sequencer will be reset and all programming registers will return to their default start-up values when a falling edge is detected on the SYS_RES_N pin. After the reset there is a minimum time of 1µs needed before a FRAME_REQ pulse can be sent. All recommended register settings must be reloaded after a reset sequence.

3.9 SPI PROGRAMMING

Programming the sensor is done by writing the appropriate values to the on-board registers. These registers can be written over a simple serial interface (SPI). The details of the timing and data format are described below. The data written to the programming registers can also be read out over this same SPI interface.

3.9.1 SPI WRITE

The timing to write data over the SPI interface can be found below.

FIGURE 4: SPI WRITE TIMING

The data is sampled by the CMV20000 on the rising edge of the SPI_CLK. The SPI_CLK has a maximum frequency of 20MHz. The SPI_EN signal has to be high for half a clock period before the first databit is sampled. SPI_EN has to remain high for 1 clock period after the last databit is sampled.

One write action contains 16 databits:

- One control bit: First bit to be sent, indicates whether a read ('0') or write ('1') will occur on the SPI interface.
- 7 address bits: These bits form the address of the programming register that needs to be written. The address is sent MSB first.
- 8 data bits: These bits form the actual data that will be written in the register selected with the address bits. The data is written MSB first.

When several sensor registers need to be written, the timing above can be repeated with SPI_EN remaining high all the time. See the figure below for an example of 2 registers being written in burst.

FIGURE 5: SPI WRITE TIMING FOR 2 REGISTERS IN BURST

The sample and hold time is 1/4th of the SPI clock period.

3.9.2 SPI READ

The timing to read data from the registers over the SPI interface can be found below.

FIGURE 6: SPI READ TIMING

To indicate a read action over the SPI interface, the control bit on the SPI_IN pin is made '0'. The address of the register being read out is sent immediately after this control bit (MSB first). After the LSB of the address bits, the data is launched on the SPI_OUT pin on the falling edge of the SPI_CLK. This means that the data should be sampled by the receiving system on the rising edge of the SPI_CLK. The data comes over the SPI_OUT with MSB first.

The CMV20000 has to SPI read out pins: SPI_OUT_LEFT (pin T1) and SPI_OUT_RIGHT (pin R18). SPI_OUT_LEFT will read out every register, while SPI_OUT_RIGHT will only read out registers 103 to 126. Because of the large sensor there is some SPI read out delay. This delay is fixed and independent of the sensor or SPI clock.

FIGURE 7: SPI DELAY

So when sampling on the rising SPI CLK edge it is advised to have a SPI CLK of 10MHz maximum.

3.10 REQUESTING A FRAME

After starting up the sensor (see section 3.7), a number of frames can be requested by sending a FRAME_REQ pulse. The number of frames can be set by programming the appropriate register (addresses 22 and 23). The default number of frames to be grabbed is 1.

In internal-exposure-time mode, the exposure time will start after this FRAME_REQ pulse. In the external-exposure-time mode, the read-out will start after the FRAME_REQ pulse. Both modes are explained into detail in the sections below.

3.10.1 Internal exposure control

In this mode, the exposure time is set by programming the appropriate registers (address 32-33) of the CMV20000.

After the high state of the FRAME_REQ pulse is detected, the exposure time will start immediately. When the exposure time ends (as programmed in the registers), the pixels are being sampled and prepared for read-out. This sequence is called the frame overhead time (FOT). Immediately after the FOT, the frame is read-out automatically. If more than one frame is requested, the exposure of the next frame starts already during the read-out of the previous one. See the diagram below for more details.

FIGURE 8: REQUEST FOR 2 FRAMES IN INTERNAL- EXPOSURE-TIME MODE

When the exposure time is shorter than the read-out time, the FOT and read-out of the next frame will start immediately after the read-out of the previous frame.

FIGURE 9: REQUEST FOR 2 FRAMES IN INTERNAL-EXPOSURE-TIME MODE WITH EXPOSURE TIME < READ-OUT TIME

3.10.2 EXTERNAL EXPOSURE CONTROL

The exposure time can also be programmed externally by using the T_EXP1 input pin. This mode needs to be enabled by setting the appropriate register (address 81). In this case, the exposure starts when a high state is detected on the T_EXP1 pin. When a high state is detected on the FRAME_REQ input, the exposure time stops and the read-out will start automatically. A new exposure can start by sending a pulse to the T_EXP1 pin during or after the read-out of the previous frame.

FIGURE 10: REQUEST FOR 2 FRAMES USING EXTERNAL-EXPOSURE-TIME MODE

4 READING OUT THE SENSOR

The CMV20000 has LVDS (low voltage differential signaling) outputs to transport the image data to the surrounding system. Next to 16 data channels, the sensor also has two other LVDS channels for control and synchronization of the image data. In total, the sensor has 18 LVDS output pairs (2 pins for each LVDS channel):

- 16 Data channels
- 1 Control channel
- 1 Clock channel

This means that a total of 36 pins of the CMV20000 are used for the LVDS outputs (32 for data + 2 for LVDS clock + 2 for control channel). See the pin list for the exact pin numbers of the LVDS outputs. The 16 data channels are used to transfer the 12-bit pixel data from the sensor to the receiver in the surrounding system. The output clock channel transports a clock, synchronous to the data on the other LVDS channels. This clock can be used at the receiving end to sample the data. This clock is a DDR clock which means that the frequency will be half of the output data rate. When 480Mbps output data rate is used, the LVDS output clock will be 240MHz. The data on the control channel contains status information on the validity of the data on the data channels. Information on the control channel is grouped in 12-bit words that are transferred synchronous to the 16 data channels.

4.1 LVDS LOW-LEVEL PIXEL TIMING

The figure below shows the timing for transfer of 12-bit pixel data over one LVDS output. To make the timing more clear, the figure shows only the p-channel of each LVDS pair. The data is transferred LSB first, with the transfer of bit D[0] during the high phase of the DDR output clock.

FIGURE 11: 10: 12-BIT PIXEL DATA ON AN LVDS CHANNEL

The time 'T1' in the diagram above is 1/12th of the period of the input clock (CLK_IN) of the CMV20000. If a frequency of 40MHz is used for CLK_IN (max), this results in a 240MHz LVDS_CLOCK_OUT.

4.2 LVDS READOUT TIMING

The readout of image data is grouped in bursts of 640 pixels per channel (2 rows at the same time). Each pixel is 12 bits of data (see section 4.1.1). One complete pixel period equals one period of the master clock input. For details on pixel remapping and pixel vs channel location please see section 4.1.3 of this document. An overhead time exists between two bursts of 640 pixels. This overhead time has the length of one pixel read-out (i.e. the length of 12 bits at the selected data rate) or one master clock cycle.

4.2.1 16 OUTPUT CHANNELS

By default, all 16 data output channels are used to transmit the image data. This means that two entire rows of image data are transferred in one slot of 640 pixel periods ($16/2 \times 640 = 5120$). Next figure shows the timing for the top and bottom LVDS channels.

CMV20000 Datasheet

FIGURE 12: OUTPUT TIMING IN DEFAULT 16 CHANNEL MODE

Only when 16 data outputs, running at 480Mbps, are used, the frame rate of 30fps can be achieved (default).

4.2.2 8 OUTPUT CHANNELS

The CMV20000 has the possibility to use only 8 LVDS output channels. This setting can be programmed in the register with address 80 (see section 5.7). In such multiplexed output mode, only the 8 bottom LVDS channels are used. The readout of one row takes 1*640 periods. . This means that ne entire rows of image data are transferred in one slot of 640 pixel periods (8 \times 640 = 5120). Next figure shows the timing for the bottom LVDS channels.

FIGURE 13: OUTPUT TIMING IN 8 CHANNEL MODE

In this 2 channel mode, the frame rate is reduced with a factor of 2 compared to 4 channel mode.

4.3 PIXEL REMAPPING

Depending on the number of output channels, the pixels are read out by different channels and come out at a different moment in time. With the details from the next sections, the end user is able to remap the pixel values at the output to their correct image array location.

4.3.1 16 OUTPUTS

The figure below shows the location of the image pixels versus the output channel of the image sensor.

FIGURE 14: PIXEL REMAPPING FOR 16 OUTPUT CHANNELS

18 bursts (8 x 2) of 640 pixels happen in parallel on the data outputs. This means that two complete rows are read out in one burst. The amount of rows that will be read out depends on the value in the corresponding register. By default there are 3840 rows being read out.

4.3.2 8 OUTPUTS

When only 8 outputs are used, the pixel data is placed on the outputs as detailed in the figure below. 8 bursts of 640 pixels happen in parallel on the data outputs. This means that one complete row is read out in one burst. The time needed to read out two rows is doubled compared to when 16 outputs are used. The top LVDS channels are not being used in this mode, so they can be turned off by setting the correct bits in the register with address 95-97. Turning off these channels will reduce the power consumption of the chip. The amount of rows that will be read out depends on the value in the corresponding register. By default there are 3840 rows being read out.

FIGURE 15: PIXEL REMAPPING FOR 8 OUTPUT CHANNELS

4.4 CONTROL CHANNEL

The CMV20000 has one LVDS output channel dedicated for the valid data synchronization and timing of the output channels. The end user must use this channel to know when valid image data or training data is available on the data output channels.

The control channel transfers status information in 12-bit word format. Every bit of the word has a specific function. Next table describes the function of the individual bits.

Bit	Function	Description
[0]	DVAL	Indicates valid pixel data on the outputs
[1]	LVAL	Indicates validity of the readout of a row
[2]	FVAL	Indicates the validity of the readout of a frame
[3]	'0'	Constant zero
[4]	'0'	Constant zero
[5]	FOT	Indicates when the sensor is in FOT (sampling of image data in pixels) (*)
[6]	INTE1	Indicates when pixels of integration block 1 are integrating (*)
[7]	INTE2	Indicates when pixels of integration block 2 are integrating (*)
[8]	'0'	Constant zero
[9]	'1'	Constant one
[10]	'0'	Constant zero
[11]	'0'	Constant zero

(*)Note: The status bits are purely informational. These bits are not required to know when the data is valid. The DVAL, LVAL and FVAL signals are sufficient to know when to sample the image data.

4.4.1 DVAL, LVAL, FVAL

The first three bits of the control word must be used to identify valid data and the readout status. Next figure shows the timing of the DVAL, LVAL and FVAL bits of the control channel with an example of the readout of a frame of 6 rows (default is 3840 rows). This example uses the default mode of 16 outputs (8 outputs on each side).

CMV20000 Datasheet

FIGURE 16: DVAL, LVAL AND FVAL TIMING IN 16 OUTPUT MODE

4.4.2 DIGITAL TEST PINS

Pins D1 (Tdig2) and D3 (Tdig1) can be used as digital outputs to monitor the state of the sensor. Register 92 can be used to select a signal on these pins.

Reg92[6:4] Tdig2	
0	LVAL
3	INTE_1
7	CLK OUT (=LVDS CLK/12)

Reg92[3:0]	Tdig1
0	FVAL
2	FOT
3	INTE_2

4.5 TRAINING DATA

To synchronize the receiving side with the LVDS outputs of the CMV20000, a known data pattern can be put on the output channels. This pattern can be used to "train" the LVDS receiver of the surrounding system to achieve correct word alignment of the image data. Such a training pattern is put on all 16 data channel outputs when there is no valid image data to be sent (so, also in between bursts of 640 pixels). The training pattern is a 12-bit data word that replaces the pixel data. The sensor has a 12-bit sequencer register (address 90-90) that can be loaded through the SPI to change the contents of the 12-bit training pattern.

The control channel does not send a training pattern, because it is used to send control information at all time. Word alignment can be done on this channel when the sensor is idle (not exposing or sending image data). In this case all bits of the control word are zero, except for bit [9].

The figure below shows the location of the training pattern (TP) on the data channels and control channels when the sensor is in idle mode and when a frame of 6 rows is read-out. The default mode of 16 outputs is selected.

FIGURE 17: TRAINING PATTERN LOCATION IN THE DATA CHANNEL AND CONTROL CHANNEL.

The LVDS outputs are not aligned with the LVDS output clock. Every channel (per odd/even side) has a skew of +600ps compared to the previous channel. The control channel and both odd and even channels 1 are aligned with the clock. This skew will become larger than a LVDS clock period and therefor bit and word alignment is needed in the receiving side.

FIGURE 18: LVDS OUTPUT SKEW

4.6 Test pattern

Instead of sending image data, the sensor can generate a two-dimensional test image (after sending a frame request), if the test pattern mode is enabled. This setting can be programmed in the register with address 83.

The test pattern is the sum of the row number, the pixel number and the data output channel number. Next figure shows an example of the test pattern data.

FIGURE 19: TEST PATTERN DATA

5 IMAGE SENSOR PROGRAMMING

This section explains how the CMV20000 can be programmed using the on-board sequencer registers.

5.1 EXPOSURE MODES

The exposure time can be programmed in two ways, externally or internally. Externally, the exposure time is defined as the time between the rising edge of T_EXP1 and the rising edge of FRAME_REQ (see section 3.10 for more details). Internally, the exposure time is set by uploading the desired value to the corresponding sequencer register.

The table below gives an overview of the registers involved in the exposure mode.

Exposure time settings			
Register name	Register address	Default value	Description of the value
Exp_ext	81[0]	0	0: Exposure time is defined by the value uploaded in the sequencer register (32-33)1: Exposure time is defined by the pulses applied to the T_EXP1 and FRAME_REQ pins.
Exp_time	32-33	3840	When the Exp_ext register is set to '0', the value in this register defines the exposure time according to the formula below. Minimum = 1.

$$Actual\ Exposure\ time = \big(((Exp_time - 1) * 641) + 1 + (47 * reg82)\big) * clk_per$$

Here clk_per is the period of the input LVDS_CLK multiplied by 12 (so for 480MHz this is 25ns). The minimum exposure time then becomes $94\mu s$.

5.1.1 FRAME TIMING

A detailed view of the frame timing can be seen below.

5.2 HIGH DYNAMIC RANGE MODE

5.2.1 PIECEWISE LINEAR RESPONSE

The CMV20000 has the possibility to achieve a high optical dynamic range by using a piecewise linear response. This feature will clip illuminated pixels which reach a programmable voltage, while leaving the darker pixels untouched.

The clipping level can be adjusted 2 times within one exposure time to achieve a maximum of 3 slopes in the response curve. More details can be found in the figure below.

FIGURE 20: PIECEWISE LINEAR RESPONSE DETAILS

In the figure above, the red lines represent a pixel on which a large amount of light is falling. The blue line represents a pixel on which less light is falling. As shown in the figure, the bright pixel is held to a programmable voltage for a programmable time during the exposure time. This happens two times to make sure that at the end of the exposure time the pixel is not saturated. The darker pixel is not influenced and will have a normal response. The Vlevel_s2/3 voltages and different exposure times are programmable using the sequencer registers. Using this feature, a response as detailed in the figure below can be achieved. The placement of the kneepoints in X is controlled by the Vlevel_s2/3 programming, while the slope of the segments is controlled by the programmed exposure times.

FIGURE 21: PIECEWISE LINEAR RESPONSE

5.2.1.1 PIECEWISE LINEAR RESPONSE WITH INTERNAL EXPOSURE MODE

The following registers need to be programmed when a piecewise linear response in internal exposure mode is desired.

		HDR set	ttings – PLR
Register name	Register address	Default value	Description of the value
Exp_time	32-33	3840	The value in this register defines the total exposure time according following formula: ((Exp_time - 1) x 641 + 1 + 47 x FOT_mult) x clk_per, where clk_per is the period of the master input clock.
Nr_slopes	37[1:0]	1	The value in this register defines the number of slopes (min=1, max=3).
Exp_s2	39-40	0	The value in this register defines the exposure time from the start of the second slope to the end of the total exposure time. Formula: ((Exp_s2 - 1) x 641 + 1 + 47 x FOT_mult) x clk_per, where clk_per is the period of the master input clock.
Exp_s3	42-43	0	The value in this register defines the exposure time from the start of the third slope to the end of the total exposure time. Formula: ((Exp_s3 - 1) x 641 + 1 + 47 x FOT_mult) x clk_per, where clk_per is the period of the master input clock.
Vlevel_s2	114[6:0]	64	Bit[6] = enable Bit[5:0] dac value Low level voltage during dual slope operation. The value in this register defines the Vlevel_s2 voltage (DAC setting). The DAC range goes from 0 to 2.1V.
Vlevel_s3	115[6:0]	64	Bit[6] = enable Bit[5:0] dac value Low level voltage during triple slope operation. The value in this register defines the Vlevel_s3 voltage (DAC setting). The DAC range goes from 0 to 2.1V.

5.2.1.2 PIECEWISE LINEAR RESPONSE WITH EXTERNAL EXPOSURE MODE

When external exposure time is used and a piecewise linear response is desired, the following registers should be programmed.

	HDR settings – PLR			
Register name	Register address	Default value	Description of the value	
Nr_slopes_ex	15[1:0]	1	The value in this register defines the number of slopes	
			(min=1, max=3).	
Vlevel_s2_ex	112[6:0]	64	Bit[6] = enable	
			Bit[5:0] dac value	
			Low level voltage during dual slope operation. The value in	
			this register defines the Vlevel_s2 voltage (DAC setting).	
			The DAC range goes from 0 to 2.1V.	
Vlevel_s3_ex	113[6:0]	64	Bit[6] = enable	
			Bit[5:0] dac value	
			Low level voltage during triple slope operation. The value	
			in this register defines the Vlevel_s3 voltage (DAC setting).	
			The DAC range goes from 0 to 2.1V.	

The timing that needs to be applied in this external exposure mode looks like the one below.

FIGURE 22: PIECEWISE LINEAR RESPONSE WITH EXTERNAL EXPOSURE MODE

5.3 WINDOWING

To limit the amount of data or to increase the frame rate of the sensor, windowing in Y direction is possible. The number of lines and start address can be set by programming the appropriate registers. The CMV20000 has the possibility to read out multiple (max=8) predefined subwindows in one read-out cycle. The default mode is to read-out one window with the full frame size (5120 x 3840).

5.3.1 SINGLE WINDOW

When a single window is read out, the start address and size can be uploaded in the corresponding registers. The default start address is 0 and the default size is 3840 (full frame).

Windowing – single window				
Register name Register address Default value Description of the value				
Start_single	24-25	0	The value in this register defines the start address of the	
			window in Y (min=0, max=3839)	
Number_lines_single	26-27	3840	The value in this register defines the number of lines read	
			out by the sensor (min=1, max=3840)	

FIGURE 23: SINGLE WINDOW SETTINGS

5.3.2 Multiple windows

The CMV20000 can read out a maximum of 8 different subwindows in one read-out cycle. The location and length of these subwindows must be programmed in the correct registers. The total number of lines to be read-out (sum of all windows) needs to be specified in the Number_lines register. The registers which need to be programmed for the multiple windows can be found in the table below.

	Windowing – multiple windows			
Register name	Register address	Default value	Description of the value	
Multwin_en	44	0	0: multiple windows mode disabled	
			1: multiple windows mode enabled	
Number_lines	45-46	0	The value in this register defines the total number of lines	
			read-out by the sensor (min=1, max=3840)	
Start1	47-48	0	The value in this register defines the start address of the	
			first window in Y (min=0, max=3839)	
Number_lines1	63-64	0	The value in this register defines the number of lines of the	
			first window (min=1, max=3840)	
Start2	49-50	0	The value in this register defines the start address of the	
			second window in Y (min=0, max=3839)	
Number_lines2	65-66	0	The value in this register defines the number of lines of the	
			second window (min=1, max=3840)	
Start3	51-52	0	The value in this register defines the start address of the	
			third window in Y (min=0, max=3839)	
Number_lines3	67-68	0	The value in this register defines the number of lines of the	
			third window (min=1, max=3840)	
Start4	53-54	0	The value in this register defines the start address of the	
			fourth window in Y (min=0, max=3839)	
Number_lines4	69-70	0	The value in this register defines the number of lines of the	
			fourth window (min=1, max=3840)	
Start5	55-56	0	The value in this register defines the start address of the	
			fifth window in Y (min=0, max=3839)	
Number_lines5	71-72	0	The value in this register defines the number of lines of the	
			fifth window (min=1, max=3840)	
Start6	57-58	0	The value in this register defines the start address of the	
			sixth window in Y (min=0, max=3839)	
Number_lines6	73-74	0	The value in this register defines the number of lines of the	
			sixth window (min=1, max=3840)	
Start7	59-60	0	The value in this register defines the start address of the	
			seventh window in Y (min=0, max=3839)	
Number_lines7	75-76	0	The value in this register defines the number of lines of the	
			seventh window (min=1, max=3840)	
Start8	61-62	0	The value in this register defines the start address of the	
			eighth window in Y (min=0, max=3839)	
Number_lines8	77-78	0	The value in this register defines the number of lines of the	
			eighth window (min=1, max=3840)	

Number_lines = Number_lines1 + Number_lines2 + Number_lines3 + Number_lines4

FIGURE 24: EXAMPLE OF 4 SUBWINDOWS READ-OUT

5.4 IMAGE FLIPPING

The image coming out of the image sensor, can be flipped in X and/or Y direction. This means that if flipping is enabled in both directions the upper right pixel is read out first (instead of lower left). The following registers are involved in image flipping

Image flipping				
Register name	Register address	Default value	Description of the value	
Image_flipping	85[1:0]	0	0: No image flipping	
			1: Image flipping in X	
			2: Image flipping in Y	
			3: Image flipping in X and Y	

5.5 IMAGE SUBSAMPLING

To maintain the same field of view but reduce the amount of data coming out of the sensor, a subsampling mode is implemented on the chip. Different subsampling schemes can be programmed by setting the appropriate registers. These subsampling schemes can take into account whether a color or monochrome sensor is used to preserve the Bayer pattern information. The registers involved in subsampling are detailed below. A distinction is made between a simple and advanced mode (can be used for color devices). Subsampling can be enabled in every windowing mode.

5.5.1 SIMPLE SUBSAMPLING

Image subsampling - simple				
Register name	Register address	Default value	Description of the value	
Number_lines_single	26-27	3840	The value in this register defines the total number of lines read out by the sensor (min=1, max=3840)	
Sub_s	28-29	0	Number of rows to skip (min=0, max=3839)	
Sub_a	30-31	0	Identical to Sub_s	

The figures below give two subsampling examples (skip 4x and skip 1x).

FIGURE 25: SUBSAMPLING EXAMPLES (SKIP 4X AND SKIP 1X)

5.5.2 ADVANCED SUBSAMPLING

When a color sensor is used, the subsampling scheme should take into account that a Bayer color filter is applied on the sensor. This Bayer pattern should be preserved when subsampling is used. This means that the number of rows to be skipped should always be a multiple of two. An advanced subsampling scheme can be programmed to achieve these requirements. Of course, this advanced subsampling scheme can also be programmed in a monochrome sensor. See the table of registers below for more details.

Image subsampling - advanced				
Register name	Register address	Default value	Description of the value	
Number_lines_single	26-27	3840	The value in this register defines the total number of lines read out by the sensor (min=1, max=3840)	
Sub_s	28-29	0	Should be '0' at all times	
Sub_a	30-31	0	Number of rows to skip, it should be an even number between (0 and 3838).	

The figures below give two subsampling examples (skip 4x and skip 2x) in advanced mode.

FIGURE 26: SUBSAMPLING EXAMPLES IN ADVANCED MODE (SKIP 4X AND SKIP2X)

5.6 Number of frames

When internal exposure mode is selected, the number of frames sent by the sensor after a frame request can be programmed in the corresponding sequencer register.

Number of frames				
Register name	Register address	Default value	Description of the value	
Number_frames	22-23	1	The value in this register defines the number of frames grabbed and sent by the image sensor in internal exposure mode (min =1, max = 65535)	

5.7 OUTPUT MODE

When LVDS output mode is selected, the number of LVDS channels can be selected by programming the appropriate sequencer register. The pixel remapping scheme and the read-out timing for each mode can be found in section 4 of this document.

Output mode				
Register name	Register address	Default value	Description of the value	
Output_mode	80	0	0: 16 outputs	
			1: 8 outputs	

5.8 FOT MULTIPLIER

The length of the FOT can be programmed using the register below. It is not recommended to set it below 80 as loss in swing and increase in FPN can occur.

	FOT multiplier			
Register name	Register address	Recommended	Description of the value	
		value		
FOT_mult	82	80	The value in this register defines the length of the FOT according to the following formula: (80 x FOT_mult + FOT_mult/8) x clk_per, where clk_per is the period of the master input clock (min=8, max=248, multiple of 8)	

CMV20000 Datasheet

5.9 TRAINING PATTERN

As detailed in section 4.5, a training pattern is sent over the LVDS data channels whenever no valid image data is sent. This training pattern can be programmed using the sequencer register.

Training pattern			
Register name Register address Default value Description of the value			
Training_pattern	90-91	85	The 12 LSBs of this 16 bit word are sent

5.10 Test Pattern

As detailed in section 4.6, a test pattern can be generated whenever no training data is sent. This test pattern can be enabled using the register below.

Test pattern					
Register name	Register address	Default value	Description of the value		
Testpattern_en	83	0	0: test pattern disabled		
1: test pattern enabled					

5.11 DATA RATE

During start-up or after a sequencer reset, the data rate can be changed if a lower speed than 480Mbps is desired. This can be done by applying a lower master input clock (CLK IN) and lowe LVDS CLK N/P to the sensor. See section 3.5 for more details on the input clock. See section 3.7 and 3.8 for details on how and when the data rate can be changed.

5.12 POWER CONTROL

The power consumption of the CMV20000 can be regulated by disabling the LVDS data channels when they are not used (in 8 channel mode).

Power control Power control						
Register name	Register address	Default value	Description of the value			
Channel_en	95-96	262143	Bits 0-7 enable/disable the bottom data output channels			
			Bits 8-15 enable/disable the top data output channels			
			Bit 16 enables/disables the clock channel			
			Bit 17 enables/disables the control channel			
			Bit 18 enables/disables the clock receiver			
			0: disabled			
			1: enabled			

5.13 OFFSET AND GAIN

5.13.1 OFFSET

A digital offset can be applied to the output signal. The dark level offset can be programmed by setting the desired value in the sequencer registers. The offset register is a 12 bit 2's complement representation of the actual desired offset to be added or subtracted from a fixed value of 1296. Default offset register value of 2840 is the 2's complement representation of -1256 \rightarrow default dark level is 1296 + (-1256) = 40.

Offset						
Register name	Register name Register address Default value Description of the value					
Offset	88-89	2840	The value in this register defines the dark level offset applied to the output signal			

5.13.2 GAIN

An analog gain and ADC gain can be applied to the output signal. The analog gain is applied by a PGA in every column. The digital gain is applied by the ADC.

Gain						
Register name	Register address	Default value	Description of the value			
PGA_gain	93 bits[3:2]	0	0: x1.6 gain 1: x1.9 gain (recommended) 2: x2.25 gain 3: x2.55 gain			
ADC_gain	126 bits[5:0]	32	32			

5.14 TEMPERATURE

The register below contains the temperature data.

Temperature					
Register name	Register name Register address		Description of the value		
Temperature	101-102	0	This register contains the temperature data		

6 REGISTER OVERVIEW

The table below gives an overview of all the sensor registers. The registers with the remark "Do not change" should not be changed.

	Register overview									
Address	Default					Value				Remark
		Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	
0	1									Do not change
1	0									Do not change
2	0									Do not change
3	0									Do not change
4	0									Do not change
5	15									Do not change
6	0									Do not change
7	0									Do not change
8	0									Do not change
9	0									Do not change
10	32									Do not change
11	0									Do not change
12	32									Do not change
13	0									Do not change
14	0									Do not change
15	1							Nr_slopes	_ex[1:0]	
16	0									Do not change
17	0									Do not change
18	0									Do not change
19	0									Do not change
20	0									Do not change
21	0									Do not change
22	1				Numb	er_frames	[7:0]			
23	0				Numbe	er_frames	[15:8]			
24	0				Star	t_single[7	:0]			
25	0				Star	t_single[1	5:8]			
26	0			I	Number	_lines_sin	gle[7:0]			
27	15			N	Number_	_lines_sing	le[15:8]			
28	0				5	Sub_s[7:0]				
29	0				S	ub_s[15:8]				
30	0				S	ub_a[7:0]				
31	0				Sı	ub_a[15:8				
32	0				Ex	p_time[7:0)]			
33	15				Exp	_time[15:	8]			
34	0									Do not change
35	15									Do not change
36	0									Do not change
37	1							Nr_slope	es[1:0]	
38	0									Do not change
39	0				Е	xp_s2[7:0]				
40	0				Ex	cp_s2[15:8]			
41	0									Do not change
42	0				Е	xp_s3[7:0]				
43	0					cp_s3[15:8				
44	0							Multwi	n_en	
45	0				Num	ber_lines[7:0]			
46	0				Numl	per_lines[:	.5:8]			

CMV	/20000	Datas	heet
-----	--------	-------	------

Register overview						
Address	Default	Value	Remark			
		Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0]				
47	0	Start1[7:0]				
48	0	Start1[15:8]				
49	0	Start2[7:0]				
50	0	Start2[15:8]				
51	0	Start3[7:0]				
52	0	Start3[15:8]				
53	0	Start4[7:0]				
54	0	Start4[15:8]				
55	0	Start5[7:0]				
56	0	Start5[15:8]				
57	0	Start6[7:0]				
58	0	Start6[15:8]				
59	0	Start7[7:0]				
60	0	Start7[15:8]				
61	0	Start8[7:0]				
62	0	Start8[15:8]				
63	0	Number_lines1[7:0]				
64	0	Number lines1[15:8]				
65	0	Number lines2[7:0]				
66	0	Number_lines2[15:8]				
67	0	Number_lines3[7:0]				
68	0	Number_lines3[15:8]				
69	0	Number lines4[7:0]				
70	0	Number_lines4[15:8]				
71	0	Number lines5[7:0]				
72	0	Number lines5[15:8]				
73	0	Number lines6[7:0]				
74	0	Number_lines6[15:8]				
75	0	Number_lines7[7:0]				
76	0	Number lines7[15:8]				
77	0	Number_lines8[7:0]				
78	0	Number lines8[15:8]				
79	0		Do not change			
80	0	Output_mode				
81	0	Exp_ext				
82	80	FOT_mult[7:0]				
83	0	Testpattern_en				
84	129	· ostpattern_cm	Set to 131			
85	0	Image_flipping[1:0]				
86	0	60kh9[110]	Set to 3			
87	254		Set to 0			
88	24	Offset[7:0]	200.00			
89	11	Offset[12:8]				
90	85	Training_pattern[7:0]				
91	0	Training_pattern[7.6] Training_pattern[15:8]				
92	0		Do not change			
93	0	PGA_Gain[3:2)	50 Hot change			
94	136	1 6/1_5um[5.2)	Set to 72			
95	255	Channel_en[7:0]	300 00 72			
96	255	Channel_en[15:8]				
97	3	Channel_en[18:16]	Set to 7			
98	0	Chainel_en[16.10]	Do not change			
30	U		DO HOL CHANGE			

	Register overview									
Address	Default					Value				Remark
		Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	
99	0									Do not change
100	0									Do not change
101	0				Τe	emp[7:0]				Do not change
102	0				Te	mp[15:8]				Do not change
103	136									Set to 72
104	136									Set to 102
105	136									Set to 68
106	96									Do not change
107	96									Do not change
108	96									Set to 228
109	96									Set to 210
110	64									Do not change
111	64									Do not change
112	64					Vlevel_s2_	ex[6:0]			
113	64					Vlevel_s3_	ex[6:0]			
114	64					Vlevel_s2	2[6:0]			
115	64					Vlevel_s3	8[6:0]			
116	96									Set to 91
117	96									Set to 91
118	96									Do not change
119	96									Do not change
120	96									Do not change
121	255									Set to 47
122	255									Do not change
123	64									Set to 102
124	0									Do not change
125	0									Do not change
126	32					ADC_	gain[5:0]			
127	32									Do not change

Note: The default value of the "do not change" registers should not be overwritten.

7 Mechanical specifications

7.1 PACKAGE DRAWING

FIGURE 27: PACKAGE DRAWING OF THE CMV20000. ALL DISTANCES IN MM.

Package tolerances and alignment are:

Tilt image sensor: +/- 0.05 degree
Rotation image sensor: +/- 0.3 degree

• Placement image sensor : +/- 150 um

Alignment image sensor to the top of the package : 1 mm +/- 0.13 mm

Pin alignment tolerances are specified as 1% however tolerances measured are 0.18% max.

7.2 ASSEMBLY DRAWING

FIGURE 28: ASSEMBLY DRAWING OF CMV20000

7.3 COVER GLASS

The cover glass of the CMV20000 has following specifications:

- Reflection(abs) <= 1.5% @ 400 900 nm (per surface), Angle Off Interest = 15^o
- 2 sides AR-coated

When a color sensor is used an IR-cutoff filter should be placed in the optical path of the sensor.

7.4 COLOR FILTERS

When a color version of the CMV20000 is used, the color filters are applied in a Bayer pattern. The color version of the CMV20000 always has micro lenses. The use of an IR cut-off filter in the optical path of the CMV20000 image sensor is necessary to obtain good color separation when using light with an IR component.

A RGB Bayer pattern is used on the CMV20000 image sensor. The order of the RGB filter can be found in the drawing below.

FIGURE 29: RGB BAYER PATTERN ORDER

7.5 QE AND SPECTRAL RESPONSE

The typical QE and spectral response of the CMV20000 color/monochrome with micro lenses and cover glass can be found below.

FIGURE 30: TYPICAL QE OF THE CMV20000

FIGURE 31: TYPICAL SPECTRAL RESPONSE OF THE CMV20000

7.6 ANGULAR RESPONSE

FIGURE 32: ANGULAR RESPONSE

8 PIN LIST

Pin number	Pin name	Description	Туре
A2	OUTE1 P	LVDS positive output data even rows channel1 bottom	LVDS output
A3	VDD20	2.1V supply	Supply
A4	OUTE2 P	LVDS positive output data even rows channel2 bottom	LVDS output
A5	VDD20	2.1V supply	Supply
A6	OUTE3 P	LVDS positive output data even rows channel3 bottom	LVDS output
A7	VDDPIX	2.3V -> 3.3V DEFAULT 2.8V supply	Supply
A8	OUTE4 P	LVDS positive output data even rows channel4 bottom	LVDS output
A9	GND	Ground pin	Ground
A10	OUTE5_N	LVDS negative output data even rows channel5 bottom	LVDS output
A11	VDD20	2.1V supply	Supply
A12	OUTE6_N	LVDS negative output data even rows channel6 bottom	LVDS output
A13	VDDPIX	2.3V -> 3.3V DEFAULT 2.8V supply	Supply
A14	OUTE7_N	LVDS negative output data even rows channel7 bottom	LVDS output
A15	GND	Ground pin	Ground
A16	OUTE8 N	LVDS negative output data even rows channel8 bottom	LVDS output
A17	VDD20	2.1V supply	Supply
A18	CMD_LVDS	decouple with 470nF to ground	Bias
B1	DIO2	Diode 2 for test (connect to GND)	Test
B2	OUTE1 N	LVDS negative output data even rows channel1 bottom	LVDS output
В3	 GND	Ground pin	Ground
B4	OUTE2 N	LVDS negative output data even rows channel2 bottom	LVDS output
B5	 GND	Ground pin	Ground
B6	OUTE3_N	LVDS negative output data even rows channel3 bottom	LVDS output
B7	GND	Ground pin	Ground
B8	OUTE4_N	LVDS negative output data even rows channel4 bottom	LVDS output
B9	VDD33	3.3V supply	Supply
B10	OUTE5_P	LVDS positive output data even rows channel5 bottom	LVDS output
B11	GND	Ground pin	Ground
B12	OUTE6_P	LVDS positive output data even rows channel6 bottom	LVDS output
B13	GND	Ground pin	Ground
B14	OUTE7_P	LVDS positive output data even rows channel7 bottom	LVDS output
B15	VDD33	3.3V supply	Supply
B16	OUTE8 P	LVDS positive output data even rows channel8 bottom	LVDS output
B17	GND	Ground pin	Ground
B18	CMD_COL_AMPL	decouple with 470nF to ground	Bias
C1	TANA	Test pin for analog signals (can be left floating)	Analog output
C2	OUTCTR_N	LVDS negative control output channel	LVDS output
C3	DIO1	Diode 1 for test (connect to GND)	Test
C16	GND	Ground pin	Ground
C17	CMDN	decouple with 470nF to ground	Bias
C18	CMD COL PC	decouple with 470nF to ground	Bias
D1	TDIG2	Test pin Test pin for digital signals (can be left floating	Digital output
		or route to an input pin of the FPGA)for digital signals	· .
D2	OUTCTR_P	LVDS positive control output channel	LVDS output
D3	TDIG1	Test pin for digital signals (can be left floating or route	Digital output
		to an input pin of the FPGA)	
D16	CMDP	decouple with 470nF to VDD33	Bias
D17	CMDP_INV	decouple with 470nF to VDD33	Bias
D18	CMD_ADC	decouple with 470nF to VDD33	Bias
E1	Extra1	Leave floating	

		image ser	nsors
CM\	/2000	00 Datash	eet

Pin	Pin name	Description	Туре
number			
E2	Extra2	Connect to GND	
E3	FRAME_REQ	Frame request	Digital input
E16	VBGAP	decouple with 470nF to VBGAP_LOW	Bias
E17	VBGAP_LOW	decouple to VBGAP see pin E16	Bias
E18	CMD_COL_LOAD	decouple with 470nF to ground	Bias
F1	STRB_EXP1	Output strobe pin for the exposure time	Digital output
F2	VDD20	2.1V supply	Supply
F3	GND	Ground pin	Ground
F16	GND	Ground pin	Ground
F17	VDD20	2.1V supply	Supply
F18	REF_ADC	Ref for ADC testing (decouple with 470nF to ground)	Bias
G1	VDDPIX	2.3V -> 3.3V DEFAULT 2.8V supply	Supply
G2	GND	Ground pin	Ground
G3	VDD33	3.3V supply	Supply
G16	VDD33	3.3V supply	Supply
G17	GND	Ground pin	Ground
G18	VDDPIX	2.3V -> 3.3V DEFAULT 2.8V supply	Supply
H1	Extra6	Connect to GND	,
H2	T EXP1	Input pin for external exposure mode	Digital input
H3	GND	Ground pin	Ground
H16	GND	Ground pin	Ground
H17	VREF	Ref for column amps (decouple with 470nF to ground)	Bias
H18	CMD_RAMP	decouple with 470nF to VDD33	Bias
J1	PLL REF	decouple with 470nF to PLL REF LOW	Bias
J2	PLL REF LOW	decouple to PLL_REF see pin J1	Bias
J3	GND	Ground pin	Ground
J16	GND	Ground pin	Ground
J17	VRAMP2	Start voltage second ramp (decouple with 470nF to	Bias
		ground)	
J18	VRAMP1	Start voltage first ramp (decouple with 470nF to ground)	Bias
K1	VDDPIX	2.3V -> 3.3V DEFAULT 2.8V supply	Supply
K2	GND	Ground pin	Ground
К3	VDD33	3.3V supply	Supply
K16	VDD33	3.3V supply	Supply
K17	GND	Ground pin	Ground
K18	VDDPIX	2.3V -> 3.3V DEFAULT 2.8V supply	Supply
L1	LVDS_CLK_P	LVDS input clock P	LVDS input
L2	VDD20	2.1V supply	Supply
L3	GND	Ground pin	Ground
L16	GND	Ground pin	Ground
L17	VDD20	2.1V supply	Supply
L18	SIG ADC	Sig for ADC testing (decouple with 470nF to ground)	Bias
M1	LVDS_CLK_N	LVDS input clock N	LVDS input
M2	CLK_IN	Master input clock	Digital input
M3	SYS_RES_N	Input pin for sequencer reset	Digital input
M16	VTF LOW3	Transfer low voltage 3 (decouple with 470nF to ground)	Bias
M17	VTF LOW2	Transfer low voltage 2 (decouple with 470nF to ground)	Bias
M18	VTF_LOW1	Transfer low voltage 2 (decouple with 470h to ground)	Bias
N1	Extra3	Connect to GND	Dias
N2	OUTCLK P	LVDS positive clock output channel	LVDS output
N3	Extra4	connect to GND	Lv D3 Output
N16	VRES_L	Res low voltage (decouple with 470nF to ground)	Bias
N17		3.3V supply or highest supply voltage	
INT\	VRES_H	5.5 v supply of flighest supply voltage	Supply

CMV20000 Datasheet

Pin number	Pin name	Description	Туре
N18	VPCH_L	Precharge low voltage (decouple with 470nF to ground)	Bias
P1	SPI_EN	SPI enable	Digital input
P2	OUTCLK_N	LVDS negative clock output channel	LVDS output
Р3	SPI_IN	SPI data input pin	Digital input
P16	GND	Ground pin	Ground
P17	GND	Ground pin	Ground
P18	VPCH H	Precharge high voltage (decouple with 470nF to ground)	Bias
R1	SPI CLK	SPI clock input pin	Digital input
R2	OUTO1_N	LVDS negative output data odd rows channel1 top	LVDS output
R3	GND	Ground pin	Ground
R4	OUTO2_N	LVDS negative output data odd rows channel2 top	LVDS output
R5	GND	Ground pin	Ground
R6	OUTO3_N	LVDS negative output data odd rows channel3 top	LVDS output
R7	GND	Ground pin	Ground
R8	OUTO4_N	LVDS negative output data odd rows channel4 top	LVDS output
R9	VDD33	3.3V supply	Supply
R10	OUTO5_P	LVDS positive output data odd rows channel5 top	LVDS output
R11	GND	Ground pin	Ground
R12	OUTO6 P	LVDS positive output data odd rows channel6 top	LVDS output
R13	GND	Ground pin	Ground
R14	OUTO7 P	LVDS positive output data odd rows channel7 top	LVDS output
R15	VDD33		·
		3.3V supply LVDS positive output data odd rows channel8 top	Supply
R16	OUTO8_P		LVDS output Ground
R17	GND	Ground pin SPI data output pin at the right, this is a back up SPI data	
R18	SPI_OUT_RIGHT	output pin. Only the spi output data of register >=	Digital output
		address 103 are available at this pin. Should be routed	
		to the FPGA as well	
T1	SPI_OUT_LEFT	SPI data output pin at the left, this is the main SPI data	Digital output
11	SPI_OUT_LEFT	• •	Digital output
		output pin containing the SPI output data of all	
		registers.	
T2	OUTO1_P	LVDS positive output data odd rows channel1 top	LVDS output
T3	VDD20	2.1V supply	Supply
T4	OUTO2_P	LVDS positive output data odd rows channel2 top	LVDS output
T5	VDD20	2.1V supply	Supply
T6	OUTO3_P	LVDS positive output data odd rows channel3 top	LVDS output
T7	VDDPIX	2.3V -> 3.3V DEFAULT 2.8V supply	Supply
T8	OUTO4_P	LVDS positive output data odd rows channel4 top	LVDS output
T9	GND	Ground pin	Ground
T10	OUTO5_N	LVDS negative output data odd rows channel5 top	LVDS output
T11	VDD20	2.1V supply	Supply
T12	OUTO6_N	LVDS negative output data odd rows channel6 top	LVDS output
T13	VDDPIX	2.3V -> 3.3V DEFAULT 2.8V supply	Supply
T14	OUTO7_N	LVDS negative output data odd rows channel7 top	LVDS output
T15	GND	Ground pin	Ground
T16	OUTO8_N	LVDS negative output data odd rows channel8 top	LVDS output
T17	VDD20	2.1V supply	Supply
T18	Extra5	connect to GND	

9 SPECIFICATION OVERVIEW

C '(' ''	V 1			
Specification	Value	Comment		
Effective pixels	5120 x 3840			
Pixel pitch	6.4 x 6.4 μm ²			
Imager size	32.77x24.58m m ²			
Full well charge	15 Ke-	Pinned photodiode pixel.		
Conversion gain	0.25 DN/e-	At recommended settings		
Temporal noise	8 e-	Pipelined global shutter (GS) with correlated		
(analog domain)	cc In	double sampling (CDS)		
Dynamic range	66 dB	Allows fixed pattern paice correction and re		
Pixel type	Global shutter	Allows fixed pattern noise correction and reset		
	pixel	(kTC) noise canceling through correlated double		
Shuttor tupo	Dinalinad global	sampling. Exposure of next image during readout of the		
Shutter type	Pipelined global shutter	previous image.		
Parasitic light	1/50 000	previous image.		
sensitivity -	1/30 000			
Shutter efficiency				
Color filters	Optional	RGB Bayer		
Micro lenses	Yes	NGB Bayer		
QE * FF	60.00%	@ 550 nm with micro lenses.		
Dark current	125e/s	© 330 IIII WICH IIIICIO IEII3E3.		
signal	@ RT			
DSNU	10e/s			
Fixed pattern	<0.2%	full swing		
noise (RMS)	10.270	Tun Swing		
PRNU (RMS)	1%			
LVDS Output	16	Each data output running @ 480 Mbit/s.		
channel		8 outputs selectable at half frame rate		
Frame rate	30 frames/s	Using a 12bit/pixel and 480 Mbit/s LVDS.		
		Higher frame rate possible in row windowing		
		mode.		
Timing generation	On-chip	Possibility to control exposure time through		
	·	external pin.		
PGA	Yes	4 analog gain settings		
Programmable	Sensor parameters	Window coordinates, Timing parameters, Gain		
Registers		& offset, Exposure time, flipped readout in x		
		and y direction		
Supported HDR	Multi-slope	Multiple slopes with partial reset of the pixel.		
modes				
ADC	12bit	Column ADC		
Interface	LVDS	Serial output data + synchronization signals		
I/O logic levels	LVDS = 2.1V			
	Logic levels = 3.3V			
Supply voltages	2.1 & 3.3 V	3.3V for the pixel array and analog circuits		
		2.1V for digital circuits and the LVDS drivers		
Clock inputs	40MHz CLK_IN			
	480MHz			
	LVDS_CLK_N/P			
Power	1100 mW			
Package	Ceramic package	Custom ceramic PGA (143 pins)		
Operating range	-20C to +70C	Dark current and noise performance will		
		degrade at higher temperature		
Cover glass		2 sides ARC		

10 ORDERING INFO

Part Number	Chroma	Microlens	Package	Glass
CMV20000-1E5M1PA	Mono	yes	Ceramic PGA	AR coated
CMV20000-1E5C1PA	RGB Bayer	yes	Ceramic PGA	AR coated

On request the package and cover glass can be customized. For options, pricing and delivery time please contact info@cmosis.com.

11 HANDLING AND SOLDERING PROCEDURE

11.1 SOLDERING

11.1.1 WAVE SOLDERING

Wave soldering is possible but not recommended. Solder dipping can cause damage to the glass and harm the imaging capability of the device. See the figure below for the wave soldering profile.

11.1.2 Reflow soldering

The figure below shows the maximum recommended thermal profile for a reflow soldering system. If the temperature/time profile exceeds these recommendations, damage to the image sensor can occur.

11.1.3 SOLDERING RECOMMENDATIONS

Image sensors with color filter arrays (CFA) and micro-lenses are especially sensitive to high temperatures. Prolonged heating at elevated temperatures may result in deterioration of the performance of the sensor. Best solution will be

CMV20000 Datasheet

flow soldering or manual soldering of a socket (through hole or BGA) and plug in the sensor at latest stage of the assembly/test process.

11.2 HANDLING IMAGE SENSORS

11.2.1 ESD

The following are the recommended minimum ESD requirements when handling image sensors.

- 1. Ground workspace (tables, floors...)
- 2. Ground handling personnel (wrist straps, special footwear...)
- 3. Minimize static charging (control humidity, use ionized air, wear gloves...)

11.2.2 GLASS CLEANING

When cleaning of the cover glass is needed we recommend the following two methods.

- 1. Blowing off the particles with ionized nitrogen
- 2. Wipe clean using IPA (isopropyl alcohol) and ESD protective wipes.

11.2.3 IMAGE SENSOR STORING

Image sensors should be stored under the following conditions

- 1. Dust free
- 2. Temperature 20°C to 40°C
- 3. Humidity between 30% and 60%.
- 4. Avoid radiation, electromagnetic fields, ESD, mechanical stress

12 Additional information

For any additional questions related to the operation and specification of the CMV20000 imagers or feedback with respect to the present data sheet please contact techsupport@cmosis.com.