





HELP International is an international humanitarian NGO that is committed to fighting poverty and providing the people of backward countries with basic amenities and relief during the time of disasters and natural calamities. It runs a lot of operational projects from time to time along with advocacy drives to raise awareness as well as for funding purposes.

After the recent project that included a lot of awareness drives and funding programmes, they have been able to raise around \$ 10 million. Now the CEO of the NGO needs to decide how to use this money strategically and effectively. The significant issues that come while making this decision are mostly related to choosing the countries that are in the direst need of aid.



### **Analysis Objectives**



To categorise the countries using some socio-economic and health factors that determine the overall development of the country. Also to suggest the countries which the CEO needs to focus on the most. The datasets containing those socio-economic factors and the corresponding data dictionary are provided.



### Methodology used for Analysis







## Data Sourcing/ Data Cleaning/ Data Understanding



- There are 10 columns and 167 variables; dtypes: float64(7), int64(2), object(1)
- There seems to be a few outliers but they will be removed after applying PCA
- No null values are present in the given dataset
- No missing values are present in the given dataset
- The data has to be standardised/ normalised in order to apply PCA on the dataset
- The dataset does not require any extensive EDA.
- The variables are a mix of economic and social factors
- Economic factors can help to cluster the countries into different clusters and social factors can help to disburse funds for different sectors.



### First look at the dataset



|   | country             | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  |
|---|---------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|
| 0 | Afghanistan         | 90.2       | 10.0    | 7.58   | 44.9    | 1610   | 9.44      | 56.2       | 5.82      | 553   |
| 1 | Albania             | 16.6       | 28.0    | 6.55   | 48.6    | 9930   | 4.49      | 76.3       | 1.65      | 4090  |
| 2 | Algeria             | 27.3       | 38.4    | 4.17   | 31.4    | 12900  | 16.10     | 76.5       | 2.89      | 4460  |
| 3 | Angola              | 119.0      | 62.3    | 2.85   | 42.9    | 5900   | 22.40     | 60.1       | 6.16      | 3530  |
| 4 | Antigua and Barbuda | 10.3       | 45.5    | 6.03   | 58.9    | 19100  | 1.44      | 76.8       | 2.13      | 12200 |

#### Variables-

Country Name, Child Mortality Rate, Health, Exports, Imports, Income, Inflation, Life Expectancy, Total Fertility Rate, Gross Domestic Product.



### **Principal Component Analyis**



| Feature    | PC4       | PC3       | PC2       | PC1       |   |
|------------|-----------|-----------|-----------|-----------|---|
| child_mort | 0.370653  | -0.029544 | 0.192884  | -0.419519 | 0 |
| exports    | 0.003091  | 0.144761  | 0.613163  | 0.283897  | 1 |
| health     | 0.461897  | -0.596632 | -0.243087 | 0.150838  | 2 |
| imports    | -0.071907 | -0.299927 | 0.671821  | 0.161482  | 3 |
| income     | 0.392159  | 0.301548  | 0.022536  | 0.398441  | 4 |
| inflation  | 0.150442  | 0.642520  | -0.008404 | -0.193173 | 5 |
| life_expec | -0.203797 | 0.113919  | -0.222707 | 0.425839  | 6 |
| total_fer  | 0.378304  | 0.019549  | 0.155233  | -0.403729 | 7 |
| gdpp       | 0.531995  | 0.122977  | -0.046022 | 0.392645  | 8 |
|            |           |           |           |           |   |

- Principal component analysis
   (PCA) is a statistical procedure
   that uses an orthogonal
   transformation to convert a set of
   observations of possibly
   correlated variables into a set of
   values of linearly uncorrelated
   variables called principal
   components.
- Taking four principal components for each feature variable.



### **Principal Component Analyis**





- We can see that the first component is in the direction of life\_expec, income, gdpp; Also these three components have the highest loadings.
- The second component is in the direction of imports and exports



### Principal Component Analyis Scree Plot





- A Scree Plot is a simple line segment plot that shows the fraction of total variance in the data as explained or represented by each PC.
- Therefore, four principal components are enough to explain variance(more than 80%) in out data.



### Principal Component Analyis Correlation- Heat Map







PCA succeeded in removing correlations in data.



## K- Means Clustering Silhouette Analysis and Hopkins Statistics





#### **Hopkins Statistics:**

The Hopkins statistic, is a statistic which gives a value which indicates the cluster tendency, in other words: how well the data can be clustered. If the value is between {0.7, ..., 0.99}, it has a high tendency to cluster.

For our Dataset; Hopkin statistic value=0.762

Silhouette Analysis is the mean intra-cluster distance to all the points in its own cluster.

- The value of the silhouette score range lies between -1 to 1.
- A score closer to 1 indicates that the data point is very similar to other data points in the cluster,
- A score closer to -1 indicates that the data point is not similar to the data points in its cluster.







- We can see from below data that four clusters are enough to represent our data
- Reiterating with four clusters









Scatter Plot between PC1 and PC2 for 4 clusters





|   | country                | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  | PC1       | PC2       | PC3       | PC4       | ClusterID |
|---|------------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|-----------|-----------|-----------|-----------|-----------|
| 0 | Afghanistan            | 90.2       | 10.0    | 7.58   | 44.9    | 1610   | 9.44      | 56.2       | 5.82      | 553   | -2.913025 | 0.095621  | -0.718118 | 1.005255  | 1         |
| 1 | Albania                | 16.6       | 28.0    | 6.55   | 48.6    | 9930   | 4.49      | 76.3       | 1.65      | 4090  | 0.429911  | -0.588156 | -0.333486 | -1.161059 | 0         |
| 2 | Algeria                | 27.3       | 38.4    | 4.17   | 31.4    | 12900  | 16.10     | 76.5       | 2.89      | 4460  | -0.285225 | -0.455174 | 1.221505  | -0.868115 | 2         |
| 3 | Angola                 | 119.0      | 62.3    | 2.85   | 42.9    | 5900   | 22.40     | 60.1       | 6.16      | 3530  | 1.033576  | 0.136659  | -0.225721 | -0.847063 | 0         |
| 4 | Antigua and<br>Barbuda | 10.3       | 45.5    | 6.03   | 58.9    | 19100  | 1.44      | 76.8       | 2.13      | 12200 | 0.022407  | -1.779187 | 0.869997  | -0.036967 | 2         |



- Countries are divided into 4 clusters;
- Highest number of countries belong to Cluster
   0





#### Cluster 0

|    | country    | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  | PC1      | PC2       | PC3       | PC4       | ClusterID |
|----|------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|----------|-----------|-----------|-----------|-----------|
| 1  | Albania    | 16.6       | 28.0    | 6.55   | 48.6    | 9930   | 4.490     | 76.3       | 1.65      | 4090  | 0.429911 | -0.588156 | -0.333486 | -1.161059 | 0         |
| 3  | Angola     | 119.0      | 62.3    | 2.85   | 42.9    | 5900   | 22.400    | 60.1       | 6.16      | 3530  | 1.033576 | 0.136659  | -0.225721 | -0.847063 | 0         |
| 10 | Bahamas    | 13.8       | 35.0    | 7.89   | 43.7    | 22900  | -0.393    | 73.8       | 1.86      | 28000 | 1.670996 | 0.561162  | 0.991258  | -0.207080 | 0         |
| 12 | Bangladesh | 49.4       | 16.0    | 3.52   | 21.8    | 2440   | 7.140     | 70.4       | 2.33      | 758   | 1.081374 | -0.481970 | -0.664355 | -0.522505 | 0         |
| 13 | Barbados   | 14.2       | 39.5    | 7.97   | 48.7    | 15300  | 0.321     | 76.7       | 1.78      | 16000 | 0.580025 | 0.535327  | 0.486228  | -1.035275 | 0         |

#### Cluster 1

|    | country     | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  | PC1       | PC2      | PC3       | PC4      | ClusterID |
|----|-------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|-----------|----------|-----------|----------|-----------|
| 0  | Afghanistan | 90.2       | 10.0    | 7.58   | 44.9    | 1610   | 9.44      | 56.2       | 5.82      | 553   | -2.913025 | 0.095621 | -0.718118 | 1.005255 | 1         |
| 15 | Belgium     | 4.5        | 76.4    | 10.70  | 74.7    | 41100  | 1.88      | 80.0       | 1.86      | 44400 | -2.672314 | 0.418172 | -0.257368 | 0.278672 | 1         |
| 19 | Bolivia     | 46.6       | 41.2    | 4.84   | 34.3    | 5410   | 8.78      | 71.6       | 3.20      | 1980  | -0.882088 | 0.457368 | -0.584633 | 0.406161 | 1         |
| 22 | Brazil      | 19.8       | 10.7    | 9.01   | 11.8    | 14500  | 8.41      | 74.2       | 1.80      | 11200 | -3.122053 | 0.038775 | -0.455751 | 1.080918 | 1         |
| 24 | Bulgaria    | 10.8       | 50.2    | 6.87   | 53.0    | 15300  | 1.11      | 73.9       | 1.57      | 6840  | -2.807909 | 0.078649 | -0.342961 | 0.543557 | 1         |





#### Cluster 2

| 13 | country                | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  | PC1       | PC2       | PC3      | PC4       | ClusterID |
|----|------------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|-----------|-----------|----------|-----------|-----------|
| 2  | Algeria                | 27.3       | 38.4    | 4.17   | 31.4    | 12900  | 16.100    | 76.5       | 2.89      | 4460  | -0.285225 | -0.455174 | 1.221505 | -0.868115 | 2         |
| 4  | Antigua and<br>Barbuda | 10.3       | 45.5    | 6.03   | 58.9    | 19100  | 1.440     | 76.8       | 2.13      | 12200 | 0.022407  | -1.779187 | 0.869997 | -0.036967 | 2         |
| 5  | Argentina              | 14.5       | 18.9    | 8.10   | 16.0    | 18700  | 20.900    | 75.8       | 2.37      | 10300 | -0.101584 | -0.568252 | 0.242092 | -1.466266 | 2         |
| 8  | Austria                | 4.3        | 51.3    | 11.00  | 47.8    | 43200  | 0.873     | 80.5       | 1.44      | 46900 | -0.181487 | -0.402866 | 0.867459 | -0.438773 | 2         |
| 11 | Bahrain                | 8.6        | 69.5    | 4.97   | 50.9    | 41100  | 7.440     | 76.0       | 2.16      | 20700 | -1.123851 | -0.961397 | 0.526615 | -1.197201 | 2         |

|    | Cluster    | 3          |         |        |         |        |           |            |           |       |          |           |           |           |           |
|----|------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|----------|-----------|-----------|-----------|-----------|
|    | country    | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  | PC1      | PC2       | PC3       | PC4       | ClusterID |
| 6  | Armenia    | 18.1       | 20.8    | 4.40   | 45.3    | 6700   | 7.77      | 73.3       | 1.69      | 3220  | 2.342165 | -1.988459 | 0.190344  | 1.105038  | 3         |
| 7  | Australia  | 4.8        | 19.8    | 8.73   | 20.9    | 41400  | 1.16      | 82.0       | 1.93      | 51900 | 2.973764 | -0.734689 | -0.519766 | 1.205442  | 3         |
| 9  | Azerbaijan | 39.2       | 54.3    | 5.88   | 20.7    | 16000  | 13.80     | 69.1       | 1.92      | 5840  | 1.268744 | -0.656588 | -0.488098 | 0.055634  | 3         |
| 32 | Chad       | 150.0      | 36.8    | 4.53   | 43.5    | 1930   | 6.39      | 56.5       | 6.59      | 897   | 0.937827 | -1.350472 | -0.821130 | -0.259855 | 3         |
| 35 | Colombia   | 18.6       | 15.9    | 7.59   | 17.8    | 10900  | 3.86      | 76.4       | 2.01      | 6250  | 2.174455 | -0.004510 | 0.257320  | -0.311857 | 3         |





### Mean of Country Data by Cluster for further analysis

|           | gdpp         | child_mort | exports   | health   | imports   | income       | inflation | life_expec | total_fer | ClusterID |
|-----------|--------------|------------|-----------|----------|-----------|--------------|-----------|------------|-----------|-----------|
| ClusterID |              |            |           |          |           |              |           |            |           |           |
| 0         | 10515.622222 | 36.313333  | 43.180200 | 6.453556 | 51.348131 | 15283.777778 | 4.657733  | 70.777778  | 2.810667  | 0         |
| 1         | 13581.675676 | 39.454054  | 42.562432 | 6.646216 | 43.875676 | 18668.918919 | 7.540730  | 70.372973  | 3.024324  | 1         |
| 2         | 15651.787879 | 31.563636  | 43.290909 | 7.139697 | 50,581818 | 19967.848485 | 8.042030  | 72.260606  | 2.738788  | 2         |
| 3         | 12250.368421 | 65.147368  | 33.667368 | 6.786316 | 41.726316 | 15315.473684 | 12.894632 | 66.473684  | 3.558421  | 3         |





#### Mean GDP by Cluster



 When allocating money for creating job, skilling people and employment so that the GDP of the companies increases--countries in Cluster 0 and 3 should be focussed.

#### Mean Income by Cluster



Mean Income of the countries in Cluster 0 and 3 is less





#### Mean exports by Cluster



 The exports of countries in Cluster 1, Cluster 2 and Cluster 0 are comparable; Funds should given to help countries in Cluster 3 to increase there exports;

#### Mean imports by Cluster



 Imports of a country should not be high as it devalues its currency and also increases debt;





#### Mean health by Cluster



 Spendings on health is comparable for all the three clusters; Other factors such as life expectancy and child mortality will be a more defining factor for funds disbursal

#### Mean inflation by Cluster



 Countries in Cluster 3 show high inflation; Measures to curb the same should be taken by appropriate fund disbursal.





Mean life expectancy, total fertility rate and child mortality by Cluster







- Life expectancy is comparable in almost all the clusters; Though this is a mean data which requires further scrutinization to understand medical facilities in countries which enhances life expectancy
- Cluster 3 shows high total fertility which is not good for the health of both mother and her children; Higher TFR means
- # greater population which is a burden on our limited resources; Funds should be spent





Mean life expectancy, total fertility rate and child mortality by Cluster

- Life expectancy is comparable in almost all the clusters; Though this is a mean data which requires further scrutinization to understand medical facilities in countries which enhances life expectancy
- Cluster 3 shows high total fertility which is not good for the health of both mother and her children; Higher TFR means greater population which is a burden on our limited resources; Funds should be spent on educating couples as well as providing them with birth control measures. Focus should be on countries in Cluster 3.
- Child mortality seems to be on the higher side in Cluster 3. Hence funds should be disbursed for countries in cluster 3 for children health, nutrition,maternity care, vaccination and education.



### **Hierarchical Clustering**







A dendrogram is a type of <u>tree</u> <u>diagram</u> showing hierarchical clustering — relationships between similar sets of data.

Taking number of clusters as 4;
Also taking a clue from
k-means clustering



### **Hierarchical Clustering- Clustered Data**



#### Cluster 0

| 885 | country     | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  | ClusterID |
|-----|-------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|-----------|
| 0   | Afghanistan | 90.2       | 10.0    | 7.58   | 44.9    | 1610   | 9.44      | 56.2       | 5.82      | 553   | 0.0       |
| 15  | Belgium     | 4.5        | 76.4    | 10.70  | 74.7    | 41100  | 1.88      | 80.0       | 1.86      | 44400 | 0.0       |
| 16  | Belize      | 18.8       | 58.2    | 5.20   | 57.5    | 7880   | 1.14      | 71.4       | 2.71      | 4340  | 0.0       |
| 19  | Bolivia     | 46.6       | 41.2    | 4.84   | 34.3    | 5410   | 8.78      | 71.6       | 3.20      | 1980  | 0.0       |
| 22  | Brazil      | 19.8       | 10.7    | 9.01   | 11.8    | 14500  | 8.41      | 74.2       | 1.80      | 11200 | 0.0       |
|     |             |            |         |        |         |        |           |            |           |       |           |

| 22  | Diazii              | 19.0       | .0.7    | 01     | 11.0    | +500   | 0.41      | 14.2       | 1.00      | 1200  | 0.0       |
|-----|---------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|-----------|
|     | Cluster 1           |            |         |        |         |        |           |            |           |       |           |
| *55 | country             | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  | ClusterID |
| 1   | Albania             | 16.6       | 28.0    | 6.55   | 48.6    | 9930   | 4.49      | 76.3       | 1.65      | 4090  | 1.0       |
| 3   | Angola              | 119.0      | 62.3    | 2.85   | 42.9    | 5900   | 22.40     | 60.1       | 6.16      | 3530  | 1.0       |
| 4   | Antigua and Barbuda | 10.3       | 45.5    | 6.03   | 58.9    | 19100  | 1.44      | 76.8       | 2.13      | 12200 | 1.0       |
| 5   | Argentina           | 14.5       | 18.9    | 8.10   | 16.0    | 18700  | 20.90     | 75.8       | 2.37      | 10300 | 1.0       |
| 9   | Azerbaijan          | 39.2       | 54.3    | 5.88   | 20.7    | 16000  | 13.80     | 69.1       | 1.92      | 5840  | 1.0       |



### **Hierarchical Clustering- Clustered Data**



#### Cluster 2

|    | o can a y  |       | CAPOLLO | · · · · · · · · · · · · · · · · · · · | mporto |       |        | mo_cxpcc | totte. | Sabb  | O.M.O.C.I.D |
|----|------------|-------|---------|---------------------------------------|--------|-------|--------|----------|--------|-------|-------------|
| 2  | Algeria    | 27.3  | 38.4    | 4.17                                  | 31.4   | 12900 | 16.100 | 76.5     | 2.89   | 4460  | 2.0         |
| 8  | Austria    | 4.3   | 51.3    | 11.00                                 | 47.8   | 43200 | 0.873  | 80.5     | 1.44   | 46900 | 2.0         |
| 11 | Bahrain    | 8.6   | 69.5    | 4.97                                  | 50.9   | 41100 | 7.440  | 76.0     | 2.16   | 20700 | 2.0         |
| 17 | Benin      | 111.0 | 23.8    | 4.10                                  | 37.2   | 1820  | 0.885  | 61.8     | 5.36   | 758   | 2.0         |
| 39 | Costa Rica | 10.2  | 33.2    | 10.90                                 | 35.0   | 13000 | 6.570  | 80.4     | 1.92   | 8200  | 2.0         |
| (  | Cluster 3  |       |         |                                       |        |       |        |          |        |       | 7           |
|    |            |       |         |                                       |        |       |        |          |        |       |             |

|    | Cluster 3          |            |         |        |         |        |           |            |           |       |           |
|----|--------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|-----------|
| 80 | country            | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  | ClusterID |
| 6  | Armenia            | 18.1       | 20.8    | 4.40   | 45.3    | 6700   | 7.77      | 73.3       | 1.69      | 3220  | 3.0       |
| 7  | Australia          | 4.8        | 19.8    | 8.73   | 20.9    | 41400  | 1.16      | 82.0       | 1.93      | 51900 | 3.0       |
| 44 | Denmark            | 4.1        | 50.5    | 11.40  | 43.6    | 44000  | 3.22      | 79.5       | 1.87      | 58000 | 3.0       |
| 45 | Dominican Republic | 34.4       | 22.7    | 6.22   | 33.3    | 11100  | 5.44      | 74.6       | 2.60      | 5450  | 3.0       |
| 49 | Equatorial Guinea  | 111.0      | 85.8    | 4.48   | 58.9    | 33700  | 24.90     | 60.9       | 5.21      | 17100 | 3.0       |



# Hierarchical Clustering Analysis of Mean Data by Cluster



Mean of Country Data by Cluster for further analysis

| gdpp         | child_mort | exports   | health   | imports   | income       | inflation | life_expec | total_fer | ClusterID |
|--------------|------------|-----------|----------|-----------|--------------|-----------|------------|-----------|-----------|
|              |            |           |          |           |              |           |            |           |           |
| 15719.666667 | 35.020833  | 45.410625 | 6.502292 | 45.493750 | 22300.416667 | 6.668521  | 71.412500  | 2.865625  | 0.0       |
| 8062.362069  | 44.148276  | 38.996362 | 6.595345 | 50.621826 | 11470.051724 | 6.790534  | 69.155172  | 3.111207  | 1.0       |
| 18976.533333 | 25.380000  | 44.940000 | 7.375333 | 46.280000 | 22306.666667 | 6.523467  | 74.780000  | 2.448000  | 2.0       |
| 16783.230769 | 57.769231  | 36.200000 | 7.353846 | 44.776923 | 19859.230769 | 14.399846 | 67.376923  | 3.203846  | 3.0       |



## Hierarchical Clustering(k=4) Analysis of the clusters



#### Mean Income, GDP and health by Cluster









## Hierarchical Clustering(k=4) Analysis of the clusters



Mean Child Mortality, Life Expectancy and Total Fertility Rate by Cluster









### Summary



- K-means Clustering or Hierarchical clustering- With K=4 we get same result for both the methods;
- 2. Recommendations-
  - Income and GDP of countries in Cluster in 0 and 3 is comparatively less;
     Therefore, when allocating money for creating job, skilling people and employment, countries in Cluster 0 and 3 should be focussed.
  - b. Inflation is also high in countries in Cluster 3 which is an indicator of bad economy
  - c. Child mortality and total fertility rate is also on the higher side in the Cluster 3
  - d. Therefore, countries in the Cluster 3 are in dire need of aids

Cluster 3- Armenia, Azerbaijan, Chad, Equatorial Guinea, Haiti, Niger, Nigeria, Nepal etc. are a few countries that belong to least developed countries in the world.

#### Total no=15 countries

Funding should be provided for education, health, nutrition and disease control. Skilling and employment should also be brought into focus.