INSTITUTO FEDERAL DA BAHIA CAMPUS PORTO SEGURO

REDES MULTIMÍDIA

Alunos(as): Joshua Kiko, Raul Guilherme Lage, Rayana Ribeiro e Yasmin Cordeiro

Prof.: Paulo paixão

Porto Seguro, Outubro de 2015.

INSTITUTO FEDERAL DA BAHIA CAMPUS PORTO SEGURO

REDES MULTIMÍDIA

Relatório de trabalho requisitado pelo professor Paulo Paixão, como item referente a nota parcial da segunda unidade da disciplina de Redes de computadores II.

Alunos(as): Joshua Kiko, Raul Guilherme Lage, Rayana Ribeiro e Yasmin Cordeiro

Prof.: Paulo paixão

Porto Seguro, Outubro de 2015.

SUMÁRIO

1. Introdução	1
2. Aplicações de Redes Multimídia	2
2.1. Propriedadedes de Aúdio e Vídeo	2
2.2. Tipos de Aplicações de Redes Multimidia	3
3. Vídeo de Fluxo Contínuo Armazenado	4
3.1. UDP de Fluxo Contínuo	4
3.2. HTTP de Fluxo Contínuo	5
3.3. Netflix, Youtube e KanKan	5
4. Voz sobre o IP	6
4.1. Quais as Vantagens e Desvantagens	9
4.2. Como funciona o Skype	10
5. Protocolo para Aplicações interativas em Tempo Real	10
5.1. Protocolo RTP e SIP	10
6. Suporte de Rede para Multimídia	16
7. Considerações Finais	17
8. Referências	18

1. Introdução

Neste relatório estão descritas as atividades de pesquisa realizadas pelo grupo acerca do tema Redes de Multimídia, referente a disciplina de redes de computadores do curso Técnico em Informática, pelo Instituto Federal da Bahia – Campus Porto Seguro.

"Os avanços recentes na tecnologia estão modificando a maneira como utilizamos o áudio e o vídeo. No passado ouvíamos transmissão de áudio através de um rádio e assistíamos a transmissão de um programa de vídeo através de uma TV. Usávamos a rede telefônica apenas para nos comunicarmos interativamente com outras pessoas". - Redes de computadores e a internet, Capítulo 29.

Neste trabalho apresentamos as formas de comunicação e transmissão feitas pela internet, e aplicações que utilizam a internet para prover serviços de áudio e vídeo, que pode acontecer tanto de forma ao vivo, como armazenadas ou interativas.

Explicamos alguns conceitos técnicos, parte dos processos que permitem tais transmissões, os protocolos utilizados e exemplos de funcionamento.

2. Aplicações de Redes Multimídia

Aplicações que utilizam a internet para prover serviços de áudio e vídeo a seus usuários.

2.1 Propriedades de Áudio e Vídeo

Propriedades de Vídeo

Uma das características mais destacadas dos vídeos é sua alta taxa de bits. O vídeo distribuído pela Internet costuma variar de 100 kbits/s para videoconferências de baixa qualidade até mais de 3 Mbits/s para os filmes de fluxo de vídeo com alta definição.

Outra característica importante do vídeo é que ele pode ser compactado, compensando assim a qualidade com a taxa de bits. Também podemos usar a compactação para criar múltiplas versões do mesmo vídeo.

Vídeo é uma sequência de imagens apresentadas a uma taxa constante, ex. 24 imagens/seg.

Imagem digital: é uma matriz de pixels, cada pixel é representado por bits.

Propriedades de Áudio

O áudio digital tem requisitos de largura de banda muito menores do que o vídeo. Embora as taxas de bit de áudio sejam em geral muito menores do que as de vídeo, os usuários costumam ser muito mais sensíveis a pequenas falhas de áudio do que de vídeo.

O sinal analógico amostrado a uma taxa constante, telefone: 8.000 amostras/seg, cada amostra é discretizada (arredondada), ex., 2^8=256 possíveis valores discretos. Cada valor discretizado é representado por bits, exemplo: 8.000 amostras/seg, 256 valores discretos = 64.000 bps.

O receptor converte-o de volta a um sinal analógico, podendo ocorrer alguma perda de qualidade.

2.2 Tipos de Aplicações de Redes Multimídia

Podemos dividir os serviços de áudio e vídeo em três grandes categorias: streaming de áudio/vídeo armazenado, streaming de áudio/vídeo em tempo real e áudio/vídeo interativo.

O termo streaming significa que o usuário pode ouvir e/ou assistir um determinado arquivo após ter sido iniciado, isto é, no streaming, o conteúdo é executado sem que haja necessidade de trazê-lo por inteiro para o lado do cliente (fluxo contínuo).

O serviço de áudio/vídeo interativo refere-se ao uso da internet para aplicações interativas de áudio/vídeo. Nos serviços de áudio/vídeo interativos um usuário usa a Internet para se comunicar interativamente com outro usuário. Bons exemplos dessa aplicação são o telefone via Internet ou as sessões de teleconferência.

Nos serviços de streaming de áudio/vídeo armazenado (gravado) os arquivos sofrem um processo de compressão e são armazenados em um servidor. Um cliente faz o download dos arquivos através da Internet. Muitas vezes, este tipo de serviço é chamado <u>áudio/vídeo sob demanda</u>. Exemplos de arquivos de áudio armazenados: músicas, sinfonias, livros em tape e conferências. Exemplos de vídeos armazenados são filmes, programas de TV e clips de música.

Nos serviços de streaming de áudio/vídeo em tempo real (ao vivo) um usuário escuta uma transmissão de áudio e/ou assiste uma transmissão de vídeo através da Internet em tempo real. Um bom exemplo desse tipo de aplicação é uma rádio via internet. Em linhas gerais, remete a transmissão de programas de rádio e TV via internet.

De acordo com a Figura podemos dividir os serviços de áudio e vídeo em três:

3. Vídeo de Fluxo Contínuo Armazenado

Vídeo de fluxo contínuo armazenado (streaming de vídeo armazenado), podem ser classificados em HTTP de fluxo contínuo, e UDP de fluxo contínuo.

Todo o tipo de vídeos de fluxo contínuo utiliza o buffer (de reprodução), para aliviar os efeitos de atrasos de fim a fim e variar as quantidades de largura de banda disponível entre servidor e cliente.

O <u>buffer de reprodução</u> isola o tempo de chegada dos pacotes do tempo de reprodução. Seu uso é necessário para armazenar dados até eles serem reproduzidos.

3.1 UDP e HTTP de Fluxo Contínuo

UDP de fluxo contínuo

Com o UDP (protocolo simples da camada de transporte) de fluxo contínuo, o servidor transmite vídeo a uma taxa que corresponde à taxa de consumo de vídeo do cliente (RTSP – Real-Time Streaming Protocol).

O RTSP é um protocolo de controle projetado especialmente para melhorar a eficiência do processo de transferência de dados de fluxo contínuo.

Normalmente <u>usa um pequeno buffer</u> no lado do cliente (depende da aplicação). Funciona muito bem numa rede com baixo congestionamento.

HTTP de fluxo contínuo

No HTTP de fluxo contínuo, o vídeo é apenas armazenado em um servidor HTTP como um arquivo comum com uma URL específica.

O uso do HTTP sobre TCP (protocolo de controle de transmissão) também permite ao vídeo atravessar firewalls e NATs mais facilmente.

Vídeos de fluxo contínuo sobre HTTP também deixam clara a necessidade de um servidor de controle de mídia, tal como um servidor RTSP.

Netflix e YouTube (buffers e pré-busca → uso normal da banda pelo TCP, tentando alcançar a banda máxima possível).

3.2 Redes de Distribuição de Conteúdo

Uma CDN (Rede de Distribuição de Conteúdo): gerencia servidores em múltiplas localidades distribuídas geograficamente, armazena cópias dos vídeos em seus servidores, e tenta direcionar cada requisição do usuário para uma localidade CDN que proporcionará a melhor experiência para o usuário.

A maioria das CDNs utiliza o DNS para interceptar e redirecionar requisições.

3.3 YouTube, Netflix e KanKan

YouTube: Data centers (Centro de Processamento de Dados) da Google, direciona via DNS (Sistema de Nomes e Domínios) para seus data centers. Usa o HTTP de fluxo contínuo. Cerca de ½ Bilhão de vídeos e de visualizações diárias.

Netflix: CDNs (notadamente Akamai - uma empresa de Internet americana) e links de terceiros. Servidores próprios de registro e pagamentos. Converte os vídeos em várias resoluções e disponibiliza-os.

Kankan: Maior na China, e usa tecnologia proprietária P2P (ponto a ponto) com hash (algoritmo que mapeie dados grandes e de tamanho variável para pequenos dados de tamanho fixo, resumem o dado) distribuído (tipo torrent). UDP sempre que possível.

4. Voz sobre o IP

Voz sobre IP ou Telefonia IP, é uma aplicação de áudio/vídeo em tempo real. Nesse caso a internet é usada como uma rede telefônica que utiliza de alguns recursos adicionais.

Ela funciona através da internet por uma comutação de pacotes e essa aplicação possibilita a comunicação entre duas partes.

Para controlar este tipo de comunicação existem especialmente dois protocolos auxiliares o SIP e o H.323.

SIP

O SIP (**Session Initiation Protocol**) estabelece, gerencia e encerra uma sessão multimídia, trata-se de um protocolo de camada de aplicação. Esse protocolo pode ser usado para criar sessões multicast (entrega de informação para múltiplos destinatários simultaneamente usando a estratégia mais eficiente onde as mensagens só passam por um link uma única vez e somente são duplicadas quando o link para os destinatários se divide em duas direções), estre várias partes ou entre duas partes.

O SIP atua de forma independente em relação ao suporte oferecido pela camada de transporte, ele pode ser suportado pelo SCTP,UDP ou TCP.

Esse protocolo assim como o HTTP é baseado em texto e utiliza mensagens que nesse caso são seis: INVITE, ACK, BYE, OPTIONS, CANCEL e REGISTER. Cada mensagem tem um cabeçalho que consiste em várias linhas que descrevem a estrutura de uma mensagem como o tipo de mídia e assim por diante e um corpo.

Um exemplo da implementação das mensagens em uma sessão simples seria a seguinte: o usuário que deseja iniciar uma sessão inicializa ela por meio de uma mensagem INVITE, após o outro usuário responder a chamada é enviada uma mensagem de confirmação ACK. Quando a sessão será encerrada por um dos dois usuários é enviada uma mensagem BYE que encerra a sessão. A mensagem OPTIONS consulta os recursos disponíveis de uma máquina, a mensagem CANCEL

cancela um processo já iniciado e a mensagem REGISTER estabelece uma conexão quando aquele que recebe a chamada não está disponível.

Endereços

No protocolo SIP é possível determinar os endereços de emissor e receptor de diversas maneiras, ele permite bastante flexibilidade. Podem ser usados como endereços o email, endereços IP, números de telefones e outros tipos de endereços.

Entretanto a única demanda é que o endereço precisa estar no formato SIP que também pode ser denominado esquema SIP.

Sessão simples

Uma sessão simples é constituída por três fases: o estabelecimento, a comunicação e o encerramento.

A sessão é estabelecida quando um emissor envia uma mensagem INVITE para outro usuário, utilizando os protocolos UDP,TCO ou SCTP para iniciar a comunicação. Em seguida o outro usuário receptor da mensagem INVITE aceita o convite e envia uma mensagem de resposta, para confirmar a mensagem de confirmação o originador envia uma mensagem ACK, quando a sessão é estabelecida a comunicação é iniciada através de duas portas temporárias.

Quando a comunicação for encerrada a mensagem BYE é enviada por qualquer uma das duas partes que solicitou o encerramento da sessão.

Caso os usuários não possuam um endereço IP fixo o protocolo SIP apresenta um mecanismo que descobre o endereçamento IP do destinatário de uma chamada, para isso ele utiliza de um servidor de registro que conhece o IP do destinatário de uma chamada.

H.323

É um padrão que possibilita que telefones da rede de telefonia convencional se comuniquem com os computadores conectados à internet.

Com a utilização de um gateway que vai transformar a mensagem da rede telefônica numa mensagem internet e assim se estabelece uma conexão entre a Internet e a rede de telefonia pública. O servidor gatekeeper da rede local desempenha o papel de servidor de registro.

O protocolo H.323 usa os protocolos G.17 ou G.723.1 para compressão de dados. O protocolo H.245 permite que as partes negociem o método de compressão a ser utilizado. O protocolo Q.931 é usado durante as fases de estabelecimento_e encerramento de conexões. Outro protocolo denominado H.225, ou RAS(Registration/Administration/Status), é usado para registro no gatekeeper.

Simulação de uma operação simples

Neste exemplo veremos a operação de uma comunicação telefônica usando H.323 como um exemplo simples:

- 1- O terminal envia uma mensagem em broadcast para gatekeeper. O gatekeeper responde com seu endereço IP.
- 2- O terminal e o gatekeeper se comunicam, usando o protocolo H.225 para negociar a largura da banda.
- 3- O terminal, o gatekeeper, o gateway e o telefone se comunicam utilizando o protocolo Q.931para estabelecer uma conexão.
- 4- O terminal, o gatekeeper, o gateway e o telefone se comunicam utilizando o protocolo H.245 para negociar o método de compressão.
- 5- O terminal, o gateway e o telefone trocam informações de áudio usando o RTP sob gerenciamento do RTCP.
- 6- O terminal, o gatekeeper, o gateway e o telefone se comunicam usando o Q.931 para encerrar a comunicação.

4.1. Quais as vantagens e Desvantagens

Vantagens VoIP

A principal vantagem é a redução de despesas, visto que a comunicação via Internet possui tarifas bem menores do que a telefonia convencional que apresenta variáveis para a tarifação como localização do destinatário e horário da ligação.

Outra vantagem é a mobilidade que a comunicação pela internet permite, onde o único pré requisito é um equipamento com conexão a Internet, em qualquer que seja a sua localização.

A possibilidade de utilizar de outros mecanismos com a comunicação VoIP permite que se possa realizar chamadas de vídeo, compartilhamento de arquivos e gerenciamento de listas telefônicas.

Desvantagens VoIP

O que pode ser visto como uma vantagem para alguns para outros é uma desvantagem de acordo com a facilidade de acesso à internet, pois esse tipo de comunicação é dependente de uma conexão à internet, o que para muitos devido à localização é algo que coloca barreiras em uma usabilidade estável.

Outra desvantagem é a qualidade das chamadas que são influenciadas de acordo com a qualidade da internet, ou seja, uma conexão lenta pode afetar na comunicação e torná-la algo inviável para uma chamada de negócios por exemplo.

A identificação das chamadas quando realizada de um software para um telefone também é outro ponto negativo, pois essas não podem ser identificadas pelo telefone o que prejudica na hora de saber quem está te ligando ou quem te ligou para um futuro retorno da ligação.

4.2. Como funciona o Skype

O Skype é um software que permite a comunicação grátis pela internet através dos princípios de funcionamento da voz sobre IP ou VoIP.

Ele permite que se realize a ligação software para software, que é uma ligação gratuita onde os dois usuários se comunicam através do próprio Skype em ambos os dispositivos, tanto o remetente da ligação quanto o destinatário.

Esse software também permite a ligação software para um telefone convencional, nessas chamadas existe um custo fixo por ligação que é definido pelo Skype, a grande vantagem dessas chamadas é que o preço é sempre um valor único que independe da localização e horário ao contrário das tarifas de uma telefonia convencional, o que na maioria das vezes acaba saindo mais barato.

5. Protocolo para Aplicações interativas em Tempo Real

Aplicações interativas em tempo real, incluindo telefone por internet e videoconferência, prometem liderar grande parte do crescimento futuro da internet. Portanto, não é surpresa que organismos padronizadores, tais como a IETF e o ITU, tenham se ocupado durante tantos anos (e ainda se ocupam) com a produção de padrões para essa classe de aplicações.

Tendo à mão padrões apropriados para aplicações interativas em tempo real, empresas independentes poderão criar novos produtos atraentes que interagem uns com os outros.

5.1 Protocolo RTP e SIP

Protocolo de tempo real RTP

O RTP é um padrão definido no RFC 3550 que anexa campos de cabeçalho às porções de áudio/vídeo antes de passá-las à camada de transporte e esses campos contém número de sequência e marcas de tempo. Ele pode ser usado para transportar formatos comuns como PCM, GSM e MP3 para som e MPEG e H.263

para vídeo. Ele também complementa outros importantes protocolos interativos de

tempo real, entre eles SIP e H.323.

Básico do RTP

O RTP geralmente roda sobre UDP (protocolo simples da camada de transporte). O

lado remetente encapsula uma porção de mídia dentro de um pacote RTP, em

seguida encapsula o pacote em um segmento UDP, e então passa o segmento para

o IP. O lado receptor extrai o pacote RTP do segmento UDP, em seguida extrai a

porção de mídia do pacote RTP e então passa a porção para o transdutor para

decodificação e apresentação.

Exemplo:

Utilizando o RTP para transportar voz, entendendo que a fonte de voz esteja

codificada em PCM de 64kbps, também supondo que a aplicação colete os dados

codificados em porções de 20 milissegundos, ou seja, 160 bytes por porção. O lado

remetente precede cada porção dos dados de áudio com um cabeçalho RTP que

contém o tipo de codificação de áudio, um número de seguência e marca de tempo.

O tamanho do cabeçalho RTP é normalmente 12 bytes. A porção de áudio junto com

o cabeçalho RTP forma o pacote RTP. O pacote RTP é enviado para dentro do

socket de interface UDP. No lado do receptor, a aplicação recebe o pacote RTP da

interface do seu socket, extrai a porção de áudio do pacote RTP e usa os campos de

cabeçalho do pacote RTP para decodificar e reproduzir adequadamente a porção de

áudio.

Cabeçalho RTP:

Tipo de Carga (7 bits) é usado para indicar o tipo de codificação que está sendo

usado no momento. Se um transmissor muda o tipo de codificação durante uma

conferência, o transmissor informa o receptor através deste campo de tipo de carga.

Formatos de áudio:

Tipo de carga 0: PCM mu-law, 64 kbps;

Tipo de carga 3, GSM, 13 kbps;

Tipo de carga 7, LPC, 2.4 kbps;

11

Formatos em vídeo:

Tipo de carga 26, Motion JPEG;

Tipo de carga 31. H.261;

Tipo de carga 33, MPEG2 vídeo;

Número de sequência (16 bits) é o número de sequência que é incrementado a cada pacote RTP enviado; pode ser usado para <u>detectar perdas de pacotes e para recuperar a sequência de pacotes</u>.

Protocolo de controle RTP (RTCP)

O RFC 3550 também especifica o RTCP, um protocolo que uma aplicação de rede multimídia pode usar junto com o RTP.

Trabalha em conjunto com o RTP;

Cada participante de uma sessão RTP transmite periodicamente pacotes de controle RTCP para todos os outros participantes;

Cada pacote RTCP contém relatórios do transmissor e/ou do receptor;

Estatísticas de relatório são úteis para a aplicação;

As estatísticas incluem o número de pacotes enviados, número de pacotes perdidos, variação de atraso entre chegadas etc.;

Esta informação de realimentação para a aplicação pode ser usada para controle do desempenho e para fins de diagnóstico;

O transmissor pode mudar suas transmissões com base nestas informações de realimentação.

Tipos de Pacotes RTCP

Pacotes de relatório do receptor: Fração de pacotes perdidos, último número de sequência, variância média do atraso entre chegadas.

Pacotes de relatório do transmissor: SSRC do fluxo RTP, o tempo corrente, o número de pacotes enviados e o número de bytes enviados.

Pacotes de descrição da fonte: Endereço de e-mail do transmissor, o nome do transmissor, o SSRC do fluxo RTP associado. Fornecem um mapeamento entre o SSRC e o nome do usuário ou do hospedeiro.

Protocolo de tempo real SIP

Protocolo de inicialização de sessão (Session Initiation Protocol - SIP) desenvolvido pela IETF e definido no RFC3261, RFC 5411, sendo um protocolo simples tem funções:

- Todas chamadas telefônicas e chamadas de videoconferência ocorrem sobre a Internet.
- Pessoas s\(\tilde{a}\) o identificadas por nomes ou endere\(\tilde{c}\) os de e-mail, em vez de n\(\tilde{u}\) meros telef\(\tilde{o}\) nicos.
- Você pode alcançar o usuário chamado, não importa onde ele esteja não importa o dispositivo IP que ele esteja usando atualmente.
- Provê mecanismos para o chamador deixar o usuário chamado saber que ele deseja estabelecer uma chamada.
- Provê mecanismos de modo que o chamador e o chamado possam concordar com o tipo de mídia e codificação.
 - Provê mecanismos para terminar a chamada.

Estabelecendo uma chamada para um endereço IP conhecido

A mensagem INVITE do SIP de Alice indica seu número de porta e endereço

IP. Indica a codificação que Alice prefere receber (PCM lei-m), que é parecida

com uma mensagem de requisição HTTP e é enviada por UDP.

A mensagem 200 OK de Bob 200 indica seu número de porta, endereço IP e

codificação preferida (GSM) e enviada por SIP.

Após receber a resposta de Bob, ela envia uma mensagem SIP de

reconhecimento (ACK).

Mensagens SIP podem ser enviadas sobre TCP ou UDP; aqui são enviadas

sobre RTP/UDP.

O número de porta padrão do SIP é 5060.

Mensagens SIP

Nesse exemplo a Alice só conhece somente o endereço SIP do Bob,

bob@domain.com e não conhece o endereço IP.

INVITE sip:bob@domain.com SIP/2.0

Via: SIP/2.0/UDP 167.180.112.24

From: sip:alice@hereway.com

To: sip:bob@domain.com

Call-ID: <u>a2e3a@pigeon.hereway.com</u>

Content-Type: application/sdp

Content-Length: 885

c=IN IP4 167.180.112.24

m=audio 38060 RTP/AVP 0

14

Quando uma mensagem SIP passa por um dispositivo SIP, ele anexa um cabeçalho que indica o endereço IP do dispositivo. Além desse cabeço ela anexa também cabeçalho From e To e inclui um Call-ID que <u>identifica o id de chamada único para cada chamada</u>, um cabeçalho Content-Type também é incluso que <u>define o formato usado para descrever o conteúdo da mensagem SIP</u>, já o cabeçalho Content-Lenght contém <u>o comprimento em bytes do conteúdo da mensagem</u>.

Agora com "carriage return" e um "line feed" a mensagem contém o corpo de informação.

Tradução de nome e localização de usuário

Sabemos que Alice sabia o endereço IP do Bob, mas nem sempre isso ocorre. Por que esse endereço não só pode ser atribuído dinamicamente com DHCP, mas também o Bob pode ter vários dispositivos IP.

No mesmo exemplo vamos supor que Alice só conheça o email de Bob, bob@domain.com e que é usado também para chamadas SIP. Para descobrir o endereço IP, Alice envia uma mensagem INVITE bob@domain.com SIP/2.0 e envia essa mensagem a um proxy SIP, ele responderá com uma mensagem SIP (podendo ser em endereço IP ou em uma URL).

Para saber como o servidor proxy SIP manda o endereço IP, precisa antes saber sobre a entidade registradora SIP. Sabendo que cada usuário tem uma entidade registradora, sempre que um usuário manda uma aplicação SIP, essa aplicação manda uma mensagem de registro SIP à entidade registradora, informando seu IP corrente.

6. Suporte de Rede para Multimídia

Três técnicas em nível de rede para dar suporte a aplicações de multimídia:

Técnica	Granularidade	Garantia	Mecanismos	Complexidade	Implementação no momento
Obtendo o melhor do serviço de melhor esforço	todo o tráfego tratado igualmente	nenhuma ou flexível	suporte da camada de aplicação, CDNs, sobreposições, provisão de recurso em nível de rede	mínima	em toda a parte
Serviço diferenciado	diferentes classes de tráfego tratadas de formas diferentes	nenhuma ou flexível	marcação, regulação e programação de pacotes	média	alguma
Garantias de qualidade de serviço (QoS) por conexão	cada fluxo de origem- destino tratado de forma diferente	flexível ou rígida, uma vez admitido o fluxo	marcação, regulação e programação de pacotes; admissão e sinalização de chamadas	leve	pouca

7. Considerações Finais

A partir do presente trabalho, percebemos a evolução dos meios de comunicação, a complexidade do funcionamento por trás de algo que já está presente no cotidiano das pessoas, entendendo como a internet possibilita a interação através de áudio e vídeo permitindo suas transmissões.

8. Referências

Redes de computadores e a internet : uma abordagem top-down / James F. Kurose; tradução Opportunity translations ; revisão técnica Wagner Zucchi. – 6. ed.-- São Paulo : Addison Wesly, Cap. 7.

Redes de computadores e a internet : uma abordagem top-down / James F. Kurose e Keith W. Ross ; tradução Opportunity translations ; revisão técnica Wagner Zucchi. – 5. ed.-- São Paulo : Addison Wesly, 2010.

http://www2.ic.uff.br/~lsousa/redes/cap-7.pdf

http://www.joinville.udesc.br/portal/professores/claudinei/materiais/SMU_slide_05_Re_quisitos_e_Suporte_de_Redes_para_Multimidia.pdf