3. Нехай на універсальній множині $X = \{x_1, x_2, x_3, x_4\}$ задана нечітка множина альтернатив $\mu_{\overline{\nu}}: X \to [0, 1]$ із нечіткою ціллю $\mu_{\overline{\nu}}: X \times X \to [0, 1]$. Знайти нечітке відношення Парето.

4. Нехай на універсальній множині $X = \{x_1, x_2, x_3, x_4\}$ задана нечітка множина альтернатив $\mu_D: X \to [0, 1]$ із нечіткою ціллю $\mu_2: X \times X \to [0, 1]$. Знайти нечітке відношення Парето.

§ 3. Ігри в умовах нечіткої інформації

Для простоти викладення матеріалу без обмеження загальності будемо розглядати ігри двох гравців в умовах нечіткої інформації.

Ігри з нечіткою цільовою множиною. Нехай X і Yуніверсальні множини стратегій, які можуть вибирати гравці 1 і 2 відповідно, а стратегії гравців описуються нечіткими множинами $\mu_1: X \to [0, 1], \ \mu_2: X \to [0, 1]$. Функції вигращу гравців $u_1, \ u_2: X \times Y \to [0, 1]$ інтерпретується як оцінки гравцями ситуації гри (x, y). Множина E^1 (числова вісь) інтерпретується при цьому як універсальна множина оцінок.

Кожен із гравців прагне до досягнення своєї нечітко описаної цілі. Будемо вважати, що ціль гравця i описується нечіткою множиною G_i в універсальній множині оцінок E^1 із функцією належності $\overline{\mu}_i^G: E^1 \to [0, 1]$. Наприклад, така нечітка ціль може бути нечіткою множиною типу "величина виграшу повинна бути значно більшою за 10" і т. п. Чим більший ступінь належності оцінки виграшу u нечіткій множині $\overline{\mu}_G(u)$, тим більший ступінь досягнення цієї цілі.

Таким чином, оскільки виграш залежить від ситуації гри, то ціль гравця i будемо описувати нечіткою підмножиною множини ситуацій виду:

$$\mu_i^G(x,y) = \overline{\mu_i}^G(u_i(x,y)), (x,y) \in X \times Y.$$

Неважко побачити, що задана нечітка множина є такою, що її образом у E^1 при відображенні u_i , є задана у E^1 нечітка множина цілі G_i .

Введемо в розгляд нечіткі підмножини D_1 і D_2 множини ситуацій $X \times Y$, які визначаються так:

$$\mu_{D_1}(x,y) = \min\{\mu_1(x), \mu_1^G(x,y)\}, \quad \mu_{D_2}(x,y) = \min\{\mu_2(x), \mu_2^G(x,y)\}.$$

Ці нечіткі множині ϵ перетинами відповідних нечітких множин стратегій і нечітких множин цілі. Якщо, наприклад, гравцеві 1, відомий конкретний вибір $\tilde{y} \in Y$ гравця 2, то перед першим гравцем по-

стає задача досягнення нечіткої мети $\mu_1^G(x,\tilde{y})$ на множині нечітких стратегій $\mu_1(x)$. Розв'язок такої задачі є перетин нечітких множин $\mu_1^G(x,\tilde{y})$ і $\mu_1(x)$, тобто нечітка множина з функцією належності

$$\mu_{D_1}(x, \tilde{y}) = \min \{ \mu_1(x), \mu_1^G(x, \tilde{y}) \}.$$

Таким чином, нечітку множину $\mu_{D_1}(x,y)$ можна розглядати як родину (за параметром y) розв'язків задач досягнення нечітких цілей $\mu_1^G(x,y)$. Аналогічний зміст надається і множині $\mu_{D_2}(x,y)$.

Остаточно, приходимо до "чіткої" гри у нормальній формі $\left\langle X,Y,\mu_{D_1},\mu_{D_2}\right\rangle$, розв'язки якої за тими чи іншими принципами оптимальності, у тих чи інших умовах інформованості гравців при їх некооперативній чи кооперативній поведінці будуть розв'язками наведеної вище нечіткої постановки гри.

Ігри з чіткими функціями виграшу і нечіткими множинами стратегій. Нехай X і Y універсальні множини можливих стратегій гравців 1 і 2 відповідно, а $\mu_1: X \to [0,1], \ \mu_2: X \to [0,1]$ нечіткі множини їхніх стратегій. Функції виграшу гравців $u_1, \ u_2: X \times Y \to [0,1]$. На відміну від попереднього випадку, будемо вважати, що кожен із гравців прагне одержати по можливості більше значення своєї функції виграшу.

Варто зауважити, що при будь-який фіксованій (і відомій гравцеві 1) стратегії $\tilde{y} \in Y$ гравця 2 перед гравцем 1 стоїть задача максимізації функції його виграшу на нечіткій множині стратегій. Під "максимізацією" розуміють вибір нечіткої підмножини μ_{D_1} множини μ_1 , якій відповідають найбільші значення як функції u_1 , так і функції належності μ_1 до нечіткої множини стратегій. Таким чином, фактично виграш гравця оцінюється не за одним критерієм, а за двома $u_1(x,\tilde{y})$ і $\mu_1(x)$ і ми приходимо до двокритеріальної гри. Її нормальна форма має вигляд $\langle X,Y,(u_1,\mu_1),(u_2,\mu_2)\rangle$. Нехай X^*,Y^* – множини "оптимальних" за тим чи іншим принципом оптимальності стратегій відповідно 1 і 2 гравця у цій чіткій двокритеріальній грі, тоді нечіткі множини "оптимальних" стратегій вихідної гри мають функції належності

$$\mu_1^u(x) = \begin{cases} \mu_1(x), & x \in X^*, \\ 0, & x \notin X^*, \end{cases} \quad \mu_2^u(y) = \begin{cases} \mu_2(y), & y \in Y^*, \\ 0, & y \notin Y^*. \end{cases}$$

Для ілюстрації цього підходу розглянемо задачу знаходження нечіткої рівноваги за Нешем. Побудуємо множину найкращих нечітких відповідей 1 гравця на фіксовану стратегію $y \in Y$ другого гравця. Це

буде нечітка множина $\mu_{D_1}(x,y) = \{\mu_1(x) | x \in P_1(y); \ 0 | x \notin P_1(y) \}$, де $P_1(y) -$ множина ефективних альтернатив двокритеріальної задачі:

$$u_1(x,y) \rightarrow \max, \ \mu_1(x) \rightarrow \max, \ x \in X,$$

яка за теоремою Подіновського про необхідну й достатню умови ефективності альтернативи (див. Розділ 4. § 3 "Багатокритеріальна оптимізація") може бути подана у вигляді:

$$P_1(y) = \bigcup_{\lambda > 0} \left\{ x \; \middle| \; u_1(x,y) = \sup_{\substack{x' \in X, \\ \mu_1(x') \geq \lambda}} u_1(x',y) \right\}.$$

Найкращою нечіткою відповіддю гравця 2 на вибір гравцем 1 стратегії варто вважати нечітку множина виду:

$$\mu_{D_2}(x,y) = \{ \mu_2(y) | y \in P_2(x); \quad 0 | y \notin P_2(x) \},$$

де $P_2(x)$ – множина ефективних альтернатив двокритеріальної задачі:

$$u_2(x,y) \to \max, \ \mu_2(y) \to \max, \ y \in Y,$$

яка може бути представлена у вигляді:

$$P_2(x) = \bigcup_{\rho > 0} \left\{ y \mid u_2(x, y) = \sup_{\substack{y \in Y, \\ \mu_2(y') \ge \rho}} u_2(x, y') \right\}.$$

Визначення 7.3.1. Нечіткою рівновагою за Нешем розглянутої гри двох осіб називається нечітка підмножина множини $X \times Y$ виду: $\mu^{NE}(x,y) = \min \left\{ \mu_{D_1}(x,y), \mu_{D_2}(x,y) \right\}.$

Іншими словами, нечітка рівновагою за Нешем визначається як перетин нечітких множин D_1 і D_2 .

Оскільки числа λ і ρ інтерпретуються як рівні, починаючи із яких гравці вважають в однаковому ступені припустимими всі стратегії із нечітких множин стратегій, то для знаходження конкретної рівноваги за Нешем достатньо знайти такі $\lambda > 0$ і $\rho > 0$, при яких існує розв'язок такої системи оптимізаційних задач:

$$u_{1}(x,y) = \sup \{u_{1}(x',y) \mid x' \in X, \ \mu_{1}(x') \geq \lambda \},$$

$$u_{2}(x,y) = \sup \{u_{2}(x,y') \mid y' \in Y, \ \mu_{2}(y') \geq \rho \}.$$

Нечіткому рівноважному розв'язку відповідають такі нечіткі виграші гравців:

$$\begin{split} & \mu_{u_1}(v) = \sup_{(x,y) \in u_1^{-1}(v)} \mu^{NE}(x,y), & \forall v \in R^1, \\ & \mu_{u_2}(v) = \sup_{(x,y) \in u_2^{-1}(v)} \mu^{NE}(x,y), & \forall v \in R^1. \end{split}$$

Так саме, як у чіткій грі, нечіткий рівноважний за Нешем розв'язок може бути основою для досягнення домовленості між гравцями про вибір конкретної ситуації (x,y) у вихідній нечітко визначеній грі.

Контрольні завдання до § 3

1. Нехай на універсальних множинах $X = \{x_1, x_2, x_3, x_4\}$, $Y = \{y_1, y_2, y_3, y_4\}$ задані нечіткі множини стратегій гравців, відповідно $\mu_1: X \to [0,1]$ та $\mu_2: Y \to [0,1]$. Кожен із гравців прагне досягнути свою нечітку ціль, яка описується функцією належності, відповідно $\overline{\mu}_1^D: X \to [0,1]$ та $\overline{\mu}_2^D: Y \to [0,1]$.

	\boldsymbol{x}_1	x_2	x_3	\mathcal{X}_4
μ_1	0,2	0,8	0,4	0,9
$\overline{\mu}_1^{\scriptscriptstyle D}$	0,5	0,6	0,8	0,5

	$y_{\scriptscriptstyle 1}$	y_2	y_3	$y_{\scriptscriptstyle 4}$
μ_2	0,2	0,8	0,4	0,9
$\overline{\mu}_2^{\scriptscriptstyle D}$	0,5	0,6	0,8	0,5

Знайти обережні стратегії гравців.

2. Нехай на універсальних множинах $X = \{x_1, x_2, x_3, x_4\}$, $Y = \{y_1, y_2, y_3, y_4\}$ задані нечіткі множини стратегій гравців, відповідно $\mu_1: X \to [0,1]$ та $\mu_2: Y \to [0,1]$. Кожен із гравців прагне досягнути свою нечітку ціль, яка описується функцією належності, відповідно $\overline{\mu}_1^D: X \to [0,1]$ та $\overline{\mu}_2^D: Y \to [0,1]$.

	x_1	x_2	x_3	\mathcal{X}_4
μ_1	0,2	0,8	0,4	0,9
$\overline{\mu}_1^{\scriptscriptstyle D}$	0,5	0,6	0,8	0,5

	$y_{\scriptscriptstyle 1}$	y_2	y_3	y_4
μ_2	0,2	0,8	0,4	0,9
$\overline{\mu}_2^{\scriptscriptstyle D}$	0,5	0,6	0,8	0,5

Знайти обережні стратегії гравців.

3. Нехай на універсальних множинах $X_1 = \{a_1, b_1, c_1, d_1\}$, $X_2 = \{a_2, b_2, c_2, d_2\}$ задані нечіткі множини стратегій гравців, відповідно $\mu_1: X \to [0,1]$ та $\mu_2: Y \to [0,1]$.

	$a_{\scriptscriptstyle 1}$	$b_{\scriptscriptstyle 1}$	c_1	$d_{\scriptscriptstyle 1}$
μ_1	0,6	0,3	0,5	0,3

	a_{2}	b_{2}	c_2	$d_{\scriptscriptstyle 2}$
μ_2	0,3	0,3	0,9	0,5

Функції їх виграшу визначені на чіткій множині ситуацій гри.

X_1	a_2	b_2	c_2	d_2
$a_{\scriptscriptstyle 1}$	0,3, 0,2	0,5, 0,1	0,2, 0,1	0,3, 0,1
$b_{\scriptscriptstyle 1}$	0,3, 0,1	0,4, 0,2	0,2, 0,1	0,3, 0,1
c_1	0,2, 0,1	0,3, 0,1	0,2, 0,1	0,2, 0,1

Знайти обережні стратегії гравців.

4. Нехай на універсальних множинах $X_1 = \{a_1, b_1, c_1, d_1\}$, $X_2 = \{a_2, b_2, c_2, d_2\}$ задані нечіткі множини стратегій гравців, відповідно $\mu_1: X \to [0,1]$ та $\mu_2: Y \to [0,1]$.

	$a_{\scriptscriptstyle 1}$	$b_{\scriptscriptstyle 1}$	$c_{\scriptscriptstyle 1}$	$d_{\scriptscriptstyle 1}$
μ_1	0,2	0,4	0,1	0,8

	a_2	b_{2}	c_2	$d_{\scriptscriptstyle 2}$
μ_2	0,4	0,2	0,5	0,9

Функції їх виграшу визначені на чіткій множині ситуацій гри.

X_2 X_1	a_2	b_2	c_2	d_2
$a_{\scriptscriptstyle 1}$	0,4, 0,2	0,5, 0,4	0,2, 0,1	0,3, 0,2
b_{1}	0,3, 0,2	0,4, 0,2	0,4, 0,2	0,3, 0,1
$c_{_1}$	0,2, 0,1	0,3, 0,1	0,2, 0,1	0,5, 0,9

Знайти обережні стратегії гравців.