

B.Tech - Even Sem : Semester in Exam-I Academic Year: 2022-2023 20CS3061AA - AUTOMATA THEORY AND FORMAL LANGUAGES Set No: 2

Time		Max.Marks: 50					
S.NO	Answer All Questions	Choice	Options	Marks	CO	CO BTL	CC
1.	Define NFA formally. Given $\Sigma = \{a b\}$, Construct a ε -NFA that recognizes the language $L = \{a^* + b^*\}$	choice Q-2		4.5Marks	COI	3	3
2.	Construct a minimal DFA, which accepts a set of all strings over {0, 1}, which when interpreted as a binary number is divisible by '3'.			4.5Marks	COI	3	3
3.	Design a Finite Automata from the given RE [ab + (b + aa) b* a]	choice Q-4		8Marks	COI	3	3
4.	Write Arden's Theorem and prove it. Find the regular expression equivalent to the following transition diagram using this theorem:			8Marks	COI	3	3
	State the principle of Pumping Lemma. Write the steps to show that a given infinite language is not regular using a Pumping Lemma. Thus give the formal definition of the pumping lemma. Prove using the pumping lemma that the language $L = \{0^k 1^k k \in \mathbb{N} \}$ is not regular.			12.5Marks	COI	3	3
	a q5 a b q4			12.5Marks	: CO1	3	3
	Construct right-linear and left-linear grammars for the language $L = \{a^nb^m: n \ge 2, m \ge 3\}$.	choice Q-8		4.5Marks	CO2	4	2
	Given a CFG given by $G = (N, T, P, S)$ with $N = \{S\}$, $T = \{a, b\}$, $P = \{S > aSb, S > ab\}$. Obtain the derivation tree and the language generated $L(G)$.			4.5Marks	CO2	4	2
	Write procedures to eliminate unit productions. Eliminate unit productions from the CFG with P given by S->Aa B, B->A bb, A->a bc B.	choice Q-10		8Marks	CO2	4	2
0.	Verify whether a string "abbb" is a valid member of the following CFG in CNF: S->AB, A->BB a, B->AB b.			8Marks	CO2	4	2
1.	Define Chomsky Normal Form (CNF). Write a procedure to find equivalent grammar in CNF. Obtain a grammar in Chomsky Normal Form (CNF) equivalent to the grammar G with productions P given S ->aAbB, A ->aA a, B ->bB b.	choice Q-12		12.5Marks	CO2	4	4
2.	Define Greibach Normal Form (GNF). Convert the grammar S ->AB, A ->BS b, B->SA a into GNF.			12.5Marks	COS	4	4