Flow Rate Analysis for Liquid Cooled CPU

Justin Jarmer Fynn Vossler Tyler Kemmet Kyle Jenkins

Problem Statement

Air cooled PCs have significant drawbacks that could be eliminated with the introduction of water cooled systems due to the significantly higher specific heat of water.

The science center here at AU contains a large computer/server dedicated to large computations for research using programs such as ElmerSolver.

In order to free up space in the computer case a water cooled system is being introduced

Science Center Computer

- Contains 4 12-Core CPUs (AMD Opteron 6344)
 - > 70.4°C Max Operating Temperature
 - > Default TDP of 115 W of each
- Cooled by 4 large CPU fans over heatsinks

6344

General Specifications Platform: Server

Product Line: AMD Opteron™ 6300 Series

Processor

of Threads: 12

Base Clock: 2.6GHz

Total L2 Cache: 12MB

Default TDP: 115W

Unlocked for Overclocking 1: No

Max. Operating Temperature (Tjmax): 70.4°C

Product Family: AMD Opteron™

of CPU Cores: 12

Max. Boost Clock: Up to 2.0GHz

Total L1 Cache: 576KB

Total L3 Cache: 16MB

Processor Technology for CPU Cores:

32nm

CPU Socket: G34

Geometry

- Rectangular Tubes
 - > 20 mm x 15 mm x 70 mm
 - ➤ Hole diameter is 13 mm
- Cooling Tube Stand
 - > 52 mm x 45 mm x 2 mm

Ansys Meshing

- Mesh Parameters
 - selected to the preference of Fluent CFD solver

- Inflation Condition
 - allows for better handling of boundary layer

Ansys Boundary Conditions

Inlet:

- Determines flow rate through the pipes
- Determines starting temp of water

Pump Flow Rate (gal/min)	Inlet Velocity (m/s)
1	0.5934
4.4	0.2617
6.6	0.3919

Heat-In:

Determines heat flux into the system

Energy output of CPU (W)	Assigned Heat Flux (W/m^2)
115	49145.3

Simulation Results (4.4 gal/min)

Conclusion

Our simulation shows that the CPU temperature decreases with higher flow rates. However, all three sampled flow rates succeeded in keeping the CPU below its maximum operating temperature.

Therefore, the Cytek pump is the most viable solution for the liquid cooling system based on financial purposes and feasibility.

			Max CPU Operating temp: 343.55 K
Pump Brands	Flow Rate (gal/min)	Outlet Temperature (K)	CPU Temperature (K)
Cytek	1	304.75	325.2
Corsair	4.4	301.5	312.5
Raijintek	6.6	300.65	310.0