GW calculations and

F. Bruneval
Section de Recherches de Métallurgie Physique
CEA Saclay
Université Paris-Saclay

Outline

- I. Introduction: going beyond DFT
- II. Introduction of the Green's function

- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the GW self-energy in practice
- V. Applications

Standard DFT has unfortunately some shortcomings

A pervasive problem

Effective masses for transport in semiconductors

Defect formation energy, dopant solubility

Optical absorption

FIG. 1. Single-particle Hartree-Fock and local density approximation eigenvalue spectra (eV) for the SiH₄ molecule.

Bruyères-le-Châtel, Abinit HPC school 2024

Gap re-normalization by a (metallic) substrate

FIG. 1 (color online). Schematic energy level diagram indicating polarization shifts in the frontier energy levels (ionization and affinity) of a molecule upon adsorption on a metal surface.

Benzene deposited on copper, gold, graphite

Neaton, Hybertsen, Louie PRL (2006)

How do go beyond within the DFT framework?

Not easy to find improvement within DFT framework
There is no such thing as a perturbative expansion
Perdew's Jacob's ladder does not help for the band gap

HEAVEN OF CHEMICAL ACCURACY

FIG. 1. Jacob's ladder of density functional approximations to the exchange-correlation energy.

Need to change the overall framework!

Outline

- I. Introduction: going beyond DFT
- II. Introduction of the Green's function

- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the GW self-energy in practice
- V. Applications

Many-body perturbation theory

Historically older than the DFT (from the 40-50's)! Big names: Feynman, Schwinger, Hubbard, Hedin, Lundqvist

Green's functions = propagator

Exact ground state wavefunction:

$$|N$$
 ,0 \rangle

Creation, annihilation operator: $\Psi^{\intercal}(rt)$, $\Psi(rt)$

- $\Psi^{\dagger}(rt)|N,0
 angle$ is a (N+1) electron wavefunction not necessarily in the ground state
- $\Psi^{\dagger}(r't')|N,0\rangle$ is another (N+1) electron wavefunction

Let's compare the two of them!

Green's function definition

$$=iG^{e}(\mathbf{r}t,\mathbf{r}'t')$$
 for $t>t'$

Mesures how an extra electron propagates from (r't') to (rt).

$$=iG^h(r't',rt)$$
 for $t'>t$

Mesures how a missing electron (= a hole) propagates from (rt) to (r't').

Final expression for the Green's function

$$iG(rt,r't')= \langle N,0|T[\Psi(rt)\Psi^{\dagger}(r't')]|N,0 \rangle$$

time-ordering operator

$$G(\mathbf{r}t,\mathbf{r}'t') = G^{e}(\mathbf{r}t,\mathbf{r}'t')$$
$$-G^{h}(\mathbf{r}'t',\mathbf{r}t)$$

Compact expression that describes both the propagation of an extra electron and an extra hole

Lehman representation

$$iG(r,r',t-t') = \langle N,0 | T[\Psi(rt)\Psi^+(r't')] | N,0 \rangle$$

Closure relation
$$\sum_{M,i} |M,i\rangle \langle M,i|$$

Lehman representation:

Tesentation:
$$G(\mathbf{r}, \mathbf{r}', \omega) = \sum_{i} \frac{f_{i}(\mathbf{r}) f_{i}^{*}(\mathbf{r}')}{\omega - \epsilon_{i} \pm i \eta}$$

where
$$\epsilon_i = \begin{cases} E\left(N+1,i\right) - E\left(N,0\right) \\ E\left(N,0\right) - E\left(N-1,i\right) \end{cases}$$
 Exact excitation energies!

Related to photoemission spectroscopy

Energy conservation:

before after
$$h\nu + E(N,0) = E_{kin} + E(N-1,i)$$

Quasiparticle energy:

$$\epsilon_{i} = E(N,0) - E(N-1,i) = E_{kin} - h \nu$$

And inverse photoemission spectroscopy

Energy conservation:

before after
$$E_{kin} + E(N,0) = h\nu + E(N+1,i)$$

Quasiparticle energy:

$$\epsilon_{i} = E(N+1,i) - E(N,0) = E_{kin} - h\nu$$

Exact realization of the Lehman decomposition

$$\langle m|G^{h}(\omega)|m\rangle = \sum_{i} \frac{\langle N0|\hat{c}_{m}^{+}|N-1i\rangle\langle N-1i|\hat{c}_{m}|N0\rangle}{\omega - \epsilon_{i} - i\eta}$$

$$N=2$$

$$N-1=1$$

$$m=1$$

Obtained from FCI calculations

Satellites in reality?

F. Bruneval

Bruyères-le-Châtel, Abinit HPC school 2024

Other properties of the Green's function

Get the electron density:

$$\rho(\mathbf{r}) = -i G(\mathbf{r}t^-, \mathbf{r}, t)$$

Galitskii-Migdal formula for the total energy:

$$E_{total} = \frac{1}{\pi} \int_{-\infty}^{\mu} d\omega \operatorname{Tr} \left[\left(\omega - h_0 \right) \operatorname{Im} G \left(\omega \right) \right]$$

Expectation value of any 1 particle operator (local or non-local)

$$\langle O \rangle = \lim_{t \to t'} Tr[OG]$$

Outline

- I. Introduction: going beyond DFT
- II. Introduction of the Green's function

- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the GW self-energy in practice
- V. Applications

Dyson equation for the exact Green's function

Imagine there exists an operator that generates the exact *G*

This operator is the famous "self-energy":

- non-local in space
- time-dependent
- non-Hermitian

A hierarchy of equations of motion

In fact there is an exact expression for the self-energy as a function of the **two-particle Green's function**

$$\left[G_0^{-1} - \Sigma\right]G = 1$$

$$\left[G_0^{-1}-G_2\right]G=1$$

$$G_2(1,2;3,4) = \langle N,0|T[\Psi(1)\Psi(2)\Psi^{+}(3)\Psi^{+}(4)]|N,0\rangle$$

And try to guess the equation of motion for the two-particle Green's function?

$$G_2$$
 needs G_3

$$G_3$$
 needs G_4

$$G_4$$
 needs G_5

An expression for the self-energy

Trick due to Schwinger (1951):

- Introduce a small external potential U (that will be made equal to zero at the end)
- Calculate the variations of G with respect to U $G_2(1,3;2,3^+) = G(1,2)G(3,3^+) \frac{\delta G(1,2)}{\delta U(3)}$

Obtain a perturbation theory with basic ingredients G and v 1st order is Hartree-Fock 2nd order is MP2

However MP2 diverges for metals!

<u>Trick due to Hubbard+Hedin (late 1950's – early 1960's):</u>

- Introduce the electrostatic response V to U $V(1)=U(1)-i\int d2\,v(1,2)\delta G(2,2)$
- ullet Calculate the variations of G with respect to V

Obtain a new renormalized perturbation theory with basic ingredients G and W

1st order is GW

Shifting from *U* to *V*

$$U(1) = \varepsilon \delta(\mathbf{r} - \mathbf{r_1}) \delta(t - t_1)$$

Everything is functional of U

$$U(1) = \varepsilon \delta(\mathbf{r} - \mathbf{r_1}) \delta(t - t_1)$$

$$V(1)=U(1)+\int d\mathbf{r} v(r_1-r)\delta\rho(\mathbf{r})$$

V also includes the electrostatic response

Everything is functional of V G[V]

5 coupled equations:
$$1=(r_1t_1\sigma_1)$$
 $2=(r_2t_2\sigma_2)$

$$W(1,2) = v(1,2) + \int d34 v(1,3) \chi_0(3,4) W(4,2)$$

screened Coulomb interaction

Hedin's pentagram

Hedin's pentagram approximated

Simplest approximation

$$\Sigma(1,2)=iG(1,2)v(1^+,2)$$
 Fock exchange

Not enough: Hartree-Fock is known to perform poorly for solids

Hartree-Fock approximation for band gaps

5 coupled equations:
$$1=(r_1t_1\sigma_1)$$
 $2=(r_2t_2\sigma_2)$

$$W(1,2) = v(1,2) + \int d34 v(1,3) \chi_0(3,4) W(4,2)$$

screened Coulomb interaction

5 coupled equations:
$$1=(r_1t_1\sigma_1)$$
 $2=(r_2t_2\sigma_2)$

$$G(1,2) = G_0(1,2) + \int d \, 34 \, G_0(1,3) \, \Sigma(3,4) \, G(4,2)$$
 Dyson equation
$$\Sigma(1,2) = i \int d \, 34 \, G(1,3) \, W(1,4) \, \Gamma(4,2,3)$$
 self-energy
$$\Gamma(1,2,3) = \delta(1,2) \, \delta(1,3) + \int d \, 4567 \, \frac{\delta \, \Sigma(1,2)}{\delta \, G(4,5)} \, G(4,6) \, G(5,7) \, \Gamma(6,7,3)$$
 vertex
$$\chi_0(1,2) = -i \int d \, 34 \, G(1,3) \, G(4,1) \, \Gamma(3,4,2)$$
 polarizability
$$W(1,2) = v(1,2) + \int d \, 34 \, v(1,3) \, \chi_0(3,4) \, W(4,2)$$

screened Coulomb interaction

5 coupled equations:
$$1=(r_1t_1\sigma_1)$$
 $2=(r_2t_2\sigma_2)$

$$G(1,2) = G_0(1,2) + \int d \, 34 \, G_0(1,3) \, \Sigma(3,4) \, G(4,2)$$
 Dyson equation
$$\Sigma(1,2) = i \int d \, 34 \, G(1,2) \, W(1,2) \, \frac{\Gamma(4,2,3)}{\Gamma(4,2,3)}$$
 self-energy
$$\Gamma(1,2,3) = \delta(1,2) \, \delta(1,3) + \int d \, 4567 \, \frac{\delta \, \Sigma(1,2)}{\delta \, G(4,5)} \, G(4,6) \, G(5,7) \, \Gamma(6,7,3)$$
 vertex
$$\chi_0(1,2) = -i \int d \, 34 \, G(1,2) \, G(2,1) \, \frac{\Gamma(3,4,2)}{\Gamma(3,4,2)}$$
 polarizability

$$W(1,2) = v(1,2) + \int d34 v(1,3) \chi_0(3,4) W(4,2)$$

screened Coulomb interaction

polarizability

Truncated Hedin's pentagram

Here comes the *GW* approximation

$$\Sigma(1,2) = iG(1,2)W(1,2)$$

GW approximation

$$\chi_0(1,2) = -iG(1,2)G(2,1)$$

RPA approximation

$$W(1,2) = v(1,2) + \int d34 v(1,3) \chi_0(3,4) W(4,2)$$

Dyson-like equation

What is W?

Interaction between electrons in vacuum:

$$v(\mathbf{r},\mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{|\mathbf{r}-\mathbf{r}'|}$$

Interaction between electrons in a homogeneous polarizable medium:

$$W(\mathbf{r},\mathbf{r}') = \frac{1}{4\pi \, \varepsilon_0 \varepsilon_r} \frac{e^2}{|\mathbf{r} - \mathbf{r}'|}$$
Dielectric constant of the medium

Dynamically screened interaction between electrons in a general medium:

$$W(\mathbf{r},\mathbf{r}',\omega) = \frac{e^2}{4\pi \varepsilon_0} \int d\mathbf{r}'' \frac{\varepsilon^{-1}(\mathbf{r},\mathbf{r}'',\omega)}{|\mathbf{r}''-\mathbf{r}'|}$$

Summary

GW viewed as a "super" Hartree-Fock

Hartree-Fock Approximation

$$\Sigma_{x}(\boldsymbol{r_{1,r_{2}}}) =$$

$$\frac{i}{2\pi} \int_{-\infty}^{\mu} d\omega' G(\boldsymbol{r_{1,}} \boldsymbol{r_{2,}} \omega') v(\boldsymbol{r_{1,}} \boldsymbol{r_{2}})$$

= bare exchange

GW Approximation

$$\Sigma_{xc}(\boldsymbol{r_1}, \boldsymbol{r_2}, \omega) =$$

$$\frac{i}{2\pi} \int_{-\infty}^{\mu} d\omega' G(\mathbf{r_{1}}, \mathbf{r_{2}}, \omega') v(\mathbf{r_{1}}, \mathbf{r_{2}}) \qquad \frac{i}{2\pi} \int d\omega' G(\mathbf{r_{1}}, \mathbf{r_{2}}, \omega + \omega') W(\mathbf{r_{2}}, \mathbf{r_{1}}, \omega')$$

 $\Sigma_c(\mathbf{r}_1,\mathbf{r}_2,\omega)$

Exercice

+ correlation

GW is nothing else but a "screened" version of Hartree-Fock.

Non Hermitian dynamic

DFT vs *GW*

Electronic density

$$\rho(\mathbf{r})$$

Green's function

$$G(\mathbf{r}t,\mathbf{r}'t')$$

Non-local, dynamic Depends onto empty states

Local and static

exchange-correlation potential

exchange-correlation operator = self-energy

$$\Sigma_{xc}(rt,r't')$$

Approximations:

LDA, GGA, hybrids

 $v_{xc}(\mathbf{r})$

GW approximation

$$\Sigma_{GW}(\mathbf{r}t,\mathbf{r}'t')=iG(\mathbf{r}t,\mathbf{r}',t')W(\mathbf{r}t,\mathbf{r}'t')$$

GW approximation gets good band gap

after van Schilfgaarde et al PRL 96 226402 (2008)

No band gap problem anymore!

Outline

- I. Introduction: going beyond DFT
- II. Introduction of the Green's function

- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the GW self-energy in practice
- V. Applications

Hedin's coupled equations

5 coupled equations:
$$1=(r_1t_1\sigma_1)$$
 $2=(r_2t_2\sigma_2)$

$$\Gamma(1,2,3) = \delta(1,2)\delta(1,3) + \int \frac{d}{d} \frac{d}{d} \frac{\delta \Sigma(1,2)}{\delta G(4,5)} \frac{G(4,6)G(5,7)\Gamma(6,7,3)}{\delta(4,5)}$$

vertex

$$\chi_0(1,2) = -i \int d34 G(1,2) G(2,1) \frac{\Gamma(3,4,2)}{\Gamma(3,4,2)}$$

polarizability

$$W(1,2) = v(1,2) + \int d34 v(1,3) \chi_0(3,4) W(4,2)$$

screened Coulomb interaction

Super-truncated Hedin's pentagram

Historical recap of *GW* calculations

- 1965: Hedin's calculations for the homogeneous electron gas Phys Rev **2201 citations**
- 1967: Lundqvist's calculations for the homogeneous electron gas Physik der Kondensierte Materie **299 citations**
- 1982: Strinati, Mattausch, Hanke for real semiconductors but within tight-binding PRB **154 citations**
- 1985: Hybertsen, Louie for real semiconductors with ab initio LDA PRL **711 citations** & PRB **1737 citations**
- 1986: Godby, Sham, Schlüter for real semiconductors to get accurate local potential

PRL **544 citations** & PRB **803 citations**

- ~2001: First publicly available *GW* code in ABINIT
- 2003: Arnaud, Alouani for extension to Projector Augmented Wave PRB **102 citations**
- 2006: Shishkin, Kresse for extension to Projector Augmented Wave (again)
 PRB 256 citations

GW approximation in practice

• For periodic solids: Abinit, BerkeleyGW, VASP, Yambo

based on plane-waves (with pseudo or PAW)

For finite systems: MOLGW, Fiesta, FHI-AIMS

based on localized orbitals (Gaussians or Slater or other)

What is common to all implementations

Workflow of a typical *GW* calculation

G from Kohn-Sham DFT hamiltonian

$$G^{\text{KS}} = \left[\omega - h_{\text{KS}}\right]^{-1}$$

which implies

$$G^{KS}^{-1}(\mathbf{r},\mathbf{r}',\omega) = \sum_{i} \phi_{i}^{KS}(\mathbf{r}) \left[\omega - \epsilon_{i}^{KS}\right] \phi_{i}^{KS*}(\mathbf{r}')$$

$$G^{KS}(\mathbf{r},\mathbf{r}',\omega) = \sum_{i} \frac{\phi_{i}^{KS}(\mathbf{r})\phi_{i}^{KS*}(\mathbf{r}')}{\omega - \epsilon_{i}^{KS} \pm i \eta}$$

This expression will be used to get W

and \sum

How to get *W*?

From the RPA equation

$$\chi_0(1,2) = -iG^{KS}(1,2)G^{KS}(2,1)$$

which translates into

$$\chi_{0}(\mathbf{r}_{1}, \mathbf{r}_{2}, \omega) = \sum_{\substack{i \text{ occ} \\ j \text{ virt}}} \phi_{i}(\mathbf{r}_{1}) \phi_{i}^{*}(\mathbf{r}_{2}) \phi_{j}(\mathbf{r}_{2}) \phi_{j}^{*}(\mathbf{r}_{1})$$

$$\times \left[\frac{1}{\omega - (\epsilon_{j} - \epsilon_{i}) - i \eta} - \frac{1}{\omega - (\epsilon_{i} - \epsilon_{j}) + i \eta} \right]$$

This is the Alder-Wiser formula or the SOS formula

It involves empty states!

Then
$$\chi_0(1,2)$$
 $W(1,2)$

Diagonal self-energy correction approximation

$$G^{-1} = G^{KS - 1} - (\Sigma - v_{xc})$$

And remember:
$$G^{KS}^{-1}(\mathbf{r},\mathbf{r}',\omega) = \sum_{i} \phi_{i}^{KS}(\mathbf{r}) \left[\omega - \epsilon_{i}^{KS}\right] \phi_{i}^{KS*}(\mathbf{r}')$$

 G^{KS} is diagonal in KS basis

$$G_{ij}^{KS} \stackrel{-1}{=} (\omega) = \delta_{ij} (\omega - \epsilon_i^{KS})$$

Approximation:
$$\langle i | \Sigma(\omega) - v_{xc} | j \rangle \approx \delta_{ij} \langle i | \Sigma(\omega) - v_{xc} | i \rangle$$

Hence G is diagonal in KS basis

$$G_{ij}^{-1}(\omega) \approx \delta_{ij}(\omega - \epsilon_i^{KS} - \langle i | \Sigma(\omega) - \nu_{xc} | i \rangle)$$

Diagonal self-energy correction approximation

G is diagonal in KS basis

$$G_{ij}^{-1}(\omega) \approx \delta_{ij}(\omega - \epsilon_i^{KS} - \langle i | \Sigma(\omega) - v_{xc} | i \rangle)$$

Excitation energies are the poles of G or the zeros of G^{-1}

$$G^{-1}(\epsilon_i^{GW}) = 0$$

Quasiparticle energies:

$$\epsilon_{i}^{GW} = \epsilon_{i}^{KS} + \langle i | \Sigma(\epsilon_{i}^{GW}) - v_{xc} | i \rangle$$

Full quasiparticle solution

F. Bruneval

Bruyères-le-Châtel, Abinit HPC school 2024

Linearization of the energy dependance

$$\epsilon_{i}^{GW} - \epsilon_{i}^{KS} = \langle \phi_{i}^{KS} | [\Sigma(\epsilon_{i}^{GW}) - v_{xc}] | \phi_{i}^{KS} \rangle$$

Not yet known

Taylor expansion:

$$\sum \left(\epsilon_i^{GW} \right) = \sum \left(\epsilon_i^{KS} \right) + \left(\epsilon_i^{GW} - \epsilon_i^{KS} \right) \frac{\partial \sum}{\partial \epsilon} + \dots$$

Final result:

$$\epsilon_{i}^{GW} = \epsilon_{i}^{KS} + Z_{i} \langle \phi_{i}^{KS} | [\Sigma(\epsilon_{i}^{KS}) - v_{xc}] | \phi_{i}^{KS} \rangle$$

where
$$Z_i = 1/\left(1 - \left\langle i | \frac{\partial \Sigma}{\partial \epsilon} | i \right\rangle\right)$$

Quasiparticle equation

A typical ABINIT ouptput for Silicon at Gamma point

Self energy evaluation in GW

Correlation part of the GW self energy requires a convolution in frequency:

$$\Sigma_{c}(\omega) = \frac{i}{2\pi} \int_{-\infty}^{+\infty} d\omega' \frac{G(\omega + \omega')}{W_{p}(\omega')}$$

$$G(\omega) = \sum_{i} \frac{\phi_{i}(\mathbf{r}) \phi_{i}^{*}(\mathbf{r}')}{\omega - \epsilon_{i} \pm i \eta}$$
?

How to deal with the frequency dependence in W?

How do we perform the convolution? How do we treat the frequency dependence in *W*?

Dealing with two-point functions with plane-waves

Remember 1-point functions are

$$\phi_{k}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{kG} c_{k}(\mathbf{G}) e^{i(\mathbf{k}+\mathbf{G}) \cdot \mathbf{r}}$$

1 vector of coefficients per k-point in the Brillouin zone

Then 2-point functions are

$$W(r_{1,r_{2}}) = \frac{1}{\Omega} \sum_{qGG'} e^{i(q+G).r_{1}} W_{GG'}(q) e^{-i(q+G').r_{2}}$$

a matrix of coefficients per q-point in the BZ due to translational symmetry:

$$W(r_{1},r_{2}) = W(r_{1}+R,r_{2}+R)$$

W in plane-waves and frequency space

(1)
$$\chi_{0}(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = \sum_{\substack{i \text{ occ} \\ j \text{ virt}}} \phi_{i}(\mathbf{r}_{1}) \phi_{i}^{*}(\mathbf{r}_{2}) \phi_{j}(\mathbf{r}_{2}) \phi_{j}^{*}(\mathbf{r}_{1})$$

$$\times \left[\frac{1}{\omega - (\epsilon_{j} - \epsilon_{i}) - i \eta} - \frac{1}{\omega - (\epsilon_{i} - \epsilon_{j}) + i \eta} \right]$$

(2)
$$\varepsilon(1,2) = \delta(1,2) - \int d3v(1,3)\chi_0(3,2)$$

(3)
$$W(1,2) = \int d3 \varepsilon^{-1}(1,3) v(3,2)$$

(1)
$$\chi_{0GG'}(\boldsymbol{q},\omega) = \sum_{\boldsymbol{k}} \langle j \, \boldsymbol{k} - \boldsymbol{q} | e^{-i(\boldsymbol{q} + \boldsymbol{G}) \cdot \boldsymbol{r}_1} | i \, \boldsymbol{k} \rangle \langle i \, \boldsymbol{k} | e^{i(\boldsymbol{q} + \boldsymbol{G}') \cdot \boldsymbol{r}_2} | j \, \boldsymbol{k} - \boldsymbol{q} \rangle$$

ecuteps $i_{\text{occ}}_{j \text{ virt}}$ nband
$$\times \left[\frac{1}{\omega - (\varepsilon_i - \varepsilon_i) - i \, \eta} - \frac{1}{\omega - (\varepsilon_i - \varepsilon_i) + i \, \eta} \right]$$

$$\varepsilon_{\boldsymbol{G}\boldsymbol{G}'}(\boldsymbol{q},\omega) = \delta_{\boldsymbol{G},\boldsymbol{G}'} - \sum_{\boldsymbol{G}''} v_{\boldsymbol{G}\boldsymbol{G}''}(\boldsymbol{q}) \chi_{0\boldsymbol{G}''\boldsymbol{G}'}(\boldsymbol{q},\omega) \qquad v_{\boldsymbol{G}\boldsymbol{G}''}(\boldsymbol{q}) = \frac{4\pi}{|\boldsymbol{q}+\boldsymbol{G}|^2} \delta_{\boldsymbol{G},\boldsymbol{G}''}$$

(3)
$$W_{GG'}(\boldsymbol{q}, \omega) = \varepsilon_{GG'}^{-1}(\boldsymbol{q}, G') v_{G'}(\boldsymbol{q})$$
 matrix inversion

G_0W_0 calculation in ABINIT

Plasmon-Pole Models in *GW*

Correlation part of the GW self energy requires a convolution in frequency:

$$\Sigma_{c}(\omega) = \frac{i}{2\pi} \int_{-\infty}^{+\infty} d\omega' \frac{G(\omega + \omega')}{W_{p}(\omega')}$$

Generalized Plasmon-Pole Model:

$$\epsilon^{-1}(\omega') - 1 = \frac{\Omega^2}{2\widetilde{\omega}} \left[\frac{1}{\omega' - \widetilde{\omega} + i\eta} - \frac{1}{\omega' + \widetilde{\omega} - i\eta} \right]$$
Amplitude of the pole Position of the pole small real number

2 parameters need two constraints:

- Hybertsen-Louie (HL):
$$\ \epsilon^{-1}(0)$$
 and f sum rule $\int\limits_0^{}\omega\, {\rm Im}\, \epsilon^{-1}(\omega) = -\, \frac{\pi}{2}\, \omega_p^2$ - Godby-Needs (GN): $\ \epsilon^{-1}(0)$ and $\ \epsilon^{-1}(i\,\omega)$

F. Bruneval

Bruyères-le-Châtel, Abinit HPC school 2024

Silicon band gap with PPM

Silicon unit cell:

k-points: 5x5x5

bands: 190 empty states

cutoff energy for epsilon: 8 Ry

	HL	GN
Γ_{v}	5.45	5.65
Γ_{c}	8.71	8.87
Direct Band gap	3.26	3.22

Expt.

3.40 eV

Band gaps are almost the same However, the absolute positioning of the bands is not (0.2 eV difference!)

Outline

- I. Introduction: going beyond DFT
- II. Introduction of the Green's function

- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the GW self-energy in practice
- V. Applications

GW approximation gets good band gap

No more a band gap problem!

Exact realization of the Lehman decomposition

$$\langle m|G^{h}(\omega)|m\rangle = \sum_{i} \frac{\langle N0|\hat{c}_{m}^{+}|N-1i\rangle\langle N-1i|\hat{c}_{m}|N0\rangle}{\omega - \epsilon_{i} - i\eta}$$

$$N=2$$

$$N-1=1$$

$$m=1$$

Obtained from FCI calculations

F. Bruneval

What is the best starting point for G_0W_0 ?

Ionization potential of 100 small molecules

van Setten et al. JCTC (2015)

https://gw100.wordpress.com/

but containing difficult elements: Rb, Cs, Br, As etc...

F. Bruneval

 $v_{xc} = \alpha \Sigma_x + (1 - \alpha) v_x^{\text{PBE}} + v_{\text{Bruyères-le-Châtel, Abinit HPC school 2024}}^{\text{F. Bruneval, N. Dattani,}}$

Defect calculation within GW approximation

Bruyères-le-Châtel, Abinit HPC school 2024

Getting the density-matrix from GW

Electronic density:

$$\rho(\mathbf{r}) = \sum_{i} f_{i} \, \varphi_{i}^{*}(\mathbf{r}) \varphi_{i}(\mathbf{r})$$

Density-matrix:

$$\gamma(\mathbf{r}, \mathbf{r}') = \sum_{i} f_{i} \, \varphi_{i}^{*}(\mathbf{r}) \varphi_{i}(\mathbf{r}')$$

An example: the kinetic energy is a explicit functional of

$$\gamma(\mathbf{r},\mathbf{r'})$$

$$T = -\frac{1}{2} \sum_{i} f_{i} \iint d\mathbf{r} d\mathbf{r}' \varphi_{i}^{*}(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}') \nabla_{\mathbf{r}'}^{2} \varphi_{i}^{*}(\mathbf{r}')$$

GW density matrix in ABINIT

$$\langle \mathbf{k}i|\Sigma^{GW}(\mu_F+i\omega)|\mathbf{k}j\rangle$$

$$\langle \mathbf{k}i|\gamma^{GW}|\mathbf{k}j\rangle = -\frac{1}{2\pi} \int d\omega \frac{\langle \mathbf{k}i|\Sigma^{GW}(\mu_F + i\omega)|\mathbf{k}j\rangle}{(\mu_F + i\omega - \epsilon_{\mathbf{k}i})(\mu_F + i\omega - \epsilon_{\mathbf{k}j})}$$

already available in ABINIT v9.4

Denawi, Bruneval, Torrent, Rodriguez-Mayorga PRB (2023)

Diagonalization:

$$\sum_{j=1}^{N_b} \gamma_{\mathbf{k}ij} U_{\mathbf{k}j\lambda} = n_{\mathbf{k}\lambda} U_{\mathbf{k}i\lambda}$$

Si

Diagonalization:

$$\sum_{j=1}^{N_b} \gamma_{\mathbf{k}ij} U_{\mathbf{k}j\lambda} = n_{\mathbf{k}\lambda} U_{\mathbf{k}i\lambda}$$

Natural orbitals, natural occupancies

$$\phi_{\mathbf{k}\lambda}(\mathbf{r}) = \sum_{i=1}^{N_b} U_{\mathbf{k}i\lambda} \varphi_{\mathbf{k}i}(\mathbf{r}).$$

Si

Diagonalization:

$$\sum_{j=1}^{N_b} \gamma_{\mathbf{k}ij} U_{\mathbf{k}j\lambda} = n_{\mathbf{k}\lambda} U_{\mathbf{k}i\lambda}$$

Natural orbitals, natural occupancies

$$\phi_{\mathbf{k}\lambda}(\mathbf{r}) = \sum_{i=1}^{N_b} U_{\mathbf{k}i\lambda} \varphi_{\mathbf{k}i}(\mathbf{r}).$$

Si

Varying number of electrons that sum up to the correct count!

Density matrix to estimate self-consistent GW energy

Denawi, Bruneval, Torrent, Rodriguez-Mayorga PRB (2023)

Summary

- The GW approximation solves the band gap problem!
- The calculations are extremely heavy, so that we resort to many additional technical approximations: $\mathbf{G}_0\mathbf{W}_0$
- The complexity comes from
 - Dependence upon empty states
 - Non-local operators
 - Dynamic operators that requires freq. convolutions

Reviews - Links

Reviews:

- L. Hedin, Phys. Rev. 139 A796 (1965).
- L. Hedin and S. Lunqdvist, in Solid State Physics, Vol. **23** (Academic, New York, 1969), p. 1.
- F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. **61** 237 (1998).
- W.G. Aulbur, L. Jonsson, and J.W. Wilkins, Sol. State Phys. 54 1 (2000).
- G. Strinati, Riv. Nuovo Cimento **11** 1 (1988).
- F. Bruneval and M. Gatti, "Quasiparticle Self-Consistent GW Method for the Spectral Properties of Complex Materials", Top. Curr. Chem (2014) 347: 99–136

Codes:

- http://www.abinit.org
- http://www.vasp.org
- http://www.berkeleygw.org/
- https://github.com/bruneval/molgw

Find the location of the poles of the self-energy

Szabo-Ostlung book chapter 3 teaches how to perform HF in this example:

Basis: STO-3G

$$r(H-H) = 1.4 \text{ bohr}$$

2 basis functions → 2 eigenstates:

LUMO anti-bonding

HOMO bonding

In eigenvector basis: Hamiltonian

$$(22|\frac{1}{|r_1-r_2|}|22) = 0.697$$

Atomic units

Find the location of the poles of W

Diagonalize the RPA equation

$$\chi^{-1}(\omega) = \begin{pmatrix} \frac{\omega - (\epsilon_j - \epsilon_i)}{f_i - f_j} \\ & & \\$$

 $|kl\rangle$

$$\Delta \epsilon = \epsilon_{2} - \epsilon_{1} = 1.248$$

$$v = (12|1/r|12) = 0.181$$

$$\begin{vmatrix} 12 \\ 2 \end{vmatrix} \qquad \begin{vmatrix} 21 \\ 0 \\ 2 \end{vmatrix} \qquad 0$$

$$\langle 21 | \qquad 0 \qquad \frac{\omega + \Delta \epsilon}{-2} \qquad 0$$

$$v \qquad v$$

$$\Omega = \pm \sqrt{\Delta \epsilon^2 + 4v \Delta \epsilon} = \pm 1.569$$

$$\Sigma_{c}(\omega) = \frac{i}{2\pi} \int_{-\infty}^{+\infty} d\omega' \frac{G(\omega + \omega')}{W_{p}(\omega')}$$

$$G(\omega) = \sum_{i} \frac{\phi_{i}(\mathbf{r})\phi_{i}(\mathbf{r}')}{\omega - \epsilon_{i} \pm i \eta}$$

$$W_{p}(\omega) = \sum_{s} \frac{R_{s}(\mathbf{r}) R_{s}(\mathbf{r}')}{\omega - \Omega_{s} \pm i \eta}$$

$$\Sigma_{c}(\omega) = \frac{i}{2\pi} \sum_{i \in \{1,2\}} \sum_{s \in \{1 \to 2,2 \to 1\}} \int_{-\infty}^{+\infty} d\omega' \frac{\alpha}{\omega + \omega' - \epsilon_{i} \pm i\eta} \times \frac{\beta}{\omega' - \Omega \pm i\eta}$$

Pole table:

F. Bruneval

Bruyères-le-Châtel, Abinit HPC school 2024

 $\epsilon_2 - \omega \Omega$

$$\epsilon_2 + \Omega = 2.239$$

$$\epsilon_1 - \Omega = -2.147$$

Real part of the self-energy from MOLGW

$$\epsilon^{GW}_{\mathrm{HOMO}}$$
 = -16.23 eV $\epsilon^{GW}_{\mathrm{LUMO}}$ = 18.74 eV Bruyères-le-Châtel, Abinit HPC school 2024

Same conclusions hold for a many-state case:

Bulk silicon

Plasmon frequency $\sim 17 \text{ eV}$ Occupied states $\sim -5 - 0 \text{ eV}$ Empty states $\sim +2 - \dots \text{ eV}$

Exercise 0: Where the spectral weight comes from?

Ex: A complex function made of single polar:
$$\frac{1}{2} = \frac{A_1}{2 - \alpha_2} + \frac{A_2}{2 - \alpha_3} + \frac{A_3}{2 - \alpha_3}$$

poles: a_i Revictors: A_i :
$$(\frac{1}{2} - \alpha_2) \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2 - \alpha_3} + \frac{1}{2} \frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i Revictors: A_i :
$$(\frac{1}{2} - \alpha_2) \frac{1}{2} \frac{1}{2} + \frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i Revictors: A_i :
$$(\frac{1}{2} - \alpha_1) \frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i Revictors: A_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i Revictors: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i Revictors: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i Revictors: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i Revictors: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i :
$$\frac{1}{2 - \alpha_3} + \frac{1}{2 - \alpha_3}$$

Poles: a_i :
$$a_i$$
:

Exercise 1

Green's function in frequency domain

$$iG(\mathbf{r}_{1}t_{1},\mathbf{r}_{2}t_{2}) = \theta(t_{1}-t_{2})\sum_{i \text{ virit}} \phi_{i}(\mathbf{r}_{1})\phi_{i}^{*}(\mathbf{r}_{2})e^{-i\epsilon_{i}(t_{1}-t_{2})}$$

$$-\theta(t_{2}-t_{1})\sum_{i \text{ occ}} \phi_{i}(\mathbf{r}_{2})\phi_{i}^{*}(\mathbf{r}_{1})e^{-i\epsilon_{i}(t_{2}-t_{1})}$$

$$G(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = \int d(t_{1}-t_{2})e^{i\omega(t_{1}-t_{2})}G(\mathbf{r}_{1}t_{1},\mathbf{r}_{2}t_{2})$$

$$G(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = \sum_{i} \frac{\phi_{i}(\mathbf{r}_{1})\phi_{i}^{*}(\mathbf{r}_{2})}{\omega-\epsilon_{i}\pm i\eta}$$

Exercise 2:

Fock exchange from Green's functions

$$\Sigma_{x}(1,2)=iG(1,2)v(1^{+},2)$$

$$\Sigma_{x}(\mathbf{r_{1}},\mathbf{r_{2}},\omega)=-\sum_{iocc}\frac{\phi_{i}(\mathbf{r_{1}})\phi_{i}^{*}(\mathbf{r_{2}})}{|\mathbf{r_{1}}-\mathbf{r_{2}}|}$$

Exercise 3: let's play with Dyson equations

1) The multiple faces of the Dyson equation

$$[\omega - h_{KS}]G_{KS} = 1$$

$$[\omega - h_0 - v_{xc}]G_{KS} = 1$$

$$[G_0^{-1} - v_{xc}]G_{KS} = 1$$

$$G_{KS} = G_0 + G_0 v_{xc} G_{KS}$$

$$G_{KS} = G_0 + G_0 v_{xc} G_0 + G_0 v_{xc} G_0 v_{xc} G_0 + ...$$

$$G_{KS}^{-1} = G_0^{-1} - v_{xc}$$

2) Combining the Dyson equations

$$G^{-1} = G_0^{-1} - \Sigma$$

$$G_{KS}^{-1} = G_0^{-1} - v_{xc}$$

$$G^{-1} = G_{KS}^{-1} - (\Sigma - v_{xc})$$

$$1 = \left[G_{KS}^{-1} - (\Sigma - v_{xc})\right] G$$

$$1 = \left[\omega - h_0 - \Sigma\right] G$$
Bruyères-le-Châtel, Abinit HPC school 2024

Exercise 4

Derive the standard Adler-Wiser formula (1963):

$$\chi_0(1,2) = -iG(1,2)G(2,1)$$

$$\chi_0(\mathbf{r_1},\mathbf{r_2},\omega) = -\frac{i}{2\pi} \int d\omega' G(\mathbf{r_1},\mathbf{r_2},\omega+\omega') G(\mathbf{r_2},\mathbf{r_1},\omega')$$

$$\chi_{0}(\mathbf{r_{1}}, \mathbf{r_{2}}, \omega) = \sum_{\substack{i \text{ occ} \\ j \text{ virt}}} \phi_{i}(\mathbf{r_{1}}) \phi_{i}^{*}(\mathbf{r_{2}}) \phi_{j}(\mathbf{r_{2}}) \phi_{j}^{*}(\mathbf{r_{1}})$$

$$\times \left[\frac{1}{\omega - (\epsilon_{j} - \epsilon_{i}) - i \eta} - \frac{1}{\omega - (\epsilon_{i} - \epsilon_{j}) + i \eta} \right]$$

Exercice 4: solution (1/3)

Definitions:

$$G(\omega) = \int dG \ G(G) \ e^{-i\omega G}$$

$$G(G) = \frac{1}{2\pi} \int d\omega \ G(\omega) e^{-i\omega G}$$

$$\int d\omega \ e^{-i\omega G}$$

$$\mathcal{X}(G) = -i \ G(G) \ G(-G)$$

Exercice 4: solution (2/3)

$$\chi(\omega) = \int d\sigma \chi(b) e = -\frac{i}{(i\sigma)^2} \int d\sigma \int d\omega_1 G(\omega_1) e \int d\omega_2 G(\omega_2) e e$$

$$= -\frac{i}{(i\sigma)^2} \int d\omega_1 \int d\omega_2 G(\omega_1) G(\omega_2) \int d\sigma e$$

$$= -\frac{i}{2\pi} \int d\omega_1 G(\omega_1) G(\omega_2)$$

$$= -\frac{i}{2\pi} \int d\omega_2 \int d\omega_2 \int d\omega_2 G(\omega_2) \int d\sigma e$$

$$= -\frac{i}{2\pi} \int d\omega_2 \int d\omega_2$$

Exercice 4: solution (3/3)

$$\chi(\omega) = \int d\zeta \ \chi(\delta) \ e^{-\frac{i}{2}} \int d\zeta \ \int d\omega_1 \ G(\omega_1) \ e^{-\frac{i}{2}} \int d\omega_2 \ G(\omega_1) \ e^{-\frac{i}{2}} \int d\omega_2 \ G(\omega_1) \ G(\omega_2) \ G(\omega_2) \ e^{-\frac{i}{2}} \int d\omega_1 \ G(\omega_1) \ G(\omega_2) \ G(\omega_2) \ e^{-\frac{i}{2}} \int d\omega_2 \ \int d\omega_2$$

Exercise 5

Derive that the product in time becomes a convolution in frequency:

$$\Sigma(\mathbf{r_{1}}, \mathbf{r_{2}}, t_{1} - t_{2}) = iG(\mathbf{r_{1}}, \mathbf{r_{2}}, t_{1} - t_{2})W(\mathbf{r_{2}}, \mathbf{r_{1}}, t_{2} - t_{1})$$

$$G(\mathbf{r_{1}}, \mathbf{r_{2}}, \omega) = \int d(t_{1} - t_{2})e^{i\omega(t_{1} - t_{2})}G(\mathbf{r_{1}}, t_{1}, \mathbf{r_{2}}, t_{2})$$

$$G(\mathbf{r_{1}}, \mathbf{r_{2}}, t_{1} - t_{2}) = \frac{1}{2\pi}\int d\omega e^{-i\omega(t_{1} - t_{2})}G(\mathbf{r_{1}}, \mathbf{r_{2}}, \omega)$$

$$\Sigma(\mathbf{r_{1}}, \mathbf{r_{2}}, \omega) = \frac{i}{2\pi}\int d\omega' G(\mathbf{r_{1}}, \mathbf{r_{2}}, \omega + \omega')W(\mathbf{r_{2}}, \mathbf{r_{1}}, \omega')$$

Exercice 6: Feynman diagram drawing

- a) Draw all the 1st order diagrams for the self-energy
- b) Draw all the 2nd order diagrams for the self-energy
- c) What is the difference between the proper and the improper self-energy
- d) How self-consistency can simplify the expansion?

Self-energy diagram drawing rules:

- 1. Diagrams are combinations of arrows (Green's function) and horizontal lines (Coulomb interaction).
- 2. Diagrams should be connected.
- 3. Self-energy have an entry point and an exit point (possibly the same).
- 4. Each intersection (=vertex) should conserve the particle numbers.
- 5. A proper self-energy diagram cannot be cut (by removing an arrow) into another smaller self-energy.

Exercise 6:

Perturbation theory up to third order

$$\begin{split} &\Sigma_{pq}^{(3)}(\omega) = \sum_{I=1}^{6} \left(AI + CI + DI\right) \\ &A1 = -\sum \frac{(2V_{pkqj} - V_{pkjq})(2V_{jiab} - V_{jiba})V_{abki}}{(\varepsilon_{j} + \varepsilon_{i} - \varepsilon_{a} - \varepsilon_{b})(\varepsilon_{k} + \varepsilon_{i} - \varepsilon_{a} - \varepsilon_{b})} \\ &A2 = \sum \frac{(2V_{pcqb} - V_{pcbq})(2V_{jiab} - V_{jiba})V_{jica}}{(\varepsilon_{j} + \varepsilon_{i} - \varepsilon_{a} - \varepsilon_{b})(\varepsilon_{j} + \varepsilon_{i} - \varepsilon_{a} - \varepsilon_{c})} \\ &A3 = \sum \frac{(2V_{pcqj} - V_{pcjq})(2V_{jiab} - V_{jiba})V_{abci}}{(\varepsilon_{j} + \varepsilon_{i} - \varepsilon_{a} - \varepsilon_{b})(\varepsilon_{j} - \varepsilon_{c})} \\ &A4 = \sum \frac{(2V_{pjqc} - V_{pjcq})(2V_{jiab} - V_{jiba})V_{abci}}{(\varepsilon_{j} + \varepsilon_{i} - \varepsilon_{a} - \varepsilon_{b})(\varepsilon_{j} - \varepsilon_{c})} \\ &A5 = -\sum \frac{(2V_{pbqk} - V_{pbkq})(2V_{jiab} - V_{jiba})V_{ijka}}{(\varepsilon_{j} + \varepsilon_{i} - \varepsilon_{a} - \varepsilon_{b})(\varepsilon_{k} - \varepsilon_{b})} \\ &A6 = -\sum \frac{(2V_{pkqb} - V_{pkkq})(2V_{jiab} - V_{jiba})V_{ijka}}{(\varepsilon_{j} + \varepsilon_{i} - \varepsilon_{a} - \varepsilon_{b})(\varepsilon_{k} - \varepsilon_{b})} \\ &C1 = \sum \frac{(2V_{piab} - V_{piba})V_{abcd}V_{qicd}}{(\omega + \varepsilon_{i} - \varepsilon_{a} - \varepsilon_{b})(\omega + \varepsilon_{i} - \varepsilon_{c} - \varepsilon_{d})} \\ &C2 = \sum \frac{(2V_{piab} - V_{piba})V_{abjk}V_{qijk}}{(\omega + \varepsilon_{i} - \varepsilon_{a} - \varepsilon_{b})(\varepsilon_{j} + \varepsilon_{k} - \varepsilon_{a} - \varepsilon_{b})} \end{aligned}$$

$$C3 = \sum \frac{(2V_{pijk} - V_{pikj})V_{abjk}V_{qiob}}{(\omega + \varepsilon_i - \varepsilon_a - \varepsilon_b)(\varepsilon_j + \varepsilon_k - \varepsilon_a - \varepsilon_b)}$$

$$D5 = \sum \left\{ \frac{V_{pikk}[V_{jub}(V_{quik} - 2V_{quik}) + V_{jibu}(V_{quik} - 2V_{quik})]}{(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_k)(\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b)} \right\}$$

$$C4 = \sum \frac{(2V_{paik} - V_{paik})V_{ijbc}V_{qaib}}{(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_j)(\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_c)}$$

$$C5 = \sum \frac{(2V_{paik} - V_{paik})V_{ijbc}V_{qaij}}{(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_k)(\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_c)}$$

$$D6 = -\sum \left\{ \frac{V_{pikk}[V_{ijb}(V_{qik} - 2V_{qik}) + V_{ijba}(V_{qik} - 2V_{qik})]}{(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_k)(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_c)} \right\}$$

$$D1 = \sum \left\{ \frac{V_{pikk}[V_{ijb}(V_{qik} - 2V_{qik}) + V_{ijba}(V_{qik} - 2V_{qik})]}{(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_k)(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_c)} \right\}$$

$$D2 = \sum \left\{ \frac{V_{pikk}[V_{ijb}(V_{qik} - 2V_{qik}) + V_{ijba}(V_{qik} - 2V_{qik})]}{(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_k)(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_k)} \right\}$$

$$D3 = \sum \left\{ \frac{V_{pikk}[V_{ijb}(V_{qik} - 2V_{qik}) + V_{ijba}(V_{qik} - 2V_{qik})]}{(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_k)(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_k)} \right\}$$

$$D4 = \sum \left\{ \frac{V_{pikk}[V_{ijb}(V_{qik} - 2V_{qik}) + V_{ijba}(V_{qik} - 2V_{qik})]}{(\omega + \varepsilon_i - \varepsilon_a - \varepsilon_b)(\omega + \varepsilon_j - \varepsilon_b - \varepsilon_c)} \right\}$$

$$D3 = \sum \left\{ \frac{V_{pika}[V_{ijb}(V_{qik} - 2V_{qik}) + V_{ijba}(V_{qik} - 2V_{qik})]}{(\omega + \varepsilon_i - \varepsilon_a - \varepsilon_b)(\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b)} \right\}$$

$$D4 = \sum \left\{ \frac{V_{piki}[V_{ijb}(V_{qib} - 2V_{qik}) + V_{ijba}(V_{qik} - 2V_{qiba})]}{(\omega + \varepsilon_i - \varepsilon_a - \varepsilon_b)(\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b)} \right\}$$

$$D4 = \sum \left\{ \frac{V_{piki}[V_{ijb}(V_{qib} - 2V_{qib}) + V_{ijba}(V_{qib} - 2V_{qiba})]}{(\omega + \varepsilon_a - \varepsilon_j - \varepsilon_k)(\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b)} \right\}$$

$$L.S. Cederbaum, W. Domcke (1977)$$

Exercice 6: effect of the other diagrams

Ionization potentials of the **GW100** benchmark (reference CCSD(T))

