Week 1 Supervised Learning and Regression

Week 1.1 Models and Parameters

Supervised Learning

x: inputs y: outputs

Training data:

$$(x = 1, y = 1)$$

$$(x = 2, y = 4)$$

$$(x = 3, y = 9)$$

Test data:

$$(x = 4, y = ?)$$

Supervised Learning

Training data:

Models

In ML, a Model is a function that relates some inputs (x) to some outputs (y)

Most models have parameters (θ), which allows them to represent whole classes of functions.

$$\hat{y} = ax^2 + bx + c \qquad \qquad \hat{y} = a\log(x) + b \qquad \dots$$

Linear regression

Fitting a Model

- 1. Define the model: Choose the "class" of functions that relates the inputs (x) to the output (y)
- 2. Define your training loss
- 3. Find the function in your class/form that gives the smallest training loss

Week 1.2 Loss functions

Fitting a Model

1. Define the model: Choose the "class" of functions that relates the inputs (x) to the output (y)

Applying the Model to Data

$$\hat{y} = b_0 + b_1 x$$

Training loss function

- A training loss function measures the deviation of the model fits from the observed data
- A large loss indicates a poor fit to the training data
- Different loss functions penalize different deviations differently
- We find the parameters that minimize our loss function given the training data

Residuals

Residuals are the errors from the model fit: Data = Fit + Residual

A criterion for the best line

- We want a line that has small residuals
 - Option 1: Minimize the sum of magnitudes (absolute values)
 of residuals: The L₁-norm

$$L(\theta) = \sum_{i=1}^{n} |y_i - \hat{y}_i| = \sum_{i=1}^{n} |r_i| = ||\mathbf{r}||_1$$
 LAD: Least Absolute Deviation

2. Option 2: Minimize the sum of squared residuals: The squared L₂-norm

$$L(\theta) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} r_i^2 = ||\mathbf{r}||_2^2$$
 OLS: Ordinary Least Squares

- The most commonly used is least squares
 - 1. Motivated by normal distribution of errors
 - 2. Solutions can be easily computed
 - 3. Big errors count relatively more than small errors

Week 1.3 Optimization Finding the best model fit

Optimization

- Finding the best *function* is the same problem as finding the best *parameters*.
- Parameter estimation is the process of minimizing the training loss by trying different values of the parameters
- The setting of parameters that gives you the smallest loss is the best estimate of the parameters, and the best function in your class

Optimization

Here the parameter was a single number. In linear regression we have 2 parameters, making the loss-function a surface

Parameter Value (θ)

Using the derivative of the loss

By providing the derivative of the loss function in respect to the parameters, optimization can be sped up.

Fit:
$$\hat{y}_i = b_0 + b_1 x_i$$

Residual:
$$r_i = y_i - \hat{y}_i$$

$$\frac{\partial \sum f_i(\theta)}{\partial \theta} = \sum \frac{\partial f_i(\theta)}{\partial \theta}$$

Loss:
$$L = \sum_{i=1}^{N} (y_i - b_0 - b_1 x_i)^2$$

$$\frac{\partial f(g(\theta))}{\partial \theta} = \frac{\partial f(g)}{\partial g} \frac{\partial g(\theta)}{\partial \theta}$$

Derivative b₀:
$$\frac{\partial L}{\partial b_0} = -2\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) = -2\sum_{i=1}^{n} r_i$$

Derivative b₁:
$$\frac{\partial L}{\partial b_1} = -2\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) x_i = -2\sum_{i=1}^{n} r_i x_i$$

Using the derivative of the loss

The vector of partial derivatives is called a gradient or Jacobian.

Derivatives of the loss

- Remember: Derivative = slope
- · Also remember: want to make loss small
- . If $\frac{\partial L}{\partial \theta}$ is positive, should I increase or decrease θ ?
- . If $\frac{\partial L}{\partial \theta}$ is negative, should I increase or decrease θ ?

Linear regression in matrix notation

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

$$\hat{y} = Xb$$

For each point in the dataset, we get a fit/estimate/prediction from the model. Next, we'll compare those to the actual data.

Using the derivative (vector notation)

By providing the derivative of the loss function in respect to the parameters, optimization can be sped up.

Prediction:
$$\hat{y} = Xb$$

$$\begin{vmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{vmatrix} = \begin{vmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{vmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

Residual:
$$\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}}$$

Loss:
$$L = (\mathbf{y} - \mathbf{X}\mathbf{b})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{b})$$
$$= \mathbf{y}^{\mathsf{T}}\mathbf{y} - 2\mathbf{y}^{\mathsf{T}}\mathbf{X}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{b}$$

Gradient:
$$\nabla_b J = -2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \mathbf{b} = -2\mathbf{X}^T \mathbf{r}$$

Week 1.4 Implementing OLS regression through minimization of L2 loss

Step 1: Write the model function

Write a function that returns the

```
First input is parameter
list or np.array

def linearModelPredict(b,X):

# Get Model prediction

predY =

# return Model prediction

return predY
```

Step 2: Write a loss function

We are modifying the loss function to also return the gradient First input is parameter Explanatory and list or np.array response variable def linearModelLossRSS(b,X,y): # Get Model prediction predY = linearModelPredict(b, X) # Get the vector of residuals res = # Get the residuals sums of squares rss = # Get the gradient gradient = # return rss and gradient return (rss,gradient)

Step 3: Call the optimizer

```
import scipy.optimize as so
# Set some starting values
bstart=[0,0]
# Call the optimization function
RESULT=so.minimize(linearModelLossRSS,bstart,args=(X, y),jac=True)

Loss Starting Additional Use
function value arguments gradient
```

Remember our definition:

def linearModelLossRSS(b,X,y):

Step 4: Check the results

```
RESULT
                     # Final loss function value
fun: 14.25
hess inv: array([[0.33,-0.07],[-0.07,0.01]])
jac: array([1.19-06, -1.90-06])
message: 'Optimization terminated successfully.'
nfev: 24
                     # Number of evaluations
nit: 3
                     # Number of iterations
njev: 6
status: 0
success: True
x: array([65,-0.6]) # Parameter estimates
```

- Check if successful
- Get parameter estimates
- Maybe check the loss

Step 5: Visualize the results

```
b=RESULT.x  # Get the parameters
x_grid = np.linspace(y.min(), y.max(),10) # get grid
Xn = np.c_[np.ones(x_grid.size), x_grid] # Make Design
yp=linearModelPredict(b,X) # get prediction
ax.plot(x_grid, yp, color = 'red')
```

 $\% \ \widehat{in \ poverty} = 64.68 - 0.62 \% \ HS \ grad$

Week 1.5 Evaluating model fit - R²

Evaluating the fit with R²

- The quality of the fit of a linear regression model is most commonly evaluated using R² the coefficient of determination.
- R² is calculated from the ratio of residual sum of squares total sum of squares.

$$R^2 = 1 - \frac{\text{RSS}}{\text{TSS}} = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2} \quad \text{Total sum of squares (RSS)}$$

- It tells us what percent of variability in the response variable is explained by the model. (0=no fit, 1=perfect fit)
- The remainder of the variability is explained by variables not included in the model or by inherent randomness in the data.
- Because OLS is miming the RSS, it will always have the highest R² value possible for that class of models.

Summary

Models can be written in general as:

The training loss function tells how bad a fit is:

Example: squared error
$$L = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Model fitting involves selecting the parameters that minimizes the loss function: Parameter estimation
- In linear regression, the proportion of the explained variance in the response variable is expressed by the coefficient of determination (R²)

Week 1.6 L1-loss and median regression Robust techniques

The Impact of the Loss Function

Example of best running speeds for a 3km Strava segment.

What do you notice?

Are these old guys for real?

Maybe these data points have other explanations:

- old guys on bikes
- young runners lying about their age
- really good doping

- ...

The Impact of the Loss Function

Excluding these "outliers" changes the predicted running speed for 80-year olds

Answers that change a lot with exclusion of a few data points are called **non-robust**.

So are we sure that this one is cheater as well?

Robust statistics

Robust statistics seek to provide methods that emulate popular statistical methods, but which are not unduly affected by outliers or other small departures from model assumptions.

- Mean is a measure of central tendency that is sensitive to outliers
- Median is a measure of central tendency that is robust against outliers

Robust regression

To develop a robust regression technique, we can think how to change the loss function.

Say we have these 4 data points

If we find the point that minimizes the sum of squared error

$$L = \sum_{i=1}^{n} (y_i - b_0)^2$$

$$\frac{\partial L}{\partial b_0} = \sum_{i=1}^{n} -2(y_i - b_0)$$

$$\frac{\partial L}{\partial b_0} = 0 \implies b_0 = \frac{\sum_{i=1}^{n} y_i}{n}$$

The minimum is reached at the mean

Robust regression

To develop a robust regression technique, we can think how to change the cost function.

Say we have these 4 data points

If we find the point that minimize the sum of **absolute** errors

$$L = \sum_{i=1}^{n} |y_i - b_0|$$

$$L = \sum_{i=1}^{n} \begin{cases} (y_i - b_0) & \text{if } y_i > b_0 \\ -(y_i - b_0) & \text{if } y_i \le b_0 \end{cases}$$

$$\frac{\partial L}{\partial b_0} = \sum_{i=1}^n \begin{cases} -1 & \text{if } y_i > b_0 \\ 1 & \text{if } y_i \le b_0 \end{cases}$$

The minimum is reached at the median

Outliers and robustness

Median regression leads to results in a regression line that is closer to the one that excludes the outlier.

Median regression is a robust regression technique

Week 1.7 Implementing Median regression through minimization of L1 loss

Implementing median regression

```
yp = linearModelPredict(b,x)
   # Computes Prediction
                                 calls
linearModelLossRSS(b,x,y)
                                     linearModelLossLAD(b,x,y)
   # Computes RSS
                                        # Computes summed
   # for linear fit.
                                        # absolute deviation
so.minimize(lossfcn,b0,args=(x,y))
   # Estimates b to
   # minimize lossfcn
                                       Handing a loss function to your linear
                                       regression lets you do normal linear
LinearModelFit(x,y,lossfcn)
                                       regression (lossfcn = rss) and median
```

regression (lossfcn = lad) with the

same code

Using the derivative

Again, by providing the derivative of the training loss with respect to the parameters, we can make the fit faster.

Prediction:
$$\hat{y}_i = b_0 + b_1 x_i$$

Residual:
$$r_i = y_i - \hat{y}_i$$

Loss:
$$L = \sum_{i=1}^{n} |y_i - (b_0 + b_1 x_i)|$$

Derivative
$$b_0$$
:
$$\frac{\partial L}{\partial b_0} = -\sum_{i=1}^n \operatorname{sgn}(y_i - (b_0 + b_1 x_i)) = -\sum_{i=1}^n \operatorname{sgn}(r_i)$$

Derivative b₁:
$$\frac{\partial L}{\partial b_0} = -\sum_{i=1}^n \operatorname{sgn}(y_i - (b_0 + b_1 x_i)) \cdot x_i = -\sum_{i=1}^n \operatorname{sgn}(r_i) \cdot x_i$$

Parameter estimation

- "Parameter estimation" is the process of minimizing the loss function by trying different values of the parameters
- The Gradient can speed up optimization a lot! (But you can get by without it.)
- For nearly every problem there is a more specialized solution that is faster, for example Sklearn-methods usually have a fit (estimation) and predict (prediction) function built in.
- But using general minimization algorithms, such as scipy.optimize.minimize, is an incredibly useful and universal tool.

Summary

- We can fit mathematical models to capture the relationship between x and y
- 1. Select a function class/form
- 2. Select a loss function
- 3. Estimation/ fitting: Find the function that minimizes the loss
- "supervised learning" is a cornerstone of statistics, machine learning, and data science.