SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH QUẢNG NINH

KỲ THI CHỌN HỌC SINH GIỚI CẤP TỈNH THPT NĂM 2018 Môn thi: TOÁN – Bảng A

Ngày thi: **04/12/2018**

ĐỀ THI CHÍNH THỰC

Thời gian làm bài: 180 phút, không kể thời gian giao đề (Đề thi này có 01 trang)

Bài 1 (4 điểm).

- 1. Cho hàm số $y = x^4 2mx^2 + 2m 1$, với m là tham số. Tìm các giá trị của m để đồ thị của hàm số đã cho có ba điểm cực trị là 3 đỉnh của một tam giác vuông.
- 2. Nhà bạn An muốn đặt thợ làm một bể cá, nguyên liệu bằng kính trong suốt, không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được 400000 (cm³) nước. Biết rằng chiều cao của bể gấp 2 lần chiều rông của bể. Xác đinh diên tích đáy của bể cá để tiết kiêm nguyên vật liêu nhất.

Bài 2 (3 điểm). Giải hệ phương trình
$$\begin{cases} \frac{1}{y^2} \log \frac{100x}{y^2} = 1 - \frac{x-2}{y^2} \\ \sqrt{xy-2} = \sqrt[3]{x-1} + y \end{cases}$$

Bài 3 (4 điểm).

- 1. Cho tam giác ABC không có góc vuông và có các cạnh BC = a, CA = b, AB = c. Chứng minh rằng nếu $a^2 + b^2 = 2c^2$ và $\tan A + \tan C = 2\tan B$ thì $\triangle ABC$ là tam giác đều.
- 2. Trong cuộc thi văn nghệ do Đoàn thanh niên trường THPT X tổ chức vào tháng 11 năm 2018 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó: có 4 tiết mục khối 12, có 5 tiết mục khối 11 và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng ngày 20 tháng 11 (không tính thứ tự biểu diễn). Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12.
- **Bài 4** (3 điểm). Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có 3 góc đều nhọn. Gọi H là trực tâm của tam giác ABC; M, N, P lần lượt là giao điểm của AH, BH, CH với đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ trực tâm H của tam giác ABC, biết $M\left(-\frac{16}{9}; -\frac{5}{9}\right); N\left(-\frac{7}{8}; \frac{5}{4}\right); P\left(-\frac{1}{3}; \frac{1}{6}\right)$.
- **Bài 5** (4 điểm). Cho lăng trụ ABC.A'B'C' có đáy là tam giác vuông tại A, AB = a, BC = 2a. Mặt bên BCC'B' là hình thoi và nằm trong mặt phẳng vuông góc với mặt phẳng chứa đáy. Góc giữa hai mặt phẳng (BCC'B') và (ABB'A') bằng α .
 - 1. Trong trường hợp $\tan \alpha = \frac{5\sqrt{2}}{4}$, hãy tính theo *a*:
 - a. Thể tích khối lăng trụ ABC. A'B'C'.
 - **b.** Khoảng cách giữa hai đường thẳng A'C' và B'C.
- **2.** Gọi β là góc giữa hai mặt phẳng chứa hai mặt bên qua CC' của lăng trụ ABC.A'B'C', tìm hệ thức giữa cot α và cot β .

Bài 6 (2 điểm). Cho ba số thực dương x, y, z thỏa mãn $x^2 + y^2 + z^2 = 1$. Tìm giá trị lớn nhất của biểu thức

Họ và tên thí sinh:	Số báo danh:
Chữ ký của cán bộ coi thi 1:	Chữ ký của cán bộ coi thi 2:

SỞ GIÁO DỰC VÀ ĐÀO TẠO TỈNH QUẢNG NINH

HƯỚNG DẪN CHẨM THI CHỌN HỌC SINH GIỚI CẤP TỈNH THPT NĂM 2018 Môn thi: TOÁN – Bảng A

ĐỀ THI CHÍNH THỨC

Ngày thi: 04/12/2018 (Hướng dẫn này có 05 trang)

Bài	Sơ lược lời giải	Điểm
	1.($2 \operatorname{di\acute{e}m}$) TXĐ: $D = \mathbb{R}$.	
	$Ta có: y' = 4x(x^2 - m)$	0,5
	$y' = 0 \Leftrightarrow 4x(x^2 - m) = 0 \Leftrightarrow x = 0$ hoặc $x^2 = m$	0,25
	Hàm số có 3 điểm cực trị $\Leftrightarrow y' = 0$ có 3 nghiệm phân biệt $\Leftrightarrow m > 0$	0,25
	Khi đó 3 điểm cực trị của đồ thị hàm số là:	
	$A\left(-\sqrt{m};-m^2+2m-1\right), B\left(0;2m-1\right), C\left(\sqrt{m};-m^2+2m-1\right)$	0,5
	Vì hàm số chẵn nên tam giác ABC cân tại $B \in Oy$, A và C đối xứng nhau qua Oy .	
	ABC là tam giác vuông \Leftrightarrow tam giác ABC vuông cân tại B	0.5
Bài 1	$\Leftrightarrow AC = AB.\sqrt{2} \Leftrightarrow m^2 = \sqrt{m} \Leftrightarrow m = 1 \text{ hoặc } m = 0.$	0,5
	Vậy chọn $m=1$.	
4 điểm	2. (2 điểm) Gọi a, b, c lần lượt là chiều rộng, dài, cao của hình hộp chữ nhật	0,25
	(a, b, c > 0).	0,23
	Theo bài ra $V = abc = 400000$ và $c = 2a \Rightarrow 2a^2b = 400000 \Rightarrow ab = \frac{200000}{a}$	0,25
	Ta có tổng diện tích xung quanh và diện tích một đáy của bể là	0.25
	$S = ab + 2ac + 2bc = ab + 4a^2 + 4ab = 5ab + 4a^2$	0,25
	$= \frac{1000000}{a} + 4a^2 = 4\left(\frac{125000}{a} + \frac{125000}{a} + a^2\right)$	0,5
	$S = 4\left(\frac{125000}{a} + \frac{125000}{a} + a^2\right) \ge 4.3.\sqrt[3]{\frac{125000}{a} \cdot \frac{125000}{a} \cdot a^2} = 30000.$	0,5
	Suy ra S nhỏ nhất khi $\frac{125000}{a} = a^2 \Leftrightarrow a = 50 \Rightarrow b = 80 \Rightarrow S_d = 4000 \text{ cm}^2$.	0,25
	Điều kiện: $x > 0$; $xy \ge 2$.	0,25
Bài 2 3 điểm	Ta có $\frac{1}{y^2} \log \frac{100x}{y^2} = 1 - \frac{x - 2}{y^2} \iff \log 100x - \log y^2 = y^2 - x + 2$	0,25
	$\Leftrightarrow x + \log x = y^2 + \log y^2 (1)$	0,25

suy ra hàm số $f(t)$ đồng biến Kết hợp với (1) ta có $f(x)$: Thế (2) vào phương trình có $\sqrt{y^3 - 2} = \sqrt[3]{y^2 - 1} + y \Leftrightarrow \sqrt[3]{y^2}$ $(y - 3) \left(\frac{y + 3}{\sqrt[3]{(y^2 - 1)^2} + 2\sqrt[3]{y^2}} \right)$	$f(y^{2}) \Leftrightarrow x = y^{2} \qquad (2)$ Son lại của hệ đã cho ta được: $\frac{y^{2} - 1 - 2 + y - 3 - (\sqrt{y^{3} - 2} - 5) = 0}{\sqrt{1 - 1} + 4} + 1 - \frac{y^{2} + 3y + 9}{\sqrt[3]{y^{2} - 2} + 5} = 0 \qquad (3) \Leftrightarrow y = 3$ $\frac{y^{2} - 1 + 4}{\sqrt{1 - 1} + 4} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{y^{2} - 1 + 4}{\sqrt{1 - 1} + 4} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 5} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3y + 9}{\sqrt{y^{3} - 2} + 1} + 1 < 2 < \frac{y^{2} + 3$	0,25 0,25 0,25 0,5 0,5
suy ra hàm số $f(t)$ đồng biến Kết hợp với (1) ta có $f(x)$: Thế (2) vào phương trình co $\sqrt{y^3 - 2} = \sqrt[3]{y^2 - 1} + y \Leftrightarrow \sqrt[3]{y^2}$ $(y - 3) \left(\frac{y + 3}{\sqrt[3]{(y^2 - 1)^2} + 2\sqrt[3]{y^2} + 2\sqrt[3]{y^$	trên khoảng $(0; +\infty)$. $= f(y^2) \Leftrightarrow x = y^2 \qquad (2)$ còn lại của hệ đã cho ta được: $\frac{y^2 - 1}{-2 + y - 3 - (\sqrt{y^3 - 2} - 5)} = 0$ $\frac{-1}{-1 + 4} + 1 - \frac{y^2 + 3y + 9}{\sqrt[3]{y^2 - 2} + 5} = 0 \qquad (3) \Leftrightarrow y = 3$ $\frac{-1}{-1 + 4} + 1 < 2 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{-1}{-1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{-1}{-1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{-1}{-1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{-1}{-1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{-1}{-1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$	0,25 0,25 0,5 0,5
suy ra hàm số $f(t)$ đồng biến Kết hợp với (1) ta có $f(x)$: Thế (2) vào phương trình co $\sqrt{y^3 - 2} = \sqrt[3]{y^2 - 1} + y \Leftrightarrow \sqrt[3]{\sqrt[3]{(y^2 - 1)^2} + 2\sqrt[3]{y^2}}$ Ta có $\frac{y + 3}{\sqrt[3]{(y^2 - 1)^2} + 2\sqrt[3]{y^2 - 1}}$ Nên pt (3) có nghiệm duy n Vậy hệ pt có nghiệm (x ; y) 1.(2 điểm) Ta có	trên khoảng $(0; +\infty)$. $= f(y^2) \Leftrightarrow x = y^2 \qquad (2)$ còn lại của hệ đã cho ta được: $\frac{y^2 - 1}{-2 + y - 3 - (\sqrt{y^3 - 2} - 5)} = 0$ $\frac{-1}{-1 + 4} + 1 - \frac{y^2 + 3y + 9}{\sqrt[3]{y^2 - 2} + 5} = 0 \qquad (3) \Leftrightarrow y = 3$ $\frac{-1}{-1 + 4} + 1 < 2 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{-1}{-1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{-1}{-1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{-1}{-1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{-1}{-1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$ $\frac{-1}{-1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{với } y \ge \sqrt[3]{2}$	0,25
Thế (2) vào phương trình có $\sqrt{y^3 - 2} = \sqrt[3]{y^2 - 1} + y \Leftrightarrow \sqrt[3]{\sqrt{y^2 - 1}} + y \Leftrightarrow \sqrt[3]{\sqrt{y^2 - 1}}$ $(y - 3) \left(\frac{y + 3}{\sqrt[3]{(y^2 - 1)^2} + 2\sqrt[3]{y^2}} \right)$ Ta có $\frac{y + 3}{\sqrt[3]{(y^2 - 1)^2} + 2\sqrt[3]{y^2 - 1}}$ Nên pt (3) có nghiệm duy n Vậy hệ pt có nghiệm (x; y) 1. (2 điểm) Ta có	$\frac{\sin a }{y^2 - 1} = \frac{\sin a}{\sqrt{y^2 - 1}} = \frac{\sin a}{\sqrt{y^2 - 2}} = 0$ $\frac{-1 + 4}{\sqrt{y^2 - 2}} = \frac{(3) \Leftrightarrow y = 3}{\sqrt{y^2 - 2} + 5} = 0$ $\frac{-1 + 4}{\sqrt{y^2 - 2} + 5} = 0$	0,5
$\sqrt{y^3 - 2} = \sqrt[3]{y^2 - 1} + y \Leftrightarrow \sqrt[3]{\sqrt{y^2 - 1}}$ $(y - 3) \left(\frac{y + 3}{\sqrt[3]{(y^2 - 1)^2} + 2\sqrt[3]{y^2}}\right)$ Ta có $\frac{y + 3}{\sqrt[3]{(y^2 - 1)^2} + 2\sqrt[3]{y^2 - 1}}$ Nên pt (3) có nghiệm duy n Vậy hệ pt có nghiệm (x; y) 1.(2 điểm) Ta có	$\frac{y^2 - 1 - 2 + y - 3 - \left(\sqrt{y^3 - 2} - 5\right) = 0}{\frac{-1 + 4}{-1 + 4} + 1 - \frac{y^2 + 3y + 9}{\sqrt[3]{y^2 - 2} + 5}} = 0 (3) \Leftrightarrow y = 3$ $\frac{-1 + 4}{-1 + 4} + 1 < 2 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{v\'er} y \ge \sqrt[3]{2}$ $\frac{1}{1 + 4} + 1 < 2 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{v\'er} y \ge \sqrt[3]{2}$ $\frac{1}{1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{v\'er} y \ge \sqrt[3]{2}$ $\frac{1}{1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{v\'er} y \ge \sqrt[3]{2}$ $\frac{1}{1 + 4} + 1 < 3 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{v\'er} y \ge \sqrt[3]{2}$	0,5
$(y-3) \left(\frac{y+3}{\sqrt[3]{(y^2-1)^2 + 2\sqrt[3]{y^2 - 1}}} \right)$ Ta có $\frac{y+3}{\sqrt[3]{(y^2-1)^2 + 2\sqrt[3]{y^2 - 1}}}$ Nên pt (3) có nghiệm duy n Vậy hệ pt có nghiệm $(x; y)$ 1. (2 điểm) Ta có	$\frac{1}{\sqrt{1+4}} + 1 - \frac{y^2 + 3y + 9}{\sqrt[3]{y^2 - 2} + 5} = 0 (3) \Leftrightarrow y = 3$ $\frac{1}{\sqrt{1+4}} + 1 < 2 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{v\'oi} y \ge \sqrt[3]{2}$ $\text{hất } y = 3.$	0,5
Ta có $\frac{y+3}{\sqrt[3]{(y^2-1)^2} + 2\sqrt[3]{y^2-1}}$ Nên pt (3) có nghiệm duy n Vậy hệ pt có nghiệm $(x; y)$ 1.(2 điểm) Ta có	$\frac{1}{x^2 + 4} + 1 < 2 < \frac{y^2 + 3y + 9}{\sqrt{y^3 - 2} + 5} \text{ v\'oi } y \ge \sqrt[3]{2}$ hất $y = 3$.	
Nên pt (3) có nghiệm duy n Vậy hệ pt có nghiệm $(x; y)$ 1. (2 điểm) Ta có	hất $y = 3$.	0,25
1.(2 điểm) Ta có	=(9;3).	
		0,25
u + v = 2c	$\begin{cases} \cos B = 2\cos A\cos C \\ a^2 = 2c^2 - b^2 \end{cases}$	0,5
$\Leftrightarrow \begin{cases} \frac{a^2 + c^2 - b^2}{2ac} = 2 \cdot \frac{b^2 + c^2}{2ac} \\ a^2 = 2c^2 - b^2 \end{cases}$	$\frac{c^2 - a^2}{bc} \cdot \frac{a^2 + b^2 - c^2}{2ab}$	0,5
$\Rightarrow b^2(3c^2-2b^2)=(2b^2-c^2)$	$(c^2)c^2 \Leftrightarrow b^2c^2 + c^4 - 2b^4 \Leftrightarrow (c^2 - b^2)(c^2 + 2b^2) = 0 \Leftrightarrow c = b$	0,5
Bài 3 . Kết hợp với $a^2 + b^2 = 2c^2$	$\Rightarrow a = b = c$. Vậy tam giác ABC là tam giác đều.	0,5
	mẫu của phép chọn ngẫu nhiên là Ω	0.25
Số phần tử của không gian	m ãu là: $n(Ω) = C_{12}^5 = 792$	0,25
	iết mục sao cho khối nào cũng có tiết mục được biểu diễn và	0,25
trong đó có ít nhất hai tiết n Chỉ có 3 khả năng xảy ra th		-
	thán tọi cho oleh có 74 ta . 2 tiết mục khối 10, 1 tiết mục khối 11	
	tiết mục khối 10, 2 tiết mục khối 11	0,5
+ 3 tiết mục khối 12, 1	tiết mục khối 10, 1 tiết mục khối 11	
Số kết quả thuận lợi cho biế		0,5
Xác suất cần tìm là $P(A) =$	$\frac{330}{792} = \frac{5}{12}$.	0,5
$\widehat{PNB} = \widehat{PCB}$	··	+
Ta có $\widehat{PCB} = \widehat{RAM} \Rightarrow \widehat{PCB}$	$\widehat{NB} = \widehat{BNM}$, suy ra BN là đường phân giáctrongcủa \widehat{PNM}	0,5
$\mathbf{B}\mathbf{\grave{a}i} 4 \qquad \widehat{BAM} = \widehat{BNM}$		0,5
3 điểm Chứng minh tương tự PC, A Suy ra H là tâm đường tròn	$4M$ lần lượt là đường phân giác trong của góc \widehat{MPN} , \widehat{PMN}	0,25

Bài	Sơ lược lời giải	Điểm
	Ta có $\overrightarrow{MN} = \left(\frac{65}{72}, \frac{65}{36}\right)$, viết được PT MN: $2x - y + 3 = 0$	0,5
	Tương tự ta có PT của MP : $3x - 6y + 2 = 0$; NP: $4x + 2y + 1 = 0$	0,25 0,25
	PT đường phân giác của \widehat{MPN} : $6x + 18y - 1 = 0$ và $18x - 6y + 7 = 0$ do M , N nằm cùng phía cua đường phân giác trong nên ta chon PT PC : $6x + 18y - 1 = 0$	0,25 0,25
	Đường phân giác của $\widehat{PNM}: 4y - 5 = 0$ và $8x + 7 = 0$ Chọn được PT NB là : $8x + 7 = 0$	0,5
	Ta có $NB \cap PC = H$, suy ra $H\left(-\frac{7}{8}; \frac{25}{72}\right)$	0,25
	1 (3 điểm) a. (1,5 điểm) Dựng $AH \perp BC$ ($H \in BC$), suy ra được $AH \perp (BCC'B')$ Trong tam giác vuông ABC có $AC = \sqrt{BC^2 - AB^2} = a\sqrt{3}$; $AH = \frac{AB.AC}{BC} = \frac{a\sqrt{3}}{2}$	0,5
	Dựng $HI \perp BB'(I \in BB')$, ta có $\begin{cases} BB' \perp HI \\ BB' \perp AH \end{cases} \Rightarrow BB' \perp (AHI)$	0,25
	Suy ra được góc giữa 2 mặt phẳng $(BCC'B')$ và $(ABB'A')$ bằng góc giữa hai đường thẳng AI và HI bằng $\widehat{AIH} = \alpha$ (do tam giác AHI vuông tại H nên \widehat{AIH} là góc nhọn)	0,25
Bài 5 4 điểm	Trong tam giác vuông ABH tính được $BH = \frac{a}{2}$, ta có $\tan \alpha = \tan \widehat{AIH} = \frac{AH}{IH} = \frac{5\sqrt{2}}{4}$ suy ra $IH = \frac{a\sqrt{3}}{2} : \frac{5\sqrt{2}}{4} = \frac{a\sqrt{6}}{5} \Rightarrow \sin \widehat{IBH} = \frac{a\sqrt{6}}{5} : \frac{a}{2} = \frac{2\sqrt{6}}{5}$	0,25
	$\begin{array}{c} \text{Vậy } V_{ABCA'B'C'} = \frac{3}{2} V_{A.BCC'B'} = \frac{3}{2}.\frac{1}{3}.\frac{a\sqrt{3}}{2}.4a^2.\frac{2\sqrt{6}}{5} = \frac{6a^3\sqrt{2}}{5}.\\ \text{(Hoặc tính đường cao } B'D \text{ và tính } S_{\Delta ABC} \text{ rồi suy ra thể tích khối lăng trụ.)} \end{array}$	0,25
	b. $(1,5 \text{ diểm})$ Dựng $B'D \perp BC$ $(D \in BC)$, ta có $B'D \perp (ABC)$ Ta có $A'C' \parallel AC$ nên $A'C' \parallel (B'AC)$, nên $d(A'C', B'C) = d(A'C', (B'AC))$	0,25
	$= d(C', (B'AC)) = d(B, (B'AC)) = \frac{BC}{DC}. d(D, (B'AC))$ $D\text{ung } DJ \perp AC \text{ tại } J, \text{ có } DJ \parallel AB$	0,25
	Dựng $DX \perp AC$ tại X , co $DX \parallel AB$ Dựng $DK \perp JB$ ' tại K . Chứng minh được $DK \perp (B'AC) \Rightarrow d(D, (B'AC)) = DK$	0,25

Bài	Sơ lược lời giải	Điểm
	A J Za Za E	
	Ta có $\cos \widehat{B'BD} = \cos \widehat{IBH} = \frac{1}{5}$ mà $\cos \widehat{B'BD} = \frac{BD}{BB'} \Rightarrow BD = \frac{2a}{5} \Rightarrow \frac{DJ}{AB} = \frac{CD}{CB} = \frac{4}{5} \Rightarrow DJ = \frac{4a}{5}$ Ta có $\sin \widehat{B'BD} = \sin \widehat{IBH} = \frac{2\sqrt{6}}{5} = \frac{B'D}{BB'} \Rightarrow B'D = \frac{4a\sqrt{6}}{5}$	0,25
	Xét tam giác <i>B'DJ</i> vuông tại <i>D</i> có $\frac{1}{DK^2} = \frac{1}{B'D^2} + \frac{1}{DJ^2} = \frac{25}{96a^2} + \frac{25}{16a^2} = \frac{175}{96a^2}$	0,25
	Suy ra d(A'C', B'C) = $\frac{BC}{DC}$. $DK = \frac{5}{4} \cdot \frac{4a\sqrt{42}}{35} = \frac{a\sqrt{42}}{7}$. 2) (1 diểm) Dựng $HE \perp CC'$ ($E \in CC'$), ta có $\begin{cases} CC' \perp AH \\ CC' \perp HE \end{cases} \Rightarrow CC' \perp (AHE)$	0,25
	2) (1 điểm) Dựng $HE \perp CC'$ $(E \in CC')$, ta có $\begin{cases} CC' \perp AH \\ CC' \perp HE \end{cases} \Rightarrow CC' \perp (AHE)$	0,25
	Suy ra được góc giữa 2 mặt phẳng $(BCC'B')$ và $(ACC'A')$ bằng góc giữa hai đường thẳng AE và HE bằng $\widehat{AEH} = \beta$ (do tam giác AHE vuông tại H nên \widehat{AEH} là góc nhọn)	0,25
	Xét tam giác vuông AHE , ta có $\cot \beta = \frac{HE}{AH}$. Ta có $BH = \frac{a}{2}$, $AH = \frac{a\sqrt{3}}{2}$, $IH = AH \cdot \cot \alpha = \frac{a\sqrt{3}}{2} \cot \alpha$ và do tam giác BHI vuông tại I nên $HI < BH$ suy ra $\frac{a\sqrt{3}}{2} \cot \alpha < \frac{a}{2} \Rightarrow \cot \alpha < \frac{1}{\sqrt{3}} \Rightarrow 60^{\circ} < \alpha < 90^{\circ}$	0,25

Bài	Sơ lược lời giải	Điểm
	Vì $BH = \frac{a}{2} = \frac{BC}{4}$ nên $\frac{HE}{HI} = \frac{HC}{HB} = 3 \Rightarrow HE = 3HI$ $\Rightarrow \cot \beta = \frac{HE}{AH} = \frac{3HI}{AH} = 3\cot \alpha$ Vậy $\cot \beta = 3\cot \alpha$ với $60^{\circ} < \alpha < 90^{\circ}$	0,25
	Không mất tính tổng quát giả sử $x = \min(x, y, z) \Rightarrow x^2 \le \frac{1}{3}$. (*)	
Bài 6 2 điểm	Xét: $P - \frac{1}{1 - x \cdot \sqrt{\frac{y^2 + z^2}{2}}} - \frac{1}{1 - \frac{y^2 + z^2}{2}} - \frac{1}{1 - x \cdot \sqrt{\frac{y^2 + z^2}{2}}}$	
	$= \frac{x\left(y - \sqrt{\frac{y^2 + z^2}{2}}\right)}{(1 - xy)\left(1 - x.\sqrt{\frac{y^2 + z^2}{2}}\right)} + \frac{x\left(z - \sqrt{\frac{y^2 + z^2}{2}}\right)}{(1 - zx)\left(1 - x.\sqrt{\frac{y^2 + z^2}{2}}\right)} - \frac{(y - z)^2}{2(1 - yz)\left(1 - \frac{y^2 + z^2}{2}\right)}$	0,25
	$\leq \frac{x\left(\frac{y-z}{2}\right)}{(1-xy)\left(1-x.\sqrt{\frac{y^2+z^2}{2}}\right)} + \frac{x\left(\frac{z-y}{2}\right)}{(1-zx)\left(1-x.\sqrt{\frac{y^2+z^2}{2}}\right)} - \frac{(y-z)^2}{2(1-yz)\left(1-\frac{y^2+z^2}{2}\right)}$	
	$= \frac{(y-z)^2}{2} \left[\frac{x^2}{(1-xy)(1-zx)\left(1-x.\sqrt{\frac{y^2+z^2}{2}}\right)} - \frac{1}{(1-yz)\left(1-\frac{y^2+z^2}{2}\right)} \right] \le 0$	0,5
	$\begin{array}{l} \text{Đúng vì}: \ x^2 \leq 1 - x\sqrt{\frac{y^2 + z^2}{2}} \ ; 1 - xy \geq 1 - yz; 1 - zx \geq 1 - \frac{y^2 + z^2}{2} \\ \Rightarrow P \leq \frac{1}{1 - x.\sqrt{\frac{y^2 + z^2}{2}}} - \frac{1}{1 - \frac{y^2 + z^2}{2}} - \frac{1}{1 - x.\sqrt{\frac{y^2 + z^2}{2}}} = \frac{2}{1 - x.\sqrt{\frac{1 - x^2}{2}}} + \frac{1}{1 - \frac{1 - x^2}{2}} = \frac{2\sqrt{2}}{\sqrt{2} - \sqrt{t(1 - t)}} + \frac{2}{1 + t} \end{array}$	0,25
	$V \circ i t = x^2; 0 < t \le \frac{1}{3} \text{Hàm số} y = \frac{2\sqrt{2}}{\sqrt{2} - \sqrt{t(1-t)}} + \frac{2}{1+t} \text{đồng biến trên} \left(0; \frac{1}{3}\right) \text{ do đó} :$	0,5
	$\Rightarrow f(x, y, z) \le \frac{2\sqrt{2}}{\sqrt{2} - \sqrt{t(1-t)}} + \frac{2}{1+t} \le \frac{9}{2} \text{Suy ra Max} P = \frac{9}{2} \text{khi } x = y = z = \frac{1}{\sqrt{3}}$	0,5

Các chú ý khi chấm:

- 1. Hướng dẫn chấm này chỉ trình bày sơ lược bài giải. Bài làm của học sinh phải chi tiết, lập luận chặt chẽ, tính toán chính xác mới được điểm tối đa.
- 2. Các cách giải khác nếu đúng vẫn cho điểm. Tổ chấm trao đổi và thông nhất chi tiết nhưng không được quá số điểm dành cho câu, phần đó.
- 3. Có thể chia điểm thành từng phần nhưng không dưới 0,25 điểm và phải thống nhất trong cả tổ chấm.
 - 4. Điểm toàn bài là tổng số điểm các phần đã chấm. Không làm tròn điểm.
- 5. Mọi vấn đề phát sinh trong quá trình chấm phải được trao đổi trong tổ chấm và chỉ cho điểm theo sự thống nhất của cả tổ.

------ Hết -----