

Teorija informacije

Osnovni pojmovi teorije informacije

Osnovni pojmovi teorije informacije

- Opći model komunikacijskog sustava
 - Diskretni komunikacijski sustav
 - Poruka i prijenos poruke
- Sadržaj informacije, entropija
- Kodiranje
- Informacijski opis komunikacijskog sustava, informacijske mjere
- Kapacitet kanala
- Prijenos informacije komunikacijskim sustavom

Opći model komunikacijskog sustava

Zavod za telekomunikacije

Temeljni problem komunikacije je točno ili aproksimativno reproducirati u jednoj točki informacijskog prostora (odredište) poruku odabranu na nekoj drugoj točki (izvor) [Shannon 1948].

Diskretni komunikacijski sustav

Zavod za telekomunikacije

- 🛾 Jednostavniji slučaj diskretni signali
- Ključna pitanja:
 - Što je poruka?
 - Što znači prenijeti poruku?
 - Koja je mjera za količinu informacije u nekoj poruci, te informacije prenesene sustavom?

TI • Osnovni pojmovi teorije informacije

DEFINICIJA

Poruka

Zavod za telekomunikacije

- Niz simbola odabranih iz konačne abecede X
 - Abeceda Yelskupælemæntarnih simbola
- Svaki simboł, pri W-pom, biranju ima vjerojatnost pojavljivanja:
- Pretpostavka (za sada): odabir simbola (x_i) neovisan o prethodno odabranim simbolima (x_i) neovisan o prethodno odabranim (x_i) Norma (x_i) Nor

DISKRETNI KOMUNIKACIJSKI SUSTAV ODREDIŠTE

Prijenos poruke: pogled sa izvora

- Prijenos poruke = prijenos simbola
- Na izvoru odabran x_i: što se pojavi na odredištu?
- Pretpostavka: poznata statističk svojstva prijenosa

Prijenos poruke: pogled sa odredišta

Sadržaj informacije poruke - primjer

- Koliko informacije možemo maksimalno prenijeti nekom porukom?
- Primjer: pismo ili glava

- Koliko informacije je primio promatrač?
- Što ako uvijek pada pismo?
- Što ako pismo pada 70% puta?

Entropija

Zavod za telekomunikacije

Entropija diskretne slučajne varijable

$$H(X) \square \square \square_{i\square 1}^{n} p(x_i) \log p(x_i) \mathbb{D}bit/simbol$$

Entropija daje mjeru za sadržaj informacije

Entropija, neodređenost, sadržaj informacije u sustavu bez smetnji

Zavod za telekomunikacije

Neodređenost = entropija

Informacija na izvoru, neodređenost na odredištu

Prijenosom poruke neodređenost je

Svojstva entropije $H(X) \square \square \square p(x_i) \log p(x_i)$

$$\int_{-\infty}^{\infty} p(x_i) \log p(x_i)$$

telekomunikacije

- Sadržaj informacije ne može biti negativan
- Sadržaj informacije je 0 ako se uvijek pojavljuje samo jedan simbol
- Neodređenost i sadržaj informacije su maksimalni ako su vjerojatnosti simbola jednako raspoređene

$$H(X) \square 0$$

$$H(X) \square 0 \square \square i \mid p(x_i) \square 1$$

$$p(x_i) \, \square \, \stackrel{1}{=} \, \square \quad H(X) \, \square \, \log n$$

$$H(XY) = H(X) + H(Y)$$

 $H(X) \square \log n$

Zašto baš logaritam?

Osnovni pojmovi teorije informacije

Bit i binarna znamenka

- Teorija informacije: bit je osnovna jedinica informacije
- Ostatak svijeta: bit je binarna znamenka
- Bacamo "nepošteni" novčić, pismo=1, glava=0; koliko je ovo bitova: 1111111111?
- Kada znamo razliku, iz konteksta je jasno što se misli

DEFINICIJA

Kodiranje

- Dodjela kodnih riječi simbolima poruke
- Poruka se "samo" pretvara u novi oblik (niz simbola)
- Zašto onda kodirati?
- U praksi, kodovi su binarni

Kodiranje i entropija

Zavod za telekomunikacije

			telekollidlikacije	
2	SIMBOL (x _i)	VJEROJATNOST POJAVLJIVANJA p(x _i) = p _i	KODNA RIJEČ (C _i)	DULJINA KODNE RIJEČI (I _i)
A	1	1/2	0	1
Ŋ	2	1/4	10	2
	3	1/8	110	3
•	4	1/8	111	3

Prosječna duljina kodne riječi:

$$L \ \square \ \bigsqcup_{i \square 1}^n p_i l_i \ \square \ 0.5 \square 1 \ \square \ 0.25 \square 2 \ \square \ 0.125 \square 3 \ \square \ 0.125 \square 3 \ \square \ 1.75 \square bit / simbol \square \ \square \ H(X)$$

- Ne postoji kod sa manjom prosječnom duljinom
- Entropija je granica kompresije bez

Informacijski opis komunikacijskog sustava

- Sustav bez smetnji ne postoji
 - Promatramo opći sustav uz (manja) ograničenja: diskretni bezmemorijski kanal
- Opis kanala diskretni informacijski sustav

Vjerojatnosni opis inf. sustava (kanala)

- Opis sustava skupom vjerojatnosti
- Svaki od ova tri pogleda potpuno određuje sustav i pojave na ulazu/izlazu
- □ Vjerojatnosti prijelaza x→ y potpuno definiraju

kanal TI • Osnovni pojmovi teorije informacije

Primjer

- Komunikacijski kanal prenosi simbole {a, b, c}
 - p(a) = p(b) = 2p(c)
- Matrica uvjetnih vierojatnosti prijelaza u kanalu: (y) (x_i) (y) (y)

- a) nacrtati graf prijelaza u kanalu.
- b) odrediti vjerojatnost pojave pojedinog

Odnosi vjerojatnosti u inf. sustavu (kanalu)

	Zavod za telekomunikacije	
MATEMATIČKI OPIS	ZNAČENJE	
	Skup simbola na ulazu je potpun; isto vrijedi i za izlaz.	
$p(x_i) \square \bigsqcup_{j \in I}^m p(x_i, y_j), p(y_j) \square \bigsqcup_{j \in I}^n p(x_i, y_j)$	Vjerojatnost pojave simbola je zbroj vjerojatnosti pojava svih parova u kojima se taj simbol pojavljuje.	
$p(x_i, y_j) \square p(x_i) p(y_j x_i) \square p(y_j) p(x_i y_j)$	Prijelazi između tri pogleda na sustav (pogled s ulaza, s izlaza ili oboje istovremeno). Veza između tri načina potpunog opisa sustava.	
$n(r, v) = n(r, v) = n(r)n(v \mid r)$	Prijelaz iz apriorne u aposteriornu vjerojatnost pojave x_i .	
$p(x_i \mid y_j) \parallel p(x_i, y_i) \parallel p(x_i, y_i) \parallel p(x_i, y_i) \parallel p(x_i, y_i) \parallel p(x_i) p(y_i \mid x_i)$	Izračun unazadnih vjerojatnosti prijelaza.	
$i \square 1$ $i \square 1$	Bayesova formula.	

Vjerojatnosni opis → informacijski opis

Zavod za telekomunikacije

19

Entropija: informacijski opis slučajnih događaja $\mathbf{pogađaji}$ $\mathbf{x}_{i} \mathbf{\hat{q}} X, X = \{x_{1}, x_{2}, ..., x_{n}\}$

Informacijske mjere


```
H(X) Entropija na ulazu sustava
  vlastite
  entropij
            H(Y) Entropija na izlazu sustava
          H(X,Y) Združena entropija
          H(Y|X) Entropija šuma, irelevantnost
uvjetne 
entropij
          H(X|Y) Ekvivokacija, mnogoznačnost
           I(X;Y) Srednji uzajamni sadržaj
                  informacije, transinformacija
```

Entropija na ulazu, izlazu, združena entropija

Zavod za telekomunikacije

Promatramo događaje na ulazu i izlazu odvojeno:

$$H(X) \square \square \square_{i\square 1}^{n} p(x_i) \log p(x_i) \qquad H(Y) \square \square \square_{j\square 1}^{m} p(y_j) \log p(y_j)$$

- Promatramo događaje zajednički:

Uvjetna entropija (općenito)

Zavod za telekomunikacije

Prosječna preostala neodređenost varijable Y nakon što je poznata varijabla X

$$H(Y \mid X) \square \bigsqcup_{i \square 1}^{n} p(x_{i}) H(Y \mid x \square x_{i})$$

$$\square \square \bigsqcup_{i \square 1}^{n} p(x_{i}) \bigsqcup_{j \square 1}^{m} p(y_{j} \mid x_{i}) \log p(y_{j} \mid x_{i})$$

$$\square \square \square \bigsqcup_{i \square 1}^{n} \bigsqcup_{j \square 1}^{m} p(x_{i}, y_{j}) \log p(y_{j} \mid x_{i})$$

Entropija šuma ili irelevantnost

Zavod za telekomunikacije

- Uvjetna entropija H(Y|X)
- Neodređenost simbola na izlazu nakon što je poslan simbol sa ulaza (promatrano s ulaza)

Posljedica smetnji $x_1, p(x_1) \bullet x_2, p(x_2) \bullet y_2$ $x_1, p(x_1) \bullet x_2, p(x_2) \bullet y_2$ $x_1, p(x_1) \bullet x_2, p(x_2) \bullet y_3$ $x_1, p(x_1) \bullet x_2, p(x_2) \bullet y_3$

Mnogoznačnost ili ekvivokacija

- Uvjetna entropija H(X|Y)
- Preostala neodređenost simbola na ulazu nakon što je primljen simbol na izlazu (promatrano s izlaza)

Relativna entropija

telekomunikacije

Mjera udaljenosti između dviju raspodjela vjerojatnosti varijable:

$$D(p \parallel q) \square \square p(x_i) \log \frac{p(x_i)}{q(x_i)}$$

- Interpretacija
 - Stvarne vjerojatnosti su p; mi pretpostavljamo q
 - Ta pogreška nosi neefikasnost; to je relativna entropija
 - Kodiranjem prema pogrešnim vjerojatnostima

trošimo D(p||q) više bitova po simbolu nego što
$$L \square \square p(x_i)$$
 po posimbolu nego što $L \square \square p(x_i)$ posimbolu nego što $p(x_i)$ posimbolu neg

Srednji uzajamni sadržaj informacija (transinformacija)

Definicija:
$$I(X;Y) \square \square \square p(x_i, y_j) \log p(x_i, y_j) \log p(x_i, y_j)$$

- Interpretacija:
 - Koliko informacije jedna varijabla pruža o drugoj
 - U kojoj mjeri su dvije varijable zavisne
 - Nezavisne: I(X;Y) = 0
 - Jednake: I(X;Y) = H(X) = H(Y)

Odnos entropije i uzajamnog sadržaja informacije

Zavod za telekomunikacije

Uzajamni sadržaj informacije I(X;Y) predstavlja smanjenje neodređenosti varijable X uzrokovano poznavanjem varijable Y I(X;Y) \square H(X) \square H(X|Y)

Uzajamni sadržaj informacije dviju varijabli je simetričan:

$$I(Y;X) = I(X;Y).$$

Odnos između entropije, združene entropije i uvjetne entropije

- Združena entropija (neodređenost) para varijabli jednaka je zbroju neodređenosti jedne varijable, te preostale neodređenosti druge varijable uz uvjet da je prva varijabla poznata. H(X,Y) = H(X) + H(Y|X)
- Uzajamni sadržaj informacije je razlika između zbroja pojedinačnih entropija varijabli $\frac{1}{1} \frac{1}{2} \frac{1}{$

Vlastiti sadržaj informacije

- Uzajamni sadržaj informacije jedne varijable same sa sobom naziva se vlastiti sadržaj informacije.
- Vlastiti sadržaj informacije slučajne varijable je upravo njena entropija:

$$I(X;X) = H(X) - H(X|X) = H(X)$$

Odnosi i svojstva informacijskih mjera

$$I(X;Y) = H(X) - H(X|Y)$$

 $I(X;Y) = H(Y) - H(Y|X)$
 $I(X;Y) = H(X) + H(Y) - H(X,Y)$
 $H(X;Y) = H(X) + H(Y|X)$
 $H(X;Y) = H(Y) + H(X|Y)$
 $I(X;Y) = I(Y;X)$
 $I(X;Y) = I(X)$
 $I(X;Y) \ge 0$
 $H(X|Y) \le H(X)$

Prijenos informacije i informacijske mjere

TI • Osnovni pojmovi teorije informacije

Primjer

- Za komunikacijski sustav zadan u prethodnom primjeru matricom uvjetnih vjerojatnosti potrebno je odrediti:
 - a) entropiju ulaznog i izlaznog skupa simbola, tj. H(X) i H(Y);
 - b) uvjetne entropije H(X|Y) i H(Y|X);
 - c) uzajamni sadržaj informacije *I(X; Y)*;
 - d) združenu entropiju para varijabli H(X, Y).

Kapacitet kanala

Zavod za telekomunikacije

- Promatramo prijenos informacije kom. kanalom
- Simboli na ulazu s vjerojatnosima $p(x_i)$
- Kapacitet kanala je definiran kao: $C = \max_{\{p(x_i)\}} I(X;Y)$ [bit/simbol]

Kapacitet kanala je maksimalna količina informacije po simbolu koja se u prosjeku može prenijeti kanalom

Temeljni teorem kanala sa smetnjama

Zavod za telekomunikacije

- Kanal kapaciteta C [bit/simbol]
- Izvor entropije H [bit/simbol]
- □ Ako je $H \leq C$, mogući proizvoljno mali gubici
- Ako je H > C, nemoguć prijenos bez gubitakay)

Primjer: kapacitet simetričnog binarnog kanala

Prijenos informacije komunikacijskim sustavom

Zavod za telekomunikacije

