

Problema del **Agente Viajero**

con Algoritmos Bioinspirados

Resumen

A partir de una serie de direcciones, se busca resolver el problema de TSP, mediante optimalidad y dos algoritmos Bioinspirados: algoritmo genético y colonia de hormigas. Se llega a la conclusión de que la mejor solución se alcanza con la Colonia de Hormigas.

Problema

Se tienen 149 direcciones pertenecientes a la ciudad de Guadalajara, en Jalisco, México. Se busca encontrar rutas visiten 40 de esas ciudades y una ruta que visite 100, minimizando los costos.

Algoritmo Genético

con soluciones que reproducen y mutan para generar una nueva población. Se elige la solución con mejor valor de evaluación (fitness).

- Tipo de cromosoma: numérico
- Criterio inicialización: aleatorio (factible)
- Criterio de paro: 100000 generaciones
- Fitness: 1/F.O.
- Criterio de selección de padres: ruleta
- Tamaño de la población: 40
- Puntos de cruce: 1 (Lugar: Aleatorio)
- Probabilidad mutación: 0.1 (Intercambio)
- Criterio de reemplazo: Se agregan los hijos

TSP

Busca resolver el problema de crear una ruta con el menor costo posible visitar un número de nodos por un mismo agente, sin repetir los nodos visitados.

Formulación:

F.O:
$$\min \sum_{i} \sum_{j} C_{ij} X_{ij}$$

$$: \sum_{j=1}^{n} X_{ij} = 1, \ \forall i \neq j$$
The second $\sum_{i=1}^{n} X_{ij} = 1, \ \forall j \neq i$

$$u_i - u_j + n * X_{ij} \leq n - 1$$

Colonia de Hormigas

Inspirado en el proceso de búsqueda que de las hormigas, pues éstas dejan un rastro de feromonas. El camino más corto será aquel con feromonas más concentradas.

- Número de hormigas: 40
- Número de iteraciones: 1000
- Grado de influencia de las feromonas: 1
- Grado de influencia de visibilidad: 2
- Desvanecimiento de feromonas: 0.1
- Tasa de aprendizaje: 1

Resultados: 10 redes de 40 nodos

Solución exacta

Red	Costo	Tiempo (s)
1	60.345621	0.86
2	57.319470	167.38
3	59.089170	53.04
4	58.7692	38626.92
5	59.897937	7.62
6	58.298945	2.21
7	53.690624	15.14
8	56.913263	41.44
9	58.028717	175.82
10	63.027439	27.20

Algoritmo Genético

Red	Costo	Tiempo
1	114.366665	5 min 56 s
2	102.3087	4 min 35s
3	107.129	4 min 18s
4	123.363	5 min 2 s
5	105.3704	5 min 48s
6	121.7497	4 min 15 s
7	107.0672	5 min 32 s
8	98.890647	4 min 26 s
9	101.330278	4 min 25 s
10	140.73206	4 min 22 s
	1 2 3 4 5 6 7 8 9	1 114.366665 2 102.3087 3 107.129 4 123.363 5 105.3704 6 121.7497 7 107.0672 8 98.890647 9 101.330278

Colonia de Hormigas

Red	Costo	Tiempo
1	70.320589	4 min 8s
2	71.174379	4 min 18s
3	62.429757	4 min 37s
4	69.206560	4 min 51s
5	74.82260	4 min 24s
6	74.4864	4 min 11s
7	60.534666	4 min 43s
8	59.7763	5 min 2s
9	65.558156	4 min 53s
10	81.8570	4 min 34s

Resultados: red de 100 nodos

Algoritmo Genético

Ruta: {0, 7, 19, 26, 11, 72, 66, 29, 15, 34, 87, 42, 10, 79, 62, 13, 53, 49, 24, 48, 47, 39, 67, 9, 8, 41, 74, 20, 86, 35, 3, 81, 37, 46, 92, 90, 75, 85, 21, 57, 56, 93, 71, 18, 22, 2, 1, 94, 14, 23, 97, 50, 98, 69, 80, 77, 68, 84, 63, 82, 38, 6, 5, 76, 73, 65, 78, 52, 25, 45, 44, 55, 54, 61, 91, 89, 17, 27, 51, 33, 58, 36, 12, 96, 95, 31, 30, 4, 59, 32, 28, 43, 60, 40, 64, 83, 99, 70, 88, 16, 0}

Costo: 291.700188

Tiempo computacional: 19,23 min

Colonia de Hormigas

Ruta: {0, 36, 20, 11, 48, 96, 23, 32, 15, 31, 13, 28, 46, 54, 87, 39, 92, 63, 16, 27, 78, 62, 64, 25, 52, 82, 51, 99, 17, 49, 89, 81, 91, 42, 18, 60, 30, 2, 68, 95, 26, 69, 76, 21, 38, 4, 90, 22, 97, 75, 66, 9, 71, 58, 43, 7, 57, 73, 45, 37, 56, 3, 34, 61, 33, 53, 94, 55, 12, 93, 44, 8, 83, 40, 1, 74, 10, 85, 41, 47, 35, 59, 14, 80, 5, 84, 72, 67, 65, 88, 77, 19, 79, 50, 70, 86, 29, 98, 24, 6,

Costo: 107.9003891

Tiempo computacional: 15,56 min

Conclusiones

Una vez concluido el proyecto, vemos que el problema de TSP es un problema que para encontrar la solución óptima requiere de recursos computacionales grandes, en donde incluso puede ser imposible resolverse. Si observamos los resultados, nos podemos percatar de que, como es esperado, los mejores resultados son las soluciones exactas. Sin embargo, y como lo pudimos comprobar al trabajar con una red de 100 nodos, encontrar la solución exacta no siempre será posible o accesible. Es aquí cuando las metaheurísticas entran en juego, estos nos permiten acercarnos a la solución óptima con otros procesos, como lo pudimos comprobar con Algoritmos Genéticos y Colonia de Hormigas.

Es por ello que, dentro de los bioinspirados, el mejor fue el de Colonia de Hormigas, pues, aunque los tiempos de ejecución son parecidos, los costos son muy reducidos en comparación al algoritmo Genético, y muy parecidos a las soluciones exactas.

Bibliografía Penna, A. F. (2014). Problema del agente viajero.

- XIKUA Boletín Científico de la Escuela Superior de Tlahuelilpan, 2(3). Medina, I. R. (2014). Revisión de los Algoritmos
- Bioinspirados. The University of Manchester. Johnson, D. S. (1990, July). Local optimization and
- the traveling salesman problem. In International colloquium on automata, languages, and programming (pp. 446-461). Berlin, Heidelberg: Springer Berlin Heidelberg.

Equipo:

Adalía Fernanda Aneiros Gutiérrez (A00832680) (A00830523) Valeria Edith Lugo Gutiérrez Yuu Ricardo Akachi Tanaka (A01351969) Pablo Monzon Terrazas (A01562619) Donnet Hernández Franco (A01352049) Luis Alejo Muñoz Ledo (A01704173)

MA2015: Diseño de Algoritmos Bioinspirados **Profesor:** Fernando Elizalde Ramirez