

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

A Bunch of Keys

Assignment keys for defining the normal forms later on the state of th

K is a

https://eduassistpro.github.

Candidate keys are also called ke
 osen

Add WeChat edu_assist_pr

Finding Keys

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Implied Functional Dependencies

Assignment Project Exam Help

- To design a good database, we need to consider all possible FDs.
- * thttps://eduassistpro.github.

```
{{StudentID}} → {ProjectNo},
AProjectNo} → Supervisor hat edu_assist_projectNo and the potential of the pote
```

- We use the notation $\Sigma \models X \to Y$ to den set Σ of FDs.
- We write Σ^* for all possible FDs **implied** by Σ .

Equivalence of Functional Dependencies

Assighment Project Exam Help

https://eduassistpro.github.

- Example Let Σ_1 We have Σ_2 by Σ_2 that Σ_2 denote the none, Σ_1 and Σ_2 are equivalent.
- Questions:
 - **1** Is it possible that $\Sigma_1^* = \Sigma_2^*$ but $\Sigma_1 \neq \Sigma_2$? **Yes**
 - 2 Is it possible that $\Sigma_1^* \neq \Sigma_2^*$ but $\Sigma_1 = \Sigma_2$? **No**

Implied Functional Dependencies

Assignment Project Exame Help

 \bigcirc Compute the set of all attributes that are dependent on X, which is

• Ahttps://eduassistpro.github.

• $X^+ := X$;

for each Y → Z ∈ Σ with Y ⊆
 add all the attributes in Z to X⁺, i.e.,
 replace X⁺ by X⁺ ∪ Z.

assist_pr

See Algorithm 15.1 on Page 538 in [Elmasri & Navathe, 7th edition] or Algorithm 1 on Page 555 in [Elmasri & Navathe, 6th edition]

Implied Functional Dependencies – Example

Assignment Projects, Exams Help $\Sigma = \{AC \rightarrow B, B \rightarrow CD, C \rightarrow E, AF \rightarrow B\}$ on R.

https://eduassistpro.github.

Add Wee Chatuedu_assist_pressing the state of the state o

- ② Then we check that $ED \subseteq (AC)^+$. Hence $\Sigma \models AC \rightarrow ED$.
- Can you quickly tell whether or not $\Sigma \models AC \rightarrow EF$ holds?

Finding Keys

Assignment Project Exam Help

• Algorithm²:

https://eduassistpro.github.

for every subset X of the relation R, compute its closure X⁺

 A prime attribute is an attribute occurring in a key, and a non-prime attribute is an attribute that is not a prime attribute.

²It extends Algorithm 15.2(a) in [Elmasri & Navathe, 7th edition, pp. 542], or Algorithm 2(a) or in Algorithm 2(a) in [Elmasri & Navathe, 6th edition pp. 558] to finding all keys of *R*

Exercise – Finding Keys

As Scenario a relation schema $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and a set of functional $P = \{A, B, C, D\}$ and $P = \{A, B, C, D\}$

* https://eduassistpro.github.

•
$$(A)^+ = A$$
, $(B)^+ = B$, $(C)^+ = A$
• $(AB)^+ = ABCD$, $(ABD)^+ = AC$
• $(ABC)^+ = ABCD$, $(ABD)^+ = AC$
• $(BCD)^+ = BCD$

- A Hence, we have
 - AB is the only key of R.
 - AB, ABC, ABD and ABCD are the superkeys of R.
 - A and B are the prime attributes of R.

Exercise – Finding Keys

Assignment Project Exam Help Checking all possible combinations of the attributes is too tedious!

ttps://eduassistpro.github.

- If an attribute never appears in the dep

 Anys repair view at edu_assist_pr

 If an affribute never appears in the deta
- If an attribute *never* appears in the dete in the dependent of any FD, this attribute must **not be part of each key**.
- If a proper subset of X is a key, then X must not be a key.

Finding Keys - Example

Assignment an Problem Exam Help

StudentID, CourseNo, Semester

ConfirmedBy, Office);

nttps://eduassistpro.github.

- What are the keys, superkeys and prime attribute
 - {StudentID, CourseNo, Semester} is the only key.
 - Every set that has {StudentID, CourseNo, Semester} as its subset is a superkey.
 - StudentID, CourseNo and Semester are the prime attributes.