CATEGORIES

github.com/danimalabares/stack

Contents

1.	Definitions	1
2.	Monomorphisms	1
3.	Presheaves	2
4.	Yoneda lemma	2
5.	Internal Hom	2
References		3

1. Definitions

We recall the definitions, partly to fix notation.

Definition 1.1. A category C consists of the following data:

- (1) A set of objects $Ob(\mathcal{C})$.
- (2) For each pair $x, y \in \text{Ob}(\mathcal{C})$ a set of morphisms $\text{Mor}_{\mathcal{C}}(x, y)$.
- (3) For each triple $x, y, z \in \mathrm{Ob}(\mathcal{C})$ a composition map $\mathrm{Mor}_{\mathcal{C}}(y, z) \times \mathrm{Mor}_{\mathcal{C}}(x, y) \to \mathrm{Mor}_{\mathcal{C}}(x, z)$, denoted $(\phi, \psi) \mapsto \phi \circ \psi$.

These data are to satisfy the following rules:

- (1) For every element $x \in \mathrm{Ob}(\mathcal{C})$ there exists a morphism $\mathrm{id}_x \in \mathrm{Mor}_{\mathcal{C}}(x,x)$ such that $\mathrm{id}_x \circ \phi = \phi$ and $\psi \circ \mathrm{id}_x = \psi$ whenever these compositions make sense.
- (2) Composition is associative, i.e., $(\phi \circ \psi) \circ \chi = \phi \circ (\psi \circ \chi)$ whenever these compositions make sense.

Definition 1.2. A functor $F : A \to B$ between two categories A, B is given by the following data:

- (1) A map $F : Ob(\mathcal{A}) \to Ob(\mathcal{B})$.
- (2) For every $x, y \in \text{Ob}(\mathcal{A})$ a map $F : \text{Mor}_{\mathcal{A}}(x, y) \to \text{Mor}_{\mathcal{B}}(F(x), F(y))$, denoted $\phi \mapsto F(\phi)$.

These data should be compatible with composition and identity morphisms in the following manner: $F(\phi \circ \psi) = F(\phi) \circ F(\psi)$ for a composable pair (ϕ, ψ) of morphisms of \mathcal{A} and $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$.

2. Monomorphisms

Definition 2.1. Let \mathcal{C} be a category and let $f: X \to Y$ be a morphism of \mathcal{C} .

- (1) We say that f is a monomorphism if for every object W and every pair of morphisms $a, b: W \to X$ such that $f \circ a = f \circ b$ we have a = b.
- (2) We say that f is an *epimorphism* if for every object W and every pair of morphisms $a, b: Y \to W$ such that $a \circ f = b \circ f$ we have a = b.

Definition 2.2. Let \mathcal{C} be a category, and let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of presheaves of sets.

- (1) We say that φ is *injective* if for every object U of \mathcal{C} the map $\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is injective.
- (2) We say that φ is *surjective* if for every object U of \mathcal{C} the map $\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is surjective.

Lemma 2.3. The injective (resp. surjective) maps defined above are exactly the monomorphisms (resp. epimorphisms) of PSh(C). A map is an isomorphism if and only if it is both injective and surjective.

3. Presheaves

Definition 3.1. A presheaf of sets on \mathcal{C} is a contravariant functor from \mathcal{C} to Sets. Morphisms of presheaves are natural transformations of functors. The category of presheaves of sets is denoted $PSh(\mathcal{C})$ or $\hat{\mathcal{C}}$.

4. Yoneda Lemma

The Yoneda lemma says that the sections over a of a presheaf X can be described completely as natural transformations between the presheaf Hom(-,a) and X.

Definition 4.1. Let A be a category. The Yoneda embedding is the functor

$$h:A\to \hat{A}$$

whose value at an object a of A is the presheaf

$$h_a = \operatorname{Hom}_A(-, a).$$

In other words, the evaluation of the presheaf h_a at an object c of A is the set of maps from c to a.

Theorem 4.2 (Yoneda lemma). For any presheaf X over A, there is a natural bijection (in Sets I think!!)

$$\operatorname{Hom}_{\widehat{A}}(h_a, X) \xrightarrow{\simeq} X_a$$

$$(h_a \xrightarrow{u} X) \longmapsto u_a(1_a)$$

5. Internal Hom

Upshot. Internal Hom is when the Hom set of two objects in some category is in also an object of the category. Down-to-earth, that for two sheaves $\mathcal{F}, \mathcal{G}, U \mapsto \operatorname{Hom}(\mathcal{F}(U), \mathcal{G}(U))$ is also a sheaf, called $\mathcal{H}om$.

I start with Stacks Project approach.

Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F}, \mathcal{G} be \mathcal{O}_X -modules. Consider the rule

$$U \longmapsto \operatorname{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U, \mathcal{G}|_U).$$

It follows from the discussion in Sheaves, Section ?? that this is a sheaf of abelian groups. In addition, given an element $\varphi \in \operatorname{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U,\mathcal{G}|_U)$ and a section $f \in \mathcal{O}_X(U)$ then we can define $f\varphi \in \operatorname{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U,\mathcal{G}|_U)$ by either precomposing with multiplication by f on $\mathcal{F}|_U$ or postcomposing with multiplication by f on $\mathcal{G}|_U$

CATEGORIES 3

(it gives the same result). Hence we in fact get a sheaf of \mathcal{O}_X -modules. We will denote this sheaf $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$. There is a canonical "evaluation" morphism

$$\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) \longrightarrow \mathcal{G}.$$

For every $x \in X$ there is also a canonical morphism

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})_x \to \mathrm{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}_x,\mathcal{G}_x)$$

which is rarely an isomorphism.

Cartesian closed category In the category of sets there is a bijection $\operatorname{Hom}(X \times Y, Z) \cong \operatorname{Hom}(X, \operatorname{Hom}(Y, Z))$ that depends naturally on X, Y and Z. The notions related to this bijection are "Cartesian closed category", "currying" and "internal Hom".

Definition 5.1. A category C is Cartesian closed if:

- (1) \mathcal{C} has all finite products (Caveat: some require that \mathcal{C} has all finite limits)
- (2) For any object Y the functor $-\times Y$ has a right adjoint, which we will denote by $\mathrm{Map}(Y,-)$ or by $-^Y$.

Remark 5.2. By section 3 here, the second property above implies that we get a functor $\operatorname{Map}(-,-): \mathcal{C}^{\operatorname{op}} \times \mathcal{C} \to \mathcal{C}$, and moreover we get natural isomorphisms $\operatorname{Hom}(X,\operatorname{Map}(Y,Z)) \cong \operatorname{Hom}(X \times Y,Z)$ and $\operatorname{Map}(X,\operatorname{Map}(Y,Z)) \cong \operatorname{Map}(X \times Y,Z)$.

References