

19-20-21 March 2025

ศูนย์ประชุมและแสดงสินค้านานาชาตินงนุชพัทยา, ชลบุรี

www.automation-expo.asia

Al for Quality Control

Using AI to Improve Manufacturing Process

My Profile

- Tapanan Yeophantong (A. Tap)
- Full-time Lecturer at the Department of Design and Digital Innovation (DDI), Martin de Tours School of Management and Economics, **Assumption University**
- Co-founder & Research Director at Baksters
- Managing Director at Praram Nine Technology
- 20+ years experience in Al research

ศูนย์ประชุมและแสดงสินค้า นานาชาตินงนุชพัทยา, ชลบุรี

Topics

- A Correct Understanding of Al
- Al Transformation in Manufacturing
- Key Technologies for AI in Quality Control

A Brief History of Al

How has Al come to be?

AI HAS A LONG HISTORY OF BEING "THE NEXT BIG THING"...

Timeline of Al Development

- 1950s-1960s: First Al boom the age of reasoning, prototype Al developed
- 1970s: Al winter I
- 1980s-1990s: Second Al boom: the age of Knowledge representation (appearance of expert systems capable of reproducing human decision-making)
- 1990s: Al winter II
- 1997: Deep Blue beats Gary Kasparov
- 2006: University of Toronto develops Deep Learning
- 2011: IBM's Watson won Jeopardy
- 2016: Go software based on Deep Learning beats world's champions

Rule-based Al

- Al systems were then based on IF-THEN rules hard-coded into the program.
- Key domains:
 - Chatbot
 - Games
 - Machine Translation

Expert Systems

THNOLOGY

UIS

Machine/Deep Learning

Generative Al

What about LLMs?

- LLMs, like other generative models, are built on advanced neural network architectures.
- However, they are specifically designed to process and generate natural language more efficiently.
- Common models:
 - Transformers (e.g. BERT, GPT)
 - Retrieval-Augmented Models (e.g. RAG)
 - Recurrent-Augmented Models (e.g. BigBird)

ศูนย์ประชุมและแสดงสินค้า นานาชาตินงนุชพัทยา, ชลบุรี

Summary of LLM Architectures

Architectures	Models	Use Cases
Transformers	GPT, BERT, RoBERTa	General-purpose NLP
Decoder-only Transformers	GPT, BLOOM, LLaMa	Text generation, chatbot
Encoder-only Transformers	BERT, RoBERTa, ALBERT	Text classification, retrieval
Encoder-decoder Transformers	T5, BART, Pegasus	Translation, summarization
Mixture of Experts	Switch Transformer, GLaM	Scaling of diverse tasks
Retrieval-Augmented Models	RAG, RETRO, GPT-4 w/ plugins	Domain-enhanced generation
Recurrent-Augmented Models	Longformer, BigBird	Long text understanding
Hybrid Architectures	ChatGPT, Claude	Chatbot

Agentic Al

Artificial Intelligence

Al involves techniques that equip computers to emulate human behavior, enabling them to learn, make decisions, recognize patterns, and solve complex problems in a manner akin to human intelligence.

Machine Learning

ML is a subset of AI, uses advanced algorithms to detect patterns in large data sets, allowing machines to learn and adapt. ML algorithms use supervised or unsupervised learning methods.

Deep Learning

DL is a subset of ML which uses neural networks for in-depth data processing and analytical tasks. DL leverages multiple layers of artificial neural networks to extract high-level features from raw input data, simulating the way human brains perceive and understand the world.

Generative Al

Generative AI is a subset of DL models that generates content like text, images, or code based on provided input. Trained on vast data sets, these models detect patterns and create outputs without explicit instruction, using a mix of supervised and unsupervised learning.

ศนย์ประชมและแสดงสินค้า

นานาชาตินงนุชพัทยา, ชลบุรี

Al Engineering Process

Al "Problem-Solution Fit"

THOOLOGY

UIS

Topics

- A Correct Understanding of Al
- Al Transformation in Manufacturing
- Key Technologies for AI in Quality Control

5A's of Al

INDUSTRY USE CASES FOR GENERATIVE AI IN MANUFACTURING

Generative Al's ability to predict patterns through data and augment existing analytics leads to numerous use cases for manufacturers:

Process Optimization

UIS

Process Optimization

Product Design

 Explore design possibilities for components, structures, or products based on specified parameters and constraints.

Manufacturing Process

 Analyze production data to identify inefficiencies, and other areas for improvement in the production process.

Supply Chain

 Predict production demands to allow optimizing warehouse requirements, logistics and distribution networks.

Quality Control

Quality Control

- Analyze images and sensor data to automate the detection of anomalies, defects, and other deviations from quality standards in the delivered products.
- This helps factories to ensure product consistency, reduce scrap rates, and improve product quality.

Predictive Maintenance

Predictive Maintenance

- Analyze sensor data from equipment to predict potential failures and maintenance needs before they occur.
- Factories can schedule preventive maintenance activities, minimize downtime, and extend equipment lifespan.

Topics

- A Correct Understanding of Al
- Al in Process Management & Monitoring
- Key Technologies for AI in Quality Control

ศูนย์ประชุมและแสดงสินค้า นานาชาตินงนชพัทยา, ชลบรี

Key Technologies

- Computer Vision
- Machine & Deep Learning
- Generative Al
- Edge AI & IoT Integration
- Robotic Process Automation (RPA)

Counting Inspection

DIMENSION INSPECTION

Smart Item Pattern Recognition to Detect, Adjust, & Highlight Item Dimensions

SURFACE INSPECTION

Ensuring Consistent Quality through Advanced Image Analysis

THOOLOGY

Generative AI*

Edge Al **Cloud AI** Inference results Inference results Network (low bandwidth) (low bandwidth) Network Cloud server Al training and inference Network Raw data Al inference using a Al inference using a Al inference using a pretrained AI model pretrained AI model pretrained AI model (high bandwidth) [Al processing] [Al processing] [Al processing] Production equipment **Appliances Appliances** Production equipment Cameras Cameras Edge devices Edge devices

Image source: www.murata.com

THNOLOGY

UIS

THOOLOGY

UIS

