Entregar por escrito el Jueves 13. Los ejercicios pueden hacerse en grupo; entregar en grupo, escribiendo por orden alfabético los nombres de todos los participantes, no penaliza.

Se asume siempre que estamos trabajando en un espacio de probabilidad (Ω, \mathcal{A}, P) , y que $\mathcal{B} \subset \mathcal{A}$ es una sub- σ -álgebra.

- 1) Demostrar el siguiente (importante) corolario de la desigualdad de Hölder: si $f \in \mathcal{L}_p$, entonces $||f||_p = \sup_{\{g:||g||_q=1\}} \int fg$.
- 2) Demostrar las desigualdades de Hölder y Minkowski en los casos p=1 y $p=\infty$.
- 3) Sea $X \in L^2$ una v.a.; hallar la constante c que mejor aproxima a X en L^2 .
- 4) Sean $X,Y\in L^1$ variables aleatorias tales que para todo conjunto en $A\in\mathcal{A}$, se verifica que $\int_A X=\int_A Y$. Decidir razonadamente si X=Y en casi todo punto (c.s.).
- 5) Dado el espacio de probabilidad (Ω, \mathcal{A}, P) , sea $\mathcal{B} \subset \mathcal{A}$ una sub- σ -álgebra. Probar que $L^2(\Omega, \mathcal{B}, P)$ es un subespacio vectorial cerrado de $L^2(\Omega, \mathcal{A}, P)$.
- 6) Probar que si A y B son independientes, entonces también lo son $A y B^c$, $A^c y B$, $y A^c y B^c$.