

AIAD REPORT Second Project

João Abelha - 201706412 Vitor Barbosa - 201703591

Descrição do problema

Hoje em dia, as cidades são caracterizadas por uma grande densidade de trânsito. Será possível construir um sistema multiagente de modo a mitigar os atrasos e as longas esperas em trânsito? O nosso trabalho irá tentar responder a esta questão, tentando montar um cenário real, com as seguintes características:

- → Existem **carros** em circulação que têm uma origem e um destino. Estes carros podem ter diferentes estratégias de navegação: caminho mais curto, caminho mais rápido, caminho com menor número de estradas;
- Também existem **carros prioritários**, o que leva a que os carros que circulam numa estrada onde entra um carro prioritário parem até que este os ultrapasse de modo a deixar passá-lo. Deste modo, estes chegarão sem problemas ao destino. Estes carros irão sempre por caminhos mais rápidos, de forma a chegarem à sua emergência no menor tempo possível;
- Todas as **ruas** que existem na cidade, tem informação da sua distância, da sua velocidade máxima e da sua densidade de trânsito. Estas variáveis serão usadas para poder determinar qual será o melhor caminho para o carro;
- Como a segurança rodoviária é importante, a velocidade máxima de cada estrada será restringida consoante as condições climatéricas da cidade.

Esquema Global

No nosso trabalho foram considerados quatro tipos de agentes: **Car**, **Priority Car**, **Road**, **City.** No esquema em cima estão visíveis as interações que existem entre estes.

Variáveis independentes

Tipo de estratégia

Estratégia que um carro pode ter: número mínimo de interseções, caminho mais rápido ou caminho mais curto.

Número de nós e arestas

Quantidade de nós e arestas que constituem o grafo, isto é, a cidade

Número carros normais e prioritários iniciais

Frota inicial de carros normais e prioritários

Probabilidade de criação dos carros

Probabilidade de criação da frota de carros periodicamente.

Número de carros de cada tipo a criar a cada intervalo de ticks

Números não negativos usados para criar a cada x ticks, um determinado conjunto de carros

Probabilidade de mudar as condições meteorológicas

A probabilidade de a cada TickIntervalChangeWeather mudar as condições meteorológicas

Quantidade de ticks entre criação de carros

O número de ticks entre a geração de novo conjunto de carros

Quantidade de ticks entre possíveis mudanças de tempo

Número de ticks entre possíveis mudanças de tempo e consequente restrições em velocidades máximas

Variáveis dependentes

Velocidade média

A velocidade é dependente das condições meteorológicas e, no caso do agente Car, da presença de um Priority Car na mesma Road

Distância percorrida, Duração da viagem e Número de interseções

Todas as variáveis acima dependem da estratégia do agente Car e das escolhas que este faz em cada interseção

Ocupação das Roads

A percentagem de ocupação das Roads é dependente da quantidade de carros que circulam na mesma.

Número carros parados

O número de carros parados depende da presença ou não de um Priority Car na Road que determinado Car está a circular

Condições Meteorológicas

A condições meteorológicas são alteradas aleatoriamente a cada TickIntervalChangeWeather. Existe ainda uma probabilidade de estas se alterarem ou não

Número de carros no destino

O número de carros no destino depende do número de carros iniciais e da criação, com uma dada probabilidade, de novos carros a cada TickIntervalMakeCars

Visualização da execução da simulação

Para poder visualizar o comportamento dos agentes, usamos a classe **DisplaySurface** para mostrar o grafo da cidade através da classe **Network2DDisplay**. Nesta visualização podemos observar o estado das ruas da nossa cidade, isto é, podemos perceber o quão **ocupada** está uma **Road**.

Cada **cor** associada a uma **edge** corresponde a um **intervalo de percentagem de ocupação**.

White - vazia Green -] 0, 20] Orange -] 20, 70] Red -] 70, 100]

Parâmetros da simulação

Para parametrizar a configuração é necessário conter um ficheiro com pares de keys e values com aqueles parâmetros que queremos parametrizar a simulação.

^{*} Definem o valor de dois objetos do tipo carro e se a <u>flag</u> para os ver for passada pela linha de argumentos, serão gerados gráficos para seguir as estatísticas destes dois carros individualmente em vez da média de todos os agentes respetivos

Experiências realizadas

Experiência 1

- 6 carros de cada tipo.
- Mesmos nó fonte e destino entre carros de cada estratégia.
- Sem carros prioritários nem criação periódica de carros.
- Mudanças meteorológicas não relevantes.
- Valores médios de cada estratégia, depois de correr 15 vezes:

Estratégia	Tempo (ticks)	Interseções	Distância
Min Intersections	4775	6.296	150
Shortest Time	2418	6.667	116.667
Shortest Path	2450	6.883	116.667

Experiência 2

- Frota inicial de 6 carros de cada tipo
- Semelhante à experiência 1, mas com criação periódica de 500 em 500 ticks de 2 carros de cada tipo.
- Valores médios da frota inicial de carros, depois de correr 15 vezes:

Estratégia	Tempo (ticks)	Interseções	Distância	
Min Intersections	5075	7.33	150	
Shortest Time	2600	7.78	123.67	
Shortest Path	2700	7.8	116.67	(

Experiências realizadas

Experiência 3

- Frota inicial de 22 carros e 6 carros prioritários
- Criação periódica de 1000 em 1000 ticks de 5 carros prioritários
- Mudanças meteorológicas não relevantes.
- Paragem da experiência aos 10 mil ticks

Experiência 4

- Frota inicial de 22 carros
- Semelhante à experiência 2, com criação periódica de 500 em 500 ticks de 2 carros de cada tipo.
- Mudanças das condições meteorológicas de 300 em 300 ticks com uma probabilidade de 80%

Análise de resultados

Experiência 1

 Pela análise da experiência 1, conseguimos concluir que com um número suficiente de carros, a média dos valores tende a favorecer a estratégia do carro, podendo ainda assim não ser o melhor cenário neste aspeto devido à existência de trânsito e portanto a negociação poderá não levar sempre ao caminho "favorito" do carro.

• Experiência 2

- A experiência 2 relativamente à experiência 1 muda a variável independente número de carros, sem entrar para a
 estatística da frota a inicial, funcionando como trânsito para este veículos. Consequentemente, o número médio
 de ticks que demoram a chegar ao final aumentou para as várias estratégias.
- O número de interseções também aumentou devido à maior ocupação de ruas que anteriormente poderiam não estar ocupadas, optando os carros por outras.
- A distância manteve-se exceto no shortest path que aumentou mas no geral conseguiu percorrer mais rápido, acabando por mostrar a trade-off favorável a este tipo de carro.

Experiência 3

- O aumento do número de priority cars em circulação provoca um aumento de número de carros parados, fator que faz aumentar a taxa de ocupação de determinadas ruas.
- Também se verifica que após alguns ticks da criação de novos carros prioritários a velocidade média desce um pouco, uma vez que, os carros que circulam nas ruas por onde os carros prioritários passam, param para este seguirem o seu caminho

Experiência 4

 Esta experiência mostra como o fator meteorológico influencia a velocidade e a taxa de ocupação. Com uma rápida mudança de tempo mostra variações frequentes da velocidade em relação à velocidade máxima permitida. Quando o fator diminui, a velocidade diminui e verificamos que a taxa de ocupação das ruas aumenta, consequentemente, uma vez que os carros levam mais tempo para chegar ao fim da rua.

Conclusões e Trabalho Futuro

- → Alteramos uma especificação em relação ao trabalho anterior deixando de ser a City responsável por alterar as condições meteorológicas. Esta alteração é agora feita pelo Scheduler do Repast.
- Seria interessante implementar a parte de multiruns de modo a conseguir correr várias simulações parametrizadas de diferentes formas. Para além disso, sendo este um problema com muitas variáveis e de índole complexa seria possível ainda fazer mais gráficos e extrair novas conclusões como as influências duma ambulância nas diferentes estratégias.
- O grupo está satisfeito com o resultado final, pois as diferentes simulações realizadas permitiram perceber melhor o comportamento do nosso SMA com variações das variáveis independentes. Conseguimos observar que os agentes Car tiveram o comportamento esperado nas diferentes estratégias (através da visualização de valores em gráficos e ficheiros), tal como os agentes Priority Car. Conseguimos também perceber muito melhor as interações entre os agentes Road e Car/PriorityCar através da visualização da cidade e do seu estado de ocupação e dos diferentes gráficos que vão sendo atualizados ao longo do tempo.

