EECS151: Introduction to Digital Design and ICs

Lecture 11 - CMOS

Bora Nikolić

RISC-I: Reduced Instruction Set Computing

On February 12, 2015, IEEE installed a plaque at UC Berkeley to te the contribution of RISC-I. The plaque reads:

UC Berkeley students designed and built the first VLSI reduced instruction-set ter in 1981. The simplified instructions of RISC-I reduced the hardware for instruction decode and control, which enabled a flat 32-bit address space a large set of registers, and pipelined execution. A good match to C prograi and the Unix operating system, RISC-I influenced instruction sets widely used today, including those for game consoles, smartphones and tablets

https://risc.berkeley.edu/risc-i/reunion/

Berkeley @@@@

Berkeley ⊚000

Berkeley ©000

Review

- Pipelining increases throughput
 - Structural, control and data hazards exist
- FPGAs are widely used for hardware prototyping and accelerating key applications.
- Core FPGA building blocks:
 - Configurable Logic Blocks (CLBs)
 - Slices
 - Look-Up Tables
 - Flip-Flops
 - Carry chain
 - Configurable Interconnect

FPGA Interconnect

Configurable Interconnect

- Between rows and columns of CLBs are wiring channels.
- These are programable. Each wire can be connected in many ways.
- Switch Box:
 - Each interconnection has a transistor
 - Each switch is controlled by 1-bit configuration register.

FPGA Features: BRAMs, DSP, AI

Diverse Resources on FPGA

Colors represent different types of resources:

Block RAM

DSPs

Clocking

Serial I/O + PCI

A routing fabric runs throughout the chip to wire everything together.

[Xilinx]

Berkeley ©000

Block RAM

- Block Random Access Memory
- Used for storing large amounts of data:
 - 18Kb or 36Kb
 - Configurable bitwidth
 - 2 read and write ports
- · More recently
 - UltraRAM in UltraScale+ devices

DSP Slice

Efficient implementation of multiply, add, bit-wise logical.

Berkeley @000

Berkeley @000

9 Berkeley 2000

Berkeley ⊚000

Berkeley ©000

Berkeley ©000

State-of-the-art Xilinx FPGA Platform

• Versal (ACAP: Adaptive Compute Acceleration Platform)

EECS151 L11 CMOS

Nikolić, Fall 2021

CMOS Process

2/1000 1 10Ce33

Design Process

• Design through layers of abstractions

Specification
(e.g. in plain text)

Model
(e.g. in C/C/SystemVerilag)

Architecture
(e.g. in-order, out-of-order)

RTL logic design
(e.g. in Verillag, SystemVerilag)

Physical design
(schematic, layout; ASIC, FPGA)

Test
(Does the part works)

Step-and-Scan Lithography

EECS151 L11 CMOS

Nikolić, Fall 2021

Semiconductor Manufacturing

- Repetitive steps (40-70 masks):
 - Passivation
 - Photoresist coating
 - Patterning (stepper)
 - Develop
 - Etch
 - Process step
 - Etching
 - Deposition
 - Implant
 - Remove resistRepeat
- Zoom into a chip:

https://youtu.be/Fxv3JoS1uY8

CMOS Process

- Post ~250nm CMOS
- Shallow-trench isolation, dual/triple-well process

Metal Stack

• Interconnect is predominantly copper

SEM view of Copper Interconnect
(IBM Microelectronics)

Berkeley @@@@

Metal Stack in Modern Processes

- Metal stack
 - Bottom layers have pitch that matches transistors
 - Intermediate are 2-4x
 - Top layers are wide and thick: Power distribution, clock

Lithography Scaling

EUV - I

Nikolić, Fall 2021

Berkeley @090

Sub-Wavelength Lithography

• Light projected through a gap

Lithography Implications

• Forbidden directions

• Forbidden pitches

Optical proximity correction (OPC)

7

20 Berkeley @090

We Would Just Like a Square Contact...

• OPC vs. ILT

• Double patterning (pitch-split double exposure)

"Layout coloring"

*7nm process is quadruple patterned (w/o EUV)

EECS151 L11 CMOS

Nikolić, Fall 202

22 Berkeley ©060

24 Berkeley @000

Lithography and Processing Takeaways

- 193nm lithography impacts many of the design rules in modern processes:
 - Preferred and forbidden directions
 - Forbidden pitches
 - Multiple patterning
- EUV relaxes many of the restrictions in sub 5nm processes

Administrivia

- Semiconductor Workforce Fellowships in the area of SoC design
 - 8 undergraduate scholarships (4k each), applications due October 15
- Homework 4 is due today
 - No new homework this week
 - Homework 5 will be posted later this week, due next week
- No lab this week
 - Lab 6 (last) after the midterm
- Midterm 1 on October 7, 7-8:30pm
 - You will be assigned a classroom
 - One double-sided page of notes allowed
 - Material includes FPGAs

Berkeley ⊚000

Berkeley @000

