Ab-initio MD Simulation of GeTe

Jason Larkin CHE 24-623

Outline

- What is GeTe
- II. Ab-initio MD
- III. Radial Distribution Function
- IV. Results from [3] Liquid
- V. Results from [1] Amorphous
- VI. Results from [2] Amorphous and GST

Papers

- [1] J. Akola, R.O. Jones Phys. Rev. Lett. 100, 205502 (2008). (Simulation)
- [2] J. Akola, R.O. Jones Phys. Rev. B 76, 235201 (2007). (Simulation)
- [3] J.Y. Raty, et al., Phys. Rev. B 65, 115205 (2002). (Experiment and Small Simulation)
- [4] K. Hirota, et al., J. Appl. Phys. 82(1), 1997. **(Experiment)**
- [5] D.B. Dove, et al., Appl. Phys. Lett. 16, 3 (1970). **(Experiment)**
- All focus on the structural change from crystal->liquid->amorphous

I. What is GeTe/PC Materials?

- Phase Change Materials: Alloys of Ge, Sb, and Te.
- Most Popular: Ge₂Sb₂Te₅
- Composed of layers of GeTe and Sb2Te3 with vacancies

Contrast in Optical/Electrical properties between crystalline and amorphous phases.

Ex: difference in resistance 1K-1M Ohm.

Read/write: liquify, quench to amorphous, heat above re-crystallization T (~50 ns).

II. Ab-initio MD

Feynman-Hellman Theorem:

$$-\frac{\partial E[\{c_k^i\}, \{\mathbf{R}_\alpha\}]}{\partial \mathbf{R}_\alpha} = \langle \Psi | \frac{\partial \mathcal{H}}{\partial \mathbf{R}_\alpha} | \Psi \rangle \qquad \qquad \vec{F} = -\nabla U = m\vec{a}$$

- Assumption: electrons stay in their ground state as nuclei move.
- Recipe
- 1) Given location of nuclei, species, calculate electronic structure.
- 2) Take the (analytic) derivative above.
- 3) Move nuclei (with say Verlet integration).
- 4) Repeat.
- Most of time (again) in calculating forces, so solving $\mathcal{H}\Psi=E\Psi$ better be fast!
- •CPMD code: http://www.cpmd.org/
- •Flexible: if I want to go from GeTe->GST, simple!

Computational Details

- Calculation [1], [2] run on IBM Blue Gene/L, 512 CPUs for 1 month.
- •[1] includes 216 atoms in a 18.6 Ang. cube.
- •[2] includes same, 460 atoms GST.
- •[3] has only 64 atoms!

Melt T

219ps, expt.~(1000 ps)

[3], Langevin, dt=0.003 ps

- -A similar melting cycle, but everything done in 11 ps!!!
- Do results depend on this difference in quench times? NVE vs. NVT?
- The entire read/write cycle takes ~50 ns, good luck...
- •No force-field potentials exists for these materials, so this is as good as it gets.

III. Radial Distribution Function

Radial Distribution
Function (RDF) gives idea
of short-range order for
liquid/amorphous:

$$g(r) = n(r)/(\rho 4\pi r^2 dr)$$

- For LJ system, first peak in RDF very nearly same as FCC. True in general??
- For multi-species systems, I can have multiple RDFs (looking at say Ge-Ge, Te-Te only).

Figure 2.5: LJ RDFs for the fcc crystal at T=20 K, 40 K, 60 K, and 80 K, the amorphous phase at T=10 K, and the liquid phase at T=70 K and T=100 K.

-McGaughey PhD. Thesis

IV. Results from [3]

- Liquid phase total RDF shows (much) shorter overall and Ge-Ge bonding than crystal.
- Neutron diffraction (expt.) shows similar total RDF (short bonds).
- With MD data, we can look at species-species RDFs.

FIG. 6. Calculated total pair correlation function g(r) at 1000 K (plain line) compared with neutron diffraction g(r) at 1173 K (symbols). Bottom: the partial g(r) (g_{GeTe} , thick line; g_{GeGe} , gray line; g_{TeTe} , dots). The partials are shifted for clarity.

V. Results from [1]

- With atom by atom data, we can decompose RDFs (structure factors) into individual components.
- •We see that overall and Ge-Ge bonds are much shorter in amorphous. Te-Te is close to crystal bond length.

FIG. 1 (color online). Partial RDF of *a*-GeTe and *a*-Ge_{0.15}Te_{0.85} at 300 K. Black (thick) line, Te-Te; blue (peaked) line, Ge-Te (Te-Ge); red (middle) line, Ge-Ge. Insets: Coordination numbers as a function of cutoff distance (here 3.2 Å).

Peak at ~2.6 Ang.

[5]

Mechanical Engineering

Peak at ~2.6 Ang. (small diff. between graph and actual).

VI. Results from [2]

- Again, shortened Ge-Ge and overall bonds, Te-Te nearly same as crystal.
- •Results for GST materials show similar trends, shortened overall bonds except Te-Te.

TABLE I. Calculated structural properties of Ge₂Sb₂Te₅ and GeTe at 300 K: Ge-Te and Sb-Te bond lengths (r_0) and the first minima (r_{min}) of the partial RDF, atomic coordination numbers (n_x) , cutoff distance 3.2 Å) and order parameters (α_r) , and the total volume of cavities (V_n) .

	a-Ge ₂ Sb ₂ Te ₅		c-Ge ₂ Sb ₂ Te ₅		a-GeTe		c-GeTe	
	Calculated	Expt.	Calculated	Expt.	Calculated	Expt.	Calculated	Expt.
r ₀ (Å)	2.78/2.93	2.61/2.85 ^a 2.63/2.83 ^c	2.92/3.02	2.83/2.91 ^a 3.0±0.3 ^a	2.78	2.65 ^b	3.00	3.00 ^b 2.80, 2.84 ^b
r _{min} (Å)	3.84/3.88				3.68			
n_{Ge}	4.2	$3.9 \pm 0.8^{\circ}$	6		4.2	3.7 ^b	3+3	
n_{Sb}	3.7	2.8 ± 0.5^{c}	6					
n_{Te}	2.9	2.4 ± 0.8^{c}	4.8 ^d		3.3	2.5b	3+3	
α_{Ge}	0.77		1		0.56		1	
α_{Sb}	0.61		1					
α_{Te}	0.75		1		0.94	0.94		1
V_v (%)	11.8		~10		6.4		~0	

aEXAFS and XRD (Ref. 9).

FIG. 2. (Color online) Radial distribution functions of a-GST and a-GeTe at 300 K. (a) Te-Te [black, a-GST; red, a-GeTe; and green (scaled by 0.25), metastable GST crystal at 300 K]. (b) Partial RDF (black, Ge-Te bonds in a-GST; red, Ge-Te bonds in a-GeTe;

and blue, Sb-Te bonds in a-GST).

bEXAFS and XRD (Ref. 30), and ND (Ref. 31). c-GeTe structures: rhombohedral (shorter bonds, coordination 3+3) and fcc (longer bonds, coordination 6). cEXAFS (Ref. 12).

dVacancies reduce the value below 6.

Summary

- Ab-initio MD flexible, can simulate many systems accurately.
- Very expensive, can (mostly) study bulk-like properties.
- GeTe Amorphous/Liquid phase total RDF shows (much) shorter overall bonding than crystal.
- This is due (primarily) to Ge-x bonding which prefers tetrahedral. Very difficult to capture this with force-field potential!

