pi stability analysis, large p

Contents

Experiment Overview	Т
Data Generation	2
Extraneous Covariate	2
Precision Matrix	2
Data matrix	3
Results	4

Experiment Overview

In this experiment, I compared the results for three methods of hyperparameter selection: M1, M2, and M3. 50 trials were performed. M1 proceeded as follows: In each trial, for each variable, π was selected by maximizing ELBO over the following grid:

$$\mathop{\pi}\limits_{\sim} = \{0.001, 0.113, 0.226, 0.338, 0.450\}$$

 σ^2 and σ^2_β were fit to the data for each variable and individual using MAPE.

The optimal π was then stabilized in the following manner: upon concluding the first grid search, another grid search was performed using the values of μ , α , σ^2 , and σ^2_{β} corresponding to the optimal π as initial values. If the optimal π remained unchanged from the first grid search, then the grid search was concluded. However, if the optimal π changed, then the grid search was repeated until the optimal π stabilized.

M2 proceeded exactly as M1, except instead of fitting σ^2 to the data using MAPE, σ^2 was fixed for all individuals as the sample variance of the variable being treated as the response.

M3 was a pure grid search in which each of the hyperparameters was optimized by maximizing ELBO over a 3-D grid of 125 points $\sigma^2 \times \underset{\sim}{\pi} \times \sigma_{\beta}^2$. Since none of the hyperparameters were being fit to the data, the grid

search was not iterated until stability as in M1 and M2. π was chosen as above, while σ_β^2 and σ^2 were:

$$\sigma_{\beta}^{2} = \{0.001, 0.005, 0.022, 0.106, 0.5\} \quad \underset{\sim}{\sigma^{2}} = \{0.2, 0.4, 0.6, 0.8, 1\}$$

The first 30 trials were performed on a relatively small dataset, with p + 1 = 5. The last 20 trials were performed on a larger dataset, with p + 1 = 25. At the end of each set of trials, the performance of all methods were compared in terms of sensitivity, specificity, accuracy, and time to fit.

Note that I observed the fitted σ^2 blow up, resulting in erroneous results. This happened most often in the large p case. Thus, if any errors resulted for any of the 3 methods, for example, due to blowup of fitted σ^2 values, the trial was discarded.

Under each method, the CAVI updates were performed for 100 iterations before exiting, assuming that the tolerance criteria was not met prior to this.

Data Generation

Extraneous Covariate

I generated the covariate, Z, as the union of three almost disjoint intervals of equal measure. That is, $Z = Z_1 \cup Z_2 \cup Z_3$ with $Z_1 = (-3, -1), Z_2 = (a, b) = (-1, 1), Z_3 = (1, 3)$. Within each interval, I generated 60 covariate values from a uniform distribution. For example:

Precision Matrix

All of the individuals in interval 1 had the same precision matrix, $\Omega^{(1)}$:

$$\Omega_{i,j}^{(1)} = \begin{cases} 2 & i = j \\ 1 & (i,j) \in \{(1,2), (2,1), (2,3), (3,2)\} \\ 0 & o.w. \end{cases}$$

Also, all of the individuals in interval 3 had the same precision matrix, $\Omega^{(3)}$:

$$\Omega_{i,j}^{(3)} = \begin{cases} 2 & i = j \\ 1 & (i,j) \in \{(1,3), (3,1), (2,3), (3,2)\} \\ 0 & o.w. \end{cases}$$

However, the individuals in interval 2 had a precision matrix that was dependent upon Z and (a, b). Let $\beta_0 = -a/(b-a)$ and $\beta_1 = 1/(b-a)$. Then:

$$\Omega_{i,j}^{(2)}(z) = \begin{cases} 2 & i = j \\ 1 & (i,j) \in \{(2,3), (3,2)\} \\ 1 - \beta_0 - \beta_1 z & (i,j) \in \{(1,2), (2,1)\} \\ \beta_0 + \beta_1 z & (i,j) \in \{(1,3), (3,1)\} \\ 0 & o.w. \end{cases}$$

Thus, $\Omega^{(2)}(a) = \Omega^{(1)}$ and $\Omega^{(2)}(b) = \Omega^{(3)}$. That is, an individual on the left or right boundary of Z_2 would have precision matrix $\Omega^{(1)}$ or $\Omega^{(3)}$, respectively. The conditional dependence structures corresponding to each of these precision matrices are visualized below.

Data matrix

Let z_l be the extraneous covariate for the l-th individual. To generate the data matrix for the l-th individual, I took a random sample from $\mathcal{N}(0, \{\Omega_l(z_l)\}^{-1})$, where:

$$\Omega_l(z_l) = \begin{cases} \Omega^{(1)} & z_l \in Z_1 \\ \Omega^{(2)}(z_l) & z_l \in Z_2 \\ \Omega^{(3)} & z_l \in Z_3 \end{cases}$$

Results

```
n <- 180
n_3 <- n^(-1/3)

# sensitivity comparison (5)

# m1 - m2
data.frame(X = m1_sens5 - m2_sens5) %>% ggplot(aes(X)) +
    ggtitle(TeX("Sensitivity, p = 5: $M_1 - M_2$")) +
    xlab("Sensitivity Difference") +
    geom_histogram(binwidth = 2 * IQR(m1_sens5 - m2_sens5) * n_3, color = "black") +
    theme_bw() +
    theme(plot.title = element_text(hjust = 0.5))
```



```
summary(m1_sens5 - m2_sens5)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.054762 0.000000 0.004762 0.003810 0.017857 0.030952
```

```
# m1 - m3
data.frame(X = m1_sens5 - m3_sens5) %>% ggplot(aes(X)) +
   ggtitle(TeX("Sensitivity, p = 5: $M_1 - M_3$")) +
   xlab("Sensitivity Difference") +
   geom_histogram(binwidth = 2 * IQR(m1_sens5 - m3_sens5) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


summary(m1_sens5 - m3_sens5)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## -0.047619 0.008333 0.016667 0.020556 0.036905 0.083333

```
# m2 - m3
data.frame(X = m2_sens5 - m3_sens5) %>% ggplot(aes(X)) +
   ggtitle(TeX("Sensitivity, p = 5: $M_2 - M_3$")) +
   xlab("Sensitivity Difference") +
   geom_histogram(binwidth = 2 * IQR(m2_sens5 - m3_sens5) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


summary(m2_sens5 - m3_sens5)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.000000 0.007143 0.011905 0.016746 0.020833 0.061905

```
# sensitivity comparison (25)

# m1 - m2

data.frame(X = m1_sens25 - m2_sens25) %>% ggplot(aes(X)) +
    ggtitle(TeX("Sensitivity, p = 25: $M_1 - M_2$")) +
    xlab("Sensitivity Difference") +
    geom_histogram(binwidth = 2 * IQR(m1_sens25 - m2_sens25) * n_3, color = "black") +
    theme_bw() +
    theme(plot.title = element_text(hjust = 0.5))
```


summary(m1_sens25 - m2_sens25)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.20000 -0.09048 -0.06667 -0.07548 -0.03571 -0.01429
```

```
# m1 - m3
data.frame(X = m1_sens25 - m3_sens25) %>% ggplot(aes(X)) +
   ggtitle(TeX("Sensitivity, p = 25: $M_1 - M_3$")) +
   xlab("Sensitivity Difference") +
   geom_histogram(binwidth = 2 * IQR(m1_sens25 - m3_sens25) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


summary(m1_sens25 - m3_sens25)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## -0.1523809 -0.0892857 -0.0154762 -0.0378571 0.0005952 0.0261905

```
# m2 - m3
data.frame(X = m2_sens25 - m3_sens25) %>% ggplot(aes(X)) +
   ggtitle(TeX("Sensitivity, p = 25: $M_2 - M_3$")) +
   xlab("Sensitivity Difference") +
   geom_histogram(binwidth = 2 * IQR(m2_sens25 - m3_sens25) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


summary(m2_sens25 - m3_sens25)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.08333 0.01667 0.04762 0.03762 0.06905 0.12381
```

```
# specificity comparison (5)

# m1 - m2
data.frame(X = m1_spec5 - m2_spec5) %>% ggplot(aes(X)) +
    ggtitle(TeX("Specificity, p = 5: $M_1 - M_2$")) +
    xlab("Specificity Difference") +
    geom_histogram(binwidth = 2 * IQR(m1_spec5 - m2_spec5) * n_3, color = "black") +
    theme_bw() +
    theme(plot.title = element_text(hjust = 0.5))
```



```
summary(m1_spec5 - m2_spec5)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.0005464 0.0498634 0.0907104 0.0882878 0.1140710 0.1868853

```
# m1 - m3
data.frame(X = m1_spec5 - m3_spec5) %>% ggplot(aes(X)) +
   ggtitle(TeX("Specificity, p = 5: $M_1 - M_3$")) +
   xlab("Specificity Difference") +
   geom_histogram(binwidth = 2 * IQR(m1_spec5 - m3_spec5) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```



```
summary(m1_spec5 - m3_spec5)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. ## -0.032787 -0.005874 0.000000 0.007978 0.018169 0.093443

```
# m2 - m3
data.frame(X = m2_spec5 - m3_spec5) %>% ggplot(aes(X)) +
   ggtitle(TeX("Specificity, p = 5: $M_2 - M_3$")) +
   xlab("Specificity Difference") +
   geom_histogram(binwidth = 2 * IQR(m2_spec5 - m3_spec5) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


Specificity Difference

```
summary(m2_spec5 - m3_spec5)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. ## -0.171038 -0.105328 -0.084426 -0.080310 -0.053689 -0.006011
```

```
# specificity comparison (25)

# m1 - m2
data.frame(X = m1_spec25 - m2_spec25) %>% ggplot(aes(X)) +
    ggtitle(TeX("Specificity, p = 25: $M_1 - M_2$")) +
    xlab("Specificity Difference") +
    geom_histogram(binwidth = 2 * IQR(m1_spec25 - m2_spec25) * n_3, color = "black") +
    theme_bw() +
    theme(plot.title = element_text(hjust = 0.5))
```


summary(m1_spec25 - m2_spec25)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.08601 0.13079 0.15419 0.14986 0.16868 0.18812

```
# m1 - m3
data.frame(X = m1_spec25 - m3_spec25) %>% ggplot(aes(X)) +
   ggtitle(TeX("Specificity, p = 25: $M_1 - M_3$")) +
   xlab("Specificity Difference") +
   geom_histogram(binwidth = 2 * IQR(m1_spec25 - m3_spec25) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


summary(m1_spec25 - m3_spec25)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## -0.0032957 0.0003717 0.0038062 0.0033763 0.0059914 0.0120724

```
# m2 - m3
data.frame(X = m2_spec25 - m3_spec25) %>% ggplot(aes(X)) +
   ggtitle(TeX("Specificity, p = 25: $M_2 - M_3$")) +
   xlab("Specificity Difference") +
   geom_histogram(binwidth = 2 * IQR(m2_spec25 - m3_spec25) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


summary(m2_spec25 - m3_spec25)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.18791 -0.16494 -0.14841 -0.14648 -0.12724 -0.08109
```

```
# distribution of ELBO

# p = 5

# m1

data.frame(X = m1_ELBO5) %>% ggplot(aes(X)) +
    ggtitle(TeX("ELBO, p = 5: $M_1$")) +
    xlab("ELBO") +
    geom_histogram(binwidth = 2 * IQR(m1_ELBO5) * n_3, color = "black") +
    theme_bw() +
    theme(plot.title = element_text(hjust = 0.5))
```


summary(m1_ELBO5)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -85164 -84793 -84608 -84623 -84379 -84210
```

```
# m2
data.frame(X = m2_ELB05) %>% ggplot(aes(X)) +
   ggtitle(TeX("ELB0, p = 5: $M_2$")) +
   xlab("ELB0") +
   geom_histogram(binwidth = 2 * IQR(m2_ELB05) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


summary(m2_ELBO5)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -71496 -69328 -67904 -67857 -66477 -64592
```

```
# m3
data.frame(X = m3_ELB05) %>% ggplot(aes(X)) +
   ggtitle(TeX("ELB0, p = 5: $M_3$")) +
   xlab("ELB0") +
   geom_histogram(binwidth = 2 * IQR(m3_ELB05) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


summary(m3_ELBO5)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -49121 -46917 -45228 -45239 -43288 -40581
```

```
# p = 25

# m1
data.frame(X = m1_ELB025) %>% ggplot(aes(X)) +
    ggtitle(TeX("ELB0, p = 25: $M_1$")) +
    xlab("ELB0") +
    geom_histogram(binwidth = 2 * IQR(m1_ELB025) * n_3, color = "black") +
    theme_bw() +
    theme(plot.title = element_text(hjust = 0.5))
```


summary(m1_ELB025)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -419360 -417484 -416282 -416620 -415635 -414012
```

```
# m2
data.frame(X = m2_ELB025) %>% ggplot(aes(X)) +
   ggtitle(TeX("ELB0, p = 25: $M_2$")) +
   xlab("ELB0") +
   geom_histogram(binwidth = 2 * IQR(m2_ELB025) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


summary(m2_ELBO25)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -388137 -386381 -385196 -384894 -383819 -377801
```

```
# m3
data.frame(X = m3_ELB025) %>% ggplot(aes(X)) +
   ggtitle(TeX("ELB0, p = 25: $M_3$")) +
   xlab("ELB0") +
   geom_histogram(binwidth = 2 * IQR(m3_ELB025) * n_3, color = "black") +
   theme_bw() +
   theme(plot.title = element_text(hjust = 0.5))
```


summary(m3_ELBO25)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -220222 -215170 -212452 -211904 -209408 -199046
```

```
Sys.time() - start
```

Time difference of 1.000593 hours

```
# find errors
errs <- sapply(results, `[[`, "error")
err_log <- !sapply(errs, is.null)
errs[err_log]</pre>
```

named list()

```
# display a single non-large example
results[!err_log][1]
```

```
## $trial1
## $trial1$covariates
```



```
##
## $trial1$M1
## $trial1$M1$summary
                         Covariate Dependent Graphical Model
##
##
                                        Unique conditional dependence structures: 3
## Model ELBO: -84663.66
## n: 180, variables: 5
                                                 Hyperparameter grid size: 5 points
## CAVI converged for 3/5 variables
##
## Model fit completed in 3.032~{\rm secs}
##
## $trial1$M1$unique_graphs
## $trial1$M1$unique_graphs[[1]]
```

Graph 1, Individuals 1,...,53

##

\$trial1\$M1\$unique_graphs[[2]]

Graph 2, Individuals 54,...,100

##

\$trial1\$M1\$unique_graphs[[3]]


```
##
##
## $trial1$M1$sensitivity
## [1] 0.952381
## $trial1$M1$specificity
## [1] 0.9961749
## $trial1$M1$accuracy
## [1] 0.988
##
## $trial1$M1$ELBO
## [1] -84663.66
## $trial1$M1$time
## [1] 3.032029
##
##
## $trial1$M2
## $trial1$M2$summary
##
                         Covariate Dependent Graphical Model
## Model ELBO: -67017.2
                                      Unique conditional dependence structures: 13
## n: 180, variables: 5
                                                 Hyperparameter grid size: 5 points
## CAVI converged for 3/5 variables
## Model fit completed in 1.106 secs
## $trial1$M2$unique_graphs
## $trial1$M2$unique_graphs[[1]]
```

Graph 1, Individuals 1,37,...,51

##
\$trial1\$M2\$unique_graphs[[2]]

Graph 2, Individuals 2,...,18

##

\$trial1\$M2\$unique_graphs[[3]]

Graph 3, Individuals 19,...,33

##
\$trial1\$M2\$unique_graphs[[4]]

Graph 4, Individuals 34,...,36

##
\$trial1\$M2\$unique_graphs[[5]]

Graph 5, Individuals 52,...,55

##
\$trial1\$M2\$unique_graphs[[6]]

Graph 6, Individuals 56,...,78

##
\$trial1\$M2\$unique_graphs[[7]]

Graph 7, Individuals 79,...,93

##
\$trial1\$M2\$unique_graphs[[8]]

Graph 8, Individuals 94

##
\$trial1\$M2\$unique_graphs[[9]]

Graph 9, Individuals 95,...,105

##
\$trial1\$M2\$unique_graphs[[10]]

Graph 10, Individuals 106,...,118

##

\$trial1\$M2\$unique_graphs[[11]]

Graph 11, Individuals 119,...,146

##
\$trial1\$M2\$unique_graphs[[12]]

Graph 12, Individuals 147,...,161

##

\$trial1\$M2\$unique_graphs[[13]]


```
##
##
## $trial1$M2$sensitivity
## [1] 0.9380952
##
## $trial1$M2$specificity
## [1] 0.8278689
## $trial1$M2$accuracy
## [1] 0.8484444
##
## $trial1$M2$ELBO
## [1] -67017.2
## $trial1$M2$time
## [1] 1.105693
##
##
## $trial1$M3
## $trial1$M3$summary
##
                         Covariate Dependent Graphical Model
## Model ELBO: -49121.09
                                        Unique conditional dependence structures: 3
## n: 180, variables: 5
                                               Hyperparameter grid size: 125 points
## CAVI converged for 4/5 variables
## Model fit completed in 6.251~{\rm secs}
## $trial1$M3$unique_graphs
## $trial1$M3$unique_graphs[[1]]
```

Graph 1, Individuals 1,...,58

##
\$trial1\$M3\$unique_graphs[[2]]

Graph 2, Individuals 59,...,93

##
\$trial1\$M3\$unique_graphs[[3]]


```
##
##
## $trial1$M3$sensitivity
## [1] 0.9357143
##
## $trial1$M3$specificity
## [1] 0.9989071
## $trial1$M3$accuracy
## [1] 0.9871111
##
## $trial1$M3$ELBO
## [1] -49121.09
## $trial1$M3$time
## [1] 6.25109
##
##
## $trial1$error
## NULL
# display a single large example
results[!err_log & 1:n_trials > (n_trials - n_large)][1]
```

\$trial31

\$trial31\$covariates


```
##
## $trial31$M1
## $trial31$M1$summary
##
                         Covariate Dependent Graphical Model
##
## Model ELBO: -417210.07
                                      Unique conditional dependence structures: 11
## n: 180, variables: 25
                                                Hyperparameter grid size: 5 points
## CAVI converged for 18/25 variables
##
## Model fit completed in 24.872 secs
##
## $trial31$M1$unique_graphs
## $trial31$M1$unique_graphs[[1]]
```

Graph 1, Individuals 1,...,12

##
\$trial31\$M1\$unique_graphs[[2]]

Graph 2, Individuals 13,14

##

\$trial31\$M1\$unique_graphs[[3]]

Graph 3, Individuals 15,...,24

##
\$trial31\$M1\$unique_graphs[[4]]

Graph 4, Individuals 25,...,33

##

\$trial31\$M1\$unique_graphs[[5]]

Graph 5, Individuals 34,...,99

##
\$trial31\$M1\$unique_graphs[[6]]

Graph 6, Individuals 100,...,108

##

\$trial31\$M1\$unique_graphs[[7]]

Graph 7, Individuals 109,...,131

##
\$trial31\$M1\$unique_graphs[[8]]

Graph 8, Individuals 132,...,141

##

\$trial31\$M1\$unique_graphs[[9]]

Graph 9, Individuals 142,...,149

##
\$trial31\$M1\$unique_graphs[[10]]

Graph 10, Individuals 150,...,163

##

\$trial31\$M1\$unique_graphs[[11]]

Graph 11, Individuals 164,...,180


```
##
##
## $trial31$M1$sensitivity
## [1] 0.8357143
##
## $trial31$M1$specificity
## [1] 0.9952534
## $trial31$M1$accuracy
## [1] 0.9940622
##
## $trial31$M1$ELBO
## [1] -417210.1
## $trial31$M1$time
##
  [1] 24.87153
##
##
## $trial31$M2
## $trial31$M2$summary
##
                         Covariate Dependent Graphical Model
##
## Model ELBO: -385317.49
                                      Unique conditional dependence structures: 102
## n: 180, variables: 25
                                                 Hyperparameter grid size: 5 points
## CAVI converged for 6/25 variables
## Model fit completed in 32.559 secs
##
## $trial31$M2$unique_graphs
## $trial31$M2$unique_graphs[[1]]
```

Graph 1, Individuals 1,...,6

##
\$trial31\$M2\$unique_graphs[[2]]

Graph 2, Individuals 7,8

‡ # ¢+~ial21¢M2¢w

\$trial31\$M2\$unique_graphs[[3]]

Graph 3, Individuals 9,...,12

##
\$trial31\$M2\$unique_graphs[[4]]

Graph 4, Individuals 13,14

##

\$trial31\$M2\$unique_graphs[[5]]

Graph 5, Individuals 15

##
\$trial31\$M2\$unique_graphs[[6]]

Graph 6, Individuals 16

##

\$trial31\$M2\$unique_graphs[[7]]

Graph 7, Individuals 17,...,19

##
\$trial31\$M2\$unique_graphs[[8]]

Graph 8, Individuals 20,...,22

##

\$trial31\$M2\$unique_graphs[[9]]

Graph 9, Individuals 23,24

##
\$trial31\$M2\$unique_graphs[[10]]

Graph 10, Individuals 25

Graph 11, Individuals 26,...,28

##
\$trial31\$M2\$unique_graphs[[12]]

Graph 12, Individuals 29,...,31

##

\$trial31\$M2\$unique_graphs[[13]]

Graph 13, Individuals 32

##
\$trial31\$M2\$unique_graphs[[14]]

Graph 14, Individuals 33

\$trial31\$M2\$unique_graphs[[15]]

Graph 15, Individuals 34,...,36

##
\$trial31\$M2\$unique_graphs[[16]]

Graph 16, Individuals 37

\$trial31\$M2\$unique_graphs[[17]]

Graph 17, Individuals 38,...,40

##
\$trial31\$M2\$unique_graphs[[18]]

Graph 18, Individuals 41,42

\$trial31\$M2\$unique_graphs[[19]]

Graph 19, Individuals 43,44

##
\$trial31\$M2\$unique_graphs[[20]]

Graph 20, Individuals 45

Graph 21, Individuals 46

##
\$trial31\$M2\$unique_graphs[[22]]

Graph 22, Individuals 47,48

\$trial31\$M2\$unique_graphs[[23]]

Graph 23, Individuals 49,...,51

##
\$trial31\$M2\$unique_graphs[[24]]

Graph 24, Individuals 52,...,54

#

\$trial31\$M2\$unique_graphs[[25]]

Graph 25, Individuals 55,56

##
\$trial31\$M2\$unique_graphs[[26]]

Graph 26, Individuals 57,...,59

##
\$trial31\$M2\$unique_graphs[[27]]

Graph 27, Individuals 60

##
\$trial31\$M2\$unique_graphs[[28]]

Graph 28, Individuals 61,62

##
\$trial31\$M2\$unique_graphs[[29]]

Graph 29, Individuals 63,...,65

##
\$trial31\$M2\$unique_graphs[[30]]

Graph 30, Individuals 66,67

##
\$trial31\$M2\$unique_graphs[[31]]

Graph 31, Individuals 68

##
\$trial31\$M2\$unique_graphs[[32]]

Graph 32, Individuals 69

##

\$trial31\$M2\$unique_graphs[[33]]

Graph 33, Individuals 70,...,72

##
\$trial31\$M2\$unique_graphs[[34]]

Graph 34, Individuals 73,...,76

##

\$trial31\$M2\$unique_graphs[[35]]

Graph 35, Individuals 77

##
\$trial31\$M2\$unique_graphs[[36]]

Graph 36, Individuals 78,...,81

\$trial31\$M2\$unique_graphs[[37]]

Graph 37, Individuals 82

##
\$trial31\$M2\$unique_graphs[[38]]

Graph 38, Individuals 83

##
\$trial31\$M2\$unique_graphs[[39]]

Graph 39, Individuals 84

##
\$trial31\$M2\$unique_graphs[[40]]

Graph 40, Individuals 85

Graph 41, Individuals 86

##
\$trial31\$M2\$unique_graphs[[42]]

Graph 42, Individuals 87,...,89

\$trial31\$M2\$unique_graphs[[43]]

Graph 43, Individuals 90

##
\$trial31\$M2\$unique_graphs[[44]]

Graph 44, Individuals 91,92

##
\$trial31\$M2\$unique_graphs[[45]]

Graph 45, Individuals 93

##
\$trial31\$M2\$unique_graphs[[46]]

Graph 46, Individuals 94

Graph 47, Individuals 95,96

##
\$trial31\$M2\$unique_graphs[[48]]

Graph 48, Individuals 97

##
\$trial31\$M2\$unique_graphs[[49]]

Graph 49, Individuals 98,99

##
\$trial31\$M2\$unique_graphs[[50]]

Graph 50, Individuals 100

\$trial31\$M2\$unique_graphs[[51]]

Graph 51, Individuals 101

##
\$trial31\$M2\$unique_graphs[[52]]

Graph 52, Individuals 102,...,104

##
\$trial31\$M2\$unique_graphs[[53]]

Graph 53, Individuals 105

##
\$trial31\$M2\$unique_graphs[[54]]

Graph 54, Individuals 106

\$trial31\$M2\$unique_graphs[[55]]

Graph 55, Individuals 107

##
\$trial31\$M2\$unique_graphs[[56]]

Graph 56, Individuals 108

Graph 57, Individuals 109

##
\$trial31\$M2\$unique_graphs[[58]]

Graph 58, Individuals 110

##
\$trial31\$M2\$unique_graphs[[59]]

Graph 59, Individuals 111

##
\$trial31\$M2\$unique_graphs[[60]]

Graph 60, Individuals 112,113

##
\$trial31\$M2\$unique_graphs[[61]]

Graph 61, Individuals 114

##
\$trial31\$M2\$unique_graphs[[62]]

Graph 62, Individuals 115

Graph 63, Individuals 116,117

##
\$trial31\$M2\$unique_graphs[[64]]

Graph 64, Individuals 118

Graph 65, Individuals 119

##
\$trial31\$M2\$unique_graphs[[66]]

Graph 66, Individuals 120

Graph 67, Individuals 121,...,124

##
\$trial31\$M2\$unique_graphs[[68]]

Graph 68, Individuals 125

Graph 69, Individuals 126

##
\$trial31\$M2\$unique_graphs[[70]]

Graph 70, Individuals 127

##
\$trial31\$M2\$unique_graphs[[71]]

Graph 71, Individuals 128,...,130

##
\$trial31\$M2\$unique_graphs[[72]]

Graph 72, Individuals 131

#

\$trial31\$M2\$unique_graphs[[73]]

Graph 73, Individuals 132

##
\$trial31\$M2\$unique_graphs[[74]]

Graph 74, Individuals 133

##
\$trial31\$M2\$unique_graphs[[75]]

Graph 75, Individuals 134,135

##
\$trial31\$M2\$unique_graphs[[76]]

Graph 76, Individuals 136

##
\$trial31\$M2\$unique_graphs[[77]]

Graph 77, Individuals 137,...,139

##
\$trial31\$M2\$unique_graphs[[78]]

Graph 78, Individuals 140,141

\$trial31\$M2\$unique_graphs[[79]]

Graph 79, Individuals 142,143

##
\$trial31\$M2\$unique_graphs[[80]]

Graph 80, Individuals 144

##
\$trial31\$M2\$unique_graphs[[81]]

Graph 81, Individuals 145

##
\$trial31\$M2\$unique_graphs[[82]]

Graph 82, Individuals 146,147

##

\$trial31\$M2\$unique_graphs[[83]]

Graph 83, Individuals 148,149

##
\$trial31\$M2\$unique_graphs[[84]]

Graph 84, Individuals 150

#

\$trial31\$M2\$unique_graphs[[85]]

Graph 85, Individuals 151,152

##
\$trial31\$M2\$unique_graphs[[86]]

Graph 86, Individuals 153

##
\$trial31\$M2\$unique_graphs[[87]]

Graph 87, Individuals 154,...,158

##
\$trial31\$M2\$unique_graphs[[88]]

Graph 88, Individuals 159

##
\$trial31\$M2\$unique_graphs[[89]]

Graph 89, Individuals 160,161

##
\$trial31\$M2\$unique_graphs[[90]]

Graph 90, Individuals 162,...,165

##

\$trial31\$M2\$unique_graphs[[91]]

Graph 91, Individuals 166

##
\$trial31\$M2\$unique_graphs[[92]]

Graph 92, Individuals 167,168

\$trial31\$M2\$unique_graphs[[93]]

Graph 93, Individuals 169

##
\$trial31\$M2\$unique_graphs[[94]]

Graph 94, Individuals 170

##
\$trial31\$M2\$unique_graphs[[95]]

Graph 95, Individuals 171

##
\$trial31\$M2\$unique_graphs[[96]]

Graph 96, Individuals 172

##
\$trial31\$M2\$unique_graphs[[97]]

Graph 97, Individuals 173

##
\$trial31\$M2\$unique_graphs[[98]]

Graph 98, Individuals 174,175

##
\$trial31\$M2\$unique_graphs[[99]]

Graph 99, Individuals 176,177

##
\$trial31\$M2\$unique_graphs[[100]]

Graph 100, Individuals 178

#

\$trial31\$M2\$unique_graphs[[101]]

Graph 101, Individuals 179

##
\$trial31\$M2\$unique_graphs[[102]]

Graph 102, Individuals 180

##
##
\$trial31\$M2\$sensitivity
[1] 0.9238095
##
\$trial31\$M2\$specificity

```
## [1] 0.8457997
##
## $trial31$M2$accuracy
  [1] 0.8463822
## $trial31$M2$ELBO
## [1] -385317.5
##
## $trial31$M2$time
   [1] 32.55868
##
##
##
## $trial31$M3
## $trial31$M3$summary
##
                         Covariate Dependent Graphical Model
##
## Model ELBO: -214790.25
                                      Unique conditional dependence structures: 17
## n: 180, variables: 25
                                               Hyperparameter grid size: 125 points
  CAVI converged for 25/25 variables
## Model fit completed in 1.986 mins
##
## $trial31$M3$unique_graphs
## $trial31$M3$unique_graphs[[1]]
```

Graph 1, Individuals 1,...,25

Graph 2, Individuals 26,...,33

##
\$trial31\$M3\$unique_graphs[[3]]

Graph 3, Individuals 34,...,44

##

\$trial31\$M3\$unique_graphs[[4]]

Graph 4, Individuals 45,...,48

##
\$trial31\$M3\$unique_graphs[[5]]

Graph 5, Individuals 49,...,51

##

\$trial31\$M3\$unique_graphs[[6]]

Graph 6, Individuals 52,...,56

##
\$trial31\$M3\$unique_graphs[[7]]

Graph 7, Individuals 57,...,85

##

\$trial31\$M3\$unique_graphs[[8]]

Graph 8, Individuals 86

##
\$trial31\$M3\$unique_graphs[[9]]

Graph 9, Individuals 87,...,103

#

\$trial31\$M3\$unique_graphs[[10]]

Graph 10, Individuals 104,...,109

##
\$trial31\$M3\$unique_graphs[[11]]

Graph 11, Individuals 110,...,113

#

\$trial31\$M3\$unique_graphs[[12]]

Graph 12, Individuals 114,...,119

##
\$trial31\$M3\$unique_graphs[[13]]

Graph 13, Individuals 120,...,126

##

\$trial31\$M3\$unique_graphs[[14]]

Graph 14, Individuals 127,...,149

##
\$trial31\$M3\$unique_graphs[[15]]

Graph 15, Individuals 150,...,166

##

\$trial31\$M3\$unique_graphs[[16]]

Graph 16, Individuals 167

##
\$trial31\$M3\$unique_graphs[[17]]

Graph 17, Individuals 168,...,180

##
##
\$trial31\$M3\$sensitivity
[1] 0.8428571
##
\$trial31\$M3\$specificity

```
## [1] 0.9874619
##
## $trial31$M3$accuracy
## [1] 0.9863822
##
## $trial31$M3$ELB0
## [1] -214790.2
##
## $trial31$M3$time
## [1] 119.1823
##
##
```

\$trial31\$error

NULL