

EE902 Final Exam 2023-24 Q3

Venkateswar Reddy Melachervu | 10 Mar 2024

TalentSprint | 23156022 Page 1 / 31

Overall Status: Completed Detailed Status: Test-taker Completed

Test Finish Time: March 10, 2024 11:33:00 AM IST

Venkateswar Reddy Melachervu

vmela23@iitk.ac.in

Test-Taker ID: - 130025089

Credibility Index: LOW 6

Profile Picture Snapshot

Identity Card Snapshot

TalentSprint | 23156022 Page 2 / 31

39 Marks Scored out of 40

97.5 % 71.43 percentile out of 14 Test Takers

 $2_h 31_m 8_s \stackrel{\text{Time taken}}{_{\text{of 3hr}}}$

Marks Scored

Attempt Summary

Distribution of questions attempted in a total of 40 question(s).

TalentSprint | 23156022 Page 3 / 31

Section 1
Section #1

question(s) 40 Q.

Time taken
2h 31m 8s
(Untimed)

Marks Scored 39 / 40

Marks Scored

Attempt Summary

Distribution of questions attempted in a total of 40 question(s).

This shows the correctness of questions attempted by the test taker

Correct	39 Ques	39/39 Marks
Incorrect	1 Ques	0/1 Marks

TalentSprint | 23156022 Page 4 / 31

▼ Question 1

U Time taken: 1m 55s

The Gaussian kernel is defined as

Response:

OPTIONS	RESPONSE	ANSWER
$\exp\left(\frac{\left\ \bar{\mathbf{x}}_{i} - \bar{\mathbf{x}}_{j}\right\ ^{2}}{2\sigma^{2}}\right)$		
$\exp\left(-\frac{\ \bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j\ }{2\sigma^2}\right)$		
$\exp\left(-\frac{\left\ \mathbf{\bar{x}}_{i}-\mathbf{\bar{x}}_{j}\right\ ^{2}}{2\sigma^{2}}\right)$		
$\left\ \bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j \right\ \exp\left(-\frac{\left\ \bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j \right\ }{2\sigma^2}\right)$		

▼ Question 2

U Time taken: 54s

Logistic regression can be used in which of the following applications

OPTIONS	RESPONSE	ANSWER
Stock price forecasting		
Disease detection	•	
Predicting the price of a home		
Clustering of users based on shopping information		

Q. 3

The learning model for the linear regression problem described in class is

OPTIONS	RESPONSE	ANSWER
$ \underbrace{\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(M) \end{bmatrix}}_{\bar{y}} = \underbrace{\begin{bmatrix} \bar{\mathbf{x}}(1) \\ \bar{\mathbf{x}}(2) \\ \vdots \\ \bar{\mathbf{x}}(M) \end{bmatrix}}_{\bar{\mathbf{x}}} \bar{\mathbf{h}} + \underbrace{\begin{bmatrix} \epsilon(1) \\ \epsilon(2) \\ \vdots \\ \epsilon(M) \end{bmatrix}}_{\bar{\epsilon}} $		
$ \underbrace{\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(M) \end{bmatrix}}_{\bar{\mathbf{y}}} = \underbrace{\begin{bmatrix} \bar{\mathbf{x}}^T(1) \\ \bar{\mathbf{x}}^T(2) \\ \vdots \\ \bar{\mathbf{x}}^T(M) \end{bmatrix}}_{\bar{\mathbf{x}}} \bar{\mathbf{h}} + \underbrace{\begin{bmatrix} \epsilon(1) \\ \epsilon(2) \\ \vdots \\ \epsilon(M) \end{bmatrix}}_{\bar{\epsilon}} $		
$ \underbrace{\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(M) \end{bmatrix}}_{\bar{y}} = \underbrace{\begin{bmatrix} \bar{x}(1) \\ \bar{x}(2) \\ \vdots \\ \bar{x}(M) \end{bmatrix}}_{\bar{x}} \bar{h}^{T} + \underbrace{\begin{bmatrix} \epsilon(1) \\ \epsilon(2) \\ \vdots \\ \epsilon(M) \end{bmatrix}}_{\bar{\epsilon}} $		
$ \underbrace{\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(M) \end{bmatrix}}_{\bar{\mathbf{y}}} = \underbrace{\begin{bmatrix} \bar{\mathbf{x}}^T(1) \\ \bar{\mathbf{x}}^T(2) \\ \vdots \\ \bar{\mathbf{x}}^T(M) \end{bmatrix}}_{\bar{\mathbf{x}}} \bar{\mathbf{h}}^T + \underbrace{\begin{bmatrix} \epsilon(1) \\ \epsilon(2) \\ \vdots \\ \epsilon(M) \end{bmatrix}}_{\bar{\epsilon}} $		

Consider the table below

	$x_2 = 0$	$x_2 = 1$
y = 0	3	9
y = 1	6	12

The quantity is given as p(y = 1)

Response:

OPTIONS	RESPONSE	ANSWER
3 4		
<u>3</u> <u>5</u>		
1/3		
<u>2</u> <u>5</u>		

▼ Question 5

© Time taken: 55s

Consider the model

The quantity $p(l^1|i^0,d^0)$ is an example of

OPTIONS	RESPONSE	ANSWER
Causal reasoning		
Evidential Reasoning		
Intercausal Reasoning		
Not possible to evaluate		

Consider the linear regression problem with the design matrix \mathbf{X} and response vector $\mathbf{\bar{y}}$ given below $\mathbf{X} = \begin{bmatrix} -1 & 1 \\ -1 & -1 \\ 1 & 1 \end{bmatrix}$, $\mathbf{\bar{y}} \begin{bmatrix} 2 \\ -2 \\ 4 \\ -2 \end{bmatrix}$

The vector of regression coefficients is

Response:

OPTIONS	RESPONSE	ANSWER
$\frac{1}{2}\begin{bmatrix}3\\-2\end{bmatrix}$		
$\frac{1}{2}\begin{bmatrix} -2\\3 \end{bmatrix}$		
$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$		
$\frac{1}{2}\begin{bmatrix}1\\-1\end{bmatrix}$		

Question 7

① Time taken: 27s

What is the **margin** between two hyperplanes?

 $\bar{\mathbf{a}}^T \bar{\mathbf{x}} = c_1$

 $\bar{\mathbf{a}}^T\bar{\mathbf{x}}=c_2$

Response:

OPTIONS	RESPONSE	ANSWER
$\frac{\ \bar{\mathbf{a}}\ }{ c_1 - c_2 }$		
$\frac{ c_1^2 - c_2^2 }{\ \bar{\mathbf{a}}\ }$		
$\frac{ c_1 - c_2 }{\ \bar{\mathbf{a}}\ ^2}$		
$\frac{ c_1-c_2 }{\ \bar{\mathbf{a}}\ }$	•	

TalentSprint | 23156022

The posterior probability $p(y=1|\bar{\mathbf{x}}=\bar{\mathbf{v}})$ is given as

Response:

OPTIONS	RESPONSE	ANSWER
$\frac{p(\bar{\mathbf{x}} = \bar{\mathbf{v}} y=1)}{p(\bar{\mathbf{x}} = \bar{\mathbf{v}})}$		
$\frac{p(\bar{\mathbf{x}}=\bar{\mathbf{v}} y=1)\times p(y=1)+p(\bar{\mathbf{x}}=\bar{\mathbf{v}} y=0)\times p(y=0)}{p(\bar{\mathbf{x}}=\bar{\mathbf{v}})}$		
$\frac{p(\bar{\mathbf{x}}=\bar{\mathbf{v}} y=1)\times p(y=1)}{p(\bar{\mathbf{x}}=\bar{\mathbf{v}})}$	•	
$\frac{p(\bar{\mathbf{x}} = \bar{\mathbf{v}})}{p(\bar{\mathbf{x}} = \bar{\mathbf{v}} y=1) \times p(y=1)}$		

▼ Question 9

U Time taken: 1m

The K - means $\underline{\textbf{cost-function}}$ to minimize is given as

OPTIONS	RESPONSE	ANSWER
$\min \sum_{i=1}^K \sum_{j=1}^M \alpha_i(j) \ \overline{\mathbf{x}}(j) - \overline{\mathbf{\mu}}_i \ $		
$\min \sum_{i=1}^K \sum_{j=1}^M \alpha_i(j) (\overline{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_i) (\overline{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_i)^T$		
$\min \sum_{i=1}^K \sum_{j=1}^M \alpha_i(j) \ \overline{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_i \ ^2$	•	
$\min \sum_{i=1}^K \alpha_i(j) \ \overline{\mathbf{x}}(j) - \overline{\mathbf{\mu}}_i\ ^2$		

The $\underline{entropy}$ H (X) of this source is

Response:

OPTIONS	RESPONSE	ANSWER
$-\sum_{i=1}^n p(x_i) \log_2 p(x_i)$		⊘
$\sum_{i=1}^{n} \frac{1}{p(x_i)} \log_2 \frac{1}{p(x_i)}$		
$-\sum_{i=1}^n p(x_i) \log_2 \frac{1}{p(x_i)}$		
$\sum_{i=1}^{n} \log_2 \frac{1}{p(x_i)}$		

Q.

▼ Question 11

U Time taken: 5m 21s

What is the distance between the two hyperplanes given below

$$\begin{array}{l} x_1 + \sqrt{2}x_2 + \sqrt{3}x_3 + \dots + \sqrt{N}x_N = 2\sqrt{2} \\ x_1 + \sqrt{2}x_2 + \sqrt{3}x_3 + \dots + \sqrt{N}x_N = -2\sqrt{2} \end{array}$$

OPTIONS	RESPONSE	ANSWER
$\frac{8}{\sqrt{N(N+1)}}$		
$\frac{2\sqrt{2}}{\sqrt{N(N+1)}}$		
$\frac{2}{\sqrt{\frac{N(N+1)(2N+1)}{6}}}$		
$\frac{1}{2\sqrt{\frac{N(N+1)(2N+1)}{6}}}$		

Consider the linear regression model below

$$y(k) = h_0 + h_1 x_1(k) + \cdots + h_n x_n(k) + \epsilon(k)$$

The quantities $x_i(k)$ are

Response:

OPTIONS	RESPONSE	ANSWER
Response		
Regression coefficient		
Regressor	•	
Model error		

▼ Question 13

① Time taken: 4m 23s

The probability $p(x_j = 1|y = 0)$ can be evaluated using the formula

OPTIONS	RESPONSE	ANSWER
$\frac{\sum_{j=1}^{N} 1(x_j(i)=1, y(i)=0)}{N}$		
$1-p(x_j=1 y=1)$		
$\frac{\sum_{i=1}^{M} 1(x_j(i)=1,y(i)=0)}{M}$		
$\frac{\sum_{i=1}^{M} 1(x_j(i)=1, y(i)=0)}{\sum_{i=1}^{M} 1(y(i)=0)}$	•	

To determine the cluster in iteration l, we assign $\bar{\mathbf{x}}(j)$ to cluster \tilde{l} with centroid $\bar{\mu}_{\tilde{i}}^{(l-1)}$ that satisfies

Response:

OPTIONS	RESPONSE	ANSWER
$\tilde{\imath} = \arg\max_i \bar{\mathbf{x}}^T(j) \overline{\boldsymbol{\mu}}_i^{(l-1)} - \left(\overline{\boldsymbol{\mu}}_i^{(l-1)}\right)^T \overline{\boldsymbol{\mu}}_i^{(l-1)}$		
$\tilde{\imath} = \arg\max_{i} 2\overline{\mathbf{x}}^{T}(j)\overline{\mathbf{\mu}}_{i}^{(l-1)} + \left(\overline{\mathbf{\mu}}_{i}^{(l-1)}\right)^{T}\overline{\mathbf{\mu}}_{i}^{(l-1)}$		
$\tilde{\imath} = \arg\max_{i} \bar{\mathbf{x}}^{T}(j) \overline{\boldsymbol{\mu}}_{i}^{(l-1)} + \left(\overline{\boldsymbol{\mu}}_{i}^{(l-1)}\right)^{T} \overline{\boldsymbol{\mu}}_{i}^{(l-1)}$		

Q.

▼ Question 15

U Time taken: 22m 20s

The multivariate Gaussian PDF for parameters below is

$$\overline{\mu} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \ \mathbf{R} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

OPTIONS	RESPONSE	ANSWER
$\frac{1}{\sqrt{12\pi}} e^{-\frac{1}{3} \left(x_1^2 + x_2^2 + 3x_1 + 3x_2 - x_1 x_2 + 3\right)}$		
$\frac{1}{\sqrt{12\pi}} e^{-\frac{1}{3}(x_1^2 + x_2^2 + 3x_1 - 3x_2 + x_1x_2 + 3)}$		
$\frac{1}{\sqrt{12\pi}}e^{-\frac{1}{3}(x_1^2+x_2^2+3x_1-3x_2-x_1x_2+3)}$	•	
$\frac{1}{\sqrt{12\pi}} e^{-\frac{1}{3}(x_1^2 + x_2^2 - 3x_1 - 3x_2 + x_1x_2 + 3)}$		

① Time taken: 1m 26s

In the example considered in lectures, the size of the feature vector equals

Response:

OPTIONS	RESPONSE	ANSWER
Number of emails in the set		
Number of words in the dictionary		
2		
Number of words in an e-mail		

Question 17

© Time taken: 31s

Consider the ML example below for prediction of sales based on advertising

(Million	Advertising
Euro)	(Million Euro)
651	23
762	26
856	30
1,063	34
1,190	43
1,298	48
1,421	52
1,440	57
1,518	58
	651 762 856 1,063 1,190 1,298 1,421 1,440

In this example, Advertising is the

OPTIONS	RESPONSE	ANSWER
Response		
Regression coefficient		
Model error		
Regressor	•	

The **kernel SVM** problem can be defined as

Response:

OPTIONS	RESPONSE	ANSWER
$\begin{aligned} \max \sum_{i=1}^{2M} \lambda_i &- \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_j \\ \text{subject to } \lambda_i &\geq 0 \\ \sum_{i=1}^{2M} \lambda_i y_i &= 0 \end{aligned}$		
$\max \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j K(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}_j)$ subject to $\lambda_i \geq 0$ $\sum_{i=1}^{2M} \lambda_i y_i = 0$		
$\begin{aligned} \max \sum_{i=1}^{2M} \lambda_i &- \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j K(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}_j) \\ \text{subject to } \lambda_i &\geq 0 \\ \sum_{i=1}^{2M} \lambda_i y_i &= 0 \end{aligned}$		
$\max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j K(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}_j)$ subject to $\lambda_i \leq 0$ $\sum_{i=1}^{2M} \lambda_i y_i \geq 0$		

▼ Question 19

① Time taken: 1m

The regression coefficient vector from the training data is determined as

OPTIONS	RESPONSE	ANSWER
$\bar{\mathbf{h}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \bar{\mathbf{y}}$		•
$\bar{\mathbf{h}} = \mathbf{X}^T (\mathbf{X}^T \mathbf{X})^{-1} \bar{\mathbf{y}}$		
$\bar{\mathbf{h}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X} \bar{\mathbf{y}}$		
$\bar{\mathbf{h}} = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}^T\bar{\mathbf{y}}$		

Q. 20

Which figure below represents linear regression

Response:

OPTIONS	RESPONSE	ANSWER
0.4 0.2 -0.4 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2		

▼ Question 21

U Time taken: 1m 56s

1. The log-likelihood of the regression parameter $\ ar{\mathbf{h}}$ in logistic regression can be written as

OPTIONS	RESPONSE	ANSWER
$\sum_{k=1}^{M} (1 - y(k)) \ln g(\bar{\mathbf{x}}(k)) + y(k) \ln (1 - g(\bar{\mathbf{x}}(k)))$		
$\sum_{k=1}^{M} y(k) \ln g(\bar{\mathbf{x}}(k)) + (1 - y(k)) \ln (1 - g(\bar{\mathbf{x}}(k)))$		⊘
$\prod_{k=1}^{M} \left(g(\bar{\mathbf{x}}(k)) \right)^{y(k)} \left(1 - g(\bar{\mathbf{x}}(k)) \right)^{1-y(k)}$		
$\prod_{k=1}^{M} \left(g(\bar{\mathbf{x}}(k)) \right)^{1-y(k)} \left(1 - g(\bar{\mathbf{x}}(k)) \right)^{y(k)}$		

The probability $p(x_j = 1|y = 1)$ can be evaluated using Laplace smoothing as

Response:

OPTIONS	RESPONSE	ANSWER
$\frac{\sum_{j=1}^{N} 1(x_j(i)=1,y(i)=1)+1}{\sum_{i=1}^{M} 1(y(i)=1)+2}$		
$\frac{\sum_{i=1}^{M} 1(x_j(i)=1,y(i)=1)+1}{\sum_{i=1}^{M} 1(y(i)=1)+2}$		
$\frac{\sum_{i=1}^{M} 1(x_j(i)=1,y(i)=1)+1}{\sum_{i=1}^{M} 1(y(i)=1)+1}$		
$\frac{\sum_{i=1}^{M} 1(x_j(i)=1,y(i)=1)}{\sum_{i=1}^{M} 1(y(i)=1)}$		

-

▼ Question 23

① Time taken: 3m 39s

What is the quantity $H(X \mid Type)$ for the type feature depicted in the figure below, where X is the final decision?

OPTIONS	RESPONSE	ANSWER
1		
0.36		
0		
0.54		

The *conditional entropy* H(X|Y) is defined as

Response:

OPTIONS	RESPONSE	ANSWER
$\sum_{j=1}^{m} p(y_j) H(Y = y_j X)$		
$\sum_{j=1}^{m} p(y_j) H(X Y=y_j)$		
$\sum_{j=1}^m H(X Y=y_j)$		
$\sum_{i=1}^{n} p(x_i) H(Y X=x_i)$		

Q. 25

▼ Question 25

U Time taken: 1m 14s

The Gaussian discriminant classifier for both classes with identical covariances is

Response:

OPTIONS	RESPONSE	ANSWER
Ellipsoidal		
Spherical		
Conical		
Linear	•	

Q.

▼ Question 26

① Time taken: 49s

The cluster assignment indicator $lpha_2(3)$

OPTIONS	RESPONSE	ANSWER
Equals 1 when $\bar{\mathbf{x}}(3)$ belongs to \mathcal{C}_2 and 0 otherwise		
Equals 0 when $\bar{\mathbf{x}}(3)$ belongs to \mathcal{C}_2 and 1 otherwise		
Equals 1 when $\bar{\mathbf{x}}(2)$ belongs to \mathcal{C}_3 and 0 otherwise		
Equals 0 when $\bar{\mathbf{x}}(2)$ belongs to \mathcal{C}_3 and 1 otherwise		

Consider the two classes $\,\mathcal{C}_0,\mathcal{C}_1\,$ distributed as below and determine when the classifier chooses $\,\mathcal{H}_0\,$

$$\mathcal{C}_0 \sim N\left(\begin{bmatrix}2\\-2\end{bmatrix}, \begin{bmatrix}\frac{1}{8} & 0\\ 0 & \frac{1}{4}\end{bmatrix}\right), \mathcal{C}_1 \sim N\left(\begin{bmatrix}4\\-4\end{bmatrix}, \begin{bmatrix}\frac{1}{8} & 0\\ 0 & \frac{1}{4}\end{bmatrix}\right)$$

Response:

OPTIONS	RESPONSE	ANSWER
$x_1 + 4x_2 \ge -1$		
$x_1 + 2x_2 \le 5$		
$4x_1 - x_2 \le 3$		
$2x_1 - x_2 \le 9$	•	•

•	Question	28

U Time taken: 1m 14s

The k - means algorithm is a/an

OPTIONS	RESPONSE	ANSWER
Supervised learning algorithm		
Reinforcement learning algorithm		
Deep learning algorithm		
Unsupervised learning algorithm	•	•

The *mean* and *covariance matrix* of the multivariate Guassian are defined as

Response:

OPTIONS	RESPONSE	ANSWER
$E\{\bar{\mathbf{x}}\} = \bar{\mathbf{\mu}}, E\{(\bar{\mathbf{x}} - \bar{\mathbf{\mu}})^2\} = \mathbf{R}$		
$E\{\bar{\mathbf{x}}\} = \bar{\mathbf{\mu}}, E\{(\bar{\mathbf{x}} - \bar{\mathbf{\mu}})(\bar{\mathbf{x}} - \bar{\mathbf{\mu}})^T\} = \mathbf{R}$		
$E\{\bar{\mathbf{x}}\} = \mu, E\{(\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}})^T(\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}})\} = \mathbf{R}$		
$E\{\bar{\mathbf{x}}\} = \mu, E\{\bar{\mathbf{x}}\bar{\mathbf{x}}^T\} = \mathbf{R}$		

Q.

▼ Question 30

© Time taken: 1m 35s

The optimization problem to determine the soft classifier is given as

OPTIONS	RESPONSE	ANSWER
$\begin{split} \min \sum_{i=1}^{N} u_i + \sum_{i=1}^{N} v_i \\ \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b &\geq 1 - u_i, 1 \leq i \leq M \\ \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b &\leq -1 + v_i, M + 1 \leq i \leq 2M \\ u_i &< 0, \ v_i < 0 \end{split}$		
$\begin{split} &\min \lVert \bar{\mathbf{a}} \rVert \\ &\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \geq 1 - u_i, 1 \leq i \leq M \\ &\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \leq -1 + v_i, \ M+1 \leq i \leq 2M \\ &u_i \geq 0, \ v_i \geq 0 \end{split}$		
$\begin{aligned} & \min \sum_{i=1}^{N} u_i + \sum_{i=1}^{N} v_i \\ & \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 1 - u_i, 1 \le i \le M \\ & \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le -1 + v_i, M + 1 \le i \le 2M \\ & u_i \ge 0, \ v_i \ge 0 \end{aligned}$		
$\begin{aligned} \max \sum_{i=1}^N u_i + \sum_{i=1}^N v_i \\ \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b &\geq 1 - u_i, 1 \leq i \leq M \\ \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b &\leq -1 + v_i, M + 1 \leq i \leq 2M \\ u_i &\geq 0, \ v_i \geq 0 \end{aligned}$		

Given a new observation $\bar{\boldsymbol{x}}=\bar{\boldsymbol{v}}\text{,,}$ it can be labeled as belonging to the class

y = 1 if

Response:

OPTIONS	RESPONSE	ANSWER
$\frac{\prod_{j=1}^{N} p(x_j = v_j y = 1)}{p(y = 0)} > \frac{\prod_{j=1}^{N} p(x_j = v_j y = 0)}{p(y = 1)}$		
$\frac{p(y=0)}{\prod_{j=1}^{N} p(x_j=v_j y=1)} > \frac{p(y=1)}{\prod_{j=1}^{N} p(x_j=v_j y=0)}$		
$\frac{\prod_{j=1}^{N} p(x_j = v_j y = 1)}{p(y = 1)} > \frac{\prod_{j=1}^{N} p(x_j = v_j y = 0)}{p(y = 0)}$	•	
$\frac{p(y=1)}{\prod_{j=1}^{N} p(x_j=v_j y=1)} > \frac{p(y=0)}{\prod_{j=1}^{N} p(x_j=v_j y=0)}$		

▼ Question 32

U Time taken: 3m 43s

Consider the model below

 $p(d^{0}, i^{1}, g^{1}, s^{1})$ can be evaluated as approximately

OPTIONS	RESPONSE	ANSWER
0.05871		
0.12960		
0.11664		
0.45332		

In Gaussian discriminant analysis, we **choose** \mathcal{C}_0 if

Response:

OPTIONS	RESPONSE	ANSWER
$p(\bar{\mathbf{x}}; \mathcal{C}_0) < p(\bar{\mathbf{x}}; \mathcal{C}_1)$		
$p(\bar{\mathbf{x}}; \mathcal{C}_0) = p(\bar{\mathbf{x}}; \mathcal{C}_1)$		
$p(\bar{\mathbf{x}}; \mathcal{C}_0) > 0$		
$p(\bar{\mathbf{x}}; \mathcal{C}_0) > p(\bar{\mathbf{x}}; \mathcal{C}_1)$	•	•

Q.

▼ Question 34

U Time taken: 1m 26s

The dual problem for the SVM can be formulated as

OPTIONS	RESPONSE	ANSWER
$\max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_j$ subject to $\lambda_i \leq 0$		
$\max \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_j$ subject to $\lambda_i \leq 0$ $\sum_{i=1}^{2M} \lambda_i y_i \geq 0$		
$\max \sum_{i=1}^{2M} \lambda_i + \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \bar{\mathbf{x}}_i^T \bar{\mathbf{x}}_j$ subject to $\lambda_i = 0$ $\sum_{i=1}^{2M} \lambda_i y_i = 0$		
$\begin{aligned} \max \sum_{i=1}^{2M} \lambda_i &- \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_j \\ \text{subject to } \lambda_i &\geq 0 \\ \sum_{i=1}^{2M} \lambda_i y_i &= 0 \end{aligned}$	•	

The optimization problem to determine the support vector classifier is

Response:

OPTIONS	RESPONSE	ANSWER
$\begin{aligned} \min & \ \bar{\mathbf{a}}\ _2 \\ \mathcal{C}_0 \colon \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 1, \ 1 \le i \le M \\ \mathcal{C}_1 \colon \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le -1, \ M + 1 \le i \le 2M \end{aligned}$		
$\min \frac{1}{\ \bar{\mathbf{a}}\ _2}$ $\mathbf{C_0}: \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 1, \ 1 \le i \le M$ $\mathbf{C_1}: \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le -1, \ M+1 \le i \le 2M$		
$\begin{aligned} &\min \ \bar{\mathbf{a}}\ _2 \\ & \mathcal{C}_0 \colon \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \leq 1, \ 1 \leq i \leq M \\ & \mathcal{C}_1 \colon \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \geq -1, \ M+1 \leq i \leq 2M \end{aligned}$		
$\begin{aligned} &\min \frac{1}{\ \bar{\mathbf{a}}\ _2} \\ & \mathcal{C}_0 \colon \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \leq 1, \ 1 \leq i \leq M \\ & \mathcal{C}_1 \colon \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \geq -1, \ M+1 \leq i \leq 2M \end{aligned}$		

▼ Question 36

① Time taken: 1m 51s

The PDF of the Gaussian mixture is given as

OPTIONS	RESPONSE	ANSWER
$\sum_{i=1}^K \left(\left(\frac{1}{2\pi\sigma^2} \right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^2} \bar{\mathbf{x}} - \overline{\boldsymbol{\mu}}_i ^2} \right)^{p_i}$		
$\sum_{i=1}^K p_i \times \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^2} \ \overline{\mathbf{x}} - \overline{\boldsymbol{\mu}}_i\ ^2}$		
$\prod_{i=1}^{K} p_i \times \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^2} \ \bar{\mathbf{x}} - \bar{\boldsymbol{\mu}}_i\ ^2}$		
$\prod_{i=1}^K \left(\left(\frac{1}{2\pi\sigma^2} \right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^2} \ \overline{\mathbf{x}} - \overline{\boldsymbol{\mu}}_i\ ^2} \right)^{p_i}$		

The update rule in logistic regression is

Response:

OPTIONS	RESPONSE	ANSWER
$\bar{\mathbf{h}}(k+1) = \bar{\mathbf{h}}(k) + \eta \left(y(k+1) - g(\bar{\mathbf{x}}(k+1)) \right) \bar{\mathbf{x}}(k+1)$		
$\bar{\mathbf{h}}(k+1) = \bar{\mathbf{h}}(k) - \eta \left(y(k+1) - g(\bar{\mathbf{x}}(k+1)) \right) \bar{\mathbf{x}}(k+1)$		
$\bar{\mathbf{h}}(k+1) = \bar{\mathbf{h}}(k) + \eta \left(y(k+1) - \bar{\mathbf{h}}^T(k)\bar{\mathbf{x}}(k+1) \right) \bar{\mathbf{x}}(k+1)$		
$\bar{\mathbf{h}}(k+1) = \bar{\mathbf{h}}(k) - \eta \left(y(k+1) - \bar{\mathbf{h}}^T(k) \bar{\mathbf{x}}(k+1) \right) \bar{\mathbf{x}}(k+1)$		

▼ Question 38

U Time taken: 3m 46s

The expected value of the log-likelihood in iteration $\, \it l \,$ is

OPTIONS	RESPONSE	ANSWER
$\prod_{j=1}^{M} \sum_{i=1}^{N} \left(\alpha_{i}^{(l)}(j) \ln p_{i} - \frac{N}{2} \ln 2\pi \sigma^{2} - \frac{1}{2\sigma^{2}} \bar{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_{i} ^{2} \right)$		
$\prod_{j=1}^{M} \prod_{i=1}^{N} \left(\alpha_{i}^{(l)}(j) \ln p_{i} - \frac{N}{2} \ln 2\pi \sigma^{2} - \frac{1}{2\sigma^{2}} \bar{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_{i} ^{2} \right)$		
$\sum_{j=1}^{M} \sum_{i=1}^{N} \alpha_{i}^{(l)}(j) \left(\ln p_{i} - \frac{N}{2} \ln 2\pi \sigma^{2} - \frac{1}{2\sigma^{2}} \bar{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_{i} ^{2} \right)$	•	
$\sum_{j=1}^{M} \prod_{i=1}^{N} \left(\ln p_i - \frac{N}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \ \bar{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_i \ ^2 \right)^{\alpha_i^{(l)}(j)}$		

Which for the following shows image segmentation

Response:

OPTIONS		RESPONSE	ANSWER
pixelated 20 30 40 50 20 20 30 40 50	mean filtered 20		
New Image	Old image		

Q.

▼ Question 40

① Time taken: 1m 14s

As $z \to \infty, z \to -\infty$, the logistic function approaches the limits

Response:

OPTIONS	RESPONSE	ANSWER
0,1		
∞, 0		
0,∞		
1,0	•	

TalentSprint | 23156022 Page 24 / 31

10th Mar 2024

09:01 AM	Started the test with Section #1
09:01 AM •	Candidate gave us right to the following feeds - camera: HP TrueVision FHD RGB-IR (064e:3401) - microphone: Default - Microphone Array (Realtek High Definition Audio(SST))
09:01 AM •	Candidate Looking Away from Screen
09:02 AM •	Candidate Looking Away from Screen
09:03 AM	Away from test window
09:04 AM •	Candidate Looking Away from Screen
09:05 AM	Away from test window
09:05 AM	Candidate Looking Away from Screen
09:07 AM	Candidate Looking Away from Screen for 02 mins
09:13 AM	Away from test window
09:14 AM	Candidate Looking Away from Screen
09:15 AM	Candidate Looking Away from Screen
09:15 AM	Candidate Looking Away from Screen
09:16 AM	Away from test window for 01 min
09:16 AM	Away from test window
09:16 AM	Candidate Looking Away from Screen
09:18 AM	Candidate Looking Away from Screen
09:18 AM	Away from test window for 01 min
09:19 AM	Candidate Looking Away from Screen
09:20 AM	Away from test window
09:21 AM	Away from test window
09:22 AM	Candidate Looking Away from Screen
09:22 AM	Away from test window
09:23 AM	Away from test window
09:26 AM	Candidate Looking Away from Screen
09:27 AM	Away from test window for 02 mins
09:29 AM •	Candidate Looking Away from Screen
09:29 AM	Candidate Looking Away from Screen
09:30 AM	Candidate Looking Away from Screen for 01 min
09:32 AM	Candidate Looking Away from Screen for 06 mins
09:40 AM	Candidate Looking Away from Screen
09:43 AM	Candidate Looking Away from Screen for 03 mins
09:47 AM	Candidate Looking Away from Screen

TalentSprint | 23156022 Page 25 / 31

09:48 AM	•	Candidate Face not Visible
09:48 AM	•	Away from test window for 18 mins
09:50 AM	•	Away from test window
09:54 AM	•	Away from test window
09:54 AM	•	Away from test window
09:57 AM	•	Away from test window for 02 mins
10:00 AM	•	Away from test window
10:00 AM	•	Candidate Looking Away from Screen
10:02 AM	•	Candidate Looking Away from Screen
10:03 AM	•	Candidate Looking Away from Screen
10:04 AM	•	Candidate Looking Away from Screen for 02 mins
10:06 AM	•	Away from test window for 05 mins
10:08 AM	•	Away from test window
10:08 AM	•	Away from test window
10:10 AM	•	Candidate Looking Away from Screen
10:11 AM	•	Away from test window
10:11 AM	•	Away from test window
10:12 AM	•	Candidate Looking Away from Screen
10:13 AM	•	Candidate Looking Away from Screen
10:15 AM	•	Away from test window for 02 mins
10:16 AM	•	Candidate Looking Away from Screen
10:17 AM	•	Candidate Looking Away from Screen
10:18 AM	•	Away from test window
10:18 AM	•	Candidate Looking Away from Screen
10:19 AM	•	Candidate Looking Away from Screen for 01 min
10:20 AM	•	Away from test window
10:21 AM	•	Away from test window
10:21 AM	•	Away from test window
10:22 AM	•	Away from test window
10:24 AM	•	Away from test window
10:24 AM	•	Away from test window
10:24 AM	•	Candidate Looking Away from Screen
10:25 AM	•	Away from test window
10:25 AM	•	Candidate Looking Away from Screen
10:26 AM	•	Away from test window
10:28 AM	•	Away from test window
10:28 AM	•	Candidate Looking Away from Screen
10:28 AM	•	Away from test window

TalentSprint | 23156022 Page 26 / 31

10:29 AM ●	Candidate Looking Away from Screen
10:31 AM ●	Away from test window for 03 mins
10:32 AM •	Candidate Looking Away from Screen
10:33 AM ●	Away from test window
10:33 AM •	Away from test window
10:34 AM •	Candidate Looking Away from Screen
10:35 AM ●	Candidate Looking Away from Screen
10:35 AM •	Candidate Looking Away from Screen
10:36 AM •	Candidate Looking Away from Screen
10:38 AM •	Candidate Looking Away from Screen
10:42 AM •	Candidate Looking Away from Screen
10:43 AM •	Candidate Looking Away from Screen
10:45 AM •	Candidate Looking Away from Screen
10:47 AM	Candidate Looking Away from Screen for 02 mins
10:51 AM	Additional person there
10:53 AM	Candidate Looking Away from Screen
10:54 AM	Away from test window for 10 mins
10:55 AM	Candidate Looking Away from Screen
10:56 AM •	Away from test window
10:56 AM	Candidate Looking Away from Screen
10:57 AM •	Away from test window
10:58 AM •	Away from test window
10:58 AM •	Away from test window
11:00 AM •	Candidate Looking Away from Screen
11:01 AM •	Candidate Looking Away from Screen
11:05 AM	Candidate Looking Away from Screen
11:06 AM •	Candidate Looking Away from Screen
11:06 AM •	Candidate Looking Away from Screen
11:07 AM •	Candidate Looking Away from Screen
11:08 AM •	Candidate Looking Away from Screen for 02 mins
11:11 AM •	Candidate Looking Away from Screen
11:12 AM •	Candidate Looking Away from Screen
11:13 AM •	Candidate Looking Away from Screen
11:14 AM •	Candidate Looking Away from Screen
11:15 AM •	Candidate Looking Away from Screen for 01 min
11:17 AM •	Candidate Looking Away from Screen
11:18 AM •	Away from test window for 18 mins
11:18 AM •	Candidate Looking Away from Screen
I	

TalentSprint | 23156022 Page 27 / 31

11:19 AM •	Away from test window for 01 min
11:20 AM	Away from test window
11:20 AM	Away from test window
11:21 AM	Candidate Looking Away from Screen
11:23 AM	Away from test window for 01 min
11:23 AM	Candidate Looking Away from Screen
11:26 AM	Candidate Looking Away from Screen for 01 min
11:28 AM	Away from test window
11:28 AM	Candidate Looking Away from Screen
11:29 AM	Away from test window
11:31 AM	Away from test window

11:33 AM Finished the test

• Credibility Index: LOW

Images of Test-Taker

TalentSprint | 23156022 Page 28 / 31

TalentSprint | 23156022 Page 29 / 31

TalentSprint | 23156022 Page 30 / 31

About the Report

This Report is generated electronically on the basis of the inputs received from the assessment takers. This Report including the AI flags that are generated in case of availing of proctoring services, should not be solely used/relied on for making any business, selection, entrance, or employment-related decisions.

Mettl accepts no liability from the use of or any action taken or refrained from or for any and all business decisions taken as a result of or reliance upon anything, including, without limitation, information, advice, or AI flags contained in this Report or sources of information used or referred to in this Report.

TalentSprint | 23156022 Page 31 / 31