实验十三R、L、C元件阻抗特性的测定

一、预习思考题

1. 测量 R、L、C 各个元件的阻抗角时,为什么要与它们串联一个小电阻? 可否用一个小电感或大电容代替?为什么?

在测量 R、L、C 元件的阻抗角时,串联一个小电阻的目的是为了增加电路的总阻抗的稳定性,使得电路的反应更加平滑,避免由于某个元件的极端反应(如纯电感或纯电容)导致测量误差。小电阻的引入可以避免电路出现过于陡峭的相位变化,确保测量过程中电流和电压的相位关系稳定,从而准确地测定元件的阻抗角。而如果用一个小电感或大电容代替小电阻,则可能会引入额外的相位偏移,改变电路的阻抗特性,从而影响测量结果的准确性。

二、实验报告

1. 根据实验数据,在方格纸上绘制 R、L、C 三个元件的阻抗频率特性曲线,从中可得出什么结论?

r	U	R	L	С
51Ω	3V	1000	0.01	1.00E-06

$R(1k\Omega)$

	200HZ	1000HZ	2000HZ	4000HZ	5000HZ
Ur	0.159	0.159	0.159	0.159	0.159
lr	0.003118	0.003118	0.003118	0.003118	0.003118
X或R	962.2642	962.2642	962.2642	962.2642	962.2642
Ф	0	0	0	0	0
R理论	1000	1000	1000	1000	1000

L(10mH)

f	200HZ	1000HZ	2000HZ	4000HZ	5000HZ
Ur	1.09	0.99	0.832	0.576	0.493
lr	0.021373	0.019412	0.016314	0.011294	0.009667
X或R	140.367	154.5455	183.8942	265.625	310.3448
Ф	1.2	43.2	47.2	59	66.1
XL理论	12.56	62.8	125.6	251.2	314

C(1uf)

f	200HZ	1000HZ	2000HZ	4000HZ	5000HZ
Ur	0.228	0.98	1.89	2.93	3.67
lr	0.004471	0.019216	0.037059	0.057451	0.071961
X或R	671.0526	156.1224	80.95238	52.21843	41.68937
Ф	84	66.1	34.8	29	28.8
XC理论	796.18	159.24	79.62	39.81	31.85

1. 电阻 R:

在所有频率下,电阻的阻抗幅值保持恒定,不受频率的影响。阻抗相位为 0°,电压和电流之间没有相位差。曲线为一条平行于频率轴的直线,表示电阻的阻抗是恒定的。

2. 电感 L:

随着频率的增加,电感的阻抗幅值逐渐增大。阻抗相位接近90°,即电流滞后于电压。电感的阻抗特性呈曲线呈斜率上升的趋势。这表明电感的阻抗与频率成正相关,且其相位在高频时趋近于+90°。

3. 电容 C:

随着频率的增加,电容的阻抗幅值逐渐减小。阻抗相位接近-90°,即电流超前于电压。电容的阻抗特性表现为随着频率增加,阻抗迅速降低,曲线呈下降趋势。这表明电容的阻抗与频率成负相关,

2. 根据实验数据,在方格纸上绘制 R、L、C 三个元件串联的阻抗角频率特性曲线,并总结、归纳出结论。

由图可以发现:

- **低频区域**:在低频时,电容的容抗较大,电感的感抗较小。阻抗角较小(负相位角)。
- **高频区域 (高于谐振频率)**:在高频时,电感的感抗增大,电容的容抗减小。阻抗角较大(正相位 角)。
- 1. 电阻的阻抗与频率无关,因此无论在低频还是高频下,它的阻抗角都恒定为0。
- 2. **电感**的阻抗与频率成正比,随着频率的增加,电感的阻抗逐渐增大,同时电流滞后于电压的相位逐渐增大,阻抗角有增大趋势。
- 3. **电容**的阻抗与频率成反比,随着频率的增加,电容的阻抗逐渐减小,同时电流超前于电压的相位逐渐增大,阻抗角有减小趋势。
- 3. 根据实验数据填写表 14-1,并用理论计算直接计算出电抗 X 或者电阻 R,并与表格中的用实验数据间接测算的电抗 X 或者电阻 R 的值做对 比,你会发现有些值误差可以接受,有些值误差很大,试分析误差产生的来源。

f	200HZ	1000HZ	2000HZ	4000HZ	5000HZ
ΔR	37.73585	37.73585	37.73585	37.73585	37.73585
ΔXL	-127.807	-91.7455	-58.2942	-14.425	3.655172
ΔΧС	264.93	-8.8962	-30.4541	-54.0561	-59.7696

由电阻或电抗理论值与测量值之差 ΔR 或 ΔX 与频率的关系图中可以看出,理论计算的电抗 X 或电阻 R 与通过实验数据间接测得的值进行对比,我们发现纯电阻的 ΔR 不随频率的改变而改变,恒为 37.7 Ω ,电容和电感在低频率时的容抗误差较大,在高频率时误差有减小的趋势。

误差来源分析

根据实验结果和误差计算,可能出现以下几种误差来源:

- 1. **测量误差**:测量电压、电流和频率的仪器可能存在一定的精度误差,尤其在高频下,仪器的响应可能变得不准确,导致测量误差。此外,在选择量程时,如果没有选择合适的量程,可能会导致读取错误,特别是在测量电压和电流较小或较大的情况下。
- 2. **元件的非理想性**:电阻的值可能会随温度变化而发生变化,尤其在高功率操作时,电阻器的温度会升高,导致其阻值发生变化,从而引入误差。理想电感和电容假设的模型在实际元件中并不完全成立,电感元件可能会有伴生电阻,而电容器可能有寄生电感和漏电流等效应,这些都会导致理论计算和实验值的差异。
- 3. **连接和布线问题**:在实验中,电路的连接、导线的电阻和接触不良等问题也可能会引入误差。特别是在高频电路中,连接的电缆、接头的电感和电容效应可能会影响总阻抗和电抗的测量结果。

4. **频率响应**:在高频或低频下,元件的行为可能与理论模型有所偏差。例如,电感和电容在特定频率下的表现可能受到自身损耗的影响,导致测得的电抗与理论值不一致。

5. 心得体会及其它。

通过参与R、L、C元件阻抗特性的测定实验,我获得了宝贵的实践经验和深刻的认识。实验中,我学习到了串联小电阻的重要性,它不仅增加了电路的稳定性,还有助于避免极端元件反应导致的测量误差。通过亲手绘制阻抗频率特性曲线,我直观地观察到了电阻、电感和电容在不同频率下的阻抗变化,这加深了我对元件阻抗特性的理解。

在实验过程中,我注意到理论与实际测量值之间存在一定的误差。通过分析,我认识到这些误差可能来源于测量仪器的精度、元件的非理想特性以及环境因素等。这次实验不仅让我更加熟悉了电路元件的阻抗特性,也锻炼了我的实验操作能力和数据分析能力。我意识到了理论与实践相结合的重要性,以及在实验中不断探索和验证的必要性。通过这次实验,我对未来的学习和研究工作充满了期待和信心。