

CONTROLLABLE GENERATION OF AZIMUTHAL AND RADIAL TERAHERTZ BEAMS USING MULTI-PIXEL PHOTOCONDUCTIVE EMITTERS

Justas Deveikis, James Lloyd-Hughes

20th June, 2022

OTST conference, Budapest, Hungary

Outline

- Interdigitated photoconductive THz emitters
- Methods to control THz polarisation state using emitters
- Azimuthal and radial THz beams and their differences from linear/elliptical beams
- Multi-pixel emitter for generation of azimuthal and radial THz beams
- Characterisation of azimuthal and radial THz beams
- Conclusions and further work

Interdigitated Photoconductive Emitter (PCE)

WARWICK
THE UNIVERSITY OF WARWICK

- Advantages: improved radiation pattern, higher THz emission power, higher polarisation purity.
- Metallisation layers (shadow mask) prevent THz from interfering destructively in the farfield (Dreyhaupt, A., et al. Appl. Phys. Lett. 86, 121114 (2005)).
- THz polarisation plane is parallel to the direction of biased E-field.

Control of THz Polarisation State (1)

Mechanical rotation of THz emitter

Electrical control using 4-pixels

Mosley, C.D.W., et al. AIP Advances 9, 045323 (2019). 4

Control of THz Polarisation State (2)

The University of Warwick

Controllable ellipticity setup with Si prism and 4-pixels THE UNIVERSITY OF WARWICK

Mosley, C.D.W., Deveikis, J., Lloyd-Hughes, J., Appl. Phys. Lett. 119, 121105 (2021).

Azimuthal (A) and Radial (R) Beams

Properties:

- Non-gaussian beamprofile;
- Inhomogeneous polarisation.

Applications:

- Tighter beam spot at the focus position;
- Enhancement of longitudinal E-field component under focusing (R beam only).

Linearly polarised beam profile (comparison).

Azimuthal and Radial THz Beams Generation

Linearly polarised beam profile (comparison).

S. Winnerl, et al. Opt. Express 17, 1571-1576 (2009).

Modelling of Azimuthal (A) THz Beam

- WARWICK
 THE UNIVERSITY OF WARWICK
- Dipole array modelling has been employed at 1 THz.
- Red arrows direction of biased electric field.

- WARWICK
 THE UNIVERSITY OF WARWICK
- Dipole array modelling has been employed at 1 THz.
- Red arrows direction of biased electric field.

Modelling of Radial (R) THz Beam

- WARWICK
 THE UNIVERSITY OF WARWICK
- Dipole array modelling has been employed at 1 THz.
- Red arrows direction of biased electric field.

Modelling of Radial (R) THz Beam

- WARWICK
 THE UNIVERSITY OF WARWICK
- Dipole array modelling has been employed at 1 THz.
- Red arrows direction of biased electric field.

Modelling of Linear (L) THz Beam

- WARWICK
 THE UNIVERSITY OF WARWICK
- Dipole array modelling has been employed at 1 THz.
- Red arrows direction of biased electric field.

16-pixel Photoconductive Emitter

- To employ electrical modulation for azimuthal, radial and linear beams, it is necessary to use at least 16 pixels.
- The 4-pixel emitter electrode geometry (highlighted by red rectangle) has been repeated 4 times.
- Conventional lithography process and metal magnetron sputterer for material deposition has been used in this work.

Optical microscope images of emitter's interdigitated area (x50 magnification).

16-pixel Emitter Implementation in THz Time-Domain Spectrometer

Spatially-Resolved Electro-Optic Sampling (1)

- WARWICK S with THE UNIVERSITY OF WARWICK
- Standard EOS detection does not work for beams with doughnut-like profile (1).
- To measure a beam profile, the gate beam was expanded in a line (2). A slit was used to scan the gate beam along the axis of a beam (3). (Imai, R. et al. Optics Express 21896 (2012))

Spatially-Resolved Electro-Optic Sampling (1)

- Standard EOS detection does not work for beams with THE UNIVERSITY OF WARWICK doughnut-like profile (1).
- To measure a beam profile, the gate beam was expanded in a line (2). A slit was used to scan the gate beam along the axis of a beam (3). (Imai, R. et al. Optics Express 21896 (2012))

Spatially-Resolved Electro-Optic Sampling (1)

- WARWICK S with THE UNIVERSITY OF WARWICK
- Standard EOS detection does not work for beams with doughnut-like profile (1).
- To measure a beam profile, the gate beam was expanded in a line (2). A slit was used to scan the gate beam along the axis of a beam (3). (Imai, R. et al. Optics Express 21896 (2012))

Spatially-Resolved Electro-Optic Sampling (2)

 Experimental implementation of spatiallyresolved (SREOS) method for transversal THz field detection:

Beamprofile of A and R beams

- Both horizontal and vertical THz components were detected.
- THz field was corrected with respect to the probe beam power at position.

Spatially- and Time-Resolved Data of A and R

WARWICK
THE UNIVERSITY OF WARWICK

L (horizontal polarisation)

0.0

Time (ps)

0.5

1.0

16

-1.0

-1.0

-0.5

Deveikis, J., Lloyd-Hughes, J. (in preparation), 2022

Electrical Beamprofile Control

- Changing pixel bias configuration alters the beamshape.
- Useful to correct the given beamprofile when pixels are not excited uniformly.
- Fitting function:

$$E_x = AJ_1(x)e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$

Deveikis, J., Lloyd-Hughes, J. (in preparation), 2022

Conclusions and further work

- Azimuthally, radially and linearly polarised beams were generated using the same 16-pixel emitter.
- Further studies to investigate polarization state in x-y plane.
- Scaling the number of pixels and their size for studying impact on quality of the beam.

Acknowledgements

Dr Gerard Colston (Cleanroom)

David Greenshields (Electronics Workshop)

CONTROLLABLE GENERATION OF AZIMUTHAL AND RADIAL TERAHERTZ BEAMS USING MULTI-PIXEL PHOTOCONDUCTIVE EMITTERS

Justas Deveikis, James Lloyd-Hughes

20th June, 2022

OTST conference, Budapest, Hungary

Electric field equations by a Hertzian dipole in a spherical coordinate system:

$$E_{r} = Z_{0} \frac{I_{0} l \cos \theta}{2\pi r^{2}} \left(1 + \frac{1}{ikr} \right) e^{-ikr};$$

$$E_{\theta} = i Z_{0} \frac{kI_{0} l \sin \theta}{4\pi r} \left(1 + \frac{1}{ikr} - \frac{1}{(kr)^{2}} \right) e^{-ikr};$$

$$E_{\varphi} = 0;$$

where r, θ , φ are radial distance, polar and azimuthal angle respectively; l is the length of a dipole; Z_0 is the impedance of free space; l_0 is photocurrent; k is wavenumber; i is the imaginary unit.

Dipole Array Modelling Implementation

Red arrow shows individual dipole of length $l=5~\mu m$ matching the gap between electrodes.

Dipoles were distributed along the gap with spacing between adjacent dipoles equal to $d=5 \mu m$.

