1 Algorytm szyfrowania RSA

Na początku generujemy dla siebie parę kluczy (publiczny i prywatny) w następujący sposób.

- 1. Wybieramy $p \neq q$: duże liczby pierwsze.
- **2.** Obliczamy $n = p \cdot q$.
- **3.** Znajdujemy dużą liczbę d względnie pierwszą z $(p-1)\cdot(q-1)$.
- **4.** Znajdujemy takie e, że $d \cdot e \mod (p-1) \cdot (q-1) = 1$ (za pomocą rozszerzonego algorytmu Euklidesa).
- **5.** Para (e, n) to nasz klucz publiczny, a (d, n) to nasz klucz prywatny.

2 Szyfrowanie wiadomości

Jak zaszyfrować wiadomość? Zapisujemy ją bitowo i dzielimy na kawałki, których długość jest nie większa od $\log n$. Dzięki temu każdy z kawałków jest liczbą z zakresu [0, n). Każdą z liczb będziemy szyfrować osobno.¹

Załóżmy zatem, że chcemy zaszyfrować liczbę $m \in [0, n)$. Obliczamy liczbę

$$E(m) = m^e \mod n ,$$

i wysyłamy ją jako szyfrogram sodbiorcy. Odbiorca otrzymuje szyfrogram si odszyfrowuje go obliczając

$$D(s) = s^d \mod n$$
.

¹Takie naiwne podejście prowadzi do tego, że takie same kawałki byłyby szyfrowane w ten sam sposób. W praktyce stosuje się różne obejścia tego problemu, np. dołączanie losowego ciągu.

3 Poprawność

Musimy pokazać, że dla dowolnego $m \in [0, n)$ zachodzi D(E(m)) = m. Przekształcając otrzymujemy

$$D(E(m)) = (m^e \mod n)^d \mod n$$

$$= (m^e)^d \mod n \qquad (z \text{ własności modulo})$$

$$= m^{k \cdot (p-1) \cdot (q-1)+1} \mod n. \qquad (\text{gdzie } k \in \mathbb{N} \cup \{0\})$$

Chcemy teraz pokazać, że $m^{k(p-1)\cdot (q-1)+1} \equiv m \mod n$.

Dla m względnie pierwszych z n, możemy zastosować bezpośrednio twierdzenie Eulera (patrz poniżej), żeby uzyskać

$$m^{k(p-1)\cdot (q-1)+1} \mod n = (m^{(p-1)\cdot (q-1)})^k \cdot m \mod n = 1^k \cdot m \cdot n = m.$$

4 Poprawność, cd.

Dla dowolnej wartości m, możemy argumentować następująco. Obliczmy najpierw wartość $m^{k\cdot(p-1)\cdot(q-1)+1}\mod p$.

- ▶ Jeśli $m \mod p = 0$, to $m^{k(p-1)\cdot (q-1)+1} \mod p = 0 = m \mod p$.
- ▶ Jeśli natomiast $m \mod p \neq 0$, to $m = \ell \cdot p + m_p$, gdzie $\ell \in \mathbb{N} \cup \{0\}$ i $0 < m_p < p$. Wtedy

$$m^{p-1} \mod p = (\ell \cdot p + m_p)^{p-1} \mod p$$

$$= m_p^{p-1} \mod p$$

$$= 1. \qquad (z \text{ twierdzenia Eulera})$$

Stąd $m^{k \cdot (p-1) \cdot (q-1)+1} \mod p = 1^{k \cdot (q-1)} \cdot m \mod p = m \mod p$.

W analogiczny sposób otrzymujemy również, że $m^{k\cdot(p-1)\cdot(q-1)+1}\equiv m\mod q$. Łącząc te dwie równości za pomocą chińskiego twierdzenia o resztach otrzymujemy $m^{k\cdot(p-1)\cdot(q-1)+1}\equiv m\mod pq$.

5 Twierdzenie Eulera

Twierdzenie 5.1 (Twierdzenie Eulera). Dla dowolnej dodatniej liczby naturalnej n, niech $\mathbb{Z}_n^* = (\{a : 1 \le a \le n \land a \perp n\}, \cdot \mod n)$ będzie grupą, której elementami są liczby względnie pierwsze z n, zaś działaniem mnożenie modulo n. Niech $\phi(n)$ będzie liczbą elementów takiej grupy. Wtedy dla $m \in \mathbb{Z}_n^*$ zachodzi $m^{\phi(n)} \equiv 1 \mod n$.