

Computational Intelligence

Subject3: ANNs architectures, models, and parameters

Instructor: Ali Tourani

Agenda

- ANNs basic terms
- Working with data
- Neural Networks types
- Linear classification
- Gradient descent algorithm

Before we begin ...

- Teaching Assistants of the course:
 - Amir Abbasi (<u>amir.abbasi.rose@gmail.com</u>)
 - Reza Khan Mohammadi (<u>rezanecessary@gmail.com</u>)
- ▶ Join the **Telegram Group** of the course to get updated
- Introduce your final project team members
 - **▶ Deadline: October 15, 2020 23 Mehr 1399 (Next Wednesday)**
 - ► Send an email to introduce your team (Student-ID + Full-Name)
 - ► Maximum number of members: 3

- **Neurons:** the basic unit of the neural network
 - ► A summation function to sense the input signals
 - ► An Activation Function (AF) to generate outputs within an acceptable range
 - ► Samples: Sigmoid, TanH, ReLU, etc.

- ► *Inputs:* source data fed into the neural network
 - ▶ Why? To make a decision or predict about data
 - ► Each input is fed to a single neuron in the input layer

- Outputs: generated data
 - ► Typically a set of real values or Boolean decisions
 - ► Each output is generated from a single neuron in the output layer

- **Error Function:** shows how far the actual output is from the predicted
 - ► Goal#1: to minimize the error function
 - ► Goal#2: to bring output as close as possible to the correct value

- ► *Forward Pass (Propagation):* the main flow of calculation
 - 1. Taking the inputs
 - 2. Passing them through the networks for process
 - 3. Generate outputs
 - 4. Pass them to the next layer
 - 5. Do while generating the F.O

- ► **Backpropagation:** the backward pass
 - ► Why?
 - ► To discover the optimal weights for the neurons
 - ▶ To minimize the loss function
 - ► To generate the best prediction
 - ► How? by tracking the AFs
 - ► **Gradient descent** algorithm

- ► **Backpropagation:** the backward pass
 - ► Forward pass: generating the initial prediction 1
 - ► Backward pass: discovering the optimal weights based on the error function
 - ▶ Don't worry! There are implemented libraries for backpropagation in TensorFlow or Keras!

- ▶ *Bias (neuron):* the neuron to move the AF in the graph
 - ► A special neuron added to each layer in the neural network
 - ▶ Note: commonly it is employed in the input layer only
 - ► The value of the bias neuron = 1
 - They also carry a weight (w_b)
 - Why do we use it?
 - ▶ It is essential to move the AF to the left/right/up/down
 - ▶ Without it we might face many problems
 - ▶ Especially when dealing with zero-valued signals
 - ▶ To make the output more reliable by allowing them to employ more complex logic

▶ *Bias (neuron):* the neuron to move the AF in the graph

▶ *Bias (neuron):* the neuron to move the AF in the graph

- ▶ *Bias (neuron):* the neuron to move the AF in the graph
 - ▶ Note: bias neurons can be added to each layer of the NN

- ► *Hyperparameters:* the setting or configuration of the ANNs
 - Note: tuning them is very important!
 - Benefits of a good setting:
 - ► Accurate predictions
 - Magnificent results

- ► *Training-set:* a set of inputs used to train the neural network
 - ► A dataset of examples used during the learning process
 - ▶ Used to fit the parameters (e.g., weights) of the NN
 - ► Should follow a general probability distribution
 - Supervised approaches (the correct outputs are known)
 - ► Large amounts of instances (dataset size)
 - ► May depend on variation of classes
 - Find some of them <u>here</u>

- *Validation-set:* a dataset of examples used to <u>tune the hyperparameters</u>
 - Should follow the same probability distribution as the training-set
 - Usage:
 - ▶ Decreasing the probability of **overfitting** (*what is it?!*)
 - ► Evaluation of the error function using another dataset
 - ► AKA "development-set" or "dev set"

- ► *Test-set:* a dataset of examples used
 - ▶ Used to assess the performance of the NN
 - Independent of the training dataset
 - ▶ Should follow the same probability distribution as the training-set
 - ► **Holdout:** isolating a part of the training-set for test (*evaluation*) as the test-set and do not use them for training the network

Training-set, Validation-set, and Test-set

► Training-set, Validation-set, and Test-set

20

Training-set, Validation-set, and Test-set

Training Set (60%)

To train the models

Validation Set (20%)

To make sure the models are not overfitting

Testing Set (20%)

To determine the accuracy of the models

Pass in NNs

A forward and backward pass

► Batch size

► The number of training data used in one forward/backward pass

▶ Iteration

▶ Number of passes, each pass using [batch size] number of instances

Epoch

- ► The number of times the algorithm sees the entire training set
- ► Forward and backward pass of all the training instances

- Pass, Batch-size, Iteration, and Epoch
 - **Example**: 10,000 images of human face (training data)
 - ► *Batch-size*: **500**
 - ▶ # of iterations: 20
 - We need 20 iterations to completeOne epoch
 - ► Normally, we need several epochs

Overfitting problem

- Exploiting relationships in the training data that do not hold in general
- Generalization Problem:
 - ▶ The NN learns very good from the training-set, but it cannot generalize beyond it
 - ► Accurate predictions for the training-set
 - ▶ Inaccurate predictions for the validation-set and test-set
- Minimal overfitting: a model fit to the training-set also fits the test-set

▶ Underfitting problem

▶ the network is not able to generate accurate predictions on the training set

- Overfitting problem How to avoid?
 - ► Method 1: Retraining Neural Networks
 - ► Running the same NN model on the same training set, but each time with different initial weights to find the lowest performance (more general) NN
 - ► Method 2: Multiple Neural Networks
 - ▶ Running several NNs in parallel on the same training set, but with different initial weights and calculate the average of outputs
 - Method 3: Early Stopping
 - ► Monitor the error on the validation set after each training iteration to see when the error increases

- Data labeling (data annotation)
 - ► The process of marking up or annotating data to show the target
 - ► The target is the answer you want your model to predict
 - ► Sample tasks: tagging, annotation, moderation, or classification

- Data labeling (data annotation)
 - Manually/Automatically labeling data

Data labeling (data annotation)

Typical Neural Networks

- Feed Forward
- Recurrent
- Competitive
- Probabilistic

Typical Neural Networks

- Feed Forward
 - All paths from the input nodes to the output layer (no loop)
 - ► The information moves in **only one direction**
 - ► Connections between the nodes do not form a cycle
 - Samples:
 - ► Single-layer perceptron
 - Multi-layer perceptron
 - ► Convolutional Neural Networks (CNNs)
 - Radial Basis Function networks (RBF)

Typical Neural Networks

Feed Forward

Typical Neural Networks

- Recurrent
 - ▶ The information moves in **both forward and backward direction**
 - Connections between the nodes forms a directed graph
 - ► Samples:
 - ► Elman and Jordan networks
 - ► Hopfield networks
 - ► Recursive neural networks

Typical Neural Networks

Recurrent

Typical Neural Networks

- Competitive
 - ► The neurons **compete** to be activated (not just by a simple AF)
 - ► How? Using a function of distance from a selected data point
 - ► The highest value: the neuron closest to the data point (strength)
 - High potential to be used in unsupervised learning
 - Samples:
 - ► Kohonen self-organizing maps

Typical Neural Networks

- Competitive algorithm
 - Apply input data
 - ► Find the strongest
 - ► Increase the weights of the strongest matches
 - Repeat

Neural Networks Types

Typical Neural Networks

- Probabilistic
 - Uses exponential functions as AFs
 - ► Each node in the hidden layer receives data from all input nodes
 - ► There are *K*>0 classes, placed in the hidden layer,
 - ▶ We also have *K>0* outputs (one output for each class)
 - \blacktriangleright Each node of the class k corresponds to a probabilistic (e.g. Gaussian) function
 - ▶ All of the probabilistic functions are summed to shape the final output

Neural Networks Types

Typical Neural Networks

Probabilistic

- ► *Singe-layer Perceptron:* the simplest type of a neural network
 - ► A feedforward neural network with <u>no hidden units</u>
 - ► Able to learn linearly separable patterns

- Can we divides the input space into two classes (e.g. 0 and 1)?
 - ▶ 2D space: a line

3D space: a hyperplane

We need to adjust the weights for slope and bias for intercept y = wx + b

Nonlinear

- ► A single-layer perceptron can <u>only</u> solve **Linearly Separable** problems
 - **▶** Binary AND

Input		Output
x_1	x_2	y
1	1	1
1	0	0
0	1	0
0	0	0

- ► A single-layer perceptron can <u>only</u> solve **Linearly Separable** problems
 - **▶** Binary OR

Input		Output
x_1	x_2	y
1	1	1
1	0	1
0	1	1
0	0	0

► A single-layer perceptron can <u>only</u> solve **Linearly Separable** problems

 χ_2

▶ Binary XOR????

▶ Impossible to find a linear boundary

Input		Output
x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

- ► An iterative optimization algorithm for finding a local minimum
 - ► How? by iteratively moving in the direction of the steepest descent
 - ▶ Like moving from a mountain to the sea
 - ► An step-to-step downhill in the direction with negative gradient

► *Learning Rate*: the size of steps

► The higher LR, the more risk of

finding the local minimum

Usage

- ► We use this method to predict how good our model is working
- Cost/Loss function
- Parameters: weight and bias

Calculations

We know how to calculate MSE

$$MSE = \frac{1}{N} \sum_{n=1}^{N} (R_n - P_n)^2$$

- ightharpoonup Real value R_n
- ightharpoonup Predicted value P_n
- ► Number of samples *N*

Calculations

In this regard, for cost function:

$$f(w,b) = \frac{1}{N} \sum_{n=1}^{N} (y_n - (wx_n + b))^2$$

► Thus, the gradient will be:

$$f'(w,b) = \begin{bmatrix} \frac{df}{dw} \\ \frac{df}{db} \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \sum -2x_n(y_n - (wx_n + b)) \\ \frac{1}{N} \sum -2(y_n - (wx_n + b)) \end{bmatrix}$$

Calculations

► Relation among weights:

$$w_i(t) = w_i(t-1) + \Delta w_i(t)$$

▶ Where $\Delta w_i(t)$ is:

$$\Delta w_i(t) = \mu(-\frac{\delta E}{\delta w})$$

- Learning rate μ
- \blacktriangleright MSE E

What's Next?

ANNs Learning Process

Questions?

