LTV Unwired: Exploring Lyft Drivers

A comprehensive overview

Drivers Lifetime Value (LTV)

SF Rideshare/ Regular Rates	UBERX	LYFT	TAXI	
Base Fare	\$3.00	\$2.00	\$3.	50
Per Minute (waiting- only for taxis)	\$0.30	\$0.22	\$0.	55
Per Mile	\$1.50	\$1.15	\$2.	75
Service Fee		\$1.75		
Min/Max	\$	5-\$400		

"Present value of future cash flows expected from drivers over the entire projected lifetime of a driver"

LTV for a Driver =
$$\sum_{m=0}^{Margin_{m}Prob(Active)_{m}} \frac{(1+WACC)^{m}}{(states the discount rate)^{*}}$$
WACC is the discount rate

The math model: LTV of Drivers

 The LTV over the next 12 months can be divided as the sum of LTV for each month for the next 12 months:

$$L = V_1 + V_2 + \dots + V_{12}$$

At each of the month, we can simply say

LTV= (Cash flow given the Driver Retains) * (Probability of Retention)

- * ${m}$ is a time period, e.g. the first month (${m}$ =1), the second month (${m}$ =2)
- * \${n} is the total number of periods the driver will stay before he/she finally churns
- * Prob(Active)m is the retention rate/possibility in month m
- * Margin is the profit (cash flow) the driver will contribute in the month m
- * WACC is the discount rate

we look at the existing cash flows of each driver

Table 1

Cash flow	2016-03- 28	2016-03- 29	2016-03- 30	2016-03- 31	2016-04- 01	2016-04- 02	2016-04- 03	2016-04- 04	2016-04- 05
002be0ff dc997bd 5c50703 158b7c2		\$246.61		\$365.60	\$338.02	\$220.56			\$346.43
007f038 9f9c7b0 3ef9709 8422f90		\$56.59							
02e440f 6c20920 6375833 cef02e0				\$320.34		\$214.78		\$34.57	
0938ed7 63cb312 9ae6360 7aaf69d			\$239.09	\$172.52	\$188.53			\$107.39	\$119.49

Variables Selected Included to calculate LTV (% Retention in the next period)

Profile-related

Tenure (Time with Lyft)
Prime vs. Regular

Recency [Days]

Ride distance

Ride Duration

Ride Prime Time %

Response Time

Frequency (# rides per month)

Monetary (Cash Flow)

People with the same # of rides could end up having different LTVs

Driver	1674103b16c39ab5 6a76884b7c2ca83c	30eedffe19d8ec6c53 841f0d46c8ab51	5ceff5a3983505de6d 021403c69750779	6ff443616dd01da84 2095c0939394baf
Tenure (in month)	27	23	33	3
rides	348	348	348	348
Avg Ride Distance	6560	5968	8265	4592
Avg Ride Duration	834	767	794	794
Prime Ratio	1.5%	2.6%	1.7%	2.1%
Lifetime Value (LTV)	\$641K	\$738K	\$743K	\$485K

Decision Tree vs. Logistic Regression

Decision Tree and Logistic Regression can serve as the basis of LTV (predict the driver churn in the next 30 days)

Logistic Regression Prediction

```
getCLV<-function(r,f,m,n,cost,periods,dr,pModel){
      df < -data.frame(period = c(0), r = c(r), f = c(f), n = c(n), value = c(0))
                                                                                     POTENTIAL IMPACT
      for(i in 1:periods){
            backstep<-df[df$period==i-1,]
            nrow<-nrow(backstep)</pre>
            for(j in 1:nrow){
                  r<-backstep[i,]$r
                  f<-backstep[j,]$f
                  n<-backstep[j,]$n
                   p<-
predict(pModel,data.frame(Recency=r,Frequency=f),type='response')[1]
                   Retains<-n*p
                   df<-rbind(df,c(i,0,f+1,Retains,Retains*(m-cost) / (1+dr)^i))
                   df<-rbind(df,c(i,r+1,f,n-Retains,(n-Retains)*(-cost) / (1+dr)^i
))
      return(sum(df$value))
}
```


EASE OF IMPLEMENTATION / READINESS FOR MODELING

caculating the CLV for a driver with R=0 days,F=10,cash flow=100,WACC/discount rate=5% for 3 periods

v<-getCLV(0,10,100,1,0,3,5%,model)

https://github.com/hq211486/Lyft/blob/master/R%20script%20retention%20model

Next Steps:

- Explore into more indicator variables (in addition to RFM) in the model to predict retention
- Cross-validations
- Drivers analysis: profile segmentation