Combinatorial aspects of surface Cluster algebras and applications to Frobenius' conjecture

Andrea Bonucci

Vrije Universiteit

February 24, 2023

Introduction

Figure: Cluster algebra was first introduced, in 2002, by Sergey Fomin and Andrei Zelevinsky.

Introduction

Where are Cluster algebras encountered?

Introduction

Where are Cluster algebras encountered?

- ► Frieze patterns,
- Triangulated surfaces,
- Coxeter groups,
- Tropical geometry,
- Hyperbolic geometry,
- Quiver representations,
- Poisson geometry...

A quiver Q is a directed graph; i.e. a 4-tuple (Q_0, Q_1, h, t) .

- \triangleright Q_0 is the set of vertices $\{1, 2, ..., n\}$;
- $ightharpoonup Q_1$ is the set of arrows,
- ▶ $h, t : \mathcal{Q}_0 \to \mathcal{Q}_1$, where h maps the head of the arrow and t maps the tail, each to the appropriate vertex.

Figure: Example of 2 *cluster quiver* (left and rightmost) and a non-cluster quiver (middle)

A seed (x, y, Q) determines the corresponding Cluster algebras through a few rules; where

- **x** = $(x_1, ..., x_n)$ is the *n*-tuple of variables, called the *initial* cluster; e.g. in the setting of Conway-Coxeter Frieze patterns, all these variables are equal to 1.
- **y** = $(y_1, ..., y_n)$ is the *n*-tuple of generators, called the *initial* coefficients; e.g. in the setting of triangulated polygons, these are precisely the diagonals of the triangulation.
- Q a cluster quiver.

The Cluster algebra is generated by a applying a recursive method to the initial seed, called a *cluster mutation*. A *cluster mutation* μ_k acts on \mathbf{x} as follows;

$$\mu_k((x_1,\ldots,x_k,\ldots,x_n))=(x_1,\ldots,x_k',\ldots,x_n)$$
, where;

$$x'_k = \frac{\prod_{i \to k} x_i + \prod_{i \leftarrow k} x_i}{x_k}.$$

A mutation μ_k also yields a new quiver Q' in the following way:

- 1. For any path $i \to k \to j$ add an arrow $i \to j$;
- 2. Invert all arrows going into, or coming out from, vertex k;
- 3. Cancel any 2-cycle.

A mutation μ_k also yields a new quiver Q' in the following way:

- 1. For any path $i \to k \to j$ add an arrow $i \to j$;
- 2. Invert all arrows going into, or coming out from, vertex k;
- 3. Cancel any 2-cycle.

Figure: Example of mutation.

Frobenius' Conjecture

Markov's equation:

$$x^2 + y^2 + z^2 = 3xyz;$$

Frobenius' Conjecture

Markov's equation:

$$x^2 + y^2 + z^2 = 3xyz$$
;

e.g. (1,5,13), (5,13,194), (1,89,233), (5,29,433).

Frobenius' Conjecture

Consider any Markov triple (a, b, c); we permute them to (x, y, z), such that $x \le y \le z$. Then, Frobenius' conjecture states:

Theorem

Given any two ordered Markov triples (a_1, a_2, τ) , (b_1, b_2, τ) , then $a_1 = b_1$, and $a_2 = b_2$.

Connection?

How does Cluster algebra factor in when thinking about Frobenius' conjecture?

Connection?

Consider the torus \mathbb{T}^2 , as the quotient space

$$\mathbb{T}^2 = I \times I / \sim_{vert} / \sim_{side},$$

where $I = [0,1] \subset \mathbb{R}$ and $\sim_{\textit{vert}}$ and $\sim_{\textit{side}}$ is the equivalence relation $(x,1) \sim_{\textit{vert}} (x,0)$), and $(0,y) \sim_{\textit{side}} (1,y)$...

The End

Thank you for listening!