Ensemble C_n^k des parties à k éléments de l'ensemble $\mathcal{E}_n = \{1, 2 \dots n\}$.

partie = sous-ensemble

$$\mathcal{E}_4 = \{ \quad , \quad \quad , \quad \quad \}$$

$$\mathcal{E}_4=\{\ 1,\quad 2,\quad 3,\quad 4\}$$

$$\mathcal{E}_4 = \{ \ 1, \quad 2, \quad 3, \quad 4 \}$$

$$\mathcal{C}_4^2 = \{ \qquad , \qquad \qquad , \qquad \qquad , \qquad \qquad \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,\},$$
 , , ,

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,1\},$$
, , , , ,

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,1\}, \dots, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\},$$
 , , ,

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,\}, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,1\}, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,1\}, \}, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme naïf qui construit toutes les parties à **deux** éléments d'un ensemble à *n* éléments est dans

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui construit toutes les parties à deux éléments d'un ensemble à n éléments est dans $\Theta(n^2)$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui construit toutes les parties à **trois** éléments d'un ensemble à n éléments est dans $\Theta()$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui construit toutes les parties à **trois** éléments d'un ensemble à n éléments est dans $\Theta(n^3)$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui construit toutes les parties à k éléments d'un ensemble à n éléments est dans $\Theta()$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui construit toutes les parties à k éléments d'un ensemble à n éléments est dans $\Theta(n^k)$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui **imprime** toutes les parties à k éléments d'un ensemble à n éléments est dans $\Theta(n^k \times k)$

Quel est le coût minimum de l'algorithme d'impression?

Quel est le coût minimum de l'algorithme d'impression?

Coût d'impression d'un élément

 \times

Nombre d'éléments

Quel est le coût minimum de l'algorithme d'impression?

Coût d'impression d'un élément $\Theta(k)$

 \times

Nombre d'éléments

Quel est le coût minimum de l'algorithme d'impression?

Coût d'impression d'un élément $\Theta(k)$

X

Nombre d'éléments C_n^k

Quel est le coût minimum de l'algorithme d'impression?

Coût d'impression d'un élément $\Theta(k)$

X

Nombre d'éléments C_n^k

 $\Theta(k.C_n^k)$

Quel est le coût minimum de l'algorithme d'impression?

Coût d'impression d'un élément $\Theta(k)$

Nombre d'éléments C_n^k

$$\Theta(k.C_n^k)$$

L'algorithme na \ddot{i} f est en $\Theta(k \times n^k)$, le coût minimum est en $\frac{n!}{(k-1)!(n-k)!}$

algorithme naïf :
$$\Theta(k \times n^k)$$

coût minimum : $\frac{n!}{(k-1)!(n-k)!}$

$$\frac{n!}{(n-k)!} =$$

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} =$$

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}$$

coût minimum : $\frac{n!}{(k-1)!(n-k)!}$

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}$$

$$= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}$$

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}$$
$$= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \prod_{i=0}^{i=k-1} (n-i)$$

$$\begin{split} \frac{n!}{(n-k)!} &= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} \\ &= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \prod_{i=0}^{i=k-1} (n-i) \end{split}$$

 n^k est beaucoup plus grand que $\prod_{i=0}^{i=k-1}(n-i)$

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times \dots \times (n-k) \times (n-k+1) \times \dots \times n}{(n-k)!} = \frac{1 \times 2 \times \dots \times (n-k) \times (n-k+1) \times \dots \times n}{1 \times 2 \times \dots \times (n-k)}$$

$$= \frac{\cancel{1} \times \cancel{2} \times \dots \times \cancel{1} \times \cancel{1} \times \cancel{2} \times \dots \times \cancel{1} \times \cancel{1} \times \cancel{1} \times \cancel{1} \times \dots \times \cancel{1} \times$$

 n^k est beaucoup plus grand que $\prod_{i=0}^{i=k-1} (n-i)$

Donc le rapport du coût de l'algorithme naïf au coût minimal

$$\frac{\binom{n!}{(n-k)!}}{\binom{n}{(n-k)!}} = \frac{1 \times 2 \times \dots \times (n-k) \times (n-k+1) \times \dots \times n}{(n-k)!} = \frac{1 \times 2 \times \dots \times (n-k) \times (n-k+1) \times \dots \times n}{1 \times 2 \times \dots \times (n-k)}$$

$$= \frac{1 \times 2 \times \dots \times (n-k) \times (n-k+1) \times \dots \times n}{1 \times 2 \times \dots \times (n-k)} = \prod_{i=0}^{i=k-1} (n-i)$$

 n^k est beaucoup plus grand que $\prod_{i=0}^{i=k-1} (n-i)$

Donc le rapport du coût de l'algorithme naïf au coût minimal

$$\frac{\underset{i=0}{\overset{k\times n^k}{\prod_{i=0}^{i=k-1}(n-i)}}}{=}$$

$$\begin{split} \frac{n!}{(n-k)!} &= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} \\ &= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \prod_{i=0}^{i=k-1} (n-i) \end{split}$$

 n^k est beaucoup plus grand que $\prod_{i=0}^{i=k-1}(n-i)$

Donc le rapport du coût de l'algorithme naïf au coût minimal $\frac{k \times n^k}{\prod_{\substack{i=0\\i=0\\(k-1)!}}^{l=k-1}(n-i)} = \frac{n^k}{\prod_{\substack{i=0\\i=0}}^{l=k-1}(n-i)} \times k! \text{ est supèrieur à } k!$

$$\frac{\frac{n!}{(n-k)!}}{=} \frac{\frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!}}{=} \frac{\frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}}{=} \frac{\frac{1}{k} \times \frac{1}{k} \times ... \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}}{=} \Pi_{i=0}^{i=k-1}(n-i)$$

 n^k est beaucoup plus grand que $\prod_{i=0}^{i=k-1}(n-i)$

Donc le rapport du coût de l'algorithme naïf au coût minimal $\frac{k \times n^k}{\prod_{\substack{i=0 \ (k-1)!}}^{i=k-1}(n-i)} = \frac{n^k}{\prod_{\substack{i=0 \ (k-1)!}}^{i=k-1}(n-i)} \times k! \text{ est supèrieur à } k!$

Ça vaut le coup de tenter quelque chose par exemple quand $k \approx \frac{n}{2}$