Mixed effects models

Prisha Reddy Bobbili

1 Hypothesis testing:

We would now like to perform tests of significance of the different effects present in a model.

Consider the following fixed effect model :

$$y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$$

Let us recall how to test the significance of the input corresponding to the j index (β parameter, in this case).

 $H_0: \beta_j$'s are all same.

Since under the null hypothesis , all β_j 's are same , we assume them to take a constant value (say k) which is then absorbed into μ by the model.

We then fit both the models (the one with β_j 's and the one without) and compare them using the Log-likelihood test!

Now consider the following Random effect model:-

$$y_{ijk} = \mu + \alpha_i + b_j + \epsilon_{ijk}$$
$$b_j \sim N(o, \sigma_b^2)$$

In this case however , testing whether input corresponding to j index (b's in this case) is not so simple. The prime reason : b_j 's are not parameters. (A null hypothesis must always be couched using only parameters.)

We have to test something involving σ_b^2 . Thus,

$$H_0: \sigma_b^2 = 0$$

Note:

This is only in case of b's. In case of α 's (in case we want to test); we still have: $H_0: \alpha$'s are all same

Note

Thus, tests are no longer as basic as in case of fixed effect model. (even for α 's which is a fixed effect in the mixed effect model)

Reason

The null distribution gets far more complicate due to the presence of random effect.

We shall now see how to deal with the tests in these cases.