

# Análise e Previsão de Séries Temporais

Aula – 2: Introdução às séries temporais

Eraylson Galdino egs@cin.ufpe.br



#### **Agenda**

- Resumo da Aula anterior;
- Estimação e eliminação dos componentes sazonais e de tendência;
- Estimativa e Eliminação da Tendência, na ausência da sazonalidade;
- Estimação e Eliminação de ambos: Tendência e Sazonalidade;
- Avaliando e Estimando a sequência de ruído;



#### Resumo da aula anterior

- Conceitos:
  - Séries Temporais;
  - Modelos simples com média zero
    - Ruído I.I.D
    - Processo Binário
    - Random Walk
  - Modelos com tendência e sazonalidade
    - Tendência
    - Sazonalidade
  - Modelos Estacionários
    - Estacionariedade
    - Função de Autocorrelação
    - Correlograma



## Estimação e eliminação dos componentes sazonais e de tendência

- A série temporal deve ser analisada e pode ser transformada num modelo mais compatível para ser trabalhado;
- Modelo de decomposição clássico:

$$X_t = m_t + s_t + Y_t$$

- **m**, é o componente de tendência
- $s_t$  é o componente sazonal
- Y<sub>t</sub> é a variável aleatória estacionária
- O objetivo é estimar componentes determinísticos como  $m_t$  e  $s_t$  e tornar a variável aleatória estacionária;



#### Estimativa e Eliminação da Tendência, na ausência da sazonalidade

• Sem sazonalidade o modelo é descrito como:

$$X_t = m_t + Y_t, t = 1, ..., n$$
  
 $EY_t = 0$ 

- Métodos para estimação de tendência:
  - Suavização com o filtro de médias móveis;
  - Suavização exponencial;
  - Suavização pela eliminação de componentes de alta frequência;
  - Ajuste Polinomial
- Eliminação de tendência:
  - Diferenciação;



- Suavização com filtro de médias móveis:
  - Médias Móveis: média dos n valores anteriores à observação atual x,

$$\hat{m}_t = \frac{1}{k} \sum_{n=0}^{k-1} X_{t-n}$$

- Funciona como um filtro removendo apenas as flutuações (alta frequência);
- Suavização Exponencial:
  - O componente de tendência é definido pelas médias móveis, sendo α um coeficiente entre [0, 1] que pondera a contribuição dos valores passados:

$$\hat{m}_t = \alpha X_t + (1 - \alpha)\hat{m}_{t-1}, \quad t = 2, \ldots, n,$$

- O  $X_t$  é o valor real da série
- O  $\widehat{m}_t$  é a previsão através da média móvel



Utilizando Média Móvel



**Eraylson Galdino** 



- Utilizando Suavização Exponencial
  - $\alpha = 0.5$



**Eraylson Galdino** 



- Ajuste polinomial:
  - Utilizado para minimizar soma dos quadrados:

$$\sum_{t=1}^n (x_t - m_t)^2$$

• Exemplo:

$$m_t = a_0 + a_1 t + a_2 t^2$$



Eraylson Galdino



- Diferenciação:
  - Utilizado o operador de diferenciação para obter a série diferenciada em lag-1:

$$\nabla X_{t} = X_{t} - X_{t-1} = (1 - B)X_{t},$$

• **B** é o operador de deslocamento para trás:

$$BX_{t} = X_{t-1}$$

$$BX_t = X_{t-1} e \nabla^j(X_t) = \nabla(\nabla^{j-1}(X_t)), j \ge 1 \operatorname{com} \nabla^0(X_t) = X_t$$

 Através da aplicação da diferenciação diversas vezes (geralmente até duas) pode-se obter uma série que pode ser modelada por um processo estacionário



• Série Airline com tendência



Eraylson Galdino



• Série Airline com diferenciação de ordem 1





• Série Airline com diferenciação de ordem 2





## Estimação e Eliminação de ambos: Tendência e Sazonalidade

- Método S1: Estimação dos componentes de tendência e sazonalidade
  - 1º A tendência é estimada inicialmente através de um filtro de suavização eliminando o componente de sazonalidade;
    - Caso o período **d** do componente sazonal for um valor par, é dito que d=2q:

$$\hat{m} = (0.5x_{t-q} + x_{t-q+1} + \dots + x_{t+q-1} + 0.5x_{t-q}) / d, q < t \le n - q$$

- Caso seja impar, é dito que d=2q+1, e é utilizado média móvel simples
- $2^{\circ}$  A sazonalidade é estimada através da média  $w_k$  dos desvios para cada período.

$$\{(x_{k+jd} - \hat{m}_{k+jd}), q < k + jd \le n - q\}$$
, para cada  $k = 1,...,d$ 

$$\hat{s}_k = w_k - d^{-1} \sum_{i=1}^d w_i, k = 1, ..., d, e \, \hat{s}_k = \hat{s}_{k-d}, k > d$$



## Estimação e Eliminação de ambos: Tendência e Sazonalidade

- Método S1: Estimação dos componentes de tendência e sazonalidade
  - 3º Remove o componente de sazonalidade:

$$d_{t} = x_{t} - \hat{s}_{t}, t = 1,...,n$$

- 4º Reajusta o componente de tendência para a série sem a sazonalidade utilizando métodos como o ajuste polinomial;
- 5º Remove o componente de tendência, restando o componente de ruído:

$$\hat{Y}_{t} = x_{t} - \hat{m}_{t} - \hat{s}_{t}, t = 1,...,n$$



## Estimação e Eliminação de ambos: Tendência e Sazonalidade

- Método S2: Aplicando o operador de Diferenciação sazonal
  - Aplica o operador de diferenciação, sendo o **d** o período sazonal

$$\nabla_d X_t = X_t - X_{t-d} = (1 - B^d) X_t$$

Ao aplicar no modelo:

$$X_t = m_t + s_t + Y_t$$

• Tem como resultado o modelo:

$$\nabla_d X_t = m_t - m_{t-d} + Y_t - Y_{t-d}$$

Dessa forma o componente de sazonalidade  $\{s_t\}$  é eliminado e o componente  $\{m_t\}$  pode ser eliminado utilizando algum método ou diferenciação  $\nabla$ 



- Após ajustar um modelo para a série temporal que assume estacionariedade sem componentes de sazonalidade e tendência é necessário analisar a sequência de ruído;
  - A fim de constatar que o ruído é um conjunto de observações aleatórias e independentes no tempo sem possuir nenhum padrão temporal;
  - Se a hipótese for verdadeira o modelo está ajustado à série, senão outro modelo deverá ser construído com intuito de representar melhor a série temporal;
- Técnicas:
  - Função de autocorrelação
  - Teste Portmanteau
  - Checagem pela normalidade



- Função de auto-correlação
  - Se uma sequência é i.i.d., 95% das amostras de autocorrelações devem cair entre os limites ±1.96/√n
  - Senão a hipótese de sequência i.i.d. é rejeitada





- Teste portmanteau
  - Verifica a independência dos resíduos
  - É considerada a estatística  $Q = n \sum_{j=1}^{h} \hat{\rho}^2(j)$ 
    - Sendo  $\hat{\rho}$  o coeficiente da auto correlação dos resíduos
  - No caso da amostra ser uma sequência i.i.d. a estatística do teste terá aproximadamente uma distribuição  $X^2$  com  $\boldsymbol{h}$  graus de liberdades
  - Se Q é grande ( $Q > \chi^2_{1-\alpha}(h)$ ) sugere que a amostra não seja uma sequência i.i.d.



- Checagem pela normalidade
  - Caso o ruído seja gaussiano (distribuição normal) é possível concluir que o modelo foi bem ajustado para a série;
  - Testes de normalidade:
    - Shapiro-Wilk test
    - Kolmogorov-Smirnov



## Decomposição da Série





#### **Extras**

- Código com alguns exemplos em python: <u>https://github.com/EraylsonGaldino/timeseries/blob/master/Aula%2002.ipynb</u>
- Ferramentas para a aula prática:
  - Anaconda: <a href="https://www.anaconda.com/download/">https://www.anaconda.com/download/</a>
  - Jupyter: <a href="http://jupyter.org/install">http://jupyter.org/install</a>



#### Referências

- BOX, G. E. P. and JENKINS, G. M. (2008). Time series analysis: forecasting and control, 4nd. ed., San Francisco: Holden-Day.
- Brockwell, Peter J. and Davis, Richard A. (2002). Introduction to Time Series and Forecasting, 2nd. ed., Springer-Verlag