

Article Title

First Author¹, Co-Author², Co-Author^{1,3*}

- ¹ Department X, Institution X, City X, State XX, Country X
- ² Department X, Institution X, City X, State XX, Country X
- ³ Department X, Institution X, City X, State XX, Country X

Correspondence*:

Co-Author

email@uni.edu

2 ABSTRACT

- 3 Abstract length and content varies depending on article type. Refer to http://
- 4 www.frontiersin.org/about/AuthorGuidelines for abstract requirement and length
- 5 according to article type.

1 INTRODUCTION

7 Hello, how are we doing?

2 METHODS

8 **2.1 Clean up**

- 9 All functional annotation sets were cleaned up the following way (using definitions from the Gene
- 10 Ontology version 2019-07-01):
- 1. Any annotations where the GO accession was marked as obsolete were removed.
- 12 2. Some terms in the GO have 'alternative ids'. When naively removing duplicates, two entries will not
- be recognized as duplicates if they have different accessions pointing to the same GO term. Therefore,
- all GO accessions were changed to their respecitve 'main id' and the dataset was again scanned for
- duplicates.
- Table 1 provides information on the number of annotations that were removed this way from each dataset.
- 17 All further analyses were performed on the cleaned datasets since we assume the user will only be interested
- 18 in still valid and non-redundant functional annotations.

3 RESULTS

19 ... a quantitative comparison of the datasets in Table.

LASTNAME et al. **Short Title**

Table 1. Number of removed annotations during cleanup.

Genome	Dataset	Obsolete Annotations	Duplicates
Hordeum_vulgarum	GOMAP	101	0
Medicago_truncatula.A17	GOMAP	0	0
Medicago_truncatula.R108	GOMAP	0	0
Oryza_sativa	GOMAP GoldStandard	111 38	2 556
Phaseolus_vulgaris	GOMAP	0	0
Triticum_aestivum	GOMAP	285	0
Vigna_unguiculata	GOMAP	0	0
Zea_mays.B73.v3	GOMAP	1107	70
Zea_mays.B73.v4	GOMAP	752	83
Zea_mays.Mo17	GOMAP	726	77
Zea_mays.PH207	GOMAP	798	76
Zea_mays.W22	GOMAP	754	82

Table 2. Quantitative metrics of the cleaned functional annotation sets. C, F, P, and A refer to the aspects of the GO: Cellular Component, Biological Function, Molecular Process, and Any/All.

				Anno	tations ^a		1	Annotaated	l Genes [%] ^b	Мє	edia	n An	n. per G.c
Genome	Genes	Dataset	C	F	P	A	С	F	P	A	C	F	P	A
Arachis_hypogaea		GOMAP	153433	132944	493799	780176	576.67	568.55	671.23	671.24	2	2	6	10
Glycine_max		GOMAP	129215	113827	417555	660597	460.20	470.34	528.71	528.72	2	2	6	11
Hordeum_vulgarum		GOMAP	88130	80282	272823	441235	352.37	364.70	397.33	397.34	2	2	5	10
Medicago_truncatula.A17		GOMAP	107362	99719	364065	571146	423.25	437.36	504.43	504.44	2	2	6	10
Medicago_truncatula.R108		GOMAP	112343	108031	382322	602696	403.32	502.20	557.06	557.06	1	2	5	9
Our ran continue		GOMAP	72780	64685	248700	386165	286.19	298.53	358.24	358.25	2	2	6	9
Oryza_sativa		GoldStandard	7730	11060	19378	38176	57.25	73.83	90.31	113.87	1	1	1	3
Phaseolus_vulgaris	100	GOMAP	72005	64583	229630	366218	259.34	255.39	274.32	274.33	2	2	6	11
Triticum_aestivum		GOMAP	267741	218623	785960	1272324	956.04	981.87	1078.90	1078.91	2	2	6	10
Vigna_unguiculata		GOMAP	75867	68313	243278	387458	271.73	271.24	297.72	297.73	2	2	6	11
Zea_mays.B73.v3		GOMAP	135211	87420	291251	513882	348.66	380.73	394.68	394.69	3	2	6	11
Zea_mays.B73.v4		GOMAP	88827	82251	278719	449797	367.17	373.37	393.23	393.24	2	2	6	10
Zea_mays.Mo17		GOMAP	87567	79214	277787	444568	336.18	351.05	386.19	386.20	2	2	6	10
Zea_mays.PH207		GOMAP	90617	85500	288677	464794	351.70	367.62	405.56	405.57	2	2	6	10
Zea_mays.W22		GOMAP	95390	85039	289780	470209	369.87	376.85	406.89	406.90	2	2	6	10

^a How many annotations in the C, F, and P aspect does this dataset contain? A = How many in total? A = C + F + P

Table 3. Quality evaluation of the used GO annotation sets.

Genome	Dataset	SimGIC2 score
Oryza_sativa	GOMAP GoldStandard	0.248394 0.999974

b How many annotations in the C, F, and F aspect does this dataset contain? A = Frow many in total? A = C + F + Fb How many genes in the genome have at least one GO term from the C, F, P aspect annotated to them? A = How many at least one from any aspect? $(A = C \cup F \cup P)$ c Take a typical gene that is present in the annotation set. How many annotations does it have in each aspect? A = How many in total? Ask your favorite statistician why $A \neq C + F + P$