在一个欧几里得空间中,任一针对点空间的点的等距变换结果都是相对某另一点的平移 再叠加一个正交变换。这个定理也是后面介绍物理定律的标架变换不变性时的理论基础。我 们把它正式表述如下:

定理 0.1 (等距变换的表示定理). 设 $\mathscr E$ 是一个欧几里得空间, $\mathscr V$ 是其平移空间,选定任一点 $X_0 \in \mathscr E$,则 $\mathscr E$ 上的任一等距变换 $i: \mathscr E \to \mathscr E, i \in \mathscr V$ 都可表示为

$$i(X) = i(X_0) + \mathbf{Q}_i(X - X_0)$$

其中 \mathbf{Q}_i 是一个正交算符,由 i 唯一确定。

证明. 见附录。

由定理0.1,给定欧几里得空间上的任一等距变换 i,则仅需知道 i 关于某一参考点 X_0 的像是哪个点,以及由 i 确定的某特征正交算符 \mathbf{Q}_i 的取值,就可以知道 i 对任意一点 $X \in \mathcal{E}$ 的像。享有表示定理的等距变换 i 未必需要是 \mathcal{V} 中的向量,但由于任意两点的"差"唯一对应一个 \mathcal{V} 中的平移向量,故 $i(X) - i(X_0)$ 和 $X - X_0$ 分别表示由点 $i(X_0)$ 到点 i(X) 和点 X_0 到点 X 的平移向量。由等距变换的表示定理,这两个平移向量只相差由正交算符 \mathbf{Q}_i 规定的几何变换,具体可见 §??。

例 0.1. 考虑欧几里得空间 (\mathcal{E},d) 上的以下等距变换,其中 \mathbf{Q} 是一个正交算符, X_0,C 是 \mathcal{E} 中固定的点:

$$i_1(X) = X + (C - X_0)$$

 $i_2(X) = X_0 + \mathbf{Q}(X - X_0)$
 $i_3(X) = X + \mathbf{Q}^{-1}(C - X_0)$

 i_1 把任一点向固定的方向平移固定距离($i_1(X) = X + \mathbf{u}, \mathbf{u} \equiv C - X_0$)。 $i_1 \circ i_2 = i_2 \circ i_3$ (自行验证作为练习。)

当 $\mathbf{Q} = \mathbf{I}$ 时, i_2 是恒等映射。当 $\mathbf{Q} \neq \mathbf{I}$ 时, 由正交算符性质 $\det \mathbf{Q} = \pm 1$ 。当 $\det \mathbf{Q} = 1$ 时, i_2 是一种旋转操作; 当 $\det \mathbf{Q} = -1$ 时, 由 $\mathbf{Q} = (-\mathbf{I})(-\mathbf{Q})$ 和 $\det (-\mathbf{Q}) = 1$ 可知 i_2 是先进行了一个旋转($-\mathbf{Q}$)再进行了反转($-\mathbf{I}$)的操作。

由该例最后的结论可知, $\det \mathbf{Q}$ 为 +1 和 -1 的两种情况,只差一个翻转 -**I** 变换。设 $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3\}$ 是 3 维欧几里得空间的平移空间 \mathcal{V} 的一组规范正交基,则它们经过翻转变换后形成的另一组基 $\{-\hat{\mathbf{e}}_1, -\hat{\mathbf{e}}_2, -\hat{\mathbf{e}}_3\}$,在画法惯例上只存在"左手规则"与"右手规则"的差别(图0.1)。用形象的语言说,就是我们的物理世界是存在"镜子外"和"镜子内"两套的,而

更新至 2024-11-03

且它们的运动学规律只相差一个翻转变换。在本讲义内,我们只关心"镜子外的物理世界"的规律,并规定用"右手规则"来建立坐标系,对应于 $\det \mathbf{Q} = 1$ 的情况。基于同样的惯例,"叉乘"运算 $\mathbf{a} \times \mathbf{b}$ 得到的向量方向也是按"右手规则"得到。

图 0.1: 翻转变换在纸面画法上相当于左、右手规则之差别。

更新至 2024-11-03