Tema 5 (III) - El método de aproximación por mínimos cuadrados

Resumen: Dado un sistema incompatible $A\mathbf{x} = \mathbf{b}$, esto es $\mathbf{b} \notin \operatorname{col}(A)$, el Teorema de la Proyección asegura que el vector de col(A) más cercano al vector \mathbf{b} es $\mathsf{P}_{col(A)}(\mathbf{b})$. La aproximación por mínimos cuadrados consiste en cambiar el sistema original, que es incompatible, por el sistema $A\mathbf{x} = \mathsf{P}_{\mathrm{col}(A)}(\mathbf{b})$ que es compatible y es "el más próximo" al sistema original. Hay, en la práctica, dos formas equivalentes de proceder:

- (1) Abordaje "directo", esto es, hallar $\mathsf{P}_{\operatorname{col}(A)}(\mathbf{b})$ y, a continuación, resolver el sistema $A\mathbf{x} = \mathsf{P}_{\operatorname{col}(A)}(\mathbf{b})$.
- (2) Resolver las ecuaciones normales $(A^t A)\mathbf{x} = A^t \mathbf{b}$.
- 1. En cada caso, probar que el sistema $A\mathbf{x} = \mathbf{b}$ es incompatible y hallar la "mejor" solución aproximada usando los procedimientos (1) y (2) descritos en el resumen. Comparar la eficiencia de los métodos.

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 0 & -2 \end{pmatrix} \mathbf{b} = \begin{pmatrix} -2 \\ 2 \\ -3 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 1 \end{pmatrix}$$

2. Los salarios medios (en millones de \$) pagados en la Mayor League Baseball desde 1990 a 1999 son:

Año	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Salario	0,60	0,85	1,03	1,08	1, 17	1, 11	1, 12	1, 34	1,40	1,61

- a) Representar la tabla como una nube de puntos (empezar con $x_0 = 0$ para 1990) y comprobar que una recta serviría como modelo "razonable" para aproximar esta nube de puntos.
- b) Usar el método de los mínimos cuadrados para ajustar una recta (recta de regresión) a la nube.
- c) Estimar cuáles han sido los salarios medios desde 2000 a 2010. Contrastar la estimación con la fuente original: http://www.mlbplayers.com/pdf9/4923609.pdf
- 3. Encontrar la recta de regresión para los conjuntos de puntos siguientes:
 - a) (1,1), (2,2), (3,2), (4,3)
 - b) (-3, -3), (-2, -2), (0, 0), (1, 2)
- 4. Encontrar la parábola que mejor se ajuste, en el sentido de los mínimos cuadrados, a la nube de puntos:
 - a) (-1,1), (0,-1), (1,0), (2,2)
 - b) (-2,4), (-1,7), (0,3), (1,0), (2,-1)
- 5. Un investigador tiene una serie de parejas de datos experimentales (x_i, y_i) de los que se supone que, aproximadamente, será $y_i = p(x_i)$ siendo p un polinomio de segundo grado. Por ensayo y error, conjetura que $p(x) = x^2 - 4x + 1$; Puede mejorarse la conjetura? En la tabla siguiente se resumen los datos.

x_i	1	2	3	4	5
y_i DATOS REALES	-1, 8	-2, 9	-2, 1	1, 1	5,9
$\hat{y}_i = x_i^2 - 4x_i + 1$	-2	-3	-2	1	6

- **6.** Probar que, para toda matriz $A_{m \times n}$, se tiene que rango $(A) = \text{rango}(A^t A)$. Indicaciones:
 - a) Probar que si $\mathbf{x} \in \mathbb{R}^n$ es tal que $A\mathbf{x} = \vec{\mathbf{0}}$, entonces $A^t A\mathbf{x} = \vec{\mathbf{0}}$ lo cual, implica que nulo $(A) \subseteq \text{nulo}(A^t A)$.
 - $b) \text{ Viceversa: } A^t A \mathbf{x} = \vec{\mathbf{0}} \Rightarrow \mathbf{x}^t A^t A \mathbf{x} = 0 \Rightarrow (A \mathbf{x})^t (A \mathbf{x}) = \|A \mathbf{x}\|^2 = 0 \Rightarrow A \mathbf{x} = \vec{\mathbf{0}} \Rightarrow \text{nulo}(A^t A) \subseteq \text{nulo}(A) \,.$
 - c) Aplicar ahora el hecho de que $\operatorname{rango}(A) + \dim(\operatorname{nulo}(A)) = n$.
- 7. Si las columnas de A son linealmente independientes, podemos usar las ecuaciones normales para hallar la matriz de la proyección $P_{col(A)}$ sin encontrar una base ortonormal de col(A). Pasos a seguir:
 - a) Probar que para todo $\mathbf{b} \in \mathbb{R}^n$, la solución del sistema $A\hat{\mathbf{x}} = \mathsf{P}_{\mathrm{col}(A)}(\mathbf{b})$ es $\hat{\mathbf{x}} = (A^t A)^{-1} A^t \mathbf{b}$. (*)
 - b) Usar el hecho anterior para probar que la matriz de $\mathsf{P}_{\mathrm{col}(A)}$ es $A(A^tA)^{-1}A^t$.
 - c) Para la matriz A dada, hallar la matriz de $P_{col(A)}$ de dos formas diferentes. $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 1 & 1 \end{pmatrix}$
 - (*) Nota: A la matriz $(A^tA)^{-1}A^t$ se le denomina pseudoinversa de A.
- 8. Hallar mín $\{(2-x+y)^2+(1+x+y)^2+(3-x-2y)^2\mid x,y\in\mathbb{R}\}$