

EE141-Spring 2010 Digital Integrated Circuits

Lecture 5
Switch Logic - Optimization

EECS141

Lecture #5

1

Administrativia

- □ Homework #2 posted
- □ First lab this week

EECS141

Lecture #5

2

Class Material

- □ Last lecture
 - Design Rules
 - Introduction to switch logic
- □ Today's lecture
 - Optimization of inverter logic
- □ Reading (5.4-5.5)

CMOS Inverter: Transient Response V_{DD} R_{p} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{OUT} V_{OUT} $V_{in} = V_{DD}$ (a) Low-to-high (b) High-to-low Lecture #5 5

The Next Question: Inverter Chain

- \Box For some given C_L :
 - How many stages are needed to minimize delay?
 - How to size the inverters?
- □ Anyone want to guess the solution?

Careful about Optimization Problems

- ☐ Get fastest delay if build one **very** big inverter
 - So big that delay is set only by self-loading

- □ Likely not the problem you're interested in
 - Someone has to drive this inverter...

EECS141 Lecture #5

Engineering Optimization Problems in General

- □ Need to have a set of constraints
- □ Constraints key to:
 - Making the result useful
 - Making the problem have a 'clean' solution
- □ For sizing problem:
 - Need to constrain size of first inverter

Delay Optimization Problem #1

- □ You are given:
 - A <u>fixed</u> number of inverters
 - The size of the first inverter
 - The size of the load that needs to be driven
- □ Your goal:
 - Minimize the delay of the inverter chain
- □ Need model for inverter delay vs. size

EECS141 Lecture #5

Inverter Delay

Delay: $t_{pHL} = (\ln 2) R_N C_L$ $t_{pLH} = (\ln 2) R_p C_L$

□ Assume we want equal rise/fall delays

 $t_{pHL} = t_{pLH}$

- Need approximately equal resistances, $R_N = R_P$
- PMOS approximately 2 times larger resistance for same size;
- Must make PMOS 2 times wider, $W_P = 2W_N = 2W$
- $t_p = (\ln 2) (R_{inv}/W) C_L$ with R_{inv} resistance of minimum size NMOS

Loading on the previous stage: $C_{in} = WC_{ginv} = W(3C_G)$

Inverter Delay Model

$$R = R_{inv}/W$$

$$C_{int} = W(3C_d) = WC_{dinv}$$

Replace ln(2) with k (a constant):

$$Delay = kR(C_{int} + C_{L)}$$

$$Delay = k(R_{min}/W)(WC_{dinv} + C_L)$$

EECS141 Lecture #5

Inverter with Load

Delay = $kR C_{in}(C_{int}/C_{in} + C_L/C_{in})$ = $kR \cdot C \cdot [C_{in}/C_{in} + C_L/(WC)]$

 $= kR_{min}C_{ginv}[C_{dinv}/C_{ginv} + C_L/(WC_{ginv})]$ = Delay (Internal) + Delay (Load)

 $C_{dinv}/C_{ginv} = \gamma =$ Constant independent of size

Delay Formula

$$Delay \sim R_W \left(C_{int} + C_L \right)$$

$$t_p = kR_W C_{\text{in}} \left(C_{\text{int}} / C_{in} + C_L / C_{in} \right) = t_{inv} \left(\gamma + f \right)$$

$$C_{int} = \gamma C_{in} (\gamma \approx 1 \text{ for CMOS inverter})$$

 $f = C_L/C_{in} - \text{electrical fanout}$
 $t_{inv} = kR_{min}C_{ginv}$

 t_{inv} is independent of sizing of the gate!!!

EECS141 Lecture #5

Apply to Inverter Chain

In Out
$$t_{p} = t_{p1} + t_{p2} + ... + t_{pN}$$

$$t_{pj} = t_{inv} \left(\gamma + \frac{C_{in,j+1}}{C_{in,j}} \right)$$

$$t_{p} = \sum_{j=1}^{N} t_{p,j} = t_{inv} \sum_{i=1}^{N} \left(\gamma + \frac{C_{in,j+1}}{C_{in,j}} \right), \quad C_{in,N+1} = C_{L}$$

Optimal Tapering for Given N

- \Box Delay equation has N-1 unknowns, $C_{in,2} \dots C_{in,N}$
- \Box **To minimize the delay,** find N-1 partial derivatives:

$$\begin{split} t_{p} &= \ldots + t_{inv} \frac{C_{in,j}}{C_{in,j-1}} + t_{inv} \frac{C_{in,j+1}}{C_{in,j}} + \ldots \\ \frac{dt_{p}}{dC_{in,j}} &= t_{inv} \frac{1}{C_{in,j-1}} - t_{inv} \frac{C_{in,j+1}}{C_{in,j}^{2}} = 0 \end{split}$$

EECS141 Lecture #5

Optimal Tapering for Given N (cont'd)

□ Result: every stage has **equal fanout**:

$$\frac{C_{in,j}}{C_{in,j-1}} = \frac{C_{in,j+1}}{C_{in,j}}$$

□ In other words, size of each stage is geometric mean of two neighbors:

$$\boxed{C_{in,j} = \sqrt{C_{in,j-1}C_{in,j+1}}}$$

□ Equal fanout → every stage will have same delay

Optimum Delay and Number of Stages

 \Box When each stage has same fanout f:

$$f^N = F = C_L / C_{in.1}$$

□ Effective fanout of each stage:

$$f = \sqrt[N]{F}$$

□ Minimum path delay:

$$t_p = Nt_{inv} \left(\gamma + \sqrt[N]{F} \right)$$

EECS141 Lecture #5

Example

 C_L/C_1 has to be evenly distributed across N=3 stages:

$$f = \sqrt[3]{8} = 2$$

Delay Optimization Problem #2

- □ You are given:
 - The size of the first inverter
 - The size of the load that needs to be driven
- Your goal:
 - Minimize delay by finding optimal number and sizes of gates
- □ So, need to find N that minimizes:

$$t_p = Nt_{inv} \left(\gamma + \sqrt[N]{C_L / C_{in}} \right)$$

EECS141 Lecture #5

Solving the Optimization

□ Rewrite N in terms of fanout/stage *f*:

$$f^N = C_L/C_{in} \rightarrow N = \frac{\ln(C_L/C_{in})}{\ln f}$$

$$t_{p} = N t_{inv} \left(\left(C_{L} / C_{in} \right)^{1/N} + \gamma \right) = t_{inv} \ln \left(C_{L} / C_{in} \right) \left(\frac{f + \gamma}{\ln f} \right)$$

$$\frac{\partial t_p}{\partial f} = t_{inv} \ln \left(C_L / C_{in} \right) \cdot \frac{\ln f - 1 - \gamma / f}{\ln^2 f} = 0$$

$$f = \exp(1 + \gamma/f)$$
 For $\gamma = 0, f = e, N = \ln(C_L/C_{in})$

Normalized Delay As a Function of F

$$t_p = Nt_{inv} \left(\gamma + \sqrt[N]{F} \right), F = C_L / C_{in}$$

F	Unbuffered	Two Stage	Inverter Chain
10	11	8.3	8.3
100	101	22	16.5
1000	1001	65	24.8
10,000	10,001	202	33.1

 $(\gamma = 1)$

Textbook: page 210

What About Energy (and Area)?

$$C_{tot} = C_{in} + f \cdot C_{in} + \dots + f^{N} \cdot C_{in}$$

$$= C_{in} \cdot (1 + f + \dots + f^{N})$$

$$= C_{in} + C_{in} \cdot f^{N} + C_{in} \cdot \underbrace{f \cdot (1 + f + \dots + f^{N-2})}$$

Overhead !!! f(f^N-1-1) / (f-1)

Example (\gamma=0): C_L = 20pF; C_i = 50fF $\rightarrow N$ = 6

Fixed: 20pF

Overhead: 11.66pF !!!

EECS141 Lecture #5 25

Example Overhead Numbers

Example: $C_L = 20 \text{pF}$; $C_{in} = 50 \text{fF}$

