目录

第1讲	墙角模型	1
第2讲	对棱相等模型	6
第3讲	汉堡模型	9
第4讲	垂面模型	14
第5讲	切瓜模型	20
第6讲	4笠模型	26
第7讲	鳄鱼模型	31
第8讲	已知球心或球半径模型	38
第9讲	最值模型	44
第 10 讲	内切球模型	50

第1讲 墙角模型

如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球. 有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力. 研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径. 并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.

球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各项点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.

空间几何体的外接球与内切球十大模型

1. 墙角模型; 2. 对棱相等模型; 3. 汉堡模型; 4. 垂面模型; 5. 切瓜模型; 6. 斗笠模型; 7. 鳄鱼模型; 8. 已知球心或球半径模型; 9. 最值模型; 10. 内切球模型.

【方法总结】

墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为 a, b, c, 外接球的半径为 R,

则 $2R = \sqrt{a^2 + b^2 + c^2}$.),秒条公式: $R^2 = \frac{a^2 + b^2 + c^2}{4}$. 可求出球的半径从而解决问题. 有以下四种类型:

【例题选讲】

[例] (1)已知三棱锥 A-BCD 的四个项点 A, B, C, D 都在球 O 的表面上,AC 上平面 BCD,BC $\bot CD$,且 $AC=\sqrt{3}$,BC=2, $CD=\sqrt{5}$,则球 O 的表面积为(

- Α. 12π
- Β. 7π
- C. 9π
- D. 8π

(2)若三棱锥 S-ABC 的三条侧棱两两垂直,且 SA=2, SB=SC=4,则该三棱锥的外接球半径为(). A. 3 B. 6 C. 36 D. 9

- (3)已知 S, A, B, C, 是球 O 表面上的点,SA 上平面 ABC, AB 上BC, SA = AB = 1, $BC = \sqrt{2}$,则球 O 的表面积等于().
 - Α. 4π

B. 3π

- C. 2π
- D. π.

(4)在正三棱锥 S-ABC 中,M,N 分别是棱 SC,BC 的中点,且 $AM \perp MN$,若侧棱 $SA=2\sqrt{3}$,则正三棱锥 S-ABC 外接球的表面积是

(5)(2019 全国 I)已知三棱锥 P-ABC 的四个顶点在球 O 的球面上,PA=PB=PC, $\triangle ABC$ 是边长为 2 的正三角形,E,F 分别是PA,AB 的中点, $\angle CEF=90^{\circ}$,则球O 的体积为().

- A. $8\sqrt{6}\pi$
- B. $4\sqrt{6}\pi$ C. $2\sqrt{6}\pi$ D. $\sqrt{6}\pi$

(6)已知二面角 $\alpha-l-\beta$ 的大小为 $\frac{\pi}{3}$,点 $P \in \alpha$,点 P 在 β 内的正投影为点 A,过点 A 作 $AB \perp l$,垂足为点 B, 点 $C \in I$, $BC = 2\sqrt{2}$, $PA = 2\sqrt{3}$, 点 $D \in \beta$, 且四边形 ABCD 满足 $\angle BCD + \angle DAB = \pi$. 若四面体 PACD的四个顶点都在同一球面上,则该球的体积为_____.

【对点训练】

- 1. 点 A, B, C, D 均在同一球面上,且 AB, AC, AD 两两垂直,且 AB=1, AC=2, AD=3, 则该球的表面积为()
 - Α. 7π
- Β. 14π
- C. $\frac{7}{2}\pi$
- D. $\frac{7\sqrt{14}\pi}{3}$

- 2. 等腰 $\triangle ABC$ 中,AB=AC=5,BC=6,将 $\triangle ABC$ 沿 BC 边上的高 AD 折成直二面角 B-AD-C,则三棱锥 B-ACD 的外接球的表面积为()
 - Α. 5π
- B. $\frac{20}{3}\pi$
- C. 10π
- D. 34π
- 3. 已知球 O 的球面上有四点 A, B, C, D, DA 上平面 ABC, AB 上BC, DA = AB = BC = $\sqrt{2}$, 则球 O 的体积等于______.

4. 已知四面体 P-ABC 四个顶点都在球 O 的球面上,若 PB 上平面 ABC, $AB \perp AC$,且 AC=1, AB=PB = 2,则球 O 的表面积为_____.

- 5. 三棱锥 P-ABC 中, $\triangle ABC$ 为等边三角形,PA=PB=PC=3, $PA\perp PB$,三棱锥 P-ABC 的外接球的体 积为()
 - A. $\frac{27}{2}\pi$
- B. $\frac{27\sqrt{3}}{2}\pi$
- C. $27\sqrt{3}\pi$
- D. 27π

- 6. 在空间直角坐标系 Oxyz 中,四面体 ABCD 各项点的坐标分别为 A(2, 2, 1), B(2, 2, -1), C(0, 2, -1)
 - 1), *D*(0, 0, 1), 则该四面体外接球的表面积是()
 - A. 16π
- B. 12π
- C. $4\sqrt{3}\pi$ D. 6π
- 7. 在平行四边形 ABCD 中, $\angle ABD = 90^{\circ}$,且 AB = 1, $BD = \sqrt{2}$,若将其沿 BD 折起使平面 $ABD \perp$ 平面 BCD,则三棱锥 A-BDC 的外接球的表面积为(D)
 - A. 2π
- Β. 8π
- C. 16π
- D. 4π

- 8. 在正三棱锥 S-ABC 中,点 M 是 SC 的中点,且 $AM \bot SB$,底面边长 $AB=2\sqrt{2}$,则正三棱锥 S-ABC 的外接球的表面积为()
 - Α. 6π
- B. 12π
- C. 32π
- D. 36π

- 9. 在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体 A-BCD 为鳖臑,AB 上平面 BCD,且 $AB=BC=\frac{\sqrt{3}}{6}CD$,若此四面体的体积为 $\frac{8\sqrt{3}}{3}$,则其外接球的表面积为______.
- 10. 在长方体 $ABCD-A_1B_1C_1D_1$ 中,底面 ABCD 是边长为 $3\sqrt{2}$ 的正方形, $AA_1=3$,E 是线段 A_1B_1 上一点,若二面角 A-BD-E 的正切值为 3,则三棱锥 $A-A_1D_1E$ 外接球的表面积为

第2讲 对棱相等模型

【方法总结】

对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决. 外接球的直径等于长方体的体对角线长,即 $2R = \sqrt{a^2 + b^2 + c^2}$ (长方体的长、宽、高分别为 a、b、c). 秒杀公式: $R^2 = \frac{x^2 + y^2 + z^2}{8}$ (三棱锥的三组对棱长分别为 x、y、z). 可求出球的半径从而解决问题.

【例题选讲】

[例] (1)正四面体的各条棱长都为 $\sqrt{2}$,则该正面体外接球的体积为 . . .

(2)在三棱锥 A-BCD 中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥 A-BCD 外接球的表面积为 ____.

(3)在三棱锥 A-BCD 中,AB=CD=6,AC=BD=AD=BC=5,则该三棱锥的外接球的体积为 .

(4)在正四面体 A-BCD 中, E 是棱 AD 的中点, P 是棱 AC 上一动点, BP+PE 的最小值为 $\sqrt{7}$,则该正四面体的外接球的体积是 (

- A. $\sqrt{6}\pi$
- B. 6π
- C. $\frac{3\sqrt{6}}{\pi}$
- D. $\frac{3}{\pi}$

(5)已知三棱锥 A-BCD,三组对棱两两相等,且 AB=CD=1, $AD=BC=\sqrt{3}$,若三棱锥 A-BCD 的 第 7页

【对点训练】

1. 已知正四面体 ABCD 的外接球的体积为 $8\sqrt{6\pi}$,则这个四面体的表面积为

- 2. 表面积为 $8\sqrt{3}$ 的正四面体的外接球的表面积为()

- A. $4\sqrt{3}\pi$ B. 12π C. 8π D. $4\sqrt{6}\pi$

3. 已知四面体 ABCD 满足 $AB=CD=\sqrt{6}$, AC=AD=BC=BD=2,则四面体 ABCD 的外接球的表面积是

4. 三棱锥中 S-ABC, $SA=BC=\sqrt{13}$, $SB=AC=\sqrt{5}$, $SC=AB=\sqrt{10}$. 则三棱锥的外接球的表面积为_____.

5. 已知一个四面体 ABCD 的每个顶点都在表面积为 9π 的球 O 的表面上,且 AB=CD=a,AC=AD=BC $=BD=\sqrt{5}$,则 a=_____.

6. 正四面体 ABCD 中,E 是棱 AD 的中点,P 是棱 AC 上一动点,BP+PE 的最小值为 $\sqrt{14}$,则该正四面 体的外接球表面积是()

A. 12π

- B. 32π
- C. 8π
- D. 24π

第3讲 汉堡模型

【方法总结】

汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两 个面的外心且分别垂直这两个面的直线的交点. 一般情况下只作出一个面的垂线, 然后设出球心用算术方 法或代数方法即可解决问题. 有时也作出两条垂线,交点即为球心.)解决. 以直三棱柱为例,模型如下图, 由对称性可知球心 O 的位置是 $\triangle ABC$ 的外心 O_1 与 $\triangle A_1B_1C_1$ 的外心 O_2 连线的中点, 算出小圆 O_1 的半径 AO_1

$$=r$$
, $OO_1=\frac{h}{2}$, $\therefore R^2=r^2+\frac{h^2}{4}$.

【例题选讲】

[例] (1) (2013 辽宁)已知直三棱柱 $ABC-A_1B_1C_1$ 的 6 个项点都在球 O 的球面上. 若 AB=3,AC=4, $AB \perp AC$, $AA_1 = 12$, 则球 O 的半径为().

A.
$$\frac{3\sqrt{17}}{2}$$

B.
$$2\sqrt{10}$$
 D. $3\sqrt{10}$

C.
$$\frac{13}{2}$$

D.
$$3\sqrt{10}$$

(2)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为().

A.
$$\pi a^2$$

B.
$$\frac{7}{3}\pi a^2$$

B.
$$\frac{7}{3}\pi a^2$$
 D. $\frac{3}{7}\pi a^2$

D.
$$\frac{3}{7}\pi a^2$$

(3)(2009 全国 I)直三棱柱 $ABC-A_1B_1C_1$ 的各顶点都在同一球面上,若 $AB=AC=AA_1=2$, $\angle BAC=120^\circ$, 则此球的表面积等于().

- Α. 10π
- Β. 20π
- C. 30π
- D. 40π

(4)已知圆柱的高为 2,底面半径为 $\sqrt{3}$,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表 面积等于(

- Α. 4π
- B. $\frac{16\pi}{3}$
- C. $\frac{32\pi}{3}$
- D. 16π

(5)若一个圆柱的表面积为 12π ,则该圆柱的外接球的表面积的最小值为()

- A. $(12\sqrt{5}-12)\pi$
- B. $12\sqrt{3}\pi$ C. $(12\sqrt{3}+3)\pi$
- D. 16π

【对点训练】

- 1. 一直三棱柱的每条棱长都是 2, 且每个顶点都在球 O 的表面上,则球 O 的表面积为()
 - A. $\frac{28\pi}{3}$

- B. $\frac{\sqrt{22}\pi}{3}$
- C. $\frac{4\sqrt{3}\pi}{3}$
- D. $\sqrt{7}\pi$

2. 一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该 六棱柱的体积为 $\frac{9}{8}$,底面周长为 3,则这个球的体积为______.

- 3. 已知正三棱柱 $ABC-A_1B_1C_1$ 中,底面积为 $\frac{3\sqrt{3}}{4}$,一个侧面的周长为 $6\sqrt{3}$,则正三棱柱 $ABC-A_1B_1C_1$ 外接球的表面积为()
 - Α. 4π
- Β. 8π
- C. 16π
- D. 32π

ـ ۲

- 4. 已知直三棱柱 $ABC-A_1B_1C_1$ 的 6 个项点都在球 O 的球面上,若 AB=3,AC=1, $\angle BAC=60^\circ$, $AA_1=2$,则该三棱柱的外接球的体积为()
 - A. $\frac{40\pi}{3}$
- B. $\frac{40\sqrt{30}\pi}{27}$
- C. $\frac{320\sqrt{30}\pi}{27}$
- D. 20π

- 5. 已知矩形 ABCD 中,AB=2AD=2,E,F 分别为 AB,CD 的中点,将四边形 AEFD 沿 EF 折起,使二面角 A-EF-C 的大小为 120° ,则过 A,B,C,D,E,F 六点的球的表面积为(
 - Α. 6π
- Β. 5π
- C. 4π
- D. 3π

- 6. 已知直三棱柱 $ABC-A_1B_1C_1$ 的 6 个顶点都在球 O 的表面上,若 AB=AC=1, $AA_1=2\sqrt{3}$, $\angle BAC=\frac{2\pi}{3}$, 则球O的体积为()
 - A. $\frac{32\pi}{3}$
- B. 3π
- C. $\frac{4\pi}{3}$
- D. 8π

- 7. 有一个圆锥与一个圆柱的底面半径相等,此圆锥的母线与底面所成角为60°,若此圆柱的外接球的表面 积是圆锥的侧面积的 4 倍,则此圆柱的高是其底面半径的(
 - A. $\sqrt{2}$ 倍
- B. 2 倍 C. 2√2 倍 D. 3 倍

- 8. 正四棱柱 $ABCD-A_1B_1C_1D_1$ 中, AB=2, 二面角 A_1-BD-C_1 的大小为 $\frac{\pi}{3}$,则该正四棱柱外接球的表面 积为()
 - A. 12π
- B. 14π
- C. 16π
- D. 18π

9. 正四棱柱 $ABCD - A_iB_iC_iD_i$ 中, $AB = \sqrt{2}$, $AA_i = 2$, 设四棱柱的外接球的球心为 O , 动点 P 在正方 形 ABCD 的边上,射线 OP 交球 O 的表面点 M,现点 P 从点 A 出发,沿着 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$ 运动 一次,则点M经过的路径长为 .

10. 已知圆柱的上底面圆周经过正三棱锥 P-ABC 的三条侧棱的中点,下底面圆心为此三棱锥底面中心 O. 若三棱锥 P-ABC 的高为该圆柱外接球半径的 2 倍,则该三棱锥的外接球与圆柱外接球的半径的 比值为 .

第4讲 垂面模型

【方法总结】

垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球,由对称性可知球心0的位置是 $\triangle CBD$ 的外心 O_1 与 $\triangle AB_2D_2$ 的外心 O_2 连线的中点,算出小圆 O_1 的半径 $AO_1=r$, $OO_1=\frac{h}{2}$, $\therefore R^2=r^2+\frac{h^2}{4}$.

【例题选讲】

[例] (1)已知在三棱锥 S-ABC 中,SA 上平面 ABC,且 $\angle ACB$ =30°,AC=2AB=2 $\sqrt{3}$,SA=1. 则该 三棱锥的外接球的体积为(

A.
$$\frac{13}{8}\sqrt{13}\pi$$

C.
$$\frac{\sqrt{13}}{6}\pi$$

C.
$$\frac{\sqrt{13}}{6}\pi$$
 D. $\frac{13\sqrt{13}}{6}\pi$

(2)三棱锥 P-ABC 中	,平面 PAC 上平面 ABC,	$AB \perp AC$, $PA = PC = AC = 2$,	AB=4,则三棱锥 $P-ABC$
的外接球的表面积为().		
Α. 23π	B. $\frac{23}{4}\pi$	С. 64π	D. $\frac{64}{3}\pi$

(3)在三棱锥 S-ABC 中,侧棱 SA 上底面 ABC,AB=5,BC=8, $\angle ABC=60$ °, $SA=2\sqrt{5}$,则该三棱锥 的外接球的表面积为(

- A. $\frac{64}{3}\pi$
- B. $\frac{256}{3}\pi$
- C. $\frac{436}{3}\pi$
- D. $\frac{2.048\sqrt{3}}{27}\pi$

(4)在三棱锥 P-ABC 中,已知 PA上底面 ABC, $\angle BAC=120^\circ$,PA=AB=AC=2,若该三棱锥的顶点 都在同一个球面上,则该球的表面积为()

- A. $10\sqrt{3}\pi$
- B. 18π C. 20π
- D. $9\sqrt{3}\pi$

(5)在三棱锥 P-ABC 中,PA 上平面 ABC , $\angle BAC$ = 120° , AC = 2 , AB = 1 ,设 D 为 BC 中点,且直线 PD 与平面 ABC 所成角的余弦值为 $\frac{\sqrt{5}}{5}$,则该三棱锥外接球的表面积为______.

【对点训练】

1. 三棱锥 S-ABC 中,SA 上底面 ABC,若 SA=AB=BC=AC=3,则该三棱锥外接球的表面积为() 21 π

Α. 18π

B. $\frac{21\pi}{2}$

C. 21π

D. 42π

- 2. 四面体 ABCD 的四个顶点都在球 O 的表面上,AB 上平面 BCD, $\triangle BCD$ 是边长为 3 的等边三角形,若 AB = 2,则球 O 的表面积为()
 - A. 4π
- B. 12π
- C. 16π
- D. 32π

- 3. 已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上,SA上平面 ABC, $SA=2\sqrt{3}$,AB=1,AC=2, $\angle BAC=60^\circ$,则球 O 的表面积为()
 - Α. 4π
- B. 12π
- C. 16π
- D. 64π

- 4. 在三棱锥 P-ABC 中,已知 PA \bot 底面 ABC, $\angle BAC$ =60°,PA=2,AB=AC= $\sqrt{3}$,若该三棱锥的顶点都在同一个球面上,则该球的表面积为()
 - A. $\frac{4\pi}{3}$
- B. $\frac{8\sqrt{2\pi}}{3}$
- C. 8π
- D. 12π

- 5. 在三棱锥 A-BCD 中, $AC=CD=\sqrt{2}$,AB=AD=BD=BC=1,若三棱锥的所有顶点,都在同一球面 上,则球的表面积是 .
- 6. 如图,在 $\triangle ABC$ 中, $AB=BC=\sqrt{6}$, $\angle ABC=90^{\circ}$,点 D 为 AC 的中点,将 $\triangle ABD$ 沿 BD 折起到 $\triangle PBD$ 的位置,使PC=PD,连接PC,得到三棱锥P-BCD,若该三棱锥的所有顶点都在同一球面上,则该 球的表面积是()

Α. 7π

B. 5π

C. 3π

D. π.

7. 已知点 P, A, B, C, D 是球 O 表面上的点,PA 上平面 ABCD,四边形 ABCD 是边长为 $2\sqrt{3}$ 的正方形. 若

 $PA = 2\sqrt{6}$, 则 $\triangle OAB$ 的面积为().

A. $\sqrt{3}$

B. $2\sqrt{2}$

C. $3\sqrt{3}$

D. $6\sqrt{3}$

9. 中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知 PA_{\perp} 平面 ABCE,四边形 ABCD 为正方形, $AD=\sqrt{5}$, $ED=\sqrt{3}$,若鳖臑 P-ADE 的外接球的体积为 $9\sqrt{2\pi}$,则阳马 P-ABCD 的外接球的表面积为

10. 在四棱锥 P-ABCD 中,PA 上平面 ABCD ,AP=2 ,点 M 是矩形 ABCD 内 (含边界)的动点,且 AB=1 , AD=3 ,直线 PM 与平面 ABCD 所成的角为 $\frac{\pi}{4}$.记点 M 的轨迹长度为 α ,则 $\tan \alpha =$ ______.; 当三棱锥 P-ABM 的体积最小时,三棱锥 P-ABM 的外接球的表面积为

第5讲 切瓜模型

【方法总结】

切瓜模型是有一侧面垂直底面的棱锥型,常见的是两个互相垂直的面都是特殊三角形且平面 ABC 上平 面 BCD,如类型 I, $\triangle ABC$ 与 $\triangle BCD$ 都是直角三角形,类型 II, $\triangle ABC$ 是等边三角形, $\triangle BCD$ 是直角三角 形,类型III, $\triangle ABC$ 与 $\triangle BCD$ 都是等边三角形,解决方法是分别过 $\triangle ABC$ 与 $\triangle BCD$ 的外心作该三角形所在 平面的垂线,交点 O 即为球心. 类型 \mathbb{N} , $\triangle ABC$ 与 $\triangle BCD$ 都一般三角形,解决方法是过 $\triangle BCD$ 的外心 O_1 作该三角形所在平面的垂线,用代数方法即可解决问题.设三棱锥 A-BCD 的高为 h,外接球的半径为 R, 球心为 O. $\triangle BCD$ 的外心为 O_1 , O_1 到 BD 的距离为 d, O 与 O_1 的距离为 m, 则 $\begin{cases} R^2 = r^2 + m^2, \\ R^2 = d^2 + (h-m)^2, \end{cases}$ 解得

R. 可用秒杀公式: $R^2=r_1^2+r_2^2-rac{l^2}{4}$ (其中 r_1 、 r_2 为两个面的外接圆的半径,l 为两个面的交线的长)

【例题选讲】

[**例**] (1)已知在三棱锥 P-ABC 中, $V_{P-ABC}=\frac{4\sqrt{3}}{3}$, $\angle APC=\frac{\pi}{4}$, $\angle BPC=\frac{\pi}{3}$, $PA\perp AC$, $PB\perp BC$,且平 面 PAC \bot 平面 PBC,那么三棱锥 P-ABC 外接球的体积为

(3)已知三棱锥 A-BCD 中, $\triangle ABD$ 与 $\triangle BCD$ 是边长为 2 的等边三角形且二面角 A-BD-C 为直二面角,则三棱锥 A-BCD 的外接球的表面积为()

A.
$$\frac{10\pi}{3}$$

B.
$$5\pi$$

D.
$$\frac{20\pi}{3}$$

(4)已知 $\triangle ABC$ 是以 BC 为斜边的直角三角形,P 为平面 ABC 外一点,且平面 PBC 上平面 ABC,BC=3, $PB=2\sqrt{2}$, $PC=\sqrt{5}$,则三棱锥 P-ABC 外接球的表面积为_____.

(5)已知等腰直角三角形 ABC 中,AB=AC=2,D,E 分别为 AB,AC 的中点,沿 DE 将 $\triangle ABC$ 折成直二面角(如图),则四棱锥 A-DECB 的外接球的表面积为_____.

【对点训练】

- 1. 把边长为 3 的正方 ABCD 沿对角线 AC 对折,使得平面 ABC 上平面 ADC ,则三棱锥 D ABC 的外接 球的表面积为 ()
 - A. 32π
- B. 27π
- C. 18π
- D. 9π

2. 在三棱锥 A-BCD 中, $\triangle ACD$ 与 $\triangle BCD$ 都是边长为 4 的正三角形,且平面 ACD 上平面 BCD,则该三棱锥外接球的表面积为

3. 已知如图所示的三棱锥 D-ABC 的四个顶点均在球 O 的球面上, $\triangle ABC$ 和 $\triangle DBC$ 所在的平面互相垂 直, AB=3, $AC=\sqrt{3}$, $BC=CD=BD=2\sqrt{3}$, 则球 O 的表面积为()

A. 4π

Β. 12π

C. 16π

D. 36π

4. 在三棱锥 A-BCD 中,平面 ABC 上 平面 BCD , ΔABC 是边长为 2 的正三角形,若 $\angle BDC = \frac{\pi}{4}$,三棱 锥的各个顶点均在球O上,则球O的表面积为().

A. $\frac{52\pi}{3}$

B. 3π C. 4π

- 5. 已知空间四边形 ABCD, $\angle BAC=\frac{2}{3}\pi$, $AB=AC=2\sqrt{3}$, BD=4, $CD=2\sqrt{5}$,且平面 ABC \bot 平面 BCD ,则该几何体的外接球的表面积为(。)
 - A. 24π
- B. 48π
- C. 64π
- D. 96π

6. 如图,已知四棱锥 P-ABCD 的底面为矩形,平面 PAD 上平面 ABCD , $AD=2\sqrt{2}$, PA=PD=AB=2 ,则四棱锥 P-ABCD 的外接球的表面积为 ()

A. 2π

B. 4π

C. 8π

D. 12π

7.	在四棱锥 A-BC	DE 中, ΔABC 是边长为 6 的 I	E三角形, BCDE 是正方牙	形,平面 $ABC \perp$ 平面 $BCDE$,	
	则该四棱锥的外	接球的体积为()			
	A. $21\sqrt{21}\pi$	B. 84π	C. $7\sqrt{21}\pi$	D. $28\sqrt{21}\pi$	
8.	已知空间四边形	$ABCD$, $\angle BAC = \frac{2\pi}{3}$, $AB = 2\pi$	$AC = 2\sqrt{3}$, $BD = CD = 6$,且平面 <i>ABC</i> ⊥ 平面 <i>BCD</i> ,	训
	空间四边形 ABC	D 的外接球的表面积为()		
	A. 60π	B. 36π	C. 24π	D. 12π	
9.		$C \Leftrightarrow AB = AC = 4$, $\angle BAC =$	120° , $PB = PC = 4\sqrt{3}$,	平面 $PBC \perp $ 平面 ABC ,则三相	夌
	锥 P - ABC 外接	球的表面积为			
10	. 在三棱锥 <i>P - Al</i>	BC中,平面 PAB ⊥ 平面 ABC;	$AP = 2\sqrt{5}, AB = 6, \angle AC$	$B = \frac{\pi}{3}$,且直线 PA 与平面 ABC	\mathcal{C}
				=	

所成角的正切值为2,则该三棱锥的外接球的表面积为(

A. 13π

B. 52π

C. $\frac{52\pi}{3}$

D. $\frac{52\sqrt{13}\pi}{3}$

第6讲 斗笠模型

【方法总结】

圆锥、顶点在底面的射影是底面外心的棱锥. 秒杀公式: $R = \frac{h^2 + r^2}{2h}$ (其中 h 为几何体的高,r 为几何体的底面半径或底面外接圆的圆心)

【例题选讲】

[例] (1)一个圆锥恰有三条母线两两夹角为 60° ,若该圆锥的侧面积为 $3\sqrt{3}\pi$,则该圆锥外接球的表面积为_____.

(2)(2020·全国I)已知 A, B, C 为球 O 的球面上的三个点, $\odot O_1$ 为 $\triangle ABC$ 的外接圆.若 $\odot O_1$ 的面积为 4π , $AB=BC=AC=OO_1$,则球 O 的表面积为(

- Α. 64π
- Β. 48π
- C. 36π
- D. 32π

(3)在三棱锥 P - ABC 中, $PA = PB = PC = 2\sqrt{6}$, AC = AB = 4,且 $AC \perp AB$,则该三棱锥外接球的表面积为 ____.

(4)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为(

- A. $\frac{81\pi}{4}$
- Β. 16π
- С. 9π
- D. $\frac{27\pi}{4}$

(5)如图所示,在正四棱锥 P-ABCD 中,底面 ABCD 是边长为 4 的正方形,E,F 分别是 AB,CD 的中点, $\cos \angle PEF = \frac{\sqrt{2}}{2}$,若 A,B,C,D,P 在同一球面上,则此球的体积为______.

(6)在三棱锥 P-ABC 中, $PA=PB=PC=\sqrt{2}$, AB=AC=1 , $BC=\sqrt{3}$,则该三棱锥外接球的体积为

()

A. $\frac{4\pi}{}$

B. $\frac{8\sqrt{2}}{\pi}$

C. $4\sqrt{3}\pi$

D. $\frac{32}{\pi}$

【对点训练】

1. 已知圆锥的顶点为P,母线PA与底面所成的角为 30° ,底面圆心O到PA的距离为1,则该圆锥外接球的表面积为_____.

- 2. 在三棱锥 P-ABC 中, $PA=PB=PC=\sqrt{3}$,侧棱 PA 与底面 ABC 所成的角为 60° ,则该三棱锥外接球的体积为() A. π B. $\frac{\pi}{3}$ C. 4π D. $\frac{4\pi}{3}$
- 3. 在三棱锥 P-ABC 中, $PA=PB=PC=\sqrt{6}$, AC=AB=2 ,且 $AC\perp AB$,则该三棱锥外接球的表面积为()
 - A. 4π B. 8π C. 16π D. 9π

- 4. 已知体积为 $\sqrt{3}$ 的正三棱锥 P-ABC 的外接球的球心为 O ,若满足 $\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\vec{0}$,则此三棱锥外接球的半径是 ()
 - A. 2
- B. $\sqrt{2}$
- C. $\sqrt[3]{2}$
- D. $\sqrt[3]{4}$

- 5. 已知正四棱锥 P-ABCD 的各顶点都在同一球面上,底面正方形的边长为 $\sqrt{2}$,若该正四棱锥的体积为 2,则此球的体积为()
 - A. $\frac{124\pi}{3}$
- B. $\frac{625\pi}{81}$
- C. $\frac{500\pi}{81}$
- D. $\frac{256\pi}{9}$

,

2

- 6. 已知圆锥的顶点为S,母线SA,SB 互相垂直,SA与圆锥底面所成角为 30° ,若 ΔSAB 的面积为8,则该圆锥外接球的表面积是_____.
- 7. 已知圆台 O_1O_2 上底面圆 O_1 的半径为 O_2 ,下底面圆 O_2 的半径为 O_2 ,圆台的外接球的球心为 O_2 ,且球心在圆台的轴 O_1O_2 上,满足 O_1O_2 =3 O_2 1,则圆台 O_1O_2 的外接球的表面积为______.
- 8. 在六棱锥 P-ABCDEF 中,底面是边长为 $\sqrt{2}$ 的正六边形,PA=2 且与底面垂直,则该六棱锥外接球的体积等于______.

9. 在三棱锥 P - ABC 中, PA = PB = PC = 2 , $AB = \sqrt{2}$, $BC = \sqrt{10}$, $\angle APC = \frac{\pi}{2}$, 则三棱锥 P - ABC 的 外接球的表面积为______.

10. 在三棱锥 P-ABC 中, $PA=PB=PC=9\sqrt{2}$, AB=8 , AC=6 . 顶点 P 在平面 ABC 内的射影为 H , 若 $\overrightarrow{AH}=\lambda \overrightarrow{AB}+\mu \overrightarrow{AC}$ 且 $\mu+2\lambda=1$,则三棱锥 P-ABC 的外接球的体积为______.

第7讲 鳄鱼模型

【方法总结】

鳄鱼模型即普通三棱锥模型,用找球心法可以解决. 如果已知其中两个面的二面角,则可用秒杀公式: $R^2 = \frac{m^2 + n^2 - 2 \ mn \cos \alpha}{\sin^2 \alpha} + \frac{l^2}{4} (其中 \ l = |AB|)解决.$

【例题选讲】

[例] (1)在三棱锥 A-BCD 中, ΔABD 和 ΔCBD 均为边长为 2 的等边三角形,且二面角 A-BD-C 的 平面角为 60° ,则三棱锥的外接球的表面积为 .

C. 8π

D. 9π

若 S, A, B, C 都在同一球面上,则该球的表面积是()

Β. 6π

A. 4π

(4)已知三棱锥 P-ABC中, $AB\perp BC$, $AB=2\sqrt{2}$, $BC=\sqrt{3}$, $PA=PB=3\sqrt{2}$, 且二面角 P-AB-C的大小为 150° ,则三棱锥P-ABC外接球的表面积为(

A. 100π

B. 108π C. 110π

D. 111π

(5)在三棱锥 P-ABC 中, $AB \perp BC$,三角形 PAC 为等边三角形,二面角 P-AC-B 的余弦值为 $-\frac{\sqrt{6}}{3}$, 当三棱锥 P-ABC 的体积最大值为 $\frac{1}{3}$ 时,三棱锥 P-ABC 的外接球的表面积为_____.

(6)在体积为 $\frac{2\sqrt{3}}{3}$ 的四棱锥 P-ABCD 中,底面 ABCD 为边长为 2 的正方形, ΔPAB 为等边三角形,二面角 P-AB-C 为锐角,则四棱锥 P-ABCD 外接球的半径为()

- A. $\frac{\sqrt{21}}{}$
- B. $\sqrt{2}$
- C. $\sqrt{3}$
- D. $\frac{3}{-}$

【对点训练】

- 1. 在三棱锥 S-ABC中,SB=SC=AB=BC=AC=2,二面角 S-BC-A的大小为 60° ,则三棱锥 S-ABC C 外接球的表面积是 ()
 - A. $\frac{14\pi}{3}$
- B. $\frac{16\pi}{3}$
- C. $\frac{40\pi}{9}$
- D. $\frac{52\pi}{9}$

2. 已知三棱锥 A-BCD, BC=6,且 ΔABC 、 ΔBCD 均为等边三角形,二面角 A-BC-D 的平面角为 60° ,则三棱锥外接球的表面积是

3. 已知边长为 6 的菱形 ABCD 中, $\angle BAD$ = 120° , 沿对角线 AC 折成二面角 B-AC-D 的大小为 θ 的四面

体且 $\cos \theta = \frac{1}{3}$,则四面体 ABCD 的外接球的表面积为_____.

4. 在三棱锥 P-ABC 中,顶点 P 在底面 ABC 的投影 G 是 ΔABC 的外心, PB=BC=2 ,且面 PBC 与底面 ABC 所成的二面角的大小为 60° ,则三棱锥 P-ABC 的外接球的表面积为______.

- 5. 直角三角形 ABC, $\angle ABC = \frac{\pi}{2}$, AC + BC = 2 ,将 $\triangle ABC$ 绕 AB 边旋转至 $\triangle ABC'$ 位置,若二面角 C AB -C' 的大小为 $\frac{2\pi}{3}$,则四面体 C' ABC 的外接球的表面积的最小值为 ()
 - Α. 6π
- B. 3π
- C. $\frac{3}{2}\pi$
- D. 2π

6. 已知空间四边形 ABCD 中, AB=BD=AD=2 , BC=1 , $CD=\sqrt{3}$, 若二面角 A-BD-C 的取值范围 为 $[\frac{\pi}{4}\,,\,\,\frac{2\pi}{3}]$,则该几何体的外接球表面积的取值范围为_____.

7. 在三棱锥 S-ABC 中,底面 ΔABC 是边长为 3 的等边三角形, $SA=\sqrt{3}$, $SB=2\sqrt{3}$,二面角 S-AB-C 的大小为 60° ,则此三棱锥的外接球的表面积为

- 8. 在四面体 ABCD 中, BC = CD = BD = AB = 2 , $\angle ABC = 90^{\circ}$, 二面角 A BC D 的平面角为150° , 则 四面体 ABCD 外接球的表面积为(
 - A. $\frac{31}{3}\pi$
- B. $\frac{124}{3}\pi$ C. 31π
- D. 124π

- 9. 在三棱锥 A-BCD 中, $AB=BC=CD=DA=\sqrt{7}$, $BD=2\sqrt{3}$, 二面角 A-BD-C 是钝角.若三棱锥 A-BCD 的体积为 2. 则三棱锥 A-BCD 的外接球的表面积是()
 - A. 12π
- B. $\frac{37}{3}\pi$
- C. 13π
- D. $\frac{53}{4}\pi$

10.	在平面五边形 $ABCDE$ 中, $\angle A = 60^\circ$, $AB = AE = 6\sqrt{3}$, $BC \perp CD$, $DE \perp CD$, 且 $BC = DE = 6$. 将
	五边形 $ABCDE$ 沿对角线 BE 折起,使平面 ABE 与平面 $BCDE$ 所成的二面角为120°,则沿对角线 BE
	折起后所得几何体的外接球的表面积是
	第8讲 已知球心或球半径模型
	【例题选讲】
面。	[例] (1)(2017·全国 I)已知三棱锥 $S-ABC$ 的所有顶点都在球 O 的球面上, SC 是球 O 的直径. 若平 SCA 上平面 SCB , $SA=AC$, $SB=BC$,三棱锥 $S-ABC$ 的体积为 9,则球 O 的表面积为
щ	MENTER MENTER SEE DE LE TRANSPORTE DE LINE DE
BC≡	(2)已知三棱锥 $A-BCD$ 的所有顶点都在球 O 的球面上, AB 为球 O 的直径,若该三棱锥的体积为 $\sqrt{3}$,=3, $BD=\sqrt{3}$, $\angle CBD=90^\circ$,则球 O 的体积为

(3)(2012 全国 I)已知三棱锥 S-ABC 的所有顶点者	都在球 O 的球面上,	$\triangle ABC$ 是边长为 1 的正三角形,
SC 为球 O 的直径,且 $SC=2$,则此棱锥的体积为()	

- A. $\frac{\sqrt{2}}{6}$
- B. $\frac{\sqrt{3}}{6}$
- C. $\frac{\sqrt{2}}{3}$
- D. $\frac{\sqrt{2}}{2}$

(4)(2020·新高考全国I)已知直四棱柱 $ABCD-A_1B_1C_1D_1$ 的棱长均为 2, $\angle BAD=60^\circ$. 以 D_1 为球心, $\sqrt{5}$ 为半径的球面与侧面 BCC_1B_1 的交线长为_____.

(5)三棱锥 S-ABC 的底面各棱长均为 3,其外接球半径为 2,则三棱锥 S-ABC 的体积最大时,点 S 第 39页

到平面 ABC 的距离为(

- A. $2+\sqrt{3}$
- B. $2-\sqrt{3}$
- C. 3
- D. 2

【对点训练】

- 1. 已知三棱锥 P-ABC 的所有顶点都在球 O 的球面上, $\triangle ABC$ 满足 $AB=2\sqrt{2}$, $\angle ACB=90^\circ$,PA 为球 O 的直径且 PA=4,则点 P 到底面 ABC 的距离为()
 - A. $\sqrt{2}$
- B. $2\sqrt{2}$
- C. $\sqrt{3}$
- D. $2\sqrt{3}$

- 2. 已知矩形 ABCD 的顶点都在球心为 O,半径为 R 的球面上,AB=6, $BC=2\sqrt{3}$,且四棱锥 O-ABCD 的体积为 $8\sqrt{3}$,则 R 等于()
 - A. 4
- B. $2\sqrt{3}$
- C. $\frac{4\sqrt{7}}{9}$
- D. $\sqrt{13}$

3. 已知三棱锥 P-ABC 的四个顶点均在某球面上,PC 为该球的直径, $\triangle ABC$ 是边长为 4 的等边三角形,

三棱锥 P-ABC 的体积为 $\frac{16}{3}$,则此三棱锥的外接球的表面积为() C. $\frac{64\pi}{3}$

- A. $\frac{16\pi}{3}$
- B. $\frac{40\pi}{3}$
- D. $\frac{80\pi}{3}$

4. 已知三棱锥 A-SBC 的体积为 $\frac{2\sqrt{3}}{3}$,各项点均在以 PA 为直径球面上, $AB=AC=\sqrt{2}$, BC=2 ,则这 个球的表面积为_____.

5. (2017·全国III)已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的 体积为 .

6. (2020·全国I)已知 A, B, C 为球 O 的球面上的三个点, $\odot O_1$ 为 $\triangle ABC$ 的外接圆,若 $\odot O_1$ 的面积为 4π ,

 $AB=BC=AC=OO_1$,则球 O 的表面积为()

- Α. 64π
- Β. 48π
- C. 36π
- D. 32π

- 7. $(2020 \cdot 全国II)$ 已知 $\triangle ABC$ 是面积为 $\frac{9\sqrt{3}}{4}$ 的等边三角形,且其顶点都在球O的球面上.若球O的表面积为 16π ,则O到平面ABC的距离为()
 - A. $\sqrt{3}$
- B. $\frac{3}{2}$
- C. 1
- D. $\frac{\sqrt{3}}{2}$

8. 如图,半径为R 的球的两个内接圆锥有公共的底面,若两个圆锥的体积之和为球的体积的 $\frac{3}{8}$,则这两个圆锥高之差的绝对值为()

A. $\frac{R}{2}$

B. $\frac{2R}{3}$

C. $\frac{4R}{3}$

D. *R*.

9. 如图,已知正方体 ABCD— $A_1B_1C_1D_1$ 的棱长为 2,长为 2 的线段 MN 的一个端点 M 在棱 DD_1 上运动,点 N 在正方体的底面 ABCD 内运动,则 MN 的中点 P 的轨迹的面积是(

A. 4π

Β. π

C. 2π

D. $\frac{\pi}{2}$

10. 在三棱锥 A-BCD 中,底面为 Rt \triangle ,且 $BC \perp CD$,斜边 BD 上的高为 1,三棱锥 A-BCD 的外接球的 直径是 AB ,若该外接球的表面积为 16π ,则三棱锥 A-BCD 的体积的最大值为 .

第9讲 最值模型

【方法总结】

最值问题的解法有两种方法:一种是几何法,即在运动变化过程中得到最值,从而转化为定值问题求解.另一种是代数方法,即建立目标函数,从而求目标函数的最值.

【例题选讲】

[例] (1)已知三棱锥 P-ABC 的顶点 P, A, B, C 在球 O 的球面上, $\triangle ABC$ 是边长为 $\sqrt{3}$ 的等边三角形,O 36 π , $\triangle P$ ABC 距

(2)在四面体 ABCD 中,AB=1, $BC=CD=\sqrt{3}$, $AC=\sqrt{2}$,当四面体 ABCD 的体积最大时,其外接球的表面积为()

- Α. 2π
- B. 3π
- C. 6π
- D. 8π

(3)已知四棱锥 S-ABCD 的所有顶点在同一球面上,底面 ABCD 是正方形且球心 O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于 $16+16\sqrt{3}$,则球 O 的体积等于()

- A. $\frac{4\sqrt{2}\pi}{3}$
- B. $\frac{16\sqrt{2}\pi}{3}$
- C. $\frac{32\sqrt{2}\pi}{3}$
- D. $\frac{64\sqrt{2}\pi}{3}$

(4)三棱锥 A-BCD 内接于半径为 $\sqrt{5}$ 的球 O 中,AB=CD=4,则三棱锥 A-BCD 的体积的最大值为 ()

Δ	4
11.	3

B.
$$\frac{8}{3}$$

C.
$$\frac{16}{3}$$

$$\frac{1}{2}$$
 D. $\frac{32}{3}$

(5)已知正四棱柱的顶点在同一个球面上,且球的表面积为 12π, 当正四棱柱的体积最大时,正四棱柱的高为_____.

【对点训练】

- 1. 三棱锥 P-ABC 的四个项点都在体积为 $\frac{500\pi}{3}$ 的球的表面上,底面 ABC 所在的小圆面积为 16π ,则该三棱锥的高的最大值为()
 - A. 4
- B. 6
- C. 8
- D. 10

- 2. (2015·全国 II)已知 A,B 是球 O 的球面上两点, $\angle AOB = 90^\circ$,C 为该球面上的动点.若三棱锥 O-ABC 体积的最大值为 36,则球 O 的表面积为()
 - Α. 36π
- Β. 64π
- C. 144π
- D. 256π

- 3. 已知点 A, B, C, D 均在球 O 上, $AB=BC=\sqrt{6}$, $AC=2\sqrt{3}$. 若三棱锥 D-ABC 体积的最大值为 3,则球 O 的表面积为
- 4. 在三棱锥 A-BCD 中,AB=1, $BC=\sqrt{2}$, $CD=AC=\sqrt{3}$,当三棱锥 A-BCD 的体积最大时,其外接球的表面积为_____.

- 5. 已知三棱锥 D-ABC 的所有顶点都在球 O 的球面上,AB=BC=2, $AC=2\sqrt{2}$,若三棱锥 D-ABC 体积的最大值为 2,则球 O 的表面积为()
 - Α. 8π
- Β. 9π
- C. $\frac{25\pi}{3}$
- D. $\frac{121\pi}{9}$

6. 三棱锥 A-BCD 的一条棱长为 a,其余棱长均为 2,当三棱锥 A-BCD 的体积最大时,它的外接球的

表面积为(

A. $\frac{21\pi}{4}$

B. $\frac{20\pi}{3}$

C. $\frac{5\pi}{4}$

D. $\frac{5\pi}{3}$

7. 已知三棱锥 O-ABC 的顶点 A, B, C 都在半径为 2 的球面上, O 是球心, $\angle AOB=120^\circ$,当 $\triangle AOC$ 与 $\triangle BOC$ 的面积之和最大时,三棱锥 O-ABC 的体积为()

A. $\frac{\sqrt{3}}{2}$

B. $\frac{2\sqrt{3}}{3}$

C. $\frac{2}{3}$

D. $\frac{1}{3}$

8. (2018·全国III)设 A, B, C, D 是同一个半径为 4 的球的球面上四点, $\triangle ABC$ 为等边三角形且其面积为 $9\sqrt{3}$,则三棱锥 D-ABC 体积的最大值为()

A. $12\sqrt{3}$

B. $18\sqrt{3}$

C. $24\sqrt{3}$

D. $54\sqrt{3}$

9. 已知球的直径 SC=4,A,B 是该球球面上的两点, $\angle ASC=\angle BSC=30^\circ$,则棱锥 S-ABC 的体积最大第 47页

为(

- A. 2
- B. $\frac{8}{3}$
- C. $\sqrt{3}$
- D. $2\sqrt{3}$

10. 四棱锥 P-ABCD 的底面为矩形,矩形的四个顶点 A, B, C, D 在球 O 的同一个大圆上,且球的表面

积为 16π , 点 P 在球面上,则四棱锥 P-ABCD 体积的最大值为(

- A. 8
- B. $\frac{8}{3}$
- C. 16
- D. $\frac{16}{3}$

11. (2016·全国III)在封闭的直三棱柱 $ABC-A_1B_1C_1$ 内有一个体积为 V的球. 若 $AB\perp BC$, AB=6, BC=8,

 $AA_1=3$,则 V 的最大值是()

- Α. 4π
- B. $\frac{9\pi}{2}$
- C. 6π
- D. $\frac{32\pi}{3}$

12. 已知半径为 1 的球 0 中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为

13. 如图,在矩形 ABCD中,已知 AB=2AD=2a, E 是 AB 的中点,将 $\triangle ADE$ 沿直线 DE 翻折成 $\triangle A_1DE$,

连接 A_1C . 若当三棱锥 A_1-CDE 的体积取得最大值时,三棱锥 A_1-CDE 外接球的体积为 $\frac{8\sqrt{2}\pi}{3}$,则 a=(

A. 2

B. $\sqrt{2}$

C. $2\sqrt{2}$

D. 4

14. 已知三棱锥 S-ABC 的顶点都在球 O 的球面上,且该三棱锥的体积为 $2\sqrt{3}$,SA 上平面 ABC,SA = 4, $\angle ABC$ = 120°,则球 O 的体积的最小值为

第 10 讲 内切球模型

【方法总结】

以三棱锥 P-ABC 为例,求其内切球的半径.

方法: 等体积法,三棱锥 P-ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;

第一步: 先求出四个表面的面积和整个锥体体积;

第二步: 设内切球的半径为r, 球心为O, 建立等式: $V_{P-ABC} = V_{O-ABC} + V_{O-PAB} + V_{O-PAC} + V_{O-PBC} \Rightarrow V_{P-ABC}$

$$_{ABC} = \frac{1}{3} S_{\triangle ABC} \cdot r + \frac{1}{3} S_{\triangle PAB} \cdot r + \frac{1}{3} S_{\triangle PAC} \cdot r + \frac{1}{3} S_{\triangle PBC} \cdot r = \frac{1}{3} (S_{\triangle ABC} + S_{\triangle PAB} + S_{\triangle PAC} + S_{\triangle PBC}) \cdot r;$$

第三步:解出
$$r = \frac{3V_{P-ABC}}{S_{O-ABC} + S_{O-PAB} + S_{O-PAC} + S_{O-PBC}} = \frac{3V}{S_*}$$
.

秒杀公式(万能公式):
$$r=\frac{3V}{S_*}$$

【例题选讲】

[例] (1)已知一个三棱锥的所有棱长均为 $\sqrt{2}$,则该三棱锥的内切球的体积为_____.

(2)(2020·全国III)已知圆锥的底面半径为1, 母线长为3, 则该圆锥内半径最大的球的体积为

(3)阿基米德(公元前 287 年~公元前 212 年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是"圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二".他特别喜欢这个结论.要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边.若表面积为 54π的圆柱的底面直径与高都等于球的直径,则该球的体积为()

Α. 4π

Β. 16π

C. 36π

D. $\frac{64\pi}{3}$

(4)已知三棱锥 P-ABC 的三条侧棱 PA,PB,PC 两两互相垂直,且 PA=PB=PC=2,则三棱锥 P-ABC 的外接球与内切球的半径比为_____.

(5)正四面体的外接球和内切球上各有一个动点 P 、 Q , 若线段 PQ 长度的最大值为 $\frac{4}{3}\sqrt{6}$,则这个四面体的棱长为_____.

【对点训练】

- 2. 已知一个平放的各棱长为 4 的三棱锥内有一个小球 O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的 $\frac{7}{8}$ 时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于(___)
 - A. $\frac{7\pi}{6}$
- B. $\frac{4\pi}{3}$
- C. $\frac{2\pi}{3}$
- D. $\frac{\pi}{2}$

- 3. 已知四棱锥 P-ABCD 的底面 ABCD 是边长为 6 的正方形,且 PA=PB=PC=PD,若一个半径为 1 的球与此四棱锥所有面都相切,则该四棱锥的高是()
 - A. 6
- B. 5
- C. $\frac{9}{2}$
- D. $\frac{9}{4}$

- 4. 将半径为 3,圆心角为 $\frac{2\pi}{3}$ 的扇形围成一个圆锥,则该圆锥的内切球的表面积为()
 - Α. π
- Β. 2π
- C. 3π
- D. 4π

- 5. 体积为 $\frac{4\pi}{3}$ 的球与正三棱柱的所有面均相切,则该棱柱的体积为______.
- 6. 在四棱锥 P-ABCD 中,四边形 ABCD 是边长为 2a 的正方形,PD 上底面 ABCD,且 PD=2a,若在这个四棱锥内放一个球,则该球半径的最大值为______.

7. 一个棱长为6的正四面体内部有一个任意旋转的正方体,当正方体的棱长取得最大值时,正方体的外接球的表面积是()

A. 4π

B. 6π

C. 12π

D. 24π

8. 在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马. 若四棱锥 M-ABCD 为阳马,侧棱 $MA\perp$ 底面 ABCD ,且 MA=BC=AB=2 ,则该阳马的外接球与内切球表面积之和为

9. 在三棱锥 S-ABC 中, AB=6 , BC=8 , AC=10 ,二面角 S-AB-C 、 S-AC-B 、 S-BC-A 的大小均为 $\frac{\pi}{4}$,设三棱锥 S-ABC 的外接球球心为 O ,直线 SO 交平面 ABC 于点 M ,则三棱锥 S-ABC 的内切球半径为______.

10. 已知直三棱柱 $ABC - AB_1C_1$ 中, AC = BC = 2 , $AC \perp BC$, 设二面角 $C - AB - C_1$ 的平面角为 θ ,且 $\tan\theta = \sqrt{2} \text{ ,现在该三棱柱的内部空间放一个小球 } O_1 \text{ ,设小球 } O_1 \text{ 的表面积为 } S_1 \text{ ,三棱柱的外接球 } O_2 \text{ 的 表面积为 } S_2 \text{ ,则 } \frac{S_1}{S} \text{ 的最大值为 } \underline{\hspace{1cm}}$