Machine Learning Regression Assignment

POLIMI Graduate School of Management

Predicting Popularity of eCommerce Reviews

Objective:

Predict number of shares on product comments with the end goal of managing potential negative feedback.

Variables of interest based on: Context

From our understanding of the variables:

- The number of days elapsed from publication might impact the number of shares.
- Including images and videos may attract more attention from viewers.
- The relatable topics might push people to draw parallels with their lives.
- Subjective and sentiment-driven titles might enhance empathy among readers.

#	Variable	Description
1	age_days	Days between the article publication and dataset acquisition
9	num_imgs	Number of images
10	num_videos	Number of videos
13	product_category	Category of the product: business, cleaning,, other
25	day	Publication day: mon sun
26	topic_quality	Percentage of the content speaking about quality
27	topic_shipping	Percentage of the content speaking about shipping
28	topic_packaging	Percentage of the content speaking about packaging
29	topic_description	Percentage of the content speaking about the description
30	topic_others	Percentage of the content speaking about other topics
31	global_subjectivity	Content text subjectivity (0-Objective 1-Subjective)
32	global_sentiment_polarity	Text sentiment polarity (-1-Negative 1-Positive)
43	title_subjectivity	Title subjectivity
44	title_sentiment_polarity	Title polarity

Deep dive into days elapsed

Typically, there is a correlation between the days since publishing and the number of shares.

In this case, that correlation is not present.

Therefore, we will focus on the **outliers** in the data, which might be **viral comments**, and investigating the underlying reasons for this phenomenon.

How to craft a viral comment?

From all the numerical variables, there's no obvious pattern for viral comments, as they are highly connected with the content of the comments.

RANDOM FOREST MODEL | gs_99_2

By filtering out viral comments (1% of comments), we found the patterns that popular comments follow.

What makes comments popular?

Some variables impact shares more than others.

- Days after publication
- Percentage of the content about shipping
- Percentage of the content about quality
- Number of links
- Number of images

Project Limitations

- Excluding two categorical columns, all the variables are numerical variables.
- The data lacks detailed context knowledge regarding the variables, which may impact the depth of the analysis.
- It's unclear whether the data has undergone pre-processing that could affect the model.

Can we know for sure how many shares a comment will gain?

Predictive model gs_99_2

While the model provides some predictions of how many shares a comment will receive, there is space for improvement.

Areas to further investigate:

- data imbalance
- user behaviour

"Popularity" what is it?

+1400 shares

This is the median of the shares gained by comments in the past 2 years

Popular comments VS Day of the Week

- Users are less active on the weekend
- Comments posted on the weekend are more likely to gain popularity
- Most comments are posted week days

Popular comments VS Product categories

- Travel and entratainment comments are less likely to become popular
- Tech, sport and other comments are likely to become popular
- Category representation is uneven

Note: this is based on the assumption that all these services started to be offered at the same time.

Travel comments have lower avg. sentiment polarity,
 which means that they have more negative words

 Entertainment comments have higher possibility to have subjective titles

The **subjectivity and sentiment polarity** in each category are similar.

As we mentioned before, viral comments are highly influenced by the content of the comments.

do we need to know the **exact**numbers of shares a comment
will gain?

Not really.

Objective: [...] managing potential negative feedback.

To do this, it is enough to create a model able to predict if a comment will become infamous or not instead of the exact numbers of shares.

Thank you!