- 9 July 09
 - 1. Let $\alpha = \sum f_i dx_i$ be a closed C^{∞} 1-form on \mathbb{R}^n . Define a function g on \mathbb{R}^n by setting $g(\mathbf{x})$ equal to

$$\int_0^{x_1} f_1(t, x_2, x_3, \dots, x_n) dt + \int_0^{x_2} f_2(0, t, x_3, \dots, x_n) dt$$
$$+ \int_0^{x_3} f_3(0, 0, t, x_4, \dots, x_n) dt + \dots + \int_0^{x_n} f_n(0, \dots, 0, t) dt.$$

Show that $dg = \alpha$.

HINT: Don't forget to use $d\alpha = 0$, use the fundamental theorem of calculus, use differentiation under the integral sign, and the chain rule.