

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/62, 15/31, 15/54, 1/21, A61K
38/45

(11) International Publication Number:

WO 95/04151

A2 (43) International Publication Date:

9 February 1995 (09.02.95)

(21) International Application Number:

PCT/GB94/01647

(22) International Filing Date:

29 July 1994 (29.07.94)

(30) Priority Data:

(34) Countries for which the regional or international application was filed:

GB et al.

9401787.8 31 January 1994 (31.01.94)

(71) Applicant (for all designated States except US): MEDEVA HOLDINGS B.V. [NL/NL]; Churchill-Lean 223, NL-1078 ED Amsterdam (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KHAN, Mohammed, Anjam [GB/GB]; Cambridge University Dept. of Pathology, Tennis Court Road, Cambridge CB2 1QP (GB). HORMAECHE, Carlos, Estenio [GB/GB]; Cambridge University Dept. of Pathology, Tennis Court Road, Cambridge CB2 1QP (GB). CHATFIELD, Steven, Neville [GB/GB]; Medeva Vaccine Research Unit, Dept. of Biochemistry, Imperial College of Science and Tochnology, London SW7 2AY (GB). DOUGAN, Gordon [GB/GB]; Medeva Vaccine Research Unit, Dept. of Biochemistry, Imperial College of Science and Technology, London SW7 2AY (GB).

(74) Agents: HUTCHINS, Michael, Richard et al.; Fry Heath & Spence, St. Georges House, 6 Yattendon Road, Horley, Surrey RH6 7BS (GB).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, IP, KE, KG, KP, KR, KZ, LK, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FS, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: VACCINE COMPOSITIONS

(57) Abstract

The invention provides a DNA construct comprising a DNA sequence encoding a fusion protein of the formula: TetC-(Z)_s-Het, wherein: TetC is the C fragment of tetanus toxin, or a protein comprising the epitopes thereof; Het is a heterologous protein, Z is an amino acid, and a is zero or a positive integer, provided that (Z)_a does not include the sequence Gly-Pro. The invention also provides replicable expression vectors containing the constructs, bacteria transformed with the constructs, the fusion proteins per as and vaccine compositions formed from the fusion proteins or attenuated bacteria expressing the fusion proteins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΔT	Austria	GB	United Kingdom .	MIR	Margitania
ΑŪ	Australia	GR	Georgia	. MW	Malawi
BB	Barbados	GN	Outnes	NB	Niger
BB	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Pano	AU	Hungary	NO	Norwey
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
· BJ	Bento	п	Italy	PL	Poland
BR	Brazil	.PP	Japan	PT	Portugal
BY	Belave	KCB	Konya	RO	Romenia
CA	Canada	KG	Kyrgystae	120	Russian Pederation
Œ	Central African Republic	EP	Democratic People's Republic	SID.	Status
œ	Congo		of Korea	SE	Sweden
Œ	Sytteerland	ER	Republic of Korea	SI	Slovenia
ā	Côte d'Ivetre	KZ .	Kazathstan	SK	Slovakia
CM	Сепитоск	ш	Liechtenstein	SN	Scnogal
CN	China	LK	Sri Lenka	110	Ched
œ	Crechostovakia	LO	Lorenbourg	` TG	Togo
Œ	Creek Republic	LV	Letvia	TJ	Telikhsten
DB	Germany	MC	Monaco	17	Trinkled and Tobero
DE	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Speta	MG	Madagusour	US	United States of America
n	Finance	MIL	Mell	υz	Uzbekistan
FR	Practice ·	MN	Mongolia	VN	Viet Nam
7 45	NAMES .	TATA.	our Grown	414	A 20'0 G 420'TR

VACCINE COMPOSITIONS

This invention relates to DNA constructs, replicable expression vectors containing the constructs, bacteria containing the constructs and vaccines containing the bacteria or fusion proteins expressed therefrom. More particularly, the invention relates to novel DNA constructs encoding the C-fragment of tetanus toxin, and to fusion proteins containing tetanus toxin C-fragment.

It is known to prepare DNA constructs encoding two or more heterologous proteins with a view to expressing the proteins in a suitable host as a single fusion protein. However, it has often been found that fusing two proteins together in this way leads to an incorrectly folded chimaeric protein which no longer retains the properties of the individual components. For example, the B-subunits of the Vibrio cholerae (CT-B) and E. coli (LT-B) enterotoxins are powerful mucosal immunogens but genetic fusions to these subunits can alter the structure and properties of the carriers and hence their immunogenicity (see M. Sandkvist et al. J. Bacteriol. 169, pp4570-6, 1987, Clements et al. 1990 and M. Lipscombe et al. Mol. Microbiol. 5, pp 1385, 1990). Moreover, many heterologous proteins expressed in bacteria are not produced in soluble

properly folded or active forms and tend to accumulate as insoluble aggregates (see C. Schein et al. Bio/Technology 6, pp 291-4, 1988 and R. Halenbeck et al. Bio/Technology 7, pp 710-5, 1989.

In our earlier unpublished international patent application PCT/GB93/01617, it is disclosed that by providing a DNA sequence encoding tetanus toxin C-fragment (TetC) linked via a "hinge region" to a second sequence encoding an antigen, the expression of the sequence in bacterial cells is enhanced relative to constructs wherein the C-fragment is absent. For example, the expression level of the full length P28 glutathione S-tranferase protein of S. mansoni when expressed as a fusion to TetC from the <u>nirB</u> promoter was greater than when the P28 protein was expressed alone from the nirB promoter. The TetC fusion to the full length P28 protein of S. mansoni was soluble and expressed in both E. coli and S. typhimurium. In addition, the TetC-P28 fusion protein was capable of being affinity purified by a glutathione agarose matrix, suggesting that the P28 had folded correctly to adopt a conformation still capable of binding to its natural substrate. It was previously considered that a hinge region, which typically is a sequence encoding a high proportion of proline and/or glycine amino acids, is essential for promoting the independent folding of both the TetC and the antigenic protein fused thereto. However, it has now been discovered, surprisingly in view of the previous studies on CT-B and LT-B referred to above, that

when the hinge region is omitted between the TetC and a second antigen such as P28, the proteins making up the fusion do exhibit correct folding as evidenced by affinity purification on a glutathione agarose matrix.

Accordingly, in a first aspect, the invention provides a DNA construct comprising a DNA sequence encoding a fusion protein of the formula $TetC-(Z)_a$ -Het, wherein TetC is the C fragment of tetanus toxin, or a protein comprising the epitopes thereof; Het is a heterologous protein; Z is an amino acid, and <u>a</u> is zero or a positive integer, provided that $(Z)_a$ does not include the sequence Gly-Pro.

Typically (Z)₂ is a chain of 0 to 15 amino acids, for example 0 to 10, preferably less than 6 and more preferably less than 4 amino acids.

In one embodiment $(Z)_3$ is a chain of two or three amino acids, the DNA sequence for which defines a restriction endonuclease cleavage site.

In another embodiment, a is zero.

Usually the group (Z)₂ will not contain, simultaneously, both glycine and proline, and generally will not contain either glycine or proline at all.

In a further embodiment, $(Z)_a$ is a chain of amino acids provided that when \underline{a} is 6 or more, $(Z)_a$ does not contain glycine or proline.

The group (Z)₈ may be a chain of amino acids substantially devoid of biological activity.

In a second aspect the invention provides a replicable expression vector, for example suitable for use in

4

bacteria, containing a DNA construct as hereinbefore defined.

In another aspect, the invention provides a host (e.g. a bacterium) containing a DNA construct as hereinbefore defined, the DNA construct being present in the host either in the form of a replicable expression vector such as a plasmid, or being present as part of the host chromosome, or both.

In a further aspect, the invention provides a fusion protein of the form TetC-(Z)_{a} -Het as hereinbefore defined, preferably in substantially pure form, said fusion protein being expressible by a replicable expression vector as hereinbefore defined.

In a further aspect the invention provides a process for the preparation of a bacterium (preferably an attenuated bacterium) which process comprises transforming a bacterium (e.g. an attenuated bacterium) with a DNA construct as hereinbefore defined.

The invention also provides a vaccine composition comprising an attenuated bacterium, or a fusion protein, as hereinbefore defined, and a pharmaceutically acceptable carrier.

The heterologous protein "Het" may for example be a heterologous antigenic sequence, e.g. an antigenic sequence derived from a virus, bacterium, fungus, yeast or parasite.

Examples of viral antigenic sequences are sequences derived from a type of human immunodeficiency virus (HIV) such as HIV-1 or HIV-2, the CD4 receptor binding site from

HIV, for example from HIV-1 or -2., hepatitis A, B or C virus, human rhinovirus such as type 2 or type 14, Herpes simplex virus, poliovirus type 2 or 3, foot-and-mouth disease virus (FMDV), rabies virus, rotavirus, influenza virus, coxsackie virus, human papilloma virus (HPV), for example the type 16 papilloma virus, the E7 protein thereof, and fragments containing the E7 protein or .its epitopes; and simian immunodeficiency virus (SIV).

Examples of antigens derived from bacteria are those derived from Bordetella pertussis (e.g. P69 protein and haemagglutinin (FHA) antigens), Vibrio filamentous cholerae, Bacillus anthracis, and E.coli antigens such as E.coli heat Labile toxin B subunit (LT-B), E.coli K88 antigens, and enterotoxigenic E.coli antigens. Other examples of antigens include the cell surface antigen CD4, Schistosoma mansoni P28 glutathione S-transferase antigens (P28 antigens) and antigens of flukes, mycoplasma, roundworms, tapeworms, Chlamydia trachomatis, and malaria parasites, eg. parasites of the genus plasmodium or babesia, for example Plasmodium falciparum, and peptides encoding immunogenic epitopes from the aforementioned antigens.

Particular antigens include the full length Schistosoma mansoni P28, and oligomers (e.g. 2, 4 and 8-mers) of the immunogenic P28 as 115-131 peptide (which contains both a B and T cell epitope), and human papilloma virus E7 protein, Herpes simplex antigens, foot and mouth disease virus antigens and simian immunodeficiency virus

antigens.

The DNA constructs of the present invention may contain a promoter whose activity is induced in response to a change in the surrounding environment. An example of such a promoter sequence is one which has activity which is induced by anaerobic conditions. A particular example of such a promoter sequence is the nirB promoter which has been described, for example in International Patent Application PCT/GB92/00387. The nirB promoter has been isolated from E.coli, where it directs expression of an operon which includes the nitrite reductase gene nirB (Jayaraman et al, J. Mol. Biol. 196, 781-788, 1987), and nirD, nirC, cysG (Peakman et al, Eur. J. Biochem. 191, 315323, 1990). It is regulated both by nitrite and by changes in the oxygen tension of the environment, becoming active when deprived of oxygen, (Cole, Biochem, Biophys. Acta. 162, 356-368, 1968). Response to anaerobiosis is mediated through the protein FNR, transcriptional activator, in a mechanism common to many anaerobic respiratory genes. By deletion and mutational analysis the part of the promoter which responds solely to anaerobiosis has been isolated and by comparison with other anaerobically regulated promoters a consensus FNR-binding site has been identified (Bell et al, Nucl, Acids. Res. 17, 3865-3874, 1989; Jayaraman et al, Nucl, Acids, Res. 17, 135-145, 1989). It has also been shown that the distance between the putative FNR-binding site and the -10 homology region is critical (Bell et al, Molec. Microbiol.4, 17531763, 1990). It is therefore preferred to use only that part of the <u>nirB</u> promoter which responds solely to anaerobiosis. As used herein, references to the <u>nirB</u> promoter refer to the promoter itself or a part or derivative thereof which is capable of promoting expression of a coding sequence under anaerobic conditions. The preferred sequence, and which contains the <u>nirB</u> promoter is:

AATTCAGGTAAATTTGATGTACATCAAATGGTACCCCTTGCTGAATCGTTAAGG TAGGCGGTAGGGCC (SEQ ID NO: 1)

In a most preferred aspect, the present invention provides a DNA molecule comprising the <u>nirB</u> promoter operably linked to a DNA sequence encoding a fusion protein as hereinbefore defined.

In another preferred aspect of the invention, there is provided a replicable expression vector, suitable for use in bacteria, containing the <u>nirB</u> promoter sequence operably linked to a DNA sequence encoding a fusion protein as hereinbefore defined.

The DNA molecule or construct may be integrated into the bacterial chromosome, e.g. by methods known <u>per se</u>, and thus in a further aspect, the invention provides a bacterium having in its chromosome, a DNA sequence or construct as hereinbefore defined.

Stable expression of the fusion protein can be obtained in vivo. The fusion protein can be expressed in an attenuated bacterium which can thus be used as a vaccine.

The attenuated bacterium may be selected from the Vibrio, Haemophilus, genera Salmonella, Bordetella, Neisseria and Yersinia. Alternatively, the attenuated bacterium may be an attenuated strain of enterotoxigenic Escherichia coli. In particular the following species can be mentioned: S.typhi - the cause of human typhoid; <u>S.typhimurium</u> - the cause of salmonellosis in several animal species; S.enteritidis - a cause of food poisoning in humans; S.choleraesuis - a cause of salmonellosis in pigs; Bordetella pertussis - the cause of whooping cough; Haemophilus influenzae - a cause of meningitis; Neisseria gonorrhoea the cause of gonorrhoea; and Yersinia - a cause of food poisoning.

Examples of attenuated bacteria are disclosed in, for example EP-A-0322237 and EP-A-0400958, the disclosures in which are incorporated by reference herein.

An attenuated bacterium containing a DNA construct according to the invention, either present in the bacterial chromosome, or in plasmid form, or both, can be used as a vaccine. Fusion proteins (preferably in substantially pure form) expressed by the bacteria can also be used in the preparation of vaccines. For example, a purified TetC-P28 fusion protein in which the TetC protein is linked via its C-terminus to the P28 protein with no intervening hinge region has been found to be immunogenic on its own. In a further aspect therefore, the invention provides a vaccine composition comprising a pharmaceutically acceptable carrier or diluent and, as active ingredient, an attenuated

bacterium or fusion protein as hereinbefore defined.

The vaccine may comprise one or more suitable adjuvants.

is advantageously presented vaccine lyophilised form, for example in a capsular form, for oral administration to a patient. Such capsules may be provided . with an enteric coating comprising, for example, Eudragit "S", Eudragit "L", Cellulose acetate, Cellulose acetate phthalate or Hydroxypropylmethyl Cellulose. capsules may be used as such, or alternatively, the lyophilised material may be reconstituted prior to administration, e.g. as a suspension. Reconstitution is advantageously effected in buffer at a suitable pH to ensure the viability of the organisms. In order to protect the attenuated bacteria and the vaccine from gastric acidity, a sodium bicarbonate preparation is advantageously administered before each administration of the vaccine. Alternatively, the vaccine may be prepared for parenteral administration, intranasal administration or intramammary administration.

The attenuated bacterium containing the DNA construct or fusion protein of the invention may be used in the prophylactic treatment of a host, particularly a human host but also possibly an animal host. An infection caused by a microorganism, especially a pathogen, may therefore be prevented by administering an effective dose of an attenuated bacterium according to the invention. The bacterium then expresses the fusion protein which is

capable of raising antibody to the micro-organism. The dosage employed will be dependent on various factors including the size and weight of the host, the type of vaccine formulated and the nature of the fusion protein.

An attenuated bacterium according to the present invention may be prepared by transforming an attenuated bacterium with a DNA construct as hereinbefore defined. Any suitable transformation technique may be employed, such as electroporation. In this way, an attenuated bacterium capable of expressing a protein or proteins heterologous to the bacterium may be obtained. A culture of the attenuated bacterium may be grown under aerobic conditions. A sufficient amount of the bacterium is thus prepared for formulation as a vaccine, with minimal expression of the fusion protein occurring.

The DNA construct may be a replicable expression vector comprising the <u>nirB</u> promoter operably linked to a DNA sequence encoding the fusion protein. The <u>nirB</u> promoter may be inserted in an expression vector, which already incorporates a gene encoding one of the heterologous proteins (e.g. the tetanus toxin C fragment), in place of the existing promoter controlling expression of the protein. The gene encoding the other heterologous protein (e.g. an antigenic sequence) may then be inserted. The expression vector should, of course, be compatible with the attenuated bacterium into which the vector is to be inserted.

The expression vector is provided with appropriate

transcriptional and translational control elements including, besides the <u>nirB</u> promoter, a transcriptional termination site and translational start and stop codons. An appropriate ribosome binding site is provided. The vector typically comprises an origin of replication and, if desired, a selectable marker gene such as an antibiotic resistance gene. The vector may be a plasmid.

The invention will now be illustrated but not limited, by reference to the following examples and the accompanying drawings, in which:

Figure 1 is a schematic illustration of the construction of plasmid pTECH1;

Figure 2 illustrates schematically the preparation of the plasmid pTECH1-28 from the starting materials pTECH1 and PUC19-P28:

Figure 3 illustrates schematically the preparation of the plasmid pTECH3-P28 from the starting materials plasmids pTECH1-P28 and pTETnir15;

Figures 4 and 5 are western blots obtained from bacterial cells harbouring the pTECH3-P28 construct; and

Figure 6 illustrates the glutathione affinity purification of TetC fusions as determined by SDS-PAGE and Coomassie Blue Staining.

In accordance with the invention a vector was constructed to allow genetic fusions to the C-terminus of the highly immunogenic C fragment of tetanus toxin, without the use of a heterologous hinge domain. A fusion was constructed, with the gene encoding the protective 28kDa

glutathione S-transferase from Schistosoma mansoni. The recombinant vector was transformed into Salmonella typhimurium (SL338; rm[†]). The resulting chimeric protein was stably expressed in a soluble form in salmonella as assessed by western blotting with fragment C and glutathione S-transferase antisera. Furthermore it was found that the P28 component of the fusion retains the capacity to bind glutathione.

The construction of the vector and the properties of the fusion protein expressed therefrom are described in more detail below.

EXAMPLE 1

Preparation of pTECH1

The preparation of pTECH1, a plasmid incorporating the nirB promoter and TetC gene, and a DNA sequence encoding a hinge region and containing restriction endonuclease sites to allow insertion of a gene coding for a second or guest protein, is illustrated in Figure 1. Expression plasmid pTETnir15, the starting material shown in Figure 1, was constructed from pTETtacl15 (Makoff et al, Nucl. Acids Res. 17 10191-10202, 1989); by replacing the EcoRI-Apal region (1354bp) containing the lacI gene and tacI gene and tacI promoter with the following pair of oligos 1 and 2:

Oligo-1 5'AATTCAGGTAAATTTGATGTACATCAAATGGTACCCCTTGCTGAAT CGTTAAGGTAGGCGGTAGGGCC-3' (SEQ ID NO: 2)

Oligo-2 3'-GTCCATTTAAACTACATGTAGTTTACCATGGGGAACGACTTA
GCAATTCCATCCGCCATC-5' (SEQ ID NO: 3)

The oligonucleotides were synthesised on a Pharmacia Gene Assembler and the resulting plasmids confirmed by sequencing (Makoff *et al*, Bio/Technology <u>7</u>, 1043-1046, 1989).

The pTETnir15 plasmid was then used for construction of the pTECH1 plasmid incorporating a polylinker region suitable as a site for insertion of heterologous DNA to direct the expression of fragment C fusion proteins. pTETnirl5 is a known pAT153-based plasmid which directs the expression of fragment C. However, there are no naturally occurring convenient restriction sites present at the 3'-end of the TetC gene. Therefore, target sites, preceded by a hinge region, were introduced at the 3'-end of the TetC coding region by means of primers SEQ ID NO: 4 and SEQ ID NO: 5 tailored with "add-on" adapter sequences (Table 1), using the polymerase chain reaction (PCR) [K. Mullis et al, Cold Spring Harbor Sym. Quant. Biol. <u>51</u>, 263-273 1986]. Accordingly, pTETnir15 was used as a template in a PCR reaction using primers corresponding to regions covering the SacII and BamHI sites. The anti-sense primer in this amplification was tailored with a 38 base 5'-adaptor sequence. The anti-sense primer was designed so that a sequence encoding novel XbaI, SpeI and BamHI sites were incorporated into the PCR product. In addition, DNA sequences encoding additional extra amino acids including proline were incorporated (the hinge regions) and a translation stop codon signal in frame with the fragment C open reading frame.

The PCR product was gel-purified and digested with SacII and BamHI, and cloned into the residual 2.8 kb vector pTETnirl5 which had previously been digested by SacII and BamHI. The resulting plasmid purified from transformed colonies and named pTECH 1 is shown in Figure 1. Heterologous sequences such as the sequence encoding the Schistosoma mansoni P28 glutathione S-transferase (P28) were cloned into the XbaI SpeI and BamHI sites in accordance with known methods.

The DNA sequence of the plasmid pTECH1 is shown in the sequence listing as SEQ ID NO: 6.

TABLE 1

DNA SEQUENCES OF OLIGONUCLEOTIDES UTILISED IN THE CONSTRUCTION OF THE TETC-HINGE VECTORS

A). Primer 1. Sense PCR (21mer). (SEQ ID NO: 4)

SacII

- 5'AAA GAC TCC GCG GGC GAA GTT -3'
 TETANUS TOXIN C FRAGMENT SEQ.
- B).Primer 2. Anti-Sense PCR Primer (64mer). (SEQ ID NO: 5)

 BanHI STOP Spel Mbal 2552

EXAMPLE 2

Construction of pTECH1-P28

A P28 gene expression cassette was produced by PCR

using pUC19-P28 DNA (a kind gift from Dr R Pierce, Pasteur Institute, Lille) as template. Oligonucleotide primers were designed to amplify the full length P28 gene beginning with the start codon and terminating with the stop codon. In addition, the sense and antisense primers were tailored with the restriction sites for <u>XbaI</u> and <u>BamHI</u> respectively. The primers are shown in the sequence listing as SEQ ID NO: 7 and SEQ ID NO: 8.

The product was gel-purified and digested with <u>XbaI</u> and <u>BamHI</u> and then cloned into pTECH1 which had previously been digested with these enzymes and subsequently gel-purified. The DNA sequence of pTECH1 - P28 is shown in sequence listing as SEQ ID NO: 9.

Expression of the TetC-Hinge-P28 fusion protein

Several bacterial strains, namely <u>S. typhimirium</u> strains SL 5338 (A. Brown <u>et al</u>, J.Infect.Dis. <u>155</u>, 86-92, 1987) and SL3261 and <u>E. coli</u> (TG2) were transformed with pTECH1-P28 by means of electroporation. SL3261 strains harbouring the pTECH1-P28 plasmid have been deposited at the National Collection of Type Cultures, 61 Colindale Avenue, London, NW9 SHT, UK under the accession number NCTC 12833. A strain of SL3261 containing the pTECH1 plasmid has been deposited under accession number NCTC 12831. The identity of recombinants was verified by restriction mapping of the plasmid DNA harboured by the cells. Further expression of the TetC-P28 fusion protein was then evaluated by SDS-PAGE and western blotting of bacterial cells harbouring the construct. It was found that the

fusion protein remains soluble, cross-reacts with antisera to both TetC and P28, and is also of the expected molecular weight, 80kDal, for a full length fusion.

The fusion protein was stably expressed in E.coli (TG2) and S. typhimurium (SL5338,SL3261) as judged by SDS-PAGE and western blotting. Of interest was a band of 50kDal which co-migrates with the TetC-Hinge protein alone and cross-reacts exclusively with the anti-TetC sera is visible in a western blot. As the codon selection in the hinge region has been designed to be suboptimal, the rare codons may cause pauses during translation which may occasionally lead to the premature termination of translation, thus accounting for this band.

Affinity purification of the TetC-P28 fusion

Glutathione is the natural substrate for P28, a glutathione S-transferase. The amino acid residues involved in binding glutathione are thought to be spatially separated in the primary structure of the polypeptide and brought together to form a glutathione binding pocket in the tertiary structure (P. Reinemer et al. EMBO, J8, 1997-2005, 1991). In order to gauge whether the P28 component of the fusion has folded correctly to adopt a conformation capable of binding glutathione, its ability to be affinity purified on a glutathione-agarose matrix was tested. The results obtained (not shown) demonstrated that TetC-P28 can indeed bind to the matrix and the binding is reversible, as the fusion can be competitively eluted with free glutathione.

17

EXAMPLE 3

Construction of pTECH3-P28

The plasmid pTECH1-P28 directs the expression of the S. mansoni P28 protein as a C-terminal fusion to fragment C from tetanus toxin separated by a heterologous hinge Expression of the fusion protein is under the control of the <u>nirB</u> promoter. The vector pTECH3-P28 was in part constructed from the plasmid pTETnir15 by the polymerase chain reaction (PCR) using the high fidelity thermostable DNA polymerase from Pyrococcus fusorius, which possesses an associated 3'5' exonuclease proofreading activity. The sequence of steps is summarised in Figure 5. In order to generate a TetC-hingeless replacement cassette, the segment of DNA from the unique SacII site within the TetC gene to the final codon was amplified by means of the PCR reaction, using pTETnir15 as template DNA. The primers used in the PCR amplification are shown in the sequence listing as SEQ ID NO: 10 and SEQ ID NO: 11. The antisense primer in this amplification reaction was tailored with an XbaI recognition sequence.

The amplification reaction was performed according to the manufacturer's instructions (Stratagene, La Jolla, CA, USA). The product was gel-purified, digested with <u>SacII</u> and <u>XbaI</u>, and then cloned into the residual pTECH1-P28 vector which had been previously digested with the respective enzymes <u>SacII</u> and <u>XbaI</u>. The resulting vector was designated pTECH3-P28. The DNA sequence of pTECH3-P28 is shown in the sequence listing as SEQ ID NO: 12.

EXAMPLE 4

Transformation of S. typhimurium SL5338 (galE r'm') with pTECH3-P28, and Analysis of the Transformants

S. typhimurium SL5338 (galE rm¹) were cultured in either L or YT broth and on L-agar with ampicillin (50 g/ml) if appropriate and were transformed with the pTECH3-P28 plasmid. The transformation protocol was based on the method described by MacLachlan and Sanderson. (MacLachlan PR and Sanderson KE, 1985. Transformation of Salmonella typhimurium with plasmid DNA: differences between rough and smooth strains. J. Bacteriology 161, 442-445).

A 1ml overnight culture of S. typhimurium SL5338 (r'm'; Brown A, Hormaeche CE, Demarco de Hormaeche R, Dougan G, Winther M, Maskell D, and Stocker BAD, 1987. Infect.Dis. 155, 86-92) was used to inoculate 100 ml of LB broth and shaken at 37°C until the culture reached OD656 = 0.2. The cells were harvested at 3000 x g and resuspended in 0.5 volumes if ice-cold 0.1M MgCl₁. The cells were pelleted again and resuspended in 0.5 volumes of ice-cold CaCl₂. This step was repeated once more and the cells resuspended in 1 ml of 0.1M CaCl, to which was added 50 µl of TES (50 mM Tris, 10 mM EDTA, 50 mM NaCl, pH 8.0). The cells were incubated on ice for 45 to 90 minutes. To 150ul of cells was added 100ng of plasmid DNA in 1 - 2ul. The mixture was incubated on ice for 30 minutes prior to heatshock at 42°C for 2 minutes, and immediate reincubation on ice for 1 minute. To the transformed mixture was added 2 ml of LB broth and incubated for 1.5 hours to allow expression of the ampicillin drug resistance gene, B-lactamase. Following incubation 20 μ l and 200 μ l of cells were spread on to LB agar plates containing 50 μ g/ml of ampicillin. The plates were dried and incubated at 37°C overnight.

The identity of recombinants was verified by restriction mapping of the plasmid DNA and by western blotting with antisera directed against TetC and P28.

SDS-PAGE and Western Blotting

Expression of the TetC fusions was tested by SDS-PAGE and western blotting. S. typhimurium SL5338 (galE r'm') bacterial cells containing the pTECH3-P28 plasmid and growing in mid-log phase, with antibiotic selection, were harvested by centrifugation and the proteins fractionated by 10% SDS-PAGE. The proteins were transferred to a nitrocellulose membrane by electroblotting and reacted with either a polyclonal rabbit antiserum directed against TetC or the full length P28 protein. The blots were then probed with goat anti-rabbit Ig conjugated to horse-radish peroxidase (Dako, High Wycombe, Bucks, UK) and developed with 4-chloro-1-napthol). The results of the western blotting experiments are shown in Figures 4 and 5; Figure 4 illustrating the results of probing with rabbit anti-TetC~ polyclonal antiserum and Figure 5 illustrates the results of probing with rabbit anti-P28 polyclonal antiserum. each case lanes 1, 2 and 3 are independent clones of SL5338 (pTECH3-P28), lanes 4, 5 and 6 are SL5338 (pTECH1-P28) and.

lane 7 is SL5338 (pTETnirl5). The molecular weight markers are indicated. From the results, it is evident that the fusion protein remains soluble, reacts with antisera to both TetC and P28, and is also of the expected molecular weight, 80 kDal, for a full length fusion (Figure 4). Furthermore the fusion protein appears to be stably expressed.

Glutathione-Agarose Affinity Purification

Glutathione is the natural substrate for P28, a glutathione S-transferase. The amino acid residues involved in binding glutathione are thought to be spatially separated in the primary structure of the polypeptide and brought together to form a glutathione binding pocket in the tertiary structure. In order to gauge whether the P28 component of the fusion has folded correctly to adopt a conformation capable of binding glutathione, we tested its ability to be affinity purified on a glutathione agarose matrix.

Bacterial cells containing pTECH3-P28 and expressing the TetC full length P28 gene fusion were grown to log phase, chilled on ice, and harvested by centrifugation at 2500 x g for 15 min at 4C. The cells were resuspended in 1/15th the original volume of ice-cold phosphate buffered saline (PBS) and lysed by sonication in a MSE Soniprep 150 (Gallenkamp, Leicester, UK). The insoluble material was removed by centrifugation and to the supernatant was added 1/6 volume of a 50% slurry of pre-swollen glutathioneagarose beads (Sigma, Poole, Dorset, UK). After mixing

gently at room temperature for 1 hour the beads were collected by centrifugation at 1000 x g for 10 secs. The supernatant was discarded and the beads resuspended in 20 volumes of cold PBS-0.5% Triton X100 and the beads collected again by centrifugation. The washing step was repeated three more times. The fusion protein was eluted by adding 1 volume of SDS-PAGE sample buffer. comparison purposes, a similar procedure was followed with bacterial cells containing the PTECH1-P28 plasmid from which TetC-hinge-P28 fusion protein is expressed. Extracts from clones containing either plasmid were compared using SDS-PAGE and the results are shown in Figure 6. In Figure 6, lanes 1, 2 and 3 are clones of SL5338 (pTECH1-P28) whereas lanes 4, 5 and 6 are independent clones of SL 5338 (pTECH3-P28).

The results suggest that the TetC-P28 fusion protein can indeed bind to the matrix and the binding is reversible regardless of the absence of a heterologous hinge domain (data not shown) It is possible that a peptide sequence present at the C-terminus of TetC may in fact impart flexibility to this particular region.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: MEDEVA HOLDINGS BV
 - (B) STREET: CHURCHILL-LAAN 223
 - (C) CITY: AMSTERDAM.

 - (E) COUNTRY: THE NETHERLANDS (F) POSTAL CODE (ZIP): 1078 ED
 - (ii) TITLE OF INVENTION: VACCINES
 - (iii) NUMBER OF SEQUENCES: 20
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
 - (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/GB93/01617
 - (B) FILING DATE: 30-JUL-1993
 - (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: GB 9401787.8
 - (B) FILING DATE: 31-JAN-1994
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 68 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Escherichia coli
 - (ix) FEATURE:
 - (A) NAME/KEY: promoter
 - (B) LOCATION: 1..61

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
AATTCAGGTA AATTTGATGT ACATCAAATG GTACCCCTTG CTGAATCGTT AAGGTAGGCG	60
GTAGGGCC	68
(2) INFORMATION FOR SEQ ID NO: 2:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 68 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
AATTCAGGTA AATTTGATGT ACATCAAATG GTACGCCTTG CTGAATCGTT AAGGTAGGCG	60
GTAGGGCC	68
(2) INFORMATION FOR SEQ ID NO: 3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	·
(iii) ANTI-SENSE: YES	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
GTCCATTTAA ACTACATGTA GTTTACCATG GGGAACGACT TAGCAATTGC ATCCGCCATC	60
(2) INFORMATION FOR SEQ ID NO: 4:	
(i) SEQUENCE CHARACTERISTICS:	

(iii) HYPOTHETICAL: NO

(A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
(zi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
AAAGACTCCG CGGGCGAAGT T	21
(2) INFORMATION FOR SEQ ID NO: 5:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTRETICAL: NO	
(iii) ANTI-SENSE: YES	
(zi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
CTATGGATCC TTAACTAGTG ATTCTAGAGG GCCCCGGCCC GTCGTTGGTC CAACCTTCAT	·60
CGGT	64
•	
(2) INFORMATION FOR SEQ ID NO: 6:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3754 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular	
(ii) MOLECULE TYPE: DNA (genomic)	

(iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

TTCAGGTAAA TTTGATGTAC ATCAAATGGT ACCCCTTGCT GAATCGTTAA GGTAGGGG	GT 60
AGGGCCCAGA TCTTAATCAT CCACAGGAGA CTTTCTGATG AAAAACCTTG ATTGTTGGG	ST 120
CGACAACGAA GAAGACATCG ATGTTATCCT GAAAAAGTCT ACCATTCTGA ACTTGGACA	AT 180
CAACAACGAT ATTATCTECG ACATCTCTGG TTTCAACTCC TCTGTTATCA CATATCCAG	GA 240
TGCTCAATTG GTGCCGGGCA TCAACGGCAA AGCTATCCAC CTGGTTAACA ACGAATCTT	rc - 300
TGAAGTTATC GTGCACAAGG CCATGGACAT CGAATACAAC GACATGTTCA ACAACTTCA	¥C 360
CGTTAGCTTC TGGCTGCGCG TTCCGAAAGT TTCTGCTTCC CACCTGGAAC AGTACGGCA	C 420
TAACGAGTAC TCCATCATCA GCTCTATGAA GAAACACTCC CTGTCCATGG GCTCTGGTT	rG 480
GTCTGTTTCC CTGAAGGGTA ACAACCTGAT CTGGACTCTG AAAGACTCCG CGGGCGAAG	ST 540
TEGTCAGATE ACTITECGEG ACCTGCCGGA CAAGTTCAAC GCGTAGCTGG CTAACAAAT	rg 600
GGTTTTCATC ACTATCACTA ACGATGGTCT GTCTTCTGCT AAGCTGTACA TCAAGGGGG	T 660
TCTGATGGGC TCCGCTGAAA TCACTGGTCT GGGCGCTATC CGTGAGGACA ACAACATCA	KC 720
TCTTAAGCTG GACCGTTGCA ACAACAACAA CCAGTACGTA TCCATCGACA AGTTCCGTA	780
CTTCTGCAAA GCACTGAACC CGAAAGAGAT CGAAAAACTG TATACCAGCT ACCTGTCTA	T 840
CACCTTCCTG CGTGACTTCT GGGGTAACCC GCTGCGTTAC GACACCGAAT ATTACCTGA	T 900
CCCGGTAGCT TCTAGCTCTA AAGACGTTCA GCTGAAAAAC ATCACTGACT ACATGTAGC	T 960
GACCAACGCG CCGTCCTACA CTAACGGTAA ACTGAACATC TACTACCGAC GTCTGTACA	A 1020
CGGCCTGAAA TTCATCATCA AACGCTACAC TCCGARCAAC GAAATGGATT CTTTCGTTA	A 1080
ATCTGGTGAC TTCATCAAAC TGTACGTTTC TTACAACAAC AACGAACACA TGGTTGGTT	A 2140
CCCGAAAGAC GGTAACGCTT TCAACAACCT GGACAGAATT CTGCGTGTTG GTTACAACG	C 1200
TCCGGGTATC CCGCTGTACA AAAAAATGGA AGCTGTTAAA CTGCGTGACC TGAAAACCT	A 1260
CTCTGTTCAG CTGAAACTGT ACGACGACAA AAACGCTTCT CTGGGTCTGG TTGGTACGC	A 1320
CAACGGTCAG ATCGGTAACG ACCCGAACGG TGACATCCTG ATCGCTTCTA ACTGGTACT	T 1380
CAACCACCTG AAAGACAAAA TCCTGGGTTG CGACTGGTAC TTCGTTCCGA CCGATGAAG	G 1440

WO 95/04151 PCT/GB94/01647

1	TGGACCAAC	GACGGGCCGG	GGCCCTCTAG	AATCACTAGT	TAAGGATCCG	CTAGCCCGCC	1500
7	AATGAGCGG	GCTTTTTTT	CTCGGGCAGC	GTTGGGTCCT	GGCCACGGGT	GCGCATGATC	1560
G	TGCTCCTGT	CGTTGAGGAC	CCGGCTAGGC	TGGCGGGGTT	GCCTTACTGG	TTAGCAGAAT	1620
G	AATCACCGA	TACGCGAGCG	AACGTGAAGC	GACTGCTGCT	GCAAAACGTC	TGCGACCTGA	1680
G	CAACAACAT	GAATGGTCTT	CGGTTTCCGT	GTTTEGTAAA	GTCTGGAAAC	GCGGAAGTCA	1740
G	CGCTCTTCC	GCTTCCTCGC	TCACTGACTC	GCTGCGCTCG	GTCGTTCGGC	TGCGGCGAGC	1800
G	GTATCAGCT	CACTCAAAGG	CGGTAATACG	GTTATCCACA	GAATCAGGGG	ATAACGCAGG	1860
A	AAGAACATG	TGAGCAAAAG	GCCAGCAAAA	GGCCAGGAAC	CGTAAAAAGG	CCGCGTTGCT	1920
G	GCGTTTTTC	CATAGGCTCC	GCCCCCTGA	CGAGCATCAC	AAAAATCGAC	GCTCAAGTCA	1980
G	AGGTGGCGA	AACCCGACAG	GACTATAAAG	ATACCAGGCG	TTTCCCCCTG	GAAGCTCCCT	2040
С	GTGCGCTCT	CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC	CTGTGGGCCT	TTCTCCCTTC	2100
G	GGAAGCGTG	GCGCTTTCTC	AATGCTCACG	CTGTAGGTAT	CTCAGTTCGG	TGTAGGTCGT	2160
T	CGCTCCAAG	CTGGGCTGTG	TGCACGAACC	CCCCGTTCAG	CCCGACCGCT	GCGCCTTATC	-2220
C	GGTAACTAT	CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	TTATCGCCAC	TGGCAGCAGC	2280
C	actggtaac	AGGATTAGCA	GAGCGAGGTA	TGTAGGCGGT	GCTACAGAGT	TCTTGAAGTG	2340
G	TGGCCTAAC	TACGGCTACA	CTAGAAGGAC	AGTATTTGGT	ATCTGGGCTC	TGCTGAAGCC	2400
A	GTTACCTTC	GGAAAAAGAG	TTGGTAGCTC	TTGATCCGGC	AAACAAACCA	CCCCTGGTAG	2460
C	GGTGGTTTT	TTTGTTTGCA	AGCAGCAGAT	TAGGCGCAGA	AAAAAAGGAT	CTCAAGAAGA	2520
T	CCTTTGATC	TTTTCTACGG	GGTCTGACGC	TCAGTGGAAC	GAAAACTCAC	GTTAAGGGAT	2580
T	PTGGTCATG	AGATTATCAA	AAAGGATCTT	CACCTAGATC	CTTTTAAATT	AAAAATGAAG	2640
T'	rttaaatca	ATCTAAAGTA	TATATGAGTA	AACTTGGTCT	GACAGTTACC	AATGCTTAAT	2700
Ci	AGTGAGGCA	CCTATCTCAG	CGATCTGTCT	ATTTCGTTCA	TCCATAGTTG	CCTGACTCCC	2760
C	STCGTGTAG	ATAACTACGA	TACGGGAGGG	CTTACCATCT	GGCCCCAGTG	CTGCAATGAT	2820
A	CCCCGAGAC	CCACGCTCAC	CGGCTCCAGA	TTTATCAGCA	ATAAACCAGC	CAGCEGGAAG	2880
GO	CCGAGCGC	AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	ATCCAGTCTA	TTAATTGTTG	2940
CC	CGGGAAGCT	AGAGTAAGTA	GTTCGCCAGT	TAATAGTTTG	CGCAACGTTG	TTGCCATTGC	3000
TC	CAGGCATC	GTGGTGTCAC	GCTCGTCGTT	TGGTATGGCT	TCATTCAGCT	CCGGTTCCCA	3060

3120

ACGATCAAGG CGAGTTACAT GATCCCCCAT GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG

TCCTCCGATC GTTGTCAGAA GTAAGTTGGC CGCAGTGTTA TCACTCATGG TTATGGCAGC	3180
ACTGCATAAT TCTCTTACTG TCATGCCATC CGTAAGATGC TTTTCTGTGA CTGGTGAGTA	3240
CTCAACCAAG TCATTCTGAG AATAGTGTAT GCGGCGACCG AGTTGCTCTT GCCCGGCGTC	3300
AACACGGGAT AATACCGCGC CACATAGCAG AACTTTAAAA GTGCTCATCA TTGGAAAACG	3360
TTCTTCGGGG CGAAAACTCT CAAGGATCTT ACCGCTGTTG AGATCCAGTT CGATGTAACC	3420
CACTOGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTTC ACCAGCGTTT CTGGGTGAGC	3480
AAAAACAGGA AGGCAAAATG CCGCAAAAAA GGGAATAAGG GCGACACGGA AATGTTGAAT	3540
ACTCATACTC TICCTITTC AATATTATTG AAGCATTTAT CAGGGTTATT GTCTCATGAG	3600
CGGATACATA TTTGAATGTA TTTAGAAAAA TAAACAAATA GGGGTTCGGC GCACATTTCC	3660
CCGAAAAGTG CCACCTGACG TCTAAGAAAC CATTATTATC ATGACATTAA CCTATAAAAA	3720
TAGGCGTATC ACGAGGCCCT TTCGTCTTCA AGAA	3754
(2) INFORMATION FOR SEQ ID NO: 7:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	•
(iii) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
AGTCTAGAA TGGCTGGCGA GCATATCAAG	30
2) INFORMATION FOR SEQ ID NO: 8:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: DNA (genomic)

540

600

660

720

(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: YES	
·.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	٠.
TTAGGATCCT TAGAAGGGAG TTGCAGGCCT	3
(2) INFORMATION FOR SEQ ID NO: 9:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4378 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	•
	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
TTCAGGTAAA TTTGATGTAC ATCAAATGGT ACCCCTTGCT GAATCGTTAA GGTAGGCGGT	6
TET C GENE START CODON AGGGCCCAGA TCTTAATCAT CCACAGGAGA CTTTCTGATG AAAAACCTTG ATTGTTGGGT	120
CGACAACGAA GAAGACATCG ATGTTATCCT GAAAAAGTCT ACCATTCTGA ACTTGGACAT	180
CAACAACGAT ATTATCTCCG ACATCTCTGG TTTCAACTCC TCTGTTATCA CATATCCAGA	240
FGCTCAATTG GTGCCGGGCA TCAACGGCAA AGCTATCCAC CTGGTTAACA ACGAATCTTC	300
GAAGTTATC GTGCACAAGG CCATGGACAT CGAATACAAC GACATGTTCA ACAACTTCAC	360
COTTAGETTE TEGETECES TTEEGAAAGT TTETECTTEE CACCTEGAAC AGTACEGCAC	420
AACGAGTAC TCCATCATCA GCTCTATGAA GAAACACTCC CTGTCCATCG GCTCTGGTTG	480

GTCTGTTTCC CTGAAGGGTA ACAACCTGAT CTGGACTCTG AAAGACTCCG CGGGCGAAGT

TCGTCAGATC ACTTTCCGCG ACCTGCCGGA CAAGTTCAAC GCGTACCTGG CTAACAAATG

GGTTTTCATC ACTATCACTA ACGATCGTCT GTCTTCTGCT AACCTGTACA TCAACGGCGT

TCTGATGGC TCCGCTGAAA TCACTGGTCT GGGCGCTATC CGTGAGGACA ACAACATCAC

TCTTAAGCTG GACCGTTGCA ACAACAACAA CCAGTACGTA TCCATCGACA AGTTCCGTAT	780
CTTCTGCAAA GCACTGAACC CGAAAGAGT CGAAAAACTG TATACCAGCT ACCTGTCTAT	. 840
CACCTTCCTG CGTGACTTCT GGGGTAACCC GCTGCGTTAC GACACCGAAT ATTACCTGAT	900
CCCGGTAGCT TCTAGCTCTA AAGACGTTCA GCTGAAAAAC ATCACTGACT ACATGTACCT	960
GACCAACGCG CCGTCCTACA CTAACGGTAA ACTGAACATC TACTACCGAC GTCTGTACAA	1020
CGGCCTGAAA TTCATCATCA AACGCTACAC TCCGAACAAC GAAATCGATT CTTTCGTTAA	1080
ATCTGGTGAC TTCATCAAAC TGTACGTTTC TTACAACAAC AACGAACACA TCGTTGGTTA	1140
CCCGAAAGAC GGTAACGCTT TCAACAACCT GGACAGAATT CTGCGTGTTG GTTACAACGC	1200
TCCGGGTATC CCGCTGTACA AAAAAATGGA AGCTGTTAAA CTGCGTGACC TGAAAAGCTA	1260
CTCTGTTCAG CTGAAACTGT ACGACGACAA AAACGCTTCT CTGGGTCTGG TTGGTACCCA	1320
CAACGGTCAG ATCGGTAACG ACCCGAACCG TGACATCCTG ATCGCTTCTA ACTGGTACTT	1380
CAACCACCTG AAAGACAAAA TCCTGGGTTG CGACTGGTAC TTCGTTCCGA CCGATGAAGG	1440
HINGE DOMAIN Xbal S.Mansoni P28 GENE START TTGGACCAAC GACGGCCGG GGCCCTCTAG AATGGCTGGC GAGCATATCA AGGTTATCTA	1500
TTTTGACGGA CGCGGACGTG CTGAATCGAT TCGGATGACT CTTGTGGCAG CTGGTGTAGA	1560
CTACGAAGAT GAGAGAATTA GTTTCCAAGA TTGGCCAAAA ATCAAACCAA CTATTGCAGA	1620
CGGACGATTG CCTGCAGTGA AAGTCACTGA TGATCATGGG CACGTGAAAT GGATGTTAGA	1680
GAGTTTGGCT ATTGCACGGT ATATGGCGAA GAAACATCAT ATGATGGGTG AAACAGACGA	1740
GGAATACTAT AGTGTTGAAA AGTTGATTGG TCATGCTGAA GATGTAGAAC ATGAATATCA	1800
CAAAACTTTG ATGAAGCCAC AAGAAGAGAA AGAGAAGATA ACCAAAGAGA TATTGAACGG	1860
CAÁAGITÉCA GITCITETCA AIATGATETG EGAATETETG AAAGGGTEGA CAGGAAAGET	1920
GGCTGTTGGG GACAAAGTAA CTCTAGCTGA TTTAGTCCTG ATTGCTGTCA TTGATCATGT	1980
GACTGATCTG GATAAAGGAT TTCTAACTGG CAAGTATCCT GAGATCCATA AACATCGAGA	2040
AAATCTGTTA GCCAGTTCAC CGCGTTTGGC GAAATATTTA TCGARCAGGC CTGCAACTCC	2100
STOP BAMHI TTCTAAGGA TCCGCTAGCC CGCCTAATGA GCGGGCTTTT TTTTCTCGGG CAGCGTTGGG	2162
CCTGGCCAC GGGTGCGCAT GATCGTGCTC CTGTCGTTGA GGACCCGGCT AGGCTGGGGG	2160
GTTGCCTTA CTGGTTAGCA GAATGAATCA CCGATACGCG AGCGAACGTG AAGCGACTGC	2220
WIIGCLIA CIGGIAGCA GAATGAATCA CCGATACGCG AGCGAACGTG AAGCGACTCC	2280

TGCTGCAAAA	CGTCTGCGAC	CTGAGCAAC	A ACATGAATG	S TCTTCGGTTT	CCGTGTTTCG	234
TAAAGTCTGG	AAACGCGGAA	GTCAGCGCTC	TTCCGCTTC	TEGETCACTG	ACTCGCTGCG	240
CTCGGTCGTT	CGGCTGCGGC	GAGCGGTAT	AGCTCACTC	A AAGGCGGTAA	TACGGTTATC	246
CACAGAATCA	GGGGATAACG	CAGGAAAGA	A CATGTGAGCI	AAAGGCCAGC	AAAAGGCCAG	252
GAACCGTAAA	AAGGCCGCGT	TGCTGGCGT1	TTTCCATAGO	-CTCCGCCCCC	CTGACGAGCA	258
TCACAAAAAT	CGACGCTCAA	GTCAGAGGT	GCGAAACCC	ACAGGACTAT	AAAGATAGCA	264
GGCGTTTCCC	CCTGGAAGCT	CCCTCGTGCG	CTCTCCTGT1	CCGACCCTGC	CGCTTACCGG	270
ATACCTGTCC	GCCTTTCTCC	CTTCGGGAAG	CGTGGCGCTT	TCTCAATGCT	CACGCTGTAG	2760
GTATCTCAGT	TCGGTGTAGG	TCGTTCGCTC	CAAGCTGGGC	TGTGTGCACG	AACEGEGEGT	2826
TCAGCCCGAC	CGCTGCGCCT	TATCEGGTAA	CTATEGTCTT	GAGTCCAACC	CGGTAAGACA	2880
CGACTTATCG	CCACTGGCAG	CAGCCACTGG	TAACAGGATT	AGCAGAGCGA	GGTATGTAGG	2940
CGGTGCTACA	GAGTTCTTGA	AGTGGTGGCC	TAACTAGGGC	TACACTAGAA	GGACAGTATT	3000
r GGTATCTGC	GCTCTGCTGA	AGCCAGTTAC	CTTCGGAAAA	AGAGTTGGTA	GCTCTTGATC	3060
CGGCAAACAA	ACCACCGCTG	GTAGCGGTGG	TTTTTTTGTT	TGCAAGCAGC	AGATTACGCG	3120
CAGAAAAAA	GGATCTCAAG	AAGATCCTTT	GATCTTTTCT	ACGGGGTCTG	ACGCTCAGTG	3180
GAACGAAAAC	TCACGTTAAG	GGATTTTGGT	CATGAGATTA	TCAAAAAGGA	TCTTCACCTA	3240
GATCCTTTTA	TAAAAATTAA	GAAGTTTTAA	ATCARTCTAA	AGTATATATG	AGTAAACTTG	3300
STCTGACAGT	TACCAATGCT	TAATCAGTGA	GGCACCTATC	TCAGCGATCT	GTCTATTTCG	3360
TCATCCATA	GTTGCCTGAC	TECCCGTEGT	GTAGATAACT	ACGATACGGG	AGGGCTTACC	3420
ATCTGGCCCC	AGTGCTGCAA	TGATACCGCG	AGACCCACGC	TCACEGGCTC	CAGATTTATC	3480
IGCAATAAAC	CAGCCAGCCG	GAAGGGCCGA	GCGCAGAAGT	GGTCCTGCAA	CTTTATCCGC	3540
TCCATCCAG	TCTATTAATT	GTTGECGGGA	AGCTAGAGTA	AGTAGTTCGC	CAGTTARTAG	3600
TTGCGCAAC	GTTGTTGCCA	TTGCTGCAGG	CATCGTGGTG	TCACGCTCGT	EGTTTGGTAT	3660
GCTTCATTC	AGCTCCGGTT	CCCAACGATC	AAGGCGAGTT	ACATGATCCC ·	CCATGTTGTG	3720
AAAAAAGCG	GTTAGCTCCT	TCGGTCCTCC	GATCGTTGTC	AGAAGTAAGT	TGGCCGCAGT	3780
TTATCACTC	atggttatgg	CAGCACTGCA	TAATTCTCTT	ACTGTCATGC	CATCCGTAAG	3840
TGCTTTTCT	GTGACTGGTG	AGTACTCAAC	CAAGTCATTC	TGAGAATAGT	GTATGGGGCG	3900

ACCGAGTTGC	TCTTGGCCGG	CGTCAACACG	GGATAATACC	GCGCCACATA	GCAGAACTTT	3960
aaaägtgctc	ATCATTGGAA	AACGTTCTTC	GGGGCGAAAA	CTCTCAAGGA	TCTTRECGCT	4020
GTTGAGATCC	AGTTCGATGT	AACCCACTCG	TGCACCCAAC	TGATCTTCAG	CATCTTTTAC	4080
TTTCACCAGC	GTTTCTGGGT	GAGCAAAAAC	AGGAAGGCAA	AATGCCGCAA	AAAAGGGAAT	4140
AAGGGCGACA	CGGAAATGTT	GAATACTCAT	ACTCTTCCTT	TTTCAATATT	ATTGAAGCAT	4200
TTATCAGGGT	TATTGTCTCA	TGAGCGGATA	CATATTTGAA	TGTATTTAGA	AAAATAAACA	4260
AATAGGGGTT	CCGCGCACAT	TTCCCCGAAA	AGTGCCACCT	GACGTCTAAG	AAACCATTAT	4320
TATCATGACA	TTAACCTATA	AAAATAGGCG	TATCACGAGG	ECCTTTCGTC	TTCAAGAA	4378

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

AAAGACTCCG CGGGCGAAGT T

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: TTATCTAGAG TCGTTGGTCC AACCTTCATC

(2) INFORMATION FOR SEQ ID NO: 12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4366 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

TTCAGGTAAA TTTGATGTAC ATCAAATGGT ACCCCTTGCT GAATCGTTAA GGTAGGCGGT 60 TET C GENE START CODON AGGGCCCAGA TCTTAATCAT CCACAGGAGA CTTTCTGATG AAAAACCTTG ATTGTTGGGT 120 CGACAACGAA GAAGACATCG ATGTTATCCT GAAAAAGTCT ACCATTCTGA ACTTGGACAT 180 CAACAACGAT ATTATCTCCG ACATCTCTGG TTTCAACTCC TCTGTTATCA CATATCCAGA 240 TGCTCAATTG GTGCCGGGCA TCAACGGCAA AGCTATCCAC CTGGTTAACA ACGAATCTTC 300 TGAAGTTATC GTGCACAAGG CCATGGACAT CGAATACAAC GACATGTTCA ACAACTTCAC 360 CGTTAGCTTC TGGCTGCGCG TTCCGAAAGT TTCTGCTTCC CACCTGGAAC AGTACGGCAC 420 TAACGAGTAC TCCATCATCA GCTCTATGAA GAAACACTCC CTGTCCATCG GCTCTGGTTG 480 SacII GTCTGTTTCC CTGAAGGGTA ACAACCTGAT CTGGACTCTG AAAGACTCGG CGGGCGAAGT 540 TCGTCAGATC ACTTTCCGCG ACCTGCCGGA CAAGTTCAAC GCGTACCTGG CTAACAAATG 600 GGTTTTCATC ACTATCACTA AGGATCGTCT GTCTTCTGCT AACCTGTACA TCAACGGGGT 660 TCTGATGGGC TCCGCTGAAA TCACTGGTCT GGGCGCTATC CGTGAGGACA ACAACATCAC 720 TCTTAAGCTG GACCGTTGCA ACAACAACAA CCAGTACGTA TCCATCGACA AGTTCCGTAT 780 CTTCTGCAAA GCACTGAACC CGAAAGAGAT CGAAAAACTG TATRCCAGCT ACCTGTCTAT 840

CACCTTCCT	G CGTGACTTCT	GGGGTAACCC	GCTGCGTTAC	GACACGGAAT	ATTACCTGAT	900
CCCGGTAGC	T TCTAGCTCTA	AAGACGTTCA	GĊTGAAAAA	ATCACTGACT	ACATGTACCT	960
GACCAACGC	CCGTCCTACA	CTAACGGTAA	ACTGAACATC	TACTACCGAC	GTCTGTACAA	1020
CGGCCTGAA	A TTCATCATCA	AACGCTACAC	TCCGAACAAC	GAAATCGATT	CTTTCGTTAA	1080
ATCTGGTGAG	TTCATCAAAC	TGTACGTTTC	TTACAACAAC	AACGAACACA	TCGTTGGTTA	1140
CCCGAAAGAG	GGTAACGCTT	TCAACAACCT	GGACAGAATT	CTGCGTGTTG	GTTACAACGC	1200
TCCGGGTAT	CCGCTGTACA	AAAAAATGGA	AGCTGTTARA	CTGCGTGACC	TGAAAACCTA	1260
. CTCTGTTCA	CTGAAACTGT	ACGACGACAA	AAACGCTTCT	CTGGGTCTGG	TTGGTAGGCA	1320
CAACGGTCAG	ATCGGTAACG	ACCCGAACCG	TGACATCCTG	ATCCCTTCTA	ACTGGTACTT	1380
CAACCACCTO	AAAGACAAAA	TCCTGGGTTG	CGACTGGTAC	TTCGTTCCGA	CCGATGAAGG	1440
_	XbaI S	.Mansoni P2	0 CENE CTAD	₽ ·		•
TTGGACCAAC					TTGACGGACG	1500
CGGACGTGCT	GAATCGATTC	GGATGACTCT	TGTGGCAGCT	GGTGTAGACT	ACGAAGATGA	1560
GAGAATTAGT	TTCCAAGATT	GGCCAAAAAT	CAAACCAACT	ATTCCAGACG	GACGATTGCC	1620
TGCAGTGAAA	GTCACTGATG	ATCATGGGCA	CGTGAAATGG	ATGTTAGAGA	GTTTGGCTAT	1680
TGCACGGTAT	ATGGCGAAGA	AACATCATAT	GATGGGTGAA	ACAGAGGAGG	AATACTATAG	1740
TGTTGAAAAG	TTGATTGGTC	ATGCTGAAGA	TGTAGAACAT	GAATATCACA	AAACTTTGAT	1800
GAAGCCACAA	GAAGAGAAAG	AGAAGATAAC	CAAAGAGATA	TTGAACGGCA	AAGTTCCAGT	1860
TCTTCTCAAT	ATGATCTGCG	AATÇTCTGAA	AGGGTCGACA	GGAAAGCTGG	CTGTTGGGGA	1920
CAAAGTAACT	CTAGCTGATT	TAGTCCTGAT	TGCTGTCATT	GATCATGTGA	CTGATCTGGA	1980
TAAAGGATTT	CTAACTGGCA	AGTATCCTGA	GATCCATAAA	CATCGAGAAA	ATCTGTTAGC	2040
CA COMO A COC	CCRRRCCCCS	እ አጥ አውጥጥ አጥ ድ	CAACACCCCT	. CCA & CTO C CCM	STOP BamHI	2100
CHELICACCE	COLLIGOCON	AATATTTATC	GWWCWGGCCI	GCWICTCCT.	ICIANOCÁIC	2100
CGCTAGCCCG	CCTAATGAGC	GGGCTTTTTT	TTCTCGGGCA	GEGTTGGGTC	CTGGCCACGG	2160
GTGCGCATGA	TCGTGCTCCT	GTCGTTGAGG	ACCCGGCTAG	GCTGGGGGG	TTGCCTTACT	2220
GGTTAGCAGA	ATGAATCACC	GATACGCGAG	CGAACGTGAA	GCGACTGCTG	CTGCAAAACG	2280
TCTGCGACCT	GAGCAACAAC	ATGAATGGTC	TTCGGTTTCC	GTGTTTCGTA	AAGTCTGGAA	2340
ACGCGGAAGT	CAGCGCTCTT	CCGCTTCCTC	GCTCACTGAC	TCGCTGCGCT	CGGTCGTTCG	2400

GCTGCGGCG	A GCGGTATCAG	CTCACTCAA	GGCGGTAATA	CGGTTATCCA	CAGAATCAGG	2460
GGATAACGC	ggaaagaaca	TGTGAGCAA	A AGGCCAGCAA	AAGGCCAGGA	ACCGTAAAAA	. 2520
GGCCGCGTTG	CTGGCGTTT1	TCCATAGGCT	CCGCCCCCCT	GACGAGCATC	ACAAAAATEG	2580
ACGCTCAAGI	CAGAGGTGGC	GAAACCCGAC	AGGACTATAA	AGATACCAGG	CGTTTCCCCC	2640
TGGAAGCTC	: CTCGTGCGCT	CTCCTGTTCC	GACCCTGCCG	CTTACCGGAT	ACCTGTCCGC	2700
CTTTCTCCCT	TCGGGAAGCG	TGGGGCTTTC	: TCÅATGCTCA	CGCTGTAGGT	ATCTCAGTTC	2760
GGTGTAGGTC	: GTTCGCTCCA	AGCTGGGCTG	TGTGCACGAA	CCCCCCGTTC	AGCCCGAGCG	2820
CTGCGCCTTA	TCCGGTAACT	ATCGTCTTG2	GTCCAACCCG	GTAAGACACG	ACTTATCGCC	2880
ACTGGCAGCA	GCCACTGGTA	ACAGGATTAG	CAGAGCGAGG	TATGTAGGCG	GTGCTACAGA	2940
GTTCTTGAAG	TGGTGGCCTA	ACTACGGCTA	CACTAGAAGG	ACAGTATTTG	GTATCTGGGC	3000
TCTGCTGAAG	CCAGTTACCT	TCGGAAAAAG	AGTTGGTAGC	TCTTGATCCG	GCAAACAAAC	3060
CACCGCTGGT	AGCGGTGGTT	TTTTTGTTTG	CAAGCAGCAG	ATTACGCGCA	GAAAAAAAGG	3120
ATCTCAAGAA	GATCCTTTGA	TCTTTTCTAC	GGGGTCTGAC	GCTCAGTGGA	ACGAAAACTC	3180
ACGTTAAGGG	ATTTTGGTCA	TGAGATTATC	AAAAAGGATC	TTCACCTAGA	TCCTTTTAAA	3240
ttaaaaatga	AGTTTTAAAT	CAATCTAAAG	TATATATGAG	TAAACTTGGT	CTGACAGTTA	3300
CCAATGCTTA	ATCAGTGAGG	CACCTATCTC	AGCGATCTGT	CTATTTCGTT	CATCCATAGT	. 3360
TGCCTGACTC	CCCGTCGTGT	AGATAACTAC	GATACGGGAG	GGCTTACCAT	CTGGCCCCAG	3420
TGCTGCAATG	ATACCGCGAG	ACCCACGCTC	ACCGGCTCCA	GATTTATCAG	CAATAAACCA	3480
GCCAGCCGGA	AGGGCCGAGC	GCAGAAGTGG	TCCTGCAACT	TTATCEGCCT	CCATCCAGTC	3540
Tattaattgt	TGCCGGGAAG	CTAGAGTAAG	TAGTTCGCCA	GTTAATAGTT	TGCGCAAGGT	3600
TGTTGCCATT	GCTGCAGGCA	TCGTGGTGTC	ACGCTCGTCG	TTTGGTATGG	CTTCATTCAG	3660
CTCCGGTTCC	CAACGATCAA	GGCGAGTTAC	ATGATCCCCC	ATGTTGTGCA	AAAAAGCGGT	3720
PAGCTCCTTC	GGTCCTCCGA	TCGTTGTCAG	AAGTAAGTTG	GCCGCAGTGT	TATCACTCAT	3780
GGTTATGGCA	GCACTGCATA	ATTCTCTTAC	TGTCATGCCA	TCCGTAAGAT	CCTTTTCTCT	3840
CACTGGTGAG	TACTCAACCA	AGTCATTCTG	AGAATAGTGT	ATGCGGCGAC	CGAGTTGCTC	3900
TTGCCCGGCG	TCAACACGGG	ATAATACCGC	GCCACATAGC	AGAACTTTAA	AAGT-GCT-CAT	3960
CATTGGAAAA	CGTTCTTCGG	GGCGAAAACT	CTCAAGGATC	TTACCGCTGT	TGAGATCCAG	4020

TTCGATGTAA	CCCACTCGTG	CACCCAACTG	ATCTTCAGCA	TCTTTTACTT	TCACCAGCGT	4080
TTCTGGGTGA	GCAAAAACAG	GAAGGCAAAA	TGCCGCAAAA	AAGGGAATAA	GGGCGACACG	4140
GAAATGTTGA	ATACTCATAC	TCTTCCTTTT	TCAATATTAT	TGAAGCATTT	ATCAGGGTTA	4200
TTGTCTCATG	AGCGGATACA	TATTTGAATG	TATTTAGAAA	AATAAACAAA	TAGGGGTTCC	4260
GCGCACATTI	CCCCGAAAAG	TGCCACCTGA	CGTCTAAGAA	ACCATTATTA	TCATGACATT	4220
AACCTATAAA	AATAGGCGTA	TCACGAGGCC	CTTTCGTCTT	CAAGAA		4366

CLAIMS

- 1. A DNA construct comprising a DNA sequence encoding a fusion protein of the formula TetC-(Z)_d-Het, wherein TetC is the C fragment of tetanus toxin, or a protein comprising the epitopes thereof; Het is a heterologous protein, Z is an amino acid, and a is zero or a positive integer, provided that (Z)_d does not include the sequence Gly-Pro.
- A DNA construct according to Claim 1 wherein (Z)₁ is a chain of 0 to 15 amino acids.
- 3. A DNA construct according to Claim 2 wherein (Z)₃ is a chain of less than 4 amino acids.
- 4. A DNA construct according to Claim 3 wherein (Z)₂ is a chain of two or three amino acids, the DNA sequence for which defines a restriction endonuclease cleavage site.
- 5. A DNA construct according to Claim 2 wherein \underline{a} is zero.
- A DNA construct according to Claim 2 in which (Z)_a is free from glycine and/or proline.
- 7. A DNA construct according to any one of the preceding

Claims wherein the heterologous protein Het is an antigenic sequence derived from a virus, bacterium, fungus, yeast or parasite.

- 8. A DNA construct according to Claim 7 wherein the heterologous protein Het is the <u>Schistosoma mansoni</u> P28 glutathione S-transferase antigen.
- 9. A replicable expression vector, for example suitable for use in bacteria, containing a DNA construct as defined in any one of Claims 1 to 8.
- 10. A host, for example, a bacterium, having integrated into the chromosomal DNA thereof a DNA construct as defined in any one of Claims 1 to 8.
- A fusion protein as defined in any one of Claims 1 to
 8.
- 12. A process for the preparation of a bacterium (preferably an attenuated bacterium), which process comprises transforming a bacterium with a DNA construct as defined in any one of Claims 1 to 8.
- 13. A vaccine composition comprising a fusion protein, or an attenuated bacterium expressing said fusion protein, the fusion protein being as defined in any one of Claims 1 to 8; and a pharmaceutically

38

acceptable carrier.

14. A method of immunising a patient, e.g. a human patient, which comprises administering to the patient an effective immunising amount of a vaccine composition as defined in Claim 13.

SUBSTITUTE SHEET (RULE-26)

FIG.6