CS/COE 0447

Implementing Logic:
Teaching the Machine to "think"

wilkie (with content borrowed from:

Jarrett Billingsley

Dr. Bruce Childers)

What's electricity?

(for fun section)

In your orbit

protons sit still while electrons can move around

Opposites attract...

Lots of fish electrons in the sea

here's a solid piece of metal

the atoms are in a fixed structure but *some* of the electrons are free to move

right now, the charges are **balanced:** same number of positive and negative

let's knock it out of whack

Two moles is company, three's a crowd

let's shove more electrons in

packing more electrons in leads to two things:

- 1. this metal is now negatively charged
- 2. the electrons are now closer together meaning they're less happy

Carousel of unhappiness

Watch em go

voltage measures electron unhappiness low high

and that's electricity

current measures how many electrons per second are moving past a point low high

Logic Basics

Transistors n'at

Transistors

- A transistor is like a little valve, or switch
- The input, output, and control are all single bits
- The bits are represented as voltages (maybe 3.3V = 1, 0V = 0)

now just put 3 billion of them together! who said EE was hard?

it connects its input to its output if control is a **1**

Two Types of MOS Transistor

 Metal Oxide Semiconductor transistors come in two varieties:

ON

Gates

- We can combine transistors in interesting ways to make gates
- A gate implements one of the basic boolean logic functions
- Let's start with the simplest: the **NOT gate**

Time to bundle up

If we want to, say, NOT a 32-bit value, we can draw it like:

- It's a lot nicer than drawing 32 wires with 32 NOT gates
- Logisim calls these wire bundles
 - o It doesn't draw the slashes and numbers though...

NOT (With MOS Transistors)

- AKA an "Inverter"
- Input value "A" manipulates transistors and output "Q"
- Voltage goes to ground () unless it goes to Q
- "high" voltage == "1"

NAND (MOS)

AND (MOS)

AB

NOR (MOS)

OR (MOS)

A+B

AND, OR, and... XOR?

we know about AND and OR, but what's XOR?

AND (multiple inputs)

• If you have more than 2 inputs... you can just concatenate:

A	В	C	Q
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	1

AND and/or OR

- Combining logic is just a matter of combining logic gates:
- Look at when Q is "1"
- OR each of those by the AND of each term:

$$\overline{A}B\overline{C} + \overline{A}BC$$

A	В	C	Q
0	0	0	0
1	0	0	0
0	1	0	1
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	1
1	1	1	0

AND and/or **OR**

$$\overline{A}B\overline{C} + \overline{A}BC$$

Α	В	C	Q
0	0	0	0
1	0	0	0
0	1	0	1
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	1
1	1	1	0

If you give an electrical engineer a NAND gate...

• Sum up: If a NOT gate is after an AND gate, you get a NAND gate:

- This kind of gate has a cool property: it's universal
 - In other words, you can build an entire computer with NANDs (or NORs)
 - Think how to build a NOT from a NAND (Then build an AND, etc)
- But this isn't how real circuits are designed, at least not anymore
- Digital logic courses use them cause NAND gate chips are cheap
- But in Logisim, we have infinite gates for free :D
- Use the kind of gate you need for the situation at hand