Diffie-Hellman Key Exchange

Key Establishment: The problem

- Securing communication requires that the data is encrypted before being transmitted.
- Associated with encryption and decryption are keys that must be shared by the participants.
- The problem of securing the data then becomes the problem of securing the establishment of keys.
- Task: If the participants do not physically meet, then how do the participants establish a shared key?

Key Establishment: The problem (cont.)

Diffie-Hellman Key Exchange

- Discovered by WhitfieldDiffie and Martin Hellman
 - "New Directions in Cryptography" (1976)
- Diffie-Hellman key Exchange protocol
 - Exponential key agreement
 - Allows two users to exchange a secret key
 - Requires no prior secrets
 - Real-time over an untrusted network

Diffie-Hellman Key Exchange (cont..)

- Using Diffie-Hellman key exchange protocol,
 - Two unknown users can set up a private but random key for their symmetric key cryptosystem.
- There is no need for users to meet in advance, or use a secure courier, or use some other secret channels, to select a key.
- The purpose of the algorithm is exchange of a secret key
 - Not encryption
 - Not signing

Diffie-Hellman Key Exchange (cont..)

Algorithm

- Require two large numbers,
 - one prime p,
 - and generator g (2 <= g <= p-2), is a primitive root of p,
- p and g both are publicly available numbers

- a primitive root of a prime number p as one whose powers modulo p generate all the integers from 1 to p-1. That is, if a is a primitive root of the prime number p, then the numbers
 - a mod p, a² mod p,..., a^{p-1} mod p
 - are distinct and consist of the integers from 1 through p-1 in some permutation (in any order)
 - g is Primitive root, it must be : 2 <= g <= p-2</p>

- \Box P = 7
 - then 3 is primitive root of 7
 - 2 is not primitive root of 7

n (n goes to 1 to p-1)	3 ⁿ	3 ⁿ mod 7
1	3	3
2	9	2
3	27	6
4	81	4
5	243	5
6	729	1

n (n goes to 1 to p-1)	2 ⁿ	2 ⁿ mod 7
1	2	2
2	4	4
3	8	1
4	16	2
5	32	4
6	64	1

- □ The order of Z_n^{\times} is given by Euler's totient function Φ(n).
- The totient Φ(n) of a positive integer n is defined to be the number of positive integers less than or equal to n that are co-prime to n.
 - Example: Φ(9) = 6, How?

- □ Take for example n = 14. The elements of \mathbf{Z}_{14}^{\times} are the congruence classes $\{1, 3, 5, 9, 11, 13\}$; there are $\phi(14) = 6$ of them.
- Here is a table of their powers (mod 14):

```
n n, n<sup>2</sup>, n<sup>3</sup>, ..... (mod 14)

1: 1,

3: 3, 9, 13, 11, 5, 1

5: 5, 11, 13, 9, 3, 1

9: 9, 11, 1

11: 11, 9, 1

13: 13, 1
```

3 and 5 are the primitive roots modulo 14

Algorithm

- □ Users pick random private values x (x < p) and y (y < p)
- Compute public values
 - R1 = $g^x \mod p$
 - \blacksquare R2 = g^y mod p
- Public values R1 and R2 are exchanged
- Compute shared, private key
 - $\mathbf{k}_{alice} = (R2)^x \mod p$
 - $\mathbf{k}_{hob} = (R1)^y \mod p$
- \square Algebraically it can be shown that $k_{alice} = k_{bob}$
 - Users now have a symmetric secret key to encrypt

Key Exchange

Proof

We know

```
R1 = g^x \mod p

R2 = g^y \mod p
```

```
■ k_{alice} = (R2)^x \mod p

= (g^y \mod p)^x \mod p

= (g^y)^x \mod p

= (g)^y \mod p

= (g^x)^y \mod p

= (g^x \mod p)^y \mod p

= (R1)^y \mod p

= k_{bob}
```

Example

- Alice and Bob get public numbers
 - P = 19, G = 3 [Primitive roots of modulus 19 are 2,3,10,13,14,15]
- \square Alice and Bob pick private values x=15 & y=10 respectively
- Alice and Bob compute public values
 - \blacksquare R1 = 3^{15} mod 19 = 12
 - $R2 = 3^{10} \mod 19 = 16$
 - Alice and Bob exchange public numbers
- Alice and Bob compute symmetric keys
 - kalice = $(R2)^x \mod p = (16)^{15} \mod 19 = 7$
 - kbob = $(R1)^y \mod p = (12)^{10} \mod 19 = 7$
- Alice and Bob now can talk securely!

Security of Diffie-Hellman

- This protocol susceptible to two attacks:
 - The Man-in-the-middle attack
 - The Discrete logarithmic attack

Man-in-the-middle attack

- (p and g are publicly known)
- An adversary Eve intercepts Alice's public value and sends her own public value to Bob.
- When Bob transmits his public value, Eve substitutes it with her own and sends it to Alice.
- Eve and Alice thus agree on one shared key and Eve and Bob agree on another shared key.
- After this exchange, Eve simply decrypts any messages sent out by Alice or Bob, and then reads and possibly modifies them before re-encrypting with the appropriate key and transmitting them to the other party.
- This is present because Diffie-Hellman key exchange does not authenticate the participants.

Man-in-the-middle attack (cont.)

Example

- Alice and Bob get public numbers
 - P = 19, G = 3 [Primitive roots of modulus 19 are 2,3,10,13,14,15]
- Alice , Eve and Bob pick private values x=15 & z=12 & y=10 respectively
- Alice, Eve and Bob compute public values
 - $R1 = 3^{15} \mod 19 = 12$
 - $R2 = 3^{12} \mod 19 = 11$
 - $R3 = 3^{10} \mod 19 = 16$
 - Alice , Eve and Eve , Bob exchange public numbers
- Alice and Bob compute symmetric keys
 - kalice = $(R2)^x \mod p = (11)^{15} \mod 19 = 1$
 - kbob = $(R2)^y \mod p = (11)^{10} \mod 19 = 11$
 - (K1) Eve = $(R1)^z \mod p = (12)^{12} \mod 19 = 1$
 - (K2) Eve = $(R3)^z \mod p = (16)^{12} \mod 19 = 11$

Discrete Logarithmic Attack

- For some values of the prime p, choose values of g such that g^x has only a small number of possible values, no matter what x is, which would make it easy to find for a value of x that was equivalent to the original value of x.
- Adversary knows p, g, R1, R2
- Adversary is forced to take discrete logarithm to determine key.
- \square R1 = g^x mod p
- \square X = dlog_{qmodp}(R1)
- □ E.g g=3, p=19, R1=8
- \Box dlog_{3mod19}(8) = _____
- □ So result = 3^3 mod 19 = 8 so x = 3
- Then Adversary can calculate K same as Bob calculates it.

Discrete Logarithmic Attack

- Consider a Diffie-Hellman scheme with a common prime p
 11 and a primitive root g = 2.
- □ If user A has public key R1 = 9, what is A's private key X?
- Adversary is forced to take discrete logarithm to determine key.
- \square R1 = g^x mod p
- \square X = dlog_{qmodp}(R1)
- □ E.g g=2, p=11, R1=9
- $dlog_{2mod11}(9) = ____$
- □ So result = $2^6 \mod 11 = 9$ so x = 6
- Then Adversary can calculate K same as Bob calculates it.

Discrete Logarithmic Attack (cont.)

- The security of this protocol depends on the discrete logarithm problem.
 - It assumes that it is computationally infeasible to calculate the shared secret key $k = (g^{xy} \mod p)$ given the two public values $(g^x \mod p)$ and $(g^y \mod p)$ when the prime p is sufficiently large (>= 1024 bits).

Discrete Logarithmic Attack

- □ For example, if p=170141183460469231731687303715884105727,
 - then it would take roughly 1.14824 μ 1021 steps to solve. (Each step requires many calculations.)
- Even using computers which are estimated to perform 300 trillion calculations per second, it would take roughly 5 years to solve.

Use of DH in Secure Internet Protocols

DH in SSL

- Secure Sockets Layer (SSL) is a de-facto standard for securing information flow between web users and web servers.
- In SSL, the Handshake Protocol is responsible for authentication of the parties and negotiation of encryption methods and keys.
- In this process, DH can be used. DH is considered the strongest alternative of the available options for the key exchange

Use of DH in Secure Internet Protocols

DH in SSH

- Secure Shell (SSH) is a both a protocol and a program used to encrypt traffic between two computers.
- The two parties to the connection (e.g., client and server) begin their conversation by negotiating parameters (e.g., preferred encryption and compression algorithms, and certain random numbers).
- Then a shared secret is computed using DH

Summary

- Key agreement protocol
- Strength based on discrete logarithms
- Does:
 - Allow public key exchange with no prior shared secrets
 - Works very efficiently
- Does not
 - Provide encryption, decryption, signature, etc.
 - Authenticate
- Defeats Man-in-the-middle attack
- Defeats Discrete logarithm attack