

FINAL \$2 APRIL 1996

FY95 LIMITED ENERGY STUDY AREA B NITRIC ACID PRODUCTION FACILITIES

HOLSTON ARMY AMMUNITION PLANT KINGSPORT, TENNESSEE

U.S. ARMY CORPS OF ENGINEERS MOBILE DISTRICT

CONTRACT NO.: DACA01-94-D-0007 DELIVERY ORDER NO.: 004

AESE PROJECT NO.: 95094-00

Prepared By:

Affiliated Engineers SE, Inc. 3300 SW Archer Road Gainesville, FL 32608 (352) 376-5500 (352) 375-3479 - FAX

DESTROUTION STATIMENT A
Approved to: people releases
Distribution Unitedited

Affiliated Engineers, Inc.

3300 S.W. Archer Road Gainesville, FL 32608 (352) 376-5500 (352) 375-3479 (FAX)

625 North Segoe Road P.O. Box 5039 Madison, WI 53705-0039 (608) 238-2616 (608) 238-2614 (FAX)

442 Fifth Street P.O. Box 2206 Columbus, IN 47202 (812) 376-0885 (812) 377-6459 (FAX)

1646 North Carolina Boulevard Suite 210 Walnut Creek, CA 94596 (510) 933-8400 (510) 933-8401 (FAX)

Westlake Center 1601 Fifth Avenue Suite 750 Seattle, WA 98101 (206) 624-7588 (206) 624-5242 (FAX)

110 Banks Drive, Suite 203 Chapel Hill, NC 27514 (919) 967-5364 (919) 967-5365 (FAX)

Suite 2, Room 3 771 Airport Boulevard Ann Arbor, MI 48108 (313) 669-0434 (313) 669-0445 (FAX)

DEPARTMENT OF THE ARMY

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld,

Librarian Engineering

Title Page
Table of Contents
Extracted to gowith
Executive Summary
4/19/96

Executive Summary
Extracted 4/19/96
In EN-DM files

History

Holston Army Ammunition Plant (HAAP) in Kingsport, Tennessee, manufactures explosives from raw materials. The facility comprises two separate areas designated Area "A" and Area "B".

At Area "B", Nitric Acid production facilities located in Building 302 include energy intensive AOP lines from which dilute nitric acid is obtained. The original chemical and mechanical equipment was placed in service in 1942, employing a process invented in 1935. Significant modifications have occurred over the extended life of the systems, and the current configuration is shown schematically in Figure 1.

19971017 110

AMMONIA OXIDATION PRO

EXISTING E

FY95 LIMITED ENERGY STUDY

90094/M/EXST-FD

Š.

Problem Statement

Demand by the military for explosives has declined in recent years, and continued progressively decreasing demand is forecast. Because plant mobilization to accommodate any increased military demand (i.e., renewed global conflict involving or supported by the United States) may be required on short notice, the production facilities must be maintained in a ready status.

Todays production demands are met by operating one or two of the four 50 ton/day oxidation process lines in Building 302 four continuous 24-hour days, with monthly equivalent single line operation totaling 96 hours.

Equipment providing heat rejection at the cascade cooler and the water chiller employs technology inconsistent with todays emphasis on energy efficiency. Insulation on piping and pressure vessels containing fluids at elevated temperatures is essentially non-existent. Photographs included as Figure 2 show some of these conditions. All of the steam delivered to the process equipment is discharged to drain as steam condensate. Most of the filtered river water used for process heat rejection is discharged to drain after circuiting the heat exchange equipment.

Figure 2

Purpose of the Study

The purpose of this study is to identify and evaluate the technical and economic feasibility of process or equipment modifications pursuant to conservation of energy and reduction of water consumption at the Ammonia Oxidation Process Facilities in Building 302, Area "B". An adjunct requirement is to avoid proposed modifications which would impose additional maintenance and operation requirements.

The following ECO's specifically identified by scope documents, were investigated:

- 1. Convert air compressor drive turbine from tailgas to steam or to steam augmentation.
- 2. Recover heat from product gas leaving the air preheater to produce steam.
- 3. Water conservation.

Additional ECO's selected by the A/E to be studied include the following:

- 1. Insulate heat exchangers and tailgas piping.
- Install preformed plate heat exchangers inside insulation on air preheater and tailgas heater vessels for heat recovery to a 30 psig steam system.
- 3. Inject air compressor intercooler and aftercooler condensate and steam condensate from the ammonia vaporizer into tailgas entering compressor drive turbine for increased power.

Study Approach

Observations of the installation were made during field surveys conducted July 5, 1995 through July 7, 1995 and again on August 18, 1995. To further establish the A/E's understanding of the chemical processes involved, and the energy associated with the chemical reactions, two reports prepared by other consultants were reviewed. From the final report titled Limited Energy Studies by EMC Engineers, Inc. dated August 1992, a "Process Energy Inventory" tabulation for Nitric Acid Manufacturing, Building 302-B, apparently excerpted from Technical Report No. HDC-39-77 was obtained. The table is presented in the appendix under "Reference Material". The formulae for essential chemical reactions for the production of Nitric Acid by the oxidation of ammonia were obtained from Working Summary Report prepared by AAI Corporation dated December 1992.

The schematic of the AOP process included in the project Detailed Scope of Work was reconstructed to reflect existing system configuration confirmed during field surveys.

It was noted that data contained in the schematic of the AOP process from the scope documents and the previously referenced Process Energy Inventory from Technical Report No. HDC-39-77 apparently represented the system prior to installation in 1991 of four new air compressors manufactured by Joy Manufacturing Co., prior to installation in 1982 of the extended absorption columns, and prior to the installation in 1979 of the refrigerated water system (water chiller).

Process Energy Inventory

A molal analysis of the chemical reactions was performed to determine constituents of the tailgas and to establish water vapor (and liquid) quantities required to be condensed and used as diluent for the product nitric acid. From this calculation and source material from compressor and turbine manufacturers literature, an "Existing System Process Energy Inventory" was developed. The manufacturer's literature is presented in the Appendix under "Reference Material" also included in "Reference Material" are tables, formulae, charts and excerpts from various documents used in the development of the energy and chemical analysis. Table 1 shows the inventory data, which was used to prepare the Ammonia Oxidation Process Flow Diagram/Existing System presented as Figure 1 herein. All ECO's were evaluated using this data for baseline comparison.

TABLE 1. EXISTING SYSTEM PROCESS ENERGY INVENTORY

	He	Heat Gain		Heat Rejected			Heat Recovered	pa	Неа	Heat Lost	
Equipment	MBH	Source	МВН	Source	Destination	МВН	Source	Recipient	MBH	Waste Stream	Remarks
Ammonia Vaporizer	714.1	Stm. Syst.	149.2	Stm. Cond.	Drain				149.2	Drain	
Mixer	178.8 (177.9)	Air NH ₃									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2902.9	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	816.8	Atmosph.	
Tailgas Heater			2211.4	Prod. Gas	TG & Atmos	2001.5	Prod. Gas	Tailgas	209.9	Atmosph.	
Cascade Cooler	4869.4	80% HNO ₃ Reaction	2846.2	Prod. Gas & H₂O Vapor Condens.	River Water Drain & Atmos				2846.2	Drain	
Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens.	River Water				86.5	Drain	
Air Compressor	2018.2	Elect. Mtr	2750.6	H ₂ O Vapor Condens.	River Water				2750.6	Drain	793 hp
Tailgas Turbine	768.2	Heat Recovered	2097.4	Turbine Exhaust	Atmos.	768.2			1329.2	Exh to Atmosph	302 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product			
Unaccounted Losses			673.9						673.9		
TOTAL	16724.2		16724.2			4974.5			11749.7		

HOLSTON NITRIC ACID PRODUCTION FACILITY

Assumptions

The following assumptions have been made:

- 1. A Molar products table based on a hydrocarbon fuel composition of $(CH_2)_n$ will yield suitable results for the products of combustion of NH_3 (ammonia), provided that the percentage of theoretical air is the same composition for the ammonia as the hydrocarbon. (Gas tables by Kennan and Kaye are sufficiently accurate).
- 2. Air temperature entering the mixer is automatically controlled at 625°F by mixing nominal 100°F, 115 psig air from the aftercooler with uncontrolled air leaving the air preheater.
- Existing tailgas heater materials of high chrome iron are compatible with high temperature heat transfer fluids substituted for the tailgas.
- 4. Existing turbines operating on tailgas flow streams will have similar efficiency when operating on steam.

Energy Conservation Opportunities

ECO No. 1: Turbine Conversion to Steam

The existing turbines, manufactured by Dresser-Rand Steam Turbine and Motor Division, used to augment the electric motors driving the air compressors, were basically designed as steam turbines but are currently employed as gas turbines for recovery of energy contained in process tailgas. Based on energy balance documents furnished by the government, calculated shaft output with 15,450 lb/hr, 58 psig, 435°F gas at the turbine inlet is 347 hp with turbine exhaust to atmosphere. At conditions determined independently as work of this report, the calculated turbine output is 302 hp. Inlet temperatures are limited to 750°F maximum.

Replacement of the turbines with new 1,200 hp condensing type units to operate on the Thermodynamic Rankine Cycle with steam/water as the working fluid is proposed. Steam at 300 psig and 525°F from the central plant will be directed to the steam turbine. Turbine exhaust at 2.0 inch Hg vacuum will be condensed in a steam surface condenser using river water as the condensing medium. From the condenser, the condensate will be returned to the central plant by condenser hotwell pumps.

Performance of the Rankine Cycle System in the AOP process is indicated schematically in Figure 3 herein. Shaft energy produced will displace electric motor energy required to drive air compressors. Table 2 shows the energy inventory associated with ECO No. 1.

ECO No. 2: Steam Produced from Product Gas

Introduction of liquid Dowtherm A heat transfer fluid into the existing tailgas heater vessel (liquid in place of tailgas) is proposed to recover heat from the product gas prior to its introduction to the cascade heater. The fluid, the eutectic mixture of diphenyl oxide and diphenyl, would then be pumped through a closed system in which the fluid would release heat in an unfired steam boiler vessel to produce steam at 100 psig and 30°F for use in AOP process equipment or for offsetting steam production in the central plant.

AMMONIA OXI

AMMONIA OXIDATION PROCESS FLOW DIAGRAM

ECO NO. 1 STEAM TURBINE DRIVEN AIR COMPRESSOR

TABLE 2. ECO NO. 1 PROCESS ENERGY INVENTORY

	Hea	Heat Gain		Heat Rejected			Heat Recovered	þá	Heal	Heat Lost	
Equipment	МВН	Source	MBH	Source	Destination	МВН	Source	Recipient	МВН	Waste Stream	Remarks
Ammonia Vaporizer	714.1	Stm. Syst.	149.2	Stm. Cond. to Drain					149.2	Drain	
Mixer	178.8 (177.9)	Air NH ₃									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2902.9	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	816.8	Atmosph.	
Tailgas Heater			704.0	Prod. Gas	TG & Atmos				704.0	Atmosph.	
Cascade Cooler	4869.4	80% HNO ₃ Reaction	4163.4	Prod. Gas & H ₂ O Vapor Condens.	River Water Drain & Atmos				4163.4	Drain	
Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens.	River Water				86.5	Drain	
Air Compressor	2786.8	Turbine	2750.6	H ₂ O Vapor Condens.	Atmos. River Water				2750.6	Atmos. Drain	
Steam Turbine	10525.0	Steam from Steam Plant	13312.0	Turbine Exhaust	Condens. & River Water	526.5	Stm. Cond.	Stm. Pint	12785.5	Stm Surf. Cond.	12840 #/hr Steam Rqd. @ 300 psi @ 525°F - 1095 hp
Final Bleacher			118.7	Product	Product	18.7	Product	Product			
Stack Loss			95.8	Tailgas	Atmos.				8.36	Atmos.	
Unaccounted Losses			89.1						89.1		
TOTAL	27259.6		27259.6			2731.3			24528.3		

HOLSTON NITRIC ACID PRODUCTION FACILITY

This ECO would eliminate the availability of high energy tailgas use in the existing air compressor gas turbine. Release of the low temperature tailgas to atmosphere (from 58 psig) will be a source of objectional noise. It integrates ideally into the proposed system in ECO No. 1. Table 3 shows the energy inventory associated with ECO No. 2, and Figure 4 represents the AOP process with ECO No. 2 incorporated.

ECO No. 3: Water Conservation at Chiller and Cascade Coolers

Filtered river water discharged to drain, is 20°F to 80°F above river water temperature. No contaminants are introduced into the flow streams at Building 302. It is proposed to evaporatively cool the water in an induced draft cooling tower and return it to the heat rejection equipment so that costs at the Central Water Treatment Plant can be reduced. Primarily, savings will be derived from reduced demand for aluminum sulfate and hydrated lime in the flocculation process of the filter plant.

Table 4 and Figure 5 represent the AOP process with proposed ECO No. 3 water conservation incorporated.

ECO No. 4: Insulate Heat Exchangers

Heat is released to the atmosphere by radiation and convection from the dull bare metal surface of the nominal 18 inch diameter pressure vessels and 6 inch diameter tailgas piping. Standard high temperature calcium silicate pipe insulation with protective metal jacket is to be installed to increase recovered energy used in the air compressor gas turbine drive unit. Proposed insulation thickness is 1 inch.

AOP process parameters with proposed insulation are indicated in Table 5 and in Figure 6 herein.

ECO No. 5: Insulated Heater Surfaces with Low Pressure Steam Recovery

This ECO is an adjunct to ECO No. 4 - Insulate Heat Exchangers. Plant steam will still be required for production and process startup, but approximately 80% of steam used in the ammonia vaporizer will be derived from recovered energy.

A new 30 psig steam/condensate system, is proposed. The 30 psig steam is produced in a waste heat steam generator (WHSG) to extract heat from the 480°F turbine exhaust gas. Exhaust gas (tailgas) exiting the WHSG is discharged to atmosphere.

TABLE 3. ECO NO. 2 PROCESS ENERGY INVENTORY

	He	Heat Gain		Heat Rejected			Heat Recovered	ed	Hea	Heat Lost	
	200	o Carrier	2	acuito	Dectination	MBH	Source	Recinient	H	Waste	Remarks
Ammonia Vaporizer	714.1	Stm. Syst.	149.2	Stm. Cond. to Drain					149.2	Drain	
	178.8	Air									
Mixer	(177.9)	NH,									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2902.9	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	816.8	Atmosph.	
											±2690 #/hr saturated steam
:		10% HNO ₃	9,000		Dowtherm &	0000	, pos	mod the control	940	Atmosph	produced @ 100
Dowtherm Heater	608.7	Heaction	3234.6	Prod. Gas	Atmos.	2330.8	Prod. Gas	Downlerm	643.0	Aunospin.	fied
		ONH %or		Dryd Gas & H	River Water						
Cascade Cooler	4260.5	Reaction	1949.4	Vapor Condens.	Atmos				1949.4	Drain	
Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens.	River Water				86.5	Drain	
Air Compressor	2786.8	Elect. Meter	2750.6	H ₂ O Vapor Condens.	River Water				2750.6	Atmos. Drain	1095 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product			
Stack Loss			95.8	Tailgas	Atmos.				92.8	Atmos.	
Unaccounted Losses			2549.3						2549.3		
TOTAL	16724.4		16724.4			5195.6			11528.8		

HOLSTON NITRIC ACID PRODUCTION FACILITY

 \mathfrak{D}

DOW

AMMONIA OXIDATION PROCESS FLOW DIAGRAM

ECO NO. 2 DOWTHERM HEAT EXCHANGER

HOLS

TABLE 4. ECO NO. 3 PROCESS ENERGY INVENTORY

	Hea	Heat Gain		Heat Rejected			Heat Recovered	pa	Heal	Heat Lost	
										Waste	
Equipment	MBH	Source	МВН	Source	Destination	МВН	Source	Recipient	МВН	Stream	Remarks
										Cooling	
Ammonia Vaporizer	714.1	Stm. Syst.	149.2	Stm. Cond. to Drain					149.2	Tower	
	178.8	Air									
Mixer	(177.9)	Ĩ.									
			ı.							Cooling	
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Tower	
Air Preheater			2902.9	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	816.8	Atmosph.	
Tailgas Heater			2211.4	Prod. Gas	TG & Atmos	2001.5	Prod. Gas	Tailgas	209.9	Atmosph.	
					River Water						
		80% HNO3		Prod. Gas & H ₂ O	Drain &					Cooling	
Cascade Cooler	4869.4	Reaction	2846.2	Vapor Condens.	Atmos				2846.2	Tower	
		20% HNO ₃		Prod. Gas & H ₂ O						Cooling	
Absorption Columns	1217.3	Reaction	86.5	Vapor Condens.	River Water				86.5	Tower	
				H ₂ O Vapor						Cooling	
Air Compressor	2018.2	Elect. Meter	2750.6	Condens.	River Water				2750.6	Tower	793 hp
										Exh. to	
Tailgas Turbine	768.2		2097.4			768.2			1329.2	Atmosph	302 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product			
Unaccounted											
Losses			673.9						673.9		
TOTAL	16724.2		16724.2			4974.5			11749.7		
							1000				

95094/REPORT.FIN

AMMONIA OXIDATION

EC

AMMONIA OXIDATION PROCESS FLOW DIAGRAM

ECO NO. 3

INCORPORATE COOLING TOWER

TABLE 5. ECO NO. 4 PROCESS ENERGY INVENTORY

	He	Heat Gain		Heat Rejected			Heat Recovered	pa	Heat	Heat Lost	
										Waste	
Equipment	MBH	Source	MBH	Source	Destination	МВН	Source	Recipient	MBH	Stream	Remarks
Ammonia Vaporizer	714.1	Stm. Syst.	149.2	Stm. Cond. to Drain					149.2	Drain	
Mixer	178.8 (1771)	Air NH ₃									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2128.8	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	42.7	Atmosph.	
Tailgas Heater			2496.7	Prod. Gas	TG & Atmos	2473.6	Prod. Gas	Tailgas	23.1	Atmosph.	
Cascade Cooler	4869.4	80% HNO ₃ Reaction	2092.1	Prod. Gas & H ₂ O Vapor Condens.	River Water Drain & Atmos				2092.1	Drain	
Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens.	River Water				86.5	Drain	
Air Compressor	1618.6	Elect. Meter	2750.6	H ₂ O Vapor Condens.	River Water				2750.6	Drain	636 hp
Tailgas Turbine	1168.2	Recovered Heater	2582.1	Tailgas	Atmos.	1168.2			1413.9	Exh. to Atmosph	459 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product			
Unaccounted Losses			1432.5						1432.5		
TOTAL	16724.6		16724.6			5846.6			10878.0		

HOLSTON NITRIC ACID PRODUCTION FACILITY

(1)

AMMONIA OX

1" IN:

ECO NO.4
1' INSULATION ON HEATERS

Results of integrating this ECO into the AOP process are shown in Table 6 and Figure 7.

ECO No. 6: Water Injection at Gas Turbine Not developed.

ECO No. 7: Recovered Steam Injected at Tailgas Turbine Inlet

Recovery of relatively pure water obtained from air compressor intercoolers and aftercoolers and from steam trap discharge at the ammonia vaporizer, all of which is presently discharged to waste, will be utilized for makeup to a waste heat steam generating system (WHSG) consisting of two recovery sections, one located in product gas stream leaving the platinum filter and the other in the wet gas stream leaving the turbine, and a steam separator vessel.

Additional boiler water makeup (approximately 10%) from the steam plant will augment the recovered water. Steam from the WHSG will be introduced into the hot tailgas from the tailgas heater to increase turbine output and offset electrical load of the compressor drive motor, and will be discharged to atmosphere along with the tailgas.

Introduction of the steam into the tailgas will be made at a sufficient distance upstream of the turbine inlet, in the existing 6 inch diameter standard black iron piping. The WHSG section in the product gas stream will be constructed of high chromium stainless steel (400 series) for surfaces in contact with product gas. The wet gas WHSG section will be standard steel construction as offered by Clayton Industries, El Monte, CA.

AOP process parameters with the proposed steam injection system, incorporated with the insulation evaluated in ECO #4, are shown in Table 7 and Figure 8 herein.

TABLE 6. ECO NO. 5 PROCESS ENERGY INVENTORY

	He	Heat Gain		Heat Rejected			Heat Recovered	pa	Hea	Heat Lost	
Equipment	MBH	Source	MBH	Source	Destination	MBH	Source	Recipient	MBH	Waste Stream	Remarks
Ammonia Vaporizer	714.1	L.P. Steam	149.2	Steam Cond.	Drain	149.2	Steam Cond.	LP Steam			
Mixer	178.8 (177.9)	Air NH ₃									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2128.8	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	42.7	Atmosph.	
Tailgas Heater			2496.7	Prod. Gas	TG & Atmos & L.P. Stm	2473.6	Prod. Gas Prod. Gas	Tailgas L.P. Stm Syst.	23.1	Atmosph.	
Cascade Cooler	4869.4	80% HNO ₃ Reaction	2092.1	Prod. Gas & H ₂ O Vapor Condens.	River Water Drain & Atmos				2092.1	Drain	
Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens.	River Water				86.5	Drain	
Air Compressor	1618.6	Elect. Meter	2750.6	H ₂ O Vapor Condens.	River Water				2750.6	Drain	636 hp
Tailgas Turbine	1168.2	Recovered Heat	2582.1	Turb. Exh.	Stack	1758.3	Stack	L.P. Stm Syst.	823.8	Exh. to Atmosph	459 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product			
Unaccounted Losses			1432.5						1432.5		
TOTAL	16724.6		16724.6			6282.9			10138.7		

ECO NO.5

1' INSULATION ON HEATERS
WITH LOW PRESSURE STEAM RECOVERY

TABLE 7. ECO NO. 7 PROCESS ENERGY INVENTORY

	Hea	Heat Gain		Heat Rejected			Heat Recovered	9	Неа	Heat Lost	
Equipment	MBH	Source	МВН	Source	Destination	MBH	Source	Recipient	МВН	Waste Stream	Remarks
Ammonia Vaporizer	714.1	L.P. Steam	149.2	Steam Cond.	Tailgas	149.2	Steam Cond.	Tailgas			
Mixer	178.8 (177.9)	Air NH ₃									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2128.8	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	42.7	Atmosph.	
Tailgas Heater	2434.7	40% HNO ₃ Reaction	2496.7	Prod. Gas & H ₂ O Vapor Condens.	TG & Atmos	2473.1	Prod. Gas	Tailgas	23.1	Atmosph.	
Prod. Gas Recov. Boiler	608.7	10% HNO ₃ Reaction	816.9	Prod. Gas	LP Steam	816.9	Prod. Gas	LP Steam			765 #/hr Steam
Wet Gas Boiler						837.9	Turb Exh.	L.P. Steam	926.6	Stack	786 #/hr Steam
Cascade Cooler	1826.0	30% HNO ₃ Reaction	1275.2	Prod. Gas & H ₂ O Vapor Condens.	River Water Drain & Atmos				1275.2	Drain	
Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens. & Reaction	River Water				86.5	Drain	
Air Compressor	1425.2	Elect. Meter	2750.6	H ₂ O Vapor Condens.	River Water				2750.6	Drain	560 hp
Tailgas Turbine	1361.6	Recovered Heat	3156.1	Turbine Exhaust	Wet Gas Recov. Blr	1361.6	Wet Gas	Air			535 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product	į		
Unaccounted Losses			859.0						859.0		
TOTAL	16724.6		16724.6			7843.5			8881.1		

HOLSTON NITRIC ACID PRODUCTION FACILITY

AMMONIA OXIDATION

HEATERS AND ADD

EC STEAM/WATER INJEC

0

AMMONIA OXIDATION PROCESS FLOW DIAGRAM

ECO NO. 7

STEAM/WATER INJECTION AT TAILGAS, INSULATE HEATERS AND ADD WASTE HEAT RECOVERY

R INJECTION AT TAILGAS, INSULATE NO ADD WASTE HEAT RECOVERY

29

Calculations

Calculations for energy inventories throughout the product gas and tailgas flow streams were made using published data where available. Heat release from the exothermic reaction in the product gas stream, as indicated on flow diagrams and tables in the material furnished by the government and the operating contractor, was adjusted by application of principles and chemical values from several engineering handbooks. Excerpts from these handbooks are presented in the Appendix, section Reference Material.

Thermodynamic properties of steam and water vapor in air were obtained from "Thermodynamic Properties of Steam"; thermodynamic properties of air were obtained from "Gas Tables". Specific heat data for various gases and liquids were obtained from "Marks' Standard Handbook for Mechanical Engineers" and additional textbooks. Heat loss for bare and insulated pipes was obtained from insulation manufacturers catalogs. Thermodynamic properties of Dowtherm A heat transfer fluid were obtained from "Marks' Handbook" and from tabular data in Platecoil Catalog, Tranter, Inc. In general, where data was obtained from graphically presented material, the diagram is included in the Appendix with the detailed calculations.

Basic formulae, definitions, numerical values and results of calculations for process chemical and thermal parameters are presented in this section.

Detailed calculation sheets are included in Appendix.

Calculations For: Pound Moles per Hour Delivered to Process

$$NH_3$$
: lbs/hr = 1088 lbs/hr = 63.88 #-mol/hr
mol, wt 17.0307

Specific Humidity of Air/Vapor Mixture:

$$W = \frac{P \vee R\alpha}{(Pm - P \vee) R \vee}$$

Where: P_V = Vapor pressure of water @ 100°F dewpoint

Pm = Air/vapor mixture pressure

 $R\alpha$ = Universal gas constant/mol. wt. of air R_{\lor} = Universal gas constant/mol. wt. of H_2O

$$W = \frac{(0.9492 \text{ psia}) (1544/28.9644)}{(129.97 \text{ psia} - 0.9492 \text{ psia}) (1544/18.016)} = 0.0046 \text{ #vapor/#dry air}$$

Air/Vapor Mixture Mass Flow = 16556 lbs/hr

H₂O:
$$\frac{16556 \text{ lbs/hr}}{1 + \frac{1}{0.0046 \text{ lbs/# dry air}}} = 75.81 \text{ lbs/hr}$$

$$\frac{\text{lbs/hr}}{\text{mol. wt}} = \frac{75.81 \text{ lbs/hr}}{18.016} = 4.21 \text{ #-mol/hr}$$

Dry Air Mass Flow = 16556 lbs/hr - 75.81 lbs/hr = 16480.19 lbs/hr

$$N_2$$
: lbs/hr x mol. fract = 16480.19 lbs/hr (0.78084) = 444.28 #-mol/hr mol. wt. air 28.9644

$$O_2$$
: lbs/hr x mol. fract = 16480.19 lbs/hr (0.20948) = 119.19 #-mol/hr mol. wt. air 28.9644

$$A_R$$
: lbs/hr x mol. fract = 16480.19 lbs/hr (0.00934) = 5.31 #-mol/hr 28.9644

	CONDITIONS—ASSIGNED OR OBSERVED AND MISCELLAMEOUS
	DATE January 1, 1996
CULATIONS MOLAL BASIS	FUEL NH3 Ammonia Gas
	SOURCE Vaporizer
2	FUEL UNIT 63.88 Woles, gaseous

	FUEL ANAL. AS FIRED (AF), % BY WT OR VOL	N ₂ 25% by Volume H ₂ 75% by Volume		CO: NEGL. 0, 21% CONEGL, H, 78% 1 c	NES f, g, h FOR GASEOUS FUELS UNIT = 2(AOLES EACH X MOL WT) LB	MOL WI OF FUEL = LINE $\frac{17.031}{1000}$ 9 SP WT OF FUEL @ 80 F & 29.9" = $\frac{11}{394}$ CU FI h	_;;	CARBON UNBURNED, 18/100 18 FUEL $\frac{\%}{\%}$ "C" 0.0 * $\frac{\%}{100}$ - $\frac{\%}{9}$ "C"	FIUE GAS, !- ENT) TEMP, !/	- : .0:	7	AS STANDARD. 129.47-0.95 = 0.0074	ORSAT + % CO, + CO BY ORSAT. # 102 = 78.084 = 3.72.75
COMBUSTION CALCULATIONS—MOLAL BASIS 4NH3 + 702— 4NO2 + 6H20	FUEL, O2, AND AIR PER UNIT OF FUEL MOLES PER FUEL UNIT (AF)	L FUEL KUEL WT FUEL MUL. ANOLES N CONSTITUENT UNIT, DIVI. CON- 1	1 N TO NO2 28 15.97 3 31.94 31.94 2 C700 CO 3 CO TO CO. 28 0 .5 0 -	H ₂ 2 47,91 .5 2	7 O; (DEDUCT) 32 O 1 O 0.00	CO;	11 ASH O O O O O O O O O O O O O O O O O O O	O, AND AIR, MOLES FOR TOTAL AIR 7,0 (SEE LINE A AT RIGHT)	13 O ₁ (THEO) REQD = O ₂ , UNE 12 55.90 14 O ₁ (EXCESS) = $\frac{1.A100}{100} \times O_2$, UNE 12 O O	15 O ₂ (TOTAL) SUPPLIED = LINES 13 + 14 S5-30 16 N ₂ SUPPLIED = 3.73 × O ₂ LINE 15 208.37 17 AUR (DRY) SUPPLIED = O ₂ + N ₃ 24.27	H ₁ O IN AIR = MOLES DRY AIR $\times \frac{A}{B} - \frac{A}{A}$ AIR (WET) SUPPLIED = LINES 17 + 18 FIUE GAS CONSTITUENTS = LINES 1 TO 18,	*NOTE-FOR AIR AT 80 F AND 60% RELATIVE HUMIDITY, A - 0.0212 IS OFTEN	** MOTE! FIVE GAS ANALYSIS BY ORSAT, IF CO IS PRESENT IN FLUE GASES, A CARBON BALANCE IS USED TO DETERMINE DISTRIBUTION OF C, THUS: ALL C IN FLUE — C IN FLUE GAS CONSTITUENTS + C IN REFUSE, MOLES C IN TUEL — TO GAY ANAL + 17. ALL C IN FLUE — C IN FLUE GAS CONSTITUENTS + C IN REFUSE) X TO GO, BY ORSAT. + TO GAY ORSAT.

HOLSTON NITRIC ACID PRODUCTION FACILITY

	•				44/)ou	· .				
Γ			- z	0 W	# -		U	70	• ·-	0
	CONDITIONS—ASSIGNED OR OBSERVED AND MISCELLANEOUS	DATE January 4, 1996 FUEL N, Gas	SOURCE 2 Air	FUEL ANAL. AS FIRED (AF), % BY WT OR VOL			CO. CO N ₁ % +	AL AIR (T.A.) ASSIGNED or by ORSAT 100	LINES (, g, h FOR GASEOUS FUELS GIEL HALT - YOACHES FACH × MOL. WT) 18	MOL WT OF FUEL = UNE f + 100 28,013
	•			FLUE GAS (F.G.) COMPOSITION MOLES PER TUEL UNIT (AF)	. NO ₂ O1 H1 H1O CO	0 0 62.83		0		00.00
		COMBUSTION CALCULATIONS-MOLAL BASIS	$N_2 + 20_2 \longrightarrow 2N0_2$	ELIEL O. AND AIR FER UTIL OF FUEL	FUEL	NO ₂ 2	IINE k	2 0 5 0	32 0 1	28 0 0
		Ü		ä	OOV	N TO C TO CO CO CO TO CO	7	£	o, (DEDUCT)	ž

TUE GAS		18.02 7:03 = 18.007
TOTAL WET FIVE GAS DRY FIVE GAS MOLES 200.76 267.55	21 •NOTE—FOR AIR AT 80 F AND 60% RELATIVE HUMIDITY, $\frac{\Lambda}{B-\Lambda}$ = 0.0212 IS OFIEN USED AS STANDARD. 129.97-0.95	*
		N THUE GASES, A CARBON BALANCE IS USED TO DETERMINE DISTRIBUTION OF C, THUS: C IN REFUSE, MOLES C IN TUEL = % C BY AMAL + 17. - (MOLES C INTRIFE - MOLES C IN REFUSE) X % CO, BY ORSAT + % CO, + CO BY ORSAT.
19 AIR (WET) SUPPLIED = LINES 17 + 18 201.41	RELATIVE, HUMIDITY, B - A -	RESENT IN TUE GASES, A CARBON B. ENIS + C IN REFUSE, MOLES C IN TU C IN CO; - (MOLES C IN THE - MOLE
19 AIR (WET) SUPPLIED = LINES 17 + 18 201.41	FOR AIR AT 80 F AND 60%	HOTE TUE GAS ANALYSIS BY ORSAL, IF CO IS PRESENT IN TUE THE GAS CONSTITUENTS + C IN TUE GAS CONSTITUENTS + C IN
19 AIR (WET) SUP	21 *NOTE	PHOTE FUE GAS AHALYSI

HOLSTON NITRIC ACID PRODUCTION FACILITY

15

2 \succeq 8

_ 0

.100.F 100 F

100 %

REL HUMID. (PSYCHROMETRIC CHART)

DRY-BULB (AMBIENT) TEMP, I

0

63.39

FOR TOTAL AIR 100 % (SEE LINE & AT RIGHT)

O, AND AIR, MOLES

SUM

O.H YSH.

0 ٥

=

ço;

WET-BULB TEMP

EXIT TEMP OF FLUE GAS,

B., BAROMETRIG PRESSURE, psia

0.95 139.97

A. PRESS, HO IN AIR, LINES (0 X 9), ANT HO 0.95

SAT. PRESS, HO AT AMB TEMP, #4:-119

2.21

204.24

399.20 304.26

TOTAL

63.29

O₂ (TOTAL) SUPPUED = UNES 13 \pm 14 N₂ SUPPUED = (3.73 \times 0.) HINE 15

O₁ (EXCESS) = $\frac{1.A.-100}{100} \times$ O₂, line 12

 O_t (THEO) REQD = O_{2r} LINE 12

2 7 2.2

HO IN AIR - MOLES DRY AIR X -

AIR (DRY) SUPPLIED = O1 + M1

Ε:

CU FI

COF 394

LINE 9

Ħ

SP WT OF FUEL @ 80 F & 29.9"

0

0

0 d

77

0 0

0

ρ°.

0.0

CARBON UNBURNED, 18/100 18 FUEL

- % ASH IN FUEL X 100

COMBUSTIBLE IN REFUSE, "C"

FUEL HEAT VALUE, BTU/LB

8

9 9

ा और लोहेंस्ट्रीक को सिंह के बार्ग कर है। यह इस

z

ш

Calculations For: Theoretical Pound Moles per Hour Product Gas

 NO_2 : 31.94 #-mol/hr + 63.29 #-mol/hr = 95.23 #mol/hr

 N_{o} : 208.37 #-mol/hr + 204.26 #-mol/hr = 412.63 #mol/hr

 H_2O : 25.92 #-mol/hr + 2.21 #-mol/hr = 28.13 #-mol/hr

From Sheet 1:

 A_R : <u>lbs/hr x mol. fract</u> = <u>16480.19 lbs/hr (0.00934)</u> = 5.31 #-mol/hr

mol. wt. air 28.9644

Other: $\underline{\text{lbs/hr x mol. fract}} = \underline{16480.19 \text{ lbs/hr } (0.00034)} = \underline{0.19} \text{ #-mol/hr}$

mol. wt. air 28.9644

TOTAL = 541.49 #-mol/hr

NO₂ Percent by Volume = <u>95.23 #-mol/hr (100)</u> = 17.59% 541.49 #-mol/hr

N₂ Percent by Volume = <u>412.63</u> 541.49

H₂O Percent by Volume = 28.13 = 5.20%

 H_2O Percent by Volume = $\underbrace{28.13}_{541.72}$

A_R Percent by Volume = $\underline{5.31}$ = 0.98% 541.49

Other Percent by Volume = $\frac{0.19}{541.72}$ = $\frac{0.04\%}{541.72}$

TOTAL 100.01

76.20%

Calculations For: Product Gas Specific Heat at Constant Pressure

16658.94 #/hr

$$C_{PPRG} = \frac{W_{n2}C_{Pn2} + W_{ar}C_{Par} + W_{NO2}C_{PNO2} + W_{H2O}C_{PH2O}}{W_{PR.G.}}$$
 $W_{N2} = 412.63 \text{ #moles/hr } (28.013) = 11559.00 \text{ #/hr}$
 $W_{AR} = 5.31 \text{ #moles/hr } (39.948) = 212.12 \text{ #/hr}$
 $W_{NO2} = 95.23 \text{ #moles/hr } (46.005) = 4381.06 \text{ #/hr}$
 $W_{H2O} = 28.16 \text{ #moles/hr } (18.015) = 506.26 \text{ #/hr}$

From Gas Table @ 1460° R

$$C_{PN2}$$
 = $\frac{\emptyset}{\ln T}$ = $\frac{52.867}{\ln 1460}$ = $7.2558^{B}/\#-mol\ ^{\circ}F$
 C_{PAR} = $\frac{\emptyset}{\ln T}$ = $\frac{41.9242}{\ln 1460}$ = $5.7539^{B}/\#-mol\ ^{\circ}F$
 $^{*}C_{PNO2}$ = $\frac{\emptyset}{\ln T}$ = $\frac{61.639}{\ln 1460}$ = $8.4597^{B}/\#-mol\ ^{\circ}F$
 C_{PH2O} = $\frac{\emptyset}{\ln T}$ = $\frac{58.556}{\ln 1460}$ = $7.3503^{B}/\#-mol\ ^{\circ}F$
 $C_{PPR.G.}$ = $\frac{412.63(7.2558) + 5.31(5.7539) + 95.23(7.2558) + 28.13(7.3503)}{(541.49 - 0.19)}$

= 7.2460 ^B/#-mol °F

^{*}Assume specific heat of NO_2 (MW = 46) is essentially the same as CO_2 (MW = 44).

Calculations For: Dewpoint of Product Gas

 $P_V = H_2O$ mol. fract. x P_{PG}

Where:

Pv = vapor pressure of water.

 P_{PG} = product gas pressure.

 $P_{V} = 0.0520 (102 \text{ psig}) = 5.304 \text{ psig or } 20.0 \text{ psia}$

Saturation pressure of H₂O @ 20 psia = 227.96° F

Dewpoint = 227.96°F

Mass Flow of Product Gas Constituents

 $NO_2 = (\#-mol/hr) (\#/\#-mol) = 95.23 (46.008) = 4381.34 \#/hr$

 N_2 = (#-mol/hr) (#/#-mol) = 416.63 (28.016) = 11672.31 #/hr

 $H_2O = (\#-mol/hr) (\#/\#-mol) = 28.13 (18.016) = 506.79 \#/hr$

 $A_{\rm p}$ = (#-mol/hr) (#/#-mol) = 5.31 (39.95) = 16772.57 #/hr

Unaccounted = 17644 - 16773 = 871 #/hr

Apparent Mol. Wt. = <u>17644 #/hr</u> = 32.58 #/#-mol 541.49 #-mol/hr

 $C_P = \frac{7.2460 \text{ }^B/\text{\#-mol} \text{ }^\circ\text{F}}{32.58 \text{ } \text{\#/mol}} = 0.2224 \text{ }^B/\text{\#} \text{ }^\circ\text{F}$

Calculations For: Recoverable Heat

$$Q_{REC} = W C_{p} (T_{IN} - T_{OUT}) = 17644 (0.222) (800 - 400)/1000 = 1570 MBH$$

Assume feedwater entering boiler is 300°F and 65 psig

$$W_{STM} = 1570000 = 1570000 = 1740 \#/hr$$
 $\Delta h = 1570000 = 1740 \#/hr$
 $\Delta h = 183.1 - 282 @ 65 psig$

Volumetric Analysis - Product Gas/Bleaching Air:

Constituent	# Moles/Hr in Blchng Air	# Moles/Hr in Pr. Gas Entg.	# Moles/Hr in New Pr. Gas	% By Volume
N ₂	74.93	416.63	491.56	76.57
Α	0.90	5.31	6.21	0.97
O ₂	20.10	0*	20.10	3.13
NO ₂	0	95.23	95.23	14.83
H₂O	0.71	28.13	28.84	4.49
			641.94	99.99

Bleaching Air: 2779 #DA/hr + 15.45 # H_2 O/hr = 2794.45 #/hr # moles DA/hr = 2779/28.96 = 95.96

*Assume all available O₂ combines with available N₂:

$$N_2 + 2O_2 ----> 2NO_2$$

Calculations For: Absorption Column Spray Water and Tailgas

Spray Water Required = 40.6 + 3.8 + 31.74 - 28.84 = 47.3 # mol/hr

or
$$\frac{47.3 \text{ # mol/hr (18.016 #/#mol)}}{8.33 \text{ #/g (60 m/hr)}} = 1.70 \text{ gpm}$$

or 47.3 # mol/hr (18.016 #/#mol) = 855 #/hr

Tail Gas	# Moles/Hr	Mol. Wt.	#/Hr
O ₂	20.1	32	643.2
N ₂	491.6	28.016	13772.7
NO	31.72	30.008	954.1
H₂O	3.8	18.016	68.5
A _R	6.21	39.948	248.1
Other	0.19	42.09	8.0
	553.62		15694.6

Apparent Mol. Wt. = $\frac{15694.6}{553.62}$ = 28.349

Calculations For: 50 Tons/Day of 61% Acid by Volume (66.124 #-mol/hr HNO₃) & Tailgas

Constituent	# Moles Ent. Col	# Moles in Product	# Moles in Tailgas
N ₂	491.56	0	491.56
A _R	6.21	0	6.21
O ₂	20.10	0	20.10
H ₂ O	28.84	40.6	3.8
HNO ₃	0	63.48	0
NO	0	0	31.74
Reaction: 3NO ₂ + H	₂ O> 2 HNO ₃ + NO		

Water in Tailgas ---->
$$\underline{P}_{TG} = \underline{0.5959 \ (1544/30)} = 0.0045 \ \#DTG \ (Saturated @ 85°F)$$
 $(P_m - P_{\lor}) \ R_{\lor}$ $(80 - 0.5959) \ (1544/18.016)$

% HNO₃ =
$$\underline{63.48 (100)}$$
 = 60.98 by Volume 104.1

%
$$HNO_3 = \underline{63.48 (63.013) (100)} = 84.5 \text{ by Weight}$$

4732

Calculations For: Product and Tailgas (By Molal Analysis)

Absorption Column Mass Balance:

$$W_{IN}$$
 = 491.56 (28.014) + 6.21 (39.948) + 95.23 (46.01) + 28.84 (18.016) + 855 + 20.1 (32)

= 20418 #/hr

$$W_{OUT}$$
 = 491.56 (28.014) + 6.21 (39.948) + 3.8 (18.016) + 31.74 (30.01) + 20.1 (32) + 4732

= 20415 #/hr

Tailgas = 20415 - 4732 = 15680 #/hr

Calculations For: Tailgas (By Molal Analysis)

$$C_{PTG} = W_{N2} C_{PN2} + W_{AR} C_{PAR} + W_{NO} C_{PNO} + W_{H2O} C_{PH2O} + W_{O2} C_{PO2} - W_{TG}$$

 $W_{N2} = 491.56 \text{ #-Mol/hr}$

 $W_{AR} = 6.21 \text{ #-Mol/hr}$

 $W_{NO} = 31.74 \text{ #-Mol/hr}$

 $W_{H2O} = 3.8 \text{ #-Mol/hr}$

 $W_{02} = 20.1/553.41 \text{ #-Mol/hr}$

Calculate C_P @ 350°F (810°R) - Value of \varnothing from gas tables

$$C_PO_2 = \frac{\emptyset}{InT} = \frac{51.911}{In 810} = 7.751 \text{ B/#-Mol}^{\circ}\text{F}$$

$$C_{PN2}$$
 = $\frac{\emptyset}{InT}$ = $\frac{48.61}{In 810}$ = 7.2584 B/#-Mol°F

$$C_{PAR} = \frac{\emptyset}{InT} = \frac{38.9994}{In 810} = 5.8234 \text{ B/#-Mol}^{\circ}\text{F}$$

$${}^{\star}C_{PNO} = \frac{\emptyset}{InT} = \frac{50.146}{In 810} = 7.4878 \text{ B/#-Mol}^{\circ}\text{F}$$

$$C_{PH20} = \frac{\emptyset}{InT} = \frac{48.419}{In 810} = 7.2299 \text{ B/#-Mol}^{\circ}\text{F}$$

$$C_{PTG} = 491.56 (7.2584) + 6.21 (5.8234) + 31.74 (7.4878) + 3.8 (7.2299) + 20.1 (7.7513) 553.41$$

7.2732 B/#-Mol°F

or

Cost Data

"Means Mechanical Cost Data", 19th Annual Edition, 1996 was used for unit price data for the majority of line items entered on estimating forms. Pipe fittings and accessories were entered as ±80 percent of run-of-pipe cost. Major equipment pricing, where not included in "Means", was developed from published cost of similar devices tempered by engineering judgement.

ECO costs were developed for a single process line, including equipment shown on the Process Flow Diagrams. Provisions for "Crossover" to permit any one of the five air compressors, for instance, is not included, nor is the provision to interconnect any other new device in one process line with its companion device in an adjacent process line. Additional expenditures to implement similar changes on a second line will not produce additional savings at the present production rate.

Cost estimate analysis sheets for each ECO are included in this section, followed by Life Cycle Analysis Summary sheets from the LCIDD computer program.

Cost analysis rough worksheets are presented in Appendix.

DATE PREPARED: 11/14/95

ESTIMATOR: PDL

							LOTINI	ATON. F	DL
PROJECT: HOLSTON AAP AF	REA B N	VITRIC	ACID		LOCA	TION: I	KINGSP	ORT, TE	NNESSEE
TASK DESCRIPTION	QUAN	ITITY		LABOR	EQU	IPMENT	N	MATERIAL	
ECO NO. 1	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
STEAM PIPING:									
6" ø Sch.40 Undrgr.	250	LF	16.55	4138	1.28	320	31.00	7750	\$12,208.00
3" Ø Sch. 80 Undrgr.	250	LF	17.65	4413	1.28	320	19.50	4875	9608.00
4" ø Sch. 40	150	LF	11.70	1755	1.40	210	10.60	1590	3555.00
2" Ø Sch. 80	150	LF	7.75	1163	.86	129	5.50	837	2129.00
Pipe Insul.	300	LF		2000				1000	3000.00
Turbin Mod. Cost		LS		10000				10000	20000.00
15000#/Hr. Stm. Surf. Cndns.	1	EA		10000		2500		30000	42500.00
Cond. Pump	1	EA		300				1500	1800.00
8" Condnsr Wtr. Piping	300	LF	23	6900	1.81	543	31.00	9300	16743.00
Pipe Ftgs & Misc.	1	LOT		10000				25000	35000.00
TOTAL				50669		4022		91852	\$146,543.00

DATE PREPARED: 11/14/95

ESTIMATOR: PDL

PROJECT: HOLSTON AAP AREA B NITRIC ACID LOCATION: KINGSPORT, TENNESSEE

PROJECT. HOESTON AA		D IVIII	IIO AOIL		LOOK		111001	OITI, ILIV	TEOOLE
TASK DESCRIPTION	Q	UANTITY		LABOR	EQ	UIPMENT		MATERIAL	
ECO NO. 2	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
STEAM PIPING:									
8" Ø Sch.40 Undrgr.	250	LF	17.40	4350	1.28	320	33.50	8375	\$13,045.00
3" Ø Sch. 80 Undrgr.	250	LF	17.65	4413	1.28	320	19.50	4875	9608.00
8" Ø Sch. 40	150	LF	23.00	3450	1.81	272	31.00	4650	8372.00
2" ø Sch. 80	150	LF	7.75	1163	.86	129	5.50	837	2129.00
Pipe Insul.	1	LOT		2500				1200	3700.00
DOWTHERM PIPE:									
2 1/2" ø Sch. 40	200	LF	9.20	1840	1.12	224	6.40	1280	3344.00
Pipe Insul.	1	LOT		2000				1000	3000.00
Hi Temp Pump (406 GPM)	1	EA		300				3438	3738.00
65 GPM Pump	1	EA		216				1375	1591.00
N₂ Blnkt. Syst.	1	EA		250				1000	1250.00
Unfired Blr. Vessel	1	EA		5000		2500		75000	82500.00
Misc. Acces. & Fittings	1	LOT		20000				40000	60000.00
TOTAL				45482		3765		143030	\$192,277.00

0007	COTIL	4 A T C	ANIAL	VOIC			DATE PF	REPARED:	11/14/95
COST	E2111/	/AIE	ANAL	1919			ESTIM	ATOR: F	PDL
PROJECT: HOLSTON AAF	AREA	B NITE	RIC ACIE)	LOCA	TION:	KINGSP	ORT, TE	NNESSEE
TASK DESCRIPTION	QUAN	ITITY	L	ABOR	EQUIP	MENT	MATI	ERIAL	
ECO NO. 3	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
FIBERGLASS COOLING TOV	VER								
600 GPM Ind. Dr.	1	EA		1500		1000		12000	\$14,500.00
Pumps & Piping	1	LOT		3500				7200	10700.00
Elect		LS		3000				5000	8000.00
Sitework/Pads		LS		5000				1000	6000.00
TOTAL				13000		1000		25200	39,200.00

DATE PREPARED: 11/14/95

ESTIMATOR: PDL

PROJECT: HOLSTON AAP AREA B NITRIC ACID

LOCATION: KINGSPORT, TENNESSEE

TASK DESCRIPTION	QUANT	TTY	LAB	OR	MA	TERIAL	
Insulation ECO NO. 4	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
1" CALCIUM SILICATE:							
18" ø Air Preheater	12	LF	5.40	64.80	9.35	112.20	\$ 177.00
18" ⊘ Tailgas Heater	25	LF	5.40	135.00	9.35	233.75	368.75
8" ø Tailgas Pipe to Turbine	120	LF	3.84	460.80	4.26	511.20	972.00
0.010 S.S. JACKET:							
18" ø Air Preheater	60	SF	4.03	241.80	.93	55.80	297.60
18" ø Tailgas Heater	125	SF	4.03	503.75	.93	116.25	620.00
8" ⊘ Tailgas Pipe to Turbine	315	SF	4.03	1,269.45	.93	292.95	1,562.40
18" ø Flange Sets (Insulation)	10	SF	13.45	134.50	2.71	27.10	\$161.60
18" ø Flange Sets (Jacket)	10	SF	4.03	40.30	.93	9.30	\$49.60
Subtotal			\$2,850.40			\$1,358.55	\$ 4,208.95
15% Conting							631.35
TOTAL Construction Use							\$ 4,850.00

COST	ECT	MAT	TE A	NA	I VSIS	4
CUSI				1177		,

DATE PREPARED: 11/14/95

ESTIMATOR: PDL

PROJECT: HOLSTON AAP AREA B NITRIC ACID LOCATION: KINGSPORT, TENNESSEE

	QUANT	ITY	LA	BOR	МА	TERIAL	
TASK DESCRIPTION ECO NO. 5	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
18" Semicircular							
Plate Heat Exchanger 14' Long	1	EA		100.00		5,000.00	\$ 5,100.00
Clayton Whsg. Waste							
Heat Steam Generator	1	EA		2,000.00		5,000.00	7,000.00
Condensate Cooler	1	EA		100.00		500.00	600.00
Cond. Rcvr/Pump	1	EA		300.00		1,500.00	1,800.00
1-1/4" ø Insulated							
Pipe & Fittings	1	LOT		7,500.00		5,000.00	\$12,500.00
TOTAL				10,000.00		17,000.00	\$ 27,000.00

DATE PREPARED: 11/14/95

ESTIMATOR: PDL

PROJECT: HOLSTON AAP AREA B NITRIC ACID LOCATION: KINGSPORT, TENNESSEE

TASK DESCRIPTION	QUAI	YTIV	LAE	BOR	EQUIP	MENT	MATIERIAL		
ECO NO. 7	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT	COST	UNIT PRICE	COST	TOTAL
Makeup & Fowtr. Pipe - 1" ∅	500	LF	4.65	4138	.57	285	2.89	1445.00	\$4,055.00
Steam Pipe - 1-1/2" Ø	150	LF	5.70	4413	.69	104	3.96	594.00	1,553.00
400 Series St. Stl. Econom.	1	EA		1755		500		185500.00	188,000.00
Waste Ht. Blr. System	1	EA		1,500		150		68600.00	70,250.00
Fdwtr Pump-46 PM/225 TDH	1	EA	72.50	1163			500	500.00	573.00
Temperature Controls	1	SET	150.00	2000			850	850.00	1,000.00
6"ø A3126RTP321 Pipe	40	LF	20.00	10000	1.50	60	60	2400.00	3,260.00
Heater Insulation		LS		300				1360.00	4,210.00
Steam Pipe Insul	150	LF	2.49	6900			2.23	335.00	709.00
Fdwtr Pipe Insul	150	LF	2.42	10000			2.16	324.00	687.00
Surge Tank - 100 Gag	1	EA		25				100.00	\$125.00
Pipe Fittings & Accos.	1	LOT		2000				5500.00	\$7,500.00
Subtotal				13,315			1,099	267508.00	\$281,922.00
**Cost W.O. St. Stl. Sect.									\$93,922.00

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95094
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY

FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #1 STM. TURB.DRIVE @ AIR COMPR.

ANALYSIS DATE: 12-21-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST \$ 146543.
- \$ 14661. B. SIOH
- C. DESIGN COST 15993. \$
- 177197. D. TOTAL COST (1A+1B+1C) \$
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$
- F. PUBLIC UTILITY COMPANY REBATE \$
- G. TOTAL INVESTMENT (1D 1E 1F) 177197.
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

	UNIT COST	SAVINGS	ANNUAL \$		DISCOUNT	DISCOUNTED	
FUEL	\$/MBTU(1)	MBTU/YR(2)	SA	VINGS(3)	FACTOR(4)	SA	VINGS(5)
A. ELECT	\$ 10.25	2325.	\$	23831.	15.61	Ś	372001.
B. DIST	\$.00	0.	Ś	0.	17.56	Ś	0.
C. RESID	•	0.	Ś	0.	19.97	Š	0.
D. NAT G		0.	\$	0.	20.96	\$	0.
E. COAL	\$.00	0.	\$	0.	17.58	\$	0.
F. LPG	\$.00	0.	\$	0.	16.12	\$	0.
L. OTHER	\$ 3.90	-10538.	\$	-41097.	14.74	\$	-605775.
M. DEMAN	D SAVINGS		\$	13050.	14.74	\$	192357.
N. TOTAL		-8213.	\$	-4216.		\$	-41417.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-)
 - (1) DISCOUNT FACTOR (TABLE A) 14.74
 - (2) DISCOUNTED SAVING/COST (3A X 3A1)

B. NON RECURRING SAVINGS(+) / COSTS(-)

	. , ,	,		
	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

- \$ 0. d. TOTAL 0.
- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 0.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ -4216.
- 5. SIMPLE PAYBACK PERIOD (1G/4)

-42.03 YEARS

6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)

\$ -41417.

7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= -.23

(IF < 1 PROJECT DOES NOT QUALIFY)

**** Project does not qualify for ECIP funding; 4,5,6 for information only.

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

N/A

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95094 ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080

INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY

FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #2 REJCTD HT CNVRTD TO 100# STM

ANALYSIS DATE: 12-21-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST \$ 192275.
- \$ 10576. B. SIOH
- 11537. C. DESIGN COST
- D. TOTAL COST (1A+1B+1C) \$ 214388.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$
- F. PUBLIC UTILITY COMPANY REBATE \$
- 214388. G. TOTAL INVESTMENT (1D - 1E - 1F)
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

_							
	UNIT COST	SAVINGS	ANN	WAL \$	DISCOUNT	DI	SCOUNTED
F	FUEL \$/MBTU(1)	MBTU/YR(2)	SAV	/INGS(3)	FACTOR(4)	SA	VINGS(5)
							111600
Α	A. ELECT \$ 10.25	-885.	Ş	-9071.	15.61	Ş	-141602.
Е	B. DIST \$.00	0.	\$	0.	17.56	\$	0.
C	C. RESID \$.00	0.	\$	0.	19.97	\$	0.
D	O. NAT G \$.00	0.	\$	0.	20.96	\$	0.
E	E. COAL \$.00	0.	\$	0.	17.58	\$	0.
F	F. LPG \$.00	0.	\$	0.	16.12	\$	0.
I	L. OTHER \$ 3.90	3445.	\$	13436.	14.74	\$	198039.
M	1. DEMAND SAVINGS		\$	-1855.	14.74	\$	-27343.
N	N. TOTAL	2560.	\$	2509.		\$	29094.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-) \$ -1080.
 - (1) DISCOUNT FACTOR (TABLE A)
 - (2) DISCOUNTED SAVING/COST (3A X 3A1)
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

- d. TOTAL
- \$ 0.

0.

14.74

- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ -15919.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 1429.
- 5. SIMPLE PAYBACK PERIOD (1G/4)

150.00 YEARS

-15919.

6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)

- \$ 13175.
- 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= (IF < 1 PROJECT DOES NOT QUALIFY)
- .06

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

-10.32 %

STUDY: 95094 LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080

INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY

FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #3 REDUCED WTR CONSUMP W/ CLNG TWR

ANALYSIS DATE: 12-21-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST 39200.
- 2156. B. SIOH
- C. DESIGN COST \$
- D. TOTAL COST (1A+1B+1C) \$ 43708.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$
- F. PUBLIC UTILITY COMPANY REBATE \$ 0.
- G. TOTAL INVESTMENT (1D 1E 1F) 43708.
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

	UN:	IT COST	SAVINGS	ANNU	JAL \$	DISCOUNT	DIS	COUNTED
FUE	:L \$/1	MBTU(1)	MBTU/YR(2)	SAV	INGS(3)	FACTOR(4)	SAV	INGS(5)
Α.	ELECT \$	10.25	-65.	\$	-666.	15.61	\$	-10400.
В.	DIST \$.00	0.	\$	0.	17.56	\$	0.
С.	RESID \$. 00	0.	\$	0.	19.97	\$	0.
D.	NAT G \$.00	0.	\$	0.	20.96	\$	0.
E.	COAL \$.00	0.	\$	0.	17.58	\$	0.
F.	LPG \$.00	0.	\$	0.	16.12	\$	0.
Μ.	DEMAND SA	AVINGS		\$.	0.	14.74	\$	0.
Ν.	TOTAL		-65.	Ś	-666.		Ś	-10400.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-)
 - (1) DISCOUNT FACTOR (TABLE A)

 - (2) DISCOUNTED SAVING/COST (3A X 3A1) 81424.
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

d. TOTAL

- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 81424.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 4858.
- 5. SIMPLE PAYBACK PERIOD (1G/4)

9.00 YEARS

5524.

6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)

\$ 71024.

- 7. SAVINGS TO INVESTMENT RATIO
- (SIR) = (6 / 1G) =
- 1.62

(IF < 1 PROJECT DOES NOT QUALIFY)

**** Project does not qualify for ECIP funding; 4,5,6 for information only.

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

N/A

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95094
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080
LLATION & LOCATION: HOLSTON ARMY AREGION NOS 4 CENSUS: 3

INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY

FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #4 INSULATE HEAT EXCHANGERS

ANALYSIS DATE: 12-21-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST \$ 4850.
- B. SIOH \$ 267. C. DESIGN COST \$ 291.
- C. DESIGN COST \$ 291.

 D. TOTAL COST (1A+1B+1C) \$ 5408.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0.
- F. PUBLIC UTILITY COMPANY REBATE \$ 0.
- G. TOTAL INVESTMENT (1D 1E 1F) \$ 5408.
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF MISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

FUEL	UNIT COST \$/MBTU(1)	SAVINGS MBTU/YR(2)		UAL \$ INGS(3)	DISCOUNT FACTOR(4)		GOUNTED JINGS(5)
A. ELECT	\$ 10.25	460.	\$	4718.	15.61	\$	73656.
B. DIST	\$.00	0.	\$	0.	17.56	\$	0.
C. RESID	\$.00	0.	\$	Ο.	19.97	\$	0.
D. NAT G	\$.00	0.	\$	0.	20.96	Ş	0.
E. COAL	\$.00	0.	\$	0.	17.58	\$	0.
F. LPG	\$.00	0.	\$	Ο.	16.12	\$	0.
M. DEMAN	D SAVINGS		S	2585.	14.74	\$	38103.
N. TOTAL		460.	\$	7303.		\$	111758.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-)
 - (1: DISCOUNT FACTOR (TABLE A) 14.74
 - (2) DISCOUNTED SAVING/COST (3A X 3A1) \$ 0.
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

- 'd. TOTAL \$ 0.
- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 0
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 7303.
- 5. SIMPLE PAYBACK PERIOD (1G/4) . .74 YEARS
- 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 111758.
- 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= 20.67
 (IF < 1 PROJECT DOES NOT QUALIFY)
- 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 19.96 %

LIFE CYCLE COST ANALYSIS SUMMARY

STUDY: 95094

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080

INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY

FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #5 INSUL HX S W/ NEW 30# STM SYST ANALYSIS DATE: 12-21-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST \$ 31850.
- B. SIOH
- \$ 1752.
- COST \$ C. DESIGN COST
 - 1911.
- D. TOTAL COST (1A+1B+1C) \$ 35513.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE \$
- G. TOTAL INVESTMENT (1D 1E 1F)

35513.

2 ENERGY SAVINGS (+) / COST (-)

DATE OF NIST	UNIT COST	USED FOR DIS SAVINGS MBTU/YR(2)	37.70.30	FACTORS JAL \$ INGS(3)	OCT 1993 DISCOUNT FACTOR(4)		COUNTED INGS(5)
A. ELECT B. DIST C. RESID D. NAT G E. COAL F. LPG L. OTHER M. DEMAN N. TOTAL	\$.00 \$.00 \$.00 \$.00 \$.00 \$ 3.90 D SAVINGS	460. 0. 0. 0. 0. 0. 664.	\$\$\$\$\$\$\$\$\$	4718. 0. 0. 0. 0. 0. 2589. 2585. 9892.	15.61 17.56 19.97 20.96 17.58 16.12 14.74	\$\$\$\$\$\$\$\$\$\$\$	73656. 0. 0. 0. 0. 38159. 38103. 149918.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-)

- 14.74
- (1) DISCOUNT FACTOR (TABLE A)
- (2) DISCOUNTED SAVING/COST (3A X 3A1)
- -1946.

-132.

B. NON RECURRING SAVINGS(+) / COSTS(-)

•	NON RECORDER	SAVINGS(+)	YR	DISCNT	DISCOUNTED
	ITEM	COST(-)			SAVINGS(+)/
		(1)	(2)	(3)	COST(-)(4)

- d. TOTAL
- \$ Û.

- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ -1946.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 9760.
- 5 SIMPLE PAYBACK PERIOD (1G/4)

3.64 YEARS

6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)

- \$ 147972.
- 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= (IF < 1 PROJECT DOES NOT QUALIFY)
- 4.17

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

10.73 %

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95094 ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY

FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #7 RECOVERED STM INJECT @ TLGS TURB

ANALYSIS DATE: 12-22-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST \$ 281920.
- B. SIOH
- \$ 4125. N COST \$ 4500. 4500. C. DESIGN COST
- D. TOTAL COST (1A+1B+1C) \$ 290545.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$
- F. PUBLIC UTILITY COMPANY REBATE \$
- 290545. G. TOTAL INVESTMENT (1D - 1E - 1F)
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

FUEL	UNIT COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)		DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5)	
A. ELECT	\$ 10.25	683.	\$	7002.	15.61	\$	109304.
	\$.00	0.	\$	0.	17.56	\$	0.
C. RESID	\$.00	0.	\$	0.	19.97	\$	0.
D. NAT G	\$.00	0.	\$	0.	20.96	\$	0.
E. COAL	\$.00	0.	\$	0.	17.58	\$	0.
F. LPG	\$.00	0.	\$	0.	16.12	\$	0.
M. DEMAN	D SAVINGS		Ş	3835.	14.74	\$	56528.
N. TOTAL		683.	\$	10837.		\$	165832.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - -412. A. ANNUAL RECURRING (+/-)
 - (1) DISCOUNT FACTOR (TABLE A)
 - -6073. (2) DISCOUNTED SAVING/COST (3A X 3A1)
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	ΥR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

- 0. d. TOTAL \$ 0.
- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ -6073.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 10425.
- 27.87 YEARS 5. SIMPLE PAYBACK PERIOD (10/4)
- 6. TOTAL NET DISCOUNTED SAVINGS (2N5+30) \$ 159759.
- 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= . 55 (IF < 1 PROJECT DOES NOT QUALIFY)
- .06 % 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

Pg 55

Extracted to

Go with

Executive Summany

4/19/96

Conclusion

Four of the six ECO's evaluated produce savings to investment ratios greater than 1.25. Not all of these conservation concepts can be accomplished simultaneously. ECO No. 5 is predicated on being incorporated with No. 4, and these two concepts should be considered as one.

Neither ECO No. 1 nor No. 2 is compatible with ECO No. 5, since each of them negates the availability of high energy tailgas on which ECO No. 5 depends.

ECO No. 3 can be incorporated with any combination of other mutually compatible ECO's.

Although integral implementation of ECO's No. 1 and No. 2 could be accomplished, this combination can be eliminated by inspection because No. 1 requires increased steam flow from the central plant at 300 psig, while No. 2 produces excess 100 psig steam to displace central plant steam.

The available groupings of qualifying ECO's do not produce an aggregate cost greater than \$300,000, and therefore cannot be considered for ECIP funding.

We recommend implementation of ECO's No. 7, which at current production rates, will produce calculated electrical savings of 683 x 10⁶ Btu/yr \$3,835 per year in electrical demand costs.

Abbreviations

AESE: Affiliated Engineers SE, Inc.

AOP: Ammonia Oxidation Process

ASME: American Society of Mechanical Engineers

bhp: Boiler Horsepower

ECO: Energy Conservation Opportunity

(ECIP): Energy Conservation Investment Program. This is a federal government program which allocates funds for projects which increase energy efficiency.

HDC: Holston Defense Corporation

HAAP: Holston Army Ammunition Plant

Excess Air: A term used to describe the amount of air that is supplied to fossil fired boilers over and above the amount theoretically required for complete combustion.

hr/yr: hour per year

kWh: kilowatt-hour

lb/hr: pounds per hour

lb/mo: pounds per month

(LCCID): Life Cycle Cost in Design. Government software package used to evaluate projects for ECIP funding.

MBtu/hr: thousand British thermal units per hour

MMBtu/yr: million British thermal units per year

psig: pounds per square inch gauge

SIR: Savings to Investment Ratio

Appendices

DETAILED CALCULATIONS

Made By: PDL	Date:	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

VOLUMBTRIC ANALYSIS OF PRODUCT GAS

COMPOSITE MOLECULAR WIEGHT OF AIR = 28.96 (FREI	n Marks Hoder
DRY AIR SUPPLIED = 16465 #/HR = 568.54 = m	0155/HR
AMMONIA SUPPLIED = 1088 THR - 63.88	3 #molos/HR
Ammoura Oxidation:	
4NH3+702 -> 4NO, + 6H20	
APPARENT ADDITIONAL No OXIDATION:	
$N_3 + 2O_2 \longrightarrow 2NO_2$	FROM MARKS HNDBK
CXYGEN SUPPLIED = (568,54 # MOLES/HR) (20,	(948) = 119.10 # mois 5/HA
Oz USED IN 100% OXI DATION OF NH3- 63.88 MEC	THR (7/4) = 111.79 mois
Co USED IN NO CXIDATION = 119.10 - 111	
NO. IN PROD. GAS = 65.88(4) + 7.31(2) =	
Na USEC IN Na OXIDATION = 7.31 = 3.	transfer over the company of the contract of t
7_80 FROM NH ₃ OXIDATON = 63.88 $\left(\frac{6}{4}\right)$ = 9	come communicación de la constante
HO IN AIR = 0.005=#HSO/H DA (16465# DYHE) =	= 5.03 # MOIE HA

Made By: PDL	Date: 12-1-95	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

VOLUMETRIC ANALYSIS OF PRODUCT GAS

FROM MARKS HNABK				
	# MOLES/HR	# MOLOS/HR	# MOLES/HR	90 BY VOL
CONSTITUENT	INAIR	USED/PROC	WOLIN PROD GAS	DRY GAS
No 568546	•	(2/66)	440.28	85.20
ARGONISHES				1.03
ARGOMISBELL	4.5.31	0	5.31	
NO	0		0	13.78
		0	71.19	
420	5.03	95 87	EAS = 51	6.78 /HR
$\mathcal{O}_{\mathfrak{Z}}$	119.10	(119.10)	0	
7.1.5			617.63	
WAT GAS				
7/2 BY VO	<u> </u>			
No = 71,29				
AR = 0.86				
	PARTIA	L TRESSURE	PHO = (0.1633)	(102 // N°)
NO = 11.53			*/30	
Ho0 = 16.33			= 16.66	P51G.
7750 - 16.33				
	۵	BSDCULS F	R. = 16.6.6+14.97	= 31.63 PSIA
	/ 1.		.,	
SATULATIO	N 7-012 05	- H C @ 21 /	3 Pz 1A = 2 53.	70 = 37,000
- ALUE - NILL	~ 15011.05	عادات ت الم	21217-033.	
		e e per e e e e e e e e e e e e e e e e	·	
		· · · · · · · · · · · · · · · · · · ·		
and the control of th		A CAMPAGNA CONTRACTOR CONTRACTOR	the second of th	

 Made By:
 Date:
 Job No:

 PDL
 12-1-95
 95094-00

 Checked By:
 Date:
 Sheet No:

 3
 of

Calculations For:

PRODUCT GAS

CP	, -	_ V	N _N	CP.	+	W.	R C	PA.	+	W_{N}	$\mathbf{g}^{C_{\theta}}$	vo+	u	Энэ	C	ρ_{\perp}	0				
CPPRA	۰.							Npi	2.6.			>					-				
								••••													
W_{λ}	ح ا	=	44	0.2	8. #	mo.	165/	HR!	(28	3.0	13)) =	,	2 7	33	3.	56	, 7	HR		
u'_	2	2		5. 3	1 #	MOL	5/4	e I	(3)	9.9	48)	-			21	2.	18	2 ⁻	±/H	R	
u)	NO.			21. /	19	±111	OLFE	/#R	('	16,	.00	ر5	=	j	32	75	. /	2	#/	HR	
W	H,0	4		100.	25	#	MOL	i 5/	HK	(/:	8.01	s)	=		18	16	. 8	7,5	#/ _K	(R	
														/	7	6:	37.	65	5,#	HR	
$C_{P_{N_3}}$	-	0.	.22	7-+	0.0	00.	02	921	(12	60)) =	0.	26	4	B/#	٦٥	-				
$C \rho_{A}$	1 =	4	. 97	72/	39.	94	8					= 0	. /	2 9	1 3	#	, =	_) 50	-0	Buf
		=	-									= _C	7,	10	8	8/2	¥°/	> ر =)	В	_ 6.
				ļ	!	······.															
L.f	4,0	- 0	1,4	33	+ 0	.00	CC	16	60	al E	و	- (م کم	15	4		3	· -			···; ·
C	P_{P_k}	.G.	= 1a	33.	3.50	6 (O.	(/نشاد) /	ا.را2							0.1	08)	+12	16.	85 <i>c</i>	.454
		:		: :			······································				76	3	7 . Cc	5		:					:
			= (D. 6	5,	3	3/	# 0	=					•••••	•						
								i					:								
<u> </u>								'				i				:					

Made By:	Date: 12-1-95	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

RECOVERABLE HEAT

Proc =	W Cp (T,,	- Tour) = 17638	(6.25 3)(800	-400)/1000
	_ 1795.01			
Assumo	FÖÖDWATER	εντεκινό Βοι	LōR 15 30	00°F
W=7A = -	178 50 00 B7	17850	00 = 198 282 @6	0 #/HR. 5 PSIG.
	E ANALYSIS # MOLGS/HR IN BLCHNGAIR	- PRODUCT GA #MOCES/HR IN PRICAS ENTG	MMOLDS/AR	NG AIR: OB BY VOL
No 95.96(.78)		440.28	515.21	72.05
A 95.96(100 Oz 95.96(12094		5.31 O	6.21 20.10	0.87 2.81
NOs		71, 76	71.76	10.04
H ₂ O <u>15.45</u> 18.013	- 0.86	100,85	101.75	14.23
BLGACH *noisz	NG AIR: 27 TAME 2779/28	79 ± DAY, + 15.4.	5#4,5/HR = 27	94,45
	$+2C_2 \longrightarrow$	2NO2 CON	(BIN65 W/)	7 V A (L NEET - N

 Made By:	Date:	Job No:	
PDL	12-1		
Checked By:	Date:	Sheet No:	

Calculations For:

PRODUCT & TAILGAS

CONSTITUENT	1 1 7 10	± MOLES 1 PROD	# MOLGS IN TAILGAS	
N2 515,2-3		O	505.16	· · · · · · · · · · · · · · · · · · ·
A	6.21	0	6.21	
03 .	0	O	0	
NO2 71.76+6	30.10 = 91.86	. 0	0	
H20 /	101.75	66.394 an	UP 4,74 VAPOR	
HNO3 91.86	a) = 0	61.24	0	
NO 9/3		0	30,62	
		127.63	546.73	
REACTION				
3NQ+	- /4 ₂ O →	2 HNO + 1	10	
WATOR IN ROA	спорэ <u>'9/.</u> З	86 - 3 <i>c</i> .	62 #MOLOS/HR	
WATER IN TA	ILGAS - 15	450 #/HR (0.0 .00 - 6.0055#	0055 # H. DG) = H. H. DG X 18.015)	4.74 #MOLE HR
PRODUCT →	61.24 NOLES/	3013/4nois)+	(66.39 ME) (18.0	715 th move)
	= 5055#/HR	<u> </u>		: :
% HNO3=.	61.24(100) - 4 127.63 61.24(63.013)	7.98 BY Vol	umo By WIOGHT	

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479
 Made By:
 Date:
 Job No:

 PDC
 11-9-95
 95094-00

 Checked By:
 Date:
 Sheet No:

 of
 Of

Calculations For:

ABSORPTION COLUMN OUTLOT FLOWS (RATED PRODUCTION)

1.9 UND - 50 TPD(2000#5) - (030#/1)
61% DILUTE HNO3 = 50 TPD (2000#5) = 6830#/H
HNO3 MOL. W7, = 63.016
HNO3 = (0.61)(4767) - 40.34 # moce/HR 63.016
H.O = (0.39) (4462) = 147.85 # moco/HR 18.016
ASSUME TAILGAS CONTAINS WATER VAPOR QUANTITY
EQUAL TO AMOUNT PRESENT IN SATURATED AIR @ 60PSIG AND 85°F.
HD = 0.0055 ## (15450 /HE)= 85#/HR
$\frac{\# \text{moc} = 5/\text{HR} = 85}{18.016} = 4.72$
SPRAY WATER ROD = 90,20 + 4.72 - 45,45= 49,27 # 00/H
OR 79.72 MK (18.016 /4MOLA) _ 5.06 GPM 8.33 4/6 (60 M/HR) OR 2530 4/HR
8,332/6 (60 M/HR) OR 2530#/HR
TAIL GAS # MOLES/HR MOLIWT, MOLOS
0.38
N_2 435.64 28.016 15.55 MOL.WT = $\frac{498.29}{17.72}$
NO 45.82 30.008 1.53 = 28.12
H ₂ O 4.12 18.016 0.26
498.29

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479 Made By: Date:

12-4-95

Job No: 95094-00

Checked By:

Date:

Sheet No:

Calculations For:

PRODUCT AND TAILGAS (BY MOLAL ANALYSIS)

SPRAY WATER ADDOD = 0.3 GPM (8.35 /CAL) (60 //HE) = 150.3 #/HR TOTAL PRODUCT = 5205 THR ABSORPTION COLUMN MASS BALACO: Win = 505.16(28.014)+621(39.948)+91.86(46.01)+101.75(18.013)+150 = 20609 #/HR Wout = 505.16(28.014)+ 6.21(39.948)+4,74(18.013)+30.62(30.01)+5205 = 20610 #/HR TAILGAS = 20610 - 5205 = 15405 #/HR PRODUCT TO HNO3 = 61.24 (100) = 45.04% BY VOL PRODUCT % HNO3 = 61,24(63,013 (20) 74,14% BY WT. CALCULATE ADDITIONAL EPLAYWATER REQUIRED TO PEDUCE 61% HNO BY WIGGHT: .61(5205+W) = 61.24(63.013) TOTAL PRODUCT = 5205+1121 W = 1121 JH/HR = 6326 #/HR SPRAY WATER = (1121.4 150.3) = 2.5 GPM

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608

(904) 376-5500 FAX (904) 375-3479

Made By:	
BO.)

Date:

Job No: 95094-00

Checked By:

Date:

Sheet No:

Calculations For:

ENERGY INVENTORY AT AIR PREHERTER

EXISTING SYSTOM
HEAT LOSS FROM BARE PIPE:
REF. SCHULLOR HOAT TRANSFOR TABLES 18 P @ 1200 F PIPE OFOR TOMP BARE - DULL
Q = 54455 BTUH/FT (15 FT) = 980.2 MBH
HEAT TRANSFORRED TO AIR:
$Q = W C_{p} \Delta T = 16556 (0.24)(625-100)$
= 2086.1 MBH
HOAT ROMOVOD FROM PRODUCT GAS:
Q= 980.2+2086.1= 3066.3 MBH
HEAT TRANSFORRED TO WATER @ CONSERTER:
$Q = \frac{500}{1000} (GPM)(\Delta T) = \frac{500}{1000} (77)(140-65)$
= 2887.5 MBH

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479
 Made By:
 Date:
 Job No:

 PDL
 11-12-95
 95094-00

 Checked By:
 Date:
 Sheet No:

 ______ of ______
 _______ of ________

Calculations For:

COOLING WATER AT CASCADE COOLER

	EXIS	TINC	, 5	YS 7	ON	1					
	EXIS Q=(1	LBS E	VAP/	(F)(9	50)+	(100	76 – TI	35 50A	F)(100°-	75°)	
						.,					
	LBS	GVAP/	1416 =	= V V							
	4018,7 39/3,7	7 7 (1000) = 9	950	W+	1500 1000	ų <u>≤</u> ≈0(≥ S) - <i>6</i>	?5 W		
	$\omega =$	4018 3413	700	- 25	sec.	-	366	65 [#]	/HR		
			92	5							
	DRAI	N =	154	45 -	392	7 =	1152	0#/1	4R		
				.							
					i	· · · · · · · · · · · · · · · · · · ·					
							ļi				
											<u>.</u>
			· · · · · · · · · · · · · · · · · · ·								
							: 		: :		
					: :	:	· ·			÷ ÷ · · ·	
:				:							
		-									
;			•		:						
. :	<u> </u>										

Made By: PD L	Date: 11-9-95	Job No: 95094-00		
Checked By:	Date:	Sheet No: of		

Calculations For:

ENERGY INVENTORY AT ABSORPTION COLUMNS

N		- WAIBE CON		,06.		
		(0.0065##			85 * /H	
	=	44,35#/h	4R			
	HBAT 1	R&mov&D=	44.35(h ₄	(a) = 44.35 /6	<u>(873)</u> <u>-</u> 38	,7MBH
	APPROX.	HEAT RET	movod F	ROM GAS	•	:
		= W CP 27.				
			= 115.9			
	From	TECHNICAL	L ROPOR	7 No. H	DC-39-77	7,
		GNT ACIE				
	740	COLUMN	1 15 11	2.5 MBH	MATGRAF	42 /2
	RQ, D. C	00LING U)ATER:		APPGN	JOIX)
н Wr	r.GPn1 =	(38.7+11 (2)500.45-		15.5 2	R 7750 [±]	HR
< W	57M =	38,71 11	<u>5.9</u> = 3	0.9 OR	15 445	HR
	·					

Made By: Date: 11-12-95

Job No: 95094-00

Checked By: Date:

Sheet No:

Calculations For.

WATOR CHILLER

					EXTENO	
				4 4 4 4	ACF THO	5
A	SSUMO	BOTH - CHILL	CE 576	AM RO	QUIROMO	7W75
ARE	- 22.	5 #/HR s	5757M 1	POR TON	OF ROFI	216.
701	บร = (115.9+38	3,7)MBH	- 1. 44	/ 4)<	
		(2) 12.000	MBH/TON	- 6.77	70103	
		6.44 X				
BA	120MOT	KIC CON) DENSE 1	e:		
					45.8) *,	issumo
			7.74			, , , , ,
		=	151640	BTUH		TEMP.
<i>)</i>	rr D	T := 2	o°F:			
	C. FN	500	(20) =	15 OR	7580 [#] //	IR
				;		
			·			: : ::
4						
	······································			ennomentales en la companya de la c Esta de la companya de la comp		
•						

FAX (904) 375-3479

Checked By:

Date: 12-5-95

Job No: 95094-00

PDL

Made By:

Date:

Sheet No:

Calculations For:

TAILGAS (BY MOLAL ANALYSIS)

	CPTO = WW. CPN + WAR CPAR + WND EPNO + WHOC CPHOO	
	w_{76} .	
	White 505.16(28.013) = 14151.05	•
	WAR = 6.21 (39,948) = 248.08	:
	WN0 = 30.62(30.01) = 918,91	
	$u^{1} = u^{7} + (18.015) = 85.39$	
	CALCULATE Cp @ 350°F (810°R)	
	Cpn = 0.227 + 0.0000292 (810) =0.251	
	CPAR = 4.9.72/=9.948 = 0.124	
	CPNO = 4,972/30,01 = 0-177	
	CF = 0.432+ 2.0000 No 6 (840) = 0.446	
	CPTG = 14151,05(.251) + 248,08(0.124) + 918,91(0.172) + 85.39(0.17	46)
	15463.43	
	=0,246 8/407	
	TAILGAS	
	PROP. GAS A A A PRIP. GAS	
	1070° = 7	
	Cp = 0.253 = 1	
:		

Made By: PDL	Date: 12-5-95	Job No: 95094-00		
Checked By:	Date:	Sheet No:		

Calculations For: _

TAILGAS HEATER

CALCULATO			/NES U	sing Ei	(157126	
SYSTOM	PARAMETE	rs:				
EFF =	Tr.G.OUT -	TTG.IN	785 -85	5 - 0.7	,,,	
	TP.G. IN -	Tra. IN	1070 -8	5		
,						
USING CAL PARAMET	CULATOD	EFF, De	TERMIN	5 PROC	éss •	
7.6. out =	T7.1N + 0.	711 (TP.G.IN	- Trom):	= 85+0.	711 (1205 - 8	'5)
	881°F					
Précev.	Wil CARCOTI	COUT - TOIN)= 15403	.43 (0.246	.)(881 – 85)
	= 3,017,4	150 BTU	4			
700000		DRECOV.	100	3017450	>	
	= TPG, IN -	WPG. CPPG.	= 1205-	17637.65	(0.253)	
	= 529 %					
					1435 05	
ω_{ε} x 1570	= WT. CF	Ta. (Traout -	T.G .IN)=	1546343 (435 - 85)(0,296)
	= 1,320	,235BT	u H			
$\Delta Q =$	3017450	-13262	25 = /	691215	BTU H	
* AZOUS DG	SHOULT	BE AF	PROXIMA	TOCY 50	RUAL TO	
THE RODU	CTION IN	PIPE LOS	S TO A	TMOS. BY	ADDING. 1	NSUL.
QINSUL SU	= 980agc - E = 116912	- 41900+ 55	4300 - 349	00 = 1,45	7,700 BTU	i H
To ERRO	R = 116912	15-1457700	$y^{(m)} = 13$.8%		

Made By: PDL	Date: 12-5-95	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

TAILGAS PIPING

CALCUL								
MTL	- 6".	HCI -	- Usō	A51	TM A	312 (SRADG	TP3.
Sep	4. No.	= 1000) P/:	58				
Ρ=	90 PS	16 @	800°	F				
	5 <i>E</i> :	- 12858	o P5/					
5	CH No	128	(90) 350	'= 7	•			
Usā	SCHED	ucō 10	? 5 -	> I	0 = 6	. 357	' /N	
				A	e07 =	3/.7	1102	
Par RT,	- P2 R	νν. Γ ₂						
STANDA	RD ATN	105 PH6R	e; 5	18.7	er,	4.696	PSIA,	0.0765
V =	14.69	<u>6(/0.07</u> 518.7 ((90 + 10	260° f 4.696) =	4,4	57 F	1/4
V=		5.43 */HI MHR (197 F	FPM
PIPE D								
			t. ii.	,)	: • •			

Made By: PD L	Date: 12-5-95	Job No: 95094-00		
Checked By:	Date:	Sheet No:		

Calculations For.

TAILGAS PIPING

NRS = VDP - 5197 F/min (6.357 IN) (60 MIN/HR) 12 M/FT (4.457 FT3/#) (0.081 =/FT-HR)
= 457,559
$\Delta P = 3.4 \times 10^{6} + 10^{3} \times 3.4 \times 10^{-6} (0.008) (100) (15403.43)$ $3.4 \times 10^{-6} (0.008) (100) (15403.43)$ $(6.357)^{5} (1/4.457)$
= 0.28 PSI
ASSUMING TAILGAS PRESSURE LEAVING TAILGAS HEATOR 15 60 PSIG, CALCUCATE STEAM PRODUCTION
CAPABILITY OF HEAT RECOVERY BOILER ASSUMING PRODUCT GAS TEMPERATURE LEAVING THE BOILER OF 400°F, FEEDWATER ECONOMIZER OUTLET (BOILER
INCET) TEMPERATURE OF 300°F, AND 50°F SUPERENT.
W= WRG. CRG (TRG IN - TRG, OUT) = 17637,65(0,253)(529-400) STM (hstmout - hstm) (1210.0 - 280) = 619 #/HR @ 360 F & 78 PSIA
WWETCAS = WTG. + WSTM = 15403.43+619 = 16022 HAR
V _{STM} = 6.045 F7/± FROM KEENANG KOYES WET GAS = 6.045 (619) + 4.457 (15403.43) = 4.518 FT/± 16022

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

Calculations For:

TABLE /

Ammonia Vaporizor:
Q = 694 #/HR (1273 B/# - 244 B/#) = 714 126 BTUH
QLESS = 694 #/HR (18/4=) (275°-60°) = 149210 BTUH
MIXER:
MIXER: (TRANSMAIR) = 16556 #/HR (0.24 /4°F) (625-580°) = 1788048TUH
QTEAMSE (NH3) = 1080 = /HR (0.54 74) (580-275°) = 177.876 DTUH
CONVORTOR:
CLNG.WTR: QREJ. = 38499 #/HE (13/40-65) = 2.887,425 BTU H
QREACTION = 7136.1 BTUH - SEE NEXT SHEET
AIR PREHEATOR:
PREJ. (AIR) = 16556#HR (0.24 / 625-100) = 2,086,056 BTEH REF. SCHULLER HT. TRANSF. TABLO
QREJ (ATMOS) = 54455 BTU H=T (15FT) = 816825 BTU H
TAGOUT = TAGIN - QROTAINT CROTAIN 1470-2086056+816825 - 819.7 TAILGAS HEATER: WAG CAR 17644(0.253) = 819.7
TTG OUT = TTGIN + 6FF (TPGIN - TTGIN) = 85+ 0.711 (819.7 - 85) = 607.4 F
QTG=WCPAT=15450 (0,248) (607.4-85) = 200/528 B74 H
ORGIATMOS = 9997(21) = 209937
TPGOUT = TPGIN - (QTG+QREJAT) = 819.7 - (2001528+ 209937) = 324.3
QREJERS WOLD DT = 17092 (0.253 /4074-105)
= 2,172,5165 BTUH
QREJONDONS = 673,700 BTWH - SEE NOX7 PAGE
QRENT = 0.8c (6086.7) = 4,869,4000700H

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

REACTION HEAT TABLE 1

CONSTITUENT	HEAT OF COMBUSTION	CONSTITUTION LBS/HR	SYSTEM NOT HEAT
NH3	11633/#	1088	(1,265,344 BTU)
03		- .	
NO2 (1443.7)+	33. XID /mor (9.48x109 8)	(f) 2939	(4,242,963 BTW)
		1287	(1,858,042BTUH
	68273/4(LI		11,784,767 BTa
<u> </u>	2- 4=1856,0-313,8=1	1542,2	2,717,665 B741
		, Ne	= 7,136,082 B
3 NO2 + H	0 -> 2HNO3-		
20NS71740 NT	HEAT OF	CONSTITUENT	≤y576M
	COMBUSTON	LBS/HR	NOT HEAT
NO2	(1443.7 ^B /±)	4226	6,101,076
Ho	6827 8/#(LIQU	10) 552	(3768504BTUH
	ht= 1530,3-309.8 = 122	0.5	(673716 BTUH
HNO3	1190 By (Liqui	D) 4025	4,789,750 814
NO ha	hs= 206 8/# (1296 8/#)	919	829 150 (1,191,024) 3741
			•

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

TABLE 1

<u>i-/</u>	RODUCT
	SOLUTION - 198.2 #MOLOS/HR.
	HNO3 - 61.2 # MOCOS/HR
	REFERENCE HEAT OF DILUTION OF ACIDS TABLE
	$7) = \frac{198.2 - 61.^2}{61.2} = 2.2$
	D = 2952 Cal/moi = 12351.168 Jouce =/mol
	LEAT OF DILUTION = 12351.168 Douis / MOC (61.2 # NICK / HE) (9.48 x in
	= 7/6 BTUH
	HEAT ABOUS AMBIENT:
	Q = WCp DT = 6830 THR (0.64 9#°F) (87-60)
	= 118022 BTUH
935.	arption Columns:
	QRE TOAS WOL CO DT = 17092 (0.253) (105-85)
<u>;</u>	= 86,485 BTUH
	QREJUDENS - O -> ALL CONDENSATION IN

4		
_	=_	==

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

TABLE 1

Tar		:					•						
FROM	r Ke	ENA	ب لا	KAY	ō @	324°	F(78	4°R)	Pr.	= <i>5.1</i>	44)	h,=1	87.92
	F	, = Y ₃ =	P_{R_j}	(P)) = 5.	144 (-	15 73)	= 1.0	57	· .			
		HOTHE	2R =	119.	4								
	h.	:			1 1	2THEAR) = 18	87.92	- 0.	725 (187.9	2-11	9,4)
	7		***********	.2 B/ 18°R	***************************************	118	3°F						
ω	KTOR	= (1) ₇₆	Δh 545	- 15	450(187.9. 2549	2 - /: S	38.2) =	3 <i>01.</i>	8 1ન	P
(2 _{TUR}	8 =	30	/.გ(১	545)	- 76	8174	вти	Н				
		- 1	1			5450 15450		: .					33 BT 1418
			y	580 l	ļ								
				:	: :	?. Co.		: 0 .		:		:	
		1		*	:	POCK 155				195	S	CF1	
		PMTI	₹ =	(10	95-	302	(254	(5)	= 2	018	.2/	NBH	4

 Made By:
 Date:
 Job No:

 PDL
 11-12-95
 950 95

 Checked By:
 Date:
 Sheet No:

Calculations For:

TURBING DRIVE FOR AIR COMPRESSOR ECO#1

Using	FIG. 4 (ATTACKOZ) FROM MARK'S HANDBOOK:
	$c = Concert = \frac{(115 + 14.7)^{2}}{14.7} = 2.974$
HP=	69(41975CFM)(1440)(1.03/2) - 859
FREM	Meures Diackan: 41071859 A 1521
ر ۵	$_{3} = 1271 B/_{44} - 7542 E/_{44} = -329 B/_{44}$
57.5	411 RQD. @ 75% Tare EFF:
	W= 859 AP(2545 /HP) = 12730 #/HR 259(.75)
75 , 1,2	L J'IN FR FOR CONDENSER:
2	OND. TOME = 101°F @ 2" HG
For	95% GUALITY STEAM :
	= hf + z(hg-hf) = 69.1+,95(1036.6)
	= 1053.9
Rec.	= 10:30(10525-65) = 72536 MEX 1000
'	WTR = QCCND - 13228 500 (AT) = 500 (95-65) = 835 GPM

 $\Sigma_{dng} = 227[(1.08R_c)^{0.203} - 1]$ $\sum_{dng} = 0.0456 \ \overline{mc_n} \ \Delta t$, where c_r is the specific heat at stant volume and Δt is the isentropic temperature rise. A tiplier of 0.147 applied to the above Σ values gives the bhp 100 ft³/min at 14.4 psia and 60°F. Figure 4 illustrates a ular empirical solution for Σ , wherein an arbitrary efficiency of 68 percent is applied at $1.5R_c$, 78 R_c , and 87 percent at $4R_c$. Mechanical efficiency of ercent is widely accepted, which includes loss allowances percent for piston-ring friction and piston-rod packing 3 percent for gearing friction of the crosshead, slipper es, connecting-rod pins, and crankshaft bearings. The r losses are dissipated by convectional air circulation in ne sizes under 300 hp and into the lubricant system in er sizes. The ring and packing losses are mostly absorbed he jacket-water system. Where the cylinder power is less 100 hp, these losses should be doubled.

perature Rise

on compression is essentially an adiabatic function, espewhen referred to the internal cylinder conditions. The pression-temperature rise follows the equation

$$T_2 = T_1(KR_c)^{\sigma/\eta} \tag{5}$$

re η represents the heat leak factor applied in a manner istent with the thermal efficiency. These factors are less 1.05 for normal water-jacket cylinders, 1.09 for dryet cylinders, 1.11 for forced-air-cooled cylinders with fins, 1.15 for high-velocity water-jacket cooling and the expancycle, curve CFD on Fig. 1. There was a time when water injected into the suction of air compressors to reduce the narge temperature; when the speed of machinery was ased and the clearance volume reduced, the practice was s hazardous. The temperature drop was substan-1.75. The scheme is still applied in chemical esses to wash out unsaturated gums and to suppress the narge temperature of exothermic gases. The liquid is ly a light solvent of the same character as the gas and is ized into the suction line. A short, 10-s blast of steam 2 or 4 h can usually clear the gums from a cylinder. ne temperature behavior is only consistent below $4R_c$; nd this, the cylinder cooling effect is perceptible because e reduced mass flow at higher Rc operation. European ice of process sizing includes a warm-up factor, which mes the gas is heated 20 to 40°F in passing through the vlinder and suction valves. Such a correction comples the volumetric efficiency by a judgment factor of 0.95 20. Thermocouple probes in the suction valve and in the stream show no such evidence at the ambient-temperarange. American practice has always disregarded such ctions. The warm-up factor also allows for valve and 1-ring leakage. If such leakage is perceptible, the temperrise is usually cumulative and readily detectable by ometry.

ression Efficiency

oression efficiency is an approximate method of accountor all the power losses that occur between stagnant on and discharge pressures. It presumes that all valve and an efficiency is an approximate method of accountor all the power losses that occur between stagnant on and discharge pressures. It presumes that all valve and character of the gas are inconsequential.

Fig. 4 Approximate horsepower to compress air or gas. If single-stage, multiply cubic feet actual capacity of free gas per minute by 1,440 to obtain capacity in millions of cubic feet per 24 h. Then capacity in 24 h times horsepower per million as obtained from the chart will give the total horsepower. If two-stage, take the square root of the total number of compressions. Read the horsepower from the chart for this ratio, multiplying the same for the two stages, to which add 3 percent for cooler loss. Note that horsepower is for 14.4 psia intake. If horsepower based on capacity at 14.7 psia, add 2 percent to horsepower.

JOY MANUFACTURING CO. BUFFALO TO

Made By:	Date:	Job No:
PDL	11-13-95	95094-00
Checked By:	Date:	Sheet No: of

...

Calculations For:

Ico No.1

INACTIVE HEATOR LOSS TO ATMOSS
Q=2/FT(33526BTM)=T)=704,0 MBH
$\mathcal{R} = w c_P \Delta \tau$
APPARENT PRODUCT GAS CP FROM EXISTG. SYST. CALCS.
Q=, = 1895,480 = 17644 (CP) (1070 - 785)
CPOX = C.377 P/4 FF 1/64600 = 17644 (0.377) (1070 - TLUG)
Tave = 1676 - 70-1500 - 964°F 17694(6,877)
CASCADE CANGE DRAINS
Q=(THREO)h+q+ (15445 THR-THREO)_T
G=WCp DT = 17640 (0.377) (965-105)
= 5720.5 MBH TAR EVAT = 57205008/HR - (15445/H)(155-75°)
950-25 = 5767 */HR
DRAIN= 15445-5767 = 96787 OR 196PM

_	_	
		-

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For: ECO No./

G = WCp DT = 15450(0,248)(85-60)/000 = 95,8 MBH ELECT : RACKY SAUINGS /354,1 MBH(1152 H/yR) = 1580 MILLION BTO/YR /CC2 ADDITIONAL STEPPIN RQD = 13432 H/R(E85-11057)PJ (1152) = 3774 MILLION ETILIYE	7	Ã1	د د	A:	5	R	56	61	7 S	6	7	o	A	M	0 =	٩	H.			: :				:		
ELECT ENGLIST SAUMOS 1354, MBH (1152 H/VR) = 15BD MILLION BTW/YR 1600 ADDITIONAL STEAM ROD, = 13432 H/R (1285-11057) B/L (1152) = 2774 Michigan Enwyre		4	2 _	l	W (n P	2	7	_	15	74:	50	(0	,24	(8) ((8 <u>.</u>	5 -	6	(ه	100	00					
1354, MBH (1152 H/YR) = 1580 MILLEON BTU/YR ECT. ADDITIONAL STEAM ROD = 13432 H/HR (1285-11057) B/H (1153) - 2774 MILLEON ETW/YR					9	35,	81	ИЕ	ŝН																:	
ADDITIONAL STEAM ROD, = 13432 #/HR(1285-11057) B/L (1152) = 27774 MILLION ETWARE		ΕL	. E ⊂	T	gin. Name	n c	A: 0	4	5	ΑU	/N	≥ ئ	>													
20774 Micharen Environ				1	35	; ç,	1 /	n B	H ((11:	52	Ή/	/R) _	: 1	5	5 (ð	Mti	LL t	01	1	3 7	cr/y	æ	
		A	ンレ	17	101	ن ۸	٤	5	75	r) n	\ /	Pa	Ď	,=	13					Î28	5-	110	5.7.) B/ ₄	± (1	152
															9	ワ	74	/) ;	ii	C	J =	27	u/	/Æ		
	· · · · · · · · · · · · · · · · · · ·			: : :										· · ·												
		:				:	;						:	:	:					· ·						

Made By:	Date:	Job No:
PDL	12.18.95	95094-00
Checked By:	Date:	Sheet No:
		of

Calculations For:

TABLE 2

AMMONIA	VAPOR	IZOR,	MIX	KER,	co	NUE	RTO	OR	AN	O	A	IR		
PROHEA	TOR	COND	1710	NS	11	DEN	710	AL	70	2	TA	BL	5	1
CALCS	1 1 1		<u></u>											
	,,													
TAILGAS	/4 EA	76R.	٠. u		HT.	TRAS	٠ - ج	7 A 74	٠, ٢					
0 -	23.5	1 /2) -	2011	0 (()	787	T. J. +1						······································	
POJUGO	, , , , ,	a6 (°	J	.07	040									!
DIPG=	7040 17644 (0253	\= /	57,	7									:
	1 1 1			- :										
1 _{LUG} =	1070 -	157.7	= ;	912	-									
			<u> </u>											
CASCADO	دوور) 5	6R.										·	}	
J. RET	GAS = U) (-	ΔT	_ ,-	2067	10.	252	19	/2 –	105	\ <u>-</u>	74	89 1	91
	GAS - ^	756 CY		/	0/0	(-)		<u>ار د د د د د د د د د د د د د د د د د د د</u>			, J -	-, 7	عرر د	, , , , ,
Q.P.F	Јсопови з	= 67	3700	BTUH	-	SAN	15	AS	/AB	(5	1			
	: : :				;									:
ars	Ac7 =	48694	00 =	5744		//	· :	//		//		:		
						·			: 					
ABSORP	_		_								<u>.</u>			:
	SAME		5	AB	45	/								:
570AM	TURE	BILLO HE	2/25/	1-3/1	_ _	22	26 17	75	BTU.	 H				
						:					/ ~			
) = TM = _	WAR	<u>N</u>	= 41	7.1-	1054	, — . !	12,	842	1	HK			•
	PRET = PRETERN	WSTM	Oh-	T.II. =	1284	2(110	5.7	-69	.1) =	13	31:	201	7 B	711
	DRE Term	D=12	842(1	5(110	-60)=5	526	.5				:		/
(PREC =	WEON	CPCON	DT:	-12	842(1)(1	01-	60)=	: 5	26	5 3	2 3	7U+
	RLCST =									: :			٠.	

A		
\equiv	三	
		_

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

Calculations For:

TABLE 2

	:										:	:		:	:	:	:	:	:	:	:		-
Pier	· Du	, T	•	<^	41.1	_	A	<	7	ביל ע	, 5	. /				 !	 !		 :			:	
				~ Z.)			/.		/		, LO	/											
S 7	ACI	ح .	Los	\$	•												· · · · · · · · · · · · · · · · · · ·						
					_															ļ	ļ	i	:
		RE	J =	ω	$\mathcal{C}_{\mathbf{f}}$	2 د	۸7	=	15	45	0(0	0,:	248)(8	5-1	60)		ļ			<u>.</u>	
				9		0.	. 70			,										<u></u>			ļ
			.	7	ر د	70	<i>,</i>	1.6	Z n	ŧ								<u></u>		ļ	 	:	ļ :
																					: : :	: : :	· · · · · · · · · · · · · · · · · · ·
																		 : :			``````````````````````````````````````	:	; !
																		: · · · · · · · · · · · · · · · · · · ·	\$;	
												: 									: :	:	
																			<u>.</u>			:	·
																		: : :	<u></u>	i 			 :
																			ļ	<u>:</u>	: :	· · ·]
																		:]]	· . • • • • • • • • • • • • • • • • • •	:	
													·········									· ·	
										:										: 			:
			<u>!</u>		·				:										:		: 		
												<u>i</u> .	<u></u> :					•••••	· :				:
								:			<u>;</u> <u>.</u>		: : :			··· ····;		,					 :
			······································							:	:			:	:	• • • • • •					:		· :
:						:						;											
			: :			:				:	:.												
		·····		<u>.</u>		:									;						٠		
 		<u>:</u>		:						3.										:			
 				\$ -				•															
 		:			:								• • •			:							
 ······																**							,

 Made By:
 Date:
 Job No:

 PDC
 10-13-95
 950 94-00

 Checked By:
 Date:
 Sheet No:

Calculations For:

FCO No.2

HEAT LESS FROM BARD FIRST:
18' & PIFF @ 735° FOFE TOMP. Dacc:
S= (19265-9997)(135)+9997]21FT = 341,3
KERT TRANSFERESS TO DOWNESSEL:
From Existing Systom Calcs:
PTAILGAS = 1341,1 MBH
APPARENT PROD. GAS SPECIFIC HEAT:
Cp = 1341100 -0.267 =/#0= (7644=/#0)(1070-785)
4:00; : 17643=/4; (0267=400) 1000 =3156,3MBH
THUESE SXMERET TO MILLETME
Q=WCp DT = 15450(0.248)(85-65)
= 76.6 MBH

Calculations For:

ECO No. 2

			:				:	: :	:	-	:	:	:		:	:	: :	:	
Do	w ī	T/415	En	4	PAR	AME	76	rs :			· · · · · · · · · · · · · · · · · · ·					<u></u>			
											 							···········	
Pui	u f	2 ح	suc:	710	N 7	どれ	P <u>-</u>	57	71	TOM	121	Pn	.G	15 /	۔ ماک	TON	(P		
													:						
								=	33	8+	40	9.C	=	36	9	F			
/1				_															
<u>= بر</u>	۵.	/-	15 /		BNI	5R11	<i></i>	Boic	<i>\$</i>	2									
	6) =	W	CP	Δ7	-		Ro	F,	70	TC F	12	101	۲۷	\mathcal{D}_{ℓ}	ATA	Roi	F.	
																TER			oG.
	٠.١	_	2	م	3 <i>00</i>	P.Tu	¥												
	α		(0.	55 5	14 0E	172	5°-	369)) -	= /	6.	120	0	#/H	R	: : :			
												:		:					
	ن	٨٠٠٠٠	\ =	76	120	TAK	(7.4	8 9/F) M/HR	(ځ		40	6	7	M					
 					507	F7 ((60	'/HR	.				i		<u>:</u>			:	
													······		······································	· · · · · · · · · · · · · · · · · · ·			
				İ															
																	:		i
												······································	······································				<u>.</u>		
														·····					:
	<u>:</u>										:					:			
 	·····	·····							1										
	:	:					1												
		:	1 1		4 .				:										
 				:					· · · · · ·			**							
		······································				:	• • • • •	****											

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608

Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By:	Date:	Job No:
PDL	12-18-95	95094-00
Checked By:	Date:	Sheet No:

Calculations For:

TABLE 3

			<u> </u>				rior		400°F-	
		: :					1			
	PROS	w cp	ZI =	F Sch	14 (0, e	253X Hr. TR	1070 - 1 NSF. TI	100) =	2,990,	8343
	PLOSS	= /(192 35—	65- <i>99</i>	97)(1	35)+9	997	(15 FT)	= 24.	2990 3 ,794 i	BiuH
		Coord								
					7.00	(0 25	- zVum		- 10-	
				1 1				1 1	= 1,27.	
(RETa	Sugan:	= 5,	Mo	AS	TAR	siā 1 =	: 673	700 E7	ruH
KB5	ORPTI	oai Co	Lama	ر ع (ا	EAM	5 A	s 74	`డుక	1	
AIR	r Co	MPR:	•							
		2 = 8	859 (254	s) =	2180	£300			
	4	Pet =	SAM	5 1	0 s	- A P /	E I			
FIA	1 1	BLCHR								
ļļļ										
₽7. <i>F</i>		Loss					Nor 1		95761	א אילפ ו
					5450	(0,248	3X 85-6	رەم	95790	<i>, p,</i>
57:	ANI:	w = _	QREE		2747,	<u>acc</u> _	2690	#/HR		

AFFILIATED ENGINEERS SE, INC.

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By: PDI

Checked By:

Date: 11-14-95 Date:

Job No:

Sheet No:

Calculations For:

FILTERED WATER COST - ECO 3

				:							: <u>.</u>					<u>.</u>									
		VIT																							
		057	. :				;		;			:					1								
	y	# 148	7	P5	R	m	ادر	ے د ک	N	ے	, AL	LC	<i>N</i>	5.		_	50	56 -I	-/-	141 181	5 N	とん	5	X	
					•••••												N	1A	16	R	IAL				
	PRE		, -	a	- \ -	\	<i>C</i> .					~_			140	المن	///	, pu	1/10	\/ I	15	<u>ء</u> ۽	(R/	10	Ÿ
	116	56 A	-` /	FIL	NA) OL	~ _		οn															, /C ,	
													=	3;	73	324	1, 8	00	G	AL	/4/	e			
										1	1				:		:		:				:		
				B	Ν	Νι	LA		Co	5 7	7	- ~/	48	.00	2(:	37:	32	480	(در	=	5 9	5 2 .	4/	YR.	,
															1000	06	60					:		······································	
																	 		; : :	! !		:			
	WATE	~ /<	5/	ع ل و	۵.	=	وكد	0	G P	M -	- 5.	7-	- 1/	5	=	5=	12,	8 4	2 P	M					
											ļ !					: 									
										i i		· . · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				 					
											· · · · · · · · · · · · · · · · · · ·						: :	······································		:					
																	: : : :	: : ! ::		: : : :					
						!										· · · · · · · · · · · · · · · · · · ·	: 	: : :	· · · · · · · · · · · · · · · · · · ·						
											:			:		,									
							:									:				:					
<u>i.</u>	<u> </u>				<u>;</u>													· · · ·		: 					
				***								;				····				i	·				
	Ť		:																						
			:		:																				
																:		**							
		· ••••••••••••••••••••••••••••••••••••																							
:																									

Calculations For:

ECO No. 3

EQUIPT (CENG. WATER FLOW	LWT	
CONVERTER	276PM	140°F	
	24 C DW		
CASCADS CLR	24 <i>G</i> PM	100°F	
AIR COMPR	156 GPM	104°F	
	109 GPM	104°F	
	174 GFM	10107	
	540 GPM @	MIXED TERIP = 10	28°F
AIR COMPR	BALANCOD F	OR 85°F EW	7
CONVERTOR	SHOULD ZE	TKAY W/ 160°F	LWT
CONSIDE	INCREASING FO	cw @ KESORF	771010
Traions	FOR YOT RA	THER THAN 10°L	37.
₽M=	115900 BiaH _	58GPM- 2898	38 [±] /HR
CASCADE (IRR DRAIN:		
Q= 4) (950) + (58)(8,3	3)(60) - W)(100 -8	9)
ω= <i>3</i> ,	9510=1/KR		
DRAIN	58(8.33)(65)	-3940 /HE = 2505	O#/HR
		50 GPM @ 100°	· · · · ·
Tower From:	77+50+156 +109+	-174 = 566 GPM	

Made By: PDL

Date: //-/3-95

Job No: 95094-00

Checked By: Date:

Sheet No:

Calculations For:

ECO No. 3

										:		
TOWER	556000	のいる				:						
566 G												
	= &WT = LWT											
	- WB.											;
MARC	ery NC	3011										
	85000											
	5 HP F1	1.										
1% BLOWS			PM						: : :			
27, MAKEN												
Assumā	FAN CFER	A ⁻ .= €	ے'خ				1,3	. 11	تى يە	-		
ANNUAL	7/12 5-7/2	+4/=	15	4P(0 •748	HE/	1152	Ψ/s _R)	= /	848	31	Kwh	/YR
Assamē	PUMPING	LNEKG	Y 1	706			الله المستحدث		4 7 / -			
		 Ç	enter Ester	2	22	و المنظمة		* * * * * * * * * * * * * * * * * * * *				
MUNTING								1444 144 4	200			
· · · · · · · · · · · · · · · · · · ·												
LUMPING.												

```
-, | 10/95
                                       COST FOR STEAM, 13-200
                 OUT-OF-POCKET
                                  MONTHLY USAGE & PROD. REPORT BY KEN HARRIS
   GIVEN:
                       AREA B
      Sum of individual boilers steam output = 1,324,620,000 lbs
       Building Steam Output = Sum - Internal consumption (turbines, DA, ctc)
                                                               1,107,382.000 lbs
                               1, 324, 620,000 4.836 =
                                                                 1.107 m Btu
                                                                  (Per HOC wal purch
spec June 1994)
       Steam Coal, 1994 = 64,673 tons
                                    64,673 tons x 2000 x 14,100 BTU
       Btu content of coal =
                                            mm Btu
                                     1.824
       Cost of treatment of Sulfuric System backward water = unites COST MEMORT
                   50 gpm ave x 60 Min x 8760 x $. 239/
                                                                6,500 /yr.
       COST of Filter Water for feed water = Utilities Cost Report
                 1, 324,620,000 lbs x 0.148.
                                                                24,500/48
       cost of electricity (motors, precipitators etc) =
                                                                  $ 173,000/gr
                  412,000 KWH (aux) x .035 .
        cost of fly ash dispisal =
                                          15,000 est
                 cinder removal =
                                          lours est
                   Wdg maintenance = 393, 391 rouhnot 529,104 major = 922, 465
                    water treatment Chemical (See Comisis Study 1495) $91,000
Out of Acket Steam Cost = Coal + electricity + chemical + FW
                                                                         disposal disp
                                                               + treatment + lyash + and
                                        bldg steam output
        per Detense fuels,
Geo. Tittsworth $ 2.91 million
                    (45×64,673)+ +173.000+ +91,000+ 24,500+ 6500+ 15,000 + 10,000
                                    1,107,382.000 163
                                                            3.75 Kills Counting
                                     2.92
                                              1000 lbs
```

91

J. Bouchellon, PE

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road

Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

PDL Checked By:

Made By:

Date:

Date: Job No: 11-12-95 95099-00

Date:

Sheet No:

Calculations For:

ECO NO.4

REF. SHULLER 18" PIPE W/ 1" INSUL. & MOTAL. J	ACKGT
AIR PRÉMORIOR - 2792 (15 FT) - 41,9 MBH@1200° OPER	,70mp
TAILGAS HTR PAINOS = (1345+1978)(21FT) = 34,9MBH@ 902	,0
APPRICE PROD. C-45 Cp FROM 5 XISTING SYST. CA Cp = 5000500000 = 0.434 8/40F	
NEW AIR PREHEATER LVG. PROD. GAS TEMP: Q=2086.1 MBH+ 41.9 MBH=WCpΔT = 17644 (0.434) (ΔΤ	
AT = 267.0 TLUG = 1470 - 267.0 = 1203°F	
APPARENT PRODUCASCO @ TAILGAS HEATER FROM EXISTE SYSTEM CALES. Q= WCp DT = 1895,4(1000)	
(P= 18.954.0C) = 0.3778#°F 17644 (1070-785) ABSUME 800°F NOW T.G. HTR. LUG. PROD. GAS. TE Q=17644 (0.377) (B03-800) = 2680.7 MBH	74 P.
1000 T.G. DT = 2680.7/100 = 722°F TLVG = 808°F	

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479 Made By: Date: Job No:

Checked By: Date: Sheet No:
______of_____

Calculations For.

ECO NO.4

,			
USING C	AS TABLES	FOR AIR	@ Low Press:
7, = 126			
h,= 30	8-8/4		
P = 29.	23		
IDEAL CO	NDITIONSCE	TURB EYH.	
P3 =	Pr, (Pa) = 29.03	3(14.7)= 3	5.91
	5°R -> 35.		
7, 105A	_ε = /95,5 =/±		
EFFTUR	= 72,5 % F	ROM EARCIE	z CACCS
HP=189	50 4/11 (308 /4 - 2545	195,52/4),725)	= 495
h=====	= h, - (h, - h,	د = (:=: م) (ع: نام)	26.4%
TEXA	= 941°R 0	K 480°F	
			·

 Made By:
 Date:
 Job No:

 PDL
 12-19-95
 95094-00

 Checked By:
 Date:
 Sheet No:

Calculations For:

An	MONIA VAPORIZER, MIXER AND CONVERTER SAME AS TABLE 1.
	IR PREHEATER:
	QRETAIR = SAME AS TABLE / EXTRAPOLATED FROM SCHULER TABLE (3000) 150
	QROJATHOS = (3000)(15) = . 45000 BTUH
	TLUG = TONT - QAIR + QROTATIOS = 1470 - 2086056+ 4500 WCP 17644 (0.253
	= 992.6°F
	REVISE QREJATHUS = 2850(15) = 42750 BTUH
	TLUG = 1470 - 2086056+ 42750 - 993.1°F
7,	NILGAS HEATER :
	Trout = Trom + FFF(TAGIN - Trom) = 85+ 0.711(993-8
	= 730.6°F
	QREJTE WCPDT = 15450(0.248)(730.6-85)
	= 2,473,635 B70H
	QREJATMOS = 1100(21) = 23100 BTUK
	TPGOUT = TPGIN - (QROTTG+ QROTATARS) = 9926-(2473635+2310 WCP 17644(0.25)
	= 4333°F
	REVISE QREJAINCE = (854+1345)21 = 23090 ->> TPGOUT = 433,

Made By:	Date:	Job No:			
Checked By:	Date:	Sheet No: of			

Calculations For:

CASCAD	of Coocer:
	PROJUAS = WOG CADT = 17092 (0,253)(433-105)
	= 1418363 BTUH
	aroJeondons = SAMO AS TABLE 1 = 673700
ARSO	EPTION COLUMNS AND FINAL BLEACHOR- SAMO
	As 7ABL5 /
Turi	3/26:
Freom	KOONAN & KAYO @ 731°F(1191°R) Pr, = 23,35 h, = 289.01
R	$r_{\bullet} = P_{r_{1}} \left(\frac{P_{3}}{P_{1}} \right) = 2335 \left(\frac{15}{73} \right) = 4.80$
TA	150R. h = 184.72 B/#
	72 - h, - ETURE (h, - h27HERE) = 289,1725 (289.1 - 184.7)
	= 213.4
	TOXH = 889 R OR 429°F
	UKioks = W(Dh) = 15450(289.01-213.4) = 459 HP
	PREC = 459 (2545) = 1168175 BTU H
	QLOST = WCP DT = 15450(0.248)(429-60) = 1,413,860

_	

Made By:	Date:	Job No:					
Checked By:	Date:	Sheet No: of					

Calculations For:

-	TEVH	= (War	CP	_ 7,	₊ +	W	CP	10	_	20	00	(0.	5)(#	00	+1	54	50(وحرة	18X.5	5:
	TEXH			ws	CP	,+ W	CPE		:				200	000	5)	+	54	500	بد.	(8)		
																			: : :			,
			50	70	F															ļ		
									. h	1										.i	<u></u>	
	WE	TUR	, <u> </u>	UST	CPST	- OT	ST.	+ 1	Uc	LP.		16	_					: : : :	: . !	!		
						د	54	5	:											<u></u>		
		ļ <u>.</u>				,	\ /=	26	//-	~~		- , ,	1	4 .	u 0	٧/.	721		521	د/		
			=	<u>بر</u>	000	(0.5)(/	31.	_				00	0.2	46,	<u> </u>	/ > 1			-		
							i		۲	54	5			: : :					ļ	:		
			=	4	125	146	2		· • · · · · · · · · ·													••••
					<u> </u>	•••••			•													••••
																			: !			
									:										:	\$ }		
								:	:											1		
:							:				:		:					:			: .	****
:													:				*******		:			
			:								****		:									
												:										
											:				:							
												:		:	:						:	

					j.									:					:	: :		
											:				•					:		
				:		;	:			:	;					;						
			: 					:							;							
	······	: :													, .					:		
													:									
:		:																				

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

Calculations For.

ECO No. 5

Cursory	EVACUATION &	
REA SCNA?	ELE ENERGY RECOVER	Y, F, IMPLOMONTED
		DIFFERENCE BETWEEN
PICE HEAT	TER AND TRICAS HO HERE WITH & WITHO	5AT5RS LOSS TO CUT INSULATION
	:R: 980,4-41.9 =	
	1. 1. 1. 554.5 - 34.9 =	= 519,4 MBH
·		1457.9 MBH
l i i i i i i i i i i i i i i i i i i i	HEAT REMOVAL I	
	om P.	(-) - 222.5 MBU
	15450 (0,24) (805 - 74	
	15450 (c.24) (480-275)	= 76C.1 MBH

Made By:	Date:	Job No:					
Checked By:	Date:	Sheet No:					

Calculations For:

ECO No. 5

						: : : : : : : : : : : : : : : : : : :
14	RBING	DUTA	UT			
		745°F				
	1 1 1					
	P = =	14.38 h,	= 292.58	3		
	€ -	14.7 (24.	38) = 4.9	3		
	rs	14.7 (24. 72.7				
						i
	h ₂ =	185.7				
	,					
	h EXH =	292.58-	(292.58-1	85.7)(.725)		
: : :						
		= 215.09				
	7	= 435°F	-			
	'EXH	, 30 ,				
	1.0					
	17 F	15450 (272.58 -	215,09) - 4	70.4	
			2545		, , ,	
	<u> </u>	ļ				
						:
		:				
	1					
		i i				1
						1
	<u></u>	<u></u>				
· · · · · · · · · · · · · · · · · · ·						
1						
	**************************************	arang maka arang Kanggaran		• • •		
			131 mann	• • • • • • • • • • • • • • • • • • • •		
	÷					į.

 Made By:
 Date:
 Job No:

 PDL
 12-18-95
 95094-00

 Checked By:
 Date:
 Sheet No:

Calculations For:

AM CA	M 0	ردر	A	V	A PO	R	120 5 R	Ζ,	M A N	1XE	re S	, C	ON R7	V01	ET SE	o R	ر ح	A/	R	1	PRO	-H	8A	10 R
				ļ					ļ															
									<u>.</u>	C	2	30	2 P :	516	, -	- 6	27	5'	°F					
												:							:	:	· Æ.	A	55	ane
											:		: :								1			ame
	- :	:											: ;							1	:		:	066
	Š	57,	5 P	M	->	- 1	N	=	<u> </u>	Q 	_ - h	Fω	_	<i>59.</i>	72	6 b	- / 1	-	4:		56	0	#/H	r
									:		:	Εω	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										:	
		L	~5	7			···· ···· :			 :	i	:							: : :		·		: : : :	
											 : :								· · · ·		:	: :		
					:	······································		······································													: : : : :			
												: 									:			:
			· · · · · · · · · · · · · · · · · · ·									:									:			
							:			:	`						. ;							
			:			:								*** **										
						3																		
			:	:							***													

Made By: PDL	Date: 11-13-45	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

ECO. NO. 6

PROCESS DRY AIR RATO:	
$M = M_{\omega} (1 - W) = 19350 \frac{4}{14R} (1 - 0.00)$	055) 7# DRY A/R
= 19243,6 #/HR DR	v 4, p
CONVERT MFG. DESIGN CONDENSATE RA DRY AIR RATE:	TO PROCESS
DRY AIR RATE:	
15 576 (0 - 21/4 / 1038 = /2)	150 [±] /48
15 576 CLR = 216.4 (19243.6) -	. /30 / //~
2-2 1, 1 = 264.9(19243.6)	- 184 #/LR
27706	7
AFTERCOLEN = 173 (19243.6)	= 121 #/HR
27445	7/4/
	455#/HR
TURBINE ENTERING CONDITIONS:	
MASS FLOW = 15450 + 1149 = 16599#	HR
	TMIX ha ERROR
Q = 1149 THE TAILY - 207) + hage 25 PEIA PERTANY	325 1189.2 -147.9
Tyle CEIA SCITMIN	400 1229.9 - 232.3
Q= 15450 HR (0.248 / 4 =) (435 - TMIX)	316 1184,2 -137,7
	anga kanadisa at 7, 19
Tmix = 4566-0.235 hg	
NOT ENOUGH HEAT IS AVAIL	ABLE IN
NOT ENOUGH HEAT IS AVAIL TAILGAS TO VAPORIZE THE C	ONDENSATE

 Made By:
 Date:
 Job No:

 PDL
 11-13-95
 95094-00

 Checked By:
 Date:
 Sheet No:

 2
 of

Calculations For:

ECO No.6

EVALUA	TO FOR	INCORPO	CATION W/ E	CO No. 4
Q=114	9 #/HR STMIX	-207) + 89:	7.8 + hg - 1181-0	7.
Q = 154.	50 (0.248) (805-Tm,x)		
7,77	, = 953,8.	- 0.235 hg		
- 1m1x	<u>ha</u> _	ERROR		
500	1280.6	155.5		
45C	1229,9	267.4		
600	1330-1	43.8		
650	1354.8	- 12.0		
US5 6		O TURBIA	e Vapor Tömp. Jē INLET.	
h = 2	5 - 265,93 16 5)+ 1149(1340,0) 99) = 340.3 ⁸ /#	
Pr. = Pr. = Taio	12,473 (14,7)	and the same and t	5, = 1.81 haiden = 1188 Taiden = 285°	
Ros	CALCULATO		TURBING EXHI	aust HT.

Made By: Job No: Date: 9509400 9-14-95 PDL Sheet No: Checked By: Date:

Calculations For: ECO No. 6

116599=1/HA	:
306F@73PSIA 1149=/HR 1149+/HR h=270 \ \ h=1181.2	:
1149 7HR 1149 4HR	
h=270 T h=1181.2	· ···
16599 THR	· · · · · · · · · · · · · · · · · · · ·
() ASSUME 100% PHASE CHANGE OF CONDENSATE W/	
() ASSUME 100% PLASS CHANGE OF CONDENSATO W/ TRICGAS TEMIP. LVG. THE HX = 220°F	:
HOUSING Q = 1149 +/HR (h - h) = 1149 (181.2-270)=1046969	9
= 512- Q= W6C1 DT + W5CP5 DT = 15450(0,24) DT + 1149(0.5) DT	
DT = 1046969 2445 - Toby = 20. 2445=464.	S
△T = 1046969 244,5 - TONTG= =20. 2945=464.	 :
STEANVTAILGAS MIXTURE CONDITIONS?	
G= = 1149 (hanx - 1181,2) TMIX hmix BREOK	
	-
GOAS 15450 (0.24) (805-TMIX) 400 1231.6 -196	
400 1231.6 - 196	
1mix = 585.5 - 0.310 hamir 210 11030 - 77.5	
Tmix = 585.5 - 0.310 hamix 310 1183.8 - 77.5	·
INSUFFICION HOAT IN TURBING	
INSUFFICION HOAT IN TURBING	
INSUFFICIENT HEAT IN TURBING EXHAUST GAS TO VAPORIZE	
INSUFFICIENT HEAT IN TURBING EXHAUST GAS TO VAPORIZE	
INSUFFICIENT HEAT IN TURBING EXHAUST GAS TO VAPORIZE	

	Made By:	Date:	Job No:
-	Checked By:	Date:	Sheet No:

Calculations For:

Eco No. 6

		ATE ON	· /•			
¥ 6	lsø or	171CE 7	RAP FO	R CONTIN	4045 D,	RAINAGE
	<u> </u>					
	TAILGAS		1614 58 P			
	15450 t/4 805°F	R	Je	5,9		
	ainaman (garantaman) in an ini an an g		DENSATE/	575AM		
	Cp=0,24	~ @	94 #/HR			
	58 PS16	,	00 PS16			
			338°F			
			7=309			
	~!! - ~ ~ ~ ()		•	1 200		
/-	5950 01-1	NOUS Imi	x) = 694(@mix		
	7 -	862.8 - 0 .	1876			
	'M1X -		1@MIX		<u> </u>	
	TMIX	hanix	5RROR(T.	W-CALC)		· · · · · · · · · · · · · · · · · · ·
	750	1405	149.9			
	650	1355,5				
	540	1301.4	(79,4)			
		1330.9	(13.9)			3
	615	1338,3	2.46			:
						٠,
		;				•
	·					

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

ECO No. 6

/ U.R.	BING PROCESS:	
<u>G</u> A≤		VAPOR
Pr. = /	6,005 h,= 259.7	L - 1220 2
		h, = 1338, 3 5, = 1, 80
ry = 14	_ (160°5)=3,236	
2 2	3,7	ha=1183
h ₂ ,		hovn1838.3-(6363-483).2
	= 259,7 - (35°,7-1645)(.725)	=1230.5
	= 190.68	TEXH = 380°
TEXH	- 335°	
HP=	15450(,24)(615-335)+699	4 (1338,3-1220,5)
	2545	
=	437.3	
	THIS CONCEPT 1	5 ABANDONED
		· · · · · · · · · · · · · · · · · · ·
	er en	
		en e
		• •

Made By:	Date: 12-12-95	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

ECO#7 ITERATION #1

WET GAS HEATER - 2000 THR STEAM + SPRAY STEAM SATURATION TENTER
15405 (0.246) (Twen 85) = 2000 (0.50) (324-Twen)
TWGIN 15485 (.246) + 2000 (.5) = 134.8° F
CP. G = 2000(.5) + 15466(.246) - 0.275 8/4 %
Two GUT = Two,N + 0.711 (TPG,N - TWOM) = 134.8 + 0.71 (993-134.8)
= 745.0° =
PATTOMPORATOR = WWG CPWG (TWGOUT - 745) = 17405 (0.515) (895.7-745)
= 721307 BIHH
WATTEMPORTOR QUITTOMPORATOR 7:1307 - 809 THR
TPGOUT = TPGIN - WWG CPOX (TWGOUT - TWGIN) + QATTOMPORATOR WPG CPPG
= 1245 - 17405 (0.275)(895.7 - 134.8) + 721.370 17644 (0.253)
= 227.5°F
CONDENSATION WILL OCCUR AT 254°F IN PRODUCT GAS.
QPG ECONOMITER = 2000 HIR (1 =/# =) (240-150) = 18000 BTUH
WPG COND = QPG ECON 180000 = 191 #/HR hfg16 944

TURBINO			
, 4,057,00			
PARTIAL PROESUR	F H ₃ 0 = .175(5	8 fs16) = 10.2 Ps	16 OR 25 PSIA
5= 1.9764			
h= 1404.8			
THEOR. hexHat	334 @ 15	PS1A \$ 600°	
hexter her	0.725(H _{ST} -1	334) = 1404.8-0.	725(1404.8-1334)
= 13 53.			
TEXHS= 639°			
GAS @ 745 F			
$P_{r_i} = \vartheta^q$.38		
the same and the s	192.58 ³ /#		
		$\left(\begin{array}{c} 15 \\ \hline 73 \end{array}\right) = 5.01$	
		73) - 3101	
THOOR. h. CAS=	186.463/#		
ha sxng=	29258- 0.725	(292.58 - 186.46	<u> </u>
=	215.64 ² /#		
725.44	= 437°=		·
15405(0.246)	(TEXH - 437)	= 2000(0.46)(63	39-TEXH)
and the second manufacture of the same and the same in		2000 (0.46)(39)_	· .
7	5405(0,246)+2	000(0,46)	, , , , , , , , , , , , , , , , , , ,

Made By: PDL

Checked By:

Date:

Job No: 12-12-95 95094-00

Date:

Sheet No:

PEXH	- ~ 6746	PEXHC !			= 139036	D. ~ 10)	+ 2000(0,46)	0.2
	. \	WEX	#			179	05	
	WKTUKE	= W=	KN CPORT	(745-	TEXH)			
			254.	5				
		= 1/4	05(.27	1)(74	5-476	<u>ـ</u> رد،	497 HF	
				7				
	WASTE	HEAT	- 3014	e 72				
	150	SCK = 0	250° F	• 🛶 🗴	55.65.11	~ <i>[</i>		
	QBLR =	Wex 4	CPEXH (TEXH -	-250)=	1740	5 (0.263)(4	92-26
		= 1061	983 -	BTUH				
	1.1	_	\circ				4	
	L\ 576	AM -	LABLE	-= 10	61983	_ = /	191 THR	
			Of 8		871.7	· · · · · · · · · · · · · · · · · · ·	191 #/HR	
	107190	H20	ADDE	070	TAILGAS	. 6		
	1 1 1							Agents of the same
		289	THR -/HR		<u>įįi.</u>			
		1191	THE	ļ			<u> </u>	
		2001	PHR	<u> </u>	SSUMÖ	70 6	1000 #/HR	
		·					;	
	PARTIA	L 1756	20066	- 1400	0 @ ST	ACK:	· · · · · · · · · · · · · · · · · · ·	
			4.696)=					
	DE	TW POI	UT = /	136 5		e e e ga ar a		
			<u> </u>	ana in g	e e		· · · · · · · · · · · · · · · · · · ·	
1 1	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					

 =	

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: . of

Calculations For:

ECO#7 ITERATION 2

CASE A	1800 = HR SATU.	RATED STEAM @ 80 PSI	IG INJECTOD
WET GAS	S CLNDITIONS;		
	$(T_{\omega_6}-85)=W_{s7}$ $C_{P_{s7}}$		
		1800(.5)(324)+15405	(0,248)(85)
TwG = 13			
CPws = U	VIG CPTG+ WST CPST -	15405 (0.248) + 1800(0.5)_	0.274 8/#°F
Twant	= Two + EFF (Tron	1 - Twc) = 130,6 + 0.711 (9	93. - 130.6)
	= 743.8		
Trecur = Tren	- QWG + ORGIAN = WFG CAPG	993.1-7205(0.274 <u>)</u> 743.8-130 17644 (0.25	3) + 41024
	= 336,3°=		
Economi	₹ <i>€</i> -7€ \$		
		1800(1)(324-150) = 313	
TPGOU	$T = T_{PGIN} - Q = \omega$ $W_{PG} C_{PRG}$	336,3 - <u>313200</u> 17644(e,253)	= 2661°F

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

 Made By:
 Date:
 Job No:

 Checked By:
 Date:
 Sheet No:

 ______of
 ______of

Calculations For:

Tur	BINE						
Pere	cē.₽7	STEAM	By V	oruma :			· · · · · · · · · · · · · · · · · · ·
	MOL	s 18 18	00 -	99.9			
	: :	L ₇₆ = 5		1 1 1			
	%=	99.4	(100)	- 15.45	5		
IN 667 557) = 8.96-51 G	
					1,983.		
5.7 643 5	7 / 2 / 14.	PARTIAC	7.c-50	115 = 6	.1545 (16)=2.47 Psli	A
F. F. W.	15	= //8	6.3	1,1	1.5815		i
		- = 41	_ :	- 1186.3,	= 1247.	/	
Twee -				= 5 ⁻¹ 5 ²	91=49.		
		= 27 5/				@ 744°F	
Theres.		J J j	$\left(\frac{1}{P_{T}}\right)^{\frac{1}{2}}$	24.31(_	$\frac{16}{63.7}$ = 5,	9.3	
1176 (h _a =	29253- 01	725(29.	2. =3 - 195	.71) = 22	2.28	
	7,	= 925° 1	e or	. 465°			

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

Calculations For:

WST CP- (TOXH-TO	OUT) = WCA = CPOAS (T2 - TOXH)
	(c.248)] T = 15405 (c.248 (465) + 1800(0.47)(412)
ToxH = 455.4	°F
MINE = WET hst. WST	1N + Wah, _ 1800 (1407.3, + 15405(292.33) TWa 1800+ 15405
= 409.0	7 13/4
haxus = Wst	h==== + Woh2 - 1800 (1247,1) + 15405 (222,28) Ns++ Wo 1800 + 15405
hext = 329.5=	
	(17205)(469.0-339.5) = 537.4 HP
	(2545) = 1367,798 ETUH @ TUREINE (7 = 17205 (0,074) (4554-60) = 1,863983. BTUM
WASTO HEAT BO	
Q= WST hfg=	= 1800(891.7) = 1,605,060 B74H
TSTACK = TOXH	- Q - 455.4 - 1605060 = 1.15°F

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

ECO#1 ITERATION 3

	7 12				· :
CASE B	1500 7HR	SATURATOD	STEAM @	80 PSIG]	MJ0070D
SUBSTITUT	10N OF 1	500 HR IN ,	FORMULAS	OF CASO	25012
THE FOL					
WOT GAS	CONDITION	5 •			
Twe	= 124.20	7			
	= 0.270 }				
1ω _{6ρα}	_= 742.0°				
		0-			
TPGO	or= 352.€	2.7			
Economiza	5R 6				
ALCON	OUTLET 6	= Economiz	or TO CO	NTAIN SM	A
		STEAM SUC			
				10001	
<i>Υ</i> =ω=	WZ N= 1	UPG, CPPG ATPG			
$\triangle h_{Fu}$	= 17644(o.253)(352,2	-265) - 25	59.5°E/#	
	,	56C			
$Q_{F}w_{s}$	iens = Wifa	PF. AT = 1500	(1)(324 - 150)=261000	BTUN
	EQUILI				
\mathcal{W}_{s}		how - Grusons	- 15ca (259.5)	- 26/000 = 1	43,8#/HR
	·	1500 (=	(55.5) = 789	250 B711 H	
4	REC PW Z	INFW - 13 CO			
				·	

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

TURBING:			
MOLST	= 83,26		:
mo _{lyo}	= 546.73		
0/0=	- /3,27-		
PARTIAL PR =	. 1322 (58) - 7.67	PS16 - 22,37 PSIA INLET	-
hs7,x	=1403,4 @742°F	5571N= 1,985	
PARTIAL PR =	. 1322 (16) = 2.1	1 PSIA	
	u7 = 1159		· · · · · · · · · · · · · · · · · · ·
1757	- 4403,4725(1	403.4-1159) = 1226.2	
7 3	Tou- = 367°F		
GAS PARTIA	. Tit. = 587.67	= 50.3 PS16 OR 65.0 Ps.	/ A
P _r ,	= 24.16 b,	= 291.81 - @ 742°F	
F	$= 24.16 \left(\frac{16}{65} \right) = 5$.95	
THONR ha	= 1959		
h	= 291.81 - 0.725	(291,81-195.9) = 222.28 3/	#
To	= 465°F	h _{ōxH} = 311.4 ≥/±	
	×4= 449.7	WKTURE = 525 HP	
1 1 1	= 390,4 NIET		

-	
	 =
	=

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

									:	 :		:				•	:	:	:	:		:			
	k) _{AS}	70	- /	YER	7 7	3	015	<i>ـ چ-</i> کـ	2 5								· -			<u>.</u>				
			E																			 : .:			
		C) =	(W	£7.	- W	S.T.E.C) /) f q	_	(1	150	0 -	- /	43	(8	91	.7)) =	1 =	114	0.	3 7	37	el H
				i				1	i.				- :							1	1				
			57A	·K	/	ř X	4 _	10	X	P 0		=	44	19.	7 -		12	100	03	27	· 5)	=/	89	3.4	F
								في الم	14	-Fō	¥Η						(D.L.		<u>.</u>	[: :		
																					<u>.</u>				
																				! !		<u>.</u>		: L	
															·····	•••••			·				!	:	
																					 !		:	: : :	 }
																							: : :		
																				: : :		; ;	: :		
		···																		: :	: :	:			
						<u> </u>				<u>.</u>					· · · · · ·					: : :		:			
		:		******					:	:				:			:			: : :	: :	 !	· · · · · · · · · · · · · · · · · · ·		
																					· · · · · · · · · · · · · · · · · · ·	: :			
<u>:</u>							ļ									: ::						:			
											:											:	· · · · ·		
···· :					· · · · · · · · · · · · · · · · · · ·					:											• • • • • • • • • • • • • • • • • • • •	 :			
							<u></u>	:						:	:		:			:					
	· · · · · · · · · · · · · · · · · · ·	:											:		:										
	: :					<u>.</u>					•••••										·				
									٠.	.: .															
															•										
	14 -4 -111 <u>8 -111</u> 1																								
		:	:				:																		
. :		:		:																					
			:																						

	-

-			The state of the s
	Made By:	Date:	Job No:
	Checked By:	Date:	Sheet No:

Calculations For: ECO #7 - ITORATION 4

CASE C	1400 THR	5,5AM @	80 P 51 G	INJOCTED @	TAI
	& WITH	PRODUCT	GAS L	EAVING TH	5
	***************************************			- 245°F	
WET GAS	COND 1710NS.				
			17.		
	wc - 85)= U				
[15405 (0.24	18)+ 1400(0.9	47)] Twg = 1	1400(0,47)(3.	24) + 15405(o.	248)(8
				(m (n 47)	10
LPW6 - W7	Wro + War	rst = 15905	5405+140	100 (0.47) = 0.	2667
				بدا - (.993) 117	1.0
-	740.8°F			\(0,266)\(740,8-120 .44 (C,25 3)	
TPGoui =	TPOM- QUE	+ OREJATHOS	11540541400	(0,266) 742.8-12	0.1)+
	$\omega_{r_{\ell}}$	s CPPG	176	·44 (c. 25 \$)	
=	993.1- 650.8	= 362.3	° =		
Economi=	WPG CFPG AT	T= = 176441	(0.253)(36)	23-245)	
WFW=	WPG CPG	1.76		523619_ 270	1 n 3/4
	= 523619		2) (523619 - 374	
)= 243600 E	
WSTEC	= WFW DhFW	- QFNSENS	1400 (374.	0)-243600=	314 #/
	has	:	841		

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

															:
lur	3145 :														
	Mels	, -	1400	2	= 7;	7. 7									-
	MOL-														
	%	= _7 54	2.7 6.73	+77.	7 =	12,	44								
INCE 7	576A	as F,	RT/	AL 1	PEFE	Sul	<i>ે ઇ</i> =	12	44 ((58)	= ;	7,22	Psi	G	
	hsT,	÷	4												
OUTLET	STEAL	u Pi	R71	۸۲	PRO	SSu	PE =	/-	244	(16)=	1.99	Ps	IA	··[·· ··
TX	LOOR. M.	STOUT	=	1151	1.48	/#		•	,						
	h	STOUT	= h	57/N	-0.	725(hor	/N -	1151	٠٢) -	= 140	2.9-	.725	(140:	o. 9-
					o.5							:			
	7	- STou	=	359	1.3°	<u>'</u> =									:
INL67	GAS	PART	AL I	PRŌS	s. =	(5 8	' - 7.	.22	= 50	0.78	P31			41°F 201	
	Pr, =	24.0	8		h,=	291	,56								
	Prs=	Pr. (16 50.7	8):	= 7,	59							· · · · · · · · · · · · · · · · · · ·		
T450	e h = :	= 210 - h,) (h	, - ,	101	= 2	71,56	· · · · · · · · · · · · · · · · · · ·	,725	5(29	1,56	- 216)	,
<u> </u>	;	= 23													

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

		CAS CPORS (TO - TEXH)
1400 (6.4)	7)+ 15405 (0,248)	TEXH = 15405(0,248)(506)+14000
	483.7°F	
hINLET =	WST KSTINT WChI WSTT Wa	- 1400 (1402.9) + 15405 (291.56)
	WSTT WE	1406 + 15405
•	= 384.1 %	
		1400 (1220,5) + 15405 (232.4)
	Wsi + WE	1400 + 15405
	314.7 3/4	
WKTURE	= (1400+15405)(380	4.1-314.7) = 458 HP
	2545	
Drsc =	458 (2515) = 116	5979 BTU H
	AT BOILER:	=(1400-314)(891.7)= 968386 370
· · · · ·	WST WSTECON) N fg	-(1400-314) = 768386 810
TSTACK =	= TEXH - Q	= 483.7 - 968386
		76805(0.306)
	= 267.1°F	
	eren er	

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479
 Made By:
 Date:
 Job No:

 Checked By:
 Date:
 Sheet No: _____ of ____

Calculations For:

ECO #7 ITERATION 5

FINAL	CASE	STEAM	SPRAYW	ATER 1	NISCT	50 @	TAIL	GAS
			ING TA					
			5 HEA	4 1 1		1 1		4
			BINE EX					
			LG-AS					
WOT C	JAS CO	NOITION	ss: (u:	ING E	co #4	RESU	LTS)	
W7	6 CPTG (T	6 - ING)	= W ₅₇	CPST (w6 - 15	AT)		
51540	5 (0.248))+ 1500l	(047) 77	. = 150	0(047)	(274) +	· 154051	6 248V
				G - 130	060.17)	(327),	75795	
Two	= 868.	8°F						:
					÷	م م	TUL57	
ATTEL	MPGRATOR	- DPRAY	/	/	MERST	a RB MI	105 5°	7
(BAT = W	CO ((- 74		· · · · · · · · · · · · · · · · · · ·	Va 22	V0000	- 745
							100010	ر ۱۲۵
	= 6	56259	Bray					
u	کر = ۵۲	XF	65625	9=	236 #	HR	:	
	= 6) _{A7} = 4 h	Fq	891.9					
					ļ			1: 11
	DUCT GA			:				
	WITH 1.					PROT	arci G	AS
	1 - 4 1 1 1							
	LEAUIN		the second secon				25	0
	= WPG	CPPG (TPGO	w7 - 255) = 176	44(0.2	53)(43	3 -32	5)
	= WPG	CPPG (TPGO	w7 - 255) = 176	44(0.2	53)(43	3 -32	5)
Q_{R}	= W _R = 52	CPPG (TPG) 6900 8498	W.O. CON) = 176	44(0.2) NG CO	n dens	MODIA	5)
Q_{R}	= WPG	CPPG (TPG) 6900 8498	W.O. CON) = 176	44(0.2) NG CO	n dens	MODIA	5)

 _	=

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

	3 - 11 -	•							
IUI	SBING	•	-	83.	3			<u>.</u>	
	MOL _{H20}	<u> </u>	+ 736	= 124.	1				
		18	016						
	MOLTG =	546.	73						
	aj_	724	183.3 + 124 .1 83.3	13.	2				·
	10 -	54673	++24.1	= 78.	5				
		3 7617 3	83.3			7.	67		:
STEX	AM PAR	TIAL PR	ossuk8	= 0.18	5(58)	= 10,	23. PSIG	INLE	—!
						2.1	1 16 PSIA		
	/	404.9	.	= 0.18	5 (16)	= 0.	~~ / J/ /	DUTE	` (
h.	57/10 = 7	704,87	# @	745°F		557N=	1. 974		
	,		- 8/						
IHEAK	ASTOUT =	- 1/80	. 7 74						
	hstout -	٨	FFF(h	-115	w2) =	140110	-0775	(14048-1	
				57 (10)	J., J	1709.8	-0,725	0 1-1.0-1	45.
· · · · · · · · · · · · · · · · · · ·	•	= 1242.	3 9/#		· · · · · · · · · · · · · · · · · · ·				
	ISTOUT	= 402°	F				<u></u>		:
7616	CAS:								:
	T	- J4 > 0	@ 120E	-^^p	۲-	- 292	.58		
							:		
	Fra	= Pr, (-	16) =	5. 57					. :
			10 1				<u> </u>		
THE	or. ho	= 192.	30		; ;	<u> </u>	i <u> i</u> <u></u> .		
	L	= h.	- EFF(1701 - 190	3) = 6	292,58	3-0,725	5(292.58	1/4
	. <u> </u>								
		= 21	9.9 E/H	<u> </u>	7.60u	7 7 75) T		
	WKTU	- 11)	1	- 42 26		500	18. 1242.R	+15405/	ا <i>ڪڊ</i> ود
	~ K7 ₩ l	er - ws			G = 0	10,140	254		
			354	.			7-7-1	 .	
		: 3	82 HP						

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

					:
TURBIA	SE EXHAUST	WASTE H.	EAT BOIL	5RE	
	WSTRA CPST (TSTOUT CPFW DTF		1 1 1		324-150)
18	CPFW DTF	b + hfg	. ,	250	
=	766 874 (0.47)(40= 786 #/AR	250 1-225) + 15	5405 (0.248)	(422 - 53 5)	=736(174)
	786 4	324-150)+	891.7		
=	: 845 4/HR				
	766 575AM = 87L				
ws	1716 =	440-225			
	TLVG = = 1500				
	/ ;	716			
	TLUG = 252°	T	erene gerene birinin işalını azılınını	edici er elferensengaria karılık karılışı	
		\mathcal{B}_{ℓ}	OILER Cu	TLET TE	MP.
WCe	- (ToxH-402)=	W_ Cp (40	55- Tova		
	10x4 = 4460F		52.00		
			169 <i>6</i> 5		
	7 = WEYH CPEXH	DTsrok= 1	7640(0.275	\$ 250 -60	
	= 921690				294466
GRE:	J = Waxh Cpaxh (TEXH -T STK) =	16903 77640(0. 275	146 (433-60)=	1809423

Made By:	Date: 12-95	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

ECO #7A

Twg - Twg =	0.711	
	0.711 (TPG/-TWG/)	
Ws. CPST (TST - To	is) = WTO CPTO (TOCK- T)	ra)
1200 (0.47) (324 - 7	ωω = 15405 (0,248))(TwG1 - 85)
TWG= 154056.	248)(85) + 1200(0.47 05(0,248) + 1200(47)(7 <u>X324)</u> = 115.7°F
Twa2= (15.7	+ 0.711 (993-115.7) = 739.5°F
TPG2= TPC1 -	<u> Orecou</u> - 993 - (1 WPG CPPG) = 739.5°F 1540571200)(0,275)(739.5 17644 (0.258)
	<u> Orecou</u> - 993 - (1 WPG CPPG	
TPG2= TPC1 -	<u> Orecou</u> - 993 - (1 WPG CPPG	
TPG2= TPC1 - 1 = 367.3 TURBING & WG-CODSTITUGEDT	QRECOU - 993 - (1 WPG CPPG	
TPG2= TPC1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	QRECOU - 993 - (1 NPG CPPG 20 F MOLES/HR 505.16	
TPG2= TPC1 - 10 TURBINE & WG-CODSTITUGEDT No A	QRECOU - 993 - (1) WAG CAPG MOLES/HE 505.16 6.21	
TPG2= TPC1 - 1 = 367.3 TURBING & WG-CODSTITUGEDT	QRECOU - 993 - (1 NPG CPPG 20 F MOLES/HR 505.16	15405+1200)(0.275)(739.5

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

H.O PARTIAL PROSS = (58+14.7)(.116) = 8.43 PSIA
he= 1403.5 @ 739,5°F
5 = 2.0667
THOOR h2 = 12 55.4
h==1255,4-,725(1403,5-1255,4)=1296.1 TEYH=517°,
Pri = 23.94 har = 291.05
P-= PB (15)
$P_{r} = P_{R}, (15) = 5.58$
THERE h = 192.3
hws = 29105725(291.05 - 192.3) = 211.34
Twes = 420°=
WKTURE = 1200 (1403.5-1296.1)+15405 (291.05-211.34)
2545
= 533 HP
1200(.47)(517-TwG2)=15405(.275)(TwG2-420)
To a plant of the second of th
Taks = 432°F
63°F LESS THAN BASIS FOR
CLAYTON QUOTATION
Assume System W.O. PR.GAS RECOVE W/
STEAM INJECTED IN TAILGAS @ OUTLET OF
ABSORPTION COLUMN WILL PRODUCE 525 HP.

Made By:	Date: 12-12-95	Job No: 95094-00
Checked By:	Date:	Sheet No: of

Calculations For:

TURBING INCOT/OUTLOT PIPING.

. ,	
WET GA	S LEAVING HEATER?
16	905 405 THR @ 745°F
	5 = 15320 #/HR
	POR = 2085 #/HR
CONSTITU	ENTS # MOLES/HR 70 By Volumes
DRY 6	AS 1500 541,99 82.970 86.7 2505/18.015=145.7483.26 17.676 13.3
HD FA	65773 625,25 183 7,7 RTIAL PRESSURG = 0. NAG(58) = 10,2 PSIG
ν _{pc} =	PATM VATM (TOG) = 14.7 (13.07) (1205) = 7.4 FT/4
VH.0 =	28.64 FT/# FROM KEENAN & KEYES
76-	28.64 FT/# FROM KEENAN & KEYES 18:38 15:320 (9:44) + 2085 (28:64) = 9:72 FT/#
VELOC 17	16905 (637 = 1/4) (144 M/FT) 8089 60 M/HR (31.7 M) = 13,804 FM
N _R ==	VDp = (72804 FT/min)(6.357IN)(0.07651#/FT3)
	(218×107 #/SEC-FT)(60 556/MIN)(1214/FT)
	396759 250648
△P=_	$\frac{3.4 \times 10^{-6} + L W^{2} + (3.4 \times 10^{-6})(0.0:8)(100)(17405)^{2}(9.72)}{d^{5}}$
	1.5PS1

Made By: Date: 12-12-95

Job No: 95094-00

Checked By:

Date:

Sheet No:

										:
7	URBIN	تى ك	YHAU	st Va	FLOCI	74				
	_ ــر_	100=	04.35/	6,35 9,92 FT A	4 Vax	10=	22	.68	3/	<u>.</u>
	/ a ÷	121	5°F)/1	7.74 7.75 5, 3 P≤/	-)(/ J	75 =	36	49	1 /#	
		145+	460	, , , , ,	72/26	,		, (
	V500	c 174 =	1640	25 THR	(36,49	TA)	(144"	\sqrt{FT})_	8220 13,618	C- PW
				60 MHM	(111.	93 12	ر•.		. १२,७१४	-/ 1
										: · · · · · · · · · · · · · · · · · · ·
						÷				
										· i
									· · · · · · · · · · · · · · · · · · ·	
					· 					
							· · · · · · · · · · · · · · · · · · ·			
						: *********				
										
									1	
						: I				
									·	1
			<u></u>							
				j i						
										1
										1
· · · · · · · · · · · · · · · · · · ·										
		:	-	:						
								•		

Made By:	Date: 11-14-95	Job No: 95094-00
Checked By:	Date:	Sheet No: of

Calculations For:

ECO SAVINGS

No. 1	266543
OFERATING HO	ars PER YEAR = 4 5/ms (24 7/0) (12 11/5) = 1152
	SAVINGS = 2.0182 X10 ETU (1152 1/4R) = 2324.98mic. B/yR
575AM	INCREASE = 12,7855 110 BTU (1152 1/4)= 10537.79" DEMAND = 793 (.748) = 593.16 KW -> #13050 192277
	INCREASE = (2786.8 2018,2)(1152) = 885.427"
STAANI	CFFS67 = 2990.8.1152) = 3445.402"
	DEMAND = -302(,748) = -225,90 -> -4970
NO. 5	J ₃₁ 200
1 <u>0</u> 4	44850
Erro	EMAND = (793-636) (.748)= 117.44 -> \$2585
NC. 5	27111 7 450 = +31850
Ecocy.	SACYNOS = (2018.2-1618.61)(1152) = 460.339
STEAM	DEFSET = 560 (714.1) (1152) = - 663.804 PLANT MAKELIF = (694-560) (1152) = 154368#/YR

	=
-	=

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

	No. 7									
					:	<u> </u>				· ····································
	<i>-</i>			(1.46	,	0	\/	~\ -	103	136
	FLOCT	DAVIN	165=	(2018	12-1	(425.2)(115	2) -	683.	36
_							100	0		<u></u>
DPTL.	576AM	PLANT	- MAK	JUP	=420	THR (1152)= 4	83840	TYR
			d							
			412	ANA	DUAL	RECC	CERIN	6 8	A	
		/	762_	51-2	700	/ <u>-</u> /-	71/ 78	, <u> </u>	#3835	
·	Uchia	<i>~</i> ο - (//5-	JEC	1.170	- //	7,00	-	20 30) <u> </u>
		ļļ						; 		
<u></u>										
									······································	
1										<u></u>
: !						·				
									i	:
					: .	:				
			:							*****
			i :					: : : : :		1
					: :			******		
			<u></u> ;					• • • • • • • • • • • • • • • • • • • •		
									· ···· .	
	· · · · · · · · · · · · · · · · · · ·									
		:		****						
<u>.</u>										
		t								
							• •		•	
	· · · · · · · · · · · · · · · · · · ·							* *		
***** ** ***	the state and									

REFERENCE MATERIAL

HOLSTON ARMY AMMUNITION PLANT DRAWN-PB HOLSTON DEFENSE CORPORATION OATE-F-14-16
KINGSPORT, TENN.
BEDG. 302B. NITRIE ACID MFG.

FIGURE 16

Technical Report No. HDC-39-77

	٠		duction.		•	rical	turbine		\	// /3	·	ROJ. : HEET	NO LATEE (ED B)		INC. JECT _= OF _CDATE DATE_	
		Comments	Beste: 45 TPD production.	*		Mechanical & electrical losses	318.8 hp-hr/hr 75% turbine efficiency.		*Founds per hour.	<i>.</i>		0300	Imbalance - 2X	Kingsport, Tennesse		
		Rate	.2 8рж			4						6147 1b/br	•			
	Heat Loat	Source				Machine	Exhaust					61X Ac 1d			•	
		1000 Btu/hr	4.69			307	09					112.5			•	•
. 2-B	. pa	Gal/min		77.5		329		16,556*	15,450*	581			r Lost		•	
PLANT RY IDING 30	Heat Removed	Source		R. V.		R.W.		Aff	Tail Gas	R.V.	7. K		18,645 Removed or Los			
UNITION INVENTO ING, BUI	T	1000 Bru/hr		1,740		3,400		2,100	1,440	7,963	1,453		18,645 1	80 ·		
HOLSTON ANNY ADDUNITION PLANT PROCESS ENERGY INVENTORY NITRIC ACID MANUFACTURING, BUILDING 302-B	ered	Recipient		Product	Product	•	А11			:				TABLE 28		• •
HOLST PRO RIC ACID	Heat Recovered	Donor		Asmonia	Alr		Tail Gas		•	:					•	7.4
TIN	. He	1000 Btu/hr		563	2100		1082			•					<i>}</i>	
		1b/hr	469							17,644	1,256		overed		58.51	
	Hear Added	Source	Steam	Resction		Elect.				Reaction 17,644	Reaction Condensate Feed		ed or Rec		phen were	
	- 1	1000 Bru/hr	631.9	6280		1536				4733	1331 16.3 Co		18,27] Added or Recovered			~
										•				orporation		
		Equipment	Associa Vaporizer	Converser		PRE-Compressor	YRD-Compressor	Air Preheater	Tail Gas Heater	Cascade Cooler	Absorption Tover	Bleacher	Total Process Energy	Roleton Defense Corporation		
			4	Č		8	ž	VIV	H.	Ö	ą	116	Tot	Ho.		

JOY MANUFACTURING CO. BUFFALO N. Y.

4-26 THERMAL PROPERTIES OF SUBSTANCES AND THERMODYNAMICS

vapor pressures (p, psia) at various temperatures (t, deg F) are as follows:

t	200	250	300	350	400	450	500
P	0.060	0.227	0.701	1.832	4.117	8.638	16.29
t p			650 73.55				

 sures. Table 32 (Badger, Ind. Eng. Chem., Sept., 1937) gives properties of this eutectic.

Pure Hydrocarbons The vapor pressures of various commercially important pure hydrocarbons are shown graphically in Fig. 25.

Ammonia Vapor The properties of saturated and superheated ammonia vapor have been determined accurately by the NBS (Circ. 142, 1923). The principal properties are given in Tables 33 and 34 and Fig. 24. Properties of aqua-ammonia are given in Fig. 26.

In these tables, the entropy s_f and the heat of the liquid b_f are taken as zero at -40° F instead of at 32°F, as is customary in most tables.

Properties of Other Refrigerants Complete and consistent

Fig. 22 Enthalpy-entropy (Mollier) chart for steam. (From "Steam, Its Generation and Use," The Bahcock & Wilcox Co., 1963.)

Thermo-12® Gold

Heat Transfer Tables

Pipe and Block Insulation

Nominal Pipe Size 18" Metal Jacket

Insulation	Pipe (Operati	ng Tem	peratu	re (°F)											
Thickness	20	00	30	10	40	0	50	00	60	00	80	00	10	00	12	200
(inches)	HL*	ST*	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST
Bare	1070	200	2442	300	4309	400	6783	500	9997	600	19265	800	33526	1000	54455	1200
1	157	122	306	153	469	183	651	213	854	245	1345	313	7978	3908	42792	476
1½	123	114	236	137	360	161	497	185	650	209	1018	263	1490	325	2094	394
2	100	107	192	127	291	146	401	165	523	185	814	229	1188	280	1666	338
2½	85	103	163	120	246	136	338	152	440	169	685	207	997	250	1395	300
3	75	100	142	114	215	128	294	143	383	157	594	190	864	228	1208	271
3½	67	98	127	110	191	123	262	135	341	148	528	177	767	210	1071	249
4	59	96	113	106	170	117	232	128	302	139	467	165	677	194	945	228
4½	56	95	106	105	160	115	218	125	283	135	438	159	635	186	886	218
5	52	93	98	102	148	111	202	121	262	130	405	152	587	176	818	206
5½	48	92	91	100	137	109	187	117	242	126	375	145	542	168	756	194
6	45	91	86	99	129	106	176	114	228	122	352	140	509	161	709	186
6%	43	90	81	97	122	105	166	112	215	119	332	136	481	156	669	178
7	41	90	77	96	115	103	158	110	204	117	315	132	456	151	635	172
7½	39	89	73	95	110	101	150	108	195	114	300	129	434	146	605	166
8	37	88	70	94	105	100	144	106	186	112	287	126	415	142	578	161
8½	36	88	67	94	101	99	138	105	179	111	275	124	398	139	554	157
9	34	88	65	93	97	98	133	103	172	109	265	121	383	136	533	153
9½	33	87	63	92	94	97	128	102	166	107	256	119	369	133	514	149
10	32	87	61	92	91	96	124	101	160	106	247	117	357	130	496	146

Nominal Pipe Size 18" Dull Surface

Insulation	Pipe (Operati	ng Tem	peratu	re (°F)											
Thickness	20	00	30	00	40	00	50	00	60	00	80	0	10	00	12	00
(inches)	HL*	ST*	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST
Bare	1070	200	2442	300	4309	400	6783	500	9997	600	19265	800	33526	1000	54455	120
1	193	105	366	123	554	141	760	160	991	179	1545	219	2257	264	3172	31
1½	144	98	272	112	410	126	561	140	729	154	1130	186	1644	221	2301	26
2	114	94	215	105	323	116	442	127	573	139	886	164	1285	193	1795	22
2½	95	92	179	101	269	110	367	119	476	128	735	150	1065	174	1485	20
3	82	90	155	97	232	105	317	113	410	121	632	140	915	161	1275	18
3½	73	88	137	95	205	102	280	109	362	116	558	132	807	151	1123	17
4	64	87	120	93	180	98	246	104	318	111	489	124	707	141	984	16
4½	60	87	113	92	169	97	230	102	298	108	458	121	662	136	921	15
5	55	86	104	91	156	95	212	100	274	105	422	117	609	131	847	14
5½	51	85	96	89	143	94	195	98	253	103	389	113	561	126	780	14
6	48	85	90	89	134	92	183	97	237	101	364	110	525	122	730	13
6%	45	84	85	88	127	91	172	95	223	99	343	108	495	119	688	13
7	43	84	80	87	120	91	163,	94	211	98	325	106	469	116	651	12
7½ .	41	84	76	87	114	90	155	93	201	96	309	104	446	113	619	12
8	39	84	73	86	109	89	148	92	192	95	295	103	426	111	591	12
8%	37	83	70	86	104	89	142	91	184	94	283	101	408	109	566	11
9	36	83	67	86	100	88	137	91	177	94	271	100	392	108	544	11
9%	35	83	65	85	97	88	132	90	170	93	261	99	377	106	524	11
10	33	83	62	85	93	87	127	90	164	92	252	98	364	105	506	11

HL: Heat Transfer, BTU/hr. per linear ft.

ST: Surface Temperature, 'F.

System

The Clayton Waste Heat Recovery System can be used to generate steam or high temperature hot water. Typical combinations of an exhaust gas or waste heat unit with a direct-fired steam generator are shown belowed on the next page. Similar combinations are available thigh temperature hot water production.

A principal feature of the Clayton Waste Heat Steam Generator is its unique coil design. The coil tube is wound in a spiral pattern with planned and closely controlled spacing between the turns. This provides the desired area to control the velocities of the combustion gases.

Various sizes of boiler tubing with relatively small internal volumes are used in the coil. This highly efficient heating surface arrangement minimizes size and weight

requirements. Several sizes of coils are available in standard production.

The Exhaust Gas Steam Generator has a somewhat different construction. Its heating section may differ in diameter, quantity of coils per section and flue gas area. A set of four or six coils and pipe sizes from 1" to 2" are used. Combinations are put together to produce the required steam output. This provides flexibility in matching exhaust gas rates with standard size sections.

In applications where gas temperatures are below 427°C (800°F)—typical of marine diesels—the steam or hot water flow in any section of the unit can be bypassed if one of the spiral coils is damaged. Although the steam or hot water output would be reduced after bypass, complete shutdown is not necessary.

132

CLAYTON WHSG PERFORMANCE

WASTE GAS MASS FLOWRATE, LBS/HR

25000*

source sound power level, dB re 1 pW
 room volume, ft³
 octave-band center frequency, Hz
 distance from the source to the reference point, ft

iation (I) applies directly to a single cound

APPENDIX

Gas	Molecular Weight	Specific Heat at Constant Pressure (c _p), Btu lb _m -1 R-1 T = Rankine Degrees	Range R	Maximum Deviation from Experimental Data (per cent)
N ₂	28.02	0.227 + 0.0000292T	720-1900	Less than 1
H ₂ O	18.016	0.433 + 0.0000166T	720-1900	
CO ₂	44.00	0.186 + 0.0000625T	720-1900	Less than 3
CO	28.00	0.226 + 0.0000321T	720-1900	Less than 1
H:	2.016	3.35 + 0.000114T	720-1900	Less than 1
CH4	16.03	0.208 + 0.000561T	720-1900	
O ₂	32.00	0.200 + 0.0000353T	720-1900	Less than 1
Air	28.96	0.220 + 0.0000306T	720-1900	Less than 1
C_sH_{1s}	114.14	0.105 + 0.000486T	720-1900	

*E. S. Taylor, W. A. Leary, and J. R. Diver, Effect of Fuel-Air Ratio, Inlet Temperature and Exhaust Pressure on Detonation, NACA Report No. 699 (1940).

TABLE IIB
HEAT-CAPACITY EQUATIONS*

Gas or Vapor	Equation c _p in Btu mole ⁻¹ R ⁻¹	Range R	Maximum Error (per cent)
O ₂	$c_p = 11.515 - \frac{172}{\sqrt{T}} + \frac{1530}{T}$	540-5000	1.1
	$=11.515 - \frac{172}{\sqrt{T}} + \frac{1530}{T} + \frac{0.05}{1000} (T - 4000)$	5000-9000	0.3
N_2	$c_p = 9.47 - \frac{3.47 \times 10^3}{T} + \frac{1.16 \times 10^6}{T^2}$	540-9000	1.7
CO	$c_p = 9.46 - \frac{3.29 \times 10^3}{T} + \frac{1.07 \times 10^6}{T}$	540-9000	1.1
$H_2 \dots$	$c_p = 5.76 + \frac{0.578}{1000}T + \frac{20}{\sqrt{T}}$	540-1000	0.8
	$=5.76 + \frac{0.578}{1000}T + \frac{20}{\sqrt{T}} - \frac{0.33}{1000} (T - 4000)$	4000-9000	1.4
H ₂ O	$c_p = 19.86 - \frac{597}{\sqrt{T}} + \frac{7500}{T}$	540-5400	1.8
CO ₂	$c_p = 16.2 - \frac{6.53 \times 10^3}{T} + \frac{1.41 \times 10^6}{T^2}$	540-6300	0.8
CH	$c_p = 4.52 + 0.00737T$	540-1500	1.2
	$c_p = 4.23 + 0.01177T$	350-1100	1.5
	$c_p = 4.01 + 0.01636T$	400-1100	1.5
	$c_p = 7.92 + 0.0601T$	400-1100	Est. 4
$C_{12}H_{26}$.	$c_p = 8.68 + 0.0889T$	400-1100	Est. 4

* R. L. Sweigert and M. W. Beardsley, Empirical Specific Heat Equations Based upon Spectroscopic Data, Georgia School of Technology Bulletin, Vol. 1, No. 3 (June, 1938).

TA Gas-Con

Al

Gas	Chemical Formula	Molecu: Weig: M
Acetylene Air Ammonia Argon Butane Carbon dioxide Carbon monoxide Dodecane Ethane Ethylene Hydrogen Methane Nitrogen Detane Doxygen Propane Sulphur dioxide	C ₂ H ₂ NH ₂ A C ₄ H ₁₀ CO ₂ CO C ₁₂ H ₂₆ C ₂ H ₆ C ₂ H ₆ He H ₂ CH ₄ N ₂ C ₈ H ₁₈ O ₂ C ₃ H ₅ SO ₂ H ₂ O	26.0: 28.94 17.01 39.96 58.08 44.06 28.06 170.3 30.05 28.06 4.06 2.01 16.03 28.02 114.14 32.00 44.06 64.07 18.01

6-10 GENERAL PROPERTIES OF MATERIALS

Specific Gravity and Density of Water at Atmospheric Pressure (Weights are in vacuo)

Temp,	Specific	Dens	sity,	Temp,	Specific	Der	isity,
.C.	gravity	lb/ft³	kg/m³	°C	gravity	lb/ft³	kg/m³
0	0.99987	62.4183	999.845	40	0.99224	61.9428	992.228
2	0.99997	62.4246	999.946	42	0.99147	61.894	991.447
4	1.00000	62.4266	999,955	41	0.99066	61.844	990.647
6	0.99997	62.4246	999,946	46	0.98982	61.791	989.797
8	0.99988	62.4189	999.854	48	0.98896	61.737	988.931
10	0.99973	62.4096	999.706	50	0.98807	61.682	988.050
12	0.99952	62.3969	999.502	52	0.98715	61.624	987.121
14	0.99927	62.3811	999.272	54	0.98621	61.566	986.192
16	0.99897	62.3623	998.948	56	0.98524	61.505	985.215
18	0.99862	62.3407	998.602	58	0.98425	61.443	984.222
20	0.99823	62.3164	998.213	60	0.98324	61.380	983.213
22	0.99780	62.2894	997.780	62	0.98220	61.315	982.172
24	0.99732	62.2598	997.304	64	0.98113	61.249	981.113
26	0.99681	62.2278	996.793	66	0.98005	61.181	980.025
28	0.99626	62.1934	996.242	68	0.97894	61.112	978.920
30	0.99567	62.1568	995.656	70	0.97781	61.041	077 702
32	0.99505	62.1179	995.033	72	0.97666	60.970	977.783
34	0.99+10	62.0770	994.378	74	0.97548	60.896	976.645
36	0.99371	62.03+1	993.691	76	0.97348		975.460
38	0.99299	61.9893	992.973	78	0.97428	60.821 60.745	974.2 <i>5</i> 9 973.041

PHYSICAL DATA

Average Composition of Air between Sea Level and 90 km Altitude and Dry

Element	Formula	% by vol.	% by mass	Molecular weight
Nitrogen	N ₂	78.084	75.55	28.0134
Oxygen	O ₂	20,948	23.15	31,9988
Argon	Ar	0.934	1.325	39,948
Carbon dioxide	CO_2	0.0314	0.0477	++.00995
Neon	Ne	0.00182	0.00127	20.183
Helium	He	0.00052	0.000072	4.0026
Krypton	Kr	0.000114	0.000+09	83,80
Methane	CH ₄	0.0002	0.000111	16.043

From 0.0 to 0.00005 percent by volume of 9 other gases. Average composite molecular weight of air 28,9644 Data from "U.S. Standard Atmosphere, 1962," Government Printing Office.

Volume of Water as a Function of Pressure and Temperature (From "International Critical Tables")

Temp,				Pressu	re in atmo	spheres		
°F (°C)	0	500	1,000	2,000	3,000	4,000	5,000	
32(0) 68(20) 122(50) 176(80)	1.0000 1.0016 1.0128 1.0287	0.9915	0.9619 0.9732	0.9428	0.9065	0.8855 0.8974	0.8675 0.8792	0.8361 0.8444 0.824 0.8562 0.836 0.8679 0.848

F. & 29.92	7		Spec. Grav.	Sprc. Heat	Latent	Vapor Press.	Abs. Visc.	Therm. Cond.	
The coroll of t	(at 68°F & 29.92 "Hg	or as noted)	SG	ڻ	ێ		-	k 54°F	
Colling	(100% or % in H.C) as noted)	H.O 1	26	20 4	"Hg	do	Biu h, th og	
refuse C.H.O. 791 S78 237 7.28 331 25.5% C.C.H. 25.5% C.C.H. 25.5% C.C.H. 25.5% C.C.H. 26.7 26.	Acetic acid	0.810	1 0 40	448	17.	141	1 22	000	
Second Color	Acetone	O.H.O.	791	.528	237	7.28	331	102	
rectate C.H.1.O. 1871 4.59 e C.H.3.H.1. 10.72 4.45 2.55% CaCl. 1.728 6.87 Cacl. 1.759 5.50 Cacl. 1.759 5.70 Cacl. 1.750 5.70 Cacl. 1.750 5.70 Cacl. 1.750 5.70 Cacl. 1.750 5.70 Cacl. 1	Ammonia	ž	618	1.13	518	253	.266	292	
Telegraphic C.H.: MP7	Amyl acetate	011	.871	.459			.806	.073	
-255% CaCl. 1.189 814 5.00 100 3.01 2.67 2.65% NaCl 1.189 814 158 61.5 1.87 2.02 1.265% NaCl 1.189 814 158 61.5 1.87 2.02 1.265% NaCl 1.189 814 158 61.5 1.87 2.02 1.265% NaCl 1.189 8.11 1.26 1.265 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.169 0.376 1.179 1.170 1.179 1.179 1.179 1.170 1.179 1.170 1.179 1.170 1.179 1.170 1.179 1.170 1	Aniine		1.07.	54.7	200	.002	4.47	660	
-25% NaCl. 1.189 814 861.5 1.00 -25% NaCl. 1.189 814 188 61.5 1.00 -25% NaCl. 1.189 814 188 61.5 1.00 -25% NaCl. 1.189 827 1.50 -25% NaCl. 1.189 827 1.50 -25% NaCl. 1.189 827 1.50 -25% NaCl. 1.189 827 1.18 -25% NaCl. 1.189 827 1.1	Brine - 25%	: ÷	1 228	400	88	10.5	,04/	180.	
n dioxide CtHu	Brine - 25%	NoN	1.189	81.4			200	3,16	
n dioxide CO: 1.101 97 63.1 1690 0771 n dioxide CO: 1.101 97 63.1 1690 0771 lorin m dioxide COI, 1.594 201 93.8 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.	Butane	CiHin	.579	.550	158	81.5	187	920	
n divulide CS: 1263 240 157 11.60 376 form interachloride CCi. 1.594 201 93.8 3.58 3.653 feelof CHI-O: 901 459 183 2.87 3.653 feelof CHI-O: 901 459 183 2.87 455 feelof CHI-O: 901 459 183 2.87 455 feelof CHI-O: 901 459 920 151 174 2.45 feelof CHI-O: 1.115 3.7 344 .002 20.9 e.9 tytol CHI-O: 1.115 3.7 344 .002 20.9 feelof CHI-O: 1.115 3.7 344 .002 20.9 feelof CHI-O: 1.215 2.98 feelof CHI-O: 933 468 190 6.68 3.98 feelof CHI-O: 933 488 172 1144 1.183 ceed CHI-O: 934 1.53 156 417 12.7 feelof CHI-O: 934 1.53 156 417 12.7 feelof CHI-O: 935 3.38 172 1144 1.183 feelof CHI-O: 936 3.38 114 1.21 114 114 114 114 114 114 114 114 114 1	Carbon dioxide	00	1.101	.92	63.1	1690	.071		
Column CCI 1.594 201 93.8 3.58	Carbon disulfide	CS:	1.263	.240	157	11.60	.376	.083	
Color	Carbon tetrachloride	CCL	1.594	.201	93.8	3.58	958	190.	
Itelan	Chloroform	CHCL	1.489	.234	113	6.27	.563	.070	
Itechol	Ethyl Acetate	CIRO:	106	459	183	2.87	.455	.084	
Maric acid	Ethyl Alcohol	0.7.0	789	.622	368	1.73	- 10	101	
here glycol	Ethyl Alcohol-40%	0,4,0	.935	.920		,	1.25	224	
e glycol 1.067 70 1.087 70 1.087 70 1.087 70 1.09 1.087 70 1.097 70 1.09 1.097 70 1.09 1.097 70 1.00 1.007 1.00 1.00 1.007 1.00 1.00 1.007 1.00 1.007 1.	Ethyl Ether	CiHio	.708	.503	151	17.4	245	073	
e glycol— 1.067 70	Ethylene glycol	C.H.O.	1.115	.57	344	.002	20.9	167	
2—82.28 puia CFCI ₁ 1.490 27.4 60.6 4.1 2.28.7 puia CFCI ₂ 1.315 25.8 81.0 279 27.3 4.6 2.2.13 puia CFCI ₃ 1.553 60.6 61.53 1.253 60.6 61.53 1.254 60.6 61.53 1.254 60.6 61.53 1.254 60.6 61.53 1.254 60.6 61.53 1.254 60.6 61.24 1.255 1.254 1.255 1.254 1.255 1.254 1.255 1.254 1.255 1.254 1.255 1.254 1.255 1.254 1.255 1.254 1.255 1.254 1.255	Ethylene glycol-								
2 - 2.5.87 pring CFCL, 1.490 2.71 78.9 27.3 .46 2 - 133 pring CFCL, 1.315 .253 60.6 159 .27 22 - 133 pring CFCL, 1.215 .298 81.0 279 .27 24 - 133 pring CFCL, 1.215 .298 81.0 279 .27 25 - 133 pring CFCL, 1.215 .298 81.0 279 .27 26 c	50%		1.067	.70		07.	1.4	.242	
22—133 prior Cristica 1.341 233 60.6 153 27 22—133 prior Cristica Cristica 279 137 124 35 101 Cristica 684 537 130 476 324 102 Cristica 684 537 157 4.96 326 101 Cristica 684 537 4.96 326 118 102 Pristica Cristica 82 50 178 7 18 101 Pristica Cristica 172 144 183 393	Freon 11 - 12.87 psia		1490	.214	78.9	27.3	.46	.064	
Colored Circle Ci	rreon 12—82.78 psig		. 3.3	.253	9.09	153	.27	.052	
C-HLO, C	rreon 22-133 psia		1.215	867.	0.18	279	.24	.062	
C.H.	Casoline	1 3	190	0/2			.35	•	
Moric acid — C.H.O.	100000	- - - - - -	107.1	5/5	!		1009	.162	
hloric ocid— Critii 1.059 1.35 1.57 1.57 1.56 1.26 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.5	Heriane	£ 3	400	BOC.	157	0.30	9 7	.082	
cuelette HCI 1,198 60 178 76.88 318 183 60 60 60 60 60 60 60 60 60 60 60 60 60	Hoden blosse		Aco.	/fc.	/2/	۰۸۰.۲	.326	.088	
coeffice C.H.O. 933 .468 190 .668 .388 .388 clocked C.H.O. 933 .468 190 .668 .388 .388 clocked C.H.O. 922 .4610 .499 .3.78 .593 clocked C.H.O. 923 .385 .372 .472 .418 .393 clocked C.H.O703 .93 .722 .417 .542 .417 .542 .417 .542 .416 .417 .542 .417 .542 .416 .417 .418 .418 .418 .418 .418 .418 .418 .418	Andr.	171	001	,	1	4			
ocetate C.H.O. 933 .468 190 .668 .388 olicohol CH.O. 792 .610 499 .378 .593 chloride CH.O. 792 .610 499 .378 .593 chloride CH.O. 792 .610 499 .378 .593 chloride C.H.O. 792 .610 .834 .72 .181 .183 .610 .610 .610 .610 .610 .610 .610 .610	S C C	!	, C &	0.0	9 /-		-	.234	
cid (Hi O) 792 (10 499) 378 (10 4) 69 (10 4) 6	Methyl ocetate	C. H. O.	110) * O *	100	4,40	200	500	
CHICL ST 385 172 144 183 HA40. 1502 93 172 144 183 CHI. 703 93 156 417 542 ST 542 542 CHI. 504 53 156 417 542 CHI. 505 542 543 CHI. 506 1071 551 561 500 127 CHI. 507 551 561 500 258 14 SOI. 1134 335 136 202 230	Methyl alcohol	0.30	793	610	1001	37.5	203	200	
cid HHQQ, 1502 93 156 417 177 177 18 200 1834 156 177 177 177 1502 156 177 177 177 177 178 179 179 179 179 179 179 179 179 179 179	Methyl chloride	D E	.52	.385	172	144	183	080	
tf gage	Atilk	1	1.03	63	7				
tf gage ——————————————————————————————————	Nitric acid	HMO.	1.502		208		177	-	
C-H ₁ 52 52 52 53 53 52 52 52 52 52 52 52 52 52 52 52 52 52	Octane	C.H.;	.703	.523	156	417	.542	160.	
C-H ₁ , 53 33 200 200 200 200 200 200 200 200 200	Oil, draft gage	u	.834						
C-H ₁ , 626 527 158 200 C-H ₂ , 626 527 158 240 C-H ₂ O ₁ 1.071 561 150 258 14 SO ₂ 1.436 335 151 96.5 230	Oil, linseed	j	175	.53			33		
C-H ₁ , 626 527 158 40.6 C-H ₂ , 626 527 158 240 C-H ₂ , 585 557 158 201 12.7 C-H ₃ , 585 557 150 258 14 SO ₂ , 1434 35 151 96.5 23.0	Oil, lube. (med.)	-	-	.45			200	080	
C.H.C. 626 537 158 240 C.H.C. 1.071 561 158 201 1240 C.H.C. 585 576 150 258 14 SO. 1.836 336 202 258 27 H.SO. 1.836 336 202 233	Oil, olive	_	75	.33			84	.109	
C-H ₁ C-G-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-	Oif, vegetable		.92	.434			40.6		
C-H-O 1.071 5561 .001 12.7 C-H- 585 .376 150 258 .14 SO ₂ 158 .35 151 96.5 23.0 H-SO ₄ 1.836 .336 202 23.0	Pentane		626	.527	158		.240	690.	
CcH. 585 576 150 258 .14 CCH. 385 35 151 96.5 .27 H-SO ₁ 1.836 .336 202 23.0	Phenol		1.071	.561		100.	12.7		
50; 1434 .35 151 96.5 .27 H 50, 1.836 .336 202 23.0	Propane		585	.576	150	258	7	.075	
1.836 .336 202 23.0	Sulfur dioxide	_	434	35	151	96.5	.27	.115	
	Sulfuric acid - 78%	-	1.836	911	202				

Oil, draft gage		83.4	?	2	<u>.</u>	7	140.
Oil, linseed	į		.53			33	
Oil, lube. (med.)	Passes		.45		_	200	080
Oil, olive	;		.33			8.4	.109
Oif, vegetable	-		.434			40.6	
Pentane	CHIL		.527	158		.240	690.
Phenol			.561		100.	12.7	
Propane			.576	150	258	4	.075
Sulfur dioxide			.35	151	96.5	.27	.115
Sulfuric acid - 98%	H-501		.336	202		23.0	.205
Tolvene			.407	178	.870	.590	.074
Turpentine			.472	133	.17	1.49	.063
Water, 39.27F (4°C)			1.005	1069	.240	1.567	.325
Water, 59°F (15°C)			1,000	1058	.504	1.140	339
Water, 68.7°F							
(20.2°C)			866.	1054	707	1.000	.346
Water, 70°F (21.1°C)			866	1053	.739	978	.347
Water, 212°F (100°C)			1.006	970	29.92	.284	.393
Water, heavy	0:0		1.0 5 8	894			
Water, sea			.94			1.03	.349
Adapted from the data of N. V. Lange, "Handbook of Chemistry," Handbook Publishers,	7 7 7 10 1	mge, "Ha	millionk o	(Chemis	try." Han	dhook P	ublishers,
THE PARTY OF THE P			71.11.1		THE COURT BALL	2001	

TABLE 13	137 - PROPERTIES	S OF SOUDS	
	Density	Specific	Thermal Conductivity
Solid	Y	Cn	שנ
	tb/ft3	81v/lb.ºF	Blu-in./hr-fi2.ºF
Ashestor	153	.20	1.7
Ashestos - cement board	120	1	0.4
Ashes	43	.20	6.0
Asphalt	82	ı	2.2
Bakelite	86	.33	l
Borax	109	.38	1 3
Brick, common	120	.22	5.0
Brick, face	130	.22	9.0
Calcium carbonate	177	41.	14.4
Calcium chloride	134	91.	1
Carborandum	195	91.	1.5
Celluloid	87	.36	₹.
Cellulose	76	.37	1
Cement, loote	44	.20	2.1
Cement, mortar	116	.20	5.0
Chalk	142	.21	5.8
Charcoal, hardwood	34	.20	1
Cinders, loose	43	81.	ļ
Clay, dry	63	.22	1
Clay, moist	110	55.	1
Coal, anth., solid	86	E: :	ı
Coat, bitum., solld	85	.30	I
Coke, solid	7.5	.20	1 .
Concrete, cinder	26	E .	0.5
Concrete, stane	140	<u>-</u> -	6.7
Cork	2 '	7 .	· •
Corkboard		1 :	200
Colton	n	1 5.	
Dry Ice	26	.12	l
Earth, moist	78	74.	12.0
Ebonite	7.2	.35	1.2
	58	.46	ı
Feldrage	160	.20	16.2
Flannel	i	1	0.7
Gloss grown	160	91.	5,5
Glass, flint	215	.13	T.4
Glass, pyrex	140	.20	7.5
Granite	165	61.	12.5
Graphile	66	.20	306
Gypsum, compressed	152	.26	0.7
Gypsum board	20		<u>:</u>
Hay, baled	20	.32	!

TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the

DE CHEMISTRY

14 TH EDITION

McGRAW-HILL

Substance	State	$\Delta H f^{\bullet}$, $k \mathbf{J} \cdot \mathbf{mol}^{-1}$	$\Delta G f^{\bullet}$, kJ·mol ⁻¹	S°, J·deg⁻¹. mol⁻¹	1.6
Nb ₂ O ₅	С	-1 899.5(42)	-1 765.8	137.3(13)	
NbOCl ₃	С	-879.5	-782	159	13
Nitrogen					••
N_2	g	0	0	191.61(2)	,
NF ₃	g	-132.1(11)	-90.6	260.8(2)	
N_2F_2 cis	g	67	109	259.8	9
trans	g	81.2	120.5	262.6	
N ₂ H ₄ hydrazine	lq	50.6(11)	150.1	121.5(4)	9
$N_2^2H_4$ hydrazine- d_4	g	81.6	150.9	248.86	
$N_2H_5^+$ std. state	aq	-7.5	82.4	151	3
N_2H_5Br	С	-155.6			
std. state	aq	-128.9	-21.8	233.1	-7
N ₂ H ₅ Cl	С	-197.1			
std. state	aq	-174.9	-49.0	207.1	-6
N ₂ H ₃ Cl⋅HCl	C	-367.4			
N ₂ H ₅ OH	lq	-242.7			
undissoc; ss	aq	-251.50	-109.2	207.9	-
$N_2H_5NO_3$	С	-251.58			
std. state	aq	-215.10	-28.91	297	
$(N_2H_5)_2SO_4$	С	-959.0	***		
std. state	aq	-924.7	-579.9	322	-151
NO NOD-	g	90.29(17)	86.60	210.76	3
NOBr	g g O	82.13	82.42	273.42	45
NOCI	6	51.71(42)	66.10	261.68(17)	44
NOF	g	-65.7(17)	-50.3 -96	248.02	41
NOF ₃	g	-163		278.40	6.
NO ₂	g	33.1(8)	51.3	240.03(13)	3
NO ₂ CI	g	12.1(17)	54	272.19	93 #4
NO ₂ F NO ₃	g	-109.(21) 69.41	-66	250.2	4
N ₂ O	g	82.4(4)	114.35	252.5	7
N ₂ O ₂	g	170.37	104.2 202.88	220.0 287.52	ũ
	g	- 17.2			
$N_2O_2^{2-}$ hyponitrite N_2O_3	aq	82.8(8)	138.9 139.7	27.6	15
N ₂ O ₄	g la	-19.56	97.52	308.5(21)	IC
11204	•	9.08	97.79	209.20 304.38	72
N_2O_5	g	11.3(18)	118.0	346.5(42)	*
•	g	11.3(10)	110.0	J40.J(4-1	
Osmium		^		22.6	*
Os O-Cl	С	0	0	32.5	
OsCl ₃	С	-190.4	-121	130	
OsCl ₄	С	-254.8	-159	155	3
OsO ₄	С	-394.1	-305.0	143.9	5
Oxygen					94
O_2	g	0	0	205.147(35)	- 2
0,	g	142.7(17)	163.2	238.9	S
OF ₂	g	24.5(16)	41.8	247.5(4)	94
O_2F_2	g	19.79	61.42	268.11	# C #
Palladium					
					200

Table 1

Combustion Constants

ž	S. C. S.	i.	Molecu- lar	Th per	Cu Et	Sp Gr	Bita per Gress	Heat of C Bru per Cu Fr Gross Net	Heat of Combustion r Cu Ft Btu per Net Gross	nbustion Bu per Lb iross Net	Require	For 100% Total Air Moles per mole of Combustible or Cu Ft per Cu Ft of Combustible Required for Combustion Flue Produ	For 100% Total Air Moles per mole of Combustible or 'u Ft per Cu Ft of Combustible for Combustion Flue Prod	otal Air f Combu f Combu	stible stible Product		For 100% Total Air Lb per Lb of Combustible	For Lb per	100% To	ital Air mbustibl		
		- Crimana	weight	· ·	per L.b	1.0000	(High)		(High)	(Low)	o,	ž	Air	, 00	O ₂ H ₂ O N ₂		0,	z.	Air	, O	H ₂ O	z
	Carbon*	C	12.01	:	:	:	:	;	14.093	14 09 1	9	3.76	4.76	-		-		1				
	Hydrogen	112	2.016	0.0053	187,723	0.0696	325	275	001.19	16918	2 -	1 88	2, 0	2	: -	3.10	•	8.86	1.53	3.66	:	8.86
	Oxygen	°C	32.000	0.0846	11.819	1.1053	: :			2	3	00.1	7.30	:	2:		7.94	14.97	34.34	:	8.94	26.41
	Nitrogen (atm)	ź	28.016	0.0744	13,443	0.9718				:	:	:	:	:	:	:	:	:	:	:	:	:
5 Ca	Carbon monoxide	e CO	28.01	0.9740	13.506	0.9672	322	322	4 347	4 147	: 6		3. 6	: :		::					:	:
0 0	Carbon dioxide	CO;	44.01	0.1170	8.548	1.5282	!				2	00.1	4.30	0.1		_	75.0	1.90	2.47	1.57	:	_
Paraffin series	series									:	:	:	:	:	:	· :	:	:	:	:	:	:
	Methane	E	16,041	0.0424	23.565	0.5543	1013	913	23.879	21.520	2.0	7 53	0 63	-			.,		;	į		
	Ethane	C ₂ H ₆	30 067	0.080.0	12.455	1.0488	1792	1641	22,320	20 412	3.5	13.18	16.68	9 9	2.0	_		37.6	17.1	2.14	2.25	13.28
	Propane	Cilli	44,092	0.1196	8.365	1.5617	2500	2185	21.661	19.944		18.83	21.82				5.6	2.39	71.0	2.93	.80	12.39
10 u-l	n-Butane	Cillin	58.118	0.1582	6.321	2.0665	3370	3113	21,308	19.680	5.9	24 47	10.07		2.0	-			5.70	2.99	.63	12.07
	Isobutane	C(H)	58.118	0.1582	6.321	1.0665	1363	3105	21.257	19,629	9	24 47	10 01				_	16.1	15.49	3.03	1.55	6.
	n-Pentane	CsHr	72,144	0.1904	5.252	2.4872	4016	3709	21,091	19.517	8.0	30.11	38.11				_		7.47	5.03 5.03	2 :	6.
	Isopentane	CsHr	72.144	0,1904	5.252	2.4872	4008	3716	21,052	19,478	8.0	30.11	18.11					0.0	5.35	3.03	50	æ. :
	Neopentane	CHI	72 144	0.1904	5.252	2 4872	1661	1693	20,970	19, 196	8.0	30.11	18 11			_	_		5.33	3.03	50	£ :
15 n-t	n-Hexane	Cillii	86.169	0.2274	4.198	2 9704	4762	4412	20,940	19,403	9.5	35.76	45.26	0.0		_	3.53		5.35	3.05	.50	æ. :
	ries					-							2			_			2.71	3.06	.46	=
	Ethy lene	Calla	28.051	0.0746	13.412	0.9740	1614	1513	21,644	20,295	3.0	11.29	14,29			1 30 1	147	00.1	101		Ş	:
	Propylene	ડે. E	42.077	0.1110	6.007	1.4504	2336	2186	21,041	169.61	4.5	16.94	21.44	3.0	3.0	_		_			67:1	2
	n-Bulene	Ć.	56.102	0.1480	6.756	1.9336	3084	2885	20,840	19,496	6.0	22.59	28.59			_	-				67.	= :
	Sobutenc	CH	\$6.102	0.1480	6.756	1.9336	3068	2869	20,730	19,382	0.9	22.59	28.59			_	_		_	7.7	67.	= :
20 n-P	n-Pentene	CHE	70.128	0.1852	5,400	2.4190	38.36	3586	20,712	19,363	7.5	28.23	35.73	5.0		-	3.47	_			67.	= :
=	c series															-		-			67.	=
	Benzene	Ctt	78.107	0.2060	4.852	2.6920	3751	3601	18,210	17,480	7.5	28.23	35.73	6.0		28.21 3.0	3.07	1 66 0	01.1	0, 0, 1	5	
	Toluene	Ť.	92.132	0.2431	4.113	3.1760	4:18:4	4284	18,440	17,620	0.6	33.88			4.0 33			_			9 6	10.22
23 Xy	Xylene	ŭ C'E⊑	106.158	0.2803	3.567	3.6618	\$230	4980	18,650	17,760	10.5	39.52		8.0 5		_					0.70	
34 4	74 A A A A A A A A A A A A A A A A A A A		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*	:											_					1	į
	Acetylene	: :	50.0.05	0.0697	14.344	_	1499		21,500	20,776	2.5	9.41		2.0		9.41 3.0	_	0.22	13.30			2
	Mapitulatene		701.07	0.3384	2.935	_	5854		7,298	16,708		45.17				45.17 3.00		_				0 07
20 ME	Fibra alcohol		32.041	0.0846	07871				10,259	9.078	5.	5.65		1.0 2	2.0 5.	_				1.37	1.13	4.98
1	A managed a	1000	10.001	0.1710	0.221	+		1451	3,161	11.929	-		14.29								1.17	109
1	HOHE	i i	160.71	0.0400	41.314	0.3961	441		9,668	8,001	0.75				1.5 3.	3.32 1.41			6.10		1.59	12
29 Sulfur*	ur•	S	32.06				:	;	3.983	1 981	0	37.1	S 474	so:								
	Hydrogen sulfide	H ₂ S	34.076	1160.0	10.979	1.1898	647	\$96	7.100	6.545	2 5	3,70				3.76		3.29				3.29
	Sulfur dioxide		64.06	0.1733	5.770	2.2640	;			21.0	3	70.0							6.10	1.88 0.	0.53	4.69
	Water vapor		18.016	0.0476	21.017	0.6215		•	:	:	:	:			•	:	•	:	:	:	:	:
33 Air				0.0766	13061	0000	:	•	:	:	:	::	:	:	:	:	:	•	:	:	:	:
				00/00		· · · · · · · · · · · · · · · · · · ·										-						

*Carbon and sulfur are considered as-gases for molal calculations only.

Note: This table is reprinted from Fuel Flue Gases, 1941 Edition, courtesy of American Gas Association.

All gas volumes corrected to 60 F and 30 in. Hg dry.

PHYSICAL PROPERTIES — Liquids and Misc.

						_					-		iu i		
	mol.	sp gr	sp ht	mp	bp	i.H			riscosity	centipois	_	Vı	scosily	SSU	
	wi	60-70F	60F	f	f			4.4C	26.7C 80F	120F	71C	4.4C	26.7C	490	710
Acids	60	1.05	.48	62	245	1751	001					40F	805	120F	160
cetic ocid, 10% only ocid — aleic	282	1.01	.96		1	1/3	.095	1.65	1.18	0.85	0.65	1			
atty acid — palmitic	256	0.853	.653	13	547 520	21.8	.092	1							
otty acid — stearic ydrochloric acid 31.5% (muriatic)	284	1.15	.550	157 -53	721	26.4	.078	2.5	1.85	1	1	ł	}		
lydrochloric acid 10% (muriatic) litric acid, 95%		1.05	.75 .5	-44		1				1.42	11		1		1
litric acid, 60% litric acid, 10%		1.37	.64	-9.4	187			1 45	1.05	.8	.61]	
henol (carbolic acid)	94	1.05	.9 .56	106	346	16.1		14.5	73	3 9		T			
hosphoric acid, 20% hosphoric acid, 10%		1.11	.85 .93	}		1	1	1		3,	2.1	1			1
sulfuric acid, 110% (Furning)		1.84	.27	92	342		t	82.0	41.0	22.0	12.2	280	100	55	
ulfuric acid, 60%		1.50	.35 .52	28.6 -20	625 282	2191	.15	46.0 8.9	23.0 5 B	11.5	6.4	118	68	45	3
oulfuric acid, 20%		1.14	.84	8	218			2.5	3.4	0.8	0.55				
Water solutions brine — calcium chloride, 25%		1.23	.689	. 21			.28	4.5	2.1	0.95	0.45				
rine sodium chloride, 25% ea water		1.19	.786	. 16	221		.24	3.3	21	13	0.52				
odium hydroxide, 50% (caustic soda) odium hydroxide, 30%		1.53	.78	1		1		2500	77.0	260	9.5	950	240	84	Ι.
Water	18	1.33	.84 1.0	32	212	144	34	1 55	9.6 0.86	4.5 0.56	2.5	""	1.0	**	1 4
Food Products*						_		-	0.00	0.50	0 -	-			-
Dextrose, corn syrup 40° Baume Dextrose, corn syrup 45° Baume		1.38			225 237	ł		ļ			1	170000	11000	1700	43
ish, fresh, avg. ruit, fresh, avg.			.76 .88		.,,	101			ļ				2=10*	120000	1200
oney		٠۶	.34			120 30	1								
e Cream and		[]	.5 .70			96					1	ĺ			
Naple syrup		.92	.64			22 52						10000	450	155	8
Neat, fresh, avg. Nilk, 3.5%		1.03	.70 .90			90					1				
Aolasses, primary A Aolasses, secondary B		1.55	.6			1 17							10000	2600	1
Aolasses, blackstrap (final) C													70000	10000	
ucrose, 60% sugar syrup		1.53	.74	10	218			156	47.6	1			300000	25000	
oucrose, 40% sugar syrup ougar, cane & beet		118	.66 .3	25	214	-		:22	41.0 5.0	14.0	7.0	500	153	68	1
Vegetables, fresh, avg. Wines, table and dessert, avg.			92			130									
Petroleum Products		1 03	.95	7 10 22											
phalt, RS-1, MS-1, SS-1, emulsion		10	42						86	34	17		400		
sphalt, RC-0, MC-0, SC-0, cut back sphalt, RC-3, MC-3, SC-3, cut back							· ·			3-	'']	400 950	160	15
sphalt, RC-5, MC-5, SC-5, cut back sphalt, 100-120 penetration		10									ļ		40000 500000	7000 45000	160
sphalt, 40-50 penetration	78	101											3500 at		
on 1 Fuel Oil (Kerosene)	/ 0	.8 4 4	53	4.2	176	1701	0.087	.8 7	62 55	46	0.30		0000 0.		1
lo. 2 Fuel Oil, - PS100	1	118.	47			110'	0.084	3.3 4.6	2.1	1.4	0.95	40	36		
o. 3 Fuel Oil, - PS200 o. 4 Fuel Oil		.887 901	.43				0.078	150	7.6 7.0	1.6	1.15	43 84	36 52	33	3
lo. 5 Fuel Oil, - PS300 lo. 6 Fuel Oil, Bunker C PS400		.937	.41				0.075	97.0	24.0 390.0	9.6 75.0	5.0 25.0	480	125	62 370	12
ransformer oil, light ransformer oil, medium		956 898	40 42				0.070 0.075	34.2	1000.0	155.0	40.0	170	4500	680	18
4" API Mid-continent crude		9: 855	42				0.08	89.0 15	28.2	119	6.7	463	72 145	70	5
8° API gas oil Duench and tempering oil]	.887	42				0.078	25	6.5 9.0	3.0 6.0	2.0 4.0	135	51 59	37 48	3
AE -5W (+8 machine lube oil: AE-10W (+10 machine lube oil:	l	8.8						110	30	12	7	550	160	74	5
AE—20 (• 20 machine lube oil! AE—30 (• 30 machine lube oil!		89						170 580	50 98	22 33	11	1500 2900	265 500	120	6
AE-40 AE-50		.89						1200	200	60	25	5000	870	170 260	111
araffin, meited	1	9	40	100-133	660 BCD	70	0.14		400	100	45	23000	1400 3600	380 720	150
Minath	6.5	.862	47	-139	23:	1571	0.084	.75	.57	.45	.36		ı		
Miscellaneous cetone, 100%	58	.789	.514	- 137	133	2251	001								
Icohol, ethyl, 95%		.81	١		133	370	.096	2.0	0.32	0.26 .8	0.21				
mmonia, 100% mmonia, 26%	17	.77	6.5	-106	- 27	5891	.13	0.14	0.73	.53 0.08	0.43				
rocior		.905	1.0		650		.26	2000	1.2						
otton seed oil reosote	(See c	.95 oal tars	.47	1			.1	-000	200	32	10	20000	500	95	4
Dwtherm C	166	.995	.63	54	500	123	.08	į	l				l		
hylene glycol	62	1.10	.3565 ,58	70-220	600 387	3461	.08	44.0	19.0	9.0	١,,	,,,,	ا ا		_
lue, 2 parts water, 1 port dry glue lycerol, 100% (glycerin)	92	1.09	.89	62.5	554	3401					4.5	185	86	53	3
reed oil		1.13	ı	-6.5		3-0.	.164	11.0	5.4	130.0 2.8	56.0 1.5	25000	3100	700	23
thatia -at 111	148	.93 1.53	.232	-5.0 267	552 544	66		72	37	20	11			- 1	
ifur, melted	32	.92 1.8	.2433	3-14	832			- 1	45.0					Í	
rnloroethylene	66	1.62	215	-99	189	90	.070	.7	0.58	0.46	0.4		I		
antine, spirits of pon tetrachloride	136	.86	.42	14	320	1.841	.074	1.9	1.35	0.95	0.7				

¹ This figure is latent heat of vaporization.
*sp ht of food products are for above freezing.
Below freezing the values are approx. 60% of those given.

mol wt — molecular weight sp ht — Btu/lb F mp — Melting point, F

bp — Boiling point, F
LH — Latent heat of fusion, Btu/lb
k — Thermal conductivity, Btu/sq ft hr F/tt

Table 3-37. HEAT OF DILUTION OF ACIDS*

VIVIAN B. PARKER

 ΔH_{diln} , the integral heat of dilution, is the change in enthalpy, per mole of solute, when a solution of concentration m_1 is diluted to a final finite concentration m_2 . When the dilution is carried out by addition of an infinite amount of solvent, so the final solution is infinitely dilute, the enthalpy change is the integral heat of dilution to infinite dilution. Since Φ_L , the relative apparent molal enthalpy, is equal to and opposite in sign to this, only Φ_L is referred to here.

Φ_L, cal/mol, at 25 deg C (298.15 K)^a

		T, can		50g 5 (a.e.			_V		
n	m	HF	HCl	HClO ₄	HBr	HI	HNO,	CH ₂ O ₂	$C_2H_4O_2$
500,000 100,000 50,000 20,000 10,000	0.00 .000111 .000555 .00111 .00278 .00555	0 300 900 1,300 1,800 2,130	0 5 10 16 25 34	0 5 10 14 22 30	0 5 9 13 22 31	0 5 9 12 20 29	0 5 11 15 23 31	0 9 13 20 23 25	0 40 50 53 55 58
7,000 5,000 4,000 3,000 2,000	.00793 .01110 .01388 .01850 .02775	2,250 2,360 2,450 2,550 2,700	40 47 54 60 74	35 40 43 47 54	37 44 49 56 68	34 41 46 52 63	36 42 46 51 59	26 26 27 28 28	59 61 62 62 63
1,500 1,110 1,000 900 800	.03700 .05000 .05551 .0617 .0694	2,812 2,927 2,969 2,989 3,015	85 97 102 107 113	58 62 62 63 64	77 89 92 97 102	71 81 84 85 92	78	29 29 29 30 31	64 65 65 66 67
700 600 555.1 500 400	.0793 .0925 .1000 .1110 .1388	3,037 3,057 3,060 3,077 3,097	120 129 133 140 156	65 65 65 65 64	108 115 119 124 135	96 102 105 108 116	92	32 32 32 32 32 33	68 68 69 70 72
300 277.5 200 150 111.0	.1850 .2000 .2775 .3700 .5000	3.126 3,129 3,142 3,148 3,156	176 182 212 242 280	61 59 50 36 18	150 155 176 197 225	$\begin{array}{r} 125 \\ 128 \\ 146 \\ 154 \\ 170 \\ \end{array}$	110	34 35 36 39 42	76 79 82 88 97
100 75 55.51 50 40	.5551 .7401 1.0000 1.1101 1.3877	3,160 3,167 3,179 3,184 3,192	295 343 405 431 493	+12 -14 -48 -61 -91	235 270 314 331 379	176 194 223 234 260	120 121 121 121 121 121	44 49 54 56 60	101 113 130 147 155
37.00 30 27.75 25 22.20	1.5000 1.8502 2.0000 2.2202 2.5000	3,194 3,200 3,203 3,208 3,211	518 595 627 674 732	$ \begin{array}{r} -103 \\ -138 \\ +149 \\ -162 \\ -173 \end{array} $	398 455 477 510 550	269 301 315 336 365	121 124 126 130 139	62 65 66 67 68	162 183 192 204 218
20 18.50 15.86 15 13.88	2.7753 3.0000 3.500 3.7004 4.0000	3,214 3,216 3,221 3,227 3,234	792 838 946 988 1,052	-182 -187 -196 -195 -188	590 624 709 743 796	396 427 503 536 588	149 159 189 203 229	69 69 69 69 69	233 245 268 277 291
12.33 12 11.10 10 9.5	4.5000 4.6255 5.0000 5.5506 5.8427	3,246 3,249 3,256 3,265 3,269	1,171 1,190 1,271 1,396 1,462	-175 -170 -150 -117 -97	887 911 983 1,097 1,156	676 700 764 855 920	265 277 313 368 400	68	313 318 333 353 363
9.251 9.0 8.5 8.0 7.929	6.0000 6.1674 6.5301 6.9383 7.0000	3,272 3,274 3,278 3,282 3,283	1,498 1,535 1,618 1,710 1,725		1,196 1,230 1,313 1,401 1,416	950 980 1,050 1,115 1,130	418 437 480 530 538	67 66 65	368 373 383 392 394

^{*}One calorie (thermochemical) equals 4.184 joules.

142

n 7. 7. 6. 6. 0.5 *From: NSR 1965. Substant HClO. H.O

LiCI LiCI-H₂O LiCIO₄-3H₄C

LiBr LiBr-HrO *25 deg C = *From: NSP

1965.

T.

Table 3-37. HEAT OF DILUTION OF ACIDS (Continued)

 								~/	
 n	m	HF	HCl	HClO₄	HBr	HI	HNO ₃	CH ₂ O ₂	$C_2H_4O_2$
7.5 7.0 6.938 6.5 6.167	7.4008 7.9295 8.0000 8.5394 9.0000	3,286 3,290 3,291 3,296 3,302	1,820 1,942 1,960 2,090 2,202	61 135 146 229 306	1,497 1,608 1,622 1,738 1,845	1,210 1,325 1,340 1,450 1,570	595 661 667 745 805	63 61 61 58 55	402 411 412 420 426
6.0 5.551 5.5 5.0 4.5	9.2510 10.0000 10.0920 11.1012 12.3346	3,305 3,316 3,317 3,335 3,362	2,265 2,447 2,472 2,721 3,025	348 481 499 730 1,144	1,903 2,078 2,102 2,344 2,655	1,630 1,820 1,850 2,100 2,460	840 940 950 1,098 1,270	53 49 49 43 37	429 436 437 445 453
4.0 3.700 3.5 3.25 3.0	13.8765 15.0000 15.8589 17.0788 18.5020	3,400 3,428 3,450 3,483 3,520	3,404 3,680 3,882 4,160 4,460	1,574 1,893 2,150 2,460 2,880	3,089 3,415 3,668 4,005 4,370	2,960 3,350 3,660 4,110 4,630	1,495 1,645 1,770 1,920 2,101	29 26 21 17 13	462 469 473 481 488
$\begin{array}{c} 2.775 \\ > 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \end{array}$	20.0000 22.2024 27.7530 37.0040 55.506	3,557 3,607 3,712	4,750 5,180 6,260 8,240 10,900	3,300 4,000 5,500	4,760 5,300 6,650 8,530 11,670	5,190 6,000	2,270 2,520 3,060 3,770 4,715	9 +4 -5 -13 +11	496 506 528 532 518
 0.5 0.25	111.012 222.02							77 129	495

te, when a solution n is carried out by te enthalpy change molal enthalpy, is

 $CH_1O_2 \mid C_2H_4O_2$

Table 3-38. HEATS OF SOLUTION*

VIVIAN B. PARKER

 ΔH_{π} 25 deg C for Uni-univalent Electrolytes in $\rm H_2O^2$

Substance	State	ΔH_x°	Sunstance	State	ΔH ,	Substance	State	ΔH ,
HF HCI HCIO+H-O HBr HI HIO- HNO- HCOOH CH-COOH NH-CIO-	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-17,888 -21,215 -7,875 -20,350 -19,520	LiBr·2H;O LiBrO: LiI LiI-H;O LiI-2H;O LiI-3H;O LiNO: LiNO: LiNO: NaOH NaOH-H;O NaCI NaCI NaCI	000000000000000000000000000000000000000	-15,130 -7,090 -3,530 140 -2,630 1,680	KCI KCIO, KCIO, KBr KBrO, KI KIO, KNO, KNO, KC,H,O,	000000000000000000000000000000000000000	cal/mole 4,115 9,890 12,200 4,750 9,830 4,860 6,630 3,190 8,340 -3,665 2,800 4,840 5,790 10,410
NH.JO; NH.JO; NH.JO; NH.JO; NH.CH:O; NH.CN CH.NH.CI (CH.):NHCI N(CH.):JB; N(CH.):JB; N(CH.):JB; N(CH.):JB;	000000000000000000000000000000000000000	3.280 7,600 4,600 6,140 -570 4,200 5,400 1,378 350 975 5,800 10,055	NaClO:3H:O NaClO: NaClO: NaClO:H:O NaBr-O NaBr-2H:O NaBr-O: NaI NaI NaIO: NaNO: NaNO: NaNO:	000000000000000000000000000000000000000	6,830 5,191 3,317 5,380 -144 4,454 6,430 -1,800 3,855 4,850 4,900 -4,140	RbOH·2H:O RbF RbF·H:O RbF·1}H:O RbCl RbClO: RbClO:	C C C C C C C C C C C C C C C C C C C	-14,900 -4,310 210 -6,240 -100 320 4,130 11,410 13,560 5,230 11,700 6,000 8,720
AgCIO4 AgNO3 AgNO3 LiOH LiOH-H3O LiF	0 0 0	1,760 8,830 5,400 -5,632 -1,600 1,130	NaC:H:O:3H:O NaCN NaCN-!H:O NaCN-2H:O NaCN-2H:O NaCNO NaCNS	000000000000000000000000000000000000000	4,700 290 790 4,440 4,590 1,632	C ₅ OH C ₅ OH·H ₁ O C ₅ F C ₅ F·H ₂ O C ₅ F·1 ₄ H ₂ O	c c c	-17,100 -4,900 -8,810 -2,500 -1,300
LiCI LiCIO+H ₁ O LiCIO+3H ₁ O LiBr- LiBr-H ₁ O	6 6 6 6	-8,850 -4,560 -6,345 7,795 -11,670 -5,560	KOH KOH·H ₁ O KOH·1½H ₁ O KF KF·2H ₁ O	0000	-13,769 -3,500 -2,500 -4,238 1,666	CaCl CaClO ₄ CaBr CaBrO ₅ CaI CaNO ₅	0 0 0	4,250 13,250 6,210 12,060 7,970 9,560

^{*25} deg C = 298.15 K. One calorie (thermochemical) = 4.184 joules.

^{*}From: NSRDS—NBS 2, "Thermal Properties of Aqueous Uni-univalent Electrolytes", V.B. Parker, National Bureau of Standards, 1965.

^{*}From: NSRDS-NBS 2, "Thermal Properties of Aqueous Uni-univalent Electrolytes", V.B. Parker, National Bureau of Standards, 1965.

cast and their ends cropped; then they are placed in a furnace and heated to a specified temperature. The heated ingot is placed in a press where it is pierced. This hollow cylinder, open at one end, is then descaled and drawn over a mandrel on a horizontal drawbench. The closed end is then burned off, and the hollow forging is chemically descaled. Following this, the forging is straightened, placed in a lathe, and the outer diameter machined to a true dimension. The inside is dressed to remove scale, but no machining is done on the inside.

Code Designations Appropriate ASTM specifications list the physical and chemical properties of materials used in piping systems. The complete compilation of "Steel Piping, Tubing and Fittings" can be purchased from the ASTM, 1916 Race St., Philadelphia, Pa. 19103. The treatment in this section is a brief outline of frequently encountered materials.

Carbon-steel piping is most frequently used as manufactured in accordance with ASTM specifications A106 and A53. The chemical composition of these two materials is identical; both are subjected to physical tests, but those for A106 are more rigorous. For example, the Code for Pressure Piping permits the use of A53 for pressures of 600 lb/in² gage (22,137 N/m²) and less but excludes its use for higher pressures; A106 can be used for pressures not above 2,500 lb/in² gage (92,237 N/m²). A53 and A106 are made in Grades A and B; Grade B has higher strength properties but is less ductile and, for this reason, Grade A is permitted only for cold bending or close coiling. When carbon steel is intended for use in welded construction at temperatures in excess of 775°F (413°C), consideration should be given to the possibility of graphite formation.

Carbon-molybdenum steel piping may be obtained as A204 (electric-fusion-welded), A335 (seamless) or A369 (forged, turned, and bored). This material was developed in past years when steam temperatures were approaching, but not reaching, 1000°F (538°C) under which conditions carbon steel was both unsatisfactory and uneconomical. It has been found that there is a tendency for carbon-molybdenum to show graphitization at temperatures in excess of 800°F (427°C), and its use in welded construction above this value should be with caution.¹

Chromium-molybdenum steel has been used for temperatures up to 1100°F (593°C). In the small diameters, the material is usually available in the seamless construction; because of the inability of the seamless mills to fabricate large-diameter and heavy-walled pipe, it may be necessary to resort to the more expensive hollow-forged or forged-and-bored piping for higher pressures and temperatures. The material for a hightemperature piping system should be selected after a careful review of technical and economic considerations; the following is intended only as being indicative of recent and current practice. For temperatures up to 950°F (510°C), ½ percent Cr-½ percent Mo (A335, Grade P2) is used; for temperatures 950 to 1000°F (510 to 538°C), 1 percent Cr-1/2 percent Mo (A335, Grade P12) is used; for temperatures 1000 to 1050°F (538 to 566°C), 1¼ percent Cr–½ percent Mo (A335, Grade P11) may be used; for temperatures 1050 to 1100°F (566 to 593°C), 21/4 percent Cr-1 percent Mo (A335, Grade P22) is frequently used. When there is a combination of high temperatures and erosive action, 5 percent Cr-1/2 percent Mo (A335, Grade 5) has been found desirable.

¹Modern steel-making practices have reduced significantly the problem of graphitization. However, in pipe installed in the 1940s and early 1950s, there have been many failures. Stainless-steel piping is available in a variety of compositions, most popular of which are ASTM A213, Grade TP321 (16 percent Cr-8 percent Ni, stabilized with titanium) and ASTM A213, Grade TP347 (18 percent Cr-8 percent Ni, stabilized with columbium). Either of these two materials may be used up to 1200°F (649°C); particular care must be given to choice of welding rod to avoid brittleness in the welds.

Refer to Tables 1 and 2, respectively, for permissible stress values for piping materials at low and elevated temperatures.

Schedule Designations Many years ago piping was designated as standard, extra-strong, and double extra-strong. There was no provision for thin-walled pipe, and no intervening standard thicknesses between the three schedules, which covered too great a spread to be economical without intermediate weights. Table 3 lists piping as a function of the schedule number which is given, approximately, by the following relationship: Schedule no. = $1,000 \times P/\hat{S}E$, where P is operating pressure, Ib/in^2 gage, and SE is allowable stress range multiplied by joint efficiency, Ib/in^2 .

EXAMPLE. Find the required schedule of ASTM A106 Grade B pipe operating at 1,150 lb/in² gage and 600°F.

Table 2 lists SE value as 15,000 lb/in². Substituting, 1,000 (1,150/15,000) = 76.6. Use schedule no. 80, tentatively, but check with Eq. (1), below.

Commercial sizes of wrought-iron and steel pipe are known by their nominal inside diameter (ID) from ¼ (0.3175 cm) to 12 in (30.5 cm). Above 12 in ID, pipe is usually known by its outside diameter (OD). All classes of pipe of a given nominal size have the same OD, the extra thickness for different weights being on the inside.

Thickness of Pipe The following notes, covering power piping systems, have been abstracted from Part 2 of the Code for Power Piping (ANSI B31.1.0-1967).

For inspection purposes, the minimum thickness of pipe wall to be used for piping at different pressures and for temperatures not exceeding those for the various materials listed in Tables 1 and 2 shall be determined by the formula

$$t_m = \frac{PD}{2SE + Py} - A \tag{1}$$

where t_m = minimum pipe-wall thickness, in, allowable on inspection; P = maximum internal service pressure, $1b/in^2$ gage (plus water-hammer allowance in case of cast-iron conveying liquids); D = OD of pipe, in: SE = maximum allowable stress in material due to internal pressure and joint efficiency, at the design temperature, $1b/in^2$; values of SE given in Tables 1 and 2 include allowance for joint efficiency; y = a coefficient, values for which are listed in Table 4: A = allowance for threading, mechanical strength, and corrosion, in, with values of A listed in Table 5.

The thickness of cast-iron pipe conveying liquid may be taken from Table 14, using the pressure class next higher than the maximum internal service pressure in pounds per square inch. Where cast-iron pipe is used for steam service, the thickness should be calculated by Eq. (1), using SE values listed in Table 1.

Plain-end pipe includes pipe joined by flared compression couplings, lapped joints, and by welding, i.e., by any method that does not reduce the wall thickness of the pipe at the joint.

Physical and Chemical Properties of Pipes, Tubes, Etc. The design of piping for operation above 750°F (399°C) presents many problems not encountered at lower temperatures.

(Continued) Table 2. Allowable Stress Values for Temperatures 650 to 1200 F (343.4 to 649 C) (VNSI BB6.1.0-1967)

The Mark

Cirale Composition Circle Factor Factor Giff					Longitudinal			
TP30411 18C3-8N3 ^{pol.k.} 75,000 0.85 8 TP30411 18C3-8N3 ^{pol.k.} 75,000 0.85 8 TP30411 18C3-8N3 ^{pol.k.} 75,000 0.85 8 TP30411 18C3-12Ni-17p ^{ol.k.} 75,000 0.85 8 TP30411 18C3-10Ni-17p ^{ol.k.} 75,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 10,000 1	ASTM spec. No.	Grade	Composition	min tensile	efficiency factor	P.No."	650°	700
TP304H 18C3-8Ng ^{2,4,4} 75,000 0.85 8 TP304H 18C3-8Ng ^{2,4,4} 75,000 0.85 8 TP304H 18C3-12Ni-Mc ^{2,4,4} 75,000 0.85 8 TP316H 18C3-12Ni-Mc ^{2,4,4} 75,000 0.85 8 TP321H 18C3-10Ni-Tr ^{2,4,4} 75,000 0.85 8 TP300 1.00 1 15,000 1 15,000 1 15,000 1 1 1 1 1 1 1 1 1	utomatically							
TP30411 SC 2-8NP ^{d-4} 75,000 0.85 8	wended austenner	Hroad.L	1SC 7-8 Ninth	75,000	0.85	90		12,050
TP31611 RC1-12Ni-Me ^{dAk} 75,000 0.85 8 TP31611 RC1-12Ni-Me ^{gAk} 75,000 0.85 8 TP31611 RC1-10Ni-Tip ^{clak} 75,000 0.85 8 8 TP32111 RC1-10Ni-Tip ^{clak} 75,000 0.85 8 8 RC1-10Ni-Tip ^{clak} 75,000 0.85 8 RC1-10Ni-Tip ^{clak} 75,000 0.85 8 RC1-10Ni-Tip ^{clak} 75,000 0.85 8 RC1-10Ni-Tip ^{clak} 75,000 RC1-10Ni-Tip ^{clak} RC1	31CC1 1331C	H-0x d.l.	18C7-875	75,000	0.85	x		8,900
TP3161 RCi-12Ni-Mo ²⁴ 75,000 0.85 8 TP3211 RCi-10Ni-Ti ^{24,4} 75,000 0.85 8 TP3211 RCi-10Ni-Ti ^{24,4} 75,000 0.85 8 RCi-10Ni-Ti ^{24,4} 75,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 1.00		HARGE	18CT-12/1-110%.1.k	75,000	0.85	×		13,600
TP321H RCz-10Ni-Ti7 ^{2,4} k 75,000 0.85 8 TP321H RCz-10Ni-Ti7 ^{2,4} k 75,000 0.85 8 TP321H RCz-10Ni-Ti7 ^{2,4} k 75,000 0.85 8 R TP321H RCz-10Ni-Ti7 ^{2,4} k 75,000 1.00 1 12,000 15,000 1 12,000 1		TPUGIL	18C1-12C1-109.6	75,000	0.85	œ		009'6
TP321H TRCF-10N -TP4 75,000 0.85 8		Theody	Attract Table 1	75,000	0.85	œ		12,850
A ^d		TP32111	18Cr-10Ni-174	75,000	0.85	œ		10,350
Ad 48,000 1.00 1 15,000 15,000 15,000 15,000 15,000 1.00 1 15,000 15,000 1.00 1 15,000 15,000 1.00 1 15,000	amless A53					-	13 600	11 250
B	carbon steel	٧.		000.84	00.1	_	12,1411	0.00
Ad 48,000 1.00 1 2,000 18,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 10,000 1.00 1.00 1.00 1.00 1		PET		000 09	1.00	_	15,000	14,350
005 21 0071 000 pc	4	2 7		000 81	00 1	_	12,000	11,650
005.21	100 carbon steet	, ,		000 09	00	-	15,000	14,350
		a (20,000	001	_	17,500	16,600

The stress values tabulated include a longitudinal joint efficiency factor where applicable.

The stress values in this table may be interpolated to determine values for interruckate temperatures. Materials listed in Table 126.1 of the VNSI Standard for which allowable stresses are not tabulated may be used. Allowable stresses for such materials shall be taken from Sections 1 and V111 of the VSVE Boiler and Pressure Vessel Gode.

"The grouping of materials acto P-number classification is made an the basis of hardenability characteristics. The P-numbers indicated in this label are identical to those adopted by the ASMF Boiler and Pressure Vessel Code. Qualification of welding procedures, welders, and welding operators is required and should comply with the ASMF Boiler and Pressure Vessel Code Exction Vy except as modified by Par. 1273.

"The several types and grades of material tabulated should not be used at temperatures in excess of the maximum temperatures for which the

Ther stress values below 630°F which are not tabulated in Table 1, refer to Section 1, Table 187-23.1 of the ASMF Boiler and Pressure allowable stress values are indicated.

Upon prolonged exposure to temperatures above about 755%, the carbide phase of carbon steel may be converted to graphite. Vessel Code.

Upon prolonged exposure to temperatures above about \$75%, the carbide phase of carbon-moly belenum steel may be converted to graphite. Upon prolonged exposure to temperatures above about 97%, the carbide phase of chrome-moly belenum steel (with chromium under U60) may

*At temperatures over 1000F these stress values apply only when the earloon is 0.04 percent or higher.

*In size 8 in and larger and schedule 140 or heavier, the minimum rensile strength may be 70,000 Birlin? In these sizes and thicknesses, the findicated allowable stresses should be reduced by the ratio of 70 divided by 75.

*For allowable stress values below 700°F, see Table 1.

The values tabulated apply to firebox quality material. can cause leakage or malfunction.

For the properties of steel applicable to high-temperature serbolting material, etc., see Sec. 6. For a discussion of creep vice (as well as to ordinary service) for pipes, tubes, fittings, properties, see Sec. 5.

Piping of thickness designed in accordance with Eq. (1) may which SE values are listed in Tables 1 and 2. The following be used for any combination of pressure and temperature for summarizes piping-industry practice.

pipe may be seamless steel (A106), (A312), (A345), or (A376); or electric-fusion-welded steel (A166). 2,500 lb/in* (92,237 N/m²) Temperatures not above 1100°F (593°C) For pressures in excess of 100 lb/in2 (3,690 N/m2), the steel (A369); or automatic-welded steel (A312). For pressures Steam Pressures above 250 (9,224 N/m²) and not above between 250 and 600 lb/in2 (9,224 and 22,137 N/m2) the pipe may be seamless steel (A106) or (A53); electric-fusion-welded For pressures of 250 lb/in2 (9,224 N/m2) and lower and for service up to 750°F (399°C), any of the following may be used: steel (A155); electric-resistance-welded steel (A135) or (A53). electric-fusion-welded steel (A134) or (A139); electric-resis-

(A139) is used for close coiling or cold bending. Pipe permissible for services specified may be used for temperatures higher than 750°F (199°C), unless otherwise prohibited, if the SEvalues of Tables 1 and 2 are used when calculating the (A53); or Grade A electric-welded pipe (A53), (A135), required wall thickness.

Valves and fittings must have flange openings or welded ends, and valves must have external stem threads. Valves must be of east or forged steel or of forged or east nonferrous material. Forged and cast-steel screwed valves and fittings Malfeable-iron screwed fittings (300 lb MSS SP-31) may be used for pressures not greater than 300 lb/in2 and temperatures not over 500°F. Valves 8 in and larger should have the bypass of at least 4/4 in, commercial size. Welded fittings may be used of the same material and thickness as the pipe with which they may be used up to 300 lb/in2 and 500°F for 3 (2) [1/2] in pipe, and pressure from 250 to 400 (400 to 600) [600 to 2,500] lb/in*.

Steam Pressures from 125 to 250 lb/ln² (4,612 to 9,224 N/m³), are to be used.

-	800	850	006	950	60,1
=	900	11 750	11.550	11.400	9'01
- ×	8.700	8,650	8,500	8,300	S,
=	200	12,950	12,600	12,350	ő. E
0	200	000,6	8,750	8,600	æ
12	.850	12,750	12,650	12,600	12,3
0	,100	9,850	009'6	9,500	6,9
0	000				
2	008'01				
6	000				
2	008'01				
12	2,000				

permissible for this service may be used for temperatures fusion-welded steel (A134 or A139), electric-resistance-welded (A72). Copper and brass may be used if the temperature does or cold bending, Grade A seamless steel (A53); or Grade A electric-welded steel (A53), (A135), or (A139) is suitable. Pipe above 450°F (232°C) if the proper SE is used in calculating the Temperature not above 450°F (232°C) Pipe may be electricsteel (A135), seamless or welded steel (A53), or wrought iron not exceed 406 F. Cast iron may also be used. For close coiling pipe-wall thickness.

wei size infe

Flanged-steel fittings must conform to the 300 lb ANSI Stan-Malleable-iron screwed fittings must conform to the 300 lb MSS SP-31 specifications, except that the 150 lb ANSI Stan-Valves below 3 in may have inside stem screws. Stop valves 8 in and over must be by passed. Bodies, bonnets, and yokes dard B16.5, if of cast iron, to the 250 lb ANSI Standard B16.2; or, for screwed fittings, to the ANSI Standard B16.4. are of cast iron, malleable iron, steel, bronze, brass, or Monel. dard B16.3 may be used for pressures not greater than 150 lb. Welded fittings may be used

above 450°F Pipe may be of steel, wrought iron, cast iron, copper, or brass; valve bodies of cast iron, malleable iron, steel, or brass. Fittings are of 125 lb or 150 lb American Steam Pressures from 25 to 125 lb/ln*, Temperatures not Standard cast iron with screwed or slanged ends, or of malleable iron with screwed ends.

Ę SK

= 13 Kg

> Steam Pressures 25 lb/lnx and less, Temperature up to 460'F Pipe may be of steel, wrought iron, spiral-riveted steel, brass, copper, or cast iron. Flanged fittings conform to the 25 lb ANSI Standard B16.2. Screwed fittings are of the 125 ANSI Standard B16.4 or of the 150 lb ANSI Standard B16.3 for cast iron or malleable iron, respectively, or the B16.15 for bronze. Welded fittings may be used.

1. E. E. E.

Pipe colls are made from any of the commercial sizes of iron, sizes % to 2 in, are given in Table 10. Steel tubing cannot be steel, brass, and copper pipe and tubing. Limiting center-tocenter dimensions, to which pipe coils can be fabricated in bent to the absolute limits of brass or copper.

2 ± 2 ± 5

in (0.091 to 5.08 cm), and in standard pipe weights and Seamless mechanical tubing is obtainable in outside diameters ranging from 1/4 to 10% in in wall thickness from 20 gage to 2

CA

Table 1, Allowable Stress Values for Temperatures up to 650°F (343.4°C)

			Soc.	Longitudinal			Wall Allow				99 (KOS)	009	650
;	Stage	Nominal		efficiency factor	P.No.ª	001	200	300	,00+	450			
NSTM spec. No. Pipe: Welded carbon steel,						6,500	6,350 8,600	6,100 8,200	5,850	5,700			
burt-welded A120, Lap-welded A120, Automatically welded austenitic steel, A312	7115041F# 718164F# 718164F# 718164F# 718164F# 718164F# 718164F#	18CF-8Ni 18CF-18Ni 18CF-12Ni-Mo 18CF-12Ni-Mo 18CF-10Ni-Mi 18CF-10Ni-Ti 18CF-10Ni-Ti	75,000 75,000 75,000 75,000 75,000 75,000	0.85 0.85 0.85 0.85 0.85	_ <u> </u>	15,950 15,950 15,950 15,950 15,950 15,950	14,050 13,600 14,850 13,700 14,300 14,050	13,200 11,700 14,350 12,400 13,450 13,600	12,700 10,400 13,850 11,450 13,100 12,300		12,350 9,700 13,600 12,850 11,450	12,200 9,200 13,600 10,100 12,850 10,900	12,150 9,050 13,600 9,850 12,850 10,600
Electric-fusion- welded austenitic steel, A358 Class 1 ^{2,4} Class 1 ^{2,}	1192111 119304 119304 119304 119316 119316 119321	18C+8Ni 18C+8Ni 18C+8Ni 18C+12Ni 18C+12Ni-Mo 18C+12Ni-Mo 18C+12Ni-Mo 18C+12Ni-Mo 18C+10Ni-Mi 18C+10Ni-Mi	75,000 75,000 75,000 75,000 75,000 75,000 75,000 75,000 75,000 75,000 75,000 75,000 75,000	06.0 00.1 00.1 00.0 00.0 00.0 00.0 00.0	ac	18.750 18.750 16,900 16,900 18,750 18,750 16,900 16,900 18,750 18,750	16,550 16,000 14,000 17,500 16,100 16,500 16,800 16,800 16,500 16,900 16,900	15,550 13,750 12,760 12,4000 16,900 16,900 16,200 15,200 15,300 16,350 14,350 13,750	14,950 12,230 13,450 11,000 16,300 16,300 14,700 12,150 13,400 14,500 13,900		14,550 11,400 13,100 10,250 16,000 12,600 14,400 11,350 15,100 13,500	14,350 10,800 12,900 9,700 11,900 11,900 10,700 15,100 15,100 11,500	14,300 10,650 12,900 16,000 14,000 14,400 10,450 10,450 11,500 11,500
Class II" Class II" Seamless A120 carbon steel A335 ferrite alloy A346 ferrite alloy A366 ferrite alloy A366 ferrite alloy A367 Austenitie	17921 17921 185 185 185 185 185 185 185 185 185 18	8C-10N-TI 8C-4Mo-Si 5C-4Mo-Si 5C-4Mo-Si 8C-4Mo-Si 18C-8Ni 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI 18C-10N-TI		96-1 96-1 96-1 96-1 96-1 96-1 96-1 96-1	ж — мм м ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж	10,800 15,000 15,000 18,700 18,750	10,600 15,000 15,000 15,000 16,530 16,500 16,500 16,530 16	15,000 15,000 15,000 15,000 15,500 16,900 14,600 15,550 15,550 15,550 15,550 16,900 15,550 16,900 16,500 16,600 16	9, 800 15,000 15,000 15,000 14,950 12,250 16,300 16,300 16,300 15,400 11,500 11	009'6	14,500 14,500 14,500 14,500 11,400 12,600 13,500 11,400 11,400 11,600 13,500 11,400 11,400 11,600 11	14,000 14,000 14,000 14,300 16,300 11,900 11,900 11,900 11,900 11,900 11,900 11,900 11,900 11,900 11,900 11,900 11,900 11,900 11,900 11,900 11,900	13,700 13,700 14,300 16,530 16,600 11,600 11,600 11,600 11,600 11,600 11,600 11,600 11,600 11,600 11,600 11,600 11,600 11,600

PROBABLE COST DEVELOPMENT

COST ESTIMATE ANALYSIS	TE A	INAL	YSIS		Ž	INVITATIO	5./contr	5./contract no.		EFFECTIVE PRICING DATE	RICING	DATE PREPA 11-14-9	MTE PREPA	10
PROJECT HOLSY, A AAF	1	BB	ARBA B NIZE	Ų	Acit [CODE A	□ CODE	В	CODE C	DRAWING NO.		SHT	OF.	
LOCATION KINGSPER	i	16NN.			D	O OTHER				ESTIMATOR	PDC	снескер	р вү	
TASK DESCRIPTION	QUANTITY			Š	LABOR		EQ	EQUIPMENT	2	MATERIAL	TOTAL	-	SHIP	SHIPPING
ECO No.1	No. of Units	Unit	MH Unit	Total Hrs	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost			Vait	Total
STEMM PIPING:									,					
INDROR.	256.	7/7			16 55	4138	128	320	3	7750	12208	8		
UNDRAR	256	1. F		,	7321	4113	801	330	19 50	4875	8006	8		
ا درق	150	1 F			1120	1755	0% 1	210	5931	0651	3555	55		!
3"4 sch 20	150	c FF			778	1163	38	129	5.25	637	2129	29		
	300	4-1				2000				1000	3000	0		
57		5.5				10000				10000	20000	S		
15000 THR STAI SURF. CHIMS !	- 5	SA				lono		2500		300D	42500	.00	-	
COND. PUMP	7	S.A				300				1500	1800	2		
8" CNONSR. WIE. KITING	300	4.F			87	6900	18/	543	1 10	9300	16743	m	-	
FIPE FTES & MISC.	_	107				10000				25000	35000	0		
								})		1		
						50669		4033		91852	141,543	8/3		
										·····································		-		
												_		
												-		
										•				
TOTAL THIS SHEET														
											L			

					-									
COST ESTIMATE		ANALYSIS	SIS		<u> </u>	INVITATION	O./CONT	O./CONTRACT NO.		EFFECTIVE PRICING DATE	RICING	DATE PREP)	TE PREPA 11-14-95	10
PROJECT HOCESPORT SAIT	ALEATE	五	AC 12	D		□ CODE A	□ CODE	8	O CODE C	DRAWING NO.		SHT	OF.	
LOCATION KINGS FOR	76NN	2				🗆 ОТНЕВ 🔔				ESTIMATOR PDL	74	СНЕСКЕР	р вү	
†	QUANTITY	<u></u>		LABOR	OR		EO	EQUIPMENT	2	MATERIAL	TOTAL		SHIF	SHIPPING
ECO NO. 2	No. of U	Unit MH Meas	Spit.	Total Hrs 1	Unit Price	Cost	Unit Price	Cost	Unit Pric e	Cost		1	Unit	Total WT
Popular														
UNTIME	3	2F		_	17.45	4350	361	320	33 20	5288	30081	5		
Sch. 60 (hares.		i.F.			5961	81413	27	300	10.30	4875	8096	8		
SCH. 40 OK	150 6	e ř		١٤	40	3430	18/	272	13	4650	T158	ď		
2" C SCH GO ON HAC.	150 6	1 F			275	1163	58	13.9	5.50	288	2129	6		
PIPE INSUE	1 1.	1.27				2500				0001	3700	0		
Drawing Pipe:														
21/2 Ju Sell. 10	200 6	し戸			550	(840	1.12	hee	540	0801	3344	4		
PIPE INSUL.	1 79	197			_ `	Dooc.				1000	3000	0		
								,						
HI TOATP PURITY ENGINDS		11.33				300				3438	373	738		
65 GPM FULLE	-	64				216				1375	1881	16		
No BLAKT SYST	-	S.A				250				1000	1.00	20		
														-
UNFIRED BIR. Vosteri	-	E.A.			1	5000		2500		75000	82500	003		
		1												
III SC. OCCES, A TANS	7	9				20000		1		40000	1 60	00000		
					6	T8/18/1		3/105		1.13030	115491	77		
									_					
TOTAL THIS SHEET														
											1			

COST ESTIMATE		ANAL	ANALYSIS		=	INVITATIA	b./contr	D./CONTRACT NO.		EFFECTIVE PRICING DATE	RICING	DATE PREPA	REPA	
PROJECT						CODE A	E CODE	8	CODE C	DRAWING NO.		SHT	0F	
LOCATION						🗆 ОТНЕВ 🗀				ESTIMATOR		СНЕСКЕD	D BY	
CRIPTION	QUAI	QUANTITY		٦	LABOR	,	EQI	EQUIPMENT		MATERIAL	TOTAL	Ą	SHIP	SHIPPING
FCO NO. 3	No. of Units	Unit Meas	MH Unit	Total Hrs	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost			Unit	Total WT
FBRGL, CLUBE, LASK. FKG.														
GCC G PNI IND. INC.	-	C, A				1500		0001		12000	14500	0		
-						1				4				
FURITE & PLANG	_	407				3500				2000	10700	00		
Lie : 7		57				3000				5000	8000	0		
SITE WOON KIPATE		15				Seco				1000	00	0000		
						()		1		1		
						18000		1000		23000	39200	00		
														-
									-					
TOTAL THIS SHEET														
											1			

					-									
COST ESTIMATE		INAL	ANALYSIS		<u>z</u>	SNVITATIC	40./CONTRACT NO.	RACT NO.		EFFECTIVE PRICING DATE	RICING	DATE PREPA	REPA	. u
				j									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0
PROJECT HOLSTON AAP,	ARGA	M	NIRIC	ACID =	П	CODE A		œ	CODE C	DRAWING NO.		SHT	OF.	
165 FORT 7	SNN					□ OTHER _		-		ESTIMATOR /	PDL	снескер	р ву	
NOI	QUANTITY	≽			LABOR		EO	EQUIPMENT		MATERIAL	TOTAL	AL	SHIP	SHIPPING
	No. of Units	Unit Meas	MH Onit	Total Hrs	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost			Unit	Total WT
INSULATION EW##														
1" CALCIUM SILICATE:														
18 DAIR PRHTR.	12	LF		•	240	08 40			935	11230	177	7 -		
18'4 TAMBAS HTE.	25	17		- W	3 40	135-			935	23375	368	8 75		
S TO TURB.		T			382	46080			426	2115	97	7		
0,010 S.S. JACKET!														
DAIR PRHTR	60	3.5			40x	24180			93	55 80	297	760		
18' D 1411 CAS HTR	125	SF			405	50375			93	11625	620	10		
10	14RB 315	SF			£0 h	126945			93	29295	1562	2 70		
18 4 TANGE SOTSUNEAL	01(SF			13 75	13450			27	27 10	16,	100		
18" & F. S. 75 (TACKOT)	10	SF			403	4030			183	930	h	960		
SUBTOTAL						285040				1358 25	4308	38 95		-
												,		
15% CONTING.											9	3135		
	1	1										,		
TOTAL CONST U	U										4850			
									-					
TOTAL THIS SHEET														

COST ESTIMATE		ANAL	ANALYSIS		∠	INVITATIO	NO./CONTRACT NO.	RACT NO.		EFFECTIVE PRICING DATE	RICING	DATE PREP/	REP/	
PROJECT						CODE A	□ CODE	8	CODE C	DRAWING NO.		SHT	0F	
LOCATION						O OTHER				ESTIMATOR		СНЕСКЕВ	D BY	
TASK DESCRIPTION	DUN	QUANTITY		٥	LABOR	٠	EO	EQUIPMENT	2	MATERIAL	TOTAL	AL.	SHIPPING	PING
ECO NO.5	No. of Units	Unit Meas	MH	Total Hrs	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost			Unit WT	Total
18 Senileirent											·			:
PEATE HT. EYEH. 14 ENG.	/	5H				100				Saco	2100	0		
													-	
CLAYTON WHSE WASTE														
	1 2.	61				amo				5000	7000	0		
LONDENSATE LOGIER	~	6.A				170				500	009	0		
COND, ROVE/PUMP	_	6.A				300				1500	1800	20		
1/4" & INSUCALLE														
PIFO & FITTINGS	~	LOT				7500				5000	561	200		
											(1		
						10000				17000	27000	000		
												-		
									-	•				
TOTAL THIS SHEET														
											1000			

COST ESTIMATE ANALYSIS	TE A	NAL	YSIS		2	INVITATIO	r./cont	CONTRACT NO.		EFFECTIVE PRICING DATE	RICING	DATE PREPA	3EPN	
PROJECT HOLSTON NITRIC ALID PRED EUO	2 Ac10	PROL	, - Ec	71	7	CODE A	II CODE	В	CODE C	DRAWING NO.		SHT	OF	
l al	10 NN.	ر. د.				CI OTHER			1	ESTIMATOR F	PDL	СНЕСКЕD	р вү	:
	QUANTITY	Ш		5	LABOR		EC	EQUIPMENT	2	MATERIAL	TOTAL	٦	SHE	SHIPPING
ECO NO.7	No. of Units	Unit	MH	Total	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost	٠	l	Unit	Total WT
MAKOUP & FDUSIR PFE-10 500	1	¥7			465	2325	57	285	2000	1445	4055	2		
STERNI P.F. 0- 1 2 4	150	77			5 70	855	100	104	31	594	1553	3		
400 SERIOS ST.STL. ELLNEM.	`	67				2000		. 500		/85500	188000	8		
WASTE Hr, Bur Syst		EA						150		08900	705	70250		
FDWIR PUMP-46PW/225TAH	\ }	Ro			72.50	73			500-	500	573	B		
TEMPORNTURE CONTROLS	_	50.7			150	150			850	850	1000	Q		
6 4 A3126RIP321 P.PS	40	1F			Z	800	150	09	00	2400	3260	00		
HEATOR INSULATION		57				2850				1360	4210	0		
STEAM PILE INFUL	150	1			27.6	374			223	335	77	709		
FDWTR PIPE INSUL	150	LF			243	363			ه. اق	324	9	789		
SURGE TANK-100CM	\	SZ				25				100	/	125		
P.Po FITTIBOS & ACCES.	\	het				2000				5500	75	7500		
												1		
						13315		6601		367508	28/822	22		
15% CONTINGENTY	7													
					C	=	<	\ \ \ \	V	,	02911	,		
					3	70	3	7	7	0,70	(3)	8		
									-					
TOTAL THIS SHEET														

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By: PDL	Date: 12-22-95	Job No: 95094-00
Checked By:	Date:	Sheet No: of

Calculations For:

ECO #7 CosTS

	Assumptions	
	COST OF ST. STZ. FABRICATION IS PROPORTIONAL TO PUBLISHOO COST MULTIPLIOR FOR 90° PIPO GLBOW FROM MOANS:	•
	SCH, 40 12" \$ 31655 90" BTBOW - 1720 MATERIAL	
	SCH 40 12 \$ BL. IRON 90 EZBOW - \$12 MATERIAL	
	MULTIPLIÈR = 1720 - 8.1	
1	PUMP AND ACCUMULATOR SKIDS AND BACK PRESSURE REGULATOR INCLUDED IN	
	CLAYTON QUOTATION WILL SERVE BOTH GENERATORS	
(3)	STANDARD GONGRATOR COST 15 1/3 OF TOTAL QUOTED COST.	
	ADDOO COST FOR ST. STL. GONGRATOR	
	WHICH CLAYTON DOCLINGO TO QUOTE: COST = \$68600 (8.1) = \$185522	

P.O. BOX 5530, EL MONTE, CALIFORNIA 91734-1530

TEL (818) 443-9381 FAX (818) 442-1701

TO: Affiliated Engineers SE, Inc.

3300 SW Archer Road

Gainesville, Florida 32608-1731

TERMS: 20% with Order-Balance Net 30 Subject to Credit Approval

ATTW: Paul Little

(904) 376-5500 -TEL

(904) 375-3479 -FAX

FOB: El Monte, CA - Prepay and Add

APPROX. SHIP DATE: 120 Days

AFTER RECEIPT AND ACCEPTANCE OF ORDER

RE: Clayton Steam Generator

QUANT.	MODEL AND SPECIFICATIONS		UNIT PRICE	TOTAL
1	RGSG-5ECO201 Exhaust Gas Steam Generator Mono-coil, smooth tube, single pass Steam Designed to maintian feedwater inlet temperevent dewpoint corrosion while maintain efficiency.	m Generator peratrue to		
	Steam Flow: 1,180	°F °F inw.c.		
1	Bottom Inlet/Top Outlet Cones Provide transition pieces from 32 inch O. stack to the EGSG. Includes Soot Blower on Inlet Side.			
1	Pump & Accumulator Skids Includes the following items mounted on a 1 Feed Pump & Electric Motor Accumulator with Level Control & Pressu Control Box Including Starter for Clayt Safety Valve(s) Overflow Steam Trap Necessary piping and wiring with-in ski	are Gauge on Pump		
1	Back Pressure Regulator. For stabilizing steam system during load and operation start-up. TOTAL: HEAT RECOVERY SYSTEM	fluctuation		\$68,610
	NOTE: Freight, Sales Tax, and other fees	may apply.		

ACCEPTANCE	THIS QU	IOTATION IS ACCEPTED		SUBMITTED BY		
Y Y				Nick LeJeune	Jeune Sales Engineer	C. 11, - 12/22/95
ВҮ	NAME	TITLE	DATE	SIGNATURE	TITLE	DATE

Affiliated Engineers SE, Inc. 3300 SW Archer Road Gainesville, FL 32608 Telephone Conversation

Nick Lo Juono	
	Doubles
CLAYTON	95094-00
HOLSTON AAP NITICIE ACIO FAC.	Project Number 12-22-95
	Dete Date
KINGS PORT, TONN.	
Location	Time
FAXED ONE PAGE QUOT	♂.
CLAYTON DOCLINGD TO BU	OTE THAT
CLATION DUCLINES 10 MM	7,10
STAINLESS STEEL SECTION BECK	AUSE OF THE
NITRIC ACID FORMOD.	
	· .
•	

Spanie Te

By: Jacel & Lettel

Affiliated Engineers SE, Inc. 3300 SW Archer Road Gainesville, Fiorida 32608-1731

(904)376-5500 - Office (904)375-3479 - Fex

FAX TRANSMISSION COVER SHEET

TO: NICK LO JUBNO 1/5-407-2200 FAX # 770 907-0548
COMPANY: CLAYTON INDUSTRIES REGUEST 95094-00
FROM: PAUL LITTES PAGES: 3 (Ind cover sneet)
DATE TIME: 12-11-95 Hard Copyrito Follows: NO
REMARKS:
DESIRE BUDGET PRICING &
NOMINAL PORFORMANCO THAT MIGHT
BE EXPORTED L ANTICIPATE EACH
UNIT WILL PRODUCT IN EXCESS OF
1000 #/HR SATURATED STEAM.
SATURATION STEAMS
-

CLAYTON INDUSTRIES HEAT RECOVERY SYSTEM FACT SHEET FOR QUOTATION

(Designed for initial proposal only to establish size and budget estimate for basic equipment)

	DATE 12-11-95	
COMPANY: ABSB ADDRESS: GAINGSUILE	ō, Fc,	
NAME OF CONTACT: PAUL LITTE		
PRODUCT GAS UNIT	Circle appropriate units of mea	asure
Gas Flow Mass Units 17650	17650 (lba/hr ør Kg/hr	·)
Standard Volume Units (at 75 °F or		
	350 (For C)	,
Gas Inlet Temperature	80 (Psl or bar)	
Steam Pressure	17.0	
Receiver (Feedwater) Temp. (usually 200 °F or 9		
OPTION* 1. Gas Outlet Temperature	(F or C)	(ha -4)
2. Total Heat Transfer	(Btu/hr or Kcal/	rir)
3. Steam Mass Flow Rate	(lbs/hr or k/hr)	
"(Indicate "maximum available" If unknown)	27 (1-14)	
owable Gas Pressure Drop		•
	70 /	
DEWPOINT=	255°F Cp=0.253 8/40F	
D T BY Voi	umo: No-71.3; NO,-11.5%; HaO-16.	4%
Waste Gas Properties: TERCERS! BY	Aum : Paras	
Source of Waste Gas (incinerator, oven, turbin	ie, engine, etc.): CHEMICAL FROCES	
Source of Fuel (gas, diesel oil, commercial wa	·	
Specific Gravity ¹ Temp	Specific Heat ² Temp	
indicate utilization factor, (8 hours/day, 5 days Continuous; standb Equipment estimate at job site (size and numb	y only, etc.): 24 HRS/DAY	
Equipment selection Clayton Engineering:		
	_	
	REDUIRES 400 SERIES	
Will use the following figures if not available: 1.0 @ 70°F. Will use the following figures if not available: .25 @ 600°F.	REQUIRES 400 SERIES STAINLESS STOEL GAS	•
	CONTION CONT)ENS
	ATION IS DESIREABLE - NI	TRIC
_	ACID WILL BE THE RES	uct
	ACID WILL BE THE RES	

157

DEC-11-, 82 WON 11:18 ID:

or altable

TEL NO:

#710 P02

CLAYTON INDUSTRIES HEAT RECOVERY SYSTEM FACT SHEET FOR QUOTATION

(Designed for initial proposal only to establish size and budget estimate for basic equipment)

	DATE 12-11-95
COMPANY: ABSB	
ADDRESS: GAINESULLE, FC.	
NAME OF CONTACT: PAUL LITTED	
TURBING EXHAUST UNIT	Circle appropriate units of measure
Gas Flow Mass Units 20000 #/HR	20000 (lbs/hr or Kg/hr)
Standard Volume Units (at 75°F or 24°C)	(SCFM or SM³/hr)
Gas Inlet Temperature 495°F	<u>495</u> (For C)
Steam Pressure 80 PSIG	RO (Psl or bar)
Receiver (Feedwater) Temp. (usually 200 °F or 93 °C)	
OPTION* 1. Gas Outlet Temperature	(F or C)
2. Total Heat Transfer	(Btu/hr or Kcal/hr)
3. Steam Mass Flow Rate	(lbs/hr or k/hr)
"(Indicate "maximum available" if unknown)	27
wable Gas Pressure Drop	(In W.C. or mm -
	N.C.)
Waste Gas Properties: PERCENT BY VOLUME: Ng-8	30.2; NO-4.9%; HaD-13.9%
Source of Waste Gas (Incinerator, oven, turbine, engine, etc.):	CP - 0.203 /# F
Source of Fuel (gas, diesel oll, commercial waste, etc.):	.А.
Specific Gravity' Temp Specific Hea	t² Temp
Indicate utilization factor, (8 hours/day, 5 days/week; or 24 hrs/day, 5 continuous; standby only, etc.);	ay, 24'HR/DAY
Equipment estimate at job site (size and number of sections):	
Equipment selection Clayton Engineering:	

¹Will use the following figures if not available: 1.0 @ 70°F. ²Will use the following figures if not available: .25 @ 600°F.

ENERGY RATE SOURCE MATERIAL

```
J. Bouchellon, PE
                                                        7/4/95
OUT-OF-POCKET COST FOR STEAM, 13-200
                                             1,107,382.000 lbs
                                                1.107 m Btu
                                                 (Per HOC wal purch
spec June 1994)
                                              E, 500 /gr.
                                              24,500/yr
                                                $ 173,000/yr
```

```
MONTHLY USAGE & PROD. REPORT, BY KEN HARRIS
     GIVEN:
                       AREA B
       Sum of individual boilers steam output = 1,324,620,000 lbs
       Building Steam Output = Sum - Internal consumption (turbines, DA, ctc)
                               1, 324, 620,000 4.836 =
        Steam Coal, 1994 = 64,673 tons
        Btu content of coal =
                                     64,673 tous x 2000 x 14,100
                                     1.824 mm Btu
        Cost of treatment of Sulfuric System backwark water = unites COST REPORT
                   50 gpm ave x 60 Tr x 8760 x 239/
                                                    100090
        COST of Filter Water for feed water =
                                           Utilities Cost Report
                  1, 324,620,000 lbs x0,148.
                    8 16s water
                                   1000901
                 electricity (motors, precipitators etc)
                   412,000 KWH (aur) x . 035
                                                × 12 mo
        cost of fly ash dispisal =
                                          15,000 est
                  cinder removal =
                                         lu. un est
                           maintenavic = 393, 391 rouhn++ 529,104 major = 922, 465
                   bldg.
                   water treatment Chemicals (See Osmisis Study 1495-)
Out of Archet Steam Cost = Coal + electricity + chemical 1 FW + treatment fly ash + Condi
                                        bldg
                                              steam output
        per Defense fuels, Geo. Tittsworths $ 2.91 million
                    (45x64,673)+ $173,000+ $91,000+ 24,500+ 6520+ 15,000+ 10,000
       OPSC =
                                   1,107,382.000 165
                                                           3.75 Kiles
                                     2.92
                                                                    maintenance
                                              1000 165
                           159
```

-5 =

HOLSTUN ARMY AMM PLANT
POWLSCHOOLD CONT# DAAAJ9470+C+0520
P O RX 749
KINGSPUT TN 37662

1011931305034 D146528750140028757

٠, ج			,		1000000	
MARCH 1995	:	Gross Amount	Lasi For	t Pay Date Net Amount	į	
Please Return This Portion With Your Payment	:	147,72	3.75 A	IPK 18 140,	028.75	
Meter Types Codes K - Kilowatt Hour Elifestimate D - KW Demand C - Meter Ch A - KVA Demand O - Off Peak R - RKVAH V - KVAR Demand	ange	Service Address	0 401377	₫ 4	37660	
Month MARCH 1395	Tanli			WINCEPAY		
Office KINGSPUK!						
From To Motor Number	Provious Readings	Present Readings	Motor Constant	Meterod Usage	Voltage Constant	
Garam Carry X 8474 6474 D 8474 6474 D 8474 6474 V 8474	1 37339 1 34572	27558 24627 •-351	24000.	4555000 2320000		
	0034	- 724	84300. 6000.	3696.0		
02-00 03-04 V Carrott	0330	154 <u>0</u>		120.00		

05-53 03-54 0 05-53 03-54 0)	1540 500	1,2	000
Contract Cagacity	10,500	RATE BILLING FUEL ADJ PROMPT PAYMENT DISC TUTAL AMOUNT BUE	29463** TAUGO	154,111.36 11,950.19CR
Billing KVAR RKVAH	1,380,000	LOTAL AMOUNT DOS		140,025.75
Metered Demand Power Factor	8,364.0	ş****		
Billing Dentar a	8,064.0	•		
Metered AND Power Post Consum Adjusted WMH Voltage Act WWH	4,855,866 4,856,888			
Billing KWH	4,056,066			

KINGSPORT

Original Sheet Number 11-1 T.P.S.C. Tariff Number 1

TARIFF I. P. (Industrial Power)

AVAILABILITY OF SERVICE

Available to industrial and large commercial customers. Customers shall contract for a definite amount of electrical capacity in KW which shall be sufficient to meet normal maximum requirements but in no case shall the capacity contracted for be less than 3,000 KW. Contract capacities will be specified in multiples of 100 KW.

MONTHLY RATE

Tariff Code	Service Voltage	Demand Charge per KW	Energy Charge per KVH	Service <u>Charge</u>	
322	Primary	\$ 8.70	2.302 cents	\$ 240.00	
323	Subtransmission	\$ 7.79	2.269 cents	\$ 730.00	
324	Transmission	\$ 7.60	2.241 cents	\$1,930.00	7 HOC

Reactive Demand Charge for each Kilovar of Lagging Reactive Demand

in excess of 50 percent of the KW of monthly metered demand \$ 0.75 per KVAR

MINIMUM CHARGE

This tariff is subject to a minimum monthly charge equal to the sum of the service charge, the product of the demand charge and the monthly billing demand and the fuel clause adjustment.

FUEL CLAUSE

When the unit cost of fuel in the charges for power purchased from Appalachian Power Company under Federal rgy Regulatory Commission rate schedule No. 23 is above or below a base unit price of 15.8563 mills per KWH, adjusted for losses, the bill for service shall be increased or decreased respectively at a rate per KWH equal to the amount that such cost of fuel is above or below the unit base cost of 15.8563 mills per KWH, adjusted for losses, applied to the KWH measured in the period for which the bill is rendered. The adjustment shall be based on the most recent calendar month for which fuel cost data is available.

PROMPT PAYMENT DISCOUNT

A discount of 1.5 percent will be allowed if account is paid in full within 15 days of date of bill.

DETERMINATION OF DEMAND

The billing demand in KW shall be taken each month as the single highest 30-minute integrated peak in KW as registered during the month by a demand meter or indicator, or, at the Company's option, as the highest registration of a thermal type demand meter or indicator, but the monthly billing demand so established shall in no event be less than 60% of the greater of (a) the customer's contract capacity or (b) the customer's highest previously established monthly billing demand during the past 11 months nor less than 3,000 kW.

The reactive demand in KVARS shall be taken each month as the single highest 30-minute integrated peak in KVARS as registered during the month by a demand meter or indicator, or, at the Company's option, as the highest registration of a thermal type demand meter or indicator.

METERED VOLTAGE

The rates set forth in this tariff are based upon the delivery and measurement of energy at the same voltage, thus measurement will be made at or compensated to the delivery voltage. At the sole discretion of the Company, such compensation may be achieved through the use of loss compensating equipment, the use of formulas to calculate losses or the application of multipliers to the metered quantities. In such cases, the metered KWH and KW values will be adjusted for billing purposes. If the Company elects to adjust KWH and KW based on multipliers, the adjustments shall be in accordance with the following:

- 1. Measurements taken at the low-side of a customer-owned transformer will be multiplied by 1.01.
- . Measurements taken at the high-side of a Company-owned transformer will be multiplied by 0.98.

Issued: October 30, 1992

By: Michael J. Holzaepfel, President

Kingsport, Tennessee

Effective: November 3, 1992 Pursuant to an Order in Docket Number 92-04425 SCOPE OF WORK

DEPARTMENT OF THE ARMY

MOBILE DISTRICT, CORPS OF ENGINEERS P. O. BOX 2288

MOBILE, ALABAMA 36628-0001

April 4, 1995

RECEIVED

Affiliated Engineers SE, Inc.

APR 1 0 1995

Route to 60 4/15/95

REPLY TO ATTENTION OF:

A-E Contracts Section

Affiliated Engineers SE, Inc. Mr Carl L. Osberg 3300 SW Archer Road Gainesville, FL 32608-1731

Gentlemen:

We have a requirement for a Limited Energy Study for Area B Nitric Acid Production Facilities at Holston AAP, TN, in accordance with the enclosed Scope of Work and as will be further defined at the pre-study conference on April 26 at Holston. It is proposed that this work be accomplished by delivery order under Contract Number DACA01-94-D-0007.

You are requested to submit your proposal for accomplishing this work by May 10, 1995. Your proposal should be addressed as follows:

District Engineer
U. S. Army Engineer District, Mobile
Attention: CESAM-EN-MN/Mr. Dan Mizelle
Post Office Box 2288
Mobile, Alabama 36628-0001

You are cautioned that no services for which an additional cost or fee will be charged should be furnished without the prior written authorization of the Contracting Officer.

Please contact Mr. Roger D. Baer at 205/441-5493 if you have any questions concerning this matter.

Sincerely

O. B. Anderson

Authorized Representative of the Contracting Officer

SCOPE OF WORK

FOR A

LIMITED ENERGY STUDY

AREA B NITRIC ACID PRODUCTION FACILITIES

HOLSTON ARMY AMMUNITION PLANT, TENNESSEE

Performed as part of the ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

HAOPSOW.doc

SCOPE OF WORK FOR A LIMITED ENERGY STUDY

AREA B NITRIC ACID PRODUCTION FACILITIES HOLSTON ARMY AMMUNITION PLANT, TENNESSEE

TABLE OF CONTENTS

- 1. BRIEF DESCRIPTION OF WORK
- 2. GENERAL
- 3. PROJECT MANAGEMENT
- 4. SERVICES AND MATERIALS
- 5. PROJECT DOCUMENTATION
 - 5.1 ECIP Projects
 - 5.2 Non-ECIP Projects
 - 5.3 Nonfeasible ECOs
- 6. DETAILED SCOPE OF WORK
- 7. WORK TO BE ACCOMPLISHED
 - 7.1 Perform a Limited Site Survey
 - 7.2 Evaluate Selected ECOs
 - 7.3 Combine ECOs into Recommended Projects
 - 7.4 Submittals, Presentations and Reviews

ANNEXES

- A DETAILED SCOPE OF WORK
- B EXECUTIVE SUMMARY GUIDELINE
- C REQUIRED DD FORM 1391 DATA

- 1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:
- 1.1 Perform a limited site survey of specific buildings or areas to collect all data required to evaluate the specific ECOs included in this study.
- 1.2 Evaluate specific ECOs to determine their energy savings potential and economic feasibility.
- 1.3 Provide project documentation for recommended ECOs as detailed herein.
- 1.4 Prepare a comprehensive report to document all work performed, the results and all recommendations.

2. GENERAL

- 2.1 This study is limited to the evaluation of the specific buildings, systems, or ECOs listed in Annex A, DETAILED SCOPE OF WORK.
- 2.2 The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.
- 2.3 For the buildings, systems or ECOs listed in Annex A, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All energy conservation opportunities which produce energy or dollar savings shall be documented in this report. Any energy conservation opportunity considered infeasible shall also be documented in the report with reasons for elimination.
- 2.4 The study shall consider the use of all energy sources applicable to each building, system, or ECO.
- 2.5 The "Energy Conservation Investment Program (ECIP) Guidance", described in letter from DAIM-FDF-U, dated 10 Jan 1994 establishes criteria for ECIP projects and shall be used for performing the economic analyses of all ECOs and projects. The program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced in the ECIP Guidance. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified in the ECIP Guidance. The output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval to the Contracting Officer.
- 2.6 The following definitions apply to terms used in this scope of work:
- 2.6.1 "Contracting Officer", "Contracting Officer's Representative", or Government's Representative" refer to the contracting office of the Mobile District, U. S. Army Corps of Engineers.

- 2.6.2 "Installation Commander", or "Installation Representative" refer to the military commander of Holston Army Ammunition Plant.
- 2.6.3 "Plant Manager", Operating Contractor", or "Operating Contractor's Representative" refer to the Holston Defense Corporation, which operates Holston Army Ammunition Plant under contract to the U. S. Army.
- 2.7 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP or O&M funding, and determining in coordination with installation personnel the appropriate packaging and implementation approach for all feasible ECOs.
- 2.7.1 Projects which qualify for ECIP funding shall be identified, separately listed, and prioritized by the Savings to Investment Ratio (SIR).
- 2.7.2 All feasible non-ECIP projects shall be ranked in order of highest to lowest SIR.
- 2.8 Metric Reporting Requirements: In this study, the analyses of the ECOs may be performed using English or Metric units as long as they are consistent throughout the report. The final results of energy savings for individual recommended projects and for the overall study will be reported in units of MegaBTU per year and in MegaWattHours per year. Paragraph 7.4.2 details requirements for the contents of the final submittal.

3. PROJECT MANAGEMENT

3.1 <u>Project Managers</u>. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this contract. Upon award of this contract, the individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this contract. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this contract. This individual will be the Government's representative.

3.2 <u>Installation Assistance</u>.

3.2.1. The Installation Commander will designate an individual to coordinate between the AE and the Holston Defense Corporation. This individual will be the Installation Representative, and all correspondence with Holston Army Ammunition Plant will be addressed to his attention.

- 3.2.2. The Plant Manager will designate an individual to assist the AE in obtaining information and establishing contacts necessary to accomplish the work required under this contract. This individual will be the Operating Contractor's Representative.
- 3.3 <u>Public Disclosures</u>. The AE shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.
- 3.4 <u>Meetings</u>. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE's project manager and the Government's representative shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, are in addition to the presentation and review conferences.
- 3.5 <u>Site Visits, Inspections, and Investigations</u>. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

3.6 Records

- 3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, delivery order number, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.
- 3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.
- 3.7 <u>Interviews</u>. The AE and the Government's representative shall conduct entry and exit interviews with the Plant Manager before starting work at the installation and after completion of the field work. The Government's representative shall schedule the interviews at least one week in advance.
- 3.7.1 Entry. The entry interview shall describe the intended procedures for the survey and shall be conducted prior to commencing work at the facility. As a minimum, the interview shall cover the following points:

- a. Schedules.
- b. Names of energy analysts who will be conducting the site survey.
- c. Proposed working hours.
- d. Support requirements from Holston Defense Corporation (HDC).
- 3.7.2 Exit. The exit interview shall briefly describe the items surveyed and probable areas of energy conservation. The interview shall also solicit input and advice from the Plant Manager.
- 4. <u>SERVICES AND MATERIALS</u>. All services, materials (except those specifically enumerated to be furnished by the Government), labor, supervision and travel necessary to perform the work and render the data required under this contract are included in the lump sum price of the contract.
- 5. <u>PROJECT DOCUMENTATION</u>. All energy conservation opportunities which the AE has considered shall be included in one of the following categories and presented in the report as such:
- 5.1 ECIP Projects. To qualify as an ECIP project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$300,000, a Savings to Investment Ratio (SIR) greater than 1.25 and a simple payback period of less than ten years. The overall project and each discrete part of the project shall have an SIR greater than 1.25. All projects meeting the above criteria shall be arranged as specified in paragraph 2.7.1 and shall be provided with programming documentation. Programming documentation shall consist of a DD Form 1391 and life cycle cost analysis (LCCA) summary sheet(s) (with necessary backup data to verify the numbers presented). A life cycle cost analysis summary sheet shall be developed for each ECO and for the overall project when more than one ECO are combined. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs.
- 5.2 Non-ECIP Projects. Projects which do not meet ECIP criteria with regard to cost estimate or payback period, but which have an SIR greater than 1.25 shall be documented. Projects or ECOs in this category shall be arranged as specified in paragraph 2.7.2 and shall be provided with the following documentation: the life cycle cost analysis (LCCA) summary sheet completely filled out, a description of the work to be accomplished, backup data for the LCCA, ie, energy savings calculations and cost estimate(s), and the simple payback period. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. In addition these projects shall have the necessary documentation prepared, as required by the Government's representative, for one of the following categories:

- 5.2.1. Federal Energy Management Program (FEMP) Projects. A FEMP (or O&M Energy) project is one that results in needed maintenance or repair to an existing facility, or replaces a failed or failing existing facility, and also results in energy savings. The criteria are similar to the criteria for ECIP projects, ie, SIR \geq 1.25, and simple payback period of less than ten years. Projects with a construction cost estimate up to \$1,000,000 shall be documented as outlined in par 5.2 above; projects over \$1,000,000 shall be documented on 1391s. In the FEMP program, a system may be defined as "failed or failing" if it is inefficient or technically obsolete. However, if this strategy is used to justify a proposed project, the equipment to be replaced must have been in use for at least three years.
- 5.2.2. Low Cost/No Cost Projects. These are projects which the Plant Manager can perform using his resources. Documentation shall be as required by the Plant Manager.
- 5.3 <u>Nonfeasible ECOs</u>. All ECOs which the AE has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.
- 6. <u>DETAILED SCOPE OF WORK</u>. The Detailed Scope of Work may be found in Annex A.

7. WORK TO BE ACCOMPLISHED.

- 7.1 <u>Perform a Limited Site Survey</u>. The AE shall obtain all necessary data to evaluate the ECOs or projects by conducting a site survey. The AE shall document his site survey on forms developed for the survey, or standard forms, and submit these completed forms as part of the report. All test and/or measurement equipment shall be properly calibrated prior to its use.
- 7.2 Evaluate Selected ECOs. The AE shall analyze the ECOs listed in Annex A. These ECOs shall be analyzed in detail to determine their feasibility. Savings to Investment Ratios (SIRs) shall be determined using current ECIP guidance. The AE shall provide all data and calculations needed to support the recommended ECO. All assumptions and engineering equations shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. A life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data.
- 7.3 <u>Combine ECOs Into Recommended Projects</u>. During the Interim Review Conference, as outlined in paragraph 7.4.1, the AE will be advised of the Plant Manager's preferred packaging of recommended ECOs into projects for implementation. Some projects may be a combination of several ECOs, and others may contain only one. These projects will be evaluated and arranged as outlined in

- paragraphs 5.1, 5.2, and 5.3. Energy savings calculations shall take into account the synergistic effects of multiple ECOs within a project and the effects of one project upon another. The results of this effort will be reported in the Final Submittal per par 7.4.2.
- 7.4 Submittals, Presentations and Reviews. The work accomplished shall be fully documented by a comprehensive report. report shall have a table of contents and shall be indexed. and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. Names of the persons primarily responsible for the project shall be included. The AE shall give a formal presentation of the interim submittal to installation, command, and other Government personnel. Slides or view graphs showing the results of the study to date shall be used during the presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. A review conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. It is anticipated that the presentation and review conference will require approximately one working day. The presentation and review conference will be at the installation on the date agreeable to. the Plant Manager, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.
- 7.4.1 Interim Submittal. An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations showing energy and dollar savings, SIR, and simple payback period of all the ECOs shall be included. The results of the ECO analyses shall be summarized by lists as follows:
- a. All ECOs eliminated from consideration shall be grouped into one listing with reasons for their elimination as discussed in par 5.3.
- b. All ECOs which were analyzed shall be grouped into two listings, recommended and non-recommended, each arranged in order of descending SIR. These lists may be subdivided by building or area as appropriate for the study. The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. At the Interim Submittal and Review Conference, the Government's and AE's representatives shall coordinate with the Plant Manager to provide the AE with direction for packaging or combining ECOs for programming purposes and also indicate the fiscal year for which the

programming or implementation documentation shall be prepared. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.

- 7.4.2 Final Submittal. The AE shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. AE shall submit the Scope of Work for the study and any modifications to the Scope of Work as an appendix to the submittal. report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The recommended projects, as determined in accordance with paragraph 5, shall be presented in order of priority by SIR. The lists of ECOs specified in paragraph 7.5.1 shall also be included for continuity. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:
- a. An Executive Summary to give a brief overview of what was: accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).
- b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.
- c. Documentation for the recommended projects (includes LCCA Summary Sheets).
 - d. Appendices to include as a minimum:
 - Energy cost development and backup data
 - 2) Detailed calculations
 - 3) Cost estimates
 - Computer printouts (where applicable) 4)
 - 5) Scope of Work

ANNEX A

DETAILED SCOPE OF WORK

- 1. The facilities to be studied in this contract are used for the production of nitric acid in Area B at Holston Army Ammunition Plant (HSAAP) in Kingsport, Tennessee. Holston Army Ammunition Plant is a government-owned, contractor-operated (GOCO) facility. The operating contractor is the Holston Defense Corporation (HDC). For reasons of safety and security, access to the plant is controlled. Temporary passes will be required for both personnel and vehicle access.
 - a. A one-week notice should be given by the AE prior to any visit. This time will be needed to make the necessary arrangements for the visit.
 - b. The AE should submit a list of the equipment and instruments they plan to use prior to their arrival. Because of the nature of HSAAP operations, safety regulations prohibit and restrict the use of some equipment on the installation. Having a list of the equipment to be used beforehand, HSAAP will be better prepared at the entrance interview to address the regulations pertaining to the equipment to be used. This will also facilitate coordination of the inspection and permitting of the equipment.
- 2. The following persons have been designated as points of contact and liaison for all work required under this contract. Mr. Scott Shelton shall be the Installation Representative, and Mr. J. L. Bouchillon shall be the Operating Contractor's Representative.
- 3. Completion and Payment Schedule: The following schedule shall be used as a guide in approving payments on this contract. The final report for this study shall be due not later than 180 days after Notice to Proceed.

MILESTONE	PERCENT OF CONTRACT AMOUNT AUTHORIZED FOR PAYMENT
Completion of Field Work Receipt of Interim Submittal Completion of Interim Presentation & Receipt of Final Report	25 75 Review 85 100

4. Purpose and Background: The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs) for the Ammonia Oxidation Process (AOP), which produces weak nitric acid. Figure 16 on page A-2 illustrates the AOP process. The chemical reactions utilized in the AOP are exothermic, producing large quantities of hot gases. Large amounts of cooling water are also used to cool and condense water vapor in the gases. Electrical energy is used to compress air for the process. Some heat and mechanical energy are already recovered

- in the process. However, there appears to be room for improvement in the process or by using recovered heat in nearby facilities. Building 302-B houses four 50-ton/day AOP units. Each AOP unit has an air compressor, which is driven by a 1300-HP electric motor. The motor is assisted by a gas turbine, which is driven by the tail gas from the process. At the present production level, one 50-TPD unit operates four continuous 24-hour days twice per month.
 - 5. The AE is encouraged to propose and analyze any ECOs which he believes may save energy, water, or dollars. The AE must become familiar with the process and with the capabilities and limitations of the existing equipment. Due to the limited resources available, proposed ECOs should not impose additional maintenance and operation requirements. In addition to ECOs proposed by the AE, the following ECOs will be evaluated:
 - a. Since 300 psig steam is available, revise air compressor turbine drive to steam. There may be variations on this ECO, such as using 300 psig steam exclusively (which might require a different turbine) or using steam (at 300 psig or at a reduced pressure) in the existing turbine to assist the electric motor.
 - b. Use the product gas leaving the Air Preheater (Fig 16) to generate steam. Depending on the pressure of the steam generated, the gas could be cooled to perhaps as low as 400 degF. The steam thus generated could be used to drive (or assist in driving) the air compressor, or it could be used to vaporize ammonia, or for heating at the 302-B tank farm.
 - c. Identify and evaluate the possibility of water conservation at the cascade coolers and at other points in the process.
 - 6. Government-furnished information. The following documents will be furnished to the AE:
 - a. Energy Conservation Investment Program (ECIP) Guidance, dated 10 Jan 1994 and the latest revision with current energy prices and discount factors for life cycle cost analysis.
 - b. AR 415-15, 1 Jan 84, Military Construction, Army (MCA) Program Development
 - c. TM5-800-2, Cost Estimates, Military Construction.
 - d. Tri-Service Military Construction Program (MCP) Index, dated day/month/year.
 - e. As-built drawings and process descriptions with quantitative data for the AOP facilities.

- 8. A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. This computer program can be used for performing the economic calculations for ECIP and non-ECIP ECOs. The AE is encouraged to obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street; Urbana, Illinois 61801. The telephone number is (217) 333-3977 or (800) 842-5278.
 - 9. Direct Distribution of Submittals. The AE shall make direct distribution of correspondence, minutes, report submittals, and responses to comments as indicated by the following schedule:

AGENCY

EXECUTIVE SUMMARIES REPORTS

FIELD NOTES
CORRESPONDENCE

Holston Army Ammunition Plant ATTN: SMCHO-EN (Mr Shelton) Kingsport, TN 37660-9982		3	1**	1
US AMC I & SA ATTN: AMXEN-C (Mr Nache) Rock Island, IL, 61299-7190	1	1	-	-
Commander US Army Corps of Engineers ATTN: CEMP-ET (Mr Gentil) 20 Massachusetts Avenue NW Washington, DC, 20314-1000	1*		_	_
USAED, South Atlantic ATTN: CESAD-EN-TE (Mr Baggette) 77 Forsyth Street, SW Atlanta, GA 30335-6801	1	1	-	_
USAED, Mobile ATTN: CESAM-EN-DM (Battaglia) PO Box 2288 Mobile, AL 36628-0001	2	2	1**	1
US Army Logistics Evaluation Agency ATTN: LOEA-PL (Mr Keath) New Cumberland Army Depot New Cumberland, PA, 17070 - 5007	1*	-	_	_

* Receives Executive Summary of final report only.

** Field Notes submitted in final form at interim submittal.

ANNEX B

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- Building Data (types, number of similar buildings, sizes, etc.)
- 3. Present Energy Consumption of Buildings or Systems Studied.
 - o Total Annual Energy Used.
 - o Source Energy Consumption.

Electricity - KWH, Dollars, MBTU

Coal - TONS, Dollars, MBTU, MWH
Natural Gas - THERMS, Dollars, MBTU, MWH
Other - QTY, Dollars, MBTU, MWH

- 4. Energy Conservation Analysis.
 - o ECOs Investigated.
 - o ECOs Recommended.
 - o ECOs Rejected. (Provide economics or reasons)
 - o ECIP Projects Developed. (Provide list) *
 - o Non-ECIP Projects Developed. (Provide list) *
 - o Operational or Policy Change Recommendations.
- * Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.
- 6. Energy and Cost Savings.
 - o Total Potential Energy Savings in MegaBTU per year (and MegaWattHr per year) and first year dollar savings.
 - o Percentage of Energy Conserved.
 - o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.

ANNEX C

REQUIRED DD FORM 1391 DATA

To facilitate ECIP project approval, the following supplemental data shall be provided:

- a. In title block clearly identify projects as "ECIP."
- b. Complete description of each item of work to be accomplished including quantity, square footage, etc.
- c. A comprehensive list of buildings, zones, or areas including building numbers, square foot floor area, designated temporary or permanent, and usage (administration, patient treatment, etc.).
- d. List references, and assumptions, and provide calculations to support dollar and energy savings, and indicate any added costs.
- (1) If a specific building, zone, or area is used for sample calculations, identify building, zone or area, category, orientation, square footage, floor area, window and wall area for each exposure.
 - (2) Identify weather data source.
- (3) Identify infiltration assumptions before and after improvements.
- (4) Include source of expertise and demonstrate savings claimed. Identify any special or critical environmental conditions such as pressure relationships, exhaust or outside air quantities, temperatures, humidity, etc.
- e. Claims for boiler efficiency improvements must identify data to support present properly adjusted boiler operation and future expected efficiency. If full replacement of boilers is indicated, explain rejection of alternatives such as replace burners, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit actions.
- f. Lighting retrofit projects must identify number and type of fixtures, and wattage of each fixture being deleted and installed. New lighting shall be only of the level to meet current criteria. Lamp changes in existing fixtures is not considered an ECIP type project.

g. An ECIP life cycle cost analysis summary sheet as shown in the ECIP Guidance shall be provided for the complete project and for each discrete part included in the project. The SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.

- h. The DD Form 1391 face sheet shall include, for the complete project, the annual dollar and MBTU (MWH) savings, SIR, simple amortization period and a statement attesting that all buildings and retrofit actions will be in active use throughout the amortization period.
- i. The calendar year in which the cost was calculated shall be clearly shown on the DD Form 1391.
- j. For each temporary building included in a project, separate documentation is required showing (1) a minimum 10-year continuing need, based on the installation's annual real property utilization survey, for active building retention after retrofit, (2) the specific retrofit action applicable and (3) an economic analysis supporting the specific retrofit.
- k. Nonappropriated funded facilities will not be included in an ECIP project without an accompanying statement certifying that utility costs are not reimbursable.
- 1. Any requirements required by ECIP guidance dated 10 Jan 1994 and any revisions thereto. Note that unescalated costs/savings are to be used in the economic analyses.
- m. The five digit category number for all ECIP projects except for Family Housing is 80000. The category code number for Family Housing projects is 71100.

MINUTES OF MEETINGS

Affiliated Engineers SE, Inc.

3300 SW Archer Road

Gainesville, Florida 32608

(904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

95094-00 HOLSTON AREA B ACID FACILITY STUDY Project # Project December 1, 1995 KINGSPORT, TN Date City, State MAH 1 of 2 INTERIM REVIEW Typist Page Type of Meeting PDL 11/30/95 Copies Meeting Date

Present

Tony Battaglia
Scott Shelton
Jerry Bouchillon
Alex Fancher
Paul Little
Carl Osberg

US Army Corps of Engineers
Holston AAP
HDC
HDC
AESE
AESE

The purpose of this meeting was to review the Interim Report and the following items were discussed.

- 1. Reviewed schematic flow diagram of process. Several corrections were noted.
- 2. AESE to revise energy inventory table and show sample calculations (pages 43-49).
- ECO No. 1 needs to be revised to reflect replacing of the existing tailgas turbine with a steam condensing turbine. Noise will be an issue to review if tail gas is going to be exhausted.
- 4. ECO No. 2 correct steam output from 31,000 to 3,100 lbs/hr and review using steam to assist turbine.
- AESE to create a new ECO utilizing insulated air preheater, tailgas heater and plantnium recovery filter, with a once through steam system to assist the turbines.
- Look at possibility of eliminating/replacing cascade cooler.
- 7. Plantnium filter needs to be located prior to any waste heat boiler and cascade cooler.
- Stainless steel needs to be 400 grade for any metals in contact with product gas. AESE to get price quotes from manufacturers for waste heat boiler.
- Dowtherm A (eutectic mixture of Diphenyl Oxide and Diphenyl) is incompatible with the process if a leak were to occur, and is to be eliminated from consideration for an intermediate heat transfer fluid.
- 10. Utilizing a cooling tower will jeopardize Pollution Permits (ECO No. 3).
- 11. Existing chiller has capacity for operating only (2) units at once.
- 12. Add Conclusions and Recommendations to Executive Summary section of the report.

Project Name: Holston AAP Nitric Acid Production Facility Date: December 22, 1995

Project No.: 95094-00 **Page No.:** 2 of 2

13. Starting turbine without tail gas uses 290 amps of electrical power when tail gas is added to turbine the electrical power drops to 220 amps.

14. AESE to investigate chiller revision from a direct-contact steam condenser to a steam surface condenser from which steam condensate can be recovered. Because chiller operates only 5 months out of year, evaluate production level at which this modification will qualify for ECIP.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By:

AFFILIATED ENGINEERS SE, INC.

For Carl L. Osberg, P.E.

Vice President

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

HOLSTON AAP NITRIC ACID PRODUCTION FACILITY		95094-00	
Project		Project #	
HOLSTON, TN		August 22, 199	5
City, State		Date	
EXIT INTERVIEW		1 of 1	DA
Type of Meeting 08/17/95 (AM)		Page	Typist
Meeting Date		Copies	
Present	Representing		
Scott Shelton	SMCHO-EN		
Alex Francher	HDC	•	
Carl Osberg	AESE		

AESE

The purpose of this meeting was to review the items surveyed and discuss probable areas of energy conservation. The following items were discussed.

Nitric Acid manufacturing process was observed in operation with absorption column #9 operating. Each of the four air compressors were operating, but only one of the four was being loaded. It was noted that compressed air final stage after cooler does not have dewpoint control or other control strategy. The steam jet refrigerating unit was confirmed to utilize a steam surface condenser.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

Ву,

Paul Little

Paul Little, P.E.

HVAC Project Engineer

3300 SW Archer Road Gainesville, Florida 32608

(904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

HOLSTON AAP NITRIC ACID PRODUCTION FACILITY	95094-00	
Project HOLSTON, TN	Project # July 11, 1995	117.11.71.71
City, State EXIT INTERVIEW	Date	
Type of Meeting	1 of 1	MAH
07/07/95	CO	.,,,
Meeting Date	Copies	

Present Representing

Scott Shelton Charlie Fowler

Charlie Fowler Robert Barnes SMCHO-EN HDC - Engineering

AESE

The purpose of this meeting was to review the items surveyed and discuss probable areas of energy conservation. The following items were discussed.

- 1. Bob Barnes briefly reviewed the scope of work for this project. Some options available for saving energy, water or dollars for this project include:
 - Recover heat to generate steam or hot water to supplement or eliminate steam used to vaporize ammonia.
 - Recover heat to generate steam to be used to reduce existing steam used at chiller.
 - Reduce filtered riverwater used at cascade cooler by storing chilled water in a closed loop configuration.
 - Recover heat to generate steam to run turbine at air compressor to reduce electric motor use.
 - Recover hot condensate from vaporizer and/or chiller to be regenerated to steam with waste heat for use at vaporizer or chiller.
 - Use 300 psig or 150 psig steam from existing steam system to run a turbine at the air compressor to reduce or eliminate the electric motor usage.
- 2. Bob Barnes asked Mr. Fowler if there were any ideas for energy conservation which had been overlooked. Mr. Fowler was not aware of other potential energy saving concepts.
- Mr. Fowler clarified the capacity of the steam jet chiller. The chiller was relocated from another process and is approximately sized to handle 2 AOP process streams and not 4 as originally estimated by AESE.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By:

AFFILIATED ENGINEERS SE. INC.

Robert A. Barnes, P.E. HVAC Project Engineer

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

LICUATON AAD NITDIG AGID DDG	DUCTION FACILITY	05001.00	
HOLSTON AAP NITRIC ACID PRO	95094-00		
Project		Project #	
HOLSTON, TN		July 11, 1995	
City, State		Date	
ENTRY INTERVIEW		1 of 1	MAH
Type of Meeting		Page	Typist
07/05/95		CO	
Meeting Date		Copies	
Present	Representing		
Scott Shelton	SMCHO-EN		
Jerry Bouchillon	HDC		
Alex Fancher	HDC		
Mike Richarme	AESE		
Carl Osberg	AESE		
Robert Barnes	AESE		

The purpose of this meeting was to have an entry interview and the following items were discussed.

- 1. Mr. Jerry Bouchillon inquired as to the type of data needed to be furnished by HDC. AESE personnel requested information regarding: compressor intercooler water flow: Pump flows; pump curves; motor data; chiller capacity; and chiller steam flow and pressure.
- 2. Alex Fancher stated that manuals were available by Dupont which had technical data on the AOP process which could contain information useful for this project. The manuals would be located during the AESE field investigation to be reviewed for useful information.
- 3. Jerry Bouchillon would provide AESE with the name of the stainless steel fabricator who provided equipment for this facility to be used for pricing and special fabrication information.
- 4. AESE would conduct the field investigation today 07/05/95 instead of the document review listed in the AESE agenda. This would allow Mike Richarme to become familiar with the AOP Facility so he could shorten his field investigation time and depart this evening.
- 5. Jerry Bouchillon advised that mechanical and electrical drawings of the AOP Facility were downstairs in the engineering plan room. AESE personnel were invited to look through the drawings for relevant information for this project.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By:

AFFILIATED ENGINEERS SE, INC.

Robert A. Barnes, P.E. HVAC Project Engineer

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

HOLSTON AAP NITRIC ACID PRODUCTION FACILITY	95094-00	
Project	Project #	
HOLSTON, TN	May 1, 1995	
City, State	Date	
PRE-NEGOTIATIONS	1 of 2	MAH
Type of Meeting	Page	Typist
04/26/95	RB	
Meeting Date	Copies	
Present	epresenting	

Tony Battaglia

Jerry Bouchillon

Scott Shelton

Bob Lowe

Robert Barnes

Carl Osberg

US Army Corps of Engineers

HDC

SMCHO-EN

HDC

AESE

AESE

The purpose of this meeting was to review the project scope and the following items were discussed.

- 1. HDC is investigating purchasing 100 lb steam from Tennessee-Eastman.
- 2. Acid production facility operates only 2 to 4 days/month but runs continuous during the 2 to 4 days. Currently run two units during this period. Investigate running one unit all week vs two units for 2 to 4 days. Staffing of facility needs to be considered.
- 3. A more detailed schematic diagram of the system is needed to better understand the system.
- 4. Steam cost is \$2.94/MBtu at present. Electrical cost is \$.03412/kWH.
- 5. Nitric acid production process was invented in 1935 and has been active at Holston since 1942. A newer more efficient process is now available and is also active at Holston. A new 300 ton/day unit is presently in use at HDC.
- 6. A waste heat boiler is a possible option to generate steam to run the air compressors to reduce the electric motor energy use.
- 7. Alex Fancher is contact point at acid production facility.
- 8. A steam jet ejector chiller is currently used to cool river water when water temperatures rise in the summer months.
- 9. Jerry Bouchillon to update flow diagram of process, provide P&I drawings of process, and provide air compressor curves. Data on turbines will be made available at entry interview.
- 10. Proposal to Corps may also include ideas/approach to project that is different than scope of work.
- 11. AESE to notify Corps prior to submitting proposal of any special consultants, testing, etc. that is going to be proposed.

Project Name:

Holston AAP Nitric Acid Production Facility

4

Date:

May 1, 1995

Project No.:

95094-00

Page No.:

2 of 2

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By:

AFFILIATED ENGINEERS SE, INC.

Carl L. Osberg, P.E.

Vice President