Federated Continual Learning with Adaptive Fuzzy Tiling Activation

Chenyang Ma (cm2196) Yuwei Zhang (yz798)

Federated Continual Learning (FCL)

- Data on devices evolve over time: users delete, transfer, and upload data
- Model trains on a sequence of T tasks $\{\mathcal{T}^{(1)}, \mathcal{T}^{(2)}, ..., \mathcal{T}^{(T)}\}$
 - without access to training data of the previous tasks

Figure 1: Federated continual learning. Each client is trained on task sequences. The server aggregates local model updates and broadcast the global model to all clients.

Catastrophic Forgetting in CL & FCL

- FCL inherits *Catastrophic Forgetting* from continual learning (CL) [1, 2]
- Knowledge from the new task overwrites the knowledge acquired from previous tasks: *Interference*

Goal of this work

- Previous works on FCL develop FL protocols that are task-specific
 - Yoon et al. [1]: Image classification
 - Chaudhary et al. [2]: NLP

 Can we acquire a generalized solution to tackle Catastrophic Forgetting for FCL by applying techniques that are effective in CL?

Natural Sparsity: Fuzzy Tiling Activation (FTA)

- Introduces sparsity by design: mapping a scalar to a vector [1]
- Task agnostic
- Model agnostic

$$\begin{split} v := (l, l+\xi, l+2\xi, ..., u-2\xi, u-\xi, u) &= \mathrm{arange}(l, u+\epsilon, \xi) \\ I_+(w) := \begin{cases} 1, & \text{if } w > 0 \\ 0, & \text{otherwise} \end{cases} \\ \vartheta(z) := 1 - I_+ \left(\mathrm{ReLU}(v-z) + \mathrm{ReLU}(z-\xi-v) \right) \end{split}$$

Natural Sparsity: Fuzzy Tiling Activation (FTA)

- Maps an input scalar to a smoothed one-hot encoding
- Leaks gradients
- Creates more sparse feature space

$$\begin{split} I_{\eta,+}(w) &:= I_+(\eta-w) \times w + I_+(w-\eta) = \begin{cases} w, & \text{if } w < \eta \\ 1, & \text{otherwise} \end{cases} \\ \vartheta_{\eta}(z) &:= 1 - I_{\eta,+} \left(\text{ReLU}(v-z) + \text{ReLU}(z-\xi-v) \right) \end{split}$$

Proposed method: Adaptive Fuzzy Tiling Activation (AFTA)

- FTA leads to gradient vanishing if the input scalar is not within the predefined bounds
- We argue the problem worsens in FL with data heterogeneity
- We develop a method to adaptively set the lower and upper bounds during training, named as AFTA

$$\forall q \in \{1, 2, ..., Q\}, h_q \in S$$

$$l = \min\{l \in S : l > \mu + 2\sigma\}, \quad u = \max\{u \in S : u < \mu - 2\sigma\}$$

In Combination with Continual Learning Techniques

- Knowledge Distillation (KD) [1]
 - Teacher model: global model trained on t-1 previous tasks
 - Student model: train on the t-th task locally

$$\mathcal{L}_{\text{KD}} = (1 - \alpha)\mathcal{L}_{\text{CE}} + \alpha\mathcal{L}_{\text{KL}}$$

$$\mathcal{L}_{\text{KD}} = (1 - \alpha)\left(-\sum_{i} y_{i} \log(p_{s_{i}})\right) + \alpha\left(\sum_{i} p_{t_{i}}^{T} \log\left(\frac{p_{t_{i}}^{T}}{p_{s_{i}}^{T}}\right)\right)$$

- Elastic Weight Consolidation (EWC) [2]
 - Regularize the network's parameters based on their importance for the previous tasks

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_i \frac{\lambda}{2} F_i(\theta_i - \theta_{A,i}^*),$$

Pipeline

Figure 4: The pipeline. (a) shows the network with/without (A)FTA on the client-side; (b) shows the complementary CL techniques that can be combined with (A)FTA, which is also deployed on the client-side.

Experimental Design

- Permuted-FEMNIST
 - Each task is a ten-way classification
 - A different random pixel-level permutation is applied to the input data X

- Split-FEMNIST
 - Each task is a two-way classification
 - The original FEMNIST dataset for each client is split

...

Experimental Design

Evaluation metrics

- The final accuracy of all trained tasks
- The best accuracy achieved by each task
- Averaged incremental accuracy [1, 2, 3]
- Averaged forgetting [1, 2, 3]

^[1] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation learning. In CVPR, 2017.

^[2] Haiyan Yin, Ping Li, et al. Mitigating forgetting in online continual learning with neuron calibration. In NeurlPS, 2021.

^[3] Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated continual learning with weighted inter-client transfer. In ICML, 2021.

Results

Table 1: Performances on Permuted-FEMNIST. Accuracy (\uparrow), Forgetting \downarrow . The baseline is in **bold**. The highest Accuracy is in **red**. The lowest forgetting is in **blue**.

Sparsity	CL Tech	$\mathcal{T}^{(1)}$	$\mathcal{T}^{(2)}$	$\mathcal{T}^{(3)}$	$\mathcal{T}^{(4)}$	$\mathcal{T}^{(5)}$	$\mathcal{T}^{(1)*}$	$\mathcal{T}^{(2)*}$	$\mathcal{T}^{(3)*}$	$\mathcal{T}^{(4)*}$	$\mathcal{T}^{(5)*}$	Accuracy	Forgetting
None	None KD EWC	18.82 23.55 22.20	22.18 24.58 24.82	22.19 21.63 21.79	21.13 24.81 25.39	44.69 42.74 45.10	53.71 57.14 57.88	33.75 35.84 35.55	35.29 31.63 32.51	36.97 36.36 36.74	44.69 42.74 45.10	25.91 26.96 27.26	15.08 13.28 13.70
FTA	None	18.79	17.7	18.56	31.51	56.64	76.79	56.84	49.41	56.64	56.64	28.7	30.62
	KD	16.77	19.99	20.36	29.55	54.72	69.37	50.08	41.33	54.42	54.72	27.56	25.71
	EWC	28.29	22.94	23.06	36.56	59.37	79.59	58.49	50.05	66.91	59.37	34.29	28.84
AFTA	None	20.05	25.84	20.77	31.08	46.17	79.06	54.03	50.6	61.82	46.17	30.21	29.55
	KD	28.70	28.45	29.83	36.57	54.35	80.63	47.19	45.74	49.13	54.35	34.48	19.83
	EWC	28.56	28.74	29.62	35.65	54.59	80.90	47.68	44.88	49.84	54.59	34.42	20.15

Table 2: Performances on Split-FEMNIST. Accuracy (\uparrow), Forgetting \downarrow . The baseline is in **bold**. The highest Accuracy is in **red**. The lowest forgetting is in **blue**.

Sparsity	CL Tech	$\mathcal{T}^{(1)}$	$\mathcal{T}^{(2)}$	$\mathcal{T}^{(3)}$	$\mathcal{T}^{(4)}$	$\mathcal{T}^{(5)}$	$\mathcal{T}^{(1)*}$	$\mathcal{T}^{(2)*}$	$\mathcal{T}^{(3)*}$	$\mathcal{T}^{(4)*}$	$\mathcal{T}^{(5)*}$	Accuracy	Forgetting
None	None KD EWC	59.11 74.02 81.45	74.58 61.45 85.91	54.27 46.95 51.25	97.05 96.62 97.68	84.06 85.17 86.14	95.08 97.56 96.93	86.63 88.88 92.25	90.84 70.01 89.38	99.23 99.52 98.89	84.06 85.17 86.14	72.94 75.69 78.58	17.35 15.39 12.23
FTA	None	86.66	61.57	44.68	96.42	86.61	98.12	82.90	85.77	99.03	86.61	75.19	15.30
	KD	94.63	69.47	41.78	97.15	87.22	97.51	83.68	60.77	98.28	87.22	78.25	7.44
	EWC	84.15	72.83	45.37	95.55	88.17	97.42	89.01	78.30	98.82	88.17	78.70	13.13
AFTA	None	89.85	81.55	53.2	96.62	80.02	97.75	88.81	90.53	98.48	80.02	82.68	10.87
	KD	97.23	84.10	50.26	97.70	81.88	97.91	86.75	77.87	97.99	81.88	82.23	6.25
	EWC	86.35	70.40	47.44	96.37	86.48	97.80	87.14	78.74	99.01	86.48	78.83	12.43

Results: Full Training Curves

Figure 7: Performance on Permuted-FEMNIST Using vanilla CNN, (a) is baseline.

Figure 8: Performance on Permuted-FEMNIST Using CNN + FTA.

Figure 9: Performance on Permuted-FEMNIST Using CNN + AFTA.

Figure 10: Performance on Split-FEMNIST Using vanilla CNN, (a) is baseline.

Figure 11: Performance on Split-FEMNIST Using CNN + FTA.

Figure 12: Performance on Split-FEMNIST Using CNN + AFTA.

THANK YOU

