Math 6a - Problem Set 1

- 1. Show that there are infinitely many primes of the form 4k + 3.
- 2. In lectures, we saw that division was transitive, that is, if a|b and b|c, then a|c. Below, I give several possible meanings for $a \sim b$ where a and b are integers. Which of these are transitive, in the sense that $a \sim b$ and $b \sim c$ implies $a \sim c$? Give proofs or counterexamples.
 - (a) $a \sim b$ iff a does not divide b
 - (b) $a \sim b \text{ iff } a < b + 2019$
 - (c) $a \sim b$ iff $a^2 \equiv b^2 \pmod{2019}$
 - (d) $a \sim b \text{ iff } \gcd(a, b) > 2019$
- 3. Prove that a number $a_n a_{n-1} \dots a_2 a_1 a_0$ written in base 10 is divisible by 9 if and only if $a_n + a_{n-1} + \dots + a_2 + a_1 + a_0$ is.
- 4. (a) The last digits of the Fibonacci numbers are $0, 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, \ldots$ Show that the sequence consists of the same cycle repeated infinitely often.
 - (b) For a fixed natural number m, consider now the sequence F_n (mod m). Show again that the sequence consists of the same cycle repeated infinitely often and this cycle has length less than or equal to $m^2 1$.
 - (c) Show that if r divides n, then F_r divides F_n (where we start with $F_0 = 0$ and $F_1 = 1$).
- 5. A message has been encrypted using RSA and the encoding $01 \leftrightarrow A, 02 \leftrightarrow B, \dots, 26 \leftrightarrow Z$ with exponent e = 5 and modulus n = 2881. The encrypted message is

0559 0752 0915 0849 0405 0002 1702 1373.

What is the decrypted message? (You may use an online modular exponentiation calculator.)