Analyzing Hospital Dataset Using Linear Regression

Wangqian Miao*

Kuang Yaming Hornors School, Biophysics, Nanjing University

Mingyi Xue

School of Chemistry and Chemical Engineering, Nanjing University

Instructor: Dr. Erin K. Melcon

Department of Statistics, University of California, Davis

Contents

1	Intro	oduction	3
2	Sum	mary	3
	2.1	Analyzing the Sample Correlation Coefficient	3
	2.2	Scatter Plot	4
	2.3	Five Number Summary	4
3	Data	Preparation	4
	3.1	Boxplots	4
	3.2	Remove Outliers	5
4	Mod	el Fitting	5
	4.1	Using A.I.C & B.I.C	5
	4.2	C.I. & H.T. for β_i	6
	4.3	Partial \mathbb{R}^2	6
	4.4	Add Interaction Term	6
	4.5	Model Selection	7
5	Mod	el Diagnotics	7
	5.1	e_i Normality	7
		5.1.1 QQ Plot	7
		5.1.2 Shapiro-Wilk Normality Test	7
		5.1.3 Conclusion	8
	5.2	Constant Variance	8
		5.2.1 e_i v.s. $\hat{y_i}$ Plot	8
		5.2.2 Fligner-Killeen Test	8
		5.2.3 Conclusion	8
	5.3	Remove Outliers Again	8
	5.4	Final model	9

^{*}The two authors are all exchange students from Nanjing university

2	STA101: Advanced Sta	tistics For Biological Science	Project 1
6	i Interpretation		9
7	Prediction		10
8	Conclusion		10

1 Introduction

In this article, we use the linear regression model to analyze the dataset of "Hospfull.csv" which describes characteristics of the United States Hospitals. The source of this data is the text: "Applied Linear Statistical Models, fifth edition, Kutner, Nachtsheim, Neter, and Li."

Our goal is predicting the average estimated probability of acquiring infection in hospital (in percantage) by finding the important explanary variables. Depending on the tools and techniques we learn in linear regression, we will build a "correct" model and make the prediction.

Firstly, we will use the full model and make the improvement later. In the dataset, we choose "Infect" as our response variable Y and let other variables be the explanary variables X_i . So, the linear regression model is:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \varepsilon \tag{1}$$

We make a summary table as following to interret the variables.

Name	Variable	Variable Kind	Units
Indfect	Y	Response	Percentage
Length	X_1	Numerical	Days
Culture	X_2	Numerical	Ratio
Bed	X_3	Numerical	Number
Medschool	X_4	Categorical	Y/N
Region	X_5	Categorical	NE/NC/S/W

Table 1: A summary table for the variables

2 Summary

2.1 Analyzing the Sample Correlation Coefficient

Firstly,we analyze the correlaytion coefficient between Y and numerical variables to find whether the linear relationship between Y and X_i is strong enough.

Y v.s. X_i	Correlation Coefficient	Linear Relationship Strength
$\overline{X_1}$	0.5334	Moderate & Positive
X_2	0.5592	Moderate & Positive
X_3	0.3598	Weak & Positive

Table 2: A summary table for the variables

2.2 Scatter Plot

Figure 1: Scatter plots by different numerical variables

2.3 Five Number Summary

Region	Min	Q_1	Median	Mean	Q_3	Max
NC	1.300	3.8500	4.400	4.394	5.225	7.800
NE	2.500	4.200	4.850	4.861	5.750	7.700
\mathbf{S}	1.300	2.900	4.200	3.927	4.700	7.600
W	2.600	4.075	4.450	4.381	4.850	5.600

Table 3: A summary table for the variables

Medschool	Min	Q_1	Median	Mean	Q_3	Max
N	1.300	3.400	4.300	4.224	5.025	7.800000
Y	2.900	4.500	5.000	5.094	5.700	7.700

Table 4: A summary table for the variables

3 Data Preparation

3.1 Boxplots

According to the Boxplot by different catogorical, we find there exists some outliers in the dataset.

(a) the first subfigure

(b) the second subfigure

3.2 Remove Outliers

The outliers are shown in the following table. We remove 10 outliers and the ratio of the full dataset is 8.850%.

Index	Length	Infect	Culture	Bed	MedSchool	Region
2	8.82	1.6	3.8	80	N	NC
8	11.18	5.4	60.5	640	\mathbf{Y}	NC
13	12.78	7.7	46	322	Y	NE
47	19.56	6.5	17.2	306	N	NE
53	11.41	7.6	16.6	535	N	\mathbf{S}
54	12.07	7.8	52.4	157	N	NC
93	8.92	1.3	2.2	56	N	NC
101	9.76	2.6	6.9	64	N	W
103	7.14	2.7	13.1	92	N	\mathbf{W}
112	17.94	5.9	26.4	835	Y	NE

Table 5: The information of outliers

4 Model Fitting

4.1 Using A.I.C & B.I.C

Based on the criatia of A.I.C or B.I.C, the "correct" model can be found.

Without considering the interaction term, we find that the full model has the lowest A.I.C. based on the all subsets of the full model. The model we build is

$$\hat{y}_1 = -0.4536 + 0.3962X_1 + 0.0586X_2 + 0.0013X_3 - 0.4005X_{4Y} -0.4577X_{5NE} - 0.3619X_{5S} + 0.9163X_{5W}$$
(2)

Without considering the interaction term, we find that the full model has the lowest B.I.C. based on the all subsets of the full model. The model we build is

$$\hat{y}_2 = -0.5573 + 0.4389X_1 + 0.0565X_2 -0.5097X_{5NE} - 0.3471X_{5S} + 0.9048X_{5W}$$
(3)

There are some differences between the two models, we will use some techniques to compare them.

4.2 C.I. & H.T. for β_i

We analyze the full model's βs C.I.($\alpha = 0.5$) for the first model. The table is as following.

	2.5~%	97.5~%
(Intercept)	-1.8014	0.8942
X_1	0.2507	0.5417
X_2	0.0371	0.0802
X_3	0.0001	0.0024
X_{4Y}	-0.9805	0.1796
X_{5NE}	-0.9469	0.0316
X_{5S}	-0.7823	0.0585
X_{5W}	0.3422	1.4905

Table 6: C.I. of βs of the first model

The C.I. of X_4 contains 0. We will consider that X_4 should be dropped.

	Coefficients:	Estimate Std. Error	t value	$\Pr(> t)$
(Intercept)	-0.453605	0.678888	-0.6680	0.50565
X_1	0.396160	0.073290	5.405	4.79e-07
X_2	0.058650	0.010860	5.401	4.89 e-07
X_3	0.001265	0.000568	2.227	0.02833
X_{4Y}	-0.400484	0.292175	-1.371	0.17370
X_{5NE}	-0.457657	0.246435	-1.857	0.06639
X_{5S}	-0.361916	0.211761	-1.709	0.09070
X_{5W}	0.916322	0.289204	3.168	0.00206

Table 7: H.T. for βs of the first model

The p-value of β_4 is big enough for us to accept H_0 which means $\beta_4 = 0$, we can drop X_4 . Now we have a model " $Y X_1, X_2, X_3, X_5$ ". We find that $\beta_3's$ value is quite small. How much error we will reduce by adding X_3 in our model " $Y \sim X_1, X_2, X_5$ "?

4.3 Partial R^2

We use partial \mathbb{R}^2 to estimate how much error we will reduce by adding X_3 .

$$R^2 = \frac{SSE_S - SSE_L}{SSE_S} = 3.156\% \tag{4}$$

Our goal is to find a "correct" model, so we can drop X_3 and choose the second model $Y \sim X_1, X_2, X_5$ which is the best under the B.I.C criteria.

4.4 Add Interaction Term

At last we consider that wether we should add the interaction term analyzing the C.I. of βs , we find there is no need to add interaction term, because the C.I. all contain 0.

4.5 Model Selection

Based on the discussion above, we find the most important variables X_1, X_2, X_5 and our final model is that

$$Y \sim X_1 + X_2 + X_5 \tag{5}$$

5 Model Diagnotics

There are some assumptions we should obey by using linear regression. Mostly, we care about the normality of e_i and whether the variance is a constant.

5.1 e_i Normality

The assumption is that $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon})$. We use e_i to estimate ε in practice. There are two popular ways which are QQ plot and Shapiro-Wilk Normality Test.

5.1.1 QQ Plot

According to the figure below, most points are near to y = x which suggests e_i is normarly distributed.

Figure 2: best

5.1.2 Shapiro-Wilk Normality Test

We use Shapiro-Wilk Test to find whether the error is normaly distributed.

- H_0 : The error is normaly distributed.
- H_A : The error is not normaly distributed.

According to R, the p-value=0.5181. Is is large enough for us to accept null which means the error is normally distributed under any significance.

5.1.3 Conclusion

Our model obey the assumption that $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon})$.

5.2 Constant Variance

The assumption is that σ_{ε} is constant. There are two popular ways which are plotting $e_i v.s. \hat{y}_i$ and Fligner-Killeen Test.

5.2.1 e_i v.s. $\hat{y_i}$ Plot

According to the figure below, there is no clear pattern in the plot, so the conclusion is that the variance is constant.

Figure 3: best

5.2.2 Fligner-Killeen Test

We use Fligner-Killeen Test to find whether the variance is constant.

- H_0 : $\sigma^2_{lower} = \sigma^2_{higher}$. H_A : $\sigma^2_{lower} \neq \sigma^2_{higher}$.

According to R, the p-value=0.2361. Is is large enough for us to accept null which means the variance is constant under any significance.

5.2.3Conclusion

The conclusion is that our model obey the assumption that the variance is constant.

5.3Remove Outliers Again

We use the method of "Cooks Distance" to find wether there still exists some outliers in the dataset. As shown in the figure below, The "Cooks Distance" is so small that there is no need to move any points out of our dataset.

Figure 4: best

5.4 Final model

Our final model is a "correct" model and it is appropriate.

$$Y = -0.5573 + 0.4389X_1 + 0.0565X_2 - 0.5097X_{5NE} -0.3471X_{5S} + 0.9048X_{5W} + \varepsilon$$
(6)

6 Interpretation

In this section, we will interpret the meaning of βs according to this problem.

- β_0 : Since the probability of acquiring infection in hospital cannot be negative, it is inappropriate to predict the probability of acquiring infection at all X's equal 0.
- β_1 : When the length of stay of all patients in the hospital increases by 1 day, the probability of acquring infection in hospital tends to increase by 0.4389 percentage on average, holding all other variables constant.
- β_2 : When the ratio of number of cultures performed to number of patients increases by 1, the probability of acquring infection in hospital tends to increase by 0.05648 percentage on average, holding all other variables constant.
- β_3 : The probability of acquring infection in hospital tends to decrease by 0.5097 percentage on average when patients are in category of North East compared to patients in category of North Central, holding all other variables constant.
- β₄: The probability of acquiring infection in hospital tends to decrease by 0.3471 percentage
 on average when patients are in category of South compared to patients in category of North
 Central, holding all other variables constant.
- β_5 : bThe probability of acquiring infection in hospital tends to increase by 0.9048 percentage on average when patients are in category of West compared to patients in category of North Central, holding all other variables constant.

7 Prediction

We will use our model to do a prediction.b

8 Conclusion

R Appendix

Listing 1: R script for Project 1

```
###### set work directory and load dataset ######
              etwd("/home/xmy/STA_101/Projects/P1")
           \label{eq:hospFull_csv} HospFull\_csv", \ header = TRUE)
           head(HospFull, n = 3)
           library("ggplot2")
library("leaps")
library("MPV")
           ###### define functions #######
           Partial.R2 = function(small.model, big.model){
12
           SSE1 = sum(small.model$residuals^2)
           SSE2 = sum(big.model\$residuals^2)
15
          PR2 = (SSE1 - SSE2)/SSE1
           return (PR2)
16
17
           All.Criteria = function(the.model)\{
          p = length(the.model$coefficients)
n = length(the.model$residuals)
19
20
           the.BIC = BIC(the.model)
           the .LL = logLik(the .model)
the .AIC = AIC(the .model)
the .PRESS = PRESS(the .model)
23
           {\rm the.R2adj} = {\rm summary}({\rm the.model}) {\rm \$adj.r.squared}
26
             t \text{ the .CP} = \text{summary(the . model)}
           names(the.results) = c("LL", "p", "n", "AIC", "BIC", the.PRESS, the.R2adj)
29
           return(the.results)
30
31
33
           ###### correlation #######
           cor(HospFull$Length, HospFull$Infect)
34
           cor(HospFull$Culture, HospFull$Infect)
35
           cor(HospFull$Bed, HospFull$Infect)
37
38
39
           ###### Infect summary ######
            summary(HospFull$Infect)
41
           # grouped by MedSchool
           aggregate(Infect ~ MedSchool, data = HospFull, summary)
42
            # grouped by Region
           aggregate(Infect ~ Region, data = HospFull, summary)
45
           # plot(HospFull)
46
            ##### boxplots of Infect #####
           \frac{\text{require}}{\text{ggplot}}
49
           # boxplot grouped by MedSchool
50
                Calculate the height and width (in pixels) for a 4x3-inch image at 600 ppi
           png("group_boxplot_medschool.png", width=6*ppi, height=4*ppi, res=ppi)
ggplot(HospFull, aes(y=Infect, x = MedSchool))+ theme_gray() + geom_boxplot() + ylab("Probability_of_acquiring_infection_in_hospital")
xlab("category_of_MedSchool")+ coord_flip()
53
             gtitle("Boxplot of Infect grouped by Medchool")
56
           dev. off()
57
58
           # boxplot grouped by Region
59
           png("group_boxplot_region.png", width=6*ppi, height=4*ppi, res=ppi)
           ggplot(HospFull,\ aes(y=Infect,\ x=Region)) +\ theme\_gray() + geom\_boxplot() +\ ylab("Probability\_of\_acquiring\_infection\_in\_hospital") +\ theme\_gray() +\ th
60
           xlab("category_of_Geographical_region")+ coord_flip()
61
           #ggtitle("Boxplot of Infect grouped by Region"
63
           dev.off()
64
           ###### scatter plots of Infect ######
           # scatter plot of Infect vs. Length
png("scatter_plot_length.png", width=6*ppi, height=4*ppi, res = ppi)
qplot(HospFull$Length, HospFull$Infect, data = HospFull) +xlab("length_of_stay") + ylab("probability_of_acquiring_infection")
67
68
69
           # scatter plot of Infect vs. Culture
```

```
png("scatter_plot_culture.png", width=6*ppi, height=4*ppi, res = ppi)
          qplot(HospFull$Culture, HospFull$Infect, data = HospFull) +xlab("culture/patients_*_100") + ylab("probability_of_acquiring_infection")
 74
 75
 76
 77
          # scatter plot of Infect vs. Bed
 78
          png("scatter_plot_bed.png", width=6*ppi, height=4*ppi, res = ppi)
          qplot(HospFull$Bed, HospFull$Infect, data = HospFull) +xlab("number_of_beds") + ylab("probability_of_acquiring_infection")
 79
 80
 81
 82
 83
          ###### remove outliers according to plots ######
 85
           # cover HospFull
          the.original = HospFull
 86
          HospFull=HospFull[-which(HospFull$Length>15),]
HospFull=HospFull[-which(HospFull$Culture>60),]
 88
          HospFull=HospFull[-which(HospFull$MedSchool="Y" & HospFull$Infect > 7),]
 89
          HospFull⊨HospFull[—which(HospFull$MedSchoo⊨"N" & HospFull$Infect > 7),]
 90
          HospFull=HospFull[-which(HospFull$Region="W" & HospFull$Infect < 3),]
 92
          HospFull=HospFull[-which(HospFull\$Region="NC" \& HospFull\$Infect < 2),]
          length(the.original$Infect)
 93
          length(HospFull$Infect)
 94
          the ratio = (length(the.original$Infect)-length(HospFull$Infect))/length(the.original$Infect)
 95
 96
          the.ratio
 97
          ###### subset models of Infect~. ######
          ## rename dataset for convenience
names(HospFull) = c("X1", "Y", "X2", "X3", "X4", "X5")
 99
100
          \begin{array}{ll} \text{full model} = \lim (Y - X1 + X2 + X3 + X4 + X5, \text{data} = \text{HospFull}) \\ \text{round}(\text{full model} \\ \text{coefficients}, 4) \end{array}
101
102
103
          bic.model = lm(Y\sim X1+X2+X5, data = HospFull)
          Tound (bic. model$coefficients, 4)
all.models = c("Y~1", "Y~X1", "Y~X2", "Y~X4", "Y~X5",
"Y~X1+X2", "Y~X1+X3", "Y~X1+X4", "Y~X1+X5", "Y~X2+X4", "Y~X2+X4", "Y~X2+X5", "Y~X3+X4", "Y~X3+X5", "Y~X3+X5", "Y~X4+X5",
"Y~X1+X2+X3", "Y~X1+X2+X4", "Y~X1+X2+X5", "Y~X1+X3+X4", "Y~X1+X3+X5", "Y~X1+X3+X5", "Y~X2+X3+X5", "Y~X2+X3+X5", "Y~X2+X3+X5", "Y~X2+X3+X5", "Y~X2+X3+X5", "Y~X2+X3+X5", "Y~X2+X3+X5", "Y~X2+X3+X5", "Y~X1+X2+X3+X5", "Y~X1+X2+X3+X3+X5", "Y~X1+X2+X3+X3+X3", "Y~X1+X2+X3+X3+X3", "Y~X1+X2+X3+X3+X3", "Y~X1+X2+X3+X3+X3", "Y~X1+X3+X3+X3", "Y~X1+X3+X3+X3", "Y~X1+X3+X3", "Y~X1+X3+X3", "Y~X1+X3+X3+X3", "Y~X1+X3+X3+X3", "Y~X1+X3+X3", "Y~X1+X3
104
105
106
107
108
             Y~X1+X2+X3+X4+X5")
109
          Infect.all.model.crit = t(sapply(all.models,function(M){
110
111
          current.model = lm(M,data = HospFull)
All.Criteria(current.model)
112
113
114
115
          Infect.\,all.model.\,crit\,=\,data.frame(Infect.\,all.model.\,crit\,)
            find the model with lowest BIC
116
          Infect.\,all.\,model.\,crit\,[which(Infect.\,all.\,model.\,crit\,\$BIC == min(Infect.\,all.\,model.\,crit\,[\,,5\,]\,)\,)\,,]
            find the model with lowest AIC
118
          Infect.\,all.\,model.\,crit\,[\,which(\,Infect.\,all\,.\,model.\,crit\,\$AIC \\ =\! min(\,Infect\,.\,all\,.\,model.\,crit\,[\,,4\,]\,))\,\,,]
119
120
122
          ###### anova analysis of X4 ######
123
          summary(full.model)
124
           summary (bic.model)
125
          alpha = 0.05
126
          {\rm the.CIs} = {\rm confint}({\rm full.model}, {\rm level} = 1 - {\rm alpha})
127
          round(the.CIs, 4)
128
           # drop X4
129
          smaller.model = lm(Y\sim X1+X2+X3+X5, data = HospFull)
          anova.small = anova(smaller.model)
larger.model = lm(Y-X1+X2+X3+X4+X5, data = HospFull)
130
131
132
          anova.large = anova(larger.model)
133
          anova(smaller.model, larger.model)
134
135
136
           ###### anova analysis of X3 ######
          smaller.model = lm(Y\sim X1+X2+X5, data = HospFull)
137
138
          anova.small = anova(smaller.model)
          larger.model = lm(Y\sim X1+X2+X3+X5, data = HospFull)
139
          anova.large = anova(larger.model)
140
141
          anova(smaller.model, larger.model)
142
           ###### partial r2 of X3 ##
          partial.R2=Partial.R2(smaller.model, larger.model)
143
144
          partial.R2
145
146
          ###### considering interaction terms ######
           # interaction term between X1 and X5
148
149
          \texttt{final.model} = \texttt{lm}(Y \hspace{-0.5mm} \cdot \hspace{-0.5mm} X1 \hspace{-0.5mm} + \hspace{-0.5mm} X2 \hspace{-0.5mm} + \hspace{-0.5mm} X5, \hspace{2mm} \texttt{data} = \texttt{HospFull})
          final.model
150
151
          X1.interation.model = lm(Y-X1+X2+X5+X1*X5, data = HospFull)
            ummary(X1.interation.model)
152
          confint(X1.interation.model, level = 1-alpha)
153
          anova(final.model, X1.interation.model)
154
          \verb|partial.R2=Partial.R2| (final.model, X1.interation.model)|\\
155
          partial.R2
156
           \# interaction term between X2 and X5
157
          X2.interation.model = lm(Y\sim X1+X2+X5+X2*X5, data = HospFull)
158
159
          X2.interation.model
160
           summary(X2.interation.model)
          confint(X2.interation.model, level = 1-alpha)
161
          anova (final.model, X2.interation.model)
```

```
163
       partial.R2=Partial.R2(final.model,X2.interation.model)
       partial.R2
164
165
166
167
       ###### diagnose of model ######
168
       final.model = lm(Y\sim X1+X2+X5, data = HospFull)
       final.model
169
170
       HospFull$ei = final.model$residuals
171
       HospFull\$yhat = \\ final.\\ model\$fitted.\\ values
172
        ## nomality
173
       # qqplot
174
       png("qqplot.png", width=6*ppi, height=4*ppi, res = ppi)
       qqnorm(final.model$residuals)
qqline(final.model$residuals)
175
176
       dev.off()
       # S-W test
178
       the.SWtest = shapiro.test(final.model$residuals)
179
       the.SWtest
180
181
182
       ## constant variance
       # ei-yi plot
png("scatter_plot_constant_variance.png", width=6*ppi, height=4*ppi, res = ppi)
183
184
185
       qplot(yhat, ei, data = HospFull) +
       xlab("Fitted_Values") + ylab("Errors") + geom_hline(yintercept = 0,col = "purple")
186
       dev.off()
187
        FK test
188
189
       HospFull$ei = final.model$residuals
       Group = rep("Lower",nrow(HospFull))
Group[HospFull$Y < median(HospFull$Y)] = "Upper"
190
191
       Group = as.factor(Group)
192
193
       {\bf HospFull\$Group = Group}
194
       the.FKtest\!\!=\!fligner.test(HospFull\$ei\,,\;HospFull\$Group)
195
       the.FKtest
196
197
       ## outliers
198
       # cook's distance
       cutoff = 0.10
199
200
       CD = cooks.distance(final.model)
201
       HospFull\$CD = cooks.distance(final.model)
       HospFull[which(HospFull$CD>cutoff),]
202
203
       # no outliers
204
       png("cooks_distance.png", width=6*ppi, height=4*ppi, res = ppi)
       plot (CD, ylab = "Cook' s_Distance")
abline(h = cutoff, color = "purple")
205
206
207
       dev.off()
208
       SR = stdres(final.model)
209
       HospFullSR = SR
210
211
       cutoff= 3
       png("standardized_error.png", width=6*ppi, height=4*ppi, res = ppi)
ggplot(HospFull,aes(x = SR))+geom_histogram(binwidth = 0.5,color = "black",fill = "white")+ xlab("standardized_error")
212
213
214
        dev.off()
215
       SR[which(abs(SR) > cutoff)]
216
217
       ###### final model ######
218
       {\tt final.model}
219
       R2 = summary(final.model)r.squared
220
       R2
221
         #### predict estimated values of Y ######
223
       alpha = 0.05
224
       x.star = data.frame(X1 = 8, X2 = 14, X5 = "W")
       predict(final.model, x.star, interval = "confidence", level = 1-alpha)
predict(final.model, x.star, interval = "prediction", level = 1-alpha)
225
```