

第三章 基本图形 生成算法

图形的扫描转换

基本图形生成算法

- * 图元扫描转换
 - ∞直线段扫描转换
 - ∞圆弧扫描转换
- * 实区域填充

光栅图形中点的表示

地址线性表

1D表示

显示屏幕

2D表示

像素由其左下角坐标表示

地址 =
$$(x_{max}-x_{min})*(y-y_{min})+(x-x_{min})+$$
基地址

每行像素点数

行数

行中位置

光栅图形中点的表示

Address(
$$x,y$$
) = (x_{max} - x_{min}) * (y - y_{min}) + (x - x_{min}) + 基地址
= $k_1 + k_2 y + x$

对像素连续寻址时,如何减少计算量?

Address
$$(x \pm 1, y) = k_1 + k_2 y + (x \pm 1) = \text{Address}(x, y) \pm 1$$

Address $(x, y \pm 1) = k_1 + k_2 (y \pm 1) + x = \text{Address}(x, y) \pm k_2$
Address $(x \pm 1, y \pm 1) = k_1 + k_2 (y \pm 1) + (x \pm 1)$
 $= \text{Address}(x, y) \pm k_2 \pm 1$

增量法的优点?

直线段扫描转换

- * 假设
 - ∞像素间均匀网格,整数型坐标系,直线段斜率0<m<1
 - ❖ X方向每次迭代都增1,y方向不一定
 - ➡对m>1, x、y互换

直线段的扫描转换算法

- **❖** 直线的扫描转换
 - ☞ 确定最佳逼近于该直线的一组象素
 - ∞按扫描线顺序,对这些象素进行写操作
- ❖ 三个常用算法:
 - 1数值微分法(DDA)
 - 2中点画线法
 - 3Bresenham算法。

数值微分(DDA)法(1/5)

- ❖ 已知线段端点: P₀(x₀,y₀), P₁(x₁,y₁)
- * 直线方程

$$y=kx+b$$
 {(x_i, y_i)}, i=0,...n.

- ❖ 浮点数取整: y_i=round(y_i)=(int)(y_i+0.5)
 - ∞用到浮点数的乘法、加法和取整运算

数值微分(DDA)法(2/5)

❖ 增量算法

$$sigma_{i+1} = kx_{i+1} + b = k(x_i + 1) + b = y_i + k$$

$$(x_i,y_i) \rightarrow (x_i+1,y_i+k)$$

⋄ 缺点:

- ∞有浮点数取整运算
- ≪不利于硬件实现
- ∞效率低
- ≪仅适用于|k| ≤1的情形:x每增加1,y最多增加1。 当 |k| >1时,必须把x,y互换。

数值微分(DDA)法(3/5)

- *digital differential analyzer
- **❖基本思想**
 - ∞用数值方法解微分方程

$$dx/dt = \Delta x$$

$$dy/dt = \Delta y$$

$$X_{n+1} = X_n + \varepsilon \Delta X$$

$$y_{n+1} = y_n + \varepsilon \Delta y$$

选取є的原则: 使0.5≤|є∆x|,|є∆y|≤1

数值微分(DDA)法(4/5)

- ❖ 对称的DDA
 - **∞取ε=2**-n
 - **∽**使 2ⁿ⁻¹≤max(|∆x |,|∆y|)≤2ⁿ
- ❖ 简单的DDA
 - ≪取ε= $1/\max(|\Delta x|, |\Delta y|)$
 - ≪使 ε |∆x |, ε |∆y|中必有一个是单位步长

数值微分(DDA)法(5/5)

- *缺点:
 - ∞浮点数运算
 - ≪不易硬件实现

中点画线法 (1/4)

- ❖ 问题: 判断距离理想直线最近的下一个象素点
- * 已知:线段两端点(x0,y0),(x1,y1)
- ❖ 直线方程: F(x,y)=ax+by+c=0
 - a=y0-y1
 - b=x1-x0

S C−XUY I-X I YU

$$\begin{cases} F(x,y) = 0 & \text{点在直线上面} \\ F(x,y) > 0 & \text{点在直线上方} \\ F(x,y) < 0 & \text{点在直线下方} \end{cases}$$

如何判断M点在Q点上方还是在Q点下方?

中点画线法(2/4)

- ◆ 直线上方点: F(x,y)>0 直线下方点: F(x,y)<0
 </p>
- ❖ 构造判别式: d=F(M)=F(Xp+1,Yp+0.5)
- ❖ 由d>0, d<0可判定下一个象素

- ❖ 分两种情形考虑再一下个象素的判定:
- * 若d≥0,中点M在直线上方,取正右方象素P1 (Xp+1,Yp)
 - ☞ 再下一个象素的判别式为:

$$d1=F((Xp+1)+1,Yp+0.5)=a(Xp+2)+b(Yp+0.5)+c$$

= d+a

d的增量为a

- ❖ 若d<0,中点M在直线下方,取右上方象素P2(Xp+1,Yp+1)</p>
 - ➡ 再下一个象素的判别式为:

d的增量为a+b

中点画线法 (4/4)

❖ d的初始值

$$< d0 = F(X0+1,Y0+0.5)$$

= $F(X0,Y0) + a+0.5b$
= $a+0.5b$

- ≪用2d代替d后,d0=2a+b
- ∞d的增量都是整数
- ❖ 优点:
 - ∞只有整数运算,不含乘除法
 - ∞可用硬件实现

因(X0,Y0)在直线上, 所以F(X0,Y0)=0

Bresenham画线算法(1/11)

- ❖ 使用最广泛
- ❖ 与中点画线法的思想类似
- ❖ 由误差项符号决定下一个象素取正右方像素还是右上方像素

Bresenham画线算法(2/11)

❖基本思想

- ≪比较从理想直线到位于直线上方的像素的距离d1和相邻的位于直线下方的像素的距离d2
- ∞根据距离误差项的符号确定与理想直线最近的象素

Bresenham画线算法(3/11)

- *最大位移方向每次走一步
 - ≪k<1时,x为最大位移方向
- *y方向走步与否
 - ∞取决于误差e值的大小
- *❖ 误差计算*
- **❖**初值: **e0**= Δ**y**/ Δ**x**
- ◆当e≥0.5时,最接近P2(xi+1,yi+1)
 - ∞y方向走一步
- ◆当e<0.5时,最接近P1(xi+1,yi)
 </p>
 - ∞y方向不走步

Bresenham画线算法(4/11)

- ❖为方便与0比较,设e=e-0.5
- \bullet e0= Δ y/ Δ x-0.5
- *当e≥0时,最接近P2(xi+1,yi+1)★y方向走一步
- ◆当e<0时,最接近P1(xi+1,yi)
 </p>

 ◆y方向不走步
- *有除法,不宜硬件实现

Bresenham画线算法(5/11)

- ❖设 $e=e\times2\Delta x$,不影响判断的准确性
- ***e0=2**∆y ∆x
- ◆当e≥0时,最接近P2(xi+1,yi+1)
 - ∞y方向走一步
- *当e<0时,最接近P1(xi+1,yi)
 - ≪y方向不走步

Bresenham画线算法(6/11)

- **※** 下一步误差的计算
- *当e≥0时,y方向走一步

$$e'=2\Delta y/\Delta x - 1 = e + \Delta y/\Delta x - 1$$

$$e'=e + 2\Delta y - 2\Delta x$$

❖当e<0时,y方向不走步

$$e'=2\Delta y/\Delta x=e+\Delta y/\Delta x$$

Bresenham画线算法(7/11)

- * 先确定最大位移方向
- ❖ 确定误差e的计算方法,并根据e确定在非最大位移方向上如何走步

Bresenham画线算法(8/11)

- ❖ 先确定最大位移方向
 - ∞|k|<1时,x为最大位移方向
 - ∞|k|>1时,y为最大位移方向
- ❖ 增1还是减1,取决于直线 所在象限
 - **∞**Δx≥0时,s1=1,否则s1=-1
 - «Δy≥0时,s2=1,否则s2=-1

Bresenham画线算法(9/11)

- ❖ 确定误差e的计算方法,并根据e确定在非最 大位移方向上如何走步
- * 误差初值的计算
 - ≪ | k | < 1时, e=2 | Δy | | Δx |
 </p>
 - ≪ |k|>1时, e=2|Δx| |Δy|

Bresenham画线算法(10/11)

❖ 确定误差e的计算方法,并根据e确定在非最 大位移方向上如何走步

```
≪e<0,不走步
```

- *|k|<1时, x=x+s1, e=e+2|∆y|</p>
- *|k|>1时, y=y+s2, e=e+2|∆x|

≪e≥0,走步

- ♦ |k|<1时, x=x+s1, y=y+s2, e=e+2|∆y|-2|∆x|</p>
- ♦ | k| > 1时, y=y+s2, x=x+s1, e=e+2 | ∆x|-2 | ∆y|

Bresenham画线算法(11/11)

- * 优点
 - ∞整数运算,速度快
 - ≪精度高
 - ∞乘2运算可用移位实现,适于硬件实现

圆弧的扫描转换

- **※ 圆的八对称性**
 - ∞只考虑第二个八分圆
- ❖ 假设圆心在原点x²+y²=R²

圆弧的扫描转换

- * 两种直接离散生成方法
 - ∞离散点
 - *开方运算
 - ≪离散角度
 - ❖三角函数运算
- *** 缺点**:
 - ≪计算量大
 - ∞所画像素位置间的间距不一致

$$y = y_c \pm \sqrt{r^2 - (x_c - x)^2}$$

$$\begin{cases} x_i = x_c + r \cdot \cos \alpha_i \\ y_i = y_c + r \cdot \sin \alpha_i \end{cases}$$

中点画圆法 (1/2)

- $F(X,Y)=X^2+Y^2-R^2=0$
- ❖ 中点 M=(Xp+1,Yp-0.5)

$$d = F(M) = F(x_p + 1, y_p - 0.5)$$
$$= (x_p + 1)^2 + (y_p - 0.5)^2 - R^2$$

- ❖ 当F(M)<0时,M在圆内,P1距离圆弧近,取P1
- ❖ 当F(M)>0时,M在圆外,P2距离圆弧近,取P2

中点画圆法 (2/2)

若 d<0,取P1为下一象素,再下一象素的判别式为

$$d' = F(x_p + 2, y_p - 0.5) = (x_p + 2)^2 + (y_p - 0.5)^2 - R^2 = d + 2x_p + 3$$

若d>=0,取P2为下一象素,再下一象素的判别式为

$$d' = F(x_p + 2, y_p - 1.5) = (x_p + 2)^2 + (y_p - 1.5)^2 - R^2 = d + 2(x_p - y_p) + 5$$

初始象素是(0,R),判别式d的初值为

$$d_0 = F(1, R - 0.5) = 1.25 - R$$

使用e=d-0.25代替d e0=1-R

DDA画圆法(1/3)

- ❖ 圆的方程: f(x,y)=x²+y²-R²=0
- ❖ 全微分: df(x,y)=2xdx+2ydy=0
- ❖ 微分方程: dy/dx=-x/y
- ❖ 递推方程:

$$(y_{n+1}-y_n)/(x_{n+1}-x_n)=-\varepsilon x_n/\varepsilon y_n$$

 $x_{n+1}-x_n=\varepsilon y_n$
 $y_{n+1}-y_n=-\varepsilon x_n$

实际画出的曲线 不是圆,而是螺 旋线,为什么?

DDA画圆法(2/3)

❖ 将递推公式写成矢量形式:

$$[x_{n+1} \quad y_{n+1}] = [x_n \quad y_n] \begin{bmatrix} 1 & -\varepsilon \\ \varepsilon & 1 \end{bmatrix}$$

❖ 构造一个行列式值为1的矩阵

$$\begin{bmatrix} 1 & -\varepsilon \\ \varepsilon & 1-\varepsilon^2 \end{bmatrix}$$

* 对应的圆方程递推关系为

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \varepsilon \mathbf{y}_n$$

 $\mathbf{y}_{n+1} = -\varepsilon \mathbf{x}_n + (1-\varepsilon^2)\mathbf{y}_n = \mathbf{y}_n - \varepsilon \mathbf{x}_{n+1}$

DDA画圆法(3/3)

- ❖针对不同象限及顺逆时针画圆,赋给c适当的) 符号
- ❖ c不同,圆形状不同, c大近似椭圆

Bresenham画圆算法(1/7)

- ❖ 顺时针画第一四分圆,下一步选择哪个点?
- **❖** 基本思想:
 - ★通过比较像素与圆的距离平方来避免开方运算
- ❖ 下一像素有3种可能的选择

$$m_H = |(x_i + 1)^2 + y_i^2 - R^2|$$

$$m_D = |(x_i+1)^2 + (y_i-1)^2 - R^2|$$

$$m_V = |x_i^2 + (y_i - 1)^2 - R^2|$$

- ❖ 选择像素的原则
 - ∞使其与实际圆弧的距离平方达到最小

Bresenham画圆算法(2/7)

- ❖圆弧与点(xi,yi)附近光栅网格的相交关系有5种
- ❖ 右下角像素D (xi,yi)与实际圆弧的近似程度

$$\Delta i = (x_i + 1)^2 + (y_i - 1)^2 - R^2$$

- ≤当Δi<0时,D在圆内,①②
 </p>

Bresenham画圆算法(3/7)

- ◆ 当Δi<0时,D在圆内,①②</p>
- ❖ 情形①,选m_H,m_D中最小者

=
$$|(x_i+1)^2+y_i^2-R^2| - |(x_i+1)^2+(y_i-1)^2-R^2|$$

$$=(x_i+1)^2+y_i^2-R^2+(x_i+1)^2+(y_i-1)^2-R^2$$

- $=2 (\Delta i + y_i)-1$
- ∞若d<0,则选H
- ∞若d>0,则选D
- ≪若d=0,则选H

Bresenham画圆算法(4/7)

- ❖ 当Δi>0时,D在圆外,③④
- ❖ 情形③,选m_v,m_D中最小者

=
$$|(x_i+1)^2+(y_i-1)^2-R^2|-|x_i^2+(y_i-1)^2-R^2|$$

$$=(x_i+1)^2+(y_i-1)^2-R^2+x_i^2+(y_i-1)^2-R^2$$

- $=2 (\Delta i-x_i)-1$
- ∞若d'<0,则选D
- ∞若d'>0,则选V
- ∞若d'=0,则选D

情形④也 适用

Bresenham画圆算法(5/7)

- ◆ 当Δi=0时,D在圆上,⑤
- ❖ 按d判别,有d>0,应选D
- ❖ 按d'判别,有d'<0,应选D

Bresenham画圆算法(6/7)

- - ≪若d≤0,选H
 - ≪若d>0,选D
- **❖** 当Δi>0时,
 - ≪若d'≤0,选D
 - ≪若d'>0,选V
- **❖** 当∆i=0时,选D

Bresenham画圆算法 (7/7)

 $P_i(x_i,y_i)$

 $\mathbf{H}(x_i+1,y_i)$

- * 判别式的递推关系
- ❖ 当取H(xi+1,yi)时
- (x_i, y_i-1) (x_i+1, y_i-1) $\Delta i+1=(x_i+1+1)^2+(y_i-1)^2-R^2=\Delta i+2(x_i+1)+1$
- ❖ 当取V(xi,yi-1)时
 - $\Delta i+1=(x_i+1)^2+(y_i-1-1)^2-R^2=\Delta i-2(y_i-1)+1$
- ◆ 当取D(xi+1,yi-1)时

$$\Delta i+1=(x_i+1+1)^2+(y_i-1-1)^2-R^2=\Delta i+2(x_i+1)-2(y_i-1)+2$$

多边形逼近法

- ❖ 当圆的正内接多边形边数足够多时,可以用画该多边形近似代替画圆
- ❖ "以直代曲"的代表方法之一
- ❖ 内接正n边形顶点为P_i(x_i, y_i)

$$\begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

线画图元的属性控制(1/3)

- ❖ 线宽控制: 刷子形状、朝向对线型的影响
 - 1.用象素复制方法产生宽图元

优点:

线宽与线段的斜率有关 效率高,实现简单

缺点:

- (1) 线宽较大时,不自然
- (2)折线处有缺口
- (3)宽度不符合要求
- (4)对称问题: 奇偶数像素,效果不同

竖直方向复制

 $m \in (-1,1)$

水平方向复制

线画图元的属性控制(2/3)

- 2.移动刷子产生宽图元
- ❖ 线宽变粗,刷子移动覆盖
- * 线宽与线段的斜率有关

线画图元的属性控制(3/3)

3.用填充图形表示宽图元

用等距线方法:

- ∞线宽均匀
- ∞端口处与边垂直
- ≪生成的图形质量高

线型控制

- ❖用位屏蔽器实现
 - ☆位屏蔽器中每一位对应的是一个像素,而不是单位长度,不能满足要求
 - ≪线型中的笔划长度与直线长度有关
 - *斜线笔划长度比水平或垂直线笔划长
 - ❖对工程图,这种变化是不允许的,它不符合国标规定
- ❖ 工程图,笔画作单独的扫描转换

1111001111001111100