

Bazy Danych

Andrzej M. Borzyszkowski

Instytut Informatyki Uniwersytetu Gdańskiego

materiały dostępne elektronicznie http://inf.ug.edu.pl/~amb

Modelowanie danych (model związków encji)

2/29

Modelowanie rzeczywistości

- Model semantyczny: "rozumiemy" modelowana rzeczywistość
 - potem planujemy jej reprezentację

Projektowanie bazy danych: analiza wymagań

- wymagania funkcjonalne (planowane operacje)
 - diagramy przepływu danych, diagramy sekwencji, scenariusze (inżynieria oprogramowania)
 - stosowane są diagramy UML (unified modelling language)
- wymagania danych
 - schemat koncepcyjny: decyzje biznesowe (bussiness logic)
 - co chcemy przechowywać?
 - jakie operacje chcemy wykonywać
 - warunki spójności narzucane na dane

© Andrzej M. Borzyszk

Bazy Danych

Bazy Danych

3/29

Modelowanie rzeczywistości, c.d.

- Modele historyczne
 - model hierarchiczny (np. drzewo katalogów systemu operacyjnego)
 - model sieciowy
- Model relacyjny (Peter Chen 1976)
 - dane tworzą relację/wiele relacji
 - relacja (relation) ≈ tabela (table)
 - diagramy związków encji entity relationship diagrams
- Modele przyszłości?
 - model obiektowo-relacyjny
 - model semistrukturalny
 - itd.

Andrzej M. Borzyszkows

Bazy Danych

Encje i związki

- **Encja** (*entity*): realny byt, jednostkowy i odróżnialny od innych podobnych encji, np. człowiek, przedmiot, organizacja
 - baza danych zawiera właśnie informacje o encjach
 - encje pewnego typu stanowią zbiór, ma on swoją nazwę
 - encje charakteryzują się własnościami.
- Własność (atrybut): cecha encji przechowywana w bazie danych
 - ma wartość w pewnym zbiorze właściwym dla tej własności
 - a priori może być złożona, wielowartościowa, pochodna.
- Klucz (key): jedna lub więcej własności jednoznacznie identyfikujących encję w bazie danych.
- Związek (relationship): zależność pomiędzy zbiorami encji w bazie danych, ma swoją nazwę.

Encje, c.d.

- Typ encji definiuje zbiór możliwych encji o tych samych atrybutach – schemat, intensja
- Ekstensja chwilowy stan bazy danych, zbiór encji przechowywanych w danej chwili
- Atrybut kluczowy dla każdej ekstensji atrybut jest niepowtarzalny
 - tzn. nigdy nie będą przechowywane dwie encje o tej samej wartości klucza
 - oznaczany jest jako podkreślenie nazwy
 - najczęściej jest to atrybut atomowy
 - może być kilka atrybutów kluczowych
 - Dziedzina wartości atrybutu *nie jest* na diagramie reprezentowana

ani typ danych, ani dodatkowe ograniczenia

Encje

- Encja (jednostka) jest opisywana atrybutami
 - np. imię, nazwisko, pesel (atrybuty proste)
 - mogą być atrybuty złożone (np. adres)
 - pochodne (np. wiek)
 - wielowartościowe (np. wykształcenie)
 - atrybuty mają prawo mieć wartość nieokreśloną

6/29

Związki

- Typ związku określa typy encji, pomiędzy którymi zachodzi związek oraz dopuszczalną liczność elementów encji będących w związku
 - bieżący stan bazy danych określa istniejące powiązania dla danego związku
- Np. w bazie danych przechowywane są informacje o studentach, przedmiotach i zaliczeniach
 - "zalicza" jest związkiem pomiędzy encjami przedmiotów i studentów, związkiem wieloznacznym
 - w bazie danych przechowywane są bieżące informacje na powyższy temat, zmieniają się one w czasie
 ale istnienie i typ związku jest niezmienny
- Prawie zawsze związki są binarne (pomiędzy dwiema encjami) 8/29

n © Andrzej M. Borzyszkowski

Andrzej M. Borzyszkowski

Bazy Danych

5/29

azy Danych

© Andrzej M. Borzyszkowski

Bazy Danych

Przykład

- Szkoła Wyższa organizuje bazę danych zawierającą informacje o nauczycielach akademickich (nazwisko, imię, nr legitymacji), studentach (nazwisko, imię, nr indeksu), wykładanych przedmiotach (nazwa, rodzaj, liczba godzin w tygodniu, kod) i ich terminach (dzień tygodnia, godzina, sala).
- Rozważamy też następujące związki między encjami:
 - odbywa się: każdy przedmiot posiada określony termin/salę
 - związek wzajemnie jednoznaczny, 1:1
 - jest prowadzony: każdy przedmiot jest prowadzony przez nauczyciela, który prowadzi wiele przedmiotów
 - związek jednoznaczny, 1:N
 - zalicza: każdy student zalicza kilka przedmiotów, każdy z nich gromadzi wielu studentów, zaliczenia są na ocenę
 - związek wieloznaczny, N:M

9/29

Andrzej M. Borzyszkowski

Andrzej M. Borzyszkowski

Klasyfikacja (binarnych) związków encji

• 1-1 (wzajemnie jednoznaczny)

- każda encja z jednego zbioru encji może być skojarzona z co najwyżej jedną encją z drugiego zbioru
- pewne encje mogą pozostać bez skojarzenia
- czasami wyraźnie chcemy uniknąć takiej sytuacji
- np. przedmiot ma pełen udział w związku oznacza, że każdy przedmiot ma przypisany termin wymóg istnienia

Klasyfikacja (binarnych) związków encji

1-N (jednoznaczny)

- każda encja ze jednego zbioru może być skojarzona z pewną ich liczbą z drugiego zbioru
- jednakże encja z drugiego zbioru najwyżej z jedną encją z pierwszego zbioru
- i znowu mogą pozostać encje bez skojarzenia
- ale czasami wyraźnie chcemy uniknąć takiej sytuacji
- np. zapewnić, że przedmioty mają obsadę

Klasyfikacja (binarnych) związków encji

wieloznaczny

- dowolna liczba encji
 z jednego zbioru może
 być skojarzona z dowolną
 liczbą encji z drugiego
 zbioru
- nadal aktualne uwagi o encjach niezwiązanych

© Andrzej M. Borzysz

Bazy Danych

11/29

- student zalicza przedmiot przedmiot jest zaliczany
- przedmiot odbywa się w terminie termin jest zajęty przez
- nauczyciel wykłada przedmiot przedmiot jest wykładany
- Technicznie nie ma znaczenia jaką nazwę przyjmiemy
 - ale musi być jasna w przypadku związku rekursywnego
 - np. pracownik jest kierownikiem innego pracownika
- Na diagramie można zaznaczać dokładniej możliwe liczebności encji w związku, np. 1:∞, 0:∞, 2:10
 - albo podawać tylko maksymalne ograniczenie

Encje i związki, c.d

- W diagramach encji i związków warto używać liczby pojedynczej
 - ale tabela odpowiadająca encji będzie zawierać wiele elementów
- Związki mogą posiadać swoje atrybuty
 - np. student nie tylko uczęszcza na wykład, ale i zalicza na ocenę w pewnej dacie

14/29

13/29

Andrzej M. Borzyszkowski

Diagram ER (notacja ISO)

Diagram ER (notacja Martina)

© Andrzej M. Borzyszkowski

Diagram ER w notacji UML

Rozszerzone diagramy encji i związków (EERD)

- Pojęcie dziedziczenia
 - np. student i nauczyciel ma wspólne atrybuty (imię, nazwisko itd.)
 - związek "jest" (oznaczany trójkątem)
 - generalizacja
 - kompletna
 - rozłączna
- Możliwe również dziedziczenie wielokrotne

Rodzaje notacji (wg wikipedii)

- Związek 1 do wiele
 - różne koncepcje gdzie postawić znak "wiele"
 - na ogół dwa różne sformułowania
- My będziemy stosować notację Chena (romby) z użyciem "kurzej stopki", notacja Martina
- źródło: is.gd/aAvquW

Encje słabe

- Encja słaba:
 - nie może istnieć bez encji nadrzędnej
 - nie ma swojego klucza
 - Klucz słaby jest jednoznaczny w ramach encji nadrzędnej
 - kluczem w bazie będzie para: klucz słaby + klucz encji nadrzędnej

Przykład: pracownicy w banku

 Podstawowe encje to pracownicy banku, możliwe specjalności pracowników, oddziały banku oraz stanowiska pracy w banku

```
Pracownik (imię, nazwisko, data urodzenia);
Odział (nazwa, miasto);
Stanowisko (nazwa, pensja);
Specjalność (nazwa);
```

- Pracownicy są przypisani do jednego oddziału oraz zajmują pewne stanowisko
- Każdy z pracowników może mieć kilka specjalności
- Diagram związków encji wykazuje encje wraz z ich atrybutami oraz związki i ich rodzaje (i ew. atrybuty)
 - nie określa dziedzin atrybutów
 - nie wyjaśnia, czy są one wymagane
 - nie musi określać, czy dopuszczalne jest zero przypisań

Pracownicy w banku – ERD

Pracownicy w banku – format UML

- Diagramy w wersji Chena-Martina są dość rozrzutne, jeśli chodzi o zajętość miejsca
- Format wzorowany na UML może być oszczędniejszy (np. DBDesigner -- ujawnia nazwy kluczy obcych)

Jeszcze jeden przykład

Zaczynamy od trzech encji podstawowych

Klient (nazwisko, adres, inne dane);

Towar (nazwa, kod kreskowy, wielkość zapasów, ceny kupna, oferowane itd);

Zamówienie (od kogo pochodzi, zestawienie towarów,
 daty wysyłki i inne, koszt wysyłki);

© Andrzej M. Borzyszkowski

Bazy Danych

23/29

Andrzej M. Borzyszkowski

Bazy Danych

21/29

Przykład: Związki

[Klient] <składa> [Zamówienie]

- związek 1 do wiele (zamówienie musi pochodzić od klienta, klient może złożyć 0, 1 lub wiele zamówień)

[Zamówienie] <składa się z> [Pozycje]

związek 1 do wiele (pozycja musi mieć określony nagłówek zamówienia, zamówienie może mieć wiele pozycji lub być nawet puste)

[Pozycja] <dotyczy> [Towaru]

- związek wiele do 1 (pozycja dotyczy towaru, nie może go nie określić, towar może wystapić w wielu pozyciach, ale w danych zamówieniu tylko raz)

[Towar] <ma> [Kod kreskowy]

 związek 1 do wiele (dopuszczamy by towar miał wiele różnych kodów, kod kreskowy musi jednoznacznie określać towar)

Przykład: Encje

- Pierwsza postać normalna wyklucza możliwość podania zestawienia towarów w jednej encji zamówienie
 - potrzebna jest osobna encja dla poszczególnych pozycji każdego zamówienia
 - dopuszczając, że jeden towar może mieć wiele różnych kodów kreskowych, trzeba stworzyć osobną tabelę dla tych kodów
- Decyzja, by stworzyć osobną tabelę dla wielkości zapasów
 - można podejrzewać, że będzie systematycznie modyfikowana

```
Pozycja (jakiego zamówienia, towar, wielkość
  zamówienia, inne, np. rabat);
Kod kreskowy (jakiego towaru, kod);
                                                       25/29
Zapas (czego, ile);
```

Związki, c.d.

[Towar] <występuje w> [Zapasie]

- związek 1 do 1 (w tabeli zapasów jest najwyżej jedna pozycja dla każdego towaru)
- Uwaga: związek wieloznaczny [Zamówienie] <..> [Towar] potencjalnie z dodatkowymi atrybutami np. wielkość zamówienia, został już rozłożony na dodatkową encję i dwa związki "1 do wiele"

```
[Zamówienie] <składa się z> [Pozycja]
 <dotyczy> [Towaru]
```

Przykład: Diagram encji i związków

Andrzej M. Borzyszkowski

Andrzej M. Borzyszkowski

Przykład: Diagram encji i związków

