

Boost Converter Analysis | ED18B027

≡ Tag Empty

Status Empty

√ 1 more property

Simulation of Buck and Boost Converter

- Used Python Power Electronics
- Gate Signal generated using Ramp Carrier Waveform
- Choose Duty Ratio as 0.7 to boost 12V to 40V

- Compared Currents voltages with C = 50, 500 and 5000 microFarad and L=1, 10 mH.
- Openloop Control to reduce initial spike, something like Slow Start.
- DCM to CCM transition observed in openloop control.

Interactive Graphs using Models

- Interactive Graph showing Duty Cycle needed to maintain constant Vout.
- Shows transition between DCM and CCM mode of operation

Duty Cycle vs Load Current

- Can't achieve infinite boost, because of inefficiencies.
- Used small ripple approximation to plot efficiency vs D and Boost vs D.
- Interactive graphs showing practical efficiency and boost
- Concatenating one boost after another to get better efficiency for same boost.

