This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, Please do not report the images to the Image Problem Mailbox.

RECORDING AND REPRODUCING METHOD

Patent Number:

JP6028773

Publication date:

1994-02-04

Inventor(s):

SHINPO MASATOSHI

Applicant(s):

MATSUSHITA ELECTRIC IND CO LTD

Requested Patent:

☐ JP6028773

Application Number: JP19920120241 19920513

Priority Number(s):

IPC Classification:

G11B20/10

EC Classification:

Equivalents:

Abstract

PURPOSE: To accelerate the rise of a sound by writing a sample in each channel to a buffer from an input/ouput part at the time of storage and from a storage medium at the time of reproduction and reading it when first sample data in a last channel are written.

CONSTITUTION: First of all, digital data are fetched from the input/output part 1 and recorded in the buffers 4, 4' at an allowable transfer rate VO alternately. Then, when a head 5 ends the seeking a target track and sector, the data in the buffer 4 are transferred into the storage medium at the allowable transfer rate VS. The data from the input/output part 1 are recorded in the buffer 4' while transferring. When the data in the buffer 4 are ended to record in the medium 6, seeking is performed succeedingly and the data in the buffer 4' are recorded in the medium 6. Thereafter, the operation is repeated by required number of times. At this time, the data by 1 block are stored in the buffer 4 temporarily so that continuous storage or reproduction of the data is secured and the next data by one block are stored in the buffer 4 while the data are outputted.

Data supplied from the esp@cenet database - I2

(19) F 本国特計庁 (J P)

(12) 公開特許公報(A)

(11)特許出願公即番号

特開平6-28773

(48)公開日 平成6年(1994)2月4日

{51}Int.CL*

識別記号 广内型基金导 FΙ

技術表示箇所

G 1 1 B 20/10

A 7923 5D

帝台請求 有

請求値の数4(全 12 頁)

(21)出願番号

(22)出願日

特职平4-120241

(71)出现人 000005821 。

(72)発明者 新保 正利

松下軍器產業株式会社

人阪府門真市人字門真1006番地

平成4年(1992) 5月13日

大阪府門真市大学門真1008番地。 松下電器

產業株式会社内。

(74)代理人 产理 : 小狐结 明 (外2名)

(54)【桑明の名称】 記録再生方法

の【要約】

【目的】ディスク記憶装置を用いて、音楽、音声信号 の連続記録再生を保証しながら、音声が再生出力される までの時間を早くする。

【構成】 ディジタル音声信号の入出力部1と、データ の連続記憶あるいは再生が保証されるNチャンネル分デ ータの最小単位LBバイトが記憶媒体6上に記憶される 様に、逆に記憶集体6からのデータが、バッファ4、入 出力部1間のデータ西列となるようにデータ並びを制御 するデータ西の的2と、少なくとも2つのバッファメモリ部4と、第Nチャンネルの第1サンプル目データがバ ッファ4に書き込まれる時間を図る時間計測的に あるい は書き込まれたことを検出するデータ検出部3と、ヘッ ド5と、記憶製作部6とを備え、少なくとも第Nチャン ネルの第1のサンプル目がバッファ4に書き込まれたこ とが計測あるいは検出されたら、このバッファ4のデー タを記憶媒体6あるいは入出力部1へ転送する。

【特許請求の範囲】

``. ``.

> 【請求項1】単一、あるいは複数チャンネルのディジタ ルの音声信号が入力あるいは出力される入出力部と、データ入力時には、この入出力部から取り込まれた、以下 に記載される最小記憶単位LB[バイト]分のデータ が、p、rを任意の正の整数、Nをチャンネル数、 1 + ンプルをq [バイト] とした時に、LB=r×q×Nの 関係で表されるものとし、第1チャンネルから第Nチャ ンネルの第1サンプル、第1チャンネルから第Nチャン ネルの第2サンプル、・・・、第1チャンネルから第Nチャンネルの第rサンプルの順c(g $\times <math>N$)バイトのNサンプルで構成される基本構成で、最終の各チャンネが 第アサンプルとなるように基本構成のア回の繰り返しで 並び変えられ、データ出力時には、逆にバッファから の、以下に記載される最小再生単位LB[バイト]分の データが、データ入力時の入出力部データ西でル同じに なるようにデータが並び変えられように制御するデータ 香の临8と、少なくとも2つのバッファメモリ部と、第N チャンネルの第1 サンプル目データがバッファに書き込 まれるまでの時間を図る時間計測的、あるいは書き込ま れたことを検出するデータ検出部と、ヘッドと、記憶某 体部とを備え、

入出力部とバッファ間のデータ転送レートがVO[バイト/秒]、バッファと記憶媒体間のデータ転送レートがVS[バイト/秒]、記憶媒体の最大シーク時間がT%[秒]、データの連続記憶あるいは連続再生が保証される、1回のアクセスでの最小記憶あるいは最小再生単位がLB[バイト]と表された時に、最小記憶あるいは最小再生単位上段がLBとVS×VO×T3/(VS-VO)を満足するようにし、

記憶媒体へのデータの書き込み時には、入出力部からのデータがデータ西砂胞の制御に従って、第1のバッファ、第2のバッファに交互に少なくともこの最小記憶単位L8[バイト]分づつ前記データ西砂に従って書き込まれ、バッファがいっぱいになったら、あるいは、少なくとも、第Nチャンネルの第1のサンプルがバッファに書き込まれたろとが時間計測部あるいはデータ検出部で検出されたら、このバッファの第1チャンネルの第1件ンブルから順次誘み出され、ヘッドに送られ、記憶媒体部で記憶され、

再生時には、記憶媒体部からヘッドで、少なくとも前記最小再生単位LB[バイト]を単位としてデータが読み出され、第1のバッファ、第2のバッファに交互に少なくともこの最小再生単位LB[バイト]分づつ前記データ西別に従って書き込まれ、バッファがいっぱいになったら、あるいは、少なくとも、第Nチャンネルの第1のカンプルがバッファに書き込まれたことが時間計測部あるいはデータ検出部で検出されたら、データ西別部の制御に従って、このバッファの第1チャンネルの第1サンプル、第3チャンネルの第1サンプル、第3チャンネル

の第1サンプル、・・・、第Nチャンネルの第1サンプル、第1 チャンネルの第2サンプル、第2 チャンネルの 第2サンプル、第3チャンネルの第2サンプル、・・ 、第1チャンネルの第rサンプル、第2チャンネルの 第アチャンネル、第3チャンネルの第アサンプル、・・ ・、第Nチャンネルの第rサンプルの順に読み出され、 入出力部に転送されることを特徴とする記録再生方法。 【請求項2】単一、あるいは複数チャンネルのディジタ ルの音声信号が入力あるいは出力される入出力部と、テ ータ入力時には、この入出力部から取り込まれた、以下 に記載される最小記憶単位LB[バイト]分のデータ が、p、Mを任意の正の整数、Nをチャンネル数、1サ ンプルをa[バイト]とした時に、LB=p×N×M、 の関係で表されるものとし、第1チャンネルの第1のサ ンプルから第Mサンプル、第2チャンネルの第1のサン プルから第Mサンプル、、第3チャンネルの第1のサン プルから第Mサンプル、・・・、第Nチャンネルの第1のサンプルから第Mサンプル、・・・、第1 チャンネルの第 $(M \times (p-1)+1)$ サンプルから第 $(p \times M)$ サンプル、第2チャンネルの第(M imes(p-1)+1)から第(p imes M)、第3チャンネルの第(M imes(p-1)+1) 1)+1)サンプルから第 $(p\times M)$ サンプル、・・ ・、第Nチャンネルの第($M \times (p-1)+1$)サンプルから第($p \times M$)サンプルのp個の基本構成の繰り返 しで並び変えられ、データ出力時には、逆にバッファか ろの、以下に記載される最小再生単位LB[バイト]分 のデータが、データ入力時の入出力部データ画列と同じ になるようにデータが並びかえられるように制御するデ ・夕酉の節と、少なくとも2つのバッファメモリ部と、 第Nチャンネルの第1サンプル目データがバッファ書き 込まれる時間をはかる時間計測部、あるいは書き込まれ たことを検出するデータ検出部と、ヘッドと、記憶媒体 部とを備え、

入出力部とバッファ間のデータの転送レートがV0[バイト/秒]、バッファと記憶媒体間のデータの転送レートがV8[バイト/秒]、記憶媒体の最大シーク時間がT%[秒]、データの連続記憶あるいは再生が保証される、1回のアクセスでの最小記憶あるいは最小再生単位がLB[バイト]と表された時に、最小記憶あるいは再生単位LBがLB[VS~V□X/(VS-V□)を満足するようにし、

記憶関係へのデータの書き込み時には、第1のバッファ、第2のバッファに交互に少なくともこの最小記憶単位LB[バイト]分が書き込まれ、バッファがいっぱいになったら、あるいは、少なくとも第Nチャンネルの第1のサンプルがバッファに書き込まれたことが時間計測部あるいはデータ検出部で検出されたら、このバッファの第1チャンネルの第1サンプルから順次読み出されへッドにおくられ、記憶媒体部で記憶され、

再生時には、記憶媒体部からヘッドで、少なくとも前記

最小再生単位LB[バイト]を単位としてデータが読み出され、第1のバッファ、第2のバッファに交互に少なくともこの最小再生単位LB[バイト]分が書き込まれ、バッファがいっぱいになったら、あるいは、少なとも、第Nチャンネルの第1のサンプルがバッファに移送出されたら、このバッファの第1チャンネルの第1サンプル、第3チャンネルの第1サンプル、・・・、第Nチャンネルの第1サンプル、第3チャンネルの第2サンプル、第3チャンネルの第2サンプル、第3チャンネルの第2サンプル、第3チャンネルの第2サンプル、第1チャンネルの第2サンプル、第1チャンネルの第2サンプル、第1チャンネルの第2サンプル、第3チャンネルの第($p\times M$)サンプル、第3チャンネルの第($p\times M$)サンプルの順に読み出され、入出力部に転送されることを特徴とする記録再生方法。

【請求項3】媒体において規格化されているセクタサイズをLS[バイト]、Mを正の整数としたとき、LS= q ×N×Mとすることを特徴とする請求項1記載の記録再生方法。

【請求項4】媒体において規格化されているセクタサイズをLS[バイト]としたとき、LS= q×Mとすることを特徴とする請求項2記載の記録再生方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、磁気ディスクや光磁気 ディスクなどの記録再生装置を用いてディジタル化され た音楽信号や音声信号を実時間で連続的に記録あるいは 再生するための記録再生方法に関するものである。 【〇〇〇2】

【従来の技術】従来は、コンピュータで扱われる処理としてはテキストデータが主であったが、最近は、ビットマップディスプレイやAD/DA変換器などの入出力技術の向上、高密度大容量低価格記録媒体の進歩、オブジェクト指向言語などのソフトウエア技術の進歩、聴覚視覚情報を利用した高度なコーザインタフェスの発達、コンピュータ処理能力の施力をはいれてきている。 【0003】動画、音声などのデータがは時系列でリアルタは時でリケルを変な意味を持ち、データを違って、時間情報でリアルタなければならない。データのリアルタイムで連続記しなければならない。データのリアルタイでの連続記しなければならない。データのリアルタイスで画連続記しなければならない。データのリアルタイスで画を保証を対ればならない。データのリアルタイスで画を開設しなければならない。データのリアルタイスで画を発売した。とないには、例音をない、出力指示から実際に音などの課題がある。 【0004】以下、図面を参照しながら従来のファイル

システム、例えば、UNIXのファイルシステムで音声 データを扱う場合について説明する。 【0005】(図5)はUNIXのファイルシステムに

【0005】(図5)はUNIXのファイルシステムにおけるデータ管理の基本概念を示す図である。(図6)は従来例のファイルの記憶装置のブロックを示す図、(図7)は(図6)の記憶装置の記録再生タイミングである。(図6)において、1はデータの人出力のである。(の26)において、1はデータの人出力のでは、ブァイルシステムが扱うファイルは複数個の固定長ブロックの記憶位置にはでしている。ファイルシステムがブロックの記憶位置であるいは1024バイを譲渡され、ファイルシステムがブロックの記憶位置はがファイルシステムがブロックの記憶位置はであるいで再生動作について記明を記憶であるので再生動作について記明を記憶であるのである。一次である。一次がある。一次があり出力部1の転送レートをを送ります。(入)出力部に転送している間に、次のブロックはする。(入)出力部に転送している間に、次のブロッイルのでする。(入)出力部に転送したいる間に、次のブロッイルのでする。(入)出力部に転送したいる間に、次のブロッイルのでする。

【0006】テキストファイルとは異なり、音声データはファイルの最初から最後まで、時間的に途切れなく連続して出力されなければならない。このためには、シーク時間が小さいか、出力部へのデータ転送速度が遅ければ問題は生じないが、一般的な記憶装置ではこの条件を必ずしも満足できないし、従来のファイルシステムではこれらの問題を解決するための管理機能は備えられていない。

【0007】シークによる途切れを解決するためには、あらかじめトータルのシーク時間を予測し、この時間を吸収するに十分なデータを一度半導体メモリに読みした後に、出力部にデータを転送する方法がある。この方法は、コンパクトディスク程度の転送レート約1.4M bpsの音声を取り扱う場合には半導体メモリの容量がりまる。音声の立ち上がり時間が問題となる。うり、媒体に記憶されたデータの1つの時間+読み出しっかがまでのブロックが出力部に転送される時間(シータンのよりではかまりまり長ければ、ファければ、カサイズ/出力転送レート)より長ければ、ファければならないことになる。(従って、半導体メモリの容量が現ま的ではないサイズになるとか、メモリからの読み出しに遅れが生じることになる。。

【0008】これに対し別の解決方法もある。(図8)は記憶媒体6上で物理的にファイルのブロックを連続的に配置する方法である。この方法ではファイルがアクセスされるためのシーク時間はファイル先頭へのシークに要される時間だけで済むが、この方法の問題点は、ユーザが意識して連続領域を確保する必要があることと、フ

ァイルの編集の際に、編集処理に要される時間が長くなるということである。あらかじめデータのサイズを知っていないと連続領域を確保できないし、ファイルに新たなファイルが挿入されたり、追加される様なサイズが変更になるときはファイルを一旦待避させ、連続領域を確保する必要が生じる。大きなファイルサイズの待避では、待避だけでも時間的に無視できない。

[0009]

【発明が解決しようとする課題】このように、テキストファイルとは異なり、音声データがファイルの最初から最後まで、時間的に途切れなく連続して出力されるには、シーク時間が小さいか、出力部へのデータ転送速度が遅ければ問題は生じないが、一般的な記憶装置ではこの条件を必ずしも満足できないし、従来のファイルシステムではこれらの問題を解決するための管理機能は備えられていない。

【0010】また、シークによる途切れを解決するためには、あらかじめトータルのシーク時間を予測し、この時間を吸収するに十分なデータを一度半導体メモリに読み出した後に、出力部にデータを転送する方法があるが、この方法は、コンパクトディスク程度の転送レートの音声を取り扱う場合には、メモリ容量が大きくなり、メモリからの読み出しに時間がかかり音声出力に遅れが生じることになる。

【0011】また別の解決方法として、記憶媒体上で物理的にファイルのブロックを連続的に配置する方法があるが、ユーザが意識して連続領域を確保する必要があることと、ファイルの編集の際に、編集処理に要する時間が長くなる。

【0012】また、ディスクを用いた音声信号の記憶において、多チャンネルの信号を記録する方法については明確ではない等の課題を有していた。

[0013]

【課題を解決するための手段】本発明は、上記従来の音声データの記録再生方法、特に多チャンネルの記録再生方法の課題に鑑みてなされたものであって、入出力部、データ西別部、時間計測部あるいはデータ検出部、半導体メモリによるバッファ、ヘッド及び記憶媒体とを備えるものである。

[0014]

【作用】本発明は、上記したような構成をとることによって、多チャンネルの音声データを記憶集体上に離散的に配置し、大容量半導体メモリバッファを用いながら、実時間で連続性を維持しながら高速にデータを記憶集体に記憶したり、読み出すことができる記録再生方法を提供できるものである。

[0015]

【実施例】以下、具体例について詳細にのべる。 【0016】まず(図1)は本発明の第1の実施例にお ける記録再生方法を実現する装置の構成を示したブロッ ク図、(図2)は(図1)の装置におけるデータの記録 再生タイミング図である。(図1)において、1は入出 力部、2はデータ西砂路、3は時間計測部あるいはデー タ検出部、4、4、はバッファ、5はヘッド、6は記憶 媒体である。(図1)のような装置で実現された本発明 の第1の実施例における記録再生方法の原理について説 明する。

【0017】以下では、音声データの場合に絞って説明する。はじめに、離散型ブロックファイルの場合におけるリアルタイムでの連続入出力を保証するための、記憶媒体6とバッファ4、4'間の転送速度、記憶媒体6のシーク時間、1回のアクセスで配場できる最小ブロックサイズ及びバッファ4、4'と入出力部1間のデータ転送速度の関係を明確にする。

【0018】まず、ADコンバータ、あるいは外部機器からのディジタルデータが入出力部1から取り込まれ、 入出力部1とバッファ4、4.間に許されるデータ転送 レートV0[Bae/s]で第1、第2のバッファ4、<math>4)に交互にWhet れる。次に、 \wedge ッド 5が目的のト ラック及びセクタにシークし、シークし終わると第1の バッファ4のデータが、バッファ4と記憶集体6間に許 されるデータ転送レートVS [Bte/s] でヘッド5に 転送され記憶等体6に記憶される。この間に、先程の第 2のバッファ4'に入出力部1からのデータが確さ れる。第1のバッファ4のデータが記憶操体1にWie し終わると続いてシークが行われ、第2のバッファ4' のデータが記憶集体1にWhat れる。以後、この動作 が必要回数繰り返される。この方法とは別に、必要とされるデータがバッファ4に書き込まれたら、バッファ4 がいっぱいになるのを待たずに記憶媒体1にデータを転 送し記憶することも可能である。記憶と再生はその動作 が逆であるので説明を省略する。ここで、データの連続 記憶あるいは再生が保証される様に、一旦1ブロック分のデータがバッファ4に蓄えられ、この1ブロック分の データが出力される間に、次の1 ブロック分のデータが バッファ4に蓄えられるようにする。このことから、以 下の関係が成り立つ。

[0019]

【数1】 し。

+

LA

【00209】こここで、T%[sc]は最大シーク時間である。つまり、シークして、記憶媒体からLB[Bt e]のデータが読み出されバッファ4に蓄える時間が、LB[Bte]のデータがバッファ4と入出力部1との間で転送される時間を越えなければデータの連続性は保たれる。(数1)を変形すると(数2)が得られる。

S

TER

[0021]

【数2】

Vax Vax Tax

le ≧

【0022】これは、ブロッ**りサイ**域が(数2)で決まるサイズ以上に確保されれば、連続性が保証されるとも理解できる。

【0023】(図3)は本発明の第1の実施例の記憶集体6上でのデータの記憶順(フォーマット)を示した図であって、その書き込み、及び読み出し方を(図1)、(図2)を使って以下に説明する。

【0024】記録時には、単一、あるいは複数チャンルのディジタルの音声信号は入出力部1から取り込ま あるいは複数チャンネ れ、p、rを任意の正の整数、Nをチャンネル数、q [バイト]を1サンプルとした時に、前記された1回の アクセスでの最小記憶単位LB[バイト]が、LB=r× $\mathbf{q} \times \mathbf{N}$ の関係で表されるものとすると、第 $\mathbf{1}$ チャンネルから第 \mathbf{N} チャンネルの第 $\mathbf{1}$ サンプル、第 $\mathbf{1}$ チャンネルから第 \mathbf{N} チャンネルの第 $\mathbf{2}$ サンプル、・・・、第 $\mathbf{1}$ チャンネルから第 \mathbf{N} チャンネルの第 \mathbf{r} サンプルの順 \mathbf{r} ($\mathbf{q} \times \mathbf{r}$) N) バイトのNサンプルで構成される基本構成で最終各 チャンネルが第rサンプルとなるように基本構成のr回の繰り返しデータ西別となるようににデータ西別胎2の 制御こしたがって並び変えられ、入出力部1とバッファ 4間に許されるデータ転送レートV0[Bæ/s]でバ ッファ4のうちの第1のバッファ4にWhoされる。次 に、ヘッド5が目的のトラック及びセクタにシークし、 シークし終わると第1のバッファ4のデータの第1チャ ンネルの第1サンプルから順次、バッファ4と記憶媒体 6間に許されるデータ転送レートVS[Be/s]でへ ッド5に転送され記憶媒体6に記憶される。この間に、 先程のバッファのうちの第2のバッファ4'に入出力部 1からのデータがWhetれ、Wheth完了されると再び シークが行われ、第2のバッファ4'のデータが記憶集体1にWebされる。以後、この動作が必要回数繰り返 される。この方法とは別に、時間計測的、あるいはデー タ検出部3で第Nチャンネルの第1サンプル目がバッファ4に書き込まれるまでの時間が計測されるか、第Nチ ャンネルの第1サンプル目がバッファ4に書き込まれる のが検出されて、バッファ4がいっぱいになるのを待た ずに、少なくとも、第Nチャンネルの第1のサンプルが バッファ4に書き込まれたら、このバッファ4の第1チャンネルの第1サンプルからLB[8te] が順次読み出 されヘッド5をへて記憶某体6に転送されて記憶され 第1のバッファ4のデータが全て記憶され終えたら、再 びシークが行われ、今度は第2のバッファ4'のデータ が記憶されることも可能である。

【0026】ここで、この第1の実施例における、入出力部1とバッファ4、バッファ4と記憶媒体6との転送レートのマッチングをとるための最小記憶あるいは最小再生ブロックサイズLB [Be] 、記憶媒体の規格化されたセクタサイズLS [Be] 、ごしかないるが、ファ4に書き込まれる時間TD [3e] 、記憶媒体6からバッファ4に書き込まれる時間TD [3e] 、記憶媒体6からバッファ4に書き込まれる時間TM [3e] 、音声の出力開始指示から音声が実際に出力されるまでの音声立ち上がり時間TS [3e] を計算するために代表的な数値例を上げ、最小ブロックサイズLBでいるまでの音声立ち上がり時間を計算する。以下は、入出力部1からがリファ4へ最小ブロックサイズLBでは最小ブロックサイズLBでは、カータを書き込むに要する時間、記憶媒体6からバッファ4に最小ブロックサイズLBでは、カータを書き込むに要する時間、記憶媒体6からバッファ4には、カータを書き込むに要する時間、記憶媒体6からバッファ4では、カータングルー10には、カータングルー11の転送レート 12には、バッファ13には、バッファ14には、バッファ14には、カータングルート 15には、バッファ15には、カータングルート 15には、バッファ15には、カータングルート 15には、バッファ15には、カータングルート 15には、バッファ15には、カータングルート 15には、カータングルート 1

【0027】最小ブロックサイズ上の計算例は以下のようになる。(数2)を用いて計算すると、2チャンネルの場合 LB= 11K [Bte] 4チャンネルの場合 LB= 29K [Bte] 8チャンネルの場合 LB=171K [Bte] 入出力部1からバッファ4、あるいはバッファ4から入出力部1へ最小ブロックサイズLBを書き込む時間の計算式は(数3)で与えられ、計算例は以下のようにな

る。 【0028】 【数3】 L s L s

۷,

 T_{ie}

 $F_s \times q \times N$

L n

9 6 0 0 0 × N

(48KH2サンプリング、1Bbl((q = 2)の場合) 「数5】

【0029】
2チャンネルの場合 TD= 57 [ms]
4チャンネルの場合 TD= 76 [mS]
8チャンネルの場合 TD= 223 [ms]
バッファ 4から記憶集体6、あるいは記憶集体6からバッファ 4へ最小ブロックサイズLを書き込む時間の計算式は(数4)で与えられ、計算例は以下のようになる。

【数4】

LF

T # = ---

【0031】 v_{ϵ} 2チャンネルの場合 $T \Vdash 12 [ms]$ 4チャンネルの場合 $T \Vdash 30 [ms]$ 8チャンネルの場合 $T \Vdash 30 [ms]$ 8チャンネルの場合 $T \Vdash 178 [ms]$ 2.こで、本発明の第1の実施例のように、記録時には入出力部1からバッファ4へデータが転送され、第Nチャンネルの第1サンプル目がバッファ4に対応されたら、場に関い、シークが完了した。場別集体6から記憶性か6へデータを転送し記憶し、再生時には、シークが完了し、記憶媒体6から記憶はか6が、第Nチャンネルの第1サンプル目がバッファ4に対応されたら即所は銀件6からデッファ4でのデータ転送レート 200、記憶媒体6からバッファ4へのデータ転送レート VSと追い機はなければ、バッファ4でのデータの対応は出た破綻は生じないので、破綻の生じないチャンネル数は以下の(数5)で与えられる。【0032】

Y 5

N≤

【0033】前記条件を適角ずると、10チャンネルとなる。次に、音声の立ち上がり時間の例を計算する。 【0034】ここで重要なことは、必要とされるチャンネル数分の少なくとも1サンプル分がいされてからはじめて限に移らなければならないことである。これを行わないと各チャンネルのデータを時間関係を保って同時に再生するためには、入出力部1に大容量バッファを必要とする。この必要とされるチャンネル数分の少なくとも1サンプル分が書かれるまでの時間が最小の音声の立ち上がり時間となる。この場合、同じ容量LBでも、こ容母のバッファに含まれる号・マンネルのサンプルの書き方が音声の立ち上がり時間に気容をする。計算式は以下の(数6)で与えられる。

【数6】

 $q \times N$

 $T_5 = T_{\delta C} +$

【0036】代表的な場合をを計算すると
2チャンネルの場合 TS=45 [ms]
(q=2、r=2750)
4チャンネルの場合 TS=45 [ms]
(q=2、r=3625)
8チャンネルの場合 TS=45 [ms]
(q=2、r=10688)
となり、最悪でも、ほぼ最大シーク時間となる。
【0037】(図4)は本発明の第2の実施例の記憶関体6上のデータの書き方(フォーマット)を示した図であって、その書き込み、及び読み出し方を第1の実施例

にならって以下に説明する。 【0038】記憶時には、単一、あるいは複数チャンネ ルのディジタルの音声信号が入出力部1から取り込ま れ、第1チャンネルの第1のサンプルから第Mサンプ ル、第2チャンネルの第1のサンプルから第Mサンプ ル、、第3チャンネルの第1のサンプルから第Mサンプ ・・・、第Nチャンネルの第1のサンプルから第M サンプル、・・・、第1チャンネルの第(M×(p-1)+1)サンプルから第(p×M)サンプル、第2チ ャンネルの第 $(M \times (p-1)+1)$ から第 $(p \times$

M)、第3 チャンネルの第(M × (p-1) + 1)サンプルから第(p × M)サンプル、・・・、第N チャンネルの第(M × (p-1) + 1)サンプルから第(p × M) サンプルのp個の基本構成のデータ西別になるよう ビデータ西辺h32の制御に従って並び変えられる。以後 の記憶動作、再生動作は第1の実施例と同じである。こ の第2の実施例における音声の立ち上がり時間は以下の (数7)で与えられる。 [0039]

【数7】

【0040】第1の実施例と同じ条件で代表的な場合の 計算をすると

8チャンネルの場合 TS=2001 [ms] (q=2, M=10688, p=1)

【数8】

 $E_{\epsilon} \times (N-1) + q$

T 5 = Tsk

【0043】この場合はp=1の条件は外されるが代表 的な場合の計算すると

2チャンネルの場合 TS=46 [ms] (q=2、M=256、p=11) 4チャンネルの場合 TS=47 [ms] (q=2、M=256、p=15) 8チャンネルの場合 TS=49 [ms] (q=2, M=256, p=42)となる。

【0044】第1、第2の実施例においては、データの 記憶時、再生時ともバッファ4へのデータのWie、Rei dは前記した最小記憶あるいは最小再生単位LBD全デ タが書き込まれてからバッファの切り替え、データの転 送を行ってもよい。この場合はバッファの切り替えが容 易であるが、音声の立ち上がり時間が遅くなる。 【0045】また、第2の実施列において、(数8)は pを大きくとった場合に相当し、チャンネル数が多い場 合は、結果として音声の立ち上がりが早くなっている。 光磁気ディスクなどを使って新しいディスクフォーマッ

[♥] っとなる。

【0041】ここで、第2の実施例の各チャンネルのサ ンプルのグループを規格化されているセクタサイズLs [バイト] にとると、この時の音声の立ち上がり時間は 以下の(数8)で与えられる。 [0042]

Ⅴs トを採用する場合には、このpをいくらにするかが重要. である。

【0046】以上の実施例から、音声の立ち上がり時間の早さからして、第1の実施例、第2の実施例のセクタサイズ採用の例、第2の実施例の順に性能が高くなる が、取り扱うデータがチャンネル毎にグループ化されて いるほうが便利なことがあるので、その点からは第1の 実施例より第2の実施例実施例の方が有効である。

【0047】本発明のように、ディスクを使って離散的 にデータを記録する方法においては、従来のテープレコ ーダを用いた記憶方法と違って、再生時の各トラックあ るいはチャンネルの同時再生タイミングを意識した各ト ラックへのデータの貼り付け、すなわち、記憶は必要ない。なぜなら、テープの様に各トラックの時間軸を独立 できないものとは違って、ディスクでは各チャンネルの 各データごとにタイムコードと呼ばれる時間静報を記憶 することもでき、また、後で、この情報を簡単に修正す ることもできるからである。従って、データを媒体に記

憶する場合には、各チャンネルの時間関係は無視してとにかく記憶すればよい。従って、従来、テープ媒体で行われていた、オーバダブあるいはピンポンと呼ばれる、あるトラックを再生しながら、そのデータを別のトラックに同時に記憶する機能や、バウンスと呼ばれる、あるトラックを再生しながら、それに合わせて、入出力部から別のデータを記憶する機能などは実際にディスクに記憶するタイミング、場所は意識する必要がない。

' · ' '

化して記憶し、最後のチャンネルの第1サンプルが書き込み終わったらデータをはじめて読み出す様にすることにより、連続記憶あるいは連続再生を可能にする方法を提供できるものである。また、同様に、最小記録あるいは最小再生データサイズを確保しながら、記憶時には入出力部から、あるいは再生時には記憶媒体から規格化されたディスクのセクタサイズを単位として各チャンネルのデータをグループ化して記録し、最後のチャンネルのデータをグループ化して記録し、最後のチャンネルの1サンプルが書き込み終わったらデータをじめて読み出す様にすることで、音声の立ち上がりを早く、かつ、連続記憶あるいは再生を可能にする方法を提供できるものである。

【図面の簡単な説明】

【図1】本発明の一実施列の原理装置ブロック図

【図2】本発明の実施例におけるデータの記憶再生のタイミング図

【図3】 本発明の第1の実施例における記憶媒体上のデータフォーマット図

【図4】本発明の第2の実施例における記憶媒体上のデータフォーマット図

【図5】従来例のUNIXのファイルシステムにおける データ管理の基本概念図

【図6】従来例の記憶装置のブロック図

【図7】従来例のデータの記憶再生のタイミング図

【図8】従来例のファイル連続語器の例を示す図

