제4차 친환경자동차 기본계획 (2021~2025)

2021. 2.

관계부처 합동

목 차

I . 기본계획 개요1
Ⅱ. 제3차 친환경차 기본계획 평가4
Ⅲ. 글로벌 동향 및 시사점 7
Ⅳ. 목표 및 추진전략19
♥. 친환경차 개발 및 보급 추진계획 20
4 비치거리 남그은 기소하하는 비치니스템 그士 - ^^
1. 친환경차 보급을 가속화하는 사회시스템 구축 20
1. 신완경사 모급을 가옥와야는 사외시스템 구축 ······ 20 2. 기술혁신을 통해 탄소중립시대 개척 ················· 37

I. 기본계획 개요

□ 법적 근거

ㅇ 환경친화적 자동차의 개발 및 보급 촉진에 관한 법률 제3조

□ 계획기간 및 주기

- 5년을 계획기간으로 5년마다 수립·시행
 - * (1차) '06~'10년, (2차) '11~'15년, (3차) '16~'20년

□ 계획목적 및 범위

환경친화적 자동차의 개발 및 보급 촉진을 통해 자동차산업의 지속
 적인 발전과 국민 생활환경의 향상을 도모

- 1. 환경친화적 자동차의 개발 및 보급에 관한 기본방향
- 2. 환경친화적 자동차의 개발 및 보급에 관한 중장기 목표
- 3. 환경친화적 자동차의 연구개발 및 그 연구개발과 관련된 기반조성에 관한 사항
- 4. 수소연료공급시설 등 자동차 동력원의 보급에 필요한 기반시설의 구축에 관한 사항 등

□ 수립 절차 및 추진 경과

○ 산·학·연 전문가 70여명이 참여하는 '친환경차 전략포럼'을 구성· 운영하여 제4차 친환경차 기본계획 수립 ('20.6~12월)

환경친화적 자동차 정의 및 특징 -

□ 정의

- 전기자동차, 수소전기자동차, 하이브리드자동차, 태양광자동차 중에너지효율 등 환경기준에 부합하는 차량
 - * 환경친화적 자동차의 개발 및 보급 촉진에 관한 법률 제2조

□ 구동방식 및 연료

	주요 구동방식	연료
전기차	모터 + 배터리	전기(충전)
수소차	모터 + 수소연료전지	수소
하이브리드	엔진 + 모터(보조) + 배터리	화석연료
플러그인	엔진 + 모터(보조) + 배터리	화석연료+전기(충전)

□ 온실가스 저감효과

- 전기차·수소차 주행 중 온실가스 배출 없음 (전력 또는 수소생산단계 배출)
- 총 수명(연료생산 + 배터리제조 + 주행) 고려시 하이브리드차도 전기차와 유사한 수준의 온실가스 감축효과 실현 가능(IEA)
 - → '30년에도 국내 신차시장의 약 70%를 점유하는 내연기관차 시장을 고려하여 하이브리드도 환경·산업측면에서 병행보급 필요

[**차종별 생애 CO₂ 배출량**(중형 승용차, 10년 사용시)]

(단위: t CO₂-eq)

		연료생신	+ 주행	자동차 제조, 폐기 및 재활용		
구분	합계	(Well-To-Wheel)		(Vehicle Cycle)		
TE	답게	연료 생산	주행 중 배출	배터리	ㅈ리 페바니네하Ω 드	
		(Well-To-Tank)	(Tank-To-Wheel)	(NMC111 기준)	조립폐차재활용 등	
전기차(40kWh)	22.8 ~ 24.2	14.8	-	2.6 ~ 4.0	5.4	
전기차(80kWh)	25.4 ~ 28.2	14.8	-	5.2 ~ 8.0	5.4	
내연기관차	34.3	4.6	23.7	-	6.0	
하이브리드차	27.5	3.4	17.6	0.3	6.2	
플러그인하이브리드차	24.5	10.2	7.1	0.8	6.4	
수소전기차	27.5	17.7	-	0.3	9.5	

* 자료: Global EV Outlook 2020(IEA)

^{*} 주: 배터리 배출량은 공정효율에 따라 상이, 전력생산 배출량은 `18년 전세계 평균 발전원별 발전량 기준, 수소 연료는 개질 기준 (*18년 화석연료 발전 의존도: (세계) 석탄 38% 석유 2.9% 가스 23.0% (한국) 석탄 43% 석유 2.2%, 가스 26.4%)

참고

에너지소비효율 및 온실가스 배출량(17년 전력MIX 기준)

① 에너지소비효율

순번	내연기	기관차	하이브리드차	전기차
T 간	휘발유	경유	아이트니트시	건기시
1	아반떼	아반떼	토요타 Prius	아이오닉
	(15.2km/L)	(17.8km/L)	(22.4km/L)	(20.0km/Le)
2	말리부	QM3	아이오닉	코나(도심형)
	(14.2km/L)	(17.4km/L)	(22.4km/L)	(18.4km/Le)
	엑센트 카파	르노삼성 CLIO	니로	Model 3 Standard
3	(14.1km/L)	(17.1km/L)	(19.5km/L)	Range Plus
	(14.1KIII/L)	(17.18111/L)	(19.3KIII/L)	(18.4km/Le)
4	K3	셀토스	쏘나타(DN8)	코나(기본형)
T	(14.1km/L)	(17.0km/L)	(19.1/L)	(17.8km/Le)
5	혼다 ACCORD	코나	혼다 ACCORD	쏘울(도심형)
)	(13.9km/L)	(16.8km/L)	(18.9km/L)	(17.8km/Le)
6	아베오	스토닉	K5	BMW i3
	(13.8km/L)	(16.7km/L)	(18.0km/L)	(17.8km/Le)

^{*} 환산기준(에너지법 시행규칙 별표) : 휘발유 7,260kcal/L, 전기(소비기준) 2,290kcal/kWh

② 온실가스 배출량

순번	내연기	기관차	하이브리드차	전기차
포인	휘발유	경유	아이트니트시	건기시
1	아반떼	아반떼	토요타 Prius	아이오닉
	(108g/km)	(104g/km)	(68g/km)	(73g/km)
2	말리부	QM3	아이오닉	코나(도심형)
	(118g/km)	(106g/km)	(69g/km)	(79g/km)
	에세트 키교L	르노삼성 CLIO	니로	Model 3 Standard
3	· - · · ·		니도 (79g/km)	Range Plus
	(115g/km)	(115g/km) (108g/km)		(79g/km)
4	K3	셀토스	쏘나타(DN8)	코나(기본형)
7	(117g/km)	(109g/km)	(83g/km)	(82g/km)
5	혼다 ACCORD	코나	혼다 ACCORD	<u> </u>
J	(118g/km)	(111g/km)	(82g/km)	(82g/km)
6	아베오	스토닉	K5	BMW i3
	(120g/km)	(111g/km)	(89g/km)	(82g/km)

- * 전기차 온실가스배출량 : 온실가스 배출계수(g/kWh) ÷ 차량의 에너지효율(km/kWh) 전기(사용단)의 온실가스 배출계수('17년) : 459.4g/kWh(KEA 에너지편람, 전력거래소)
- ** 내연기관차 및 하이브리드차의 온실가스 배출량은 "자동차의 에너지소비효율, 온실가스 배출량 및 연료소비율 시험방법 등에 관한 고시"에 근거하여 한국에너지공단에 신고된 복합CO2 배출량

Ⅱ. 제3차 친환경차 기본계획 평가

가. 국내보급·수출

- □ (보급) 친환경차 국내 보급은 '16년말 누적 24만대에서 '20년말 누적 82만대로 3.4배 증가
 - 차종별 시장규모('19년 기준)는 전체자동차 세계 11위이나, 전기차 세계 8위, 수소차 세계 1위로 친화경차 보급은 내연기관차 대비 우수

< 국내보급 누적 추세(단위: 대) >

< **연간시장규모** ('19년, 단위: 대) >

구분	2016	2017	2018	2019	2020
전기차	10,855	25,108	55,756	89,918	134,962
하이브리드차	232,636	312,606	399,464	497,697	652,876
플러그인 하이브리드차	580	1,250	5,620	8,350	21,585
수소차	87	170	893	5,083	10,906
합계	244,158	339,134	461,733	601,048	820,329

^{*} 자료 : IEA(플러그인 하이브리드차, '16-'19), 자동차 산업동향(플러그인 하이브리드차, '20), 국토교통부(그 외)

· · · · · · · · · · · · · · · · ·							
구분	세계시장	국내시장	비중(%)	순위			
전체 자동차	91,296,738	1,795,134	2.0	11			
하이브리드차	2,293,793	98,810	4.3	4			
플러그인 하이브리드차	510,091	5,255	1.0	16			
전기차	1,490,672	32,052	2.2	8			
수소차(승용)	7,578	4,194	55.3	1			

- * 자료: OICA, Marklines(세계), 자동차산업동향(국내)
- □ [수출] 전기차 수출 증가 등으로 친환경차 수출은 '17년 18만대에서 '20년 28만대로 지속 증가 추세
 - 우리기업의 친환경차 수출('19년 수출액 기준)은 하이브리드차 세계 6위, 플러그인 하이브리드차 세계 5위, 전기차 세계 4위로 친환경차 글로벌 경쟁력을 입증

< 수출 추세(단위: 대) > < **친환경차 수출 상위 10개국**(19년 단위: 백만달러) >

00,000			995
50,000		788	
00,000 157	227	76,008	121,825
16.826	38,523	31,399	
50,000 14,578	18,395	172	26,730
00,000			
145,281	138,216	150,474	126,889
2017	2018	2019	2020

사료 : 사동자 산업 동양(2017-2020) 새구성

국가	하이브리드	국가	플러그인 하이브리드	국가	전기차
일본	16,311	독일	4,818	미국	7,648
독일	6,172	일본	2,588	벨기에	5,018
벨기에	3,674	스웨덴	1,762	독일	3,913
터키	3,125	미국	1,008	한국	2,354
영국	2,762	한국	939	오스트리아	1,220
한국	2,691	영국	839	프랑스	1,166
슬로바키아	1,876	중국	523	영국	1,097
캐나다	1,845	슬로바키아	502	네덜란드	902
프랑스	1,227	스페인	271	중국	438
스웨덴	828	벨기에	199	일본	431

주 : 하이브리드(HS 870340, 870350), 플러그인하이브리드 (HS 870360, 870370), 전기차(HS 870380), 역수출 제외

* 자료 : UN Comtrade

나. 기술 개발

- □ **[내연기관차**比] 최고출력, 가속력 등 주행성능은 내연기관차 이상으로 개선 되었으나 주행거리, 가격, 충전속도(전기차), 내구성(수소상용차) 등은 미흡
 - o 여전히 높은 전기차·수소차 구매가격으로 정부의 구매보조금 및 세제지원 없이는 경제성 확보가 곤란

* 자료 : 한국에너지관리공단 자동차 표시연비('20.11.24기준), 그 외 제조사 공식자료(가격은 세전) * 차종 : 내연(코나 가솔린), 전기차(코나 EV), 수소차(넥쏘), 하이브리드차(코나 HEV)

- ☐ [글로벌경쟁력] 성능은 세계최고수준이나 브랜드·디자인·차종 등은 열위
 - (전기차) 국산 전기차의 성능(주행거리·전비)은 세계최고 수준이나, 브랜드·디자인(미국·유럽) 및 가격경쟁력(중국)은 열위
 - (수소차) 세계최고 수준의 성능(스택효율) 확보, 전기차대비 가격 열위
 - (하이브리드) 준중형급은 선도국대비 동등수준 연비 확보, 중대형급은 연비 열위 및 차종한계(중대형SUV 모델 부재)

< 차종별 경쟁력 비교 >

전기차	【전비, km/kWh】 코나 EV(韓) 5.6 : 모델3(美) 5.0 【자율주행】 선도기업은 부분자율주행차(레벨 2.5) 출시로 글로벌시장 독규(국내는 동 수준 차량 미출시)
수소차	【스택효율】넥쏘 (韓) 60% : 미라이 (日) 55%, 【차량가격, 천만원】넥쏘(韓) 7 : 코나EV(韓) 5
하이 브리드차	【연비】 아이오닉 HEV(韓) 22.4 km/L : 프리우스 HEV(日) 22.4 km/L 【차종】한국 9종 : 일본 61종

* 자료 : 한국에너지관리공단 자동차 표시연비('21.1.11기준), 그 외 제조사 공식자료

다. 충전인프라

- □ (성과) 친환경차 증가에 따라 전기차·수소차 충전소가 대폭 확충
 - * 전기차충전기('16년→'20년) 급속 919기 → 9,805기, 완속 1,095기 → 54,383기
 - * 수소충전소('16년→'20년) 9기 → 70기
- □ **[한계]** 소비자 관점에서 **여전히 충전문제 해결이 지연**되고 있으며, 친환경차 확산의 가장 큰 병목요인으로 작용
 - 수소충전소는 전략적 배치 미흡*, 경제성 부족 등으로 당초 목표 대비 구축 지역
 - * 서울 · 수도권 지역 수소충전소 부족 등 지역별 충전소 구축편차 존재
 - 전기차충전기 접근성 부족*, 긴 충전시간 등 충전 편의성 부족
 - * 전기차 운전자의 72%가 주거지, 77%가 직장내 충전기 부족 지적('19, 교통연)

라. 제도·생태계

- □ [성과] 수소차 보조금 신설('16.1월), 전기·수소차 전용번호판('17.4월) 등 친환경차 확산을 위한 제도기반 마련
 - 수소경제 활성화 로드맵('19.1월), 한국형뉴딜('20.7월), 미래차 확산 및 시장선점 전략('20.10월) 등을 통해 **구체적 친환경차 전환 전략을 마련**
- □ **(한계)** 내연기관 부품기업이 대부분*이며 선도기업外 미래차 제조 역량 부족, 미래차 핵심기술 보유기업·인력 등 산업기반 不안정
 - * 전체 부품기업의 31%(2,800개사) 차지, 미래차 부품기업은 전체의 4%에 불과
 - 국내 부품기업의 **미래차분야 전환을 지원**하고, 시장 자생적인 미래차 확산기반 조성을 위해 新비즈니스 발굴·육성 필요
 - 미래차 제조·서비스·부품 분야에 신규 사업자 진입을 촉진하고, 미래차 시대에 대비하여 정비시스템 완비

Ⅲ. 글로벌 동향 및 시사점

1 세계시장 동향 및 전망

- □ **(동향)** 글로벌 친환경차 판매량은 '19년 약 435만대(내연기관차 판매의 5%)로 최근 4년간 연평균 21%의 성장률을 기록
 - 치종별 세계시장 비중(19년)은 하이브리드(플러그인하이브리드 포함 64.3%), 전기차(34.2%), 수소차(0.2%) 순, 국가별 시장규모는 중국, 일본, 미국, 영국, 독일, 우리나라 순

< **친환경차 시장** (단위: 천대) >

구분	2016	2017	2018	2019			
친환경차	2,446	3,167	4,072	4,358			
하이브리드차	1,742	2,001	2,146	2,294			
플러그인하이브리드차	255	370	565	510			
전기차	442	737	1,283	1,491			
수소차(승용)	2	3	4	8			
기타 [*]	5	55	73	56			
친환경차 비율	2.61%	3.30%	4.26%	4.77%			

^{*} BEV/HEV/PHEV/FCEV 구분이 명확하지 않은 경우

< 국가별·차종별 ('19년, 단위: 천대) >

국가	하이브리드차	플러그인 하이브리드차	전기차	수소차 (승용)
중국	196	224	821	-
일본	1,083	15	20	1
미국	402	84	236	2
영국	77	29	41	0
독일	51	45	61	0
프랑스	83	19	49	0
한국	97	3	29	4

* 자료 : Marklines

- □ [전망] 세계 친환경차 시장은 연평균 28% 성장('21~'25, CAGR)하여, '25년에는 2.8천만대 규모로 성장 전망
 - 차종별로는 **하이브리드의 비중이 높은 수준**('25년 16%)에서 유지 되는 가운데, 전기차 비중이 빠르게 확대될 것으로 전망

< **친환경차 시장** (단위: 백만대) >

< 차종별 판매량·점유율 전망 >

구분	2021	2022	2023	2024	2025	2030
하이브리드차	5.6	6.7	8.1	9.9	12.2	20.9
플러그인 하이브리드차	1.3	1.7	2.8	3.6	4.3	7.3
전기차	3.5	5.4	7.3	9.4	11.8	28.5
수소차	0.03	0.04	0.06	0.08	0.11	0.98
내연기관	83.9	81.6	79.0	75.0	71.4	64.7
합계	94.3	95.4	97.2	98.0	99.8	122.4

- * 자료 : 프로스트&설리번(2019), SNE Research(2020), Automotive From Ultima Media(2020) 등 3개 기관 차종별 전망치 종합(30년은 2개 기관 종합)
- * 주) 일부 전망치에 마일드하이브리드 포함, 좌측 표 및 우측 그래프는 각 기관 전망치 평균

^{*} 자료 : Marklines, OICA

< 글로벌 메가트랜드 >

연비 · 디지털 혁신

- · 환경·경제성의 핵심인 연비 경쟁 심화
- · 자율주행 경쟁 본격화

· 신규진입 및 전략적 동맹 확대

환경규제 강화

· 주요국 연비·온실가스 규제 강화

차종확대 전쟁

산업생태계 전환

- · (전기차) 소형 → 대형·프리미엄화
- · (수소차) 승용 → 상용차

가. 주행·디지털 성능 경쟁이 심화

□ **[주행]** 배터리용량 확대 및 효율적 열관리 등을 통해 주행거리, 연비, CO₂배출(하이브리드) 등 주행성능 대폭 개선

< 주행거리 >

< 에너지소비효율 >

< 하이브리드차 CO₂ 배출량 >

* 자료: 美 환경보호청(주행거리, 에너지소비효율), 한국환경공단(CO₂ 배출량)

- □ [□지털] 자율주행과 전기차의 융합이 활성화되고, 고객편의를 혁신 하는 디지털 성능이 강력한 구매요인으로 부상
 - (**자율주행**) 테슬라는 우수한 자율주행기능을 탑재한 전기차 출시로 글로벌 전기차 시장을 주도
- 테슬라의 오토파일럿은 '19년부터 자율주행 2단계 수준에서 차선변경, 추월 등이 가능한 2.5단계 수준의 자율주행 기능을 제공
- 현대는 자율주행 SW 기업인 '앱티브(APTIV)'와 합작법인 설립을 통해 `22년 3단계 자율 주행차를 출시를 시작으로 완전 자율주행 플랫폼 개발 및 `24년까지 양산 추진 계획
- (ICT융합) 최신 전기차 중심으로 고성능 컴퓨터와 배터리 등을 응용한 사용자 편의기술 확대
- 테슬라는 차량에 탑재된 컴퓨터와 디스플레이를 활용한 게임 기능(Tesla Arcade), 자동차 캠핑에 필요한 공조 최적화 ·가상 벽난로 기능 등을 제공
- 니오는 탑승자의 피로도를 감지하여 상황에 맞는 적절한 향기를 골라 자동으로 향수를 분사하는 기능(intelligent fragrance)을 제공

나. 산업생태계 친환경차 전환 가속화

- □ **[전기차]** 전기차 제조업체는 '16년 65개에서 '20년말 149개로 급증
 - 테슬라 독주체제 속에 글로벌 완성차업체(GM, 폭스바겐 등)는 신차 출시를 통해 고객확대 추진 중
 - 견고한 내수판매를 기반으로 한 니오, 샤오펑 등 **중국 신생업체도 등장**

< 전기차 업체 현황 >

< 완성차 업체별 신차 계획 >

업체명	시장점유율	기존업종	진입시기
테슬라	24.7%	전기차	'12.6월(모델S)
르노닛산	10.2%	내연기관	'10.12월(Leaf)
폭스바겐	9.9%	내연기관	'14.2월(e-Golf)
GM	8.7%	내연기관	'16.12월(Bolt)
현대차	7.4%	내연기관	'11.12월(레이EV)
NIO	-	신생업체	'14년(설립)(EP9)
XiaoPeng	-	신생업체	'14년(설립)(G3)

- * 자료 : Marklines (시장점유율 `20.9월 누적 기준)
- * 주) 기타 중국 신생업체(설립연도) : Leap Motor('17년), Aiways('17년), Ora('18년), Sitech('18년) 등

업체	신차 계획
GM	• '35년까지 LDV [†] 차량은 전기차로 전환 * (Light-Duty Vehide) 최대 총 차량 중량 8,500lbs(4.25ton)
폭스바겐	'30년까지 전체 브랜드 제품 전동화 추진 '25년까지 브랜드 전체 80종의 전기차 출시
르노닛산	• '22년까지 12개 전기차 출시 예정 * 르노·닛산·미쓰비시(RNIM) Alliance 2022 전략

- □ **[수소차]** 글로벌 완성차 제조업체는 수소연료전지제조 업체 등과 전략적 얼라이언스 구축을 통해 수소차 시장진출 적극 추진
 - 현대차는 국내 보급확대 정책 등을 통해 글로벌 수소차 판매 1위 달성

[수소차 개발 및 실증 협력사례]

	협력	주요 내용				
현대	Cummins	■ 현대의 연료전지시스템과 커민스의 전동화부품(모터 등)을 결합한 파워트레인 공동개발 및 상용화 협력(2019)				
	Audi	■ 현대차와 Audi가 수소차 관련 특허 라이센스 공유 체결(2018)				
토요타 (Toyota)	BMW	■ 토요타와 BMW가 공동 개발한 연료전지 스택과 파워트레인을 BMW5 시리즈에 탑재 실증(2015) ■ 토요타와 BMW가 제품 개발 파트너쉽 체결(2016) ■ '22년 BMW i Hydrogen NEXT에 공동개발 연료전지 및 파워트레인 적용 예정				
	SinoHytec	■ 토요타는 연료전지를 중국 내 수출을 위해 시스템 제조사인 SinoHytec 및 중국 완성차 4개 기업과 합작사 설립(2020)				
발라드	Re-fire	■ 발라드는 중국 내 수소버스/트럭에 연료전지 스택 납품을 위해 시스템 제조사인 Re-fire와 협력 체결(2018)				
(Ballard)	Van Hool	■ 미국, 유럽 등 수소버스 실증・판매에 발라드 연료전지 시스템 적용				
	New Flyer	■ 미국 수소버스 실증, 판매에 발라드 연료전지 시스템 적용				

- □ [**하이브리드**] 일본·한국 완성차 업체는 친환경차 시장의 대부분을 차지('19년 64%)하는 하이브리드차에 대한 투자를 지속
 - 특히, 단기에 교통부문 CO₂ 저감을 달성하고자 하는 유럽, 전기 ·수소 충전인프라 투자가 어려운 지역에서 현실적인 대안으로 부상

< 주요 완성차그룹별 하이브리드 판매 차종 > < 신차판매 중 하이브리드 비중 추이 >

				(단위 : 개)
업체	2017	2018	2019	20.3Q*
토요타	33	35	35	37
혼다	16	17	17	19
현대차	6	6	7	9
르노닛산	12	11	10	11
스즈키	6	6	7	6
기타	25	21	23	26
합계	99	96	99	108

* 자료 : Marklines, `20.3Q 누적 기준

국가	2017	2018	2019	성장도			
노르웨이	0.9%	8.7%	9.3%	8.4%P			
핀란드	1.9%	2.5%	8.4%	6.4%P			
덴마크	0.0%	0.1%	3.7%	3.6%P			
대만	0.2%	0.1%	2.7%	2.4%P			
슬로베니아	0.1%	0.1%	2.3%	2.2%P			
네덜란드	2.2%	2.4%	4.3%	2.1%P			
스웨덴	3.6%	3.8%	5.7%	2.1%P			
스페인	2.8%	3.3%	4.5%	1.7%P			
포르투갈	1.7%	2.4%	2.6%	0.9%P			
멕시코	0.8%	1.4%	1.7%	0.9%P			
전세계	2.3%	2.4%	2.7%	0.5%P			
* 자근 · Mark	linos OICA						

* 주: 신차 판매 중 하이브리드차 비중 확대 상위 10개국

다. 온실가스 주요 배출원인 수송분야 환경규제 강화

- □ LEDS의 UN 제출시한('20.12월) 등을 계기로 주요국의 탄소중립 선언 가속화 ➡ 2050 탄소중립이 글로벌 新 패러다임으로 대두
 - * EU('19.12월)·中(9.22)·日(10.26)·韓(10.28), 美 바이든 대통령도 공약으로 탄소중립 제시
- □ 글로벌 온실가스 배출량이 증가하면서 **수송부문 배출량·비중도 증가**

< 세계 온실가스 배출량 >

< 온실가스 배출 중 수송분야 비중 >

	(단위 : 백만톤CO2eq*)					
국가	국가 2016		2018			
미국	6,524.1	6,488.2	6,676.6			
한국	한국 693.5		727.6			
EU	4,308.4	4,323.1	4,224.4			
중국	9,050.0	9,250.0	9,530.0			
일본	1,302.8	1,289.2	1,238.3			

- * Carbon dioxide (CO2)는 세계온난화잠재력 지수가 1
- * 자료 : 환경부 온실가스종합정보센터, stats.oecd.org, IEA(2020. 11)

	(단위 : 백만톤CO2eq, %)					
구분	2016		2017		2018	
TE	배출량	뺭	배출량	뺭	배출량	뺭
OECD 국가	15,6120	100	15,613.1	100	15,669.9	100
에너지	12,602.8	80.7	12,597.1	80.7	12,638.1	80.7
수송	3,622.7	23.2	3,662.8	23.5	3,703.7	23.6
한국	693.5	100	709.7	100	727.6	100
에너지	602.7	86.9	615.7	86.7	632.4	86.9
수송	98.8	14.2	98.3	13.9	98.1	13.5

* 자료 : 환경부 온실가스종합정보센터, stats.oecd.org

○ 한국, EU, 중국, 일본 등 글로벌 각국은 자동차 제작사에 적극적인 온실가스 감축 및 연비개선 의무를 부과

▮주요국 온실가스 및 연비규제 동향 ▮

기준	한국		미국*		EU	중국**	일본**
기正	연비	CO ₂	연비	CO ₂	CO ₂	CO ₂	CO ₂
′25년	26.0	89	20.0	106.3	81	93.5	92.0(′30년)
′20년	24.3	97	18.5	116.8	95('21년)	116.9	115.1
′15년	17.0	140	15.4	146.7	130	156.8(′16년)	139.1

- * 미국은 기존 기업평균연비규제 CAFE(Corporate Average Fuel Economy)에서 완화한 연비 규제인 SAFE(Safer Affordable Fuel Efficient)로 변경하며 연비 개선 폭을 '26년까지 연간 1.5%로 완화
- ** 연비 기준을 휘발유의 탄소 함량을 고려한 변환계수(2337g/l)를 이용하여 환산한 값으로 환산 방법 등에 따라 차이를 보일 수 있음
- *** 단위는 연비 km/l, 이산화탄소 배출량 CO₂: q/km이며, 미국은 연비와 온실가스 모두 규제, 한국은 둘 중 하나 선택
 - 특히, 상용차 1대가 배출하는 온실가스는 승용차보다 2.5배(트럭), 16배 (버스) 높아 상용차의 친환경차 전환이 온실가스 저감에 중요

【 차종별 연간 온실가스 배출량(국내 기준, 주행거리반영) 】

차종별 운행대수	트럭	버스	택시	RV차량	승용차 (RV外)
시 ㅇ ㄹ 푼 ᆼ네ㅜ	(285만대)	(11만대)	(25만대)	(895만대)	(909만대)
1대당 CO ₂ (톤)	9.59 (2.5배)	62.6 (16배)	17.4 (4.5배)	2.4 (0.6배)	3.9 (1배)
年온실가스 총배출(18, 천톤)	34,446	6,765	4,385	22,331	36,266

- * 주요 연료: (승용) 휘발유·경유, (택시) LPG, (버스) CNG·경유, (트럭) 경유
- * 산출근거: '18년 배출량/운행대수
- * 1일 평균 주행거리('19): (트럭) 129km, (버스) 177km, (택시) 300km, (승용) 33km

라. 친환경차 차종확대 전쟁

- □ [전기차] 소형차 중심에서 프리미엄 세단, 대형SUV, 슈퍼카로 확대
 - 과거 출퇴근용 소형 세컨카로 주로 활용되었으나, 출력 등 성능 개선을 통해 최근 고급·대형세단, SUV 등으로 확산되는 추세
 - 특히, **테슬라는** 고출력 등 **프리미엄 전략을 구사**, 포르쉐, 벤츠 등 고급브랜드 업체도 전기차 시장에 본격 진출
 - **중국은** 전기트럭을 세계최초 보급하고 **가격경쟁력을 기반으로 전기 버스 시장을 장악**, 한국은 포터 등 소형트럭을 출시하여 보급 개시

< 테슬라(파란색) vs 현대차(주황색) >

< 글로벌 고급 브랜드 >

(단위 : km, kV					
업체	모델명	차체형	주행거리	최고출력	
포르쉐	Taycan (Turbo S)	Sedan	323	460	
아우디	e-tron	SUV	357	266	
포드	Mach-E (GT performance)	SUV	378	360	
재규어	I-PACE S	SUV	376	295	
현대	코나 일렉트릭	Sedan	415	150	

* 자료: 각 제조사 공식홈페이지(미국)

< 중국 VS 국내 상용차 >

(단위: km, kWh)

(CFOL , Issa ISAA)

	버스				트럭			
국가	모델명	주행거리	배터리 용량	국가	모델명	주행거리	배터리 용량	
ねユ	카운티 일렉트릭 (소형 마을버스급)	250	128	상그	봉고3 EV (1톤급)	211	58	
한국	일렉시티 (중형 시내버스급)	319	256	한국	포터2 일렉트릭 (1톤급)	211	58	
즈그	그린타운850 (중형 시내버스급)	194	129	~ ¬	Geely E200s (1톤급)	200	54	
중국	이-화이버드 (중형 시내버스급)	378	272	중국	DFSK EC31 (1톤급)	290	42	

^{*} 자료 : 저공해차통합누리집, 각 제조업체 발표

- □ 【수소차】 승용차는 현대차·토요타 2강 체제 → 현대 글로벌 판매량 1위(19년) 달성, 토요타 신형 미라이 출시('20.12월)로 경쟁심화 전망
 - * 미라이(2세대) : 수소저장용량 확장(4.6kg→5.6kg), 주행거리 650km(30%↑)

^{*} 자료: 테슬라 차량 최대출력은 추정치 포함

- 전기차대비 고중량 적재가 가능한 장점*으로 수소상용차시장 확대

 □ 현대차가 수소트럭 수출(~'25년, 스위스 1,600대)을 통해 우위 확보
 - * 40톤 트럭(FCEV vs EV): 800km 주행시 적재가능 무게(34톤 vs 24톤)
 - 출처 : Fuel Cells and Hydrogen Applications for Regions and Cities(Roland Berger, '17)

[수소트럭·버스 실증사례]

국가	주요 내용
	■토요타와 히노가 합작한 수소버스 "Sora" 실증 후 '18년 양산 ■토요타와 히노가 합작하여 수소트럭 공동개발 및 실증 중
	■'19년 4월기준 수소버스 35대 운행 중 ■캘리포니아주는 항만에 수소트럭을 보급하는 프로젝트 추진 중('18~) - 켄워스(Kenwirth)와 도요타(Toyota)가 합작
**** * * * * * *	■'10년부터 '16년까지 수소버스를 도입하는 프로젝트 추진(60대) ■스위스는 '20~'25년까지 현대차의 수소화물차 1,600대를 구매
*:	■ '17년 Feichi Bus가 중국 내 처음으로 포산에서 상업적 운행 시작 ■ '18년 200개 이상의 수소버스가 상하이, 포산, 장자커우, 청두 등에서 운행 중

- □ **(하이브리드)** 하이브리드 기술강국인 **일본은 소형~대형까지 차종** 다양화 전략을 통해 세계 하이브리드 시장의 90%('19년기준 206.3만대) 점유
 - 국내업체는 세계 하이브리드 시장의 7%('19년기준 15.8만대) 점유 중이며, 소형차 중심의 판매로 다양한 차종의 일본에 비해 판매량 확장 한계

[한국-일본 하이브리드 신차 판매 차종 비교]

구분	한-일 '20년 신차 판매 하이브리드차 차량 모델수 분석				
일본시장	국내생산(日업체)	61종	61종		
	수입	0종	(순위 : 토요타 19종, 혼다 12종, 렉서스 10종)		
국내시장	국내생산(韓업체)	9종	21종		
수네시6	수입	12종	(순위 : 토요타 5종, 현대 5종, 기아 4종)		

[※] 출처: Marklines, 미국시장의 경우 '20년 출시 신차 기준 전체 32종 중에서 일본계 22종, 한국계 4종)

- □ [목표] 일본의 녹색성장전략('20.12월)에 따르면, '30년대 중반 승용차 신차 판매의 100%를 전동차로 실현 추진
 - 수소차는 '25년 20만대, '30년 80만대 보급목표를 설정('19.12월)

[일본 친환경차 보급목표]

구분	내용
2050년 탄소중립에	• 늦어도 2030년대 중반까지 승용차 신차 판매의 100%를 전동차로
(20) 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	실현할 수 있도록 포괄적인 조치를 강구
따드 국 귀666년국 (40)	• 상용차에 대해서도 승용차에 준하여 2021년 여름까지 검토를 추진
수소연료전지 전략	• (FCEV) '20년 4만대 → '25년 20만대 → '30년 80만대
로드맵 (`19)	• (충전소) `20년 160개 → '25년 320개 → '30년 900개

□ (지원) 청정에너지자동차(CEV) 4개 차종(BEV, PHEV, FCEV, 클린디젤)에 보조금 지급 및 충전 인프라 설치비용 지워

[일본 친환경차 구매보조금]

구분	보조금 산식	상한액 [*]	비고
BEV(경·소형)	1천엔/km * 1회 충전 주행거리	40만엔	-
BEV(중·대형)	2천엔/km * (1회 충전 주행거리 - 200km)	40인 앤	전기주행모드 200km 이상
PHEV	대당 20만엔 정액 지급	20만엔	전기주행모드 40km 이상
FCEV	(†나라 기계 도조 기소리† 기계 * 버ㅈ으	-	보조율 2/3
클린디젤	(차량 가격 – 동종 가솔린차 가격) * 보조율	15만엔	보조율 1/15

- * 자료: 일본 차세대 자동차 진흥센터(http://www.cev-pc.or.jp/)
- * 차량을 이용한 전기 공급기능을 탑재한 경우에는 2만엔 추가 지원
- 충전 인프라의 경우 전기차 충전소 설비는 최대 2/8*, 공사비는 한도 내 전액 지원하며, 수소충전소는 설치비용의 1/2~2/3까지 보조금 지원
 - * 고속도로 서비스·주차공간 및 휴게소 등에 대한 충전설비 설치사업에 대해서는 충전설비 비용도 한도 내 전액 지원

중 국

- □ 【목표】 '신에너지자동차 산업 발전계획' 등에서 '25년 신에너지자동차 (BEV, PHEV, FCEV) 비중 20% 목표 설정
 - '35년까지 목표를 단계적으로 상향하여 신에너지자동차 비중 50%, 하이브리드차 비중 50%로 친환경차 100% 달성

[중국 친환경차 보급목표 (신차)]

구분	내용
신에너지자동차산업 발전계획(`20.10)	• (신에너지자동차 비중) '25년 20%
중국 공산당 중앙위원회	• (신에너지자동차 비중) '25년 20%, '30년 40%, '35년 50%
제5차 전체회의('20.10)	• (하이브리드자동차 비중) '25년 40%, '30년 45%, '35년 50%

- □ 【**지원**】전기차·플러그인하이브리드차 보조금 일몰 연장('20 → '22), 경쟁력이 미흡한 수소차산업발전을 위해 지원제도를 개편('20.9월)
 - (전기차) 승용대상 보조금 지급기한을 '22년까지 연장, 지급요건 강화 (판매가 30만 위안 이하 등), 지원액 삭감 추진('20~'22년간 '19년比 10~30%↓)
 - * 中 국가보조금(승용, '20년) : BEV 16,200~22,500위안, PHEV 8,500 위안 (배터리용량, 에너지소비효율 등에 따라 일부 조정)
 - **(수소차)** 중앙정부가 연료전지차 시범사업*에 참여하는 도시군에 목표**달성 정도에 따라 차별적으로 매년 장려금을 지원(~'23.12월)
 - * (주요내용) ①연료전지차 산업의 밸류체인 구축, ②신기술 및 신차종 시범 운영, ③정책 및 제도 완비 등
 - ** 연료전지차 1,000대이상 보급, 수소충전소 15기이상 완공 등
 - (인프라) 전기차충전기의 경우 대기오염관리 중점지역, 기타 성
 등으로 구분하여 설치비를 전략적 차등지원
 - * 대기오염관리 중점 지역의 경우 '20년 1억 2,600만 위안까지 지원

미국

□ 【목표】 주정부 간 협의체 등을 통한 주정부 간 공동목표 설정 및 연료 전지·수소에너지협회의 수소경제 로드맵 수립 등 전개

[미국의 친환경차 보급목표]

구분	내용
Multi-State ZEV Action	• '25년까지 10개 주*에서 ZEV(CO ₂ 무배출 자동차) 330만대의
Plan('19.11)	누적보급
수소경제 로드맵('19.11)	• '30년까지 FCEV 누적 보급대수 120만대, 수소충전소 누적
十工6/11 土一日(15.11)	4,300개 구축
중·대형차 친환경차 전환	• '50년까지 15개 주**와 D.C.에서 중·대형차(픽업트럽, 밴, 배달트럭,
MOU('20.07)	스쿨버스 등)의 친환경차 판매 100% 전환
내연기관 판매금지	• '35년 캘리포니아 주정부 차원에서 내연기관 승용차 판매금지 선언

^{*} California, Colorado, Connecticut, Maine, Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island and Vermont

□ 【**지원**】 친환경차를 대상으로 세액 공제(Tax Credit) 형태의 구매보조금 지급하고 이용 편의성 향상을 위한 지원 정책도 활용

[미국의 친환경차 보급 촉진 정책]

구분	내용		
	• 일정 요건을 만족한 BEV, PHEV에 대해 배터리 용량에 따라 최대 7,500달러의 세액공제 실시하고 있으며, 20만대 이상을 판매한 업체*는 대상에서 제외		
연방 정부	* 테슬라('20.1.1), GM('20.4.1~)은 현재 세액공제 대상에서 제외		
ОТ	• FCEV는 차량 총 중량 등급(GVWR)에 따라 4,000달러에서 40,000달러까지 지원되며, 당초 '17년말 이후 폐지예정이었으나 '20년말까지 연장		
줩	• 연방정부 지원 외에도 각 주별로 별도의 구매보조금 지원, 세금 감면 혜택, 다인승 차량 전용차선 이용 허가 등 다양한 보급 촉진 정책 전개		
주정부	* 주정부 보조금 예시(캘리포니아, 달러) FCEV: 4,500 BEV: 2,500 PHEV: 1,000 저소득자의 경우, FCEV: 7,000 EV: 4,500 PHEV: 3,500		

^{**} California, Connecticut, Colorado, Hawaii, Maine, Maryland, Massachusetts, New Jersey, New York, North Carolina, Oregon, Pennsylvania, Rhode Island, Vermont, and Washington

E U

- □ (EU) 온실가스 감축을 위해 자동차 제조업체별 CO₂ 배출량 제한을 강화하는 한편, ZLEV* 기준비율(benchmark)에 따른 우대제도 등 운영
 - * Zero-Low Emission Vehicle: CO2 배출량이 0-50g/km인 승용·경상용차
 - 업체별로 ZLEV 기준비율*을 상회하는 경우 '21년부터 95 g/km로 강화되는 CO₂ 배출량 한도를 최대 5%까지 완화
 - * ('25년 이후) 승용·경상용 15%, ('30년 이후) 승용 35%, 경상용 30%
- □ 【주요국】 자국의 특성에 따른 보급 목표 수립 및 지원 정책 추진

구분	자동차 생산 [*]	쳰환경차 수출**	목표 및 지원정책***		
독일	4위	2위	 (목표) '30년까지 BEV-FCEV 누적 보급대수 700~1,000만대, 충전소 100만개 내연기관차의 높은 경쟁력으로 친환경차 전환이 상대적으로 지연 (정책) 구매보조금 상향(20.6월), 독일내 모든 주유소의 전기차충전기 설치추진 등 친환경차 전환 촉진을 위한 다각적 정책 추진 * (BEV-FCEV) 5~6,000유로, (PHEV) 3,750~4,500유로 		
스페인	9위	16위	• (목표) `30년 승용·버스·2/3륜 BEV·PHEV 500만대 누적 보급 • (정책) BEV·PHEVFCEV 승용차에 대해 최대 4,000유로 지원		
프랑스	10위	10위	 (목표) '28년까지 (승용) BEV·FCEV 300만대, PHEV 180만대 누적 보급 (경상용) BEV·PHEV·FCEV 50만대 누적 보급 (정책) 2040년 내연기관 승용차·소형밴 판매금지(법안 제정, '19.12) 유럽 최대 친환경차 생산국을 목표로 ZLEV 차량 구매 보조금 증액 * 전기차 구매보조금 3~7천유로(차량가격에 따라 상이), PHEV(CO₂ 등급 50g/km미만) 구매보조금 2천유로(배터리로 50km이상 주행) 		
영국	16위	6위	• (목표) '30년까지 BEV:PHEV 승용차 판매 비중 50~70%		
네덜 란드	37위	13위	 (목표) 대중교통 중심 전환 □ 택시는 '25년까지 절반을 ZEV로 전환하고, 공공버스는 '25년까지 판매량 50% 전동화, '30년까지 운행차량 전량 전동화 (정책) 친환경차 이용 촉진에 방점을 두고 대중교통 중심의 친환경차 전환 및 민관합동 프로젝트를 통한 충전인프라 확충 등 추진 		

^{* 2019}년 국가별 전체 자동차 합산 생산대수 기준(OICA) ** 2019년 국가별 전기차, 플러그인하이브리드차, 하이브리드차 합산 수출액 기준(UN Comtrade, 역수출 제외)

^{***} Global EV Outlook 2020 및 국가별 발표내용

- ☐ [산업경쟁력] 그간 친환경차 확산성과도 있었으나, 브랜드·디자인(미국· 유럽) 및 가격경쟁력(중국) 열위로 국내시장 잠식 우려
 - o 기술혁신을 통한 성능 및 가격경쟁력 확보로 **우리기업을 글로벌** 친환경차 전환흐름을 주도하는 '게임체인저'로 육성
 - 철도·공항·항만 모빌리티 전반의 친환경화, 그린수소 등 새로운 영역에 담대한 도전으로 탄소중립을 성장동력화
- □ (보급속도) 수요 부족, 충전여건 미흡 등은 친환경차 보급 가속화의 병목요인 ⇒ 친환경차 국가 보급목표대비 확산이 더딘 상황
 - * 연도별 목표달성률(%): ('17) 103% → ('18) 98% → ('19) 84% → ('20.1~9) 48.7%
 - 거주지 및 경로상의 **충전·주차 편의성을 대폭 강화**, 공급측면에만 부과된 환경개선책임*을 대규모 수요자에도 분담 필요
 - * 친환경차 제조·판매사에 온실가스규제, 저공해차 보급목표제 등을 旣 적용
- □ **[생태계전환]** 탄소중립이행은 장기과제로서 '빠른 이행' 뿐아니라 우리기업이 낙오하지 않고 '일자리·생산기반을 유지'하는 것도 중요
 - 산업·에너지·시장의 치밀한 영향분석 하에 '친환경차 전환전략'을 마련하여 이해관계자의 자발적 참여 유도
 - 자동차 부품기업(내연기관차 전속업체 2,800개사 등)의 미래차 전환을 촉진하여 탄소중립 신속이행을 뒷받침
- ◇ 그간 발표된 정부의 친환경차 정책*을 집대성하고 법정계획으로 확정하여 관계부처의 집행력 확보 추진
 - * 미래차산업 발전 전략(19.10), 한국판뉴딜(20.7) 미래차 확산 및 시장선점전략(20.10) 등
- ◇ 「2050 탄소중립 추진전략('20.12)」을 새로운 성장동력으로 연계하기 위해 현존기술의 한계를 뛰어넘는 기술혁신으로 탄소중립시대 개척
 - 차량 全주기 친환경성 강화로 실질적인 탄소중립 실현

Ⅳ. 목표 및 추진전략

비전

2021년 친환경차 대중화 원년,

2025년 친환경차 중심 사회 · 산업생태계 · 구축

- * 전기차 전용플랫폼 적용모델 출시, 수소트럭·특수차 보급 개시
- * 전기・수소차 주차・충전・운행 편리, '25년까지 자동차 부품기업 500개 전환

◆ 친환경차 누적보급('20년 82만대): '25년 283만대(신차판매 51%),'30년 785만대(신차판매 83%)

목표

		′20년	′25년	′30년
친환경차		82만대	283만대	785만대
	전기차	13.5만대	113만대	300만대
	수소차	1.1만대	20만대	85만대
그도브어ㅎ		67.4만대	150만대	400만대
전체차량 중 비중		3%	11%	30%

◈ 온실가스 배출('17년대비, 주행기준): '25년까지 8%, 30년까지 24% 감축

	′17년	′25년	′30년
자동차 온실가스	73백만톤	67.1백만톤	55.7백만톤

^{*} 친환경차 보급확대에 따른 온실가스 감축 효과(대중교통 전환 효과, 바이오연료 적용 등은 불포함)

① 친환경차 확산을 가속화하는 사회시스템 구축

- 가. 친환경차 확산을 통해 '30년까지 온실가스 24% 감축
- 나. 전기·수소차 충전시설을 적시·적소 배치
- 다. 내연기관차 수준의 경제성을 조기에 확보
- 라. 탄소중립을 실질적으로 구현하는 제도적 기반 구축

추진 전략

② 기술혁신을 통해 탄소중립시대 개척

- 가. 내연기관차 동등수준의 성능 확보 및 친환경차 수출강국 도약
- 나. 탄소중립시대를 개척하는 4대「Challenge」프로젝트 추진

③ 탄소중립 산업생태계로 전환 가속화

- 가. 연대·협력을 통해 '30년까지 1,000개의 부품기업을 미래차로 전환
- 나. 미래차 분야 New-Player 집중 육성

Ⅴ. 친환경차 개발 및 보급 추진계획

1 친환경차 확산을 가속화하는 사회시스템 구축

● [전략①] 수요·편의·가격 3大 과제 해소로 보급속도 퀀텀점프

- (수요) 공공・민간의 대규모 수요 창출, 택시 등 사업용차량 전환 촉진
- (편의) 적시·적소에 충전소 집중 배치 (거주지직장(전기차), 수도권(수소차))
- (가격) 내연기관차 수준의 차량기격+연료비 경쟁력 확보(25년 전기차 30년 수소차)

추진 방향

		′20년	인센티브	′25년
전	승용	11.7만대	전기택시 보조금 상향(820→1,000만원)	93만대
기	버스	1,837대	최소자부담금 설정(1억원)	1.1만대
차	트럭	1.5만대	전기트럭 지원규모 확대(1.3→2.5만대)	19.3만대
수	승용	1.1만대	보조금 유자(21년 정부 2,250만원)	20만대
소	버스	75대	보조금 유지(21년 정부 1.5억원), 연료보조금 신설(21)	4,600대
차	트럭	0대	수소트럭보조금 신설(21), 연료보조금 신설(23)	900대

◈ [전략②] 온실가스 감축의 현실적인 대안으로 하이브리드 육성

필요성	추진 방향
■ '30년에도 전기차·수소차가	■ 연비향상을 통해 온실가스 감축
국내 신차시장의 약 33%를 점유	경쟁력 유지

◈ [전략③] 탄소중립을 실질적으로 구현하는 제도적 기반 마련

필요성	 □ 기술수준(차량가격 등), 에너지공급(전력·수소), 대규모 수요자 상황 (운수사업자 등) 등을 종합적으로 고려하여 탄소중립실현 가능성 제고 ■ 실질적인 탄소중립 구현을 위해 자동차 온실가스 관리체계 고도화 추진
추진 방향	■ 산업계와 소통을 통해 중장기 친환경차 최적 전환전략을 수립■ 온실가스 관리체계에 자동차 全주기평가 반영 검토

가. 친환경차 확산을 통해 30년까지 온실가스 24% 감축

- ◈ 공공·민간의 대규모 수요창출 → '25년까지 친환경차 283만대 보급
- ◈ 온실가스 배출기준 및 저공해차 보급 목표제 강화 → 공급확대 유도
- ◈ 하이브리드를 전주기 온실가스 감축을 통한 NDC 이행의 수단으로 활용

◇ (목표) 친환경차 판매 비중 25년 51% ⇒ 30년 80%이상

□ 신차판매 중 친환경차 판매 비중 : '20년 12% → '30년 83%(약 7배↑)

【 친환경차 보급 로드맵(안) 】

◇ 공공·민간의 대규모 수요 창출

① 공공부문이 친환경차 확산에 선도적으로 동참

- □ 국가·지자체·공공기관 등 공공부문의 전기·수소차 의무구매비율을 단계적으로 상향 ('21년 80% → '23년 100%)
 - 특히, 공공기관장 업무용 차량은 전기·수소차로 구매 의무화('22~)
- □ 수소특수차 및 전기이륜차를 공공부문 의무구매대상 차종에 포함('22)
 - 시범사업* 결과를 바탕으로 차종별 의무구매비율을 설정
 - * 5톤 수소청소차('21~), 10톤 수소특수차('22~), 전기이륜차('22~)

- □ 수소차 보급의지가 높은 지자체와 협력하여 **수소충전소 및 수소차** 시범사업을 추진하는 "수소상용차 선도 지자체 프로젝트" 추진
 - * 수소교통복합기지(교통거점+충전·부대시설), 메가스테이션(전시체험관+충전소) 등
 - ** 지자체와 협력하여 수소특수차 실증 추진('22~)

차종	지자체별 수소상용차 보급목표
수소버스	경기 4,000대(~'30), 전북 400대(~'30), 광주 316대('30),
구꼬미끄	충남 200대(~'30), 울산 300대(~'35), 경남 2,000대(~'40)
수소화물차	경남 5톤 수소청소차 150대(~'40), 10톤 수소화물차 2,850대(~'40)

② 대규모 수요자「친환경차 구매목표제」도입

- □ 렌트카 등 대규모 수요자 친환경차 구매 확대를 위해 "친환경차 구매목표제" 도입 추진(친환경차법 개정, '21)
 - (구매비율) '21년 10%(시범사업), '22년 12%(잠정) ⇒ 단계적 상향 추진
 - * 무공해차(전기차·수소차) 보급목표제 동등수준(시범사업 결과를 토대로 22년 목표 최종결정)
 - (대상업계) ▲차량 대여사업자, 물류·택배사업자, 운수사업자(버스 ·택시) 가운데 일정 차량보유 대수 이상 사업자(예: 차량보유 5만대 이상 대여사업자), ▲대규모 기업집단
 - (운영) '21년 시범 운영을 통해 구매실적 집계, 평가검증 등 구체 적인 제도 운영방안을 마련
 - 전환차종: 친환경 차종이 기 출시되어 있는 승용·버스·소형화물(1톤)
 - * 의무구매 대상기업들도 보조금 지원하되, 법인구매 비중이 높아 개인 구매가 어려운 지역의 경우 법인 지원 비중 제한방안 검토
 - 인센티브: 전기택시 보조금 지급단가 확대, 택시·버스차고지 등에 전기차 충전기 구축예산 우선 지원
- □ 무공해차 전환100(K-EV100*) 추진을 통해 민간의 자발적 전기차· 수소차 전환 지원
 - * 민간기업이 2030년까지 보유·임차차량을 100% 전기차·수소차로 전환할 것을 공개 선언할 경우, 구매보조금, 충전인프라 설치 지원 등
 - 구매목표제 실적우수업체를 대상으로 K-EV100 전환을 유도

③ 버스·트럭·택시 등 사업용 차량 전환 촉진

- □ (구매보조금) ¹전기택시 보조금 상향('21)^{*} 및 전기트럭 지원물량 확대
 - * ('20년) 국비보조금 한도 내(최대 820만원) → ('21년) 한도 외(최대 1,000만원)
 - ²수소상용차의 경우, 버스는 단가(1.5억원) 유지('21), 10톤 트럭은 보조금 신설('21), 他차급은 개발・출시시기**와 연계하여 보조금 신설('22~)
 - * '21년 국내 제작사 최대 생산Capa인 2.5만대 지원(국고보조금 1,600만원/대)
 - ** 5톤 수소 청소차('17~'21), 10톤 수소특수차('20~'23), 10톤 수소특수트럭('21~'22) 개발・실증
- □ [연료보조금] 버스 등 사업자의 수소연료 가격 부담 완화를 위해 사업용 수소차에 대해 연료보조금 지급 추진
 - 버스, 택시, 화물차를 대상으로 하되, 차량개발 및 시범사업 경과등 고려, 시내버스부터 우선 적용 추진
 - * 버스('21년 약 200대 시범사업, '22년 도입) → 택시·화물차('23년 도입)
- □ **[인센티브]** 전기·수소택시 부제대상에서 제외, 버스운수사업면허 우대, 친환경화물차 전환 지원 등 **현행 인센티브를 최소 '25년까지 유지**

【 택시·버스·트럭 인센티브 현황 】

- △ (택시) 친환경 택시 보급 활성화를 위해 전기자동차 및 수소전기자동차를 이용한 택시운송사업은 부제대상에서 제외
- △ (버스) 시내버스운송사업의 면허를 위해 40대이상(특·광역시 기준)의 상용차를 확보해야 하나, 수소차 보유시 인센티브 부여(수소버스 크레딧 우대 1.3배)
- △ (트럭) 기존 노후 경유화물차를 친환경차로 교체할 경우 톤급 범위·기간제한 완화 등 인센티브 부여

◇ 제작사의 친환경차 공급 확대를 유도

- □ 자동차제작(수입)사가 달성해야하는 자동차 온실가스 기준(CO2 배출량/ 차량판매)을 단계적 상향 ('21년 97g/km → '25년 89g/km → '30년 70g/km)
 - * '25년까지 중간평가를 의무화하고, 기준달성여부 및 산업 여건을 고려하여 기준 및 유연성 조정 가능 조항 추가
 - 중·대형 상용차 연도별 온실가스 기준('23~'25) 신설·운영
 - * (온실가스) '21~'22년까지의 기준값 대비 '23년 2.0%, '25년 7.5% 감축
- □ 수송부문 온실가스 저감 의무를 자동차판매자(제조사·수입사)에게도 부과하는 "저공해차 보급목표제"를 단계적으로 강화
 - * 연간 판매량의 일정비율 이상을 저공해차 및 무공해차로 의무적으로 판매
 - 저공해차 : '21년 18% → '22년 20% / 무공해차 : '21년 10% → '22년 12%
 - 중규모 제작사(연간판매량 2~10만대)는 디딤돌 목표부여 가능 : 무공해차 '21년 4% → '22년 8%

◇ 하이브리드를 온실가스 감축의 현실적 대안으로 활용

〈 2025년 목표 〉

- ♦ 하이브리드 연비 향상(25년 10%)을 통해 '30년 전력MIX에도 전기차와 유사한 수준의 全주기 온실가스배출(배터리생산+연료생산+주행) 유지
 - * 전주기 온실가스배출(10만km주행, '30년 전력MIX 기준, 배터리생산(IEA변용) : 코나 하이브리드 9.2톤 = 코나 EV 9~10.7톤

정부

- **① [엔진효율]** High-speed 공기공급기 적용 및 열관리시스템 개선을 통해 하이브리드 엔진효율(엔진출력/연료)을 (現) 40%→ ('25) 45%
 - 분당 10만회이상 고속회전 모터를 적용하여 공기를 압축공급하여 배기량은 줄이고 출력은 유지하는 엔진다운사이징 구현
 - 열관리시스템 최적화를 통해 엔진열을 난방 또는 배터리충전에 활용

- ② [구동계효율] 구동시스템(엔진+모터+변속기) 부피 축소 및 동력전달 효율 5% 개선을 위한 동력전달장치 기술 개발
 - 변속기 내부에 모터를 일체화 + 동력보조모터 추가(現 1개 → 2개)
 → 변속기 전장 15% 축소 및 동력전달분배 최적화 실현

- ③ [4륜 구동] 중대형 SUV 승차감 및 주행 안정성 개선을 위해 전륜측 엔진+모터외에 후륜측 모터 추가적용(주행연비 3% 개선)
 - 도로경사도, 방향전환 등 주행환경에 따라 전륜과 후륜의 동력을 최적분배하는 최적제어기술 적용

민간

- 중형SUV('21), 대형SUV('23) 등 신차출시를 통해 **디젤 SUV를** 하이브리드로 집중 전환(~'24)
- 세계최고 수준의 연비 확보를 위해 **하이브리드 전용플랫폼 개발**(~'25)

나. 전기·수소차 충전시설을 적시·적소 배치

- ◈ (전기차충전기) ① 거주지·직장 등 생활거점 중심 : 25년 누적 50만기② 휴게소 등 이동거점 중심 : 25년 누적 1.7만기
- ◆ (수소충전소) '22년까지 310기, '25년까지 450기 구축·운영
 - 차량대비 충전소가 부족한 서울·수도권 전략적 집중 구축
 - * 수도권 구축목표(누적): '20년 17기 → '21년 50기 이상 ※ 수요·교통량 등을 고려한 **'수소충전소' 최적 배치 전략** 마련(~'21.1분기)
- ◈ (주차편의) 정부・공공기관 등 공공시설에 우선적으로 친환경차 전용주차면 대대적 확충 (총주차면수의 5%이상)

전기차 충전기

◇ 국민 생활거점, 이동거점을 중심으로 집중 구축

- □ 【생활거점】충전기(급속·완속충전기, 콘센트) 의무설치비율 확대를 통해 '25년까지 거주지·직장 중심 50만기 이상 구축 (친환경차법 개정, '21)
 - (신축건물) 충전기 의무설치비율 : '20년 0.5% → '22년 5%** → '25년 10%
 - * 의무구축대상: 100세대 이상 아파트, 다중이용시설, 공용주차장 등
 - ** 법 개정 이후 건축 허가~건축 소요기간 2.5년 감안, 실제 적용시기 '25년
 - (기축건물) 충전기 설치의무 신규 부과 : '20년 0% → '22년 공공 건물 2% → '23~25년 민간건물* 2%로 대상 확대
 - * 대형마트・백화점・대기업 소유 건물, 아파트(100세대 이상) 등
 - (非의무 건물) 공공기관(시·군·구·주민센터 등) 충전시설 개방 확대*, 가로등 충전시설 설치 등 인근 충전시설을 활용할 수 있도록 지원
 - * 한전 24시간개방 66개지사內 전기차충전기 : '20년 103기 → '21년 228기
 - 국가·지자체·공공기관 등이 구축·운영하는 공공 충전시설의 개방을 의무화하고, 위치·개방시간 등 정보공개 추진 (친환경차법 개정, '21)

- □ (이동거점) 민관협력을 통해 급속충전기 중심으로 '25년까지 이동 경로·고속도로 등에 1.7만기 구축
 - 접근성이 우수한 **주유소·LPG충전소** 內 전기차충전기를 복합설치 하는 **"하이브리드 스테이션"을 '25년까지 630개소이상 구축**
 - < 하이브리드 스테이션 전환계획(4대 정유사·LPG공급사 기준) >

	현재(20.12월)	22년(누적)	25년(누적)
주유소 + 전기차충전기	119	265	609
LPG충전소 + 전기차충전기	6	12	21

- 고속도로별 교통량 등을 고려하여 **휴게소**(전국 197개)에 **초급속충** 전기(350kWh) 등을 설치하여 장거리 여행 불편 최소화
 - * 고속도로 휴게소(197개) 1개소당 배치: '20년 2.5기→ '22년 8기 → '25년 15기
- **민간충전사업자**에게 **급속충전기** 설치비용의 50%이내에서 보조금을 교부하여 '25년 누적 2,651기 구축 예정
 - * (~'20년 누적) 1,248기 ('21년) 289기 ('22년) 270기 ('23년) 300기 ('24년) 272기 ('25년) 272기

◇ 한계극복형 전기차 충전기술 상용화

- □ (무선충전로봇) 자율주행로봇이 전기차로 접근하여 무선충전(11kW*)□ 주거지·직장내에 주차된 다수의 전기차를 차량이동없이 충전가능
 - * 코나EV 64kWh 완충시 약 6시간 소요
 - 아파트·직장 등 실생활 공간에서 실증('23) → 실증결과를 토대로 '무선충전자율주행' 로봇 설치보조금 신설 검토('24)
 - * 자율주행 기반 11kW급 유무선 충전로봇시스템 상용화 기술 개발 ('20~'23, 정부 75억원)

< '무선충전자율주행' 로봇 개요 >

- □ **(버스무선충전)** 환경개선 효과가 높고, 정해진 노선을 반복 운행하는 버스를 대상으로 무선충전 시범사업 추진 검토
 - 현재 전기버스에 무선충전장치를 부착하고, 시점·기점에 무선충 전기를 매설하여 무선충전하는 서비스를 실증특례 추진('20.10~, 대전)
 - 무정차 순환버스 시스템 도입을 위한 버스정류소 무선충전 시범사업 추진 검토
 - * 전문가 TF를 통해 시범사업 기획 검토('21)
 - ** 실증특례 및 시범사업 결과 바탕으로 본격확산 여부 검토
- □ 【초급속 충전】 20분충전으로 300km이상 주행이 가능한 초급속 충전기 (350kW) 본격 구축('21년 123기+α)
 - ㅇ 냉각기 등 핵심부품 국산화 및 충전효율을 적극 개선
 - * 400kW급 대용량 충전을 위한 차량 부품 및 시스템 기술 개발('18~'22, 정부 84억원)

◇ 旣설치된 전기차충전기의 이용효율 제고

- □ 【단속 강화】 ¹ 非전기차 주차시 단속할 수 있는 충전시설을 친환경차법에 따라 의무설치된 충전기에서 모든 충전기로 확대 (친환경차법 개정, '21)
 - ^② 충전이 완료된 전기차가 계속주차할 경우 단속할 수 충전시설을 급속충전기에서 급속 및 완속충전기로 확대
- □ **[단속 체계]** 전기차충전기에 불법주차된 차량 **단속주체를 광역지자체** 에서 기초지자체로 변경하여 단속의 실효성 확보 (친환경차법 개정, '21)

【 전기차 충전설비 단속 개선방향(안)】

구분	현행
非전기차 주차 단속	의무설치된 전기차충전기
완충전기차 주차단속	급속충전기: 2시간 초과
단속주체	광역지자체

개선안	
공용 전기차충전기	
① 급속충전기 : 2시간 초과 ② 완속충전기 : 12시간 초과	
기초지자체	

 \Rightarrow

◇ 전기차 충전사업 민간시장 활성화

- □ (공공사업 이양) 공공역할을 직접 구축·운영 중심에서 지원기능 중심으로 전환
 - 공공사업의 축소·이양 방안을 마련·추진(´21~)

【 주요 내용 】

- 기관별 구축사업 단계적 축소 및 관제·지원기능 강화방안 마련
- ② 국가 소유로 운영 중인 충전기의 민간 이양 방안 마련
- □ [수익성 확보] 사업자, 운전자 모두에게 혜택이 될 수 있도록 요금 개선 방안도 검토

수소차 충전소

◇ 신규 부지 발굴 및 충전소연계 新사업모델 확산

- □ (부지발굴) ¹ 기존 LPG·CNG 충전소 활용 및 민원 우려가 적은 공공 유휴부지(군부대·공공기관·환경기초시설 등) 중심으로 발굴
 - ^② 도시공원 및 그린벨트(GB) 입지규제를 개선('21)

【 입지규제 개선방향(안)】

현행	
도시공원 점용허가 대상 아님	
GB내 택시·버스·화물차 차고지에 충전소 설치 불가	
GB내 부지(주유소, LPG충전소) 소유자만 설치 가능	

	개선		
\Rightarrow	점용허가 대상에 포함		
	설치 허용		
	임차인도 설치 허용		

- □ 【新**사업 모델**】 [●] 이동형 수소충전소*('21~, 소도시·산간지역 등), 메가 스테이션(전시·체험관+충전소) 등 新 수소충전모델 조기 도입
 - * 국산 부품을 활용한 이동형 충전소 기술개발 사업('19~'21) 추진 → 21년 3기(산업부 1기, 완성차업체 2기) 시범 보급, 22년부터 본격 구축
 - **②** 교통거점*에 수소교통복합기지(충전·부대시설 복합설치) 구축 추진('21~)
 - * 환승센터, 철도역, 공항, 항만, 터미널 등 교통 활동이 이루어지는 주요 지역
- □ 【상용차충전소】 대용량 수소충전소 확충을 위해 특수목적법인 (SPC, Kohygen) 설립*('21.2) → 정부 충전소 구축 보조사업 참여(35개)
 - * 중앙정부, 지역난방공사, 현대차, 정유·가스 5社, FI, 지자체 간 협약 체결(20.10)
 - 경유화물차의 수소차 전환을 위해 **화물차 휴게소 등 물류거점에 수소 충전소 구축** ⇒ '25년까지 10개소이상 구축('21년 2개소)

◇ 수소충전소 구축·운영 사업성 확보

- □ (운영비) 운영비 중 가장 큰 비중을 차지하는 연료구입비 일부를 한시 지원('21~'25)하여 충전소 운영 경제성·사업성 제고
 - (대상) 전년도 적자가 발생한 수소충전소 운영사업자(연구용 등 제외)
 - (방식) 연료구입비와 기준단가 차액의 70% 수준(개소당 평균 9천만원)
- □ (공급단가 인하) 수소 유통전담기관 중심으로 공동구매, 부생수소 유통망 구축 등으로 수소공급비용 절감
 - * 수소유통전담기관이 수소유통거래, 적정가격, 수급관리 담당(수소법 제34조)
 - * 당진 부생수소 유통망: ①**생산**(현대제철) → ②**운송**(현대글로비스) → ③**공급**(하이넷)

- □ (임대료 감면) 국·공유지 內 수소충전소 구축시 임대료 감면한도 한시적 확대(예: 現 50% → 80%) 추진 (친환경차법 개정, '21)
 - * (현행) 국·공유지에 수소충전소 구축시 50%를 한도로 임대료 경감 가능
- □ 【구축비용】 ⁶ 충전소 핵심부품 국산화율 78%('21)까지 확대(現 42%)
 - → 구축비용 30%이상 저감(충전소 1기당 구축비용 30억원 → 20억원)
 - * '수소 소부장' '20년 100억원 신규 지원 등 기존 과제 포함 200억원 이상 지원
 - 7개발된 국산부품의 트랙레코드 확보를 위한 실증사업 집중지원

◇ 수소충전소 안전성 및 충전속도 제고

- □ **[안전성]** 수소누출 위험 등에 대비, 충전소 설계단계에서 **안전성** 평가 및 안전인증제 도입('21~')
 - * 이중 모니터링을 위해 수소안전전담기관(가스안전공사)내 시스템 구축('21)
- □ **[충전속도]** 대용량 수소상용차 충전시 2배 속도로 충전하는 **듀얼충전** 기술*을 활용하여 충전시간**을 절반으로 단축
 - * 수소상용차 충전지연 없는 멀티충전 국산화 기술 개발('21~'24, 정부 36억원)
 - ** 충전시간 : 수소상용차 약 20분(30kg 충전기준)

친환경차 주차·주행 편의 향상

- □ [주차] ¹ 전국 모든(신·기축) 노외주차장(도로·건물에 종속되지 않은 주차장)의 5% 이상을 친환경차 전용주차면으로 할당(주차장법 시행규칙 개정, '21)
 - ^② 공공 건물(국가, 지자체, 공공기관 등)은 '22년부터 총 주차면수의 5% 이상을 친환경차 전용주차면 설치토록 의무화(친환경차법 개정, '21)
- □ **[주행]** 전기·수소차 고속도로 통행료 50% 감면을 '22년까지 연장

다. 내연기관차 수준의 경제성을 조기에 확보

- ▶ 내연기관차와 동등수준의 차량가격+연료비 경제성(TCO*-Parity) 달성□ '25년 전기차, '30년 수소차
 - * TCO (Total Cost of Ownership)
 - o 국산화, 공정혁신 등을 통해 차량가격 1천만원이상 인하(~'25)
 - o 초기구매가격을 절반수준으로 낮추는 배터리리스사업 활성화

◇ 25년까지 전기차·수소차 차량가격을 1천만원이상 인하

□ [정부] 배터리, 수소연료전지 등 핵심소재·부품을 국산화하고, 공용 플랫폼 등 공정혁신을 통해 차량가격 저감을 지원

【 차량가격 인하를 위한 기술전략 】

		주요 내용
전기차	국산화	· 파우치·바인더·분리막 등 배터리 핵심소재 ('19~'24, 정부 556억원)
	공정혁신	· 중소·중견기업의 중소형 전기버스·트럭 및 초소형 전기차 전용플랫폼 개발 및 공동 활용 지원('19~'22, 정부 355억원)
수소차	국산화	 수소연료전지 및 수소저장용기 5대 핵심소재 국산화 ('19~'24, 정부 583억원) ※ 수소차 소재 국산화율 '20년 70% → '25년 94% 수소상용차용 400kW급 대용량 모터를 국산화 ('20~'23, 정부 198억원)
	공정혁신	· 전기차 플랫폼을 사용하기 위해 배터리 공간에 탑재 가능한 형상의 수소저장용기 개발('20~'24, 정부 219억원)
	백금사용량 저감기술	· 수소연료전지 백금사용량 '30년까지 83% 저감 * 중대형상용차용 연료전지시스템 전용 전국기술 개발('20~'23, 정부 47억원)

- □ (민간) 내연기관과 가격차이의 대부분을 차지하는 배터리, 수소연료 전지 가격을 규모의 경제, 기술개발 등을 통해 단계적으로 저감
 - 주요 부품모듈 시스템화·대량생산 등을 통해 7% 원가 절감이 가능한 전기차 전용플랫폼(하부프레임) 출시('21)·개선(~'24)
 - * '21년 현대ㆍ기아차의 전기차 전용플랫폼 모델 4종 출시

【 전기・수소차 구동계 가격 전망(만원)】

(▲전기차: 현대차 코나EV 기준, ▲수소차: 현대차 넥쏘 기준)

◇ 경제성 목표달성을 위해 저렴한 연료비, 세제지원 병행 추진

- □ [연료비] 높은 초기 차량구매부담을 저렴한 연료비로 상쇄
 - (전기) 전기차 충전요금 증가수준 최소화 등을 통해 휘발유 대비 절반 수준으로 가격 격차 유지
 - * 전기차 충전요금 45.3~55.9원/km, 휘발유 122.1원/km
 - **(수소)** 30년까지 수소공급단가 43% 인하 (7,000원 → 4,000원/kg)
 - * 대규모 수소생산 기지(~'25년 44개), 유통센터 구축 등
- □ (세제지원) 개소세, 취득세, 도시철도채권 등 친환경차에 대한 세제 혜택 연장여부 적극 검토

◇ 전기차·수소차 리스사업 활성화로 초기구매부담 완화

배터리리스

택시·트럭 시범사업('21~'22)

- □ (시범사업) 택시 20대를 활용하여 전기차 초기구매 비용을 절반 수준으로 인하*하는 배터리리스 시범사업** 추진('21.2월~)
 - * (예시) 차량의 초기 구매가격을 현재 2,890만원(전기택시 보조금 수령후 가격)에서 → △57.1% 낮춘 1,240만원으로 대폭 인하 가능
 - ** 현대글로비스(렌탈 운영), KST모빌리티(택시운행), 현대차(판매), LG화학(사용후배터리 검증)
 - ※ 다만, 시범사업 종료 이후 구매보조금의 취지와 예산집행 기준 부합성을 검토할 필요
 - 소상공인 지원효과가 큰 **1톤 트럭 대상으로 시범사업 추진**
 - * 중소기업이 생산한 전기트럭을 배터리리스를 통해 판매 추진
- □ **[배터리재사용]** 사용후배터리 수요창출과 잔존가치·안전성기준 마련을 통해 사용후배터리 활용 촉진
 - (수요) 재생에너지연계(새만금 등), 전력계통연계(한전) 등 대규모 ESS 수요를 보유한 지자체·공기업과 협력하여 재사용배터리 실증
 - (기준) 잔존가치 등을 고려하여 배터리 적기수거가 가능하도록 차량탑재상태에서 배터리모듈단위의 성능·안전성 검증기술 확보
 - * 차량 탑재상태 잔존가치 분석 기반 배터리 전주기 활용성 제고('21~'23, 정부 150억원)

수소연료전지리스 리스사업을 수소차로 확대('22~)

- □ "수소연료전지" 리스사업 도입을 통해 초기구매가격 저감^{*}으로 수소버스 전환속도 제고
 - * (예시) 차량의 초기 구매가격을 現 1.38억원(수소버스 보조금 수령후 가격)에서 → △**50.7%** 낮춘 7천만원으로 대폭 인하 가능
 - 수소충전소 건설·운영 SPC(코하이젠)와 연계하여 리스회사를 설립

 □ "대형 수소충전소 구축" + "수소버스 보급"을 패키지 추진

라. 탄소중립을 실질적으로 구현하는 제도적 기반 구축

- ◈ 산업계와 긴밀한 소통을 통해 탄소중립의 긍정적 영향을 극대화 하는 '친환경차 전환전략' 수립 → 탄소증립 실현 가능성 제고
- ◈ 온실가스 관리체계를 자동차 전주기평가 체계로 전화

◇ 산업경쟁력을 제고하는 방향으로 "친환경차 전환전략" 수립 ['21]

□ [전략수립] 차종별·업체별 영향분석, 산업계와 협의를 거쳐 국내 여건을 고려한 전환전략 및 우선순위 검토('21)

(씨)

▶ (산업영향) 차종별 생산계획, 기술성장 잠재력, 업계경영상황 등

고려 ▶ (에너지영향) 친환경연료(전기·수소) 생산 및 공급 체계 등

사항 ▶ (시장영향) 승용·상용차 경제성, 대규모 수요업종 동향 등 * 버스.택시.트럭 운수사업자 등

우선 ▶ 경유승용차 판매중단, 상용차(버스·트럭) 우선 전환 등 내연 순위 기관차 차종별 전환전략을 마련

- □ [추진체계] 「자동차산업 탄소중립 협의회(가칭)」 구성·운영
 - (구성) 산업부·자동차산업협회, 산업·에너지·수요 분야의 광범위한 이해관계자가 참여
 - (목적) 자동차 탄소중립 추진방향 및 세부과제, 건의사항 소통

【 자동차산업 탄소중립 협의회 구성(안) 】

자동차산업 탄소중립 협의회				
정부·업계	연구	¹기관	에너기	│ 「 ・수요
산업부, 완성차사, 부품회사 등	산업연구원, 제	자동차연구원 등	에너지공기	업, 지자체 등

◇ 온실가스 관리체계를 자동차 全주기평가로 대전환

- ◈ 실질적 탄소중립을 위해 주행이외에 배출되는 온실가스도 관리 필요
- ◈ 자동차 全주기관점에서 탄소多배출요인을 체계적 관리 추진

- 선도국 사례를 참고하여 배터리 전수명 품질·적합성 기준 도입
 - ▲ 성능·내구성·안전성 확보 ▲ 배터리 전수명동안 탄소배출 저감, ▲ 재활용 확대 등 품질·적합성 평가체계 및 기준 검토
 - 연구용역 추진('21~'22), 제도설계 및 이해관계자 의견수렴 추진('23~)
- 배터리 재사용을 촉진하기 위해 "전기차 사용후 배터리" 안전성 검증 체계 및 사후관리 제도 도입

	주요내용		
안전성 검사	배터리의 재사용을 위해 분해 또는 재조립하는 경우 설비요건 등 자격을 갖춘 사업자가 절연·용량 등 항목을 검사		
사후관리	안전성 검사결과의 적절성을 공장검사를 통해 주기적으로 확인 (연 1회이상), 사용후배터리 공급자의 책임보험 가입 의무화 등		

② 全주기평가체계 생산·운행·재활용 단계별 CO2배출을 체계적 관리

- 자동차 온실가스 기준(CO2 배출량/차량판매)에 **전주기 온실가스 평가** 체계(LCA) 반영 검토 ('21~'22년 정책연구)
 - * Life Cycle Assessment: ▲ 연료·전기의 생산·사용 ▲ 생산, 폐기·재활용 등 자동차 순환 ※ EU 집행위는 승용차·경상용차(LCV)의 CO₂ 배출에 대해 전과정평가 방법 개발 가능성에 대한 평가와 법제화 등에 대한 제안 등을 '23년까지 유럽의회 및 유럽이사회에 제출 추진
- **완성차·부품 기업의 RE100^{*} 참여 기반마련** ➡ '21년부터 재생에너지 전력을 구매할 수 있도록 다양한 이행수단**을 가동하고 사용실적 인정 지원
 - * 사용 전력의 100%를 재생에너지로 조달하는 자발적 성격의 캠페인
 - ** 녹색 프리미엄, 제3자 PPA, 인증서(REC) 구매, 지분투자, 자가발전 등

기술혁신을 통해 탄소중립시대 개척

● [전략①] 全 차종에서 내연기관차를 대체할 수 있는 성능을 확보하고 세계최고 기술력으로 글로벌 수출시장 석권

* '25년 수출 : 전기차 46만대('20년 12.2만대), 수소차 7만대('20년 1천대) 하이브리드 30만대('20년 15.4만대)

	필요성	추진 방향
전 기 차	■ 주행거리·전비는 세계최고 수준■ 브랜드·디자인(미국·유럽) 및 가격경쟁력(중국)은 열위	 ■ 주행거리·전비 경쟁력 확대 ■ 대형·프리미엄까지 모든 차급 출시 (~'23년, 신차 13종)
수 소	■ 수소승용차 보급 세계 1위 ('20년), 경쟁국 추격(신차 출시)	■ 스택효율 격차 유지(승용) + 주행거리 2배·내구성 5배 향상(상용)
차	■ 글로벌 수소상용차 전환경쟁 본격화* 전기차比 장거리주행 및 적재 용이	■ 차세대 승용모델 출시('23), 화물차·청소차 시범운행('21) 등

◆ [전략②] 탄소중립시대 개척을 위해 현존기술의 한계를 뛰어넘는4대「Challenge」프로젝트 추진

4대 프로젝트	추진 방향
① 탄소중립 +	 ■ CO₂ 재활용 → 차량연료(메탄 등) 제조 ■ 미세먼지 Net-Zero 구현 ■ 수소상용차 주행거리 1,000km 돌파
② 그린수소 Boom-up	■ 재생에너지연계 수전해 상용화■ 바이오가스 등 폐에너지 활용
③ 친환경 모빌리티 대변혁 * 차량용 수소연료전지·배터리기술 활용	■ 철도·항공·항만·산업 등 모빌리티 전반의 친환경화 가속화
④ Life-Cycle 전주기 친환경화	■ 전기차 폐배터리 재사용 촉진■ 수소연료전지 소재(백금 등) 재사용 기술 확보

가. 내연기관차 동등수준의 성능 확보 및 친환경차 수출강국 도약

① 전기차: 세계최고 수준의 기술력 확보

〈 2025년 목표 〉

- 배터리에너지밀도 향상, ② 열관리시스템 효율 개선, ③ 부품경량화
 등을 통해 세계최고 수준의 전비·주행거리 확보
 - * 주행거리와 전비는 반비례 관계로 동시상향은 고난도 과제 ▲아이오닉: 전비 6.3km/kWh / 주행거리 271km, ▲코나V: 전비 5.6 / 주행거리 406

		핵심성능	기본방향	현재 (2020년)	목표 (2025년)	
		주행거리	내연기관차수준의 주행거리(600km) 달성	400km	600km	
	승용	전비	주행거리 600km 달성 + 전비 15%↑ 향상	5.6km/kWh	6.5km/kWh	
차량	00	00	자 <mark>율</mark> 주행	핵심 구매요인으로 부상하는 디지털 성능을 보강하여 전기차에 접목	level 2	level 3('22) level 4("24)
	상용	주행거리	주행거리를 30% 개선	300km	400km	
바리	리튬	에너지밀도	현존하는 기술 고도화	250Wh/kg	350Wh/kg	

정부

- **① [배터리에너지밀도]** 리튬이온전지 **에너지밀도 향상***(現 250Wh/kg → 25년 350Wh/kg↑), 전고체 등 차세대배터리**(350Wh/kg급 이상) 상용화
 - * 배터리팩 에너지밀도 개선('20~'25, 정부 270억원)
 - ** 350Wh/kg급 전고체전지 배터리 모듈 개발('20~'24, 정부 151억원), 차세대전지용 400Wh/kg급 소재부품장비 요소기술 개발('20~'24, 정부 448억원)

【 이차전지 개발・실증・상용화 로드맵 】

구분	'20년	'21~'22년	'23~'25
리튬이온 (현존 기술 고도화)	■에너지밀도 250Wh/kg 셀 제조기술 확보	-	■ 350Wh/kg급 셀 제조기술 확보
전고체 [*] (미래 기술 확보)	■300Wh/kg 이상 급 셀 구현	■350Wh/kg 셀 제조 기술 확보	■350Wh/kg 모듈 제조 기술 확보 ■'30년 차량 적용

- ② [열관리시스템] 저온환경에서 배터리에너지의 난방소모로 주행거리 감소 □ 열관리시스템 효율 개선으로 '25년까지 저온난방시 주행거리 15% 향상
 - * -7℃에서 히터 작동시 상온(25℃) 대비 주행거리가 30%이상 감소(미국자동차공학회)
- 적은 전기에너지로 열에너지 생산이 가능한 新냉매(탄화수소계열)개발적용 등으로 히트펌프 난방효율을 '25년까지 20% 개선
 - * 탄화수소계열 냉매개발 및 고효율 열관리시스템 개발('20~'25, 정부 426억원)
- ③ [부품경량화] 철강대비 무게가 1/3인 알루미늄을 차문, 후드 등 차체에 적용하여 경량화 추진 (차량 10% 경량화시 연비 3.8% 개선 효과)
 - * 고강도·고성형성·저원가 알루미늄 설계 및 제조기술('17~'23, 정부 148억원)
- ④ 【자율주행】 '24년 완전자율주행 차량 출시를 위해 카메라·라이다 등 6대 핵심부품 고도화 추진*
 - * 6대 자율주행 핵심부품 개발('21~'27, 정부 2,336억원)

핵심부품	개발 방향		
카메라	카메라 개수: 협각/중각/광각의 3개 → 가변식다중초점 1개(경제성↑)		
레이더	횡방향 해상도 2배이상 개선(차량·바이크·사람 등 인지성능↑)		
라이다	기계적 회전체 구조 → 회전체 없는 구조로 전환(내구·신뢰성 향상↑)		
열상카메라	가시광선 기반 → 원적외선 융합 (비·눈·안개 등 환경조건 영향 감소)		
컴퓨팅모듈	수집되는 정보를 처리하는 연산능력 개선(노트북 100대↑ 수준)		
HMI*	운전자·탑승자 모니터링 고도화(자세, 행동 등)		

* Human Machine Interface

민간

- [승용] 중·소형에서 대형·프리미엄까지 모든 차급 출시(~'23년, 신차 13종), 부분자율주행(레벨3) 성능탑재('22)
- **[상용]** 2층 고상전기버스('21), 0.8톤 전기트럭('21), 3.5톤 전기트럭('23) 등 상용차 모델도 다양화

② 수소차 : 기술초격차로 글로벌 독주체제 구축

〈 2025년 목표 〉

- ◈ 경쟁사 대비 우수한 스택효율 격차를 지속 유지
- ◈ 고내구성·장거리주행이 요구되는 글로벌 상용차시장 선점을 위해 수소차 내구성·주행거리 한계돌파에 선도적으로 도전

		핵심성능	기본방향	현재 (2020년)	목표 (2025년)
	승	연비	스택효율 개선 등으로 연비 10% 개선	96km/kg	106km/kg
	용	내구성	내연기관차수준의 내구성(30만km) 달성	16만km	30만km
수 소 차	A F	주행거리	북미 등 장거리주행 필요지역 진출을 타깃으로 주행거리 2배 확대	400km	800km
	상 용	내구성	승용차대비 고내구성을 확보	10만km	50만km
		연비	수소상용차 연비 10% 개선	13km/kg	15km/kg
연료전지		스택효율	경쟁사대비 우수한 성능을 유지	60%	65%

정부

- ① [연비] 스택 효율 5%p 향상(現 60% → '25년 65%), 에너지 多소비 부품 효율 향상 ('25년까지 공기압축기 소비전력 30%↓ 등)
 - * 수소전기차용 차세대 연료전지시스템 기술 개발('20~'24, 정부 268억원)
 - (스택효율) 전극內 백금 손실 최소화, 전해질막 두께 저감 등을 통한 에너지손실 저감으로 스택 효율 5%p 향상
 - (전력소비) 스택을 통과하여 배출되는 압축공기(2~3bar)를 회수 및 압축기에 재공급하여 공기공급장치 소비전력을 30%^{*} 감소
 - * 연료전지 스택효율 1.3%p 개선과 동등한 효과

- ② [내구성] 수소연료전지시스템 및 수소저장장치 제조과정에 새로운 공법을 적용하여 부품수명을 대폭 개선
 - * 수소상용차용 연료전지 내구성 향상('20~'25, 정부 330억원)

	핵심부품	새로운 제조공법	효과
	막전극접합체	전극-백금간 결합력 강화	백금 손실속도 감소
스 택	가스켓	고무소재 배합기술 개선	소재부식 방지, 압력 분산
	분리판	표면에 코팅막 형성	수분에 의한 부식을 방지
2	수소공급장치	수소 유량제어밸브의 틈새치단소재(現 고무) 대체	스택에 수소과다유입 방지
열관리장치		냉각수펌프 베어링소재를 고내구로 대체	누수에 의한 부식방지
수소저장장치		밸브의 출·입구 형상 재설계 등	파손의 원인인 진동방지

③ [주행거리] 수소저장용기 탑재공간을 추가 확보(차량측면)할 수 있는 수소상용차 전용플랫폼 적용(민간) 지원 ⇨ 전용수소저장용기 개발

④ [수소특수차] 수소차 확산 잠재력이 큰 지자체와 협력하여 5톤 수소 청소차, 10톤 수소특수차(살수차, 노면청소차 등) 등 특수차 조기 상용화
 * 5톤 청소차 ('17~'21, 정부 80억원), 10톤 특수차('20~'23, 정부 171억원)

민간

- **[승용]** 내구성·가격경쟁력이 대폭 개선된 **차세대 넥쏘 출시*** 내구성 (16만km → 30만km), 차량가격 (7천만원 → 5천만원대) 등
- **[상용]** 10톤 수소화물차('21), 수소광역버스('22), 23톤 수소컨테이너트럭('23), 수소VAN('24) 등 대형·장거리 라인업 중심으로 확대

나. 탄소중립시대를 개척하는 4대「Challenge」프로젝트 추진

- ◈ 수송분야 탄소중립 실현 가능성을 제고하기 위해서는
 - 현존기술을 뛰어넘어 친환경차의 한계에 과감히 도전하고,
 - ② ▲ 그린수소, ▲ 친환경 모빌리티 영역 확장, ▲ Life-Cycle 전주기 친환경화 등 전후방 연관산업 전반의 친환경화 추진 필요

□「탄소중립 +」프로젝트

'CO₂-Recycling' 프로젝트 하이브리드가 CO₂를 배출한만큼 재사용

◆ CO2와 H2를 원료로 메탄·에탄올을 생산하여 자동차·항공연료로 활용

그린수소생산(0단계)

- 신재생전기로 수전해
 - * CO₂ 無배출
- 수소차 등에 적용

메탄생산(1단계)

- CO₂를 활용, 메탄 생산
- CNG 차량 등에 적용

 \Box

에탄올생산(2단계)

- 메탄을 활용, 에탄올 생산
- 가솔린 차량 등에 적용 * 가솔린 + 에탄을 혼합

 \Box

- □ **[메탄생산]** 신재생발전과 연계한 그린수소생산설비와 메탄생산설비를 집적하여 "그린수소메탄화 프로젝트" 추진
 - CO₂ 메탄화촉매 국산화, 설비효율개선(폐열활용) 등 기술개발('19~'21) →
 2MW급 태양광발전(동해시)과 연계한 메탄생산 설비 실증('22~'23)
 - * 재생에너지 장주기 저장 및 전환을 위한 Power to Gas 기술개발('19~'23, 정부 285억원)

< 동해시 그린수소메탄화 생산능력(추정) >

- 그린수소생산(추정) : 연간 6.3만kg, 이산화탄소 소비(추정) : 연간 35만kg
- 메탄생산(추정) : 연간 12.6만kg

※ 가정 : 태양광발전 평균 이용률 적용, 생산된 수소는 모두 메탄으로 전환 등

- CNG버스에 그린수소메탄을 적용하는 시범사업 추진('24~)
- □ [에탄올생산] 그린수소메탄 활용, "그린에탄을" 생산기술 상용화
 - 차량용 에탄올 제조공정 개발 및 인프라 구축('22~), 가솔린+에탄올 혼합연료 적용*을 위한 엔진최적화 기술개발 및 실증('22~)
 - * 에탄올 10% 이하로 혼합시 기존 가솔린 차량에 적용 가능

'미세먼지 Net-Zero' 자동차 친환경차의 공기청정 기능 강화

- □ 주행 중 미세먼지를 배출하는 만큼 포집·정화하는 '달리는 공기 청정 자동차'를 조기 상용화
 - * 16년 국내 미세먼지 발생량 : 연간 총 33.6만톤 (자동차 2만톤)
 - ㅇ 자동차에 고성능 공조필터 및 특수집진시스템을 부착하여 앞차, 도로, 브레이크 등 다양한 위치에서 발생하는 미세먼지를 포집
 - * 최적기술전략 수립('19~'21, 대학·연구소 3개팀 경쟁, 정부 180억원), 본격 개발('22~)

< 미세먼지 발생위치별 미세먼지 포집 기술(예) >

수소트럭 '주행거리 1.000km' 돌파

디젤트럭 수준의 주행거리 확보

- □ 수소상용차 주행거리 1,000km 돌파를 위해 고압기체대비 동일부피에 3배이상 충전할 수 있는 차량용 액체수소(영하 253도)저장기술* 개발
 - * 수소상용차용 대용량 극저온 수소저장시스템 개발('22~'25, 정부 32억원)
 - ※ 80kg의 액체수소를 저장할 수 있는 수소트럭 컨셉 발표(메르세데스벤츠)
 - 현대차 스위스 수출 수소트럭의 수소저장량 약 32kg
 - 대용량 액화수소 생산·저장플랜트(5톤/일)* 액화수소충전소 핵심부품 개발** 등 액화수소차량 보급을 위한 인프라 상용화도 병행 추진
 - * 상용급 액체수소 플랜트 핵심 기술 개발('19~'23, 정부 278억원)
 - ** 액화수소충전소용 극저온 펌프 개발('20~'24, 정부 45억원)
 - 액화수소충전소 구축 실증('21~'22, 강원 평창) → '30년 누적 40기 구축

②「그린수소 Boom-up」프로젝트

수전해 수소충전소

온실가스 배출없이 수소생산

- □ 재생에너지의 전력으로 물을 전기분해하여 수소를 생산하여 온실 가스를 전혀 배출하지 않는 '수전해 수소충전소' 상용화
 - 우선 재생에너지가 풍부한 **제주에서 개발·실증***('20~'22) → 새만금 등 재생에너지 특화지역을 중심으로 확대 추진('23~)
 - * 재생에너지연계 그린수소 생산 기술 개발 및 실증('20~'22, 정부 141억원)
 - 효율향상 등 수전해기술 고도화를 위한 대규모 연구단지 구축(~'24)

< 제주 수전해 수소충전소 개요 >

- 풍력발전에서 발생된 전력으로 물을 전기분해 하여 수소생산 (200kg/일)
 - * $H_2O \rightarrow H_2 + 1/2O_2$
- 하루 200kg 수소생산시 넥쏘 33대 완충가능

바이오가스 수소층전소

바이오메탄을 활용하여 수소생산

- □ 생활폐기물, 하수슬러지 등 바이오매스의 처리과정에서 발생하는 바이오가스를 활용한 '수소생산 및 충전인프라' 시범사업
 - * 바이오가스를 이용한 수소융복합 충전소 실증('19~'21, 정부 93억원) ⇨ 충주시에 구축되어 하루 500kg 수소 생산 가능
 - 시범사업을 통해 수소생산 경제성, 수소품질, 주민수용성 등을 검증
 (~'21)하고, 전국 바이오매스 시설*로 확대 추진
 - * '19년 기준 수소 500kg/일 생산이 가능한 시설은 60개소로 추정

회생제동 수소충전소

버려지는 전기에너지를 수소생산에 활용

- □ **열차가 감속·정지시 발생하는** 회생제동전력^{*}으로 수소를 깨끗하고 저렴하게^{**} 생산·공급하는 **신개념 수소충전소** 상용화 추진
 - * 차량감속시 구동모터는 발전기로 작동, 운동에너지를 전기로 전환(가속시 반대)
 - ** 폐에너지 활용하여 전력생산시 발생하는 Co2감축 및 수소생산가격 저감 기대
 - 지하철역內 유휴부지 등 동 모델 확산 잠재력이 높은 지자체와 협력□ 수소생산(개질) 및 충전시설 구축, 에너지관리시스템 개발 등 추진

블루 수소충전소

천연가스에서 수소를 생산할 때 발생하는 002를 포집

- □ 천연가스에서 수소추출시 발생하는 이산화탄소를 포집하여 **추출수소의** 환경적 한계를 극복하는 '블루 수소충전소' 확산
 - 창원시 추출수소 생산시설과 연계하여 이산화탄소를 포집·활용(CCUS*) 하는 블루 수소충전소 구축·실증 ('21~'22, 정부 2.5억원, 지방비 17.5억원)
 - * Carbon Capture Utilization & Storage

해양바이오 수소플랜트

미생물을 이용하여 산업가스를 수소로 전환

- □ 해양미생물을 이용하여 산업부생가스를 수소로 전환하는 원천기술 확보 및 바이오수소 생산기술 상용화
 - * 실증플랜트 구축('17~'19, 태안) → 일 0.5톤 상용수소 생산 기술개발('21~'23)
 - 플랜트 최적 운영·제어기술 및 맞춤형 정제시스템 개발을 통해 기 구축한 플랜트에서 **상용 수소 생산**('23)
 - * 상용 수소생산 검증 완료 후 지역사회 충전소 연계 등 추진

③「친환경 모빌리티 대변혁(Big-Bang)」프로젝트

수소열차

- □ **[수소트램]** 변전소 등 전력설비가 필요없어 전철대비 구축비*가 저렴하고, 적은 에너지로 대규모 수송이 가능한** 도심형 수소트램(400kW) 상용화
 - * 전력설비 건설비(국가철도공단, 고속철도 기준): 31억원/km
 - ** 탑승인원당 에너지소비 : 수소트램(250인승) 1.6kW ↔ 넥쏘(5인승) 24kW
 - 수소트램 전용핵심부품을 개발('21~'22), 유휴선로 등 도심내 기존
 인프라를 활용한 빠른 실증 추진('23) → 단거리 관광철도 운행('24~)
 - * 수소트램 개발 및 실증 사업('21~'23, 정부 290억원)

< 수소트램 전용핵심부품 개발 내용 >

- ① 수소연료전지 형상변경
- 넥쏘용 대비 높이 축소(20cm이상) 등
 - * 승객공간 확보를 위해 자동차와 달리 연료전지시스템을 지붕에 탑재 → 기존 터널 등 통과
- ② 객차 지붕마다 설치된 수소저장용기를 서로 연결하는 플렉시블 고압튜브 개발 등
- □ **[수소광역열차]** 수소열차(1.2MW급) 제작(~'22)·상용화('23~)를 추진
 - 온실가스·미세먼지 배출이 많은 디젤열차를 단계적으로 감축(전시 대비 디젤차량 일부보유*)하고 전기·수소 등 친환경열차로 대체 추진
 - * 전기철도차량 비율(목표) : ('17) 92% → ('20) 93% → ('26) 98%

공항·항만특수차

- □ (공항특수차) 공항에서 화물카트를 견인하는 수소견인트럭 개발→ '22년부터 공항에서 시범운행 추진
 - * 공항특수차용 연료전지시스템 및 차량장착 기술개발('20~'23, 정부 71억원)
 - 다양한 **공항용 특수차에 적용 가능한 모듈형 연료전지 파워팩** 및 **수소저장시스템 공용화** 기술개발 추진

【 공항용 차량(예시) 】

- □ **[항만특수차]** 항만내 운영중인 하역장비 및 컨테이너 취급장비, 항만출입 차량 등을 수소 모빌리티로 전환 추진('24~)
 - 항만공사 등과 협력하여 실증을 추진하고, 항만內 유휴부지 등을 활용하여 수소충전소 구축도 병행 추진
 - ㅇ 항만에 출입하는 컨테이너 운송용 트랙터를 수소차로 집중 전환 추진

【 항만용 차량(예시) 】

UAM(플라잉카)

□ (기술개발) 국내 독자기술 기반 ①틸트프롭형, ②멀티콥터형 비행체 등 다양한 eVTOL(전기식수직이착륙) 비행체 기술개발 추진

딜트 프롭형

~′23

- ▶ 1인승급 시제기(비행속도 200 km/hr) 개발 및 비행시험 완료('19~'23, 정부 178억원)
- ′23~
- ▶ **4~5인승급 기체 개발 및 인증 추진** ※ 단거리(20~100 km), 중장거리(100~400 km)

멀티콥터 형

~'25

▶ 탑재중량 200 kg급 카고(물류)용 시제기 개발 및 국내 시범비행 실시('21~'25, 정부 240억원)

- 비행체 개발과 연계하여 로터(프로펠러), 초경량 모터, 고출력·고밀도 배터리팩, 팩 소재, 항전계통 등 핵심부품의 조기 국산화* 추진
 - * 미래 친환경 모빌리티용 150 kW급 경량 전기추진시스템 ('20~'23, 정부 133억원) 및 230 Wh/kg급 고출력·고밀도 배터리팩 개발('20~'23, 정부 140억원)
- □ **[단계적 상용화]** 민관합동 실증사업인 K-UAM 그랜드챌린지(*20~'24*) 등을 거쳐 '25년 상용화 준비
 - * (0단계, '20~'21) 실증 시나리오 설계, 설비 구축→(1단계, '22~'23) 도심외곽 테스트→ (2단계, '24) 도심지 내 실증노선 운용
 - 대중수용성 확대와 운용시스템 연계성^{*} 검증을 위해 화물서비스부터 실증('21~)하고 여객 상용서비스 준비
 - * 무인화·자동화를 지원할 첨단 교통관리시스템인 K드론시스템 연계('17~'22, 국가R&D 중), 실증지원 사업('21~)으로 상용화 촉진
 - 아울러, 수요창출과 시장 확산을 위해 재난·치안·안보·의료 등 공공 분야 활용도 유도

건설기계

- □ **(수소굴착기)** 수소연료전지 탑재로 충전시간*이 짧고 유해물질 배출이 없는 중형 **횔 굴삭기(14톤 휠** 타입) 선행 개발**
 - * 수소 충전시간: 15분이내 / 전기배터리식의 경우 기존에 보급된 자동차용 급속충전기(50kW) 기준 10시간 이상
 - ** 휠 타입 수소굴착기 세계 최초 개발
 - 수소굴착기 안전성 평가기준 및 실차개발('20~'23) → 상용화를 위한 건축·토건 등 사업장별 수소굴착기 실증 추진('24~)
 - * 14톤급 건설중장비용 수소연료전지 파워시스템 개발 ('20~'24, 정부 114억원)

< 수소굴착기 개발 내용>

- □ **[수소지게차]** 실내물류형 2.5톤 수소지게차를 규제자유특구에서 규제특례*를 통해 실증, 안정성 확보 및 안전기준 수립**
 - * 수소연료전지 지게차에 대한 인증기준 부재 → 특구 사업장 내에서 충전/운행 허가
 - ** 실내물류형 수소연료전지 지게차 안전기준 수립
 - 수소충전 및 운전 안전성 검증 위한 규제자유특구 실증('20~'21)
 - * 5kW급 수소연료전지 파워팩 적용 지게차 실증(규제자유특구혁신사업), ('20~'21, 정부/지방비/민간 : 30/14/7.3억원)

④「Life-Cvcle 전주기 친환경화」프로젝트

배터리 재사용 · 재활용 촉진

- □ **[기반마련]** 배터리 잔여수명을 활용한 **재사용**(전기차, 에너지저장장치)과 사용후 배터리 분해·자원 확보를 위한 **재활용**(희소금속추출) 기반마련
 - * 발생전망(환경부, '20) ('20) 780대 → ('23) 5,914대 → ('30) 107,520대
 - 재사용 센터(제주, 나주, 울산)에 **잔존가치 평가 장비·체계 구축**
 - * 제주('20~'22, 총 132억원), 나주('19~'23, 총 227억원), 울산('20~'22, 총 151억원)
 - 전기차 사용후 배터리 자원순환 클러스터 구축('21~'23, 포항)

< 전기차 배터리 재사용 절차 >

□ **[활용지원]** 규제특례로 민간의 재사용배터리 비즈니스를 활성화하고, 공공부문·국책사업에 선도 적용

【 용도별 활용 방안(안) 】

	용 도	활용지원
		공주태양광발전소연계 ESS(300kWh, '21~),
FCC	재생에너지연계용	현대차울산공장태양광연계 ESS(2MWh, '21~)
ESS		→ 한수원 등 발전공기업으로 확대 검토
	계통연계용	한전이 보유한 변전소 등에 적용 검토
	저기이르바	퍼스널모빌리티플랫폼 핵심기술개발 및 실증사업('21~'25,
	전기이륜차	정부 260억원)과 연계, 폐배터리 실증 추진('22~)

- □ 【제도완비】 회수·관리기준(수거단계), 안전성 검사기준(활용단계) 등 재사용배터리 수명단계별 미비된 제도를 조속히 완비
 - * 사용후 배터리 거점수거센터 4개소 준공 및 수거시스템 구축(~'21, 전자제품등자원순환법 등)
 - * 전수검사가 가능한 안전성 검증 제도 마련(연구용역 '21.上, 전기용품 및 생활용품 안전관리법령 개정 추진 '21.下)
 - 깨끗한 고품질 배터리 유통 촉진 □ ▲ 성능·내구성·안전성 확보 ▲ 배터리 전주기 탄소배출 저감, ▲ 재활용 확대 등을 위한 제도 도입

수소연료전지 · 저장용기 재사용 기반 선제적 구축

- □ 수명이 다한 수소차에서 전량수입에 의존하거나 고가인 핵심소재를 추출하여 수소차 제조에 재사용하는 기술개발 추진
 - 수소택시 실증사업(~'22)과 연계하여 부품소재 단위 재사용성을 분석
 - * 수소택시 20대를 서울에서 실증('19~'22, 정부 78억원)
 - 내구수명(16만km)이상 주행한 수소택시를 순차적으로 분해하여 부품별 잔존가치 분석
 - 중장기적으로 수소차 폐차물량 발생 전망 등을 고려하여 **'수소차** 부품 재사용센터'의 구축을 적극 검토

【 수소차 재사용 개술개발 (예시)】

부품	기술개발	재사용 소재
막전극접합체	얇은 막전극접합체 [*] 를 상호분리하는 초임계기술 확보	이오노머(전량수입)
(스택부품)	* 두께 0.025mm 내외	백금(고가)
수소저장용기	라이너와 고강성 탄소섬유를 완전히	라이너(전량수입)
十二川の67	분리하는 기술 확보	탄소섬유 → 기체확산층(스택부품)

3 탄소중립 산업생태계로 전환 가속화

◈ [전략①] 25년까지 500개, 30년까지 1,000개 부품기업의 미래차 전환

필요성

■ 친환경차·자율차 부품기업은 전체부품기업의 전체의 4%(400여개)

■ 부품기업은 미래차진출 장애요인으로 기술·R&D(65%), 공급처· 기술협력(48%), 자금(45%), 진출분야 불확실(25%) 등을 지적

* 국내 부품기업 실태조사('20.9~10월, 자동차산업협동조합)

■ 친환경차 생산계획 공유, 물량배정 등 완성차-부품기업간 연대 촉진

■ 내연기관차 전속부품기업 중심으로 年 100개이상의 사업재편 희망기업 발굴

* 사업재편지원단 활용하여 발굴, 기활법을 통해 '25년까지 300개이상 사업재편 승인지원

추진 방향

■ 금융·기술·공정·융합 등 사업재편 지원수단 확충

- △ (**금융**) 사업재편지원펀드('21, 200억원), 혁신기업 1,000(~'22, 대출·보증) 등
- △ (기술) 국책사업('21 3,236억원) 활용, 사업재편 전용R&D신설('21, 100억원) 등
- △ (공정) 미래차 부품기업의 스마트공장 구축 지원, 할당관세 적용 등
- △ (**융합)** 자동차 부품기업과 IT·S/W 등 스타트업 매칭 지원무역협회 "Smart Bridge")

◈ [전략②] New-Player가 활발히 친환경차 시장에 진입할 수 있고. 중소·중견기업이 주인공으로 성장할 수 있는 기반 마련

필요성 ■ 친환경차 전환을 신서비스 창출과 중소·중견기업의 육성 기회로 활용

추진 방향

- 중견제작사 및 전속 부품업체의 미래차 전환을 촉진하기 위해 R&D 및 설비투자 지원
- 규제샌드박스를 통한 新사업모델 개발 지원*, 미래차펀드(2,000억원), Big3펀드(1,500억원)를 결성하여 미래차 투자 개시('21)
 - * (울산) 수소지게차, (강원) 액화수소 충전소 실증, (대구) 자율주행셔틀 등
- 중소·중견 친환경차 제조사를 육성 ⇒ 청소차 등 수소특수차 개발(정부 273억원, 초소형 및 소형상용 전기차 공용플랫폼(정부 355억원) 등 지원

가. 연대·협력을 통해 30년까지 1,000개의 부품기업을 미래차로 전환

- ◈ 완성차-부품기업간 연대·협력으로 '가치사슬 One-Shot' 전환
- ◆ 年 100개이상의 사업재편 희망기업을 발굴하고, 금융·공정·기술·異업종 협력 등 사업재편 지원수단 확충 ⇒ '발굴=전환성공' 공식 확립

◇ 완성차-부품기업 연대·협력으로 '가치사슬 One-Shot' 전환

- □ (공동사업 재편) 완성차사가 미래 사업계획* 공유하여 1·2차 핵심 협력사들이 사업재편 전략을 수립할 수 있도록 지원
 - * 향후 친환경차 차종·모델 출시 계획, 설비·R&D 투자 계획 등
 - 완성차사는 전기·수소차 생산 계획 물량의 일부를 사업재편을 추진 하는 협력사와 공유
 - 대형 부품기업의 사업재편 시 2·3차 협력사와 공동 참여를 유도하고, 정부국책사업 지원신청時 우대*
 - * 사업재편지원단을 통해 컨설팅, 시제품 제작, 평가 인증 등 우선 지원
- □ [부품기업 투자] 완성차 출연금(300억원)을 기반으로 2,000억원 규모의 '미래차 그린뉴딜 펀드' 조성('21)
 - 미래차 전환 의지가 있는 유망 부품기업을 대상으로 미래차 R&D, 미래차·디지털 기술융합, 전기차·수소차 충전인프라 등에 투자

◇ 年 100개이상의 사업재편·사업전환 희망기업 발굴 및 전략수립 지원

- □ (발굴) 완성차사, 협·단체, 실태조사 등을 통해 내연기관 전속부품 기업* 중심으로 연간 100개 이상 사업재편·사업전환 희망기업 발굴
 - * 엔진·동력전달 등 내연기관 부품 전속기업은 전체 부품기업의 31%(2,800여개) 차지
 - 기술·금융·수출지원기관이 참여하는 "사업재편지원단" ('20.5~) 가동을 통해 수요발굴, 시제품 제작 등 사업재편 지원
 - * 희망기업 발굴·지원계획 : ('20) 76개 → ('21~) 年 100개 이상

수요발굴 컨설팅 제공 사업화 지원 후속지원 ▶ 기업역량 분석 ▶ 판로개척(KOTRA) ▷ ▶ 사업화 전략 수립 ▷ ▶ 시제품 제작 ▶ 완성차사 추천 ⇒ → 금융(신보·기보) ▶ 실태조사 ▶ 평가·인증 ▶ 비즈니스 모델 개발 ▶ 사업재편(기활법) ▶ 애로기술 해결 ▶ 수요조사 금융(정책금융기관) ► R&D(KEIT·KIAT)

- '25년까지 300개이상 부품기업의 사업재편계획(기활법) 및 사업 전환계획(사업전환법)을 승인하여 자금·세제 등 인센티브 부여
 - * 기업의 사업재편·전환계획을 심의 승인 후 절차간소화, 자금, 세제 등 혜택 부여
 - * 사업재편·전환 승인계획(누적): ('20) 22개사 → ('22) 100개사 → ('25) 300개사
- □ **[컨설팅]** 완성차사 퇴직인력, 전문 컨설팅기관을 활용하여 기업별 사업재편전략 수립 지원
 - 완성차사의 구매·재무·R&D분야 퇴직인력을 부품기업에 파견하여 사업재편 컨설팅, 애로기술 해결, 수요연계 등 밀착현장 지원
 - * 자동차부품산업진흥재단이 퇴직인력 Pool 관리 및 고용·운영
 - 금융·특허 등 전문컨설팅기관을 통해 시장조사, 선행기술 분석, 금융 컨설팅 등 전문분야 애로를 핀셋 해소

◇ 사업재편 유형별 금융·공정·기술·異업종협력 전폭 지원

【 사업재편 유형별 지원방향 】

유 형	주요 내용	지원방향
① 전문화	旣 확보한 기술을 고도화 ⇨ 유사 미래차분야 진출	기술혁신,
	* 친환경차 냉각시스템, 자율차 광학렌즈 등	금융
② 전환	기존 산업에서 미래차로 주력생산품목을 전환	금융,
	* ▲ 엔진부품 → 수소연료전지, ▲ 변속기 → 감속기 등	기술혁신
③융합·협력	IT:SW, 센서 등 이종업체와 미래차 업체의 융합·협력	M&A,
984.84	* 자율주행W 스타트업(B社)이 자동차부품기업(M社) 등 투자 유치	기업간 협력

□ (금융지원) 전문화·분사, 대형화·M&A 등 사업재편 유형별로 펀드· 대출 등 종합적인 자금지원

프로그램		주요내용
펀드	소부장벤처펀드 ('20~'22, 3천억원)	스마트공장 구축을 통한 생산성 혁신을 달성한 유망 소부장 기업 지원
	시업재편지원펀드 (21, 200억원)	인수합병(M&A) · 경영구조 개선 · 지재권 확보 등 지원
	기술혁신펀드 ('20~'22, 5천억)	친환경차를 포함한 제조업 분야 유망기업의 기술투자 지원
여신	혁신기업 1,000	'22년까지 1,000개+@의 대표 혁신기업에 대출·보증 지원

- □ [공정지원] 미래차 부품기업의 스마트공장 구축 지원, 이차전지·연료 전지 관련 설비·원재료 20개품목* 할당관세 적용('21)
 - * ▲ 이차전지 제조용(16개) : 흑연화합물, 전해액, NCM 전구체 등
 - ▲ 연료전지 제조용(4개) : 백금촉매, 코팅머신, 연신기 등
- □ 【기술혁신】 [●]부품기업 R&D('21년 3,236억원)에 사업재편기업 지원시 선정평가 가점부여 등 인센티브 보강하고, 대중소협력R&D 지원 강화
 - * 대기업(완성차)-중견기업(모듈)-중소기업(부품)이 협력하는 '수요연계형과제' 발굴·지원
 - ^②신산업 진출을 희망하는 중견·중소기업 대상으로 신성장·원천기술 개발, 컨설팅을 지원하는 **사업재편 전용R&D신설**('21년 100억원)

- ^❸권역별 부품시험인증센터 확충, 수소차 부품 KS 제정* 등을 통해 미래차 부품 시험·인증 지원
 - * 연료전지 스택(5종), 수소공급장치(4종), 공기공급장치(5종), 열관리장치 (6종) 등 20종

【 미래차 부품시험·인증인프라 구축 계획(안) 】

	분야	총 사업비	기간
경기	자율차 부품시험	325억원	′20~′23
전북	자율차 도로주행 테스트	200억원	′20~′21
전남	초소형전기차용 소형연료전지 부품시험	125억원	′20~′22
충남	수소연료전지 부품시험	708억원	′17~′21
경북	차량용 경량소재 기술고도화	290억원	′20~′22
대구	미래차 구동전장부품 시험	155억원	′20~′23
강원	초소형전기차 안전성	480억원	′20~′22

- □ (異**업종융합)** 자동차 부품기업과 IT·S/W 등 異種산업 분야 스타트 기업간 개방형 협력을 지원하는 "Smart Bridge" 프로젝트 추진
 - 대·중견기업이 희망하는 협력분야를 토대로 잠재력있는 스타트업을 발굴하고, R&D·금융 등 후속지원
 - (부품재단) 부품기업 수요발굴(부품재단), (정부) R&D·금융 등 후속지원(정부)
 - (무역협회 *) 스타트업 모집·선정 \rightarrow 부품기업과 매칭 \rightarrow 미팅 및 데모데이 지원
 - * 국내외 大·中堅기업과 스타트업간 3,000여건의 매칭 지원 실적('18~'20)
- □ 【지역별 사업재편】지역별 완성차·부품산업 기반, 미래차 인프라(자율 주행, 충전소) 여건 등을 바탕으로 지역별 특화 사업재편·사업전환 추진

【 지역별 사업재편·사업전환 추진방향 】

대 구	■(자율주행・전기차) 5G 및 데이터기반 자율주행 부품・서비스 개발
경 북	■(고기능 소재, 성형) 전기차, 수소차 등에 필요한 하이테크 성형가공
광 주	■(전기상용차) 전기 특장차(냉동·건조) 중심의 상용차 개발·생산 ■(광융합) 전기특장차 등의 인지시스템에 필요한 광센서, 광학기기
전 북	■(수소상용차) 기존 상용차, 자율주행 상용차 개발 및 실증
전 남	■(초소형전기차) 공용플랫폼 개발, 인공지능·센서 등 융합 실증
강 원	■(초소형전기차) 부품 기술개말 및 성능·안전성 평가기반
충 남	■ (미래차 튜닝 산업) 내연기관차를 전기차로 개조하고, 주행안전성을 높이는 중·저수준 애프터마킷 자율주행(ADAS) 모듈 개발 ■ (내구성, 안전성) 전기·수소차 내구성·안전성 향상을 위한 소재

◇ 정비시스템 완비 및 친환경차 전문인력 양성 ('25년까지 2.1만명)

- □ [정비시스템] 일반 정비소(3.8만개소, '18년)의 2%에 불과한 전기차·수소차 정비소(600여개)를 '25년까지 5%(2~3천개)로 확대
 - 친환경 정비실적이 우수한 정비사업장을 선정·포상하여 관심 유도
 - * '자동차전문정비사업조합연합회'를 통해 산업부 장관명의 표창
- □ (응합형 선도인력) ¹다학제 융합교육과정 확대^{*}, ²전문대 자동차학과 미래차 교과비중(현행 20% 미만) 확대를 유도^{**}
 - * 미래형자동차R&D전문인력양성(기존, 산업부)
 - ** "미래차 현장인력양성사업"('21년 13.7억원, 신규)을 통해 전문대와 협업 추진
 - 인재의 현장 활용성 제고를 위한 산학협력 프로그램을 강화하고,
 지방 거점대학 중심의 사업추진으로 지방대학 역량 강화
 - * 친환경차(xEV) 부품개발 R&D 인력양성사업('21년 신규, 16.6억원, 25명 목표)
 - 미래차 분야 반도체 설계인력(~'25년 300명), 인공지능 및 소프트웨어 전문인력(~'25년 1천명) 등 기반기술 분야도 지속 투자
- □ [정비·현장인력] 전환수요가 많은 정비·부품제조 분야 교육기관*(직업 훈련기관+전문대) 및 교육대상(구직자+재직자)을 확대
 - * 정비업체 재직자의 전환교육 이수 의무화(자동차관리법 시행규칙 개정, '21.上) 및 전문교육기관 지정·운영 (국토부, '21년~)
 - * 中企 근로자 대상 미래차 부품 기술・제조 교육프로그램 제공 및 계약학과 운영 (중기부)
- □ **(내연차 인력전환)** ¹ 기존 기업의 미래차업종 전환시 미래차 융합기술 교육 제공*, ²고용위기 인력은 직업훈련·고용안정 프로그램 패키지 지원**
 - * 직무전환 희망 구직자:재직자 대상 미래차 융합 기술 집중교육 지원(21년 13.7억원 산업부)
 - ** 40대 실직자 중심으로 자동차부품 품질관리 직업훈련 및 직무체험 지원(21년 14.1억원 산업부) 및 고용부"고용촉진장려금"프로그램 연계

나. 미래차 분야 New-Player 집중 육성

◇ New-Player의 친환경차 시장진입 활성화

- □ (중견제작사) 중견제작사 및 전속 부품업체의 미래차 전환을 촉진하기 위해 R&D 및 설비투자 지원
 - * 중견제작사 및 부품업체 전용 미래차전환 R&D 프로그램 신설
 - * 미래차 전환 설비투자는 공장증설이 없어도 외투·지투 보조금 지원 추진
- □ [미래차펀드] 총 3,500억원 규모의「미래차 + Big3 펀드」를 조성 하여 미래차분야 중소·벤처기업 투자 개시('21~)

프로그램	주요내용			
미래차펀드	"스마트대한민국펀드"('20~'25, 총 6조원) 조성계획으로 이중 2,000억원			
	규모로 미래차 전용펀드 조성			
Big3펀드	Data, 5G, AI 인프라와 시스템반도체, 바이오헬스, 미래차 분야 중소·			
('20, 1.5천억원)	벤처기업 지원			

□ [규제혁신] 미래차 분야 지역별 규제특례·실증을 지원하고, 신기술· 서비스 실증 결과를 사업화 연계 집중 지원(규제법령 정비 등)

【 미래차 분야 지원현황 】

구분	지역	주제	주요 실증내용
자율	세종	자율주행	자율주행차 승객운송 서비스를 허용하는 한정 면허 발급,
주행차	대구	11210	자율주행차 주행 데이터 수집활용 허용
	제주	전기차충전	기존 충전기의 성능개선,이동형 전기차충전기 허용, 개인
			소유 충전기의 공유사업 허가, 전기차 진단 서비스
	경북	차세대배터리 리사이클링	폐배터리 매각・재사용 기준마련을 위한 실증 허용
7471+1	대전	무선충전	전기버스에 무선충전장치를 부착하고, 버스정류장 하부에
전기차 •			매설된 무선충전기를 이용하여 무선충전하는 서비스
	전국	전기차	일반 220V 전기 콘센트에 설치하여 전기차를 충전
부품		충전 콘센트	할 수 있는 'IoT 기반 스마트 콘센트'
	전북	친환경차	LNG 중대형상용차, 이동식충전소, 초소형전기특수차* 실증
			* 소방, 쓰레기압축, 청소, 이동식 세탁
	광주	무인저속 특장차	무인저속 특장차 도로주행, 도시공원출입, 수집데이터 활용
	전남	e-모빌리티	초소형 전기차 교량(진입금지구역) 운행 허용
수소차	울산	수소 모빌리티	지게차, 무인운반차, 소형선박 등에 수소연료전지 동력
			체계를 적용한 운행 실증
	7101	액화수소 산업	액화수소 관련 생산설비, 저장용기, 충전소 등에 대한
	강원		구축·운영 및 상용화 실증

◇ 중견·중소기업을 친환경차 제조전문기업으로 육성

□ 【수소차】 ¹ 국책사업을 통해 5톤 수소청소차, 10톤 수소살수차 등 수소특수차를 전문적으로 개조하는 기업 육성

5톤 수소청소차('17~'21, 정부 80억원)

- 내연기관(CNG)청소차를 수소차로 개조
- 넥쏘용 수소연료전지(95kW) 2기 탑재, CNG용기를 수소저장용기로 교체 등

10톤 수소특수차('20~'23, 정부 171 억원)

- 10톤 수출화물차를 특수차로 개조
- 노면청소차, 살수차, 음식물수거차 등
- ^② 전기버스 중소·중견기업의 **수소버스로 업종 전환**을 위해 **기존** 전기버스를 수소버스로 활용할 수 있도록 지원
 - < 기존 전기버스의 수소버스 전환 ('21~'24, 정부 125억원) >
- 전기버스에 트레일러형 연료전지 추가 → 주행거리 2배 증가(전기 260km + 수소 260km)

 일반 전기버스
 주행거리 연장형 수소전기버스(FC-REEV)

 배터리 1
 외부충전

 배터리 2
 외부충전

 전기구동시스템
 전기구동시스템

 ※ FC-REEV : Fuel Cell Range Extended Electric Vehicle
- □ **(전기차)** 중견·중소기업이 전기차를 제조시 자유롭게 활용 가능한 개방형 공용플랫폼 구축 (초소형전기차('21), 중소형전기트럭·버스('22))
 - * 중소·중견기업 지원을 위한 전기차 개방형 플랫폼('19~'21년 정부 231억원)
 - * 가변플랫폼 기반 중소형 전기버스 트럭 및 운영환경 기술개발('20~'22년, 정부 124억원)
 - 전기화물차 보조금 전체물량의 **10%는 중소기업에 별도 배정**('21~)

<초소형전기차 공용플랫폼 >

<중소형상용차 공용플랫폼 >

Ⅵ. 추진일정 및 기대효과

1 추진일정

추진과제	소관부처	추진일정			
1. 친환경차 보급을 가속화하는 사회시스템 구축					
1-1. 공공기관 의무구매 비율 향상 및 차종확대	산업부·환경부	~′23			
1-2. 친환경차 구매목표제 도입·운영	산업부·환경부	′21~			
1-3 저공해차 보급 목표제 단계적 강화	환경부·산업부	′21~			
1-4. 버스·택시·트럭 등 사업용 차량 전환 촉진	환경부·국토부·산업부	′21~			
1-5. 하이브리드를 온실가스 감축 수단으로 활용	산업부	~′25			
1-6. 전기차충전기 적기 구축	환경부·산업부·국토부	~′25			
1-7. 수소차 충전소 최적 배치전략 수립	환경부·산업부·국토부	′21			
1-8. 내연기관차 수준의 경제성 확보	산업부·기재부· 국토부·행안부	'25 전기차 '30 수소차			
1-9. 전기차·수소차 리스사업 활성화	산업부환경부	′21~			
1-10. 친환경차 최적 전환전략 수립	산업부·환경부	′21			
1-11. 자동차 전주기평가로 대전환 추진	산업부	′21~			
2. 기술혁신을 통해 탄소중립시대 개척					
2-1. 전기차・수소차 성능혁신	산업부·과기부	~′25			
2-2. 탄소중립+ 프로젝트	산업부·국토부	'21~			
2-3. 그린수소 Boom-up	산업부·환경부·해수부	'21~			
2-4. 모빌리티 전반의 친환경화	산업부·국토부·해수부 ·중기부·환경부	'21~			
2-5. 배터리·수소연료전지 재사용 및 재활용 촉진	산업부·환경부	'21~			
3. 탄소중립 산업생태계 전환 가속화					
3-1. '미래차 그린뉴딜 펀드' 조성	산업부	′21			
3-2. 사업재편사업전환 승인기업 누적 300개사 달성	산업부·중기부	′25			
3-3. 친환경차 정비시스템 완비 및 전문인력 양성	산업부·국토부·중기부	~′25			
3-4. New-Player의 친환경차 시장진입 활성화	중기부·산업부 ·과기부	′21~			
3-5. 수소차 제조전문기업 육성	산업부	~′23			
3-6. 전기차 공용플랫폼 구축	산업부·환경부	~′22			

2 5년후 달라지는 모습

□ 자동차 산업의 친환경화

"내연기관차 수출 강국"에서"친환경차 수출 강국"으로 도약합니다.

② 일터·관광·교통 등 일상의 친환경화

○ 전기차·수소차 화물차 全 차급이 출시되고, 생업과 공공서비스에 본격적으로 투입됩니다.

- "수소트램"을 타고 도심 속을 여행하고, 수소버스를 타고 "도시간 장거리 이동"도 가능해집니다.
 - * 수소트램 상용화('23), 수소광역버스 출시('22) 등

○ 물에서 추출한 "그린수소"와 온실가스로 생산한 "그린메탄"으로 탄소중립시대에 맞는 청정연료시대를 열어갑니다.

③ 친환경차 주행여건 대폭 개선

○ 전기차는 "휴대폰처럼 상시생활충전"이 가능해 지고, "1회 충전으로 전국 어디든지" 안심하고 이동할 수 있게 됩니다.

○ 수소차는 "교통물류거점 중심으로 충전소를 대폭 확충"하고, "내구성은 2배 개선"되고, "가격은 인하"됩니다.

