Analysis of Categorical Data Chapter 3: Inference for Contingency Table

Shaobo Jin

Department of Mathematics

Intended Learning Outcome

Through this chapter, you should be able to

- test independence in contingency table,
- 2 test monotone trend.

Odds Ratio

Suppose that we have observed a 2×2 table

	\overline{Y}		
X	1	2	
1	n_{11}	n_{12}	
2	n_{21}	n_{22}	

The sample odds ratio is

$$\hat{\theta} = \frac{n_{11}n_{22}}{n_{12}n_{21}} \ge 0.$$

If $\hat{\theta} > 0$, then we can consider

$$\log \hat{\theta} = \log n_{11} + \log n_{22} - \log n_{12} - \log n_{21}.$$

Wald Confidence Interval

An estimated standard error of $\log \hat{\theta}$ is

$$\sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}.$$

Hence, a Wald confidence interval for $\log \theta$ is

$$\log \hat{\theta} \pm z_{\alpha/2} \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}.$$

However,

$$\hat{\theta} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

can be 0 (if $n_{11}n_{22} = 0$), ∞ ($n_{12}n_{21} = 0$), or undefined (if $n_{11}n_{22} = n_{12}n_{21} = 0$). Consequently, the Wald interval may not exist.

- An ad-hoc approach is to add 0.5 to n_{ij} .
- Use other approaches such as the score interval or the likelihood ratio confidence interval.

Example: Aspirin Use and Myocardial Infraction

Compute $\hat{\theta}$ and find a 95% confidence interval for θ

	Myocardial Infraction		
	Yes No		
Placebo	28	656	
Aspirin	18	658	

Independence

We have an $I \times J$ contingency table from multinomial sampling with probabilities $\{\pi_{ij}\}$. We want to test

 H_0 : independence as $\pi_{ij} = \pi_{i+}\pi_{+j}$ for all i, j,

 $H_1: H_0$ is not true.

The log-likelihood under H_1 is

$$\ell_0(\pi_{i+}, \pi_{+j}) = \log\left(\frac{n!}{n_{11}! \cdots n_{IJ}!}\right) + \sum_i \sum_j n_{ij} \log(\pi_{i+} \pi_{+j}).$$

The log-likelihood under H_1 is

$$\ell_1\left(\pi_{ij}\right) = \log\left(\frac{n!}{n_{11}!\cdots n_{IJ}!}\right) + \sum_i \sum_j n_{ij}\log\left(\pi_{ij}\right).$$

Likelihood Ratio Test

The MLE under H_0 is

$$\hat{\pi}_{i+} = \frac{n_{i+}}{n}, \ \hat{\pi}_{+j} = \frac{n_{+j}}{n}.$$

The MLE under H_1 is

$$\hat{\pi}_{ij} = \frac{n_{ij}}{n}.$$

The likelihood ratio test statistic is

$$G^{2} = -2 \left[\ell_{0} \left(\hat{\pi}_{i+}, \hat{\pi}_{+j} \right) - \ell_{1} \left(\hat{\pi}_{ij} \right) \right] = -2 \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} \log \left(\frac{n_{i+} n_{+j} / n}{n_{ij}} \right).$$

If H_0 holds, G^2 also converges in distribution to to chi-square with (IJ-1)-(I-1)-(J-1)=(I-1)(J-1) degrees of freedom. A rule-of-thumb is that no more than 20% of $\hat{\mu}_{ij} < 5$.

Pearson Chi-Square

The Pearson chi-square that tests H_0 : independence is

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(\text{observed frequency}_{ij} - \text{expected frequency}_{ij}\right)^{2}}{\text{expected frequency}_{ij}}$$

$$= \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(n_{ij} - n\hat{\pi}_{i+}\hat{\pi}_{+j}\right)^{2}}{n\hat{\pi}_{i+}\hat{\pi}_{+j}}.$$

If H_0 holds, X^2 converges in distribution to to chi-square with (I-1)(J-1) degrees of freedom. A rule-of-thumb is still that no more than 20% of $\hat{\mu}_{ij} < 5$.

Aspirin Use and Myocardial Infarction

Test independence

	Myocardial Infarction		
	Yes No		
Placebo	28	656	
Aspirin	18	658	

Fisher's Exact Test

For 2×2 tables, regardless of sampling, under the independence assumption, conditioning on both sets of marginal totals, the only free cell is n_{11} . It follows the hypergeometric distribution

$$P(n_{11} = t) = \frac{\binom{n_{1+}}{t} \binom{n_{2+}}{n_{+1} - t}}{\binom{n}{n_{+1}}}.$$

- For $H_0: \theta = 1$ (independence) versus $H_1: \theta > 1$, the Fisher's exact test uses the p-value $P(n_{11} \geq t_o)$ where t_o is the observed value of n_{11} .
- For $H_0: \theta = 1$ versus $H_1: \theta \neq 1$, there are different ways of computing the p-value. They lead to different p-values.

Fisher's Tea Tasting Experiment

	Guess Poured First		
Poured First	Milk	Tea	Total
Milk	3	1	4
Tea	1	3	4
Total	4	4	8

Ordinality and Scoring

If our data are ordinal, using the above X^2 and G^2 are less ideal since they ignore ordinality of data.

To keep ordinality, many people choose to assign scores to the ordinal variables: $u_1 \leq u_2 \leq \cdots \leq u_I$ be the scores for the rows, and $v_1 \leq v_2 \leq \cdots \leq v_J$ be the scores for the columns. The scores are then treated as the values of the variables. However, this approach has several serious issues:

- How shall we assign scores?
- ② Are the distance between the assigned score actually reflect the "distance" between categories?

Ordinal Variables

Suppose that both X and Y are ordinal.

- A pair of subjects is concordant if the subject ranked higher on X also ranks higher on Y.
- A pair of subject is discordant if the subject ranking higher on X ranks lower on Y.

	Job satisfaction			
Age	1: Not satisfied	2: Satisfied	3: Very satisfied	
1: < 30	34	53	88	
2: 30 - 50	80	174	304	
3: > 50	29	75	172	

Concordant/Discordant Pairs

	Job satisfaction			
Age	1: Not satisfied	2: Satisfied	3: Very satisfied	
1: < 30	34	53	88	
2: 30 - 50	80	174	304	
3: > 50	29	75	172	

- Subject A belongs to (1,1) and subject B belongs to (2,2). The pair (A, B) is concordant.
- Subject A belongs to (2,2) and subject B belongs to (1,1). Also concordant.
- Subject A belongs to (1,2) and subject B belongs to (2,1). The pair (A, B) is discordant.
- Subject A belongs to (2,1) and subject B belongs to (1,2). Also discordant.

Probability of Concordant/Discordant

Suppose that we have two independent subjects A and B from a joint distribution $\{\pi_{ij}\}$.

• The probability of a concordant pair is

$$\Pi_{c} = \sum_{i,j} \{ P [A = (i,j)] P [B = (h,k), h > i, k > j \mid A = (i,j)] \}$$

$$+ \sum_{i,j} \{ P [A = (i,j)] P [B = (h,k), h < i, k < j \mid A = (i,j)] \}$$

$$= 2\sum_{i,j} \left\{ \pi_{ij} \sum_{h>i} \sum_{k>j} \pi_{hk} \right\}.$$

The probability of a discordant pair is

$$\Pi_d = 2\sum_{i,j} \left\{ \pi_{ij} \sum_{h>i} \sum_{k < j} \pi_{hk} \right\}.$$

Gamma Coefficient

We define the Goodman-Kruskal's gamma as

$$\gamma = \frac{\Pi_c - \Pi_d}{\Pi_c + \Pi_d}.$$

- γ has the range $-1 \le r \le 1$. It work in a similar way as the Pearson correlation coefficient.
- ② If $\gamma > 0$ ($\Pi_c > \Pi_d$), then it is more likely to have concordant pairs than discordant pairs (positive trend).
- If $\gamma < 0$ ($\Pi_c < \Pi_d$), then it is less likely to have concordant pairs than discordant pairs (negative trend).
- If $\gamma = 0$, then no trend.
- **1** If X and Y are independent, then $\gamma = 0$. But $\gamma = 0$ does not mean independence.

Alternative Method

For ordinal data, we use the sample Goodman-Kruskal's gamma is

$$\hat{\gamma} = \frac{C - D}{C + D}$$

to check whether they have a monotone trend, where C is the total number of concordant pairs of observations, and D is the total number of discordant pairs of observations.

- If $\gamma = 0$, there is no trend between X and Y.
- For a large sample size, $\hat{\gamma}$ is approximately normal.

The sample version of γ is

$$\hat{\gamma} = \frac{C - D}{C + D},$$

where C is the total number of concordant pairs and D is the total number of discordant pairs.

Compute $\hat{\gamma}$

	Job satisfaction			
Age	1: Not satisfied	2: Satisfied	3: Very satisfied	
1: < 30	34	53	88	
2: 30 - 50	80	174	304	
3: > 50	29	75	172	

Wilcoxon Test or Mann-Whitney Test

Suppose that we have two random variables Y_0 and Y_1 . The Wilcoxon test or the Mann-Whitney test tests whether

$$P(Y_0 > Y_1) = P(Y_0 < Y_1).$$

In the special case where we have a $2 \times J$ table (I = 2) and the scores for X are $\{0,1\}$. We have two groups, one group with X=0 and another group with X=1. Then the general idea is that

- Assign ranks to the whole sample of size $n_{0+} + n_{1+}$.
- ② Compute the sum of ranks assigned to the group X=0.
- **1** If H_0 is not true, the sum of ranks tends to be either small or large.

The Kruskal-Wallis test generalizes the Mann-Whitney test to more than 2 groups. The Kruskal-Wallis test can be viewed as a non-parametric version of one-way ANOVA.

Be Careful With Their Hypotheses

	Y			
X	1	2	3	4
0	0.05	0.5	0.35302019	0.09697981
1	0.1666553	0.2833447	0.5000000	0.0500000

Histogram of p-value

