Long-Term Simulation of Power System Dynamics using Time Sequenced Power Flows

Thad Haines

Montana Tech - Master's Thesis Research Project

February 5th, 2019

Overview of Project

TODO:

What is LTD - why use it system assumptions/main methods of LTD goals of research/ code

Overview of parts involved in simulation (sequence diagram) other explanations about computery stuff: ipy vs py? flow chart of predicted work flow.

EE554.sav test system:

Generators are identical. PSLF models have exciters.

+20 MW Load Step at t=2

System Response

+20 MW Load Step at t=2

Detailed Frequency Response

-20 MW Load Step at t=2

System Response

-20 MW Load Step at t=2

Detailed Frequency Response

Dynamic model 'pgov1'

Proportional gain control of generator P_M

Entered into system via parsed text file:

Dynamic model 'pgov1' experiment: -20 MW t=2, +30 MW t=32

pgov1 on Gen 1

Dynamic model 'pgov1' experiment: -20 MW t=2, +30 MW t=32

pgov1 on Gen 1 & Gen 2

Thad Haines MT TECH

Time [sec]

Time [sec]

- Much more work to do.
- Frequency effects should be accounted for in swing equation.
- ► Euler Integration tracks PSLF mean frequency well.
- Custom dynamic model implementation seems realizable.