Day 2 – Phase 2: File & Directory Management + Search

Tasks:

• Inside iot_logger, create logs/temperature.log and scripts/sensor_script.py.

```
salma2002@MSI:~/iot_logger$ touch logs/temperture.log scripts/sensor_script.py
salma2002@MSI:~/iot_logger$ ls logs
temperture.log
salma2002@MSI:~/iot_logger$ ls scripts
sensor_script.py
salma2002@MSI:~/iot_logger$
```

• Copy /etc/services into data and search for patterns like ssh or http.

• Use regex to find lines starting with t or containing numbers.

```
logger/data$ grep -E '^t|[0-9]' services
                      /tcp
                                                               # TCP port service multiplexer
 tcpmux
echo
                       /tcp
                      /udp
/tcp
/udp
echo
discard
                                          sink null
sink null
discard
                        /tcp
/tcp
/tcp
/tcp
/tcp
/tcp
/tcp
/tcp
systat
daytime
davtime
netstat
qotd
chargen
                                          ttytst source
chargen
                                          ttytst source
ftp-data
ftp
                        /udp
/tcp
/tcp
/tcp
fsp
                                          fspd
                                                               # SSH Remote Login Protocol
ssh
 telnet
                                         mail
smtp
 ime
                        /tcp
                                          timserver
                        /udp
/tcp
/tcp
/udp
 ime
                                          timserver
whois
                                          nicname
                                                               # Login Host Protocol (TACACS)
 tacacs
                        /tcp
/udp
/udp
domain
                                                               # Domain Name Server
domain
bootps
                        /udp
bootpc
 tftp
                        /udp
                        /tcp
/tcp
gopher
finger
                                                               # Internet Gopher
                        /tcp
                                                              # WorldWideWeb HTTP
http
                                          www
                                          www kerberos5 krb5 kerberos-sec# Kerberos v
kerberos5 krb5 kerberos-sec# Kerberos v
tsap # part of ISODE
kerberos
                        /tcp
kerberos
                        /udp
iso-tsap
                         2/tcp
```

• Locate .txt files in /home/ and remove temporary ones if needed.

```
salma2002@MSI:~/Desktop$ cd ..
salma2002@MSI:~$ cd iot_logger
salma2002@MSI:~/iot_logger$ cd data
salma2002@MSI:~/iot_logger/data$ ls
services
salma2002@MSI:~/iot_logger/data$ touch temporary.txt
salma2002@MSI:~/iot_logger/data$ ls
services temporary.txt
salma2002@MSI:~/iot_logger/data$ man find

salma2002@MSI:~/iot_logger/data$ find /home/salma2002/iot_logger -type f -name "*.txt"
/home/salma2002@MSI:~/iot_logger/data$ rm temporary.txt
salma2002@MSI:~/iot_logger/data$ rm temporary.txt
salma2002@MSI:~/iot_logger/data$ ls
services
salma2002@MSI:~/iot_logger/data$
```

Create hard and symbolic links for temperature.log.

```
salma2002@MSI:~/iot_logger/logs$ ln ~/iot_logger/logs/temper
ture.log ~/iot_logger/logs/temperture_hard.log
salma2002@MSI:~/iot_logger/logs$ ln -s ~/iot_logger/logs/tem
perture.log ~/iot_logger/logs/temperture_soft.log
salma2002@MSI:~/iot_logger/logs$
```

Display directory structure to confirm organization.

```
salma2002@MSI:~/iot_logger/logs$ tree ~/iot_logger/logs/
/home/salma2002/iot_logger/logs/

— temperture.log
— temperture_hard.log
— temperture_soft.log -> /home/salma2002/iot_logger/logs/t
emperture.log

1 directory, 3 files
salma2002@MSI:~/iot_logger/logs$
```

Open-Ended Questions:

• Explain the different types of files in Linux (regular, directory, symbolic link, device, etc.) and how to check them with commands.

1. Regular Files

Regular files are the most common type, used to store data. They can be:

- Text files → Contain human-readable characters (e.g., .txt, source code files).
- Binary files → Contain compiled programs or other non-readable data (e.g., executables).
- Media files → Store multimedia content like images, videos, and music (e.g., .jpg, .mp4).

2. Directory Files

A directory is a special type of file that holds references to other files or subdirectories.

• Example: /home/user/ contains a user's files and folders.

3. Symbolic Links (Symlinks)

A symbolic link is a pointer (shortcut) to another file or directory.

- It doesn't contain data itself, only the path to the target.
- Example: /usr/bin/python -> /usr/bin/python3.11

If the target is deleted, the symlink becomes broken (dangling).

4. Character Device Files

Character device files represent devices that transfer data one character at a time.

- Common examples: keyboards, mice, and serial ports.
- Typically found in /dev/.
- Example: /dev/input/mouse2
- Can be created using the mknod command.

5. Block Device Files

Block device files represent devices that handle data in fixed-size blocks.

- Commonly used for disks and storage devices.
- Found in /dev/.
- Example: /dev/sda1 (a partition on a hard disk).

6. FIFO (Named Pipes)

FIFO files are used for inter-process communication (IPC).

- They allow processes to pass data so that it is read in the same first-in, first-out order it was written.
- Created with the mkfifo command.
- Example:
- mkfifo mypipe

How to Check File Types

Linux provides several ways to check file types:

ls -l → Displays file type in the first character (- = regular, d = directory, l = symlink, c = character device, b = block device, p = pipe).

Reference: Types of files in Linux

• What's the difference between a hard link and a symbolic link? Give real examples of when to use each.

In Linux, files are represented by inodes, which store metadata and point to the actual file data on disk. A file in the filesystem is essentially a name (link) that refers to an inode.

Hard Links

- A hard link is an additional filename that points directly to the same inode as the original file.
- Deleting the original file does not remove the data, because the inode remains as long as at least one link exists.
- Renaming or moving the original file also does not affect the hard link, since both names point to the same inode.
- Any modification to the data in the inode is reflected in all hard-linked files.
- Limitation: Hard links can only exist within the same filesystem.

Example use case:

When you need multiple filenames pointing to the same physical data, such as maintaining different references to a configuration file without duplicating storage.

Symbolic Links (Symlinks)

- A symbolic link is a special file that stores the path to another file.
- Unlike hard links, a symlink does not point directly to the inode.
- If the target file is deleted, renamed, or moved, the symlink becomes a broken link (dangling).

 Symlinks can span across different filesystems because they reference names, not inodes.

Example use case:

When you want a shortcut or alias to a file or directory, such as linking /etc/nginx/sites-enabled/ to files in /etc/nginx/sites-available/.

Reference:

What is the difference between a symbolic link and a hard link? - Stack Overflow

• Is rmdir the same as rm -r when deleting directories? Explain

No, they are not the same.

- rmdir: This command can only delete a directory if it is completely empty. If the directory contains any files or subdirectories, the command will fail.
- rm -r: This command recursively deletes a directory along with all its contents (files and subdirectories). It is more powerful and also more dangerous because it removes everything without requiring the directory to be empty.

Reference: <u>Difference between rmdir and rm -r</u>