Report

IMPORT AN EXCEL FILE WITH PROC PRINT STATEMENT AND MODIFY IT

```
CODE:
```

```
*Command for importing excel file;

proc import datafile = "/home/u59242808/Data Files/SAS Data1.xlsx"

out=SASOD_data1 dbms = xlsx replace;

run;

*modifing the given data file (creating variables);

Data SASOD_data1modified;

set SASOD_data1;

weightloss=StartWeight - EndWeight;

run;

proc print data=SASOD_data1modified;

run;
Copy
OUTPUT:
```

Obs	IdNumber	Name	Team	StartWeight	EndWeight	weightloss
1	1023	David Shaw	red	189	165	24
2	1049	Amelia Serrane	yollow	145	124	21
<u> </u>	1249	Man Manag	£क्ष्मी	210	192	18
4	1988	Republisher.	geddan.	经线	97	97
<u> </u>	410747	Anddony big chickle	1796E	127	6 [梁	6 -

- · We can add a comment line inside the SAS code starting with star (*) and ending with semi-colon (;) in the same line.
- · "Proc import datafile=" is used to import a datafile and the position of the file which we want to import is written next to it inside "". We can get the position from datafile properties.
- · Out = we give the name to the datafle.
- · Dbms = for excel f le we write xlsx, for csv f le we write csv.
- · Then we include **replace** so that if by the same name another datafle is saved this new datafle will replace that dataset and then we use semi-colon to end this particular program.
- · Then we write run; to run this particular lines of codes.
- · Then for modifying this data, at first we give a datafile name with the code data new_name;
- · Then we call the dataf le which we want to modify by the code set old_ name.
- · In this program we had StartWeight and EndWeight columns and we want a new program by the name weightloss and then we will simply just put the formula/equation like weightloss = Startweight EndWeight.
- · Then we put run; and run this particular lines of codes.
- We can also print the data in beautiful form with this code **proc print data** = **datafile**_name which we want to see.

IMPORT AN EXCEL FILE WITH PROC PRINT STATEMENT AND MODIFY IT

CODE:

/* importing file*/

```
proc import datafile="/home/u59242808/Data Files/SAS Data2.xlsx"
 out=data2
 dbms=XLSX replace;
run;
/* modifying the data*/
data data2_modified;
set data2;
 total_NCI = (NCI_2021 + NCI_2020 + NCI_2019 + NCI_2018 + NCI_2017);
 total_NCI_2 = sum(NCI_2021, NCI_2020, NCI_2019, NCI_2018, NCI_2017);
 average_NCI = total_NCI / 5;
 average_NCI_2 = mean(NCI_2021, NCI_2020, NCI_2019, NCI_2018, NCI_2017);
run;
proc print data= data2_modified;
run;
Сору
OUTPUT:
```

Obs	Sr. No	Company	NCI_2021	NCI_2020	NCI_2019	NCI_2018	NCI_2017	total_NCI	total_NCI_2	average_NCI	average_NCI_
- 1	1	RIL	74257	-143583	-53949	-59109	-54949	-237333.00	-237333.00	-47466.60	-47466.6
2	2	ICICI Bank	-54185.5	-36945.4	-24040.8	-38965.6	7000.3	-147137.00	-147137.00	-29427.40	-29427.4
3	3	Axis Bank	-54179.7	-9667.6	-18748.5	-10252.7	-12632.7	-105481.20	-105481.20	-21096.24	-21096.2
4	4	IOCL	-22154	-26882.4	-20771.5	-15778.7	-14733.9	-100320.50	-100320.50	-20064.10	-20064.1
5	5	Tata Steel	-13008.5	-17634.7	-16350	-12273.4	-3956.4	-63223.00	-63223.00	a12644.60	a12644.6
61	6	JSW/Steell	-2609-	-49092L	-17432L	-613%	6284	45554 00	46551.00	-9110120	-901002
	2	0000000	-03700002	APRILITY	40000000			4689443	W600100-	41020380	-1100 0.00
		191935 p.	35553-55	_			19999	6662A2556	632052-08	3271.72	22754
24		2000025	336580 SS		.5860E 2	365566	A127 27E	20080150	28(882)37	696868	-676%.C
el/a	66	Nacel Foods	500,000	J. (87) 5	2666	.0929 C	40024	235W08.5W	250000 SW	400036032	400854
10.00		N82		69295A6	50304.69	DAME NO.	54606.04	CAMPORTO	-80800560	0075.73	40000
1260		The ball of the same	40.500	Second	ALCOHOLO.	2000	46080104	70.000mm	GOSGS-GO	5000000	2006
200	10	Design Course	4509.85	TO SERVE	AMARINA CO	600000	5960		20000000000000000000000000000000000000	-9678.76	4605.2
	48	Ulital tem			-8094.08	-					
4.5		Hedeol Burk	-479/8/28	-4675000TV				A1800 A180		-397E-3F	2000
99		Adjust Marky	75000	-34	3663 C					-5028044	-5028.A
17.		Distributions.	-2000040			-74(0)/43			A\$70.16,000	-8018/91	-60100
et i	-	Àâŋs.	-6269	-100	11 .55%			1000000	40004907	-200	-20003
	- 10	Miser Remerk	200000	-0000000	-34 min	ASS MES	400,000,00	713KB/B	- 18 San Alia	-86 9060	48000
490		Makek	-1393 67	3825.60	80000	2814.21	49000400	1,000,000,000	4000000	-87875/09	-23104
	20	20	58648A	48%。百	4001.75	469126	3780,33	1056.0	- 7344/9	-2003,06	-9703,0
	21	STATIONS	880926	-070-99	-8685	435634	-5582-19	13/10/20	4000000	-2696.78	-8696.8
22	22	Scottice.	-500007	4195.98	3575.SE	-2275.5	2572.9	200000	-900079 844	-265631	-9166.5
20	23	Private.	2578.96	1888.88	8370.21	400.33	2626.68	-44600.00	1970010	3360.28	25602
200	26	20808 Lees	-1394.97	8362.05	-00/0.c	-5865.0b.	2000,00	#25692,00	-1900 to (0)	-220020	-22002
1900	367	BESSEL	-7333BE	-4576(Z ²)	-1816/80	2000	456,07	42307.86	4350000	2053.EE	46600
186	288	Mater	503362	-2575%	47.582	5959.50°	2353.25	-590000	490566	5800,777	-1950/77
-			,	,				,			
25	25	M&M Fin	-7382.59	-2572.71	-1316.85	211.04	-256.47	-11317.58	-11317.58	-2263.52	-2263.5
26	26	MRF	-5063.42	-167.08	-1309.83	-1969.64	-1393.89	-9903.86	-9903.86	-1980.77	-1980.7
27	27	<u> Анцелине</u>	-1155.48	-4689.58	-897.62	422.49	-2474.63	-8894.82	8894.82	-1778.86	-1778.6
1	28-11	Ath Militia	-5980.6	20169	-1580-4	4818	-36656		- 地區級 4 億	476260	4762
20	- 29	letwe	465740	49922	- WAR	-209-65	400000	- PER 1945	47792.90	-1046157	-KENET
68	23	den	-279259	35057	2000	-202-02	-2542.94	1000.00	-7000 to	496999	-19725
8	221	Charge C	20000	JEGG CO.	.930034iP	-2453 441	-21116ir	280236	-2606.06	4909.00	-49581
124.1	38	Mela	1986.90	4112/195	-012339	462.30	4560 300	-WEI 60	4860.00	-6459/14	-0.856.5
ž.		tarin	-2/202.52	200. Fd	2000	705,32	-24/6/65	.5095.5.1	7388.54	0.006,01	14250
,		keleEdecto	1 .288656	9750.7 F	37204	18844.07		4992.12	4992.53	4592.68	4382.6
			-200000	20000-04	669.70		207-24	4049.00		-4080-02	
		intel Sometime		The second second					-6846(08		-13665
8		Mad (brees	-2274	-589	894.62	2245100	4541.00	679879	4792,74	-9363:74	-4363.7
ii 💮		\$2.0mg2	-\$69.74	A297 HE	-290A59	-819.95	550.60	-5897.00	5698.69	-2072.78	-21727
*		275 State	-1251.50	-000.00	-03077	-000 M	-5894.54	-600271	all sold in	-9978-94	-3678/
	35-1	had to Health	97130	569 (720	20.	2579.7	5093,59	-5003,50	1004.70	46667
	₩.		-4770.72	_	-7480 SS	462.88	-275.50	8893	5502.52	2000	-20075
37	40	Tetrien Irá	-0693	2264	-845	2205.07	7225.97	443.0kg	-5653.4%	4688.68	-4930.0
	67	Афрей Реукца	380,4	9889	4005(4)	-05/85/06	66479	533.60	多级数	-4008,30	-20004
1	63	Accept Physics	824.28	269,48	-873/36	-4208.99	-580.6	-6269.77	-6169.77	-2632.96	-2002
2		VB Wolse	-\$20,95	-4200.00	-4002 20	-9539.36	769.10	4025-27	-900122	-1918.26	-49482
*	66		205.6	207,03	6957.95	-593,35	-026,06	6Me21	5274,21	-strate	-1914
**	_	Sta Comme			7460,13	41.23	-584.61	4902.59	4983.59	000.54	400
2//	_	State Comme	2760	243	4629,86	-179/39	0002.64	401818	492.%	922,65	-8600
60-			273.55	47523	-6305:32	-2181	86.02	-0257.28	-4207.39	-207,68	-207.6
-		AT SIG									
38		Statut Forge	1229.25	729.84	4001,83	-695,84	-579.83	-6937.29	4787.29	827,48	-837,4 -829,0
10 7	50		597.39	4836.51	2505.93	7788.27	-08.66	4600.00	-6200.00	829.02	

In this program the things we learnt new are pointed below:

- In case of modifying a dataf le, we can simply put the new_variable_name
 equation like previous work or we can also use new_variable_name
 formula.
- Here we used

```
total_NCI = (NCI_2021 + NCI_2020 + NCI_2019 + NCI_2018 + NCI_2017);
```

which is the equation.

```
total_NCI_2 = sum(NCI_2021, NCI_2020, NCI_2019, NCI_2018, NCI_2017);
```

but in this case we simply put the sum formula

· Also in case of finding average we used mean formula.

IMPORTING DATAFILE WITH INFILE STATEMENT

```
CODE:
```

```
/*reading data separated by blank*/
data sdata_blank;
infile "/home/u59242808/Data Files/DATA_blanks.txt";
input Names $ Gender $ Age Weight;
run;
proc print data=sdata_blank;
run;
/*reading Data separated by comma(csv file)*/
Data sdata_commas;
infile "/home/u59242808/Data Files/DATA_commas.csv" dsd;
input Names $ Gender $ Age Weight;
run;
proc print data=sdata_commas;
```

```
run;
/*reading data separated by other deliminators like colon in this case*/
data sdata_otherdel;
infile "/home/u59242808/Data Files/other_del_data.txt" dlm= ":";
input Names $ Gender $ Age Weight;
run;
proc print data= sdata_otherdel;
run;
Copy
OUTPUT:
```


- · At frst, we give the datafle name we want to give the data for this particular notebook as data name.
- · Next, we write infile "datafile location" to import the datafile.
- · In case of this dataf les imported here the variables names were not defined in the text/csv fles. So, we used input and wrote the variable names one by one.
- · In case of character type variables we have to use \$ sign after the variable name to define it as character type and in case of numeric values we don't have to put any sign after the variable names.
- · After that, when we imported the same datafle from a csv fle instead of a text fle we had to include dsd after the infle "location" statement. This dsd specifies that when data values are enclosed in quotation marks, delimiters within the value and are treated as character data. The DSD option changes how SAS treats delimiters when you use LIST input and sets the default delimiter to a comma. When we specify DSD, SAS treats two consecutive delimiters as a missing value and removes quotation marks from character values.
- · In case of importing a text f le where the values are separated with any delimiters like semi-colon, comma, colon, or any others then we simply have to define the delimiter like dlm =": " after the inf le "location" statement.

IMPORTING A TEXT FILE DATASET WHERE FIRST ROW IS HEADER BY BOTH INFILE AND PROC PRINT STATEMENT

CODES:

```
/*import txt file with data infile statement(blank delimiter), first row as header*/
data bank_full_blank;
infile "/home/u59242808/Data Files/Bank_full_Blank.txt" firstobs= 2
delimiter= " ";
input age job $ marital $ education $ default $ balance housing $ loan $ contact $ day montant;
/*import txt file with proc import (blank delimiter) first row as header*/
```

proc import datafile="/home/u59242808/Data Files/Bank_full_Blank.txt"

```
out=data_full_blank_2_sasdata dbms=dlm replace;
delimiter=" ";
getnames=yes; /*including first line as heading in the data*/
run;
Copy
OUTPUT:
```


- \cdot In case of comment lines inside the codes we can also use / comment / .
- · In case of infile statement we have to define the names of the variables ourselves and as the first row is our header in the datafle, so we have to define firstobs = 2 so that the sas environment takes the values of the variables from the second row ignoring the first row.
- \cdot As there is no delimiter used, we will simply define delimiter= " " putting a blank inside the quotations.
- · Then we will have to manually put the variable names in the input statement.
- \cdot In case of importing the same f le by proc print statement, we will just simply put a code getnames = yes; and the sas environment will understand and take that f rst line as heading or simply variable names.

READING DATAFILES IN DIFFERENT FOR-MAT

CODE:

- /st Reading datafles in different format using informat statement
- SAS has different formats but we'll work with only two kinds
- i. standard numeric which is in the format w.d
- ii. character value which is in the format Sw.

```
eg, in w.d format, 145 \, \text{kg} is 3. format and 2.1 \, \text{is} \, 3.1 \, \text{format*}/
data sdata_ column;
inf le "/home/u59242808/Data Files/DATA_column.txt";
input
@1 Name $5.
@6 Gender $1.
@7 Weight 3
@10 DOB mmddyy10;
run;
/ 1 Jan 1960 = 1, 2 Jan 1960 = 2 and so on for date format/
 / \ display \ DDMonth \ YYYY \ format \ /
proc print data= sdata_ column;
format DOB date9.;
run;
\ /\ display\ MM/DD/YYYY\ format\ /
proc print data= sdata_ column;
format DOB mmddyy10.;
run;
OUTPUT:
```

Obs	Name	Gender	Weight	DOB
1	Tim	М	145	210CT1978
2	Sara		130	20SEP1964
3	Mike	M	180	23NOV1965
4	Laura	F	130	06NOV1980
5	Sean	M	167	07APR2000

Obs	Name	Gender	Weight	DOB
1	Tim	M	145	10/21/1978
2	Sara		130	09/20/1964
3	Mike	M	180	11/23/1965
4	Laura	F	130	11/06/1980
5	Sean	M	167	04/07/2000

· During importing a fle through infle statement from a text fle, if there is no blanks or space or delimiters or the space between one value from the next one is not equal but the variable values are are in same space length then we can read the datafle in informat statement.

For eg. if 1-5 available space uses for Name variable and 6th space is available for gender, 7th-9th space takes weight and from 10th till end it takes dob then

we can define them just by using @1 variable_name \$5. This @1 define that this particular variable will take value from 1st place and \$sign will define that it is a character variable and this 5. Will define that it will take 5 places from 1 till 5.

- · Similarly @6 Gender \$1. Will define that Gender variable will start taking values from 6th space till only 1 space from that which means only 6th space and it will be a character type variable.
- · Date has many formats in SAS environment.

Normally if we don't define any format it will take 1st January 1960 as 1, 2nd January 1960 as 2 and so on for date format.

But, we can change it according to our needs.

Like, here we used 2 formats.

- i) Format DOB date9. which will show us the date as 01JAN1960 or 11NOV2021 like that.
- ii) Format DOB mmddyy10. which will show us the date as 01/01/1960 or 11/11/2021 like that.

IMPORTING DIFFERENT SHEETS FROM EXCEL TO SAS

CODE:

```
/ Importing different sheet other than the first one from Excel to Sas/
proc import dataf le= "/home/u59242808/Data Files/excel_ data.xlsx"
out= dataset1 dbms= XLSX replace;
sheet= "name_ class";
run;
/ Importing some selected ranges of a sheet from Excel to SAS/
proc import dataf le= "/home/u59242808/Data Files/excel_ data.xlsx"
out= dataset1 dbms= XLSX replace;
sheet= "name_ class";
range= "A1:B8";
run;
proc print data= dataset1;
run;
```

/ by using noobs we are ignoring the obs no column/
proc print data= dataset1 noobs;
run;
OUTPUT:

 \cdot Here, we imported the datafle by the same process and just added an extra code line which is

```
Sheet= "name_class";
```

By this way, no matter how many sheets are there in that particular excel fle, only the sheet named as name_ class will be imported.

 \cdot Similarly, if we want to take only some particular values/observations from a particular sheet of the excel f le we will simply define the range we want to take like

Range= "A1:B8" like that.

· No matter the dataset, sas environment always put observation number by default in the imported dataset. If we want to ignore that observation number column from our output we will add a command noobs after the proc print data= dataset_name. That way, when we print our results at the end, the observation number column is not printed.

CREATE A DATAFILE

```
CODE:
/ Create datafile/
libname scores "/home/u59242808";
/ Permanent Data File/
data scores.student_ math;
input stu_ names $ math_ score;
datalines;
Speedy 90
Tim 91
Shawn 100
Mike 60
;
run;
proc print data= scores.student_ math;
run;
/ Temporary data file (data go away the next time i login)/
```

```
data student_ math2;
input stu_ names $ math_ score;
datalines;
Speedy 90
Tim 91
Shawn 100
Mike 60
;
run;
proc print data = student_ math2;
run;
OUTPUT:
```


- $\cdot\;$ We can create a datafle by ourselves in SAS environment as well
- i) Permanent dataf le
- ii) Temporary dataf le.
- $\cdot\,\,$ In case of creating a permanent datafle we will have to save the datafle in a library.

Here, I saved it in my scores library by and saved the datafle as student_math by using the code data scores.student_math.

· Then, I have to put the variable names as input

- · Then, by defining datalines, we will just simply put the values and observations.
- · In case of a temporary datafle, we don't have to define any library name and we can simply just start by defining data dataset name as data student_math2 and then put the input variable names and observations.

SAS function

```
CODE:

proc import dataf le= "/home/u59242808/Data Files/score_ data.xlsx"

out= score_ data1 dbms= XLSX replace;

run;

/* converting Gender variable from small to upper letter

another function is used to f nd out the length of name variable observations*/

data score_ data_ new;

set score_ data1;

gender_ func = upcase(gender);

length_ name = length(name);

run;

proc print data= score_ data_ new;

run;

OUTPUT:
```


- · At frst we imported the data.
- \cdot Then we saw that the gender variable was in lowercase we want the uppercase values and we also need the length of the names.
- \cdot So, we created a new variable as ${\tt gender_func}$ and used the upcase statement to convert the alphabets present in the gender to uppercase using the statement

```
Gender\_func = upcase(gender);
```

· We also used length statement to f nd out the length of the name observations in our data and put the output in a new variable by the name length_ name like

```
Length\_name = length(name);
```

IF-THEN STATEMENT

CODE:

```
/ using if-then statement/
data score_data1_ ifthen;
set score_data1;
if gender = "m" then gender_num = 1;
else gender_num = 2;
run;
```

proc print data= score_data1_ifthen; run;

OUTPUT:

1 Tim 88 80 99 m M 3 2 Sharon 95 90 90 f F 6 3 Sean 45 78 56 m M 4 4 Mike 89 . 77 m M 4 5 Tina 54 69 69 f F 4	Obs	name	score1	score2	score3	gender	gender_func	length_name
3 Sean 45 78 56 m M 4 4 Mike 89 . 77 m M 4 5 Tina 54 69 69 f F 4	1	Tim	88	80	99	m	M	3
4 Mike 89 . 77 m M 4 5 Tina 54 69 69 f F 4	- 2	Sharon	95	90	90	f	F	6
5 Tina 54 69 69 f F 4	3	Sean	45	78	56	m	M	4
	4	Mike	89		77	m	M	4
Contract St. 10 March March 15		Tina	54	69	69	f	F	4
To 20 M		Corp	S7.	79,	74	j.		100 A
	Special Control of the Control of th				27 - 120 - 22	W.	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	5

EXPLANATION:

- \cdot We used the previous dataset here and that's why we didn't have to import the dataf le again here.
- · Here we want to convert the gender m-f values to binary form.

So, we used if then statement here and made a new variable as gender_num which will give us value 1 if gender is mail and 2 if gender is female.

By using if then statement we wrote here if gender = "m" then gender_ num
1 else gender_ num
2 and then printed the output.

IF ELSE THEN STATEMENT

CODE:

proc import dataf le= "/home/u59242808/Data Files/score_data_miss.xlsx" out= score_data_miss dbms= xlsx replace; run;

data score_data_miss_cond; set score_data_miss;

```
if gender = "m" then gender_num = 1;
else if gender = "f" then gender_num = 2;
else gender_ num = .;
avg_ marks = mean(score1, score2, score3);
proc print data= score_data_miss_cond;
run;
data score_data_miss_cond2;
set score_data_miss_cond;
length take $12;
if avg_marks > = 90 then do
grade = "A";
result = "Pass";
end:
else if avg_marks > = 80 then do
grade = "B";
result = "Pass";
end:
else if avg_marks > = 70 then do
grade = "C";
result = "Pass";
end;
else if avg_marks > = 60 then do
grade = "D";
result = "Pass";
end;
else if 0 < = avg_marks < 60 then do
grade = "F";
result = "Fail";
end;
else do
```

```
grade = ".";
result = ".";
end:
/ create two variables i) complete when all the marks are given and ii) pass if
the average score is \geq = 60/
if score1 \sim = . and score2 \sim = . then take = "Complete";
else take = "Incomplete";
run;
proc print data= score_data_miss_cond2;
/ Divide the file into two parts using if statement where part 1= who complete
the assignment and 2= incomplete/
data subset_ 1;
set score_data_miss_cond2;
if take = "Complete";
run;
data subset_ 2;
set score_data_miss_cond2;
if take = "Incomplete";
run;
proc print data= subset_ 1;
proc print data= subset_2;
run;
/ Divide the file into two parts using delete statement where part 1= who complete
the assignment and 2= incomplete/
data subset_3;
set score_data_miss_cond2;
if take = "Incomplete" then delete;
run;
data subset_4;
set score_data_miss_cond2;
if take = "Complete" then delete;
```

run;
proc print data = subset_ 3;
proc print data = subset_ 4;
run;

OUTPUT:

Obs	name	score1	score2	score3	gender	gender num	avg marks
1	Tim	88	80	99	m	1	89.0000
2	Sharon	95	90	90	f	2	91.6667
					_		
3	Sean	45	78	56	m	1	59.6667
4	Mike	89		77	m	1	83.0000
5	Tina	54	69	69	f	2	64.0000
6	Sara	67	70	.74	f asset		72,0000
www.toi	Brown of a	boneser	***	- 87	78		
The state of		X-		980	5963		- g
1990 = .	5 8	ernere P		207	00 -	7	
5333 i	. 98.1 v	-	655	18,	- COO .		3- 8
XXXX	. 88. A	VE.	S2	322	98	ne j	e 9
WW.	-	erik .	₩.	79	45	70	
	** 🥸 a	Ea .					
	e	**			*	•	•
01-		4 2					
Obs na	me score	score2	score3 ge	nder gend	er num av	g marks take	grade result
		8 90°	90 f		2	21.8967 Complete	A Pass
* g : 8e		5 78 ·	56 m	:	4 ·	59.5657 Complete	
S WE		#	77 . 22		ē .	83.6050 Incomplet	to 23 Pens
. 6. 3s		s 99	500 f	:	2	64.0000 Complete	D Fees
		76	74 . 9	i	2	75.0000 Complete	© Pess
<i>II</i>	R	8 82 ·	78 . 55		9	85.9590 Complete	
. 8.4	mae .	. 98	88 . sa	-	9 .	\$2,5000 Incomplete \$8,3333 Commists	
1000		85 73 2 59	88 m 86 m	÷	*	88.3833 Complete 95.0000 Complete	A Page
2 29 11		9 79	70 . 52			72.9987 Complete	C Peas
. % . A							

- · Here, at f rst we imported the dataf le which is the f rst output.
- · Then, we used if then statement to convert gender to binary in a new variable <code>gender_num</code> and made another variable avg_ marks which implies the average of score1, score2, score3 and printed the frst output.
- · Then, we made 3 new variables take, grade and result.

We take the length of take variable as 12 as by default it takes only 8 length.

We defined if $avg_marks > = 90$ then grade will show A and result will show pass

If $avg_marks > = 80$ then grade will show B and result will show pass and so on.

If avg_ marks lies between 0 to 60 then grade will show F and result will show Fail and at last, when there is no avg_ marks given, then grade and result will also show blank.

Later, in case of take variable where there is at least 1 missing value in score1, score2, score3, take will show incomplete and if for any student, all 3 marks are given, it will show complete.

And this result is shown in output2

- · Then we made 2 subset of this output by 2 different processes where 1 subset will show all the student who has take = complete and another output will show who has take = incomplete.
- i) We simply took the dataset and checked if take = complete given, then it will be printed in the subset 1.
- ii) If take = incomplete, then those observations will be printed on subset2
- iii) Then again we took the entire dataset and checked if take = incomplete then deleted those values and saved it as subset3.
- iv) Lastly, if take = complete, then deleted those observations and saved it as subset 4.

1D ARRAY

CODE:

· ARRAY:

procimport dataf le= "/home/u59242808/DataFiles/score_data_miss999.xlsx" out= score_data_miss999 dbms= xlsx replace;

run;

proc print data = score_data_miss999,

run;

One-dimensional ARRAY, converting the 999 values to period(. / space);

data dataset 1:

```
set score_ data_ miss999,
array score_ var(3) score1 score2 score3;
do i = 1 to 3;
if score_ var(i) = 999 then score_ var(i) = .;
end;
run;
proc print data = dataset1;
run;
OUTPUT:
```

Obs	name	score1	score2	score3	gender
1	Tim	88	80	99	m
2	Sharon	95	90	90	f
3	Sean	45	78	56	m
4	Mike	89	999	77	m
5	Tina	54	69	69	f
6	Sara	67	78	74	f
7	Spencer	98	82	78	m
8	James	999	96	89	m
9	Jaden	98	78	89	m
10	Will	92	89	98	m
11	Jack	69	79	70	m
12	Mila	999	999	999	

Obs	name	score1	score2	score3	gender	i
1	Tim	88	80	99	m	4
2	Sharon	95	90	90	f	4
3	Sean	45	78	56	m	4
4	Mike	89		77	m	4
5	Tina	54	69	69	f	4
6	Sara	67	78	74	f	4
7	Якникоз	93	32	3 3	W.	4
	SHIKK		98	89	100	A.
\$7	12856	Ø;≓	74	40	m	4
	198	3E	88	SF2=	M	4
- 44	Jest	000		20	m	4
NZ ₆	.11	-			4 .	-2

- · At frst, we imported the datafle.
- \cdot As we can see that there are some 999 values there which are wrong and we want to convert those to . null values and we used 1Dimensional array here for that purpose.
- \cdot We defined a array as score_var here which has 3 variables score1, score2, score3.
- · Then for every ith variable of score_var we checked if any value is 999 or not and if it is 999 then we changed it to "." (null value) and if it is not 999 then we stopped for that particular value and checked the next one.

GIVING TITLE TO A DATASET

CODE:

```
proc import dataf le= "/home/u59242808/DataFiles/score_ data_ miss777.xlsx"
dbms = xlsx out = score_ dataO replace;
run;
proc print data= score_ dataO,
title "missing values are shown as 777";
run;
OUTPUT:
```

ı	missing	values	are sho	wn as 7	77
Obs	name	score1	score2	score3	gender
1	Tim	88	80	99	m
2	Sharon	95	90	90	f
3	Sean	45	78	56	m
4	Mike	89	777	77	m
5	Tina	54	69	69	f
6	Sara	67	78	74	f
7	Spencer	98	82	78	m
8	James	777	96	89	m
9	Jaden	98	78	89	m
10	Will	92	89	777	m
11	Jack	69	79	70	m
12	Mila				

- · Here, the dataset is imported through proc print statement.
- · Then while print the output data we used a title code after the proc print data statement and before running it. That way we can give any title to any dataset.

ADDING LABELS TO THE VARIABLES

- · We generally add labels for listing and reporting purpose.
- · Syntax for label:

label var_ name = "Variable name";

or

Obs	name	Math score	Stats score	English score	gender
1	Tim	88	80	99	m
2	Sharon	95	90	90	f
3	Sean	45	78	56	m
4	Mike	89		77	m
5	Tina	54	69	69	f
6	Sara	67	78	74	f
7	Spencer	98	82	78	m
8	James		96	89	m
9	Jaden	98	78	89	m
10	Will	92	89	98	m
11	Jack	69	79	70	m

Obs	Students name	Math score	Stats score	English score	gender
1	Tim	88	80	99	m
2	Sharon	95	90	90	f
3	Sean	45	78	56	m
4	Mike	89		77	m
5	Tina	54	69	69	f
6	Sara	67	78	74	f
7	Spencer	98	82	78	m
8	James		96	89	m
9	Jaden	98	78	89	m
10	Will	92	89	98	m
11	Jack	69	79	70	m

Obs	name	score1	score2	score3	gender
- 1	Tim	88	80	99	m
2	Sharon	95	90	90	f
3	Sean	45	78	56	m
4	Mike	89		77	m
5	Tina	54	69	69	f
6	Sara	67	78	74	f
7	Spencer	98	82	78	m
8	James		96	89	m
9	Jaden	98	78	89	m
10	Will	92	89	98	m
-11	Jack	69	79	70	m

Ob	s student name	Math score	Stats score	English score	gender
	1 Tim	88	80	99	m
	2 Sharon	95	90	90	f
	3 Sean	45	78	56	m
	4 Mike	89		77	m
	5 Tina	54	69	69	f
	6 Sara	67	78	74	f
	7 Spencer	98	82	78	m
	8 James		96	89	m
	9 Jaden	98	78	89	m
- 1	0 Will	92	89	98	m
1	1 Jack	69	79	70	m

 $\cdot \;$ At frst, we imported the data.

- · Then we used the label syntax for sas in our program and gave the label for Math score, Stats score, English score for score1, score2, score3 respectively through the datastep and printed it keeping in mind that we have to add LABEL statement in while printing the dataset.
- · Later, we gave the label for name as Students name and printed it.
- · Later, we only printed the data not using the LABEL statement in the proc print statement and got the original variable names in our output.
- · We can also split the label name in two different lines in the variable column by defining some concatenation as label split and using it in the label name code itself. We used as concatenation here and used label name = studentname and got student and name splitted in two different lines in the variable name space.

ASSIGNING FORMAT INTO VARIABLE

```
CODE:
proc import dataf le= "/home/u59242808/Data Files/score_data_miss.xlsx"
out = data0 dbms = xlsx replace;
run:
data dataset 1:
set data0;
total_score = sum(score1, score2, score3);
average_ score = mean(score1, score2, score3);
run;
data dataset2;
set dataset1;
format average_score 5.2;
run;
proc print data = dataset2;
title "Permanent Format for average_score";
run;
/ Using temporary format in proc print statement /
proc print data= dataset2;
format score 14.1;
format score 241;
```

```
format score3 41;
title "Temporary Format for score1, score2, score3";
RUN;
OUTPUT:
```

	Perm	anent Fo	ormat for avera	ige_score	
Obs name	score1	score2	score3gender	total_score	axerage score
7.77	- 92	8.9	06 16	201	69.88
2 2000	g (5)	20	26 .	278	\$2.57
(S. Share	- 65	78	273 EV	272	58.67
A VEW	8 92		77 ° 125	1999	99.99
S Since	* 59	· 539	99 ° F	992	60,00
£ 822	67	76	76 9	240	73787
77 Toppos	ser 28		78 ze	258	88.90
³ & Access	P.	26		106	92.50
6 Jacob	R.	156		286	32.33
S CO WE				278	
3 65 3993		72		208	
		r t		7 290	1220
With The same		٠.	• • •		
	Personal Control	e Moonie	(for some f. v	rosessi saassa	
"1000" marce	Temperate Temperate	g Possini 'energi'	t Got soveres (, po accepto " accepto "	restall place	
		ener e	(Secretary), projection		
John Steel		2.20	(\$0.00000), p	297 275	22.99
Description	70.5	99.9	98.9 . m		98.99 98.97
Ø. 1999	8 . 95.5 65.6		98.9 m 98.9 i	27%	98.99 98.97 98.87
2. 10000 3. 1000 5. 1020	95.9 65.9	39.9 72.9	98.9 . m 99.9 . 5 96.8 . m. 77.9 . m	27% 47% 188	99.99 95.97 59.80 33.09
S. Steen	50.9 50.9	78.8 78.8	99.9 m 99.9 f 96.9 m 77.9 m 69.9 f	279 179 199 192	98.99 95.97 98.87 33.99 66.90
S. Steep S. Steep S. The S. Steep	95.5 65.6 89.9 50.0	99.9 79.9 99.9 70.9	99.9	279 978 988 992 248	98.59 95.57 58.60 38.90 96.90
S. Property of the second seco	50.9 50.9	99.9 79.9 99.9 70.0	98.8 . m 98.8 . 5 96.8 . m 77.8 . m 69.9 . f 76.0 . m	279 978 986 992 258 258	98.99 98.87 98.87 86.99 76.99
S. Steep S.	96.5 65.6 80.9 50.0 97.0	98.8 78.8 99.9 70.9 92.8 98.8	98.8 . # 98.8 . # 97.8 . # 69.9 . £ 74.0 . £ 78.8 . #	279 979 984 982 249 256 335	98.99 95.97 96.90 96.90 10.90 98.99
S. Henry S. Henry S. Henry S. Henry V. Spensor	50.9 50.9 50.9 57.9 50.9	99.9 79.9 99.9 70.0 92.9 96.9 78.9	\$8.8 . # \$6.8 . # \$7.9 . # 60.9 . £ 76.0 . # 76.0 . # \$8.8 . # \$8.8 . #	279 979 986 992 259 256 335	98.99 95.97 98.87 96.99 96.99 98.99
S. March	95.5 65.6 95.9 97.9 95.5 95.5	98.8 78.9 90.9 70.0 92.8 98.8 78.9	\$6.9	279 978 984 982 249 256 936 272	92.55 50.67 50.60 50.00 70.00 50.00 50.50 50.50
S. Section of Section	95.5 65.6 95.9 97.9 97.9 96.5 92.8	99.9 79.9 99.9 70.0 92.9 96.9 78.9	\$8.8 . # \$6.8 . # \$7.9 . # 60.9 . £ 76.0 . # 76.0 . # \$8.8 . # \$8.8 . #	279 979 986 992 259 256 335	95.55 95.57 96.50 96.50 76.50 96.55
	95.5 65.6 95.9 97.9 95.5 95.5	98.8 78.9 90.9 70.0 92.8 98.8 78.9	\$6.9	279 979 986 986 256 256 256 270 270	22.52 25.57 25.50 25.50 26.50 25.50 25.50

 $\cdot\,$ At frst, we imported the dataset in SAS environment.

- · Later, from score1, score2, score3 we made 2 new variables as total_score and average_score which defines the sum and mean of these 3 score values respectively.
- \cdot There we got some average values like 91.66666667, 59.6666667 like that and that's why we used formatting here.
- · At frst, we permanently formatted the average_score in 5.2 rule by which it will take only 2 decimal places and can take 5 values before the point and printed the frst dataset with a title permanent format for average_score.
- · Later, we temporary formatted the 3 scores available (score1, score2, score3) in our dataset by 4.1 rule by which it can take 4 number values before point and can take only 1 decimal place and printed it with the title temporary format for score1, score2, score3.

USER DEFINE FORMAT

```
CODE:
proc import dataf le= '/home/u59242808/Data Files/score_data_miss.xlsx'
out= score_data0 dbms= xlsx replace;
run;
data score_data1;
set score_data0;
total_score = sum(score1, score2, score3);
average_ score = mean(score1, score2, score3);
run;
proc format;
value $genderf 'f' = 'female'
'm' = 'male':
/ this $genderf variable will be created having the values female and male from
f and m respectively/
value as_group 0 - < 60 = F'
60 - < 70 = 'D'
70 - < 80 = 'C'
80 - < 90 = 'B'
90 - High = 'A'
```

```
other = 'Missing';
run;
proc print data = score_data1;
format gender $genderf. average_score as_group.;
title "User Def ne Formal Table"
run;
OUTPUT:
```

User Define Formal Table run Obs name score1 score2 score3 gender total score average score 1 Tim 80 male 267 В 88 99 2 275 Sharon 95 90 90 female Α 3 Sean 56 male 179 F 45 4 Mike 89 77 male 166 В 5 D Tina 54 69 69 female 192 C 78 74 6 Sara 67 female 219 7 Spencer 98 82 78 male 258 В

- \cdot At frst, we imported the dataset and fnd out the total score and average score in numerical values.
- $\cdot\,\,$ Now, we had 'm' and 'f' values in gender variable and numerical mean values in average_ score variable.
- · We used proc format here and def ned gender f value as female and m value as male.
- \cdot Then we took value from average_score and took them in group values like if the average_score is between 0 to 60 then it will return F, if its between 60 to 70 it will return D, like that we converted the average scores to grades and if there is any null value in average_score it will return missing.
- \cdot Then we printed our data with proc print statement and used format statement to change these given gender values to formatted genderf character values and

changed average_score to as_group which we defined and also gave a title to our dataset and printed it.

STORING AND REFERING AND USING USER DEFINE FORMAT

```
CODE:
libname myfmts "/home/u59242808/SAS_code";
proc format library= myfmts;
value $genderf'm' = 'Male'
f' = Female';
value asgroup 0-< 60 = 'F'
60 < 70 = 'D'
70 < 80 = 'C'
80 < 90 = 'B'
90 \cdot High = 'A'
other = 'Missing';
run;
proc format library= myfmts fmtlib;
run;
proc import dataf le= "/home/u59242808/Data Files/score_data_miss.xlsx"
out = scoredataO dbms= xlsx replace;
run;
data scoredata1;
set scoredataO,
total_score = sum(score1, score2, score3);
avg_score = mean(score1, score2, score3);
libname myfmts "/home/u59242808/SAS_code";
option fmtsearch = (myfmts work library);
proc print data= scoredata1;
format gender Sgenderf. avg_score asgroup.;
run;
```

OUTPUT:

Obs	name	score1	score2	score3	gender	total_score	avg_score
- 1	Tim	88	80	99	Male	267	Е
2	Sharon	95	90	90	Female	275	A
3	Sean	45	78	56	Male	179	F
4	Mike	89		77	Male	166	E
5	Tina	54	69	69	Female	192	
6	Sara	67	78	74	Female	219	(
7	Spencer	98	82	78	Male	258	E
8	James		96	89	Male	185	
9	Jaden	98	78	89	Male	265	
10	Will	92	89	98	Male	279	
11	Jack	69	79	70	Male	218	(
12	Mila						Missing

- · If we have a lot of datasets and there are some primary formatting which has to been done in all of these datasets, we can use this method of storing the user define format and can use for all of the datasets in very simple 2 steps and don't have to define again and again.
- $\cdot\,\,$ For this we have to call out our library to store the data and have to make a library for storing it.
- · Then we can define the values and grades as we did previously.
- \cdot Then we printed the stored data in which we can check what exactly we defined.
- · Later, we imported a data and find out total and mean of the dataset.
- \cdot Later, we called out the data where we stored our user defined format and refered to it.
- · Then we printed our data and just used the format statement so that sas environment can understand exactly in which dataset we want to use the use define format and for exactly which variables we want to use it and got our output.

USING CONDITIONAL CLAUSE WHILE ITTERATING DO-WHILE STATEMENT

```
CODE:
/ Using conditional clause while itterating do-while statement /
/* In this dataset suppose we want to limit the number of years to invest in the
capital to 10 years
and add the UNTIL expression to determine years it take for investment to
reach 50 thousand to control the
number of years */
data invest;
do year = 1 to 10 until (capital > = 50000);
capital + 2000,
capital + capital \theta.10; / if the interest rate is 10% */
output;
end;
/ if year = 11 then year = 10; /
run;
data invest;
do year = 1 \text{ to } 10 \text{ until (capital } > = 50000);
capital + 4000,
capital + capital \theta.10; / if the interest rate is 10% */
output;
end;
if year = 11 then year = 10,
run;
OUTPUT:
```


EXPLANATION:

- · Here we tried to find out at 10% interest rate after investing some exact amount each year + gained amount how long will it take to reach that capital amount to 50000 in maximum of 10 years time.
- · Here at frst out investment amount was 2000 each year and we can see that we couldn't make 50000 at the end of 10th year and it seems like we need more time.
- · So, later we tried to invest 4000 each year and got the result with the help of do-while loop that we can gain 50000 capital plus some amount at the end of 8th year and don't have to wait till 10th year.

CREATING VARIABLES IN ARRAY STATE-MENT

- · array array_ name { dimension}
- \cdot if variables are not specified then new variables name will be created like array_name1, array_name2... till dimension specification
- · if we want to specify the character array then syntax will be: array array_ name { 5} \$;
- · if we don't specify the length of the character it becomes 8
- · if we want to increase the length of the asssigned variable then syntax will be: array array_ name $\{5\}$ \$ 24;
- \cdot Assigning initial value in array & creating temporary array element Syntax: array Goal{3} G1 G2 G3 (50 32 41)
- if array is string,then, array string(3) \$ str1-str3 ('red', 'green', 'blue')
- · temporary array element which is not written in output,

```
array var{ 4} temporary(40 41 42 43) */
```

CODE:

```
proc import dataf le= "/home/u59242808/DataFiles/score_data_miss999.xlsx" dbms = xlsx out = data0 replace; run;
```

```
data score_ data1(drop= i);
set data0;
```

```
array score_variable(3) score1 score2 score3;
doi = 1 to 3
if score_variable(i) = 999 then score_variable(i) = .;
end;
average_ score = mean(score1, score2, score3);
run;
proc print data= score_data1;
run;
data score_data2(drop= i);
set score_data1;
array score(3) score1 score2 score3;
array score_dif(3);
doi = 1 to 3
score_dif(i) = score(i) - average_score;
end:
run;
proc print data= score_data2;
title "Creating variables in an Array statement";
run;
proc means data= score_data1;
var score1 score2 score3;
run;
data score_data3(drop= i);
set score_data1;
array score(3) score1 score2 score3;
array avg{3} (79.5 81.9 80.8); / Assigning initial values/
array score_dif(3);
doi = 1 to 3
score_dif\{i\} = score\{i\} - AVG\{i\};
end;
run;
```

proc print data= score_data3 (keep= name score_dif 1 score_dif 2 score_dif 3);

title "Finding our X - Xbar using arrays";

run;

OUTPUT:

Creating variables in an Array statement

The MEANS Procedure

Variable	Label	N	Mean	Std Dev	Minimum	Maximum
score1	score1	10	79.5000000	19.2945012	45.0000000	98.0000000
score2	score2	10	81.9000000	7.7380733	69.0000000	96.0000000
score3	score3	11	80.8181818	13.3627705	56.0000000	99.0000000

Finding our X - Xbar using arrays

Obs	name	score_diff1	score_diff2	score_diff3
1	Tim	8.5	-1.9	18.2
2	Sharon	15.5	8.1	9.2
3	Sean	-34.5	-3.9	-24.8
4	Mike	9.5		-3.8
5	Tina	-25.5	-12.9	-11.8
6	Sara	-12.5	-3.9	-6.8
7	Spencer	18.5	0.1	-2.8
8	James		14.1	8.2
9	Jaden	18.5	-3.9	8.2
10	Will	12.5	7.1	17.2
11	Jack	-10.5	-2.9	-10.8
12	Mila			

- · At f rst, we imported the dataf le and converted all the 999 values to missing values (.) and also found out the average score of all the students.
- \cdot Then we again used array statement and found out the dif erence between each score and the average (per person wise) score for those individual students.
- \cdot Then we found out the subject wise number of available values of students, average score, std deviation, minimum and maximum values of all the 3 subjects available.
- \cdot Then we again used array statement and found out the difference between each score and the average (per subject wise) score for those students.
- · Also, while printing this last output we ignored to print the rest of the columns

like score1, score2, score3, gender, and person wise average score.

CREATING TEMPORARY ARRAY ELE-MENTS WHICH WE DONOT NEED TO PRINT IN THE FINAL RESULT

CODE:

```
/ Creating temporary array elements which need not be printed in the final
output/
proc import dataf le= "/home/u59242808/Data Files/score_data_miss999.xlsx"
out= data dbms= xlsx replace;
run;
data data1 (drop = i);
set data;
array score_array(3) score1 score2 score3;
do i = 1 to 3
if score_array(i) = 999 then score_array(i) = . ;
end;
average_ score = mean(score1,score2, score3);
run;
data data2 (drop = i);
set data1;
array score(3) score1 score2 score3;
array average \{3\} temporary (79.581.980.8); /*We are assigning values to average
12 and 3 which is stored
temporarily and does not require in final output*/
/ array average{3}temporary(79.5 81.9 80.8); /
array score_dif(3);
doi = 1 to 3
score_ dif {i} = score{i} - average{i};
end;
run;
```

proc print data= data2; title "Assingning temporary array elements"; run; OUTPUT:

	Assingning temporary array elements										
Obs	name	score1	score2	score3	gender	average_score	score_diff1	score_diff2	score_diff3		
- 1	Tim	88	80	99	m	89.0000	8.5	-1.9	18.2		
2	Sharon	95	90	90	f	91.6667	15.5	8.1	9.2		
3	Sean	45	78	56	m	59.6667	-34.5	-3.9	-24.8		
4	Mike	89		77	m	83.0000	9.5		-3.8		
5	Tina	54	69	69	f	64.0000	-25.5	-12.9	-11.8		
6	Sara	67	78	74	f	73.0000	-12.5	-3.9	-6.8		
7	Spencer	98	82	78	m	86.0000	18.5	0.1	-2.8		
8	James		96	89	m	92.5000		14.1	8.2		
9	Jaden	98	78	89	m	88.3333	18.5	-3.9	8.2		
10	Will	92	89	98	m	93.0000	12.5	7.1	17.2		
11	Jack	69	79	70	m	72.6667	-10.5	-2.9	-10.8		
12	Mila										

EXPLANATION:

- $\cdot\,$ At f rst we imported the dataset and found out the person wise average score in the 3 scores given.
- · Then we find out the subject wise average score but didn't store it permanently in the sas dataset but rather found out the difference in subject wise average score and the scores obtained by the students with the help of array statement.

MERGING TWO DATASETS (ONE TO ONE)

CODE:

/ Combining SAS dataset (one-one mail merging) /
/ one-one merging /
proc import dataf le= "/home/u59242808/DataFiles/score_data_id_partial.xlsx"
out= data_a dbms= xlsx replace;
run;
proc import dataf le= "/home/u59242808/DataFiles/score_data_id.xlsx"
out= data_b dbms= xlsx replace;

```
run;
data one2one;
set data_a;
set data_b;
run;
proc print data= one2one;
title "One to One marging";
run;
proc print data= data_a;
title "Partial dataset";
proc print data= data_b;
title "Complete dataset";
run;
OUTPUT:
```

One to One marging

Obs	name	score1	score2	gender	stu_id	score3
1	Tim	88	80	m	1	99
2	Sharon	95	90	f	2	90
3	Sean	45	78	m	3	56
4	Mike	89		m	4	77
5	Tina	54	69	f	5	69
6	Sara	67	78	f	6	74

Partial dataset

Obs	name	score1	score2	gender	stu_id
1	Tim	88	80	m	1
2	Sharon	95	90	f	2
3	Sean	45	78	m	3
4	Mike	89		m	4
5	Tina	54	69	f	5
6	Sara	67	78	f	6

Complete dataset

Obs	name	score1	score2	score3	gender	stu_id
1	Tim	88	80	99	m	1
2	Sharon	95	90	90	f	2
3	Sean	45	78	56	m	3
4	Mike	89	-	77	m	4
5	Tina	54	69	69	f	5
6	Sara	67	78	74	f	6
7	Sam	98	82	78	m	7
8	James		96	89	m	8
9	Jaden	98	78	89	m	9
10	Jack	69	79	70	m	11
11	Will	92	89	98	m	10

EXPLANATION:

- · There are 2 datasets given.
- i) Full complete dataset given.
- ii) Partial dataset given, like details of only 6 students are given out of 11 and score3 variables scores are not present in the dataset.
- · At frst, we imported both of these 2 datasets.
- · Then just made a new dataset and set both of the datasets in there and simply we got the one-to-one merged dataset which was required here.
- · For convenience, the 2 given datasets are also printed here.

CONCATENATING TWO DATASETS

· general form of CONCATENATING (syntax):

data < f le name>; set < f le name1> < f le name 2>;

run;

```
CODE:
/ Concatenating (combining)/
procimport dataf le= "/home/u59242808/DataFiles/score_data_id_partial.xlsx"
out= data_a dbms= xlsx replace;
run;
proc import datafle= "/home/u59242808/Data Files/score_data_id.xlsx"
out= data_b dbms= xlsx replace;
run;
data concat;
set data_ a data_ b;
run;
proc print data= concat;
title "Concatenated dataset";
run;
proc print data= data_a;
title "partial dataset";
proc print data= data_b;
title "complete dataset";
run;
OUTPUT:
```


partial dataset

Obs	name	score1	score2	gender	stu_id
1	Tim	88	80	m	1
2	Sharon	95	90	f	2
3	Sean	45	78	m	3
4	Mike	89	_	m	4
5	Tina	54	69	f	5
6	Sara	67	78	f	6

complete dataset

Obs	name	score1	score2	score3	gender	stu_id
1	Tim	88	80	99	m	1
2	Sharon	95	90	90	f	2
3	Sean	45	78	56	m	3
4	Mike	89		77	m	4
5	Tina	54	69	69	f	5
6	Sara	67	78	74	f	6
7	Sam	98	82	78	m	7
8	James		96	89	m	8
9	Jaden	98	78	89	m	9
10	Jack	69	79	70	m	11
11	Will	92	89	98	m	10

- · There are 2 datasets given.
- i) Full complete dataset given.
- ii) Partial dataset given, like details of only 6 students are given out of 11 and score3 variables scores are not present in the dataset.
- · At first, we imported both of these 2 datasets.
- · Then just made a new dataset and set both of the datasets in there in the same line instead of taking 2 datasets in 2 different sets in 2 different lines and simply we got the concatenated (combined) dataset which was required here.
- · For convenience, the 2 given datasets are also printed here.

APPENDING TWO DATASETS

```
 syntax:
proc append base = < flename_ 1>
data = < flename_ 2>;
run;
```

- · Base is the dataset to which observations are added.
- $\cdot\,\,$ Data is the name of the dataset containing observation that have to be added in base dataset.
- · We use force command where there is unlike structure of datasets.

```
CODE:
```

```
/ Appending /
proc import dataf le= "/home/u59242808/Data Files/score_ data_ id_ partial.xlsx"
out= data_ a dbms= xlsx replace;
run;
proc import dataf le= "/home/u59242808/Data Files/score_ data_ id.xlsx"
out= data_ b dbms= xlsx replace;
run;
proc append base= data_ a
data= data_ b force;
run;
proc print data= data_ a;
title "Appending dataset";
run;
```

OUTPUT:

Appending dataset

Obs	name	score1	score2	gender	stu_id
1	Tim	88	8.0	m	1
2	Sharon	95	90	f	2
3	Sean	45	78	m	3
4	Mike	89	-	m	4
5	Tina	54	69	f	5
6	Sara	67	78	f	6
7	Tim	88	80	m	1
8	Sharon	95	90	f	2
9	Sean	45	78	m	3
10	Mike	89	-	m	4
11	Tina	54	69	f	5
12	Sara	67	78	f	6
13	Sam	98	82	m	7
14	James		96	m	8
15	Jaden	98	78	m	9
16	Jack	69	79	m	11
17	Will	92	89	m	10

- · There are 2 datasets given.
- i) Full complete dataset given.
- ii) Partial dataset given, like details of only 6 students are given out of 11 and score3 variables scores are not present in the dataset.
- · At frst, we imported both of these 2 datasets.
- · Here the appending was not so simple as merging and concatenating.
- \cdot Here, we have to use append command in proc statement taking f rst data as the base data and second data to add it after the base data and then printed it and got the appending data which was required here.
- · As there is unlike structure of datasets, that's why we had to use the force command or else there would be the observations from the second dataset used in the command here as there is an extra variable here then the base dataset.