

Automating pattern discovery and the statistical process for regression

David Duvenaud¹, **James Robert Lloyd**¹, Roger Grosse²,

Joshua B. Tenenbaum², Zoubin Ghahramani¹

1: Department of Engineering, University of Cambridge, UK 2: Massachusetts Institute of Technology, USA

Data may often exhibit high level structure e.g. linearity, periodicity etc.

- Smoothing methods (e.g. local linear regression) would all produce good estimates of the regression function within the data for the above...
- . . . but this would ignore any high level structure
- Traditionally, different statistical models would be required to produce a parsimonious fit to the above and enabel extrapolation

Gaussian process regression can model many structures with an appropriately chosen kernel

- The kernel encodes the inductive bias of the model i.e. the types of functions the model 'believes in'
- Below we depict standard base kernels, and examples of functions the model believes in (samples from the prior)

• Base kernels can be combined to create more complicated structural assumptions

We consider all kernel expressions derived from a generative grammar...

- Constructing appropriate composite kernels has previously been the domain of Gaussian process experts
- ullet We consider all algebraic expressions involving a small number of base kernels and the operations '+' and '×', which includes

Bayesian linear regression	LIN
Bayesian polynomial regression	$Lin \times Lin \times \dots$
Generalized Fourier decomposition	$PER + PER + \dots$
Generalized additive models	$\sum_{d=1}^{D} ext{SE}_d$
Automatic relevance determination	$ig \prod_{d=1}^D \mathrm{SE}_d$
Linear trend with deviations	Lin + SE
Linearly growing amplitude	$Lin \times SE$

... which we search greedily, producing progressively better statistical models

- We try all base kernels, selecting the one with the highest (approximate) marginal likelihood which balances data fit and model complexity
- The search continues by adding an extra term to the current best kernel, stopping when marginal likelihood no longer improves

Example: Mauna Loa CO₂ concentration

• By automatically inferring an appropriate kernel, we can also automatically decompose functions into additive components

Example: International airline passengers

