Database security

Security

1

Advantages of using databases

- Shared access
 - Many users, one common, centralized data set
- - Individual users do not have to collect and maintain their own sets of data
- Data consistency
 - A change to a data value affects all users of that data value
- Data integrity
 - Data values can be protected against accidental or malicious undesirable changes
- Controlled access
 - Only authorized users are allowed to view or to modify data values

Security

Security requirements (1/2)

Physical integrity

- · Immunity to physical problems
 - e.g. power failures
- Ability to reconstruct the database if destroyed in a catastrophe

Logical integrity

· Data structure (schema) is preserved

· Data in each element is accurate

Auditability

 It is possible to track who or what has accessed (or modified) which elements in the database

Security

3

Security requirements (2/2)

Access control

- A user/role is allowed to access only authorized data/queries
- Different users/roles can be restricted to different modes
 - e.g. read or write records

User authentication

- Every user/role is positively identified
- · Fundamental for audit trails and for permissions to access data

Availability

• Users/roles can access the database in general and all the data for which they are authorized

Security

.

Two-phase updates

▶ Problem

- Failures during updates may render databases incoherent
 - Logical integrity problem
- But DBMS require ACID properties
 - Atomicity
 - · Entire transaction happens or not
 - Consistency
 - The DB state must be consistent after transactions
 - Isolation
 - · Concurrent transactions do not interfere with each other
 - Durability
 - · Changes occur even in the presence of failures
- > Solution: two-phase updates

Security

5

Two-phase update

- ▶ 1st phase: intent phase
 - The DBMS gathers resources it needs to perform the update
 - It does everything to prepare for the update, but makes no changes to the database
 - Committing: writes a commit flag to the database
 - Point-of-no-return
 - · After, the DBMS begins making permanent changes
- > 2nd phase: commit phase
 - Makes the permanent changes in the database
 - Idempotent changes
 - It lasts until finishing all changes prepared in the first phase
 - When it finishes, the database changed to a new, stable and coherent state

Security

,

Redundancy / internal consistency

- - Parity bits, Hamming codes, cyclic redundancy checks
 - Can be applied to different data elements
 - · Fields, records, entire database
 - More space
 - To store error detection/correction information
- > Shadow fields
 - Duplication of fields or records
 - Requires substantial storage space

Security

7

Concurrency / consistency

- Accesses by two users of the same DBMS must be constrained so that neither interferes with each other
 - Simple locking: multiple readers, one writer
 - But simple locking may not be enough on query-update cycles

- Treat every query-update cycle as a single atomic operation (a transaction)
 - e.g. flight booking
- Synchronization should be applied to transactions
 - Two concurrent transactions cannot write (and sometimes read) the same field/record

Security

•

Monitors

- DBMS unit responsible for the DB structural integrity
 - Checks entered values to ensure their consistency with field, record or database consistency constraints

> Types of monitors

- Range comparisons
 - · Tests if values belong to an acceptable range
- State constraints
 - · Describe the condition of the entire database
 - e.g. the commit flag
 - · Impose integrity restriction rules
 - · e.g. to detect duplicate records
- Transition constraints
 - · Describe required conditions before changing the database

Security

9

Database activity monitoring

- DBMS usage supervision
 - To detect abuses
 - To detect unusual/suspect activity or operations

> DBMS independent

- Not part of the DBMS
- External observation of DBMS activity

Monitoring sensors

- Network activity
- Local SQL commands performed
- Log analysis

Security

Sensitive data

- Data that cannot be publicly disclosed
 - With restricted visibility & use

▶ Risks

- · Privacy and welfare of individuals
- Business activities
- Security-related activities

Security

11

Sensitive data

- Some databases contain sensitive data
 - Data that should not be made public
 - e.g. clinical records of patients
- - Some record fields, entire records/tables, entire database
 - e.g. personal health record (HER) with all detected pathologies, treatments and interventions
 - e.g. clinical records of an AIDS table
 - · e.g. defense-related databases

- · Simple cases: all or nothing
 - · Everything sensitive, nothing sensitive
- Complicated cases: part of the DB elements are sensitive
 - In some cases, sensitivity is extended to the simple existence of a field data or record

Security

Sensitive data: Factors that make data sensitive

- > Inherently sensitive
 - · The value itself may be so revealing that it is sensitive
- ▶ From a sensitive source
 - The value may reveal the identity of its source
- Declared sensitive
 - · The value was explicitly declared sensitive
- Belongs to a sensitive record
 - · Value of a record explicitly marked as sensitive
- Sensitive given previously disclosed information
 - By itself, the data is not sensitive, but together with other data, the whole can be sensitive

Security

13

Sensitive data: General Data Protection Regulation (GDPR)

- Personal data
 - Data that can be unequivocally linked to a (living) individual
 - Links can be provided by unique identifiers or sets of quasiidentifiers
- Specially sensitive personal data
 - · Those that can threat fundamental rights
 - · Ethnic/racial origins
 - · Political opinions
 - · Philosophical or religious beliefs
 - · Syndicate memberships
 - · Sexual life and orientations
 - · Health status and history
 - · Related with genetics or biometrics

Security

4.4

Laws for the protection of personal data

- - · There is not a global consensus
- ▷ In Portugal this is supervised by CNPD
 - Comissão Nacional de Proteção de Dados
 - All data processing involving personal data gathered from individuals needs to be <u>submitted to CNPD for authorization</u>
- - Started on May 25, 2018

Security

15

Types of disclosures (of sensitive data)

- Exact data
 - · The exact value of a sensitive datum
 - The most serious disclosure
- ▶ Bounds
 - Sensitive data item is > lower bound or < upper bound
 - · Sometimes bounds are used to protect (hide) sensitive data
 - · By providing bounds to elements instead of their exact value
- Negative result
 - By getting a negative result for a query on a sensitive value, a user can conclude that the value has a particular set of values
 - e.g. from a list of effective voters we can conclude who didn't vote

Security

Types of disclosures (of sensitive data)

- The existence of a sensitive field in a record can be, by itself, sensitive information
 - · Because it may reveal a hidden data gathering & processing activity

▷ Probable value

 By crossing the results of several queries we can infer a probability for an element value

Security

17

Inference

> Definition

- A way to extract, or derive, sensitive information from non-sensitive information
- We are assuming that there is no free access to the entire data repository
 - Conclusions need to be taken from authorized queries that, by themselves, alone, do not:
 - · Leak any sensitive information
 - · Allow an exclusive use of sensitive fields to select information

Security

Inference attacks

Direct attack

- Uses queries with a blend of selection rules that use sensitive fields and non-sensitive fields
- The DBMS can be deceived by the selection rules with nonsensitive fields, which are not intended to select particular records

▶ Indirect attack

- Inference of particular values from statistical values computed over several records
 - · Counts, sums, averages

Security

19

Inference attacks

- The database may conceal data when a small number of records make up the large proportion of the data revealed
- A tracker attack can fool the DBMS by using different queries that reveal data and, by combining the results, the attacker can get the desired information

© André Zúquete / João Paulo Barraca

Security

K-anonymity

L. Sweeney, "K-anonymity: A Model for Protecting Privacy", Int. Journal on Uncertainty, Fuzziness and Knowledge-based Systems. 2002

Definition

- No query can deliver an anonymity set with less than k entries
- The anonymity set is the set of all possible subjects

Privacy-critical attributes

- (Unique) identifiers
- Quasi-identifiers
 - · When combined can produce unique tuples
- Sensitive attributes
 - · Potentially unique per subject
 - · Disease, salary, crime committed, etc.

Security

21

Multilevel security: Goal

- > Tag information items with security classifications
 - · e.g. unclassified, confidential, secret, top secret
- > Tag queries with security levels
 - The security level of the entity responsible for the query
- Prevent queries from observing values of fields with a different security classification
 - Or from observing meaningful values

Security

Multilevel security: Confidentiality with poli-instanciation

- A record with a particular key field may be duplicated in different security levels
 - · Possibly with different values
- ➤ This reduces the precision of the database information
 - The correctness of the information depends on the entity performing the query
 - Duplicates can legitimately occur

Security

23

Multilevel security: Separation strategies (1)

- > Partitioning
 - Different security levels, different databases
 - Queries are directed to the appropriate DB
- > Advantages
 - Easy to implement
- Disadvantages
 - Redundancy of information
 - Problems in the access to records with fields with different security levels

Security

Multilevel security: Separation strategies (2)

- - · Fields are encrypted with a security-level key
- Advantages
 - · Single database, same database structure
- Disadvantages
 - Decryption on each query with the adequate security level key
 - Randomized encryption: equal fields should not produce the same cryptogram
 - · Otherwise statistics and known-plaintext attacks disclose values
 - · Solution: different keys per record or different IVs per record
 - No encrypted values should be updated by providing another encrypted value

Security

25

Multilevel security: Separation strategies (3)

- - Each data item is formed by three parts:
 - · Data item, sensitivity label, checksum
 - · The sensitivity label should be
 - · Unforgeable (cannot be changed)
 - · Unique (cannot be copied to another data item)
 - · Concealed (cannot be observed)
- Advantages
 - Can use a regular DBMS
 - Trusted stored procedures are enough to implement them
- Disadvantages
 - · Space for storing sensitivity labels and checksums

Security