EJERCICIOS 5

(1) Supóngase que \mathbb{F} es un cuerpo y que $f \in \mathbb{F}[x]$ es irreducible. Define

$$K = K(F, f) := \{ r \in [\mathbf{X}] \mid \operatorname{grd}(\mathbf{r}) < \operatorname{grd}(\mathbf{f}) \}.$$

(Recuerde que $grd(0) = -\infty$, por definición, entonces $0 \in K$.) Define la suma y el producto de elementos de K ser la suma y el producto de polinomios usuales pero modulo f. Probar que K es un cuerpo.

(2) Sea = $\mathbb{Z}/3\mathbb{Z}$ y $f = x^2 + 1$. Probar que f es irreducible y sea K = K(F, f) el cuerpo como en Ejercicio 1. Calcule los inversos de x, x + 1 y 2x. Probar que

$$\sigma: K \to K, a+bx \mapsto a-bx$$

es un automorfismo.

- (3) Sean \mathbb{F} un cuerpo, σ un automorfismo. Probar que
- (1) $\sigma(1) = 1$ y $\sigma(0) = 0$;
- (2) si $k = 1 + \cdots + 1$, entonces $\sigma(k) = k$;
- (3) si $\sigma(k) = k$ y $\sigma(\ell) = \ell$, entonces $\sigma(k\ell) = k\ell$ y $\sigma(k/\ell) = k/\ell$.

Concluir que Q tiene un automorfismo único, la identidad.

(4) Sean $\mathbb{F} = \mathbb{Z}/3\mathbb{Z}$, V un espacio vectorial de dimensión 3 sobre \mathbb{F} . Supóngase que β es la forma bilineal tal que, con respecto al base estándar, tiene la matriz

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}.$$

Escribir la matriz de β con respecto a la base

$$\mathcal{B} = \{(1,1), (1,2)\}.$$

- (5) Sea V un espacio finitodimensional sobre un cuerpo \mathbb{F} . Sea Ω el conjunto de formas σ -sesquilineales, para σ un automorfismo fijado de \mathbb{F} . Define una relación \sim sobre Ω como sigue: para $f,g\in\Omega$, escribe $f\sim g$ si hay bases \mathcal{B} y \mathcal{C} tal que $[f]_{\mathcal{B}}=[g]_{\mathcal{C}}$.
 - Probar que ~ es una relación de equivalencia;
 - Probar que $f \sim g$ si y solo si hay un operador lineal invertible $T \in \mathcal{L}(V)$ tal que $f = g_T$. Indicación: Recuerde la definición

$$g_T: V \times V \to \mathbb{F}, (x, y) \mapsto g(Tx, Ty).$$

- Supóngase que $\mathbb{F} = \mathbb{R}$ o \mathbb{C} y que σ es conjuagacion compleja. Probar que si f es un producto interno y $f \sim g$, entonces g es un producto interno.
- (6) Sea \langle , \rangle el producto interno canónico sobre \mathbb{C}^2 . Demostrar que no existe un operador lineal no nulo en \mathbb{C}^2 tal que $\langle v, Tv \rangle = 0$ para cada $v \in \mathbb{C}^2$. Generalizarlo.
 - (7) Sea V un espacio vectorial finitodimensional sobre \mathbb{R} . Sea $\langle \cdot, \cdot \rangle$ un producto interno sobre V. Para $v \in V$ define

$$\phi_{v}: V \to \mathbb{R}, w \mapsto \langle v, w \rangle.$$

Probar que la función

$$V \to V^*, v \mapsto \phi_v$$

es un isomorfismo lineal. Demostrar que, en general, la misma construcción no da una isomorfismo cuando $\dim(V) = \infty$.

(8) Sea V un espacio vectorial real o complejo con un producto interno. Demostrar que la forma cuadrática determinada por el producto interno cumple la **ley del paralelogram**

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2.$$