DRASIL

A Knowledge-Based Approach to Scientific Software Development

Henry M, Aaron M, Maryyam N, Nicholas R, Dan S

McMaster University

Literate Scientific Software Group, July 27, 2017

Background Context

- ullet \exists problems \in D where
- $D = \{ \text{ scientific computing, engineering computing } \}$
- Problems = [
 - Inconsistent Software Requirement Specifications (SRS) across
 D
 - Inconsistency between code and documentation
 - Documentation is annoying to make and maintain
 - Hard to reuse code for different applications

Purpose of Drasil

- Solve the four problems
- Promote
 - Reusability
 - Examples have fully documented code
 - Data base to build new examples
 - Maintainability
 - Make changes in one place, gets updated everywhere

What is Drasil?

• Knowledge Capture (Data.Drasil)

What is Drasil?

- Knowledge Capture (Data.Drasil)
- Language and Rendering (Language.Drasil)
 - Code Generation: transition from Drasil to working code
 - Documentation Generation: transition from Drasil to human readable documentation

What is Drasil?

- Knowledge Capture (Data.Drasil)
- Language and Rendering (Language.Drasil)
 - Code Generation: transition from Drasil to working code
 - Documentation Generation: transition from Drasil to human readable documentation
- Case Studies (Example.Drasil)
 - This part is where you would input equations, requirements, and output code and documentation

• Input:

- Input:
 - Equations (DataDefs, Instance Models)

- Input:
 - Equations (DataDefs, Instance Models)
 - Requirements

- Input:
 - Equations (DataDefs, Instance Models)
 - Requirements
 - Assumptions

- Input:
 - Equations (DataDefs, Instance Models)
 - Requirements
 - Assumptions
- Output:

- Input:
 - Equations (DataDefs, Instance Models)
 - Requirements
 - Assumptions
- Output:
 - Code that fits the requirements and assumptions

- Input:
 - Equations (DataDefs, Instance Models)
 - Requirements
 - Assumptions
- Output:
 - Code that fits the requirements and assumptions
 - Documentation (Module Guide, Software Requirements Specification)

• Catching and correcting errors in software:

- Catching and correcting errors in software:
 - If there is an error, it will be everywhere

- Catching and correcting errors in software:
 - If there is an error, it will be everywhere
 - Easy to spot

- Catching and correcting errors in software:
 - If there is an error, it will be everywhere
 - Easy to spot
 - Once it's fixed, it is also fixed everywhere else

• Drasil is a knowledge capturing system that allows for the easy reuse of information

- Drasil is a knowledge capturing system that allows for the easy reuse of information
- Knowledge capture is achieved through the use of data types called chunks

- Drasil is a knowledge capturing system that allows for the easy reuse of information
- Knowledge capture is achieved through the use of data types called chunks
- Combination of chunks to grow information

- Drasil is a knowledge capturing system that allows for the easy reuse of information
- Knowledge capture is achieved through the use of data types called chunks
- Combination of chunks to grow information
- Related information should stem from one source (reduces duplication)

Growing Chunk

Chunk Combinations

Drasil Logic Tree

Collaborative Efforts

• Peer review of code

Collaborative Efforts

- Peer review of code
- Discussion of all around issues (ex. cyclic imports, referencing problems)

Collaborative Efforts

- Peer review of code
- Discussion of all around issues (ex. cyclic imports, referencing problems)
- A lot of collaboration through GitHub

Collaboration via Github

Git is a version control system, GitHub is a Git repository hosting service that is free.

• Git allows us to collaborate effectively, even when team members are not in the same location

GitHub Issues

GitHub Issues

Collaboration via Github

Git is a version control system, GitHub is a Git repository hosting service that is free.

- Git allows us to collaborate effectively, even when team members are not in the same location
- Git combined with Haskell, allows us to make large changes while easily maintaining a working version of Drasil

Collaboration via Github

Git is a version control system, GitHub is a Git repository hosting service that is free.

- Git allows us to collaborate effectively, even when team members are not in the same location
- Git combined with Haskell, allows us to make large changes while easily maintaining a working version of Drasil
- Git (when used properly) prevents catastrophic loss of work

Daily Tasks

- Finding patterns within examples ⇒ sentence combinators
- Finding patterns between examples ⇒ extraction of common sections, contents, and concepts

Daily Tasks

- Finding patterns within examples ⇒ sentence combinators
- Finding patterns between examples ⇒ extraction of common sections, contents, and concepts

- Knowledge extraction
- Reduced duplication due to
 - Increased function efficiency
 - Building chunks off of each other instead of from scratch

Example

Var	Physical Constraints	Software Constraints	Typical Value	Typical Uncertainty
P _{btol}	$0.0 < P_{btol}$ and $P_{btol} < 1.0$	None	0.008	1.0e-3
TNT	TNT > 0.0	None	1	0.1
а	$a > 0.0$ and $\frac{a}{b} >$ 1.0	$d_{min} \le a, a \le d_{max}$, and $\frac{a}{b} < AR_{max}$	1500.0 m	0.1
ь	b > 0.0 and $b < a$	$d_{min} \le b$, $b \le d_{max}$, and $\frac{a}{b} < AR_{max}$	1200.0 m	0.1
w	w≥0.0	$w_{max} \le w$ and $w \le w_{min}$	42.0 kg	0.1
SD	SD > 0.0	$SD_{min} \le SD$ and $SD \le SD_{max}$	45.0 m	0.1

Input Data Constraints

Example

```
s6_2_5_table1 = Table [S "Var", S "Physical Cons", S "Software Constraints", S "Typical Value",
 5 "Uncertainty"] (mkTable [(x \rightarrow x!!0), (x \rightarrow x!!1), (x \rightarrow x!!2), (x \rightarrow x!!3),
   (\x -> x!!4)] [[(P $ plate_len ^. symbol), (P $ plate_len ^. symbol) +:+ 5 "> 0 and" +:+
   (P $ plate len ^. symbol) :+: $ "/" :+: (P $ plate width ^. symbol) +:+ $ "> 1".
   (P $ dim_min ^. symbol) +:+ $ "<=" +:+ (P $ plate_len ^. symbol) +:+ $ "<=" +:+
   (P $ dim_max ^. symbol) +:+ S "and" +:+ (P $ plate_len ^. symbol) :+: S "/" :+:
   (P $ plate width ^. symbol) +:+ S "<" +:+ (P $ ar max ^. symbol), S "1500" +:+
   Sy (unit symb plate len), 5 "10%"], [(P $ plate width ^. symbol),
   (P $ (plate width ^. symbol)) +:+ 5 "> 0 and" +:+ (P $ plate width ^. symbol)
   +:+ S "<" +:+ (P $ plate_len ^. symbol), (P $ dim_min ^. symbol) +:+ S "<=" +:+
   (P $ plate_width ^. symbol) +:+ S "<=" +:+ (P $ dim_max ^.symbol) +:+ S "and" +:+
   (P $ plate len ^. symbol) :+: S "/" :+: (P $ plate_width ^. symbol) +:+ S "<" +:+
   (P $ ar max ^. symbol), S "1200" +:+ Sy (unit symb plate width), S "10%"],
   [(P $ pb tol ^ symbol), 5 "0 <" +:+ (P $ pb_tol ^ symbol) +:+ 5 "< 1", 5 "-", 5 "0.008", 5 "0.1%"],
   [(P $ char_weight ^. symbol), (P $ char_weight ^. symbol) +:+ S ">= 0", (P $ cWeightMin ^. symbol)
   +:+ S "<" +:+ (P $ char weight ^, symbol) +:+ S "<" +:+ (P $ cWeightMax ^, symbol). S "42" +:+
  Sy (unit_symb char_weight), S "10%"],[(P $ tNT ^. symbol), (P $ tNT ^. symbol)
  S " > 0", S "-", S "1", S "10%"], [(P $ standOffDist ^. symbol), (P $ standOffDist ^. symbol)
   +:+ S "> 0", (P $ sd min ^. symbol) +:+ S "<" +:+ (P $ standOffDist ^. symbol) +:+ S "<" +:+
   (P $ sd max ^, symbol), 5 "45" :+: Sy (unit symb standOffDist), 5 "10%"]])
```



```
s6_2_5_table1 :: Contents
s6_2_5_table1 = inDataConstTbl (gbInputDataConstraints)
```

Example

```
-- Creates the input Data Constraints Table
inDataConstTbl :: (UncertainQuantity c, SymbolForm c, Constrained c) => [c] -> Contents
inDataConstTbl qlst = Table ([s "Var"] ++ (isPhys $ physC (head qlst) qlst) ++
(isSfwr $ sfwrC (head qlst) qlst) ++ [s "Typical" +:+ titleize value] ++
(isUnc $ typUnc (head qlst) qlst))
(map (\tax -> fmtInputConstr x qlst) qlst)
(s "Input Data Constraints") True
where isPhys [] = []
isPhys = [titleize' physicalConstraint]
isSfwr [] = []
isSfwr = [titleize' softwareConstraint]
isUnc [] = []
isUnc = [5 "Typical Uncertainty"]
```

Daily Tasks

- Finding patterns within examples ⇒ sentence combinators
- Finding patterns between examples ⇒ extraction of common sections, contents, and concepts

- Knowledge extraction
- Reduced duplication due to
 - Increased function efficiency
 - Building chunks off of each other instead of from scratch
- Implement new functions/types created by supervisors

Daily Tasks

- Finding patterns within examples ⇒ sentence combinators
- Finding patterns between examples ⇒ extraction of common sections, contents, and concepts

- Knowledge extraction
- Reduced duplication due to
 - Increased function efficiency
 - Building chunks off of each other instead of from scratch
- Implement new functions/types created by supervisors
- Code cleanup and bug fixing

Daily Tasks

- Finding patterns within examples ⇒ sentence combinators
- Finding patterns between examples ⇒ extraction of common sections, contents, and concepts

- Knowledge extraction
- Reduced duplication due to
 - Increased function efficiency
 - Building chunks off of each other instead of from scratch
- Implement new functions/types created by supervisors
- Code cleanup and bug fixing
- Opening/closing issues

- Each member is assigned a case study as well as tasks and issues
- SWHS
 - Largest Example
 - ODEs

- Each member is assigned a case study as well as tasks and issues
- SWHS
 - Largest Example
 - ODEs
- NoPCM
 - Builds off of pre-existing SWHS example

- Each member is assigned a case study as well as tasks and issues
- SWHS
 - Largest Example
 - ODEs
- NoPCM
 - Builds off of pre-existing SWHS example
- GlassBR
 - Omitted general definitions

- SSP
 - Indexing
 - Sophisticated math
 - Diversity of symbols

- SSP
 - Indexing
 - Sophisticated math
 - Diversity of symbols
- GamePhysics
 - Most ambiguous example
 - SRS for a game physics library

End

For more information about Drasil and LLS visit our github page: https://github.com/JacquesCarette/literate-scientific-software You can even build a working version yourself!

