RMP-RRT & OBPRM

i≣ Key	Obstacle-Based PRM	RRT	RRT*	kinodynamic RRT
words	non-holonomic systems single-query problems			
:≣ Status	note complete			

Rapidly-exploring Random Trees & RRT*

- motivation:
 - single query problems: multiple-query PRM expands whole free space —>
 resource waste
 - motion constraints for non-holonomic robots need to be included in planning phase.
- ▼ Process: (straight line graph)
 - 1. select **start** node **randomly**
 - 2. **randomly** select second node: check connectivity between first and second node(linear collision test).
 - 3. randomly select 3rd node: connect the node to the closest existing node.
 - 4. If **collision** with obstacle, place the new node along the connecting line **closest to obstacle.** —> improve path along narrow passages
 - 5. iteratively grow the trees.
 - —> weighting possible (towards goal), growth limit possible (max. distance to closest node)
- ▼ When do PRM and RRT work well?
 - **high-dimenional** problems
 - the free space F is $(\epsilon, \alpha, \beta)$ -expansive, where ϵ, α, β is large

RMP- RRT & OBPRM 1

• Problem: not optimal

▼ Solution: RRT* — Rewiring graph structure

- for each new node, check its log(n) neighbourhood
- if **shorter path** exists, pick that path
- —> shortest path guaranteed. **asymptotically optimal.**

▼ Other improvements:

- accelerate the planner: decompose the free space into multiple expansive components
- increase expansiveness: use geometric transformations
- integration with new planners

Non-holonomic robots: Kinodynamic RRT

- systems with differential constraints
- nodes are not connected with straight lines, but motion profile of a car —> clothoids

PRM (mulitple/single-query):

RMP- RRT & OBPRM 2

▼ Advantages:

- probabilistic complete
- easy to apply in higher dimensional C-space
- support fast queries with enough preprocessing

▼ Disadvantages:

- unlikely to sample nodes in narrow passages
- hard to sample/connect nodes on constraint surfaces

Obstacle-Based PRM

• sample around the obstacle boundaries —> ensure to look into narrow passages.

▼ Process:

- 1. find a point in the C-obstacle
- 2. select a random direction, find a free point.
- 3. **binary search:** find the **boundary point** of obstacle
- 4. repeat for multiple iterations.
- OBPRM VS. PRM:
 - only sample around obstacles, more nodes through narrow passages
 - less nodes
 - improves connectivty between spaces

RMP- RRT & OBPRM 3