## Calculation of signatures

CRISM workshop: Statistics for Differential Equations Driven by Rough Paths

Jeremy Reizenstein

Centre for Complexity Science, University of Warwick

September 2016



### Table of Contents

- Signatures
- 2 Log signatures
- 3 Timings
- 4 (Autodifferentiation)

## Signatures

The signature of a path is a set of iterated integrals. Consider a path in  $\mathbb{R}^3$  parameterised by the variable t ranging from 0 to 1, given by

$$t \mapsto \gamma(t) = (\gamma_1(t), \gamma_2(t), \gamma_3(t))$$

Then, for example, the element 2,3 of the signature is

$$\int_0^1 \left[ \int_0^t \gamma_2'(s) \, ds \right] \, \gamma_3'(t) \, dt = \int_0^1 \int_0^t d\gamma_2(s) \, d\gamma_3(t)$$

and element 2,1,2 of the signature is

$$\int_0^1 \int_0^t \int_0^s d\gamma_2(r) d\gamma_1(s) d\gamma_2(t).$$



## Signatures

The mth level of the signature of a path in  $\mathbb{R}^d$  given as a function from [a,b] is the  $d^m$  values of the elements with m integrated integrals. It is denoted  $X_{a,b}^m$  and takes values in  $(\mathbb{R}^d)^{\otimes m}$ . Given a piecewise linear path, we can compute the first m levels of its signature.

For a straight path with displacement x, the signature is

$$\left(1, x, \frac{x \otimes x}{2!}, \frac{x \otimes x \otimes x}{3!}, \dots\right) \qquad \Omega(d^m)$$

• Chen's identity for the signature of the concatenation of paths,  $a \le b \le c$ 

$$X_{a,c}^m = \sum_{k=0}^m X_{a,b}^k \otimes X_{b,c}^{m-k} \qquad \qquad \Omega(md^m)$$



## Log-Signature demonstration

There is redundancy in the signature. For example, in  $\mathbb{R}^2$ , the first four levels of the signature look like this

$$1 + (\cdot \cdot) + \begin{pmatrix} (\cdot \cdot) \\ (\cdot \cdot) \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} (\cdot \cdot) \\ (\cdot \cdot) \end{pmatrix} \begin{pmatrix} (\cdot \cdot) \\ (\cdot \cdot) \end{pmatrix} \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} \begin{pmatrix} (\cdot \cdot) \\ (\cdot \cdot) \end{pmatrix} \begin{pmatrix} (\cdot \cdot) \\ (\cdot \cdot) \end{pmatrix} \begin{pmatrix} (\cdot \cdot) \\ (\cdot \cdot) \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

- that is 2+4+8+16=30 numbers while the log signature is only 2+1+2+3=8 numbers.

## Log-Signature domain

The log signature lives in the free Lie algebra, a subspace of the tensor space. We can pick any basis to express it, e.g. in the Lyndon basis.

$$a\mathbf{1} + b\mathbf{2} + c\mathbf{12} + d\mathbf{112} + e\mathbf{122}$$
  
 $a\binom{1}{0} + b\binom{0}{1} + c\binom{0}{-1}\binom{1}{0} + d\binom{0}{0}\binom{1}{0}\binom{0}{0} + e\binom{0}{0}\binom{0}{0}\binom{1}{0}}{\binom{0}{1}\binom{0}{0}} + e\binom{0}{0}\binom{0}{0}\binom{0}{1}$ 

is the log of

$$1 + \left( \begin{smallmatrix} a \\ b \end{smallmatrix} \right) + \tfrac{1}{2} \left( \begin{smallmatrix} a^2 & ab + 2c \\ ab - 2c & b^2 \end{smallmatrix} \right) + \tfrac{1}{6} \left( \begin{smallmatrix} \left( \begin{smallmatrix} a^3 & a^2b + 6d + 3ac \\ a^2b - 12d & ab^2 + 6e + 3bc \end{smallmatrix} \right) \\ \left( \begin{smallmatrix} a^2b + 6d - 3ac & ab^2 - 12e \\ ab^2 + 6e - 3bc & b^3 \end{smallmatrix} \right) \right) + \cdots$$

## Detour on Lyndon words

The Lyndon basis gets an element from each Lyndon-word using a procedure which splits a Lyndon word into its longest Lyndon suffix and the rest, e.g.

$$\begin{array}{l} \underline{1122} \rightarrow [1,\underline{122}] \rightarrow [1,[\underline{12},2]] \rightarrow [[1,[1,2]],2] \\ = [[1,12-21],2] \\ = [1(12-21)-(12-21)1,2] \\ = [(112-121)-(121-211),2] \\ = ((112-121)-(121-211))2 \\ -2((112-121)-(121-211)) \\ = 22121-21212+1122-2211 \end{array}$$

## Log-Signature domain

The log signature of a path with displacement x is just x. BCH formula expresses  $A \bullet B := \log(\exp A \otimes \exp B)$  as

$$A + B + [A, B]/2 + ([A, [A, B]] + [B, [B, A]])/12 + \cdots$$

$$(a1 + b2 + c12 + d112 + e122 + \cdots) \bullet (a'1 + b'2)$$

$$= (a1 + b2 + c12 + \cdots) + (a'1 + b'2)$$

$$+ (ab'12 - a'b12 - a'c112 + cb'122 + \cdots)/2 + \cdots$$

$$= (a + a')1 + (b + b')2 + (c + \frac{ab' - a'b}{2})12 + \cdots$$

## **Anagrams**

### Code example

```
void joinSegmentToSignatureInPlace(
 FLogSignature<2,3>& a, const FSegment<2>& b) {
  a[4] +=0.5*a[2]*b[1]
        +0.08333333333333*a[1]*a[1]*b[0]
        +0.08333333333333*a[0]*b[1]*b[1];
  +0.08333333333333*a[1]*b[0]*b[0]
        +0.08333333333333*a[0]*a[0]*b[1]
        -0.5*a[2]*b[0]
        a[2] +=0.5*a[0]*b[1]
        -0.5*a[1]*b[0];
  a[1] += b[1];
  a[0] += b[0];
```

# Some comparative timings

| (D,M)                                                           | (2,6) | (2,10) | (3,10)   | (5,5) | (10,4) |
|-----------------------------------------------------------------|-------|--------|----------|-------|--------|
| Time (s) for 100 (log) signatures of length-100 paths:          |       |        |          |       |        |
| Signature                                                       | 0.021 | 0.201  | 8.005    | 0.212 | 0.404  |
| Compiled                                                        | 0.005 | 0.491  | 276.174  | 0.325 | 0.578  |
| Projection                                                      | 0.028 | 0.389  | 16.491   | 0.389 | 0.829  |
| Time (s) for 100 (log) signatures of length- <b>1000</b> paths: |       |        |          |       |        |
| Signature                                                       | 0.017 | 2.427  | 100.572  | 2.400 | 4.935  |
| Compiled                                                        | 0.042 | 4.931  | 2857.072 | 3.341 | 5.845  |
| Projection                                                      | 0.211 | 3.285  | 123.143  | 3.297 | 7.701  |
| Time (s) for a single call of the preparation function:         |       |        |          |       |        |
| Compiled                                                        | 0.107 | 0.805  | 439.38   | 0.372 | 1.466  |
| Projection                                                      | 0.001 | 0.037  | 4.386    | 0.103 | 0.156  |

### Autodifferentiation

Consider evaluating, for some fixed value of x,

$$\frac{d}{dx}\left[\left(\sin(x^4+\log x)\right)(x+\sinh x)\right]$$



### Recurrent Neural Networks



### Recurrent Neural Networks



#### Thanks!









Dr Ben Graham