

Counterfactual Multi-Agent Policy Gradients—hoho

论文试图解决什么问题?

在多智能体环境:

- 1. 过去常用independent actor-critic模型,每个智能体单独训练自己的策略actor-critic模型,导致全局信息共享不足,难以做到coordination(协调)
- 2. 在一个合作的场景,联合动作只能生成全局的奖励,导致如何衡量每个智能体对团队的贡献比较困难(multi-agent credit assignmane problem)
- 3. 模型往往需要求不同agent采取action的联合概率分布,联合动作(joint action space)空间十分巨大,导致 计算复杂度巨大

这是否是一个新的问题?

对于多智能体环境的credit assignment问题,不是一个新问题。

这篇文章要验证一个什么科学假设?

- 进行中心化的全局价值计算(centralised critic),以使获取全局的价值信息
- counterfactual baseline:基于奖励差分的思想(difference reward),即对每个智能体进行奖励塑形,用一个默认的动作(default action)替换后,计算其奖励,并与全局的奖励进行对比,得出这个智能体对团队的贡献,以此作为奖励分配。
- efficient critic representation,缓解计算复杂度问题

有哪些相关研究?如何且类?谁是这一课题在领域内值得关注的研究员?

todo

论文中提到的解决方案之关键是什么?

借鉴优势函数的思想,本文提出方法COMA,基于中心化的价值函数(critic),单独计算每个智能体的奖励基线——(此时其他智能体的动作保持固定),然后跟全局的价值函数作对比,进行反事实的推理:假如当时这个智能体采取另一个动作,会(不会)怎样!

• 中心化价值函数 centralised critic

整体架构如下:

 critic 学习一个全局的 Q 函数 $Q(s,\mathbf{u})$,其中 \mathbf{u} 为所有智能体的联合动作。 critic 只会在训练时使用。

输入:环境的全局状态 s_t ,立即奖励 r_t ,还有各个智能体的动作输入 u_t^a (表示第a个智能体的动作)和策略 $\pi(h^a,\epsilon)$

当全局观测不可获得,则将当前所有agent的"action-observation"的历史记录au代替全局状态 s

输出:每个智能体的动作优势 A_t^a ,以此来衡量每个智能体的贡献

2. 反事实的奖励基线 counterfactual baseline

通常的策略梯度可以建模为

$$egin{aligned} g &= \partial_{ heta^\pi} \log \pi(u | au_t^a) (Q(u_t^a, s_t) - V(s_t)) \ &pprox \partial_{ heta^\pi} \log \pi(u | au_t^a) (r + \gamma V(s_{t+1}) - V(s_t)) \end{aligned}$$

但是如此一来就无法解决credit assignment问题:TD error考虑的是全局reward的影响,对于每个智能体来说(actor)无法显式确认它对于全局reward的贡献。

受difference reward思想的启发,本文使用了反事实推理:如果智能体当时不采取xxx动作,它的奖励将如何?

$$D^a = r(s, \mathbf{u}) - r(s, (\mathbf{u}^{-a}, c^a))$$

将其他agent的action固定,只研究当前agent的action变化所产生的影响:

 c^a 为agent的默认动作, (\mathbf{u}^{-a},c^a) 表示当前agent a 采取"默认行为" c^a 后所有 agent 的联合动作空间,从而得到相对于默认动作,agent a实际所采取动作的优势,可以出衡量 agent a 采取行为 u 会比采取默认行为 c^a 要更好($D^a>0$)还是更坏($D^a<0$)

但是要想计算出每一个动作的 D^a 值,就需要将每个动作都替换成默认行为 c^a 去与环境互动一次得到最终结果,这样采样次数会非常多;另外,到底选择哪一个行为当作默认行为才是最合适的也是比较难决定的。因此,文中提出使用"函数拟合"的方式来计算 D^a

参考优势函数的思想, D^a 可以拟合为:

$$A^{a}(s,\mathbf{u}) = Q(s,\mathbf{u}) - \sum_{u^{'a}} \pi^{a}(u^{'a}| au^{a})Q(s,(\mathbf{u}^{-a},u^{'a}))$$

其中 $(\mathbf{u}^{-a}, u^{'a})$ 表示在联合动作中用智能体a的动作 $u^{'a}$ 替换其在联合动作 \mathbf{u} 中的部分。

3. efficient critic representation

critic网络输出所有agent的所有动作即联合动作空间复杂度是 $O(|U|^n)$,计算量太大。于是本文设计只输出当前agent的各个动作的Q值,网络架构如下:

将其他agents的action \mathbf{u}^{-a} ,并结合历史信息作为输入。输出则是基于输入的其他agent的action下的当前agent的所有action的Q值(即 $Q(s,(\mathbf{u}^{-a},u^{'a})$ 的部分),然后结合当前agent的 u^a_t 和 π^a_t ,相乘求和得到baseline,并与全局价值函数作差得到Advantage funciton,最终用于梯度下降。

另外,actor的架构如下:

论文中的实验是如何设计的?

使用星际争霸作为实验环境。设计多种不同的多智能体协作方式:

3个海军单位(3m)

5个海军单位(5m)

5个幽灵单位(5w)

2条龙和3个狂战士单位(2d_3z)

让算法控制的作战小队和游戏AI控制的小队进行对战,并计算胜率。

实验还加入了 "部分可观测" 条件的限制,视野范围等于攻击范围。这意味着当敌人没有进入攻击范围内时,作战单位是不知道敌人位置信息的,因此agent不仅要学会如何去探索敌方目标,还需要与队友共享敌方目标的位置信息。

• 动作空间与奖励设计

每个agent都有着相同的动作空间:{ move[direction],attack[enemy_id],stop,noop }。一个回合的全局 reward:

 $global_reward =$ 对敌人造成的伤害 $-\frac{1}{2}$ 我方受到的伤害 +10* 被消灭的对方的作战单位数量

当赢得游戏时,则获得的回报为整个队伍剩余血量另外加200。

• 环境状态设计

actor接收agent的局部观测信息; critic接收全局状态信息。

1. 局部观测信息

由于作战单位的视野范围等于攻击范围,因此观测到的视野是以该单位为中心的一个圆。局部观测信息是指在视野圆圈内,**每一个单位**(包括敌方和友方)的以下几个信息:**distance,relative x,relative y,unit type,shield**。(shield指护盾,有些兵种攻击后有冷却期,该护盾用来吸收短时间对方的攻击)

2. 全局观测信息

全局观测信息包含了所有单位的**relative x,relative y,unit type,shield,healthy point,cooldown**信息,其中 relative 的坐标信息是相对据地图中心的相对坐标,不再是针对于某一个特定目标的坐标。

用于定量评估的数据集是什么?代码有没有开源?

- 没数据集
- 没官方代码

可参考第三方代码:https://github.com/opendilab/DI-engine/blob/main/ding/policy/coma.py

论文中的实验及结果有没有很好地支持需要验证的科学假设?

实验总体结果如下:

	Local Field of View (FoV)							Full FoV, Central Control			
map	heur.	IAC-V	$\mathrm{IAC}\text{-}Q$	cnt-V	cnt-QV	CON mean	/IA best	heur.	DQN	GMEZO	
3m	35	47 (3)	56 (6)	83 (3)	83 (5)	87 (3)	98	74	-	-	
5m	66	63 (2)	58 (3)	67 (5)	71 (9)	81 (5)	95	98	99	100	
5w	70	18 (5)	57 (5)	65 (3)	76(1)	82 (3)	98	82	70	74^{3}	
$2d_{-}3z$	63	27 (9)	19 (21)	36 (6)	39 (5)	47 (5)	65	68	61	90	

• IAC-V:基于传统的多智能体独立actor-critic模型,只输出单个agent的V值

• IAC-Q:基于传统的多智能体独立actor-critic模型,只输出单个agent每个动作的Q值

- cnt-V:即central-V,学习中心化的critic,但只学习V函数,并使用TD error($r+\gamma V(s_{t+1})-V(s_t)$)进行优势函数的计算
- cnt-QV,即central-QV,同时学习Q值和V值,将本文COMA的countefactual baseline用V值替换来计算优势函数
- Local Field of View: 加入"部分可观测"条件的限制,视野范围等于攻击范围
- Full FoV: 当不加入"部分可观测"的条件限制

各种兵种的实验对比:

这篇论文到底有什么贡献?

todo

下一步呢?有什么工作可以继续深入?

todo