Université AbouBekr Belkaid-Tlemcen

Faculté des Sciences Département de Mathématiques Année universitaire 2022-2023

Master 1 : Probabilités-Statistiques Module: Théorie de l'intégration

Corrigé du contrôle continu : Théorie de l'intégration

Exercice 1 (8 pts).

Soit (E, \mathcal{F}, μ) un espace mesuré. On dit qu'une partie N de E est μ -négligeable s'il existe $Z \in \mathcal{F}$ tel que $N \subset Z$ et $\mu(Z) = 0$. On désigne par \mathcal{N}_{μ} la famille des parties μ -négligeables. On dit que (E, \mathcal{F}, μ) est complet ou que \mathcal{F} est complète pour μ si et seulement si $\mathcal{N}_{\mu} \subset \mathcal{F}$.

1. Montrer que la réunion $N = \bigcup N_n$ d'une suite $(N_n)_{n \in \mathbb{N}}$ de parties μ -négligeables est encore μ -négligeable.

2. On pose

$$\mathcal{F}^{\mu} = \{ X \subset E : \exists A, B \in \mathcal{F}, \text{ tels que } A \subset X \subset B \text{ et } \mu(B \setminus A) = 0 \},$$

et

$$\mathcal{F}_{\mu} = \{ B \cup N, \ B \in \mathcal{F}, \ N \in \mathcal{N}_{\mu} \}.$$

Montrer que \mathcal{F}^{μ} et \mathcal{F}_{μ} sont des tribus contenant \mathcal{F} .

- 3. Montrer que $\mathcal{F}^{\mu} = \mathcal{F}_{\mu}$.
- 4. Soit l'application $\overline{\mu}: \mathcal{F}^{\mu} \to \overline{\mathbb{R}}_+$ définie par $\overline{\mu}(X) = \mu(A) = \mu(B)$.
 - a. Montrer que $\overline{\mu}$ est bien définie et est une mesure sur \mathcal{F}^{μ} prolongeant μ .
 - b. Montrer que $\mathcal{N}_{\overline{\mu}} = \mathcal{N}_{\mu}$, en déduire que l'espace $(E, \mathcal{F}^{\mu}, \overline{\mu})$ est complet.

Solution

1. Soit $(N_n)_{n\in\mathbb{N}}$ une suite de parties μ -négligeables alors il existe pour tout $n\in\mathbb{N}$ une partie $Z_n\in\mathcal{F}$ telle que

$$N_n \subset Z_n$$
 et $\mu(Z_n) = 0$.

On en déduit que

$$N = \bigcup_{n \in \mathbb{N}} N_n \subset Z = \bigcup_{n \in \mathbb{N}} Z_n,$$

οù

$$\mu(Z) = \mu\left(\bigcup_{n \in \mathbb{N}} Z_n\right) \le \sum_{n \in \mathbb{N}} \mu(Z_n) = 0.$$

Ce qui prouve que N est μ -négligeable. (2 points)

- 2. Montrons que \mathcal{F}^{μ} est une tribu contenant \mathcal{F} (1.5 points).
 - On a $E \subset E \subset E$ et comme $E \in \mathcal{F}$ et $\mu(E \setminus E) = \mu(\emptyset) = 0$, on a $E \in \mathcal{F}^{\mu}$;
 - Si $A \subset X \subset B$, par passage au complémentaire on a $B^c \subset X^c \subset A^c$ avec $\mu(A^c \setminus B^c) = \mu(B \setminus A) = 0$. On a donc $A \in \mathcal{F}^{\mu} \Rightarrow A^c \in \mathcal{F}^{\mu}$.
 - Si $A_n \subset X_n \subset B_n$, $n \in \mathbb{N}$, avec $\mu(B_n \setminus A_n) = 0$ alors $\bigcup_{n \in \mathbb{N}} A_n \subset \bigcup_{n \in \mathbb{N}} X_n \subset \bigcup_{n \in \mathbb{N}} B_n$.

$$\bigcup_{n\in\mathbb{N}} B_n \setminus \bigcup_{n\in\mathbb{N}} A_n \subset \bigcup_{n\in\mathbb{N}} B_n \setminus A_n$$

donc

$$\mu\left(\bigcup_{n\in\mathbb{N}}B_n\setminus\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\geq0}\mu(B_n\setminus A_n)=0.$$

Ainsi \mathcal{F}^{μ} est stable par réunion dénombrable;

De plus, si $A \in \mathcal{F}$ alors $A \subset A \subset A$, et $\mu(A \setminus A) = 0$ donc $A \in \mathcal{F}_{\mu}$ ainsi $\mathcal{F} \subset \mathcal{F}^{\mu}$.

Maintenant, montrons que \mathcal{F}_{μ} est une tribu contenant \mathcal{F} . (1.5 points)

- Comme $E \in \mathcal{F}$ et $\emptyset \in \mathscr{N}_{\mu}$ on a $E = E \cup \emptyset \in \mathcal{F}_{\mu}$;
- Montrons que si $A \in \mathcal{F}_{\mu}$, alors $A^c \in \mathcal{F}_{\mu}$. Soit

$$A = B \cup N$$
 où $B \in \mathcal{F}$ et $N \subset Z \in \mathcal{F}$ avec $\mu(Z) = 0$.

On a

$$(B \cup N)^c = (Z \cup Z^c) \cap (B \cup N)^c = (Z \cup Z^c) \cap (B^c \cap N^c),$$

$$= (Z \cap B^c \cap N^c) \cup (Z^c \cap B^c \cap N^c)$$

$$= (Z \cap B^c \cap N^c) \cup (Z \cup B \cup N)^c$$

$$= (Z \cap B^c \cap N^c) \cup (Z \cup B)^c, \quad \text{car } N \subset Z,$$

et puisque

$$(Z \cup B)^c = Z^c \cap B^c \in \mathcal{F}$$
 et que $(Z \cap B^c \cap N^c) \subset Z$ avec $\mu(Z) = 0$,

i.e., $(Z \cap B^c \cap N^c)$ et μ -négligeable, on obtient que $(B \cup N)^c \in \mathcal{F}_{\mu}$.

— Soit $A_n = B_n \cup N_n \in \mathcal{F}_{\mu}$, $n \in \mathbb{N}$. Comme \mathcal{F} est une tribu alors $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{F}$ et qu'une réunion dénombrable d'ensembles μ -négligeables est μ -négligeable (question 1), on a

$$\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} (B_n \cup N_n) = \left(\bigcup_{n\in\mathbb{N}} B_n\right) \cup \left(\bigcup_{n\in\mathbb{N}} N_n\right) \in \mathcal{F}_{\mu},$$

ainsi \mathcal{F}_{μ} est stable par réunion dénombrable;

De plus si $A \in \mathcal{F}$ alors $A = A \cup \emptyset \in \mathcal{F}_{\mu}$, ainsi $\mathcal{F} \subset \mathcal{F}_{\mu}$.

3. Montrons que $\mathcal{F}^{\mu} = \mathcal{F}_{\mu}$. (1 points)

Soit alors $X \in \mathcal{F}^{\mu}$ et $A, B \in \mathcal{F}$ tels que $A \subset X \subset B$, $\mu(B \setminus A) = 0$. En écrivant $X = A \cup (X \setminus A)$, puisque $A \in \mathcal{F}$ et $X \setminus A \subset B \setminus A$, on a $X \setminus A \in \mathcal{N}_{\mu}$, et donc $X \in \mathcal{F}_{\mu}$. Donc $\mathcal{F}^{\mu} \subset \mathcal{F}_{\mu}$.

Pour l'autre inclusion, Si $X \in \mathcal{F}_{\mu}$ alors $X = A \cup N$ où $A \in \mathcal{F}$ et $N \subset Z \in \mathcal{F}$ avec $\mu(Z) = 0$. On a

$$A \subset A \cup N \subset A \cup Z$$
.

Si on pose $B = A \cup Z$, alors on a $A \subset X \subset B$. Puisque $A \in \mathcal{F}$ et $B = A \cup Z \in \mathcal{F}$ (stabilité par réunion) et

$$\mu(B \setminus A) = \mu((A \cup Z) \setminus A) \le \mu(Z) = 0,$$

on en déduit que $X \in \mathcal{F}^{\mu}$. Donc $\mathcal{F}_{\mu} \subset \mathcal{F}^{\mu}$.

- 4. Soit l'application $\overline{\mu}: \mathcal{F}^{\mu} \to \overline{\mathbb{R}}_+$ définie par $\overline{\mu}(X) = \mu(A) = \mu(B)$.
- a. Vérifions que $\overline{\mu}$ est bien définie, c'est-à-dire ne dépend pas du choix de A et B. (1 point) Supposons que

$$A \subset X \subset B$$
, $\mu(B \setminus A) = 0$, avec $A, B \in \mathcal{F}$

et

$$A' \subset X \subset B', \quad \mu(B' \setminus A') = 0, \quad \text{avec } A', B' \in \mathcal{F}.$$

Alors $A \subset B'$ donc $\mu(A) \leq \mu(B') = \mu(A')$. En répétant l'argument dans l'autre sens, on montre aussi que $\mu(A') \leq \mu(A)$, donc μ est bien définie.

- Vérifions que $\overline{\mu}$ est une mesure sur \mathcal{F}^{μ} prolongeant μ . (1 point)
- Clairement $\overline{\mu}(\emptyset) = \mu(\emptyset) = 0$ car $\emptyset \in \mathcal{F}$.;

— Si $(X_n)_{n\in\mathbb{N}}$ est une famille disjointe d'éléments de \mathcal{F}^{μ} , alors il existe deux suites $(A_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ d'éléments disjoints de \mathcal{F} telles que $A_n \subset X_n \subset B_n$ et $\mu(B_n \setminus A_n) = 0$ pour tout $n \in \mathbb{N}$, on a

$$\bigcup_{n\in\mathbb{N}} A_n \subset \bigcup_{n\in\mathbb{N}} X_n \subset \bigcup_{n\in\mathbb{N}} B_n$$

et

$$\mu\left(\bigcup_{n\in\mathbb{N}}B_n\setminus\bigcup_{n\in\mathbb{N}}A_n\right)=0.$$

On a donc

$$\overline{\mu}\left(\bigcup_{n\in\mathbb{N}}X_n\right) = \mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n>0}\mu(A_n) = \sum_{n>0}\overline{\mu}(X_n).$$

b. Montrons que $\mathcal{N}_{\overline{\mu}} = \mathcal{N}_{\mu}$, (bonus 1 point)

Soit $N \in \mathscr{N}_{\overline{\mu}}$. Soit $Z \in \mathcal{F}^{\mu}$ tel que $N \subset Z$ et $\overline{\mu}(Z) = 0$. Comme $Z \in \mathcal{F}^{\mu}$ alors il existe $Z_1, Z_2 \in \mathcal{F}$ tel que $Z_1 \subset Z \subset Z_2$ et $\mu(Z_2 \setminus Z_1) = 0$.

On a $0 = \overline{\mu}(Z) = \mu(Z_1) = \mu(Z_2)$, ainsi on obtient $N \subset Z_2$ avec $Z_2 \in \mathcal{F}$ et $\mu(Z_2) = 0$. Donc $N \in \mathcal{N}_{\mu}$. ainsi $\mathcal{N}_{\overline{\mu}} \subset \mathcal{N}_{\mu}$.

Pour l'autre inclusion, soit $N \in \mathscr{N}_{\mu}$. Soit $Z \in \mathcal{F}$ tel que $N \subset Z$ et $\mu(Z) = 0$. Alors on a $\emptyset \subset N \subset Z$ et $\mu(Z \setminus \emptyset) = \mu(Z) = 0$ donc $N \in \mathcal{F}^{\mu}$ et $\overline{\mu}(N) = \mu(\emptyset) = \mu(Z) = 0$. Ainsi $N \in \mathscr{N}_{\overline{\mu}}$, d'où $\mathscr{N}_{\mu} \subset \mathscr{N}_{\overline{\mu}}$.

Finalement, on a $\mathcal{N}_{\overline{\mu}} \subset \mathcal{N}_{\mu} \subset \mathcal{F}^{\mu}$ ce qui montre que $(E, \mathcal{F}^{\mu}, \overline{\mu})$ est un espace mesuré complet. (bonus 1 point)

Exercice 2 (8 pts).

- 1. Rappeler la définition de la classe monotone sur un ensemble E.
- 2. Soit (E, \mathcal{F}) un espace mesurable, et μ_1 , μ_2 deux mesures sur \mathcal{F} .

Soit $A \in \mathcal{F}$ tel que $\mu_1(A) = \mu_2(A) < +\infty$. On pose

$$\mathcal{M} = \{ B \in \mathcal{F}, \ tel \ que \ \mu_1(A \cap B) = \mu_2(A \cap B) \}.$$

Montrer que \mathcal{M} est une classe monotone sur E.

Solution

- 1. Un sous-ensemble $\mathcal{M} \subset \mathscr{P}(E)$ est appelé une classe monotone si :
 - i) $E \in \mathcal{M}$. (1 point)
 - ii) Si $A, B \in \mathcal{M}$ et $A \subset B$, alors $B \setminus A \in \mathcal{M}$. (1 point)
 - iii) Si $A_n \in \mathcal{M}$ pour tout $n \in \mathbb{N}$, et que $A_n \subset A_{n+1}$, alors $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}$. (1 point)
- 2. Soit (E, \mathcal{F}) un espace mesurable, et μ_1, μ_2 deux mesures sur \mathcal{F} .

Soit $A \in \mathcal{F}$ tel que $\mu_1(A) = \mu_2(A) < +\infty$. On pose

$$\mathcal{M} = \{ B \in \mathcal{F}, \text{ tel que } \mu_1(A \cap B) = \mu_2(A \cap B) \}.$$

Montrons que \mathcal{M} est une classe monotone.

- $E \in \mathcal{M} \text{ car } E \in \mathcal{F} \text{ et } \mu_1(A \cap E) = \mu_1(A) = \mu_2(A) = \mu_2(A \cap E).$ (1 point)
- Soit $B, C \in \mathcal{M}$ tels que $B \subset C$, montrons que $C \setminus B \in \mathcal{M}$.

On remarque d'abord que $C \setminus B = C \cap B^c \in \mathcal{F}$ par stabilité de \mathcal{F} par passage au complémentaire et par intersection.

Puis, on a $A \cap (C \setminus B) = (A \cap C) \setminus (A \cap B)$, et comme $\mu_1(A) < +\infty$ et $\mu_2(A) < +\infty$ on a aussi $\mu_1(A \cap C) < +\infty$ et $\mu_2(A \cap C) < +\infty$ et donc

$$\mu_1((A \cap C) \setminus (A \cap B)) = \mu_1(A \cap C) - \mu_1(A \cap B),$$

$$\mu_2((A \cap C) \setminus (A \cap B)) = \mu_2(A \cap C) - \mu_2(A \cap B).$$

Comme $B, C \in \mathcal{M}$, on en déduit que

$$\mu_1((A \cap C) \setminus (A \cap B)) = \mu_2((A \cap C) \setminus (A \cap B)),$$

et donc

$$\mu_1(A \cap (C \setminus B)) = \mu_2(A \cap (C \setminus B)),$$

ainsi $C \setminus B \in \mathcal{M}$. (2 points)

- Soit $B_n \in \mathcal{M}$, $n \in \mathbb{N}$, tel que $B_n \subset B_{n+1}$. On veut montrer que $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{M}$. On remarque d'abord que $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{F}$ (par stabilité de \mathcal{F} par union dénombrable). Puis, comme $A \cap \bigcup_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} (A \cap B_n)$ et que $(A \cap B_n) \subset (A \cap B_{n+1})$ pour tout $n \in \mathbb{N}$ (i.e., la suite $(A \cap B_n)$ est croissante), on a par continuité croissante de μ_1 et μ_2

$$\mu_1\left(A\cap \bigcup_{n=0}^{+\infty} B_n\right) = \mu_1\left(\bigcup_{n\in\mathbb{N}} (A\cap B_n)\right) = \lim_{n\to+\infty} \mu_1(A\cap B_n)$$

$$\mu_2\left(A\cap\bigcup_{n=0}^{+\infty}B_n\right)=\mu_2\left(\bigcup_{n\in\mathbb{N}}(A\cap B_n)\right)=\lim_{n\to+\infty}\mu_2(A\cap B_n)$$

et puisque $\mu_1(A \cap B_n) = \mu_2(A \cap B_n)$ pour tout $n \in \mathbb{N}$, on obtient

$$\mu_1\left(A\cap\bigcup_{n=0}^{+\infty}B_n\right)=\mu_2\left(A\cap\bigcup_{n=0}^{+\infty}B_n\right).$$

Donc $\bigcup_{n=0}^{+\infty} B_n \in \mathcal{M}$, ce qui montre la stabilité de \mathcal{M} par union dénombrable croissante. (2 points)

Exercice 3 (4 pts).

I. Rappeler la définition de la mesure extérieure sur un ensemble E.

II. Soit l'application $\mu^* : \mathscr{P}(E) \to \overline{\mathbb{R}}_+$ définie par $\mu^*(\emptyset) = 0$ et $\mu^*(A) = \infty$ si $A \neq \emptyset$. Montrer que μ^* est une mesure extérieure.

Solution

I. Soit E un ensemble. Une **mesure extérieure** sur E est une application

$$\mu^*: \mathscr{P}(E) \to \overline{\mathbb{R}}_+$$

telle que

- i) $\mu^*(\emptyset) = 0$; **(0.5 point)**
- ii) μ^* est croissante : si $A \subset B \subset E$, $\mu^*(A) \leq \mu^*(B)$; (0.5 point)
- iii) μ^* est sous- σ -additive : pour toute suite $(A_n)_{n\in\mathbb{N}}$ de parties de E,

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n \in \mathbb{N}} \mu^*(A_n).$$
 (0.5point)

II. Soit l'application $\mu^* : \mathscr{P}(E) \to \overline{\mathbb{R}}_+$ définie par $\mu^*(\emptyset) = 0$ et $\mu^*(A) = \infty$ si $A \neq \emptyset$. Montrons que μ^* est une mesure extérieure.

- i) On a $\mu^*(\emptyset) = 0$ et ceci par définition de μ^* . (0.5 point)
- ii) μ^* est monotone? (1 point)

Soient $A, B \in \mathcal{P}(E)$ tels que $A \subset B$. Montrons que $\mu^*(A) \leq \mu^*(B)$?

- Si $B = \emptyset$ alors $A = \emptyset$ donc $\mu^*(A) = 0 \le 0 = \mu^*(B)$.
- Si $B \neq \emptyset$, alors $\mu^*(B) = +\infty$, on a deux cas :
 - Si $A = \emptyset$ alors $\mu^*(A) = 0 \le \mu^*(B)$.

- Si $A \neq \emptyset$ alors $\mu^*(A) = \mu^*(B) + \infty$.

Ainsi dans tous les cas on a $\mu^*(A) \leq \mu^*(B)$.

iii) μ^* est σ -sous-additive? (1 point)

Soit $(A_n)_{n\in\mathbb{N}}\subset\mathscr{P}(E)$.

• Si $A_n = \emptyset$, $\forall n \in \mathbb{N}$.

On a $\mu^*(A_n)=0, \forall n\in\mathbb{N}$ et $\bigcup_{n\in\mathbb{N}}A_n=\emptyset$ donc $\mu^*\left(\bigcup_{n\in\mathbb{N}}A_n\right)=0$, ainsi

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n=0}^{+\infty} \mu^*(A_n).$$

• S'il existe $n_0 \in \mathbb{N}$, tel que $A_{n_0} \neq \emptyset$, alors $\bigcup_{n \in \mathbb{N}} A_n \neq \emptyset$ ce qui donne $\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) = +\infty$ et

$$\sum_{n=0}^{+\infty} \mu^*(A_n) \ge \mu^*(A_{n_0}) = +\infty = \mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right).$$

Ainsi

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right).$$