PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : C10M 173/02 // (C10M 173/02 C10M 129:38, 133:06, 133:06 C10M 133:08, 135:10, 135:10 C10M 145:36) C10N 40:00	A1	(11) International Publication Number: (43) International Publication Date:	WO 92/13049 6 August 1992 (06.08.92)
	,	pean patent), CA, CH (Euro	ppean patent), DE (Euro- ean patent), ES (European atent), GB (European pa- IT (European patent), JP,
 (71) Applicant: ECOLAB INC. [US/US]; Ecolab (Paul, MN 55102 (US). (72) Inventor: GUTZMANN, Timothy, Allen; Lane, Eagan, MN 55123 (US). (74) Agents: BYRNE, Linda, M. et al.; Merch Smith, Edell, Welter & Schmidt, 1000 Norwe East Fifth Street, Saint Paul, MN 55101 (US). 	304 Kolst	with international search report ad	

(54) Title: CONVEYER LUBRICANT COMPATIBLE WITH SYNTHETIC PLASTIC CONTAINERS

(57) Abstract

Concentrated liquid and solid lubricating compositions having superior compatibility with synthetic polymeric packaging materials, such as polyethylene terephthalate (PET), linear high density polyethylene (LHDPE), polystyrene, polymeric coated papers, and the like, can include 1 to 50 wt% of a fatty acid diamine salt having the formula $[(R^1)(R^2)N(R^5)NH(R^3)(R^4)]^+(R^6COO)^-$ or $[(R^1)(R^2)NH(R^5)NH(R^3)(R^4)]^+(R^6COO)^-$ wherein R^1 is a $C_{10.18}$ aliphatic group; R^2 , R^3 , and R^4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; R^5 is a $C_{1.5}$ alkylene group; and R^6 is a $C_{10.18}$ aliphatic group. The lubricating compositions are particularly useful on the load bearing surfaces of conveyor belts used in the bottling of carbonated beverages in polyethylene terephthalate bottles.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

•				MG	Mudagascar
AT	Austria	ES	Spani	ML.	Mali
AU	Australia	FI	Finland	MN	Mongolia
BB	Bartsules	FR	France	MR	Mauritania
BE	Belgium	GA	Gahon	MW	Malawi
BF	Burkina Faso	GB	United Kingdom		
BC	Bulgaria	GN	Guinca	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
-	Hr.wil	HU	Hungary	PL	Poland
BR		IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland		Republic of Korea	SN	Senegal
CI	(ou d'hoire	KR		รบ	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
cs	Czechoslovakia	1.60	Sri Lanka	TG.	Togo
DΕ	Licemany	LU	i usembourg		United States of America
DK	Dennark	MC	Monaco	us	Officer States of America

1

CONVEYOR LUBRICANT COMPATIBLE WITH SYNTHETIC PLASTIC CONTAINERS

Field of the Invention

5

20

Broadly, the invention relates to aqueous lubricant compositions and more particularly to a lubricant compositions compatible with synthetic polymeric packaging materials, such as polyethylene terephthalate (PET), linear high density polyethylene (LHDPE), polystyrene, and the like. Such lubricant compositions are adapted for use as a lubricating agent on the load bearing surfaces of a chain driven conveyor system used for conveying such synthetic polymeric materials. More specifically, the invention relates to a lubricant compositions specifically adapted for use in lubricating the load bearing surface of a conveyor system used in the bottling of carbonated beverages in polyethylene terephthalate bottles.

Background of the Invention

Beverages and other comestibles are often processed and packaged in synthetic polymeric packaging on mechanized conveyor systems which are lubricated to reduce friction between the packaging and the load bearing surface of the conveyor. The lubricants commonly used on the load bearing surfaces of these conveyor systems, such as those used in the food processing, beverage and the brewery industries, typically contain fatty acid soaps as the active lubricating ingredient because of the superior lubricity provided by fatty acid soaps.

The fatty acid soaps are generally formed by neutralizing a fatty acid with a caustic compound such as alkali metal hydroxide (NaOH or KOH) or an alkanolamine (MEA, DEA or TEA). Fatty acid soaps neutralized with such caustic compounds are generally incompatible with

polyethylene terephthalate to such an extent that prolonged contact frequently results in the formation of stress cracks and fissures in the plastic. This is most frequently observed in bottling plants where carbonated beverages are placed into polyethylene terephthalate bottles because of the stress placed upon the bottle by the bottling process, the carbonated beverage contained within the bottle, and interval pressure.

Various polyethylene terephthalate compatible lubricant compositions have been developed by replacing at least a portion of the fatty acid with other lubricating components. For example, Rossio, United States Patent Number 4,929,375, suggests that incorporation of a tertiary amine, such as a (C₈₋₁₀) alkyl dimethyl amine, into a fatty acid lubricant composition enhances the polyethylene terephthalate compatibility of the lubricant composition.

While these various attempts have been successful in producing lubricant compositions which are compatible with polyethylene terephthalate, such compositions have not generally been effective for providing both superior lubricity and superior compatibility with synthetic polymeric packaging materials. Accordingly, a substantial need still exists for a conveyor lubricant which provides a combination of superior lubricity and compatibility with synthetic polymeric packaging materials.

Summary of the Invention

The invention resides in an aqueous lubricant composition capable of providing superior lubricity to the interface between the load bearing surface of a conveyor system and a synthetic polymeric packaging material and a related method for effecting such lubrication. The lubricant composition may be formed as a liquid or solid concentrate and includes an effective lubricating amount of a fatty acid diamine salt having the formula

 $[(R^1)(R^2)N(R^5)NH(R^3)(R^4)]^+(R^6COO)^-$ or $[(R^1)(R^2)NH(R^5)NH(R^3)(R^4)]^{++}(R^6COO)_2^-$ wherein R^1 is a C_{10-18} aliphatic group; R2, R3, and R4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide 5 units; R^5 is a C_{1-5} alkylene group; and R^6 is a C_{10-18} aliphatic group. The lubricant composition further includes one or more of (i) an amount of a hydrotrope effective for providing sufficient aqueous solubility to the fatty acid and diamine components of the fatty acid 10 diamine salt so as to permit formation of the fatty acid diamine salt, (ii) an effective cleansing amount of an anionic or nonionic surfactant, and (iii) an effective chelating amount of a chelating agent. The liquid form of the lubricant composition includes a major proportion of 15 water while the solid form of the lubricant composition includes an amount of a solidification agent effective for assisting in solidification of the composition.

Detailed Description of the Invention

- The invention resides in an improved lubricant concentrate composition that can be formulated in liquid or solid form. The lubricant composition comprises (-) a fatty acid diamine salt having the formula $[(R^1)(R^2)N(R^5)NH(R^3)(R^4)]^+(R^6COO)^- \text{ or }$
- [(R¹)(R²)NH(R⁵)NH(R³)(R⁴)]⁺⁺ (R⁶COO)₂ wherein R¹ is a C_{10-18} aliphatic group; R², R³, and R⁴ are independently hydrogen or an alkoxy (preferably ethoxy) group containing one to five alkylene oxide (preferably ethylene oxide) units; R⁵ is a C_{1-5} alkylene group; and R⁶ is a C_{10-18} aliphatic group,
- (-) a hydrotrope effective for providing sufficient aqueous solubility to the fatty acid and diamine components of the fatty acid diamine salt so as to permit formation of the fatty acid diamine salt, (-) an anionic or nonionic surfactant effective for cleaning the lubricated surface,
- 35 and (-) a chelating agent. The liquid form of the

lubricant composition further includes a major proportion of water while the solid form of the lubricant composition further includes an amount of a solidification agent effective for assisting in solidification of the composition.

The lubricant composition may also include various optional components intended to enhance lubricity, microbial efficacy, physical and/or chemical stability, etc. The lubricant composition of the invention is particularly well suited for lubricating the load bearing surfaces and drive chains of conveyor systems used to convey polyethylene terephthalate bottles filled with a carbonated beverage.

15 Fatty Acid Diamine Salt

25

30

We have surprisingly discovered that an aqueous solution of selected fatty acid diamine salts obtained as the neutralization product of a fatty acid and a diamine performs as an effective polyethylene terephthalate compatible lubricant composition capable of providing effective lubricating properties to the load bearing surface of a conveyor system. Useful fatty acid diamine salts are those having the general formula:

 $[(R^{1})(R^{2})N(R^{5})NH(R^{3})(R^{4})]^{+}(R^{6}COO)^{-}$ -or- $[(R^{1})(R^{2})NH(R^{5})NH(R^{3})(R^{4})]^{++}(R^{6}COO)_{2}^{-}$

wherein: (-) R^1 is a C_{10-18} aliphatic group,

- (-) R^2 , R^3 , and R^4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units,
- (-) R^5 is a C_{1-5} alkylene group, and
- (-) R^6 is a C_{10-18} aliphatic group.

For reasons of performance the preferred fatty acid diamine salts are those wherein R^1 is a C_{10-18} aliphatic group derived from a fatty acid; R^4 is hydrogen; R^5 is a C_{2-5} alkylene group; and R^6 is a C_{10-18} aliphatic group.

For reasons of availability and performance the most preferred fatty acid diamine salts are those wherein R^1 is a C_{10-18} aliphatic group derived from a fatty acid; R^2 , R^3 , and R^4 are hydrogen; R^5 is a propylene group; and R^6 is a C_{10-18} aliphatic group.

10 The fatty acid diamine salts may be conveniently produced by reacting a suitable diamine of the formula $(R^1)(R^2)N(R^5)N(R^3)(R^4)$ with a suitable fatty acid of the formula R^6 COOH under conditions sufficient to produce the fatty acid diamine salt. Generally, such fatty acids will spontaneously neutralize such diamines to form the fatty acid diamine salts under ambient conditions provided both components can be brought into intimate contact such as through mutual solubilization.

The fatty acid diamine salt in liquid concentrates can

20 be formed in solution by adding the hydrotrope to the water
and then sequentially adding the fatty acid and the
diamine. The fatty acid and diamine will react
spontaneously to form the fatty acid diamine salt. The
remaining formula components such as surfactant(s),

25 sequestrant(s), alcohol(s) and other components can then be

added and mixed into the formulation to complete the concentrate.

The fatty acid diamine salt in solid concentrates can be formed by (i) combining the hydrotrope, surfactant(s), sequestrant(s), and alcohol(s) to form a liquid premix, (ii) adding the fatty acid(s) to the premix to form a first mixture, (iii) heating the first mixture to a temperature above the melting point of the solidifying agent, (iv) sequentially adding the solidifying agent and the diamine to the heated first mixture under constant agitation to form a second mixture, (v) allowing the fatty acid and the diamine to spontaneously react in the second mixture to form a fatty acid diamine salt, and (vi) allowing the second mixture to solidify into a water soluble block of lubricant by cessation of agitation and cooling to ambient temperatures.

Diamines

25

Useful diamines are those having the general formula: $(R^1) \, (R^2) \, N(R^5) \, N(R^3) \, (R^4)$

wherein: (-) R^1 is a C_{10-18} aliphatic group, preferably derived from a C_{10-18} fatty acid,

(-) R^2 , R^3 , and R^4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units, preferably hydrogen, and

7

(-) R^5 is a C_{1-5} alkylene group, preferably a propylene group.

Representative examples of useful diamines include N-coco-1,3-propylene diamine (N-coco-1,3 diaminopropane), N-oleyl-1,3-propylene diamine (N-oleyl-1,3 diaminopropane), N-tallow-1,3-propylene diamine (N-tallow-1,3 diaminopropane), and mixtures thereof. Such N-alkyl-1,3 diaminopropanes are available from Akzo Chemie America, Armak Chemicals under the trademark Duomeen®.

10

Fatty Acids

A wide variety of fatty acids may be usefully employed in the lubricant compositions of the invention. Those acids found to provide effective lubricity are those having the general formula R⁶COOH wherein R⁶ represents an aliphatic group having from about 9 to about 17 carbon atoms so as to produce a fatty acid having about 10 to 18 carbon atoms. For use in formulating the solid form of the composition the C₁₆₋₁₈ fatty acids are preferred as they assist in solidification of the composition. The aliphatic group may be branched or unbranched and saturated or unsaturated but is preferably a straight chain alkyl group.

Specific examples of suitable fatty acids include such saturated fatty acids as capric (decanoic) (C_{10}) ,

25 undecyclic (undecanoic) (C_{11}) , lauric (dodecanoic) (C_{12}) , trideclic (tridecanoic) (C_{13}) , myristic (tetradecanoic)

8

(C₁₄), palmitic (hexadecanoic) (C₁₆), stearic (octadecanoic)
(C₁₈); monounsaturated fatty acids such as lauroleic (C₁₂),
myristoleic (C₁₄), palmitoleic (C₁₆), and oleic (C₁₈);
polyunsaturated fatty acids such as linoleic (diunsaturated C₁₈), and linolenic (tri-unsaturated C₁₈); and
substituted fatty acids such as ricinoleic (hydroxysubstituted C₁₈).

Mixed fatty acids may be employed in the lubricant composition of the invention such as those derived from fats and oils. Coconut oil fatty acids are particularly preferred in the lubricant compositions of the invention because of their ready availability and superior lubricating properties. Coconut oil fatty acids include major fractions of lauric and myristic acids and minor fractions of palmitic, stearic, oleic and linoleic acids. Tall oil fatty acids, obtained as a byproduct of the paper industry from the tall oil recovered from pine wood black liquor, are also preferred fatty acids for use in the lubricant composition of the invention. Tall oil fatty acids include major fractions of oleic and linoleic acids and minor fractions of palmitic, stearic, and isostearic acids.

9

Other Components

Water

When the lubricant composition of the invention is formulated as a liquid the composition includes a major portion of water in addition to the fatty acid diamine, salt.

Solidifying Agent

When the lubricant composition of the invention is

formulated as a solid the composition optionally, but

preferably, includes an effective solidifying proportion of
a solidifying agent. Any compound which is compatible with
the other components of the lubricant composition and is
capable of aiding in solidification of the composition may

be employed. Suitable solidification agents include higher
molecular weight glycols, polyalkylene glycols such as
polyethylene glycol (PEG), higher molecular weight fatty
acid soaps, and urea. The fatty acid soaps may be
conveniently formed in situ by adding sodium or potassium

hydroxide to the composition so as to convert a portion of
the fatty acid to the corresponding alkali metal fatty acid
soap (See Trial #s 11 and 12).

Hydrotrope

The lubricant composition of the invention includes an effective amount of a hydrotrope for effecting aqueous

10

solubilization of the fatty acid and the diamine. mutual aqueous solubilization is necessary for achieving substantially complete neutralization of the fatty acid by the diamine and for phase stability of the dilute use 5 solution of the lubricant composition. A variety of compatible hydrotropes are available for use in the lubricant composition. For reasons of overall compatibility with the other components and effectiveness for solubilizing the fatty acid and diamine, the preferred 10 hydrotropes are the anionic surfactant sulfonates. "A nonexhaustive list of suitable sulfonates includes specifically, but not exclusively, alkali metal salts of C_{6-18} alkyl sulfonates such as sodium decane sulfonate and sodium dodecane sulfonate, alkali metal aryl sulfonates 15 such as sodium benzene sulfonate and sodium phenol sulfonate, and $C_{6\text{--}30}$ alkaryl sulfonates such as sodium $C_{2\text{--}18}$ alkyl naphthalene sulfonate and sodium xylene sulfonate.

Hydrotropes which are solid under ambient conditions
may be usefully employed when formulating the solid form of
the lubricant compositions of the invention as such solid
hydrotropes assist in solidification of the composition.
Suitable solid hydrotropes for use in the lubricant
compositions of the invention includes specifically, but
not exclusively, C₂₋₁₈ alkyl naphthalene sulfonates
available from PetroChemicals Company, Inc. under the mark
"Petro".

11

The proportion of hydrotrope which should be employed depends upon various factors including the specific hydrotrope employed and the specific fatty acid and diamine employed. However, effective results can generally be obtained by including about 2-40 wt% hydrotrope, preferably about 5-20 wt%, in the lubricant composition.

Surfactants

The lubricant compositions of the invention optionally,

10 but preferably, may further include a compatible material

for enhancing the lubricity of the composition, such as an
anionic or nonionic surfactant.

Anionic surfactants are generally those compounds containing a hydrophobic hydrocarbon moiety and a negatively charged hydrophilic moiety. Typical commercially available products provide either a carboxylate, sulfonate, sulfate or phosphate group as the negatively charged hydrophilic moiety. Broadly, any of the commercially available anionic surfactants may be usefully employed in the lubricant composition of the invention.

Particularly suitable anionic surfactants for use in the lubricant composition of the invention are the sulfonates having the general formula (R³⁰)SO₃Na wherein R³⁰ is a hydrocarbon group in the surfactant molecular-weight range. For reasons of cost, availability and overall compatibility with the other components of the lubricant

5

composition, the preferred anionic surfactants for use in the lubricant composition are the alkaryl sulfonates such as alkyl benzene sulfonates and alkyl naphthalene sulfonates.

Nonionic surfactants are generally hydrophobic compounds which bear essentially no charge and exhibit a hydrophilic tendency due to the presence of oxygen in the molecule. Nonionic surfactants encompass a wide variety of polymeric compounds which include specifically, but not 10 exclusively, ethoxylated alkylphenols, ethoxylated aliphatic alcohols, ethoxylated amines, carboxylic esters, carboxylic amides, and polyoxyalkylene oxide block copolymers.

Particularly suitable nonionic surfactants for use in the lubricant composition of the invention are the 15 alkoxylated (preferably ethoxylated) alcohols having the general formula $R^{10}O((CH_2)_mO)_m$ wherein R^{10} is an aliphatic group having from about 8 to about 24 carbon atoms, m is a whole number from 1 to about 5, and n is a number from 1 to 20 about 20 which represents the average number of ethyleneoxide groups on the molecule.

Based upon their overall compatibility with the other components of the lubricant composition and their ability to enhance the lubricity and cleansing effect of the 25 lubricant composition at a reasonable cost, a particularly preferred group of nonionic surfactants are the alkoxylated

13

amines having the general formula $(R^{21})(R^{22})(R^{23})N$ wherein R^{21} , R^{22} , and R^{23} are independently hydrogen, a C_{1-5} alkyl, or a polyalkoxy (preferably polyethoxy) group having the general formula $((CH_2)_mO)_n$ wherein m is a number from 2 to 4 and n is a number from 1 to about 20 with at least one of R^{21} , R^{22} , and R^{23} being a polyalkoxy group.

Sequestrant

The compositions of the invention may also optionally

contain a sequestrant for the purpose of complexing or

chelating hardness components in the service water into

which the lubricant composition is dispensed. Sequestrants

are reagents that combine with metal ions to produce

soluble complexes or chelate compounds. The most common

and widely used sequestrants are those that coordinate

metal ions through oxygen and/or nitrogen donor atoms. The

sequestrant use in the lubricant composition of the

invention may be organic or inorganic so long as it is

compatible with the other components of the composition.

Based upon availability and overall compatibility with the

other components, the preferred sequestrant is

ethylenediamine tetraacetic acid.

Alcohol

25 The novel lubricant compositions of the invention may also contain a (C_{1-10}) alcohol having about 1-5 hydroxy

groups for the purpose of enhancing the physical stability, wettability, and activity of the composition. A nonexhaustive list of suitable alcohols include methanol, ethanol, isopropanol, t-butanol, ethylene glycol, propylene glycol, hexylene glycol, glycerine, low molecular weight polyethylene glycol compounds, and the like.

Other Components

In addition to the above mentioned components, the

lubricating compositions of the invention may also contain
those components conventionally employed in conveyor
lubricant compositions, which are compatible in the
composition, to achieve specified characteristics such as
anti-foam additives, viscosity control agents, perfumes,

dyes, corrosion protection agents, etc.

Concentrations

Broadly, the solid and liquid forms of the concentrated lubricant compositions of the invention should include

20 about 1-70 wt% of the fatty acid diamine salt. More specifically, the liquid form should include about 1-50 wt% fatty acid diamine salt and the solid concentrate about 5-70 wt% fatty acid diamine salt.

A preferred liquid concentrate of the lubricant

25 composition of the invention includes about 5-25 wt% fatty
acid diamine salt made from about 4-20 wt% fatty acid and

15

1-10 wt% diamine. The liquid concentrate can also include about 2-40 wt% hydrotrope, about 2-30 wt% surfactant, and about 1-20 wt% sequestrant.

A preferred solid concentrate of the lubricant

5 composition of the invention includes about 10-60 wt% fatty
acid diamine salt made from about 8-50 wt% fatty acid and
about 2-20 wt% diamine. The solid concentrate can also
include about 2-40 wt% hydrotrope, about 2-30 wt%
surfactant, and about 1-20 wt% sequestrant.

The lubricant compositions of the invention may be 10 applied to the load bearing surface of a conveyor system by any of the recognized methods for such application including the most commonly utilized and widely accepted practice of spraying the lubricant onto the moving conveyor 15 surface. However, prior dispensing the lubricant compositions of the invention onto the moving conveyor, the composition must be diluted with water to use strength. The diluted lubricant use solution should contain about 50 to 20,000 ppm (wt/v), preferably about 100 to 10,000 ppm 20 (wt/v), active lubricant components wherein the active components of the lubricant composition includes all those components which contribute to the lubricating efficacy of the composition, specifically excluding any water contained in the composition. More specifically, the diluted 25 lubricant use solution should contain about 50 to 10,000 ppm (wt/v), preferably about 100 to 5,000 ppm (wt/v) fatty

acid diamine salt, about 50 to 8,000 ppm (wt/v) hydrotrope, about 0 to 6,000 ppm (wt/v) surfactant, and about 0 to 5,000 ppm (wt/v) sequestrant.

This description is provided to aid in a complete

5 nonlimiting understanding of the invention. Since many
variations of the invention may be made without departing
from the spirit and scope of the invention, the breadth of
the invention resides in the claims hereinafter appended.

rable One
Liquid Formulations
(wt%)

	Water	32.1	29.0	34.0	24.0	22.0	31.8	32.5	21.5	21.5	
	Neo	1	1	1	1	2.0	1	1	1	ı	
	V100	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
	SXS	ı	ı	ı	ı	ı	1	ı	,	40.0	
Sulfonates	NOS	ı	ι	ı	ı	ŧ	ı	ı	40.0	1	
Sul	Petro	40.0	40.0	40.0	50.0	50.0	40.0	40.0	ı	i	
,,	Tall	ı	ı	ı	ı	ı	1	1	12.0	12.0	
Fatty Acids	Coco	0.9	0.9	6.0	6.0	6.0	5.0	20.5		ı	
Fatt	Oleic	0.9	0.9	0.9	0.9	0.9	5.0	7.0	, , ,	i	
	K215	i	1	1	ı	ı	ı	ı	1.5	15.0	
	K210									ı ı	
ines	K202	ı	0	. 1	1	1	. 1	l i	ı	l l	
Amines	C12PA	n O	. !	i 1	i I	1 1	1	1	ı	1 1	
	DuoCD C12PA K202	ı	. !	د ا ج		· <	. r	7.0	C - 7)
								۰.	. ,	~ ~	

Table Two
Solid Formulations
(wt%)

	PEG	17.8
	Urea	15.0 15.0
	DF210	1.0 1.0 1.0
	X3176 I	10.0
S	V100	10.0 4.0 4.0 4.0 4.0 4.0
Sulfonates		20.0
Sul	SON	26.0
,	Petro	40.0 40.0 40.0 38.0 29.7
Fatty Acids	NaOH	1.04. 8.0. 1.111
Fatt	Tall	23.8 14.0 20.0 19.8 20.0
	Coco	5.0
	Oleic	5.0
Amines	K215	21.9 24.0 10.0 19.0
Am	DuoCD T-20 K21	27.7
	DuoCD	4.0 3.0 0.0 0.0 1.1
		0426459

• - Versene 220[®] used in place of Versene 100[®].
• - Added as 16 wt% LBA liquid and 30 wt% BA powder.
• - Added as B wt% LBA liquid and 30 wt% BA powder.
• - Added as BA powder.
• - Added as BA powder.
• - Added as a 90 wt% active powder.

19

Table Three Formulation Comments

Formula #	Comments
1	Liquid concentrate contained curds. Incorporation of additional Petro LBA reduced amount of curdling but did not completely eliminate. A 1 wt% use solution of the composition had a pH of 8.86.
2	Liquid concentrate. A 1 wt% use solution of the composition had a pH of 8.68 and was slightly hazy.
3	Liquid concentrate. A 1 wt% use solution of the composition had a pH of 8.98 and was slightly hazy.
4	Liquid concentrate.
5	Liquid concentrate. A 1 wt% use solution of the composition had a pH of 8.85.
6	Liquid concentrate. A 1 wt% use solution of the composition had a pH of 9.40.
7	Liquid concentrate. A 1 wt% use solution of the composition had a pH of 9.08.
8	Liquid concentrate. The concentrated composition was clear. A 1 wt% use solution of the composition had a pH of 7.84.
9	The liquid concentrate was clear and remained stable at 40°F. A 1 wt% use solution of the composition had a pH of 8.94.
10	Solid concentrate. A 1 wt% use solution of the composition had a pH of 8.13 and was clear.
. 11	The concentrate was solid but slightly tacky. A 0.5 wt $\$$ use solution of the composition had a pH of 10.99.
. 12	The mixture was fluid at 190-200°F and solidified quickly upon cooling. The concentrate was solid but slightly tacky. The solid concentrate was easily removed from the mold. A 0.5 wt% use solution of the

4 ·

	composition had a pH of 9.86.
13	The mixture gelled during mixing but thinned when heated slightly. The concentrate was solid but tacky. The solid concentrate would not release from the mold.
14	Solid concentrate. A use solution of the composition was turbid.
15	The solid concentrate was a soft, slightly tacky composition. A 0.5 wt% use solution of the composition was clear. A 0.5 wt% use solution of the composition had a pH of 8.68.
16	The concentrate was a soft solid. A use solution of the composition was opaque.

Nomenclature*

- DuoCD = Duomeen CD® (N-coco-1,3-[propane] diamine) available from Akzo Chemie America, Armak Chemicals.
- C₁₂PA = A dodecyl amine available from Akzo Chemie America, Armak Chemicals.
- K202 = Varonic $K202^{\textcircled{0}}$ (a C_{10-18} alkyl amine ethoxylate having an average of about 2 moles of ethyleneoxide per molecule available from Sherex Chemical Co. Inc.
- K210 = Varonic $K210^{\oplus}$ (a C_{10-18} alkyl amine ethoxylate having an average of about 10 moles of ethyleneoxide per molecule available from Sherex Chemical Co. Inc.
- K215 = Varonic $K210^{\textcircled{0}}$ (C₁₀₋₁₈ alkyl amine ethoxylates) having an average of about 15 moles of ethyleneoxide per molecule available from Sherex Chemical Co. Inc.
- Oleic = Oleic oil fatty acids. A mixture of C_{10-18} fatty acids containing primarily C_{18} fatty acids.
- Coco = Coconut oil fatty acids. A mixture of C_{12-18} saturated and unsaturated fatty acids containing primarily C_{12} and C_{14} saturated fatty acids.
- Tall = Tall oil fatty acids. A mixture of C_{16-18} saturated and unsaturated fatty acids containing primarily monounsaturated and diunsaturated C_{18} fatty acids.
- Petro = Petro LBA $^{\textcircled{\$}}$ (C_{2-18} alkyl naphthalene sulphonates) available from PetroChemical Co. Inc. Petro BA $^{\textcircled{\$}}$ is a dark colored form of Petro LBA $^{\textcircled{\$}}$.
- NOS = n-octyl sulphonate.
- SXS = Aqueous solution of 40 wt% sodium xylene sulphonate.
- V100 = Versene 100[®] (aqueous solution containing 40 wt% tetrasodium EDTA) available from Dow Chemical Company.
- V220 = Versene $220^{\textcircled{0}}$ (powdered tetrasodium EDTA) available from Dow Chemical Company.
- Neo = Neodol[®] (C_{14-15} alcohol ethoxylates having an average of 12 to 14 moles ethyleneoxide per molecule) available from Shell.
- $X3176 = Desomeen X-3176^{\textcircled{R}}$ (proprietary cationic surfactants) available from Desoto Chemical Company.

- DF210 = Mazu DF210® (a silicone defoamer containing 10% active components) available from Mazer Chemical.
- T-20 = Ethoduomeen T/20® (an ethoxylated N-tallow-1,3-diaminopropane containing an average of 10 ethoxy units) available from Akzo Chemie America, Armak Chemicals.
- PEG = Polyethylene glycol having an average molecular weight of about 8000 available from Union Carbide Corp.

* All are 100% active unless otherwise specified.

23

Polyethylene Terephthalate Bottle Stress Crack Testing Procedure

The test is designed to comparatively determine the affect of conveyor lubricating compositions on pressurized polyethylene terephthalate (PET) bottles.

Fill twenty-four two liter polyethylene terephthalate test bottles with carbonated city water, using a McCann carbonator equipped with a Procon pump, to 5.0 to 5.2 volumes of CO_2 as determined by a Zahm-Nagel CO_2 Tester. Test every sixth bottle during filling for CO_2 loading. If the tested bottle is below 5.0 volumes CO_2 discard tested and previous five bottles. Allow the filled bottles to set at room temperature overnight.

Dilute the two concentrated conveyor lubricant compositions to be tested with distilled water at a lubricant:water ratio of 1:60 (1.67%) for the liquid concentrated lubricants and 1:200 (0.50%) for the solid concentrated lubricants.

Separately place 200 mls of each of the dilute lubricant solutions into a mixing bowl and whip with a Kitchen Aid K-5A Mixer equipped with a wire whip attachment at a speed setting of ten for five minutes in order to foam the solution.

Separately rinse a 13.5" by 18.5" (inside diameter) polyethylene storage bin with 100 mls of the dilute lubricant

24

solutions (unfoamed). Drain the rinsed bins thoroughly and place 75.0 grams of each of the foamed lubricant solutions into separate storage bins.

Place twelve of the filled bottles into each of the polyethylene bins making sure all bottle bottoms are thoroughly coated with the foamed lubricant solution. Allow the filled bottles to set for four to five hours under room conditions.

Set the filled bottles while still in the polyethylene bins in a temperature/humidity control room set at a temperature of $100^{\circ}F$ +/- $5^{\circ}F$ and a humidity of 85% Relative Humidity +/- $5^{\circ}F$. Monitor the bottles daily for any leakage for fourteen days. After completion of testing period, compare crack formation on bottles treated with the two different lubricant compositions.

25

Polyethylene Terephthalate Compatability Testing

Polyethylene terephthalate compatability testing was conducted for Formulations #4, #5, #7 and #10 in accordance with the "Bottle Stress Crack Testing Procedure" set forth above. In addition, commercially available conveyor lubricants employing ethoxylated amines (DicoLube PL^m) and alkyl dimethyl amines as described in United States Patent No. 4,929,375 as the active lubricant were tested for polyethylene terephthalate compatability. All formulations and commercially available products resulted in zero leakage. However, based upon comparision testing of crack formation, the polyethylene terephthalate compatability of those lubricants based upon the diamines (The Invention) were observed to be superior to those based upon ethoxylated amines (DicoLube PL^m) and those based upon alkyl dimethyl amines as described in United States Patent No. 4,929,375.

10

We claim:

 An aqueous liquid conveyor lubricant concentrate which is compatible with synthetic polymeric packaging materials, the concentrate comprising:

5 (-) an effective lubricating amount of a fatty acid diamine salt having the formula

 $[(R^{1})(R^{2})N(R^{5})NH(R^{3})(R^{4})]^{+}(R^{6}COO)^{-}$ $[(R^{1})(R^{2})NH(R^{5})NH(R^{3})(R^{4})]^{++}(R^{6}COO)_{2}^{-}$

wherein R^1 is a C_{10-18} aliphatic group; R^2 , R^3 , and R^4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; R^5 is a C_{1-5} alkylene group; and R^6 is a C_{10-18} aliphatic group;

- (-) an amount of a hydrotrope effective for providing sufficient aqueous solubility to the fatty acid and diamine components of the fatty acid diamine salt so as to permit formation of the fatty acid diamine salt, and
- 20 (-) a balance of water.
 - 2. An aqueous liquid conveyor lubricant concentrate which is compatible with synthetic polymeric packaging materials, the concentrate comprising:
- 25 (-) an effective lubricating amount of a fatty acid diamine salt having the formula $[(R^1)(R^2)N(R^5)NH(R^3)(R^4)]^+(R^6COO)^- \\ -or-$

 $[(R^1)(R^2)NH(R^5)NH(R^3)(R^4)]^{++}$ $(R^6COO)_2^{-}$ wherein R^1 is a C_{10-18} aliphatic group; R^2 , R^3 , and R^4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; R^5 is a C_{1-5} alkylene group; and R^6 is a C_{10-18} aliphatic group;

- (-) an effective cleansing amount of an anionic or nonionic surfactant, and
- (-) a balance of water.

10

15

20

25

5

- 3. An aqueous liquid conveyor lubricant concentrate which is compatible with synthetic polymeric packaging materials, the concentrate comprising:
 - (-) an effective lubricating amount of a fatty acid diamine salt having the formula

$$[(R^{1})(R^{2})N(R^{5})NH(R^{3})(R^{4})]^{+}(R^{6}COO)^{-}$$

$$-or-$$

$$[(R^{1})(R^{2})NH(R^{5})NH(R^{3})(R^{4})]^{++}(R^{6}COO)_{2}^{-}$$

wherein R^1 is a C_{10-18} aliphatic group; R^2 , R^3 , and R^4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; R^5 is a C_{1-5} alkylene group; and R^6 is a C_{10-18} aliphatic group;

- (-) an effective chelating amount of a chelating agent, and
- (-) a balance of water.

28

- 4. The concentrate of claim 1 wherein R^1 is derived from a C_{10-18} fatty acid.
- 5. The concentrate of claim 1 wherein \mathbb{R}^5 is a 5 propylene group.
 - 6. The concentrate of claim 1 wherein the diamine portion of the diamine fatty acid salt is a $N-(C_{10-18})$ aliphatic-1,3-propylene diamine.

10

7. The concentrate of claim 1 wherein the hydrotrope is an alkali metal sulphonate selected from the group consisting of alkali metal C_{6-18} alkyl sulfonates and alkali metal C_{6-30} alkaryl sulfonates.

15

8. The concentrate of claim 2 wherein the surfactant is selected from the group consisting of a fatty acid soap, a sulfonates, an alkoxylated aliphatic alcohol, an alkoxylated amine, and mixtures thereof.

- 9. The concentrate of claim 3 wherein the chelating agent is ethylene diamine tetraacetic acid or a salt thereof.
- 25 10. The concentrate of claim 1 wherein the lubricant comprises about 1-50 wt% fatty acid diamine salt.

- 11. An aqueous liquid concentrate which can form an aqueous lubricant composition for the load bearing surface of a conveyor system upon dilution with water, said concentrate comprising:
- (a) about 1-50 wt-% of a fatty acid diamine salt having the formula $[(R^1)(R^2)N(R^5)NH(R^3)(R^4)]^+(R^6COO)^-$ -or- $[(R^1)(R^2)NH(R^5)NH(R^3)(R^4)]^{++}(R^6COO)_2^-$ wherein R¹ is a C₁₀₋₁₈ aliphatic group; R², R³, and R⁴ are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; R⁵ is a C₁₋₅ alkylene group; and R⁶ is a C₁₀₋₁₈ aliphatic group;
 - (b) about 2-40 wt-% of a hydrotrope selected from the group consisting of an alkali metal C_{6-18} alkyl sulphonate, an alkali metal C_{6-30} alkaryl sulphonate, and mixtures thereof;
- 20 (c) about 2-30 wt% of an anionic or nonionic surfactant selected from the group consisting of a fatty acid soap, a sulfonates, an alkoxylated aliphatic alcohol, and an alkoxylated amine;
 - (d) about 1-20 wt% EDTA or a salt thereof; and
 - (e) the balance water.

- 12. An aqueous liquid conveyor lubricant concentrate which is compatible with synthetic polymeric packaging materials, the concentrate comprising:
 - (-) an effective lubricating amount of the neutralization product of a C_{10-18} fatty acid and a diamine having the formula

 $[(R^{1})(R^{2})N(R^{5})NH_{2}(R^{3})]^{+}(R^{6}COO)^{-}$ -or- $[(R^{1})(R^{2})NH(R^{5})NH_{2}(R^{3})]^{++}(R^{6}COO)_{2}^{-}$

- wherein R¹ is a C₁₀₋₁₈ aliphatic group; R² and R³ are independently hydrogen or an alkoxy group, containing one to five alkylene oxide units; and R⁵ is a C₁₋₅ alkylene group;
 - (-) an amount of a hydrotrope effective for providing sufficient aqueous solubility to the fatty acid and diamine components of the fatty acid diamine salt so as to permit substantially complete neutralization of the diamine by the fatty acid, and
- 20 (-) a balance of water.

5

- 13. An aqueous liquid conveyor lubricant concentrate which is compatible with synthetic polymeric packaging materials, the concentrate comprising:
- (-) an effective lubricating amount of the neutralization product of a C_{10-18} fatty acid and a diamine having the formula

5

20

25

 $[(R^{1})(R^{2})N(R^{5})NH_{2}(R^{3})]^{+}(R^{6}COO)^{-}$ -or- $[(R^{1})(R^{2})NH(R^{5})NH_{2}(R^{3})]^{++}(R^{6}COO)_{2}^{-}$

wherein R^1 is a C_{10-18} aliphatic group; R^2 and R^3 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; and R^5 is a C_{1-5} alkylene group;

- (-) an effective cleansing amount of an anionic or nonionic surfactant, and
- 10 (-) a balance of water.
 - 14. An aqueous liquid conveyor lubricant concentrate which is compatible with synthetic polymeric packaging materials, the concentrate comprising:
- 15 (-) an effective lubricating amount of the neutralization product of a C_{10-18} fatty acid and a diamine having the formula

 $[(R^{1})(R^{2})N(R^{5})NH_{2}(R^{3})]^{+}(R^{6}COO)^{-}$ -or- $[(R^{1})(R^{2})NH(R^{5})NH_{2}(R^{3})]^{++}(R^{6}COO)_{2}^{-}$

wherein R^1 is a C_{10-18} aliphatic group; R^2 and R^3 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; and R^5 is a C_{1-5} alkylene group;

- (-) an effective chelating amount of a chelating agent, and
 - (-) a balance of water.

of a conveyor system comprising the step of coating the load bearing surface of the conveyor system with a sufficient lubricating amount of a conveyor lubricant comprising at least (-) a major proportion of water, and (-) an effective lubricating amount of a fatty acid diamine salt having the formula

 $[(R^1)(R^2)N(R^5)NH(R^3)(R^4)]^+(R^6COO)^- \\ -or- \\ [(R^1)(R^2)NH(R^5)NH(R^3)(R^4)]^{++} (R^6COO)_2^- \\ \text{wherein } R^1 \text{ is a } C_{10-18} \text{ aliphatic group; } R^2, R^3, \text{ and } R^4 \text{ are } \\ \text{independently hydrogen or an alkoxy group containing one to } \\ \text{five alkylene oxide units; } R^5 \text{ is a } C_{1-5} \text{ alkylene group; and } \\$

15 R^6 is a C_{10-18} aliphatic group.

- 16. The process of claim 15 wherein R^1 is derived from a C_{10-18} fatty acid and R^5 is a propylene group.
- 20 17. A process for lubricating the load bearing surface of a conveyor system comprising the step of coating the load bearing surface of the conveyor system with an effective lubricating amount of a conveyor lubricant comprising at least (-) a major proportion of water, and (-) an effective lubricating amount of the neutralization product of a C₁₀₋₁₈ fatty acid and a diamine having the formula (R¹)(R²)N(R⁵)NH(R³)(R⁴) wherein R¹ is a C₁₀₋₁₈

aliphatic group; R^2 , R^3 , and R^4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; and R^5 is a C_{1-5} alkylene group.

- 5 18. A process for lubricating the load bearing surface of a conveyor system comprising the steps of:
 - (a) dispersing a concentrate of a lubricating composition into sufficient water to form an aqueous lubricating solution, wherein (i) said lubricating concentrate comprises at least an effective lubricating amount of a fatty acid diamine salt having the formula

 $[(R^{1})(R^{2})N(R^{5})NH(R^{3})(R^{4})]^{+}(R^{6}COO)^{-}$ -or- $[(R^{1})(R^{2})NH(R^{5})NH(R^{3})(R^{4})]^{++}(R^{6}COO)_{2}^{-}$

- wherein R^1 is a C_{10-18} aliphatic group; R^2 , R^3 , and R^4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; R^5 is a C_{1-5} alkylene group; and R^6 is a C_{10-18} aliphatic group; and (ii) said lubricating solution comprises at least about 50-10,000 ppm (w/v) of the fatty acid diamine salt; and
 - (b) placing said lubricating solution onto the load bearing surface of an operating conveyor system in an amount and for a period of time effective to lubricate the load bearing surface.

25

10

19. The process of claim 18 wherein the lubricating solution comprises at least about 100-5,000 ppm (w/v) of

the fatty acid diamine salt.

20. The process of claim 18 wherein R^1 is derived from a C_{10-18} fatty acid and R^5 is a propylene group.

- 21. A process for lubricating the load bearing surface of a conveyor system comprising the steps of:
- (a) dispersing a concentrate of a lubricating composition into sufficient water to form an aqueous lubricating solution, wherein (i) said lubricating concentrate comprises at least an effective lubricating amount of the neutralization product of a C₁₀₋₁₈ fatty acid and a diamine having the formula (R¹)(R²)N(R⁵)NH(R³)(R⁴) wherein R¹ is a C₁₀₋₁₈ aliphatic group; R², R³, and R⁴ are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; and R⁵ is a C₁₋₅ alkylene group, and (ii) said lubricating solution comprises at least about 50-5000 ppm (w/v) of the neutralization product; and
- 20 (b) placing said lubricating solution onto the load bearing surface of an operating conveyor system in an amount and for a period of time effective to lubricate the load bearing surface.
- 25 22. A solid conveyor lubricant concentrate dilutable with an aqueous base to form a use solution which is

compatible with synthetic polymeric packaging materials, the concentrate comprising:

(-) an effective lubricating amount of a fatty acid diamine salt having the formula

 $[(R^{1})(R^{2})N(R^{5})NH(R^{3})(R^{4})]^{+}(R^{6}COO)^{-}$ -or- $[(R^{1})(R^{2})NH(R^{5})NH(R^{3})(R^{4})]^{++}(R^{6}COO)_{2}^{-}$

wherein R^1 is a C_{10-18} aliphatic group; R^2 , R^3 , and R^4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; R^5 is a C_{1-5} alkylene group; and R^6 is a C_{10-18} aliphatic group; and

(-) an amount of a solidification agent effective for solidifying the concentrated lubricant.

15

5

10

23. The concentrated solid conveyor lubricant of claim 22 further comprising (-) an effective cleansing amount of an anionic or nonionic surfactant, and (-) an effective chelating amount of a chelating agent.

- 24. The concentrated solid conveyor lubricant of claim 22 wherein R^1 is derived from a C_{10-18} fatty acid and R^5 is a propylene group.
- 25 25. The concentrated solid conveyor lubricant of claim 22 wherein the diamine portion of the diamine fatty acid salt is a $N-(C_{10-18})$ aliphatic-1,3-propylene diamine.

26. The concentrated solid conveyor lubricant of claim 23 wherein the chelating agent is ethylene diamine tetraacetic acid.

5

- 27. The concentrated solid conveyor lubricant of claim 22 wherein the lubricant comprises about 5-70 wt% of the fatty acid diamine salt.
- 28. A concentrated solid polyethylene terephthalate compatible conveyor lubricant comprising:
 - (-) an effective lubricating amount of the ${\tt neutralization\ product\ of\ a\ C_{10-18}\ fatty\ acid\ and\ a}$ diamine having the formula

15

 $(R^1)(R^2)\tilde{N}(R^5)NH(R^3)(R^4)$

wherein R^1 is a C_{10-18} aliphatic group; R^2 , R^3 , and R^4 are independently hydrogen or an alkoxy group containing one to five alkylene oxide units; and R^5 is a C_{1-5} alkylene group; and

- (-) an amount of a solidification agent effective for solidifying the concentrated lubricant.
- 29. The solid concentrated conveyor lubricant of claim
 28 further comprising (-) an effective cleansing amount of
 an anionic or nonionic surfactant, and (-) an effective
 chelating amount of a chelating agent.

37

30. The solid concentrated conveyor lubricant of claim 28 wherein R^1 is derived from a C_{10-18} fatty acid and R^5 is a propylene group.

5

- .

International Application No

L CLASSIF	ICATION OF SUBJE	CT MATTER (if several classification	symbols apply, indicate all)6	
According t	o international Patent	Classification (IPC) or to both National	Classification and IPC	
	5 C10M173/		12,129:38,133:06,133:06,133	: u8,
II. FIELDS	SEARCHED			
		Minimum Docum	mentation Searched	
Classificati	on System		Classification Symbols	
Int.Cl.	5	C10M		
		Documentation Searched other to the Extent that such Document	er than Minimum Documentation is are included in the Fields Searched ⁸	<i>5</i> 7.
III. DOCUI	MENTS CONSIDER	ED TO BE RELEVANT		
Category a	Citation of D	ocument, 11 with indication, where appro-	priate, of the relevant passages 12	Relevant to Claim No.13
X	Septemb	010 053 (HENKEL KOMMA) er 1990 e 9, line 9	NDITGESELLSCHAFT) 7	1-6,8, 10,12-21
Υ	see pag see pag	e 9, line 16 - line 23 e 12, line 11 - line 3 e 13, line 1 - line 3 e 14, line 24 - line 3	18	11
Υ	1987	233 774 (DIVERSEY COR		11
A	see pag see pag	e 2, line 45 - line 6 e 5, line 55 - page 6	0 , line 10	1-3,7-9, 12-14
			-/	
"A" do co "E" ez fil "L" do cit "O" de "P" do	nsidered to be of parti- riler document but pul- ling date cument which may the sich is cited to establis- action or other special ocument referring to a ber means	eneral state of the art which is not cuiar relevance blished on or after the international row doubts on priority claims;) or in the publication date of another reason (as specified) in oral disciosure, use, exhibition or or to the international filing date but	"I" later document published after the inter- or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the c- cannot be considered novel or cannot be involve an inventive step "Y" document of particular relevance; the c- cannot be considered to involve an inven- decument is combined with one or inve- ments, such combination being obvious in the art. "&" document member of the same patent	to a speciation set only underlying the stained invention set considered to size and invention set of the stap when the set of the such documents a person skilled
		f the International Search	Date of Mailing of this International S	earch Report
		MARCH 1992		3 APR 1992
Internation	al Searching Authorit EUROP	y EAN PATENT OFFICE	Signature of Authorized Officer HILGENGA K.J.	

	CONTINUED FROM THE SECOND SHEET)				
L DOCUME	VIS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECUND STREET) Cization of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.			
stegory *	Citation of Document, with Indication, where appropriate				
		1,2,4-6,			
	EP,A,O 372 628 (AKZO N.V.) 13 June 1990	8.10.12,			
1	— 1.1,1	8,10,12, 13,15-21			
		20,00			
	see page 2, line 35 - line 53				
	see page 3, line 45 - line 46				
	see page 4, line 14 - line 10				
	see page 2, line 35 - line 35 see page 3, line 45 - line 46 see page 4, line 14 - line 16 see page 4, line 31 - line 32				
	US,A,4 929 375 (C.E ROSSIO) 29 May 1990				
.]	US,A,4 929 375 (C.E ROSSIO) ES 1103 555				
	cited in the application	$= \frac{1}{2} \frac{\partial}{\partial x^2} \lambda^2 + \frac{\partial}{\partial x^2} \lambda^2$			
		•			
		1,2			
		1			
		,			
1					
ļ					
İ					
ļ					
ļ					
1					
.					
1					
1		,			
1					
į					
1					

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. US 9106997 SA

54611

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 20/03/92

Patent document cited in search report	Publication date	1	Patent family member(s)	Publication date	
WO-A-9010053	07-09-90	DE-A- AU-A- EP-A-	3905548 5091990 0384282	06-09-90 26-09-90 29-08-90	
EP-A-0233774	26-08-87	AU-B- AU-A- US-A-	597028 6901687 4895668	24-05-90 20-08-87 23-01-90	
EP-A-0372628	13-06-90	AU-A- CA-A- JP-A- US-A-	4589689 2004544 2194096 5062978	07-06-90 05-06-90 31-07-90 05-11-91	
 US-A-4929375	29-05-90	US-A- US-A-	5009801 5073280	23-04-91 17-12-91	

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82