Chapter 18. Power and Sample Size Calculation

18.1. Statistical Power

- Power of a test
 - Probability of rejecting the null hypothesis (H₀)
 - Power = 1 P(Type II error): Correctly reject H_0 and identify a truly significant result.
 - Determine the *usefulness* of a test.
 - Usually, 80% is considered a 'decent' power.
- Various factors affect the power of the test:
 - The larger the significance level (α), the higher power of the test.
 - The larger the sample size, the higher the power of the test.
 - The larger the size of the discrepancy between hypothesized and true values, the higher the power.

18.2. Power and Sample Size Analysis

- Optimize the design of a study. (Save money and time.)
- Improve chances of conclusive results with maximum efficiency.
- Achieve a desired balance between Type I and Type II errors.
- Minimize risks for subjects.
- Primary objectives
 - Determine the sample size to achieve a certain power.
 - Determine the power of a test for a given sample size.
 - Characterize the power of a study to detect a minimum meaningful effect.
- Planning for a future (prospective) study

Sample size	Description
Too small	Insufficient power
	Difference between groups is clinically important, but it may not reject H ₀ .
Too large	Excess power
	Difference between groups is not clinically important, but it may reject H ₀ .

• Parameters needed for power and sample size calculation 15

Parameter	Description	
Type I error (α)	Usually set at 5%.	
	Power increases as α increases.	
Standard deviation (σ)	Variance of the data	
	If small, the power will be greater.	
Effect size (Δ)	Minimum (clinically) significant difference	
	(e.g. means, proportions)	
	Big effect sizes are easier to detect and thus have greater power.	
Sample size (n)	Usually driven by cost, time, etc.	

Example: If we are interested in conducting a level α test and wish to have 100(1- β) % power,

		8	(1 / 1 /
Test	One-sample t-test	One-sample t-test	Two-sample t-test ¹⁶
	(One-sided)	(Two-sided)	(Two-sided)
Sample	$(z_{\alpha}+z_{\beta})\sigma^{2}$	$\left((z_{\alpha/2} + z_{\beta}) \sigma \right)^2$	$(z_{\alpha/2} + z_{\beta})\sigma$
size	$n \geq \left(\frac{1}{\Delta}\right)$	$n \geq \left(\frac{1}{\Delta}\right)$	$n \ge 2 \times \left(\frac{\alpha/2}{\Delta}\right)$

Effect size and standard deviation are usually obtained through pilot studies or previously published data.
Sample size in each group (Assume equal-sized groups)

18.3. PROC POWER

General Syntax

Statement	Description	
ONESAMPLEFREQ	Tests, confidence interval precision, and equivalence tests of a single binomial proportion	
ONICCANADI ENACANIC	TEST = Z / EXACT	
ONESAMPLEMEANS	One-sample t-test, confidence interval precision, or equivalence test TEST = T	
PAIREDFREQ	McNemar's test for paired proportions	
	DIST = NORMAL	
PAIREDMEANS	Paired t-test, confidence interval precision, or equivalence test	
	TEST = DIFF / EQUIV_DIFF	
TWOSAMPLEFREQ	Chi-square, likelihood ratio, and Fisher's exact tests for two	
	independent proportions	
	TEST = PCHI / LRCHI / FISHER	
TWOSAMPLEMEANS	Two-sample t-test, confidence interval precision, or equivalence test	
	TEST = DIFF / EQUIV / DIFF_SATT	

TWOSAMPLEWILCOXON	Wilcoxon-Mann-Whitney (rank-sum) test for 2 independent groups
TWOSAMPLESURVIVAL	Log-rank, Gehan, and Tarone-Ware tests for comparing two survival
	curves
	TEST = LOGRANK / GEHAN / TARONEWARE
ONEWAYANOVA	One-way ANOVA including single-degree-of-freedom contrasts
	TEST = OVERALL / CONTRAST
MULTREG	Tests of one or more coefficients in multiple linear regression
ONECORR	Fisher's z-test and t-test of (partial) correlation
	DIST = FISHERZ / T
PLOT	Display plots for previous sample size analysis

- PROC GLMPOWER: Prospective power and sample size analysis for linear models.
- For analyses not supported directly in SAS, write your own program.
- PASS: Specialized software for power and sample size analysis

Example

* Two-sample t-test; * One-way ANOVA: * One-sample t-test; SAS Code * Sample size * Power calculation Balanced groups; calculation with power with sample size = 200; * Power (overall test); = 80%; proc power; proc power; proc power; twosamplemeans onewayanova test = onesamplemeans test = diff overall test = t meandiff = **5** groupmeans = 59|66|42std = 12mean = 5stddev = 12stddev = 20ntotal = 200nperg = 4ntotal = .power = .power = .power = 0.8run; run; run;

Output

Fixed Scenario Elements		
Distribution	Normal	
Method	Exact	
Mean	5	
Standard Deviation	20	
Nominal Power	0.8	
Number of Sides	2	
Null Mean	0	
Alpha	0.05	
Computed N To	otal	
Actual Power N	Total	

0.802

128

Fixed Scenario Elements		
Distribution	Normal	
Method	Exact	
Mean Difference	5	
Standard Deviation	12	
Total Sample Size	200	
Number of Sides	2	
Null Difference	0	
Alpha	0.05	
Group 1 Weight	1	
Group 2 Weight	1	
Computed Power		

Fixed Scenario Elements		
Method	Exact	
Group Means	59 66 42	
Standard Deviation	12	
Sample Size Per Grou	р 4	
Alpha	0.05	
Computed Pov		

0.585

SAS Code

* Chi-squared test; * Power calculation with a series of different npergroup;

proc power;

groupproportions = $(0.6\ 0.8)$ nullproportiondiff = 0 npergroup = **25 50 75** 100 200

power = .; run;

* Multiple linear regression;

proc power;

run;

multreg model = fixed twosamplefreq test=pchi nfullpredictors = 7 ntestpredictors = 3 rsquarefull = 0.9 rsquarediff = 0.1 ntotal = .power = 0.9;

* Survival analysis; * Compare two groups based on median survivals: proc power; twosamplesurvival

accrualtime = 12 followuptime = 24 groupmedsurvtimes = 15 20 22 24 npergroup = .

power = 0.8run;

Output

Fixed Scenario Elements		
Distribution	Asymptotic normal	
Method	Normal approximation	
Null Proportion Difference	0	
Group 1 Proportion	0.6	
Group 2 Proportion	0.8	
Number of Sides	2	
Alpha	0.05	

Computed Power			
Index	N per Group	Power	
1	25	0.335	
2	50	0.590	
3	75	0.767	
4	100	0.876	
5	200	0.993	

Fixed Scenario Elements		
Method	Exact	
Model	Fixed X	
Number of Predictors in Full Model	7	
Number of Test Predictors	3	
R-square of Full Model	0.9	
Difference in R-square	0.1	
Nominal Power	0.9	
Alpha	0.05	

Computed N Total	
Actual Power	N Total
0.903	20

Fixed Scenario Elements			
Method	Lakatos normal approximation		
Form of Survival Curve 1	Exponential		
Form of Survival Curve 2	Exponential		
Accrual Time	12		
Follow-up Time	24		
Group 1 Median Survival Time	15		
Nominal Power	0.8		
Number of Sides	2		
Number of Time Sub-Intervals	12		
Group 1 Loss Exponential Hazard	0		
Group 2 Loss Exponential Hazard	0		
Alpha	0.05		
Computed N P	er Group		

Computed N Per Group			
Index	Med Surv Time 2	Actual Power	N Per Group
1	20	0.801	273
2	22	0.800	158
3	24	0.802	108