MIPS floating-point operands

Name	Example	Comments
32 floating- point registers	\$f0, \$f1, \$f2,, \$f31	MIPS floating-point registers are used in pairs for double precision numbers.
2 ³⁰ memory words	Memory[0], Memory[4], , Memory[4294967292]	Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential word addresses differ by 4. Memory holds data structures, such as arrays, and spilled registers, such as those saved on procedure calls.

MIPS floating-point assembly language

Category	Instruction	Example	Meaning	Comments	
Arithmetic	FP add single	add.s \$f2.\$f4.\$f6	\$f2 = \$f4 + \$f6	FP add (single precision)	
	FP subtract single	sub.s \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (single precision)	
	FP multiply single	mul.s \$f2,\$f4,\$f6	$f2 = f4 \times f6$	FP multiply (single precision)	
	FP divide single	div.s \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (single precision)	
	FP add double	add.d \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (double precision)	
	FP subtract double	sub.d \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (double precision)	
	FP multiply double	mul.d \$f2,\$f4,\$f6	\$f2 = \$f4 × \$f6	FP multiply (double precision)	
	FP divide double	div.d \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (double precision)	
Data transfer	load word copr. 1	lwc1 \$f1,100(\$s2)	\$f1 = Memory[\$s2 + 100]	32-bit data to FP register	
	store word copr. 1	swc1 \$f1,100(\$s2)	Memory[\$s2 + 100] = \$f1	32-bit data to memory	
Condi- tional branch	branch on FP true	bclt 25	if (cond == 1) go to PC + 4 + 100	PC-relative branch if FP cond.	
	branch on FP false	bclf 25	if (cond == 0) go to PC + 4 + 100	PC-relative branch if not cond.	
	FP compare single (eq,ne,lt,le,gt,ge)	c.lt.s \$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than single precision	
	FP compare double (eq,ne,lt,le,gt,ge)	c.lt.d \$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than double precision	

MIPS floating-point machine language

Name	Format	Example						Comments	
add.s	R	17	16	6	4	2	0	add.s	\$f2,\$f4,\$f6
sub.s	R	17	16	6	4	2	1	sub.s	\$f2.\$f4.\$f6
mul.s	R	17	16	6	4	2	2	mul.s	\$f2,\$f4,\$f6
div.s	R	17	16	6	4	2	3	div.s	\$f2.\$f4.\$f6
add.d	R	17	17	6	4	2	0	add.d	\$f2.\$f4.\$f6
sub.d	R	17	17	6	4	2	1	sub.d	\$f2,\$f4,\$f6
mul.d	R	17	17	6	4	2	2	mul.d	\$f2.\$f4.\$f6
div.d	R	17	17	6	4	2	3	div.d	\$f2,\$f4,\$f6
lwc1	1	49	20	2	100			lwc1	\$f2,100(\$s4)
swc1	1	57	20	2	100			swc1	\$f2.100(\$s4)
bc1t	1	17	8	1	25			bc1t	25
bc1f	1	17	8	0	25			bc1f	25
c.lt.s	R	17	16	4	2	0	60	c.lt.s	\$f2,\$f4
c.lt.d	R	17	17	4	2	0	60	c.lt.d	\$f2,\$f4
Field size		6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	All MIPS	instructions 32 bits

FIGURE 3.17 MIPS floating-point architecture revealed thus far. See Appendix A, Section A.10, for more detail. This information is also found in column 2 of the MIPS Reference Data Card at the front of this book.