2.1

Problem: Recall that an ordered pair (a, b) can be defined as the set $\{\{a\}, \{a, b\}\}$. Show that (a, b) = (c, d) if and only if a = c and b = d

Solution. Let $L = \{\{a\}, \{a, b\}\}$ and $R = \{c, \{c, d\}\}$. Suppose L = R. Since $\{a\} \in L$, we have $\{a\} \in R$. Thus, $\{a\} = \{c\}$ or $\{a\} = \{c, d\}$.

Case 1: If $\{\alpha\} = \{c\}$, then $\alpha \in \{c\}$, meaning $\alpha = c$.

Case 2: If $\{a\} = \{c, d\}$, then $c \in \{a\}$, meaning c = a.

2.3

Problem: Show that the replacement schema implies the comprehension schema.

Solution. Let $\psi(u, v) = \phi(v) \wedge u = v$. Then, the replacement schema becomes

$$\forall a \exists b \ \forall v \ (v \in b \Leftrightarrow \exists u \ (u \in a \land \psi(u, v)))$$

$$\forall a \exists b \ \forall v \ (v \in b \Leftrightarrow \exists u \ (u \in a \land \forall u \ (\phi(v) \land u = v)))$$

$$\forall a \ \exists b \ \forall v \ (v \in b \Leftrightarrow v \in a \land \phi(v))$$

2.4

Problem: In this question, we show how the pairing axiom follows from the replacement schema. Let sets a and b be given.

- (a) We originally used the pairing axiom to construct the set $\{\emptyset, \{\emptyset\}\}$. Instead, us the power set axiom.
- (b) Let $\psi(u, v)$ be the formula

$$(u = \emptyset \land v = a) \lor (u \neq \emptyset \land v = b).$$

Show that this is a function-like formula.

(c) Use the replacement schema on the set $\{\emptyset, \{\emptyset\}\}\$ and the function-like formula $\psi(u, v)$ to show the existence of the set with elements α and b.

Solution.

- (a) Consider $\{\emptyset\}$. By the power set axiom, there exists a set c such that c consists of all subsets of $\{\emptyset\}$. Thus, $c = \{\emptyset, \{\emptyset\}\}$.
- (b)

Extra Problem 2

Problem: Let s be a set. Use mathematical symbols exclusively to express t, the set of all singleton subsets of s.

Solution.

$$\forall s \exists t \ \forall x \ (x \in t \Leftrightarrow x \in s \land \forall a \ \forall b \ (a \in x \land b \in x \Rightarrow a = b))$$