OSPF

Course Code: CSC 3116 Course Title: Computer Networks

Dept. of Computer Science Faculty of Science and Technology

Lecturer No:	Lab 8	Week No:	8	Semester:	Spring 2020-21	
Lecturer:	Dr. Md. Sohidul Islam, Email: sohidul@aiub.edu					

Lecture Outline

- 1. OSPF Theory
- 2. OSPF Configuration

Topic Heading..

Topic sub heading..

	EIGRP	OSPF	
1	It supports maximum 255 routers in the network. However, the default is 100 routers. (highly scalable)	Supports unlimited number of routers	
2	Fast convergence due to feasible successor	Fastest convergence speed due to the area concept	
3	Cisco proprietary protocol and can be implemented only in Cisco routers.	Open standard protocol and can be implement in any router.	
4	It calculates the metric In terms of bandwidth and delay (default).	It calculates the metric In terms of bandwidth only.	
5	EIGRP works on DUAL(Diffusing Update Algorithm) Algorithm.	EIGRP works on Dijkstra Algorithm.	
6	It maintains the best route and some other alternative routes for each destination.	It maintains the best route in routing table and all routes in database table.	
7	It is basically use for medium to lager size organization in the network [1].	It is basically use for lager size organization in the network [1].	
8	Administrative distance 90	Administrative distance 110	
9	Easy to implement	The implementation is complicated	

OSPF Theory

OSPF Area

- An autonomous system (AS) is divided into one or more area.
- Each area is given an area ID
- An AS must have an area having
 ID 0 (zero) for multi-area OSPF.
 Such area is called backbone area.
- All areas of an AS must be connected to the backbone area.
- A router in an area exchanges routing information with the routers of its area only (by default)

Fig. 1 Autonomous systems and area

OSPF Routers

- Internal Router (IR): The router for which all its interface belong to one area. Router 1 and Router 5.
- Area Border Router (ABRs): The router that contains interfaces in more than one area. Router 2 and Router 4
- Backbone Router: The router that has all or at least one interface in Area 0.
 Router 3, Router 2 and Router 4.

Fig. 1 Autonomous systems and area

 Autonomous System Boundary Router (ASBR): The routers with connection to a separate autonomous system. R4 in the example is connected to EIGRP [4].

OSPF data structure and packets

- Link state advertisement (LSA)
- A data structure with some specific information about the networks [2].
- O Depending on its type, it holds information about
 - a router's interfaces,
 - all routers attached to network,
 - summary routing information of an area,
 - all routers of an AS.
- Link state database (LSDB)
- O A collection of all LSAs known to a router
- O In a convergent network, all routers of a network have the same LSDB.

Link State Database (LSDB)

Fig. 2 LSA & LSDB relationship

OSPF data structure and packets

Hello

router.

- Used to build and maintain neighbor relationships.
- DBD Database Description
 - List of LSAs contained in a LSDB. This packet type is circulated when two routers are initially exchanging their link-state databases.
- Link State Request (LSR)
 Used to request complete information about a link learned from another
- Link State Update (LSU)
 Used to send one or LSA(s)
- Links State Acknowledgement (LSAck)
 Used to acknowledge the reception of an LSA

Neighbor discovery

Parameters need to be identical for two routers to become neighbors

- Network mask—net mask of the sending router
- Subnet number —derived using the subnet mask and each router's interface Internet Protocol (IP) address
- Area ID—area ID of the sending interface
- Hello interval—how often Hello packets are transmitted
- Dead interval—how long to wait for Hello packets before terminating neighbor
- Authentication type and password—optional
- Stub area flag—specifies the type of stub area, if applicable [3]

Hello packet contains all these information

DR and BDR

- Point-to-point network
 - A network in an area connecting only two routers directly.
- Broadcast network
 - A network in an area connecting more than two routers
- Designated router (DR)
 - In a broad cast network, a router with the highest priority.
 - If the priorities tie, the router having the highest RID
 - All database exchange is done via DR
- Backup Designated router (BDR)
 - In a broad cast network, a router with the second highest priority .
 - If the priorities tie, the router having the second highest RID
 - If the DR fails, the BDR takes over.
- DROTHER: The router which is neither DR nor BDR [2]

DR and BDR....

Fig. 5 point-to-point network

Fig. 6 Broadcast network, DR and BDR election

Configuration

Wildcard mask

- Used to specify a range of network addresses.
- Inverted subnet mask
- Used in EIGRP, OSPF and Access-List.
- How to get wildcard mask of an IP address?
 Subtract the subnet mask from 255.255.255.255
- What does each bit of a wildcard mask mean?
 - 0 : All IP address in the range must match the bit
 - 1: Different IP address in the range can have different value in the bit position

Wildcard mask....

• Only 192.168.3.0

All bits must match.

WCM: 0.0.0.0

IP address range: 192.168.3.0 to 192.168.3.255

Match first three block (24 bits) and fourth block can take any value

WCM: 0.0.0.255

IP address range: 192.168.3.4 to 192.168.3.13

11000000.10101000.00000011.00000100

11000000.10101000.00000011.00001101

First 28 bits same.

Match first 28 bits; make them all zero

Make rest of the bits 1

00000000.00000000.00000000.00001111

WCM: 0.0.0.15

PRAESIDIUM PRAESIDIUM

Commands

Network: 172.16.1.0/30

Network: 192.168.2.0/24

Network: 172.16.1.4/30

The prefix 30 means subnet mask: 255.255.255.252 Wildcard mask: 0.0.0.3

Prefix 24 indicates subnet mask: 255.255.255.0
 Wildcard mask: 0.0.0.255

OSPF Configuration

R1(config)# router ospf process_id

R1(config router)#potywork network ID WCM

R1(config-router)#network network_IP WCM area area_id

Process ID is an integer. Not all routers need to have the same process ID.

ANGLADESH

Commands....

Network: 172.16.1.0/30

Network: 172.16.1.4/30

Network: 192.168.2.0/24

The prefix 30 means subnet mask: 255.255.255.252
Wildcard mask: 0.0.0.3

Prefix 24 indicates subnet mask: 255.255.255.0

Wildcard mask: 0.0.0.255

```
R1(config)# router ospf 10
```

R1(config)# router –id 1.1.1.1

R1(config-router)#network 192.168.2.0 0.0.0.255 area 0

R1(config-router)#network 172.16.1.0 0.0.0.3 area 0

R1(config-router)#network 172.16.1.4 0.0.0.3 area 0

Commands....

Network: 192.168.2.0/24

Network: 172.16.1.4/30

R1(config)# router ospf 10

R1(config-router)#network 192.168.2.0 0.0.0.255 area 0

R1(config-router)#network 172.16.1.0 0.0.0.255 area 0

ospf protocol will be used in any network of area 0 which is connected to the router, having network IP address with first three octets 172.16.1 [2]

Topic Heading..

Commands....

TABLE II Command for verifying configuration [2]

Command	Description	
show ip ospf neighbor [type number]	Lists brief output about neighbors, identified by neighbor router ID, including current state, with one line per neighbor; optionally, limits the output to neighbors on the listed interface.	
show ip ospf neighbor neighbor-ID	Lists the same output as the show ip ospf neighbor detail command, but only for the listed neighbor (by neighbor RID).	
show ip ospf database	Lists a summary of the LSAs in the database, with one line of output per LSA. It is organized by LSA type (first type 1, then type 2, and so on).	
show ip route	Lists all IPv4 routes.	
show ip route ospf	Lists routes in the routing table learned by OSPF.	
show ip route ip-address mask	Shows a detailed description of the route for the listed subnet/mask.	
clear ip ospf process	Resets the OSPF process, resetting all neighbor relationships and also causing the process to make a choice of OSPF RID.	

References

- [1] Computer Networking Class, https://computernetworkingclass.blogspot.com... /2016/08/comparison-between-rip-eigrp-igrp-and.html, [Accessed: May 2, 2020].
- [2] W. Odom, Official Cert Gudie CCNA 200-301 Volume 1, Pearson Education, Inc., USA, 2020, pp. 449-497.
- [3] J. Macfarlane, Network Routing Basics, Wiley Publications. Inc., USA, 2006, pp. 254.
- [4] OSPF, "http://www.certiology.com/cisco-certifications/ccna/ccna-routing-and-switching/free-cisco-ccna-study-guide/ospf.html, [Accessed: May 2, 2020]..

Books

- 1. Official Cert Guide CCNA 200-301, vol. 1, W. Odom, Cisco Press, First Edition, 2019, USA.
- **2. CCNA Routing and Switching**, *T. Lammle*, John Wily & Sons, Second Edition, 2016, USA.