Regulation Analysis using Restricted Boltzmann Machines

iBIOS, 2/2/2012

Patrick Michl Heidelberg University

A linear metabolic pathway of enzymes (E) ...

... is regulated by transcription factors (TF) ...

... which respond to **signals** (S)

P 4

P 3

P 2

P 1

Which transcription factors and signals cause this patterns?

Biological Problem

Analysing the regulation of metabolism

Machine Learning

Restricted Boltzmann Machines (RBM)

Implementation

Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is an ANN ...

Restricted Boltzmann Machines

... with two layers: **visible units** (*v*) and **hidden units** (*h*)

Visible units are strictly connected with hidden units

Restricted Boltzmann Machines

V := set of visible units

H := set of hidden units

 s_v : = value of v, $\forall v \in V$

 $s_h := \text{value of } h, \forall h \in H$

$$s_v \in \{0, 1\}, \forall v \in V$$

$$s_h \in \{0, 1\}, \forall h \in H$$

In the most common model all units have binary values ...

Restricted Boltzmann Machines

V := set of visible units

H := set of hidden units

$$s_v$$
: = value of v , $\forall v \in V$

$$s_h := \text{value of } h, \forall h \in H$$

$$s_v \in \{0, 1\}, \forall v \in V$$

$$s_h \in \{0, 1\}, \forall h \in H$$

$$\theta_v \coloneqq \text{threshold of } v, \forall v \in V$$

$$\theta_h \coloneqq \text{threshold of } h, \forall h \in H$$

$w_{v,h} := \text{weight of } edge(v,h)$

$$E_v \coloneqq -\sum_h w_{v,h} s_v s_h + \theta_v s_v$$

$$E_h \coloneqq -\sum_{v} w_{v,h} s_v s_h + \theta_h s_h$$

... to define **energy** functions: **Local** energies E_v and E_h ...

$$w_{v,h} \coloneqq \text{weight of } edge(v,h)$$

Local Energy

$$E_v \coloneqq -\sum_h w_{v,h} s_v s_h + \theta_v s_v$$

$$E_h \coloneqq -\sum_{v} w_{v,h} s_v s_h + \theta_h s_h$$

Global Energy

$$E \coloneqq \sum_{v} E_v + \sum_{h} E_h$$

... and the **global** Energy *E*. We want to minimize *E*

Energy Delta for visible units

$$\Delta E v = E_{v_{,}off} - E_{v_{,}on}$$
$$= \dots$$

Energy Delta for visible units

$$\Delta E v = E_{v,off} - E_{v,on}$$

$$= -k_B T \ln P[v,off]$$

$$-(-k_B T \ln P[v,on])$$

... we can use the **Boltzmann Factor** ...

Energy Delta for visible units

$$\Delta E v = E_{v,off} - E_{v,on}$$

$$= -k_B T \ln P[v,off]$$

$$-(-k_B T \ln P[v,on])$$

$$P[v,off] = 1 - P[v,on]$$

$$P[v,on] = \frac{1}{1 + e^{-\frac{\Delta E v}{k_B T}}}$$

... to get a term for the **probability** [v, on]

Probalilities

$$P[v,on] = \frac{1}{1 + e^{-\frac{\Delta E v}{k_B T}}}$$

$$P[h,on] = \frac{1}{1 + e^{-\frac{\Delta Eh}{k_B T}}}$$

Simulated Annealing

$$\begin{aligned} &\text{while } (T > T_{Min}) \\ &\text{forall } v \\ &\text{if } (P[v,on] > rand(0,1)) \text{ set } s_v = 1 \\ &\text{forall } h \\ &\text{if } (P[h,on] > rand(0,1)) \text{ set } s_h = 1 \\ &\text{set } T \text{smaller} \end{aligned}$$

$$E \rightarrow \min$$

Biological Problem

Analysing the regulation of metabolism

Machine Learning Restricted Boltzmann Machines (RBM)

```
# Initialize a weight a Gaussian distribution of the self. Weight a Gaussian distribution of the self.
```

Implementation

Modeling the Problem / Example

Modeling Regulation as RBM

... we define S and E as visible Layer ...

Modeling Regulation as RBM

... we define S and E as visible Layer ...

Modeling Regulation as RBM

Let's try it as simple as possible

1/31/2012 | Page 28

... so we get 8 visible and 2 hidden units, fully connected

Learning samples

S	E
1,0,0,1	1,0,0,0
1,0,0,1	1,1,0,0
1,0,0,1	1,0,1,0
1,0,0,1	1,0,0,1
1,0,1,1	0,0,0,0
1,0,1,1	0,1,0,0
1,0,1,1	0,0,1,0
1,0,1,1	0,0,0,1

Let's feed the machine with learning samples ...

Weight matrix

	TF ₁	TF ₂
S ₁	0,3	0,8
S_2	0,5	0,6
S_3^-	0,9	0,1
S_4	0,3	0,8
E₁	1,0	0,0
E_2	0,1	0,0
E_{3}^{-}	0,1	0,0
E_4	0,2	0,0

Weight matrix

	TF ₁	TF_2
S ₁	0,3	0,8
S_2	0,5	0,6
S_3^-	0,9	0,1
S_4	0,3	0,8
E₁	1,0	0,0
E_2	0,1	0,0
E_{3}^{-}	0,1	0,0
E_4	0,2	0,0

The weights are visualized by the **intensity** of the edges

Learning samples

S	Е
1,0,0,1	1,0,0,0
1,0,0,1	1,1,0,0
1,0,0,1	1,0,1,0
1,0,0,1	1,0,0,1
1,0,1,1	0,0,0,0
1,0,1,1	0,1,0,0
1,0,1,1	0,0,1,0
1,0,1,1	0,0,0,1

Now we can compare the results with the samples

Learning samples

S	E
1,0, <mark>0</mark> ,1	1 ,0,0,0
1,0, 0 ,1	1 ,1,0,0
1,0, 0 ,1	1 ,0,1,0
1,0, 0 ,1	1 ,0,0,1
1,0, <mark>1</mark> ,1	0 ,0,0,0
1,0, 1 ,1	0 ,1,0,0
1,0, <mark>1</mark> ,1	0 ,0,1,0
1,0, 1 ,1	0 ,0,0,1

Learning samples

S	E
1,0 ,0, 1	1,0,0,0
1,0 ,0, 1	1,1,0,0
1,0 ,0, 1	1,0,1,0
1,0 ,0, 1	1,0,0,1
1,0,1,1	0,0,0,0
1,0 ,1, 1	0,1,0,0
1,0 ,1, 1	0,0,1,0
1,0 ,1, 1	0,0,0,1

S₁, S₂ and S₄ do almost not affect the metabolism

Further Objectives

Since 2006 RBMs have successfully be used to train (pretrain) Multi-Layer ANNs (Hinton, Osindero, 2006)

This new branch in machine learning ("deep learning") already has a wide area of applications, incuding:

- Face recognition / Voice recognition
- Unsupervised detection of features
- Imagetransformation

It has to be asumed that deep learning strategies also provide further capabilities in regulatory analysis