Information Theory

Segwang Kim

February 14, 2019

Now, we assume that all random variables are discrete.

For the joint pdf p of r.v.'s X, Y, denote $p(x) = \int p(x,y)dy$, $p(y) = \int p(x,y)dx$ and so on.

Denote ran(X) be a range of a r.v. X.

Denote $X_i^j = (X_i, \dots, X_j)$, its realization is $x_i^j = (x_i, \dots, x_j)$

1 Entropy, relative entropy, mutual information

1.1 Entropy

Definition) Entropy.

X: r.v. with the pdf p(x)

$$H(X) = \mathbb{E}_X(\log \frac{1}{p(X)})$$

For X = i w.p. $p_i, i = 1, ..., n$,

$$H(\{p_1,\ldots,p_n\}) := H(X)$$

Especially, for
$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \end{cases}$$

$$H(p) := H(X)$$

Proposition) Properties of Entropy.

- (i) Shift invariant: H(X) = H(X + a) for $a \in \mathbb{R}$.
- (ii) Non-negativity: $H(X) \ge 0$.
- (iii) $X \sim U([n])$ where $[n] = \{1, \dots, n\}$, then $H(X) = \log(n)$.
- (iv) $H(X) \leq \log |ran(X)| = H(U)$ where |ran(X)| is the number of elements in the range of $X, U \sim U(ran(X))$.
- (v) $H({p_i})$ is concave w.r.t. ${p_i}$.

Proof. Consider
$$D(\lbrace p_i \rbrace || U) = \log |ran(X)| - H(\lbrace p_i \rbrace)$$
.

Definition) Joint entropy.

X, Y : r.v.'s with the joint pdf p(x, y)

$$H(X,Y) = \mathbb{E}_{X,Y}(\log \frac{1}{p(X,Y)})$$

Proposition) Properties of Joint Entropy.

(i) If X, Y are independent, H(X, Y) = H(X) + H(Y)

1.2 Conditional entropy

Definition) Conditional entropy.

X, Y : r.v.'s with the joint pdf p(x, y)

$$H(Y|X) = \mathbb{E}_{X,Y}(\log \frac{1}{p(Y|X)})$$

Proposition) Properties of Conditional Entropy.

- (i) Non-negativity: $H(Y|X) \ge 0$
- (ii) Chain rule: H(X,Y) = H(X|Y) + H(Y)
- (iii) Chain rule': $H(X_1, ..., X_n) = \sum_{i=1}^n H(X_i|X_1^{i-1})$
- (iv) H(X, Y|Z) = H(X|Y, Z) + H(Y|Z)
- (v) $H(X|Y) \leq H(X)$. The equality holds when X,Y are indep.
- (vi) For stationary process $\{X_n\}$, i.e. $p(X_i^j) = p(X_{i+1}^{j+1})$, $H(X_n|X_1^{n-1})$ is nonnegative and decreasing, thus it must have limit.

Proof.
$$H(X_n|X_1^{n-1}) \ge H(X_n|X_2^{n-1}) = H(X_{n-1}|X_1^{n-2}) \ge 0,$$

(vii) For $g: ran(X) \to \mathbb{R}, H(g(X)) \le H(X)$

Proof.
$$H(X, g(X)) = H(g(X)) + H(X|g(X)) \ge H(g(X)), \ H(X, g(X)) = H(X) + H(g(X)|X) = H(X)$$

- (viii) H(Y|X) = 0 iff Y is a ftn of X
 - (ix) A sequence of r.v.'s $\{X_i\}$ forms a Markov chain, then, $H(X_0|X_n)$ and $H(X_n|X_0)$ are non-decreasing with n.

Proof.
$$I(X_0; X_{n-1}) \geq I(X_0; X_n)$$
. Refer proposition (ii) of 1.2.

Theorem) Fano's inequality.

Consider r.v.'s X, Y with the joint pdf. Let $P_e = \mathbb{P}(\hat{X}(Y) \neq X)$. Then,

$$P_e \ge \frac{H(X|Y) - 1}{\log|ran(X)|}$$

1.3 Relative entropy

Definition) Relative Entropy (Kullback Leibler distance).

For pdfs p(x), q(x),

$$D(p||q) = \mathbb{E}_{X \sim p}(\log \frac{p(X)}{q(X)})$$

Proposition) Properties of Relative Entropy.

(i) $D(p||q) \ge 0$. The equality holds when p = q w.p. 1.

Proof. Use Jensen inequality.

(ii) D(p||q) is convex in the pair of (p,q), i.e. For $\lambda \in [0,1]$, pairs of pdfs (p,q), (p',q'),

$$D(\lambda p + (1 - \lambda)p' \| \lambda q + (1 - \lambda)q') \le \lambda D(p\|q) + (1 - \lambda)D(p'\|q') \tag{1}$$

Proof.

$$\lambda D(p||q) + (1 - \lambda)D(p'||q') = \sum_{x} (\lambda p(x) \log(\frac{p(x)}{q(x)}) + (1 - \lambda)p'(x) \log(\frac{p'(x)}{q'(x)}))$$

$$= \sum_{x} (\lambda p(x) \log(\frac{\lambda p(x)}{\lambda q(x)}) + (1 - \lambda)p'(x) \log(\frac{(1 - \lambda)p'(x)}{(1 - \lambda)q'(x)}))$$

Note that $\sum_{i=1}^{n} a_i \log(\frac{a_i}{b_i}) \ge (\sum_{i=1}^{n} a_i) \log(\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i})$ (: $t \mapsto t \log t$ is convex). Apply this for each term of the above summation.

Definition) Conditional Relative Entropy.

For pdfs p(x|y), q(x|y),

$$D(p(x|y)||q(x|y)) = \mathbb{E}_{X,Y \sim p}(\log \frac{p(X|Y)}{q(X|Y)})$$

3

Proposition) Properties of Conditional Relative Entropy.

(i) D(p(x,y)||q(x,y)) = D(p(y)||q(y)) + D(p(x|y)||q(x|y))

1.4 Mutual Information

Definition) Mutual Information.

X, Y : r.v.'s. with the joint pdf p(x, y).

$$I(X;Y) = D(p(x,y)||p_X(x)p_y(y)) = \mathbb{E}_{X,Y \sim p}(\log(\frac{p(X,Y)}{p(X)p(Y)}))$$

= $H(X) - H(X|Y)$

Proposition) Properties of Mutual Information.

- (i) $I(X;Y) \ge 0$.
- (ii) I(X;Y) = 0 iff X, Y are indep.
- (iii) I(X;Y) is concave w.r.t. p(x) for fixed p(y|x).

Proof.

$$I(X;Y) = H(Y) - H(Y|X)$$

First, H(Y) is concave w.r.t. p(x) for fixed p(y|x). Indeed, H(Y) is concave w.r.t. $p(y) = \{p_{y,1}, \ldots, p_{y,n}\}$ and p(y) is linear w.r.t. $p(x) = \{p_{x,1}, \ldots, p_{x,m}\}$ since $p_{y,i} = \sum_x p(Y = y_i|x)p(x)$. Second, H(Y|X) is convex w.r.t. p(x) for fixed p(y|x). Indeed, $H(Y|X) = \sum_{x,y} -p(x,y)\log(p(y|x)) = \sum_x p(x)(\sum_y -p(y|x)\log(p(y|x)))$ is linear w.r.t. p(x).

(iv) I(X;Y) is convex w.r.t. $p_{Y|X}(y|x)$ for fixed $p_X(x)$. i.e., Given $\lambda \in (0,1), p_{Y|X:0}(y|x), p_{Y|X:1}(y|x),$

$$I_{(X,Y)\sim p_{X,Y;\lambda}}(X;Y) \le \lambda I_{(X,Y)\sim p_{X,Y;0}}(X,Y) + (1-\lambda)I_{(X,Y)\sim p_{X,Y;1}}(X,Y)$$
 (2)

where $p_{Y|X;\lambda}(y|x) = \lambda p_{Y|X;0}(y|x) + (1-\lambda)p_{Y|X;1}(y|x)$.

Proof. Note that $p_{X,Y;\lambda}(x,y) = p_X(x)p_{Y|X;\lambda}(y|x)$. Then,

$$I_{(X,Y)\sim p_{X,Y;\lambda}}(X;Y) = \mathbb{E}_{(X,Y)\sim p_{X,Y;\lambda}}\log\frac{p_{X,Y;\lambda}(X,Y)}{p_{X;\lambda}(X)p_{Y;\lambda}(Y)}$$
$$= D(p_{X,Y;\lambda}(x,y)||p_{X;\lambda}(x)p_{Y;\lambda}(y))$$

Now, we need to compute $p_{X,Y;\lambda}(x,y)$ and $p_{X;\lambda}(x)p_{Y;\lambda}(y)$.

$$p_{X,Y;\lambda}(x,y) = p_{X;\lambda}(x)p_{Y|X;\lambda}(y|x)$$

$$= p_X(x)p_{Y|X;\lambda}(y|x)$$

$$= p_X(x)(\lambda p_{Y|X;0}(y|x) + (1-\lambda)p_{Y|X;1}(y|x))$$

$$= \lambda p_{X,Y;0}(x,y) + (1-\lambda)p_{X,Y;1}(x,y)$$

Also,

$$\begin{split} p_{X;\lambda}(x)p_{Y;\lambda}(y) &= \int p_{X,Y;\lambda}(x,y)dy \int p_{X,Y;\lambda}(x,y)dx \\ &= \int p_{X;\lambda}(x)p_{Y|X;\lambda}(y|x)dy \int p_{X;\lambda}(x)p_{Y|X;\lambda}(y|x)dx \\ &= p_{X}(x) \int p_{Y|X;\lambda}(y|x)dy \int p_{X;\lambda}(x)p_{Y|X;\lambda}(y|x)dx \\ &= p_{X}(x) \int p_{X;\lambda}(x)(\lambda p_{Y|X;0}(y|x) + (1-\lambda)p_{Y|X;1}(y|x))dx \\ &= p_{X}(x)(\lambda p_{Y;0}(y) + (1-\lambda)p_{Y;1}(y)) \\ &= \lambda p_{X}(x)p_{Y;0}(y) + (1-\lambda)p_{X}(x)p_{Y;1}(y) \end{split}$$

Therefore,

$$\begin{split} I_{(X,Y)\sim p_{X,Y;\lambda}}(X;Y) &= D(p_{X,Y;\lambda}(x,y) \| p_{X;\lambda}(x) p_{Y;\lambda}(y)) \\ &= D(\lambda p_{X,Y;0}(x,y) + (1-\lambda) p_{X,Y;1}(x,y) \| \lambda p_{X}(x) p_{Y;0}(y) + (1-\lambda) p_{X}(x) p_{Y;1}(y)) \\ &\leq \lambda D(p_{X,Y;0}(x,y) \| p_{X}(x) p_{Y;0}(y)) + (1-\lambda) D(p_{X,Y;1}(x,y) \| p_{X}(x) p_{Y;1}(y)) \quad (\because (1)) \\ &\leq \lambda I_{(X,Y)\sim p_{X,Y;0}}(X,Y) + (1-\lambda) I_{(X,Y)\sim p_{X,Y;1}}(X,Y) \end{split}$$

Definition) Conditional Mutual Information.

X, Y, Z: r.v.'s. with the joint pdf p(x, y, z).

$$I(X;Y|Z) = \mathbb{E}_{X,Y,Z \sim p}(\log(\frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}))$$
$$= H(X|Z) - H(X|Y,Z)$$

Proposition) Properties of Conditional Mutual Information.

(i) $I(X;Y|Z) \ge 0$

Proof.

$$I(X;Y|Z) = \mathbb{E}_{X,Y,Z \sim p}(\log(\frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}))$$
$$= \mathbb{E}_{Z \sim p}[\mathbb{E}_{X,Y \sim p_{X,Y|Z}}(\log(\frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}))] \ge 0$$

(ii) Chain rule: $I(X_1^n; Y) = \sum_{i=1}^n I(X_i; Y | X_1^{i-1})$

Theorem) Data processing Inequality.

R.v.'s $X \to Y \to Z$ form a Markov chain. i.e. p(z|x,y) = p(z|y), then,

$$I(X;Y) \ge I(X;Z)$$

This means, no clever manipulation of the data can improve the inferences that can be made from the data.

Proof.
$$I(X;Y) - I(X;Z) = I(X;Y|Z) \ge 0$$

Corollary) In particular,.

- (i) If Z = g(Y), we have $I(X; Y) \ge I(X; g(Y))$
- (ii) If $X \to Y \to Z$, then $I(X;Y|Z) \le I(X;Y)$

Exercise) Some examples of Conditional Mutual Information.

- a) I(X;Y|Z) < I(X;Y) if $X \sim Ber(1/2), X = Y = Z$
- b) I(X;Y|Z) > I(X;Y) if $X, Y \stackrel{i.i.d.}{\sim} Ber(1/2), Z = X + Y$

2 Asymptotic Equipartition Property (AEP)

2.1 AEP

Theorem) (AEP).

 X_i : i.i.d. r.v.'s with pdf p

$$-\frac{1}{n}\log p(X_1,\ldots,X_n)\to H(X) \quad \text{a.s.}$$

Definition) Typical set.

The typical set $A_{\epsilon}^{(n)}$ is

$$A_{\epsilon}^{(n)} = \{(x_1, \dots, x_n) : |-\frac{1}{n}\log p(x_1, \dots, x_n) - H(X)| < \epsilon\}$$

Proposition) Properties of Typical sets.

- (i) For $x_1^n \in A_{\epsilon}^{(n)}$, $2^{-n(H(X)+\epsilon)} \le p(x_1^n) \le 2^{-n(H(X)-\epsilon)}$.
- (ii) $\mathbb{P}(X \in A_{\epsilon}^{(n)}) \ge 1 \epsilon$ for sufficiently large n.
- (iii) $|A_{\epsilon}^{(n)}| < 2^{n(H(X)+\epsilon)}$

Proof.
$$1 = \sum_{x_1^n} p(x_1^n) \ge \sum_{x_1^n \in A_{\epsilon}^{(n)}} p(x_1^n) \ge \sum_{x_1^n \in A_{\epsilon}^{(n)}} 2^{-n(H(X)+\epsilon)} = |A_{\epsilon}^{(n)}| 2^{-n(H(X)+\epsilon)}$$

(iv) $|A_{\epsilon}^{(n)}| \ge (1 - \epsilon)2^{n(H(X) - \epsilon)}$ for sufficiently large n

Proof.
$$1 - \epsilon < \mathbb{P}(X_1^n \in A_{\epsilon}^{(n)}) = \sum_{x_1^n \in A_{\epsilon}^{(n)}} p(x_1^n) \le |A_{\epsilon}^{(n)}| 2^{-n(H(X) - \epsilon)}$$
 for sufficiently large n

Theorem) Implication of AEP to data compression.

 X_i : i.i.d. r.v.'s with pdf p. There exists a data compression code (bijection) s.t. for $\epsilon > 0$

$$\mathbb{E}(\frac{1}{n}l(X_1^n)) < H(X_1^n) + \epsilon$$

where $l(X_1^n) = \sum_{X_i}$ (length of the code for X_i)= $\sum_{X_i} l(X_i)$, $X_1^n = (X_1, \dots, X_n)$

Proof. For $X_1^n \in A_{\epsilon}^{(n)}$, encode it by $nH(X_1) + \epsilon + 2$ bits. Otherwise, by $n \log(|ran(X_1)|) + 2$ bits. It means, encode naively. (the number of possible outcome= $|ran(X_1)|^n$)

$$\mathbb{E}(l(X_1^n)) = \sum_{x_1^n \in A_{\epsilon}^{(n)}} p(x_1^n) l(x_1^n) + \sum_{x_1^n \notin A_{\epsilon}^{(n)}} p(x_1^n) l(x_1^n)$$

$$= \mathbb{P}(X_1^n \in A_{\epsilon}^{(n)}) (nH(X_1) + \epsilon + 2) + \mathbb{P}(X_1^n \notin A_{\epsilon}^{(n)}) (n\log(|ran(X_1)|) + 2)$$

$$\leq (nH(X_1) + \epsilon + 2) + \epsilon (n\log(|ran(X_1)|) + 2)$$

3 Entropy rates

3.1 Entropy rates

Definition) Entropy rates.

The entropy rate of a r.p. $\mathcal{X} = \{X_i\}$ is

$$H(\mathcal{X}) = \lim_{n} \frac{1}{n} H(X_1^n) = \lim_{n} \frac{1}{n} H(X_1, \dots, X_n)$$

provided the limit exists.

Alternatively (in case of \mathcal{X} is stationary),

$$H'(\mathcal{X}) = \lim_{n} H(X_n | X_1^{n-1})$$

provided the limit exists.

Theorem) Two definitions coincide in case of stationary distribution.

If \mathcal{X} is stationary, then $H(\mathcal{X}) = H'(\mathcal{X})$, i.e.

$$\lim_{n} \frac{1}{n} H(X_1^n) = \lim_{n} H(X_n | X_1^{n-1})$$

Proof. $\frac{1}{n}H(X_1^n) = \frac{1}{n}\sum_{i=1}^n H(X_i|X_1^i) = \lim_n H(X_n|X_1^{n-1})$ by Cesaro sum.

3.2 Markov Process

Definition) Markov Process.

A r.p. $\mathcal{X} = \{X_i\}$ is a Markov process (m.p.) if

$$\mathbb{P}(X_n = x_n | X_1^{n-1} = x_1^{n-1}) = \mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1})$$

for all n.

A m.p. $\mathcal{X} = \{X_i\}$ is stationary (s.m.p.) if $\mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1})$ is indep of $n. \to H(\mathcal{X}) = H(X_2 | X_1)$.

Transition matrix M for a m.p. $\mathcal{X} = \{X_i\}$ with $ran(X) = [m] = \{1, \dots, m\}$ is

$$M = [p_{ij}]_{1 \le i,j \le m}$$
 where $p_{ij} = \mathbb{P}(X_n = j | X_{n-1} = i)$

Denote $M^n = [p_{ij}^{(n)}].$

A m.p. $\mathcal{X} = \{X_i\}$ is irreducible if there exists $m \in \mathbb{N}$ s.t. $\forall i, j \in [m], \exists n \in \{0\} \cup [m]$ with $p_{i,j}^{(n)} > 0$.

A m.p. $\mathcal{X} = \{X_i\}$ is aperiodic if for given $N \in \mathbb{N}$, $\forall i, j \in [m]$, $\exists n > N$ with $p_{ij}^{(n)} > 0$. \rightarrow (Aperiodic \subset Irreducible)

A stationary distribution μ for a m.p. $\mathcal{X} = \{X_i\}$ satisfies $\mu = \mu M$

Theorem) Entropy rate of s.m.p..

If \mathcal{X} is s.m.p., then.

$$H(\mathcal{X}) = -\sum_{ij} \mu_i p_{ij} \log p_{ij}$$

Proof. Since it is stationary and Markov, $H(\mathcal{X}) = \lim_n H(X_n|X_1^{n-1}) = \lim_n H(X_n|X_{n-1})$. So, $\lim_n H(X_n|X_{n-1}) = H(X_2|X_1 = \mu) = \mathbb{E}_{X_1 \sim \mu}(\mathbb{E}_{X_2|X_1 \sim p(x_2|x_1)}(\frac{1}{\log p(X_2|X_1)}))$ where μ is a stationary distribution.

Exercise) A few examples.

a) For a m.p. with transition matrix $M = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$, A stationary dist. is $\mu = (\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta})$ $H(\mathcal{X}) = \frac{\beta}{\alpha + \beta} H(\alpha) + \frac{\alpha}{\alpha + \beta} H(\beta) \leq H(\mu) = H(\frac{\alpha}{\alpha + \beta})$

3.3 Hidden Markov Models

Definition) Markov Process.

A r.p. $\mathcal{Y} = \{Y_i\}$ is a Hidden Markov process (h.m.p.) if $Y_i = \phi(X_i)$ for some $\phi : \mathbb{R} \to \mathbb{R}$ and a m.p. $\{X_i\}$

 \mathcal{Y} is stationary but not necessarily a m.p..

Lemma) Initial conditioning reduces entropy.

 $\mathcal{Y} = \{Y_i\}$ is a h.m.p. associated with a m.p. $\{X_i\}$. Then,

$$H(Y_n|Y_1^{n-1},X_1) \le H(\mathcal{Y})$$

Proof.

$$H(Y_{n}|Y_{1}^{n-1},X_{1}) = H(Y_{n}|Y_{1}^{n-1},X_{1})$$

$$= H(Y_{n}|Y_{1}^{n-1},X_{1},X_{-k}^{0}) \quad (\because \text{Markov property})$$

$$= H(Y_{n}|Y_{1}^{n-1},Y_{-k}^{0},X_{1},X_{-k}^{0}) \quad (\because \mathcal{Y} = \{Y_{i}\} \text{ is a h.m.p.})$$

$$\leq H(Y_{n}|Y_{-k}^{n-1}) = H(Y_{n+k+1}|Y_{1}^{n+k}) \to H(\mathcal{Y}) \quad \text{as } k \to \infty$$

Lemma) Initial conditioning approaches to the entropy rates.

 $\mathcal{Y} = \{Y_i\}$ is a h.m.p. associated with a m.p., $\{X_i\}$. $H(X_1) < \infty$. Then,

$$H(Y_n|Y_1^{n-1}) - H(Y_n|Y_1^{n-1}, X_1) \to 0$$
 as $n \to \infty$

Proof.

$$H(Y_n|Y_1^{n-1}) - H(Y_n|Y_1^{n-1}, X_1) = I(X_1; Y_n|Y_1^{n-1})$$

Since
$$H(X_1) \ge I(X_1; Y_1^n) = \sum_{i=1}^n I(X_1; Y_i | Y_1^{i-1})$$
, it follows that $I(X_1; Y_n | Y_1^{n-1}) \to 0$ as $n \to \infty$

Theorem) Initial conditioning approaches to the entropy rates.

 $\mathcal{Y} = \{Y_i\}$ is a h.m.p. associated with a m.p., $\{X_i\}$. $H(X_1) < \infty$. Then,

$$H(Y_n|Y_1^{n-1}, X_1) \le H(\mathcal{Y}) \le H(Y_n|Y_1^{n-1})$$

 $\lim H(Y_n|Y_1^{n-1}, X_1) = H(\mathcal{Y}) = \lim H(Y_n|Y_1^{n-1})$

4 Data Compression

4.1 Data Compression

Denote \mathcal{D} be a set of alphabets. Its size is $D = |\mathcal{D}|$ Denote \mathcal{D}^* be the set of finite length strings of \mathcal{D} .

Definition) Codeword.

For a r.v. X, The source code is $C : ran(X) \to \mathcal{D}^*$.

The expected length L(C) of a source code C is given by

$$L(C) = \mathbb{E}(l(X)) = \sum_{x} p(x)l(x)$$

where l(x) is the length of C(x)

A source code is nonsingular if it is injective.

The extension of a source code $C: ran(X) \to \mathcal{D}^*$ is $C^*: ran(X)^* \to \mathcal{D}^*$ defined by concatenating codewords, i.e.

$$C^*(x_1^n) = C(x_1) \dots C(x_n)$$

for every $n \ge 0$ and $x_1^n \in ran(X)^n$

A source code $C: ran(X) \to \mathcal{D}^*$ is uniquely decodable (UD) if its extension C^* is nonsingular.

A source code is a prefix code if no codeword is a prefix of any other codeword.

Theorem) Kraft Inequality.

If C is a prefix code, then

$$\sum_{i} D^{-l_i} \le 1$$

(This sum is called Kraft sum)

Conversely, given $\{l_i\}$ satisfying the above inequality, there exists a prefix code with these word lengths.

Proof. (\Rightarrow) Consider a D-ary full tree T with the depth $l_{\max} = \max_i l_i$. Given codewords $\{C(x_i)\}$, we can find the corresponding subset nodes $\{v_i\} \subset T$ satisfying that none of nodes on the path from the root to v_i is v_j node. Therefore, v_i have $D^{l_{\max}-l_i}$ descendents in T, each of those descendents is disjoint. So, $\sum_i D^{l_{\max}-l_i} \leq D^{l_{\max}}$.

$$(\Leftarrow)$$
 Grow a *D*-ary full tree *T* with the depth $l_{\min} = \min_i l_i$.

Theorem) The expected length of a prefix code.

If C is a prefix code associated with a r.v. X on \mathcal{D} , then

$$L(C) \ge H_D(X) = \sum_{x} p(x) \log_D \frac{1}{p(x)}$$

Proof. Consider a prob. dist. $\{q_i\}$ over ran(X) where $q_i = \frac{D^{-l_i}}{\sum_i D^{-l_i}}$. Then, $KL_D(\{p_i\} | \{q_i\}) = -H_D(\{p_i\}) + L(C) + \log_D(K) \ge 0$ with log-base D where $K = \sum_i D^{-l_i}$. The conclusion follows by Kraft Inequality. Furthermore, the equality holds when K = 1, $p_i = q_i = D^{-l_i}$. \square

4.2 Shannon Coding

Definition) D-adic. A pmf is D-adic if each of the probabilities is equal to D^{-n} for some $n \in \mathbb{N}$

Definition) Shannon Coding.

For a r.v. X, Shannon coding $C: ran(X) \to \mathcal{D}^*$ is a code satisfying $l_i = \lceil \log_D \frac{1}{p_i} \rceil$.

Proposition) Properties of Shannon Coding.

- (i) Sub-optimal
- (ii) prefix code (: it satisfies Kraft inequality)

(iii)
$$H_D(X) \le L(C) < H_D(X) + 1 \ (\because \log_D \frac{1}{p_i} \le l_i < 1 + \log_D \frac{1}{p_i})$$

Theorem) Optimal prefix codeword length.

If C^* is an optimal prefix code associated with a r.v. X on \mathcal{D} , then

$$H_D(X) \le L(C^*) < H_D(X) + 1$$

Proof. C^* should be better than Shannon code. Also, C^* is a prefix code.

Theorem) The minimum average code length.

If C^* is an optimal prefix code associated with a r.v.'s $\{X_i\}$ on \mathcal{D} , then

$$\frac{1}{n}H_D(X_1^n) \le L_n(C^*) = \mathbb{E}(\frac{1}{n}l^*(X_1^n)) < \frac{1}{n}H_D(X_1^n) + \frac{1}{n}$$

If $\mathcal{X} = \{X_i\}$ is stationary,

$$L_n(C^*) = \mathbb{E}(\frac{1}{n}l^*(X_1^n)) \to H_D(\mathcal{X})$$

Theorem) The comparison of average code length.

If C is a prefix code associated with a r.v.' $X \sim p$ on \mathcal{D} s.t. $l_C(x) = \lceil \log \frac{1}{q(x)} \rceil$ for some pmf q, then

$$H_D(p) + KL(p||q) \le \mathbb{E}_{X \sim p}(l_C(X)) < H_D(p) + KL(p||q) + 1$$

Proof.

$$\mathbb{E}_{X \sim p}(l_C(X)) = \sum p(x) \lceil \log \frac{1}{q(x)} \rceil < \sum p(x) (\log \frac{1}{q(x)} + 1)$$

$$= \sum p(x) (\log \frac{p(x)}{q(x)p(x)} + 1) = H_D(p) + KL(p||q) + 1$$

Similarly, the lower bound can be proven.

4.3 Huffman Coding

Definition) Huffman Coding.

For a r.v. X, Huffman coding $C: ran(X) \to \mathcal{D}^*$ is a code satisfying ...

Lemma) Characterization of Huffman Coding.

For a r.v. X, there exists an optimal prefix code that satisfies

- 1. If $p_i > p_j$, then $l_i < l_j$.
- 2. The two longest codewords have the same length.
- 3. The two longest codewords differ only in the last bit (, and corresponds to the two least likely symbols).

Proof. Consider a corresponding tree. We can improve $\mathbb{E}(l(X))$ by swapping, rearranging and trimming.

Proposition) Properties of Huffman Coding.

(i) Optimal

Proof. By recursion through merging the two longest codewords.

(ii) $H_D(X) \le L(C) < H_D(X) + 1$

4.4 Shannon-Fano-Elias Coding (Alphabetic code)

Definition) Shannon-Fano-Elias coding.

For a r.v. X with pmf p, Shannon-Fano-Elias (S.F.E) coding $C: ran(X) \to \mathcal{D}^*$ is constructed by following steps.

- 1. Define $\bar{F}: ran(X) \to [0,1]: x \mapsto \sum_{a < x} p(a) + \frac{1}{2}p(x)$
- 2. Let l(x) be the integer $\left[\log_2 \frac{1}{p(x)}\right] + 1$
- 3. Let C(x) be the first l(x) most significant bits after the decimal point of the binary expansion of $\bar{F}(x)$ i.e. $[\bar{F}(x)]_{l(x)}$.

Proposition) Properties of S.F.E Coding.

(i) Nonsingular

Proof. It is enough to show that $\lfloor \bar{F}(a_i) \rfloor_{l(a_i)}$ are distinct where $\{a_i\} = ran(X)$. Note that $F(a_i) > \bar{F}(a_i) \geq \lfloor \bar{F}(a_i) \rfloor_{l(a_i)}$. Claim that $\lfloor \bar{F}(a_i) \rfloor_{l(a_i)} > F(a_{i-1})$. Obviously, $\lfloor \bar{F}(a_i) \rfloor_{l(a_i)} \geq \bar{F}(a_i) - \frac{1}{2^{l(a_i)}}$. Also, $\bar{F}(a_i) = F(a_{i-1}) + \frac{1}{2}p(a_i) \geq F(a_{i-1}) + \frac{1}{2^{l(a_i)}}$ since $l(x) = \left\lceil \log_2 \frac{1}{p(x)} \right\rceil + 1$. Therefore, $F(a_i) > \lfloor \bar{F}(a_i) \rfloor_{l(a_i)} > F(a_{i-1})$

- (ii) S.F.E coding is prefix free
- (iii) L(C) < H(X) + 2

Proof.
$$L(C) = \mathbb{E}(l(C(X))) = \sum_{x} p(x)l(x) = \sum_{x} p(x)(\lceil \log_2 \frac{1}{p(x)} \rceil + 1) < H(X) + 2 \quad \Box$$

5 Channel Capacity

5.1 Channel Capacity

Definition) Channel Capacity.

A discrete channel is a system (X, p(Y|X), Y) consisting of an input r.v. X and output r.v. Y, and fixed p(Y|X)

Information of channel capacity is

$$C = \max_{p(X)} I(X;Y)$$

Proposition) Properties of Channel Capacity.

- (i) $C \geq 0$
- (ii) $C \leq \log(|ran(X)|), C \leq \log(|ran(Y)|)$
- (iii) C is concave w.r.t. p(X)

Definition) Symmetric Channel.

A channel is symmetric if the rows and the columns of the transition matrix p(Y|X) are permutations with each other

Proposition) Properties of Symmetric Channel.

(i) $C = \max_{p(X)} I(X;Y) = \max_{p(X)} (H(Y) - H(r)) \le \log |ran(Y)| - H(r)$ where r is a row of the transition matrix.

Definition) Discrete Memoryless channel.

A channel is memoryless if the prob. dist. of the output depends only on the input at the time.

The n-th extension of the discrete memoryless channel (DMC) is $(X_1^n, p(Y_1^n|x_1^n), Y_1^n)$ where $p(Y_k|x_1^k, y_1^{k-1}) = p(Y_k|x_1^k)$

Definition) Jointly typical sequences.

The set $A_{\epsilon}^{(n)}$ of jointly typical sequences $\{(x_1^n, y_1^n)\}$ is defined as

$$\begin{split} A_{\epsilon}^{(n)} &= \{(x_1^n, y_1^n) \mid \; \max(|-\frac{1}{n}\log p(x_1^n) - H(X)|, |-\frac{1}{n}\log p(y_1^n) - H(Y)| \\ , &|-\frac{1}{n}\log p(x_1^n, y_1^n) - H(X, Y)|) < \epsilon \} \end{split}$$

where $p(x_1^n, y_1^n) = \prod_{i=1}^n p(x_i, y_i)$

Theorem) Joint AEP.

Let (X_1^n, Y_1^n) be i.i.d. sequences from $p(x_1^n, y_1^n) = \prod_{i=1}^n p(x_i, y_i)$. Then,

- 1. $\mathbb{P}((X_1^n, Y_1^n) \in A_{\epsilon}^{(n)}) \to 1 \text{ as } n \to \infty$
- 2. $|A_{\epsilon}^{(n)}| < 2^{n(H(X,Y)+\epsilon)}$
- 3. If $(\tilde{X}_1^n, \tilde{Y}_1^n) \sim p(x_1^n)p(y_1^n)$,

$$\mathbb{P}((\tilde{X_1^n}, \tilde{Y_1^n}) \in A_{\epsilon}^{(n)}) \leq 2^{-n(I(X;Y) - 3\epsilon)}$$

For sufficiently large n,

$$\mathbb{P}((\tilde{X_1^n}, \tilde{Y_1^n}) \in A_{\epsilon}^{(n)}) \ge (1 - \epsilon)2^{-n(I(X;Y) + 3\epsilon)}$$

Proof. 1 and 2 are obvious. For 3, $\mathbb{P}((\tilde{X}_1^n, \tilde{Y}_1^n) \in A_{\epsilon}^{(n)}) = \sum_{(\tilde{x}_1^n, \tilde{y}_1^n) \in A_{\epsilon}^{(n)}} p(\tilde{x}_1^n, \tilde{y}_1^n) = \sum_{(\tilde{x}_1^n, \tilde{y}_1^n) \in A_{\epsilon}^{(n)}} p(\tilde{x}_1^n) p(\tilde{y}_1^n)$. By 2, we can bound the number of terms in the summation. By definition of $A_{\epsilon}^{(n)}$, we can bound the each probability term.

Definition) (M,n).

An (M, n) code consists of

- 1. An index set $I = \{1, ..., M\}$.
- 2. An encoding ftn $x_1^n: I \to \Omega_x^n$. This is determined by realizations of r.v. X(w) n times for each $w \in I$. So, $X_1(w), \ldots, X_n(w)$ are i.i.d. r.v.'s. Denote their realization as $x_1(w), \ldots, x_n(w)$. We will determine which realizations define $x_1^n(w)$ in later.
- 3. A DMC $(x_1^n(w), p(Y_1^n|x_1^n(w)), Y_1^n)$. This generates a r.v. Y_1^n for given $x_1^n(w)$.
- 4. A decoding ftn $g: \Omega_y^n \to I$. Since every y_1^n is always generated for given $x_1^n(w)$, a decoding ftn g can acknowledge $x_1^n(w)$. But we omit for the sake of brevity. i.e. g is a ftn of $x_1^n(w)$, as well as y_1^n .

The probability of error at input code $x_1^n(w)$ is

$$\lambda_w(x_1^n(w)) = \mathbb{E}_{Y_1^n \sim p(\cdot | x_1^n)} (I(g(y_1^n) \neq w)) = \mathbb{P}(g(Y_1^n) \neq w | x_1^n(w))$$
$$= \sum_{y_1^n} p(y_1^n | x_1^n(w)) I(g(y_1^n) \neq w)$$

The maximal probability of error at input code x_1^n is

$$\lambda^{(n)}(x_1^n) = \max_{w} \lambda_w(x_1^n(w))$$

The average probability of error at input code x_1^n is

$$P_e^{(n)}(x_1^n) = \mathbb{E}_{W \sim U([2^{nR}])} \lambda_W(x_1^n(W)) = \frac{1}{M} \sum_{w=1}^M \lambda_w(x_1^n(w))$$

The average probability of error is

$$P_e^{(n)} = \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_1^n(W)} \lambda_W(X_1^n(W))$$

The rate R of an (M, n) code is

$$R = \frac{\log M}{n}$$

A rate R is achievable if there exists sequence of $(\lceil 2^{nR} \rceil, n)$ code s.t. $\lambda^{(n)} \to 0$ as $n \to \infty$. The capacity of a discrete memoryless channel is the supremum of all achievable rates.

Theorem) Channel Coding Theorem.

For every $\delta > 0$, R < C, there exist $(2^{nR}, n)$ code with $P_e^{(n)} < \delta$. Conversely, any sequence of $(2^{nR}, n)$ code with $P_e^{(n)} \to 0$ must have $R \le C$ i.e. $(2^{nR}, n)$ code is achievable iff R < C.

Proof. First, consider i.i.d. r.v.'s $X_1(w), \ldots, X_n(w)$ for each $w \in [2^{nR}] = \{1, \ldots, 2^{nR}\}$ where $p(X_1^n(w))$ maximizes I(X;Y). The number of observation n will be determined later. From the observation, we have a codebook

$$C = \begin{pmatrix} x_1(1) & x_2(1) & \dots & x_n(1) \\ \vdots & \vdots & \dots & \vdots \\ x_1(2^{nR}) & x_2(2^{nR}) & \dots & x_n(2^{nR}) \end{pmatrix} = \begin{pmatrix} x_1^n(1) \\ \vdots \\ x_1^n(2^{nR}) \end{pmatrix}$$

Fix $\epsilon > 0$ s.t. $4\epsilon < \delta$ and $R < I(X;Y) - 3\epsilon$ (: R < C). Define $E_w = \{(x_1^n(w), y_1^n) \in A_{\epsilon}^{(n)}\}$ for each $w \in [2^{nR}]$ Define a decoding ftn $g: ran(Y)^n \to I$ by followings.

$$g(y_1^n) = g_{x_1^n}(y_1^n) = \begin{cases} w' & \text{if } \exists! \ w' \in [2^{nR}] \text{ s.t. } (x_1^n(w'), y_1^n) \in E_{w'} \\ 2 & \text{o.w.} \end{cases}$$

Note that the second case is no matter what value you assign. Therefore, the expected number of error (or probability of error) is

$$\begin{split} P_{e}^{(n)} &= \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_{1}^{n}(W)} \mathbb{E}_{Y_{1}^{n} \sim p(\cdot|X_{1}^{n}(W))} (I_{g(Y_{1}^{n}) \neq W}) \\ &= \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_{1}^{n}(W)} \mathbb{P}(g(Y_{1}^{n}) \neq W|X_{1}^{n}(W)) \\ &= \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_{1}^{n}(W)} (\lambda_{W}(X_{1}^{n}(W))) \\ &= \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \mathbb{E}_{X_{1}^{n}(w)} (\lambda_{w}(X_{1}^{n}(w))) \\ &= \mathbb{E}_{X_{1}^{n}(1)} \lambda_{1}(X_{1}^{n}(1)) \quad (\because \text{symmetry of code construction}) \\ &= \sum_{x_{1}^{n}(1)} \mathbb{P}(x_{1}^{n}(1)) \lambda_{1}(x_{1}^{n}(1)) \\ &= \sum_{x_{1}^{n}(1)} \mathbb{P}(x_{1}^{n}(1)) \cdot \mathbb{P}(g(Y_{1}^{n}) \neq 1 | x_{1}^{n}(1)) \end{split}$$

By the definition of g,

$$\begin{split} P_e^{(n)} &= \sum_{x_1^n(1)} \mathbb{P}(x_1^n(1)) \cdot \mathbb{P}(g(Y_1^n) \neq 1 | x_1^n(1)) \\ &= \sum_{x_1^n(1)} \mathbb{P}(x_1^n(1)) \cdot \mathbb{P}(\neg (\exists! \ 1 \in [2^{nR}] \ \text{s.t.} \ (x_1^n(1), y_1^n) \in E_1) | x_1^n(1)) \\ &= \sum_{x_1^n(1)} \mathbb{P}(x_1^n(1)) \cdot \mathbb{P}((x_1^n(1), y_1^n) \notin E_1 \vee (x_1^n(1), y_1^n) \in E_2 \vee \dots \vee (x_1^n(1), y_1^n) \in E_{2^{nR}} | x_1^n(1)) \\ &= \mathbb{P}((X_1^n(1), Y_1^n) \notin E_1 \vee (X_1^n(1), Y_1^n) \in E_2 \vee \dots \vee (X_1^n(1), Y_1^n) \in E_{2^{nR}}) \\ &\leq \mathbb{P}_{X_1^n(1), Y_1^n}(E_1^c) + \mathbb{P}_{X_1^n(1), Y_1^n}(E_2) + \dots + \mathbb{P}_{X_1^n(1), Y_1^n}(E_{2^{nR}}) \\ &\leq \epsilon + \mathbb{P}_{X_1^n(1), Y_1^n}(E_2) + \dots + \mathbb{P}_{X_1^n(1), Y_1^n}(E_{2^{nR}}) \quad \text{for sufficiently large } n \\ &\leq \epsilon + 2^{-n(I(X;Y) - 3\epsilon - R)} \quad (\because p_{X_1^n(1)} \perp p_{Y_1^n|X_1^n(w)} \ \forall w \neq 1, \ \text{AEP 3}) \\ &\leq 2\epsilon \quad \text{for sufficiently large } n \text{ since } R < I(X;Y) - 3\epsilon \end{split}$$

Conversely, we need to show that $P_e^{(n)} \to 0$ implies $R \leq C$. First, we show Fano's inequality.

Lemma) Fano's inequality.

For a DMC, assume $W \sim U([2^{nR}])$. Let $P_e^{(n)} = \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_1^n(W)} \lambda_W(X_1^n(W))$. Then,

$$H(X_1^n|Y_1^n) \le 1 + P_e^{(n)} nR \tag{3}$$

or,

$$H(W|Y_1^n) \le H(\{P_e^{(n)}, 1 - P_e^{(n)}\}) + P_e^{(n)}\log(|2^{nR}| - 1)$$
(4)

(Note that $H(X_1^n|Y_1^n)$ needs integration w.r.t. $W, X_1^n(W), Y_1^n$))

Proof. Let's start from data processing inequality $H(X_1^n|Y_1^n) \leq H(W|Y_1^n)$ since $W \to X \to Y$. Define $E_{W,Y_1^n} = I(g(Y_1^n) \neq W)$ be a ftn of W and Y_1^n . Note that when we integrate E_{W,Y_1^n} , we sequentially generate $W \sim U(2^{nR})$, $X_1^n(W)$ and $Y_1^n \sim p(\cdot|X_1^n(W))$. Consider

$$H(E_{W,Y_1^n}, W|Y_1^n) = H(W|Y_1^n) + H(E_{W,Y_1^n}|W, Y_1^n) = H(W|Y_1^n) + 0$$

Hence, $H(X_1^n(W)|Y_1^n) \le H(W|Y_1^n) = H(E_{W,Y_1^n}, W|Y_1^n) = H(E_{W,Y_1^n}|Y_1^n) + H(W|E_{W,Y_1^n}, Y_1^n)$. For the first term,

$$H(E_{W,Y_1^n}|Y_1^n) \le H(E_{W,Y_1^n}) \le 1$$
 (: E is a binary r.v..)

For the second term,

$$\begin{split} H(W|E_{W,Y_1^n},Y_1^n) &= \mathbb{E}_{W \sim U([2^{nR}])}(\mathbb{P}(E_{W,Y_1^n} = 0)H(W|Y_1^n,E_{W,Y_1^n} = 0) \\ &+ \mathbb{P}(E_{W,Y_1^n} = 1)H(W|Y_1^n,E_{W,Y_1^n} = 1)) \\ &(\mathbb{P},\ H\ \text{integrate w.r.t.}\ X_1^n,Y_1^n) \\ &\leq 0 + \mathbb{E}_{W \sim U([2^{nR}])}\mathbb{E}_{X_1^n(W)}(\mathbb{P}(g(Y_1^n) \neq W|X_1^n(W)))\log(|ran(W)| - 1) \\ &(\because E_{W,Y_1^n} = 0 \Leftrightarrow W\ \text{is correctly determined by } g(Y_1^n)) \\ &\leq \mathbb{E}_{W \sim U([2^{nR}])}\mathbb{E}_{X_1^n(W)}(\lambda_W(X_1^n(W)))\log(|ran(W)| - 1) \leq P_e^{(n)} \, nR \end{split}$$

Henceforth, $H(X_1^n(W)|Y_1^n) \leq 1 + P_e^{(n)}(x_1^n)nR$ which is (3). For (4), note that

$$\begin{split} H(E_{W,Y_1^n}) &= H(\{\mathbb{P}(E_{W,Y_1^n} = 1), \, \mathbb{P}(E_{W,Y_1^n} = 0)\}) = H(\{\mathbb{P}(g(Y_1^n) \neq W), \, \mathbb{P}(g(Y_1^n) = W)\}) \\ &= H(P_e^{(n)}, 1 - P_e^{(n)}) \end{split}$$

Furthermore, we need following lemma too.

Lemma) For a DMC,.

$$I(X_1^n; Y_1^n) \le nC \tag{5}$$

Proof.

$$\begin{split} I(X_1^n;Y_1^n) &= H(Y_1^n) - H(Y_1^n|X_1^n) \\ &= H(Y_1^n) - \sum_{i=1}^n H(Y_i|Y_1^{i-1},X_1^n) \\ &= H(Y_1^n) - \sum_{i=1}^n H(Y_i|X_i) \quad (\because \text{DMC}) \\ &\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i|X_i) = \sum_{i=1}^n I(X_i;Y_i) \end{split}$$

Now, we can prove the converse.

$$nR = H(W) = H(W|Y_1^n) + I(W;Y_1^n)$$

$$\leq H(W|Y_1^n) + I(X_1^n(W);Y_1^n)$$

$$\leq 1 + P_n^{(e)}nR + I(X_1^n;Y_1^n) \quad (\because (4), W \sim U([2^{nR}]))$$

$$\leq 1 + P_n^{(e)}nR + nC \quad (\because (5))$$

Dividing by n, we have $R \leq \frac{1}{n} + P_e^{(n)}R + C$. Taking $n \to \infty$, we are done.

Corollary) Bounding $\lambda^{(n)}(x_1^n)$ by specific realization.

(i) For every $\delta > 0$, R < C, there exist $(2^{nR}, n)$ code with $\lambda^{(n)}(x_1^n) < \delta$.

Proof. It is enough to show that we can take a codebook $(2^{n(R-1/n)}, n)$ satisfying $\lambda^{(n)}(x_1^n) < \delta$. By channel coding theorem, we have

$$P_e^{(n)} = \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_1^n(W)}(\lambda_W(X_1^n(W))) \le 2\epsilon.$$

Then, there exists $x_1^n(w)$ for each $w \in [2^{nR}]$ s.t. $\mathbb{E}_{W \sim U([2^{nR}])} \lambda_1(x_1^n(W)) \leq 2\epsilon$. Therefore, at least the half of w's of $[2^{nR}]$ satisfies $\lambda_w(x_1^n(w)) \leq 4\epsilon$. So we are done.

Theorem) Zero-error codes.

 $P_e^{(n)} = 0$ implies R < C.

Proof. $nR = H(W) = H(W|Y_1^n) + I(W;Y_1^n) = I(W;Y_1^n)$ since $P_e^{(n)} = 0$ implies W can be restored by $g(y_1^n(X_1^n(W)))$ for all $X_1^n(W)$. Data processing inequality implies that $I(W;Y_1^n) \leq I(X_1^n;Y_1^n)$. Finally, $I(X_1^n;Y_1^n) = \sum_{i=1}^n I(X_i;Y_i) \leq nC$.

Definition) Feedback capacity.

 $(2^{nR}, n)$ feedback code is a sequence of mappings $x_i(W, Y_1^{i-1})$.

The capacity with feedback, C_{FB} , of a DMC is a supremum of all rates achievable by feedback codes.

Theorem) $C_{FB} = C = \max_X I(X; Y)$.

Proof. Clearly, $C_{FB} \geq C$. To show that $C_{FB} \leq C$, let's start from $H(W) = H(W|Y_1^n) + I(W;Y_1^n)$. Bound $I(W;Y_1^n)$ as follows.

$$I(W; Y_1^n) = H(Y_1^n) - H(Y_1^n|W)$$

$$= H(Y_1^n) - \sum_{i=1}^n H(Y_i|Y_1^{i-1}, W)$$

$$= H(Y_1^n) - \sum_{i=1}^n H(Y_i|Y_1^{i-1}, X_i, W) \quad (\because X_i \text{ is a ftn of } Y_1^{i-1}, W)$$

$$= H(Y_1^n) - \sum_{i=1}^n H(Y_i|X_i)$$

$$\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i|X_i) = \sum_{i=1}^n I(X_i; Y_i)$$

$$\leq nC$$

Together with (3), $H(W) \leq 1 + P_e^{(n)} nR + nC$. Dividing by n and letting $n \to \infty$ give $R \leq C$. Taking supremum of R, we have $C_{FB} \leq C$.

Theorem) Joint source-channel coding theorem.

 V_1^n is a finite alphabet stochastic process $\mathcal V$ s.t. $V_1^n \in A_{\epsilon}^{(n)}$, $H(\mathcal V) < C$. Then there exists source-channel code s.t. $\mathbb P(\hat V_1^n \neq V_1^n) \to 0$ a.s.. Conversely, for any stationary stochastic process $\mathcal V$ with $H(\mathcal V) > C$, the probability of error is bounded away from zero.

Proof. Take $\epsilon > 0$ s.t. $H(\mathcal{V}) + \epsilon < C$. From AEP, we have $|A_{\epsilon}^{(n)}| \leq 2^{n(H(\mathcal{V}) + \epsilon)}$. So, we can index them with $n(H(\mathcal{V}) + \epsilon)$ bits. From channel coding theorem, we can reliably transmit

the indices since $H(\mathcal{V}) + \epsilon = R < C$ with the arbitrary small probability of error. Conversely, we need to show that $\mathbb{P}(\hat{V}_1^n \neq V_1^n) \to 0$ a.s. implies $H(\mathcal{V}) < C$. Note that

$$H(\mathcal{V}) \approx \frac{H(\mathcal{V}_{1}^{n})}{n} \qquad (\because \text{def})$$

$$= \frac{1}{n} (H(\mathcal{V}_{1}^{n}|\hat{\mathcal{V}}_{1}^{n}) + I(\mathcal{V}_{1}^{n};\hat{\mathcal{V}}_{1}^{n}))$$

$$\leq \frac{1}{n} (1 + \mathbb{P}(\mathcal{V}_{1}^{n} \neq \hat{\mathcal{V}}_{1}^{n}) n \log |\mathcal{V}| + I(\mathcal{V}_{1}^{n};\hat{\mathcal{V}}_{1}^{n}))$$

$$\leq \frac{1}{n} (1 + \mathbb{P}(\mathcal{V}_{1}^{n} \neq \hat{\mathcal{V}}_{1}^{n}) n \log |\mathcal{V}| + I(\mathcal{X}_{1}^{n};\mathcal{Y}_{1}^{n})) \qquad (\because \text{data processing inequality})$$

$$= \frac{1}{n} + \mathbb{P}(\mathcal{V}_{1}^{n} \neq \hat{\mathcal{V}}_{1}^{n}) \log |\mathcal{V}| + C \qquad (\because \text{Memoryless DMC})$$

letting $n \to \infty$, we are done.

6 Differential Entropy

Now we are assume that all r.v.'s are continuous, i.e. $F(x) = \mathbb{P}(X \leq x)$ is continuous.

6.1 Differential Entropy, Relative Entropy, Conditional Entropy, Mutual Information

Definition) Differential Entropy.

X: r.v. with the pdf p(x)

$$h(X) = -\int_{S} p(x) \ln p(x) dx = \mathbb{E}_{X}(\ln \frac{1}{p(X)}; S)$$

where $S = \{x \mid p(x) > 0\}$ is the support set of X.

Comparing to discrete entropy (bits), differential entropy uses natural log (nats), i.e. ln.

Exercise) Few examples.

- a) $X \sim U([a, b]) \Rightarrow h(X) = \ln(b a)$. Note that if b - a < 1, h(X) < 0
- b) $X \sim \mathcal{N}(0, \sigma^2) \implies h(X) = \mathbb{E}_X(\frac{1}{2} \ln 2\pi \sigma^2 + \frac{1}{2\sigma^2} X^2)) = \frac{1}{2} \ln 2\pi e \sigma^2$.

Proposition) Properties of Differential Entropy.

- (i) Shift invariant: h(X) = h(X + a) for $a \in \mathbb{R}$.
- (ii) $h(aX) = h(X) + \log|a|$

Proof.
$$p_{aX}(y) = \frac{1}{|a|} p_x(\frac{y}{a})$$

(iii) $h(AX) = h(X) + \log |A|$ where A is a linear map and |A| = detA

6.2 AEP for continuous r.v.

Theorem) (AEP).

 X_i : i.i.d. r.v.'s with pdf p

$$-\frac{1}{n}\ln p(X_1,\dots,X_n) \to h(X) = \mathbb{E}_X(-\ln p(X)) \quad \text{a.s.}$$

Definition) Typical set.

The typical set $A_{\epsilon}^{(n)}$ is

$$A_{\epsilon}^{(n)} = \{(x_1, \dots, x_n) \in S^n : |-\frac{1}{n} \ln p(x_1, \dots, x_n) - h(X)| < \epsilon\}$$

Define a Vol(A) as

$$Vol(A) = \int_A dx_1 \cdots dx_n$$

Proposition) Properties of Typical sets.

- (i) $\mathbb{P}(X \in A_{\epsilon}^{(n)}) \ge 1 \epsilon$ for sufficiently large n.
- (ii) $Vol(A_{\epsilon}^{(n)}) < 2^{n(H(X)+\epsilon)}$

Proof.

$$1 = \int_{S^n} p(x_1^n) dx_1^n \ge \int_{A_{\epsilon}^{(n)}} p(x_1^n) dx_1^n \ge \int_{A_{\epsilon}^{(n)}} 2^{-n(H(X) + \epsilon)} dx_1^n$$
$$= Vol(A_{\epsilon}^{(n)}) 2^{-n(H(X) + \epsilon)}$$

(iii) $Vol(A_{\epsilon}^{(n)}) \geq (1-\epsilon)2^{n(H(X)-\epsilon)}$ for sufficiently large n

Proof.
$$1 - \epsilon < \mathbb{P}(X_1^n \in A_{\epsilon}^{(n)}) = \int_{A_{\epsilon}^{(n)}} p(x_1^n) dx_1^n \le Vol(A_{\epsilon}^{(n)}) 2^{-n(H(X) - \epsilon)}$$
 for sufficiently large n

Theorem) Relation to Discrete Entropy (Quantization).

Define $X^{\Delta} = \sum_{i} \Delta i I_{\Delta i \leq X < \Delta(i+1)}$.

If p(x) is Riemann-integrable, then

$$H(X^{\Delta}) + \log \Delta \to h(X)$$
 as $\Delta \to 0$.

Proof. $H(X^{\Delta}) = -\sum \mathbb{P}(X^{\Delta} = \Delta i) \log \mathbb{P}(X^{\Delta} = \Delta i)$. MVT implies that there exists x_i s.t. $\mathbb{P}(X^{\Delta} = \Delta i) = \mathbb{E}(I_{\Delta i \leq X < \Delta(i+1)}) = p(x_i)\Delta$. Therefore,

$$\begin{split} H(X^{\Delta}) &= -\sum \mathbb{P}(X^{\Delta} = \Delta i) \log \mathbb{P}(X^{\Delta} = \Delta i) \\ &= -\sum (p(x_i)\Delta) \log(p(x_i)\Delta) = -\sum (p(x_i)\Delta) \log p(x_i) - \log \Delta \sum p(x_i)\Delta \\ &= -\sum (p(x_i)\Delta) \log p(x_i) - \log \Delta \rightarrow h(X) - \log \Delta \ (bits) \end{split}$$

Definition) Joint differential entropy.

X, Y : r.v.'s with the joint pdf p(x, y)

$$h(X,Y) = \mathbb{E}_{X,Y}(\ln \frac{1}{p(X,Y)})$$

Exercise) Multivariate normal distribution..

a) $X \sim \mathcal{N}(\mu, \Sigma)$

$$h(X) = \mathbb{E}_X(\frac{1}{2}\ln(2\pi)^n|\Sigma| + \frac{1}{2}(X-\mu)^t\Sigma^{-1}(X-\mu))$$

= $\frac{1}{2}\ln(2\pi)^n|\Sigma| + \frac{1}{2}tr(\mathbb{E}_X(\Sigma^{-1}(X-\mu)^t(X-\mu)))$
= $\frac{1}{2}\ln(2\pi)^n|\Sigma| + n \ (nats)$

Proposition) Properties of Joint Differential Entropy.

(i) If X, Y are independent, h(X, Y) = h(X) + h(Y)

Definition) Conditional Differential Entropy.

X, Y : r.v.'s with the joint pdf p(x, y)

$$H(Y|X) = \mathbb{E}_{X,Y}(\ln \frac{1}{p(Y|X)})$$

Proposition) Properties of Conditional Differential Entropy.

- (i) Chain rule: $h(X_1, ..., X_n) = \sum_{i=1}^n h(X_i | X_1^{i-1})$
- (ii) Conditioning reduces entropy: $h(X_1, \ldots, X_n) \leq \sum_{i=1}^n h(X_i)$. The equality holds when X_1, \ldots, X_n are indep.

Theorem) Hadamard Inequality.

K: p.s.d. matrix. Then,

$$|K| \le \prod_{i=1}^{n} K_{ii}$$

Proof. Let $X \sim \mathcal{N}(0, K)$. From the above 2nd proposition,

$$\frac{1}{2}\ln(2\pi e)^n|K| \le \sum_{i=1}^n \frac{1}{2}\ln(2\pi e)K_{ii} = \frac{1}{2}\ln[(2\pi e)^n\prod_{i=1}^n K_{ii}]$$

Definition) Differential Relative Entropy (Kullback Leibler distance).

For pdfs p(x), q(x),

$$D(p||q) = \mathbb{E}_{X \sim p}(\ln \frac{p(X)}{q(X)})$$

Proposition) Properties of Differential Relative Entropy.

(i) $D(p||q) \ge 0$. The equality holds when p = q w.p. 1.

Theorem) Normal distribution maximizes entropy.

Let $X \in \mathbb{R}^n$ be a r.v. with $\mathbb{E}(X) = 0$, $\mathbb{E}(XX^t) = K$. Then,

$$h(X) \le \frac{1}{2} \ln(2\pi e)^n |K|$$

where equality holds when $X \sim \mathcal{N}(0, K)$

Proof. Let $Y \sim \mathcal{N}(0, K)$. Then,

$$0 \le D(X||Y) = -h(X) + \mathbb{E}_X(-\log \mathcal{N}(X; 0, K))$$
$$= -h(X) + \frac{1}{2}\ln(2\pi e)^n |K|$$

Definition) Differential Mutual Information.

X, Y : r.v.'s. with the joint pdf p(x, y).

$$I(X;Y) = D(p(x,y)||p_X(x)p_y(y)) = \mathbb{E}_{X,Y \sim p}(\log(\frac{p(X,Y)}{p(X)p(Y)}))$$

= $h(X) - h(X|Y)$

Unlike differential entropy, the mutual information of continuous r.v. is the same as that of quantized r.v..

Proposition) Properties of Mutual Information.

- (i) $I(X;Y) \ge 0$.
- (ii) I(X;Y) = 0 iff X, Y are indep.

7 Gaussian Channel

7.1 Gaussian Channel

Definition) Gaussian channel.

 $Y_i = X_i + Z_i, \ Z_i \overset{i.i.d.}{\sim} \mathcal{N}(0, N)$ where $Z_i, \ X_i$ are independent and $\frac{1}{n} \sum_{i=1}^n x_i^2 \leq P$

Proposition) Probability of error.

(i) Probability of error for binary transmission $X = \pm \sqrt{P} \ w.p.\frac{1}{2}$.

$$P_e = \mathbb{E}_X(I(XY < 0)) = \frac{1}{2}(\mathbb{P}(Y < 0|X = \sqrt{P}) + \mathbb{P}(Y > 0|X = -\sqrt{P}))$$

= $\mathbb{P}(Z > \sqrt{P})$

Definition) Information capacity.

The information capacity with power constraint is

$$C = \max_{p(x): EX^2 \le P} I(X; Y)$$

Proposition) Gaussian channel capacity.

(i) The information capacity of Gaussian Channel is

$$\frac{1}{2}\log(1+\frac{P}{N})$$
 where $X \sim \mathcal{N}(0,P)$

Proof.
$$I(X;Y) = h(Y) - h(Y|X) = h(Y) - h(Z|X) = h(Y) - h(Z)$$
. Note that $\mathbb{E}(Y^2) = \mathbb{E}(X^2) + \mathbb{E}(Z^2) \le P + N$. Therefore, $h(Y) \le \frac{1}{2} \log 2\pi e(P + N)$. We are done.

Definition) (M,n) with power constraint.

An (M, n) code with power constraint consists of

- 1. An index set $I = \{1, ..., M\}$.
- 2. An encoding ftn $x_1^n: I \to \Omega_x^n$ with power constraint of $\sum_{i=1}^n x_i^2(w) \le nP \quad \forall w \in I$
- 3. A DMC $(x_1^n(w), p(Y_1^n|x_1^n(w)), Y_1^n)$. This generates a r.v. Y_1^n for given $x_1^n(w)$.
- 4. A decoding ftn $g: \Omega_y^n \to I$.

Theorem) Gaussian capacity.

For every $\delta > 0$, $R < C = \frac{1}{2}\log(1 + \frac{P}{N})$, there exist $(2^{nR}, n)$ code with $P_e^{(n)} < \delta$. Conversely, any sequence of $(2^{nR}, n)$ code with $P_e^{(n)} \to 0$ must have $R \le C = \frac{1}{2}\log(1 + \frac{P}{N})$

i.e. $(2^{nR}, n)$ code is achievable iff $R \leq C$.

Proof. Fix $\epsilon > 0$ s.t. $4\epsilon < \delta$ and $R < I(X;Y) - 3\epsilon$ (: R < C). Generate $X_i(w) \sim \mathcal{N}(0, P - \epsilon) \quad \forall w \in [2^{nR}]$. Define $E_w = \{(x_1^n(w), y_1^n) \in A_{\epsilon}^{(n)}\}$ for each $w \in [2^{nR}]$, $F_w = \{\frac{1}{n} \sum_{i=1}^n x_i(w) > P\}$. Define a decoding ftn $g: ran(Y)^n \to I$ by followings.

$$g(y_1^n) = g_{x_1^n}(y_1^n) = \begin{cases} w' & \text{if } \exists! \ w' \in [2^{nR}] \text{ s.t. } (x_1^n(w'), y_1^n) \in E_{w'} \land x_1^n(w') \in F_{w'} \\ 2 & \text{o.w.} \end{cases}$$

Note that the second case is no matter what value you assign. Similar to channel coding theorem, the expected number of error (or probability of error) is

$$P_e^{(n)} = \mathbb{E}_{W \sim U([2^{nR}])} \mathbb{E}_{X_1^n(W)} \mathbb{E}_{Y_1^n \sim p(\cdot \mid x_1^n(W))} (I_{g(Y_1^n) \neq W}) = \int_{x_1^n(1)} \mathbb{P}(g(Y_1^n) \neq 1 \mid x_1^n(1)) d\mathbb{P}(x_1^n(1))$$

By the definition of g,

$$\begin{split} P_e^{(n)} &= \int_{x_1^n(1)} \mathbb{P}(g(Y_1^n) \neq 1 | x_1^n(1)) d\mathbb{P}(x_1^n(1)) \\ &\leq \mathbb{P}(X_1^n(1) \in F_1) + \mathbb{P}(X_1^n(1) \in E_1^c) + \mathbb{P}(X_1^n(1) \in E_2) + \dots + \mathbb{P}(X_1^n(1) \in E_{2^{nR}}) \\ &\leq \epsilon + \epsilon + (2^{nR} - 1)2^{-n(I(X;Y) - 3\epsilon} \quad (\because X_i(1) \sim \mathcal{N}(0, P - \epsilon)) \\ &\leq 2\epsilon + 2^{-n(I(X;Y) - 3\epsilon - R)} \quad \text{for sufficiently large } n \\ &\leq 3\epsilon \quad \text{for sufficiently large } n \text{ since } R < I(X;Y) - 3\epsilon \end{split}$$

Conversely, we need to show that $P_e^{(n)} \to 0$ implies $R \leq C$. Now, we can prove the converse.

$$\begin{split} R &= \frac{1}{n} H(W) = \frac{1}{n} (H(W|Y_1^n) + I(W;Y_1^n)) \\ &\leq \frac{1}{n} (H(W|Y_1^n) + I(X_1^n(W);Y_1^n)) \\ &\leq \frac{1}{n} + P_n^{(e)} R + \frac{1}{n} I(X_1^n;Y_1^n) \quad (\because (4), \ W \sim U([2^{nR}])) \\ &\leq \frac{1}{n} + P_n^{(e)} R + \frac{1}{n} \sum_{i=1}^n h(Y_i) - h(Z_i) \quad (\because \text{the last line of proof of } (5), \ Y_i = X_i + Z_i) \\ &\leq \frac{1}{n} + P_n^{(e)} R + \frac{1}{n} \sum_{i=1}^n [\frac{1}{2} \log(2\pi e(P_i + N)) - \frac{1}{2} \log(2\pi eN)] \quad \text{where } P_i = \mathbb{E}_{w \sim U([2^{nR}])} x_i^2(w) \\ &\leq \frac{1}{n} + P_n^{(e)} R + \frac{1}{n} \sum_{i=1}^n \frac{1}{2} \log \frac{P_i + N}{N} \\ &\leq \frac{1}{n} + P_n^{(e)} R + \frac{1}{2} \log(\frac{1}{n} \sum_{i=1}^n \frac{P_i + N}{N}) \quad (\because \text{Jensen's inequality}) \end{split}$$

Note that
$$\sum_{i=1}^{n} \frac{P_i}{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{w \sim U([2^{nR}])} x_i^2(w) = \mathbb{E}_{w \sim U([2^{nR}])} \frac{1}{n} \sum_{i=1}^{n} x_i^2(w) \le P$$

$$R \le \frac{1}{n} + P_n^{(e)} R + \frac{1}{2} \log(\frac{1}{n} \sum_{i=1}^{n} \frac{P_i + N}{N})$$

$$\le \frac{1}{n} + P_n^{(e)} R + \frac{1}{2} \log(1 + \frac{1}{N} \sum_{i=1}^{n} \frac{P_i}{n})$$

$$\le \frac{1}{n} + P_n^{(e)} R + \frac{1}{2} \log(1 + \frac{P}{N})$$

Taking $n \to \infty$, we are done.

7.2 Parallel gaussian channel

Definition) Parallel Gaussian channel.

 $Y_i = X_i + Z_i, \ Z_i \sim \mathcal{N}(0, N_i)$ where $Z_i, \ X_i$ are independent and $\sum_{i=1}^n x_i^2 \leq P$

Proposition) Parallel gaussian channel capacity.

(i) The information capacity of parallel Gaussian Channel is

$$C = \max_{\sum EX_{i}^{2} \le P} I(X_{1}^{n}; Y_{1}^{n}) = \sum \frac{1}{2} [\log(\frac{\nu}{N_{i}})]^{+} \text{ where } \nu \text{ satisfies } \sum (\nu - N_{i})^{+} = P$$

Proof.

$$\begin{split} I(X_1^n; Y_1^n) &= h(Y_1^n) - h(Y_1^n | X_1^n) = h(Y_1^n) - h(Z_1^n) \\ &= h(Y_1^n) - \sum h(Z_i) \\ &= \sum h(Y_i) - h(Z_i) \\ &\leq \sum \frac{1}{2} \log 2\pi e(P_i + N_i) - \frac{1}{2} \log 2\pi e(N_i) \quad \text{where } P_i = EX_i^2 \\ &= \sum \frac{1}{2} \log(1 + \frac{P_i}{N_i}) \end{split}$$

So, we need to optimize followings

Maximize
$$\sum \frac{1}{2} \log(1 + \frac{P_i}{N_i})$$

subject to $\sum P_i \le P, P_i \ge 0$

Consider $J = \sum_{i=1}^{\infty} \frac{1}{2} \log(1 + \frac{P_i}{N_i}) - \frac{1}{2\nu} (\sum_{i=1}^{\infty} P_i)$. We have $\frac{\partial J}{\partial P_i} = \frac{1}{2} \frac{1}{P_i + N_i} - \frac{1}{2\nu} = 0$. Hence, $P_i = (\nu - N_i)^+ \geq 0$ must satisfy $\sum_{i=1}^{\infty} P_i = P$. To sum up, we first find ν s.t. $\sum_{i=1}^{\infty} (\nu - N_i)^+ = P$. Then,

$$C = \sum_{i=1}^{n} \frac{1}{2} \left[\log \left(\frac{\nu}{N_i} \right) \right]^{+}$$

7.3 Correlated gaussian noise channel

Definition) Correlated (colored) gaussian channel.

$$Y_i = X_i + Z_i, \ X_1^n \sim \mathcal{N}(0, K_X), \ Z_1^n \sim \mathcal{N}(0, K_Z) \text{ where } Z_1^n \perp X_1^n \text{ and } \frac{1}{n} \sum_{i=1}^n x_i^2 \leq P$$

Proposition) Colored gaussian channel capacity.

(i) The information capacity of Colored Gaussian Channel is

$$C = \max_{\frac{1}{n}tr(K_X) \le P} I(X_1^n; Y_1^n) = \sum_{i=1}^{n} \frac{1}{2} [\log(\frac{\nu}{\lambda_i})]^{+}$$

where λ_i 's are eigenvalues of K_Z , ν satisfies $\sum_{i=1}^n (\nu - \lambda_i)^+ = nP$.

Proof. Note that $\frac{1}{n}\sum_{i=1}^n x_i^2 = \frac{1}{n}tr(x_1^n t_1^n x_1^n)$. So, power constraint is $\frac{1}{n}tr(K_X) \leq P$.

$$I(X_1^n; Y_1^n) = h(Y_1^n) - h(Y_1^n | X_1^n) = h(Y_1^n) - h(Z_1^n)$$

$$= h(Y_1^n) - \sum_i h(Z_i)$$

$$= \frac{1}{2} \log(2\pi e)^n (|K_X + K_Z|) - \frac{1}{2} \log(2\pi e)^n |K_Z|$$

$$= \sum_i \frac{1}{2} \log \frac{|K_X + K_Z|}{|K_Z|}$$

So, we need to optimize followings

Maximize
$$\sum \frac{1}{2} \log \frac{|K_X + K_Z|}{|K_Z|}$$

subject to $K_X \ge 0$, $\frac{1}{n} tr(K_X) \le P$

Since K_Z is p.s.d., we have $K_Z = QD_ZQ^t$ where $D_Z = diag(\operatorname{eig}(K_Z)) = diag(\lambda_1, \ldots, \lambda_n)$ and Q is orthogonal. Then $\frac{1}{2}\log\frac{|K_X+K_Z|}{|K_Z|} = \frac{1}{2}\log\frac{|Q^tK_XQ+D_Z|}{|D_Z|}$. Let $A = Q^tK_XQ$. So, equivalently,

Maximize
$$\sum \frac{1}{2} \log \frac{|A + D_Z|}{|D_Z|}$$

subject to $A \ge 0$, $\frac{1}{n} tr(A) \le P$

Hadamard inequality implies that $|A+D_Z| \leq \prod_i |A_{ii}+\lambda_i|$ while equality holds when A is diagonal. From the constraint, $\frac{1}{n}tr(A) = \sum_i A_{ii} \leq P$. So, it is reformulated as independent parallel channel. Therefore, we first find ν s.t. $\sum_{i=1}^n (\nu - \lambda_i)^+ = nP$. Then,

$$C = \sum \frac{1}{2} [\log(\frac{\nu}{\lambda_i})]^+$$

7.4 Stationary colored gaussian noise channel

Definition) Toeplitz matrix.

Toeplitz matrix or diagonal-constant matrix is a matrix in which each descending diagonal from left to right is constant.

Exercise) A few examples.

a) $\mathcal{X} = \{X_i\}$ is a stationary process, then $Var(X_1^n)$ is a Toeplitz matrix

Theorem) Toeplitz distribution theorem.

Given continuous $g: \mathbb{R} \to \mathbb{R}$, Toeplitz matrix

$$K_n = \begin{pmatrix} R(0) & R(1) & R(2) & \cdots & R(n-1) \\ R(1) & R(0) & R(1) & \cdots & R(n-2) \\ R(2) & R(1) & R(0) & \cdots & R(n-3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R(n-1) & R(n-2) & R(n-3) & \cdots & R(0) \end{pmatrix}$$

with eigenvalues $\lambda_1^{(n)}, \ldots, \lambda_n^{(n)}$, let $N(f) = \sum_n R(n)e^{j2\pi fn}$ $(\theta = 2\pi f)$ where $\sqrt{-1} = j$. Then,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} g(\lambda_i^{(n)}) = \int_{1/2}^{1/2} g(N(f)) df$$

Proof. Briefly...Check that $\nu = \begin{pmatrix} e^{j2\pi f \cdot 0} \\ \vdots \\ e^{j2\pi f \cdot (n-1)} \end{pmatrix}$ satisfies $K_n \nu = \lambda \nu$. Then, we have $\lambda_i^{(n)} \to N(f)$ as $n \to \infty$.

Corollary) Revisit colored Gaussian channel capacity.

(i) For stationary Z, the information capacity of Colored Gaussian Channel is

$$C = \max_{\frac{1}{n}tr(K_X) \le P} I(X_1^n; Y_1^n) = \frac{1}{2} \int_{1/2}^{1/2} \log(1 + \frac{(\nu - N(f))^+}{N(f)}) df$$

where λ_i 's are eigenvalues of K_Z , $N(f) = \sum K_Z(n)e^{j2\pi fn}$,

$$\nu$$
 satisfies $\sum (\nu - \lambda_i)^+ = P$.

The power constraint becomes $\int_{1/2}^{1/2} (\nu - N(f))^+ df = P$

Proof.

$$C = \max_{\frac{1}{n}tr(K_X) \le P} I(X_1^n; Y_1^n) = \sum_{i=1}^{n} \frac{1}{2} [\log(\frac{\nu}{\lambda_i})]^+ = \sum_{i=1}^{n} \frac{1}{2} \log(1 + \frac{(\nu - \lambda_i)^+}{\lambda_i})$$

where λ_i 's are eigenvalues of K_Z , ν satisfies $\sum (\nu - \lambda_i)^+ = P$.

By the above theorem, $\sum \frac{1}{2} \log(1 + \frac{(\nu - \lambda_i)^+}{\lambda_i}) = \frac{1}{2} \int_{1/2}^{1/2} \log(1 + \frac{(\nu - N(f))^+}{N(f)}) df$ where $N(f) = \sum_n K_Z(n) e^{j2\pi f n}$. The power constraint becomes $\int_{1/2}^{1/2} (\nu - N(f))^+ df = P$.

7.5 Correlated gaussian channel with feedback

Definition) Correlated gaussian channel with feedback.

 $Y_i = X_i + Z_i, \ X_1^n \sim \mathcal{N}(0, K_X), \ Z_1^n \sim \mathcal{N}(0, K_Z)$ where $\frac{1}{n} \sum x_i^2(w, Y_1^{i-1}) \leq P$ $(2^{nR}, n)$ feedback code for the correlated gaussian channel is a sequence of mappings $x_i(W, Y_1^{i-1})$ where $\mathbb{E}(\frac{1}{n} \sum x_i^2(w, Y_1^{i-1})) \leq P$

Proposition) Correlated gaussian channel with feedback capacity.

(i) Feedback capacity of correlated gaussian channel per transmission $\left(=\frac{1}{n}\right)$ is

$$C_{FB,n} = \frac{1}{n} \max_{\frac{1}{n} tr(K_X) \le P} I(X_1^n; Y_1^n) = \max_{\frac{1}{n} tr(K_X) \le P} \frac{1}{2n} \log \frac{|K_{X+Z}|}{|K_Z|}$$

Proof.

$$\begin{split} I(X_1^n; Y_1^n) &= h(Y_1^n) - h(Y_1^n | X_1^n) = h(Y_1^n) - h(Z_1^n) \\ &= h(Y_1^n) - \sum h(Z_i) \\ &\leq \frac{1}{2} \log(2\pi e)^n (|K_{X+Z}|) - \frac{1}{2} \log(2\pi e)^n |K_Z| \\ &= \frac{1}{2} \log \frac{|K_{X+Z}|}{|K_Z|} \end{split}$$

where power constraint is $\frac{1}{n}tr(K_X) \leq P$.

(ii) R with $P_e^{(n)} \to 0$ satisfies

$$R \le \frac{1}{2n} \log \frac{|K_Y|}{|K_Z|} + \epsilon_n$$

where $\epsilon_n \to 0$

Proof. By (3), we have $H(W|Y_1^n) \leq 1 + nRP_e^{(n)} = n\epsilon_n$ where $\epsilon_n = \frac{1}{n} + RP_e^{(n)} \to 0$.

Then,

$$\begin{split} nR &= H(W) \\ &= I(W; Y_1^n) + H(W|Y_1^n) \\ &\leq I(W; Y_1^n) + n\epsilon_n \\ &= \sum_i I(W; Y_i|Y_1^{i-1}) + n\epsilon_n \\ &= \sum_i (h(Y_i|Y_1^{i-1}) - h(Y_i|Y_1^{i-1}, W)) + n\epsilon_n \\ &= \sum_i (h(Y_i|Y_1^{i-1}) - h(Y_i|Y_1^{i-1}, W, X_1^i)) + n\epsilon_n \quad (\because X_1^i : \text{ ftn of } Y_1^{i-1}, W) \\ &= \sum_i (h(Y_i|Y_1^{i-1}) - h(Y_i|X_1^{i-1}, Y_1^{i-1}, Z_1^{i-1}, W, X_i)) + n\epsilon_n \quad (\because \text{ similarly}) \\ &= \sum_i (h(Y_i|Y_1^{i-1}) - h(Z_i|X_1^{i-1}, Y_1^{i-1}, Z_1^{i-1}, W, X_i)) + n\epsilon_n \\ &= \sum_i (h(Y_i|Y_1^{i-1}) - h(Z_i|Z_1^{i-1}) + n\epsilon_n \quad (\because Z : \text{ stationary}) \\ &= h(Y_1^n) - h(Z_1^n) + n\epsilon_n \\ &= \frac{1}{2} \log \frac{|K_Y|}{|K_Z|} + n\epsilon_n \end{split}$$

We are done. \Box

(iii) The information capacity of correlated gaussian channel with feedback per transmission $(=\frac{1}{n})$ can be bounded above as

$$C_{FB,n} \le C_n + \frac{1}{2}$$

where C_n is a correlated gaussian channel capacity per transmission.

Proof. We need a following lemma.

Lemma) Determinant preserves order on p.s.d. cone.

For $A \geq 0$, $B \geq 0$, $A - B \geq 0$, we have

$$|A| \ge |B|$$

Proof. For independent two r.v.'s $X \sim \mathcal{N}(0,B)$, $Y \sim \mathcal{N}(0,A-B)$, consider h(X+Y). Then, we have $h(X+Y) \geq h(X+Y|Y) = h(X|Y)$. Hence, $\frac{1}{2}\log((2\pi e)^n|A|) \geq \frac{1}{2}\log((2\pi e)^n|B|)$.

Now we can prove (ii). From (i), we have

$$I(X_1^n; Y_1^n) \le \sum \frac{1}{2} \log \frac{|K_{X+Z}|}{|K_Z|}$$

Since $2(K_X + K_Z) - K_{X+Z} = K_{X-Z} \ge 0$, the above lemma implies $|K_{X+Z}| \le |2(K_X + K_Z)| = 2^n |K_X + K_Z|$. Therefore,

$$I(X_1^n; Y_1^n) \le \frac{1}{2} \log \frac{|K_{X+Z}|}{|K_Z|}$$

$$\le \frac{1}{2} \log \frac{2^n |K_X + K_Z|}{|K_Z|}$$

$$\le \frac{1}{2} \log \frac{|K_X + K_Z|}{|K_Z|} + \frac{n}{2}$$

$$\le nC_n + \frac{n}{2}$$

We are done.

Definition) Causally related.

Random vector X_1^n is causally related to Z_1^n iff

$$p(x_1^n, z_1^n) = p(z_1^n) \prod_{i=1}^n p(x_i | x_1^{i-1}, z_1^{i-1})$$

Reflection) A few properties of causally related random vector.

(i) The most general causal dependence of X_1^n on Y_1^n is

$$X = BZ + V$$
 (V depends on W)

where B is strictly lower triangular.

(ii) Causally related channel capacity is

$$C_{FB,n} = \max_{\frac{1}{n}tr(BK_ZB^t + K_V) \le P} \frac{1}{2n} \log \frac{|(B+I)K_Z(B+I)^t + K_V|}{|K_Z|}$$

Proof. From the above proposition (i),

Proposition) sharp bound for capacity.

(i) The information capacity of correlated gaussian channel with feedback per transmission can be bounded above as

$$C_{FB,n} \leq 2C_n$$

where C_n is a correlated gaussian channel capacity per transmission.

Proof. We need following lemmas.

Lemma) Determinant is log-concave on p.s.d. cone.

For $A \geq 0$, $B \geq 0$, $\lambda \in [0, 1]$, we have

$$|\lambda A + (1 - \lambda)B| \ge |A|^{\lambda}|B|^{1 - \lambda} \tag{6}$$

Proof. For independent r.v.'s $X \sim \mathcal{N}(0,A)$, $Y \sim \mathcal{N}(0,B)$, $Z \sim Ber(\lambda)$, consider W = ZX + (1-Z)Y. Note that $Var(W) = \mathbb{E}(W^2) = \lambda A + (1-\lambda)B$. Then

$$\frac{1}{2}\log(2\pi e)^{n}|\lambda A + (1-\lambda)B| \ge h(W)$$

$$\ge h(W|Z)$$

$$\ge \lambda h(X) + (1-\lambda)h(Y)$$

$$= \frac{1}{2}\log(2\pi e)^{n}|A|^{\lambda}|B|^{1-\lambda}$$

Lemma) Entropy and variance of causally related random process.

If X_1^n and Z_1^n re causally related, then

$$h(X_1^n - Z_1^n) \ge h(Z_1^n) \tag{7}$$

and

$$|K_{X-Z}| \ge |K_Z| \tag{8}$$

Proof.

$$h(X_1^n - Z_1^n) = \sum_{i=1}^n h(X_i - Z_i | X_1^{i-1} - Z_1^{i-1})$$

$$\geq \sum_{i=1}^n h(X_i - Z_i | X_1^i, Z_1^{i-1}) \quad (\because \text{Conditioning reduces entropy})$$

$$= \sum_{i=1}^n h(Z_i | X_1^i, Z_1^{i-1})$$

$$= \sum_{i=1}^n h(Z_i | Z_1^{i-1})$$

$$= h(Z_1^n)$$

First, taking a supremum w.r.t. $X_1^n - Z_1^n$ gives $\frac{1}{2} \log(2\pi e)^n |K_{X-Z}| \ge h(Z_1^n)$. Then, taking a supremum w.r.t. Z_1^n gives $|K_{X-Z}| \ge |K_Z|$.

Now we can prove (i).

$$C_{n} = \frac{1}{2n} \log \frac{|K_{X} + K_{Z}|}{|K_{Z}|} = \frac{1}{2n} \log \frac{|\frac{1}{2}K_{X+Z} + \frac{1}{2}K_{X-Z}|}{|K_{Z}|}$$

$$\geq \frac{1}{2n} \log \frac{|K_{X+Z}|^{\frac{1}{2}}|K_{X-Z}|^{\frac{1}{2}}}{|K_{Z}|} \quad (\because (6))$$

$$\geq \frac{1}{2n} \log \frac{|K_{X+Z}|^{\frac{1}{2}}|K_{Z}|^{\frac{1}{2}}}{|K_{Z}|} \quad (\because (8))$$

$$= \frac{1}{2} \frac{1}{2n} \log \frac{|K_{X+Z}|}{|K_{Z}|}$$

$$\geq \frac{1}{2} C_{FB,n}$$

7.6 Multiple-Input Multiple-Output (MIMO)

Definition) Multiple-Input Multiple-Output (MIMO).

$$y = Hx + n$$

where $H \in \mathbb{C}^{r \times t}$, $\mathbb{E}(n) = 0$, $E(nn^*) = I_r$, with power constraint $\mathbb{E}(x^*x) = tr\mathbb{E}(x^*x) \leq P$. Note that SNR (signal to noise ratio) is $\rho = \frac{P}{E(|n_i|^2)} = P$.

Definition) Complex gaussian.

Given
$$x \in \mathbb{C}^n$$
, define $\hat{x} = \begin{pmatrix} \operatorname{Re}(x) \\ \operatorname{Im}(x) \end{pmatrix} \in \mathbb{R}^{2n}$.

x is said to be (complex) gaussian if \hat{x} is gaussian.

x is circulary symmetric if

$$\mathbb{E}((\hat{x} - \mathbb{E}(\hat{x})(\hat{x} - \mathbb{E}(\hat{x}))^*) = \frac{1}{2} \begin{pmatrix} \operatorname{Re}(Q) & -\operatorname{Im}(Q) \\ \operatorname{Im}(Q) & \operatorname{Re}(Q) \end{pmatrix} = \frac{1}{2} \hat{Q}$$

for some Hermitian p.s.d. $Q \in \mathbb{C}^{n \times n}$.

Note that $\mathbb{E}((x - \mathbb{E}(x))(x - \mathbb{E}(x)^*) = Q$.

Joint pdf is defined as

$$r_{\mu,Q}(x) = \det(\pi \hat{Q})^{-1/2} \exp(-(\hat{x} - \hat{\mu})^* \hat{Q}^{-1}(\hat{x} - \hat{\mu}))$$

= $\det(\pi Q)^{-1/2} \exp(-(x - \mu)^* Q^{-1}(x - \mu))$

Reflection) Some properties.

(i) Joint entropy of complex gaussian is $H(r_Q) = \log \det(\pi eQ)$.

Proposition) MIMO capacity.

(i) Let x be a circularly symmetric gaussian with zero-mean and covariance $\frac{P}{t}I_t$. The information capacity of MIMO y = Hx + n is

$$C = \mathbb{E}[\log \det(I_r + \frac{P}{t}HH^*)]$$

When $n \to infty$, $C \to r \log(1 + P)$

Proof. For the capacity if $t \to \infty$, note that $\frac{1}{t}HH^* \to I_r$ as $t \to \infty$ by SLLN.

7.7 MIMO Detectors

$$r = Ha + n$$

We want to find a which minimize ||n|| for some sense.

7.7.1 Maximum Likelihood (ML) detector

- $\hat{a} = \arg \max_{a} \|r Ha\|_{F}^{2}$ where the optimization is done by exhaustive search over $\forall a$.
- ML detection is optimal

7.7.2 Zero Forcing (ZF) detector

- $\hat{a} = G_{ZF}r = a + H^{\dagger}n$ where $G_{ZF} = H^{\dagger} = (H^*H)^{-1}H^*$.
- G_{ZF} increases noise.

7.7.3 MMSE detector

- $\hat{a} = G_{MMSE}r = a + H^{\dagger}n$ where $G_{MMSE} = (H^*H + \frac{1}{\rho}I_N)^{-1}H^*$ with SNR ρ .
- $G_{MMSE} = (H^*H + \frac{1}{\rho}I_N)^{-1}H^*$ is a solution of $\arg\min_G \epsilon \|Gr a\|_F^2$ where
- MMSE receiver has good performance with reasonable complexity
- This is a mitigated version of ZF detector.

7.7.4 V-BLAST detector

• ?

8 Rate Distortion Theory

8.1 Lloyd algorithm

The goal of Lloyd algorithm is to find a set of reconstruction points.

1. Given t-th reconstruction points $x_1^{(t)}, \ldots, x_n^{(t)}$, find optimal set of regions

$$R_i = \{x | \|x - x_i^{(n)}\| \le \|x - x_j^{(n)}\| \ \forall j\}$$

- 2. Compute $x_i^{(t)} = \mathbb{E}(x|R_i) = \frac{\int_{R_i} x d\mathbb{P}(x)}{\int_{R_i} d\mathbb{P}(x)}$
- 3. Interate step 1 and 2.

8.2 Rate distortion code

Definition) Distortion.

A distortion measure is a mapping

$$d: \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}_{>0}$$

d is bounded iff

$$\max_{(x,\hat{x})\in\mathcal{X}\times\hat{\mathcal{X}}}d(x,\hat{x})<\infty$$

The distortion between sequence x_1^n, \hat{x}_1^n is

$$d(x_1^n, \hat{x}_1^n) = \frac{1}{n} \sum_{i=1}^n d(x_i, \hat{x}_i)$$

Definition) Rate distortion code.

A $(2^{nR}, n)$ rate distortion code consists of

- 1. An index set $I = \{1, ..., 2^{nR}\}.$
- 2. An encoding ftn $f_n: \mathcal{X}^n \to [2^{nR}]$.
- 3. A decoding ftn $g_n: [2^{nR}] \to \hat{\mathcal{X}}^n$.
- 4. A distortion is defined by

$$D_n = \mathbb{E}d(X_1^n, \hat{X}_1^n) = \mathbb{E}d(X_1^n, g_n(f_n(X_1^n)))$$
$$= \sum_{x_1^n} p(x_1^n) d(x_1^n, g_n(f_n(x_1^n)))$$

(R, D) is achievable iff $\exists (2^{nR}, n)$ codes (f_n, g_n) with $D_n \to D$ as $n \to \infty$ $R(D) = \inf_{\text{achievable } (R,D)} R$ $D(R) = \inf_{\text{achievable } (R,D)} D$

Information R-D function is

$$R^{(I)}(D) = \min_{p_{\hat{X}|X}: \mathbb{E}_{(X,\hat{X}) \sim p_{\hat{X}|X}} p_X} I(X; \hat{X})$$

for given p_X

Proposition) Properties of $R^{(I)}(D)$.

(i) $R^{(I)}(D)$ is non-increasing.

Proof. Trivial from the definition.

(ii) $R^{(I)}(D)$ is convex.

Proof. We need to consider a new distortion $D_{\lambda} = \lambda D_0 + (1-\lambda)D_1$ for given distortions D_0 , D_1 with $\lambda \in (0,1)$. Let's assume that we achieve $(R_0^{(I)}, D_0)$, $(R_1^{(I)}, D_1)$ with distribution $p_{\hat{X},X;0}(\hat{x}|x)$, $p_{\hat{X},X}(\hat{x}|x)$. Let $p_{\hat{X}|X;\lambda}(\hat{x}|x) = \lambda p_{\hat{X}|X;0}(\hat{x}|x) + (1-\lambda)p_{\hat{X}|X;1}(\hat{x}|x)$. Then,

$$I_{p_{\hat{X}|X;\lambda}}(X;\hat{X}) \le \lambda I_{p_{\hat{X}|X;0}}(X;\hat{X}) + (1-\lambda)I_{p_{\hat{X}|X;1}}(X;\hat{X}) \quad (\because (2))$$

Therefore,

$$R^{(I)}(D_{\lambda}) \leq I_{p_{\hat{X}|X;\lambda}}(X;\hat{X}) \leq \lambda I_{p_{\hat{X}|X;0}}(X;\hat{X}) + (1-\lambda)I_{p_{\hat{X}|X;1}}(X;\hat{X})$$

$$\Rightarrow R^{(I)}(D_{\lambda}) \leq \lambda R^{(I)}(D_{0}) + (1-\lambda)R^{(I)}(D_{1})$$

Exercise) Compute R-D function for a few examples.

a) Binary case.

For Hamming distance $d(x, \hat{x}) = I(x \neq \hat{x})$, Ber(p) on \mathcal{X} ,

$$R^{(I)}(D) = \begin{cases} H(p) - H(D) & 0 \le D \le \min(p, 1 - p) \\ 0 & \text{o.w.} \end{cases}$$

Proof. We may assume that $p \leq \frac{1}{2}$.

$$\begin{split} I(X; \hat{X}) &= h(X) - h(X | \hat{X}) \\ &= h(\{p, 1 - p\}) - h(X \oplus \hat{X} | \hat{X}) \\ &\geq h(\{p, 1 - p\}) - h(X \oplus \hat{X}) \\ &= h(\{p, 1 - p\}) - h(\{\mathbb{P}(X \neq \hat{X}), 1 - \mathbb{P}(X \neq \hat{X})\}) \\ &= h(\{p, 1 - p\}) - h(\{\mathbb{E}d(X, \hat{X}), 1 - \mathbb{E}d(X, \hat{X})\}) \end{split}$$

Note that $\mathbb{E}d(X,\hat{X}) \leq D$. Therefore, $h(\{\mathbb{E}d(X,\hat{X}), 1 - \mathbb{E}d(X,\hat{X})\}) \leq H(\{D,1-D\})$ for $D \leq \frac{1}{2}$.

$$\begin{split} I(X; \hat{X}) & \geq h(\{p, 1-p\}) - h(\{\mathbb{E}d(X, \hat{X}), 1 - \mathbb{E}d(X, \hat{X})\}) \\ & \geq h(\{p, 1-p\}) - h(\{D, 1-D\}) \quad \text{for } D \leq \frac{1}{2} \end{split}$$

Consider a BSC model s.t. decode $\hat{X} \sim Ber(r)$. Distortion constraint $\mathbb{E}d(X,\hat{X}) \leq D \leq \frac{1}{2}$ implies $\mathbb{P}(X=1) = \mathbb{P}(X=1|\hat{X}=1)\mathbb{P}(\hat{X}=1) + \mathbb{P}(X=1|\hat{X}=0)\mathbb{P}(\hat{X}=0)$. Therefore, $r = \frac{p-D}{1-2D}$.

- (a) For $D \leq p \leq \frac{1}{2}$, let $\mathbb{P}(\hat{X} = 1) = r = \frac{p-D}{1-2D}$. Then, we have $I(X, \hat{X}) = H(p) H(D)$.
- (b) For D > p, let $\mathbb{P}(\hat{X} = 0) = 1$. Then, we have $I(X, \hat{X}) = 0$ where $\mathbb{E}d(X, \hat{X}) = p < D$.

We are done by symmetricity for $p > \frac{1}{2}$.

b) Gaussian case.

For L^2 -distance $d(x, \hat{x}) = ||x - \hat{x}||_2$, $X \sim \mathcal{N}(0, \sigma^2)$ on \mathcal{X} ,

$$R^{(I)}(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D} & 0 \le D \le \sigma^2 \\ 0 & \text{o.w.} \end{cases}$$

Proof. We may assume that $p \leq \frac{1}{2}$.

$$\begin{split} I(X; \hat{X}) &= h(X) - h(X|\hat{X}) \\ &= h(X) - h(X - \hat{X}|\hat{X}) \\ &\geq h(X) - h(X - \hat{X}) \\ &\geq \frac{1}{2} \log(2\pi e \sigma^2) - h(\mathcal{N}(0, \mathbb{E}(X - \hat{X})^2)) \\ &= \frac{1}{2} \log(\frac{\sigma^2}{\mathbb{E}(X - \hat{X})^2}) = \frac{1}{2} \log(\frac{\sigma^2}{D}) \end{split}$$

- (a) For $D \leq \sigma^2$, let $\hat{X} \sim \mathcal{N}(0, \sigma^2 D)$ and $X = \hat{X} + Z$ where $Z \sim \mathcal{N}(0, D)$, $X \perp Z$. Then, we have $I(X, \hat{X}) = \frac{1}{2} \log(\frac{\sigma^2}{D})$.
- (b) For $D > \sigma^2$, let $\hat{X} = 0$. Then, we have $I(X, \hat{X}) = 0$ where $\mathbb{E}d(X, \hat{X}) = \sigma^2 < D$.

c) Parallel gaussian case.

For L^2 -distance $d(x, \hat{x}) = ||x - \hat{x}||_2$, $X_i \sim \mathcal{N}(0, \sigma_i^2)$ on \mathcal{X} ,

$$R(D) = \sum_{i=1}^{n} \frac{1}{2} [\log \frac{\sigma_i^2}{D_i}]^+$$

where $D_i = \min(\lambda, \sigma_i^2)$ with λ satisfying $\sum_{i=1}^n D_i = D$.

Proof.

$$I(X_{1}^{n}; \hat{X}_{1}^{n}) = h(X_{1}^{n}) - h(X_{1}^{n}|\hat{X}_{1}^{n})$$

$$= \sum_{i=1}^{n} h(X_{i}) - \sum_{i=1}^{n} h(X_{i} - \hat{X}_{i}|X_{1}^{i-1}, \hat{X}^{n})$$

$$\geq \sum_{i=1}^{n} h(X_{i}) - \sum_{i=1}^{n} h(X_{i} - \hat{X}_{i}|\hat{X}_{i}) \quad \text{if } f(x_{1}^{m}|\hat{x}_{1}^{n}) = \prod_{i=1}^{n} f(x_{i}|\hat{x}_{i})$$

$$= \sum_{i=1}^{n} I(X_{i}, \hat{X}_{i})$$

$$\geq \sum_{i=1}^{n} R(D_{i}) \quad \text{if } \hat{X}_{i} \sim \mathcal{N}(0, \sigma_{i}^{2} - D_{i}) \text{ where } D_{i} = \mathbb{E}((X - \hat{X})^{2})$$

$$= \frac{1}{2} \sum_{i=1}^{n} [\log \frac{\sigma_{i}^{2}}{D_{i}}]^{+}$$

So, we need to optimize followings

Minimize
$$\sum \frac{1}{2} \log(1 + \frac{\sigma_i^2}{D_i})$$

subject to $\sum D_i \le D, D_i \ge 0$

Therefore, we are done.

8.3 R-D theorem

Definition) Jointly typical sequences.

The set $A_{\epsilon}^{(n)}$ of jointly typical sequences $\{(x_1^n,\hat{x}_1^n)\}$ is defined as

$$\begin{split} A_{d,\epsilon}^{(n)} &= \{(x_1^n, \hat{x}_1^n) \mid \, \max(|-\frac{1}{n}\log p(x_1^n) - H(X)|, \qquad |-\frac{1}{n}\log p(\hat{x}_1^n) - H(\hat{X})|, \\ &|-\frac{1}{n}\log p(x_1^n, \hat{x}_1^n) - H(X, \hat{X})|, \quad |d(x_1^n, \hat{x}_1^n)) - \mathbb{E}d(X, \hat{X})|) < \epsilon \} \end{split}$$

where $p(x_1^n, \hat{x}_1^n) = \prod_{i=1}^n p(x_i, \hat{x}_i), d(x_1^n, \hat{x}_1^n) = \frac{1}{n} \sum_{i=1}^n d(x_i, \hat{x}_i).$

Theorem) Joint AEP.

Let $(X_1^n, \hat{X}_1^n) \stackrel{i.i.d}{\sim} p_{\hat{X}|X} p_X$. Then,

1.
$$\mathbb{P}((X_1^n, \hat{X}_1^n) \in A_{\epsilon, d}^{(n)}) \to 1 \text{ as } n \to \infty$$

2.
$$\forall (x_1^n, \hat{x}_1^n) \in A_{\epsilon, d}^{(n)}$$
,

$$p(\hat{x}_1^n) \ge p(\hat{x}_1^n | x_1^n) 2^{-n(I(X;\hat{X}) - 3\epsilon)}$$

Proof. 1 is trivial. For 2,

$$p(\hat{x}_1^n) = \frac{p(x_1^n, \hat{x}_1^n)}{p(x_1^n)} = p(\hat{x}_1^n) \frac{p(x_1^n, \hat{x}_1^n)}{p(x_1^n)p(\hat{x}_1^n)}$$

$$\geq p(\hat{x}_1^n) \frac{2^{-n(H(X,\hat{X}) - \epsilon)}}{2^{-n(H(X) - \epsilon)}2^{-n(H(\hat{X}) - \epsilon)}}$$

$$\geq p(\hat{x}_1^n, |x_1^n)2^{-n(I(X;\hat{X}) - 3\epsilon)}$$

Theorem. Assume that a distortion measure d is bounded. Then, if $R \ge R^{(I)}(D)$, then (R, D) is achievable. Conversely, any code that achieves distortion D with rate R must satisfy $R \ge R^{(I)}(D)$.

Proof. We assume that $R \geq R^{(I)}(D)$. Fix $\delta > 0$. To show that (R, D) is achievable, we need to construct encoding and decoding functions (f_n, g_n) with index set $I = [2^{nR}]$ satisfying $D_n = \mathbb{E}d(X_1^n, g_n(f_n(X_1^n))) \leq D + \delta$. First, generate $\hat{X}_i(w) \stackrel{i.i.d.}{\sim} p_{\hat{X}|X}, \ \forall i \in [n], \ \forall w \in [2^{nR}].$ For $T(X_1^n) = \{w \in [2^nR] | (X_1^n, \hat{X}_1^n(w)) \in A_{d,\epsilon}^{(n)} \}$, define an encoding function $f_n : \mathcal{X}^n \to [2^{nR}]$

$$f_n(X_1^n) = \begin{cases} \min_{w \in T(X_1^n)}(w) & \text{if } T(X_1^n) \neq \emptyset \\ 1 & \text{o.w.} \end{cases}$$

Define a decoding function $g_n:[2^{nR}]\to \hat{\mathcal{X}}^n\cong \mathcal{X}^n$

$$g_n(w) = \hat{X}_1^n(w)$$

Note that $\hat{X}_1^n(X_1^n) := g_n(f_n(X_1^n))$ is a r.v. since it is a function of \hat{X}_1^n and \hat{X}_1^n . Compute $\mathbb{E}_{(X_1^n,\hat{X}_1^n)}d(X_1^n,\hat{X}_1^n(X_1^n))$ as follows.

$$\begin{split} \mathbb{E}_{X \sim p_{X}, \hat{X} \sim p_{\hat{X}|X}} d(X_{1}^{n}, \hat{X}_{1}^{n}(X_{1}^{n})) &= \mathbb{E}_{X \sim p_{X}} \mathbb{E}_{\hat{X} \sim p_{\hat{X}|X}} d(X_{1}^{n}, \hat{X}_{1}^{n}(X_{1}^{n})) \\ &= \mathbb{E}_{X \sim p_{X}} \mathbb{E}_{\hat{X} \sim p_{\hat{X}|X}, T(X_{1}^{n}) \neq \emptyset} d(X_{1}^{n}, \hat{X}_{1}^{n}(X_{1}^{n})) + \mathbb{E}_{X \sim p_{X}} \mathbb{E}_{\hat{X} \sim p_{\hat{X}|X}, T(X_{1}^{n}) = \emptyset} d(X_{1}^{n}, \hat{X}_{1}^{n}(X_{1}^{n})) \\ &\leq 1 \cdot (D_{n} + \epsilon) + \mathbb{P}((X_{1}^{n}, \hat{X}(w)_{1}^{n}) \notin A_{d, \epsilon}^{(n)} \ \forall w \in [2^{nR}]) \cdot d_{\max} \end{split}$$

Let's bound $\mathbb{P}((X, \hat{X}(w)) \notin A_{d,\epsilon}^{(n)} \ \forall w \in [2^{nR}])$ as follows.

$$\begin{split} \mathbb{P}((X_1^n, \hat{X}_1^n(w)) \notin A_{d,\epsilon}^{(n)} \ \forall w \in [2^{nR}]) &= \sum_{x_1^n} p(x_1^n) \sum_{\hat{x}_1^n : (x_1^n, \hat{x}_1^n(w)) \notin A_{d,\epsilon}^{(n)} \ \forall w \in [2^{nR}]} p(\hat{x}_1^n) \\ &= \sum_{x_1^n} p(x_1^n) \sum_{\hat{x}_1^n} p(\hat{x}_1^n) I((x_1^n, \hat{x}_1^n(w)) \notin A_{d,\epsilon}^{(n)} \ \forall w \in [2^{nR}]) \\ &= \sum_{x_1^n} p(x_1^n) [1 - \sum_{\hat{x}_1^n} p(\hat{x}_1^n) I((x_1^n, \hat{x}_1^n(w)) \in A_{d,\epsilon}^{(n)} \ \forall w \in [2^{nR}])] \\ &= \int \prod_{w=1}^{2^{nR}} \mathbb{P}_{\hat{X} \sim p_{\hat{X}|x}} ((x_1^n, \hat{X}_1^n(w)) \notin A_{d,\epsilon}^{(n)}) \ d\mathbb{P}_X(x_1^n) \\ &= \int \prod_{w=1}^{2^{nR}} [1 - \mathbb{P}_{\hat{X} \sim p_{\hat{X}|x}} ((x_1^n, \hat{X}_1^n(w)) \in A_{d,\epsilon}^{(n)})] \ d\mathbb{P}_X(x_1^n) \end{split}$$

Conversely, assume that we have a code with distortion less than D. Then,

$$\begin{split} nR &\geq H(\hat{X}_{1}^{n}) \\ &\geq H(\hat{X}_{1}^{n}) - H(\hat{X}_{1}^{n}|X_{1}^{n}) = I(X_{1}^{n},\hat{X}_{1}^{n}) \quad (\because \hat{X}_{1}^{n} \text{ is a ftn of } X_{1}^{n}) \\ &\geq H(\hat{X}_{1}^{n}) - H(\hat{X}_{1}^{n}|\hat{X}_{1}^{n}) = \sum_{i=1}^{n} H(X_{i}) - \sum_{i=1}^{n} H(X_{i}|\hat{X}_{1}^{n},X_{1}^{i-1}) \quad (\because X_{i} \overset{i.i.d.}{\sim} p_{X}) \\ &\geq \sum_{i=1}^{n} H(X_{i}) - \sum_{i=1}^{n} H(X_{i}|\hat{X}_{i}) = \sum_{i=1}^{n} I(X_{i},\hat{X}_{i}) \\ &\geq \sum_{i=1}^{n} R^{(I)}(\mathbb{E}(d(X_{i},\hat{X}_{i}))) = n\frac{1}{n} \sum_{i=1}^{n} R^{(I)}(\mathbb{E}(d(X_{i},\hat{X}_{i}))) \\ &\geq nR^{(I)}(\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(d(X_{i},\hat{X}_{i}))) \quad (\because R^{(I)} \text{ is convex , Jensen}) \\ &= nR^{(I)}(\mathbb{E}(d(X_{1}^{n},\hat{X}_{1}^{n}))) \\ &\geq nR^{(I)}(D) \quad (\because R^{(I)} \text{ is non-increasing}) \end{split}$$

9 Variational Auto Encoder (VAE)

9.1 Problem Setting

- Given probability space $(\Omega, \mathcal{A}, \mathbb{P})$
- $\mathcal{X} = \mathbb{R}^D$: a data space
- $\mathcal{Z} = \mathbb{R}^d$: a latent space
- Data $x^{(1)}, x^{(2)}, \ldots$ are realizations of a r.v. $X: \Omega \to \mathcal{X}$
- Hidden states $z^{(1)}, z^{(2)}, \ldots$ are realization of a r.v. $Z: \Omega \to \mathcal{Z}$.
- We assume that $X, Z \sim p_{X,Z}(\cdot, \cdot)$ and $Z \sim p_Z(\cdot; \theta^*)$ where $p_Z(\cdot; \theta^*)$ is one of the exponential family.
- $x^{(i)}$ is governed by $z^{(i)}$. Specifically,
 - 1. Generate $z^{(i)}$
 - 2. Then, $X^{(i)} \sim p_{X|Z=z^{(i)}}(\cdot | z^{(i)}; \theta^*)$

Furthermore, we assume that

- 1. $p_X(x;\theta) = \int p_{X|Z=z}(x|z;\theta)p_Z(z;\theta)dz$ dz is intractable (so we cannot evaluate or differentiate the marginal likelihood)
- 2. True posterior density $p_{Z|X=x}(z|x;\theta) = \frac{p_{X|Z=z}(x|z;\theta)p_{Z}(z;\theta)}{p_{X}(x;\theta)}$ is intractable (so the EM algorithm cannot be used), and where the required integrals for any reasonable meanfield VB algorithm are also intractable.
- 3. A large dataset: we have so much data that batch optimization is too costly; we would like to make parameter updates using small minibatches or even single datapoints. Sampling-based solutions, e.g. Monte Carlo EM, would in general be too slow, since it involves a typically expensive sampling loop per datapoint.

9.2 Goal

- 1. Infer $\hat{\theta}^*$, MAP (MLE) of θ^*
- 2. Given $x^{(i)}$, generate θ

9.3 The variational bound

Introduce an alternative pdf $q_{Z|X=x}(\cdot|x;\phi)$ of Z depending on x and ϕ . This pdf will be used for estimating the true posterior dist. $p_{Z|X=x}(\cdot|x;\theta)$.

$$\log p_X(x;\theta) = D(q_{Z|X=x}(\cdot|x;\phi)||p_{Z|X=x}(\cdot|x;\theta)) + \mathcal{L}(\theta,\phi;x)$$

$$\geq \mathcal{L}(\theta,\phi;x)$$

where

$$\mathcal{L}(\theta, \phi; x) = \mathbb{E}_{Z \sim q(\cdot|x;\phi)} [-\log q_{Z|X=x}(Z|x;\phi) + \log p_{X,Z}(x,Z;\theta)]$$

$$= \mathbb{E}_{Z \sim q(\cdot|x;\phi)} [-\log q_{Z|X=x}(Z|x;\phi) + (\log p_{Z}(Z;\theta) + \log p_{X|Z}(x|Z;\theta))]$$

$$= -D(q_{Z|X=x}(\cdot|x;\phi) ||p_{Z}(\cdot;\theta)) + \mathbb{E}_{Z \sim q(\cdot|x;\phi)} [\log p_{X|Z}(x|Z;\theta))]$$

$$= \text{regularizer for } \phi + \text{negative reconstruction error}$$

9.4 The SGVB estimator

Basically, we want to optimize $\mathcal{L}(\theta, \phi; x^{(i)})$. To end this, we need to generate $Z \sim q(\cdot|x^{(i)}; \phi)$. Instead of direct sampling from $q(\cdot|x^{(i)}; \phi)$ which is impossible, we reparameterize it by

$$\tilde{z} = g(\epsilon, x; \phi)$$
 with $\epsilon \sim r_{\epsilon}$

where $g(\epsilon, x; \phi)$ is a differentiable transformation and r_{ϵ} is an easy dist. to sample. Note that

$$\mathcal{L}(\theta, \phi; x^{(i)}) = \mathbb{E}_{Z \sim q(\cdot | x^{(i)}; \phi)} [-\log q_{Z|X = x^{(i)}}(Z|x^{(i)}; \phi) + \log p_{X,Z}(x^{(i)}, Z; \theta)]$$

Stochastic Gradient Variational Bayes (SGVB) estimator is

$$\mathcal{L}^{A}(\theta, \phi; x^{(i)}) \approx \frac{1}{L} \sum_{l=1}^{L} \left[-\log q_{Z|X=x^{(i)}}(\tilde{z}_{l}^{(i)}|x^{(i)}; \phi) + \log p_{X,Z}(x^{(i)}, \tilde{z}_{l}^{(i)}; \theta) \right]$$

where $\tilde{z}_l^{(i)} = g(\epsilon_l, x^{(i)}; \phi)$ with $\epsilon_l \stackrel{i.i.d.}{\sim} r_{\epsilon}$

9.5 The AEVB estimator

Note that

$$\mathcal{L}(\theta, \phi; x^{(i)}) = -D(q_{Z|X=x^{(i)}}(\cdot|x^{(i)}; \phi) || p_Z(\cdot; \theta)) + \mathbb{E}_{Z \sim q(\cdot|x^{(i)}: \phi)}[\log p_{X|Z}(x^{(i)}|Z; \theta))]$$

Assume that the KL-divergence $D(q_{Z|X=x^{(i)}}(\cdot|x^{(i)};\phi)||p_Z(\cdot;\theta))$ can be integrated analytically. Auto Encoding Variational Bayes (AEVB) estimator is

$$\mathcal{L}^{B}(\theta, \phi; x^{(i)}) \approx -D(q_{Z|X=x^{(i)}}(\cdot|x^{(i)}; \phi) || p_{Z}(\cdot; \theta)) + \frac{1}{L} \sum_{l=1}^{L} [\log p_{X|Z=\tilde{z}_{l}^{(i)}}(x^{(i)}|\tilde{z}_{l}^{(i)}; \theta))]$$

where $\tilde{z}_l^{(i)} = g(\epsilon_l, x^{(i)}; \phi)$ with $\epsilon_l \stackrel{i.i.d.}{\sim} r_{\epsilon}$

Exercise) VAE.

a) Let $\mu^{(i)}$ and $\sigma^{(i)}$ (diagonal) be outputs of the encoding MLP for $x^{(i)}$ with variational parameters (network weights) ϕ . Let $r_{\epsilon} = \mathcal{N}(0, I)$. Then

$$\begin{split} \mathcal{L}^{B}(\theta, \phi; x^{(i)}) \approx & \frac{1}{2} (d + \log(|\det \sigma^{(i)}{}^{2}|) - \|\mu^{(i)}\|^{2} - \operatorname{tr}(\sigma^{(i)}{}^{2})) \\ & + \frac{1}{L} \sum_{l=1}^{L} [\log p_{X|Z = \tilde{z}_{l}^{(i)}}(x^{(i)}|\tilde{z}_{l}^{(i)}; \theta))] \end{split}$$

where
$$\tilde{z}_l^{(i)} = g(\epsilon_l, x^{(i)}; \phi)$$
 with $\epsilon_l \stackrel{i.i.d.}{\sim} \mathcal{N}(0, I)$