Reflection Models and Measurement **TOUR Advanced Computer Graphics: Photographic Image Synthesis Abhijeet Ghosh Lecture 08, Feb. 02nd 2024

1

Reflection Models

- Mathematical representation a class of BRDFs
 - typically with a small number of parameters
- Types of BRDF models
 - Phenomenological
 - Physically based
- Parameter fitting
 - Empirically
 - Measured data

Phenomenological Models

- Equations that describe the "qualitative behavior" of surfaces
 - matte, glossy or plastic, roughness
- Examples
 - Lambertian diffuse reflection
 - Phong specular reflection [Phong75]

3

Lambertian Reflection

- $f_r(\omega_r, \omega_i) = \rho_d / \pi$
 - ρ_d is the diffuse reflection coefficient [0,1]
 - π = $\int_{\Omega} \cos\theta d\omega$, is the normalization constant!

Glossy and Retro-reflective

- Glossy surfaces plastic, high gloss paints, polished wood
- Retro-reflective velvet, moon's surface, road signs, bike reflectors

5

Phong Model

- $f_r(\omega_o, \omega_i) = \rho_a / \pi + \rho_s (\omega_r \cdot \omega_o)^s / (n \cdot \omega_i)$ = $\rho_a / \pi + \rho_s (\cos \theta)^s / (n \cdot \omega_i)$
 - ρ_s is the specular reflection coefficient [0,1]
 - S controls the specular lobe width

Blinn-Phong Model

 $\omega_{h} = (\omega_{i} + \omega_{o}) / ||\omega_{i} + \omega_{o}||$

• $f_r(\omega_o, \omega_i) = \rho_d / \pi + \rho_s (\mathbf{n} \cdot \omega_h)^s / (\mathbf{n} \cdot \omega_i)$ = $\rho_d / \pi + \rho_s (\cos \theta)^s / (\mathbf{n} \cdot \omega_i)$

7

Lafortune Generalized Cosine Lobe

- $f_r(\omega_r, \omega_i) = \rho_d / \pi + \sum_j [C_{x,j}(\omega_{i,x} \cdot \omega_{r,x}) + C_{y,j}(\omega_{i,y} \cdot \omega_{r,y}) + C_{z,j}(\omega_{i,z} \cdot \omega_{r,y})]^{s,j}$
 - Off-specularity, retro-reflection, anisotropy
 - Well suited for measured data!

Physically-Based Models

- Based on low level geometric structure of surfaces
- · Closed form solutions
 - Microfacet distributions for rough surfaces
 - Cylindrical grooves for threaded structures

11

Microfacet Models • Rough surfaces modeled as a collection of microfacets - each face a perfect specular reflector - distribution of faces described statistically

Torrance-Sparrow Model

- D(ω_h) = exp-[tan δ /m]² Beckman distribution $\frac{1}{\pi m^2 \cos^4 \delta}$
 - δ, angle between n and $ω_h$
 - m, root-mean-square slope of microfacets
- $G(\omega_r, \omega_i) = min\{1, 2 (n \cdot \omega_h) (n \cdot \omega_r), 2 (n \cdot \omega_h) (n \cdot \omega_i)\}$ $\frac{(\omega_r \cdot \omega_h)}{(\omega_r \cdot \omega_h)}$
 - V-shaped grooves

15

Blinn Microfacet Distribution

- $D(\omega_h) = (s + 2) (n \cdot \omega_h)^s$ 2π
 - Replace Gaussian with a cosine lobe
 - Normalization term (s + 2)/ $2\pi = \int_{\Omega} (n \cdot \omega_h)^s \cos \theta_h d\omega_h$

GGX microfacet distribution

- D(ω_h) = $\frac{\alpha^2}{\pi \cos^4 \delta (\alpha^2 + \tan^2 \delta)^2}$
 - δ, angle between n and $ω_h$
 - $-\alpha$, width of distribution
 - Better fit to measured data
 - Longer tail, sharper peak
 - Beckmann, GGX

GGX distribution

Microfacet Distributions, D(m)

17

Poulin-Fournier Model

- Anisotropy modeled by cylindrical grooves
 - d & h control the level of anisotropy
 - for fabrics such as satin and velvet

Satin and velvet [Ashikhmin et al. 2000]

Satin

Velvet

- Anisotropy gaussian for satin distribution
 - $p(\mathbf{h}) = c * \exp(-\tan^2 \theta(\cos^2 \phi/\sigma_x^2 + \sin^2 \phi/\sigma_y^2))$
- Velvet has bright isotropic highlights only at grazing angle

-
$$p(\mathbf{h}) = c * \exp(-\cot^2 \theta/\sigma^2)$$