PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

51) International Patent Classification 6:		(11) International Publication Number: WO 99/45954
A61K 39/00, 39/29, C07K 7/00, 14/02, 14/82	A1	(43) International Publication Date: 16 September 1999 (16.09.99)
 21) International Application Number: PCT/US 22) International Filing Date: 13 March 1998 (17) 27) Applicant: EPIMMUNE, INC. [US/US]; Suite 200, 6 Ridge Drive, San Diego, CA 92121 (US). 27) Inventors: SETTE, Alessandro; 5551 Linda Rosa A Jolla, CA 92037 (US). KUBO, Ralph, T.; 126 Street, San Diego, CA 92130 (US). SIDNEY, J. D. Villa La Jolla Drive, La Jolla, CA 92037 (US) Esteban; 13644 Landfair Road, San Diego, CA 92 GREY, Howard, M.; 9066 La Jolla Street, La 92037 (US). SOUTHWOOD, Scott; 10679 S. Drive, Santee, CA 92071 (US). 274) Agents: BASTIAN, Kevin, L. et al.; Townsend and and Crew LLP, 8th floor, Two embarcadero Carrancisco, CA 94111–3834 (US). 	venue, la solution of the solu	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE GH, GM, GW, HU, ID, IL, IS, IP, KE, KG, KP, KR, KZ LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO paten (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian paten (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European paten (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.
54) Title: HLA-BINDING PEPTIDES AND THEIR U	SES	
· •	SES	
57) Abstract The present invention provides the means and metho rapable of specifically binding glycoproteins encoded by	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The
57) Abstract The present invention provides the means and metho rapable of specifically binding glycoproteins encoded by	ds for se	electing immunogenic peptides and the immunogenic peptide composition lele and inducing T cell activation in T cells restricted by the allele. The antigen.
57) Abstract The present invention provides the means and metho apable of specifically binding glycoproteins encoded by	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The
57) Abstract The present invention provides the means and metho apable of specifically binding glycoproteins encoded by	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The
57) Abstract The present invention provides the means and metho apable of specifically binding glycoproteins encoded by	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The
57) Abstract The present invention provides the means and metho apable of specifically binding glycoproteins encoded by	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The
57) Abstract The present invention provides the means and metho apable of specifically binding glycoproteins encoded by	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The
57) Abstract The present invention provides the means and metho apable of specifically binding glycoproteins encoded by	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The
57) Abstract The present invention provides the means and metho apable of specifically binding glycoproteins encoded by	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The
57) Abstract The present invention provides the means and metho apable of specifically binding glycoproteins encoded by	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The
57) Abstract The present invention provides the means and metho	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The
57) Abstract The present invention provides the means and metho rapable of specifically binding glycoproteins encoded by	ds for se	ele and inducing T cell activation in T cells restricted by the allele. The

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM		FI	Spain Finland				
	Amenia			LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN ·	Senegal
AU	Australia	GA	Gahon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico .	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	¥U	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
Cυ	Cuba	KZ	Kazakatan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

20

25

HLA BINDING PEPTIDES AND THEIR USES

BACKGROUND OF THE INVENTION

The present invention relates to compositions and methods for preventing, treating or diagnosing a number of pathological states such as viral diseases and cancers. In particular, it provides novel peptides capable of binding selected major histocompatibility complex (MHC) molecules and inducing an immune response.

MHC molecules are classified as either Class I or Class II molecules. Class II MHC molecules are expressed primarily on cells involved in initiating and sustaining immune responses, such as T lymphocytes, B lymphocytes, macrophages, etc. Class II MHC molecules are recognized by helper T lymphocytes and induce proliferation of helper T lymphocytes and amplification of the immune response to the particular immunogenic peptide that is displayed. Class I MHC molecules are expressed on almost all nucleated cells and are recognized by cytotoxic T lymphocytes (CTLs), which then destroy the antigen-bearing cells. CTLs are particularly important in tumor rejection and in fighting viral infections.

The CTL recognizes the antigen in the form of a peptide fragment bound to the MHC class I molecules rather than the intact foreign antigen itself. The antigen must normally be endogenously synthesized by the cell, and a portion of the protein antigen is degraded into small peptide fragments in the cytoplasm. Some of these small peptides translocate into a pre-Golgi compartment and interact with class I heavy chains to facilitate proper folding and association with the subunit β2 microglobulin. The peptide-MHC class I complex is then routed to the cell surface for expression and potential recognition by specific CTLs.

Investigations of the crystal structure of the human MHC class I molecule, HLA-A2.1, indicate that a peptide binding groove is created by the folding of the $\alpha 1$ and $\alpha 2$ domains of the class I heavy chain (Bjorkman et al., Nature 329:506 (1987). In these investigations, however, the identity of peptides bound to the groove was not determined.

Buus et al., <u>Science</u> 242:1065 (1988) first described a method for acid elution of bound peptides from MHC. Subsequently, Rammensee and his coworkers (Falk

10

15

20

25

30

et al., Nature 351:290 (1991) have developed an approach to characterize naturally processed peptides bound to class I molecules. Other investigators have successfully achieved direct amino acid sequencing of the more abundant peptides in various HPLC fractions by conventional automated sequencing of peptides eluted from class I molecules of the B type (Jardetzky, et al., Nature 353:326 (1991) and of the A2.1 type by mass spectrometry (Hunt, et al., Science 225:1261 (1992). A review of the characterization of naturally processed peptides in MHC Class I has been presented by Rötzschke and Falk (Rötzschke and Falk, Immunol, Today 12:447 (1991).

Sette et al., <u>Proc. Natl. Acad. Sci. USA</u> 86:3296 (1989) showed that MHC allele specific motifs could be used to predict MHC binding capacity. Schaeffer et al., <u>Proc. Natl. Acad. Sci. USA</u> 86:4649 (1989) showed that MHC binding was related to immunogenicity. Several authors (De Bruijn et al., <u>Eur. J. Immunol.</u>, 21:2963-2970 (1991); Pamer et al., 991 <u>Nature</u> 353:852-955 (1991)) have provided preliminary evidence that class I binding motifs can be applied to the identification of potential immunogenic peptides in animal models. Class I motifs specific for a number of human alleles of a given class I isotype have yet to be described. It is desirable that the combined frequencies of these different alleles should be high enough to cover a large fraction or perhaps the majority of the human outbred population.

Despite the developments in the art, the prior art has yet to provide a useful human peptide-based vaccine or therapeutic agent based on this work. The present invention provides these and other advantages.

SUMMARY OF THE INVENTION

The present invention provides compositions comprising immunogenic peptides having binding motifs for HLA molecules. The immunogenic peptides, which bind to the appropriate MHC allele, comprise conserved residues at certain positions which allow the peptides to bind desired HLA molecules.

Epitopes on a number of immunogenic target proteins can be identified using the peptides of the invention. Examples of suitable antigens include prostate cancer specific antigen (PSA), hepatitis B core and surface antigens (HBVc, HBVs) hepatitis C antigens, Epstein-Barr virus antigens, human immunodeficiency type-1 virus (HIV1), Kaposi's sarcoma herpes virus (KSHV), human papilloma virus (HPV) antigens, Lassa

virus, mycobacterium tuberculosis (MT), p53, CEA, trypanosome surface antigen (TSA) and Her2/neu. The peptides are thus useful in pharmaceutical compositions for both therapeutic and diagnostic applications.

In particular, the invention provides compositions comprising an immunogenic peptide having an HLA binding motif, which immunogenic peptide is a peptide shown in Tables 3-14. Also provided are peptides comprising a conservative substitution of a residue in a peptide shown in Table 3-14. The immunogenic peptide of the invention can be further linked to a second oligopeptide. In some embodiments, the second oligopeptide is a peptide that induces a helper T response.

10

5

The invention further provides nucleic acid molecules encoding immunogenic peptides as shown in Tables 3-14, or peptides comprising a conservative substitution of a residue of a peptide shown in Table 3-14. The nucleic acid may further comprise a sequence encoding a second immunogenic peptide or peptide that induces a helper T response.

15

The peptides provided here can be used to induce a cytotoxic T cell response either *in vivo* or *in vitro*. The methods comprise contacting a cytotoxic T cell with a peptide of the invention.

Definitions

20

The term "peptide" is used interchangeably with "oligopeptide" in the present specification to designate a series of residues, typically L-amino acids, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of adjacent amino acids. The oligopeptides of the invention are less than about 15 residues in length and usually consist of between about 8 and about 11 residues, preferably 9 or 10 residues.

25

An "immunogenic peptide" is a peptide which comprises an allele-specific motif such that the peptide will bind an MHC molecule and induce a CTL response. Immunogenic peptides of the invention are capable of binding to an appropriate HLA molecule and inducing a cytotoxic T cell response against the antigen from which the immunogenic peptide is derived.

30

Immunogenic peptides are conveniently identified using the algorithms of the invention. The algorithms are mathematical procedures that produce a score which

enables the selection of immunogenic peptides. Typically one uses the algorithmic score with a "binding threshold" to enable selection of peptides that have a high probability of binding at a certain affinity and will in turn be immunogenic. The algorithm is based upon either the effects on MHC binding of a particular amino acid at a particular position of a peptide or the effects on binding of a particular substitution in a motif containing peptide.

A "conserved residue" is an amino acid which occurs in a significantly higher frequency than would be expected by random distribution at a particular position in a peptide. Typically a conserved residue is one where the MHC structure may provide a contact point with the immunogenic peptide. At least one to three or more, preferably two, conserved residues within a peptide of defined length defines a motif for an immunogenic peptide. These residues are typically in close contact with the peptide binding groove, with their side chains buried in specific pockets of the groove itself. Typically, an immunogenic peptide will comprise up to three conserved residues, more usually two conserved residues.

As used herein, "negative binding residues" are amino acids which if present at certain positions will result in a peptide being a nonbinder or poor binder and in turn fail to be immunogenic i.e. induce a CTL response.

The term "motif" refers to the pattern of residues in a peptide of defined length, usually about 8 to about 11 amino acids, which is recognized by a particular MHC allele. The peptide motifs are typically different for each human MHC allele and differ in the pattern of the highly conserved residues and negative residues.

The binding motif for an allele can be defined with increasing degrees of precision. In one case, all of the conserved residues are present in the correct positions in a peptide and there are no negative residues in positions 1,3 and/or 7.

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany it as found in its native state. Thus, the peptides of this invention do not contain materials normally associated with their in situ environment, e.g., MHC I molecules on antigen presenting cells. Even where a protein has been isolated to a homogenous or dominant band, there are trace contaminants in the range of 5-10% of native protein which co-purify with the desired protein. Isolated peptides of this invention do not contain such endogenous co-purified protein.

20

15

5

10

25

The term "residue" refers to an amino acid or amino acid mimetic incorporated in an oligopeptide by an amide bond or amide bond mimetic.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention relates to the determination of allele-specific peptide motifs for human Class I MHC (sometimes referred to as HLA) allele subtypes, in particular, peptide motifs recognized by HLA alleles.

For HLA-A2.1 alleles a peptide of 9 amino acids preferrably has the following motif: a first conserved residue at the second position from the N-terminus selected from the group consisting of I, V, A and T and a second conserved residue at the C-terminal position selected from the group consisting of V, L, I, A and M. An alternate motif is one in which the first conserved residue at the second position from the N-terminus selected is from the group consisting of L, M, I, V, A and T and the second conserved residue at the C-terminal position selected from the group consisting of A and M. The amino acid at position 1 is preferrably not an amino acid selected from the group consisting of D, and P. The amino acid at position 3 from the N-terminus is not an amino acid selected from the group consisting of D, E, R, K and H. The amino acid at position 6 from the N-terminus is not an amino acid selected from the group consisting of R, K and H. The amino acid at at position 7 from the N-terminus is not an amino acid selected from the group consisting of R, K, H, D and E.

20

25

30

5

10

15

The HLA-A2.1 binding motif for peptide of 10 residues is as follows: a first conserved residue at the second position from the N-terminus selected from the group consisting of L, M, I, V, A, and T, and a second conserved residue at the C-terminal position selected from the group consisting of V, I, L, A and M. The first and second conserved residues are separated by 7 residues. Preferrably, the amino acid at position 1 is not an amino acid selected from the group consisting of D, E and P. The N-terminal residue is not an amino acid selected from the group consisting of D and E. The residue at position 4 from the N-terminus is not an amino acid selected from the group consisting of A, K, R and H. The amino acid at position 5 from the N-terminus is not P. The amino acid at position 7 from the N-terminus is not an amino acid selected from the group consisting of R, K and H. The amino acid at position 8 from the N-terminus is not amino acid selected from the group consisting of D, E, R, K and H. The amino acid at position

10

15

20

25

30

9 from the N-terminus is not an amino acid selected from the group consisting of R, K and H

Te motif for HLA-A3.2 comprises from the N-terminus to C-terminus a first conserved residue of L, M, I, V, S, A, T and F at position 2 and a second conserved residue of K, R or Y at the C-terminal end. Other first conserved residues are C, G or D and alternatively E. Other second conserved residues are H or F. The first and second conserved residues are preferably separated by 6 to 7 residues.

The motif for HLA-A1 comprises from the N-terminus to the C-terminus a first conserved residue of T, S or M, a second conserved residue of D or E, and a third conserved residue of Y. Other second conserved residues are A, S or T. The first and second conserved residues are adjacent and are preferably separated from the third conserved residue by 6 to 7 residues. A second motif consists of a first conserved residue of E or D and a second conserved residue of Y where the first and second conserved residues are separated by 5 to 6 residues.

The motif for HLA-A11 comprises from the N-terminus to the C-terminus a first conserved residue of T, V, M, L, I, S, A, G, N, C D, or F at position 2 and a C-terminal conserved residue of K, R, Y or H. The first and second conserved residues are preferably separated by 6 or 7 residues.

The motif for HLA-A24.1 comprises from the N-terminus to the C-terminus a first conserved residue of Y, F or W at position 2 and a C terminal conserved residue of F, I, W, M or L. The first and second conserved residues are preferably separated by 6 to 7 residues.

These motifs are then used to define T cell epitopes from any desired antigen, particularly those associated with human viral diseases, cancers or autoiummune diseases, for which the amino acid sequence of the potential antigen or autoantigen targets is known.

Epitopes on a number of potential target proteins can be identified in this manner. Examples of suitable antigens include prostate specific antigen (PSA), hepatitis B core and surface antigens (HBVc, HBVs) hepatitis C antigens, Epstein-Barr virus antigens, melanoma antigens (e.g., MAGE-1), human immunodeficiency virus (HIV) antigens, human papilloma virus (HPV) antigens, Lassa virus, mycobacterium tuberculosis (MT), p53, CEA, trypanosome surface antigen (TSA) and Her2/neu.

10

15

20

Peptides comprising the epitopes from these antigens are synthesized and then tested for their ability to bind to the appropriate MHC molecules in assays using, for example, purified class I molecules and radioiodonated peptides and/or cells expressing empty class I molecules by, for instance, immunofluorescent staining and flow microfluorometry, peptide-dependent class I assembly assays, and inhibition of CTL recognition by peptide competition. Those peptides that bind to the class I molecule are further evaluated for their ability to serve as targets for CTLs derived from infected or immunized individuals, as well as for their capacity to induce primary in vitro or in vivo CTL responses that can give rise to CTL populations capable of reacting with virally infected target cells or tumor cells as potential therapeutic agents.

The MHC class I antigens are encoded by the HLA-A, B, and C loci. HLA-A and B antigens are expressed at the cell surface at approximately equal densities, whereas the expression of HLA-C is significantly lower (perhaps as much as 10-fold lower). Each of these loci have a number of alleles. The peptide binding motifs of the invention are relatively specific for each allelic subtype.

For peptide-based vaccines, the peptides of the present invention preferably comprise a motif recognized by an MHC I molecule having a wide distribution in the human population. Since the MHC alleles occur at different frequencies within different ethnic groups and races, the choice of target MHC allele may depend upon the target population. Table 1 shows the frequency of various alleles at the HLA-A locus products among different races. For instance, the majority of the Caucasoid population can be covered by peptides which bind to four HLA-A allele subtypes, specifically HLA-A2.1, A1, A3.2, and A24.1. Similarly, the majority of the Asian population is encompassed with the addition of peptides binding to a fifth allele HLA-A11.2.

TABLE 1

		(
	A Allele/Subtype	N(69)*	A(54)	<u>C(502)</u>
	A 1	10.1(7)	1.8(1)	27.4(138)
•	A2.1	11.5(8)	37.0(20)	39.8(199)
5	A2.2	10.1(7)	0	3.3(17)
	A2.3	1.4(1)	5.5(3)	0.8(4)
	A2.4	-		-
	A2.5	• •	•	-
	A3.1	1.4(1)	0	0.2(0)
10	A3.2	5.7(4)	5.5(3)	21.5(108)
	A11.1	0	5.5(3)	0 .
	A11.2	5.7(4)	31.4(17)	8.7(44)
	À11.3	0	3.7(2)	0
	A23	4.3(3)	-	3.9(20)
15	A24	2.9(2)	27.7(15)	15.3(77)
	A24.2	•	-	-
	A24.3	-	-	
	. A25	1.4(1)	•	6.9(35)
	A26.1	4.3(3)	9.2(5)	5.9(30)
20	A26.2	7.2(5)	-	1.0(5)
	A26V	-	3.7(2)	-
	A28.1	10.1(7)	-	1.6(8)
-	A28.2	1.4(1)	-	7.5(38)
	A29.1	1.4(1)	-	1.4(7)
25	A29.2	10.1(7)	1.8(1)	5.3(27)
	A30.1	8.6(6)	•	4.9(25)
	A30.2	1.4(1)	-	0.2(1)
	A30.3	7.2(5)	•	3.9(20)
	A31	4.3(3)	7.4(4)	6.9(35)
30	A32	2.8(2)	-	7.1(36)
	Aw33.1	8.6(6)	-	2.5(13)
	Aw33.2	2.8(2)	16.6(9)	1.2(6)
	Aw34.1	1.4(1)	•	-
	Aw34.2	14.5(10)	-	0.8(4)
35	Aw36	5.9(4)	-	-

Table compiled from B. DuPont, <u>Immunobiology of HLA</u>, Vol. I, Histocompatibility Testing 1987, Springer-Verlag, New York 1989.

The nomenclature used to describe peptide compounds follows the conventional practice wherein the amino group is presented to the left (the N-terminus)

^{*} N - negroid; A = Asian; C = caucasoid. Numbers in parenthesis represent the number of individuals included in the analysis.

and the carboxyl group to the right (the C-terminus) of each amino acid residue. In the formulae representing selected specific embodiments of the present invention, the amino-and carboxyl-terminal groups, although not specifically shown, are in the form they would assume at physiologic pH values, unless otherwise specified. In the amino acid structure formulae, each residue is generally represented by standard three letter or single letter designations. The L-form of an amino acid residue is represented by a capital single letter or a capital first letter of a three-letter symbol, and the D-form for those amino acids having D-forms is represented by a lower case single letter or a lower case three letter symbol. Glycine has no asymmetric carbon atom and is simply referred to as "Gly" or G.

10

15

The procedures used to identify peptides of the present invention generally follow the methods disclosed in Falk et al., Nature 351:290 (1991), which is incorporated herein by reference. Briefly, the methods involve large-scale isolation of MHC class I molecules, typically by immunoprecipitation or affinity chromatography, from the appropriate cell or cell line. Examples of other methods for isolation of the desired MHC molecule equally well known to the artisan include ion exchange chromatography, lectin chromatography, size exclusion, high performance ligand chromatography, and a combination of all of the above techniques.

20

In the typical case, immunoprecipitation is used to isolate the desired allele. A number of protocols can be used, depending upon the specificity of the antibodies used. For example, allele-specific mAb reagents can be used for the affinity purification of the HLA-A, HLA-B₁, and HLA-C molecules. Several mAb reagents for the isolation of HLA-A molecules are available. The monoclonal BB7.2 is suitable for isolating HLA-A2 molecules. Affinity columns prepared with these mAbs using standard techniques are successfully used to purify the respective HLA-A allele products.

25

30

In addition to allele-specific mAbs, broadly reactive anti-HLA-A, B, C mAbs, such as W6/32 and B9.12.1, and one anti-HLA-B, C mAb, B1.23.2, could be used in alternative affinity purification protocols as described in previous applications.

The peptides bound to the peptide binding groove of the isolated MHC molecules are eluted typically using acid treatment. Peptides can also be dissociated from class I molecules by a variety of standard denaturing means, such as heat, pH, detergents, salts, chaotropic agents, or a combination thereof.

Peptide fractions are further separated from the MHC molecules by reversed-phase high performance liquid chromatography (HPLC) and sequenced. Peptides can be separated by a variety of other standard means well known to the artisan, including filtration, ultrafiltration, electrophoresis, size chromatography, precipitation with specific antibodies, ion exchange chromatography, isoelectrofocusing, and the like.

Sequencing of the isolated peptides can be performed according to standard techniques such as Edman degradation (Hunkapiller, M.W., et al., Methods Enzymol. 91, 399 [1983]). Other methods suitable for sequencing include mass spectrometry sequencing of individual peptides as previously described (Hunt, et al., Science 225:1261 (1992), which is incorporated herein by reference). Amino acid sequencing of bulk heterogenous peptides (e.g., pooled HPLC fractions) from different class I molecules typically reveals a characteristic sequence motif for each class I allele.

Definition of motifs specific for different class I alleles allows the identification of potential peptide epitopes from an antigenic protein whose amino acid sequence is known. Typically, identification of potential peptide epitopes is initially carried out using a computer to scan the amino acid sequence of a desired antigen for the presence of motifs. The epitopic sequences are then synthesized. The capacity to bind MHC Class molecules is measured in a variety of different ways. One means is a Class I molecule binding assay as described in the related applications, noted above. Other alternatives described in the literature include inhibition of antigen presentation (Sette, et al., J. Immunol. 141:3893 (1991), in vitro assembly assays (Townsend, et al., Cell 62:285 (1990), and FACS based assays using mutated ells, such as RMA.S (Melief, et al., Eur. J. Immunol. 21:2963 (1991)).

Next, peptides that test positive in the MHC class I binding assay are assayed for the ability of the peptides to induce specific CTL responses in vitro. For instance, Antigen-presenting cells that have been incubated with a peptide can be assayed for the ability to induce CTL responses in responder cell populations. Antigen-presenting cells can be normal cells such as peripheral blood mononuclear cells or dendritic cells (Inaba, et al., J. Exp. Med. 166:182 (1987); Boog, Eur. J. Immunol. 18:219 [1988]).

Alternatively, mutant mammalian cell lines that are deficient in their ability to load class I molecules with internally processed peptides, such as the mouse cell lines RMA-S (Kärre, et al., Nature, 319:675 (1986); Ljunggren, et al., Eur. J. Immunol.

10

5

15

20

25

10

15

20

25

30

21:2963-2970 (1991)), and the human somatic T cell hybrid, T-2 (Cerundolo, et al., Nature 345:449-452 (1990)) and which have been transfected with the appropriate human class I genes are conveniently used, when peptide is added to them, to test for the capacity of the peptide to induce in vitro primary CTL responses. Other eukaryotic cell lines which could be used include various insect cell lines such as mosquito larvae (ATCC cell lines CCL 125, 126, 1660, 1591, 6585, 6586), silkworm (ATTC CRL 8851), armyworm (ATCC CRL 1711), moth (ATCC CCL 80) and Drosophila cell lines such as a Schneider cell line (see Schneider J. Embryol. Exp. Morphol. 27:353-365 [1927]).

Peripheral blood lymphocytes are conveniently isolated following simple venipuncture or leukapheresis of normal donors or patients and used as the responder cell sources of CTL precursors. In one embodiment, the appropriate antigen-presenting cells are incubated with $10\text{-}100~\mu\text{M}$ of peptide in serum-free media for 4 hours under appropriate culture conditions. The peptide-loaded antigen-presenting cells are then incubated with the responder cell populations in vitro for 7 to 10 days under optimized culture conditions. Positive CTL activation can be determined by assaying the cultures for the presence of CTLs that kill radiolabeled target cells, both specific peptide-pulsed targets as well as target cells expressing endogenously processed form of the relevant virus or tumor antigen from which the peptide sequence was derived.

Specificity and MHC restriction of the CTL is determined by testing against different peptide target cells expressing appropriate or inappropriate human MHC class I. The peptides that test positive in the MHC binding assays and give rise to specific CTL responses are referred to herein as immunogenic peptides.

The immunogenic peptides can be prepared synthetically, or by recombinant DNA technology or from natural sources such as whole viruses or tumors. Although the peptide will preferably be substantially free of other naturally occurring host cell proteins and fragments thereof, in some embodiments the peptides can be synthetically conjugated to native fragments or particles.

The polypeptides or peptides can be a variety of lengths, either in their neutral (uncharged) forms or in forms which are salts, and either free of modifications such as glycosylation, side chain oxidation, or phosphorylation or containing these modifications, subject to the condition that the modification not destroy the biological activity of the polypeptides as herein described.

10

15

20

25

30

Desirably, the peptide will be as small as possible while still maintaining substantially all of the biological activity of the large peptide. When possible, it may be desirable to optimize peptides of the invention to a length of 9 or 10 amino acid residues, commensurate in size with endogenously processed viral peptides or tumor cell peptides that are bound to MHC class I molecules on the cell surface.

Peptides having the desired activity may be modified as necessary to provide certain desired attributes, e.g., improved pharmacological characteristics, while increasing or at least retaining substantially all of the biological activity of the unmodified peptide to bind the desired MHC molecule and activate the appropriate T cell. For instance, the peptides may be subject to various changes, such as substitutions, either conservative or non-conservative, where such changes might provide for certain advantages in their use, such as improved MHC binding. By conservative substitutions is meant replacing an amino acid residue with another which is biologically and/or chemically similar, e.g., one hydrophobic residue for another, or one polar residue for another. The substitutions include combinations such as Gly, Ala; Val, Ile, Leu, Met; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr. The effect of single amino acid substitutions may also be probed using D-amino acids. Such modifications may be made using well known peptide synthesis procedures, as described in e.g., Merrifield, Science 232:341-347 (1986), Barany and Merrifield, The Peptides, Gross and Meienhofer, eds. (N.Y., Academic Press), pp. 1-284 (1979); and Stewart and Young, Solid Phase Peptide Synthesis, (Rockford, Ill., Pierce), 2d Ed. (1984), incorporated by reference herein.

The peptides can also be modified by extending or decreasing the compound's amino acid sequence, e.g., by the addition or deletion of amino acids. The peptides or analogs of the invention can also be modified by altering the order or composition of certain residues, it being readily appreciated that certain amino acid residues essential for biological activity, e.g., those at critical contact sites or conserved residues, may generally not be altered without an adverse effect on biological activity. The non-critical amino acids need not be limited to those naturally occurring in proteins, such as L- α -amino acids, or their D-isomers, but may include non-natural amino acids as well, such as β - γ - δ -amino acids, as well as many derivatives of L- α -amino acids.

Typically, a series of peptides with single amino acid substitutions are employed to determine the effect of electrostatic charge, hydrophobicity, etc. on binding.

10

15

For instance, a series of positively charged (e.g., Lys or Arg) or negatively charged (e.g., Glu) amino acid substitutions are made along the length of the peptide revealing different patterns of sensitivity towards various MHC molecules and T cell receptors. In addition, multiple substitutions using small, relatively neutral moieties such as Ala, Gly, Pro, or similar residues may be employed. The substitutions may be homo-oligomers or hetero-oligomers. The number and types of residues which are substituted or added depend on the spacing necessary between essential contact points and certain functional attributes which are sought (e.g., hydrophobicity versus hydrophilicity). Increased binding affinity for an MHC molecule or T cell receptor may also be achieved by such substitutions, compared to the affinity of the parent peptide. In any event, such substitutions should employ amino acid residues or other molecular fragments chosen to avoid, for example, steric and charge interference which might disrupt binding.

Amino acid substitutions are typically of single residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a final peptide. Substitutional variants are those in which at least one residue of a peptide has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the following Table 2 when it is desired to finely modulate the characteristics of the peptide.

TABLE 2

Original Residue	Exemplary Substitution
Ala	Ser
Arg	Lys, His
Asn	Gln
Asp	Glu
Cys	Ser
Gln	Asn
Glu	Asp
Gly	Pro
His	Lys; Arg
Ile	Leu; Val
Leu	Ile; Val
Lys	Arg; His
Met	Leu; Ile
Phe	Tyr; Trp
Ser	Thr
Thr	Ser
Тгр	Tyr; Phe
Туг	Trp; Phe
Val	Ile; Leu
Pro	Gly

15

20

25

30

Substantial changes in function (e.g., affinity for MHC molecules or T cell receptors) are made by selecting substitutions that are less conservative than those in Table 2, i.e., selecting residues that differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, for example as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in peptide properties will be those in which (a) hydrophilic residue, e.g. seryl, is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a residue having an electropositive side chain, e.g., lysl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (c) a residue having a bulky side chain, e.g. phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

The peptides may also comprise isosteres of two or more residues in the immunogenic peptide. An isostere as defined here is a sequence of two or more residues that can be substituted for a second sequence because the steric conformation of the first sequence fits a binding site specific for the second sequence. The term specifically includes peptide backbone modifications well known to those skilled in the art. Such modifications include modifications of the amide nitrogen, the α-carbon, amide carbonyl, complete replacement of the amide bond, extensions, deletions or backbone crosslinks. See, generally, Spatola, Chemistry and Biochemistry of Amino Acids, peptides and Proteins, Vol. VII (Weinstein ed., 1983).

Modifications of peptides with various amino acid mimetics or unnatural amino acids are particularly useful in increasing the stability of the peptide in vivo.

Stability can be assayed in a number of ways. For instance, peptidases and various biological media, such as human plasma and serum, have been used to test stability. See, e.g., Verhoef et al., Eur. J. Drug Metab. Pharmacokin. 11:291-302 (1986). Half life of the peptides of the present invention is conveniently determined using a 25% human serum (v/v) assay. The protocol is generally as follows. Pooled human serum (Type AB, non-heat inactivated) is delipidated by centrifugation before use. The serum is then diluted to 25% with RPMI tissue culture media and used to test peptide stability. At predetermined time intervals a small amount of reaction solution is removed and added to either 6% aqueous trichloracetic acid or ethanol. The cloudy reaction sample is cooled

10

15

20

25

30

(4°C) for 15 minutes and then spun to pellet the precipitated serum proteins. The presence of the peptides is then determined by reversed-phase HPLC using stability-specific chromatography conditions.

The peptides of the present invention or analogs thereof which have CTL stimulating activity may be modified to provide desired attributes other than improved serum half life. For instance, the ability of the peptides to induce CTL activity can be enhanced by linkage to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. Particularly preferred immunogenic peptides/T helper conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues. Alternatively, the CTL peptide may be linked to the T helper peptide without a spacer.

The immunogenic peptide may be linked to the T helper peptide either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated. Exemplary T helper peptides include tetanus toxoid 830-843, influenza 307-319, malaria circumsporozoite 382-398 and 378-389.

In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes CTL. Lipids have been identified as agents capable of priming CTL in vivo against viral antigens. For example, palmitic acid residues can be attached to the alpha and epsilon amino groups of a Lys residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be injected directly in a micellar form, incorporated into a liposome or emulsified in an adjuvant, e.g., incomplete Freund's adjuvant. In a preferred embodiment a particularly effective immunogen comprises palmitic acid attached to alpha and epsilon amino groups

10

15

20

25

30

of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.

As another example of lipid priming of CTL responses, E. coli lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P₃CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide. See, Deres et al., Nature 342:561-564 (1989), incorporated herein by reference. Peptides of the invention can be coupled to P₃CSS, for example, and the lipopeptide administered to an individual to specifically prime a CTL response to the target antigen. Further, as the induction of neutralizing antibodies can also be primed with P₃CSS conjugated to a peptide which displays an appropriate epitope, the two compositions can be combined to more effectively elicit both humoral and cell-mediated responses to infection.

In addition, additional amino acids can be added to the termini of a peptide to provide for ease of linking peptides one to another, for coupling to a carrier support, or larger peptide, for modifying the physical or chemical properties of the peptide or oligopeptide, or the like. Amino acids such as tyrosine, cysteine, lysine, glutamic or aspartic acid, or the like, can be introduced at the C- or N-terminus of the peptide or oligopeptide. Modification at the C terminus in some cases may alter binding characteristics of the peptide. In addition, the peptide or oligopeptide sequences can differ from the natural sequence by being modified by terminal-NH₂ acylation, e.g., by alkanoyl (C_1-C_{20}) or thioglycolyl acetylation, terminal-carboxyl amidation, e.g., ammonia, methylamine, etc. In some instances these modifications may provide sites for linking to a support or other molecule.

The peptides of the invention can be prepared in a wide variety of ways. Because of their relatively short size, the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart and Young, Solid Phase Peptide Synthesis, 2d. ed., Pierce Chemical Co. (1984), supra.

Alternatively, recombinant DNA technology may be employed wherein a nucleotide sequence which encodes an immunogenic peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression. These procedures are generally known in the art,

as described generally in Sambrook et al., Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, New York (1982), which is incorporated herein by reference. Thus, fusion proteins which comprise one or more peptide sequences of the invention can be used to present the appropriate T cell epitope.

As the coding sequence for peptides of the length contemplated herein can be

5

10

15

•

20

25

30

condlyloma acuminatum.

synthesized by chemical techniques, for example, the phosphotriester method of Matteucci et al., <u>J. Am. Chem. Soc.</u> 103:3185 (1981), modification can be made simply by substituting the appropriate base(s) for those encoding the native peptide sequence. The coding sequence can then be provided with appropriate linkers and ligated into expression vectors commonly available in the art, and the vectors used to transform suitable hosts to produce the desired fusion protein. A number of such vectors and suitable host systems are now available. For expression of the fusion proteins, the coding sequence will be provided with operably linked start and stop codons, promoter and terminator regions and usually a replication system to provide an expression vector for expression in the desired cellular host. For example, promoter sequences compatible with bacterial hosts are provided in plasmids containing convenient restriction sites for insertion of the desired coding sequence. The resulting expression vectors are transformed into suitable bacterial hosts. Of course, yeast or mammalian cell hosts may also be used, employing suitable vectors and control sequences.

The peptides of the present invention and pharmaceutical and vaccine

compositions thereof are useful for administration to mammals, particularly humans, to treat and/or prevent viral infection and cancer. Examples of diseases which can be treated

using the immunogenic peptides of the invention include prostate cancer, hepatitis B,

hepatitis C, AIDS, renal carcinoma, cervical carcinoma, lymphoma, CMV and

For pharmaceutical compositions, the immunogenic peptides of the invention are administered to an individual already suffering from cancer or infected with the virus of interest. Those in the incubation phase or the acute phase of infection can be treated with the immunogenic peptides separately or in conjunction with other treatments, as appropriate. In therapeutic applications, compositions are administered to a patient in an amount sufficient to elicit an effective CTL response to the virus or tumor antigen and to cure or at least partially arrest symptoms and/or complications. An amount adequate to

accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the peptide composition, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician, but generally range for the initial immunization (that is for therapeutic or prophylactic administration) from about $1.0 \mu g$ to about $5000 \mu g$ of peptide for a 70 kg patient, followed by boosting dosages of from about $1.0 \mu g$ to about $1000 \mu g$ of peptide pursuant to a boosting regimen over weeks to months depending upon the patient's response and condition by measuring specific CTL activity in the patient's blood. It must be kept in mind that the peptides and compositions of the present invention may generally be employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, in view of the minimization of extraneous substances and the relative nontoxic nature of the peptides, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions.

15

10

For therapeutic use, administration should begin at the first sign of viral infection or the detection or surgical removal of tumors or shortly after diagnosis in the case of acute infection. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. In chronic infection, loading doses followed by boosting doses may be required.

20

Treatment of an infected individual with the compositions of the invention may hasten resolution of the infection in acutely infected individuals. For those individuals susceptible (or predisposed) to developing chronic infection the compositions are particularly useful in methods for preventing the evolution from acute to chronic infection. Where the susceptible individuals are identified prior to or during infection, for instance, as described herein, the composition can be targeted to them, minimizing need for administration to a larger population.

30

25

The peptide compositions can also be used for the treatment of chronic infection and to stimulate the immune system to eliminate virus-infected cells in carriers. It is important to provide an amount of immuno-potentiating peptide in a formulation and mode of administration sufficient to effectively stimulate a cytotoxic T cell response. Thus, for treatment of chronic infection, a representative dose is in the range of about 1.0 μ g to about 5000 μ g, preferably about 5 μ g to 1000 μ g for a 70 kg patient per dose.

10

15

20

25

30

Immunizing doses followed by boosting doses at established intervals, e.g., from one to four weeks, may be required, possibly for a prolonged period of time to effectively immunize an individual. In the case of chronic infection, administration should continue until at least clinical symptoms or laboratory tests indicate that the viral infection has been eliminated or substantially abated and for a period thereafter.

The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral or local administration. Preferably, the pharmaceutical compositions are administered parenterally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.

The concentration of CTL stimulatory peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.

The peptides of the invention may also be administered via liposomes, which serve to target the peptides to a particular tissue, such as lymphoid tissue, or targeted selectively to infected cells, as well as increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to, e.g., a receptor prevalent among lymphoid cells, such as monoclonal

10

15

20

25

30

antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the selected therapeutic/immunogenic peptide compositions. Liposomes for use in the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369, incorporated herein by reference.

For targeting to the immune cells, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.

For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.

For aerosol administration, the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight

15

20

25

30

of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.

In another aspect the present invention is directed to vaccines which contain as an active ingredient an immunogenically effective amount of an immunogenic peptide as described herein. The peptide(s) may be introduced into a host, including humans, linked to its own carrier or as a homopolymer or heteropolymer of active peptide units. Such a polymer has the advantage of increased immunological reaction and, where different peptides are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the virus or tumor cells. Useful carriers are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly(lysine:glutamic acid), influenza, hepatitis B virus core protein, hepatitis B virus recombinant vaccine and the like. The vaccines can also contain a physiologically tolerable (acceptable) diluent such as water, phosphate buffered saline, or saline, and further typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are materials well known in the art. And, as mentioned above. CTL responses can be primed by conjugating peptides of the invention to lipids, such as P₂CSS. Upon immunization with a peptide composition as described herein, via injection, aerosol, oral, transdermal or other route, the immune system of the host responds to the vaccine by producing large amounts of CTLs specific for the desired antigen, and the host becomes at least partially immune to later infection, or resistant to developing chronic infection.

Vaccine compositions containing the peptides of the invention are administered to a patient susceptible to or otherwise at risk of viral infection or cancer to elicit an immune response against the antigen and thus enhance the patient's own immune response capabilities. Such an amount is defined to be an "immunogenically effective dose." In this use, the precise amounts again depend on the patient's state of health and weight, the mode of administration, the nature of the formulation, etc., but generally range from about $1.0~\mu g$ to about $5000~\mu g$ per 70~kilogram patient, more commonly from about $10~\mu g$ to about $500~\mu g$ mg per 70~kilogram patient, more commonly from about $10~\mu g$ to about $500~\mu g$ mg per 70~kilogram patient, more commonly from about $10~\mu g$ to

. 5

10

15

20

25

30

In some instances it may be desirable to combine the peptide vaccines of the invention with vaccines which induce neutralizing antibody responses to the virus of interest, particularly to viral envelope antigens.

For therapeutic or immunization purposes, nucleic acids encoding one or more of the peptides of the invention can also be admisitered to the patient. A number of methods are conveniently used to deliver the nucleic acids to the patient. For instance, the nulceic acid can be delivered directly, as "naked DNA". This approach is described, for instance, in Wolff et. al., Science 247: 1465-1468 (1990) as well as U.S. Patent Nos. 5,580,859 and 5,589,466. The nucleic acids can also be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253. Particles comprised solely of DNA can be administered. Alternatively, DNA can be adhered to particles, such as gold particles. The nucleci acids can also be delivered complexed to cationic compounds, such as cationic lipids. Lipid-mediated gene delivery methods are described, for instance, in WO 96/18372; WO 93/24640; Mannino and Gould-Fogerite (1988) BioTechniques 6(7): 682-691; Rose U.S. Pat No. 5,279,833; WO 91/06309; and Felgner et al. (1987) Proc. Natl. Acad. Sci. USA 84: 7413-7414. The peptides of the invention can also be expressed by attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into an acutely or chronically infected host or into a noninfected host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848, incorporated herein by reference. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al. (Nature 351:456-460 (1991)) which is incorporated herein by reference. A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g., Salmonella typhi vectors and the like, will be apparent to those skilled in the art from the description herein.

A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding multiple epitopes of the invention. To create a DNA sequence encoding the selected CTL epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes are reverse translated. A human codon usage table is used to guide the codon choice for each amino acid. These epitope-encoding

10

15

20

25

30

DNA sequences are directly adjoined, creating a continuous polypeptide sequence. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequence that could be reverse translated and included in the minigene sequence include: helper T lymphocyte epitopes, a leader (signal) sequence, and an endoplasmic reticulum retention signal. In addition, MHC presentation of CTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL epitopes.

The minigene sequence is converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) are synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. he ends of the oligonucleotides are joined using T4 DNA ligase. This synthetic minigene, encoding the CTL epitope polypeptide, can then cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are included in the vector to ensure expression in the target cells. Several vector elements are required: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an *E. coli* origin of replication; and an *E. coli* selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, *e.g.*, the human cytomegalovirus (hCMV) promoter. *See*, U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.

Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences can also be considered for increasing minigene expression. It has recently been proposed that immunostimulatory sequences (ISSs or CpGs) play a role in the immunogenicity of DNA vaccines. These sequences could be included in the vector, outside the minigene coding sequence, if found to enhance immunogenicity.

In some embodiments, a bicistronic expression vector, to allow production of the minigene-encoded epitopes and a second protein included to enhance or decrease immunogenicity can be used. Examples of proteins or polypeptides that could beneficially .5

10

15

20

25

30

enhance the immune response if co-expressed include cytokines (e.g., IL2, IL12, GM-CSF), cytokine-inducing molecules (e.g. LeIF) or costimulatory molecules. Helper (HTL) epitopes could be joined to intracellular targeting signals and expressed separately from the CTL epitopes. This would allow direction of the HTL epitopes to a cell compartment different than the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the MHC class II pathway, thereby improving CTL induction. In contrast to CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-β) may be beneficial in certain diseases.

Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate *E. coli* strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

Therapeutic quantities of plasmid DNA are produced by fermentation in *E. coli*, followed by purification. Aliquots from the working cell bank are used to inoculate fermentation medium (such as Terrific Broth), and grown to saturation in shaker flasks or a bioreactor according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by Quiagen. If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.

Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). A variety of methods have been described, and new techniques may become available. As noted above, nucleic acids are conveniently formulated with cationic lipids. In addition, glycolipids, fusogenic liposomes, peptides and compounds referred to collectively as protective, interactive, non-condensing (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

Target cell sensitization can be used as a functional assay for expression and MHC class I presentation of minigene-encoded CTL epitopes. The plasmid DNA is

10

15

20

25

30

introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct *in vitro* transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 labeled and used as target cells for epitope-specific CTL lines. Cytolysis, detected by 51Cr release, indicates production of MHC presentation of minigene-encoded CTL epitopes.

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human MHC molecules are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g. IM for DNA in PBS, IP for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for 1 week in the presence of peptides encoding each epitope being tested. These effector cells (CTLs) are assayed for cytolysis of peptide-loaded, chromium-51 labeled target cells using standard techniques. Lysis of target cells sensitized by MHC loading of peptides corresponding to minigene-encoded epitopes demonstrates DNA vaccine function for in vivo induction of CTLs.

Antigenic peptides may be used to elicit CTL ex vivo, as well. The resulting CTL, can be used to treat chronic infections (viral or bacterial) or tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a peptide vaccine approach of therapy. Ex vivo CTL responses to a particular pathogen (infectious agent or tumor antigen) are induced by incubating in tissue culture the patient's CTL precursor cells (CTLp) together with a source of antigen-presenting cells (APC) and the appropriate immunogenic peptide. After an appropriate incubation time (typically 1-4 weeks), in which the CTLp are activated and mature and expand into effector CTL, the cells are infused back into the patient, where they will destroy their specific target cell (an infected cell or a tumor cell).

The peptides may also find use as diagnostic reagents. For example, a peptide of the invention may be used to determine the susceptibility of a particular individual to a treatment regimen which employs the peptide or related peptides, and thus may be helpful in modifying an existing treatment protocol or in determining a prognosis for an affected

individual. In addition, the peptides may also be used to predict which individuals will be at substantial risk for developing chronic infection.

The following example is offered by way of illustration, not by way of limitation.

Example 1

Class I antigen isolation was carried out as described in the related applications, noted above. Naturally processed peptides were then isolated and sequenced as described there. An allele-specific motif and algorithms were determined and quantitative binding assays were carried out.

Using the motifs identified above for various HLA alleles, amino acid sequences from a number of antigens were analyzed for the presence of these motifs. Tables 3- ** provide the results of these searches.

The above examples are provided to illustrate the invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference.

Table 3

า	Λ
4	U

15

5

10

1		
Sequence	Antigen	Molecule
FTFSPTYKAFLSK	HBV	POL
GTLPQEHIVLKLK	HBV	POL
FTFSPTYKAFLCK	HBV	POL
GTLPQEHIVLKIK	HBV	POL
LVVSYVNTNMGLK	HBV	POL
STTDLEAYFKDCLFK	HBV	x
LVVSYVNVNMGLK	HBV	NUC
GTLPQDHIVQKIK	HBV	POL
STSSCLHQSAVRK	нву	POL
TTTNAHOTT.DKVI.HK	HBV	Y

POL

25

Sequence	Antigen	Molecule
HTTNFASK	HBV ayw	
FTFSPTYK	HBV ayw	
PTYKAFLCKQY	HBVayw	
CTTPAQGTSMY	HBVayw	<u> </u>
PTSCPPTCPGY	HBVayw	
FSQFSRGNY	HBVayw	
LMPLYACIOSK	HBVayw	
RVTGGVFLVDK	HBVayw	POL
HTLWKAGILYK	HBVayw	
QTRHYLHTLWK	HBVayw	
GTDNSVVLSRK	HBVayw	
SYVNTNMGLKF	HBVayw	
LYSILSPF	HBVayw	
WYWGPSLYSIL	HBVayw	
LYSILSPFLPL	HBVayw	ļ
PYKEFGATVEL	HBVayw	
CTWMNSTGFTK	HCV	
MYVGDLCGSVF	HCV	
VYLLPRRGPRL	HCV	
ITKIQNFRVYY	HIV	<u> </u>
KVYLAWVPAHK	HIV	
KMIGGIGGFIK	HIV	
IVASCDKCQLK	HIV	
KVKQWPLTEEK	HIV	
TVNDIQKLVGK	HIV	
DVKQLTEAVQK	HIV	
AVVIQDNSDIK	HIV	
WTYQIYQEPFK	HIV	
VTVYYGVPVWK	HIV	
LTEDRWNKPQK	HIV	
ATDIQTKELQK	HIV	
OTKELOKOITK	HIV	

		
7	Intigen	Molecule
Sequence	Antigen	WOIGCOIR
WTVQPIVLPEK	HIV	
QVPLRPMTYK	HIV nef	
·	73-82	
QVPLYPMTFK	HIV nef	·
	73-82	
VPLRPMTYK	HIV nef	
	74-82	
AVDLYHFLK	HIV nef	
	84-94	
AVDLSHFLK	HIV nef	
	84-94	
ATLYCVHQR	HIV, p17,	
	82-90	
RLRDLLLIV	HIV-1 NL43	
	768-776	
RLRDLLLIVTR	HIV-1 NL43	
	768-778	ļ
RLRDYLLIVTR	HIV-1 NL43	
	768-778	
LRDLLLIVTR	HIV-1 NL43	
	769-778	
QIYQEPFKNLK	HIV-1 RT	
	507-517	ļ
AVFIHNFK	HIVcon	
RTLNAWVK	HIVcon	<u> </u>
ETAYFILK	HIVcon	
RLRPGGKKK	HIVgag	
	p17/2	<u> </u>
KIRLRPGGKK	HIVgag	1
	p17/2	<u> </u>
KIRLRPGGK	HIVgag	
	p17/2	
ETTDLYCY	HPV16	E7
GTLGIVCPICSQK	HPV16	E7

Sequence	Antigen	Molecule
LMGTLGIVCPICSQK	HPV16	E7
AVCDKCLK	HPV16	B6
PYAVCDKCLKF	HPV16	E6
HYCYSLYGTTL	HPV16	E6
FYSRIREL	HPV16	E6
TLEKLTNTGLY	HPV18	E6
KTVLELTEVFEFAFK	HPV18	E6
TMLCMCCK	HPV18	E7
NTSLQDIEITCVYCK	HPV18	E6
EVFEFAFK	HPV18	E6
KOSSKALOR	Leukemia	þ3A2 CMI
ATGFKQSSK	Leukemia	рза2 CMI
HSATGFKQSSK	Leukemia	рза2 СМІ
FKQSSKALQR	Leukemia	þ3A2 CMI
VTCLGLSY	MAGE1	1
ITKKVADLVGFLLLK	MAGE1	
LVGFLLLK	MAGE1	
VTKAEMLESVIKNYK	MAGE1	
TSCILESLFR	MAGE1	
NYKHCFPEI	MAGE1	
SYVLVTCL	MAGE1	
ETDPISHTY	MAGE1(a)	
ETDPTSHLY	MAGEl(a)	
ETDPTSNTY	MAGE1(a)	
ETDPTSHVY	MAGE1(a)	
ETDPTSHSY	MAGE1(a)	
ETDPASHTY	MAGE1 (a)	
EVDPTSHTY	MAGE1 (a)	
ETDPTGHTY	MAGE1(a)	
ETDRTSHTY	MAGE1 (a)	
EADPTSHTY	MAGE1(a)	
ETVPTSHTY	MAGE1(a)	

	<u> </u>	
Sequence	Antigen	Molecule
ETDPTSHTY	MAGE1	
	consensus	
ETDPTGHSY	MAGE1 T(a)	
MFPDLESEF	MAGE2	
TTINYTLWR	MAGE2	
VIFSKASEY	MAGE2	
LVHFLLLKY	MAGE2	
LVHFLLLKY	MAGE2	
LVHFLLLKYR	MAGE2	
PVIFSKASEY	MAGE2	
STTINYTLWR	MAGE2	
VVEVVPISH	MAGE2	
EYLQLVFGI	MAGE2	
IFSKASEYL	MAGE2	
SFSTTINYTL	MAGE2	
LYILVTCLGL	MAGE2	<u> </u>
FATCLGLSY	MAGE3	
VVGNWQYFFPVIFSK	MAGE3	
LIIVLAIIAR	MAGE3	
YFFPVI F SK	MAGE3	
NWQYFFPVI	MAGE3	
NWQYFFPVIF	MAGE3	
IFSKASSSL	MAGE3	
EVDPTSNTY	MAGE41	
RYPLTFGWCY	nef/182	
RYPLTFGWC	nef/182	
ATQIPSYK	PAP	<u> </u>
LTELYFEK	PAP	
HSFPHPLY	PSA	
TQEPALGTTCY	PSA	
VTKFMLCAGRWTGGK	PSA	
HVISNDVCAQVHPQK	PSA	<u> </u>

Ġ

Sequence	Antigen	Molecule
LYDMSLLKNRF	PSA	
ETDPTGHSY	T2 analog o	f MAGE-3

	والموالية			نبي								_								_				<u>. </u>												_	
1.0752	1,071	1.1162	1.0702	1.0736	1.0712	1.0707	1.0326	1.1024	1.0331	1.1623	1.1026	1.1091	1.0299	1.0869	1.1003	1.0311	1.0329	1.0335	1.0344	1.1027	1.1028	1.0756	1.0693	1.0705	1.0724	1.0764	1.0737	1.0715	1.0747	1.0749	1.0338	1.0317	1.0355	1.0005	1.0346	1.0300	Peptide
TIDVYMIMVK	LUNWCMQIAK	RLVHRDLAAR	QLRSLTEILK	XASINBIRIAX	CTORCEXCSK	TILWKDIFHK	DLSYMPIWK	VTAEDGTQR	ILKETELRK	TVCAGGCAR	CVNCSQFLR	LLDHYRENR	QVCTGTDMX	GVVRGILIK	KITDPGLAR	ILWKDIFHK	ILIKRRQQK	ALKENISPK	LVKSPNHVX	VVRCILIKR	MANTYMEN	MCDLVDAREY	ALTETINODAA	LIQRINFQLCY	RALOCIPREA	CTPTAENPEY	YVMAGVCSPY	しいいこころ	KLLDIDETEY	FTHQ5DVWSY	MANDIAID	KOUBBLIE	LTCSPQPEY	CTQLFEDNY	Азызакт	HILDMLRITH	Sequence
6	ă	0[10	2	0	10	9	9	•	9	9	•	•	•	9	9	9	9	•	•	•	ïO	ō	10	5	ō	ē	ō	6	5	•	9	9	9	9	9	*
c-ERA2	c-ERB2	c-ERB2	€-ERB2	c-ERB2	c-ERB2	c-ERB2	c-ERB2	c-ERB2	c-ERB2	c-ERB2	e-ERB2	c-ERB2	c-ERB2	\c-ERB2	c-ERB2	e-ERB2	c-ERB2	.e-ERB2	e-ERB2	c-ERB2	¢ERB2	c-ERB2	c-ERB2	¢-ERB2	c-ERB2	' c-ERB2	c-ER82	c-ERB2	c-ERB2	c-ERB2	c-ERB2	c-ER82	c-ERB2	c-ERB2	c-EKB2	-∢-ER82	Virus
																																					Strain
																																					Molecule
2	25	3	Ξ	Ķ	327	\$	607	322	2	218	528	808	2	899	86	167	83	157	852	699	8	1014	55	154	545	1239	3	204	848	668	562	10	133	₹	₩5	\$	Pos.
3,11	1,1	3.1	 	3.11	3,11	3.11	3.17	3,11	3,11	١.	<u>3,1</u>	3.1	<u>3</u>	3.11	3,11	3.11	3,11	3,11	3,11	3,11	3,11	-	-	-	-	-	-	-	-	-	-	-	 -	-	-		Motif
																						0.012	0.018	0.030	<0.0015	0.063	Ξ	=	1.3	2.7	0.0024	0.043	0.13	0.18	76	: • :	Α1
		. !																									0										A2.1
0.013	2	0.18	0.20	98.0	0.021	0.043	0.0008	40,0002	0.019	0.0004	0.0015	0.037	0.0007	0.0047	0.17	0.28	0.38	0.40	0.48	0.11	0.76	<0.0002	0.0024	0.0012	0.035	<0.0002	0.010	0	0.0017	0.0003	0.011	<0.0002	•	0	0000	0.037	A3.2
012	2	0	0013	0.22	0.61	3.6	0.010	\$10.0	0.0023	0.023	0.031	40.000€	2052	0.099	0.24	0.31	0.0097	0.013	0.070	0.73	0.0018	<0.0002	0.011	<0.0002	0.0050	0.0022	0.012	0	0	0.0005	0.0039	<0.0002	0.0061	0.028	0	0.0002	A11
: ا																											٥										A24

Table 4

	0.0099	0.0009			3,11	747			c-ERB2	10	KIPVAIKVLR	1.1139
	6	0.017			3,11	8			c-ERB2	10	GLACHQLCAR	1.1134
	0.013	0.0068			3,11	217			' c-ERB2	10	RTVCAGGCAR	1.1129
	1000	0.015			3,11	S			c-ERB2	10	GILIKRRQQK	1.0728
	0.016	0.0000			3,11	85			c-ERB2	10	VVPGILIKRR	1.1137
	0.0042	0.022			3,11	596			c-ERB2	10	CVARCPSCVK	1.0726
	0.033	0.018			3.1	8			c-ERB2	10	CVVPCILIKR	1.1136
	0.033	0.0072			3,11	972	<u> </u>		c-ERB2	10	LVSEFSRMAR	1.1143
	0.0005	0.040		!	3,11		! !		c-ERB2	5	ILKCGVLIQR	1.1127
	0.072	0.0035	: !	!	3,11	478		:	c-EKB2	10	HTVPWDQLFR	1.1133
!	19	0.017	; : 1	:	3.11	423		:	c-EKB2	10	SVFQNLQVIR	1.1131
	0.0072	000	:		. <u>3,</u> 11	35			c-ERIJ2	10	VLVKSPNIIVK	1.0745
	0.11	0.057	!	;	3.1	713	!		c-EKB2	01	RILKETELKK	1.0731
A24	À11	A3.2	A2.1	A1	Motif	Pos.	Molecule	Strain	Virus	AA	Sequence	Peptide
								~				

	6.65	0.000			3,11	523			EBNAI	10	GTALAIPQCR	1.1124
	20.61	2010			3,11	87			EBNAI	10	QTHIFAEVLK	1.0697
	3 5	200			3,11	578			EBNAI	9	AIKDLVMTX	1,0297
		2 2	1		3	514			EBNAI	9	KTSLYNLRR	1.1016
	3 5	3 5			12.	ş			EBNAI	9	GVFVYGGSK	1.0293
	2	3		9.01	4	S			EBNAI	5	GTWVAGVFVY	1.0683
				900	_	ŝ			EBNAI	5	PVCEADYFEY	1.0681
					-	8		Ì	EBNA1	9	PLRESIVCY	1.0295
				0.00	· : -	\$				9	VGEADYFEY	1620.1
24	<u>}</u>	2.5	A2.1	A1	Motif	Pos.	Molecule	Strain	Virus	٨٨	Sequence	Peptide
_												

اہ	آي	اب	امر	ر د	امر	امو	ابر	ای	ر.	٠,	مي	ļ.s	9.	,	n	اء	5	<u>~</u>	š	re	
5.0112	5,0060	5.0061	5.0101	5.0103	5.0108	5.0102	500%	5.0095	5.0104	5.0042	5.0054	5.0049	5.0048	2.0040	3	2005	5.0044	5.00%	2000	repude	
RFYIQMCTEL	AYERMONIL	PAIOMCLET	RMVLSAFDER	RSRYWAIRTR	STILEURSRY	RSGAAGAAVK	LILROSVAHK	KMIDGIGRFY	SLMQCSTLPR	CINDRNFWR	MOMOTELX	MVLSAFDER	MIUGRAFI	The state of the s	Rd LLS.Com	RMCNILKCK	ILROSVAHK	STLELKSRY	CTELKLSDY	Sequence	
10	9	9	10	10	10	5	5	ĕ	10	9	٠	·	-	ŀ	۰	6	9	9	9	3	
FW	FLU	FLU	עק	FLU	FLU	FLU	FLU	, ETN	FLU	FLU	FLU	71.0	2		FILE	E	FLU	FU	2	9	۲ ا
>	>	>	>	>	>	>	A	>	>	>	>	3		*	>	>	>	>	>		Strain
N	N.P	Ž	NP.	Ą	NP	NS	Z	Z	Z	Z	2		2	Z	Z	Ę	N.	Z	2		Molecule
8	218	39	8	S	376	173	264	2	165	Ş	ŧ	5 8	6	ಕ	\$	121	265	37	\$		Pos.
2	22	2	3		u	u	-	w	4			١,		ات	w	 	3	_	. i -	·	Motif
													i					0.020	3		<u> </u>
													-					-			A2.1
			a too	2012	0.001	0.019	0.30	S S		0.000	0.000	200	0.0016	0.059	0.031	0.2/	3				A3.2
			0.010	2015	0.010	200	200	מאין			200	200	2 2	0.0010	0.30	0.002	2000	2002			A11
9.13	216		30																		A24

																									•													
2,0231	1.05	2,0233	10774	2003	28	100	8	185	1.0806	1.0766	2.0241	1.0556	20242	1.03	7.83 1	20216	1.091	2039	1.833	1.0619	20121	20124	20115	1.037	1.0174	20119	2.0112	20120	2.0127	1.0166	1.0387	1.0208	2.0126	2.0125	1.0186	1.0155	Peptide	
TSCPPICPGY	_	TTPAQCTSMY	WLWCMDIDPY		_	HSASPOCSPY	PLDKCIKPYY	LSSTSRNINY	TTPAQGTSMY	LQDPRVRALY	KTFGRKLHLY	KTIKCRKLHLY	QTFGRKLHLY	KTYGRKLHLY	KTYCRKLHLY	QTECKKLHLY	HILADONA	13AVSAQTIST	LLDPRVRGLY	DILLDTASALY	STSRNINY	PSRCRLCLY	ASRDLAASA	SUMPLIANTS	PLDKGIKPY	Q5AVRKEAY	PSSWAFAKY	PSQPSRCNY	MSPTDLEAY	KYCNFICLY	LTKQYLNLY	PTTCRTSLY	MSTTDLEAY	PTTCRTSLY	SLDVSAAFY	LIVSVIGIT	Sequence	
5	10	5	5	10	ä	5	5	10	10	10	5	5	5	5	5	8	5	5	=	5	9	9	9	۰	9	-	٥	9	9	9	9	9	9	9	9	9	^	
НВУ	НВИ	1187	HBV	ИВИ	HBV	НВИ	ИВИ	HBV	HBV	HBV	НВУ	HBV	НВИ	HBV	ИВИ	ИВИ	ИВИ	ИВИ	ABH	НВУ	ABH	HBV	HBV	ИВИ	ABH	, HBA	ABH	ABH	ИВУ	ИВИ	ABII	HBV	HBV	IBV	1 IBV	HBV	Virus	
•ctr	đ	ayw	Ape	adr/adw	wbe	, ayw	adr	adr	wbs	wbe	e dr	adr	Byw	wbe	wbs	ayw	adr	ALL	adr	adr.	adr	adr/adw	ayw	wbe	adr	wbs	wbs	ayw	adw	adr	adw	adr	ğ	\LL	adr	adr	Strain	
	ğ		CORE		POL		PQL		PNA	2		کار		POL		POL	POL		WV	CORE				Ď	P					P _C	کار	ρc			35	CORE	Molecule	
226	22	28	5	2	133	767	98	1,035	126	120	1,069	<u>8</u>	1,087	1098	1,098	183 185	2	1,000	120	419	1,036	1364	\$	1092	\$	88	316	ž	1,550	బ్త	1280	1383	1,521	1,382	9	20	Pos.	3
-	_	-	- -	-	-	-	-	_	-	-	-	-	-	_	-	_	_	-	_	_	-	-	-	_	-	_	-	_	-	-	_	-	-	-	<u> </u> _	-	Moss	
810.0	0.030	000		0=	0.12	0.15	0.5	80	102	2	-0.36	202	037	0.57	0.89	Ξ	Ξ	2	6.3	Ξ	0.0097	0.011	0013	0.017	9100	0.025	005	0.057	0.067	0.068	0.50	0.77	8	1	172	25	2	:
				•		0					0.0002	0.0023		0.0020	0.0003		0.0025														ŀ						72.1	
			\$0,000	000	0	0.019	-	2009	-	0.014	0.15	0.094	0.0037	0.53	0.59	0.00%	0.014	A0.0009	0.17	٥					<0.0002					0.30	0.0003	٥	Q.UUA	0.000	0.003/	0.000/	25.2	<u>}</u>
		İ	COLOUNA	0020	0	0.017	6	-		, -	0.095	0.090	0.011	0.35	0.72	0.012	0.0048	0.0037	0	0					◆0.000					0.014	0.00/5	٦	, ,	, -	0.000	3	}	1
	!			٥		6				T	6			0.000	٥		0.0017																		 -		3	<u>.</u>

																																	_				
2.0173	2.0174	2.0188	2.0182	2.0181	2,0043	2.0054	5.0062	2,0060	2.0047	2.0050	2,0051	2.0038	2,0044	2.0039	2.0049	2.0048	2.0045	2.0046	2.0059	10061	2.0068	2.0094	5.0108	2.0245	20214	5.0107	2.0235	FC207	20219	2.0077	5.0056	2.0082	2.0116	2.0089	1.0910	2.0246	Peptide
SYQHFRKLLL	SYQHFRRLLL	LYRPLLSLPF	LYAAVINELL	LYSHPIILGF	SYQHFRRLL	LYQTPCRXL	AYRPPNAPI	CYPALMPLY	HYFKTRHYL	нуктупи	NYRVSWPKF	LYNILSPFL	LYSSTVPVL	LYSUSPFL	PYPNYTKYL	FYPKYTKYL	LYSSTVPS#	FYPNLTKYL	LYAAVTNEL	KYTSPPWLL	PTDLEAYFK	PTYKAFLCK	TSAJCSVVRR	AWDTAAGGIKA	LITAGLECKK	QAFIFSFTYK	SMYPSCCCTK	SMFPSCCCTK	SUPQEHIIQK	HLHQDIIKK	SAICSVVRR	CLHQSPVRK	IMPARFYPK	LLYQTFGRK	NLYVSLLLLY	KSVQHILESLY	Sequence
ō	ō	5	5	10	9	9	9	9	9	9	•	9	9	9	9	9	9	9	9	•	9	9	10	10	10	5	10	10	10	9	. 9	9	9	9	ō	10	AA
) IBV	ABH	НВИ	ABH	HBV	νви	НВУ	НВУ	ИВИ	ИВИ	НВУ	· HBV	HBV	НВИ	HBY	HBV	∨ H8V	УВН	НВУ	HBV	НВИ	НВУ	НВУ	НВУ	ABH	ABH	V HBV	НВУ	НВУ	ИВУ	ABH	1187	IBV	11BV	HBV	IIBV	Affil	Virus
adr/adw	ayw	ad.	adw	אנינ	ayw	ayw		ALL	adr	adw/ayw	wye	adır	edr	ayw	adw	ayw	adw/ayw	adı	wbe	ALL	Whe	ayw		ALL	ayw		ayw	adr/adw	eyw	eyw		ayw	ayw.	ayw	ad.	wbe	Strain
					-	ş r	NUC;XNUCFUS														:x:	Z	P _C		Ş	JOS.			POL	2	POL	ट्ट		POL	Jot		Molecule
578	3	1,371	 	9	63	280,1	<u>=</u>	1224	7,2	743	38	368	ည	×	718	718	3	<u>\$</u>	1,169	1,33	1552	1263	æ	1,123	108	85	25	35	1197	8	ន	. ₹	23	Ē	3	=	Pos.
24	×	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	=	=	3	u u	y	3	u,	3	ų	3	w	w	_ 	w	-	-	Motif
																																! !			0.015	910.0	A 1
	:																															:	j	!	<u> </u>		A2.1
																					0.0002	0.030	0.0006	0.16	0.95	0.15	::	0.43	0.36	0.041	\$0,000	92	0.98	1.8			A3.2
																					0.016	0.085	0.013	0.0076	0.021	13	1.73	1.9	t,	0.0075	0.067	0.025	1.5	0.64			A11
0.0%	0.16	0.25	0.32	Ξ	0.011	0.014	0.026	0.049	0.057	0.15	0.18	0.34	0.37	0.50	1.6	1.7	1.9	2.1	3.2	3.6																	A24

				_			·-		_					_	<u>, </u>	_						<u>.</u>				<u>.</u>	٠.,				_						
1 042	1.0219	1.0978	1.0982	1.0165	1.0993	1.0977	1.0975	1.0976	1.0972	1.0199	2.0074	1.0382	1.0980	1.0374	1.0172	1.0213	1.0152	1.1041	1.0369	1.0197	1.0991	1.0358	1.0987	1.0383	1.0848	1.0215	1.0367	1.0176	1.0370	1.0379	1.0189	1.0377	5.0115	2.0171	2.0172	2.0176	Peptide
RLVLQTSTR	FVLGCCRHK	RLVFQTSTR	LLLYKTFGR	NVSIPWTHK	KVFVLGGCR	ILYKRETTR	RLKLIMPAR	AVNHYFKTR	RLADEGLNR	PLYACIQSK	YVNTNMGLK	PLYACIQAK	WYDPSQFS#	CLHQSAVRK	LIKYLPLDK	QVLPKILHK	STISTGPCK	MIDEAHNAA	TVNENRRLK	PVNRPIDWK	ALRFISARR	STNRQLGRK	HLYPVARQR	PTYKAPLIK	XXTTTSAL	TTDLEAYFK	STVPSHVPK	RHYLHTLWK	VTKYLPLDK	LLYKTYCRK	LLYKTFCRK	YVSLMLLYK	NFLISLCIFIL	GYRWMCLRRF	AYRPPNAPIL	AHMATI BALK	Sequence
6	6	9	9	9	9	9	9	9	9	.9	9	9	9	6	9	9	9	9	9	9	9	9	6	9	6	9	9	9	6	9	6	9	10	10	ō	01	AA
HBV	HBV	ABH	VBH	УВИ	ARI4	HBV	HBV	HBV	HBV	HBV	HBV	HBV	HBV	ABH	ABH	ABH	HBV	HBV	HBV	HBV	HBY	HBV	HBV	HBV	HBV	HBV	HBV	HBV	HBV	· ABH	V8H	HBV	ABI	1184	1184	Affil	Virus
wbe	adr	¥.	2.	2	ad.	ed;	edr	4	ad-	adr	ayw	Mpe	adr	adw	adr	edr	edr	wbs	wbe	adr	adr	Mpe	adr	adw	adr	adr	adw	adr	adw	adw	adr	wbe		>l.L	٧٢٠	mke	Strain
JOL JOL	×	2	2	3	×	P _C	ş	Ş	ğ	잗	CORE	ΡOΓ	POL	POL	POL	יגי	ENV	POL	Ž	POL	-x-	ENV	POL	POL	POL	-x-	POL	POL	POL	POL	POL	POL.	POL				Molecule
7	SS	757	: 5	2	2	ğ	8	2	8	1230	ä	1259	25	828	693	1505	Ħ	740	떯	1197	1488	85	1257	1221	8	1523	8	3	72	1095	10%	3	ន	Ę	ន	21.5	Pos.
3,11	3,1	3.=	3.11	<u></u>	3,11	<u></u>	3	3.3	3,11	3.11	3.13	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3.11	3,11	3,11	3,11	υ Έ	3,11	3,11	3,11	24	24	2	24	Motif
				:	1						İ																							i	:		AI
																																					A2.1
0.064	0.065	0.068	0.073	0.072	0.042	0.095	0.095	0.0071	0.10	0.11	0.16	0.18	0.011	0.22	0.0039	0.10	0.011	0.030	9100	0.080	0.44	0.51	0.54	0.17	0.39	0.0006	0.021	1.2	0.014	2.5	5.0	0.31					A3.2
0.0002	9100	0.0032	0.0045	0.076	0.082	₹0.0005	0.0002	0.098	0.025	0.018	0.048	0.034	0.20	0.017	0.23	0.28	0.29	0.33	0.40	0.41	40,0005	0.34	0.0020	0.71	0.92	0.92	0.93	0.010	ī	0.40	0.30	7.4					A11
																																	0.0099	190	0 022	000	A24

		٠.,	<u>.</u>	- 1			_		<u>. </u>													<u>. </u>		<u>. </u>					<u>. </u>			· · ·				٠.	
1:0909	1.0793	1.1092	1.0781	1.0935	1.1148	2.0210	1.1071	1.1089	1.1072	1.1091	1.0581	1.1150	1.0547	1.1152	1.0562	1.0546	1.0789	1.1081	1.0586	1.0799	1.0554	1.0584	1.1153	1.0807	1.0543	2.0205	1.0564	1.0989	1.1047	1.0967	1.0981	1.0845	1.1046	1.1045	1.0170	1.1043	Peptide
YLVSFGVWIR	SECTIFICATION	RVCCQLDPAR	NALKALINI	MADSIA	STRHCDKSFR	XATKATATOX	SILPETIVVE	CTDNSVVLSR	TLPETTVVRR	SLFQPTICE	TVNCHQVLPK	RIRTPRTPAR	VICCVFLVDK	RLCLYRPLLR	SLCIHLNENK	TAYSHLSTSK	MLLYKTYGRK	LVVDFSQFSR	EAYFKDCLFK	TWNAHRNLPK	MASHINATIN	STIDLEAYER	RLPYRPTICR	SWASCCCLIK	TLWKAGILYK	XMHANHAAAL	TLAGEHIVLK	SVPSHLPDR	SVPSRLPDR	HISCLTFGR	LVCSSCLPR	LVSPCVWIR	ROLLANAT	NLYPVARQR	TVNEKRRLK	MLLYKTYCR	Sequence
10	5	10	10	5	10	5	10	ĩO	10	10	10	10	10	10	10	10	10	10	10	10	10	5	10	10	10	10	ŏ	9	9	9	9	9	9	9	9	9	^^
1187	1 JBV	JIBV	VBI	ABH	ABH	ABH	НВИ	нвч	НВУ	· HBV	HBV	НВУ	HBV	HBV	нву	нви	HBV	HBV	HBV	HBV .	HBV	HBV	HBV	нви	HBV	HBV	HBV	HBV	ABH	нви	ABH	. ∧8H	лвн	VBH	HBV	ABH	Virus
adr	adw	adr	Whe	adw	wbe	ayw	adr	adı	adr	adır	adr	adw	adr	adw	ødr	adr	adw	adır	adr	wbe	τρe	spe	adw	wys	adr .	wye	adır	ıpe	Mps	adır	upe.	adır	wbe	wbe	adr	Ape	Strain
CORE	7C).	×	Jor .	POL	IOL	껸	CORE	POL	CORE	گر اگر	×	<u>ک</u> ر	POL	کار	POL	POL	10 2	707	×	×	אסר	.x.	POL	ANG	POL	JOL	JQ.	POL	POL	CORE	25	CORE	βĘ	קר	POL	JQL	Molecule
亮	=	1422	12	23	792	721	165	1320	532	1377	1500	82	ž	1397	1150	858	1094	962	1527	. 1529	1065	1522	1	295	724	669	1179	1395	1424	494	1022	æ	1457	28	43	1094	Pos.
3,11	1,1	3,1	3.1	3.11	3,11	3,11	3,11	3,11	3,11	3,11	3,2	3,11	3,11	3.1	3,1	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3.11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3.11	Molif
			:	 																																	<u>}</u>
		:																																			A2.1
0.015	0.017	0.0019	<u>\$0.000</u>	0.029	0.0057	0.027	0.0005	0.025	<0.0003	0.077	0.073	0.17	0.035	0.19	0.20	0.26	0.61	0.0009	0.037	0.82	2.5	0.0066	2.8	1.5	3.5	0.0067	0.092	0.0004	0.0007	0.013	0.0008	0.0033	0.021	0.042	0.048	1900	A3.2
0.0027	0.014	0.023	0023	0.0087	0.038	0.053	0.068	0.072	0.053	0.043	0.092	0.0002	0.17	0.0049	0.078	0.092	0.020	0.63	0.74	0.65	0.012	2.7	0.030	3.4	1.0	4.2	5.6	0.010	0.010	0.011	0.015	0.020	0	0.0011	0.037	0.0032	A11
		<u>!</u>																																			A24

0.010	<0.0003			1	3	KXI	Mpe	ARIT	5	A logical Care	
Ļ	3			3,11	314	ENV	adw	Л8Н	10	PIPSSWAFAK	_
_	0.013			3,11	1185	J.O.	adr	14BV	10	IVLKLKQCFR	_
-	0.013	İ		601 3,11	3	<u> </u>	adr	1187	10	RLADEGLNRR	1.1075
_	0.0069			3.1	359	TOT.	adr	VIII I	10	YVCPLTVNEK	1.0535
-	0.0057			3,11	\$	TOJ	mke	118V	10	FVGPLTVNEK	2.0207
A11 A24	A3.2	A2.1	AI	Pos. Molif	Pos.	Molecule	Strain	Virus	^^	Sequence :	Peptide

1.1063	1.1067	1.0484	1.0485	1.1062	1.0480	1.000	1.55	100.	10137	1.0143	1.0120	1.0952	1,0122	1.0123	1.0090	1.0955	1.0139	20170	20169	20037	1.0489	1.0509	2.0036	1.0140	1.0145	2.0035	2.0034	1.0112	1.0118	Pepude	
LUFLLLADAR	GYCIYLLPNR	TLCFCAYMSK	HURCHSKKK	RMYVGGVEHR	WASHI JANITH	20000000	CVACAI VAEY	Circiaca	TAVESENK	EVICVQPEX	AVCTRGVAK	KTSERSQPR	HURCHSKX	LIPCHSKKK	RLGVRATRK	QLFTFSFRR	SVPAEILRIK	TITETTIANA	MYVGGVEHRL	EWLLLFILL	THCPTPLLY	GLSAFSLHSY	FTIFKIRMY	DVVCCSMSY	RVCEKMALY	LTPRCMVDY	VQDCNCSIY	NIVDVQYLY	CTCC:SSDLY	Sequence	
10	5	5	5	E	1	;	\$	•	•	•	9	•	9	9	•	•	9	õ	5	9	ö	ŏ	9	9	9	9	9	9	۰	3	
HCV	HQ.	HÇV	Ę	HCV		2	Ş	ĘĆ.	A H O	HCV	HCV	HQ.	H.C	ΗĆ	HCA	HCA	HCV	HCA	, HCA	HCV	HQ.	HCA	N. C.	HCV	S.C	Ϊ́Ο	HCV	HCV	IICV	vii us	<
																												-		2112111	Strain
NSI/ENV2	CORT			1000	NICI /ENIO	I ORF	LOAS	LORF	LORF	LORF	LORF	CORE	LORF	LORF	CORE	IANA	IORF.				LORF	LO _E		LORF	LORF		-	NSI/ENV	CX		Molecule
773	Z Z		1 2	2 5	3	127	1858	1042	2241	2563	1183	51	1390	139	c	3	1 2	1	g		3 5	ŝ	8	2416	2	3	2				Pos.
3,11	$^{+}$	+	十	+	┪	┪	3,11	-	İ-	Τ	H	t	十	+	3,1	1	3,5	: 3	2 2	2 2	-	-	-	-	-	. -		:-	-		Molif
												1									9	3	200	650.0	, ,	0.079	2 3	9	S .	1	<u> </u>
			Ì																			0.0004	CUMO		i	-	-	-	1		A2.1
0.013	2001	0.000	017	620	Z0	0.57	0.87	0.0095	0.010	20019	0,010	2 5		2 5		074	K	AIR					בונות				0.0000		-	-	A3.2
·	3	2002	0,13	0.025	0.012	0.0051	=	9	0.00	2000	2 6	2 5		2010		016	ORG	DRG				1000	00004				9.50	200	000	0100	A11
																			600	2006	=		0,000								A24

1.0013	1.0080	1.0024	1.0047	1.0938	1.0062	1.0036	1.0072	1.0939	1.0059	1.007	1.003	1.0016	1.0032	-09 ±	1.00%	20249	2.0190	20247	2006	20132	20063	20131	20065	20134	2004	20255	20251	1.042	1.04.1	1.0431	2.0252	1.0415	1.0412	1.0028	2.0129	1.0014	Peptide
F	<u> </u>	2	5	╌	-	┝	23	13	2	3	3	₹	8	Ē	\$	3	8	7	8	2	2	3	8	32	Z.	┝	2	2	-	Н	-	┝	⊢	8	29	ž	ă.
ILDIRQCPK	TVQCTHGIK	NTPVFAIKK	FVNTPPLVK	KIWPSHKCR	YLAWVPAHK	MCYELHPOK	INTOIQIX	KIWPSYKCR	QIIEQLIKK	CIPHPACLX	KLTEDRWNK	NWCKTPK	AIPQSSMTX	AVFIHINFKR	KLACRWPVX	LYPLASLESL	TEMPLE	IYKRWIILGL	MONMODLY	TOEPFOIL	IYQEPFIONL	TYQIYQEP	TYDINDEP	RYLKDQQLL.	RYLICOQUL	QMAVFILINFX	ISKIGPENPY	PAETCQETAY	LVAVHVASGY	EVNIVTDSQY	ALADACDYA	VIYQYMDOLY	VTVLDVCDAY	TVLDVGDAY	MOMMODLY	FRDYVDRFY	Sequence
۰	۰	۰	۰	9	۰	9	9	•	۰	•	۰	9	۰	9	9	ē	5	ē	٥	•	٠	9	•	9	9	5	5	10	10	5	10	10	10	9	9	9	۸۸
HIV	VIII	AIFI	AHI	VIH	νH	AH.	VΗ	ΛH	HIV	HIV	AIH	AIH	NΗ	ΗN	돌	ΑF	AFF	HQ.	ΛΉ	AIH	AIH	NH.	VIΗ	AIH	νH	, HIA	AIH	ΛΉ	VIΗ	ЧΙ	AIH	All I	HIV	AISI	AIK	Aft	Virus
																																					Strain
GAG	ENV	POL	₽ P	CAC	POT	POL	POL	CAG	POL	DC	VIF	PG.	전	7 0	POL													گر آگ	Įς.	වු		יסר	707	ΙĞΙ		CAG	Molecule
287	2420	ا <u>چ</u>	Ξ	£	127	25	1458	Š	1215	8	1712	193	8	Ž.	8561	506	266	266	3	900'l	, E	1,033	1,023 130,1	2,778	2,778	1,432	742	2 25	1329	1187	3	2	3	3	3	3	Pos.
3.11	3.	ن = :	3.1	3.11	3,11	3,11	3,11	3.11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	24	24	24	24	24	24	2	24	٦	24	ü	-	-	-	-	-	-	-	-	-	-	Motif
	-																										0.013	0.013	680	0.053	0.00	0.25	028	000	0.064	0.090	2
																																					A21
0.042	12000	0,003	0.012	0.077	0.077	0.064	0.025	0.12	16000	220	0.013	2005	Ξ	0.17	2.7											0.61						0.0007	0	â.0002			A3.2
0.0048	0.046	8	0.066	A.0005	0.057	00%	98	g Ø	0.16	280	0.77	Q 20	0.96	1.8	0.08											20						0,0090	0.000	0.00%			À
																0.014	0014	0.017	2003		220.0	0.20	0.30	20.30	0.76												A24

Pepiide 1.0015 1.0058 1.0054 1.0056 1.0078 1.0942 1.0463 1.0417 1.0407	Sequence RDYVDRFYK GIIQAQPDK VLFLDGIDK VLFLDGIDK LVDFRELNK KVVPRRKAK KVVPRRKAK TVQPIVLFEK AVFIHNFKRK KVLFLDGIDK KLVDFRELNK KVLFLDGIDK	300000000000000000000000000000000000000	Virus HIV HIV HIV HIV HIV HIV HIV	Strain	Molecule GAC: POL POL POL POL POL POL POL PO	Pos. 799 1199 11513 859 2185 935 1533 768		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.11 A1		A1 A2.1	A1 A2.1 A3.2
X X	PLDCIDK	5 5	AIH AIH		POL POL		768				3,11	3.11 0.36 3.11 0.51
	KLKPGMDGPK	5 5	ΛΉ		절	8		3,11	3,11	3,11		0.39
1.1056	KIQNFRYYX	5 5	AH		POL	1474		3 3	3,11	3,11	3,11 0,032	
1.0410	GIPHPAGLKK	ర	AIH		3	8		3,11	3,11	3,11		0.011
1.0426	MICGICCFIK	5 5	HTV HTV		2 2	£ =		3,11	3,11	3,11	3,11 0.056	
1.0413	MIKILEPFRK	ō	ЧΝ		Ž	859	₩	3,11	3,11	3,11		0.015
1.0453	VVIQONSDIK	5 5	AH.		POL	50	4-4	+	H	H	3,11	3,11 <0.0005
1.1059	IVQQQNNLLX	5 5	HA HA		GAG	22.5		3,11	+	+	+	3,11
1.0417	MOHWADALLA	ē	ΨIV		වූ	ŝ		\vdash	\vdash	\vdash	3,11	3,11 <0.0002
1.045	LYEICTEMEK	5 5	HV		کے	8		\vdash	\vdash	\vdash	\vdash	3,11
1.0392	LYQNANPDCK	ē	₩.		cAG	327	17	27 3,11	-	┝	3,11	-

_	 .				·-			_	, .					_													<u>. </u>			<u></u>										
1.1095	100	1.0591	1.0625	1.0605	1.0614	1.0629	1.0598	1.0606	1.0596	1.0998	1.0999	1,0853	1.0234	1.0997	1.0233	1.0237	1.0241	1.0226	1.0244	1.0243	1.0239	2.0030	20031	20024	20027	2,0029	20032	20161	20164	2.0160	1.0594	1.0913	1.0601	1.0599	2.0162	2.0159	1.0610	1.0230	1.0225	Peptide
CVYCKQQLLR	KLKHLNEKHR	DIILECVYCK	LTEVFEFAFK	GIVCPICSQK	LTEVFEFAFK	LLIRCLRCOK	LLIRCINCOK	LLIRCLRCQX	CTILLEQUINK	CIDFYSRIR	CIDPYSKIR	HLECYYCK	LIRCLECOK	KLRHLNEKR	NCPICSQX	SIPHAACHK	SIPHAACHK	MARDGETLL	SVYCDTLEX	SYYCOTLEX	SYYCOTLEX	AACDILLEKT	LYNLLIACT	JORNAGYV	CUSTACLL	ACKIALE	нтмисмеск	LLIRCLRCQK	YSRURELRHY	YSRIRELRIY	VACDKCTXEA	וווסוורצכא	CALELLACA	HCOTPILLHEY	YSKISEYRHY	YSKISEYRHY	LQDIETTCVY	QAEPDRAISY	ISEVRHYCY	Sequence
5	8	ö	ĕ	6	10	10	10	10	ō	9	•	•	٠	•	9	•	•	•	9	9	•	•	٠	•	•	9	9	10	10	10	10	ĕ	5	10	10	5	10	9	9	AA
HPV) JPV	Adii	VIII	JIPV) Adli	HPV	НРV	HPV	HPV	HPV	AdH	HPV	HPV	AAH	HPV	HPV	ΗPV	ЧP	HPV	HPV	HPV	H.	MH	HPV	MH	HPV	AdH	AdH	ΥP	MH	VAH	MPH	Adil	Adil	MAII	HPV	AdH	Adil	νчн	Virus
16	18	16	156	<u>.</u>	18	18	91	18	16	18	18	16	18	18	16	18	18	16	18	18	18	18	18	16	16	18	18	18	18	18	16	16	16	16	16	16	¥.	76	91	Strain
T	-63	26	E.	27 - ::	68	E6	£6	93	53	£6	E6	E	E	83	Ø	93	93	93	.E6	£6	63	£6	E6	Es	63	E6	E)	53	E6	23	-63	E6	63	63	93	93	7.	13	93	Molecule
37	=	32	=	33:	=	ã∣	\$	101	ន	&	83	ಜ	ន	117	89	જ	જ	33	2	22	2	85	98	69	87	ដ	ક	ē	2	2	8	8	<u>=</u>	2	7	7	25	\$	8	Pos.
ر ت: ا	3.11	3.21	;;; =	ئے: : = :	بر 1	3,=	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3.11	3,11	3,11	3,11	3,11	3,11	24	24	24	24	24	=	3	-	-	-	-	-	-	-	_	-	-	-	Modif
					:																							-	0.012	0.018	0.0095	0.032	0.033	0.087	0.1	0.17	0.25	0.021	7.8	2
	:		:		!																											·						<u> </u>		A2.1
0.011	E100	0.0065	0.0012	0.0017	8	0.56	2.2	0.076	0.010	0.010	0.017	0.0016	0.019	0.025	0.005	0.017	0.0094	0,010	0.70 65.0	92.0	0.39						0.020	0.081		^0.0002	0.0052			40.0002	£0.0009	<0.0009	0.00%	<0.0002	1100.0	A3.2
0.0059	0	0.021	2	0.060	2	2	ន្ទ	929	0.98	0.0009	0.0018	0.019	0.0012	<0.0005	0.023	0.12	025	0.67	0.95	Ξ	น						0,079	0.078		ð.0002	0.019			\$0.000 2	٥	٥	0.012	<0.0002	0.036)
			!	-																		0.010	910.0	0.032	0.057	£0														A24

1000	1.0444	1,0648	1,0447	1.0634	1,0257	1.1004	-18	184	6.0126	20151	20165	2,0010	10125	6,016.3	4.0144	6.0123	60119	4.0166	19103	6.0124	1,0123	161019	6,0062	SE LOT	60	41101	6,0065	1,0448	13/02	1103	20102	2010	Ē	2000	2	2,0009	6005	1,0259	1,0254	3,0173	1,025	3.0172	2,0020	Peptide
SCEORSLACK	LTCDNQIMPX	MLESVIXNYX	LLTQOLVQEX	XXITYMEUS	TADATADET	BONTENITT	SAMBAJDCI	XITVARLE	IMETANAS	LYBATCLGL	NYCHCARIP	ASDEMPLAN	MAKELBYTYE	KVEHLEVIK	IEDOLABIYASTI	MANYSANDAA	ASTAUGIOAND	XIIVAXELES	ADLVGRULK	KLESSEDAN	LPRAYTTICK	HSAYCEPUK	LYCECALLY	LTQULYQEX	ALASISYVK	RORTEMENT	TSTAXALET	DILYOBOYIC	VALLERSY	ATTAXAASIB	LIQULYQUIA	ANTILLTISSY	ANNEASTIN	ANILLISESS	CSANCHMOA	MOULLESS	ATTAXASL	LANGEKALEY	ENDPTCHSY	EVUPICHAY	TODLYQEKY	ALINELADYS	KUMMANA	Sequence
5	5	5	5	ō	. •	•	9	,	5	ĕ	5	•	8	ö	10	10	10	10	10	10	•	9	•	•		•	•	10	\dashv	┪	+	5	•	•	-	-	-	•	•	9	9	•	•	*
MACE	MACE	MAGE	MACE	MACE	MAGE	MAGE	MACE	MAGE	MAGE	MAGE	MAGE	MAGE	MAGE	MAGE .	MACE	MACE	MAGE	MAGE	MAGE	MAGE	MACE	MAGE	MACE	MAGE	MAGE	MAGE	HOVIN	MAGE	MAGE	MAGE	MAGE	MAGE	MACE	MACE	MAGE	MACE	MACE	MAGE	BOVW	MAGE	MAGE	MAGE	MAGE	Vinus
	1/3	1	-	1	7	-	1	1	1	و	1	J	1	-	-	1	1	1		ı		1	1	1	1	-	-	3	2	-	-	u	-	3	3	J	-	-	1	•	1	5/51	ı	Strain
									ngw				MARI			N.S.C	74			the state			Page 1		MAN		7			3							3							Molecule
֡֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡֡֡֡֡֡֡֡֡֡֡֡	52	178	238	8	239	8	219	8	776	115	135	16	270	125	2	265	ž	ß	ā	ğ	8	ę	ž	229	2	8	ä	ž	-	22	â	-	Į.	•	7	•	3	ž	ž	161	266	161	161	Pos.
	ונ	211	<u>.</u>	3.11	3,11	11,0	3,31	11.0	9.2	24	24	9.5	=	٦	-	٦	3	-	-	2	J	٠	-	J	ų	-	J	-	-	-	-	-	-	-	-	-	-	-	-	-	_	1	-	Motif
																	Ì											001	0.17	ŝ	:	2.0	2		ğ	ê	ŝ	2	=	1.9	2.1	9.9	ı	٨
																												Ì				1			İ	Ì	Ì							A2.1
	9020	014	0 0004	12	00002	0.016	0.0093	2					2	à.000	â 800 83	900	88	2	ğ	ŝ	203	ē	9,000,4	A 0003	Ç,	ê	ŝ		8000		A)0009			1	1	1		8	•	40,0002	0	0.0006	0.0002	A3.2
	001	0027	016	9	Q.	5	נ	u					Ş	0,007	0.012	0,000	2005	0.084	Ş	0,00	Ê	0,000	2004	22	٤	8	8	┪	ĝ	-	+	ğ		1	1	1	Ì	8	÷		0,0002	0.0006	60000	λII
									900	0.04	0.25	0.027									1					1			1		1	1	Ī	T	1	1	1	1	7	•		0		A24

_	-			<u> </u>				<u></u> .			<u> </u>			····
1.1116	1.1121	1.0679	1.1115	1.1113	1.0678	1.0287	1.0284	1.0285	1.0276	1.0278	1.0672	1.0667	1.0281	Peplide
CLAPPQHLIR	RVCACTGRDR	NTSSSPQPKK	VVRRCPHHER	KTYQGSYGFR	RTEEDNLRKK	ELNEALELK	RTEEDILRK	NTSSSPQPK	CTYSPALNK	RVRAMANK	RVEGNLRVEY	CTAKSVTCTY	CSDCTTHIY	Sequence
10	10	10	10	10	10	9	9	9	9	9	. 10	10	9	AA
p\$3	p53	p53	p53	p\$3	p53	P53	p53	pS3	p53	p53	p53	p53	p53	Virus
									,					Strain
														Molecule
187	273	311	172	101	283	343	283	311	124	156	196	117	922	Pos.
3,11	3.11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	-	-	1	Pos. Motif
											0.022	0.33	29.5	A1
												0		A2.1
0.013	0.014	0.0035	0.099	2.6	3.3	0.020	0.0015	0.0009	0.46	1.5	0.0014	0.023	0.0010	A3.2
0.0006	110.0	950.0	0.0017	88.0	0.0000	0.0052	1600	0.095	1.1	67.0	0.0020	0.049	0.029	A11
												0		A24

<u>.</u>			_						_	_	_			_		<u> </u>
3,0232	3.0162	3.0159	3.0160	3.0161	3.0231	3.0158	3.0230	3.0238	3.0236	3.0235	3.0237	3.0163	3.0166	3.0174	3.0175	Peptide
TALTHOSVA	VYNCLLPPY	TLYMOXYA .	LYCESVEN	LYFEKGEYF	XOLESSYLLE	XXXSJIQILV	TAMEILINIMK	KCEYFVEMYY	LIQLCMEQHY	ATSTISTIST	KTSTTSTA	ESYKHEQVY	VSCHILIELY	LCEYIRKRY	KGEYFVEMY .	Sequence
5	9	9	9	9	10	9	10	10	10	10	10	9	9	9	9	۸۸
PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	Virus
																Strain
																Molecule
309	302	183	213	318	25	12	263	322	당	228	230	፠	31		222	Pos.
24	24	24	24	24	=	=	Ų	-			_	-	-	-	-	Pos. Motif
								0.018	0.62	12	=	0.098	0.77	0.78	3.4	^1
									0.0005				<0.0002			A2.1
					△0.000	0.10	0.0%	0.0057	0.015	0.0005	0.0026	<0.0002	<0.0002	<0.0002	<0.0002	A3.2
					0.014	1.2	0.12	0.089	0.0024	0.0004	0.0004	0.0002	0.055	0.0002	0.0002	A11
0.024	0.032	0.11	0.44	2.5					0.0022	0	0	٥	٥	0	•	A24

200	<u> </u>		· · · · · ·		1	1					
Peptidel	Sequence		Virus	Strein	Molecuio	Pea	Metif	A1	432	A11_	! A24
1.0270	ALFERTELY	. 1	75A.		•	231		6011			
2.0137	VSHITTELY	10	/SA		1			Q.15	40,000	0.000,5	
1,0065	PLYOMBLLX	▼ .i.	FSA		!	-	I III		0.34	9.00	
1,0073	VVHYEKWIK	9 1	FSA		1	10	1.11		0.0072	0.000	
1002	YTEVVHYEK	9 1	FSA	1	1	4	111		0.0006	6.434	
1.1000	SUDMERLE	9 1-	/3A			100	771		94004	0.047	
1.0340	IVCCWECK	•	FSA			, 2	711		COLL	0.011	
1,000	OVHEOKYTK	. • 1	FSA			182	3.11		0.0000	6.534	
1.1112	STIEVVHYR	10	PSA.		1	227	3.11		236	0.23	
1.0463	LTAAHCHINK	1 10 1	FSA		1	B	1,11		0.14	0.003	
1,0461	LIVOCWECEX	· 10	PSA	· · · · · · · · · · · · · · · · · · ·	1	20	7.11		0.044	000	
1.0442	KAAHABKMIK	10	ISA		T	20	7711		0.04	200	
1.1111	VIDRALEAGE	10	FSA		1	186	231		0.0000	0.Ch2	
3.0100	MILELSEPA		FSA		1	118	Randomi				

۰	•	•	
	9	U	
•		2	
		¢	
i	ŀ	4	

				1000000	Dane.	Pos	Motif	NO1	A03	A11	A24
Bequence	Siso	Antigen	Strain	MOTOCOTO				Bind.	Bind.	Bind.	Bind.
EDTPIGHLY	6	HAGE3a	3	analog		161	A01	12.5000			
	٥	66.00	1	analog		161	A01	8.0000			
AVDPIGREI	ì	E GOWN	-	analog		161	A01	5.5000			
EVOPIAHLI	٤	2000 C-030				1213	A01	5.5000	0.0005	0.0010	
FSPAFORES	°	MAGEJa	F F	analog		161	A01	5.3500			
EVUALUALE	·	KAGEJa	F	analog		161	A01	5.0000			
EVOLUTION OF	ì	1	6	analog		161	A01	4.6500			
באחנותו	, 0	MAGE3a	-	analog		161	A01	3.4500			
A TOUR TOUR	100	MAGEBA	9	analog		161	A01	2.9500			
EVOL TORON	0	MAGEJa	3	analog		161	A01	2.6667			
2000	0	MAGEJA		analog		161	A01	2.4000			
EVOLUCIONE	10	NACE.	•			161	A01	1.5000			
EVUPASNII	1	2001				147	A01	1.2000	0.0005	0.0001	
PLSEDQLLY	1	Luc				2889	A01	0.8100	0.0002	0.0002	
LSAFSLHSY	2	HCV			_	277		0.5650			
IPSYKKLIMY	+	PAP				310	A01	0.5467	0.0003	0.0002	
YASCHLTELY	_	FAC	-	analog		161	AO1	0.3300			
EVDPIGHLA	╀					826	A01	0.2967	0.0003	0.0001	
CHOINKGHST	+	new-z/meu			_	225	A01	0.2600	0.0003	0.0003	
VGSDCTTIHY	7	650		100		161	A01	0.1800			
EVAPIGHLY	6	KAGE3a	F	borrus				1			

ď	١
9	,
40	٥
ř	4

Secure	8	Antioon	Strain	Molecule	Preq	Pos.	Motif	104	A03	A11	A24
								Blad.	Bind.	Bind.	Bind.
ESKPNPEGRY	ន	HER-2/heu				280	YOY	0.1800	0.0003	0.0003	
ASCVTACPY	٥	HER-2/neu				293	N 01	0.0552	0.0008	0.0074	
FSPAFDNLY	6	HER-2/neu				1213	A01	0.0425	0.0002	0.0002	
ASPLOSTFY	6	HER-2/neu				266	AOI	0.0290	0.0002	0.0004	
RGTQLFENDY	ន	HER-2/neu				103	A01	0.0205	0.0003	0.0015	
PASPLDSTFY	2	HER-2/neu				966	A01	0.0148	0.0003	0.0001	
PSQKTYQGSY	ន្ទ	p53				86	A01	0.0140	0.0003	0.0003	
KSTKVPAAY	6	HCV				1236	A01	0.0134	0.0009	0.0001	
DSSVLCECY	6	HCV				1513	AO1	0.0110	0.0002	0.0003	
KISEYRHYCY	10	нру	16	E6		79	A01	0.0000	0.0043	0.0038	
NLYVSLMLLY	10	HBV	wpw	POL	20	1088	A01	0.0000			
GTRVRAHAIY	10	p53				154	A01/03	0.0027	0.0365	0.0002	
LTCGFADLMGY	11	HCV				126	A01/11	2.4500	0.0003	0.0120	0.0001
VHAGVGSPY	6	HER-2/neu				773	A01/A03	0.0400	0.0575	0.0079	
TLWKAGILY	6.	HBV	adr	Pot	100	724	A03	0.0017	0.2667	0.0016	
KLNWASQIY	9	HIV		POL		958	A03	0.0070	0.1160	0.0006	
LVGFLLLKY	6	MAGEL	1			109	A03	0.0033	0.0563	0.0012	
ILRGISFVY	6	ABH	adr	Pot	80	1345	A03	0.0017	0.0440	0.0002	
RVLOGLPREY	2	HER-2/neu				545	A03	0.0015	0.0350	0.0050	

S
ø
Ы
Tal

		200 100	Strain	Molecule	Pred	Pos.	Motif	A01	A03	A11	724
Botton								Bind.	Bind.	Bind.	Bind.
307.00	•	au/ c-qan				795	A03	0.0024	0.0112	0.0039	
OT NET UBKY	0	HTV		GAG		274	A03	0.0017	0.0103	0.0002	
LLGDNQVHPK	10	HAGE2	2			182	A03		0.0093	0.0014	
OVRDOAEHLE	10	HIV		PoL		1419	A03		0.0089	0.0093	
LVSAGTRK	8	AIA	con			1246	F04		0.0091	0.0054	
VTDBGBOK	8	AIR	COD			1153	A03		0.0000	0.0065	
TVFDAKRLIGR	11	1	d snousbo	endogenous peptide seguences	vences		A03/11		0.1050	1.3000	
KTGGDTYKR	6		endodenone p	peptide seguences	uences		A03/11		0.0340	0.8200	
SLYTKWHY	6	PSA	1			237	A03/11	0.0017	0.6750	0.0140	
AVAAVAARR	6	ا ا	endodenous p	peptide sequences	uences		A03/11		0.1600	0.0825	
KIONFRUYY	6			POL		1474	A03/11	0.0056	0.1190	0.1350	
EMLESVIKNYK	11	KAGB1				127	A03/11		0.0087	0.0099	
EVAPPEYHRK	100	HLA-Aw68 endogenous peptide seguences	d snousbo	eptide seg	nences		A11		0.0008	0.0575	
ETAYPI.I.K	6	HIV	consensus			1321	A11		0.0037	0.0425	
RWGLLLALL	6	HER-2/neu				8	A24				1.2567
PYVSRLLGI	6	HER-2/neu				780	A24				0.1650
VYHINVKCW	6	HER-2/neu				951	A24				0.1640
AYSUTLOGE	6	HER-2/neu				440	A24				0.1250
SYGVTVWBL	6	HER-2/neu				907	A24				0.1200
LYISAWPDSL	97	HER-2/neu				410	A24				0.0835
VWSYGVTVW	6	HER-2/neu				905	A24				0.0800

				rante J							
Sequence	8180	Antigen	Strain	Molecule	Freq	Pos.	Motif	A01	A03	A11	A24
								Bind.	Bind.	Bind.	Bind
SYGVTVWELM	10	HBR-2/neu				907	A24				0.063
QYLAGLSTL	6	нсл				1777	A24				0.047
TYLPTNASL	9	HER-2/neu				63	A24				0.037
EXLVSFGVWI	10	жву		NUC	90	117	A24			-	0.033
KFMLCAGRW	6	PSA				190	A24				0.030
WFHISCLTF	6	нви		NUC	90	102	A24				0.030
TYSTYGKFL	6	нсл				1296	A24				0.022
VYHIMVKCHM	10	HER-2/neu				951	A24		·		0.021
RFRELVSEF	6	HER-2/neu				968	A24				0.018
CYGLGNEHL	6	HER-2/neu				342	A24		·		0.017
QYSPGQRVEF	10	нси				2614	A24				0.017
KWMALESIL	9	HER-2/neu				887	A24				0.014
EYLVPQQGFF	10	HER-2/neu				1022	A24				0.012
RYSEDPTVPL	10	HER-2/neu				1111	A24				0.011
RFTHQSDVW	9	HER-2/neu				898	A24				0.010

0.0051 0.0007 A24 0 <0.0002 <0.0002 <0.0005 <0.0002 9000.0 0.0033 0.0023 0.0011 0.0009 0.0012 0.0007 0.0014 0.0051 0.015 0.027 0.98 ALL 0 <0.0002 <0.0002 <0.0002 0.056 0.0014 9000.0 0.0007 <0.0002 0.0045 0.0013 0.0034 0.0040 0.0019 0.0069 0.015 A3.2 0.0006 A2.1 0 0.0005 <0.000 0.0002 <0.0009 0.0068 0.0033 0.0084 0.0048 0.0028 6.6 71 Motif 3,11 3,11 3,11 3,11 3,11 3,11 3,11 3,11 3,11 24 24 m Pos. 108 128 215 109 171 170 112 109 108 168 161 161 108 231 161 161 152 65 96 ~ Mol. Mage Strain 1/2/3 5/51 21 2 10 10 Ź 01 10 2 10 2 20 2 10 0 0 0 0 0 0 0 σ σ PTTINFTROR LVGFLLLKYR EKYLEYGRCR SYVLVTCLGL SLEQRSLHCK SLFRAVITKE **MLESVIKNYK** VLVTCLGLSY DLVGFLLLKY WEELSVMEVY VYDGREHSAY FLLLKYRAR ELVHPLLLK AYGEPRKLL QLVFGIDVR LVTCLGLSY **EVVPISHLY** EVVRIGHLY EADPTSNTY DLVGFLLLK LVGFLLLKY EVDPASNTY Baquence

S	
a	
<u> </u>	
ab	

Bequence	VV	Mage Strain	Mol.	Pos.	Hotif	A1	A2.1	A3.2	A11	A24
EVDPIGHVY	6	9		161	1	1.9		<0.0002	<0.0002	0
EMLESVIK	8	1		127				<0.0003	0	
LVFGIDVK	8	1		153	3			0.0035	0.0037	
GVQGPSLK	8	1		266	3	·		<0.0003	0.0063	
VNEVYDGR	8	1		220	3			<0.0003	0.0007	
VQEKYLEY	8	1		244	1	0.0018				
AYGEPRKL	8	1		231	24					0.0017
VKEADPTGHSY	11	- 1		159	1	<0.0003				,
IWEELSVMEVY	11	1		214	1	<0.0003				·
EHLESVIKNYK	11	1		127	3		0.0087	0.0099		·
EADPISHTY	9	analog		161	1	0.68				
EVDPISNIY	9	analog		161	1	1.8				
Ealeaqora	6	1		14	2.1		0	<0.0002	0	
HSLEORSLH	9	1		1	3			0.0025	0.0003	
QSPQGASAF	6	-		56	3			0.0004	0	
SAFPITINE	6	1		62	3		,	<0.0003	0	0.0003
TSCILESLE	9	1		90	3			<0.0003	0	
SCILESLFR	6	1		91	3		,	<0.0003	0.0026	
LFRAVITKK	6	1		97	3			0.011	0.0005	
VGFLLKYR	6			110	3			0.0044	0.0051	
ESVIKNYKH	6	1		130	3	·		<0.0003	0	
VIKNYKHCF	9	1		132	3			<0.0003	0	

Beguence	X	Mage Strain	Mol.	Pos.	Hotif	A1	A2.1	A3.2	A11	A24
ASESLQLVP	6	1,2		147	E.			<0.0003	0	
LGDNQIMPK	9	1	٠	183	3			0.0007	0.0048	
VHIAMEGGH	9	1		200	3			<0.0003	0	
YDGREHSAY	6	1		224	3			<0.0003	0	
LTQDLVQEK	6	1		239	3			<0.0003	0.14	
CGVQGPSLK	9	1		265	3			<0.0003	0.0037	
EMLESVIKNY	10	1		127	1	9000.0		<0.0002	<0.0002	0
KEADPTGHSY	10	, 1		160	1	<0.0005		<0.0002	<0.0002	,
ASAFPTTINF	10	1		61	3			<0.0003	<0.0002	
AFPITINFIR	10	1		63	3			<0.0003	0.0003	
PTTINFTROR	10	1		65	6			<0.0003	0.0002	
STSCILESLF .	10	1		89	3			<0.0003	<0.0002	
GFLLLKYRAR	10	1		111	3			0.0019	0.0008	
KAEMLESVIK	10	1		125	6			<0.0003	0.0097	
SVIKNYKHCF	ᄗ	1		131	3			<0.0003	<0.0002	
KASESLQLVF	10	1		146	E.			<0.0003	<0.0002	0.0012
DVKEADPTGH	10	1		158	íЭ			<0.0003	<0.0002	
LVHIAMEGGH	ខ្ព	-		199	3			0.0008	0.0005	
LSVARVYDGR	2	1		218	Ю			<0.0003	0.012	
VMEVYDGREH	10	П		220	3			<0.0003	0.0002	0
YGRCRTVIPH	2	-1		251	3			<0.0003	<0.0002	
SCGVQGPSLK	2	1		264	ю			0.0005	0.0089	

able 5

S
1 e
a
Ë

Bedrepce	\$	- Mage Strain	16 3.	Pos.	Hotif	۸1	A2.1	A3.2	A11	A24
VPDSDPARY	6	1	new	254	1	0.0038				
QVPDSDPAR	6	1	nev	254	3	·		<0.0003	0.0002	
VIKVSARVR	6	1	new	284	3			0.0016	0	
PSLREAALR	6	1	nev	296	3			<0.0003	0	
EFLWGPRAL	6	1	new	264	24					0.0006
ETSYVKVLEY	10	1	new	274	1	0.56				
LVQEKYLEYR	10	1	new	243	3			0.0008	0.0043	
QVPDSDPARY	10	1	new	254	3			0.0014	0.0003	
YVKVLEYVIK	10	1	new	277	£		·	0.0029	0.0015	
YVIKVSARVR	10	1	new	283	3			0.019	0.0009	
RALAETSYVK	10	1	new	270	11			0.18	0.24	
SYVKVLETVI	10	1	new	276	24					0.036
FFPSLREAAL	10	1	new	294	24		,			0.0044
SVIKNYK	7	N T	POL	131	3,11			0.0006	0.0028	
PVTKAEMLESVIK	13	1 n	E6	122	3,11			<0.0003	0	
ETSYVKULEYVIK	13	u T	E6	273	3,11			0.0044	0.0003	
ITKKVADLVGFLLLK	15	1 n	POL	102	3,11			0.40	1.0	
VTKAEMLESVIKNYK	15	1 n	POL	123	3,11			0.024	0.053	
VVGNWQYFFPVIFSK	15	3	POL	79	3,11			1.6	0.34	
PRALAETSY	6	1	пем	268	1	<0.0018		<0.0003	<0.0002	
FATCLGLSY	6	3		171	1	0.038		<0.0003	0.0004	
LEQRSTHCK	6	1	Men	3	£			<0.0002	0	·

ij	
ė	
ă	
ĭa	

Jan Mol. 1 new new new new new new new new new new						
9 1 new 9 1 new 9 1 new 9 2 1 new 9 2 2 2 8 8 2 8 9 2 9 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9	Mo1.	. Motif	A1 A	A2.1 N3.2	A11	N24
9 1 1 new 9 2 1 1 new 9 2 2 2 2 2 3 3 2 2 2 3 3 6 9 9 2 2 9 9 2 2 9 9 2 2 9 9 2 2 9 9 2 2 9 9 2 2 9 9 2 2 9 9 2 2 9 9 9 2 2 9	new	3		<0.0002	2 0.0011	
9 1 new 9 1 new 9 2 1 new 9 2 2 9 9 2 2 9 9 2 2 9 9 2 2 9 9 2 2 9 9 2 2 9 9 2 9 9 2 9 9 2 9 9 2 9 9 2 9	new	ю		<0.0002	2 0.0018	
9 1 1 new 9 2 2 2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	new	. 3		<0.0002	2 0	
9 1 new 9 2 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 9 2 9 9 2 9	new	п		<0.0002	2 0	
9 1 1 new 9 2 2 2 2 3 3 3 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Men	3		<0.0002	2 0	
9 ; 2 9 ; 2 9 ; 2 9 ; 2 9 ; 2 9 ; 2 9 ; 2 9 ; 3	new	3		0.0005	0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	new	3		0.0003	0.0026	
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2	3		<0.0002	2 0	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		E		0.089	1.1	
9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3		<0.0002	2 0	
9 2 2 6 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3		<0.0002	0 2	0.014
9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3		<0.0002	2 0.0001	
9 2 2 6 9 9 2 2 2 9 9 9 9 9 9 9 9 9 9 9		Э		<0.0002	2 0.0002	
0 0 0		3		0.043	0.010	
0 0 0		m		<0.0002	2 0	
2 2 2		8		<0.0002	2 0	
6		Э		<0.0002	2 0	:
	2 138	3		<0.0002	2 0.0022	
VIFSKASEY 9 2 142		9		0.081	0.033	
VVEVVPISH 9 2 159		3		0.0007	0.010	
LGDNQVMPK 9 2 183		3		<0.0002	2 0.0061	
EGDCAPEEK 9 2,3 205		6		<0.0002	0. 2	

							,			
esuenbeg	. \$	Mage Strein	Mo1.	Pos.	Motif	A1	A2.1	A3.2	AII	Z
Qeeegpstf	6	3		83	ε			<0.000	٥	
TPPDLESEF	6	3		90	. 3			<0.0002	٥	0.0
SEFOAALSR	6	3		96	3			<0.0002	0	
EFQAALSRK	6	3		97	ε			<0.0002	0.0001	
SVVGNWQYF	6	3		131	3			<0.0002	0	
VVGNWQYFF	6	3		132	3			0.0022	0.0021	
YFFPVIFSK	6	3		138	3			0.0020	0.027	
. ASSSLQLVF	6	, 3		147	3			0.0011	0.0089	
LMEVDPIGH	6	3		159	Ė			<0.0002	0	
IIVLAIIAR	9	3		196	9			0.0069	0.0011	
VQEKYLBYR	9.	1		244	11			<0.0002	0	
SNQEEEGPR	6	2		81	11			<0.0002	0	
NYKHCPPEI	6	1	nev	135	24					•
IFGKASESL	6	1	new	143	24					0.0
GFLIIVLVM	6	1	лем	193	24					0.0
IFSKASEYL	6	2		143	24					000
EYLQLVFGI	6	2		149	24					,
NWOYPPUI	6.	B		135	24					0
IFSKASSSL	6	3		143	24					0.0
LGSVVGNWQY	10	3		129	1	<0.0020		<0.0003	0.0012	
IFATCLGLSY	10	3		170	1	<0.0002		0.0005	0.0004	
TSCILESLFR	10	1	nev	06	3			<0.0002	0.015	

			IADIC	י ע						
gednence	2	Mage Strain	Mo1.	Pos.	Hotif	A1	A2.1	A3.2	A11	A24
LESVIKNYKH	ន្ទ	1	new	129	3			<0.0002	<0.0002	
REHSAYGEPR	10	1	new	227	3			<0.0002	<0.0002	
PDSDPARYEF	10	1	new	255	3			<0.0002	<0.0002	
LEYVIKVSAR	10	1	new	280	3			<0.0002	<0.0002	
VIKVSARVRF	10	1	new	283	3		·	<0.0002	<0.0002	
KVSARVRFFF	10	1	new	285	3			0.0013	0.0020	
STTINYTEWR	10	2		65	E			0.0014	0.091	
SSNQEEEGPR	10	, 2		80	3			<0.0002	<0.0002	
RMFPDLESEF	10	2		89	3			<0.0002	<0.0002	0.0016
ESEFQAAISR	10	2		95	3			<0.0002	<0.0002	
SEFQAAISRK	10	. 2		96	3			0.0012	0.0028	
ISRKMVELVH	10	2		102	3	·		<0.0002	<0.0002	
VELVHFLLLK	2	2		107	3			0.0009	0.0003	
ELVHPLLLKY	9	2,3		108	3			0.0066	0.0003	
LVHFLLLKYR	10	2		109				0.026	0.0022	
HFLLLKYRAR	10	2,3		111	3			0.0014	0.0002	
KAEMLESVLR	10	2		125	3			<0.0002	0.0009	
ESVLRNCQDF	10	2		130	m			<0.0002	<0.0002	
SVLRNCQDFF	10	2		131	3			<0.0002	<0.0002	
NCQDFFPVIF	10	2		135	3			<0.0002	<0.0002	
QDPPPVIFSK	10	2		137	3			<0.0002	0.0083	
PVIPSKASEY	10	2		141	æ			0.016	0.0033	

Table 5

		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								
Sednence	2	Strain		Pos.	Notif	A1	A2.1	A3.2	A11	N24
KASEYLQLVF	10	2		146	3			<0.0002	<0.0002	0.0030
EWEWPISH	10	2		158	æ			<0.0002	<0.0002	
VEVVPISHLY	10	2		160	3			<0.0002	<0.0002	
ILVTCLGLSY	10	2		170	3			0.0036	0.0002	
LLGDNQVMPK	10	2.		182	9			0.0093	0.0014	
IEGDCAPEEK	10	2		204	3			<0.0002	<0.0002	
STPPOLESEF	10	6		68	3	-		<0.0002	<0.0002	
ESEFOALSR	101	, 3		56	3			<0.0002	<0.0002	
SEFQAALSRK	10	3		96	3			0.0010	0.0010	
LSRKVAELVH	10	3		102	3			<0.0002	<0.0002	,
ABLUHFLLLK	10	3		107	3			0.0008	<0.0002	
LVHFLLLKYR	10	3		109	3			0.040	0.0014	
GSVVGNWQYF	10	3		130	3			0.0020	0.0008	
SVVGNWQYFF	10	3		131	3			0.0085	0.0067	
KASSSLOLVF	10	3		146	3			0.0003	0.0008	0.0021
ELMEVDPIGH	위	3		158	3			<0.0003	<0.0002	
MEVDPIGHLY	10	3		160	3			0.0004	0.0004	
VDPICHLYIF	10	Ю		162	3			<0.0003	<0.000	
LIIVLAIIAR	10	3		195	3			0.028	0.0021	
REGDCAPEEK	10	3		204	3			<0.0003	<0.0002	
RQPSEGSSSR	10	1	new	74	11	·		0.0009	0.0009	
LQLVFGIDVK	10	1	new	151	11			0.0050	0.0018	

Table 5

Sequence	2	Mage	Wol.	Pos.	Motif	A1	N2.1	A3.2	AII	A24
ROVPDSDPAR	01	1	new	252	11			<0.0003	<0.0002	
MNYPLWSQSY	10	3	new	89	11			<0.0003	<0.0002	
GFLIIVLVMI	10	τ	new	193	24		-			0.0008
SFSTTINYTL	10	2		63	24			·		0.015
EFQAAISRKH	10	2		97	24					<0.0002
LYILVTCLGL	10	. 2		168	24					0.014
NWOYFFPVIF	10	3		135	24					0.017
AVDPIGHLY	6	٤ ′	analog	161	1	8.0				
EADPIGHLY	6	£	analog	161	ï	3.5				
EVDPASNTY	9	4		161	1	1.5				
EDTPIGHLY	6	3	analog	161	1	13			,	
EVDPTGHLY	6	3	analog	161	. 1	3.0		·		
AADSPSPPH	9	2		55	A11					
VPISHLYIL	6	2		170	P1					
HPKTGLLII	9	2		196	P1					
SMLEVFEGR	9	2		226	A11					
DSVFAHPRK	9	2		236	A11					
VFAHPRKLL	9	2		238	A24					
MODLVQENY	9	2		247	A01					
DPACYEFLW	6	2		265	P2					
FLWGPRALI	6	2		271	A02					
ALIETSYVK	9.	2		772	A03/A11					

Table 5

•	•	٦	
		1	
•	ć	3	
•	-	4	

Sequence	*	Mage Strain	Wol.	Pos.	HOLLE	A1	A2.1	A3.2	A11	A24
TSYVKVLHH	6	2		281	A11					
TAAKSIHAB	9	2		296	P1					
ISYPPLHER	6	2		299	A03/A11					
YPPLHERAL	6	2		301	P1					
EPVTKAEHL	6	2/3		128	P1					
VPGSDPACY	6	2/3		261	P2					
EGLEARGEA	6	3		14	A03					
GLEARGEAL	6	, 3		15	A02					
EARGEALGL	9	3		17	A02					·
ALGLVGAQA	6	6		22	A02/A03		i			
GLVGAQAPA	6	Ю		24	A02/A03	·				
LVGAQAPAT	9	3		25	A02					
PATEEQEAA	6	3		31	A02/A03					
Earsssstl	9	٣		37	A02					
AASSSSTLV	6	М		38	A02					
LVEVTLGEV	6	3		45	A02					
EVTLGEVPA	6			47	A02/A03					
VTLGEVPAA	6	3		48	A02/A03					
LPTTHNYPL	6	3		71	P1					
POLESEPOA	6	6		66	A03					
HFLLLKYRA	9	Ю		118	A03					
FFPVIFSKA	6	£		146	A03					

Bequence	2	Hage	. Kol.	Pos.	Hotif	A1	A2.1	A3.2	A11	A24
DPIGHEYIF	6	3		170	P2					
GDNQIMPKA	6	3		191	A03					
MPKAGLLII	6	3		196	P1					
AGLLIVLA	. 6	3		199	A03					
KIWEELSVL	6	3		220	A02					
SVLEVFEGR	6	3		226	A03/A11					
EDSILGDPK	6	3		235	A03/A11					
SILGDPKKL	6	6 ,		237	A02					
ILGDPKKLL	6	3		238	A02		-			
FLWGPRALV	6	3		271	A02					
PRALVETSY	6	3		275	A01					
RALVETSYV	6	3		276	A02					
ALVETSYVK	6	3		277	A03/A11					
LVETSYVKV	6	3		278	A02			•		
YVKVLHHYV	6	3		283	A02					
KVLHHWYKI	6	3		285	A02			·		
MVKISGGPH	6	3		290	A03/A11					
ISGCPHISY	6	3	,	293	A01/A03/A11					
GPHISYPPL	6	3		296	P1					
YPPLHEWVL	6	3		301	P1		·			
VPISHLYILV	10	2		170	P1					
HPKTGLLIIV	10	2		196	P1					

Table 5.

Table 5

	-	Mage	Kol	Pos.	Motif	A1	A2.1	A3.2	A11	A24
	5	,		230	A24					
upper twon.	: =	,		241	p1					
ANAON JOOK 1	2 2	2		246	A01					
EFI-WCPRAL.I	2	2		270	A24					
GPRALIETSY	2	2		274	P2					
RALIETSYVK	2	2		276	A11					
SYVKVLHHTL	ន	2		282	A24					
SYPPLHERAL	9	, 2		300	A24					
APEEKIWEBL	101	2/3		216	P1		·			
PLEORSQUCK	2	3		2	A03/A11					
HCKPEEGLEA	9	3		- 9	A03					
EARGEALGLV	2	9		17	A02					
RGEALGLVGA	ន	3		19	A03					
EALGLVGAQA	ន	3		21	A02/A03					
LGLVGAQAPA	10	3		23	A03					ŀ
GLVGAQAPAT	10	3		24	A02					
QAPATEEQEA	10	3		29	A02/A03					
EAASSSSTLV	10	3		37	A02					
TLVEVTLGEV	10	3		å	A02					
BUTLGEVPAA	유	3		47	A02/A03					
PDPPQSPQGA	10	3		59	A03					
LPTTMNYPLW	01	•		7.1	P2					

Sequence	5	Mage Strain	No1.	Pos.	Motif	A1	A2.1	A3.2	A11	A24
PDLESEFOAA	10	3		66	A03					
YFFPVIFSKA	10	£		145	A03					
LGDNQIMPKA	10	3		190	A03					
HPKAGLLIIV	10	3		196	P1					,
EVFEGREDSI	10	3		229	A02					
EDSILGDPKK	10	3		235	A03/A11					
SILGDPKKLL	10	3		237	A02				·	
ILGDPKKLLT	10	, 3		238	A02					
GDPKKLLTQH	10	3		240	A03/A11					
DPKKLLTQHF	10	3		241	P2					
LTQHFVQENY	10	3		246	A01/A03/A11					
FVQENYLEYR	10	3		250	A03/A11					
ACYEFLWGPR	10	3		267	A03/A11					
GPRALVETSY	10	3		274	P2					
RALVETSYVK	10	3		276	A03/A11					
ALVETSYVKV	10	3		277	A02					
LVETSYVKVL	10	3		278	A02					
YVKVLHHMVK	10	3	·	283	A03/A11					
MVKISGGPHI	10	3		290	A02				·	
KISGGPHISY	10	3		292	A01					
SPPHSPQGA	6	2		. 60	P2A					
APATEEQEA	6	3		30	P2A					-

Table 5

Beguence	\$	Mage	Kol.	Pos.	Motif	A1	A2.1	A3.2	A11	A24
DPPQSPQGA	6	3		09	P2A					
APATEEQQTA	10	2		30	P2A					
FPDLESEFOA	10	2/3		98	P2A					
APATEEGEAA	10	3		30	P2A					
DPIGHLYIFA	10	3		170	P2A					
EADPTGHSY	6	1		161	1	0.56	0	٥	0.0002	<0.0002
KVADLVGFLL	01	1		105		0.0005	0.041	0.0039	0.0030	0.00.0
ASSLPTTHNY	10	£ ,		8	1	2.3			0.043	
TODLVOEKY	6	7		240	τ	0.57	0.0001	0	0	0
LVOEKYLEY	6	1		243	£	016	0	0.0016	0.0098	0
ILLWOPIPV	6	٣				<0.0007	1.4	0.0048	0.0048	0
EVDPIGHLY	6	6				3.7			0.0022	
ASSPSTTINI	10	2		8	τ	0.016	0	0.0016	0.0054	0
VTCLGLSY	8	1		172	τ	0.022	, o	0.0001	0.0007	0
SSLPTTMNY	6	3		6	1	0.037	0	0.013	0.12	0
GSVVGKWQX	6	3		77	1	0.0059	0	0.0009	0.025	0
DLVQEKYLEY	10	1	Mau	242	9	0	0	0.0010	0	0
SSFSTTINY	6	2		6	-1	0.016	0	0.0095	0.056	0
MLESVIKNY	6	1		128	1	0.0016	0.0002	0.0006	0	0
KHVELVHPL	6	2.				<0.0007	0.13	0.0007	٥	0.0043
KMVELVHPLL	유	2		105		<0.0008	0.071	0.0004	0.0001	0.0008
LVPGIELMEV	ន	3				0.0030	0.065	0.0007	0	0

Table 5

Bequence	\$	Mage Strain	Wol.	Pos.	Hotif	A1	A2.1	A3.2	AII	A24
SLFRAVITK	6	1		96	3,11	<0.0007	0.0001	3.9	2.6	٥
ADLVGFLLLK	10	1		107	3	0.0012	0.0003	0.0081	0.022	0
ESLFRAVITK	10	1		95	3	<0.0008	0	0.0000	0.0052	٥
HLESVIRNYK	10	ι				0	0	0.034	0.0045	٥
LVGFLLLK	8 .	1		109	3	0.0029	0.0002	0.027	0.034	0
TTINFTROR	6	1.		99	3,11	0	0	0.051	0.40	D
LLGDNQIMPK	10	ε/τ		182	3,11	<0.0007	0.0001	0.022	0.016	0
SVMEVYDGR	6	1 1		219	3,11	<0.0006	0	0.059	0.32	0
HSAYGEPRK	6	1		229	3	0.0007	0	0.00.0	0.0015	0
LLTQDLVQER	10	1		238	3,11	<0.0007	0	0.0014	0.011	0
LTQDLVQEK	6	1		239	3,11	0.0011	0	0.0002	0.16	0
NYKHCFPEIF	10	-		135	24	0	0	0	0	0.26
LYIFATCLGL	10	3		115	24	<0.0007	0	0.0006	0	0.0035
NYPLWSQSY	6	ы		16	24	<0.0006	0	0	0.0001	0.016
SYVLVTCL	В	1		168	24	0.0029	0.00025	0.0020	0.0002	0.0026
ETSYVKVLEY	10	1				0.075	0	0.0009	0.0004	0
TSYVKVLEY	6	1		275	3	0.082	0	0.23	0.013	0
FLWGPRALA	6	1			•	<0.0006	0.027	0.0015	0	٥
ALAETSYVKV	10	1		271		<0.0007	0.017	0.0011	0.0029	٥
RVRFFFPSLR	10	1		290	3	<0.0007	0	0.25	0.0035	0
ALAETSYVK	6	1				<0.0006	0.0002	0.17	0.39	0
LTQDLVQEKY	10	1		239	1	0.041	0	0	0.0002	Ó

able 5

S
ĭe
Tab
_

	\$	Mage Strain	#601.	Pos.	Motif	A1	N2.1	A3.2	A11	A24
GFLLLKYRA	6	1		Ŀ				0.0004	0.0002	
CFPEIFGKA	6	1						0	0	
FFFPSLREA	6	1						0	0	
FFPSLREAA	6	1						0	0	_
HCFPEIFGK	6	1		138	3,11			0.0017	0.0022	
RSLHCKPEEA	10	1					·	0.0001	0.0008	
EPLWOPRALA	10	1						0	0	
RFFFPSLREA	10	, 1						0.0004	0	
FPFPSLREAM	10	1						0	0	

Sequence	Antigen	Strain	Strain Molecule	Position	Motif	ΙΥ	A2	A3	AII	A24	Max.
						Binding	Binding	Binding	Binding	Binding	Binding
FSPAFDNLYY	c-ErbB2			1213	AUI	5.5000		0.0005	0.0010		5.5000
CMQIAKGMSY	c-ErbB2			826	AUI	0.2967		0.0003	0.0001		0.2967
ESMPNPEGRY	c-FirbB2			280	AOI	0.1800	; ; ;	0.0003	0.000	:	0.1800
ASCVTACFY	~			293	AOI	0.0552		0.0008	0.0074		0.0552
FSPAFDNLY	-			1213	AUI	0.0425		0.0002	0.0002	! !	0.0.125
ASPLDSTFY	c-ErhB2			700	AOI	0.0290	 	0.0002	0.0004	i	0.0290
RGTOLFEDNY	2			<u> </u>	AOI	0.0205	! !	0.000	0.0015		0.0205
PASPLDSTFY	c-EihB2			966	Au	0.0148		0.0003	0.0001	:	87:0:0
LSAFSLHSY	2			2889	AOI	0.8100		0.0002	0.0002	: :	0.8100
KSTKVPAAY	IC I			1236	Ani	0.0134	:	0.0000	0.0001	:	0.0134
DSSVLCECY				1513	AOI	0.010		0.0002	0.0XXJ		0.010
ETDPIGHLY	MAGE-3a	<i>س</i> /	analog	191	AOI	12.5000	; 			<u>:</u> 	12.5000
AVDPIGHLY	F73 *	3	analog	191	AUI	8.0000					8.0000
EVDPIAHLY	***		analog	191	A	5.5000	: : :				5.5000
EVDAIGHLY		0	analog	191	AOI	5.3500	:	 		-	5.35(10)
EVDPIGALY		6	analog	191	AOI	5.0000	<u>-</u> ! !				5.0000
EVDPIGHAY	MAGE-3a	0	analog	191	AOI	4.6500	<u> </u>			-	4.6500
EADPIGHLY	MAGE-3a	3	analog	191	AOI	3.4500	<u> </u>				3.4500
EVDPTGIILY	MAGE-3a	3	analog	191	AOI	2.9500	 			:	2.95(11)
EVDPIGHSY	MAGE-3a	3	analog	191	ADI	2.6667		<u> </u>			2.6667
EVDPAGIILY	MAGE-3a	٣	analog	191	AOI	2.4000		<u></u>		<u>.</u> i	2.4000
EVDPIGHLA	MAGE-3a	3	analog	191	AOI	0.3300				<u>:</u> 	0.3300
EVAPIGILY	MAGE-33	3	analog	191	A01	0.1800				<u> </u>	0.1800
EVDPASNTY	MAGE-4	4		191	A01	1.5000					1.5000
VGSDCTTIHY	253			225	AOI	0.2600		0.0003	0.000		0.2600
PSOKTYOGSY	p53			86	A01	0.0140		0.0003	0.0003	i 	0.0140
PLSEDOLLY	PAP			147	All	1.2000	<u> </u>	0.0005	0.0001		1.2000
IPSYKKLIMY	PAP	j	į	277		0.5650					0.5650
YASCHLTELY	PAP			310	A01	0.5467		0.0003	0.0002		0.5467

Sequence	Antigen	Strain	Molecule	Position	Motif	A1	A2	A3	A11	A24	Nax.
						Binding	Binding	Binding	Binding	Binding	Binding
RVLQGLPREY	c-ERB2			545	A03	510000		0.0350	0.0050		0.0350
	c-ERB2			795	A03	0.0024		0.0112	0.000	: : : :	0.0112
VMAGVGSPY	c-ErbB2			773	!	0.0400		0.0575	0.0079		0.0575
11.WKAGILY	\ E		POL	724	•	0.0017		0.2667	0.0016		0.2667
1 LRGTSFVY	1817	adr	POL.	1345	!	0.0017		0.0.140	0.0002	:	0.04.10
KLIMASQIY	<u> </u>		POL	958	A03	0.0070		0.1160	0.000	:	9.1.0
GLNKIVRMY	>		GAG	27.4	A03	0.0017	!	0.0103	0.0002	!	0.0103
LVGFLLLKY	MAGE-I	_		3	V03	0.0033	: :	0.0563	0.0012		0.056.3
GTRVRAMAIY	p.53			151	V03	0.0027	 	0.0365	0.0002	!	0.0365
KJONFRVYY	<u> </u>		POL	1474	AU3/AII	0.00156		0.1190	0.1350		0.1.350
SLYTKVVHY	PSA			_	A03/A11	0.0017		0.6750	0,0140	•	0.6750
LTCGFADIMGY	ICV	•		126	A I	2.4500		0.0003	0.0120	10000	2.45()()
ETAYFLLK	HIV	บ้อว		1351	AII			0.0037	0.0425	:	0.0425
RWGLLLALL	c-ErhB2			œ	A24					1.2567	1.2567
PYVSRLLGI				780	A24				- ! !	0.1650	0.1650
	c-ErhB2		. !	951	A24			:	; i	0.1640	0.1640
AYSI,TLQGI,	c-ErbB2			2	A24					0.1250	0.1250
!	c-ErbB2			206	A24					0.1200	0.1200
j	c-ErhB2			=	A24	-				0.0835	0.0835
VWSYGVTVW	c-ErhB2			905	A24					0.080.0	0.080.0
Σ	c-ErhB2			907	A24					0.0630	0.0630
	~			63	A24			!		0.0375	0.0375
VYMIMVKCWM	_		-	951	A24			 		0.0218	0.0218
RFRELVSEF	~			968	A24					08110	0.0180
	~			342	A24					0.0176	0.0176
KWMALESIL	-			887	A24					0.0149	0.0149
- 1	c-ErhB2			1022	Λ24					0.0120	0.0120
RYSEDPTVPL	c-ErbB2	•		====	A24					0.0117	0.0117
	c-ErbB2			868	A24					0.0107	0.0107

Table 5

S
٠.
<u> </u>
5
ď
н

					,,,	•	-	- C Y		774	×
	Anthon	Cirolin	Ctrain Malecule (Position	Position	Non	_	7 Y	2			
Sednence	11.0								Diadlan	Dinding	Rinding
	 					Binding	Bluding	Bunding	Summig	SHILLING	D6
										36600	25500
	11017		JIIN	117	A24					CCCU.O	0.000
EYLVSFGVWI 1110 V	<u> </u>		200		١.		i .			10000	וווענווע
	1		2	133						10000	17.11.31.71
WFILISCLTF			ر 1	7/1	- 1		-				10000
					i						C #1:
1E0 154 150	<u>ح</u>										19 19 11 11
	:		1		•		!		-	0.0225	()()225
100000000000000000000000000000000000000	<u>ک</u>			967							
1211671	י כ	1			:		:			0.0175	0.0175
700	2			7614							
OYSPCORVER	<u>ح</u>				-		-		i		2000
		!		1001	+.C. \						
Macket	∀										
ことうてノコニュー		_									

Table 6

	, <u>, , , , , , , , , , , , , , , , , , </u>	
AA	SEQUENCE	SOURCE
9	GLNKIVRMY	HIV GAG 274
9	KLNWASQIY	HIV POL 958
9	KIQNFRVYY	HIV POL 1474
9	TLWKAGILY	HBV adr POL 724
9	ILRGTSFVY	HBV adr POL 1345
9	SLYTKVVHY	PSA 237
9	NTSSSPQPK	p53 311
9	NVKIPVAIK	c-ERB2 745
10	TLGFGAYMSK	HCV LORF 1261
10	GTRVRAMAIY	p53 154
10	EAYSPVSTSK	HBV adw POL 887
9	QITKIQNFR	HIV POL 1471
9	NITGLILTR	HIV ENV 2633
9	FLWEWASVR	HBV adr ENV 324
9	RTPSPRRRR	HBV adr CORE 549
9	SLARGNQGR	HBV adr POL 805
10	VAYQATVCAR	HCV LORF 1587
10	KTYQGSYGFR	p53 101
9	WMCLRRFII	HBV ayw 237
9	WMCLRRFII	HBV ayw 237-245
9	KFMLCAGRW	PSA 190
10	IMPKTGFLII	MAGE 1 188
8	ETAYFLLK	HIV con 1351
11	LTCGFADIMGY	HCV 126
9	CSPHHTALR	нв∨
		NUC;XNUCFUS 48
9	VMPKTGLLI	MAGE 2 188
9	VMPKTGLLI	MAGE2 188-196
9	VAELVHFLL	MAGE 3 106
9	IMPKAGLLI	MAGE 3 188
10	VMPKTGLLII	MAGE 2 188
10	VMPKTGLLII	MAGE2 188-197

9 ASCVTACPY c-ErbB2 293 9 VMAGVGSPY c-ErbB2 773 9 ASPLDSTFY c-ErbB2 997 9 FSPAFDNLY c-ErbB2 1213 9 KSTKVPAAY HCV 1236 9 DSSVLCECY HCV 1513 9 LSAFSLHSY HCV 2889 9 PLSEDQLLY PAP 147 9 YAVCDKCLK HPV 16 E6 67 9 CMSCCRSSR HPV 16 E6 143 9 RWGLLLALL c-ErbB2 8 9 TYLPTNASL c-ErbB2 63 9 CYGLGMEHL c-ErbB2 63 9 CYGLGMEHL c-ErbB2 342 9 AYSLTLQGL c-ErbB2 342 9 AYSLTLQGL c-ErbB2 887 9 FFTHQSDVW c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 966 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310 10 LYISAWPDSL c-ErbB2 410	AA	SEQUENCE	SOURCE
9 VMAGVGSPY c-ErbB2 773 9 ASPLDSTFY c-ErbB2 997 9 FSPAFDNLY c-ErbB2 1213 9 KSTKVPAAY HCV 1236 9 DSSVLCECY HCV 1513 9 LSAFSLHSY HCV 2889 9 PLSEDQLLY PAP 147 9 YAVCDKCLK HPV 16 E6 67 9 CMSCCRSSR HPV 16 E6 143 9 RWGLLLALL c-ErbB2 8 9 TYLPTNASL c-ErbB2 63 9 CYGLGMEHL c-ErbB2 342 9 AYSLTLQGL c-ErbB2 440 9 PYVSRLLGI c-ErbB2 780 9 KWMALESIL c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 RGTQLFEDNY c-ErbB2 103 10 CMQLAKGMSY c-ErbB2 996 10 PASPLDSTFY c-ErbB2 996 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 VASCHLTELY PAP 310			~ ~~~
9 ASPLDSTFY c-ErbB2 997 9 FSPAFDNLY c-ErbB2 1213 9 KSTKVPAAY HCV 1236 9 DSSVLCECY HCV 1513 9 LSAFSLHSY HCV 2889 9 PLSEDQLLY PAP 147 9 YAVCDKCLK HPV 16 E6 67 9 CMSCCRSSR HPV 16 E6 143 9 RWGLLLALL c-ErbB2 8 9 TYLPTNASL c-ErbB2 63 9 CYGLGMEHL c-ErbB2 342 9 AYSLTLQGL c-ErbB2 440 9 PYVSRLLGI c-ErbB2 887 9 RFTHQSDVW c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 907 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 996 10 CMQLAKGMSY c-ErbB2 996 10 PASPLDSTFY c-ErbB2 996 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 VASCHLTELY PAP 310	9	ASCVTACPY	c-ErbB2 293
9 FSPAFDNLY C-ErbB2 1213 9 KSTKVPAAY HCV 1236 9 DSSVLCECY HCV 1513 9 LSAFSLHSY HCV 2889 9 PLSEDQLLY PAP 147 9 YAVCDKCLK HPV 16 E6 67 9 CMSCCRSSR HPV 16 E6 143 9 RWGLLLALL C-ErbB2 8 9 TYLPTNASL C-ErbB2 63 9 CYGLGMEHL C-ErbB2 342 9 AYSLTLQGL C-ErbB2 440 9 PYVSRLLGI C-ErbB2 887 9 RFTHQSDVW C-ErbB2 887 9 RFTHQSDVW C-ErbB2 898 9 VWSYGVTVW C-ErbB2 905 9 SYGVTVWEL C-ErbB2 907 9 VYMIMVKCW C-ErbB2 907 9 FREELVSEF C-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY C-ErbB2 280 10 CMQLAKGMSY C-ErbB2 966 10 PASPLDSTFY C-ErbB2 996 10 PSQKTYQGSY P53 98 10 VGSDCTTIHY P53 225	9	VMAGVGSPY	c-ErbB2 773
9 KSTKVPAAY HCV 1236 9 DSSVLCECY HCV 1513 9 LSAFSLHSY HCV 2889 9 PLSEDQLLY PAP 147 9 YAVCDKCLK HPV 16 E6 67 9 CMSCCRSSR HPV 16 E6 143 9 RWGLLLALL C-ErbB2 8 9 TYLPTNASL C-ErbB2 63 9 CYGLGMEHL C-ErbB2 342 9 AYSLTLQGL C-ErbB2 440 9 PYVSRLLGI C-ErbB2 887 9 KWMALESIL C-ErbB2 887 9 RFTHQSDVW C-ErbB2 898 9 VWSYGVTVW C-ErbB2 905 9 SYGVTVWEL C-ErbB2 907 9 VYMIMVKCW C-ErbB2 907 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 RGTQLFEDNY C-ErbB2 103 10 ESMPNPEGRY C-ErbB2 826 10 PASPLDSTFY C-ErbB2 996 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	ASPLDSTFY	c-ErbB2 997
9 DSSVLCECY HCV 1513 9 LSAFSLHSY HCV 2889 9 PLSEDQLLY PAP 147 9 YAVCDKCLK HPV 16 E6 67 9 CMSCCRSSR HPV 16 E6 143 9 RWGLLLALL c-ErbB2 8 9 TYLPTNASL c-ErbB2 63 9 CYGLGMEHL c-ErbB2 342 9 AYSLTLQGL c-ErbB2 440 9 PYVSRLLGI c-ErbB2 780 9 KWMALESIL c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 907 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 996 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	FSPAFDNLY	c-ErbB2 1213
9	9	KSTKVPAAY	HCV 1236
9 PLSEDQLLY PAP 147 9 YAVCDKCLK HPV 16 E6 67 9 CMSCCRSSR HPV 16 E6 143 9 RWGLLLALL c-ErbB2 8 9 TYLPTNASL c-ErbB2 63 9 CYGLGMEHL c-ErbB2 342 9 AYSLTLQGL c-ErbB2 440 9 PYVSRLLGI c-ErbB2 780 9 KWMALESIL c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 907 9 VYMIMVKCW c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 896 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225	9	DSSVLCECY	HCV 1513
9 YAVCDKCLK HPV 16 E6 67 9 CMSCCRSSR HPV 16 E6 143 9 RWGLLLALL c-ErbB2 8 9 TYLPTNASL c-ErbB2 63 9 CYGLGMEHL c-ErbB2 342 9 AYSLTLQGL c-ErbB2 440 9 PYVSRLLGI c-ErbB2 780 9 KWMALESIL c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	LSAFSLHSY	HCV 2889
9 CMSCCRSSR HPV 16 E6 143 9 RWGLLLALL C-ErbB2 8 9 TYLPTNASL C-ErbB2 63 9 CYGLGMEHL C-ErbB2 342 9 AYSLTLQGL C-ErbB2 440 9 PYVSRLLGI C-ErbB2 780 9 KWMALESIL C-ErbB2 887 9 RFTHQSDVW C-ErbB2 898 9 VWSYGVTVW C-ErbB2 905 9 SYGVTVWEL C-ErbB2 907 9 VYMIMVKCW C-ErbB2 951 9 RFRELVSEF C-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY C-ErbB2 103 10 ESMPNPEGRY C-ErbB2 826 10 CMQIAKGMSY C-ErbB2 826 10 PASPLDSTFY C-ErbB2 996 10 FSPAFDNLYY C-ErbB2 1213 10 PSQKTYQGSY P53 98 10 VGSDCTTIHY PAP 310	9.	PLSEDQLLY	PAP 147
9 RWGLLLALL c-ErbB2 8 9 TYLPTNASL c-ErbB2 63 9 CYGLGMEHL c-ErbB2 342 9 AYSLTLQGL c-ErbB2 440 9 PYVSRLLGI c-ErbB2 780 9 KWMALESIL c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225	9	YAVCDKCLK	HPV 16 E6 67
9 TYLPTNASL c-ErbB2 63 9 CYGLGMEHL c-ErbB2 342 9 AYSLTLQGL c-ErbB2 440 9 PYVSRLLGI c-ErbB2 780 9 KWMALESIL c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 826 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	CMSCCRSSR	HPV 16 E6 143
9 CYGLGMEHL c-ErbB2 342 9 AYSLTLQGL c-ErbB2 440 9 PYVSRLLGI c-ErbB2 780 9 KWMALESIL c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225	9	RWGLLLALL	c-ErbB2 8
9 AYSLTLQGL c-ErbB2 440 9 PYVSRLLGI c-ErbB2 780 9 KWMALESIL c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225	9	TYLPTNASL	c-ErbB2 63
9 PYVSRLLGI c-ErbB2 780 9 KWMALESIL c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225	9	CYGLGMEHL	c-ErbB2 342
9 KWMALESIL c-ErbB2 887 9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225	9	AYSLTLQGL	c-ErbB2 440
9 RFTHQSDVW c-ErbB2 898 9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 826 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	PYVSRLLGI	c-ErbB2 780
9 VWSYGVTVW c-ErbB2 905 9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	KWMALESIL	c-ErbB2 887
9 SYGVTVWEL c-ErbB2 907 9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	RFTHQSDVW	c-ErbB2 898
9 VYMIMVKCW c-ErbB2 951 9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	VWSYGVTVW	c-ErbB2 905
9 RFRELVSEF c-ErbB2 968 9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	SYGVTVWEL	c-ErbB2 907
9 WFHISCLTF HBV NUC 102 9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	VYMIMVKCW	c-ErbB2 951
9 TYSTYGKFL HCV 1296 9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	RFRELVSEF	c-ErbB2 968
9 QYLAGLSTL HCV 1777 10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	WFHISCLTF	HBV NUC 102
10 IPSYKKLIMY PAP 277 10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	TYSTYGKFL	HCV 1296
10 RGTQLFEDNY c-ErbB2 103 10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	9	QYLAGLSTL	HCV 1777
10 ESMPNPEGRY c-ErbB2 280 10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	10	IPSYKKLIMY	PAP 277
10 CMQIAKGMSY c-ErbB2 826 10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	10	RGTQLFEDNY	c-ErbB2 103 .
10 PASPLDSTFY c-ErbB2 996 10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	10	ESMPNPEGRY	c-ErbB2 280
10 FSPAFDNLYY c-ErbB2 1213 10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	10	CMQIAKGMSY	c-ErbB2 826
10 PSQKTYQGSY p53 98 10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	10	PASPLDSTFY	c-ErbB2 996
10 VGSDCTTIHY p53 225 10 YASCHLTELY PAP 310	10	FSPAFDNLYY	c-ErbB2 1213
10 YASCHLTELY PAP 310	10	PSQKTYQGSY	p53 98
	10	VGSDCTTIHY	p53 225
10 LYISAWPDSL c-ErbB2 410	10	YASCHLTELY	PAP 310
	10	LYISAWPDSL	c-ErbB2 410

AA	SEQUENCE	SOURCE
10	SYGVTVWELM	c-ErbB2 907
10	VYMIMVKCWM	c-ErbB2 951
10	EYLVPQQGFF	c-ErbB2 1022
10	RYSEDPTVPL	c-ErbB2 1111
10	EYLVSFGVWI	HBV NUC 117
10	QYSPGQRVEF	HCV 2614
9.	VYNFATCGI	LCMV glyco 35
9	GYCLTKWMI	LCMV glyco 283
9	MFEALPHII	LCMV glyco 7
9	IFALISFLL	LCMV glyco 43
9	LFKTTVNSL	LCMV glyco 342
9	LYTVKYPNL	LCMV nucleo 204
9	PYIACRTSI	LCMV nucleo 314
10	GYCLTKWMIL	LCMV glyco 283
10	AYLVSIFLHL	LCMV glyco 446
9	RWCIPWQRL	CEA 10
9	IYPNASLLI	CEA 101
9	LWWVNNQSL	CEA 177
9	LYGPDAPTI	CEA 234
9	VYAEPPKPF	CEA 318
9	LWWVNNQSL	CEA 355
9	LYGPDDPTI	CEA 412
9	TYYRPGVNL	CEA 425
9	LYGPDTPII	CEA 590
9	QYSWRINGI	CEA 624
9	TYACFVSNL	CEA 652
9	VWKTWGQYW	gp100 152
<u> </u>	TWGQYWQFL	gp100 155
9	RYGSFSVTL	gp100 479
9	LMAVVLASL	gp100 606
ļ .		gp100 636
9	HWLRLPRIF	PAP 96
9	SYKHEQVYI	PAP 90
9	AMTNLAALF	
9	VFLTLSVTW	PSA 2

AA .	SEQUENCE	SOURCE
9	TWIGAAPLI	PSA 9
9	CYASGWGSI	PSA 148
10	YMIMVKCWMI	c-ErbB2 952
10	RWCIPWQRLL	CEA 10
10	FWNPPTTAKL	CEA 27
10	QYSWFVNGTF	CEA 268
- 10	TFQQSTQELF	CEA 276
10	VYAEPPKPFI	CEA 318
10	YYRPGVNLSL	CEA 426
10	QYSWLIDGNI	CEA 446
10	SYLSGANLNL	CEA 604
10	HFLRNQPLTF	gp100 231
10	LFPPEGVSIW	PAP 123
10	TWIGAAPLIL.	PSA 9
10	HYRKWIKDTI	PSA 244
9	KLRKPKHKK	P. falciparum CSP
9	KILSVFFLA	P. falciparum EXP-1
9	ALFFIIFNK	P. falciparum EXP-1
9	GTGSGVSSK	P. falciparum EXP-1
9	VLYNTEKGR	P. falciparum EXP-1
9	KYKLATSVL	P. falciparum EXP-1
9	PSENERGYY	P. falciparum LSA1 1664
9	FLKENKLNK	P. falciparum LSA1
9	GVSENIFLK	P. fatciparum LSA1 105
9	ILVNLLIFH	P. falciparum LSA1
9	KSLYDEHIK	P. falciparum LSA1 1854

		
AA	SEQUENCE	SOURCE
9	LLIFHINGK	P. falciparum LSA1 16
9	QSSLPQDNR	P. falciparum LSA1 1676
9	QTNFKSLLR	P. falciparum LSA1
9	RINEEKHEK	P. falciparum LSA1 49
9	SLYDEHIKK	P. falciparum LSA1
9	VLAEDLYGR	P. falcîparum LSA1 1647
9	VLSHNSYEK	P. falciparum LSA1
9	FYFILVNLL	P. falciparum LSA1
9	YYIPHQSSL	P. falciparum LSA1 1671
9	PSDGKCNLY	P. falciparum TRAP 207
9	LACAGLAYK	P. falciparum TRAP 511
9	LLACAGLAY	P. falciparum TRAP 510
9	LSTNLPYGR	P. falciparum TRAP 122
9	'QGINVAFNR	P. falciparum TRAP 192
9	RGDNFAVEK	P. falciparum TRAP 307
9	RSRKREILH	P. falciparum TRAP 262
9	SLLSTNLPY	P. falciparum TRAP
9	KYLVIVFLI	P. falciparum TRAP
9	PYAGEPAPF	P. falciparum TRAP 528

AA	SEQUENCE	SOURCE
10	VTCGNGIQVR	P. falciparum CSP 375
10	GTGSGVSSKK	P. falciparum EXP-1 28
10	LALFFIÍFNK	P. falciparum EXP-I 9
10	FQDEENIGIY	P. falciparum LSA1 1794
10	FILVNLLIFH	P. falciparum LSA1
10	HVLSHNSYEK	P. falciparum LSA1
10	KSLYDEHIKK	P. falciparum LSA1 1854
10	ALLACAGLAY	P. falciparum TRAP
10	IIRLHSDASK	P. falciparum TRAP
10	LLACAGLAYK	P. falciparum TRAP
10	RLHSDASKNK	P. falciparum TRAP
9	ILGFVFTLT-NH2	Flu Matrix 59-67
10	KGILGFVFTL- NH2	Flu Matrix 57-66
9	KLQCVPLHV	PSA 166-174 P/D
9	KLQCVPLHV	PSA 166-174 P/D
9	KLQCVPLHV	PSA 166-174 P/D
11	KQVPLRPMTYK	940.03 N-terminal extension
9	KLYEIVAKV	A2.1 consensus
9	KLAEYVAKV	A2.1 consensus
9	KLAEIVYKV	A2.1 consensus
9	KVFEYLINK	A3.2 consensus
10	KVFPYALINK	A3.2 consensus
9	AVFAYAAAK	A3.2 consensus
9	ALEPAIAKY	Al consensus

		, , , , , , , , , , , , , , , , , , ,
AA	SEQUENCE	SOURCE
9	YLEPAIAKY	Al consensus
9	ALEPYIAKY	A1 consensus
9	YLEQYIEKY	A1 consensus
9.	GTEKLLAKY	Al consensus
9	ATEPALAKY	A1 consensus
9	ATNYPAIQK	A11 consensus
9	ATNVPAIQK	A11 consensus
9	ATNAPYIQK	All consensus
9	ATNAVYIQK	All consensus
9	ATNAAYAQK	All consensus
9	AVNAAYAQK	All consensus
9	AVNAPYIQK	All consensus
9	AVNAVYIQK	All consensus
9	PTDPKLINY	A1 consensus
9	GTDPKLINY	A1 consensus
9	YTDPKLINF	A1 consensus
9	FTDPKLINY	A1 consensus
9	FTDQAVIKY	Al consensus
9	YTDQAVIKF	Al consensus
9	YTDQKLINF	A1 consensus
9	STNPKPQKK	HCV-core 2-10
11	STNPKPQKKNK	HCV-core 2-12
9	SFFPEITYI	self peptide of P815
		analog; Y2 to F,
9	ATDPNFLLY	A1 consensus
9	ATDKNFLLY	A1 consensus
9	ALMEKIYQV	A2.1 consensus peptide
9	ALSEKIYQV	A2.1 consensus
		peptide
9	AVYDPIIQK	A3.2 consensus peptide
9	AVYDKIIQK	A3.2 consensus peptide
9	AVMNPMIQK	All consensus

AA	SEQUENCE	SOURCE
9 .	AVMNEMIQK	All consensus peptide
9	AYMDMVNSF	A24 consensus
9	AYIDNVNSF	A24 consensus peptide
9	KLAAAAAAK	A3.2/A11 poly-A analog
9	DVFRDPALK	Aw68 endogenous
9	GYKDGNEYI	Lm listeriolysin 91-
10	MMWYWGPSLY	HBV
11	WMMWYWGPSL Y	нви
9	RYLRDQQLL	HIV env
8	FLLLKYRA	MAGE-1
9	IMPKTGFLI	MAGE-1
9	VADLVGFLL	MAGE-1
10	IMPKTGFLII	MAGE-1
11	FLITVLVMIÁM	MAGE-1
11	CILESCFRAVI	MAGE-I
9	MYRPDAIQL	P. Yoelii SSP2 143
10	NYSPNGNTNL	P. Yoelii SSP2 119
9	KFNPMKTHI	Kd consensus peptide
9	AMIKNLDFI	Db consensus
9	AMIKNLYFI	Db consensus analog
11	STLPETYVVRR	HCV 141-151 analog
9	QYDDAVYKL	Cw4 consensus
10	FQDPQERPRK	HPV16 E6
10	VFEFAFKDLF	HPV18 E6
9	VVYRDSIPH	HPV18 E6
9	IFEANGNLI	Flu HA 240-248
9	IYATVAGSL	HA 529-537

AA	SEQUENCE	SOURCE
9	SYIPSAEKI	P. bergaii CS 252- 260
9	KYQAVTTTL	Tumour P198 14-22
10	MYPHFMPTNL	MCMV pp89 167- 176
9	AYPNVSAKI	Lm listeriolysin 196-
9	AYTGGKINI	Lm listeriolysin 413- 421
9	SAISSILSK	HBV ENV 159
9	QAGFFLLTK	HBV ENV 190
9	SALYREALK	HBV NUC 64
9	RAKWNNTLK	HIV env 370
9	RATQIPSYK	PAP 273
9	TAAHCIRNK	PSA 58
9	MAVFIHNFK	HIV pol 909
9	TAGILELLK	HPV 6b E1 192
9	RAALLGKFK	HPV 6b E1 205
9	CATMCRHYK	HPV 6b E1 406
9	TAACSHEGK	Flu HA-1 132
9	NANANSAVK	P. fal csp 304
9	GAFKVPGVK	LCMV glyco 484
9	RARVHPTTR	HBV POL 244
9	CALPFTSAR	HBV X 69
9	NMLESILIK	LCMV nuc 259
9	WMILAAELK	LCMV glyco 289
9	EMNLPGRWK	HIV pol 107
9	SSLQSKHRK	HBV POL 201
9	GSTHVSWPK	HBV POL 398
9	TSDLEAYFK	HBV X NUC FUS
9	ASQIYAGIK	HIV pol 438
9	ASCDKCQLK	HIV pol 769
9	MSLAADLEK	LCMV nuc 100
9	VSSKNLMEK	Mel. tyro 25

AA	SEQUENCE	SOURCE
9	LSTNLPYGK	P. fal ssp2 122
9	STDHIPILY	A1 Nat. Processed
9	STAPPAHGV	Breast mucin 9-17
9	LMAVVLASL	gp100
9	WSQKRSFVY	gp100
9	PLDCVLYRY	gp100
10	PSSVGSRSEY	gp100
9	YTAVVPLVY	Hu J chain 102-110

Table 7

AĄ	SEQUENCE	SOURCE		
8	LTELYFEK	PAP 315		
9	TISPSYTYY	CEA 419		
9	GTGCNGWFY	HPV 16/18 E1 11		
9	LTEMVQWAY	HPV 6b/11 E1 358		
9	ITVNNSGSY	CEA 289		
9	CTGWFMVEA	HPV 6b/11 E1 14		
9	ATVQDLKRK	HPV 6b/11 E1 77		
9	AVESEISPR	HPV 6b/11 E1 101		
9	FLNSNMQAK	HPV 6b/11 E1 393		
9	ITRQTVIEH	HPV 6b/11 E1 341		
9	IVGPPDTGK	HPV 6b/11 E1 476		
9	KLIEPLSLY	HPV 6b/11 E1 254		
9	KLWLHGTPK	HPV 6b/11 E1 462		
9	KMSIKQWIK	HPV 6b/11 E1 420		
9	VVAGFGIHH	HPV 6b/11 E1 238		
9	HLFGYSWYK	CEA 61		
9	ISPSYTYYR	CEA 420		
9	HTQVLFIAK	CEA 636		
9	ITVYAEPPK	CEA 316		
9	ITVSAELPK	CEA 494		
9	RLQLSNGNR	CEA 190		
9	RLQLSNGNR	CEA 546		
9	RINGIPQQH	CEA 628		
9 .	SNMQAKYVK	HPV 6b/11 E1 396		
9	EWITRQTVI	HPV 6b/11 E1 339		
9	FFERLSSSL	HPV 6b/11 E1 613		
9	nwkpivqfl	HPV 6b/11 E1 439		
10	PTISPSYTYY	CEA 418		
10	PTISPLNTSY	CEA 240		
10	HSASNPSPQY	CEA 616		
10	KLIEPLSLYA	HPV 6b/11 E1 254		
10	AIVGPPDTGK	HPV 6b/11 E1 475		
10	DCATMCRHYK	HPV 6b/16 E1 405		
10	KLWLHGTPKK	HPV 6b/11 E1 462		
10	WVVAGFGIHH	HPV 6b/11 E1 237		

5	
10	·
15 ⁻	
20	
25	
30	
35	

	_ ·	
AA	SEQUENCE	SOURCE
10	TITVSAELPK	CEA 493
10	TFWNPPTTAK	CEA 26
10	TISPSYTYYR	CEA 419
10	TISPLNTSYR	CEA 241
10	RTLTLFNVTR	CEA 198
10	RTLTLFNVTR	CEA 554
10	RTLTLLSVTR	CEA 376
10	ATPGPAYSGR	CEA 89
10	ASGHSRTTVK	CEA 483
10	QFLRHQNIEF	HPV 6b/11 E1 445
10	TFTFPNPFPF	HPV 6b/11 E1 586
9	RVDCTPLMY	Prost.Ca PSM 463
9	LLSLYGIHK	Prost.Ca PAP 243
9	SIVLPFDCR	Prost.Ca PSM 590
9	KSLYESWTK	Prost.Ca PSM 491
9	SMKHPQEMK	Prost.Ca PSM 615
9	SLYESWTKK	Prost.Ca PSM 492
9	YSLVHNLTK	Prost.Ca PSM 471
9	HLTELYFEK	Prost.Ca PAP 314
9	RATQIPSYK	Prost.Ca PAP 273
9	ASGRARYTK	Prost.Ca PSM 531
9	SLYGIHKQK	Prost.Ca PAP 245
9	RDYAVVLRK	Prost.Ca PSM 598
9	SSHDLMLLR	Prost.Ca PSA 113
9	GAAPLILSR	Prost.Ca PSA 12
9	KIVIARYGK	Prost.Ca PSM 199
9	RAAPLLLAR	Prost.Ca PAP 2
9	VVLRKYADK	Prost.Ca PSM 602
9	GLPDRPFYR	Prost.Ca PSM 680
9	WLDRSVLAK	Prost.Ca PAP 25
9	KVFRGNKVK	Prost.Ca PSM 207
9	IVRSFGTLK	Prost.Ca PSM 398
9	KIYSISMKH	Prost.Ca PSM 610
9	RSVLAKELK	Prost.Ca PAP 28
9	STNEVTRIY	Prost.Ca PSM 348
9	GFFLLGFLF	Prost.Ca PSM 31
I	_ 	

SOURCE SEQUENCE AA Prost.Ca PSM 227 LYSDPADYF Prost.Ca PSM 606. 9 KYADKIYSI Prost.Ca PSM 178 9 NYARTEDFF Prost.Ca PSM 448 9 AYINADSSI HBV. POL 165 9 **SASFCGSPY** HBV POL 655 9 AFTFSPTYK HBV POL 524 SVVRRAFPH 9 HBV ENV 236 RWMCLRRFI 9 HBV ENV 334 SWLSLLVPF 9 HBV ENV 197 9 SWWTSLNFL 9 **PWTHKVGNF** HBV POL 51 9 SFCGSPYSW HBV POL 167 Prost.Ca PSM 451 10 NADSSIEGNY **GLDSVELAHY** Prost.Ca PSM 104 10 10 RATOIPSYKK Prost.Ca PAP 273 10 LGFLFGWFIK Prost.Ca PSM 35 Prost.Ca PSM 454 10 SSIEGNYTLR Prost.Ca PSM 491 10 KSLYESWTKK 10 SLLSLYGIHK Prost.Ca PAP 242 10 FLYNFTQIPH Prost.Ca PSM 73 VIYAPSSHNK Prost.Ca PSM 690 10 Prost.Ca PSM 601 10 AVVLRKYADK Prost.Ca PSM 482 KSPDEGFEGK 10 Prost.Ca PSM 398 IVRSFGTLKK 10 RIYNVIGTLR Prost.Ca PSM 354 10 10 LSLYGIHKQK Prost.Ca PAP 244 Prost.Ca PSA 99 **MSLLKNRFLR** 10 Prost.Ca PSM 614 ISMKHPQEMK 10 Prost.Ca PSA 43 RAVCGGVLVH 10 **GSAPPDSSWR** Prost.Ca PSM 311 10 Prost.Ca PSM 291 10 SIPVHPIGYY 10 **CSGKIVIARY** Prost.Ca PSM 196 10 **ETYELVEKFY** Prost.Ca PSM 557 Prost.Ca PSM 440 10 RLLQERGVAY Prost.Ca PSM 565 10 **FYDPMFKYHL**

Prost.Ca PSM 624

TYSVSFDSLF

Ś

10

15

20

25

30

AA	SEQUENCE	SOURCE	
10	LYNFTQIPHL	Prost.Ca PSM 74	
10	GWRPRRTILF	Prost.Ca PSM 409	
10	FAAPFTQCGY	HBV POL 631	
10	RWMCLRRFII	HBV ENV 236	
10	WFVGLSPTVW	HBV ENV 345	
10	SWPKFAVPNL	HBV POL 392	
10	VFADATPTGW	HBV POL 686	
9	FIFHKFQTK	HTLV-I tax 276	
9	FLTNVPYKR	HTLV-I tax 182	
9	ITWDPIDGR	HTLV-I tax 54	
9	SALQFLIPR	HTLV-I tax 66	
9	LSFPDPGLR	HTLV-I tax 131	
9	QSSSFIFHK	HTLV-1 tax 272	
9	GLCSARLHR	HTLV-I tax 34	
9	RLPSFPTQR	HTLV-I tax 74	
9	AMRKYSPFR	HTLV-1 tax 108	
9	ISGGLCSAR	HTLV-I tax 31	
9	ALFTAQEAK	HPV 16 E1 69	
9	ATMCRHYKR	HPV 16 E1 406	
9	FMSFLTALK	HPV 16 E1 453	
9	GVSFSELVR	HPV 16 E1 216	
9	KAAMLAKFK	HPV 16 E1 204	
9	LTNILNVLK	HPV 16 E1 191	
9	LVRPFKSNK	HPV 16 E1 222	
9	MSFLTALKR	HPV 16 E1 454	
9	NSNASAFLK	HPV 16 E1 386	
9	QMSMSQWIK	HPV 16 E1 419	
9	RLKAICIEK	HPV 16 E1 109	
9	SLFGMSLMK	HPV 16 E1 484	
9	SMSQWIKYR	HPV 16 E1 421	
9	TAAALYWYK	HPV 16 E1 315	
9	VVLLLVRYK	HPV 16 E1 274	
9	ALLRYKCGK	HPV 18 E1 284	
9	ATMCKHYRR	HPV 18 E1 413	
9	CATMCKHYR	HPV 18 E1 412	
9	FITFLGALK	HPV 18 E1 460	

AA	SEQUENCE	SOURCE	
9	GVLILALLR	HPV 18 E1 279	
9	KLRAGQNHR	HPV 18 E1 647	
9	LILALLRYK	HPV 18 E1 281	
9	LTTNIHPAK	HPV 18 E1 571	
9	NMSQWIRFR	HPV 18 E1 428	
9	NSNAAAFLK	HPV 18 E1 393	
9	SVAALYWYR	HPV 18 E1 322	
9	WTYFDTYMR	HPV 18 E1 536	
9	YVQAIVDKK	HPV 18 E1 19	
9	IIKNFDIPK	GCDFP-15 36	
9	VLAVQTELK	GCDFP-15 55	
. 10	IIIKNFDIPK	GCDFP-15 35	
10	TACLCDDNPK	GCDFP-15 87	
10	AVLAVQTELK	GCDFP-15 54	
10	TFYWDFYTNR	GCDFP-15 97	
9	ASCHLTELY	PAP 311	
10	KGEYFVEMYY	PAP 322	
10	LTAAHCIRNK	PSA 57	
9	PLYDMSLLK	PSA 95	
9	QVHPQKVTK	PSA 182	
9	SLLKNRFLR	PSA 100	
9	YTKVVHYRK	PSA 239	
9	TLWKAGILY	HBV pol 150	
9	SLYTKVVHY	PSA 237	
9	PVNRPIDWK	HBV POL 612	
9	RHYLHTLWK	HBV POL 719	
11	HTLWKAGILYK	HBV POL 149	
11	GTDNSVVLSRK	HBV POL 735	
11	RVTGGVFLVDK	HBV POL 357	
8	ATQIPSYK	PAP 274	
9	WMNSTGFTK	HCV consensus	
9	RVLEDGVNY	HCV consensus	
9	RLLAPITAY	HCV consensus	
9	GVLAALAAY	HCV consensus	
9	RVCEKMALY	HCV consensus	

TABLE 8

<u> </u>			
	PEPTIDE	AA	SEQUENCE
	1235.01	10	AVFDRKSDAK
5	26.0149	9	CALRFTSAR
	26.0153	9	SSAGPCALR
	F104.02	9	SLTPPHSAK
	F105.01	9	AIFQSSMTK
	F105.02	9	GIFQSSMTK
0	F105.03	9	AAFQSSMTK
	F105.04	9	AIAQSSMTK
!	F105.05	9	AIFASSMTK
	F105.06	9	AIFQASMTK
	F105.07	9	AIFQSAMTK
5	F105.08	9	AIFQSSATK
	F105.09	9	AIFQSSMAK
	F105.10	9	AIFQSSMTA
,	F105.11	9	FIFQSSMTK
	F105.12	9	SIFQSSMTK
20	F105.14	9	ANFQSSMTK
	F105.16	9	AIFQCSMTK
	F105.17	9	AIFQSSMTR
	F105.19	9	AIFQSSMTY
	F105.20	9	AILQSSMTR
25	F105.21	9	AIFQRSMTR
	F105.24	10	PAIFQSSMTK
	F105.25	10	AIFQSSMTKI
	27.0103	9	AULHQQQK
	27.0104	9	YGFRLGFLH
30	27.0108	9	SSCMGGMNR
	27.0235	10	TCTYSPALNK
•	27.0239	10	NSSCMGGMNR
	27.0240	10	SSCMGGMNRR
	27.0250	10	KSKKGQSTSR
35	27.0252	10	TSRHKKLMFK
	28.0062	8	FMFSPTYK
	28.0063	8	FVFSPTYK
	l		

10

15

20

25

3(

PEPTIDE	AA	SEQUENCE	
8.0322 9		SMICSVVRR	
28.0323	9	SVICSVVRR	
28.0324	9	KVGNFTGLK	
28.0325	. 9	KVGNFTGLR	
28.0326	9	VVFFSQFSR	
28.0327	9	SVNRPIDWK	
28.0328	. 9	TLWKAGILK	
28.0329	9	TLWKAGILR	
28.0330	9	TMWKAGILY	
28.0331	9	TVWKAGILY	
28.0332	9	RMYLHTLWK	
28.0333	9	RVYLHTLWK	
28.0334	9	AMTESPTYK	
.28.0335	9	AVTFSPTYK	
28.0336	9	SVVRRAFPR	
28.0337-	9	SVVRRAFPK	
28.0338	9	ISEYRHYXY	
28.0339	.9	GTGXNGWFY	
28.0340	9	ASXHLTELY	
28.0341	9	ASXDKXQLK	
28.0371	9	RVXEKMALY	
28.0372	9	XTGWFMVEA	
28.0374	9	HISXLTFGR	
28.0375	9	AVXTRGVAK	
28.0377	. 9	HLIFXHSKK	
28.0378	9	HTMLXMXXK	
28.0381	9	RLKAIXIEK	
28.0383	9	TLFXASDAK	
28.0384	9	ALLRYKXGK	
28.0387	9	ATMXRHYKR	
28.0388	9	XATMXRHYK	
28.0390	9	ATMXKHYRR	
28.0391	9	LLAXAGLAY	
28.0392	9	LAXAGLAYK	
28.0393	9	SIVLPFDXR	
28.0394	9	AAXWWAGIK	
28.0628	10	OMFTFSPTYK	

PEPTIDE	AA	SEQUENCE
28.0629	10	QVFTFSPTYK
28.0630	10	TMWKAGILYK
28.0631	10	TVWKAGILYK
28.0632	10	VMGGVFLVDK
28.0633	10	VVGGVFLVDK
28.0635	10	SVLPETTVVR
28.0638	10	HTLWKAGILK
28.0640	10	HMLWKAGILY
28.0395	9	SAIXSVVRR
28.0644	10	GTFNSVVLSR
28.0645	10	YMFDVVLGAK
28.0646	10	MMWYWGPSLK
28.0647	10	MMWYWGPSLR
28.0665	10	IVGGWEXEK
28.0667	10	IILEXVYXK
28.0668 .	10	SIPHAAXHK
28.0670	10	IVXPIXSQK
28.0671	10	LIRXLRXQK
28.0672	10	XTYSPALNK
28.0675	10	TVXAGGXAR
28.0676	10	HISXLTFGR
28.0677	10	XVNXSQFLR
28.0678	. 10	LIFXHSKKK
28.0679	10	FVLGGXRHK
28.0713	10	TSAIXSVVRR
28.0714	10	HLIFXHSKKK
28.0715	10	LLIRXINXQK
28.0716	10	GIVXPIXSQK
28.0717	10	LLIRXLRXQK
28.0718	10	SLEQRSLHXK
28.0720	10	RIVGGWEXEK
28.0721	10	DIILEXVYXK
28.0722	10	XVYXKQQLLR
28.0723	10	RAVXGGVLVH
28.0725	10	LTAAHXIRNK
28.0728	10	KAAXWWAGIK
28.0730	10	VVRRXPHHER

	JENCE
28.0731 10 LLGI	
	WGXSGK
28.0732 10 TTLF	XASDAK
28.0734 10 RTV	XAGGXAR
28.0736 10 GTQ	RXEKXSK
28.0737 10 LVQ	NANPDXK
28.0738 10 VTX	GNGIQVR
28.0739 10 DXA	тмхкнүк
28.0740 10 GLA	XHQLXAR
28.0741 10 ALL	AXAGLAY
28.0742 10 LLA	XAGLAYK
28.0743 10 XVA	ARXPSGVK
28.0745 10 LVE	IXTEMEK
28.0746 10 LLN	WXMQIAK
28:0824 11 HMI	LWKAGILYK
28.0825 11 HVL	.WKAGILYK
28.0826 II SML	PETTVVRR
28.0827 11 SVL	PETTVVRR
28.0828 11 GMI	DNSVVLSRK
28.0829 11 GVI	ONSVVLSRK
28.0830 11 GTF	NSVVLSRK
28.0369 9 GLA	AXHQLXA
.1259.02 9 DT	VDTVLEK
1259.10 9 PVT	TIGECPK
1259.14 10 FTA	VGKEFNK
1259.16 11 RTI	LDFHDSNVK
1259.21 11 KTI	RPILSPLTK
1259.26 11 GTI	HPSSSAGLK
1259.28 11 ILW	VILDRLFFK
1259.29 9 WI	LDRLFFK
1259.30 11 CD	/RRFKYGLK
1259.31 9 KSI	MREEYRK
1259.33 9 YIC	OMCTELK
1259.37 10 MV	MELVRMIK
1259.38 9 VM	MELVRMIK
1259.41 11 LIF	RPNENPAHK
26.0023 B VS	FGVWIR
	IPWTHK

PEPTIDE SEQUENCE ASFCGSPY 26.0026 26.0035 TSPYELSLY TSIPFLHEY 26.0036 FNDPGPGTY 26.0041 5 26.0045 9 YVDLGALRY 26.0051 DADRSFIEY 26.0055 NMDKAVKLY TTDNFYRNY 26.0056 9 HSAEALQKY 26.0058 26.0059 LTAGLDFAY 26.0061 LTYKYNQFY 26.0062 CSNDKSLVY 9 RSARASSRY 26.0063 9 26.0065 ASADKPYSY 9 STTAGPNEY 26.0067 9 LSGNGHFHY 26.0069 9 26.0073 9 NTFVQANLY GTATYLPPY 26.0074 9 RLDAFRQTY 26.0081 KAEVHTFYY 26.0082 9 VAEGDTVIY 26.0083 9 LTEIDIRDY 26.0084 9 HTEFEGQVY 26.0085 9 26.0086 VSDGGPNLY **IIEDQYNRY** 26.0092 26.0093 9 FLDQWWTEY 26.0095 FVEDPNGKY 26.0096 9 ISDESYRVY 26.0156 YLAEADLSY ALLAVGATK 26.0197 9 26.0198 9 ALNFPGSQK 26.0199 AVGATKVPR 26.0203 FSVSVSQLR 26.0204 GTATLRLVK

26.0205

26.0207

26.0211

9

GVSRQLRTK LIYRRRLMK

OLVLHOILK

5			
10			
15		`	
20			
25			
30			
35			

		
PEPTIDE	AA .	SEQUENCE
26.0212	9	SSHWLRLPR
26.0214	9	TMEVTVYHR
26.0216	9	VLASLIYRR
26.0217	9	VSCQGGLPK
26.0218	9	VVLASLIYR
26.0227	9	GTQCALTRR
26.0251	. 9	FTIPYWDWR
26.0252	9	GTPEGPLRR
26.0253	9	KSYLEQASR
26.0255	9	LVSLLCRHK
26.0256	9	MVPFIPLYR
26.0258	9	QTSAGHFPR
26.0259	9	SIFEOWLRR
26.0260	9	SLLCRHKRK
26.0261	9	SSWQIVCSR
26.0267	10	NMQIGGVLTY
26.0273	10	RMAQNFAMRY
26.0274	10	FTVQGSLSGY
26.0275	10	QTSPYELSLY
26.0276	10	SSNAILSLSY
26.0280	10	TSQPWWPADY
26.0284	10	VSDVSIIIPY
26.0285	10	ASDAQSANKY
26.0286	10	FTETNLAGEY
26.0287	10	YVDGFEPNGY
26.0291	10	FNDPGPGTYY
26.0296	10	FLDQWWTEYY
26.0299	10	AAEFATETAY
26.0309	10	NAEVVLNQLY
26.0311	10	FVDGDSLFEY
26.0316	10	PSEDAQVAVY
26.0317	10	MSDNIRTGLY
26.0318	10	ESELREILNY
26.0319	10	CMESVRNGTY
26.0320	10	KTENGITRLY
26.0321	10	LTEIDIRDYY
26.0397	10	LLVLMAVVLA

PEPTIDE	AA .	SÉQUENCE
26.0424	10	AVVLASLIYR
26.0425	. 10	GALLAVGATK
26.0426	10	GTATLRLVKR
26.0427	10	HTMEVTVYHR
26.0428	10	IALNFPGSQK
26.0432	10	QLRALDGGNK
26.0433	10	QVPLDCVLYR
26.0434	10	SLIYRRRLMK
26.0435	10	SSSHWLRLPR
26.0438	10	TVSCQGGLPK
26.0442	10	VVLASLIYRR
26.0466	10	YVKVLHHTLK
26.0473	10	LIGCWYCRRR
26.0474	10	LLIGCWYCRR
26.0485	10	SSMHNALHIY
26.0504	10	CVSSKNLMEK
26.0510	10	FSSWQIVCSR
26.0513	10	GLVSLLCRHK
26.0518	10	YMVPFIPLYR
26.0535	11	GVWIRTPPAYR
26.0539	11	RLVVDFSQFSR
26.0545	11	TLPETTVVRRR
26.0549	11	LLPIFFCLWVY
	11	STLPETTVVRR
26.0550	11	RAFPHCLAFSY

rage 1 of 15

NLESCEPAN 9 1 15 2.1 0.0004	eowenbeg	YX 35.55	ingge Strain	₩.	Pos.	Motif	A1	A2.1	A3.2	A11	A24
9 1 93 2.1 9 1 101 2.1 9 1/3 174 2.1 10 1 187 2.1 10 1 37 2.1 10 1 37 2.1 10 1 37 2.1 10 1 37 2.1 10 1 37 2.1 10 1 101 2.1 9 2 104 2.1 9 2 105 2.1 9 2 105 2.1 9 2 143 2.1 9 2 147 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 16	ALEAQQEAL	6	1		15	2.1		<0.0003	.: .		
9 1 101 2.1 9 1/3 174 2.1 9 1 187 2.1 10 1 187 2.1 10 1 7 2.1 10 1 92 2.1 10 1 100 2.1 10 1/3 114 2.1 9 2 101 2.1 9 2 105 2.1 9 2 106 2.1 9 2 147 2.1 9 2 147 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 169 2.1 9 3 167 2.1 9 3 167 2.1 9 3 <td< td=""><td>ILESLPRAV</td><td>6</td><td>1</td><td></td><td>93</td><td>2.1</td><td></td><td>0.0004</td><td></td><td></td><td></td></td<>	ILESLPRAV	6	1		93	2.1		0.0004			
9 1/3 174 2.1 9 1 187 2.1 10 1 7 2.1 10 1 37 2.1 10 1 92 2.1 10 1 92 2.1 10 1 101 2.1 9 2 101 2.1 9 2 105 2.1 9 2 105 2.1 9 2 143 2.1 9 2 143 2.1 9 2 147 2.1 9 3 147 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 169 2.1 9 3 167 2.1 9 3 169	VITKKVADL	6	1		101	2.1		<0.0003			
10 1 167 2.1 10 1 7 2.1 10 1 37 2.1 10 1 37 2.1 10 1 100 2.1 10 1 101 2.1 10 1/3 114 2.1 9 2 105 2.1 9 2 105 2.1 9 2 143 2.1 9 2 143 2.1 9 3 101 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3	CLGLSYDGL	6	ε/1		174	2.1		0.0004		·	
10 1 7 2.1 10 1 37 2.1 10 1 92 2.1 10 1 100 2.1 10 1 101 2.1 10 1/3 114 2.1 9 2 101 2.1 9 2 105 2.1 9 2 143 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 187 2.1 9 3 1	QIMPKTGFL	6	1		187	2.1		0.0007			
10 1 92 2.1 10 1 92 2.1 10 1 100 2.1 10 1 101 2.1 10 1/3 114 2.1 10 1/3 174 2.1 9 2 101 2.1 9 2 105 2.1 9 2 143 2.1 9 3 101 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 187 2.1 9 3 <	STHCKPEEAL	10	1		7	2.1		0.0002			
10 1 92 2.1 10 1 100 2.1 10 1 101 2.1 10 1/3 114 2.1 10 1/3 174 2.1 9 2 101 2.1 9 2 105 2.1 9 2 143 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 187 2.1 9 3 <	PLVLGTLEEV	10	1		37	2.1		0.0008			
10 1 100 2.1 10 1 101 2.1 10 1/3 114 2.1 10 1/3 174 2.1 9 2 101 2.1 9 2 105 2.1 9 2 143 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 187 2.1 9 3 <	CILESLFRAV	10	1		92	2.1		0.0003			
10 1 101 2.1 10 1/3 114 2.1 10 1 142 2.1 9 2 101 2.1 9 2 105 2.1 9 2 106 2.1 9 2 143 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 169 2.1 9 3 167 2.1 9 3 169 2.1 9 3 167 2.1 9 3 167 2.1 9 3 187 2.1	AVITKKVADL	10	1		100	2.1		0			
10 1/3 114 2.1 10 1 142 2.1 9 2 101 2.1 9 2 105 2.1 9 2 106 2.1 9 2 143 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 187 2.1	VITKKVADLV	10	1		101	2.1		D			
10 1 142 2.1 10 1/3 174 2.1 9 2 101 2.1 9 2 106 2.1 9 2 143 2.1 9 3 147 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 169 2.1 9 3 169 2.1 9 3 167 2.1 9 3 167 2.1 9 3 187 2.1	LLKYRAREPV	10	1/3		114	2.1		0			
10 1/3 174 2.1 9 2 101 2.1 9 2 105 2.1 9 2 106 2.1 9 2 143 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 167 2.1 9 3 169 2.1 9 3 187 2.1	EIFGKASESL	10	1		142	2.1		0			
9 2 101 2.1 9 2 106 2.1 9 2 143 2.1 9 2 147 2.1 9 3 101 2.1 9 3 167 2.1 9 3 167 2.1 9 3 187 2.1	CLGLSYDGLL	10	1/3		174	2.1		0			
9 2 105 2.1 9 2 106 2.1 9 2 143 2.1 9 3 101 2.1 9 3 167 2.1 9 3 167 2.1 9 3 187 2.1	AISRKHVEL	6	2		101	2.1		0.0003			
9 2 106 2.1 9 2 143 2.1 9 2 147 2.1 9 3 101 2.1 9 3 167 2.1 9 3 169 2.1 9 3 187 2.1	KHVELVHPL	6	2		105	2.1		0.16			
9 2 143 2.1 9 2 147 2.1 9 3 101 2.1 9 3 167 2.1 9 3 187 2.1	HVELVHFLL	6	2		106	2.1		0.0031			
9 2 147 2.1 9 3 101 2.1 9 3 167 2.1 9 3 169 2.1 9 3 187 2.1	DLQQSLRVL	9	2		143	2.1		0			
9 3 101 2.1 9 3 167 2.1 9 3 169 2.1 9 3 187 2.1	SLRVLAAGL	6	2		147	2.1		0.0001			
9 3 167 2.1 9 3 169 2.1 9 3 187 2.1	ALSRKVAEL	6	3		101	2.1		0.0050			
9 3 187 2.1	HLYIFATCL	6	9		167	2.1		0.0003			
9 3 187 2.1	YIFATCLGL	9	3	•	169	2.1		0.018			
	QIHPKAGLL	6	G.		187	2.1		0			

Table 9

		Maga						,		
Sequence	*	Strain	Mol.	Pos.	Motil	17	A2.1	A3.2	MII	A24
AISRIGMELV	10	2		101	2.1		0			
MVBLVHFLLL	20	2		106	2.1		0.0017			
KLPGLLSRDL	27	7		135	2.1		0			
LLSRDLOOSL	2	7		139	2.1		0.0007			
SLPTTMIYPL	101	. 3		63	2.1		0.0035			
DLESEFQAAL	10	3		93	2.1		0.0001			
ALSRKVARLV	10	3		101	2.1		0.0001			
KVABLVHFLL	101	3		105	2.1		0.012			
VIFSKASSSL	10	3		142	2.1		0			
SLQLVFGIEL	2	3		150	2.1		0.0049			
LMRVDPIGHL	10	3		159	2.1		0.0005			
FLIIVLVMI	6	1		194	2.1		0.0005			
GLLGDNQIM	6	1		181	2.1		0.0051			
SLHCKPEEA	6	1		7	2.1		0.013	<0.0002	0	
ALGLVCVQA	.6	1		22	2.1		0.015	<0.0002	<0.0002	
CKPERALEA	9	1		10	Random		<0.0002			
QORALGLVC	9	1		19	Random		<0.0002			
VQAATSSES	6	τ		28	Random		<0.0002			
PLVLGTLEE	6	1		37	Random		<0.0002			
VPTAGSTDP	6	Į,		46	Random		<0.0002			
POSPQGASA	6	1		55	Random		<0.0002			
PPITINFIR	6	1		19	Random		<0.0002			

Sequence	7	Mage	Hol.	Pos.	Motif	A1	A2.1	A3.2	A11	A24
QRQPSEGSS	6	1		7.3	Random		<0.000			
SREEEGPST	9	1		82	Random		<0.0002			
AVITKKVAD	6	1		100	Random		<0.0002			
EMLESVIKK	6	1		127	Random		<0.0002			0
YKHCFPEIF	ę	1		136	Random		<0.0002			
GKASESLQL	6	1.		145	Random		<0.0002			
VFGIDVKEA	9	1		154	Random		<0.0002	<0.0002	0	
DPTGHSYVL	9	1		163	Random		<0.0002			
VICIGLSYD	Ø	1		172	Random		<0.0002			
PKTGFLIIV	6	1		190	Random		<0.0002			
LVMIAMEGG	9	1		199	Random		<0.0002			
HAPEERIWE	0	1	٠	208	Random		<0.0002			
ELSVMRVYD	6	1		217	Random		<0.0002			
GREHSAYGE	6	1		226	Random		<0.0002			
PRKLLTQDL	6	1		235	Random		0.0002			
VQBKYLRYG	6	1		244	Random		<0.0002			•
RCRIVIPHA	6	1		253	Random		<0.0002			
MSSCGVQGP	6	1		262	Random		<0.0002			
ILESLFRAVI	10	1		93	2.1		0.0002			
FLIIVLVMIA	10	1		194	2.1		0.0003	0.0093	0.0030	
LVFGIDVKRA	10	1		153	2.1		0.0002	<0.0002	0	
EVYDGREHSA	10	1		222	2.1		0	<0.0002	0	

Sequence	2	Mage Strain	Mol.	Pos.	Motíf	۸1	x2.1	АЗ.2	A11	A24
GVQGPSLKPA	or C	1		366	2.1		0.0001			
QLVFGIDV	80			152	2.1		0			
KLLTQDLV	8	1		237	2.1		0.0004			
GLLGDNQI	8	1		181	2.1		0			
DLVGFLLL	8	1		108	2.1		0			
TIBOASIB	8	1		176	2.1		0.0001			
DLVQBKYL	8	i		242	2.1		0			
LLGDNQIM	8	1		182	2.1		0			
MATAIITS	8	1		194	2.1		0			
ALEAQQEA	8	1		15	2.1		٥			
TLEBUPTA	8	1		42	2.1		٥			
IMPKTGFL	8	1		188	2.1		0.0001			
PVTKAEML	8	1		122	2.1		0			
IVLVMIAM	. 8	1		197	2.1		0.0001			
AVITKKVA	8	1		100	2.1		0			
BIWRELSV	8	1		213	2.1		0			
INATAIIT	8	1		195	2.1		0.0001			
IIVLVMIA	8	1		196	2.1		0.0002			
SLFRAVITKKV	11	1		96	2.1		0.0001			
LLLKYRARBPV	11	1		113	2.1		0.0001			
YLEYGRCRTVI	11	1		. 248	2.1		0.0006			
ALEACORALGE	11	7		15	2.1		0.0001			

	1	Mage	X 01.	Pos.	Motif	N1	A2.1	A3.2	A11	A24
FLITVLVMIAM	=	1		194	2.1		0.0041			
VLGTLBEVPTA	==	-		39	2.1		0.0002	-		
OLVFGIDVKEA	=	1		152	2.1		0.0001			
AVITKKVADLV	::	1		100	2.1		0			
PVTKAEMLESV	==	1		122	2.1		0			
KVADLVGFLLL	11	1		105	2.1		0.020			
GVQGPSLKPAM	11	1		266	2.1		0			
LVGFLLLKYRA	11	1.		109	2.1		0.0004			
LVMIAMEGGHA	11	1		199	2.1		0.0005			
CILESLFRAVI	::	1		92	2.1		0.0030			
BALEAQQEA	6	1		14	2.1		0	<0.000	٥	
EAQQEALGL	6			17	2.1		0			<0.0002
AATSSSBPL	6	τ		30	2.1		0			<0.0002
ATSSSSPLV	6	1		31	2.1		0.0007	;		
GTLEEVPTA	6	1		41	2.1		0.013	<0.0002	0	
GASAFPITI	9	1		9	2.1		0			<0.0002
STSCILESL	6	1		89	2.1		0.0002			
RAVITKKVA	6	1		99	2.1		0	<0.0002	0	
ITKKVADLV	9	1		102	2.1		0			
RAREPUTKA	6	1		118	2.1	·	0			
KAEMLBSVI	9	1		125	2.1		0			<0.0002
KASESLQLV	9	1		146	2.1		0.0009			

	-	Hage	7	00	Motif	14	A2.1	лз.2	A11	A24
Sequence	2	Strain	1001				٥			
PTGHSYVLV	5			164	7:7					
KTGFLIIVL	6	-		191	2.1		0.0006			
TITULIMIA	6	-		195	2.1		٥	0.0022	0.0006	
		-		961	2.1		0.0007			
IIVLVMIAM	1			201	2.1		0.0005	<0.0002	0.0002	
МІАМЕССИНА	n '	1		213	2.1		0			·
EIMEELSVM	7	•		3.5	, 1		0.0002			<0.0002
SAYGEPRKL	~			2			٠			
YLEYGRCRT	6	-		248	2.1			2000	٥	
EALGLVCVQA	10	1		12	2.1		0.0005	<0.000	,	300
OAATSSSSPL	10	1		29	2.1		0			<0.0002
VTKAEMLESV	10	1		123	2.1		0			
CANDTCHSYV	10	1		161	2.1		٥			
UT CTT. RRVPT	10	1		39	2.1		0.0004			
Chrotertner	9	1		62	2.1		0			
GTDVKRADPT	2	1		156	2.1		٥			
PTGHSYVLVT	10	1		164	2.1		0			
FLWGPRALA	6	1	Aeu	265	2.1		0.042	0.0017	0	
LAETSYVKV	6	1	new	272	2.1		٥			
YVKVLEYVI	9	-	new	277	2.1		0.0002			
DVDCREDST.	6	1	new	290	2.1		0.0001			
T PETERSTOCK	۶	-	new	272	2.1		٥			<0.0002
TAVAISISM	1 5		yen	280	2.1		0.0002	0.0002	٥	
VLEYVIKVSA	1	4							•	

Sequence	\$	Mage	Mo1.	Pos.	Motif	A1	λ2.1	лз.2	A11	A24
ANTDEEREGV	9	1	nev	301	2.1		0			
CMUCKBERV	6	1	new (a)	,	2.1		0.018			
AMGL/VCVOV	6	1	new (a)	22	2.1		0.012			
LMIGTLEEV	6	-	nev (a)	38	2.1		0.13			
LOLVFGIDV	6	1	new	151	2.1		0.0004			
GLSYDGLLG	6	1	nev	176	2.1		0			
GLSYDGLLV	6	1	nev (a)	176	2.1		0.0047			
LIGDNOIMP	6	1	nev	182	2.1		0.0001			
LIGDNOIMV	6	1	new (a)	182	2.1		0.043			
WEELSVMEV	6	-	new	215	2.1		0			
WELSVMEV	6	1	new (a)	215	2.1		0.041			
RKLLTODLV	6	н	пем	236	2.1		0			
YEPLWGPRA	6		nev	262	2.1		0			
YMFLWGPRV	6	-	пем (а)	262	2.1		0.22			
AATSSSSPLV	2	1	new	30	2.1		0			
ATSSSSPLVL	2	1	nev	31	2.1		٥			
KMADLVGFLV	10	1	new (a)	105	2.1		1.5			
VADLVGFLLL	2	1	пем	106	2.1		0.0008			0.0003
SESLOLVFGI	10	1	nev	148	2.1		0			
VMVTCLGLSV	10	1	new (a)	170	2.1		0.30			
OIMPKTGFLI	10	1	nev	187	2.1		0.0009			
OMMPKTGFLV	97	1	new (a)	187	2.1		0.050			
						•				

	2	Mage Strain	Mol.	Pos.	Motif	71	A2.1	A3.2	A11	A24
_		-1	nev	191	2.1		0.0012			
LIIVLVMIAM	10	1	new	195	2.1		0.0003	,		
VMIAMEGGHV	10	1	nev (a)	200	2.1		0.053			
SAYGEPRICL	10	1	пем	230	2.1		o	,		0.0008
ALAETSYVKVL	11	1 N		270	2.1		0.012			
KMVELVHFLLL	11	2		52	2.1		0.67			
ELMEVDPIGHL	11	3		105	2.1		0.026			
HLYIFATCLGL	11	3		114	2.1		0.041			
LLLKYRARBPV	11	3		9	2.1		0.0001			
QLVFGIELMEV	11	3		99	2.1		0.34			·
IMPKAGLLIIV	11	3		135	2.1		0.013			
VLVTCLGLSYDGL	13	1 n	86	170	2.1		0.0017		·	
KLLTQDLVQEKYL	13	1 n	B6	237	2.1		0.0060			
DLVQEKYLEYRQV	13	1 n	E6	242	2.1		0			
SLFRAVITKKVADLV	15	1 n	POL	96	2.1		0.0004	٠		
DLESEFQAAISRKWV	15	2	POL	40	2.1		0			
MLGSVVGNWQYFFPV	15	3	POL	75	2.1		0.012			
GASSFSTTI	6	2		60	2.1		0			0.0002
DLESEFQAA	6	2,3		93	2.1		٥			
QAAISRIOM	6	2		99	2.1		0			
KAEMLESVL	۷.	2		125	2.1		0			٥
KASEYLQLV	6	2		146	2.1		0.011			

Sequence	2	Mage	Mo1.	Pos.	Hotif	11	A2.1	АЗ.2	111	A24
OLVFGIEVV	6	7		152	2.1		0.0038	·		
VVPISHLYI	6	7		162	2.1		0.0002			
PISHLYILV	6	2		164	2.1		0.0005			
HEYIEVTCE	6	2		167	2.1		0.0034			
YILVTCLGL	6	2		169	2.1		0.0014	-		
GLLGDNQVM	6	2 .		181	2.1		0.0038			
QVMPKTGLL	6	2		187	2.1		0			
VMPKTGLLI	6	2		188	2.1		0.0010			0.230
KTGLLIIVL	6	2		191	2.1		0.0002			
GLLIVIAI	6	2,3		193	2.1		0.0002			
LLIIVLAII	6	2,3		194	2.1		0.0001			
LIIVLAIIA	6	2,3		195	2.1		0.0008			
IIVLAIIAI	6	2		196	2.1		0.0009			
IIAIEGDCA	6	2		201	2.1		0			
GASSLPTIM	6	3		60	2.1		0			0.0010
QAALSRKVA	6	3		99	2.1		0			.
VABLVHFLL	6	3		106	2.1		0			0.039
KAEMLGSVV	6	3		125	2.1		٥			
KASSSLQLV	6	3		146	2.1		0.0005			
QLVFGIELM	6	3		152	2.1		0.0010			
PIGHLYIFA	6	3		164	2.1		0			
IMPKAGLLI	6	3		188	2.1		0.0064			

1.51	
	+
	2.1
	2.1
	2.1
	2.1
	2.1
	2.1
	2.1
	2.1
	2.1
	2.1
Ì	2.1
	2.1
	2.1
	2.1
	2.1
١	2.1
Ì	2.1
	2.1
	2.1
	2.1
ŀ	2.1

	:	Mage	Ţ.	, BOB	Motif	14	A2.1	A3.2	A11	A24
Sequence	1	3659411		, 8,			6000.0			0.0018
VAELVHFLLL	2	F		30,7						
VTKAEMIGSV	10	Ж		123	2.1		<0.0002			
GIELMEVDPI	27	3		156	2.1		<0.0002			
Evno rent.Y I	2	3		191	2.1		<0.0002			
DICHLYTEAT	9	~		164	2.1		0.0003			
OTMPKAGLLI	10	~		187	2.1		0.0006			
IMPKAGLLII	25	7		188	2.1		0.0015			
KAGLLIIVLA	10	9		191	2.1		<0.0002			
AIIAREGDCA	107	3		200	2.1		<0.0002		Į.	
FLWGPRALI	6	2		271	A02					
GLEARGEAL	6	3		15	A02					
EARGEALGL	6	8		17	A02					
ALGLYGADA	6	3		22	A02/A03					
GLVGAOAPA	6	3		24	A02/A03			·		
LVGAOAPAT	6]		25	A02					
PATEEORAA	6	3		31	A02/A03					
EAASSSSTL	6	3		37	A02					
AASSSSTLV	٥	_		38	A02					
LVEVTLGEV	6	6		45	A02					
EVTLGEVPA	6	3		4.7	A02/A03					
VTIGEVPAA	6			48	A02/A03					
200	ŀ			220	A02					
NI WEBLISAN	1									

										
	*	Mage	Mo1.	Pos.	Motif	A1	٨2.1	х3.2	111	A24.
erranbkkt.	0	3		237	A02					
TIGODKKIL	6	9		238	A02					
FLWGPRALV	6	3		271	A02					
RALVETSYV	6	3		276	A02					
LVETSYVKV	6	3		278	A02					
YVKVLHHMV	6	£		283	A02					
KVLHHMVKI	9	3		285	A02					
· EARGEALGLV	10	3		17	A02					
EALGLVGAQA	10	3		21	A02/A03					
GLVGAQAPAT	97	3		24	A02					
OAPATERORA	10	3		29	A02/A03					
EAASSSSTLV	10	3		37	A02					
TLVEVTLGEV	ន	3		44	A02			·		
EVTLGEVPAA	2	3		47	A02/A03					
EVFEGREDSI	10	3		229	A02					
SILGDPKKLL	10	3		237	A02					
ILGDPKKLLT	10	3		238	A02					
ALVETSYVKV	27	3		277	A02					
LVETSYVKVL	2	3		278	A02					
MVKISGGPHI	2	3		290	A02					
LVLGTLEEV	6	7		38	2.1	<0.0006	0.032	0	٥	0.0003
CVADIMETT.	۽	,		105		0.0005	0.041	0.0039	0.0030	0.0070
NAMOUNG TO										

	*	Mage	Xo1.	Pos.	Motif	A1	A2.1	АЗ.2	111	A24
TOPOTET	9	~		153	2.1		0.17			
TLIMOPIPA	6					<0.0007	1.4	0.0048	0.0048	0
EUDD TOH! W	0	-				3.7			0.0022	
SAUSTANET.	•	2				40.0007	0.13	0.0007	0	0.0043
KNORLANFLL	10	7		105		<0.0008	0.071	0.0004	0.0001	0.0008
LVFGIRLMRV	107	3				0.0030	0.065	0.0007	0	0
KVART.VHFT.	6	3		105	2.1	0	0.073	0.011	0.0047	0.0005
CTLESTERS	6	1		92	2.1	0.0001	0.073	0	0.0002	0
VMTAMRGGHA	2	1		200	2.1	<0.00008	0.0023	0	0	0
MESUTKNYK	ļ a	1				0	0	0.034	0.0045	0
FTSYVKVLRY	2	1				0.075	0	0.0009	0.0004	0
KVLEYVIKV	6	1	new	279	2.1	<0.0005	0.095	0.022	0.015	0
FLWGDRALA	6	1				<0.0006	0.027	0.0015	0	0
ALRERERGY	-	1		302	2.1	<0.0006	0.0056	0	0	0
ALARTSYVKV	2	1		271		<0.000	0.017	0.0011	0.0029	0
YVIKVSARV	6	-		283	2.1	0.0005	0.018	0	0	0
RALAETSYV		-		270	2.1	<0.0006	0.014	0.0003	0.0005	0
ALAETSYVK	6					<0.0006	0.0002	0.17	0.39	٥
VAGTLEEV	-	-		39	2.1	<0.0007	0.0088	٥	0	0
SLOLVFGI	8	1		150	2.1	<0.0007	0.0094	٥	0.0001	٥
ILESLERA	8	-		93	2.1	<0.0004	0.0017	0.0003	0	0.0001
FLLLEVER	"	-		112	2.1	0.0036	0.0007	0.0003	0.0001	٥
	4						:			

Sequence	2	Mage	. 10J	Poff.	Motif	14	A2.1	A3.2	A11	A24
GLVCVQAA	•	1		24	2.1	0.0016	0.0008	0.0008	0	0
VLVTCLGL	8	1		170	2.1	<0.0007	0.0010	0.0001	0	0
KVADLVGFL	6	1		105	2.1	<0.0008	0.0091	0.0013	0.0005	D
YVLVTCLGL	6	1		169	2.1					
IMPKTGFLI	6	1		188	2.1	<0.0008	0.0035	0	0	3.2
HIÖNGDTIB	6	1			A2.1	<0.0008	0.0054	0	٥	0.0002
GLVCVQAAT	6	1		24	2.1	0.0030	0.0001	0.0026	0	0.0001
VADLÝGFLL	6	1		106	2.1	0.032	0.0011	0.0054	0.0008	0.0007
YLEYGRCRTV	01	1		248	2.1	0.0008	0.0097	0.0001	0	0
AGIDAATÕTS	10	1		150	2.1	0.0028	0.0047	0.0013	0.0001	0.0001
IMPKTGFLII	10	1		188	2.1	<0.0008	0.0007	0	0	0.050
ALGLVCVQAA	10	1		22	A2.1	0.0011	0.0002	0.0003	0	0
BIWEBLSVMBV	11	1		213	A2.1	0.0007	0.013	0.0001	0.0001	O
FLIIVLVMIAM	11	. 1			A2.1	0.023	0.0031	0.016	0.0014	0.0011
VIPHAMSSCGV	11	1		257	2.1	<0.000>	1.4	0	0	0
CILESCFRAVI	11	1			A2.1	0.079	0.0017	0.058	0.0005	0.0008
QIMPKTGFLII	11	1		187	2.1	<0.000	0.0003	0	0	0.0030
GFLLLKYRA	6	1						0.0004	0.0002	
CFPRIFGKA	9	1						0	0	
PFFPSLREA	9	. 1			-			0	0	
FPPSLREAA	6	1						0	0	
RSLHCKPBEA	10	1						0.0001	0.0008	

								1		
Section 2	\$	AA Strain	Mol.	Pos.	Motif	A1	A2.1	A2.1 A3.2	A11	A24
RELEGIORALE 10	9	-						0	0	
201000000	2							0.0004	0	
1	2 2							0	0	

Seguence	Antigen	Strain	Strain Molecule	Position	Motif	A1	A2	А3	A11	A24	Max.
						Binding	Binding	Binding	Binding	Binding	Binding
ALFLGFLGAA	HIV	MN	<u>100 160 </u>	818	A02		05640				0501:0
MLQLTVWGI	HIV	i i	Ep160	995	A02		0.2450				0.2.150
RVIEVLORA	₩	MΝ	091dg	829	A(12		11.1963		;		0.1963
KLTPLCVTL	H	Z	gp160	120	A()2		0.1600	•			0.1600
LLIAARIVEL	HIV	Z	091da	776	A02		0.1550	:			0.1550
SLLNATDIAV	HIV	NΣ	gp160	814	A02		0.1050	:			0.1050
ALFLGFLGA	HIV	Z	gp160	218	A()2		0.0945		!		0.0945
HMLQLTVWGI	HIV	NM	gp160	265			0.0677				0.0677
LLNATDIAV	AIII	ΣN	091da	815	A02		0.0607				0.0607
ALLYKLDIV	2	Σ	091da	130	!		0.0362				0,0362
WLWYIKIFI	HIV	Z Σ	091 da	679	A02		0.0355	:			0.0.355
TI IVHLNESV	HIV	Z	9 Je	288	A02		0.0350				0.0350
LLOYWSQEL	HIV	Ž	gp160	800	A()2		0.0265	· i			0.0265
IMIVGGLVGL	HIV	ZΣ	gp160	289	A02		0.0252		:		0.0252
LLYKLDIVSI	HIV	Z	8p160	180	A02		0.0245		•		0.0245
FLAIIWVDL	HIV	Z	gp160	753	A02		0.0233		1	:	0.0233
TLOCKINQII	HIV	Z	8p160	415	A02		0.0200				0.0200
GLVGLRIVFA	AIH	NΣ	gp160	692	A02		0.0195				0.0195
FLGAAGSTM	HIV	Σ	gp160	523	A02		0.0190			:	0.0100
IISTMDOST	HIV	NW	gp160	101	A02		0.0179		:		0.0179
TVWGIKQLQA	HIV	NM	gp160	570	A02		0.0150				0510.0
LLGRRGWEV	HIV	NM	gp160	785	A(1)2		0.0142	 :			0.0142
AVLSIVNRV	HIV	NM	gp160	101	A02		0.0132				0.0132

ſ	Anthon	Ctroin	Strain Molecule Position	Position	Motif	AI	A2	A3	-	A24	Max.
Sequence	ViniBen	241 8611	Morenie			:		DE	Binding		Rinding
						Binding	BINGING	Bruching	Duning		9
FIMIVGGLV	HIV	Z	8p160	989	A02		0.0131				5.10.0
1	HIV		gp160	815	A02		0.0117	•			/
FLYGALLLA	PLP	Human		08	A02		0006:		!	:	1.50
SLLTFMIAA	PLP	Human		253	A02		0.5300	::	1		0.5.500
FMIAATYNFAV	PLP	Human		257	A02		0.4950		:		0,49,0
RMYGVLPWI PLP	PLP	Human		205	A02		0.1650		:	:	0.1631.0
IAATYNFAV	PLP	Human		259	A02		0.0540	,	:	:	0,0340
GLLECCARCLY PLP	PLP	Human		2	A02		0.0515	•	:	· i	5150.0
YALTVVWLL	PLP	Human		157	A02		0.0415	•		. •	CIMON
ALTVVWLLV	PLP	Human		158			0.0390		:	:	06.00
FLYGALLL	PLP	Human		80	A(1)2		0.0345		:		C :
3	PLP	Human		199	AUZ		9:0	:	:	-	9 5
LLVFACSAV	PLP	Human		164	A02		0.0107				(0.0.0)

Table 10

		·
AA .	SEQUENCE	SOURCE
9	YIFATCLGL	MAGE 3 169
9	IMPKTGFLI	MAGE 1 188
10	IMPKTGFLII	MAGE 1 188
15 .	MLGSVVGNWQYFFPV	MAGE 3 POL 75
9	VMPKTGLLI	MAGE 2 188
9	[MPKAGLLI	MAGE 3 188
10	IMPKAGLLII	MAGE 3 188
9	RLWHYPCTV	HCV Env2 614
9	RLWHYPCTI	HCV Env2 614
9	FLLLADARI	HCV Env2
9	GVWPLLLLL	HCV Env2 792
9	GMWPLLLLL	HCV Env2 792
9	YLNTPGLPV	HCV NS3/NS4 1542
9	YMNTPGLPV	HCV NS3/NS4 1542
9	VILDSFDPL	HCV NS5 2251
9	ILMTHFFSI	HCV NS5 2843
9	ILMTHFFSV	HCV NS5 2843
9	LMAVVLASL	gp100 606
9	SLSLGFLFL	PAP 13
10	YMIMVKCWMI	c-ErbB2 952
10	GLHGQDLFGI	PAP 196
9	AILSVSSFL	P. falciparum CSP 6
9	GLIMVLSFL	P. falciparum CSP 425
9	VLLGGVGLV	P. falciparum EXP-1
9	GLLGNVSTV	P. falciparum EXP-1
9	LLGNVSTVL	P. falciparum EXP-1 84
9	VLAGLLGNV	P. falciparum EXP-1 80

	· · · · · · · · · · · · · · · · · · ·	
AA	SEQUENCE	SOURCE
9	KILSVFFLA	P. falciparum EXP-1
9	FLIFFDLFL	P. falciparum TRAP 14
9	LIFFDLFLV	P. falciparum TRAP
9	FMKAVCVEV	P. falciparum TRAP 230
9	LLMDCSGSI	P. falciparum TRAP 51
10	ILSVSSFLFV	P. falciparum CSP 7
10	VLLGGVGLVL	P. falciparum EXP-1
10	GLLGNVSTVL	P. falciparum EXP-1
10	FLIFFDLFLV	P. falciparum TRAP
10	GLALLACAGL	P. falciparum TRAP 507
9	KIWEELSML	MAGE2 220
9	TLMSAMTNL	Prost.Ca PAP 112
9	LLLARAASL	Prost.Ca PAP 6
9	ALDVYNGLL	Prost.Ca PAP 299
9	VTWIGAAPL	PSA 8
10	ALIETSYVKV	MAGE2 277
10	SLSLGFLFLL	Prost.Ca PAP 13
10	RTLMSAMTNL	PAP 111
10	FLPSDFFPSV(CONH2)	HBc 18-27
10	FLPSDFFPSV-NH2	HBc 18-27
9	ILGFVFTLT-NH2	Flu Matrix 59-67
10	KGILGFVFTL-NH2	Flu Matrix 57-66
11	FLPSDFFPSVR	HBc 18-28
9	FLPSDFFPS	HBc 18-26
9	GILGKVFTL	Flu Matrix 58-66
9	FLSKQYLNL	HBV polymerase
9	KLQCVPLHV	PSA 166-174 P/D
		= :

		<u> </u>
AA	SEQUENCE	SOURCE
9	KLQCVPLHV	PSA 166-174 P/D
9	KLQCVPLHV	PSA 166-174 P/D
9	KLYEIVAKV	A2.1 consensus
9	KLAEYVAKV	A2.1 consensus
9	KLAEIVYKV	A2.1 consensus
9	TLTSCNTSV	HIV gp 120 env. RE trans. 197
9	ALMEKIYQV	A2.1 consensus peptide
9	ALSEKTYQV	A2.1 consensus peptide
9	FLMSYFPSV	941.01 9-mer analog
9	FLPSYFPSV	941.01 9-mer analog
10	FLMSDYFPSV	941.01 M2 analog
9	FLYCYFALV	Chiron consensus
9	FMYCYFALV	Chiron consensus
10	SLVGFGILCV	Chiron consensus
10	SLMGCGLFWV	Chiron consensus
8	GLLGPLLV	HBVadr-ENV
9	AMAKAAAAI	A2.1 poly-A
10	MMWYWGPSLY	нви
9	FLPSYFPSA	analog of 994.02:
9	FAPSYFPSV	analog of 994.02: chiron comb
9	FLPSYFPSS	analog of 994.02: chiron comb
9	FSPSYFPSV	analog of 994.02:
9	IMPKTGFLI	MAGE-1
9	VADLVGFLL	MAGE-1
11	EIWEELSVMEV	MAGE-1
11	FLIIVLVMIAM	MAGE-1
11	VIPHAMSSCGV	MAGE-1
11	CILESCFRAVI	MAGE-1
9	YIFATCLGL	MAGE3

AA	SEQUENCE	SOURCE
9	YIFATCLGL	MAGE3
11	KMVELVVHFLLL	MAGE2 112-122
11	HLFIYATCLGL	MAGE3 174-184
9	GLQDCTMLV	HCV NS5 2727-2735
8	TLGIVSPI	HPV, analog of 1088.01
8	TLGIVXPI	HPV, analog of 1088.01
10	FLLAQFTSAI	HBV POL 513
11	VLLDYQGMLPV	HBV env
11	CILLCLIFLL	HBV env
9	FLGGSPVCL	HBV env
11	TVIEYLVSFGV	HBV core 114-124
11	TVLEYLVSFGV	HBV core 114-124
10	FLLAQFTSAI	HBV pol
9	GLYSSTVPI	HBV pol
9	GLYSSTAPI	HBV pol
9	GLDVLTAKV	HIV form VIN.
9	RILGAVAKV	HIV form VIN.
9	LLFGYPVYV	HTLV, tax 11-19
9	ALFGYPVYV	tax 11-19, SAAS
9	LLFGAPVYV	tax 11-19, SAAS
9	LLFGYAVYV	12x 11-19, SAAS
9	LLFGYPVAV	tax 11-19, SAAS
9	AAGIGILTV	MART1 27-35
9	GILTVILGV	MARTI 31-39
9	ILTVILGVL	MARTI 32-40
9	VILGVLLLI	MARTI 35-43
9	ALMDKSLHV	MART1 56-64
10	TVILGVLLLI	MART1
10	LLDGTATLRL	MARTI
10	ILSVSSFLFV	Plas. falcip. CSA-A 7-16
9	GLIMVLSFL	Plas. falcip. CSA-A 401-409

SOURCE **SEQUENCE** AA Plas. falcip. CSA-A ġ IMVLSFLFL 403-411 FLIFFDLFLV Plas. falcip. TRAP-A 10 14-23 **FMKAVCVEV** Plas. falcip. TRAP-A 200-207 IMPGQEAGL gp100 9 GLGQVPLIV gp100 9 LMAVVLASL gp100 9 RLMKQDFSV gp100 gp100 HLAVIGALL 9 gp100 9 LLAVGATKV gp100 **MLGTHTMEV** 10 LLDGTATLRL gp100 gp100 **VLYRYGSFSV** 10 gp100 10 **VLPSPACQLV** 10 SLADTNSLAV gp100 VLMAVVLASL gp100 10 LMAVVLASLI gp100 10 gp100 **RLDCWRGGQV** 10 gp100 10 **AMLGTHTMEV** 10 ALDGGNKHFL gp100 YLEPGPVTA gp100 10 LLNATAIAVA 11 SLLNATAIAVA gp100 9 KTWGQYWQV ITDQVPFSV gp100 YLEPGPVTA gp100 gp100 10 LLDGTATLRL **VLYRYGSFSV** gp100 10 10 ALDGGNKHFL gp100 MART1 31-39 **GILTVILGV** Human Tyrosinase 9 YMNGTMSQV MLLAVLYBL Human Tyrosinase Human Tyrosinase LLWSFQTSA

5

10

15

20

25

AA	SEQUENÇE	SOURCE
9	YLTLAKHTI	Human Tyrosinase
9	FLPWHRLFL	Human Tyrosinase
9	FLLRWEQEI	Human Tyrosinase
9	RIWSWLLGA	Human Tyrosinase
9	LLGAAMVGA	Human Tyrosinase
9	AMVGAVLTA	Human Tyrosinase
9	VLTALLAGL	Human Tyrosinase
9	ALLAGLVSL	Human Tyrosinase
9	LLAGLVSLL	Human Tyrosinase
10	BLLWSFQTSA	Human Tyrosinase
10	WMHYYVSMDA	Human Tyrosinase
10	FLPWHRLFLL	Human Tyrosinase
10	WLLGAAMVGA	Human Tyrosinase
10	AMVGAVLTAL	Human Tyrosinase
10	VLTALLAGLV	Human Tyrosinase
10	TALLAGLVSL	Human Tyrosinase
10	ALLAGLVSLL	Human Tyrosinase
9	NLTDALLQV	P. falciparum SSP2 132
9	SAWENVKNV	P. fakciparum SSP2 218
10	FLIFFDLFLV	P. falciparum SSP2
9	NLNDNAIHL	P. falciparum SSP2 80
10	YLLMDCSGSI	P. falciparum SSP2 51
9	TLQDVSLEV	controls

Table 11

		<u> </u>	
SIP SIP	AA	SEQUENCE	SOURCE
9 NAWGMVLLV HPV 6b/11 E 270 9 SLYAHIQWL HPV 6b/11 E 260 9 TLIKCPPLL HPV 6b/11 E 556 9 GIYDALFDI PSMAg 707 9 YLSGANLNL CEA 605 9 VLYGPDTPI CEA 589 9 IMIGVLVGV CEA 691 9 LLTFWNPPT CEA 24 9 KLTEMVQWA HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 536 10 TLIKCPPLLV HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNQSL CEA 176 10 YLWWVNQSL CEA 354 10 YLWWVNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254	9	ALYWFRTGI	HPV 6b/11 E1
9 SLYAHIQWL HPV 6b/11 E 260 9 TLIKCPPLL HPV 6b/11 E 556 9 GIYDALFDI PSMAg 707 9 YLSGANLNL CEA 605 9 VLYGPDTPI CEA 589 9 IMIGVLVGV CEA 691 9 LLTFWNPPT CEA 24 9 KLTEMVQWA HPV 6b/11 E 357 9 YMDTYMRNL HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 260 10 TLIKCPPLLV HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254		LLDGNPMSI	HPV 6b/11 E1
9 TLIKCPPLL HPV 6b/11 E 556 9 GIYDALFDI PSMAg 707 9 YLSGANLNL CEA 605 9 VLYGPDTPI CEA 589 9 IMIGVLVGV CEA 691 9 LLTFWNPPT CEA 24 9 KLTEMVQWA HPV 6b/11 E 357 9 YMDTYMRNL HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254 10 WLCAGALVLA PSMAg 20	9	NAWGMVLLV	HPV 6b/11 E1
9 GIYDALFDI PSMAg 707 9 YLSGANLNL CEA 605 9 VLYGPDTPI CEA 589 9 IMIGVLVGV CEA 691 9 LLTFWNPPT CEA 24 9 KLTEMVQWA HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254	9	SLYAHIQWL	HPV 6b/11 E1 260
9 YLSGANLNL CEA 605 9 VLYGPDTP1 CEA 589 9 IMIGVLVGV CEA 691 9 LLTFWNPPT CEA 24 9 KLTEMVQWA HPV 6b/11 E 357 9 YMDTYMRNL HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 260 10 TLIKCPPLLV HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNNQSL CEA 354 10 YLWWVNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254	9	TLIKCPPLL	HPV 6b/11 E1 556
9 VLYGPDTP1 CEA 589 9 IMIGVLVGV CEA 691 9 LLTFWNPPT CEA 24 9 KLTEMVQWA HPV 6b/11 E 357 9 YMDTYMRNL HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 260 10 TLIKCPPLLV HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254 10 WLCAGALVLA PSMAg 20	9	GIYDALFDI	PSMAg 707
9 IMIGVLVGV CEA 691 9 LLTFWNPPT CEA 24 9 KLTEMVQWA HPV 6b/11 E 357 9 YMDTYMRNL HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 260 10 TLIKCPPLLV HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNNQSL CEA 354 10 YLWWVNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254	9	YLSGANLNL	CEA 605
9 LLTFWNPPT CEA 24 9 KLTEMVQWA HPV 6b/11 E 357 9 YMDTYMRNL HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 260 10 TLIKCPPLLV HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNNQSL CEA 354 10 YLWWVNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254	9	VLYGPDTPI	CEA 589
9 KLTEMVQWA HPV 6b/11 E 357 9 YMDTYMRNL HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 260 10 TLIKCPPLLV HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254 10 WLCAGALVLA PSMAg 20	9	IMIGVLVGV	CEA 691
9 YMDTYMRNL HPV 6b/11 E 532 10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 260 10 TLIKCPPLLV HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNNQSL CEA 354 10 YLWWVNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254	9	LLTFWNPPT	CEA 24
10 NLLDGNPMSI HPV 6b/11 E 539 10 SLYAHIQWLT HPV 6b/11 E 260 10 TLIKCPPLLV HPV 6b/11 E 556 10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNNQSL CEA 354 10 YLWWVNQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254 10 WLCAGALVLA PSMAg 20	9	KLTEMVQWA	HPV 6b/11 E1 357
10 SLYAHIQWLT HPV 6b/11 E 260	9	YMDTYMRNL	HPV 6b/11 E1 532
260	10	NLLDGNPMSI	HPV 6b/11 E1 539
10 MVFELANSIV PSMAg 583 10 YLWWVNNQSL CEA 176 10 YLWWVNNQSL CEA 354 10 YLWWVNGQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E1 254 10 WLCAGALVLA PSMAg 20	10	SLYAHIQWLT	HPV 6b/11 E1 260
10 YLWWVNNQSL CEA 176 10 YLWWVNNQSL CEA 354 10 YLWWVNGQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E: 254 10 WLCAGALVLA PSMAg 20	10	TLIKCPPLLV	HPV 6b/11 E1 556
10 YLWWVNNQSL CEA 354 10 YLWWVNGQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E: 254 10 WLCAGALVLA PSMAg 20	10	MVFELANSIV	PSMAg 583
10 YLWWVNGQSL CEA 532 10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254 10 WLCAGALVLA PSMAg 20	10	YLWWVNNQSL	CEA 176
10 GIMIGVLVGV CEA 690 10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E: 254 10 WLCAGALVLA PSMAg 20	10	YLWWVNNQSL	CEA 354
10 VLYGPDAPTI CEA 233 10 KLIEPLSLYA HPV 6b/11 E 254 HPV 6b/11 E 254	10	YLWWYNGQSL	CEA 532
10 KLIEPLSLYA HPV 6b/11 E: 254 10 WLCAGALVLA PSMAg 20	10	GIMIGVLVGV	CEA 690
254 10 WLCAGALVLA PSMAg 20	10	VLYGPDAPTI	CEA 233
	10	KLIEPLSLYA	HPV 6b/11 E1 254
n governous	10	WLCAGALVLA	PSMAg 20
IU IMIGYLVGVA CEA 691	10	IMIGVLVGVA	CEA 691

	· · · · · · · · · · · · · · · · · · ·	
AA	SEQUENCE	SOURCE
9	YLYQLSPPI	HTLV-I tax 155
9	LLFEEYTNI	HTLV-I tax
9	QLGAFLTNV	HTLV-I tax
9	TLTAWQNGL	HTLV-I tax
9	ALQFLIPRL	HTLV-1 tax
9	TLGQHLPTL	HTLV-I tax
9	FAFKDLFVV	HPV 18 E6
9	RLLQLLFRA	GCDFP-15
9	CMVVKTYLI	GCDFP-15 65
9	LLLVLCLQL	GCDFP-15 15
9	ILYAHIQCL	HPV18 E1 266
9	SLACSWGMV	HPV16 E1 266
9	CLYLHIQSL	HPV16 E1 259
9	YLVSPLSDI	HPV16 E1
9	VMFLRYQGV	HPV16 E1
9	KLLSKLLCV	HPV16 E1 292
9	ALDGNPISI	HPV18 E1 546
9	AVFKDTYGL	HPV18 E1 216
9	LLTTNIHPA	HPV18 E1 570
9	LLQQYCLYL	HPV16 E1 254

AA	SEQUENCE	SOURCE
9	AMLAKFKEL	HPV16 E1 206
9 .	ALDGNLVSM	HPV16 E1
9	FLGALKSFL	HPV18 E1
9	FIHFIQGAV	HPV18 E1
10	TLLLVLCLQL	GCDFP-15
10	LLFRASPATL	GCDFP-15
10	SLMKFLQGSV	HPV16 E1 489
10	SLACSWGMVV	HPV16 E1 266
10	FLQGSVICFV	HPV16 E1 493
10	FIQGAVISFV	HPV18 E1 500
10	KLLCVSPMCM	HPV16 E1 296
10	FILYAHIQCL	HPV18 E1 265
10	fvnstshfwl	HPV18 E1 508
10	ILLTTNIHPA	HPV18 E1 569
10	TLLQQYCLYL	HPV16 E1 253
9	GLLGWSPQA	HBV ENV 62
9	GLACHQLCA	HER2/neu
9	ILDEAYVMA	HER2/neu
9	SIISAVVGI	HER2/neu
9	VVLGVVFGI	HER2/neu
9	YMIMVKCWM	HER2/neu
10	ALCRWGLLLA	HER2/neu
10	QLFEDNYALA	HER2/neu

AA	SEQUENCE	SOURCE
9	HMWNFISGI	HCV
		consensus
9	VIYQYMDDL	HIV POL
	<u> </u>	358.
9	SLYNTVATL	HIV GAG 77
10	TVWGIKQLQA	HIV ENV
<u> </u>		735
9	LLLEAGALV	MSH 99
9	VLETAVGLL	MSH 92
9	CLALSDLLV	MSH 79
9	FLSLGLVSL	MSH 45
9	SLVENALVV	MSH 52
9	AIIDPLIYA	MSH 291
9	FLCWGPFFL	MSH 251
9	FLALIICNA	MSH 283
9	TILLGIFFL	MSH 244
9	RLLGSLNST	MSH 9
9	SLYNTVATL	HIV p17/5B
Ŀ		<i>7</i> 7-8
9	VIYQYMDDL	HIV RT/50A
<u></u>		346-
9	ILKEPVHGV	HIV RT/IV9
		476-

Table 12

PEPTIDE NO.	PEPTIDE LENGTH	SEQUENCE
1237.01	9	FLWGPQALV.
1237.02	9	FLWGPNALV
1237.03	9	FLWGPHALV
1237.04	9	FLWGPKALV
1237.05	9	FLWGPFALV
26.0158	9	AVIGALLAV
26.0172	9	LLHLAVIGA
26.0186	9	SLADTNSLA
26.0192	9	VMGTTLAEM
26.0240	9	LLAVLYCLL
26.0383	10	FLRNQPLTFA
26.0390	10	HLAVIGALLA
26.0395	10	LAVIGALLAV
26.0418	10	TLAEMSTPEA
26.0423	10	YLAEADLSYT
26.0497	10	MLLAVLYCLL
1183.10	10	VLYRYGSFSV
27.0007	9	ILSSLGLPV
27.0012	9	LLFLGVVFL
27.0019	9	GLYGAQYDV
27.0022	9	FVVALIPLV .
27.0023	9	GLMTAVYLV
27.0027	9	ALVLLMLPV
27.0028	9	ILLSIARVV
27.0029	9	SLYFGGICV
27.0030	9	QLIPCMDVV
27.0031	9	VLQQSTYQL
27.0032	9	AIHVVVHAI
27.0034	9	GLHGVGVSV
27.0035	9	GLVDFVKHI
27.0036	9	LLFRFMRPL
27.0038	. 9	LMLPGMNGI
27.0043	9	TVLRFVPPL
27.0044	9	MLGNAPSVV
27.0050	9	YLDLALMSV
27.0064	9	RMPEAAPPV

PEPTIDE NO.	PEPTIDE LENGTH	SEQUENCE
27.0082	9	FLLPDAQSI
27.0083	9	MTYAAPLFV
27.0088	9	LLPLGYPFV
27.0089	9	GLYYLTTEV
27.0090	9	MALLRLPLV
27.0091	9	RLPLVLPAV
27.0093	99	RMFAANLGV
27.0095	9	RLLDDTPEV
27.0096	9	YLYVHSPAL
27.0100	9	GLYLSQIAV
27.0101	99	YLSQIAVLL
27.0102	9	SLAGFVRML
27.0137	10	ATYDKGILTV
27.0146	10	KIFMLVTAVV
27.0151	10	FLLADERVRV
27.0153	10	MLATDLSLRV
27.0154	10	RLQPQVGWEV
27.0161	10	FLMPVEDVFI
27.0165	10	RMSRVTTFTV
27.0168	10	LALVLLMLPV
27.0169	10	ALVLLMLPVV
27.0170	10	GIVSGILLSI
27.0171	. 10	SLYFGGICVI
27.0173	10	QLIPCMDVVL
27.0181	10	LLFRFMRPLI
27.0183	10	VLLEDGGVEV
27.0184	10	AMPAYNWMTV
27.0186	10	GLAGTVLRFV
27.0188	10	VLIAFGRFPI
27.0189	10	FLTCDANLAV
27.0197	10	ALAWGAWGEV
27.0204	10	LLLETSWEAI
27.0217	10	RMPEAAPPVA
27.0223	10	WMAETTLGRV
27.0226	10	AMALLRLPLV
27.0229	10	FMSLAGFVRM
27.0266	11	SLLTEVETYVL

	PEPTIDE NO.	PEPTIDE LENGTH	SEQUENCE
	27.0268	11	GILGFVFTLTV
	27.0269	11	VLDVGDAYFSV
	27.0271	11	KIWEELSMLEV
	27.0272	. 11	STLVEVTLGEV
5	27.0273	11	GLAPPOHLIRV
	27.0274	11	HLIRVEGNLRV
	27.0005	9	YLLALRYLA
	27.0013	9	GLYRQWALA
	27.0017	9	LLWQDPVPA
10	27.0040	9	ALLSDWLPA
	27.0045	9	WLLIDTSNA
	27.0046	9	MLASTLTDA
	27.0081	9	YLSEGDMAA
	27.0094	9	LLACAVIHA
15	27.0144	10	LLCCSGVATA
•	27.0191	10	LLATVFKLTA
	27.0192	10	KLTADGVLTA
	27.0195	10	GLGGLGLFFA
	28.0064	8	TLGIVXPI
20	28.0065	8	ALGTTXYA
	28.0293	9	FLLTRILTY
	28.0294	9	ALMPLYACV
	28.0295	9	LLAQFTSAV
	28.0296	9	LLPFVQWFV
25	28.0297	9	FLLAQFTSV
	28.0298	9	KLHLYSHPV
	28.0299	9	KLFLYSHPI
·	28.0300	9	LLSSNLSWV
	28.0301	9	FLLSLGIHV
30	28.0302	9	MMWYWGPSV
	28.0303	9	VLQAGFFLV
	28.0304	9	PLLPIFFCV
	28.0305	9	FLLPIFFCL
	28.0306	9	VLLDYQGMV
35	28.0307	9	YMDDVVLGV
	28.0308	9	YMFDVVLGA

28.0309

GLLGWSPOV

10

1.

2

5		•	
•			
10			
15			
1.5			
20			
20			
25			
25			
25			
25			
25			
25			
25			
25			
25			
25			
25			
25			
25			

PEPTIDE NO.	PEPTIDE LENGTH	SEQUENCE
28.0342	9	YMIMVKXWM
28.0343	9	YIFATXLGL
28.0345	9	SLHXKPEEA
28.0346	9	ALGLVXVQA
28.0348	9	LLMDXSGSI
28.0349	9	FAFRDLXIV
28.0352	9	GTLGIVXPI
28.0353	9	TLGIVXPIX
28.0354	9	LLWFHISXL
28.0355	9	KLTPLXVTL
28.0356	99	ALVEIXTEM
28.0357	9	LTFGWXFKL
28.0359	9	KLOXVDLHV
28.0360	9	FMKAVXVEV
28.0361	99	LLQQYXLYL
28.0362	9	XLYLHIQSL
28.0363	9	SLAXSWGMV
28.0364	9	ILYAHIQXL
28.0365	9	KLLSKLLXV
28.0366	9 .	PLLPIFFXL
28.0367	9	TLIKXPPLL
28.0368	<u> </u>	ALMPLYAXI
28.0370	. 9	XILESLFRA
28.0609	10	FLLAQFTSAV
28.0610	10	YLHTLWKAGV
28.0611	10	YLFTLWKAGI
28.0612	10	YLLTLWKAGI
28.0613	10	LLFYQGMLPV
28.0614	10	LLLYQGMLPV
28.0615	10	LLVLQAGFFV
28.0616	10	ILLLCLIFLV
28.0650	10	ALXRWGLLL
28.0651	10	KLPDLXTEL
28.0652	10	HLYQGXQVV
28.0653	10	XILESLFRA
28.0654	10	KLQXVDLHV
28.0655	10	YIFATXLGL

		
PEPTIDE NO.	PEPTIDE LENGTH	SEQUENCE
F111.01	9	SLYNTVATL
F111.02	9	ALYNTVATL
F111.04	9	SLANTVATL
F111.06	9	SLFNAVATL
F111.07	9	SLFNLLATL
F111.10	9	SLFNTIAVL
F111.11	9	SLFNAVAVL
F111.09	9	SLFNTIVVL
F111.12	9	SLFNAIAVL
F111.13	9	SLFNTVAVL
F111.14	9	SLFNTVCVI
F111.15	9	SLHNTVATL
F111.17	. 9	SLHNTVAVL
F111.18	9	SLYATVATL
F111.19	9	SLYNAVATL
F111.21	9	SLYNTAATL
F111.22	9	SLYNTIAVL
F111.23	9	SLYNTSATL
F111.25	9	SLYNTVAVL
F111.26	9	SLYNTVATA
F111.27	9	SLYNAIATL
F111.28	9	SLYNLVAVL
F111.29	9	SLFNLLAVL
F111.32	9	SLFNTVVTL
F111.34	9	SLYNTVAAL
1039.031	9	MMWYWGPSL
1211.40	10	SLLNATAIAV
	10	TIHDIILECV
	9	FAFRDLCIV
	9	GTLGIVCPI
	9	TLGIVCPIC

Table 13

A	SEQUENCE	SOURCE
A		
9	IPQSLDSWW	HBV ENV
		191
9	IPIPSSWAF	HBV ENV
		313
9	TPARVTGGV	HBV POL
	, ,	365
9	LPIFFCLWV	HBV ENV
		379
9	HPAAMPHLL	HBV POL
		440
9	FPHCLAFSY	HBV POL
	·	541
9	DPSRGRLGL	HBV POL
		789
9	QPRGRRQPI	HCV Core 57
9	SPRGSRPSW	HCV Core 99
9	DPRRRSRNL	HCV Core
		111
9	LPGCSFSIF	HCV Core
		168
9	YPCTVNFTI	HCV E2 622
9	LPALSTGLI	HCV E2 681
9	HPNIEEVAL	HCV NS3
		1358
9	SPGALVVGV	HCV NS4
		1887

	<u> </u>	
A	SEQUENCE	SOURCE
A		
9	SPGQRVEFL	HCV NS5
		2615
9	APTLWARMI	HCV NS5
		2835
9	FPRIWLHJL	HIV VPR 34
9	SPTRRELQV	HIV POL 37
9	FPVRPQVPL	HIV NEF 84
9	RPQVPLRPM	HIV NEF 87
9	KPCVKLTPL	HIV ENV
		123
9	SPRTLNAWV	HIV GAG
		153
9	FPISPIETV	HIV POL 171
9	SPAIFQSSM	HIV POL 327
9	NPDIVIYQY	HIV POL 346
9	GPGHKARVL	HIV GAG
		360
9	LPEKDSWTV	HIV POL 417
9	YPLASLRSL	HIV GAG
		507
9	VPRRKAKII	HIV POL 991
9	TPTLHEYML	HPV16 E7 5
9	KPLNPAEKL	HPV18 E6
		110
9	NPAEKLRHL	HPV18 E6
<u></u>		113
9.	VPISHLYIL	MAGE2 170
9	MPKTGLLII	MAGE2 196

- 15

A	SEQUENCE	SOURCE
Α		
9	DPACYEFLW	MAGE2 265
9	EPHISYPPL	MAGE2 296
9	YPPLHERAL	MAGE2 301
9	LPTTMNYPL	MAGE3 71
9	DPIGHLYIF	MAGE3 170
9	MPKAGLLII	MAGE3 196
9	GPHISYPPL	MAGE3 296
9	HPSDGKCNL	P. falciparum
		S
9	RPRGDNFAV	P. falciparum
		S
9	QPRPRGDNF	P. falciparum
		S
9	LPNDKSDRY	P. falciparum
		S
10	LPLDKGIKPY	HBV POL
		123
10	TPARVTGGVF	HBV POL
		365
10	FPHCLAFSYM	HBV POL
		541
10	LPRRGPRLGV	HCV Core 37
10	APLGGAARAL	HCV Core
		142
10	LPGCSFSIFL	HCV Core
		168
10	VPASQVCGPV	HCV E2 497
10	YPCTVNFTIF	HCV E2 622

_

10

Α	SEQUENCE	SOURCE
Α	_	
10	SPLLLSTTEW	HCV E2 663
10	RPSGMFDSSV	HCV NS3
		1506
10	LPVCQDHLEF	HCV NS3
		1547
10	KPTLHGPTPL	HCV NS3
		1614
10	TPLLYRLGAV	HCV NS3
	عد عد المالية	1621
10	NPAIASLMAF	HCV NS4
		1783
10	LPAILSPGAL	HCV NS4
		1882
10	SPGALVVGVV	HCV NS4
<u> </u>		1887
10	APTLWARMIL	HCV NS5
		2835
10	IPVGEIYKRW	HIV GAG
-	1101 101 001 0	261
10	YPLASLRSLF	HIV GAG
-	A DOTA A KADADA MA	507
10	APTKAKRRVV	HIV ENV
10	VPISHLYILV	MAGE2 170
10	MPKTGLLIIV	MAGE2 170 MAGE2 196
10	HPRKLLMQDL	MAGE2 196
10	LPTTMNYPLW	+
-	 	
10	MPKAGLLIIV	MAGE3 196

ż

10

	• • • • • • • • • • • • • • • • • • • •	
A	SEQUENCE	SOURCE
Α		
10	IPYSPLSPKV	P. falciparum
		S
10	TPYAGEPAPF	P. falciparum
		S
9	FPDHQLDPA	HBV ENV 14
9	YPALMPLYA	HBV POL
		640
9	LPVCAFSSA	HBV X 58
9	APLGGAARA	HCV 142
9	DPTTPLARA	HCV 2806
9	FPYLVAYQA	HCV 1582
9	LPAILSPGA	HCV 1882
9	NPAIASLMA	HCV 1783
9	TPIDTTIMA	HCV 2551
9	TPLLYRLGA	HCV 1621
9	WPLLLLLA	HCV 793
9	NPYNTPVFA	HIV POL 225
9	APLLLARAA	PAP 4
9	HPQWVLTAA	PSA 52
10	IPIPSSWAFA	HBV ENV
		313
10	TPPAYRPPNA	HBV NUC
		128
10	APFTQCGYPA	HBV POL
		633
10	LPIHTAELLA	HBV POL
		712
10	GPCALRFTSA	HBV X 67

SEQUENCE SOURCE 10 **DPTTPLARAA** HCV 2806 **IPQAVVDMVA** HCV 339 10 LPCSFTTLPA HCV 674 10 **QPEKGGRKPA** HCV 2567 10 **VPHPNIEEVA** HCV 1356 10 **IPAETGQETA** HIV POL 820 10 **LPQGWKGSPA** HIV POL 320 **FPDLESEFQA** 10 MAGE2/3 98 10 **DPIGHLYIFA** MAGE3 170 **EPLSLYAHI** HPV 6b/11 E1 2 9 **PPLLVTSNI** HPV 6b/11 E1 5 9 **SPRLDAIKL** HPV 6b/11 E1 TPKKNCIAI HPV 6b/11 E1 9 **FPFDRNGNA** HPV 6b/11 E1 10 **CPPLLVTSNI** HPV 6b/11 E1 5 10 **FPFDRNGNAV** HPV 6b/11 E1 5 8 **GPLLVLQA** HBV ENV 173 8 **IPIPSSWA** HBV ENV

313

5

10

A	SEQUENCE	SOURCE
Α		
8	VPFVQWFV	HBV ENV
		340
8 -	LPIFFCLW	HBV ENV
		379
8	RPPNAPIL	HBV NUC
		133
8	MPLSYQHF	HBV POL 1
8	HPAAMPHL	HBV POL
		429
8	SPFLLAQF	HBV POL
		511
8	YPALMPLY	HBV POL
		640
8	SPTYKAFL	HBV POL
		659
8	VPSALNPA	HBV POL
		769
8	HPvhAGPI	HIV con.
	·	GAG
8	GPGvRyPL	HIV con.
		NEF
8	SPIETVPV	HIV con.
		POL
8	NPYNTPVF	HIV con.
		POL
8	LPIQKETW	HIV con.
		POL

A	SEQUENCE	SOURCE
A		
8	VPRRKaKi	HIV con.
		POL
8	VpLQLPPI	HIV con.
		REV
8	VPLAMKLI	P. falciparum
8	LPYGRTNL	P. falciparum
8	RPRGDNFA	P. falciparum
8	IPQQEPNI	P. falciparum
8	TPFAGEPA	P. falciparum
9	SPINTIAEA	HPV 6b E1
		93
9	SPISNVANA	HPV 11 E1
		93
9	SPRLDAIKL	HPV 6b/11 E1
L		1
9	EPLSLYAHI	HPV 6b/11 E1
		2
9	EPPKIQSGV	HPV 6b/11 E1
		3
9	IPFLTKFKL	HPV 6b E1
		455
9	TPKKNCIAI	HPV 6b/11 E1
		4
9	QPLTDAKVA	HPV 11 E1
		512
9	PPLLVTSNI	HPV 6b/11 E1
		5

Α	SEQUENCE	SOURCE
Α		
9	FPFDRNGNA	HPV 6b/11 E1
	,	5
9	APLILSRIV	PSA 14
9	HPEDTGQVF	PSA 78
9	HPLYDMSLL	PSA 94
9	HPQKVTKFM	PSA 184
9	GPLVCNGVL	PSA 211
9	RPSLYTKVV	PSA 235
9	FPPEGVSIW	PAP 124
9	NPILLWQPI	PAP 133
9	LPFRNCPRF	PAP 156
9	IPSYKKLIM	PAP 277
9	LPPYASCHL	PAP 307
9	SPSCPLERF	PAP 348
9	CPLERFAEL	PAP 351
9	GPTLIGANA	gp100 74
9	LPDGQVIWV	gp100 97
9	VPLAHSSSA	gp100 198
9	QPLTFALQL	gp100 236
9	DPSGYLAEA	gp100 246
9	EPGPVTAQV	gp100 282
9	MPTAESTGM	gp100 366
9	TPAEVSIVV	gp100 401
9	LPKEACMEI	gp100 520
9	LPSPACQLV	gp100 545
9	VPLIVGILL	gp100 596
9	LPHSSSHWL	gp100 630

A SEQUENCE SOURCE A 9 CPIGENSPL gp100 64 9 SPLLSGQQV gp100 65	7
9 CPIGENSPL gp100 64	7
	7 I
9 SPITSGOOV on 100 65	<u>'</u>
3 St Etadog v Epaco os	3
9 MPREDAHFI MART1	1
9 APLGPQFPF Tyrosinase	6
9 IPIGTYGQM Tyrosinase	1
9 TPMFNDINI Tyrosinase	1
9 LPWHRLFLL Tyrosinase	2
9 IPYWDWRDA Tyrosinase	2
9 SPASFFSSW Tyrosinase	2
9 LPSSADVEF Tyrosinase	3
9 SPLTGIADA Tyrosinase	3
9 DPIFLLHHA Tyrosinase	3
9 IPLYRNGDF Tyrosinase	4
9 YPELPKPSI CEA 141	
9 LPVSPRLQL CEA 185	
9 LPVSPRLQL CEA 363	
9 NPPAQYSWL CEA 442	,
9 LPVSPRLQL CEA 541	
9 IPQQHTQVL CEA 632	
9 NPPAQYSWF CEA 264	
9 LPSIPVHPI Prost.Ca F	SM
9 IPVHPIGYY Prost.Ca F	SM
9 RPFYRHVIY Prost.Ca F	SM
9 TPKHNMKAF Prost.Ca F	SM
9 FPGIYDALF Prost.Ca F	SM
9 RPRWLCAGA Prost.Ca I	SM
9 DPLTPGYPA Prost.Ca I	SM

Α	SEQUENCE	SOURCE
Α		
9	RPRRTILFA	Prost.Ca PSM
9	LPFDCRDYA	Prost.Ca PSM
9	LPIHTAELL	HBV POL
		712
10	GPDAPTISPL	CEA 236
10	IPQQHTQVLF	CEA 632
10	QPIPVHTVPL	Prost.Ca PAP
10	HPYKDFIATL	Prost.Ca PAP
10	LPGCSPSCPL	Prost.Ca PAP
10	LPSWATEDTM	Prost.Ca PAP
10	VPLSEDQLLY	Prost.Ca PAP
10	FPHPLYDMSL	Prost.Ca PSA
10	RPGDDSSHDL	Prost.Ca PSA
10	HPQKVTKFML	Prost.Ca PSA
10	LPFDCRDYAV	Prost.Ca PSM
10	YPNKTHPNYI	Prost.Ca PSM
10	SPEFSGMPRI	Prost.Ca PSM
10	RPRWLCAGAL	Prost.Ca PSM
10	TPKHNMKAFL	Prost.Ca PSM
10	RPFYRHVIYA	Prost.Ca PSM
10	HPAAMPHLLV	HBV POL
	l	429
9	SPREGPLPA	HER2/neu
		1151
9	KPDLSYMPI	HER2/neu
		605
9	HPPPAFSPA	HER2/neu
		1208

Ś

10

-15

Α	SEQUENCE	SOURCE
Α		
9	GPLPAARPA	HER2/neu
		1155
9	АРОРНРРРА	HER2/neu
		1204
9	EPLTPSGAM	HER2/neu
		698
9	LPTHDPSPL	HER2/neu
		1101
9	DPLNNTTPV	HER2/neu
		121
9	SPLTSIISA	HER2/neu
		649
9	SPKANKEIL	HER2/neu
		760
9	LPTNASLSF	HER2/neu 65
9	CPSGVKPDL	HER2/neu
-		600
9	SPLAPSEGA	HER2/neu
		1073
9	MPNQAQMRI	HER2/neu
		706
9	LPAARPAGA	HER2/neu
		1157
9	LPQPPICTI	HER2/neu
		941
9	SPAFDNLYY	HER2/neu
		1214

Α	SEQUENCE	SOURCE
A		
9	TPTAENPEY	HER2/neu
		1240
9	LPSETDGYV	HER2/neu
	•	1120
10	LPTNASLSFL	HER2/neu 65
10	CPAEQRASPL	HER2/neu
		642
10	KPCARVCYGL	HER2/neu
		336
10	АРОРНРРРАБ	HER2/neu
		1204
10	SPGGLRELQL	HER2/neu
		133
10	SPLTSIISAV	HER2/neu
		649
10	MPNQAQMRIL	HER2/neu
		706
10	SPYVSRLLGI	HER2/neu
		779
10	HPPPAFSPAF	HER2/neu
		1208
10	SPREGPLPAA	HER2/neu
		1151
10	NPHQALLHTA	HER2/neu
		488
10	MPYGCLLDHV	HER2/neu
		801

		
A	SEQUENCE	SOURCE
Α		
10	GPASPLDSTF	HER2/neu
		995
9	LPTTLFQPV	HTLV-I tax
		21
9	IPPSFLQAM	HTLV-I tax
		10 .
9	FPGFGQSLL	HTLV-I tax
		4
9	WPLLPHVIF	HTLV-I tax
		16
9	SPPITWPLL	HTLV-I tax
		16
9	VPYKRIEEL	HTLV-I tax
		18
9	RPQNLYTLW	HTLV-I tax
		13
9	CPKDGQPSL	HTLV-I tax
į		26
9	RPNDEVTAV	GCDFP-15
		47
9	SPATLLLVL	GCDFP-15
		11
9	WPYLHNRLV	HPV16 E1
		576
9	QPFILYAHI	HPV18 E1
		263
9	SPRLKAICI	HPV16 E1
		107

-

		
Α	SEQUENCE	SOURCE
Α		
9	SPLGERLEV	HPV18 E1
	•	97
9	SPRLQEISL	HPV18 E1
		110
9	RPIVQFLRY	HPV18 E1
,		447
10	WPYLHNRLVV	HPV16 E1
		576
10	WPYLESRITV	HPV18 E1
!		583
10	QPPKLRSSVA	HPV18 E1
		315
10	EPPKLRSTAA	HPV16 E1
		308
9	DPSRGRLGL	HBV POL
		778
9	HPAAMPHLL	HBV POL
		429
9	IPIPSSWAF	HBV ENV
		313
10	TPARVTGGVF	HBV POL
		354
10	FPHCLAFSYM	HBV POL
		530
9	LPVCAFSSA	HBV X 58
9	YPALMPLYA	HBV POL
	·	640
9	APLLLARAA	PAP 4

c

10

Α	SEQUENCE	SOURCE
Α		
9	HPQWVLTAA	PSA 52
9	HPSDGKCNL	Pf SSP2 206
9	RPRGDNFAV	Pf SSP2 305
9	QPRPRGDNF	Pf SSP2 303
10	TPYAGEPAPF	Pf SSP2 539
9	GPHISYPPL	MAGE3 296
9	YPPLHERAL	MAGE2 301
9	VPISHLYIL	MAGE2 170
9	EPHISYPPL	MAGE2 296
9	LPTTMNYPL	MAGE3 71
9	MPKAGLLII	MAGE3 196
10	HPRKLLMQDL	MAGE2 241

Table 14

PEPTIDE	AA	SEQUENCE
25.0129	9	LPPLERLTL
26.0445	10	EPGPVTAQVV
26.0448	10	LPRIFCSCPI
26.0449	10	LPSPACQLVL
26.0455	10	VPLAHSSSAF
26.0458	10	VPRNQDWLGV
26.0476	10	APPAYEKLSA
26.0478	10	MPREDAHFIY
26.0519	10	APAFLPWHRL
26.0522	10	GPNCTERRLL
26.0523	10	IPLYRNGDFF
26.0529	10	TPRLPSSADV
19.0101	9	TPAEVSIVV
26.0554	11	APFTQCGYPA
26.0561	11	NPADDPSRGR
26.0564	11	RPPNAPILSTL
26.0566	11	SPFLLAQFTSA
26.0567	11	SPHHTALRQA
26.0568	11	TPARVTGGVF

.5

15

25

WHAT IS CLAIMED IS:

- 1. A composition comprising an immunogenic peptide having an HLA binding motif, which immunogenic peptide is a peptide shown in Tables 3-14 or a peptide comprising a conservative substitution of a residue in a peptide shown in Table 3-14.
- 2. The composition of claim 1, wherein the immunogenic peptide is linked to a second oligopeptide.
- The composition of claim 2, wherein the second oligopeptide is a peptide that induces a helper T response.
 - 4. A composition comprising a nucleic acid molecule encoding an immunogenic peptide as shown in Tables 3-14, or a peptide comprising a conservative substitution of a residue of a peptide shown in Table 3-14.
 - 5. The composition of claim 4, wherein the nucleic acid further comprises a sequence encoding a second immunogenic peptide.
- 20 6. The composition of claim 4, wherein the nucleic acid further comprises a sequence encoding an oligopeptide that induces a helper T response.
 - 7. A method of inducing a cytotoxic T cell response comprising contacting a cytotoxic T cell with a peptide of claim 1.

International application No. PCT/US98/05039

<u> </u>				
A. CLASSIFICATION OF SUBJECT MATTER 1PC(6) :A61K 39/00, 39/29; C07K 7/00, 14/02, 14/82				
11S CI. : 424/185.1: 530/300, 328, 350				
According to	o International Patent Classification (IPC) or to both a	national classification and IPC		
B. FIELDS SEARCHED				
	ocumentation scarched (classification system followed	by classification symbols)		
U.S. : 4	424/185.1; 530/300, 328, 350			
Documentation scarched other than minimum documentation to the extent that such documents are included in the fields searched				
STN file=reg of first sequence in Table 3. Examiner's MHC/peptide files.				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)				
STN file	reg sequence search of first sequence in Table 3.	iTN file=ca of hits on sequence searc	h.	
· ·				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
			Relevant to claim No.	
Category*	Citation of document, with indication, where app	propriate, of the retevant passages	Relevant to claum No.	
T	BRUSS, V. A short linear sequence in t	the pre-S domain of the large	1-3 and 7	
	hepatitis B virus envelope protein requir			
	Virology. December 1997, Vol. 71, No.	o. 12, pages 9350-9357. See		
	entire document			
.,	PREICUED ADAMS S at al. Comple	ata musicatida requesca of s	1-3 and 7	
Y	PREISLER-ADAMS, S. et al. Comple hepatitis B virus, subtype adw2, and id	entification of three types of	1 DILL (*)	
	C open reading frame. Nucleic Acids			
	page 2258. See entire document.	100. 1995, 101. 21, 110. 9,		
	page 2255. Coo chare to character			
Υ	RAMMENSEE, H. et al. Peptides n	aturally presented by MHC	1-3 and 7	
	Class I molecules. Annu. Rev. Immunol. 1993, Vol. 11, pages			
	213-243, see entire article.			
			I	
X Further documents are listed in the continuation of Box C. See patent family annex.				
	pecial categories of cited documents:	"T" leter document published after the m dete and not in conflict with the app	lication but cited to understand	
to	be of particular relevance	"X" document of particular relevance; ti		
1.	rifer document published on or after the international filing data	considered novel or cannot be considered when the document is taken alone		
cited to establish the publication dete of another citation or other		'Y' document of particular relevance; t	he claimed invention connot be	
1	pecial reason (as specified) comment referring to an oral disclosure, use, exhibition or other	considered to involve an inventue combined with one of more other su	e step when the document is	
•	eegá	being obvious to a person skilled in		
	ocument published prior to the international filing date but later than se priority date claimed	'&' document member of the same pate	nt family	
Date of the	Date of the actual completion of the international search. Date of mailing of the international search report.			
17 JUL 1998				
Name and	Name and mailing address of the ISA/US Authorized officer			
Commissi Box PCT	oner of Patents and Trademarks	1	Jab	
	on, D.C. 20231	THOMAS CUNNINGHAM	Jo 62	
Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196	40	

International application No. PCT/US98/05039

Catégory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
(ENGELHARD, V. et al. Structure of peptides associated with MHC Class I molecules. Curr. Opin. Immunol. 1994, Vol. 6, pages 13-23, see entire document.	
	·	
	·	
•		
	·	

International application No. PCT/US98/05039

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
See attached sheet.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-3 and 7
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No. PCT/US98/05039

Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

1. This International Search Authority has found 3453 inventions claimed in the International Application covered by the claims indicated below:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group 1, claim(s) 1-3 and 7, drawn to compositions comprising peptides and methods of inducing CTL responses using such compositions. A review of Tables 3-14 indicates there are 2764 structurally different peptides recited.

Group II, claim(s) 4-6, drawn to nucleic acids encoding peptides. Claims 4-6 recite nucleic acids encoding the 2764 different peptides of Tables 3-14.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. The species are as follows:

Each of the 2764 different peptides recited by Tables 3-14 and each of the 2764 different nucleic acid sequences encoding the peptides of Tables 3-14. 2764 + 2764 = 5,528 total species.

The claims are deemed to correspond to the species listed above in the following manner:

The following claims are generic: claims 1-7 because they encompass all of the peptides or nucleic acid sequences encoding the peptides of Tables 3-14.

The first peptide species recited in Table 3 (FTF. . .LSK) will be examined. Each additional peptide species requires the payment of a separate fee. To have all the recited peptide species searched requires the payment of 2763 additional fees.

Upon payment for Group II, the Office will examine the first ten (or ten that the Applicant selects) nucleic acid species at no additional cost. Each four species of nucleic acids thereafter requires the payment of a separate fee. To have all the nucleic acid species searched requires the payment of (2764-10)/4 = 689 additional fees.

and it considers that the International Application does not comply with the requirements of unity of invention (Rules 13.1, 13.2 and 13.3) for the reasons indicated below:

The inventions listed as Groups I and II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the peptides of Group I lack the corresponding technical structural and functional features of the nucleic acids of Group II.

The species listed above do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons: the 5528 different species of peptides recited by Tables 3-14 (or the nucleic acid sequences encoding such peptides) lack the same or corresponding special technical features of common structure and function, source of isolation and amino acid or nucleic acid identity. Each separate species would require a separate prior art search.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.