- 10. Given A(4, 1), B(1, 5), and C(0, 1). S and T are translations. $S:(x, y) \to (x + 1, y + 4)$ and $T:(x, y) \to (x + 3, y - 1)$. Draw $\triangle ABC$ and its images under $S \circ T$ and $T \circ S$.
 - a. Does $S \circ T$ appear to be a translation?
 - **b.** Is $S \circ T$ equal to $T \circ S$?
 - c. $S \circ T:(x, y) \to (\underline{?}, \underline{?})$ and $T \circ S:(x, y) \to (\underline{?}, \underline{?})$
- 11. L, M, and N are midpoints of the sides of $\triangle QRS$.
- **a.** $H_N \circ H_M : S \to \underline{\hspace{0.1cm}}?$ **b.** $H_M \circ H_N : Q \to \underline{\hspace{0.1cm}}?$ **c.** $D_{S, \frac{1}{2}} \circ H_N : Q \to \underline{\hspace{0.1cm}}?$ **d.** $H_N \circ D_{S, 2} : M \to \underline{\hspace{0.1cm}}?$ e. $H_L \circ H_M \circ H_N : O \rightarrow ?$

Exs. 11, 12

- 12. If T is a translation that maps R to N, then:
 - a. $T:M \rightarrow \underline{?}$
- **b.** $T \circ D_{S-\frac{1}{2}}: R \to \frac{?}{}$
- c. $T \circ T: R \rightarrow ?$

In Exercises 13-16 tell which of the following properties are invariant under the given transformation.

- a. distance
- b. angle measure
- c. area
- d. orientation
- 13. The composite of a reflection and a dilation
- 14. The composite of two reflections
- 15. The composite of a rotation and a translation
- 16. The composite of two dilations

For each exercise draw a grid and find the coordinates of the image point. O is the origin and A is the point (3, 1). R_x and R_y are reflections in the xand y-axes.

17. $R_r \circ R_v: (3, 1) \to (\underline{?}, \underline{?})$

18. $R_v \circ H_Q: (1, -2) \to (\frac{?}{2}, \frac{?}{2})$

19. $H_A \circ H_O: (3, 0) \to (\frac{?}{?}, \frac{?}{?})$

20. $H_0 \circ H_A: (1, 1) \to (\frac{?}{?}, \frac{?}{?})$

21. $R_x \circ D_{Q_{-2}}: (2, 4) \to (\frac{?}{?}, \frac{?}{?})$

- **22.** $\mathcal{R}_{0,90} \circ R_{\nu}: (-2, 1) \to (\underline{?}, \underline{?})$
- **23.** $\mathcal{R}_{A, 90} \circ \mathcal{R}_{O, -90}: (-1, -1) \to (\underline{?}, \underline{?})$ **24.** $D_{O, -\frac{1}{2}} \circ D_{A, 4}: (3, 0) \to (\underline{?}, \underline{?})$
- 25. Let R_i be a reflection in the line y = x and R_y be a reflection in the y-axis. Draw a grid and label the origin O.
 - **a.** Plot the point P(5, 2) and its image Q under the mapping $R_v \circ R_I$.
 - **b.** According to Theorem 14-8, $m \angle POQ = \frac{?}{}$.
 - c. Use the slopes of \overline{OP} and \overline{OO} to verify that $\overline{OP} \perp \overline{OO}$.
 - **d.** Find the images of (x, y) under $R_v \circ R_I$ and $R_I \circ R_v$.
- **26.** Let R_k be a reflection in the line y = -x and R_k be a reflection in the x-axis.
 - a. Plot P(-6, -2) and its image Q under the mapping $R_k \circ R_x$.
 - **b.** Use slopes to show that $m \angle POQ = 90$ where O is the origin. (Do you see that this result agrees with Theorem 14-8?)
 - **c.** Find the images of (x, y) under $R_k \circ R_x$ and $R_x \circ R_k$.
- 27. Explain how you would construct line j so that $R_k \circ R_i : A \to B$.

k