

Differential Calculus

Partial Differentiation

(Total Differentials, Explicit Function, Implicit Functions and Total Differential Coefficient)

Prepared by

Dr. Sunil
NIT Hamirpur (HP)

Explicit Function:

A function, where the dependent variable say y, is **expressed** in terms of the independent variable say x, then that function is called **explicit function**.

Example: $y = 4x^3 + 3x^2 + 5x + 9$.

Implicit Functions:

A function, where one of the various variables **cannot be expressed** explicitly in terms of the other variables, then that function is called *implicit function*.

Example: Consider the relation $x^3 + y^3 + 3axy = 0$.

In this case, we obtain $\frac{dy}{dx}$ by differentiating throughout w.r.t. x.

Total Differentials:

Let u be a function of x and y i.e. u = f(x, y).

Then the total differential of u is defined and written as

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy.$$

Similarly, if u be a function of x, y and z i.e. u = f(x, y, z).

Then the total differential of u is defined and written as

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz.$$

Evaluation of $\frac{dy}{dx}$ for an implicit function:

Let u = f(x, y) be an implicit function $\Rightarrow u = f(x, y) = 0$ or const.

$$\Rightarrow$$
 du = 0.(i)

Also when u be a function of x and y, i.e. u = f(x, y),

then the total differential of u is defined and written as $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$(ii)

From (i) and (ii), we get
$$\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = 0 \implies \frac{dy}{dx} = -\frac{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} = -\frac{u_x}{u_y}$$
.

Total Differential Coefficient:

Let
$$u = f(x, y)$$
, where $x = \phi(t)$, $y = \psi(t)$.

Then u is ultimately a function of t.

Then the total differential coefficient of u w.r.t. t is defined and written as

$$\frac{\mathrm{d} u}{\mathrm{d} t} = \frac{\partial u}{\partial x} \cdot \frac{\mathrm{d} x}{\mathrm{d} t} + \frac{\partial u}{\partial y} \cdot \frac{\mathrm{d} y}{\mathrm{d} t} \,.$$

Similarly, if u = f(x, y, z), where $x = \varphi(t)$, $y = \psi(t)$ and $z = \xi(t)$.

Then the total differential coefficient of u w.r.t. t is defined and written as

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial u}{\partial z} \cdot \frac{dz}{dt}.$$

Remark: u = f(x, y) and t = x, then from $\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$, we have

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}} = \frac{\partial\mathbf{u}}{\partial\mathbf{x}} + \frac{\partial\mathbf{u}}{\partial\mathbf{y}} \cdot \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} \,,$$

where $\frac{du}{dx}$ is the total differential coefficient of u w.r.t. x.

Now let us solve some problems related to Total Differentials and Total Differential Coefficient:

Q.No.1: Find the total differential of u in the following cases:-

(i)
$$u = \sqrt{x + y}$$
 and (ii) $u = \log(x^2 + y^2)$.

Sol.: (i) Since
$$u = \sqrt{x + y}$$

$$\therefore \frac{\partial u}{\partial x} = \frac{1}{2\sqrt{x+y}} \text{ and } \frac{\partial u}{\partial y} = \frac{1}{2\sqrt{x+y}}.$$

Then
$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = \frac{1}{2\sqrt{x+y}} (dx + dy).$$

(ii) Since
$$u = \log(x^2 + y^2)$$
. $\frac{\partial u}{\partial x} = \frac{2x}{x^2 + y^2}$ and $\frac{\partial u}{\partial y} = \frac{2y}{x^2 + y^2}$.

Then
$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = \frac{2xdx + 2ydy}{x^2 + y^2}$$
.

Q.No.2: If
$$x^3 + y^3 = 3axy$$
, find $\frac{dy}{dx}$.

Sol.: Given
$$x^3 + y^3 - 3axy = 0$$
. So let $u = x^3 + y^3 - 3axy = 0$.

$$\therefore \frac{\partial u}{\partial x} = 3x^2 - 3ay \text{ and } \frac{\partial u}{\partial y} = 3y^2 - 3ax.$$

Hence
$$\frac{dy}{dx} = -\frac{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} = -\frac{(3x^2 - 3ay)}{(3y^2 - 3ax)} = \frac{ay - x^2}{y^2 - ax}$$
.

Q.No.3: If $u = \sin^{-1}(x - y)$, where x = 3t, $y = 4t^3$. Prove that the total differential coefficient of u w. r. t. t is equal to $3(1 - t^2)^{-1/2}$.

Sol.: Given
$$u = \sin^{-1}(x - y)$$
, where $x = 3t$, $y = 4t^3$.

$$\therefore \frac{\partial u}{\partial x} = \frac{1}{\sqrt{1 - (x - y)^2}}, \frac{\partial u}{\partial y} = \frac{-1}{\sqrt{1 - (x - y)^2}}, \frac{du}{dx} = 3 \text{ and } \frac{du}{dy} = 12t^2.$$

Then total differential coefficient of u w. r. t. t is

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$$

$$\Rightarrow \frac{du}{dt} = \frac{1}{\sqrt{1 - (x - y)^2}} \cdot 3 + \frac{-1}{\sqrt{1 - (x - y)^2}} \cdot 12t^2 = \frac{3(1 - 4t^2)}{\sqrt{1 - (3t - 4t^3)^2}} = \frac{3(1 - 4t^2)}{\sqrt{(1 - 4t^2)^2(1 - t^2)}}$$

$$\Rightarrow \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = 3(1 - t^2)^{-1/2}.$$

Q.No.4: If $u = \sin(x^2 + y^2)$, where $a^2x^2 + b^2y^2 = c^2$, find the total differential coefficient of u w. r. t. x.

Sol.: Given $u = \sin(x^2 + y^2)$, where $a^2x^2 + b^2y^2 = c^2$.

Let
$$f = a^2x^2 + b^2y^2 - c^2$$
.

$$\therefore \frac{\partial f}{\partial x} = 2a^2x \ , \ \frac{\partial f}{\partial y} = 2b^2y \quad \text{and} \ \frac{dy}{dx} = -\frac{f_x}{f_y} = -\frac{a^2x}{b^2y} \ .$$

Since we know the total differential coefficient of u w. r. t. x. is

$$\frac{\mathrm{d} u}{\mathrm{d} x} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{\mathrm{d} y}{\mathrm{d} x} \,.$$

$$\Rightarrow \frac{du}{dx} = 2x\cos\left(x^2 + y^2\right) + 2y.\cos\left(x^2 + y^2\right)\left(-\frac{a^2x}{b^2y}\right) = 2\left(1 - \frac{a^2}{b^2}\right)x\cos\left(x^2 + y^2\right).$$

Q.No.5: Find the total differentials in the following cases:

(a)
$$u = (2x^2 - 4y^3)^3$$
, (b) $u = \tan \frac{x}{y}$.

Sol.: Since we know the total differential of u is $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$.

(a) Here
$$u = (2x^2 - 4y^3)^3$$

$$\therefore \frac{\partial u}{\partial x} = 3(2x^2 - 4y^3)^2 \cdot (4x) = 12x(2x^2 - 4y^3)^2,$$

and
$$\frac{\partial u}{\partial y} = 3(2x^2 - 4y^3)^2(-12y^2) = -36y^2(2x^2 - 4y^3)^2$$
.

Hence
$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = 12x(2x^2 - 4y^3)^2 dx - 36y^2(2x^2 - 4y^3)^2 dy$$
$$= 12(2x^2 - 4y^3)^2(xdx - 3y^2dy) . \text{ Ans.}$$

(b) Here
$$u = \tan \frac{x}{y}$$
. $\therefore \frac{\partial u}{\partial x} = \sec^2 \left(\frac{x}{y}\right) \left(\frac{1}{y}\right)$ and $\frac{\partial u}{\partial y} = \sec^2 \left(\frac{x}{y}\right) \left(-\frac{x}{y^2}\right)$.

Hence
$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = \sec^2 \left(\frac{x}{y}\right) \left(\frac{1}{y}\right) dx + \sec^2 \left(\frac{x}{y}\right) \left(-\frac{x}{y^2}\right) dy$$

$$= \sec^2 \left(\frac{x}{y}\right) \left(\frac{y dx - x dy}{y^2}\right). \text{ Ans.}$$

Q.No.6: Find the total differential coefficient of $u = \sin\left(\frac{x}{y}\right)$, where $x = e^t$,

$$y = t^2 \text{ w. r. t. } t_{\bullet}$$

01

Given
$$u = \sin\left(\frac{x}{y}\right)$$
, where $x = e^t$, $y = t^2$, find $\frac{du}{dt}$ as a function of t.

Verify your result by direct substitution.

Sol.: We have
$$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt} = \left(\cos\frac{x}{y}\right) \frac{1}{y} \cdot e^t + \left(\cos\frac{x}{y}\right) \left(-\frac{x}{y^2}\right) 2t$$
$$= \cos\left(\frac{e^t}{t^2}\right) \cdot \frac{e^t}{t^2} - 2\cos\left(\frac{e^t}{t^2}\right) \cdot \frac{e^t}{t^3} = \left(\frac{t-2}{t^3}\right) e^t \cos\left(\frac{e^t}{t^2}\right).$$

Also
$$u = \sin\left(\frac{x}{y}\right) = \sin\left(\frac{e^t}{t^2}\right)$$
.

$$\therefore \frac{du}{dt} = \cos\left(\frac{e^t}{t^2}\right) \cdot \frac{t^2 e^t - e^t \cdot 2t}{t^4} = \left(\frac{t - 2}{t^3}\right) e^t \cos\left(\frac{e^t}{t^2}\right) \text{ as before.}$$

Q.No.7: If $u = x \log xy$, where $x^3 + y^3 + 3xy - 1 = 0$, find total differential coefficient of $u \cdot w$. r. t. x.

Sol.: Given $u = x \log xy$, where $x^3 + y^3 + 3xy - 1 = 0$.

Since we know that total differential coefficient of u w. r. t. x is

$$\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dx} . \qquad(i)$$

Now
$$\frac{\partial u}{\partial x} = x \cdot \left(\frac{1}{xy} \cdot y\right) + 1 \cdot \log xy = 1 + \log xy$$
. Also $\frac{\partial u}{\partial y} = x \cdot \left(\frac{1}{xy} \cdot x\right) = \frac{x}{y}$.

Let
$$f = x^3 + y^3 + 3xy - 1$$
, then $\frac{dy}{dx} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} = -\frac{\left(3x^2 + 3y\right)}{\left(3y^2 + 3x\right)} = -\frac{\left(x^2 + y\right)}{\left(y^2 + x\right)}$.

Substituting the values of $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{dy}{dx}$ in (i), we get

$$\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dx} = (1 + \log xy) + \left(\frac{x}{y}\right) \left(-\frac{x^2 + y}{y^2 + x}\right) = 1 + \log xy - \frac{x(x^2 + y)}{y(y^2 + x)}. \text{ Ans.}$$

Q.No.8: Find the total differential coefficient of x^2y w. r. t. x where x and y are connected by $x^2 + xy + y^2 = 1$.

Sol.: Let $u = x^2y$, where x and y are connected by $x^2 + xy + y^2 = 1$.

Since we know that total differential coefficient of u w. r. t. x is

$$\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dx} . \qquad(i)$$

Now
$$\frac{\partial u}{\partial x} = 2xy$$
. Also $\frac{\partial u}{\partial y} = x^2$.

Let
$$f = x^2 + xy + y^2 - 1$$
,

then
$$\frac{dy}{dx} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} = -\frac{(2x+y)}{(2y+x)} = -\frac{(2x+y)}{(x+2y)}$$
.

Substituting the values of $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{dy}{dx}$ in (i), we get

$$\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dx} = 2xy + x^2 \cdot \left(-\frac{2x+y}{x+2y} \right) = \frac{2xy(x+2y) - x^2(2x+y)}{(x+2y)}$$

$$\Rightarrow \frac{du}{dx} = \frac{x(xy + 4y^2 - 2x^2)}{(x+2y)}. \text{ Ans.}$$

Q.No.9: (i) If f(x,y) = 0, $\varphi(y,z) = 0$,

show that
$$\frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial z} \cdot \frac{dz}{dx} = \frac{\partial f}{\partial x} \cdot \frac{\partial \phi}{\partial y}$$
.

(ii) If the curves If f(x,y) = 0 and $\varphi(x,y) = 0$ touch,

show that at the point of contact $\frac{\partial f}{\partial x} \cdot \frac{\partial \phi}{\partial y} = \frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial x}$.

Sol.: (i) Given f(x,y) = 0, $\varphi(y,z) = 0 \Rightarrow df = 0$ and $d\varphi = 0$.

i.e.
$$\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = 0$$
 and $\frac{\partial \phi}{\partial y}dy + \frac{\partial \phi}{\partial z}dz = 0$.

$$\Rightarrow \frac{dy}{dx} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} \qquad(i) \quad \text{and} \quad \frac{dz}{dy} = -\frac{\frac{\partial \phi}{\partial y}}{\frac{\partial \phi}{\partial z}}. \qquad(ii)$$

$$(i) \Rightarrow \frac{\partial f}{\partial y} \cdot \frac{dy}{dx} = -\frac{\partial f}{\partial x} \Rightarrow \frac{\partial f}{\partial y} \cdot \frac{dy}{dz} \cdot \frac{dz}{dx} = -\frac{\partial f}{\partial x} \Rightarrow \frac{\partial f}{\partial y} \cdot \left[-\frac{\frac{\partial \phi}{\partial z}}{\frac{\partial \phi}{\partial y}} \right] \cdot \frac{dz}{dx} = -\frac{\partial f}{\partial x}$$

$$\Rightarrow \frac{\partial f}{\partial y} \cdot \frac{\partial \varphi}{\partial z} \cdot \frac{dz}{dx} = \frac{\partial f}{\partial x} \cdot \frac{\partial \varphi}{\partial y}.$$

(ii) Let the curves f(x,y) = 0 and $\varphi(x,y) = 0$ are touching at a point (a,b).

Now the slope of the tangent of the curve f(x,y) = 0 at point of contact is

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}.$$
(i)

and the slope of the tangent of the curve $\varphi(x,y) = 0$ at point of contact is

$$\frac{dy}{dx} = -\frac{\frac{\partial \phi}{\partial x}}{\frac{\partial \phi}{\partial y}}.$$
(ii)

Now since the curves f(x,y) = 0 and $\phi(x,y) = 0$ are touching so that their slope of the tangents are same.

Hence from (i) and (ii), at the point of contact $\frac{\partial f}{\partial x} \cdot \frac{\partial \phi}{\partial y} = \frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial x}$.

Q.No.10: If
$$x^2 + y^2 + z^2 - 2xyz = 1$$
. Show that $\frac{dx}{\sqrt{1 - x^2}} + \frac{dy}{\sqrt{1 - y^2}} + \frac{dz}{\sqrt{1 - z^2}} = 0$.

Sol.: Given $x^2 + y^2 + z^2 - 2xyz = 1$.

Let
$$u = x^2 + y^2 + z^2 - 2xyz - 1 = 0$$
.

Here u be an implicit function \Rightarrow du = 0. ...(i)

Here u be a function of x, y and z, i.e. u = f(x, y, z).

Then the total differential of u is $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz$

$$\Rightarrow \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz = 0. \quad [by (i)] \qquad(ii)$$

Evaluate: $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial u}{\partial z}$.

Since $u = x^2 + y^2 + z^2 - 2xyz - 1$.

$$\therefore \frac{\partial u}{\partial x} = 2(x - yz), \ \frac{\partial u}{\partial y} = 2(y - xz) \ \text{ and } \ \frac{\partial u}{\partial z} = 2(z - xy).$$

Hence (ii) becomes (x - yz)dx + (y - xz)dy + (z - xy)dz = 0.(iii)

Find: (x - yz), (y - xz) and (z - xy).

Since we have given $x^2 + y^2 + z^2 - 2xyz = 1$

$$\Rightarrow x^2 - 2xyz = 1 - y^2 - z^2 \Rightarrow x^2 - 2xyz + y^2z^2 = 1 - y^2 - z^2 + y^2z^2$$

$$\Rightarrow (x - yz)^2 = (1 - y^2)(1 - z^2) \Rightarrow (x - yz) = \sqrt{(1 - y^2)(1 - z^2)}$$

Similarly,
$$(y-xz) = \sqrt{(1-x^2)(1-z^2)}$$

and
$$(z - xy) = \sqrt{(1 - x^2)(1 - y^2)}$$
.

Hence (iii) becomes
$$\sqrt{(1-y^2)(1-z^2)}dx + \sqrt{(1-x^2)(1-z^2)}dy + \sqrt{(1-x^2)(1-y^2)}dz = 0$$
.

Last step: Dividing by $\sqrt{(1-x^2)(1-y^2)(1-z^2)}$, we get

$$\frac{dx}{\sqrt{1-x^2}} + \frac{dy}{\sqrt{1-y^2}} + \frac{dz}{\sqrt{1-z^2}} = 0.$$

Q.No.11: If $u = x^2 + y^2$, where $x = a \cos t$, $y = b \sin t$. Find $\frac{du}{dt}$ and verify the result.

Sol.: Given
$$u = x^2 + y^2$$
.

We have
$$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt} = 2x \cdot a(-\sin t) + 2y \cdot b\cos t = 2(yb\cos t - xa\sin t)$$

Also
$$u = x^2 + y^2 = a^2 \cos^2 t + b^2 \sin^2 t$$
.

$$\therefore \frac{du}{dt} = a^2 2 \cos t (-\sin t) + b^2 2 \sin t (\cos t) = 2[-(a \cos t)(a \sin t) + (b \sin t)(b \cos t)]$$

=
$$2(yb\cos t - xa\sin t)$$
 as before.

Q.No.12: If $ax^2 + by^2 + cz^2 = 1$ and 1x + my + nz = 0, then prove that

$$\frac{dx}{bny - cmz} = \frac{dy}{clz - anx} = \frac{dz}{amx - bly}.$$

Also find
$$\frac{dy}{dx}$$
 and $\frac{dz}{dx}$.

Sol.: Let $f = ax^2 + by^2 + cz^2 - 1$ and $\phi = lx + my + nz$.

$$\therefore f = 0 \implies df = 0 \text{ and } \phi = 0 \implies d\phi = 0.$$

Now
$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz = 2axdx + 2bydy + 2czdz = axdx + bydy + czdz = 0....(i)$$

Also
$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz = ldx + mdy + ndz = 0$$
 ...(ii)

Solving (i) and (ii), we get

$$\frac{\mathrm{dx}}{\mathrm{bny} - \mathrm{cmz}} = \frac{\mathrm{dy}}{\mathrm{clz} - \mathrm{anx}} = \frac{\mathrm{dz}}{\mathrm{amx} - \mathrm{bly}}.$$

Now consider
$$\frac{dx}{bny-cmz} = \frac{dy}{clz-anx}$$
 and $\frac{dx}{bny-cmz} = \frac{dz}{amx-bly}$.

$$\therefore \frac{dy}{dx} = \frac{clz - anx}{bny - cmz} \text{ and } \frac{dz}{dx} = \frac{amx - bly}{bny - cmz}. \text{ Ans.}$$

Q.No.13: If
$$x^2y - e^x + x \sin z = 0$$
 and $x^2 + y^2 + z^2 = a^2$. Find $\frac{dy}{dx}$ and $\frac{dz}{dx}$.

Sol.: Let
$$f = x^2y - e^x + x \sin z = 0$$
 and $\phi = x^2 + y^2 + z^2 - a^2 = 0$.

$$\therefore$$
 f = 0 \Rightarrow df = 0 and ϕ = 0 \Rightarrow d ϕ = 0.

Now
$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz = (2xy - e^x + \sin z)dx + x^2dy + x\cos zdz = 0$$
(i)

Also
$$d\phi = \frac{\partial \phi}{\partial x}dx + \frac{\partial \phi}{\partial y}dy + \frac{\partial \phi}{\partial z}dz = 2xdx + 2ydy + 2zdz = xdx + ydy + zdz = 0$$
 ...(ii)

Solving (i) and (ii), we get

$$\frac{dx}{x^{2}z - yx\cos z} = \frac{dy}{x^{2}\cos z - z(2xy - e^{x} + \sin z)} = \frac{dz}{y(2xy - e^{x} + \sin z) - x^{3}}.$$

Now consider
$$\frac{dx}{x^2z - yx\cos z} = \frac{dy}{x^2\cos z - z(2xy - e^x + \sin z)}$$

and
$$\frac{dx}{x^2z - yx\cos z} = \frac{dz}{y(2xy - e^x + \sin z) - x^3}.$$

We get
$$\frac{dy}{dx} = \frac{x^2 \cos z - z(2xy - e^x + \sin z)}{x^2z - yx \cos z}$$
 and $\frac{dz}{dx} = \frac{y(2xy - e^x + \sin z) - x^3}{x^2z - yx \cos z}$. Ans.

Q.No.14: If
$$x^y = e^{x-y}$$
, then prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.

Sol.: Given $x^y = e^{x-y}$.

Taking log on both sides, we get

$$\log x^y = \log e^{x-y} \implies y \log x = x - y \implies y \log x - x + y = 0$$
.

Let
$$u = y \log x - x + y$$
.(i)

Differentiate (i) partially w. r. t. x and y separately, we get

$$\therefore \frac{\partial u}{\partial x} = \frac{y}{x} - 1 = \frac{y - x}{x} \text{ and } \frac{\partial u}{\partial y} = (\log x + 1).$$

Hence
$$\frac{dy}{dx} = -\frac{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} = \frac{\frac{y-x}{x}}{(\log x + 1)} = \frac{x-y}{x(\log x + 1)} = \frac{y \log x}{x(1 + \log x)}$$
. ...(i) [: x - y = y \log x]

Now since
$$y \log x = x - y \Rightarrow \frac{y}{x} \log x = 1 - \frac{y}{x} \Rightarrow \frac{y}{x} (1 + \log x) = 1 \Rightarrow \frac{y}{x} = \frac{1}{(1 + \log x)}$$

Substituting the value of $\frac{y}{x}$ in (i), we get

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\log x}{(1 + \log x)^2}.$$

This completes the proof.

Q.No.15: Using partial differentiation, find $\frac{dy}{dx}$ when $x^y + y^x = C$.

Sol.: Given
$$x^y + y^x = C \implies x^y + y^x - C = 0$$

Let
$$f(x,y) = x^y + y^x - C$$
(i)

Differentiate (i) partially w. r. t. x and y separately, we get

$$\frac{\partial f}{\partial x} = yx^{y-1} + y^x \log y$$
 and $\frac{\partial f}{\partial y} = x^y \log x + xy^{x-1}$.

But
$$\frac{dy}{dx} = -\frac{f_x}{f_y} = -\frac{y(x^{y-1} + y^{x-1} \log y)}{x(x^{y-1} \log x + y^{x-1})}$$
. Ans.

Q.No.16.: Find $\frac{du}{dt}$ as a total derivative and verify the result by direct substitution if

$$u = x^2 + y^2 + z^2$$
 and $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$.

Sol.: Here u is a function of x, y, z are and x, y, z are in turn functions of t. Thus u is a function 't' via the intermediate variables x, y, z. Then

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt}$$

$$= 2x \cdot 2e^{2t} + 2y \cdot \left(2e^{2t} \cos 3t - 3e^{2t} \sin 3t\right) + 2z\left(2e^{2t} \sin 3t + 3e^{2t} \cos 3t\right)$$

Rewriting in terms of x, y, z

$$= 2x \cdot 2 \cdot x + 2 \cdot y(2y - 3 \cdot z) + 2z(2z + 3y)$$

$$= 4(x^2 + y^2 + z^2)$$

or in terms of t

$$\frac{du}{dt} = 4(e^{4t} + e^{4t}(\cos^2 3t + \sin^2 3t)) = 8e^{4t}$$

Verification by direct submission:

$$u = x^2 + y^2 + z^2 = e^{4t} + e^{4t} \cos^2 3t + e^{4t} \sin^2 3t = 2e^{4t}$$

$$\frac{du}{dt} = 8e^{4t}$$
.

Q.No.17.: Find the total differential coefficient of x^2y w.r.t. x when x, y are connected

by
$$x^2 + xy + y^2 = 1$$
.

Sol.: Let $u = x^2y$, then the total differential is

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy$$

Thus the total differential coefficient of u w.r.t x is

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}}$$

$$\frac{du}{dx} = 2xy + x^2 \frac{dy}{dx}$$

From the Implicit relation $f = x^2xy + y = 1$, we calculate

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{f}_{x}}{\mathrm{f}_{y}} = -\frac{2x + y}{x + 2y}$$

so
$$\frac{du}{dx} = 2xy + x^2 \cdot \frac{dy}{dx} = 2xy + x^2 \left(-\frac{(2x+y)}{(x+2y)} \right)$$

$$\frac{\mathrm{du}}{\mathrm{dx}} = 2xy - \frac{x^2(2x+y)}{(x+2y)}.$$

Q.No.18.: The altitude of the right circular cone is 15 cm and is increasing at 0.2 cm/sec.

The radius of the base is 10 cm and is decreasing at 0.3 cm/sec. How fast is the volume changing?

Sol.: Let x be the radius and y be the altitude of the cone. So volume V of the right circular cone is $V = \frac{1}{3}\pi x^2 y$.

Since x and y are changing w.r.t time t, differentiate V w.r.t. t.

$$\frac{dV}{dt} = \frac{\partial V}{\partial x} \frac{dx}{dt} + \frac{\partial V}{\partial y} \frac{dy}{dt}$$
$$= \frac{1}{3} \pi \left(2xy \frac{dx}{dt} + x^2 \frac{dy}{dt} \right)$$

It is given that x = 10, y = 15, $\frac{dx}{dt} = -0.3$ and $\frac{dy}{dt} = 0.2$, substituting these values

$$\frac{dV}{dt} = \frac{1}{3}\pi \left[2.10.15(-0.3) + 10^{2}(0.2) \right] = \frac{-70}{3}\pi \text{ cm}^{3}/\text{sec}$$

i.e, volume is decreasing at the rate of $\frac{70\pi}{3}$.

Home Assignments

Q.No.1.: Find $\frac{du}{dt}$ when $u = \sin\left(\frac{x}{y}\right)$ and $x = e^t$, $y = t^2$. Verify the result by direct substitution.

Ans.:
$$\frac{t-2}{t^3}e^t\cos\left(\frac{e^t}{t^2}\right).$$

Q.No.2.: Find $\frac{du}{dt}$ given $u = \sin^{-1}(x - y)$, x = 3t, $y = 4t^3$. Verify the result by direct substitution.

Ans.:
$$3(1-t^2)^{-1/2}$$

Q.No.3.: If $u = x^3 ye^z$ where x = t, $y = t^2$ and z = In t, find $\frac{du}{dt}$ at t = 2.

Ans.: 6t⁵; 192.

Q.No.4.: Find
$$\frac{du}{dt}$$
, if $u = tan^{-1} \left(\frac{y}{x} \right)$ and $x = e^t - e^{-t}$ and $y = e^t + e^{-t}$.

Ans.:
$$\frac{-2}{e^{2t} + e^{-2t}}$$

Q.No.5.: If x, y are related by $x^2 - y^2 = 2$ and $u = \tan(x^2 + y^2)$, find $\frac{du}{dx}$.

Ans.:
$$4x \sec^2(2x^2 - 2)$$
.

Q.No.6.: If
$$u = \tan^{-1} \left(\frac{y}{x} \right)$$
 and $y = x^4$ find $\frac{du}{dx}$ at $x = 1$.

Ans.:
$$\frac{3x^2}{1+x^6}$$
; $\frac{3}{2}$ at $x = 1$.

Q.No.7.: In order that the function $u = 2xy - 3x^2y$ remains constant. What should be the rate of change of y (w.r.t. t) given that x increases at the rate of 2cm/sec at the instant when x = 3 cm and y = 1 cm.

Ans.: $\frac{dy}{dt} = -\frac{32}{21}$ cm/sec; y must decrease at the rate of $\frac{32}{21}$ cm/sec.

Q.No.8.: Find the rate at which the area of a rectangle is increasing at a given instant when the sides of the rectangle are 4 ft and 3 ft and are increasing at the rate of 1.5 ft/sec. and 0.5 ft/sect respectively.

Ans.: 6.5 sq. ft/sec.

Q.No.9.: Find (a).
$$\frac{dz}{dx}$$
 and (b). $\frac{dz}{dy}$, given $z = xy^2 + x^2y$, $y = \text{In } x$.

Ans.: (a). Here x is the independent variable

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \frac{dy}{dx} = y^2 + 2xy + 2y + x$$

(b). Here y is the independent variable

$$\frac{dz}{dy} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial x}\frac{dx}{dy} = xy^2 + 2x^2y + 2xy + x^2$$

Q.No.10.: Find the differential of the function $f(x, y) = x \cos y - y \cos x$.

Ans.: df =
$$(\cos y + y \sin x) dx - (x \sin y + \cos x) dy$$

Q.No.11.: Find the differential of the function $u(x, y, z) = e^{xyz}$.

Ans.: $du = e^{xyz}(yzdx + zxdy + xydz)$.

Q.No.12.: Find $\frac{du}{dt}$ for the functions $u = x^2 - y^2$, $x = e^t \cos t$, $y = e^t \sin t$ at t = 0.

Ans.: $2e^{2t}(\cos 2t - \sin 2t)$; At t = 0, $\frac{du}{dt} = 2$

Q.No.13.: Find $\frac{du}{dt}$ for the functions u = In(x + y + z); $x = e^{-t}$, $y = \sin t$, $z = \cos t$.

Ans.: $\frac{\cos t - \sin t - e^{-t}}{\cos t + \sin t + e^{-t}}$

Q.No.14.: Find $\frac{du}{dt}$ for the functions $u = \sin(e^x + y)$, x = f(t), y = g(t).

Ans.: $\frac{du}{dt} = \left[\cos(e^x + y)\right]e^x f'(t) + \left[\cos(e^x + y)\right]g'(t).$

Q.No.15.: Find $\frac{du}{dt}$ for the functions $u = x^y$ when $y = \tan^{-1} t$, $x = \sin t$.

Ans.: $y.x^{y-1}\cos t + x^y \ln x.\frac{1}{1+t^2}$.

NEXT TOPIC

Transformation of independent variables (Composite Functions),

Jacobian, Properties of Jacobians

*** *** *** ***
