Computer Vision and Machine Learning

(Shape from structured light)

Bhabatosh Chanda bchanda57@gmail.com

Acknowledgement

- http://www.cs.cmu.edu/afs/cs/academic/class/15385s06/lectures/ppts/lec-17.ppt
- http://mesh.brown.edu/byo3d

5/28/2023

Shape from structured light

Shape from X

- Reconstructing 3D object from 2D images
 - Stereo
 - Motion
 - Shading
 - Texture
 - Focus
 - ... etc.

5/28/202

Shape from structured light

Passive triangulation: Stereo vision

- Keypoints detection in the images
- Correspondence problem
- Geometric constraints → search along epipolar lines
- 3D reconstruction of matched pairs by triangulation

5/28/2023

Shape from structured light

Passive Stereo vision: Problems

- The main problems of photogrammetry
 - to recover shape from multiple views of a scene, we need to find correspondences between the images
 - the matching/correspondence problem is hard
 - the 3D object geometry cannot be reconstructed in image regions without well-defined image points
- Plausible solution: Structured light

5/28/2023 Shape from structured light

Structured Light

- · Structured light (active stereo)
 - idea: find ways to simplify matching and guarantee dense coverage with homologous points
 - general strategy: use illumination to create our own correspondences
 - · most robust and widely used method

5/28/2023 Shape from structure

Basic Principle

- Light projection
 - use a projector to create unambiguous correspondences
 - with these correspondences, apply conventional stereo
 - if we project a single point, matching is unique
 - ... but many images needed to cover the object
 - NOTE: ray on the left is in opposite direction

5/28/2023

Shape from structured light

Basic Principle

- Light projection
 - use a projector to create unambiguous correspondences
 - with these correspondences, apply conventional stereo
 - if we project a single point, matching is unique
 - ... but many images needed to cover the object
- In general, various types of light patterns may be projected.
 - Vertical stripe, horizontal stripe
 - · Cross-check stripe
 - Collection of dots pattern

5/28/2023

Shape from structured light

Light Spot Stereo: Set up

Calibrated Cameras: Detection of spot in left and right cameras fully determines its 3D location. Spot to be scanned across scene. Many images required for whole scene.

Shape from structured light

Variants to light spot

- Pattern projection
 - project a pattern instead of a single point
 - needs only a single image, oneshot recording
 - ...but matching is no longer unique (although still easier)

5/28/2023 Shape from structured I

Line projection

Concept

5/28/2023

- A projector is just an inverse camera, ray direction is reversed.
- The projector is described by the same geometric model.
- Projected pattern and image define two rays in space.
 - One projector and one camera are sufficient for triangulation.

Shape from structured

16

Occlusion and correspondence problem

- Some parts of the object may be self-occluded.
 - May be seen by one camera, not the other.
- Makes correspondence problem more difficult.
- Unique binary number may be assigned to every point of surface.
 - Binary numbers are defined by (dark, light) pattern.
- Correspondence between points in two image planes may be established by matching binary patterns.

5/28/2023

Shape from structured light

