

1241.18

U.S. APPLICATION NO. (If known, see 37 C.F.R. 1.5)

09/806232

INTERNATIONAL APPLICATION NO.

PCT/JP99/05349

INTERNATIONAL FILING DATE

29 September 1999

PRIORITY DATE CLAIMED

29 September 1998

## TITLE OF INVENTION

DNAS ENCODING NOVEL POLYPEPTIDES

## APPLICANT(S) FOR DO/EO/US

Motoharu Seiki



JCP7 Rec'd PCT/IPO 28 MAR 2001

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1.  This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2.  This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3.  This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the application time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(l).
4.  A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5.  A copy of the International Application as filed (35 U.S.C. 371(c)(2))
  - a.  is transmitted herewith (required only if not transmitted by the International Bureau).
  - b.  has been transmitted by the International Bureau.
  - c.  is not required, as the application was filed in the United States Receiving Office (RO/US).
6.  A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7.  Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
  - a.  are transmitted herewith (required only if not transmitted by the International Bureau).
  - b.  have been transmitted by the International Bureau.
  - c.  have not been made; however, the time limit for making such amendments has NOT expired.
  - d.  have not been made and will not be made.
8.  A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
9.  An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
10.  A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

## Items 11. to 16. below concern other document(s) or information included:

11.  An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
12.  An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
13.  A FIRST preliminary amendment.
  - A SECOND or SUBSEQUENT preliminary amendment.
14.  A substitute specification.
15.  A change of power of attorney and/or address letter.
16.  Other items or information: Submission of Computer Readable Form; Form PCT/IPEA/409; Form PCT/IB/308; Copy of Published International Application No. WO00/18900; Form PCT/ISA/210.

|                                                                                                                                                                                                                                                 |                                                |                                                                                                                                                                                                            |            |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| U.S. APPLICATION NO. (If known, see 37 CFR 1.5)<br><b>09/806232</b>                                                                                                                                                                             | INTERNATIONAL APPLICATION NO<br>PCT/JP99/05349 | ATTORNEY'S DOCKET NUMBER<br>1241.18                                                                                                                                                                        |            |           |
| 17. <input checked="" type="checkbox"/> The following fees are submitted:                                                                                                                                                                       |                                                | <input type="checkbox"/> CALCULATIONS <input type="checkbox"/> PTO USE ONLY                                                                                                                                |            |           |
| <b>Basic National Fee (37 CFR 1.492(a)(1)-(5):</b>                                                                                                                                                                                              |                                                |                                                                                                                                                                                                            |            |           |
| Search Report has been prepared by the EP or JPO ..... \$860.00                                                                                                                                                                                 |                                                |                                                                                                                                                                                                            |            |           |
| International preliminary examination fee paid to USPTO                                                                                                                                                                                         |                                                |                                                                                                                                                                                                            |            |           |
| (37 CFR 1.492(a)(1)) ..... \$690.00                                                                                                                                                                                                             |                                                |                                                                                                                                                                                                            |            |           |
| No international preliminary examination fee paid to USPTO (37 CFR 1.492(a)(1)) but international search fee paid to USPTO (37 CFR 1.492(a)(2)) ..... \$710.00                                                                                  |                                                |                                                                                                                                                                                                            |            |           |
| Neither international preliminary examination fee (37 CFR 1.492(a)(1)) nor international search fee (37 CFR 1.492(a)(2)) paid to USPTO ..... \$1,000.00                                                                                         |                                                |                                                                                                                                                                                                            |            |           |
| International preliminary examination fee paid to USPTO (37 CFR 1.492(a)(4)) and all claims satisfied provisions of PCT Article 33(1)-(4) ..... \$100.00                                                                                        |                                                |                                                                                                                                                                                                            |            |           |
| <b>ENTER APPROPRIATE BASIC FEE AMOUNT =</b>                                                                                                                                                                                                     |                                                | \$860.00                                                                                                                                                                                                   |            |           |
| Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)).                                               |                                                | \$                                                                                                                                                                                                         |            |           |
| Claims                                                                                                                                                                                                                                          | Number Filed                                   | Number Extra                                                                                                                                                                                               | Rate       |           |
| Total Claims                                                                                                                                                                                                                                    | 114 - 20 =                                     | 94                                                                                                                                                                                                         | X \$18.00  | \$1692.00 |
| Independent Claims                                                                                                                                                                                                                              | 6 - 3 =                                        | 3                                                                                                                                                                                                          | X \$80.00  | \$240.00  |
| Multiple dependent claim(s) (if applicable)                                                                                                                                                                                                     |                                                |                                                                                                                                                                                                            | + \$270.00 | \$270.00  |
| <b>TOTAL OF ABOVE CALCULATIONS =</b>                                                                                                                                                                                                            |                                                | \$3062.00                                                                                                                                                                                                  |            |           |
| <input checked="" type="checkbox"/> Applicant claims small entity status. See 37 C.F.R. 1.27. The fees indicated above are reduced by ½.                                                                                                        |                                                | \$1531.00                                                                                                                                                                                                  |            |           |
| <b>SUBTOTAL =</b>                                                                                                                                                                                                                               |                                                | \$1531.00                                                                                                                                                                                                  |            |           |
| Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).                                          |                                                | \$                                                                                                                                                                                                         |            |           |
| <b>TOTAL NATIONAL FEE =</b>                                                                                                                                                                                                                     |                                                | \$1531.00                                                                                                                                                                                                  |            |           |
| Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property +                                                                        |                                                | \$                                                                                                                                                                                                         |            |           |
| <b>TOTAL FEES ENCLOSED =</b>                                                                                                                                                                                                                    |                                                | \$1531.00                                                                                                                                                                                                  |            |           |
|                                                                                                                                                                                                                                                 |                                                | <b>Amount to be:</b>                                                                                                                                                                                       |            |           |
|                                                                                                                                                                                                                                                 |                                                | refunded                                                                                                                                                                                                   | \$         |           |
|                                                                                                                                                                                                                                                 |                                                | charged                                                                                                                                                                                                    | \$         |           |
| a. <input checked="" type="checkbox"/> A check in the amount of \$ <u>1531.00</u> to cover the above fees is enclosed.                                                                                                                          |                                                |                                                                                                                                                                                                            |            |           |
| b. <input type="checkbox"/> Please charge my Deposit Account No. _____ in the amount of \$ _____ to cover the above fees. A duplicate copy of this sheet is enclosed.                                                                           |                                                |                                                                                                                                                                                                            |            |           |
| c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. <u>06-1205</u> . A duplicate copy of this sheet is enclosed. |                                                |                                                                                                                                                                                                            |            |           |
| <b>NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.</b>                                |                                                |                                                                                                                                                                                                            |            |           |
| SEND ALL CORRESPONDENCE TO:                                                                                                                                                                                                                     |                                                |                                                                                                                                                                                                            |            |           |
| <p>Lawrence S. Perry<br/>         FITZPATRICK, CELLA, HARPER &amp; SCINTO<br/>         30 Rockefeller Plaza<br/>         New York, NY 10112<br/>         Tel: (212) 218-2100<br/>         Fax: (212) 218-2200</p>                               |                                                | <br>SIGNATURE<br><hr/> <p>Lawrence S. Perry<br/>         NAME<br/> <u>31,865</u><br/>         REGISTRATION NUMBER</p> |            |           |

09/806232

JCOS Rec'd OCT/PTO 28 MAR 2001

1241.18

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: )  
Motoharu Seiki ) : Examiner: Not Yet Assigned  
Application No.: N/Y/A ) : Group Art Unit: N/Y/A  
Filed: Currently herewith ) :  
For: DNAS ENCODING NOVEL )  
POLYPEPTIDES ) : March 27, 2001

Commissioner for Patents  
Washington, D.C. 20231

PRELIMINARY AMENDMENT

Sir:

Prior to action on the merits, please amend the  
above-identified application as follows:

IN THE CLAIMS:

Please amend Claims 13, 18-21, 25, 26, 29, 30 and  
32. A marked up copy of Claims 13, 18-21, 25, 26, 29, 30 and  
32, showing the changes made thereto, is attached.

13. (Amended) A recombinant DNA that is obtained  
by integrating the DNA of any one of claims 11 or 12 into a  
vector.

18. (Amended) An oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.

19. (Amended) An oligonucleotide selected form an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 10; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.

20. (Amended) A method of detecting an mRNA encoding the polypeptide of any one of claims 1 to 8 using an oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.

21. (Amended) A method of inhibiting expression of the polypeptide of any one of claims 1 to 8 using an oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.

25. (Amended) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the DNA of claim 9.

26. (Amended) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ

transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the DNA of claim 10.

29. (Amended) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said vector is obtained by integrating the oligonucleotide of claim 18 into a vector.

30. (Amended) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury,

inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said vector is obtained by integrating the oligonucleotide of claim 19 into a vector.

32. (Amended) The method of claim 31, wherein said compound that regulates the expression of a gene is detected by determining the amount of mRNA encoding the polypeptide.

REMARKS

Claims 13, 18-21, 25, 26, 29, 30 and 32 have been amended to correct their dependency and conformity with accepted U.S. practice. No new matter has been added.

Entry hereof is earnestly solicited.

Applicants' undersigned attorney may be reached in our New York office by telephone at (212) 218-2100. All correspondence should continue to be directed to our below listed address.

Respectfully submitted,



\_\_\_\_\_  
Lawrence  
Attorney for Applicants  
Lawrence S. Perry  
Registration No. 31,865

FITZPATRICK, CELLA, HARPER & SCINTO  
30 Rockefeller Plaza  
New York, New York 10112-3801  
Facsimile: (212) 218-2200

LSP\ac

NY\_MAIN 156479 V1

VERSION WITH MARKINGS SHOWING CHANGES MADE TO CLAIMS

13. (Amended) A recombinant DNA that is obtained by integrating the DNA of any one of claims [9 to]11 or 12 into a vector.

18. (Amended) An oligonucleotide selected [form] from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9 [or 11]; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.

19. (Amended) An oligonucleotide selected form an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 10 [or 12]; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.

20. (Amended) A method of detecting an mRNA encoding the polypeptide of any one of claims 1 to 8 using [the] an oligonucleotide [of claim 18 or 19] selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.

21. (Amended) A method of inhibiting expression of the polypeptide of any one of claims 1 to 8 using [the] an oligonucleotide [of claim 18 or 19] selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.

25. (Amended) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis,

arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the DNA of claim 9 [or 11].

26. (Amended) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the DNA of claim 10 [or 12].

29. (Amended) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes,

wherein said vector is obtained by integrating the [DNA of claim 9 or 11, or the] oligonucleotide of claim 18 into a vector.

30. (Amended) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said vector is obtained by integrating the [DNA of claim 10 or 12, or the] oligonucleotide of claim 19 into a vector.

32. (Amended) The method of claim 31, wherein said compound that regulates the expression of a gene is detected by determining the amount of mRNA encoding the polypeptide [of any one of claims 1 to 8].



JC07 Rec'd PCT/PTO 10 MAY 2001

#2.

1241.18

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: )  
Motoharu Seiki ) : Examiner: Not Yet Assigned  
Application No.: 09/806,232 ) : Group Art Unit: N/Y/A  
Filed: March 28, 2001 ) :  
For: DNAS ENCODING NOVEL )  
POLYPEPTIDES ) : May 10, 2001

Commissioner for Patents  
Washington, D.C. 20231

SUPPLEMENTAL PRELIMINARY AMENDMENT

Sir:

Further to the Preliminary Amendment filed March 28, 2001 and prior to action on the merits, please amend the above-identified application as follows:

IN THE SPECIFICATION

Please substitute the paragraph starting at page 39, line 5 and ending at line 8 with the following replacement paragraph. A marked-up copy of this paragraph, showing the changes made thereto, is attached.

In human, the expression of MT5-MMP was strong in the brain, and its expression was observed in the kidney and pancreas. The results of examination of its site-specific

O  
MAY 10 2001  
PATENT & TRADEMARK OFFICE

expression in the human brain revealed a characteristic expression in the cerebellum. High expression in the cerebellum was also confirmed in mouse.

REMARKS

The specification has been amended to correct an inadvertent word processing error. Since no new matter has been added, entry hereof is earnestly solicited.

Applicants' undersigned attorney may be reached in our New York office by telephone at (212) 218-2100. All correspondence should continue to be directed to our below listed address.

Respectfully submitted,

  
\_\_\_\_\_  
Attorney for Applicants  
Lawrence S. Perry  
Registration No. 31,865

FITZPATRICK, CELLA, HARPER & SCINTO  
30 Rockefeller Plaza  
New York, New York 10112-3801  
Facsimile: (212) 218-2200

LSP\ac

NY\_MAIN 168275 v1



Application No. 09/806,232  
Attorney Docket No. 1241.18

VERSION WITH MARKINGS TO SHOW CHANGES MADE TO SPECIFICATION

The paragraph starting at page 39, line 5 and ending at line 8 has been amended as follows.

In human, the expression of MT5-MMP [also] was strong in the brain, and its expression was observed in the kidney and pancreas. The results of examination of its site-specific expression in the human brain revealed a characteristic expression in the cerebellum. High expression in the cerebellum was also confirmed in mouse.

NY\_MAIN 168275 v 1

09/806232

JC03'Rec'd PCT/PTO 28 MAR 2001

1241.18

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: )  
Motoharu Seiki : Examiner: Not Yet Assigned  
Application No.: N/Y/A ) : Group Art Unit: N/Y/A  
Filed: Currently herewith ) :  
For: DNAS ENCODING NOVEL )  
POLYPEPTIDES : March 27, 2001

Commissioner for Patents  
Washington, D.C. 20231

SUBMISSION OF COMPUTER READABLE FORM  
UNDER 37 C.F.R. § 1.821(e)

Sir:

Applicants submit herewith a computer readable form under 37 C.F.R. § 1.821(e). The content of the computer readable form and the Sequence Listing filed herewith are the same.

Applicants' undersigned attorney may be reached in our New York office by telephone at (212) 218-2100. All correspondence should continue to be directed to our below listed address.

Respectfully submitted,

  
Attorney for Applicant  
Lawrence S. Perry  
Registration No. 31,865

FITZPATRICK, CELLA, HARPER & SCINTO  
30 Rockefeller Plaza  
New York, New York 10112-3801  
Facsimile: (212) 218-2200

21 PRT/

09/806252

JC03 Rec'd PCT/PTO 28 MAR 2001

## DESCRIPTION

### DNAS ENCODING NOVEL POLYPEPTIDES

#### TECHNICAL FIELD

The present invention relates to novel membrane-type matrix metalloproteinase polypeptides; DNAs encoding the polypeptides; vectors comprising the DNAs; transformants transformed with the vectors; and a method of producing the polypeptides. Furthermore, the present invention relates to a method of searching for inhibitors or activators of the polypeptides using the polypeptides, a part thereof, or microorganisms or animal cells expressing the polypeptides or a part thereof, as well as a method of searching for compounds that regulate the gene expression of the polypeptides.

#### BACKGROUND ART

A group of enzymes generically termed "matrix metalloproteinases" (hereinafter, abbreviated to MMPs) that have metal ions at the active center are involved in the degradation of extracellular matrix composed of complicated components such as collagens, fibronectin, laminin and proteoglycans.

To date, the following MMPs have been reported: interstitial collagenase (MMP-1), gelatinase A (MMP-2), gelatinase B (MMP-9), stromelysin 1 (MMP-3), matrilysin (MMP-7), neutrophil collagenase (MMP-8), stromelysin 2 (MMP-10), stromelysin 3 (MMP-11), metallo-elastase (MMP-12), collagenase 3 (MMP-13), membrane type 1 MMP (MT1-MMP or MMP-14), membrane type 2 MMP (MT2-MMP or MMP-15), membrane type 3 MMP (MT3-MMP or MMP-16), membrane type 4 MMP (MT4-MMP or MMP-17), etc. (Protein, Nucleic Acid and Enzyme, 42, 2386 (1997)). These MMPs form a family, and each MMP is basically composed of an N-terminal propeptide domain, an active domain to which zinc ions bind, and a hemopexin-like domain. In MMP-7, no hemopexin-like domain is found. Transmembrane-type MMPs have a transmembrane domain and a intracellular domain at the C-terminal of the hemopexin-like domain.

A human MT4-MMP gene has already been reported [Puente, Cancer Research, 56, 944 (1996)]. However, a translation initiation site is not included in the nucleotide sequence of this gene, and this gene was defined as a human MT4-MMP gene simply because it comprises a nucleotide sequence containing MMP-like domains. Thus, it is difficult to consider that this gene encodes the full-length of MT4-MMP.

On the other hand, it is known that production of MT1-MMP is enhanced in patients with arthrosis deformans [Am. J. Pathol., 151, 245 (1997)]; that MMPs are important for the infiltration of leukocytes into tissues that is important in immunological and inflammatory reactions [J. Immunol., 156, 1 (1996)]; that MMP inhibitors prevent hepatitis [Eur. J. Pharmacol., 341, 105 (1998)]; and that MMP inhibitors are effective for treating corneal ulcer [Japanese Journal of Ophthalmology, 102, 270 (1998)].

It is also known that MMPs are important for cancer proliferation, infiltration and metastasis [Protein, Nucleic Acid and Enzyme, 42, 2386 (1997)], and it is reported that MMP inhibitors have carcinostatic activity [SCRIP, 2349, 20 (1998)].

Furthermore, it is suggested that MT4-MMP is expressed in leukocytes and thus may be involved in the migration and infiltration of leukocytes.

From what have been described so far, MMPs may be used for markers for diagnosing arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, and inhibitors of MMPs are useful for preventing or treating these diseases.

The already reported MT4-MMP gene [Cancer Research, 56, 944 (1996)] does not include a transcription initiation site nor has such a domain structure as seen in known membrane-type MMPs such as MT1-MMP. Therefore, this gene represents a sequence encoding a non-physiological peptide not expressed *in vivo*.

The present invention provides a novel, membrane-type matrix metalloproteinase polypeptide [hereinafter, sometimes abbreviated to MT4-MMP(2)] that is, different from the

hitherto reported MT4-MMP, physiologically active; a DNA encoding the metalloproteinase polypeptide; a method of producing the metalloproteinase polypeptide; and a method of screening for inhibitors or activators of the metalloproteinase polypeptide using the polypeptide or the DNA encoding the polypeptide.

The present invention also provides physiologically active, novel, human and mouse membrane-type matrix metalloproteinase polypeptides (hereinafter, abbreviated to human or mouse MT5-MMP); DNAs encoding the metalloproteinase polypeptides; a method of producing the metalloproteinase polypeptides; and a method of screening for inhibitors or activators of the metalloproteinase polypeptides using the polypeptides or the DNAs encoding the polypeptides.

#### DISCLOSURE OF THE INVENTION

The present inventor has made intensive and extensive researches based on the assumption that the known human MT4-MMP is not a protein having the inherent activity of MT4-MMP and that a true MT4-MMP protein having the activity should exist. Thus, the present invention has been achieved.

Also, the present inventor has made intensive and extensive researches based on the assumption that useful and novel membrane-type MMPs should exist other than hitherto known membrane-type MMPs that are considered useful in pharmaceutical purposes. Thus, the present invention has been achieved.

The present invention relates to the following inventions (1) to (32).

- (1) A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 1.
- (2) A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of (1) above and having metalloproteinase activity.
- (3) A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 2.
- (4) A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of (3) above and having metalloproteinase activity.

The deletion, substitution or addition mentioned in (2) and (4) above can be made by site-specific mutagenesis that was a well-known technique prior to the filing of the present application. "One or several amino acids" means the number of amino acids that can be deleted, substituted or added by site-specific mutagenesis. The polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence and having metalloproteinase activity can be prepared based on those methods described in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989) (hereinafter, abbreviated to Molecular Cloning 2nd Ed.); Current Protocols in Molecular Biology, Supplement 1-38, John Wiley & Sons (1987-1997) (hereinafter, abbreviated to Current Protocols 1-38); Nucleic Acid Research, 10, 6487 (1982); Proc. Natl. Acad. Sci. USA, 79, 6409 (1982); Gene, 34, 315 (1985), Nucleic Acids Research, 13, 4431 (1985); Proc. Natl. Acad. Sci. USA, 82, 488 (1985); Proc. Natl. Acad. Sci. USA, 81, 5662 (1984); Science, 224, 1431 (1984); PCT WO85/00817 (1985); Nature, 316, 601 (1985) and so forth.

- (5) A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 5.
- (6) A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of (5) above and having metalloproteinase activity.
- (7) A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 6.
- (8) A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of (7) above and having metalloproteinase activity.
- (9) A DNA encoding the polypeptide of any one of (1) to (4) above.
- (10) A DNA encoding the polypeptide of any one of (5) to (8) above.
- (11) A DNA consisting of the nucleotide sequence of positions 86-1846 of SEQ ID NO: 3 or positions 100-1917 of SEQ ID NO: 4, or a DNA which hybridizes to the DNA under stringent conditions and which encodes a polypeptide having metalloproteinase activity.

The above expression "a DNA which hybridizes under stringent conditions" means a DNA that is obtained by colony hybridization, plaque hybridization, Southern blot

hybridization or the like using, as a probe, a DNA consisting of the nucleotide sequence of positions 86-1846 of SEQ ID NO: 3 or positions 100-1917 of SEQ ID NO: 4. Specifically, a DNA which can be identified by carrying out a hybridization at 65°C in the presence of 0.7-1.0 mol/L NaCl using a filter on which the DNA derived from colony or plaque is immobilized, and then washing the filter in 0.1-2 x SSC (saline-sodium citrate) solution (1x SSC solution is composed of 150 mmol/L sodium chloride and 15 mmol/L sodium citrate) at 65°C.

Hybridization may be carried out based on those methods described in laboratory manuals such as Molecular Cloning 2nd Ed., Current Protocol in Molecular Biology, and DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995).

Specific examples of hybridizable DNAs include DNAs having at least 80% or more, preferably 95% or more homology to the nucleotide sequence of positions 86-1846 of SEQ ID NO: 3 or positions 100-1917 of SEQ ID NO: 4.

(12) A DNA consisting of the nucleotide sequence of positions 75-1928 of SEQ ID NO: 7 or positions 1-1935 of SEQ ID NO: 8, or a DNA which hybridizes to the DNA under stringent conditions and which encodes a polypeptide having metalloproteinase activity.

The above expression "a DNA which hybridizes under stringent conditions" means a DNA that is obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, a DNA consisting of the nucleotide sequence of positions 75-1928 of SEQ ID NO: 7 or positions 1-1935 of SEQ ID NO: 8. Specifically, a DNA which can be identified by carrying out a hybridization at 65°C in the presence of 0.7-1.0 mol/L NaCl using a filter on which the DNA derived from colony or plaque is immobilized, and then washing the filter in 0.1-2 x SSC (saline-sodium citrate) solution (1x SSC solution is composed of 150 mmol/L sodium chloride and 15 mmol/L sodium citrate) at 65°C.

Specific examples of hybridizable DNAs include DNAs having at least 80% or more, preferably 95% or more homology to the nucleotide sequence of positions 75-1928 of SEQ ID NO: 7 or positions 1-1935 of SEQ ID NO: 8.

- (13) A recombinant DNA that is obtained by integrating the DNA of any one of (9) to (12) above into a vector.
- (14) A transformant comprising the recombinant DNA of (13) above.
- (15) The transformant of (14) above, wherein said transformant is a microorganism belonging to the genus *Escherichia*.
- (16) The transformant of (15) above, wherein said microorganism belonging to the genus *Escherichia* is *Escherichia coli*.
- (17) A method of producing the polypeptide of any one of (1) to (8) above, comprising culturing a transformant comprising a recombinant DNA obtained by integrating a DNA encoding the polypeptide into a vector in a medium, allowing the polypeptide to be produced and accumulated in the culture, and recovering the polypeptide from the culture.
- (18) An oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of (9) or (11) above; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- (19) An oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of (10) or (12) above; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- (20) A method of detecting an mRNA encoding the polypeptide of any one of (1) to (8) above using the oligonucleotide of (18) or (19) above.
- (21) A method of inhibiting expression of the polypeptide of any one of (1) to (8) using the oligonucleotide of (18) or (19) above.
- (22) A method of screening for an inhibitor or an activator of the polypeptide of any one of (1) to (8) above, which comprises using the polypeptide and a cell that expresses the polypeptide.
- (23) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans,

rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the polypeptide of any one of (1) to (4) above.

(24) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the polypeptide of any one of (5) to (8) above.

(25) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the DNA of (9) or (11) above.

(26) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the DNA of (10) or (12) above.

(27) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact

dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the oligonucleotide of (18) above.

(28) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the oligonucleotide of (19) above.

(29) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said vector is obtained by integrating the DNA of (9) or (11) above, or the oligonucleotide of (18) above into a vector.

(30) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said vector is obtained by integrating the DNA of (10) or (12) above, or the oligonucleotide of (19) above into a vector.

(31) A method of screening for a compound that regulates the expression of a gene encoding the polypeptide of any one of (1) to (8) above, which comprises contacting a cell that expresses the polypeptide with a test sample.

(32) The method of (31) above, wherein said compound that regulates the expression of a gene is detected by determining the amount of mRNA encoding the polypeptide of any one of (1) to (8) above.

#### BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows an alignment of the amino acid sequences of human MT5-MMP and mouse MT5-MMP with the amino acid sequences of human MT1-MMP, MT2-MMP, MT3-MMP and MT4-MMP(2).

Mark "\*" indicates identical amino acid residues.

Mark "." indicates similar amino acid residues.

(Amino acid residues are represented by one-letter abbreviations.)

In this Figure, "kb" means kilobase pairs.

Fig. 2 shows the results of an experiment in which a mouse MT5-MMP partial peptide (i.e., propeptide domain + active domain; "MT5 $\Delta$ C" in this Figure) of various concentrations was reacted with pro-MMP-2 to thereby examine the peptide's ability to cleave and activate pro-MMP-2.

As a positive control, APMA was used. As a result, activation was recognized in an MMP concentration dependent manner. In this Figure, "Active" shows activated MMP-2.

#### BEST MODES FOR CARRYING OUT THE INVENTION

Hereinbelow, the present invention will be described in detail.

##### [1] Acquisition of the DNAs encoding the Novel Matrix Metalloproteinase Polypeptides of the Present Invention

###### (1) Preparation of cDNA Libraries

In order to construct a cDNA library, total RNA or mRNA is prepared from an appropriate cell or tissue.

As a method for preparing total RNA, the guanidine thiocyanate-cesium trifluoroacetate method [Methods in Enzymology, 154, 3 (1987)], the acid guanidine thiocyanate/phenol/chloroform (AGPC) method [Analytical Biochemistry, 162, 156 (1987);

Experimental Medicine, 9, 1937 (1991)]; or the like may be used.

As a method for preparing mRNA (as poly(A)<sup>+</sup> RNA) from total RNA, a method using oligo(dT) immobilized cellulose column (Molecular Cloning 2nd Ed.), a method using oligo(dT) latex [Cell Engineering, Supplement 8, "New Cell Engineering Experiment Protocols", SHUJUNSHA Co., pp.48-52; Nucleic Acids Res., Symposium Series, 19, 61 (1988)] or the like may be used.

Alternatively, mRNA may be prepared directly from a tissue or cell using a commercial kit such as First Track mRNA Isolation Kit (Invitrogen) or Quick Prep mRNA Purification Kit (Pharmacia).

In the case of MT4-MMP(2), preferably, types of cDNA libraries which contained ESTs of the DNA encoding MT4-MMP found in databases are ascertained, and then cells or tissues that were used for the construction of those libraries, or cell strains or the like derived from those tissues may be used as an appropriate cell or tissue. In the case of MT5-MMP, it is preferable to use tissues such as brain and kidney or cell strains derived from those tissues as an appropriate cell or tissue.

From the resultant total RNA or mRNA, a cDNA library is constructed by conventional methods.

Specific examples of methods for constructing cDNA libraries include those described in Molecular Cloning 2nd Ed.; Current Protocols 1-38; DNA Cloning 1: Core Techniques, A practical Approach, Second Edition, Oxford University Press (1995); etc. or methods using commercial kits such as SuperScript Plasmid System for cDNA Synthesis and Plasmid Cloning manufactured by Gibco BRL and ZAP-cDNA Synthesis Kit manufactured by Stratagene.

As a cloning vector for constructing a cDNA library, any vector, such as a phage vector or plasmid vector, may be used as long as it is capable of autonomous replication in *E. coli* K12 strain.

Specifically, ZAP Express [Stratagene; Strategies, 5, 58 (1992)], pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)], Lamda ZAP II (Stratagene),  $\lambda$  gt10,  $\lambda$  gt11 [DNA Cloning, A Practical Approach, 1, 49 (1985)],  $\lambda$  TriplEx (Clontech),  $\lambda$  ExCell

(Pharmacia), pT7T318U (Pharmacia), pcD2 [Mol. Cell. Biol., 3, 280 (1983)], pUC18 [Gene, 33, 103 (1985)], pAMo [J. Biol. Chem., 268, 22782-22787 (1993); also called as “pAMoPRC3Sc” (Japanese Unexamined Patent Publication No. 05-336963) or the like may be used.

As a host microorganism, any microorganism may be used as long as it belongs to *Escherichia coli*. Specifically, *Escherichia coli* XL1-Blue MRF' [Stratagene; Strategies 5, 81 (1992)], *Escherichia coli* C600 [Genetics, 39, 440 (1954)], *Escherichia coli* Y1088 [Science, 222, 778 (1983)], *Escherichia coli* Y1090 [Science, 222, 778 (1983)], *Escherichia coli* NM522 [J. Mol. Biol., 166, 1 (1983)], *Escherichia coli* K802 [J. Mol. Biol., 16, 118 (1966)], *Escherichia coli* JM105 [Gene, 38, 275 (1985)], *Escherichia coli* SOLRTM Strain (Stratagene), *Escherichia coli* LE392 (Molecular Cloning 2nd Ed.) or the like may be used.

In addition to cDNA libraries constructed by the above-described methods, commercial cDNA libraries may also be used.

Examples of commercial cDNA libraries include cDNA libraries of individual organs derived from animals such as human, bovine, mouse, rat or rabbit manufactured by Clontech, Lifetech Oriental, etc.

## (2) Aquisition of the DNAs of the Invention

cDNA clones containing the DNA of the present invention may be selected from the cDNA library prepared in (1) above by such method as colony hybridization or plaque hybridization (Molecular Cloning 2nd Ed.) using a radioactively or fluorescently labeled probe.

As a probe for MT4-MMP(2) gene, an oligonucleotide based on the nucleotide sequence of a DNA encoding MT4-MMP (a part of which has been elucidated) may be used. For MT5-MMP gene, an oligonucleotide based on the nucleotide sequence of a DNA encoding MT3-MMP may be used.

From the resultant clones of interest, mRNA is obtained as described above and then cDNA is synthesized.

An adaptor is added to both ends of the resultant cDNA. Using a primer based on the

sequence of this adaptor and a gene-specific primer based on the partially known sequence of the gene of interest, 5' RACE (rapid amplification of cDNA ends) and 3' RACE [Proc. Natl. Acad. Sci. USA, 85, 8998 (1988)] are carried out to obtain a cDNA fragment located 5' to the primer sequence and a cDNA fragment located 3' to the primer sequence.

By ligating the resultant cDNA fragments, a full-length cDNA can be obtained.

The nucleotide sequence of the thus obtained DNA fragment can be determined by integrating into a vector the fragment as it is or the fragment digested with an appropriate restriction enzyme by conventional methods and then analyzing the sequence by conventional methods such as the dideoxy method by Sanger et al. [Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)] or with a DNA sequencer manufactured by Perkin Elmer (373A DNA Sequencer), Pharmacia, LI-COR, etc.

In order to determine the nucleotide sequence of the genomic DNA fragment encoding the polypeptide of the present invention, conventional methods for chromosomal DNA cloning (Molecular Cloning 2nd Ed.) can be used.

Briefly, chromosomal DNA from cells expressing the polypeptide of the present invention [such as monocytic THP-1 cells for MT4-MMP(2); such as brain or kidney cells for MT5-MMP] is digested with a restriction enzyme. The digested fragments are cloned into a conventional plasmid vector or phage vector to construct a genomic library.

The genomic library is screened using, as a probe, the DNA fragment obtained and sequenced as described above in the same manner as in the cDNA cloning described above. Thus, clones containing the genomic gene encoding the polypeptide of the present invention can be obtained.

Using the resultant clones, the nucleotide sequence of the genomic gene can be determined by the above-described method.

It is also possible to obtain a DNA of interest derived from other tissues or other animals (e.g. human) by selecting DNAs that hybridize to the DNA obtained by the above-described method under stringent conditions.

Alternatively, a DNA of interest may be chemically synthesized with a DNA synthesizer based on the nucleotide sequence information obtained by the above-described

method. As a DNA synthesizer, one using the thiophosphite method manufactured by Shimadzu Corp., a DNA synthesizer model 392 using the phosphoamidite method manufactured by Perkin Elmer, or the like may be enumerated.

The novelty of the nucleotide sequence obtained can be confirmed by searching DNA sequence databases of GenBank, EMBL, DDBJ, etc. using a homology search program such as BLAST. If the nucleotide sequence is found to be novel, it is converted into an amino acid sequence. Then, amino acid sequence databases of GenPept, PIR, Swiss-Prot, etc. are searched using a homology search program such as FASTA or FrameSearch to thereby search for existing genes having homology to the novel nucleotide sequence.

As a DNA encoding MT4-MMP(2), the polypeptide of the present invention, that has been confirmed to have a novel nucleotide sequence by the above-described method, a DNA having the nucleotide sequence as shown in SEQ ID NO: 3 or SEQ ID NO: 4 may be given, for example.

As a plasmid comprising a DNA having the nucleotide sequence as shown in SEQ ID NO: 3, plasmid pmMT4/pBSSK may be given. As a plasmid comprising a DNA having the nucleotide sequence as shown in SEQ ID NO: 4, plasmid phMT4/pBSIIKS may be given.

*Escherichia coli* pmMT4/pBSSK comprising plasmid pmMT4/pBSSK and *Escherichia coli* phMT4/pBSIIKS comprising plasmid phMT4/pBSIIKS were deposited as FERM BP-6528 and FERM BP-6530, respectively, on September 25, 1998 with National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology located at 1-3, Higashi 1-chome, Tsukuba City, Ibaraki Pref., Japan (postal code: 305-8566).

As a DNA encoding MT5-MMP, another polypeptide of the present invention, that has been confirmed to have a novel nucleotide sequence by the above-described method, a DNA having the nucleotide sequence as shown in SEQ ID NO: 7 or SEQ ID NO: 8 may be given, for example.

As a plasmid comprising a DNA having the nucleotide sequence as shown in SEQ ID NO: 7, plasmid pmMT5/pBSSK may be given. As a plasmid comprising a DNA having the nucleotide sequence as shown in SEQ ID NO: 8, plasmid phMT5/pGEM may be given.

*Escherichia coli* pmMT5/pBSSK comprising plasmid pmMT5/pBSSK and

*Escherichia coli* phMT5/pGEM comprising plasmid phMT5/pGEM were deposited as FERM BP-6529 and FERM BP-6531, respectively, on September 25, 1998 with National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology located at 1-3, Higashi 1-chome, Tsukuba City, Ibaraki Pref., Japan (postal code: 305-8566).

(3) Preparation of the Oligonucleotides of the Invention

Using the DNAs and DNA fragments of the present invention obtained in the above-described method, oligonucleotides (anti-sense and sense) comprising a partial sequence of the DNAs of the present invention can be prepared by conventional methods or with the DNA synthesizer mentioned above.

Examples of such oligonucleotides include a DNA having the same sequence as that of consecutive 5 to 60 bases within the nucleotide sequences of the above-described DNAs, or a DNA complementary thereto. Specifically, as oligonucleotides comprising a partial sequence of MT4-MMP(2) gene, a DNA having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases in the nucleotide sequence as shown in SEQ ID NO: 3 or 4, or a DNA complementary thereto may be given. As oligonucleotides comprising a partial sequence of MT5-MMP gene, a DNA having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases in the nucleotide sequence as shown in SEQ ID NO: 7 or 8, or a DNA complementary thereto may be given. When oligonucleotides are used as a sense primer and an anti-sense primer, the above-described oligonucleotides are preferably used which are not greatly different between the selected two in melting temperature (Tm) and in the number of bases.

Furthermore, derivatives of these oligonucleotides may also be used as the oligonucleotide of the present invention.

Some of the examples of such oligonucleotide derivatives include oligonucleotide derivatives in which phosphodiester bonds are converted to phosphorothioate bonds; oligonucleotide derivatives in which phosphodiester bonds are converted to N 3'-P5' phosphoamidate bonds; oligonucleotide derivatives in which ribose and phosphodiester bonds are converted to peptide-nucleic acid bonds; oligonucleotide derivatives in which uracil is

substituted by C-5 propynyluracil; oligonucleotide derivatives in which uracil is substituted by C-5 thiazoluracil; oligonucleotide derivatives in which cytosine is substituted by C-5 propynylcytosine; oligonucleotide derivatives in which cytosine is substituted by phenoxazine-modified cytosine; oligonucleotide derivatives in which ribose is substituted by 2'-O-propylribose; or oligonucleotide derivatives in which ribose is substituted by 2'-methoxyethoxyribose [Cell Engineering, 16, 1463 (1997)].

## [2] Preparation of the Matrix Metalloproteinase Polypeptides of the Invention

### (1) Preparation of Transformants

In order to express in a host cell the DNA of the present invention obtained by the method described in [1] above, methods described in Molecular Cloning 2nd Ed. and Current Protocols 1-38, for example, may be used.

Briefly, a recombinant expression vector is prepared by inserting the DNA of the present invention downstream of a promoter in an appropriate vector. Then, by introducing the recombinant vector into a host cell, a transformant that expresses the polypeptide of the present invention can be obtained.

As a host cell, any cell such as a bacterium, yeast, animal cell, or insect cell may be used as long as it is capable of expressing the gene of interest.

As an expression vector, a vector which is capable of autonomously replicating or integrating into chromosome in the above host cell, and which comprises a promoter at a site appropriate for transcription of the DNA of the present invention, is used.

When a prokaryote such as a bacterium is used as the host cell, it is preferred that the expression vector for the polypeptide gene of the present invention be capable of autonomous replication in the prokaryote and, at the same time, a recombinant vector composed of a promoter, a ribosome binding sequence, the DNA of the present invention, and a transcription termination sequence. The vector may also contain a gene that controls the promoter.

Examples of expression vectors which may be used in the present invention include pKK233-2 (Pharmacia), pSE280 (Invitrogen), pGEMEX-1 (Promega), pQE-8 (Qiagen), pKYP10 (Japanese Unexamined Patent Publication No. 58-110600), pKYP200 [Agric. Biol.

Chem., 48, 669 (1984)], pLSA1 [Agric. Biol. Chem., 53, 277 (1989)], pGEL1 [Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)], pBluescript II SK(-) (Stratagene), pGEX (Pharmacia), and pET-3 (Novagen).

As a promoter, any promoter may be used as long as it can direct the expression of the gene of interest in a host cell such as *E. coli* or *Bacillus subtilis*. For example, an *E. coli*- or phage-derived promoter such as trp promoter (P<sub>trp</sub>), lac promoter, PL promoter, PR promoter or T7 promoter; SP01 promoter; SP02 promoter; or penP promoter may be used. An artificially designed and altered promoter such as a promoter in which two P<sub>trp</sub> promoters are connected in series (P<sub>trp</sub> x 2), tac promoter, lacT7 promoter, or let 1 promoter may also be used.

As a ribosome binding sequence, it is preferable to use a plasmid in which the distance between Shine-Dalgarno sequence and the initiation codon is appropriately adjusted (e.g., 6-18 bp).

In the recombinant vector of the present invention, it is not necessarily required for the expression of the DNA of the present invention to contain a transcription termination sequence, but it is desirable to locate such a sequence immediately downstream of the structural gene.

As a host cell, a microorganism belonging to the genus *Escherichia*, *Serratia*, *Bacillus*, *Brevibacterium*, *Corynebacterium*, *Microbacterium*, *Pseudomonas* or the like may be used. Specific examples of host cells which may be used in the present invention include *Escherichia coli* XL1-Blue, *Escherichia coli* XL2-Blue, *Escherichia coli* DH1, *Escherichia coli* MC1000, *Escherichia coli* KY3276, *Escherichia coli* W1485, *Escherichia coli* JM109, *Escherichia coli* HB101, *Escherichia coli* No.49, *Escherichia coli* W3110, *Escherichia coli* NY49, *Serratia ficaria*, *Serratia fonticola*, *Serratia liquefaciens*, *Serratia marcescens*, *Bacillus subtilis*, *Bacillus amyloliquefaciens*, *Brevibacterium ammoniagenes*, *Brevibacterium immariophilum* ATCC14068, *Brevibacterium saccharolyticum* ATCC14066, *Corynebacterium glutamicum* ATCC13032, *Corynebacterium glutamicum* ATCC14067, *Corynebacterium glutamicum* ATCC13869, *Corynebacterium acetoacidophilum* ATCC13870, *Microbacterium ammoniaphilum* ATCC15354, and *Pseudomonas* sp. D-0110.

As a method for introducing the recombinant vector, any method of introducing

DNA into the above host cell may be used. For example, the method using calcium ions [Proc. Natl. Acad. Sci., USA, 69, 2110 (1972)], the protoplast method (Japanese Unexamined Patent Publication No. 63-248394), or electroporation [Gene, 17, 107 (1982); Molecular & General Genetics, 168, 111 (1979)] may be used.

When a yeast strain is used as the host cell, an expression vector such as YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHs19, or pHs15 may be used.

As a promoter, any promoter that can direct the expression of the gene of interest in yeast may be used. For example, PH05 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock polypeptide promoter, MF α 1 promoter, or CUP 1 promoter may be used.

As a host cell, a yeast strain belonging to the genus *Saccharomyces*, *Schizosaccharomyces*, *Kluyveromyces*, *Trichosporon*, *Schwanniomyces*, *Pichia* or the like may be used. Specific examples of yeast strains that may be used in the present invention include *Saccharomyces cerevisiae*, *Schizosaccharomyces pombe*, *Kluyveromyces lactis*, *Trichosporon pullulans*, *Schwanniomyces alluvius*, and *Pichia pastoris*.

As a method for introducing the recombinant vector, any method of introducing DNA into yeast may be used. For example, electroporation [Methods in Enzymology, 194, 182 (1990)], the spheroplast method [Proc. Natl. Acad. Sci., USA, 81, 4889 (1984)], the lithium acetate method [Journal of Bacteriology, 153, 163 (1983)] or the like may be enumerated.

When an animal cell is used as the host, an expression vector such as pAGE107 (Japanese Unexamined Patent Publication No. 3-22979; Cytotechnology, 3, 133 (1990)], pAS3-3 (Japanese Unexamined Patent Publication No. 2-227075), pCDM8 [Nature, 329, 840 (1987)], pcDNA1/Amp (Invitrogen), pREP4 (Invitrogen), or pAGE103 [Journal of Biochemistry, 101, 1307 (1987)] may be used.

As a promoter, any promoter that can direct the expression of the gene of interest in animal cells may be used. Examples of promoters that may be used in the present invention include the promoter of the IE (immediate early) gene of cytomegalovirus (CMV), the early promoter of SV40, a metallothionein promoter, a retrovirus promoter, a heat shock

promoter and SR  $\alpha$  promoter. Alternatively, the enhancer of the IE gene of human CMV may be used in combination with the promoter thereof.

Examples of animal cells that may be used in the present invention include human cells such as Namalwa cells, HEK293 cells (ATCC: CRL-1573); simian cells such as COS cells; and Chinese hamster cells such as CHO cells, HBT5637 (Japanese Unexamined Patent Publication No. 63-299).

As a method for introducing the recombinant vector, any method of introducing DNA into animal cells may be used. For example, electroporation [Cytotechnology, 3, 133 (1990)], the calcium phosphate method (Japanese Unexamined Patent Publication No. 2-227075), or lipofection [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987); Virology, 52, 456 (1973)] may be used.

When an insect cell is used as the host, it is possible to express the polypeptide of the present invention according to methods described in, for example, Baculovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992); Current Protocols 1-38; and Bio Technology, 6, 47 (1988).

Briefly, a recombinant gene transfer vector and Baculovirus are co-introduced into an insect cell to thereby obtain a recombinant virus in the supernatant of the insect cell culture. Then, the insect cell is infected with the recombinant virus further to allow the production of the polypeptide of the present invention.

As a gene transfer vector that may be used in the above method, pVL1392, pVL1393, pBlueBacIII (all of which are manufactured by Invitrogen) may be enumerated, for example.

As a Baculovirus that may be used in the above method, *Autographa californica* nuclear polyhedrosis virus that infects insects belonging to the subfamily Hadeniae may be given, for example.

As an insect cell that may be used in the above method, *Spodoptera frugiperda* ovary cells Sf9 and Sf21 [Baculovirus Expression Vectors, A Laboratory Manual (1992)]; a *Trichoplusia ni* ovary cell High5 (Invitrogen); or the like may be enumerated.

As a method of co-introducing a gene transfer vector and Baculovirus into an insect cell

for preparing a recombinant virus, the calcium phosphate method (Japanese Unexamined Patent Publication No. 2-227075) or lipofection [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)] may be enumerated, for example.

As a method of expressing the gene, in addition to direct expression, such as secretion production or fusion protein expression may be carried out based on the methods described in Molecular Cloning 2nd Ed.

When the polypeptide of the present invention is expressed by a yeast strain, animal cell or insect cell, a polypeptide to which sugars or sugar chains have been attached can be obtained.

The polypeptide of the present invention can be prepared by culturing the transformant obtained as described above in a medium, allowing the polypeptide of the present invention to be produced and accumulated in the culture, and recovering the polypeptide from the culture.

It is also possible to express the polypeptide of the present invention in a patient *in vivo* by introducing an appropriate expression vector that directs expression of the polypeptide of the present invention into cells taken from the patient's living body and then returning the cells into the body.

## (2) Culturing of Transformants

The culturing of the transformant of the present invention in a medium is carried out by conventional methods used for culturing hosts.

As a medium to culture the transformant obtained from a prokaryotic host such as *E. coli* or an eucaryotic host such as yeast, either a natural or synthetic medium may be used as long as it contains carbon sources, nitrogen sources and inorganic salts assimilable by the microorganism and is suitable for efficient culturing of the transformant.

As carbon sources, any carbon source may be used as long as it is assimilable by the microorganism. For example, carbohydrates such as glucose, fructose, sucrose, or molasses, starch or starch hydrolysate containing them; organic acids such as acetic acid, propionic acid; and alcohols such as ethanol and propanol may be used.

As nitrogen sources, ammonia; ammonium salts of inorganic or organic acids such as

ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate; other nitrogen-containing compounds; Peptone; meat extract; yeast extract; corn steep liquor; casein hydrolysate; soybean meal and soybean meal hydrolysate; various fermented microorganism cells and digested products thereof; and the like may be used.

As inorganic substances, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, iron(II) sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like may be used.

Usually, culturing is carried out under aerobic conditions, by such as shaking culture or submerged aeration agitation culture. The culturing temperature is preferably between 15 to 40°C, and the culturing period is usually 16 to 96 hrs. During the culturing, the pH is maintained at 3.0 to 9.0. The pH adjustment is carried out using an inorganic or organic salt, an alkali solution, urea, calcium carbonate, ammonia or the like.

During the culturing, an antibiotic such as ampicillin or tetracycline may be added to the medium if necessary.

When a microorganism transformed with an expression vector using an inducible promoter is cultured, an inducer may be added to the medium if necessary. For example, when a microorganism transformed with an expression vector using Lac promoter is cultured, isopropyl- $\beta$ -D-thiogalactopyranoside or the like may be added. When a microorganism transformed with an expression vector using trp promoter is cultured, indoleacrylic acid or the like may be added.

As a medium to culture a transformant obtained from an animal cell as a host, commonly used RPMI1640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science, 122, 501 (1952)], DMEM medium [Virology, 8, 396 (1959)], 199 medium [Proceeding of the Society for the Biological Medicine, 73, 1 (1950)] or one of these media supplemented with fetal bovine serum, etc. may be used.

Usually, the culturing is carried out at pH 6-8, at 30-40°C in the presence of 5% CO<sub>2</sub> for 1 to 7 days.

During the culturing, an antibiotic such as kanamycin, penicillin, or streptomycin may be added to the medium if necessary.

As a medium to culture a transformant obtained from an insect cell as a host, commonly used TNM-FH medium (Pharmingen), Sf-900 II SFM medium (Life Technologies), ExCell400 or ExCell405 (both from JRH Biosciences), Grace's Insect Medium [Nature, 195, 788 (1962)] or the like may be used.

Usually, culturing is carried out at pH 6-7 at 25-30°C for 1 to 5 days.

During the culturing, an antibiotic such as gentamycin may be added to the medium if necessary.

### (3) Isolation and Purification of the Expressed Polypeptides

Conventional methods of enzyme isolation/purification may be used to isolate and purify the polypeptides expressed by the method described above from the culture of the above-described transformant. For example, when the polypeptide of the present invention is expressed in a dissolved state in cells, the cells are harvested by centrifugation after completion of the culturing, and then suspended in an aqueous buffer. Subsequently, the cells are disrupted with a sonicator, French press, Manton-Gaulin homogenizer, Dynomill or the like to thereby obtain a cell-free extract, which is then centrifuged to obtain a supernatant. From this supernatant, a purified sample may be obtained by conventional enzyme isolation/purification methods. For example, the solvent extraction method; salting out with ammonium sulfate or the like; desalting; precipitation with organic solvents; anion exchange chromatography using resins such as Q-Sepharose, diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (Mitsubishi Chemical Corp.); cation exchange chromatography using resins such as S-Sepharose FF (Pharmacia); hydrophobic chromatography using resins such as butyl Sepharose, phenyl Sepharose; gel filtration using molecular sieve; affinity chromatography; and electrophoresis such as chromatofocusing, isoelectric focusing; may be used independently or in combination.

When the polypeptide of the present invention is expressed in an insoluble form within cells, the cells are harvested and disrupted in the same manner as described above. Then, the cells are centrifuged to obtain the precipitate fraction, from which the polypeptide is recovered by conventional methods. Subsequently, the polypeptide in an insoluble form is solubilized

with a protein-denaturing agent. The resultant solubilized solution is diluted until the solution no longer contains the denaturing agent or the concentration of the denaturing agent becomes so low that no protein denaturation would occur; or the solubilized solution is dialyzed. Thus, the normal steric structure of the polypeptide is restored. Subsequently, a purified sample can be obtained by using the isolation/purification methods described above.

When the polypeptide of the present invention or a derivative thereof (such as sugar-modified polypeptide) is secreted out of cells, the polypeptide or the derivative can be recovered from the culture supernatant. Briefly, the culture is treated by centrifugation, etc. in the same manner as described above to obtain the soluble fraction. From this soluble fraction, a purified sample can be obtained by using the isolation/purification methods described above. When the polypeptide of the present invention or a derivative thereof (such as sugar-modified polypeptide) is expressed on cell surfaces, the membrane fraction of the cultured cells is dissolved with a surfactant to obtain the soluble fraction. From this soluble fraction, a purified sample can be obtained by using the isolation/purification methods described above.

Alternatively, the polypeptide of the present invention may be prepared by chemical synthesis methods such as the Fmoc (fluorenylmethyloxycarbonyl) method and the tBoc (t-butyloxycarbonyl) method. The polypeptide of the present invention may also be chemically synthesized with peptide synthesizers manufactured by Advanced ChemTech, Perkin Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corp. and so forth.

### [3] Detection of the Biological Activity of the Polypeptides of the Invention

The proteinase activity of the polypeptides of the present invention obtained by the method described in [2] above is determined by subjecting a peptide or protein degraded by the polypeptides of the present invention electrophoresis or column chromatography. Alternatively, the activity is determined by measuring degradation of a fluorescence- or isotope-labeled peptide or protein by the polypeptide of the present invention. It is also possible to detect the activity by measuring the state of activation of an enzyme that is

activated by excision of a peptide. The activity may also be measured by using a gel containing a peptide that is degraded by the enzyme in the same manner as in gelatin zymography.

[4] Search for and Identification of Inhibitors or Activators of the Polypeptides of the Invention

A test sample is added to those cells expressing the polypeptide of the present invention prepared by the method described in [2] above, or the polypeptide of the present invention purified by the method described in [2] above from recombinant *E. coli* cells expressing the polypeptide of the present invention prepared by the method described in [2] above.

Then, by comparing the proteinase activity of the polypeptide of the present invention in the presence of the test sample with the activity in the absence of the test sample, it is possible to screen for a substance that enhances the proteinase activity (activator) or a substance that inhibits the proteinase activity (inhibitor).

Specific examples of test samples include synthetic compounds, naturally occurring proteins, artificially synthesized proteins, peptides, saccharides, lipids, modified products or derivatives of these substances; urine, body fluids, tissue extracts, cell culture supernatants and cell extracts from mammals (such as mouse, rat, guinea pig, hamster, pig, sheep, bovine, equine, canine, feline, simian, or human); non-peptidic compounds; fermentation products; and extracts from plants and other organisms.

When a peptide is used as a test sample, a random peptide library may be utilized. Examples of random peptide libraries that may be used in the present invention include peptides on phage [Proc. Natl. Acad. Sci. USA, 87, 6378 (1990); PCT Patent Application Number 96/40189] and peptides on plasmids [United States Patent No. 5,270,170; United States Patent No. 5,338,665].

Peptides that bind to MT4-MMP(2) of the present invention can be obtained by screening a random peptide library. Examples of random peptide libraries that may be used in the present invention include peptides on phage [Proc. Natl. Acad. Sci. USA, 87, 6378 (1990); PCT Patent Application Number 96/40189] and peptides on plasmids [United States

Patent No. 5,270,170; United States Patent No. 5,338,665].

[5] Uses of the DNAs and Polypeptides of the Invention

(1) The DNA of the present invention may be used as a probe in Northern hybridization on RNA that is extracted from human tissues or human-derived cells in the same manner as described in (2) of Section [1] above, to thereby detect or quantitatively determine the mRNA of the polypeptide gene of the present invention in the tissues or cells. By comparing the amounts of RNA expressed in various tissues, the tissue distribution of the polypeptide of the present invention can be elucidated.

Alternatively, the oligonucleotide of the present invention may be used as a primer specific to the DNA of the present invention in RT-PCR [reverse transcription PCR; PCR protocols (1990)] on RNA that is extracted from human tissues or human-derived cells in the same manner as described in (2) of Section [1] above, to thereby detect or quantitatively determine the mRNA of the polypeptide gene of the present invention. These methods of quantitative determination of the mRNA of the polypeptide gene may be used in the diagnosis of disease states in which the gene is involved.

By quantification of the mRNA encoding the polypeptide in various disease model animals, it is possible to reveal the importance of the gene product in diseases. Furthermore, it is possible to evaluate a drug by comparing the amount of expression of the mRNA encoding the polypeptide in the presence or absence of the drug.

(2) The DNA of the present invention or an oligonucleotide having a nucleotide sequence identical with or complementary to a partial nucleotide sequence of the DNA may be used as a probe to carry out *in situ* hybridization [Methods in Enzymology, 254, 419 (1995)] on human tissue section. As a result, more detailed information on the distribution of the polypeptide of the present invention can be obtained, e.g. cells expressing the polypeptide in a given tissue can be specified.

Information as to in which tissue or cell the polypeptide of the present invention is expressed, and information as to what stimulation given to cells changes the amount of expression of the polypeptide obtained by the above-described methods will be useful in

elucidating the physiological functions of the polypeptide of the present invention and its involvement in diseases.

(3) The DNA of the present invention may be used as a probe to carry out Southern hybridization (Molecular Cloning 2nd Ed.) on genomic DNA. As a result, mutations in the gene encoding the polypeptide of the present invention can be detected. By detecting such mutations, it is possible to diagnose those diseases which may be caused by mutations of the gene. Specifically, with respect to MT4-MMP(2), diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, and inflammations associated with infiltration of leukocytes may be diagnosed. With respect to MT5-MMP, diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease, brain tumor, and inflammations associated with infiltration of leukocytes may be diagnosed.

(4) The anti-sense oligonucleotides (RNA/DNA) of the present invention are expected to be applicable to treatment or prevention of diseases in which the gene encoding the polypeptide of the present invention may be involved in their onset, by inhibiting the transcription of the gene or the translation of the mRNA [Chemistry 46, 681 (1991); Bio Technology, 9, 358 (1992)]. With respect to MT4-MMP(2), specific examples of such diseases include arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, and inflammations associated with infiltration of leukocytes. With respect to MT5-MMP, specific examples of such diseases include arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor,

brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease, brain tumor, and inflammations associated with infiltration of leukocytes.

The above-described anti-sense oligonucleotide is designed and prepared based on a partial nucleotide sequence of the DNA encoding the polypeptide of the present invention, preferably a nucleotide sequence complementary to 10-50 bases within the translation initiation region, and then administered into the living bodies of subjects.

Pharmaceuticals containing the DNA of the present invention are prepared or administered in the same manner as described below except that the DNA of the present invention is used instead of the polypeptide of the present invention.

(5) The polypeptide of the present invention can be obtained by using the DNA of the present invention in accordance with the method described in [2] above. With respect to MT4-MMP(2), a polypeptide of the present invention is used for a diagnostic agent, therapeutic agent or prophylactic agent for diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, and inflammations associated with infiltration of leukocytes. With respect to MT5-MMP, a polypeptide of the present invention is used for a diagnostic agent, therapeutic agent or prophylactic agent for diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease, brain tumor, and inflammations associated with infiltration of leukocytes is contemplated.

Although it is possible to administer the polypeptide of the present invention alone as a diagnostic agent or therapeutic agent, usually it is preferred that the polypeptide of the present invention be administered as a pharmaceutical preparation obtained by mixing the polypeptide with one or more pharmacologically acceptable carriers and formulating by any of the well-known methods in the technical field of pharmaceutics. Preferably, a sterile solution of the

polypeptide dissolved in water or an aqueous carrier such as an aqueous solution of NaCl, glycine, glucose or human albumin is used. Pharmacologically acceptable additives such as buffers and isotonic agents that bring liquid preparations close to physiological conditions may also be added. For example, sodium acetate, sodium chloride, sodium lactate, potassium chloride, or sodium citrate may be added. The pharmaceutical preparation may be freeze-dried for storage and dissolved in an appropriate solvent at the time of use.

It is desirable to select the best route of administration that would be most effective for the treatment intended. Usually, parenteral routes such as subcutaneous, intramuscular, intravenous, or intratracheal route are used.

(6) The DNAs of the present invention (sense DNAs and anti-sense DNAs) or oligonucleotides comprising a part of the nucleotide sequences thereof may be incorporated as a single-stranded or double-stranded DNA or oligonucleotide into viral vectors such as retrovirus, adenovirus, adeno-associated virus or other vectors to prepare vectors for gene therapy, and may be used in such therapy.

#### EXAMPLES

Hereinbelow, the present invention will be described more specifically with reference to the following Examples. However, the scope of the present invention is not limited by these Examples.

##### EXAMPLE 1. Cloning of the Gene of Mouse MT4-MMP-Related Protein [MT4-MMP(2)]

Since MT4-MMP gene is highly expressed in the human brain, a brain cDNA library from mouse 17-day embryo was prepared using ZAP-cDNA Synthesis Kit (Stratagene) according to the manual attached to the Kit.

Using a partial sequence of the human MT4-MMP gene (positions 233-1899 of SEQ ID NO: 17) as a probe, the resultant cDNA library was screened by plaque hybridization.

Several of the positive clones that hybridized to the above probe were analyzed for their nucleotide sequences. All of the analyzed clones contained a signal peptide sequence that is considered missing in the reported human MT4-MMP gene; the longest clone was 3.5 kb.

Therefore, it was considered that an mRNA corresponding to the DNA of SEQ ID NO: 3 which can express the 587 amino acid MT4-MMP(2) shown in SEQ ID NO: 1 is expressed in mouse.

EXAMPLE 2. Cloning of Human MT4-MMP (2) Gene

EST clones relating to the human MT4-MMP gene were searched for through databases. However, no clones were registered which contain a sequence encoding a signal peptide as seen in the above-mentioned mouse gene. Therefore, it was considered that secretion-type human MT4-MMP gene does not exist or there are reasons that make the isolation thereof difficult.

A human brain cDNA library (Clontech) was screened using a partial sequence of the mouse MT4-MMP(2) gene, as a probe, from Example 1 encoding an N-terminal region representing the signal peptide. However, the gene of interest could not be isolated. Then, the inventors analyzed 5' regions of transcripts by 5' RACE. For this analysis, monocyte-derived THP-1 (ATCC TIB-202; American Type Culture Collection) cells were used in which expression of MT4-MMP mRNA had been confirmed.

Briefly, a cDNA was prepared using poly(A)<sup>+</sup> RNA isolated from human THP-1 cells, a human MT4-MMP selective primer (SEQ ID NO: 9) and Superscript II (Gibco BRL). A single-stranded oligonucleotide adaptor (SEQ ID NO: 10) was ligated to the resultant cDNA with T4 RNA ligase. Then, a PCR was performed in GC buffer using the MT4-MMP selective primer (SEQ ID NO: 9), an adaptor selective primer (SEQ ID NO: 11) and LA Taq (Takara). After completion of this reaction, another PCR was performed using a gene-selective, other primer (SEQ ID NO: 12) and an adaptor selective primer (SEQ ID NO: 13).

The analysis of the 50 clones revealed that, while 3 clones were cDNA fragments containing an MT4-MMP sequence, 47 clones were cDNA fragments encoding a signal peptide sequence similar to that in mouse MT4-MMP(2). From this, in addition to the downstream region of the propeptide sequence already known, the entire region of the mRNA of SEQ ID NO: 4 encoding human MT4-MMP(2) as shown in SEQ ID NO: 2 containing a signal peptide has been elucidated. Although the nucleotide sequence of an EST clone

H97792 was almost identical with the sequence of the MT4-MMP gene reported by Puente [Cancer Research, 56, 944 (1996); SEQ ID NO: 17], a partial sequence of the catalytic domain was different. The EST clone H97792 was more highly conserved with mouse MT4-MMP(2) gene. When the entire sequence of human MT4-MMP(2) gene was determined newly, differences were found even in the previously sequenced region of the MT4-MMP gene reported by Puente.

Mouse and human MT4-MMP(2) genes are mutually conserved well; their propeptide domains, catalytic domains, hinge domains and hemopexin-like domains had 87%, 87%, 78% and 96% homology, respectively. Their signal peptide domains and transmembrane domains had relatively low similarities of 54% and 35%, respectively. When the catalytic domain of human MT4-MMP(2) gene were compared with the catalytic domains of MT1-MMP, MT2-MMP and MT3-MMP, the similarities were 36%, 39% and 31%, respectively. These results also supported that mouse MT4-MMP(2) gene is most close to human MT4-MMP(2) gene. Thus, it was concluded that mouse MT4-MMP(2) gene is a mouse homologue to human MT4-MMP(2) gene.

#### EXAMPLE 3. Expression of MT4-MMP(2) and Detection of the Gene Product

In order to confirm that a gene product is certainly translated from the isolated cDNA, the cDNA was integrated into pSG5 vector (Stratagene) containing an SV 40 promoter. For detecting the expressed product, a FLAG sequence (Eastman Chemical) was integrated downstream of the latent enzyme processing site to thereby enable detection with anti-FLAG antibodies.

COS-1 cells were transfected with mouse or human MT4-MMP(2) expression plasmids. After 48 hr, cells were harvested and lysed followed by detection of FLAG-labeled MT4-MMP by Western blotting. With the use of an anti-FLAG antibody M2 (Eastman Chemical), a specific 66 kDa band in both cells transfected with the expression plasmids was detected.

#### EXAMPLE 4. Detection and Analysis of MT4-MMP Transcript

Since MT4-MMP transcript has an *Alu* sequence at 5' end, there was a possibility that it

contains intron(s). Using a partial sequence of human MT4-MMP(2) (positions 212-519 of SEQ ID NO: 4) as a probe, hybridized clones were isolated from a library of Health Science Research Resources Bank (Deposit No. LI020) by hybridization, and plasmids were extracted from the resultant clones by conventional methods. Then, the present inventors examined nucleotide sequences around the 5' end region (positions 140-272 of SEQ ID: 17) of MT4-MMP contained in these plasmids.

When MT4-MMP gene was compared with MT4-MMP(2) gene, MT4-MMP nucleotide sequence of the region in which homology no longer exists (positions 1-139 of SEQ ID NO: 17) was almost identical with positions 3008-3147 of the genomic sequence (SEQ ID NO: 18); and a splice donor sequence was found on the border between the region with homology and the region without homology. The sequence encoding the exons of MT4-MMP (positions 140-340 of SEQ ID NO: 17) were almost identical with positions 3148-3280 and positions 3564-3633 of the genomic sequence (SEQ ID NO: 18). From these results, it was concluded that the transcript still containing the first intron is MT4-MMP transcript.

From these results, it was considered that two mRNAs encoding MT4-MMP and MT4-MMP(2) are expressed in human.

In order to discriminate these two transcripts by performing RT-PCR separately, 5' primers specific to individual transcripts (MT4-MMP: SEQ ID NO: 14; MT4-MMP(2): SEQ ID NO: 15) and a common 3' primer (SEQ ID NO: 16) were prepared.

The expression of these transcripts in various cancer cells is shown in Table 1 below.

Table 1. Expression of MT4-MMP(2) and MT4-MMP Transcripts in Cancer Cells

| Cancer Cell Line        | MT4-MMP(2) | MT4-MMP | Accession Number  |
|-------------------------|------------|---------|-------------------|
| Jurkat (T cell)         | ++         | +/-     | ATCC TIB-152      |
| Raji (B cell)           | -          | -       | ATCC CCL-86       |
| BJAB (B cell)           | -          | -       | ATCC HB-136       |
| THP-1 (monocytic)       | ++         | +       | ATCC TIB-202      |
| K562 (monocytic)        | ++         | -       | ATCC CCL-243      |
| U-937 (monocytic)       | ++         | -       | ATCC CRL-1593.2   |
| U-251 MG (astrocytoma)  | ++         | -       | Hakkonen IFO50288 |
| SK-N-SH (neuroblastoma) | ++         | -       | ATCC HTB-11       |
| no.10 (glioma)          | +/-        | -       | Hakkonen IFO50368 |
| KALS-1 (glioma)         | ++         | -       | Hakkonen IFO50434 |
| MKN-7 (gastric)         | +          | -       | Riken RCB0999     |
| MKN-28 (gastric)        | -          | -       | Riken RCB1000     |
| NUGC-4 (gastric)        | +          | -       | HS Found JCRB0834 |
| PANC-1 (pancreatic)     | ++         | +       | ATCC CRL-1469     |
| MIA PaCa-2 (pancreatic) | ++         | +/-     | ATCC CRL-1420     |
| SK-HEP-1 (hepatoma)     | ++         | +       | ATCC HTB-52       |
| Hep 3B (hepatoma)       | ++         | +       | ATCC HB-8064      |
| ZR-75-1 (breast)        | ++         | +       | ATCC CRL-1500     |
| MCF7(adenocarcinoma)    | ++         | +       | ATCC HTB-22       |
| T-24 (bladder)          | ++         | +       | ATCC HTB-4        |
| A375 (melanoma)         | ++         | +       | ATCC CRL-1619     |
| HT-1080 (fibrosarcoma)  | +          | -       | ATCC CCL-121      |

++: strong expression; +: medium expression; +/-: slight expression; -: no expression

ATCC: American Type Culture Collection

HS Found.: Japan Health Sciences Foundation

Riken: The Institute of Physical and Chemical Research

Hakkonen: Institute for Fermentation, Osaka

MT4-MMP was only expressed in those cells where expression of MT4-MMP(2) was recognized.

From these results, it is believed that MT4-MMP(2) is the major transcript and that expression of MT4-MMP also occurs depending on cells under similar transcriptional control.

#### EXAMPLE 5. Expression of MT4-MMP(2) in mouse Tissues

Tissues of 4-week old mice were excised by organ. RNA was extracted therefrom and used to examine the expression pattern of MT4-MMP(2). Briefly, 20  $\mu$ g of total RNA was electrophoresed on 1% agarose gel and transferred onto a nylon membrane followed by Northern blot analysis using  $^{32}$ P-labeled mouse MT4-MMP(2) gene as a probe, to thereby examine the expression pattern of MT4-MMP(2).

Organs in which particularly high expression was observed were the cerebrum, cerebellum, brainstem, large intestine, uterus, and testis. Little expression was observed in the adrenal, mammary gland, and placenta. The results of expression in mouse were consistent with the results of MT4-MMP expression in human tissues reported by Puente et al. [Cancer Research, 56, 944 (1996)].

In mouse, the expression of MT4-MMP(2) was very high in the brain, and its expression was also observed in some limited organs such as the large intestine, uterus and testis. This presents a contrast to the expression of MT1-MMP and MT2-MMP seen in a relatively wide range of tissues. From this, it is believed that MT4-MMP(2) is involved in the maintenance of homeostasis in tissues through the degradation of extracellular substrates specific to those organs expressing MT4-MMP(2).

#### EXAMPLE 6. Expression of a Mouse MT4-MMP(2) Partial Peptide (Hemopexin-like Domain) in *E. coli*

A cDNA encoding a mouse MT4-MMP(2) partial peptide (hemopexin-like domain) having an amino acid sequence represented by positions 321-550 of SEQ ID NO: 1 to which a

methionine residue was added at the N-terminus was amplified by polymerase chain reaction (PCR) using the cDNA of mouse MT4-MMP(2) as a template.

The amplified fragment was subcloned into an *E. coli* expression vector pET3a (Takara) and then introduced into *E. coli* BL21 (DE3) pLysS (Takara). This *E. coli* was grown in 1 liter of expression medium in the presence of 100  $\mu$ g/ml of ampicillin until OD<sub>600</sub> reached 0.5. Then, the cells were stimulated with 0.4 mmol/L of isopropyl- $\beta$ -D-thiogalactopyranoside (IPTG) and cultured for another three hours.

After the culturing, granules (inclusion bodies) consisting of the mouse MT4-MMP(2) partial peptide formed in *E. coli* cells were collected by conventional methods and dissolved in a solubilization solution containing 8 mol/L urea, 50 mmol/L Tris-HCl (pH 8.6) and 20 mmol/L dithiothreitol (DTT). The resultant solution was applied to High Q anion exchange column followed by recovery of the fraction eluted with 0.2 mol/L sodium chloride.

This fraction was diluted with a solution containing 50 mmol/L Tris-HCl (pH 8.6), 6 mol/L urea, 1 mmol/L dithiothreitol, 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 100 mmol/L zinc chloride and 0.02% sodium azide. Then, cystamine (final concentration: 20 mmol/L) was added to the resultant dilution. Subsequently, the resultant solution was dialyzed against a solution containing 50 mmol/L Tris-HCl (pH 8.6), 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 100 mmol/L zinc chloride, 5 mmol/L  $\beta$  mercaptoethanol, 1 mmol/L 2-hydroxyethyl disulfide and 0.02% sodium azide at 4°C. Further, dialysis was performed against 10 volumes of a solution containing 50 mmol/L Tris-HCl (pH 7.5), 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 50 mmol/L zinc chloride and 0.02% sodium azide (4 hr x 3 times). The dialyzed solution was centrifuged at 22,000xg at 4°C for 10 min to remove the precipitate.

The supernatant was applied to S-200 column pre-equilibrated with a buffer containing 50 mmol/L Tris-HCl (pH 7.5), 150 mmol/L sodium chloride, 10 mmol/L calcium chloride and 0.02% sodium azide for gel filtration to obtain a mouse MT4-MMP(2) partial peptide corresponding to the hemopexin-like domain.

**EXAMPLE 7. Expression of a Human MT4-MMP(2) Partial Peptide (Propeptide Domain +**

Active Domain) in *E. coli*

A cDNA encoding a human MT4-MMP(2) partial peptide having an amino acid sequence represented by positions 58-298 of SEQ ID NO: 2 was amplified by polymerase chain reaction (PCR) using the cDNA of human MT4-MMP(2) as a template.

The amplified fragment was subcloned into an *E. coli* expression vector pRSET (Invitrogen). The enzyme was expressed as a fusion protein fused to the 6x His sequence present in the pRSET-derived leader sequence. This vector was introduced into *E. coli* BL21 (DE3) pLysS (Takara). This *E. coli* was grown in 1 liter of expression medium (tryptone, 12 g/L; yeast extract, 24 g/L; sodium chloride, 10 g/L; Trisma base, 250 mg/L; glycerol, 4 ml/L) in the presence of 100  $\mu$ g/ml ampicillin until OD<sub>600</sub> reached 0.5. Then, the cells were stimulated with 0.4 mmol/L isopropyl- $\beta$ -D-thiogalactopyranoside (IPTG) and cultured for another three hours.

After the culturing, granules (inclusion bodies) consisting of the human MT4-MMP(2) partial peptide (propeptide domain + active domain) formed in *E. coli* cells were collected by conventional methods and dissolved in a solubilization solution containing 8 mol/L urea and 50 mmol/L Tris-HCl (pH 8.6). The resultant solution was applied to a nickel chelate column followed by recovery of the fraction eluted with 250 mmol/L imidazole.

This fraction was diluted with a solution containing 50 mmol/L Tris-HCl (pH 8.6), 6 mol/L urea, 20 mmol/L dithiothreitol, 0.15 mol/L sodium chloride, 100 mmol/L calcium chloride, 100  $\mu$ mol/L zinc chloride and 0.02% sodium azide (200-fold dilution). Then, cystamine (final concentration: 20 mmol/L) was added to the resultant dilution. Subsequently, the resultant solution was dialyzed against a solution containing 50 mmol/L Tris-HCl (pH 8.6), 0.15 mol/L sodium chloride, 10 mmol/L calcium chloride, 100  $\mu$ mol/L zinc chloride, 5 mmol/L  $\beta$  mercaptoethanol, 1 mmol/L 2-hydroxyethyl disulfide and 0.02% sodium azide at 4°C. Further, dialysis was performed against 10 volumes of a solution containing 50 mmol/L Tris-HCl (pH 7.5), 0.15 mol/L sodium chloride, 10 mmol/L calcium chloride, 50  $\mu$ mol/L zinc chloride and 0.02% sodium azide (4 hr x 3 times). The thus dialyzed solution was centrifuged at 22,000xg at 4°C for 10 min to remove the precipitate.

The supernatant obtained was concentrated 5-fold with Amicon YM-10 (Millipore) to

prepare a crude enzyme.

EXAMPLE 8. Measurement of the Activity of the Human MT4-MMP(2) Partial Peptide (Active Domain)

a) Activation of the Human MT4-MMP(2) Partial Peptide (Propeptide Domain + Active Domain)

It is known that MMPs are activated by trypsin treatment and then exhibit metalloproteinase activity. Whether MT4-MMP(2) is also activated by such treatment or not was examined by the method described below.

Briefly, trypsin (Wako Purechemical Industries, Ltd.) was added to 200  $\mu$ l of the crude MT4-MMP(2) partial peptide (propeptide domain + active domain) solution to give a concentration of 0.1  $\mu$ g/ml, and reacted at 37°C for 30 min. Then, phenylmethanesulfonyl fluoride (PMSF) (a serine protease inhibitor) was added to the reaction solution at 1 mmol/L to inactivate the trypsin.

b) Assay

To 10  $\mu$ l of the activated enzyme, a measurement buffer or an inhibitor diluted with a measurement buffer (TIMP-1 or TIMP-2; final concentration: 1  $\mu$ g/ml) was added to make a 50  $\mu$ l solution. To this solution, 50  $\mu$ l of 10  $\mu$ mol/L fluorescent substrate was added and reacted at 37°C for 120 min. After the completion of each reaction, fluorescence generated by the enzyme reaction was measured. Measurement was carried out under the following conditions: excitation wave length: 320 nm; fluorescence wave length: 395 nm.

The reagents and substrates used in this assay were as described below.

Fluorescent substrate: DMSO stock (10 mmol/L); MOCAc-Pro-Leu-Gly-Leu-A<sub>2</sub>pr(Dnp)-Ala-Arg-NH<sub>2</sub> (Peptide Institute, Inc.)

Standard fluorescent substrate: DMSO stock (1 mmol/L); MOCAc-Pro-Leu-Gly (Peptide Institute, Inc.)

Activity measurement buffer: 0.1 mol/L Tris-HCl (pH 7.5; Nacalai Tesque), 0.1 mol/L NaCl (Nacalai Tesque), 0.01 mol/L CaCl<sub>2</sub> (Wako Purechemical), 0.05% Briji-35 (w/v; Wako Purechemical)

The results of the measurement are shown in Table 2. Similar to other MMPs, the MT4-MMP(2) partial peptide, in particular, the partial peptide after the activation by trypsin exhibited a strong substrate-degrading activity.

It is reported that MT-MMPs are not inhibited by the metalloproteinase inhibitor TIMP-1, but inhibited by TIMP-2 [FEBS Letters, 393, 101 (1996)].

Whether MT4-MMP(2) also has such a nature or not was examined.

As shown in Table 2, similar to the activities of other MT-MMPs, the activity of MT4-MMP(2) was not inhibited by TIMP-1, but strongly inhibited by TIMP-2.

These results revealed that MT4-MMP(2) is one type of MT-MMP.

Table 2. Measurement of the Activity of Human MT4-MMP(2) Partial Peptide  
(Active Domain)

| Sample                           | Trypsin<br>Treatment | Inhibitor | Fluorescence Intensity |
|----------------------------------|----------------------|-----------|------------------------|
|                                  |                      |           | (Mean±SD) (n=3)        |
| Blank                            |                      |           | 0.000±0.057            |
| Human MT4-MMP(2) partial peptide | -                    | None      | 1.304±0.056            |
| Human MT4-MMP(2) partial peptide | +                    | None      | 4.882±0.102            |
| Human MT4-MMP(2) partial peptide | +                    | TIMP-1    | 3.493±0.166            |
| Human MT4-MMP(2) partial peptide | +                    | TIMP-2    | 0.076±0.065            |

#### EXAMPLE 9. Cloning of Mouse MT5-MMP Gene

In order to isolate mouse MT5-MMP gene, a brain cDNA library from mouse 17-day embryo was prepared using ZAP-cDNA Synthesis Kit (Stratagene) according to the manual attached to the kit.

The resultant cDNA library was screened by plaque hybridization using human MT3-MMP gene as a probe. Clones exhibiting a strong signal and clones exhibiting a weak signal were obtained. The nucleotide sequences of these clones were determined.

As a result of analysis of clones with a weak signal, a 2.1 kb sequence was found in one of them. Although this sequence exhibited weak homology to human and rat MT3-MMP genes, it was not homologous to other MMP genes. Thus, it was considered that this sequence represents a novel MMP gene.

Subsequently, a 3.7 kb cDNA fragment that hybridized to the above-described 2.1 kb sequence was obtained from the above library by plaque hybridization. From the 2.1 kb and 3.7 kb sequences, a 4.2 kb cDNA sequence shown in SEQ ID NO: 7 was obtained.

A protein with 618 amino acids represented by SEQ ID NO: 5 was encoded in the cDNA shown in SEQ ID NO: 7. Since the peptide of SEQ ID NO: 5 contains those sequences corresponding to the individual domains of MT-MMPs in well-conserved states, it was concluded that this peptide is a novel MT-MMP, namely, mouse MT5-MMP (Fig. 1).

#### EXAMPLE 10. Cloning of Human MT5-MMP Gene

In order to confirm the human gene corresponding to mouse MT5-MMP gene, a human kidney cDNA library (Clontech) was screened by plaque hybridization using mouse MT5-MMP gene as a probe in the same manner as in Example 9. As a result, a gene that has 92% homology to mouse MT5-MMP gene and is different from known MT-MMP genes was obtained.

All of the sequenced human MT5-MMP cDNA clones lacked a 5' region that is supposed to encode a signal peptide. Thus, the sequence of the missing region was determined by 5' RACE as described below to thereby determine the nucleotide sequence containing the entire region encoding human MT5-MMP gene.

Briefly, cDNA was prepared from a human brain poly(A)<sup>+</sup> RNA (Clontech) using Superscript II (Gibco BRL) and a human MT5-MMP gene-selective primer (SEQ ID NO: 19) according to the manual attached to the kit.

A single-stranded oligonucleotide adaptor (SEQ ID NO: 10) was ligated to the resultant cDNA with T4 RNA ligase. Then, the cDNA was subjected to PCR in GC buffer using the MT5-MMP gene-selective primer (SEQ ID NO: 19), an adaptor-selective primer (SEQ ID NO: 11) and LA Taq (Takara).

After completion of the above PCR, another PCR was performed using an other gene-selective primer (SEQ ID NO: 20) and an adaptor-selective primer (SEQ ID NO: 13). From the above-mentioned sequence obtained from the human kidney cDNA library using the mouse gene as a probe and the sequence obtained from the 5' RACE, a 2.6 kb cDNA fragment

(shown in SEQ ID NO: 8) that encodes a 645 amino acid protein (shown in SEQ ID NO: 6) was obtained.

EXAMPLE 11. Expression of MT5-MMP mRNAs in Internal Organs

Expression of MT5-MMP gene in tissues was examined by Northern blotting.

Briefly, 20  $\mu$ g of total RNA was electrophoresed on 1% agarose gel and transferred onto a nylon membrane. Then, Northern blotting was carried out using  $^{32}$ P-labeled mouse MT5-MMP gene as a probe to examine the expression pattern of approximately 4 kb MT5-MMP mRNAs.

In 2-week old mice, a strong expression was observed only in the brain, but the expression was around detection limit or below in other tissues of other organs.

When expression in human tissues was examined with Multiple Tissue Blot (Clontech) using human MT5-MMP gene as a probe, high expression was observed in the brain. The results of Northern blotting using  $^{32}$ P-labeled human MT5-MMP gene as a probe revealed that strong expression of both 4.0 kb and 4.8 kb MT5-MMP mRNAs are also recognized in the human brain. In human, the expression was also recognized in the kidney and pancreas. The 4.8 kb mRNA and the 4.0 kb mRNA were expressed strongly in the brain and in the kidney and pancreas, respectively.

Then, RT-PCR was carried out using MT5-MMP specific primers (SEQ ID NOS: 21 and 22) to analyze these fragments. As a result, it was found that a DNA fragment of the same size as that of the fragment amplified in the brain is amplified in the kidney and pancreas with almost equal efficiencies and that no products of different sizes were found. Thus, it was believed that the shorter transcript contains the entire coding region.

When the expression of MT5-MMP in mouse and human was examined, characteristic expression was observed in the brain. In particular, the expression was limited in the brain in mouse, and was very low in other internal organs.

Since the expression of this gene in the brain is characteristic, site-specific expression was examined using Human Brain Multiple Tissue Blot (Clontech).

High expression of MT5-MMP was observed in the cerebellum. Its expression was

also observed in the cerebral cortex, medulla, occipital region of head, frontal region of head, temporal region of head and putamen, but not observed in the spinal cord.

These results show a remarkable characteristic of MT5-MMP gene different from other MT-MMP genes expressed in various tissues.

In human, the expression of MT5-MMP was ~~also~~ strong in the brain, and its expression was observed in the kidney and pancreas. The results of examination of its site-specific expression in the human brain revealed a characteristic expression in the cerebellum. High expression in the cerebellum was also confirmed in mouse.

These results suggest the possibility that MT5-MMP controls the degradation of extracellular matrixes around cells associated with such processes as the maturation and maintenance of brain tissues, the construction of nervous network, and so forth.

#### EXAMPLE 12. Expression of MT5-MMP mRNA in Cancer Cells

MT1-MMP is expressed frequently in cancer cells *per se* and interstitial cells around them in many cancer tissues and functions as an activator of gelatinase A at the tissue level. The expression of MT5-MMP in various cancer cell strains was examined by RT-PCR using MT5-MMP-specific primers (SEQ ID NOS: 21 and 22).

The results are shown in Table 3 below.

Table 3. Expression of MT5-MMP Transcript in Cancer Cells

| Cancer Cell Line        | MT5-MMP | Accession Number  |
|-------------------------|---------|-------------------|
| Jurkat (T cell)         | -       | ATCC TIB-152      |
| Raji (B cell)           | -       | ATCC CCL-86       |
| BJAB (B cell)           | -       | ATCC HB-136       |
| THP-1 (monocytic)       | -       | ATCC TIB-202      |
| K562 (monocytic)        | -       | ATCC CCL-243      |
| U-937 (monocytic)       | -       | ATCC CRL-1593.2   |
| U-251 MG (astrocytoma)  | -       | Hakkoken IFO50288 |
| SK-N-SH (neuroblastoma) | +++     | ATCC HTB-11       |
| no.10 (glioma)          | ++      | Hakkoken IFO50368 |
| KALS-1 (glioma)         | +++     | Hakkoken IFO50434 |
| MKN-7 (gastric)         | +       | Riken RCB0999     |
| MKN-28 (gastric)        | -       | Riken RCB1000     |
| NUGC-4 (gastric)        | +       | HS Found JCRB0834 |
| PANC-1 (pancreatic)     | +       | ATCC CRL-1469     |
| MIA PaCa-2 (pancreatic) | +       | ATCC CRL-1420     |
| SK-HEP-1 (hepatoma)     | +       | ATCC HTB-52       |
| Hep 3B (hepatoma)       | +       | ATCC HB-8064      |
| ZR-75-1 (breast)        | ?       | ATCC CRL-1500     |
| MCF7(adenocarcinoma)    | -       | ATCC HTB-22       |
| T-24 (bladder)          | -       | ATCC HTB-4        |
| A375 (melanoma)         | +/-     | ATCC CRL-1619     |
| HT-1080 (fibrosarcoma)  | +/-     | ATCC CCL-121      |

+++; very strong expression; ++; strong expression; +; medium expression; +/-; slight expression; -; no expression

ATCC: American Type Culture Collection

HS Found.: Japan Health Sciences Foundation

Riken: The Institute of Physical and Chemical Research

Hakkoken: Institute for Fermentation, Osaka

While MT1-MMP is expressed in various cancer cell lines, cell lines expressing MT5-MMP were specific in the nervous system-derived neuroblastoma [SK-N-SH (HTB-11, ATCC)], undifferentiated glioma [no. 10 (IFO50368, Institute for Fermentation, Osaka)], and glioma [KALS-1, (IFO50434, Institute for Fermentation, Osaka)], with the correlation of the expression in brain.

Also, its expression in pancreatic cancer cell strains [PANC-1 (CRL-1469, ATCC); MIA PaCa-2 (CRL-1420, ATCC)] and hepatoma cell strains [SK-HEP-1 (HTB-52, ATCC); Hep 3B (HB-8064, ATCC)] was characteristic.

It is considered that abnormal expression of MT-MMPs on cell surfaces promotes the infiltration of cells. Actually, excessive expression of MT1-MMP enhances the infiltrating ability of cancer cell lines and increases the frequency of experimental metastasis. In human cancer tissues, cancer cells and fibroblasts around them express MT1-MMP at high frequency, and the presence of gelatinase A which MT1-MMP activates at sites of its expression is well correlated with the infiltration and metastasis of cancer.

Since MT5-MMP is expressed in undifferentiated glioma, glioma, pancreatic cancer and hepatoma cell lines, the possibility has been suggested that excessive expression of MT5-MMP is involved in the malignant nature of cancer cells in a specific types of cancers.

**EXAMPLE 13. Expression of a Mouse MT5-MMP Partial Peptide (Propeptide Domain + Active Domain) in *E. coli***

A cDNA encoding a mouse MT5-MMP partial peptide having an amino acid sequence represented by positions 40-300 of SEQ ID NO: 5 to which a methionine residue is added at the N terminus was amplified by polymerase chain reaction (PCR) using the cDNA of mouse MT5-MMP as a template.

The amplified fragment was subcloned into an *E. coli* expression vector pET3a (Takara)

and then introduced into *E. coli* BL21 (DE3) pLysS (Takara). This *E. coli* was grown in 1 liter of expression medium (12 g/L of tryptone; 24 g/L of yeast extract; 10 g/L of sodium chloride; 250 mg/L of Trisma base; 4 ml/L of glycerol) in the presence of 100  $\mu$ g/mL ampicillin until OD<sub>600</sub> reached 0.5. Then, the cells were stimulated with 0.4 mmol/L isopropyl- $\beta$ -D-thiogalactopyranoside (IPTG) and cultured for another three hours.

After the culturing, granules (inclusion bodies) consisting of the mouse MT5-MMP partial peptide formed in the *E. coli* cells were recovered by conventional methods and dissolved in a solubilization solution containing 8 mol/L urea, 50 mmol/L Tris-HCl (pH 8.6) and 20 mmol/L dithiothreitol (DTT). The resultant solution was applied to Q-anion ion exchange column followed by recovery of the fraction eluted with 0.1 M NaCl.

This fraction was diluted with a solution containing 50 mmol/L Tris-HCl (pH 8.6), 6 mol/L urea, 1 mmol/L dithiothreitol, 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 100 mmol/L zinc chloride and 0.02% sodium azide. Then, cystamine (final concentration: 20 mmol/L) was added to the resultant dilution. Subsequently, the resultant solution was dialyzed against 4 L of a solution containing 50 mmol/L Tris-HCl (pH 8.6), 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 100 mmol/L zinc chloride, 5 mmol/L  $\beta$  mercaptoethanol, 1 mmol/L 2-hydroxyethyl disulfide and 0.02% sodium azide at 4°C overnight. Further, dialysis was performed against 10 volumes of a solution containing 50 mmol/L Tris-HCl (pH 7.5), 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 50  $\mu$  mol/L zinc chloride and 0.02% sodium azide (4 hr x 3 times). The thus dialyzed solution was centrifuged at 22,000xg at 4°C for 10 min to remove the precipitate.

The supernatant obtained was concentrated with Amicon YM-10 (Millipore) and treated with 0.1  $\mu$ g/ml trypsin at 37°C for 30 min. After inactivation of the trypsin with 1 mmol/L DTT, the sample was applied to S-200 column pre-equilibrated with a buffer containing 50 mmol/L Tris-HCl (pH 7.5), 150 mmol/L sodium chloride, 10 mmol/L calcium chloride and 0.02% sodium azide to perform gel filtration. As a result, the mouse MT5-MMP partial peptide (propeptide domain + active domain) was obtained.

Human MT5-MMP peptide can also be expressed in the same manner.

EXAMPLE 14. Measurement of the Activity of Mouse MT5-MMP Partial Peptide (Active Domain)

ProMMP-2 (final concentration: 1  $\mu$  g/mL) and the mouse MT5-MMP partial peptide (propeptide domain + active domain) (final concentration: 1  $\mu$  g/mL) were mixed and incubated at 37°C for 1 hr. In this operation, Briji 35-added TNC buffer [50 mmol/L Tris-HCl (pH 7.5), 150 mmol/L NaCl, 10 mmol/L CaCl<sub>2</sub>, 0.02% NaN<sub>3</sub>, 0.05% Briji 35] was used. After the incubation, an equal volume of SDS/PAGE loading buffer was added to the sample, which was then electrophoresed and subjected to Coomassie staining according to routine procedures. As a positive control of activation for ProMMP-2, p-aminophenylmercuric acetate (APMA) was used. As a result, activation of ProMMP-2 was recognized depending on a MMP concentration. The results are shown in Fig. 2.

#### INDUSTRIAL APPLICABILITY

By using the DNA of novel MT4-MMP(2) polypeptide obtained by the present invention, it becomes possible to diagnose, prevent or treat diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, wounds including corneal ulcer, leukemia, cancer, and inflammations associated with infiltration of leukocytes.

Furthermore, by using the DNA of novel MT5-MMP polypeptide obtained by the present invention, it becomes possible to diagnose, prevent or treat diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, wounds including corneal ulcer, leukemia, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease, brain tumor, cancer, and inflammations associated with infiltration of leukocytes.

## CLAIMS

1. A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 1.
2. A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of claim 1 and having metalloproteinase activity.
3. A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 2.
4. A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of claim 3 and having metalloproteinase activity.
5. A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 5.
6. A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of claim 5 and having metalloproteinase activity.
7. A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 6.
8. A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of claim 7 and having metalloproteinase activity.
9. A DNA encoding the polypeptide of any one of claims 1 to 4.
10. A DNA encoding the polypeptide of any one of claims 5 to 8.

11. A DNA consisting of the nucleotide sequence of positions 86-1846 of SEQ ID NO: 3 or positions 100-1917 of SEQ ID NO: 4, or a DNA which hybridizes to said DNA under stringent conditions and which encodes a polypeptide having metalloproteinase activity.
12. A DNA consisting of the nucleotide sequence of positions 75-1928 of SEQ ID NO: 7 or positions 1-1935 of SEQ ID NO: 8, or a DNA which hybridizes to said DNA under stringent conditions and which encodes a polypeptide having metalloproteinase activity.
13. A recombinant DNA that is obtained by integrating the DNA of any one of claims 9 to 12 into a vector.
14. A transformant comprising the recombinant DNA of claim 13.
15. The transformant of claim 14, wherein said transformant is a microorganism belonging to the genus *Escherichia*.
16. The transformant of claim 15, wherein said microorganism belonging to the genus *Escherichia* is *Escherichia coli*.
17. A method of producing the polypeptide of any one of claims 1 to 8, comprising culturing a transformant comprising a recombinant DNA obtained by integrating a DNA encoding said polypeptide into a vector in a medium, allowing said polypeptide to be produced and accumulated in the resultant culture, and recovering said polypeptide from said culture.
18. An oligonucleotide selected form an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9 or 11; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the

above oligonucleotides.

19. An oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 10 or 12; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
20. A method of detecting an mRNA encoding the polypeptide of any one of claims 1 to 8 using the oligonucleotide of claim 18 or 19.
21. A method of inhibiting expression of the polypeptide of any one of claims 1 to 8 using the oligonucleotide of claim 18 or 19.
22. A method of screening for an inhibitor or an activator of the polypeptide of any one of claims 1 to 8, which comprises using the polypeptide and a cell that expresses the polypeptide.
23. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the polypeptide of any one of claims 1 to 4.
24. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes,

brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the polypeptide of any one of claims 5 to 8.

25. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the DNA of claim 9 or 11.
26. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the DNA of claim 10 or 12.
27. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the oligonucleotide of claim 18.
28. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact

dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the oligonucleotide of claim 19.

29. A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said vector is obtained by integrating the DNA of claim 9 or 11, or the oligonucleotide of claim 18 into a vector.
30. A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said vector is obtained by integrating the DNA of claim 10 or 12, or the oligonucleotide of claim 19 into a vector.
31. A method of screening for a compound that regulates the expression of a gene encoding the polypeptide of any one of claims 1 to 8, which comprises contacting a cell that expresses the polypeptide with a test sample.
32. The method of claim 31, wherein said compound that regulates the expression of a gene is detected by determining the amount of mRNA encoding the polypeptide of any one of

claims 1 to 8.

Fig. 1

Fig. 2



Attorney's Docket No.: \_\_\_\_\_

## DECLARATION, POWER OF ATTORNEY AND PETITION

I (We), the undersigned inventor(s), hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I (We) believe that I am (we are) the original, first, and joint (sole) inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled

### DNAS ENCODING NOVEL POLYPEPTIDES

the specification of which

is attached hereto.

was filed on \_\_\_\_\_ as

Application Serial No. \_\_\_\_\_

and amended on \_\_\_\_\_

was filed as PCT international application

Number PCT/JP99/05349

on September 29, 1999

and was amended under PCT Article 19

on \_\_\_\_\_ (if applicable).

I (We) hereby state that I (We) have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above; that I (We) do not know and do not believe that this invention was ever known or used before my invention or discovery thereof, or patented or described in any printed publication in any country before my invention or discovery thereof, or more than one year prior to this application, or in public use or on sale in the United States for more than one year prior to this application; that this invention or discovery has not been patented or made the subject of an inventor's certificate in any country foreign to the United States on an application filed by me or my legal representatives or assigns more than twelve months before this application.

I (We) acknowledge the duty to disclose information known to be material to

the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.

I (We) hereby claim foreign priority benefits under Section 119(a)-(d) of Title 35 United States Code, of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

| Application No.    | Country      | Filing date               | Priority claimed                                                    |
|--------------------|--------------|---------------------------|---------------------------------------------------------------------|
| <u>276258/1998</u> | <u>Japan</u> | <u>September 29, 1998</u> | <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No |
| <u>291505/1998</u> | <u>Japan</u> | <u>September 29, 1998</u> | <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No |
| _____              | _____        | _____                     | <input type="checkbox"/> Yes <input type="checkbox"/> No            |
| _____              | _____        | _____                     | <input type="checkbox"/> Yes <input type="checkbox"/> No            |

I hereby claim the benefit under Section 119(e) of Title 35 United States Code, of any United States application(s) listed below.

---

(Application Number)

---

(Filing Date)

---

(Application Number)

---

(Filing Date)

I (We) hereby claim the benefit under Section 120 of Title 35 United States Code, of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Section 112 of Title 35 United States Code, I (We) acknowledge the duty to disclose material information as defined in Section 1.56(a) of Title 37 Code of Federal Regulations, which occurred between the filing date of the prior application and national or PCT international filing date of this application:

| Application Serial No. | Filing Date | Status (pending, patented,<br>abandoned) |
|------------------------|-------------|------------------------------------------|
|                        |             |                                          |
|                        |             |                                          |
|                        |             |                                          |

And I (We) hereby appoint: Finnegan, Henderson, Farabow, Garrett & Dunner, L.L.P., Registration No. 22,540; Douglas B. Henderson, Registration No. 20,291; Ford F. Farabow, Jr., Registration No. 20,630; Arthur S. Garrett, Registration No. 20,338; Donald R. Dunner, Registration No. 19,073; Brian G. Brunsvold, Registration No. 22,593; Tipton D. Jennings, IV, Registration No. 20,645; Jerry D. Voight, Registration No. 23,020; Laurence R. Hefter, Registration No. 20,827; Kenneth E. Payne, Registration No. 23,098; Herbert H. Mintz, Registration No. 26,691; C. Larry O'Rourke, Registration No. 26,014; Albert J. Santorelli, Registration No. 22,610; Michael C. Elmer, Registration No. 25,857; Richard H. Smith, Registration No. 20,609; Stephen L. Peterson, Registration No. 26,325; John M. Romary, Registration No. 26,331; Bruce C. Zotter, Registration No. 27,680; Dennis P. O'Reilley, Registration No. 27,932; Allen M. Sokal, Registration No. 26,695; Robert D. Bajefsky, Registration No. 25,387; Richard L. Stroup, Registration No. 28,478; David W. Hill, Registration No. 28,220; Thomas L. Irving, Registration No. 28,619; Charles E. Lipsey, Registration No. 28,165; Thomas W. Winland, Registration No. 27,605; Basil J. Lewris, Registration No. 28,818; Martin I. Fuchs, Registration No. 28,508; E. Robert Yoches, Registration No. 30,120; Barry W. Graham, Registration No. 29,924; Susan Haberman Griffen, Registration No. 30,907; Richard B. Racine, Registration No. 30,415; Thomas H. Jenkins, Registration No. 30,857; Robert E. Converse, Jr., Registration No. 27,432; Clair X. Mullen, Jr., Registration No. 20,348; Christopher P. Foley, Registration No. 31,354; John C. Paul, Registration No. 30,413; David M. Kelly, Registration No. 30,953; Kenneth J. Meyers, Registration No. 25,146; Carol P. Einaudi, Registration No. 32,220; Walter Y. Boyd, Jr., Registration No. 31,738; Steven M. Anzalone, Registration No. 32,095; Jean B. Fordis, Registration No. 32,984; Barbara C. McCurdy, Registration No. 32,120; James K. Hammond, Registration No. 31,964; Richard V. Burgujian, Registration No. 31,744; J. Michael Jakes, Registration No. 32,824; Thomas W. Banks, Registration No. 32,719; M. Paul Barker, Registration No. 32,013; Bryan C. Diner, Registration No. 32,409; Christopher P. Isaac, Registration No. 32,616; Andrew C. Sonu, Registration No. 33,457; and Dirk D. Thomas, Registration No. 32,600.

53  
I(We) hereby request that all correspondence regarding this application be sent to the firm of FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P. whose Post office address is: 1300 I Street, N.W., WASHINGTON, D.C. 20005 U.S.A.

I (We) declare further that all statements made herein of my (our) knowledge are true and that all statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment,

or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

1 - 60 Motoharu SEIKI Residence: Tokyo, Japan

NAME OF FIRST SOLE INVENTOR



Signature of Inventor

March 14, 2001

Date

Citizen of: Japan

Post Office Address:

Koyamadai-jutaku 5-203, 2-5,

Koyamadai, Shinagawa-ku,

Tokyo 142-0061 Japan

09/806232

JC03 Rec'd PCT/PTO 28 MAR 2001

SEQUENCE LISTING

<110> Seiki Motoharu

<120> DNA CODING FOR NOVEL POLYPEPTIDE

<130>

<140> PCT/JP99/05349

<141> 1999-09-29

<150> JP10-276258

<151> 1998-09-29

<150> JP10-291505

<151> 1998-09-29

<160> 22

<170> PatentIn Ver. 2.0

<210> 1

<211> 587

<212> PRT

<213> Mouse

<400> 1

Met Gly Arg Arg Pro Arg Gly Pro Gly Ser Pro Arg Gly Pro Gly Pro

1

5

10

15

Pro Arg Pro Gly Pro Gly Leu Pro Pro Leu Leu Leu Val Leu Ala Leu  
20 25 30

Ala Ala His Gly Gly Cys Ala Ala Pro Ala Pro Arg Ala Glu Asp Leu  
35 40 45

Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr Leu Pro Pro Ala  
50 55 60

Asp Pro Ala Ser Gly Gln Leu Gln Thr Gln Glu Glu Leu Ser Lys Ala  
65 70 75 80

Ile Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Thr Thr Gly Ile Leu  
85 90 95

Asp Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg Cys Ser Leu Pro  
100 105 110

Asp Leu Pro Pro Gly Ala Gln Ser Arg Arg Lys Arg Gln Thr Pro Pro  
115 120 125

Pro Thr Lys Trp Ser Lys Arg Asn Leu Ser Trp Arg Val Arg Thr Phe  
130 135 140

Pro Arg Asp Ser Pro Leu Gly Arg Asp Thr Val Arg Ala Leu Met Tyr  
145 150 155 160

Tyr Ala Leu Lys Val Trp Ser Asp Ile Thr Pro Leu Asn Phe His Glu

165 170 175

Val Ala Gly Asn Ala Ala Asp Ile Gln Ile Asp Phe Ser Lys Ala Asp  
180 185 190

His Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly Thr Val Ala His  
195 200 205

Ala Phe Phe Pro Gly Asp His His Thr Ala Gly Asp Thr His Phe Asp  
210 215 220

Asp Asp Glu Pro Trp Thr Phe Arg Ser Ser Asp Ala His Gly Met Asp  
225 230 235 240

Leu Phe Ala Val Ala Val His Glu Phe Gly His Ala Ile Gly Leu Ser  
245 250 255

His Val Ala Ala Pro Ser Ser Ile Met Gln Pro Tyr Tyr Gln Gly Pro  
260 265 270

Val Gly Asp Pro Val Arg Tyr Gly Leu Pro Tyr Glu Asp Arg Val Arg  
275 280 285

Val Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser Pro Thr Ala Gln  
290 295 300

Leu Asp Thr Pro Glu Pro Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro  
305 310 315 320

Asn Asn Arg Ser Ser Thr Pro Pro Gln Lys Asp Val Pro His Arg Cys  
325 330 335

Thr Ala His Phe Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe  
340 345 350

Phe Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val  
355 360 365

Ser Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu  
370 375 380

His Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys  
385 390 395 400

Ile Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn  
405 410 415

Val Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro  
420 425 430

Gly Gly Ile Asp Ala Val Phe Ser Trp Ala His Asn Asp Arg Thr Tyr  
435 440 445

Phe Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg Arg  
450 455 460

Met Asp Pro Gly Tyr Pro Ala Gln Gly Pro Leu Trp Arg Gly Val Pro  
465 470 475 480

Ser Met Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe  
485 490 495

Phe Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Ala  
500 505 510

Ala Pro Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly  
515 520 525

Glu Pro Leu Ala Asp Ala Glu Asp Val Gly Pro Gly Pro Gln Gly Arg  
530 535 540

Ser Gly Ala Gln Asp Gly Leu Ala Val Cys Ser Cys Thr Ser Asp Ala  
545 550 555 560

His Arg Leu Ala Leu Pro Ser Leu Leu Leu Thr Pro Leu Leu Trp  
565 570 575

Gly Leu Trp Thr Ser Val Ser Ala Lys Ala Ser  
580 585

<210> 2

<211> 606

<212> PRT

<213> Homo sapiens

<400> 2

Met Arg Arg Arg Ala Ala Arg Gly Pro Gly Pro Pro Pro Pro Gly Pro

|                                                                 |     |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|-----|
| 1                                                               | 5   | 10  | 15  |     |
| Gly Leu Ser Arg Leu Pro Leu Leu Pro Leu Pro Leu Leu Leu         |     |     |     |     |
|                                                                 | 20  | 25  | 30  |     |
| Ala Leu Gly Thr Arg Gly Gly Cys Ala Ala Pro Glu Pro Ala Arg Arg |     |     |     |     |
|                                                                 | 35  | 40  | 45  |     |
| Ala Glu Asp Leu Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr |     |     |     |     |
|                                                                 | 50  | 55  | 60  |     |
| Leu Pro Pro Ala Asp Pro Thr Thr Gly Gln Leu Gln Thr Gln Glu Glu |     |     |     |     |
|                                                                 | 65  | 70  | 75  | 80  |
| Leu Ser Lys Ala Ile Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Ala |     |     |     |     |
|                                                                 | 85  | 90  | 95  |     |
| Thr Gly Ile Leu Asp Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg |     |     |     |     |
|                                                                 | 100 | 105 | 110 |     |
| Cys Ser Leu Pro Asp Leu Pro Val Leu Thr Gln Ala Arg Arg Arg Arg |     |     |     |     |
|                                                                 | 115 | 120 | 125 |     |
| Gln Ala Pro Ala Pro Thr Lys Trp Asn Lys Arg Asn Leu Ser Trp Arg |     |     |     |     |
|                                                                 | 130 | 135 | 140 |     |
| Val Arg Thr Phe Pro Arg Asp Ser Pro Leu Gly His Asp Thr Val Arg |     |     |     |     |
|                                                                 | 145 | 150 | 155 | 160 |

Ala Leu Met Tyr Tyr Ala Leu Lys Val Trp Ser Asp Ile Ala Pro Leu  
165 170 175

Asn Phe His Glu Val Ala Gly Ser Thr Ala Asp Ile Gln Ile Asp Phe  
180 185 190

Ser Lys Ala Asp His Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly  
195 200 205

Thr Val Ala His Ala Phe Phe Pro Gly His His His Thr Ala Gly Asp  
210 215 220

Thr His Phe Asp Asp Asp Glu Ala Trp Thr Phe Arg Ser Ser Asp Ala  
225 230 235 240

His Gly Met Asp Leu Phe Ala Val Ala Val His Glu Phe Gly His Ala  
245 250 255

Ile Gly Leu Ser His Val Ala Ala Ala His Ser Ile Met Arg Pro Tyr  
260 265 270

Tyr Gln Gly Pro Val Gly Asp Pro Leu Arg Tyr Gly Leu Pro Tyr Glu  
275 280 285

Asp Lys Val Arg Val Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser  
290 295 300

Pro Thr Ala Gln Pro Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro Asp  
305 310 315 320

Asn Arg Ser Ser Ala Pro Pro Arg Lys Asp Val Pro His Arg Cys Ser  
325                    330                    335

Thr His Phe Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe  
340                    345                    350

Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val Ser  
355                    360                    365

Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu His  
370                    375                    380

Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys Ile  
385                    390                    395                    400

Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn Val  
405                    410                    415

Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro Gly  
420                    425                    430

Gly Ile Asp Ala Ala Phe Ser Trp Ala His Asn Asp Arg Thr Tyr Phe  
435                    440                    445

Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg His Met  
450                    455                    460

Asp Pro Gly Tyr Pro Ala Gln Ser Pro Leu Trp Arg Gly Val Pro Ser

465 470 475 480

Thr Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe Phe

485 490 495

Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Val Ala

500 505 510

Pro Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly Asp

515 520 525

Ser Gln Ala Asp Gly Ser Val Ala Ala Gly Val Asp Ala Ala Glu Gly

530 535 540

Pro Arg Ala Pro Pro Gly Gln His Asp Gln Ser Arg Ser Glu Asp Gly

545 550 555 560

Tyr Glu Val Cys Ser Cys Thr Ser Gly Ala Ser Ser Pro Pro Gly Ala

565 570 575

Pro Gly Pro Leu Val Ala Ala Thr Met Leu Leu Leu Pro Pro Leu

580 585 590

Ser Pro Gly Ala Leu Trp Thr Ala Ala Gln Ala Leu Thr Leu

595 600 605

<210> 3

<211> 3517

<212> D N A

<213> Mouse

<220>

<221> CDS

<222> (86)..(1846)

<400> 3

ggcacgaggg cgccggagccg agcgaggcgc ggagctggct gctggcgggt gcggggaccc 60

tcgccacccg acctgggaga gcggg atg gga cgc cgc ccg cgg gga cct ggg 112  
Met Gly Arg Arg Pro Arg Gly Pro Gly

1 5

tcc ccc cgg gga cct ggc cct cca cgc ccc ggg ccg ggg ctg cca cca 160  
Ser Pro Arg Gly Pro Gly Pro Pro Arg Pro Gly Pro Gly Leu Pro Pro

10 15 20 25

ctg ctg ctt gta ctg gcg ctg gcg gcc cat ggg ggc tgc gca gcg ccc 208  
Leu Leu Leu Val Leu Ala Ala Ala His Gly Gly Cys Ala Ala Pro

30 35 40

gcg ccc cgc gcg gag gac ctc agc ctc ggg gtg gag tgg cta agc agg 256  
Ala Pro Arg Ala Glu Asp Leu Ser Leu Gly Val Glu Trp Leu Ser Arg

45 50 55

ttt ggc tac ctg ccg cct gca gat ccg gca tca ggg cag cta cag acc 304  
Phe Gly Tyr Leu Pro Pro Ala Asp Pro Ala Ser Gly Gln Leu Gln Thr

60 65 70

cag gag gaa ctg tcc aaa gcg att act gcc atg cag cag ttt ggt ggt 352  
Gln Glu Glu Leu Ser Lys Ala Ile Thr Ala Met Gln Gln Phe Gly Gly  
75 80 85

ctg gag acc act ggc atc cta gat gag gcc act ctg gcc ctg atg aaa 400  
Leu Glu Thr Thr Gly Ile Leu Asp Glu Ala Thr Leu Ala Leu Met Lys  
90 95 100 105

acc cct cga tgc tcc ctt ccg gac ctg ccc cct ggg gcc caa tcg aga 448  
Thr Pro Arg Cys Ser Leu Pro Asp Leu Pro Pro Gly Ala Gln Ser Arg  
110 115 120

agg aag cgg cag act cca ccc cca acc aaa tgg agc aag agg aac ctt 496  
Arg Lys Arg Gln Thr Pro Pro Pro Thr Lys Trp Ser Lys Arg Asn Leu  
125 130 135

tct tgg agg gtc cgg aca ttc cca cgg gac tca ccc ctg ggc cgg gat 544  
Ser Trp Arg Val Arg Thr Phe Pro Arg Asp Ser Pro Leu Gly Arg Asp  
140 145 150

act gtg cgt gca ctc atg tac tac gcc ctc aaa gtc tgg agt gac atc 592  
Thr Val Arg Ala Leu Met Tyr Tyr Ala Leu Lys Val Trp Ser Asp Ile  
155 160 165

aca ccc ttg aac ttc cac gag gta gcg ggc aac gcg gcg gac atc cag 640  
Thr Pro Leu Asn Phe His Glu Val Ala Gly Asn Ala Ala Asp Ile Gln  
170 175 180 185

atc gac ttc tcc aag gcc gac cac aat gac ggc tac ccc ttc gat ggc 688

Ile Asp Phe Ser Lys Ala Asp His Asn Asp Gly Tyr Pro Phe Asp Gly

190

195

200

cct ggt ggc acg gtg gcc cac gca ttc ttc cct ggt gac cac cac acg 736

Pro Gly Gly Thr Val Ala His Ala Phe Phe Pro Gly Asp His His Thr

205

210

215

gca ggg gac acc cac ttt gat gac gat gag cca tgg acc ttc cgt tcc 784

Ala Gly Asp Thr His Phe Asp Asp Glu Pro Trp Thr Phe Arg Ser

220

225

230

tca gat gcc cac ggg atg gac ctg ttt gca gtg gcc gtc cat gag ttt 832

Ser Asp Ala His Gly Met Asp Leu Phe Ala Val Ala Val His Glu Phe

235

240

245

ggt cat gcc att ggt ctg agc cat gtt gcc gcc cca agc tcc atc atg 880

Gly His Ala Ile Gly Leu Ser His Val Ala Ala Pro Ser Ser Ile Met

250

255

260

265

caa ccg tac tac cag ggc ccc gtg ggt gac ccc gta cgc tat gga ctt 928

Gln Pro Tyr Tyr Gln Gly Pro Val Gly Asp Pro Val Arg Tyr Gly Leu

270

275

280

ccc tat gag gac agg gtg cgt gtc tgg cag ttg tac ggt gtg cgaa 976

Pro Tyr Glu Asp Arg Val Arg Val Trp Gln Leu Tyr Gly Val Arg Glu

285

290

295

tcc gtg tcc cct act gcc cag ctg gat acc cca gag ccc gag gag cca 1024

Ser Val Ser Pro Thr Ala Gln Leu Asp Thr Pro Glu Pro Glu Pro

300

305

310

ccc ctc ctg cca gag ccc ccc aac aat cg<sub>g</sub> tct agc act cc<sub>g</sub> ccc cag      1072  
 Pro Leu Leu Pro Glu Pro Pro Asn Asn Arg Ser Ser Thr Pro Pro Gln

315

320

325

aag gac gtg cct cac agg tgc act gcc cac ttt gat gct gtg gcc cag      1120  
 Lys Asp Val Pro His Arg Cys Thr Ala His Phe Asp Ala Val Ala Gln  
 330                335                340                345

att cga ggc gaa gca ttc ttt ttc aaa ggc aag tat ttc tgg agg ctg      1168  
 Ile Arg Gly Glu Ala Phe Phe Lys Gly Lys Tyr Phe Trp Arg Leu  
 350                355                360

acc cgg gac cga cac ttg gtg tcg ctg cag cc<sub>g</sub> gct caa atg cat cgc      1216  
 Thr Arg Asp Arg His Leu Val Ser Leu Gln Pro Ala Gln Met His Arg  
 365                370                375

ttc tgg cgg ggc ctg cc<sub>g</sub> ctg cac ctg gac agt gtg gac gcc gtg tat      1264  
 Phe Trp Arg Gly Leu Pro Leu His Leu Asp Ser Val Asp Ala Val Tyr  
 380                385                390

gag cgt acc agt gac cac aag att gtc ttc ttc aaa gga gac aga tac      1312  
 Glu Arg Thr Ser Asp His Lys Ile Val Phe Phe Lys Gly Asp Arg Tyr  
 395                400                405

tgg gtg ttt aag gac aac aac gta gag gaa ggg tac cc<sub>g</sub> cga cct gtc      1360  
 Trp Val Phe Lys Asp Asn Asn Val Glu Glu Gly Tyr Pro Arg Pro Val  
 410                415                420                425

tcc gac ttc agc ctc ccg cca ggt ggc atc gat gct gtc ttc tcc tgg 1408  
Ser Asp Phe Ser Leu Pro Pro Gly Gly Ile Asp Ala Val Phe Ser Trp  
430 435 440

gcc cac aat gac agg act tat ttc ttt aag gac cag ctg tac tgg cgc 1456  
Ala His Asn Asp Arg Thr Tyr Phe Phe Lys Asp Gln Leu Tyr Trp Arg  
445 450 455

tat gat gac cac aca cgg cgc atg gac cct ggc tac cct gcc cag gga 1504  
Tyr Asp Asp His Thr Arg Arg Met Asp Pro Gly Tyr Pro Ala Gln Gly  
460 465 470

ccc ctg tgg aga ggt gtc ccc agc atg ttg gat gat gcc atg cgc tgg 1552  
Pro Leu Trp Arg Gly Val Pro Ser Met Leu Asp Asp Ala Met Arg Trp  
475 480 485

tct gat ggt gca tcc tat ttc ttc cga ggc cag gag tac tgg aaa gtg 1600  
Ser Asp Gly Ala Ser Tyr Phe Phe Arg Gly Gln Glu Tyr Trp Lys Val  
490 495 500 505

ctg gat ggc gag ctg gaa gca gcc ccc ggg tac cca cag tct aca gcc 1648  
Leu Asp Gly Glu Leu Glu Ala Ala Pro Gly Tyr Pro Gln Ser Thr Ala  
510 515 520

cgc gac tgg ctg gta tgc ggt gag ccg ctg gcg gat gcg gag gat gta 1696  
Arg Asp Trp Leu Val Cys Gly Glu Pro Leu Ala Asp Ala Glu Asp Val  
525 530 535

ggg cct gga ccc cag ggc cgc agt ggg gcc caa gat ggt ctg gca gta 1744  
Gly Pro Gly Pro Gln Gly Arg Ser Gly Ala Gln Asp Gly Leu Ala Val  
540 545 550  
  
tgt tcc tgc act tca gac gca cac agg ttg gca ctg cca tct ctg ctg 1792  
Cys Ser Cys Thr Ser Asp Ala His Arg Leu Ala Leu Pro Ser Leu Leu  
555 560 565  
  
ctt ctg act cca ctg ctg tgg ggc ctg tgg acc tca gtc tct gcc aag 1840  
Leu Leu Thr Pro Leu Leu Trp Gly Leu Trp Thr Ser Val Ser Ala Lys  
570 575 580 585  
  
gca tcc tgagggcagt gctagccttg cgatcaagg agccagggga gcagggcacac 1896  
Ala Ser  
  
actggccagt actcagcagg acttgtgctc caagcttccg gtccctcgct ctttcattcc 1956  
  
ttccttcattt gaacccaggg gtgctgtgcc atctgcttggaa gtggtctcca gctgggacag 2016  
  
gacgtcccac caagggcatc catgcacacc ttgcctaccc ggagcagcca taggcagctc 2076  
  
cccttccttc ctctgcacat cacgctgctt cggtgcacct tgccgggctg cccaaaggcca 2136  
  
gctgtcacaa ccccaggatg ctttgtctgc acctgagcgg ctctgatggc atctgcacgt 2196  
  
gggctgtatga gggcaaaca ggggttcctc gtggtatccg tagggccac catgcctgtt 2256  
  
tcacaagtaa gagagttgtatgcccgatgg gggaaacaggg tggagaaag gcacccatccc 2316

agaagtctga tccactgccg tttgcagcag ccagcgccgt atctgctggg ataggggacc 2376  
agtcacactc aggatctgcc cacagattcc cagatgctgg caaggggcct tgctccaact 2436  
accaggagca cagccaccc tc(ccgtc) agataggtt gccatggagg ctgtgtcctg 2496  
ttatctccct ctcttgcc aggagagcat tgtgggtctc cctcgggtgc tttgtatggg 2556  
ggtggggggc gcccata(g) atatttcttc atctgtcagt accattgt tcagcaagat 2616  
gccccat at agttctggcc tgagaccctg cagcttggac tcacagctgt cccctcccc 2676  
gctgcagaag ggcttcta(ac) acctggaata aaggtggcg tttagttttag ggaaggagga 2736  
tggttggggg agcccagggt gatagcaagg gggagctgca gggataagt tcagggcct 2796  
cggggagtca tgacaatgtt accgccta(ac) ttggagatgt aggagctgt cacggattgc 2856  
ttctctgggt gacaaaccc catggccag aaagggctg agttgaacc caagatgggt 2916  
taatgagctc cagaaaggaa cagccaa(g) caaagg(t)t gggacaagac gggcctgagg 2976  
aacagggcca cccaggtagg cg(t)ggctgta gggtaagcag ttctgtcat tggcacgag 3036  
atgaaaatta gtgatcacac gcacata(cc) ccctccccaa ctggcccggt cccatctcag 3096  
gtaagaaagg cttctgtcta ccccaggcca ggtttgagtg ttgtcaggat gagttagcag 3156  
ctagcggggc ctaagtttct accctccatt tcccaaggct ggccacaccc tagaccctg 3216

tcagactagg caggacagag tcagggtag gggcatctga ggttccctg tcttcca 3276

caccctactc tgccctcata tcaaaggcacg ctcctatgtat gtcccatgtt gtccaccagc 3336

ctgcaggaca cagatgtcct atacagcaac aggaaatgc caaaaatctt tgtcacatag 3396

cactgaaaac cagacccgca ggctggagct gtctagatgc tgggtcaca ctcatttaa 3456

aaccttataaaaa attttgtaca ctggaaaaaaaaaaaaaaaaaaaaaaaa 3516

a

3517

<210> 4

<211> 2423 (2438 ではないか?)

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (100)..(1917)

<400> 4

ccggcgcccc cgccgcggag agcggaggc gccggctgc ggaacgcgaa gcggaggcgc 60

cgggaccctg cacgccccc gcggcccat gtgagcgcc atg cgg cgc cgc gca 114

Met Arg Arg Arg Ala

1

5

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|--|
| gcc | cgg | gga | ccc | ggc | ccg | ccg | ccc | cca | ggg | ccc | gga | ctc | tcg | cgg | ctg | 162 |    |  |
| Ala | Arg | Gly | Pro | Gly | Pro | Pro | Pro | Pro | Gly | Pro | Gly | Leu | Ser | Arg | Leu |     |    |  |
|     |     |     | 10  |     |     |     |     |     |     | 15  |     |     |     |     | 20  |     |    |  |
| ccg | ctg | ctg | ccg | ctg | ccg | ctg | ctg | ctg | ctg | ctg | gcg | ctg | ggg | acc | cgc | 210 |    |  |
| Pro | Leu | Leu | Pro | Leu | Pro | Leu | Leu | Leu | Leu | Leu | Ala | Leu | Gly | Thr | Arg |     |    |  |
|     |     |     | 25  |     |     |     |     |     |     | 30  |     |     |     |     | 35  |     |    |  |
| ggg | ggc | tgc | gcc | gcf | ccg | gaa | ccc | gcf | cgf | gcc | gag | gac | ctc | agc | 258 |     |    |  |
| Gly | Gly | Cys | Ala | Ala | Pro | Glu | Pro | Ala | Arg | Arg | Ala | Glu | Asp | Leu | Ser |     |    |  |
|     |     |     | 40  |     |     |     |     |     |     | 45  |     |     |     |     | 50  |     |    |  |
| ctg | gga | gtg | gag | tgg | cta | agc | agg | ttc | ggt | tac | ctg | ccc | ccg | gct | gac | 306 |    |  |
| Leu | Gly | Val | Glu | Trp | Leu | Ser | Arg | Phe | Gly | Tyr | Leu | Pro | Pro | Ala | Asp |     |    |  |
|     |     |     | 55  |     |     |     |     |     |     | 60  |     |     |     |     | 65  |     |    |  |
| ccc | aca | aca | ggg | cag | ctg | cag | acg | caa | gag | gag | ctg | tct | aag | gcc | atc | 354 |    |  |
| Pro | Thr | Thr | Gly | Gln | Leu | Gln | Thr | Gln | Glu | Glu | Leu | Ser | Lys | Ala | Ile |     |    |  |
|     |     |     | 70  |     |     |     |     |     |     | 75  |     |     |     |     | 80  |     | 85 |  |
| aca | gcc | atg | cag | cag | ttt | ggt | ggc | ctg | gag | gcc | acc | ggc | atc | ctg | gac | 402 |    |  |
| Thr | Ala | Met | Gln | Gln | Phe | Gly | Gly | Leu | Glu | Ala | Thr | Gly | Ile | Leu | Asp |     |    |  |
|     |     |     | 90  |     |     |     |     |     |     | 95  |     |     |     |     | 100 |     |    |  |
| gag | gcc | acc | ctg | gcc | ctg | atg | aaa | acc | cca | cgc | tgc | tcc | ctg | cca | gac | 450 |    |  |
| Glu | Ala | Thr | Leu | Ala | Leu | Met | Lys | Thr | Pro | Arg | Cys | Ser | Leu | Pro | Asp |     |    |  |
|     |     |     | 105 |     |     |     |     |     |     | 110 |     |     |     |     | 115 |     |    |  |

ctc cct gtc ctg acc cag gct cgc agg aga cgc cag gct cca gcc ccc 498  
Leu Pro Val Leu Thr Gln Ala Arg Arg Arg Arg Gln Ala Pro Ala Pro  
120 125 130

acc aag tgg aac aag agg aac ctg tcg tgg agg gtc cggt acg ttc cca 546  
Thr Lys Trp Asn Lys Arg Asn Leu Ser Trp Arg Val Arg Thr Phe Pro  
135 140 145

cgg gac tca cca ctg ggg cac gac acg gtg cgt gca ctc atg tac tac 594  
Arg Asp Ser Pro Leu Gly His Asp Thr Val Arg Ala Leu Met Tyr Tyr  
150 155 160 165

gcc ctc aag gtc tgg agc gac att gcg ccc ctg aac ttc cac gag gtg 642  
Ala Leu Lys Val Trp Ser Asp Ile Ala Pro Leu Asn Phe His Glu Val  
170 175 180

gcg ggc agc acc gcc gac atc cag atc gac ttc tcc aag gcc gac cat 690  
Ala Gly Ser Thr Ala Asp Ile Gln Ile Asp Phe Ser Lys Ala Asp His  
185 190 195

aac gac ggc tac ccc ttc gac ggc ccc ggc ggc acc gtg gcc cac gcc 738  
Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly Thr Val Ala His Ala  
200 205 210

ttc ttc ccc ggc cac cac cac acc gcc ggg gac acc cac ttt gac gat 786  
Phe Phe Pro Gly His His Thr Ala Gly Asp Thr His Phe Asp Asp  
215 220 225

gac gag gcc tgg acc ttc cgc tcc tcg gat gcc cac ggg atg gac ctg 834

|                                                                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |
|-----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|--|
| Asp                                                             | Glu | Ala | Trp | Thr | Phe | Arg | Ser | Ser | Asp | Ala | His | Gly | Met | Asp | Leu  |  |
| 230                                                             |     |     |     | 235 |     |     |     |     | 240 |     |     |     | 245 |     |      |  |
| ttt gca gtg gct gtc cac gag ttt ggc cac gcc att ggg tta agc cat |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 882  |  |
| Phe Ala Val Ala Val His Glu Phe Gly His Ala Ile Gly Leu Ser His |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |
|                                                                 |     |     | 250 |     |     |     | 255 |     |     |     |     | 260 |     |     |      |  |
| gtg gcc gct gca cac tcc atc atg cgg ccg tac tac cag ggc ccg gtg |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 930  |  |
| Val Ala Ala Ala His Ser Ile Met Arg Pro Tyr Tyr Gln Gly Pro Val |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |
|                                                                 |     | 265 |     |     |     | 270 |     |     |     |     | 275 |     |     |     |      |  |
| ggt gac ccg ctg cgc tac ggg ctc ccc tac gag gac aag gtg cgc gtc |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 978  |  |
| Gly Asp Pro Leu Arg Tyr Gly Leu Pro Tyr Glu Asp Lys Val Arg Val |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |
|                                                                 |     | 280 |     |     | 285 |     |     |     | 290 |     |     |     |     |     |      |  |
| tgg cag ctg tac ggt gtg cgg gag tct gtg tct ccc acg gcg cag ccc |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1026 |  |
| Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser Pro Thr Ala Gln Pro |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |
|                                                                 |     | 295 |     | 300 |     |     | 305 |     |     |     |     |     |     |     |      |  |
| gag gag cct ccc ctg ctg ccg gag ccc cca gac aac cgg tcc agc gcc |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1074 |  |
| Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro Asp Asn Arg Ser Ser Ala |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |
|                                                                 |     | 310 |     | 315 |     |     | 320 |     |     |     | 325 |     |     |     |      |  |
| ccg ccc agg aag gac gtg ccc cac aga tgc agc act cac ttt gac gcg |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1122 |  |
| Pro Pro Arg Lys Asp Val Pro His Arg Cys Ser Thr His Phe Asp Ala |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |
|                                                                 |     | 330 |     |     | 335 |     |     | 340 |     |     |     |     |     |     |      |  |
| gtg gcc cag atc cgg ggt gaa gct ttc ttc ttc aaa ggc aag tac ttc |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1170 |  |
| Val Ala Gln Ile Arg Gly Glu Ala Phe Phe Phe Lys Gly Lys Tyr Phe |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |

|                                                                           |     |     |     |
|---------------------------------------------------------------------------|-----|-----|-----|
| 345                                                                       | 350 | 355 |     |
| tgg cgg ctg acg cgg gac cgg cac ctg gtg tcc ctg cag ccg gca cag      1218 |     |     |     |
| Trp Arg Leu Thr Arg Asp Arg His Leu Val Ser Leu Gln Pro Ala Gln           |     |     |     |
| 360                                                                       | 365 | 370 |     |
| atg cac cgc ttc tgg cgg ggc ctg ccg ctg cac ctg gac agc gtg gac      1266 |     |     |     |
| Met His Arg Phe Trp Arg Gly Leu Pro Leu His Leu Asp Ser Val Asp           |     |     |     |
| 375                                                                       | 380 | 385 |     |
| gcc gtg tac gag cgc acc agc gac cac aag atc gtc ttc ttt aaa gga      1314 |     |     |     |
| Ala Val Tyr Glu Arg Thr Ser Asp His Lys Ile Val Phe Phe Lys Gly           |     |     |     |
| 390                                                                       | 395 | 400 | 405 |
| gac agg tac tgg gtg ttc aag gac aat aac gta gag gaa gga tac ccg      1362 |     |     |     |
| Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn Val Glu Glu Gly Tyr Pro           |     |     |     |
| 410                                                                       | 415 | 420 |     |
| cgc ccc gtc tcc gac ttc agc ctc ccg cct ggc ggc atc gac gct gcc      1410 |     |     |     |
| Arg Pro Val Ser Asp Phe Ser Leu Pro Pro Gly Gly Ile Asp Ala Ala           |     |     |     |
| 425                                                                       | 430 | 435 |     |
| ttc tcc tgg gcc cac aat gac agg act tat ttc ttt aag gac cag ctg      1458 |     |     |     |
| Phe Ser Trp Ala His Asn Asp Arg Thr Tyr Phe Phe Lys Asp Gln Leu           |     |     |     |
| 440                                                                       | 445 | 450 |     |
| tac tgg cgc tac gat gac cac acg agg cac atg gac ccc ggc tac ccc      1506 |     |     |     |
| Tyr Trp Arg Tyr Asp Asp His Thr Arg His Met Asp Pro Gly Tyr Pro           |     |     |     |
| 455                                                                       | 460 | 465 |     |

|                                                                                         |     |     |      |
|-----------------------------------------------------------------------------------------|-----|-----|------|
| gcc cag agc ccc ctg tgg agg ggt gtc ccc agc acg ctg gac gac gcc                         |     |     | 1554 |
| Ala Gln Ser Pro Leu Trp Arg Gly Val Pro Ser Thr Leu Asp Asp Ala                         |     |     |      |
| 470                                                                                     | 475 | 480 | 485  |
| atg cgc tgg tcc gac ggt gcc tcc tac ttc ttc cgt ggc cag gag tac                         |     |     | 1602 |
| Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe Phe Arg Gly Gln Glu Tyr                         |     |     |      |
| 490                                                                                     | 495 | 500 |      |
| tgg aaa gtg ctg gat ggc gag ctg gag gtg gca ccc ggg tac cca cag                         |     |     | 1650 |
| Trp Lys Val Leu Asp Gly Glu Leu Glu Val Ala Pro Gly Tyr Pro Gln                         |     |     |      |
| 505                                                                                     | 510 | 515 |      |
| tcc acg gcc cg <sup>g</sup> gac tgg ctg gtg tgt gga gac tca cag gcc gat gga             |     |     | 1698 |
| Ser Thr Ala Arg Asp Trp Leu Val Cys Gly Asp Ser Gln Ala Asp Gly                         |     |     |      |
| 520                                                                                     | 525 | 530 |      |
| tct gtg gct gc <sup>g</sup> ggc gtg gac gc <sup>g</sup> gca gag ggg ccc cgc gcc cct cca |     |     | 1746 |
| Ser Val Ala Ala Gly Val Asp Ala Ala Glu Gly Pro Arg Ala Pro Pro                         |     |     |      |
| 535                                                                                     | 540 | 545 |      |
| gga caa cat gac cag agc cgc tcg gag gac ggt tac gag gtc tgc tca                         |     |     | 1794 |
| Gly Gln His Asp Gln Ser Arg Ser Glu Asp Gly Tyr Glu Val Cys Ser                         |     |     |      |
| 550                                                                                     | 555 | 560 | 565  |
| tgc acc tct ggg gca tcc tct ccc cc <sup>g</sup> ggg gcc cca ggc cca ctg gtg             |     |     | 1842 |
| Cys Thr Ser Gly Ala Ser Ser Pro Pro Gly Ala Pro Gly Pro Leu Val                         |     |     |      |
| 570                                                                                     | 575 | 580 |      |

gct gcc acc atg ctg ctg ctg cca cta cca ggc gcc ctg 1890  
Ala Ala Thr Met Leu Leu Leu Pro Pro Leu Ser Pro Gly Ala Leu  
585 590 595

tgg aca gcg gcc cag gcc ctg acg cta tgacacacag cgcgagccca 1937  
Trp Thr Ala Ala Gln Ala Leu Thr Leu  
600 605

tgagaggaca gaggcgtgg gacagcctgg ccacagaggg caaggactgt gccggagtcc 1997

ctggggagg tgctggcgcg ggatgaggac gggccaccct ggcaccggaa ggccagcaga 2057

ggcacggcc cgccaggcgtt gggcaggctc aggtggcaag gacggagctg tcccctagtg 2117

aggactgtg ttgactgacg agccgagggg tggccgctcc agaagggtgc ccagtcaggc 2177

cgcaccgccc ccagcctcct ccggccctgg agggagcatc tcgggctggg ggcccacccc 2237

tctctgtgcc ggcccacca accccaccca cactgctgcc tggtgctccc gccggcccac 2297

agggcctccg tccccaggtc cccagtgggg cagccctccc cacagacgag ccccccacat 2357

ggtgccgcgg cacgtcccc ctgtgacgcg ttccagacca acatgacctc tccctgctt 2417

gtaaaaaaaaaaaaaaa a 2438

<210> 5

<211> 618

<212> PRT

<213> Mouse

<400> 5

Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Gln Ala Ser Arg

1 5 10 15

Trp Ser Gly Trp Arg Ala Pro Gly Arg Leu Leu Pro Leu Leu Pro Ala

20 25 30

Leu Cys Cys Leu Ala Ala Ala Gly Ala Gly Lys Pro Ala Gly Ala

35 40 45

Asp Ala Pro Phe Ala Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu

50 55 60

Leu Pro Tyr Glu Ser Arg Ala Ser Ala Leu His Ser Gly Lys Ala Leu

65 70 75 80

Gln Ser Ala Val Ser Thr Met Gln Gln Phe Tyr Gly Ile Pro Val Thr

85 90 95

Gly Val Leu Asp Gln Thr Thr Ile Glu Trp Met Lys Lys Pro Arg Cys

100 105 110

Gly Val Pro Asp His Pro His Leu Ser Arg Arg Arg Asn Lys Arg

115 120 125

Tyr Ala Leu Thr Gly Gln Lys Trp Arg Gln Lys His Ile Thr Tyr Ser

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 130                                                             | 135 | 140 |     |
| Ile His Asn Tyr Thr Pro Lys Val Gly Glu Leu Asp Thr Arg Lys Ala |     |     |     |
| 145                                                             | 150 | 155 | 160 |
| Ile Arg Gln Ala Phe Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe |     |     |     |
| 165                                                             | 170 | 175 |     |
| Glu Glu Val Pro Tyr His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp |     |     |     |
| 180                                                             | 185 | 190 |     |
| Ile Met Ile Phe Phe Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe |     |     |     |
| 195                                                             | 200 | 205 |     |
| Asp Gly Glu Gly Gly Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly |     |     |     |
| 210                                                             | 215 | 220 |     |
| Ile Gly Gly Asp Thr His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly |     |     |     |
| 225                                                             | 230 | 235 | 240 |
| Asn Ala Asn His Asp Gly Asn Asp Leu Phe Leu Val Ala Val His Glu |     |     |     |
| 245                                                             | 250 | 255 |     |
| Leu Gly His Ala Leu Gly Leu Glu His Ser Asn Asp Pro Ser Ala Ile |     |     |     |
| 260                                                             | 265 | 270 |     |
| Met Ala Pro Phe Tyr Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro |     |     |     |
| 275                                                             | 280 | 285 |     |

Gln Asp Asp Leu Gln Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu  
290 295 300

Pro Leu Glu Pro Thr Arg Pro Leu His Thr Leu Pro Val Arg Arg Ile  
305 310 315 320

His Ser Pro Ser Glu Arg Lys His Glu Arg His Pro Arg Pro Pro Arg  
325 330 335

Pro Pro Leu Gly Asp Arg Pro Ser Thr Pro Gly Ala Lys Pro Asn Ile  
340 345 350

Cys Asp Gly Asn Phe Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe  
355 360 365

Val Phe Lys Asp Arg Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln  
370 375 380

Glu Gly Tyr Pro Met Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala  
385 390 395 400

Arg Ile Asp Ala Ala Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe  
405 410 415

Lys Gly Asp Lys Tyr Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly  
420 425 430

Tyr Pro His Ser Leu Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly  
435 440 445

Ile Asp Thr Ala Leu Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe  
450 455 460

Lys Gly Glu Arg Tyr Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp  
465 470 475 480

Pro Gly Tyr Pro Lys Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala  
485 490 495

Pro Gln Gly Ala Phe Ile Ser Lys Glu Gly Tyr Tyr Thr Tyr Phe Tyr  
500 505 510

Lys Gly Arg Asp Tyr Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu  
515 520 525

Pro Gly Tyr Pro Arg Asn Ile Leu Arg Asp Trp Met Gly Cys Lys Gln  
530 535 540

Lys Glu Val Glu Arg Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val  
545 550 555 560

Asp Ile Met Val Thr Ile Asp Asp Val Pro Gly Ser Val Asn Ala Val  
565 570 575

Ala Val Val Val Pro Cys Thr Leu Ser Leu Cys Leu Leu Val Leu Leu  
580 585 590

Tyr Thr Ile Phe Gln Phe Lys Asn Lys Ala Gly Pro Gln Pro Val Thr

595

600

605

Tyr Tyr Lys Arg Pro Val Gln Glu Trp Val

610

615

<210> 6

<211> 645

<212> PRT

<213> Homo sapiens

<400> 6

Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro

1

5

10

15

Pro Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro

20

25

30

Gly Arg Leu Leu Leu Leu Leu Pro Ala Leu Cys Cys Leu Pro Gly

35

40

45

Ala Ala Arg Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala

50

55

60

Val Ala Val Ala Val Ala Arg Ala Asp Glu Ala Glu Ala Pro Phe Ala

65

70

75

80

Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu Leu Pro Tyr Asp Ser

85

90

95

Arg Ala Ser Ala Leu His Ser Ala Lys Ala Leu Gln Ser Ala Val Ser  
100 105 110

Thr Met Gln Gln Phe Tyr Gly Ile Pro Val Thr Gly Val Leu Asp Gln  
115 120 125

Thr Thr Ile Glu Trp Met Lys Lys Pro Arg Cys Gly Val Pro Asp His  
130 135 140

Pro His Leu Ser Arg Arg Arg Asn Lys Arg Tyr Ala Leu Thr Gly  
145 150 155 160

Gln Lys Trp Arg Gln Lys His Ile Thr Tyr Ser Ile His Asn Tyr Thr  
165 170 175

Pro Lys Val Gly Glu Leu Asp Thr Arg Lys Ala Ile Arg Gln Ala Phe  
180 185 190

Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe Glu Glu Val Pro Tyr  
195 200 205

His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp Ile Met Ile Phe Phe  
210 215 220

Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe Asp Gly Glu Gly Gly  
225 230 235 240

Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly Ile Gly Gly Asp Thr  
245 250 255

His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly Asn Ala Asn His Asp  
260 265 270

Gly Asn Asp Leu Phe Leu Val Ala Val His Glu Leu Gly His Ala Leu  
275 280 285

Gly Leu Glu His Ser Ser Asp Pro Ser Ala Ile Met Ala Pro Phe Tyr  
290 295 300

Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro Gln Asp Asp Leu Gln  
305 310 315 320

Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu Pro Leu Glu Pro Thr  
325 330 335

Arg Pro Leu Pro Thr Leu Pro Val Arg Arg Ile His Ser Pro Ser Glu  
340 345 350

Arg Lys His Glu Arg Gln Pro Arg Pro Pro Arg Pro Pro Leu Gly Asp  
355 360 365

Arg Pro Ser Thr Pro Gly Thr Lys Pro Asn Ile Cys Asp Gly Asn Phe  
370 375 380

Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe Val Phe Lys Asp Arg  
385 390 395 400

Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln Glu Gly Tyr Pro Met

405                    410                    415

Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala Arg Ile Asp Ala Ala  
420                    425                    430

Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe Lys Gly Asp Lys Tyr  
435                    440                    445

Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly Tyr Pro His Ser Leu  
450                    455                    460

Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly Ile Asp Thr Ala Leu  
465                    470                    475                    480

Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe Lys Gly Glu Arg Tyr  
485                    490                    495

Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp Pro Gly Tyr Pro Lys  
500                    505                    510

Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala Pro Gln Gly Ala Phe  
515                    520                    525

Ile Ser Lys Glu Gly Tyr Tyr Thr Phe Tyr Lys Gly Arg Asp Tyr  
530                    535                    540

Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu Pro Gly Tyr Pro Arg  
545                    550                    555                    560

Asn Ile Leu Arg Asp Trp Met Gly Cys Asn Gln Lys Glu Val Glu Arg

565

570

575

Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val Asp Ile Met Val Thr

580

585

590

Ile Asn Asp Val Pro Gly Ser Val Asn Ala Val Ala Val Val Ile Pro

595

600

605

Cys Ile Leu Ser Leu Cys Ile Leu Val Leu Val Tyr Thr Ile Phe Gln

610

615

620

Phe Lys Asn Lys Thr Gly Pro Gln Pro Val Thr Tyr Tyr Lys Arg Pro

625

630

635

640

Val Gln Glu Trp Val

645

<210> 7

<211> 4263

<212> DNA

<213> Mouse

<220>

<221> CDS

<222> (75)..(1928)

<400> 7

gcgggaggac ccggccggag ccgccgcccgc cgccgcgcgc atcgcagccg ggcggccggg 60

|                 |                      |         |             |             |                 |             |         |
|-----------------|----------------------|---------|-------------|-------------|-----------------|-------------|---------|
| ccccccgcccgc    | cggg atg ccg agg agc | cg      | ggc ggc cgc | gct gcg ccg | ggc             | 110         |         |
|                 | Met Pro Arg Ser Arg  | Gly     | Gly Arg Ala | Ala Pro Gly |                 |             |         |
|                 | 1                    | 5       |             | 10          |                 |             |         |
| cag gcc tcg cgc | tgg agc ggc          | tgg     | cgg gcc     | ccg ggg     | cgg ctg         | 158         |         |
| Gln Ala Ser Arg | Trp Ser Gly          | Trp Arg | Ala Pro Gly | Arg Leu     | Leu Pro         |             |         |
| 15              | 20                   |         | 25          |             |                 |             |         |
| ctg ctg ccc     | gcg ctc tgc          | tgc ctc | gcg gcg     | gcg ggg     | gcc ggg aag     | 206         |         |
| Leu Leu Pro Ala | Leu Cys Cys          | Leu Ala | Ala Ala     | Gly Ala     | Gly Lys         |             |         |
| 30              | 35                   |         | 40          |             |                 |             |         |
| ccg gcc ggg     | gcg gac gcg          | ccc ttc | gct ggg     | cag aac     | tgg tta aaa tca | 254         |         |
| Pro Ala Gly     | Ala Asp Ala          | Pro Phe | Ala Gly     | Gln Asn     | Trp Leu Lys     | Ser         |         |
| 45              | .50                  |         | 55          |             | 60              |             |         |
| tat ggc tat     | ctg ctt ccc          | tat gag | tcg cgg     | gca tct     | gcg ttg cat     | tct         | 302     |
| Tyr Gly         | Tyr Leu              | Leu Pro | Tyr Glu     | Ser Arg     | Ala Ser         | Ala Leu His | Ser     |
| 65              | 70                   |         | 75          |             |                 |             |         |
| ggg aag gcc     | ttg cag tcc          | gcg gtc | tcc act atg | cag cag     | ttt tac         | ggg         | 350     |
| Gly Lys         | Ala Leu              | Gln Ser | Ala Val     | Ser Thr     | Met Gln         | Gln Phe     | Tyr Gly |
| 80              | 85                   |         | 90          |             |                 |             |         |
| atc cca gtc     | acc ggt gtg          | ttg gat | cag aca aca | atc gag     | tgg atg         | aag         | 398     |
| Ile Pro Val     | Thr Gly Val          | Leu Asp | Gln Thr     | Thr Ile     | Glu Trp         | Met Lys     |         |
| 95              | 100                  |         | 105         |             |                 |             |         |

aaa cct cga tgt ggc gtc cct gat cat ccc cac ttg agc agg agg agg 446  
Lys Pro Arg Cys Gly Val Pro Asp His Pro His Leu Ser Arg Arg Arg  
110 115 120

aga aat aag cga tat gcc cta act gga cag aag tgg agg cag aaa cac 494  
Arg Asn Lys Arg Tyr Ala Leu Thr Gly Gln Lys Trp Arg Gln Lys His  
125 130 135 140

atc acc tac agc att cac aat tat acc cca aag gtg ggt gag ctg gac 542  
Ile Thr Tyr Ser Ile His Asn Tyr Thr Pro Lys Val Gly Glu Leu Asp  
145 150 155

aca cg<sup>g</sup> aag gct att cgt cag gct ttc gat gtg tgg cag aag gtg act 590  
Thr Arg Lys Ala Ile Arg Gln Ala Phe Asp Val Trp Gln Lys Val Thr  
160 165 170

cca ctg acc ttt gaa gag gtg cca tac cat gag atc aaa agt gac cg<sup>g</sup> 638  
Pro Leu Thr Phe Glu Glu Val Pro Tyr His Glu Ile Lys Ser Asp Arg  
175 180 185

aag gag gca gac atc atg atc ttc ttt gct tct ggt ttc cat ggt gac 686  
Lys Glu Ala Asp Ile Met Ile Phe Phe Ala Ser Gly Phe His Gly Asp  
190 195 200

agc tcc cca ttt gat ggg gaa ggg gga ttc cta gcc cat gcc tac ttt 734  
Ser Ser Pro Phe Asp Gly Glu Gly Phe Leu Ala His Ala Tyr Phe  
205 210 215 220

cct ggc cca ggg atc gga gga gac act cac ttt gat tca gat gaa ccc 782

|                                                                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |     |
|-----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|--|-----|
| Pro                                                             | Gly | Pro | Gly | Ile | Gly | Gly | Asp | Thr | His | Phe | Asp | Ser | Asp | Glu | Pro  |  |     |
|                                                                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |     |
| 225                                                             |     |     |     |     |     |     | 230 |     |     |     |     |     |     | 235 |      |  |     |
| tgg acg cta gga aat gcc aac cat gat ggc aat gac ctc ttc ctg gtg |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 830  |  |     |
| Trp Thr Leu Gly Asn Ala Asn His Asp Gly Asn Asp Leu Phe Leu Val |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |     |
| 240                                                             |     |     |     |     |     |     | 245 |     |     |     |     |     |     | 250 |      |  |     |
| gcc gtg cat gaa ctg ggc cat gca ctg ggc ttg gag cac tct aat gac |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 878  |  |     |
| Ala Val His Glu Leu Gly His Ala Leu Gly Leu Glu His Ser Asn Asp |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |     |
| 255                                                             |     |     |     |     |     |     | 260 |     |     |     |     |     |     | 265 |      |  |     |
| ccc agt gct atc atg gct ccc ttc tac caa tac atg gag aca cac aac |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 926  |  |     |
| Pro Ser Ala Ile Met Ala Pro Phe Tyr Gln Tyr Met Glu Thr His Asn |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |     |
| 270                                                             |     |     |     |     |     |     | 275 |     |     |     |     |     |     | 280 |      |  |     |
| ttc aag cta ccg cag gac gat ctc cag ggc atc cag aag att tac gga |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 974  |  |     |
| Phe Lys Leu Pro Gln Asp Asp Leu Gln Gly Ile Gln Lys Ile Tyr Gly |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |     |
| 285                                                             |     |     |     |     |     |     | 290 |     |     |     |     |     |     | 295 |      |  | 300 |
| ccc cca gct gag cct ctg gag ccc aca agg ccc ctc cat aca ctc ccg |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1022 |  |     |
| Pro Pro Ala Glu Pro Leu Glu Pro Thr Arg Pro Leu His Thr Leu Pro |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |     |
| 305                                                             |     |     |     |     |     |     | 310 |     |     |     |     |     |     | 315 |      |  |     |
| gtc cgc agg atc cac tcg ccg tct gag agg aag cac gag cgg cac cca |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1070 |  |     |
| Val Arg Arg Ile His Ser Pro Ser Glu Arg Lys His Glu Arg His Pro |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |     |
| 320                                                             |     |     |     |     |     |     | 325 |     |     |     |     |     |     | 330 |      |  |     |
| agg ccc cca cgg ccg ccc ctt ggg gac cgg cca tcc act cca ggt gcc |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1118 |  |     |
| Arg Pro Pro Arg Pro Pro Leu Gly Asp Arg Pro Ser Thr Pro Gly Ala |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |     |

335

340

345

aaa ccc aac atc tgc gat ggc aac ttc aac aca gtg gcc ctc ttc cga 1166

Lys Pro Asn Ile Cys Asp Gly Asn Phe Asn Thr Val Ala Leu Phe Arg

350

355

360

ggg gag atg ttt gtg ttc aag gat cgc tgg ttc tgg cgc ctg cgc aat 1214

Gly Glu Met Phe Val Phe Lys Asp Arg Trp Phe Trp Arg Leu Arg Asn

365

370

375

380

aac cgg gtg cag gaa ggc tac ccc atg cag atc gaa cag ttc tgg aag 1262

Asn Arg Val Gln Glu Gly Tyr Pro Met Gln Ile Glu Gln Phe Trp Lys

385

390

395

ggc ctg ccc gcc cgc ata gac gca gcc tat gaa aga gct gac ggg aga 1310

Gly Leu Pro Ala Arg Ile Asp Ala Ala Tyr Glu Arg Ala Asp Gly Arg

400

405

410

ttc gtc ttc ttc aaa gga gac aag tac tgg gtt ttc aaa gaa gtg acg 1358

Phe Val Phe Phe Lys Gly Asp Lys Tyr Trp Val Phe Lys Glu Val Thr

415

420

425

gtg gaa cct ggg tac ccc cac agc ttg ggg gag ctg gga agc tgc ctg 1406

Val Glu Pro Gly Tyr Pro His Ser Leu Gly Glu Leu Gly Ser Cys Leu

430

435

440

ccc cgt gaa gga att gac aca gct ctg cgc tgg gaa cct gtg ggc aaa 1454

Pro Arg Glu Gly Ile Asp Thr Ala Leu Arg Trp Glu Pro Val Gly Lys

445

450

455

460

acc tac ttc ttc aaa ggc gaa cgg tac tgg cgc tac agc gag gag cgg 1502  
Thr Tyr Phe Phe Lys Gly Glu Arg Tyr Trp Arg Tyr Ser Glu Glu Arg  
465 470 475

cga gcc aca gac cct ggc tac ccc aag ccc atc acc gtg tgg aag ggc 1550  
Arg Ala Thr Asp Pro Gly Tyr Pro Lys Pro Ile Thr Val Trp Lys Gly  
480 485 490

atc ccg cag gct ccg caa ggg gcc ttc atc agc aag gaa gga tat tac 1598  
Ile Pro Gln Ala Pro Gln Gly Ala Phe Ile Ser Lys Glu Gly Tyr Tyr  
495 500 505

acc tac ttc tac aaa ggc cgg gac tac tgg aag ttt gac aac cag aaa 1646  
Thr Tyr Phe Tyr Lys Gly Arg Asp Tyr Trp Lys Phe Asp Asn Gln Lys  
510 515 520

ctg agc gtg gag cca ggc tac cca cgc aac atc ctg cgt gac tgg atg 1694  
Leu Ser Val Glu Pro Gly Tyr Pro Arg Asn Ile Leu Arg Asp Trp Met  
525 530 535 540

ggc tgc aag cag aag gag gta gag cgg cgt aag gag cgg agg ctg ccc 1742  
Gly Cys Lys Gln Lys Glu Val Glu Arg Arg Lys Glu Arg Arg Leu Pro  
545 550 555

cag gat gat gtg gac atc atg gtg acc atc gat gac gtg cca ggc tct 1790  
Gln Asp Asp Val Asp Ile Met Val Thr Ile Asp Asp Val Pro Gly Ser  
560 565 570

gtg aac gct gtg gct gtg gtt gtc ccc tgc aca ctg tcc ctc tgc ctc 1838  
Val Asn Ala Val Ala Val Val Val Pro Cys Thr Leu Ser Leu Cys Leu  
575 580 585

ctg gtg ctg ctc tac act atc ttc caa ttc aag aac aag gcg ggt cct 1886  
Leu Val Leu Leu Tyr Thr Ile Phe Gln Phe Lys Asn Lys Ala Gly Pro  
590 595 600

cag ccc gtc acc tac tat aag cgg ccg gtc cag gag tgg gta 1928  
Gln Pro Val Thr Tyr Tyr Lys Arg Pro Val Gln Glu Trp Val  
605 610 615

tgagcagccc agagccctct ctgtctaccc ggtctggcca gccaggccct tcctcaccag 1988

ggtctgaggg gcagctctag ccactgccca ctggggccag cagggctaag gcagggttcg 2048

tgttagctg aagtgggtggg tgcactggtc taggctgagt gcggggctgg gagtgatgg 2108

ggctatgccc aggttggta gctggcaccc agctgccagc cttctgtcct gggcagacct 2168

ctctctactc aaggaaatag gccaggccct gtcaggagtc aaggatggtg ccaggaggt 2228

ccccctgaggt cattgcatcc tgtggtgtct gcaagatacc acagctccag tcctggctgg 2288

gaccctgccc tctgaggcaa gccagcacta gctctcaccc caccccaaga tgccaccaat 2348

cccagtcccc tctgccaaca cctgctggtc agatgtcccc tcatccctac cctactatcc 2408

tccaaggctg cagtccccct gatgccaaca gagtggcaa aagcctgggt ttccccctgct 2468

agcccataga gagattcctc aggaaacctg ttccacccgt caggtctcct ctgagactca 2528  
gaacttaggg tcacatgctg caggcaaggc tgtggccagc tggatctcac aaggaccag 2588  
ctgtcatgtc gtgaatattt aaatgtcctg tcactactgt ttaaagtccc atttgcaaa 2648  
ggctacttga ggcttaggt cagctagagg tgactgtctt ggtgatgagg ccagtatggt 2708  
ggcccttccc cgggcactaa ggaccacggt gctgcaaagg ccactcgggc atcctgatac 2768  
tagcgggcat cctgttcagg aggctcaaca gctacaggag ctgaccctgg ttctggggc 2828  
ggatgcaagt ttgtgaccat tctctactcc ccctcattaa ttttgtcccc tgccctgctc 2888  
cagcctgtcc tctgtggcct gggggctcg cctgactaca ggtaaagcag agaggattct 2948  
agagccaccc ttgtcatctt ctcagagtaa gggaccaggg cagcctttt agttctccat 3008  
ctacatcccc agtgaccctg aggcaactca gctccagcct ggagtcggtg tttgtgctcc 3068  
tatcttgacc ctggcagccc aggtctctgg gtccatcttc ctgcactgct cttaggaaaa 3128  
gggtcctctt cccagctggt agcagccccaa ggctttgggg ttccccccaa ctccctaacc 3188  
caaactacct ttttgttgtt tgtttaacc tgaggccctt cticacatct gacagttcct 3248  
aagtcttggt ttggcttgct cccaaaaccac tgggtgcaag tgtcactcac tggctctctg 3308

ccaaaccaa cggtggtacg aggccggcat caaggtgcta gtgggtcaca gataccaact 3368  
ctgacctctg agcctgcatt ggctttgccccc ctgccctgtg gtctctcgcc ctgttagcaca 3428  
gacagagact ctcgatgccc tggagttgt tgagtaaaat ctcttgtccc agaagcacct 3488  
atgtgggtcc actgtgtccc atctcaccat tgtgttcttg ctcattttgg ccaagggcag 3548  
gctccctggg gcaggcgggg aacaactgca gagatttgtt gattcatagg ttgtacagc 3608  
gttttatact ttgcaaagca ctttatttgc tcacagctgt ccactcacat gaaactcctg 3668  
taggctctga gagaggctga gggtagcact catttaccc tcagatgaag cacaaggagg 3728  
tcttatttgc tgccctgcc atccaggtgg ccctggctgg gtcttgtgtc cccatcagtg 3788  
ggcccttcca gggtccaaga aaactgtctc ttctagtcct ctcctctggg cctccctccc 3848  
ccagtccttgc ggtcccttc ctcaggttgg tgctcacttc ttgaaagctc taggccccgc 3908  
aggctccctg ttggctcctg gcattccaag gccagttgcg aaagagcagg ggtatggaggc 3968  
aggcagccca ggctgcagat gtgagggaca cagggccggg cccagagagg gctcagccta 4028  
gaggcttcca atcttggatt cttctgcctg cggcatctg ttgtccatc agcccaggc 4088  
agagcagtca gaggggcaaa gtactggagc ccccagagct cagcttcccc tcggcctggg 4148  
tgacatcaca gcatctcagt gtcggtcaca ttttaactg atcagcctt gtacaatgtt 4208

ttttaaatca tttctaaata aaacagaaaat acagtgttaa aaaaaaaaaa aaaaaa 4263

<210> 8

<211> 2620

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(1935)

<400> 8

atg ccg agg agc cgg ggc ggc cgc gcc gcg ccg ggg ccg ccg ccg 48

Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro

1

5

10

15

ccg ccg ccg ccg ggc cag gcc ccg cgc tgg agc cgc tgg cgg gtc 96

Pro Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro

20

25

30

ggg cgg ctg ctg ctg ctg ctg ccc gcg ctc tgc tgc ctc ccg ggc 144

Gly Arg Leu Leu Leu Leu Leu Pro Ala Leu Cys Cys Leu Pro Gly

35

40

45

gcc gcg cgg gcg gcg gcg gcg ggg gca ggg aac cgg gca gcg 192

Ala Ala Arg Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala

50

55

60

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gtg | gct | gtg | gct | gtg | gct | cgg | gct | gac | gag | gct | gag | gct | ccc | ttc | gcc | 240 |
| Val | Ala | Val | Ala | Val | Ala | Arg | Ala | Asp | Glu | Ala | Glu | Ala | Pro | Phe | Ala |     |
| 65  |     | 70  |     |     |     |     |     | 75  |     |     |     |     | 80  |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| ggg | cag | aac | tgg | tta | aag | tcc | tat | ggc | tat | ctg | ctt | ccc | tat | gac | tca | 288 |
| Gly | Gln | Asn | Trp | Leu | Lys | Ser | Tyr | Gly | Tyr | Leu | Leu | Pro | Tyr | Asp | Ser |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 95  |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| cgg | gca | tct | gct | ctg | cac | tca | gct | aag | gcc | ttg | cag | tcg | gca | gtc | tcc | 336 |
| Arg | Ala | Ser | Ala | Leu | His | Ser | Ala | Lys | Ala | Leu | Gln | Ser | Ala | Val | Ser |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 100 |     |     |     |     |     |     | 105 |     |     |     |     |     | 110 |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| act | atg | cag | cag | ttt | tac | ggg | atc | ccg | gtc | acc | ggt | gtg | ttg | gat | cag | 384 |
| Thr | Met | Gln | Gln | Phe | Tyr | Gly | Ile | Pro | Val | Thr | Gly | Val | Leu | Asp | Gln |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 115 |     |     |     |     |     |     | 120 |     |     |     |     |     | 125 |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| aca | acg | atc | gag | tgg | atg | aag | aaa | ccc | cga | tgt | ggt | gtc | cct | gat | cac | 432 |
| Thr | Thr | Ile | Glu | Trp | Met | Lys | Lys | Pro | Arg | Cys | Gly | Val | Pro | Asp | His |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 130 |     |     |     |     |     |     | 135 |     |     |     |     |     | 140 |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| ccc | cac | tta | agc | cgt | agg | cgg | aga | aac | aag | cgc | tat | gcc | ctg | act | gga | 480 |
| Pro | His | Leu | Ser | Arg | Arg | Arg | Arg | Asn | Lys | Arg | Tyr | Ala | Leu | Thr | Gly |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 145 |     |     |     |     |     |     | 150 |     |     |     |     |     | 155 |     | 160 |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| cag | aag | tgg | agg | caa | aaa | cac | atc | acc | tac | agc | att | cac | aac | tat | acc | 528 |
| Gln | Lys | Trp | Arg | Gln | Lys | His | Ile | Thr | Tyr | Ser | Ile | His | Asn | Tyr | Thr |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 165 |     |     |     |     |     |     |     |     |     |     |     |     |     | 175 |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| cca | aaa | gtg | ggt | gag | cta | gac | acg | cgg | aaa | gct | att | cgc | cag | gct | ttc | 576 |

Pro Lys Val Gly Glu Leu Asp Thr Arg Lys Ala Ile Arg Gln Ala Phe  
180 185 190

gat gtg tgg cag aag gtg acc cca ctg acc ttt gaa gag gtg cca tac 624  
Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe Glu Glu Val Pro Tyr  
195 200 205

cat gag atc aaa agt gac cgg aag gag gca gac atc atg atc ttt ttt 672  
His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp Ile Met Ile Phe Phe  
210 215 220

gct tct ggt ttc cat ggc gac agc tcc cca ttt gat gga gaa ggg gga 720  
Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe Asp Gly Glu Gly Gly  
225 230 235 240

tcc ctg gcc cat gcc tac ttc cct ggc cca ggg att gga gga gac acc 768  
Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly Ile Gly Gly Asp Thr  
245 250 255

cac ttt gac tcc gat gag cca tgg acg cta gga aac gcc aac cat gac 816  
His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly Asn Ala Asn His Asp  
260 265 270

ggg aac gac ctc ttc ctg gtg gct gtg cat gag ctg ggc cac gcg ctg 864  
Gly Asn Asp Leu Phe Leu Val Ala Val His Glu Leu Gly His Ala Leu  
275 280 285

gga ctg gag cac tcc agc gac ccc agc gcc atc atg gcg ccc ttc tac 912  
Gly Leu Glu His Ser Ser Asp Pro Ser Ala Ile Met Ala Pro Phe Tyr

|                                                                        |     |     |     |
|------------------------------------------------------------------------|-----|-----|-----|
| 290                                                                    | 295 | 300 |     |
| cag tac atg gag acg cac aac ttc aag ctg ccc cag gac gat ctc cag 960    |     |     |     |
| Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro Gln Asp Asp Leu Gln        |     |     |     |
| 305                                                                    | 310 | 315 | 320 |
| ggc atc cag aag atc tat gga ccc cca gcc gag cct ctg gag ccc aca 1008   |     |     |     |
| Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu Pro Leu Glu Pro Thr        |     |     |     |
| 325                                                                    | 330 | 335 |     |
| agg cca ctc cct aca ctc ccc gtc cgcc agg atc cac tca cca tcg gag 1056  |     |     |     |
| Arg Pro Leu Pro Thr Leu Pro Val Arg Arg Ile His Ser Pro Ser Glu        |     |     |     |
| 340                                                                    | 345 | 350 |     |
| agg aaa cac gag cgcc cag ccc agg ccc cct cgg ccg ccc ctc ggg gac 1104  |     |     |     |
| Arg Lys His Glu Arg Gln Pro Arg Pro Pro Arg Pro Pro Leu Gly Asp        |     |     |     |
| 355                                                                    | 360 | 365 |     |
| cggtt cca tcc aca cca ggc acc aaa ccc aac atc tgt gac ggc aac ttc 1152 |     |     |     |
| Arg Pro Ser Thr Pro Gly Thr Lys Pro Asn Ile Cys Asp Gly Asn Phe        |     |     |     |
| 370                                                                    | 375 | 380 |     |
| aac aca gtg gcc ctc ttc cgg ggc gag atg ttt gtc ttt aag gat cgcc 1200  |     |     |     |
| Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe Val Phe Lys Asp Arg        |     |     |     |
| 385                                                                    | 390 | 395 | 400 |
| tgg ttc tgg cgt ctg cgcc aat aac cga gtg cag gag ggc tac ccc atg 1248  |     |     |     |
| Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln Glu Gly Tyr Pro Met        |     |     |     |
| 405                                                                    | 410 | 415 |     |

cag atc gag cag ttc tgg aag ggc ctg cct gcc cgc atc gac gca gcc 1296  
Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala Arg Ile Asp Ala Ala  
420 425 430

tat gaa agg gcc gat ggg aga ttt gtc ttc ttc aaa ggt gac aag tat 1344  
Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe Lys Gly Asp Lys Tyr  
435 440 445

tgg gtg ttt aag gag gtg acg gtg gag cct ggg tac ccc cac agc ctg 1392  
Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly Tyr Pro His Ser Leu  
450 455 460

ggg gag ctg ggc agc tgt ttg ccc cgt gaa ggc att gac aca gct ctg 1440  
Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly Ile Asp Thr Ala Leu  
465 470 475 480

cgc tgg gaa cct gtg ggc aag acc tac ttt ttc aaa ggc gag cgg tac 1488  
Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe Lys Gly Glu Arg Tyr  
485 490 495

tgg cgc tac agc gag gag cgg cgg gcc acg gac cct ggc tac cct aag 1536  
Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp Pro Gly Tyr Pro Lys  
500 505 510

ccc atc acc gtg tgg aag ggc atc cca cag gct ccc caa gga gcc ttc 1584  
Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala Pro Gln Gly Ala Phe  
515 520 525

atc agc aag gaa gga tat tac acc tat ttc tac aag ggc cg<sup>g</sup> gac tac 1632  
Ile Ser Lys Glu Gly Tyr Tyr Thr Phe Tyr Lys Gly Arg Asp Tyr  
530 535 540

tgg aag ttt gac aac cag aaa ctg agc gtg gag cca ggc tac ccg cgc 1680  
Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu Pro Gly Tyr Pro Arg  
545 550 555 560

aac atc ctg cgt gac tgg atg ggc tgc aac cag aag gag gtg gag cgg 1728  
Asn Ile Leu Arg Asp Trp Met Gly Cys Asn Gln Lys Glu Val Glu Arg  
565 570 575

cgg aag gag cgg cgg ctg ccc cag gac gac gtg gac atc atg gtg acc 1776  
Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val Asp Ile Met Val Thr  
580 585 590

atc aac gat gtg ccg ggc tcc gtg aac gcc gtg gcc gtg gtc atc ccc 1824  
Ile Asn Asp Val Pro Gly Ser Val Asn Ala Val Ala Val Val Ile Pro  
595 600 605

tgc atc ctg tcc ctc tgc atc ctg gtg ctg gtc tac acc atc ttc cag 1872  
Cys Ile Leu Ser Leu Cys Ile Leu Val Val Tyr Thr Ile Phe Gln  
610 615 620

ttc aag aac aag aca ggc cct cag cct gtc acc tac tat aag cgg cca 1920  
Phe Lys Asn Lys Thr Gly Pro Gln Pro Val Thr Tyr Tyr Lys Arg Pro  
625 630 635 640

gtc cag gaa tgg gtg tgagcagccc agagccctct ctatccactt ggtctggcca 1975

Val Gln Glu Trp Val

645

gccaggccct tcctcaccag ggtctgaggg gcagctctgg ccagtgctca ccagggccag 2035

cagggcccta ggctggggtc gtacagctga agttgtgggt gcattggcct aggctgagcg 2095

tggggcaggg aattatgggg gctgtgccc gggtgggtgt ctggcaccca gctgccagcc 2155

ttctgtcctg ggcaaactac tccctactta aggaaatagg ccaggctcca tccggaggca 2215

gggaccatgc caggaggagc ccctgtggtc acggcatcct gtggtgtcca tgaggtacca 2275

cagctccact cctggctgga acccggcacc ctctgtggga agccagcact agctctcatac 2335

ccccatccgg gagataaccac cagtcctggt cccctttgc caacacctgc tggtagatg 2395

tccccctacc cccacccac tgtcctccaa ggctacagga cccctgcttc tgacacagt 2455

agcaacaagg ctgggtttcc ctgctggcag acggcagatc cctcaggaaa cctgctccac 2515

ttgtcagggt ctctcggag acccaggatt taggtcaca tgctgcaggc agggctgtgg 2575

cccagctggg tctgacaagg acccgtgtca catcgtaat attta 2620

<210> 9

<211> 21

<212> DNA

<213> Homo sapiens

<400> 9

GGTCCTCTT GTTCCACTTG G

21

<210> 10

<211> 35

<212> D N A

<213> Homo sapiens

<400> 10

gttaggaattc gggttttagg gaggtcgaca ttgcc

35

<210> 11

<211> 23

<212> D N A

<213> Homo sapiens

<400> 11

ggcaatgtcg acctccctac aac

23

<210> 12

<211> 22

<212> D N A

<213> Homo sapiens

<400> 12

ggagctgtct aaggccatca ca

22

<210> 13

<211> 23

<212> D N A

<213> Homo sapiens

<400> 13

ctccctacaa cccgaattcc tac

23

<210> 14

<211> 20

<212> D N A

<213> Homo sapiens

<400> 14

cttgtggca gatagggggc

20

<210> 15

<211> 21

<212> D N A

<213> Homo sapiens

<400> 15

cgcgccgagg acctcagcct g

21

<210> 16

<211> 21

<212> D N A

<213> Homo sapiens

<400> 16

ggttcctt gttccacttg g

21

<210> 17

<211> 2295

<212> DNA

<213> Homo sapiens

<400> 17

aagagacaag aggtgccttg tggcagata ggggctggg agggggcctg cccgaaagca 60

gtggtggccc gtggcaggct tctcactggg taggaccggg ccctctgttg cacccctca 120

ccctgctctc tgccctcagg agtggctaag caggttcgt tacctgcccc cgctgaccc 180

cacaacaggg cagctgcaga cgcaagagga gctgtctaag gccatcacag ccatgcagca 240

gtttggtgcc ctggaggcca ccggcatcct ggacgaggcc accctggccc tcatgaaaac 300

cccacgctgc tccctgccag acctccctgt cctgacccag gctcgccagga gacgccaggc 360

tccagccccc accaagtgga acaagaggaa cctgtcggtt aggtccgga cgttcccacg 420

ggactcacca ctggggcacg acacggtgcg tgcactcatg tactacgccc tcaaggctcg 480

gagcgacatt gcgccttga acttccacga ggtggcgggc agcaccgccc acatccagat 540

cgacttctcc aaggccgacc ataacgacgg ctacccttc gacgcccggc ggcaccgtgc 600

ccacgccttc ttccccggcc accaccacac cgccgggtac accacttta acgatgacga 660

ggcctggacc ttccgctcct cgatgccc cggatggac ctgttgcag tggctgtcca 720  
cgagttggc cacgccattg gttaaagcca tgtggccgct gcacactcca tcatgcggcc 780  
gtactaccag ggcccggtgg gtgacccgct gcgtacggg ctcccctacg aggacaagg 840  
gcgcgtctgg cagctgtacg gtgtgcggga gtctgtgtct cccacggcgc agcccggaga 900  
gcctccccctg ctgcccggagc cccagacaa ccggtccagc gccccggcca ggaaggacgt 960  
gccccacaga tgcagcactc actttgacgc ggtggccag atccgggttg aagctttctt 1020  
cttcaaaggc aagtacttct ggccggctgac gcgggaccgg cacctgggtt ccctgcagcc 1080  
ggcacagatg caccgcttct ggccgggcct gccgctgcac ctggacagcg tggacgcccgt 1140  
gtacgagcgc accagcgacc acaagatcgt ctttttaaa ggagacaggt actgggttt 1200  
caaggacaat aacgttagagg aaggataccc gcgcggcgtc tccgacttca gcctccggcc 1260  
tggccggcatc gacgctgcct tctcctggc ccacaatgac aggacttatt tcttaagga 1320  
ccagctgtac tggcgctacg atgaccacac gaggcacatg gacccggct accccggcca 1380  
gagccccctg tggaggggtg tcccccagcac gctggacgac gccatgcgt ggtccgacgg 1440  
tgcctcctac ttcttcgtg gccaggagta ctggaaagtg ctggatggcg agctggaggt 1500

ggcacccggg taccacagt ccacggcccg ggactggctg gtgtgtggag actcacaggc 1560  
cgatggatct gtggctgcgg gcgtggacgc ggcagagggg ccccgcgccc ctccaggaca 1620  
acatgaccag agccgctcgg aggacggta cgaggtctgc tcatgcacct ctggggcattc 1680  
ctctcccccg gggccccag gcccaactggt ggctgccacc atgctgctgc tgctgccgcc 1740  
actgtcacca ggcccctgt ggacagcggc ccaggccctg acgctatgac acacagcgcg 1800  
agcccatgag aggacagagg cgggtggaca gcctggccac agagggcaag gactgtgccg 1860  
gagtccctgg gggaggtgct ggccgggat gaggacgggc caccctggca ccggaaaggcc 1920  
agcagagggc acggcccgcc agggctggc aggctcaggt ggcaaggacg gagctgtccc 1980  
ctagtgaggg actgtgttga ctgacgagcc gaggggtggc cgctccagaa gggtgcccg 2040  
tcaggccgca ccgcccggcag cctcctccgg ccctggaggg agcatctcg gctggggcc 2100  
caccctctc tgtgccggcg ccaccaaccc caccacact gctgcctggt gctcccgccg 2160  
gcccacaggg cctccgtccc caggtccccca gtggggcagc cctccccaca gacgagcccc 2220  
ccacatggtg ccgcggcacg tccccctgt gacgcgttcc agaccaacat gacctctccc 2280  
tgctttgttag cggcc 2295

<211> 4014

<212> DNA

<213> Homo sapiens

<220>

<221> exon

<222> (3148)..(3280)

<220>

<221> exon

<222> (3564)..(3633)

<400> 18

ttctgttggg gtgtccctgg caaactagga agtggttccc accctctcac tccagcccc 60

aagacggccc ctcccaggat gcctagcctg agatttgggg cacarcccct gagcacaaac 120

tcgtgttagg taggaggcac ccaccagccc tgccccacag acccaccacc ccccaagatt 180

cgatgccatt ctatgctcaa attccagtgc ctccctgggc cacaggcgac agtgcctgtt 240

tatcatgggc ggggctgcct gtcccgggct ggtgccgggg ccctggttct atgagttgaa 300

gcaggctggc cgctcacacc tgcaactaaa ccacctgctt ccaaacattg ggcaacattc 360

cacagccact gggagtgctg cctgccaggc ccggctccac ttccctgaaa tgcattggc 420

ctcgtggcca ggctgcccag ctccctgggg accagagtgg ggggtgcccc aaaccgccac 480

cgtgaacccc acagagtaaa tggccactc agtgcagcta ccagccatga cctcagctta 540  
tagacggaa ggctgggggg tgagttgtcc tcccaagggg tctcagcacc tgctggcca 600  
acccaggcag cagctggcct gggtggaaa ggcacctgcc tgtgtggacc cttccctggt 660  
gagggggcag ggggtcatca tccaatatca tagatgtatg gaggaaactc cagagtgc tt 720  
cctggaggag gtgacaggct attgtAACCA tgaggcacag tggccctgtt gagctgtgtat 780  
cttaacaaag gactaaaaag tgcagaatgt gctgatggc atctccagca cctacagcgg 840  
tgactgatca tggacacccc tcagtaaacc ctgcaggtgc aaggtatgtt gggaccggat 900  
gctcgcccccc aaagatcccc acaccctgga ggtcagggcg gaagtggag gccagcttgt 960  
caaggccaag gctgtcaccc ccaaggcccc tccagagaag ctgcccaccc cagtcatgaa 1020  
cgtccacttt gacgtcctgt cgtgcctata gctttggagg ggcccccagt tctgtacaca 1080  
ctcttggctt ccccaaggggg ctgagggct gggctgggtc agtagggttt ggaaaggggg 1140  
taaaggcaca gaggggggccc ccgggaagga ctcagtgctt cctggaaggg gaatctcggt 1200  
gtgtcagat cccatgtatgt gtcttgcgt gcccctcctg gccagcacgs cctgttgctg 1260  
atgccccctgg gacttccagg atggtgggtgc ctcattccct ctgagcactg cctgctgkgt 1320  
ggcaggagg gttggccagg accacccat caccagctcc tgcagaccag aacctggagg 1380

cccagcagg ggcataawtg agtcacaagc attttcttt ttcttttcc tttttttt 1440  
tttaggattt cttaaaaaag ttatgtttt ttcatttatg catttttta gtttaaggca 1500  
catgaaacta ctagtattta tttaaatca gaaatggtca aaaatggca ctttcatatg 1560  
atttggccaa tgaatacatg agaggtggta aataatagcg attcacaagc attttcta 1620  
tgtccaggaa aaaaaaaaaaag acaggtttgc aggaggca gagccccag cacatcaccc 1680  
ctggcttgta ccttctgga gccgcctca cccctgctgt gttccctgg gctggcgagt 1740  
atccacaggg cagagcagca gttcatggc agcctgcaag tggcacagg cgccatttg 1800  
cggttgaaga aactgaagct aggggtggag gtatccccca cagatggcac ccaggcctgc 1860  
catccccagg tccccacgt ggcacccagg tccccacaga tggcatccag gccccctgt 1920  
ccccagggcc cctccagggt agcagagatg actggggcat ggggccaggg ctgatttat 1980  
gcccaggta aaggctgcc ctcattcctg ctcctactca gctccggtgt ggtagcctt 2040  
gcacccaccc cagtggccccc ttcaagagcag agctgtcccc tgccgcaggt gctgggtga 2100  
acatttcca cgtcctggct cacgtcctca tcaccagcct gccaaggact ctgaggaagg 2160  
agcccagagg ggtggactgc cttgccccag gcacacagcg gggaggtggc tgagtggat 2220

ttgaacctag gcagcctggc tggaacctgg cttttgttc tgagacaggg tctcgctctg 2280  
ttgcagacac agtctgcaac tcctgtgctc aaacgatcct cccgcctcag cctcccaaag 2340  
tgctgggatc tcaggcataa gccacagcac cgccaaggcc tggctctta tctccccat 2400  
gaatgtacag catggccaa ttccttaaac tgggtctga gccacagcct ttctcagctg 2460  
gggtcccaga cttggatgc tagacttccc tgtcacaagt cagctgagag cctgcattt 2520  
acactggcca cattaagag cttttgaag gttccctagc attttgcggt ctcaggaggc 2580  
gtgggtggg gcagggttgc catgagtggt tgtacaggc gtgcacggca caagctcaca 2640  
ccatctaagg gacatcagat ttatttattt attcatttt tagatggagt ctgctctgt 2700  
cgcccaggct ggagtgcagt ggcacgatct cggctcactg caagctccgc ctctgggtt 2760  
cccaccactc tcctgcytca gcctcccgag tagctggac tacaggcacc tgccaccaca 2820  
cccgctaat ttttgtatt tttagtagag acgggtttc accatattag ctaggatgg 2880  
ctccatctcc tgacctcatg atccgcctgc ctggcctcc caaactgctg ggattacagg 2940  
cgtgagccac agcacccggc cagggacatc agtttattt agacacttt ccggcagctg 3000  
cccagggaaag agacagagag gtgccttgc ggcagatagg gggctggag gggccctgcc 3060  
cggaagcagt gttggcccggt ggcaggcttc tcactggta ggaccgggcc ctctgttgc 3120

ccccctcacc ctgctctctg ccctcaggag tggctaagca ggttcggtta cctgcccccg 3180

gbtgacccca caacaggca gctgcagacg caagaggagc tgtctaaggc catcacagcc 3240

atgcagcagt ttktgtggcct ggaggchacc ggcattctgg gtcagttctc cagggggcag 3300

cgggagcgcc gtgsccccc tcaggtctgc gcccgctggc catgccccct ctgatcaggc 3360

acagtccgt cttatgcttg aatgaacctg ggtcctggcc tggtagct cagagcctgg 3420

ggctggtccc ccaaagatga cgtgggagga gggsgcggct cggaggctgg tgccagagtc 3480

aggctccgc ctttgggat gctcgggatc ctagggtggg gagtgagctg ggctaggctc 3540

tgagctccat gcttccctg cagacgaggc caccttggcc ctgatgaaaa ccccacgctg 3600

ctccctgcca gacctccct gtcctgaccm caggtctcgc agggagacgc acaggtctcm 3660

cagcccccm mcaagtggac acagagagga acctgtcgta gaggtgggtg cgtggccagg 3720

gtgaggagcg gggcctccgt ggaggtggsc gcgtggccag ggtgaggaac ggggtctccg 3780

tggaggtggg cgctggcca gggtgaaa cgggtctcc gtggaggcgg gtgcgtggcc 3840

agggtgagga acagggtctc cgtggaggtg ggcgcgtggc cagggtggg aacgggtct 3900

ccgtggaggc gggtgctgg ccagggtgag gagtgaaa cccatgtctc cgtgtctggg 3960

cctgctgttag atatcaagct tatcgatacc gtcgacacctg agggggghcc gtac 4014

<210> 19

<211> 21

<212> DNA

<213> Homo sapiens

<400> 19

aatctcccat cggccctttc a 21

<210> 20

<211> 20

<212> DNA

<213> Homo sapiens

<400> 20

atgcacggcc accaggaaga 20

<210> 21

<211> 20

<212> DNA

<213> Homo sapiens

<400> 21

ggatcagaca acgatcgagt 20

<210> 22

<211> 20

<212> DNA

<213> Homo sapiens

<400> 22

cagcttgaag ttgtgcgtct

20

SEQUENCE LISTING

<110> Seiki Motoharu

<120> DNA CODING FOR NOVEL POLYPEPTIDE

<130> 1241.18

<140> US 09/806,232

<141> 2001-03-28

<150> PCT/JP99/05349

<151> 1999-09-29

<150> JP10-276258

<151> 1998-09-29

<150> JP10-291505

<151> 1998-09-29

<160> 22

<170> PatentIn Ver. 2.0

<180> 1

<211> 587

<212> PRT

<213> Mouse

<200> 1

Met Gly Arg Arg Pro Arg Gly Pro Gly Ser Pro Arg Gly Pro Gly Pro  
5 10 15

Pro Arg Pro Gly Pro Gly Leu Pro Pro Leu Leu Leu Val Leu Ala Leu  
20 25 30

Ala Ala His Gly Gly Cys Ala Ala Pro Ala Pro Arg Ala Glu Asp Leu  
35 40 45

Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr Leu Pro Pro Ala  
50 55 60

Asp Pro Ala Ser Gly Gln Leu Gln Thr Gln Glu Glu Leu Ser Lys Ala  
65 70 75 80

Ile Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Thr Thr Gly Ile Leu  
85 90 95

Asp Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg Cys Ser Leu Pro  
100 105 110

Asp Leu Pro Pro Gly Ala Gln Ser Arg Arg Lys Arg Gln Thr Pro Pro  
115 120 125

Pro Thr Lys Trp Ser Lys Arg Asn Leu Ser Trp Arg Val Arg Thr Phe  
 130 135 140  
 Pro Arg Asp Ser Pro Leu Gly Arg Asp Thr Val Arg Ala Leu Met Tyr  
 145 150 155 160  
 Tyr Ala Leu Lys Val Trp Ser Asp Ile Thr Pro Leu Asn Phe His Glu  
 165 170 175  
 Val Ala Gly Asn Ala Ala Asp Ile Gln Ile Asp Phe Ser Lys Ala Asp  
 180 185 190  
 His Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly Thr Val Ala His  
 195 200 205  
 Ala Phe Phe Pro Gly Asp His His Thr Ala Gly Asp Thr His Phe Asp  
 210 215 220  
 Asp Asp Glu Pro Trp Thr Phe Arg Ser Ser Asp Ala His Gly Met Asp  
 225 230 235 240  
 Leu Phe Ala Val Ala Val His Glu Phe Gly His Ala Ile Gly Leu Ser  
 245 250 255  
 His Val Ala Ala Pro Ser Ser Ile Met Gln Pro Tyr Tyr Gln Gly Pro  
 260 265 270  
 Val Gly Asp Pro Val Arg Tyr Gly Leu Pro Tyr Glu Asp Arg Val Arg  
 275 280 285  
 Val Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser Pro Thr Ala Gln  
 290 295 300  
 Leu Asp Thr Pro Glu Pro Glu Pro Pro Leu Leu Pro Glu Pro Pro  
 305 310 315 320  
 Asn Asn Arg Ser Ser Thr Pro Pro Gln Lys Asp Val Pro His Arg Cys  
 325 330 335  
 Thr Ala His Phe Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe  
 340 345 350  
 Phe Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val  
 355 360 365  
 Ser Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu  
 370 375 380  
 His Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys  
 385 390 395 400  
 Ile Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn

405

410

415

Val Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro  
 420 425 430

Gly Gly Ile Asp Ala Val Phe Ser Trp Ala His Asn Asp Arg Thr Tyr  
 435 440 445

Phe Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg Arg  
 450 455 460

Met Asp Pro Gly Tyr Pro Ala Gln Gly Pro Leu Trp Arg Gly Val Pro  
 465 470 475 480

Ser Met Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe  
 485 490 495

Phe Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Ala  
 500 505 510

Ala Pro Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly  
 515 520 525

Glu Pro Leu Ala Asp Ala Glu Asp Val Gly Pro Gly Pro Gln Gly Arg  
 530 535 540

Ser Gly Ala Gln Asp Gly Leu Ala Val Cys Ser Cys Thr Ser Asp Ala  
 545 550 555 560

His Arg Leu Ala Leu Pro Ser Leu Leu Leu Leu Thr Pro Leu Leu Trp  
 565 570 575

Gly Leu Trp Thr Ser Val Ser Ala Lys Ala Ser  
 580 585

&lt;210&gt; 2

&lt;211&gt; 606

&lt;212&gt; PRT

&lt;213&gt; Homo sapiens

&lt;400&gt; 2

Met Arg Arg Arg Ala Ala Arg Gly Pro Gly Pro Pro Pro Pro Gly Pro  
 1 5 10 15

Gly Leu Ser Arg Leu Pro Leu Leu Pro Leu Pro Leu Leu Leu Leu Leu  
 20 25 30

Ala Leu Gly Thr Arg Gly Gly Cys Ala Ala Pro Glu Pro Ala Arg Arg  
 35 40 45

Ala Glu Asp Leu Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr  
 50 55 60

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Pro | Pro | Ala | Asp | Pro | Thr | Thr | Gly | Gln | Leu | Gln | Thr | Gln | Glu | Glu |     |
| 65  |     |     |     |     | 70  |     |     |     |     | 75  |     |     |     |     | 80  |     |
| Leu | Ser | Lys | Ala | Ile | Thr | Ala | Met | Gln | Gln | Phe | Gly | Gly | Leu | Glu | Ala |     |
|     |     |     |     |     | 85  |     |     |     |     | 90  |     |     |     |     | 95  |     |
| Thr | Gly | Ile | Leu | Asp | Glu | Ala | Thr | Leu | Ala | Leu | Met | Lys | Thr | Pro | Arg |     |
|     |     |     |     |     |     |     | 100 |     |     |     | 105 |     |     |     | 110 |     |
| Cys | Ser | Leu | Pro | Asp | Leu | Pro | Val | Leu | Thr | Gln | Ala | Arg | Arg | Arg | Arg |     |
|     |     |     |     |     |     |     | 115 |     |     |     | 120 |     |     |     | 125 |     |
| Gln | Ala | Pro | Ala | Pro | Thr | Lys | Trp | Asn | Lys | Arg | Asn | Leu | Ser | Trp | Arg |     |
|     |     |     |     |     |     | 130 |     |     |     | 135 |     |     |     | 140 |     |     |
| Val | Arg | Thr | Phe | Pro | Arg | Asp | Ser | Pro | Leu | Gly | His | Asp | Thr | Val | Arg |     |
|     |     |     |     |     |     | 145 |     |     |     | 150 |     |     |     | 155 |     | 160 |
| Ala | Leu | Met | Tyr | Tyr | Ala | Leu | Lys | Val | Trp | Ser | Asp | Ile | Ala | Pro | Leu |     |
|     |     |     |     |     |     | 165 |     |     |     | 170 |     |     |     |     | 175 |     |
| Asn | Phe | His | Glu | Val | Ala | Gly | Ser | Thr | Ala | Asp | Ile | Gln | Ile | Asp | Phe |     |
|     |     |     |     |     |     | 180 |     |     |     | 185 |     |     |     |     | 190 |     |
| Ser | Lys | Ala | Asp | His | Asn | Asp | Gly | Tyr | Pro | Phe | Asp | Gly | Pro | Gly | Gly |     |
|     |     |     |     |     |     | 195 |     |     |     | 200 |     |     |     |     | 205 |     |
| Thr | Val | Ala | His | Ala | Phe | Phe | Pro | Gly | His | His | His | Thr | Ala | Gly | Asp |     |
|     |     |     |     |     |     | 210 |     |     |     | 215 |     |     |     |     | 220 |     |
| Thr | His | Phe | Asp | Asp | Asp | Glu | Ala | Trp | Thr | Phe | Arg | Ser | Ser | Asp | Ala |     |
|     |     |     |     |     |     | 225 |     |     |     | 230 |     |     |     |     | 240 |     |
| His | Gly | Met | Asp | Leu | Phe | Ala | Val | Ala | Val | His | Glu | Phe | Gly | His | Ala |     |
|     |     |     |     |     |     | 245 |     |     |     | 250 |     |     |     |     | 255 |     |
| Ile | Gly | Leu | Ser | His | Val | Ala | Ala | Ala | His | Ser | Ile | Met | Arg | Pro | Tyr |     |
|     |     |     |     |     |     | 260 |     |     |     | 265 |     |     |     |     | 270 |     |
| Tyr | Gln | Gly | Pro | Val | Gly | Asp | Pro | Leu | Arg | Tyr | Gly | Leu | Pro | Tyr | Glu |     |
|     |     |     |     |     |     | 275 |     |     |     | 280 |     |     |     |     | 285 |     |
| Asp | Lys | Val | Arg | Val | Trp | Gln | Leu | Tyr | Gly | Val | Arg | Glu | Ser | Val | Ser |     |
|     |     |     |     |     |     | 290 |     |     |     | 295 |     |     |     |     | 300 |     |
| Pro | Thr | Ala | Gln | Pro | Glu | Glu | Pro | Pro | Leu | Leu | Pro | Glu | Pro | Pro | Asp |     |
|     |     |     |     |     |     | 305 |     |     |     | 310 |     |     |     |     | 320 |     |
| Asn | Arg | Ser | Ser | Ala | Pro | Pro | Arg | Lys | Asp | Val | Pro | His | Arg | Cys | Ser |     |
|     |     |     |     |     |     | 325 |     |     |     | 330 |     |     |     |     | 335 |     |
| Thr | His | Phe | Asp | Ala | Val | Ala | Gln | Ile | Arg | Gly | Glu | Ala | Phe | Phe | Phe |     |

340

345

350

Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val Ser  
 355 360 365

Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu His  
 370 375 380

Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys Ile  
 385 390 395 400

Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn Val  
 405 410 415

Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro Gly  
 420 425 430

Gly Ile Asp Ala Ala Phe Ser Trp Ala His Asn Asp Arg Thr Tyr Phe  
 435 440 445

Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg His Met  
 450 455 460

Asp Pro Gly Tyr Pro Ala Gln Ser Pro Leu Trp Arg Gly Val Pro Ser  
 465 470 475 480

Thr Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe Phe  
 485 490 495

Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Val Ala  
 500 505 510

Pro Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly Asp  
 515 520 525

Ser Gln Ala Asp Gly Ser Val Ala Ala Gly Val Asp Ala Ala Glu Gly  
 530 535 540

Pro Arg Ala Pro Pro Gly Gln His Asp Gln Ser Arg Ser Glu Asp Gly  
 545 550 555 560

Tyr Glu Val Cys Ser Cys Thr Ser Gly Ala Ser Ser Pro Pro Gly Ala  
 565 570 575

Pro Gly Pro Leu Val Ala Ala Thr Met Leu Leu Leu Leu Pro Pro Leu  
 580 585 590

Ser Pro Gly Ala Leu Trp Thr Ala Ala Gln Ala Leu Thr Leu  
 595 600 605

&lt;210&gt; 3

&lt;211&gt; 3517

<212> DNA  
<213> Mouse

<220>  
<221> CDS  
<222> (86)..(1846)

<400> 3  
ggcacgaggg cgccggagccg agcgaggcgc ggagctggct gctggcgggt gcggggaccc 60  
tcgccacccg acctgggaga gcggg atg gga cgc cgc ccg cgg gga cct ggg 112  
Met Gly Arg Arg Pro Arg Gly Pro Gly  
1 5  
tcc ccc cgg gga cct ggc cct cca cgc ccc ggg ccg ggg ctg cca cca 160  
Ser Pro Arg Gly Pro Gly Pro Pro Arg Pro Gly Pro Gly Leu Pro Pro  
10 15 20 25  
ctg ctg ctt gta ctg gcg ctg gcg gcc cat ggg ggc tgc gca gcg ccc 208  
Leu Leu Val Leu Ala Leu Ala Ala His Gly Gly Cys Ala Ala Pro  
30 35 40  
gag ccc cgc gcg gag gac ctc agc ctc ggg gtg gag tgg cta agc agg 256  
Ala Pro Arg Ala Glu Asp Leu Ser Leu Gly Val Glu Trp Leu Ser Arg  
45 50 55  
tgt ggc tac ctg ccg cct gca gat ccg gca tca ggg cag cta cag acc 304  
Phe Gly Tyr Leu Pro Pro Ala Asp Pro Ala Ser Gly Gln Leu Gln Thr  
60 65 70  
cag gag gaa ctg tcc aaa gcg att act gcc atg cag cag ttt ggt ggt 352  
Gln Glu Glu Leu Ser Lys Ala Ile Thr Ala Met Gln Gln Phe Gly Gly  
75 80 85  
ctg gag acc act ggc atc cta gat gag gcc act ctg gcc ctg atg aaa 400  
Leu Glu Thr Thr Gly Ile Leu Asp Glu Ala Thr Leu Ala Leu Met Lys  
90 95 100 105  
acc cct cga tgc tcc ctt ccg gac ctg ccc cct ggg gcc caa tcg aga 448  
Thr Pro Arg Cys Ser Leu Pro Asp Leu Pro Pro Gly Ala Gln Ser Arg  
110 115 120  
agg aag cgg cag act cca ccc cca acc aaa tgg agc aag agg aac ctt 496  
Arg Lys Arg Gln Thr Pro Pro Pro Thr Lys Trp Ser Lys Arg Asn Leu  
125 130 135  
tct tgg agg gtc cgg aca ttc cca cgg gac tca ccc ctg ggc cgg gat 544  
Ser Trp Arg Val Arg Thr Phe Pro Arg Asp Ser Pro Leu Gly Arg Asp  
140 145 150  
act gtg cgt gca ctc atg tac tac gcc ctc aaa gtc tgg agt gac atc 592  
Thr Val Arg Ala Leu Met Tyr Tyr Ala Leu Lys Val Trp Ser Asp Ile

155

160

165

|                                                                 |     |     |      |
|-----------------------------------------------------------------|-----|-----|------|
| aca ccc ttg aac ttc cac gag gta gcg ggc aac gcg gcg gac atc cag |     |     | 640  |
| Thr Pro Leu Asn Phe His Glu Val Ala Gly Asn Ala Ala Asp Ile Gln |     |     |      |
| 170                                                             | 175 | 180 | 185  |
| atc gac ttc tcc aag gcc gac cac aat gac ggc tac ccc ttc gat ggc |     |     | 688  |
| Ile Asp Phe Ser Lys Ala Asp His Asn Asp Gly Tyr Pro Phe Asp Gly |     |     |      |
| 190                                                             | 195 | 200 |      |
| cct ggt ggc acg gtg gcc cac gca ttc ttc cct ggt gac cac cac acg |     |     | 736  |
| Pro Gly Gly Thr Val Ala His Ala Phe Phe Pro Gly Asp His His Thr |     |     |      |
| 205                                                             | 210 | 215 |      |
| gca ggg gac acc cac ttt gat gac gat gag cca tgg acc ttc cgt tcc |     |     | 784  |
| Ala Gly Asp Thr His Phe Asp Asp Asp Glu Pro Trp Thr Phe Arg Ser |     |     |      |
| 220                                                             | 225 | 230 |      |
| tca gat gcc cac ggg atg gac ctg ttt gca gtg gcc gtc cat gag ttt |     |     | 832  |
| Ser Asp Ala His Gly Met Asp Leu Phe Ala Val Ala Val His Glu Phe |     |     |      |
| 235                                                             | 240 | 245 |      |
| ggc cat gcc att ggt ctg agc cat gtt gcc gcc cca agc tcc atc atg |     |     | 880  |
| Gly His Ala Ile Gly Leu Ser His Val Ala Ala Pro Ser Ser Ile Met |     |     |      |
| 250                                                             | 255 | 260 | 265  |
| caa ccg tac tac cag ggc ccc gtg ggt gac ccc gta cgc tat gga ctt |     |     | 928  |
| Gln Pro Tyr Tyr Gln Gly Pro Val Gly Asp Pro Val Arg Tyr Gly Leu |     |     |      |
| 270                                                             | 275 | 280 |      |
| CGG tat gag gac agg gtg cgt gtc tgg cag ttg tac ggt gtg cgg gaa |     |     | 976  |
| Pro Tyr Glu Asp Arg Val Arg Val Trp Gln Leu Tyr Gly Val Arg Glu |     |     |      |
| 285                                                             | 290 | 295 |      |
| tcc gtg tcc cct act gcc cag ctg gat acc cca gag ccc gag gag cca |     |     | 1024 |
| Ser Val Ser Pro Thr Ala Gln Leu Asp Thr Pro Glu Pro Glu Glu Pro |     |     |      |
| 300                                                             | 305 | 310 |      |
| ccc ctc ctg cca gag ccc ccc aac aat cgg tct agc act ccg ccc cag |     |     | 1072 |
| Pro Leu Leu Pro Glu Pro Pro Asn Asn Arg Ser Ser Thr Pro Pro Gln |     |     |      |
| 315                                                             | 320 | 325 |      |
| aag gac gtg cct cac agg tgc act gcc cac ttt gat gct gtg gcc cag |     |     | 1120 |
| Lys Asp Val Pro His Arg Cys Thr Ala His Phe Asp Ala Val Ala Gln |     |     |      |
| 330                                                             | 335 | 340 | 345  |
| att cga ggc gaa gca ttc ttt ttc aaa ggc aag tat ttc tgg agg ctg |     |     | 1168 |
| Ile Arg Gly Glu Ala Phe Phe Lys Gly Lys Tyr Phe Trp Arg Leu     |     |     |      |
| 350                                                             | 355 | 360 |      |
| acc cgg gac cga cac ttg gtg tcg ctg cag ccg gct caa atg cat cgc |     |     | 1216 |
| Thr Arg Asp Arg His Leu Val Ser Leu Gln Pro Ala Gln Met His Arg |     |     |      |

| 365                                                                                                                                       | 370 | 375 |      |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|
| tcc tgg cgg ggc ctg ccg ctg cac ctg gac agt gtg gac gcc gtg tat<br>Phe Trp Arg Gly Leu Pro Leu His Leu Asp Ser Val Asp Ala Val Tyr<br>380 | 385 | 390 | 1264 |
| gag cgt acc agt gac cac aag att gtc ttc aaa gga gac aga tac<br>Glu Arg Thr Ser Asp His Lys Ile Val Phe Phe Lys Gly Asp Arg Tyr<br>395     | 400 | 405 | 1312 |
| tgg gtg ttt aag gac aac aac gta gag gaa ggg tac ccg cga cct gtc<br>Trp Val Phe Lys Asp Asn Asn Val Glu Glu Gly Tyr Pro Arg Pro Val<br>410 | 415 | 420 | 1360 |
| tcc gac ttc agc ctc ccg cca ggt ggc atc gat gct gtc ttc tcc tgg<br>Ser Asp Phe Ser Leu Pro Pro Gly Gly Ile Asp Ala Val Phe Ser Trp<br>430 | 435 | 440 | 1408 |
| gcc cac aat gac agg act tat ttc ttt aag gac cag ctg tac tgg cgc<br>Ala His Asn Asp Arg Thr Tyr Phe Phe Lys Asp Gln Leu Tyr Trp Arg<br>445 | 450 | 455 | 1456 |
| tat gat gac cac aca cgg cgc atg gac cct ggc tac cct gcc cag gga<br>Tyr Asp Asp His Thr Arg Arg Met Asp Pro Gly Tyr Pro Ala Gln Gly<br>460 | 465 | 470 | 1504 |
| ccc ctg tgg aga ggt gtc ccc agc atg ttg gat gat gcc atg cgc tgg<br>Pro Leu Trp Arg Gly Val Pro Ser Met Leu Asp Asp Ala Met Arg Trp<br>475 | 480 | 485 | 1552 |
| tct gat ggt gca tcc tat ttc ttc cga ggc cag gag tac tgg aaa gtg<br>Ser Asp Gly Ala Ser Tyr Phe Phe Arg Gly Gln Glu Tyr Trp Lys Val<br>490 | 495 | 500 | 1600 |
| ctg gat ggc gag ctg gaa gca gcc ccc ggg tac cca cag tct aca gcc<br>Leu Asp Gly Glu Leu Glu Ala Ala Pro Gly Tyr Pro Gln Ser Thr Ala<br>510 | 515 | 520 | 1648 |
| cgc gac tgg ctg gta tgc ggt gag ccg ctg gcg gat gcg gag gat gta<br>Arg Asp Trp Leu Val Cys Gly Glu Pro Leu Ala Asp Ala Glu Asp Val<br>525 | 530 | 535 | 1696 |
| ggg cct gga ccc cag ggc cgc agt ggg gcc caa gat ggt ctg gca gta<br>Gly Pro Gly Pro Gln Gly Arg Ser Gly Ala Gln Asp Gly Leu Ala Val<br>540 | 545 | 550 | 1744 |
| tgt tcc tgc act tca gac gca cac agg ttg gca ctg cca tct ctg ctg<br>Cys Ser Cys Thr Ser Asp Ala His Arg Leu Ala Leu Pro Ser Leu Leu<br>555 | 560 | 565 | 1792 |
| ctt ctg act cca ctg ctg tgg ggc ctg tgg acc tca gtc tct gcc aag<br>Leu Leu Thr Pro Leu Leu Trp Gly Leu Trp Thr Ser Val Ser Ala Lys        |     |     | 1840 |

570 575 580 585

gca tcc tgagggcagt gctagccttg cgatcaagg agccagggga gcagggacac 1896  
Ala Ser

actggccagt actcagcagg acttgtgctc caagcttccg gtccctcgct ctttccttcc 1956  
ttccttcctt gaaccagggt gtgctgtgcc atctgctgga gtggtctcca gctggacag 2016  
gacgtcccac caagggcatc catgcacacc ttgcctacct ggagcagcca taggcagctc 2076  
cccttccttc ctctgcacat cacgctgctt cggtgcacct tgccggctg cccaagccca 2136  
gctgtcacaa ccccaggatg ccttgtctgc acctgagcgg ctctgatggc atctgcacgt 2196  
gggctgatga gggcaaaca ggggttcctc gtggtatccg tagggccac catgcctgtt 2256  
tcacaagtaa gagagttgat gccccgatgg gggAACAGGG tggagaaaag gcacctaccc 2316  
agaagtctga tccactgccg tttgcagcag ccagcgccgt atctgctggg ataggggacc 2376  
atccacactc aggatctgcc cacagattcc cagatgctgg caaggggcct tgctccaact 2436  
a~~c~~aggagca cagccaccc tccccgtcct agataggtt gcatggagg ctgtgtcctg 2496  
ttatctccct ctctttggcc agagagcat tgtgggtctc ctcgggtgc tgttgatggg 2556  
ggggggggc gcccatacag atatttcttc atctgtcagt acccattgct tcagcaagat 2616  
gc~~c~~ccatata agttctggcc tgagaccctg cagttggac tcacagctgt cccctcccc 2676  
gc~~g~~cgagaag ggcttcta~~a~~ac acctggaata aaggtggcg ttcagtttag ggaaggagga 2736  
tggttgggg agcccagggt gatagcaagg gggagctgca gggataagt~~t~~ tcagggtcct 2796  
cggggagtca tgacaatgtt accgccta~~a~~ac ttggagatgt aggagctgtg cacggattgc 2856  
ttctctgggt gacaaacctc catggtccag aaagggctg aggtgaacc caagatgggt 2916  
taatgagctc cagaaaggaa cagccaa~~g~~tt caaagg~~t~~t gggacaagac gggcctgagg 2976  
aacagg~~g~~cca cccaggtagg cgtggctgta gggtaagcag tttctgtcat tggcacgag 3036  
atgaaaatta gtgatcacac gcacatacc~~c~~ ccctccccaa ctggcccggt cccatctcag 3096  
gtaagaaagg cttctgtcta cccagg~~g~~cca gtttgagtg ttgtcaggat gagtgagcag 3156  
ctagcggggc ctaagttct accctccatt tcccaagcct ggccacaccc tagacccctg 3216  
tcagactagg caggacagag tcagggtag gggcatctga gtttccctg tcttggaa~~g~~c 3276  
caccctactc tgccctcata tcaaagc~~a~~cg ctcctat~~g~~at gtcccatgtt gtccaccagc 3336

ctgcaggaca cagatgtcct atacagcaac agggaaaagtc caaaaatctt tgtcacatag 3396  
 cactgaaaac cagacccgca ggctggagct gtctagatgc tgggtgcaca ctcattttaa 3456  
 aacccaaact cttaataaaaa attttgtaca ctggaaaaaaaaaaaaaaaaaaaaaaaa 3516  
 a 3517  
 <210> 4  
 <211> 2438  
 <212> DNA  
 <213> Homo sapiens  
 <220>  
 <221> CDS  
 <222> (100)..(1917)  
 <400> 4  
 ccggcgaaaaa cgccgcggag agcggaggag gccgggctgc ggaacgcgaa gcggaggcg 60  
 ccggaccctg cacgcccccc gcggggccat gtgagcgcc atg cgg cgc cgc gca 114  
 Met Arg Arg Arg Ala  
 1 5  
 ggc cgg gga ccc ggc ccg ccg ccc cca ggg ccc gga ctc tcg cgg ctg 162  
 Ala Arg Gly Pro Gly Pro Pro Pro Gly Pro Gly Leu Ser Arg Leu  
 10 15 20  
 cgg ctg ctg ccg ctg ccg ctg ctg ctg ctg gcg ctg ggg acc cgc 210  
 Pro Leu Leu Pro Leu Leu Leu Leu Ala Leu Gly Thr Arg  
 25 30 35  
 ggc ggc tgc gcc gcg ccg gaa ccc gcg cgg cgc gcc gag gac ctc agc 258  
 Gly Gly Cys Ala Ala Pro Glu Pro Ala Arg Arg Ala Glu Asp Leu Ser  
 40 45 50  
 ctg gga gtg gag tgg cta agc agg ttc ggt tac ctg ccc ccg gct gac 306  
 Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr Leu Pro Pro Ala Asp  
 55 60 65  
 ccc aca aca ggg cag ctg cag acg caa gag gag ctg tct aag gcc atc 354  
 Pro Thr Thr Gly Gln Leu Gln Thr Gln Glu Glu Leu Ser Lys Ala Ile  
 70 75 80 85  
 aca gcc atg cag cag ttt ggt ggc ctg gag gcc acc ggc atc ctg gac 402  
 Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Ala Thr Gly Ile Leu Asp  
 90 95 100  
 gag gcc acc ctg gcc ctg atg aaa acc cca cgc tgc tcc ctg cca gac 450  
 Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg Cys Ser Leu Pro Asp  
 105 110 115

|                                                                 |     |      |     |
|-----------------------------------------------------------------|-----|------|-----|
| ctc cct gtc ctg acc cag gct cgc agg aga cgc cag gct cca gcc ccc |     | 498  |     |
| Leu Pro Val Leu Thr Gln Ala Arg Arg Arg Arg Gln Ala Pro Ala Pro |     |      |     |
| 120                                                             | 125 | 130  |     |
| acc aag tgg aac aag agg aac ctg tcg tgg agg gtc cgg acg ttc cca |     | 546  |     |
| Thr Lys Trp Asn Lys Arg Asn Leu Ser Trp Arg Val Arg Thr Phe Pro |     |      |     |
| 135                                                             | 140 | 145  |     |
| cgg gac tca cca ctg ggg cac gac acg gtg cgt gca ctc atg tac tac |     | 594  |     |
| Arg Asp Ser Pro Leu Gly His Asp Thr Val Arg Ala Leu Met Tyr Tyr |     |      |     |
| 150                                                             | 155 | 160  | 165 |
| gcc ctc aag gtc tgg agc gac att gcg ccc ctg aac ttc cac gag gtg |     | 642  |     |
| Ala Leu Lys Val Trp Ser Asp Ile Ala Pro Leu Asn Phe His Glu Val |     |      |     |
| 170                                                             | 175 | 180  |     |
| gcg ggc agc acc gcc gac atc cag atc gac ttc tcc aag gcc gac cat |     | 690  |     |
| Ala Gly Ser Thr Ala Asp Ile Gln Ile Asp Phe Ser Lys Ala Asp His |     |      |     |
| 185                                                             | 190 | 195  |     |
| aac gac ggc tac ccc ttc gac ggc ccc ggc acc gtg gcc cac gcc     |     | 738  |     |
| Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly Thr Val Ala His Ala |     |      |     |
| 200                                                             | 205 | 210  |     |
| tcc ttc ccc ggc cac cac acc gcc ggg gac acc cac ttt gac gat     |     | 786  |     |
| Phe Phe Pro Gly His His Thr Ala Gly Asp Thr His Phe Asp Asp     |     |      |     |
| 215                                                             | 220 | 225  |     |
| gac gag gcc tgg acc ttc cgc tcc tcg gat gcc cac ggg atg gac ctg |     | 834  |     |
| Asp Glu Ala Trp Thr Phe Arg Ser Ser Asp Ala His Gly Met Asp Leu |     |      |     |
| 230                                                             | 235 | 240  | 245 |
| tcc gca gtg gct gtc cac gag ttt ggc cac gcc att ggg tta agc cat |     | 882  |     |
| Phe Ala Val Ala Val His Glu Phe Gly His Ala Ile Gly Leu Ser His |     |      |     |
| 250                                                             | 255 | 260  |     |
| gtg gcc gct gca cac tcc atc atg cgg ccg tac tac cag ggc ccg gtg |     | 930  |     |
| Val Ala Ala Ala His Ser Ile Met Arg Pro Tyr Tyr Gln Gly Pro Val |     |      |     |
| 265                                                             | 270 | 275  |     |
| ggc gac ccg ctg cgc tac ggg ctc ccc tac gag gac aag gtg cgc gtc |     | 978  |     |
| Gly Asp Pro Leu Arg Tyr Gly Leu Pro Tyr Glu Asp Lys Val Arg Val |     |      |     |
| 280                                                             | 285 | 290  |     |
| tgg cag ctg tac ggt gtg cgg gag tct gtg tct ccc acg gcg cag ccc |     | 1026 |     |
| Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser Pro Thr Ala Gln Pro |     |      |     |
| 295                                                             | 300 | 305  |     |
| gag gag cct ccc ctg ctg ccg gag ccc cca gac aac cgg tcc agc gcc |     | 1074 |     |
| Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro Asp Asn Arg Ser Ser Ala |     |      |     |
| 310                                                             | 315 | 320  | 325 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| ccg | ccc | agg | aag | gac | gtg | ccc | cac | aga | tgc | agc | act | cac | ttt | gac | gcg | 1122 |
| Pro | Pro | Arg | Lys | Asp | Val | Pro | His | Arg | Cys | Ser | Thr | His | Phe | Asp | Ala |      |
| 330 |     |     |     |     |     | 335 |     |     |     |     |     |     |     | 340 |     |      |
| gtg | gcc | cag | atc | cgg | ggt | gaa | gct | ttc | ttc | ttc | aaa | ggc | aag | tac | ttc | 1170 |
| Val | Ala | Gln | Ile | Arg | Gly | Glu | Ala | Phe | Phe | Phe | Lys | Gly | Lys | Tyr | Phe |      |
| 345 |     |     |     |     |     | 350 |     |     |     |     |     |     | 355 |     |     |      |
| tgg | cgg | ctg | acg | cgg | gac | cg  | cac | ctg | gtg | tcc | ctg | cag | ccg | gca | cag | 1218 |
| Trp | Arg | Leu | Thr | Arg | Asp | Arg | His | Leu | Val | Ser | Leu | Gln | Pro | Ala | Gln |      |
| 360 |     |     |     |     |     | 365 |     |     |     |     |     | 370 |     |     |     |      |
| atg | cac | cgc | ttc | tgg | cg  | ggc | ctg | ccg | ctg | cac | ctg | gac | agc | gtg | gac | 1266 |
| Met | His | Arg | Phe | Trp | Arg | Gly | Leu | Pro | Leu | His | Leu | Asp | Ser | Val | Asp |      |
| 375 |     |     |     |     |     | 380 |     |     |     |     |     | 385 |     |     |     |      |
| gcc | gtg | tac | gag | cgc | acc | agc | gac | cac | aag | atc | gtc | ttc | ttt | aaa | gga | 1314 |
| Ala | Val | Tyr | Glu | Arg | Thr | Ser | Asp | His | Lys | Ile | Val | Phe | Phe | Lys | Gly |      |
| 390 |     |     |     |     |     | 395 |     |     |     |     |     | 400 |     |     | 405 |      |
| gac | agg | tac | tgg | gtg | ttc | aag | gac | aat | aac | gta | gag | gaa | gga | tac | ccg | 1362 |
| Asp | Arg | Tyr | Trp | Val | Phe | Lys | Asp | Asn | Asn | Val | Glu | Glu | Gly | Tyr | Pro |      |
| 410 |     |     |     |     |     |     |     | 415 |     |     |     |     |     | 420 |     |      |
| cgc | ccc | gtc | tcc | gac | ttc | agc | ctc | ccg | cct | ggc | ggc | atc | gac | gct | gcc | 1410 |
| Arg | Pro | Val | Ser | Asp | Phe | Ser | Leu | Pro | Pro | Gly | Gly | Ile | Asp | Ala | Ala |      |
| 425 |     |     |     |     |     |     |     | 430 |     |     |     |     | 435 |     |     |      |
| tcc | tcc | tgg | gcc | cac | aat | gac | agg | act | tat | ttc | ttt | aag | gac | cag | ctg | 1458 |
| Phe | Ser | Trp | Ala | His | Asn | Asp | Arg | Thr | Tyr | Phe | Phe | Lys | Asp | Gln | Leu |      |
| 440 |     |     |     |     |     |     |     | 445 |     |     |     |     | 450 |     |     |      |
| tac | tgg | cgc | tac | gat | gac | cac | acg | agg | cac | atg | gac | ccc | ggc | tac | ccc | 1506 |
| Tyr | Trp | Arg | Tyr | Asp | Asp | His | Thr | Arg | His | Met | Asp | Pro | Gly | Tyr | Pro |      |
| 455 |     |     |     |     |     |     |     | 460 |     |     |     |     | 465 |     |     |      |
| gcc | cag | agc | ccc | ctg | tgg | agg | ggt | gtc | ccc | agc | acg | ctg | gac | gac | gcc | 1554 |
| Ala | Gln | Ser | Pro | Leu | Trp | Arg | Gly | Val | Pro | Ser | Thr | Leu | Asp | Asp | Ala |      |
| 470 |     |     |     |     |     |     |     | 475 |     |     |     |     | 480 |     |     | 485  |
| atg | cgc | tgg | tcc | gac | ggt | gcc | tcc | tac | ttc | ttc | cgt | ggc | cag | gag | tac | 1602 |
| Met | Arg | Trp | Ser | Asp | Gly | Ala | Ser | Tyr | Phe | Phe | Arg | Gly | Gln | Glu | Tyr |      |
| 490 |     |     |     |     |     |     |     |     | 495 |     |     |     |     | 500 |     |      |
| tgg | aaa | gtg | ctg | gat | ggc | gag | ctg | gag | gtg | gca | ccc | ggg | tac | cca | cag | 1650 |
| Trp | Lys | Val | Leu | Asp | Gly | Glu | Leu | Glu | Val | Ala | Pro | Gly | Tyr | Pro | Gln |      |
| 505 |     |     |     |     |     |     |     |     | 510 |     |     |     |     | 515 |     |      |
| tcc | acg | gcc | cgg | gac | tgg | ctg | gtg | tgt | gga | gac | tca | cag | gcc | gat | gga | 1698 |
| Ser | Thr | Ala | Arg | Asp | Trp | Leu | Val | Cys | Gly | Asp | Ser | Gln | Ala | Asp | Gly |      |
| 520 |     |     |     |     |     |     |     | 525 |     |     |     |     | 530 |     |     |      |

|                   |          |            |            |            |             |            |      |     |            |            |     |     |     |      |      |      |
|-------------------|----------|------------|------------|------------|-------------|------------|------|-----|------------|------------|-----|-----|-----|------|------|------|
| tct               | gtg      | gct        | gcf        | ggc        | gtg         | gac        | gcf  | gca | gag        | ggg        | ccc | cgc | gcc | cct  | cca  | 1746 |
| Ser               | Val      | Ala        | Ala        | Gly        | Val         | Asp        | Ala  | Ala | Glu        | Gly        | Pro | Arg | Ala | Pro  | Pro  |      |
| 535               |          |            |            |            |             | 540        |      |     |            |            | 545 |     |     |      |      |      |
| gga               | caa      | cat        | gac        | cag        | agc         | cgc        | tcg  | gag | gac        | ggt        | tac | gag | gtc | tgc  | tca  | 1794 |
| Gly               | Gln      | His        | Asp        | Gln        | Ser         | Arg        | Ser  | Glu | Asp        | Gly        | Tyr | Glu | Val | Cys  | Ser  |      |
| 550               |          |            |            |            | 555         |            |      |     |            | 560        |     |     |     |      | 565  |      |
| tgc               | acc      | tct        | ggg        | gca        | tcc         | tct        | ccc  | ccg | ggg        | gcc        | cca | ggc | cca | ctg  | gtg  | 1842 |
| Cys               | Thr      | Ser        | Gly        | Ala        | Ser         | Ser        | Pro  | Pro | Gly        | Ala        | Pro | Gly | Pro | Leu  | Val  |      |
|                   |          |            |            |            |             | 570        |      |     |            | 575        |     |     |     | 580  |      |      |
| gct               | gcc      | acc        | atg        | ctg        | ctg         | ctg        | ccg  | cca | ctg        | tca        | cca | ggc | gcc | ctg  | 1890 |      |
| Ala               | Ala      | Thr        | Met        | Leu        | Leu         | Leu        | Leu  | Pro | Pro        | Leu        | Ser | Pro | Gly | Ala  | Leu  |      |
|                   |          |            | 585        |            |             |            |      | 590 |            |            |     |     | 595 |      |      |      |
| tgg               | aca      | gcf        | gcc        | cag        | gcc         | ctg        | acg  | cta | tgacacacag | cgcgagccca |     |     |     |      | 1937 |      |
| Trp               | Thr      | Ala        | Ala        | Gln        | Ala         | Leu        | Thr  | Leu |            |            |     |     |     |      |      |      |
|                   |          |            | 600        |            |             | 605        |      |     |            |            |     |     |     |      |      |      |
| tt                | ggaggaca | gaggcggtgg | gacagcctgg | ccacagaggg | caaggactgt  | gccggagtcc | 1997 |     |            |            |     |     |     |      |      |      |
| ct                | gggggagg | tgctggcgcg | ggatgaggac | gggccaccct | ggcacccggaa | ggccagcaga | 2057 |     |            |            |     |     |     |      |      |      |
| gg                | gcacggcc | cgccagggt  | gggcaggctc | aggtggcaag | gacggagctg  | tcccttagtg | 2117 |     |            |            |     |     |     |      |      |      |
| gg                | ggactgtg | ttgactgacg | agccgagggg | tggccgctcc | agaagggtgc  | ccagtcaggc | 2177 |     |            |            |     |     |     |      |      |      |
| cc                | ccccggcc | ccagcctcct | ccggccctgg | agggagcatc | tcgggctggg  | ggcccacccc | 2237 |     |            |            |     |     |     |      |      |      |
| cc                | ctgtgcc  | ggcgccacca | accccaccca | cactgctgcc | tggtgctccc  | gccggcccac | 2297 |     |            |            |     |     |     |      |      |      |
| cc                | ggcctccg | tccccaggtc | cccagtgggg | cagccctccc | cacagacgag  | ccccccacat | 2357 |     |            |            |     |     |     |      |      |      |
| gg                | gtccgcgg | cacgtcccc  | ctgtgacgcg | ttccagacca | acatgacctc  | tccctgctt  | 2417 |     |            |            |     |     |     |      |      |      |
| gtaaaaaaaaaaaaaaa | a        |            |            |            |             |            |      |     |            |            |     |     |     | 2438 |      |      |

<210> 5  
<211> 618  
<212> PRT  
<213> Mouse

|         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| <400> 5 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| Met     | Pro | Arg | Ser | Arg | Gly | Gly | Arg | Ala | Ala | Pro | Gly | Gln | Ala | Ser | Arg |  |
| 1       |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     | 15  |     |  |
| Trp     | Ser | Gly | Trp | Arg | Ala | Pro | Gly | Arg | Leu | Leu | Pro | Leu | Leu | Pro | Ala |  |
|         |     |     |     |     | 20  |     |     |     | 25  |     |     |     |     | 30  |     |  |
| Leu     | Cys | Cys | Leu | Ala | Ala | Ala | Gly | Ala | Gly | Lys | Pro | Ala | Gly | Ala |     |  |

35

40

45

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Ala | Pro | Phe | Ala | Gly | Gln | Asn | Trp | Leu | Lys | Ser | Tyr | Gly | Tyr | Leu |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 50  |     |     |     |     | 55  |     |     |     |     | 60  |     |     |     |     |     |
| Leu | Pro | Tyr | Glu | Ser | Arg | Ala | Ser | Ala | Leu | His | Ser | Gly | Lys | Ala | Leu |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 65  |     |     |     | 70  |     |     |     |     | 75  |     |     |     |     |     | 80  |
| Gln | Ser | Ala | Val | Ser | Thr | Met | Gln | Gln | Phe | Tyr | Gly | Ile | Pro | Val | Thr |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 85  |     |     |     |     |     |     | 90  |     |     |     |     |     |     | 95  |     |
| Gly | Val | Leu | Asp | Gln | Thr | Thr | Ile | Glu | Trp | Met | Lys | Lys | Pro | Arg | Cys |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 100 |     |     |     |     |     |     | 105 |     |     |     |     |     | 110 |     |     |
| Gly | Val | Pro | Asp | His | Pro | His | Leu | Ser | Arg | Arg | Arg | Arg | Asn | Lys | Arg |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 115 |     |     |     |     |     |     | 120 |     |     |     |     |     | 125 |     |     |
| Tyr | Ala | Leu | Thr | Gly | Gln | Lys | Trp | Arg | Gln | Lys | His | Ile | Thr | Tyr | Ser |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 130 |     |     |     |     | 135 |     |     |     |     |     | 140 |     |     |     |     |
| Ile | His | Asn | Tyr | Thr | Pro | Lys | Val | Gly | Glu | Leu | Asp | Thr | Arg | Lys | Ala |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 145 |     |     |     |     | 150 |     |     |     |     | 155 |     |     |     |     | 160 |
| Ile | Arg | Gln | Ala | Phe | Asp | Val | Trp | Gln | Lys | Val | Thr | Pro | Leu | Thr | Phe |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 165 |     |     |     |     |     |     | 170 |     |     |     |     |     | 175 |     |     |
| Gly | Glu | Val | Pro | Tyr | His | Glu | Ile | Lys | Ser | Asp | Arg | Lys | Glu | Ala | Asp |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 180 |     |     |     |     |     | 185 |     |     |     |     |     |     | 190 |     |     |
| Ile | Met | Ile | Phe | Phe | Ala | Ser | Gly | Phe | His | Gly | Asp | Ser | Ser | Pro | Phe |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 195 |     |     |     |     | 200 |     |     |     |     |     | 205 |     |     |     |     |
| Asp | Gly | Glu | Gly | Gly | Phe | Leu | Ala | His | Ala | Tyr | Phe | Pro | Gly | Pro | Gly |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 210 |     |     |     |     | 215 |     |     |     |     | 220 |     |     |     |     |     |
| Ile | Gly | Gly | Asp | Thr | His | Phe | Asp | Ser | Asp | Glu | Pro | Trp | Thr | Leu | Gly |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 225 |     |     |     |     | 230 |     |     |     |     | 235 |     |     |     |     | 240 |
| Asn | Ala | Asn | His | Asp | Gly | Asn | Asp | Leu | Phe | Leu | Val | Ala | Val | His | Glu |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 245 |     |     |     |     |     |     | 250 |     |     |     |     |     | 255 |     |     |
| Leu | Gly | His | Ala | Leu | Gly | Leu | Glu | His | Ser | Asn | Asp | Pro | Ser | Ala | Ile |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 260 |     |     |     |     |     | 265 |     |     |     |     |     |     | 270 |     |     |
| Met | Ala | Pro | Phe | Tyr | Gln | Tyr | Met | Glu | Thr | His | Asn | Phe | Lys | Leu | Pro |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 275 |     |     |     |     | 280 |     |     |     |     |     |     | 285 |     |     |     |
| Gln | Asp | Asp | Leu | Gln | Gly | Ile | Gln | Lys | Ile | Tyr | Gly | Pro | Pro | Ala | Glu |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 290 |     |     |     |     | 295 |     |     |     |     | 300 |     |     |     |     |     |
| Pro | Leu | Glu | Pro | Thr | Arg | Pro | Leu | His | Thr | Leu | Pro | Val | Arg | Arg | Ile |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 305 |     |     |     |     | 310 |     |     |     |     | 315 |     |     |     |     | 320 |

His Ser Pro Ser Glu Arg Lys His Glu Arg His Pro Arg Pro Pro Arg  
                   325                  330                  335  
 Pro Pro Leu Gly Asp Arg Pro Ser Thr Pro Gly Ala Lys Pro Asn Ile  
                   340                  345                  350  
 Cys Asp Gly Asn Phe Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe  
                   355                  360                  365  
 Val Phe Lys Asp Arg Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln  
                   370                  375                  380  
 Glu Gly Tyr Pro Met Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala  
                   385                  390                  395                  400  
 Arg Ile Asp Ala Ala Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe  
                   405                  410                  415  
 Lys Gly Asp Lys Tyr Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly  
                   420                  425                  430  
 Tyr Pro His Ser Leu Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly  
                   435                  440                  445  
 Ile Asp Thr Ala Leu Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe  
                   450                  455                  460  
 Lys Gly Glu Arg Tyr Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp  
                   465                  470                  475                  480  
 Pro Gly Tyr Pro Lys Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala  
                   485                  490                  495  
 Pro Gln Gly Ala Phe Ile Ser Lys Glu Gly Tyr Tyr Thr Tyr Phe Tyr  
                   500                  505                  510  
 Lys Gly Arg Asp Tyr Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu  
                   515                  520                  525  
 Pro Gly Tyr Pro Arg Asn Ile Leu Arg Asp Trp Met Gly Cys Lys Gln  
                   530                  535                  540  
 Lys Glu Val Glu Arg Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val  
                   545                  550                  555                  560  
 Asp Ile Met Val Thr Ile Asp Asp Val Pro Gly Ser Val Asn Ala Val  
                   565                  570                  575  
 Ala Val Val Val Pro Cys Thr Leu Ser Leu Cys Leu Leu Val Leu Leu  
                   580                  585                  590  
 Tyr Thr Ile Phe Gln Phe Lys Asn Lys Ala Gly Pro Gln Pro Val Thr

595

600

605

Tyr Tyr Lys Arg Pro Val Gln Glu Trp Val  
 610 615

<210> 6  
 <211> 645  
 <212> PRT  
 <213> Homo sapiens

<400> 6  
 Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro  
 1 5 10 15

Pro Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro  
 20 25 30

Gly Arg Leu Leu Leu Leu Leu Pro Ala Leu Cys Cys Leu Pro Gly  
 35 40 45

~~Ala~~ Ala Arg Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala  
~~Asn~~ 50 55 60

~~Val~~ Ala Val Ala Val Ala Arg Ala Asp Glu Ala Glu Ala Pro Phe Ala  
~~Gly~~ 65 70 75 80

~~Gly~~ Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu Leu Pro Tyr Asp Ser  
~~Asn~~ 85 90 95

~~Arg~~ Ala Ser Ala Leu His Ser Ala Lys Ala Leu Gln Ser Ala Val Ser  
~~Asn~~ 100 105 110

~~Thr~~ Met Gln Gln Phe Tyr Gly Ile Pro Val Thr Gly Val Leu Asp Gln  
~~Asn~~ 115 120 125

Thr Thr Ile Glu Trp Met Lys Lys Pro Arg Cys Gly Val Pro Asp His  
 130 135 140

Pro His Leu Ser Arg Arg Arg Asn Lys Arg Tyr Ala Leu Thr Gly  
 145 150 155 160

Gln Lys Trp Arg Gln Lys His Ile Thr Tyr Ser Ile His Asn Tyr Thr  
 165 170 175

Pro Lys Val Gly Glu Leu Asp Thr Arg Lys Ala Ile Arg Gln Ala Phe  
 180 185 190

Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe Glu Glu Val Pro Tyr  
 195 200 205

His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp Ile Met Ile Phe Phe  
 210 215 220

Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe Asp Gly Glu Gly Gly  
225 230 235 240

Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly Ile Gly Gly Asp Thr  
245 250 255

His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly Asn Ala Asn His Asp  
260 265 270

Gly Asn Asp Leu Phe Leu Val Ala Val His Glu Leu Gly His Ala Leu  
275 280 285

Gly Leu Glu His Ser Ser Asp Pro Ser Ala Ile Met Ala Pro Phe Tyr  
290 295 300

Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro Gln Asp Asp Leu Gln  
305 310 315 320

Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu Pro Leu Glu Pro Thr  
325 330 335

Arg Pro Leu Pro Thr Leu Pro Val Arg Arg Ile His Ser Pro Ser Glu  
340 345 350

Arg Lys His Glu Arg Gln Pro Arg Pro Pro Arg Pro Pro Leu Gly Asp  
355 360 365

Arg Pro Ser Thr Pro Gly Thr Lys Pro Asn Ile Cys Asp Gly Asn Phe  
370 375 380

Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe Val Phe Lys Asp Arg  
385 390 395 400

Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln Glu Gly Tyr Pro Met  
405 410 415

Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala Arg Ile Asp Ala Ala  
420 425 430

Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe Lys Gly Asp Lys Tyr  
435 440 445

Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly Tyr Pro His Ser Leu  
450 455 460

Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly Ile Asp Thr Ala Leu  
465 470 475 480

Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe Lys Gly Glu Arg Tyr  
485 490 495

Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp Pro Gly Tyr Pro Lys

500

505

510

Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala Pro Gln Gly Ala Phe  
 515 520 525

Ile Ser Lys Glu Gly Tyr Tyr Thr Tyr Phe Tyr Lys Gly Arg Asp Tyr  
 530 535 540

Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu Pro Gly Tyr Pro Arg  
 545 550 555 560

Asn Ile Leu Arg Asp Trp Met Gly Cys Asn Gln Lys Glu Val Glu Arg  
 565 570 575

Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val Asp Ile Met Val Thr  
 580 585 590

Ile Asn Asp Val Pro Gly Ser Val Asn Ala Val Ala Val Val Ile Pro  
 595 600 605

Cys Ile Leu Ser Leu Cys Ile Leu Val Leu Val Tyr Thr Ile Phe Gln  
 610 615 620

Phe Lys Asn Lys Thr Gly Pro Gln Pro Val Thr Tyr Tyr Lys Arg Pro  
 625 630 635 640

Val Gln Glu Trp Val  
 645

<210> 7  
<211> 4263  
<212> DNA  
<213> Mouse

<220>  
<221> CDS  
<222> (75)..(1928)

<400> 7  
gcgggaggac ccggccggag ccgccgcccgc cgccgccccgc atcgcagccg ggccggccggg 60

cccccgccgc cggg atg ccg agg agc cgg ggc cgc gct gcg ccg ggc 110  
 Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly  
 1 5 10

cag gcc tcg cgc tgg agc ggc tgg cgg gcc ccg ggg cgg ctg ctg ccg 158  
 Gln Ala Ser Arg Trp Ser Gly Trp Arg Ala Pro Gly Arg Leu Leu Pro  
 15 20 25

ctg ctg ccc gcg ctc tgc tgc ctc gcg gcg gcg ggg gcc ggg aag 206  
 Leu Leu Pro Ala Leu Cys Cys Leu Ala Ala Ala Gly Ala Gly Lys  
 30 35 40

|                                                                                                                                    |     |
|------------------------------------------------------------------------------------------------------------------------------------|-----|
| ccg gcc ggg gcg gac gcg ccc ttc gct ggg cag aac tgg tta aaa tca<br>Pro Ala Gly Ala Asp Ala Pro Phe Ala Gly Gln Asn Trp Leu Lys Ser | 254 |
| 45 50 55 60                                                                                                                        |     |
| tat ggc tat ctg ctt ccc tat gag tcg cg gca tct gcg ttg cat tct<br>Tyr Gly Tyr Leu Leu Pro Tyr Glu Ser Arg Ala Ser Ala Leu His Ser  | 302 |
| 65 70 75                                                                                                                           |     |
| ggg aag gcc ttg cag tcc gcg gtc tcc act atg cag cag ttt tac ggg<br>Gly Lys Ala Leu Gln Ser Ala Val Ser Thr Met Gln Gln Phe Tyr Gly | 350 |
| 80 85 90                                                                                                                           |     |
| atc cca gtc acc ggt gtg ttg gat cag aca aca atc gag tgg atg aag<br>Ile Pro Val Thr Gly Val Leu Asp Gln Thr Thr Ile Glu Trp Met Lys | 398 |
| 95 100 105                                                                                                                         |     |
| aaa cct cga tgt ggc gtc cct gat cat ccc cac ttg agc agg agg agg<br>Lys Pro Arg Cys Gly Val Pro Asp His Pro His Leu Ser Arg Arg Arg | 446 |
| 110 115 120                                                                                                                        |     |
| aga aat aag cga tat gcc cta act gga cag aag tgg agg cag aaa cac<br>Arg Asn Lys Arg Tyr Ala Leu Thr Gly Gln Lys Trp Arg Gln Lys His | 494 |
| 125 130 135 140                                                                                                                    |     |
| atc acc tac agc att cac aat tat acc cca aag gtg ggt gag ctg gac<br>Ile Thr Tyr Ser Ile His Asn Tyr Thr Pro Lys Val Gly Glu Leu Asp | 542 |
| 145 150 155                                                                                                                        |     |
| aca cgg aag gct att cgt cag gct ttc gat gtg tgg cag aag gtg act<br>Thr Arg Lys Ala Ile Arg Gln Ala Phe Asp Val Trp Gln Lys Val Thr | 590 |
| 160 165 170                                                                                                                        |     |
| cca ctg acc ttt gaa gag gtg cca tac cat gag atc aaa agt gac cgg<br>Pro Leu Thr Phe Glu Glu Val Pro Tyr His Glu Ile Lys Ser Asp Arg | 638 |
| 175 180 185                                                                                                                        |     |
| aag gag gca gac atc atg atc ttc ttt gct tct ggt ttc cat ggt gac<br>Lys Glu Ala Asp Ile Met Ile Phe Phe Ala Ser Gly Phe His Gly Asp | 686 |
| 190 195 200                                                                                                                        |     |
| agc tcc cca ttt gat ggg gaa ggg gga ttc cta gcc cat gcc tac ttt<br>Ser Ser Pro Phe Asp Gly Glu Gly Gly Phe Leu Ala His Ala Tyr Phe | 734 |
| 205 210 215 220                                                                                                                    |     |
| cct ggc cca ggg atc gga gga gac act cac ttt gat tca gat gaa ccc<br>Pro Gly Pro Gly Ile Gly Gly Asp Thr His Phe Asp Ser Asp Glu Pro | 782 |
| 225 230 235                                                                                                                        |     |
| tgg acg cta gga aat gcc aac cat gat ggc aat gac ctc ttc ctg gtg<br>Trp Thr Leu Gly Asn Ala Asn His Asp Gly Asn Asp Leu Phe Leu Val | 830 |
| 240 245 250                                                                                                                        |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| gcc | gtg | cat | gaa | ctg | ggc | cat | gca | ctg | ggc | ttg | gag | cac | tct | aat | gac |     | 878  |      |
| Ala | Val | His | Glu | Leu | Gly | His | Ala | Leu | Gly | Leu | Glu | His | Ser | Asn | Asp |     |      |      |
| 255 |     |     |     | 260 |     |     |     |     |     | 265 |     |     |     |     |     |     |      |      |
| ccc | agt | gct | atc | atg | gct | ccc | ttc | tac | caa | tac | atg | gag | aca | cac | aac |     | 926  |      |
| Pro | Ser | Ala | Ile | Met | Ala | Pro | Phe | Tyr | Gln | Tyr | Met | Glu | Thr | His | Asn |     |      |      |
| 270 |     |     |     | 275 |     |     |     |     |     | 280 |     |     |     |     |     |     |      |      |
| ttc | aag | cta | ccg | cag | gac | gat | ctc | cag | ggc | atc | cag | aag | att | tac | gga |     | 974  |      |
| Phe | Lys | Leu | Pro | Gln | Asp | Asp | Leu | Gln | Gly | Ile | Gln | Lys | Ile | Tyr | Gly |     |      |      |
| 285 |     |     |     | 290 |     |     |     |     |     | 295 |     |     |     |     | 300 |     |      |      |
| ccc | cca | gct | gag | cct | ctg | gag | ccc | aca | agg | ccc | ctc | cat | aca | ctc | ccg |     | 1022 |      |
| Pro | Pro | Ala | Glu | Pro | Leu | Glu | Pro | Thr | Arg | Pro | Leu | His | Thr | Leu | Pro |     |      |      |
| 305 |     |     |     |     |     |     | 310 |     |     |     |     |     |     | 315 |     |     |      |      |
| gtc | cgc | agg | atc | cac | tcg | ccg | tct | gag | agg | aag | cac | gag | cgg | cac | cca |     | 1070 |      |
| Val | Arg | Arg | Ile | His | Ser | Pro | Ser | Glu | Arg | Lys | His | Glu | Arg | His | Pro |     |      |      |
| 320 |     |     |     |     |     |     | 325 |     |     |     |     |     |     | 330 |     |     |      |      |
| agg | ccc | cca | cg  | ccg | ccc | ctt | ggg | gac | cg  | cca | tcc | act | cca | ggt | gcc |     | 1118 |      |
| Arg | Pro | Pro | Arg | Pro | Pro | Leu | Gly | Asp | Arg | Pro | Ser | Thr | Pro | Gly | Ala |     |      |      |
| 335 |     |     |     |     |     |     | 340 |     |     |     |     |     |     | 345 |     |     |      |      |
| aaa | ccc | aac | atc | tgc | gat | ggc | aac | tcc | aac | aca | gtg | gcc | ctc | ttc | cga |     | 1166 |      |
| Lys | Pro | Asn | Ile | Cys | Asp | Gly | Asn | Phe | Asn | Thr | Val | Ala | Leu | Phe | Arg |     |      |      |
| 350 |     |     |     |     |     |     | 355 |     |     |     |     |     |     | 360 |     |     |      |      |
| ggg | gag | atg | ttt | gtg | ttc | aag | gat | cg  | tgg | ttc | tgg | cg  | ctg | cg  | aat |     | 1214 |      |
| Gly | Glu | Met | Phe | Val | Phe | Lys | Asp | Arg | Trp | Phe | Trp | Arg | Leu | Arg | Asn |     |      |      |
| 365 |     |     |     |     |     |     | 370 |     |     |     |     |     |     | 375 |     |     | 380  |      |
| aae | cg  | gt  | ca  | ga  | gg  | ta  | cc  | at  | ca  | at  | ga  | ca  | tg  | tt  | tg  | aag | 1262 |      |
| Asn | Arg | Val | Gln | Glu | Gly | Tyr | Pro | Met | Gln | Ile | Glu | Gln | Phe | Trp | Lys |     |      |      |
| 380 |     |     |     |     |     |     | 385 |     |     |     |     |     |     | 390 |     |     | 395  |      |
| ggc | ctg | ccc | gcc | cg  | ata | gac | gca | gc  | ta  | gaa | aga | g   | ct  | gac | gg  | aga | 1310 |      |
| Gly | Leu | Pro | Ala | Arg | Ile | Asp | Ala | Ala | Tyr | Glu | Arg | Ala | Asp | Gly | Arg |     |      |      |
| 400 |     |     |     |     |     |     | 405 |     |     |     |     |     |     | 410 |     |     |      |      |
| ttc | gtc | t   | ttc | aaa | g   | g   | a   | g   | t   | ac  | tgg | gtt | ttc | aaa | g   | gt  | ac   | 1358 |
| Phe | Val | Phe | Phe | Lys | Gly | Asp | Lys | Tyr | Trp | Val | Phe | Lys | Glu | Val | Thr |     |      |      |
| 415 |     |     |     |     |     |     | 420 |     |     |     |     |     |     | 425 |     |     |      |      |
| gtg | gaa | cct | gg  | ta  | cc  | ca  | ag  | tc  | gg  | ga  | g   | ct  | g   | gg  | ag  |     | 1406 |      |
| Val | Glu | Pro | Gly | Tyr | Pro | His | Ser | Leu | Gly | Glu | Leu | Gly | Ser | Cys | Leu |     |      |      |
| 430 |     |     |     |     |     |     | 435 |     |     |     |     |     |     | 440 |     |     |      |      |
| ccc | cgt | gaa | gg  | at  | g   | ac  | g   | c   | tg  | cg  | tg  | gaa | c   | gt  | gg  | aaa | 1454 |      |
| Pro | Arg | Glu | Gly | Ile | Asp | Thr | Ala | Leu | Arg | Trp | Glu | Pro | Val | Gly | Lys |     |      |      |
| 445 |     |     |     |     |     |     | 450 |     |     |     |     |     |     | 455 |     |     | 460  |      |

|                                                                               |     |      |     |
|-------------------------------------------------------------------------------|-----|------|-----|
| acc tac ttc ttc aaa ggc gaa cgg tac tgg cgc tac agc gag gag cg                |     | 1502 |     |
| Thr Tyr Phe Phe Lys Gly Glu Arg Tyr Trp Arg Tyr Ser Glu Glu Arg               |     |      |     |
| 465                                                                           | 470 | 475  |     |
| cga gcc aca gac cct ggc tac ccc aag ccc atc acc gtg tgg aag ggc               |     | 1550 |     |
| Arg Ala Thr Asp Pro Gly Tyr Pro Lys Pro Ile Thr Val Trp Lys Gly               |     |      |     |
| 480                                                                           | 485 | 490  |     |
| atc ccg cag gct ccg caa ggg gcc ttc atc agc aag gaa gga tat tac               |     | 1598 |     |
| Ile Pro Gln Ala Pro Gln Gly Ala Phe Ile Ser Lys Glu Gly Tyr Tyr               |     |      |     |
| 495                                                                           | 500 | 505  |     |
| acc tac ttc tac aaa ggc cgg gac tac tgg aag ttt gac aac cag aaa               |     | 1646 |     |
| Thr Tyr Phe Tyr Lys Gly Arg Asp Tyr Trp Lys Phe Asp Asn Gln Lys               |     |      |     |
| 510                                                                           | 515 | 520  |     |
| ctg agc gtg gag cca ggc tac cca cgc aac atc ctg cgt gac tgg atg               |     | 1694 |     |
| Leu Ser Val Glu Pro Gly Tyr Pro Arg Asn Ile Leu Arg Asp Trp Met               |     |      |     |
| 525                                                                           | 530 | 535  | 540 |
| g <sup>6</sup> gc tgc aag cag aag gag gta gag cgg cgt aag gag cgg agg ctg ccc |     | 1742 |     |
| G <sup>6</sup> Ty Cys Lys Gln Lys Glu Val Glu Arg Arg Lys Glu Arg Arg Leu Pro |     |      |     |
| 545                                                                           | 550 | 555  |     |
| c <sup>6</sup> ag gat gat gtg gac atc atg gtg acc atc gat gac gtg cca ggc tct |     | 1790 |     |
| G <sup>6</sup> ln Asp Asp Val Asp Ile Met Val Thr Ile Asp Asp Val Pro Gly Ser |     |      |     |
| 560                                                                           | 565 | 570  |     |
| g <sup>6</sup> tg aac gct gtg gct gtt gtc ccc tgc aca ctg tcc ctc tgc ctc     |     | 1838 |     |
| V <sup>6</sup> al Asn Ala Val Ala Val Val Pro Cys Thr Leu Ser Leu Cys Leu     |     |      |     |
| 575                                                                           | 580 | 585  |     |
| c <sup>6</sup> tq gtg ctg ctc tac act atc ttc caa ttc aag aac aag gcg ggt cct |     | 1886 |     |
| L <sup>6</sup> eu Val Leu Leu Tyr Thr Ile Phe Gln Phe Lys Asn Lys Ala Gly Pro |     |      |     |
| 590                                                                           | 595 | 600  |     |
| cag ccc gtc acc tac tat aag cgg ccg gtc cag gag tgg gta                       |     | 1928 |     |
| Gln Pro Val Thr Tyr Tyr Lys Arg Pro Val Gln Glu Trp Val                       |     |      |     |
| 605                                                                           | 610 | 615  |     |
| tgagcagccc agagccctct ctgtctaccc ggtctggcca gccaggccct tcctcaccag 1988        |     |      |     |
| ggctctgaggg gcagctctag ccactgccca ctggggccag cagggctaag gcagggttcg 2048       |     |      |     |
| tgttagctg aagtgggtgg tgcaactggc taggctgagt gcggggctgg gagtgatggt 2108         |     |      |     |
| ggctatgccc aggtgggtta gctggcaccc agctgccagc cttctgtcct gggcagacct 2168        |     |      |     |
| ctctctactc aaggaaatag gccaggccct gtcaggagtc aaggatggtg ccaggaggtg 2228        |     |      |     |
| cccctgaggt cattgcatcc tgtggtgtct gcaagatacc acagctccag tcctggctgg 2288        |     |      |     |

gaccaggccc tctgaggcaa gccagcacta gctctcaccc caccctaaga tgccaccaat 2348  
cccagtcccc tctgccaaca cctgctggtc agatgtcccc tcatccctac cctactatcc 2408  
tccaaggctg cagtgccct gatgccaaca gagtggcaa aagcctgggt ttcccctgct 2468  
agcccataga gagattcctc agaaacctg ttccacccgt caggtctcct ctgagactca 2528  
gaacttaggg tcacatgctg caggcaaggc tgtggccagc tggatctcac aaggaccag 2588  
ctgtcatgtc gtgaatattt aaatgtcctg tcactactgt ttaaagtccc atttgcaaa 2648  
ggctacttga ggcttaggt cagctagagg tgactgtctt ggtgatgagg ccagtatggt 2708  
ggcccttccc cgggcactaa ggaccacgg gctgcaaagg ccactcgggc atcctgatac 2768  
tagcgggcat cctgttcagg aggctcaaca gctacaggag ctgaccctgg ttctggggc 2828  
ggatgcaagt ttgtgaccat tctctactcc ccctcattaa ttttgtcccc tgccctgctc 2888  
cagcctgtcc tctgtggcct ggggctcg cctgactaca ggtaaagcag agaggattct 2948  
aaagccaccc ttgtcatctt ctcagagtaa gggaccagg cagccttttta agttctccat 3008  
ccacatcccc agtgaccctg aggcaactca gctccagcct ggagtcggtg tttgtgctcc 3068  
tatcttgacc ctggcagccc aggtctctgg gtccatcttc ctgcactgct ctttagaaaa 3128  
gggtcctctt cccagctggt agcagccccaa ggctttgggg tttcccccaa ctccctaacc 3188  
caaaactacct ttttgggtt tgtttaacc tgaggccctt cttcacatct gacagttcct 3248  
aagtcttgggt ttggcttgct ccaaaaccac tgggtgcaag tgcactcac tggctctctg 3308  
ccaaacccaa cggtggtacg aggccggcat caaggtgcta gtgggtcaca gataccaact 3368  
ctgacctctg agcctgcatg ggcttgccc ctgcccgttg gtctctcgcc ctgtagcaca 3428  
gacagagact ctcgatgccc tggagttgt tgagtaaat ctcttgccc agaagcacct 3488  
atgtgggtcc actgtgtccc atctcaccat tgtgttcttg ctcatttgg ccaagggcag 3548  
gctccctggg gcaggcgggg aacaactgca gagathtagt gattcatagg tttgtacagc 3608  
gttttatact ttgcaaagca cttaatttc tcacagctgt ccactcacat gaaactcctg 3668  
taggctctga gagaggctga gggtagcact catcttaccc tcagatgaag cacaaggagg 3728  
tcttattatc tgccctgccc atccaggtgg ccctggctgg gtcttggtc cccatcagtg 3788  
ggcccttcca gggtccaaga aaactgtctc ttcttagtccct ctccctggg cctccctccc 3848

ccagtcccct ggtccctctc ctcaggttgg tgctcacttc ttgaaagctc taggccccgc 3908  
 aggctccctg ttggctcctg gcattccaag gccagttgcg aaagagcagg ggatggaggc 3968  
 aggcagccca ggctgcagat gtgagggaca cagggccggg cccagagagg gctcagccta 4028  
 gaggcttcca atcttggatt cttctgcctg cggtcatctg tttgtccatc agcccaggc 4088  
 agagcagtca gaggggcaaa gtactggagc ccccagagct cagcttcccc tcggcctggg 4148  
 tgacatcaca gcatctcagt gtcggtcaca ttttaaactg atcagcctt gtacaatgtt 4208  
 ttttaaatca tttctaaata aaacagaaaat acagtgttaa aaaaaaaaaa aaaaaa 4263

<210> 8  
 <211> 2620  
 <212> DNA  
 <213> Homo sapiens

<220>  
 <221> CDS  
 <222> (1) ..(1935)

|                                                                                                                                                   |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| atg ccg agg agc cgg ggc ggc cgc gcc gcg ccg ggg ccg ccg ccg ccg<br>Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro Pro<br>5 10 15     | 48  |
| cgg ccg ccg ggc cag gcc ccg cgc tgg agc cgc tgg cgg gtc cct<br>Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro<br>20 25 30            | 96  |
| ggg cgg ctg ctg ctg ctg ctg ccc gcg ctc tgc tgc ctc ccg ggc<br>GLY Arg Leu Leu Leu Leu Leu Pro Ala Leu Cys Cys Leu Pro Gly<br>35 40 45            | 144 |
| gcc gcg cgg gcg gcg gcg gcg gcg ggg gca ggg aac cgg gca gcg<br>Ala Ala Arg Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala<br>50 55 60                | 192 |
| gtg gcg gtg gcg gtg gcg cgg gcg gac gag gcg gag gcg ccc ttc gcc<br>Val Ala Val Ala Val Ala Arg Ala Asp Glu Ala Glu Ala Pro Phe Ala<br>65 70 75 80 | 240 |
| ggg cag aac tgg tta aag tcc tat ggc tat ctg ctt ccc tat gac tca<br>Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu Leu Pro Tyr Asp Ser<br>85 90 95    | 288 |
| cgg gca tct gcg ctg cac tca gcg aag gcc ttg cag tcg gca gtc tcc<br>Arg Ala Ser Ala Leu His Ser Ala Lys Ala Leu Gln Ser Ala Val Ser<br>100 105 110 | 336 |

|                                                                             |     |     |     |
|-----------------------------------------------------------------------------|-----|-----|-----|
| act atg cag cag ttt tac ggg atc ccg gtc acc ggt gtg ttg gat cag             |     | 384 |     |
| Thr Met Gln Gln Phe Tyr Gly Ile Pro Val Thr Gly Val Leu Asp Gln             |     |     |     |
| 115                                                                         | 120 | 125 |     |
| aca acg atc gag tgg atg aag aaa ccc cga tgt ggt gtc cct gat cac             |     | 432 |     |
| Thr Thr Ile Glu Trp Met Lys Lys Pro Arg Cys Gly Val Pro Asp His             |     |     |     |
| 130                                                                         | 135 | 140 |     |
| ccc cac tta agc cgt agg cg <sup>g</sup> aga aac aag cgc tat gcc ctg act gga |     | 480 |     |
| Pro His Leu Ser Arg Arg Arg Asn Lys Arg Tyr Ala Leu Thr Gly                 |     |     |     |
| 145                                                                         | 150 | 155 | 160 |
| cag aag tgg agg caa aaa cac atc acc tac agc att cac aac tat acc             |     | 528 |     |
| Gln Lys Trp Arg Gln Lys His Ile Thr Tyr Ser Ile His Asn Tyr Thr             |     |     |     |
| 165                                                                         | 170 | 175 |     |
| cca aaa gtg ggt gag cta gac acg cg <sup>g</sup> aaa gct att cgc cag gct ttc |     | 576 |     |
| Pro Lys Val Gly Glu Leu Asp Thr Arg Lys Ala Ile Arg Gln Ala Phe             |     |     |     |
| 180                                                                         | 185 | 190 |     |
| gat gtg tgg cag aag gtg acc cca ctg acc ttt gaa gag gtg cca tac             |     | 624 |     |
| Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe Glu Glu Val Pro Tyr             |     |     |     |
| 195                                                                         | 200 | 205 |     |
| cat gag atc aaa agt gac cg <sup>g</sup> aag gag gca gac atc atg atc ttt ttt |     | 672 |     |
| His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp Ile Met Ile Phe Phe             |     |     |     |
| 210                                                                         | 215 | 220 |     |
| get tct ggt ttc cat ggc gac agc tcc cca ttt gat gga gaa ggg gga             |     | 720 |     |
| Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe Asp Gly Glu Gly Gly             |     |     |     |
| 225                                                                         | 230 | 235 | 240 |
| tcc ctg gcc cat gcc tac ttc cct ggc cca ggg att gga gga gac acc             |     | 768 |     |
| Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly Ile Gly Gly Asp Thr             |     |     |     |
| 245                                                                         | 250 | 255 |     |
| cac ttt gac tcc gat gag cca tgg acg cta gga aac gcc aac cat gac             |     | 816 |     |
| His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly Asn Ala Asn His Asp             |     |     |     |
| 260                                                                         | 265 | 270 |     |
| ggg aac gac ctc ttc ctg gtg gct gtg cat gag ctg ggc cac gcg ctg             |     | 864 |     |
| Gly Asn Asp Leu Phe Leu Val Ala Val His Glu Leu Gly His Ala Leu             |     |     |     |
| 275                                                                         | 280 | 285 |     |
| gga ctg gag cac tcc agc gac ccc agc gcc atc atg gcg ccc ttc tac             |     | 912 |     |
| Gly Leu Glu His Ser Ser Asp Pro Ser Ala Ile Met Ala Pro Phe Tyr             |     |     |     |
| 290                                                                         | 295 | 300 |     |
| cag tac atg gag acg cac aac ttc aag ctg ccc cag gac gat ctc cag             |     | 960 |     |
| Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro Gln Asp Asp Leu Gln             |     |     |     |
| 305                                                                         | 310 | 315 | 320 |

|                                                                                                                                            |     |     |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|------|
| ggc atc cag aag atc tat gga ccc cca gcc gag cct ctg gag ccc aca<br>Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu Pro Leu Glu Pro Thr<br>325  | 330 | 335 | 1008 |      |
| agg cca ctc cct aca ctc ccc gtc cgcc agg atc cac tca cca tcg gag<br>Arg Pro Leu Pro Thr Leu Pro Val Arg Arg Ile His Ser Pro Ser Glu<br>340 | 345 | 350 | 1056 |      |
| agg aaa cac gag cgcc cag ccc agg ccc cct cgg ccg ccc ctc ggg gac<br>Arg Lys His Glu Arg Gln Pro Arg Pro Pro Arg Pro Pro Leu Gly Asp<br>355 | 360 | 365 | 1104 |      |
| cgg cca tcc aca cca ggc acc aaa ccc aac atc tgt gac ggc aac ttc<br>Arg Pro Ser Thr Pro Gly Thr Lys Pro Asn Ile Cys Asp Gly Asn Phe<br>370  | 375 | 380 | 1152 |      |
| aac aca gtg gcc ctc ttc cgg ggc gag atg ttt gtc ttt aag gat cgcc<br>Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe Val Phe Lys Asp Arg<br>385 | 390 | 395 | 400  | 1200 |
| tgg ttc tgg cgt ctg cgcc aat aac cga gtg cag gag ggc tac ccc atg<br>Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln Glu Gly Tyr Pro Met<br>405 | 410 | 415 | 1248 |      |
| cgg atc gag cag ttc tgg aag ggc ctg cct gcc cgcc atc gac gca gcc<br>Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala Arg Ile Asp Ala Ala<br>420 | 425 | 430 | 1296 |      |
| tat gaa agg gcc gat ggg aga ttt gtc ttc ttc aaa ggt gac aag tat<br>Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe Lys Gly Asp Lys Tyr<br>435  | 440 | 445 | 1344 |      |
| tgg gtg ttt aag gag gtg acg gtg gag cct ggg tac ccc cac agc ctg<br>Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly Tyr Pro His Ser Leu<br>450  | 455 | 460 | 1392 |      |
| ggg gag ctg ggc agc tgt ttg ccc cgt gaa ggc att gac aca gct ctg<br>Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly Ile Asp Thr Ala Leu<br>465  | 470 | 475 | 480  | 1440 |
| cgc tgg gaa cct gtg ggc aag acc tac ttt ttc aaa ggc gag cgcc tac<br>Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe Lys Gly Glu Arg Tyr<br>485 | 490 | 495 | 1488 |      |
| tgg cgc tac agc gag gag cgg cgg gcc acg gac cct ggc tac cct aag<br>Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp Pro Gly Tyr Pro Lys<br>500  | 505 | 510 | 1536 |      |
| ccc atc acc gtg tgg aag ggc atc cca cag gct ccc caa gga gcc ttc<br>Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala Pro Gln Gly Ala Phe<br>515  | 520 | 525 | 1584 |      |

|            |            |            |            |            |            |            |            |            |     |     |     |     |     |     |      |      |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|-----|-----|-----|-----|-----|------|------|
| atc        | agc        | aag        | gaa        | tat        | tac        | acc        | tat        | ttc        | tac | aag | ggc | cg  | gac | tac | 1632 |      |
| Ile        | Ser        | Lys        | Glu        | Gly        | Tyr        | Tyr        | Thr        | Tyr        | Phe | Tyr | Lys | Gly | Arg | Asp | Tyr  |      |
| 530        |            |            |            |            | 535        |            |            |            |     |     | 540 |     |     |     |      |      |
| tgg        | aag        | ttt        | gac        | aac        | cag        | aaa        | ctg        | agc        | gtg | gag | cca | ggc | tac | ccg | cgc  | 1680 |
| Trp        | Lys        | Phe        | Asp        | Asn        | Gln        | Lys        | Leu        | Ser        | Val | Glu | Pro | Gly | Tyr | Pro | Arg  |      |
| 545        |            |            |            |            |            |            | 550        |            |     | 555 |     |     |     | 560 |      |      |
| aac        | atc        | ctg        | cgt        | gac        | tgg        | atg        | ggc        | tgc        | aac | cag | aag | gag | gtg | gag | cg   | 1728 |
| Asn        | Ile        | Leu        | Arg        | Asp        | Trp        | Met        | Gly        | Cys        | Asn | Gln | Lys | Glu | Val | Glu | Arg  |      |
|            |            |            |            |            |            | 565        |            |            | 570 |     |     |     | 575 |     |      |      |
| cg         | aag        | gag        | cg         | cg         | ctg        | ccc        | cag        | gac        | gtg | gac | atc | atg | gtg | acc | 1776 |      |
| Arg        | Lys        | Glu        | Arg        | Arg        | Leu        | Pro        | Gln        | Asp        | Asp | Val | Asp | Ile | Met | Val | Thr  |      |
|            |            |            |            |            |            | 580        |            |            | 585 |     |     | 590 |     |     |      |      |
| atc        | aac        | gat        | gtg        | ccg        | ggc        | tcc        | gtg        | aac        | gcc | gtg | gcc | gtg | gtc | atc | ccc  | 1824 |
| Ile        | Asn        | Asp        | Val        | Pro        | Gly        | Ser        | Val        | Asn        | Ala | Val | Ala | Val | Val | Ile | Pro  |      |
|            |            |            |            |            |            | 595        |            |            | 600 |     |     | 605 |     |     |      |      |
| tgc        | atc        | ctg        | tcc        | ctc        | tgc        | atc        | ctg        | gtg        | ctg | gtc | tac | acc | atc | ttc | cag  | 1872 |
| Cys        | Ile        | Leu        | Ser        | Leu        | Cys        | Ile        | Leu        | Val        | Leu | Val | Tyr | Thr | Ile | Phe | Gln  |      |
|            |            |            |            |            |            | 610        |            |            | 615 |     |     | 620 |     |     |      |      |
| tgc        | aag        | aac        | aag        | aca        | ggc        | cct        | cag        | cct        | gtc | acc | tac | tat | aag | cg  | cca  | 1920 |
| Ph         | Lys        | Asn        | Lys        | Thr        | Gly        | Pro        | Gln        | Pro        | Val | Thr | Tyr | Tyr | Lys | Arg | Pro  |      |
|            |            |            |            |            |            | 620        |            |            | 630 |     |     | 635 |     |     | 640  |      |
| gtc        | cag        | gaa        | tgg        | gtg        | tgagcagccc | agagccctct | ctatccactt | ggtctggcca |     |     |     |     |     |     |      | 1975 |
| V          | Gln        | Glu        | Trp        | Val        |            |            |            |            |     |     |     |     |     |     |      |      |
|            |            |            |            |            | 645        |            |            |            |     |     |     |     |     |     |      |      |
| gt         | ggggccct   | tcctcaccag | ggtctgaggg | gagactctgg | ccagtgtca  | ccagggccag |            |            |     |     |     |     |     |     |      | 2035 |
| gt         | ggggcccta  | ggctggggtc | gtacagctga | agttgtgggt | gcattggcct | aggctgagcg |            |            |     |     |     |     |     |     |      | 2095 |
| gt         | ggggcaggg  | aattatgggg | gctgtgccc  | gggtgggtgt | ctggcaccca | gctgccagcc |            |            |     |     |     |     |     |     |      | 2155 |
| ttctgtctg  | ggcaaactac | tccctactta | aggaaatagg | ccaggctcca | tccggaggca |            |            |            |     |     |     |     |     |     |      | 2215 |
| gggaccatgc | caggaggagc | ccctgtggc  | acggcatcct | gtggtgtcca | tgaggtacca |            |            |            |     |     |     |     |     |     |      | 2275 |
| cagctccact | cctggctgga | accggcacc  | ctctgtggga | agccagcact | agctctcatc |            |            |            |     |     |     |     |     |     |      | 2335 |
| ccccatccgg | gagataccac | cagtcctgt  | cccctttgc  | caacacctgc | tggtcagatg |            |            |            |     |     |     |     |     |     |      | 2395 |
| tccccctacc | cccacccac  | tgtcctccaa | ggctacagga | cccctgcttc | tgacacagt  |            |            |            |     |     |     |     |     |     |      | 2455 |
| agcaacaagc | ctgggtttcc | ctgctggcag | acggcagatc | cctcaggaaa | cctgctccac |            |            |            |     |     |     |     |     |     |      | 2515 |
| ttgtcagggt | ctcttcggag | accaggatt  | tagggtcaca | tgctgcaggc | aggctgtgg  |            |            |            |     |     |     |     |     |     |      | 2575 |

cccagctggg tctgacaagg acccggtca catcgtaat attta 2620  
<210> 9  
<211> 21  
<212> DNA  
<213> Homo sapiens

<400> 9  
ggttcctctt gttccacttg g 21  
<210> 10  
<211> 35  
<212> DNA  
<213> Homo sapiens

<400> 10  
gttaggaattc gggttgttagg gaggtcgaca ttgcc 35  
<210> 11  
<211> 23  
<212> DNA  
<213> Homo sapiens  
<400> 11  
ggcaatgtcg acctccctac aac 23  
<210> 12  
<211> 22  
<212> DNA  
<213> Homo sapiens  
<400> 12  
ggagctgtct aaggccatca ca 22  
<210> 13  
<211> 23  
<212> DNA  
<213> Homo sapiens

<400> 13  
ctccctacaa cccgaattcc tac 23  
<210> 14  
<211> 20  
<212> DNA  
<213> Homo sapiens

<400> 14  
cttgtggca gatagggggc 20  
<210> 15  
<211> 21

<212> DNA  
<213> Homo sapiens

<400> 15  
cgcgccgagg acctcagcct g 21

<210> 16  
<211> 21  
<212> DNA  
<213> Homo sapiens

<400> 16  
ggttcctctt gttccacttg g 21

<210> 17  
<211> 2295  
<212> DNA  
<213> Homo sapiens

<400> 17  
aagagacaag aggtgccttg tggcagata gggggctggg agggggcctg cccggaagca 60  
gtgggtggccc gtggcaggct tctcactggg taggaccggg ccctctgttg cacccctca 120  
cctgctctc tgccctcagg agtggctaag cagttcggt tacctgcccc cggtgaccc 180  
cacaacaggg cagctgcaga cgcaagagga gctgtctaag gccatcacag ccatgcagca 240  
gtttggtggc ctggaggcca ccggcatcct ggacgaggcc accctggccc ttagaaaaac 300  
ccacgctgc tccctgccag acctccctgt cctgaccagg gctcgagga gacgccaggc 360  
tccagcccc accaagtgga acaagagggaa cctgtcgtgg agggtccgga cgttcccacg 420  
gactcacca ctggggcacg acacggtgcg tgcactcatg tactacgccc tcaaggtctg 480  
gagcgacatt gcgccttga acttccacga ggtggcgggc agcaccgccc acatccagat 540  
cgacttctcc aaggccgacc ataacgacgg ctaccccttc gacgcccggc ggcaccgtgc 600  
ccacgccttc ttccccggcc accaccacac cgccgggtac acccacttta acgatgacga 660  
ggcctggacc ttccgctcct cggatgccca cggatggac ctgtttgcag tggctgtcca 720  
cgagtttggc cacgccattg ggttaagcca tgtggccgct gcacactcca tcacgcggcc 780  
gtactaccag ggcccggtgg gtgaccggct ggcgtacggg ctcccctacg aggacaaggt 840  
gcgcgtctgg cagctgtacg gtgtgcggga gtctgtgtct cccacggcgc agcccgagga 900  
gcctccctg ctgccggagc cccagacaa ccggtccagc gccccggcca ggaaggacgt 960

gccccacaga tgcagcaactc actttgacgc ggtggcccg atccgggttg aagctttctt 1020  
cttcaaaggc aagtacttct ggccggctgac gcgggaccgg cacctggtgt ccctgcagcc 1080  
ggcacagatg caccgcttct ggccggggcct gccgctgcac ctggacagcg tggacgccgt 1140  
gtacgagcgc accagcgacc acaagatcg ttttttaaa ggagacaggt actgggtgtt 1200  
caaggacaat aacgttagagg aaggataccc gcgcggcg tcggacttca gcctcccgcc 1260  
tggcggcatc gacgctgcct ttcctggc ccacaatgac aggacttatt tttaagga 1320  
ccagctgtac tggcgctacg atgaccacac gaggcacatg gacccggct acccggcca 1380  
gagccccctg tggaggggtg tcccgacac gctggacgac gccatgcgct ggtccgacgg 1440  
tgccctctac ttcttcgtg gccaggagta ctggaaagtg ctggatggcg agctggaggt 1500  
ggcacccggg tacccacagt ccacggcccg ggactggctg gtgtgtggag actcacaggg 1560  
cgatggatct gtggctgcgg gcgtggacgc ggcagagggg ccccgccccc ctccaggaca 1620  
acatgaccag agccgctcg aggacggta cgaggtctgc tcatgcacct ctggggcatc 1680  
ctctcccccgg ggggccccag gccactggt ggctgccacc atgctgctgc tgctgccccc 1740  
actgtcacca ggccctgt ggacagcgcc ccaggccctg acgctatgac acacagcg 1800  
aggccatgag aggacagagg cggtggaca gcctggccac agagggcaag gactgtgccg 1860  
gatccctgg gggaggtgct ggccgggat gaggacggc caccctggca ccggaggcc 1920  
agcagagggc acggcccgcc agggctggc aggctcaggt ggcaaggacg gagctgtccc 1980  
ctagtgggg actgtgttga ctgacgagcc gaggggtggc cgctccagaa gggtgcccg 2040  
tcaggccca ccggcccgag ctcctccgg ccctggaggg agcatctcg gctggggcc 2100  
cacccctctc tgtgccggcg ccaccaaccc cacccacact gctgcctggt gctcccgcc 2160  
gcccacaggg cctccgtccc caggtccccca gtggggcagc cttcccaaca gacgagcccc 2220  
ccacatggtg ccgcggcactg tccccctgt gacgcgttcc agaccaacat gacctctccc 2280  
tgctttgttag cggcc

2295

<210> 18  
<211> 4014  
<212> DNA  
<213> Homo sapiens

<220>

<221> exon  
<222> (3148) .. (3280)

<220>  
<221> exon  
<222> (3564) .. (3633)

<400> 18  
ttctgttggg gtgtccctgg caaaacttagga agtggttccc accctctcac tccagcccc 60  
aagacggccc ctcccaggat gcctagcctg agatttgggg cacarcccct gagcacaaac 120  
tcgtgttagg taggaggcac ccaccagccc tgccccacag acccaccacc ccccaagatt 180  
cgatgccatt ctatgctcaa attccagtgc ctccctgggc cacaggcgac agtgcctgtt 240  
tatcatgggc ggggctgcct gtcccgggct ggtgccgggg ccctggttct atgagttgaa 300  
gcaggctggc cgctcacacc tgcaactaaa ccacctgctt ccaaacadttt ggcaacattc 360  
cacagccact gggagtgctg cctgccaggc ccggctccac tttcctgaaa tgcatgtggc 420  
cttgtggcca ggctgcccag ctccctgggg accagagtgg ggggtgcccc aaaccgcccac 480  
cgtaaacccc acagagtaaa tggccactc agtgcagcta ccagccatga cctcagctt 540  
tagacgggaa ggctgggggg tgagttgtcc tcccaagggg tctcagcacc tgctggccca 600  
acccaggcag cagctggcct gggtaaaa ggcacctgcc tgtgtggacc ctccctgg 660  
gagggggcag ggggtcatca tccaatatca tagatgtatgt gaggaaactc cagagtgcctt 720  
cgtggaggag gtgacaggct attgtAACCA tgaggcacag tggccctgtt gagctgtgtat 780  
cttaacaaag gactaaaaag tgcagaatgt gctgatggc atctccagca cctacagcgg 840  
tgactgatca tggcacaccc tcagtaaacc ctgcaggtgc aaggtatgtt gggaccggat 900  
gctcgcccccc aaagatcccc acaccctggg ggtcagggcg gaagtgggag gccagcttgt 960  
caaggccaag gctgtcaccc ccaaggcccc tccagagaag ctgcccaccc cagtcata 1020  
cgtccacttt gacgtcctgt cgtgcctata gctttggagg ggccccagt tctgtacaca 1080  
ctcttggctt ccccaagggg ctgaggggct gggctgggtc agtagggttt ggaaaggggg 1140  
taaaggcaca gagggggggcc ccgggaagga ctcagtgcctt cctggaaggga gaatctcg 1200  
gtgtgcagat cccatgtatgt gtcttgcgt gcccctcctg gccagcacgs cctggtgcgt 1260  
atgcccctgg gacttccagg atggtggtgc ctcattccct ctgagcactg cctgctgkgt 1320

ggcaggagg gttggccagg accacccat caccagctcc tgcagaccag aacctggagg 1380  
cccagcaggt ggcataawtg agtcacaagc attttcttt ttcttttcc tttttttt 1440  
tttaggattt cttaaaaag ttatgtttt ttcatttatg cattttta ggttaaggcca 1500  
catgaaacta ctagtattta tttaaatca gaaatggtca aaaatggca ctttcatatg 1560  
atttggccaa tgaatacatg agaggtggta aataatagcg attcacaagc atttctaaa 1620  
tgtccaggg aaaaaaaaaaag acaggtttgc aggcaaggca gagccccag cacatcaccc 1680  
ctggcttcta ccttcttgc gccgcctca cccctgctgt ggttccctgg gctggcgagt 1740  
atccacaggg cagagcagca gcttcatggc agcctgcaag tggcacagg cgccatttgg 1800  
cggttgaaga aactgaagct aggggtggag gtagccccca cagatggcac ccaggcctgc 1860  
catccccagg tccccacgt ggcacccagg tccccacaga tggcatccag gccccctgt 1920  
cccccaggcc cctccagggt agcagagatg actggggcat gggccaggg cttgattttat 1980  
ggccaggta aagggtgtgcc ctcattcctg ctcctactca gctccgggtgt ggtagccctt 2040  
ggccccaccc cagtggccc ttcagagcag agctgtcccc tgccgcaggt gctgggtgtga 2100  
acattttcca cgtcctggct cacgtcctca tcaccagcct gccaaggact ctgaggaagg 2160  
aqcccagagg ggtggactgc cttgccccag gcacacagcg gggaggtggc tgagtggat 2220  
ttggAACCTAG gcagcctggc tggaacctgg ctttgtttc tgagacaggg tctcgctctg 2280  
ttggcagacac agtctgcaac tcctgtgctc aaacgatcct cccgcctcag cctcccaaag 2340  
tggggatc tcaggcataa gccacagcac cggccaagcc tgggtctta tctccccat 2400  
gaatgtacag catggccaa ttccctaaac tgggtgtctga gccacagcct ttctcagctg 2460  
gggtcccaga cttggatgc tagacttccc tgtcacaagt cagctgagag cctgcatttgc 2520  
acactggcca catttaagag cttttgaag gttccctagc atttgcgggt ctcaggaggg 2580  
gtgggggtggg gcaggggtgc catgagtggt tgtacaggtc gtgcacggca caagctcaca 2640  
ccatctaagg gacatcagat ttatttattt attcatttt tagatggagt cttgctctgt 2700  
cgcccaggct ggagtgcagt ggcacgatct cggctcactg caagctccgc ctcctgggtt 2760  
cccaccactc tcctgcytca gcctcccgag tagctggac tacaggcacc tgccaccaca 2820  
cccggttaat ttttgtatt tttagtagag acggggttc accatattag ctaggatgg 2880

ctccatctcc tgacccatg atccgcctgc ctcggcctcc caaactgctg ggattacagg 2940  
cgtgagccac agcacccggc cagggacatc aggtttatta agacacttt ccggcagctg 3000  
cccagggaaag agacagagag gtgccttgc ggcagatagg gggctggag gggcctgcc 3060  
cggaagcagt gttggcccgt ggcaggcttc tcactggta ggaccggcc ctctgttgca 3120  
ccccctcacc ctgctctctg ccctcaggag tggctaagca ggtcggta cctgcccccg 3180  
gbtgacccca caacagggca gctgcagacg caagaggagc tgtctaaggc catcacagcc 3240  
atgcagcagt ttktgtggct ggaggchacc ggcattctgg gtcagttctc cagggggcag 3300  
cgggagcgcc gtgscccccgt tcaggtctgc gcccgtcggc catgccccct ctgatcaggc 3360  
acagtcccggt cttatgcttg aatgaacctg ggtcctggcc tggtagct cagacccctgg 3420  
ggctggtccc ccaaagatga cgtggagga gggsgcggct cggaggctgg tgccagagtc 3480  
aggtcccgcc ctttggggat gctcgggatc ctagggtggg gagtgagctg ggctaggctc 3540  
ttagctccat gctttccctg cagacgaggc caccttggcc ctgatgaaaa cccacgctg 3600  
ctccctgccca gaccccccgt gtcctgaccc caggtctcgc agggagacgc acaggtctcm 3660  
cggcccccm mcaagtggac acagagagga acctgtcgtg gaggtgggtg cgtggccagg 3720  
gtggaggagcg gggcctccgt ggaggtggsc gcgtggccag ggtgaggaac ggggtctccg 3780  
ttaggtggg cgctggccca ggggtgggaa cgggtctcc gtggaggcgg gtgcgtggcc 3840  
acggtaggaa acagggtctc cgtggaggtg ggcgcgtggc cagggtgggg aacgggtct 3900  
cgtggaggc gggtgcggtgg ccagggtgag gagtggggcc cccatgtctc cgtgtctggg 3960  
cctgctgttag atatcaagct tatcgatacc gtcgacccctg agggggghcc gtac 4014

<210> 19

<211> 21

<212> DNA

<213> Homo sapiens

<400> 19

aatctcccat cggccctttc a

21

<210> 20

<211> 20

<212> DNA

<213> Homo sapiens

<400> 20

atgcacggcc accaggaaga 20  
<210> 21  
<211> 20  
<212> DNA  
<213> Homo sapiens

<400> 21  
ggatcagaca acgatcgagt 20  
<210> 22  
<211> 20  
<212> DNA  
<213> Homo sapiens

<400> 22  
cagcttgaag ttgtgcgtct 20

SEQUENCE LISTING

<110> Seiki Motoharu

<120> DNA CODING FOR NOVEL POLYPEPTIDE

<130> 1241.18

<140> US 09/806,232

<141> 2001-03-28

<140> PCT/JP99/05349

<141> 1999-09-29

<150> JP10-276258

<151> 1998-09-29

<150> JP10-291505

<151> 1998-09-29

<160> 22

<170> PatentIn Ver. 2.0

<210> 1

<211> 587

<212> PRT

<213> Mouse

<400> 1

Met Gly Arg Arg Pro Arg Gly Pro Gly Ser Pro Arg Gly Pro Gly Pro  
1 5 10 15

Pro Arg Pro Gly Pro Gly Leu Pro Pro Leu Leu Leu Val Leu Ala Leu  
20 25 30

Ala Ala His Gly Gly Cys Ala Ala Pro Ala Pro Arg Ala Glu Asp Leu  
35 40 45

Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr Leu Pro Pro Ala  
50 55 60

Asp Pro Ala Ser Gly Gln Leu Gln Thr Gln Glu Glu Leu Ser Lys Ala  
65 70 75 80

Ile Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Thr Thr Gly Ile Leu

85

90

95

Asp Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg Cys Ser Leu Pro  
 100 105 110

Asp Leu Pro Pro Gly Ala Gln Ser Arg Arg Lys Arg Gln Thr Pro Pro  
 115 120 125

Pro Thr Lys Trp Ser Lys Arg Asn Leu Ser Trp Arg Val Arg Thr Phe  
 130 135 140

Pro Arg Asp Ser Pro Leu Gly Arg Asp Thr Val Arg Ala Leu Met Tyr  
 145 150 155 160

Tyr Ala Leu Lys Val Trp Ser Asp Ile Thr Pro Leu Asn Phe His Glu  
 165 170 175

Val Ala Gly Asn Ala Ala Asp Ile Gln Ile Asp Phe Ser Lys Ala Asp  
 180 185 190

His Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly Thr Val Ala His  
 195 200 205

Ala Phe Phe Pro Gly Asp His His Thr Ala Gly Asp Thr His Phe Asp  
 210 215 220

Asp Asp Glu Pro Trp Thr Phe Arg Ser Ser Asp Ala His Gly Met Asp  
 225 230 235 240

Leu Phe Ala Val Ala Val His Glu Phe Gly His Ala Ile Gly Leu Ser  
 245 250 255

His Val Ala Ala Pro Ser Ser Ile Met Gln Pro Tyr Tyr Gln Gly Pro  
 260 265 270

Val Gly Asp Pro Val Arg Tyr Gly Leu Pro Tyr Glu Asp Arg Val Arg  
 275 280 285

Val Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser Pro Thr Ala Gln  
 290 295 300

Leu Asp Thr Pro Glu Pro Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro  
 305 310 315 320

Asn Asn Arg Ser Ser Thr Pro Pro Gln Lys Asp Val Pro His Arg Cys  
325 330 335

Thr Ala His Phe Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe  
340 345 350

Phe Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val  
355 360 365

Ser Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu  
370 375 380

His Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys  
385 390 395 400

Ile Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn  
405 410 415

Val Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro  
420 425 430

Gly Gly Ile Asp Ala Val Phe Ser Trp Ala His Asn Asp Arg Thr Tyr  
435 440 445

Phe Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg Arg  
450 455 460

Met Asp Pro Gly Tyr Pro Ala Gln Gly Pro Leu Trp Arg Gly Val Pro  
465 470 475 480

Ser Met Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe  
485 490 495

Phe Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Ala  
500 505 510

Ala Pro Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly  
515 520 525

Glu Pro Leu Ala Asp Ala Glu Asp Val Gly Pro Gly Pro Gln Gly Arg  
530 535 540

Ser Gly Ala Gln Asp Gly Leu Ala Val Cys Ser Cys Thr Ser Asp Ala  
545 550 555 560

|       |              |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-------|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| His   | Arg          | Leu | Ala | Leu | Pro | Ser | Leu | Leu | Leu | Thr | Pro | Leu | Leu | Trp |     |
|       |              |     |     |     | 565 |     |     |     |     | 570 |     |     |     | 575 |     |
| Gly   | Leu          | Trp | Thr | Ser | Val | Ser | Ala | Lys | Ala | Ser |     |     |     |     |     |
|       |              |     |     |     | 580 |     |     |     |     | 585 |     |     |     |     |     |
| <210> | 2            |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <211> | 606          |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <212> | PRT          |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <213> | Homo sapiens |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <400> | 2            |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Met   | Arg          | Arg | Arg | Ala | Ala | Arg | Gly | Pro | Gly | Pro | Pro | Pro | Pro | Gly | Pro |
| 1     |              |     |     | 5   |     |     |     | 10  |     |     |     |     |     | 15  |     |
| Gly   | Leu          | Ser | Arg | Leu | Pro | Leu | Leu | Pro | Leu | Pro | Leu | Leu | Leu | Leu | Leu |
|       |              |     |     |     |     | 20  |     |     | 25  |     |     |     |     | 30  |     |
| Ala   | Leu          | Gly | Thr | Arg | Gly | Gly | Cys | Ala | Ala | Pro | Glu | Pro | Ala | Arg | Arg |
|       |              |     |     |     |     |     | 35  |     |     | 40  |     |     |     | 45  |     |
| Ala   | Glu          | Asp | Leu | Ser | Leu | Gly | Val | Glu | Trp | Leu | Ser | Arg | Phe | Gly | Tyr |
|       |              |     |     |     |     |     | 50  |     |     | 55  |     |     |     | 60  |     |
| Leu   | Pro          | Pro | Ala | Asp | Pro | Thr | Thr | Gly | Gln | Leu | Gln | Thr | Gln | Glu | Glu |
|       |              |     |     |     |     | 65  |     |     |     | 70  |     | 75  |     | 80  |     |
| Leu   | Ser          | Lys | Ala | Ile | Thr | Ala | Met | Gln | Gln | Phe | Gly | Gly | Leu | Glu | Ala |
|       |              |     |     |     |     |     | 85  |     |     | 90  |     |     |     | 95  |     |
| Thr   | Gly          | Ile | Leu | Asp | Glu | Ala | Thr | Leu | Ala | Leu | Met | Lys | Thr | Pro | Arg |
|       |              |     |     |     |     |     | 100 |     |     | 105 |     |     |     | 110 |     |
| Cys   | Ser          | Leu | Pro | Asp | Leu | Pro | Val | Leu | Thr | Gln | Ala | Arg | Arg | Arg | Arg |
|       |              |     |     |     |     |     | 115 |     |     | 120 |     |     |     | 125 |     |
| Gln   | Ala          | Pro | Ala | Pro | Thr | Lys | Trp | Asn | Lys | Arg | Asn | Leu | Ser | Trp | Arg |
|       |              |     |     |     |     |     | 130 |     |     | 135 |     |     |     | 140 |     |
| Val   | Arg          | Thr | Phe | Pro | Arg | Asp | Ser | Pro | Leu | Gly | His | Asp | Thr | Val | Arg |
|       |              |     |     |     |     |     |     | 145 |     |     | 150 |     |     | 155 |     |
| Ala   | Leu          | Met | Tyr | Tyr | Ala | Leu | Lys | Val | Trp | Ser | Asp | Ile | Ala | Pro | Leu |
|       |              |     |     |     |     |     |     | 165 |     |     | 170 |     |     | 175 |     |

Asn Phe His Glu Val Ala Gly Ser Thr Ala Asp Ile Gln Ile Asp Phe  
180 185 190

Ser Lys Ala Asp His Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly  
195 200 205

Thr Val Ala His Ala Phe Phe Pro Gly His His His Thr Ala Gly Asp  
210 215 220

Thr His Phe Asp Asp Asp Glu Ala Trp Thr Phe Arg Ser Ser Asp Ala  
225 230 235 240

His Gly Met Asp Leu Phe Ala Val Ala Val His Glu Phe Gly His Ala  
245 250 255

Ile Gly Leu Ser His Val Ala Ala Ala His Ser Ile Met Arg Pro Tyr  
260 265 270

Tyr Gln Gly Pro Val Gly Asp Pro Leu Arg Tyr Gly Leu Pro Tyr Glu  
275 280 285

Asp Lys Val Arg Val Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser  
290 295 300

Pro Thr Ala Gln Pro Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro Asp  
305 310 315 320

Asn Arg Ser Ser Ala Pro Pro Arg Lys Asp Val Pro His Arg Cys Ser  
325 330 335

Thr His Phe Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe Phe  
340 345 350

Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val Ser  
355 360 365

Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu His  
370 375 380

Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys Ile  
385 390 395 400

Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn Val  
405 410 415

Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro Gly  
420 425 430

Gly Ile Asp Ala Ala Phe Ser Trp Ala His Asn Asp Arg Thr Tyr Phe  
435 440 445

Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg His Met  
450 455 460

Asp Pro Gly Tyr Pro Ala Gln Ser Pro Leu Trp Arg Gly Val Pro Ser  
465 470 475 480

Thr Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe Phe  
485 490 495

Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Val Ala  
500 505 510

Pro Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly Asp  
515 520 525

Ser Gln Ala Asp Gly Ser Val Ala Ala Gly Val Asp Ala Ala Glu Gly  
530 535 540

Pro Arg Ala Pro Pro Gly Gln His Asp Gln Ser Arg Ser Glu Asp Gly  
545 550 555 560

Tyr Glu Val Cys Ser Cys Thr Ser Gly Ala Ser Ser Pro Pro Gly Ala  
565 570 575

Pro Gly Pro Leu Val Ala Ala Thr Met Leu Leu Leu Leu Pro Pro Leu  
580 585 590

Ser Pro Gly Ala Leu Trp Thr Ala Ala Gln Ala Leu Thr Leu  
595 600 605

<210> 3  
<211> 3517  
<212> DNA  
<213> Mouse

<220>  
<221> CDS  
<222> (86)..(1846)

<400> 3  
 ggcacgaggg cgccggagccg agcgaggcgc ggagctggct gctggcgggt gcggggaccc 60  
 tcgccacccg acctgggaga gcggg atg gga cgc cgc ccg cgg gga cct ggg 112  
                   Met Gly Arg Arg Pro Arg Gly Pro Gly  
                   1                       5  
 tcc ccc cgg gga cct ggc cct cca cgc ccc ggg ccg ggg ctg cca cca 160  
 Ser Pro Arg Gly Pro Gly Pro Pro Arg Pro Gly Pro Gly Leu Pro Pro  
   10                   15                   20                   25  
 ctg ctg ctt gta ctg gcg ctg gcg gcc cat ggg ggc tgc gca gcg ccc 208  
 Leu Leu Leu Val Leu Ala Leu Ala His Gly Gly Cys Ala Ala Pro  
   30                   35                   40  
 gcg ccc cgc gcg gag gac ctc agc ctc ggg gtg gag tgg cta agc agg 256  
 Ala Pro Arg Ala Glu Asp Leu Ser Leu Gly Val Glu Trp Leu Ser Arg  
   45                   50                   55  
 ttt ggc tac ctg ccg cct gca gat ccg gca tca ggg cag cta cag acc 304  
 Phe Gly Tyr Leu Pro Pro Ala Asp Pro Ala Ser Gly Gln Leu Gln Thr  
   60                   65                   70  
 cag gag gaa ctg tcc aaa gcg att act gcc atg cag cag ttt ggt ggt 352  
 Gln Glu Glu Leu Ser Lys Ala Ile Thr Ala Met Gln Gln Phe Gly Gly  
   75                   80                   85  
 cta gag acc act ggc atc cta gat gag gcc act ctg gcc ctg atg aaa 400  
 Leu Glu Thr Thr Gly Ile Leu Asp Glu Ala Thr Leu Ala Leu Met Lys  
   90                   95                   100                   105  
 acc cct cga tgc tcc ctt ccg gac ctg ccc cct ggg gcc caa tcg aga 448  
 Thr Pro Arg Cys Ser Leu Pro Asp Leu Pro Pro Gly Ala Gln Ser Arg  
   110                   115                   120  
 agg aag cgg cag act cca ccc cca acc aaa tgg agc aag agg aac ctt 496  
 Arg Lys Arg Gln Thr Pro Pro Pro Thr Lys Trp Ser Lys Arg Asn Leu  
   125                   130                   135  
 tct tgg agg gtc cgg aca ttc cca cgg gac tca ccc ctg ggc cgg gat 544  
 Ser Trp Arg Val Arg Thr Phe Pro Arg Asp Ser Pro Leu Gly Arg Asp  
   140                   145                   150  
 act gtg cgt gca ctc atg tac tac gcc ctc aaa gtc tgg agt gac atc 592

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Thr | Val | Arg | Ala | Leu | Met | Tyr | Tyr | Ala | Leu | Lys | Val | Trp | Ser | Asp | Ile |      |
| 155 |     |     |     |     | 160 |     |     |     |     | 165 |     |     |     |     |     |      |
| aca | ccc | ttg | aac | tgc | cac | gag | gtt | gct | ggc | aac | gct | gct | gac | atc | cag | 640  |
| Thr | Pro | Leu | Asn | Phe | His | Glu | Val | Ala | Gly | Asn | Ala | Ala | Asp | Ile | Gln |      |
| 170 |     |     |     |     | 175 |     |     |     |     | 180 |     |     |     |     | 185 |      |
| atc | gac | tcc | tcc | aag | gcc | gac | cac | aat | gac | ggc | tac | ccc | ttc | gat | ggc | 688  |
| Ile | Asp | Phe | Ser | Lys | Ala | Asp | His | Asn | Asp | Gly | Tyr | Pro | Phe | Asp | Gly |      |
|     |     |     |     |     | 190 |     |     |     | 195 |     |     |     |     | 200 |     |      |
| cct | ggt | ggc | acg | gtt | gcc | cac | gca | ttc | ttc | cct | ggt | gac | cac | cac | acg | 736  |
| Pro | Gly | Gly | Thr | Val | Ala | His | Ala | Phe | Phe | Pro | Gly | Asp | His | His | Thr |      |
|     |     |     |     |     | 205 |     |     |     | 210 |     |     |     | 215 |     |     |      |
| gca | ggg | gac | acc | cac | ttt | gat | gac | gat | gag | cca | tgg | acc | ttc | cgt | tcc | 784  |
| Ala | Gly | Asp | Thr | His | Phe | Asp | Asp | Asp | Glu | Pro | Trp | Thr | Phe | Arg | Ser |      |
|     |     |     |     |     | 220 |     |     |     | 225 |     |     |     | 230 |     |     |      |
| tca | gat | gcc | cac | ggg | atg | gac | ctg | ttt | gca | gtt | gcc | gtc | cat | gag | ttt | 832  |
| Ser | Asp | Ala | His | Gly | Met | Asp | Leu | Phe | Ala | Val | Ala | Val | His | Glu | Phe |      |
|     |     |     |     |     | 235 |     |     |     | 240 |     |     |     | 245 |     |     |      |
| ggt | cat | gcc | att | ggt | ctg | agc | cat | gtt | gcc | gcc | cca | agc | tcc | atc | atg | 880  |
| Gly | His | Ala | Ile | Gly | Leu | Ser | His | Val | Ala | Ala | Pro | Ser | Ser | Ile | Met |      |
|     |     |     |     |     | 250 |     |     |     | 255 |     |     |     | 260 |     | 265 |      |
| caa | ccg | tac | tac | cag | ggc | ccc | gtt | gac | ccc | gta | cgc | tat | gga | ctt |     | 928  |
| Gln | Pro | Tyr | Tyr | Gln | Gly | Pro | Val | Gly | Asp | Pro | Val | Arg | Tyr | Gly | Leu |      |
|     |     |     |     |     | 270 |     |     |     | 275 |     |     |     | 280 |     |     |      |
| ccc | tat | gag | gac | agg | gtt | cgt | gtc | tgg | cag | ttt | tac | ggt | gtt | cgg | gaa | 976  |
| Pro | Tyr | Glu | Asp | Arg | Val | Arg | Val | Trp | Gln | Leu | Tyr | Gly | Val | Arg | Glu |      |
|     |     |     |     |     | 285 |     |     |     | 290 |     |     |     | 295 |     |     |      |
| tcc | gtt | tcc | cct | act | gcc | cag | ctg | gat | acc | cca | gag | ccc | gag | gag | cca | 1024 |
| Ser | Val | Ser | Pro | Thr | Ala | Gln | Leu | Asp | Thr | Pro | Glu | Pro | Glu | Glu | Pro |      |
|     |     |     |     |     | 300 |     |     |     | 305 |     |     |     | 310 |     |     |      |
| ccc | ctc | ctg | cca | gag | ccc | ccc | aac | aat | cgg | tct | agc | act | ccg | ccc | cag | 1072 |
| Pro | Leu | Leu | Pro | Glu | Pro | Pro | Asn | Asn | Arg | Ser | Ser | Thr | Pro | Pro | Gln |      |
|     |     |     |     |     | 315 |     |     |     | 320 |     |     |     | 325 |     |     |      |
| aag | gac | gtt | cct | cac | agg | tgc | act | gcc | cac | ttt | gat | gct | gtt | gcc | cag | 1120 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Lys | Asp | Val | Pro | His | Arg | Cys | Thr | Ala | His | Phe | Asp | Ala | Val | Ala | Gln |      |
| 330 |     |     |     | 335 |     |     |     |     | 340 |     |     |     | 345 |     |     |      |
| att | cga | ggc | gaa | gca | ttc | ttt | ttc | aaa | ggc | aag | tat | ttc | tgg | agg | ctg | 1168 |
| Ile | Arg | Gly | Glu | Ala | Phe | Phe | Phe | Lys | Gly | Lys | Tyr | Phe | Trp | Arg | Leu |      |
|     |     |     |     | 350 |     |     |     |     | 355 |     |     |     | 360 |     |     |      |
| acc | cg  | gac | cga | cac | ttg | gtg | tcg | ctg | cag | ccg | gct | caa | atg | cat | cgc | 1216 |
| Thr | Arg | Asp | Arg | His | Leu | Val | Ser | Leu | Gln | Pro | Ala | Gln | Met | His | Arg |      |
|     |     |     |     | 365 |     |     |     | 370 |     |     |     | 375 |     |     |     |      |
| ttc | tgg | cg  | ggc | ctg | ccg | ctg | cac | ctg | gac | agt | gtg | gac | gcc | gtg | tat | 1264 |
| Phe | Trp | Arg | Gly | Leu | Pro | Leu | His | Leu | Asp | Ser | Val | Asp | Ala | Val | Tyr |      |
|     |     |     |     | 380 |     |     | 385 |     |     |     | 390 |     |     |     |     |      |
| gag | cgt | acc | agt | gac | cac | aag | att | gtc | ttc | ttc | aaa | gga | gac | aga | tac | 1312 |
| Glu | Arg | Thr | Ser | Asp | His | Lys | Ile | Val | Phe | Phe | Lys | Gly | Asp | Arg | Tyr |      |
|     |     |     |     | 395 |     |     | 400 |     |     |     | 405 |     |     |     |     |      |
| tgg | gtg | ttt | aag | gac | aac | aac | gta | gag | gaa | ggg | tac | ccg | cga | cct | gtc | 1360 |
| Trp | Val | Phe | Lys | Asp | Asn | Asn | Val | Glu | Glu | Gly | Tyr | Pro | Arg | Pro | Val |      |
|     |     |     |     | 410 |     |     | 415 |     |     | 420 |     |     | 425 |     |     |      |
| tcc | gac | ttc | agc | ctc | ccg | cca | ggt | ggc | atc | gat | gct | gtc | ttc | tcc | tgg | 1408 |
| Ser | Asp | Phe | Ser | Leu | Pro | Pro | Gly | Gly | Ile | Asp | Ala | Val | Phe | Ser | Trp |      |
|     |     |     |     | 430 |     |     | 435 |     |     |     | 440 |     |     |     |     |      |
| gcc | cac | aat | gac | agg | act | tat | ttc | ttt | aag | gac | cag | ctg | tac | tgg | cgc | 1456 |
| Ala | His | Asn | Asp | Arg | Thr | Tyr | Phe | Phe | Lys | Asp | Gln | Ieu | Tyr | Trp | Arg |      |
|     |     |     |     | 445 |     |     | 450 |     |     |     | 455 |     |     |     |     |      |
| tat | gat | gac | cac | aca | cg  | cg  | atg | gac | cct | ggc | tac | cct | gcc | cag | gga | 1504 |
| Tyr | Asp | Asp | His | Thr | Arg | Arg | Met | Asp | Pro | Gly | Tyr | Pro | Ala | Gln | Gly |      |
|     |     |     |     | 460 |     |     | 465 |     |     | 470 |     |     |     |     |     |      |
| ccc | ctg | tgg | aga | ggt | gtc | ccc | agc | atg | ttg | gat | gat | gcc | atg | cgc | tgg | 1552 |
| Pro | Leu | Trp | Arg | Gly | Val | Pro | Ser | Met | Leu | Asp | Asp | Ala | Met | Arg | Trp |      |
|     |     |     |     | 475 |     |     | 480 |     |     | 485 |     |     |     |     |     |      |
| tct | gat | ggt | gca | tcc | tat | ttc | ttc | cga | ggc | cag | gag | tac | tgg | aaa | gtg | 1600 |
| Ser | Asp | Gly | Ala | Ser | Tyr | Phe | Phe | Arg | Gly | Gln | Glu | Tyr | Trp | Lys | Val |      |
|     |     |     |     | 490 |     |     | 495 |     |     | 500 |     |     | 505 |     |     |      |
| ctg | gat | ggc | gag | ctg | gaa | gca | gcc | ccc | ggg | tac | cca | cag | tct | aca | gcc | 1648 |

|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
|-------------|------------|------------|------------|------------|------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Leu         | Asp        | Gly        | Glu        | Leu        | Glu        | Ala        | Ala | Pro | Gly | Tyr | Pro | Gln | Ser | Thr | Ala |      |
|             |            |            |            | 510        |            |            |     | 515 |     |     |     | 520 |     |     |     |      |
| cgc         | gac        | tgg        | ctg        | gta        | tgc        | ggt        | gag | ccg | ctg | gcg | gat | gct | gag | gat | gta | 1696 |
| Arg         | Asp        | Trp        | Leu        | Val        | Cys        | Gly        | Glu | Pro | Leu | Ala | Asp | Ala | Glu | Asp | Val |      |
|             |            |            |            | 525        |            |            |     | 530 |     |     |     | 535 |     |     |     |      |
| ggg         | cct        | gga        | ccc        | cag        | ggc        | cgc        | agt | ggg | gcc | caa | gat | ggt | ctg | gca | gta | 1744 |
| Gly         | Pro        | Gly        | Pro        | Gln        | Gly        | Arg        | Ser | Gly | Ala | Gln | Asp | Gly | Leu | Ala | Val |      |
|             |            |            |            | 540        |            |            |     | 545 |     |     |     | 550 |     |     |     |      |
| tgt         | tcc        | tgc        | act        | tca        | gac        | gca        | cac | agg | ttg | gca | ctg | cca | tct | ctg | ctg | 1792 |
| Cys         | Ser        | Cys        | Thr        | Ser        | Asp        | Ala        | His | Arg | Leu | Ala | Leu | Pro | Ser | Leu | Leu |      |
|             |            |            |            | 555        |            |            |     | 560 |     |     | 565 |     |     |     |     |      |
| ctt         | ctg        | act        | cca        | ctg        | ctg        | tgg        | ggc | ctg | tgg | acc | tca | gtc | tct | gcc | aag | 1840 |
| Leu         | Leu        | Thr        | Pro        | Leu        | Leu        | Trp        | Gly | Leu | Trp | Thr | Ser | Val | Ser | Ala | Lys |      |
|             |            |            |            | 570        |            |            |     | 575 |     |     | 580 |     |     | 585 |     |      |
| gca         | tcc        | tgagggcagt | gctagccttg | cgatcaagg  | agccagggga | gcagggacac |     |     |     |     |     |     |     |     |     | 1896 |
| Ala         | Ser        |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| actggccagt  | actcagcagg | acttgtgctc | caagcttccg | gtccctcgct | ctttccttcc |            |     |     |     |     |     |     |     |     |     | 1956 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| ttcccttcctt | gaacctcagg | gtgctgtgcc | atctgctgga | gtggcttcca | gctggacag  |            |     |     |     |     |     |     |     |     |     | 2016 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| gaagtcccac  | caagggcatc | catgcacacc | ttgcctaccc | ggagcagcca | taggcagctc |            |     |     |     |     |     |     |     |     |     | 2076 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| cccttccttc  | ctctgcacat | cacgctgctt | cggtgcaccc | tgcgggctg  | cccaagccca |            |     |     |     |     |     |     |     |     |     | 2136 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| gctgtcacaa  | ccccaggatg | ccttgtctgc | acctgagcgg | ctctgatggc | atctgcacgt |            |     |     |     |     |     |     |     |     |     | 2196 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| gggctgatga  | ggggcaaaca | ggggttcctc | gtggtatccg | tagggccac  | catgcctgtt |            |     |     |     |     |     |     |     |     |     | 2256 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| tcacaagtaa  | gagagttgat | ccccgatgg  | ggaaacaggg | tggagaaag  | gcacctaccc |            |     |     |     |     |     |     |     |     |     | 2316 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| agaagtctga  | tccactgccg | tttgcagcag | ccagcgccgt | atctgctgg  | ataggggacc |            |     |     |     |     |     |     |     |     |     | 2376 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| agtcacactc  | aggatctgcc | cacagattcc | cagatgctgg | caagggcct  | tgctccaact |            |     |     |     |     |     |     |     |     |     | 2436 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| accaggagca  | cagccaccc  | tccccgtcct | agataggta  | gccatggagg | ctgtgtcctg |            |     |     |     |     |     |     |     |     |     | 2496 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |
| ttatctccct  | ctctttggcc | aggagagcat | tgtgggtctc | cctcgggtgc | tgttgatgg  |            |     |     |     |     |     |     |     |     |     | 2556 |
|             |            |            |            |            |            |            |     |     |     |     |     |     |     |     |     |      |

ggggggggc gcccataagat atatttcttc atctgtcagt acccattgct tcagcaagat 2616  
gccccatata agttctggcc tgagaccctg cagcttggac tcacagctgt cccctcccc 2676  
gctgcagaag ggcttctaac acctggaata aaggtggcg ttcagtttag ggaaggagga 2736  
tggttggggg agcccagggt gatagcaagg gggagctgca gggataagtg tcagggtcct 2796  
cggggagtca tgacaatgtt accgcctaac ttggagatgt aggagctgtg cacggattgc 2856  
ttctctgggt gacaaacctc catggtccag aaaggggctg aggttgaacc caagatgggt 2916  
taatgagctc cagaaaggaa cagccaagtt caaagggtct gggacaagac gggctgagg 2976  
aacagggccca cccaggtagg cgtggctgta gggtaagcag tttctgtcat tggcacgag 3036  
atggaaaatta gtgatcacac gcacataccc ccctcccaa ctggcccggt cccatctcag 3096  
gttaagaaagg cttctgtcta cccaggcca gtttgagtg ttgtcaggat gagtgagcag 3156  
ctggcggggc ctaagttct accctccatt tcccaagcct ggccacaccc tagaccctg 3216  
tcagactagg caggacagag tcagggtag gggcatctga gtttccctg tcttggaaagc 3276  
cacccctactc tgccctcata tcaaagcacg ctcctatgtat gtcccatgtt gtccaccagc 3336  
ctgcaggaca cagatgtcct atacagcaac agggaaagtc caaaaatctt tgtcacatag 3396  
caatgaaaac cagacccgca ggctggagct gtctagatgc tgggtcaca ctcattttaa 3456  
aacccaaact cttataaaaa attttgtaca ctggaaaaaaaaaaaaaaaaaaaaaaa 3516

a 3517

<210> 4  
<211> 2423 2438  
<212> DNA  
<213> Homo sapiens

<220>  
<221> CDS  
<222> (100)..(1917)

<400> 4



|                                                                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |  |
|-----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|--|
| Arg                                                             | Asp | Ser | Pro | Leu | Gly | His | Asp | Thr | Val | Arg | Ala | Leu | Met | Tyr | Tyr  |  |
| 150                                                             |     |     |     | 155 |     |     |     |     | 160 |     |     |     | 165 |     |      |  |
| gcc ctc aag gtc tgg agc gac att gcg ccc ctg aac ttc cac gag gtg |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 642  |  |
| Ala                                                             | Leu | Lys | Val | Trp | Ser | Asp | Ile | Ala | Pro | Leu | Asn | Phe | His | Glu | Val  |  |
|                                                                 |     |     | 170 |     |     |     | 175 |     |     |     | 180 |     |     |     |      |  |
| gcg ggc agc acc gcc gac atc cag atc gac ttc tcc aag gcc gac cat |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 690  |  |
| Ala                                                             | Gly | Ser | Thr | Ala | Asp | Ile | Gln | Ile | Asp | Phe | Ser | Lys | Ala | Asp | His  |  |
|                                                                 |     |     | 185 |     |     |     | 190 |     |     |     | 195 |     |     |     |      |  |
| aac gac ggc tac ccc ttc gac ggc ccc ggc ggc acc gtg gcc cac gcc |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 738  |  |
| Asn                                                             | Asp | Gly | Tyr | Pro | Phe | Asp | Gly | Pro | Gly | Gly | Thr | Val | Ala | His | Ala  |  |
|                                                                 |     |     | 200 |     |     |     | 205 |     |     |     | 210 |     |     |     |      |  |
| ttc ttc ccc ggc cac cac acc gcc ggg gac acc cac ttt gac gat     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 786  |  |
| Phe                                                             | Phe | Pro | Gly | His | His | His | Thr | Ala | Gly | Asp | Thr | His | Phe | Asp | Asp  |  |
|                                                                 |     |     | 215 |     |     |     | 220 |     |     |     | 225 |     |     |     |      |  |
| gac gag gcc tgg acc ttc cgc tcc tcg gat gcc cac ggg atg gac ctg |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 834  |  |
| Asp                                                             | Glu | Ala | Trp | Thr | Phe | Arg | Ser | Ser | Asp | Ala | His | Gly | Met | Asp | Leu  |  |
|                                                                 |     |     | 230 |     |     |     | 235 |     |     |     | 240 |     |     | 245 |      |  |
| ttt gca gtg gct gtc cac gag ttt ggc cac gcc att ggg tta agc cat |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 882  |  |
| Phe                                                             | Ala | Val | Ala | Val | His | Glu | Phe | Gly | His | Ala | Ile | Gly | Leu | Ser | His  |  |
|                                                                 |     |     | 250 |     |     |     | 255 |     |     |     | 260 |     |     |     |      |  |
| gtg gcc gct gca cac tcc atc atg cgg ccg tac tac cag ggc ccg gtg |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 930  |  |
| Val                                                             | Ala | Ala | Ala | His | Ser | Ile | Met | Arg | Pro | Tyr | Tyr | Gln | Gly | Pro | Val  |  |
|                                                                 |     |     | 265 |     |     |     | 270 |     |     |     | 275 |     |     |     |      |  |
| ggc gac ccg ctg cgc tac ggg ctc ccc tac gag gac aag gtg cgc gtc |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 978  |  |
| Gly                                                             | Asp | Pro | Leu | Arg | Tyr | Gly | Leu | Pro | Tyr | Glu | Asp | Lys | Val | Arg | Val  |  |
|                                                                 |     |     | 280 |     |     |     | 285 |     |     |     | 290 |     |     |     |      |  |
| tgg cag ctg tac ggt gtg cgg gag tct gtg tct ccc acg gcg cag ccc |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1026 |  |
| Trp                                                             | Gln | Leu | Tyr | Gly | Val | Arg | Glu | Ser | Val | Ser | Pro | Thr | Ala | Gln | Pro  |  |
|                                                                 |     |     | 295 |     |     |     | 300 |     |     |     | 305 |     |     |     |      |  |
| gag gag cct ccc ctg ctg ccg gag ccc cca gac aac cgg tcc agc gcc |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1074 |  |
| Glu                                                             | Glu | Pro | Pro | Leu | Leu | Pro | Glu | Pro | Pro | Asp | Asn | Arg | Ser | Ser | Ala  |  |
|                                                                 |     |     | 310 |     |     |     | 315 |     |     |     | 320 |     |     | 325 |      |  |
| ccg ccc agg aag gac gtg ccc cac aga tgc agc act cac ttt gac gcg |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1122 |  |

|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |     |      |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----|------|
| Pro              | Pro             | Arg             | Lys             | Asp             | Val             | Pro             | His             | Arg             | Cys             | Ser             | Thr             | His             | Phe             | Asp             | Ala             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 330 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 335 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 340 |      |
| gtg              | gcc             | cag             | atc             | cg <sup>g</sup> | ggt             | gaa             | gct             | t <sup>c</sup>  | t <sup>c</sup>  | t <sup>c</sup>  | aaa             | ggc             | aag             | tac             | t <sup>c</sup>  |     | 1170 |
| Val              | Ala             | Gln             | Ile             | Arg             | Gly             | Glu             | Ala             | Phe             | Phe             | Phe             | Lys             | Gly             | Lys             | Tyr             | Phe             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 345 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 350 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 355 |      |
| tgg              | cg <sup>g</sup> | ctg             | acg             | cg <sup>g</sup> | gac             | cg <sup>g</sup> | cac             | ctg             | gt <sup>g</sup> | tcc             | ctg             | cag             | ccg             | gca             | cag             |     | 1218 |
| Trp              | Arg             | Leu             | Thr             | Arg             | Asp             | Arg             | His             | Leu             | Val             | Ser             | Leu             | Gln             | Pro             | Ala             | Gln             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 360 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 365 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 370 |      |
| atg              | cac             | cgc             | ttc             | tgg             | cg <sup>g</sup> | ggc             | ctg             | ccg             | ctg             | cac             | ctg             | gac             | agc             | gt <sup>g</sup> | gac             |     | 1266 |
| Met              | His             | Arg             | Phe             | Trp             | Arg             | Gly             | Leu             | Pro             | Leu             | His             | Leu             | Asp             | Ser             | Val             | Asp             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 375 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 380 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 385 |      |
| gcc              | gt <sup>g</sup> | ta <sup>c</sup> | ga <sup>g</sup> | cg <sup>c</sup> | ac <sup>c</sup> | agc             | ga <sup>c</sup> | ca <sup>c</sup> | aa <sup>g</sup> | atc             | gt <sup>c</sup> | ttc             | ttt             | aaa             | gga             |     | 1314 |
| Ala              | Val             | Tyr             | Glu             | Arg             | Thr             | Ser             | Asp             | His             | Lys             | Ile             | Val             | Phe             | Phe             | Lys             | Gly             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 390 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 395 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 400 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 405 |      |
| gac              | agg             | ta <sup>c</sup> | tg <sup>g</sup> | gt <sup>g</sup> | ttc             | aa <sup>g</sup> | ga <sup>c</sup> | aa <sup>t</sup> | aa <sup>c</sup> | gt <sup>a</sup> | ga <sup>g</sup> | ga <sup>a</sup> | gg <sup>a</sup> | ta <sup>c</sup> | cc <sup>g</sup> |     | 1362 |
| Asp              | Arg             | Tyr             | Trp             | Val             | Phe             | Lys             | Asp             | Asn             | Asn             | Val             | Glu             | Glu             | Gly             | Tyr             | Pro             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 410 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 415 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 420 |      |
| cg <sup>c</sup>  | ccc             | gt <sup>c</sup> | tcc             | ga <sup>c</sup> | ttc             | agc             | ctc             | ccg             | cct             | ggc             | ggc             | atc             | ga <sup>c</sup> | gct             | ggc             |     | 1410 |
| Arg              | Pro             | Val             | Ser             | Asp             | Phe             | Ser             | Leu             | Pro             | Pro             | Gly             | Gly             | Ile             | Asp             | Ala             | Ala             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 425 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 430 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 435 |      |
| t <sup>c</sup> c | tcc             | tgg             | ggc             | ca <sup>c</sup> | aa <sup>t</sup> | ga <sup>c</sup> | gg <sup>g</sup> | ac <sup>t</sup> | at <sup>t</sup> | ttc             | ttt             | aa <sup>g</sup> | ga <sup>c</sup> | ca <sup>c</sup> | tg <sup>g</sup> |     | 1458 |
| Phe              | Ser             | Trp             | Ala             | His             | Asn             | Asp             | Arg             | Thr             | Tyr             | Phe             | Phe             | Lys             | Asp             | Gln             | Leu             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 440 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 445 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 450 |      |
| tac              | tgg             | cg <sup>c</sup> | ta <sup>c</sup> | ga <sup>t</sup> | ga <sup>c</sup> | ca <sup>c</sup> | ac <sup>g</sup> | ag <sup>g</sup> | ca <sup>c</sup> | at <sup>g</sup> | ga <sup>c</sup> | cc <sup>c</sup> | gg <sup>c</sup> | ta <sup>c</sup> | cc <sup>c</sup> |     | 1506 |
| Tyr              | Trp             | Arg             | Tyr             | Asp             | Asp             | His             | Thr             | Arg             | His             | Met             | Asp             | Pro             | Gly             | Tyr             | Pro             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 455 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 460 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 465 |      |
| gcc              | cag             | agc             | ccc             | ctg             | tgg             | agg             | gg <sup>t</sup> | gt <sup>c</sup> | cc <sup>c</sup> | agc             | ac <sup>g</sup> | ctg             | ga <sup>c</sup> | ga <sup>c</sup> | gg <sup>c</sup> |     | 1554 |
| Ala              | Gln             | Ser             | Pro             | Leu             | Trp             | Arg             | Gly             | Val             | Pro             | Ser             | Thr             | Leu             | Asp             | Asp             | Ala             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 470 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 475 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 480 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 485 |      |
| atg              | cgc             | tgg             | tcc             | ga <sup>c</sup> | gg <sup>t</sup> | gg <sup>c</sup> | tcc             | ta <sup>c</sup> | ttc             | ttc             | cgt             | gg <sup>c</sup> | ca <sup>c</sup> | ga <sup>c</sup> | ga <sup>c</sup> |     | 1602 |
| Met              | Arg             | Trp             | Ser             | Asp             | Gly             | Ala             | Ser             | Tyr             | Phe             | Phe             | Arg             | Gly             | Gln             | Glu             | Tyr             |     |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 490 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 495 |      |
|                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 500 |      |
| tgg              | aaa             | gt <sup>g</sup> | ctg             | ga <sup>t</sup> | gg <sup>c</sup> | ga <sup>g</sup> | ctg             | ga <sup>g</sup> | gt <sup>g</sup> | gca             | ccc             | gg <sup>g</sup> | ta <sup>c</sup> | cc <sup>a</sup> | ca <sup>c</sup> |     | 1650 |

|                                                                                                     |     |     |      |
|-----------------------------------------------------------------------------------------------------|-----|-----|------|
| Trp Lys Val Leu Asp Gly Glu Leu Glu Val Ala Pro Gly Tyr Pro Gln                                     |     |     |      |
| 505                                                                                                 | 510 | 515 |      |
| tcc acg gcc cg <sup>g</sup> gac tgg ctg gtg tgt gga gac tca cag gcc gat gga                         |     |     | 1698 |
| Ser Thr Ala Arg Asp Trp Leu Val Cys Gly Asp Ser Gln Ala Asp Gly                                     |     |     |      |
| 520                                                                                                 | 525 | 530 |      |
| tct gtg gct gc <sup>g</sup> ggc gtg gac gc <sup>g</sup> gca gag ggg ccc cg <sup>c</sup> gcc cct cca |     |     | 1746 |
| Ser Val Ala Ala Gly Val Asp Ala Ala Glu Gly Pro Arg Ala Pro Pro                                     |     |     |      |
| 535                                                                                                 | 540 | 545 |      |
| gga caa cat gac cag agc cg <sup>c</sup> tcg gag gac ggt tac gag gtc tgc tca                         |     |     | 1794 |
| Gly Gln His Asp Gln Ser Arg Ser Glu Asp Gly Tyr Glu Val Cys Ser                                     |     |     |      |
| 550                                                                                                 | 555 | 560 | 565  |
| tgc acc tct ggg gca tcc tct ccc cc <sup>g</sup> ggg gcc cca gg <sup>c</sup> cca ctg gtg             |     |     | 1842 |
| Cys Thr Ser Gly Ala Ser Ser Pro Pro Gly Ala Pro Gly Pro Leu Val                                     |     |     |      |
| 570                                                                                                 | 575 | 580 |      |
| gct gcc acc atg ctg ctg ctg cc <sup>g</sup> cca ctg tca cca gg <sup>c</sup> gcc ctg                 |     |     | 1890 |
| Ala Ala Thr Met Leu Leu Leu Pro Pro Leu Ser Pro Gly Ala Leu                                         |     |     |      |
| 585                                                                                                 | 590 | 595 |      |
| tgg aca gc <sup>g</sup> gcc cag gcc ctg acg cta tgacacacag cg <sup>c</sup> gagccca                  |     |     | 1937 |
| Trp Thr Ala Ala Gln Ala Leu Thr Leu                                                                 |     |     |      |
| 600                                                                                                 | 605 |     |      |
| tg <sup>a</sup> aggaca gaggcggtgg gacagcctgg ccacagaggg caaggactgt gccggagtcc                       |     |     | 1997 |
| ct <sup>a</sup> ggggagg tgctggcg <sup>c</sup> ggatgaggac gggccaccct ggcaccggaa ggccagcaga           |     |     | 2057 |
| ggcacggcc cgccagg <sup>g</sup> gggcaggctc aggtggcaag gacggagctg tcccctagtg                          |     |     | 2117 |
| aggactgtg ttgactgacg agccgagggg tggccgctcc agaagggtgc ccagtcaggc                                    |     |     | 2177 |
| cgcaccgccc ccagcctcct ccggccctgg agggagcatc tcgggctggg ggcccacccc                                   |     |     | 2237 |
| tctctgtgcc ggccaccca accccaccca cactgctgcc tggtgctccc gccggcccac                                    |     |     | 2297 |
| aggcctccg tccccaggtc cccagtgggg cagccctccc cacagacgag ccccccacat                                    |     |     | 2357 |
| ggtgccgcgg cacgtccccct ctgtgacgcg ttccagacca acatgacctc tccctgcttt                                  |     |     | 2417 |
| gtaaaaaaaaaaaaaaa a                                                                                 |     |     | 2438 |

<210> 5  
<211> 618  
<212> PRT  
<213> Mouse

<400> 5  
Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Gln Ala Ser Arg  
1 5 10 15  
  
Trp Ser Gly Trp Arg Ala Pro Gly Arg Leu Leu Pro Leu Leu Pro Ala  
20 25 30  
  
Leu Cys Cys Leu Ala Ala Ala Gly Ala Gly Lys Pro Ala Gly Ala  
35 40 45  
  
Asp Ala Pro Phe Ala Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu  
50 55 60  
  
Leu Pro Tyr Glu Ser Arg Ala Ser Ala Leu His Ser Gly Lys Ala Leu  
65 70 75 80  
  
Glu Ser Ala Val Ser Thr Met Gln Gln Phe Tyr Gly Ile Pro Val Thr  
85 90 95  
  
Gly Val Leu Asp Gln Thr Thr Ile Glu Trp Met Lys Lys Pro Arg Cys  
100 105 110  
  
Gly Val Pro Asp His Pro His Leu Ser Arg Arg Arg Arg Asn Lys Arg  
115 120 125  
  
Tyr Ala Leu Thr Gly Gln Lys Trp Arg Gln Lys His Ile Thr Tyr Ser  
130 135 140  
  
Ile His Asn Tyr Thr Pro Lys Val Gly Glu Leu Asp Thr Arg Lys Ala  
145 150 155 160  
  
Ile Arg Gln Ala Phe Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe  
165 170 175  
  
Glu Glu Val Pro Tyr His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp  
180 185 190  
  
Ile Met Ile Phe Phe Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe

195

200

205

Asp Gly Glu Gly Gly Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly  
 210 215 220

Ile Gly Gly Asp Thr His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly  
 225 230 235 240

Asn Ala Asn His Asp Gly Asn Asp Leu Phe Leu Val Ala Val His Glu  
 245 250 255

Leu Gly His Ala Leu Gly Leu Glu His Ser Asn Asp Pro Ser Ala Ile  
 260 265 270

Met Ala Pro Phe Tyr Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro  
 275 280 285

Gln Asp Asp Leu Gln Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu  
 290 295 300

Pro Leu Glu Pro Thr Arg Pro Leu His Thr Leu Pro Val Arg Arg Ile  
 305 310 315 320

His Ser Pro Ser Glu Arg Lys His Glu Arg His Pro Arg Pro Pro Arg  
 325 330 335

Pro Pro Leu Gly Asp Arg Pro Ser Thr Pro Gly Ala Lys Pro Asn Ile  
 340 345 350

Cys Asp Gly Asn Phe Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe  
 355 360 365

Val Phe Lys Asp Arg Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln  
 370 375 380

Glu Gly Tyr Pro Met Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala  
 385 390 395 400

Arg Ile Asp Ala Ala Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe  
 405 410 415

Lys Gly Asp Lys Tyr Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly  
 420 425 430

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Pro | His | Ser | Leu | Gly | Glu | Leu | Gly | Ser | Cys | Leu | Pro | Arg | Glu | Gly |
|     |     |     |     | 435 |     |     | 440 |     |     |     |     | 445 |     |     |     |
| Ile | Asp | Thr | Ala | Leu | Arg | Trp | Glu | Pro | Val | Gly | Lys | Thr | Tyr | Phe | Phe |
|     | 450 |     |     |     | 455 |     |     |     | 460 |     |     |     |     |     |     |
| Lys | Gly | Glu | Arg | Tyr | Trp | Arg | Tyr | Ser | Glu | Glu | Arg | Arg | Ala | Thr | Asp |
|     | 465 |     |     |     | 470 |     |     | 475 |     |     |     |     | 480 |     |     |
| Pro | Gly | Tyr | Pro | Lys | Pro | Ile | Thr | Val | Trp | Lys | Gly | Ile | Pro | Gln | Ala |
|     |     |     | 485 |     |     |     | 490 |     |     |     |     | 495 |     |     |     |
| Pro | Gln | Gly | Ala | Phe | Ile | Ser | Lys | Glu | Gly | Tyr | Tyr | Thr | Tyr | Phe | Tyr |
|     |     |     | 500 |     |     |     | 505 |     |     |     | 510 |     |     |     |     |
| Lys | Gly | Arg | Asp | Tyr | Trp | Lys | Phe | Asp | Asn | Gln | Lys | Leu | Ser | Val | Glu |
|     |     |     | 515 |     |     | 520 |     |     |     | 525 |     |     |     |     |     |
| Pro | Gly | Tyr | Pro | Arg | Asn | Ile | Leu | Arg | Asp | Trp | Met | Gly | Cys | Lys | Gln |
|     |     |     | 530 |     |     | 535 |     |     | 540 |     |     |     |     |     |     |
| Lys | Glu | Val | Glu | Arg | Arg | Lys | Glu | Arg | Arg | Leu | Pro | Gln | Asp | Asp | Val |
|     | 545 |     |     | 550 |     |     |     | 555 |     |     |     | 560 |     |     |     |
| Asp | Ile | Met | Val | Thr | Ile | Asp | Asp | Val | Pro | Gly | Ser | Val | Asn | Ala | Val |
|     |     |     | 565 |     |     | 570 |     |     |     | 575 |     |     |     |     |     |
| Ala | Val | Val | Val | Pro | Cys | Thr | Leu | Ser | Leu | Cys | Leu | Leu | Val | Leu | Leu |
|     |     |     | 580 |     |     | 585 |     |     | 590 |     |     |     |     |     |     |
| Tyr | Thr | Ile | Phe | Gln | Phe | Lys | Asn | Lys | Ala | Gly | Pro | Gln | Pro | Val | Thr |
|     |     |     | 595 |     |     | 600 |     |     | 605 |     |     |     |     |     |     |
| Tyr | Tyr | Lys | Arg | Pro | Val | Gln | Glu | Trp | Val |     |     |     |     |     |     |
|     |     |     | 610 |     |     | 615 |     |     |     |     |     |     |     |     |     |

<210> 6  
<211> 645  
<212> PRT  
<213> Homo sapiens

<400> 6  
Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro Pro  
1 5 10 15

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Pro | Pro | Pro | Pro | Gly | Gln | Ala | Pro | Arg | Trp | Ser | Arg | Trp | Arg | Val | Pro |
|     |     |     |     |     |     |     | 20  |     | 25  |     |     |     | 30  |     |     |
| Gly | Arg | Leu | Leu | Leu | Leu | Leu | Leu | Pro | Ala | Leu | Cys | Cys | Leu | Pro | Gly |
|     |     |     |     |     |     |     |     | 35  |     | 40  |     |     | 45  |     |     |
| Ala | Ala | Arg | Ala | Ala | Ala | Ala | Ala | Gly | Ala | Gly | Asn | Arg | Ala | Ala |     |
|     |     |     |     |     |     |     |     | 50  |     | 55  |     |     | 60  |     |     |
| Val | Ala | Val | Ala | Val | Ala | Arg | Ala | Asp | Glu | Ala | Glu | Ala | Pro | Phe | Ala |
|     |     |     |     |     |     |     | 65  |     | 70  |     | 75  |     | 80  |     |     |
| Gly | Gln | Asn | Trp | Leu | Lys | Ser | Tyr | Gly | Tyr | Leu | Leu | Pro | Tyr | Asp | Ser |
|     |     |     |     |     |     |     | 85  |     |     | 90  |     |     | 95  |     |     |
| Arg | Ala | Ser | Ala | Leu | His | Ser | Ala | Lys | Ala | Leu | Gln | Ser | Ala | Val | Ser |
|     |     |     |     |     |     |     |     | 100 |     | 105 |     |     | 110 |     |     |
| Thr | Met | Gln | Gln | Phe | Tyr | Gly | Ile | Pro | Val | Thr | Gly | Val | Leu | Asp | Gln |
|     |     |     |     |     |     |     | 115 |     | 120 |     |     | 125 |     |     |     |
| Thr | Thr | Ile | Glu | Trp | Met | Lys | Lys | Pro | Arg | Cys | Gly | Val | Pro | Asp | His |
|     |     |     |     |     |     |     | 130 |     | 135 |     |     | 140 |     |     |     |
| Pro | His | Leu | Ser | Arg | Arg | Arg | Asn | Lys | Arg | Tyr | Ala | Leu | Thr | Gly |     |
|     |     |     |     |     |     |     | 145 |     | 150 |     |     | 155 |     | 160 |     |
| Gln | Lys | Trp | Arg | Gln | Lys | His | Ile | Thr | Tyr | Ser | Ile | His | Asn | Tyr | Thr |
|     |     |     |     |     |     |     | 165 |     |     | 170 |     |     | 175 |     |     |
| Pro | Lys | Val | Gly | Glu | Leu | Asp | Thr | Arg | Lys | Ala | Ile | Arg | Gln | Ala | Phe |
|     |     |     |     |     |     |     | 180 |     | 185 |     |     | 190 |     |     |     |
| Asp | Val | Trp | Gln | Lys | Val | Thr | Pro | Leu | Thr | Phe | Glu | Glu | Val | Pro | Tyr |
|     |     |     |     |     |     |     | 195 |     | 200 |     |     | 205 |     |     |     |
| His | Glu | Ile | Lys | Ser | Asp | Arg | Lys | Glu | Ala | Asp | Ile | Met | Ile | Phe | Phe |
|     |     |     |     |     |     |     | 210 |     | 215 |     |     | 220 |     |     |     |
| Ala | Ser | Gly | Phe | His | Gly | Asp | Ser | Ser | Pro | Phe | Asp | Gly | Glu | Gly | Gly |
|     |     |     |     |     |     |     |     |     | 225 |     | 230 |     | 235 |     | 240 |
| Phe | Leu | Ala | His | Ala | Tyr | Phe | Pro | Gly | Pro | Gly | Ile | Gly | Gly | Asp | Thr |
|     |     |     |     |     |     |     | 245 |     |     | 250 |     |     | 255 |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| His | Phe | Asp | Ser | Asp | Glu | Pro | Trp | Thr | Leu | Gly | Asn | Ala | Asn | His | Asp |
|     |     |     |     |     |     |     |     | 260 | 265 |     |     |     |     | 270 |     |
| Gly | Asn | Asp | Leu | Phe | Leu | Val | Ala | Val | His | Glu | Leu | Gly | His | Ala | Leu |
|     |     |     |     |     |     |     |     | 275 | 280 |     |     |     |     | 285 |     |
| Gly | Leu | Glu | His | Ser | Ser | Asp | Pro | Ser | Ala | Ile | Met | Ala | Pro | Phe | Tyr |
|     |     |     |     |     |     |     |     | 290 | 295 |     |     |     |     | 300 |     |
| Gln | Tyr | Met | Glu | Thr | His | Asn | Phe | Lys | Leu | Pro | Gln | Asp | Asp | Leu | Gln |
|     |     |     |     |     |     |     |     | 305 | 310 |     |     |     |     | 320 |     |
| Gly | Ile | Gln | Lys | Ile | Tyr | Gly | Pro | Pro | Ala | Glu | Pro | Leu | Glu | Pro | Thr |
|     |     |     |     |     |     |     |     | 325 | 330 |     |     |     |     | 335 |     |
| Arg | Pro | Leu | Pro | Thr | Leu | Pro | Val | Arg | Arg | Ile | His | Ser | Pro | Ser | Glu |
|     |     |     |     |     |     |     |     | 340 | 345 |     |     |     |     | 350 |     |
| Arg | Lys | His | Glu | Arg | Gln | Pro | Arg | Pro | Pro | Arg | Pro | Pro | Leu | Gly | Asp |
|     |     |     |     |     |     |     |     | 355 | 360 |     |     |     |     | 365 |     |
| Arg | Pro | Ser | Thr | Pro | Gly | Thr | Lys | Pro | Asn | Ile | Cys | Asp | Gly | Asn | Phe |
|     |     |     |     |     |     |     |     | 370 | 375 |     |     |     |     | 380 |     |
| Asn | Thr | Val | Ala | Leu | Phe | Arg | Gly | Glu | Met | Phe | Val | Phe | Lys | Asp | Arg |
|     |     |     |     |     |     |     |     | 385 | 390 |     |     |     |     | 400 |     |
| Trp | Phe | Trp | Arg | Leu | Arg | Asn | Asn | Arg | Val | Gln | Glu | Gly | Tyr | Pro | Met |
|     |     |     |     |     |     |     |     | 405 | 410 |     |     |     |     | 415 |     |
| Gln | Ile | Glu | Gln | Phe | Trp | Lys | Gly | Leu | Pro | Ala | Arg | Ile | Asp | Ala | Ala |
|     |     |     |     |     |     |     |     | 420 | 425 |     |     |     |     | 430 |     |
| Tyr | Glu | Arg | Ala | Asp | Gly | Arg | Phe | Val | Phe | Phe | Lys | Gly | Asp | Lys | Tyr |
|     |     |     |     |     |     |     |     | 435 | 440 |     |     |     |     | 445 |     |
| Trp | Val | Phe | Lys | Glu | Val | Thr | Val | Glu | Pro | Gly | Tyr | Pro | His | Ser | Leu |
|     |     |     |     |     |     |     |     | 450 | 455 |     |     |     |     | 460 |     |
| Gly | Glu | Leu | Gly | Ser | Cys | Leu | Pro | Arg | Glu | Gly | Ile | Asp | Thr | Ala | Leu |
|     |     |     |     |     |     |     |     | 465 | 470 |     |     |     |     | 480 |     |
| Arg | Trp | Glu | Pro | Val | Gly | Lys | Thr | Tyr | Phe | Phe | Lys | Gly | Glu | Arg | Tyr |
|     |     |     |     |     |     |     |     | 485 | 490 |     |     |     |     | 495 |     |

Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp Pro Gly Tyr Pro Lys  
500 505 510

Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala Pro Gln Gly Ala Phe  
515 520 525

Ile Ser Lys Glu Gly Tyr Tyr Thr Tyr Phe Tyr Lys Gly Arg Asp Tyr  
530 535 540

Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu Pro Gly Tyr Pro Arg  
545 550 555 560

Asn Ile Leu Arg Asp Trp Met Gly Cys Asn Gln Lys Glu Val Glu Arg  
565 570 575

Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val Asp Ile Met Val Thr  
580 585 590

Ile Asn Asp Val Pro Gly Ser Val Asn Ala Val Ala Val Val Ile Pro  
595 600 605

Cys Ile Leu Ser Leu Cys Ile Leu Val Leu Val Tyr Thr Ile Phe Gln  
610 615 620

Phe Lys Asn Lys Thr Gly Pro Gln Pro Val Thr Tyr Tyr Lys Arg Pro  
625 630 635 640

Val Gln Glu Trp Val  
645

<210> 7

<211> 4263

<212> DNA

<213> Mouse

<220>

<221> CDS

<222> (75)..(1928)

<400> 7

gcgggaggac ccggccggag ccgccgcccgc cgccgccccatcgcagccg ggccggccggg 60

ccccccgccgc cggg atg ccg agg agc cgg ggc ggc cgc gct gcg ccg ggc 110  
Met Pro Arg Ser Arg Gly Arg Ala Ala Pro Gly

1

5

10

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| cag | gcc | tgc | cgc | tgg | agc | ggc | tgg | cgg | gcc | ccg | ggg | cgg | ctg | ctg | ccg |     | 158 |
| Gln | Ala | Ser | Arg | Trp | Ser | Gly | Trp | Arg | Ala | Pro | Gly | Arg | Leu | Leu | Pro |     |     |
| 15  |     |     |     |     |     |     | 20  |     |     |     |     |     | 25  |     |     |     |     |
| ctg | ctg | ccc | gcg | ctc | tgc | tgc | ctc | gcg | gcg | gcg | ggg | gcc | ggg | aag |     | 206 |     |
| Leu | Leu | Pro | Ala | Leu | Cys | Cys | Leu | Ala | Ala | Ala | Ala | Gly | Ala | Gly | Lys |     |     |
| 30  |     |     |     |     |     |     | 35  |     |     |     |     | 40  |     |     |     |     |     |
| ccg | gcc | ggg | gcg | gac | gcg | ccc | ttc | gct | ggg | cag | aac | tgg | tta | aaa | tca |     | 254 |
| Pro | Ala | Gly | Ala | Asp | Ala | Pro | Phe | Ala | Gly | Gln | Asn | Trp | Leu | Lys | Ser |     |     |
| 45  |     |     |     |     |     |     | 50  |     |     |     | 55  |     |     | 60  |     |     |     |
| tat | ggc | tat | ctg | ctt | ccc | tat | gag | tgc | cgg | gca | tct | gcg | ttg | cat | tct |     | 302 |
| Tyr | Gly | Tyr | Leu | Leu | Pro | Tyr | Glu | Ser | Arg | Ala | Ser | Ala | Leu | His | Ser |     |     |
| 65  |     |     |     |     |     |     | 70  |     |     |     |     | 75  |     |     |     |     |     |
| ggg | aag | gcc | ttg | cag | tcc | gcg | gtc | tcc | act | atg | cag | cag | ttt | tac | ggg |     | 350 |
| Gly | Lys | Ala | Leu | Gln | Ser | Ala | Val | Ser | Thr | Met | Gln | Gln | Phe | Tyr | Gly |     |     |
| 80  |     |     |     |     |     |     | 85  |     |     |     |     | 90  |     |     |     |     |     |
| atc | cca | gtc | acc | ggt | gtg | ttg | gat | cag | aca | aca | atc | gag | tgg | atg | aag |     | 398 |
| Ile | Pro | Val | Thr | Gly | Val | Leu | Asp | Gln | Thr | Thr | Ile | Glu | Trp | Met | Lys |     |     |
| 95  |     |     |     |     |     |     | 100 |     |     |     | 105 |     |     |     |     |     |     |
| aaa | cct | cga | tgt | ggc | gtc | cct | gat | cat | ccc | cac | ttg | agc | agg | agg | agg |     | 446 |
| Lys | Pro | Arg | Cys | Gly | Val | Pro | Asp | His | Pro | His | Ile | Ser | Arg | Arg | Arg |     |     |
| 110 |     |     |     |     |     |     | 115 |     |     |     | 120 |     |     |     |     |     |     |
| aga | aat | aag | cga | tat | gcc | cta | act | gga | cag | aag | tgg | agg | cag | aaa | cac |     | 494 |
| Arg | Asn | Lys | Arg | Tyr | Ala | Leu | Thr | Gly | Gln | Lys | Trp | Arg | Gln | Lys | His |     |     |
| 125 |     |     |     |     |     |     | 130 |     |     | 135 |     |     | 140 |     |     |     |     |
| atc | acc | tac | agc | att | cac | aat | tat | acc | cca | aag | gtg | ggt | gag | ctg | gac |     | 542 |
| Ile | Thr | Tyr | Ser | Ile | His | Asn | Tyr | Thr | Pro | Lys | Val | Gly | Glu | Leu | Asp |     |     |
| 145 |     |     |     |     |     |     | 150 |     |     |     | 155 |     |     |     |     |     |     |
| aca | cgg | aag | gct | att | cgt | cag | gct | ttc | gat | gtg | tgg | cag | aag | gtg | act |     | 590 |
| Thr | Arg | Lys | Ala | Ile | Arg | Gln | Ala | Phe | Asp | Val | Trp | Gln | Lys | Val | Thr |     |     |
| 160 |     |     |     |     |     |     | 165 |     |     |     | 170 |     |     |     |     |     |     |
| cca | ctg | acc | ttt | gaa | gag | gtg | cca | tac | cat | gag | atc | aaa | agt | gac | cgg |     | 638 |
| Pro | Leu | Thr | Phe | Glu | Glu | Val | Pro | Tyr | His | Glu | Ile | Lys | Ser | Asp | Arg |     |     |

175

180

185

|                                                                  |     |     |      |
|------------------------------------------------------------------|-----|-----|------|
| aag gag gca gac atc atc ttc ttt gct tct ggt ttc cat ggt gac      |     |     | 686  |
| Lys Glu Ala Asp Ile Met Ile Phe Phe Ala Ser Gly Phe His Gly Asp  |     |     |      |
| 190                                                              | 195 | 200 |      |
| agc tcc cca ttt gat ggg gaa ggg gga ttc cta gcc cat gcc tac ttt  |     |     | 734  |
| Ser Ser Pro Phe Asp Gly Glu Gly Gly Phe Leu Ala His Ala Tyr Phe  |     |     |      |
| 205                                                              | 210 | 215 | 220  |
| cct ggc cca ggg atc gga gga gac act cac ttt gat tca gat gaa ccc  |     |     | 782  |
| Pro Gly Pro Gly Ile Gly Gly Asp Thr His Phe Asp Ser Asp Glu Pro  |     |     |      |
| 225                                                              | 230 | 235 |      |
| tgg acg cta gga aat gcc aac cat gat ggc aat gac ctc ttc ctg gtg  |     |     | 830  |
| Trp Thr Leu Gly Asn Ala Asn His Asp Gly Asn Asp Leu Phe Leu Val  |     |     |      |
| 240                                                              | 245 | 250 |      |
| gac gtg cat gaa ctg ggc cat gca ctg ggc ttg gag cac tct aat gac  |     |     | 878  |
| Ala Val His Glu Leu Gly His Ala Leu Gly Leu Glu His Ser Asn Asp  |     |     |      |
| 255                                                              | 260 | 265 |      |
| ccc agt gct atc atg gct ccc ttc tac caa tac atg gag aca cac aac  |     |     | 926  |
| Pro Ser Ala Ile Met Ala Pro Phe Tyr Gln Tyr Met Glu Thr His Asn  |     |     |      |
| 270                                                              | 275 | 280 |      |
| tcc aag cta ccg cag gac gat ctc cag ggc atc cag aag att tac gga  |     |     | 974  |
| Phe Lys Leu Pro Gln Asp Asp Leu Gln Gly Ile Gln Lys Ile Tyr Gly  |     |     |      |
| 285                                                              | 290 | 295 | 300  |
| ccc cca gct gag cct ctg gag ccc aca agg ccc ctc cat aca ctc ccg  |     |     | 1022 |
| Pro Pro Ala Glu Pro Leu Glu Pro Thr Arg Pro Leu His Thr Leu Pro  |     |     |      |
| 305                                                              | 310 | 315 |      |
| gtc cgc agg atc cac tcg ccg tct gag agg aag cac gag cggt cac cca |     |     | 1070 |
| Val Arg Arg Ile His Ser Pro Ser Glu Arg Lys His Glu Arg His Pro  |     |     |      |
| 320                                                              | 325 | 330 |      |
| agg ccc cca ccg ccg ccc ctt ggg gac ccg cca tcc act cca ggt gcc  |     |     | 1118 |
| Arg Pro Pro Arg Pro Pro Leu Gly Asp Arg Pro Ser Thr Pro Gly Ala  |     |     |      |
| 335                                                              | 340 | 345 |      |
| aaa ccc aac atc tgc gat ggc aac ttc aac aca gtg gcc ctc ttc cga  |     |     | 1166 |
| Lys Pro Asn Ile Cys Asp Gly Asn Phe Asn Thr Val Ala Leu Phe Arg  |     |     |      |

350

355

360

|                                                                                                                                           |     |     |     |      |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| ggg gag atg ttt gtg ttc aag gat cgc tgg ttc tgg cgc ctg cgc aat<br>Gly Glu Met Phe Val Phe Lys Asp Arg Trp Phe Trp Arg Leu Arg Asn<br>365 | 370 | 375 | 380 | 1214 |
| aac cgg gtg cag gaa ggc tac ccc atg cag atc gaa cag ttc tgg aag<br>Asn Arg Val Gln Glu Gly Tyr Pro Met Gln Ile Glu Gln Phe Trp Lys<br>385 | 390 |     | 395 | 1262 |
| ggc ctg ccc gcc cgc ata gac gca gcc tat gaa aga gct gac ggg aga<br>Gly Leu Pro Ala Arg Ile Asp Ala Ala Tyr Glu Arg Ala Asp Gly Arg<br>400 | 405 |     | 410 | 1310 |
| tcc gtc ttc ttc aaa gga gac aag tac tgg gtt ttc aaa gaa gtg acg<br>Phe Val Phe Phe Lys Gly Asp Lys Tyr Trp Val Phe Lys Glu Val Thr<br>415 | 420 |     | 425 | 1358 |
| gtg gaa cct ggg tac ccc cac agc ttg ggg gag ctg gga agc tgc ctg<br>Val Glu Pro Gly Tyr Pro His Ser Leu Gly Glu Leu Gly Ser Cys Leu<br>430 | 435 |     | 440 | 1406 |
| ccc cgt gaa gga att gac aca gct ctg cgc tgg gaa cct gtg ggc aaa<br>Pro Arg Glu Gly Ile Asp Thr Ala Leu Arg Trp Glu Pro Val Gly Lys<br>445 | 450 | 455 | 460 | 1454 |
| acc tac ttc ttc aaa ggc gaa cgg tac tgg cgc tac agc gag gag cgg<br>Thr Tyr Phe Phe Lys Gly Glu Arg Tyr Trp Arg Tyr Ser Glu Glu Arg<br>465 | 470 |     | 475 | 1502 |
| cga gcc aca gac cct ggc tac ccc aag ccc atc acc gtg tgg aag ggc<br>Arg Ala Thr Asp Pro Gly Tyr Pro Lys Pro Ile Thr Val Trp Lys Gly<br>480 | 485 |     | 490 | 1550 |
| atc ccg cag gct ccg caa ggg gcc ttc atc agc aag gaa gga tat tac<br>Ile Pro Gln Ala Pro Gln Gly Ala Phe Ile Ser Lys Glu Gly Tyr Tyr<br>495 | 500 |     | 505 | 1598 |
| acc tac ttc tac aaa ggc cgg gac tac tgg aag ttt gac aac cag aaa<br>Thr Tyr Phe Tyr Lys Gly Arg Asp Tyr Trp Lys Phe Asp Asn Gln Lys<br>510 | 515 |     | 520 | 1646 |
| ctg agc gtg gag cca ggc tac cca cgc aac atc ctg cgt gac tgg atg<br>Leu Ser Val Glu Pro Gly Tyr Pro Arg Asn Ile Leu Arg Asp Trp Met        |     |     |     | 1694 |

| 525                                                                                                                                                                                                       | 530 | 535 | 540 |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| ggc tgc aag cag aag gag gta gag cg <sup>g</sup> cgt aag gag cg <sup>g</sup> agg ctg ccc<br>Gly Cys Lys Gln Lys Glu Val Glu Arg Arg Lys Glu Arg Arg Leu Pro                                                | 545 | 550 | 555 | 1742 |
| cag gat gat gtg gac atc atg gtg acc atc gat gac gtg cca ggc tct<br>Gln Asp Asp Val Asp Ile Met Val Thr Ile Asp Asp Val Pro Gly Ser                                                                        | 560 | 565 | 570 | 1790 |
| gtg aac gct gtg gct gtg gtt gtc ccc tgc aca ctg tcc ctc tgc ctc<br>Val Asn Ala Val Ala Val Val Pro Cys Thr Leu Ser Leu Cys Leu                                                                            | 575 | 580 | 585 | 1838 |
| ctg gtg ctg ctc tac act atc ttc caa ttc aag aac aag gc <sup>g</sup> ggt cct<br>Leu Val Leu Leu Tyr Thr Ile Phe Gln Phe Lys Asn Lys Ala Gly Pro                                                            | 590 | 595 | 600 | 1886 |
| c <sup>a</sup> ccc gtc acc tac tat aag cg <sup>g</sup> ccg gtc cag gag tgg gta<br>Gln Pro Val Thr Tyr Tyr Lys Arg Pro Val Gln Glu Trp Val                                                                 | 605 | 610 | 615 | 1928 |
| t <sup>a</sup> g <sup>a</sup> gc <sup>g</sup> ccc agagccctct ctgtctaccc ggtctggcca gccaggccct tcctcaccag                                                                                                  |     |     |     | 1988 |
| g <sup>a</sup> gtctgagg <sup>g</sup> gcagctctag ccactgccca ctggggccag cagg <sup>g</sup> ctaag gcagggttcg                                                                                                  |     |     |     | 2048 |
| t <sup>a</sup> gttagctg aagtgg <sup>g</sup> gg tg <sup>a</sup> ctgg <sup>g</sup> tc tagg <sup>a</sup> tg <sup>g</sup> at <sup>g</sup> tc <sup>g</sup> t <sup>g</sup> g <sup>a</sup> gtgat <sup>g</sup> gt |     |     |     | 2108 |
| g <sup>a</sup> gttatgccc aggttgg <sup>g</sup> ta gctggcaccc ag <sup>a</sup> ctgcc <sup>g</sup> ac cttctgtcct gggcagacct                                                                                   |     |     |     | 2168 |
| ctctctactc aaggaaatag gccaggccct gtcaggagtc aaggatgg <sup>g</sup> t <sup>g</sup> ccaggaggt <sup>g</sup>                                                                                                   |     |     |     | 2228 |
| cccctgaggt cattgc <sup>a</sup> tcc tgtggtgtct gcaagatacc acagctccag tcctggctgg                                                                                                                            |     |     |     | 2288 |
| gacc <sup>a</sup> c <sup>g</sup> ccc tctgaggcaa gccagcacta gctctcaccc caccccaaga tgccaccaat                                                                                                               |     |     |     | 2348 |
| ccc <sup>a</sup> gtcccc tctgccaaca cctgctgg <sup>g</sup> tc agatgtcccc tc <sup>a</sup> tccctac cctactatcc                                                                                                 |     |     |     | 2408 |
| tccagg <sup>a</sup> ctg cagtccccct gatgccaaca gagtgg <sup>g</sup> caa aagcctgggt ttcccctgct                                                                                                               |     |     |     | 2468 |
| agcccataga gagattc <sup>a</sup> tc aggaaac <sup>g</sup> ctg ttccacccgt cagg <sup>a</sup> tctcct ctgagactca                                                                                                |     |     |     | 2528 |
| gaacttaggg tcacatgctg caggcaaggc tgtggcc <sup>g</sup> agc tggatctcac aaggacccag                                                                                                                           |     |     |     | 2588 |

ctgtcatgtc gtgaatattt aaatgtcctg tcactactgt ttaaagtccc atttgcaaa 2648  
ggctacttga ggcttaggt cagctagagg tgactgtctt ggtgatgagg ccagtatgg 2708  
ggcccttccc cgggcactaa ggaccacggt gctgcaaagg ccactcgggc atcctgatac 2768  
tagcgggcat cctgttcagg aggctcaaca gctacaggag ctgaccctgg ttctggggc 2828  
ggatgcaagt ttgtgaccat tctctactcc ccctcattaa tttgtcccc tgccctgctc 2888  
cagcctgtcc tctgtggcct ggggctcgg cctgactaca ggtaaagcag agaggattct 2948  
agagccaccc ttgtcatctt ctcagagtaa gggaccaggg cagccttta agttctccat 3008  
ctacatcccc agtgaccctg aggcaactca gctccagcct ggagtcggtg tttgtgctcc 3068  
tafcattgacc ctggcagccc aggtctctgg gtccatcttc ctgcactgct ctttagaaaa 3128  
gggtcctctt cccagctggt agcagccca ggcttgggg tttcccccaa ctccctaacc 3188  
caactacct ttttgttgtt tgtttaacc tgaggccctt cttcacatct gacagttcct 3248  
aagtcttggt ttggcttgct ccaaaaccac tgggtgcaag tgtcaactcac tggctctctg 3308  
ccaaacccaa cggtggtacg aggccggcat caaggtgcta gtgggtcaca gataccaact 3368  
ctgacctctg agcctgcatg ggcttgcctt ctgccctgtg gtctctcgcc ctgttagcaca 3428  
gacagagact ctcgatgccc tggagttgt ttagtaaat ctcttgccc agaagcacct 3488  
atgtgggtcc actgtgtccc atctcaccat tgtgttcttgc ctcattttgg ccaaggcag 3548  
gctccctggg gcaggcgggg aacaactgca gagatttagt gattcatagg tttgtacagc 3608  
gttttatact ttgcaaagca ctttattagc tcacagctgt ccactcacat gaaactcctg 3668  
taggctctga gagaggctga gggtagcact catcttaccc tcagatgaag cacaaggagg 3728  
tcttattatc tgcccctgccc atccagggtgg ccctgggtgg gtcttgtgtc cccatcagt 3788  
ggcccttcca gggtccaaga aaactgtctc ttcttagtcct ctcctctggg cctccctccc 3848  
ccagtccctt ggtccctctc ctcaggttgg tgctcaattc ttgaaagctc taggccccgc 3908

aggctccctg ttggctcctg gcattccaag gccagttgcg aaagagcagg ggatggaggc 3968  
 aggcagccca ggctgcagat gtgagggaca cagggccggg cccagagagg gctcagccta 4028  
 gagggcttcca atcttggatt cttctgcctg cggtcatctg tttgtccatc agcccagggtc 4088  
 agagcagtca gagggggcaaa gtactggagc ccccagagct cagcttcccc tcggcctggg 4148  
 tgacatcaca gcatctcagt gtcggtcaca ttttaaactg atcagcctt gtacaatgtt 4208  
 ttttaaatca tttctaaata aaacagaaat acagtgttaa aaaaaaaaaa aaaaaa 4263  
  
 <210> 8  
 <211> 2620  
 <212> DNA  
 <213> Homo sapiens  
  
 <220>  
 <221> CDS  
 <222> (1)..(1935)  
  
 <400> 8  
 atg ccg agg agc cgg ggc ggc cgcc ggc ggc ccg ggg ccg ccg ccg ccg 48  
 Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro Pro  
                   5                     10                     15  
  
 ccg ccg ccg ggc cag gcc ccg cgc tgg agc cgc tgg cgg gtc cct 96  
 Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro  
                   20                  25                     30  
  
 ggg cgg ctg ctg ctg ctg ctg ccc gcg ctc tgc tgc ctc ccg ggc 144  
 Gly Arg Leu Leu Leu Leu Leu Pro Ala Leu Cys Cys Leu Pro Gly  
                   35                  40                     45  
  
 gcc gcg cgg gcg gcg gcg gcg gcg ggg gca ggg aac cgg gca gcg 192  
 Ala Ala Arg Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala  
                   50                  55                     60  
  
 gtg gcg gtg gcg gtg gcg cgg gcg gac gag gcg gag gcg ccc ttc gcc 240  
 Val Ala Val Ala Val Ala Arg Ala Asp Glu Ala Glu Ala Pro Phe Ala  
                   65                  70                     75                  80  
  
 ggg cag aac tgg tta aag tcc tat ggc tat ctg ctt ccc tat gac tca 288  
 Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu Leu Pro Tyr Asp Ser

| 85                                                                                                                                                                                 | 90  | 95  |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| cg <del>g</del> gca tct gc <del>g</del> ctg cac tca gc <del>g</del> aag gcc ttg cag tc <del>g</del> gca gtc tcc<br>Arg Ala Ser Ala Leu His Ser Ala Lys Ala Leu Gln Ser Ala Val Ser |     |     | 336 |
| 100                                                                                                                                                                                | 105 | 110 |     |
| act atg cag cag ttt tac ggg atc cc <del>g</del> gtc acc ggt gt <del>g</del> ttg gat cag<br>Thr Met Gln Gln Phe Tyr Gly Ile Pro Val Thr Gly Val Leu Asp Gln                         |     |     | 384 |
| 115                                                                                                                                                                                | 120 | 125 |     |
| aca acg atc gag tgg atg aag aaa ccc cga tgt ggt gtc cct gat cac<br>Thr Thr Ile Glu Trp Met Lys Lys Pro Arg Cys Gly Val Pro Asp His                                                 |     |     | 432 |
| 130                                                                                                                                                                                | 135 | 140 |     |
| ccc cac tta agc cgt agg cg <del>g</del> aga aac aag cgc tat gcc ctg act gga<br>Pro His Leu Ser Arg Arg Arg Asn Lys Arg Tyr Ala Leu Thr Gly                                         |     |     | 480 |
| 145                                                                                                                                                                                | 150 | 155 | 160 |
| c <del>g</del> aag tgg agg caa aaa cac atc acc tac agc att cac aac tat acc<br>Gln Lys Trp Arg Gln Lys His Ile Thr Tyr Ser Ile His Asn Tyr Thr                                      |     |     | 528 |
| 165                                                                                                                                                                                | 170 | 175 |     |
| c <del>g</del> aaa gt <del>g</del> ggt gag cta gac ac <del>g</del> cg <del>g</del> aaa gct att cgc cag gct ttc<br>Pro Lys Val Gly Glu Leu Asp Thr Arg Lys Ala Ile Arg Gln Ala Phe  |     |     | 576 |
| 180                                                                                                                                                                                | 185 | 190 |     |
| gat gt <del>g</del> tgg cag aag gt <del>g</del> acc cca ctg acc ttt gaa gag gt <del>g</del> cca tac<br>Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe Glu Glu Val Pro Tyr             |     |     | 624 |
| 195                                                                                                                                                                                | 200 | 205 |     |
| cat gag atc aaa agt gac cg <del>g</del> aag gag gca gac atc atg atc ttt ttt<br>His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp Ile Met Ile Phe Phe                                     |     |     | 672 |
| 210                                                                                                                                                                                | 215 | 220 |     |
| gct tct ggt ttc cat ggc gac agc tcc cca ttt gat gga gaa ggg gga<br>Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe Asp Gly Glu Gly Gly                                                 |     |     | 720 |
| 225                                                                                                                                                                                | 230 | 235 | 240 |
| t <del>tc</del> ctg gcc cat gcc tac ttc cct ggc cca ggg att gga gga gac acc<br>Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly Ile Gly Gly Asp Thr                                     |     |     | 768 |
| 245                                                                                                                                                                                | 250 | 255 |     |
| cac ttt gac tcc gat gag cca tgg acg cta gga aac gcc aac cat gac<br>His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly Asn Ala Asn His Asp                                                 |     |     | 816 |

| 260                                                                                                                                       | 265 | 270 |      |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|
| ggg aac gac ctc ttc ctg gtg gct gtg cat gag ctg ggc cac gcg ctg<br>Gly Asn Asp Leu Phe Leu Val Ala Val His Glu Leu Gly His Ala Leu<br>275 | 280 | 285 | 864  |
| gga ctg gag cac tcc agc gac ccc agc gcc atc atg gcg ccc ttc tac<br>Gly Leu Glu His Ser Ser Asp Pro Ser Ala Ile Met Ala Pro Phe Tyr<br>290 | 295 | 300 | 912  |
| cag tac atg gag acg cac aac ttc aag ctg ccc cag gac gat ctc cag<br>Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro Gln Asp Asp Leu Gln<br>305 | 310 | 315 | 960  |
| ggc atc cag aag atc tat gga ccc cca gcc gag cct ctg gag ccc aca<br>Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu Pro Leu Glu Pro Thr<br>325 | 330 | 335 | 1008 |
| agg cca ctc cct aca ctc ccc gtc cgc agg atc cac tca cca tcg gag<br>Arg Pro Leu Pro Thr Leu Pro Val Arg Arg Ile His Ser Pro Ser Glu<br>340 | 345 | 350 | 1056 |
| agg aaa cac gag cgc cag ccc agg ccc cct cgg ccg ccc ctc ggg gac<br>Arg Lys His Glu Arg Gln Pro Arg Pro Pro Arg Pro Pro Leu Gly Asp<br>355 | 360 | 365 | 1104 |
| cgg cca tcc aca cca ggc acc aaa ccc aac atc tgt gac ggc aac ttc<br>Arg Pro Ser Thr Pro Gly Thr Lys Pro Asn Ile Cys Asp Gly Asn Phe<br>370 | 375 | 380 | 1152 |
| aac aca gtg gcc ctc ttc cgg ggc gag atg ttt gtc ttt aag gat cgc<br>Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe Val Phe Lys Asp Arg<br>385 | 390 | 395 | 1200 |
| tgg ttc tgg cgt ctg cgc aat aac cga gtg cag gag ggc tac ccc atg<br>Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln Glu Gly Tyr Pro Met<br>405 | 410 | 415 | 1248 |
| cag atc gag cag ttc tgg aag ggc ctg cct gcc cgc atc gac gca gcc<br>Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala Arg Ile Asp Ala Ala<br>420 | 425 | 430 | 1296 |
| tat gaa agg gcc gat ggg aga ttt gtc ttc ttc aaa ggt gac aag tat<br>Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe Lys Gly Asp Lys Tyr        |     |     | 1344 |

| 435                                                                                                                                       | 440 | 445 |      |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|
| tgg gtg ttt aag gag gtg acg gtg gag cct ggg tac ccc cac agc ctg<br>Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly Tyr Pro His Ser Leu<br>450 | 455 | 460 | 1392 |
| ggg gag ctg ggc agc tgt ttg ccc cgt gaa ggc att gac aca gct ctg<br>Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly Ile Asp Thr Ala Leu<br>465 | 470 | 475 | 1440 |
| cgc tgg gaa cct gtg ggc aag acc tac ttt ttc aaa ggc gag cgg tac<br>Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe Lys Gly Glu Arg Tyr<br>485 | 490 | 495 | 1488 |
| tgg cgc tac agc gag gag cgg cgg gcc acg gac cct ggc tac cct aag<br>Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp Pro Gly Tyr Pro Lys<br>500 | 505 | 510 | 1536 |
| ccg atc acc gtg tgg aag ggc atc cca cag gct ccc caa gga gcc ttc<br>Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala Pro Gln Gly Ala Phe<br>515 | 520 | 525 | 1584 |
| atc agc aag gaa gga tat tac acc tat ttc tac aag ggc cgg gac tac<br>Ile Ser Lys Glu Gly Tyr Tyr Thr Phe Tyr Lys Gly Arg Asp Tyr<br>530     | 535 | 540 | 1632 |
| tgg aag ttt gac aac cag aaa ctg agc gtg gag cca ggc tac ccg cgc<br>Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu Pro Gly Tyr Pro Arg<br>545 | 550 | 555 | 1680 |
| aac atc ctg cgt gac tgg atg ggc tgc aac cag aag gag gtg gag cgg<br>Asn Ile Leu Arg Asp Trp Met Gly Cys Asn Gln Lys Glu Val Glu Arg<br>565 | 570 | 575 | 1728 |
| cgg aag gag cgg cgg ctg ccc cag gac gac gtg gac atc atg gtg acc<br>Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val Asp Ile Met Val Thr<br>580 | 585 | 590 | 1776 |
| atc aac gat gtg ccg ggc tcc gtg aac gcc gtg gcc gtg gtc atc ccc<br>Ile Asn Asp Val Pro Gly Ser Val Asn Ala Val Ala Val Val Ile Pro<br>595 | 600 | 605 | 1824 |
| tgc atc ctg tcc ctc tgc atc ctg gtg ctg gtc tac acc atc ttc cag<br>Cys Ile Leu Ser Leu Cys Ile Leu Val Leu Val Tyr Thr Ile Phe Gln        |     |     | 1872 |

610

615

620

ttc aag aac aag aca ggc cct cag cct gtc acc tac tat aag cgg cca 1920  
 Phe Lys Asn Lys Thr Gly Pro Gln Pro Val Thr Tyr Tyr Lys Arg Pro  
 625 630 635 640

gtc cag gaa tgg gtg tgagcagccc agagccctct ctatccactt ggtctggcca 1975  
 Val Gln Glu Trp Val  
 645

gccaggccct tcctcaccag ggtctgaggg gcagctctgg ccagtgctca ccagggccag 2035

cagggcccta ggctgggtc gtacagctga agttgtgggt gcattggcct aggctgagcg 2095

tggggcaggg aattatgggg gctgtgccca gggtgtgggt ctggcaccca gctgccagcc 2155

tttgtcctg ggcaaactac tccctactta aggaaatagg ccaggctcca tccggaggca 2215

gggaccatgc caggaggagc ccctgtggtc acggcatcct gtggtgtcca tgaggtacca 2275

cagctccact cctggctgga acccggcacc ctctgtggga agccagcact agctctcatc 2335

ccccatccgg gagataccac cagtcctggc cccctttgc caacacctgc tggcagatg 2395

tcccccctacc cccacccac tgtcctccaa ggctacagga cccctgcttc tgacacagt 2455

aggaaacaagc ctgggtttcc ctgctggcag acggcagatc cctcaggaaa cctgctccac 2515

tttgtcaggg ctcttcggag acccaggatt tagggtcaca tgctgcaggc agggctgtgg 2575

cccaagctggg tctgacaagg acccgtgtca catcgtaat attta 2620

<210> 9

<211> 21

<212> DNA

<213> Homo sapiens

<400> 9

ggttcctctt gttccacttg g

21

<210> 10

<211> 35

<212> DNA

<213> Homo sapiens

<400> 10  
gttaggaattc gggttttagg gaggtcgaca ttgcc 35

<210> 11  
<211> 23  
<212> DNA  
<213> Homo sapiens

<400> 11  
ggcaatgtcg acctccctac aac 23

<210> 12  
<211> 22  
<212> DNA  
<213> Homo sapiens

<400> 12  
ggagctgtct aaggccatca ca 22

<210> 13  
<211> 23  
<212> DNA  
<213> Homo sapiens

<400> 13  
ctccctacaa cccgaattcc tac 23

<210> 14  
<211> 20  
<212> DNA  
<213> Homo sapiens

<400> 14  
cttgtggca gatagggggc 20

<210> 15  
<211> 21  
<212> DNA  
<213> Homo sapiens

<400> 15  
cgcgccgagg acctcagcct g 21

<210> 16

<211> 21  
<212> DNA  
<213> Homo sapiens

<400> 16  
ggttcctctt gttccacttg g

21

<210> 17  
<211> 2295  
<212> DNA  
<213> Homo sapiens

<400> 17  
aagagacaag aggtgccttg tggcagata ggggctggg agggggcctg cccgaagca 60  
gtggtggccc gtggcaggct tctcaactggg taggaccggg ccctctgttg cacccctca 120  
ccctgcttc tgccctcagg agtggctaag caggttcggt tacctgcccc cggtgaccc 180  
caeaacaggg cagctgcaga cgcaagagga gctgtctaag gccatcacag ccatgcagca 240  
gtttggtggc ctggaggcca cggcatcct ggacgaggcc accctggccc ttagaaaaac 300  
cccacgctgc tccctgccag acctccctgt cctgaccagg gctgcagga gacgccaggc 360  
tccagcccc accaagtgga acaagagggaa cctgtcggtt agggtccgga cgttcccacg 420  
ggactcacca ctggggcacg acacggtgcg tgcactcatg tactacgccc tcaaggcttg 480  
gagcgacatt gcgccttga acttccacga ggtggcgggc agcaccgccc acatccagat 540  
cgacttctcc aaggccgacc ataacgacgg ctacccttc gacgcccggc ggcaccgtgc 600  
ccacgccttc ttccccggcc accaccacac cgccgggtac acccactta acgatgacga 660  
ggcctggacc ttccgctcct cggatgccc cggatggac ctgtttgcag tggatgtcca 720  
cgagtttggc cacgccattg ggttaagcca tgtggccgct gcacactcca tcattgcggcc 780  
gtactaccag ggcccgggtgg gtgacccgct ggcgtacggg ctcccctacg aggacaagg 840  
gcgcgtctgg cagctgtacg gtgtgcggga gtctgtgtct cccacggcgc agcccgagga 900  
gcctccctg ctgccggagc cccagacaa ccggtccagc gccccgccc ggaaggacgt 960

gccccacaga tgcagcactc actttgacgc ggtggcccag atccgggtg aagctttctt 1020  
cttcaaaggc aagtacttct ggccggctgac gcgggaccgg cacctggtgt ccctgcagcc 1080  
ggcacagatg caccgcttct ggccgggcct gccgctgcac ctggacagcg tggacgcccgt 1140  
gtacgagcgc accagcgacc acaagatcgt cttctttaaa ggagacaggt actgggtgtt 1200  
caaggacaat aacgttagagg aaggataccc ggcgcgcgtc tccgacttca gcctccgc 1260  
tggcggcatc gacgctgcct ttcctggc ccacaatgac aggacttatt tcttaagga 1320  
ccagctgtac tggcgctacg atgaccacac gaggcacatg gacccggct accccgccc 1380  
gagccccctg tggaggggtg tcccccacac gctggacgac gccatgcgt ggtccgacgg 1440  
tgctccctac ttctccgtg gccaggagta ctggaaagtg ctggatggcg agctggaggt 1500  
ggccacccggg tacccacagt ccacggcccg ggactggctg gtgtgtggag actcacaggg 1560  
ccatggatct gtggctgcgg gcgtggacgc ggcagagggg ccccgccccc ctccaggaca 1620  
acatgaccag agccgctcgg aggacggta cgaggtctgc tcacgcacct ctggggcatc 1680  
ctctcccccg ggggccccag gcccactggt ggctgccacc atgctgctgc tgctgccgc 1740  
actgtcacca ggcccccgtg ggacagcggc ccaggccctg acgctatgac acacagcgcg 1800  
aggccatgag aggacagagg cgggtggaca gcctggccac agagggcaag gactgtgccg 1860  
gagtccctgg gggaggtgct ggccgcggat gaggacgggc caccctggca ccggaaggcc 1920  
agcagagggc acggcccgcc agggctggc aggctcaggt ggcaaggacg gagctgtccc 1980  
ctagtgaggg actgtgttga ctgacgagcc gaggggtggc cgctccagaa gggtgcccag 2040  
tcaggccgca ccgcgcgcag cctcctccgg ccctggaggg agcatctcgg gctggggcc 2100  
caccctctc tgtgcggcg ccaccaaccc caccacact gctgcctggt gctccgcgc 2160  
gcccacaggg cctccgtccc caggtcccc agtggggcagc cctccccaca gacgagcccc 2220  
ccacatggtg ccgcggcagc tccccctgt gacgcgttcc agaccaacat gacccctccc 2280

tgctttgtag cggcc 2295  
<210> 18  
<211> 4014  
<212> DNA  
<213> Homo sapiens  
  
<220>  
<221> exon  
<222> (3148)..(3280)  
  
<220>  
<221> exon  
<222> (3564)..(3633)  
  
<400> 18  
tttgttggg gtgtccctgg caaacttagga agtggttccc accctctcac tccagcccc 60  
aagacggccc ctcccaggat gcctagcctg agatttgggg cacarcccct gagcacaaac 120  
tcgtgttagg taggaggcac ccaccagccc tgccccacag acccaccacc ccccaagatt 180  
cgatgccatt ctatgctcaa attccagtgc ctccctgggc cacaggcgac agtgcctgtt 240  
tatcatgggc ggggctgcct gtcccgggct ggtgccgggg ccctgggtct atgagttgaa 300  
gcaggctggc cgctcacacc tgcaactaaa ccacctgctt ccaaacattg ggcaacattc 360  
caagccact gggagtgctg cctgccaggc ccggctccac tttcctgaaa tgcatgtggc 420  
ctcgtggcca ggctgcccag ctccctgggg accagagtgg ggggtgcccc aaaccgcccac 480  
cgtgaacccc acagagtaaa tgggccactc agtgcagcta ccagccatga cctcagctta 540  
tagacggaa ggctgggggg tgagttgtcc tcccaagggg tctcagcacc tgctggccca 600  
acccaggcag cagctggcct ggggtggaaa ggcacctgcc tgtgtggacc cttccctggt 660  
gagggggcag ggggtcatca tccaatatca tagatgtatgt gagggaaactc cagagtgcctt 720  
cctggaggag gtgacaggct attgttaacca tgaggcacag tggccctgtt gagctgtgat 780  
cttaacaaag gactaaaaag tgcagaatgt gctgatggc atctccagca cctacagcgg 840

tgactgatca tggcacaccc tcagtaaacc ctgcaggtgc aaggtagtgt gggaccggat 900  
gctcggggcc aaagatcccc acaccctgga ggtcagggcg gaagtggag gccagcttgt 960  
caaggccaag gctgtcaccc ccaaggcccc tccagagaag ctgcccaccc cagtcataaa 1020  
cgtccacttt gacgtcctgt cgtgcctata gctttggagg ggcccccagt tctgtacaca 1080  
ctcttggctt ccccaagggg ctgagggct gggctgggtc agtagggttt ggaaaggggg 1140  
taaaggcaca gaggggggccc ccgggaagga ctcagtgcct cctggaaaggga gaatctcggg 1200  
gtgtgcagat cccatgttgt gtcttgcgt gcccctcctg gccagcacgs cctgttgctg 1260  
atgcccctgg gacttccagg atgggtgtgc ctcattccct ctgagcactg cctgctgkgt 1320  
ggcaggagg gttggccagg accaccccat caccagctcc tgcaaaaaaaccgg aacctggagg 1380  
ccagcaggt ggcataawtg agtcacaagc attttcttt ttcttttcc tttttttttt 1440  
tttaggattt cttaaaaaag ttatgtttt ttcatttatg cattttttta ggttaagcca 1500  
catgaaacta ctagtattta ttttaaatca gaaatggta aaaatggca cttcatatg 1560  
atttggccaa tgaatacatg agaggtggta aataatagcg attcacaagc attttctaaa 1620  
tgccaggaa aaaaaaaaaaag acaggtttgc aggcaaggca gagcccccaag cacatcaccc 1680  
ctggctgtt ctttctgga gcccgcctca cccctgctgt ggccctgg gctggcgagt 1740  
atccacaggg cagagcagca gttcatggc agcctgcaag tggcacagg cgccatttgg 1800  
cggttgaaga aactgaagct aggggtggag gtagccccca cagatggcac ccaggcctgc 1860  
catccccagg tccccacgtt ggcacccagg tccccacaga tggcatccag gccccctgt 1920  
ccccaggggcc cttccagggt agcagagatg actggggcat gggccagggtt cttgatttt 1980  
gcccaaggta aagggtgtcc ctcattcctg ctcctactca gctccgggtgt ggtagcctt 2040  
gcacccaccc cagtggggcc ttcagagcag agctgtcccc tgccggcagggt gctgggtgtga 2100  
acattttcca cgtcctggct cacgtcctca tcaccagcct gccaaggact ctgaggaagg 2160

agcccagagg ggtggactgc cttgccccag gcacacagcg gggaggtggc tgagtggat 2220  
ttgaacctag gcagcctggc tggAACCTGG ctTTTGTTC tgAGACAGGG tCTCGCTCTG 2280  
ttgcAGACAC agtCTGCAAC tcCTGTGCTC aaACGATCCT CCCGCCTCAG CCTCCCAAAG 2340  
tgCTGGGATC tcAGGCATAA GCCACAGCAC CGGCCAAGCC tGGGCTCTTA tCTCCCCAT 2400  
gaATGTACAG catGGCCAA tTCCTTAAAC tGGTGTCTGA GCCACAGCCT ttCTCAGCTG 2460  
ggGTCCCAGA CCTTGGATGC tagACTTCCC tGTCACAAGT cAGCTGAGAG CCTGCATTG 2520  
acACTGGCCA cATTAAAGAG CCTTTGAAG GTTCCCTAGC attTTGCGGT CTCAGGAGGC 2580  
gtGGGGTGGG gcAGGGTTGC catGAGTGGT tGTAAGGTC gtGCACGGCA caAGCTCACA 2640  
ccATCTAAGG gACATCAGAT ttATTTATTt attCATTTT tagATGGAGT CTTGCTCTGT 2700  
cccccAGGCT ggAGTGCAGT ggcACGATCT CGGCTCACTG caAGCTCCGC CTCCTGGGTT 2760  
ccACCACTC tcCTGCYTCA gcCTCCCAG tagCTGGGAC tacAGGCACC tgCCACCACA 2820  
ccCGGCTAAT ttTTGTATT ttTAGTAGAG acGGGGTTtC accATATTAG CTAGGATGGT 2880  
ctCCATCTCC tgACCTCATG atCCGCCTGC CTCGGCCTCC caAAACTGCTG ggATTACAGG 2940  
cgTgAGCCAC agCACCCGGC cAGGGACATC agGTTATTa agACACTTT ccGGCAGCTG 3000  
ccAGGGAAAG agACAGAGAG gtGCCTTGTG ggcAGATAgg gggCTGGGAG gggGCCTGCC 3060  
cgGAAGCAGT gttGGCCCGT ggcAGGCTTC tcACTGGTA ggACCAGGCC ctCTGTTGCA 3120  
ccccCTCACC ctGCTCTCTG ccCTCAGGAG tggCTAAGCA ggTTCGGTtA cCTGCCCG 3180  
gbTGACCCCA caACAGGGCA gctGCAGACG caAGAGGAGC tgtCTAAGGC catCACAGCC 3240  
atGCAGCAGT ttKGtGGCCT ggAGGChACC ggcATCCTGG gtcAGTTCTC cAGGGGGCAG 3300  
cggGAGCGCC gtGSCCCCCG tcAGGTCTGC gcccGTCGGC catGCCCCCT ctGATCAGGC 3360  
acAGTCCCGT cttATGCTTG aatGAACCTG ggtCCTGGCC tGGTGTAGCT cAGAGCCTGG 3420  
ggCTGGTCCC ccaaAGATGA cgtGGGAGGA gggSGCggCT cggAGGCTGG tgCCAGAGTC 3480

aggctccgc ccttgggat gctcgggatc ctagggtggg gagtgagctg ggctaggctc 3540  
ttagctccat gcttccctg cagacgaggc caccttggcc ctgatgaaaa ccccacgctg 3600  
ctccctgccca gacctcccct gtcctgaccm caggtctcgc agggagacgc acaggtctcm 3660  
cagcccccm mcaagtggac acagagagga acctgtcgtg gaggtgggtg cgtggccagg 3720  
gtgaggagcg gggcctccgt ggaggtggsc gcgtggccag ggtgaggaac ggggtctccg 3780  
tggaggtggg cgctggcca gggtgggaa cggggtctcc gtggaggcgg gtgcgtggcc 3840  
agggtgagga acagggtctc cgtggaggtg ggcgcgtggc cagggtgggg aacggggct 3900  
ccgtggaggc gggtgcgtgg ccagggtgag gagtggggcc cccatgtctc cgtgtctggg 3960  
cctgctgttag atatcaagct tatcgatacc gtcgacctcg agggggghcc gtac 4014

<210> 19

<211> 21

<212> DNA

<213> Homo sapiens

<400> 19

aatctcccat cggccctttc a

21

<210> 20

<211> 20

<212> DNA

<213> Homo sapiens

<400> 20

atgcacggcc accaggaaga

20

<210> 21

<211> 20

<212> DNA

<213> Homo sapiens

<400> 21

ggatcagaca acgatcgagt

20

<210> 22

<211> 20

<212> DNA

<213> Homo sapiens

<400> 22

cagcttgaag ttgtgcgtct

20