Probability and Statistics I

25. The Distribution of Sample Totals, Means, and Proportions

6.2 The Distribution of Sample Totals, Means, and Proportions

The Case of a Normal Population Distribution

NORMAL POPULATION DISTRIBUTION

Distribution of the Sample Mean for a Normal Population

If X_1, \ldots, X_n represent a random sample from a normal distribution with mean μ and variance σ^2 , mathematically

$$X_i \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2),$$

 $then^1$

$$T_n = \sum_{i=1}^n X_i \sim \text{Normal}(n\mu, n\sigma^2)$$

$$\bar{X}_n = \sum_{i=1}^n X_i/n \sim \text{Normal}(\mu, \sigma^2/n)$$

SS2857

¹The textbook now uses T_o and \bar{X} with no subscript to denote the total and the mean. I prefer to use T_n and \bar{X}_n to emphasize the sample size.

NORMAL POPULATION DISTRIBUTION

Example 25.1

According to Burmaster and Murray (1998), the height of men between the ages of 50 and 80 is normally distributed with a mean of 174.20 cm and a variance of 42.36 cm².

Suppose that we collect a random sample of 25 men from the population. Let their heights be denoted by X_1, \ldots, X_{25} .

- a) What is the sampling distribution of the total height, $T_{25} = \sum_{i=1}^{25} X_i$?
- b) What is the sampling distribution of the average height, $\bar{X}_{25} = \sum_{i=1}^{25} X_i/25$?
- c) What is the sampling distribution of $Z = \frac{(\bar{X}_{25}-174.20)}{\sqrt{1.69}}$?

6.2 The Distribution of Sample Totals, Means, and Proportions

The Central Limit Theorem

SS2857 4/14

Central Limit Theorem

Let X_1, \ldots, X_N be a random sample from *any* distribution with mean μ and variance $\sigma^2 < \infty$. Then

$$\lim_{n\to\infty}P\left(\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\leq z\right)=P(Z\leq z)$$

where $Z \sim \text{Normal}(0, 1)$.

SS2857 5/14

Central Limit Theorem

Let X_1, \ldots, X_N be a random sample from *any* distribution with mean μ and variance $\sigma^2 < \infty$. Then

$$\lim_{n\to\infty}P\left(\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\leq z\right)=P(Z\leq z)$$

where $Z \sim \text{Normal}(0, 1)$.

We say

$$rac{ar{X}_n - \mu}{\sigma/\sqrt{n}} \stackrel{.}{\sim} \mathsf{Normal}(0,1)$$

or

$$\bar{X}_n \stackrel{\cdot}{\sim} \text{Normal}(\mu, \sigma^2/n).$$

Example 25.2

Suppose that X_1, \ldots, X_n are independent and identically distributed Bernoulli random variables such that

$$P(X_i = 0) = 1 - p$$
 and $P(X_i = 1) = p$

for all $i = 1, \ldots, n$.

- a) What is the pmf of \bar{X}_n ?
- b) What is the approximate cdf of

$$Z = \frac{\bar{X}_n - np}{\sqrt{p(1-p)/n}}$$

when n is large?

SS2857 7/14

PMF & CDF of
$$Z=\frac{\sqrt{n}(\bar{X}_n-p)}{\sqrt{p(1-p)}}$$
 when $p=0.2$ and $n=100$

Example 25.3

Consider the random variable Y with pmf

	31	35	59	60	67
р	0.24	0.15	0.23	0.32	0.06

The mean and variance of Y are

$$\mu = E(Y) = 49.45$$
 and $\sigma^2 = V(Y) = 189.13$.

SS2857 9/14

SS2857 10/14

Example 25.4

The Acme string company produces spools of string advertised to have a length of 100 m. However, the length of string on a randomly selected ball actually has a mean of 101 m and a standard deviation of .2 m.

Approximate the 95-th percentile of the total amount of string in a box containing 50 spools.

SS2857 12/14

Questions?

SS2857 13/14

Exercise 25.1

According to Burmaster and Murray (1998), the log weight in kilograms of men between the ages of 50 and 80 is normally distributed with a mean of 4.41 and variance .46. It can be shown that the weight then follows a log-normal distribution with mean $\mu_W=91.45$ kg and variance $\sigma_W^21970.83$ kg. The pdf is shown on the next slide. The vertical dashed line represents the mean.

Let W_1, \ldots, W_n be a random sample of weights for n men.

- a) Describe the shape of the density.
- b) Approximate the distribution of \bar{W}_n . What conditions need to be satisfied?
- c) Explain what the approximation in the previous part means.
- d) (Extra) Use the approximation to show that $\lim_{n\to\infty} P(\mu_W \epsilon < \bar{W}_n < \mu_W + \epsilon) = 1$ for any $\epsilon > 0$. Explain what this means.

SS2857 14/14