Contents

1	Dév	éveloppements limités		
	1	Formu	ıle de Taylor-Young	2
	2	Développements limités		2
		2.1	Définitions	2
		2.2	Calculs de développements limités	L

Chapter 1

Développements limités

1 Formule de Taylor-Young

Théorème 1.1. Soit f une fonction définie au voisinage d'un point a, si f est n fois dérivable en a et si x est dans un voisinage de a, alors on peut écrire:

$$f(x) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)(x-a)^{k}}{k!} + o_{a}((x-a)^{n}).$$

Proof. □

2 Développements limités

2.1 Définitions

Définition 1.2. Soit a un réel et f une fonction définie sur $]a - \delta$; $a + \delta[$. On dit que f admet un développement limité d'ordre n au point a s'il existe un polynôme de degré n noté $\mathsf{PP}_n(f)$ tel que:

$$f(x) = PP_n(x-a) + o_a((x-a)^n)$$

$$f(x) = \alpha_0 + \alpha_1(x-a) + \alpha_2(x-a)^2 + \dots + \alpha_n(x-a)^n + (x-a)^n \varepsilon(x-a) \text{ avec}$$

$$\varepsilon(x-a) \xrightarrow[x \to a]{} 0.$$

 PP_n s'appelle la partie principale du développement limité d'ordre n en a.

Remarque 1.3. En faisant le changement de fonction $g: x \to f(x+a)$ on se ramène toujours au développement limité au point 0.

Remarque 1.4. La proposition précédente dit que: si f a un développement limité à l'ordre n en a, cela ne signifie pas que f' a un développement limité, ni même que f est dérivable en un point autre que a...

Par contre, si on connaît un développement limité de f à l'ordre n et si l'on sait que f' a un développement limité d'ordre n-1, la proposition ci-dessus nous dit que le développement limité de f s'obtient à partir de celui de f' en intégrant, donc le développement limité de f' s'obtient à partir de celui de f en dérivant terme à terme.

Notation. $o(x^k)$ signifie $o_0(x^k)$.

Proposition 1.5. Soit $f: I \to \mathbb{R}$ une fonction dérivable. On suppose que

$$f'(x) = \sum_{k=0}^{n} a_k (x - a)^k + o_a ((x - a)^n)$$
, alors

$$f(x) = f(a) + \sum_{k=1}^{n} \frac{a_k}{k+1} (x-a)^{k+1} + o_a((x-a)^{n+1}).$$

Définition 1.6. Soit $P = \sum_{k=0}^{n} \alpha_k (x-a)^k$ un polynôme et $m \le n$. On note $Tr_m(P)$ le polynôme $Q = \sum_{k=0}^{m} \alpha_k (x-a)^k$.

le polynôme
$$Q = \sum_{k=0}^{m} \alpha_k (x-a)^k$$
.

Proposition 1.7.

- 1. Si f admet un développement limité à l'ordre n en 0, il est unique $(PP_n(f))$ est uniquement déterminé).
- 2. Si f admet un développement limité à l'ordre n en 0, alors f admet un développement limité à l'ordre k en 0 pour tout $k \le n$, et $PP_k(f) = Tronc_k(PP_n(f))$.
- 3. f est continue en $0 \Leftrightarrow f$ admet un développement limité d'ordre 0 au point 0dont le premier terme est f(0).
- 4. f est dérivable en $0 \Leftrightarrow f$ admet un développement limité à l'ordre 1 au point 0.
- 5. Reformulation de Taylor-Young: si f est n fois dérivable en 0, alors f admet un développement limité d'ordre n en 0. Attention : si n > 1 la réciproque est fausse.

Proof.

1. Supposons que $f(x) = P_1(x) + o(x^n) = P_2(x) + o(x^n)$ avec P_1, P_2 deux polynômes de degré au plus n.

$$Q = P_1 - P_2$$
 est un polynôme de degré au plus n

$$Q(x) = o(x^n) = o(1) \operatorname{car} o(x^n) \xrightarrow[x \to 0]{} 0$$

Donc le terme constant de Q(x) est nul.

Donc
$$Q(x) = xQ_1(x)$$
 avec $deg(Q_1) \le n - 1$.

$$xQ_1(x)=o(x^n)\Rightarrow Q_1(x)=o(x^{n-1})$$

On applique le même raisonnement : $Q_1(x)\underset{x\to 0}{\longrightarrow} 0$
 $Q_1(x)=xQ_2(x)$ avec $deg(Q_2)\leq n-2$
 $Q(x)=x^2Q_2(x)$, donc en itérant, on obtient : $Q(x)=x^nQ_0(x)$ avec Q_0 de degré au plus 0. Mais alors $Q(x)=o(x^n)$, donc $Q_0(x)=0$

2.
$$f(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_n x^n + o(x^n)$$

$$\Leftrightarrow f(x) = \sum_{j=0}^n \alpha_j x^j + o(x^n)$$

$$\Leftrightarrow f(x) = \sum_{j=0}^k \alpha_j x^j + \sum_{j=k+1}^n \alpha_j x^j + o(x^n)$$

$$o(x^j)$$

3. *f* est continue en 0.

$$f(x) \underset{x \to 0}{\longrightarrow} f(0) \Leftrightarrow f(x) - f(0) \underset{x \to 0}{\longrightarrow} 0$$

$$\Leftrightarrow f(x) - f(0) = o(1)$$

$$\Leftrightarrow f(x) = f(0) + o(1)$$

$$\Leftrightarrow f \text{ admet un développement limité d'ordre 0 en 0 dont le premier terme est}$$

r admet an developpement timite a ordre o en o dont le preimer terme est f(0).

4.
$$f$$
 est dérivable en 0,
 $\exists a \in \mathbb{R}$ tel que $\frac{f(x) - f(0)}{x} \xrightarrow[x \to 0]{} a$
 $\Leftrightarrow \frac{f(x) - f(0)}{x} - a \xrightarrow[x \to 0]{} 0$
 $\Leftrightarrow \frac{f(x) - f(0)}{x} - a = o(1)$
 $\Leftrightarrow \frac{f(x) - f(0)}{x} = a + o(1)$
 $\Leftrightarrow f(x) - f(0) = ax + o(x)$
 $\Leftrightarrow f(x) = f(0) + ax + o(x)$

 \Leftrightarrow f admet un développement limité à l'ordre 1 en 0 dont le premier terme est f(0).

2.2 Calculs de développements limités

Première source de développements limités, la formule de Taylor-Young : si f est n fois dérivable en 0, f admet un développement limité à l'ordre n en 0 donné par

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n}).$$

Exemples 1.8. :

1. e^x admet un développement limité à l'ordre n en 0 pour tout $n \in \mathbb{N}$ donné par

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

 $\operatorname{car} x o e^x$ est de classe C^∞ sur $\mathbb R$ et de dérivée e^x .

2. $(1+x)^{\alpha}$ est dérivable en 0 de dérivée $\alpha(1+X)^{\alpha-1}$ et est dérivable à l'ordre k au voisinage de 0, pour tout $k \in \mathbb{N}$, de dérivée k-ième :

$$\alpha(\alpha-1)(\alpha-2)...(\alpha-k+1)(1+x)^{\alpha-k}$$

Donc $(1+x)^{\alpha}$ admet un développement limité à l'ordre n en 0, $\forall n \in \mathbb{N}$, donné par :

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^{k} + o(x^{n}).$$

3. Si $\alpha = -1$, on obtient

$$\frac{1}{1+x} = 1 + \frac{-1}{1!}x + \frac{(-1)(-2)x^2}{2!} + \dots + \frac{(-1)(-2)\dots(-n)x^n}{n!} + o(x^n) = \sum_{k=0}^{n} (-1)^k x^k + o(x^n).$$

4. Si
$$\alpha = \frac{1}{2}$$
, on obtient $\sqrt{1+x} = 1 + \sum_{k=1}^{n} \frac{\frac{1}{2} \left(\frac{1}{2} - 1\right) \dots \left(\frac{1}{2} - k + 1\right)}{k!} x^{k} + o(x^{n})$

5. De même, en dérivant on a

$$\cos(x) = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{2k!} + o(x^{2n})$$

et

$$\sin(x) = \sum_{k=0}^{n} \frac{(-1)^{k+1} x^{2k+1}}{(2k+1)!} + o(x^{2n+1}).$$

Proposition 1.9. Si f et g sont deux fonctions qui admettent un développement limité à l'ordre n en 0 donnés par $f = P + o(x^n)$ et $g = Q + o(x^n)$ avec P et Q de degré $\leq n$, alors:

- 1. f + g admet un développement limité à l'ordre n en 0: $f + g = (P + Q) + o(x^n)$.
- 2. $f \cdot g$ admet un développement limité à l'ordre n en 0: $f \cdot g = Tr_n(P \cdot Q) + o(x^n)$
- 3. Si $\lim_{x\to 0} g(x) = 0$, alors $f\circ g$ admet un développement limité à l'ordre n en 0 et $f\circ g = Tr_n(P(Q)) + o(x^n)$

Proposition 1.10. Nous pouvons aussi utiliser la parité ou l'imparité pour calculer rapidement un développement limité:

Soit f une fonction admettant un développement limité d'ordre n en 0 donné par $f = P + o(x^n)$.

- Si f est une fonction paire, alors P est un polynôme pair.
- Si f est une fonction impaire, P est un polynôme impair.

Exemple 1.11.
$$\tan(x) = x + \frac{x^3}{3} + o(x^3) = x + \frac{x^3}{3} + o(x^4) \cot(x)$$
 est impaire.

Proposition 1.12. Quotient.

Si f admet un développement limité à l'ordre n en 0 et si $f(0) \neq 0$ alors $\frac{1}{f}$ admet un développement limité à l'ordre n en 0.

On utilise que $f(x) = f(0) + \sum_{k=1}^{n} \alpha_k x^k + o(x^n)$ et on obtient :

$$\frac{1}{f} = \frac{1}{f(0) + \sum_{k=1}^{n} \alpha_k x^k + o(x^n)} = \frac{1}{f(0)} \frac{1}{1+u}$$

où l'on pose $u = \sum_{k=1}^{n} \frac{\alpha_k}{f(0)} x^k + o(x^n)$. On utilise ensuite la composition des développements limités, vue plus haut.

Proposition 1.13. Intégration et dérivation du développement limité.

1) Soit f une fonction définie et dérivable au voisinage de 0. Si f' admet un développement limité à l'ordre n en 0, donné par $f'(x) = Q(x) + o(x^n)$, alors f admet un développement limité à l'ordre n+1 en 0, donné par :

$$f(x) = f(0) + \int_0^x Q(t) dt + o(x^{n+1})$$

2) Si f admet un développement limité à l'ordre n en 0 donné par

 $f(x) = P(x) + o(x^n)$, et si f' admet un développement limité à l'ordre n-1 en 0, alors :

$$f'(x) = P'(x) + o(x^{n-1})$$

Exemple 1.14. Posons
$$f(x) = \sqrt{1+x}$$
 et $g(x) = \sin(x)$.
On a $f(x) = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + o(x^3)$ et $g(x) = x - \frac{x^3}{6} + o(x^3)$. Alors, on a :

1.

$$\sqrt{1+x} + \sin(x) = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + o(x^3) + x - \frac{x^3}{6} + o(x^3)$$
$$= 1 + \frac{3x}{2} - \frac{x^2}{8} - \frac{5x^3}{48} + o(x^3);$$

2.

$$\sqrt{1+x} \sin(x) = (1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + o(x^3))(x - \frac{x^3}{6} + o(x^3))$$

$$= \operatorname{Tronc}_3 \left((1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16})(x - \frac{x^3}{6}) \right) + o(x^3)$$

$$= \operatorname{Tronc}_3 \left(x + \frac{x^2}{2} - \frac{x^3}{8} + \frac{x^4}{16} - \frac{x^3}{6} - \frac{x^4}{12} + \frac{x^5}{48} - \frac{x^6}{96} \right) + o(x^3)$$

$$= x + \frac{x^2}{2} - \frac{x^3}{8} - \frac{x^3}{6} + o(x^3)$$

$$= x + \frac{x^2}{2} - \frac{7x^3}{24} + o(x^3);$$

3.

Développements limités usuels

(au voisinage de 0)

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$ch(x) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$sh(x) = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$th(x) = x - \frac{x^{3}}{3} + \frac{2}{15}x^{5} - \frac{17}{315}x^{7} + o(x^{7})$$

$$cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$tan(x) = x + \frac{x^{3}}{3} + \frac{2}{13}x^{5} + \frac{17}{315}x^{7} + o(x^{7})$$

$$(1 + x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^{3} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + o(x^{n})$$

$$\frac{1}{1+x} = 1 - x + x^{2} - x^{3} + \dots + (-1)^{n}x^{n} + o(x^{n})$$

$$\sqrt{1 + x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{x^{3}}{16} + \dots + (-1)^{n-1} \frac{1.1.3.5 \cdots (2n-3)}{2^{n}n!}x^{n} + o(x^{n})$$

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3}{8}x^{2} - \frac{5}{16}x^{3} + \dots + (-1)^{n} \frac{1.3.5 \cdots (2n-1)}{2^{n}n!}x^{n} + o(x^{n})$$

$$ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + o(x^{n})$$

$$argth(x) = x + \frac{x^{3}}{3} + \frac{x^{5}}{5} - \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

$$arctan(x) = x - \frac{1}{2} \frac{x^{3}}{3} + \frac{3}{8} \frac{x^{5}}{5} - \dots + (-1)^{n} \frac{1.3.5 \cdots (2n-1)}{2^{n}n!} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$arcsin(x) = x + \frac{1}{2} \frac{x^{3}}{3} + \frac{3}{8} \frac{x^{5}}{5} + \dots + \frac{1.3.5 \cdots (2n-1)}{2^{n}n!} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$