PROBLEMA 6.5 Denniestra los siguientes teoremas:

Teorema 1: f derivable en $[x_1, x_2]$. Si f tiere $k \ge 2$ raices en $[x_1, x_2] \Rightarrow f^1$ tiere, al menos, k-1 raices en $[x_1, x_2]$.

Dem: f se anula en k ≥ 2 puntos: x1, x2, ..., 2k

f(2t)=0 i=1,2,...,k

Aphicando el teorema de Rolle:

$$\Rightarrow$$
 ha emagion $f'(z) = 0$ there, al menos, $K-1$ solutiones ya gre $f^{l}(z_{0,i}) = 0$ $i = 1,...,k-1$

Teorema 2 f K-veces devivable en [21122]. Si f tiere K+122 raices en [21122] entonces f(u) tiere Lal menos, ma rait en [21122]

Dem: Usando el teorema 1:

$$f(x) = 0$$

 $(k+1)$ - solutiones \Rightarrow al menos k -solutiones
en $[x_1, x_2]$ \Rightarrow $en [x_1, x_2]$

Aplicando ahora d teorema 1 a 51:

$$f'(x) = 0$$
 \Rightarrow $f''(x) = 0$
 k -solutiones \Rightarrow al menos $(k-1)$ -solutiones
 $en [x_1, x_2]$ \Rightarrow $en [x_1, x_2]$

Repritiendo el razonamiento:

$$f^{(3)}(x) = 0$$
 al menos $(k-2)$ -solutiones on $[x_1, x_2]$
 $f^{(4)}(x) = 0$ " " $(k-3)$ -solutiones en $[x_1, x_2]$

$$f^{(k)}(z) = 0 " " (k-(k-1)) = 1 solutiones$$

en [z1, z2]