Robotics

Estimation and Learning with Dan Lee

Week 3. Robotic Mapping

3.2 Occupancy Grid Mapping 3.2.3 Handling Range Sensor

Body frame

The Robot

The Map

Distance measurement: d

Known state: (x_1, x_2, θ)

$$\begin{bmatrix} x_{1,occ} \\ x_{2,occ} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} d \\ 0 \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

[cm]
$$0 < x \le 10$$
 $i = 1$ [index] $10 < x \le 20$ $i = 2$ $20 < x \le 30$ $i = 3$ \vdots

[cm]
$$0 < x \le 7$$
 $i = 1$ [index] $7 < x \le 14$ $i = 2$

$$i = ceil(x/r)$$

$$i = ceil((x - x_{min})/r)$$

Distance measurement: d

Known state: (x_1, x_2, θ)

$$\begin{bmatrix} x_{1,occ} \\ x_{2,occ} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} d \\ 0 \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} i_{1,occ} \\ i_{2,occ} \end{bmatrix} = ceil \left(\frac{1}{r} \begin{bmatrix} x_{1,occ} \\ x_{2,occ} \end{bmatrix} \right)$$

Distance measurement: d

Known state: (x_1, x_2, θ)

Occupied cell: $(x_{1,occ}, x_{2,occ})$

*Bresenham's line algorithm

The Robot

Global frame

The Map

Distance measurement:

$$(d_1, d_2, d_3, d_4, d_5)$$

Directions of rays:

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$$

Known state: (x_1, x_2, θ)

For *k*-th occupied cell:

$$\begin{bmatrix} x_{1k} \\ x_{2k} \end{bmatrix} = \begin{bmatrix} d_k \cos(\theta + \alpha_k) \\ -d_k \sin(\theta + \alpha_k) \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} i_{1k} \\ i_{2k} \end{bmatrix} = ceil \left(\frac{1}{r} \begin{bmatrix} x_{1k} \\ x_{2k} \end{bmatrix} \right)$$

