Searching for Massive New Particles Decaying to Jets at ATLAS

Thomas Hartland

5th June 2018

Massive new particles

- ► Excited quarks q*
- Quantum black holes QBH
- ► W' bosons

Excited quarks

Figure 1: Excited quark formation in a proton-proton collision¹.

 $^{^{1}} Image:\ http://www.quantumdiaries.org/2015/02/04/lhc-run-ii-excited-quarks/$

Jets

Figure 2: Example dijet event at the ATLAS detector².

 $^{^2}$ M. Aaboud et al. Search for new phenomena in dijet events using 37 fb $^{-1}$ of pp collision data collected at $\sqrt{s}=13\,\mathrm{TeV}$ with the ATLAS detector. *Phys. Rev.*, D96(5):052004, 2017.

Dijet invariant mass

ightharpoonup With the total energies E and momenta p of jets 1 and 2

$$m_{jj} = \sqrt{(E_1 + E_2)^2 - (p_1 + p_2)^2}$$

 $ightharpoonup m_{jj}$ is the rest mass of the massive particle

m_{jj} distribution

Figure 3: Binned m_{jj} distribution of dijet events from 2015-16 ATLAS measurements in 37 ${\rm fb}^{-1}$ p-p collisions.

Equivalent Higgs

Figure 4: The Higgs was discovered in the photon-photon distribution.

Excited quark simulated signal peak

Figure 5: Example excited quark peak at $m_{q^*}=3\,\mathrm{TeV}.$

Quantum black hole simulated signal peak

Figure 6: Example QBH peak at $m_{QBH}=5\,\mathrm{TeV}.$

W' simulated signal peak

Figure 7: Example W' peak at $m_{W'}=3\,\mathrm{TeV}$.

Likelihood

► The binned log likelihood for a given background *b*, fitted background *f*, and peak *p* scaled to *N* events:

$$L(N) = -\sum_{i} ln(Poisson(b_i, f_i + p_{i,N}))$$

Figure 8: Illustration of likelihood testing process.

Figure 8: Illustration of likelihood testing process.

In practice

Figure 9: Example probability distribution for a single randomly generated background with a q^* peak at 3 TeV containing a varying number of events.

Simulated QCD background

Figure 10: Simulated smooth background for expected number of dijet events with no massive particles considered. Randomly sampled to generate many data-like backgrounds.

Distribution of expected limits

Figure 11: Distribution of 5000 expected limits for a q^* at 3 TeV, based on randomly generated backgrounds.

Excited quark Brazil plot

Figure 12: Brazil plot for observed and expected q^* cross sections.

QBH Brazil plot

Figure 13: Brazil plot for observed and expected QBH cross sections.

W' Brazil plot

Figure 14: Brazil plot for observed and expected W' cross sections.

95% C.L lower mass limits

Regions where the 95% C.L upper cross section limit is lower than the simulated cross section are excluded.

	95% C.L lower mass limit	
Model	Expected	Observed
q^*	6.4 TeV	6.2 TeV
QBH	9.0 TeV	8.9 TeV
W'	3.6 TeV	3.6 TeV

Table 1: Summary of expected and observed 95% confidence level lower mass limits based on the intersections of the cross section upper limits with the simulated cross section.

The End

Questions?