Машинное обучение

SKLearn

https://trends.google.com/

Термины

- Большие данные Наука о данных
- Машинное обучение
- Искусственный интеллект
 - Artificial Intelligence
- Нейросети Многослойные нейросети Глубокое обучение

Machine Learning

- Supervised Learning
- Обучение с учителем
- Labelled data
- Размеченные данные
- Unsupervised Learning
- Обучение без учителя
- Reinforced learning
- Обучение с подкреплением

Профессии

- Data Engineer
- Data Analyst
- Data Scientist
- ML Engineer

•

iPython

- Jupyter Notebook
 - Text Cell Markdown
 - Code Cell

Anaconda

- Google Colab
- Colab.research.google.com

Ячейки

- # Заголовок
- Пуск Shift + Enter
- Github.com/valentin-arkov/
- Dataset-z
- Raw
- !wget <raw UML>
- !ls -la

Регрессия

pandas

Import pandas as pd

Dataframe

- GigaChat
- DeepSeek
- Perplexity
- Qwen

DataFrame

- df = pd.read....
- df
- df.
- df.dtypes int, float, object
- Уудалить два столбца drop
- Переименовать столбцы
- height weight hair
- df.hair df["hair"]
- df.head() df.tail()

Описательная статистика

- df.describe()
- df.gender.value_counts()
- import matplotlib.pyplot as plt
- plt.hist
- plt.scatter
- plt.title
- plt.xlabel
- plt.show()

MHK

- Метод наименьших квадратов (МНК)
- Ordinary Least Squares (OLS)
- sklearn
- linear_models
- LinearRegression

SKLearn

- Sci Kit Learn
- Import
- Ordinary Least Squares
- Bec = f(рост)
- model = LinearRegression()
- model.fit(x, y)
- model.predict(x)
- model.coefs_intercept_

Выбросы

• Аномалии

- Удалить строки
- По номеру строки
- По условию > 250

Регрессия на нейросети

- from sklearn.neural_network import MLPRegressor
- neuro = MLPRegressor(hidden_layer_sizes=(1,)
- neuro.fit(X, y)
- Y_predict = regr.predict(X)
- plt.scatter(x, y)
- plt.plot(x, y_predict)

Активация

• Функция активации / возбуждения нейрона

activation='relu', 'tanh', 'identity'

Датасет

- 100 обычных людей
- X = 150 ... 200
- $Y = x 100 \pm 10$
- 20 марафонцев
- $X = 200 \pm 10$
- $Y = 50 \pm 10$
- Линия регрессии «притягивается» к выбросам!

Перцептрон

- MLPRegression
- Multi Layer Perceptron

- Activation = "1"
- Solver подобрать
- Hidden layers = (1,)
- Random_state

Colab

- Поделиться блокнотом
- Чтение
- Полный доступ

Decision Tree

- Дерево решений
 - Решающее дерево
- Яндекс картинки
 - Дерево решений WD40
- Import
- Model = decision...
- Fit
- Predict
- visualization

СРС - Зачет

- Boston Housing Dataset
 - Регрессия
- Titanic Survival Dataset
 - Классификация

- Форма на GitHub
 - Ссылка на чтение

Нелинейная модель

MLPRegressor

- Hidden = (10,1,)
- Activation = tan

Ансамбль моделей

- Случайный лес
 - Несколько деревьев

- Random Forest Regressor
 - Количество деревьев
 - Глубина
 - «Консенсус-прогноз»

Качество модели

- Train-test-split
- Метрики качества

Выбросы

- Аномальные значения
 - Outliers
 - «Притягивают» к себе линию регрессии
- Основные, однородные объекты
 - $-x: 150 \dots 200 \quad (n = 100)$
 - $-y = x 100 \pm 10$
- Выбросы
 - $-\{190; 60\} \pm 10 (n = 20)$

Робастная регрессия

- Robust Regression
- Устойчивая
- «грубая»
- Нечувствительная к выбросам