MODULES AND HOMOMORPHISMS

COLTON GRAINGER (MATH 6140 ALGEBRA 2)

ASSIGNMENT DUE 2019-01-28

[1, No. 10.2.1]. Given. The definition of a submodule.

To prove. Kernels and images of R-module homomorphisms are submodules.

Proof. Let $f: M \to N$ be a homomorphism of modules. From our study of groups, $\ker f$ and $\operatorname{im} f$ are subgroups of M and N respectively [1, Ch. 2.2]. To argue both groups are stable under the ring action, consider $m \in M$ and $n \in N$.

inclusion	justification
$rm \in \ker f$ $rn \in \operatorname{im} f$	f(rm) = rf(m) = r0 = 0. Choose $a \in f^{-1}(n)$, then $rn = rf(a) = f(ra)$. \square

[1, No. 10.2.2]. To prove. R-module isomorphism classes partition any set of R-modules.

Proof. Let M, M', M'' be R-modules.

property	justification
Reflexivity	Because id: $M \to M$ respects addition and
	intertwines the ring action, id is a module
	isomorphism.
Symmetry	Say $\varphi \colon M \to M'$ is a module isomorphism. By
	definition φ^{-1} is a bijective set map. Moreover,
	take any elements $\varphi(m), \varphi(n) \in M'$ and $r \in R$.
	Additivity follows from $\varphi^{-1}(\varphi(m)) + \varphi^{-1}(\varphi(n)) =$
	$\varphi^{-1}(\varphi(m+n)) = \varphi^{-1}(\varphi(m) + \varphi(n))$. Closure
	under the ring action is seen by
	$r\varphi^{-1}(\varphi(m)) = rm = \varphi^{-1}(\varphi(rm)).$
Transitivity	Let $M \xrightarrow{f} M' \xrightarrow{g} M''$ be module isomorphisms.
	Then $M \xrightarrow{g \circ f} M''$ is an group isomorphism. Let
	$r \in R$ and $m \in M$. Consider $r(g \circ f)(m) =$
	$rg(f(m)) = g(rf(m)) = g(f(rm)) = (g \circ f)(rm).$
	So $g \circ f$ is a module isomorphism. \square

[1, No. 10.2.4]. Given. Let $A \in Ab$, let $a \in A$, and say $n \in N$.

 $To \ prove.$

a. $\varphi_a \colon \mathbf{Z}/(n) \to A$ given by $\varphi(k+(n)) = ka$ is a well defined **Z**-module homomorphism iff na = 0. b. $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/(n), A) \cong A_n$ where $A_n := \{a \in A : na = 0\}$.

Date : 2019-01-24.

 $^{^{1}\}mathrm{A}$ module isomorphism is a bijective module homomorphism.

Proof.

- a. The following are equivalent.
 - The module homomorphism $\varphi_a \colon \mathbf{Z}/(n) \to A$ such that $\varphi(k+(n)) = ka$ is well defined.
 - For each j such that $j k \in (n)$, ja = ka.
 - For the generators $\pm n$ of the ideal (n), $\pm na = 0$.
 - For the integer n and the element $a \in A$, na = 0.
- b. Let $\psi \colon \operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/(n), A) \to A_n \text{ map } \varphi \in \operatorname{Hom}(\mathbf{Z}/(n), A) \text{ to } a \text{ iff } \varphi(1+(n)) = a.$ From the argument above, each $\varphi \in \operatorname{Hom}(\mathbf{Z}/(n), A)$ is determined by $\varphi(1+(n)) = 1a = a$, so ψ is well defined.

property of ψ	justification
an additive homomorphism?	For arbitrary $\varphi_1, \varphi_2 \in \text{Hom}(\mathbf{Z}/(n), A)$, there's $a_1, a_2 \in A_n$ such that $\varphi_1(1+(n)) = a_1$ and $\varphi_2(1+(n)) = a_2$. Then $\psi \colon \varphi_1 + \varphi_2 \mapsto a_1 + a_2$.
injective?	Consider $\alpha \in \ker \psi$. Then $\alpha(1+(n))=0$. So α is the zero homomorphism, i.e., $\ker \psi=0$.
surjective?	Note that if $b \in A_n$, then $nb = 0$. Since $ b $ divides n , the homomorphism $\beta(1 + (n)) = b$ is well defined. So im $\psi = A_n$.

We conclude $\psi \colon \operatorname{Hom}(\mathbf{Z}/(n), A) \xrightarrow{\sim} A_n$. \square

[1, No. 10.2.5]. To exhibit. All Z-module homomorphisms from Z/30Z to Z/12Z.

Exhibition. Take 1 + (30) as a generator of $\mathbb{Z}/(30)$. All the unique homomorphisms from $\mathbb{Z}/(30)$ to $\mathbb{Z}/(12)$ are determined by the image of 1 + (30) in $\mathbb{Z}/(12)$, whose order must divide 30. In particular, there are 6 possible images.

element	order	determines $\mathbf{Z}/(30) \to \mathbf{Z}(12)$?
0 + (12)	1	yes
1 + (12)	12	
2 + (12)	6	yes
3 + (12)	4	
4 + (12)	3	yes
5 + (12)	12	
6 + (12)	2	yes
7 + (12)	12	
8 + (12)	3	yes
9 + (12)	4	
10 + (12)	6	yes
11 + (12)	12	

So Hom has cardinality 6. Moreover, Hom is isomorphic to a quotient of $\mathbf{Z}/(12)$. (Verify.) Thence we conclude $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/(30),\mathbf{Z}/(12)) \cong \mathbf{Z}/(6)$. \square

[1, No. 10.2.6]. To prove. $\text{Hom}_{\mathbf{Z}}(\mathbf{Z}/(n), \mathbf{Z}/(m)) \cong \mathbf{Z}/(n, m)\mathbf{Z}$.

Proof. Fix the base ring **Z**. By [1, p. 10.2.4], the module $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/(n), \mathbf{Z}/(m))$ is isomorphic to $\{a+(m): n(a+(m)) = na+(m) = 0+(m)\}$ by the 1-1 correspondence $a+(m) \leftrightarrow \varphi$ if and only if $\varphi(1+(m)) = a+(m)$.

We'll establish a set bijection between Hom and $\{0, \ldots, d-1\}$ where $d = \gcd(m, n)$. Knowing the cardinality of Hom, and that Hom is isomorphic to a quotient of $\mathbf{Z}/(m)$, we will argue that Hom $\cong \mathbf{Z}/(m, n)$.

So let $\varphi \in$ Hom such that $\varphi(1+(m))=a+(m)$. Then na+(m)=0+(m). So² na=km. Let $d=\gcd(m,n)$. Factorize n and m so that $n=\nu d$ and $m=\mu d$. Now the condition on a is $\nu da=k\mu d$. Thence $a=\frac{k\mu}{\nu}$, which we assume is an integer in $\{0,\ldots,m-1\}$. Since μ and ν are coprime, k must be $\{0,\nu,\ldots,d(\nu-1)\}$, which establishes the set bijections:

$$\{0, \dots, d(\nu - 1)\} \leftrightarrow \{a + (m) : n(a + (m)) = 0 + (m)\}$$
$$\leftrightarrow \operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/(n), \mathbf{Z}/(m)).$$

Because Hom is isomorphic to a quotient of the cyclic group $\mathbf{Z}/(m)$, and because $|\mathrm{Hom}| = d = \gcd(m,n)$, we conclude that $\mathrm{Hom} \cong \mathbf{Z}/(m,n)$. \square

[1, No. 10.2.7]. Given. Let z be a fixed element in the center of R.

To prove.

- a. The map $\varphi \colon m \mapsto zm$ is an R-module endomorphism of M.
- b. For a commutative ring R the map from R to $\operatorname{End}_R(M)$ given by $\psi \colon r \mapsto rI$ is a ring homomorphism (where I is the identity endomorphism.)

Proof.

- a. Let $m, n \in M$, and $r \in R$. For additivity, observe $\varphi(m+n) = z(m+n) = zm + zn = \varphi(m) + \varphi(n)$. For closure under the ring action, consider $r\varphi(m) = rzm = zrm = \varphi(rm)$.
- b. Let $r, s \in R$. Consider $\psi(r+s) = (r+s)I = rI + sI = \psi(r) + \psi(s)$, with also $\psi(rs) = (rs)I = r(sI) = rI(sI) = \psi(r)\psi(s)$. \square

[1, No. 10.2.9]. Given. Let R be a commutative ring.

To prove. $\operatorname{Hom}_R(R, M)$ and M are isomorphic as left R-modules.

Proof. Let $\varphi \in \text{Hom be mapped by } \psi \colon \varphi \mapsto \varphi(1) \text{ into } M.$

property of ψ	justification
an R -module homomorphism?	Say $\alpha, \beta \in \text{Hom and } r \in R$. Then
-	$\psi(\alpha+\beta) = (\alpha+\beta)(1) = \alpha(1) + \beta(1) = \psi(\alpha) + \psi(\beta).$
injective?	Suppose $\alpha \in \ker \psi$. Then α is mapped to $0 \in M$.
	So $\alpha(1) = 0$ which implies that for each $r \in R$,
	$\alpha(r) = \alpha(r1) = r\alpha(1) = r0 = 0$. So α is the zero
	homomorphism.
surjective?	Pick an arbitrary $m \in M$. Is there $\beta \in \text{Hom such}$
	that $\beta(1) = m$? Yes. R-linearly extending the
	provisional definition $\beta(1) = m$, we'd have
	$\beta(r) = rm$, which does define a module
	homomorphism β . \square

[1, No. 10.2.10]. Given. Let R be a commutative unital ring.

To prove. $\operatorname{Hom}_R(R,R) =: \operatorname{End}_R(R)$ and R are isomorphic as rings.

Proof. Consider the map $\psi \colon R \to \operatorname{End}(R)$ such that $r \mapsto rI$.

property of ψ	justification
a ring homomorphism?	Special case of [1, No. 10.2.7] when considering R as a module over itself.

²My choice of notation due to https://math.stackexchange.com/questions/381891.

property of ψ	justification
injective?	Consider ker ψ . Say $r \in R$ and for each $\varphi \in \operatorname{End}(R)$, $rI\varphi = r\varphi = 0$. Then for each $s \in R$, $0 = r\varphi(s) = \varphi(rs)$. In particular for $\varphi = \operatorname{id} \in \operatorname{End}(R)$ and $s = 1 \in R$, we have $0 = \operatorname{id}(r)$. So $r = 0$.
surjective?	Say $\varphi \in \operatorname{End}(R)$. There's some $r \in R$ such that $\varphi(1) = r$. By [1, p. 10.2.9], that $\varphi(1) = r$ determines φ by extending R -linearly. (E.g., for $s \in R$, $\varphi(s) = s\varphi(1) = sr$.) \square

[1, No. 10.2.11]. Given. Let A_1, A_2, \ldots, A_n be R-modules and let the B_j be submodules of the A_j , resp. To prove. $(A_1 \times \cdots \times A_n)/(B_1 \times \cdots \times B_n) \cong (A_1/B_1) \times \cdots \times (A_n/B_n)$.

Proof by universal property. Suppose that a passerby R-module C has homomorphisms φ_j into the A_j/B_j .

Define

$$\pi_i : \left(\prod_j A_j\right) / \left(\prod_j B_j\right) \to A_i / B_i$$

$$(a_1, \dots, a_n) + \prod_j B_j \mapsto a_i + B_i.$$

Observe that the π_i are well defined and surjective as $a_i \notin B_j$ for $i \neq j$. To see that $\left(\prod_j A_j\right) / \left(\prod_j B_j\right)$ is the product of the quotients A_j/B_j , suppose now that $C = \prod_1^n (A_j/B_j)$ is the product indeed (explaining the otherwise ridiculous reversed arrow for ψ) with homomorphisms φ_j as the standard coordinate projections. By the universal property of products, there's a unique homomorphism $\psi \colon \prod A/\prod B \to C$ such that $\varphi_j \circ \psi = \pi_j$ for all j. Factorization through the φ_j forces $\ker \psi = \cap_j \ker \pi_j = (0_{A_1}, \dots, 0_{A_n}) + \prod_j B_j$, which is trivial. So $\psi \colon \prod A/\prod B \xrightarrow{\sim} C$. \square

References

[1] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 2004.