Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования

Тульский государственный университет

КАФЕДРА АВТОМАТИКИ И ТЕЛЕМЕХАНИКИ

ПОДПРОГРАММА-ФУНКЦИЯ

Лабораторная работа № 2 по курсу «Программирование на ЯВУ»

Вариант № 4

Выполнил:	студент группы 220601	Белым А.А.
		(подпись)
Проверил:		Сулимова В.В
		(полпись)

Цель работы

Целью работы является изучить работу с подпрограмм-функций и реализация программы, использующей подпрограмму-функцию,

Задание

Написать программу, вычисляющую значения переменных x и y в системе уравнений $a_1x+b_1y=c_1$ и $a_2x+b_2y=c_2$, где a_1 , b_1 , c_1 , a_2 , b_2 , c_2 — некоторые числа, вводимые пользователем с клавиатуры.

Теоретическая справка

Схема алгоритма

На рисунке 1 представлена схема алгоритма ввода параметров системы 2-х уравнений с 2-мя неизвестными, её решения и вывода корней системы.

Рисунок 1 — Блок-схема обобщенного алгоритма решения системы уравнений

На рисунке 2 представлена схема алгоритма ввода параметров системы 2-х уравнений.

Рисунок 2 — Блок-схема алгоритма ввода параметров системы уравнений

На рисунке 3 представлена блок-схема алгоритма запроса одного из параметров системы.

Рисунок 3 — Блок-схема алгоритма ввода произвольного параметра

На рисунке 4 представлена схема алгоритма организации проверки пользователем введённых данных.

Рисунок 4 — Блок-схема алгоритма организации проверки пользователем введённых данных

На рисунке 5 представлена схема алгоритма решения системы 2-х уравнений с 2-мя неизвестными.

Рисунок 5 — Блок-схема алгоритма решения системы уравнений

На рисунке 6 представлена схема алгоритма расчета определителя 2-ого порядка.

Рисунок 6 — Схема алгоритма расчета определителя 2-ого порядка

На рисунке 7 представлена схема алгоритма вывода корней системы 2-х уравнений с 2-мя неизвестными.

Рисунок 7 — Блок-схема алгоритма вывода корней системы уравнений

Инструкция пользователю

Данная программа позволяет решать системы из двух линейных уравнений.

Для работы программы необходимо ввести с клавиатуры коэффициенты уравнений — сначала коэффициент при х, затем при у и свободный коэффициент первого уравнения, затем коэффециенты второго уравнения в том же порядке. Все параметры — вещественные числа. После этого предоставляется возможность проверить введённые данные; если они корректны, для продолжения работы нужно ввести 'у', ввод любого другого значения приведёт к завершению работы программы с соответствующим сообщением.

В качестве результатов работы программа либо выведет 2 числа - х и у, удовлетворяющие системе, если система совместна; либо если система не имеет решений или имеет бесконечно много решений (т. е. если определитель системы равен нулю), то будет сообщено, что система не совместна.

Инструкция программисту

При создании программы решения системы 2-х уравнений с 2-мя неизвестными были сделаны следующие действия.

В основной части программы определена костанта maxvars, равная 2, которая определяет количество неизвестных системы.

Определён тип MatColumn как array[1..maxvars] of real, для представления коэффициентов системы в форме столбцов (в отдельном массиве коэффициенты при х, в другом при у, и т.д.).

Были введены структуры данных, описание которых представлено в таблице 1.

Таблица 1 - Структуры данных, используемые в в основной части программы оценки элементов массива

имя	ТИП	предназначение
A,B,C	MatColumn	Столбцы расширенной матрицы системы: коэффициенты уравнений при х, коэффициенты системы при у и свободные коэффициенты соответственно.
х,у	real	Корни системы уравнений.
log	boolean	Указывает на отсутствие ошибок (значение true) ввода данных или желания пользователя прервать программу.

Кроме того, в процессе создания вышеуказанной программы были определены следующие подпрограммы:

1. Функция GetParam запрашивает у пользователя произвольный (по имени и номеру) параметр системы - вещественное число. Возвращает запрошенный параметр; кроме того, в случае ошибки пользователя уведомляет об этом основную программу с помощью переменной log.

function GetParam(const paramName:char;const paramNum:integer;

var log:boolean):real;

Используемые функцией параметры-константы приведены в таблице 2; параметры-переменные - в таблице 3, локальные переменные - в таблице 4.

Таблица 2 - Параметры-константы функции ввода произвольного параметра системы

имя	ТИП	предназначение
paramName	char	Имя запрашиваемого параметра.
paramNum	integer	Порядковый номер запрашиваемого параметра.

Таблица 3 - Параметры-переменные функции ввода произвольного параметра системы

имя	ТИП	предназначение
log		Указывает на желание пользователя продолжить работу программы(при значении true, false - завершение программы)

Таблица 4 - Локальные переменные функции ввода произвольного параметра системы

имя	ТИП	предназначение
ch	char	Содержит ответ пользователя на запросы программы о повторении ввода данных.
buf	i Sirino	Буфер, который содержит значения в строковом формате на случай ошибочного ввода параметра.

2. Функция InputData вводит коэффициенты системы уравнений. Возвращает true, если ввод завершился без ошибок. Так как функция использует тип MatColumn и константу maxvars, то они должны быть определены глобально в основной программе. Кроме того, функция InputData использует функцию GetParam, поэтому она также должна быть глобальной по отношению к InputData.

function InputData(var A,B,C:MatColumn):boolean;

Используемые функцией параметры-переменные приведены в таблице 5.

Таблица 5 - Параметры-переменные функции ввода параметров уравнений системы

имя	ТИП	предназначение
A,B,C	MatColumn	Столбцы расширенной матрицы системы: коэффициенты уравнений при х, коэффициенты системы при у и свободные коэффициенты соответственно.

3. Функция CheckData позволяет организовать проверку пользователем введенных им ранее значений. Возвращает true, если пользователь подтвердил правильность данных. Так как функция использует тип MatColumn, то он должен быть определен глобально в основной программе.

function CheckData(const A,B,C:MatColumn):boolean;

Используемые функцией параметры-константы приведены в таблице 6; локальные переменные - в таблице 7.

Таблица 6 - Параметры-константы функции проверки пользователем введенных значений

имя	ТИП	предназначение
A,B,C		Столбцы расширенной матрицы системы: коэффициенты уравнений при х, коэффициенты системы при у и свободные коэффициенты соответственно.

Таблица 7 - Локальные переменные функции проверки пользователем введенных значений

имя	ТИП	предназначение
ch	ch char	Содержит ответ пользователя на запрос программы о
CII	Ciiai	правильности данных.

4. Функция GetDet рассчитывает определитель 2-ого порядка, составленный из 2-х матриц-столбцов. Возвращает искомый определитель. Так как функция использует тип MatColumn, то он должен быть определен глобально в основной программе.

function GetDet(const A,B:MatColumn):real;

Используемые функцией параметры-константы приведены в таблице 8.

Таблица 8 - Параметры-константы функции подсчета определителя

имя	ТИП	предназначение
A,B	MatColumn	Первый и второй столбец рассчитываемого определителя

5. Функция SolveSys решает систему 2-х уравнений с 2-мя неизвестными. Возвращает true, если переданная система была совместна. Так как функция использует тип MatColumn, то он должен быть определен глобально в основной программе.

function SolveSys(const A,B,C:MatColumn; var x,y:real):boolean;

Используемые функцией параметры-константы приведены в таблице 9; параметры-переменные - в таблице 10; локальные переменные - в таблице 11.

Таблица 9 - Параметры-константы функции решения системы уравнений

имя	ТИП	предназначение
A,B,C	 MatColumn	Столбцы расширенной матрицы системы: коэффициенты уравнений при х, коэффициенты системы при у и свободные коэффициенты соответственно.

Таблица 10 - Параметры-переменные функции решения системы уравнений

имя	ТИП	предназначение
x,y	real	Корни системы уравнений.

Таблица 11 - Локальные переменные функции решения системы уравнений

имя	ТИП	предназначение
d	real	Определитель данной системы.
dx	real	Определитель из свободных членов и коэффициентов при у.
dy	real	Определитель из коэффициентов при х и свободных членов.

6. Процедура PrintData выводит корни системы уравнений. procedure PrintData(const x,y:real);

Используемые процедурой параметры-константы приведены в таблице 12.

Таблица 12 - Параметры-константы процедуры вывода корней системы уравнений

имя	ТИП	предназначение
х,у	real	Корни системы уравнений.

Текст программы

Ниже представлен текст программы, написанной на языке Turbo Pascal 7, которая решает систему 2-х уравнений с 2-мя неизвестными.

```
{----ПРОГРАММА РЕШЕНИЯ СИСТЕМЫ 2-Х УРАВНЕНИЙ С 2-МЯ НЕИЗВЕСТНЫМИ-----}
Program SysSolver;
const maxvars=2; {кол-во переменных системы}
type MatColumn=array[1..maxvars] of real; {тип "матрица-столбец"}
{-----ФУНКЦИЯ ВВОДА ВЕЩЕСТВЕННОГО ПАРАМЕТРА-----}
{Параметры: имя запрашиваемого параметра; номер параметра; переменная состояния}
function GetParam(const paramName:char;const paramNum:integer;
                                            var log:boolean):real;
var temp:real; buf:string; code:integer; ch:char;
begin
    ch:='Y'; temp:=0; {инициализация переменных}
    repeat
        WriteLn('Введите ',paramName,paramNum,' - вещественное число.');
        Write(paramName, paramNum, ':'); ReadLn(buf); Val(buf, temp, code);
        if code<>0 then begin {введено не вещественное число?}
            WriteLn('Недопустимое значение ', paramName, paramNum, '.');
            WriteLn('Повторить ввод?(y/n)');
            ReadLn(ch);
        end;
    until (Upcase(ch)='N') or (code=0);
    {пока пользователь не отказался или число некорректное}
    log:=code=0; {число введено корректно?}
    if log then
        GetParam:=temp; {вернём значение}
end;
{----- ВВОДА ДАННЫХ-----
{Параметры: коэффициенты при х; коэффициенты при у; свободные коэффициенты}
function InputData(var A,B,C:MatColumn):boolean;
var i:byte; log:boolean;
begin
    log:=true;i:=1; {инициализация переменной}
    while (i<=maxvars) and log do begin {пока не было ошибки или не введены
                                                уравнения }
        A[i]:=GetParam('a',i,log);
        if log then
            B[i]:=GetParam('b',i,log);
        if log then
```

```
C[i]:=GetParam('c',i,log);
        inc(i);
    end;
    InputData:=log;
end;
{-----
{Параметры: коэффициенты при х; коэффициенты при у; свободные коэффициенты}
function CheckData(const A, B, C:MatColumn):boolean;
var ch:char;
begin
      WriteLn('Вы ввели:');
      WriteLn(A[1]:1:4,'x + ',B[1]:1:4,'y = ',C[1]:1:4);
      WriteLn(A[2]:1:4,'x + ',B[2]:1:4,'y = ',C[2]:1:4);
      WriteLn('al=',A[1]:1:4,'; b1=',B[1]:1:4,'; c1=',C[1]:1:4);
      WriteLn('a2=',A[2]:1:4,'; b2=',B[2]:1:4,'; c2=',C[2]:1:4);
      WriteLn('OK?(y/n)');
      Readln(ch);
      CheckData:=UpCase(ch)='Y';
end;
{-----ФУНКЦИЯ ПОДСЧЕТА ОПРЕДЕЛИТЕЛЯ-----}
{Параметры: первый столбец определителя; второй столбец определителя}
function GetDet(const A,B:MatColumn):real;
begin
    GetDet:=A[1]*B[2]-B[1]*A[2];
end;
{-----ФУНКЦИЯ РЕШЕНИЯ СИСТЕМЫ-----}
{Параметры: коэффициенты при х; коэффициенты при у; свободные коэффициенты
                        найденное значение х; значение у}
function SolveSys(const A,B,C:MatColumn; var x,y:real):boolean;
var d, dx, dy:real;
begin
    d:=GetDet(A,B);
    if d<>0 then begin
        dx := GetDet(C, B);
         dy:=GetDet(A,C);
          x := dx/d;
          y := dy/d;
          SolveSys:=true;
      end else SolveSys:=false;
end;
```

```
{-----РОЦЕДУРА ВЫВОДА КОРНЕЙ СИСТЕМЫ-----}
{Параметры: значение х; значение у}
procedure PrintData(const x, y:real);
begin
   WriteLn('OTBeT:');
   WriteLn('x = ', x);
   WriteLn('y =',y);
end;
{-----}
var A,B,C:MatColumn;
{коэффециенты при х; при у; свободные коэффециенты}
     x,y:real;
{значение х; значение у}
    log:boolean;
{переменная состояния}
BEGIN
     WriteLn('Данная программа находит корни системы уравнений');
     WriteLn('(a1)x+(b1)y=(c1);');
     WriteLn('(a2)x+(b2)y=(c2);');
     log:=InputData(A,B,C);
     if log then
         log:=CheckData(A,B,C);
     if log then begin
         log:=SolveSys(A,B,C,x,y);
         if log then
             PrintData(x,y)
          else
             WriteLn('Cистема не совместна!');
     end else
         WriteLn('Программа завершена.');
     WriteLn('Нажмите <Enter>...');
      ReadLn;
END.
```

Тестовые примеры

На рисунке 8 представлен пример работы программы решения системы уравнений для системы x+2y=7 и 2x+y=5.

```
Данная программа находит корни системы уравнений
(a1)x+(b1)y=(c1);
(a2)x+(b2)y=(c2);
Введите а1 - вещественное число.
a1:1
Введите b1 - вещественное число.
b1:2
Введите с1 - вещественное число.
c1:7
Введите а2 - вещественное число.
a2:2
Введите b2 - вещественное число.
Введите с2 - вещественное число.
c2:5
Вы ввели:
1.0000x + 2.0000y = 7.0000
2.0000x + 1.0000y = 5.0000
a1=1.0000; b1=2.0000; c1=7.0000
a2=2.0000; b2=1.0000; c2=5.0000
0K?(y/n)
У
Ответ:
x = 1.00000000000000E+000
y = 3.00000000000000E+000
Нажмите <Enter>...
```

Рисунок 8— Пример работы программы решения системы уравнений

Вывод

В ходе выполнения данной лабораторной работы я научился использовать подпрограммы-функции при написании программ. Функции возвращают через свое имя некоторое значение, что и отличает их от процедур. Эта особенность позволяет функциям участвовать в качестве операнда в выражениях, что бывает полезно при подсчете различных значений в математических, физических, финансовых и многих других областях.