

EXERCICE 7-1: UART & HANDSHAKE

OBJECTIFS

Cet exercice a pour objectif de permettre aux étudiants d'utiliser le handshaking "automatique" de l'USART et d'observer concrètement le comportement de ce mécanisme en situation de surcharge.

a) REALISATION PRATIQUE

Copiez votre projet labo Tp2_PWM&RS232 sous C:\microchip\harmony\v<n>\apps\MINF\Exercices et renommez le Ex7_1.

MODIFICATION DE LA CONFIGURATION

Au niveau de la configuration de l'USART, il faut établir la configuration comme cidessous (changement du "Handshake mode") :

Avec cette configuration, les signaux de contrôle de flux sont maintenant gérés automatiquement par hardware.

Info du datasheet du PIC, chapitre USART:

Le signal RTS est drivé à 0 (prêt à recevoir) quand l'USART a la place pour 2 caractères dans son FIFO.

MODIFICATIONS DU CODE

- Régler l'interruption de réception lorsque le buffer à moitié plein (= 4 bytes sur les 8 du buffer). Il est nécessaire de le modifier à la main dans le code d'initialisation de l'USART si pas disponible via Harmony.
- Enlever le contrôle de flux géré par software : tous les tests de la valeur de l'entrée CTS et les assignations de la sortie RTS.
 - o Interruption RX
 - o GetMessage
 - o Interruption TX
 - o SendMessage
 - o InitFifoComm
- Pour s'assurer que le contrôle de flux entre en action, votre application doit envoyer une trame à chaque cycle (pas un cycle sur 5 comme demandé au TP).
- Attention également à gérer les activations, désactivations et clear des interruptions TX et RX.

MODIFICATION SIGNALISATION PAR LED

Il est demandé d'introduire les modifications suivantes :

- Toggle LED_3 dans interruption RX
- Toggle LED_4 dans interruption TX
- LED_0 à 1 au début traitement application puis à 0 en fin traitement application (éliminer les autres traitements sur LED_0).

TEST DE FONCTIONNEMENT ET OBSERVATIONS

b) TEST INITIAL

Avant de créer une surcharge mettant en œuvre le handshaking, il faut tester le bon fonctionnement des modifications. Utilisation de 2 kits chargés chacun avec une application qui émet un message par cycle.

OBSERVATION EN RECEPTION

canal 1: LED_0 (marque traitement dans l'application)	
canal 2: LED_3 (inversion à chaque int RX)	
canal 3 : broche 52 U1RX	
canal 4: RS232_RTS (broche 48)	

OBSERVATION EN EMISSION

canal 1: LED_0 (marque traitement dans l'application)
canal 2: LED_4 (inversion dans réponse à l'interruption TX)
canal 3 : broche 53 U1TX
canal 4: RS232_CTS (broche 47)

c) TEST AVEC SURCHARGE

Pour tester le comportement du handshaking, il est nécessaire d'augmenter le débit d'émission. Il faut modifier l'application pour envoyer 1 message supplémentaire tous les 3 cycles de l'application.

OBSERVATION EN RECEPTION (AVEC SURCHARGE)

OBSERVATION EN EMISSION (AVEC SURCHARGE)

canal 1: LED_0 (marque traitement dans l'application)
canal 2: LED_4 (inversion dans réponse à l'interruption TX)
canal 3 : broche 53 U1TX
canal 4: RS232_CTS (broche 47)