

Prueba I Métodos Matemáticos de la Física II

Licenciatura en Física - 2018 IPGG

(I) (30%)

Sea:

 $R_{ij} = \delta_{ij}\cos\left(\theta\right) + n_{i}n_{j}\left[1 - \cos\left(\theta\right)\right] - \sin\left(\theta\right)\epsilon_{ijk}n_{k}$

donde n_k son las componentes de un vector unitario. Halle la traza de la matriz ${f C}$ cuyas componentes están dadas por la ecuación indicial $C_{ij} = R_{ik}R_{jk}$ Obs.: $i, j, k \in \{1, 2, 3\}$.

(II) (30%)

Si r es la magnitud del vector posición ${\bf r},$ demuestre lo siguiente:

- 1. $\nabla f(r) = \frac{\mathbf{r}}{r} \frac{df(r)}{dr}$
- 2. $\nabla \cdot \mathbf{F}(r) = \frac{\mathbf{r}}{r} \cdot \frac{d\mathbf{F}(r)}{dr}$
- 3. $\nabla f(\xi) = \mathbf{A} \frac{df(\xi)}{d\xi}$, donde $\xi = \mathbf{A} \cdot \mathbf{r}$, siendo \mathbf{A} un vector constante.

Obs. : Todas las funciones consideradas aquí son arbitrarias.

(III) (40%)

Sean los campos escalares $\phi_1\left(r\right) = \frac{\left(\mathbf{P}\cdot\mathbf{r}\right)^2}{r^2}$ y $\phi_2\left(r\right) = \frac{r^2}{\left(\mathbf{P}\cdot\mathbf{r}\right)^2}$, donde **P** es un vector constante. Determine el producto $\nabla \phi_1(r) \times \nabla \phi_2(r)$.

1)
$$Rij = Sij \cos\theta + ning (1-\cos\theta) - \sin\theta \in igk Nk$$
 $Cii = RigRig$
 $= \left[Sig \cos\theta + ning (1-\cos\theta) - \sin\theta \in igk Ng \right]$
 $\times \left[Sig \cos\theta + ning (1-\cos\theta) - \sin\theta \in igk Ng \right]$
 $= -\left[Sig \cos\theta + (1-\cos\theta) ning \right] \sin\theta \in igk Ng$
 $-\left[Sig \cos\theta + (1-\cos\theta) ning \right] \sin\theta \in igk Ng$
 $+\left[Sig \cos\theta + ning (1-\cos\theta) \right] \left[Sig \cos\theta + ning (1-\cos\theta) \right]$

+ Sin20 Eils Eilk Msnr

Obs. Los 2 primeros terminos son nulos=> Sil Fier=0 Eigk Mk Mine =0.

3

Cii = Sie Sie Costo + 2 Sie nine Coso (1-coso) + Minenine (1-coso)2

+ Sin20 Eigs Eigk Ms Mk

1 (vector unitarior)

= 3 cos20 + Mini(1-cos0) cos0 + Minimum (1-cos0)²

+ sin20 (Seedes- Seedse) none

 $= 3\cos^2\theta + (1-\cos\theta)\cos\theta + (1-\cos\theta)^2 + 3\sin^2\theta)\pi \ln \pi$ $-\sin^2\theta)\pi \ln \pi$

= 30020 + 000 - 0000 + 1 - 2000 + 0000 + 30000 $- \sin 20$

 $= 3 + 1 - \cos \theta + \sin^2 \theta = 4 + \sin^2 \theta - \cos \theta / /$

2) a) La componente i-esime està de de por:

$$[\Delta t(L)]! = 2! t(L) = \frac{9}{9} t(L)$$

enego
$$\frac{\partial r}{\partial x_i} = \partial_i r = \partial_i (x_e x_e)^{1/2} = \frac{1}{2} (x_e x_e)^{-1/2} \partial_i (x_e x_e)$$

Xi Se transforme en derivada

i. $[\nabla f(r)]_{i} = \frac{x_{i}}{r} \frac{df(r)}{dr}$ depende de $|\vec{r}| = r$.

$$\Delta t(L) = \frac{L}{L} \frac{q_L}{q_L(L)} \bigg|.$$

Regla de la codune

b)
$$\nabla \cdot \vec{F}(r) = \partial_i F_i(r) = \frac{\partial}{\partial x_i} F_i(r) = \frac{dF_i(r)}{dr} \frac{\partial r}{\partial x_i}$$

$$=\frac{\chi_{i}}{r}\frac{dF_{i}(r)}{dr}=\frac{\overrightarrow{r}}{r}\cdot\frac{d\overrightarrow{F}(r)}{dr}$$

c)
$$\left[\nabla f(\xi)\right]_{i} = \delta_{i} f(\xi)$$

$$=\frac{9x!}{9\xi}\frac{9\xi}{9t(\xi)}=\frac{9x!}{9\xi}\frac{9\xi}{9t(\xi)}.$$

por otro lador:
$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{\partial}{\partial x_i} (Ae Xe) = Ae \frac{\partial x_e}{\partial x_i} = Ae Sei$$

$$=A$$

$$\nabla f(\xi) = \vec{A} \frac{df(\xi)}{d\xi}$$

3)
$$\phi_{1} = (\vec{p} \cdot \vec{r})^{2} = P_{2}P_{3} \times 2 \times 3$$

entonas:

$$\nabla \phi_1 = 2 \left[\frac{1}{P \cdot 1} \frac{1}{P} - \frac{1}{P^2} \right]$$

Por otro lado:

$$\phi_2 = \frac{r^2}{(\overrightarrow{P.r})^2}$$

$$= 2 \frac{\chi_{i}}{(\vec{p}.\vec{r})^{2}} - 2 \frac{\chi^{2}}{(\vec{p}.\vec{r})^{3}}$$

$$= 2 \left[\frac{\vec{r}}{(\vec{p} \cdot \vec{r})^2} - \frac{r^2}{(\vec{p} \cdot \vec{r})^3} \right]$$

οο
$$\nabla \phi_1 \times \nabla \phi_2 = 4 \left[\left(\vec{p}, \vec{r} \right) \vec{p} - \left(\vec{p}, \vec{r} \right) \vec{r} \right] \left[\left(\vec{p},$$

$$= 4 \left(\frac{1}{r^2(\vec{p}.\vec{r})} \vec{p} \vec{x} \vec{r} + \frac{1}{r^2(\vec{p}.\vec{r})} \vec{r} \vec{x} \vec{p} \right) = 0$$