Deep Learning - Theory and Practice

IE 643

Lectures 11, 12 - Part 2

September 9 & 13, 2022

- Convex Sets
- Convex Functions in 1D
- 3 Convex Sets and Functions in Higher Dimensions
- 4 Strictly Convex Functions
- Convex Optimization

Convex Sets

Points in a 2D space

Affine combination of two points

• z is an arbitrary point on the line passing through x and y.

Convex combination of two points

• z is an arbitrary point on the line segment connecting x and y.

Convex Sets

- A set C is convex if $\lambda x + (1 \lambda)y \in C$, $\forall x, y \in C$, $\forall \lambda \in [0, 1]$.
- The line segment connecting x and y in C lies entirely within C.

Convex Sets

- A set C is convex if $\lambda x + (1 \lambda)y \in C$, $\forall x, y \in C$, $\lambda \in [0, 1]$.
- The line segment connecting x and y in C lies entirely within C.

Non-convex Sets

- A set $\mathcal C$ is not convex if there exist two points x and y in $\mathcal C$ such that $\lambda x + (1-\lambda)y \notin \mathcal C$, for some $\lambda \in [0,1]$.
- The line segment connecting x and y in $\mathcal C$ does not entirely lie within $\mathcal C$.

Convex Sets and Convex Combination

Going beyond two points

- Let x, y, z be points in a set C.
- How to extend the definition of convex combination to these three points?

Convex Sets and Convex Combination

Going beyond two points

- Let x, y, z be points in a set C.
- How to extend the definition of convex combination to these three points? (Homework!)

Convex Sets and Convex Combination

Going beyond two points

- More generally, let x^1, x^2, \dots, x^m be m points in a set C.
- How to extend the definition of convex combination to these m points? (Homework!)

Convex Functions

• A function $f: \mathcal{C} \to \mathbb{R}$, defined over a convex set $\mathcal{C} \subseteq \mathbb{R}$ is called convex if $f(\lambda y + (1 - \lambda)z) \le \lambda f(y) + (1 - \lambda)f(z)$, $\forall y, z \in \mathcal{C}$, $\forall \lambda \in [0, 1]$.

- A function $f: \mathcal{C} \to \mathbb{R}$, defined over a convex set $\mathcal{C} \subseteq \mathbb{R}$ is called convex if $f(\lambda y + (1 \lambda)z) \le \lambda f(y) + (1 \lambda)f(z)$, $\forall y, z \in \mathcal{C}$, $\forall \lambda \in [0, 1]$.
- Chord over-estimates the graph of function.

- A function $f: \mathcal{C} \to \mathbb{R}$, defined over a convex set $\mathcal{C} \subseteq \mathbb{R}$ is called convex if $f(\lambda y + (1 \lambda)z) \le \lambda f(y) + (1 \lambda)f(z)$, $\forall y, z \in \mathcal{C}$, $\forall \lambda \in [0, 1]$.
- Chord over-estimates the graph of function.

- A function $f: \mathcal{C} \to \mathbb{R}$, defined over a convex set $\mathcal{C} \subseteq \mathbb{R}$ is called convex if $f(\lambda y + (1 \lambda)z) \le \lambda f(y) + (1 \lambda)f(z)$, $\forall y, z \in \mathcal{C}$, $\forall \lambda \in [0, 1]$.
- Chord over-estimates the graph of function.

Concave Function

- Concave function is a close relative of convex function.
- A function $f: \mathcal{C} \to \mathbb{R}$, defined over a convex set $\mathcal{C} \subseteq \mathbb{R}$ is called concave if -f is convex over \mathcal{C} .

Note: Concave functions are also defined over convex sets 11,12 - Part 20 187

Convex Function - Characterization

Extending convex function definition to more than two points.

How to extend the definition of convex functions to a set of points $\{x^1, x^2, \dots, x^m\} \subset C$?

Convex Function - Characterization

Extending convex function definition to more than two points.

How to extend the definition of convex functions to a set of points $\{x^1, x^2, \dots, x^m\} \subset C$? (Homework!)

Convex Function - First Order Characterization

- For differentiable convex functions, the tangent lines under-estimate the graph of function.
- Recall: Tangent at a point is a first-order approximation of a function.

Convex Function - First Order Characterization

- Recall: First order approximation of a function f at y in the vicinity of point z:
 - $f(y) \approx f(z) + (y-z)f'(z).$

Convex Function - First Order Characterization

• Let $\mathcal{C} \subseteq \mathbb{R}$ be an open interval. Let $f : \mathcal{C} \to \mathbb{R}$ be a continuously differentiable function. Then f is convex if and only if

$$f(y) \geq f(z) + (y-z)f'(z), \ \forall y, z \in C.$$

• f'(z) is the derivative of f at z.

Note: $\mathcal{C} \subseteq \mathbb{R}$ is assumed to be an open interval.

Convex Function - Second Order Characterization

- Let $C \subseteq \mathbb{R}$ be an open interval. Let $f : C \to \mathbb{R}$ be a twice continuously differentiable function. Then f is convex if and only if $f''(x) \ge 0$, $\forall x \in C$.
- f''(x) is the double derivative of f at x.
- $f''(x) \ge 0$ indicates non-negative curvature.

Convex Function - Interesting Properties

Convex functions enjoy several interesting properties.

- If f_i are convex for $i=1,\ldots,m$, their weighted sum $\sum_{i=1}^m \theta_i f_i$ is convex, when $\theta_i \geq 0$, $\forall i=1,\ldots m$.
- If f_i are convex for i = 1, ..., m, $\max_{i=1,...,m} f_i$ is convex.
- If f is convex then g(x) = f(ax + b), $a, b \in \mathbb{R}$ is also convex. (Affine invariance)

Moving Towards Higher Dimensions...

Convex Sets In High Dimensions

• Extreme cases: the empty set \emptyset and the full space \mathbb{R}^d .

Convex Sets In High Dimensions

• Hyperplane: $\{x \in \mathbb{R}^d : w^\top x = a\}$, for some $\mathbf{0} \neq w \in \mathbb{R}^d$ and $a \in \mathbb{R}$.

Convex Sets In High Dimensions

- Closed Halfspace:
 - ▶ $\{x \in \mathbb{R}^d : w^\top x \ge a\}$, for some $\mathbf{0} \ne w \in \mathbb{R}^d$ and $a \in \mathbb{R}$.
 - $\{x \in \mathbb{R}^d : w^\top x \leq a\}$, for some $\mathbf{0} \neq w \in \mathbb{R}^d$ and $a \in \mathbb{R}$.
- Open Halfspace:
 - ▶ $\{x \in \mathbb{R}^d : w^\top x > a\}$, for some $\mathbf{0} \neq w \in \mathbb{R}^d$ and $a \in \mathbb{R}$.
 - $\{x \in \mathbb{R}^d : w^\top x < a\}$, for some $\mathbf{0} \neq w \in \mathbb{R}^d$ and $a \in \mathbb{R}$.

High Dimensional Representation - Notations

• Gradient of a function $f: \mathbb{R}^d \to \mathbb{R}$ at a point x

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \vdots \\ \frac{\partial f(x)}{\partial x_d} \end{pmatrix}$$

High Dimensional Representation - Notations

• Hessian Matrix of a function $f: \mathbb{R}^d \to \mathbb{R}$ at a point x

$$H = \nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_d} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_d \partial x_1} & \frac{\partial^2 f(x)}{\partial x_d \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_d \partial x_d} \end{pmatrix}$$

- Note the size of $H: d \times d$, we will denote this as $H \in \mathbb{R}^{d \times d}$.
- Note also that H is symmetric. (why?)

Transpose Of A Matrix

Matrix A of size $d \times d$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1d} \\ a_{21} & a_{22} & \cdots & a_{2d} \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots \\ a_{d1} & a_{d2} & \cdots & a_{dd} \end{pmatrix}$$

Transpose of A (of same size)

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1d} \\ a_{21} & a_{22} & \dots & a_{2d} \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ a_{d1} & a_{d2} & \dots & a_{dd} \end{pmatrix} \qquad A^{\top} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{d1} \\ a_{12} & a_{22} & \dots & a_{d2} \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ a_{1d} & a_{2d} & \dots & a_{dd} \end{pmatrix}$$

Note: Rows of matrix A are columns of matrix A^{\top} .

Symmetric Matrix

• A matrix A is symmetric if $A = A^{\top}$.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1d} \\ a_{12} & a_{22} & \dots & a_{2d} \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ a_{1d} & a_{2d} & \dots & a_{dd} \end{pmatrix} = A^{\top}$$

Symmetric Positive (Semi-)definite Matrix

• A symmetric matrix $A \in \mathbb{R}^{d \times d}$ is called positive semi-definite (denoted by $A \succeq 0$) if

$$x^{\top} A x \ge 0, \ \forall x \ \in \mathbb{R}^d.$$

Caution: This definition is non-intuitive.

• A symmetric matrix $A \in \mathbb{R}^{d \times d}$ is called positive definite (denoted by $A \succ 0$) if

$$x^{\top}Ax > 0$$
, $\forall x \in \mathbb{R}^d$ such that $x \neq 0$.

Symmetric Positive (Semi-)definite Matrix

Computation-friendly definitions

- $A \succeq 0 \iff$ all eigen values of A are non-negative.
- $A \succ 0 \iff$ all eigen values of A are positive.

Recall:

- ▶ A (non-zero) vector x is called an eigen vector of matrix $A \in \mathbb{R}^{d \times d}$ with a corresponding eigen value β , if $Ax = \beta x$.
- ▶ An eigen value of a symmetric matrix is always real. (Why?)

Convex Function - Characterization In 1D

Let $\mathcal{C} \subseteq \mathbb{R}$ be an open convex set and let $f : \mathcal{C} \to \mathbb{R}$ be a convex function. **Recall:**

Zero-th Order Characterization

$$f(\lambda y + (1 - \lambda)z) \le \lambda f(y) + (1 - \lambda)f(z), \ \forall y, z \in \mathcal{C}, \ \forall \lambda \in [0, 1].$$

First Order Characterization

$$f$$
 continuously differentiable, $f(y) \ge f(z) + f'(z)(y-z), \forall y, z \in C$.

Second Order Characterization

f twice continuously differentiable and $f''(x) \ge 0$, $\forall x \in C$.

Convex Function - Characterization In High Dimensions

Let $\mathcal{C} \subseteq \mathbb{R}^d$ be an open convex set and let $f: \mathcal{C} \to \mathbb{R}$ be a convex function.

Zero-th Order Characterization

$$f(\lambda y + (1 - \lambda)z) \le \lambda f(y) + (1 - \lambda)f(z), \ \forall y, z \in \mathcal{C}, \ \forall \lambda \in [0, 1].$$

First Order Characterization

$$f$$
 continuously differentiable, $f(y) \geq f(z) + \nabla f(z)^{\top} (y-z), \forall y,z \in \mathcal{C}.$

Second Order Characterization

f twice continuously differentiable and $\nabla^2 f \succeq 0$.

Other Flavors Of Convex Function

- Strictly convex function
- Strongly convex function

A function $f: \mathcal{C} \to \mathbb{R}$ defined over a convex set \mathcal{C} is called strictly convex if

$$f(\lambda y + (1 - \lambda)z) < \lambda f(y) + (1 - \lambda)f(z), \ \forall y, z \in \mathcal{C} \text{ s.t. } x \neq y, \ \forall \lambda \in (0, 1).$$

A function $f: \mathcal{C} \to \mathbb{R}$ defined over a convex set \mathcal{C} is called strictly convex if $f(\lambda y + (1-\lambda)z) < \lambda f(y) + (1-\lambda)f(z), \ \forall y,z \in \mathcal{C} \text{ s.t. } x \neq y, \ \forall \lambda \in (0,1).$

• Graph of the function should be **strictly below** the chord!

Strictly Convex Function - First Order Characterization

• Let $\mathcal{C} \subseteq \mathbb{R}$ be an open convex set. Let $f: \mathcal{C} \to \mathbb{R}$ be a continuously differentiable function. Then f is strictly convex if and only if

$$f(y) > f(z) + \nabla f(z)^{\top} (y-z), \forall y, z, \in \mathcal{C}, y \neq z.$$

Strictly Convex Function - Second Order Characterization

• Let $\mathcal{C} \subseteq \mathbb{R}$ be an open convex set. Let $f: \mathcal{C} \to \mathbb{R}$ be a twice continuously differentiable function. f is strictly convex if

$$\nabla^2 f \succ 0$$
.

- Important note: This positive definiteness condition is sufficient but not necessary.
 - e.g. $f(x) = x^4$, $x \in \mathbb{R}$ is strictly convex but f''(x) = 0 at x = 0.

Let $\mathcal{C} \subseteq \mathbb{R}^d$ be a convex set and let $f : \mathcal{C} \to \mathbb{R}$ be a strictly convex function.

Zero-th Order Characterization

$$f(\lambda y + (1-\lambda)z) < \lambda f(y) + (1-\lambda)f(z), \ \forall y, z \in \mathcal{C}, \ y \neq z \ \forall \lambda \in (0,1).$$

First Order Characterization
f continuously differentiable in int(C) and

$$\forall z \in int(\mathcal{C}), \ f(y) > f(z) + \nabla f(z)^{\top} (y-z), \forall y \neq z \in \mathcal{C}.$$

Let $\mathcal{C} \subseteq \mathbb{R}^d$ be an open convex set and let $f: \mathcal{C} \to \mathbb{R}$.

Second Order Characterization (sufficient condition)

f twice continuously differentiable and $\nabla^2 f \succ 0$, \Longrightarrow f is strictly convex.

Convex Optimization Problem

$$\min_{x \in \mathcal{C}} f(x)$$

- ullet f is called objective function and ${\mathcal C}$ is called feasible set.
- Let $f^* = \min_{x \in C} f(x)$ denote the **optimal objective function value**.
- Optimal Solution Set $X^* = \{x \in \mathcal{C} : f(x) = f^*\}.$
- Let us denote by x^* an optimal solution in X^* .

$$\min_{x \in \mathcal{C}} f(x) \tag{OP}$$

Local Optimal Solution

A solution z to (OP) is called local optimal solution if $f(z) \le f(\hat{z})$, $\forall \hat{z} \in \mathcal{N}_{\epsilon}(z)$ for some $\epsilon > 0$.

Recall: $\mathcal{N}_{\epsilon}(z)$ denotes the ϵ -neighborhood of z with respect to a suitable distance metric.

Global Optimal Solution

A solution z to (OP) is called global optimal solution if $f(z) \leq f(\hat{z})$, $\forall \hat{z} \in C$.

First-order necessary condition for optimality

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a continuously differentiable function. If a point $x^* \in \mathbb{R}^d$ is a local optimal solution of $\min_{x \in \mathbb{R}^d} f(x)$ then $\nabla f(x^*) = \mathbf{0}$.

$$\min_{x \in \mathcal{C}} f(x)$$

- ullet $\mathcal{C}\subseteq\mathbb{R}^d$ is a convex set
- $f: \mathcal{C} \to \mathbb{R}$ is a convex function

Convex Optimization Regime!

What Is So Special About Convex Optimization?

- Appealing geometry in small dimensions
- Nice properties from an optimization perspective
 - ▶ Every local optimal solution (if it exists) is a global optimal solution.

Proposition

Consider the convex optimization problem $\min_{x \in \mathbb{R}^d} f(x)$ and let $X^* \neq \phi$ (recall: $X^* = \{x \in \mathbb{R}^d : f(x) \leq f(z) \ \forall z \in \mathbb{R}^d\}$ denotes the set of optimal solutions of the optimization problem).

Then every local optimal solution of the problem $\min_{x \in \mathbb{R}^d} f(x)$ is a global optimal solution.

First-order necessary and sufficient condition for optimality

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a continuously differentiable convex function. A point $x^* \in \mathbb{R}^d$ is an optimal solution of $\min_{x \in \mathbb{R}^d} f(x)$ if and only if $\nabla f(x^*) = \mathbf{0}$.

Proposition

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a continuously differentiable convex function. A point $x^* \in \mathbb{R}^d$ is an optimal solution of $\min_{x \in \mathbb{R}^d} f(x)$ if and only if $\nabla f(x^*) = \mathbf{0}$.

Note: The zero gradient condition is necessary and sufficient for optimality!

Optimal solutions for Strictly Convex Functions

Uniqueness of solution

Consider the convex optimization problem $\min_{x \in \mathbb{R}^d} f(x)$ where f is strictly convex. If the set $X^* = \operatorname{argmin}_{x \in \mathbb{R}^d} f(x)$ is non-empty, then X^* contains exactly one element.