Mathematik IV f. Elektrotechnik Mathematik III f. Informatik 6. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Stefan Ulbrich
Dipl.-Math. Hannes Meinlschmidt

SoSe 2013 28. Mai 2013

Dipl.-Math. Sebastian Pfaff

Gruppenübung

Aufgabe G1 (Lagrange-Interpolation)

Gesucht ist ein Polynom p_4 vom Grad $n \le 4$, das folgender Interpolationsbedingung genügt:

$$p_4(k) = 1, \quad k = 0, \dots, 4.$$

- (a) Bestimmen Sie p_4 . Die Vorgehensweise bleibt Ihnen dabei selbst überlassen. (Sinnvollerweise sollten Sie ein anderes Verfahren als in (b) wählen.)
- (b) Bestimmen Sie p_4 mit Hilfe der Interpolationsformel von Lagrange.

Aufgabe G2 (Hinzunahme von Stützstellen)

Gegeben sei die Funktion $f(x) = x^4 + 2x^2 + 3$.

(a) Bestimmen Sie ein Interpolationspolynom p_2 vom Höchstgrad 2, welches f an den Stellen $x_0 = 0$, $x_1 = -1$, und $x_2 = 1$ interpoliert, d.h. folgender Interpolationsbedingung genügt:

$$p_2(x_i) = f(x_i), \quad i = 0, 1, 2.$$

- (b) Bestimmen Sie ein Interpolationspolynom p_3 vom Höchstgrad 3, welches f an den Stellen $x_0 = 0$, $x_1 = -1$, $x_2 = 1$ und $x_3 = 2$ interpoliert.
- (c) Bestimmen Sie ein Interpolationspolynom p_5 vom Höchstgrad 5, welches f an den Stellen $x_0 = 0$, $x_1 = -1$, $x_2 = 1$, $x_3 = 2$, $x_4 = 1.5$ und $x_5 = 20$ interpoliert.

Aufgabe G3 (Inverse Interpolation)

Es soll eine Näherung für die Inverse Funktion zu

$$f:(0,\infty)\to\mathbb{R}$$
 $x\mapsto \ln(x)$

bestimmt werden.

- (a) Begründen Sie, warum f invertierbar ist.
- (b) Die Funktion f wird an folgenden Stützstellen ausgewertet: $x_0 = 1$, $x_1 = e$, $x_2 = e^2$. (e beschreibt hier die Eulersche Zahl, also $\exp(1)$.) Bestimmen Sie mit Hilfe dieser Auswertungen eine Näherung p_2 für f^{-1} . Dabei soll p_2 ein Polynom vom Höchstgrad 2 sein.
- (c) Verwenden Sie Ihr Ergebnis aus (b) um eine näherungsweise Lösung \tilde{x} der Gleichung f(x) = -1 zu erhalten. Vergleichen Sie ihr Ergebnis \tilde{x} mit der tatsächlichen Lösung \bar{x} .

Hausübung

Aufgabe H1 (Lagrangesches Interpolationspolynom)

Es seien folgende Daten gegeben:

- (a) Bestimmen Sie das Lagrangesche Interpolationspolynom p_3 vom Grad $n \le 3$, das die Interpolationsbedingungen für (1) erfüllt.
- (b) Zeichnen Sie das Interpolationspolynom und die Interpolationspunkte.

Aufgabe H2 (Lagrangesches Interpolationspolynom)

Die Funktion $f(x) = \sqrt{x}$ soll mit Hilfe des Lagrange-Interpolationspolynoms p_2 zwischen den Stützstellen $x_0 = \frac{1}{4}$, $x_1 = 1$ und $x_2 = 4$ interpoliert werden. Vergleichen Sie die Punktauswertungen von f und p in den Punkten $\tilde{x} = \frac{1}{2}$ und $\hat{x} = 2$ und skizzieren Sie die Graphen von f und p.

Aufgabe H3 (Inverse Interpolation)

Gegeben sei die Funktion

$$f:[0,1] \to \left[-1,\frac{3}{4}\right]: x \mapsto x^2 - \frac{1}{4^x}.$$

- (a) Zeigen Sie, dass die Funktion f eine Umkehrfunktion besitzt.
- (b) Berechnen Sie ein Newtonsches Interpolationspolynom vom Grad 2 zur *Umkehrfunktion* von f. Verwenden Sie dabei die Stützstellen $x_0 = 0$, $x_1 = \frac{1}{2}$ und $x_2 = 1$ (von f).