## Real-time MCTS (4.7)



#### Seminar aus maschinellem Lernen







#### Übersicht



- Real-time MCTS Was ist das?
- Beispiele für MCTS in Spielen
  - →Tron
  - →Ms. Pac-Man



#### Real-time MCTS – was ist das?



- Go, Lines of Action, etc Zugbasierte Spiele
- Real-time games (Echtzeitspiele) sind zeitkritisch
- Agent hat wenig Zeit für Berechnungen
- Auch wenn kein Zug durchgeführt wird, geht das Spiel weiter
- Spiele können mitunter nicht deterministisch sein



#### Real-time MCTS – wieso MCTS?



- Bisher meist durch Skripte, Trigger, Routinen gelöst
- Motivation: Gute Ergebnisse mit MCTS bei zugbasierten Spielen übertragbar?
- Ziel: Skripte outperformen, oder ähnliches Level erreichen



#### Tron – Der Film



- Spiel basierend auf dem Film Tron
- Exkursion Film:
  - →1982 von Walt Disney erschienen
  - → Erster Film mit langen Computersequenzen, gilt als Meilenstein in der Computeranimation
  - → Kultfilm Fortsetzung "Tron: Legacy" (2010)
  - → Handlung: Programmierer will beweisen, dass Code von ihm ist, wird in Computerwelt materialisiert. Tron ist ein Überwachungsprogramm das "installiert" werden soll. Dort werden Kämpfe ausgetragen → dieses Spiel







## **Tron – Das Spielfeld**



- Hier: Zwei Spieler
- Spielfeld durch Wand begrenzt.MxN groß
- Jedes Feld kann zwei Zustände haben (besetzt, frei)





## Tron – Die Spielregeln



- Spieler können lediglich 90°
   Bewegungen ausführen
- Wände ersetzen freie Felder nachdem der Spieler drauf war
- Spieler stirbt wenn er auf ein besetztes Feld kommt
- Sieg, Unentschieden, oder Niederlage sind die Möglichen outcomes





#### **Tron - MCTS**



- MCTS mit UCT, da Baumstruktur aufgebaut wird
- Es gibt maximal 3 Züge da nur 2x 90° und geradeaus funktionieren.
   180° → Niederlage
- Rewards: Sieg 1.0; Unentschieden 0.5; Niederlage 0.0
- Durchschnitt wird zurückgegeben (Backpropagation)



#### **Tron – Game Agent Leitlinien**



- Spieler können sich nicht selbst einsperren
- "Survival Mode" falls Spieler eingesperrt wurde
  - → Verändert das Spiel in "Single Player" Variante
  - → Der längste Weg muss gefunden werden



## **Tron – Experiment Spielfelder (Maps)**



Drei Spielfelder: unterschiedliche Problemstellungen



## Tron – Map A



Agent soll erkennen, dass Spieler Eins nach links muss

|                  | Player Two Right | Player Two Left |
|------------------|------------------|-----------------|
| Player One Right | (1,0)            | (0,1)           |
| Player One Left  | (1,0)            | (0.5,0.5)       |
|                  |                  |                 |



#### Tron – Map B



- Verlassen des "Käfigs" muss erkannt werden
- Ist im Vorteil weil n\u00e4her am Zentrum, sollte also fast alle Spiele gewinnen





#### Tron – Map C



- "Open Field" Map
- Gleicht real-world Maps wahrscheinlich am ehesten





## **Tron – Setup Experimente**



- Mehrere Agents
  - →UCB1 (Upper Confidence Bounds applied to Trees)

- →UCB-E (Bandit)
  - $\overline{x_j} + C \sqrt{\frac{\sqrt{n}}{n_i}}$
- Mehrere Zeitintervalle zwischen den "Zügen"
  - →100ms 900ms mit Erhöhungen um 50ms
- Maps werden 20 mal berechnet
- Gespielt wird gegen "Master Player" UCB1 mit 1000ms Rechenzeit



## **Tron – Experimente UCB1**



- **Reminder:**  $\overline{x_j} + C\sqrt{\frac{\ln(n)}{n_j}}$
- Agent erreicht nicht die optimale
   Performance bei Map B
- Ergebnisse für Map A, C sind eher zufällig



## **Tron – Experimente UCB-TUNED**



**Reminder:** 
$$\bar{x_j} + \sqrt{\frac{ln(n)}{n_j}min\left\{1/4, \bar{x_j^2} - \bar{x_j}^2 + \sqrt{\frac{2ln(n)}{n_j}}\right\}}$$

- Schlechtere Performance als UCB1 für Map B
- Scheint bessere Performance bei Map A,C zu haben (zu kleine Testmenge)



## **Tron – Experimente UCB-E**



■ Reminder:  $\overline{x_j} + C\sqrt{\frac{\sqrt{n}}{n_j}}$ 

- Richtet sich mehr an Exploration, daher ist die Rechenzeit sehr wichtig
- Map A benötigt tiefe Suche, daher kommt wohl schlechtes Ergebnis



## Ms. Pac-Man – Allgemeines I



- Wieso Ms. Pac-Man und nicht Pac-Man?
- Unterschiede in den bekannten Spielfakten
- Geschwindigkeit, Laufwege der Gegner unbekannt.
- Beim essen der Pellets, ändern der Richtung verlangsamt Ms.
   Pac-Man. Faktor unbekannt





## Ms. Pac-Man – Allgemeines II



- Durch die vielen unbekannten ist es schwer Regeln zu erstellen (skripten)
   → Regeln kamen in letzter Zeit an ihre Limits
- Interne Informationen dürfen nicht verarbeitet werden
- Generierung der Informationen mittels Computer Vision





#### Ms. Pac-Man – Methodik



- Ziel ist es einen hohen Score zu erreichen. Sammeln der Pellets oder Früchte, Gegner aufessen
- Vermeidung von sog. Pincer Movements (Flankieren der Gegner)





## Ms. Pac-Man – Interne Darstellung I



- Implemtieruung von C-Paths
- Gegnerbewegungen werden nicht mitmodelliert, doch miteinbezogen (cpaths ohne gegner)
- C-Path muss komplett entlang gelaufen werden.





#### Ms. Pac-Man – Interne Darstellung II



- C-Paths bilden nicht die Realität ab
- Realität <> Simulation
- Gegner werden aggressiver auf Ms. Pac-Man zugehen wenn mehr Pellets vom Feld sind - Typabhängig
- Rewardfunktion: Survival 0-1; Pellets gegessen 0-1; Ghosts gegessen 0-1
  - →Normalisiert, daher zwischen 0 und 1
- Survival Reward wird der Max-Leaf zurückgegeben



#### Ms. Pac-Man - Taktiken



- Survival Mode: Davoneilen der Gegner
- Feeding: Essen der Pellets
- Pursuit: Essen der Gegner
- Wechsel der Taktiken abhängig vom Zustand und eines Thresholds

TABLE II SELECTION OF A MOVEMNET PATH

| Current<br>Tactics | Selection Method                                                                                                                                                   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Survival           | Selects a path in which the survival rate is the highest among the paths connected to Ms. Pac-Man.                                                                 |
| Feeding            | Selects a path which contains more pellets that<br>can be eaten from the ones connected to Ms. Pac-Man<br>and have a survival rate at or higher than the threshold |
| Pursuit            | Selects a path on which more ghosts can be eaten<br>among the paths connected to Ms. Pac-Man<br>with the threshold survival rate or higher                         |

- <Survival> Encounters with a power pellet and a ghost in the blue state are allowed
- <Feeding> An encounter with a power pellet is allowed, an encounter with a ghost in the blue state is not allowed
  <Pursuit> An encounter with a power pellet is not allowed
- <Pursuit> An encounter with a power pellet is not allowed, an encounter with a ghost in the blue state is allowed



## Ms. Pac-Man – Experiment I



Setup: 300 Simulationen, Vergleich gegen ICE Pambush3

#### Ergebnis nach Punktzahl

| р      | min  | max   | mean    | s.d.    |
|--------|------|-------|---------|---------|
| System | 6840 | 37630 | 24926.5 | 9085.71 |
| ICE    | 8620 | 30660 | 20574.5 | 6213.21 |

#### Ergebnis nach Level

| р      | min | max | mean | s.d.  |
|--------|-----|-----|------|-------|
| System | 1   | 7   | 4.4  | 1.497 |
| ICE    | 1   | 5   | 3.4  | 0.970 |



# Ms. Pac-Man – Beobachtungen und Verbesserungen Experiment I



- Erreicht besseren Score
- Nicht stabil im Score
- Heatmap der gefährlichen Wege wurde angelegt
- Anpassung der Rewardfunktion an gefährliche Wege



 Pellets auf gefährlichen Wegen sollten zuerst gegessen werden



## Ms. Pac-Man – Experiment II



Evaluation nach Anpassung der Rewardfunktion

#### Ergebnis nach Punktzahl

| р             | min   | max   | mean    | s.d.     |
|---------------|-------|-------|---------|----------|
| Experiment I  | 6840  | 37630 | 24926.5 | 9085.71  |
| ICE           | 8620  | 30660 | 20574.5 | 6213.21  |
| Experiment II | 16800 | 58990 | 31105.6 | 11605.57 |

#### Ergebnis nach Level

| р             | min | max | mean | s.d.  |
|---------------|-----|-----|------|-------|
| Experiment I  | 1   | 7   | 4.4  | 1.497 |
| ICE           | 1   | 5   | 3.4  | 0.970 |
| Experiment II | 2   | 7   | 4.8  | 1.361 |



#### **Ende**



- Vielen Dank für die Aufmerksamkeit
- Gibt es noch Fragen?



#### Literaturverzeichnis



- N. G. P. Den Teuling, "Monte-Carlo Tree Search for the Simultaneous Move Game Tron," Univ. Maastricht, Netherlands, Tech. Rep., 2011.
- S. Samothrakis, D. Robles, and S. M. Lucas, "A UCT Agent for Tron: Initial Investigations," in Proc. IEEE Symp. Comput. Intell. Games, Dublin, Ireland, 2010, pp. 365–371.
- \* D. Robles and S. M. Lucas, "A Simple Tree Search Method for Playing Ms. Pac-Man," in Proc. IEEE Conf. Comput. Intell. Games, Milan, Italy, 2009, pp. 249–255.
- N. Ikehata and T. Ito, "Monte Carlo Tree Search in Ms. Pac-Man," in Proc. 15th Game Progr. Workshop, Kanagawa, Japan, 2010, pp. 1–8.

