Übung 10

Logik für Informatiker

Prädikatenlogik

Aufgabe 1

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{0/0, s/1, +/2\}$ und $\Pi = \{p/1, = /2\}$. Sei X eine Menge von Variablen und $x, y \in X$. Gegeben sind die Struktur \mathcal{A} und die Belegung β , wobei $\{a, b, c\}^*$ die Menge aller Wörter über dem Alphabet $\{a, b, c\}$ ist (inklusive des leeren Wortes ε). Worte werden durch Verknüpfung von Buchstaben des Alphabetes gebildet. Beispiele für Worte über dem gegebenen Alphabet sind: a, b, c, aa, cb, ac, cb, aaaaaaaacaa.

 $\mathcal{A} = (\{a, b, c\}^*, \{0_{\mathcal{A}}, s_{\mathcal{A}} \colon \{a, b, c, \}^* \to \{a, b, c\}^*, +_{\mathcal{A}} \colon \{a, b, c\}^* \times \{a, b, c\}^* \to \{a, b, c\}^*\}, \{p_{\mathcal{A}}, =_{\mathcal{A}}\}) \text{ mit}$

- $0_A = a \in \{a, b, c\}^*$
- $s_{\mathcal{A}}(w) = ww \in \{a, b, c\}^*$ (Konkatenation mit sich selbst)
- $+_{\mathcal{A}}(w_1, w_2) = w_1 w_2 \in \{a, b, c\}^*$ (Konkatenation)
- $p_{\mathcal{A}} = \{ w \mid \text{ Die Anzahl von } a \text{ in } w \text{ ist gerade} \}$
- $=_{\mathcal{A}}$ ist die Gleichheit, d.h. $=_{\mathcal{A}} = \{(w, w) \mid w \in \{a, b, c\}\}.$

und $\beta: X \to \{a, b, c\}^*$ ist definiert durch $\beta(x) = ba, \beta(y) = b$.

Evaluieren Sie

- a) $\mathcal{A}(\beta)(s(x)+y+s(x))$, =baba+_A b +_A baba=bababbaba
- b) $A(\beta)(x = y + 0)$, =(x,y+0) ba = b +_A a, ba = ba wahr!
- d) $\mathcal{A}(\beta)(\exists yp(x+y))$, es existiert ein Wort w, die Anzahl der a's in baw gerade ist. Mit w=a erhalten wir baa. Die Formel ist wahr.
- e) $\mathcal{A}(\beta)(\forall x \forall y ((p(x) \land \neg p(y)) \to p(x+y)))$. Für alle Wörter w und alle Wörter q gilt dass falls die Anzahl von a in w gerade ist und die Anzahl der a in q ungerade dann ist die Anzahl der a in wq gerade. Mit w= aa und q= ba erhalten wir wq=aaba, also ist die Formel falsch.

Aufgabe 2

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{0/0, 1/0, p/1, +/2\}$ und $\Pi = \{p/1, =/2\}$. Sei X eine Menge von Variablen und $x, y \in X$. Gegeben sind die Struktur \mathcal{A} und die Belegungen β_1, β_2 , mit $\mathcal{A} = (\mathbb{Z}, \{0_{\mathcal{A}}, 1_{\mathcal{A}}, p_{\mathcal{A}} \colon \mathbb{Z} \to \mathbb{Z}, +_{\mathcal{A}} \colon \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}\}, \{=_{\mathcal{A}}\})$ mit

- $0_A = 1 \in \mathbb{Z}$
- $1_{\mathcal{A}} = 0 \in \mathbb{Z}$
- $p_{\mathcal{A}}(n_1) = n_1 1 \in \mathbb{Z}$
- $\bullet +_{\mathcal{A}}(n_1 + n_2) = n_1 + n_2 \in \mathbb{Z}$
- $\bullet =_{\mathcal{A}}$ ist die Gleichheit
- $\beta_1: X \to \mathbb{Z}$. definiert durch $\beta_1(x) = 7, \beta_1(y) = 5$
- $\beta_2 \colon X \to \mathbb{Z}$, definiert durch $\beta_2(x) = 0, \beta_2(y) = 3$

Evaluieren Sie

- a) $\mathcal{A}(\beta)(p(1) + p(p(x) + 0))$, $p_A(0) + A p(p(7) + A 1) = -1 + p(7) = -1 + 6 = 5$; -1 + p(p(0) + 1) = -1 + p(0) = -2
- b) $\mathcal{A}(\beta)(x+0=p(y)+p(1))$, und 7+1=4+p(0) 8=4-1 Falsch; 0+1= 2+(-1) 1=1. Wahr
- c) $\mathcal{A}(\beta)(p(0) + p(0) = p(p(0)))$, für p(1)+p(1)=p(p(1)) 0+0=-1 Falsch

 $\beta = \beta_1$ und $\beta = \beta_2$.

Aufgabe 3

Sei $\Sigma=(\Omega,\Pi)$ eine Signatur, wobei $\Omega=\{1/0,s/1,*/2\}$ und $\Pi=\{p/1,=/2\}$. Sei X eine Menge von Variablen und $x,y\in X$. Gegeben sind die Struktur $\mathcal A$ und die Belegung β mit $\mathcal A=(\mathbb Q,\{1_{\mathcal A},s_{\mathcal A}\colon\mathbb Q\to\mathbb Q,*_{\mathcal A}\colon\mathbb Q\times\mathbb Q\to\mathbb Q\},\{p_{\mathcal A},=_{\mathcal A}\})$ und

- $1_A = 1 \in \mathbb{Q}$
- $s_{\mathcal{A}}(q_1) = q_1 + 1 \in \mathbb{Q}$
- $*_{\mathcal{A}}(q_1, q_2) = q_1 + q_2 \in \mathbb{Q}$
- $p_{\mathcal{A}} \subseteq \mathbb{Q}, n \in p_{\mathcal{A}}$ genau dann, wenn n gerade ist
- $\bullet =_{\mathcal{A}}$ ist die Gleichheit
- $\beta \colon X \to \mathbb{Q}$, definiert durch $\beta(x) = 11, \beta(y) = 7$

Evaluieren Sie

- a) $\mathcal{A}(\beta)(s(s(x)*1*y)s(s(11)+1+7)=s(12+1+7)=s(20)=21$
- b) $\mathcal{A}(\beta)(s(x*y) = s(x)*1)$ s(18)=s(11)+1 19=13 Falsch.
- c) $\mathcal{A}(\beta)(\forall x \forall y (s(x*y) = s(x)*y))$ Für alle rationale Zahlen p und q gilt p+q+1 = p+1+q Wahr!
- d) $\mathcal{A}(\beta)(\exists yp(y*x))$ Es existiert eine rationale Zahl q so dass 11+q ist gerade. Wahr für q=1.
- e) $\mathcal{A}(\beta)((\forall x\exists y((x=s(y)\land \neg p(x))\to p(y)))$. Für alle rationale Zahlen a existiert eine rationale Zahl q so dass falls a=q+1 und a ist