Math 357 Expositional homework 05

Assigned: 2024-03-18 (M)

Due:

The goal of this homework is to deepen our understanding of representation theory by working with the theory and applications of two results: Maschke's theorem and a version of Schur's lemma.

Corollaries of Maschke's theorem. Let G be a finite group, let F be a field such that char $F/\!\!/ \#G$, and let V be a finitely generated FG-module (equivalently, a finite-dimensional F-vector space¹). Prove the following statements.

- (a) V is completely reducible.²
- (b) Let $\rho: G \to GL(V)$ be a representation of G on V—if you like, the representation afforded by the FG-module V. Then there exists a basis $\mathcal B$ of V such that, simultaneously (!) for all $g \in G$, the matrix of $\rho(g)$ with respect to $\mathcal B$ is block diagonal.³

Schur's lemma. Let G be a group; let F be a field; and for $i \in \{1,2\}$, let V_i be an F-vector space, and let $\rho_i : G \to GL(V_i)$ be a representation of G on V_i . A G-homomorphism from ρ_1 to ρ_2 is an F-linear map $\phi : V_1 \to V_2$ that intertwines the two representations; that is, for all $g \in G$,

$$\varphi \circ \rho_1(q) = \rho_2(q) \circ \varphi$$

as maps $V_1 \rightarrow V_2$. A G-isomorphism is an invertible G-homomorphism.

Analogous to the notation we developed for modules, let $\text{Hom}_G(\rho_1, \rho_2)$ denote the set of G-homomorphisms from ρ_1 to ρ_2 , and let $\text{End}_G(\rho_1)$ denote $\text{Hom}_G(\rho_1, \rho_1)$.

Consider the following version of Schur's lemma.

Lemma 1 (Schur). Let G be a group, let V be a C-vector space, let $\rho: G \to GL(V)$ be an irreducible representation of G, and let $\varphi \in End_G(\rho)$. Then φ is a scalar multiple of the identity map on V. That is, there exists a $\lambda \in C$ such that for all $v \in V$, $\varphi(v) = \lambda v$.

(c) Prove Schur's lemma. *Hint:* Make sense of the following proof outline:

1.
$$E_{\lambda} = \{ v \in V \mid \varphi(v) = \lambda v \} \neq \{0_V\}$$

¹Convince yourself of this equivalence! For a concise explanation, see DF3e, p 851.

²*Hint*: See DF3e, p 851.

³*Hint*: Use Exercise (a). See also DF3e, p 851.

2. E_{λ} is G-invariant

3.
$$E_{\lambda} = V$$

(d) For $i \in \{1,2\}$, let V_i be a C-vector space, and let $\rho_i : G \to GL(V_i)$ be a representation of G on V_i ; and let $\phi \in Hom_G(\rho_1,\rho_2)$. Prove that if $V_1 \not\cong V_2$, then ϕ is the zero map; and if $V_1 \cong V_2$ and ϕ is not the zero map, then ϕ is a G-isomorphism.

Applications of Schur's lemma. Let G be an abelian group, let V be a nonzero C-vector space, and let $\rho: G \to GL(V)$ be an irreducible representation.

- (e) Prove that deg $\rho = 1.4$
- (f) Let $n \in \mathbf{Z}_{>0}$, and let $G = \langle g \, | \, g^n = 1 \rangle$ be the cyclic group of order n with generator g. Use Exercise (e) to show that ρ has the form

$$\rho:G\to C^\times$$

$$g^j\mapsto e^{\frac{2jk\pi i}{n}}$$

for a fixed $k \in \{0, \dots, n-1\}$.

⁴*Hint:* In the setting of Schur's lemma, consider φ = ρ(g) for some g ∈ G.