Trigonometric Coefficients for Regular N-Sided Polygons Eli Ruminer

Table of Contents

1	Introduction	2
2	Theroems	2
3	Trigonometric Equations 3.1 Identities	3
4	Proof	4
5	Shape Equations	7

Introduction 1

This paper derives a function that generates a coefficient that transforms sine and cosine into calculating points for any n-sided regular polygon. This is done through using inverse trigonometric functions to create a periodic function that increases and decreases linearly over each period. This allows the creation of a coefficient which when multiplied by sine and cosine serves to transform them into an equivalent function for non-circle polygons.

After deriving the equation we then prove that it represents a point on the perimeter of a unit n-gon by simplifying the point-slope formula of a constructing line of the unit n-gon and two points between the modified sine and cosine showing they are the same.

Through this, we can derive a general formula for any shape using the sign function and the newly proven coefficient function. This general function requires the use of an "input" angle, which is calculated using x and y for each point, but due to this can be rotated by simply adding or subtracting a constant from the angle calculation inside the coefficient function's input.

$\mathbf{2}$ Theroems

Theorem 1.1 $\arccos(\cos(ax))$ is periodic over $\frac{2\pi}{a*n}$. $\cos(ax)$ is periodic over $\frac{2\pi}{a*n}$ thus $\arccos(\cos(ax))$ must also be.

Theorem 1.2 For $x \in \mathbb{R}$ $\arccos(\cos(ax)) \in [0, \pi]$.

 $\cos(x)$ has a domain over \mathbb{R} and a range of [-1,1], $\arccos(x)$ has a domain over [-1,1] and a range of $[0,\pi]$. Due to the range of cos being the domain of arccos, all real numbers can be an input of x, and all numbers on the interval [-1,1] can be output.

Theorem 1.3 $\cos(n(a+\frac{2\pi}{n})) = \cos(na)$ $\cos(n(a+\frac{2\pi}{n}))$ expands to $\cos(n(a+2\pi))$ which due to cosine's periodic nature evaluates to

Theorem 2.1 $\sin(\alpha) - \sin(\beta) = 2\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$ Theorem 2.2 $\cos(\alpha) - \cos(\beta) = -2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})$

3 Trigonometric Equations

Let $n = \{x : x \in \mathbb{Z}^+ \text{ and } x \geq 3\}$, and

$$d_{n}(\theta) = \cos(\frac{\pi}{n}) \sec(\frac{\pi - \arccos(\cos(n\theta))}{n})$$
$$\cos_{n}(\theta) = d_{n}(\theta) \cos(\theta)$$
$$\sin_{n}(\theta) = d_{n}(\theta) \sin(\theta)$$

This is derived through the original functions:

$$\begin{aligned} h_n(\theta) &= \sin(\frac{\pi}{2} - \frac{\pi}{n} + (\theta \mod \frac{2\pi}{n})) - \sin(\frac{\pi}{2} - \frac{\pi}{n}) \\ d_n(\theta) &= \frac{h_n(\theta)}{\sin(\frac{\pi}{2} - \frac{\pi}{n} + (\theta \mod \frac{2\pi}{n}))} \\ \cos_n(\theta) &= (1 - d_n(\theta))\cos(\theta) \\ \sin_n(\theta) &= (1 - d_n(\theta))\sin(\theta) \end{aligned}$$

These functions follow the premise that any n-sided regular polygon (shape s_n) centered at (0,0) has a circumcircle where each vertex touches the circumference of the circumcircle. Arc a can be constructed which is $\frac{1}{n^{\text{th}}}$ of the circumcircle, its diameter is the same length as any line which constructs s_n , and it's circumference equals to the circumference of the section of the circumcircle spanning from adjacent vertices on s_n .

Thus, the height of a at a given point on a circle subtracted from the radius of the circle will result in the distance from the midpoint of s_n to the point on the perimeter of s_n which intersects the ray of angle θ drawn in standard position.

 $h_n(\theta)$ serves to find the height of a at a position by splitting the circumcircle into n^{ths} (resulting in a period of $\frac{2\pi}{n}$), finding the height of a point on a through sine and changing from the "left" vertex to the "right" vertex over the period of $\frac{2\pi}{n}$ (the length of a). The use of mod makes the function periodic. It then subtracts by the height of a vertex so that $h_n(\theta) = 0$ when $\theta = 0$

 $d_n(\theta)$ divides the height $(h_n(\theta))$ by the angle between the assumed intersection point on s_n and the intersection point on the circumcircle to get the actual distance.

These functions then simplify to:

$$d_n(\theta) = \cos(\frac{\pi}{n}) \sec(\frac{\pi}{n} - (\theta \mod \frac{2\pi}{n}))$$
$$\cos_n(\theta) = d_n(\theta) \cos(\theta)$$
$$\sin_n(\theta) = d_n(\theta) \sin(\theta)$$

Which is not algebraic due to mod (and the resultant floor function behind it), yet it can be noted that due to the nature of the original $h_n(\theta)$, $\theta \mod \frac{2\pi}{n}$ can be substituted for an

equivalent function which has an equal period of $\frac{2\pi}{n}$, increases linearly over $[0, \frac{\pi}{n}]$ to $[0, \frac{\pi}{n}]$

and decreases linearly at the same rate from $\left[\frac{\pi}{n}, \frac{2\pi}{n}\right]$. These requirements can be met by $\frac{\arccos(\cos(n\theta))}{n}$, which due to **Theorem 1.1** and **Theorem 1.2** is periodic over $\frac{2\pi}{n}$ has a domain of $n\theta \in \mathbb{R}$, and thus $\theta \in \mathbb{R}$ and a range of $\left[0, \frac{\pi}{n}\right]$, thus the above equations can be changed to:

$$d_{n}(\theta) = \cos(\frac{\pi}{n}) \sec(\frac{\pi - \arccos(\cos(n\theta))}{n})$$
$$\cos_{n}(\theta) = d_{n}(\theta)\cos(\theta)$$
$$\sin_{n}(\theta) = d_{n}(\theta)\sin(\theta)$$

Identities 3.1

Identity 1.1 Let $i = \mathbb{Z}$, due to **Theorem 1.3**:

$$\cos_n(\theta + i\frac{2\pi}{n}) = d_n(\theta)\cos(\theta + i\frac{2\pi}{n})$$
$$\sin_n(\theta + i\frac{2\pi}{n}) = d_n(\theta)\sin(\theta + i\frac{2\pi}{n})$$

Identity 1.2 When $0 \le \theta \le \frac{2\pi}{n}$ then $d_n(\theta) = \cos(\frac{\pi}{n})\sec(\frac{\pi}{n}-\theta)$ When θ only spans one period, $\frac{\arccos(\cos(n\theta))}{n}$ is not required to make the function periodic. **Identity 1.3** Let $i = \mathbb{Z}$ then:

$$\cos_n(i\frac{2\pi}{n}) = (1)\cos(i\frac{2\pi}{n}) = \cos(i\frac{2\pi}{n})$$
$$\sin_n(i\frac{2\pi}{n}) = (1)\sin(i\frac{2\pi}{n}) = \sin(i\frac{2\pi}{n})$$

This is true because $\arccos(\cos(n\theta))$ evaluates to 0 whenever $\theta=i\frac{2\pi}{n},$ which means $\sec(\frac{\pi}{n}-\frac{\arccos(\cos(n\theta))}{n})$ simplifies to $\sec(\frac{\pi}{n})$ so $d_n(i\frac{2\pi}{n})=\sec(\frac{\pi}{n})\cos(\frac{\pi}{n})=1$

Proof 4

Let $i, n = \mathbb{Z}$. Shape s_n is made of n vertices and n line segments with the i^{th} vertex (v_i) at the point $(\cos(i\frac{2\pi}{n}), \sin(i\frac{2\pi}{n}))$. The i^{th} line segment, L_i , spans between v_i and v_{i+1} and is represented by the equation

$$L_{i} = \frac{\sin((i+1)\frac{2\pi}{n}) - \sin(i\frac{2\pi}{n})}{\cos((i+1)\frac{2\pi}{n}) - \cos(i\frac{2\pi}{n})}x + \sin(i\frac{2\pi}{n}) - \frac{\sin((i+1)\frac{2\pi}{n}) - \sin(i\frac{2\pi}{n})}{\cos((i+1)\frac{2\pi}{n}) - \cos(i\frac{2\pi}{n})}\cos(i\frac{2\pi}{n})$$

which due to **Theorem 2.1** and **Theorem 2.2** simplifies to

$$L_{i} = -\cot((2i+1)\frac{\pi}{n})x + \sin(i\frac{2\pi}{n}) + \cot((2i+1)\frac{\pi}{n})\cos(i\frac{2\pi}{n})$$

Let $0 \le a < b \le \frac{2\pi}{n}$, $\alpha = a + i \frac{2\pi}{n}$, and $\beta = b + i \frac{2\pi}{n}$: a "modified" line can be drawn with the equation $\sin_n(\theta)$ and $\cos_n(\theta)$ which would be written as

$$y_m = \frac{\sin_n(\beta) - \sin_n(\alpha)}{\cos_n(\beta) - \cos_n(\alpha)} x + \sin_n(\alpha) - \frac{\sin_n(\beta) - \sin_n(\alpha)}{\cos_n(\beta) - \cos_n(\alpha)} \cos_n(\alpha)$$

the slope of y_m can be simplified through these steps:

$$\frac{\operatorname{d}_{n}(\beta)\sin(\beta)-\operatorname{d}_{n}(\alpha)\sin(\alpha)}{\operatorname{d}_{n}(\beta)\cos(\beta)-\operatorname{d}_{n}(\alpha)\cos(\alpha)}$$

$$\frac{\operatorname{cos}(\frac{\pi}{n})}{\operatorname{cos}(\frac{\pi}{n})}\frac{\operatorname{sec}(\frac{\pi}{n}-b)\sin(\beta)-\operatorname{sec}(\frac{\pi}{n}-a)\sin(\alpha)}{\operatorname{sec}(\frac{\pi}{n}-a)\cos(\alpha)}*\frac{\operatorname{cos}(\frac{\pi}{n}-a)\cos(\frac{\pi}{n}-b)}{\operatorname{cos}(\frac{\pi}{n}-a)\cos(\frac{\pi}{n}-a)\cos(\frac{\pi}{n}-b)}$$

$$\frac{\sin(\beta)\cos(\frac{\pi}{n}-a)-\sin(\alpha)\cos(\frac{\pi}{n}-b)}{\operatorname{cos}(\beta)\cos(\frac{\pi}{n}-a)-\cos(\alpha)\cos(\frac{\pi}{n}-b)}$$

$$\frac{\sin(\beta)(\cos(\frac{\pi}{n})\cos(a)+\sin(\frac{\pi}{n})\sin(a))-\sin(\alpha)(\cos(\frac{\pi}{n})\cos(b)+\sin(\frac{\pi}{n})\sin(b))}{\operatorname{cos}(\beta)(\cos(a)+\tan(\frac{\pi}{n})\sin(a))-\sin(\alpha)(\cos(b)+\tan(\frac{\pi}{n})\sin(b))}*\frac{\operatorname{sec}(\frac{\pi}{n})}{\operatorname{cos}(\beta)(\cos(a)+\tan(\frac{\pi}{n})\sin(a))-\cos(\alpha)(\cos(b)+\tan(\frac{\pi}{n})\sin(b))}$$

$$\frac{\sin(\beta)(\cos(a)+\tan(\frac{\pi}{n})\sin(a))-\sin(\alpha)(\cos(b)+\tan(\frac{\pi}{n})\sin(b))}{\operatorname{cos}(\beta)(\cos(a)+\tan(\frac{\pi}{n})\sin(a))-\cos(\alpha)(\cos(b)+\tan(\frac{\pi}{n})\sin(b))}$$
(3.1)

Splitting the equation up the numerator simplifies like so:

$$\sin(\beta)(\cos(a) + \tan(\frac{\pi}{\mathrm{n}})\sin(a)) - \sin(\alpha)(\cos(b) + \tan(\frac{\pi}{\mathrm{n}})\sin(b))$$

$$(\sin(b)\cos(i\frac{2\pi}{n}) + \cos(b)\sin(i\frac{2\pi}{n}))(\cos(a) + \tan(\frac{\pi}{n})\sin(a)) - \dots$$
$$\dots(\sin(a)\cos(i\frac{2\pi}{n}) + \cos(a)\sin(i\frac{2\pi}{n}))(\cos(b) + \tan(\frac{\pi}{n})\sin(b))$$

$$\cos(a)\sin(b)\cos(i\frac{2\pi}{n}) + \sin(a)\sin(b)\cos(i\frac{2\pi}{n})\tan(\frac{\pi}{n}) + \cos(a)\cos(b)\sin(i\frac{2\pi}{n}) + \dots$$

$$\dots\sin(a)\cos(b)\sin(i\frac{2\pi}{n})\tan(\frac{\pi}{n}) - \sin(a)\cos(b)\cos(i\frac{2\pi}{n}) - \sin(a)\sin(b)\cos(i\frac{2\pi}{n})\tan(\frac{\pi}{n}) - \dots$$

$$\dots\cos(a)\cos(b)\sin(i\frac{2\pi}{n}) - \cos(a)\sin(b)\sin(i\frac{2\pi}{n})\tan(\frac{\pi}{n})$$

$$\cos(i\frac{2\pi}{n})(\cos(a)\sin(b) - \sin(a)\cos(b)) + \sin(i\frac{2\pi}{n})\tan(\frac{\pi}{n})(\sin(a)\cos(b) - \cos(a)\sin(b))$$

$$\sin(\mathrm{i}\,\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})(\sin(a)\cos(b)-\cos(a)\sin(b)) - \cos(\mathrm{i}\,\frac{2\pi}{\mathrm{n}})(\sin(a)\cos(b)-\cos(a)\sin(b))$$

$$(\sin(i\frac{2\pi}{n})\tan(\frac{\pi}{n})-\cos(i\frac{2\pi}{n}))(\sin(a)\cos(b)-\cos(a)\sin(b))$$

$$(\sin(i\frac{2\pi}{n})\tan(\frac{\pi}{n})-\cos(i\frac{2\pi}{n}))\sin(a-b)$$

and the denominator simplifies to

$$\cos(\beta)(\cos(a) + \tan(\frac{\pi}{n})\sin(a)) - \cos(\alpha)(\cos(b) + \tan(\frac{\pi}{n})\sin(b))$$

$$(\cos(b)\cos(i\frac{2\pi}{n}) - \sin(b)\sin(i\frac{2\pi}{n}))(\cos(a) + \tan(\frac{\pi}{n})\sin(a)) - \dots$$
$$\dots(\cos(a)\cos(i\frac{2\pi}{n}) - \sin(a)\sin(i\frac{2\pi}{n}))(\cos(b) + \tan(\frac{\pi}{n})\sin(b))$$

$$\frac{\cos(a)\cos(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}})+\sin(a)\cos(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})-\cos(a)\sin(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}})-\dots}{\sin(a)\sin(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})-\cos(a)\cos(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}})-\cos(a)\sin(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})+\dots}\\ \dots\sin(a)\cos(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}})+\sin(a)\sin(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})$$

$$(\cos(i\frac{2\pi}{n})\tan(\frac{\pi}{n}))(\sin(a)\cos(b) - \cos(a)\sin(b)) + \sin(i\frac{2\pi}{n})(\sin(a)\cos(b) - \cos(a)\sin(b))$$

$$(\cos(i\frac{2\pi}{n})\tan(\frac{\pi}{n}) + \sin(i\frac{2\pi}{n})(\sin(a)\cos(b) - \cos(a)\sin(b))$$

$$(\cos(i\frac{2\pi}{n})\tan(\frac{\pi}{n}) + \sin(i\frac{2\pi}{n})\sin(a - b)$$

meaning that we can now simplify the original fraction (denoted 3.1) to become:

$$\frac{\left(\sin\left(i\frac{2\pi}{n}\right)\tan\left(\frac{\pi}{n}\right)-\cos\left(i\frac{2\pi}{n}\right)\right)\sin\left(a-b\right)}{\left(\cos\left(i\frac{2\pi}{n}\right)\tan\left(\frac{\pi}{n}\right)+\sin\left(i\frac{2\pi}{n}\right)\right)\sin\left(a-b\right)}$$

$$\frac{\sin\left(i\frac{2\pi}{n}\right)\tan\left(\frac{\pi}{n}\right)-\cos\left(i\frac{2\pi}{n}\right)}{\cos\left(i\frac{2\pi}{n}\right)\tan\left(\frac{\pi}{n}\right)-\cos\left(i\frac{2\pi}{n}\right)}*\frac{\cos\left(\frac{\pi}{n}\right)}{\cos\left(\frac{\pi}{n}\right)}$$

$$\frac{\sin\left(i\frac{2\pi}{n}\right)\sin\left(\frac{\pi}{n}\right)-\cos\left(i\frac{2\pi}{n}\right)\cos\left(\frac{\pi}{n}\right)}{\cos\left(i\frac{2\pi}{n}\right)\sin\left(\frac{\pi}{n}\right)-\cos\left(i\frac{2\pi}{n}\right)\cos\left(\frac{\pi}{n}\right)}$$

$$\frac{-\cos\left(i\frac{2\pi}{n}\right)\cos\left(\frac{\pi}{n}\right)+\sin\left(i\frac{2\pi}{n}\right)\sin\left(\frac{\pi}{n}\right)}{\sin\left(\frac{\pi}{n}\right)\cos\left(i\frac{2\pi}{n}\right)+\cos\left(\frac{\pi}{n}\right)\sin\left(i\frac{2\pi}{n}\right)}$$

$$\frac{-\cos\left(i\frac{2\pi}{n}+\frac{\pi}{n}\right)}{\sin\left(i\frac{2\pi}{n}+\frac{\pi}{n}\right)}$$

$$-\cot\left(i\frac{2\pi}{n}+\frac{\pi}{n}\right)$$

$$-\cot\left(i\frac{2\pi}{n}+\frac{\pi}{n}\right)$$

$$-\cot\left(i\frac{2\pi}{n}+\frac{\pi}{n}\right)$$

so the equation of the "modified" line becomes:

$$y_m = -\cot((2i+1)\frac{\pi}{n})x + \sin_n(a+i\frac{2\pi}{n}) + \cot((2i+1)\frac{\pi}{n})\cos_n(a+i\frac{2\pi}{n})$$

This leads to the conclusion that when $0 \le a < b \le \frac{2\pi}{n}$ the slopes of y_m and y are equal. If a = 0, due to **Identity 1.3**, then for any applicable value of b, y_m becomes:

$$y_m = -\cot((2i+1)\frac{\pi}{n})x + \sin(i\frac{2\pi}{n}) + \cot((2i+1)\frac{\pi}{n})\cos(i\frac{2\pi}{n})$$

Meaning that $y_m = L_i$ when a = 0 and due to **Identity 1.3**: $\sin_n(a+i\frac{2\pi}{n}) = \sin(i\frac{2\pi}{n})$ and $\cos_n(a+i\frac{2\pi}{n}) = \cos(i\frac{2\pi}{n})$ thus the point p_a , located at $(\cos_n(a+i\frac{2\pi}{n}), \sin_n(a+i\frac{2\pi}{n}))$, is equal to v_i . Because $y_{m,a=0} = L_i$, point p_b (located at $(\cos_n(b+i\frac{2\pi}{n}), \sin_n(b+i\frac{2\pi}{n}))$) is always on line segment L_i , thus when $a \neq 0$, p_a must also always be on line segment L_i . This means that for any value x where $0 \leq x \leq \frac{2\pi}{n}$, the point p_x , located at $(\cos_n(x+i\frac{2\pi}{n}), \sin_n(x+i\frac{2\pi}{n}))$, falls on line L_i of shape s_n , and since $i \in \mathbb{Z}$, any point p_θ , located at $(\cos_n(\theta), \sin_n(\theta))$, will always be on the perimeter of shape s_n .

5 Shape Equations

From these formulas, the equation for any regular polygon can be derived. The equation is found through a mutation of the ellipse equation by $d_n(\theta)$:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = d_n(\theta)^2 * 1$$

To derive theta, one would start with $\theta = \arctan(\frac{(y-k)a}{(x-h)b})$, which would find the angle at the correct point offset from the center, but due to x being squared, the shape is mirrored over x = h, which will work for even sided polygons as they are symmetric over x = h, but not for odd sided polygons due to their anti-symmetry (this is also the case over the line y = k but all shapes, regardless of side parity, are mirrored over y = k). This can be fixed by noting that the angle is calculated correctly in Quadrants I and IV (relative to (h, k) as the origin), and π radians off from the expected angle in Quadrants II and III. Thus when x < h, π must be added to θ . Using the sign function and modifying it to equal 1 when x < h and 0 when $x \ge h$ results in the formula:

$$-\frac{1}{2}(\frac{x-h}{|x-h|}-1)$$

which when multiplied by π and added to θ becomes:

$$\arctan(\frac{(y-k)a}{(x-h)b}) - \frac{\pi}{2}(\frac{x-h}{|x-h|} - 1)$$

meaning that the standard equation is:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = d_n(\arctan(\frac{(y-k)a}{(x-h)b}) - \frac{\pi}{2}(\frac{x-h}{|x-h|} - 1))^2$$

As d_n takes an angle, a constant value can be added to θ to make any shape rotate, allowing for easy rotation calculations.