A Book of Abstract Alachra 1/2nd Edition

ok of Abstract Aig	gebra	(2nd Ed	lition)
Chapter AA, Problem 3E		Bookmark	Show all steps: ON
	Problen	n	
Prove the following:			
$A \subseteq A \cup B$ and $B \subseteq A \cup B$.			
Step	o-by-step s	solution	
	Step 1 of 2		
Objective:-			
The objective is to prove $A \subseteq A \cup B$ and	$d \ B \subseteq A \cup B$	В.	
Comment			
	Step 2 of 2		
Proof:-			
Let A and B are two sets. Let $x \in A \subseteq B$	-		
Subsets:- If sets <i>A</i> and <i>B</i> are such that ento be subset of <i>B</i> .	every elemen	ts of A are also e	lements of <i>B</i> , then <i>A</i> is said
$A\subseteq B \Leftrightarrow \big\{x\in A \Rightarrow x\in B\big\}$			
The union of two sets A and B is:-			
$A \cup B = \{x : x \in A \text{ or } x \in B\}$			
The graphically the union two sets A and	d <i>B</i> is:-		

The colored figure is shown the union of two sets. The union two sets contain the both sets. Every elements of both set also elements of union of two sets. Thus, *A* and *B* are subsets of union of *A* and *B*.

Hence,

 $A \subseteq A \cup B$ and $B \subseteq A \cup B$.

Proved

Comment