

Qualifying the R11265 MaPMT for use in RICH Upgrade

- Qualification Parameters
- Available Data from Tests at Edinburgh
- Edinburgh Plans
- Conclusions

Qualification Parameters I

Extract all parameters (apart from QE) from single photon spectra

- Absolute Gain:
 - measure: gain dependence on HV
 - determine: the dynamic range of signals
 - conclude: the margin available to adjust gain by increase of HV (e.g. to counter ageing)
- Gain uniformity:
 - measure: gain variation within single MaPMT
 - determine: gain variation distribution, range & patterns
 - conclude: needs to adjust gain in readout (with the aim to equalise the signal loss)
 - measure: gain variation between MaPMTs
 - determine: gain variation distribution
 - conclude: need for gain matching in final setup
- □ Signal loss (Signal-over-Noise):
 - use: gain measurement data & well defined loss
 - determine: typical & maximal loss of single photon signal below 5σ noise threshold
 - conclude: acceptability of losses (depending on whole system!)

Qualification Parameters II

Cross-talk:

- measure: probability & signal size of cross-talk signals in all pixels
 - determine: cross-talk integrated over 8 neighbours
 - determine: cross-talk matrix, i.e. (a-)symmetries of cross-talk patterns
 - conclude: acceptability of cross-talk (depending on whole system)

Effective active area:

- measure: relative photon detection efficiency & signal gain across surface
 - determine: effective pixel boundaries & efficiency patters
 - conclude: effective active area & non-recoverable gaps between pixels

Quantum Efficiency of SBA Photocathode:

- measure: absolute photon induced current in dependence on wavelength
 - · determine: photon detection efficiency, integrated over surface
 - conclude: match to manufactures specs & gain in figure-or-merit wrt. standard PC

Qualification Parameters III

Dependence on magnetic fields:

- test for effects on signal gain & single photon detection efficiency
- measure: single photon spectra for field directions x, y, z
 - determine: shape and threshold of relative signal gain & photon detection efficiency
 - determine: increase in signal & photoelectron loss

Dependence on ageing:

- test for effects on signal gain & Quantum Efficiency
- measure: gain & signal loss dependence on temperature
 - determine: drift of key parameters on operation conditions
- measure: gain & signal loss in accelerated heat-cycles (low illumination)
 - determine: robustness (of tube and SBA PC) against operational cycles
- measure: QE, gain & signal loss for 10yr equivalent accelerated illumination
 - determine: shape and rate of change of QE (wavelength dependent?) & signal loss
- measure: rate of delayed 'after-pulses' with lever arm of months
 - determine: increase of rate of lon Feedback
- measure: charge collection dependency on bias in QE measurement
- determine: onset of secondary electron production from ionisation RICH upgrade meeting, 08.05.2013

Qualification Parameters IV

- Dependence on irradiation:
 - test for effects on signal gain & Quantum Efficiency
 - measure: QE, gain & signal loss for 10yr equivalent accelerated irradiation
 - determine: shape and rate of change of QE (wavelength dependent?) & signal loss
- Dependence on readout:
 - test for effects on signal loss & cross-talk
 - compare readout options for: VME-based QDC, MAROC, CLARO
 - determine: significance of differences between systems

□ All data using VME-based QDC, x100 amp, 8 channels at a time (amp-limited)

□ Single photon spectra:

MaPMT: R11265

nominal/max HV: 1000V/1100V

used HV: 800V pixel (medium gain): 6 illumination: $\mu \sim 0.26$

MaPMT: R7600

nominal/max HV: 900V/1000V

used HV: 900V pixel (medium gain): 11

illumination: $\mu \sim 0.45$

- Fit to data (Poisson) gives: pedestal, #photoelectrons, signal gains & widths
- R11265 shows much better separation of single photon signal than R7600

- □ All data using VME-based QDC, x100 amp, 8 channels at a time (amp-limited)
- Absolute gain:

- exponential rise of gain: doubles every ~60V → plenty of margin to raise gain
- R7600 data from 2003 available

□ All data using VME-based QDC, x100 amp, 8 channels at a time (amp-limited)

Gain uniformity:

- very different pattern of large/small gain pixels (re-visit 1d histograms!)
- R11265 has weaker central pixels, R7600 has weaker edge and corner pixels

- □ All data using VME-based QDC, x100 amp, 8 channels at a time (amp-limited)
- □ Signal loss:
 - three methods to calculate signal loss from fitted spectra:

- from fitted photoelectron spectra using Poisson statistics (preferred method)
- 2) from integrals over total signal spectrum (includes higher orders)
- 3) from fit to pedestal (gives upper estimate and may include noise contributions)

□ All data using VME-based QDC, x100 amp, 8 channels at a time (amp-limited)

Signal loss:

MaPMT: R11265

used HV: 950V

loss correlates with gain / HV:
halves with every ~60V

@ 940V: loss <5% (<8%: low gain pixels)

2003 data: R7600 with AVPm readout: loss ~11% @900V

- □ All data using VME-based QDC, x100 amp, 8 channels at a time (amp-limited)
- Cross-talk:

measured for all neighbours of all 64 pixels

- □ All data using VME-based QDC, x100 amp, 8 channels at a time (amp-limited)
- Cross-talk:

MaPMT:	R11265	R7600
used HV:	950V	950V
cross-talk		
adjacent pixels	<2%	2-4%
diagonal pixels	<0.5%	<1%
sum of 8 neighbours	<5%	

- R11265: cross-talk between pixels is symmetric
- non-uniform patters visible: probably due to gain variations (to be re-checked)

Edinburgh Plans I

Available MaPMT:

- 1x R11265 @ Edi lab, ~5x R7600 @ Edi lab (+ x4 R11265 @Cam/CERN)
- 4x R11265 ordered from Edinburgh money (expected to arrive in June)
- 4x R11265 ordered from LHCb money (expected to arrive at RAL in August)

Available Infrastructure:

- pulsed single photon light source (focussed) & dark box with xy-stages
- VME-based QDC readout for 64 channels:
 - x100 linear amplification from commercial amplifiers: currently only for 8 channels
 - 64-ch x100 amplifier under development in-house
- MAROC readout:
 - will get 2 MAROC readout boards (Cambridge development) over summer
- Magnet and dark chamber for MaPMT fitting into gap (unfocussed pulsed LEDs)
- QE measurement:
 - established method from HPD measurements
 - automation to be finished over summer
- Climate chamber:
- RICH upgrade meeting, 08:03:2013 (when? man power limited)

Edinburgh Plans II

- □ Test programme personnel assigned:
 - absolute gain, gain variations, signal loss
 - on up to 9 MaPMT R11265
 - compare to available R7600
 - cross-talk
 - on ~2 MaPMT R11265
 - compare to R7600
 - magnetic field measurements
 - on ~2 MaPMT R11265
 - compare to R7600
- □ Test programme discussing personnel:
 - comparison of VME based QDC to MAROC readout (& comparison to CLARO?)
 - Quantum Efficiency measurement for SBA photocathode
 - effective active area scans on xy-stage
 - ageing tests:
 - temperature dependency, operation cycles, high integrated illumination

Conclusions

- Comprehensive evaluation of R11265 needs further systematic studies:
 - magnetic field measurements
 - ageing due to temperature, operating cycles & illumination
 - Quantum Efficiency of SBA photocathode & its stability
 - scan of effective active area
 - gain statistics on multiple MaPMT for gain, variation, signal loss, cross-talk
- Edinburgh data available on:
 - absolute gain, gain variations, signal loss, cross-talk
 - for single R11265 and R7600 so far
- Edinburgh will contribute significantly to that:
 - established methods and standards of signal loss and cross-talk
 - infrastructure available or provided shortly
 - still discussing personnel for some tasks