

## planetmath.org

Math for the people, by the people.

## shift operators in $\ell^p$

Canonical name ShiftOperatorsInellp Date of creation 2013-03-22 15:17:40 Last modified on 2013-03-22 15:17:40

Owner matte (1858) Last modified by matte (1858)

Numerical id 4

Author matte (1858)
Entry type Definition
Classification msc 46B99
Classification msc 54E50

Let  $\mathbb{F}$  be  $\mathbb{R}$  or  $\mathbb{C}$ , and let  $1 \leq p \leq \infty$ , let  $\ell^p(\mathbb{F}), \|\cdot\|_p$  be as in the parent entry.

The right and left shift operators  $S_r, S_l \colon \ell^p(\mathbb{F}) \to \ell^p(\mathbb{F})$  as defined as follows. For  $a = (a_1, a_2, \ldots) \in \ell^p(\mathbb{F})$ ,

$$S_r(a) = (0, a_1, a_2, \ldots)$$

and

$$S_l(a) = (a_2, a_3, \ldots).$$

## Properties

- 1.  $S_l \circ S_r$  is the identity, but  $S_r \circ S_l$  is not.
- 2.  $S_r$  is an isometry;  $||S_r(a)|| = ||a||$ , and  $||S_l(a)||_p \le ||a||$ . Both shift operators are therefore bounded (and continuous).