Steps to follow in ANN:

L_layer_model_minib() -- Main function

- initialize_parameters_deep_he(layers_dims) -- initialise weights
- initialize_adam(parameters)-- initialise the optimiser
- random_mini_batches(X, Y, mini_batch_size, seed)--defines randomised batches.
- For i in mini batches
 - L_model_forward(X,parameters,activation-- computes the forward pass
 - Loop over the layers and do forward prop on each
 - linear_activation_forward(A_prev, W, b, activation)--compute the linear forward and then apply activation
 - linear forward(A, W, b):
 - $\mathbf{Z} = \mathbf{W}.dot(\mathbf{A}) + \mathbf{b}$
 - A, activation_cache = activation(Z)
 - compute_cost(AL, Y,parameters,lambd,regularisation,cost_func='mse')_- computes the cost
 - Mse : cost=np.mean(np.square(AL-Y))*0.5
 - Log :cost = (1./m) * np.sum(-np.dot(Y,np.log(AL+epsilon).T) np.dot(1-Y, np.log(1-AL+epsilon).T))
 - L_model_backward(AL, Y, caches,activation,regularisation,lambd,cost_func)
 --perform backprop
 - Mse: dAL=(AL-Y)
 - Log : dAL = -(np.divide(Y, AL) np.divide(1 Y, 1 AL))
 - Loop over the layers and do back prop on each
 - linear_activation_backward(dA, cache,regularisation,lambd,activation)--compute back prop from activation to the weights
 - dZ = activation backward(dA, activation cache)
 - linear_backward(dZ, cache,regularisation,lambd)
 - db = 1./m * np.sum(dZ, axis = 1, keepdims = True)
 - dA prev = np.dot(W.T,dZ)
 - update_parameters(parameters, grads, learning_rate)--finally update all the weights in the network
- cost avg = cost total / batches --compute the avg costs over the batch
- predicterr(valid_x,valid_y,parameters,lambd,activation=activation,regularisation='none',c ost_func=cost_func) --predict the validation cost
- plt.plot(costs) --plot the costs

Best Model for Sin Curve

```
layers_dims = [1,20,20,1]
```

```
parameters = L_layer_model_minib(
train_x, train_y, layers_dims, valid=False,
num_iterations = 600,
learning_rate = 0.001,
print_cost = True,
lambd=0.1,
optimizer="adam",
beta = 0.9,beta1 = 0.9, beta2 = 0.999,epsilon = 1e-8,
activation='tanh',
regularisation='none',
mini_batch_size=64,
cost_func="mse",
he_init=True)
```


Architecture Comparisons

Batch Size Comparisons

Freezing other parameters and changin batch sizes

layers_dims = [4,10,10,1]

num_iterations = 20,

learning_rate = 0.001

mini_batch_size =1(SGD)

optimizer="adam"

activation=Tanh

he_init=True

cost_func='mse'

regularisation ='none'

Training mape: 0.6939322934163785

Valid mape: 0.7115727145429904

Testing mape: 0.7354052660571078

layers_dims = [4,10,10,1]

num_iterations = 20,

learning_rate = 0.001

mini_batch_size =64

optimizer="adam"

activation=Tanh

activation-rann

he_init=True

cost_func='mse'

regularisation ='none'

Training mape: 0.7226041626498847

Valid mape: 0.7243184792599733

Testing mape: 0.7423342115034387

layers_dims = [4,10,10,1] num_iterations = 20, learning_rate = 0.001 mini_batch_size =256 optimizer="adam" activation=Tanh he_init=True cost_func='mse' regularisation ='none'

Training mape: 0.787330891219502 Valid mape: 0.8000444029923501 Testing mape: 0.8021629604210103 layers_dims = [4,10,10,1] num_iterations = 20, learning_rate = 0.001

mini_batch_size =6888(batch)

optimizer="adam"
activation=Tanh
he_init=True
cost_func='mse'
regularisation ='none'

Training mape: 3.600072792312424 Valid mape: 3.702112026264359 Testing mape: 3.6967978640657115

- As batch size increases learning becomes slow-more iterations needed
- As batch size increases learning per epoch becomes faster vectorisation comes into play
- Even with sufficient epoch SGD tends to give slightly better results
- SGD graph for validation is usually a bit zig zag and not smooth(optimisers will help)

Output Activation Comparisons

layers_dims = [4,10,10,1] num_iterations = 50, learning_rate = 0.001 mini_batch_size =256

mini_batcn_size =250 optimizer="adam"

activation="sigmoid"

he_init=True cost_func='mse' regularisation ='none'

Training mape: 0.7726484973627554 Valid mape: 0.7767228155762528 Testing mape: 0.7946247880970604 layers_dims = [4,10,10,1] num_iterations = 50, learning_rate = 0.001 mini_batch_size =256 optimizer="adam" activation="tanh" he_init=True cost_func='mse'

regularisation ='none'

Training mape: 0.7264987907448855 Valid mape: 0.732542065744155

Testing mape: 0.7536587432898809

Tanh converges faster

Learning Rate:

Regularisation

Lambd = 0.95

Training mape: 0.7716003838887064 Valid mape: 0.779187773992918 Testing mape: 0.7839908249893479

Learning Rate

- As Learning rate decreases we can observer the model learns slower
- More iterations will be required
- Higher the Learning rate higher the chances to encounter and fall into local minimas as we can see in the first graph. The graph is more noisy when dropping.
- Lower the learning rate smoother the graph

Regularisation

- As we increase lambd we decrease the rate of learning during training
- Validation loss is maintained constantly
- Convergence for higher lambd requires more iterations as we can see in maps vals.

Best Model for CCPP Dataset:

```
layers_dims = [4,20,20,1]
parameters = L_layer_model_minib(
X_train, y_train,layers_dims,valid=True,valid_x=X_valid,valid_y=y_valid,
num_iterations = 300,
he_init=True,
mini_batch_size =64,
learning_rate = 0.001,
print_cost = True,
regularisation='none', lambd=0.1,
optimizer="adam",
beta = 0.9, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8,
activation='tanh',
cost_func='mse')
```


Bonus:

SGD with Momentum -

layers_dims = [4,10,10,1] num_iterations = 400, learning_rate = 0.001 mini_batch_size =1 optimizer="momentum" activation="tanh" he_init=True cost_func='mse' regularisation ='none'

Training mape: 0.7107204433769398 Valid mape: 0.7157541114288213 Testing mape: 0.7271898861662556

R2-

Adam with Batches-

layers_dims = [4,10,10,1] num_iterations = 400, learning_rate = 0.001 mini_batch_size =256 optimizer="adam" activation="tanh" he_init=True cost_func='mse' regularisation ='L2'

Training mape: 0.7144425261228652 Valid mape: 0.7197032291132449 Testing mape: 0.7249401718028659

R2-

