Galois Theory

Definition: Let F/K be an extension of fields. Define $Gal(F/K) = Aut_K(F) = \{ \sigma \in Aut(F) : \sigma(a) = a \ \forall a \in K \}$.

which is called the Galois group of F/K.

Example: Gal (C/IR) has two elements, namely id and $z \mapsto z$.

Note: Autk (F) is a group under composition.

Note: If $F = K(\alpha)$ and $\beta \in F$, then we can write $\beta = \frac{a_0 + a_1 \alpha + \cdots + a_n \alpha^n}{b_0 + b_1 \alpha + \cdots + b_n \alpha^n}$ for some $a_i, b_j \in K$ and some $n \ge 0$.

If $\sigma \in Gal(F/K)$, then $\sigma(\beta) = \frac{a_0 + a_1\sigma(\alpha) + \dots + a_n\sigma(\alpha)^n}{b_0 + b_1\sigma(\alpha) + \dots + b_n\sigma(\alpha)^n}$

 σ is determined by $\sigma(\alpha)$.

Also, if $X \subseteq F$ and F = K(X), then $\sigma \in Gal(F/K)$ is just determined by $\sigma|_{X}$.

Theorem: If F/k is a field extension, $U \in F$, if f(u) = 0 for some $f(x) \in K[x]$ and if $\sigma \in Gal(F/k)$, then $f(\sigma(u)) = 0$.

Proof: $f(\sigma(u)) = \sigma(f(u)) = \sigma(o) = o$.

For example, if $F = K(\alpha)$ is an algebraic extension, then $\sigma \in Gal(F/K)$ are determined by where they send α and they have to send α to a root of the

minimal polynomial. In particular, IGal(F/K) = [KW: K] Example: $[Q(\sqrt{2}):Q]=2$, so $[Gal(Q(\sqrt{2})/Q)] \le 2$. One map is the identity and the other is the map $\sigma(a+b\sqrt{2}) = a-b\sqrt{2}$. In particular, GallQ(vz)/Q) = Z2. Example: LQ(1/2):Q]=3, If $\sigma \in Gal(Q(3/2)/Q)$ $\sigma(\sqrt[3]{a})$ has to be a root of x^3-a . But, $\sqrt[3]{a}$ is the only root of x^3-2 in $Q(3\sqrt{2})$, so $\sigma(3\sqrt{2})=3\sqrt{2}$ i.e. σ = id, so Gal(Q(3/2)/Q) = 2 id 3. Theorem: Let F/K be an extension, let $H \leq Gal(F/K)$ and let KEEEF be an intermediate field. Then H'= { x < F; \(\sigma(a) = a \) \(\text{ + EH} \) is an intermediate field $K \subseteq H' \subseteq F$, and E* = { \sigma \in \text{Gal(F/K)} : \sigma(\alpha) = \alpha \text{ \footnote{E}} is a subgroup of Gal (F/K). Proof: see notes. Definition: An extension F/K is Galois if and only if Gal(F/K) = K. Example: C/IR, it is the case Gal(C/IR)'=IR.

In contrast, $Q(\overline{32})/Q$ is not Galois. Indeed, we saw $Gal(Q(\overline{32})/Q) = \frac{1}{2}id_{\frac{1}{2}}$. So

Indeed, we have $\overline{2} = z \iff z \in \mathbb{R}$.

Gal(Q($\overline{\Sigma}$)/Q)' = Q(\overline{S}) \neq Q.

The Fundamental Theorem of Galois Theory.

Let F/K be a finite-clegree Galois extension. Then

(i) E→ E' = Gal(F/E)

(ii) H → H'

provides an inclusion-reversing bijection between subgroups of Gal(F/K) and intermediate fields of F/K. Furthermore, the relative degrees and indices of subgroups are related: $[E_1:E_2] = [E_2':E_1']$ for E_1 , E_2 intermediate fields or subgroups of Gal(F/K).

Also, the normal subgroups of Gal(F/K)

correspond to the intermediate fields that are also

Galois extension of K.

Example: Let $F = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, where $\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$.

If $\sigma \in \text{Gal}(F/\mathbb{Q})$, then $\sigma(\sqrt{2}) = \pm \sqrt{2}$, $\sigma(\sqrt{3}) = \pm \sqrt{3}$ and σ is determined by the signs. In fact, all 4 passibilities happen. This is a Galois extension and $\mathbb{Q}(F/\mathbb{Q}) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Indeed, we can define $\mathbb{Q}(F/\mathbb{Q}) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Indeed, we can define $\mathbb{Q}(F/\mathbb{Q}) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

