Let m =base of the counter

s =starting value of counter

 $h = m^{\lceil \log_m s \rceil} - 1$, halting value of the counter

 $d = \lceil \log_m s \rceil$, number of digits in each value of the counter

$$d_r = \left\lceil \frac{d}{3} \right\rceil$$
, number of digit regions

 $l = \lceil \log_2 m \rceil + 2$, number of bits needed to represent each digit plus 2 for MSR and MSD

 $H_{d_r} = 3 \cdot (l + 30)$, height of a counter value

Warp Units

Pre_First_Warp First_Warp Warp_Bridge Second_Warp Post_Warp

Digit Top

DigitTop DigitTop_Digit1 DigitTop_Digit2 DigitTop_Digit3

Return Digit NR ead Digit N+1

ReturnDigit1_ReadDigit2 ReturnDigit2_ReadDigit3 ReturnDigit3_ReadDigit1

${\bf Return Digit N Read Next Row}$

ReturnDigit1_ReadNextRow ReturnDigit2_ReadNextRow ReturnDigit3_ReadNextRow