

MUSIC INFORMATION RETRIEVAL

AND THE PRINCIPLES OF AUDIO PROCESSING AND ANALYSIS

Alexander Schindler
Scientist
Information Management
Center For Digital Safety & Security

AIT Austrian Institute Of Technology Gmbh Alexander.schindler@ait.ac.at

FEATURE EXTRACTION FROM MUSIC

Extracting Music Information

TOO MUCH AUDIO DATA

- Digital Audio
 - Sampling Rate: 44,100 Hz
 - 16-bit resolution for each channel
 - 2 channels for stereo
 - 88,200 Integers per second
 - 15,9 Millions for mainstream music (3min)
 - 60,5 MB

EXCERCISE: SAME GENRE?

FEATURE EXTRACTION FROM MUSIC

By example...

RHYTHM PATTERN (RP)

- fluctuations on critical frequency bands (a.k.a. Fluctuation Pattern)
- covers rhythm in the broad sense

Classical

Rock

RHYTHM PATTERN (RP)

FOURIER TRANSFORM

BARK SCALE

- psychoacoustical scale (related to Mel scale)
- 24 "critical bands" of hearing (non-linear)
- proposed by Eberhard Zwicker in 1961

Equal loudness curves (Phon)

- Relationship between sound pressure level in decibel and hearing sensation is not linear
- Perceived loudness depends on frequency of the tone
- equal loudness contours for 3, 20, 40, 60, 80, 100 phon

on-line test: http://www.phys.unsw.edu.au/jw/hearing.html

Sone Transformation

- Perceived loudness measured in Phon does not increase linearly
- Transformation into Sone
- Up to 40 phon slow increase in perceived loudness, then drastic increase
- Higher sensibility for certain loudness differences

RHYTHM PATTERN (RP): 2 EXAMPLES

Queen - Another One Bites The Dust (first 6 seconds)

PCM Audio Signal

Power Spectrum

Bark Scale

Decibel

Phon

Sone

RHYTHM PATTERN (RP): 2 EXAMPLES

RHYTHM PATTERN (RP): 2 EXAMPLES

DEEP LEARNING

for **Music Information Retrieval**

DEEP LEARNING FOR MUSIC IR

Pre-Processing: Waveform → Spectrogram → 40 Mel bands → Log scale

Winning algorithm MIREX 2015 music/speech classification task (99.73%) by Thomas Lidy

VISUALIZING CNN FILTERS LEARNED FOR MUSIC/SPEECH CLASSIFICATION

Learned Filter Weights

0 2 4 6 8 10

0 2 4 6 8 10

DEEP VS. SHALLOW

100 epochs

200 epochs

	Shallow	Deep	Shallow	Deep
GTZAN	78.1	78.6	80.8	80.6
ISMIRgenre	85.5	84.1	84.9	85.1
Latin	92.4	94.4	93.5	95.1
MSD	63.9	67.2	/	/

THANK YOU!

///////

ALEXANDER SCHINDLER

Scientist Information Management Center for Digital Safety & Security

AIT Austrian Institute of Technology GmbH
Donau-City-Straße 1 | 1220 Wien
T +43 50550-2902 | M +43 664 8251454 | F +43 50550-2813
alexander.schindler@ait.ac.at | www.ait.ac.at