Errata

Han, Y., and Tu, S. N. T. Remarks on the Vanishing Viscosity Process of State-Constraint Hamilton–Jacobi Equations. *Applied Mathematics & Optimization 86*, 1 (June 2022), 3

Yuxi Han and Son N. T. Tu

Oct 31, 2025

We note a typographical error in [1, Lemma 18]: the proof is correct, but the statement mistakenly claimed $\|f_{\kappa} - f\|_{L^{\infty}(\Omega)} \leq C\kappa$ instead of the correct $\|f_{\kappa} - f\|_{L^{\infty}(\Omega)} \leq C\kappa^2$. This led to the slower rate $\mathcal{O}(\epsilon^{1/p})$ in [1, Corollary 3]; the corrected statement yields the improved rate $\mathcal{O}(\epsilon^{1/(p-1/2)})$. The updated version is available at https://arxiv.org/abs/2107.09860.

Lemma 18. Assume $f \in \mathrm{C}^2(\overline{\Omega})$ such that f = 0 and Df = 0 on $\partial\Omega$. For all $\kappa > 0$ small enough, there exists $f_{\kappa} \in \mathrm{C}^2_c(\Omega)$ such that

$$\|f_{\kappa} - f\|_{L^{\infty}(\Omega)} \leqslant C\kappa^{2}$$
 and $\|D^{2}f_{\kappa}\|_{L^{\infty}(\Omega)} \leqslant C$

where C is independent of κ .

In Corollary 3, the use of the incorrect statement produced the slower rate $\mathcal{O}(\epsilon^{1/p})$; with the correction, the improved rate should be $\mathcal{O}(\epsilon^{1/(p-1/2)})$.

Proof of Corollary 3. Let $\mathfrak{u}_{\kappa}^{\epsilon} \in \mathrm{C}^2(\Omega) \cap \mathrm{C}(\overline{\Omega})$ be the solution to $(\mathrm{PDE}_{\epsilon})$ and \mathfrak{u}_{κ} be the solution to (PDE_{0}) with f replaced by f_{k} , respectively. It is clear that

$$0 \leqslant u^{\varepsilon}(x) - u^{\varepsilon}_{\kappa}(x) \leqslant C\kappa^{2}$$
 for $x \in \Omega$

and

$$0 \leqslant \mathfrak{u}(x) - \mathfrak{u}_{\kappa}(x) \leqslant C\kappa^{2}$$
 for $x \in \Omega$.

Therefore,

$$u^{\varepsilon}(x) - u(x) \le 2C\kappa^2 + \left(u^{\varepsilon}_{\kappa}(x) - u_{\kappa}(x)\right).$$
 (57)

By Theorem 2 and Remark 8, as $f_{\kappa} \in C_c^2(\Omega)$ with a uniform bound on $D^2 f_{\kappa}$, we have

$$\begin{split} u_{\kappa}^{\varepsilon}(x) - u_{\kappa}(x) & \leq \frac{\nu C_{\alpha} \varepsilon^{\alpha + 1}}{d(x)^{\alpha}} + C\left(\left(\frac{\varepsilon}{\kappa}\right)^{\alpha + 1} + \left(\frac{\varepsilon}{\kappa}\right)^{\alpha + 2}\right) + 4nC\varepsilon, \qquad p < 2 \\ u_{\kappa}^{\varepsilon}(x) - u_{\kappa}(x) & \leq \nu \varepsilon \log\left(\frac{1}{d(x)}\right) + C\left(\left(\frac{\varepsilon}{\kappa}\right) + \left(\frac{\varepsilon}{\kappa}\right)^{2}\right) + 4nC\varepsilon, \qquad p = 2 \end{split}$$

for some constant C independent of κ . Choose $\kappa = \epsilon^{\gamma}$ with $\gamma \in (0,1)$. Then (57) becomes

$$\begin{split} u^{\epsilon}(x) - u(x) &\leqslant C\epsilon^{2\gamma} + C\epsilon + \frac{C\epsilon^{\alpha+1}}{d(x)^{\alpha}} + C\epsilon^{(1-\gamma)(\alpha+1)}, & p < 2, \\ u^{\epsilon}(x) - u(x) &\leqslant C\epsilon^{2\gamma} + C\epsilon + C\epsilon |\log d(x)| + C\epsilon^{1-\gamma}, & p = 2. \end{split}$$

If p=2, the optimal choice of γ is given by $2\gamma=1-\gamma$, i.e., $\gamma=\frac{1}{3}$, which yields a rate of $\mathcal{O}(\epsilon^{2/3})$, an improvement over the $\mathcal{O}(\sqrt{\epsilon})$ estimate in Theorem 1.

If p < 2, by setting $2\gamma = (1 - \gamma)(\alpha + 1)$, we can get the best value of γ , that is, $\gamma = \frac{\alpha + 1}{\alpha + 3}$, and we obtain an improved estimate of $\mathcal{O}\left(\epsilon^{\frac{2(\alpha + 1)}{\alpha + 3}}\right)$, noting that $\frac{2(\alpha + 1)}{\alpha + 3} = \frac{1}{p - 1/2} > \frac{1}{p} > \frac{1}{2}$.

References

[1] HAN, Y., AND TU, S. N. T. Remarks on the Vanishing Viscosity Process of State-Constraint Hamilton-Jacobi Equations. Applied Mathematics & Optimization 86, 1 (June 2022), 3.