

FCC Test Report

FCC ID : 2AEIM-1133148

Equipment : Car Key Fob with BLE

Brand Name : Tesla

Model Name : 1133148

Applicant / : Tesla Motors, Inc.

Manufacturer 3500 Deer Creek Road Palo Alto, California US 94304

United States Of America

Standard : 47 CFR FCC Part 15.247

The product was received on Jul. 06, 2018, and testing was started from Jul. 06, 2018 and completed on Jul. 06, 2018. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Allen Lin

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-3273456 Page Number: 1 of 22

FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

Table of Contents

Report No.: FR862918-03AL

HIST	ORY OF THIS TEST REPORT	3
SUM	MARY OF TEST RESULT	4
1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	6
1.3	Testing Location Information	6
1.4	Measurement Uncertainty	7
2	TEST CONFIGURATION OF EUT	8
2.1	Test Condition	8
2.2	Test Channel Mode	8
2.3	The Worst Case Measurement Configuration	9
2.4	Support Equipment	9
2.5	Test Setup Diagram	10
3	TRANSMITTER TEST RESULT	11
3.1	AC Power-line Conducted Emissions	11
3.2	DTS Bandwidth	13
3.3	Maximum Conducted Output Power	
3.4	Power Spectral Density	
3.5	Emissions in Non-restricted Frequency Bands	
3.6	Emissions in Restricted Frequency Bands	18
4	TEST EQUIPMENT AND CALIBRATION DATA	22
APPI	ENDIX A. TEST RESULTS OF DTS BANDWIDTH	
APPI	ENDIX B. TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	
APPI	ENDIX C. TEST RESULTS OF POWER SPECTRAL DENSITY	
APPI	ENDIX D. TEST RESULTS OF EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
APPI	ENDIX E. TEST RESULTS OF EMISSIONS IN RESTRICTED FREQUENCY BANDS	
APPI	ENDIX F. TEST PHOTOS	
РНО	TOGRAPHS OF EUT V01	

TEL: 886-3-3273456 Page Number : 2 of 22

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

History of this test report

Report No.	Version	Description	Issued Date
FR862918-03AL	01	Initial issue of report	Jun. 03, 2019

TEL: 886-3-3273456 Page Number : 3 of 22

Report Template No.: HE1-C10 Ver2.0 Report Version : 01 FCC ID: 2AEIM-1133148

Summary of Test Result

Report No.: FR862918-03AL

: 01

Report Clause	Ref. Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	Not Required	FCC 15.203
3.1	15.207	AC Power-line Conducted Emissions	PASS	FCC 15.207
3.2	15.247(a)	DTS Bandwidth	PASS	≥500kHz
3.3	15.247(b)	Maximum Conducted Output Power	PASS	Power [dBm]:30
3.4	15.247(e)	Power Spectral Density	PASS	PSD [dBm/3kHz]:8
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	Non-Restricted Bands: >30 dBc
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	Restricted Bands: FCC 15.209

Reviewed by: Sam Chen

Report Producer: Ann Hou

TEL: 886-3-3273456 Page Number : 4 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, **2019**

Report Template No.: HE1-C10 Ver2.0 Report Version

Report Template No.: HE1-C10 Ver2.0 FCC ID: 2AEIM-1133148

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number
2400-2483.5	LE	2402-2480	0-39 [40]

Report No.: FR862918-03AL

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	BT-LE(1Mbps)	1.0	1TX

Note:

- Bluetooth LE uses a GFSK (1Mbps) modulation for DSSS.
- BWch is the nominal channel bandwidth.

1.1.2 Antenna Information

Ant.	Port	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	1	-	-	PCB antenna	fixed on board	3.8

For BT function:

For IEEE 802.15.1 Bluetooth mode (1TX/1RX)

1.1.3 EUT Information

	Operational Condition							
EU	Γ Power T	уре	Fro	m DC power sup	ply / Ba	ttery		
EU	Γ Functio	n	\boxtimes	Point-to-multipo	int		Point-to-point	
				-	Type of	EUT		
\boxtimes	Stand-alo	ne						
	Combine	d (EUT where	e the	radio part is fully	/ integra	ated within	another device)	
	Combine	d Equipment	- Bra	and Name / Mode	el No.:			
	Plug-in radio (EUT intended for a variety of host systems)							
	Host System - Brand Name / Model No.:							
	Other:							

1.1.4 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
BT-LE(1Mbps)	1	0	n/a (DC>=0.98)	n/a (DC>=0.98)

TEL: 886-3-3273456 Page Number : 5 of 22

FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

1.1.5 Table for Permissive Change

This product is an extension of original one reported under Sporton project number: FR862918AL

Below is the table for the change of the product with respect to the original one.

	Modifications	Performance Checking
1.	NFC Tag chip is changed (A7005 tag chip change to A9007 tag chip)	N/A for BT
2.	Add a second layout	Radiated Spurious Emission for below 1G was evaluated.

Report No.: FR862918-03AL

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- KDB 558074 D01 v05r02

1.3 Testing Location Information

	Testing Location							
\boxtimes	HWA YA	ADD	:	No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)				
		TEL	:	886-3-327-3456 FAX : 886-3-327-0973				
	Test site Designation No. TW1190 with FCC.							
	JHUBEI	ADD	:	No.8, Ln. 724, Bo'ai St.	, Zhubei City, Hsinchu County, Taiwan (R.O.C.)			
TEL: 886-3-656-9065 FAX: 886-3-656-9085								
	Test site Designation No. TW0006 with FCC.							

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
RF Conducted	TH01-HY	Andy Lee	23.5°C / 65%	06/Jul/2018
Radiated	03CH03-HY	Jeff Lin	24.2°C / 56%	06/Jul/2018

TEL: 886-3-3273456 Page Number : 6 of 22

FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Report No.: FR862918-03AL

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	3.0 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.9 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.3 dB	Confidence levels of 95%
Temperature	0.7 °C	Confidence levels of 95%
Humidity	4 %	Confidence levels of 95%

TEL: 886-3-3273456 Page Number : 7 of 22
FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

Test Configuration of EUT 2

Test Condition 2.1

RF Conducted	Abbreviation	Remark
TnomVnom	Tnom	20°C
-	Vnom	3V

Test Channel Mode 2.2

Test Software Version	BTool v1.41.11
-----------------------	----------------

Mode	Power Setting
BT-LE(1Mbps)	-
2402MHz	0xC
2440MHz	0xC
2480MHz	0xC

TEL: 886-3-3273456 Page Number : 8 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Version Report Template No.: HE1-C10 Ver2.0 : 01

2.3 The Worst Case Measurement Configuration

T	ne Worst Case Mode for Following Conformance Tests
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands
Test Condition	Conducted measurement at transmit chains

Report No.: FR862918-03AL

Th	e Worst Case Mode for Fo	ollowing Conformance Te	sts
Tests Item	Emissions in Restricted From	equency Bands	
Test Condition	regardless of spatial multi	antenna assembly (multiple plexing MIMO configuratior antenna gain of each anter), the radiated test should
Operating Mode < 1GHz	CTX		
1	DC power supply mode		
Operating Mode > 1GHz	CTX		
	X Plane	Y Plane	Z Plane
Orthogonal Planes of EUT			
Worst Planes of EUT		V	

2.4 Support Equipment

		Support Equipment -	RF Conducted	
No.	Equipment	Brand Name	Model Name	FCC ID
1	DC power supply	G.W	GPS-3030DD	-
2	Notebook	HP	TPN-W111	PD97260NG
3	Adapter for NB	HP	TPN-DA03	-
4	Fixture	-	-	-

Note: Support equipment No.2~4 was provided by customer.

		Support Equipment – R	adiated Emission	
No.	Equipment	Brand Name	Model Name	FCC ID
1	DC power supply	G.W	GPS-3030DD	-

TEL: 886-3-3273456 Page Number : 9 of 22

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

Test Setup Diagram 2.5

TEL: 886-3-3273456 Page Number : 10 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Version

: 01

Report Template No.: HE1-C10 Ver2.0

Transmitter Test Result 3

AC Power-line Conducted Emissions 3.1

3.1.1 AC Power-line Conducted Emissions Limit

AC Po	wer-line Conducted Emissions I	Limit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarithr	n of the frequency.	

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 **Test Procedures**

	Test Method
•	Refer as ANSI C63.10-2013, clause 6.2 foray power-line conducted emissions.

3.1.4 **Test Setup**

TEL: 886-3-3273456 Page Number : 11 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Template No.: HE1-C10 Ver2.0

FCC ID: 2AEIM-1133148

Report Version : 01

FCC Test Report

3.1.5 Test Result of AC Power-line Conducted Emissions

Please refer to FCC 15.207 which states, "Measurements to demonstrate compliance with the conducted limits are not required for devices employ DC power source for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines".

Report No.: FR862918-03AL

Therefore, for this device, AC Power Line Conducted Emissions investigation is not required.

TEL: 886-3-3273456 Page Number : 12 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit
Systems using digital modulation techniques:
■ 6 dB bandwidth ≥ 500 kHz.

Report No.: FR862918-03AL

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method
•	For the emission bandwidth shall be measured using one of the options below:
	Refer as KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.
	Refer as KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.
	Refer as RSS-Gen, clause 6.7 for for occupied bandwidth testing.
	Refer as ANSI C63.10, clause 6.9.3 for occupied bandwidth testing.

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix A

TEL: 886-3-3273456 Page Number : 13 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, **2019**

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

axim	um Conducted Output Power Limit		
•	If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)		
-	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm		
•	■ Point-to-point systems (P2P): If G _{TX} > 6 dBi, then P _{Out} = 30 – (G _{TX} – 6)/3 dBm		
•	Smart antenna system (SAS):		
	- Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm		
	- Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm		
	- Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm		
i.r.p.	Power Limit:		
24	00-2483.5 MHz Band		
•	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)		
•	Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$		
•	Smart antenna system (SAS)		
	- Single beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm		
	- Overlap beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm		
	- Aggregate power on all beams: P _{eirp} ≤ MAX(36, [P _{Out} + G _{TX} + 8]) dBm		

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-3273456 Page Number : 14 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, **2019**

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

3.3.3 Test Procedures

	Test Method
-	Maximum Peak Conducted Output Power
	Refer as KDB 558074, clause 9.1.1 Option 1 (RBW ≥ EBW method).
	Refer as KDB 558074, clause 9.1.2 Option 2 (integrated band power method)
	☐ Refer as KDB 558074, clause 9.1.3 Option 3 (peak power meter for VBW ≥ DTS BW)
•	Maximum Average Conducted Output Power
	Duty cycle ≥ 98%
	Refer as KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
	Duty cycle < 98%
	Refer as KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	RF power meter and average over on/off periods with duty factor or gated trigger
	Refer as KDB 558074, clause 9.2.3.1 Method AVGPM (using an RF average power meter).
•	For conducted measurement.
	If the EUT supports multiple transmit chains using options given below: Refer as KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	■ If multiple transmit chains, EIRP calculation could be following as methods: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

Report No.: FR862918-03AL

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix B

TEL: 886-3-3273456 Page Number : 15 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, **2019**

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit

Report No.: FR862918-03AL

Power Spectral Density (PSD)≤8 dBm/3kHz

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

Test Method

- Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).
 - Refer as KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz; Detector=peak).
- For conducted measurement.
 - If The EUT supports multiple transmit chains using options given below:
 - Measure and sum the spectra across the outputs. Refer as KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Refer as Appendix C

TEL: 886-3-3273456 Page Number : 16 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit					
RF output power procedure Limit (dB)					
Peak output power procedure	20				
Average output power procedure	30				

Report No.: FR862918-03AL

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method
•	Refer as KDB 558074, clause 11 for unwanted emissions into non-restricted bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix D

TEL: 886-3-3273456 Page Number : 17 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit						
Frequency Range (MHz) Field Strength (uV/m) Field Strength (dBuV/m) Measure Distance						
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Report No.: FR862918-03AL

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB / decade). The test report shall specify the extrapolation method used to determine compliance of the ELIT

Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-3273456 Page Number : 18 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

3.6.3 Test Procedures

Test Method

Report No.: FR862918-03AL

- The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].
- Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
- For the transmitter unwanted emissions shall be measured using following options below:
 - Refer as KDB 558074, clause 12 for unwanted emissions into restricted bands.
 - Refer as KDB 558074, clause 12.2.5.3 (ANSI C63.10, clause 4.1.4.2.3), Reduced VBW≥1/T.
 - Refer as KDB 558074, clause 12.2.4 measurement procedure peak limit.
- For the transmitter band-edge emissions shall be measured using following options below:
 - Refer as KDB 558074 clause 13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.
 - Refer as KDB 558074, clause 13.2 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements.
 - Refer as KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
- For conducted and cabinet radiation measurement, refer as KDB 558074, clause 12.2.2.
 - For conducted unwanted emissions into restricted bands (absolute emission limits).
 Devices with multiple transmit chains using options given below:
 - (1) Measure and sum the spectra across the outputs or
 - (2) Measure and add 10 log(N) dB
 - For KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.

TEL: 886-3-3273456 Page Number : 19 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

: 01

3.6.4 Test Setup

TEL: 886-3-3273456 Page Number : 20 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, **2019**

Report Template No.: HE1-C10 Ver2.0 Report Version

Above 1GHz

Spectrum Analyzer

Above 1GHz

Report No.: FR862918-03AL

3.6.5 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix E

TEL: 886-3-3273456 Page Number : 21 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, **2019**

Report Version

: 01

Report Template No.: HE1-C10 Ver2.0

Test Equipment and Calibration Data 4

Instrument for Conducted Test

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101515	9kHz~40GHz	08/Dec/2017	07/Dec/2018
Power Sensor	Anritsu	MA2411B	1339407	300MHz~40GHz	06/Nov/2017	05/Nov/2018
Power Meter	Anritsu	ML2495A	1517010	300MHz~40GHz	06/Nov/2017	05/Nov/2018
RF Cable-0.2m	HUBER+SUHNER	SUCOFLEX_104	MY10710/4	30MHz~26.5GHz	25/Aug/2017	24/Aug/2018
RF Cable-0.2m	HUBER+SUHNER	SUCOFLEX_104	MY10709/4	30MHz~26.5GHz	25/Aug/2017	24/Aug/2018
RF Cable-0.5m	HUBER+SUHNER	SUCOFLEX_104	MY10713/4	30MHz~26.5GHz	25/Aug/2017	24/Aug/2018
Signal Generator	R&S	SMR40	100116	10MHz~40GHz	27/Jul/2017	26/Jul/2018

Instrument for Radiated Test

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	31/Oct/2017	30/Oct/2018
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	1GHz ~ 18GHz 3m	01/Nov/2017	31/Oct/2018
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	23/Apr/2018	22/Apr/2019
Amplifier	Keysight	83017A	MY53270196	1GHz ~ 26.5GHz	31/Aug/2017	30/Aug/2018
Spectrum	R&S	FSP40	100593	9kHz ~ 40GHz	12/Dec/2017	13/Dec/2018
Receiver	R&S	ESCS 30	100354	9kHz ~ 2.75GHz	08/Dec/2017	07/Dec/2018
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	26/Jan/2018	25/Jan/2019
RF Cable-high	SUHNER	SUCOFLEX106	CB222	1GHz ~ 40GHz	26/Jan/2018	25/Jan/2019
Bilog Antenna	SCHAFFNER	CBL 6112B	22237	30MHz ~ 1GHz	08/Jul/2017	07/Jul/2018
Horn Antenna	SCHWARZBECK	BBHA9120D	1531	1GHz ~ 18GHz	18/Apr/ 2018	17/Apr/2019
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170154	18GHz ~ 40GHz	06/Feb/ 2018	05/Feb/2019
Loop Antenna	TESEQ	HLA 6120	31244	9 kHz~30 MHz	16/Mar/2018	15/Mar/2019

TEL: 886-3-3273456 Page Number : 22 of 22 FAX: 886-3-3270973 Issued Date : Jun. 03, 2019

Report Version Report Template No.: HE1-C10 Ver2.0 : 01

EBW-DTS Result Appendix A

Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-LE(1Mbps)	733.75k	1.066M	1M07F1D	720k	1.058M

Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;

Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
BT-LE(1Mbps)	-	-	-	-
2402MHz_TnomVnom	Pass	500k	720k	1.058M
2440MHz_TnomVnom	Pass	500k	720k	1.066M
2480MHz_TnomVnom	Pass	500k	733.75k	1.058M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

AV Power-DTS Result

Appendix B

Summary

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	5.81	0.00381

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz_TnomVnom	Pass	3.80	5.81	30.00
2440MHz_TnomVnom	Pass	3.80	5.53	30.00
2480MHz_TnomVnom	Pass	3.80	5.14	30.00

PSD-DTS Result

Appendix C

Summary

Mode	PD			
	(dBm/RBW)			
2.4-2.4835GHz	-			
BT-LE(1Mbps)	-6.17			

RBW=3kHz.

Result

Mode	Result	Gain	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
BT-LE(1Mbps)	-	-	-	-
2402MHz_TnomVnom	Pass	3.80	-6.17	8.00
2440MHz_TnomVnom	Pass	3.80	-9.28	8.00
2480MHz_TnomVnom	Pass	3.80	-9.81	8.00

RBW=3kHz.

Page No. : C1 of C2

Appendix C

CSE Non-restricted Band-DTS Result

Appendix D

Summary

Mode)	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
			(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835	5GHz	-	-	-	-	-	-	-	-	-	-	-	-	-
BT-LE(1M	lbps)	Pass	2.40167G	4.42	-25.58	2.395632G	-58.27	2.399988G	-44.61	2.485152G	-58.17	6.991214G	-52.25	1

Result

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz_TnomVnom	Pass	2.40167G	4.42	-25.58	2.395632G	-58.27	2.399988G	-44.61	2.485152G	-58.17	6.991214G	-52.25	1
2440MHz_TnomVnom	Pass	2.40167G	4.42	-25.58	2.304464G	-59.12	2.39968G	-58.95	2.484708G	-57.52	9.757684G	-50.54	1
2480MHz_TnomVnom	Pass	2.40167G	4.42	-25.58	1.756272G	-58.20	2.399608G	-58.09	2.483652G	-52.86	6.214464G	-52.95	1

RSE TX below 1GHz Result

Appendix E.1

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-
BT-LE(1Mbps)	Pass	QP	37.76M	29.92	40.00	-10.08	-6.81	3	Vertical	208	1.00	-

SPORTON INTERNATIONAL INC. Page No. : E1 of E6

Result

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-
2440MHz	Pass	PK	49.89k	35.09	113.63	-78.54	13.58	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	78.936k	31.14	109.65	-78.51	13.56	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	112.494k	33.68	106.57	-72.89	13.62	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	1.1649M	42.99	66.31	-23.32	16.78	3	Horizontal	0	1.00	-
2440MHz	Pass	PK	4.8066M	35.70	69.50	-33.80	18.68	3	Horizontal	0	1.00	-
2440MHz	Pass	PK	18.2391M	35.69	69.50	-33.81	22.24	3	Horizontal	0	1.00	-
2440MHz	Pass	PK	61.04M	27.86	40.00	-12.14	-14.32	3	Vertical	0	1.00	-
2440MHz	Pass	PK	258.92M	24.49	46.00	-21.51	-5.65	3	Vertical	0	1.00	-
2440MHz	Pass	PK	373.38M	27.30	46.00	-18.70	-4.22	3	Vertical	0	1.00	-
2440MHz	Pass	PK	555.74M	31.08	46.00	-14.92	-0.42	3	Vertical	0	1.00	-
2440MHz	Pass	PK	654.68M	31.79	46.00	-14.21	0.27	3	Vertical	0	1.00	-
2440MHz	Pass	QP	37.76M	29.92	40.00	-10.08	-6.81	3	Vertical	208	1.00	-
2440MHz	Pass	PK	30M	28.02	40.00	-11.98	-2.38	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	117.3M	23.10	43.50	-20.40	-8.00	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	262.8M	24.77	46.00	-21.23	-5.73	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	379.2M	31.27	46.00	-14.73	-4.18	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	571.26M	30.76	46.00	-15.24	-0.61	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	749.74M	32.74	46.00	-13.26	1.50	3	Horizontal	360	1.00	-

SPORTON INTERNATIONAL INC. Page No. : E2 of E6

SPORTON INTERNATIONAL INC. Page No. : E3 of E6

SPORTON INTERNATIONAL INC. Page No. : E4 of E6

SPORTON INTERNATIONAL INC. Page No. : E5 of E6

862918-03

SPORTON INTERNATIONAL INC. Page No. : E6 of E6

862918-03

RSE TX above 1GHz Result

Appendix E.2

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-
BT-LE(1Mbps)	Pass	AV	2.483502G	47.97	54.00	-6.03	32.61	3	Vertical	131	2.50	-

SPORTON INTERNATIONAL INC. Page No. : E1 of E14

862918-03

Appendix E.2

Result

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	AV	2.369G	45.31	54.00	-8.69	32.20	3	Vertical	146	2.61	-
2402MHz	Pass	AV	2.402G	98.55	Inf	-Inf	32.31	3	Vertical	146	2.61	-
2402MHz	Pass	PK	2.3566G	56.08	74.00	-17.92	32.16	3	Vertical	146	2.61	-
2402MHz	Pass	PK	2.4024G	100.10	Inf	-Inf	32.32	3	Vertical	146	2.61	-
2402MHz	Pass	AV	2.3826G	45.29	54.00	-8.71	32.25	3	Horizontal	205	1.18	-
2402MHz	Pass	AV	2.402G	85.77	Inf	-Inf	32.31	3	Horizontal	205	1.18	-
2402MHz	Pass	PK	2.3682G	56.00	74.00	-18.00	32.19	3	Horizontal	205	1.18	-
2402MHz	Pass	PK	2.4024G	87.20	Inf	-Inf	32.32	3	Horizontal	205	1.18	-
2402MHz	Pass	AV	4.80395G	43.79	54.00	-10.21	2.99	3	Vertical	99	2.82	-
2402MHz	Pass	PK	4.80451G	51.73	74.00	-22.27	2.99	3	Vertical	99	2.82	-
2402MHz	Pass	AV	4.80397G	41.76	54.00	-12.24	2.99	3	Horizontal	197	1.45	-
2402MHz	Pass	PK	4.80431G	50.52	74.00	-23.48	2.99	3	Horizontal	197	1.45	-
2440MHz	Pass	AV	2.3652G	45.15	54.00	-8.85	32.19	3	Vertical	145	3.13	-
2440MHz	Pass	AV	2.44G	99.15	Inf	-Inf	32.46	3	Vertical	145	3.13	-
2440MHz	Pass	AV	2.4904G	45.31	54.00	-8.69	32.64	3	Vertical	145	3.13	-
2440MHz	Pass	PK	2.3628G	56.34	74.00	-17.66	32.18	3	Vertical	145	3.13	-
2440MHz	Pass	PK	2.44G	100.44	Inf	-Inf	32.46	3	Vertical	145	3.13	-
2440MHz	Pass	PK	2.4868G	56.66	74.00	-17.34	32.62	3	Vertical	145	3.13	-
2440MHz	Pass	AV	2.3432G	45.15	54.00	-8.85	32.10	3	Horizontal	348	1.50	-
2440MHz	Pass	AV	2.44G	87.96	Inf	-Inf	32.46	3	Horizontal	348	1.50	-
2440MHz	Pass	AV	2.4972G	45.37	54.00	-8.63	32.66	3	Horizontal	348	1.50	-
2440MHz	Pass	PK	2.3636G	55.79	74.00	-18.21	32.18	3	Horizontal	348	1.50	-
2440MHz	Pass	PK	2.4404G	89.31	Inf	-Inf	32.46	3	Horizontal	348	1.50	-
2440MHz	Pass	PK	2.498G	55.41	74.00	-18.59	32.67	3	Horizontal	348	1.50	-
2440MHz	Pass	AV	4.88001G	42.20	54.00	-11.80	3.16	3	Vertical	105	1.44	-
2440MHz	Pass	PK	4.88041G	50.95	74.00	-23.05	3.16	3	Vertical	105	1.44	-
2440MHz	Pass	AV	4.87997G	40.97	54.00	-13.03	3.16	3	Horizontal	216	1.04	-
2440MHz	Pass	PK	4.88053G	50.15	74.00	-23.85	3.16	3	Horizontal	216	1.04	-
2480MHz	Pass	AV	2.48G	98.52	Inf	-Inf	32.60	3	Vertical	131	2.50	-
2480MHz	Pass	AV	2.483502G	47.97	54.00	-6.03	32.61	3	Vertical	131	2.50	-
2480MHz	Pass	PK	2.4798G	99.98	Inf	-Inf	32.60	3	Vertical	131	2.50	-
2480MHz	Pass	PK	2.483502G	56.41	74.00	-17.59	32.61	3	Vertical	131	2.50	-
2480MHz	Pass	AV	2.48G	88.83	Inf	-Inf	32.60	3	Horizontal	214	3.19	-
2480MHz	Pass	AV	2.483502G	45.42	54.00	-8.58	32.61	3	Horizontal	214	3.19	-
2480MHz	Pass	PK	2.4802G	90.19	Inf	-Inf	32.60	3	Horizontal	214	3.19	-
2480MHz	Pass	PK	2.4844G	56.73	74.00	-17.27	32.61	3	Horizontal	214	3.19	-
2480MHz	Pass	AV	4.96008G	43.60	54.00	-10.40	3.33	3	Vertical	341	1.20	-
2480MHz	Pass	PK	4.9605G	51.92	74.00	-22.08	3.33	3	Vertical	341	1.20	-
2480MHz	Pass	AV	4.96005G	40.68	54.00	-13.32	3.33	3	Horizontal	205	1.50	-
2480MHz	Pass	PK	4.96061G	50.16	74.00	-23.84	3.33	3	Horizontal	205	1.50	-

