Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет программной инженерии и компьютерной техники Кафедра информатики и прикладной математики

Методы цифровой обработки сигналов

Исследование эффективности метода подавления низкочастотных помех с помощью усредняющего фильтра

Лабораторная работа 2

Вариант 4

Старался: Шкаруба Н.Е. Группа: Р3418 **Работу принял**: Тропченко А.А.

Задание

Цель работы - определение возможностей метода подавления низкочастотных помех с помощью линейного фильтра.

Пусть на входе системы наблюдается смесь полезного высокочастотного сигнала и низкочастотной помехи. При этом на входе помеха по своей амплитуде в несколько сот раз превышает амплитуду сигнала. Путем линейной фильтрации с использованием двух видов нерекурсивного фильтра удается увеличить соотношение сигнал/шум.

№	Частота сигнала	ала Амплитуда сигнала Частот		Амплитуда помехи	
			помехи		
4	15	1	0,2-2	40	

Результаты моделирования

Соотношения сигнал/шум в выходной смеси от соотношения частот полезного сигнала и помехи

Fs	Fn	Fs/Fn	SNR	
			out	
15	0,2	75,00	123,92	
	0,4	37,50	38,46	
	0,6	25,00	14,49	
	0,8	18,75	8,91	
	1	15,00	5,59	
	1,2	12,50	3,84	
	1,4	10,71	3,03	
	1,6	9,38	2,28	
	1,8	8,33	1,91	
	2	7,50	1,61	

Соотношения сигнал/шум на выходе от соотношения амплитуд помехи и полезного сигнала для фиксированных значений частоты помехи (амплитуда помехи на входе варьируется от заданного до 500)

Апом	Асиг	Ап/Ас	SNR out			
			0,4	0,8	1,2	1,6
40	1	40	38,46	8,91	3,84	2,28
88		88	17,5	4,11	1,89	1,28
136		136	11,34	2,74	1,38	1,03
184		184	8,41	2,12	1,15	0,93
232		232	6,69	1,74	1,03	0,87
280		280	5,56	1,51	0,96	0,84
328		328	4,77	1,36	0,91	0,81
376		376	4,18	1,25	0,88	0,8
424		424	3,73	1,17	0,86	0,79
472		472	3,37	1,11	0,84	0,78
500		500	3,21	1,08	0,83	0,77

Схема устройства

Вывод

В ходе данной работы были построены зависимости соотношения сигнал/шум от соотношения частоты полезного сигнала и помехи, а также от соотношения амплитуды помехи и полезного сигнала. Было определено, что путем линейной фильтрации с использованием нерекурсивного фильтра удается увеличить соотношение сигнал/шум. Также была представлена схема линейного нерекурсивного фильтра, выполняющего фильтрацию сигнала.