Academic Year: 2020-2021

Practice Examples

- Example 1: Find Eigen values and corresponding Eigen vectors of $\begin{bmatrix} -1 & -2 \\ -4 & -3 \end{bmatrix}$.
- Example 2: Find Eigenvalues and corresponding Eigenvector of $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- Example 3: Find eigenvalues and corresponding eigenvectors of $\begin{bmatrix} 1/4 & -1/4 \\ -1/12 & 5/12 \end{bmatrix}$.
- (Note: This is Inverse of matrix $A = \begin{bmatrix} 5 & 3 \\ 1 & 3 \end{bmatrix}$)
- Example 4: Find eigenvalues and corresponding eigenvectors of $\begin{bmatrix} 28 & 24 \\ 8 & 12 \end{bmatrix}$.
- (Note: This is square of matrix $A = \begin{bmatrix} 5 & 3 \\ 1 & 3 \end{bmatrix}$)
- Example 5: If $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$, find eigenvalues for the following matrices:
- a) A b) A^{T} C) A^{-1} D) $4A^{-1}$ E) A^{2} .
- Example 6: Find Eigen values and corresponding Eigen vectors of $\begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$.
- Example 7: Find Eigen values and corresponding Eigen vectors of $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.
- Example 8: Find eigenvalues and corresponding eigenvectors of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
- Example 9: Find eigenvalues and corresponding eigenvectors of $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.
- (non-repeated eigenvalues with symmetric matrix)
- Example 10: Find eigenvalues and corresponding eigenvectors of $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.

Academic Year: 2020-2021

Example 11: Find eigenvalues and eigenvectors of

1)
$$\begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$
 2) $\begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$ 3) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & -1 \end{bmatrix}$ 4) $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 3 \end{bmatrix}$ 5) $\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ 6) $\begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$ 7) $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ 8) $\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 9) $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$ 10) $\begin{bmatrix} 8 & 0 & 3 \\ 2 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ 11) $\begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$ 12) $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$

Example 12: Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 5 & -1 \end{bmatrix}$ and find its inverse.

Example 13: If $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$, find A^3 and A^{-3} using cayley-Hamilton theorem.

Example 14: If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then find A^2, A^3, A^{-1}, A^{-2} using Cayley-Hamilton theorem.

Example 15: Verify Cayley-Hamilton theorem for the following matrices

$$1)\begin{bmatrix}1 & 0\\4 & 5\end{bmatrix} \quad 2)\begin{bmatrix}5 & 4\\1 & 2\end{bmatrix}$$

Example 16: Using Cayley-Hamilton theorem, find the inverse of

$$1)\begin{bmatrix}2 & 3\\3 & 5\end{bmatrix} \quad 2)\begin{bmatrix}5 & 3\\3 & 2\end{bmatrix}.$$

Example 17: Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence

compute A^{-1} . Also express $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$ as a quadratic polynomial.

Example 18: Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence find A^{-1} .

Example 19: If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, prove that $A^5 - 3A^4 + A^3 - 7A^2 + 5A + I = 61I - 43A$.

Academic Year: 2020-2021

Example 20: Find LU decomposition of following matrices (if exist):

$$1) \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix} 3) \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} 4) \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$5) \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} 6) \begin{bmatrix} 8 & 0 & 3 \\ 2 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} 7) \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} 8) \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix} 9) \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Example 21: Find the *LU* decomposition of following matrices:

1)
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

2) $B = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$

2)
$$B = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$

3)
$$E = \begin{bmatrix} 3 & 1 & 4 \\ 1 & 2 & 6 \\ 4 & 6 & 5 \end{bmatrix}$$

4)
$$F = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ -4 & -6 & -3 \end{bmatrix}$$

5)
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$

6)
$$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

Example 22: Find the *LU* decomposition of following metrices:

1)
$$C = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$
.

1)
$$C = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$
.
2) $D = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ -4 & -6 & -3 \end{bmatrix}$.