Упражнение xcos

Компонентное моделирование. Scilab, подсистема xcos

Ибатулина Дарья Эдуардовна, НФИбд-01-22

Содержание

1	Цель работы	4	
2	Задание	5	
3	Теоретическое введение	6	
4	Выполнение лабораторной работы 4.1 Реализация модели в хсов	11 11 21	
5	Выводы	24	
Сп	Список литературы		

Список иллюстраций

3.1	Командной окно Scilab	6
3.2	Палитры блоков	7
3.3	Пример модели	8
3.4	Параметры для блока CLOCK_c	9
3.5	Параметры для нижнего блока GENSIN_f	9
3.6	Параметры для верхнего блока GENSIN_f	10
4.1	Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = 0$	11
4.2	Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=0$	12
4.2 4.3	Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/4\dots$ Фигура Диссажу: $A=B=1, a=2, b=2, \delta=\pi/2\dots$	12
4.3 4.4	Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/2$	13
4.4 4.5	Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = 3\pi/4$	13
4.6 4.7	Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = 0$	14 14
4.7 4.8	Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = \pi/4 \dots$	15
	Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = \pi/2$	15
4.9	Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = 3\pi/4$	
4.10	Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = \pi$	16
4.11	Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = 0$	16
	Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = \pi/4 \dots$	17
4.13	Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = \pi/2$	17
	Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=3\pi/4$	18
	Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = \pi$	18
	Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = 0$	19
	Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = \pi/4 \dots$	19
	Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/2$	20
	Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=3\pi/4$	20
	Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi$	21
4.21	Редактор OMEdit	21
4.22	Создание класса	22
4.23	Просмотр класса в текстовом виде	22
4.24	Написание кода для задания дифференциального уравнения	22
4.25	Задание параметров симуляции	23
4.26	Полученные графики для х и х'	23
	Полученный график для х	23

1 Цель работы

Научиться работать со средствами моделирования xcos и OpenModelica.

2 Задание

- 1. Реализовать имитационную модель функционирования двух источников синусоидального сигнала, позволяющая в зависимости от задаваемых параметров построить различные фигуры Лиссажу в хсоз с различными параметрами;
- 2. Реализовать имитационную модель функционирования двух источников синусоидального сигнала, позволяющая в зависимости от задаваемых параметров построить различные фигуры Лиссажу в OpenModelica.

3 Теоретическое введение

Scilab — система компьютерной математики, предназначенная для решения вычислительных задач. Основное окно Scilab содержит обозреватель файлов, командное окно, обозреватель переменных и журнал команд (рис. [3.1]).

Рис. 3.1: Командной окно Scilab

Программа хсоз является приложением к пакету Scilab. Для вызова окна хсоз необходимо в меню основного окна Scilab выбрать Инструменты, Визуальное моделирование хсоз. При моделировании с использованием хсоз реализуется принцип визуального программирования, в соответствии с которым пользователь на экране из палитры блоков (рис. [3.2]) создаёт модель и осуществляет расчёты.

Рис. 3.2: Палитры блоков

На рис. [3.3] в качестве примера приведена модель функционирования двух источников синусоидального сигнала, позволяющая в зависимости от задаваемых параметров построить различные фигуры Лиссажу.

Рис. 3.3: Пример модели

Математическое выражение для кривой Лиссажу:

$$\begin{cases} x(t) = A \sin(at + \delta), \\ y(t) = B \sin(bt) \end{cases}$$

Блокам можно задавать различные характеристики (рис. [3.4], [3.5], [3.6]).

Рис. 3.4: Параметры для блока CLOCK_с

Рис. 3.5: Параметры для нижнего блока GENSIN f

Рис. 3.6: Параметры для верхнего блока GENSIN_f

Использованы следующие блоки xcos:

CLOCK_с - запуск часов модельного времени;

GENSIN_f - блок генератора синусоидального сигнала;

CSCOPEXY - анимированное регистрирующее устройство для построения графика типа y = f(x);

TEXT_f - задаёт текст примечаний.

4 Выполнение лабораторной работы

4.1 Реализация модели в хсоз

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=2, \delta=0$ (рис. [4.1]). Меняя фазу в первом генераторе на $\pi/4; \pi/2; 3\pi/4; \pi;$ соответственно получим другие фигуры Лиссажу (рис. [4.2], [4.3], [4.4], [4.5]).

Рис. 4.1: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=0$

Рис. 4.2: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/4$

Рис. 4.3: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/2$

Рис. 4.4: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=3\pi/4$

Рис. 4.5: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi$

Изменим параметр частоты на втором генераторе на 4.

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=4, \delta=0$ (рис. [4.6]). Меняя фазу в первом генераторе на $\pi/4; \pi/2; 3\pi/4; \pi;$ соответственно получим другие фигуры Лиссажу (рис. [4.7], [4.8], [4.9], [4.10]).

Рис. 4.6: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=0$

Рис. 4.7: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/4$

Рис. 4.8: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/2$

Рис. 4.9: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=3\pi/4$

Рис. 4.10: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi$

Изменим параметр частоты на втором генераторе на 6.

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=6, \delta=0$ (рис. [4.11]). Меняя фазу в первом генераторе на $\pi/4; \pi/2; 3\pi/4; \pi;$ соответственно получим другие фигуры Лиссажу (рис. [4.12], [4.13], [4.14], [4.15]).

Рис. 4.11: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=0$

Рис. 4.12: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/4$

Рис. 4.13: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/2$

Рис. 4.14: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=3\pi/4$

Рис. 4.15: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi$

Изменим параметр частоты на втором генераторе на 3.

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=3, \delta=0$ (рис. [4.16]). Меняя фазу в первом генераторе на $\pi/4; \pi/2; 3\pi/4; \pi;$ соответственно получим другие фигуры Лиссажу (рис. [4.17], [4.18], [4.19], [4.20]).

Рис. 4.16: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=0$

Рис. 4.17: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/4$

Рис. 4.18: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/2$

Рис. 4.19: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=3\pi/4$

Рис. 4.20: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi$

4.2 Реализация модели в OpenModelica

Смоделируем класс дифференциального уравнениия x'=-x. Для этого зайдём в OMEdit и создадим этот класс (рис. [4.21], [4.22], [4.23], [4.24], [4.25]).

Рис. 4.21: Редактор OMEdit

 OMEdit - Cosผลาน Hosbin Modelica Knacc * * 					
Имя:	DU				
Specialization:	Model				
Extends (опционально):	Просмотр				
Вставить в класс (опционально):	Просмотр				
Partial					
Encapsulated					
State					
	ОК Отмена				

Рис. 4.22: Создание класса

Рис. 4.23: Просмотр класса в текстовом виде

```
1 model DU "Решение ДУ"
2 Real x(start=1);
3 equation
4 der(x)=-x;
5 end DU;
```

Рис. 4.24: Написание кода для задания дифференциального уравнения

Рис. 4.25: Задание параметров симуляции

В результате получился такой график (рис. [4.26], [4.27]).

Рис. 4.26: Полученные графики для х и х'

Рис. 4.27: Полученный график для х

5 Выводы

В результате выполнения лабораторной работы я научилась работать со средствами моделирования xcos и OpenModelica.

Список литературы

1. Королькова А.В., Кулябов Д.С. Руководство к упражнению. Компонентное моделирование. Scilab, подсистема xcos. Моделирование информационных процессов. - 2025. — 8 с.