

10) 임베딩 벡터의 시각화

11) 문서 벡터를 이용한 추천 시스템

12) 워드 임베딩의 평균

08) 사전 훈련된 워드 임베딩

1. 케라스 임베딩 층

Embedding(): 인공 신경망 구조 관점에서 임베딩 층(embedding layer)을 구현

1) 임베딩 층은 룩업 테이블이다.


```
# 아래의 각 인자는 저자가 임의로 선정한 숫자들이며 의미있는 선정 기준이 아님.

v = Embedding(20000, 128, input_length=500)

# vocab_size = 20000

# output_dim = 128

# input_length = 500
```

vocab_size : 텍스트 데이터의 전체 단어 집합의 크기 output_dim : 워드 임베딩 후의 임베딩 벡터의 차원

input_length : 입력 시퀀스의 길이

08) 사전 훈련된 워드 임베딩

2. 사전 훈련된 워드 임베딩 사용하기(실습)

GloVe 다운로드 링크: http://nlp.stanford.edu/data/glove.6B.zip

Word2Vec 다운로드 링크: https://drive.google.com/file/d/0B7XkCwpI5KDYNINUTTISS21pQmM

ELMo, Embeddings from Language Model

- 사전 훈련된 언어 모델(Pre-trained language model) 사용

Bank Account(은행 계좌) [0.2 0.8 -1.2]

Bank

 $[0.2 \ 0.8 \ -1.2]$

River Bank (강둑) [0.2 0.8 -1.2]

같은 표기의 단어라도 문맥에 따라서 다르게 워드 임베딩을 할 수 있으면 자연어 처리의 성능이 더 올라가지 않을까?

문맥을 반영한 워드 임베딩(Contextualized Word Embedding)

2. biLM(Bidirectional Language Model)의 사전 훈련

은닉층이 2개인 일반적인 단방향 RNN 언어 모델의 언어 모델링

biLM

양쪽 방향의 언어 모델을 둘 다 활용

기본적으로 다층 구조(Multi-layer)를 전제

→ 은닉층이 최소 2개 이상이다!

biLM(Bidirectional Language Model)

글자(character)단위로 계산 문맥과 상관없이 단어의 연관성을 찾아낼 수 있음 00V에도 견고함

2. biLM(Bidirectional Language Model)의 활용

1) 각 층의 출력값을 연결(concatenate)한다.

2) 각 층의 출력값 별로 가중치를 준다.

3) 각 층의 출력값을 모두 더한다.

y × =

ELMo 표현(representation)

4) 벡터의 크기를 결정하는 스칼라 매개변수를 곱한다

2. biLM(Bidirectional Language Model)의 활용

ELMo 표현을 사용해서 스팸 메일 분류하기 (실습)

10) 임베딩 벡터의 시각화

구글이 지원하는 시각화 툴, 임베딩 프로젝터

더 알고 싶다면? → https://arxiv.org/pdf/1611.05469v1.pdf

11) 문서 벡터를 이용한 추천 시스템

유사도 비교

1. Doc2Vec / Sent2Vec : 문서 벡터로 변환

Today's Topic

2. 문서에 존재하는 <mark>단어 벡터들의 평균</mark> 을 구하는 것

12) 워드 임베딩의 평균(실습)

깃헙에서 실습결과를 확인하세요^^

