Proof.

 (\Longrightarrow) Let G be a finite cyclic group. Then there exists $g \in G$ such that any element in G can be written g^n for some $n \in \mathbb{Z}$.

Let N = |G| and define $\phi : G \to \mathbb{Z}(N)$ such that $\phi(g^n) = \overline{n}$, where \overline{m} is the class of integers congruent to m modulo N.

We first show that ϕ is well-defined. Consider the set $\{1,g,\ldots,g^{N-1}\}$. If $g^n=g^m$ for any $0\leq n< m< N$, then $g^{m-n}=1$ while m-n< N. The cycle would have length less than N and g would not generate G, which is a contradiction. Thus the elements are unique and $G=\{1,g,\ldots,g^{N-1}\}$. We also observe that $g^N=1$, because for all $0\leq n< N-1, 0< 1+n< N$, implying that $gg^n\neq 1$, leaving only g^{N-1} as the inverse of g. Let $n,m\in \mathbb{Z}$ be such that $g^n=g^m$. Then n-m is an integer multiple of N, so $\phi(g^n)=\phi(g^m)$, as desired.

It is clear that ϕ is a homomorphism because for all $n, m \in \mathbb{Z}$, $\phi(g^n g^m) = \phi(g^{n+m}) = \overline{n+m} = \overline{n} + \overline{m} = \phi(g^n) + \phi(g^m)$. Finally, ϕ is a bijection because $|\{g^0, g^1, \dots, g^{N-1}\}| = |\{\overline{0}, \overline{1}, \dots, \overline{N-1}\}| = N$.

(\Leftarrow) Let G be a finite abelian group that is isomorphic to $\mathbb{Z}(N)$ for some N with $\phi: \mathbb{Z}(N) \to G$ as the isomorphism.

Observe that $|G| = |\mathbb{Z}(N)| = N$ since ϕ is a bijection. Since ϕ is a homomorphism, $\{\phi^0(1), \phi^1(1), \dots, \phi^{N-1}(1)\} = \{\phi(0), \phi(1), \dots, \phi(N-1)\}$. The right-hand side set has cardinality N since ϕ is a bijection. Thus, the left-hand side also has cardinality N and it is equal to G.