PAPER-III COMPUTER SCIENCE

Signature and Name of Invigilator	
1. (Signature)	OMR Sheet No. :
(Name)	(To be filled by the Candidate)
2. (Signature)	Roll No.
(Name)	(In figures as per admission card)
	Roll No
D 8 7 1 4	(In words)

Time: 2 ½ hours] [Maximum Marks: 150

Number of Pages in this Booklet: 16

Instructions for the Candidates

- Write your roll number in the space provided on the top of this page.
- This paper consists of seventy five multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - (i) To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be
 - (iii) After this verification is over, the OMR Sheet Number should be entered on this Test Booklet.
- Each item has four alternative responses marked (A), (B), (C) and (D). You have to darken the circle as indicated below on the correct response against each item.

Example: (A) (B) (D) where (C) is the correct response.

- Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.
- 9. You have to return the test question booklet and Original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are, however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There is no negative marks for incorrect answers.

Number of Questions in this Booklet : 75 परीक्षार्थियों के लिए निर्देश

- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए ।
- 2. इस प्रश्न-पत्र में पचहत्तर बहुविकल्पीय प्रश्न हैं ।
- परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी । पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्निलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है :
 - (i) प्रश्न-पुस्तिका खोलने के लिए उसके कवर पेज पर लगी कागज की सील को फाड़ लें । खुली हुई या बिना स्टीकर-सील की पुस्तिका स्वीकार न करें ।
 - (ii) केंवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं । दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात् किसी भी प्रकार की त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें । इसके लिए आपको पाँच मिनट दिये जायेंगे । उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा ।
 - (iii) इस जाँच के बाद OMR पत्रक की क्रम संख्या इस प्रश्न-पुस्तिका पर अंकित कर दें ।
- प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (A), (B), (C) तथा (D) दिये गये हैं । आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है ।

- 5. प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं । यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन नहीं होगा ।
- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें ।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ट पर करें ।
- उ. यिंद आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं ।
- 9. आपको परीक्षा समाप्त होने पर प्रश्न-पुस्तिका एवं मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक हे और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें । हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं ।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही इस्तेमाल करें ।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है ।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

D-87-14 | P.T.O.

COMPUTER SCIENCE PAPER – III

Note: This paper contains seventy five (75) objective type questions of two (2) marks each. All questions are compulsory.

1.	A hierarchical memory system that uses cache memory has cache access time of 50 nano
	seconds, main memory access time of 300 nano seconds, 75% of memory requests are for
	read, hit ratio of 0.8 for read access and the write-through scheme is used. What will be
	the average access time of the system both for read and write requests?
	(A) 157.5 n.sec. (B) 110 n.sec.

75 n.sec.

(D) 82.5 n.sec.

2. For switching from a CPU user mode to the supervisor mode following type of interrupt is most appropriate

(A) Internal interrupts External interrupts

Software interrupts (C)

(D) None of the above

- 3. In a dot matrix printer the time to print a character is 6 m.sec., time to space in between characters is 2 m.sec., and the number of characters in a line are 200. The printing speed of the dot matrix printer in characters per second and the time to print a character line are given by which of the following options?
 - (A) 125 chars/second and 0.8 seconds
 - (B) 250 chars/second and 0.6 seconds
 - (C) 166 chars/second and 0.8 seconds
 - (D) 250 chars/second and 0.4 seconds
- Match the following 8085 instructions with the flags: 4.

List - I

List – II

a. XCHG

only carry flag is affected.

b. SUB

no flags are affected.

STC

iii. all flags other than carry flag are affected.

d. DCR

iv. all flags are affected.

Codes:

d a b c

(A) iv i ii iii

(B) iii ii i iv

(C) ii iii i iv

ii i iv iii

5.	How	many times will the following loo LXI B, 0007 H	op be ex	ecuted ?
	LOP	: DCX B		
		MOV A, B		
		ORA C		
		JNZ LOP		
	(A)	05	(B)	07
	(C)	09	(D)	00
6.	Spec	ify the contents of the accumulato	or and th	ne status of the S, Z and CY flags when 8085
	micro	oprocessor performs addition of 8°	7 H and	79 H.
	(A)	11, 1, 1, 1	(B)	10, 0, 1, 0
	(C)	01, 1, 0, 0	(D)	00, 0, 1, 1
7.	Loca	tion transparency allows:		
	I.	Users to treat the data as if it is d		
	II.	Programmers to treat the data as		
	III.	Managers to treat the data as if it		e location.
	Whic	ch one of the following is correct :	?	<i>B</i> .
((A)	I, II and III	(B)	I and II only
	(C)	II and III only	(D)	II only
8.	Whic	ch of the following is correct?	10	
0.	I.	Two phase locking is an optimist	tic prote	ocol
	II.	Two phase locking is pessimistic		
	III.	Time stamping is an optimistic p	•	
	IV.	Time stamping is pessimistic pro		
	(A)	I and III	(B)	II and IV
	(C)	I and IV	(D)	II and III
	(-)			
9.		rules used to limit the vo	olume of	f log information that has to be handled and
	proce			ring the loss of volatile information.
	(A)	Write-ahead log	(B)	Check-pointing
	(C)	Log buffer	(D)	Thomas
10.	Let R	X = ABCDE is a relational scheme	with fur	nctional dependency set $F = \{A \rightarrow B, B \rightarrow C,$
	AC -	\rightarrow D}. The attribute closures of A	and E a	re
	(A)	ABCD, φ	(B)	ABCD, E
	(C)	Φ,ϕ	(D)	ABC, E
D-87	-14		3	Paper-III

11.	Cons	sider the following statements:
	I.	Re-construction operation used in mixed fragmentation satisfies commutative rule.
	II.	Re-construction operation used in vertical fragmentation satisfies commutative rule
	Whic	ch of the following is correct?
	(A)	I
	(B)	II
	(C)	Both are correct
	(D)	None of the statements are correct.
12.	Whic	ch of the following is false?
	(A)	Every binary relation is never be in BCNF.
	(B)	Every BCNF relation is in 3NF.
	(C)	1 NF, 2 NF, 3 NF and BCNF are based on functional dependencies.
	(D)	Multivalued Dependency (MVD) is a special case of Join Dependency (JD).
13.		ch of the following categories of languages do not refer to animation languages?
	(A)	Graphical languages (B) General-purpose languages
	(C)	Linear-list notations (D) None of the above
	3.6	
14.	Matc	ch the following:
		List – II
	a. T	ablet, Joystick i. Continuous devices
	b. L	ight Pen, Touch Screen ii. Direct devices
	c. L	ocator, Keyboard iii. Logical devices
	d. D	Oata Globe, Sonic Pen iv. 3D interaction devices
	Code	es:
		a b c d
	(A)	ii i iv iii
	(B)	i iv iii ii
	(C)	i ii iii iv
	(D)	iv iii ii i
15.	A tec	chnique used to approximate halftones without reducing spatial resolution is known as
		<u> </u>
	(A)	Halftoning (B) Dithering
	(C)	Error diffusion (D) None of the above
_		

Paper-III 4 D-87-14

- **16.** Consider a triangle represented by A(0, 0), B(1, 1), C(5, 2). The triangle is rotated by 45 degrees about a point P(-1, -1). The co-ordinates of the new triangle obtained after rotation shall be _____
 - (A) A' $(-1, \sqrt{2} 1)$, B' $(-1, 2\sqrt{2} 1)$, C' $(\frac{3}{2}\sqrt{2} 1, \frac{9}{2}\sqrt{2} 1)$
 - (B) A' $(\sqrt{2}-1,-1)$, B' $(2\sqrt{2}-1,-1)$, C' $(\frac{3}{2}\sqrt{2}-1,\frac{9}{2}\sqrt{2}-1)$
 - (C) A' $\left(-1, \sqrt{2} 1\right)$, B' $\left(2\sqrt{2} 1, -1\right)$, C' $\left(\frac{3}{2}\sqrt{2} 1, \frac{9}{2}\sqrt{2} 1\right)$
 - (D) A' $\left(-1, \sqrt{2} 1\right)$, B' $\left(2\sqrt{2} 1, -1\right)$, C' $\left(\frac{9}{2}\sqrt{2} 1, \frac{3}{2}\sqrt{2} 1\right)$
- 17. In Cyrus-Beck algorithm for line clipping the value of t parameter is computed by the relation:

(Here P_1 and P_2 are the two end points of the line, f is a point on the boundary, n_1 is inner normal)

(A)
$$\frac{(P_1 - f_i) \cdot n_i}{(P_2 - P_1) \cdot n_i}$$

(B)
$$\frac{(\mathbf{f_i} - \mathbf{P_1}) \cdot \mathbf{n_i}}{(\mathbf{P_2} - \mathbf{P_1}) \cdot \mathbf{n_i}}$$

$$(C) \quad \frac{(P_2 - f_i) \cdot n_i}{(P_1 - P_2) \cdot n_i}$$

(D)
$$\frac{(f_i - P_2) \cdot n_i}{(P_1 - P_2) \cdot n_i}$$

- **18.** Match the following:
 - a. Cavalier Projection
- i. The direction of projection is chosen so that there is no foreshortening of lines perpendicular to the *xy* plane.
- b. Cabinet Projection
- ii. The direction of projection is chosen so that lines perpendicular to the xy planes are foreshortened by half their lengths.
- c. Isometric Projection
- iii. The direction of projection makes equal angles with all of the principal axis.
- d. Orthographic Projection
- iv. Projections are characterized by the fact that the direction of projection is perpendicular to the view plane.

Codes:

19.	Cons	ider the following statements S1, S2 and S3:
	S1:	In call-by-value, anything that is passed into a function call is unchanged in the
		caller's scope when the function returns.
	S2 ·	In call-by-reference, a function receives implicit reference to a variable used as

S2: In call-by-reference, a function receives implicit reference to a variable used as

argument.

S3: In call-by-reference, caller is unable to see the modified variable used as argument.

(A) S3 and S2 are true.

(B) S3 and S1 are true.

(C) S2 and S1 are true.

(D) S1, S2, S3 are true.

20. How many tokens will be generated by the scanner for the following statement?

$$x = x * (a + b) - 5;$$

(A) 12

(B) 11

(C) 10

(D) 07

21. Which of the following statements is not true?

(A) MPI_Isend and MPI_Irecv are non-blocking message passing routines of MPI.

(B) MPI_Issend and MPI_Ibsend are non-blocking message passing routines of MPI.

MPI_Send and MPI_Recv are non-blocking message passing routines of MPI.

(D) MPI_Ssend and MPI_Bsend are blocking message passing routines of MPI.

22. The pushdown automation $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, 1\}, \delta, q_0, 0, \{q_0\})$ with

$$\delta(q_0, a, 0) = \{(q_1, 10)\}$$

$$\delta(q_1, a, 1) = \{(q_1, 11)\}$$

$$\delta(q_1, b, 1) = \{(q_2, \lambda)\}$$

$$\delta(q_2, b, 1) = \{(q_2, \lambda)\}$$

$$\delta(\mathbf{q}_2, \lambda, 0) = \{(\mathbf{q}_0, \lambda)\}$$

Accepts the language

(A)
$$L = \{a^n b^m \mid n, m \ge 0\}$$

(B)
$$L = \{a^n b^n | n \ge 0\}$$

(C)
$$L = \{a^n b^m \mid n, m > 0\}$$

(D)
$$L = \{a^n b^n | n > 0\}$$

23. Given two languages:

$$L_1 = \{(ab)^n \ a^k \mid n > k, k \ge 0\}$$

$$L_2 = \{a^n \ b^m \mid n \neq m\}$$

Using pumping lemma for regular language, it can be shown that

- (A) L_1 is regular and L_2 is not regular.
- (B) L_1 is not regular and L_2 is regular.
- (C) L_1 is regular and L_2 is regular.
- (D) L_1 is not regular and L_2 is not regular.

24. Regular expression for the complement of language $L = \{a^n b^m \mid n \ge 4, m \le 3\}$ is

- (A) $(a + b)^* ba(a + b)^*$
- (B) a* bbbbb*
- (C) $(\lambda + a + aa + aaa)b^* + (a + b)^* ba(a + b)^*$
- (D) None of the above

25.	For n devices in a network, mesh topology.	numb	per of duplex-mode links are required for a
	(A) n(n+1)	(B)	n(n-1)
	(C) $n(n+1)/2$	D	n(n-1)/2
26.	How many characters per second (line if the transfer is asynchronous (A) 300 (C) 360		parity) can be transmitted over a 3200 bps ag 1 start bit and 1 stop bit) 320 400
27.	Which of the following is not a field	d in TCD h	
<i>41</i> .	(A) Sequence number		Fragment offset
	(C) Checksum	(D)	Window size
28.	What is the propagation time if the the propagation speed to be $2.4 \times 10^{\circ}$ (A) 0.5 ms (C) 50 ms		between the two points is 48,000? Assume econd in cable. 20 ms 200 ms
29.	<u> </u>	rotocol for	r communication over point-to-point and
	multipoint links. (A) Stop-and-wait	(B)	HDLC
	(C) Sliding window	(D)	Go-back-N
30.	Which one of the following is true	•	
			ublic key is announced to the public.
	(B) Public key is kept by the rece(C) Both private key and public k	_	ivate key is announced to the public. t by the receiver.
	(D) Both private key and public k	•	•
21	A d i.i		. La
31.	Any decision tree that sorts n eleme (A) $\Omega(n)$	ents nas nei (B)	_
	$\Omega(nlgn)$	(D)	$\Omega(n^2)$
32.	Match the following:	. /	
<i>34</i> .	List – I	List – l	п
	a. Bucket sort i		
	b. Matrix chain multiplication i	i. $O(n^3)$	
	c. Huffman codes i	ii. O(n <i>l</i> gn)
	d. All pairs shortest paths i	v. O(n)	
	Codes:		
	a b c d (A) iv ii i iii		
	(A) iv ii i iii (B) ii iv i iii		
	(C) iv ii iii i		
	(D) iii ii iv i		

33. We can show that the clique problem is NP-hard by proving that (A) $CLIQUE \le P 3-CNF_SAT$ (B) CLIQUE ≤ P VERTEX COVER (C) CLIQUE ≤ P SUBSET_SUM (D) None of the above Dijkstra algorithm, which solves the single-source shortest--paths problem, is a 34. ___, and the Floyd-Warshall algorithm, which finds shortest paths between all pairs of vertices, is a _ Greedy algorithm, Divide-conquer algorithm Divide-conquer algorithm, Greedy algorithm (C) Greedy algorithm, Dynamic programming algorithm (D) Dynamic programming algorithm, Greedy algorithm Consider the problem of a chain <A₁, A₂, A₃> of three matrices. Suppose that the **35.** dimensions of the matrices are 10×100 , 100×5 and 5×50 respectively. There are two different ways of parenthesization : (i) $((A_1, A_2)A_3)$ and (ii) $(A_1(A_2, A_3))$. Computing the product according to the first parenthesization is ______ times faster in comparison to the second parenthesization. (A) 5 (C) 20 Suppose that we have numbers between 1 and 1000 in a binary search tree and we want to **36.** search for the number 365. Which of the following sequences could not be the sequence of nodes examined? 4, 254, 403, 400, 332, 346, 399, 365 (A) (B) 926, 222, 913, 246, 900, 260, 364, 365 927, 204,913, 242, 914, 247, 365 (C) 4, 401, 389, 221, 268, 384, 383, 280, 365 Which methods are utilized to control the access to an object in multi-threaded **37.** programming? Asynchronized methods Synchronized methods (A) Serialized methods (D) None of the above (C) How to express that some person keeps animals as pets? **38.** Person Animal pet O.... * (B) Person Animal (C) Pet Person

Animal

(D)

Person

D-87	'-14		9	Paper-III
	(A) (B) (C) (D)	Number of components related to Number of components depender None of the above	comp	
47.		N IN' of a component A is defined		t con coll on mass control to a common and A
	(C)	1	(D)	0
•		100	(B)	10
46.	Max	imum possible value of reliability	is	
	(C)	\$ 17,640	(D)	\$ 15,120
	softv (A)	\$ 25,200	(B)	14, then the risk exposure would be \$20,160
				everage component size as 100 LOC and
	appli	cation and the remaining functi	onality	will have to be custom developed. If 60
		sk in the following manner: 70 percent of the software compo	nents s	scheduled for reuse will be integrated into the
45.			s a pro	ject risk with 80% probability of occurrence
	(C)	16	(D)	18
	(A)	12	B	14
		ors (VAF) based on n questions. The		
44.		ompute function points (FP), the formula \times (0.65 ± 0.01 \times		og relationship is used where F_i ($i = 1$ to n) are value adjustment
	(C)	Complexity metric	(D)	Length metric
	(A)	Halstead metric	(B)	Function point metric
43.	Whic	ch one of the following is not a sou	arce co	de metric ?
((C)	init()	(D)	begin()
44.	(A)	ch method is called first by an appostart()	iet prog (B)	gram ? run()
42.	, ,			
	(C) (D)	The stereotype indicates that the UML profiles can be stereotyped		
	(B)	Stereotyped class must be abstract.		demont connect he changed
71.	(A)	Stereotype is used for extending	the UM	IL language.
41.		t is true about UML stereotypes?		
((C) (D)	Using element object All of the above		
	(B)	Registering appropriate event har	ndlers	
10.	(A)	Using document object	100 111 /1	in a can be defined by
40.	, ,	behaviour of the document elemen	ote in X	•
	(A) (C)	Boxing Instantiation	(B)	Wrapping Autoboxing
	calle		(D)	W.
39.			its con	rresponding wrapper class object instance is

49.		ous storage devices used by an operating system can be arranged as follows in						
	incre (A)	asing order of accessing speed : Magnetic tapes → magnetic disks → optical disks → electronic disks → main						
	(11)	magnetic tapes \rightarrow magnetic disks \rightarrow optical disks \rightarrow electronic disks \rightarrow main memory \rightarrow cache \rightarrow registers						
	(B)	Magnetic tapes → magnetic disks → electronic disks → optical disks → main						
		memory \rightarrow cache \rightarrow registers						
	(C)	Magnetic tapes → electronic disks → magnetic disks → optical disks → main						
1	(D)	memory → cache → registers Magnetic tapes → optical disks → magnetic disks → electronic disks → main						
(memory \rightarrow cache \rightarrow registers						
50.		y many disk blocks are required to keep list of free disk blocks in a 16 GB hard disk						
		1 kB block size using linked list of free disk blocks? Assume that the disk block block iber is stored in 32 bits.						
	(A)							
	(C)	20000 blocks (D) 1048576 blocks						
<i>E</i> 1	Con	sider an imaginary disk with 40 cylinders. A request some to read a block on cylinder						
51.		sider an imaginary disk with 40 cylinders. A request come to read a block on cylinder While the seek to cylinder 11 is in progress, new requests come in for cylinders 1, 36,						
		34, 9 and 12 in that order. The number of arm motions using shortest seek first						
	_	rithm is						
	(A) (C)	111 (B) 112 60 (D) 61						
	(C)							
52.		operating system has 13 tape drives. There are three processes P1, P2 & P3. Maximum						
		direment of P1 is 11 tape drives, P2 is 5 tape drives and P3 is 8 tape drives. Currently, s allocated 6 tape drives, P2 is allocated 3 tape drives and P3 is allocated 2 tape drives.						
		ch of the following sequences represent a safe state?						
		P2 P1 P3 (B) P2 P3 P1						
	(C)	P1 P2 P3 (D) P1 P3 P2						
53.	Mon	nitor is an Interprocess Communication (IPC) technique which can be described as						
33.		It is higher level synchronization primitive and is a collection of procedures,						
		variables, and data structures grouped together in a special package.						
	(B)	It is a non-negative integer which apart from initialization can be acted upon by wait						
	(C)	and signal operations. It uses two primitives, send and receive which are system calls rather than language						
	(0)	constructs.						
	(D)	1 1						
		when they are not allowed to enter critical region to save CPU time.						
Pape	er-III	10 D-87-14						

Temporal cohesion means

(A) Coincidental cohesion

(B) Cohesion between temporary variables
(C) Cohesion between local variables
(D) Cohesion with respect to time

48.

54.	In a distributed computing environment, distributed shared memory is used which is (A) Logical combination of virtual memories on the nodes. (B) Logical combination of physical memories on the nodes. (C) Logical combination of the secondary memories on all the nodes. (D) All of the above									
55.	-	uivalent logical express $f(x)$ $F[x]$	ion for the	Well For	rmed Formula	(WFF),				
	(A)	$\forall x (\sim F[x])$		(B)	$\sim (\exists x) F[x]$					
		$\exists x \ (\sim F[x])$		(D)	$\forall x \mathbf{F}[x]$					
				(D)	VAT[A]		A			
56.	An (A) (B)	generates all success node to a goal node with shortest cost. saves all path length	earch when sor nodes a through e ths (costs)	re most pand compeach of the	romising child utes an estima ne successors.	It then choo	e (cost) from start ses the successor			
		shortest path for furt	her expans	sion.						
	(D)	none of the above								
<i>5</i> 7.	The	e resolvent of the set of	clauses							
	(A	\vee B, \sim A \vee D, C \vee \sim B)	is							
	(A)	$A \vee B$		(B)	$C \vee D$					
	(C)	$A \lor C$		(D)	$A \lor D$					
	, ,			4,						
58.	Ma	tch the following:	*	Y						
	a.	Script	i.		l graph with al representation					
	b.	Conceptual Dependence	cies ii.	stored in	dge about ob n record-like s and slot value	tructures cons				
	c.	Frames	iii.		e concepts an anguage state	-	resent			
	d.	Associative Network	iv.	stereoty	ike structures pical pattern g events in tend ad scenes	s for com	monly			

Codes:

(A) iv

(B) iv

(C) ii

i

(D)

b

ii

iii

iii

iii

c

i

ii

iv

iv

d

iii

i

i

ii

- **59.** Match the following components of an expert system :
 - a. I/O interface
- i. Accepts user's queries and responds to question through I/O interface
- b. Explanation module
- ii. Contains facts and rules about the domain
- c. Inference engine
- iii. Gives the user, the ability to follow inferencing steps at any time during consultation
- d. Knowledge base
- iv. Permits the user to communicate with the system in a natural way

Codes:

- a b c d
 (A) i iii iv ii
 (B) iv iii i ii
- (\overline{C}) i iii ii iv (D) iv i iii ii
- **60.** A computer based information system is needed.
 - I. as it is difficult for administrative staff to process data.
 - II. due to rapid growth of information and communication technology.
 - III. due to growing size of organizations which need to process large volume of data.
 - IV. as timely and accurate decisions are to be taken.

Which of the above statement(s) is/are true?

- (A) I and II
- (B) III and IV
- (C) II and III
- (D) II and IV
- **61.** Given the recursively enumerable language (L_{RE}) , the context sensitive language (L_{CS}) , the recursive language (L_{REC}) , the context free language (L_{CF}) and deterministic context free language (L_{DCF}) . The relationship between these families is given by
 - (A) $L_{CF} \subseteq L_{DCF} \subseteq L_{CS} \subseteq L_{RE} \subseteq L_{REC}$
 - (B) $L_{CF} \subseteq L_{DCF} \subseteq L_{CS} \subseteq L_{REC} \subseteq L_{RE}$
 - (C) $L_{DCF} \subseteq L_{CF} \subseteq L_{CS} \subseteq L_{RE} \subseteq L_{REC}$
 - (D) $L_{DCF} \subseteq L_{CF} \subseteq L_{CS} \subseteq L_{REC} \subseteq L_{RE}$

62. Match the following:

- Context free grammar
- b. Regular grammar
- c. Context sensitive grammar
- d. Unrestricted grammar

List - II

- i. Linear bounded automaton
- ii. Pushdown automaton
- iii. Turing machine
- iv. Deterministic finite automaton

Codes:

- ii iv iii i (A)
- (B) ii iv i iii
 - (C) iv iii
- (D) i iv iii ii

63. According to pumping lemma for context free languages:

Let L be an infinite context free language, then there exists some positive integer m such that any $w \in L$ with $|w| \ge m$ can be decomposed as w = u v x y z

- (A) with $|vxy| \le m$ such that $uv^i xy^i z \in L$ for all i = 0, 1, 2
- (B) with $|vxy| \le m$, and $|vy| \ge 1$, such that $uv^i xy^i z \in L$ for all $i = 0, 1, 2, \ldots$
 - (C) with $|vxy| \ge m$, and $|vy| \le 1$, such that $|uy| \ge L$ for all $i = 0, 1, 2, \ldots$
 - (D) with $|vxy| \ge m$, and $|vy| \ge 1$, such that $uv^i xy^i z \in L$ for all $i = 0, 1, 2, \ldots$

Given two spatial masks 64.

$$S_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } S_2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

The Laplacian of an image at all points (x, y) can be implemented by convolving the image with spatial mask. Which of the following can be used as the spatial mask?

(A) only S_1

(B) only S_2

(C) Both S_1 and S_2

(D) None of these

65. Given a simple image of size 10×10 whose histogram models the symbol probabilities and is given by

p_1	p_2	p_3	p_4
a	b	c	d

The first order estimate of image entropy is maximum when

- (A) a = 0, b = 0, c = 0, d = 1
- (B) $a = \frac{1}{2}$, $b = \frac{1}{2}$, c = 0, d = 0
- (C) $a = \frac{1}{3}, b = \frac{1}{3}, c = \frac{1}{3}, d = 0$
- (D) $a = \frac{1}{4}, b = \frac{1}{4}, c = \frac{1}{4}, d = \frac{1}{4}$

- (A) Optimum
- (C) Unbounded

- (B) Infeasible
- (D) Degenerate

- (A) total supply equals total demand
- (B) total supply does not equal total demand
- (C) the solution so obtained is not feasible
- (D) none of these
- **69.** Five men are available to do five different jobs. From past records, the time (in hours) that each man takes to do each job is known and is given in the following table:

				Jobs	}	1
		I	II	III	IV	V
	P	2	9	2	7	1
	Q	6	8	7	6	1
Men	R	4	6	5	3	1
	S	4	2	7	3	1
	T	5	3	9	5	1

Find out the minimum time required to complete all the jobs.

(A) 5

(B) 11

(C) 13

(D) 15

- I. Feature detector can be any function of the input parameters.
- II. Learning procedure only adjusts the connection weights to the output layer.

Identify the correct statement out of the following:

- (A) I is false and II is false.
- (B) I is true and II is false.
- (C) I is false and II is true.
- (D) I is true and II is true.

71.	Α_		p	oint o	of a f	azzy set A is a point $x \in X$ at which $\mu_A(x) = 0.5$
	(A)) cor	e			(B) support
	(C)	cro	ssovei	ſ		(D) α-cut
72.		itch th		owing	g lea	rning modes w.r.t. characteristics of available information for
	a.	Super	vised		i.	Instructive information on desired responses, explicitly specified by a teacher.
	b.	Reco	ding		ii.	A priori design information for memory storing
	c.	Reinf	orcem	ent	iii.	Partial information about desired responses, or only "right" or "wrong" evaluative information
	d.	Unsu	pervis	ed	iv.	No information about desired responses
	Co	des:				
		a	b	c	d	
	(A	i	ii	iii	iv	
	(B)		iii	ii	iv	
	(C)		iv	iii	i	
	(D)) ii	iii	iv	i	
73.	XX /1	nich o	f tha	follor	vina	versions of Windows O.S. contain built-in partition manager
13.					_	and expand pre-defined drives?
	(A		ndows			(B) Windows 2000
	(C)		ndows			(D) Windows 98
74.	A.	Гrojan	horse	is		
	(A)	or i	ts use	r and	also	forms a legitimate function that is known to an operating system has a hidden component that can be used for nefarious purposes age security or impersonation.
	(B)	Ap	oiece o	of cod	le tha	t can attach itself to other programs in the system and spread to programs are copied or transferred.
	(C)	Ap	orogra	m tha	t spre	eads to other computer systems by exploiting security holes like ties for creation of remote processes
	(D)) All				
75.		nich o		follov	ving	computing models is not an example of distributed computing
	(A)) Clo	oud co	mputi	ng	(B) Parallel computing
	(C)) Clu	ister co	ompu	ting	(D) Peer-to-peer computing
D-8	7-14					15 Paper-III

