1 LinAlg I

Ist $P_A(t) := \det(A - t \cdot E_n) = \sum_{i=0}^n \alpha_i t^i$ das Charakteristische Polynom einer Matrix $A \in M(n \times n, K)$, so gilt $a_n = (-1)^n, a_0 = \det(A), a_{n-1} = (-1)^{n-1} \operatorname{tr}(A), \quad \operatorname{tr}(AB) = \operatorname{tr}(BA)$

Definition: Quotientenraum

Sei V ein K-Vektorraum, $U \subseteq V$ ein Untervektorraum. Definiere die Äquivalenzrelation auf V durch $v \sim_U v' \Leftrightarrow v - v' \in U$. Der **Quotientenraum** $V/_U$ ist die Menge der Äquivalenzklassen von \sim_U .

Der Quotientenraum mit der Abbildung $\rho: V \to V/_U, v \mapsto [v]$ hat die **universelle** Eigenschaft, dass es für jede lineare Abbildung $F: V \to W$ mit $U \subseteq \operatorname{Ker}(F)$ ein eindeutig bestimmte lineare Abbildugn $\overline{F}: V/_U \to W$ gibt, sodass $F = \overline{F} \circ \rho$.

Definition: Äquivalenz und Ähnlichkeit

Zwei Matrizen $A, B \in M(m \times n, K)$ heissen **äquivalent**, wenn es matrizen $S \in GL(m, K), T \in GL(n, K)$ gibt, sodass $B = SAT^{-1}$

Im Falle von m=n heissen zwei Matrizen $A,B\in M(n\times n,K)$ ähnlich, falls es ein $S\in GL(n,K)$ gibt, sodas $B=SAS^{-1}$

Analog heissen $F, G \in \text{Hom}(V, W)$ äquivalent, falls es Isomorphismen Φ, Ψ von V, W gibt, sodass $G = \Psi \circ F \circ \Phi$ und für W = V heissen $F, G \in \text{End}(V)$ ähnlich, wenn es einen Isomorphismus $\Phi : V \to V$ gibt, sodass $G = \Phi \circ F \circ \Phi^{-1}$.

Es sind dann äquivalent:

- (i) F, G sind ähnlich.
- (ii) Für jede Basis \mathcal{B} von V sind $\mathcal{M}_{\mathcal{B}}(F)$ und $\mathcal{M}_{\mathcal{B}}(G)$ ähnlich.
- (iii) F und G haben (bis auf Vertauschung) die gleichen Jordan'sche Normalform.

Definition: Simultan Diagonaliserbar

Zwei Endomorphismen $F, G \in \text{End}(V)$ heissen **simultan** diagonalisierbar, wenn es eine Basis \mathcal{B} von V gibt, sodass beide $\mathcal{M}_{\mathcal{B}}(F)$ und $\mathcal{M}_{\mathcal{B}}(G)$ diagonal sind.

Das ist genau dann der Fall, wenn $F \circ G = G \circ F$

Definition: Trigonalisierbare Endomorphismen

Eine Abbildung $F \in \text{End}(V)$ heisst **trigonalisierbar**, falls eine Basis \mathcal{B} von V gibt, sodass $\mathcal{M}_{\mathcal{B}}(F)$ eine obere Dreiecksmatrix ist.

Aquivalent dazu sind

- (a) Es gibt eine F-invariante Fahne in V: eine Kette von Untervektorräumen $\{0\} = V_0 \subseteq V_1 \subseteq ... \subseteq V_n = V$, sodass $F(V_i) \subseteq V_i, \forall i = \{1, ..., n\}$
- (b) Das charakteristische Polynom $P_F(t)$ zerfällt in Linearfaktoren.

Rezept: Triagonalisierung

- (i) Charakteristisches Polynom $P_F(t)$ berechnen und Eigenwerte von F bestimmen. Zerfällt es nicht in Linearfaktoren, so ist F nicht trigonalisierbar.
- (ii) Einen Eigenvektor v_1 zu einem λ bestimmen.

- (iii) Ersetze in der Kanonischen Basis $\mathcal{K}=(e_1,e_2,e_3)$ einen Vektor mit v_1 , sodass immer noch alle linear unabhängig sind. $\mathcal{K}\to\mathcal{B}_1$
- (iv) Setze $S_1 = T_{\mathcal{K}}^{\mathcal{B}_1}$ z.B. $T_{\mathcal{K}}^{\mathcal{B}_1} = (v_1|e_2|e_3)$
- (v) Setze $A_2 = S_1^{-1}AS_1$ und wiederhole (ii) (iv) mit der unteren Teilmatrix $A_2 \in M(n-1 \times n-1, K)$

$$\begin{pmatrix} A \end{pmatrix} \to S_1^{-1} A S_1 = A_2 = \begin{pmatrix} \lambda_1 & * \\ 0 & A_2' \end{pmatrix}$$

(vi) "Verlängere" die Vektoren $v_2' \in \mathbb{R}^{n-1}, v_3'' \in \mathbb{R}^{n-2}$ usw. durch hinzufügen von 0 in den verlorengegangenen Koordinaten.

Definition: Minimal polynom

Das Minimalpolynom von einem $F \in \text{End}(V)$, dim $V = n < \infty$ ist das eindeutig bestimmte (kleinste) normierte Polynom $M_F \in K[t]$ sodass $M_F(F) = 0 \in \text{End}(V)$ und gilt

$$\forall g \in K[t] \text{ mit } g(F) = 0 \implies \deg(M_F) \le \deg(g)$$

Ist für ein invertierbares $A \in GL(n,K)$ das charakteristische Polynom gegben durch $P_A(t) = \sum_{i=0}^n a_i t^i$, so gilt

$$P_A(A) = \sum_{i=0}^{n} a_i A^i = 0 = a_0 A^{-1} + \sum_{i=1}^{n} a_i A^{i-1}$$

Da $a_0 = \det(A) \neq 0$ gilt insbesondere.

$$A^{-1} = -\sum_{i=1}^{n} \frac{a_i}{a_0} A^{i-1}$$
 und $A^n = -\sum_{i=0}^{n-1} a_i A^i$

2 Jordan-Normalform

Definition: Nilpotente Endmorphismen

Man nennt $F \in \text{End}(V)$ nilpotent, falls es ein $d \in \mathbb{N}$ gibt, sodass $F^d = 0$

Äquivalent dazu sind

- (a) Das charakteristische Polynom ist $P_F(t) = (-t)^n$
- (b) Es gibt eine Basis \mathcal{B} von V, sodass $\mathcal{M}_{\mathcal{B}}(F)$ eine <u>strikte</u> obere Dreiecksmatrix ist.

Lemma: Fitting

Sei $G \in \text{End}(V)$, dim $V = n < \infty$ und

$$d := \min\{l \in \mathbb{N} | \operatorname{Ker} G^l = \operatorname{Ker} G^{l+1} \}$$

Dann gilt

- (a) $d = \min\{l \in \mathbb{N} | \operatorname{Im} G^l = \operatorname{Im} G^{l+1} \}$
- (b) $\operatorname{Ker} G^{d+i} = \operatorname{Ker} G^d$ und $\operatorname{Im} G^{d+i} = \operatorname{Im} G^d, \forall i \in \mathbb{N}$
- (c) $U := \operatorname{Ker} G^d$ und $W := \operatorname{Im} G^d$ sind G-invariante Untervektorräume.

- (d) $(G|_U)^d = 0$. und G_W ist ein Isomorphismus.
- (e) $M_{G|_{U}} = t^{d}$
- (f) $V = U \oplus W$ und dim $U = r \ge d$, dim W = n r mit $r = \mu(P_G, 0)$

Insbesondere gibt es eine Basis \mathcal{B} von V, sodass

$$\mathcal{M}_{\mathcal{G}} = \begin{pmatrix} N & 0 \\ 0 & C \end{pmatrix} \quad \text{mit} \quad N^d = 0 \quad \text{und} \quad C \in GL(n-r,K)$$

Satz über die Hauptraumzerlegung

Sei $F \in \text{End}(V)$ und $P_F(t) = \pm (t - \lambda_1)^{r_1} (t - \lambda_2)^{r_2} \dots (t - \lambda_k)^{r_k}$ mit den $\lambda_1, \dots, \lambda_k$ paarweise verschiedenen Eigenwerten von F. Sei $V_i = \text{Hau}(F; \lambda_i)$. Dann gilt

- (a) V_i ist F-invariant, dim $V_i = r_i$ und $F|_{V_i}$ hat char. Polynom $(t \lambda_i)^{r_i}$
- **(b)** $V = V_1 \oplus \ldots \oplus V_k$
- (c) F lässt sich eindeutig zerlegen: $F = F_D + F_N$ mit
 - F_D ist diagonalisierbar und F_N ist nilpotent und es gilt $F_D \circ F_N = F_n \circ F_D$
 - F_D und F_n sind Linear kombinationen von id, F, F^2, \dots

Satz: Nilpotente Endomorphismen

Sei $G \in \text{End}(V)$ nilpotent und $d = \min\{l \in \mathbb{N} | G^l = 0\}$. Dann gibt es eindeutig bestimmte Zahlen $s_1, \ldots, s_d \in \mathbb{N}$ sodass

$$\dim V = n = ds_d + (d-1)s_{d-1} + \dots s_1$$

und eine (nicht eindeutige) Basis \mathcal{B} von V, sodass

In \mathbb{R} zerfällt jedes Polynom in Lineare und Quadratische Faktoren

$$P_F(t) = (t - \lambda_1)^{r_1} \dots (t - \lambda_k)^{r_k} g_1^{q_1} \dots g_m^{q_m}$$

wobei $g_j = (t - a_j)^2 + b_j^2$ mit $z_j = a_j + ib_j$ und $\overline{z_j}$ den komplexen Nullstellen von g_j . Definiere die Matrizen

$$A_{j} = \begin{pmatrix} a_{j} & b_{j} \\ -b_{j} & a_{j} \end{pmatrix} \quad \tilde{J}_{r}(A) := \begin{pmatrix} A & E_{2} & & & & \\ & A & E_{2} & & & & \\ & & \ddots & \ddots & & \\ & & & \ddots & E_{2} \\ & & & & A \end{pmatrix} \in M(2r \times 2r, K)$$

Satz: Reelle Jordan-Normalform

Sei $F \in \text{End}(V)$ und $P_F(t) = (t - \lambda_1)^{r_1} \dots (t - \lambda_k)^{r_k} g_1^{q_1} \dots g_m^{q_m}$ Dann gibt es eine Basis \mathcal{B} von V sodass die Abbildungsmatrix folgende Form hat:

Die ersten Blöcke haben die gewöhnliche Jordan-Normalform von den Reellen Nullstellen, und die restlichen Jordan-Blöcke haben die Form $\tilde{J}_r(A)$.

Ist $s_k(\lambda)$ die Anzahl Jordan-Blöcke der Grösse k zum Eigenwert λ und s'_{jk} die Anzahl der 2k-Blöcke zum Polyom g_j , so gilt:

$$s_k = 2a_k - a_{k-1} - a_{k+1}, \quad s'_{jk} = \dim \operatorname{Ker}(g_j(F)^k - \frac{1}{2} \left(\dim \operatorname{Ker}(g_j(F)^{k-1}) + \dim \operatorname{Ker}(g_j(F)^{k+1}) \right)$$

wobei $a_k(\lambda) = \dim \operatorname{Ker}(A - \lambda E_n)$.

Finde ein $w \in \text{Eig}(B; a+ib)$. Und setze $v_1 = Re(w), v_2 = Im(w)$ für die Basis bzw. in die Transformationsmatrix.

3 Dualräume

Definition: Dualraum

Sei V ein K-Vektorraum. Der **Dualraum** von V ist

$$V^* := \operatorname{Hom}(V, K)$$

und besteht aus Linearformen $\varphi \in V^*$.

Der Dualraum hat folgende Eigenschaften.

- Sei $\mathcal{B} = (v_1, \ldots, v_n)$ eine Basis von V. Dann gibt es zu jedem v_i eine eindeutige Linearform $v_i^* \in V^*$ mit $v_i^*(v_j) = \delta_{ij}$. Die Menge $\mathcal{B}^* := (v_1^*, \ldots, v_n^*)$ ist eine Basis von V^* . Insbesondere gilt $\dim(V) = \dim(V^*) \implies V \simeq V^*$. (Im unendlichdimensionalen Fall gilt das nicht).
- Schreibt man die Basis \mathcal{B} als Matrix $A = (v_1 | \dots | v_n)$, und die Duale Basis \mathcal{B}^* als Zeilenmatrix $B = \begin{pmatrix} & v_1^* & \\ & \vdots & \\ & & v_2^* & \end{pmatrix}$, so ist $B = A^{-1}$

Definition: Annulator

Sei $U \subseteq V$ ein Unterraum von V. Dann ist der **Annulator** von U

$$U^0 := \{ \varphi \in V^* \big| \varphi(u) = 0, \forall u \in U \} \subseteq V^*$$

ein Unterraum von V^* und es gilt $\dim(U^0) = \dim(V) - \dim(U)$, denn ist (u_1, \ldots, u_k) eine Basis von U, und $(u_1, \ldots, u_k, v_1, \ldots, v_r)$ eine Basis von V, so ist (v_1^*, \ldots, v_r^*) eine Basis von U^0

Definition: Duale von Linearen Abbildungen

Seien $F:V\to W$ und $\psi:W\to K\in W^*$ linear. Dann ist die duale Abbildung zu F gegeben durch

$$F^*:W^*\to V^* \quad \psi\mapsto F^*(\psi):=\psi\circ F\in \mathrm{Hom}(V,K)$$

$$V \xrightarrow{F} W \qquad \downarrow^{\psi} \\ \downarrow^{\psi} \mathbb{K}$$

Die resultierende Abbildung gegeben durch

$$\Phi: \operatorname{Hom}(V, W) \to \operatorname{Hom}(W^*, V^*) \quad F \mapsto \Phi(F) := F^*$$

ist ein Isomorphismus.

Sind V, W zwei K-Vektorräume mit Basen \mathcal{A}, \mathcal{B} und $F \in \text{Hom}(V, W)$, dann gilt für die Duale Abbildung F^* :

- $\mathcal{M}_{\mathcal{A}^*}^{\mathcal{B}^*} = \left(\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}\right)^T$
- $\operatorname{rang}(F^*) = \operatorname{rang}(F)$
- $Im(F^*) = (Ker(F))^0$ und $Ker(F^*) = (Im(F))^0$
- ullet F injektiv $\Longrightarrow F^*$ surjektiv und F surjektiv $\Longrightarrow F^*$ injektiv

Für endlich dimensionale Vektorräume gibt einen natürlichen Isomorphismus von V mit seinem Bidualraum $V^{**} := (V^*)^*$ gegeben durch

$$ev: V \to V^{**}$$
 $v \mapsto ev_v \in \operatorname{Hom}(V^*, K)$ $ev_v(\varphi) = \varphi(v)$

Es gelten auch für Basen \mathcal{B} von V und Unterräume $U \subseteq V$

$$\mathcal{B}^{**} \simeq \mathcal{B} \quad (U^0)^0 \simeq U$$

Für ein LGS Ax = 0 für $AinM(m \times n, K)$ schreiben wir $a_1, \ldots a_m$ für die Zeilen von A. Setzen wir $U := \operatorname{span}(a_1, \ldots a_n)$, so ist der Lösungsraum des LGS $\mathcal{L} = U^0$. Das dazu duale Problem ist dann: für gegebenes $W = \operatorname{span}(w_1, \ldots w_s)$ suche ein A, sodass

$$\mathcal{L} = \{x | Ax = 0\} = W$$

Also suche U, sodass $U=W^0$, bzw. $U^0=W$. Setze $X=(w_1,\ldots w_s)\in M(n\times s,K)$ und löse $X^Ta^T=0$. $(a^T\in (K^n)^*)$

4 Bilinearformen

Definition: Bilinearform

Seien V, W K-Vektorräume. Eine Abbildung $s: V \times W \to K$ ist eine **Bilinearform**, wenn für alle $v, v' \in V, w, w' \in W, \lambda \in K$ gilt

(a)
$$s(v + \lambda v', w) = s(v, w) + \lambda s(v', w)$$

(b)
$$s(v, w + \lambda w') = s(v, w) + \lambda s(v, w')$$

also linear in jedem Argument. $s: V \times V \to K$ heisst

- symmetrisch, falls $s(v, v') = s(v', v) . \forall v \in V$
- alternieren, falls $s(v, v') = -s(v', v), \forall v \in V$

Definition: Darstellende Matrix von Bilinearformen

Für V mit dim $V = n < \infty$ ist die **darstellende Matrix** der Bilinearform $s: V \times V \to K$ bezüglich der Basis $\mathcal{B} = (v_1, \dots, v_n)$ die eindeutig bestimmte Matrix

$$\mathcal{M}_{\mathcal{B}}(s) := (s(v_i, v_j))_{ij} \in M(n \times n, K)$$

und es gilt für alle $u, v \in V$

$$s(u, w) = u^{T} \mathcal{M}_{\mathcal{B}}(s) w = \sum_{i,j=1}^{n} s(v_i, v_j) u_i w_j$$

Die Abbildung $s \mapsto \mathcal{M}_{\mathcal{B}}(s)$ ist bijektiv.

Es gilt $e_i^T A e_j = a_{ij}$

Satz: Transformationsformel

Sei $s: V \times V \to K$ bilinear. V endlich dimensional mit Basen \mathcal{A}, \mathcal{B} . Dann gilt

$$\mathcal{M}_{\mathcal{B}}(s) = \mathcal{M}_{\mathcal{A}}^{\mathcal{B}}(\mathrm{id})^{T} \mathcal{M}_{\mathcal{A}}(s) \mathcal{M}_{\mathcal{A}}^{\mathcal{B}}(\mathrm{id})$$

5 Skalarprodukt

Definition: Skalarprodukt

Eine symmetrische bilinearform $\langle -, - \rangle : V \times V \to \mathbb{R}$ heisst **Skalarprodukt** auf V, falls sie zusätzlich positiv definit ist.

$$\langle v, v \rangle \ge 0, \forall v \in V \quad \text{und} \quad \langle v, v \rangle = 0 \Leftrightarrow v = 0$$

Ein \mathbb{R} -Vektorraum V mit einem Skalarprodukt heisst **euklidischer Raum**. Jedes Skalarprodukt induziert eine Norm durch $||v|| := \sqrt{\langle v, v \rangle}$ und der **Winkel** zwischen zwei Vektoren ist definiert durch

$$\cos(\alpha) = \frac{\langle x, y \rangle}{||x|| ||y||}$$

Eine Matrix $A \in M(n \times n, K)$ heisst **positiv-definit**, falls

$$v^T A v \ge 0, \forall v \in K^n \quad \text{und} \quad v^T A v = 0 \Leftrightarrow v = 0$$

Es gilt $\langle -, - \rangle$ pos. definit $\Leftrightarrow \mathcal{M}_{\mathcal{B}}(\langle -, - \rangle)$. (Unabhängig von Basis wegen Transformationsformel)

Definition: Sesquilinearität

Sei V ein \mathbb{C} -Vektorraum. Eine Abbildung $s: V \times V \to \mathbb{C}$ heisst **sesquilinear**, falls für alle $v, w, z \in V$ gilt

$$s(v + \lambda z, w) = s(v, w) + \lambda s(z, w)$$

$$s(v, w + \lambda z) = s(v, w) + \overline{\lambda}s(v, z)$$

s heisst **hermitesch**, falls $\forall v, w \in V$ gilt

$$s(w,v) = \overline{s(w,v)}$$

Beispiel: Das Standardskalarprodukt auf \mathbb{C}^n gegeben durch

$$\langle z, w \rangle := \sum_{i=1}^{n} z_i \overline{w_i}$$

ist eine sesquilinearform auf \mathbb{C}^n

Wie bei den Bilinearformen gibt es für jede gegebene Basis $\mathcal{B} = (v_1, \dots, v_n)$ von V mit Sesquilinearform s auf V eine eindeutige Darstellungsmatrix

$$\mathcal{M}_{\mathcal{B}}(s) = (s(v_i, v_j))_{ij} \in M(n \times n, K)$$

und es gilt $s(v, w) = x^T A \overline{y}$, wobei x, y die Koordinaten von v, w bezüglich \mathcal{B} ist. Die Transformationsformel zwischen zwei Basen \mathcal{A}, \mathcal{B} von V ist wie folgt

$$\mathcal{M}_{\mathcal{B}}(s) = T_{\mathcal{A}}^{\mathcal{B}^T} \mathcal{M}_{\mathcal{A}} \overline{T_{\mathcal{A}}^{\mathcal{B}}}$$

Eine hermitesche Sesquilinearform $s: V \times V \to \mathbb{C}$ heisst **Skalarprodukt** auf V, falls sie noch positiv definit ist. Ein \mathbb{C} -Vektorraum mit Skalarprodukt heisst **unitärer Raum**.

Polarisierungsformel

Ist $\operatorname{char}(K) \neq 2$, so gilt für jede symmetrische Bilinearform s und die zugehörige quadratische Form q auf V die **Polarisierungsformel**

$$s(v, w) = \frac{1}{2} (q(v + w) - q(v) - q(w))$$

Für Sesquilinearformen ist die Polarisierung gegeben durch

$$s(v, w) = \frac{1}{4} (q(v + w) - q(v - w) + i \cdot q(v + iw) - i \cdot q(v - iw))$$

Satz: Cauchy-Schwarz'sche Ungleichung

Sei V ein euklidischer oder unitärer Vektorraum. Dann gilt für alle $v, w \in V$ die Ungleichung

$$|\langle v, w \rangle| \le ||v|| \cdot ||w||$$

und die Gleichheit gilt genau dann, wenn v und w kolinear sind.

Wir sagen $v, w \in V$ sind **orthogonal**, falls $\langle v, w \rangle = 0$ und schreiben $v \perp w$. Wir sagen zwei Unterräume $U, W \subseteq V$ sind orthogonal, falls $u \perp w, \forall u \in U, w \in W$. Das **orthogonale Komplement**

$$U^{\perp} := \{ v \in V | v \perp u, \forall u \in U \}$$

Eine Familie von Vektoren v_1, \ldots, v_n heisst **orthogonal**, falls $v_i \perp v_j, \forall i \neq j$. Und **orthonormal**, falls zusätzlich $||v_i|| = 1$ und es gilt dann $\langle v_i, v_j \rangle = \delta_{ij}$.

Satz: Orthonormalisierungssatz

Sei V ein endlichdimensoinaler euklidischer/unitärer Vektorraum und $U \subseteq V$ ein Unterraum mit Orthonormalbasis (u_1, \ldots, u_k) . Dann gibt es eine Ergänzung zu einer Orthonormalbasis $(u_1, \ldots, u_k, v_1, \ldots v_r)$ von V.

Es gilt für jeden Unterraum $U\subseteq V$ eines eukidischen/unitären Vektorraumes

$$V = U \oplus U^{\perp}$$
 und $\dim V = \dim U + \dim U^{\perp}$

Algorithmus: Gram-Schmidt

Sei V ein euklidischer/unitärer Vektorraum und $W = (w_1, \dots w_n)$ eine Basis von V. Wir konstruieren eine Orthonormalbasis von V:

Setze $\hat{v_1} = w_1$ und $v_1 = \frac{\hat{v_1}}{||\hat{v_1}||}$. Für $j = 2, \dots n$ setze

$$\hat{v_j} = w_j - \sum_{i=1}^{j-1} \left\langle v_i, w_j \right\rangle v_i \quad v_j = \frac{\hat{v_j}}{||\hat{v_j}||}$$

Dann ist (v_1, \ldots, v_n) eine Orthonormalbasis von V.

Definition: Orthogonale/ Unitäre Endomorphismen

Sei V ein euklidischer/unitärer Vektorraum. $F \in \text{End}(V)$ heisst **orthogonal/unitär**, falls

$$\forall v, w \in V : \langle F(v), F(w) \rangle = \langle v, w \rangle$$

Ein orthogonaler/unitärer Endomorphismus $F \in \text{End}(V)$ hat folgende Eigenschaften

- (a) F ist längenerhaltend: ||F(v)|| = ||v||
- (b) F ist winkelerhaltend: $v \perp w \implies F(v) \perp F(w)$
- (c) F ist ein Isomorphismus und die Inverse F^{-1} ist orthogonal/unitär.
- (d) Ist $\lambda \in K$ ein Eigenwert von F so gilt $|\lambda| = 1$

Lemma: $||F(v)|| = ||v||, \forall v \in V \implies F \text{ orthogonal.}$

Definition: Orthogonale/Unitäre Matrizen

Eine Matrix $AinM(n \times n, K)$ heisst orthogonal, falls $A^{-1} = A^T$. A heisst unitär, falls $A^{-1} = A^H$ Schreibe

$$\mathcal{O}(n) := \{ A \in M(n \times n, K) \big| A \text{ ist orthogonal} \}$$

$$\mathcal{SO}(n) := \{ A \in \mathcal{O}(n) \big| \det A = 1 \}$$

$$\mathcal{U}(n) := \{ A \in M(n \times n, K) \big| A \text{ ist unitär} \}$$

Sei \mathcal{B} eine ONB von einem euklidischen/unitären Vektorraum V und $F \in \text{End}(V)$. Dann gilt

$$F$$
 ist orthogonal/unitär $\Leftrightarrow \mathcal{M}_{\mathcal{B}}(F) \in \mathcal{O}(n)/\mathcal{U}(n)$

Matrizen $A \in \mathcal{O}(2)$ haben alle die Form

$$A = \underbrace{\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}}_{\text{Rotation um } \alpha} \quad \text{oder} \quad A = \underbrace{\begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}}_{\text{Spiegelung um die Achse im Winkel } \frac{c_2}{2}}$$

für ein $\alpha \in [0, 2\pi)$.

Sei $F \in \text{End}(V)$ orthogonal, dim $V = n < \infty$. Dann gibt es eine ONB $\mathcal B$ von V sodass

$$\mathcal{M}_{\mathcal{B}}(F) = \begin{pmatrix} 1_{\cdot \cdot \cdot_{1}} & & & & \\ & \cdot \cdot_{1} & & & & \\ & & -1_{\cdot \cdot_{-1}} & & & \\ & & & A_{1} & & \\ & & & & \ddots & \\ & & & & A_{k} \end{pmatrix}, \quad A_{i} \in \mathcal{SO}(2)$$

Theorem: Jeder unitärer Endomorphismus besitzt eine ONB aus Eigenvektoren. Insbesondere gibt es für alle $A \in \mathcal{U}(n)$ ein $S \in \mathcal{U}(n)$ sodass

$$S^H A S = \begin{pmatrix} \pm 1 \\ & \ddots \\ & & \end{pmatrix}$$

6 Dualität und Skalarprodukt

Definition: Nicht ausgeartete Bilinearformen

Seien V, W K-Vektorräume, $b: V \times W \to K$ eine Bilinearform. Betrachte die Abbildungen

$$b': V \to W^*, \quad v \mapsto b(v, -) \quad \text{und} \quad b'': W \to V^*, \quad w \mapsto b(-, w)$$

Dann heisst b nicht ausgeartet, falls b' und b'' injektiv sind.

Es gilt dann

- (a) $b: V \times W \to K$ bilinear $\Leftrightarrow b(v, -)$ und b(-, w) linear für alle $v \in V, w \in W$.
- (b) Ist b nicht ausgeartet, so sind b', b'' Isomorphismen, da gilt $\dim V \leq \dim W^* = \dim W \leq \dim V^* = \dim V$.
- (\mathbf{c})

b nicht ausgeartet $\Leftrightarrow \forall v \neq 0 \in V \exists w \in W : b(v, w) \neq 0$ und $\forall w \neq 0 \in W \exists v \in V : b(v, w) \neq 0$

Definition: Kanonischer Isomorphismus von Dualraum

Sei V ein euklidischer Vektorraum. Der Kanonische Isomorphismus zwischen V und V^* ist die Abbildung

$$\Phi: V \to V^* \quad v \mapsto \langle -, v \rangle$$

Es gilt dann

(a) Für jeden UVR $U \subseteq V$ ist gilt

$$\Phi(U^{\perp}) = U^0$$

(b) Ist $\mathcal{B} = (v_1, \dots, v_n)$ eine ONB von V und $\mathcal{B}^* = (v_1^*, \dots, v_n^*)$ die duale Basis, so ist $\psi(v_i) = v_i^*$

Bemerkung: Für Sesquilinearformen auf \mathbb{C} -Vektorräumen ist $s'': v \mapsto s(-, v)$ nur semilinear und man erhält einen Semi-Isomorphismus: d.h. $\Phi(\lambda v) = \overline{\lambda}\Phi(v)$

$$\Phi: V \to V^*, \quad v \mapsto \langle -, v \rangle$$

7 Adjungierte Abbildungen

Definition: Adjungierte Abbildungen

Seien V,W in euklidische/unitäre K-Vektorräume. $F:V\to W$ linear. Dann ist die zu F adjungierte Abbildung F^{ad} die Abbildung charakterisiert durch

$$\langle F(v), w \rangle_W = \left\langle v, F^{ad}(w) \right\rangle_V, \forall v \in W, w \in W \tag{*}$$

Es gilt dann

- (a) Falls F^{ad} existient, so ist sie eindeutig und es gilt $F^{ad}^{ad} = F$
- (b) Mit den kanonischen Isomorphismen $\Phi: V \to V^*, \Psi: W \to W^*$ gilt $F^{\mathrm{ad}} = \Phi^{-1} \circ F^* \circ \Psi$.

$$\begin{array}{ccc} V \xleftarrow{F^{\mathrm{ad}}} & W \\ \downarrow^{\Phi} & & \downarrow^{\Psi} \\ V^* \xleftarrow{F^*} & W^* \end{array}$$

(c) Sind \mathcal{A} und \mathcal{B} ONB von V bzw. W, so gilt

$$\mathcal{M}_{\mathcal{A}}^{\mathcal{B}}(F^{\mathrm{ad}}) = \left(\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}\right)^{H}$$

(d) V und W lassen sich wie folgt orthogonal Zerlegen

$$V = \operatorname{Ker} F \oplus \operatorname{Im} F^{\operatorname{ad}}$$
 und $W = \operatorname{Ker} F^{\operatorname{ad}} \oplus \operatorname{Im} F$

und es gilt

$$\operatorname{Im}(F^{\operatorname{ad}}) = (\operatorname{Ker} F)^{\perp} \quad \text{und} \quad \operatorname{Ker}(F^{\operatorname{ad}}) = (\operatorname{Im} F)^{\perp}$$

Ist F selbstadjungiert, so gilt $V = \operatorname{Ker} F \oplus \operatorname{Im} F$.

Bemerkung: Für unitäre \mathbb{C} -Vektorräume ist die Adjungierte auch linear, da $\Phi^{-1} \circ F^* \circ \Psi$, aber die Abbildung

$$(-)^{\mathrm{ad}}: \mathrm{Hom}(V, W) \to \mathrm{Hom}(W, V), \quad F \mapsto F^{\mathrm{ad}}$$

ist nur semilinar (d.h. $(\lambda F)^{\rm ad} = \overline{\lambda} F^{\rm ad}$, da das λ nur über Φ^{-1} gezogen wird.

Beispiel: $F = L_A$, $A \in M(m \times n, K)$, $\langle u, v \rangle_V = u^T C v$ und $\langle w, z \rangle_W = w^T D z$ mit C, D symmetrisch positiv definit. Angenommen $F^{ad} =: L_B$ existiert. Dann gilt $\forall v, w$

$$\langle Av, w \rangle = \langle v, Bw \rangle \implies v^T A^T D w = v^T C B w$$

$$\implies A^T D = C B \implies B = C^{-1} A^T D$$

Beispiel: $W = \{(a_n)_{n=0}^{\infty} | a \text{ beschränkt} \}$ und definiere

$$\langle (x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty} \rangle := \sum_{i=0}^{\infty} \frac{x_n y_n}{n^2}$$

Definiere $V = \{a \in W \mid \exists N : \forall n \geq \mathbb{N} a_n = 0\}$. Ist $F : V \hookrightarrow W$ die Inklusion. Angenommen F^{ad} existiert. Dann wähle die Folge $w = (1)_{n=0}^{\infty}$. Dann müsste $F^{ad}(w) \in V$. Also $\exists N \in \mathbb{N}, \forall n \geq N : F^{ad}(w)_n = 0$. Wähle $v_n = \left(n^2 \delta_{nm}\right)_m \in V$. Aber wir erhalten

$$\langle F(v_n), w \rangle = \langle v_n, w \rangle = \frac{n^2 \cdot 1}{n^2} = 1$$

 $\langle v_n, F^{ad}(w) \rangle = 0, \forall n \ge N$

Proposition:

Sei V euklidisch/unitär und endlich dimensional, $F \in \text{Hom}(V, W)$) sodass F^{ad} exisitert. Für eine ONB (v_1, \ldots, v_n) von V gilt

$$F^{ad}(w) = \sum_{i=0}^{n} \langle w, f(v_i) \rangle v_j, \quad \forall w \in W$$

Beweis:

$$\langle b_j, F^{ad}(w) \rangle = \sum_{i=0}^n \langle w, f(b_i) \rangle \langle b_i, b_j \rangle \stackrel{ONB}{=} \overline{\langle w, f(b_j) \rangle} = \langle f(b_j), w \rangle$$

Proposition:

Seien $\mathcal{B}, \mathcal{B}'$ ONB von V, W Dann gilt

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{B}'}(F^{ad}) = \left(\mathcal{M}_{\mathcal{B}'}^{\mathcal{B}}\right)^{H}$$

Proposition: Sei $\Phi: V \to V^*$ der Kanonische Isomorphismus $v \mapsto \langle v, - \rangle$ und $\Psi: W \to W^*, w \mapsto \langle w, - \rangle$. Dann kommutiert das folgende Diagramm

$$\begin{array}{ccc} V \xleftarrow{F^{ad}} & W \\ \Phi \!\!\! \downarrow & & \downarrow \!\!\! \Psi \\ V^* \xleftarrow{F^*} & W^* \end{array}$$

d.h. $\Phi \circ F^{ad} = F^* \circ \Psi$ weil

$$F^* \circ \Psi(w) = F^*(\langle w, - \rangle) = \langle w, f(\cdot) \rangle = \langle F^{ad}(w), - \rangle = \Phi \circ F^{ad}(w)$$

$$\operatorname{Im} F^{ad} = (\operatorname{Ker} F)^{\perp}, \operatorname{Ker} F^{ad} = (\operatorname{Im} F)^{\perp}$$

Definition: Selbstadjungierte Endomorphismen

Sei $K = \mathbb{R}, \mathbb{C}, V$ ein euklidischer/unitärer K-Vektorraum. $F : V \to V$ heisst **selbstadjungiert**, falls $F = F^{ad}$, d.h.

$$\langle f(v), w \rangle = \langle v, f(w) \rangle$$

Ist F ein selbstadjungierter Endomorphismus eines eukl./unitären VR V, so gilt:

- (a) Alle Eigenwerte von F sind reell.
- (b) (Spektralsatz) Es gibt eine ONB von V aus Eigenvektoren von F.
- (c) Ist $v \in V$ ein Eigenvektor von F, so ist sind folgende Räume F-invariant.

$$F(\operatorname{span}(v)) \subseteq \operatorname{span}(v)$$
 und $F(\operatorname{span}(v)^{\perp}) \subseteq \operatorname{span}(v)^{\perp}$

Um die ONB zu bestimmen, bestimmt man Basen zu $\operatorname{Ker}(F - \lambda \operatorname{id}_V)$ und orthonormalisiert sie (z.B. mit Gram Schmidt).

(d) Sind $\lambda_1, \ldots, \lambda_k$ die Eigenwerte von F, so gilt

$$V = \operatorname{Eig}(F; \lambda_1) \oplus \cdots \oplus \operatorname{Eig}(F; \lambda_k)$$

(e) Ist \mathcal{B} eine ONB von V, so gilt: F selbstadjungiert $\Leftrightarrow \mathcal{M}_{\mathcal{B}}(F)$ symmetrisch/hermitesch.

Analog für Matrizen: Sei $A \in M(n \times n, \mathbb{K})$ symmetrisch/hermitesch, also $A = A^H$. Dann gilt

(a) Es gibt eine orthogonale/unitäre Matrix $Q \in \mathcal{O}(n)/\mathcal{U}(n)$ sodass $Q^T A \overline{Q} = \operatorname{diag}(\lambda_1, \dots \lambda_n)$ mit $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ Eigenwerten von A.

Hat man eine ONB von V aus Eigenvektoren (v_1, \ldots, v_n) gefunden, so erfüllt $Q := (v_1 | \cdots | v_n)$ diese Eigenschaft.

Hauptachsentransformation

Sei $A \in M(n \times n, \mathbb{K})$ symmetrisch/hermitesch und s die durch A beschriebene Bilinear-/Sesquilinearform auf \mathbb{K}^n , also $s(x,y) = x^T A \overline{y}$, und $F \in \text{End}(V)$ die entsprechende selbstadjungierte Abbildung, dann gilt

(a) Es gibt eine ONB $\mathcal{B} = (v_1, \dots v_n)$ von \mathbb{K}^n bez. des kanonischen Skalarproduktes aus Eigenvektoren von A, also

$$\mathcal{M}_{\mathcal{B}}(s) = \mathcal{M}_{\mathcal{B}}(F) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} = D \quad \text{mit} \quad \lambda_1, \dots \lambda_n \in \mathbb{R} \text{ Eigenwerte von } A \text{ bzw. } F.$$

Insbesondere gibt es eine orthogonale/unitäre Matrix $Q \in \mathcal{O}(n)/\mathcal{U}(n)$ sodass $Q^T A \overline{Q} = D$.

(b) Es gibt eine Basis $\tilde{\mathcal{B}} = (\tilde{v}_1, \dots, \tilde{v}_n)$ von \mathbb{K}^n , sodass

$$\mathcal{M}_{\tilde{\mathcal{B}}}(s) = \begin{pmatrix} E_k & 0 \\ -E_l & 0 \end{pmatrix} = \tilde{D}$$

Es gibt ein $S \in GL(n, \mathbb{K})$ sodass $S^T A \overline{T} = \tilde{D}$.

Die Zahlen k, l sind eindeutig bestimmt, da sie die Anzahl positiver bzw. negativer Eigenwerte sind.

Bemerkung: Um \mathcal{B} zu erhalten, berechnet man die Eigenvektoren von A und orthonormalisiert sie, um $(v_1, \dots v_n)$ zu erhalten. Für $\tilde{\mathcal{B}}$ setzt man

$$\tilde{v}_i = \begin{cases} \frac{1}{\sqrt{|\lambda_i|}} v_i, & \text{falls} \quad \lambda_i \neq 0 \\ v_i, & \text{sonst} \end{cases}$$

Satz: Positive Definitheit

Sei $A \in M(n \times n, \mathbb{K})$ symmetrisch/hermitesch. Dann sind äquivalent

- (a) A ist positiv definit, also $x^T A \overline{x} > 0$ für alle $x \neq 0 \in \mathbb{K}^n$
- (**b**) Alle Eigenwerte von A sind positiv.
- (c) Es gibt ein $S \in GL(n, \mathbb{K})$ sodass $A = S^H S$.
- (d) Sei $P_A(t) = (-t)^n + \alpha_{n-1}t^{n-1} + \cdots + \alpha_1t + \alpha_0 \in \mathbb{R}[t]$ das charakteristische Polynom von A, dann gilt

$$(-1)^{n-j}\alpha_j > 0$$
 für $j = 0, \dots, n-1$

(e) Die Hauptminoren der Untermatrizen $A_k \in M(k \times k, \mathbb{K})$ oben links sind positiv: $\det A_k > 0$ für $k = 1, \dots n$

Weil A negativ definit \Leftrightarrow -A positiv definit gilt auch

A negativ definit
$$\Leftrightarrow \alpha_i > 0$$
 für $j = 1, \dots, n$

Trägheitssatz von Sylvester

Sei q die zur symmerische Bilinearform s gehörende quadratische Form gegeben durch $q(v) = s(v, v) = v^T A v$.

Dann existiert eine Zerlegung $V = V_+ \oplus V_- \oplus V_0$ sodass

$$q(v) = \begin{cases} > 0, \forall v \in V_{+} \\ < 0, \forall v \in V_{-} \\ = 0, \forall v \in V_{0} \end{cases}$$

Die Zerlegung ist nicht eindeutig bestimmt, aber die dimensionen der UVR ist unabhängig von der Zerlegung. Beweis mit Hauptachsentransformation. Das tupel ($\dim V_+$, $\dim V_-$) ist die **Signatur** von q.

${\bf Orthogonalisier ungs satz}$

Sei V ein K-Vektorraum, sodass $char(K) \neq 2$. Sei $s: V \times V \to K$ eine symmetrische Bilinearform. Dann existiert eine Basis (b_1, \ldots, b_n) von V sodass $s(b_i, b_j) = 0, \forall i \neq j$. Die quadratische Form $q_S: V \to K$ ist dann

$$q_s\left(\sum_{i=1}^n x_i b_i\right) = \sum_{i=1}^n q(b_i) x_i^2$$

Beispiel: Seien A, B symmetrische reelle Matrizen, A pos. definit. z.z: $\exists S \in GL(n, \mathbb{R})$, sodass S^TAS und S^TBS diagonal sind.

Beweis: Die Cholesky Zerlegung gibt uns $A = R^T R$, wobei R obere Dreiecksmatrix, R invertierbar ist. Definiere $C = R^{-1}{}^T B R^{-1}$ symmetrisch. Wir wissen es gibt eine Orthogonale Matrix $Q \in \mathcal{O}(n)$, sodass $Q^T C Q$ diagonal ist. Setze dann $S = R^{-1}Q$. Dann sind

$$S^{T}AS = Q^{T}R^{-1}^{T}R^{T}RR^{-1}Q = Q^{T}Q = E_{n}$$

 $S^{T}BS = Q^{T}R^{-1}^{T}BR^{-1}Q = Q^{T}CQ = D$

Definition: Normale Endomorphismen/Matrizen

Ein $f \in \text{End}(V)$ heisst **normal**, falls $f \circ f^{ad} = f^{ad} \circ f$. Selbstadjungierte und orthogonale/unitäre Endmorphismen sind normal. Eine Matrix $A \in M(n \times n, K)$ heisst **normal**, falls $A^H A = AA^H$

- Diagonalmatrizen und Schiefsymmetrische Matrizen sind normal.
- $V = \{ f \in C^{\infty}(\mathbb{R}) | \forall x \in \mathbb{R} | f(x + 2\pi) = f(x) \}$. Nehme das Standardskalarprodukt $\langle f, g \rangle = \int_0^{2\pi} f(x) \overline{g(x)} dx$. Die Ableitung $D: V \to V, D(f) = \frac{df}{dx}$. Dann ist $D^{ad} = -D$ Also ist D normal.

$$\langle Df, g \rangle = \int_0^{2\pi} f'(x) \overline{g(x)} dx = [f(x) \overline{g(x)}]_0^{2\pi} - \int_0^{2\pi} f(x) \overline{g'(x)} dx = -\langle f, Dg \rangle$$

• Sei f normal, dim $V < \infty$, dann gilt

$$\operatorname{Ker} f^{ad} = \operatorname{Ker} f$$
 und $\operatorname{Im} f^{ad} = \operatorname{Im} f$

- $f \text{ normal } \Longrightarrow \operatorname{Eig}(f; \lambda) = \operatorname{Eig}(f^{ad}; \overline{\lambda})$
- Sind f, g normal, sodass $f \circ g = g \circ f$. Dann sind f + g, fg normal und es gilt $f^{ad} \circ g = g \circ f^{ad}$.
- (Spektralsatz:) Für endlich dimensionale unitäre Vektorräume gilt f normal $\Leftrightarrow \exists ONB$ aus Eigenvektoren von f.

Lemma: Hermitesche Matrizen

Sei $K = \mathbb{R}, \mathbb{C}$ und $A \in M(m \times n, K)$ mit rang r. Dann sind die hermiteschen/symmetrischen Matrizen AA^H, A^HA positiv semidefinit und haben Rang r und es gilt

$$\operatorname{Im} AA^H = \operatorname{Im} A \quad \operatorname{Ker} A^H A = \operatorname{Ker} A$$

Singulärwertzerlegung

Sei $K = \mathbb{R}$, \mathbb{C} und $A \in M(m \times n, K)$ mit $r := \operatorname{rang} A$. Dann gibt es Matrizen $U \in \mathcal{O}(m)/\mathcal{U}(m)$, $V \in \mathcal{O}(n)/\mathcal{U}(n)$ und eine quasi-diagonale Matrix $D \simeq \operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in M(m \times n, K)$ sodass $A = UDV^H$. Alternativ: Zu $A \in M(m \times n, K)$ gibt es Matrizen $\tilde{U} \in M(m \times r, K)$, $\tilde{V} \in M(n \times r, K)$ mit orthogonalen Spalten und $\tilde{D} \in M(r \times r, K) = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ sodass $A = \tilde{U}\tilde{D}\tilde{V}^H$.

Die Singulärwerte $\sigma_1, \ldots, \sigma_r$ sind unabhängig von U, V.

Rezept: Singulärwertzerlegung

- (i) $\sigma_1^2 \geq \ldots \geq \sigma_r^2$ sind die Eigenwerte von $A^H A$, bzw. AA^H inkl. Nullen.
- (ii) Berechne $\tilde{U} = (u_1 | \dots | u_r)$ als ONB von \mathbb{R}^m aus Eigenvektoren von AA^H
- (iii) Berechne $\tilde{V} = (v_1 | \dots | v_r)$ als ONB von \mathbb{R}^n aus Eigenvektoren von $A^H A$.
- (iv) Ergänze (falls nötig) $(u_1, \ldots, u_r, \ldots u_m) = U$ und $(v_1, \ldots, v_r, \ldots v_n) = V$ zu ONBs von \mathbb{R}^m und \mathbb{R}^n (mit Gram-schmidt, Kreuzprodukt)
- (v) $A = UDV^H = \tilde{U}\tilde{D}\tilde{V}^H$

SVD von Homomorphismen

Sei $F \in \text{Hom}(V, W)$ und dim V, dim $W < \infty$. Dann existieren ONBs \mathcal{A}, \mathcal{B} von V und W, sodass $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) = D$ quasi-diagonal ist mit nicht-negativen reellen Diagonaleinträgen.

Definition: Frobenius- und 2-Norm

Für $A \in M(m \times n, K)$ ist die **Frobeniusnorm** definiert durch

$$||A||_F := \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\operatorname{tr}(A^T A)}$$

und die Spektralnorm durch

$$||A||_2 := \sigma_1 = \max_{\substack{x \in K^n \\ ||x||=1}} ||A||x_2$$

Für alle $A \in M(m \times n, K)$ und unitäre Matrizen $U, V \in \mathcal{U}(n)$ bzw. $\mathcal{U}(m)$ gilt

$$||UAV||_2 = ||A||_2, \quad ||UAV||_F = ||A||_F = \sqrt{\sigma_1^2 + \ldots + \sigma_r^2}$$

Satz: Überbestimmte LGS

Für ein überbestimmtes LGS Ax = b ist der Fehler $||Ax - b||_2$ genau dann minimiert, wenn $A^H Ax = A^H b$. Für $A = \tilde{U}\tilde{D}\tilde{V}^H$ ist dies gegeben durch $x = \tilde{V}\tilde{D}^{-1}\tilde{U}^H b$.

Die **Pseudoinverse** von A ist $\hat{A} := \tilde{V}\tilde{D}^{-1}\tilde{U}^H$. Ist A invertierbar, so ist $\hat{A} = A^{-1}$

Satz: Eckart-Young-Mirsky

Sei $A = UDV^H$ mit Singulärwerten $\sigma_1 \geq \sigma_2 \geq \cdots \sigma_r \geq 0$. Setze $U_k \in M(m \times n, K), V_k \in M(n \times k, K), D_k \in M(k \times k, K)$ bestehend aus den ersten k Spalten. Für $A_k := U_k D_k V_k^H = \sum_{j=1}^k \sigma_j u_j v_j^H$ gilt für jede Matrix B mit Rang höchstens k dass

$$||A - B||_F \ge ||A - A_k||_F = \sqrt{\sum_{j=k+1}^r \sigma_j^2} \quad \text{und} \quad ||A - B||_2 \ge ||A - A_k||_2 = \sigma_{k+1}$$

Sei $A = UDV^T \in M(n \times n, \mathbb{R})$ und setze $R_0 := UV^H$. Dann gilt für alle orthogonalen Matrizen $R \in \mathcal{U}(n)$ die Abschätzung: $||A - R||_F \ge ||A - R_0||_F$

 $\sigma \in \mathbb{R}$ ist genau dann ein Singulärwert, wenn $\exists v \in V, w \in W$ sodass $Av = \sigma w$ und $A^T w \sigma v$. Da $AA^T v = \sigma^2 w$

Satz: Courant-Fischer

Sei $V, \dim(V) = n < \infty$ endlich dimensional euklidisch. $F \in \operatorname{End}(V)$ selbstadjungiert mit Eigenwerten $\lambda_1 \leq \ldots \leq \lambda_n$. Dann gilt

$$\lambda_k = \min_{\substack{U \subseteq V \\ \dim U = k}} \max_{\substack{x \in U \\ x \neq 0}} \frac{\langle x, F(x) \rangle}{||x||}$$
$$\lambda_k = \max_{\substack{U \subseteq V \\ \dim U = n-k+1}} \min_{\substack{x \in U \\ x \neq 0}} \frac{\langle x, F(x) \rangle}{||x||}$$

Insbesondere gilt für die grössten/kleinsten Eigenwerte

$$\lambda_n = \max_{\substack{x \in V \\ x \neq 0}} \frac{\langle x, Fx \rangle}{||x||}$$

$$\lambda_1 = \min_{\substack{x \in V \\ x \neq 0}} \frac{\langle x, F(x) \rangle}{||x||}$$

8 Tensorprodukt

Seien V, W K-Vektorräume mit Basen $(v_i)_{i \in I}$ bzw. $(w_j)_{j \in J}$. Ist $(u_{ij})_{(i,j) \in I \times J}$ in U eine beliebig gegeben Familie, so gibt es genau eine bilineare Abbildung

$$\xi: V \times W \to U$$
 mit $\xi(v_i, w_i) = u_{i,i}$

Definition: Tensorprodukt

Seien V,W zwei K-Vektorräume, das **Tensorprodukt** ist ein K-Vektorraum $V\otimes W$ mit der universellen Eigenschaft, es gibt eine bilineare Abbildung $\eta:V\times W\to V\otimes W$ sodass für jeden K-Vektorraum U mit bilinearen Homomorphismus $\xi:V\times W\to U$ eine eindeutig bestimmte lineare Abbildung $\xi_{\otimes}:V\otimes W\to U$ gibt, sodass $\xi=\xi_{\otimes}\circ\eta$ bzw. das folgende diagram kommutiert

$$V \times W \xrightarrow{\xi} U$$

$$\downarrow^{\eta} V \otimes W$$

Das Tensorprodukt $V \otimes W$ ist durch die universelle Eigenschaft bis auf einen Isomorphismus eindeutig bestimmt.

Sind \mathcal{A}, \mathcal{B} Basen von V, W dann ist $\{a \otimes b \mid a \in \mathcal{A}, b \in \mathcal{B}\}$ eine Basis von $V \otimes W$ und es gilt $\dim V \otimes W = \dim V \cdot \dim W$. Die Elemente von $V \otimes W$ sind dann (endliche) Summen $V \otimes W \ni \alpha = \sum_{(i,j) \in I \times J}' \alpha_{ij} v_i \otimes w_j$.

Proposition: Adjunktionsformel

Es existieren eindeutig bestimmte natürliche Isomorphismen

$$\operatorname{Bil}(V, W; U) \cong \operatorname{Hom}(V \otimes W, U) \cong \operatorname{Hom}(V, \operatorname{Hom}(W, U))$$

mit $\xi(v,w) = \xi_{\otimes}(v \otimes w) = \varphi(v)(w)$ und einen natürlichen Isomorphismus

$$K^m \otimes K^n \cong M(m \times n, K) \quad v \otimes w \longleftrightarrow vw^T$$

Proposition:

Es gibt natürliche Einbettungen

$$V^* \otimes W \hookrightarrow \operatorname{Hom}(V,W) \quad \alpha \otimes w \mapsto (v \mapsto \alpha(v) \cdot w)$$

$$\implies V^* \otimes W^* \hookrightarrow \operatorname{Hom}(V,W^*) = \operatorname{Hom}(V,\operatorname{Hom}(W,K)) \cong \operatorname{Hom}(V \otimes W,K) = (V \otimes W)^*$$

Sind V,W endlich dimensional, so sind die Einbettungen Isomorphismen. Die Korrespondenz $V^*\otimes W^*\cong (V\otimes W)^*$ lässt sich erklären durch

$$(\varphi \otimes \psi)(v \otimes w) := \varphi(v) \cdot \psi(w)$$

Lineare Abbildung $f: V \to W$ sind Covektor-Vektor paare und Bilinearfomen $s: V \times W \to K$ sind Covektor-Covektor paare.

Satz: Komplexifizierung

Sei V ein \mathbb{R} -Vektorraum. Betrachte den \mathbb{R} -Vektorraum $V \otimes_{\mathbb{R}} \mathbb{C}$, welcher als einem \mathbb{C} -Vektorraum betrachtet werden kann, wobei die komplexe Multiplikation für $\mu, \lambda \in \mathbb{C}$ gegeben ist durch

$$\mathbb{C} \times V \otimes_{\mathbb{R}} \to V \otimes_{\mathbb{R}} \mathbb{C} \quad \mu \cdot (v \otimes \lambda) := v \otimes \mu \lambda \in V \otimes_{\mathbb{R}} \mathbb{C}$$

Sei $\beta: V^k \to W$ eine bilineare Abbildung. Wir nenn β

- symmetrisch, falls $\forall \sigma \in S_k : \beta(v_1, \dots, v_k) = \beta(v_{\sigma(1)}, \dots v_{\sigma(k)})$
- alternierend, falls $\exists i \neq j : v_i = v_i \implies \beta(v_1, \dots, v_k) = 0$
- antisymmetrisch, falls $\forall \sigma \in S_k : \beta(v_1, \dots v_k) = \operatorname{sign}(\sigma) \cdot \beta(v_{\sigma(1)}, \dots, v_{\sigma(k)})$

Allgemein gilt alternierend \implies antisymmetrisch. Und für $\operatorname{char}(K) \neq 2$ auch die Umkehrung.

Definition: Höheres Tensorprodukt

Sei $k \geq 0$. Das k-fache Tensorprodukt von V ist ein K-Vektorraum $\bigotimes^k V$ mit einer multilinearen Abbildung

 $\eta: V^k \to \bigotimes^k V$ mit der universellen Eigenschaft:

$$\forall K-VRU, \xi: V^k \to U \text{ multilinear } \exists ! \xi_{\otimes} : \bigotimes^k V \to U \quad \text{ mit } \quad \xi = \xi_{\otimes} \circ \eta$$

Definition: Alternierende Potenz

Sei $k \geq 0$. Die k-te **alternierende Potenz** von V ist ein K-Vektorraum $\bigwedge^k V$ zusammen mit einer alternierenden multilinearen Abbildung $\wedge: V^k \to \bigwedge^k V$ welches die folgende Universelle Eigenschaft erfüllt: Für alle K-Vektorraum U mit einer alternierenden Abbildung $\xi: V^k \to U$ existiert genau eine lineare Abbildung $\xi_{\wedge}: \bigwedge^k V \to U$ sodass $\xi = \xi_{\wedge} \circ \wedge$.

Ist (v_1, \ldots, v_n) eine Basis von V, so ist eine Basis von $\bigwedge^k V$ gegeben durch die Produkte

$$v_{i_1} \wedge \ldots \wedge v_{i_k}$$
 mit $1 \leq i_1 < \ldots < i_k \leq n$

Man kann mit dem Tensorprodukt die Alternierende Potenz konstruieren durch

$$\bigwedge^k V = \bigotimes^k V/_{A^k(V)} \quad \text{für} \quad A^k(V) := \text{span} \left\{ v_1 \otimes \ldots \otimes v_k - \text{sign}(\sigma) v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(k)} \middle| v_i \in V, \sigma \in S_k \right\} \subseteq \bigotimes^k V$$

Definition: Symmetrische Potenz

Sei $k \geq 0$. Die k-te **symmetrische Potenz** von V ist ein K-Vektorraum $\bigvee^k V$ zusammen mit einer symmetrischen multilinearen Abbildung $\vee: V^k \to \bigvee^k V$ welches die folgende Universelle Eigenschaft erfüllt: Für alle K-Vektorraum U mit einer symmetrischen Abbildung $\xi: V^k \to U$ existiert genau eine lineare Abbildung $\xi_{\vee}: \bigvee^k V \to U$ sodass $\xi = \xi_{\vee} \circ \vee$.

Ist (v_1, \ldots, v_n) eine Basis von V, so ist eine Basis von $\bigvee^k V$ gegeben durch die Produkte

$$v_{i_1} \vee \ldots \vee v_{i_k}$$
 mit $1 \leq i_1 \leq \ldots \leq i_k \leq n$

Man kann mit dem Tensorprodukt die Symmetrische Potenz definieren als

$$\bigvee^{k} V = \bigotimes^{k} V/_{S^{k}(V)}, \quad \text{für} \quad S^{k}(V) := \text{span} \left\{ v_{1} \otimes \ldots \otimes v_{k} - v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(k)} \middle| v_{i} \in V, \sigma \in S_{k} \right\} \subseteq \bigotimes^{k} V$$

Für die Alternierende- und die Symmetrische Potenz gelten

$$\dim \bigwedge^{k} V = \begin{pmatrix} \dim V \\ k \end{pmatrix} \qquad \dim \bigvee^{k} V = \begin{pmatrix} \dim V + k - 1 \\ k \end{pmatrix}$$

Definition: Tensorprodukt von Abbildungen

Das Tensorprodukt zweier linearen Abbildungen $F:V\to V, G:W\to W'$ ist die Lineare Abbildung gegeben durch

$$F \otimes G : V \otimes W \to V' \otimes W' \quad (F \otimes G)(v \otimes w) = F(v) \otimes G(w)$$

mit der universellen Eigenschaft

$$(F \otimes G)(v, w) = \mathcal{E}(v, w)$$

Ist weiterhin $\mathcal{A} = (v_1, \dots, v_m)$ eine Basis von V, $\mathcal{A}' = (v'_1, \dots, v'_{m'})$ eine von V' und $\mathcal{B} = (w_1, \dots, w_n)$ sowie $\mathcal{B}' = (w'_1, \dots, w'_{n'})$ Basen von W, W' und sind

$$A = (a_{ij}) = \mathcal{M}_{\mathcal{A}'}^{\mathcal{A}}(F), B = (b_{ij}) = \mathcal{M}_{\mathcal{B}'}^{\mathcal{B}}(G)$$

die jeweiligen Abbildungsmatrizen, so hat mit folgenden Basen in den zwei verschiedenen Ordnungsmöglichkeiten

$$\mathcal{C} := (v_1 \otimes w_1, v_2 \otimes w_1, \dots, v_m \otimes w_1, v_1 \otimes w_2, \dots, v_m \otimes w_n) \text{ von } V \otimes W, \mathcal{C}' \text{ von } V' \otimes W' \text{ analog}$$

$$\mathcal{D} := (v_1 \otimes w_1, v_1 \otimes w_2, \dots, v_1 \otimes w_n, v_2 \otimes w_1, \dots, v_m \otimes w_n) \text{ von } V \to W, \mathcal{D}' \text{ von } V' \otimes W' \text{ analog}$$

die Abbildungsmatrix von $F \otimes W$ die folgende Form

$$C = \mathcal{M}_{\mathcal{C}'}^{\mathcal{C}}(F \otimes G) = \begin{pmatrix} Ab_{11} & Ab_{12} & \dots & Ab_{1n} \\ Ab_{21} & Ab_{22} & \dots & ab_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ Ab_{n'1} & Ab_{n'2} & \dots & A_{bn'n} \end{pmatrix} \quad D = \mathcal{M}_{\mathcal{D}'}^{\mathcal{D}}(F \otimes G) = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1m}B \\ a_{21}B & a_{22}B & \dots & a_{2m}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m'1}B & a_{m'2}B & \dots & a_{m'm}B \end{pmatrix}$$

Unabhängig von der Ordnung der Basen ist dann

$$(F \otimes G)(v_i \otimes w_j) = \sum_{i'=1}^{m'} \sum_{j'=1}^{n} a_i^{i'} b_j^{j'} v'_{i'} \otimes w'_{j'}$$

Und man könnte den Tensor $F \otimes G \in \operatorname{Hom}(V \otimes W, V' \otimes W') \cong V^* \otimes W^* \otimes V' \otimes W'$ beschreiben durch die Koordinaten $c_{ij}^{i'j'} = a_i^{i'}b_j^{j'}$ Beispiel: Folgende K-Vektorräume sind isomorph:

$$\operatorname{Hom}(V, V') \otimes \operatorname{Hom}(W, W') \cong \operatorname{Hom}(V \otimes W, V' \otimes W')$$

Definition: Darstellungen

Sei G eine Gruppe, V ein K-Vektorraum. Eine **Darstellung** von G auf V ist ein Gruppenhomomorphismus

$$\rho: G \to \mathrm{GL}(V)$$

wobei $\mathrm{GL}(V)$ dei Gruppe der Vektorraumisomorphismen von V ist.

Beispiel: Die Darstellung O(3) auf \mathbb{R}^3 gegeben durch die Inklusion $O(3) \to \operatorname{GL}(3,\mathbb{R})$ der Orthogonalen Matrizen. **Beispiel:** Sei V ein K-Vektorraum und S_n die Permutationsgruppe. Der Gruppenhomomorphismus ist dann gegeben durch

$$\rho: S_n \to GL(\bigotimes^n V) \quad \rho(\sigma)(v_1 \otimes \ldots \otimes v_n) = v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(n)} \big[\cdot \operatorname{sign}(\sigma) \big]$$

wobei der Term $sign(\sigma)$ optional ist.

Definition: Invarianzräume von Darstellungen

Zu einer Darstellung ρ von G auf V sind

• Der Raum der G-Invarianten. Ist ein Untervektorraum von V als Lösungsraum des linearen Gleichungssytem $\rho(g)(v) = v$.

$$V^G := \{v \in V \big| \rho(g)(v) = v, \forall g \in G\} \subseteq V$$

• Der Raum der Koinvarianten als Quotientenraum

$$V_G := V|_{/U}, \quad U := \operatorname{span}\{v - \rho(g)(v)|v \in V, g \in G\} \subseteq V$$

Dies ermöglicht die Alternative Darstellung der symmetrische/alternierenden Produkte:

$$\bigvee^{n} V = \left(\bigotimes^{n} V\right)^{S_{n}} = \{v_{1} \otimes \ldots \otimes v_{n} \in \bigotimes^{n} V | v_{1} \otimes \ldots \otimes v_{n} = v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(n)}, \forall \sigma \in S_{n}\}$$

$$\bigwedge^{n} V = \left(\bigotimes^{n} V\right)_{S_{n}} = \bigotimes^{n} V/_{U}, \quad U := \operatorname{span}\{v - \operatorname{sign}(\sigma) \cdot v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(n)} | v \in V, g \in G\} \subseteq \bigotimes^{n} V$$

Satz: Isomorphie von V^g und V_G

Sei G eine endliche Gruppe und $\rho: G \to GL(V)$ eine Darstellung. Nehme an, dass $\operatorname{char}(K)$ nich |G| teilt, also $|G| \neq 0 \in K$. Dann ist die kanonische Abbildung $V^G \to V_G$ ein Isomorphismus und die inverse Abbildung ist gegeben durch die Symmetrisierung

$$V_G \to V^G : \quad v + U \mapsto \frac{1}{|G|} \sum_{g = \in G} \rho(g)(v)$$

9 Polynome

- Ein Ring $(R, +, \cdot, 0)$ heisst **nullteilerfrei**, falls $a \cdot b = 0 \implies a = 0$ oder b = 0. Für jeden Körper K ist K[t] nullteilerfrei.
- \bullet Ist R ein Ring mit Eins, so ist seine **Charakteristik** definiert durch

$$\operatorname{char}(R) := \left\{ \begin{array}{cc} 0, & \text{falls} & n \cdot 1 \neq 0, \forall n \geq 1 \\ \min\{n \in \mathbb{N}^*\} : n \cdot 1 = 0, & \text{sonst} \end{array} \right.$$

- Eine nichtleere Teilmenge $I \subseteq R$ heisst **Ideal**, falls für alle $f, f' \in I, g \in R$ gilt: $f f' \in I, f \cdot g \in I$.
- Sei R ein kommutativer Ring, $f, g \in \mathbb{R} \setminus \{0\}$. Dann heisst f teilt g oder f|g, falls ein $h \in R$ exisitert mit hf = g.
- Ein kommutativer Ring heisst **Hauptidealring**, falls es zu jedem Ideal $\{0\} \neq I \subseteq R$ ein eindeutiges Element $M_I \in I$ gibt, sodass $I = RM_I = \{fM_I | f \in R\}$. Der Polynomring K[t] ist ein Hauptidealring und M_I heisst **Minimalpolynom** von I.
- (Polynomdivision) Sind $f, g \in K[t]$ mit $g \neq 0$, so gibt es eindeutig bestimmte Polynome $q, r \in K[t]$, sodass

$$f = q \cdot g + r$$
 und $\deg r < \deg g$

Definition: ggT, kgV

Für Polynome f, g ist der ggT von f, g das normierte Polynom q vom höchsten Grad, sodass q|f und q|g. Der ggT(f,g) ist auch das Minimalpolynom vom Ideal fK[t] + gK[t]. und es existieren $a, b \in K[t]$, sodass ggT(f,g) = af + bg

Das \mathbf{kgV} von f, g ist gleich das Minimapolynom des Schnittes der von f und g erzeugten Ideale: $\mathrm{kgV}(f, g) = M_{fK[t] \cap gK[t]}$

Satz: Primfaktorzerlegung

Ein Polynom $f \in K[t]$ heisst **irreduzibel**, falls

$$f = gh \implies \exists 0 \neq c \in K : f = cg \text{ oder } f = ch$$

f heisst **prim**, falls für $q \neq 0$

$$f|gh \implies f|h \text{ oder } f|h$$

f prim $\implies f$ irreduziblel und falls deg f > 0 gilt auch die Umkehrung. Sei $0 \neq f \in K[t]$ ein Polynom. Dann gibt es eindeutig bestimmte irreduzible, normierte Polynome positiven Grades $p_1, \ldots, p_n \in K[t]$ $(n \ge 0)$ und ein $0 \ne c \in K$, sodass $f = cp_1 \cdots p_n$. Also K[t] ist ein **faktorieller Ring**.

Lemma: Maximale- und Primideale

Sei R ein kommutativer Ring. Ein Ideal $I \subset R$ heisst **maximal**, falls $I \neq R$ und es kein Ideal J gibt, sodass $I \subset J \subset R$.

I heisst **prim**, falls $I \neq R$ und für alle $f, g \in R$ gilt

$$fg \in I \implies f \in I \text{ oder } g \in I$$

- I ist genau dann maximal, wenn R/I ein Körper ist.
- I ist genau dann prim, wenn R/I nullteilerfrei ist.

Hierbei ist der Quotient durch die Äquivalenzrelation \sim definiert:

$$R/I = R/_{\sim}, \quad f \sim g \Leftrightarrow f - g \in I$$

$$A \in GL(m,K), b \in M(m \times n,K), C \in M(n \times m,K), D \in GL(n,K)$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & 0 \\ C & E_n \end{pmatrix} \begin{pmatrix} E_m & A^{-1}B \\ 0 & D - CA^{-1}B \end{pmatrix} = \begin{pmatrix} E_m & B \\ 0 & D \end{pmatrix} \begin{pmatrix} A - BD^{-1}C & 0 \\ D^{-1}C & E_n \end{pmatrix}$$

$$\implies \det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \cdot \det(D - CA^{-1}B) = \det(D) \cdot \det(A - BD^{-1}C)$$

Die Vandermonde Matrix ist gegeben durch

$$V(x_1, \dots, x_n) = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}, \quad \det V(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2 = \frac{n^2(n+2)^2}{4}, \quad \prod_{i=1}^{n-1} (1+\frac{1}{i})^i = \frac{n^n}{n!}$$