FISEVIER

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Upper bounds for some graph energies

Igor Milovanović^{a,*}, Emina Milovanović^a, Ivan Gutman^{b,c}

- ^a Faculty of Electronic Engineering, University of Niš, Niš 18000, Serbia
- ^b Faculty of Science, University of Kragujevac, Kragujevac 34000, Serbia
- ^c State University of Novi Pazar, Novi Pazar 36300, Serbia

ARTICLE INFO

MSC: 15A18 05C50

Keywords: Energy of graph Ordinary graph energy Laplacian energy Incidence energy

ABSTRACT

A general inequality for non-negative real numbers is proven. Based on it, upper bounds for (ordinary) graph energy, minimum dominating energy, minimum covering energy, Laplacian-energy-like invariant, Laplacian energy, Randić energy, and incidence energy are obtained.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V, E), $V = \{v_1, v_2, \dots, v_n\}$, be a simple graph with n = |V| vertices and m = |E| edges. If the vertices v_i and v_j are adjacent, then we write $v_i \sim v_j$. Denote by d_i the degree (number of first neighbors) of the vertex v_i , and assume that $d_1 \ge d_2 \ge \dots \ge d_n$. Some well known properties of the vertex degrees are [7]:

$$\sum_{i=1}^{n} d_i = 2m \qquad \text{and} \qquad \sum_{i=1}^{n} d_i^2 = \sum_{\nu_i \sim \nu_j} (d_i + d_j) = M_1$$

where M_1 is the first Zagreb index [17,21].

The adjacency matrix $\mathbf{A} = (a_{ij})$ of the graph G is defined as

$$a_{ij} = \begin{cases} 1 & \text{if } v_i \sim v_j \\ 0 & \text{otherwise.} \end{cases}$$

The eigenvalues of **A**, denoted by $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$, are referred to as the (ordinary) eigenvalues of the graph *G* [7]. Some of their well known properties are:

$$\sum_{i=1}^{n} \lambda_i = 0 \qquad \text{and} \qquad \sum_{i=1}^{n} \lambda_i^2 = \sum_{i=1}^{n} d_i = 2m.$$

Denote by $|\lambda_1^*| \ge |\lambda_2^*| \ge \cdots \ge |\lambda_n^*|$ a non-increasing sequence of absolute values of the eigenvalues of G. The graph invariant E = E(G), called energy of G, is defined to be the sum of the absolute values of the eigenvalues of G [20,27], i.e.,

$$E = E(G) = \sum_{i=1}^{n} |\lambda_i| = \sum_{i=1}^{n} |\lambda_i^*|.$$

^{*} Corresponding author. Tel.: +381 18529603; fax: +381 18 588 399. E-mail address: igor@elfak.ni.ac.rs (I. Milovanović).

A subset \mathcal{D} of V is said to be a dominating set of G if every vertex of $V \setminus \mathcal{D}$ is adjacent to some vertex in \mathcal{D} . Any dominating set with minimum cardinality is called a minimum dominating set. Let \mathcal{D} be a minimum dominating set of the graph G. The minimum dominating adjacency matrix of G, denoted by $\mathbf{A}_{\mathcal{D}} = (a_{ij}^{\mathcal{D}})$, is the $n \times n$ matrix defined as

$$a_{ij}^{\mathcal{D}} = \begin{cases} 1 & \text{if } v_i \sim v_j \\ 1 & \text{if } i = j \text{, } v_i \in \mathcal{D} \\ 0 & \text{otherwise.} \end{cases}$$

The minimum dominating eigenvalues of the graph G, $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n$, are the eigenvalues of A_D . The following equalities are valid for them [24]:

$$\sum_{i=1}^{n} \alpha_i = |\mathcal{D}| \qquad \text{and} \qquad \sum_{i=1}^{n} \alpha_i^2 = 2m + |\mathcal{D}|.$$

Let $|\alpha_1^*| \ge |\alpha_2^*| \ge \cdots \ge |\alpha_n^*|$, $\alpha_1 = |\alpha_1| = |\alpha_1^*|$, be a non-increasing sequence of absolute values of the minimum dominating eigenvalues of G. The minimum dominating energy of the graph G, $E_D = E_D(G)$, is defined as [24,38]

$$E_{\mathcal{D}} = E_{\mathcal{D}}(G) = \sum_{i=1}^{n} |\alpha_i| = \sum_{i=1}^{n} |\alpha_i^*|.$$

A subset C of V, $C \subset V$, is called a covering set of G if every edge of G is incident to at least one vertex of G. Any covering set with minimum cardinality is called a minimum covering set. Let C be a minimum covering set of the graph G. The minimum covering matrix of G is the matrix defined by $\mathbf{A}_C = (a_{ii}^C)$, where

$$a_{ij}^{C} = \begin{cases} 1 & v_i \sim v_j \\ 1 & i = j, v_i \in C \\ 0 & \text{otherwise.} \end{cases}$$

The minimum covering eigenvalues of G, denoted by $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$, are the eigenvalues of \mathbf{A}_C . The following equalities are valid for β_i , i = 1, 2, ..., n [1]

$$\sum_{i=1}^{n} \beta_{i} = |C| \quad \text{and} \quad \sum_{i=1}^{n} \beta_{i}^{2} = 2m + |C|.$$

Let $|\beta_1^*| \ge |\beta_2^*| \ge \cdots \ge |\beta_n^*|$, $\beta_1 = |\beta_1| = |\beta_1^*|$, be a non-increasing sequence of absolute values of the minimum covering eigenvalues of G. The minimum covering energy of the graph G, $E_C = E_C(G)$, is defined as [1]

$$E_C = E_C(G) = \sum_{i=1}^n |\beta_i| = \sum_{i=1}^n |\beta_i^*|.$$

Let $\mathbf{D} = \operatorname{diag}\{d_1, d_2, \dots, d_n\}$. Then $\mathbf{L} = \mathbf{D} - \mathbf{A}$ is the Laplacian matrix of G. The eigenvalues of \mathbf{L} , denoted by $\mu_1 \ge \mu_2 \ge \dots \ge \mu_n = 0$, are the Laplacian eigenvalues of the graph G. Some of their well known properties are [15]:

$$\sum_{i=1}^{n-1} \mu_i = \sum_{i=1}^n d_i = 2m \qquad \text{and} \qquad \sum_{i=1}^{n-1} \mu_i^2 = \sum_{i=1}^n d_i^2 + \sum_{i=1}^n d_i = M_1 + 2m.$$

Let $\gamma_i = \mu_i - \frac{2m}{n}$, i = 1, 2, ..., n, and $|\gamma_1^*| \ge |\gamma_2^*| \ge \cdots \ge |\gamma_n^*|$, $|\gamma_1^*| = \frac{2m}{n}$, be a sequence of non-increasing values of absolute values of γ_i . The Laplacian energy of G is defined as [22]

$$LE = LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right| = \sum_{i=1}^{n} |\gamma_i^*|.$$

Since for several reasons the concept of Laplacian energy was not fully satisfactory, a seemingly different quantity, named Laplacian-energy-like invariant, *LEL*, has been put forward [30], defined as

$$LEL = LEL(G) = \sum_{i=1}^{n-1} \sqrt{\mu_i}.$$

The matrix $\mathbf{L}^+ = \mathbf{D} + \mathbf{A}$ is the signless Laplacian matrix of the graph G. Its eigenvalues, denoted by $\mu_1^+ \ge \mu_2^+ \ge \cdots \ge \mu_n^+ \ge 0$, are referred to as the signless Laplacian eigenvalues of G [8]. Some of their well known properties are

$$\sum_{i=1}^{n} \mu_{i}^{+} = 2m \qquad \text{and} \qquad \sum_{i=1}^{n} (\mu_{i}^{+})^{2} = M_{1} + 2m.$$

The signless Laplacian eigenvalues are encountered in the theory of the so-called incidence energy, *IE* [12,18]. The incidence energy, although defined in a completely different manner [23], satisfies the relation

$$IE = IE(G) = \sum_{i=1}^{n} \sqrt{\mu_i^+}.$$

Assume that the graph G has no isolated vertices. Then the matrix \mathbf{D} is nonsingular and $\mathbf{D}^{-1/2}$ is well defined. The matrix $\mathbf{L}^* = \mathbf{D}^{-1/2}\mathbf{L}\mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$ is the normalized Laplacian matrix of G. Its eigenvalues, $\delta_1 \geq \delta_2 \geq \cdots \geq \delta_n = 0$, are the normalized Laplacian eigenvalues of the graph G. The following relations hold [6]

$$\sum_{i=1}^{n-1} \delta_i = n \qquad \text{and} \qquad \sum_{i=1}^{n-1} \delta_i^2 = n + 2R_{-1},$$

where $R_{-1} = \sum_{\nu_i \sim \nu_i} \frac{1}{d_i d_j}$ is the general Randić index of G [5].

The normalized Laplacian energy NLE = NLE(G) has been defined as [5]

$$NLE = NLE(G) = \sum_{i=1}^{n} |\delta_i - 1|.$$

The matrix $\mathbf{R} = (r_{ij})$ defined as

$$r_{ij} = \begin{cases} 1/\sqrt{d_i d_j} & \text{if } v_i \sim v_j \\ 0 & \text{otherwise} \end{cases}$$

is referred to as the Randić matrix of the underlying graph *G*. For its eigenvalues $\rho_1 \ge \rho_2 \ge \cdots \ge \rho_n$, $\rho_1 = 1$, the following is valid [4,28]

$$\sum_{i=1}^{n} \rho_i = 0 \qquad \text{and} \qquad \sum_{i=1}^{n} \rho_i^2 = 2R_{-1}.$$

The Randić energy of the graph G has been defined as [3,4]

$$RE = RE(G) = \sum_{i=1}^{n} |\rho_i| = \sum_{i=1}^{n} |\rho_i^*|,$$

where $|\rho_1^*| \ge |\rho_2^*| \ge \cdots \ge |\rho_n^*|$, $\rho_1 = |\rho_1| = |\rho_1^*|$, is a non-increasing sequence of absolute values of the eigenvalues of **R**.

The fact that for all graphs, the normalized Laplacian energy and Randić energy coincide, has been immediately recognized, cf. [10,11,16]. At this point, it is worth noting that all the above defined energies are related with the entropy of the underlying graph [13,26].

In this paper we prove a general inequality for non-negative real numbers, and then use it to establish upper bounds for the graph energies E, E_C , $E_$

2. Main results

Let $a_1 \ge a_2 \ge \cdots \ge a_n \ge 0$ be real non-negative numbers. For the sums P and Q defined as

$$P = \sum_{i=1}^{n} a_i^2 \qquad \text{and} \qquad Q = \sum_{i=1}^{n} a_i$$

we prove the following result:

Theorem 1. For arbitrary real numbers k_1 and k_2 with the properties

$$a_1 \ge k_1 \ge \sqrt{\frac{P}{n}}$$
 and $\sqrt{\frac{P}{n}} \ge k_2 \ge a_n$

the following is valid

$$Q \le \min \left\{ k_1 + \sqrt{(n-1)(P - k_1^2)}, \ k_2 + \sqrt{(n-1)(P - k_2^2)}, \ \sqrt{nP - \frac{n}{2} (a_1 - a_n)^2} \right\}. \tag{1}$$

Equality holds if and only if $a_1 = a_2 = \cdots = a_n$.

Proof. In [32], a class $\mathcal{P}_n(b_1, b_2)$ of real polynomials of the form

$$P_n(x) = x^n + b_1 x^{n-1} + b_2 x^{n-2} + c_3 x^{n-3} + \dots + c_n$$

was considered, where b_1 and b_2 are fixed real numbers. It was proven that for the roots $x_1 \ge x_2 \ge \cdots \ge x_n$ of that class of polynomials, the following inequalities are valid

$$x_1 \le \bar{x} + \frac{1}{n}\sqrt{(n-1)\Delta} \tag{2}$$

$$x_n \ge \bar{x} - \frac{1}{n} \sqrt{(n-1)\Delta} \tag{3}$$

$$x_1 - x_n \le \sqrt{\frac{2\Delta}{n}} \tag{4}$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and $\Delta = n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2$. (5)

Consider now the polynomial

$$P_n(x) = \prod_{i=1}^n (x - a_i) = x^n + b_1 x^{n-1} + b_2 x^{n-2} + c_3 x^{n-3} + \dots + c_n$$

where $a_1 \ge a_2 \ge \cdots \ge a_n \ge 0$ are given real numbers. Since

$$b_1 = -\sum_{i=1}^n a_i = -Q$$
 and $b_2 = \frac{1}{2} \left[\left(\sum_{i=1}^n a_i \right)^2 - \sum_{i=1}^n a_i^2 \right] = \frac{1}{2} (Q^2 - P)$

the above polynomial belongs to the class $\mathcal{P}_n\left(-Q,\frac{1}{2}\left(Q^2-P\right)\right)$. According to (3), for $x_i=a_i,\ i=1,2,\ldots,n$, we have

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{Q}{n}$$
 and $\Delta = n \sum_{i=1}^{n} a_i^2 - \left(\sum_{i=1}^{n} a_i\right)^2 = nP - Q^2$. (6)

Now, for any real k_1 with the property $a_1 \ge k_1$, according to (2),

$$k_1 \le a_1 \le \frac{Q}{n} + \frac{1}{n} \sqrt{(n-1)(nP - Q^2)}$$

i.e.,

$$n k_1 - Q \le \sqrt{(n-1)(nP - Q^2)}$$
 (7)

Under the assumption of Theorem 1, $k_1 \ge \sqrt{\frac{p}{n}}$. According to Jensen's inequality (see for example [36]),

$$P = \sum_{i=1}^{n} a_i^2 \ge \frac{1}{n} \left(\sum_{i=1}^{n} a_i \right)^2 = \frac{Q^2}{n}$$

i.e.,

$$\frac{Q}{n} \leq \sqrt{\frac{P}{n}}$$
.

From the above it follows that

$$k_1 - \frac{Q}{n} \ge k_1 - \sqrt{\frac{P}{n}} \ge 0.$$

According to this and inequality (7), we conclude that

$$Q \le k_1 + \sqrt{(n-1)(P - k_1^2)},\tag{8}$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$. For any k_2 with the property $k_2 \ge a_n$, according to (3), the following is valid

$$k_2 \ge a_n \ge \frac{Q}{n} - \frac{1}{n} \sqrt{(n-1)\Delta}$$

i.e.,

$$Q - n k_2 \le \sqrt{(n-1)(nP - Q^2)}.$$

Since $\sqrt{P/n} \ge k_2$, it follows that

$$k_2 \le \sqrt{\frac{P}{n}} \le a_1 \le \frac{Q}{n} + \frac{1}{n}\sqrt{(n-1)(nP - Q^2)}$$

wherefrom we obtain

$$n k_2 - Q \le \sqrt{(n-1)(nP - Q^2)}$$
.

This means that

$$|Q - n k_2| < \sqrt{(n-1)(nP - Q^2)}$$

which implies

$$Q \le k_2 + \sqrt{(n-1)(P - k_2^2)} \tag{9}$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$. According to (4), for $x_i = a_i$, $i = 1, 2, \ldots, n$, we have that

$$a_1 - a_n \le \sqrt{\frac{2(nP - Q^2)}{n}}$$

i.e.,

$$Q \le \sqrt{nP - \frac{n}{2} (a_1 - a_n)^2}. (10)$$

Equality in (10) holds if and only if $a_1 = a_2 = \cdots = a_n$ or when n = 2 for any $a_1 \ge a_2 \ge 0$. Finally, the inequality (1) is obtained from (8)–(10). \Box

Setting $a_i = |\lambda_i^*|$, $a_i = |\gamma_i^*|$, $a_i = |\delta_i^*|$, $a_i = |\mu_i^*|$, $a_i = \sqrt{\mu_i}$, $a_i = |\rho_i^*|$, and $a_i = \sqrt{\beta_i}$, we arrive at the following corollaries of Theorem 1.

Corollary 1. Let G be a simple graph with n vertices and m edges. Then, for any k_1 and k_2 with the properties $\lambda_1 \ge k_1 \ge \sqrt{2m/n}$ and $\sqrt{2m/n} \ge k_2 \ge |\lambda_n^*|$,

$$E \leq \min \left\{ k_1 + \sqrt{(n-1)(2m - k_1^2)}, \ k_2 + \sqrt{(n-1)(2m - k_2^2)}, \sqrt{2mn - \frac{n}{2} (|\lambda_1^*| - |\lambda_n^*|)^2} \right\}. \tag{11}$$

Equality holds if and only if $G \cong \overline{K}_n$ or $G \cong \frac{n}{2} K_2$ for even n.

Remark 1. The inequalities

$$E \leq \sqrt{2mn - \frac{n}{2} \left(|\lambda_1^*| - |\lambda_n^*| \right)^2}$$

and

$$E \le k_1 + \sqrt{(n-1)(2m-k_1^2)}$$

were proven in [35] and [34], respectively.

Since

$$\lambda_1 \geq \sqrt{\frac{\sum_{i=1}^n t_i^2}{\sum_{i=1}^n d_i^2}} \geq \sqrt{\frac{M_1}{n}} \geq \frac{2m}{n} \geq \sqrt{\frac{2m}{n}}$$

where t_i is the 2-degree of the vertex v_i (see [42]), for $k_1 = \sqrt{2m/n}$ we obtain the classical McClelland bound [9,20,27]

$$E < \sqrt{2mn}$$

whereas $k_1 = 2m/n$ yields the Koolen-Moulton estimate [20,25,27]

$$E \leq \frac{2m}{n} + \frac{1}{n}\sqrt{2m(n-1)(n^2-2m)}$$

For $k_1 = \sqrt{M_1/n}$, we obtain

$$E \leq \sqrt{\frac{M_1}{n}} + \sqrt{(n-1)\left(2m - \frac{M_1}{n}\right)}$$

which was proven in [41]. For $k_1 = \left[\sum_{i=1}^n t_i^2 / \sum_{i=1}^n d_i^2\right]^{1/2}$,

$$E \leq \sqrt{\frac{\sum_{i=1}^{n} t_i^2}{\sum_{i=1}^{n} d_i^2}} + \sqrt{(n-1) \left(2m - \frac{\sum_{i=1}^{n} t_i^2}{\sum_{i=1}^{n} d_i^2}\right)}$$

which was proven in [40].

In [14], the inequality $\lambda_1 \geq \sqrt{d_1}$ was proven. Since $\sqrt{d_1} \geq \sqrt{M_1/n}$, for $k_1 = \sqrt{d_1}$, from (11) it follows

$$E \leq \sqrt{d_1} + \sqrt{(n-1)(2m-d_1)}$$

Equality holds if and only if $G \cong \overline{K}_n$, or $G \cong \frac{n}{2} K_2$ for even n.

Note finally, that for $k_1 = |\lambda_1^*| = \lambda_1$ and $\tilde{k_2} = |\lambda_n^*|$, from (11) it follows

$$E \leq \min \left\{ \lambda_1 + \sqrt{(n-1)(2m - \lambda_1^2)} \,, \ |\lambda_n^*| + \sqrt{(n-1)(2m - |\lambda_n^*|^2)} \right\}.$$

Corollary 2. Let G = (V, E) be a simple graph with n vertices and m edges, and let $C \subset V$ be its minimum covering set. Then for any k_1 and k_2 with the properties $|\beta_1^*| \ge k_1 \ge \sqrt{(2m+|C|)/n}$ and $\sqrt{(2m+|C|)/n} \ge k_2 \ge |\beta_n^*|$, it holds

$$E_{C} \leq \min \left\{ k_{1} + \sqrt{(n-1)(2m+|C|-k_{1}^{2})}, \ k_{2} + \sqrt{(n-1)(2m+|C|-k_{2}^{2})}, \right.$$

$$\left. \sqrt{n[2m+|C|-0.5(|\beta_{1}^{*}|-|\beta_{n}^{*}|)^{2}]} \right\}.$$
(12)

Equality holds if and only if $G \cong \overline{K}_n$, or $G \cong \frac{n}{2} K_2$ when n is even.

Remark 2. For $k_1 = \sqrt{(2m + |C|)/n}$, from (12) it follows

$$E_C \le \sqrt{n(2m+|C|)} \tag{13}$$

a bound earlier reported in [1]. If $2m + |C| \ge n$, then

$$\beta_1 \geq \frac{2m+|C|}{n} \geq \sqrt{\frac{2m+|C|}{n}}.$$

For $k_1 = (2m + |C|)/n$, from (12) it follows

$$E_C \leq \frac{2m+|C|}{n} + \sqrt{(n-1)\left(2m+|C|-\left(\frac{2m+|C|}{n}\right)^2\right)}.$$

Since $\frac{1}{2}(|\beta_1^*| - |\beta_n^*|)^2 \ge 0$, the inequality

$$E_C \le \sqrt{n\left(2m + |C| - \frac{1}{2}\left(|\beta_1^*| - |\beta_n^*|\right)^2\right)}$$

from (12), is stronger than (13).

Corollary 3. Let G be a simple graph with n vertices and m edges. Then, for any real k_1 and k_2 with the properties $\sqrt{\mu_1} \ge k_1 \ge \sqrt{2m/(n-1)}$ and $\sqrt{2m/(n-1)} \ge k_2 \ge \sqrt{\mu_{n-1}}$,

$$LEL \leq \min \left\{ k_1 + \sqrt{(n-2)(2m - k_1^2)}, \ k_2 + \sqrt{(n-2)(2m - k_2^2)}, \right.$$

$$\left. \sqrt{(n-1)\left(2m - \frac{1}{2}\left(\sqrt{\mu_1} - \sqrt{\mu_{n-1}}\right)^2\right)} \right\}.$$
(14)

Equality holds if and only if $G\cong K_n$ or $G\cong \overline{K}_n$.

Remark 3. For $k_1 = \sqrt{1+d_1}$, from (14) we deduce

$$\textit{LEL} \leq \sqrt{1 + d_1} + \sqrt{(n-2)(2m - 1 - d_1)}$$

which earlier was obtained in [30].

For $k_1 = \sqrt{\mu_1}$ and $k_2 = \sqrt{\mu_{n-1}}$, from (14) we get

$$\textit{LEL} \leq \min \left\{ \sqrt{\mu_1} + \sqrt{(n-2)(2m - \mu_1)} \,,\, \sqrt{\mu_{n-1}} + \sqrt{(n-2)(2m - \mu_{n-1})} \right\}$$

$$\sqrt{(n-1)\left[2m-\frac{1}{2}\left(\sqrt{\mu_1}-\sqrt{\mu_{n-1}}\right)^2\right]}\right\}.$$

For $k_1 = \sqrt{2m/(n-1)}$, from (14) it follows

$$LEL \le \sqrt{2m(n-1)} \tag{15}$$

which was earlier reported in [30]. Since $\frac{1}{2}(\sqrt{\mu_1}-\sqrt{\mu_{n-1}})^2\geq 0$, the inequality

$$LEL \le \sqrt{(n-1)\left(2m - \frac{1}{2}(\sqrt{\mu_1} - \sqrt{\mu_{n-1}})^2\right)}$$

from (14) is stronger than (15).

Corollary 4. Let G be a simple graph of order $n \ge 2$ with m edges. Then, for any real k_1 and k_2 with the properties $1 \ge k_1 \ge \sqrt{2R_{-1}/n}$ and $\sqrt{2R_{-1}/n} \ge k_2 \ge |\rho_n^*|$,

$$RE \leq \min \left\{ k_1 + \sqrt{(n-1)(2R_{-1} - k_1^2)}, \ k_2 + \sqrt{(n-1)(2R_{-1} - k_2^2)}, \right.$$

$$\left. \sqrt{2nR_{-1} - \frac{n}{2} (1 - |\rho_n^*|)^2} \right\}.$$
(16)

Equality in (16) holds if and only if $G \cong K_n$.

Remark 4. For $k_1 = 1$, from (16) it follows that

$$RE \le \min \left\{ 1 + \sqrt{(n-1)(2R_{-1}-1)}, \sqrt{n \left[2R_{-1} - \frac{1}{2} (1 - |\rho_n^*|)^2 \right]} \right\}. \tag{17}$$

The inequality

$$RE \le 1 + \sqrt{(n-1)(2R_{-1} - 1)}$$
 (18)

was proven in [2] (see also [29,33]). Since $R_{-1} \le \frac{n}{2d_n}$ (see [37]), inequality (18), is reduced to the earlier known [10] (see also [33])

$$RE \leq 1 + \sqrt{\frac{(n-1)(n-d_n)}{d_n}}.$$

For $k_1 = \sqrt{2R_{-1}/n}$, from (16) we obtain

$$RE \le \sqrt{2nR_{-1}} \tag{19}$$

which is an estimate earlier reported in [4,5]. Since $\frac{1}{2}\left(1-|
ho_n^*|
ight)^2\geq 0$, our inequality

$$RE \le \sqrt{n\left(2R_{-1} - \frac{1}{2}\left(1 - |\rho_n^*|\right)^2\right)}$$

from (16), is stronger than (19).

Corollary 5. Let G be a simple graph with n vertices and m edges. Then, for any real k_1 and k_2 with the properties $\sqrt{\mu_1^+} \ge k_1 \ge \sqrt{2m/n}$ and $\sqrt{2m/n} \ge k_2 \ge \sqrt{\mu_n^+}$, it holds

$$IE \leq \min\left\{k_{1} + \sqrt{(n-1)(2m - k_{1}^{2})}, k_{2} + \sqrt{(n-1)(2m - k_{2}^{2})}, \sqrt{n\left[2m - \frac{1}{2}\left(\sqrt{\mu_{1}^{+}} - \sqrt{\mu_{n}^{+}}\right)^{2}\right]}\right\}.$$
(20)

Remark 5. The inequality

$$\textit{IE} \leq k_1 + \sqrt{(n-1)(2m-k_1^2)}$$

was proven in [19]. For $k_1=\sqrt{\mu_1^+}$ and $k_1=\sqrt{1+d_1}$, from (20) we obtain

$$\textit{IE} \leq \sqrt{\mu_1^+} + \sqrt{(n-1)(2m-\mu_1^+)}$$

and

$$IE \le \sqrt{1+d_1} + \sqrt{(n-1)(2m-1-d_1)}$$
 (21)

which were also proven in [19]. The inequality (21) was independently obtained in [31].

For $k_1 = \sqrt{1 + d_1 + 1/(d_1 - 1)}$, $(d_1 \ge 2)$, from (20) we obtain

$$\textit{IE} \leq \sqrt{1 + d_1 + \frac{1}{d_1 - 1}} + \sqrt{(n - 1) \left(2m - 1 - d_1 - \frac{1}{d_1 - 1}\right)}$$

a result earlier communicated in [39].

For $k_1 = \sqrt{2m/n}$, from (20) we get the previously known bound [23]:

$$IE \le \sqrt{2mn}. (22)$$

Since $\frac{1}{2} (\sqrt{\mu_1^+} - \sqrt{\mu_n^+})^2 \ge 0$, our estimate

$$\textit{IE} \leq \sqrt{n \left(2m - \frac{1}{2} \left(\sqrt{\mu_1^+} - \sqrt{\mu_n^+}\right)^2\right)}$$

deduced from (20), is stronger than (22).

For $k_1 = \sqrt{M_1/m}$, from (20) we get an earlier known bound [42]

$$IE \leq \sqrt{\frac{M_1}{m}} + \sqrt{(n-1)\left(2m - \frac{M_1}{m}\right)}.$$

Remark 6. If *G* is a bipartite graph, then $\mu_n^+ = 0$ [8]. Thus, for bipartite graphs instead of (20), the following inequality may be used

$$IE \le \min \left\{ k_1 + \sqrt{(n-2)(2m-k_1^2)}, k_2 + \sqrt{(n-2)(2m-k_2^2)}, k_3 + \sqrt{(n-2)(2m-k_2^2)}, k_4 + \sqrt{(n-2)(2m-k_2^2)}, k_4 + \sqrt{(n-2)(2m-k_2^2)}, k_5 + \sqrt{(n-2)(2m-k_2^2)}, k_6 +$$

$$\sqrt{(n-1)\left[2m-\frac{1}{2}\left(\sqrt{\mu_{1}^{+}}-\sqrt{\mu_{n-1}^{+}}\right)^{2}\right]}$$

where $\sqrt{\mu_1^+} \ge k_1 \ge \sqrt{2m/(n-1)}$ and $\sqrt{2m/(n-1)} \ge k_2 \ge \sqrt{\mu_{n-1}^+}$.

Corollary 6. Let G be a simple connected graph with n vertices and m edges. Then, for any real k_1 and k_2 with the properties $2m/n \ge k_1 \ge \sqrt{2M/n}$ and $\sqrt{2M/n} \ge k_2 \ge |\gamma_n^*|$, it holds

$$LE \leq \min\left\{k_1 + \sqrt{(n-1)(2M - k_1^2)}, \ k_2 + \sqrt{(n-1)(2M - k_2^2)}, \right.$$

$$\left.\sqrt{n\left(2M - \frac{1}{2}\left(|\gamma_1^*| - |\gamma_n^*|\right)^2\right)}\right\}$$
(23)

where

$$M = \frac{1}{2} \sum_{i=1}^{n} \left(\mu_i - \frac{2m}{n} \right)^2 = m + \frac{1}{2} \sum_{i=1}^{n} \left(d_i - \frac{2m}{n} \right)^2.$$

Equality holds if and only if $G\cong K_n$.

Remark 7. For $k_1 = 2m/n$ and $k_1 = \sqrt{M/n}$, from (23) we obtain, respectively,

$$LE \le \frac{2m}{n} + \sqrt{(n-1)\left[2M - \left(\frac{2m}{n}\right)^2\right]}$$

and

$$LE \le \sqrt{2nM}$$
 (24)

which both were proven in [22]. Since $\frac{1}{2} (|\gamma_1^*| - |\gamma_n^*|)^2 \ge 0$, the inequality

$$LE \leq \sqrt{n\left(2M - \frac{1}{2}\left(|\gamma_1^*| - |\gamma_n^*|\right)^2\right)}$$

which follows from (23), is stronger than (24).

Acknowledgment

The authors would like to give sincere gratitude to the referees for careful reading of the manuscript and for valuable comments, which greatly improved the quality of our paper.

References

- [1] C. Adiga, A. Bayad, I. Gutman, S.A. Srinivas, The minimum covering energy of a graph, Karagujevac J. Sci. 34 (2012) 39-56.
- [2] S. B. Bozkurt, D. Bozkurt, Sharp bounds for energy and Randić energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 669-680.
- [3] Ş. B. Bozkurt, A.D. Gungor, I. Gutman, Randić spectral radius and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 321-334.
- [4] \$. B. Bozkurt, A.D. Gungor, I. Gutman, A.S. Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 239–250.
- [5] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index r₋₁ of graphs, Linear Algebra Appl. 433 (2010) 172–190.
- [6] F.R.K. Chung, Spectral Graph Theory, American Mathematical Society, Providence, 1997.
- [7] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980.
- [8] D. Cvetković, P. Rowlinson, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian II, Linear Algebra Appl. 432 (2010) 2257–2274.
- [9] K.C. Das, S.A. Mojallal, I. Gutman, Improving McClelland's lower bound for energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 663-668.
- [10] K.C. Das, S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 227–238.
- [11] K.C. Das, S. Sorgun, I. Gutman, On Randić energy, MATCH Commun. Math. Comput. Chem. 73 (2015) 81–92.
- [12] K.C. Das, S.A. Mojallal, Relation between energy and (signless) Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 74 (2015) 359-366.
- [13] M. Dehmer, X. Li, Y. Shi, Connections between generalized graph entropies and graph energy, Complexity 21 (2015) 35-41.
- [14] O. Favaron, M. Maheo, J.F. Sacle, Some eigenvalue properties in graphs (conjectures of Graffiti II), Discret. Math. 111 (1993) 197–220.
- [15] R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218–238.
- [16] I. Gutman, B. Furtula, S.B. Bozkurt, On Randić energy, Linear Algebra Appl. 442 (2014) 50–57.
- 17] I. Gutman, B. Furtula, v. K. Vukićević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.
- 18] I. Gutman, D. Kiani, M. Mirzakhah, On incidence energy of graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 573–580.
- [19] I. Gutman, D. Kiani, M. Mirzakhah, B. Zhou, On incidence energy of a graph, Linear Algebra Appl. 431 (2009) 1229-1233.
- [20] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks. From Biology to Linguistics, Wiley–VCH, Weinheim, 2009, pp. 145–174.
- [21] I. Gutman, N. Trinaistić, Graph theory and molecular orbits. Total π -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
- [22] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006) 29-37.
- [23] M. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph, MATCH Commun. Math. Comput. Chem. 62 (2009) 561-572.
- [24] M.R.R. Kanna, B.N. Dhartmendra, G. Sridhara, The minimum dominating energy of a graph, Int. J. Pure Appl. Math. 85 (2013) 707–718.
- [25] J.H. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 47-52.
- [26] X. Li, Z. Qin, M. Wei, I. Gutman, M. Dehmer, Novel inequalities for generalized graph entropies Graph energies and topological indices, Appl. Math. Comput. 259 (2015) 470–479.
- [27] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
- [28] X. Li, J. Wang, Randić energy and Randić eigenvalues, MATCH Commun. Math. Comput. Chem. 73 (2015) 73-80.
- [29] J. Li, J.M. Guo, W.C. Shiu, A note on Randić energy, MATCH Commun. Math. Comput. Chem. 74 (2015) 389-398.
- [30] J. Liu, B. Liu, A Laplacian-energy-like invariant of a graph, MATCH Commun. Math. Comput. Chem. 59 (2008) 355-372.
- [31] M. Liu, B. Liu, On sum of powers of the signless Laplacian eigenvalues of graphs, Hacet. J. Math. Statist. 41 (2012) 527-536.
- [32] A. Lupas, Inequalities for the roots of a class of polynomials, Publ. Elektrotehn, Fak. Univ. Beogr. Ser. Math. Fiz. 594 (1977) 79-85.
- [33] A.D. Maden, New bounds on the incidence energy, Randić energy and Randić estrada index, MATCH Commun. Math. Comput. Chem. 74 (2015) 367–387.
- [34] I.Ž. Milovanović, E.I. Milovanović, Remarks on the energy and the minimum dominating energy of a graph, MATCH Commun. Math. Comput. Chem. 75 (2016) 305–314.
- [35] I.Ž. Milovanović, E.I. Milovanović, A. Zakić, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 179-182.
- [36] D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis, Kluwer, Dordrecht, 1993.
- [37] L. Shi, Bounds on Randić indices indices, Discret. Math. 309 (2009) 5238–5241.
- [38] G. Sridhara, M.R.R. Kanna, B.N. Dhartmendra, Milovanovic bounds for minimum dominating energy of a graph, Malay. J. Math. 3 (2014) 211–215.
- [39] W. Wang, D. Yang, Bounds for incidence energy of some graphs, J. Appl. Math. 2013 (2013) 1-7.
- [40] A. Yu, M. Lu, F. Tian, New upper bounds for the energy of graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 441-448.
- [41] B. Zhou, Energy of a graph, MATCH Commun. Math. Comput. Chem. 51 (2004) 111–118.
- [42] B. Zhou, More upper bounds for the incidence energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 123–128.