CS 4248 Natural Language Processing

Professor NG Hwee Tou

Department of Computer Science
School of Computing
National University of Singapore
nght@comp.nus.edu.sg

Drawbacks of RNN

- Dealing with long range dependencies
- Need large number of training steps
- Inherently sequential nature of RNNs hinders parallel computation

Transformer Networks

- Better exploit parallel processing
- Improved training speed (and improved accuracy)
- Self-attention neural networks
- Map a sequence of input vectors to a sequence of output vectors
- First used for machine translation

Self-Attention

- Compute the similarity between a vector in a sequence and every vector in the sequence
- n^2 pairs in a sequence of n vectors
- Relevance of a vector to another vector in the context ("attention")

Self-Attention

Diagram from "The illustrated transformer" blog post http://jalammar.github.io/illustrated-transformer/

Query, Key, Value

- Retrieves a value v for a query q by matching q to a key k and accessing its associated value v
- $\sum_{i} (\operatorname{sim}(\boldsymbol{q}, \boldsymbol{k}_i) \boldsymbol{v}_i)$

$q \longrightarrow$	$oldsymbol{k}_1$	$oldsymbol{v}_1$
	k_2	v_2
	• •	:
	\boldsymbol{k}_n	v_n

q: query vector representation of the current token

Self-Attention

 d_k : dimension of k

$$egin{aligned} oldsymbol{q}_i &= oldsymbol{x}_i W^Q \ oldsymbol{k}_i &= oldsymbol{x}_i W^K \ oldsymbol{v}_i &= oldsymbol{x}_i W^V \ oldsymbol{sim} oldsymbol{(x}_i, oldsymbol{x}_j) &= rac{oldsymbol{q}_i \cdot oldsymbol{k}_j}{\sqrt{d_k}} \ oldsymbol{lpha}_{ij} &= rac{\exp(sim(oldsymbol{x}_i, oldsymbol{x}_j))}{\sum_{k=1}^n \exp(sim(oldsymbol{x}_i, oldsymbol{x}_k))} \ oldsymbol{z}_i ext{: output vector} & oldsymbol{z}_i &= \sum_{j=1}^n lpha_{ij} oldsymbol{v}_j \end{aligned}$$

Self-Attention

Expressed compactly in matrix form:

$$Q = XW^Q \quad K = XW^K \quad V = XW^V$$
 $Z = \operatorname{softmax_{row}} \left(\frac{QK^T}{\sqrt{d_k}}\right)V$
 \boldsymbol{x}_i : row i of X \boldsymbol{q}_i : row i of Q
 \boldsymbol{k}_i : row i of K \boldsymbol{v}_i : row i of V
 \boldsymbol{z}_i : row i of Z

Multi-Head Self-Attention

- Head h: One set of W_h^Q , W_h^K , W_h^V contributes Z_h
- H: total number of heads
- Each head models one "representation subspace" or one aspect of the relationships

$$Z = (Z_1 \oplus Z_2 \oplus \cdots \oplus Z_H)W^O$$

Multi-Head Self-Attention

Diagram from "The illustrated transformer" blog post http://jalammar.github.io/illustrated-transformer/

Positional Encoding

- Order of words is important in language processing
- Need to indicate the position of each input vector in the sequence
- Positional embedding: a vector of sine and cosine function for each position
- Input vector: Add positional embedding to word embedding for each word

Transformer Model Architecture

Diagram from "Attention is all you need", NeurIPS 2017

Transformer Model Architecture

Diagram from "The illustrated transformer" blog post http://jalammar.github.io/illustrated-transformer/

Transformer Block

```
y = \text{LayerNorm}(x + \text{SelfAttn}(x))
```

$$z = \text{LayerNorm}(y + \text{FFNN}(y))$$

Encoder-Decoder Attention

- The decoder has an extra cross-attention layer
 - Q: based on output of the previous layer of the decoder X_{dec}
 - K, V: based on final output of the encoder X_{enc}

$$-Q = X_{dec}W^Q$$
 $K = X_{enc}W^K$ $V = X_{enc}W^V$

Layer Normalization

- Normalize values in each NN layer to have mean = 0 and variance = 1
- For each hidden unit h_i :

$$\mu = \frac{1}{H} \sum_{i=1}^{H} h_i \text{ and } \sigma = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (h_i - \mu)^2}$$

 $h_i \leftarrow g \times (\frac{h_i - \mu}{\sigma})$ where g is a parameter

- Keep the values of a hidden layer in a range
- Fewer training iterations needed (converge faster)

BERT

- Bidirectional Encoder Representations from Transformers
- Pre-train contextualized representations from unlabeled text
- Consider both left and right context (bidirectional)
- Fine-tune with one additional output layer for many downstream (sentence-level and tokenlevel) NLP tasks with excellent performance

BERT

- Transfer learning
- Two steps: pre-training then fine-tuning
- Pre-training: Train the model on unlabeled text for masked language model and next sentence prediction
- Fine-tuning: Initialize the model with the pretrained parameters, and all parameters are fine-tuned using labeled training data from the downstream NLP task

BERT

Diagram from the BERT paper, NAACL 2019 "BERT: Pre-training of deep bidirectional transformers for language understanding"

Model Architecture of BERT

- Multi-layer bidirectional transformer encoder
- L: number of transformer layers (blocks)
- d: hidden vector size
- H: number of self-attention heads
- BERT_{BASE}: L = 12, d = 768, H = 12 (110M parameters)
- BERT_{LARGE}: L = 24, d = 1024, H = 16 (340M parameters)

BERT Input Representation

Diagram from the BERT paper, NAACL 2019

Pre-Training of BERT

- Masked language model
 - Randomly mask 15% of all input tokens
 - Model to predict the masked tokens
- Next sentence prediction
 - Choose sentences A and B for each pre-training example
 - IsNext: B is the actual next sentence that follows A
 - NotNext: B is a random sentence from the corpus
 - Two-class prediction based on [CLS]
- Cross-entropy loss

Pre-Training Corpora

- BooksCorpus (800M words)
- English Wikipedia (2.5B words)
- Total size = 3.3B words

Contextual Embeddings

• Given pretrained BERT and a new input sentence of tokens $x_1, ..., x_n$, the output vector z_i from the final layer of BERT is a contextual embedding or representation of x_i in the context of the input sentence

Fine-Tuning BERT

- Sentence A and B:
 - Natural language inference (NLI) determines the relation between the first sentence (premise) and the second sentence (hypothesis): entail or contradict or neutral
 - Question-passage pairs in question answering
 - Degenerate text Ø pair in text classification or sequence tagging

Fine-Tuning BERT

- Sentence-level task (classification): Final output vector for the [CLS] token
 - Sentiment classification
- Token-level task (sequence tagging): Final output vector for the ith input token
 - POS tagging, named entity recognition