Lecture III: Deep Learning with Memory

李宏毅

Hung-yi Lee

Outline of Lecture III

Recurrent Neural Network (RNN) & LSTM

Variants of RNN

Next Wave: Attention-based Model

Example Application

Slot Filling

time of arrival:

November 2nd

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

Example Application time of dest departure \mathcal{Y}_1 \mathcal{Y}_2 arrive 2nd Taipei November on des other other time time Problem? 2nd Taipei November leave on place of departure Neural network Taipei \mathcal{X}_2 needs memory!

Recurrent Neural Network

Recurrent Neural Network (RNN)

RNN

The same network is used again and again.

Probability of "arrive" in each slot

Probability of "Taipei" in each slot

Probability of "on" in each slot

RNN- state machine perspective

- Infinite number of states
- States are learned

Of course it can be deep ...

Bidirectional RNN

or Deep Bidirectional

Long Short-term Memory (LSTM)

Original Network:

➤ Simply replace the neurons with LSTM

Extension: "peephole" **LSTM** y^{t+1} y^t c^{t+1} ct-1 × Z^{O} Z^{O} ct-1 h^{t-1} x^{t+1} \mathbf{x}^{t} \mathbf{c}^{t}

<u>Multiple-layer</u> <u>LSTM</u>

It is quite standard now.

https://img.komicolle.org/2015-09-20/src/14426967627131.gif

Recurrent Neural Network

Learning Target

Recurrent Neural Network

RNN Learning is very difficult in practice.

Unfortunately

感謝 曾柏翔 同學 提供實驗結果

RNN-based network is not always easy to learn
 Real experiments on Language modeling

The error surface is rough.

Helpful Techniques

- Nesterov's Accelerated Gradient (NAG):
 - Advance momentum method
- RMS Prop
 - Advanced approach to give each parameter different learning rates
 - Considering the change of Second derivatives
- Long Short-term Memory (LSTM)
 - Can deal with gradient vanishing (not gradient explode)

Helpful Techniques

Gated Recurrent Unit (GRU)

Structurally Constrained Recurrent Network (SCRN)

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

➤ Outperform or be comparable with LSTM in 4 different tasks

Outline of Lecture III

Recurrent Neural Network (RNN) & LSTM

More applications of RNN

Next Wave: Attention-based Model

Many to one

• Input is a vector sequence, but output is only one vector

Many to Many (Output is shorter)

- Both input and output are both sequences, <u>but the output</u> is shorter.
 - E.g. **Speech Recognition**

Many to Many (Output is shorter)

- Both input and output are both sequences, <u>but the output</u> is shorter.
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

- Both input and output are both sequences <u>with different</u> <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. *Machine Translation* (machine learning→機器學習)

- Both input and output are both sequences <u>with different</u> <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. *Machine Translation* (machine learning→機器學習)


```
06/12 10:39
                                         06/12 10:40
推
          tion:
                                         06/12 10:41
                                         06/12 10:47
         host:
推
                                         06/12 10:59
推
          403:
                                         06/12 11:11
                                         06/12 11:13
推
                                         06/12 11:17
                                         06/12 11:32
                                         06/12 12:15
推 tlkagk:
```

Ref:http://zh.pttpedia.wikia.com/wiki/%E6%8E%A5%E9%BE%8D%E6%8E%A8%E6%96%87 (鄉民百科)

- Both input and output are both sequences <u>with different</u> <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. *Machine Translation* (machine learning→機器學習)

One to Many

Input an image, but output a sequence of words

[Kelvin Xu, arXiv'15][Li Yao, ICCV'15] A vector for whole is woman image a CNN Input image **Caption Generation**

Outline of Lecture III

Recurrent Neural Network (RNN) & LSTM

More applications of RNN

Next Wave: Attention-based Model

Attention-based Model

Reading Comprehension

Reading Comprehension

• End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. NIPS, 2015.

The position of reading head:

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.		0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.		0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow	Prediction: yellow			

Demo video: https://www.facebook.com/Engineering/videos/10153098860532200/

Visual Question Answering

source: http://visualqa.org/

Visual Question Answering

Visual Question Answering

 Huijuan Xu, Kate Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering. arXiv Pre-Print, 2015

Is there a red square on the bottom of the cat?

GT: yes Prediction: yes

Homework 1

 Introduce a New NN with Memory https://github.com/TheCEDL/homework1

Candidates

- Search RNN on Arxiv-sanity link
- Jianpeng Cheng et al. Long Short-Term Memory-Networks for Machine Reading. arXiv16'.
- Nal Kalchbrenner et al. Grid Long Short-Term Memory. arXiv16'. (From DeepMind, Alex)
- Kaisheng Yao et al. Depth-Gated LSTM. arXiv15'.
- Shuohang Wang et al. Learning Natural Language Inference with LSTM. arXiv15'.
- Junyoung Chung et al. Gated Feedback Recurrent Neural Networks. arXiv15'.