MAT292 Notes

September 2021

Contents

1	Existence and Uniqueness Theorem	1
2	Autonomous Equations and Population Dynamics 2.1 Logistic Growth	2
3	Direction Fields and Orbits 3.1 Reducing non homogeneous systems to homogeneous systems	2
4	Laplace Transform	2
5	Inverse Laplace Transform	3
6	Solving ODEs with Laplace Transform	4
7	Discontinuous Forcing Functions	4
8	Impulse Functions	5
9	Convolution Integrals and Their Applications	6
1(Introduction to Partial Differential Equations	7
1:	1 Fourier Series	8
1	Existence and Uniqueness Theorem	
	1. We need $f(t,y)$ continuous in the rectangle to get existence	
	2. We need $f_y(t,y)$ continuous in the rectangle to get uniqueness	
	3. E & U Theorem is sufficient but not necessary. i.e. these conditions imply solut but not having these conditions doesnt mean there is no solution	ion

2 Autonomous Equations and Population Dynamics

2.1 Logistic Growth

If uninhibited, we assume exp. growth however in the long run, population is limited to K Model: y' = rh(y)y

We want $h(y) \approx 1$ if y is small, h(y) < 1 if y < k, h(y) = 0 if y = k and h(y) < 0 if y > K

This can thus be modelled as $y' = r(1 - \frac{y}{k})y$. This has two equilibria namely at y = 0 and yk. The inflection points can be found by setting the derivative y'' to 0.

3 Direction Fields and Orbits

3.1 Reducing non homogeneous systems to homogeneous systems

Lets take a solution x and write it as $x = \phi + v$ where v is a constant. Then $x' = Ax + b \rightarrow \phi = A(\phi + v) + b$. Since $x_{eq} = A^{-1}b$, Av + b = 0 by the equilibrium condition $(\phi' - A\phi)$ we have that $\phi' = A\phi$. So that $x = \phi + x_{eq}$ where ϕ is a solution of the homogeneous system.

Every solution of the non homogeneous problem can be written as a solution of the homogeneous problem plus the equilibrium.

4 Laplace Transform

- Remark: The laplace transform will allow us to reduce solving an ODE to solving an algebraic equation
- Solve algebraic equation and use the inverse laplace transform to get the solution to the ODE
- Definition: If f is defined on $[0, \infty]$, the Laplace Transform is defined as $F(s) = \int_0^\infty e^{-st} f(t) dt$
- We write $F = \mathcal{L}\{f\}$
- We use uppercase letters for Laplace transform e.g. G(s) is the LT of g(t)
- Example: For $f(t) = e^{at}$, we get $F(s) = \mathcal{L}\{f\}(s) = \int_0^\infty e^{-st} e^{at} dt = \lim_{b \to \infty} \int_0^b e^{(a-s)t} dt = \lim_{b \to \infty} \frac{1}{a-s} \left(e^{(a-s)b} 1 \right) = \frac{1}{s-a} \text{ if } s > a$
- $\mathcal{L}\{1\} = \frac{1}{s}$
- Theorem: $\mathcal{L}\{c_1f_1 + c_2f_2\} = c_1\mathcal{L}\{f_1\} + c_2\mathcal{L}\{f_2\}$
- To find $\mathcal{L}\{\sin(at)\}$, write $\sin(at) = \frac{1}{2i}(e^{iat} e^{-iat})$ and use the theorem above
- This will give $\frac{1}{2i} \left(\frac{1}{s-ia} \right) \frac{1}{2i} \left(\frac{1}{s+ia} \right) = \frac{a}{s^2+a^2}$ for s > 0

- Example: LT of $f(t) = e^{2t}$ for $0 \le t < 1$ and f(t) = 4 for $1 \le t$
- Divide the integral into two seperate parts and evaluate it
- Exponential order: A function f(t) is of exponential order for M > 0, K > 0 and $a \in \mathbb{R}$ if $|f(t)| \leq Ke^{at}$ for $t \geq M$ i.e. f eventually becomes between two exponential functions
- Theorem: Every bounded function is of exponential order
- A function f(t) is piecewise continuous on [a, b] iff there are finitely many "jump points" between a and b $a \le t_0 < t_1 < \cdots < t_{k-1} < t_k = b$ such that f is continuous on each of the intervals (t_i, t_{i+1}) and f has finite limits at the jump points.
- Theorem: If for a function f(t), we have that f is piecewise continuous on $[0, A] \forall A \geq 0$ and f is of exponential order for M, k and a. Then $\mathcal{L}\{f\}$ exists for all s > a.
- Theorem: If f(t) is of exponential order then we have: $F(s) \to 0$ as $s \to \infty$ where F(s) is the L.T. of f
- Theorem: If f is continuous and f' is piecewise continuous on any interval [0, A] and f, f' are of exponential order for M, k, a then $\mathcal{L}\{f'\}(s) = s\mathcal{L}\{f\}(s) f(0)$ for s > a. Under the same conditions for n derivatives, $\mathcal{L}\{f^{(n)}\}(s) = s^n\mathcal{L}\{f\}(s) s^{n-1}f(0) s^{n-2}f'(0) \dots sf^{(n-2)}(0) f^{(n-1)}(0)$
- Proof: $\mathcal{L}\lbrace f'\rbrace(s) = \int_0^\infty e^{-st} f'(t) dt = \lim_{b\to\infty} \left(\int_0^b e^{-st} f'(t) dt\right)$ $= \lim_{b\to\infty} \left(\left[e^{-st} f(t)\right]_0^b + \int_0^b f(t) s e^{-st} dt\right) = \lim_{b\to\infty} \left(e^{-bs} f(b) - f(0) + s \int_0^b f(t) e^{-st} dt\right)$ $= s \mathcal{L}\lbrace f\rbrace(s) - f(0) \text{ where } s > a \text{ (by definition of exponential order)}$

5 Inverse Laplace Transform

- Theorem: If f(t), g(t) are piecewise continuous and of exponential order, then $\mathcal{L}\{f\} = \mathcal{L}\{g\} \implies f(t) = g(t)$
- Technicality: Take $f(t) = e^t$, $g(t) = \begin{cases} e^t & t \neq 5 \\ 0 & t = 5 \end{cases}$. Clearly $\mathcal{L}\{f\} = \mathcal{L}\{g\}$ but $f(t) \neq g(t) \forall t$
- Convention: We write f(t) = g(t) as long as they are the same whenever they are continuous
- Definition: If f is piecewise continuous and of exponential order and $\mathcal{L}\{f\}(s) = F(s)$, then we call $f(t) = \mathcal{L}^{-1}\{F\}(t)$
- There is a complex analysis formula (Mellin Transform) to find $\mathcal{L}^{-1}\{F\}$. However this is rarely used in practice and we instead use tables

6 Solving ODEs with Laplace Transform

- Lets solve the IVP $y'' + 2y' + 5y = e^{-t}$, y(0) = 1, y'(0) = -3
 - Use the Laplace transform: $\mathcal{L}\{y'' + 2y' + 5y\} = \mathcal{L}\{e^{-t}\}\$
 - $s^{2}Y(s) sy(0) y'(0) + 2(sY(s) y(0)) + 5Y(s) = \frac{1}{s+1}$
 - $-s^{2}Y(s) s \cdot 1 (-3) + 2(sY(s) 1) + 5Y(s) = \frac{1}{s+1}$ using the initial conditions
 - Solving this gives $Y(s) = \frac{s^2}{(s+1)(s^2+2s+5)}$
 - Simplifying and using partial fractions, $Y(s) = \frac{1}{4} \frac{1}{s+1} + \frac{3}{4} \frac{s+1}{(s+1)^2+4} \frac{2}{(s+1)^2+4}$
 - $-y(t) = \mathcal{L}^{-1}\{Y(s)\} = \frac{1}{4}\mathcal{L}^{-1}\{\frac{1}{s+1}\} + \frac{3}{4}\mathcal{L}^{-1}\{\frac{s+1}{(s+1)^2+4}\} 2\mathcal{L}^{-1}\{\frac{1}{(s+1)^2+4}\}$
 - $= \frac{1}{4}e^{-t} + \frac{3}{4}e^{-t}\cos(2t) e^{-t}\sin(2t)$
- Lets solve the IVP y'''' + 2y' + y = 0, y(0) = 1, y'(0) = -1, y''(0) = 0, y'''(0) = 2
 - Applying the Laplace transform: $s^4Y(s) s^3y(0) s^2y'(0) sy''(0) y'''(0) + 2(s^2Y(s) sy(0) y'(0)) + Y(s) = 0$
 - Using the initial conditions, $s^4Y(s) s^3 + s^2 2 + 2(s^2Y(s) s + 1) + Y(s) = 0$
 - Solving gives $Y(s) = \frac{s^3 s^2 + 2s}{(s^2 + 1)^2}$
 - We use a repeated partial fraction decomposition to write Y(s) as $\frac{As+B}{s^2+1} + \frac{s+1}{(s^2+1)^2}$
 - We know $y(t) = \mathcal{L}^{-1}\left\{\frac{s}{s^2+1} \frac{1}{s^2+1} + \frac{s}{(s^2+1)^2} + \frac{1}{(s^2+1)^2}\right\}$
 - For the third term, we use $\mathcal{L}\{t\cdot f(t)\}=\frac{-d}{ds}F(s)$ and then get $y(t)=\cos t-\sin t+\frac{1}{2}t\sin t+\frac{1}{2}\sin t-\frac{1}{2}t\cos t$

7 Discontinuous Forcing Functions

- Finding $\mathcal{L}\{t\} = \int_0^\infty e^{-st}t \, dt = \frac{1}{s^2}$ (IBP) or using $\mathcal{L}\{t\} = \mathcal{L}\{t \cdot 1\}$ and $\mathcal{L}\{t \cdot 1\} = -\frac{d}{ds}(\frac{1}{s}) = \frac{1}{s^2}$
- Consider y'' + 4y = g(t) with y(0) = 0, y'(0) = 0 and $g(t) = \begin{cases} 0 & 0 < t < 5 \\ \frac{t-5}{5} & t = 5 \le t < 10 \\ t & 10 \le t \end{cases}$
 - Can split it up into 3 parts and find relevant boundary conditions in each case to be used in the next case
- Piecewise defined functions can simulate the activation of a signal
 - $-u_c(t)$ is a step function that is 0 till x=c and then 1 afterwards
 - $-\ u_{cd}(t)$ is an indicator function which is 1 between c and d and 0 everywhere else
 - Use a combination of step and indicator functions = $u_{cd}(t)\frac{t-c}{d-c} + u_d(t)$ which is 0 less than c, increasing between c and d and 1 for values greater than d

• We can find the Laplace transforms of these functions

$$- \mathcal{L}\{u_c\} = \int_0^\infty e^{-st} u_c(t) dt = \int_c^\infty e^{-st} \cdot 1 dt = \frac{e^{-cs}}{s}$$

$$- \mathcal{L}\{u_{cd}\} = \mathcal{L}\{u_c - u_d\} = \frac{e^{-cs}}{s} - \frac{e^{-ds}}{s}$$

• The function g(t) from earlier can be written as $u_{5,10}(t) \cdot \frac{t-5}{5} + u_{10}(t) \cdot 1$

- Rearrange this as
$$\frac{1}{5} [u_{5,10}(t)(t-5) + 5u_{10}] = \frac{1}{5} [(u_5(t) - u_{10}(t))(t-5) + 5u_{10}(t)] = \frac{1}{5} [u_5(t)(t-5) - u_{10}(t)(t-10)]$$

- $-h(t) = u_5(t)(t-5)$ is the time shift of f by t=5
- Theorem (Laplace transform of time-shift): If $F = \mathcal{L}\{f\}$ exists for s > a and $c \ge 0$, then $\mathcal{L}\{u_c(t)f(t-c)\} = \int_0^\infty e^{-st}u_c(t)f(t-c) dt = \int_c^\infty e^{-st}f(t-c) dt = \int_0^\infty e^{-s(u+c)}f(u) du = e^{-sc}\int_0^\infty e^{-su}f(u) du = e^{-sc}\mathcal{L}\{f\}$
- Consider the IVP y(0) = 0, y'(0) = 0 and $y'' + 4y = u_1(t)$

$$-\mathcal{L}{y'' + 4y} = \mathcal{L}{u_1(t)} \to s^2Y(s) - sy(0) + 4Y(s) = \frac{e^{-s \cdot 1}}{s}$$

$$-(s^2+4)Y(s) = \frac{e^{-s}}{s} \to Y(s) = \frac{e^{-s}}{s(s^2+4)}$$

$$-Y(s) = e^{-s} \left(\frac{1}{4s} + \frac{-\frac{1}{4}s}{s^2+4} \right) = \frac{1}{4}e^{-s} \left(\frac{1}{s} - \frac{s}{s^2+4} \right)$$

- Let $H(s) = \frac{1}{s} \frac{s}{s^2+4}$ so that $h(t) = 1 \cos(2t)$. $y(t) = \frac{1}{4}u_1(t)h(t-1)$ by the previous theorem
- Consider y'' + 4y = g(t) with y(0) = 0, y'(0) = 0 and $g(t) = \begin{cases} 0 & 0 < t < 5 \\ \frac{t-5}{5} & t = 5 \le t < 10 \text{ as } t \le t < 10 \end{cases}$

before

$$-g(t)$$
 is equivalent to $\frac{1}{5}(u_5(t)(t-5)-u_{10}(t)(t-10))$

$$- \mathcal{L}{y'' + 4y} = \mathcal{L}{g(t)} \to (s^2 + 4)Y(s) = \frac{1}{5} \left[e^{-5s} \cdot \frac{1}{s^2} - e^{-10s} \cdot \frac{1}{s^2} \right]$$

$$-Y(s) = \frac{1}{5} \left[e^{-5s} \frac{1}{s^2(s^2+4)} - e^{-10s} \frac{1}{s^2(s^2+4)} \right] \text{ so that } y(t) = \frac{1}{5} \left[u_5(t)h(t-5) - u_{10}(t)h(t-10) \right]$$

where $h(t) = \mathcal{L}^{-1} \left\{ \frac{1}{s^2(s^2+4)} \right\} = \frac{1}{4}t - \frac{1}{8}\sin(2t)$

8 Impulse Functions

•
$$\delta_{\epsilon}(t) = \frac{1}{\epsilon} \cdot [u_0(t) - u_{\epsilon}(t)]$$

• Note:
$$\int_0^\infty \delta_{\epsilon}(t) dt = 1$$

• Equivalently
$$\delta_{\epsilon}(t) = \begin{cases} \frac{1}{\epsilon} & 0 \le t < \epsilon \\ 0 & \text{else} \end{cases}$$

• Let
$$\delta = \lim_{\epsilon \to 0} \delta$$
 such that $\delta(t) = 0$ when $t \neq 0$

• Then
$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases}$$

•
$$\int_0^\infty \delta(t) dt = \lim_{\epsilon \to 0} 1 = 1$$

- For any function f(t) continuous on $a \leq 0 < b$, we have $\int_a^b f(t)\delta(t) dt = \lim_{\epsilon \to 0} \int_a^b f(t)\delta_\epsilon(t) dt = \lim_{\epsilon \to 0} \int_0^\epsilon f(t) \cdot \frac{1}{\epsilon} dt = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^\epsilon f(t) dt = \lim_{\epsilon \to 0} \frac{1}{\epsilon} (\epsilon 0) f(t*)$ for some point t* s.t. $0 \leq t* \leq \epsilon$ (MVT for integrals)
- = $\lim_{\epsilon \to 0} f(t^*) = f(0)$ since $t^* \to 0$ as $\epsilon \to 0$
- \bullet δ is a generalized function (aka distribution). It is also called the Dirac delta function
- We can also shift the impulse function i.e. $\delta(t-t_0)=0$ if $t\neq t_0$
- If f(t) is continuous on $a \le t_0 < b$, $\int_a^b f(t) \delta(t t_0) dt = f(t_0)$
- Theorem $\mathcal{L}\{\delta(t-t_0)\} = \int_0^\infty e^{-st} \delta(t-t_0) dt = f(t_0) = e^{-st_0}$
- Consider an undamped oscillator $y'' + y = I_0 \delta(t)$ y(0) = 0, y'(0) = 0

- Laplace:
$$s^2Y(s) + Y(s) = I_0e^{-s\cdot 0} \implies Y(s) = I_0\frac{1}{s^2+1}$$

- Inverse LT: $y(t) = I_0 \sin(t)$
- However this gives $y'(0) = I_0$ but since we only consider $t \ge 0$, y(t) is actually $u_0(t)I_0\sin(t)$
- $-\lim_{t\to 0^-} y'(t) = 0$

9 Convolution Integrals and Their Applications

- If f and g are piecewise continuous on $[0, \infty)$, we define their convolution as $(f*g)(t) = \int_0^t f(t-\tau)g(\tau) d\tau$
- Example: f(t) = t and $g(t) = e^{-2t}$

$$-(f*g)(t) = \int_0^t (t-\tau)e^{-2\tau} d\tau = [(t-\tau)(\frac{-1}{2})e^{-2\tau}]_{\tau=0}^{\tau=t} + \int_0^t (-\frac{1}{2})e^{-2\tau} d\tau = \frac{t}{2} + \frac{1}{4}e^{-2t} - \frac{1}{4}e^$$

• Rules for Convolutions

$$-f * g = g * f$$

$$-f*(g+h) = f*g + f*h$$

$$- f * 0 = 0$$

$$-(cf) * g = c(f * g)$$

- Note:
$$f * 1 = f$$

• Proof that the convolution is commutative:

$$- f * g = \int_0^t f(t - \tau)g(\tau) d\tau = - \int_t^0 f(u)g(t - u) du = \int_0^t g(t - u)f(u) du = g * f$$

• Convolution Theorem: If $F(s) = \mathcal{L}\{f(t)\}$ and $G(s) = \mathcal{L}\{g(t)\}$ both exist for $s > a \ge 0$ then $F(s)G(s) = \mathcal{L}\{(f*g)(t)\}$ and equivalently $\mathcal{L}^{-1}\{F(s)G(s)\} = (f*g)(t)$

10 Introduction to Partial Differential Equations

- The Heat Equation
 - Consider a metal rod of length L. Let u(x,t) be the temperature in the cross section at location x and time t
 - $-u_t(x,t)$ represents the change in temperature over time for a fixed slice
 - $-u_x(x,t)$ represents the change over the rod for a fixed time
 - $-u_{xx}(x,t)$ represents how $u_x(t)$ changes over the rod for a fixed time
 - The Heat Equation is given by $u_t = \alpha^2 u_{xx}$ where a^2 is the thermal diffusivity
- Example: Solving the Heat Equation
 - We can solve this by the separation of variables
 - Consider a metal rod with length 50cm, insulated on the ends and with an initial temp of 20 C throughout with the ends maintained at 0C
 - The homogeneous problem is $u_t = \alpha^2 u_{xx}$ with u(0,T) = 0, u(L,t) = 0 for t > 0 and u(x,0) = 20
 - Assume that we can write u(x,t) = X(x)T(t). This is a strong assumption since many functions cannot be written in this form e.g. $u(x,t) = \sin(xt)$
 - Using this assumption, we can rewrite the homogeneous problem as $X(x)T'(t) = \alpha^2 X''(x)T(t)$, X(0)T(t) = 0, X(L)T(t) = 0 and X(x)T(0) = 20
 - This leads to X(0) = 0 and X(L) = 0 since T(t) cannot always be 0
 - We rearrange the equation above as $\frac{T'(t)}{\alpha^2 T(t)} = \frac{X''(x)}{X(x)} = -\lambda$
 - Since the two sides are equal, this expression cannot change over x or t so we let the expression be equal to $-\lambda$ where λ is a constant
 - We can find a solution for X''(x) since $\frac{X''(x)}{X(x)} = -\lambda$ which has a solution $X(x) = c_1 \cos(\sqrt{\lambda}x) + c_2 \sin(\sqrt{\lambda}x)$ and using X(0) = 0 and X(L) = 0, we get $c_1 = 0$ and $0 = c_2 \sin(\sqrt{\lambda} \cdot L)$ so that $\sqrt{\lambda} \cdot L = n \cdot \pi$. Equivalently $\lambda = \frac{n^2 \cdot \pi^2}{L^2}$
 - We can similarly find a solution for T(t) where the ODE is $\frac{T'(t)}{\alpha^2 T(t)} = -\lambda$
 - $-T'(t) = -\frac{n^2\pi^2}{L^2}\alpha^2T(t) \implies T(t) = e^{-\frac{n^2\pi^2}{L^2}\alpha^2t}$
 - Combining into solutions of the heat equation: $u(x,t) = X(x)T(t) = \sin(\frac{n\pi}{L}x)e^{-\frac{n^2\pi^2}{L^2}\alpha^2t}$ (there can be any constant factor at the front)
 - Fundamental solutions to the Heat Equation: $u_n(x,t) = \sin(\frac{n\pi x}{L})e^{-\frac{n^2\pi^2}{L^2}\alpha^2t}$

- Theorem (Superposition Principle): If a(x,t) and b(x,t) solve the heat equation, $c_1a(x,t) + c_2b(x,t)$ solves the heat equation $\forall c_1, c_2 \in \mathbb{R}$
- General solution to the heat equation is $u(x,t) = \sum_{n=1}^{\infty} c_n \sin(\frac{n\pi x}{L}) e^{-\frac{n^2 \pi^2 \alpha^2}{L^2}t}$
- Using the initial conditions, we have $20 = u(x,0) = \sum_{n=1}^{\infty} c_n \sin(\frac{n\pi x}{L})$
- This will work for $c_n = \frac{2}{L} \int_0^L 20 \cdot \sin(\frac{n\pi x}{L})$ (Fourier Series)

11 Fourier Series

- We define an inner product on PC[a, b] (piecewise continuous from a to b) by $\langle f, g \rangle = \int_a^b f(x)g(x) dx$
- We say f and g are orthogonal if $\langle f, g \rangle = 0$
- Consider $f(x) = \cos(x)$ and $g(x) = \sin(x)$ in $PC[-\pi, \pi]$. $< \cos x, \sin x > = \int_{-\pi}^{\pi} \cos x \sin x \, dx = 0 \implies \cos x, \sin x$ are orthogonal on $PC[-\pi, \pi]$
- Consider $f(x) = \cos(x)$ and $g(x) = x^2$ in $PC[-\pi, \pi] < \cos x, x^2 > = \int_{-\pi}^{\pi} \cos x x^2 dx = -4\pi$
- Theorem: The following set of functions is an orthogonal family in PC[-L, L]: $\left\{\frac{1}{2}, \sin(\frac{m\pi x}{L}), \cos(\frac{m\pi x}{L}) : m = 1, 2, 3, \dots\right\}$
- Theorem (Fourier's Theorem): Suppose f is periodic with period 2L and both f, f' belonging to PC[-L, L]. Then f has a Fourier Series:

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos \frac{m\pi x}{L} + b_m \sin \frac{m\pi x}{L} \right), \text{ where } a_0 = \frac{2}{L} < f(x), \frac{1}{2} > = \frac{1}{L} \int_{-L}^{L} f(x) \, dx,$$

$$a_m = \frac{1}{L} < f(x), \cos \frac{m\pi x}{L} > = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{m\pi x}{L} \, dx \text{ and } b_m = \frac{1}{L} < f(x), \sin \frac{m\pi x}{L} > = \int_{-L}^{L} f(x) \sin \frac{m\pi x}{L} \, dx$$

• The Fourier series converges to f(x) at all points where f is continuous and to the midway point between left and right limit at all points where f is discontinuous