实验报告

姓名 李霄奕 日期 2022年10月19日 No. PB21511897 评分:

实验题目: 光纤传感器

实验目的: 研究光纤传感器的功率传输特性

实验原理:

1. 透射式横(纵)向光纤位移传感

通过改变两透射多模光纤出光芯径的相对位置(横向或者纵向),引起光纤中的传输光光强变化,通过检测光强的变化实现对待测量的测量,接收光纤的输出光强被其位移调制,在接收光纤终端所探测到的光强公式为:

$$I_{(r,z)} = \frac{sI_0}{\pi\omega^2(z)} \exp\left\{-\frac{r^2}{\omega^2(z)}\right\}$$

2. 反射式光纤位移传感

由发射光纤发出的光照射到反射材料上,通过检测反射光的强度变化,就能测出反射体的位移。对于反射型光 纤位移传感器,在接收光纤终端所探测到的光强近似公式为:

$$I_A(x) = \frac{RSI_0}{\pi\omega^2(2x)} \exp\left\{-\frac{r^2}{\omega^2(2x)}\right\}$$

3. 微弯光纤位移传感器

当光纤发生弯曲时,由于其全反射条件被破坏,纤芯中传播的某些模式光束进入包层,造成光纤中的能量损耗。 光纤夹持在一个周期波长为 A 的梳妆结构中。当梳妆结构(变形器)受力时,光纤的弯曲情况将发生变化,于是纤芯中跑到包层中的光能(即损耗)也将发生变化,光纤由于弯曲产生的光能损耗系数是:

$$\alpha = \frac{A^2 L}{4} \frac{\sin[(\omega - \omega_c)L/2]}{(\omega - \omega_c)L/2} + \frac{\sin[(\omega + \omega_c)L/2]}{(\omega + \omega_c)L/2}$$

式中 ω_c 称为谐振频率。

实验仪器:

光纤输出 650nm 半导体激光器、光纤准直镜、反射式传感用光纤、透射式传感用光纤、光纤功率计、反射镜、控制电源、微调位移台、分光棱镜、承托位移台、监视器。

实验步骤:

1. 根据和实验室提供的光具座搭建光路分别改变 z、r 可得到纵向、横向位移传感特性,实验中发射光纤不动,缓慢改变接收光纤位置,记录传输功率。

- 2. 根据反射式光纤位移传感实验原理搭建光路,调节 Y 型光纤的姿态至功率最大,从距离最近处开始测量,逐渐调远,记录传输功率。
- 3. 根据微弯型光纤位移传感器原理使用实验室提供的仪器搭建光路,光源与功率计用微弯光纤连接起来,将微弯光纤夹持在变形器上,逐渐靠近两个变形器,同时观察功率计示数,待功率计示数开始变小或者光纤微露红光时开始测量,记录传输功率。

实验数据: (注意: 实验器材损坏,功率表示数波动,不能保证数据准确性,以下为目测平均值)

1. 横向位移传感

参数: 中心位移 2.350mm, 测量范围 0.01mm×±15

横向位移(mm)	-0.15	-0.14	-0.13	-0.12	-0.11	-0.10	-0.09	-0.08
功率(μW)	4.42	4.64	4.94	5.39	5.76	6.10	6.69	7.96
横向位移(mm)	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	0.00
功率(μW)	9.19	10.44	12.08	13.49	15.56	17.50	18.45	19.07
横向位移(mm)	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07
功率(μW)	19.07	18.56	17.43	15.53	13.56	11.99	10.44	9.08
横向位移(mm)	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15
功率(μW)	7.84	6.87	6.23	5.72	5.26	4.87	4.54	4.38

2. 纵向位移传感

参数: 起始位移 16.60mm, 测量范围 0.05mm×24

纵向位移(mm)	0.00	0.05	0.10	0.15	0.20	0.25
功率(μW)	24.23	22.61	21.43	20.74	20.22	19.67
纵向位移(mm)	0.30	0.35	0.40	0.45	0.50	0.55
功率(μW)	19.41	19.16	18.79	18.33	17.90	17.48
纵向位移(mm)	0.60	0.65	0.70	0.75	0.80	0.85
功率(μW)	17.21	16.93	16.62	16.29	15.89	15.68
纵向位移(mm)	0.90	0.95	1.00	1.05	1.10	1.15
功率(μW)	15.47	15.13	14.81	14.44	14.14	13.88

3. 反射位移传感

参数: 起始位移 3.50mm, 测量范围 0.05mm×60

位移(mm)	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55
功率(μW)	1.50	3.27	5.64	8.14	10.75	13.57	16.43	19.49	22.47	25.48	28.53	30.86
位移(mm)	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	1.05	1.10	1.15
功率(μW)	32.58	34.58	35.93	37.52	38.73	39.95	40.97	41.88	42.17	42.39	42.55	42.43
位移(mm)	1.20	1.25	1.30	1.35	1.40	1.45	1.50	1.55	1.60	1.65	1.70	1.75
功率(μW)	42.56	42.42	41.99	40.90	39.84	38.05	36.31	34.67	32.67	30.21	28.04	25.98
位移(mm)	1.80	1.85	1.90	1.95	2.00	2.05	2.10	2.15	2.20	2.25	2.30	2.35
功率(μW)	24.12	22.47	20.62	18.94	17.87	16.75	15.66	14.51	13.49	12.30	11.34	10.62
位移(mm)	2.40	2.45	2.50	2.55	2.60	2.65	2.70	2.75	2.80	2.85	2.90	2.95
功率(μW)	9.84	9.01	8.55	7.98	7.44	7.09	6.71	6.42	5.96	5.70	5.32	5.07

4. 微弯传感

参数: 起始位移 18.20mm, 测量范围 0.05mm×52

位移(mm)	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55
功率(μW)	544.6	540.2	539.9	538.2	536.8	536.4	535.7	534.0	531.9	531.1	527.9	523.6
位移(mm)	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	1.05	1.10	1.15
功率(μW)	518.4	512.9	507.9	503.8	499.5	494.8	487.4	481.5	472.4	466.2	460.1	453.2
位移(mm)	1.20	1.25	1.30	1.35	1.40	1.45	1.50	1.55	1.60	1.65	1.70	1.75
功率(μW)	447.4	440.3	434.9	429.7	426.4	422.7	418.0	413.8	411.0	407.5	405.0	404.4
位移(mm)	1.80	1.85	1.90	1.95	2.00	2.05	2.10	2.15	2.20	2.25	2.30	2.35
功率(μW)	403.5	401.2	400.0	397.9	394.7	390.7	384.3	379.3	376.5	375.4	373.0	369.2
位移(mm)	2.40	2.45	2.50	2.55								
功率(μW)	365.4	361.9	361.4	357.9								

数据处理与分析:

1. 横向位移传感

2. 纵向位移传感

3. 反射位移传感

4. 微弯传感

实验总结和误差分析:

横向位移传感曲线为一条对称的、中间高、两头低的曲线;纵向位移传感曲线为一条随距离增大单调递减的曲线;反射位移传感曲线为一条先增大、后减小的曲线,且递增区域小于递减区域(递增区域比递减区域陡峭);微弯传感曲线为一条大致单调递减的曲线。

本实验的主要误差有:

- 1. 实验器材损坏,无法读出准确数值
- 2. 发射光源与接收端不能严格对齐,存在一定误差
- 3. 实验环境有灯光存在,对结果有些许干扰