东南大学考试卷(A卷)

课程名称 概率论与数理统计 考试学期 18-19-3

 适 用 专 业		全校	考	 试 形 式	闭卷	考证	 式时间长	度 120 分	·钟
题号			111	四	五	六	七	八	
得分									

得分

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \, \text{表示标准正态分布的分布函数},$$

$$\Phi(-1.65) = 0.05; \Phi(-1.96) = 0.025; \Phi(1) = 0.8413; \Phi(2) = 0.9772$$

$$T_n \sim t(n)$$
 $P(T_{24} \ge 2.06) = 0.025; P(T_{24} \ge 1.71) = 0.05;$
 $P(T_{25} \ge 2.06) = 0.025; P(T_{25} \ge 1.70) = 0.05;$

$$K_n \sim \chi^2(n)$$
 $P(K_{24} \ge 39.36) = 0.025; P(K_{24} \ge 12.40) = 0.975;$
 $P(K_{25} \ge 40.65) = 0.025; P(K_{25} \ge 13.12) = 0.975;$

- 一、选择题(每题 2', 共 10')
 - 1) 已知随机变量(X,Y)的联合概率分布律如下

X	1	2
Y		
1	1/4	A
2	1/3	В

且X和Y相互独立,则(A,B)的值为

(A) (5/28,5/21)

(B) (4/21,19/28)

(C)(1/7,23/84)

- (D) (19/28,4/21)
- 2) 随机变量 X 的概率密度布函数为

$$f(x) = \begin{cases} x & 0 < x < 1 \\ \frac{3}{14}x^2 & 1 \le x < 2, \\ 0 & \text{其他} \end{cases}$$

X 的期望 EX 为

$$(A)\int_0^1 x dx + \frac{3}{14} \int_1^2 x^2 dx \qquad (B)\int_0^1 x^2 dx + \frac{3}{14} \int_1^2 x^3 dx$$

$$(C)\int_0^1 x dx + \frac{3}{14} \int_1^2 x^3 dx \qquad (D)\int_0^1 x^2 dx + \frac{3}{14} \int_1^2 x^2 dx$$

鉄

輧

锹

自

杵名

3) 设随机变量 X 与 Y 相互独立,都服规则 $P(Z < 1) =$	从指数分布 $e(1)$ 。 令 $Z = \max(X, Y)$, ()					
(A) $(1-e^{-1})(1-e^{-1})$	(B) $1-(1-e^{-1})(1-e^{-1})$					
(C) e^{-2}	(D) e^{-1}					
4) 设连续型随机变量 X 的密度函数为 $f(x)$,且 $f(x) = f(4-x)$, $F(x)$ 为 X 的分布函数。						
已知 $F(1)=0.2$, 则概率 $P(1 < x < 2)=$	()					
(A) 0.2	(B) 0.3					
(C) 0.8	(D) 0.4					
5) 设 $(X_1, X_2, \dots, X_{10})$ 为总体 $X \sim N(0, 1)$ 的一个样本, \overline{X} 为样本均值, S^2 为样本方差,						
则有	()					
$(A) \overline{X} \sim N(0,1)$	(B) $10\bar{X} \sim N(0,1)$;					
(C) $\overline{X}/S \sim t(9)$;	(D) $8X_1^2 / \sum_{i=3}^{10} X_i^2 \sim F(1,8)$.					
二、填充题(每空格 2', 共 26')						
1) 己知 P(B)=0.5, P(A)=0.3, A 和 F	1) 已知 P(B)=0.5, P(A)=0.3, A 和 B 互不相容,则 $P(A \overline{B}) =$ 。					
2) 从区间[0,2]中任取两个数,其和	小于1的概率为。					
3) 设随机变量 X 服从泊松分布,且	设随机变量 X 服从泊松分布,且 $EX=2$, $P\{X<2\}=$ 。					
4) 随机变量 X, Y 相互独立,X~N(-1	随机变量 X, Y 相互独立,X~N(-1,1), Y~N(1,8),则 P(X+Y<3)=。					
5) 随机变量 X, Y 的联合分	随机变量 X, Y 的联合分布律为: P(X=1,Y=1)=0.2; P(X=1,Y=2)=0.3;					
P(X=2,Y=1)=0.4; P(X=2,Y=2)=	=0.1 。 则 Z=min(X,Y) 分 布 律					
为。						
6) 若随机变量 X,Y 满足, DX=DY=2	2,相关系数 r=0.5;则 D(X-Y)=。					
7) 设随机变量序列 {Xn,n=1	,2,} 独立同分于匀分布 U(0,π),则					
$\frac{1}{n}(\sin X_1 + \sin X_2 + + \sin X_n)$	<u></u> ∘					
8) 设总体 X 服从正态分布 N(2,8), 2	$X_1, X_2,, X_{16}$ 是来自该总体的样本, $ar{X}$ 表示样					
本均值, 则 $E(\overline{X})^2 =$ 。						

第 2 页 共 5 页-

此答卷无效

自

觉遵

小作

- 9) 随机变量 X 的分布律为 P(X=-3)=0.4, P(X=3)=0.6, 则其分布函数为_____。
- 10) 随机变量 X 的概率密度为

$$f_X(x) = \begin{cases} 3x^2 & 0 < x < 1 \\ 0 & 其他 \end{cases}$$
,则 Y=1-2X 的密度函数为_____。

- 12) 设某总体服从 N(m,c) ,有来自该总体的容量为 25 的简单随机样本,其样本均值为 4,样本标准差为 2;则在水平 α =0.1 下,m 的置信区间为_____。
- 13) 设总体服从指数分布 e(a), a 为未知参数,若 4.22, 0.81, 2.03, 0.89, 2.05,是来自该总体的简单随机样本的观测值,则 a 的矩估计值为
- 三、(15') 设随机变量(X,Y)的联合密度为

.
$$f(x, y) =$$

$$\begin{cases} axy & 0 < x < 1, x < y < 1 \\ 0 & 其他 \end{cases}$$

求(1)常数a;(2)Y的边缘密度函数;(3)条件概率P(X<0.5|Y<0.4)。

莊

如

四、(10') 设甲箱中有红球 4 只,白球 3 只,乙箱中有红球 3 只,白球 4 只。现从甲箱中任选一球放入乙箱,然后再从乙箱中任取两只球。(1) 求取出的两球均为红色的概率;(2)如果已知取出两球均为红色,则从甲箱中取出的球是红色的概率是多少?

五、(9')设随机变量 X 和 Y 相互独立,且 X~U[-1,1],Y~e(2)。令 Z=X+Y,求随机变量 Z 的概率密度函数 $f_z(z)$ 。

如

答卷无效

本

六、(10') 某学校图书馆计划购买若干本关于大数据的书籍。设该校有 900 名学生,每天每人以 10%的概率需要借阅此书。试用中心极限定理近似计算该图书馆至少需要订购多少本这种书籍,才能以 95%的概率保证想借阅该书的同学均能借到。

七、(10')设总体 X 的概率密度为

$$f(x,\mu) = \frac{1}{\sqrt{\pi}} e^{-(x-\mu)^2}, x \in R$$

其中 μ 为未知参数。 $X_1,...X_n$ 为来自该总体的样本。 (1)求参数 μ 的最大似然估计量 $\hat{\mu}$,

(2) 判断 $\hat{\mu}$ 是否是 μ 的无偏估计量,说明理由。.

八、(10')设总体 X 服从正态分布 N (u,1), u 未知。 现有来自该总体样本容量为 25 的样本, 其样本均值为-20,样本标准差为 2. (1)试检验 H_0 : u=-20.2, v.s. H_1 : u>-20.2.(检验水平 $\alpha=0.05$),(2)若已知 u=-20,求该检验犯第二类错误的概率。