

UDBX 开放数据格式白皮书

UDBX Open Data Format White Paper

(Version 1.0 Beta)

超图研究院

2020年9月

目录

1. 概	述	1
1.1	基本约定	1
1.2	总体结构	2
2. 系	统表	3
2.1	SpatiaLite 系统表	4
2.2	SuperMap 系统表	5
3. 数	据表	11
3.1	矢量数据集	11
3.2	栅格数据集	15
4. 对	象存储结构	17
4.1	基本类型	17
4.2	SpatiaLite 的简单对象	19
4.3	CAD 数据集中存储的对象	22
4.4	文本对象	27
4.5	三维模型对象	28
4.6	栅格块存储	36
4.7	其它对象	37
5	用指南	30

1. 概述

UDBX (Universal Database Extension) 是一种文件型的开放式数据格式,由超图软件提出,支持全空间数据的高效存储与管理,为空间数据的共享和交换提供开放、便捷的解决方案。

UDBX 的特点主要包括:

- 全空间数据支持:包括二三维一体化及矢量/栅格一体化的数据存储和管理;
- 单文件存储:采用单文件存储,便于数据拷贝和分发;
- 并发支持: 一个 UDBX 数据可同时被多个用户并发访问;
- 跨平台支持:支持桌面端、服务器端、移动端高效读写;
- 海量数据支持: 单个 UDBX 文件支持超大规模数据存储;
- Unicode 支持: 支持 Unicode 编码存储多国语言。

1.1 基本约定

本文出现的术语或缩略语遵循以下约定:

- (1) OGC: 开放地理空间信息联盟 (Open Geospatial Consortium);
- (2) OGC 简单对象模型规范:即 OGC Simple feature access Part 1: Common architecture 规范中规定的简单对象模型;
- (3) SOLite: 一种开源的轻量级关系型数据库;
- (4) SpatiaLite: 基于 SQLite 的空间扩展引擎,可以存储和管理符合 OGC 简单对象模型规范的空间数据;
- (5) proj.4: OSGeo 的开源 GIS 工具,专注于地图的坐标系表达以及转换;
- (6) WKT: 即 OGC 的 Well Known Text;
- (7) OGDC: 开放式空间数据库互访开发标准接口(Open Geospatial Database Connectivity), 基于国家标准《地理空间数据库访问接口》(GB/T30320-2013)的一套 C++接口,目的是实现不同格式空间数据库的互联互访;
- (8) 数据集:由具有相同坐标系的同种类型数据组成的数据集合;
- (9) 矢量数据集:一组具有相同 Geometry 类型 (CAD 数据集除外)、相同的空间参照系和相同的字段信息结构的矢量数据要素的集合;
- (10) 栅格数据集:具有长度和宽度范围的一组有规则的空间阵列数据的集合,这些阵列数据有相同的空间参照系,阵列数据值即代表对应空间位置的属性且所有值描述的是同类属性,比如温度、高程值或其它;
- (11) 数据源: 由各种类型的数据集组成的数据集集合。

关于版本号:

- (1) 建议 SpatiaLite 采用 4.3 版本;
- (2) 建议 SQLite 采用 3.17.0 版本。

关于字段/数据类型:

- (1) 本文系统表(见第 2 节)及数据表(见第 3 节)表格中的"字段类型"为 SQLite 的字段类型,其中 INTEGER 类型默认为 32 位整型;
- (2) UDBX 提供的数据集字段信息,是基于 SOLite 字段类型的扩展,具体描述见

2.2.2.2 小节;

(3) 对象的二进制流存储采用基本数据类型描述,各类型的含义、取值范围、占用字节数等见 4.1.1 小节。

1.2 总体结构

UDBX 采用 SQLite 数据库存储空间数据,文件扩展名为".udbx"。存储规则上,分为两大类: SpatiaLite 存储和 SuperMap 自定义存储,SpatiaLite 存储点、线、面等基本矢量类型,其它数据类型为 SuperMap 自定义的存储格式。

UDBX 中的表格,分为两大类:系统表和数据表。系统表用于管理 UDBX 的数据集,因此,系统表又区分为 SpatiaLite 的系统表和 SuperMap 自定义的系统表;数据表用于存储不同的类型数据集,一个数据集对应一张或多张表格。UDBX 中表结构关系见图 1。

图 1 UDBX 表结构关系图

一个 udbx 文件是一个数据源,存储多个数据集。数据集包括两大类: 矢量数据集和栅格数据集。矢量数据集存储具有相同坐标系和属性信息的空间对象,栅格数据集则按块存储和组织连续的场数据。数据集类型见表 1。

数据集类型	枚举值	描述
Tabular	0	属性表,不存储几何对象
Point	1	二维点数据集
PointZ	101	三维点数据集
Line	3	二维线数据集
LineZ	103	三维线数据集
Region	5	二维面数据集
RegionZ	105	三维面数据集
Text	7	文本对象

表 1 数据集类型说明

CAD	149	复合数据集,存储多种几何对象		
Network	4	二维网络数据集		
Network3D	205	三维网络数据集		
Model	203	三维模型数据集		
Image	88	多波段影像数据集		
Grid	83	Grid 数据集,对应数字表面模型,像素值代表地表特征值		
VoxelGrid	89	体元栅格数据集		
Mosaic	206	镶嵌数据集		

矢量数据集存储的 Geometry 类型见表 2。其中,二维/三维的点、线、面数据集存储的对象采用 SpatiaLite 的点、线、面对象,对象命名采用"GAIA"前缀标识;其它对象类型用"Geo"作为前缀标识。各 Geometry 对应的存储结构见第 4 小节。

表 2 Geometry 类型说明

Geometry 类型	枚举值	描述
GAIAPoint	1	二维点对象
GAIAPolygon	3	二维面对象
GAIAMultiLineString	5	二维线,可带子对象
GAIAMultiPolygon	6	二维面,可带子对象
GAIAPointZ	1001	三维点对象
GAIAMultiLineStringZ	1005	三维线,可带子对象
GAIAMultiPolygonZ	1006	三维面,可带子对象
GeoPoint3D	101	三维点
GeoLine3D	103	三维线,可带子对象
GeoRegion3D	105	三维面,可带子对象
GeoText	7	文本对象
GeoModel3D	1218	三维模型对象
GeoRect	12	矩形/斜矩形
GeoRectRound	13	圆角矩形
GeoCircle	15	圆
GeoEllipse	20	椭圆
GeoPie	21	扇面
GeoArc	24	圆弧
GeoEllipticArc	25	椭圆弧
GeoCardinal	27	Cardinal 曲线
GeoCurve	28	自由曲线
GeoBSpline	29	B样条曲线

2. 系统表

系统表用于存储和管理数据源中的数据集信息,系统表分为 SpatiaLite 定义的系统表和 SuperMap 定义的系统表。

2.1 SpatiaLite 系统表

UDBX 采用 SpatiaLite 管理点、线、面数据集,因此主要涉及 SpatiaLite 的坐标系和矢量数据集相关系统表。

2.1.1 坐标系信息表

坐标系信息存储在 spatial_ref_sys 和 spatial_ref_sys_aux 中,两张表通过 srid 关联。

表 3 spatial_ref_sys 表的字段信息

字段名	字段类型	是否允许空值	描述
srid	INTEGER	N	主键;
			坐标系的唯一标识
auth_name	TEXT	N	定义该坐标系的作者/官方名称
auth_srid	INTEGER	N	该坐标系的内部标识
ref_sys_name	TEXT	N	坐标系名字
proj4text	TEXT	N	用 proj.4 ^[1] 文本格式表示的坐标系
srtext	TEXT	N	用 wkt ^[2] 表示的坐标系

表 4 spatial_ref_sys_aux 表的字段信息

字段名	字段类型	是否允许空值	描述
srid	INTEGER	N	主键;
			外键,与 spatial_ref_sys (srid)关联
			坐标系的唯一标识
is_geographic	INTEGER	Υ	是否是地理坐标系
has_flipped_axes	INTEGER	Υ	坐标轴是否翻转
spheroid	TEXT	Υ	参考椭球体
prime_meridian	TEXT	Υ	中央子午线
datum	TEXT	Υ	大地基准面
projection	TEXT	Υ	投影方式
unit	TEXT	Υ	坐标系单位
axis_1_name	TEXT	Υ	主轴名称
axis_1_orientation	TEXT	Υ	主轴朝向
axis_2_name	TEXT	Υ	副轴名称
axis_2_orientation	TEXT	Υ	副轴朝向

2.1.2 矢量数据集系统表

SpatiaLite 的矢量数据集系统表信息存储在 geometry_columns 表中。

表 5 geometry_columns 表的字段信息

字段名	字段类型	是否允许空值	描述
f_table_name	TEXT	N	数据表的名称

f_geometry_column	TEXT	N	数据表中 geometry 列名;
			联合主键(f_table_name,
			f_geometry_column)
geometry_type	INTEGER	N	geometry 类型,见表 2
coord_dimension	TEXT	N	geometry 坐标的维度
srid	TEXT	N	坐标系标识,与 spatial_ref_sys 表的
			srid 字段关联
spatial_index_enabled	INTEGER	N	是否建立了空间索引;
			取值: 0表示无索引; 1表示 R*树索
			引

2.2 SuperMap 系统表

SuperMap 自定义系统表,包括数据源描述信息表、矢量数据集系统表、栅格数据集系统表。

2.2.1 数据源描述信息表

SmDataSourceInfo 表存储数据源的基本描述信息,见表 6。

表 6 SmDataSourceInfo 表的字段信息

字段名	字段类型	是否允许空值	描述
SmFlag	INTEGER	N	数据源 ID 标识,主键
SmVersion	INTEGER	Υ	版本号。当前版本号为 10
SmDsDescription	TEXT	Υ	数据源描述信息
SmProjectInfo	BLOB	Υ	数据源的坐标系信息,见 4.7.1
SmLastUpdateTime	DATE	N	数据源的最后更新时间
SmDataFormat	INTEGER	N	数据存储格式。
			当前值为 0,表示按 UTF8 编码存储

2.2.2 矢量数据集系统表

矢量数据集系统表包括数据集注册表、字段信息表、值域信息表。

2.2.2.1 矢量数据集注册表

矢量数据集的注册信息记录在 SmRegister 表中,包括数据集名称、对应的表名、数据 集类型、父子数据集关系等,见表 7。

表 7 SmRegister 表的字段信息

字段名	字段类型	是否允许空值	描述
SmDatasetID	INTEGER	N	主键;
			数据集 ID

SmDatasetName	TEXT	Υ	数据集名字
SmTableName	TEXT	Υ	数据表名字
SmOption	INTEGER	Υ	数据集的选项信息,记录是否带金字
			塔、是否压缩等,内部使用
SmEncType	INTEGER	Υ	预留字段
SmParentDTID	INTEGER	N	父数据集 ID,可以为空
SmDatasetType	INTEGER	Υ	数据集类型;枚举值见表1
SmObjectCount	INTEGER	N	对象个数,即数据表的记录个数
SmLeft	REAL	Υ	数据集的地理范围: 左
SmRight	REAL	Υ	数据集的地理范围: 右
SmTop	REAL	Υ	数据集的地理范围:下
SmBottom	REAL	Υ	数据集的地理范围: 上
SmIDColName	TEXT	Υ	数据表对象 ID 列名
SmGeoColName	TEXT	Υ	数据表几何对象列名
SmMinZ	REAL	Υ	数据集最小高度,三维数据集适用
SmMaxZ	REAL	Υ	数据集最大高度,三维数据集适用
SmSRID	INTEGER	Υ	坐标系 ID,与 spatial_ref_sys 表的 srid
			关联; 如果该字段值为空, 则取
			SmProjectInfo 的值
SmIndexType	INTEGER	Υ	空间索引类型;取值范围{0,2},0表
			示无索引; 2表示 R 树索引
SmToleranceFuzzy	REAL	Υ	结点捕捉容限值。拓扑处理/编辑时使
			用
SmToleranceDAngle	REAL	Υ	角度容限值。拓扑处理/编辑时使用
SmToleranceNodeSnap	REAL	Υ	长悬线容限值。拓扑处理/编辑时使用
SmToleranceSmallPolygon	REAL	Υ	最小多边形容限值。拓扑处理/编辑时
			使用
SmToleranceGrain	REAL	Υ	
SmMaxGeometrySize	INTEGER	N	几何对象二进制流最大字节数
SmOptimizeCount	INTEGER	N	预留字段
SmOptimizeRatio	REAL	Υ	预留字段
SmDescription	TEXT	Υ	数据集描述信息
SmExtInfo	TEXT	Υ	数据集用户自定义扩展信息
SmCreateTime	DATETIME	Υ	数据集创建时间
SmLastUpdateTime	DATETIME	Υ	数据集最后更新时间
SmProjectInfo	BLOB	Υ	数据集坐标系,见 4.7.1。如果指定了
			该值,则以数据集的坐标系为准,忽
			略数据源的坐标系

2.2.2.2 数据集字段信息表

矢量数据集的字段信息存储在 SmFieldInfo 表中,见表 8,主要记录每个数据集有哪些字段(与数据集主表的字段对应),每个字段的别名、对应 SuperMap 的字段类型等信息。

表 8 SmFieldInfo 表的字段信息

字段名	字段类型	是否允许空值	描述
SmID	INTEGER	N	主键
SmDatasetID	INTEGER	Υ	所属数据集的 ID;
			对应 SmRegister 的 SmDatasetID 字段
SmFieldName	TEXT	Υ	字段名
SmFieldCaption	TEXT	Υ	字段别名
SmFieldType	INTEGER	Υ	对应 SuperMap 的字段类型,见表 9 表
			9 SuperMap 的字段类型
SmFieldFormat	TEXT	Υ	字段值的格式化字符串
SmFieldSign	INTEGER	Υ	字段标识,见表 10
SmFieldDomain	TEXT	Υ	废弃字段
SmFieldUpdatable	INTEGER	Υ	字段值是否可修改
SmFieldbRequired	INTEGER	Υ	是否必填字段
SmFieldDefaultValue	TEXT	Υ	字段默认值
SmFieldSize	INTEGER	Υ	字段长度

表 9 SuperMap 的字段类型

枚举值	字段类型	字节长度	取值范围	描述
0	Unknown	/		无效值
1	Boolean	1	0 1	布尔型
2	Byte	1	[0, 255]	无符号单字节
3	Int16	2	[-32768,32767]	短整型
4	Int32	4	[-2147483648,2147483647]	整型
16	Int64	8	[-2 ⁶³ ,(2 ⁶³ -1)]	长整型
6	Float	4	[-3.4×10 ³⁸ ,3.4×10 ³⁸]	单精度浮点型
7	Double	8	[-1.7×10 ³⁰⁸ ,1.7×10 ³⁰⁸]	双精度
10	Text	外部指定	/	不定长字符串
127	NText	外部指定	/	宽字节不定长字符串类
				型
18	Char	外部指定	/	定长字符串
8	Date	/	/	日期型,年、月、日。
				不带时间
22	Time	/	/	时间型,时、分、秒,
				不带日期
23	TimeStamp	/		时间戳型,年、月、
				日、时、分、秒
9	Binary	外部指定	/	固定长度二进制类型
11	LongBinary	外部指定	/	不定长二进制类型

表 10 SuperMap 的字段标识

枚举值	描述
0	普通字段

1	网络数据集的节点 ID,默认是 SmNodeID 字段
2	网络数据集的边的起点字段,默认是 SmFNode 字段
3	网络数据集的边的终点字段,默认是 SmTNode 字段
4	网络数据集边的 ID 字段
11	对象 ID 字段
12	几何对象字段
50	用户自定义字段标识起始值

2.2.2.3 值域信息表

值域分为范围值域(见表 11)和枚举值域(见表 12),用于约束字段的取值。 SmDomains 表汇总了两类值域的信息,见表 13; SmDomainField 记录了字段及其应用的值域规则,见表 14。

表 11 SmRangeDomains 表的字段信息

字段名	字段类型	是否允许空值	描述
DomainID	INTEGER	N	主键
FieldType	INTEGER	N	字段类型
DomainRangeInfos	BLOB	Υ	范围值域规则对象,见 4.7.2

表 12 SmCodeDomains 表的字段信息

字段名	字段类型	是否允许空值	描述
DomainID	INTEGER	N	主键
FieldType	INTEGER	N	字段类型
DomainCodeInfos	BLOB	Υ	枚举值域规则对象,见 4.7.2

表 13 SmDomains 表的字段信息

字段名	字段类型	是否允许空值	描述
DomainID	INTEGER	N	主键;
			值域规则 ID
DomainName	TEXT	N	值域名称
DomainDescription	TEXT	N	描述信息
DomainType	INTEGER	N	值域类型,取值:
			1 表示范围值域,在范围内为合法;
			3 表示范围值域,不在范围内为合法;
			2 表示合法枚举值域,取枚举值为合法;
			4 表示非法枚举值域,取枚举值为非法。

表 14 SmDomainField 表的字段信息

字段名	字段类型	是否允许空值	描述
DatasetID	INTEGER	N	数据集 ID;
			与 SmRegister 表的 SmDatasetID 字段关联
FieldName	TEXT	N	应用值域规则的数据集的字段名;

		联合主键(DatasetID,FieldName),与 SmFieldInfo 表的	
			(SmDatasetID, SmFieldName)关联,见表 8
DomainID	INTEGER	N	值域规则 ID,与表 13 的 DomainID 关联

2.2.3 栅格数据集系统表

栅格数据集由两张系统表管理: SmlmgRegister 存储栅格数据集信息; SmBandRegister 存储栅格数据集的波段/层信息,以及对应的金字塔数据集信息。

2.2.3.1 栅格数据集注册表

SmlmgRegister 的字段信息见表 15。

表 15 SmlmgRegister 表的字段信息

字段名	字段类型	是否允许空值	描述	
SmDatasetID	INTEGER	N	主键;	
			数据集ID	
SmDatasetName	TEXT	N	数据集名字	
SmTableName	TEXT	N	数据集表名	
SmDatasetType	INTEGER	N	数据集类型,枚举值见表 1	
SmWidth	INTEGER	Υ	数据集宽度,像素单位	
SmHeight	INTEGER	Υ	数据集高度,像素单位	
SmeBlockSize	INTEGER	Υ	存储块大小,以像素为单位,长宽一致;	
			取值: 64 128 256 1024	
SmColorSpace	INTEGER	Y	废弃字段	
SmGeoLeft	REAL	Υ	地理范围: 左	
SmGeoTop	REAL	Y	地理范围:上	
SmGeoRight	REAL	Y	地理范围: 右	
SmGeoBottom	REAL	Y	地理范围:下	
SmCreateTime	DATE	N	数据集创建时间	
SmCreator	TEXT	N	创建者	
SmDescription	TEXT	Υ	数据集描述信息	
SmClipRegion	BLOB	Υ	裁剪多边形;	
			显示时仅多边形内部区域可见	
SmExtInfo	TEXT	Υ	数据集扩展描述信息	
SmStatisticsInfo	TEXT	Υ	统计信息	
SmProjectInfo	BLOB	Υ	坐标系信息,见 4.7.1	

2.2.3.2 波段信息注册表

表 16 SmBandRegister 表的字段信息

字段名	字段类型	是否允许空值	描述
SmBandID	INTEGER	Ν	主键;波段ID

SmBandIndex INTEGER N 波段顺序编号 SmBandName TEXT N 波段名称 SmBandAvail INTEGER N 是否可用; 取值 1: 可用; 0: 不可用 SmOption INTEGER Y 数据集选项信息、内部使用,记录是否带有金字塔等信息 SmScalar INTEGER Y 预留字段 SmEncType INTEGER N Block 的压缩编码方式,见表 17 SmPixelFormat INTEGER N 像素格式,见表 18 SmMaxBlockSize INTEGER Y 像素值的最大值 SmMaxZ REAL Y 像素值的最大值 SmAltitude REAL Y 像素值的最大值 SmPyramid TEXT Y 父数据集名; 如果不为空,则为金字塔数据集 SmPyramidLevel INTEGER N 金字塔层 ID; 如果大于 0,则为对应的金字塔层 SmCreator TEXT N 创建者 SmCreateTime DATE N 创建时间 SmNovalue REAL Y 无值	SmDatasetID	INTEGER	N	所属数据集 ID,与 SmImgRegister 的	
SmBandIndex INTEGER N 波段何序编号 SmBandName TEXT N 波段名称 SmBandAvail INTEGER N 是否可用; SmDandAvail INTEGER N 数据集选项信息、内部使用,记录是否带有金字塔等信息 SmOption INTEGER Y 预留字段 SmScalar INTEGER N Block 的压缩编码方式,见表 17 SmEncType INTEGER N 像素格式,见表 18 SmPixelFormat INTEGER Y 存储块的最大大小;单位:字节 SmMaxBlockSize INTEGER Y 像素值的最小值 SmMinZ REAL Y 像素值的最大值 SmAltitude REAL Y 该层数据代表的高度;外部设置 SmAltitude REAL Y 交数据集名;如果不为空,则为金字塔数据集 SmPyramid TEXT Y 企字塔层 ID;如果大于 0,则为对应的金字塔层 SmCreator TEXT N 创建者 SmCreateTime DATE N 创建时间 SmNovalue REAL Y 无值					
SmBandAvail INTEGER N 是否可用; 取值 1: 可用; 0: 不可用 SmOption INTEGER Y 数据集选项信息,内部使用,记录是否带有金字塔等信息 SmScalar INTEGER Y 预留字段 SmEncType INTEGER N Block 的压缩编码方式,见表 17 SmPixelFormat INTEGER N 像素格式,见表 18 SmMaxBlockSize INTEGER Y 存储块的最大大小;单位:字节 SmMinZ REAL Y 像素值的最小值 SmAltitude REAL Y 像素值的最大值 SmPyramid TEXT Y 父数据集名; 如果不为空,则为金字塔数据集 SmPyramidLevel INTEGER N 金字塔层 ID; 如果大于 0,则为对应的金字塔层 SmCreator TEXT N 创建者 SmCreateTime DATE N 创建时间 SmNovalue REAL Y 无值	SmBandIndex	INTEGER	N		
Rue 1: 可用; 0: 不可用 SmOption INTEGER Y 数据集选项信息,内部使用,记录是否带有金字塔等信息 SmScalar INTEGER Y MIRTEGER N Block 的压缩编码方式,见表 17 SmPixelFormat INTEGER N Kake 表 表 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是	SmBandName	TEXT	N	波段名称	
SmOptionINTEGERY数据集选项信息、内部使用、记录是否带有金字塔等信息SmScalarINTEGERY预留字段SmEncTypeINTEGERNBlock 的压缩编码方式、见表 17SmPixelFormatINTEGERN像素格式、见表 18SmMaxBlockSizeINTEGERY存储块的最大大小;单位:字节SmMinZREALY像素值的最小值SmAtitudeREALY像素值的最大值SmPyramidTEXTY父数据集名;如果不为空、则为金字塔数据集SmPyramidLevelINTEGERN金字塔层 ID;如果大于 0、则为对应的金字塔层SmCreatorTEXTN创建者SmCreateTimeDATEN创建时间SmNovalueREALY无值	SmBandAvail	INTEGER	N	是否可用;	
SmScalar INTEGER Y 预留字段 SmEncType INTEGER N Block 的压缩编码方式,见表 17 SmPixelFormat INTEGER N 像素格式,见表 18 SmMaxBlockSize INTEGER Y 存储块的最大大小;单位:字节 SmMinZ REAL Y 像素值的最小值 SmAltitude REAL Y 像素值的最大值 SmAltitude REAL Y 次据集名;如果不为空,则为金字塔数据集 SmPyramidLevel INTEGER N 金字塔层 ID;如果大于 0,则为对应的金字塔层 SmCreator TEXT N 创建者 SmNovalue REAL Y 无值				取值 1: 可用; 0: 不可用	
SmScalar INTEGER Y 预留字段 SmEncType INTEGER N Block 的压缩编码方式,见表 17 SmPixelFormat INTEGER N 像素格式,见表 18 SmMaxBlockSize INTEGER Y 存储块的最大大小;单位:字节 SmMinZ REAL Y 像素值的最小值 SmMaxZ REAL Y 像素值的最小值 SmAltitude REAL Y 像素值的最大值 SmPyramid TEXT Y 父数据集名;如果不为空,则为金字塔数据集 SmPyramidLevel INTEGER N 金字塔层 ID;如果大于 0,则为对应的金字塔层 SmCreator TEXT N 创建者 SmCreateTime DATE N 创建时间 SmNovalue REAL Y 无值	SmOption	INTEGER	Υ	数据集选项信息,内部使用,记录是否带有	
SmEncType INTEGER N Block 的压缩编码方式,见表 17 SmPixelFormat INTEGER N 像素格式,见表 18 SmMaxBlockSize INTEGER Y 存储块的最大大小;单位:字节 SmMinZ REAL Y 像素值的最小值 SmAltitude REAL Y 像素值的最大值 SmPyramid TEXT Y 父数据集名;如果不为空,则为金字塔数据集 SmPyramidLevel INTEGER N 金字塔层 ID;如果大于 0,则为对应的金字塔层 SmCreator TEXT N 创建者 SmCreateTime DATE N 创建时间 SmNovalue REAL Y 无值				金字塔等信息	
SmPixelFormatINTEGERN像素格式,见表 18SmMaxBlockSizeINTEGERY存储块的最大大小;单位:字节SmMinZREALY像素值的最小值SmMaxZREALY像素值的最大值SmAltitudeREALY该层数据代表的高度;外部设置SmPyramidTEXTY父数据集名;如果不为空,则为金字塔数据集SmPyramidLevelINTEGERN金字塔层 ID;如果大于 0,则为对应的金字塔层SmCreatorTEXTN创建者SmCreateTimeDATEN创建时间SmNovalueREALY无值	SmScalar	INTEGER	Υ	预留字段	
SmMaxBlockSize INTEGER Y 存储块的最大大小;单位:字节 SmMinZ REAL Y 像素值的最小值 SmMaxZ REAL Y 像素值的最大值 SmAltitude REAL Y 像素值的最大值 SmPyramid TEXT Y 父数据集名;如果不为空,则为金字塔数据集 SmPyramidLevel INTEGER N 金字塔层 ID;如果大于 0,则为对应的金字塔层 SmCreator TEXT N 创建者 SmCreateTime DATE N 创建时间 SmNovalue REAL Y 无值	SmEncType	INTEGER	N	Block 的压缩编码方式,见表 17	
第一回 単位: 字节 SmMinZ REAL Y 像素値的最小値 SmMaxZ REAL Y 像素値的最大値 SmAltitude REAL Y 该层数据代表的高度; 外部设置 SmPyramid TEXT Y 父数据集名; 如果不为空、则为金字塔数据集 SmPyramidLevel INTEGER N 金字塔层 ID; 如果大于 0、则为对应的金字塔层 SmCreator TEXT N 创建者 SmCreateTime DATE N 创建时间 SmNovalue REAL Y 表値	SmPixelFormat	INTEGER	N	像素格式,见表 18	
SmMinZREALY像素值的最小值SmMaxZREALY像素值的最大值SmAltitudeREALY该层数据代表的高度; 外部设置SmPyramidTEXTY父数据集名; 如果不为空,则为金字塔数据集SmPyramidLevelINTEGERN金字塔层 ID; 如果大于 0,则为对应的金字塔层SmCreatorTEXTN创建者SmCreateTimeDATEN创建时间SmNovalueREALY无值	SmMaxBlockSize	INTEGER	Y	存储块的最大大小;	
SmMaxZREALY像素值的最大值SmAltitudeREALY该层数据代表的高度; 外部设置SmPyramidTEXTY父数据集名; 如果不为空,则为金字塔数据集SmPyramidLevelINTEGERN金字塔层 ID; 如果大于 0,则为对应的金字塔层SmCreatorTEXTN创建者SmCreateTimeDATEN创建时间SmNovalueREALY无值				单位:字节	
SmAltitudeREALY该层数据代表的高度; 外部设置SmPyramidTEXTY父数据集名; 如果不为空,则为金字塔数据集SmPyramidLevelINTEGERN金字塔层 ID; 如果大于 0,则为对应的金字塔层SmCreatorTEXTN创建者SmCreateTimeDATEN创建时间SmNovalueREALY无值	SmMinZ	REAL	Y	像素值的最小值	
SmPyramidTEXTY父数据集名; 如果不为空,则为金字塔数据集SmPyramidLevelINTEGERN金字塔层 ID; 如果大于 0,则为对应的金字塔层SmCreatorTEXTN创建者SmCreateTimeDATEN创建时间SmNovalueREALY无值	SmMaxZ	REAL	Y	像素值的最大值	
SmPyramidTEXTY父数据集名; 如果不为空,则为金字塔数据集SmPyramidLevelINTEGERN金字塔层 ID; 如果大于 0,则为对应的金字塔层SmCreatorTEXTN创建者SmCreateTimeDATEN创建时间SmNovalueREALY无值	SmAltitude	REAL	Y	该层数据代表的高度;	
如果不为空,则为金字塔数据集 SmPyramidLevel INTEGER N 金字塔层 ID; 如果大于 0,则为对应的金字塔层 SmCreator TEXT N 创建者 SmCreateTime DATE N 创建时间 SmNovalue REAL Y 无值				外部设置	
SmPyramidLevelINTEGERN金字塔层 ID; 如果大于 0,则为对应的金字塔层SmCreatorTEXTN创建者SmCreateTimeDATEN创建时间SmNovalueREALY无值	SmPyramid	TEXT	Y	父数据集名;	
如果大于 0,则为对应的金字塔层 SmCreator TEXT N 创建者 SmCreateTime DATE N 创建时间 SmNovalue REAL Y 无值				如果不为空,则为金字塔数据集	
SmCreator TEXT N 创建者 SmCreateTime DATE N 创建时间 SmNovalue REAL Y 无值	SmPyramidLevel	INTEGER	N	金字塔层 ID;	
SmCreateTime DATE N 创建时间 SmNovalue REAL Y 无值				如果大于 0,则为对应的金字塔层	
SmNovalue REAL Y 无值	SmCreator	TEXT	N	创建者	
	SmCreateTime	DATE	N	创建时间	
	SmNovalue	REAL	Υ	无值	
SmPalette BLOB Y 调色板,即颜色对照表,可视化时使用。存	SmPalette	BLOB	Υ	调色板,即颜色对照表,可视化时使用。存	
储为 Color 数组,见 4.1.10。				储为 Color 数组,见 4.1.10。	

表 17 Block 压缩编码方式

枚举值	含义	精度损失
0	不使用压缩编码	无损
8	DCT,离散余弦压缩	有损
9	SGL,游程编码压缩	无损
11	LZW 压缩	无损
12	PNG 压缩	无损

表 18 像素格式

枚举值	含义
1	MONO, 单值
4	4 位数值
8	8 位无符号
80	8 位有符号
16	16 位有符号
160	16 位无符号

24	24 位真彩色
32	32 位增强真彩色
320	32 位有符号整型
321	32 位无符号整型
64	64 位有符号长整型
3200	32 位浮点型
6400	64 位双精度浮点型

3. 数据表

数据表用于存储实际数据,每个数据集对应一张或多张表格,按系统表的管理范围,划分为矢量数据集和栅格数据集两大类。

3.1 矢量数据集

矢量数据集包括: 属性数据集、二维/三维的点/线/面数据集、文本数据集、CAD 数据集、二维/三维网络数据集、三维模型数据集。

矢量数据集的空间索引,用 SOLite 的空间索引机制,相关描述可参见其官方文档。

3.1.1 属性数据集

属性数据集不存储空间数据,数据表对应的系统字段见表 19。

表 19 属性数据集系统字段

字段名	字段类型	是否允许空值	描述
SmID	INTEGER	N	主键;对象的唯一标识
SmUserID	INTEGER	Υ	用户自定义 ID 值

3.1.2 二维/三维点数据集

二维点数据集和三维点数据集系统字段相同,见表 20。其中,SmGeometry 字段存储 点对象的类型由 geometry_columns 的 geometry_type 字段决定,见表 5。

表 20 点数据集系统字段

字段名	字段类型	是否允许空值	描述
SmID	INTEGER	N	主键;对象的唯一标识
SmUserID	INTEGER	Υ	用户自定义 ID 值
SmGeometry	POINT	N	存储 GAIAPoint 或 GAIAPointZ 对象,
			存储结构见 4.2.1 和 4.2.2

3.1.3 二维/三维线数据集

二维线数据集和三维线数据集系统字段相同,见表 21。其中,SmGeometry 字段存储 线对象的具体类型由 geometry_columns 的 geometry_type 字段决定,见表 5。

字段名 是否允许空值 字段类型 描述 SmID **INTEGER** Ν 主键;对象的唯一标识 用户自定义 ID 值 SmUserID **INTEGER** Υ 线对象的长度;单位为米 SmLength **REAL** Ν Ν 拓扑容限; SmTopoError **INTEGER** 线数据集拓扑处理时使用 SmGeometry MULTILINESTRING 存储 GAIAMultiLineString 或 GAIAMultiLineStringZ对象,存储结构见 4.2.3 和 4.2.4

表 21 线数据集系统字段

3.1.4 二维/三维面数据集

二维面数据集和三维面数据集系统字段相同,见表 22。其中,SmGeometry 字段存储面对象的具体类型由 geometry_columns 的 geometry_type 字段决定,见表 5。

字段名	字段类型	是否允许空值	描述
SmID	INTEGER	N	主键;对象的唯一标识
SmUserID	INTEGER	Υ	用户自定义 ID 值
SmArea	REAL	N	面对象的面积;单位为平方米
SmPerimeter	REAL	N	面对象的周长; 单位为米
SmGeometry	MULTIPOLYGON	N	存储 GAIAMultiPolygon 或 GAIAMultiPolygon Z 对
			象,存储结构见 4.2.6 和 4.2.7 小节。

表 22 线数据集系统字段

3.1.5 文本数据集

文本数据集系统字段见表 23, 一个文本数据集对应一张数据表。

表 23 文本数据集系统字段

字段名	字段类型	是否允许空值	描述
SmID	INTEGER	N	主键;二维文本对象的唯一标识
SmUserID	INTEGER	Υ	用户自定义 ID 值
SmGeometry	BLOB	Υ	GeoText 的二进制流数据,见 4.3.8 小节
SmIndexKey	POLYGON	Υ	对象的范围,存储为 GAIAPolygon 对象见 4.2.5 小
			节;空间索引维护时使用

3.1.6 CAD 数据集

CAD 数据集可存储多种几何对象类型, 见 4.3 小节。一个 CAD 数据集对应一张数据表, 见表 24。

表 24 CAD 数据集系统字段

字段名	字段类型	是否允许空值	描述
SmID	INTEGER	N	主键;对象的唯一标识
SmUserID	INTEGER	Υ	用户自定义 ID 值
SmGeoType	INTEGER	N	Geometry 类型,见表 25
SmGeometry	BLOB	Υ	SuperMap 简单对象的二进制流,见 4.3 小节
SmIndexKey	POLYGON	Υ	SuperMap 简单对象的范围,见 4.2.5 小节,
			空间索引维护时使用

表 25 CAD 数据集存储的对象类型

Geometry 类型	枚举值	描述
GeoPoint	1	二维点
GeoLine	3	二维线,可带子对象
GeoRegion	5	二维面,可带子对象
GeoText	7	文本, 见 4.4 小节
GeoRect	12	矩形/斜矩形
GeoRectRound	13	圆角矩形
GeoCircle	15	员
GeoEllipse	20	椭圆
GeoPie	21	扇面
GeoArc	24	圆弧
GeoEllipticArc	25	椭圆弧
GeoCardinal	27	Cardinal 曲线
GeoCurve	28	自由曲线
GeoBSpline	29	B样曲线
GeoPoint3D	101	三维点
GeoLine3D	103	三维线,可带子对象
GeoRegion3D	105	三维面,可带子对象

3.1.7 二维/三维网络数据集

二维网络数据集和三维网络数据集存储方式相同,由主表和子表组成,主表存储网络数据集的边以及结点连接信息,子表存储网络数据集的结点,见表 26 和表 27。

如果是三维网络数据集,则主表的 SmGeometry 字段存储三维线对象,子表对应存储三维点对象。

表 26 网络数据集主表的系统字段

字段名 字段类型 是否允许空值	描述
-----------------	----

SmID	INTEGER	N	主键;线对象的唯一标识
SmUserID	INTEGER	Υ	用户自定义 ID 值
SmEdgeID	INTEGER	N	边ID
SmFNode	INTEGER	Υ	起点结点 ID
SmTNode	INTEGER	Υ	终点结点 ID
SmResistance	REAL	Υ	正方向阻力
А			
SmResistanceB	REAL	Υ	负方向阻力
SmTopoError	INTEGER	N	拓扑容限;线数据集拓扑处理时使用
SmLength	REAL	N	线对象的长度;单位为米
SmGeometry	MULTILINESTRING	N	GAIAMultiLineString 或 GAIAMultiLineStringZ 对
			象,存储结构见 4.2.3 和 4.2.4

表 27 网络数据集子表的系统字段

字段名	字段类型	是否允许空值	描述
SmID	INTEGER	N	主键;
			点对象的唯一标识
SmUserID	INTEGER	Υ	用户自定义 ID 值
SmNodeID	INTEGER	Υ	结点 ID
SmGeometry	POINT	N	GAIAPoint 或 GAIAPointZ 对象, 存储结构见 4.2.1 和 4.2.2

3.1.8 三维模型数据集

三维模型数据集存储三维模型对象 GeoModel3D, 对象逻辑结构及存储结构 4.3 小节。一个三维模型数据集对应两张数据表: 主表和子表, 见表 28 和表 29。主表存储模型的结构信息, 子表存储模型关联的实体对象。主表存储的模型结构中记录了模型对象引用的实体对象名字, 基于实体对象名字的 64 位 HashCode 编码, 存储在子表的 SmHashCode 字段中。

表 28 三维模型数据集主表的系统字段

字段名	字段类型	是否允许空值	描述
SmID	INTEGER	N	主键,模型对象的唯一标识
SmUserID	INTEGER	Υ	用户自定义 ID 值
SmGeometry	BLOB	Υ	GeoModel3D 的二进制流数据,见 4.5.1 小节
SmIndexKey	POLYGON	Υ	模型对象的范围,见 4.2.5 小节;
			空间索引维护时使用

表 29 三维模型数据集子表的系统字段

字段名	字段类型	是否允许空值	描述
SmID	INTEGER	N	主键;
			模型对象的唯一标识
SmHashCode	INTEGER	Υ	唯一约束;

SmGeometry	BLOB	Υ	实体对象的二进制流数据,见 4.5.3 小节
			, the same of the

3.2 栅格数据集

栅格数据集存储二维或三维空间中的场数据,包括 Image 数据集、Grid 数据集、体元栅格(VoxelGrid)数据集和镶嵌数据集。

Image 数据集、Grid 数据集和 VoxelGrid 数据集的数据组织和存储方式相同,

(1) 原始数据

原始数据存储对应一张数据表,即主表。其存储的基本单元是块(Block),块大小记录在 SmlmgRegister 的 SmeBlockSize 字段中,见表 15;每个块代表固定长、宽的矩阵数据块,对应主表中的一行记录,见表 30。

(2) 金字塔

金字塔数据可以有多层,每层金字塔对应一个子数据集,每个子数据集是与主数据集同类型的栅格数据集,其父子关系由系统表 SmBandRegister 维护,见表 16。

字段名	字段类型	是否允许空值	描述	
SmRow	INTEGER	N	块的行号	
SmColumn	INTEGER	N	块的列号	
SmBandID	INTEGER	N	栅格数据层 ID。	
			如果是 Grid 数据集则默认为 0;	
			如果是 Image 数据集则为波段号;	
			如果是体元栅格数据集则为层 ID;	
			联合主键: (SmRow,SmColumn,SmBandID)	
SmSize	INTEGER	N	块数据字节流大小	
SmBand	LONGBLOB	Υ	块数据,存储内容见 4.6 小节	

表 30 栅格数据表的字段信息

镶嵌数据集采用元数据+原始影像文件的方式管理海量影像数据,见 3.2.4 小节。

3.2.1 Image 数据集

Image 数据集用于存储影像数据,可以有一个或多个波段,像素值代表颜色值。单波段 Image 数据集可以存储黑白色的灰度值,或 RGB 合成象素值的彩色值。

影像数据一般比较大,通常采用 DCT (Discrete Cosine Transform)。DCT 为离散余弦编码,是一种广泛应用于图像压缩的变换编码方法,该方法有很高的压缩率和性能,但数据精度会有损失。如果希望保持数据精度,则可以采用 PNG、LZW 压缩编码,见 4.6 小节。

3.2.2 Grid 数据集

Grid 数据集存储 DTM (Digital Terrain Model,数字地面模型)数据。像素值可表示地理实体或地理现象,如高程值、土壤类型、土地利用类型、岩层深度等。基于 Grid 数据集

可以进行栅格数据统计、代数运算等以数学分析和图形处理为主的计算。

Grid 数据集可采用的压缩编码方式为 LZW 和 SGL, 见 4.6 小节。SGL 是 SuperMap 自定义的一种压缩存储格式,是改进的 LZW (Lempel_Zir_Welch) 编码方式,该编码方式不仅可以对重复数据起到压缩作用,还可以对不重复数据进行压缩操作。

3.2.3 VoxelGrid 数据集

VoxelGrid 数据集,存储连续、非匀质的三维空间属性场数据,如空中电磁信号场、空气与水体污染场、地下地质属性场等。

对连续的三维场数据重采样或插值成不同层的数据,每一层数据用 Block 方式存储,高度特征值标识记录在 SmBandRegister 表的 SmAltitude 字段,见表 16。

3.2.4 镶嵌数据集

镶嵌数据集主表记录在 SmlmgRegter 系统表中,每个镶嵌数据集挂接了三个子数据集,分别代表轮廓、边界和裁剪。三个子数据集都为面数据集,表的命名规则为 (tablename 是镶嵌数据集主表名):

轮廓子数据集: tablename_F 边界子数据集: tablename_B 裁剪子数据集: tablename_C

轮廓子数据集是镶嵌数据集存储和组织影像文件的基础,是一个面数据集,每一个面对像对应单幅影像的地理范围,通过轮廓可以全局浏览影像的分布情况及覆盖情况,见表 31。

字段名	字段类型	是否允许空值	描述
SmID	INTEGER	N	主键;
			对象 ID
SmUserID	INTEGER	Υ	用户自定义 ID 值
SmArea	REAL	N	面对象的面积
SmPerimeter	REAL	N	面对象周长
SmGeometry	MULTIPOLYGON	N	几何对象
SmFileName	TEXT	Υ	挂接的文件名字
SmMinPS	REAL	Υ	影像文件最小显示分辨率
SmMaxPS	REAL	Υ	影像文件最大显示分辨率
SmLowPS	REAL	Υ	影像原始分辨率
SmHighPS	REAL	Υ	影像金字塔分辨率
SmCategory	INTEGER	Υ	是否是原始文件。取值:
			1表示是原始文件
			2表示是概视图
SmPath	TEXT	Υ	影像文件路径
SmInfo	TEXT	Υ	影像文件统计信息
SmZOrder	INTEGER	Υ	预留字段

表 31 镶嵌数据集的轮廓子数据集表

SmFileHash	TEXT	Υ	文件对应的 Hash 值
SmOverviewLevel	INTEGER	Υ	金字塔层级,原始文件为 0

边界子数据集存储镶嵌数据集的显示范围,表的字段与二维面数据集相同。

裁剪子数据集存储每幅影像的显示范围,表的字段除了二维面数据集的字段,还包括 FootprintID,INTEGER 类型,与轮廓子数据集的 SmID 字段关联。

4. 对象存储结构

本节描述了 UDBX 中各种对象的二进制存储结构,字节序为 Little-Endian,即低位字节排放在内存的低地址端。

4.1 基本类型

描述对象存储的结构的基本类型包括:基本数据类型及一些常用的对象类型。

4.1.1 基本数据类型

对象存储结构中涉及的基本数据类型见表 32。

表 32 基本数据类型及描述

类型	字节数	取值范围	描述
byte	1	[0, 255]	单字节
bool	1	0 1	布尔型
int16	2	[-32768, 32767]	短整型
uint16	2	[0,65535]	无符号短整型
int32	4	[-2147483648, 2147483647]	整型
uint32	4	[0, 4294967295]	无符号整型
int64	8	$[-2^{63}, (2^{63}-1)]$	长整型
uint64	8	$[0, (2^{64}-1)]$	无符号长整型
float	4	$[-3.4 \times 10^{38}, 3.4 \times 10^{38}]$	单精度浮点型
double	8	$[-1.7 \times 10^{308}, 1.7 \times 10^{308}]$	双精度浮点型
wchar	2		宽字符类型

4.1.2 String

对象存储结构中涉及的字符串数据类型用 String 对象描述,采用 Unicode 编码,字符集规定为 UTF8,存储结构如下:

4.1.3 Point

```
二维坐标点,用 x、y 表示:
Point { //点坐标对象
double x;
double y;
}
```

4.1.4 PointZ

```
三维坐标点,用 x、y、z 表示:
PointZ { //点坐标对象
    double x;
    double y;
    double z;
}
```

4.1.5 Rect

```
矩形,用左上角点和右下角点表示:
Rect { //矩形
Point pntLB; //左下角点
Point pntRT; //右上角点
}
```

4.1.6 BoundingBox

4.1.7 Ring

```
环形,由点组成首尾相连的环状。
Ring { //由点组成的环形 int32 numPoints; //点个数 Point[] pnts[numPoints]; //点坐标 }
```

4.1.8 RingZ

```
环形,由三维点组成首尾相连的环状。
RingZ { //由点组成的环形 int32 numPoints; //点个数 PointZ[] pnts[numPoints]; //点坐标 }
```

4.1.9 Vector3D

三维向量,存储结构同 PointZ,见 4.1.4。

4.1.10 Color

```
颜色,由 rgba 四个分量组成的 uint32 值。
Color {
byte a; // alpha 值
byte b; // blue 值
byte g; // green 值
byte r; // red 值
}
```

4.2 SpatiaLite 的简单对象

```
SpatiaLite 的简单对象类型即二维/三维的点、线、面类型。
GAIAInfo 是 SpatiaLite 各类简单对象存储的头部信息,存储结构如下:
GAIAInfo {
                             //几何对象的基本信息
                             //字节序: 小端存储
   static byte
             byteOrdering = 1;
   int32
             srid:
                             //坐标系 ID
   Rect
             mbr:
                             //对象的坐标范围
                             //MBR 结束标识
   static byte
             gaiaMBR=0x7c;
}
```

4.2.1 GAIAPoint

```
SpatiaLite 的二维点对象:
GAIAPoint {
   static byte
               gaiaStart = 0x00;
                                 //二进制流开始标记
                                 //几何对象的基本信息
   GAIAInfo
               info:
                                 //Geometry 类型标识
   static int32
               geoType = 1;
   Point
               geoPnt;
                                 //点对象的坐标值
                                 //二进制流结束标记
   static byte
               gaiaEnd = 0xFE;
}
```

4.2.2 GAIAPointZ

```
SpatiaLite 的三维点对象:
GAIAPointZ {
   static byte
               gaiaStart = 0x00;
                                 //二进制流开始标记
                                 //几何对象的基本信息
   GAIAInfo
              info:
                                 //Geometry 类型标识
   static int32
               geoType = 1001;
   PointZ
               geoPntZ;
                                 //点对象的坐标值
                                 //二进制流结束标记
   static byte
               gaiaEnd = 0xFE;
}
```

4.2.3 GAIAMultiLineString

```
SpatiaLite 的二维多线对象:
GAIAMultiLineString {
    static byte
                    gaiaStart = 0x00:
                                           //二进制流开始标记
    GAIAGeoInfo
                                               //几何对象的基本信息
                    info;
    static int32
                    geoType = 5;
                                           //Geometry 类型标识
                                           //子对象个数
    int32
                    numLineStrings;
    LineStringEntity[] lineStrings[numLineStrings];// LineString 的几何数据
                                           //二进制流结束标记
                gaiaEnd = 0xFE;
    static byte
LineStringEntity {
                    gaiaEntityMark = 0x69; //子对象标识
    static byte
    static int32
                    geoType = 2;
                                       //Geometry 类型标识
                                        //点个数
    int32
                    numPoints;
                    pnts[numPoints];
                                       //每个点的坐标值
    Point[]
}
```

4.2.4 GAIAMultiLineStringZ

```
SpatiaLite 的三维多线对象:
GAIAMultiLineStringZ {
    static byte
                    gaiaStart = 0x00;
                                            //二进制流开始标记
                                            //几何对象的基本信息
    GAIAGeoInfo
                    info;
                                            //Geometry 类型标识
    static int32
                    geoType = 1005;
    int32
                    numLineStrings;
                                            //子对象个数
    LineStringZEntity[] lineStrings[numLineStrings];// LineString 的几何数据
                gaiaEnd = 0xFE;
                                            //二进制流结束标记
    static byte
}
LineStringZEntity {
                    gaiaEntityMark = 0x69; //子对象标识
    static byte
    static int32
                    geoType = 1002;
                                        //Geometry 类型标识
```

```
int32 numPoints; //点个数
PointZ[] pnts[numPoints]; //每个点的坐标值
}
```

4.2.5 GAIAPolygon

```
SpatiaLite 的二维面对象:
GAIAPolygon {
    static byte
               gaiaStart = 0x00;
                                      //二进制流开始标记
                                      //几何对象的基本信息
    GAIAInfo
               info;
    PolygonData data;
                                      //Polygon 的几何数据
                                       //二进制流结束标记
    static byte
               gaiaEnd = 0xFE;
}
                                      //Polygon 的几何数据
PolygonData {
                                      //Geometry 类型标识
    static int32
               geoType = 3;
    int32
               numInteriors;
                                      //内环个数
    Ring
               exteriorRing;
                                      //外环对象
               interiorRings[numInteriors]; //内环对象
    Ring[]
}
```

4.2.6 GAIAMultiPolygon

```
SpatiaLite 的二维多面对象:
GAIAMultiPolygon {
    static byte
                   gaiaStart = 0x00;
                                          //二进制流开始标记
    GAIAGeoInfo
                   info:
                                              //几何对象的基本信息
    static int32
                   geoType = 6;
                                          //Geometry 类型标识
    int32
                   numPolygon;
                                          //子对象个数
    PolygonEntity[]
                   polygons[numPolygon];
                                          //子对象数据
}
PolygonEntity {
    static byte
                   gaiaEntityMark = 0x69;
                                          //子对象标识
                                          //子对象数据
    PolygonData
                   data;
}
```

4.2.7 GAIAMultiPolygonZ

```
//Geometry 类型标识
    static int32
                   geoType = 1006;
    int32
                   numPolygon;
                                           //子对象个数
    PolygonEntity[]
                   polygons[numPolygon];
                                           //子对象数据
}
PolygonEntity {
                   gaiaEntityMark = 0x69;
                                           //子对象标识
    static byte
    PolygonZData
                        data:
                                           //子对象数据
}
PolygonZData {
                                       //PolygonZ的几何数据
    static int32
                geoType = 1003;
                                       //Geometry 类型标识
    int32
                numInteriors;
                                       //内环个数
    RingZ
                exteriorRing;
                                       //外环对象
                interiorRings[numInteriors]; //内环对象
    RingZ∏
}
```

4.3 CAD 数据集中存储的对象

CAD 数据集可以存储二维/三维点/线/面和参数化等空间对象 (见表 25), 还可以存储文本对象 (见 4.4 小节)。与其它数据集不同, CAD 数据集可以存储对象风格, 以 GeoHeader 的形式存储在对象头部, 结构如下:

4.3.1 Style

Style 按对象的维度, 分为点符号、线符号和面填充风格 (符号的 ID 需要配合 SuperMap 的符号库使用)。

4.3.1.1 StyleMarker

```
点符号。
StyleMarker {
                                       //字节流长度
   int32
          length;
          markerStyle;
                                       //点符号在符号库中的 ID
   int32
                                       //符号大小, 精度 0.1mm
   int32
          markerSize;
                                       //符号旋转角度,单位 0.1 度
   int32
          markerAngle;
                                       //符号颜色
   Color
          markerColor:
                                       //符号宽度
   int32
          markerwidth:
          markerHeight:
   int32
                                       //符号高度
```

```
//预留字节的长度
    byte
           reservedLength;
           reservedData[reservedLength+4];
                                         //预留数据
    byte[]
           fillOpaqueRate;
                                         //填充透明度
    byte
                                         //渐变填充类型
    byte
           fillGradientType;
                                         //填充角度
    int16
           fillAngle;
    int16
           fillCenterOffsetX;
                                         //填充中心点水平偏移百分比
    int16
           fillCenterOffsetY;
                                         //填充中心点垂直偏移百分比
    Color
           fillBackcolor;
                                         //填充背景色
}
```

4.3.1.2 StyleLine

```
线符号。
StyleLine {
           lineStyle;
                                         //线符号在符号库中 ID 号
    int32
                                         //线宽, 单位 0.1mm
    int32
           lineWidth;
    Color
           lineColor;
                                         //线颜色
           reservedLength;
                                         //预留字节的长度
    byte
           reservedData[reservedLength+4];
                                         //预留数据
    byte∏
}
```

4.3.1.3 StyleFill

```
面填充风格。
StyleFill
       {
                                         //线符号在符号库中的 ID
       int32
               lineStyle;
       int32
               lineWidth:
                                         //线宽, 精度 0.1mm
       Color
               lineColor:
                                         //线颜色
       int32
               fillStyle;
                                         //填充符号在符号库中的 ID
       Color
               fillForecolor;
                                         //填充前景色
               fillBackcolor;
                                         //填充背景色
       Color
                                         //填充透明度
       byte
               fillOpaquerate;
       byte
               fillgGadientType;
                                         //渐变填充类型
                                         //填充角度, 精度 0.1°
       int16
               fillAngle;
       int16
                                         //填充中心点水平偏移百分比
               fillCenterOffsetX;
       int16
               fillCenterOffsetY;
                                         //填充中心点垂直偏移百分比
       byte
               reserved1Length;
                                             //预留字节的长度
               reserved1Data[reserved1Length+4]; //预留数据
       byte[]
                                             //预留字节的长度
       byte
               reserved2Length;
               reserved2Data[reserved2Length+4]; //预留数据
       byte[]
}
```

4.3.2 GeoPoint

```
二维点对象。
GeoPoint {
    GeoHeader header;
    Point pnt; // 点坐标值
}
```

4.3.3 GeoLine

```
二维线对象。
GeoLine {
    GeoHeader header;
    uint32 numSub; //子对象个数
    int32 subPointCount[numSub]; //每个子对象点个数
    Point[] pnts[allPntCount]; //allPntCount 为所有子对象点坐标个数
之和
}
```

4.3.4 GeoRegion

```
二维面对象。
GeoRegion {
    GeoHeader header;
    uint32 numSub; //子对象个数
    int32 subPointCount[numSub]; //每个子对象点个数
    Point[] pnts[allPntCount]; //allPntCount 为所有子对象点坐标个数
之和
}
```

4.3.5 GeoPoint3D

```
三维点。
GeoPoint3D {
GeoHeader header;
PointZ pnt; //点坐标
}
```

4.3.6 GeoLine3D

```
三维线。
GeoLine3D {
GeoHeader header;
```

```
uint32 numSub; //子对象个数
int32 subPointCount[numSub]; //每个子对象点个数
PointZ[] pnts[allPntCount]; //allPntCount 为所有子对象点坐标个数
之和
}
```

4.3.7 GeoRegion3D

```
三维面。
GeoRegion3D {
    GeoHeader header;
    uint32 numSub; //子对象个数
    int32 subPointCount[numSub]; //每个子对象点个数
    PointZ[] pnts[allPntCount]; //allPntCount 为所有子对象点坐标个数之和
}
```

4.3.8 GeoRect

```
矩形对象。
GeoRect {
   GeoHeader header;
                                 //中心点坐标值
   Point
               pntCenter;
   double
               width;
                                 //宽度
   double
               height;
                                 //高度
   int32
                                 //旋转角度乘 10 的四舍五入整型值
               angle;
   static int32
               reserved=0;
                                 //预留
}
```

4.3.9 GeoRectRound

```
圆角矩形。
GeoRectRound
   GeoHeader header;
                                 //中心点坐标值
   Point
               pntCenter;
   double
                                 //宽度
               width;
   double
               height;
                                 //高度
   int32
               angle;
                                 //旋转角度乘 10 的四舍五入整型值
               reserved=0;
                                 //预留
   static int32
   double
               radiusX:
                                 //圆角长半轴
   double
               radiusY;
                                 //圆角短半轴
}
```

4.3.10 GeoCircle

```
圆。
GeoCircle {
    GeoHeader header;
    Point pntCenter; //中心点坐标值 double radius; //半径
}
```

4.3.11 GeoEllipse

```
椭圆。
GeoEllipse
            {
    GeoHeader
               header;
    Point
                                   //中心点坐标值
               pntCenter;
    double
                                   //长半轴
               semimajoraxis;
    double
               semiminoraxis;
                                   //短半轴
    int32
               angle;
                                  //旋转角度乘 10 的四舍五入整型值
    static int32
               reserved=0;
                                  //预留
}
```

4.3.12 GeoPie

```
扇面。
GeoPie {
   GeoHeader
              header;
                                //中心点坐标值
   Point
              pntCenter;
   double
              semimajoraxis;
                                 //长半轴
   double
              semiminoraxis;
                                 //短半轴
                                //旋转角度乘 10 的四舍五入整型值
   int32
              rotationangle;
   int32
                                //起始角度乘 10 的四舍五入整型值
              startangle;
                                //终止角度乘 10 的四舍五入整型值
   int32
              endangle;
   static int32
              reserved=0;
                                 //预留
}
```

4.3.13 GeoArc

```
圆弧。
GeoArc {
GeoHeader header;
Point pntStart; //起始点坐标值
Point pntMiddle; //中间点坐标值
Point pntEnd; //终止点坐标值
```

}

4.3.14 GeoEllipticArc

```
椭圆弧。
GeoEllipticArc
              {
   GeoHeader header;
                                 //中心点坐标值
   Point
              pntCenter:
                                 //长半轴
   double
              semimajoraxis;
   double
              semiminoraxis;
                                 //短半轴
   int32
              rotationangle;
                                 //旋转角度乘 10 的四舍五入整型值
                                 //起始角度乘 10 的四舍五入整型值
   int32
              startangle;
   int32
                                 //终止角度乘 10 的四舍五入整型值
              endangle;
   static int32
              reserved=0;
                                 //预留
}
```

4.3.15 曲线

```
曲线包括 Cardinal 曲线、自由曲线和 B 样条曲线。其存储结构相同:
CurveObject {
    GeoHeader header;
    uint32 numPnts; //曲线控制点的个数
    Point[] pnts[numPnts]; //曲线控制点的坐标
}
```

4.4 文本对象

文本对象可以存储在文本数据集或者 CAD 数据集中。如果存储在文本数据集中,则 GeoHeader 的 styleSize 为 0。

```
GeoText {
   GeoHeader
                  header;
                                       //对象头部, 见 4.3 小节
                                       //文本子对象个数
   int32
                  subCount:
                                       //文本风格
   TextStyle
                  textStyle;
   GeoSubText
                  subTexts[subCount];
                                       //文本子对象
}
GeoSubText {
   Point
              pntAnchor;
                        //定位点
              subAngle;
   int32
                         //旋转角度,实际旋转角度乘10的四舍五入整型值
   static int32
              reserved = 0; //预留
                         // 文本子对象的文本内容
   String
              subText:
}
```

```
TextStyle {
    Color
                  color;
                                         //文本颜色
                                         //文本按位风格
    TextStyleBit
                  textStyleBit;
    Color
                  bgColor;
                                         //文本背景颜色
    double
                  fontWidth;
                                         //文本字体宽度
    double
                  fontHeight;
                                         //文本字体高度
    Point
                  pntAnchor;
                                         //文本定位点
                                         //文本字体名称
    String
                  faceName;
}
TextStyleBit {
                  fixedSize;
                                         //固定大小
    byte
                  weight;
                                         //笔画宽度
    byte
                                         //粗体斜体下划线等
    byte
                  styleFlag;
    byte
                  alignFlag;
                                         //文本对齐方式
}
```

其中, styleFlag 用 8 位表示是否带有某种风格标识, 从低位到高位分别表示: 阴影、轮廓线、背景不透明、固定大小、删除线、下划线、斜体、粗体;

alignFlag 分为两部分,高 4 位预留,低位 4 位表示字体对齐方式,取值含义:

0: 左上; 1: 中上; 2: 右上; 6: 左下; 7: 中下; 8: 右下; 9: 左中; 10: 中中; 11: 右中。

4.5 三维模型对象

三维模型对象(GeoModel3D)由带局部坐标系的模型对象(ModelNode)及其放置的位置、姿态等信息组成,其组织结构见图 2。

图 2 GeoModel3D 对象组织结构

ModelNode 由精细层和 LOD 层(用 PagedLOD 表示,可选)数据组成,精细层和 LOD 层的基本组成单元均为 Patch;每个 Patch 包含多个 Geode;Geode 是一个数据包,由实体对象(用 ModelEntity)组成,通过 Geode 上的矩阵,可以把相同的实体放置在不同的位置,实现模型数据的实例化存储。

ModelEntity 的子类包括骨架(EntitySkeleton)、材质(EntityMaterial3D)和纹理(EntityTexture)。

在存储策略上, GeoModel3D 存储在主表中, Geode 仅存储实体对象的名字; 实体对象单独存储在数据集子表中, 基于实体对象名字的 64 位 HashCode 编码作为对象的 ID。

4.5.1 GeoModel3D

GeoModel3D {

static int32 type=1218; //对象类型 static int32 hasStyle=0; //是否有风格 uint32 version; //对象版本号 bool isSpherePlaced; //是否放置到球面 Vector3D vecPosition; //对象位置

Vector3DvecPosition;//对象位置Vector3DvecScale;//对象缩放值Vector3DvecRotate;//对象旋转值

```
BoundingBox bbox; //包围盒
ModelNode modelNode;
}
```

4.5.2 ModelNode

```
ModelNode {
   int32
                                        //LOD 层数
               numLODs:
                                        // LOD 层数据
               pagedLODs[numLODs];
   PagedLOD
                                        //精细层 Patch 个数
   int32
               numPatches;
                                        //精细层 Patch 数据
   Patch
               patches[numPatches];
}
PagedLOD {
                                            //切换范围模式,存储为 int16
   RangeMode rangeMode;
                                            //LOD 层号
   int32
               lodNum;
   int32
               numPatches;
                                            //本层的 Patche 个数
   Patch
               patches[numPatches];
                                            //Patch 数据
}
                                            // LOD 切换模式
Enum RangeMode
                  {
                                            // 根据到相机的距离切换
   DISTANCE FROM EYE POINT = 0,
   PIXEL_SIZE_ON_SCREEN = 1
                                            // 根据屏幕像素大小切换
}
Patch {
           lodDdistance;
                                 //切换距离
   float
   int32
           index;
                                     //当前数据层 Patch 的索引号
                                 //父节点索引号,-1 时代表没有父节点
   int32
           parentIndex;
   int32
           numChildren;
                                     //子节点个数
   int32
           childrenIndexes[numChildren]; //子节点索引号
   int32
           geodeCount;
                                     //Geode 个数
   Geode
           geodes[geodeCount];
                                     //各 Geode 数据
}
Geode {
                                                //矩阵信息
   Matrix4d localMatrix:
   int32
           numSkeletons;
                                                //骨架个数
   String
           skeletonNames[numSkeletons]
                                                //骨架名字
                                                //材质个数
   int32
           numMaterials;
                                                //材质名字
   String
           materialNames[numMaterials]
   int32
           numTextures;
                                                //纹理个数
           textureNames[numTextures]
                                                //纹理名字
   String
}
```

```
Matrix4d { //4*4 矩阵, 行主序 double values[16]; }
```

4.5.3 ModelEntity

4.5.3.1 EntitySkeleton

```
EntitySkeleton {
                                              //骨架名
  String
                  name;
                  materialName;
                                              //关联的材质名
  String
  BoundingBox
                                           //包围盒
                  bbox:
                                           //模型矩阵
  Matrix4d
                  localMatrix;
  VertexDataPackage dataPack;
                                           //顶点数据
  int32
                  numIndexpacks;
                                           //索引包个数
  IndexPackage
                  indexPacks[numIndexpacks];
                                          //索引包数组
  }
VertexDataPackage {
   //顶点属性,与 VertexOptions 中的枚举值按位|运算得出
   int32
          vertexOptions;
   uint16
          numDim;
                         //顶点坐标维度
                        //顶点个数
   uint32
          numVertexes:
                         //顶点坐标在数组中的偏移量
   uint16 vertexStride:
   //顶点坐标数据。当 vertexOptions 具备 VO_VERTEX_DOUBLE 属性则 double, 否
则为 float
   variant vertexData[numVertexes * numDim];
   uint32
          numNormals:
                                    //法向量个数
          normalStride
                                   //法向量在数组中的偏移
   uint16
          normalData[numNormals * numDim];
   float
                                          //法向量数据
                                   //顶点颜色个数
   uint32
          numColors;
   uint16
          colorStride;
                                   //颜色在数组中的偏移
                                   //顶点颜色, 4字节存储 R/G/B/A
   uint32
          colorData[colorCount];
          numTextures:
                                   //纹理通道个数
   int32
   TextureCoord textureCoords[numTextures]; //纹理坐标数据
}
                            //顶点数据的属性
Enum VertexOptions {
   VO_NORMALS = 1,
                                //包含法线
   VO_TEXTURE_COORDS = 2,
                                //包含纹理坐标
   VO_DIFFUSE_COLOURS = 4,
                                //包含顶点颜色
                                //包含顶点 secondColor
   VO SPECULAR COLOURS = 8,
```

```
//使用权重值计算
   VO_BLEND_WEIGHTS = 16,
   VO USE SINGLE COLOR = 32.
                               //仅采用一种颜色绘制
   VO_USE_POINT_SMOOTHING = 64, //启动点反走样
   VO_MATERIAL = 128,
                                //使用材质
   VO_TEXTURE_COLOR = 256,
                                //使用纹理颜色
   VO_VERTEX_DOUBLE = 512,
                                //顶点坐标为高精度 double
   VO TEXTURE COORD Z IS MATRIX = 1024, //表示顶点属性的 Z 值是一个矩阵
};
TextureCoord {
                            //纹理坐标
   uint16
                               //纹理坐标维度
          dimension;
   uint32
          numCoords;
                               //纹理坐标个数
   uint16
          stride:
                               //偏移值
          coordData[numCoords * dimension];
                                          //坐标值
   float
}
IndexPackage {
   uint32
                 numIndexes;
                               //索引个数
   IndexType
                               //索引数据类型,存储为 int32
                 type;
   bool
                 isUseIndex;
                               //是否使用索引
                 operationType;
                               //顶点的组织方式, 存储为 int32
   OperationType
   //索引数据,当 type 为 IT_32BIT 或者 IT_32BIT_2 时,variant 为 uint32;否则为
uint16
   variant
              indexData[indexesCount];
                                //使用的 Pass 个数
   int32
              numPass;
              passNames[numPass]; //使用的 Pass 的名称数组
   String
}
Enum IndexType {
   IT 16BIT = 0.
                     //索引值采用 uint16 表示
   IT_32BIT = 1,
                     //索引值采用 uint32 表示
   IT_16BIT_2 = 2,
                     //带属性索引,索引值采用 uint16 表示
                     //带属性索引,索引值采用 uint32 表示
   IT 32BIT 2 = 3,
}
Enum OperationType {
                                   //顶点的组织方式
   OT POINT LIST = 1,
                                       //单个点
                                       //两点线
   OT LINE LIST = 2,
   OT_LINE_STRIP = 3,
                                       //线串
   OT_TRIANGLE_LIST = 4,
                                      //三角形
   OT_TRIANGLE_STRIP = 5,
                                      //条带三角形
   OT TRIANGLE FAN = 6,
                                       //扇面三角形构成
   OT QUAD STRIP = 8,
                                       //条带四边形
   OT_QUAD_LIST = 9,
                                      //四边形串,不共享边
```

4.5.3.2 EntityMaterial3D

```
EntityMaterial3D {
    double
                                  //版本号
               version;
    Strina
                                  //材质名
               name:
    String
                                  //材质所在组名
               groupName;
               effectType;
                                  //特效材质类型,存储为 int32
    EffectType
    int32
               numTechnique;
                                  //Technique 个数
    Technique
               techniques[numTechnique];
                                          //Technique 数据
}
Enum EffectType {
                          //特效材质枚举
    NONE = 0,
                              //无特效
    WATER = 1,
                              //水面特效
}
Technique {
    String
                                  //Technique 名字
           name;
                                  //Technique 所属的 scheme 名字
    String
           schemeName;
    String
           lodIndex:
                                  //Technique 所使用的 LOD 层索引
    String
           mShadowCasterMaterialName;
                                          //阴影投射的材质名字
                                         //阴影接收的材质名字
           mShadowReceiverMaterialName;
    String
    int32
           numPass;
                                          //pass 个数
    Pass
           passes[numPass];
                                          //绑定的所有 pass
}
Pass {
    String
                                          //pass 名字
                   name;
    PolygonMode
                                          //绘制模式,存储为 int32
                   polygonMode;
                                          //裁剪模式, 存储为 int32
    CullingMode
                   cullMode;
                                          //设置光照是否开启
    bool
                   lightEnabled;
    uint32
                   reserved;
                                          //未使用
    bool
                   reserved:
                                          //未使用
                                          //点尺寸大小
    float
                   pointSize;
                   pointMinSize;
                                          //点最小尺寸
    float
    float
                   pointMaxSize;
                                          //点最大尺寸
                                          //未使用
    int16
                   reserved;
    double
                   reserved [3];
                                          //未使用
                                          //线平滑方式,存储为 int32
    SmoothHintMode pntSmoothHintMode;
    SmoothHintMode lineSmoothHintMode:
                                          //点平滑方式, 存储为 int32
    uint32
           ambient:
                                          //环境光
```

```
uint32
          diffuse;
                                       //散射光
                                       //反射光
   uint32
          specular;
          selfIllumination;
                                       //自发光
   uint32
   uint32
          materialColor:
                                       //材质颜色
                                       //发光,影响发射光点的大小
   float
          shininess;
   uint32
          tracking;
                                       //顶点颜色跟踪
                                       //是否接收阴影
   bool
          receiveShadow;
                                       //颜色是否能够写入
   bool
          colorWrite:
          alphaReject:
                                       //Alpha 测试参考值
   float
   CompareFunction
                     alphaRejectFunc;
                                          //Alpha 测试方法, 存储为 int32
                                       //未使用
   bool
          reserved;
   bool
          transparentSorting;
                                       //透明物体深度排序
   bool
          reserved:
                                       //未使用
          depthCheck:
                                       //是否进行深度测试
   bool
                                       //渲染时是否进行深度写入
   bool
          depthWrite;
                                       //深度测试方法,存储为 int32
   CompareFunction depthBufferFunc;
                                       //多边形偏移量常量部分
   float
          constantPolygonOffset;
   float
          slopeScalePolygonOffset;
                                       //多边形偏移量深度坡度因子部分
   float
          reserved;
                                       //未使用
   bool
          blendAlpha;
                                       //是否进行 Alpha 混合
                                       //顶点着色器的名字
          vertexProgram;
   String
          fragmentProgram;
                                       //片元着色器的名字
   String
                                       //几何着色器的名字
   String
          geometryProgram;
   String
          shadowCasterVertexProgram;
                                       //阴影投射顶点着色器的名字
          shadowReceiverVertexProgram;
                                       //阴影接收顶点着色器的名字
   String
   String
          shadowReceiverFragmentProgram; //阴影接收片元着色器的名字
   int32
          numTextureUnitState;
                                       //纹理单元个数
   TextureUnitState textureUnitStates[numTextureUnitState]://关联的纹理单元
          textureZType[numTextureUnitState]; //各纹理 Z 通道
   int32
}
Enum PolygonMode {
                        //渲染引擎用的多边形显示模式
   PM POINTS = 1,
                            //仅显示点
                            //仅显示线框
   PM_WIREFRAME = 2,
   PM SOLID = 3
                            //显示实体
}
Enum CullingMode {
                        //渲染引擎用的的裁剪模式
                            //不进行裁剪
   CULL_NONE = 1,
   CULL_CLOCKWISE = 2,
                            //顺时针方向被裁剪
                            //逆时针方向被裁减
   CULL_ANTICLOCKWISE = 3
}
Enum SmoothHintMode {
                            //图像绘制的反走样模式
```

```
SHM_NONE = 0,
                          //不使用抗锯齿
                          //由 OpenGL 决定达到点/线的平滑效果
   SHM DONT CARE = 1,
   SHM_FASTEST = 2,
                          //运行速度最快
   SHM_NICEST = 3
                          //显示效果最好
}
                          //各类测试的比较方式
Enum CompareFunction {
   CMPF_ALWAYS_FAIL = 0,
                             //从不通过测试
   CMPF ALWAYS PASS = 1.
                             //总是通过测试
   CMPF_LESS = 2,
                             //只有参考值<缓冲区标记值时才通过
   CMPF LESS EQUAL = 3,
                             //只有参考值<=缓冲区标记值时才通过
   CMPF EQUAL = 4,
                             //只有参考值=缓冲区标记值时才通过
                             //只有参考值!=缓冲区标记值时才通过
   CMPF_NOT_EQUAL = 5,
                             //只有参考值>=缓冲区标记值时才通过
   CMPF\_GREATER\_EQUAL = 6,
   CMPF\_GREATER = 7
                             //只有参考值>缓冲区标记值时才通过
}
TextureUnitState {
                                       //纹理单元状态名字
   String
         name;
   String
         textureNameAlias;
                                       //纹理别名
                                       //纹理单元使用的纹理名称
         textureName;
   String
   String
         cubicTextureName;
                                       //立方体纹理名
                                       //未使用
   uint32 reserved:
   TextureAddressingMode modeU;
                             //纹理坐标寻址模式 U 方向, 存储为 int32
   TextureAddressingMode modeV;
                             //纹理坐标寻址模式 V 方向, 存储为 int32
   TextureAddressingMode modeW;
                             //纹理坐标寻址模式 W 方向, 存储为 int32
   FilterOptions
                minFilter;
                                //缩小时的滤波类型,存储为 int32
   FilterOptions
                maxFilter;
                                //放大时的滤波类型,字节 int32
                                //Mipmap 时滤波类型,字节 int32
   FilterOptions
                mipFilter;
                                //纹理 U 的缩放
   double
                UScale:
   double
                VScale:
                                //纹理 V 的缩放
                EnvironmentMapEnabled; // 是否启用环境映射
   bool
   int32
                                //未使用
                reserved:
                                //纹理矩阵
   Matrix4d
                texModMatrix;
}
Enum TextureAddressingMode {
                             //纹理寻址模式
   TAM WRAP,
                   //重复贴图
   TAM_MIRROR,
                   //对称翻转
   TAM_CLAMP,
                   //边缘像素填充所有大于1的纹理坐标. 边缘拉长
   TAM_BORDER,
                   //不在[0,1]范围内的纹理坐标使用用户指定的边缘颜色
}
Enum FilterOptions {
                   //纹理或者 mipmap 的滤波模式
```

4.5.3.3 EntityTexture

```
EntityTexture {
                     //纹理名字
   String name;
                     //是否带 mipmap
   bool mipmap;
   int32 level:
                     //mipmap 层级
   TextureData textureData; //纹理数据
}
TextureData {
   static uint32 compressType=14; //纹理压缩类型, 存储为 uint32
   uint32
            width:
                            //纹理宽度
                            //纹理高度
   uint32
            height;
   PixelFormat format;
                            //纹理像素格式,存储为 int32
                            //数据流字节长度
   uint32
           size:
   int32
            zipSize;
                            //zip 压缩后大小
   uchar
            data[zipSize]
                            //zip 压缩后数据
}
Enum PixelFormat {
              //纹理像素格式
   PF_BYTE_RGB = 11,
                     //3 字节像素, 每个颜色占一个字节
   PF_BYTE_BGRA = 12,
                    //4 字节像素,每个颜色和 alpha 各占一个字节
   PF_BYTE_RGBA = 13,
                     //4 字节像素, 每个颜色和 alpha 各占一个字节
}
```

4.6 栅格块存储

栅格块(Block)存储与压缩编码方式(见表 17)相关。Block 的二进制流大小写入数据表的 SmSize 字段, Block 数据写入 SmBand,见表 30。

1) 无压缩编码

Block 按实际长、宽逐像素存储值,行主序。像素值的类型及存储方式见表 18。

2) DCT 压缩

采用 jpeglib 开源库(版本号 6b) 对原始 Block 数据流进行压缩。

3) SGL 压缩

按 X 方向 16 个像素, Y 方向 4 个像素对 Block 划分 N 个 Tile, 每个 Tile 内部进行游程编码。

```
SGLBlock {
  int16
            numTiles;
                          //Tile 个数
            sizeX = 16;
                          //Tile 在 X 方向像素数
  static byte
  static byte sizeY = 4;
                          //Tile 在 X 方向像素数
                             //每个 Tile 压缩后的数据
  SGLTile∏
            tileData[numTiles];
}
SGLTile {
                      //数据流长度,字节单位
  int16
         dataLenth;
                      //编码值中, Diff 值占用位数
  byte
         bitCountDiff:
                     //Tile 的最小值占用字节数
  byte
         bvteCountMin:
  byte[] minValueByByte[byteCountMin];
                                  //Tile 的最小值
  ValuePack[] valuePacks[]; //游程编码值
}
ValuePack {
         tagCount:
                   //值的个数。如果该值最高位为 1,则表示无值,低四
  byte
位为无值个数,没有 values 值;如果该值第 3 位为 1,则表示 values 为不重复的
值,个数为低两位取整
        values[bitCountDiff]; //原值与最小值的差按占用字节数写入
  byte∏
}
```

4) LZW 压缩

目前是采用 zlib 开源库(版本号 1.2.2)对原始 Block 数据流进行压缩。

5) PNG 压缩

采用 libpng 开源库(版本号 1.2.6) 对原始 Block 数据流进行压缩。

4.7 其它对象

4.7.1 坐标系对象

坐标系对象的存储结构如下:

ProjectInfo { int32

```
prjCoordSysType;
                            //投影坐标系类型
int32
          geoCoordSysType;
                            //地理坐标系类型
int32
          projectionType;
                            //投影方式类型
int32
          datumType;
                            //datum 类型
          spheroidType;
                            //椭球体类型
int32
          primeMeridianType;
                            //中央子午线类型
int32
```

```
int32
           reserved;
                               //预留
                               //坐标系单位
int32
           unit:
double
                              //水平偏移量
           falseEasting;
double
           falseNorthing;
                              //垂直偏移量
                              //中央经线
double
           centralMeridian;
double
           centralParallel;
                              //原点纬线
           standardParallel1:
                              //标准纬线1
double
double
           standardParallel2:
                              //标准纬线 2
double
           scaleFactor:
                              //比例因子
                              //方位角
double
           azimuth;
                               //第一点经线
double
           firstPointLongitude;
double
           secondPointLongitude;//第二点经线
double
           axis:
                              //椭球长半轴
                              //椭球扁率
double
           flatten:
double
                              //中央子午线值
           primeMeridian;
                              //预留
double∏
           reserved[2];
                              // 投影坐标系名称
String
           prjCoordSysName;
String
           geoCoordSysName;
                              // 地理坐标系名称
           spheroidName;
                              // 椭球体名称
String
String
           datumName;
                              // datum 名称
           epsqCode;
                              // EPSG 编号
uint32
double
           rectifiedAngle;
                              // 纠正角
```

相关描述可参考 OGDC, 见 5 小节。其中 prjCoordSysType、geoCoordSysType、projectionType、datumType、spheroidType、primeMeridianType 的枚举值对应的含义可参考 Projection/UGPjCon.h 文件;单位值 unit 可参考 Base/ogdcdefs.h。

4.7.2 值域规则对象

}

```
值域规则对象分为范围值域(DomainRangeInfos)和枚举值域(DomainCodeInfos)。
DomainRangeInfos
   int32
                                          //范围区间的个数
                     numRanges;
   DomainRange □
                     ranges[numRanges];
                                          //各区间对象
}
DomainRange
              {
   DomainRangeType
                     rangeType;
                               //区间类型
   //区间值类型由字段类型决定:
   //字段类型 Int16、Int32,对应 variant 为 int32;
   //字段类型 Int64,对应 variant 为 int64;
   //字段类型 Float、Double,对应 variant 为 double
   variant
              leftValue;
                            //区间左值
              rightValue;
                            //区间右值
   variant
}
```

```
Enum DomainRangeType {
                    //左值取闭区间,右值取闭区间
   CloseClose
             = 1,
                 //左开,右闭
   OpenClose
            = 2,
   CloseOpen = 3, //左闭, 右开
   OpenOpen = 4
                    //左开, 右开
}
DomainCodeInfos {
   int32
                    numCodes;
                                         //枚举值的个数
                                         //各枚举对象
   DomainCode∏
                    ranges[numCodes];
}
DomainCode
             {
   //值类型由字段类型决定:
   //字段类型 Boolean、Byte、Int32,对应 variant 为 int32
   //字段类型 Int16,对应 variant 为 int16
   //字段类型 Int64, 对应 variant 为 int64
   //字段类型 Float、Double,对应 variant 为 double
   //字段类型 Text、NText,对应 variant 为 String
   Variant
             codeValue;
                              //枚举值
                              //枚举值说明
   String
             codeDescription;
}
```

5. 应用指南

超图软件自 SuperMap 9D (2019) 开始全面支持 UDBX 格式,包括组件、桌面、移动端和服务端系列产品。

此外,OGDC 也提供了对 UDBX 的支持,基于一套规范的 C++接口对 UDBX 数据进行读写操作,链接:https://github.com/SuperMap/OGDC。