CS1231(S) Tutorial 3: Sets Solutions

National University of Singapore

2020/21 Semester 1

Sometimes there is more than one correct answer.

1. Which of the following are true? Which of them are false?

(a) $\emptyset \in \emptyset$.

(e) $\{\emptyset, 1\} = \{1\}.$

(b) $\varnothing \subseteq \varnothing$.

(f) $1 \in \{\{1,2\},\{2,3\},4\}.$

(c) $\varnothing \in \{\varnothing\}$.

(g) $\{1,2\} \subseteq \{3,2,1\}$.

(d) $\varnothing \subseteq \{\varnothing\}$.

(h) $\{3,3,2\} \subsetneq \{3,2,1\}$.

Solution. F, T, T, T, F, F, T, T.

- 2. Let $A = \{1, \{1, 2\}, 2, \{1, 2\}\}$. Find |A|. Solution. |A| = 3.
- 3. Let $A = \{0, 1, 4, 5, 6, 9\}$ and $B = \{0, 2, 4, 6, 8\}$. Find $|A|, |B|, |A \cap B|$, and $|A \cup B|$. Solution. Note that $A \cap B = \{0, 4, 6\}$ and $A \cup B = \{0, 1, 2, 4, 5, 6, 8, 9\}$. So

$$|A| = 6$$
, $|B| = 5$, $|A \cap B| = 3$, and $|A \cup B| = 8$.

4. Let $A = \{2n+1 : n \in \mathbb{Z}\}$ and $B = \{2n-1 : n \in \mathbb{Z}\}$. Is A = B? Prove that your answer is correct.

Solution. Yes, as shown below.

- $1. (\subseteq)$
 - 1.1. Let $a \in A$.
 - 1.2. Use the definition of A to find $n \in \mathbb{Z}$ such that a = 2n + 1.
 - 1.3. Then a = 2(n+1) 1.
 - 1.4. As $n \in \mathbb{Z}$, we know $n + 1 \in \mathbb{Z}$.
 - 1.5. So $a \in B$ by the definition of B.
- $2. (\supseteq)$
 - 2.1. Let $b \in B$.
 - 2.2. Use the definition of B to find $n \in \mathbb{Z}$ such that a = 2n 1.
 - 2.3. Then b = 2(n-1) + 1.
 - 2.4. As $n \in \mathbb{Z}$, we know $n 1 \in \mathbb{Z}$.
 - 2.5. So $b \in A$ by the definition of A.
- 3. Hence A = B by the definition of set equality.
- 5. Let $A = \{x \in \mathbb{Z} : 2 \le x \le 5\}$ and $B = \{x \in \mathbb{R} : 2 \le x \le 5\}$. Is A = B? Prove that your answer is correct.

Solution. No, as shown below.

- 1. $3.14 \in \mathbb{R}$ and $2 \le 3.14 \le 5$.
- 2. So $3.14 \in B$ by the definition of B.
- 3. $3.14 \notin \mathbb{Z}$.
- 4. So $3.14 \notin A$ by the definition of A.
- 5. Lines 2 and 4 imply $A \neq B$ by the definition of set equality.
- 6. Let $U=\{5,6,7,\ldots,12\}$ and $M_k=\{n\in\mathbb{Z}:n=km\text{ for some }m\in\mathbb{Z}\}$ for each $k\in\mathbb{Z}.$ Find:
 - (a) $\{n \in U : n \text{ is even}\};$
 - (b) $\{n \in U : n = m^2 \text{ for some } m \in \mathbb{Z}\};$
 - (c) $\{-5, -4, -3, \dots, 5\} \setminus \{1, 2, 3, \dots, 10\};$
 - (d) $\overline{\{5,7,9\} \cup \{9,11\}}$, where U is considered the universal set;
 - (e) $\{(x,y) \in \{1,3,5\} \times \{2,4\} : x+y \ge 6\};$
 - (f) $\mathcal{P}(\{2,4\})$.

Solution.

- (a) $\{6, 8, 10, 12\}$.
- (b) {9}.
- (c) $\{-5, -4, -3, -2, -1, 0\}$.
- (d) $\overline{\{5,7,9\} \cup \{9,11\}} = \overline{\{5,7,9,11\}} = \{6,8,10,12\}$ when U is considered the universal set.
- (e) $\{(3,4),(5,2),(5,4)\}.$
- (f) $\{\emptyset, \{2\}, \{4\}, \{2,4\}\}.$
- 7. Show that for all sets A, B, C,

$$A\cap (B\setminus C)=(A\cap B)\setminus C.$$

Solution.

- $A \cap (B \setminus C) = \{x : x \in A \text{ and } x \in B \setminus C\}$ by the definition of \cap ; 1. 2. $= \{x : x \in A \text{ and } (x \in B \text{ and } x \notin C)\}\$ by the definition of \setminus ; $= \{x : (x \in A \text{ and } x \in B) \text{ and } x \notin C\}$ 3. as "and" is associative; $= \{x : x \in A \cap B \text{ and } x \notin C\}$ by the definition of \cap ; 4. $= (A \cap B) \setminus C$ 5. by the definition of \setminus .
- 8. (2009/10 Semester 2 exam question B) Prove that for all sets A and B,

$$(A \cup \overline{B}) \cap (\overline{A} \cup B) = (A \cap B) \cup (\overline{A} \cap \overline{B}).$$

Solution. (Note that we no longer need to apply the set identities as strictly as we did in the logic part of the module.)

- 1. $(A \cup \overline{B}) \cap (\overline{A} \cup B)$
- 2. = $((A \cup \overline{B}) \cap \overline{A}) \cup ((A \cup \overline{B}) \cap B)$ as \cap distributes over \cup ;
- 3. = $((A \cap \overline{A}) \cup (\overline{B} \cap \overline{A})) \cup ((A \cap B) \cup (\overline{B} \cap B))$ as \cap distributes over \cup ;
- 4. $= (\varnothing \cup (\overline{B} \cap \overline{A})) \cup ((A \cap B) \cup \varnothing)$ by the Complement Law;
- 5. $= (\overline{B} \cap \overline{A}) \cup (A \cap B)$ by the Identity Law;
- 6. $= (A \cap B) \cup (\overline{A} \cap \overline{B})$ by the Commutative Laws.

One may alternatively use the element method or the truth-table method.

- 9. Let A, B be sets. Show that $A \subseteq B$ if and only if $A \cup B = B$. Solution.
 - 1. ("Only if")
 - 1.1. Suppose $A \subseteq B$.
 - 1.2. (" $A \cup B \subseteq B$ ")
 - 1.2.1. Let $z \in A \cup B$.
 - 1.2.2. Then $z \in A$ or $z \in B$ by the definition of \cup .
 - 1.2.3. Case 1: suppose $z \in A$.
 - 1.2.3.1. Then $z \in B$ as $A \subseteq B$ from line 1.1.
 - 1.2.4. Case 2: suppose $z \in B$.
 - 1.2.4.1. Then $z \in B$.
 - 1.2.5. In either case, we have $z \in B$.
 - 1.3. $("A \cup B \supseteq B")$
 - 1.3.1. Let $z \in B$.
 - 1.3.2. Then $z \in A$ or $z \in B$ by the definition of "or".
 - 1.3.3. So $z \in A \cup B$ by the definition of \cup .
 - 1.4. Lines 1.3 and 1.2 imply $A \cup B = B$ by the definition of set equality.
 - 2. ("If")
 - 2.1. Suppose $A \cup B = B$.
 - 2.2. We prove $A \subseteq B$ as follows.
 - 2.2.1. Let $z \in A$.
 - 2.2.2. Then $z \in A$ or $z \in B$ by the definition of "or".
 - 2.2.3. So $z \in A \cup B$ by the definition of \cup .
 - 2.2.4. This implies $z \in B$ as $A \cup B = B$ by line 2.1.
- 10. For sets A and B, define $A \oplus B = (A \setminus B) \cup (B \setminus A)$.
 - (a) Let $A = \{1, 4, 9, 16\}$ and $B = \{2, 4, 6, 8, 10, 12, 14, 16\}$. Find $A \oplus B$.
 - (b) Show that for all sets A, B,

$$A \oplus B = (A \cup B) \setminus (A \cap B).$$

Solution.

- (a) $A \setminus B = \{1, 9\}$ and $B \setminus A = \{2, 6, 8, 10, 12, 14\}$. So $A \oplus B = \{1, 2, 6, 8, 9, 10, 12, 14\}$.
- (b) Compare the following truth tables.

$z \in A$	$z \in B$	$z \in A \setminus B$	$z \in B \setminus A$	$z \in A \oplus B$
\overline{T}	Τ	F	F	F
${ m T}$	\mathbf{F}	T	\mathbf{F}	${ m T}$
\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	\mathbf{F}	F	F
$z \in A$	$z \in B$	$z \in A \cup B$	$z\in A\cap B$	$z \in (A \cup B) \setminus (A \cap B)$
$\frac{z \in A}{T}$	$z \in B$	$z \in A \cup B$	$z \in A \cap B$	$z \in (A \cup B) \setminus (A \cap B)$
$\begin{array}{c} z \in A \\ \hline \mathbf{T} \\ \mathbf{T} \end{array}$	$z \in B$ T F	$z \in A \cup B$ T T	$z \in A \cap B$ T F	$z \in (A \cup B) \setminus (A \cap B)$ F T
$\begin{array}{c} z \in A \\ \hline T \\ T \\ F \end{array}$	Т	$z \in A \cup B$ T T T	T	$z \in (A \cup B) \setminus (A \cap B)$ F T T

Since the last columns of the two tables are the same, we conclude that $A \oplus B = (A \cup B) \setminus (A \cap B)$.

Instead of the truth tables above, one may prove this using the set identities. Here U denotes the universal set.

1.
$$A \oplus B$$

2.
$$= (A \setminus B) \cup (B \setminus A)$$
 by the definition of \oplus ;

3.
$$= (A \cap \overline{B}) \cup (B \cap \overline{A})$$
 by the Set Difference Law;

4.
$$= ((A \cap \overline{B}) \cup B) \cap ((A \cap \overline{B}) \cup \overline{A})$$
 by the Distributive Law;

5.
$$= (A \cup B) \cap (\overline{B} \cup B) \cap (A \cup \overline{A}) \cap (\overline{B} \cup \overline{A})$$
 by the Distributive Law;

6.
$$= (A \cup B) \cap U \cap U \cap (\overline{B} \cup \overline{A})$$
 by the Complement Law;

7.
$$= (A \cup B) \cap U \cap U \cap (\overline{B \cap A})$$
 by De Morgan's Law;

8. =
$$(A \cup B) \cap (\overline{B \cap A})$$
 by the Identity Law;

9.
$$= (A \cup B) \cap (\overline{A \cap B})$$
 by the Commutative Law;

10.
$$= (A \cup B) \setminus (A \cap B)$$
 by the Set Difference Law.

Alternatively, one may also use the element method.

11. (2015/16 Semester 1 exam question 16(a)) Denote by |x| the absolute value of the integer x, i.e.,

$$|x| = \begin{cases} x, & \text{if } x \geqslant 0; \\ -x, & \text{if } x < 0. \end{cases}$$

Given the set $S = \{-9, -6, -1, 3, 5, 8\}$, for each of the following statements, state whether it is true or false, with explanation.

(a)
$$\exists z \in S \ \forall x, y \in S \ z > |x - y|$$
.

(b)
$$\exists z \in S \ \forall x, y \in S \ z < |x - y|$$
.

Solution.

- (a) This statement is false, as shown below.
 - 1. It suffices to show $\forall z \in S \ \exists x, y \in S \ z \leq |x y|$.
 - 2. Take any $z \in S$.
 - 3. Let x = 8 and y = -9.

4. Then
$$x, y \in S$$
 and $|x - y| = |8 - (-9)| = 17 > 8 = \max S \ge z$.

(b) This statement is true, as shown below.

1.
$$-1 \in S$$
.

2.
$$|x-y| \ge 0 > -1$$
 for all $x, y \in S$.

12. For sets $A_m, A_{m+1}, \ldots, A_n$, define

$$\bigcup_{i=m}^{n} A_i = A_m \cup A_{m+1} \cup \dots \cup A_n \quad \text{and} \quad \bigcap_{i=m}^{n} A_i = A_m \cap A_{m+1} \cap \dots \cap A_n.$$

- (a) Let $A_i = \{x \in \mathbb{Z} : x \geqslant i\}$ for each $i \in \mathbb{Z}$. Write down $\bigcup_{i=2}^5 A_i$ and $\bigcap_{i=2}^5 A_i$ in roster notation.
- (b) Let $B_1, B_2, \ldots, B_k, C_1, C_2, \ldots, C_\ell$ be sets such that

$$\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^\ell C_j.$$

Show that $B_i \subseteq C_j$ for all $i \in \{1, 2, ..., k\}$ and all $j \in \{1, 2, ..., \ell\}$.

Solution.

(a)
$$\bigcup_{i=2}^{5} A_i = \{2, 3, 4, \dots\}$$
 and $\bigcap_{i=2}^{5} A_i = \{5, 6, 7, \dots\}$.

- (b) 1. Let $B_1, B_2, \ldots, B_k, C_1, C_2, \ldots, C_\ell$ be sets such that $\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^\ell C_j$.
 - 2. 2.1. Let $r \in \{1, 2, \dots, k\}$ and $s \in \{1, 2, \dots, \ell\}$.
 - 2.2. Take any $z \in B_r$.
 - 2.3. Then $z \in B_1$ or $z \in B_2$ or ... or $z \in B_k$ by the definition of "or", as $r \in \{1,2,\ldots,k\}.$
 - 2.4. So $z \in B_1 \cup B_2 \cup \cdots \cup B_k = \bigcup_{i=1}^k B_i$ by the definition of \cup and \bigcup .
 - 2.5. Hence $z \in \bigcap_{j=1}^{\ell} C_j = C_1 \cap C_2 \cap \cdots \cap C_{\ell}$ as $\bigcup_{i=1}^{k} B_i \subseteq \bigcap_{j=1}^{\ell} C_j$ by line 1. 2.6. Thus $z \in C_1$ and $z \in C_2$ and \ldots and $z \in C_{\ell}$ by the definition of \cap .

 - 2.7. In particular, we know $z \in C_s$ as $s \in \{1, 2, ..., \ell\}$.
 - 3. So $B_i \subseteq C_j$ for any $i \in \{1, 2, \dots, k\}$ and any $j \in \{1, 2, \dots, \ell\}$.