基礎磁気回路

最終コンパイル 平成 30 年 10 月 28 日

目 次

第1章	1章 磁気回路						
	1.0.1	磁気回路でのオームの法則	4				
1.1	アンペ	ールの法則	E				

第1章 磁気回路

1.0.1 磁気回路でのオームの法則

定義 1.0.1 (起磁力).

コイルに発生する磁束は電流 I と巻数 N に比例して発生する.

$$F_m = NI[A] (1.1)$$

このとき, F_m を起磁力という.

定理 1.0.1 (ホプキンソンの法則).

起磁力 NI と磁東 ϕ 間の関係を定数 R_m を用い

$$NI = R_m \phi[A] \tag{1.2}$$

と表す. ここで比例定数 R_m を磁気抵抗という. この関係をホプキンソンの法則という.

定義 1.0.2 (パーミアンス).

磁気抵抗 R_m の逆数をパーミアンスといい, Λ を用いて

$$\Lambda = \frac{1}{R_m} [H] \tag{1.3}$$

このとき, F_m を起磁力という.

定義 1.0.3 (材料の持つ磁気抵抗).

一様な磁気材料において、その磁気抵抗は R_m は

$$R_m = \frac{1}{\mu A}$$

$$= \frac{1}{\mu_0 \mu_s A} [A/Wb]$$
(1.4)

このとき, F_m を起磁力という.

1.1 アンペールの法則

定理 1.1.1 (アンペールの法則).

$$\oint_{c} \mathbf{H} \cdot d\mathbf{l} = \int_{S} \mathbf{J} \cdot d\mathbf{S} = I[A]$$
(1.5)

直線状導体の磁界

$$H = \frac{I}{2\pi r} \quad [A/m] \tag{1.6}$$

環状コイルの中心磁界

$$H = \frac{NI}{2r} [A/m] \tag{1.7}$$

索引

定義一覧

1.0.1 起磁力	 4
1.0.2 パーミアンス	 4
1.0.3 材料の持つ磁気抵抗	 4

第	1	磁気に	ᆔᄱ
777 7	1	4199 31.11	打計台

1.1. アンペールの法則

定理一覧

1.0.1 ホプキンソンの法則	4
1.1.1 アンペールの法則	5