良心 CSP-S 模拟赛

Adscn

2019年11月??日

题目名称	简单的推式子练习题	简单的字符串练习题	简单的杜教筛练习题
题目类型	传统型	传统型	传统型
目录	formula	string	interval
可执行文件名	formula	string	interval
输入文件名	formula.in	string.in	interval.in
输出文件名	formula.out	string.out	interval.out
每个测试点时限	3s	1s	7s
内存限制	512MB	512MB	512MB
测试点/包数目	20	20	10
测试点是否等分	是	是	是

注意事项:

- 1. 该比赛为良心模拟赛
- 2. 本考试所有目录, 文件名均为小写
- 3. 本考试不保证数据正确性
- 4. 所有题目的时间限制在 std 的 1.5 倍以上
- 5. 在 Ubuntu 18.04 下评测, 开启 O2 优化,启用-std=c++11
- 6. 本场考试送分到位,请 AK 的同学低调离场,不要声张。
- 7.Orz QAQAutomaton
- 8. 请注意 64 位整数的运算效率问题
- 9. 题目其实很简单

简单的推式子练习题

题目描述

给出一颗树, 点有点权, 请支持以下操作

- 1. 换根并询问所有子树的带边权点权和
- 2. 修改一个点的权值

带边权点权和定义:

设 Sum_x 为子树内的点权和 一个子树 x 的带边权点权和为

 $dep_x * Sum_x$

形式化地, 询问的值是

$$\sum_{x \in Tree} dep_x \sum_{v \in subtree \ of \ x} val_v$$

题解

单独考虑每个点 x 的贡献,发现它会被计算 $\frac{dep_x*(dep_x+1)}{2}$ 次 那题目让我们求的,其实就是 $\sum_{v \in tree} \frac{dis(u,v)*dis(u,v)+dis(u,v)}{2} val_v(\mathbf{u}$ 为给定根)

先去掉那个 $\frac{1}{2}$, 发现就是求 $\sum dis(u,v)val_v$ 与 $\sum dis(u,v)^2val_v$

对于前一部分,考虑对于每个子树 x 维护 $\sum_{v \in x} dis(x,v)val_x$,从 u 出发,在向上跳的过程 中维护答案即可, $dis(x,v)^2$ 同理。

这样就可以拿到随机树的分, 但是链会被卡爆。

考虑优化。

我们使用动态点分治,对于树建出一颗点分树出来,前面的不带平方的做法就是 ZJOI 的 幻想乡战略游戏,这里只主要讲解带平方的部分如何计算。

以下如果没有特殊说明都指点分树。

设 $dis1_x$ 为点 x 其子树中的点到达 x 的无平方代价和, $dis2_x$ 为 x 的子树到达 par_x 的无 平方代价和。

那对于前一部分我们跳跃的时候就是直接容斥就可以了。

我们设 $dis3_x$ 为到达 x 的平方代价和, $dis4_x$ 为到达 par_x 的平方代价和, sum_x 为点分树 内的点权和。

这一次的在点分树上跳跃后, 当前点到 u 的距离为 dis

答案显然就先要加上 $dis3_x$, 减去 $dis4_x$

我们参考无平方的容斥思想,是先把到达 u 点的代价转化为到达在点分树上当前点 x 的 父亲 y 代价, 然后再用维护的值算出答案。

就是把跳跃的新增的点到 u 的代价转化为到 y 的代价。

考虑现在从x 跳跃到y

原来计算的是 x 部分的点到达 u 的代价。

考虑 y 新增的点到达 u 的代价转化为到达 y 的代价。

毫无疑问是,

至九無円定,
$$\sum_{v \in yv \notin x} dis(u,v)^2 val_v - \sum_{v \in yv \notin x} dis(v,y)^2 val_v$$
$$\sum_{v \in yv \notin x} (dis(u,v)^2 - dis(v,y)^2) val_v$$

考虑我们已知的信息。

考虑我们已知的信息。
$$dis1_x = \sum_{v \in x} dis(v, x)val_v$$
$$dis2_x = \sum_{v \in x} dis(v, x)^2val_v$$
$$dis3_x = \sum_{v \in x} dis(v, par_x)val_v$$
$$dis4_x = \sum_{v \in x} dis(v, par_x)^2val_v$$
$$sum_x = \sum_{v \in x} val_x$$
现有 $dis(u, y)^2(sum_{par_x} - sum_x) = \sum_{v \in yv \notin x} dis(u, y)^2val_v$
剩下的部分就是

剩下的部分就是

$$\sum (dis(v,y)^2 - dis(u,y)^2)val_v = \sum ((dis(v,y) + dis(y,u))^2 - dis(u,y)^2)val_v$$
 设 $dis = dis(u,y)$

最后就是

$$\begin{split} 2dis(\sum_{v \in yv \notin x} dis(v,y)val_v) + dis^2(\sum_{v \in yv \notin x} val_v) \\ 就可以直接做了。 \end{split}$$

简单的字符串练习题

题目描述

现在有一个长度为 n 的 01 串 s,你需要构造长度为 m 的 01 串,使得其子串与原串 s **至多** 有一个位置不同,询问构造长度为 m 的 01 串的方案数

题解

50pts

 2^n 暴力

100pts

首先将符合条件的长度为 n 的串构建一个有 n + 1 个串的 AC 自动机

考虑 DP, 令 dp[i][j] 表示构造到第 i 位,AC 自动机匹配到了第 j 位不符合答案的方案数,可以想到转移方程 $dp[i][j] = \sum dp[i-1][k](k$ 表示 AC 自动机上 k 可以转移到 j, 其中如果 AC 自动机上 k 为某一个串的末尾,则不添加 dp[i-1][k])

可以想到这个方法的正确性, 因为在每一次 DP 过程中可以保证不出现可以与 AC 自动机 完全匹配的串, 其实在 DP 的过程中我们相当于在模拟串的匹配

所以最后的答案就是 $2^m - \sum dp[m][i]$

时间复杂度 $O(n^3)$

简单的杜教筛练习题

题目描述

给你两个数 l, r, 请你求

$$\sum_{i=l}^{r} \sigma(i)$$

其中

$$\sum_{i=l}^{r} \sigma(i)$$

$$\sigma(x) = \sum_{d|x} d$$

题解

20pts

暴力即可

50pts

依标题模拟即可。

100pts

注意到 r-l 很小,于是我们可以先筛出 le6 以内的质数,筛去贡献, 然后考虑每个数,如果它没有 > 1e6 的质因子,就跳过即可。

否则,分两种情况讨论,设剩下的数为 x

1.x = p(p) 是质数),直接算上贡献即可,用 $Miller_Rabin$ 判断。

2.x = pq(p,q) 是质数),暴力 $Pollard_Rho$ 即可。

 $3.x = p^2$ (p 是质数),直接用 sqrt 判断即可。