

CONOS COSETCKAX COMMANING MARCKINX PECTYBOINK

... SU ... 1677248 A1

(51)5 E 21 B 29/10

TOCYDAPCTBEHHAIR KOMMTET MRNTIGRATO N MRNHATA9BOEN ON **THE COOP**

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к авторскому свидетельству

(21),4401073/03

(22) 31.00 88 (46) 15.09,01, 60a, № 34

(71) Всесоюзный карино-коспедовательский и пресктиме институт по креплению скважин и буровым растворам

(72) B.D. Dancon, M.J. Kucamman, C. D. Dat-

ров. С.В. Виноградов, и С.М. Никитин

(53) 622 245.4 (088.8)

(56) Авторакое свидетвльства СЕСР Nº 31 1908. KA., E 21 B 29/00, 1976.

Авторское свидетельство СССР N. 488000, EA. E.21 B 29/10, 1972.

(54) СПОСОБ ВЫПРАВЛЕНИЯ ДЕФОРМИ-РОВАННОЙ ОБСАДНОЙ КОЛОННЫ

(57) Изобратение относится к способам. приненяемым для выправления деформированной обсадной колонны в нефтяных и гваовых скражиная. Целью изобретения явлиется првышение эффективности выправления деформированной обсадной холожны. Для этого в обсадкую коложну спускают колонну труб с гидраплической дорнирующей головкой (ДГ). Подвют в трубы жиркисть под рабочим давпением и производят стайнов перемещение колонны труб с ДГ вдоль выправляемого участка, причем на квждой стадии производят перемещение колонии труб с ДГ вдоль выправляемого участка снизу вверх при рабочем дзапении и ДГ. 3 ил. 1 таба.

Изабретание относится к способам, применяемым для ликвидации смятия обсарных колони в скавжинах нефтяной и гасовой промишленности. в частности, при рэботах по капитальному ремонту обсадных колонн.

Целью изобретения является повышение вффективности выпреванния деформированной обсадной колонны.

На фит.1 изображена компоновка, опущенная в обсадную колонну ниже выправляемого участка и состоящая из гидравлического расширителя в виде гидравлической дорнирующей головки с клапаном для заполнения жидкостью транспортной колониы труб и клапаном для слива жидкости из труб при падъеме компоновки из скважины; на фиг.2 - работв формирующей головки в выправляемом участка: на фиг.3 - разрез формирующей

Слособ выправления деформированной обседной холонны осуществляют следуюшим образом.

Спускают к выправляемонч участку 1 колонну труб 3 с формирующей головкой 2. подают в колонну труб 3 жидкость под рабовинадавлением и производят перемещение колонны труб 3 вдоль выправляеного участка в процессе рабочего цикла, причем рабочий шикл производят стадийно, а на каждой стадии прризводят перемещение колонны труб вдоль выправляемого участка снизу вверх при рабочем давлении в гидравлическай формирующей головке.

Способ осуществляют следующим обра-

Обсадная колонна диаметром 146 мм с толщиной стенки 10 мм смята на глубине 1200 м. Материал обсадной колонни сталь группы прочности Д (а, ~ 6500 кгс/см². от = - 3800xrc/см²). Шаблоним диаметром 124

-

мм определили непроходимость в обсадной колоние на глубине 1200 м. Получили посядку — изблон не проходит. Изблон дивметром 118 мм проходит. Жесткий габарит формирующей головки по диамотру составляет 118 мм.

Установили раздвижения секторов 4 формирующей головки. Диаметр их раздвижения—должен совтовуєтоських внутрениему диаметру обсадной колониы от диаметря 10 116 мм до диаметра 126 мм.

Формирующая головка 2, настроенная на заданный максимальный диаметр в расширенном состояним, соответствующий моминальному диаметру обседной колонны, 15 опускается ниже сывтого участка.

Опраделяют усилив, создаваемые сохторами 4 формирующей головои на внутренний диаметр обседной колонны 5:

где D ~ 7.1 см - внутренний дивметр резиновой уплотнительной манжеты под сектоодим:

L = 10.cm - длина решиновой уплотнительной манжеты; _

P = 120 кгс/см² — рабочее избыточнов давление жидкости в головке 2, подтвержденное технической характористикой.

Определяют удельное давление, создавленое секторами головки 2, по внутраниему диаметру обседной коложи:

$$P_Y = \frac{26800}{\pi \cdot D_{bh} \cdot 1} = \frac{26800}{314 \cdot 12 \cdot 0.5} =$$

= 1410krc/cm2

где Оы № 12 см — внутренний диаметр поверкностей контэкта;

(= 0,6 см - длина контакта секторов.

Таким образом, удельное давление, создаваемое секторами по янутрениему диаметру обсадной колонны, составляет до 45 40% от.

Поддерживая в головке 2 рабочее избыточнов давление, равное 120 кгс/см², тянут подъемником трубы 2 вверх и соворшают первый проход формирующей головкой через смятый участок 1 обсадной колонны, создаван на обсадную колонну контактные и осевые нагрузки.

Далев, сбрасив давление до нуля, опускают конприовку с формирующей головкой 2 ниже смятого участка 1 и совершают второй проход и соответственно также третий преход снизу веврх, фиксируя по гидравлическому индикатору ввса (ГИВ) осевые натрузки.

Δ

Полученные осевые нагрузки сведены в таблице.

Анализируя осевые нагрузки, отмечают, что после второго прохода они снизились на 16%, по сравнению с парвым, а после третьего прохода — ча 35%.

Одняко, начиная первый проход, можно тогдявать избыточное давление в гидравлической формирующей головке и больше 120 кгс/см². Это отразится на величине хонтактиях и осевых нагрузкат. Они возрастут. Следа за возрастанием осевой нагрузки по 100 км, нельзя допускать, чтобы ее величина превысила 300 км дополнительно к вссутруб на которых опущема компоновка с формирующей головкой, так как возникает опесность порыва труб.

Если осовия магрузка приближается к этря ввличине, необходимо снизить избыточное давление жидкости в головке 2 в пределах от 15% от и продолжить протяжку снизу вверх через смятый учесток.

Снижение осявых нагрузок при повторных проходях гомреки 2 сендетельствует о том, что смятив обсадной колонны устранаятся, проходимость по колонне восстанавливаются.

Формула изобретвиня

Способ выправления деформированной обевдной колониы, включающий спуск к выправляемому участку транспортной колонны труб с гидраванивским расширителем. подвчу в трубы жидкости под рабочим давлением и перемещение колонны труб адоль выправлянного участка в процессе рабочего цикла, отлячаю щийся тем, что, с целью повышения эффективности выправления деформированной обсядной колонкы, в канестве гидравлического расширителя используют гидравлическую дорнирующую головку, причем ребраня цикл производят стврийно, а на кажгой стадии производят перемещение колонны труб вдоль выправляемого участка съизу вверх при рабочем давлении в гидравлической дорнирующей головке.

1577248

Интервал	Минимальные оселья усилия, кН, после проход		
проработки, м	1-10	2-ro	3-10
1220 - 1190	155	130	100

+40-3677-694565

VON -Technische Universität Ilmenau PATON

1677248

Редактор М.Бандура

Составитель И.Лавкоева Техред М.Моргентал

Карректор С.Шевкун

38K83 3092

Тираж

Подписнов

ВНИИПИ Государственного комитета по изобратениям и открытиям при ГКНТ СССР 113035, Москва. Ж-35, Раушская наб.. 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагерина. 101

[state seal] Union of Soviet Socialist
USSR State Committee
on Inventions and Discoveries of the State
Committee on Science and Technology

(19) <u>SU</u> (11) <u>1677248 A1</u> (51)5 <u>E 21 B 29/10</u>

SPECIFICATION OF INVENTOR'S CERTIFICATE

(21) 4401073/03

(22) 31 [illegible month] 1988

(46) September 15, 1991, Bulletin No. 34

(71) All-Union Scientific-Research and Planning Institute of Well Casing and Drilling Muds

(72) V. P. Pankov, M. L. Kisel'man, S. F. Petrov, S. V. Vinogradov, and S. M. Nikitin

(53) 622.245.4 (088.8)

(56) USSR Inventor's Certificate No. 311908, cl. E 21 B 29/00 (1976).

USSR Inventor's Certificate No. 488000, cl. E 21 B 29/10 (1972). (54) A METHOD FOR STRAIGHTENING DEFORMED CASING

(57) The invention relates to methods that can be used to straighten deformed casing in oil and gas wells. The aim of the invention is to improve the efficiency of straightening deformed casing. For this purpose, a string with a hydraulic coring head (CH) is lowered into the casing. Fluid at the working pressure is delivered to the pipes and the string with the coring head is moved along the section to be straightened in stages, where in each stage the string with the coring head is moved along the section to be straightened from the bottom up, at the working pressure in the coring head. 3 drawings. I table.

[vertically along right margin]

(19) SU (11) 1677248 A1

1

The invention relates to methods that can be used to repair collapsed casing in wells for the oil and gas industry, in particular for major repair work on casings.

The aim of the invention is to improve the efficiency of straightening deformed casing.

Fig. 1 shows the assembly lowered into the casing below the section to be straightened and consisting of a hydraulic reamer in the form of a hydraulic coring head with a valve for filling the work string with fluid and a valve for draining the fluid from the pipes when the assembly is lifted from the well; Fig. 2 shows the operation of the forming head in the section to be straightened; Fig. 3 shows a cutaway view of the forming head.

The method for straightening deformed casing is carried out as follows.

String 3 with forming head 2 is lowered to section 1 that is to be straightened, fluid is delivered to string 3 at the working pressure, and string 3 is moved along the section to be straightened during the operating cycle, where the operating cycle is carried out in stages and in each stage, the string is moved along the section to be straightened from the bottom up, at the working pressure in the hydraulic forming head.

The method is carried out as follows.

A casing of diameter 146 mm with wall thickness 10 mm has collapsed at a depth of 1200 m. The casing material is steel of strength group D (σ [illegible subscript] = 6500 kgf/cm², $\sigma_y = 3800$ kgf/cm²). Using a gauge of diameter 124

mm, it has been determined that the casing was not passable at a depth of 1200 m. Landing was achieved: the gauge does not pass through. A gauge of diameter 118 mm passes through. The hard clearance of the forming head with respect to diameter is 118 mm.

The parting parameters of sectors 4 of the forming head were established. The diameter of their parting should correspond to the inner diameter of the casing, from a diameter of 116 mm to a diameter of 126 mm.

Forming head 2, adjusted to the specified maximum diameter in the expanded state, corresponding to the nominal diameter of the casing, is lowered below the collapsed section.

The forces created by sectors 4 of the forming head on the inner diameter of casing 5 are determined:

$$P = 3.14 \cdot 7.1 \cdot 10 \cdot 120 = 26800 \text{ kg}$$

where D = 7.1 cm is the inner diameter of the rubber packing ring under the sectors;

L = 10 cm is the length of the rubber packing ring;

 $P = 120 \text{ kgf/cm}^2$ is the working excess pressure of the fluid in head 2, confirmed by the specifications.

The unit pressure created by the sectors of head 2 over the inner diameter of the casing is determined:

$$P_{unit} = \frac{26800}{\pi \cdot D_{in} \cdot I} = \frac{26800}{314120.5} =$$
= 1410 kgf/cm²,

where $D_{in} = 12$ cm is the inner diameter of the contact surfaces;

l = 0.5 cm is the contact length of the sectors.

Thus the unit pressure created by the sectors over the internal diameter of the casing is up to 40% σ_v .

Maintaining a working excess pressure in head 2 equal to 120 kgf/cm², it is pulled upward by string lift 2 and the forming head makes the first pass through collapsed section 1 of the casing, creating contact and axial loads on the casing.

Then, releasing the pressure down to zero, the assembly with forming head 2 is lowered below collapsed section 1, and the forming head makes the second pass and accordingly also the third pass from the bottom up, the axial loads being read using a hydraulic scale.

The axial loads achieved are summarized in the table.

In examining the axial loads, note that after the second pass, they were reduced by 16% compared with the first pass, and they were reduced by 35% after the third pass.

However, when starting the first pass, excess pressure in the hydraulic forming head of even higher than 120 kgf/cm² may be created. This is reflected in the magnitude of the contact and axial loads. They increase. When monitoring the increase in the axial load on a hydraulic scale, its value cannot be permitted to exceed 300 kN above the weight of the string on which the assembly with the forming head is lowered, since the risk of snapping the string arises.

If the axial load approaches this value, it is necessary to reduce the excess pressure of the fluid in head 2 within the range of 15% σ_y and to continue pulling from the bottom up through the collapsed section.

Reduction of the axial loads on repeated passes of head 2 is evidence that the collapse in the casing is removed, and the productivity along the string is restored.

Claim

A method for straightening deformed casing, including lowering a work string with a hydraulic reamer to the section to be straightened, delivery of fluid to the pipes at the working pressure, and movement of the string along the section to be straightened during the operating cycle, distinguished by the fact that, with the aim of improving the efficiency of straightening deformed casing, a hydraulic coring head is used as the hydraulic reamer, where the operating cycle is carried out in stages, and in each stage the string is moved along the section to be straightened from the bottom up at the working pressure in the hydraulic coring head.

[see next page for tables and figures under columns 5 and 6]

6

[table and figures under columns 5 and 6]

Work interval, m	Minimum axial forces, kN, after pass		
·	lst	2nd	3rd
1220-1190	155	130	100

[see Russian original for figure]

[see Russian original for figure]

Fig. 1

Fig. 2

[see Russian original for figure]

 $D_{in} = 120$

Fig. 3

Editor M. Bandura	Compiler I. Levkoeva Tech. Editor M. Morgental	
Order 3092	Run	Subscription edition
		0, 1
"Pate	ent" Printing Production Plant,	Uzhgorod, 101 ul. Gagarina

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following Patents and Abstracts from Russian to English:

Patent 1786241 A1 **ATLANTA** Patent 989038 BOSTON BRUSSELS CHICAGO DALLAS DETROIT FRANKFURT HOUSTON LONDON LOS ANGELES MIAMI MINNEAPOLIS NEW YORK PARIS PHILADELPHIA SAN DIEGO SAN FRANCISCO SEATTLE WASHINGTON, DC

Abstract 976019 Patent 959878 Abstract 909114 Patent 907220 Patent 894169 Patent 1041671 A Patent 1804543 A3 Patent 1686123 A1 Patent 1677225 A1 Patent 1698413 A1 Patent 1432190 A1 Patent 1430498 A1 Patent 1250637 A1 Patent 1051222 A Patent 1086118 A Patent 1749267 A1 Patent 1730429 A1 Patent 1686125 A1 Patent 1677248 A1 Patent 1663180 A1 Patent 1663179 A2 Patent 1601330 A1 Patent SU 1295799 A1 Patent 1002514

PAGE 2 AFFIDAVIT CONTINUED

(Russian to English Patent/Abstract Translations)

Kim Stewart

TransPerfect Translations, Inc.

3600 One Houston Center

1221 McKinney

Houston, TX 77010

Sworn to before me this 9th day of October 2001.

Signature, Notary Public

OFFICIAL SEAL
MARIA A. SERNA
NOTARY PUBLIC
in and for the State of Texas
My contribicion expires 03-22-2003

Stamp, Notary Public

Harris County

Houston, TX

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.