

Interpolation & Filtering

Scientific Visualization – Summer Semester 2021

Jun.-Prof. Dr. Michael Krone

Contents

- Voronoi diagrams, Delaunay triangulation
- Univariate interpolation
- Differentiation on grids
- Interpolation on grids
- Interpolation without grids
- Filtering by projection or selection

Focus: Second step of visualization pipeline

Motivation

- Data is often discretized in space and/or time
- Finite number of samples
 - The continuous signal is usually known only at a few points (data points)
 - In general, data is needed in between these points
- By interpolation we obtain a representation that matches the function at the data points
 - Evaluation at any other possible point
- → Reconstruction of signal at points that are not sampled
- → Assumptions needed for reconstruction
 - Often smooth functions

Motivation

Motivation

• **Example:** precipitation of 6 hours

Aachen (205 m)	6.5
<u>Ahaus (46 m)</u>	30.0
Angermünde (55 m)	1.0
Artern (166 m)	2.5
<u>Aue (397 m)</u>	0.3
Augsburg/Mühlhausen (477 m)	0.0
Bad Hersfeld (273 m)	0.7
D ***: reingen (266 m)	0.1
(158 m)	10.0
Wittenberg (106 h.,	
Würzburg (272 m)	U. U
Zinnwald (882 m)	0.3
Zugspitze (2962 m)	1.9
Zwiesel (613 m)	0.9
Öhringen (277 m)	0.1

(Source: www.wetteronline.de, 07.05.2007 20:00)

• **Given:** irregularly distributed positions without connectivity information

- Problem: obtain connectivity to find a "good" triangulation
 - Interpolate within resulting triangles (see later)
- → For a set of points there are many possible triangulations
 - A measure for the quality of a triangulation is the aspect ratio of its triangles
 - → Avoid long, thin triangles!

- Scattered data triangulation
 - A triangulation of data points $S = s_0, s_1, ..., s_m \in \mathbb{R}^2$ consists of
 - **Vertices** (0D) = *S*

- A triangulation of scattered data must satisfy the following requirements:
 - U faces = conv(S), i.e. the union of all faces including the boundary is the convex hull of all vertices
 - The intersection of two triangles is either empty, or a common vertex, or a common edge, or a common face (tetrahedra)
 - Partitioning of the space

Triangulations with

holes,

overlapping faces,

T-nodes

are **not** valid!

- How to get connectivity/triangulation from scattered data?
 - Voronoi diagram
 - Delaunay triangulation

Delaunay triangulation

- Voronoi diagram
 - For each sample, every point within a Voronoi region is closer to it than to every other sample
 - **Given:** a set of points $X = \{x_1, ..., x_n\} \in \mathbb{R}^d$ a distance function dist(x, y)
 - The Voronoi diagram Vor(X) contains for each point x_i a cell $V(x_i)$ with

$$V(x_i) = \{ x \mid dist(x, x_i) < dist(x, x_i) \forall j \neq i \}$$

- Voronoi diagram
 - Cases where a point has equal distance to >3 samples are degenerate
 - Degenerate cases can be avoided by adding a perturbation, i.e., randomly moving the samples by $\epsilon \ll 1$

Voronoi cells

- The half space $h(x_i, x_j)$ is separated by the perpendicular bisector $B_{i,j}$ between the points x_i and x_j
- $h(x_i, x_j)$ contains x_i
- Voronoi cell = intersection of all half spaces: $V(x_i) = \bigcap_{j \neq i} h(x_i, x_j)$

Voronoi cells are convex

- Delaunay graph Del(X)
 - The geometric dual (topologically equal) of the Voronoi diagram Vor(X)
 - Points in X are nodes
 - Two nodes x_i and x_j are connected if the Voronoi cells $V(x_i)$ and $V(x_j)$ share an edge
- Delaunay cells are convex
- Delaunay triangulation = triangulation of the Delaunay graph

- Delaunay triangulation in 2D
 - Three points $x_i, x_j, x_k \in X$ belong to a face from Del(X) if no further point lies inside the circle around x_i, x_j, x_k
 - For each triangle, the circumcircle does not contain any other sample
 - Two points x_i, x_j form an edge if there is a circle around x_i, x_j that does not contain a third point from X (global Delaunay property)
 - Maximizes the minimum angle of the triangulation
 - Maximizes the ratio of $\frac{(radius \ of \ incircle)}{(radius \ of \ circumcircle)} \bigcirc$
 - It is unique (independent of the order of samples) for all but some very specific cases

- Local Delaunay property:
- An edge between two points a and b is locally Delaunay
 - if it belongs to only one triangle (edge of the convex boundary) -or-
 - if it belongs to two triangles abc and abd and d lies outside the circumcircle of abc (and c lies outside the circumcircle of abd)

- Remember: no holes, no overlapping faces, no T-nodes Algorithms for Delaunay triangulations
 - Edge flip algorithm:

```
find an initial (valid) triangulation
find all edges where local Delaunay property is violated
push these edges onto the stack
while (stack not empty) {
   pop edge from stack
   flip this edge
   push all adjacent edges for which the Delaunay property is violated due to flip
```


- Edge flip algorithm
 - For arbitrary (valid) triangulation:
 fix all parts that do not meet the local Delaunay property

Possible side effects when flipping one edge

→ push all adjacent edges for which the Delaunay property is violated due to flip

- Plane-sweep algorithm for finding an initial triangulation
 - Imaginary vertical sweepline that passes from left to right
 - As the sweepline moves:
 - Problem has been solved for the data to the left of the sweepline
 - Is currently being solved for the data at or near the sweepline and
 - Is going to be solved sometime later for the data to right of the sweepline
 - Reduces a problem in 2D space to a series of problems in 1D space

• Plane-sweep algorithm for finding an initial triangulation

```
sort points from left to right;
construct initial triangle using first three vertices (i=1...3);
for (i=4...n) {
    use last inserted point p<sub>i-1</sub> as starting point;
    walk counterclockwise along convex polygon (hull) of triangulation until the tangent points, inserting edges between p<sub>i</sub> and polygon points;
    walk clockwise along convex polygon of triangulation until the tangent points, inserting edges between p<sub>i</sub> and polygon points;
    update convex hull;
    → Connect the new point p<sub>i</sub> to all other points of the
```


convex hull if the new edge does not intersect the hull

- Plane-sweep algorithm
 - Also for triangulating polygons

- Other techniques exist, e.g.
 - Radial sweep
 - Intersecting half spaces
 - Divide and conquer (merge-based or split-based)
 - → More efficient than edge flip and plane-sweep

Contents

- Focus:
 Second step of visualization pipeline
- Voronoi diagrams, Delaunay triangulation
- Univariate interpolation
- Differentiation on grids
- Interpolation on grids
- Interpolation without grids
- Filtering by projection or selection

- Univariate interpolation: interpolation for one variable
 - Nearest neighbor (0-order)
 - Linear (first-order)
 - Smooth (higher-order)

- Taylor interpolation
- Basis functions: Taylor (monom) basis (polynomials) $m_i = x^i$ with $i \in \mathbb{N}_0$
- $P_m = \{1, x, x^2, ..., x^m\}$ is (m + 1)-dimensional vector space of all polynomials with maximum degree m
- Coefficients c_i with $f = \sum_i c_i \cdot x^i$
- Representation of samples:

$$f(x_j) = f_j \quad \forall j = 0 \dots n-1$$

Interpolation problem

$$V \cdot c = f$$
 samples

coefficients

atrix $V = r^i$ (to be solved)

with the Vandermonde matrix $V_{ji} = x_j^i$ (to be solved)

$$V(x_1,x_2,\ldots,x_n) = egin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \ dots & dots & dots & dots & dots \ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$$

- Properties of Taylor interpolation
 - Unique solution
 - Numerical problems / inaccuracies
 - Complete system has to be solved again if a single value is changed
 - Not intuitive

- Generic interpolation problem:
 - Given are n sample points $X = \{x_i\} \subseteq \Omega \subseteq \mathbb{R}$ with function values f_i
 - *n*-dimensional function space $\Phi_n(\Omega)$ with basis $\{\phi_{i=1...n}\}$
 - Coefficients c_i with $f = \sum_i c_i \cdot \phi_i$
 - Representation of samples: $f(x_j) = f_j \ \forall j = 1 ... n$
 - Solving the linear system of equations

$$\pmb{M} \cdot \pmb{c} = \pmb{f}$$
 with $\pmb{M_{ji}} = \phi_i(x_j)$, $\pmb{c_i} = c_i$, and $\pmb{f_j} = f_j$

• **Note:** number of points n determines dimension of vector space (= maximum degree of polynomials + 1)

- Other basis functions result in other interpolation schemes
- Polynomial basis functions
 - Taylor basis
 - Lagrange basis
 - Newton basis
 - Bernstein basis (Bezier)
- Spline basis
 - Bezier splines
 - B-splines

$$\phi_{i}(x) = x^{i}$$

$$\phi_{i}(x) = \prod_{j \neq i} \frac{x - x_{j}}{x_{i} - x_{j}}$$

$$\phi_{i}(x) = \prod_{j=1}^{i} (x - x_{j})$$

$$\phi_{i}^{k}(x) = \binom{k}{i} (1 - x)^{k-i} x^{i}$$

Example: Lagrange

$$\phi_{i}^{k}(\mathbf{X}) = \frac{x - t_{i}}{t_{i+k} - t_{i}} \phi_{i}^{k-1}(\mathbf{X}) + \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} \phi_{i+1}^{k-1}(\mathbf{X})$$

- Cubic Hermite polynomials H
- Linear combination of basis functions
- Coefficients describe:
 - End points p_k , p_{k+1}
 - Tangent vectors m_k , m_{k+1} at end points

$$f(x) = H_0^3(t) \boldsymbol{p_k} + H_1^3(t) \boldsymbol{m_k} + H_2^3(t) \boldsymbol{m_{k+1}} + H_3^3(t) \boldsymbol{p_{k+1}}$$
 whit $t = (x - x_k)/(x_{k+1} - x_k)$

Basis functions:

$$H_0^3(t) = (1+2t)(1-t)^2$$

$$H_1^3(t) = t(1-t)^2$$

$$H_2^3(t) = t^2(1-t)$$

$$H_3^3(t) = t^2(3-2t)$$

• **Problem:** coupling of number of samples n and degree of polynomials

- Solution: Spline interpolation
 - Smooth piecewise polynomial function
 - Continuity / smoothness at segment boundaries
 - Avoid oscillation
 - Basis functions N

B-Splines

B-Splines

- Piecewise linear interpolation
 - Simplest approach (except for nearest-neighbor sampling)
 - Fast to compute
 - Often used in visualization applications
 - Only C^0 continuity at cell boundaries
 - Data points: $(x_0, f_0), ..., (x_n, f_n)$
 - For any point x with $x_i \le x \le x_{i+1}$ described by local coordinate $u = (x x_i)/(x_{i+1} x_i) \in [0,1]$

that is
$$x = x_i + u(x_{i+1} - x_i) = (1 - u)x_i + ux_{i+1}$$

evaluate
$$f(x) = (1 - u)f_i + uf_{i+1}$$

Contents

- Focus: Second step of visualization pipeline
- Voronoi diagrams, Delaunay triangulation
- Univariate interpolation
- Differentiation on grids
- Interpolation on grids
- Interpolation without grids
- Filtering by projection or selection

Differentiation on Grids

- First approach
 - Replace differential by "finite differences"
 - Note that approximating the derivative by

$$f'(x) = \frac{df}{dx} \to \frac{\Delta f}{\Delta x}$$

causes subtractive cancellation and large rounding errors for small h

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

- Second approach
 - Approximate/interpolate (locally) by differentiable function and differentiate this function

Differentiation on Grids

• Finite differences on uniform grids with grid size *h* (1D case)

Differentiation on Grids

• Finite differences on uniform grids with grid size h (1D case)

- Forward differences
- Backward differences
- Central differences

 $f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

- Error estimation:
 - Forward/backward differences are first-order
 - Central differences are second-order

Differentiation on Grids

- Finite differences on non-uniform grids
 - Forward and backward differences as for uniform grids with

$$x_{i+1} - x_i = \alpha h$$

$$x_i - x_{i-1} = \beta h$$

Differentiation on Grids

- 2D or 3D uniform or rectangular grids
 - Partial derivatives

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

- Same as in univariate case along each coordinate axis
- **Example:** gradient in a 3D uniform grid computed via central differences
 - → Normals for lighting!

$$\operatorname{grad} f = \nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix} = \begin{pmatrix} \frac{f_{i+1,j,k} - f_{i-1,j,k}}{2h} \\ \frac{f_{i,j+1,k} - f_{i,j-1,k}}{2h} \\ \frac{f_{i,j,k+1} - f_{i,j,k-1}}{2h} \end{pmatrix}$$

- Manifolds with more than 1D
- Tensor product
- Combination of several univariate interpolations
- **Example** for 2D surface:
 - $n \cdot m$ values f_{ij} with $i = 1 \dots n$ and $j = 1 \dots m$ given at points $X \times Y = (x_1, ..., x_n) \times (y_1, ..., y_m)$
 - n univariate basis functions $\xi_i(x)$ on X
 - m univariate basis functions $\psi_i(y)$ on Y
 - $n \cdot m$ basis functions on $X \times Y$: $\phi_{ij}(x,y) = \xi_i(x) \cdot \psi_j(y)$
 - Tensor product: $f(x, y) = \sum_{i=1}^{n} \phi_{ii}(x, y) c_{ii}$

- Tensor product $f(x, y) = \sum_{i=1, j=1}^{n,m} \phi_{ij}(x, y) c_{ij}$
- ullet Solve a linear system of equations for the unknown coefficients c_{ij}
- Extension to k dimensions in the same way

- Bilinear interpolation on a rectangle
 - Tensor product for two linear interpolations
 - 2D local interpolation in a cell
 - Known solution of the linear system of equations for the coefficients c_{ij}
 - Four data points (x_i, y_j) , ..., (x_{i+1}, y_{j+1}) with scalar values $f_{i,j} = f(x_i, y_j)$, ...
 - Bilinear interpolation of points (x, y) with $x_i \le x < x_{i+1}$ and $y_j \le y < y_{j+1}$
 - "Two times linear"

Bilinear interpolation on a rectangle

$$f(x,y) = (1-\beta)((1-\alpha)f_{i,j} + \alpha f_{i+1,j}) + \beta((1-\alpha)f_{i,j+1} + \alpha f_{i+1,j+1})$$

$$= (1-\beta)f_j + \beta f_{j+1}$$

$$f_{i,j+1} - \beta f_{j+1}$$

with
$$f_j = (1-\alpha) f_{i,j} + \alpha f_{i+1,j}$$

 $f_{j+1} = (1-\alpha) f_{i,j+1} + \alpha f_{i+1,j+1}$

and local coordinates
$$\alpha = \frac{x - x_i}{x_{i+1} - x_i}$$
,

$$\beta = \frac{y - y_i}{y_{i+1} - y_i},$$

$$\alpha, \beta \in [0,1]$$

Bilinear interpolation on a rectangle

$$f(x, y) = (1 - \alpha)(1 - \beta)f_{i,j} + \alpha(1 - \beta)f_{i+1,j} + (1 - \alpha)\beta f_{i,j+1} + \alpha\beta f_{i+1,j+1}$$

- Weighted by local area of the opposite node
- Bilinear interpolation is not linear (but quadratic)
- Cannot be inverted easily

- Trilinear interpolation on a 3D uniform grid
 - Straightforward extension of bilinear interpolation (3 local coordinates α, β, γ)
 - Known solution of the linear system of equations for the coefficients c_{ijk}
 - Trilinear interpolation is not linear (but cubic)
 - Efficient evaluation: $f(\alpha, \beta, \gamma) = a + \alpha(b + \beta(e + h\gamma)) + \beta(c + f\gamma) + \gamma(d + g\alpha)$ with coefficients a, b, c, d, e, f, g, h from data at the corner nodes
- Extension to higher order of continuity
 - Piecewise cubic interpolation in 1D
 - Piecewise bicubic interpolation in 2D
 - Piecewise tricubic interpolation in 3D
 - Based on Hermite polynomials

- Interpolation on un/structured grids (triangle meshes etc.)?
- Affine combination of points x (in Euclidean space):
 - Linear combination $\Sigma_i \alpha_i \cdot x_i$
 - $0 \le \alpha_i \le 1$, $\forall i$
 - $\Sigma_i \alpha_i = 1$
 - α_i are Barycentric coordinates
- Affinely independent set of points:
 - No point can be expressed as affine combination of the other points
 - Maximum number of points is d + 1 in \mathbb{R}^d
 - Barycentric interpolation is linear

- d-Simplex in \mathbb{R}^d
 - d + 1 affinely independent points
 - Span of these points
 - 0D: point
 - 1D: line
 - 2D: triangle
 - 3D: tetrahedron

- Barycentric interpolation on a simplex
 - d+1 points x_i with function values f_i
 - Point x within the simplex described as affine combination of x_i
 - Possible approach: solve for coefficients α_i based on $\mathbf{x} = \Sigma_i \alpha_i \cdot \mathbf{x_i}$ and $\Sigma_i \alpha_i = 1$
 - Function value at $x: f = \Sigma_{i\alpha_i} \cdot f_i$ is affine combination of f_i
- Barycentric coordinates from area/volume considerations:

$$\alpha_i = \frac{\text{Vol}(\mathbf{x}_1, \dots, \mathbf{x}_{i-1}, \mathbf{x}, \mathbf{x}_{i+1}, \dots, \mathbf{x}_{d+1})}{\text{Vol}(\mathbf{x}_1, \dots, \mathbf{x}_{d+1})}$$
 replace \mathbf{x}_i by \mathbf{x}

$$Vol(\mathbf{x}_1,\ldots,\mathbf{x}_{d+1}) = \det\begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_{d+1} \\ 1 & \cdots & 1 \end{pmatrix}$$

→ generalized measure for area/volume

Determinant (2×2) :

Barycentric coordinates from area/volume considerations

$$d = 1$$

$$x = \alpha_1 x_1 + \alpha_2 x_2$$

$$\alpha_1 = L_1/L$$

Opposite local length

$$\alpha_1 + \alpha_2 = 1$$

$$x = \alpha_1 x_1 + \alpha_2 x_2$$
 $\alpha_1 + \alpha_2 = 1$ \rightarrow $x = (1-u)x_1 + ux_2$ $u = \alpha_2$

$$u = \alpha_2$$

$$d = 2$$

Opposite local area

$$d = 3$$

Opposite local volume

Determinant (2 \times 2):

$$\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

- Barycentric interpolation in a triangle
 - Geometrically, Barycentric coordinates are given by the ratios of the area of the whole triangle and the subtriangles defined by x and any two points of x_1, x_2, x_3 .

$$Vol(x_1, x_2, x_3) = det\begin{pmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{pmatrix} = det\begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{pmatrix}$$
(1/3,1/3, 1/3) -

$$= \pm 2 \operatorname{Area}(\Delta(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3))$$

$$\alpha_1 = \frac{\text{Vol}(\mathbf{x}, \mathbf{x}_2, \mathbf{x}_3)}{\text{Vol}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)}$$

$$\alpha_1 + \alpha_2 + \alpha_3 = 1$$

$$\mathbf{x} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \alpha_3 \mathbf{x}_3 \qquad f(\mathbf{x}) = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$$

- Interpolation in a generic quadrilateral
 - Main application: curvilinear grids
 - Problem: find a parameterization for arbitrary quadrilaterals

Physical space

Computational space

Local coordinates

Bilinear interpolation

$$x_{12} = \alpha_1 \cdot x_1 + (1 - \alpha_1) \cdot x_2 \qquad \alpha_1 \in [0,1]$$

$$x_{34} = \alpha_1 \cdot x_4 + (1 - \alpha_1) \cdot x_3$$

$$x = \alpha_2 \cdot x_{12} + (1 - \alpha_2) \cdot x_{34} \qquad \alpha_2 \in [0,1]$$

- Analytically solve quadratic system for α_1 , α_2
- Or: numerical solution by Newton iteration
- Final value:

$$f = \alpha_2 \cdot (\alpha_1 \cdot f_1 + (1 - \alpha_1) \cdot f_2) + (1 - \alpha_2) \cdot (\alpha_1 \cdot f_4 + (1 - \alpha_1) \cdot f_3)$$

- Jacobi matrix $J(\Phi)$
 - $J(\Phi)_{ij} = \frac{\partial \Phi_i}{\partial \alpha_j}$

Newton's method:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

- $J(\Phi)_{.j}$ describes direction and speed of position changes of Φ when α_j are varied
- Newton iteration

```
start with seed points as start configuration, e.g., \alpha i = 1/2 while ( || x - \Phi(\alpha_1, \alpha_2, \alpha_3) || > \epsilon ) Maximum error \epsilon compute J(\Phi(\alpha_1, \alpha_2, \alpha_3)) transform \Delta x to local coordinates (comp. space): \Delta x_{\alpha} = (x - \Phi(\alpha_1, \alpha_2, \alpha_3)) / J(\Phi(\alpha_1, \alpha_2, \alpha_3)) update \alpha_i = \alpha_i + \Delta x_{\alpha,i}
```

Stencil-walk algorithm [Bunnig '89] (in context of flow visualization)

- Other primitive cell types possible
- Example: Pyramid

- → bilinear on base face
- → then linear

- Inverse Distance Weighting
 - Shepard interpolation [D. Shepard, A two-dimensional interpolating function for irregularly spaced data. Proc. ACM. Nat. Conf., 517--524, 1968]
 - Originally developed for scattered data
 - Interpolated values: $f(\mathbf{x}) = \Sigma_i \phi_i(\mathbf{x}) f_i$
 - Sample points are vertices of the cell

• Basis functions:
$$\phi_i(x) = \frac{\|x - x_i\|^{-p}}{\sum_i \|x - x_j\|^{-p}} \implies f(x) = \frac{\sum_i (\|x - x_i\|^{-p} \cdot f_i)}{\sum_i \|x - x_i\|^{-p}}$$

• Define values at sample points $f(x_i) := f_i = \lim_{x \to x_i} f(x)$

Interpolation without Grids

- Shepard interpolation
 - Different exponents for inner and outer neighborhood (default: 2 in the inner neighborhood and 4 in the outer neighborhood)
 - Neighborhood sizes determine how many points are included in inverse distance weighting
 - The neighborhood size can be specified in terms of
 - Radius or
 - Number of points or
 - Combination of the two
 - Neighborhood is not given explicitly (as opposed to inverse distance weighting on grids)

Interpolation without Grids

- Radial basis functions (RBF)
 - n function values f_i given at n points x_i

• Interpolant
$$f(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i \phi(\|\mathbf{x} - \mathbf{x}_i\|)$$

- Univariate radial basis $\phi(r)$
- Examples:
 - Polynomials r^v
 - Gaussians $\exp(-ar^2)$

Interpolation without Grids

- Radial basis functions (RBF)
 - n equations for n unknowns
 - Well-defined system of linear equations (vector / matrix notation):

$$\begin{bmatrix} \phi(\|x_1 - x_1\|) & \cdots & \phi(\|x_1 - x_n\|) \\ \vdots & \ddots & \vdots \\ \phi(\|x_n - x_1\|) & \cdots & \phi(\|x_n - x_n\|) \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix} = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

 \rightarrow Compute λ_i for the chosen basis function $\phi(r)$ by solving equation system

Contents

- Voronoi diagrams, Delaunay triangulation
- Univariate interpolation
- Differentiation on grids
- Interpolation on grids
- Interpolation without grids
- Filtering by projection or selection

Focus: Second step of visualization pipeline

- Very often: too much information to be visualized at once
- Strategy is to reduce the displayed information by filtering
- Popular approach: Reduce from ndmv to n'dm'v, with n' < n and/or m' < m [Wong]
- Techniques:
 - Projection
 - Selection
 - Slicing
- User input needed

• Projection π

- Can be applied to both the
 - domain and data values
- Projection into subspaces
- Often a mapping to a subset of the original values is chosen

- Selection of data according to logical conditions (predicates)
- Example:
 - Height field 2d1v represented by (x,y,h)
 - $D_{\sigma} = \{ (x, y, h) \mid (x^2 + y^2 < (5km)^2) \land (h > 1km) \}$

Axis-Aligned Projection

Principle Components

- Selection σ
 - Selection of data according to logical conditions (predicates)
 - Example:
 - Particles P in \mathbb{R}^3
 - Often, the efficient selection of neighboring for filtering is required
 - \rightarrow Select all neighboring particles within a fixed radius r
 - \rightarrow Select the n closest particles (neighbors) to a certain particle p_i
 - **Problem:** Brute-force algorithm: $O(n^2) \rightarrow$ slow for large |P|
 - **Solution:** Use data structures for efficient neighbor search
 - Often hierarchical/tree-based (kd-Tree, Quadtree/Octree)
 - Simple solution: uniform grid data structure for fixed-radius neighbor search
 - Divide bounding box into uniform grid $\rightarrow 0(1)$
 - Sort all Particles into grid cell that contains their center point $\rightarrow O(n)$
 - Neighbor search: only test particles in grid cells within search radius $r \rightarrow$ worst case: $O(n^2)$

- Slicing
- Example: 2D cutting surface (slice) through a 3D volume

