AI1110 ASSIGNMENT-7

DASARI SRINITH (CS21BTECH11015)

Abstract—This document contains the solution for Assignment 7 (NCERT GRADE 11 CHAPTER 16 Exercise 16.2 Question 5)

QUESTION 5:

Three coins are tossed. Describe

- (i) Two events which are mutually exclusive.
- (ii) Three events which are mutually exclusive and exhaustive.
- (iii) Two events, which are not mutually exclusive.
- (iv) Two events which are mutually exclusive but not exhaustive.
- (v) Three events which are mutually exclusive but not exhaustive.

SOLUTION:

Since a coin can either turn up $\operatorname{Head}(H)$ or $\operatorname{Tail}(T)$, the possible outcomes when 3 coins are tossed are (or) the sample space contains,

$$S = \left\{ TTT \;,\; TTH \;,\; THT \;,\; HTT \; \right.$$

$$THH \;,\; HTH \;,\; HHT \;,\; HHH \right\} \eqno(1)$$

Let X be a random variable and which maps to the following set of real numbers,

$$X \in \{1, 2, 3, 4, 5, 6, 7, 8\}$$

, as defined below in Table I.

Event	Description of event
X = 1	TTT
X = 2	TTH
X = 3	THT
X = 4	HTT
X = 5	ТНН
X = 6	НТН
X = 7	ННТ
X = 8	ННН

TABLE I

(i) **Two events which are mutually exclusive**Let us take the events A,B as shown in Table II. So,

Event	Description of event
A	Getting all 3 Heads
В	Getting all 3 Tails

TABLE II

$$A = \{(X = 8)\}\tag{2}$$

$$B = \{ (X = 1) \} \tag{3}$$

and Since,

$$A \cap B = \phi \tag{4}$$

So ,events A and B are mutually exclusive.

(ii) Three events which are mutually exclusive and exhaustive

Let us take events C,D,E as shown in Table III. So,

Event	Description of event
C	Getting all 3 Tails
D	Getting exactly 2 Tails
E	Getting at least 2 Heads

TABLE III

$$C = \{X = 1\} \tag{5}$$

$$D = \{(X=2) \cup (X=3) \cup (X=4)\} \quad \text{(6)}$$

$$E = \{(X = 5) \cup (X = 6)\} \cup \{(X = 7) \cup (X = 8)\}$$
 (7)

and Since,

$$C \cap D = \phi \tag{8}$$

$$D \cap E = \phi \tag{9}$$

$$C \cap E = \phi \tag{10}$$

We can say that, events C,D,E are mutually exclusive. And,

$$C \cup D \cup E = S \tag{11}$$

So, events C,D,E are mutually exclusive and exhaustive.

(iii) Two events ,which are not mutually exclusive

Let us take the events F,G as shown in Table IV. So,

Event	Description of event
F	Getting all 3 Heads
G	Getting at least 2 Heads

TABLE IV

$$F = \{(X = 8)\}\tag{12}$$

$$G = \{(X = 5) \cup (X = 6)\} \cup \{(X = 7) \cup (X = 8)\}$$
 (13)

and Since,

$$F \cap G \neq \phi \tag{14}$$

So events F and G are not mutually exclusive.

(iv) Two events ,which are mutually exclusive but not exhaustive

Let us take the events H,I as shown in Table V. So ,

Event	Description of event
H	Getting all 3 Heads
I	Getting all 3 Tails

TABLE V

$$H = \{(X = 8)\}\tag{15}$$

$$I = \{(X = 1)\}\tag{16}$$

and Since,

$$H \cap I = \phi \tag{17}$$

So ,events H and I are mutually exclusive. And ,

$$H \cup I \neq \phi$$
 (18)

So , events H and I are mutually exclusive but not exhaustive.

(v) Three events which are mutually exclusive but not exhaustive

Let us take events J,K,L as shown in Table VI. So ,

Event	Description of event
J	Getting all 3 Tails
K	Getting exactly 2 Tails
L	Getting exactly 1 Tail

TABLE VI

$$J = \{ (X = 1) \} \tag{19}$$

$$K = \{(X = 2) \cup (X = 3) \cup (X = 4)\}\$$
 (20)

$$L = \{ (X = 5) \cup (X = 6) \cup (X = 7) \} \quad (21)$$

and Since,

$$J \cap K = \phi \tag{22}$$

$$K \cap L = \phi \tag{23}$$

$$J \cap L = \phi \tag{24}$$

We can say that , events J,K,L are mutually exclusive. And ,

$$J \cup K \cup L \neq S \tag{25}$$

So, events J,K,L are mutually exclusive but not exhaustive.