

Кафедра предпринимательства и внешнеэкономической деятельности МГТУ им. Н.Э. Баумана

НЕЙРОН

Эконометрика

Научно-исследовательский задел по созданию аналитических инструментов

Дроговоз Павел Анатольевич

д-р экон. наук, профессор, заведующий кафедрой ИБМ-6

Шиболденков Владимир Александрович

аспирант, ассистент кафедры ИБМ-6

Авторы разработали:

Графо-аналитическую систему для анализа организационноэкономической показателей и оценки конкурентного потенциала наукоемких промышленных предприятий на основе нейросетевых технологий в целях повышения эффективности и обоснованности управленческих решений;

Аналитические инструменты для многомерной визуализации и нейросетевого картирования организационно-экономических показателей наукоемких промышленных предприятий, позволяющих осуществлять кластеризацию, сегментацию и группировку исследуемых показателей по совокупному множеству признаков, для последующего выявления закономерностей и аномалий в рассматриваемой выборке

Сформировали картограммы для визуального анализа однофакторных и многофакторных закономерностей в системе организационно-экономических сведений компании;

Система организационно-экономических показателей для оценки деятельности интегрированных структур

Предлагается специализированная система организационно-экономических показателей для комплексной оценки экономической эффективности финансово-хозяйственной и производственно-технологической деятельности интегрированных структур и инфраструктурных дочерних организаций прямого управления Корпорации в условиях военно-гражданской интеграции (ВГИ) и государственно-частного партнерства (ГЧП)

Аналитическая методика для оценки параметров политики управления интегрированной структурой

Предлагается модель и методика факторного анализа показателей финансово-хозяйственной деятельности (ФХД) интегрированной структуры, которая позволяет выявить аналитические зависимости между рыночной стоимостью бизнеса и показателями ФХД, представляющими собой различные параметры финансовой, маркетинговой, производственно-технологической, инвестиционной и кадровой политики предприятия.

Методика обоснования стратегических решений по изменению организационных структур предприятий

Предлагается методика обоснования стратегических решений по реорганизации, реструктуризации и реинжинирингу предприятий ОПК на основе оценки эффектов военной-экономической (MES), социальноэкономической (SEV) и рыночной синергии (BS).

Слайд 6

Принцип работы нейронных сетей

Наиболее перспективными технологиями аналитической обработки больших массивов неструктурированных данных представляются искусственные нейронные сети – программные и аппаратные реализации математических моделей организации и функционирования биологических сетей нервных клеток живого организма.

ФУНКЦИОНАЛЬНАЯ СХЕМА БИОЛОГИЧЕСКОГО НЕЙРОНА

ПРИНЦИПИАЛЬНАЯ СХЕМА НЕЙРОНА

Биологический нейрон

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ НЕЙРОНА

где $X = x_1...x_n$ – n-мерный вектор входных сигналов

 $W = w_1...w_n$ – вектор весовых коэффициентов

 $Y = y_1...y_n$ — вектор выходных сигналов n — число входов нейрона

Искусственный нейрон

Принцип работы нейронных сетей

Характеристика	«Традиционный» подход	Нейроалгоритм
Возможность обучения	По строгим правилам	На примерах
Методика программирования	Создание пользователем чёткого алгоритма действий	Самостоятельное обучение
Метод обработки информации	Численные операции	Распознавание образов и восприятие особенностей
Решаемые задачи	Числовые, строгие	Любого рода, слабо сформулированные
Характер обрабатываемых сведений	Строгие, полные	Искаженные, неполные, повреждённые
Возможность работы без предварительных суждений о неизвестных закономерностях	Невозможна	Возможна
Возможность гибкой настройки под задачу	Отсутствует	Присутствует

Схема формального алгоритма нейросетевой карты

Карта Кохонена обладает особенным рабочим слоем – он сконструирован из нейронов, объединённых в плоскую, двумерную сеть, где каждый нейрон связан со своим ближайшим соседом. Данный принцип позволяет карте визуально повторять закономерности в предложенных данных.

Можно составить общее аналитическое выражение отображения многомерного пространства данных D в пространство карты P:

$$D(d_{1,1}, ..., d_{n,m}) \stackrel{W}{\mapsto} P(C_x, C_y, C_h),$$
 $C_h: \Leftrightarrow < R, G, B>,$

где $d_{1,1}...d_{n,m}$ — единичные элементы исследуемых данных, C_x , C_y — декартовы координаты нейронов карты, C_h — интенсивность цвета нейрона карты, R,G,B — компоненты цветового вектора аддитивной цветовой модели.

Слайд 10

Нейрокарта представляет собой плоский геометрический рисунок, отражающий обнаруженные в выборке данных закономерности

Рисунок 1. Первичная нейрокарта

На сформированную нейрокарту, также как и на географическую карту, аналитиком интерактивно наносятся любые дополнительные информационные слои: конкретные рассматриваемые свойства или закономерности объекта исследования

Карта может иллюстрировать любые аспекты выборки,

Для отражении конкретного атрибута (свойства) объекта применяются, компонентные плоскости, преобразующее наблюдаемое свойство при помощи *цветовой палитры*, заданной аналитиком

Слайд 12 Визуально может отражаться не только соотношение между характеристиками объектов, но и его характер:

Для этого необходимо использовать правило цветового кодирования, отражающего *отклонение* абсолютных значений характеристик, отвыбранного аналитиком *эталона*

Слайд 13

Правила расчета отклонения и меры схожести может отражать как единственное, отдельное свойство, так и совокупную многофакторную *схожесть* образцов с выбранным *эталоном*

Для визуального кодирования карты можно создавать правило сегментации (кластеризации) выборки данных на указанное аналитиком *количество групп* разбиения

Формальная постановка задачи организационно-

экономического анализа

Слайд 15

МЕНЕДЖМЕНТ КОМПАНИИ

Контроль и учет

Прогнозирование и управление

Исследование особенностей проявления проблем

Анализ закономерностей в наблюдаемых проблемах

Анализ характера взаимного влияния характеристик проблемы

Стратификация, типизация и классификация проблем

Причинно-следственный анализ

СТАТИСТИЧЕСКИЕ МЕТОДЫ

 \mathcal{T}

Описательная статистика $\sum f(x_i)\Delta x = \sum P(x_i) = 1$

Теория гипотез

 $H \colon \{P \in P_0\}$

Теория оценивания

$$\hat{\lambda}_m = \hat{\lambda}_m(x)$$

Корреляционно-регрессионный анализ

$$Y = k_1(x_i) + \dots + k_n(x_n)$$

Кластерный и дискриминантный анализ $F: X \stackrel{\rho}{\to} Y$

Многофакторный анализ выборки данных

$$Y = f_1(x_i) + \dots + f_n(x_n)$$

Инструменты нейрокартирования для визуализации и кластеризации массивов технико-экономических показателей

Имеется авторская разработка коллектива, реализован опытный образец в среде МАТLAB. Представлен пример обработки 50 показателей по 135 предприятиям ГК «Ростех» для оценки финансово-экономического риска.

Реализованы технологии искусственных нейронных сетей для создания нейрокарты. В отличие от традиционной географической карты, показывающей территориальную близость различных объектов, нейрокарта показывает степень близости объектов (предприятий) по факторам риска.

Кластеры проблемных предприятий

Нейрокарты позволяют анализировать и визуализировать большие массивы показателей для поддержки принятия управленческих решений

«Тепловая» кластерная нейрокарта по всем показателям

Кластеры эффективных предприятий

Компонентные нейрокарты по частным показателям-факторам

Проблемы с долгами по кредитам

Проблемы с долгами по зарплате

Слайд 17

Инструменты нейрокартирования для визуализации и кластеризации массивов технико-экономических показателей

Для обоснования проектов развития интегрированных структур предлагается использовать классификаторы ОКВЭД с учетом ассортимента для группировки по производственной / продуктовой принадлежности

Предприятия упорядочиваются по технологическим группам в соответствии с ОКВЭД

Инструменты нейрокартирования для визуализации и кластеризации массивов технико-экономических

Слайд 18 показателей

Представлена нейрокарты АО «ВНИИРТ» и компаний-аналогов для оценки конкурентных позиций

Исследуемая компания (АО «ВНИИРТ») выбрана за эталон для сравнения и вычислены характеристики ее схожести с другими компаниями-аналогами как метрика косинусного расстояния, т.е., как совокупная близость компаний по всем показателям, а затем закодирована в виде градиентной палитры синих оттенков. Ближайшими компаниями к ВНИИРТ являются МЗРИП и НЗиК.

Рисунок 1 – Нейрокарта схожести конкурентов

Шифр	Полное наименование и адрес местонахождения	1
МЗРИП	Акционерное Общество «Муромский завод радиоизмерительных приборов»	1
	(г. Муром, ул. Карачаровское шоссе, 2)	
НЗиК	Акционерное общество «НИИ измерительных приборов - Новосибирский	
	завод имени Коминтерна» (г. Новосибирск, улица Планетная, 32)	
ЛЭМ3	Акционерное общество «Научно-производственное объединение]
	«Лианозовский электромеханический завод» (г. Москва, Дмитровское	
	шоссе, 110)	
ПР3	Акционерное общество «Научно-производственное объединение	
	«Правдинский радиозавод» (Нижегородская область, г. Балахна, ул.	
	Горького, д. 34)	
Гранит	Акционерное общество «Рязанское производственно-техническое	
	предприятие «Гранит» (г.Рязань, ул. Интернациональная, д.1Г)	
Эфир	Акционерное общество «Тамбовский научно-исследовательский институт	
	радиотехники «ЭФИР» (г. Тамбов, ул. Коммунальная, 25)	

Анализ рыночных позиций осуществлен на основе 10 показателей по данным открытой финансовой отчетности предприятий за 2014 г.: внеоборотные активы (1-ВА); нематериальные активы (2-НМА); основные средства (3-ОС); оборотные активы (4-ОА); долгосрочные обязательства (5-ДО); краткосрочные обязательства (6-КО); собственный капитал (7-СК); выручка (8-В); себестоимость (9-С); чистая прибыль (10-ЧП).

Инструменты нейрокартирования для визуализации и кластеризации массивов технико-экономических

Слайд 19 ПОКАЗАТЕЛЕЙ

Представлена нейрокарты АО «ВНИИРТ» и компаний-аналогов для оценки конкурентных позиций

Кластерная нейрокарта (см. рисунок 1) отображает группировку предприятий по всем обрабатываемым показателям-факторам модели. На карте выделяются два кластера: ННИИРТ и ЛЭМЗ – крупные игроки (красный цвет); остальные компании, соотнесённые в одну совокупность (зеленый цвет).

Компонентные нейрокарты (см. рисунки 2-4) являются детальными срезами по одному из частных показателей. Для изображения закономерностей используется градиентная окраска – при помощи холодных зеленых и теплых красных оттенков цветов показаны соотношения в анализируемых показателях.

Рисунок 2 – Компонентная нейрокарта (выручка)

Рисунок 3 – Компонентная нейрокарта (чистая прибыль)

Рисунок 4 – Компонентная нейрокарта (собственный капитал)

Результаты интеллектуальной деятельности

Слайд 20 Авторским коллективом реализован прототип в системе MATLAB с возможностью компиляции в требуемую операционную систему (Windows/UNIX) и оформлены 3 свидетельства о государственной регистрации программ для ЭВМ

Расчет и анализ организационноэкономических показателей наукоемких промышленных предприятий

Нейросетевое картирование финансовых показателей промышленных предприятий

Нейросетевое картирование эконометрических показателей