Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 2

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

- c) 1 10010001 1010010000000000000000000 $_{(2)}$

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$BX = 6A5E_{(16)}, \quad CX = B6E8_{(16)}, \quad DX = 37BA_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} {\tt VAR1} &=& ({\tt DX}-29) \land {\tt CX} \\ {\tt VAR2} &=& (11 \lor {\tt CX}) + {\tt BX} \\ {\tt VAR3} &=& ((55-6) - ({\tt DX}+{\tt BX})) \lor {\tt CX} \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e madhja duke e ruajtur indeksin e saj në regjistrin DX. Psh. nëse është variabla VAR2 atëherë në regjistrin DX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat çift ndërmjet numrit 17 dhe numrit 68 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin AX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $CO_{(16)} + D3_{(16)}$
- b) $43_{(16)} + 64_{(16)}$
- c) $FA_{(16)} 19_{(16)}$
- d) $B9_{(16)} \wedge B2_{(16)}$
- e) $E9_{(16)} \wedge 25_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 16 bajtëshe. Cache memoria L1 ka kapacitet prej 1024KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 4-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$03FF423F_{(16)}$$
, $7251B268_{(16)}$, $FDC8E7CC_{(16)}$

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 4-linjësh.

 B_D

 B_E

 B_F

59

4D

66

ЗA

88

EΕ

DE

8D

46

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Blloku w_0 w_1 w_2 w_3 w_4 w_5 w_6 w_7 72 B_0 FΒ CD 6F EC 91 17 DD CO B_1 C2 48 ΑE 02 E9 3F B1 B_2 55 96 34 7C 7C 97 47 04 FF 2F E1 C4 B_3 34 8C 09 8C B_4 A9 9D 8E 69 4F 6C 75 CF F8 81 64 C1 B_5 92 71 4D 01 09 83 **A6** 92 9A 27 74 B_6 54 80 71 6A C4 63 **B9** 5E CB B_7 AD 41 9F B_8 4F 40 11 18 AD B_9 ED 46 FD 5E 04 38 C5 2F B_A CD FO A6 61 BB ΑE 99 EC B_B 1C 8C CD 69 80 37 D9 EΒ B_C C4 1E 45 DC 64 FF EF 4C

Table 1: RAM Memoria.

Table 2: Cache Memoria.

0B

CE

0F

FΑ

87

6B

71

6C

10

11

40

AF

A4

44

55

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?