Markov Inequality

For RV $X \leq t$. $Pr(X \geq 0) = 1$, $Pr(X \geq t) \leq E(X)/t$

Chebysher Inequality

If $Var(X) < \infty$, $Pr(|X - E(X)| \ge t) \le \frac{Var(X)}{t^2}$ Proof: $Pr(|X - E(X)|^2 \ge t^2) \le E(|X - E(X)|^2)/t^2 = \frac{Var(X)}{t^2}$

Sample Mean For n RV X, 1... Xn, sample mean $X_n = h \sum X_i$ If X... Xn random sample from distr w/ mean μ and variance G, X_n is sample mean, $F(\overline{X}_n) = \mu$, $Var(\overline{X}_n) = G^2/n$ (By Chebysher, $Pr(|\overline{X}_n - \mu| \ge t) \le G^2/n4^2$

Convergence of RV

- Convergence in distribution

Sequence of RV Z., Zz... n/ CDF F., fz...

converge to RV Z n/ CDF F if:

Lim Fn(x) = F(x), for every x s.t. F continuous

n>xx

- Convergence in Probability

Sequence of RV Z1, Z2 ... converges to b in prob if:

for every \$>0, lim \text{Pr}(|\frac{1}{2}n-b|<\frac{1}{6})=1

n>\infty \text{only recell Zn be close to b}

- Convergence with Probability I (a most swely) need any sequence

... converges to b if: \text{Pr}(\lim Zn = b) = 1 of \text{P2n} \text{converge to b}

n>\infty \text{(Zn \frac{1}{2}n^2 \text{b})}

Almost sure convergence => Convergence in prob => Convergence in distr

Example of converge in distribut not we prob 1: Let $Z_n = \begin{cases} 1 & \text{with } P_n + \frac{1}{n} \\ 0 & -\frac{1}{n} \end{cases}$

Then Zn >0 in prob.

However, since $\sum_{n=1}^{\infty} \Pr(Z_i=1) = +\infty$, events $\{Z_i=1\}$ independent, However, since $\sum_{n=1}^{\infty} \Pr(Z_i=1) = +\infty$, and events $\{Z_i=1\}$ by Second Borel-Gutelli lemma, $\Pr(\lim_{n\to\infty} Z_n=b) \neq 1$.

We ale Law of Large Numbers

Suppose $X_1 \cdots X_n$ form a random sample from a distr w/ mean μ , and finite variance. Let \overline{X}_n be sample mean,

then, $\overline{X}_n \xrightarrow{P} \mu$.

• If $\overline{Z}_n \xrightarrow{P} b$, $g(\overline{z})$ is a function continuous at b, $g(\overline{Z}_n) \xrightarrow{P} g(b)$.

Strong Law of Large Mumbers

Chernoff Bounds

Idea: Want to generate a family of bounds for Pr(X).

Consider in Chebyshev, we applied Markov on [X-ECX]

We can repeat that with a functional family of X with parameter 1. This will give a family of bounds parameterized by λ . Then optimize over λ to get the best bound.

Derivation: for $t \in \mathbb{R}$, P(x) = P(x) =

Central Limit Theorem (Linelberg & Lévy)

If RV X1...Xn form a random sample from a given distr w)

mean μ , var $\sigma < \omega$, then for each fixed number χ , $\lim_{n \to \infty} \Pr\left(\frac{x_n - \mu}{6/\sqrt{n}} \le \chi\right) = \frac{1}{2} (\chi)$ (Standardized sample mean $\pi N(\sigma_{(1)})$)

Interpretation: The distribution of standardized sample mean converges in distribution to normal.

Usage: Estimate $P_{Y}(|\bar{X}-EX| \leq e) \simeq \sqrt{\frac{e}{6/\ln}} - \sqrt{\frac{e}{6/\ln}}$

The Delta Method

[Computing approx distr for function of RV, esp. function of sample mean.]

Let $Y_1, Y_2 \cdots$ be sequence of RV, F^* be a cdf.

Let $\theta \in \mathbb{R}$, $\{a_i\}$ s.t. $a_i > 0$, $a_n \to \infty$.

Suppose $a_n(Y_n - \theta)$ converges in distr to F^* ,

[et $\alpha(\cdot)$ be a function w/ continuous derivative s.t. $\alpha'(\theta) \neq 0$,

then, $a_n[\alpha(Y_n) - \alpha(\theta)] / \alpha'(\theta)$ Converges in distr to F^* .

Proof outline: $a_{n} \Rightarrow \omega$, $a_{n}(Y_{n} - \theta) \Rightarrow F^{*}$, then Y_{n} dose to B as $n \Rightarrow \omega$.

(Because for any CDF, $F^{*}(N) \Rightarrow 0$ as $N \Rightarrow \omega$. Thus if Y_{n} not close to B, F^{*} will have non-negligible mass at ∞ ,)

Use Taylor Exp of $\alpha(Y_{n})$ around θ : $\alpha(Y_{n}) \Rightarrow \alpha(\theta) + \alpha'(\theta)(Y_{n} - \theta)$ $\alpha(Y_{n}) \Rightarrow \alpha(Y_{n}) - \alpha(\theta) \Rightarrow \alpha'(\theta)(Y_{n} - \theta)$ $\alpha'(\theta) = \frac{\alpha_{n}}{\alpha'(\theta)}(\alpha(Y_{n}) - \alpha(\theta)) \Rightarrow \alpha_{n}(Y_{n} - \theta)$ Thus, CDF of LHS α CDF of RHS α FX

Distribution of Function of Sample Mean Consider $\alpha(Xn)$.

By CLT, $\frac{\sqrt{n}}{6}(Xn - \mu) \stackrel{d}{\to} \overline{\Phi}$.

Thus, $\frac{\sqrt{n}}{6}(\alpha(Xn) - \alpha(\mu)) / \alpha'(\mu) \to \overline{\Phi}$.

(By Delta Method, $Y_n = X_n$, $\theta = \mu$, $\alpha_n = \frac{\sqrt{n}}{6}$, $F = \overline{\Phi}$)