Parseo y Generación de Código – 2^{do} semestre 2019 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Práctica 1 Gramáticas independientes del contexto

Ejercicio 1. Definir una gramática en el alfabeto $\Sigma = \{(,)\}$ que genere el lenguaje L de las cadenas de paréntesis balanceados. Por ejemplo, $(())() \in L$ pero $)(\not\in L)$.

Ejercicio 2. Si x es un símbolo del alfabeto, notamos $|\alpha|_x$ a la cantidad de apariciones del símbolo x en la palabra α . Definir gramáticas en el alfabeto $\Sigma = \{0,1\}$ que generen los siguientes lenguajes:

- 1. $\{\alpha : \text{existe un símbolo } x \in \Sigma \text{ y palabras } \beta, \gamma \in \Sigma^* \text{ tales que } \alpha = x\beta \text{ y } \alpha = \gamma x\} = \text{"palabras que empiezan y terminan con el mismo símbolo"}.$
- 2. $\{\alpha : |\alpha| \text{ es par}\} = \text{"palabras de longitud par"}.$
- 3. $\{\alpha : |\alpha|_0 = 0\}$ = "palabras que no tienen 0s".
- 4. $\{\alpha : |\alpha|_0 = 1\}$ = "palabras que tienen exactamente un 0". Dar una derivación más a la izquierda para la cadena 1011. Dar una derivación más a la derecha para la misma cadena.
- 5. (Difícil). $\{\alpha : |\alpha|_0 = |\alpha|_1\}$ = "palabras que tienen igual cantidad de 0s que de 1s". Dar una derivación más a la izquierda para la cadena 001101. Dar una derivación más a la derecha para la misma cadena.
- 6. $\{\alpha : \alpha = 0^n 1^m \text{ con } n, m \ge 0\} = \text{``0s seguidos de 1s''}.$
- 7. $\{\alpha : \alpha = 0^n 1^n \text{ con } n = m\} = \text{``0s seguidos de 1s, con igual cantidad de 0s y 1s''}.$
- 8. $\{\alpha: \alpha=0^n1^m \text{ con } m>n\geq 0\}=$ "0s seguidos de 1s, con más 1s que 0s". Dar una derivación más a la izquierda para la cadena 001111. Dar una derivación más a la derecha para la misma cadena.
- 9. $\{\alpha : \alpha = 0^n 1^m \text{ con } n \neq m\} = \text{``0s seguidos de 1s, con distinta cantidad de 1s que 0s''}.$

Ejercicio 3. Considerar la gramática dada por el conjunto de símbolos terminales $\{if, then, else, cmd, exp\}$, el conjunto de símbolos no terminales $N = \{S, E\}$, donde S es el símbolo inicial, y las producciones siguientes:

1. Dar dos derivaciones para la cadena if exp then cmd.

- 2. ¿Las dos derivaciones dadas en el ítem 1. son más a la izquierda?
- 3. ¿Se pueden dar dos derivaciones más a la izquierda para la cadena if exp then cmd?
- 4. Dar dos derivaciones más a la izquierda para la cadena:

if exp then if exp then cmd else cmd

En esta gramática hay cadenas que se pueden derivar usando dos derivaciones más a la izquierda distintas. Cuando pasa esto, se dice que la gramática es ambigua. La ambigüedad en la gramática de arriba se conoce como problema del dangling else.

Ejercicio 4. Considerar una variante de la gramática del ejercicio anterior, dada por el conjunto de símbolos terminales $\{if, then, else, cmd, exp, end\}$, el conjunto de símbolos no terminales $N = \{S, E\}$, donde S es el símbolo inicial, y las producciones siguientes:

$$S \quad \rightarrow \quad \text{if } E \text{ then } S \text{ end } \mid \text{ if } E \text{ then } S \text{ else } S \text{ end } \mid \text{ cmd } E \quad \rightarrow \quad \exp$$

Dar una derivación más a la izquierda para las siguientes cadenas, y justificar en cada caso por qué esa es la única derivación más a la izquierda posible:

- 1. if exp then if exp then cmd end else cmd end
- 2. if exp then if exp then cmd else cmd end end

Ejercicio 5. Considerar la gramática dada por el conjunto de símbolos terminales $\{\mathbf{num}, +, *\}$, el conjunto de símbolos no terminales $N = \{E\}$, donde E es el símbolo inicial, y las siguientes producciones:

$$E \rightarrow \mathbf{num} \mid E + E \mid E * E$$

- 1. Mostrar que la gramática es ambigua dando dos derivaciones más a la izquierda para la cadena $\mathbf{num} + \mathbf{num} * \mathbf{num}$.
- 2. Dar una única derivación más a la izquierda para la cadena num + num * num en la siguiente variante de la gramática, y justificar que esta es la única derivación más a la izquierda posible:

$$\begin{array}{ccc} E & \rightarrow & T \mid T+E \\ T & \rightarrow & \mathbf{num} \mid \mathbf{num}*T \end{array}$$

Ejercicio 6. Dar una gramática en el siguiente alfabeto:

[] , **a**

que genere el lenguaje de las listas:

 $[\hspace{.1cm}] \hspace{.2cm} [\mathbf{a}] \hspace{.2cm} [\mathbf{a},\mathbf{a}] \hspace{.2cm} [\mathbf{a},\mathbf{a},\mathbf{a}] \hspace{.2cm} \dots$

Ejercicio 7. ¿Qué lenguajes generan las siguientes gramáticas?

1. $\Sigma = \{0,1\},\, N = \{S,A\},$ símbolo inicial: S, producciones:

$$\begin{array}{ccc} S & \rightarrow & 0S0 \mid 0A0 \\ A & \rightarrow & 1 \mid 1A \end{array}$$

2. $\Sigma = \{0,1\},\, N = \{S,A,B\},$ símbolo inicial: S, producciones:

$$\begin{array}{ccc} S & \rightarrow & AB \\ A & \rightarrow & 0A \mid 1A \\ B & \rightarrow & 0A0 \mid 1A1 \end{array}$$

3. $\Sigma = \{0,1\}, N = \{S,A\},$ símbolo inicial: S, producciones:

$$\begin{array}{ccc} S & \rightarrow & A0A0A \\ A & \rightarrow & 0A \mid 1A \mid \epsilon \end{array}$$

4. $\Sigma = \{\mathbf{a}, +, *\}, N = \{S\},$ símbolo inicial: S, producciones:

$$S \rightarrow \mathbf{a} \mid SS + \mid SS *$$

Dar una derivación de $\mathbf{a} \ \mathbf{a} + \mathbf{a} \ \mathbf{a} + *$.

5. $\Sigma = \{\mathbf{a}, +, *\}, N = \{S\}, \text{ símbolo inicial: } S, \text{ producciones: }$

$$S \rightarrow \mathbf{a} \mid +SS \mid *SS$$

Dar una derivación de $*\mathbf{a} * \mathbf{a} + \mathbf{aa}$.