Klasifikasi: Regresi Logistik

Ali Akbar Septiandri

October 3, 2017

Universitas Al Azhar Indonesia

Daftar isi

- 1. Regresi Logistik
- 2. Optimasi

Memprediksi kategori

 Apa yang harus dilakukan jika kita ingin memprediksi kategori alih-alih nilai riil?

Memprediksi kategori

- Apa yang harus dilakukan jika kita ingin memprediksi kategori alih-alih nilai riil?
- Contoh: Prediksi apakah komentar-komentar berikut termasuk spam atau ham (bukan spam) jika dilihat dari kemunculan kata-kata 'order' dan 'password'.

Memprediksi kategori

- Apa yang harus dilakukan jika kita ingin memprediksi kategori alih-alih nilai riil?
- Contoh: Prediksi apakah komentar-komentar berikut termasuk spam atau ham (bukan spam) jika dilihat dari kemunculan kata-kata 'order' dan 'password'.
- Kita asumsikan spam = 1 dan ham = 0. Bagaimana memaksa keluaran dari regresi linear $y \in (-\infty, \infty)$ menjadi $y \in \{0, 1\}$?

 Cara yang banyak digunakan adalah menggunakan fungsi sigmoid/logistik, i.e.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

 Cara yang banyak digunakan adalah menggunakan fungsi sigmoid/logistik, i.e.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

• Karena z bernilai $-\infty$ sampai ∞ , maka $\sigma(z)$ bernilai dari 0 sampai $1\sim$ probabilistik

3

 Cara yang banyak digunakan adalah menggunakan fungsi sigmoid/logistik, i.e.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- Karena z bernilai $-\infty$ sampai ∞ , maka $\sigma(z)$ bernilai dari 0 sampai $1 \sim$ probabilistik
- $p(y = 1|\mathbf{x}) = \sigma(f(\mathbf{x})) = \sigma(\mathbf{w}^T\mathbf{x}) = \sigma(w_0x_0 + w_1x_1)$

 Cara yang banyak digunakan adalah menggunakan fungsi sigmoid/logistik, i.e.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- Karena z bernilai $-\infty$ sampai ∞ , maka $\sigma(z)$ bernilai dari 0 sampai $1 \sim$ probabilistik
- $p(y = 1|\mathbf{x}) = \sigma(f(\mathbf{x})) = \sigma(\mathbf{w}^T\mathbf{x}) = \sigma(w_0x_0 + w_1x_1)$
- Karena probabilitas jumlahnya harus 1, maka

$$p(y=0|\mathbf{x})=1-p(y=1|\mathbf{x})$$

Batas keputusan

Figure 1: Batas keputusan (hijau) yang dibentuk dari vektor bobot \mathbf{w} (hitam) untuk prediktor dengan dua variabel

Fungsi sigmoid/logistik

Figure 2: Fungsi sigmoid/logistik $\sigma(z) = \frac{1}{1 + exp(-z)}$

• Dalam kasus satu variabel prediktor, kemiringan dari batas keputusan diatur oleh nilai w_1 , sedangkan w_0 (intercept) hanya menggesernya

- Dalam kasus satu variabel prediktor, kemiringan dari batas keputusan diatur oleh nilai w_1 , sedangkan w_0 (intercept) hanya menggesernya
- Batas keputusan yang dihasilkan akan berupa hyperplane yang akan tegak lurus terhadap vektor w

- Dalam kasus satu variabel prediktor, kemiringan dari batas keputusan diatur oleh nilai w_1 , sedangkan w_0 (intercept) hanya menggesernya
- Batas keputusan yang dihasilkan akan berupa hyperplane yang akan tegak lurus terhadap vektor w
- Dari **w**, kita bisa menggambarkan batas keputusan (*decision boundary*) ketika $p(y=1|\mathbf{x})=p(y=0|\mathbf{x})=0.5$, i.e. $\mathbf{w}^T\mathbf{x}=0$

- Dalam kasus satu variabel prediktor, kemiringan dari batas keputusan diatur oleh nilai w_1 , sedangkan w_0 (intercept) hanya menggesernya
- Batas keputusan yang dihasilkan akan berupa hyperplane yang akan tegak lurus terhadap vektor w
- Dari w, kita bisa menggambarkan batas keputusan (decision boundary) ketika $p(y=1|\mathbf{x})=p(y=0|\mathbf{x})=0.5$, i.e. $\mathbf{w}^T\mathbf{x}=0$
- Kita perlu mencari nilai w

Likelihood (non-examinable)

- Asumsi i.i.d.
- Dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$
- Likelihood-nya menjadi

$$\begin{aligned} p(\mathcal{D}|\mathbf{w}) &= \prod_{i=1}^{N} p(y = y_i | \mathbf{x}_i, \mathbf{w}) \\ &= \prod_{i=1}^{N} p(y = 1 | \mathbf{x}_i, \mathbf{w})^{y_i} (1 - p(y = 1 | \mathbf{x}_i, \mathbf{w}))^{1 - y_i} \end{aligned}$$

• Log likelihood $L(\mathbf{w}) = \log p(\mathcal{D}|\mathbf{w})$

$$L(\mathbf{w}) = \sum_{i=1}^{N} y_i \log \sigma(\mathbf{w}^T \mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}_i))$$

Solusi

- Nilai optimum untuk kasus ini unik, i.e. convex
- Untuk memaksimalkan nilainya, gunakan gradien

$$\frac{\partial L}{\partial w_j} = \sum_{i=1}^{N} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) x_{ij}$$

 Tidak ada solusi tertutup sehingga harus menggunakan optimasi numerik, e.g. dengan gradient descent

Optimasi

Mengapa dinamakan machine learning?

Menuruni permukaan fungsi error

Figure 3: Menuruni lembah fungsi error J(w) [Raschka, 2015]

Mengapa melakukan optimasi?

- ullet Belajar o masalah optimasi kontinu
- Contoh: regresi linear, regresi logistik, jaringan saraf tiruan, SVM
- Salah satu caranya adalah dengan maximum likelihood atau sum of error

Cara melakukan optimasi

- Menggunakan fungsi galat/error E(w) yang akan diminimalkan
- e.g. dapat berupa $-L(\mathbf{w})$
- Beda nilai w, beda besar error
- ullet Belajar \equiv menuruni permukaan error

Gradient descent

```
\begin{array}{c|c} \mathbf{begin} \\ & \text{Inisialisasi } \mathbf{w} \\ & \mathbf{while} \ E(\mathbf{w}) \ \textit{masih terlalu besar } \mathbf{do} \\ & \text{Hitung } \mathbf{g} \leftarrow \nabla_{\mathbf{w}} E(\mathbf{w}) \\ & \mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{g} \\ & \mathbf{end} \\ & \text{return } \mathbf{w} \\ \mathbf{end} \end{array}
```

Algorithm 1: Melatih dengan gradient descent

Learning rate

- ullet η terlalu kecil o lambat
- ullet η terlalu besar o tidak stabil

Batch vs online

 Untuk data yang sedikit, kita bisa menjumlahkan semua error sebelum memperbarui nilai w (batch)

Batch vs online

- Untuk data yang sedikit, kita bisa menjumlahkan semua error sebelum memperbarui nilai w (batch)
- Bagaimana untuk 10 juta data?

Batch vs online

- Untuk data yang sedikit, kita bisa menjumlahkan semua error sebelum memperbarui nilai w (batch)
- Bagaimana untuk 10 juta data?
- Ternyata, kita bisa memperbarui nilai w untuk setiap satu data (online)

Gradient descent (batch)

```
begin
Inisialisasi w
while E(\mathbf{w}) masih terlalu besar do
Hitung \mathbf{g} \leftarrow \sum_{i=1}^N \nabla_{\mathbf{w}} E_i(\mathbf{w})
\mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{g}
end
return w
end
```

Algorithm 2: Melatih dengan batch gradient descent

Stochastic gradient descent

```
begin
     Inisialisasi w
     while E(\mathbf{w}) masih terlalu besar do
          Pilih j sebagai integer acak antara 1..N
          Hitung \mathbf{g} \leftarrow \nabla_{\mathbf{w}} E_i(\mathbf{w})
          \mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{g}
     end
     return w
end
            Algorithm 3: Stochastic gradient descent (SGD)
```

Kelebihan dan kekurangan

- Batch lebih powerful
- Batch lebih mudah dianalisis
- Online lebih praktikal untuk data yang besar
- Online dapat melompati optimum lokal

Pengembangan gradient descent (non-examinable)

- "Why Momentum Really Works" [Goh, 2017]
- Performance-dependent η , e.g. "NewBOB": η berubah menjadi setengahnya saat validation set tidak menjadi lebih baik
- Time-dependent schedules, e.g. eksponensial: $\eta(t) = \eta(0) exp(-t/r)$ ($r \sim$ ukuran data latih)

Regresi linear dengan gradient descent https://github.com/aliakbars/uai/blob/

gh-pages/images/line.gif

Tentang metode optimasi

- Masih banyak metode optimasi yang tidak dibahas, e.g. linear programming, Newton's method, dll.
- Optimasi merupakan bidang matematika yang kompleks
- Masalah convex: optimum global. Non-convex: optimum lokal.
- Pahami mengapa gradient descent bisa mengalami masalah

Ikhtisar

- Regresi linear dapat diubah untuk memprediksi data kategorikal dengan menggunakan fungsi sigmoid/logistik
- Proses optimasi merupakan bagian penting dari machine learning yang dapat dilakukan secara numerik, e.g. gradient descent
- Gradient descent bisa dilakukan secara batch, online, atau di antaranya
- Metode optimasi merupakan bidang matematika yang kompleks sehingga tidak perlu eksplorasi lebih jauh, gunakan pustaka yang ada

Pertemuan berikutnya

- Neural networks
- Gradient descent dan backpropagation
- Aplikasi pada computer vision

Referensi

Sebastian Raschka (2015)

Single-Layer Neural Networks and Gradient Descent

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Gabriel Goh (2017)

"Why Momentum Really Works"

Distill

Terima kasih