Comparing the performance of state-of-theart software switches in the context of NFV

Tianzhu Zhang

About me

• 2020, 8 – now

Research Engineer @ Nokia Bell Labs

• 2017,10 - 2019,11

PostDoc @ Telecom ParisTech

• 2017, 6 - 2017, 9

Intern @ Nokia Bell Labs

- Joint work of TPT, NBLF, and PoliTO
- Collaborators:
 - Leonardo Linguaglossa (Telecom Paris, Paris)
 - Massimo Gallo (Nokia Bell Labs, Paris-Saclay)
 - James Roberts (Telecom Paris, Paris)
 - Luigi lannone (Telecom Paris, Paris)
 - Paolo Giaccone (Politecnico di Torino, Turin)
- Published results:
 - Demo at IEEE Netsoft'19
 - Paper at ACM CoNEXT'19
 - On-going extension

Outline

Background

- Network Function Virtualization (NFV)
- Software switches
- Motivation

Methodology

- Test scenarios
- Testbed settings

Experimental results

Conclusion

28/10/2020

Background

Ossification of traditional networks

Network Function Virtualization (NFV)

- Shift towards agile and open service provisioning
 - Virtual network functions (VNFs) on Commodity Off-The-Shelf (COTS) hardware

28/10/2020

Software switches

- Virtual switch implemented in software
- High flexibility
- Low performance
- Previously only used for fast-prototyping and function testing
- Benefit from high-speed packet I/O techniques
 - DPDK, netmap, PF_ring, eBPF, VMA, etc.
- Widely adopted by existing NFV frameworks
 - Traffic steering between VNFs and network interface cards (NICs)

28/10/2020

	Architecture		Programming	ing Model		Virtual	$\mathbf{Runtime}$	Programming	Main	
	Self-contained	Modular	Paradigm	RTC	Pipeline	Interface	Reprogrammability	Language	Purpose	
BESS		✓	Structured	✓	✓	vhost-user	High	C, Python	Programmable NIC	
Snabb		✓	Structured		✓	vhost-user	High	Lua, C	VM-to-VM	
OVS-DPDK	✓		Match/action	\checkmark		vhost-user	High	С	SDN switch	
FastClick		✓	Structured	✓		vhost-user	Medium	C++	Modular router	
VPP	✓		Structured	✓		vhost-user	Medium	С	Full router	
VALE	✓		Structured	✓		ptnet	Low	С	Virtual L2 Ethernet	
t4p4s	√		Match/action	√		vhost-user	Low	C, Python	P4 switch	

Unclear performance

- Disparate design choices and purposes
- Performance depend on traffic patterns
- Too many hardware and software parameters to tune

Ref.	Software switches under test	Bare-metal	VNF VM	environment Container	Inter-VNF forwarding	SFC	Throughput Uni. Bi.	Latency
[34]	BESS			√		✓	✓	✓
[71]	OVS, OVS-DPDK	✓	√	√ ^(⋆)		✓	✓	✓
[72]	Linux bridge, VALE			√	√	√	√	
[73]	ClickOS, BESS					√	√	√
[19]	Linux bridge, OVS, OVS-DPDK	✓	✓		✓		√	✓
[25]	OVS, PISCES, $\mathbf{t4p4s}$	√					√	
[74, 75]	OVS-DPDK, VPP		√				√	
[18]	BESS, VPP, OVS-DPDK	✓					✓	
[76]	OVS-DPDK, Snabb, VALE		√		√		√	
[21]	Snabb, OVS, OVS-DPDK, Linux bridge		√		√		√	
[77, 30]	OVS-DPDK, OVS, Linux bridge, Lagopus, xDPd-DPDK	√	√				√	√

Existing works

 Experimental methodology to thoroughly evaluate the performance of software switches for NFV

 Compare the performance of 7 state-of-the-art high-speed software switches, quantitative-> qualitative

 Define the best use case for each tested software switch

Methodology

Typical NFV scenario

Service function chain (SFC)

28/10/2020

Test scenarios

- Physical-to-physical (p2p)
- Physical-to-virtual (p2v)
- Virtual-to-virtual (v2v)
- Loopback

Software switches under test

OVS-DPDK

FastClick

Berkley Extensible Software Switch (BESS)

Vector Packet Processing (VPP)

t4p4s

Snabbswitch

Netmap/VALE

Tools

- Traffic generators and monitors @ 10Gbps
 - MoonGen
 - pktgen-DPDK
 - pkt-gen
 - FloWatcher-DPDK
- Hypervisors
 - QEMU/KVM + CentOS 7
 - Docker
- Virtual network functions
 - Traffic monitors
 - testpmd/VALE

Testbed settings

10/28/2020 17

Experimental parameters

- Traffic patterns
 - Synthetic packets with 64B, 256B, and 1024B
- CPU assignment
 - Single core for software switches
 - Four cores for each VNF
- Virtual environment
 - VM and container
- Performance metrics
 - Throughput: in Gbps, both unidirectional and bidirectional
 - Latency: Round-Trip time under 0.1/0.5/0.99 of the maximal forwarding rate

Experimental results

Throughput test for p2p scenario

10/28/2020

Throughput test for p2v scenario

28/10/2020 21

Throughput test for loopback scenario

10/28/2020

Latency test for p2p scenario

10/28/2020

24

Latency test for loopback scenario

10/28/2020 25

Use case summary

	Best use cases	Remarks
BESS	Forwarding between physical NICs and containers	Chaining of containerized VNFs
Snabb	Fast deployment, runtime optimization	Bottlenecked with multiple VNFs
OVS-DPDK	Stateless SDN deployments	Supports OpenFlow protocol
FastClick	VNF chaining	Flexible live migration, high latency at low workload
VPP	VNF chaining	Flexible live migration
VALE	VNF chaining with high workload	Limited traffic classification and live migration capability
t4p4s	Stateful SDN deployments	Supports P4 semantics

10/28/2020 26

Conclusion

- Software switches are widely used by NFV frameworks
- It calls for a benchmarking methodology to assess their performance
- Our approach provides a comprehensive evaluation of software switches in a typical NFV environment
- Quantitative measurement with qualitative evaluation
- Code reproducible and available on GitHub

28

10/28/2020