Analysis of Financial Dataset for Fraud Detection

Problem Statement

- Digital Fraud is, unfortunately, a very common problem that can generate a lot of discomfort.
- Those behind digital fraud are always creating new ways to commit fraud without being detected.
- Detection systems are not perfect: they often mistake non-fraudulent transactions with fraudulent ones, and vice versa.

Project Goals

- Identify key features that can help us understand digital fraud.
- Improve fraud detection accuracy using Machine Learning:
 - Minimize the rate of false positives.
 - Strengthen the detection system.
- Questions to be answered:
 - What is the most fraudulent transaction type?
 - Is there a typical time of day when fraudulent activities are carried out?

Dataset

- Synthetic dataset downloaded from *Kaggle*.
- Simulates digital money transactions.
- Total of 6,362,620 records.

Variable Name	Data Type	Description	
step	int64	maps a unit of time in the real world	
type	object	CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER	
amount	float64	amount of the transaction in local currency	
nameOrig	object	customer who started the transaction	
oldBalanceOrg	float64	balance before transaction	
newBalanceOrig	float64	balance after transaction	
nameDest	object	recipient of transaction	
oldBalanceDest	float64	balance recipient before transaction	
newBalanceDest	float64	balance recipient after transaction	
isFraud	int64	identifies a fraudulent transaction (1) and non fraudulent (0)	
isFlaggedFraud	int64	an illegal attempt is an attempt to transfer more than 200.000 in a single transaction	

- No null values encountered.
- Analysis of variable isFraud:

	mean	median	std
isFraud			
0	1.781970e+05	74684.72	5.962370e+05
1	1.467967e+06	441423.44	2.404253e+06

Transaction type and fraud status:

- Data transformation and visualization:
 - Applied log transformation to transaction amount.
 - Distribution shows a log amount target area for monitoring and investigation.

Class imbalance problem:

```
isFraud
0 6354407
1 8213
Name: count, dtype: int64
```

 Solution: randomly removed entries from the majority class (non-fraudulent transactions) to match the minority class' count.

```
isFraud

0 8213

1 8213

Name: count, dtype: int64
```

Variable type:

0	1
1805	0
2843	4116
37	0
2831	0
697	4097
	1805 2843 37 2831

Variable step:

Machine Learning Methodology

- Models used: Logistic Regression, KNN Classifier, Random Forest, Support Vector Machine, and Gradient Boosting.
- Training and Evaluation Methods: Training process (80/20), cross-validation (GridSearchCV), ROC, accuracy, and MSE.

Machine Learning Models - Feature Importance

Machine Learning Models - Comparison

Model	Training Accuracy	Test Accuracy	MSE
Logistic Regression	0.8766	0.8609	0.1125
KNN	0.9056	0.8904	0.0937
Random Forest	0.9818	0.9808	0.0143
SVM	0.9469	0.9315	0.0365
Gradient Boosting	0.9831	0.9829	0.0129

Conclusions

- Used ML techniques on a synthetic dataset for fraud detection.
- Random Forest and Gradient Boosting performed well detecting fraud.
- Logistic Regression, SVM, and KNN performed well but not as effective.
- Quantitatively demonstrated high accuracy and strong ability to detect fraudulent activities.

Q&A