1 Probability decision boundary

We want to predict y=1 if the expected loss of guessing y=1 is less than the expected loss of guessing y=0. P(y=0 / x) * 5 = P(y=1 / x) * 10. Let p1 = P(y=1 / x). Then, (1 - p1) * 5 < p1 * 10, so p1 >1/3. The threshold should be set to 1/3.

2 Double counting the evidence

- (a) If we consider only X_1 we get an error rate of 0.1+0.15=0.25 if we use only X_2 and the error rate is 0.25+0.05=0.30
- (b) The error rate of the Naive Bayes classifier is given by

$$error = \sum_{X_1, X_2, Y} [f(X_1, X_2) \neq Y] \Pr(X_1, X_2, Y)$$

To compute the error rate using X_1 and X_2 we sum $\Pr(X_1, X_2, Y)$ for all the events where $f(X_1, X_2) \neq Y$, we get 0.05 + 0.035 + 0.135 + 0.015 = 0.235, which is better than if using only a single attribute (X1 or X2).

- (c) The error rate is obtained by summing the probability of all events that make wrong predict for Y which is 0.05 + 0.035 + 0.20 + 0.015 = 0.3.
- (d) Naive Bayes is based on the assumptions of conditional independence. Naive Bayes performs worse because adding a X3 which is dependent of X2 doesn't introduce any additional information.
- (e) Where as Logistic Regression does not have the same conditional independence assumptions and so it does not suffer from introducing X3 which is the exact copy of X2.