Discrete Mathematics

David Wiedemann

Table des matières

1	Counting		
	1.1	Finite sets	2
	1.2	Bijections	2
	1.3	Operations with finite sets	2
\mathbf{L}	ist	of Theorems	
	1	Definition (First Numbers)	2
	1	Theorème	2
	2	Definition (Cartesion product)	2
	2	Theorème	2
	3	Definition (Disjoint union)	2
	3	Theorème	2
	4		2
	4		3
	5		3
	5		3
	6	-	3
	7		3
	8	-	3
	9	•	4
	10		4

Lecture 1: Introduction

Mon 22 Feb

1 Counting

1.1 Finite sets

Let A be a finite set. We denote by |A| the cardinality of A.

Definition 1 (First Numbers)

We denote by [n] the set of n first natural numbers.

1.2 Bijections

Theorème 1

If there exists a bijection between finite sets A and B then |A| = |B|.

1.3 Operations with finite sets

- union
- intersection
- product
- exponentiation
- quotient

Definition 2 (Cartesion product)

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Theorème 2

$$|A \times B| = |A||B|$$

Definition 3 (Disjoint union)

Define

$$A \sqcup B = A \times \{0\} \cup B \times \{1\}$$

Theorème 3

$$|A \sqcup B| = |A| + |B|$$

Definition 4 (Exponential object)

$$A^B = \{f | f \text{ is a function from } A \text{ to } B \}$$

Theorème 4

$$|A^B| = |A|^{|B|}$$

Definition 5 (Binomial coefficient)

A binomial coefficient $\binom{n}{k}$ is the number of ways in which one can choose k objects out of n distinct objects assuming order doesn't matter.

Proposition 5

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Proposition 6

The following identities hold:

1.

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

2. $\binom{n}{k}$ is the k-th element in the n-th line of Pascal's triangle.

Preuve

Each subset of [n+1] either contains n+1 or not.

Number of (k+1)-element subsets containing n+1 is $\binom{n}{k}$

Number of (k+1)-element subsets not containing n+1 is $\binom{n}{k+1}$

Proposition 7

The number of subsets of an n-element set is 2^n , since we have

$$2^n = \sum \binom{n}{i}$$

Proposition 8

The number of subsets of even cardinality is the same as even cardinality: 2^{n-1}

Preuve

Consider

$$\phi:2^{[n]}\to 2^{[n]}$$

defined by

$$\phi(A) = A\Delta \left\{1\right\} = \begin{cases} A \setminus \left\{1\right\}, & \text{if } 1 \in A \\ A \cup \left\{1\right\}, & \text{otherwise} \end{cases}$$

The cardinality of subsets A and $\phi(A)$ always have different parity. Since $\phi \circ \phi = \operatorname{Id}$ we deduce that ϕ is a bijection between the set of odd and even subsets is the same.

Theorème 9

$$(1+x)^n = \sum \binom{n}{i} x^i$$

Preuve

In lecture notes.

Proposition 10

Assume we have k identical objects and n different persons. Then ne number of ways in which one can distribute this k objects among the n persons equals

$$\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

Equivalently, it is the number of solutions of the equation $x_1 + ... + x_n = k$

Preuve

Let A be the set of all solutions of the equation. Let B be the set of all subsets of cardinality n-1 in k+n-1.

we construct a bijection $\psi: \mathcal{A} \to \mathcal{B}$ in the following way

$$A = (x_1, \dots, x_n) \mapsto B = \{x_1 + 1, x_1 + x_2 + 2 \dots\}$$

It suffices to show that ψ is invertible. Let $B \in \mathcal{B}$. Suppose that $b_1 \dots, b_{n-1}$ are the elements of B, ordered. Then the preimage is an n-tuple of integers (x_1, \dots) defined by

$$x_1 = b_1 - 1$$

$$x_i = b_i - b_{i-1}$$

$$x_n = k + n - 1 - b_{n-1}$$

It is easy to see from these equations that the x_i are non-negative and their sums yield k.