

Universidade do Minho

Escola de Engenharia Departamento de Informática

> Mestrado Integrado em Engenharia Informática Mestrado em Engenharia Informática Computação Natural 2019/2020

Paulo Novais, Cesar Analide, Filipe Gonçalves

- Paulo Novais <u>pjon@di.uminho.pt</u>
- Cesar Analide cesar.analide@di.uminho.pt
- Filipe Gonçalves <u>fgoncalves@algoritmi.uminho.pt</u>
- Departamento de Informática Escola de Engenharia Universidade do Minho
- Grupo ISLab (Synthetic Intelligence Lab)
- Centro ALGORITMI
 Universidade do Minho

Convolutional Neural Networks

Convolutional Neural Networks (CNN's): what are they for?

- Applied when you have data that doesn't neatly align into columns
 - Images that you want to find features within
 - Machine translation
 - Sentence classification
 - Sentiment analysis
- They can find features that aren't in a specific spot
 - o Like a stop sign in a picture
 - Or words within a sentence
- They are "feature-location invariant"

Convolutional Neural Networks (CNN's): how do they work?

- Inspired by the biology of the visual cortex
 - Local receptive fields are groups of neurons that only respond to a part of what your eyes see (sub-sampling)
 - They overlap each other to cover the entire visual field (convolutions)
 - They feed into higher layers that identify increasingly complex images
 - Some receptive fields identify horizontal lines, lines at different angles, among other features (called feature maps or filters)
 - These would feed into a layer that identifies shapes
 - Which might feed into a layer that identifies objects
 - For color or RGB images, 3 layers are used to represent red, green and blue layers

How do we know a traffic signal is a stop sign?

- Individual local receptive fields scan the image looking for edges, and pick up the edges of the stop sign in a layer
- Those edges are used by a higher-level convolution that identifies the stop sign's shape (among other features, e.g., letters)
- The shape then gets matches against the pattern of what a stop sign looks like, also using the strong red signal coming from the red layers
- The information keeps getting processed upward until a decision is made (i.e., classification)
- A CNN works the same way

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	0	0	0
0	1	1	1	0
1	0	1	2	

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4			

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

Input Image

Feature Detector

Sharpen:

0	0	0	0	0
0	0	-1	0	0
0	-1	5	-1	0
0	0	-1	0	0
0	0	0	0	0

Blur:

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

Emboss:

-2	-1	0	
-1	1	1	
0	1	2	

Edge Enhance:

0	0	0	
-1	1	0	
0	0	0	

Edge Detect:

0	1	0	
1	-4	1	
0	1	0	

Image Source: http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

Image Source: http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

Step 3 – Pooling

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

Max Pooling

1	

Feature Map

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

Max Pooling

1	1	

Feature Map

0	1	0	0	0	
0	1	1	1	0	
1	0	1	2	1	
1	4	2	1	0	
0	0	1	2	1	

Max Pooling

1	1	0

Feature Map

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

Max Pooling

1	1	0
4		

Feature Map

0	1	0	0	0	
0	1	1	1	0	
1	0	1	2	1	
1	4	2	1	0	
0	0	1	2	1	

Max Pooling

1	1	0
4	2	1
0	2	1

Feature Map

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

1	1	0
4	2	1
0	2	1

Pooled Feature Map

Flattening

Step 5 – Fully Connected Layer

CNN using Keras

CNN's with Keras

- Source data must be of appropriate dimensions
 - o i.e., width x height x color channels
- Conv2D layer type does the actual convolution on a 2D image
 - o Conv1D and Conv3D also available doesn't have to be image data, e.g., Signal Data and Video Data
- MaxPooling2D layers can be used to reduce a 2D layer down by taking the maximum value in a given kernel
- Flatten layers will convert the 2D layer to a 1D layer for passing into a flat hidden layer of neurons
- Typical architecture use:
 - o Conv2D -> MaxPooling2D -> Dropout -> Flatten -> Dense -> Dropout -> Softmax

CNN's are resource-intensive

- Uses a lot of computational resources (CPU, GPU and RAM)
- Lots of hyper-parameters
 - Kernel sizes, multiple layers with different number of units, amount of pooling, number of layers, choice of optimizers, etc.
- Getting the training data is often the hardest part (as well as storing and accessing it)

Specialized CNN architectures

- Defines specific arrangement of layers, padding, and hyper-parameters
- LeNet-5
 - Good for handwriting recognition
- AlexNet
 - Image Classification, deeper than LeNet
- VGG
 - Upgrade version of AlexNet
 - Used in multiple contexts with good overall performance
- GoogLeNet
 - Even deeper, but with better performance
 - Introduces inception modules (groups of convolution layers)
- ResNet (Residual Network)
 - Even deeper maintains performance via skip connections

Universidade do Minho

Escola de Engenharia Departamento de Informática

> Mestrado Integrado em Engenharia Informática Mestrado em Engenharia Informática Computação Natural 2019/2020

Paulo Novais, Cesar Analide, Filipe Gonçalves