

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 07-194735

(43)Date of publication of application: 01.08.1995

Patent Registration N. 3397420

(51)Int.CL

A63B 37/02 A63B 39/06

(21)Application number: 05-353233

(71)Applicant :

SUMITOMO RUBBER IND LTD

(22)Date of filing:

28.12.1993

(72)Inventor:

HAMADA AKIHIKO

(12/11/01/01

KOIZUMI YOSHIMASA HIRAOKA HIDEKI YABUKI YOSHIKAZU

(54) THREE-PIECES SOLID GOLF BALL

(57)Abstract:

PURPOSE: To provide a solid golf ball having excellent flying performance, stability of iron shots and good ball hitting feel.

CONSTITUTION: This three-pieces golf ball is composed by coating a solid core 1 consisting of the inside layer core 1a and outside layer core 1b described below with a cover 2. The diameter of the inside layer core 1a is 30.7 to 39.5mm, the bending rigidity is 300 to 2,500kgf/cm2 and the Shore D hardness is 30 to 55. The thickness of the outside layer core 1b is 1.0 to 4.0mm, the bending rigidity is 2,500 to 6,500kgf/cm2 and the Shore D hardness is 55 to 75. Both are butadiene rubber. The thickness of the cover 2 is 0.6 to 2.0mm, the bending rigidity is 1,000 to 2,500kgf/cm2 and the Shore D hardness is 40 to 55. The cover is an ionomer resin or a mixture composed of the ionomer resin and a soft resin.

LEGAL STATUS

[Date of request for examination]

21.03.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3397420

[Date of registration]

14.02.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3397420号 (P3397420)

(45)発行日 平成15年4月14日(2003.4.14)

(24)登録日 平成15年2月14日(2003.2.14)

(51) Int.Cl.7

識別記号

FΙ

A63B 37/00

A 6 3 B 37/00

L

請求項の数3(全 21 頁)

(21)出願番号 特願平5-353233 (73)特許権者 000183233 住友ゴム工業株式会社 (22)出顧日 平成5年12月28日(1993.12.28) 兵庫県神戸市中央区脇浜町3丁目6番9 (65)公開番号 特開平7-194735 (72)発明者 浜田 明彦 (43)公開日 平成7年8月1日(1995.8.1) 兵庫県加古川市平岡町山之上684-33城 審查請求日 平成12年3月21日(2000.3.21) ノ宮17A402 (72)発明者 小泉 義昌 兵庫県神戸市垂水区清水が丘1-19-5 (72)発明者 平岡 秀規 兵庫県神戸市北区東大池3丁目19-16 (72)発明者 矢吹 芳計 兵庫県明石市大久保町緑が丘9-4 (74)代理人 100078064 弁理士 三輪 鐵雄

審査官 ▲吉▼川 康史

最終頁に続く

(54) 【発明の名称】 スリーピースソリッドゴルフボール

--

(57)【特許請求の範囲】

【請求項1】 内層コアーと外層コアーからなるツーピースソリッドコアーとそれを被覆するカバーからなるスリーピースソリッドゴルフボールにおいて、上記内層コ

アー、外層コアー、カバーがそれぞれ下記の特性を有することを特徴とするスリーピースソリッドゴルフボー

①内層コアー

直径:3<u>3</u>. <u>9</u>~3<u>5</u>. <u>9</u>mm

物理特性:曲げ剛性率=<u>7</u>00~<u>1</u>, <u>8</u>00kgf/cm²

ショアーD硬度=3<u>7~49</u>

組成:ブタジエンゴム、共架橋性モノマー、酸化亜鉛およびパーオキサイド類

を必須成分として含有するゴム架橋物

②外層コアー

厚み: <u>2</u>. 0~<u>3</u>. 0mm

物理特性:曲げ剛性率=<u>3</u>, <u>0</u>000~<u>4</u>, <u>8</u>00kgf/cm²

ショアーD硬度=<u>60</u>~<u>69</u>

組成:ブタジエンゴム、共架橋性モノマー、酸化亜鉛およびパーオキサイド類

を必須成分として含有するゴム架橋物

Lover

③カバー

厚み:1.0~<u>1</u>.<u>6</u>mm

物理特性:曲げ剛性率=1, <u>5</u>00~<u>1</u>, <u>9</u>00kgf/cm²

ショアーD硬度=4<u>9</u>~5<u>2</u>

組成:アイオノマー樹脂またはアイオノマー樹脂と柔軟樹脂との混合物を基材

樹脂とするカパー

【請求項2】 共架橋性モノマーがジアクリル酸亜鉛で あり、外層コアーのジアクリル酸亜鉛の配合量がゴム1 00重量部に対して35~65重量部で、内層コアーの 10 ジアクリル酸亜鉛の配合量がゴム100重量部に対して 15~35重量部である請求項1記載のスリーピースソ リッドゴルフボール。

【請求項3】 カバーの柔軟樹脂が、αーオレフィンー α, β-不飽和カルボン酸エステル-不飽和カルボン酸 三元共重合樹脂である請求項1記載のスリーピースソリ ッドゴルフボール

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、スリーピースソリッド 20 ゴルフボールに関する。さらに詳しくは、本発明は、優 れた飛行性能とアイアンショットの安定性および良好な 打球感を兼ね備えたスリーピースソリッドゴルフボール に関する。

[0002]

【従来の技術】近年、カバーと1層または2層のソリッ ドコアーとで構成されるツーピースソリッドゴルフボー ルまたはスリーピースソリッドゴルフボールが、良く飛 ぶという理由から、特にアベレージゴルファー層を中心 として好まれている。

【0003】このツーピースソリッドゴルフボールやス リーピースソリッドゴルフボールは、反撥性能を高めて 飛距離を伸ばすという目的から、一般に高剛性のアイオ ノマー樹脂をカバーの基材樹脂として用いている。

【0004】しかしながら、高剛性のアイオノマー樹脂 をカバーの基材樹脂として用いたツーピースソリッドゴ ルフボールやスリーピースソリッドゴルフボールは、飛 距離が大きいという優れた特性を有しているものの、次 の①、②に示すような重大な欠点を有している。

【0005】① アイアンクラブのフェース面で、ショ 40 ット時にスベリ (滑り) が生じやすいため、スピンのバ ラツキが大きく、飛距離が安定しない。特に、ラフから

のアイアンショットにおけるスピンの異常低下によりド

①内層コアー

直径:3<u>3</u>.<u>9</u>~3<u>5</u>.<u>9</u>mm

物理特性:曲げ剛性率=700~1,800kgf/cm2

ショアーD硬度=37~49

組成:プタジエンゴム、共架橋性モノマー、酸化亜鉛およびパーオキサイド類 を必須成分として含有するゴム架橋物

触があり、打球感が悪い。

【0007】そのため、上記欠点を改良すべく、柔軟な カバー材を使用したツーピースソリッドゴルフボールが 開発されるようになってきた (たとえば、特開平1-3 08577号公報)。

ロップボール、いわゆるフライヤーボールが生じやす

【0006】② カバーの材質が原因で打球時に硬い感

【0008】この柔軟なカバー材を使用したツーピース ソリッドゴルフボールでは、アイアンショットの不安定 性やカバーに起因する硬い打球感は解消されているもの の、カバーの柔軟化に伴う反撥性能の低下を補うため

に、非常に硬いコアーを採用している関係で、ボールに スピンがかかりすぎて飛距離の大幅な低下を招き、また 衝撃力が増大して打球感が悪化するという新たな問題を 抱えていた。

[0009]

【発明が解決しようとする課題】上記のように、従来の ツーピースソリッドゴルフボールやスリーピースソリッ ドゴルフボールは、飛距離の大きいものはアイアンショ ットの安定性や打球感が悪く、逆にアイアンショットの 安定性や打球感が良いものは飛距離が小さいという欠点 30 があり、飛距離、アイアンショットの安定性および打球 感のすべてを同時に満足する性能を有するものは見当た らなかった。

【0010】したがって、本発明は、従来のツーピース ソリッドゴルフボールやスリーピースソリッドゴルフボ ールでは達成し得なかった優れた飛行性能とアイアンシ ョットの安定性および良好な打球感を兼ね備えたソリッ ドゴルフボールを提供することを目的とする。

[0011]

【課題を解決するための手段】本発明は、それぞれ下記 の特性を有する内層コアー、外層コアーおよびカバーで スリーピースソリッドゴルフボールを構成することによ って、上記目的を達成したものである。

[0012]

[0013]

②外層コアー

厚み: <u>2</u>. 0~<u>3</u>. 0 m m

物理特性:曲げ剛性率=<u>3</u>, <u>0</u>00~<u>4</u>, <u>8</u>00 k g f / c m²

ショアーD硬度=60~69

組成:ブタジエンゴム、共架橋性モノマー、酸化亜鉛およびパーオキサイド類

を必須成分として含有するゴム架橋物

[0014]

③<u>カバー</u>

厚み: <u>1</u>. <u>0~1</u>. <u>6</u>mm

物理特性:曲げ剛性率=1, <u>5</u>00~<u>1</u>, <u>9</u>00 k g f / c m²

ショアーD硬度=49~52

組成:アイオノマー樹脂またはアイオノマー樹脂と柔軟樹脂との混合物を基材

樹脂とするカバー

【0015】すなわち、本発明では、上記内層コアー、 外層コアーおよびカバーの有する特性を下記に示すよう に相乗的に発揮させることによって、アイアンショット の安定性、優れた飛行性能および良好な打球感を有する スリーピースソリッドゴルフボールを提供することに成 功したのである。

【0016】 (1) アイアンショットの安定性上記のように、カバーが、曲げ剛性率1, $500\sim1$, 900 kg f / c m^2 で、ショアーD硬度4 $9\sim52$ という低剛性で柔軟なカバー材を使用していることによって、ショット時のスペリが起こらなくなり、飛距離のバラツキが抑えられ、アイアンショットの安定性が確保される。

【0017】(2)飛行性能

反撥性能の低下をもたらす柔軟カバーの厚みを極力薄く し、その内側に反撥性能の高い高剛性外層コアーを配置 することによって、ボールの反撥、初速が適正な水準に 30 保持される。

【0018】ボールの外側に近い高剛性の外層コアーを配置し、しかも内層コアーが比較的大径で低剛性であるため、柔軟カバーを使用していても打撃時にボールの表面近くが局部的に潰れるのではなく、ボール全体が大きく変形する傾向になる。したがって、クラブにより打撃変形を受ける際にクラブのロフトで生ずる回転モーメントが小さくなるので、過剰のスピンが生じず、打出角も大きくなる。

【0019】つまり、本発明のスリーピースソリッドゴ 40 ルフボールは、柔軟カバーを用いていても過剰のスピンが生じず、ボールの飛行性能の初期3要素(初速、打出角、スピン量)からみると、従来の高剛性カバーを用いたツーピースソリッドゴルフボールに近い特徴を有することとなり、飛距離の大きなボールが得られる。

【0020】(3)打球感

内層コアーが低剛性で変形しやすいため、打球時の衝撃 力が小さく、軽い打球感となり、また柔軟カバーのソフ トな打球感と相まって良好なフィーリングになる。

【0021】つぎに、図面を参照しつつ本発明のスリー 50 #1707、#1706 (いずれも、商品名) などがあ

ピースソリッドゴルフボールの構造を説明する。

【0022】図1は本発明のスリーピースソリッドゴルフボールの一例を模式的に示す断面図であり、図中、1はソリッドコアーであって、このソリッドコアー1は内層コアー1aと外層コアー1bとの2層からなる。そして、2は上記2層構造のソリッドコアー1を被覆するカパーであり、このカバー2にはディンプル2aが設けられている。

【0023】まず、カバー2について説明すると、カバー2は厚みが 1. $0\sim1$. 6mmという比較的薄い厚さに形成されている。カバーの厚みが 1. 0mmより薄い場合は耐カット性などの耐久性が低下し、1. 6mmより厚くなると反接性能の低下を招き、飛距離が低下することにかる

【0024】このカバー2の物理特性は、曲げ剛性率が 1, $500\sim1$, 900 k g f / c m^2 で、ショアーD 硬度が $49\sim5$ 2 である。このように、このカバー2 は、その曲げ剛性率が従来の高剛性カバーの曲げ剛性率の約3, $000\sim4$, 000 k g f / c m^2 より低く、柔軟であることが、アイアンショット時のスペリ防止と打球感に好結果をもたらすものと考えられる。

【0025】そして、このカバー2は、曲げ剛性率およびショアーD硬度が上記範囲より高い場合は柔軟性が低下してアイアンショット時のスベリが防止できず、逆に上記範囲より低い場合には耐カット性や反撥性能の低下が生じる。

【0026】このカバー2の組成について説明すると、このカバー2の基材樹脂としては、反接性能、耐カット性などの優れたアイオノマー樹脂または該アイオノマー樹脂と柔軟樹脂との混合物が用いられるが、本発明においては、特に後者のアイオノマー樹脂と柔軟樹脂との混合物が優れている。

【0027】アイオノマー樹脂には高剛性アイオノマー 樹脂と低剛性アイオノマー樹脂とがあり、高剛性のアイ オノマー樹脂としては、たとえば三井デュポンポリケミ カル(株)より市販されているハイミラン#1605、 #1707 #1708 (いずわま 帝男女) かどばた り、低剛性のアイオノマー樹脂としては、たとえばハイ ミラン#1855、#1856 (いずれも、商品名) な

【0028】そして、柔軟樹脂としては、たとえばエチ レンーイソプチルアクリレートーメタクリル酸三元共重 合樹脂があり、この三元共重合樹脂の市販品としては、 たとえば三井デュポンポリケミカル(株)製のニュクレ ルAN4212C、ニュクレルNO825J (いずれ も、商品名)などがある、また、これとは別の系統の柔 軟樹脂としては、たとえばエチレンーエチルアクリレー 10 トー無水マレイン酸三元共重合樹脂があり、この三元共 重合樹脂の市販品としては、たとえば住友化学工業

(株) 製のボンダインAX8390、TX8030 (い ずれも、商品名)などがある。

【0029】カパー2の基材樹脂としてアイオノマー樹 脂のみを用いる場合には、低剛性のアイオノマー樹脂を 単独で用いる場合(これには、単一の低剛性のアイオノ マー樹脂を用いる場合と低剛性のアイオノマー樹脂同士 の混合物を用いる場合の両者が含まれる)、髙剛性のア イオノマー樹脂と低剛性のアイオノマー樹脂との混合物 20 を用いる場合などがある。そして、カバー2の基材樹脂 としてアイオノマー樹脂と柔軟樹脂との混合物を用いる 場合には、高剛性のアイオノマー樹脂と上記柔軟樹脂と の混合物を用いる場合、高剛性のアイオノマー樹脂と低 剛性のアイオノマー樹脂と柔軟樹脂との混合物を用いる 場合などがある。また、上記の種々の組み合わせでの樹 脂使用時に水酸化マグネシウムによる金属中和改質など を適宜施してもよい。

【0030】そして、カバー2を形成するためのカバー 用組成物は、上記アイオノマー樹脂またはアイオノマー 30 樹脂と柔軟樹脂との混合物を基材樹脂とし、二酸化チタ ン、硫酸バリウムなどの顔料を配合し、要すればさらに 酸化防止剤などを配合して、調製される。また、上記基 材樹脂に他の樹脂を基材樹脂の特性を損なわない範囲 (40重量%以下)で添加することも可能である。

【0031】つぎに、外層コアー1bの厚み、物理特 性、組成について説明する。

【0032】外層コアー1bは、厚みが2.0~3.0 mmである。外層コアー1bの厚みが2.0mmより薄 い場合は、ボールに適度な剛性を与えることができず、 所望の反接性能が得られない。また、外層コアー1bの 厚みが3.0mmより厚くなると、ボール自体が硬くな りすぎて、打球感が悪くなり、また内層コアーlaの直 径が小さくなるので打撃時のボールの変形が不足し過剰 のスピンが生成するおそれがある。

【0033】この外層コアー1bの物理特性は、曲げ剛 性率が<u>3</u>, <u>0</u>00~<u>4</u>, <u>8</u>00 k g f / c m² で、ショ アーD硬度が<u>60~69で</u>ある。これらの曲げ剛性率値 やショアーD硬度値から明らかなように、この外層コア ー1bは髙剛性で、かつ髙硬度であり、外層コアー1b 50

がこのような物性を持つことによって、2~3mmの厚 さでも柔軟カバーによる反撥低下とショット時の表面に 近い部分での局部的なツブレが防止され、本発明の特徴 の一つである優れた飛行性能が確保されるようになる。 【0034】この外層コアー1bを組成面から説明する と、この外層コアー1bは、ブタジエンゴム、共架橋性 モノマー、酸化亜鉛およびパーオキサイド類を必須成分 として含有するゴム組成物の架橋体で構成される。

【0035】このゴム組成物によって、外層コアー1b は硬くて反撥性能と耐久性に優れた特性を備えることが できる。

【0036】ブタジエンゴムは、シス分80%以上のハ イシスプタジエゴムが好ましく、所望により、このブタ ジエンゴムからなるベースゴムに天然ゴム、イソプレン ゴム、スチレンプタジエンゴム、エチレンプロピレンジ エンゴム(EPDM)などを適宜配合してゴム成分とす ることができる。この記載からも明らかなように、外層 コアー1 bのゴム成分はブタジエンゴムをベースゴムと して含んでおればよく、ブタジエンゴムのみに限定され るものではない。

【0037】 共架橋性モノマーは α , β -エチレン性不 飽和カルボン酸の1価または2価の金属塩からなる。こ の共架橋性モノマーの具体例としては、たとえばジアク リル酸亜鉛、塩基性メタクリル酸亜鉛、ジメタクリル酸 亜鉛などが挙げられるが、特にジアクリル酸亜鉛が好ま しい。この共架橋性モノマーの配合量は、特に限定され ず、上記の曲げ剛性率、ショアーD硬度になるように調 整することができるものであればよいが、たとえば、ゴ ム成分100重量部に対して共架橋性モノマーを35~ 65重量部配合することでほぼ所望する範囲の曲げ剛性 率とショアーD硬度を得ることができる。

【0038】外層コアー1bのゴム組成物は、上記のブ タジエンゴムを必須成分とするゴム成分、共架極性モノ マー以外に、さらに酸化亜鉛、パーオキサイド類を必須 成分とする。酸化亜鉛は、架橋助剤、充填剤として用い られ、ゴム成分100重量部に対して通常5~25重量 部配合される。パーオキサイド類はゴムおよび共架橋性 モノマーの架橋、グラフト重合の開始剤として作用し、 このパーオキサイド類の具体例としては、たとえばジク 40 ミルパーオキサイド、1, 1-ビス(t-ブチルパーオ キシ) 3, 3, 5ートリメチルシクロヘキサンなどが挙 げられる。このパーオキサイド類の配合量は、ゴム成分 100重量部に対して通常0.2~5重量部である。

【0039】外層コアー1b用のゴム組成物には、上記 以外に必要に応じて、たとえば硫酸バリウムなどの充填 剤、老化防止剤、ステアリン酸亜鉛などの添加剤を適宜 配合してもよい。

【0040】つぎに、内層コアー1aの直径、物理特 性、組成について説明する。

【0041】内層コアー1aの直径は、ゴルフボールの

外径〔設定外径は42.7mm(+0.1mm、-0.03mmの範囲)〕、カバーおよび外層コアーの厚みによるが、その値は33.9~35.9mmである。

【0042】この内層コアー1 a の物理特性は、曲げ剛性率が $700\sim1$, 800 k g f / c m 2 であり、ショアーD硬度が3 $7\sim49$ である。この内層コアー1 b は上記の曲げ剛性率、ショアーD硬度から明らかなように、比較的柔軟に形成されている。そして、この内層コアー1 a が上記のような物性を持つことによって、ボール打撃時の変形度を充分に大きくして衝撃力を小さくす 10 ることができるのである。

【0043】この内層コアー1aも、ブタジエンゴム、 共架橋性モノマー、酸化亜鉛およびパーオキサイド類を 必須成分として含有するゴム組成物の架橋物からなるも のである。

【0044】この内層コアー1a用のゴム組成物の調製にあたって使用されるゴム成分や配合剤の材質は、前記外層コアー1b用のゴム組成物の場合と同じである。ただし、内層コアー1aが前記のような曲げ剛性率、ショアーD硬度などの物理特性を持ち得るようにするには、共架橋性モノマーの配合量を前記外層コアー1bの場合より少なくする必要があり、共架橋性モノマーの配合量としてはゴム成分100重量部に対して15~35重量部程度に配合するのが適している。

【0045】本発明のスリーピースソリッドゴルフボールは、たとえば、以下に示す方法によって作製される。 【0046】まず、内層コアー1aは、通常、内層コアー1a用のゴム組成物を金型に入れプレスで架橋成形され、そのプレス成形時の架橋条件は、温度130~180℃、時間10~50分の範囲が好ましい。ただし、架 30橋成形時の温度は必ずしも一定でなくてもよく、2段階以上に温度を変える場合でもよい。

【0047】外層コアー1bの成形は、通常、先に作製した内層コアー1aに外層コアー1b用のゴム組成物を所望の厚みにシート状にしたものを貼りつけてプレス成形することによって行われる。ただし、この方法に限られることはなく、たとえばハーフシェルを成形し、それを貼りあわせる方法やインジェクション方式により成形する方法を採用することもできる。

【0048】カバー2は、基材樹脂に必要に応じて二酸 40 化チタンなどの無機酸化物、光安定剤などの添加剤など を適宜配合したカバー用組成物を前記2層構造のソリッ ドコアー1に被覆することによって形成される。その被 寝にあたっては、通常、インジェクション成形法が採用 されるが、それに限られることはない。

【0049】そして、カバーの形成時に必要に応じて所

望のディンプルが形成され、また、カバー2の成形後、必要に応じてペイント、マーキングなどが施される。 【0050】

10

【実施例】つぎに、実施例を挙げて本発明をより具体的 に説明する。ただし、本発明はそれらの実施例のみに限 定されるものではない。

【0051】実施例1~10および比較例1~10 上記実施例および比較例のうち、実施例1~10および 比較例1~8はスリーピースソリッドゴルフボールに関 するものであり、比較例9~10は従来の代表的なツー ピースソリッドゴルフボールに関するものである。

【0052】スリーピースソリッドゴルフボールに関しては、内層コアー用ゴム組成物および外層コアー用ゴム組成物をそれぞれの表に記載の配合組成で調製し、それぞれ所定の条件で架橋し、その架橋成形物について、曲げ剛性率およびショアーD硬度を測定し、その結果をそれぞれの表に記載の配合組成で調製し、その曲げ剛性率およびショアーD硬度を測定し、その結果をそれぞれの表に記載の配合組成で調製し、その結果をそれぞれの表

【0053】ツーピースソリッドゴルフボールに関しては、コアー用組成物を表16に記載の配合組成で調製し、所定の条件で架橋し、その架橋成形物について曲げ剛性率およびショアーD硬度を測定し、その結果を表16に示している。また、カバー用組成物も表17に記載の配合組成で調製し、その曲げ剛性率およびショアーD硬度を測定し、その結果を表17に示している。

【0054】上記曲げ剛性率およびショアーD硬度の測定方法は、次に示す通りである。

【0055】約2mm厚さの成形シートを23℃で2週間保存後、曲げ剛性率(スティフネス)はASTM D-747に準じて測定し、ショアーD硬度はASTM D-2240に準じて測定した。その際、試験片の成形シートは、内層コアー、外層コアー、カバーからは採取しがたいので、それぞれ次のようにして準備した。

【0056】内層コアーおよび外層コアーの試験片の成形シートは、それぞれのゴム組成物を表記載の架橋条件で熱プレス成形することによって作製し、カバーの試験片用の成形シートは、それぞれのカバー用組成物をそのまま熱プレス成形することによって作製した。

【0057】なお、各表における配合量は重量部による ものであり、また配合材料で共通しているものは最初の 表でのみ説明する。

[0058]

【表1】

	実施例1	実施例2	実施例3	実施例4
内層コアーの配合組成				
プタジエンゴム ※1	100	100	100	100
ジアクリル酸亜鉛	2 5	2 5	2 5	30
酸化亜鉛	18.5	18.5	18.5	16.5
老化防止剤 ※2	0.5	0.5	0.5	0.5
ジクミルバーオキサイド	1. 2	1. 2	1. 2	1. 2
架橋条件(℃×分)	160 ×25	160 ×25	160 ×25	160 ×25
内層コアーの直径 (mm)	3.4. 9	34. 9	34. 9	33. 9
曲げ剛性率(kgf/cm²)	1300	1300	1300	1800
ショアーD硬度	44	44	44	49

【0059】※1 日本合成ゴム(株)製、JSR B 20*名) R11(商品名)、ハイシスブタジエンゴム、ムーニー 【0060】 粘度ML1・4 (100℃) = 43 【表2】

※2 吉富製薬 (株) 製、ヨシノックス425 (商品 *

·	実施例 1	実施例2	実施例3	実施例4
外層コアーの配合組成				
プタジエンゴム	100	100	100	100
ジアクリル酸亜鉛	4 0	50	60	40
酸化亜鉛	12. 5	9.0	5.0	12. 5
老化防止剤	0. 5	0.5	0.5	0.5
ジクミルパーオキサイド	1. 5	1. 5	1. 5	1. 5
架橋条件(℃×分)	160 ×20	160 ×20	160 ×20	160 ×20
外層コアーの厚み (mm)	2. 5	2. 5	2. 5	3. 0
曲げ剛性率(kgf/cm²)	3000	4000	4800	3000
ショアーD硬度	60	6 5	6 9	60

[0061]

【表3】

	実施例1	実施例2	実施例3	実施例4
カバーの配合組成				
ハイミラン#1605 ※3	20	20	20	20
ハイミラン#1706 ※4	20	20	20	20
ハイミラン#1855 ※5	30	30	30	30
ニュクレル#AN4212C ※6	3 0	3 0	3 0	30
二酸化チタン	2. 0	2. 0	2. 0	2. 0
硫酸パリウム	2. 0	2. 0	2. 0	2. 0
カパーの厚み (mm)	1. 4	1. 4	1. 4	1. 4
曲げ剛性率(kgf/cm²)	1500	1500	1500	1500
ショアーD硬度	49	49	4 9	49

【0062】※3 商品名、三井デュポンポリケミカル 20*鉛イオン中和エチレンーアクリル酸エステルーメタクリ (株) 製、ナトリウムイオン中和エチレン-メタクリル 酸系アイオノマー樹脂、MI(メルトインデックス)= 2. 8、曲げ剛性率=3, 100kgf/cm² ※4 商品名、三井デュポンポリケミカル (株) 製、亜 鉛イオン中和エチレンーメタクリル酸系アイオノマー樹 脂、MI=0.8、曲げ剛性率=2,600kgf/c m²

※5 商品名、三井デュポンポリケミカル (株) 製、亜*

ル酸系アイオノマー樹脂、MI=1.0、曲げ剛性率= 900kgf/cm²

※6 商品名、三井デュポンポリケミカル (株) 製、エ チレンーイソプチルアクリレートーメタクリル酸三元共 重合樹脂、MI=12、曲げ剛性率=245kgf/c m²

[0063]

【表4】

	実施例 5	実施例 6	実施例7	実施例8
内層コアーの配合組成				
プタジエンゴム	100	100	100	100
ジアクリル酸亜鉛	30	30	20	2 5
酸化亜鉛	16. 5	16.5	21.0	17.0
老化防止剤	0.5	0.5	0.5	0. 5
ジクミルパーオキサイド	1. 2	1. 2	1. 2	1. 2
架橋条件(℃×分)	160 ×25	160 ×25	160 ×25	160 ×25
内層コアーの直径(mm)	35. 9	35.9	34. 9	35. 7
曲げ剛性卒(kgf/cm²)	1800	1800	700	1300
ショアーD硬度	49	4 9	3 7	44

[0064]

【表 5】

	実施例 5	実施例 6	実施例7	実施例8
外層コアーの配合組成				
プタジエンゴム	100	100	100	100
ジアクリル酸亜鉛	50	60	50	50
酸化亜鉛	9. 0	5. 2	9. 0	7. 5
老化防止剤	0.5	0.5	0.5	0.5
ジクミルパーオキサイド	. 1. 5	1. 5	1. 5	1. 5
架橋条件(°C×分)	160 ×20	160 ×20	160 ×20	160 ×20
外層コアーの厚み (mm)	2. 0	2. 0	2. 5	2. 5
曲げ剛性率(kgf/cm³)	4000	4800	4000	4000
ショアーD硬度	6 5	6 9	6 5	6 5

[0065]

【表6】

cover

	実施例5	実施例 6	実施例7	実施例8
カパーの配合組成	·			
ハイミラン#1605	20	20	20	20
ハイミラン#1706	20	20	20	20
ハイミラン#1855	30	30	30	30
ニュクレル#AN4212C	30	30	30	30
二酸化チタン	2. 0	2. 0	2. 0	2. 0
硫酸パリウム	2. 0	2. 0	2. 0	2. 0
カパーの厚み (mm)	1. 4	1. 4	1. 4	1. 0
曲げ剛性率(kgf/cm²)	1500	1500	1500	1600
ショアーD硬度	4 9	49	49	49

[0066]

40 【表7】

	実施例9	実施例10
内層コアーの配合組成		
ブタジエンゴム	100	100
ジアクリル酸亜鉛	2 5	2 5
酸化亜鉛	18.5	19.0
老化防止剤	0.5	0. 5
ジクミルパーオキサイド	1. 2	1. 2
架橋条件(℃×分)	160 ×25	160 ×25
内層コアーの直径(mm)	34. 9	34. 5
曲げ剛性率(kgf/cm²)	1300	1300
ショアーD硬度	44	44

[0067]

20 【表8】

	実施例9	実施例10
外層コアーの配合組成		
プタジエンゴム	100	100
ジアクリル酸亜鉛	50	50
酸化亜鉛	9.0	10
老化防止剤	0.5	0.5
ジクミルバーオキサイド	1. 5	1.5
架橋条件(℃×分)	160 ×20	160 ×20
外層コアーの厚み (mm)	2. 5	2. 5
曲好剛性率(kgf/cm²)	4000	4000
曲げ剛性率(ショアーD硬度)	6 5	65

[0068]

【表9】

19

(Svar)

	実施例 9	実施例10
カバーの配合組成		
ハイミラン#1605	25	20
ハイミラン#1706	25	20
ハイミラン#1855	20	30
ニュクレル#AN4212C	30	30
二酸化チタン	2. 0	2.0
硫酸パリウム	2. 0	2. 0
カパーの厚み (mm)	1. 4	1. 6
曲げ剛性率(kgf/cm²)	1900	1500
曲げ剛性率(ショアーD硬度)	5 2	4 9

[0069]

【表10】

	比較例1	比較例2	比較例3	比較例4
内層コアーの配合組成				
プタジエンゴム	100	100	100	100
ジアクリル酸亜鉛	2 5	50	2 5	2 5
酸化亜鉛	18. 5	9. 0	18.5	18.5
老化防止剤	0. 5	0.5	0.5	0.5
ジクミルバーオキサイド	1. 2	1. 5	1. 2	1. 2
架橋条件(℃×分)	160 ×25	160 ×25	160 ×25	160 ×25
内層コアーの直径 (mm)	34. 9	34. 9	27. 9	34. 9
曲げ剛性率(kgf/cm²)	1300	4000	1300	1300
ショアーD硬度	44	6 5	44	44

[0070]

【表11】

	比較例1	比較例2	比較例3	比較例4
外層コアーの配合組成				
プタジエンゴム	100	100	100	100
ジアクリル酸亜鉛	3 0	2 5	50	50
酸化亜鉛	16.5	18.5	9. 0	9.0
老化防止剤	0.5	0.5	0.5	0.5
ジクミルバーオキサイド	1. 2	1. 2	1. 5	1. 5
架橋条件(℃×分)	160 ×20	160 ×20	160 ×20	160 ×20
外層コアーの厚み (mm)	2. 5	2. 5	6. 0	2. 5
曲げ剛性率(kgf/cm²)	1800	1300	4000	4000
ショアーD硬度	49	44	6 5	6 5

[0071]

【表12】

coven

	比較例1	比較例2	比較例3	比較例4
カパーの配合組成				
ハイミラン#1605	20	20	20	50
ハイミラン#1706	20	20	20	50
ハイミラン#1855	30	30	30	_
ニュクレル#AN4212C	30	30	30	-
二酸化チタン	2. 0	2. 0	2. 0	2. 0
硫酸パリウム	2. 0	2. 0	2. 0	2. 0
カパーの厚み (mm)	1. 4	1. 4	1. 4	1. 4
曲げ剛性率(kgf/cm²)	1500	1500	1500	3400
ショアーD硬度	49	4 9	49	6 3

[0072]

40 【表13】

24 .

23

	比較例 5	比較例 6	比較例7	比較例8
内層コアーの配合組成				
プタジエンゴム	100	100	100	100
ジアクリル酸亜鉛	2 5	10	2 5	20
酸化亜鉛	23. 0	24.0	17. 5	25.7
老化防止剤	0. 5	0.5	0. 5	0.5
ジクミルバーオキサイド	1. 2	1. 2	1. 2	1. 2
架橋条件(℃×分)	160 ×25	160 ×25	160 ×25	160 ×20
内層コアーの直径 (mm)	32. 9	34. 9	34. 9	27. 0
曲げ剛性率(kgf/cm³)	1350	200	1300	800
ショアーD硬度	4 5	2 8	44	3 8

[0073]

20 【表14】

比較例 5	比較例 6	比較例7	比較例8
100	100	100	100
50	50	100	30
14.0	9.0	5. 0	21.0
0.5	0.5	0.5	0.5
1. 5	1. 5	1. 5	1. 2
160 ×20	160 ×20	160 ×20	160 ×20
2. 5	2. 5	2. 5	5. 5
4200	4000	8000	1800
6 6	6 5	8 0	4 9
	1 0 0 5 0 1 4. 0 0. 5 1. 5 160 ×20 2. 5 4 2 0 0	100 100 50 50 14.0 9.0 0.5 0.5 1.5 1.5 160 ×20 160 ×20 2.5 2.5 4200 4000	100 100 100 50 50 100 14.0 9.0 5.0 0.5 0.5 0.5 1.5 1.5 1.5 160 ×20 160 ×20 160 ×20 2.5 2.5 2.5 4200 4000 8000

[0074]

【表15】

cord

	比較例5	比較例 6	比較例?	比較例8
カバーの配合組成			-	
ハイミラン#1605	20	20	20	50
ハイミラン#1706	20	20	20	50
ハイミラン#1855	30	30	30	_
ニュクレル#AN4212C	30	30	30	_
二酸化チタン	2. 0	2. 0	2. 0	_
磁酸パリウム	2. 0	2. 0	2. 0	_
カパーの厚み (mm)	2. 4	1. 4	1. 4	2. 4
曲げ剛性率(kgf/cm³)	1500	1500	1500	3400
ショアーD硬度	49	49	49	63

[0075]

【表16】

	比較例 9	比較例10
コアーの配合組成		
プタジエンゴム	100	100
ジアクリル酸亜鉛	3 2	38
酸化亜鉛	20.5	13.5
老化防止剤	0.5	0.5
ジクミルパーオキサイド	1. 5	1. 5
架橋条件(°C×分)	160 ×30	160 ×30
コアーの直径 (mm)	37. 9	39. 9
曲げ剛性率(kgf/cm²)	2050	2700
ショアーD硬度	5 2	5 7

[0076]

【表17】

٠...

	比較例 9	比較例10
カバーの配合組成		
ハイミラン#1605	50	20
ハイミラン#1706	50	20
サーリンAD8265 ※7	_	60
二酸化チタン	2. 0	2. 0
硫酸パリウム	2. 0	2. 0
カパーの厚み (mm)	2. 4	1. 4
曲げ剛性率(kgf/cm²)	3400	1200
ショアーD硬度	6 3	5 7

【0077】※7 商品名、米国デュポン社製、ナトリ ウム中和エチレンーブチルアクリレートーメタクリル酸 三元共重合軟質アイオノマー樹脂、MI=1.0、ショ 20 止効果を調べた。 アーD硬度=47、曲げ剛性率=560kgf/cm² 【0078】これらの実施例および比較例のスリーピー スソリッドゴルフボールやツーピースソリッドゴルフボ ールは次のようにして作製した。

【0079】スリーピースソリッドゴルフボールについ ては、まず、内層コアー用ゴム組成物をそれぞれ表記載 の配合組成で調製し、それを金型に入れ、それぞれ表記 載の架橋条件でプレス成形して内層コアーを作製した。 つぎに、この内層コアーに外層コアー用ゴム組成物をシ ート状にして貼りつけ、それぞれ表記載の架橋条件でプ 30 レス成形してソリッドコアーを得た。ついで、そのソリ ッドコアーにそれぞれ表記載の配合組成のカバー用組成 物をインジェクション成形法により被覆し、その後、ペ イント、マーキングを施して仕上げ、外径42.7mm のスリーピースソリッドゴルフボールを作製した。

【0080】ツーピースソリッドゴルフボールについて は、コアー用ゴム組成物を表16に記載の配合組成で調 製し、それを金型に入れ、表16に記載の架橋条件でプ レス成形してソリッドコアーを得た。つぎに、このコア ーに表17に記載の配合組成のカバー用組成物をインジ 40 ェクション成形法で被覆し、ペイント、マーキングを施 して仕上げ、直径42.7mmのツーピースソリッドゴ ルフボールを作製した。

【0081】得られたゴルフボールのボール重量、ウッ ド#1 (ウッド1番クラブ) およびアイアン#9 (アイ アン9番クラブ)で打撃したときのボールの初速、スピ ン、打出角、飛距離 (キャリー) およびウッド#1で打 撃したときの最大衝撃力を測定した。

【0082】アイアン#9のテストは、通常の状態での

ース面に感圧紙からなるショットマークを貼り付けた状 態でのテストも実施し、アイアンショット時のスペリ防

【0083】初速、スピン、打出角および飛距離(キャ リー)は、ツルーテンパー社製スイングロボットによ り、ウッド#1では45m/sのヘッドスピード、アイ アン#9では34.5m/sのヘッドスピードでボール を打撃して測定した。

【0084】最大衝撃力は、クラブヘッドの背面部に加 速度ピックアップを取り付けたウッド#1により、45 m/sのヘッドスピードでボールを打撃して、ヘッドの 進行方向に対して逆向きに生ずる加速度を測定し、この 加速度の最大値を力に変換することによって求めた。

【0085】また、得られたゴルフボールについて打球 感とコントロール性をトッププロ10人による実打テス トによって評価した。評価基準は次の通りである。評価 結果は表中に表示する際も同様の記号で表示している が、その場合は評価にあたった10人のうち8人以上が 同じ評価を下したことを示している。

【0086】評価基準

〇: 優れた打球感とコントロール性があり、良い。 △: コントロール性は良いが、硬すぎて衝撃が強すぎ るか、または軟らかすぎて重い感じがし、打球感が悪 ١٧.

×: 打球感、コントロール性、共に悪い。

【0087】これらの評価結果をそれぞれのゴルフボー ルに分けて表18~表29に示す。なお、表中のアイア ン#9テスト①は、アイアン#9でフェース面が乾燥し た通常の状態で打撃してテストした場合を示している。 また、アイアン#9テスト②は、アイアン#9で各打撃 毎にフェース面にショットマーク〔ライト株式会社製の 感圧紙「Lite G-42」(商品名)〕を貼り付け テスト以外に、スペリが発生しやすい条件として、フェ 50 て打撃してテストした場合を示す。そして、アイアン井

9のテスト①とテスト②との差は、初期スピンと飛距離に関して、テスト①とテスト②との値の差 (テスト①ーテスト②) を示す。

【0088】上記のようにして測定、評価した結果は表 18~表29に示すが、表18~表19は実施例1~4 の各種特性を示し、表20~表21は実施例5~8の各 種特性を示し、表22~表23は実施例9~10の各種* *特性を示し、表24~表25は比較例1~4の各種特性を示し、表26~表27は比較例5~8の各種特性を示し、表28~表29は比較例9~10の各種特性を示す。

30

【0089】 【表18】

	実施例1	実施例 2	実施例3	実施例4
ポール重量(g)	45. 4	45. 4	45. 5	45.4
ウッド#1による飛行性能				
ポール初速 (m/s)	65. 0	65.1	65. 2	65. 2
初期スピン (rpm)	2,700	2,800	2, 900	3,000
打出角 (度)	11.6	11.5	11.4	11.3
飛距離(ヤード)	230	233	231	230
アイアン#9テストの				
ボール初速(m/s)	43.0	43.2	43. 3	43.3
初期スピン (rpm)	8,200	8, 300	8,400	8,400
打出角 (度)	24.5	24.4	24.4	24. 3
飛距離(ヤード)	124	124	124	123
アイアン#9テスト②				
ッ ポール初速 (m/s)	43.0	43.2	43. 3	43. 3
初期スピン (rpm)	8,100	8, 100	8, 200	8, 200
打出角 (度)	24.6	24.4	24. 5	24.4
飛距離(ヤード)	125	125	125	124
	ı	1		I

speed

[0090]

【表19】

	実施例1	実施例 2	実施例3	実施例4
アイアン#9のテスト①とテスト②との差 初期スピン(rpm) 飛炬離(ヤード)	-100 + 1	-200 + 1	-200 + 1	-200 + 1
最大衝擊力(kgf)	1,450	1,500	1, 550	1,550
打球感とコントロール性	0	0	0	0

[0091]

【表20】

		実施例5	実施例 6	実施例7	実施例8
	ポール重量 (g)	45.4	45.5	45.4	45. 5
	ウッド#1による飛行性能				
7	ポール初速 (m/s)	65. 2	65.3	64.9	65.0
	初期スピン (rpm)	2,900	2,900	2, 700	2,700
	打出角 (度)	11.4	11.4	11.6	11.6
	飛距離(ヤード)	2 3 1	233	230	2 3 1
b	アイアン#9テスト①				
للا	ボール初速(m/s)	43.3	43.4	43. 1	43. 2
	初期スピン(rpm)	8,300	8, 300	8, 100	8, 200
	打出角 (度)	24.4	24.4	24.7	24.5
	飛距離(ヤード)	124	124	125	125
	アイアン#9テスト②				
1	ポール初速 (m/s)	43.3	43.4	43.1	43. 2
	初期スピン(rpm)	8,100	8, 200	8, 100	8, 100
	打出角 (度)	24.5	24.4	24.8	24.6
	飛距離(ヤード)	1 2 5	124	125	125.5

[0092]

【表21】

	実施例5	実施例 6	実施例7	実施例8
アイアン#9のテストのとテストのとの差 初期スピン(rpm) 飛距離(ヤード)	-200 + 1	-100 0	0	-100 +0.5
最大衝擊力 (kgf)	1,600	1,650	1, 400	1,550
打球感とコントロール性	0	0	0	0

[0093]

【表22】

33

	実施例9	実施例10
ポール重 <u>量</u> (g)	45. 4	45. 4
ウッド#1による飛行性能		
ボール初速(m/s)	65. 2	65.0
初期スピン (rpm)	2,900	2,800
打出角 (度)	11.6	11.5
飛距離(ヤード)	232	2.3 2
アイアン#9テストの		
ポール初速(m/s)	43. 3	43.1
初期スピン(rpm)	8, 400	8, 300
打出角 (度)	24.5	24.4
飛距離(ヤード)	124	124
アイアン#9テスト②		
ポール初速 (m/s)	43. 3	43.1
初期スピン (rpm)	8, 200	8, 200
打出角 (度)	24.6	24.5
飛距離(ヤード)	1 2 5	125

[0094]

【表23】

	実施例9	実施例10
アイアン#9のテストのとテストのとの差 初期スピン (rpm) 飛距離 (ヤード)	-200 + 1	-100 + 1
最大衝撃力(kgf)	1,600	1, 450
打球感とコントロール性	0	0

[0095]

【表24】

	比較例1	比較例2	比較例3	比較例4
ポール重量 (g)	45.4	45.4	45. 4	45. 5
ウッド#1による飛行性能			,	
ボール初速 (m/s)	64.3	65.2	65. 2	65. 3
初期スピン(rpm)	2,600	3, 800	3, 300	2,700
打出角 (度)	11.6	10.7	11.1	11.7
飛距離(ヤード)	225	222	228	232
アイアン#9テストの	•			
y ボール初速 (m/s)	42.6	43. 2	43. 2	43. 3
初期スピン(r pm)	8,000	10,500	9, 200	8,000
打出角 (度)	24.3	21.5	22.8	24.7
飛距離(ヤード)	118	116	120	125
アイアン#9テスト②				
ンポール初速 (m/s)	42.6	43.3	43.2	43. 3
 初期スピン (r pm)	7,900	10, 200	9,000	5,800
打出角 (度)	24.4	21.7	22. 9	25.7
飛距離 (ヤード)	1.19	117	121	132

[0096]

【表25】

	比較例1	比較例2	比較例3	比較例4
アイアン#9のテスト①とテスト②との差 初期スピン(rpm) 飛距離(ヤード)	-100 + 1	-300 + 1	-200 + 1	-2,200 + 7
最大衝撃力(kgf)	1,400	2, 200	1, 900	1,650
打球感とコントロール性	0	Δ	Δ	×

[0097]

【表26】

飛距離 (ヤード)

比較例5 比較例 6 比較例7 比較例8 ポール重量(g) 45.4 45.5 45.4 45.4 ウッド#1による飛行性能 ボール初速(m/s) 64.6 64.2 65. 2 64.9 3,200 2,600 3,000 2,700 初期スピン(rpm) 11.2 11.5 11.3 11.7 打出角 (度) 飛距離 (ヤード) 225 224 230 230 アイアン#9テストの **ðポール初速(m/s)** 42.9 42.5 43.2 43.1 初期スピン (rpm) 9,000 8,100 8, 500 8,000 打出角 (度) 23.0 24.4 24, 2 24.6 飛距離(ヤード) 119 118 122 124 アイアン#9テスト2 →ポール初速(m/s) 43.0 42.5 43.2 43.1 初期スピン (rpm) 9,000 8,000 8, 300 5,900 打出角 (度) 23.2 24.4 24.6 25.7

mitial speed

[0098]

【表27】

118

123

131

	比較例5	比較例 6	比較例7	比較例8
アイアン#9のテスト①とテスト②との差 初期スピン(rpm) 飛距離(ヤード)	0+1	-100 0	-200 + 1	-2,100 + 7
最大衡撃力(kgf)	1,500	1, 300	1, 900	1,550
打球感とコントロール性	0	0	Δ	×

119

[0099]

【表28】

	比較例9	比較例10
ポール重量 (g)	45. 5	45.4
・ ウッド#1による飛行性能		
ボール初速 (m/s)	65.1	64.5
初期スピン (rpm)	2,800	3, 500
打出角 (度)	11.5	11.0
飛距離(ヤード)	2 3 2	223
アイアン#9テストの		
ボール初速(m/s)	43. 2	42.8
初期スピン (rpm)	8, 300	9, 600
打出角 (度)	24.4	22.5
飛距離(ヤード)	1 2 3	118
アイアン#9テスト②	-	
ポール初速 (m/s)	43. 2	42.9
初期スピン (rpm)	6,300	9, 400
打出角 (度)	25.4	22.6
飛距離(ヤード)	129	118.5

[0100]

【表29】

	比較例9	比較例10
アイアン#9のテスト①とテスト②との差 初期スピン(rpm) 飛距離(ヤード)	-2,000 + 6	-200 +0.5
最大衝擊力(kgf)	1,600	1, 950
打球感とコントロール性	×	Δ

【0101】上記の表に示す結果から明らかなように、実施例1~10のゴルフボールは、適正なボール初速、初期スピン、打出角を有することにより、高剛性カバーを用いた比較例8、9に匹敵する飛距離を示すと共に、アイアン#9のテスト②とテスト②との差、つまり、アイアン#9のショットマーク無し、有り間での初期スピン、飛距離の差が少ないことからわかるように、アイアンショットの安定性が達成され、しかも低衝撃力で良好な打球感とコントロール性を有していた。

【0102】これに対して、比較例1~7のゴルフボールは、飛距離、アイアンショットの安定性、打球感のいずれかが劣っていた。

【0103】また、高剛性の硬質カバーを用いたスリー40 ピースソリッドゴルフボールである比較例8や同様に高剛性の硬質カバーを用いたツーピースソリッドゴルフボールの代表例である比較例9は、飛距離は大きいものの、アイアンショットの安定性に欠けていて、コントロール性が悪く、また特にカバーの硬さが感じられるため打球感も悪かった。

【0104】柔軟カバーを用いたツーピースソリッドゴルフボールの典型例である比較例10は、アイアンショットのバラツキが少なく、コントロール性は良好であるが、過剰スピンによる飛距離の低下が著しく、また打撃 50 時の衝撃力が大きく打球感が好ましくなかった。

[0105]

【発明の効果】以上説明したように、本発明のスリーピースソリッドゴルフボールは、優れた飛行性能とアイアンショットの安定性および良好な打球感を兼ね備えている。

【図面の簡単な説明】

【図1】本発明のスリーピースソリッドゴルフボールの

一例を模式的に示す縦断面図である。

【符号の説明】

- 1 ソリッドコアー
- 1a 内層コアー
- 1 b 外層コアー
- 2 カバー

【図1】

フロントページの続き

(56) 参考文献 特開 平7-24085 (JP, A)

特開 平5-220240 (JP, A)

特開 昭58-92372 (JP, A)

(58) 調査した分野(Int. Cl.7, DB名)

A63B 37/00 - 37/14

A63B 37/00