

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : G01N 21/64, 27/26		A2	(11) International Publication Number: WO 96/14569
			(43) International Publication Date: 17 May 1996 (17.05.96)
(21) International Application Number: PCT/GB95/02604		(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).	
(22) International Filing Date: 6 November 1995 (06.11.95)		Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(30) Priority Data: 9422392.2 5 November 1994 (05.11.94) GB			
(71) Applicant (<i>for all designated States except US</i>): COGNITIVE SOLUTIONS LTD. [GB/GB]; 13 Herries Road, Pollokshields, Glasgow G41 4DE (GB).			
(72) Inventor; and			
(75) Inventor/Applicant (<i>for US only</i>): McNAUGHTON, Moyra [GB/GB]; 276A Main Road, Elderslie, Johnstone PA5 9EF (GB).			
(74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).			
(54) Title: DETECTOR FOR CHEMICAL ANALYSIS			
(57) Abstract			
<p>A tri-state detector which may be used for chemical analysis of flowing streams has a flow cell, light source, radiation detector and a micro-electrode chemical detector, the radiation detector being, for example, a Fourier Transform UV/visible spectrometer.</p>			

1 "Detector for Chemical Analysis"

2
3 This invention relates to detectors and particularly
4 tri-state detectors for use in chemical analysis of
5 flowing streams. Such streams may be found in
6 industrial processes, trade effluents, clinical
7 solutions, or environmental waters, and will contain
8 ions and molecules with a range of chemical properties.

9
10 Process and environmental monitoring in the chemical
11 industry is largely carried out in centralised
12 laboratories which may be some distance away from where
13 the sample is taken, resulting in a time delay between
14 sampling and analysis. Should a fault develop in a
15 manufacturing process, the time taken to detect the
16 problem could be costly in terms of loss of production
17 or damage to the environment. There is increasing
18 need, therefore, in the chemical industry for the type
19 of chemical detector that can be used on-line to give
20 real-time chemical analysis of process or effluent
21 streams, with the aim of improving product yield and
22 quality whilst safeguarding the environment.

23
24 Current provision for the chemical analysis of these
25 sample streams is usually capable of dealing with only

1 one chemical property at a time. Most molecules may be
2 characterised by their absorption or emission of light,
3 or their electrical activity. At present, the methods
4 of UV/visible absorbence, fluorescence and
5 electrochemical analysis are all commonly used,
6 separately, for the determination of chemical species
7 (the analyte) in solution. Each method of detection is
8 required depending on the type and concentration of
9 analyte present in the sample. For example, not all
10 molecular species can be detected by UV or fluorescence
11 methods so that an electrochemical method may be more
12 suitable for that particular analyte. In order to
13 carry out a complete conventional analysis of complex
14 sample may therefore require that the analysis is
15 repeated with each of these three techniques in turn,
16 resulting in long analysis times. Three different
17 instruments will also be required, with obvious cost
18 implications. The amount of chemical information that
19 each technique can provide on its own is limited,
20 whereas the combination of the three techniques will
21 provide more detailed information regarding a
22 particular sample.

23

24 According to the first aspect, the present invention
25 provides a detector which is adapted to simultaneously
26 investigate the following properties of a sample:

- 27 a) absorbance with respect to electromagnetic
28 radiation;
- 29 b) fluorescence and/or emission; and
- 30 c) electrochemical properties.

31

32 The sample is preferably a flowing stream. It may be,
33 for example, a process or effluent stream, or an eluent
34 from a chromatography column.

35

36 Absorbance of the sample is preferably investigated

1 with respect to ultra-violet and/or visible radiation.

2

3 The detector may be capable of multi-wavelength
4 measurement or analysis. It may be provided with one
5 or more rapid scanning monochromators. This may allow
6 rapid wavelength scanning when the detector operates in
7 an absorbance and/or an emission mode; this facilitates
8 rapid acquisition of chemical information relating to
9 the sample. The detector may comprise one or more
10 solid state monochromators.

11

12 The electrochemical properties or activity of the
13 sample may be determined using an amperometric or
14 coulometric technique. Preferably, pulsed amperometric
15 detection (PAD), which can detect any sample molecule
16 which has the ability to undergo an oxidation or
17 reduction reaction at an electrode and produce an
18 electrical current is used. A potential applied to the
19 electrode is chosen to match the oxidation or reduction
20 potential of an analyte species; the amount of current
21 generated is proportional to the analyte concentration.

22

23 The detector may utilise a single microelectrode to
24 conduct electrochemical analysis; this may have a
25 surface diameter of less than 100 μ m. Alternatively, an
26 array of several microelectrodes may be used, each of
27 which may be set to a different measurement potential
28 to allow selective detection and concentration
29 measurement of each electroactive species present. The
30 detector may incorporate a de-mountable electrode unit.
31 This may comprise a microelectrode or microelectrode
32 array for use in electrochemical analysis. The
33 electrode unit may be removable to facilitate cleaning
34 and restoration of a surface or surfaced of the
35 electrode or electrodes; it may be disposable and this
36 may alleviate problems of contamination of the

1 electrode surface or surfaces. A common problem with
2 existing electrochemical detectors is that of
3 contamination of the electrode surface leading to a
4 loss in sensitivity.

5

6 According to a second aspect, the present invention
7 provides a detector adapted to investigate
8 electrochemical properties of a sample in which the
9 detector comprises a removable electrode unit.

10

11 According to a third aspect, the present invention
12 provides a detector adapted to investigate absorbance,
13 fluorescence or emission of a sample in which the
14 detector comprises one or more solid state
15 monochromators.

16

17 According to a fourth aspect, the present invention
18 provides a tri-state detector comprising a Fourier
19 Transform UV/visible spectrometer.

20

21 An embodiment of the invention will now be described,
22 by way of example only, with reference to the
23 accompanying drawings of which:

24

25 Fig. 1 is a schematic perspective view of a
26 detector;

27 Fig. 2 is a cross-section through Fig. 1; and
28 Fig. 3 is a schematic diagram of a tri-state
29 detector.

30 The detector which is illustrated schematically in the
31 accompanying drawings has the ability to carry out a
32 detailed chemical analysis of a flowing stream. The
33 detector is compact, easy to use and relatively low-
34 cost in comparison with single-component detectors
35 presently available. It is a tri-state detector. It
36 incorporates appropriate optical components and is

1 intended for use with appropriate data-handling
2 softwar .

3

4 Referring to the drawings, light from a polychromatic
5 light source 3 irradiates the face of an optically
6 transparent flow cell 4. A monochromator 10, placed
7 between the source 3 and the flow cell 4 is used to
8 select radiation of specified wavelengths and the
9 absorbance of the radiation by the analyte present in
10 solution is measured in the x-plane by a
11 photomultiplier 11. This incident radiation also
12 serves as the excitation source for the emission mode.
13 Simultaneously, fluorescent emission is measured at
14 right angles to the incident radiation via a second
15 monochromator 12, which is used for the wavelength
16 selection of the emitted radiation, with a second
17 photomultiplier 13. An electrochemical detector 15,
18 which in this embodiment is a microelectrode or
19 microelectrode array, is incorporated with a de-
20 mountable electrode unit in the floor of the flow-cell
21 so as not to interfere with the light path, and
22 measures current as a function of electrode potential
23 as electroactive analyte species are oxidised at the
24 electrode. The electrochemical unit can be easily
25 removed from the flow cell for cleaning/restoration of
26 the electrode surfaces. A personal computer (not
27 shown) and appropriate software is used for data
28 collection and analysis. The flow cell may be
29 interfaced to an existing separation system (eg HPLC),
30 or may be incorporated within the pipework of an
31 industrial plant or used for effluent monitoring.

32

33 Advantages of this detector include the following
34 features:-

35

36 (1) Three detection modes incorporated within one

1 device allow simultaneous
2 absorbance/emission/electrochemical measurement of
3 a wide variety of both organic and inorganic
4 species.

5

6 (2) Use of an electrochemical detector with a single
7 microelectrode or an array of several
8 microelectrodes, each set to a different
9 measurement potential, allows selective detection
10 and concentration measurement of each
11 electroactive species present.

12

13 (3) In one embodiment, the detector makes use of two
14 rapid scanning monochromators, preferably acousto
15 optic tunable filters, for selecting the
16 wavelength of light from the source and also that
17 emitted as fluorescent radiation from the sample.
18 Use of these devices allows rapid scanning across
19 the chosen wavelength region of the
20 electromagnetic spectrum, so that measurement of
21 absorbance or fluorescent emission is not
22 restricted to one wavelength at a time.

23

24 (4) The electro-chemical detector may be fabricated as
25 a de-mountable unit. This allows easy access to
26 the electrodes for cleaning and helps to alleviate
27 the well-known problems of electrode
28 contamination.

29

30 (5) The de-mountable electrode unit may be disposable.

31

32 (6) Shorter analysis times and increased sample
33 throughput for liquid chromatography.

34

35 (7) Reduced cost compared to that of separate
36 detectors.

1 (8) Capabl of *in situ* r al-time measurement of
2 process or effluent streams.

3
4 (9) Use of the specified monochromator allows rapid
5 wavelength scanning and facilitates the rapid
6 production of fluorescence/absorbance
7 emission/excitation maps/ thus providing detailed
8 chemical information regarding the analyte
9 species.

10
11 (10) Use of solid state monochromators and
12 microelectrodes provides a compact device with no
13 mechanical moving parts.

14
15 (11) Use of state-of-the-art data acquisition software
16 allows rapid data handling and storage.

17
18 Referring to Fig. 3, light from a polychromatic source
19 irradiates the face of the optically transparent flow
20 cell via a fibre optic connection. This light passes
21 through the sample solution where it is absorbed by
22 optically active analyte molecules. The incident
23 radiation also serves as the excitation source for the
24 flourescence mode. The absorbance of radiation in the
25 x-plane and the fluorescent emission in the y-plane are
26 measured by the Fourier Transform (FT) spectrometer,
27 via a network of fibre optic connections and switching
28 devices.

29
30 The electrochemical detector, which is a single
31 microelectrode or microelectrode array, may be
32 incorporated within a de-mountable unit in the body of
33 the flow-cell so as not to interfere with the light
34 path, or may comprise a unit immediat ly downstream of
35 the optical flow cell. It is anticipated that th
36 microelectrod unit will be easily removed from the

1 flow cell for cleaning or replacement, and can be made
2 cheaply enough to be essentially disposable.

3

4 The entire system is controlled from a PC; the software
5 for data acquisition and processing via an on-board A/D
6 and D/A card has been developed using National
7 Instruments Labview and LabWindows. The control and
8 information flow between the main software package and
9 the FT spectrometer control software is via the Dynamic
10 Data Exchange (DDE) facility of Microsoft Windows.
11 Experimental parameters such as number of scans
12 acquired, output waveform to the electrochemical
13 detector and presentation of data are managed via a
14 graphical user interface in the Windows environment.

15

16 Through the use of specified optical components and
17 appropriate data-handling software, the device will be
18 compact, easy to use and relatively low-cost in
19 comparison with equivalent combinations of single-
20 component detectors presently available. The
21 advantages of this tri-state detector may be summarised
22 as follows:-

23

- 24 - Three detection modes incorporated within one
25 compact device.
- 26 - Simultaneous measurement of light absorption and
27 emission together with electrochemical activity of
28 molecular species.
- 29 - Shorter analysis times and increased sample
30 through-put for liquid chromatography.
- 31 - Reduced cost compared to that of separate
32 detectors.
- 33 - Capable of in-situ real-time measurement of
34 process or effluent streams.
- 35 - Measurement of absorption and fluorescence can be
36 achieved in circa 1ms, allowing fast repetitive

1 scans in the situation where there is rapidly
2 changing signal, (eg fast kinetic processes).
3 - An easy-to-use Windows interface provides user-
4 transparent data acquisition and processing.
5 - The system can be used with existing liquid
6 chromatographic equipment.
7 - The detector components may also be used as stand
8 alone instruments: UV/visible absorption
9 spectrometer, fluorescence spectrometer and
10 electrochemical detectors, thus offering a higher
11 degree of flexibility in the use of all or any of
12 the component parts of the detector.
13 - Use of the FT Spectrometer, which is itself novel,
14 ensures a compact device with no mechanical moving
15 parts.
16 - Easily de-mountable unit containing the
17 microelectrode will simplify the task of electrode
18 cleaning or replacement.
19 - Information from the FT Spectrometer is available
20 in digital form immediately with no hardware or
21 software processing.
22 - Potential exists for a portable version to be used
23 with a lap-top PC in combination with a battery
24 powered detection system.

25

26 The proposed tri-state detector is unique in the use of
27 a Fourier Transform UV/visible spectrometer, to provide
28 a compact device which has the capability of
29 multiwavelength measurement. Also innovative is the
30 design and fabrication of the de-mountable electrode
31 unit, which may be disposable, to circumvent problems
32 of contamination of the electrode surface.

33

34 Modifications and improvements may be incorporated
35 without departing from the scope of the invention.

1 CLAIMS

2

3 1 A detector which is adapted to simultaneously
4 investigate the following properties of a sample:
5 a) absorbance with respect to electromagnetic
6 radiation;
7 b) fluorescence and/or emission; and
8 c) electrochemical properties.

9

10 2 A detector as claimed in Claim 1, wherein
11 absorbance of the sample is preferably
12 investigated with respect to ultra-violet and/or
13 visible radiation.

14

15 3 A detector as claimed in Claim 1 or Claim 2
16 capable of multi wavelength measurement or
17 analysis.

18

19 4 A detector as claimed in any one of the preceding
20 Claims provided with one or more rapid scanning
21 monochromators.

22

23 5 A detector as claimed in Claim 4, wherein one or
24 more of the monochromators are solid state
25 monochromators.

26

27 6 A detector as claimed in any one of the preceding
28 Claims adapted to use amperometric techniques for
29 determining the electrochemical properties or
30 activity of the sample.

31

32 7 A detector as claimed in any one of the preceding
33 Claims, comprising a single microelectrode for
34 conducting electrochemical analysis.

35

36 8 A detector as claimed in Claim 7 wherein th

1 single microelectrode has a surface diameter of
2 less than 100 μ m.

3

4 9 A detector as claimed in any one of Claims 1-7
5 comprising an array of several microelectrodes,
6 each being set to a different measurement
7 potential to allow selective detection and
8 concentration measurement of present electro-
9 active species.

10

11 10 A detector adapted to investigate electrochemical
12 properties of a sample in which the detector
13 comprises a removable electrode unit.

14

15 11 A tri-state detector comprising a Fourier
16 Transform UV/visible spectrometer.

x - UV/ visible absorbance

y - fluorescence

z - direction of flow

FIG. 1

FIG. 2

SUBSTITUTE SHEET (RULE 26)

2/2

FIG. 3