

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 18.56 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 0.82$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applica ana) nom alo canaco.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	736.82	6802.89	k
Compressive Load =	4114.59	<u>5315.44</u>	k
Lateral Load =	<u>360.09</u>	3657.33	k
Moment (Weak Axis) =	0.71	0.31	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 172158.1 in-lbs Resisting Force Required = 2608.46 lbs A minimum 132in long x 36in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4347.43 lbs to resist overturning. Minimum Width = <u>36 in</u> in Weight Provided = 7177.50 lbs Sliding Force = 878.96 lbs Use a 132in long x 36in wide x 18in tall Friction = 0.4 Weight Required = 2197.39 lbs ballast foundation to resist sliding. Resisting Weight = 7177.50 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 878.96 lbs Cohesion = 130 psf Use a 132in long x 36in wide x 18in tall 33.00 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3588.75 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

f'c =

Length =

Bearing Pressure

2500 psi

8 in

 Ballast Width

 36 in
 37 in
 38 in
 39 in

 P_{ftg} = (145 pcf)(11 ft)(1.5 ft)(3 ft) =
 7178 lbs
 7377 lbs
 7576 lbs
 7776 lbs

ASD LC	1.0D + 1.0S				1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S				0.6D + 1.0W				
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	1386 lbs	1386 lbs	1386 lbs	1386 lbs	1573 lbs	1573 lbs	1573 lbs	1573 lbs	2090 lbs	2090 lbs	2090 lbs	2090 lbs	-348 lbs	-348 lbs	-348 lbs	-348 lbs
F _B	1376 lbs	1376 lbs	1376 lbs	1376 lbs	2268 lbs	2268 lbs	2268 lbs	2268 lbs	2606 lbs	2606 lbs	2606 lbs	2606 lbs	-3265 lbs	-3265 lbs	-3265 lbs	-3265 lbs
F _V	187 lbs	187 lbs	187 lbs	187 lbs	1581 lbs	1581 lbs	1581 lbs	1581 lbs	1310 lbs	1310 lbs	1310 lbs	1310 lbs	-1758 lbs	-1758 lbs	-1758 lbs	-1758 lbs
P _{total}	9940 lbs	10139 lbs	10338 lbs	10538 lbs	11019 lbs	11218 lbs	11418 lbs	11617 lbs	11874 lbs	12073 lbs	12272 lbs	12472 lbs	693 lbs	813 lbs	933 lbs	1052 lbs
M	3679 lbs-ft	3679 lbs-ft	3679 lbs-ft	3679 lbs-ft	4525 lbs-ft	4525 lbs-ft	4525 lbs-ft	4525 lbs-ft	5810 lbs-ft	5810 lbs-ft	5810 lbs-ft	5810 lbs-ft	3547 lbs-ft	3547 lbs-ft	3547 lbs-ft	3547 lbs-ft
е	0.37 ft	0.36 ft	0.36 ft	0.35 ft	0.41 ft	0.40 ft	0.40 ft	0.39 ft	0.49 ft	0.48 ft	0.47 ft	0.47 ft	5.12 ft	4.36 ft	3.80 ft	3.37 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	240.4 psf	239.8 psf	239.2 psf	238.6 psf	259.1 psf	258.0 psf	256.9 psf	255.9 psf	263.8 psf	262.5 psf	261.3 psf	260.2 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	362.0 psf	358.1 psf	354.4 psf	350.9 psf	408.7 psf	403.5 psf	398.6 psf	394.0 psf	455.8 psf	449.4 psf	443.3 psf	437.5 psf	401.0 psf	154.6 psf	115.7 psf	101.4 psf

Maximum Bearing Pressure = 456 psf Allowable Bearing Pressure = 1500 psf Use a 132 ${\it in}$ long x 36 ${\it in}$ wide x 18 ${\it in}$ tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 2811.2 \text{ ft-lbs}$

Resisting Force Required = 1874.12 lbs S.F. = 1.67

Weight Required = 3123.53 lbs Minimum Width = 36 in in Weight Provided = 7177.50 lbs A minimum 132in long x 36in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E				
Width		36 in			36 in			36 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	280 lbs	635 lbs	210 lbs	824 lbs	2292 lbs	770 lbs	106 lbs	186 lbs	37 lbs		
F _V	212 lbs	208 lbs	216 lbs	157 lbs	153 lbs	168 lbs	213 lbs	209 lbs	214 lbs		
P _{total}	9166 lbs	9521 lbs	9096 lbs	9283 lbs	10750 lbs	9229 lbs	2705 lbs	2784 lbs	2635 lbs		
М	837 lbs-ft	827 lbs-ft	846 lbs-ft	626 lbs-ft	626 lbs-ft	663 lbs-ft	836 lbs-ft	825 lbs-ft	838 lbs-ft		
е	0.09 ft	0.09 ft	0.09 ft	0.07 ft	0.06 ft	0.07 ft	0.31 ft	0.30 ft	0.32 ft		
L/6	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft		
f _{min}	227.1 psf	238.4 psf	224.3 psf	243.4 psf	287.8 psf	239.5 psf	31.3 psf	34.4 psf	29.1 psf		
f _{max}	328.5 psf	338.6 psf	326.9 psf	319.2 psf	363.7 psf	319.8 psf	132.6 psf	134.4 psf	130.6 psf		

Maximum Bearing Pressure = 364 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	3.165 k	Maximum Axial Load =	4.601 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>43%</u>	Utilization =	<u>62%</u>
Diagonal Strut			
Maximum Axial Load =	2.432 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting to	or double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>33%</u>		

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

$$\label{eq:main_main_main} \begin{split} \text{Mean Height, h}_{\text{sx}} &= & 46.89 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta &= \{ & 0.020 h_{\text{sx}} \\ 0.938 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} &= & 0.612 \text{ in} \\ \hline 0.612 &= & 0.938, \text{OK.} \end{split}$$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 120 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 331.976 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 120 \\ \mathsf{J} &= 0.432 \\ &= 211.117 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= 28.6 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.4 \text{ ksi}$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t = \frac{Rt - 1.17 \frac{6}{2}}{Rt - 1.17 \frac{6}{2}}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

3.4.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Sy =

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

 $M_{max}St =$

Sx=

 $\phi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
1.88 in²
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

29.4 ksi

2.366 in⁴

1.375 in³

3.363 k-ft

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

3.4.16.1 N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 32.544 \text{ mm}^4$$

$$2.219 \text{ in}^4$$

X =

Sy =

 $M_{max}Wk =$

40 mm

1.409 in³

3.904 k-ft

Compression

 $M_{max}St =$

Sx =

 $\phi F_L St =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

 $P_{max} =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

 $\phi F_L =$

$$\begin{split} b/t &= 24.5 \\ S1 &= \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp} \\ S1 &= 12.2 \\ S2 &= \frac{k_1 Bp}{1.6Dp} \\ S2 &= 46.7 \\ \phi F_L &= \phi b [Bp-1.6Dp^*b/t] \\ \phi F_L &= 28.2 \text{ ksi} \end{split}$$

31.4 ksi

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

0.621 in³

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

Sy =

 $M_{max}Wk = 1.460 \text{ k-ft}$

0.621 in³

24.5

Sx=

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1 Rb/t =

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 28.2 \text{ ksi} \\ lx = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ y = & 27.5 \text{ mm} \\ Sx = & 0.621 \text{ in}^3 \end{array}$$

1.460 k-ft

$M_{max}St =$ Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.86047 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ l y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ S y = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}$$

$$\phi F_L = 30.2 \text{ ksi}$$

Weak Axis:

$$L_b = 63.42$$

 $J = 0.942$

$$J = 0.942$$
 98.9729

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used 0.0 Rb/t =

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

 $\varphi F_L St =$ 28.2 ksi $lx = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm y = Sx = 0.621 in³ $M_{max}St = 1.460 \text{ k-ft}$

 $\phi F_L = 43.2 \text{ ksi}$

 $\phi F_l Wk =$ 28.2 ksi $ly = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm x =Sy = 0.621 in³ $M_{max}Wk =$ 1.460 k-ft

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.7854 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ & \text{b/t} = & 24.5 \\ & \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ & \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ & \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ & \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \\ & \text{b/t} = & 24.5 \\ & \text{S1} = & 12.21 \\ & \text{S2} = & 32.70 \\ & \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ & \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 12.77 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 13.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Υ	-46.9	-46.9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-58.278	-58.278	0	0
2	M14	V	-58.278	-58.278	0	0
3	M15	V	-90.067	-90.067	0	0
4	M16	V	-90.067	-90.067	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	V	132.451	132.451	0	0
	2	M14	V	100.663	100.663	0	0
	3	M15	V	52.98	52.98	0	0
	4	M16	У	52.98	52.98	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	710.217	2	1253.798	2	.73	1	.004	1	0	1	0	1
2		min	-885.826	3	-1601.382	3	-46.295	5	24	4	0	1	0	1
3	N7	max	.037	9	1162.664	1	566	12	001	12	0	1	0	1
4		min	199	2	-147.5	3	-276.993	4	546	4	0	1	0	1
5	N15	max	.028	9	3165.066	1_	0	10	0	10	0	1	0	1
6		min	-2.287	2	-566.781	3	-265.018	4	53	4	0	1	0	1
7	N16	max	2594.623	2	4088.802	2	0	11	0	2	0	1	0	1
8		min	-2813.334	3	-5232.996	3	-46.107	5	242	4	0	1	0	1
9	N23	max	.04	14	1162.664	1_	10.643	1	.022	1	0	1	0	1
10		min	199	2	-147.5	3	-269.392	4	534	4	0	1	0	1
11	N24	max	710.217	2	1253.798	2	047	12	0	12	0	1	0	1
12		min	-885.826	3	-1601.382	3	-46.903	5	242	4	0	1	0	1
13	Totals:	max	4012.372	2	11571.472	2	0	2						
14		min	-4585.564	3	-9297.54	3	-945.479	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	108.107	1	465.003	1	-8.013	12	0	3	.258	1	0	4
2			min	5.952	12	-776.817	3	-176.271	1	015	2	.014	12	0	3
3		2	max	108.107	1	325.707	1	-6.336	12	0	3	.111	4	.735	3
4			min	5.952	12	-546.745	3	-135.472	1	015	2	.006	12	439	1
5		3	max	108.107	1	186.412	1	-4.658	12	0	3	.059	5	1.215	3
6			min	5.952	12	-316.672	3	-94.674	1	015	2	043	1	724	1
7		4	max	108.107	1	47.116	1	-2.98	12	0	3	.031	5	1.439	3
8			min	5.952	12	-86.6	3	-53.875	1	015	2	126	1	854	1
9		5	max	108.107	1	143.472	3	981	10	0	3	.005	5	1.407	3
10			min	5.952	12	-92.681	2	-25.012	4	015	2	163	1	828	1
11		6	max	108.107	1	373.544	3	27.722	1	0	3	007	12	1.12	3
12			min	3.111	15	-231.828	2	-19.054	5	015	2	155	1	649	1
13		7	max	108.107	1	603.616	3	68.521	1	0	3	006	12	.577	3
14			min	-6.494	5	-370.975	2	-16.459	5	015	2	101	1	314	1
15		8	max	108.107	1	833.688	3	109.32	1	0	3	.001	10	.18	2
16			min	-17.9	5	-510.122	2	-13.863	5	015	2	056	4	221	3
17		9	max	108.107	1	1063.761	3	150.119	1	0	3	.142	1	.824	2
18			min	-29.306	5	-649.363	1	-11.268	5	015	2	068	5	-1.275	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	108.107	1	788.659	1	-7.085	12	.015	2	.331	1	1.623	2
20			min	5.952	12	-1293.833	3	-190.917	1	0	3	.01	12	-2.585	3
21		11	max	108.107	1	649.363	1	-5.407	12	.015	2	.142	1	.824	2
22			min	5.952	12	-1063.761	3	-150.119	1	0	3	.003	12	-1.275	3
23		12	max	108.107	1	510.122	2	-3.73	12	.015	2	.054	4	.18	2
24			min	5.952	12	-833.688	3	-109.32	1	0	3	004	3	221	3
25		13	max	108.107	1	370.975	2	-2.052	12	.015	2	.024	5	.577	3
26		10	min	5.952	12	-603.616	3	-68.521	1	0	3	101	1	314	1
27		14	max	108.107	1	231.828	2	375	12	.015	2	001	15	1.12	3
28		17	min	5.796	15	-373.544	3	-28.902	4	0	3	155	1	649	1
29		15	max	108.107	1	92.681	2	13.076	1	.015	2	006	12	1.407	3
30		13		-2.579	5	-143.472	3	-19.929	5	0	3	163	1	828	1
		16	min										12		_
31		16	max	108.107	1	86.6	3	53.875	1	.015	2	004		1.439	3
32		47	min	-13.985	5	-47.116	1	-17.334	5	0	3	126	1_	854	1
33		17	max	108.107	1	316.672	3	94.674	1	.015	2	0	3	1.215	3
34		10	min	-25.391	5	-186.412	1	-14.738	5	0	3	075	4_	724	1
35		18	max	108.107	1	546.745	3	135.472	1	.015	2	.085	1_	.735	3
36			min	-36.797	5	-325.707	1	-12.143	5	0	3	079	5	439	1
37		19	max		1	776.817	3	176.271	1	.015	2	.258	_1_	0	1
38			min	-48.202	5	-465.003	1	-9.547	5	0	3	091	5	0	3
39	M14	1	max	58.444	4	493.95	2	-8.229	12	.009	3	.294	1	0	1
40			min	2.508	12	-603.073	3	-181.737	1	011	2	.016	12	0	3
41		2	max	50.195	1	354.803	2	-6.551	12	.009	3	.158	4	.574	3
42			min	2.508	12	-429.513	3	-140.938	1	011	2	.008	12	472	2
43		3	max	50.195	1	215.656	2	-4.873	12	.009	3	.087	5	.954	3
44			min	2.508	12	-255.953	3	-100.139	1	011	2	019	1	788	2
45		4	max	50.195	1	76.509	2	-3.196	12	.009	3	.047	5	1.142	3
46			min	2.508	12	-82.393	3	-59.341	1	011	2	107	1	951	2
47		5	max	50.195	1	91.168	3	-1.518	12	.009	3	.009	5	1.138	3
48		1	min	1.134	15	-64.442	1	-37.264	4	011	2	151	1	958	2
49		6	max	50.195	1	264.728	3	22.257	1	.009	3	007	12	.94	3
50			min	-9.663	5	-203.738	1	-29.89	5	011	2	149	1	812	2
51		7		50.195	1	438.288	3	63.056	1	.009	3	005	12	.549	3
52		-	max				1				2		1		
			min	-21.069	5	-343.034		-27.294	5	011		101		51	2
53		8	max	50.195	1	611.848	3	103.854	1	.009	3	0	<u>10</u>	0	15
54			min	-32.475	5	-482.33	1	-24.699	5	011	2	09	4_	054	2
55		9	max	50.195	1	785.408	3	144.653	1	.009	3	.13	_1_	.573	1
<u>56</u>		10	min	-43.881	5	-621.626	1	-22.103	5	011	2	112	5	81	3
57		10	max	72.451	4	760.921	1	-6.869	12	.011	2	.313	_1_	1.341	1
58			min	2.508	12	-958.968	3	-185.452	1	009	3	.009	12	-1.779	3
59		11	max		4	621.626	1	-5.192	12	.011	2	.159	_4_	.573	1
60			min	2.508	12	-785.408	3	-144.653		009	3	.002	12	81	3
61		12	max	50.195	1	482.33	1	-3.514	12	.011	2	.085	5	0	15
62			min	2.508	12	-611.848	3	-103.854		009	3	008	1_	054	2
63		13	max		1	343.034	1	-1.837	12	.011	2	.044	5	.549	3
64			min	2.508	12	-438.288	3	-63.056	1	009	3	101	1	51	2
65		14	max	50.195	1	203.738	1	159	12	.011	2	.007	5	.94	3
66			min	2.508	12	-264.728	3	-38.059	4	009	3	149	1	812	2
67		15	max		1	64.442	1	18.542	1	.011	2	006	12	1.138	3
68			min	2.508	12	-91.168	3	-30.069	5	009	3	151	1	958	2
69		16	max		1	82.393	3	59.341	1	.011	2	003	12	1.142	3
70			min	-7.099	5	-76.509	2	-27.474	5	009	3	107	1	951	2
71		17	max	50.195	1	255.953	3	100.139	1	.011	2	.002	3	.954	3
72			min	-18.504	5	-215.656	2	-24.878	5	009	3	095	4	788	2
73		12	max		1	429.513	3	140.938	1	.011	2	.115	1	.574	3
74		10	min	-29.91	5	-354.803		-22.283	5	009	3	115	5	472	2
75		10	max				3								1
[7]		19	шах	50.195	_ 1_	603.073	<u> </u>	181.737	1	.011	2	.294	<u>1</u>	0	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
76			min	-41.316	5	-493.95	2	-19.687	5	009	3	139	5	0	3
77	M15	1	max	83.592	5	684.714	2	-8.17	12	.012	2	.294	1	0	2
78			min	-52.737	1	-317.224	3	-181.716	1	008	3	.016	12	0	12
79		2	max	72.186	5	489.053	2	-6.493	12	.012	2	.195	4	.303	3
80			min	-52.737	1	-228.434	3	-140.917	1	008	3	.007	12	652	2
81		3	max	60.78	5	293.392	2	-4.815	12	.012	2	.114	5	.508	3
82			min	-52.737	1	-139.644	3	-100.118	1	008	3	019	1	-1.087	2
83		4	max	49.374	5	97.732	2	-3.137	12	.012	2	.063	5	.613	3
84			min	-52.737	1	-50.853	3	-59.32	1	008	3	108	1	-1.304	2
85		5	max	37.968	5	37.937	3	-1.46	12	.012	2	.015	5	.621	3
86			min	-52.737	1	-97.929	2	-46.633	4	008	3	151	1	-1.304	2
87		6	max	26.563	5	126.728	3	22.278	1	.012	2	007	12	.529	3
88			min	-52.737	1	-293.59	2	-39.232	5	008	3	149	1	-1.086	2
89		7	max	15.157	5	215.518	3	63.076	1	.012	2	005	12	.339	3
90			min	-52.737	1	-489.25	2	-36.637	5	008	3	101	1	652	2
91		8	max	3.751	5	304.308	3	103.875	1	.012	2	0	10	.05	3
92			min	-52.737	1	-684.911	2	-34.041	5	008	3	115	4	013	1
93		9	max	-2.991	12	393.099	3	144.674	1	.012	2	.13	1	.87	2
94			min	-52.737	1	-880.571	2	-31.446	5	008	3	148	5	337	3
95		10	max	-2.991	12	1076.232	2	-6.928	12	.008	3	.313	1	1.958	2
96			min	-52.737	1	-481.889	3	-185.473		012	2	.009	12	823	3
97		11	max	.518	15	880.571	2	-5.25	12	.008	3	.195	4	.87	2
98			min	-52.737	1	-393.099		-144.674		012	2	.003	12	337	3
99		12	max	-2.991	12	684.911	2	-3.573	12	.008	3	.11	5	.05	3
100			min	-52.737	1	-304.308	3	-103.875	1	012	2	009	1	013	1
101		13	max	-2.991	12	489.25	2	-1.895	12	.008	3	.059	5	.339	3
102			min	-52.737	1	-215.518	3	-63.076	1	012	2	101	1	652	2
103		14	max	-2.991	12	293.59	2	218	12	.008	3	.011	5	.529	3
104			min	-52.737	1	-126.728	3	-47.452	4	012	2	149	1	-1.086	2
105		15	max	-2.991	12	97.929	2	18.521	1	.008	3	006	12	.621	3
106		'0	min	-57.386	4	-37.937	3	-39.415	5	012	2	151	1	-1.304	2
107		16	max	-2.991	12	50.853	3	59.32	1	.008	3	003	12	.613	3
108		10	min	-68.792	4	-97.732	2	-36.819	5	012	2	108	1	-1.304	2
109		17	max	-2.991	12	139.644	3	100.118	1	.008	3	.002	3	.508	3
110		1 '	min	-80.198	4	-293.392	2	-34.224	5	012	2	122	4	-1.087	2
111		18	max	-2.991	12	228.434	3	140.917	1	.008	3	.115	1	.303	3
112		10	min	-91.604	4	-489.053	2	-31.628	5	012	2	152	5	652	2
113		19	max	-2.991	12	317.224	3	181.716	1	.008	3	.294	1	0	2
114		13	min			-684.714		-29.033	5	012	2	186	5	0	5
115	M16	1	max	81.934	5	655.673	2	-7.818	12	.012	1	.26	1	0	2
116	IVITO					-294.788				012	3	.013	12		3
117		2		70.528	5	460.012	2	-6.14	12	.011	1	.148	4	.278	3
118				-115.477	1	-205.998		-135.73	1	012	3	.006	12	62	2
119		3		59.122	5	264.352	2	-4.463	12	.011	1	.085	5	.458	3
120		<u> </u>	min	-115.477	1	-117.207	3	-94.931	1	012	3	042	1	-1.022	2
121		4	max		5	68.691	2	-2.785	12	.012	1	.047	5	.539	3
122		4			1	-28.417	3	-54.133	1	012	3	125	1	-1.207	2
123		5	max		5	60.373	3	-1.107	12	.012	1	.011	5	.521	3
124		- O			_								1		
125		G	max	-115.477	1 5	<u>-126.969</u>	2	-34.102 27.465	1	012 .011	1	162 007	12	-1.175 .405	2
126		6			<u>5</u>	149.164 -322.63	3	-28.025	5	012	3	007 155	12	925	3
127		7					2						-		
		/	max		5	237.954	3	68.263	1	.011	3	005	12	.189	3
128		0			1	-518.291	2	-25.429	5	012		101	10	458	2
129		8	max		5	326.744	3	109.062	1	.011	1	0	10	.227	2
130		0	min	<u>-115.477</u>	12	<u>-713.951</u>	2	-22.834	5	012	3	08	4	124 1 120	3
131		9	max		12	415.535	3	149.861	1	.011	1	.141	1	1.129	2
132			HIII	-115.477	1	-909.612	2	-20.238	5	012	3	102	5	537	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec	1	Axial[lb]		y Shear[lb]							LC	z-z Mome	LC
133		10	max	-5.988		1105.273	2	-7.28	12	.012	3	.33	1	2.248	2
134			min	-115.477	1	-504.325	3	-190.66	1	011	1	.011	12	-1.048	3
135		11	max	-3.434	15	909.612	2	-5.603	12	.012	3	.152	4	1.129	2
136			min		1	-415.535		-149.861	1	011	1	.004	12	537	3
137		12	max	-5.988	12	713.951	2	-3.925	12	.012	3	.078	4	.227	2
138			min	-115.477	1	-326.744	3	-109.062	1	011	1	003	3	124	3
139		13	max	-5.988	12	518.291	2	-2.248	12	.012	3	.038	5	.189	3
140			min		1	-237.954	3	-68.263	1	011	1	101	1	458	2
141		14	max	-5.988	12	322.63	2	57	12	.012	3	.001	5	.405	3
142			min	-115.477	1	-149.164	3	-37.902	4	011	1	155	1	925	2
143		15	max	-5.988	12	126.969	2	13.334	1	.012	3	006	12	.521	3
144			min	-115.477	1	-60.373	3	-28.884	5	011	1	162	1	-1.175	2
145		16	max	-5.988	12	28.417	3	54.133	1	.012	3	004	12	.539	3
146			min		1	-68.691	2	-26.288	5	011	1	125	1	-1.207	2
147		17	max	-5.988	12	117.207	3	94.931	1	.012	3	0	12	.458	3
148			min		1	-264.352	2	-23.693	5	011	1	101	4	-1.022	2
149		18	max		12	205.998	3	135.73	1	.012	3	.086	1	.278	3
150			min		1	-460.012	2	-21.097	5	011	1	115	5	62	2
151		19	max		12	294.788	3	176.529	1	.012	3	.26	1	0	2
152		- 10	min	-123.089	4	-655.673	2	-18.502	5	011	1	137	5	0	5
153	M2	1		1074.889	2	1.958	4	.697	1	0	12	0	3	0	1
154	IVIZ		min	-1407.797	3	.477	15	-44.237	4	0	4	0	1	0	1
155		2		1075.317	2	1.901	4	.697	1	0	12	0	1	0	15
156			min	-1407.476	3	.463	15	-44.61	4	0	4	013	4	0	4
157		3		1075.746	2	1.844	4	.697	1	0	12	0	1	0	15
158		3	min	-1407.155	3	.45	15	-44.983	4	0	4	026	4	001	4
159		4		1076.174	2	1.788	4	.697	1	0	12	0	1	0	15
160		4	min	-1406.833	3	.437	15	-45.357	4	0	4	039	4	002	4
161		5		1076.602	2	1.731	4	.697	1		12	<u>039 </u>	1		15
162		O .	min	-1406.512	3	.423	15	-45.73	4	0 0	4	052	4	002	4
163		6		1077.031	2	1.674	4	.697	1	0	12	<u>052</u> 0	1	002 0	15
164		0		-1406.191			15		4			066			
		7	min		3	.41		-46.103		0	4		4	003	4
165		7		1077.459	2	1.617	4	.697	1	0	12	.001	1	0	15
166			min	-1405.869	3	.393	12	-46.477	4	0	4	079	4	003	4
167		8		1077.888	2	1.56	4	.697	1	0	12	.001	1	0	15
168		_	min	-1405.548	3	.371	12	-46.85	4	0	4	093	4	004	4
169		9		1078.316	2	1.504	4	.697	1	0	12	.002	1	0	15
170			min	-1405.226	3	.349	12	-47.223	4	0	4	<u>106</u>	4	004	4
171		10		1078.745	2	1.447	4	.697	1	0	12	.002	1	001	15
172			min	-1404.905	3	.327	12	-47.597	4	0	4	12	4	004	4
173		11		1079.173		1.39	4	.697	1	0	12	.002	1	001	15
174			min		3	.305	12	-47.97	4	0	4	134	4	005	4
175		12		1079.602	2	1.333	4	.697	1	0	12	.002	1	001	15
176			min		3	.283	12	-48.343	4	0	4	148	4	005	4
177		13		1080.03	2	1.276	4	.697	1	0	12	.002	1	001	12
178			min	-1403.941	3	.261	12	-48.717	4	0	4	162	4	006	4
179		14	max	1080.459	2	1.22	4	.697	1	0	12	.003	1	001	12
180			min	-1403.62	3	.238	12	-49.09	4	0	4	176	4	006	4
181		15	max	1080.887	2	1.163	4	.697	1	0	12	.003	1	002	12
182			min	-1403.298	3	.216	12	-49.463	4	0	4	19	4	006	4
183		16		1081.316	2	1.106	4	.697	1	0	12	.003	1	002	12
184			min		3	.194	12	-49.837	4	0	4	205	4	007	4
185		17		1081.744	2	1.051	2	.697	1	0	12	.003	1	002	12
186			min		3	.172	12	-50.21	4	0	4	219	4	007	4
187		18		1082.173	2	1.007	2	.697	1	0	12	.003	1	002	12
188			min	-1402.334	3	.15	12	-50.583	4	0	4	234	4	007	4
189		19		1082.601	2	.962	2	.697	1	0	12	.004	1	002	12
			ux			.002		.001						.502	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
190			min	-1402.013	3	.128	12	-50.957	4	0	4	249	4	008	4
191	M3	1	max	623.779	2	7.908	4	3.524	4	0	12	0	1	.008	4
192			min	-769.989	3	1.87	15	.008	12	0	4	027	4	.002	12
193		2	max	623.609	2	7.14	4	4.063	4	0	12	0	1	.005	2
194			min	-770.116	3	1.69	15	.008	12	0	4	025	4	0	12
195		3	max	623.438	2	6.373	4	4.602	4	0	12	0	1	.002	2
196			min	-770.244	3	1.51	15	.008	12	0	4	023	4	0	3
197		4	max	623.268	2	5.606	4	5.141	4	0	12	0	1	0	2
198			min	-770.372	3	1.329	15	.008	12	0	4	021	4	002	3
199		5	max	623.098	2	4.839	4	5.679	4	0	12	0	1	0	15
200			min	-770.5	3	1.149	15	.008	12	0	4	019	4	003	3
201		6	max	622.927	2	4.071	4	6.218	4	0	12	0	1	001	15
202				-770.627	3	.968	15	.008	12	0	4	016	4	005	6
203		7	max	622.757	2	3.304	4	6.757	4	0	12	0	1	001	15
204				-770.755	3	.788	15	.008	12	0	4	014	5	007	6
205		8	max	622.587	2	2.537	4	7.296	4	0	12	0	1	002	15
206				-770.883	3	.608	15	.008	12	0	4	011	5	008	6
207		9	max		2	1.77	4	7.834	4	0	12	0	1	002	15
208			min	-771.011	3	.427	15	.008	12	0	4	008	5	009	6
209		10	max	622.246	2	1.003	4	8.373	4	0	12	0	1	002	15
210		10	min	-771.138	3	.227	12	.008	12	0	4	004	5	009	6
211		11	max	622.076	2	.345	2	8.912	4	0	12	.001	1	002	15
212				-771.266	3	124	3	.008	12	0	4	0	5	01	6
213		12	max	621.905	2	114	15	9.451	4	0	12	.003	4	002	15
214		12		-771.394	3	572	3	.008	12	0	4	0	12	009	6
215		13	max	621.735	2	294	15	9.989	4	0	12	.007	4	002	15
216		13	min	-771.522	3	-1.3	6	.008	12	0	4	0	12	002	6
217		14	max		2	474	15	10.528	4	0	12	.012	4	002	15
218		14	min	-771.649	3	-2.067	6	.008	12	0	4	0	12	002	6
		15		621.394	2	655	15	11.067	4	0	12	.016		002	
219 220		13	max min	-771.777	3	-2.834	6	.008	12	0	4	0	12	002	15
221		16		621.224	2	835	15	11.606	4	0	12	.021	4	007 001	15
222		10	max	-771.905	3	-3.602	6	.008	12	0	4	.021	12	006	
		17						12.144				_	4		6 1 <i>E</i>
223		17	max	621.054	2	-1.015	15		12	0	12	.026	12	001	15
224		10		-772.033	3	<u>-4.369</u>	6	.008		0	4	0		004	6 1 <i>E</i>
225		18	max	620.883	2	-1.196	15	12.683	4	0	12	.031	4	0	15
226		40		-772.161	3	-5.136	6	.008	12	0	4	0	12	002	6
227		19	max		2	-1.376	15	13.222	4	0	12	.037	4	0	1
228	N 4 4	4		-772.288	3_	-5.903	6	.008	12	0	4	0	12	0	1
229	M4	1		1159.597	<u>1</u> 3	0	1	565	12	0	1	.026	12	0	1
230				-149.799		0	1	-275.749		0	1	0		0	1
231		2		1159.768	1_	0	1	565	12	0	1	0	3	0	1
232				-149.672	3	0	1	-275.897		0	1	005	4	0	1
233		3		1159.938	1	0	1	565	12	0	1	0	12	0	1
234		4		-149.544	3	0	1	-276.045		0	1	037	4	0	1
235		4		1160.108	1_	0	1	565	12	0	1	0	12	0	1
236		_		-149.416	3_	0	1	-276.192		0	1	069	4	0	1
237		5		1160.279	1_	0	1	565	12	0	1	0	12	0	1
238				-149.288	3_	0	1	-276.34	4	0	1	1	4	0	1
239		6		1160.449	_1_	0	1	565	12	0	1	0	12	0	1
240				-149.161	3	0	1	-276.488		0	1	132	4	0	1
241		7		1160.619	_1_	0	1	565	12	0	1	0	12	0	1
242				-149.033	3	0	1	-276.635		0	1	164	4	0	1
243		8		1160.79	_1_	0	1	565	12	0	1	0	12	0	1
244				-148.905	3	0	1	-276.783		0	1	196	4	0	1
245		9		1160.96	_1_	0	1	565	12	0	1	0	12	0	1
246			min	-148.777	3	0	1	-276.931	4	0	1	227	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	1161.13	1	0	1	565	12	0	1_	0	12	0	1
248			min	-148.65	3	0	1	-277.078	4	0	1	259	4	0	1
249		11	max	1161.301	1	0	1	565	12	0	1	0	12	0	1
250			min	-148.522	3	0	1	-277.226	4	0	1	291	4	0	1
251		12	max	1161.471	1	0	1	565	12	0	1	0	12	0	1
252			min	-148.394	3	0	1	-277.373	4	0	1	323	4	0	1
253		13	max	1161.641	1	0	1	565	12	0	1	0	12	0	1
254			min	-148.266	3	0	1	-277.521	4	0	1	355	4	0	1
255		14	max	1161.812	1	0	1	565	12	0	1	0	12	0	1
256			min	-148.138	3	0	1	-277.669	4	0	1	387	4	0	1
257		15	max	1161.982	1	0	1	565	12	0	1	0	12	0	1
258			min	-148.011	3	0	1	-277.816	4	0	1	419	4	0	1
259		16	max	1162.152	1	0	1	565	12	0	1	0	12	0	1
260			min	-147.883	3	0	1	-277.964	4	0	1	45	4	0	1
261		17	max	1162.323	1	0	1	565	12	0	1	0	12	0	1
262			min	-147.755	3	0	1	-278.112	4	0	1	482	4	0	1
263		18	max	1162.493	1	0	1	565	12	0	1	001	12	0	1
264				-147.627	3	0	1	-278.259	4	0	1	514	4	0	1
265		19		1162.664	1	0	1	565	12	0	1	001	12	0	1
266		1.0	min	-147.5	3	0	1	-278.407	4	0	1	546	4	0	1
267	M6	1		3454.488	2	2.428	2	0	1	0	1	0	4	0	1
268			min	-4601.367	3	023	3	-44.689	4	0	4	0	1	0	1
269		2		3454.916	2	2.384	2	0	1	0	1	0	1	0	3
270			min	-4601.046	3	057	3	-45.063	4	0	4	013	4	0	2
271		3		3455.345	2	2.34	2	0	1	0	1	0	1	0	3
272		-	min	-4600.724	3	09	3	-45.436	4	0	4	026	4	001	2
273		4		3455.773	2	2.296	2	0	1	0	1	0	1	0	3
274			min	-4600.403	3	123	3	-45.809	4	0	4	039	4	002	2
275		5		3456.202	2	2.251	2	0	1	0	1	0	1	0	3
276		1	min	-4600.082	3	156	3	-46.183	4	0	4	053	4	003	2
277		6	max		2	2.207	2	0	1	0	1	0	1	0	3
278		-	min	-4599.76	3	189	3	-46.556	4	0	4	066	4	003	2
279		7		3457.059	2	2.163	2	0	1	0	1	0	1	0	3
280		+	min	-4599.439	3	222	3	-46.929	4	0	4	08	4	004	2
281		8		3457.487	2	2.119	2	0	1	0	1	0	1	004	3
282		0	min	-4599.118	3	256	3	-47.303	4	0	4	093	4	005	2
283		9		3457.916	_	2.074	2	0	1		1	0	1	005 0	3
		9		-4598.796	2	289	3	-47.676	4	0	4	107	4	005	2
284 285		10	min	3458.344	3			0	1	0	_ 4 _	0	1	005 0	
286		10		-4598.475	3	2.03	2		4	0	4	121	4		2
		11	min			322	3	-48.049	_	0				006	
287		11		3458.773 -4598.153		1.986	2	-48.423	1	0	1_1	135	1 1	0	2
288		10	min		3	355 1.042	3	_	4	0	4		4	006	
289		12		3459.201	2	1.942	2	0	1	0	1_1	140	1	0	3
290		40	min	-4597.832	3	388	3	-48.796	4	0	4	149	4	007	2
291		13		3459.63	2	1.897	2	0	1	0	1_	0	1	0	3
292		4.4	min	-4597.511	3	422	3	-49.169	4	0	4	164	4	008	2
293		14		3460.058	2	1.853	2	0	1	0	1_1	0	1	0	3
294		4-	min	-4597.189	3	455	3	-49.543	4	0	4	178	4	008	2
295		15		3460.487	2	1.809	2	0	1	0	1	0	1	.001	3
296		4.0	min	-4596.868	3	488	3	-49.916	4	0	4_	192	4	009	2
297		16		3460.915	2	1.765	2	0	1	0	1	0	1	.001	3
298			min		3	521	3	-50.289	4	0	4_	207	4	009	2
299		17		3461.344	2	1.72	2	0	1	0	_1_	0	1	.001	3
300			min		3	554	3	-50.663	4	0	4	221	4	01	2
301		18		3461.772	2	1.676	2	0	1	0	1_	0	1	.002	3
302			min		3	588	3	-51.036	4	0	4	236	4	01	2
303		19	max	3462.201	2	1.632	2	0	_ 1_	0	1	0	1	.002	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
304			min	-4595.583	3	621	3	-51.409	4	0	4	251	4	011	2
305	M7	1	max	2329.83	2	7.918	6	3.31	4	0	1	0	1	.011	2
306			min	-2429.849	3	1.858	15	0	1	0	4	027	4	002	3
307		2	max	2329.66	2	7.15	6	3.848	4	0	1	0	1_	.008	2
308			min	-2429.976	3	1.678	15	0	1	0	4	025	4	003	3
309		3	max	2329.49	2	6.383	6	4.387	4	0	1	0	1	.005	2
310			min	-2430.104	3	1.498	15	0	1	0	4	024	4	005	3
311		4	max	2329.319	2	5.616	6	4.926	4	0	1	0	1	.003	2
312			min	-2430.232	3	1.317	15	0	1	0	4	022	4	006	3
313		5	max	2329.149	2	4.849	6	5.465	4	0	1	0	1	.001	2
314			min	-2430.36	3	1.137	15	0	1	0	4	019	4	007	3
315		6	max	2328.979	2	4.081	6	6.003	4	0	1	0	1	0	2
316			min	-2430.487	3	.957	15	0	1	0	4	017	4	007	3
317		7	max	2328.808	2	3.314	6	6.542	4	0	1	0	1	002	15
318			min	-2430.615	3	.776	15	0	1	0	4	014	4	008	3
319		8	max	2328.638	2	2.603	2	7.081	4	0	1	0	1	002	15
320			min	-2430.743	3	.482	12	0	1	0	4	012	4	008	3
321		9	max	2328.468	2	2.005	2	7.62	4	0	1	0	1	002	15
322			min	-2430.871	3	.183	12	0	1	0	4	009	4	009	4
323		10	max	2328.297	2	1.407	2	8.158	4	0	1	0	1	002	15
324			min	-2430.999	3	223	3	0	1	0	4	005	4	009	4
325		11	max	2328.127	2	.809	2	8.697	4	0	1	0	1	002	15
326			min	-2431.126	3	672	3	0	1	0	4	002	5	009	4
327		12	max	2327.957	2	.211	2	9.236	4	0	1	.002	4	002	15
328			min	-2431.254	3	-1.12	3	0	1	0	4	0	1	009	4
329		13	max	2327.786	2	306	15	9.775	4	0	1	.006	4	002	15
330			min	-2431.382	3	-1.568	3	0	1	0	4	0	1	009	4
331		14	max	2327.616	2	486	15	10.313	4	0	1	.01	4	002	15
332			min	-2431.51	3	-2.056	4	0	1	0	4	0	1	008	4
333		15	max	2327.446	2	666	15	10.852	4	0	1	.015	4	002	15
334			min	-2431.637	3	-2.824	4	0	1	0	4	0	1	007	4
335		16	max	2327.275	2	847	15	11.391	4	0	1	.019	4	001	15
336			min	-2431.765	3	-3.591	4	0	1	0	4	0	1	006	4
337		17	max	2327.105	2	-1.027	15	11.93	4	0	1	.024	4	001	15
338			min	-2431.893	3	-4.358	4	0	1	0	4	0	1	004	4
339		18	max	2326.935	2	-1.207	15	12.468	4	0	1	.029	4	0	15
340			min	-2432.021	3	-5.125	4	0	1	0	4	0	1	002	4
341		19	max	2326.764	2	-1.388	15	13.007	4	0	1	.035	4	0	1
342			min	-2432.148	3	-5.892	4	0	1	0	4	0	1	0	1
343	M8	1	max	3161.999	1	0	1	0	1	0	1	.025	4	0	1
344			min		3	0	1	-267.242	4	0	1	0	1	0	1
345		2	max		1	0	1	0	1	0	1	0	1	0	1
346			1	-568.952	3	0	1	-267.39	4	0	1	006	4	0	1
347		3	max		1	0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-267.538	4	0	1	036	4	0	1
349		4		3162.51	1	0	1	0	1	0	1	0	1	0	1
350				-568.697	3	0	1	-267.685	4	0	1	067	4	0	1
351		5		3162.681	1	0	1	0	1	0	1	0	1	0	1
352			min		3	0	1	-267.833	4	0	1	098	4	0	1
353		6		3162.851	1	0	1	0	1	0	1	0	1	0	1
354		Ť		-568.441	3	0	1	-267.981	4	Ö	1	129	4	0	1
355		7		3163.022	1	0	1	0	1	0	1	0	1	0	1
356				-568.314		0	1	-268.128		0	1	159	4	0	1
357		8		3163.192	1	0	1	0	1	0	1	0	1	0	1
358				-568.186	3	0	1	-268.276		0	1	19	4	0	1
359		9		3163.362	1	0	1	0	1	0	1	0	1	0	1
360				-568.058		0	1	-268.424		0	1	221	4	0	1
000			1111111	000.000	J			200.724		V					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

004	Member	Sec	1	Axial[lb]						Torque[k-ft]		1 -	LC		
361		10		3163.533	1_	0	1	0	1_1	0	1	0	1	0	1
362		4.4	min	-567.93	3	0	1	-268.571	4	0	1_	252	4	0	1
363		11		3163.703	1	0	1	0	1_1	0	<u>1</u> 1	0	1_4	0	1
364		12		-567.803	3	0	1	-268.719	<u>4</u> 1	0	1	283 0	1	0	1
365 366		12		3163.873 -567.675	<u>1</u> 3	0	1	0 -268.866	4	0	1	313	4	0	1
		12	_				1		<u>4</u> 1	_	1		1	0	1
367 368		13		3164.044	<u>1</u> 3	0	1	0 -269.014	4	0	1	344	4	0	1
		11		-567.547	<u> </u>	0	1	0	_ 4 _	0	1	344 0	1	0	1
369		14		3164.214	3		1	-269.162	4	0	1		4	0	1
370 371		15		<u>-567.419</u> 3164.384	<u>ာ</u> 1	0	1	0	<u>4</u> 1	0	1	375 0	1	0	1
372		10	min	-567.292	3	0	1	-269.309	4	0	1	406	4	0	1
373		16	_	3164.555	1	0	1	0	1	0	+	0	1	0	1
374		10		-567.164	3	0	1	-269.457	4	0	1	437	4	0	1
375		17		3164.725	<u> </u>	0	1	0	1	0	1	0	1	0	1
376		17		-567.036	3	0	1	-269.605	4	0	1	468	4	0	1
377		18		3164.895	<u> </u>	0	1	0	1	0	1	0	1	0	1
378		10		-566.908	3	0	1	-269.752	4	0	1	499	4	0	1
379		19		3165.066	_ <u></u>	0	1	0	1	0	1	0	1	0	1
380		13		-566.781	3	0	1	-269.9	4	0	1	53	4	0	1
381	M10	1		1074.889	2	1.885	6	034	12	0	1	0	1	0	1
382	IVITO		min	-1407.797	3	.428	15	-44.634	4	0	5	0	3	0	1
383		2		1075.317	2	1.829	6	034	12	0	1	0	10	0	15
384				-1407.476	3	.415	15	-45.007	4	0	5	013	4	0	6
385		3		1075.746	2	1.772	6	034	12	0	1	0	10	0	15
386			min	-1407.155	3	.401	15	-45.38	4	0	5	026	4	001	6
387		4		1076.174	2	1.715	6	034	12	0	1	0	12	0	15
388		_	min		3	.388	15	-45.754	4	0	5	039	4	002	6
389		5		1076.602	2	1.658	6	034	12	0	1	0	12	0	15
390			min	-1406.512	3	.375	15	-46.127	4	0	5	053	4	002	6
391		6		1077.031	2	1.602	6	034	12	0	1	0	12	0	15
392			min	-1406.191	3	.361	15	-46.5	4	0	5	066	4	003	6
393		7		1077.459	2	1.545	6	034	12	0	1	0	12	0	15
394			min	-1405.869	3	.348	15	-46.874	4	0	5	08	4	003	6
395		8		1077.888	2	1.488	6	034	12	0	1	0	12	0	15
396			min	-1405.548	3	.335	15	-47.247	4	0	5	093	4	003	6
397		9		1078.316	2	1.431	6	034	12	0	1	0	12	0	15
398			min		3	.321	15	-47.62	4	0	5	107	4	004	6
399		10		1078.745	2	1.374	6	034	12	0	1	0	12	0	15
400				-1404.905	3	.308	15	-47.994	4	0	5	121	4	004	6
401		11		1079.173	2	1.318	6	034	12	0	1	0	12	001	15
402				-1404.584	3	.294	15	-48.367	4	0	5	135	4	005	6
403		12		1079.602	2	1.272	2	034	12	0	1	0	12	001	15
404				-1404.262	3	.281	15	-48.74	4	0	5	149	4	005	6
405		13		1080.03	2	1.228	2	034	12	0	1	0	12	001	15
406				-1403.941	3	.261	12	-49.114	4	0	5	163	4	005	6
407		14	_	1080.459	2	1.184	2	034	12	0	1	0	12	001	15
408				-1403.62	3	.238	12	-49.487	4	0	5	178	4	006	6
409		15		1080.887	2	1.139	2	034	12	0	1	0	12	001	15
410				-1403.298	3	.216	12	-49.86	4	0	5	192	4	006	6
411		16		1081.316	2	1.095	2	034	12	0	1	0	12	001	15
412			min	-1402.977	3	.194	12	-50.234	4	0	5	207	4	006	6
413		17	_	1081.744	2	1.051	2	034	12	0	1	0	12	001	15
414				-1402.656	3	.172	12	-50.607	4	0	5	221	4	007	6
415		18		1082.173	2	1.007	2	034	12	0	1	0	12	002	15
416				-1402.334	3	.15	12	-50.98	4	0	5	236	4	007	6
417		19	_	1082.601	2	.962	2	034	12	0	1	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-1402.013	3	.128	12	-51.354	4	0	5	251	4	007	6
419	M11	1	max	623.779	2	7.857	6	3.433	4	0	1	0	12	.007	6
420			min	-769.989	3	1.836	15	161	1	0	4	027	4	.002	15
421		2	max	623.609	2	7.09	6	3.972	4	0	1	0	12	.005	2
422			min	-770.116	3	1.656	15	161	1	0	4	025	4	0	12
423		3	max	623.438	2	6.323	6	4.511	4	0	1	0	12	.002	2
424			min	-770.244	3	1.476	15	161	1	0	4	023	4	0	3
425		4	max	623.268	2	5.556	6	5.049	4	0	1	0	12	0	2
426			min	-770.372	3	1.295	15	161	1	0	4	021	4	002	3
427		5	max	623.098	2	4.788	6	5.588	4	0	1	0	12	0	15
428			min	-770.5	3	1.115	15	161	1	0	4	019	4	003	4
429		6	max	622.927	2	4.021	6	6.127	4	0	1	0	12	001	15
430			min	-770.627	3	.935	15	161	1	0	4	017	4	005	4
431		7	max	622.757	2	3.254	6	6.666	4	0	1	0	12	002	15
432			min	-770.755	3	.754	15	161	1	0	4	014	4	007	4
433		8	max	622.587	2	2.487	6	7.204	4	0	1	0	12	002	15
434			min	-770.883	3	.574	15	161	1	0	4	011	4	008	4
435		9	max	622.416	2	1.72	6	7.743	4	0	1	0	12	002	15
436			min	-771.011	3	.394	15	161	1	0	4	008	4	009	4
437		10	max	622.246	2	.952	6	8.282	4	0	1	0	12	002	15
438		'0	min	-771.138	3	.213	15	161	1	0	4	005	4	009	4
439		11	max	622.076	2	.345	2	8.82	4	0	1	0	12	002	15
440			min	-771.266	3	124	3	161	1	0	4	001	4	01	4
441		12	max	621.905	2	124	15	9.359	4	0	1	.003	5	002	15
442		12	min	-771.394	3	583	4	161	1	0	4	001	1	002	4
443		13	max	621.735	2	328	15	9.898	4	0	1	.007	5	002	15
444		13	_	-771.522	3	-1.35	4	161	1	0	4	001	1	002	4
444		14	min				15				1	.011	_		15
		14	max	621.565	2	508 -2.117		10.437 161	4	0			<u>5</u>	002	
446		4.5	min	-771.649	3		4			0	4	001		008	4
447 448		15	max	621.394	2	688	15	10.975	4	0	1_4	.016	<u>5</u>	002	15
		16	min	-771.777	3	-2.885	4	161	_	0	4	001		007	4
449		16	max	621.224	2	869	15	11.514	4	0	1	.02	5	001	15
450		47	min	-771.905	3_	-3.652	4	161	-	0	4	001	1	006	4
451		17	max	621.054	2	-1.049	15	12.053	4	0	1	.025	4	001	15
452		40	min	-772.033	3	-4.419	4	161	1	0	4	001	1	004	4
453		18	max	620.883	2	-1.229	15	12.592	4	0	1	.03	4	0	15
454		40	min	-772.161	3	-5.186	4	161	1	0	4	002	1	002	4
455		19	max	620.713	2	-1.41	15	13.13	4	0	1	.036	4	0	1
456	140		min	-772.288	3	-5.954	4	161	1	0	4	002	1	0	1
457	M12	1		1159.597	1_	0	1	11.016	1	0	1	.026	4	0	1
458				-149.799		0	1	-269.461	4	0	1	001	1	0	1
459		2		1159.768	1_	0	1	11.016	1	0	1	0	1	0	1
460			min		3_	0	1	-269.609		0	1_	005	4	0	1
461		3		1159.938	1_	0	1	11.016	1	0	1	.001	1	0	1
462				-149.544		0	1	-269.756		0	1_	036	4	0	1
463		4		1160.108	1_	0	1	11.016	1	0	1	.003	1	0	1
464				-149.416		0	1	-269.904		0	1	067	4	0	1
465		5		1160.279	_1_	0	1	11.016	1	0	1	.004	1	0	1
466				-149.288	3	0	1	-270.052	4	0	1	098	4	0	1
467		6		1160.449	1	0	1	11.016	1	0	1	.005	1_	0	1
468				-149.161	3	0	1	-270.199	4	0	1	129	4	0	1
469		7	max	1160.619	1	0	1	11.016	1	0	1	.006	1	0	1
470			min	-149.033	3	0	1	-270.347	4	0	1	16	4	0	1
471		8	max	1160.79	1	0	1	11.016	1	0	1	.008	1	0	1
472			min		3	0	1	-270.495	4	0	1	191	4	0	1
473		9		1160.96	1	0	1	11.016	1	0	1	.009	1	0	1
474				-148.777	3	0	1	-270.642	4	0	1	222	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1161.13	1	0	1	11.016	1	0	1	.01	1	0	1
476			min	-148.65	3	0	1	-270.79	4	0	1	253	4	0	1
477		11	max	1161.301	1	0	1	11.016	1	0	1	.012	1	0	1
478			min	-148.522	3	0	1	-270.938	4	0	1	284	4	0	1
479		12	max	1161.471	1	0	1	11.016	1	0	1	.013	1	0	1
480			min	-148.394	3	0	1	-271.085	4	0	1	316	4	0	1
481		13	max	1161.641	1	0	1	11.016	1	0	1	.014	1	0	1
482			min	-148.266	3	0	1	-271.233	4	0	1	347	4	0	1
483		14	max	1161.812	1	0	1	11.016	1	0	1	.015	1	0	1
484			min	-148.138	3	0	1	-271.38	4	0	1	378	4	0	1
485		15	max	1161.982	1	0	1	11.016	1	0	1	.017	1	0	1
486			min	-148.011	3	0	1	-271.528	4	0	1	409	4	0	1
487		16	max	1162.152	1	0	1	11.016	1	0	1	.018	1	0	1
488			min	-147.883	3	0	1	-271.676	4	0	1	44	4	0	1
489		17		1162.323	1	0	1	11.016	1	0	1	.019	1	0	1
490			min	-147.755	3	0	1	-271.823	4	0	1	471	4	0	1
491		18		1162.493	1	0	1	11.016	1	0	1	.02	1	0	1
492			min		3	0	1	-271.971	4	0	1	503	4	0	1
493		19		1162.664	1	0	1	11.016	1	0	1	.022	1	0	1
494			min	-147.5	3	0	1	-272.119	4	0	1	534	4	0	1
495	M1	1	max		1	776.788	3	48.175	5	0	1	.258	1	0	3
496			min	-9.547	5	-463.556	1	-107.974	1	0	3	091	5	015	2
497		2	max		1	775.814	3	49.417	5	0	1	.201	1	.232	1
498		_	min	-9.265	5	-464.854	1	-107.974	1	0	3	065	5	409	3
499		3	max	474.224	3	546.751	2	7.444	5	0	3	.144	1	.466	1
500			min	-278.133	2	-558.326	3	-107.508	1	0	2	04	5	802	3
501		4	max		3	545.453	2	8.686	5	0	3	.087	1	.189	1
502			min	-277.528	2	-559.3	3	-107.508		0	2	035	5	508	3
503		5	max	475.132	3	544.155	2	9.927	5	0	3	.031	1	003	15
504			min	-276.922	2	-560.273	3	-107.508	1	0	2	03	5	212	3
505		6	max	475.586	3	542.856	2	11.169	5	0	3	001	12	.084	3
506			min	-276.317	2	-561.247	3	-107.508	1	0	2	031	4	399	2
507		7	max		3	541.558	2	12.41	5	0	3	004	12	.38	3
508		'	min	-275.711	2	-562.221	3	-107.508	1	0	2	083	1	685	2
509		8	max		3	540.26	2	13.652	5	0	3	008	12	.677	3
510		T .	min	-275.106	2	-563.194	3	-107.508	1	0	2	14	1	97	2
511		9	max		3	48.044	2	56.113	5	0	9	.082	1	.792	3
512		Ť	min	-201.396	2	.392	15		1	0	3	13	5	-1.111	2
513		10	max	489.817	3	46.746	2	57.354	5	0	9	0	10	.77	3
514		1.0	min	-200.79	2	0	5	-157.744	1	0	3	101	4	-1.136	2
515		11		490.271	3	45.448	2	58.595	5	0	9	005	12	.749	3
516			min		2	-1.613	4	-157.744		0	3	088	4	-1.16	2
517		12	max		3	359.792	3	150.359	5	0	2	.138	1	.652	3
518		12	min		2	-639.35	2	-105.058		0	3	205	5	-1.028	2
519		13		503.501	3	358.819	3	151.601	5	0	2	.082	1	.463	3
520		'0	min		2	-640.648	2	-105.058		0	3	126	5	69	2
521		14		503.956	3	357.845	3	152.842		0	2	.027	1	.274	3
522				-125.236	2	-641.946		-105.058		0	3	045	5	352	2
523		15	max		3	356.871	3	154.084	5	0	2	.036	5	.085	3
524		13	min	-124.631	2	-643.244	2	-105.058		0	3	029	1	036	1
525		16		504.864	3	355.898	3	155.325	5	0	2	.117	5	.327	2
526		10		-124.026	2	-644.543		-105.058			3	084	1		3
527		17				354.924		156.567	5	0	2	.2		103 .667	2
528		17	max	-123.42	2	-645.841	2	-105.058		0	3	139	5	291	3
		40	min							_	_				_
529		Ιδ	max		5	657.536	2	-5.988 124 424	12	0	<u>5</u>	.189	5	.336	3
530		10	min		1	-293.885	3	-124.424		0		199	_	144	
531		19	max	18.502	5	656.238	2	-5.988	12	0	5	.137	5	.012	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

533 M5	500	Member	Sec		Axial[lb]						Torque[k-ft]					
536	532	N 4 C	4			1_	-294.859	3	-123.183	4	0	2	26	1	011	1
536		IVI5	1													
Sage											_			_		_
538			2								-					
538									•	•		•				
539			3													_
Section										•				_		
541			4								_			<u> </u>		_
543										•	-			_		
644			5						_	_						
S44	-								•		_		041			
546			6	max					61.409							
S46										1	_	_1_		5		
S48			7	max		3		2	62.65	4	0	4	.024	4	1.109	3
S48	546			min				3	0	1	0	1	0	1		2
549	547		8	max	1527.627	3	1650.985	2	63.892	4	0	4	.057	4	2.057	3
550	548			min	-968.921	2	-1796.916	3	0	1	0	1	0	1	-2.713	2
551	549		9	max	1548.545	3	160.556	2	182.196	4	0	1	0	1	2.369	3
552	550			min	-816.207	2	.392	15	0	1	0	1	188	4	-3.088	2
552	551		10	max	1548.999	3	159.257	2	183.437	4	0	1	0	1	2.291	3
553				min	-815.601	2	0	15	_	1	0	1	092	4		2
555			11			3	157.959	2	184.679	4	0	1	.005	4	2.214	3
555										1		1		1		
556			12	_				3	216.393	4	0	1	0	1		
557											-	4	- 299	4		
558			13					3		4		•				
559																
560			14							•				_		
561			17								_			<u> </u>		
562			15							•	-	-		_		
563 16 max 1572.372 3 1137.615 3 221.359 4 0 1 1 .163 4 1.263 2 564 min -659.914 2 -1981.996 2 0 1 0 4 0 1 .461 3 565 17 max 1572.826 3 1136.641 3 222.6 4 0 1 0 1 .28 4 2.309 2 566 min -659.309 2 -1982.994 2 0 1 0 4 0 1 0 1 -1.062 3 567 18 max -14.862 12 2215.03 2 0 1 0 4 .305 4 1.19 2 568 min -381.935 1 -1008.089 3 -27.99 5 0 1 0 1 0 1556 3 569 19 max -14.56 12 2213.732 2 0 1 0 4 .292 4 .022 1 570 min -381.33 1 -1008.089 3 -26.748 5 0 1 0 1 0 1556 3 571 M9 1 max 176.278 1 776.788 3 107.974 1 0 3014 12 0 3 572 min 8.013 12 -463.556 1 5.952 12 0 4258 1015 2 573 2 max 176.883 1 775.814 3 107.974 1 0 301			13					_		_						
S64	-		16	_							_					
The color of the			10											_		
566 min -659.309 2 -1982.994 2 0 1 0 4 0 1 -1.062 3 567 18 max -14.862 12 2215.03 2 0 1 0 4 .305 4 1.19 2 568 min -381.935 1 -1008.089 3 -27.99 5 0 1 0 1 -556 3 569 19 max -14.56 12 2213.732 2 0 1 0 4 .292 4 .022 1 570 min -381.33 1 -1009.063 3 -26.748 5 0 1 0 1 -022 1 571 M9 1 max 176.278 1 776.788 3 107.974 1 0 3 014 12 0 3 572 min 8.013 175.814			17							-	_					
567 18 max -14.862 12 2215.03 2 0 1 0 4 .305 4 1.19 2 568 min -381.935 1 -1008.089 3 -27.99 5 0 1 0 1 -556 3 569 19 max -14.56 12 2213.732 2 0 1 0 4 .292 4 .022 1 570 min -381.33 1 -1009.063 3 -26.748 5 0 1 0 1 -023 3 571 M9 1 max 176.278 1 776.788 3 107.974 1 0 3 014 12 0 3 572 min 8.013 12 -463.556 1 5.952 12 0 4 258 1 015 2 573 2 max 176.883 1 107.974			17								-					
568 min -381,935 1 -1008,089 3 -27,99 5 0 1 0 1 556 3 569 19 max -14,56 12 2213,732 2 0 1 0 4 .292 4 .022 1 570 min -381,33 1 -1009,063 3 -26,748 5 0 1 0 1 -023 3 571 M9 1 max 176,278 1 776,788 3 107,974 1 0 3 014 12 0 3 572 min 8.013 12 -463,556 1 5,952 12 0 4 258 1 -0.015 2 573 2 max 176,883 1 775,814 3 107,974 1 0 3 011 12 .232 1 574 min 8.315 12 <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td>			10							•		_	_			
569 19 max -14.56 12 2213.732 2 0 1 0 4 .292 4 .022 1 570 min -381.33 1 -1009.063 3 -26.748 5 0 1 0 1 023 3 571 M9 1 max 176.278 1 776.788 3 107.974 1 0 3 014 12 0 3 572 min 8.013 12 -463.556 1 5.952 12 0 4 258 1 015 2 573 2 max 176.883 1 775.814 3 107.974 1 0 3 011 12 .232 1 574 min 8.315 12 -464.854 1 5.952 12 0 4 201 1 -409 3 575 3 max 474.224 </td <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td>			10							_				-		_
570 min -381.33 1 -1009.063 3 -26.748 5 0 1 0 1 023 3 571 M9 1 max 176.278 1 776.788 3 107.974 1 0 3 014 12 0 3 572 min 8.013 12 -463.556 1 5.952 12 0 4 258 1 015 2 573 2 max 176.883 1 775.814 3 107.974 1 0 3 011 12 .232 1 574 min 8.315 12 -464.854 1 5.952 12 0 4 201 1 -409 3 575 3 max 474.224 3 546.751 2 107.508 1 0 2 008 12 .466 1 576 4 max 474			40													
571 M9 1 max 176.278 1 776.788 3 107.974 1 0 3 014 12 0 3 572 min 8.013 12 -463.556 1 5.952 12 0 4 258 1 015 2 573 2 max 176.883 1 775.814 3 107.974 1 0 3 011 12 .232 1 574 min 8.315 12 -464.854 1 5.952 12 0 4 201 1 409 3 575 3 max 474.224 3 546.751 2 107.508 1 0 2 008 12 .466 1 576 min -278.133 2 -558.326 3 5.915 12 0 3 144 1 802 3 577 4 max <td< td=""><td></td><td></td><td>19</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></td<>			19	_										_		
572 min 8.013 12 -463.556 1 5.952 12 0 4 258 1 015 2 573 2 max 176.883 1 775.814 3 107.974 1 0 3 011 12 .232 1 574 min 8.315 12 -464.854 1 5.952 12 0 4 201 1 409 3 575 3 max 474.224 3 546.751 2 107.508 1 0 2 008 12 .466 1 576 min -278.133 2 -558.326 3 5.915 12 0 3 144 1 802 3 577 4 max 474.678 3 545.453 2 107.508 1 0 2 005 12 .189 1 578 min -277.528 2		140				•					-	•	_			
573 2 max 176.883 1 775.814 3 107.974 1 0 3 011 12 .232 1 574 min 8.315 12 -464.854 1 5.952 12 0 4 201 1 409 3 575 3 max 474.224 3 546.751 2 107.508 1 0 2 008 12 .466 1 576 min -278.133 2 -558.326 3 5.915 12 0 3 144 1 802 3 577 4 max 474.678 3 545.453 2 107.508 1 0 2 005 12 .189 1 578 min -277.528 2 -559.3 3 5.915 12 0 3 087 1 508 3 579 5 max 475.132		<u>IM9</u>	1								_					
574 min 8.315 12 -464.854 1 5.952 12 0 4 201 1 409 3 575 3 max 474.224 3 546.751 2 107.508 1 0 2 008 12 .466 1 576 min -278.133 2 -558.326 3 5.915 12 0 3 144 1 802 3 577 4 max 474.678 3 545.453 2 107.508 1 0 2 005 12 .189 1 578 min -277.528 2 -559.3 3 5.915 12 0 3 087 1 508 3 579 5 max 475.132 3 544.155 2 107.508 1 0 2 002 12 003 15 580 min -276.922 2																
575 3 max 474.224 3 546.751 2 107.508 1 0 2 008 12 .466 1 576 min -278.133 2 -558.326 3 5.915 12 0 3 144 1 802 3 577 4 max 474.678 3 545.453 2 107.508 1 0 2 005 12 .189 1 578 min -277.528 2 -559.3 3 5.915 12 0 3 087 1 -508 3 579 5 max 475.132 3 544.155 2 107.508 1 0 2 002 12 003 15 580 min -276.922 2 -560.273 3 5.915 12 0 3 042 4 212 3 581 6 max 475.586			2													
576 min -278.133 2 -558.326 3 5.915 12 0 3 144 1 802 3 577 4 max 474.678 3 545.453 2 107.508 1 0 2 005 12 .189 1 578 min -277.528 2 -559.3 3 5.915 12 0 3 087 1 -508 3 579 5 max 475.132 3 544.155 2 107.508 1 0 2 002 12 003 15 580 min -276.922 2 -560.273 3 5.915 12 0 3 042 4 212 3 581 6 max 475.586 3 542.856 2 107.508 1 0 2 .026 1 .084 3 582 min -276.317 2											_			_		
577 4 max 474.678 3 545.453 2 107.508 1 0 2 005 12 .189 1 578 min -277.528 2 -559.3 3 5.915 12 0 3 087 1 508 3 579 5 max 475.132 3 544.155 2 107.508 1 0 2 002 12 003 15 580 min -276.922 2 -560.273 3 5.915 12 0 3 042 4 212 3 581 6 max 475.586 3 542.856 2 107.508 1 0 2 .026 1 .084 3 582 min -276.317 2 -561.247 3 5.915 12 0 3 021 5 399 2 583 7 max 476.04			3													
578 min -277.528 2 -559.3 3 5.915 12 0 3 087 1 508 3 579 5 max 475.132 3 544.155 2 107.508 1 0 2 002 12 003 15 580 min -276.922 2 -560.273 3 5.915 12 0 3 042 4 212 3 581 6 max 475.586 3 542.856 2 107.508 1 0 2 .026 1 .084 3 582 min -276.317 2 -561.247 3 5.915 12 0 3 021 5 399 2 583 7 max 476.04 3 541.558 2 107.508 1 0 2 .083 1 .38 3 584 min -275.711 2														_		
579 5 max 475.132 3 544.155 2 107.508 1 0 2 002 12 003 15 580 min -276.922 2 -560.273 3 5.915 12 0 3 042 4 212 3 581 6 max 475.586 3 542.856 2 107.508 1 0 2 .026 1 .084 3 582 min -276.317 2 -561.247 3 5.915 12 0 3 021 5 399 2 583 7 max 476.04 3 541.558 2 107.508 1 0 2 .083 1 .38 3 584 min -275.711 2 -562.221 3 5.915 12 0 3 008 5 685 2 585 8 max 476.494			4													_
580 min -276.922 2 -560.273 3 5.915 12 0 3 042 4 212 3 581 6 max 475.586 3 542.856 2 107.508 1 0 2 .026 1 .084 3 582 min -276.317 2 -561.247 3 5.915 12 0 3 021 5 399 2 583 7 max 476.04 3 541.558 2 107.508 1 0 2 .083 1 .38 3 584 min -275.711 2 -562.221 3 5.915 12 0 3 008 5 685 2 585 8 max 476.494 3 540.26 2 107.508 1 0 2 .14 1 .677 3 586 min -275.106 2										12						3
581 6 max 475.586 3 542.856 2 107.508 1 0 2 .026 1 .084 3 582 min -276.317 2 -561.247 3 5.915 12 0 3 021 5 399 2 583 7 max 476.04 3 541.558 2 107.508 1 0 2 .083 1 .38 3 584 min -275.711 2 -562.221 3 5.915 12 0 3 008 5 685 2 585 8 max 476.494 3 540.26 2 107.508 1 0 2 .14 1 .677 3 586 min -275.106 2 -563.194 3 5.915 12 0 3 .004 15 97 2 587 9 max 489.363 3 48.044 2 157.744 1 0 3 004 12 .792 3			5			3		2						12		
582 min -276.317 2 -561.247 3 5.915 12 0 3 021 5 399 2 583 7 max 476.04 3 541.558 2 107.508 1 0 2 .083 1 .38 3 584 min -275.711 2 -562.221 3 5.915 12 0 3 008 5 685 2 585 8 max 476.494 3 540.26 2 107.508 1 0 2 .14 1 .677 3 586 min -275.106 2 -563.194 3 5.915 12 0 3 .004 15 97 2 587 9 max 489.363 3 48.044 2 157.744 1 0 3 004 12 .792 3														4		
583 7 max 476.04 3 541.558 2 107.508 1 0 2 .083 1 .38 3 584 min -275.711 2 -562.221 3 5.915 12 0 3 008 5 685 2 585 8 max 476.494 3 540.26 2 107.508 1 0 2 .14 1 .677 3 586 min -275.106 2 -563.194 3 5.915 12 0 3 .004 15 97 2 587 9 max 489.363 3 48.044 2 157.744 1 0 3 004 12 .792 3			6			3		2		1	0		.026	1		
584 min -275.711 2 -562.221 3 5.915 12 0 3 008 5 685 2 585 8 max 476.494 3 540.26 2 107.508 1 0 2 .14 1 .677 3 586 min -275.106 2 -563.194 3 5.915 12 0 3 .004 15 97 2 587 9 max 489.363 3 48.044 2 157.744 1 0 3 004 12 .792 3	582					2		3	5.915	12		3	021	5	399	2
584 min -275.711 2 -562.221 3 5.915 12 0 3 008 5 685 2 585 8 max 476.494 3 540.26 2 107.508 1 0 2 .14 1 .677 3 586 min -275.106 2 -563.194 3 5.915 12 0 3 .004 15 97 2 587 9 max 489.363 3 48.044 2 157.744 1 0 3 004 12 .792 3			7					2		1	0	2	.083	1		3
585 8 max 476.494 3 540.26 2 107.508 1 0 2 .14 1 .677 3 586 min -275.106 2 -563.194 3 5.915 12 0 3 .004 15 97 2 587 9 max 489.363 3 48.044 2 157.744 1 0 3 004 12 .792 3										12		3		5		
586 min -275.106 2 -563.194 3 5.915 12 0 3 .004 15 97 2 587 9 max 489.363 3 48.044 2 157.744 1 0 3 004 12 .792 3			8											1		
587 9 max 489.363 3 48.044 2 157.744 1 0 3004 12 .792 3														15		
			9													

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	489.817	3	46.746	2	157.744	1	0	3	.001	1	.77	3
590			min	-200.79	2	.007	15	8.418	12	0	9	1	4	-1.136	2
591		11	max	490.271	3	45.448	2	157.744	1	0	3	.084	1	.749	3
592			min	-200.185	2	-1.563	6	8.418	12	0	9	059	5	-1.16	2
593		12	max	503.047	3	359.792	3	189.207	4	0	3	007	12	.652	3
594			min	-126.447	2	-639.35	2	5.432	12	0	2	256	4	-1.028	2
595		13	max	503.501	3	358.819	3	190.448	4	0	3	004	12	.463	3
596			min	-125.842	2	-640.648	2	5.432	12	0	2	156	4	69	2
597		14	max	503.956	3	357.845	3	191.69	4	0	3	001	12	.274	3
598			min	-125.236	2	-641.946	2	5.432	12	0	2	055	4	352	2
599		15	max	504.41	3	356.871	3	192.931	4	0	3	.047	4	.085	3
600			min	-124.631	2	-643.244	2	5.432	12	0	2	.001	12	036	1
601		16	max	504.864	3	355.898	3	194.173	4	0	3	.149	4	.327	2
602			min	-124.026	2	-644.543	2	5.432	12	0	2	.004	12	103	3
603		17	max	505.318	3	354.924	3	195.414	4	0	3	.251	4	.667	2
604			min	-123.42	2	-645.841	2	5.432	12	0	2	.007	12	291	3
605		18	max	-8.121	12	657.536	2	115.606	1	0	2	.261	4	.336	2
606			min	-177.129	1	-293.885	3	-83.349	5	0	3	.01	12	144	3
607		19	max	-7.818	12	656.238	2	115.606	1	0	2	.26	1	.012	3
608			min	-176.523	1	-294.859	3	-82.108	5	0	3	.013	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.115	2	.008	3 9.484e-3	2	NC	1	NC	1
2			min	636	4	017	3	004	2 -1.552e-3	3	NC	1	NC	1
3		2	max	0	1	.351	3	.04	1 1.091e-2	2	NC	5	NC	2
4			min	636	4	095	1	02	5 -1.581e-3	3	652.183	3	6094.732	1
5		3	max	0	1	.649	3	.097	1 1.233e-2	2	NC	5	NC	3
6			min	636	4	252	1	024	5 -1.61e-3	3	360.338	3	2494.648	1
7		4	max	0	1	.83	3	.146	1 1.376e-2	2	NC	5	NC	3
8			min	636	4	34	1	017	5 -1.638e-3	3	283.305	3	1651.597	1
9		5	max	0	1	.873	3	.171	1 1.518e-2	2	NC	5	NC	3
10			min	636	4	346	1	003	5 -1.667e-3	3	269.858	3	1407.984	1
11		6	max	0	1	.779	3	.165	1 1.66e-2	2	NC	5	NC	3
12			min	636	4	272	1	.008	15 -1.695e-3	3	301.594	3	1460.636	1
13		7	max	0	1	.578	3	.129	1 1.803e-2	2	NC	5	NC	3
14			min	636	4	135	1	.006	10 -1.724e-3	3	403.678	3	1867.966	1
15		8	max	0	1	.322	3	.074	1 1.945e-2	2	NC	4	NC	2
16			min	636	4	0	15	002	10 -1.752e-3	3	708.34	3	3265.668	1
17		9	max	0	1	.204	2	.027	3 2.087e-2	2	NC	4	NC	1
18			min	636	4	.005	15	008	10 -1.781e-3	3	2245.833	3	8824.274	4
19		10	max	0	1	.271	2	.026	3 2.23e-2	2	NC	3	NC	1
20			min	636	4	015	3	018	2 -1.809e-3	3	1545.403	2	NC	1
21		11	max	0	12	.204	2	.027	3 2.087e-2	2	NC	4	NC	1
22			min	636	4	.005	15	016	5 -1.781e-3	3	2245.833	3	NC	1
23		12	max	0	12	.322	3	.074	1 1.945e-2	2	NC	4	NC	2
24			min	636	4	0	15	016	5 -1.752e-3	3	708.34	3	3265.668	1
25		13	max	0	12	.578	3	.129	1 1.803e-2	2	NC	5	NC	3
26			min	636	4	135	1	005	5 -1.724e-3	3	403.678	3	1867.966	1
27		14	max	0	12	.779	3	.165	1 1.66e-2	2	NC	5	NC	3
28			min	636	4	272	1	.007	15 -1.695e-3	3	301.594	3	1460.636	1
29		15	max	0	12	.873	3	.171	1 1.518e-2	2	NC	5	NC	3
30			min	636	4	346	1	.013	10 -1.667e-3	3	269.858	3	1407.984	1
31		16	max	0	12	.83	3	.146	1 1.376e-2	2	NC	5	NC	3
32			min	636	4	34	1	.011	10 -1.638e-3	3	283.305	3	1651.597	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
33		17	max	0	12	.649	3	.097	1 1.233e-2	2	NC	_5_	NC	3
34			min	636	4	252	1	.006	10 -1.61e-3	3	360.338	3	2494.648	
35		18	max	0	12	.351	3	.04	1 1.091e-2	2	NC	5_	NC	2
36			min	636	4	095	1	0	10 -1.581e-3	3	652.183	3	6094.732	1
37		19	max	0	12	.115	2	.008	3 9.484e-3	2	NC	1	NC	1
38			min	636	4	017	3	004	2 -1.552e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.235	3	.008	3 5.624e-3	2	NC	1	NC	1
40			min	479	4	371	2	004	2 -4.212e-3	3	NC	1	NC	1
41		2	max	0	1	.588	3	.028	1 6.743e-3	2	NC	5	NC	2
42			min	479	4	699	2	03	5 -5.134e-3	3	680.709	3	7699.29	5
43		3	max	0	1	.886	3	.078	1 7.862e-3	2	NC	5	NC	3
44			min	479	4	983	2	035	5 -6.056e-3	3	368.934	3	3116.873	1
45		4	max	0	1	1.092	3	.125	1 8.981e-3	2	NC	15	NC	3
46			min	479	4	-1.191	2	024	5 -6.978e-3	3	280.198	3	1931.611	1
47		5	max	0	1	1.188	3	.152	1 1.01e-2	2	NC	15	NC	3
48			min	479	4	-1.307	2	003	5 -7.9e-3	3	252.047	3	1588.353	1
49		6	max	0	1	1.173	3	.15	1 1.122e-2	2	NC	15	NC	3
50		—	min	479	4	-1.33	2	.01	10 -8.822e-3	3	250.29	2	1610.34	1
51		7	max	0	1	1.069	3	.12	1 1.234e-2	2	NC	15	NC	3
52			min	479	4	-1.275	2	.005	10 -9.744e-3	3	265.545	2	2025.902	1
53		8	max	473	1	.912	3	.003	1 1.346e-2	2	NC	15	NC	2
54			min	479	4	-1.171	2	001	10 -1.067e-2	3	299.998	2	3492.614	1
55		9	max	0	1	.76	3	.04	4 1.458e-2	2	NC	5	NC	1
56		-	min	479	4	-1.063	2	008	10 -1.159e-2	3	346.726	2	6022.838	
57		10	max	473 0	1	.689	3	.024	3 1.569e-2	2	NC	5	NC	1
58		10	min	479	4	-1.011	2	016	2 -1.251e-2	3	374.894	2	NC	1
59		11			12	.76	3	.024	3 1.458e-2	2	NC	5	NC	1
60		+	max	0 48	4	-1.063	2	029	5 -1.159e-2	3	346.726	2	8154.725	_
61		12	max	40	12	.912	3	.07	1 1.346e-2	2	NC	15	NC	2
62		12	min	48	4	-1.171	2	034	5 -1.067e-2	3	299.998	2	3492.614	1
63		13	max	40 0	12	1.069	3	.12	1 1.234e-2	2	NC	15	NC	3
64		13	min	48	4	-1.275	2	021	5 -9.744e-3	3	265.545	2	2025.902	1
65		14	max	46 0	12	1.173	3	.15	1 1.122e-2	2	NC	15	NC	3
66		14		48	4	-1.33	2	0	15 -8.822e-3	3	250.29	2	1610.34	1
67		15	min	46 0	12	1.188	3	.152	1 1.01e-2	2	NC	15	NC	3
68		15	max	48	4	-1.307	2	.011	10 -7.9e-3	3	252.047	3	1588.353	1
		16	min							_	NC	_	NC	1
69		16	max	0	12	1.092 -1.191	2	.125	1 8.981e-3	2		<u>15</u>		3
70		47	min	48	12			.009	10 -6.978e-3	3	280.198	3	1931.611	
71		17	max	0		.886	3	.078	1 7.862e-3	2	NC 200,004	5	NC 0446 070	3
72		40	min	48	4	<u>983</u>	2	.005	10 -6.056e-3	3	368.934		3116.873	1
73		18		0	12	.588	3	.041	4 6.743e-3	2	NC	_5_	NC 5000,004	2
74		40	min	48	4	699	2	0	10 -5.134e-3	3	680.709	3	5809.001	4
75		19	max	0	12	.235	3	.008	3 5.624e-3	2	NC NC	1_	NC NC	1
76			min	48	4	371	2	004	2 -4.212e-3	3	NC	1_	NC	1
77	M15	1_	max	0	12	.241	3	.007	3 3.566e-3	3_	NC	_1_	NC NC	1
78			min	<u>393</u>	4	37	2	004	2 -5.846e-3	2	NC	<u>1</u>	NC NC	1
79		2	max	0	12	.459	3	.028	1 4.352e-3	3_	NC 570 444	_5_	NC 5040,000	2
80		+_	min	393	4	<u>789</u>	2	04	5 -7.013e-3	2	573.111	2	5819.333	
81		3	max	0	12	.649	3	.078	1 5.138e-3	3_	NC 000 500	5	NC 0407.500	3
82			min	393	4	<u>-1.145</u>	2	048	5 -8.181e-3	2	309.508	2	3107.598	
83		4	max	0	12	.79	3	.126	1 5.924e-3	3_	NC	<u>15</u>	NC 1000 050	3
84			min	<u>393</u>	4	<u>-1.397</u>	2	034	5 -9.348e-3	2	233.602	2	1926.952	
85		5_	max	0	12	<u>.871</u>	3	.153	1 6.709e-3	3_	NC	<u>15</u>	NC	3
86			min	393	4	-1.523	2	008	5 -1.051e-2	2	208.086	2	1584.707	
87		6	max	0	12	.893	3	.151	1 7.495e-3	3_	NC	<u>15</u>	NC	3
88		-	min	<u>393</u>	4	<u>-1.523</u>	2	.01	10 -1.168e-2	2	208.085	2	1606.288	
89		7	max	0	12	.863	3	.12	1 8.281e-3	3	NC	15	NC	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	393	4	-1.419	2	.006	10 -1.285e-2	2	228.851	2	2019.255	
91		8	max	0	12	.801	3	.072	4 9.067e-3	3	NC	15	NC	2
92			min	393	4	-1.252	2	0		2	272.106	2	3309.799	4
93		9	max	0	12	.735	3	.049	4 9.853e-3	3	NC	5	NC	1
94			min	393	4	-1.087	2	007	10 -1.518e-2	2	334.659	2	4916.918	4
95		10	max	0	1	.703	3	.022	3 1.064e-2	3	NC	5_	NC	1
96			min	393	4	-1.009	2	015	2 -1.635e-2	2	375.385	2	NC	1
97		11	max	0	1	.735	3	.023	3 9.853e-3	3	NC	5	NC	1
98			min	393	4	-1.087	2	038	5 -1.518e-2	2	334.659	2	6245.879	5
99		12	max	0	1	.801	3	.07	1 9.067e-3	3	NC	15	NC	2
100			min	393	4	-1.252	2	044	5 -1.402e-2	2	272.106	2	3472.689	1
101		13	max	0	1	.863	3	.12	1 8.281e-3	3	NC	15	NC	3
102			min	393	4	-1.419	2	029	5 -1.285e-2	2	228.851	2	2019.255	1
103		14	max	0	1	.893	3	.151	1 7.495e-3	3	NC	15	NC	3
104			min	393	4	-1.523	2	002	5 -1.168e-2	2	208.085	2	1606.288	1
105		15	max	0	1	.871	3	.153	1 6.709e-3	3	NC	15	NC	3
106			min	393	4	-1.523	2	.012	10 -1.051e-2	2	208.086	2	1584.707	1
107		16	max	0	1	.79	3	.126	1 5.924e-3	3	NC	15	NC	3
108			min	393	4	-1.397	2	.01	10 -9.348e-3	2	233.602	2	1926.952	1
109		17	max	0	1	.649	3	.078	1 5.138e-3	3	NC	5	NC	3
110			min	393	4	-1.145	2	.005	10 -8.181e-3	2	309.508	2	3088.482	4
111		18	max	0	1	.459	3	.051	4 4.352e-3	3	NC	5	NC	2
112			min	392	4	789	2	0	10 -7.013e-3	2	573.111	2	4660.974	4
113		19	max	0	1	.241	3	.007	3 3.566e-3	3	NC	1	NC	1
114			min	392	4	37	2	004	2 -5.846e-3	2	NC	1	NC	1
115	M16	1	max	0	12	.103	2	.006	3 6.364e-3	3	NC	1	NC	1
116			min	145	4	079	3	003	2 -7.974e-3	2	NC	1	NC	1
117		2	max	0	12	.041	3	.04	1 7.509e-3	3	NC	5	NC	2
118			min	145	4	188	2	031	5 -9.04e-3	2	824.231	2	6132.255	
119		3	max	0	12	.134	3	.097	1 8.654e-3	3	NC	5	NC	3
120			min	145	4	42	2	038	5 -1.011e-2	2	458.528	2	2500.949	
121		4	max	0	12	.184	3	.146	1 9.8e-3	3	NC	5	NC	3
122			min	145	4	554	2	028	5 -1.117e-2	2	365.144	2	1652.287	1
123		5	max	0	12	.181	3	.172	1 1.095e-2	3	NC	5	NC	3
124			min	145	4	572	2	009	5 -1.224e-2	2	355.748	2	1405.939	
125		6	max	0	12	.129	3	.166	1 1.209e-2	3	NC	5	NC	3
126			min	145	4	476	2	.008	15 -1.33e-2	2	414.744	2	1455.085	
127		7	max	0	12	.037	3	.13	1 1.324e-2	3	NC	5	NC	3
128		1	min	145	4	291	2	.008	10 -1.437e-2	2	609.373	2	1853.256	
129		8	max	0	12	.008	9	.076	1 1.438e-2	3	NC	3	NC	2
130		1	min		4	072	3	0	10 -1.544e-2		1446.332	2	3205.88	1
131		9	max	0	12	.154	1	.035	4 1.553e-2	3	NC	4	NC	1
132			min	145	4	168	3	006	10 -1.65e-2	2	2700.536	3	6826.169	_
133		10	max	0	1	.232	2	.019	3 1.667e-2	3	NC	4	NC	1
134		10	min	145	4	211	3	014	2 -1.757e-2	2	1821.62	1	NC	1
135		11	max	0	1	.154	1	.021	1 1.553e-2	3	NC	4	NC	1
136			min	145	4	168	3	024	5 -1.65e-2	2	2700.536	3	9760.83	5
137		12	max	0	1	.008	9	.076	1 1.438e-2	3	NC	3	NC	2
138		12	min	145	4	072	3	026	5 -1.544e-2	2	1446.332	2	3205.88	1
139		13		0	1	.037	3	.13	1 1.324e-2		NC	5	NC	3
140		13	max min	145	4	291	2	012	5 -1.437e-2	2	609.373	2	1853.256	
		11		_	_	<u>291</u> .129	3			3	NC	5	NC	3
141		14	max	145	1			.166	1 1.209e-2					
142		4.5	min	145	4	476	2	.006	15 -1.33e-2	2	414.744	2	1455.085	
143		15	max	0	1	.181	3	.172	1 1.095e-2	3	NC 255.740	5	NC	3
144		40	min	145	4	572	2	.014	10 -1.224e-2	2	355.748	2	1405.939	
145		16	max	0	1	.184	3	.146	1 9.8e-3	3	NC 205 4 4 4	5	NC 4050,007	3
146			min	145	4	554	2	.012	10 -1.117e-2	2	365.144	2	1652.287	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	1	x Rotate [r					
147		17	max	0	1	.134	3	.097	1	8.654e-3	3	NC	5	NC	3
148			min	145	4	42	2	.007	10	-1.011e-2	2	458.528	2	2500.949	
149		18	max	0	1	.041	3	.046	4	7.509e-3	3	NC	5	NC	2
150		40	min	<u>145</u>	4	188	2	.002	10	-9.04e-3	2	824.231	2	5181.555	
151		19	max	.001	1	.103	2	.006	3	6.364e-3	3	NC NC	1_1	NC NC	1
152	MO	1	min	145	2	079	3	003	2	-7.974e-3	2	NC NC	<u>1</u> 1	NC NC	2
153	<u>M2</u>	1	max	.007	3	.007	3	.008	1	1.478e-3	5	NC 9039.916	2		
154 155		2	min	008 .006	2	012 .006	2	<u>597</u> .008	1	-2.298e-4 1.573e-3	<u>1</u> 5	NC	1	105.113 NC	2
156			max min	008	3	011	3	548	4	-2.156e-4	1	NC NC	1	114.434	4
157		3	max	.006	2	.005	2	.007	1	1.667e-3	5	NC NC	1	NC	2
158		-	min	008	3	011	3	5	4	-2.014e-4	1	NC	1	125.499	4
159		4	max	.005	2	.004	2	.006	1	1.761e-3	5	NC	1	NC	2
160		7	min	007	3	01	3	452	4	-1.872e-4	1	NC	1	138.763	4
161		5	max	.005	2	.003	2	.006	1	1.855e-3	5	NC	1	NC	1
162		<u> </u>	min	007	3	01	3	405	4	-1.73e-4	1	NC	1	154.839	4
163		6	max	.005	2	.003	2	.005	1	1.95e-3	5	NC	1	NC	1
164			min	006	3	009	3	359	4	-1.588e-4	1	NC	1	174.579	4
165		7	max	.004	2	.002	2	.004	1	2.044e-3	5	NC	1	NC	1
166			min	006	3	009	3	315	4	-1.445e-4	1	NC	1	199.191	4
167		8	max	.004	2	.001	2	.004	1	2.138e-3	5	NC	1	NC	1
168			min	005	3	008	3	272	4	-1.303e-4	1	NC	1	230.433	4
169		9	max	.004	2	0	2	.003	1	2.233e-3	4	NC	1	NC	1
170			min	005	3	008	3	231	4	-1.161e-4	1	NC	1	270.944	4
171		10	max	.003	2	0	2	.003	1	2.332e-3	4	NC	1	NC	1
172			min	004	3	007	3	193	4	-1.019e-4	1	NC	1	324.843	4
173		11	max	.003	2	0	2	.002	1	2.431e-3	4	NC	1_	NC	1
174			min	004	3	007	3	157	4	-8.773e-5	1_	NC	1_	398.849	4
175		12	max	.003	2	0	15	.002	1	2.531e-3	4	NC	_1_	NC	1
176			min	003	3	006	3	124	4	-7.352e-5	_1_	NC	_1_	504.547	4
177		13	max	.002	2	0	15	.001	1	2.63e-3	_4_	NC	_1_	NC	1
178			min	003	3	005	3	0 <u>95</u>	4	-5.932e-5	_1_	NC	1_	663.353	4
179		14	max	.002	2	0	15	0	1	2.73e-3	4_	NC		NC	1
180		4.5	min	002	3	004	3	068	4	-4.511e-5	1_	NC NC	1_	918.606	4
181		15	max	.001	2	0	15	0	1	2.829e-3	4_	NC NC	1_	NC	1
182		4.0	min	002	3	004	3	046	4	-3.091e-5	1_	NC NC	1_	1369.514	4
183		16	max	.001	3	0	15	0 027	1	2.928e-3	4	NC NC	1	NC	1
184		17	min	<u>001</u>		003	15		1	-1.67e-5	<u>1</u> 4		1	2287.553	1
185 186		17	max min	<u> </u>	3	0 002	3	0 013	4	3.028e-3 -2.497e-6	1	NC NC	1	NC 4663.292	4
187		1Ω	max	0	2	002 0	15	013 0	1	3.127e-3		NC NC	1	NC	1
188		10	min	0	3	0	3	004	4	3.407e-7	12	NC	1	NC	1
189		19	max	0	1	0	1	0	1	3.226e-3	4	NC	1	NC	1
190		13	min	0	1	0	1	0	1	1.146e-6	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-3.94e-7	12	NC	1	NC	1
192	1410		min	0	1	0	1	0	1	-7.884e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.015	4	1.555e-5	1	NC	1	NC	1
194			min	0	2	002	6	0	12	-1.211e-4	5	NC	1	NC	1
195		3	max	0	3	0	15	.029	4	5.514e-4	4	NC	1	NC	1
196			min	0	2	003	6	0	12	2.025e-6	12	NC	1	NC	1
197		4	max	.001	3	001	15	.043	4	1.221e-3	4	NC	1	NC	1
198			min	0	2	005	6	0	12	3.235e-6	12	NC	1	9911.366	5
199		5	max	.001	3	002	15	.055	4	1.891e-3	4	NC	1	NC	1
200			min	001	2	007	6	0	12	4.445e-6	12	NC	1	8888.794	5
201		6	max	.002	3	002	15	.066	4	2.561e-3	4	NC	1	NC	1
202			min	002	2	009	6	0	12	5.654e-6	12	NC	1_	8709.165	
203		7	max	.002	3	002	15	.077	4	3.231e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

204	5
Decoration Dec	
207	1
Min 002 2 013 6 0 12 9.283e-6 12 7307.259 6 NC	1
10 max	1
Description	1_
211 11 max .004 3 003 15 .114 4 5.911e-3 4 NC 2 NC 212 min 003 2 013 6 0 12 1.17e-5 12 7022.725 6 NC 213 12 max .004 3 003 15 .123 4 6.58e-3 4 NC 2 NC 214 min 003 2 013 6 0 12 1.291e-5 12 7236.388 6 NC 215 13 max .004 3 003 15 .133 4 7.25e-3 4 NC 1 NC 216 min 004 2 012 6 0 12 1.412e-5 12 7732.564 6 NC 217 14 max .005 3 002 15 .152 4 8.59e-3 <td< td=""><td>1</td></td<>	1
212	1
213 12 max .004 3 003 15 .123 4 6.58e-3 4 NC 2 NC 214 min 003 2 013 6 0 12 1.291e-5 12 7236.388 6 NC 215 13 max .004 3 003 15 .133 4 7.25e-3 4 NC 1 NC 216 min 004 2 012 6 0 12 1.412e-5 12 7732.564 6 NC 217 14 max .005 3 002 15 .142 4 7.92e-3 4 NC 1 NC 218 min 004 2 011 6 0 12 1.533e-5 12 8621.934 6 NC 219 15 max .005 3 002 15 .152 4 8.59e-3 <td< td=""><td>1</td></td<>	1
214 min 003 2 013 6 0 12 1.291e-5 12 7236.388 6 NC 215 13 max .004 3 003 15 .133 4 7.25e-3 4 NC 1 NC 216 min 004 2 012 6 0 12 1.412e-5 12 7732.564 6 NC 217 14 max .005 3 002 15 .142 4 7.92e-3 4 NC 1 NC 218 min 004 2 011 6 0 12 1.533e-5 12 8621.934 6 NC 219 15 max .005 3 002 15 .152 4 8.59e-3 4 NC 1 NC 220 min 004 2 009 6 0 12 1.654e-5 12	1
215 13 max .004 3 003 15 .133 4 7.25e-3 4 NC 1 NC 216 min 004 2 012 6 0 12 1.412e-5 12 7732.564 6 NC 217 14 max .005 3 002 15 .142 4 7.92e-3 4 NC 1 NC 218 min 004 2 011 6 0 12 1.533e-5 12 8621.934 6 NC 219 15 max .005 3 002 15 .152 4 8.59e-3 4 NC 1 NC 220 min 004 2 009 6 0 12 1.654e-5 12 NC 1 NC 221 16 max .006 3 001 15 .163 4 9.26e-3 4 <td>1</td>	1
216 min 004 2 012 6 0 12 1.412e-5 12 7732.564 6 NC 217 14 max .005 3 002 15 .142 4 7.92e-3 4 NC 1 NC 218 min 004 2 011 6 0 12 1.533e-5 12 8621.934 6 NC 219 15 max .005 3 002 15 .152 4 8.59e-3 4 NC 1 NC 220 min 004 2 009 6 0 12 1.654e-5 12 NC 1 NC 221 16 max .006 3 001 15 .163 4 9.26e-3 4 NC 1 NC 222 min 005 2 007 1 0 12 1.775e-5 12 NC <td>1</td>	1
217 14 max .005 3 002 15 .142 4 7.92e-3 4 NC 1 NC 218 min 004 2 011 6 0 12 1.533e-5 12 8621.934 6 NC 219 15 max .005 3 002 15 .152 4 8.59e-3 4 NC 1 NC 220 min 004 2 009 6 0 12 1.654e-5 12 NC 1 NC 221 16 max .006 3 001 15 .163 4 9.26e-3 4 NC 1 NC 222 min 005 2 007 1 0 12 1.775e-5 12 NC 1 NC 223 17 max .006 3 0 15 .174 4 9.93e-3 4	1
218 min 004 2 011 6 0 12 1.533e-5 12 8621.934 6 NC 219 15 max .005 3 002 15 .152 4 8.59e-3 4 NC 1 NC 220 min 004 2 009 6 0 12 1.654e-5 12 NC 1 NC 221 16 max .006 3 001 15 .163 4 9.26e-3 4 NC 1 NC 222 min 005 2 007 1 0 12 1.775e-5 12 NC 1 NC 223 17 max .006 3 0 15 .174 4 9.93e-3 4 NC 1 NC 224 min 005 2 006 1 0 12 1.896e-5 12 NC	1
219 15 max .005 3 002 15 .152 4 8.59e-3 4 NC 1 NC 220 min 004 2 009 6 0 12 1.654e-5 12 NC 1 NC 221 16 max .006 3 001 15 .163 4 9.26e-3 4 NC 1 NC 222 min 005 2 007 1 0 12 1.775e-5 12 NC 1 NC 223 17 max .006 3 0 15 .174 4 9.93e-3 4 NC 1 NC 224 min 005 2 006 1 0 12 1.896e-5 12 NC 1 NC 225 18 max .006 3 0 15 .187 4 1.06e-2 4 NC 1 NC 226 min 005 2 004 1	1
220 min 004 2 009 6 0 12 1.654e-5 12 NC 1 NC 221 16 max .006 3 001 15 .163 4 9.26e-3 4 NC 1 NC 222 min 005 2 007 1 0 12 1.775e-5 12 NC 1 NC 223 17 max .006 3 0 15 .174 4 9.93e-3 4 NC 1 NC 224 min 005 2 006 1 0 12 1.896e-5 12 NC 1 NC 225 18 max .006 3 0 15 .187 4 1.06e-2 4 NC 1 NC 226 min 005 2 004 1 0 12 2.017e-5 12 NC 1	1
221 16 max .006 3 001 15 .163 4 9.26e-3 4 NC 1 NC 222 min 005 2 007 1 0 12 1.775e-5 12 NC 1 NC 223 17 max .006 3 0 15 .174 4 9.93e-3 4 NC 1 NC 224 min 005 2 006 1 0 12 1.896e-5 12 NC 1 NC 225 18 max .006 3 0 15 .187 4 1.06e-2 4 NC 1 NC 226 min 005 2 004 1 0 12 2.017e-5 12 NC 1 NC 227 19 max .007 3 0 5 .201 4 1.127e-2 4 NC	1
222 min 005 2 007 1 0 12 1.775e-5 12 NC 1 NC 223 17 max .006 3 0 15 .174 4 9.93e-3 4 NC 1 NC 224 min 005 2 006 1 0 12 1.896e-5 12 NC 1 NC 225 18 max .006 3 0 15 .187 4 1.06e-2 4 NC 1 NC 226 min 005 2 004 1 0 12 2.017e-5 12 NC 1 NC 227 19 max .007 3 0 5 .201 4 1.127e-2 4 NC 1 NC 228 min 005 2 003 1 0 12 2.138e-5 12 NC 1	1
223 17 max .006 3 0 15 .174 4 9.93e-3 4 NC 1 NC 224 min 005 2 006 1 0 12 1.896e-5 12 NC 1 NC 225 18 max .006 3 0 15 .187 4 1.06e-2 4 NC 1 NC 226 min 005 2 004 1 0 12 2.017e-5 12 NC 1 NC 227 19 max .007 3 0 5 .201 4 1.127e-2 4 NC 1 NC 228 min 005 2 003 1 0 12 2.138e-5 12 NC 1 NC 229 M4 1 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC 230 min 0 3 007 3 201 4 <	1
224 min 005 2 006 1 0 12 1.896e-5 12 NC 1 NC 225 18 max .006 3 0 15 .187 4 1.06e-2 4 NC 1 NC 226 min 005 2 004 1 0 12 2.017e-5 12 NC 1 NC 227 19 max .007 3 0 5 .201 4 1.127e-2 4 NC 1 NC 228 min 005 2 003 1 0 12 2.138e-5 12 NC 1 NC 229 M4 1 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC 230 min 0 3 007 3 201 4 -2.289e-4 5 NC	1
225 18 max .006 3 0 15 .187 4 1.06e-2 4 NC 1 NC 226 min 005 2 004 1 0 12 2.017e-5 12 NC 1 NC 227 19 max .007 3 0 5 .201 4 1.127e-2 4 NC 1 NC 228 min 005 2 003 1 0 12 2.138e-5 12 NC 1 NC 229 M4 1 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC 230 min 0 3 007 3 201 4 -2.289e-4 5 NC 1 123.142 231 2 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC	1
226 min 005 2 004 1 0 12 2.017e-5 12 NC 1 NC 227 19 max .007 3 0 5 .201 4 1.127e-2 4 NC 1 NC 228 min 005 2 003 1 0 12 2.138e-5 12 NC 1 NC 229 M4 1 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC 230 min 0 3 007 3 201 4 -2.289e-4 5 NC 1 123.142 231 2 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC	1
228 min 005 2 003 1 0 12 2.138e-5 12 NC 1 NC 229 M4 1 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC 230 min 0 3 007 3 201 4 -2.289e-4 5 NC 1 123.142 231 2 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC	1
229 M4 1 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC 230 min 0 3 007 3 201 4 -2.289e-4 5 NC 1 123.142 231 2 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC	1
230 min 0 3007 3201 4 -2.289e-4 5 NC 1 123.142 231 2 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC	1
231 2 max .003 1 .005 2 0 12 6.039e-5 1 NC 1 NC	3
	4
222	3
	4
233 3 max .002 1 .004 2 0 12 6.039e-5 1 NC 1 NC	3
234 min 0 3006 3169 4 -2.289e-4 5 NC 1 146.71	4
235 4 max .002 1 .004 2 0 12 6.039e-5 1 NC 1 NC	2
236 min 0 3006 3153 4 -2.289e-4 5 NC 1 162.093	4
237 5 max .002 1 .004 2 0 12 6.039e-5 1 NC 1 NC	2
238 min 0 3005 3137 4 -2.289e-4 5 NC 1 180.775	4_
239 6 max .002 1 .004 2 0 12 6.039e-5 1 NC 1 NC	2
240 min 0 3005 3122 4 -2.289e-4 5 NC 1 203.757 241 7 max .002 1 .003 2 0 12 6.039e-5 1 NC 1 NC	2
	2
243 8 max .002 1 .003 2 0 12 6.039e-5 1 NC 1 NC 244 min 0 3004 3092 4 -2.289e-4 5 NC 1 268.958	4
245 9 max .002 1 .003 2 0 12 6.039e-5 1 NC 1 208.958	2
246 min 0 3004 3078 4 -2.289e-4 5 NC 1 316.371	4
247	2
248 min 0 3003 3065 4 -2.289e-4 5 NC 1 379.577	4
249 11 max .001 1 .002 2 0 12 6.039e-5 1 NC 1 NC	1
250 min 0 3003 3053 4 -2.289e-4 5 NC 1 466.556	4
251	1
252 min 0 3003 3042 4 -2.289e-4 5 NC 1 591.109	4
253 13 max 0 1 .002 2 0 12 6.039e-5 1 NC 1 NC	1
254 min 0 3002 3032 4 -2.289e-4 5 NC 1 778.855	4
255	1
256 min 0 3002 3023 4 -2.289e-4 5 NC 1 1081.909	4
257 15 max 0 1 .001 2 0 12 6.039e-5 1 NC 1 NC	
258 min 0 3002 3015 4 -2.289e-4 5 NC 1 1620.377	1
259 16 max 0 1 0 2 0 12 6.039e-5 1 NC 1 NC	4
260 min 0 3001 3009 4 -2.289e-4 5 NC 1 2726.278	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

261	Member	Sec 17	max	x [in]	LC 1	y [in] 0	LC 2	z [in]	LC 12	x Rotate [r 6.039e-5	LC 1	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
262		11/	min	0	3	0	3	004	4	-2.289e-4	5	NC	1	5630.399	4
263		18	max	0	1	0	2	0	12	6.039e-5	1	NC	-	NC	1
264		10	min	0	3	0	3	001	4	-2.289e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	6.039e-5	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	-2.289e-4	5	NC	1	NC	1
267	M6	1	max	.021	2	.026	2	0	1	1.562e-3	4	NC	4	NC	1
268	IVIO		min	028	3	037	3	602	4	0	1	1676.308	3	104.144	4
269		2	max	.020	2	.024	2	0	1	1.654e-3	4	NC	4	NC	1
270			min	026	3	035	3	553	4	0	1	1777.845	3	113.381	4
271		3	max	.019	2	.022	2	<u>.555</u>	1	1.747e-3	4	NC	4	NC	1
272		+ •	min	025	3	033	3	504	4	0	1	1892.461	3	124.347	4
273		4	max	.023	2	.02	2	<u>.504</u>	1	1.839e-3	4	NC	4	NC	1
274			min	023	3	031	3	456	4	0	1	2022.827	3	137.491	4
275		5	max	.016	2	.018	2	450	1	1.932e-3	4	NC	4	NC	1
276		+	min	022	3	029	3	409	4	0	1	2172.378	3	153.423	4
277		6	max	.015	2	.016	2	0	1	2.024e-3	4	NC	4	NC	1
278		T -	min	02	3	027	3	363	4	0	1	2345.609	3	172.988	4
279		7	max	.014	2	.014	2	<u>.505</u>	1	2.116e-3	4	NC	1	NC	1
280		+ '	min	019	3	025	3	318	4	0	1	2548.516	3	197.382	4
281		8	max	.013	2	.012	2	<u>510</u> 0	1	2.209e-3	4	NC	1	NC	1
282		-	min	017	3	022	3	275	4	0	1	2789.278	3	228.347	4
283		9	max	.012	2	.02 <u>2</u> .01	2	<u>275</u> 0	1	2.301e-3	4	NC	<u> </u>	NC	1
284		9	min	015	3	02	3	234	4	0	1	3079.35	3	268.502	4
285		10		015 .01	2	.008	2	<u>234</u> 0	1	2.393e-3	4	NC	<u>ა</u> 1	NC	1
286		10	max min	014	3	018	3	195	4	0	1	3435.285	3	321.931	4
287		11		.009	2	.007	2	<u>195</u> 0	1	2.486e-3	4	NC	1	NC	1
288			max	012	3		3	159	4	0	1	3881.917	3	395.298	4
289		12	min		2	016	2		1	2.578e-3	4	NC	<u>ာ</u> 1	NC	1
		12	max	.008		.005	3	0		0	1	4458.283			
290 291		13	min	011 .007	2	014 .004	2	125 0	1	2.67e-3	4	NC	<u>3</u> 1	500.091 NC	1
292		13	max	00 <i>1</i>	3	012	3	095	4	0	1	5229.455	3	657.556	4
293		14	min	.006	2	.003	2	095 0	1	2.763e-3	4	NC	<u> </u>	NC	1
294		14	max	008	3	003	3	069	4	0	1	6312.582	3	910.693	4
		15							1	•	•		<u> </u>		1
295 296		15	max	.005 006	3	.002 008	3	0 046	4	2.855e-3 0	<u>4</u> 1	NC 7941.986	3	NC 1357.954	4
297		16	min	.003	2	.001	2	046 0	1	2.947e-3	4	NC	<u>3</u> 1	NC	1
298		10	max	005	3	006	3	028	4	_	1	NC NC	1	2268.853	4
		17	min		2	006 0	2	<u>020</u> 0	1	0	4		1	NC	1
299		17	max	.002	3		3			3.04e-3	1	NC NC	1	4627.34	
300 301		10	min max	003 .001	2	004	2	014	4	0 3.132e-3	4	NC NC	1	NC	4
302		10	min	002	3	002	3	004	4	0.1326-3	1	NC	1	NC	1
303		19		<u>002</u> 0	1	<u>002</u> 0	1	004 0	1	3.224e-3	4	NC	1	NC	1
		19	max	0	1			-	1	_	1	NC NC	1		1
304	1.17	1	min		1	0	1	0	1	0	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	
305 306	<u>M7</u>		max min	0	1	<u> </u>	1	0	1	0 -7.869e-4	4	NC NC	1	NC NC	1
307		2		.001	3	0	2	.015	4	0	1	NC NC	1	NC NC	1
			max	001	2	003	3	<u>.015</u>	1	-1.337e-4	4	NC NC	1	NC NC	1
308		2	min												
309		3	max	.002	3	0 005	3	.029	1	5.195e-4	<u>4</u> 1	NC NC	1	NC NC	1
310		1	min	002	2		15	.043	4	0 1.173e-3	4	NC NC	<u>1</u> 1	NC NC	1
311		4	max	.004	3	001						NC NC	_		
312		-	min	003		008	3	0	1	1 0260 2	1_1		1_1	9122.576	
313		5	max	.005	3	002	15	.055	4	1.826e-3	4	NC NC	1	NC	1
314		6	min	005	2	01	3	0	1	2.4700.2	1_1	NC NC	_	8098.639	
315		6	max	.006	3	002	15	.066	4	2.479e-3	4	NC	1	NC 7920 794	1
316		7	min	006	2	012	3	0	1	0	1_1	8801.616	3	7830.781	4
317		7	max	.007	3	003	15	.076	4	3.132e-3	4	NC	1_	NC	_1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	I.C.	(n) L/v Ratio	I.C.	(n) I /z Ratio	IC
318			min	007	2	013	3	0	1	0	1	7858.56	3	8098.518	
319		8	max	.008	3	003	15	.086	4	3.786e-3	4	NC	1	NC	1
320			min	008	2	014	3	0	1	0	1	7300.058	3	8919.47	4
321		9	max	.009	3	003	15	.096	4	4.439e-3	4	NC	1	NC	1
322			min	009	2	015	3	0	1	0	1	7010.879	3	NC	1
323		10	max	.011	3	003	15	.104	4	5.092e-3	4	NC	1_	NC	1
324			min	01	2	01 <u>5</u>	3	0	1	0	1	6939.278	3	NC	1
325		11	max	.012	3	003	15	.113	4	5.745e-3	4	NC	1_	NC	1_
326			min	011	2	015	3	0	1	0	1_	7061.86	4	NC	1
327		12	max	.013	3	003	15	.122	4	6.398e-3	4	NC	1	NC	1
328		40	min	012	2	<u>015</u>	3	0	1	0	1_	7274.833	4	NC	1
329		13	max	.014	3	003	15	.13	4	7.052e-3	4	NC	1	NC NC	1
330		4.4	min	014	2	014	3	0	1	7 705 - 0	1_1	7771.961	4_	NC NC	1
331		14	max	.015 015	3	003 013	15	.139	1	7.705e-3	<u>4</u> 1	NC 8664.303	1_1	NC NC	1
333		15	min max	.016	3	013 002	15	<u> </u>	4	8.358e-3	4	NC	<u>4</u> 1	NC NC	1
334		13	min	016	2	002	3	0	1	0.3366-3	1	NC NC	1	NC	1
335		16	max	.018	3	002	15	.159	4	9.011e-3	4	NC	+	NC	1
336		10	min	017	2	002	3	0	1	0	1	NC NC	1	NC	1
337		17	max	.019	3	001	15	.17	4	9.664e-3	4	NC	1	NC	1
338			min	018	2	009	3	0	1	0.00100	1	NC	1	NC	1
339		18	max	.02	3	0	15	.182	4	1.032e-2	4	NC	1	NC	1
340			min	019	2	007	3	0	1	0	1	NC	1	NC	1
341		19	max	.021	3	0	15	.196	4	1.097e-2	4	NC	1	NC	1
342			min	02	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.019	2	0	1	0	1	NC	1	NC	1
344			min	001	3	022	3	196	4	-3.012e-4	4	NC	1	126.853	4
345		2	max	.007	1	.018	2	0	1	0	1	NC	1	NC	1
346			min	001	3	02	3	18	4	-3.012e-4	4	NC	1	137.944	4
347		3	max	.007	1	.017	2	0	1	0	1_	NC	1_	NC	1_
348			min	001	3	019	3	164	4	-3.012e-4	4	NC	1	151.143	4
349		4	max	.006	1	.016	2	00	1	0	_1_	NC	1_	NC	1
350			min	001	3	018	3	149	4	-3.012e-4	4	NC	1_	166.998	4
351		5	max	.006	1	.015	2	0	1	0	_1_	NC	1_	NC	1
352			min	001	3	017	3	133	4	-3.012e-4	4	NC	1	186.252	4
353		6	max	.005	1	.014	2	0	1	0	1	NC	1	NC	1
354			min	0	3	016	3	<u>118</u>	4	-3.012e-4	4_	NC NC	1_	209.937	4
355		7	max	.005	1	.013	2	0	1	0	1	NC	1	NC 000 540	1
356		0	min	0	3	014	2	104	4	-3.012e-4	4	NC NC	1_	239.519	1
357		8	max	.005	-	.012		0	1	0	1_1	NC NC	1	NC	
358 359		9	min max	.004	3	013 .011	2	089 0	1	-3.012e-4	<u>4</u> 1	NC NC	<u>1</u> 1	277.134 NC	1
360		3	min	0	3	012	3	076	4	-3.012e-4	4	NC NC	1	325.998	4
361		10	max	.004	1	.012	2	<u>076</u> 0	1	0	1	NC	1	NC	1
362		10	min	0	3	011	3	063	4	-3.012e-4	4	NC	1	391.138	4
363		11	max	.003	1	.008	2	<u>.000</u>	1	0	1	NC	1	NC	1
364			min	0	3	01	3	052	4	-3.012e-4	4	NC	1	480.778	4
365		12	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
366			min	0	3	008	3	041	4	-3.012e-4	4	NC	1	609.144	4
367		13	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
368			min	0	3	007	3	031	4	-3.012e-4	4	NC	1	802.638	4
369		14	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
370			min	0	3	006	3	022	4	-3.012e-4	4	NC	1	1114.969	4
371		15	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
372			min	0	3	005	3	015	4	-3.012e-4	4	NC	1	1669.938	4
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374			min	0	3	004	3	009	4	-3.012e-4	4	NC	1	2809.737	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

375	Member	Sec 17	max	x [in]	LC 1	y [in] .002	LC 2	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
376		1	min	0	3	002	3	004	4	-3.012e-4	4	NC	1	5802.941	4
377		18	max	0	1	.001	2	0	1	0.0120 +	1	NC	1	NC	1
378		'	min	0	3	001	3	001	4	-3.012e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0.0120 +	1	NC	1	NC	1
380		10	min	0	1	0	1	0	1	-3.012e-4	4	NC	1	NC	1
381	M10	1	max	.007	2	.007	2	0	12	1.569e-3	4	NC	1	NC	2
382	14110		min	008	3	012	3	601	4	1.334e-5		9039.916	2	104.279	4
383		2	max	.006	2	.006	2	0	12	1.66e-3	4	NC	1	NC	2
384			min	008	3	011	3	552	4	1.254e-5	12	NC	1	113.528	4
385		3	max	.006	2	.005	2	<u>.552</u> 0	12	1.751e-3	4	NC	1	NC	2
386		—	min	008	3	011	3	504	4	1.173e-5	12	NC	1	124.509	4
387		4	max	.005	2	.004	2	<u>.504</u>	12	1.843e-3	4	NC	1	NC	2
388		 -	min	007	3	01	3	456	4	1.093e-5	12	NC	1	137.67	4
389		5	max	.005	2	.003	2	_ 450 0	12	1.934e-3	4	NC	1	NC	1
390		15	min	007	3	01	3	408	4	1.012e-5	12	NC	1	153.623	4
391		6	max	.005	2	.003	2	408 0	12	2.025e-3	4	NC	1	NC	1
392		10		006	3	009	3	362	4	9.317e-6	12	NC	1	173.214	4
		7	min		2	.002	2		12			NC NC	1	NC	
393		-	max	.004				0		2.116e-3	4		1		1
394		0	min	006	3	009	3	<u>317</u>	4	8.512e-6	12	NC NC		197.641	4
395		8	max	.004	2	.001	2	0	12	2.208e-3	4	NC NC	1	NC 220 C40	1
396		_	min	005	3	008	3	274	4	7.707e-6	12	NC NC	1_	228.649	4
397		9	max	.004	2	0	2	0	12	2.299e-3	4	NC NC	1	NC 000,050	1
398		10	min	005	3	008	3	233	4	6.902e-6	12	NC	1_	268.859	4
399		10	max	.003	2	0	2	0	12	2.39e-3	4	NC	1_	NC 000,000	1
400		4.4	min	004	3	007	3	<u>195</u>	4	6.098e-6	12	NC	1_	322.362	4
401		11	max	.003	2	0	2	0	12	2.481e-3	4	NC	1	NC	1
402		1.0	min	004	3	007	3	158	4	5.293e-6	12	NC	1_	395.832	4
403		12	max	.003	2	0	2	0	12	2.573e-3	4_	NC	1_	NC	1
404		1.0	min	003	3	006	3	125	4	4.488e-6	12	NC	1_	500.775	4
405		13	max	.002	2	001	2	0	12	2.664e-3	4	NC	1	NC 050.47	1
406			min	003	3	005	3	095	4	3.683e-6	12	NC	1_	658.47	4
407		14	max	.002	2	001	15	0	12	2.755e-3	4	NC	1	NC	1
408			min	002	3	004	3	069	4	2.878e-6	12	NC	1_	911.986	4
409		15	max	.001	2	0	15	0	12	2.846e-3	4_	NC	1_	NC	1
410		1.0	min	002	3	004	3	046	4	2.074e-6	12	NC	1_	1359.942	4
411		16	max	.001	2	0	15	0	12	2.938e-3	4_	NC	_1_	NC	1
412			min	001	3	003	3	028	4	1.269e-6	12	NC	<u>1</u>	2272.335	
413		17	max	0	2	0	15	0	12	3.029e-3	4_	NC	1_	NC	1
414		1.0	min	0	3	002	4	014	4	1.257e-7	10	NC	1_	4635.029	4
415		18	max	0	2	0	15	0	12			NC	1	NC	1
416			min	0	3	001	4	004	4	-1.171e-5	1_	NC	1_	NC	1
417		19	max	0	1	0	1	0	1	3.211e-3	4	NC	1	NC	1
418			min	0	1	0	1	0	1	-2.591e-5	1_	NC	1_	NC	1
419	<u>M11</u>	1	max	0	1	0	1	0	1	8.603e-6	_1_	NC	1	NC	1
420			min	0	1	0	1	0	1	-7.835e-4	4	NC	1_	NC	1
421		2	max	0	3	0	15	.015	4	-8.156e-7	12	NC	1	NC	1
422		_	min	0	2	002	4	0	1	-1.274e-4	4	NC	1_	NC	1
423		3	max	0	3	0	15	.029	4	5.287e-4	4	NC	_1_	NC	1
424			min	0	2	004	4	0	1	-3.971e-5	1_	NC	1_	NC	1
425		4	max	.001	3	001	15	.042	4	1.185e-3	4	NC	1	NC	1
426			min	0	2	006	4	0	1	-6.386e-5	1	NC	1	9502.498	4
427		5	max	.001	3	002	15	.054	4	1.841e-3	4	NC	_1_	NC	1
428			min	001	2	008	4	0	1	-8.802e-5	1_	NC	1_	8490.075	4
429		6	max	.002	3	002	15	.066	4	2.497e-3	4	NC	1	NC	1
430			min	002	2	01	4	0	1	-1.122e-4	1	9855.691	4	8277.053	
431		7	max	.002	3	003	15	.076	4	3.153e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

432		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
434												_				
435			8													
436																
437			9													
438			40									_		•		-
439			10													
440			11									_				
441																
442			12													
443			12													
444			13													•
445																
A46			14													1
447										1		1		4		1
449			15		.005	3	003	15		4		4		1	NC	1
450	448			min	004		01	4	005	1	-3.296e-4	1	9934.363	4		1
451	449		16	max	.006	3	002	15	.16	4	9.058e-3	4		1_	NC	1
452				min				4	006	1		1_		1_		1
18 max .006 3 .001 15 .183 4 1.037e-2 4 NC 1 NC 1 454 min .005 2 .004 1 .007 1 .4.02e-4 1 NC 1 NC 1 455 19 max .007 3 0 10 .197 4 1.103e-2 4 NC 1 NC 1 456 min .005 2 .003 1 .008 1 .4.262e-4 1 NC 1 NC 1 457 M12 1 max .003 1 .005 2 .003 1 .008 1 .4.262e-4 1 NC 1 NC 1 NC 1 458 min 0 3 .007 3 .197 4 .2.519e-4 4 NC 1 125.987 4 459 2 max .003 1 .005 2 .007 1 .3.33e-6 12 NC 1 NC 3 460 min 0 3 .006 3 .181 4 .2.519e-4 4 NC 1 125.987 4 461 3 max .002 1 .004 2 .007 1 .3.33e-6 12 NC 1 NC 3 462 min 0 3 .006 3 .165 4 .2.519e-4 4 NC 1 150.97 4 463 4 max .002 1 .004 2 .006 1 .3.33e-6 12 NC 1 NC 3 464 min 0 3 .006 3 .165 4 .2.519e-4 4 NC 1 150.1 4 465 5 max .002 1 .004 2 .006 1 .3.33e-6 12 NC 1 NC 2 464 min 0 3 .006 3 .155 4 .2.519e-4 4 NC 1 165.839 4 466 min 0 3 .006 3 .155 4 .2.519e-4 4 NC 1 165.839 4 466 min 0 3 .005 3 .134 4 .2.519e-4 4 NC 1 165.839 4 466 min 0 3 .005 3 .134 4 .2.519e-4 4 NC 1 165.839 4 466 min 0 3 .005 3 .134 4 .2.519e-4 4 NC 1 165.839 4 466 min 0 3 .005 3 .134 4 .2.519e-4 4 NC 1 165.839 4 468 min 0 3 .005 3 .119 4 .2.519e-4 4 NC 1 184.953 4 469 min 0 3 .005 3 .119 4 .2.519e-4 4 NC 1 184.953 4 4 4 4 4 4 4 4 4			17													
454												•		_		•
455			18								1.037e-2					-
456			10											•		-
457 M12			19													
458		N440	4			_						_				
459		IVI12	1													
460			2			_										
461											2 510c 4					
462			2									_				
463 4 max .002 1 .004 2 .006 1 -3.33e-6 12 NC 1 NC 2 464 min 0 3 006 3 15 4 -2.519e-4 4 NC 1 165.839 4 465 5 max .002 1 .004 2 .005 1 -3.33e-6 12 NC 1 NC 2 466 min 0 3 005 3 134 4 -2.519e-4 4 NC 1 NR 2 468 min 0 3 005 3 119 4 -2.519e-4 4 NC 1 NC 2 469 7 max .002 1 .003 2 .004 1 -3.33e-6 12 NC 1 NC 2 470 min 0 3 005 3			3			-				•						
464 min 0 3 006 3 15 4 -2.519e-4 4 NC 1 165.839 4 465 5 max .002 1 .004 2 .005 1 -3.33e-6 12 NC 1 NC 2 466 min 0 3 005 3 134 4 -2.519e-4 4 NC 1 184.953 4 467 6 max .002 1 .004 2 .005 1 -3.33e-6 12 NC 1 NC 2 468 min 0 3 005 3 119 4 -2.519e-4 4 NC 1 208.466 4 469 7 max .002 1 .003 2 .004 1 -3.33e-6 12 NC 1 NC 2 470 min 0 3 004 3 <td></td> <td></td> <td>4</td> <td></td> <td>•</td> <td></td> <td></td>			4											•		
465																
466			5											•		
467 6 max .002 1 .004 2 .005 1 -3.33e-6 12 NC 1 NC 2 468 min 0 3 005 3 119 4 -2.519e-4 4 NC 1 208.466 4 469 7 max .002 1 .003 2 .004 1 -3.33e-6 12 NC 1 NC 2 470 min 0 3 005 3 104 4 -2.519e-4 4 NC 1 NS 2 471 8 max .002 1 .003 2 .004 1 -3.33e-6 12 NC 1 NC 2 472 min 0 3 004 3 09 4 -2.519e-4 4 NC 1 NC 2 473 9 max .001 1 .002						3				4				1		
468 min 0 3 005 3 119 4 -2.519e-4 4 NC 1 208.466 4 469 7 max .002 1 .003 2 .004 1 -3.33e-6 12 NC 1 NC 2 470 min 0 3 005 3 104 4 -2.519e-4 4 NC 1 237.834 4 471 8 max .002 1 .003 2 .004 1 -3.33e-6 12 NC 1 NC 2 472 min 0 3 004 3 09 4 -2.519e-4 4 NC 1 NC 2 474 min 0 3 004 3 077 4 -2.519e-4 4 NC 1 323.686 4 475 10 max .001 1 .002 2<			6		.002					1				1		
470 min 0 3 005 3 104 4 -2.519e-4 4 NC 1 237.834 4 471 8 max .002 1 .003 2 .004 1 -3.33e-6 12 NC 1 NC 2 472 min 0 3 004 3 09 4 -2.519e-4 4 NC 1 NC 2 473 9 max .002 1 .003 2 .003 1 -3.33e-6 12 NC 1 NC 2 474 min 0 3 004 3 077 4 -2.519e-4 4 NC 1 NS 2 475 10 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 NC 1 NC 1 NC 1 NC <t< td=""><td></td><td></td><td></td><td>min</td><td></td><td>3</td><td>005</td><td>3</td><td></td><td>4</td><td></td><td>4</td><td>NC</td><td>1</td><td>208.466</td><td>4</td></t<>				min		3	005	3		4		4	NC	1	208.466	4
471 8 max .002 1 .003 2 .004 1 -3.33e-6 12 NC 1 NC 2 472 min 0 3 004 3 09 4 -2.519e-4 4 NC 1 275.176 4 473 9 max .002 1 .003 2 .003 1 -3.33e-6 12 NC 1 NC 2 474 min 0 3 004 3 077 4 -2.519e-4 4 NC 1 323.686 4 475 10 max .001 1 .002 2 .003 1 -3.33e-6 12 NC 1 NC 2 476 min 0 3 003 3 064 4 -2.519e-4 4 NC 1 388.353 4 477 11 max .001 1 .002 2 .002 1	469		7	max	.002	1	.003	2	.004	1	-3.33e-6	12	NC	1	NC	2
472 min 0 3 004 3 09 4 -2.519e-4 4 NC 1 275.176 4 473 9 max .002 1 .003 2 .003 1 -3.33e-6 12 NC 1 NC 2 474 min 0 3 004 3 077 4 -2.519e-4 4 NC 1 323.686 4 475 10 max .001 1 .002 2 .003 1 -3.33e-6 12 NC 1 NC 2 476 min 0 3 003 3 064 4 -2.519e-4 4 NC 1 388.353 4 477 11 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 479 12 max .001 1 .0	470			min	0	3	005	3	104	4	-2.519e-4	4	NC	1	237.834	4
473 9 max .002 1 .003 2 .003 1 -3.33e-6 12 NC 1 NC 2 474 min 0 3 004 3 077 4 -2.519e-4 4 NC 1 323.686 4 475 10 max .001 1 .002 2 .003 1 -3.33e-6 12 NC 1 NC 2 476 min 0 3 003 3 064 4 -2.519e-4 4 NC 1 388.353 4 477 11 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 478 min 0 3 003 3 052 4 -2.519e-4 4 NC 1 NC 1 480 min 0 3 003 3			8					2			-3.33e-6			_		
474 min 0 3 004 3 077 4 -2.519e-4 4 NC 1 323.686 4 475 10 max .001 1 .002 2 .003 1 -3.33e-6 12 NC 1 NC 2 476 min 0 3 003 3 064 4 -2.519e-4 4 NC 1 388.353 4 477 11 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 478 min 0 3 003 3 052 4 -2.519e-4 4 NC 1 477.343 4 479 12 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 480 min 0 3 002				min						4				1		
475 10 max .001 1 .002 2 .003 1 -3.33e-6 12 NC 1 NC 2 476 min 0 3 003 3 064 4 -2.519e-4 4 NC 1 388.353 4 477 11 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 478 min 0 3 003 3 052 4 -2.519e-4 4 NC 1 AV7.343 4 479 12 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 480 min 0 3 003 3 041 4 -2.519e-4 4 NC 1 NC 1 481 13 max 0 1 .002 <td></td> <td></td> <td>9</td> <td></td> <td>.002</td> <td></td> <td>2</td>			9		.002											2
476 min 0 3 003 3 064 4 -2.519e-4 4 NC 1 388.353 4 477 11 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 478 min 0 3 003 3 052 4 -2.519e-4 4 NC 1 477.343 4 479 12 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 480 min 0 3 003 3 041 4 -2.519e-4 4 NC 1 604.777 4 481 13 max 0 1 .002 2 .001 1 -3.33e-6 12 NC 1 NC 1 482 min 0 3 002 3 </td <td></td> <td>•</td> <td></td> <td>-</td>														•		-
477 11 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 478 min 0 3 003 3 052 4 -2.519e-4 4 NC 1 477.343 4 479 12 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 480 min 0 3 003 3 041 4 -2.519e-4 4 NC 1 604.777 4 481 13 max 0 1 .002 2 .001 1 -3.33e-6 12 NC 1 NC 1 482 min 0 3 002 3 031 4 -2.519e-4 4 NC 1 NC 1 483 14 max 0 1 .001			10													
478 min 0 3 003 3 052 4 -2.519e-4 4 NC 1 477.343 4 479 12 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 480 min 0 3 003 3 041 4 -2.519e-4 4 NC 1 604.777 4 481 13 max 0 1 .002 2 .001 1 -3.33e-6 12 NC 1 NC 1 482 min 0 3 002 3 031 4 -2.519e-4 4 NC 1 NG 1 483 14 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 484 min 0 3 002 3			4.4		_									_		
479 12 max .001 1 .002 2 .002 1 -3.33e-6 12 NC 1 NC 1 480 min 0 3 003 3 041 4 -2.519e-4 4 NC 1 604.777 4 481 13 max 0 1 .002 2 .001 1 -3.33e-6 12 NC 1 NC 1 482 min 0 3 002 3 031 4 -2.519e-4 4 NC 1 796.865 4 483 14 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 484 min 0 3 002 3 022 4 -2.519e-4 4 NC 1 106.923 4 485 15 max 0 1 .001			11													
480 min 0 3 003 3 041 4 -2.519e-4 4 NC 1 604.777 4 481 13 max 0 1 .002 2 .001 1 -3.33e-6 12 NC 1 NC 1 482 min 0 3 002 3 031 4 -2.519e-4 4 NC 1 796.865 4 483 14 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 484 min 0 3 002 3 022 4 -2.519e-4 4 NC 1 1106.923 4 485 15 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 486 min 0 3 002 3			40													
481 13 max 0 1 .002 2 .001 1 -3.33e-6 12 NC 1 NC 1 482 min 0 3 002 3 031 4 -2.519e-4 4 NC 1 796.865 4 483 14 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 484 min 0 3 002 3 022 4 -2.519e-4 4 NC 1 1106.923 4 485 15 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 486 min 0 3 002 3 015 4 -2.519e-4 4 NC 1 1657.847 4 487 16 max 0 1 0 2 0 1 -3.33e-6 12 NC 1 NC 1 <			12													
482 min 0 3 002 3 031 4 -2.519e-4 4 NC 1 796.865 4 483 14 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 484 min 0 3 002 3 022 4 -2.519e-4 4 NC 1 1106.923 4 485 15 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 486 min 0 3 002 3 015 4 -2.519e-4 4 NC 1 1657.847 4 487 16 max 0 1 0 2 0 1 -3.33e-6 12 NC 1 NC 1			12									_				
483 14 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 484 min 0 3 002 3 022 4 -2.519e-4 4 NC 1 1106.923 4 485 15 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 486 min 0 3 002 3 015 4 -2.519e-4 4 NC 1 1657.847 4 487 16 max 0 1 0 2 0 1 -3.33e-6 12 NC 1 NC 1			13			-										
484 min 0 3 002 3 022 4 -2.519e-4 4 NC 1 1106.923 4 485 15 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 486 min 0 3 002 3 015 4 -2.519e-4 4 NC 1 1657.847 4 487 16 max 0 1 0 2 0 1 -3.33e-6 12 NC 1 NC 1			14		_											
485 15 max 0 1 .001 2 0 1 -3.33e-6 12 NC 1 NC 1 486 min 0 3 002 3 015 4 -2.519e-4 4 NC 1 1657.847 4 487 16 max 0 1 0 2 0 1 -3.33e-6 12 NC 1 NC 1																
486 min 0 3 002 3 015 4 -2.519e-4 4 NC 1 1657.847 4 487 16 max 0 1 0 2 0 1 -3.33e-6 12 NC 1 NC 1			15											•		
487 16 max 0 1 0 2 0 1 -3.33e-6 12 NC 1 NC 1																
			16		_									_		
<u> 400 </u>	488			min	0	3	001	3	009	4	-2.519e-4	4	NC	1	2789.324	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
489		17	max	0	1	0	2	0	1	-3.33e-6	12	NC	1_	NC	1
490			min	0	3	0	3	004	4	-2.519e-4	4	NC	1_	5760.611	4
491		18	max	0	1	0	2	0	1	-3.33e-6	12	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-2.519e-4	4	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	-3.33e-6	12	NC	1_	NC	1
494			min	0	1	0	1	0	1	-2.519e-4	4	NC	1_	NC	1
495	M1	1	max	.008	3	.115	2	.636	4	1.558e-2	_1_	NC	<u>1</u>	NC	1
496			min	004	2	017	3	0	12	-2.863e-2	3	NC	1	NC	1
497		2	max	.008	3	.055	2	.616	4	8.29e-3	4	NC	4	NC	1
498			min	004	2	006	3	006	1	-1.416e-2	3	1911.484	2	NC	1
499		3	max	.008	3	.012	3	.596	4	1.361e-2	4	NC	5	NC	1
500			min	004	2	01	2	008	1	-1.588e-4	1	920.072	2	6872.773	5
501		4	max	.008	3	.046	3	.576	4	1.189e-2	4	NC	5	NC	1
502			min	004	2	083	2	008	1	-5.158e-3	3	579.753	2	4895.122	5
503		5	max	.008	3	.09	3	.555	4	1.016e-2	4	NC	5	NC	1
504			min	004	2	16	2	005	1	-1.018e-2	3	417.774	2	3899.814	5
505		6	max	.008	3	.138	3	.534	4	1.406e-2	2	NC	15	NC	1
506			min	004	2	235	2	002	1	-1.52e-2	3	328.649	2	3301.987	5
507		7	max	.008	3	.185	3	.512	4	1.874e-2	2	NC	15	NC	1
508			min	004	2	302	2	0	12	-2.022e-2	3	276.092	2	2887.723	4
509		8	max	.008	3	.223	3	.489	4	2.343e-2	2	9186.617	15	NC	1
510			min	004	2	355	2	0	12	-2.524e-2	3	245.028	2	2588.288	4
511		9	max	.007	3	.248	3	.465	4	2.661e-2	2	8585.626	15	NC	1
512			min	004	2	388	2	0	1	-2.528e-2	3	228.868	2	2404.061	4
513		10	max	.007	3	.258	3	.439	4	2.881e-2	2	8402.569	15	NC	1
514			min	004	2	399	2	0	12	-2.203e-2	3	224.121	2	2350.932	4
515		11	max	.007	3	.252	3	.41	4	3.1e-2	2	8585.338	15	NC	1
516			min	004	2	388	2	0	12	-1.877e-2	3	229.602	2	2405.135	4
517		12	max	.007	3	.23	3	.38	4	2.995e-2	2	9185.958	15	NC	1
518			min	004	2	353	2	001	1	-1.557e-2	3	247.27	2	2580.532	4
519		13	max	.007	3	.196	3	.346	4	2.402e-2	2	NC	15	NC	1
520		1	min	004	2	298	2	0	1	-1.247e-2	3	281.563	2	3030.391	4
521		14	max	.007	3	.153	3	.31	4	1.809e-2	2	NC	15	NC	1
522			min	004	2	229	2	0	12	-9.359e-3	3	340.362	2	3968.521	4
523		15	max	.006	3	.104	3	.273	4	1.217e-2	2	NC	5	NC	1
524		10	min	004	2	152	2	0	12	-6.252e-3	3	441.925	2	6004.923	4
525		16	max	.006	3	.053	3	.236	4	9.305e-3	4	NC	5	NC	1
526		10	min	004	2	076	2	0	12	-3.144e-3	3	630.778	2	NC	1
527		17	max	.006	3	.004	3	.202	4	1.045e-2	4	NC	5	NC	1
528		1,	min	003	2	006	2	0	12	-3.682e-5	3	1036.059	2	NC	1
529		18	max	.006	3	.052	2	.172		1.131e-2		NC	4	NC	1
530		10	min	003	2	039	3	0	12	-4.626e-3	3	2207.309	2	NC	1
531		19	max	.006	3	.103	2	.145	4	2.271e-2	2	NC	1	NC	1
532		15	min	003	2	079	3	001	1	-9.396e-3	3	NC	1	NC	1
533	M5	1	max	.026	3	.271	2	.636	4	0	1	NC	1	NC	1
534	IVIO		min	018	2	015	3	0	1	-4.513e-6	4	NC	1	NC	1
535		2	max	.026	3	.128	2	.62	4	6.986e-3	4	NC	5	NC	1
536		 			2	001	3	0	1	0.960e-3	1	809.914	2	9603.925	_
		2	min	018			3			1.376e-2					4
537 538		3	max	.026 018	3	.04 032	2	.602 0	1	0	<u>4</u> 1	NC 381.577	<u>5</u> 2	NC 5576.749	1
		1					3		-	-					4
539		4	max	.026	3	.131		.581	4	1.121e-2	4	9975.77	<u>15</u>	NC 4259.848	1
540		-	min	018	2	223	2	<u> </u>	4	0 0000	1_	233.973	2		
541		5	max	.025	3	.257	3	.558	1	8.661e-3	4	6981.387	<u>15</u>	NC 2616 001	1
542		_	min	017	2	429	2	<u>0</u>		0	1	164.918	2	3616.091	4
543		6	max	.025	3	.398	3	.535	4	6.112e-3	4	5375.235	<u>15</u>	NC	1
544		7	min	017	2	633	2	<u>0</u>	1	0	1_	127.61	2	3219.312	
545		7	max	.024	3	.537	3	.511	4	3.563e-3	4	4447.637	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			_
546			min	017	2	818	2	0	1	0	1_	105.94	2	2915.15	4
547		8	max	.024	3	.653	3	.488	4	1.014e-3	4		<u>15</u>	NC	1
548			min	016	2	<u>966</u>	2	0	1	0	1_	93.288	2	2631.996	
549		9	max	.023	3	.727	3	.465	4	0	1_	3631.662	15	NC	1
550		40	min	016	2	<u>-1.06</u>	2	0	1	-3.054e-6	5	86.781	2	2399.823	4
551		10	max	.023	3	.754	3	.439	1	0	1_	3548.328	<u>15</u>	NC 2266 694	1
552		11	min	016 .022	3	<u>-1.091</u> .736	3	<u> </u>	4	-2.948e-6	<u>5</u> 1	84.874 3631.765	<u>2</u> 15	2366.684 NC	1
553 554			max	016	2	-1.06	2	41 0	1	-2.841e-6	5	87.069	2	2432.401	4
555		12	max	.022	3	.672	3	.381	4	7.436e-4	4	3908.514	15	NC	1
556		12	min	015	2	962	2	0	1	0	1	94.231	2	2534.763	_
557		13	max	.021	3	.57	3	.347	4	2.613e-3	4	4448.14	15	NC	1
558		10	min	015	2	806	2	0	1	0	1	108.38	2	2980.887	4
559		14	max	.021	3	<u></u>	3	.309	4	4.483e-3	4	5376.223	15	NC	1
560			min	015	2	613	2	0	1	0	1	133.094	2	4138.016	
561		15	max	.02	3	.297	3	.27	4	6.352e-3	4	6983.349	15	NC	1
562			min	015	2	404	2	0	1	0	1	176.828	2	7419.21	4
563		16	max	.02	3	.151	3	.231	4	8.222e-3	4	9979.886	15	NC	1
564			min	014	2	198	2	0	1	0	1	260.757	2	NC	1
565		17	max	.019	3	.013	3	.196	4	1.009e-2	4	NC	5	NC	1
566			min	014	2	018	2	0	1	0	1	447.172	2	NC	1
567		18	max	.019	3	.119	1	.167	4	5.124e-3	4	NC	5	NC	1
568			min	014	2	105	3	0	1	0	1	986.783	2	NC	1
569		19	max	.019	3	.232	2	.145	4	0	1	NC	1	NC	1
570			min	014	2	211	3	0	1	-2.503e-6	4	NC	1	NC	1
571	M9	1	max	.008	3	.115	2	.636	4	2.863e-2	3	NC	_1_	NC	1
572			min	004	2	017	3	001	1	-1.558e-2	1_	NC	1_	NC	1
573		2	max	.008	3	.055	2	.62	4	1.416e-2	3	NC	4_	NC	1
574			min	004	2	006	3	0	12	-7.566e-3	1_	1911.484	2	9948.942	4
575		3	max	.008	3	.012	3	.601	4	1.373e-2	4	NC	5_	NC	1
576			min	004	2	01	2	0	12	-3.078e-5	<u>10</u>	920.072	2	5710.085	
577		4	max	.008	3	.046	3	.58	4	1.079e-2	5	NC 570.750	5_	NC 1007.017	1
578		-	min	004	2	083	2	0	12	-4.688e-3	2	579.753	2	4307.317	4
579		5	max	.008	3	.09	3	.558	4	1.018e-2	3	NC	5_	NC 2015 001	1
580		6	min	004	2	16	2	<u>0</u>	12	-9.373e-3	2	417.774 NC	<u>2</u> 15	3615.291	1
581 582		6	max	.008 004	3	.138 235	2	. <u>535</u> 0	12	1.52e-2 -1.406e-2	2	328.649	2	NC 3192.599	
583		7	min		3		3	.512	4	2.022e-2	3	NC	15	NC	1
584			max	.008 004	2	.185 302	2	<u></u> 0	1	-1.874e-2	2	276.092	2	2882.635	
585		8	max	.008	3	.223	3	.488	4	2.524e-2	3	9167.554	15	NC	1
586			min		2	355	2	0		-2.343e-2		245 028	2	2613.326	
587		9	max	.007	3	.248	3	.465	4	2.528e-2	3	8568.037	15	NC	1
588			min	004	2	388	2	0	12	-2.661e-2	2	228.868	2	2397.022	
589		10	max	.007	3	.258	3	.439	4	2.203e-2	3	8385.411	15	NC	1
590			min	004	2	399	2	0	1	-2.881e-2	2	224.121	2	2352.135	4
591		11	max	.007	3	.252	3	.41	4	1.877e-2	3	8567.756	15	NC	1
592			min	004	2	388	2	0	1	-3.1e-2	2	229.602	2	2414.154	4
593		12	max	.007	3	.23	3	.38	4	1.557e-2	3	9167.012	15	NC	1
594			min	004	2	353	2	0	12	-2.995e-2	2	247.27	2	2556.222	4
595		13	max	.007	3	.196	3	.346	4	1.247e-2	3	NC	15	NC	1
596			min	004	2	298	2	0	12	-2.402e-2	2	281.563	2	3031.612	4
597		14	max	.007	3	.153	3	.309	4	9.359e-3	3	NC	15	NC	1
598			min	004	2	229	2	002	1	-1.809e-2	2	340.362	2	4110.32	5
599		15	max	.006	3	.104	3	.27	4	6.252e-3	3	NC	5	NC	1
600			min	004	2	152	2	005	1	-1.217e-2	2	441.925	2	6705.617	5
601		16	max	.006	3	.053	3	.232	4	8.062e-3	5	NC	5	NC	1
602			min	004	2	076	2	007	1	-6.238e-3	2	630.778	2	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.006	3	.004	3	.198	4	1.016e-2	4	NC	5	NC	1
604			min	003	2	006	2	008	1	-5.596e-4	1	1036.059	2	NC	1
605		18	max	.006	3	.052	2	.169	4	4.829e-3	5	NC	4	NC	1
606			min	003	2	039	3	006	1	-1.131e-2	2	2207.309	2	NC	1
607		19	max	.006	3	.103	2	.145	4	9.396e-3	3	NC	1	NC	1
608			min	003	2	079	3	0	12	-2.271e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 36	Inch Wid	lth
Address:		•	
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	2718.0	1678.0	0.0	1678.0	
2	2718.0	1678.0	0.0	1678.0	
Sum	5436.0	3356.0	0.0	3356.0	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5436 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ec}	$_{d,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	a) ^{0.2} √ d aλ√ f ′c C a1 ^{1.9}	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	vc/Avco) Yec, v Ye	$_{\text{ed,V}} \varPsi_{\text{c,V}} \varPsi_{\text{h,V}} V_{\text{bx}}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
648.00	648.00	1.000	0.961	1.000	1.000	15593	0.70	10490

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	15.66	23247		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
845.64	1103.56	1.000	1.000	1.000	23247	0.70	24939

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2718	6071	0.45	Pass
Concrete breakout	5436	10231	0.53	Pass
Adhesive	5436	8093	0.67	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1678	3156	0.53	Pass (Governs)
T Concrete breakout x+	3356	10490	0.32	Pass
Concrete breakout y-	1678	24939	0.07	Pass
Pryout	3356	20601	0.16	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 36 Inch Width				
Address:					
Phone:					
E-mail:					

	Sec. D.7.3	0.67	0.53	120.3 %	1.2	Pass
--	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.