ЛАБОРАТОРНАЯ РАБОТА №2 РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ С ПОМОЩЬЮ ТЕОРЕМ ОБ ЭКВИВАЛЕНТНОМ ИСТОЧНИКЕ

ЦЕЛЬ И ЗАДАЧИ ЛАБОРАТОРНОЙ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕЁ ВЫПОЛНЕНИЯ

Целью выполнения лабораторной работы является формирование практических навыков использования методов для расчета электрических цепей, опирающихся на <u>теоремы</u> об эквивалентном источнике.

Основными задачами выполнения лабораторной работы являются:

- 1. определение значения тока в ветви с помощью моделирования схемы;
- 2. определение значения тока в ветви с использованием теорем об эквивалентном источнике.

Результатами работы являются:

- схемы электрических цепей и показания приборов;
- уравнения, составленные по теоремам об эквивалентном источнике для заданной электрической цепи, и их решение;
- полготовленный отчет.

Необходимое оборудование для выполнения лабораторной работы:

 персональный компьютер с программным обеспечением Місго-Сар.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Активный и пассивный двухполюсники

В любой электрической схеме всегда можно выделить, какую — то одну ветвь, а всю остальную часть схемы, вне зависимости от ее структуры и сложности, условно изобразить некоторым прямоугольником (рис. 23). **Двухполюсник** — это обобщенное название схемы, которая своими двумя выходными зажимами (полюсами) присоединяется к выделенной ветви.

Если в двухполюснике есть ЭДС или источник тока, то такой двухполюсник называется *активным*.

Если в двухполюснике нет ЭДС и источника тока, то двухполюсник называется *пассивным*.

Рис. 23. Условное изображение активного двухполюсника

Для расчета электрических цепей существуют методы, которые опираются на два варианта теоремы об эквивалентном источнике.

Теорема об эквивалентном источнике напряжения (Thevenin's theorem): Любой линейный активный двухполюсник может быть представлен в виде эквивалентного источника напряжения, ЭДС которого равна напряжению холостого хода на зажимах двухполюсника, а внутренние сопротивление равно сопротивлению между зажимами двухполюсника, когда все источники внутри него выключены.

Холостой ход соответствует размыканию ветви, т.е. отсутствию тока в ветви.

Пример. Задана электрическая схема (рис. 24), в которой:

 $R_1 = 15 \ Om \,, \ R_2 = 10 \ Om \,, \ R_3 = 10 \ Om \,, \ E_1 = 20B \,.$ Найти ток I_3 .

Рис. 24. Схема электрической цепи

Решение:

Для определения тока I_3 мысленно удалим R_3 из цепи и воспользуемся теоремой об эквивалентном источнике напряжения. Оставшаяся часть схемы представляет собой активный двухполюсник (рис. 25).

Рис. 25. Преобразованная схема электрической цепи

Найдем напряжение <u>холостого хода</u> $u_{abx.x}$ и внутреннее сопротивление двухполюсника R_{ab} .

$$\begin{split} I = & \frac{E_1}{R_1 + R_2} = \frac{20}{25} = 0.8 \; A \quad \; ; \quad \; u_{abx.x} = \varphi_a - \varphi_b = IR_2 = 0.8 \cdot 10 = 8 \; B \quad \; ; \\ R_{ab} = & \frac{R_1 R_2}{R_1 + R_2} = \frac{150}{25} = 6 \; Om \; . \end{split}$$

По теореме об эквивалентном источнике напряжения линейный активный двухполюсник представляется в виде генератора ЭДС и сопротивления R_{ab} (рис. 26).

Рис. 26. Преобразованная, согласно теореме, схема электрической цепи Из рис. 26 найдем ток I_3 :

$$I_3 = \frac{u_{abx.x}}{R_{ab} + R_3} = \frac{8}{6 + 10} = 0.5 \text{ A}.$$

Теорема об эквивалентном источнике тока (Norton's theorem): Любой линейный активный двухполюсник может быть представлен в виде эквивалентного источника тока, ток которого равен току короткого замыкания, проходящего между зажимами двухполюсника, а внутреннее сопротивление равно сопротивлению между зажимами двухполюсника, когда все источники внутри него выключены.

Для рассмотренного примера мысленно удалим R_3 и воспользуемся теоремой об эквивалентном источнике тока (рис. 27).

Рис. 27. Преобразованная схема электрической цепи

Сопротивление R_3 стало равным нулю ($R_3=0$) и для этой ветви имеет место режим короткого замыкания, а протекающий ток по этой ветви будет являться током короткого замыкания (I_{κ_3}).

$$I_{\kappa 3} = \frac{E_I}{R_I} = \frac{20}{15} = 1,33 \text{ A}.$$

Схема, эквивалентная рис. 24, представлена на рис. 28.

Рис. 28. Схема электрической цепи, преобразованная по теореме об эквивалентном источнике тока

Из рис. 28 определим ток I_3 :

$$I_3 = I_{\kappa 3} \frac{R_{ab}}{R_3 + R_{ab}} = 1,33 \cdot \frac{6}{10 + 6} = 0,5 \text{ A}.$$

ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

На выполнение лабораторной работы отводится 2 академических часа.

Порядок выполнения:

- 1. Изучить краткий теоретический материал.
- 2. Собрать схему электрической цепи и определить значение напряжение холостого хода, тока короткого замыкания и сопротивления между зажимами двухполюсника.
- 3. Составить уравнения и вычислить значение напряжение холостого хода, тока короткого замыкания и сопротивления между зажимами двухполюсника.
- 4. Согласно <u>теоремам</u> об эквивалентном источнике построить преобразованные схемы электрической цепи и определить значение тока в исследуемой ветви.
- 5. Оформить отчет.
- 6. Защитить выполненную работу у преподавателя.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Для электрической цепи (рис. 29) определим ток, проходящий через сопротивление R_2 .

Рис. 29. Исходная схема

Схема исследования электрической цепи показана на рис.30.

Рис. 30. Схема исследования электрической цепи

Сопротивление R_2 из цепи исключено. Для измерения напряжения холостого хода (U_{xx}), тока короткого замыкания (I_{κ^3}) и сопротивления R_{ab} используется мультиметр. В электрическую цепь включены три переключателя, которые используются для отключения источников постоянного напряжения при измерении R_{ab} .

В результате измерений получаем следующие значения:

$$U_{xx} = 15 B$$
; $I_{\kappa 3} = 2 A$; $R_{ab} = 7.5 B$.

По формулам определим значение тока I_2 :

$$I_2 = \frac{U_{xx}}{R_{ab} + R_2} = \frac{15}{7.5 + 30} = 0.4 \text{ A};$$

$$I_2 = I_{\kappa 3} \frac{R_{ab}}{R_{ab} + R_2} = 2 \cdot \frac{7.5}{7.5 + 30} = 0.4 \text{ A}.$$

Произведем расчет для схемы (рис.29). Сопротивление R_{ab} определим из схемы, в которой источники постоянного напряжения отключены (рис.31).

Рис.31. Схема для расчета R_{ab}

$$R_{ab} = \frac{R_1 R_3}{R_1 + R_3} = \frac{30 \cdot 10}{30 + 10} = 7,5 \ Om \ .$$

<u>Напряжения холостого хода</u> U_{xx} найдем из схемы на рис. 32.

Рис. 32. Схема для расчета U_{xx}

 $U_{xx}=IR_1-E_1$; где I — ток в контуре $E_1R_1R_3E_2$, который определяется по формуле: $I=\frac{E_1-E_2}{R_1+R_3}=\frac{-20}{40}=-0.5~A$.

$$U_{xx} = 0.5 \cdot 10 - 10 = -15 B$$
.

Искомый ток через сопротивление R_2 рассчитывается по формуле:

$$I_2 = \frac{U_{xx}}{R_{ab} + R_2} = \frac{-15}{7.5 + 30} = -0.4 \text{ A}.$$

Согласно <u>теореме</u> об эквивалентном источнике тока, ток I_2 можно определить через <u>ток короткого замыкания</u> I_{κ_3} по формуле:

$$I_2 = I_{\kappa 3} \frac{R_{ab}}{R_{ab} + R_2} \,.$$

ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

Варианты заданий соответствуют вариантам лабораторной работы \mathbb{N}_2 1. Рассчитывается значение тока, проходящего через сопротивление и обозначенное на схеме I-?.

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

1. Что называется двухполюсником?

- 2. Какие двухполюсники называются активными?
- 3. Какие двухполюсники называются пассивными?
- 4. Сформулируйте <u>теорему</u> об эквивалентном источнике напряжения.
 - 5. Сформулируйте теорему об эквивалентном источнике тока.
- 6. Чем можно заменить линейный активный двухполюсник согласно теореме об эквивалентном источнике напряжения?
- 7. Чем можно заменить линейный активный двухполюсник согласно теореме об эквивалентном источнике тока?
 - 8. Объясните способ определения напряжения холостого хода.
 - 9. Объясните способ определения тока короткого замыкания.
 - 10. Как определяется внутреннее сопротивление двухполюсника?

ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

Номер варианта студенту выдается преподавателем. Отчет на защиту предоставляется в печатном виде.

Структура отчета (на отдельном листе(-ах)):

- титульный лист;
- цели и задачи работы;
- формулировка задания (вариант);
- схема электрической цепи и значения напряжение холостого хода, тока короткого замыкания и сопротивления между зажимами двухполюсника токов, полученные по показанию прибора;
- уравнения для определения напряжения холостого хода, тока короткого замыкания и сопротивления между зажимами двухполюсника;
- преобразованные схемы электрической цепи и вычисленное значение тока в исследуемой ветви;
- выводы.