Probability and Statistics

Assignment -6 [1 - Nov - 2018] You may use R-software to determine critical region and power etc.

- 1. Let X_1, X_2, \ldots be independent random variables with Bernouli(p) distribution. It is desired to test the hypothesis $H_0: p=0.6$ against the alternative $H_1: p=0.3$. It has been decided that the level of significance is to be 0.05. From first principles, derive the most powerful test based on $X_1, X_2, \ldots X_n$. For n=49, find the power of the test.
- 2. Let X_1, X_2, \ldots be independent random variables with normal distribution, mean 0 and variance $\theta, \ 0 < \theta < \infty$. It is desired to test the hypothesis $H_0: \theta = 4$ against the alternative $H_1: \theta = 1$. It has been decided that the level of significance is to be 0.05. From first principles, derive the most powerful test based on $X_1, X_2, \ldots X_n$. For n = 36, find the power of the test.
- 3. Let X_1, X_2, \ldots be independent random variables with common density, for $\theta > 0$

$$f(x,\theta) = \frac{1}{\theta} \exp\{-\frac{x}{\theta}\}, \ \ 0 < x < \infty.$$

It is desired to test the hypothesis $H_0: \theta=1$ against the alternative $H_1: \theta=4$. It has been decided that the level of significance is to be 0.05. From first principles, derive the most powerful test based on $X_1, X_2, \ldots X_n$. For n=25, find the power of the test.

- 4. Let X_1, X_2, \ldots be independent random variables with Poisson distribution, mean θ , $\theta > 0$. It is desired to test the hypothesis $H_0: \theta = 1$ against the alternative $H_1: \theta = 4$. It has been decided that the level of significance is to be 0.05. From first principles, derive the most powerful test based on $X_1, X_2, \ldots X_n$. For n = 25, find the power of the test.
- 5. Let X_1, X_2, \ldots be independent random variables with normal distribution, mean μ and variance $\theta, -\infty < \mu < \infty, \ 0 < \theta < \infty$. It is desired to test the hypothesis $H_0: \mu = 1$ against the alternative $H_1: \mu = 4$. It has been decided that the level of significance is to be 0.05. From first principles, derive the most powerful test based on $X_1, X_2, \ldots X_n$.
- 6. Let X_1, X_2, \ldots be independent random variables with normal distribution, mean μ and variance 8, $-\infty < \mu < \infty$. It is desired to test the hypothesis $H_0: \mu = 1$ against the alternative $H_1: \mu > 1$. It has been decided that the level of significance is to be 0.05. From first principles, derive the most powerful test based on $X_1, X_2, \ldots X_n$. For n = 32, determine the power function : for a > 1, power(a) is the power of the test when $\mu = a$.
- 7. Let X_1, X_2, \ldots be independent random variables with Bernouli(p) distribution. It is desired to test the hypothesis $H_0: p=0.5$ against the alternative $H_1: p<0.5$. It has been decided that the level of significance is to be 0.05. From first principles, derive the most powerful test based on $X_1, X_2, \ldots X_n$. For n=49, find the power function of the test: for 0 < a < 0.5, power(a) is the power of the test when p=a.