Assignment 1

Due Date: January 23rd, 11:59pm Please Show Your Work and Circle Your Final Answer Submit as a single document

Question 1: Envelope Theorem

Consider a constrained optimization problem:

$$x^*(\theta) = \arg\max_{x \in X(\theta)} f(x, \theta), \quad V(\theta) = \max_{x \in X(\theta)} f(x, \theta)$$

where $X(\theta) = \{x \in \mathbb{R}^n | g_j(x) \le \theta_j\}.$

- (a) Derive the envelope theorem, computing $\frac{\partial V(\theta)}{\partial \theta_i}$ for each $j \in \{1, \dots, m\}$.
- (b) Interpret your answer in (a), especially regarding KKT multipliers.
- (c) Apply the result to consumer maximization. Define $f(x, \theta)$, constraints g_j , and interpret θ and KKT multipliers.

Question 2: Topkis' Theorem (Single-Dimension)

- (a) Provide a full proof of Topkis' theorem using the approach from class.
- (b) Analyze when $q^*(\theta)$ is nondecreasing for a monopolist with inverse demand p(q) and cost $c(q, \theta)$.
- (c) For a firm minimizing costs with production $f(k, \phi l) = q$, find conditions where optimal k^* is weakly increasing/decreasing in ϕ .

Question 3: Topkis' Theorem (Multi-Dimensional)

- (a) Interpret the assumption $\frac{\partial^2 f}{\partial l \partial k} < 0$.
- (b) Analyze how optimal labor choice changes as wage w increases.

Question 4: Putting it All Together

- (a) For utility $u(x, y, z) = x^{1/2}y^{1/2} + z$, show optimum T equals 0 or W.
- (b) For $u(x, y, z) = x^{\alpha}y^{\alpha} + z$, derive T in terms of prices and W.
- (c) For $u(x, y, z) = x^{\alpha}y^{\beta} + h(z)$, show T is weakly increasing in W.

Solution 1:

(a)

Using the envelope theorem on the optimization problem:

$$V'(\theta) = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta} + \frac{\partial f(x^*(\theta), \theta)}{\partial x} \cdot \frac{\mathrm{d}x^*(\theta)}{\mathrm{d}\theta}$$
$$V'(\theta) = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta}$$

This is the result since, at the max, $x^* = 0$ thus eliminating the second term.

(b)