INTRO ROBOTICS AND VISION

Christoforos Kanellakis

Learning Objectives

- Broaden horizons on the robots' applications
- Knowledge of robots used in major industries
- Connection with visual sensors and properties
- Example on person detection

What is a Robot?

A goal-oriented machine that can sense, plan and act automatically

Why Robots?

- High precession
- Increased load capabilities
- Multi-tasking
- · Repeat tasks with high accuracy
- Not affected by the monotony of tasks
- Robots can Collaborate with each other and to some extent they can collaborate with workers
- For humans to avoid hazardous areas
- Many robots can be reprogrammed to execute different tasks

- Increased productivity
- Increased efficiency
- Cutting production costs
- Safer work environment

Robot types

- Robotic arms
- Mobile
- MAVs
- AUVs
- Legged
- Humanoid

Where the Robots can be Used?

Industries that booming due to the increase in robot use:

- Manufacturing
- Agriculture
- Food Preparation
- Search and Rescue
- Pharmaceutical Industry
- Maintenance, Inspection and Repair
- Mining and Construction

Robot Sectors - Manufacturing

Robot Sectors - Agriculture

Robot Sectors – Food Industry

Robot Sectors – Search and Rescue

Delivery of time critical services

What is machine vision?

Automatic extraction of "meaningful" information from images and videos

Vision in Robotics

Focuses on computer vision methodologies and technical solutions applied to advanced robotic systems using conventional and intelligent paradigms

Vision in Robotics - Steps

- Object detection and tracking
- Feature extraction
- Object model acquisition

Focus on Vision

Vision in Robotics - Challenges

- Sensor Frame Rate
- Image/Depth processing
- Occlusion
- Viewpoint Handling
- Out-of-View events
- Clutter
- Camera Positioning
- Field of View

Image formation

Photometric Image formation - The digital camera

The digital camera

 Sensor chip converts photons into electrons

Why is hard? Interpreting different worlds

Jeong, J., Cho, Y., Shin, Y.-S., Roh, H., & Kim, A. (2019). Complex urban dataset with multi-level sensors from highly diverse urban environments. The International Journal of Robotics Research, 38(6), 642–657. https://doi.org/10.1177/0278364919843996

- 1																								
	39	245	255	126	7	24	0	0	0	0	0	8	9	0	0	0	0	3	0	0	0	2	0	192
2	54	221	34	0	16	0	0	11	8	0	0	8	5	0	0	2	0	3	0	0	0	2	0	192
2	80	17	0	21	0	3	9	3	0	1	1	0	0	0	1	4	0	3	0	0	0	2	0	192
	99	0	0	10	0	8	0	0	9	0	0	0	9	9	0	0	0	3	0	0	0	2	0	192
1	92	195	196	188	190	194	192	201	191	93	8	0	4	0	0	8	0	3	0	0	0	2	0	192
2	55	255	255	255	255	255	255	255	255	126	10	0	7	4	0	1	0	3	0	0	0	2	0	192
1	28	128	128	128	128	128	128	128	123	62	6	0	1	0	0	3	0	3	0	0	0	2	0	192
-	0	0	0	0	0	0	0	0	8	5	2	0	0	0	0	0	0	3	0	0	0	2	0	192
-	1	1	1	1	1	1	1	1	0	0	0	0	2	5	1	0	0	3	0	0	0	2	0	192
-	0	0	0	0	0	0	0	0	9	2	0	1	3	1	0	0	0	3	0	0	0	2	0	192
-	2	2	2	2	2	2	2	2	2	0	0	3	0	0	0	8	0	3	0	0	0	2	0	192
-	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	6	0	3	0	0	0	2	0	192
-	0	0	0	0	0	0	0	0	1	4	3	0	0	4	2	0	0	3	0	0	0	2	0	192
-	7	0	0	5	0	2	17	0	1	0	9	1	0	0	5	0	0	3	0	0	0	2	0	192
-	0	4	0	6	5	0	0	0	0	16	0	0	0	1	8	3	0	3	0	0	0	2	0	192
-	3	15	0	0	9	11	15	0	57	123	18	3	2	1	0	0	0	3	0	0	0	2	0	192
-	0	0	0	11	0	0	0	2	68	182	10	0	3	0	0	3	0	3	0	0	0	2	0	192
_	01	48	1	117	173	155	102	29	57	202	0	0	2	1	0	5	0	3	0	0	0	2	0	192
	40	3	107	212	92	124	246	59	66	216	0	1	5	0	0	0	0	3	0	0	0	2	0	192
	41	14	161	86	0	4	189	85	52	192	0	0	0	0	2	0	0	3	0	0	0	2	0	192
-	3	4	188	58	5	1	202	54	68	195	0	6	3	0	5	0	0	3	0	0	0	2	0	192
١.	0	0	170	122	2	19	243	65	64	201	0	0	3	1	0	10	0	3	0	0	0	2	0	192
	92	99	38	243	205	197	242	59	70	175	11	9	9	0	0	0	0	3	0	0	0	2	0	192
	67	42	34	46	67	36	222	42	8	69	0	0	0	0	2	0	0	3	0	0	0	2	0	192
	0	0	106	221	122	166	204	4	0	10	0	0	0	0	6	0	0	3	0	0	0	2	0	192
	10	0	0	74	135	119	20	0	9	0	9	3	0	0	5	0	0	3	0	0	0	2	0	192
-	0	18	0	0	0	0	0	14	0	0	5	0	0	1	5	1	0	3	0	0	0	2	0	192
-	0	6	10	0	21	0	0	0	14	0	16	0	0	2	0	0	0	3	0	0	0	2	0	192
-	11	0	11	0	0	6	1	2	0	0	4	0	0	1	0	2	0	3	0	0	0	2	0	192
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	2	0	192
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	2	_	192
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	2	0	192
		0	0	0	0	0				0		0	0	0	0	0	0	3	0		0	2	0	192 192
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	2		
	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	2	0	192
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	2	0	192
- 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0 7	7	2	0	192 188
Ι.	1	1	_	1	_	1	1	1		1	1	_	1	_	_	1	0	12	0			0	16	
1	90	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	184	198	177	182	201	196	179	255
_																								

Visual Servoing – Typical Sensos

Color spaces

RGB (3 channels)

greyscale (1 channel)

other spaces

CMY

YIQ

HSI

HSV

HLS

LAB

HMMD

Perspective camera modelling

World coordinates: P = (X, Y, Z)

Image coordinates: $\mathbf{p} = (x, y)$

 ${f P}$ is projected to ${f p}$ through perspective projection

$$x = f\frac{X}{Z}, y = f\frac{Y}{Z}$$

Perspective camera modelling

Homogeneous world coordinates: ${}^{C}\tilde{\boldsymbol{P}}=(X,\,Y,\,Z,\,1)^{T}$

Homogeneous image coordinates: $\tilde{p} = (\tilde{x}, \tilde{y}, \tilde{z})$

camera matrix C

came

LULEÅ UNIVERSITY OF TECHNOLOGY

Nonhomogeneous image coordinates: $x = \frac{\tilde{x}}{\tilde{z}}, \ y = \frac{\tilde{y}}{\tilde{z}}$

Discrete image plane

Nonhomogeneous pixel coordinates:
$$u = \frac{\tilde{u}}{\tilde{w}}, v = \frac{\tilde{v}}{\tilde{w}}$$

pixel coordinates:
$$u = \frac{x}{\rho_w} + u_0, v = \frac{y}{\rho_h} + v_0$$

Homogeneous world coordinates: ${}^{C}\tilde{P} = (X, Y, Z, 1)^{T}$

Homogeneous pixel coordinates:
$$ilde{p} = (ilde{u}, ilde{v}, ilde{w})$$

$$ilde{m{p}} = egin{pmatrix} 1/
ho_w & 0 & u_0 \\ 0 & 1/
ho_h & v_0 \\ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}^C ilde{m{P}}$$

Spatial Operations on Images

correlation
$$\longrightarrow$$
 $\mathbf{O}[u,v] = \sum_{(i,j)\in\mathcal{W}} I[u+i,v+j]K[i,j], \ \forall (u,v)\in \mathbf{I}$

convolution
$$\longrightarrow$$
 $\mathbf{O} = \mathbf{K} * \mathbf{I}$ \longrightarrow $\mathbf{O}[u,v] = \sum_{(i,j) \in \mathcal{W}} \mathbf{I}[u-i,v-j]\mathbf{K}[i,j], \ \forall (u,v) \in \mathbf{I}$

Example on Human Detection

Sliding window method

Image Pyramids

[1] Suleiman, A., & Sze, V. (2014, October). Energy-efficient HOG-based object detection at 1080HD 60 fps with multi-scale support. In 2014 IEEE Workshop on Signal Processing Systems (SiPS) (pp. 1-6). IEEE.

[2] Nguyen, N. D., Bui, D. H., & Tran, X. T. (2019, November). A novel hardware architecture for human detection using HOG-SVM co-optimization. In 2019 IEEE Asia Pacific conference on circuits and systems (APCCAS) (pp. 33-36). IEEE.

Creates a vector with histograms of directions of gradients

Step 1: Create patch of 64x128

Original Image: 720 x 475

Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05) (Vol. 1, pp. 886-893). leee. https://learnopencv.com/histogram-of-oriented-gradients/

Creates a vector with histograms of directions of gradients

Step 1: Create patch of 64x128

Step 2: Calculate image gradients

$$abla oldsymbol{f} = \left[rac{\partial oldsymbol{f}}{\partial x}, rac{\partial oldsymbol{f}}{\partial y}
ight]$$

$$M(x,y) = \|\nabla f(x,y)\| = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$$

gradient magnitude

$$\alpha(x,y) = \tan^{-1} \left[\frac{g_y(x,y)}{g_x(x,y)} \right]$$

gradient direction

Creates a vector with histograms of directions of gradients

Step 1: Create patch of 64x128

Step 2: Calculate image gradients

Step 3: Calculate histogram of unsigned gradients in 8x8 cells

71	13	34	23	108	27	48	110
165	60	60	27	77	85	43	136
98	196	76	38	26	60	170	51
91	155	133	136	144	152	57	28
23	99	165	135	85	32	26	2
11	21	23	27	22	17	4	6
5	11	17	13	7	9	3	4
2	3	4	4	3	4	2	2

Gradient Magnitude

80	36	5	10	0	64	90	73
37	9	9	179	78	27	169	166
87	136	173	39	102	163	152	176
76	13	1	168	159	22	125	143
120	70	14	150	145	144	145	143
58	86	119	98	100	101	133	113
30	65	157	75	78	165	145	124
11	170	91	4	110	17	133	110

Gradient Direction

Creates a vector with histograms of directions of gradients

Step 1: Create patch of 64x128

Step 2: Calculate image gradients

Step 3: Calculate histogram of gradients in 8x8 cells

Creates a vector with histograms of directions of gradients

Step 1: Create patch of 64x128

Step 2: Calculate image gradients

Step 3: Calculate histogram of gradients in 8x8 cells

Step 4: 16x16 Block Normalization (robustness to illumination variations)

Creates a vector with histograms of directions of gradients

Step 1: Create patch of 64x128

Step 2: Calculate image gradients

Step 3: Calculate histogram of gradients in 8x8 cells

Step 4: 16x16 Block Normalization (robustness to illumination variations)

Step 5: concatenate 36x1 vectors of 7x15=105 block positions (36x105=3780 vector size)

SVM Classification

- Train a window classifier
- Use the trained classifier to predict the object class in each window in the image

HOG feature weighted by the human model

Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05) (Vol. 1, pp. 886-893). leee.

Ahmed, A. H., Kpalma, K., & Guedi, A. O. (2017, December). Human detection using HOG-SVM, mixture of Gaussian and background contours subtraction. In 2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) (pp. 334-338). IEEE.

Focus on Vision

Matlab Time

Break and meet during the lab time slot

1	%% Matlab code D7062E
2	
3	<pre>I=imread('cameraman.tif');</pre>
4	NX
5	figure,imshow(I)
6	XX
7	I_d=im2double(I);
8	XX
9	$\max(\mathtt{I}(:))$
10	XX
11	$max(I_d(:))$
12	%K
13	size(I)
14	XX
15	C=imread('autumn.tif'); %24-bit
16	%%
17	figure,imshow(C)
18	%%
19	size(C)
20	%X
21	C(100,200,2)
22	%%
23	C(100,200,:)
24	%%
25	impixel(C,200,100)
26	%K
27	imfinfo('cameraman.tif')
28	%% Data conversion
29	A [[-8.0000 4.0000 0 0.5000]
30	B unit8(A)
31	%%
32	Cgr=rgb2gray(C);
33	%%
34	figure,imshow(Cgr)
35	XX
36	Cdouble=double(Cgr);
37	%%

