EE5605: Kernel Methods, Fall 2022 (56)

Indian Institute of Technology Hyderabad HW 0, 30 points. Assigned: Thursday 03.11.2022. **Due: Wednesday 09.11.2022 at 11:59 pm.**

- 1. Show that the set of real numbers \mathbb{R} with the distance measure d(x,y) = |x-y| is a metric space. (5)
- 2. Let X be the set of n-letter words in a k-character alphabet $A = \{a_1, a_2, \ldots, a_k\}$, meaning that $X = \{(x_1, x_2, \ldots, x_n) | x_i \in A\}$. The distance d(x, y) between two words $x, y \in X$ is defined to be the number of places in which the words have different letters. Show that (X, d) is a metric space. (5)
- 3. Suppose that $(X, \| . \|)$ is a normed linear space. Show that $d(x, y) = \| x y \|$ is a metric on X. (5)
- 4. Suppose that \mathcal{H}_1 and \mathcal{H}_2 are two Hilbert spaces. We define $\mathcal{H}_1 \oplus \mathcal{H}_2 = \{(x_1, x_2) | x_1 \in \mathcal{H}_1, x_2 \in \mathcal{H}_2\}$ with the inner product $\langle (x_1, x_2), (y_1, y_2) \rangle_{\mathcal{H}_1 \oplus \mathcal{H}_2} = \langle x_1, y_1 \rangle_{\mathcal{H}_1} + \langle x_2, y_2 \rangle_{\mathcal{H}_2}$. Prove that $\mathcal{H}_1 \oplus \mathcal{H}_2$ is a Hilbert space. (5)
- 5. Following the definition of a kernel from class, show that the sums of kernels are kernels. (5)
- 6. Let $x, x' \in \mathbb{R}^d$ for $d \ge 1$, and let $m \ge 1$ be an integer and $c \ge 0$ be a positive real. Show that $k(x, x') := (\langle x, x' \rangle + c)^m$ is a valid kernel. (5)