

WHAT IS CLAIMED IS:

Sub B ↗
1 1. A method for forming an insulation layer over a substrate, the
2 method comprising:

3 forming a surface sensitive silicon oxide layer over the substrate; and
4 forming a porous silicon oxide layer on the surface sensitive silicon
5 oxide layer by thermal chemical vapor deposition, wherein said porous silicon oxide
6 layer is deposited at a temperature of about 400°C or less.

1 2. The method of claim 1 wherein the porous silicon oxide layer
2 has a carbon content of at least 5 atomic percent.

1 3. The method of claim 1 wherein the porous silicon oxide layer
2 has a dielectric constant of between about 2.9 and 3.2.

1 4. The method of claim 1 wherein the surface sensitive silicon
2 oxide layer is deposited from a plasma enhanced CVD reaction of TEOS and oxygen.

1 5. The method of claim 1 wherein the porous silicon oxide layer is
2 deposited from a process gas comprising TEOS and ozone.

1 6. The method of claim 5 wherein a molar ratio of said TEOS to
2 ozone is between about 10:1 and 20:1.

1 7. The method of claim 1 further comprising forming a capping
2 silicon oxide layer over the porous silicon oxide layer.

1 8. The process of claim 1 wherein said porous silicon oxide layer is
2 deposited using an SACVD process at a pressure of between 100-700 Torr.

1 9. The method of claim 1 wherein said surface sensitive and porous
2 silicon oxide layers are deposited in an in situ process.

Sub A ↗
1 10. A process for depositing an intermetal dielectric film over a
2 plurality of conductive lines, the method comprising:

1 depositing a plasma enhanced chemical vapor deposition (CVD) silicon
2 oxide layer over the plurality of conductive lines from a plasma of tetraethyloxysilane
3 (TEOS) and oxygen; and

4 depositing a silicon oxide layer over the plasma enhanced CVD silicon
5 oxide layer by a thermal CVD process from a gas mixture of a TEOS and ozone
6 wherein said thermal silicon oxide layer has a dielectric constant of about 3.2 or less
7 and a carbon content of at least about 5 atomic percent.

1 11. The method of claim 10 wherein the density of said thermal
2 silicon oxide layer is less than or equal to about 1.7 g/cm³.

1 12. The method of claim 10 further comprising depositing a plasma
2 enhanced CVD silicon oxide capping layer over the thermal silicon oxide layer.

1 13. The method of claim 10 wherein the dielectric constant of said
2 thermal silicon oxide layer is greater than or equal to about 2.9.

1 14. The method of claim 10 wherein a molar ratio of said TEOS and
2 ozone used to deposit said thermal silicon oxide layer is at least 8:1.

1 15. The method of claim 6 wherein said molar ratio is at least about
2 11.5:1.

1 16. The method of claim 14 wherein said molar ratio is between
2 about 10:1 and 20:1.

1 17. The method of claim 10 wherein said oxygen is provided from a
2 flow of molecular oxygen.

1 18. The method of claim 10 wherein said plasma enhanced and
2 thermal CVD silicon oxide layers are deposited in an in situ process.

1 19. The process of claim 10 wherein said porous silicon oxide layer
2 is deposited using an SACVD process at a pressure of between 100-700 Torr.

1 20. A substrate processing system comprising:

2 a housing defining a process chamber;
3 a substrate holder, adapted to hold a substrate during substrate
4 processing in the process chamber;
5 a gas delivery system configured to introduce gases into said process
6 chamber;
7 a heater configured to heat the substrate;
8 a controller for controlling said gas delivery system and said heater; and
9 a memory coupled to said controller comprising a computer-readable
10 medium having a computer-readable program embodied therein for directing operation
11 of said controller, said computer-readable program including instructions to control
12 said gas delivery system to flow a first process gas into the chamber and deposit a
13 surface sensitive silicon oxide layer over the substrate and then, afterwards, control said
14 gas delivery system to flow a second process gas into the chamber comprising TEOS
15 and ozone and control said heater to heat said substrate to a temperature of about 400°C
16 or less to deposit a porous silicon oxide layer on the surface sensitive silicon oxide
17 layer.

*Add
B2*

00000000000000000000000000000000