ACTIVE MATERIAL FOR LITHIUM BATTERY

Patent Number:

JP11025983

Publication date:

1999-01-29

Inventor(s):

KARIRU AMIN

Applicant(s)::

JAPAN STORAGE BATTERY CO LTD

Requested Patent:

Application Number: JP19970215424 19970704

Priority Number(s):

IPC Classification:

H01M4/58; C01B25/45; H01M4/02; H01M10/40

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide high energy density and a high voltage by providing an olivine structure and using a compound having a specified composition.

SOLUTION: This compound is represented by LiM1- XMeXPO4 (M: CO, Ni, Mn; Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr; 0<=x<=0.5). Preferably, an olivine structure has an orthorhombic symmetry having an orthorhombic symmetry space group Pmnb. Also, when the vales (a), (b) and (c) of the unit grating parameter of an orthorhombic phase are LiMnPO4, LiNiPO4, and LiCoPO4, these are preferably values within specified different ranges. Preferably, the compound having the olivine structure is included in an electrode as a positive electrode active material for a lithium battery, and preferably a negative electrode active material selected from this, electrolytic liquid, Li, and Li alloy, Lix SnO2 and a carbon material is provided in the battery.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-25983

(43)公開日 平成11年(1999)1月29日

(51) Int.Cl.6		識別記号	FI
H01M	4/58		H O 1 M 4/58
C01B	25/45		C 0 1 B 25/45 Z
	4/02		H O 1 M 4/02 C
			D
	10/40		10/40 Z
	10/40		審査請求 未請求 請求項の数6 FD 外国語出願 (全22頁)
(21)出願番号		特願平9-215424	(71) 出願人 000004282
(,,	-		日本電池株式会社
(22)出願日		平成9年(1997)7月4日	京都府京都市南区吉祥院西ノ庄猪之馬場町
			1番地
			(72) 発明者 カリル アミン
			京都市南区吉祥院西ノ庄猪之馬場町1番地
			日本電池株式会社内

(54) 【発明の名称】 リチウム電池用活物質

(57)【要約】

【課題】高エネルギー密度で、高電圧なリチウム電池を 可能とする正極活物質を提供する。

【解決手段】リチウムイオン電池系で正極活物質として 使用可能な、カンラン石型構造を有する式 Li M_{1-x} Me_x PO 4 (M: Co, Ni, Mn, Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr) (0≤x≤0.5)で表される活物質。

【特許請求の範囲】

【請求項1】オリビン構造を有し、式 LiM_{1-x} Me_x PO 4 (M: Co, Ni, Mn), (Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr) (0≤x≤0.5)で表されることを特徴とするリチウム電池用活物質。

【請求項2】前記オリビン構造が斜方晶型対称性を有することを特徴とする請求項1に記載のリチウム電池用活物質。

【請求項3】前記斜方晶型相の単位格子パラメータが、LiMnPO4の場合には $a=6.11\pm0.50$ Å、 $b=10.46\pm0.50$ Å、 $c=4.73\pm0.50$ Å、LiNiPO4の場合には $a=5.86\pm0.50$ Å、 $b=10.07\pm0.20$ Å、 $c=4.68\pm0.50$ Å、LiCoPO4の場合には $a=5.92\pm0.50$ Å、 $b=10.21\pm0.50$ Å、 $c=4.70\pm0.50$ Åであることを特徴とする請求項2に記載のリチウム電池用活物質。

【請求項4】前記斜方晶型対称性が空間群Pmnbを有することを特徴とする請求項2に記載のリチウム電池用活物質。

【請求項5】請求項1記載のリチウム電池用活物質をリチウム電池用正極活物質として含有する電極。

【請求項6】請求項5記載の電極と、電解液、Li、Li-合金、 $Li_X SnO_2$ 、及び炭素材料である負極活物質とを備 えた電池。

【発明の詳細な説明】

【発明の属する技術分野】本発明は、リチウム電池の改良に関するものである。

【従来の技術】エレクトロニクスの急速な進歩と小型化 に伴って、信頼性があり、軽量で、かつ高エネルギー密 度を有する電池が必要となっている。この点に関してリ チウム電池が有望である。なぜなら、リチウム電池は、 高い電圧及びエネルギー密度を有しており、かつ耐用年 数が長いからである。しかしながら、金属Liアノードが 呈するほとんどの非水電解液との化学的反応性、並びに 金属Liに関連する安全性の問題のために、充電可能なリ チウム電池の開発が数年間妨げられてきた。最近、二次 リチウム電池に新たな関心が寄せられている。これは、 金属Liの代わりにLi挿入化合物をアノードとして利用す ることによって「リチウムイオン」電池を作製するとい うことに関連したものである。しかしながら、この系で は、カソードホスト及びアノードホストの選択に注意を 払う必要がある。層状LiMO2(M:Co, Ni)[Mat. Res. Bull. 15 (1980) 783, J. Appl. Phys. 19 (1980) 30 5] 及び三次元スピネル型酸化物LiMn₂O₄ [Mat. Res. Bu 11. 18 (1983) 461, Mat. Res. Bull. 19 (1984) 179] は放電中間電圧がリチウムに対して約4Vの位置にあり、 リチウムイオン電池用の魅力的なカソードとなってい る。更に最近になって、他の型のカソード材料がリチウ ムイオン系で使用できるかの研究がなされた。これらの 化合物は、Li_xM₂ (PO₄)₃ (M: Ti, V, Fe) 及びM₂ (SO₄)₃ (M:Ti, Fe) [Solid State Ionic 92 (1996) 1] など のNasicon関連3D骨格から構成されている。

【発明が解決しようとする課題】本発明の課題は、従来の正極活物質では達成されなかった、高エネルギー密度で高電圧を得ることが可能なリチウム電池用活物質を提供することである。

【課題を解決するための手段】本発明の要旨は、リチウム二次電池用の正極活物質として使用可能な式 $LiM_{1-x}Me_xPO_4$ (M: Co, Ni, Mn), (Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr) (0 \leq x \leq 0.5) で表され、これらは、斜方晶型対称性及び空間群Pmnbを有するオリビン構造を呈することを特徴とすることである。

【発明の実施の形態】

【実施例】次に、本発明者が行った実験を参照して、また添付の図面を参照して、実施例により本発明を説明するが、これに限定されるものではない。

[実施例1] $\text{Li}_2\Omega_3$ 、 $\text{Mn}\Omega_3$ 、及び(NH_4) $_2\text{HPO}_4$ から成る 化学量論比の混合物を用いた一段反応によって、本発明 の Li_4 を調製した。この混合物を最初にめのう乳鉢 ですりつぶし、 400kgf/cm^2 で加圧してペレットにし、次 に450℃において空気中で4時間か焼し、その後、800℃ において24時間加熱した。

[実施例2] Li_2CO_3 、 MnCO_3 、(NH_4) $_2\text{HPO}_4$ 、並びに次のうちのいずれか一つ、即ち、鉄供給源として FeC_2O_4 , 2H_2 O、マグネシウム供給源として MgO_5 、コバルト供給源として Co_3O_4 、又はニッケル供給源として NiO_5 から成る化学量論比の混合物を用いた一段反応によって、本発明のLiMn $_{1-X}\text{Me}_X\text{PO}_4$ (Me:Mg,Ni,Co,Fe) を調製した。この混合物を最初にめのう乳鉢ですりつぶし、 400kgf/cm^2 で加圧してペレットにし、次に 450° Cにおいて空気中で4時間か焼し、その後、 800° Cにおいて24時間加熱した。鉄をドーピングする際は、窒素流動下でか焼を行った。

[実施例3] Li₂O3、NiO、及び(NH₄)₂HPO₄から成る化学量論比の混合物を用いた一段反応によって、本発明のLiNiPO₄を調製した。この混合物を最初にめのう乳鉢ですりつぶし、400kgf/cm²で加圧してペレットにし、次に350℃においで窒素流動下で8時間か焼し、その後、750℃において15時間加熱した。

[実施例4] $\text{Li}_2 \Omega_3$ 、 $\text{Mn}\Omega_3$ 、(NH_4) $_2 \text{HPO}_4$ 、並びに次のうちのいずれか一つ、即ち、鉄供給源として $\text{FeC}_2 \Omega_4$, $2\text{H}_2 \Omega_5$ の、マグネシウム供給源として MsO_3 つバルト供給源として MsO_3 から成る化学量論比の混合物を用いた一段反応によって、本発明のLi $\text{Ni}_{1-x} \text{Me}_x \text{PO}_4$ ($0 \le x \le 0.5$) (Me: Mg, Mn, Co, Fe) を調製した。この混合物を最初にめのう乳鉢ですりつぶし、 400kgf/cm^2 で加圧してペレットにし、次に350℃において空気中で8時間か焼し、その後、750℃において24時間加熱した。鉄をドービングする際は、窒素流動下でか焼を行った。

[実施例5] $\text{Li}_2\Omega_3$ 、 Co_3O_4 、及び(NH_4) $_2\text{HPO}_4$ から成る 化学量論比の混合物を用いた二段反応によって、本発明

のLi CoPO。を調製した。この混合物を最初にめのう乳鉢ですりつぶし、400kgf/cm²で加圧してペレットにし、次に350℃においで空気中で9時間か焼した。この物質を冷却し、すりつぶし、再び400kgf/cm²で加圧してペレットにし、その後、750℃において30時間加熱した。

[実施例6] Li₂CO₃、Co₃O₄、(NH₄)₂HPO₄、並びに次の うちのいずれか一つ、即ち、鉄供給源としてFeC2O4,2H2 0、マグネシウム供給源としてMgO、ニッケル供給源とし てNiO、又はマンガン供給源としてMnOO₃から成る化学量 論比の混合物を用いた一段反応によって、本発明のLiCo 1-xMexPO4(0≤x≤0.5)(Me:Mg, Mn, Ni, Fe)を調製 した。この混合物を最初にめのう乳鉢ですりつぶし、40 Okgf/cm²で加圧してペレットにし、次に350℃において 空気中で8時間か焼し、その後、750℃において24時間加 熱した。鉄をドーピングする際は、窒素流動下でか焼を 行った。図1A, 1B, 1Cは、それぞれ本発明に従って得られ た純粋なLiMnPO4、LiNiPO4、LiCoPO4のX線回折パターン を表している。三つのX線回折パターンはいずれも、斜 方晶型対称性及び空間群Pmnbに帰属できる。LiMnPO4のX 線回折パターンの帰属後に導出されたLiMnPO4の単位格 子パラメータは、a=6.11±0.5Å、b=10.46±0.5Å、c =4.73±0.5Å; LiNiPO4に対する単位格子パラメータ $lt_a=5.86\pm0.5$ Å, $b=10.07\pm0.2$ Å, $c=4.68\pm0.5$ A; LiCoPO4に対する単位格子パラメータは、a=5.92± 0.5Å、b=10.21±0.5Å、c=4.70±0.5Åである。図2 は、LiCoPO₄のサイクリックボルタンメトリーの一例を 表している。この物質は、5.1Vの位置に一つの酸化ピー クを、また4.7Vの位置に一つの還元ピークを呈する。更 に、もう一つの強い還元ピークが0.7V付近に観測される が、対応する酸化ピークは観測されなかった。この場合 は、6Vまで耐えることが知られているスルホランに溶解 したLiPF6を、電解液として使用した。図3は、本発明の 物質LiCoPO4の第一サイクルの充放電を表している。試 験は、LiPF。+スルホランを電解液として使用したテフ ロン製電槽中で0.1mA/cm²の電流密度において実施し た。この電池は、負極(87%の本発明の活物質、5%のカ ーボンブラック、8%のPVDFの組成)、リチウム対極、及 びリチウム参照電極を備えている。最初に、この電池を 充電して本発明の物質からリチウムを抽出し、次に、放 電してリチウムイオンを挿入してもとに戻す。この電池は、放電中、4.7Vの位置に平坦部を呈し、容量は80mAh/gである。しかしながら、充電容量はわずかに高く、約105mAh/gである。この値は、1個のリチウムを抽出挿入する場合の理論容量167mAh/gよりも依然として低いが、調製条件を最適化することによって改良可能であることを示している。図4は、本発明の物質LiCoPO4の第一サイクル目の充放電を表している。試験は、LiPF6+スルホランを電解液として使用したタイプのテフロン電槽中で0.1mA/cm2の電流密度において実施した。この電池の充放電の電位範囲は、 $1 \le V \le 5.3$ であった。放電中、4.7Vの位置に平坦部が観測された他に、 $1 \lor t$ 付近にもう一つの平坦部が観測された。全体としての容量は非常に高く、約350mAh/gである。

【発明の効果】本発明の、カンラン石型構造を有する式 $\text{LiM}_{1-x}\text{Me}_x\text{PO}_4$ (M: Co, Ni, Mn, Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr) (0 \leq x \leq 0.5) で表される活物質 は、リチウムイオン電池系で正極活物質として使用可能 で、容量が170mAh/gと大きく、しかも電位が5Vと高い、という優れた効果を有している。

【図面の簡単な説明】

【図1A】本発明の物質Li $MnPO_4$ のX線回折パターンを表している図である。

【図1B】本発明の物質LiNiPO。のX線回折パターンを表している図である。

【図1C】本発明の物質Li CoPO, のX線回折パターンを表している図である。

【図2】本発明の物質Li CoPO4のサイクリックボルタン モグラムを表している図である。(走査速度は2mV/分で あった)

【図3】リチウム対電極、リチウム参照電極、及び本発明の活物質LiCoPO。から作られた電極を含んでなる電池の第一サイクル目の充放電曲線を表している。この場合は、この電池を5.3Vまで充電し、1.5Vまで放電させた。【図4】リチウム対電極、リチウム参照電極、及び本発明の活物質LiCoPO。から作られた電極を含んでなる電池の第一サイクルの充放電曲線を表している。この場合は、この電池を5.3Vまで充電し、1Vまで放電させた。

【図1A】

【図1B】

【図1C】 ·

【図3】

【図4】

【外国語明細書】

1- Title:

" Active material for lithium batteries "

2- CLAIMS:

The following are claimed:

1- An active material of formula LiM_{1.x}Me_xPO₄ (M: Co, Ni, Mn), (Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr) (0≤x≤0.5) having an olivine structure for lithium batteries.

- 2- An active material in accordance with claim 1 where the olivine structure has an orthorhombic symmetry
- 3-An active material in accordance with claim 2 in which the unit cell parameters of the orthorhombic phase are: $a=6.11\pm0.50\text{\AA}$, $b=10.46\pm0.50\text{\AA}$ and $c=4.73\pm0.50\text{\AA}$ in the case of LiMnPO.; $a=6.11\pm0.50$

 5.86 ± 0.50 Å, b=10.07±0.20Å and c=4.68± 0.50Å in the case of LiNiPO₄ and a= 5.92 ± 0.50 Å, b=10.21±0.50Å and c=4.70± 0.50Å in the case of LiCoPO₄.

- 4- An active material in accordance with claim 2 where the orthorhombic symmetry has a space group of Pmnb
- 5. An electrode comprises a material in accordance with claim 1 as a positive active material for lithium batteries.
- 6- A cell comprising a positive active material in accordance with claim 5, an electrolyte and a negative active material which is Li, Li-alloy, Li_xSnO₂, carbon materials.

3- Detailed Description of Invention

3-1 Description of previous work

The rapid advance and miniaturization in electronics demand reliable, lightweight, high energy density batteries. Lithium batteries are promising in this regard as they offer higher voltage and energy density, and longer self-life. However, the chemical reactivity of a metallic Li anode with most non aqueous electrolytes as well as the safety problems associated with

3

metallic Li has hindered the development of rechargeable lithium batteries for several years. Recently secondary lithium batteries have received renewed interest with respect to employing a Li-insertion compound as anode instead of metallic Li to give the "lithium ion" batteries. This system, however, require careful selection of cathode and anode hosts. The layered LiMeO₂ (M: Co, Ni) [Mat. Res. Bull. 15 (1980) 783, J. Appl. Phys. 19 (1980) 305] and the three dimensional spinel oxide LiMn₂O₄ [Mat. Res. Bull. 18 (1983) 461, Mat. Res. Bull., 19 (1984)179] having a mid discharge voltage at about 4V against lithium have become attractive cathode for lithium ion batteries. More recently, other type of cathode materials were investigated for a possible use in lithium ion system. These compounds are composed of Nasicon related 3D framework such as Li₂M₂(PO₄)₃ M(Ti, V, Fe) and M₂(SO₄)₃ (M: Ti, Fe) [Solid State ionic 92 (1996) 1].

3-2 Summary of the invention

The invention relates to a new active material of formula LiM_1 . $_xMe_xPO_4$ (M: Co, Ni, Mn), (Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr)

($0 \le x \le 0.5$) which could be used as positive active material for lithium secondary batteries.

According to the invention, LiM_{1-x}Me_xPO₄ (M: Co, Ni, Mn), (Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr) (0≤x≤0.5) materials present an olivine structure with an orthorhombic symmetry and a space group Pmnb.

3-3 Description of the invention

The invention will now be described, by way of non limiting illustrative examples, with reference to experiment which the applicant has conducted and with reference to the accompanying figures.

EXAMPLE-1

LiMnPO₄ in accordance of the present invention was prepared using a one stage reaction involving a stoichiometric mixture of Li₂CO₃, MnCO₃ and (NH₄)₂HPO₄. The mixture was first ground in an agate mortar and pressed into a pellet at 400kgf/cm² and then calcined in air at 450°C for 4 hours followed by heating at 800°C for 24 hours.

EXAMPLE 2

LiMn_{1.x}Me_xPO₄ (Me: Mg, Ni, Co, Fe) in accordance of the present invention was prepared using a one step reaction involving a stoichiometric

5

mixture of Li₂CO₃, MnCO₃, (NH₄)₂HPO₄. and either FeC₂O₄,2H₂O as iron source, MgO as magnesium source, Co₃O₄ as cobalt source, or NiO as nickel source. The mixture was first ground in an agate mortar and pressed into a pellet at 400kgf/cm² and then calcined in air at 450°C for 4 hours followed by heating at 800°C for 24 hours. In the case of iron doping, the calcination was carried out under nitrogen flow.

EXAMPLE 3

LiNiPO₄ in accordance of the present invention was prepared using a one step reaction involving a stoichiometric mixture of Li₂CO₃, NiO and (NH₄)₂HPO₄. The mixture was first ground in an agate mortar and pressed into a pellet at 400kgf/cm² and then calcined under nitrogen flow at 350°C for 8 hours followed by heating at 750°C for 15 hours.

EXAMPLE 4.

LiNi_{1-x}Me_xPO₄ (0≤x≤0.5) (Me: Mg, Mn, Co, Fe) in accordance of the present invention was prepared using a one step reaction involving a stoichiometric mixture of Li₂CO₃, MnCO₃, (NH₄)₂HPO₄, and either FeC₂O₄, 2H₂O as iron source, MgO as magnesium source, Co₃O₄ as cobalt

source, MnCO₃ as manganese source. The mixture was first ground in an agate mortar and pressed into a pellet at 400kgf/cm² and then calcined in air at 350°C for 8 hours followed by heating at 750°C for 24 hours. In the case of iron doping, the calcination was carried out under nitrogen flow.

EXAMPLE 5

LiCoPO₄ in accordance of the present invention was prepared using a two step reaction involving a stoichiometric mixture of Li₂CO₃, Co₃O₄ and (NH₄)₂HPO₄. The mixture was first ground in an agate mortar and pressed into a pellet at 400kgf/cm² and then calcined under air at 350°C for 9 hours. The material was cooled down, grounded and a pellet was again made by pressing at 400kgf/cm² before being heated at 750°C for 30 hours.

EXAMPLE 6

LiNi_{1.x}Me_xPO₄ (0≤x≤0.5) (Me: Mg, Mn, Co, Fe) in accordance of the present invention was prepared using a one step reaction involving a stoichiometric mixture of Li₂CO₃, Co₃O₄, (NH₄)₂HPO₄, and either FeC₂O₄,2H₂O as iron source, MgO as magnisium source, NiO as nickel source, MnCO₃ as manganese source. The mixture was first ground in an

agate mortar and pressed into a pellet at 400kgf/cm² and then calcined in air at 350°C for 8 hours followed by heating at 750°C for 24 hours. In the case of iron doping, the calcination was carried out under nitrogen flow.

Fig.1 A, B, C show the X-ray diffraction patterns of a pure LiMnPO₄, LiNiPO₄, LiCoPO₄, respectively, obtained according to the present invention. All three X-ray diffraction patterns could be indexed with orthorhombic symmetry and a space group Pmnb. The unit cell parameter of LiMnPO₄ deduced after indexing the corresponding pattern are: a= 6.11±0.5Å, b=10.46±0.5Å and c=4.73± 0.5Å; Those corresponding to LiNiPO₄ are a= 5.86±0.5Å, b=10.07±0.2Å, c=4.68± 0.50Å, and those corresponding to LiCoPO₄ are a= 5.92±0.5Å, b=10.21±0.5Å, c=4.70±0.5Å.

Fig 2 shows an example of the cyclic voltammetery of LiCoPO₄. The material exhibit one oxidation peak at 5.1V and one reduction peak at 4.7V. In addition, another strong reduction peak is observed at around 0.7V, but no corresponding oxidation peak was observed. In this case, LiPF₆ dissolved in sulfolane which is known to bear up to 6V was used as electrolyte.

J.

Fig.3 shows the charge and discharge of the first cycle of the material LiCoPO₄ of the present invention. The test was conducted in Teflon cell type using LiPF₆ + sulfolane as electrolyte at a current density of 0.1mA/cm². The cell comprises a negative electrode (87% of the active material of the present invention, 5% carbon black, 8% PVDF), a lithium counter and a lithium reference. First the cell was charged to extract lithium from the material of the present invention and then discharged to insert lithium ions back. The cell shows a flat plateau at 4. 7 V during the discharge process with a capacity of 80mAh/g. The charge capacity, however, is slightly higher with about 105 mAh/g. This value are still lower than the theoretical capacity which is of 167mAh/g in the case of romoving and extracting one lithium, but could be improved by optimizing the preparation condition.

Fig.4 shows the charge and discharge of the first cycle of the material $LiCoPO_4$ of the present invention. The test was conducted in Teflon cell type using $LiPF_6$ + sulfolane as electrolyte at a current density of $0.1mA/cm^2$. The potential range for charging and discharging the cell was between $1 \le V \le 5.3$. In addition to the 4.7V plateau observed during the

discharge process, an other plateau at around 1V could be observed. The over all capacity is very high about 350 mAh/g

3-4 Merits of the invention

The invention relates to a new active material of formula LiM_1 . $_xMe_xPO_4$ (M: Co, Ni, Mn, Me: Mg, Fe, Ni, Co, Mn, Zn,Ge, Cu, Cr) ($0 \le x \le 0.5$) having an olivine structure which could be used as positive active material in lithium ion battery system with a capacity as high as 170 mAh/g and a potential as high as 5V.

4- Brief Description of Drawing

Fig. 1-A shows the X-ray diffraction pattern of the material LiMnPO₄ of the present invention

Fig. 1-B shows the X-ray diffraction pattern of the material LiNiPO₄ of the present invention

Fig. 1-C shows the X-ray diffraction pattern of the material LiCoPO₄ of the present invention

Fig. 2 shows the cyclic volatommogram of the material LiCoPO₄ of the present invention. (Scan rate was 2mV/min)

Fig. 3 shows the charge and discharge curves of the first cycle of a cell made of lithium counter, lithium reference and an electrode made of the active material LiCoPO₄ of the present invention. In this case the cell was charged at 5.3V and discharged at 1.5V

Fig. 4 shows the charge and discharge curves of the first cycle of a cell made of lithium counter, lithium reference and an electrode made of the active material LiCoPO₄ of the present invention. In this case the cell was charged at 5.3V and discharged at 1V

【図1A】

ページ2

【書類名】 外国語図面 【図1B】

ページ3

【書類名】 外国語図面- 【図1C】

【書類名】 外国語図面

[図2]

Potential vs. Li (mV)

ページ5

【書類名】 外国語図面 【図3】

ページ6

【書類名】 外国語図面 【図4】

1-Abstract

The invention relates to a new active material of formula LiM_1 . $_xMe_xPO_4$ (M: Co, Ni, Mn, Me: Mg, Fe, Ni, Co, Mn, Zn,Ge, Cu, Cr) ($0 \le x \le 0.5$) having an olivine structure. which could be used as positive active material in lithium ion battery system.

2-Representative Drawing

Fig. 3