Proof. As discussed just after Definition 49.4, by Proposition 48.10, there is a unique continuous linear map $A: V \to V$ such that

$$a(u, v) = \langle Au, v \rangle$$
 for all $u, v \in V$,

with ||A|| = ||a|| = C, and by the Riesz representation theorem (Proposition 48.9), there is a unique $b \in V$ such that

$$h(v) = \langle b, v \rangle$$
 for all $v \in V$.

Consequently, J can be written as

$$J(v) = \frac{1}{2} \langle Av, v \rangle - \langle b, v \rangle \quad \text{for all } v \in V.$$
 (*1)

Since ||A|| = ||a|| = C, we have $||Av|| \le ||A|| ||v|| = C ||v||$ for all $v \in V$. Using $(*_1)$, the inequality (*) is equivalent to finding u such that

$$\langle Au, v - u \rangle \ge \langle b, v - u \rangle$$
 for all $v \in U$. $(*_2)$

Let $\rho > 0$ be a constant to be determined later. Then $(*_2)$ is equivalent to

$$\langle \rho b - \rho A u + u - u, v - u \rangle \le 0 \quad \text{for all } v \in U.$$
 (*3)

By the projection lemma (Proposition 48.5 (1) and (2)), $(*_3)$ is equivalent to finding $u \in U$ such that

$$u = p_U(\rho b - \rho A u + u). \tag{*_4}$$

We are led to finding a fixed point of the function $F: U \to U$ given by

$$F(v) = p_U(\rho b - \rho A v + v).$$

By Proposition 48.6, the projection map p_U does not increase distance, so

$$||F(v_1) - F(v_2)|| \le ||v_1 - v_2 - \rho(Av_1 - Av_2)||.$$

Since a is coercive we have

$$a(v,v) \ge \alpha \left\| v \right\|^2,$$

since $a(v, v) = \langle Av, v \rangle$ we have

$$\langle Av, v \rangle \ge \alpha \|v\|^2$$
 for all $v \in V$, $(*_5)$

and since

$$||Av|| \le C ||v|| \quad \text{for all } v \in V, \tag{*6}$$

we get

$$||F(v_1) - F(v_2)||^2 \le ||v_1 - v_2||^2 - 2\rho \langle Av_1 - Av_2, v_1 - v_2 \rangle + \rho^2 ||Av_1 - Av_2||^2$$

$$\le \left(1 - 2\rho\alpha + \rho^2 C^2\right) ||v_1 - v_2||^2.$$