Bezout's Identity

Theorem 1 (Bezout's Identity). If a and b are integers, then there exist integers u and v such that gcd(a,b) = ua + vb

Proof. We start with the case $b \ge 0$, proceeding by strong induction.

- Base Case (b=0): Note that $gcd(a,0) = a = a \cdot 1 + 0 \cdot 0$ as needed. That is, the result holds with u=1 and v=0.
- Base Case (b=1): Note that $gcd(a,1) = 1 = a \cdot 0 + 1 \cdot 1$ as needed. That is, the result holds with u=0 and v=1.
- Inductive Step: Suppose the result holds for all integers b' with $0 \le b' < b$, where b > 1. That is, for all such b' and all integers a there exist integers a and b' such that $\gcd(a,b') = au + b'v$. Now consider b. By the division algorithm we have integers a and b' such that a = ab + b' and a = ab + b' we have two possibilities to consider.
 - If r = 0, then in fact b|a, since a = qb. So $gcd(a, b) = b = a \cdot 0 + q \cdot b$. That is, the result holds with u = 0 and v = 1.
 - If r > 0, then by the induction hypothesis there exist integers u' and v' such that gcd(b, r) = bu' + rv'. By the euclidean algorithm, we have

$$\begin{array}{rcl} \gcd(a,b) & = & \gcd(b,r) \\ & = & bu' + rv' \\ & = & bu' + (a - qb)v' \\ & = & av' + b(u' - qv'). \end{array}$$

That is, the result holds with u = v' and v = u' - qv'.

By Strong Induction, for all $b \ge 0$ and all integers a there exist integers u and v such that gcd(a,b) = au + bv.

Now suppose b < 0, so that -b > 0. By the previous discussion, there exist integers u' and v' such that gcd(a, -b) = au' + (-b)v'. Now

$$gcd(a, b) = gcd(a, -b) = au' + (-b)v' = au' + b(-v').$$

That is, the result holds with u = u' and v = -v'.

Similar to the Euclidean Algorithm, this proof of Bezout's Identity provides us with a strategy for actually finding the coefficients u and v recursively.

Definition 1 (Relatively Prime). We say that integers a and b are relatively prime if gcd(a, b) = 1.

Theorem 2 (Euclid's Lemma). If a and b are relatively prime integers and c an integer such that a|bc, then a|c.

Proof. By Bezout's Identity, we have 1 = au + bv for some integers u and v; so c = auc + bvc. Since a|bc, we have bc = at for some integer t. Thus

$$c = auc + bvc = auc + atv = a(uc + tv),$$

and so a|c as claimed.