

Project: Time Series Forecasting

20.06.2021

Peeyush Vardhan

Mobile: +91-9515456727

Email: peeyushvrdhn@gmail.com

Case Study 1: Sparkling Wine Prediction

Problem Statement:

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

Data set: Sparkling.csv

Question 1: Read the data as an appropriate Time Series data and plot the data.

Solution:

• Reading the data:

4000 02 04

```
df = pd.read_csv('Sparkling.csv',parse_dates =True, index_col=0)
df.head()
```

YearMonth 1980-01-01 1686

Sparkling

1980-02-01	1591
1980-03-01	2304
1980-04-01	1712
1020 05 01	1/171

• Checking the timestamp:

- Checking data information:
 - The number of rows are 187
 - o The number of columns are 1

Plotting the Time Series to understand the behaviour of the data:

- Insights:
 - The data seems additive in nature and it has seasonality.

- Over the years, the Sparkling sales has been good and it was the best performing in 1988
- Between the years 1989 and 1995 the sales have seemed to be constant, it shows that this particular wine has a constant consumer base.

Question 2: Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Solution:

• Checking the basic statistical details:

```
1 df.describe()
```

	Sparkling
count	187.000000
mean	2402.417112
std	1295.111540
min	1070.000000
25%	1605.000000
50%	1874.000000
75%	2549.000000
max	7242.000000

- Checking missing values in the data set:
 - There are no missing data in the dataframe

```
#finding number of missing values in the data set

df.isnull().sum()
```

Sparkling (dtype: int64

• Plotting a boxplot to understand the spread of accidents across different years and within different months across years:

o Yearly Boxplot

Monthly Boxplot

Looking at Monthly Sale Across Different Years:

YearMont	1	2	3	4	5	6	7	8	9	10	11	12
YearMont	1											
198	1686.0	1591.0	2304.0	1712.0	1471.0	1377.0	1966.0	2453.0	1984.0	2596.0	4087.0	5179.0
198	1530.0	1523.0	1633.0	1976.0	1170.0	1480.0	1781.0	2472.0	1981.0	2273.0	3857.0	4551.0
198	1510.0	1329.0	1518.0	1790.0	1537.0	1449.0	1954.0	1897.0	1706.0	2514.0	3593.0	4524.0
198	1609.0	1638.0	2030.0	1375.0	1320.0	1245.0	1600.0	2298.0	2191.0	2511.0	3440.0	4923.0
198	1609.0	1435.0	2061.0	1789.0	1567.0	1404.0	1597.0	3159.0	1759.0	2504.0	4273.0	5274.0
198	1771.0	1682.0	1846.0	1589.0	1896.0	1379.0	1645.0	2512.0	1771.0	3727.0	4388.0	5434.0
198	1606.0	1523.0	1577.0	1605.0	1765.0	1403.0	2584.0	3318.0	1562.0	2349.0	3987.0	5891.0
198	1389.0	1442.0	1548.0	1935.0	1518.0	1250.0	1847.0	1930.0	2638.0	3114.0	4405.0	7242.0
198	1853.0	1779.0	2108.0	2336.0	1728.0	1661.0	2230.0	1645.0	2421.0	3740.0	4988.0	6757.0
198	1757.0	1394.0	1982.0	1650.0	1654.0	1406.0	1971.0	1968.0	2608.0	3845.0	4514.0	6694.0
199	1720.0	1321.0	1859.0	1628.0	1615.0	1457.0	1899.0	1605.0	2424.0	3116.0	4286.0	6047.0
199	1902.0	2049.0	1874.0	1279.0	1432.0	1540.0	2214.0	1857.0	2408.0	3252.0	3627.0	6153.0
199	1577.0	1667.0	1993.0	1997.0	1783.0	1625.0	2076.0	1773.0	2377.0	3088.0	4096.0	6119.0
199	1494.0	1564.0	1898.0	2121.0	1831.0	1515.0	2048.0	2795.0	1749.0	3339.0	4227.0	6410.0
199	1197.0	1968.0	1720.0	1725.0	1674.0	1693.0	2031.0	1495.0	2968.0	3385.0	3729.0	5999.0
199	1070.0	1402.0	1897.0	1862.0	1670.0	1688.0	2031.0	NaN	NaN	NaN	NaN	NaN

Graphical Representation:

Details of the annual sale:

Sparkling

YearMonth	
1980-12-31	28406
1981-12-31	26227
1982-12-31	25321
1983-12-31	26180
1984-12-31	28431

Graphical Representation:

o Details of average the annual sale:

Sparkling

YearMonth	
1980-12-31	2367.166667
1981-12-31	2185.583333
1982-12-31	2110.083333
1983-12-31	2181.666667
1984-12-31	2369.250000

Graphical Representation:

 Average Sparkling Sales per month and the month on month percentage change of Sparkling Sales:

- Representation of decomposition of data for Time series analysis. This will be represented in 2 types:
 - Additive decomposition
 - o Multiplicative decomposition

Additive decomposition:

Multiplicative decomposition:

• Insights from decomposition of data:

- It is observed in additive decomposition that seasonality is present on a yearly basis.
- There is a slight trend in error terms as well in additive decomposition.
- Multiplicative decomposition also shows seasonality on a yearly basis.

Question 3: Split the data into training and test. The test data should start in 1991.

Solution:

• Splitting the data into train and test shape:

```
1 train=df[df.index.year < 1991]
2 test=df[df.index.year >= 1991]
3 print("Shape of Training Data is", train.shape)
4 print("Shape of Test Data is", test.shape)

Shape of Training Data is (132, 1)
Shape of Test Data is (55, 1)
```

• Bottom data from training set:

```
1 display(train.tail())
```

	arı		

YearMonth	
1990-08-01	1605
1990-09-01	2424
1990-10-01	3116
1990-11-01	4286
1990-12-01	6047

• Top data from test set:

1 display(test.head())

_				
	pa	rv	1111	
-	υa	ıπ	ш	ш

YearMonth	
1991-01-01	1902
1991-02-01	2049
1991-03-01	1874
1991-04-01	1279
1991-05-01	1432

• Plotting the training and test data:

Question 4: Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression, naïve forecast models and simple average models. Should also be built on the training data and check the performance on the test data using RMSE.

Solution:

Please refer to the Jupyter Notebook submitted to look into the code.

4.1. Building Regression Model:

• Training Time instance

Training Time instance

Iraining lime instance
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 3 4, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132]

Test Time instance Test Time instance

[133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 18 3, 184, 185, 186, 187]

• Training data head:

	Sparkling	time
YearMonth		
1980-01-01	1686	1
1980-02-01	1591	2
1980-03-01	2304	3
1980-04-01	1712	4
1980-05-01	1471	5

Training data tail:

	Sparkling	time
YearMonth		
1990-08-01	1605	128
1990-09-01	2424	129
1990-10-01	3116	130
1990-11-01	4286	131
1990-12-01	6047	132

Test data head:

1991-02-01 2049 134 1991-03-01 1874 139 1991-04-01 1279 136		Sparkling	time
1991-02-01 2049 134 1991-03-01 1874 139 1991-04-01 1279 136	YearMonth		
1991-03-01 1874 135 1991-04-01 1279 136	1991-01-01	1902	133
1991-04-01 1279 136	1991-02-01	2049	134
	1991-03-01	1874	135
1991-05-01 1432 137	1991-04-01	1279	136
	1991-05-01	1432	137

Test data tail:

	Sparkling	time
YearMonth		
1995-03-01	1897	183
1995-04-01	1862	184
1995-05-01	1670	185
1995-06-01	1688	186
1995-07-01	2031	187

• Plotting Linear Regression Model:

```
import sklearn
print(sklearn.__version__)
from sklearn import linear_model
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
```

0.24.2

RMSE model evaluation:

```
#LR MODEL EVALUATION

rmse_lr = metrics.mean_squared_error(test['Sparkling'], lr_predict, squared=False)
print("RMSE of LR is %3.3f" %(rmse_lr))
```

RMSE of LR is 1389.135

```
1 resultsDf = pd.DataFrame({'Test RMSE': [rmse_lr]},index=['RegressionOnTime'])
2 resultsDf
```

```
Test RMSE
RegressionOnTime 1389.135175
```

4.2. Building Naïve Forecast Model:

• Test data head:

```
YearMonth
1991-01-01 6047
1991-02-01 6047
1991-03-01 6047
1991-04-01 6047
1991-05-01 6047
Name: naive, dtype: int64
```

Train test data plot:

- Naïve Forecast Model Evaluation:
 - RMSE of NF is 3864.279

```
#NF MODEL EVALUATION

rmse_nf = metrics.mean_squared_error(test['Sparkling'],NM_test['naive'],squared=False)

print("RMSE of NF is %3.3f" %(rmse_nf))

RMSE of NF is 3864.279

resultsDf_NF = pd.DataFrame({'Test RMSE': [rmse_nf]},index=['NaiveModel'])

resultsDf = pd.concat([resultsDf, resultsDf_NF])

resultsDf
```


4.3. Building Simple Average Model:

• Test data head:

Sparkling mean_fore	ecast	
---------------------	-------	--

YearMonth		
1991-01-01	1902	2403.780303
1991-02-01	2049	2403.780303
1991-03-01	1874	2403.780303
1991-04-01	1279	2403.780303
1991-05-01	1432	2403.780303

Train test data plot:

• Simple Average Model Evaluation:

```
#Simple Average Model Evaluation

rmse_sa = metrics.mean_squared_error(test['Sparkling'],SA_test['mean_forecast'],squared=False)
print("RMSE of SA isis %3.3f" %(rmse_sa))
```

RMSE of SA isis 1275.082

```
resultsDf_SA = pd.DataFrame({'Test RMSE': [rmse_sa]},index=['SimpleAverageModel'])
resultsDf = pd.concat([resultsDf, resultsDf_SA])
resultsDf
```

	Test RMSE
RegressionOnTime	1389.135175
NaiveModel	3864.279352
SimpleAverageModel	1275.081804

4.4. Single Exponential Smoothing Model (SES):

```
SES_test = test.copy()
SES_train = train.copy()
   1 model_SES = SimpleExpSmoothing(SES_train['Sparkling'])
    2 model_SES_autofit = model_SES.fit(optimized=True)
   3 model_SES_autofit.params
ovided, so inferred frequency MS will be used.
warnings.warn('No frequency information was'
ust be handled at model creation
    warnings.warn(
{\tt C: \sc 91951\anaconda \lib\site-packages\stats models\tsa\holtwinters\model.py: 920: Convergence \warring: Optimization failed in the convergence \sc 91951 \anaconda \sc 91951 \anac
converge. Check mle_retvals.
    warnings.warn(
{'smoothing_level': 0.049607360581862936,
     'smoothing_trend': nan,
    'smoothing_seasonal': nan,
  'damping_trend': nan,
'initial_level': 1818.535750008871,
   'initial_trend': nan,
   'initial_seasons': array([], dtype=float64),
   'use_boxcox': False,
   'lamda': None,
   'remove_bias': False}
```

• Test data head:

	Sparkling	predict
YearMonth		
1991-01-01	1902	2724.932624
1991-02-01	2049	2724.932624
1991-03-01	1874	2724.932624
1991-04-01	1279	2724.932624
1991-05-01	1432	2724.932624

• Single Exponential Smoothing Model Evaluation:

```
#SES MODEL EVALUATION

rmse_ses = metrics.mean_squared_error(SES_test['Sparkling'],SES_test['predict'],squared=False)

print("For Alpha =0.995, RMSE of SES is %3.3f" %(rmse_ses))
```

For Alpha =0.995, RMSE of SES is 1316.035

```
resultsDf_SES = pd.DataFrame({'Test RMSE': [rmse_ses]},index=['Alpha=0.995,SimpleExponentialSmoothing'])
resultsDf = pd.concat([resultsDf, resultsDf_SES])
resultsDf
```

	Test RMSE
RegressionOnTime	1389.135175
NaiveModel	3864.279352
SimpleAverageModel	1275.081804
Alpha=0.995 SimpleExponentialSmoothing	1316 035487

4.5. Building Double Exponential Smoothing - Holt's Model

```
resultsDf_DES = pd.DataFrame({'Alpha Values':[],'Beta Values':[],'Train RMSE':[],'Test RMSE': []})
resultsDf_DES
```

Alpha Values Beta Values Train RMSE Test RMSE

• Consolidation of Double Exponential Smoothing:

	Alpha Values	Beta Values	Train RMSE	Test RMSE
0	0.3	0.3	2.535396e+06	2.535396e+06
1	0.3	0.4	2.831055e+06	2.831055e+06
2	0.3	0.5	3.138959e+06	3.138959e+06
3	0.3	0.6	3.417235e+06	3.417235e+06
4	0.3	0.7	3.609806e+06	3.609806e+06
59	1.0	0.6	3.074420e+06	3.074420e+06
60	1.0	0.7	3.331308e+06	3.331308e+06
61	1.0	0.8	3.617656e+06	3.617656e+06
62	1.0	0.9	3.941688e+06	3.941688e+06
63	1.0	1.0	4.316722e+06	4.316722e+06

64 rows × 4 columns

• Double Exponential Smoothing test set top data:

	Alpha Values	Beta Values	Train RMSE	Test RMSE
32	0.7	0.3	2.252068e+06	2.252068e+06
24	0.6	0.3	2.269391e+06	2.269391e+06
40	0.8	0.3	2.277533e+06	2.277533e+06
48	0.9	0.3	2.337537e+06	2.337537e+06
16	0.5	0.3	2.342662e+06	2.342662e+06

• Plotting on both the Training and Test data (Alpha = 0.3, Beta = 0.3)

• Results of Double Exponential Smoothing:

	Test RMSE
RegressionOnTime	1.389135e+03
NaiveModel	3.864279e+03
SimpleAverageModel	1.275082e+03
Alpha=0.995, SimpleExponential Smoothing	1.316035e+03
Alpha = 0.3, Beta = 0.3, Double Exponential Smoothing	2.252068e+06

4.6. Triple Exponential Smoothing (Holt - Winter's Model):

```
# Triple Exponential Smoothing (Holt - Winter's Model)
TES_test = test.copy()
TES_train = train.copy()
```

Model Parameters:

• Triple Exponential Smoothing test set top data:

Spark	ling	auto_	_predic	ct
-------	------	-------	---------	----

YearMonth		
1991-01-01	1902	1577.224489
1991-02-01	2049	1333.677558
1991-03-01	1874	1745.945679
1991-04-01	1279	1630.411925
1991-05-01	1432	1523.289070

Triple Exponential Smoothing (Holt - Winter's Model) Model Evaluation:

Toot DMCE

	Test RIVISE
RegressionOnTime	1.389135e+03
NaiveModel	3.864279e+03
SimpleAverageModel	1.275082e+03
Alpha=0.995, SimpleExponential Smoothing	1.316035e+03
Alpha = 0.3, Beta = 0.3, Double Exponential Smoothing	2.252068e+06
Alpha=0.676,Beta=0.088,Gamma=0.323,TripleExponentialSmoothing	1.316035e+03

Question 5: Check for the stationarity of the data on which the model is being built using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

Solution:

Please refer to the Jupyter Notebook submitted to look into the code.

- Steps Involved:
 - Determining rolling statistics
 - Plot rolling statistics
 - Perform Dickey-Fuller test

```
1 def test_stationarity(timeseries):
        #Determining rolling statistics
       rolmean = timeseries.rolling(window=7).mean() #determining the rolling mean
       rolstd = timeseries.rolling(window=7).std() #determining the rolling standard deviation
       #Plot rolling statistics:
      orig = plt.plot(timeseries, color='blue',label='Original')
       mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std')
10
11
      plt.legend(loc='best')
       plt.title('Rolling Mean & Standard Deviation')
12
13
       plt.show(block=False)
       #Perform Dickey-Fuller test:
15
      print ('Results of Dickey-Fuller Test:')
16
17
       dftest = adfuller(timeseries, autolag='AIC')
       dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])
     for key, value in dftest[4].items():
19
           dfoutput['Critical Value (%s)'%key] = value
20
21
       print (dfoutput,'\n')
```

• Plot between Rolling Standard, Rolling mean and Original:

• Results of Dickey-Fuller Test:

Results of Dickey-Fuller Test:	
Test Statistic	-1.360497
p-value	0.601061
#Lags Used	11.000000
Number of Observations Used	175.000000
Critical Value (1%)	-3.468280
Critical Value (5%)	-2.878202
Critical Value (10%)	-2.575653
dtype: float64	

Standards:

- o p-value 0.601061, Thus the series is non-stationary.
- o Difference of order 1, to check the time series again

Plot between Rolling Standard, Rolling mean and Original:

Results of Dickey-Fuller Test:

Results of Dickey-Fuller Test:	
Test Statistic	-45.050301
p-value	0.000000
#Lags Used	10.000000
Number of Observations Used	175.000000
Critical Value (1%)	-3.468280
Critical Value (5%)	-2.878202
Critical Value (10%)	-2.575653
dtype: float64	

Insight:

Now, series is stationary at alpha =0.05

Question 6: Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

Solution:

Please refer to the Jupyter Notebook submitted to look into the code.

• Test stationarity Graph:

Results of Dickey-Fuller Test:	
Test Statistic	-1.208926
p-value	0.669744
#Lags Used	12.000000
Number of Observations Used	119.000000
Critical Value (1%)	-3.486535
Critical Value (5%)	-2.886151
Critical Value (10%)	-2.579896
dtype: float64	

• Test stationarity Graph by dropping un-necessary values:


```
Results of Dickey-Fuller Test:
Test Statistic
                               -8.005007e+00
p-value
                                2.280104e-12
#Lags Used
                                1.100000e+01
Number of Observations Used
                               1.190000e+02
Critical Value (1%)
                               -3.486535e+00
Critical Value (5%)
                               -2.886151e+00
Critical Value (10%)
                               -2.579896e+00
dtype: float64
```

• Building the parameter combinations for the Model:

```
Some parameter combinations for the Model...
Model: (0, 1, 1)
Model: (0, 1, 2)
Model: (1, 1, 0)
Model: (1, 1, 1)
Model: (1, 1, 2)
Model: (2, 1, 0)
Model: (2, 1, 1)
Model: (2, 1, 2)
```

• The ARIMA Model:

ARIMA Model Results

===========						:
Dep. Variable:	D.Sp	arkling	No. Observa	tions:	131	
Model:	ARIMA(2	, 1, 2)	Log Likelih	ood	-1099.309)
Method:			S.D. of inn		1012.730)
Date:	Sun, 20 J				2210.619)
Time:	-	9:00:05			2227.870	
Sample:		01-1980			2217.628	
Jumpic.		01-1990	ngic		2217.020	,
	- 12-	01-1990				
	coof	ctd onn		DS Let	[0.025	0.0751
					[0.025	0.9/5]
const					4.570	6.599
ar.L1.D.Sparkling						
ar.L2.D.Sparkling						
ma.L1.D.Sparkling						
ma.L2.D.Sparkling						
ma.Lz.b.Sparkiing	0.9976	Root		0.000	0.915	1.001
		KOOT	.5			
==========	n1	T		M-41		
	Real	imaginar	·y	Modulus	Frequency	
AR.1 1.	.1333	-0 7073		1 3350	-0.0888	
	1333	+0.7073	-	1.3359		
) J		0.0000	
			-			
MA.2 1.	.0019	+0.0000	ני	1.0019	0.0000	

- Prediction of ARIMA Model:
 - o RMSE = 1374.546023727508

```
resultsDf = pd.DataFrame({'RMSE': [rmse]}
,index=['ARIMA(2,1,1)'])
resultsDf
```

RMSE

ARIMA(2,1,1) 1374.546024

• Building an SARIMA model using AIC:

• Examples of the parameter combinations for the Model:

```
Examples of the parameter combinations for the Model are
Model: (0, 1, 1)(0, 0, 1, 4)
Model: (0, 1, 2)(0, 0, 2, 4)
Model: (0, 1, 3)(0, 0, 3, 4)
Model: (1, 1, 0)(1, 0, 0, 4)
Model: (1, 1, 1)(1, 0, 1, 4)
Model: (1, 1, 2)(1, 0, 2, 4)
Model: (1, 1, 3)(1, 0, 3, 4)
Model: (2, 1, 0)(2, 0, 0, 4)
Model: (2, 1, 1)(2, 0, 1, 4)
Model: (2, 1, 2)(2, 0, 2, 4)
Model: (2, 1, 3)(2, 0, 3, 4)
Model: (3, 1, 0)(3, 0, 0, 4)
Model: (3, 1, 1)(3, 0, 1, 4)
Model: (3, 1, 2)(3, 0, 2, 4)
Model: (3, 1, 3)(3, 0, 3, 4)
```

• The SARIMA Model:

SARIMAX Results

Dep. Varia	ble:		Spark	ling No. 0	bservations:		132
Model:	SARI	MAX(2, 1, 3	3)x(3, 0, 3	, 4) Log L	ikelihood		-843.516
Date:			un, 20 Jun				1711.033
Time:			19:0	3:06 BIC			1743.972
Sample:			01-01-	1980 HQIC			1724.403
			- 12-01-	1990			
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	1.5316	0.043	35.260	0.000	1.446	1.617	
ar.L2	-0.9458	0.051	-18.720	0.000	-1.045	-0.847	
ma.L1	-2.9790	0.107	-27.929	0.000	-3.188	-2.770	
ma.L2	3.1855	0.327	9.752	0.000	2.545	3.826	
ma.L3	-1.3074	0.214	-6.117	0.000	-1.726	-0.888	
ar.S.L4	-0.0070	0.011	-0.655	0.513	-0.028	0.014	
ar.S.L8	-0.0232	0.010	-2.392	0.017	-0.042	-0.004	
ar.S.L12	1.0449	0.011	95.062	0.000	1.023	1.066	
ma.S.L4	-0.0268	0.099	-0.271	0.786	-0.221	0.167	
ma.S.L8	-0.0772	0.099	-0.777	0.437	-0.272	0.118	
ma.S.L12	-0.6509	0.101	-6.461	0.000	-0.848	-0.453	
sigma2	6.933e+04	1.5e-05	4.63e+09	0.000	6.93e+04	6.93e+04	
=======							===
Ljung-Box	(L1) (Q):		0.10	Jarque-Bera	(JB):	42	.51
Prob(Q):			0.75	Prob(JB):		e	.00
	asticity (H):		2.61	Skew:		е	.85
Prob(H) (t	wo-sided):		0.00	Kurtosis:		5	.45
========							===

• The Auto ARIMA Summary:

Sparkling	mean	mean_se	mean_ci_lower	mean_ci_upper
1991-01-01	1489.775620	347.338138	809.005379	2170.545861
1991-02-01	1348.987035	349.397804	664.179923	2033.794147
1991-03-01	1848.172847	349.772280	1162.631775	2533.713919
1991-04-01	1667.876173	350.195212	981.506170	2354.246176
1991-05-01	1353.543177	351.063678	665.471013	2041.615342

• RMSE Output: 713.9776935967018

	RMSE
ARIMA(2,1,1)	1374.546024
SARIMA(2,1,3)(0,0,3,12)(SARIMA AIC)	713.977694

Question 7: Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

Solution:

Please refer to the Jupyter Notebook submitted to look into the code.

• Plotting the Autocorrelation graph:

• Plotting the Partial Autocorrelation graph:

 Finding auto-correlation function and partial auto-correlation function on training data only:

10

- Shape of Training Data is (132, 1)
- Shape of Test Data is (55, 1)

• Training data autocorrelation:

• Training data partial autocorrelation:

• Visualization of the training data:

- The Augmented Dickey-Fuller test results:
 - o DF test statistic is -2.062
 - o DF test p-value is 0.5674110388593686
 - Number of lags used 12
- The Augmented Dickey-Fuller test results by removing unnecessary data:
 - o DF test statistic is -7.968
 - o DF test p-value is 8.479210655514366e-11
 - Number of lags used 11

• Plotting graph for the same:

Results for SARIMA model:

• SARIMA(0, 1, 0)x(0, 0, 0, 12) - AIC:2251.3597196862966

	param	seasonal	AIC
0	(0, 1, 0)	(0, 0, 0, 12)	2251.35972

• The SARIMA Model:

SARIMAX Results

Dep. Varia	ble:		Spar	kling No.	Observations:	:	132
Model:	SARI	MAX(0, 1,	1)x(1, 0, 1	, 12) Log	Likelihood		-865.045
Date:			Sun, 20 Jun				1738.090
Time:			•	03:08 BIC			1749.139
Sample:				-1980 HOIC			1742.576
Jump 201			- 12-01	_			27 121370
Covariance	Tyne:		12 01	opg			
covar fance	турс.			∨РБ 			
	coof	std onn		DSIzi	[0.025	0.0751	
	coei				[0.025	0.9/5]	
ma I 1	-1.1498				-1 200	-1 010	
	1.0408						
	-0.6549						
sigma2	1.128e+05	1.58e+04	7.116	0.000	8.17e+04	1.44e+05	
=======							
Ljung-Box	(L1) (Q):		0.47	Jarque-Bera	(JB):	30	0.07
Prob(Q):			0.49	Prob(JB):		(0.00
Heterosked	asticity (H):		2.82	Skew:		(0.43
Prob(H) (t	wo-sided):		0.00	Kurtosis:		!	5.33
========							====

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

• Predicted auto SARIMA summary:

Sparkling	mean	mean_se	mean_ci_lower	mean_ci_upper
1991-01-01	1417.964748	386.121138	661.181224	2174.748272
1991-02-01	1145.080417	389.378651	381.912284	1908.248549
1991-03-01	1615.907957	392.614481	846.397714	2385.418199
1991-04-01	1493.135022	395.824092	717.334057	2268.935987
1991-05-01	1346.984336	399.007903	564.943216	2129.025457

- RMSE obtained is: 603.6494071113511
- Results Obtained:

		r

ARIMA(2,1,1)	1374.546024
SARIMA(2,1,3)(0,0,3,12)(SARIMA AIC)	713.977694
SARIMA(0, 1, 1)(1, 0, 1, 12)	603.649407

Question 8: Build a table (create a data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

Solution:

ARIMA(2,1,1) 1374.546024 SARIMA(2,1,3)(0,0,3,12)(SARIMA AIC) 713.977694 SARIMA(0, 1, 1)(1, 0, 1, 12) 603.649407 SARIMA(0,1,1)(0,0,3,12) 1099.387954

Question 9: Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Solution:

Please refer to the Jupyter Notebook submitted to look into the code.

Dep. Variable:			Spar	kling No. (Observations:		18
Model:	SARI	MAX(0, 1,	1)x(1, 0, 1	, 12) Log	Likelihood		-1266.94
Date:		,	Sun, 20 Jun	_			2541.88
Time:			19:	03:09 BIC			2554.47
Sample:			01-01 - 07-01				2546.99
Covariance Type:				opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ma.L1 -1	.0788	0.038	-28.471	0.000	-1.153	-1.005	
ar.S.L12 1	.0121	0.011	96.365	0.000	0.992	1.033	
ma.S.L12 -0	.6163	0.065	-9.508	0.000	-0.743	-0.489	
sigma2 1.2	2e+05	1.21e+04	10.114	0.000	9.84e+04	1.46e+05	
 Ljung-Box (L1) ((O):	======	1.44	Jarque-Bera	(JB):	 4	9.08
Prob(Q):		0.23	Prob(JB):		0.00		
Heteroskedasticity (H):		1.22	Skew:		0.57		
Prob(H) (two-sided):		0.45	Kurtosis:		5.36		
							====

• Forecasting for upcoming one year:

Sparkling	mean	mean_se	mean_ci_lower	mean_ci_upper
1995-08-01	1877.254167	376.878119	1138.586628	2615.921706
1995-09-01	2418.741793	377.882708	1678.105296	3159.378291
1995-10-01	3296.070789	378.884633	2553.470554	4038.671023
1995-11-01	3998.078150	379.883915	3253.519358	4742.636942
1995-12-01	6250.663528	380.880577	5504.151315	6997.175742

• RMSE of the Full Model: 532.1702158997205

YearMonth

Upcoming year forecasting graph:

• Insights:

- The forecasting prediction is that there will be an increase in sales in 1996 than 1995 in Sparkling Wine.
- The growth will be more additive and it will show seasonality.

Question 10: Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales. Please explain and summarise the various steps performed in this project. There should be proper business interpretation and actionable insights present.

Solution:

This Sparkling data contains the 15 years of data of sales. Once I dug the data it seems to have a strong seasonality in the last year every year. It shows in festive times the demand for wine increases all around. This increasing demand is specific and needs specific care to match the increased demand.

Once predicting the future demand for the next 12 months, it is observed that demand will follow the same trend and will show a strong seasonality at the end of the year. Once the

sales data is decomposed it shows the trend of demand as static over the years. The demand has shown a slight increase and a specific increase between Y1987 and Y1990

Various exponential smoothing models development of this project contains the deep analysis of data:

- First data is converted into Time series index, and then EDA has provided the complete insight of data along with Decomposition of data on both additive and multiplicative basis. Additive analysis shows some trends in error terms so multiplicative decomposition is required here.
- Then different techniques of various exponential smoothing models are done training data and its effect is observed on the test data. The RMSE value of the different models is observed, and each model's RMSE value is enclosed here for better understanding. Double Exponential Smoothing follows the test data most accurately comparing the other models.

Test	RMSE
Regression On Time	
NaiveModel	3.864279e+03
Simple Average Model	1.275082e+03
Alpha = 0.995, SimpleExponentialSmoothing	1.316035e+03
Alpha=0.3, Beta=0.3, Double Exponential Smoothing	2.252068e+06

- Stationarity shows the statistical properties of a time series that do not change over a period of time. Here data was not stationary and the first order of differentiation was required to make it stationary. The augmented Dickey-Fuller test at alpha level =0.05 is used to develop the above model.
- ARIMA and SARIMA models are then developed to generate the future prediction for the next 12 months. ARIMA and SARIMA both are developed using AIC first then using ACF and PACF.

Test	RMSE
ARIMA (2,1,1) (AIC)	1374.037009
SARIMA (2,1,3) (0,0,3,12) (SARIMA AIC)	652.983976
ARIMA (1,1,0) (ACF & PACF)	1418.218341
SARIMA(0, 1, 1) (1, 0, 1, 12), (AIC & PACF)	603.648764

The Overall RMSE of the model when implemented on whole data (Training+Test) = RMSE of the Full Model is 532.170401378045

Action Insights for the company:

- New customer segment identification:
 - Looking at the result and future forecasting, we've seen that there's a constant and profitable demand for Sparkling Wine, hence we have a strong customer base. Now it's needed to identify new consumers to expand the growth. For this the suggestions would be:
 - Referral Program:
 - Bring your buddy program with additional discount to introduce new consumers
- Brand Marketing and Advertising:
 - This is the perfect time when there should be work started on brand enablement and advertising in new geography to acquire new customers.