Advanced Topics in Machine learning: Project University of Bern- 2019

Classifying music genres

Thomas Schaller | Dorian Guyot | Jonathan Péclat

SUMMARY

- Task description & Motivation
- Challenges
 - Data preparation
- State of the art (prior work)
- Our solution
- Results

Task description & Motivation

- Classify a music in a genre :
 - Blues, Classical, Country, Disco, Hip Hop
 - Jazz, Metal, Pop, Reggae, Rock.
- Genre
 - quickly describe music
 - quite consensual among people
- Our solution may help
 - find music
 - uninitiated people

Challenges

- Understand audio waveform
 - Use FFT
- Rather small dataset (1000 sounds)
 - Data augmentation
 - Transfer learning

Data preparation

21.05.2019

- Manual feature extraction: spectrograms (log scale)
 - Reduced dimensionality (600k to 45k)
 - Closer to human representation of music

Data augmentation

GTZAN dataset is small (100 30-seconds samples / genre, 10 genres)

Solutions:

- Split the samples in smaller samples (human still able to guess genre)
- Rolling window
- Color jittering on spectrograms (~white noise)

Further improvements:

Data augmentation directly on audio (pitch and tempo shifting, noise)

State of the art (prior work)

Feature extraction and conventional ML (~2010)

- Deep CNN on spectrogram (Recently)
- Deep CNN directly on Waveform (Most recently)
 - Sample-level CNN
 - First end-to-end with state of the art performance
 - 90% accuracy on MTAT and 88% on MSD dataset
 - Recurrent CNN are also promising

Reference: NAM, Juhan, CHOI, Keunwoo, LEE, Jongpil, et al. Deep Learning for Audio-Based Music Classification and Tagging: Teaching Computers to Distinguish Rock from Bach. *IEEE Signal Processing Magazine*, 2019, vol. 36, no 1, p. 41-51.

Solution 1: custom network

Solution 2: transfer learning

- → Optimizer: Adam
- → Loss: Cross Entropy
- → Learning rate: 0.001
- → Learning Rate reducer
- → Number of epochs: 50
- → Keep the smallest loss
- → Input: 216x216
- → Output: 10

Results and analysis: Fully trained model

Before data augmentation	13% on test set
Before data augmentation	32%
Too much data augmentation	15%
Good data augmentation	70%
After adding brightness and contrast	75% with a loss of 1.13

Conv2D with kernel size of (5,1)

Results and analysis: Transfer learning

Finetuning	95% with a loss of 0.16
Fixed features	68% with a loss of 0.92

Conclusions

- Pretty happy about the final result
- Frustrated to think about a model for a long time to finally get better result with transfer learning
 - But it's normal, a model with 175 layers trained on a lot of images
- Data augmentation was really important in this project

QUESTIONS?