EECS 376: Foundations of Computer Science

Seth Pettie Lecture 8

Today's Agenda

- * Recap: Strings, Languages, DFAs & their abilities
- * Turing Machines (TMs) and Church-Turing thesis
- * Pseudocode vs TMs
- * Deciders and decidability

Alphabets, Strings, Languages

- * An **alphabet** is a <u>finite</u> set of characters, usually denoted Σ
 - * Typically implicit, e.g., ASCII characters or binary $\{0,1\}$
- * A (Σ -)**string** is a <u>finite</u> sequence of characters from Σ
 - * The **length** of a string \mathcal{X} (# chars) is denoted $|\mathcal{X}|$
 - * The **empty string** is denoted \mathcal{E} ; it has length 0
- * A $(\Sigma$ -)language is (possibly infinite) set of $(\Sigma$ -)strings: $L \subseteq \Sigma^*$
 - * The language of all strings is denoted Σ^*
- * Example: $\Sigma = \{0,1\}, \Sigma^* = \{\varepsilon, 0,1,00, ...\}, |010| = 3, 0^3 1^2 = 000 11$

What is a "problem"?

* We consider **decision problems**, where the goal is to **decide** if a given object has a certain property

```
376
Is the given
Output integer prime?
No
```


... The list goes on!

Languages & their Membership Problems

- * Any <u>finite</u> object Z can be **encoded** as a <u>finite</u> **string** $\langle Z \rangle$ (e.g., in ASCII, or binary, as in a computer).
- * In this view, a property is a <u>set of strings</u>: a **language**


```
Input _{010} Is the given \underline{string} _{100} _{000} in the \underline{language}\ L_{CONN}?

Output _{NO} L_{CONN} = \{\langle G \rangle \mid G \text{ is a connected graph}\}
```

The membership (or, decision) problem for a language L: Given a string X, decide if $X \in L$ (say yes/no, accept/reject, etc.)

What is a "Computer"?

- * **Goal:** formalize the notion of a "computer" that can "solve" decision problems—i.e., "decide" languages.
- * A $\underline{\mathbf{D}}$ eterministic $\underline{\mathbf{F}}$ inite $\underline{\mathbf{A}}$ utomaton reads the input string one character at a time, and ends in either an accept or reject (non-accept) state. We say that the DFA decides language L if it:
 - * (i) accepts every string $x \in L$, and
 - * (ii) <u>rejects</u> every string $x \notin L$.
- * A language is **regular** if some DFA decides it. **Q:** Is every language regular?
- * Theorem: No DFA decides the language $\{0^k1^k \mid k \geq 0\}$.

No DFA decides $\{0^k 1^k \mid k \geq 0\}$

- * Suppose that some DFA M decides $\{0^k 1^k \mid k \geq 0\}$.
- * Let n = # of states of M, and let $x = 0^n 1^n$.
- * Claim: We can write x = uwv so that M is in the <u>same state</u> before and after reading substring $w \neq \varepsilon$.
- * M must accept $uwwv \notin \{0^k1^k \mid k \geq 0\}$. Contradiction!

Various Models of "Computers"

- * DFAs
- * Pushdown Automata
- Context-free Grammars
- Lambda Calculus
- * Turing Machines
- * RAM (random access memory) computer
- * Quantum Computers
- DNA computers
- *

Our Model

Alan Turing (1912-1954):
British pioneering computer scientist
Inventor of the "Turing Machine."

A Thought Experiment

- * Imagine you are given a huge string ${\mathcal X}$
 - * $|x| \gg$ number of neurons in your brain
- * The string is written on ordered pages of paper, and you have a pen to write with
- * **Q:** Can you decide if $x \in \{0^k 1^k \mid k \ge 0\}$?

• • •

How do people solve problems?

- * Suppose we're given a huge "input" that's written down
- * What's the <u>bare minimum</u> that we need to solve the problem?
 - * Brain to direct our efforts
 - * Eyes (or other sense) to read with
 - * Pen to write with
 - * Symbols to write down

How do people solve problems?

Without loss of generality (?):

- * We use only finitely many symbols
- * The paper is an <u>unbounded</u> (infinite) array of squares that can each store one symbol
- At each moment, we look at a <u>single</u> square
- We read what's in the square, write an appropriate symbol, then move our gaze to an adjacent square
- * (?) Our brain decides what to do next based on what we currently see and what we did so far, but it only has <u>finite</u> <u>memory</u>

This is a **Turing Machine**[™] (**TM**)

The "brain" of a TM is like a DFA, except it additionally specifies:

- what we write and
- whether move left or right

Note: " $a \rightarrow b$, R" means if the contents of the cell is a, then write b and move right.

There are <u>two</u> special "termination" states: **accept** and **reject**.

Turing Machine

- * A Turing Machine is a 7-tuple $(Q, \Gamma, \Sigma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:
 - * Q is a finite set of **states**
 - * $q_0 \in Q$ is the initial state
 - * $F = \{q_{accept}, q_{reject}\} \subseteq Q$ are the **final (accept/reject)** states
 - * Σ is the **input alphabet**
 - * $\Gamma \supseteq \Sigma \cup \{\bot\}$ is the **tape alphabet** ($\bot \notin \Sigma$ is the **blank symbol**)
 - * $\delta: (Q \setminus F) \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the **transition function**
- * Takeaway: TMs are a well-defined type of "computer".

Turing Machines In Action

* A tool for visualizing Turing Machines step-by-step:

http://turingmachine.io

Simulations

- * Intuitively, if a "computer" M_1 can **simulate** another "computer" M_2 , then M_1 is <u>at least as powerful</u> as M_2 . They are **equivalent** if M_2 can also simulate M_1 .
- * All known computational models are either:
 - * Weaker than TMs (e.g., DFAs, Pushdown Automata) or
 - * Equivalent to TMs in what they can compute (e.g., random-access machines, lambda calculus, quantum computers, etc.)
- * Church-Turing thesis: Any "computer" (e.g. any alien technology) can be simulated by some Turing Machine. (This is a conjecture!)

Pseudocode vs TMs

* Claim: Given enough memory, <u>any</u> TM can be simulated by a "Boolean" function on strings written in pseudocode (e.g., C++).

* **Q:** Can any "Boolean" function on strings written in pseudocode (e.g., C++) be simulated by a TM?

Key Idea: $TM \equiv$ "bool M(string x)"

simulateM(string X):

// simulates TM ${f M}$ on string ${f \mathcal{X}}$

// - hard-coded transition function

// - maintain state & tape cells

return accept/reject according to M

Decision Programs

- * Q: Suppose we run a function "bool M(string \mathcal{X})" (i.e., a TM) on string \mathcal{X} . What are the possible outcomes?
 - * M either (i) accepts, (ii) rejects, or (iii) it "loops" (forever)
- * A TM **M** decides a language L if it:
 - 1. $\underline{accepts}$ every string $x \in L$, and
 - 2. <u>rejects</u> every string $x \notin L$.

In this case, we say that ${\bf M}$ is a **decider** (for L), and L is **decidable**.

* Note: By definition, M does not loop on any input!

More Generally: Language of a TM

- * **Definition:** The **language** of a TM M is $L(M) := \{x : M \text{ accepts } x\}$.
- * Question: What if $x \notin L(M)$? (M(x) does not accept.)
- * **Answer:** Then M either rejects x, or loops on x!
- * Conclusion: TM M decides language L iff L(M) = L and M halts on every input.
- * **Definition:** TM M recognizes language L if L(M) = L (regardless of whether M ever loops).
- * More on this later...

Summary

- * We have formalized the notions of a "problem" and "computer", as follows:
 - * "Decision problem" \equiv "Is string $x \in L$ (associated language)?"
 - * "Computer" \equiv TM \equiv "bool **M**(string χ)"
- * We also have a precise definition of what it means for a computer to solve a problem:
 - * "A decision problem can be solved on a computer"
 - = "some TM <u>decides</u> the associated language"

Next time: Can <u>every</u> decision problem be solved on a computer?

Teaser for next class

- * Russell's Paradox (1901):
 - * Set theory version for the mathematicians:
 - * Define *S* to be the set of all sets that do not contain themselves:

$$S = \{X \mid X \notin X\}$$
Question: Is $S \in S$

- * A version that's safe to release to the public:
 - * In a town there is a Barber, and the Barber shaves exactly those people who do not shave themselves.

Question: Does the Barber shave himself?

"Diagonalization"

- * Russell's Paradox (1901):
 - * A version that's safe to release to the public:
 - * In a town there is a Barber, and the Barber shaves exactly those people who do not shave themselves.
- * Consider the SHAVER-SHAVEE Matrix:

SHAVEE

		Chico	Harpo	Groucho	Gummo	Zeppo	Barber
JIIVEN	Chico	Υ					
	Harpo		N				
	Groucho			N			
	Gummo				Y		
	Zeppo					N	
	Barber	N	Υ	Y	N	Y	Y or N?

SHAVER