This index uses the following conventions. Numbers are alphabetized as if spelled out; for example, "2-3-4 tree" is indexed as if it were "two-three-four tree." When an entry refers to a place other than the main text, the page number is followed by a tag: ex. for exercise, pr. for problem, fig. for figure, and n. for footnote. A tagged page number often indicates the first page of an exercise or problem, which is not necessarily the page on which the reference actually appears.

```
\alpha(n), 574
                                                          - (set difference), 1159
\phi (golden ratio), 59, 108 pr.
\hat{\phi} (conjugate of the golden ratio), 59
                                                            (flow value), 710
\phi(n) (Euler's phi function), 943
                                                            (length of a string), 986
\rho(n)-approximation algorithm, 1106, 1123
                                                            (set cardinality), 1161
o-notation, 50-51, 64
O-notation, 45 fig., 47–48, 64
                                                            (Cartesian product), 1162
O'-notation, 62 pr.
                                                            (cross product), 1016
O-notation, 62 pr.
                                                          ()
\omega-notation, 51
                                                            (sequence), 1166
\Omega-notation, 45 fig., 48–49, 64
                                                            (standard encoding), 1057
\overset{\infty}{\Omega}-notation, 62 pr.
                                                          \binom{n}{k} (choose), 1185
                                                          || || (euclidean norm), 1222
\Omega-notation, 62 pr.
                                                          ! (factorial), 57
\Theta-notation, 44–47, 45 fig., 64
                                                          [] (ceiling), 54
\Theta-notation, 62 pr.
                                                          | | (floor), 54
{} (set), 1158
                                                          \sqrt{\phantom{a}} (lower square root), 546
\in (set member), 1158
                                                              (upper square root), 546
∉ (not a set member), 1158
                                                             (sum), 1145
                                                          ☐ (product), 1148
  (empty language), 1058
                                                          → (adjacency relation), 1169
  (empty set), 1158
                                                         \subseteq (subset), 1159
                                                          \land (AND), 697, 1071
\subset (proper subset), 1159
                                                          \neg (NOT), 1071
: (such that), 1159
                                                          \vee (OR), 697, 1071
\cap (set intersection), 1159
                                                          ⊕ (group operator), 939
\cup (set union), 1159
                                                          ⊗ (convolution operator), 901
```

* (closure operator), 1058	ADD-SUBARRAY, 805 pr.
(divides relation), 927	adjacency-list representation, 590
∤ (does-not-divide relation), 927	replaced by a hash table, 593 ex.
\equiv (equivalent modulo n), 54, 1165 ex.	adjacency-matrix representation, 591
\neq (not equivalent modulo n), 54	adjacency relation (\rightarrow) , 1169
$[a]_n$ (equivalence class modulo n), 928	adjacent vertices, 1169
$+_n$ (addition modulo n), 940	admissible edge, 749
\cdot_n (multiplication modulo n), 940	admissible network, 749–750
$(\frac{a}{p})$ (Legendre symbol), 982 pr.	adversary, 190
ε (empty string), 986, 1058	aggregate analysis, 452–456
□ (prefix relation), 986	for binary counters, 454–455
☐ (suffix relation), 986	for breadth-first search, 597
\succeq_X (above relation), 1022	for depth-first search, 606
// (comment symbol), 21	for Dijkstra's algorithm, 661
> (much-greater-than relation), 574	for disjoint-set data structures, 566–567,
« (much-less-than relation), 783	568 ex.
\leq_{P} (polynomial-time reducibility relation),	for dynamic tables, 465
1067, 1077 ex.	for Fibonacci heaps, 518, 522 ex.
,	for Graham's scan, 1036
AA-tree, 338	for the Knuth-Morris-Pratt algorithm, 1006
abelian group, 940	for Prim's algorithm, 636
ABOVE, 1024	for rod-cutting, 367
above relation (\geq_x) , 1022	for shortest paths in a dag, 655
absent child, 1178	for stack operations, 452–454
absolutely convergent series, 1146	aggregate flow, 863
absorption laws for sets, 1160	Akra-Bazzi method for solving a recurrence,
abstract problem, 1054	112–113
acceptable pair of integers, 972	algorithm, 5
acceptance	correctness of, 6
by an algorithm, 1058	origin of word, 42
by a finite automaton, 996	running time of, 25
accepting state, 995	as a technology, 13
accounting method, 456–459	Alice, 959
for binary counters, 458	Allocate-Node, 492
for dynamic tables, 465–466	Allocate-Object, 244
for stack operations, 457–458, 458 ex.	allocation of objects, 243–244
Ackermann's function, 585	all-pairs shortest paths, 644, 684–707
activity-selection problem, 415–422, 450	in dynamic graphs, 707
acyclic graph, 1170	in ϵ -dense graphs, 706 pr.
relation to matroids, 448 pr.	Floyd-Warshall algorithm for, 693–697, 706
add instruction, 23	Johnson's algorithm for, 700–706
addition	by matrix multiplication, 686–693, 706–707
of binary integers, 22 ex.	by repeated squaring, 689–691
of matrices, 1220	alphabet, 995, 1057
modulo $n (+_n)$, 940	$\alpha(n)$, 574
of polynomials, 898	amortized analysis, 451–478
additive group modulo n , 940	accounting method of, 456–459
addressing, open, <i>see</i> open-address hash table	aggregate analysis, 367, 452–456
5/ i / i	

fo	r bit-reversal permutation, 472 pr.	for set cover, 1117-1122, 1139
	r breadth-first search, 597	for subset sum, 1128–1134, 1139
	r depth-first search, 606	for traveling-salesman problem, 1111–1117,
	r Dijkstra's algorithm, 661	1139
	r disjoint-set data structures, 566–567,	for vertex cover, 1108–1111, 1139
	568 ex., 572 ex., 575–581, 581–582 ex.	for weighted set cover, 1135 pr.
fo	r dynamic tables, 463–471	for 0-1 knapsack problem, 1137 pr., 1139
	r Fibonacci heaps, 509–512, 517–518,	approximation error, 836
10	520–522, 522 ex.	approximation ratio, 1106, 1123
fo		approximation ratio, 1100, 1123
	r the generic push-relabel algorithm, 746 r Graham's scan, 1036	APPROX-MIN-WEIGHT-VC, 1126
	r the Knuth-Morris-Pratt algorithm, 1006	APPROX-SUBSET-SUM, 1131
		APPROX-TSP-TOUR, 1112
	r making binary search dynamic, 473 pr.	
	otential method of, 459–463	APPROX-VERTEX-COVER, 1109
	r restructuring red-black trees, 474 pr.	arbitrage, 679 pr.
10	r self-organizing lists with move-to-front,	arc, see edge
c	476 pr.	argument of a function, 1166–1167
	r shortest paths in a dag, 655	arithmetic instructions, 23
	r stacks on secondary storage, 502 pr.	arithmetic, modular, 54, 939–946
	r weight-balanced trees, 473 pr.	arithmetic series, 1146
	rtized cost	arithmetic with infinities, 650
	the accounting method, 456	arm, 485
	aggregate analysis, 452	array, 21
	the potential method, 459	Monge, 110 pr.
	stor, 1176	passing as a parameter, 21
	ast common, 584 pr.	articulation point, 621 pr.
	D function (^), 697, 1071	assignment
	D gate, 1070	multiple, 21
	in pseudocode, 22	satisfying, 1072, 1079
	parallel edges, 711–712	truth, 1072, 1079
	symmetric relation, 1164	associative laws for sets, 1160
	Y-SEGMENTS-INTERSECT, 1025	associative operation, 939
	oximation	asymptotically larger, 52
	least squares, 835–839	asymptotically nonnegative, 45
	summation by integrals, 1154–1156	asymptotically positive, 45
	oximation algorithm, 10, 1105–1140	asymptotically smaller, 52
	r bin packing, 1134 pr.	asymptotically tight bound, 45
	r MAX-CNF satisfiability, 1127 ex.	asymptotic efficiency, 43
	r maximum clique, 1111 ex., 1134 pr.	asymptotic lower bound, 48
	r maximum matching, 1135 pr.	asymptotic notation, 43–53, 62 pr.
	r maximum spanning tree, 1137 pr.	and graph algorithms, 588
	r maximum-weight cut, 1127 ex.	and linearity of summations, 1146
fo	r MAX-3-CNF satisfiability, 1123–1124,	asymptotic upper bound, 47
	1139	attribute of an object, 21
fo	r minimum-weight vertex cover,	augmentation of a flow, 716
	1124–1127, 1139	augmenting data structures, 339-355
	r parallel machine scheduling, 1136 pr.	augmenting path, 719–720, 763 pr.
ra	ndomized, 1123	authentication, 284 pr., 960–961, 964

automaton	best-case running time, 29 ex., 49
finite, 995	BFS, 595
string-matching, 996–1002	BIASED-RANDOM, 117 ex.
auxiliary hash function, 272	biconnected component, 621 pr.
auxiliary linear program, 886	big-oh notation, 45 fig., 47–48, 64
average-case running time, 28, 116	big-omega notation, 45 fig., 48–49, 64
AVL-INSERT, 333 pr.	bijective function, 1167
AVL tree, 333 pr., 337	binary character code, 428
axioms, for probability, 1190	binary counter
7 1	analyzed by accounting method, 458
babyface, 602 ex.	analyzed by aggregate analysis, 454–455
back edge, 609, 613	analyzed by potential method, 461–462
back substitution, 817	bit-reversed, 472 pr.
BAD-SET-COVER-INSTANCE, 1122 ex.	binary entropy function, 1187
BALANCE, 333 pr.	binary gcd algorithm, 981 pr.
balanced search tree	binary heap, see heap
AA-trees, 338	binary relation, 1163
AVL trees, 333 pr., 337	binary search, 39 ex.
B-trees, 484–504	with fast insertion, 473 pr.
k-neighbor trees, 338	in insertion sort, 39 ex.
red-black trees, 308–338	in multithreaded merging, 799–800
scapegoat trees, 338	in searching B-trees, 499 ex.
splay trees, 338, 482	BINARY-SEARCH, 799
treaps, 333 pr., 338	binary search tree, 286–307
2-3-4 trees, 489, 503 pr.	AA-trees, 338
2-3 trees, 337, 504	AVL trees, 333 pr., 337
weight-balanced trees, 338, 473 pr.	deletion from, 295–298, 299 ex.
balls and bins, 133–134, 1215 pr.	with equal keys, 303 pr.
base-a pseudoprime, 967	insertion into, 294–295
base case, 65, 84	k-neighbor trees, 338
base, in DNA, 391	maximum key of, 291
basic feasible solution, 866	minimum key of, 291
basic solution, 866	optimal, 397–404, 413
basic variable, 855	predecessor in, 291–292
basis function, 835	querying, 289–294
Bayes's theorem, 1194	randomly built, 299–303, 304 pr.
BELLMAN-FORD, 651	right-converting of, 314 ex.
Bellman-Ford algorithm, 651-655, 682	scapegoat trees, 338
for all-pairs shortest paths, 684	searching, 289–291
in Johnson's algorithm, 702–704	for sorting, 299 ex.
and objective functions, 670 ex.	splay trees, 338
to solve systems of difference constraints,	successor in, 291–292
668	and treaps, 333 pr.
Yen's improvement to, 678 pr.	weight-balanced trees, 338
BELOW, 1024	see also red-black tree
Bernoulli trial, 1201	binary-search-tree property, 287
and balls and bins, 133–134	in treaps, 333 pr.
and streaks, 135–139	vs. min-heap property, 289 ex.

binary tree, 1177	bottleneck spanning tree, 640 pr.
full, 1178	bottleneck traveling-salesman problem,
number of different ones, 306 pr.	1117 ex.
representation of, 246	bottom of a stack, 233
superimposed upon a bit vector, 533-534	BOTTOM-UP-CUT-ROD, 366
see also binary search tree	bottom-up method, for dynamic programming,
binomial coefficient, 1186–1187	365
binomial distribution, 1203–1206	bound
and balls and bins, 133	asymptotically tight, 45
maximum value of, 1207 ex.	asymptotic lower, 48
tails of, 1208–1215	asymptotic upper, 47
binomial expansion, 1186	on binomial coefficients, 1186–1187
binomial heap, 527 pr.	on binomial distributions, 1206
binomial tree, 527 pr.	polylogarithmic, 57
bin packing, 1134 pr.	on the tails of a binomial distribution,
bipartite graph, 1172	1208–1215
corresponding flow network of, 732	see also lower bounds
d-regular, 736 ex.	boundary condition, in a recurrence, 67, 84
and hypergraphs, 1173 ex.	boundary of a polygon, 1020 ex.
bipartite matching, 530, 732–736, 747 ex., 766	bounding a summation, 1149–1156
Hopcroft-Karp algorithm for, 763 pr.	box, nesting, 678 pr.
birthday paradox, 130–133, 142 ex.	B ⁺ -tree, 488
bisection of a tree, 1181 pr.	branching factor, in B-trees, 487
bitonic euclidean traveling-salesman problem,	branch instructions, 23
405 pr.	breadth-first search, 594–602, 623
bitonic sequence, 682 pr.	in maximum flow, 727–730, 766
bitonic tour, 405 pr.	and shortest paths, 597–600, 644
bit operation, 927	similarity to Dijkstra's algorithm, 662,
in Euclid's algorithm, 981 pr.	663 ex.
bit-reversal permutation, 472 pr., 918	breadth-first tree, 594, 600
BIT-REVERSE-COPY, 918	bridge, 621 pr.
bit-reversed binary counter, 472 pr.	B*-tree, 489 n.
BIT-REVERSED-INCREMENT, 472 pr.	B-tree, 484–504
bit vector, 255 ex., 532–536	compared with red-black trees, 484, 490
black-height, 309	creating, 492
black vertex, 594, 603	deletion from, 499–502
blocking flow, 765	full node in, 489
block structure in pseudocode, 20	height of, 489–490
Bob, 959	insertion into, 493–497
Boole's inequality, 1195 ex.	
	minimum degree of, 489
boolean combinational circuit, 1071	minimum key of, 497 ex.
boolean combinational element, 1070	properties of, 488–491 searching, 491–492
boolean connective, 1079	Ç.
boolean formula, 1049, 1066 ex., 1079,	splitting a node in, 493–495
1086 ex.	2-3-4 trees, 489
boolean function, 1187 ex.	B-TREE-CREATE, 492
boolean matrix multiplication, 832 ex.	B-Tree-Delete, 499
Borůvka's algorithm, 641	B-Tree-Insert,495

B-Tree-Insert-Nonfull, 496	CHAINED-HASH-SEARCH, 258
B-TREE-SEARCH, 492, 499 ex.	chaining, 257–260, 283 pr.
B-Tree-Split-Child, 494	chain of a convex hull, 1038
BUBBLESORT, 40 pr.	changing a key, in a Fibonacci heap, 529 pr.
bucket, 200	changing variables, in the substitution method,
bucket sort, 200–204	86–87
BUCKET-SORT, 201	character code, 428
BUILD-MAX-HEAP, 157	chess-playing program, 790–791
BUILD-MAX-HEAP', 167 pr.	child
BUILD-MIN-HEAP, 159	in a binary tree, 1178
butterfly operation, 915	in a multithreaded computation, 776
by, in pseudocode, 21	in a rooted tree, 1176
	child list in a Fibonacci heap, 507
cache, 24, 449 pr.	Chinese remainder theorem, 950–954, 983
cache hit, 449 pr.	chip multiprocessor, 772
cache miss, 449 pr.	chirp transform, 914 ex.
cache obliviousness, 504	choose $\binom{n}{k}$, 1185
caching, off-line, 449 pr.	chord, 345 ex.
call	Cilk, 774, 812
in a multithreaded computation, 776	Cilk++, 774, 812
of a subroutine, 23, 25 n.	ciphertext, 960
by value, 21	circuit
call edge, 778	boolean combinational, 1071
cancellation lemma, 907	depth of, 919
cancellation of flow, 717	for fast Fourier transform, 919–920
canonical form for task scheduling, 444	CIRCUIT-SAT, 1072
capacity	circuit satisfiability, 1070–1077
of a cut, 721	circular, doubly linked list with a sentinel, 239
of an edge, 709	circular linked list, 236
residual, 716, 719	see also linked list
of a vertex, 714 ex.	class
capacity constraint, 709–710	complexity, 1059
cardinality of a set (), 1161	equivalence, 1164
Carmichael number, 968, 975 ex.	classification of edges
Cartesian product (×), 1162	in breadth-first search, 621 pr.
Cartesian sum, 906 ex.	in depth-first search, 609–610, 611 ex.
cascading cut, 520	in a multithreaded dag, 778–779
CASCADING-CUT, 519	clause, 1081–1082
Catalan numbers, 306 pr., 372	clean area, 208 pr.
ceiling function ([]), 54	clique, 1086–1089, 1105
in master theorem, 103–106	approximation algorithm for, 1111 ex.,
ceiling instruction, 23	1134 pr.
certain event, 1190	CLIQUE, 1087
certificate	closed interval, 348
in a cryptosystem, 964	closed semiring, 707
for verification algorithms, 1063	closest pair, finding, 1039–1044, 1047
CHAINED-HASH-DELETE, 258	closest-point heuristic, 1117 ex.
CHAINED-HASH-INSERT, 258	point neutrone, 111, ex.

	11.1 000
closure	common multiple, 939 ex.
group property, 939	common subexpression, 915
of a language, 1058	common subsequence, 7, 391
operator (*), 1058	longest, 7, 390–397, 413
transitive, see transitive closure	commutative laws for sets, 1159
cluster	commutative operation, 940
in a bit vector with a superimposed tree of	COMPACTIFY-LIST, 245 ex.
constant height, 534	compact list, 250 pr.
for parallel computing, 772	COMPACT-LIST-SEARCH, 250 pr.
in proto van Emde Boas structures, 538	COMPACT-LIST-SEARCH', 251 pr.
in van Emde Boas trees, 546	comparable line segments, 1022
clustering, 272	COMPARE-EXCHANGE, 208 pr.
CNF (conjunctive normal form), 1049, 1082	compare-exchange operation, 208 pr.
CNF satisfiability, 1127 ex.	comparison sort, 191
coarsening leaves of recursion	and binary search trees, 289 ex.
in merge sort, 39 pr.	randomized, 205 pr.
when recursively spawning, 787	and selection, 222
code, 428–429	compatible activities, 415
Huffman, 428–437, 450	compatible matrices, 371, 1221
codeword, 429	competitive analysis, 476 pr.
codomain, 1166	complement
coefficient	of an event, 1190
binomial, 1186	of a graph, 1090
of a polynomial, 55, 898	of a language, 1058
in slack form, 856	Schur, 820, 834
coefficient representation, 900	of a set, 1160
and fast multiplication, 903-905	complementary slackness, 894 pr.
cofactor, 1224	complete graph, 1172
coin changing, 446 pr.	complete k -ary tree, 1179
colinearity, 1016	see also heap
collision, 257	completeness of a language, 1077 ex.
resolution by chaining, 257–260	complete step, 782
resolution by open addressing, 269–277	completion time, 447 pr., 1136 pr.
collision-resistant hash function, 964	complexity class, 1059
coloring, 1103 pr., 1180 pr.	co-NP, 1064
color, of a red-black-tree node, 308	NP, 1049, 1064
column-major order, 208 pr.	NPC, 1050, 1069
column rank, 1223	P, 1049, 1055
columnsort, 208 pr.	complexity measure, 1059
column vector, 1218	complex numbers
combination, 1185	inverting matrices of, 832 ex.
combinational circuit, 1071	multiplication of, 83 ex.
combinational element, 1070	complex root of unity, 906
combine step, in divide-and-conquer, 30, 65	interpolation at, 912–913
comment, in pseudocode (//), 21	component
commodity, 862	biconnected, 621 pr.
common divisor, 929	connected, 1170
greatest, see greatest common divisor	strongly connected, 1171
	,

component graph, 617	violation of, 865
composite number, 928	constraint graph, 666–668
witness to, 968	contain, in a path, 1170
composition, of multithreaded computations,	continuation edge, 778
784 fig.	continuous uniform probability distribution,
computational depth, 812	1192
computational geometry, 1014–1047	contraction
computational problem, 5–6	of a dynamic table, 467–471
computation dag, 777	of a matroid, 442
computation, multithreaded, 777	of an undirected graph by an edge, 1172
Compute-Prefix-Function, 1006	control instructions, 23
COMPUTE-TRANSITION-FUNCTION, 1001	convergence property, 650, 672–673
concatenation	convergent series, 1146
of languages, 1058	converting binary to decimal, 933 ex.
of strings, 986	convex combination of points, 1015
concrete problem, 1055	convex function, 1199
concurrency keywords, 774, 776, 785	convex hull, 8, 1029–1039, 1046 pr.
concurrency platform, 773	convex layers, 1044 pr.
conditional branch instruction, 23	convex polygon, 1020 ex.
conditional independence, 1195 ex.	convex set, 714 ex.
conditional probability, 1192, 1194	convolution (\otimes) , 901
configuration, 1074	convolution theorem, 913
conjugate of the golden ratio $(\hat{\phi})$, 59	copy instruction, 23
conjugate transpose, 832 ex.	correctness of an algorithm, 6
conjunctive normal form, 1049, 1082	corresponding flow network for bipartite
connected component, 1170–1171	matching, 732
identified using depth-first search, 612 ex.	countably infinite set, 1161
identified using disjoint-set data structures,	counter, see binary counter
562–564	counting, 1183–1189
CONNECTED-COMPONENTS, 563	probabilistic, 143 pr.
connected graph, 1170	counting sort, 194–197
connective, 1079	in radix sort, 198
co-NP (complexity class), 1064	COUNTING-SORT, 195
conquer step, in divide-and-conquer, 30, 65	coupon collector's problem, 134
conservation of flow, 709–710	cover
consistency	path, 761 pr.
of literals, 1088	by a subset, 1118
sequential, 779, 812	vertex, 1089, 1108, 1124–1127, 1139
CONSOLIDATE, 516	covertical, 1024
consolidating a Fibonacci-heap root list,	CREATE-NEW-RS-VEB-TREE, 557 pr.
513–517	credit, 456
constraint, 851	critical edge, 729
difference, 665	critical path
equality, 670 ex., 852–853	of a dag, 657
inequality, 852–853	of a multithreaded computation, 779
linear, 846	cross a cut, 626
nonnegativity, 851, 853	cross edge, 609
tight, 865	cross product (×), 1016
	_

cryptosystem, 958-965, 983	hash tables, 256–261
cubic spline, 840 pr.	heaps, 151–169
currency exchange, 390 ex., 679 pr.	interval trees, 348–354
curve fitting, 835–839	k-neighbor trees, 338
cut	linked lists, 236–241
capacity of, 721	mergeable heap, 505
cascading, 520	order-statistic trees, 339–345
of a flow network, 720–724	persistent, 331 pr., 482
minimum, 721, 731 ex.	potential of, 459
net flow across, 720	priority queues, 162–166
of an undirected graph, 626	proto van Emde Boas structures, 538–545
weight of, 1127 ex.	queues, 232, 234–235
CUT, 519	radix trees, 304 pr.
CUT-ROD, 363	red-black trees, 308–338
cutting, in a Fibonacci heap, 519	relaxed heaps, 530
cycle of a graph, 1170	rooted trees, 246–249
hamiltonian, 1049, 1061	scapegoat trees, 338
minimum mean-weight, 680 pr.	on secondary storage, 484–487
negative-weight, see negative-weight cycle	skip lists, 338
and shortest paths, 646–647	splay trees, 338, 482
cyclic group, 955	stacks, 232–233
cyclic rotation, 1012 ex.	treaps, 333 pr., 338
cycling, of simplex algorithm, 875	2-3-4 heaps, 529 pr.
	2-3-4 trees, 489, 503 pr.
dag, see directed acyclic graph	2-3 trees, 337, 504
DAG-SHORTEST-PATHS, 655	van Emde Boas trees, 531–560
d-ary heap, 167 pr.	weight-balanced trees, 338
in shortest-paths algorithms, 706 pr.	data type, 23
data-movement instructions, 23	deadline, 444
data-parallel model, 811	deallocation of objects, 243–244
data structure, 9, 229–355, 481–585	decision by an algorithm, 1058–1059
AA-trees, 338	decision problem, 1051, 1054
augmentation of, 339–355	and optimization problems, 1051
AVL trees, 333 pr., 337	decision tree, 192–193
binary search trees, 286–307	DECREASE-KEY, 162, 505
binomial heaps, 527 pr.	decreasing a key
bit vectors, 255 ex., 532–536	in Fibonacci heaps, 519–522
B-trees, 484–504	in 2-3-4 heaps, 529 pr.
deques, 236 ex.	DECREMENT, 456 ex.
dictionaries, 229	degeneracy, 874
direct-address tables, 254–255	degree
for disjoint sets, 561–585	of a binomial-tree root, 527 pr.
for dynamic graphs, 483	maximum, of a Fibonacci heap, 509,
dynamic sets, 229–231	523–526
dynamic trees, 482	minimum, of a B-tree, 489
exponential search trees, 212, 483	of a node, 1177
Fibonacci heaps, 505–530	of a polynomial, 55, 898
fusion trees, 212, 483	of a vertex, 1169
1451011 11005, 212, 703	οι α νοιωλ, 1102

degree-bound, 898	in finding articulation points, bridges, and
DELETE, 230, 505	biconnected components, 621 pr.
DELETE-LARGER-HALF, 463 ex.	in finding strongly connected components,
deletion	615–621, 623
from binary search trees, 295–298, 299 ex.	in topological sorting, 612-615
from a bit vector with a superimposed binary	depth-first tree, 603
tree, 534	deque, 236 ex.
from a bit vector with a superimposed tree of	DEQUEUE, 235
constant height, 535	derivative of a series, 1147
from B-trees, 499–502	descendant, 1176
from chained hash tables, 258	destination vertex, 644
from direct-address tables, 254	det, see determinant
from dynamic tables, 467–471	determinacy race, 788
from Fibonacci heaps, 522, 526 pr.	determinant, 1224–1225
from heaps, 166 ex.	and matrix multiplication, 832 ex.
from interval trees, 349	deterministic algorithm, 123
from linked lists, 238	multithreaded, 787
from open-address hash tables, 271	DETERMINISTIC-SEARCH, 143 pr.
from order-statistic trees, 343–344	DFS, 604
from proto van Emde Boas structures, 544	DFS-VISIT, 604
from queues, 234	DFT (discrete Fourier transform), 9, 909
from red-black trees, 323-330	diagonal matrix, 1218
from stacks, 232	LUP decomposition of, 827 ex.
from sweep-line statuses, 1024	diameter of a tree, 602 ex.
from 2-3-4 heaps, 529 pr.	dictionary, 229
from van Emde Boas trees, 554-556	difference constraints, 664–670
DeMorgan's laws	difference equation, see recurrence
for propositional logic, 1083	difference of sets $(-)$, 1159
for sets, 1160, 1162 ex.	symmetric, 763 pr.
dense graph, 589	differentiation of a series, 1147
ϵ -dense, 706 pr.	digital signature, 960
density	digraph, see directed graph
of prime numbers, 965–966	DIJKSTRA, 658
of a rod, 370 ex.	Dijkstra's algorithm, 658-664, 682
dependence	for all-pairs shortest paths, 684, 704
and indicator random variables, 119	implemented with a Fibonacci heap, 662
linear, 1223	implemented with a min-heap, 662
see also independence	with integer edge weights, 664 ex.
depth	in Johnson's algorithm, 702
average, of a node in a randomly built binary	similarity to breadth-first search, 662,
search tree, 304 pr.	663 ex.
of a circuit, 919	similarity to Prim's algorithm, 634, 662
of a node in a rooted tree, 1177	DIRECT-ADDRESS-DELETE, 254
of quicksort recursion tree, 178 ex.	direct addressing, 254-255, 532-536
of a stack, 188 pr.	DIRECT-ADDRESS-INSERT,254
depth-determination problem, 583 pr.	DIRECT-ADDRESS-SEARCH, 254
depth-first forest, 603	direct-address table, 254–255
depth-first search, 603-612, 623	directed acyclic graph (dag), 1172

and back edges, 613	linked-list implementation of, 564–568
and component graphs, 617	in off-line least common ancestors, 584 pr.
and hamiltonian paths, 1066 ex.	in off-line minimum, 582 pr.
longest simple path in, 404 pr.	in task scheduling, 448 pr.
for representing a multithreaded	disjoint-set forest, 568–572
computation, 777	analysis of, 575–581, 581 ex.
single-source shortest-paths algorithm for,	rank properties of, 575, 581 ex.
655–658	see also disjoint-set data structure
topological sort of, 612-615, 623	disjoint sets, 1161
directed graph, 1168	disjunctive normal form, 1083
all-pairs shortest paths in, 684-707	disk, 1028 ex.
constraint graph, 666	disk drive, 485–487
Euler tour of, 623 pr., 1048	see also secondary storage
hamiltonian cycle of, 1049	DISK-READ, 487
and longest paths, 1048	DISK-WRITE, 487
path cover of, 761 pr.	distance
PERT chart, 657, 657 ex.	edit, 406 pr.
semiconnected, 621 ex.	euclidean, 1039
shortest path in, 643	L_m , 1044 ex.
single-source shortest paths in, 643–683	Manhattan, 225 pr., 1044 ex.
singly connected, 612 ex.	of a shortest path, 597
square of, 593 ex.	distributed memory, 772
transitive closure of, 697	distribution
transpose of, 592 ex.	binomial, 1203-1206
universal sink in, 593 ex.	continuous uniform, 1192
see also directed acyclic graph, graph,	discrete, 1191
network	geometric, 1202–1203
directed segment, 1015-1017	of inputs, 116, 122
directed version of an undirected graph, 1172	of prime numbers, 965
DIRECTION, 1018	probability, 1190
dirty area, 208 pr.	sparse-hulled, 1046 pr.
DISCHARGE, 751	uniform, 1191
discharge of an overflowing vertex, 751	distributive laws for sets, 1160
discovered vertex, 594, 603	divergent series, 1146
discovery time, in depth-first search, 605	divide-and-conquer method, 30-35, 65
discrete Fourier transform, 9, 909	analysis of, 34–35
discrete logarithm, 955	for binary search, 39 ex.
discrete logarithm theorem, 955	for conversion of binary to decimal, 933 ex
discrete probability distribution, 1191	for fast Fourier transform, 909-912
discrete random variable, 1196-1201	for finding the closest pair of points,
disjoint-set data structure, 561–585	1040–1043
analysis of, 575–581, 581 ex.	for finding the convex hull, 1030
in connected components, 562-564	for matrix inversion, 829–831
in depth determination, 583 pr.	for matrix multiplication, 76–83, 792–797
disjoint-set-forest implementation of,	for maximum-subarray problem, 68-75
568–572	for merge sort, 30–37, 797–805
in Kruskal's algorithm, 631	for multiplication, 920 pr.
linear-time special case of, 585	

for multithreaded matrix multiplication, 792–797	compared with greedy algorithms, 381, 390 ex., 418, 423–427
for multithreaded merge sort, 797–805	for edit distance, 406 pr.
for quicksort, 170–190	elements of, 378–390
relation to dynamic programming, 359	for Floyd-Warshall algorithm, 693–697
for selection, 215–224	for inventory planning, 411 pr.
solving recurrences for, 83–106, 112–113	for longest common subsequence, 390–397
for Strassen's algorithm, 79–83	for longest palindrome subsequence, 405 pr
divide instruction, 23	for longest simple path in a weighted
divides relation (), 927	directed acyclic graph, 404 pr.
divide step, in divide-and-conquer, 30, 65	for matrix-chain multiplication, 370–378
division method, 263, 268–269 ex.	and memoization, 387–389
division theorem, 928	for optimal binary search trees, 397–404
divisor, 927–928	optimal substructure in, 379–384
common, 929	overlapping subproblems in, 384–386
see also greatest common divisor	for printing neatly, 405 pr.
DNA, 6–7, 390–391, 406 pr.	reconstructing an optimal solution in, 387
DNF (disjunctive normal form), 1083	relation to divide-and-conquer, 359
does-not-divide relation (∤), 927	for rod-cutting, 360–370
domain, 1166	for seam carving, 409 pr.
dominates relation, 1045 pr.	for signing free agents, 411 pr.
double hashing, 272–274, 277 ex.	top-down with memoization, 365
doubly linked list, 236	for transitive closure, 697–699
see also linked list	for Viterbi algorithm, 408 pr.
downto, in pseudocode, 21	for 0-1 knapsack problem, 427 ex.
d-regular graph, 736 ex.	dynamic set, 229–231
duality, 879–886, 895 pr.	see also data structure
weak, 880-881, 886 ex.	dynamic table, 463–471
dual linear program, 879	analyzed by accounting method, 465-466
dummy key, 397	analyzed by aggregate analysis, 465
dynamic graph, 562 n.	analyzed by potential method, 466–471
all-pairs shortest paths algorithms for, 707	load factor of, 463
data structures for, 483	dynamic tree, 482
minimum-spanning-tree algorithm for,	
637 ex.	e, 55
transitive closure of, 705 pr., 707	E[] (expected value), 1197
dynamic multithreaded algorithm, see	early-first form, 444
multithreaded algorithm	early task, 444
dynamic multithreading, 773	edge, 1168
dynamic order statistics, 339–345	admissible, 749
dynamic-programming method, 359–413	antiparallel, 711–712
for activity selection, 421 ex.	attributes of, 592
for all-pairs shortest paths, 686–697	back, 609
for bitonic euclidean traveling-salesman	bridge, 621 pr.
problem, 405 pr.	call, 778
bottom-up, 365	capacity of, 709
for breaking a string, 410 pr.	classification in breadth-first search, 621 pr.
	ciassilication in denth-first search, 609_610

continuation, 778	violation of 965
critical, 729	violation of, 865
cross, 609	equation
forward, 609	and asymptotic notation, 49–50 normal, 837
	·
inadmissible, 749	recurrence, see recurrence
light, 626	equivalence class, 1164
negative-weight, 645–646	modulo $n([a]_n)$, 928
residual, 716	equivalence, modular (≡), 54, 1165 ex.
return, 779	equivalence relation, 1164
safe, 626	and modular equivalence, 1165 ex.
saturated, 739	equivalent linear programs, 852
spawn, 778	error, in pseudocode, 22
tree, 601, 603, 609	escape problem, 760 pr.
weight of, 591	EUCLID, 935
edge connectivity, 731 ex.	Euclid's algorithm, 933–939, 981 pr., 983
edge set, 1168	euclidean distance, 1039
edit distance, 406 pr.	euclidean norm (), 1222
Edmonds-Karp algorithm, 727–730	Euler's constant, 943
elementary event, 1189	Euler's phi function, 943
elementary insertion, 465	Euler's theorem, 954, 975 ex.
element of a set (\in) , 1158	Euler tour, 623 pr., 1048
ellipsoid algorithm, 850, 897	and hamiltonian cycles, 1048
elliptic-curve factorization method, 984	evaluation of a polynomial, 41 pr., 900, 905 ex.
elseif, in pseudocode, 20 n.	derivatives of, 922 pr.
else, in pseudocode, 20	at multiple points, 923 pr.
empty language (\emptyset) , 1058	event, 1190
empty set (\emptyset) , 1158	event point, 1023
empty set laws, 1159	event-point schedule, 1023
empty stack, 233	EXACT-SUBSET-SUM, 1129
empty string (ε) , 986, 1058	excess flow, 736
empty tree, 1178	exchange property, 437
encoding of problem instances, 1055-1057	exclusion and inclusion, 1163 ex.
endpoint	execute a subroutine, 25 n.
of an interval, 348	expansion of a dynamic table, 464–467
of a line segment, 1015	expectation, see expected value
Enqueue, 235	expected running time, 28, 117
entering a vertex, 1169	expected value, 1197-1199
entering variable, 867	of a binomial distribution, 1204
entropy function, 1187	of a geometric distribution, 1202
ϵ -dense graph, 706 pr.	of an indicator random variable, 118
ϵ -universal hash function, 269 ex.	explored vertex, 605
equality	exponential function, 55–56
of functions, 1166	exponential height, 300
linear, 845	exponential search tree, 212, 483
of sets, 1158	exponential series, 1147
equality constraint, 670 ex., 852	exponentiation instruction, 24
and inequality constraints, 853	exponentiation, modular, 956
tight, 865	EXTENDED-BOTTOM-UP-CUT-ROD, 369

EXTENDED-EUCLID, 937 FIB-HEAP-LINK, 516 EXTEND-SHORTEST-PATHS, 688 FIB-HEAP-PRUNE, 529 pr. FIB-HEAP-UNION, 512 extension of a set, 438 exterior of a polygon, 1020 ex. Fibonacci heap, 505-530 external node, 1176 changing a key in, 529 pr. external path length, 1180 ex. compared with binary heaps, 506–507 extracting the maximum key creating, 510 from d-ary heaps, 167 pr. decreasing a key in, 519-522 from max-heaps, 163 deletion from, 522, 526 pr. extracting the minimum key in Dijkstra's algorithm, 662 from Fibonacci heaps, 512-518 extracting the minimum key from, 512-518 insertion into, 510-511 from 2-3-4 heaps, 529 pr. in Johnson's algorithm, 704 from Young tableaus, 167 pr. EXTRACT-MAX, 162-163 maximum degree of, 509, 523-526 EXTRACT-MIN. 162, 505 minimum key of, 511 potential function for, 509 factor, 928 in Prim's algorithm, 636 twiddle, 912 pruning, 529 pr. factorial function (!), 57–58 running times of operations on, 506 fig. factorization, 975-980, 984 uniting, 511-512 unique, 931 Fibonacci numbers, 59-60, 108 pr., 523 failure, in a Bernoulli trial, 1201 computation of, 774-780, 981 pr. fair coin, 1191 FIFO (first-in, first-out), 232 fan-out, 1071 see also queue Farkas's lemma, 895 pr. final-state function, 996 farthest-pair problem, 1030 final strand, 779 FASTER-ALL-PAIRS-SHORTEST-PATHS, 691. FIND-DEPTH, 583 pr. FIND-MAX-CROSSING-SUBARRAY, 71 fast Fourier transform (FFT), 898–925 FIND-MAXIMUM-SUBARRAY, 72 circuit for, 919-920 find path, 569 iterative implementation of, 915-918 FIND-SET, 562 multidimensional, 921 pr. disjoint-set-forest implementation of, 571, multithreaded algorithm for, 804 ex. recursive implementation of, 909-912 linked-list implementation of, 564 using modular arithmetic, 923 pr. finished vertex, 603 feasibility problem, 665, 894 pr. finishing time, in depth-first search, 605 feasible linear program, 851 and strongly connected components, 618 feasible region, 847 finish time, in activity selection, 415 feasible solution, 665, 846, 851 finite automaton, 995 Fermat's theorem, 954 for string matching, 996–1002 FFT. see fast Fourier transform FINITE-AUTOMATON-MATCHER, 999 FFTW, 924 finite group, 940 FIB. 775 finite sequence, 1166 FIB-HEAP-CHANGE-KEY, 529 pr. finite set, 1161 FIB-HEAP-DECREASE-KEY, 519 first-fit heuristic, 1134 pr. FIB-HEAP-DELETE, 522 first-in, first-out, 232 FIB-HEAP-EXTRACT-MIN, 513 see also queue FIB-HEAP-INSERT, 510 fixed-length code, 429

floating-point data type, 23	full walk of a tree, 1114
floor function ([]), 54	fully parenthesized matrix-chain product, 370
in master theorem, 103–106	fully polynomial-time approximation scheme,
floor instruction, 23	1107
flow, 709–714	for subset sum, 1128-1134, 1139
aggregate, 863	function, 1166–1168
augmentation of, 716	Ackermann's, 585
blocking, 765	basis, 835
cancellation of, 717	convex, 1199
excess, 736	final-state, 996
integer-valued, 733	hash, see hash function
net, across a cut, 720	linear, 26, 845
value of, 710	objective, 664, 847, 851
flow conservation, 709-710	potential, 459
flow network, 709–714	prefix, 1003–1004
corresponding to a bipartite graph, 732	quadratic, 27
cut of, 720–724	reduction, 1067
with multiple sources and sinks, 712	suffix, 996
FLOYD-WARSHALL, 695	transition, 995, 1001-1002, 1012 ex.
FLOYD-WARSHALL', 699 ex.	functional iteration, 58
Floyd-Warshall algorithm, 693–697,	fundamental theorem of linear programming,
699–700 ex., 706	892
multithreaded, 797 ex.	furthest-in-future strategy, 449 pr.
FORD-FULKERSON, 724	fusion tree, 212, 483
Ford-Fulkerson method, 714–731, 765	fuzzy sorting, 189 pr.
FORD-FULKERSON-METHOD, 715	
forest, 1172–1173	Gabow's scaling algorithm for single-source
depth-first, 603	shortest paths, 679 pr.
disjoint-set, 568–572	gap character, 989 ex., 1002 ex.
for, in pseudocode, 20–21	gap heuristic, 760 ex., 766
and loop invariants, 19 n.	garbage collection, 151, 243
formal power series, 108 pr.	gate, 1070
formula satisfiability, 1079–1081, 1105	Gaussian elimination, 819, 842
forward edge, 609	gcd, see greatest common divisor
forward substitution, 816–817	general number-field sieve, 984
Fourier transform, see discrete Fourier	generating function, 108 pr.
transform, fast Fourier transform	generator
fractional knapsack problem, 426, 428 ex.	of a subgroup, 944
free agent, 411 pr.	of \mathbb{Z}_n^* , 955
freeing of objects, 243–244	GENERIC-MST, 626
free list, 243	GENERIC-PUSH-RELABEL, 741
Free-Object, 244	generic push-relabel algorithm, 740-748
free tree, 1172–1176	geometric distribution, 1202-1203
frequency domain, 898	and balls and bins, 134
full binary tree, 1178, 1180 ex.	geometric series, 1147
relation to optimal code, 430	geometry, computational, 1014–1047
full node, 489	GF(2), 1227 pr.
full rank, 1223	gift wrapping, 1037, 1047

global variable, 21	GREEDY-ACTIVITY-SELECTOR, 421
Goldberg's algorithm, see push-relabel	greedy algorithm, 414-450
algorithm	for activity selection, 415–422
golden ratio (ϕ) , 59, 108 pr.	for coin changing, 446 pr.
gossiping, 478	compared with dynamic programming, 381
GRAFT, 583 pr.	390 ex., 418, 423–427
Graham's scan, 1030–1036, 1047	Dijkstra's algorithm, 658–664
GRAHAM-SCAN, 1031	elements of, 423–428
graph, 1168–1173	for fractional knapsack problem, 426
adjacency-list representation of, 590	greedy-choice property in, 424–425
adjacency-matrix representation of, 590	for Huffman code, 428–437
algorithms for, 587–766	Kruskal's algorithm, 631–633
and asymptotic notation, 588	and matroids, 437–443
attributes of, 588, 592	for minimum spanning tree, 631–638
breadth-first search of, 594–602, 623	for multithreaded scheduling, 781–783
coloring of, 1103 pr.	for off-line caching, 449 pr.
complement of, 1090	optimal substructure in, 425
component, 617	Prim's algorithm, 634–636
constraint, 666–668	for set cover, 1117–1122, 1139
dense, 589	for task scheduling, 443–446, 447–448 pr.
depth-first search of, 603–612, 623	on a weighted matroid, 439–442
dynamic, 562 n.	for weighted set cover, 1135 pr.
ϵ -dense, 706 pr.	greedy-choice property, 424–425
hamiltonian, 1061	of activity selection, 417–418
incidence matrix of, 448 pr., 593 ex.	of Huffman codes, 433–434
interval, 422 ex.	of a weighted matroid, 441
nonhamiltonian, 1061	greedy scheduler, 782
shortest path in, 597	Greedy-Set-Cover, 1119
singly connected, 612 ex.	grid, 760 pr.
sparse, 589	group, 939–946
static, 562 n.	cyclic, 955
subproblem, 367–368	operator (\oplus) , 939
tour of, 1096	guessing the solution, in the substitution
weighted, 591	method, 84–85
see also directed acyclic graph, directed	
graph, flow network, undirected graph,	half 3-CNF satisfiability, 1101 ex.
tree	half-open interval, 348
graphic matroid, 437-438, 642	Hall's theorem, 735 ex.
GRAPH-ISOMORPHISM, 1065 ex.	halting problem, 1048
gray vertex, 594, 603	halving lemma, 908
greatest common divisor (gcd), 929–930,	HAM-CYCLE, 1062
933 ex.	hamiltonian cycle, 1049, 1061, 1091–1096,
binary gcd algorithm for, 981 pr.	1105
Euclid's algorithm for, 933–939, 981 pr., 983	hamiltonian graph, 1061
with more than two arguments, 939 ex.	hamiltonian path, 1066 ex., 1101 ex.
recursion theorem for, 934	HAM-PATH, 1066 ex.
greedoid, 450	handle, 163, 507
Greeny 440	handshaking lemma 1172 ev

harmonic number, 1147, 1153–1154	max-heap, 152
harmonic series, 1147, 1153–1154	maximum key of, 163
HASH-DELETE, 277 ex.	mergeable, see mergeable heap
hash function, 256, 262–269	min-heap, 153
auxiliary, 272	in Prim's algorithm, 636
collision-resistant, 964	as a priority queue, 162–166
division method for, 263, 268–269 ex.	relaxed, 530
ϵ -universal, 269 ex.	running times of operations on, 506 fig.
multiplication method for, 263–264	and treaps, 333 pr.
universal, 265–268	
,	2-3-4, 529 pr.
hashing, 253–285	HEAP DELETE 166 ox
with chaining, 257–260, 283 pr.	HEAP-DELETE, 166 ex.
double, 272–274, 277 ex.	HEAP-EXTRACT-MAX, 163
k-universal, 284 pr.	HEAP-EXTRACT-MIN, 165 ex.
in memoization, 365, 387	HEAP-INCREASE-KEY, 164
with open addressing, 269–277	HEAP-MAXIMUM, 163
perfect, 277–282, 285	HEAP-MINIMUM, 165 ex.
to replace adjacency lists, 593 ex.	heap property, 152
universal, 265–268	maintenance of, 154–156
HASH-INSERT, 270, 277 ex.	vs. binary-search-tree property, 289 ex.
HASH-SEARCH, 271, 277 ex.	heapsort, 151–169
hash table, 256–261	HEAPSORT, 160
dynamic, 471 ex.	heel, 602 ex.
secondary, 278	height
see also hashing	of a binomial tree, 527 pr.
hash value, 256	black-, 309
hat-check problem, 122 ex.	of a B-tree, 489–490
head	of a d -ary heap, 167 pr.
in a disk drive, 485	of a decision tree, 193
of a linked list, 236	exponential, 300
of a queue, 234	of a heap, 153
heap, 151–169	of a node in a heap, 153, 159 ex.
analyzed by potential method, 462 ex.	of a node in a tree, 1177
binomial, 527 pr.	of a red-black tree, 309
building, 156–159, 166 pr.	of a tree, 1177
compared with Fibonacci heaps, 506-507	height-balanced tree, 333 pr.
d-ary, 167 pr., 706 pr.	height function, in push-relabel algorithms, 738
deletion from, 166 ex.	hereditary family of subsets, 437
in Dijkstra's algorithm, 662	Hermitian matrix, 832 ex.
extracting the maximum key from, 163	high endpoint of an interval, 348
Fibonacci, see Fibonacci heap	high function, 537, 546
as garbage-collected storage, 151	HIRE-ASSISTANT, 115
height of, 153	hiring problem, 114–115, 123–124, 145
in Huffman's algorithm, 433	on-line, 139–141
to implement a mergeable heap, 506	probabilistic analysis of, 120-121
increasing a key in, 163–164	hit
insertion into, 164	cache, 449 pr.
in Johnson's algorithm, 704	spurious, 991
,	*

HOARE-PARTITION, 185 pr.	indicator random variable, 118-121
HOPCROFT-KARP, 764 pr.	in analysis of expected height of a randomly
Hopcroft-Karp bipartite matching algorithm,	built binary search tree, 300–303
763 pr.	in analysis of inserting into a treap, 333 pr.
horizontal ray, 1021 ex.	in analysis of streaks, 138–139
Horner's rule, 41 pr., 900	in analysis of the birthday paradox, 132–133
in the Rabin-Karp algorithm, 990	in approximation algorithm for
HUFFMAN, 431	MAX-3-CNF satisfiability, 1124
Huffman code, 428–437, 450	in bounding the right tail of the binomial
hull, convex, 8, 1029–1039, 1046 pr.	distribution, 1212–1213
Human Genome Project, 6	in bucket sort analysis, 202-204
hyperedge, 1172	expected value of, 118
hypergraph, 1172	in hashing analysis, 259–260
and bipartite graphs, 1173 ex.	in hiring-problem analysis, 120–121
	and linearity of expectation, 119
ideal parallel computer, 779	in quicksort analysis, 182–184, 187 pr.
idempotency laws for sets, 1159	in randomized-selection analysis, 217–219,
identity, 939	226 pr.
identity matrix, 1218	in universal-hashing analysis, 265–266
if, in pseudocode, 20	induced subgraph, 1171
image, 1167	inequality constraint, 852
image compression, 409 pr., 413	and equality constraints, 853
inadmissible edge, 749	inequality, linear, 846
incidence, 1169	infeasible linear program, 851
incidence matrix	infeasible solution, 851
and difference constraints, 666	infinite sequence, 1166
of a directed graph, 448 pr., 593 ex.	infinite set, 1161
of an undirected graph, 448 pr.	infinite sum, 1145
inclusion and exclusion, 1163 ex.	infinity, arithmetic with, 650
incomplete step, 782	Initialize-Preflow,740
Increase-Key, 162	Initialize-Simplex, 871, 887
increasing a key, in a max-heap, 163–164	Initialize-Single-Source, 648
Increment, 454	initial strand, 779
incremental design method, 29	injective function, 1167
for finding the convex hull, 1030	inner product, 1222
in-degree, 1169	inorder tree walk, 287, 293 ex., 342
indentation in pseudocode, 20	Inorder-Tree-Walk, 288
independence	in-place sorting, 17, 148, 206 pr.
of events, 1192–1193, 1195 ex.	input
of random variables, 1197	to an algorithm, 5
of subproblems in dynamic programming,	to a combinational circuit, 1071
383–384	distribution of, 116, 122
independent family of subsets, 437	to a logic gate, 1070
independent set, 1101 pr.	size of, 25
of tasks, 444	input alphabet, 995
independent strands, 789	INSERT, 162, 230, 463 ex., 505
index function, 537, 546	insertion
index of an element of \mathbb{Z}_n^* , 955	into binary search trees, 294–295

	1 1 050 005
into a bit vector with a superimposed binary	interior-point method, 850, 897
tree, 534	intermediate vertex, 693
into a bit vector with a superimposed tree of	internal node, 1176
constant height, 534	internal path length, 1180 ex.
into B-trees, 493–497	interpolation by a cubic spline, 840 pr.
into chained hash tables, 258	interpolation by a polynomial, 901, 906 ex.
into d -ary heaps, 167 pr.	at complex roots of unity, 912–913
into direct-address tables, 254	intersection
into dynamic tables, 464–467	of chords, 345 ex.
elementary, 465	determining, for a set of line segments,
into Fibonacci heaps, 510-511	1021–1029, 1047
into heaps, 164	determining, for two line segments,
into interval trees, 349	1017–1019
into linked lists, 237–238	of languages, 1058
into open-address hash tables, 270	of sets (\cap) , 1159
into order-statistic trees, 343	interval, 348
into proto van Emde Boas structures, 544	fuzzy sorting of, 189 pr.
into queues, 234	INTERVAL-DELETE, 349
into red-black trees, 315–323	interval graph, 422 ex.
into stacks, 232	INTERVAL-INSERT, 349
into sweep-line statuses, 1024	INTERVAL-SEARCH, 349, 351
into treaps, 333 pr.	INTERVAL-SEARCH-EXACTLY, 354 ex.
into 2-3-4 heaps, 529 pr.	interval tree, 348–354
into van Emde Boas trees, 552–554	interval trichotomy, 348
into Young tableaus, 167 pr.	intractability, 1048
insertion sort, 12, 16–20, 25–27	invalid shift, 985
in bucket sort, 201–204	inventory planning, 411 pr.
compared with merge sort, 14 ex.	inverse
compared with quicksort, 178 ex.	of a bijective function, 1167
decision tree for, 192 fig.	in a group, 940
in merge sort, 39 pr.	of a matrix, 827–831, 842, 1223, 1225 ex.
in quicksort, 185 ex.	multiplicative, modulo n , 949
using binary search, 39 ex.	inversion
INSERTION-SORT, 18, 26, 208 pr.	in a self-organizing list, 476 pr.
instance	in a sequence, 41 pr., 122 ex., 345 ex.
of an abstract problem, 1051, 1054	inverter, 1070
of a problem, 5	invertible matrix, 1223
instructions of the RAM model, 23	isolated vertex, 1169
integer data type, 23	isomorphic graphs, 1171
integer linear programming, 850, 895 pr.,	iterated function, 63 pr.
1101 ex.	iterated logarithm function, 58–59
integers (\mathbb{Z}) , 1158	ITERATIVE-FFT,917
integer-valued flow, 733	ITERATIVE-TREE-SEARCH, 291
integrality theorem, 734	iter function, 577
integral, to approximate summations,	
1154–1156	Jarvis's march, 1037–1038, 1047
integration of a series, 1147	Jensen's inequality, 1199
interior of a polygon, 1020 ex.	Johnson, 704

Johnson's algorithm, 700–706	Lagrange's theorem, 944
joining	Lamé's theorem, 936
of red-black trees, 332 pr.	language, 1057
of 2-3-4 trees, 503 pr.	completeness of, 1077 ex.
joint probability density function, 1197	proving NP-completeness of, 1078–1079
Josephus permutation, 355 pr.	verification of, 1063
W 1 1 1 1 1 1 007	last-in, first-out, 232
Karmarkar's algorithm, 897	see also stack
Karp's minimum mean-weight cycle algorithm,	late task, 444
680 pr.	layers
k-ary tree, 1179	convex, 1044 pr.
k-CNF, 1049	maximal, 1045 pr.
k-coloring, 1103 pr., 1180 pr.	LCA, 584 pr.
k-combination, 1185	lcm (least common multiple), 939 ex.
k-conjunctive normal form, 1049	LCS, 7, 390–397, 413
kernel of a polygon, 1038 ex.	LCS-LENGTH, 394
key, 16, 147, 162, 229	leading submatrix, 833, 839 ex.
dummy, 397	leaf, 1176
interpreted as a natural number, 263	least common ancestor, 584 pr.
median, of a B-tree node, 493	least common multiple, 939 ex.
public, 959, 962	least-squares approximation, 835–839
secret, 959, 962	leaving a vertex, 1169
static, 277	leaving variable, 867
keywords, in pseudocode, 20–22	LEFT, 152
multithreaded, 774, 776–777, 785–786	left child, 1178
"killer adversary" for quicksort, 190	left-child, right-sibling representation, 246,
Kirchhoff's current law, 708	249 ex.
Kleene star (*), 1058	LEFT-ROTATE, 313, 353 ex.
KMP algorithm, 1002–1013	left rotation, 312
KMP-MATCHER, 1005	left spine, 333 pr.
knapsack problem	left subtree, 1178
fractional, 426, 428 ex.	Legendre symbol $(\frac{a}{p})$, 982 pr.
0-1, 425, 427 ex., 1137 pr., 1139	length
k-neighbor tree, 338	of a path, 1170
knot, of a spline, 840 pr.	of a sequence, 1166
Knuth-Morris-Pratt algorithm, 1002–1013	of a spine, 333 pr.
k-permutation, 126, 1184	of a string, 986, 1184 level
Kraft inequality, 1180 ex. Kruskal's algorithm, 631–633, 642	of a function, 573
with integer edge weights, 637 ex.	of a tree, 1177
k-sorted, 207 pr.	level function, 576
<i>k</i> -string, 1184	lexicographically less than, 304 pr.
<i>k</i> -subset, 1161	lexicographic sorting, 304 pr.
k-substring, 1184	lg (binary logarithm), 56
kth power, 933 ex.	lg* (iterated logarithm function), 58–59
k-universal hashing, 284 pr.	\lg^k (exponentiation of logarithms), 56
n am visai nasining, 204 pr.	lg lg (composition of logarithms), 56
Lagrange's formula, 902	LIFO (last-in, first-out), 232

see also stack	determining whether any intersect,
light edge, 626	1021–1029, 1047
linear constraint, 846	determining whether two intersect,
linear dependence, 1223	1017–1019
linear equality, 845	link
linear equations	of binomial trees, 527 pr.
solving modular, 946–950	of Fibonacci-heap roots, 513
solving systems of, 813–827	of trees in a disjoint-set forest, 570–571
solving tridiagonal systems of, 840 pr.	Link, 571
linear function, 26, 845	linked list, 236–241
linear independence, 1223	compact, 245 ex., 250 pr.
linear inequality, 846	deletion from, 238
linear-inequality feasibility problem, 894 pr.	to implement disjoint sets, 564–568
linearity of expectation, 1198	insertion into, 237–238
and indicator random variables, 119	neighbor list, 750
linearity of summations, 1146	searching, 237, 268 ex.
linear order, 1165	self-organizing, 476 pr.
linear permutation, 1229 pr.	list, see linked list
linear probing, 272	LIST-DELETE, 238
linear programming, 7, 843–897	LIST-DELETE', 238
algorithms for, 850	LIST-INSERT, 238
applications of, 849	List-Insert', 240
duality in, 879–886	List-Search, 237
ellipsoid algorithm for, 850, 897	List-Search', 239
finding an initial solution in, 886–891	literal, 1082
fundamental theorem of, 892	little-oh notation, 50–51, 64
interior-point methods for, 850, 897	little-omega notation, 51
Karmarkar's algorithm for, 897	L_m -distance, 1044 ex.
and maximum flow, 860–861	ln (natural logarithm), 56
and minimum-cost circulation, 896 pr.	load factor
and minimum-cost flow, 861–862	of a dynamic table, 463
and minimum-cost multicommodity flow,	of a hash table, 258
864 ex.	load instruction, 23
and multicommodity flow, 862–863	local variable, 21
simplex algorithm for, 864–879, 896	logarithm function (log), 56–57
and single-pair shortest path, 859–860	discrete, 955
and single-source shortest paths, 664–670,	iterated (lg*), 58–59
863 ex.	logical parallelism, 777
slack form for, 854–857	logic gate, 1070
standard form for, 850–854	longest common subsequence, 7, 390–397, 413
see also integer linear programming, 0-1	longest palindrome subsequence, 405 pr.
integer programming	LONGEST-PATH, 1060 ex.
linear-programming relaxation, 1125	LONGEST-PATH-LENGTH, 1060 ex.
linear search, 22 ex.	longest simple cycle, 1101 ex.
linear speedup, 780	longest simple path, 1048
line segment, 1015	in an unweighted graph, 382
comparable, 1022	in a weighted directed acyclic graph, 404 pr.
determining turn of, 1017	LOOKUP-CHAIN, 388
	200 0111111,000

loop, in pseudocode, 20	for median finding, 227
parallel, 785–787	for merging, 208 pr.
loop invariant, 18–19	for minimum-weight vertex cover,
for breadth-first search, 595	1124–1126
for building a heap, 157	for multithreaded computations, 780
for consolidating the root list of a Fibonacci	and potential functions, 478
heap, 517	for priority-queue operations, 531
for determining the rank of an element in an	and recurrences, 67
order-statistic tree, 342	for simultaneous minimum and maximum,
for Dijkstra's algorithm, 660	215 ex.
and for loops, 19 n.	for size of an optimal vertex cover, 1110,
for the generic minimum-spanning-tree	1135 pr.
method, 625	for sorting, 191–194, 205 pr., 211, 531
for the generic push-relabel algorithm, 743	for streaks, 136–138, 142 ex.
for Graham's scan, 1034	on summations, 1152, 1154
for heapsort, 160 ex.	lower median, 213
for Horner's rule, 41 pr.	lower square root (↓∕), 546
for increasing a key in a heap, 166 ex.	lower-triangular matrix, 1219, 1222 ex.,
initialization of, 19	1225 ex.
for insertion sort, 18	low function, 537, 546
maintenance of, 19	LU decomposition, 806 pr., 819-822
for merging, 32	LU-DECOMPOSITION, 821
for modular exponentiation, 957	LUP decomposition, 806 pr., 815
origin of, 42	computation of, 823–825
for partitioning, 171	of a diagonal matrix, 827 ex.
for Prim's algorithm, 636	in matrix inversion, 828
for the Rabin-Karp algorithm, 993	and matrix multiplication, 832 ex.
for randomly permuting an array, 127,	of a permutation matrix, 827 ex.
128 ex.	use of, 815–819
for red-black tree insertion, 318	LUP-DECOMPOSITION, 824
for the relabel-to-front algorithm, 755	LUP-SOLVE,817
for searching an interval tree, 352	
for the simplex algorithm, 872	main memory, 484
for string-matching automata, 998, 1000	Make-Heap, 505
and termination, 19	Make-Set, 561
low endpoint of an interval, 348	disjoint-set-forest implementation of, 571
lower bounds	linked-list implementation of, 564
on approximations, 1140	makespan, 1136 pr.
asymptotic, 48	MAKE-TREE, 583 pr.
for average sorting, 207 pr.	Manhattan distance, 225 pr., 1044 ex.
on binomial coefficients, 1186	marked node, 508, 519–520
for comparting water jugs, 206 pr.	Markov's inequality, 1201 ex.
for convex hull, 1038 ex., 1047	master method for solving a recurrence, 93–97
for disjoint-set data structures, 585	master theorem, 94
for finding the minimum, 214	proof of, 97–106
for finding the predecessor, 560	matched vertex, 732
for length of an optimal traveling-salesman	matching
tour. 1112–1115	bipartite, 732, 763 pr.

maximal, 1110, 1135 pr.	multithreaded algorithm for, 792–797,
maximum, 1135 pr.	806 pr.
and maximum flow, 732–736, 747 ex.	Pan's method for, 82 ex.
perfect, 735 ex.	Strassen's algorithm for, 79–83, 111–112
of strings, 985–1013	MATRIX-MULTIPLY, 371
weighted bipartite, 530	matrix-vector multiplication, multithreaded,
matric matroid, 437	785–787, 792 ex.
matrix, 1217–1229	with race, 790
addition of, 1220	matroid, 437–443, 448 pr., 450, 642
adjacency, 591	for task scheduling, 443–446
conjugate transpose of, 832 ex.	MAT-VEC, 785
determinant of, 1224–1225	MAT-VEC-MAIN-LOOP, 786
diagonal, 1218	MAT-VEC-WRONG, 790
Hermitian, 832 ex.	MAX-CNF satisfiability, 1127 ex.
identity, 1218	MAX-CUT problem, 1127 ex.
incidence, 448 pr., 593 ex.	MAX-FLOW-BY-SCALING, 763 pr.
inversion of, 806 pr., 827–831, 842	max-flow min-cut theorem, 723
lower-triangular, 1219, 1222 ex., 1225 ex.	max-heap, 152
multiplication of, see matrix multiplication	building, 156–159
negative of, 1220	<i>d</i> -ary, 167 pr.
permutation, 1220, 1222 ex.	deletion from, 166 ex.
predecessor, 685	extracting the maximum key from, 163
product of, with a vector, 785–787, 790,	in heapsort, 159–162
792 ex.	increasing a key in, 163–164
pseudoinverse of, 837	insertion into, 164
scalar multiple of, 1220	maximum key of, 163
subtraction of, 1221	as a max-priority queue, 162–166
symmetric, 1220	mergeable, 250 n., 481 n., 505 n.
symmetric positive-definite, 832–835, 842	MAX-HEAPIFY, 154
Toeplitz, 921 pr.	MAX-HEAP-INSERT, 164
transpose of, 797 ex., 1217	building a heap with, 166 pr.
transpose of, multithreaded, 792 ex.	max-heap property, 152
tridiagonal, 1219	maintenance of, 154–156
unit lower-triangular, 1219	maximal element, of a partially ordered set,
unit upper-triangular, 1219	1165
upper-triangular, 1219, 1225 ex.	maximal layers, 1045 pr.
Vandermonde, 902, 1226 pr.	maximal matching, 1110, 1135 pr.
matrix-chain multiplication, 370–378	maximal point, 1045 pr.
MATRIX-CHAIN-MULTIPLY	maximal subset, in a matroid, 438
MATRIX-CHAIN-ORDER, 375	maximization linear program, 846
matrix multiplication, 75–83, 1221	and minimization linear programs, 852
for all-pairs shortest paths, 686–693,	maximum, 213
706–707	in binary search trees, 291
boolean, 832 ex.	of a binomial distribution, 1207 ex.
and computing the determinant, 832 ex.	in a bit vector with a superimposed binary
divide-and-conquer method for, 76–83	tree, 533
and LUP decomposition, 832 ex.	in a bit vector with a superimposed tree of
and matrix inversion, 828–831, 842	constant height, 535
· · · · · · · · · · · · · · · · · · ·	<u> </u>

finding, 214–215	memory hierarchy, 24
in heaps, 163	MERGE, 31
in order-statistic trees, 347 ex.	mergeable heap, 481, 505
in proto van Emde Boas structures, 544 ex.	binomial heaps, 527 pr.
in red-black trees, 311	linked-list implementation of, 250 pr.
in van Emde Boas trees, 550	relaxed heaps, 530
MAXIMUM, 162–163, 230	running times of operations on, 506 fig.
maximum bipartite matching, 732–736,	2-3-4 heaps, 529 pr.
747 ex., 766	see also Fibonacci heap
Hopcroft-Karp algorithm for, 763 pr.	mergeable max-heap, 250 n., 481 n., 505 n.
maximum degree, in a Fibonacci heap, 509,	mergeable min-heap, 250 n., 481 n., 505
523–526	MERGE-LISTS, 1129
maximum flow, 708–766	merge sort, 12, 30–37
Edmonds-Karp algorithm for, 727-730	compared with insertion sort, 14 ex.
Ford-Fulkerson method for, 714-731, 765	multithreaded algorithm for, 797-805, 812
as a linear program, 860–861	use of insertion sort in, 39 pr.
and maximum bipartite matching, 732-736,	Merge-Sort, 34
747 ex.	Merge-Sort', 797
push-relabel algorithms for, 736-760, 765	merging
relabel-to-front algorithm for, 748-760	of k sorted lists, 166 ex.
scaling algorithm for, 762 pr., 765	lower bounds for, 208 pr.
updating, 762 pr.	multithreaded algorithm for, 798-801
maximum matching, 1135 pr.	of two sorted arrays, 30
maximum spanning tree, 1137 pr.	MILLER-RABIN, 970
maximum-subarray problem, 68-75, 111	Miller-Rabin primality test, 968–975, 983
max-priority queue, 162	MIN-GAP, 354 ex.
MAX-3-CNF satisfiability, 1123–1124, 1139	min-heap, 153
MAYBE-MST-A, 641 pr.	analyzed by potential method, 462 ex.
MAYBE-MST-B, 641 pr.	building, 156–159
MAYBE-MST-C, 641 pr.	d-ary, 706 pr.
mean, see expected value	in Dijkstra's algorithm, 662
mean weight of a cycle, 680 pr.	in Huffman's algorithm, 433
median, 213–227	in Johnson's algorithm, 704
multithreaded algorithm for, 805 ex.	mergeable, 250 n., 481 n., 505
of sorted lists, 223 ex.	as a min-priority queue, 165 ex.
of two sorted lists, 804 ex.	in Prim's algorithm, 636
weighted, 225 pr.	MIN-HEAPIFY, 156 ex.
median key, of a B-tree node, 493	MIN-HEAP-INSERT, 165 ex.
median-of-3 method, 188 pr.	min-heap ordering, 507
member of a set (\in) , 1158	min-heap property, 153, 507
membership	maintenance of, 156 ex.
in proto van Emde Boas structures, 540–541	in treaps, 333 pr.
in Van Emde Boas trees, 550	vs. binary-search-tree property, 289 ex.
memoization, 365, 387–389	minimization linear program, 846
MEMOIZED-CUT-ROD, 365	and maximization linear programs, 852
MEMOIZED-CUT-ROD-AUX, 366	minimum, 213
MEMOIZED-MATRIX-CHAIN, 388	in binary search trees, 291
memory, 484	

in a bit vector with a superimposed binary	modular equivalence, 54, 1165 ex.
tree, 533	modular exponentiation, 956
in a bit vector with a superimposed tree of	Modular-Exponentiation, 957
constant height, 535	modular linear equations, 946-950
in B-trees, 497 ex.	MODULAR-LINEAR-EQUATION-SOLVER,
in Fibonacci heaps, 511	949
finding, 214–215	modulo, 54, 928
off-line, 582 pr.	Monge array, 110 pr.
in order-statistic trees, 347 ex.	monotone sequence, 168
in proto van Emde Boas structures, 541-542	monotonically decreasing, 53
in red-black trees, 311	monotonically increasing, 53
in 2-3-4 heaps, 529 pr.	Monty Hall problem, 1195 ex.
in van Emde Boas trees, 550	move-to-front heuristic, 476 pr., 478
MINIMUM, 162, 214, 230, 505	MST-KRUSKAL, 631
minimum-cost circulation, 896 pr.	MST-PRIM, 634
minimum-cost flow, 861–862	MST-REDUCE, 639 pr.
minimum-cost multicommodity flow, 864 ex.	much-greater-than (≫), 574
minimum-cost spanning tree, see minimum	much-less-than (\ll), 783
spanning tree	multicommodity flow, 862-863
minimum cut, 721, 731 ex.	minimum-cost, 864 ex.
minimum degree, of a B-tree, 489	multicore computer, 772
minimum mean-weight cycle, 680 pr.	multidimensional fast Fourier transform,
minimum node, of a Fibonacci heap, 508	921 pr.
minimum path cover, 761 pr.	multigraph, 1172
minimum spanning tree, 624–642	converting to equivalent undirected graph,
in approximation algorithm for	593 ex.
traveling-salesman problem, 1112	multiple, 927
Borůvka's algorithm for, 641	of an element modulo n , 946–950
on dynamic graphs, 637 ex.	least common, 939 ex.
generic method for, 625–630	scalar, 1220
Kruskal's algorithm for, 631–633	multiple assignment, 21
Prim's algorithm for, 634–636	multiple sources and sinks, 712
relation to matroids, 437, 439–440	multiplication
second-best, 638 pr.	of complex numbers, 83 ex.
minimum-weight spanning tree, see minimum	divide-and-conquer method for, 920 pr.
spanning tree	of matrices, see matrix multiplication
minimum-weight vertex cover, 1124–1127,	of a matrix chain, 370–378
1139	matrix-vector, multithreaded, 785-787, 790
minor of a matrix, 1224	792 ex.
min-priority queue, 162	modulo $n(\cdot_n)$, 940
in constructing Huffman codes, 431	of polynomials, 899
in Dijkstra's algorithm, 661	multiplication method, 263–264
in Prim's algorithm, 634, 636	multiplicative group modulo n, 941
miss, 449 pr.	multiplicative inverse, modulo n , 949
missing child, 1178	multiply instruction, 23
mod, 54, 928	MULTIPOP, 453
modifying operation, 230	multiprocessor, 772
modular arithmetic, 54, 923 pr., 939–946	MULTIPUSH, 456 ex.

1	multiset, 1158 n.	net flow across a cut, 720
1	multithreaded algorithm, 10, 772–812	network
	for computing Fibonacci numbers, 774–780	admissible, 749–750
	for fast Fourier transform, 804 ex.	flow, see flow network
	Floyd-Warshall algorithm, 797 ex.	residual, 715–719
	for LU decomposition, 806 pr.	for sorting, 811
	for LUP decomposition, 806 pr.	new, in pseudocode, 785
	for matrix inversion, 806 pr.	NEXT-TO-TOP, 1031
	for matrix multiplication, 792–797, 806 pr.	NIL, 21
	for matrix transpose, 792 ex., 797 ex.	node, 1176
	for matrix-vector product, 785–787, 790,	see also vertex
	792 ex.	nonbasic variable, 855
	for median, 805 ex.	nondeterministic multithreaded algorithm, 787
	for merge sorting, 797–805, 812	nondeterministic polynomial time, 1064 n.
	for merging, 798–801	see also NP
	for order statistics, 805 ex.	nonhamiltonian graph, 1061
	for partitioning, 804 ex.	noninstance, 1056 n.
	for prefix computation, 807 pr.	noninvertible matrix, 1223
	for quicksort, 811 pr.	nonnegativity constraint, 851, 853
	for reduction, 807 pr.	nonoverlappable string pattern, 1002 ex.
	for a simple stencil calculation, 809 pr.	nonsaturating push, 739, 745
	for solving systems of linear equations,	nonsingular matrix, 1223
	806 pr.	nontrivial power, 933 ex.
	Strassen's algorithm, 795–796	nontrivial square root of 1, modulo n , 956
	nultithreaded composition, 784 fig.	no-path property, 650, 672
	multithreaded composition, 764 lig.	normal equation, 837
	multithreaded computation, 777 multithreaded scheduling, 781–783	norm of a vector, 1222
	nutually exclusive events, 1190	NOT function (¬), 1071
	nutually independent events, 1193	not a set member $(\not\in)$, 1158
1	nutuany independent events, 1193	•
ī	M (act of notional numbers) 1150	not equivalent (≠), 54
	(set of natural numbers), 1158	NOT gate, 1070
	naive algorithm, for string matching, 988–990	NP (complexity class), 1049, 1064, 1066 ex.,
	NAIVE-STRING-MATCHER, 988	1105
	natural cubic spline, 840 pr.	NPC (complexity class), 1050, 1069
I	natural numbers (N), 1158	NP-complete, 1050, 1069
	keys interpreted as, 263	NP-completeness, 9–10, 1048–1105
	negative of a matrix, 1220	of the circuit-satisfiability problem,
Ī	negative-weight cycle	1070–1077
	and difference constraints, 667	of the clique problem, 1086–1089, 1105
	and relaxation, 677 ex.	of determining whether a boolean formula is
	and shortest paths, 645, 653–654, 692 ex.,	a tautology, 1086 ex.
	700 ex.	of the formula-satisfiability problem,
	negative-weight edges, 645–646	1079–1081, 1105
	neighbor, 1172	of the graph-coloring problem, 1103 pr.
	neighborhood, 735 ex.	of the half 3-CNF satisfiability problem,
	neighbor list, 750	1101 ex.
	nested parallelism, 776, 805 pr.	of the hamiltonian-cycle problem,
1	nesting boxes, 678 pr.	1091–1096, 1105

of the hamiltonian-path problem, 1101 ex.	1-approximation algorithm, 1107
of the independent-set problem, 1101 pr.	one-pass method, 585
of integer linear programming, 1101 ex.	one-to-one correspondence, 1167
of the longest-simple-cycle problem,	one-to-one function, 1167
1101 ex.	on-line convex-hull problem, 1039 ex.
proving, of a language, 1078–1079	on-line hiring problem, 139–141
of scheduling with profits and deadlines,	On-Line-Maximum, 140
1104 pr.	on-line multithreaded scheduler, 781
of the set-covering problem, 1122 ex.	ON-SEGMENT, 1018
of the set-partition problem, 1101 ex.	onto function, 1167
of the subgraph-isomorphism problem,	open-address hash table, 269-277
1100 ex.	with double hashing, 272–274, 277 ex.
of the subset-sum problem, 1097–1100	with linear probing, 272
of the 3-CNF-satisfiability problem,	with quadratic probing, 272, 283 pr.
1082–1085, 1105	open interval, 348
of the traveling-salesman problem,	OpenMP, 774
1096–1097	optimal binary search tree, 397-404, 413
of the vertex-cover problem, 1089–1091,	OPTIMAL-BST, 402
1105	optimal objective value, 851
of 0-1 integer programming, 1100 ex.	optimal solution, 851
NP-hard, 1069	optimal subset, of a matroid, 439
<i>n</i> -set, 1161	optimal substructure
<i>n</i> -tuple, 1162	of activity selection, 416
null event, 1190	of binary search trees, 399–400
null tree, 1178	in dynamic programming, 379–384
null vector, 1224	of the fractional knapsack problem, 426
number-field sieve, 984	in greedy algorithms, 425
numerical stability, 813, 815, 842	of Huffman codes, 435
<i>n</i> -vector, 1218	of longest common subsequences, 392–393
	of matrix-chain multiplication, 373
o-notation, 50–51, 64	of rod-cutting, 362
O-notation, 45 fig., 47–48, 64	of shortest paths, 644–645, 687, 693–694
Q'-notation, 62 pr.	of unweighted shortest paths, 382
O-notation, 62 pr.	of weighted matroids, 442
object, 21	of the 0-1 knapsack problem, 426
allocation and freeing of, 243–244	optimal vertex cover, 1108
array implementation of, 241–246	optimization problem, 359, 1050, 1054
passing as parameter, 21	approximation algorithms for, 10,
objective function, 664, 847, 851	1106–1140
objective value, 847, 851	and decision problems, 1051
oblivious compare-exchange algorithm, 208 pr.	OR function (\vee) , 697, 1071
occurrence of a pattern, 985	order
OFF-LINE-MINIMUM, 583 pr.	of a group, 945
off-line problem	linear, 1165
caching, 449 pr.	partial, 1165
least common ancestors, 584 pr.	total, 1165
minimum, 582 pr.	ordered pair, 1161
Omega-notation, 45 fig., 48–49, 64	ordered tree, 1177

1 6 1 20	1 1 222
order of growth, 28	logical, 777
order statistics, 213–227	of a multithreaded computation, 780
dynamic, 339–345	nested, 776
multithreaded algorithm for, 805 ex.	of a randomized multithreaded algorithm,
order-statistic tree, 339–345	811 pr.
querying, 347 ex.	parallel loop, 785–787, 805 pr.
OR gate, 1070	parallel-machine-scheduling problem, 1136 pr.
origin, 1015	parallel prefix, 807 pr.
or, in pseudocode, 22	parallel random-access machine, 811
orthonormal, 842	parallel slackness, 781
OS-KEY-RANK, 344 ex.	rule of thumb, 783
OS-RANK, 342	parallel, strands being logically in, 778
OS-SELECT, 341	parameter, 21
out-degree, 1169	costs of passing, 107 pr.
outer product, 1222	parent
output	in a breadth-first tree, 594
of an algorithm, 5	in a multithreaded computation, 776
of a combinational circuit, 1071	in a rooted tree, 1176
of a logic gate, 1070	PARENT, 152
overdetermined system of linear equations, 814	parenthesis structure of depth-first search, 606
overflow	parenthesis theorem, 606
of a queue, 235	parenthesization of a matrix-chain product, 370
of a stack, 233	parse tree, 1082
overflowing vertex, 736	partially ordered set, 1165
discharge of, 751	partial order, 1165
overlapping intervals, 348	PARTITION, 171
finding all, 354 ex.	PARTITION', 186 pr.
point of maximum overlap, 354 pr.	partition function, 361 n.
overlapping rectangles, 354 ex.	partitioning, 171–173
overlapping subproblems, 384–386	around median of 3 elements, 185 ex.
overlapping subproblems, 384–366	Hoare's method for, 185 pr.
overrapping-surity tennina, 767	multithreaded algorithm for, 804 ex.
D (complexity class) 1040 1055 1050	randomized, 179
P (complexity class), 1049, 1055, 1059,	
1061 ex., 1105	partition of a set, 1161, 1164
package wrapping, 1037, 1047	Pascal's triangle, 1188 ex.
page on a disk, 486, 499 ex., 502 pr.	path, 1170
pair, ordered, 1161	augmenting, 719–720, 763 pr.
pairwise disjoint sets, 1161	critical, 657
pairwise independence, 1193	find, 569
pairwise relatively prime, 931	hamiltonian, 1066 ex.
palindrome, 405 pr.	longest, 382, 1048
Pan's method for matrix multiplication, 82 ex.	shortest, see shortest paths
parallel algorithm, 10, 772	simple, 1170
see also multithreaded algorithm	weight of, 643
parallel computer, 772	PATH, 1051, 1058
ideal, 779	path compression, 569
parallel for, in pseudocode, 785–786	path cover, 761 pr.
parallelism	path length, of a tree, 304 pr., 1180 ex.

path-relaxation property, 650, 673	kernel of, 1038 ex.
pattern, in string matching, 985	star-shaped, 1038 ex.
nonoverlappable, 1002 ex.	polylogarithmically bounded, 57
pattern matching, see string matching	polynomial, 55, 898
penalty, 444	addition of, 898
perfect hashing, 277–282, 285	asymptotic behavior of, 61 pr.
perfect linear speedup, 780	coefficient representation of, 900
perfect matching, 735 ex.	derivatives of, 922 pr.
permutation, 1167	evaluation of, 41 pr., 900, 905 ex., 923 pr.
bit-reversal, 472 pr., 918	interpolation by, 901, 906 ex.
Josephus, 355 pr.	multiplication of, 899, 903–905, 920 pr.
<i>k</i> -permutation, 126, 1184	point-value representation of, 901
linear, 1229 pr.	polynomial-growth condition, 113
in place, 126	polynomially bounded, 55
random, 124–128	polynomially related, 1056
of a set, 1184	polynomial-time acceptance, 1058
uniform random, 116, 125	polynomial-time algorithm, 927, 1048
permutation matrix, 1220, 1222 ex., 1226 ex.	polynomial-time approximation scheme, 1107
LUP decomposition of, 827 ex.	for maximum clique, 1134 pr.
PERMUTE-BY-CYCLIC, 129 ex.	polynomial-time computability, 1056
PERMUTE-BY-SORTING, 125	polynomial-time decision, 1059
PERMUTE-WITH-ALL, 129 ex. PERMUTE-WITHOUT-IDENTITY, 128 ex.	polynomial-time reducibility (\leq_P), 1067, 1077 ex.
persistent data structure, 331 pr., 482	polynomial-time solvability, 1055
PERSISTENT-TREE-INSERT, 331 pr.	polynomial-time verification, 1061–1066
PERT chart, 657, 657 ex.	POP, 233, 452
P-FIB, 776	pop from a run-time stack, 188 pr.
phase, of the relabel-to-front algorithm, 758	positional tree, 1178
phi function $(\phi(n))$, 943	positive-definite matrix, 1225
PISANO-DELETE, 526 pr.	post-office location problem, 225 pr.
pivot	postorder tree walk, 287
in linear programming, 867, 869–870,	potential function, 459
878 ex.	for lower bounds, 478
in LU decomposition, 821	potential method, 459–463
in quicksort, 171	for binary counters, 461–462
PIVOT, 869	for disjoint-set data structures, 575–581,
platter, 485	582 ex.
P-MATRIX-MULTIPLY-RECURSIVE, 794	for dynamic tables, 466–471
P-MERGE, 800	for Fibonacci heaps, 509–512, 517–518,
P-MERGE-SORT, 803	520–522
pointer, 21	for the generic push-relabel algorithm, 746
array implementation of, 241–246	for min-heaps, 462 ex.
trailing, 295	for restructuring red-black trees, 474 pr.
point-value representation, 901	for self-organizing lists with move-to-front,
polar angle, 1020 ex.	476 pr.
Pollard's rho heuristic, 976–980, 980 ex., 984	for stack operations, 460–461
Pollard-Rho,976	potential, of a data structure, 459
polygon, 1020 ex.	power

of an element, modulo n , 954–958	with integer edge weights, 637 ex.
kth, 933 ex.	similarity to Dijkstra's algorithm, 634, 662
nontrivial, 933 ex.	for sparse graphs, 638 pr.
power series, 108 pr.	primality testing, 965–975, 983
power set, 1161	Miller-Rabin test, 968–975, 983
Pr { } (probability distribution), 1190	pseudoprimality testing, 966–968
PRAM, 811	primal linear program, 880
predecessor	primary clustering, 272
in binary search trees, 291–292	primary memory, 484
in a bit vector with a superimposed binary	prime distribution function, 965
tree, 534	prime number, 928
in a bit vector with a superimposed tree of	density of, 965–966
constant height, 535	prime number theorem, 965
in breadth-first trees, 594	primitive root of \mathbb{Z}_n^* , 955
in B-trees, 497 ex.	principal root of unity, 907
in linked lists, 236	principle of inclusion and exclusion, 1163 ex
in order-statistic trees, 347 ex.	PRINT-ALL-PAIRS-SHORTEST-PATH, 685
in proto van Emde Boas structures, 544 ex.	PRINT-CUT-ROD-SOLUTION, 369
in red-black trees, 311	PRINT-INTERSECTING-SEGMENTS, 1028 ex
in shortest-paths trees, 647	PRINT-LCS, 395
in Van Emde Boas trees, 551–552	PRINT-OPTIMAL-PARENS, 377
Predecessor, 230	Print-Path, 601
predecessor matrix, 685	Print-Set, 572 ex.
predecessor subgraph	priority queue, 162–166
in all-pairs shortest paths, 685	in constructing Huffman codes, 431
in breadth-first search, 600	in Dijkstra's algorithm, 661
in depth-first search, 603	heap implementation of, 162–166
in single-source shortest paths, 647	lower bounds for, 531
predecessor-subgraph property, 650, 676	max-priority queue, 162
preemption, 447 pr.	min-priority queue, 162, 165 ex.
prefix	with monotone extractions, 168
of a sequence, 392	in Prim's algorithm, 634, 636
of a string (□), 986	proto van Emde Boas structure
prefix code, 429	implementation of, 538–545
prefix computation, 807 pr.	van Emde Boas tree implementation of,
prefix function, 1003–1004	531–560
prefix-function iteration lemma, 1007	see also binary search tree, binomial heap,
preflow, 736, 765	Fibonacci heap
preimage of a matrix, 1228 pr.	probabilistically checkable proof, 1105, 1140
preorder, total, 1165	probabilistic analysis, 115–116, 130–142
preorder tree walk, 287	of approximation algorithm for
presorting, 1043	MAX-3-CNF satisfiability, 1124
Prim's algorithm, 634–636, 642	and average inputs, 28
with an adjacency matrix, 637 ex.	of average node depth in a randomly built
in approximation algorithm for	binary search tree, 304 pr.
traveling-salesman problem, 1112	of balls and bins, 133–134
implemented with a Fibonacci heap, 636	of birthday paradox, 130–133
implemented with a min-heap, 636	of bucket sort, 201–204, 204 ex.
implemented with a min-neap, 000	01 bucket 5011, 201-204, 204 ca.

of collisions, 261 ex., 282 ex.	tractable, 1048
of convex hull over a sparse-hulled	procedure, 6, 16–17
distribution, 1046 pr.	product ([]), 1148
of file comparison, 995 ex.	Cartesian, 1162
of fuzzy sorting of intervals, 189 pr.	cross, 1016
of hashing with chaining, 258–260	
<u> </u>	inner, 1222
of height of a randomly built binary search	of matrices, 1221, 1226 ex.
tree, 299–303	outer, 1222
of hiring problem, 120–121, 139–141	of polynomials, 899
of insertion into a binary search tree with	rule of, 1184
equal keys, 303 pr.	scalar flow, 714 ex.
of longest-probe bound for hashing, 282 pr.	professional wrestler, 602 ex.
of lower bound for sorting, 205 pr.	program counter, 1073
of Miller-Rabin primality test, 971–975	programming, see dynamic programming,
and multithreaded algorithms, 811 pr.	linear programming
of on-line hiring problem, 139–141	proper ancestor, 1176
of open-address hashing, 274–276, 277 ex.	proper descendant, 1176
of partitioning, 179 ex., 185 ex., 187–188 pr.	proper subgroup, 944
of perfect hashing, 279–282	proper subset (\subset) , 1159
of Pollard's rho heuristic, 977–980	proto van Emde Boas structure, 538–545
of probabilistic counting, 143 pr.	cluster in, 538
of quicksort, 181–184, 187–188 pr., 303 ex.	compared with van Emde Boas trees, 547
of Rabin-Karp algorithm, 994	deletion from, 544
and randomized algorithms, 123-124	insertion into, 544
of randomized selection, 217–219, 226 pr.	maximum in, 544 ex.
of searching a compact list, 250 pr.	membership in, 540–541
of slot-size bound for chaining, 283 pr.	minimum in, 541–542
of sorting points by distance from origin,	predecessor in, 544 ex.
204 ex.	successor in, 543–544
of streaks, 135–139	summary in, 540
of universal hashing, 265–268	Proto-vEB-Insert, 544
probabilistic counting, 143 pr.	PROTO-VEB-MEMBER, 541
probability, 1189–1196	Proto-vEB-Minimum,542
probability density function, 1196	proto-vEB structure, see proto van Emde Boas
probability distribution, 1190	structure
probability distribution function, 204 ex.	Proto-vEB-Successor,543
probe sequence, 270	prune-and-search method, 1030
probing, 270, 282 pr.	pruning a Fibonacci heap, 529 pr.
see also linear probing, quadratic probing,	P-SCAN-1, 808 pr.
double hashing	P-SCAN-2, 808 pr.
problem	P-SCAN-3, 809 pr.
abstract, 1054	P-SCAN-DOWN, 809 pr.
computational, 5–6	P-SCAN-UP, 809 pr.
concrete, 1055	pseudocode, 16, 20–22
decision, 1051, 1054	pseudoinverse, 837
intractable, 1048	pseudoprime, 966–968
optimization, 359, 1050, 1054	PSEUDOPRIME, 967
solution to, 6, 1054–1055	pseudorandom-number generator, 117

P-SQUARE-MATRIX-MULTIPLY, 793	worst-case analysis of, 180-181
P-Transpose, 792 ex.	QUICKSORT, 171
public key, 959, 962	QUICKSORT', 186 pr.
public-key cryptosystem, 958–965, 983	quotient, 928
PUSH	1
push-relabel operation, 739	\mathbb{R} (set of real numbers), 1158
stack operation, 233, 452	Rabin-Karp algorithm, 990–995, 1013
push onto a run-time stack, 188 pr.	RABIN-KARP-MATCHER, 993
push operation (in push-relabel algorithms),	race, 787–790
738–739	RACE-EXAMPLE, 788
nonsaturating, 739, 745	radix sort, 197–200
saturating, 739, 745	
	compared with quicksort, 199
push-relabel algorithm, 736–760, 765	RADIX-SORT, 198
basic operations in, 738–740	radix tree, 304 pr.
by discharging an overflowing vertex of	RAM, 23–24
maximum height, 760 ex.	RANDOM, 117
to find a maximum bipartite matching,	random-access machine, 23–24
747 ex.	parallel, 811
gap heuristic for, 760 ex., 766	randomized algorithm, 116–117, 122–130
generic algorithm, 740–748	and average inputs, 28
with a queue of overflowing vertices, 759 ex.	comparison sort, 205 pr.
relabel-to-front algorithm, 748–760	for fuzzy sorting of intervals, 189 pr.
	for hiring problem, 123–124
quadratic function, 27	for insertion into a binary search tree with
quadratic probing, 272, 283 pr.	equal keys, 303 pr.
quadratic residue, 982 pr.	for MAX-3-CNF satisfiability, 1123–1124,
quantile, 223 ex.	1139
query, 230	Miller-Rabin primality test, 968–975, 983
queue, 232, 234–235	multithreaded, 811 pr.
in breadth-first search, 595	for partitioning, 179, 185 ex., 187–188 pr.
implemented by stacks, 236 ex.	for permuting an array, 124-128
linked-list implementation of, 240 ex. priority, <i>see</i> priority queue	Pollard's rho heuristic, 976–980, 980 ex., 984
in push-relabel algorithms, 759 ex.	and probabilistic analysis, 123–124
quicksort, 170–190	quicksort, 179–180, 185 ex., 187–188 pr.
analysis of, 174–185	randomized rounding, 1139
average-case analysis of, 181–184	for searching a compact list, 250 pr.
compared with insertion sort, 178 ex.	for selection, 215–220
compared with radix sort, 199	universal hashing, 265–268
with equal element values, 186 pr.	worst-case performance of, 180 ex.
good worst-case implementation of, 223 ex.	RANDOMIZED-HIRE-ASSISTANT, 124
"killer adversary" for, 190	RANDOMIZED-PARTITION, 179
with median-of-3 method, 188 pr.	RANDOMIZED-QUICKSORT, 179, 303 ex.
multithreaded algorithm for, 811 pr.	relation to randomly built binary search
randomized version of, 179–180, 187 pr.	trees, 304 pr.
stack depth of, 188 pr.	randomized rounding, 1139
tail-recursive version of, 188 pr.	RANDOMIZED-SELECT, 216
use of insertion sort in 195 av	DANDOMIZE IN DIACE 126

randomly built binary search tree, 299–303,	RECURSIVE-FFT,911
304 pr.	RECURSIVE-MATRIX-CHAIN, 385
random-number generator, 117	red-black tree, 308–338
random permutation, 124–128	augmentation of, 346–347
uniform, 116, 125	compared with B-trees, 484, 490
RANDOM-SAMPLE, 130 ex.	deletion from, 323–330
random sampling, 129 ex., 179	in determining whether any line segments
RANDOM-SEARCH, 143 pr.	intersect, 1024
random variable, 1196–1201	for enumerating keys in a range, 348 ex.
indicator, see indicator random variable	height of, 309
range, 1167	insertion into, 315–323
of a matrix, 1228 pr.	joining of, 332 pr.
rank	maximum key of, 311
column, 1223	minimum key of, 311
full, 1223	predecessor in, 311
of a matrix, 1223, 1226 ex.	properties of, 308–312
of a node in a disjoint-set forest, 569, 575,	relaxed, 311 ex.
581 ex.	restructuring, 474 pr.
of a number in an ordered set, 300, 339	rotation in, 312–314
in order-statistic trees, 341–343, 344–345 ex.	searching in, 311
row, 1223	successor in, 311
rate of growth, 28	see also interval tree, order-statistic tree
ray, 1021 ex.	REDUCE, 807 pr.
RB-DELETE, 324	reduced-space van Emde Boas tree, 557 pr.
RB-DELETE-FIXUP, 326	reducibility, 1067–1068
RB-ENUMERATE, 348 ex.	reduction algorithm, 1052, 1067
RB-Insert, 315	reduction function, 1067
RB-Insert-Fixup, 316	reduction, of an array, 807 pr.
RB-Join, 332 pr.	reflexive relation, 1163
RB-Transplant, 323	reflexivity of asymptotic notation, 51
reachability in a graph (→), 1170	region, feasible, 847
real numbers (\mathbb{R}), 1158	regularity condition, 95
reconstructing an optimal solution, in dynamic	rejection
programming, 387	by an algorithm, 1058
record, 147	by a finite automaton, 996
rectangle, 354 ex.	RELABEL, 740
recurrence, 34, 65–67, 83–113	relabeled vertex, 740
solution by Akra-Bazzi method, 112-113	relabel operation, in push-relabel algorithms,
solution by master method, 93-97	740, 745
solution by recursion-tree method, 88-93	RELABEL-TO-FRONT, 755
solution by substitution method, 83-88	relabel-to-front algorithm, 748-760
recurrence equation, see recurrence	phase of, 758
recursion, 30	relation, 1163–1166
recursion tree, 37, 88–93	relatively prime, 931
in proof of master theorem, 98-100	RELAX, 649
and the substitution method, 91–92	relaxation
RECURSIVE-ACTIVITY-SELECTOR, 419	of an edge, 648–650
recursive case, 65	linear programming, 1125

relaxed heap, 530		row-major order, 394
relaxed red-black tree, 31	1 ex.	row rank, 1223
release time, 447 pr.		row vector, 1218
remainder, 54, 928		RSA public-key cryptosystem, 958–965, 983
remainder instruction, 23		RS-vEB tree, 557 pr.
repeated squaring		rule of product, 1184
for all-pairs shortest pa	othe 680 601	rule of sum, 1183
for raising a number to		running time, 25
repeat, in pseudocode, 20		average-case, 28, 116
repetition factor, of a strip		best-case, 29 ex., 49 expected, 28, 117
REPETITION-MATCHER		•
representative of a set, 56)1	of a graph algorithm, 588
RESET, 459 ex.	0	and multithreaded computation, 779–780
residual capacity, 716, 71	.9	order of growth, 28
residual edge, 716	_	rate of growth, 28
residual network, 715–71	9	worst-case, 27, 49
residue, 54, 928, 982 pr.		
respecting a set of edges,	626	sabermetrics, 412 n.
return edge, 779		safe edge, 626
return , in pseudocode, 2	2	SAME-COMPONENT, 563
return instruction, 23		sample space, 1189
reweighting		sampling, 129 ex., 179
in all-pairs shortest pat	ths, 700–702	SAT, 1079
in single-source shorte	st paths, 679 pr.	satellite data, 147, 229
rho heuristic, 976–980, 9	80 ex., 984	satisfiability, 1072, 1079-1081, 1105,
$\rho(n)$ -approximation algorithm	rithm, 1106, 1123	1123–1124, 1127 ex., 1139
RIGHT, 152		satisfiable formula, 1049, 1079
right child, 1178		satisfying assignment, 1072, 1079
right-conversion, 314 ex.		saturated edge, 739
right horizontal ray, 1021	ex.	saturating push, 739, 745
RIGHT-ROTATE, 313		scalar flow product, 714 ex.
right rotation, 312		scalar multiple, 1220
right spine, 333 pr.		scaling
right subtree, 1178		in maximum flow, 762 pr., 765
rod-cutting, 360–370, 390	Nev	in single-source shortest paths, 679 pr.
root	J CA.	scan, 807 pr.
of a tree, 1176		SCAN, 807 pr.
·		-
of unity, 906–907		scapegoat tree, 338
of \mathbb{Z}_n^* , 955		schedule, 444, 1136 pr.
rooted tree, 1176	240	event-point, 1023
representation of, 246-		scheduler, for multithreaded computations,
root list, of a Fibonacci h	eap, 509	777, 781–783, 812
rotation		centralized, 782
cyclic, 1012 ex.		greedy, 782
in a red-black tree, 312		work-stealing algorithm for, 812
rotational sweep, 1030–1	038	scheduling, 443–446, 447 pr., 450, 1104 pr.,
rounding, 1126		1136 pr.
randomized 1139		Schur complement 820, 834

Schur complement lemma, 834	sequence $(\langle \rangle)$
SCRAMBLE-SEARCH, 143 pr.	bitonic, 682 pr.
seam carving, 409 pr., 413	finite, 1166
SEARCH, 230	infinite, 1166
searching, 22 ex.	inversion in, 41 pr., 122 ex., 345 ex.
binary search, 39 ex., 799–800	probe, 270
in binary search trees, 289–291	sequential consistency, 779, 812
in B-trees, 491–492	serial algorithm versus parallel algorithm, 772
in chained hash tables, 258	serialization, of a multithreaded algorithm,
in compact lists, 250 pr.	774, 776
in direct-address tables, 254	series, 108 pr., 1146–1148
for an exact interval, 354 ex.	strands being logically in, 778
in interval trees, 350–353	set ({ }), 1158–1163
linear search, 22 ex.	cardinality (), 1161
in linked lists, 237	convex, 714 ex.
in open-address hash tables, 270–271	difference (–), 1159
in proto van Emde Boas structures, 540–541	independent, 1101 pr.
in red-black trees, 311	intersection (\cap) , 1159
in an unsorted array, 143 pr.	member (€), 1158
in Van Emde Boas trees, 550	not a member $(\not\in)$, 1158
search tree, see balanced search tree, binary	union (∪), 1159
search tree, B-tree, exponential search	set-covering problem, 1117–1122, 1139
tree, interval tree, optimal binary search	weighted, 1135 pr.
tree, order-statistic tree, red-black tree,	set-partition problem, 1101 ex.
splay tree, 2-3 tree, 2-3-4 tree	shadow of a point, 1038 ex.
secondary clustering, 272	shared memory, 772
secondary hash table, 278	Shell's sort, 42
secondary storage	shift, in string matching, 985
search tree for, 484–504	shift instruction, 24
stacks on, 502 pr.	short-circuiting operator, 22
second-best minimum spanning tree, 638 pr.	SHORTEST-PATH, 1050
secret key, 959, 962	shortest paths, 7, 643–707
segment, see directed segment, line segment	all-pairs, 644, 684–707
SEGMENTS-INTERSECT, 1018	Bellman-Ford algorithm for, 651–655
SELECT, 220	with bitonic paths, 682 pr.
selection, 213	and breadth-first search, 597–600, 644
of activities, 415–422, 450	convergence property of, 650, 672–673
and comparison sorts, 222	and difference constraints, 664–670
in expected linear time, 215–220	Dijkstra's algorithm for, 658–664
multithreaded, 805 ex.	in a directed acyclic graph, 655–658
in order-statistic trees, 340–341	in ϵ -dense graphs, 706 pr.
in worst-case linear time, 220–224	estimate of, 648
selection sort, 29 ex.	Floyd-Warshall algorithm for, 693–697,
selector vertex, 1093	700 ex., 706
self-loop, 1168	Gabow's scaling algorithm for, 679 pr.
self-organizing list, 476 pr., 478	Johnson's algorithm for, 700–706
semiconnected graph, 621 ex.	as a linear program, 859–860
sentinel, 31, 238–240, 309	and longest paths, 1048
, , , , , , , , , , , , , , , , , , ,	O 1 / - · -

by matrix multiplication, 686-693, 706-707	singly linked list, 236
and negative-weight cycles, 645, 653-654,	see also linked list
692 ex., 700 ex.	singular matrix, 1223
with negative-weight edges, 645-646	singular value decomposition, 842
no-path property of, 650, 672	sink vertex, 593 ex., 709, 712
optimal substructure of, 644–645, 687,	size
693–694	of an algorithm's input, 25, 926-927,
path-relaxation property of, 650, 673	1055–1057
predecessor-subgraph property of, 650, 676	of a binomial tree, 527 pr.
problem variants, 644	of a boolean combinational circuit, 1072
and relaxation, 648-650	of a clique, 1086
by repeated squaring, 689-691	of a set, 1161
single-destination, 644	of a subtree in a Fibonacci heap, 524
single-pair, 381, 644	of a vertex cover, 1089, 1108
single-source, 643–683	skip list, 338
tree of, 647–648, 673–676	slack, 855
triangle inequality of, 650, 671	slack form, 846, 854-857
in an unweighted graph, 381, 597	uniqueness of, 876
upper-bound property of, 650, 671-672	slackness
in a weighted graph, 643	complementary, 894 pr.
sibling, 1176	parallel, 781
side of a polygon, 1020 ex.	slack variable, 855
signature, 960	slot
simple cycle, 1170	of a direct-access table, 254
simple graph, 1170	of a hash table, 256
simple path, 1170	SLOW-ALL-PAIRS-SHORTEST-PATHS, 689
longest, 382, 1048	smoothed analysis, 897
simple polygon, 1020 ex.	⋆Socrates, 790
simple stencil calculation, 809 pr.	solution
simple uniform hashing, 259	to an abstract problem, 1054
simplex, 848	basic, 866
SIMPLEX, 871	to a computational problem, 6
simplex algorithm, 848, 864-879, 896-897	to a concrete problem, 1055
single-destination shortest paths, 644	feasible, 665, 846, 851
single-pair shortest path, 381, 644	infeasible, 851
as a linear program, 859–860	optimal, 851
single-source shortest paths, 643–683	to a system of linear equations, 814
Bellman-Ford algorithm for, 651–655	sorted linked list, 236
with bitonic paths, 682 pr.	see also linked list
and difference constraints, 664-670	sorting, 5, 16–20, 30–37, 147–212, 797–805
Dijkstra's algorithm for, 658-664	bubblesort, 40 pr.
in a directed acyclic graph, 655-658	bucket sort, 200-204
in ϵ -dense graphs, 706 pr.	columnsort, 208 pr.
Gabow's scaling algorithm for, 679 pr.	comparison sort, 191
as a linear program, 863 ex.	counting sort, 194–197
and longest paths, 1048	fuzzy, 189 pr.
singleton, 1161	heapsort, 151-169
singly connected graph, 612 ex.	insertion sort, 12, 16-20

k-sorting, 207 pr.	spurious hit, 991
lexicographic, 304 pr.	square matrix, 1218
in linear time, 194–204, 206 pr.	SQUARE-MATRIX-MULTIPLY, 75, 689
lower bounds for, 191–194, 211, 531	SQUARE-MATRIX-MULTIPLY-RECURSIVE,
merge sort, 12, 30–37, 797–805	77
by oblivious compare-exchange algorithms,	square of a directed graph, 593 ex.
208 pr.	square root, modulo a prime, 982 pr.
in place, 17, 148, 206 pr.	squaring, repeated
of points by polar angle, 1020 ex.	for all-pairs shortest paths, 689-691
probabilistic lower bound for, 205 pr.	for raising a number to a power, 956
quicksort, 170–190	stability
radix sort, 197–200	numerical, 813, 815, 842
selection sort, 29 ex.	of sorting algorithms, 196, 200 ex.
Shell's sort, 42	stack, 232–233
stable, 196	in Graham's scan, 1030
table of running times, 149	implemented by queues, 236 ex.
topological, 8, 612–615, 623	linked-list implementation of, 240 ex.
using a binary search tree, 299 ex.	operations analyzed by accounting method
with variable-length items, 206 pr.	457–458
0-1 sorting lemma, 208 pr.	operations analyzed by aggregate analysis,
sorting network, 811	452–454
source vertex, 594, 644, 709, 712	operations analyzed by potential method,
span law, 780	460–461
spanning tree, 439, 624	for procedure execution, 188 pr.
bottleneck, 640 pr.	on secondary storage, 502 pr.
maximum, 1137 pr.	STACK-EMPTY, 233
verification of, 642	standard deviation, 1200
see also minimum spanning tree	standard encoding ($\langle \rangle$), 1057
span, of a multithreaded computation, 779	standard form, 846, 850-854
sparse graph, 589	star-shaped polygon, 1038 ex.
all-pairs shortest paths for, 700-705	start state, 995
and Prim's algorithm, 638 pr.	start time, 415
sparse-hulled distribution, 1046 pr.	state of a finite automaton, 995
spawn, in pseudocode, 776–777	static graph, 562 n.
spawn edge, 778	static set of keys, 277
speedup, 780	static threading, 773
of a randomized multithreaded algorithm,	stencil, 809 pr.
811 pr.	stencil calculation, 809 pr.
spindle, 485	Stirling's approximation, 57
spine	storage management, 151, 243-244, 245 ex.,
of a string-matching automaton, 997 fig.	261 ex.
of a treap, 333 pr.	store instruction, 23
splay tree, 338, 482	straddle, 1017
spline, 840 pr.	strand, 777
splitting	final, 779
of B-tree nodes, 493–495	independent, 789
of 2-3-4 trees, 503 pr.	initial, 779
splitting summations, 1152–1154	logically in parallel, 778

logically in series, 778	success, in a Bernoulli trial, 1201
Strassen's algorithm, 79–83, 111–112	successor
multithreaded, 795–796	in binary search trees, 291–292
streaks, 135–139	in a bit vector with a superimposed binary
strictly decreasing, 53	tree, 533
strictly increasing, 53	in a bit vector with a superimposed tree of
string, 985, 1184	constant height, 535
string matching, 985–1013	finding <i>i</i> th, of a node in an order-statistic
based on repetition factors, 1012 pr.	tree, 344 ex.
by finite automata, 995–1002	in linked lists, 236
with gap characters, 989 ex., 1002 ex.	in order-statistic trees, 347 ex.
Knuth-Morris-Pratt algorithm for,	in proto van Emde Boas structures, 543-544
1002–1013	in red-black trees, 311
naive algorithm for, 988–990	in Van Emde Boas trees, 550–551
Rabin-Karp algorithm for, 990–995, 1013	SUCCESSOR, 230
string-matching automaton, 996–1002,	such that (:), 1159
1002 ex.	suffix (\Box) , 986
strongly connected component, 1171	suffix function, 996
decomposition into, 615–621, 623	suffix-function inequality, 999
STRONGLY-CONNECTED-COMPONENTS, 617	suffix-function recursion lemma, 1000
strongly connected graph, 1171	sum (\sum) , 1145
subgraph, 1171	Cartesian, 906 ex.
predecessor, see predecessor subgraph	infinite, 1145
subgraph-isomorphism problem, 1100 ex.	of matrices, 1220
subgroup, 943–946	of polynomials, 898
subpath, 1170	rule of, 1183
subproblem graph, 367–368	telescoping, 1148
subroutine	SUM-ARRAYS, 805 pr.
calling, 21, 23, 25 n.	SUM-ARRAYS', 805 pr.
executing, 25 n.	summary
subsequence, 391	in a bit vector with a superimposed tree of
subset (⊆), 1159, 1161	constant height, 534
hereditary family of, 437	in proto van Emde Boas structures, 540
independent family of, 437	in van Emde Boas trees, 546
SUBSET-SUM, 1097	summation, 1145–1157
subset-sum problem	in asymptotic notation, 49–50, 1146
approximation algorithm for, 1128–1134,	bounding, 1149–1156
1139	formulas and properties of, 1145–1149
NP-completeness of, 1097–1100	linearity of, 1146
with unary target, 1101 ex.	summation lemma, 908
substitution method, 83–88	•
	supercomputer, 772
and recursion trees, 91–92	superpolynomial time, 1048
substring, 1184 subtract instruction, 23	supersink, 712 supersource, 712
subtraction of matrices, 1221	supersource, 712 surjection, 1167
subtree, 1176	SVD, 842
maintaining sizes of, in order-statistic trees,	sweeping, 1021–1029, 1045 pr.
14.7—744	10131101131 1030-1038

sweep line, 1022	tight constraint, 865
sweep-line status, 1023–1024	time, see running time
symbol table, 253, 262, 265	time domain, 898
symmetric difference, 763 pr.	time-memory trade-off, 365
symmetric matrix, 1220, 1222 ex., 1226 ex.	timestamp, 603, 611 ex.
symmetric matrix, 1220, 1222 ex., 1220 ex. symmetric positive-definite matrix, 832–835,	Toeplitz matrix, 921 pr.
842	
	to, in pseudocode, 20 TOP, 1031
symmetry of Θ notation, 52	•
symmetry of Θ-notation, 52 sync, in pseudocode, 776–777	top-down method, for dynamic programming,
sync, in pseudocode, 776–777 system of difference constraints, 664–670	365
· ·	top of a stack, 232
system of linear equations, 806 pr., 813–827,	topological sort, 8, 612–615, 623
840 pr.	in computing single-source shortest paths in a dag, 655
Table-Delete, 468	TOPOLOGICAL-SORT, 613
Table-Insert,464	total order, 1165
tail	total path length, 304 pr.
of a binomial distribution, 1208–1215	total preorder, 1165
of a linked list, 236	total relation, 1165
of a queue, 234	tour
tail recursion, 188 pr., 419	bitonic, 405 pr.
TAIL-RECURSIVE-QUICKSORT, 188 pr.	Euler, 623 pr., 1048
target, 1097	of a graph, 1096
Tarjan's off-line least-common-ancestors	track, 486
algorithm, 584 pr.	tractability, 1048
task, 443	trailing pointer, 295
Task Parallel Library, 774	transition function, 995, 1001–1002, 1012 ex.
task scheduling, 443–446, 448 pr., 450	transitive closure, 697–699
tautology, 1066 ex., 1086 ex.	and boolean matrix multiplication, 832 ex.
Taylor series, 306 pr.	of dynamic graphs, 705 pr., 707
telescoping series, 1148	Transitive-Closure, 698
telescoping sum, 1148	transitive relation, 1163
testing	transitivity of asymptotic notation, 51
of primality, 965–975, 983	Transplant, 296, 323
of pseudoprimality, 966–968	transpose
text, in string matching, 985	conjugate, 832 ex.
then clause, 20 n.	of a directed graph, 592 ex.
Theta-notation, 44–47, 64	of a matrix, 1217
thread, 773	of a matrix, multithreaded, 792 ex.
Threading Building Blocks, 774	transpose symmetry of asymptotic notation, 52
3-CNF, 1082	traveling-salesman problem
3-CNF-SAT, 1082	approximation algorithm for, 1111–1117,
3-CNF satisfiability, 1082–1085, 1105	1139
approximation algorithm for, 1123-1124,	bitonic euclidean, 405 pr.
1139	bottleneck, 1117 ex.
and 2-CNF satisfiability, 1049	NP-completeness of, 1096-1097
3-COLOR, 1103 pr.	with the triangle inequality, 1112–1115
3-conjunctive normal form, 1082	without the triangle inequality, 1115–1116

traversal of a tree, 287, 293 ex., 342, 1114	Tree-Predecessor, 292
treap, 333 pr., 338	TREE-SEARCH, 290
TREAP-INSERT, 333 pr.	TREE-SUCCESSOR, 292
tree, 1173–1180	tree walk, 287, 293 ex., 342, 1114
AA-trees, 338	trial, Bernoulli, 1201
AVL, 333 pr., 337	trial division, 966
binary, see binary tree	triangle inequality, 1112
binomial, 527 pr.	for shortest paths, 650, 671
bisection of, 1181 pr.	triangular matrix, 1219, 1222 ex., 1225 ex.
breadth-first, 594, 600	trichotomy, interval, 348
B-trees, 484–504	trichotomy property of real numbers, 52
decision, 192–193	tridiagonal linear systems, 840 pr.
depth-first, 603	tridiagonal matrix, 1219
diameter of, 602 ex.	trie (radix tree), 304 pr.
dynamic, 482	y-fast, 558 pr.
free, 1172–1176	TRIM, 1130
full walk of, 1114	trimming a list, 1130
fusion, 212, 483	trivial divisor, 928
heap, 151–169	truth assignment, 1072, 1079
height-balanced, 333 pr.	truth table, 1070
height of, 1177	TSP, 1096
interval, 348–354	tuple, 1162
k-neighbor, 338	twiddle factor, 912
minimum spanning, see minimum spanning	2-CNF-SAT, 1086 ex.
tree	2-CNF satisfiability, 1086 ex.
optimal binary search, 397–404, 413	and 3-CNF satisfiability, 1049
order-statistic, 339–345	two-pass method, 571
parse, 1082	2-3-4 heap, 529 pr.
recursion, 37, 88–93	2-3-4 tree, 489
red-black, see red-black tree	joining, 503 pr.
rooted, 246–249, 1176	splitting, 503 pr.
scapegoat, 338	2-3 tree, 337, 504
search, see search tree	2 3 400,337,301
shortest-paths, 647–648, 673–676	unary, 1056
spanning, see minimum spanning tree,	unbounded linear program, 851
spanning tree	unconditional branch instruction, 23
splay, 338, 482	uncountable set, 1161
treap, 333 pr., 338	underdetermined system of linear equations,
2-3, 337, 504	814
2-3-4, 489, 503 pr.	underflow
van Emde Boas, 531–560	of a queue, 234
walk of, 287, 293 ex., 342, 1114	of a stack, 233
weight-balanced trees, 338	undirected graph, 1168
TREE-DELETE, 298, 299 ex., 323–324	articulation point of, 621 pr.
tree edge, 601, 603, 609	biconnected component of, 621 pr.
Tree-Insert, 294, 315	bridge of, 621 pr.
	clique in, 1086
Tree-Maximum, 291 Tree-Minimum, 291	coloring of, 1103 pr., 1180 pr.
I KEE-WIINIMUM, 471	coloring of, 1105 pr., 1100 pr.

computing a minimum spanning tree in,	upper-bound property, 650, 671–672
624–642	upper median, 213
converting to, from a multigraph, 593 ex.	upper square root ($\sqrt{}$), 546
d-regular, 736 ex.	upper-triangular matrix, 1219, 1225 ex.
grid, 760 pr.	1: J -1::6 005
hamiltonian, 1061	valid shift, 985
independent set of, 1101 pr.	value
matching of, 732	of a flow, 710
nonhamiltonian, 1061	of a function, 1166
vertex cover of, 1089, 1108	objective, 847, 851
see also graph	value over replacement player, 411 pr.
undirected version of a directed graph, 1172	Vandermonde matrix, 902, 1226 pr.
uniform hashing, 271	van Emde Boas tree, 531–560
uniform probability distribution, 1191–1192	cluster in, 546
uniform random permutation, 116, 125 union	compared with proto van Emde Boas structures, 547
of dynamic sets, see uniting	deletion from, 554–556
of languages, 1058	insertion into, 552–554
of sets (\cup) , 1159	maximum in, 550
Union, 505, 562	membership in, 550
disjoint-set-forest implementation of, 571	minimum in, 550
linked-list implementation of, 565–567,	predecessor in, 551–552
568 ex.	with reduced space, 557 pr.
union by rank, 569	successor in, 550–551
unique factorization of integers, 931	summary in, 546
unit (1), 928	Var [] (variance), 1199
uniting	variable
of Fibonacci heaps, 511–512	basic, 855
of heaps, 506	entering, 867
of linked lists, 241 ex.	leaving, 867
of 2-3-4 heaps, 529 pr.	nonbasic, 855
unit lower-triangular matrix, 1219	in pseudocode, 21
unit-time task, 443	random, 1196–1201
unit upper-triangular matrix, 1219	slack, 855
unit vector, 1218	see also indicator random variable
universal collection of hash functions, 265	variable-length code, 429
universal hashing, 265–268	variance, 1199
universal sink, 593 ex.	of a binomial distribution, 1205
universe, 1160	of a geometric distribution, 1203
of keys in van Emde Boas trees, 532	vEB-Empty-Tree-Insert, 553
universe size, 532	vEB tree, see van Emde Boas tree
unmatched vertex, 732	VEB-Tree-Delete, 554
unsorted linked list, 236	vEB-Tree-Insert,553
see also linked list	VEB-TREE-INSERT, 333 VEB-TREE-MAXIMUM, 550
until, in pseudocode, 20	vEB-Tree-Maximum, 550 vEB-Tree-Member, 550
unweighted longest simple paths, 382	veb-tree-member, 350 veb-tree-Minimum, 550
unweighted shortest paths, 381	VEB-TREE-PREDECESSOR, 552
upper bound, 47	vEB-Tree-Successor,551

vector, 1218, 1222-1224	in a weighted matroid, 439
convolution of, 901	
	while, in pseudocode, 20
cross product of, 1016	white-path theorem, 608
orthonormal, 842	white vertex, 594, 603
in the plane, 1015	widget, 1092
Venn diagram, 1160	wire, 1071
verification, 1061–1066	WITNESS, 969
of spanning trees, 642	witness, to the compositeness of a number, 968
verification algorithm, 1063	work law, 780
vertex	work, of a multithreaded computation, 779
articulation point, 621 pr.	work-stealing scheduling algorithm, 812
attributes of, 592	worst-case running time, 27, 49
capacity of, 714 ex.	
in a graph, 1168	Yen's improvement to the Bellman-Ford
intermediate, 693	algorithm, 678 pr.
isolated, 1169	y-fast trie, 558 pr.
overflowing, 736	Young tableau, 167 pr.
of a polygon, 1020 ex.	
relabeled, 740	\mathbb{Z} (set of integers), 1158
selector, 1093	\mathbb{Z}_n (equivalence classes modulo n), 928
vertex cover, 1089, 1108, 1124–1127, 1139	\mathbb{Z}_n^* (elements of multiplicative group
VERTEX-COVER, 1090	modulo n), 941
vertex-cover problem	\mathbb{Z}_n^+ (nonzero elements of \mathbb{Z}_n), 967
approximation algorithm for, 1108–1111,	zero matrix, 1218
1139	zero of a polynomial modulo a prime, 950 ex.
NP-completeness of, 1089-1091, 1105	0-1 integer programming, 1100 ex., 1125
vertex set, 1168	0-1 knapsack problem, 425, 427 ex., 1137 pr.,
violation, of an equality constraint, 865	1139
virtual memory, 24	0-1 sorting lemma, 208 pr.
Viterbi algorithm, 408 pr.	zonk, 1195 ex.
VORP, 411 pr.	20111, 1122 011
VOICE, TIT pil.	
walk of a tree, 287, 293 ex., 342, 1114	
weak duality, 880–881, 886 ex., 895 pr.	
weight	
of a cut, 1127 ex.	
of an edge, 591	
mean, 680 pr.	
of a path, 643	
weight-balanced tree, 338, 473 pr.	
weighted bipartite matching, 530	
weighted matroid, 439–442	
weighted median, 225 pr.	
weighted set-covering problem, 1135 pr.	
weighted union heuristic, 566	
weighted vertex cover, 1124–1127, 1139	
weight function	
for a graph, 591	

Introduction to Algorithms

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein Third Edition

Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. *Introduction to Algorithms* uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, and substantial additions to the chapter on recurrences (now called "Divide-and-Conquer"). It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many new exercises and problems have been added for this edition.

As of the third edition, this textbook is published exclusively by the MIT Press.

Thomas H. Cormen is Professor of Computer Science and former Director of the Institute for Writing and Rhetoric at Dartmouth College. Charles E. Leiserson is Professor of Computer Science and Engineering at MIT. Ronald L. Rivest is Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT. Clifford Stein is Professor of Industrial Engineering and Operations Research at Columbia University.

"In light of the explosive growth in the amount of data and the diversity of computing applications, efficient algorithms are needed now more than ever. This beautifully written, thoughtfully organized book is the definitive introductory book on the design and analysis of algorithms. The first half offers an effective method to teach and study algorithms; the second half then engages more advanced readers and curious students with compelling material on both the possibilities and the challenges in this fascinating field."

—Shang-Hua Teng, University of Southern California

"Introduction to Algorithms, the 'bible' of the field, is a comprehensive textbook covering the full spectrum of modern algorithms: from the fastest algorithms and data structures to polynomial-time algorithms for seemingly intractable problems, from classical algorithms in graph theory to special algorithms for string matching, computational geometry, and number theory. The revised third edition notably adds a chapter on van Emde Boas trees, one of the most useful data structures, and on multithreaded algorithms, a topic of increasing importance."

—Daniel Spielman, Department of Computer Science, Yale University

"As an educator and researcher in the field of algorithms for over two decades, I can unequivocally say that the Cormen book is the best textbook that I have ever seen on this subject. It offers an incisive, encyclopedic, and modern treatment of algorithms, and our department will continue to use it for teaching at both the graduate and undergraduate levels, as well as a reliable research reference."

—Gabriel Robins, Department of Computer Science, University of Virginia

Cover art: Alexander Calder, *Big Red*, 1959. Sheet metal and steel wire. 74 × 114 in. (188 × 289.6 cm.). Collection of Whitney Museum of American Art. Purchase, with funds from the Friends of the Whitney Museum of American Art, and exchange. 61.46. Photograph copyright © 2009: Whitney Museum of American Art. © 2009 Calder Foundation, New York/Artists Rights Society (ARS), New York.

The MIT Press

Massachusetts Institute of Technology Cambridge, Massachusetts 02142

http://mitpress.mit.edu

978-0-262-03384-8

Cormen, Thomas H., et al. Introduction to Algorithms, MIT Press, 2009. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/uu/detail.action?docID=3339142. Created from uu on 2023-09-03 23:12:09.