Homework 8B ECES 512

Damien Prieur

Problem 1

Given the state matricies $A=\begin{bmatrix}0&1\\0&0\end{bmatrix}$ $B=\begin{bmatrix}0\\\frac{1}{m}\end{bmatrix}$ $C=\begin{bmatrix}1&0\end{bmatrix},$ state $x=\begin{bmatrix}x_1\\x_2\end{bmatrix}$ and input u with the objective function: $J=\int_0^\infty x_1^2+\beta^2udt$

where m, β are some unknown constants. And $\beta > 0$.

- a. Based on the given information, indicate matrix Q and R in terms of m and β .
- b. Solve the ARE using Q and R. Find the matrix P in terms of m and β .
- c. Find the gain vector K in terms of m and β .
- d. Howd does the solution and cost change with β values?
- e. Verify teh optimal output $F=-x_1-4x_2$ when m=8 and $\beta=1$.
- f. Write out the time domain solution for both the open loop and closed loop system. (u = unit step)
- g. Simulate both systems and plot the states using Matlab.

Problem 2

Given the state matrices
$$A=\begin{bmatrix}0&1&0\\0&0&1\\-.4&-4.2&-2.1\end{bmatrix}$$
 $B=\begin{bmatrix}0\\0\\1\end{bmatrix}$

- a. Find the open loop eigenvalues.
- b. If $Q=I_3$, find P,K and the closed loop eigenvalues for $R\in\{0.01,0.1,1\}.$
- c. Use Matlab to plot the states and optimal input with the Q and different R values given in part b.