§3. Ряд и его остаток. Пусть имеется ряд

$$\sum_{n=1}^{\infty} a_n \,. \tag{3.7}$$

Пусть m — произвольное фиксированное натуральное число. Ряд

$$a_{m+1} + a_{m+2} + \ldots + a_{m+k} + \ldots {3.8}$$

называется *остатком* ряда (3.7) после m-го члена.

Теорема 3.1. Ряд (3.7) и его остаток после т-го члена (3.8) сходятся и расходятся одновременно.

▶ Обозначим n-ю частичную сумму ряда (3.7) через s_n , а k-ю частичную сумму ряда (3.8) — через σ_k . Имеем:

$$s_{m+k} = \underbrace{a_1 + a_2 + \ldots + a_m}_{s_m} + \underbrace{a_{m+1} + a_{m+2} + \ldots + a_{m+k}}_{\sigma_k} = s_m + \sigma_k,$$

откуда

$$\sigma_k = S_{m+k} - S_m. \tag{3.9}$$

Так как m фиксировано, то s_m в (3.9) – определенное число.

- α) Пусть ряд (3.7) сходится, и его сумма равна s. Из этого следует, что $\lim_{k\to\infty} s_{m+k} = s$ (существует, конечный). Но тогда из (3.9) следует, что существует конечный $\lim_{k\to\infty} \sigma_k$, причем $\lim_{k\to\infty} \sigma_k = \lim_{k\to\infty} s_{m+k} s_m = s s_m$. Последнее означает, что ряд (3.8) сходится и его сумма σ равна $s-s_m$. Таким образом, из сходимости ряда (3.7) следует сходимость ряда (3.8).
- β) Пусть ряд (3.8) сходится и его сумма равна σ . Это означает, что $\lim_{k\to\infty}\sigma_k=\sigma$ (существует, конечный). У нас $s_{m+k}=s_m+\sigma_k$. Переходя здесь к пределу при $k\to\infty$, получаем

$$\lim_{k \to \infty} s_{m+k} = \lim_{k \to \infty} (s_m + \sigma_k) = s_m + \lim_{k \to \infty} \sigma_k = s_m + \sigma_k$$

(существует, конечный); следовательно, ряд (3.7) сходится, и его сумма s равна $s_m + \sigma$. Итак, из сходимости ряда (3.8) следует сходимость ряда (3.7).

 γ) Пусть ряд (3.7) расходится. Требуется доказать, что тогда расходится и ряд (3.8).

Рассуждаем от противного. Допустим, что ряд (3.8) сходится. Но тогда, по пункту β), должен сходиться ряд (3.7), а это не так. Значит, расходимость ряда (3.7) влечет за собой расходимость ряда (3.8).

 δ) Пусть ряд (3.8) расходится. Нужно показать, что расходится и ряд (3.7).

И здесь рассуждаем от противного. Допустим, что ряд (3.7) сходится. Но тогда по пункту α) должен сходиться ряд (3.8), а это не так. Следовательно, расходимость ряда (3.8) влечет за собой расходимость ряда (3.7).

Вывод: ряды (3.7) и (3.8) либо оба сходятся, либо оба расходятся. \blacksquare *Замечание 3.2.* Из доказательства теоремы следует: если ряды (3.7) и (3.8) сходятся, то между их суммами s и σ существует следующая связь:

$$\sigma = s - s_m. \tag{3.10}$$

В (3.10) m фиксированное, но произвольное. Станем неограниченно увеличивать m. Тогда $s_m \xrightarrow[m \to \infty]{} s$ и, следовательно, $\lim_{m \to \infty} \sigma = 0$.

Таким образом, приходим к выводу: сумма остатка ряда после m-го члена у сходящегося ряда стремится к нулю при $m \to \infty$.