

Heinrich-Heine-Universität Düsseldorf Institut für Informatik Prof. Dr. J. Rothe

Universitätsstr. 1, D-40225 Düsseldorf Gebäude: 25.12, Ebene: O2, Raum: 26 Tel.: +49 211 8112188, Fax: +49 211 8111667 E-Mail: rothe@hhu.de 27. Mai 2019

Vorlesung im Sommersemester 2019

Informatik IV

Probeklausurtermin: 28. Mai 2019

BITTE NICHT MIT BLEISTIFT ODER ROTSTIFT SCHREIBEN!
TRAGEN SIE AUF JEDEM BLATT IHREN NAMEN, VORNAMEN
UND IHRE MATRIKELNUMMER SOWIE ZUSÄTZLICH AUF DEM
DECKBLATT STUDIENFACH MIT SEMESTER UND ANZAHL DER
ABGEGEBENEN BLÄTTER EIN, UND UNTERSCHREIBEN SIE
ALS STUDIERENDE/R DER INFORMATIK, DASS SIE ANGEMELDET SIND!

	Name.	Vorname:
--	-------	----------

Studienfach, Semester:

Matrikelnummer:

Anzahl der abgegebenen Blätter, inklusive Aufgabenblätter:

(Nur für Studierende der Informatik) Hiermit bestätige ich, dass ich mich beim akademischen Prüfungsamt für diese Klausur angemeldet habe:

Unterschrift

Aufgabe	1	2	3	4	5	Gesamt
erreichbare Punktzahl	20	25	25	18	12	100
erreichte Punktzahl						

Erlaubte Hilfsmittel:

Vorlesungsmitschriften, Bücher, Übungsblätter.

In der Klausur nicht erlaubte Hilfsmittel (in der Probeklausur aber erlaubt):

Elektronische Geräte aller Art.

Achten Sie darauf, dass Rechenwege und Zwischenschritte vollständig und ersichtlich sind.

	Service Co.
	Scientific and in con-
- 54	STATE OF THE REAL PROPERTY.
5	THE RESERVE OF

Name:

Matrikelnummer:

2

Aufgabe 1 (20 Punkte)

/20 Punkte

Kreuzen Sie für jede der folgenden Fragen in jeder Zeile entweder "Ja" oder "Nein" an.

Bewertung: Bezeichnet #R die Anzahl der richtig angekreuzten Antworten und #K die Anzahl der insgesamt angekreuzten Antworten (d. h. nur solche, bei denen entweder "Ja" oder "Nein" angekreuzt wurde – Antworten, bei denen weder "Ja" noch "Nein" oder sowohl "Ja" als auch "Nein" angekreuzt wurde, zählen nicht zu #K), so ergibt sich die folgende Gesamtpunktzahl für diese Aufgabe:

$$\#R + \left\lfloor \frac{5 \cdot \#R}{\#K} \right\rfloor$$
 Punkte, falls $\#K > 0$, und 0 Punkte, falls $\#K = 0$.

(a)	Welche	der folge	nden Aussagen ist/sind wahr?
	□Ja	□ Nein	Die leere Menge enthält nur das leere Wort.
	□Ja	☐ Nein	Es gibt eine von einem NFA akzeptierte Sprache, die durch keinen DFA akzeptiert werden kann.
	□Ja	□ Nein	Das Komplement einer unendlichen Menge $L \subseteq \{0,1\}^*$ ist stets endlich.
(b)	Welche	der folge	nden Aussagen ist/sind wahr?
	□Ja	□ Nein	Jede endliche Sprache ist regulär.
	□Ja	□ Nein	Jede reguläre Sprache ist endlich.
	□Ja	□ Nein	Mit dem Pumping-Lemma für reguläre Sprachen kann man nachweisen, dass eine Sprache regulär ist.
(c)	Welche	der folge	nden Aussagen ist/sind wahr?
	□ Ja	□ Nein	Die Klasse der kontextfreien Sprachen ist nicht abgeschlossen unter Schnitt.
	□Ja	□ Nein	Jede reguläre Sprache kann durch einen Kellerautomaten akzeptiert werden.
	□Ja	□ Nein	Das Wortproblem für kontextfreie Sprachen ist nicht algorithmisch lösbar.
(d)	Welche	der folge	nden Aussagen ist/sind wahr?
	□Ja	□ Nein	Deterministische Turingmaschinen sind keine nichtdeterministischen Turingmaschinen.
	□Ja	□ Nein	Die Äquivalenzklassen, welche durch die Myhill-Nerode-Relation induziert werden, sind repräsentantenunabhängig.
	□Ja	□ Nein	Die Berechnung eines jeden Kellerautomaten kann durch eine
			nichtdeterministische Turingmaschine simuliert werden.
(e)	Welche	der folge	nden Aussagen ist/sind beweisbar wahr?
	□ Ja	□ Nein	Seien A und B zwei Sprachen über einem Alphabet Σ . Wenn $A \cup B$ regulär ist, sind sowohl A als auch B regulär.
	□Ja	□ Nein	$\{a^nb^nc^na^n\mid n\geq 1\}$ ist kontextsensitiv.
	□ Ja	□ Nein	Deterministisch linear beschränkte Automaten sind nicht äquivalent zu linear beschränkten Automaten

Name:

Matrikelnummer:

3

Aufgabe 2 (25 Punkte) Reguläre Sprachen.

/25 Punkte

Gegeben sei folgender DFA $M=(\Sigma, Z, \delta, z_0, F)$ mit $\Sigma=\{0,1\}, Z=\{z_0, z_1, z_2, z_3, z_4, z_5\}, F=\{z_0, z_5\}$ und δ wie folgt:

8	20	21	22	z 3	24	25
0	22	25	z_1	z_1	25	22
1	21	23	20	24	23	z ₁

- (a) Bestimmen Sie mit dem entsprechenden Algorithmus aus der Vorlesung unter Angabe der Tabelle – einen minimalen DFA M' mit L(M') = L(M) an. Geben Sie explizit an, welche Zustände verschmolzen werden, und stellen Sie M' als Zustandsgraphen dar.
 P.
- (b) Geben Sie alle Äquivalenzklassen bezüglich der Myhill-Nerode-Äquivalenzrelation der Sprache L(M) = L(M') an. Es genügt für die Klassen jeweils die Angabe eines Repräsentanten, d. h., eine Beschreibung aller Wörter der Klassen ist nicht erforderlich.
- (c) Geben Sie an, in welcher Äquivalenzklasse bezüglich der Myhill-Nerode-Äquivalenzrelation der Sprache L(M) = L(M') sich das Wort w = 001 befindet, und begründen Sie formal, weshalb w nicht in einer anderen Äquivalenzklasse ist.

(Bitte geben Sie alle Argumente vollständig und verständlich an!)

Name:

Matrikelnummer:

7

Aufgabe 3 (25 Punkte) Kontextfreie Sprachen.

/25 Punkte

Gegeben sei die Grammatik $G = (\Sigma, N, S, R)$ mit dem Alphabet $\Sigma = \{a, b, c\}$, der Menge $N = \{S, C, D, E\}$ der Nichtterminale und der Regelmenge

$$R = \{S \rightarrow aEC \mid aE,$$

 $C \rightarrow cC \mid c,$
 $E \rightarrow c \mid bED \mid bE,$
 $D \rightarrow ab \mid abab\}.$

(a) Geben Sie einen Syntaxbaum für das Wort abboah an.

P.

- (b) Formen Sie G mit der entsprechenden Konstruktion aus der Vorlesung in eine Grammatik G' in Chomsky-Normalform (CNF) mit L(G) = L(G') um und geben Sie G' an.
 P.
- (c) Ist das Wort abcab in L(G) enthalten? Prüfen Sie dies mit dem Algorithmus von Cocke, Younger und Kasami und geben Sie die Tabelle bzw. Dreiecksmatrix dabei vollständig an.
 P.
- (d) Geben Sie L(G) formal als Menge von Wörtern an, ohne weiteren Bezug auf G zu nehmen.

P.

(Bitte geben Sie alle Argumente vollständig und verständlich an!)

Name:

Matrikelnummer:

11

Aufgabe 4 (18 Punkte) Punping-Lemma für CF

/18 Punkte

Gegeben sei über dem Alphabet $\Sigma = \{a,b,c\}$ die Sprache

$$L=\{a^nb^mc^{\min\{n,m\}}\mid n,m\geq 0, n\neq m\}.$$

Zeigen Sie mit dem Pumping-Lemma für kontextfreie Sprachen, dass L nicht kontextfrei ist. (Bitte geben Sie alle Argumente vollständig und verständlich an!)

_	_	•	•	_	_
т	т	'n	•		
	I.	,	ā		

Name:

Matrikelnummer:

15

Aufgabe 5 (12 Punkte) Turingmaschinen.

/12 Punkte

Betrachten Sie die folgende Turingmaschine $M = (\Sigma, \Gamma, Z, \delta, z_0, \square, F)$ mit

- Σ = {a, b},
- Γ = {a, b, □}.
- $Z = \{z_e, z_0, z_1, z_2, z_3, z_4\},$
- F = {z_e}.
- δ wie folgt:

δ	I0	z_1	22	23	24
a	(z_1, a, R)	(z_1, a, R)	(z_2, a, R)		(z_e, a, N)
ь	(z_2, b, R)	(z_1, b, R)	(z_2, b, R)	(z_e, b, N)	12
		(z_3, \square, L)	(z_4, \square, L)		

- (a) Geben Sie die Konfigurationenfolge von M für die Eingabe $x_1 = aba$ an, Gilt $x_1 \in L(M)$?

 Begründen Sie Ihre Antwort.
- (b) Geben Sie formal an, welche Sprache die Turingmaschine M akzeptiert.

P.

(c) Geben Sie einen LBA M' an, für den L(M') = L(M) gilt. Sie dürfen dabei die Vorgehensweise von M kopieren, achten Sie jedoch darauf, dass Ihr LBA vollständig angegeben ist.
P.