Задача 1. Треугольник Паскаля

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Биномиальный коэффициент C_n^k — это количество битовых массивов длины n, в которых ровно k битов единичные. Следует заметить, что при k < 0 или k > n биномиальный коэффициент равен нулю по определению.

Нужно вычислить все биномиальные коэффициенты для $n \leqslant 66$ при помощи треугольника Паскаля.

Треугольник Паскаля позволяет вычислять все биномиальные коэффициенты в порядке увеличения n, т.к.: $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k \quad \text{при } 0 < k < n$

Для заданного N необходимо выдать все строки биномиальных коэффициентов от 0 до N включительно.

Формат входных данных

В первой строке входного файла содержится целое число N — количество строк в треугольнике Паскаля ($1 \le N \le 66$).

Формат выходных данных

В выходной файл необходимо вывести все биномиальные коэффициенты треугольника Паскаля построчно, начиная с нулевой строки и заканчивая строкой номер N. В каждой строке коэффициенты должны выводиться по порядку номеров через пробел.

Пример

input.txt	output.txt
4	1
	1 1
	1 2 1
	1 3 3 1 1 4 6 4 1
	1 4 6 4 1

Задача 2. Факториал

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 5 секунд
Ограничение по памяти: разумное

Биномиальный коэффициент можно вычислить по формуле числа сочетаний из n по k : $C_n^k = \frac{n!}{k!(n-k)!}$.

Необходимо посчитать биномиальные коэффициенты по этой формуле с использованием функции вычисления факториала и выдать так же, как и в задаче 1.

Формат входных данных

В первой строке входного файла содержится целое число N — количество строк в треугольнике Паскаля ($1 \le N \le 20$).

Формат выходных данных

В выходной файл необходимо вывести все биномиальные коэффициенты построчно, начиная с нулевой строки и заканчивая строкой номер N. Коэффициенты считать по указанной формуле. В каждой строке коэффициенты должны выводиться по порядку номеров через пробел.

Пример

input.txt	output.txt
4	1
	1 1
	1 2 1
	1 3 3 1
	1 4 6 4 1

Задача 3. Треугольник Паскаля рекурсивный

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: разумное

Нужно вычислить все биномиальные коэффициенты для $n \leqslant 31$ при помощи треугольника Паскаля.

Треугольник Паскаля позволяет вычислять все биномиальные коэффициенты рекурсивно в соответствии с рекуррентными соотношениями:

$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$$
 при $0 < k < n$
$$C_n^0 = 1, C_k^k = 1$$

Для заданного N необходимо выдать все строки биномиальных коэффициентов от 0 до N включительно.

Формат входных данных

В первой строке входного файла содержится целое число N — количество строк в треугольнике Паскаля, коэффициенты в котором нужно вычислять рекурсивно с использованием указанной формулы ($1 \le N \le 31$).

Формат выходных данных

В выходной файл необходимо вывести все биномиальные коэффициенты треугольника Паскаля построчно, начиная с нулевой строки и заканчивая строкой номер N. В каждой строке коэффициенты должны выводиться по порядку номеров через пробел.

Пример

input.txt	output.txt
4	1
	1 1
	1 2 1
	1 3 3 1
	1 4 6 4 1

Задача 4. Биномиальные коэффициенты 1

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Биномиальный коэффициент C_n^k — это количество битовых массивов длины n, в которых ровно k битов единичные. Следует заметить, что при k < 0 или k > n биномиальный коэффициент равен нулю по определению.

Нужно вычислить все биномиальные коэффициенты для $n \leqslant 1\,000$ при помощи треугольника Паскаля.

После того, как все коэффициенты вычислены, нужно прочитать набор пар n и k из входного файла и выдать для каждой пары соответвующий коэффициент C_n^k .

Формат входных данных

В первой строке содержится целое число Q — количество запросов в файле $(1 \le N \le 10\,000)$. В каждой из следующих Q строк содержится по два целых числа n и k, для которых нужно распечатать коэффициент $(0 \le k \le n \le 1\,000)$.

Формат выходных данных

 ${
m Hyж}$ но вывести Q вещественных чисел, по одному в строке — биномиальные коэффициенты для запросов из входном файле.

Внимание: хоть биномиальные коэффициенты и целые, они могут быть очень большими. Поэтому вычисляйте их как вещественные числа с использованием типа double, и распечатывайте при помощи формата "%0.10g"!

Пример

input.txt	output.txt
8	1
4 0	4
4 1	6
4 2	4
4 3	1
4 4	252
10 5	1.008913445e+29
100 50	2.702882409e+299
1000 500	

Пояснение к примеру

Первые пять запросов распечатывают коэффициенты для n=4. Последний запрос распечатывает самый большой коэффициент, который может быть запрошен в данной задаче.

Задача 5. Биномиальные коэффициенты 2

Источник: Основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 5 секунд Ограничение по памяти: разумное

Необходимо посчитать биномиальные коэффициенты в целых числах по заданному модулю.

Формат входных данных

В первой строке входного файла задано два целых числа: M — модуль и T — количество запросов ($2 \le M \le 10^9$, $1 \le T \le 10^6$).

В каждой из следующих T строк задано два целых числа N и K, для которых нужно вычислить биномиальный коэффициент ($0 \le N \le 2\,000, |K| \le 10^9$).

Формат выходных данных

Для каждого из T запросов нужно вывести ответ в отдельной строке. Ответ — это биномиальный коэффициент из N по K по модулю M (целое неотрицательное число).

Примеры

input.txt	output.txt
17 12	1
0 0	14
10 5	0
3 -1	0
5 9	1
6 6	10
13 2	1
5 0	5
5 1	10
5 2	10
5 3	5
5 4	1
5 5	