Introducción a la Inteligencia Artificial Clase 6

Índice

Índice

- 1. Motivación
 - a. Aprendizaje No supervisado
 - b. Aplicaciones
- 2. kMeans
- 3. Teoría Principal Component Analysis
 - a. Concepto
 - b. Demostración Matemática

Algoritmos no supervisados

Aprendizaje no supervisado

Machine Learning Supervisado	Machine Learning no Supervisado		
Proceso aleatorio \bar{X}, y	Proceso aleatorio 🐰		
$i_{y/\bar{x}}(y \bar{x})? \longrightarrow \text{Bayes y M.V.}$	$i_{\bar{x}}(\bar{x})$? Bayes y M.V.		
Inferencias, predicciones	Clusterización, Reducción Dimensionalidad		

como conozero y yo precho deficir un error. (4,9) Error? us tenens un pfo cle comp.

mis algoritmes se van a voler ele

un concepto cle relejoeiún (estabilidad)

.UBAfiuba

Aplicaciones Generales

- Data Mining
- Pattern Recognition
- Statistical Analysis

Aplicaciones Específicas

- Density Estimation
- Clustering
- Anomaly Detection
- Object Tracking
- Speech Feature Extraction

Clustering

La clusterización o clustering, es el proceso de agrupar objetos en grupos de manera que sean más similares entre sí que con los objetos de otros clusters.

Para generar estos grupos existen diferentes técnicas y diferentes medidas de similaridad.

kMeans

K-means es uno de los algoritmos más básicos en Machine Learning no supervisado. Es un algoritmo de **clusterización**, que agrupa los datos que comparten características similares. Recordemos que entendemos datos como n realizaciones del vector aleatorio X.

El algoritmo K-means funciona de la siguiente manera:

- 1. El usuario selecciona la cantidad de clusters a crear (n).
- 2. Se seleccionan n elementos aleatorios de X como posiciones iniciales del los centroides C.
- 3. Se calcula la distancia entre todos los puntos en X y todos los puntos en C.
- 4. Para cada punto en X se selecciona el centroide más cercano de C.
- 5. Se recalculan los centroides C a partir de usar las filas de X que pertenecen a cada centroide.
- 6. Se itera entre 3 y 5 una cantidad fija de veces o hasta que la posición de los centroides no cambie.

Implementar la función $def k_means(X, n)$ de manera tal que al finalizar devuelva la posición de los centroides y a qué cluster pertenece cada fila de X.

Hint: para (2) utilizar funciones de np.random, para (3) y (4) usar los ejercicios anteriores, para (5) es válido utilizar un for. Iterar 10 veces entre (3) y (5).

Kneams genera celclos de Voronoi

$$\sigma_{c_1} = \frac{1}{N} \geq \left(x_{i_1} - \mu_{c_1} \right)^{1}$$

Oc, ~ Ocr ~ Oc3

Teg > Varianza intra grupo q des

Tez

d(Xi, Ac) ms Euclideana 11.112
ms Manhattan 11.11 $\frac{d_{1c} \int_{x_{1}}^{x_{1}} d_{2c}}{\chi_{c_{1}} d_{3c}} x_{3}$ his city block no alternation escale
Lis Mahalandois $d(x_i, x_c) = \frac{1}{2} (x_{ij} - x_{cj})^2$ K means es voliclo poca \(\times \) \(\ti = 11 ti-ta12 $W(c) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(j)=K} ||\mathcal{X}_i - \mathcal{X}_j||^2$

(1) Si mi x tiene categories predo sor K-proto.

enemos un problema cle como, con

tenemus un problème de codu, con los centroides
posibles soluciones:

+ mejorar c-init

+ combiar dij para ponlerar dest. pequeñas

+ introclucio variociones

+ modifico el solver

Alternation: discretiración —, por ancho fijo

buseauros: arg min
$$\frac{k}{2}$$
 $=$ $||x-y||^2 = arg min $\frac{k}{2}$ $||s_i|| ||vorsi||$
 $|s_i|| = arg min = |s_i|| = arg min = |s_i||vorsi||$

weelia del cluster 6

el outroide

donnle $||\cdot||^2$ es la norma, $|\cdot||$ es el conteo ele muestros.$

arg min
$$\frac{k}{2}$$
 $\frac{1}{|s_i|}$ $\frac{1}{|x_i|}$ $\frac{1}{|x_i|}$ $\frac{1}{|x_i|}$ $\frac{1}{|x_i|}$ BCS?

between chaster sum of Squareo

Algoritumo estandor:

= etapa de asignación: Aca labeleamos barraclo en su centroide más cercano. (en un parso inicial la hacemas barraclo en cinit) $S_{i}^{(t)} = \left\{ \chi_{p} : ||\chi_{p} - m_{i}^{(t)}||^{2} \leq ||\chi_{p} - m_{j}^{(t)}||^{2} + j, 1 \leq j \leq k \right\}$

- proceso de opclate: revolutamos la neclia de carla cluster:

$$m_i^{(++1)} = \frac{1}{|S_i^{(+)}|} = \frac{\pi_i}{|S_i^{(+)}|}$$

$$\Delta m = m_i^{(t+1)} - m_i^{(t)} \sim 0$$

. Si nelesitamos extender la capacidad de elasterización con Vor. no minéricas mos K-proto, K-median, K-medoids

0.9

kMeans - Image segmentation

kMeans en R3

K no se calmba - K se fria								
Como volidamo	12 K	-means?		Endogen	ros (Volido	eion int		
			4		(Volidoeión			
Volidoeión externa		conocimie Whichosión n	ndo emp "cruz	expecto inica oda'	.			
volidoción interco		nétodo e	lbo a	, (el nét relojoción	erbill o	ods)		
		nétricas	de	clu8teriz	eeioù ef. gilbout			

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

The silhouette plot for the various clustersThe visualization of the clustered data.

Reducción de dimensionalidad

RMXP LD IRMXP M < < n

El objetivo de los modelos de reducción de dimensionalidad es encontrar una "mejor" representación de los datos.

Con "mejor" nos referimos a una representación que preserve la mayor cantidad de información posible de los datos, bajo una determinada penalidad o restricción, que haga que la representación sea más accesible o simple.

Ejemplos de representaciones más simples:

- Representación de menor dimensionalidad
- Representación sparsa
- Representación independiente

Ingeniería de Features - PCA

En ocasiones los datos de entrada tienen muchas features y se torna costoso en tiempo y recursos entrenar modelos de ML con todo el dataset. En la práctica se pueden utilizar técnicas de reducción de la dimensión no supervisadas como PCA (Principal Component Analysis).

Casos de Uso

- Compresión de datos
- Identificación de patrones
- Factores latentes
- Visualización

Conocimientos Previos

- Bases y cambio de bases
- Proyecciones
- Valores y vectores propios
- Distribución gaussiana
- Optimización con restricciones

PCA

Queremos encontrar proyecciones ... de observaciones de datos ..., que sean lo más similares posibles a los originales, pero con significativamente menos dimensiones.

PCA

Dado un dataset i.i.d:

$$\chi = \{x_1, \cdots, x_N\}, x_N \in \mathbb{R}^D$$

con **media cero**, la matriz de covarianza es: 🕣

$$S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^T$$

Definimos transformaciones lineales:

$$z_n = B^T x_n \in \mathbb{R}^M$$
 $M \leqslant D$

$$B = [b_1, \cdots, b_m] \in \mathbb{R}^{DxM}, b_i^T b_j = 0 \ \forall \ i \neq j$$
 (ايطالا)

PCA

Buscamos un subespacio

$$U \subseteq \mathbb{R}^D / \dim(U) = M < D$$

donde proyectar los datos. Es decir encontrar para:

$$\tilde{x}_n \in \mathbb{R}^D$$

$$\begin{bmatrix} z_n \\ [b_1, \cdots, b_m] \end{bmatrix}$$

- i. Enfoque de máxima varianza
- ii. Enfoque de error de reconstrucción mínimo
- iii. Enfoque de variables latentes

Jamboard - Desarrollo Matemático PCA

- Introducción
- Enfoque de maximización de varianza
- Enfoque de minimización de error de reconstrucción
- Enfoque por variables latentes

De sorrollo matemático de PCA:

buscamos una progeeción $\tilde{\chi}_n$ de mis clasos originales χ_n / $dim(\tilde{\chi}_n)$ \leq $dim(\chi_n)$

. It es el clotoset i i Λ X ER Λ $U_{X} = \beta$

matriz cle cov es: $S_{=} \frac{1}{N} \geq x_n x_n^t$

Metoclo de maxima varianza: buscamos naximizar la varianza en una climensión inferior

Partimos con una columna de B (R^{MXD}), b₁ ER^D Lo maximazamos la varianza de Z₁ de ZER^M:

 $Var[2] = Var[B^{t}(X-4)] = Var[B^{t}x - B^{t}\mu] = Var[B^{t}x]$

$$Vor_{1} = Var\left[\begin{array}{c} Z_{1n} \end{array} \right] = \frac{1}{N} \frac{N}{N-2} \quad Z_{2n}^{2} \quad ; \qquad Z_{2n} = b_{1}^{\pm} x_{2n}$$

$$Vor_{1} = \frac{1}{N} \sum_{i=1}^{N} \left(b_{1}^{\pm} \cdot x_{n} \right)^{2} = \frac{1}{N} \sum_{i=1}^{N} \left(b_{2}^{\pm} x_{n} \right)^{4} \left(b_{1}^{\pm} x_{n} \right) \quad \lambda_{1} \text{ en el sub esp uniclimento}$$

$$= \frac{1}{N} \sum_{n=1}^{N} b_{1}^{\pm} x_{n} \quad x_{n}^{\pm} b_{1} = b_{1}^{\pm} \frac{1}{N} \sum_{n=1}^{N} x_{n} x_{n}^{\pm} b_{1}$$

$$= \frac{1}{N} \sum_{n=1}^{N} b_{1}^{\pm} x_{n} \quad x_{n}^{\pm} b_{1} = b_{1}^{\pm} \frac{1}{N} \sum_{n=1}^{N} x_{n} x_{n}^{\pm} b_{1}$$

$$= \frac{1}{N} \sum_{n=1}^{N} b_{1}^{\pm} x_{n} \quad x_{n}^{\pm} b_{1} = b_{1}^{\pm} x_{n} x_{n}^{\pm} b_{1}$$

$$= \frac{1}{N} \sum_{n=1}^{N} x_{n} x_{n}^{\pm} b_{1} = b_{1}^{\pm} x_{n} x_{n}^{\pm} b_{1}$$

$$= \frac{1}{N} \sum_{n=1}^{N} x_{n} x_{n}^{\pm} b_{1} = b_{1}^{\pm} x_{n} x_{n}^{\pm} b_{1} = b_{1}^{\pm} x_{n} x_{n}^{\pm} b_{1} = 1$$

$$= \frac{1}{N} \sum_{n=1}^{N} x_{n}^{\pm} x_{n}^{\pm} x_{n}^{\pm} x_{n$$

* puelle lover este porque S es simétrica (2) -0 2 b1 t3 - 2 21 b1 t = 0 $(b_1^t s)^t = (\lambda_1 b_1^t)^t$

St. b1 = b1 22t 5. b1 = 21 b1

vector propio de S $-no 5.b_1 = 2.b_1$ 2 Volor propio def. autovaloc

mo seleccionor los autorectores asociaclos a los martovolores más grandes de la matriz de covarianza.

con esto: $\begin{cases} - \text{Varianza explicada} : \sum_{i=1}^{M} A_i \end{cases}$ _s / de la varianza u perlida: $\frac{0}{2}$ A; 1R -> 1RM

M es un pocametro de mostro models. MSD

PCA

Comparación métodos 1 y 2.

PCA

Pasos principales: O, Voluber tipo de clato.

- 1. Centramos los datos
- 2. Estandarización
- 3. Autovalores de la matriz de covarianza
- 4. Proyección

$$z_n = B^T x_n$$

3'. Selecciono los monto rectors

(a) Original dataset.

(b) Step 1: Centering by subtracting the mean from each data point.

(c) Step 2: Dividing by the standard deviation to make the data unit free. Data has variance 1 along each axis.

(d) Step 3: Compute eigenvalues and eigenvectors (arrows) of the data covariance matrix (ellipse).

(e) Step 4: Project data onto the principal subspace.

(f) Undo the standardization and move projected data back into the original data space from (a).

PCA

Limitaciones

PCA

Derivaciones

Zn =
$$\beta(B^t x_n)$$
 + Kervel - PCA
e.fn. Kervel

- Si en PCA cambiamos el mapeo lineal por uno no-lineal, obtenemos un auto-encoder. Si el mapeo no-lineal es una red neuronal, tenemos un deep auto-encoder.
- Cuando la varianza del ruido gaussiano es cero, PPCA → PCA.
- Si para cada dimensión, el ruido tiene una varianza distinta → Factor Analysis.
- Si cambiamos la distribución a priori de z por una no gaussiana → ICA

$$K_{N} = X + E \rightarrow E \sim N(\vec{p}, \vec{z})$$

Segunda Forma de electronion de PCA:

Minimiración del error ele relucción:

PCI Si proyectamos un pto. Subre una cliección pi = (Pcinteri) de la meonstrucción Vannos a poeler definir pi = (X11, X21) la postción del 7 to p pi: pto. original } Vanus a minimirar pi: pto. projectodo } Vanus a minimirar normal de RD con esto decimos que Vamos a suponer 3 B base y x ∈ R° podemos asegucar:

$$\vec{x} = \frac{D}{Z} \propto_d \cdot \vec{b}_d = \frac{M}{Z} \propto_i \vec{b}_i + \frac{D}{Z} \propto_d \vec{b}_d$$

querenus encontror
$$\tilde{\mathcal{A}} = \frac{m}{2} \mathcal{A}_i \cdot \tilde{b}_i \in U \subseteq \mathbb{R}^D$$
 tal que poclanus $i=1$ maximiror la similaridad entre $\tilde{\mathcal{A}}_i \times \tilde{\mathcal{A}}_i$:

$$\widehat{x} = \sum_{i=1}^{m} \widehat{z}_{i} b_{i} = \overline{\widehat{B}}. \overline{\widehat{z}}_{i}$$

buscannos minimizar el MSE
$$||x-\tilde{x}||^2$$
: $\rightarrow \chi \in \mathbb{R}^D$

(1). optimizar \mathcal{Z}_{η} para una cloela base. $\widetilde{\chi} \in \mathbb{R}^M \rightarrow [\widetilde{\chi} \mid \emptyset] \in \mathbb{R}^D$

$$J_{M} = \frac{1}{N} \sum_{i=1}^{N} || \chi_{M} - \hat{\chi}_{M} ||^{2}$$

$$J_{M} = \frac{1}{N} J_{M} = \frac{1}{N} J_{M} + \frac{1}{N} \frac{1$$

$$\frac{\partial}{\partial z_{in}} = \frac{\partial}{\partial x_{in}} \frac{\partial}{\partial x_{in}} \frac{\partial}{\partial z_{in}}$$

$$\left(-\frac{2}{N}.\left(x_{n}-\widetilde{x}_{n}\right)^{t}\right), \left(\frac{2}{2}in\left(\frac{N}{2}in.b\right)\right) = -\frac{2}{N}\left(x_{n}-\widetilde{x}_{n}\right)^{t}.bi$$

$$\partial_{2in} J_{M} = -\frac{2}{N} \left(x_{N} - \sum_{i=1}^{M} 2_{in} \cdot b_{i} \right)^{t} \cdot b_{i} = -\frac{2}{N} \left(x_{n}^{t} b_{i} - 2_{in} \cdot b_{i}^{t} b_{i} \right)$$

$$= 1$$

$$=-\frac{2}{N}\left(2n^{t}bi-2in\right)$$

$$\partial_{2}in Jm = 0 \implies -\frac{2}{N} \left(A_{n}^{t}bi - \frac{2}{2}in\right) = 0 \implies Z_{in} = bi X_{n}^{t}$$

has Z_{in} son has coord, que

Volues a enconfror para coda

Vector $(b_{i} X_{n}^{t})$

buscamos almos la base optima:
$$\tilde{X}_{n} = \frac{m}{Z} 2_{mn} \cdot b_{n} = \frac{m}{Z} (X_{n}^{t} b_{n}) b_{n} = \frac{m}{Z} (b_{n} b_{n}^{t}) \cdot X_{n}$$

$$X = \left(\frac{M}{\sum_{n=1}^{M} b_n b_n^{\dagger}}\right) \cdot X_n + \left(\frac{D}{\sum_{j=M+1}^{M} b_j^{\dagger} b_j^{\dagger}}\right) \cdot X_j$$

$$X = (X_1, X_2, \dots, X_m, \dots, X_n)$$

$$\hat{X} = (X_1, X_2, \dots, X_m, 0, \dots, 0)$$

$$X - \hat{X} = (0, 0, \dots, X_{m+1}, \dots, X_n)$$

distancia (error):
$$X_{m} = \frac{\partial}{\partial z_{m}} = \frac{\partial}{\partial z_{m+1}} b_{j}b_{j}^{\dagger} \cdot \lambda_{j} = \frac{\partial}{\partial z_{m+1}} (\lambda_{m}t, b_{j}) \cdot b_{j}$$

$$J_{m} = \frac{1}{N} \sum_{n=1}^{\infty} ||X_{n} - \hat{X}_{n}||^{2} = \frac{1}{N} \cdot \sum_{n=1}^{\infty} ||\hat{z}_{n} - \hat{z}_{n}||^{2}$$

$$J_{m} = \frac{1}{N} \sum_{n=1}^{\infty} ||X_{n} - \hat{X}_{n}||^{2} = \frac{1}{N} \cdot \sum_{n=1}^{\infty} ||\hat{z}_{n} - \hat{z}_{n}||^{2}$$

$$= \sum_{j=M+1}^{D} b_{j}^{t} \left(\sum_{n=1}^{N} X_{n} \cdot X_{n}^{t} \right) \cdot b_{j}$$

$$= \sum_{j=M+1}^{D} b_{j}^{t} \cdot S b_{j}^{t} = \sum_{j=M+1}^{D} t_{r} \left(b_{j}^{t} \cdot S b_{j} \right) = \sum_{j=M+1}^{D} t_{r} \left(S b_{j}^{t} \cdot b_{j} \right)$$

$$= t_{r} \left(\sum_{j=M+1}^{D} b_{j}^{t} \cdot S \right) = elever cle reconstrucción se puedo$$

= $\frac{1}{j}$ = $\frac{$

A) reclució dimensiones:

R D LD U II explicació

Explicació

explicació

para calular PCA, wosotros poclemos elegir Maximizar V o mini-

mizar I

Principal Component Analysis - Práctica

PCA - Ejemplo

PCA

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Stanford | CS229T/STATS231: Statistical Learning Theory | http://web.stanford.edu/class/cs229t/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig

