"EYE SEE YOU"

A COMPUTER VISION PROJECT USING THE CELEBRITY ATTRIBUTES KAGGLE DATASET

Classify / Detect using computer vision

LEARNING OBJECTIVES

- 1. Acquire data and build an image data pipeline
- 2. Clean and augment image data.
- 3. Train and deploy a computer vision model.
 - Image Classification (CNN)
 - 2. Using Pretrained Models (Viola Jones, VGG16)
 - 3. Transfer Learning (VGG16 custom--failed)

Source: https://www.kaggle.com/jessicali9530/celeba-dataset

<class 'pandas.core.frame.DataFrame'>

Brown Hair

Bushy_Eyebrows

Rang	eIndex: 202599 entri	es, 0 to 202598					
Data	Data columns (total 41 columns):						
#	Column	Non-Null Count	Dtype				
	(
0	image_id	202599 non-null	object				
1	5_o_Clock_Shadow	202599 non-null	int64				
2	Arched Eyebrows	202599 non-null	int64				
3	Attractive	202599 non-null	int64				
4	Bags Under Eyes	202599 non-null	int64				
5	Bald	202599 non-null	int64				
6	Bangs	202599 non-null	int64				
7	Big Lips	202599 non-null	int64				
8	Big Nose	202599 non-null	int64				
9	Black Hair	202599 non-null	int64				
10	Blond Hair	202599 non-null	int64				
11	Blurry	202599 non-null	int64				

Source: https://www.kaggle.com/jessicali9530/celeba-dataset

202599 non-null int64

int64

202599 non-null

img_align_celeba
img_align_celeba.csv
list_attr_celeba.csv
list_bbox_celeba.csv
list_eval_partition.csv
list_landmarks_align_celeba.csv

100	image_id	x_1	y_1	width	height
0	000001.jpg	95	71	226	313
1	000002.jpg	72	94	221	306
2	000003.jpg	216	59	91	126

Source: https://www.kaggle.com/jessicali9530/celeba-dataset

Source: https://www.kaggle.com/jessicali9530/celeba-dataset

	image_id	lefteye_x	lefteye_y	righteye_x	righteye_y	nos
0	000001.jpg	69	109	106	113	
1	000002.jpg	69	110	107	112	
2	000003.jpg	76	112	104	106	

Source: https://www.kaggle.com/jessicali9530/celeba-dataset

MODEL (CNN; LEFT/RIGHT EYE)

```
model cnn mcdropout.summary()
Model: "sequential 3"
 Layer (type)
                             Output Shape
                                                        Param #
 conv2d 5 (Conv2D)
                              (None, 30, 30, 8)
                                                        224
 conv2d 6 (Conv2D)
                              (None, 28, 28, 16)
                                                        1168
 flatten 3 (Flatten)
                              (None, 12544)
                                                        0
 mc dropout 9 (MCDropout)
                              (None, 12544)
 dense 9 (Dense)
                              (None, 256)
                                                        3211520
 mc dropout 10 (MCDropout)
                              (None, 256)
                                                        0
 dense 10 (Dense)
                             (None, 256)
                                                        65792
 mc_dropout_11 (MCDropout)
                              (None, 256)
                                                        0
 dense 11 (Dense)
                              (None, 2)
                                                        514
                                class MonteCarloDropout(keras.layers.Dropout):
Total params: 3,279,218
                                  def call(self, inputs):
Trainable params: 3,279,218
Non-trainable params: 0
                                    return super().call(inputs, training=True)
```

More on Monte Carlo Dropout: https://arxiv.org/abs/1506.02142

Also: https://towardsdatascience.com/monte-carlo-dropout-7fd52f8b6571

epoch

MODEL (VGG16 CUSTOM)

1 model_vgg16_custom.summary()

Model: "sequential_8"

Layer (type)	Output Shape	Param #
vgg16 (Functional)	(None, 1, 1, 512)	14714688
global_average_pooling2d lobalAveragePooling2D)	(G (None, 512)	0
flatten_9 (Flatten)	(None, 512)	0
densel (Dense)	(None, 256)	131328
dense2 (Dense)	(None, 10)	2570
dense_16 (Dense)	(None, 2)	22

Total params: 14,848,608 Trainable params: 133,920

Non-trainable params: 14,714,688

CROPPED IMAGES (1000 LEFT EYES, 1000 RIGHT EYES)

FRONTAL FACE DETECTION (VIOLA-JONES / HAAR CASCADE)

- Read in image (gray)
- Convert to
 Integral Image;
 "Constant time" /
 0(1)
- 3. Attention operator; Haar Cascade

APPLICATION TO TEST IMAGE

Very fast detection (less than a second) of all relevant frontal faces in a test image.

BLURRING FACES

Using the face detection mechanism, filters like blurs can be easily added to the image.

