### 10.4.2.3

EE24BTECH11021 - Eshan Ray

January 23, 2025

### Problem Statement

#### Question:

Find two numbers whose sum is 27 and product is 182.

# Solution 1: Using Algebra

Let one of the numbers be x So, the other number is 27 - x Given,

$$x(27 - x) = 182$$
 (1)  
 $27x - x^2 = 182$  (2)

(3)

(4) (5)

$$x^2 - 27x + 182 = 0$$

$$(x-13)(x-14)=0$$

$$\implies x = 13, 14$$

So, the solutions are 
$$x = 13$$
 and  $x = 14$ .

## Computational Solution: Newton-Raphson Method

To find the roots of the quadratic equation  $x^2 - 27x + 182 = 0$ , we use the Newton-Raphson method.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \tag{6}$$

$$f(x) = x^2 - 27x + 182 (7)$$

$$f'(x) = 2x - 27 \tag{8}$$

$$x_{n+1} = x_n - \frac{x_n^2 - 27x_n + 182}{2x_n - 27}$$
 (9)

## Computational Solution: Results

After running the Newton-Raphson method, we get the following roots:

Root 1: 14.00000000 (10)

Root 2: 13.00000000 (11)

# Newton Raphson Plot



# Alternate Method: Eigenvalues of Companion Matrix

In this method, we find the roots of any polynomial of the form  $x^n + a_{n-1}x^{n-1} \dots ax + a_0 = 0$  by finding the eigenvalues of the Companion Matrix (C) given below:-

$$C = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \vdots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} \end{pmatrix}$$
(12)

For the Quadratic Equation  $x^2-27x+182-0$ , we get the following companion Matrix

$$C = \begin{pmatrix} 0 & 1 \\ -182 & 27 \end{pmatrix} \tag{13}$$

The roots of the equation is the eigenvalues of the matrix C which has been calculated using the QR Decomposition process.

## QR Decomposition: Gram-schmidt Process

In the QR Decomposition, the matrix A is decomposed into matrices Q and R as:

$$A = QR \tag{14}$$

where Q is an orthogonal matrix and Q is an upper triangular matrix. We start by producing an orthogonal set of column vectors of Q  $\{q_1, q_2, \ldots, q_n\}$  from a set of column vectors of A  $\{a_1, a_2, \ldots, a_n\}$ . For orthogonalization we subtract each vector  $a_i$  with the projections of all previously obtained orthogonal vectors  $q_1, q_2, \ldots, q_{i-1}$  to make  $q_i$  orthogonal to them.

| , ,                                                                                    |      |
|----------------------------------------------------------------------------------------|------|
| $	extit{proj}_{q_j}(a_i) = rac{\langle a_i, q_j  angle}{\langle q_j, q_j  angle} q_j$ | (15) |
| Then $q_i$ is computed as:                                                             |      |
| $q_i = a_i - \sum_{j=1}^{i-1} proj_{q_j}(a_i)$                                         | (16) |
| Then all the $q_i$ 's are normalized by :                                              |      |
| $q_i = \frac{q_i}{  q_i  }$                                                            | (17) |
| The process is repeated for all the colums of $A$                                      |      |
| 3) As Q is an orthonormal matrix                                                       |      |
| $O^{\top}O = I$                                                                        | (10) |

The projection of  $a_i$  onto a vector  $q_i$  is calculated as:

The process is repeated for all the colums of 
$$A$$
  
3) As  $Q$  is an orthonormal matrix 
$$Q^{\top}Q = I \tag{18}$$

So, R can be represented as follows

 $R = Q^{T}A$ 

(19)

 $r_{ij} = \langle a_i, q_i \rangle$ , for  $i \leq j$ (20)

## QR Algorithm

In the QR algorithm, the matrix  $A_n$  is decomposed into matrices  $Q_n$  and  $R_n$  as:

$$A_n = Q_n R_n \tag{21}$$

Then, the new matrix  $A_{n+1}$  is computed as:

$$A_{n+1} = R_n Q_n \tag{22}$$

This process is repeated until the off-diagonal elements of the matrix become negligibly small, at which point the diagonal elements approximate the eigenvalues of the original matrix.

## Eigenvalue Approach: Results

After applying the QR algorithm to the companion matrix, the eigenvalues are computed to be:

Eigenvalues: 14.0, 13.0

# Eigenvalue Approach Plot



#### Conclusion

The problem was solved using two methods: algebraic factorization and computational methods (Newton-Raphson and Eigenvalue approach).

Both methods resulted in the same roots: 13 and 14.

The eigenvalue method uses matrix operations to find roots, while Newton-Raphson provides a more direct approach.

## GitHub Repository

C code for Newton-Raphson:

https://github.com/eshan810/ee1003/blob/main/Assignments/5/codes/code.c

Python code for Newton-Raphson:

https://github.com/eshan810/ee1003/blob/main/Assignments/5/codes/root.py

C code for Eigenvalue Approach:

https://github.com/eshan810/ee1003/blob/main/Assignments/5/codes/eigen.c

Python code for Eigenvalue Approach:

https://github.com/eshan810/ee1003/blob/main/Assignments/5/codes/eigen.py