Helping You Write Academic Papers in R using Texevier

Nico Katzke^a, John Smith^{a,b}, John Doe^{a,b}

^aPrescient Securities, Cape Town, South Africa

Abstract

Abstract to be written here. The abstract should not be too long and should provide the reader with a good understanding what you are writing about. Academic papers are not like novels where you keep the reader in suspense. To be effective in getting others to read your paper, be as open and concise about your findings here as possible. Ideally, upon reading your abstract, the reader should feel he / she must read your paper in entirety.

Keywords: Multivariate GARCH, Kalman Filter, Copula

 $JEL\ classification\ L250,\ L100$

1. Question 5

2. Volatility

##	[1]	"Australia_IV"	"Brazil_IV"	"Canada_IV"	"Chile_IV"
##	[5]	"China_IV"	"Columbia_IV"	"Czech_IV"	"Denmark_IV"
##	[9]	"EU_IV"	"HongKong_IV"	"Hungary_IV"	"India_IV"
##	[13]	"Israel_IV"	"Japan_IV"	"Malaysia_IV"	"Mexico_IV"
##	[17]	"Norway_IV"	"NZ_IV"	"Peru_IV"	"Philipines_IV"
##	[21]	"Poland_IV"	"Romania_IV"	"Russia_IV"	"Saudi_IV"
##	[25]	"Singapore_IV"	"SouthAfrica_IV"	"SouthKorea_IV"	"Sweden_IV"
##	[29]	"Taiwan_IV"	"Thailand_IV"	"Turkey_IV"	"UK_IV"

 $\label{lem:lemonton} Email\ addresses:\ \mathtt{nfkatzke@gmail.com}\ (Nico\ Katzke),\ \mathtt{John@gmail.com}\ (John\ Smith),\ \mathtt{Joe@gmail.com}\ (John\ Doe)\ \mathbf{Contributions:}$

The authors would like to thank no institution for money donated to this project. Thank you sincerely.

^bSome other Institution, Cape Town, South Africa

^{*}Corresponding author: Nico Katzke*

Implied Volatility

This suggests that the market foresees the highest future volatility for the Rand, for this sub-sample.

```
## Q(m) of squared series(LM test):
## Test statistic: 1016.07 p-value: 0
## Rank-based Test:
## Test statistic: 421.1523 p-value: 0
## Q_k(m) of squared series:
## Test statistic: 1012.159 p-value: 0
## Robust Test(5%) : 210.8329 p-value: 0
```


ACF: Equally Weighted Return

ACF: Squared Equally Weighted Return

ACF: Absolute Equally Weighted Return


```
##
## Box-Ljung test
##
## data: coredata(xts_zar_rtn^2)
## X-squared = 1078.3, df = 12, p-value < 2.2e-16</pre>
```

3. Find best model

4. Fit Model

```
## Sign Bias 0.04213364 9.663936e-01
## Negative Sign Bias 3.40498413 6.662547e-04 ***
## Positive Sign Bias 0.92248723 3.563136e-01
## Joint Effect 23.82492612 2.717301e-05 ***
```

	Estimate	Std. Error	t value	Pr(> t)
mu	0.00	0.00	1.46	0.15
ar1	-0.00	0.01	-0.19	0.85
omega	0.00	0.00	2.03	0.04
alpha1	0.07	0.01	7.41	0.00
beta1	0.92	0.01	91.66	0.00

[1] 0.9895234

Comparison: Returns Sigma vs Sigma from Garch

Note the smoothing effect of garch, as noise is controlled for.

Source: Fin metrics class | Calculations: Own

News Impact Curve

##
please wait...calculating quantiles...

References

00

Appendix

 $Appendix\ A$

Some appendix information here

 $Appendix\ B$