

Media transmisyjne

Temat 3

Projekt sieci dostępu bezprzewodowego dla szkoły

Plan prezentacji

- Wprowadzenie do tematyki projektu
- > Problemy związanie z projektowaniem sieci bezprzewodowych
- Plan budynku i wstępny schemat sieci
- Charakterystyka standardów 802.11x i pasm częstotliwości
- > Bilans energetyczny łącza radiowego
- Analiza modeli propagacyjnych

Plan prezentacji

- Rozmieszczenie punktów dostępowych
- > Model dostępu do sieci i zabezpieczenia
- Wybór urządzeń sieciowych i okablowania
- Szacunkowe koszty wykonania sieci
- Podsumowanie

Wprowadzenie

https://www.marketresearchfuture.com/reports/wlan-market-1012

Problemy projektowania sieci bezprzewodowych w szkole

https://www.researchgate.net/figure/An-example-of-multipath-propagation-in-indoor-environment_fig2_224240135

Mniej trywialne problemy

- Ciągi wentylacyjne
- > Rozkład mebli w pomieszczeniu
- Liczba ludności
- Urządzenia generujące zakłócenia (np. telewizory, radia itp.)
- Chropowatość i gładkość ścian
- ➤ I wiele innych...

Założenia przy projekcie

Schemat logiczny

Charakterystyka standardów 802.11x oraz pasm częstotliwości

Standard IEEE 802.11

IEEE 802.11 – podgrupa standardów IEEE 802, opisujących warstwę fizyczną i podwarstwę MAC bezprzewodowych sieci lokalnych. Standardy 802.11 stanowią podstawę certyfikatów Wi-Fi.

IEEE 802.11b

Tabela częstotliwości poszczególnych kanałów

Maks. przepustowość: 11Mb/s

Pasmo częstotliwości: 2,4Ghz

Kanał	Szerokość kanału	Pokrywają się kanały
1	2,401-2,423 GHz	2-5
2	2,406-2,428 GHz	1,3-6
3	2,411-2,433 GHz	1-2,4-7
4	2,416-2,438 GHz	1-3,5-8
5	2.421-2.443 GHz	1-4,6-9
6	2,426-2,448 GHz	2-5,7-10
7	2,431-2,453 GHz	3-6,8-11
8	2,436-2,458 GHz	4-7,9-12
9	2,441-2,463 GHz	5-8,10-13
10	2,446-2,468 GHz	6-9,11-13
11	2,451-2,473 GHz	7-10,12-13
12	2,456-2,478 GHz	8-1,13-14
13	2,461-2,483 GHz	9-12, 14
14	2,473-2,495 GHz	12-13

IEEE 802.11a

Ten standard operuje na paśmie częstotliwości 5Ghz. Jego maksymalna przepustowość to 54 Mb/s. Niski zasięg standardu 802.11a rekompensuje praca na paśmie o częstotliwości 5 GHz, które jest mniej obłożone, a co za tym idzie, nasza sieć jest mniej podatna na zakłócenia. Częstotliwości: 5,15 – 5,35 GHz oraz 5,725 – 5,825 GHz.

IEEE 802.11g

W czerwcu 2003 roku ostatecznie uznano standard 802.11g. Pracuje on podobnie jak 802.11b na częstotliwości 2,4 GHz, ale pozwala na transfer z prędkością 54 Mb/s. Standard 802.11g jest całkowicie zgodny w dół ze standardem 802.11b.

Kanał	Szerokość kanału	Nakładające się kanały
1	2.401 - 2.423	2,3,4,5
2	2.406 - 2.428	1,3,4,5,6
3	2.411 - 2.433	1,2,4,5,6,7
4	2.416 - 2.438	1,2,3,5,6,7,8
5	2.421 - 2.443	1,2,3,4,6,7,8,9
6	2.426 - 2.448	2,3,4,5,7,8,9,10
7	2.431 - 2.453	3,4,5,6,8,9,10,11
8	2.436 - 2.458	4,5,6,7,9,10,11,12
9	2.441 - 2.463	5,6,7,8,10,11,12,13
10	2.446 - 2.468	6,7,8,9,11,12,13
11	2.451 - 2.473	7,8,9,10,12,13
12	2.456 - 2.478	8,9,10,11,13,14
13	2.461 - 2.483	9,10,11,12,14
14	2.473 - 2.495	12,13

IEEE 802.11ac

Scenariusz	Przepustowość łącza	Łączna przepustowość
Jedna antena AP , jedna antena STA , 80 MHz	433 Mbit / s	433 Mbit / s
Dwie anteny AP, dwie anteny STA, 80 MHz	867 Mbit / s	867 Mbit / s
AP z jedną anteną, STA z jedną anteną, 160 MHz	867 Mbit / s	867 Mbit / s
AP z trzema antenami, STA z trzema antenami, 80 MHz	1,27 Gbit / s	1,27 Gbit / s
AP z dwiema antenami, dwiema antenami STA, 160 MHz	1,69 Gbit / s	1,69 Gbit / s
AP z czterema antenami, cztery STA z jedną anteną, 160 MHz	867 Mbit / s na każdą STA	3,39 Gbit / s

Bilans energetyczny łącza radiowego

Bilans energetyczny łącza

Bilans łącza (ang. link budget) to równanie wyznaczające potrzebną moc nadajnika (lub parametry anteny) w funkcji pozostałych czynników.

$$P_r = P_{pr} + G_n + G_o - L_r - L_d$$
 lub $P_r = EIRP + G_o - L_r$

P_r – moc odbiornika [dBm]

G_o – zysk anteny odbiorczej [dBi]

P_{pr} – moc nadajnika [dBm]

G_n – zysk anteny nadawczej [dBi]

L_r – straty rozproszeniowe [dB]

L_d – straty dodatkowe [dB]

EIRP - Zastępcza moc promieniowana izotropowego [dBi]

Zysk anteny

Stosunek gęstości mocy wypromieniowanej przez antenę w danym kierunku do gęstości mocy wypromieniowanej przez antenę wzorcową przy założeniu, że do obu anten została doprowadzona taka sama moc.

Moc

$$EIRP = P_{pr} + G_n - L_d$$

P_{pr} – moc nadajnika [dBm]

G_n – zysk energetyczny anteny [dBi]

L_d – tłumienie kabli i złącz[dB]

Zastępcza moc promieniowana izotropowo, wyrażana w decybelach względem wata. (Equivalent Isotropical Radiated Power)

Straty

$$L=20*log(x)+20*log(f)-27,55$$

L – Tłumienie rozproszeniowe [dB]

x – długość drogi [m]

f - częstotliwość [Mhz]

$$L_d = d_1 * t_{w1} + d_2 * t_{w2} + t_{k1} + t_{k2} + m$$

Ld - tłumienie dodatkowe [dB]

d1, d2 - długości kabla do anteny [m]

tw1, tw2 - tłumienie właściwe kabla[dB/m]

tk1, tk2 - tłumienie złącz konektorowych[dB]

Obliczenia

DANE:

- P_r = -80 [dBm] Moc sygnału na odbiorniku
- P_{pr} = 17 [dBm] Moc nadajnika
- G_n = 4 [dBi] Zysk anteny nadajnika
- G_o = 4 [dBi] Zysk anteny odbiornika
- L_d = 0 [dBi] Tłumienie złącz i kabli

Zasięg	Moc sygnału odebranego[dBm]
Świetny	-70
Akceptowalny	-80
Słaby	-100

Obliczenia

Szukane:

L_r = ? – Tłumienie rozproszeniowe

Rachunki:

$$P_r = EIRP + G_o - L_r$$

 $EIRP = P_{pr} + G_n - L_d = 17 + 4 - 0 = 21 [dBm]$
 $-80 = 21 + 4 - L_r - 0$

$$L_{rmax} = 105 [dB]$$

Analiza modeli propagacyjnych

Model propagacji w wolnej przestrzeni

```
L_{FS} [dB]= 20*log(f)+20*log(d)-27,55 gdzie:
```

L_{FS} – tłumienie między antenami

f – częstotliwość fali radiowej

d – odległość między antenami

Model jednościeżkowy (1SM)

```
L_{1SM} [dB]=L_0+10\gamma log(d) gdzie:
```

L_{1SM} – tłumienie między antenami

L₀ – tłumienie odniesienia w odległości 1m

γ – indeks odległościowego zaniku mocy

d – odległość między antenami

Model liniowy (LAM)

```
L_{LAM} [dB]=L_{FS} +\alpha *d gdzie:
```

L_{LAM} – tłumienie między antenami

L_{FS} – tłumienie w wolnej przestrzeni

α – tłumienie jednostkowe [dB/m]

d – odległość między antenami

Model Motleya-Keenana

```
L_{M-K}[dB] = L_{FS} + (n_W * L_W) + (n_F * L_F) gdzie:
```

L_{M-K} – tłumienie między antenami

L_{FS} – tłumienie w wolnej przestrzeni

n_w – liczba ścian między antenami

L_w – tłumienie ściany

n_F – liczba stropów między antenami

L_F – tłumienie stropu

Model Multi-Wall

$$L_{MW}[dB] = L_0 + 10\gamma * \log(d) + \sum_{i=1}^{I} (n_W * L_W) + \sum_{j=1}^{J} (n_F * L_F)$$
 gdzie:

L_{MW} – tłumienie między antenami

L₀ – tłumienie odniesienia w odległości 1m

γ – indeks odległościowego zaniku mocy

d – odległość między antenami

 $n_{Wi,} n_{Fj}$ – liczba ścian kategorii i, stropów kategorii j

 $L_{wi, L_{Fj}}$ – tłumienie ściany kategorii i, stropu kategorii j

Porównanie modeli

Rozmieszczenie punktów dostępowych

Minimalna moc sygnału jaką chcieliśmy zapewnić to -80[dBm].

Przy wykorzystaniu modelu Multi-Wall, uzyskiwana jest ona w odległości 19[m] od nadajnika, jeżeli sygnał przechodzi przez pojedynczą ścianę.

Dodatkowe przejście sygnału przez strop zmniejsza ten dystans do 8[m].

Wymusiło to zastosowanie przynajmniej dwóch punktów dostępowych na piętro.

Model dostępu do sieci oraz zabezpieczenia

Kontrola dostępu do sieci

Cisco ISE

Cisco Identity Services Engine

Pakiet narzędzi pozwalających na kontrolę ruchu w sieci komputerowej

Posiada moduł BYOD (Bring Your Own Device)

Serwer obsługujący ISE - wymagania

Obsługa Vmware ESXi w wersji 6 (hypervisor typu 1)

Przypisane 2 rdzenie CPU z zegarem minimum 2.0GHz

• 16GB RAM

Serwer obsługujący ISE – Dell T140

https://noteboox.de/media/image/product/78940/lg/dell-emc-poweredge-t140-server-mt-1-x-xeon-e-2124-33-ghz-ram-8-gb-hdd-1-intel-xeon-e-2124-8mb-cache-33ghz-en.jpg

Środowisko administracyjne

Możliwość dostępu z autoryzowanych urządzeń w sieci

Pozwala śledzić wszystkie urządzenia znajdujące się w sieci

 Konfiguracja kont użytkowników, grupowanie, ustawianie parametrów dla BYOD

https://www.cisco.com/c/en/us/td/docs/security/ise/2-6/admin_guide/b_ise_admin_guide_26/b_ise_admin_guide_26_chapter_01.html

Podłączanie urządzeń prywatnych do sieci

Użytkownik łączy się z punktem dostępowym

 Przy rozpoczęciu sesji pojawia się portal rejestracji urządzenia

Możliwość instalacji certyfikatu na urządzeniu

Wybór urządzeń sieciowych i okablowania

https://www.wifireference.com/wp-content/uploads/2019/11/9130-dimensions.png

Punkty dostępowe – Cisco Catalyst 9130 AXI

https://cdn.x-kom.pl/i/setup/images/prod/big/product-large,,pr_2016_2_1_11_43_44_104.png

Przełącznik – Cisco SG110-24HP

https://netland24.pl/photos/5ad38ea6186e0.jpg

Router – Cisco RV340K9G5

https://electrogarden.pl/environment/cache/images/500_50 0_productGfx_108863/b66ff88c4f6bbaac439182575387.jpg

Serwer – DELL T140

Wybór okablowania

https://kompleksmedia.pl/img/products/46/87/1_max.jpg

Skrętka miedziana FTP kat. 6

Kosztorys projektu

Kosztorys projektu

Produkt	Cena jedn.	llość	Suma
Cisco Catalyst 9130 AXI	5208,00	6 szt.	31248,00
Cisco SG110-24HP	1129,31	1 szt.	1129,31
Cisco RV340K9G5	674,64	1 szt.	674,64
Serwer DELL T140	2847,97	1 szt.	2847,97
Skrętka miedziana FTP kat. 6	1,70	200 m	340,00
Wtyk RJ-45	0,50	18 szt.	9,00
Szafka sieciowa RACK 19' x 400mm	280,00	1 szt.	280,00
Listwa na kable	5,00	125 m	625,00
			37153,92

Podsumowanie

Dziękujemy za uwagę