

High fidelity modelling for High Altitude Long Endurance **Solar Powered Aircraft**

Jongseok Lee

Master thesis (external at DLR Institute of Robotics and Mechatronics) Tin Muskardin, Dr. Konstantin Kondak, Philipp Oettershagen, Thomas Stastny

High Altitude Long Endurance (HALE) platforms

- Aerial platforms capable of stratospheric flight for a long period.
- Communication networks to recording of weather and environment.

Topic: high fidelity modelling procedures for fixed wing platforms.

Motivation

- Why high fidelity models?
 - Reduce or avoid in-flight tuning of controller gains.
 - Model based control for landing on mobile platform.
 - Simulation of stratospheric mission.
- Platforms Elektra 1 and Penguin BE UAV.

Approach: local, and global system identification.

Motivation

Local system identification.

Global system identification.

Overview

- Motivation.
- Aircraft system identification problem.
- Local system identification two step method.
- Global system identification incremental model update.
- Conclusion.

Aircraft system identification problem

Given input u and output y find system S

$$m\dot{V} + \omega \times mV = F_{aero} + F_{thrust} + F_{gravity}$$
 $I\dot{\omega} + \omega \times I\omega = M_{aero} + M_{thrust}$

Aircraft system identification problem

Applying multidimensional taylor series expansion:

$$\widehat{F}_{x,aero} = Fx_0 + Fx_u u + Fx_w w + Fx_q q + Fx_{de} de$$

$$\widehat{F}_{z,aero} = Fz_0 + Fz_u u + Fz_w w + Fz_q q + Fz_{de} de$$

$$\widehat{M}_{v,aero} = My_0 + My_u u + My_w w + My_q q + My_{de} de$$

- 15 parameters for longitudinal dynamics (linear model).
- Physical quantities related to stability and control.
- Linear Vs nonlinear aerodynamic model.
- Local one value for parameters; Global sets of values.

Overview

- Motivation.
- Aircraft system identification problem.
- Local system identification two step method.
- Global system identification incremental model update.
- Conclusion.

Approach: error = y - S(x, u, parameters)

Linear projection of features.

Procedures:

- Experiment: parameter identifiability.
- Reconstruction of path: IEKF estimation and smoothing.
- Parameter identification: linear regression.
- Model validation: statistics and controller synthesis.

Input design and experimentation:

Parameter identifiability – contribution is visible.

2 flights with Elektra 1 and 3 flights with Penguin BE.

Path reconstruction:

- Smoothened estimate of states, forces and moments.
- Estimation of instrumentation errors.

Parameter identification:

- Optimization linear regression.
- Global minimum may not give correct parameters.
 - OLS Vs WLS Vs NLS Vs CLS.

Experiment

Model

identification

Model

validation

Model validation:

Coefficient	Rsquared [-]	NRMSE [-]
Fx	0.847	0.042
Fz	0.883	0.031
My	0.418	0.036

Model validation:

State	GOF [-]	TIC [-]
u (m/s)	0.8569	0.0133
w (m/s)	0.5576	0.2301
q (rad/s)	0.8507	0.1985
θ (rad)	0.9061	0.1289

- TIC 0.25 0.3 sufficient [Jategoankar 2006].
- Fulfills FAA standards of high fidelity model.

Overview

- Motivation.
- Aircraft system identification problem.
- Local system identification two step method.
- Global system identification incremental model update.
- Conclusion.

Approach 1: Current practice in the industry.

Collection of data at all points of flight envelope.

Approach 2: Incremental Update

- Data fusion of aerodynamic database with flight test data.
 - Aerodynamic database using windtunnel & CFD.

Aerospace Center

Method: Scheme for global system identification.

- Aerodynamic model outside the region of the flight data.
- Improvement in accuracy.

Method: Correction model identification.

- Correction model identification using available flight data.
- Separation of training and validation set via different trim.

Scope: Preliminary study at low altitude for Elektra 1.

- Identification of correction model at two points ...
- Validation of correction model at two points •.

Results: Preliminary study at low altitude for Elektra 1.

Fx	VLM	CVLM
RMSE	146.8	77.86
NRMSE	0.148	0.0789

Fz (N)	-2000 - -2500 - -3000 - 3500 - 4000									
	0	50	100	150	200	250	300	350	400	450
					time	(2)				

Fz	VLM	CVLM
RMSE	932.9	212.8
NRMSE	0.338	0.0777

Conclusion

- Local system identification.
 - Two step method implemented and validated.
 - System identification tool chain for 2 fixed wing platforms.
 - High fidelity model according to FAA standards.
- Global system identification.
 - Preliminary study on incremental model update scheme.
 - Within low altitude low velocity region the method proved to work with reduction of NRMSE by 0.5 and 0.2 for Fx and Fz respectively.

Future work

- Local system identification.
 - System identification for flexible aircraft (Elektra 2).
- Global system identification.
 - Wider ranges of velocities.
 - Wider ranges of altitude (Low Reynolds High Mach?).
- Fidelity definition for controller synthesis.
 - Step response of the aircraft.
 - Derivation of quantitative requirements?

Questions?

Autonomous Systems Lab

Back up slides

Autonomous Systems Lab

Autonomous Systems Lab

Autonomous Systems Lab

Table 2.5: R-squared, RMSE and NRMSE for forces and moments prediction of linear model.

Identification				Validation			
Coef	C_X	C_Z	C_m	Coef	C_X	C_Z	C_m
R^2	0.69	0.79	0.30	R^2	0.65	0.77	0.29
RMSE	41.89	153.7	15.89	RMSE	49.15	178.5	19.29
NRMSE	0.065	0.042	0.041	NRMSE	0.063	0.043	0.039

Table 2.7: TIC and GOF values for forward simulation using identified linear model.

Nonli	near:								
Identif	ication				Validat	tion			
State	u	w	\mathbf{q}	θ	State	u	w	q	θ
GOF	0.9037	0.5856	0.8959	0.9323	GOF	0.7156	0.5119	0.8765	0.8981
TIC	0.0004	0.9154	0.1660	0.0071	TIC	0.1879	0.2626	0.1753	0.1930

Autonomous Systems Lab

Aerospace Center

Table 3.12: Averaged R-squared, RMSE and NRMSE for forces and moments prediction of linear model.

Identification				Validation			
Coef	C_X	C_Z	C_m	Coef	C_X	C_Z	C_m
R^2	0.868	0.616	0.422	R^2	0.848	0.665	0.1359
RMSE	3.109	19.779	1.0899	RMSE	4.10	20.63	1.239
NRMSE	0.071	0.067	0.045	NRMSE	0.078	0.067	0.053

Table 3.14: TIC and GOF values for forward simulation with linear model.

Identif	ication				Valida	tion			
State	\mathbf{u}	w	\mathbf{q}	θ	State	u	w	\mathbf{q}	θ
GOF	0.77	0.72	0.514	0.688	GOF	0.76	0.52	0.52	0.72
TIC	0.03	0.28	0.355	0.254	TIC	0.038	0.453	0.345	0.236

Back up slides – Global

Table 4.1: Identified model parameters using VLM based simulation data (ID) compared to direct output of VLM software (AVL).

ID:					
\mathbf{Term}	Value	\mathbf{Term}	Value	\mathbf{Term}	Value
C_{x_u}	-0.004	C_{z_u}	-0.036	C_{m_u}	0.0105
C_{x_w}	0.0405	C_{z_w}	-0.231	C_{m_w}	-0.095
C_{x_q}	0.0026	C_{z_a}	-0.08595	$C_{m_{\sigma}}$	-0.196
$C_{x_{de}}$	0.00059	$C_{z_{de}}^{^{-1}}$	-0.0097	$C_{m_{de}}$	-0.047

AVL:

\mathbf{Term}	Value	\mathbf{Term}	Value	\mathbf{Term}	Value
C_{x_u}	-0.004	C_{z_u}	-0.04	C_{m_u}	0.011
C_{x_w}	0.045	C_{z_w}	-0.25	C_{m_w}	-0.105
C_{x_q}	0.0029	C_{z_a}	-0.0955	C_{m_q}	-0.218
$C_{x_{de}}$	0.00054	$C_{z_{de}}$	-0.0088	$C_{m_{de}}$	-0.0431

Back up slides - Global

ETH zürich

Back up slides - Global

Autonomous Systems Lab

Back up slides

Table 4.6: Case studies with various choice of training and validation set.

				-	
Case A	V1	V2	V3	V4	ALL
RMSE F_x	81.671	90.608	73.837	37.251	70.841
RMSE F_y	2.273E2	2.262E2	2.057E2	2.045E2	2.151E2
Case B	V1	V2	V3	V4	ALL
RMSE F_x	80.86	99.391	78.729	50.709	77.422
RMSE F_y	1.697E2	2.262E2	2.236E2	2.4066E2	2.257E2
Case C	V1	V2	V3	V4	ALL
RMSE F_x	86.883	97.78	74.22	37.251	74.033
RMSE F_y	3.710E2	2.359E2	1.884E2	2.0456E2	2.329E2
Case D	V1	V2	V3	V4	ALL
RMSE F_x	83.72	99.39	85.45	83.90	88.115
RMSE F_y	1.802E2	2.262E2	1.884E2	2.1704E2	2.112E2

```
\Delta X_u = 0.083 \cdot V_m + 29.088
\Delta X_w = -3.790 \cdot V_m + 246
\Delta X_q = -57.9 \cdot V_m + 462
\Delta X_{de} = -4.3 \cdot V_m + 248
\Delta Z_u = 4.4 \cdot V_m - 201.3
\Delta Z_w = -36 \cdot V_m + 156
       = (-552 \cdot V_m) + 1729.8
\Delta Z_q
\Delta Z_{de} = -1.39 \cdot V_m^2 - 17.82 \cdot V_m
```


