

Étude de fonction

- 1. (a) Soit $x \in \mathbb{R}$. Alors $x \in \mathcal{D}_g \iff \frac{e^x}{x} 1$ existe. Comme les fonctions exp et $x \mapsto x$ sont définies sur \mathbb{R} , cette dernière condition équivaut à $x \neq 0$ et donc $\mathcal{D}_g = \mathbb{R}^*$.
 - (b) On a à étudier les limites en 0 et en $+\infty$.
 - Si $x \to +\infty$: par croissances comparées et sommes de limites, $\lim_{+\infty} g$ existe et vaut $+\infty$.
 - Si $x \to 0^+$, on factorise par le terme principal :

$$g(x) = \frac{1}{x}(e^{x} - x)$$
$$= \frac{1}{x}(1 + o(1)) \quad x \to 0$$

la dernière égalité étant vraie par continuité de l'exponentielle, et somme de limites Finalement par produit de limites : $\lim_{x\to 0^+} g(x)$ vaut $+\infty$.

(c) Par opérations sur les fonctions dérivables, g est dérivable sur \mathcal{D}_g et par règles de calcul sur la dérivation :

$$\forall x \in \mathcal{D}_g \quad g'(x) = \frac{e^x \times 0 - e^x \times 1}{x^2} - 0 = \frac{e^x}{x^2} \times (x - 1).$$

(d) Comme il est clair que pour $x \in \mathcal{D}_g$, $\frac{e^x}{x^2} > 0$, le signe de g'(x) est celui de (x-1). D'où le tableau ci-dessous, complété avec les limites calculées en **1.b**) :

- 2. (a) Comme $f = \ln \circ g$, le réel f(x) existe si et seulement si g(x) existe et g(x) > 0. En examinant le tableau de variations de g, et en notant que e-1>0, on déduit que le réel f(x) existe si et seulement si x>0 et $\mathcal{D}_f=\mathbf{R}\pm^\star$.
 - (b) Par compositions entre les limites de *g* et celles de la fonction logarithme,on déduit les limites de *f* .
 - (c) Comme $f = \ln \circ g$, et que les fonctions ln et g sont dérivables sur leurs domaines, f est dérivable sur $\mathbf{R} \pm^{\star}$. Par règles de calculs sur la dérivée, et le résultat de $\mathbf{1c}$:

$$\forall x > 0$$
 $f'(x) = \frac{g'(x)}{g(x)} = \frac{\frac{e^x}{x^2} \times (x-1)}{\frac{e^x}{x} - 1}.$

On obtient la formule annoncée en multipliant haut et bas par x^2 .

(d) Le signe de f' est celui de g'/g. Comme g>0 sur \mathcal{D}_f , f et g ont les mêmes variations sur \mathcal{D}_f :

Étude de fonction

3. Voici la courbe de f:

