Case sub abjects Components Lavae B5, Oga C53 EF FO2001 FO2003 FO,c) FO,c) FO, c) FO, - Case Flower TO1403 F= Kitness C= Compute

Devists only of comps 15 web stand S=tate space

A C B Assister B

Rute (IWC S, our CS)

G(IWCS + out CS) = evaluate
rule against
this

Q) How do we pret

IN, oux?

27 Select In, out such that

?? Select in, out such that G(IN, out) has loop?

- ()

State Space # states = Htokens i ? (t(i), more - t(i), min) =?
Limit state space such that none than one rule will not be triggered by a state?
one miss by a rule excludes five

T = Token Space/Set $Machine(T) = G_T$ V(6) = Token Combinations E(6) = 5 to be transitions FACTORY R(F) => Muchine(T) INterest (Factory (T)) () ((Machine (T)) () 12 (6+)
Level (GT) () (Whormstein (GT)

Density (GT) Reach[17] machiner = Factory (r, t) Treach So |t|

Gt = Machine F

end 7 Compane full G(T)? Cant. O(Big) Compane what purt G(T) F= GL = G+

Addressable Addressable Spaces Addressability

P	over Soy						
W	respumm information diensity						
	in herms of States/independent						
	C) . 10 feet 10 Q						
- E	seems to equate to a borrowy hierarchy						
Donaing	() O B B						
	001						
	010 7						
	011 3						
	100 4 2 = States 101 5 Demains						
	101 5 n Danains						
	3 bites By 8 states						
	2 sternes/bit						
i i	get there seems to be a						
	great deal of redundant information						
	nthe system						
E	or expose & C becomes year						
P	or example & C becomes very ! redictable from A,B.						
h	ian can the structure be predictable						
	just have high information content						

 - Z^		States Someon	5		
Z"		Status			
m.n		States	/ч И	= tokens	5/Demany arus
m=Z n=1	D=700	ag N=	700 700		
if each	n stat	the core e whas	a cost	"Ca 4	1

Contage that its this table a 2 mones of coole Yava day Rundon Symbols in 1 cokup table 66-Trans ferre symbols 10 space m = domains reverses I line of code Yrans lev too example has maximum information density as states/domains

Paradox Cont 2 Symbols Denes. V Damains If V=1, 2=2"=#symbols, Transfern 15 7 If v=n, 9=2, transform is 1 lookup/Donain Fonds Froms # Symbols@4 <= # Symbols@B a) how many logic gates to convert input to output?