Breadth First Search: shortest first

- Maintain queue of nodes to visit
- Evaluation
 - Complete? Yes (b is finite)

Uniform Cost Search: cheapest first

- Maintain queue of nodes to visit
- Evaluation
 - Complete? Yes (b is finite)

DFS

http://www.youtube.com/watch?v=dtoFAvtVE4U

UCS

http://www.youtube.com/watch?v=z6lUnb9ktkE

Memory Limitation

Suppose: 2 GHz CPU 1 GB main memory 100 instructions / expansion 5 bytes / node 200,000 expansions / sec Memory filled in 100 sec ... < 2 minutes

Time vs. Memory

Depth	Nodes	Time	Memory
2	110	.11 milliseconds	107 kilobytes
4	11,110	11 milliseconds	10.6 megabytes
6	10^{6}	1.1 seconds	1 gigabyte
8	10^{8}	2 minutes	103 gigabytes
10	10^{10}	3 hours	10 terabytes
12	10^{12}	13 days	1 petabyte
14	10^{14}	3.5 years	99 petabytes
16	10^{16}	350 years	10 exabytes

Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

Idea 1: Beam Search

- Maintain a constant sized frontier
- Whenever the frontier becomes large
 - Prune the worst nodes

Optimal: no

Complete: no

Idea 2: Iterative deepening search

```
function Iterative-Deepening-Search (problem) returns a solution, or failure  \begin{array}{c} \text{inputs: } problem, \text{ a problem} \\ \text{for } depth \leftarrow \text{ 0 to } \infty \text{ do} \\ result \leftarrow \text{Depth-Limited-Search} (problem, depth) \\ \text{if } result \neq \text{cutoff then return } result \end{array}
```

Iterative deepening search *I* =0

Iterative deepening search *l* =1

Iterative deepening search *l* = 2

Iterative deepening search *I* = 3

Iterative deepening search

 Number of nodes generated in a depth-limited search to depth d with branching factor b:

$$N_{DLS} = b^0 + b^1 + b^2 + ... + b^{d-2} + b^{d-1} + b^d$$

• Number of nodes generated in an iterative deepening search to depth *d* with branching factor *b*:

•
$$N_{IDS} = (d+1)b^0 + db^{-1} + (d-1)b^{-2} + ... + 3b^{d-2} + 2b^{d-1} + 1b^d$$

- Asymptotic ratio: (b+1)/(b-1)
- For b = 10, d = 5,

Overhead = (123,456 - 111,111)/111,111 = 11%

Iterative deepening search

- Complete?
 - Yes
- Time?
 - $(d+1)b^0 + db^1 + (d-1)b^2 + ... + b^d = O(b^d)$
- Space?
 - -O(bd)
- Optimal?
 - Yes, if step cost = 1
 - Can be modified to explore uniform cost tree (iterative lengthening)
- Systematic?