Rank-76291 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(2) is 76291

General information

Number of lines	8
Number of points	11
Number of singular points	2
Number of Eckardt points	3
Number of double points	7
Number of single points	1
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	38
Type of lines on points	$3^3, 2^7, 1$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) \\ 1: P_6 = \mathbf{P}(1,0,1,0) = \mathbf{P}(1,0,1,0)$$

The 8 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \mathbf{Pl}(1,0,0,0,0,0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \mathbf{PI}(0,0,1,0,0,0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{7} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{7} = \mathbf{PI}(1,0,0,0,0,1)_{20}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{3} = \mathbf{PI}(1,0,1,0,1,0)_{13}$$

$$\ell_{4} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{PI}(0,1,0,0,0,0)_{1}$$

$$\ell_{5} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{PI}(0,0,1,1,1,1)_{32}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \mathbf{PI}(1,1,1,0,1,1)_{30}$$

$$\ell_{7} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{26} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{26} = \mathbf{PI}(0,1,1,1,1,1)_{34}$$

Rank of lines: (0, 4, 7, 3, 34, 12, 10, 26)

Rank of points on Klein quadric: (0, 2, 20, 13, 1, 32, 30, 34)

Eckardt Points

The surface has 3 Eckardt points:

$$0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0), T = -1$$

$$1: P_6 = \mathbf{P}(1,0,1,0) = \mathbf{P}(1,0,1,0), T = -1$$

$$2: P_{12} = \mathbf{P}(0,0,1,1) = \mathbf{P}(0,0,1,1). T = 13$$

Double Points

The surface has 7 Double points:

The double points on the surface are:

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_5$$

$$P_2 = (0, 0, 1, 0) = \ell_1 \cap \ell_4$$

$$P_8 = (1, 1, 1, 0) = \ell_2 \cap \ell_7$$

$$P_4 = (1, 1, 1, 1) = \ell_3 \cap \ell_5$$

$$P_{14} = (0, 1, 1, 1) = \ell_3 \cap \ell_6$$

$$P_{11} = (1, 1, 0, 1) = \ell_6 \cap \ell_7$$

Single Points

The surface has 1 single points:

The single points on the surface are:

$$0: P_3 = (0,0,0,1)$$
 lies on line ℓ_4

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

	01234567
0	01110100
1	10111010
2	11000011
3	11000110
4	01000101
5	$\begin{array}{c} 0.1234307 \\ 0.1110100 \\ 1.0111010 \\ 1.1000011 \\ 1.1000110 \\ 0.1000101 \\ 0.111001 \\ 0.111001 \\ 0.010111 \end{array}$
6	01110001
7	00101110

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5
in point	P_0	P_1	P_0	P_5

Line 1 intersects

	Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_6
ſ	in point	P_0	P_6	P_0	P_2	P_6

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_6	ℓ_7
in point	P_1	P_6	P_6	P_8

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_6
in point	P_0	P_0	P_4	P_{14}

Line 4 intersects

Line	ℓ_1	ℓ_5	ℓ_7
in point	P_2	P_{12}	P_{12}

Line 5 intersects

Line	ℓ_0	ℓ_3	ℓ_4	ℓ_7
in point	P_5	P_4	P_{12}	P_{12}

Line 6 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_7
in point	P_6	P_6	P_{14}	P_{11}

Line 7 intersects

Line	ℓ_2	ℓ_4	ℓ_5	ℓ_6
in point	P_8	P_{12}	P_{12}	P_{11}

3

The surface has 11 points:

The points on the surface are:

$$\begin{array}{lll} 0: \ P_0 = (1,0,0,0) & 4: \ P_4 = (1,1,1,1) & 8: \ P_{11} = (1,1,0,1) \\ 1: \ P_1 = (0,1,0,0) & 5: \ P_5 = (1,1,0,0) & 9: \ P_{12} = (0,0,1,1) \\ 2: \ P_2 = (0,0,1,0) & 6: \ P_6 = (1,0,1,0) & 10: \ P_{14} = (0,1,1,1) \\ 3: \ P_3 = (0,0,0,1) & 7: \ P_8 = (1,1,1,0) & \end{array}$$