Recall. Let $f:A\to B.$ Then f

- 1. is said to be injective if $f(a_1) = f(a_2)$ implies $a_1 = a_2$ for all $a_1, a_2 \in A$.
- 2. is said to be surjective if for all $b \in B$, there exists $a \in A$ such that f(a) = b.
- 3. is said to be bijective if it is both injective and surjective.
- 4. has a left inverse if there exists $g:B\to A$ such that g