

Proyecto final

Probabilidad y Estadística Aplicada

Facultad de Ingeniería

Estudiantes:

Julián Cardozo

Ana Laura Silveira

Pedro Solomita

Repositorio de GITHUB: https://github.com/juliancardozo/proyecto-final SCRIPT DE INGRESO SCRIPT DE SALIDA

- I. ESTADÍSTICA DESCRIPTIVA
 - I.1. DESEMPLEO
 - I.2. SALARIOS
- II. ESTIMACIÓN DE PARÁMETROS
 - II.1. DESEMPLEO
- III. PRUEBA DE HIPÓTESIS
 - III.1. DESEMPLEO
 - III.2. SALARIO
 - III.3. FUENTES

II. Repositorio de GITHUB: https://github.com/juliancardozo/proyecto-final

III. SCRIPT DE INGRESO

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import statistics
import scipy.stats as stats
# Ruta completa del archivo CSV en la unidad C:
archivo csv = r'C:\Users\USER\OneDrive\Desktop\PF\ECH 2022 - BD
Proyecto Final PyE 2023.csv'
# Leer el archivo CSV con separador (;)
datos csv = pd.read csv(archivo csv, sep=';')
# Acceder a las columnas y convertirlas en vector
ID=datos csv['ID']
AÑO=datos_csv['anio']
MES=datos csv['mes']
SEXO=datos csv['Sexo']
EDAD=datos csv['Edad']
REGION=datos csv['region']
PEA=datos csv['PEA']
DESEMPLEO=datos csv['Desempleo']
filtro = datos csv[(PEA == 1) & (DESEMPLEO == 0)]
SALARIO = filtro['Salario']
# Al.a) Tasa de desempleo para la muestra
td=DESEMPLEO.sum()/PEA.sum()*100
print("La tasa de desempleo es de {:.2f}%".format(td))
# A1.b) Gráfico de tasa de desempleo por edad
filtro = datos csv[(EDAD >= 14) & (EDAD <= 17)]
td1 = filtro['Desempleo'].sum()/filtro['PEA'].sum()*100
filtro = datos_csv[(EDAD >= 18) & (EDAD <= 25)]</pre>
td2 = filtro['Desempleo'].sum()/filtro['PEA'].sum()*100
filtro = datos csv[(EDAD >= 26) & (EDAD <= 40)]
td3 = filtro['Desempleo'].sum()/filtro['PEA'].sum()*100
filtro = datos csv[(EDAD >= 41)]
td4 = filtro['Desempleo'].sum()/filtro['PEA'].sum()*100
plt.bar(["14-17", "18-25", "26-40", "Más de 40"], [td1, td2, td3,
td4])
plt.title("Tasa de desempleo por rango de edad")
plt.xlabel("Rango de edad")
plt.ylabel("Tasa de desempleo (%)")
plt.show()
# A2.a) Histograma de salarios
plt.hist(SALARIO, bins=100, edgecolor='blue', density=True)
plt.title("Histograma de Salarios")
plt.ylabel("Densidad Relativa")
plt.show()
# A2.b) Elaborar y corregir Boxplot de salarios
plt.boxplot(SALARIO)
```

```
plt.title("Boxplot de Salarios")
plt.ylabel("Salario")
plt.show()
Q1 = np.quantile(SALARIO, 0.1)
Q3 = np.quantile(SALARIO, 0.9)
IQR = Q3 - Q1
li = Q1 - 1.5 * IQR
ls = Q3 + 1.5 * IQR
SALARIO corregido = np.where((SALARIO < li) | (SALARIO > ls),
np.nan, SALARIO)
SALARIO corregido = SALARIO corregido[~np.isnan(SALARIO corregido)]
plt.boxplot(SALARIO corregido)
plt.title("Boxplot de Salarios Corregidos")
plt.ylabel("Salario")
plt.show()
# A2.c) Calcular media, mediana y moda de salarios.
print("Media de salarios:", np.mean(SALARIO))
print("Mediana de salarios:", np.median(SALARIO))
print("Moda de salarios:", statistics.mode(SALARIO))
# A2.d) Calcular mínimo, máximo y cuartiles de salario.
salario minimo = np.min(SALARIO)
salario maximo = np.max(SALARIO)
cuartiles = np.percentile(SALARIO, [25, 50, 75])
print("Mínimo salario: ", np.min(SALARIO))
print("Máximo salario: ", np.max(SALARIO))
print("Cuartiles: ", np.percentile(SALARIO, [25, 50, 75]))
# A2.e) Presentar boxplot de salario por género y región
filtro1 = datos csv[SEXO == 1]
filtro2 = datos csv[SEXO == 2]
plt.figure(figsize=(8, 6))
plt.boxplot([filtro1['Salario'], filtro2['Salario']],
labels=['Varones', 'Mujeres'])
plt.title("Boxplot de Salarios por Género")
plt.xlabel("Género")
plt.ylabel("Salario")
plt.show()
filtro1 = datos csv[REGION == 1]
filtro2 = datos csv[REGION != 1]
plt.figure(figsize=(8, 6))
plt.boxplot([filtro1['Salario'], filtro2['Salario']],
labels=['Montevideo', 'Interior'])
plt.title("Boxplot de Salarios por Región")
plt.xlabel("Región")
plt.ylabel("Salario")
plt.show()
# B1) Estimar el desempleo del total de la población
print("Desempleo estimado: ", int(td/100*1757161))
# B2) Elaborar IC para la variable desempleo al 95%
zo = stats.norm.ppf(1 - 0.05/2)
ET = (td/100*(1-td/100)/PEA.sum())**0.5
LCi = td/100-ET*zo
LCs = td/100+ET*zo
print("IC desempleo: ", [int(LCi*1757161),int(LCs*1757161)])
# C1) Prueba de Hipótesis - Desempleo
zo = stats.norm.ppf(0.05)
```

```
ET = (7/100*(1-7/100)/PEA.sum())**0.5
RAi = 7/100+ET*zo
if td >= 7:
   print ("La tasa de desempleo aumentó respecto del 2021")
else:
   print("La tasa de desempleo disminuyó respecto del 2021")
# C2) Prueba de Hipótesis - Salario
filtrol = datos csv[(PEA == 1) & (DESEMPLEO == 0) & (SEXO == 1)]
filtro2 = datos csv[(PEA == 1) & (DESEMPLEO == 0) & (SEXO == 2)]
zo = stats.norm.ppf(1 - 0.01/2)
n1 = len(filtro1)
n2 = len(filtro2)
S1 = np.std(filtro1['Salario'])
S2 = np.std(filtro2['Salario'])
ET = (S1**2/n1+S2**2/n2)**0.5
RAi = 0-ET*zo
RAs = 0+ET*zo
m1 = np.mean(filtro1['Salario'])
m2 = np.mean(filtro2['Salario'])
if ((m1-m2 >= RAi) & (m1-m2 <= RAs)):
   print("Los salario de varones y mujeres son iguales")
else:
   print("Los salario de varones y mujeres son distintos")
```

IV. SCRIPT DE SALIDA

```
La tasa de desempleo es: 7.54%

La media de salarios: 43271.93993710942

La mediana de salarios: 32830.67

La moda de salarios: 20000.0

El salario mínimo es: 0.0

El salario máximo es: 9765833.0

Los cuartiles de salario son: [18483.35 32830.67 52659.67]

El desempleo estimado es: 132564

El IC para el desempleo: [127046, 138082]

La tasa de desempleo aumentó respecto del 2021

Los salario de varones y mujeres son distintos
```

VI. ESTADÍSTICA DESCRIPTIVA

VI.1. DESEMPLEO

a. Calcular tasa de desempleo para la muestra.

El script de cálculo para este apartado es

```
# A1.a) Tasa de desempleo para la muestra td=DESEMPLEO.sum()/PEA.sum()*100 print("La tasa de desempleo es: {:.2f}%".format(td))
```

La salida correspondiente resulta

```
La tasa de desempleo es: 7.54%
```

b. Presentar gráfico que muestre la tasa de desempleo diferenciando por rango de edad (14-17; 18-25; 26-40; más de 40 años).

El script de cálculo para este apartado es

```
# A1.b) Gráfico de tasa de desempleo por edad
filtro = datos_csv[(EDAD >= 14) & (EDAD <= 17)]
td1 = filtro['Desempleo'].sum()/filtro['PEA'].sum()*100

filtro = datos_csv[(EDAD >= 18) & (EDAD <= 25)]
td2 = filtro['Desempleo'].sum()/filtro['PEA'].sum()*100

filtro = datos_csv[(EDAD >= 26) & (EDAD <= 40)]
td3 = filtro['Desempleo'].sum()/filtro['PEA'].sum()*100

filtro = datos_csv[(EDAD >= 41)]
td4 = filtro['Desempleo'].sum()/filtro['PEA'].sum()*100

plt.bar(["14-17", "18-25", "26-40", "Más de 40"], [td1, td2, td3, td4])
plt.title("Tasa de desempleo por rango de edad")
plt.xlabel("Rango de edad")
plt.ylabel("Tasa de desempleo (%)")
plt.show()
```


VI.2. SALARIOS

a. Elaborar histograma de salarios.

El script de cálculo para este apartado es

```
# A2.a) Histograma de salarios
plt.hist(SALARIO, bins=100, edgecolor='blue', density=True)
plt.title("Histograma de Salarios")
plt.xlabel("Salarios")
plt.ylabel("Frecuencia Relativa")
plt.show()
```


b. Elaborar Box-plot para toda la muestra.

El script de cálculo para este apartado es

```
# A2.b) Elaborar y corregir Boxplot de salarios
plt.boxplot(SALARIO)
plt.title("Boxplot de Salarios")
plt.ylabel("Salario")
plt.show()
Q1 = np.quantile(SALARIO, 0.1)
Q3 = np.quantile(SALARIO, 0.9)
IQR = Q3 - Q1
li = Q1 - 1.5 * IQR
ls = Q3 + 1.5 * IQR
SALARIO corregido = np.where((SALARIO < li) | (SALARIO > ls),
np.nan, SALARIO)
SALARIO corregido = SALARIO corregido[~np.isnan(SALARIO corregido)]
plt.boxplot(SALARIO corregido)
plt.title("Boxplot de Salarios Corregidos")
plt.ylabel("Salario")
plt.show()
```


c. Calcular media, mediana y moda de salarios.

El script de cálculo para este apartado es

```
print("\nLa media de salarios:", np.mean(SALARIO))
print("La mediana de salarios:", np.median(SALARIO))
print("La moda de salarios:", statistics.mode(SALARIO))
td=DESEMPLEO.sum()/PEA.sum()*100
print("La tasa de desempleo es: {:.2f}%".format(td))
```

La salida correspondiente resulta

```
La media de salarios: 43271.93993710942
La mediana de salarios: 32830.67
La moda de salarios: 20000.0
```

d. Calcular mínimo, máximo y cuartiles de salario.

El script de cálculo para este apartado es

```
# A2.d) Calcular mínimo, máximo y cuartiles de salario.
salario_minimo = np.min(SALARIO)
salario_maximo = np.max(SALARIO)
cuartiles = np.percentile(SALARIO, [25, 50, 75])
print("\nEl salario mínimo es: ", np.min(SALARIO))
print("El salario máximo es: ", np.max(SALARIO))
print("Los cuartiles de salario son: ", np.percentile(SALARIO, [25, 50, 75])) 20000.0
```

La salida correspondiente resulta

```
El salario mínimo es: 0.0
El salario máximo es: 9765833.0
Los cuartiles de salario son: [18483.35 32830.67 52659.67]
```

e. Presentar boxplot que muestren salario diferenciando por género y región

El script de cálculo para este apartado es

```
# A2.e) Presentar boxplot de salario por género y región
filtro1 = datos csv[SEXO == 1]
filtro2 = datos csv[SEXO == 2]
plt.figure(figsize=(8, 6))
plt.boxplot([filtro1['Salario'], filtro2['Salario']],
labels=['Varones', 'Mujeres'])
plt.title("Boxplot de Salarios por Género")
plt.xlabel("Género")
plt.ylabel("Salario")
plt.show()
filtro1 = datos csv[REGION == 1]
filtro2 = datos csv[REGION != 1]
plt.figure(figsize=(8, 6))
plt.boxplot([filtro1['Salario'], filtro2['Salario']],
labels=['Montevideo', 'Interior'])
plt.title("Boxplot de Salarios por Región")
plt.xlabel("Región")
plt.ylabel("Salario")
plt.show()
```


VII. ESTIMACIÓN DE PARÁMETROS

VII.1. DESEMPLEO

Como la variable desempleo extraída del archivo .CSV es una de tipo binario, entonces es pertinente tratar la tasa de desempleo anual como una variable de proporción

$$\underline{P} = \frac{X_1 + \dots + X_n}{n}$$

Donde Xi es una variable binaria (0, 1) extraída de la población de Bernoulli B(1, p) cuyo parámetro p es el porcentaje de éxitos en la población, luego por propiedad de media y varianza

$$\mu_{\underline{P}} = \frac{1}{n} n E(X) = p$$

$$\sigma^{2}_{\underline{P}} = \frac{1}{n^{2}} nVar(X) = \frac{p(1-p)}{n}$$

Que la variable desempleo tenga distribución normal, implica que

$$Z = \frac{\underline{P} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

Donde n es el tamaño de PEA y como n ≥ 30, el ET se estima según (Cordova, 2012)

$$ET = \sqrt{\frac{p_0(1 - p_0)}{n}}$$

Siendo p_0 la proporción muestral de desempleados respecto a la PEA. Ahora a una confianza del 95 % (α = 0.05), el intervalo de confianza asociado a "p" será

$$IC_p = \left[\underline{P} - z_{1-\frac{\alpha}{2}} \times ET; \ \underline{P} + z_{1-\frac{\alpha}{2}} \times ET\right]$$

Y el intervalo de confianza IC asociado a la variable desempleo se obtiene de multiplicar ICp por la población de la PEA en Uruguay que por dato es 1'757,161

a. Estimar el desempleo del total de la población

El script de cálculo para este apartado es

```
# B1) Estimar el desempleo del total de la población print("\nEl desempleo estimado es: ", int(td/100*1757161))
```

```
El desempleo estimado es: 132564
```

a. Elabora intervalo de confianza con 95% de certeza para la variable desempleo.

El script de cálculo para este apartado es

```
# B2) Elaborar IC para la variable desempleo al 95%
zo = stats.norm.ppf(1 - 0.05/2)
ET = (td/100*(1-td/100)/PEA.sum())**0.5
LCi = td/100-ET*zo
LCs = td/100+ET*zo
print("\nEl IC para el desempleo: ",
[int(LCi*1757161),int(LCs*1757161)])
```

La salida correspondiente resulta

```
El IC para el desempleo: [127046, 138082]
```

VIII. PRUEBA DE HIPÓTESIS

VIII.1. DESEMPLEO

a. Dada una tasa de desempleo en el 2021 de 7,0% (3). Con una certeza del 95%, ¿es correcto decir que la tasa de desempleo aumentó respecto del 2021?

El estadístico de prueba en este caso corresponde a

$$Z = \frac{\underline{P} - p}{ET = \sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

Donde:

P = Proporción muestral de desempleados

n = Tamaño muestral de la PEA

p = Proporción poblacional de desempleados

Luego se probará al 95%:

Ho: $p \ge 0.07$, contra

H1: p < 0.07

Resultando la siguiente región de aceptación RA

$$RA = [0.07 + ET \times z_{0.05}; + \infty]$$

El script de cálculo para este apartado es

```
# C1) Prueba de Hipótesis - Desempleo
zo = stats.norm.ppf(0.05)
ET = (7/100*(1-7/100)/PEA.sum())**0.5
RAi = 7/100+ET*zo
if td >= 7:
    print("\nLa tasa de desempleo aumentó respecto del 2021")
```

```
else:
```

print("\nLa tasa de desempleo disminuyó respecto del 2021")

La salida correspondiente resulta

```
La tasa de desempleo aument<mark>ó</mark> respecto del 2021
```

VIII.2. SALARIO

El estadístico de prueba en este caso corresponde a

$$Z = \frac{\left(\underline{X}_1 - \underline{X}_2\right) - (\mu_1 - \mu_2)}{ET = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0,1)$$

Donde:

 \underline{X}_1 = Media muestral para la variable salario en varones

 \underline{X}_2 = Media muestral para la variable salario en mujeres

 n_1 = Tamaño muestral para la variable salario en varones

 n_2 = Tamaño muestral para la variable salario en mujeres

 μ_1 = Media poblacional para la variable salario en varones

 μ_2 = Media poblacional para la variable salario en mujeres

 S_1 = estimador puntual de la desviación estándar para la variable salario en varones

 S_2 = estimador puntual de la desviación estándar para la variable salario en mujeres

Luego se probará al 99%:

Ho: $\mu_1 - \mu_2 = 0$, contra

H1: $\mu_1 - \mu_2 \neq O$

Resultando la siguiente región de aceptación RA

$$RA = [-ET \times z_{1-0.01/2}; +ET \times z_{1-0.01/2}]$$

a. A partir de los datos de la muestra, con una certeza del 99%, ¿hay diferencias en el salario promedio si distinguimos por género?

El script de cálculo para este apartado es

```
# C2) Prueba de Hipótesis - Salario
filtro1 = datos_csv[(PEA == 1) & (DESEMPLEO == 0) & (SEXO == 1)]
filtro2 = datos_csv[(PEA == 1) & (DESEMPLEO == 0) & (SEXO == 2)]
zo = stats.norm.ppf(1 - 0.01/2)
n1 = len(filtro1)
```

```
n2 = len(filtro2)
S1 = np.std(filtro1['Salario'])
S2 = np.std(filtro2['Salario'])
ET = (S1**2/n1+S2**2/n2)**0.5
RAi = 0-ET*zo
RAs = 0+ET*zo
m1 = np.mean(filtro1['Salario'])
m2 = np.mean(filtro2['Salario'])
if ((m1-m2 >= RAi) & (m1-m2 <= RAs)):
    print("\nLos salario de varones y mujeres son iguales")
else:
    print("\nLos salario de varones y mujeres son distintos")</pre>
```

La salida correspondiente resulta

```
Los salario de varones y mujeres son distintos
```

VIII.3. FUENTES

Banco Mundial. (2022). *Banco Mundial*. Obtenido de Banco Mundial: https://datos.bancomundial.org/indicator/SL.TLF.TOTL.IN?locations=UY

Cordova, M. (2012). Estadística Descriptiva e Inferencial. Lima: PUCP.

INE. (2023). *Instituto Nacional de Estadística*. Obtenido de https://www.ine.gub.uy/Anda5/index.php/catalog/730/get-microdata