Versuchsbericht zu

O5 – Spektrometer

Gruppe Mi 11

Alex Oster(a_oste16@uni-muenster.de)

Jonathan Sigrist(j_sigr01@uni-muenster.de)

durchgeführt am 27.06.2018 betreut von Marcel Heeger

Inhaltsverzeichnis

1	Kurzfassung	1
2	Methoden	2
3	Durchführung	3
4	Datenanalyse	4
5	Diskussion	7
6	Schlussfolgerung	9
7	Anhang	10
	7.1 Unsicherheiten	10
l i	teratur	12

1 Kurzfassung

Dieser Bericht beschäftigt sich mit der Untersuchung der Linienspektren verschiedener Lichtquellen mit einem Spektrometer. Zu diesen Lichtquellen gehören eine Natriumdampflampe, eine Energiesparlampe und verschiedenfarbige Leuchtdioden. Studentengruppe A behauptet, dass sich die gelbe Natrium D-Linie nicht in seine beiden Wellenlängen aufspalten lässt, dass es sich bei der Energiesparlampe um eine mit Quecksilber befüllte Lampe handelt und dass die Leuchtdioden, da sie bestimmte Farben besitzen auch nur eine Wellenlänge besitzen und sich aus diesen einzelnen die Proportionalität hc zwischen ΔE und λ^{-1} berechnen lässt. Ziel dieser Untersuchung ist es die Behauptungen von Studentengruppe A zu überprüfen und mit den Messergebnissen auf die Korrektheit dieser zu schließen.

Dass die Na D-Linie sich nicht aufspalten lässt, ist nach den Ergebnissen dieser Untersuchung nur für das Prisma der Fall. Bei den Gittern hingegen war eine Aufspaltung ab dem zweiten Beugungsmaximum erkennbar. Die Behauptung, dass es sich bei der Füllung der Energiesparlampe um Quecksilber handelt, ließ sich insbesondere durch die Wellenlängen der Spektrallinien von $(405,81\pm0,13)$ nm und $(547,08\pm0,16)$ nm stützen. Wohingegen die Behauptung bezüglich der Leuchtdioden, dass es sich nur um einzelne Wellenlängen handelt, als falsch angenommen werden kann, da hier nicht einzelne Spektrallinien sondern Bänder aus unzähligen Wellenlängen beobachtet wurden. Aus den Maxima ließ sich dennoch hc berechnen. Dieser Wert belief sich auf $hc = (5,7\pm1,5)\cdot 10^{-7}\,\mathrm{eV}\,\mathrm{m}$ und stimmt damit nicht mit dem Produkt aus planck'schem Wirkungsquantum h und Lichtgeschwindigkeit c überein, da diese sich ungefähr um einen Faktor von zwei unterscheiden.

Die Behauptungen von Studentengruppe A ließen sich als nur bezüglich der Energiesparlampe bestätigen und für das Produkt hc lässt sich keine genaue Aussage treffen.

2 Methoden

Abbildung 1: Darstellung des Versuchsaufbau. Dabei ist (1) das Spektrometer, (2) die Lichtquelle und (3) ein Prisma.[2]

Der grundlegende Aufbau ist in Abb. 1 dargestellt und für alle Teilversuche gleich. Dabei ist (1) das Spektrometer, (2) die Lichtquelle und (3) ein Prisma. Die Lichtquelle soll so auf das Spektrometer gerichtet werden, dass das Licht durch eine Spaltblende an dem einem Arm des Spektrometers verläuft und auf das Prisma trifft. An dem anderem Arm befindet sich ein Okular mit einem Fadenkreuz, sodass die erkennbaren Spektrallinien eingeordnet werden können. Dazu dient eine Gradskala auf dem Spektrometer. An dieser lässt sich der Winkel ablesen bei dem das Fadenkreuz in dem Okular liegt.

Als erstes soll eine Natriumdampflampe als Lichtquelle verwendet werden und das Prisma so in den Strahlengang gebracht werden, dass dieser symmetrisch durch das Prisma geht. Darauf soll das Linienspektrum von Natrium hinter dem Okular betrachtet und die Beobachtungen erläutert werden. Anschließend soll mit einem 300-Spalt-pro-mm Transmissionsgitter statt des Prismas das Linienspektrum betrachtet werden. Analog dazu danach mit einem Gitter mit doppelt so vielen Spalte pro mm. Für die drei verschiedenen dispergierenden Elemente soll das Auflösungsvermögen anhand der Beugungsordnungen und der Na D-Linie diskutiert werden.

Bei dem zweitem Teilversuch soll zur Bestimmung des Gases in einer Energiesparlampe zunächst das Linienspektrum einer Heliumlampe herangezogen werden. Hier soll weiterhin das 600-Spalt-pro-mm Transmissionsgitter verwendet werden. Eine Tabelle der

Wellenlängen die den einzelnen Spektrallinien zugehören ist für diesen Versuch gegeben. Mit Hilfe der Tabelle, des Fadenkreuzes an dem Okular und der Gradskala soll eine Funktion für die Wellenlänge in Abhängigkeit des Winkels durch diese Spektrallinien erstellt werden. Daraufhin soll das Linienspektrum der Energiesparlampe betrachtet werden und anhand der Wellenlängen, die sich aus der aufgestellten Funktion ergeben, das Gas identifiziert werden mit dem die Lampe gefüllt ist.

Für den letzten Teilversuch sollen die Spektren verschiedenfarbiger Leuchtdioden betrachtet werden. Dazu sollen die Wellenlänge des Emissionsmaximum bestimmt werden. Auch hier soll die Beobachtung mit dem 600-Spalt-pro-mm Transmissionsgitter durchgeführt werden. Zudem soll für jede der Dioden die Spannung gemessen werden, ab der sie zu leuchten beginnen. Zuletzt sollen die zugehörigen Spannungen als Funktionswerte des Kehrwerts der entsprechenden Wellenlänge aufgetragen werden und hc daraus bestimmt werden.

3 Durchführung

Da andere Gruppen den Versuch bereits zuvor an dem selben Spektrometer durchgeführt hatten, war die Justierung des Spektrometers bereits erledigt, wurde jedoch vor Beginn der Messung überprüft.

Die Durchführung erfolgte analog zu der Beschreibung in Abschnitt 2. Hierbei traten keine unerwarteten Effekte auf.

Für die Natriumdampflampe ließ sich nur eine breite gelbe Spektrallinie und einige weitere schwächere beobachten (darunter eine blaue, eine türkisfarbene, eine grüne und eine rote). Bei den Gittern hingegen ließen sich ab den dritten Beugungsmaxima jedoch schon zwei gelbe Linien, welche sehr nah aneinander lagen erkennen. Der Abstand zwischen diesen wurde mit höheren Beugungsmaxima größer. Mehr als vier Maxima pro Seite ließen sich nicht beobachten.

Die Winkel der beiden gelben Natriumlinien, sowie der für das Helium- und Energiesparlampenlinienspektrum sind dem Laborbuch zu entnehmen.

Bei den Leuchtdioden wurden jeweils eine rote, gelbe, grüne und blaue verwendet. Das nullte Maximum entsprach bei allen Dioden einer Linie in ihrer Farbe. Die ersten Maxima hingegen waren für alle Dioden wie verschmierte Bänder und einzelne Maxima

waren nur schwer zu erkennen. Alle Bänder besaßen einen Farbverlauf, welcher einen Teil des Gesamtspektrums ausmachte. Bei der roten Leuchtdiode war das Band nahezu komplett rötlich, das der gelben jedoch hatte bereits eine kontinuierliche Verteilung von grün bis rot. Für die grüne Leuchtdioden traten die Farben von türkis bis rot auf und bei der blauen alle von violett bis rot. Die Intensität war bei letzteren drei bei ihrer eigenen Farbe (gelb, grün bzw. blau) am höchsten. Vor Betrachtung der Linienspektren wurde für jede der Dioden die Einsatzspannung drei mal gemessen, da die Unsicherheit für eine einzelne Messung zu groß wäre. Bei diesen fällt auf, dass die Einsatzspannungen der Dioden mit Anteilen geringerer Wellenlängen höher liegen als andere.

4 Datenanalyse

Abbildung 2: Spektrallinien der Beugungsmaxima der Na $D\text{-}\mathrm{Linie}$ bei dem 300-Spalt-pro-mm Transmissionsgitter.

Aus den gemessenen Winkeln der verschiedenen Beugungsmaxima für die NaD-Linie wurden die zugehörigen Wellenlängen bestimmt. Diese sind für das erste Gitter in Abb.

Abbildung 3: Spektrallinien der Beugungsmaxima der NaD-Linie bei dem 600-Spalt-pro-mm Transmissionsgitter.

2 und für das zweite Gitter in Abb. 3 aufgetragen. Dabei gehören zwei gleichfarbige Linien zu der gleichen Ordnung. Ist nur eine zu erkennen, so liegen beide aufeinander. Die zugehörigen Wellenlängen ergaben sich aus Gleichung 4.1. Auffällig ist, dass diese voneinander abweichen, obwohl es sich um nur zwei Wellenlängen für alle Ordnungen handeln sollte.

Nun zu dem Linienspektrum des Heliums. Da nicht alle Spektrallinien aus der Tabelle den beobachteten zuzuordnen waren wurden, wurden nicht alle zu der Aufstellung einer Funktion der Wellenlänge verwendet. Abbildung 4 stellt den Zusammenhang zwischen den gemessenen Winkeln der Spektrallinien und dazu zugehörigen Wellenlängen dar. Damit ein linearer Fit verwendet werden konnte wurde der Sinus der Winkel aufgetragen. Das lineare Verhältnis folgt aus:

$$\Delta \lambda = \Delta \sin \vartheta_m \frac{g}{m},\tag{4.1}$$

wobei m die Zahl des Beugungsmaximums und g die Gitterkonstante ist. Hiermit und

Abbildung 4: Darstellung der Wellenlänge in Abhängigkeit des Sinus des gemessenen Winkels für die Heliumlampe mit linearerem Fit.

mit den Winkeln für die Energiesparlampe ergaben sich die Ergebnisse in Abb. 5. Die fünf erkennbaren Linien für die Lampe liegen bei $(405,81\pm0,13)$ nm, $(438,25\pm0,14)$ nm, $(547,08\pm0,16)$ nm, $(579,13\pm0,16)$ nm und $(580,98\pm0,16)$ nm.

Bei dem letzten Teilversuch mit den Dioden ergab sich durch auftragen der gemittelten Spannungswerte der in Abb. 6 dargestellte Verhalt. Aus $E = h\nu = hc/\lambda = eU$ folgt dass die Steigung bei dem Auftragen der Spannung U gegen den Kehrwert der Wellenlänge $1/\lambda$ gerade hc/e entspricht. Da die Wellenlänge, wie auch die Einsatzspannungen große Unsicherheiten besitzen, ist der lineare Fit und somit die Steigung ungenau. Es lässt sich der Steigung des linearen Fits folgern, dass $hc = (5.7 \pm 1.5) \cdot 10^{-7}\,\mathrm{eV}\,\mathrm{m}$ entspricht.

¹Der Winkel für das Intensitätsmaximum bei der roten Leuchtdiode wurde nicht dokumentiert. Aufgrund dessen wurde der Winkel 21,6°[1] von Gruppe Mo14 für den linearen Fit verwendet.

Abbildung 5: Darstellung der Spektrallinien der Werte für Helium aus der Tabelle (grün), der gemessenen für Helium (orange) und der gemessenen der Energiesparlampe (blau).

5 Diskussion

Zunächst rückblickend die Behauptungen von Studentengruppe A: Die gelbe Natrium D-Linie lässt sich nicht in seine beiden Wellenlängen aufspalten. Bei der Energiesparlampe handelt es sich um eine mit Quecksilber befüllte. Leuchtdioden besitzen jeweils nur eine Wellenlänge, da sie bestimmte Farben besitzen. Zudem lässt sich aus diesen einzelnen Wellenlängen die Proportionalität hc zwischen ΔE und λ^{-1} berechnen.

Die Beobachtungen bei der Natriumdampflampe stimmen nicht mit der Behauptung überein. Bei dem Prisma war zwar keine Unterscheidung der Na *D*-Linie möglich, bei den Gittern ab dem dritten Beugungsmaximum jedoch schon. Hier war die Auflösung also groß genug um beide Linien zu erkennen. Dass die Spektrallinien in Abb. 3 nicht mit den Beobachtungen übereinstimmen deutet auf einen Fehler in der Berechnung oder der Aufnahme der Winkel hin. Zudem liegen bei dieser und Abbildung 2 die Wellenlängen für die Spektrallinien verstreut und nicht auf den beiden bei 588,995 nm oder 589,592 nm[3].

Abbildung 6: Darstellung der Einsatzspannung für die vier verschiedenen Wellenlängen, bei denen die Intensitätsmaxima der einzelnen Dioden liegen. Zudem linearer Fit um hc zu bestimmen.

So lässt sich an dieser Stelle keine genaue Aussage über die Wellenlängen der NaD-Linie treffen, die Behauptung von Studentengruppe A aufgrund der Beobachtungen dennoch widerlegen.

Dass es sich bei dem Gas in der Energiesparlampe um Quecksilber handelt lässt sich bestätigen. Alle der Werte $(405,81\pm0,13)$ nm, $(438,25\pm0,14)$ nm, $(547,08\pm0,16)$ nm, $(579,13\pm0,16)$ nm und $(580,98\pm0,16)$ nm liegen ca. (0 ± 1) nm um die Literaturwerte [4]. Insbesondere der dominanten Spektrallinien von Quecksilber bei 404,656 nm [4] verglichen mit $(405,81\pm0,13)$ nm oder 546,074 nm [4] mit $(547,08\pm0,16)$ nm. Die Ergebnisse stimmen demnach mit diesem Teil der Behauptung überein.

Bei den Dioden sind die Ergebnisse wie auch bei der Natriumdampflampe nicht einfach in den Kontext einzuordnen. Aufgrund der Beobachtungen, dass das Linienspektrum bandförmig ist, lässt sich zumindest die Behauptung von Studentengruppe A widerlegen. Dass sich hc auf $(5.7 \pm 1.5) \cdot 10^{-7}$ eV m beläuft entspricht jedoch nicht der Erwartung, dass $hc = 4.135 \cdot 10^{-15}$ eV s $\cdot 2.998 \cdot 10^{8}$ m/s $\approx 1.240 \cdot 10^{-6}$ eV m[5], welcher ungefähr dop-

pelt so groß ist wie der berechnete Wert. Auch hier ist ein Fehler in der Messung oder bei der Berechnung nicht auszuschließen. Da das erkennen der Maxima in den Spektralbänder schwer fiel ist dies nicht unwahrscheinlich. Auch der Wert für das Maximum der roten Leuchtdiode, welches von einer anderen Gruppe stammt, könnte aufgrund unterschiedlicher Kalibrierung mit der Heliumlampe nicht genau in die Messung dieser Untersuchung passen.

Somit lassen sich die Behauptungen der Studentengruppe A bis auf den Inhalt der Energiesparlampe und der Berechnung von hc widerlegen. Für letztere ist keine genaue Aussage zu treffen.

6 Schlussfolgerung

Ließen sich die Behauptungen von Studentengruppe A bestätigen? Die Ergebnisse der Untersuchung stützen diese nur teilweise.

Dass die Na D-Linie sich nicht aufspalten lässt, ist nach den Ergebnissen dieser Untersuchung nur für das Prisma der Fall. Bei den Gittern hingegen war eine Aufspaltung ab dem zweiten Beugungsmaximum erkennbar. Die Behauptung, dass es sich bei der Füllung der Energiesparlampe um Quecksilber handelt, ließ sich insbesondere durch die Wellenlängen der Spektrallinien von $(405,81\pm0,13)\,\mathrm{nm}$ und $(547,08\pm0,16)\,\mathrm{nm}$ verglichen mit den Literaturwerten $404,656\,\mathrm{nm}$ und $546,074\,\mathrm{nm}[4]$ stützen. Wohingegen die Behauptung bezüglich der Leuchtdioden, dass es sich nur um einzelne Wellenlängen handelt, als falsch angenommen werden kann, da hier nicht einzelne Spektrallinien sondern Bänder aus unzähligen Wellenlängen beobachtet wurden. Aus den Maxima ließ sich dennoch hc berechnen. Dieser Wert belief sich auf $hc = (5,7\pm1,5)\cdot 10^{-7}\,\mathrm{eV}\,\mathrm{m}$ und stimmt damit nicht mit dem Produkt aus planck'schem Wirkungsquantum h und Lichtgeschwindigkeit c überein, da diese sich ungefähr um einen Faktor von zwei unterscheiden.

Die Behauptungen von Studentengruppe A ließen sich als nur bezüglich der Energiesparlampe bestätigen und für das Produkt hc lässt sich keine genaue Aussage treffen.

7 Anhang

7.1 Unsicherheiten

Jegliche Unsicherheiten werden nach GUM bestimmt und berechnet. Die Gleichungen dazu finden sich in 7 und 8. Für die Unsicherheitsrechnungen wurde die Python Bibliothek "uncertainties" herangezogen, welche den Richtlinien des GUM folgt. Alle konkreten Unsicherheitsformeln stehen weiter unten. Für Unsicherheiten in graphischen Fits wurden die y-Unsicherheiten beachtet und die Methode der kleinsten Quadrate angewandt. Dafür steht in der Bibliothek die Methode "scipy.optimize.curve_fit()" zur Verfügung.

Für digitale Messungen wird eine Unsicherheit von $u(X) = \frac{\Delta X}{2\sqrt{3}}$ angenommen, bei analogen eine von $u(X) = \frac{\Delta X}{2\sqrt{6}}$.

Winkelskala Die Winkelskala ist in Halbgradschritte eingeteilt. Eine anliegende Noniusskala erhöht die Genauigkeit auf $\Delta \vartheta = 1'$. Für die Winkel bei den LED, wird auf Grund der großen Verschmierung $\Delta \vartheta_{\rm LED} = 30'$ angenommen.

Spannung Das digitale Voltmeter konnte Werte auf $\Delta U = 0.01 \,\mathrm{V}$ angeben.

$$x = \sum_{i=1}^{N} x_i; \quad u(x) = \sqrt{\sum_{i=1}^{N} u(x_i)^2}$$

Abbildung 7: Formel für kombinierte Unsicherheiten des selben Typs nach GUM.

$$f = f(x_1, \dots, x_N); \quad u(f) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} u(x_i)\right)^2}$$

Abbildung 8: Formel für sich fortpflanzende Unsicherheiten nach GUM.

$$\lambda = \frac{g}{m}\sin\vartheta_m; \quad u(\lambda) = \lambda\cot\vartheta_m u(\vartheta_m)$$

Abbildung 9: Unsicherheitsformel für die Wellenlänge bei einem optischen Gitter mit Gitterkonstante g und Ordnung m. g wird dabei als genau angenommen.

$$\frac{1}{\lambda} = \frac{m}{g} \frac{1}{\sin \vartheta_m}; \quad u(\frac{1}{\lambda}) = \frac{1}{\lambda} \cot \vartheta_m u(\vartheta_m)$$

Abbildung 10: Unsicherheitsformel für den Kehrwert der Wellenlänge bei einem optischen Gitter mit Gitterkonstante g und Ordnung m.

Literatur

- [1] Gruppe Mo14. Laborbuch O5 Gruppe Mo14.
- [2] WWU Münster. 05 Spektrometer. URL: https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=28561§ion=23 (besucht am 03.07.2018).
- [3] NIST. The NIST Reference on Constants, Units and Uncertainty. URL: https://physics.nist.gov/PhysRefData/Handbook/Tables/sodiumtable2.htm (besucht am 03.07.2018).
- [4] NIST. The NIST Reference on Constants, Units and Uncertainty. URL: https://physics.nist.gov/PhysRefData/Handbook/Tables/mercurytable2.htm (besucht am 03.07.2018).
- [5] NIST. The NIST Reference on Constants, Units and Uncertainty. URL: https://physics.nist.gov/cuu/Constants/index.html (besucht am 15.05.2018).