MLP neural net parallel implementation using CUDA

Szilágyi Ervin

Sapientia EMTE

November 24, 2016

Introduction

 This project's goal is to implement a multilayer perceptron neural net by using a parallel aproach. The most suitable framework for accomplishing this is the nVIDIA CUDA framework.

About MLP neural net

FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers.

Figure: MLP Neural Net structure

MLP Neuron

Figure: MLP neuron

MLP Neuron

Figure: MLP neuron

Training the Net

For each layer
do the feedforward step
end for each
calculate the error
For each layer
do the backpropagation step
update the weights
end for each

Matrix representation of the weights

Inputs:

$$\begin{pmatrix} i_0 & i_1 & i_2 & \dots & i_N \end{pmatrix}$$

Weights:

$$\begin{pmatrix} W_{00} & W_{01} & W_{02} & \dots & W_{0M} \\ W_{10} & W_{11} & W_{12} & \dots & W_{1M} \\ \dots & \dots & \dots & \dots & \dots \\ W_{N0} & W_{N1} & W_{N2} & \dots & W_{NM} \end{pmatrix}$$

Where:

N - number of inputs

M - number of neurons in the layer

Note:

The output can be calculated by applying the activation function to this product:

$$O = I * W$$

Backpropagation using gradient descent

```
//for the last layer
auto delta = d_targetVals[i] - d_activationResults[i];
d_gradients[i] = delta *
cuda_activeationFuncD(d_activationResults[i]);

//for hidden layers
d_gradients[i] = d_deltas[i] *
cuda_activeationFuncD(d_activationResults[i]);
```

Calculating the deltas for the hidden layer

Updating the weights

```
auto deltaWeight = trainRate * d_activationResults[idx]
    * d_gradients[idx] + momentum * oldDeltaWeight;
d_weights[i] += d_deltaWeights[i];
```

Normalizing the weights after update

- Problem: the activation functions usually accept values between 0.0 and 0.1 (ex: sigmoid) or -1.0 and 1.0 (ex: hyperbolic tangent).
- Solution: the weights need to be normalized to be inside these intervals.
- The minimum and maximum values needed for the normalization are calculated using reduction.

Implementation of the nerual net (Naive method)

- Keep the layers (weights, gradients) in the RAM.
- Parallelize key methods by writing cuda kernels.
- In every iteration send the values to the GPU, do the calculation, copy back the result.
- Very ineffective solution, the GPU is barely used, a lot of time is wasted by doing memory allocation and copying.

Implementation of the nerual net (Optimized approach)

- Keep the layers (weights, gradients) in the GPU memory. Use RAII classes, the GPU memory is freed up when the net is deleted.
- Parallelize every method by writing cuda kernels.
- The weights are initialized at the beginning and they are updated when an iteration is done. The inputs are sent in every iteration to the GPU.

Benchmarks

- The goal is to learn a sinus curve (20 points).
- The layer topology is: (1, 1), (1, 10), (10, 10), (10, 10), (10, 1)
- Avarage time using CPU: 13 milliseconds iteration
- Avarage time using GPU: 18 milliseconds iteration

References

- David Miller Neural Net in C++ (https://vimeo.com/19569529)
- http://iamtrask.github.io/2015/07/27/python-network-part2/
- James A. Freeman Neural Networks Algorithms, Applications, and Programming Techniques

Source code and documentation of this project can be found here: $https://github.com/Ernyoke/cuda_{\it N}{\it N}$