# **Tutorial TidyML**

# Introduction

TidyML is a minimal library focused on providing all the essential tools for the workflow of a machine learning modelling process. It divides the whole process into 5 sequential steps:

- 1. Preprocessing
- 2. Model Building
- 3. Fine Tuning
- 4. Computing Performance Metrics
- 5. Sensitivity Analysis / Interpretable ML



Internally, due to the sequential nature of the workflow, each step stores new information of the analysis on an object called "tidy\_object". At any time during the process, the internal information of the analysis can be retrieved from the tidy\_object using the "\$" operator. The implemented fields are:

```
devtools::load_all()
```

### i Loading TidyML

Loading required package: tidyverse

```
-- Attaching core tidyverse packages ------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.2 v tibble 3.2.1
```

```
v lubridate 1.9.4 v tidyr 1.3.1
v purrr 1.0.4
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
Warning: Objects listed as exports, but not present in namespace:
* create_models
* create_recipe
* transformer
library(dplyr)
tidy_object = TidyMLObject$new(0, 0, 0, 0,0)
names(tidy_object)
 [1] ".__enclos_env__"
                           "sensitivity_analysis" "outcome_levels"
                           "fit_summary"
 [4] "predictions"
                                                  "formula"
                           "tuner fit"
                                                  "tuner"
 [7] "final_models"
[10] "metrics"
                           "workflow"
                                                  "models_names"
[13] "models"
                           "hyperparameters"
                                                  "task"
[16] "transformer"
                           "validation_data"
                                                  "test_data"
                           "full_data"
[19] "train_data"
                                                  "clone"
                           "initialize"
[22] "modify"
```



# **Binary Classification Example**

We will start by creating a small binary classification dataset using the palmerpenguins data.

### **Create Dataset**

```
df <- palmerpenguins::penguins %>%
  na.omit() %>%
  dplyr::select(-year) %>%
  dplyr::filter(species == "Adelie" | species == "Gentoo") %>%
  dplyr::mutate(species = droplevels(species))
```

### **Preprocessing Step**

We will first preprocess the data set using the *preprocessing()* function. We will pass the dataset along with the formula for our problem. The preprocessing step requires to specify which columns are going to be preprocessed:

- Numerical columns will be normalized by z-score
- Categorical columns will be one-hot encoded

As well as the task to be performed: "regression" or "classification".

In our case, we will preprocess all numerical columns and all categorical columns using the **all** keyword (by default):

#### Model Definition

The function *build\_model()* allows to create a ML model. Each model has it's own set of hyperparameters which we can choose to fine\_tune by passing a range of values or to set to a specific value. By default each hyperparameter will be tuned within a given range. The The ML models implemented are:

#### 1. Neural Network:

```
1. hidden_units: number of hidden_units
```

```
2. activation: activation functions ("relu", "sigmoid", "tanh")
```

3. learn\_rate: learning rate

### 2. Support Vector Machine ("SVM"):

- 1. cost: regularization penalty
- 2. margin : margin of classifier
- 3. type: type of kernel ("linear", "rbf", "polynomial")
- 4. rbf\_sigma (rbf kernel only) : rbf kernel sigma
- 5. degree (polynomial kernel only): polynomial kernel degree
- 6. scale\_factor (polynomial kernel only): polynomial kernel scale factor

#### 3. Random Forest:

- 1. mtry: Size of feature sampling
- 2. trees: Number of trees
- 3.  $min_n$ : Minimum number of samples for splitting

#### 4. XGBoost:

- 1. mtry: Size of feature sampling
- 2. trees: Number of trees
- 3.  $min_n$ : Minimum number of samples for splitting
- 4. tree\_depth: Maximum tree depth
- 5. learn\_rate: Learning rate
- 6. loss reduction: Loss reduction

### **Hyperparameter Tuning**

Once the model has been defined, we can fine tune the hyperparameters using the *fine\_tune()* function. There are 2 different hyperparameter tuning strategies:

- 1. Bayesian Optimization
- 2. Grid Search CV

Additionally, we will specify the metric used to select the best performing hyperparameters:

| Regression            | Classification       |
|-----------------------|----------------------|
| rmse                  | accuracy             |
| mae                   | bal_accuracy         |
| mpe                   | precision            |
| mape                  | recall               |
| ccc                   | specificity          |
| smape                 | sensitivity          |
| $\operatorname{rpiq}$ | kap                  |
| rsq                   | $f_{meas}$           |
|                       | mcc                  |
|                       | detection_prevalence |
|                       | $j\_index$           |
|                       | roc_auc              |
|                       | pr_auc               |
|                       | gain_capture         |
|                       | $brier\_class$       |
|                       | roc_aunp             |

We can visualize the tuning results by setting the *plot\_results* parameter to TRUE:

- [1] "Commencing Tuning..."
- [1] "Tuning Finalized"
- [1] "########## Hyperparameter Tuning Results"

### Grid Search CV Search Results



[1] "######### Best Hyperparameters Found:"

# A tibble: 1 x 8

#### Results

Once we have found the best hyperparameter configuration we can compute the performance metrics of our model based on the test data using the **show\_results()** function. There are different options for the results depending on whether we are doing a regression task or a classification task:

### • Regression:

- summary
- $scatter\_residuals$
- $scatter\_predictions$
- residuals dist

#### • Classification:

```
- summary
```

- $roc\_curve$
- pr\_curve
- $-\ gain\_curve$
- $\ \mathit{lift}\_\mathit{curve}$
- $-\ dist\_by\_class$
- $-\ reliability\_plot$
- $-\ confusion\_matrix$

### [1] "######### Showing Results"

| Accuracy             | 1.000 |
|----------------------|-------|
| Balanced_Accuracy    | 1.000 |
| Precision            | 1.000 |
| Recall               | 1.000 |
| Specificity          | 1.000 |
| Sensitivity          | 1.000 |
| Карра                | 1.000 |
| F1_score             | 1.000 |
| MCC                  | 1.000 |
| J_index              | 1.000 |
| Detection_Prevalence | 0.507 |
| AUC_ROC              | 1.000 |
| AUC_PR               | 1.000 |
| Gain Canture         | 1 000 |





### **Confusion Matrix**



### **Sensitivity Analysis**

We can also perform sensitivity analysis for our fitted model using the **sensitivity\_analysis()** function. There are currently different methods implemented, some of these methods only work for particular models:

- 1. Permutation Feature Importance ("PFI")
- 2. SHAP
- 3. Integrated Gradients (Neural Network only)
- 4. Olden method (Neural Network only)
- 5. **TO DO**: SOBOL? Shapley Effects?:

tidy\_object <- sensitivity\_analysis(tidy\_object, type = "SHAP")</pre>







### Feature

### **SHAP Swarm Plot**



# **Regression Example**

### **Create Dataset**

We will again use the palmerpenguins dataset but choose a different formula for a regression task:

```
df <- palmerpenguins::penguins %>%
  na.omit() %>%
  dplyr::select(-year)
```

### The Pipe (%>%) Operator

Due to the sequential nature of the processing, we can concatenate all the modelling steps using the %>% (pipe) operator without expliciting passing the tidy\_object each time:

```
formula = "bill_length_mm ~ ."
tidy_object = preprocessing(
                              df,
                              formula = formula,
                              norm_num_vars = "all",
                              encode_cat_vars = "all",
                              task = "regression"
                          ) %>%
               build_model(
                              model_names = "Neural Network",
                              hyperparameters =
                                list(
                                     hidden_units = c(3,10),
                                     activation = c("relu", "tanh")
                                     )
                          ) %>%
              fine_tuning(
                              tuner = "Bayesian Optimization",
                              metrics = "rmse",
                              plot_results = T
                         ) %>%
```

- [1] "Commencing Tuning..."
- ! No improvement for 5 iterations; returning current results.
- [1] "Tuning Finalized"
- [1] "########## Hyperparameter Tuning Results"

# **Bayesian Optimization Iteration Loss**



# Bayesian Optimization Iteration Results



# Bayesian Optimization Search Results



[1] "######### Best Hyperparameters Found:"

### [1] "######## Loss Curve"

# Neural Network Loss Curve



[1] "######### Showing Results"

| Metric | Value |
|--------|-------|
| RMSE   | 2.700 |
| MAE    | 2.130 |
| MAPE   | 4.910 |
| MPE    | 1.190 |
| CCC    | 0.878 |
| SMAPE  | 4.990 |
| RPIQ   | 3.480 |
| RSQ    | 0.780 |





### Mean |Integrated Gradient| value



# Integrated Gradient Distribution



# Integrated Gradient Swarm Plot



### Olden Feature Importance

