Metrô Engenhoso

Por Ricardo Anido Brazil

Timelimit: 3

O Rei da Logônia em breve irá inaugurar um novo e revolucionário metrô, baseado numa invenção dos Engenheiros Reais, que permite teletransporte.

O novo metrô consiste de um longo túnel com uma estação a cada quilômetro. Existem também **T** teletransportadores, que estão localizados em algumas das estações. Em cada estação existe um teclado com **T** teclas, onde cada tecla corresponde a um teletransportador. A figura abaixo ilustra um sistema de metrô com três teletransportadores localizados nas estações marcadas como A, B e C.

O metrô funciona da seguinte maneira: o usuário vai até uma estação (a estação inicial) e pressiona a tecla correspondente ao teletransportador que ele quer usar. O usuário então é teletransportado para a estação que está à mesma distância do teletransportador que a estação inicial, mas do lado oposto ao teletransportador. Mais precisamente, se a localização da estação inicial é i e o usuário pressiona a tecla correspondente ao teletransportador localizado na posição j, ele será levado à estação localizada na posição 2 x j - i. Por exemplo, se o usuário está na estação 6 e quer ir até a estação -2, ele pode usar o teletransportador C (e ir do 6 ao 10) e depois o teletransportador A (e ir do 10 ao -2).

O Rei, no entanto, sabe que é possível que não exista uma sequência de teletransportadores que leve um usuário de uma estação X até uma estação Y. Para evitar que os usuários tentem ir para um lugar inacessível, ele quer criar um programa disponível na Internet para os ajudar. O Rei quer que você escreva um programa que, dadas as posições de cada teletransportador, responda uma sequência de consultas. Para cada consulta, as estações inicial e final são dadas, e seu programa deve determinar se é possível para um usuário ir da estação inicial até a estação final.

Entrada

Cada caso de teste se estende por várias linhas. A primeira linha contém dois inteiros \mathbf{T} e \mathbf{Q} indicando, respectivamente, o número de teletransportadores ($1 \le \mathbf{T} \le 10^5$) e o número de consultas ($1 \le \mathbf{Q} \le 10$). A segunda linha contém \mathbf{T} inteiros distintos $\mathbf{t_i}$ indicando a posição do i-ésimo teletransportador ($-10^7 \le \mathbf{t_i} \le 10^7$). Cada uma das \mathbf{Q} linhas seguintes descreve uma consulta e contém dois inteiros distintos \mathbf{S} e \mathbf{D} indicando a posição das estações inicial e final ($-10^7 \le \mathbf{S}$, $\mathbf{D} \le 10^7$).

O último caso de teste é seguido de uma linha contendo dois zeros.

Saída

Para cada caso de teste, imprima uma única linha contendo as respostas para as **Q** consultas, na mesma ordem em que as consultas aparecem na entrada e separadas por um espaço em branco. Para cada consulta, você deve imprimir um caractere 'Y' se for possível chegar ao destino a partir da estação inicial usando o metrô, ou 'N' caso contrário.

Exemplo de Entrada	Exemplo de Saída
1 1	У

-2 Exemplo de Entrada	N Y Exemplo de Saída
-6 2	Y N Y
5 2	
10 20 30 40 50	
10 15	
20 40	
5 3	
0 5 -3 -8 4	
-1 499	
4 237	
-1 -591	
0 0	

ACM/ICPC South America Contest 2010.