Assignment 2 – Addition to question 5, Maximum likelihood with cities.

For the section: Prove that whatever is b, log-likelihood is maximized when $a = \min(x1, ..., xn)$

In(a) is monotonically increasing. So in order to maximize the likelihood we
need to set a as high as possible.

For x < a the pdf is 0. So if there is x_i so $x_i < a$ than $\prod_{i=1}^n \frac{a^b b}{x_i^{b+1}}$ will be 0 . In that case the likelihood function will be 0, and log-likelihood is undefined. So for all i: $a \le x_i$.

Since $a \le x_i$ for all I, we maximize the likelihood by setting a to the smallest x_i in the sample which is min (x_i) .