Examen final INF 232: Langages et Automates L2, 2015/2016

Rappel à propos des consignes et quelques conseils et remarques

- Durée : 2 heures.
- Pas de sortie avant 30 minutes. Pas d'entrée après 30 minutes.
- Tout document du cours ou du TD est autorisé. Tout autre document est interdit.
- Tout dispositif électronique est interdit (calculette, téléphone, tablette, etc.).
- Le soin de votre copie sera pris en compte (-1 point si manque de soin).
- Les exercices sont indépendants.
- Le barème est donné à titre indicatif.

Exercice 1 Vrai/Faux (1 points)

- 1. Plus le nombre d'états est grand dans un automate d'états finis, plus celui-ci reconnaît de mots.
- 2. Dans la méthode de Floyd, tout programme est partiellement correct par rapport à n'importe quelle spécification qui s'écrit (Faux, P), où P est un prédicat quelconque.

Exercice 2 Des automates à trouver (2 points)

Soit $\Sigma = \{0, 1\}.$

- 1. Soit L_1 l'ensemble des mots dans Σ^* qui contiennent 010. Donner un automate A_1 d'états finis (déterministe ou non-déterministe) qui reconnait L_1 .
- 2. Soit L_2 l'ensemble des mots qui ne contiennent pas 010. Construire à partir de l'automate A_1 de la première question un automate d'états finis A_2 qui reconnait le langage L_2 .
- 3. Soit L_3 l'ensemble des mots qui commencent par 01 ou 10. Donner un automate d'états finis (déterministe ou non-déterministe) A_3 qui reconnait L_3 .
- 4. Soit L_4 l'ensemble des mots qui commencent par 01 ou 10 et qui ne contiennent pas 010. Construire à partir des automates A_2 et A_3 un automate qui reconnait L_4 .

Exercice 3 Expression régulière et automate (3 points)

1. Donner une expression régulière représentant l'ensemble des mots avec un nombre pair de zéros et un nombre pair de uns, en définissant d'abord un automate reconnaissant ce langage puis en utilisant la méthode associant les équations aux états.

Exercice 4 Déterminisation et minimisation (4 points)

Soit $\Sigma = \{a, b\}$. Déterminiser l'automate de la Figure 1 et minimiser l'automate obtenu.

Exercice 5 Langages non réguliers (5 points)

- 1. Montrer que le langage $\{a^{2n}b^{2n} \mid n > 0\}$ n'est pas régulier en se servant du lemme d'itération.
- 2. En utilisant le résultat de la question précédente, montrer que : $\{\omega \in \{a,b\}^* \mid |\omega|_a = |\omega|_b| = 2k, k \ge 0\}$ n'est pas régulier.
- 3. En utilisant les résultats des questions précédentes, montrer que : $\{a^ib^jc^{2k}\mid i+j=2k\}$ n'est pas régulier.

FIGURE 1: Un automate à déterminiser

FIGURE 2: Un automate étendu

Exercice 6 Méthode de Floyd (5 points)

On considère l'automate étendu de la Figure 2, où q_0 est l'état initial et q_t est l'état terminal.

- $1. \ \, {\rm Calculer} \,\, {\rm les} \,\, {\rm ex\'ecutions} \,\, {\rm de} \,\, {\rm cet} \,\, {\rm automate} \,\, {\rm dans} \,\, {\rm les} \,\, {\rm \acute{e}tats} \,\, {\rm initiaux} \,\, {\rm suivants} \,\, :$
 - (a) $\sigma(t) = 1, \, \sigma(s) = 0 \text{ et } \sigma(n) = 3$
 - (b) $\sigma(t) = 1, \, \sigma(s) = 0 \text{ et } \sigma(n) = 5$
 - (c) $\sigma(t) = 1$, $\sigma(s) = 0$ et $\sigma(n) = 6$
- 2. Montrer, en utilisant la méthode de Floyd, que l'automate satisfait la spécification

$$(P,Q)$$
 où $P \equiv s = 0 \land t = 1 \land n \ge 0$ et $Q \equiv r = \frac{n^2(n+1)^2}{4}$

Indication : Pour P_{q_1} , compléter le prédicat suivant :

$$s = i^{\cdots} \wedge t = (i + \cdots)^2 \wedge \cdots$$