1 Definition

A relation R is a Boyce-Codd Normal Form (BCNF) if for every non-trivial functional dependency $X \to A$ on R, X is a superkey of R.

2 Example

Consider our relation schema in Figure 1.

One of the (non-trivial) functional dependencies we identified was:

 $instructor \rightarrow office$

Clearly, instructor is not a superkey of the relation.

Therefore, we say that the FD instructor \rightarrow office *violates* BCNF, and the relation schema is not BCNF.

3 Decomposition Algorithm

while some relation schema is not in BCNF:

choose some relation schema R not in BCNF choose some FD $X \to Y$ on R that violates BCNF (optional) expand Y so that $Y = X^+$ (closure of X) let Z be all attributes of R not included in X or Y replace R with two new relations

 R_1 , containing attributes X, Y R_2 , containing attributes X, Z

Note, this algorithm is ${\it not}$ deterministic - you can decompose differently if you choose differently

4 Decomposition Notes

- The final step above is accomplished simply by projection onto the attributes in R_1 and R_2 . (Recall that this may result in fewer tuples.)
- After decomposing, you will need to establish which FDs now apply to R_1 and R_2 as well as determine their superkeys, in order to determine if they are now in BCFN.
- The optional step of expanding Y is recommended, as it tends to result in fewer larger relation schemas, and may reduce the problem faster - e.g. consider decomposing instructor →office.

5 Decomposition Example

Let's use the relation schema in Figure 1 as an example.

For this schema, we listed the following FDs:

- instructor →office (violates BCNF)
- instructor →email (violates BCNF)
- {course id, section} →instructor (does not violate BCNF)
- course id \rightarrow title (violates BCNF)

What superkeys do we have?

Answer: any superset of our only key, which is {course id, section}.

- Let's pick our first violating FD to work with first: instructor →office
- Next, expand the RHS as much as possible (we want the closure of instructor)

 $instructor \rightarrow \{instructor, office, email\}$

• Now we decompose into two new tables, shown in the next slide:

- $-R_1 = \pi_{instructor, office, email}(R)$
- $R_2 = \pi_{instructor, course id, section, title}(R)$
- Now table R_1 is in BCNF (note that this is not guaranteed by the algorithm we could have had other violating FDs)
- Table R_2 has a violating FD though: course id \rightarrow title
- Decomposition of R_2 via course id \rightarrow title:

$$course_id^+ = \{course_id, title\}$$

• Decompose into

$$R_3 = \pi_{\text{course_id. title}}(R_2)$$

$$R_4 = \pi_{\text{instructor, course_id, title}}(R_2)$$

- Done!
 - Three tables remain: R_1 , R_3 , R_4
 - All non-essential redundancy has been removed
 - Each table now represents a fundamental entity
 - * $R_1 = instructor info$
 - * $R_3 = \text{course info}$
 - * R_4 = section info

6 Review

- **Superkey**: a subset *X* of attributes of *R*: no two tuples of *R* will ever agree on *X*.
- FD (Functional Dependency): $X \to Y$ on R: whenever two tuples agree on X, they must also agree on Y.
- if a is a superkey $a \to \{a, b, \dots\}$

7 Correctness of Decomposition

Two requirements for correct decomposition so that we can recover original relation from decomposition using natural joins

- 1. natural join of decomposition must contain all attributes of the original relation
- 2. lossless join property: natural join of decomposition relations results in exactly the same tuples we had before decomposition

8 Multivalued Dependencies (MVD)

Def: An MVD X woheadrightarrow Y exists on a relation R if whenever there are two tuples t_1 and t_2 which agree on attribute X, then there also exists a tuple t_3 (which could be t_1 or t_2) such that the following are true:

- 1. $t_3[x] = t_1[x] = t_2[x]$
- 2. $t_3[y] = t_2[y]$
- 3. $t_3[z] = t_1[z]$ where z is everything in R not in X and Y.

By symmetry, there must also exist t_4 with $t_4[x] = t_1[x]$, $t_4[y] = t_4[y]$, $t_4[z] = t_2[z]$.