Chapter 2 Section 2

Andrew Taylor

April 6 2022

The letter L can be represented by the vectors (0,2) and (1,0).

The following problems ask for a linear transformation of the letter L. In the following problems, give the matrix of the transformation and plot the result.

Problem 1. Scale L by a factor of $\frac{1}{2}$

Solution. The matrix of the transformation is

$$\begin{bmatrix} 0.5 & 0.0 \\ 0.0 & 0.5 \end{bmatrix}$$

After the scaling, the L looks like this

Note that in creating this shape, we scaled both vectors that make up the L.

Problem 2. Rotate L ninety degrees counterclockwise

Solution. The matrix of the transformation is

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

After the rotation, the L looks like this

Problem 3. Reflect L about the Y axis

Solution. The matrix of the transformation is

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

The plot looks like this

Problem 4. Reflect L about the X axis

Solution. The matrix of the transformation is

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Problem 5. Rotate L forty five degrees counterclockwise

Solution. The matrix of the transformation is

$$\begin{bmatrix} \cos(\frac{\pi}{4}) & -1 * \sin(\frac{\pi}{4}) \\ \sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{bmatrix}$$

Problem 6. Find the orthogonal projection of L onto the x-axis **Solution.** The matrix of the transformation is

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Problem 7. Find the orthogonal projection of L onto the y-axis **Solution.** The matrix of the transformation is

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

