Ejercicios

1) seen P, Q projectiones sitoponelles $P^*=P$ demostrar que PQ p.o. PQ=QP

$$\Leftarrow$$
) $(PQ)^* = PQ$, $(PQ)^2 : PQPQ = P^2Q^2 = PQ$

2) sea U matriz medreole. demostrar que U miteria, U² = I (=> 7 P p.o. t.q U = I - 2 P

$$P^{2} = \frac{1}{2} (I - U)$$

$$P^{2} = \frac{1}{4} (I + U^{2} - 2U) = \frac{1}{2} (I - U)$$

$$P^* = \frac{1}{2}(I - O^*) = \frac{1}{2}(I - O)$$

<=) $U^2 = (I-2P)(I-2P) = I-4P+4P^2 = I$ esto es como decir $U^{-1} = U$, y $U^* = (I-2P)^* = I-2P = U = U^{-1} \Rightarrow U$ unitaria

3) see $A \in C^{m \times n}$, $T \in C^{m \times p}$ toles que $Ker A = \{0\} \Rightarrow m > n$, $Ker T = \{0\} \Rightarrow m > p$

sea $b \in \mathcal{L}^{M}$, sea C = AT y seau

· x e C^m sol de núvirus acadreslos Ax = b

$$y \in \mathcal{C}^{p}$$
 " $y \in \mathcal{C}^{p}$

demostron que 116-A×112 ≤ 116-Cy 12 y que si m=p se trène la identioled Tinvertible para ver la designaldes!

|| b - Cy ||₂ = || b - ATy ||₂ = || b - A × ||₂ > || b - A × ||₂ L

x'

x solución de

musuims cuadrados

para ver la ridentidad:

- . Timertible: see y=T-1x
 - => 116-Cy, 11=116-ATT-1x11=116-Ax1
- · y solución muico de minimos cuadrados
 - => 116-Cy11 < 116-Cy.11
- . usanolo las obesigualobales e identidades obtenidas || b-Ax || & || b-Cy || & || b-Cy || = || b-Ax || => || b-Cy || = || b-Ax ||
- Si $A \in C^{m \times m}$, see $||A||_F^2 = \sum_{j=1}^m \sum_{j=1}^m |A_{ij}|^2$

 - b) Si $A = U \sum V^*$ SVD => $\|A\|_F = \left(\frac{F}{\sum_{k=1}^{r}} \sigma_{k^2}\right)^{r/2}$ F = Fg(A)

observaciones:

- en la pruebe de existenció de la 8VD hemos tombien esencialmente demostrado que III UAV* III 2 = III A III2
- b) se obtience e portir de a)...

para demostron a) emperemos con $\|UA\|_F^2$ = $Z = |(UA)_{ij}|^2 = Z = Z = |(UA)_{ij}|^2 = Z = |(UA)_{ij}|^2 = Z = |(UA)_{ij}|^2 = Z = Z = |(UA)_{ij}|^2 = Z = |(UA)_{ij}|^2 = Z = |(UA)_{ij}|^2 = Z$

$$= \sum_{j} \|A^{(j)}\|_{2}^{2} = \sum_{j} \sum_{k} |A_{kj}|^{2} = \|A\|_{F}^{2}$$

pour ver $\|AV\|_F = \|A\|_F \quad \forall \quad v \text{ in toute}$ se procede de la meisma nancia...