RISC-V REFERENCE

RISC-V Instruction Set

Core Instruction Formats

31	27	26	25	24	20	19		15	14	12	11	7	6		0	
	funct7			rs2		rs1		funct3		rd		opcode		R-type		
	imm[11:0]					rs1			funct3		rd		opcode			I-type
iı	imm[11:5]			rs2		rs1		fun	ct3	imm[4:0]		opcode		S-type		
im	imm[12 10:5]		rs	2	rs1			funct3		imm[4:1 11]		op	code		B-type	
imm[31:12]								rd	op	code		U-type				
imm[20 10:1 11 19:12]									rd	op	code		J-type			

RV32I Base Integer Instructions

e	FMT	Opcode	funct3	funct7	Description (C)	Note
	R	0110011	0x0	0x00	rd = rs1 + rs2	
	R	0110011	0x0	0x20	rd = rs1 - rs2	
	R	0110011	0×4	0x00	rd = rs1 ^ rs2	
	R	0110011	0x6	0x00	rd = rs1 rs2	
	R	0110011	0x7	0x00	rd = rs1 & rs2	
Left Logical	R	0110011	0x1	0x00	rd = rs1 << rs2	
Right Logical	R	0110011	0x5	0x00	rd = rs1 >> rs2	
Right Arith*	R	0110011	0x5	0x20	rd = rs1 >> rs2	msb-extends
ess Than	R	0110011	0x2	0×00	rd = (rs1 < rs2)?1:0	
ess Than (U)	R	0110011	0x3	0x00	rd = (rs1 < rs2)?1:0	zero-extends
Immediate	I	0010011	0x0		rd = rs1 + imm	
Immediate	I	0010011	0x4		rd = rs1 ^ imm	
mmediate	I	0010011	0x6		rd = rs1 imm	
Immediate	I	0010011	0x7		rd = rs1 & imm	
Left Logical Imm	I	0010011	0x1	imm[5:11]=0x00	rd = rs1 << imm[0:4]	
Right Logical Imm	I	0010011	0x5	imm[5:11]=0x00	rd = rs1 >> imm[0:4]	
Right Arith Imm	I	0010011	0x5	imm[5:11]=0x20	rd = rs1 >> imm[0:4]	msb-extends
ess Than Imm	I	0010011	0x2		rd = (rs1 < imm)?1:0	
ess Than Imm (U)	I	0010011	0×3		rd = (rs1 < imm)?1:0	zero-extends
Byte	I	0000011	0×0		rd = M[rs1+imm][0:7]	
Half	I	0000011	0x1		rd = M[rs1+imm][0:15]	
Word	I	0000011	0x2		rd = M[rs1+imm][0:31]	
Byte (U)	I	0000011	0x4		rd = M[rs1+imm][0:7]	zero-extends
Half (U)	I	0000011	0x5		rd = M[rs1+imm][0:15]	zero-extends
. Byte	S	0100011	0×0		M[rs1+imm][0:7] = rs2[0:7]	
e Half	S	0100011	0x1		M[rs1+imm][0:15] = rs2[0:15]	
e Word	s	0100011	0x2		M[rs1+imm][0:31] = rs2[0:31]	
ch ==	В	1100011	0×0		if(rs1 == rs2) PC += imm	
ch !=	В	1100011	0x1		if(rs1 != rs2) PC += imm	
ch <	В	1100011	0x4		if(rs1 < rs2) PC += imm	
ch >	В	1100011	0x5		if(rs1 >= rs2) PC += imm	
ch < (U)	В	1100011	0x6		if(rs1 < rs2) PC += imm	zero-extends
$ch \geq (U)$	В	1100011	0×7		if(rs1 >= rs2) PC += imm	zero-extends
And Link	J	1101111			rd = PC+4; PC += imm	
o And Link Reg	I	1100111	0×0		rd = PC+4; PC = rs1 + imm	
Upper Imm	U	0110111			rd = imm << 12	
Upper Imm to PC	Ū	0010111			rd = PC + (imm << 12)	
ronment Call			0×0	imm=0x0	` ,	
ronment Break						
ronment C	all	all I	all I 1110011	all I 1110011 0x0	all I 1110011 0x0 imm=0x0	all I 1110011 0x0 imm=0x0 Transfer control to OS