Esercizi su Funzioni

Varie

- Tracce extra
 - Sul sito del corso

Esercizi

- funz_max.cc
- funz_fattoriale.cc

Documentazione

- Il codice va documentato (commentato)
 - Leggibilità
 - Riduzione degli errori
 - Manutenibilità
- Documentare gli algoritmi utilizzati

Documentazione: funzioni

- Interfaccia della funzione
 - Valori in ingresso
 - Valori in uscita
- Algoritmo implementato

Collaudo (testing)

- Se non avessimo aggiunto il controllo in funz_fattoriale.cc
 - Cosa accadeva se si inseriva un numero negativo?
- In generale come si va alla ricerca degli errori?
- Innanzitutto occorre provare il programma

Esaustività 1/2

Se un programma funziona correttamente per un valore di ingresso, si può affermare che sia corretto?

Esaustività 2/2

- Ovviamente no
- Senza entrare in ulteriori dettagli, per questo corso diciamo solo che bisogna cercare di provare il programma per tutti gli ingressi possibili, o almeno per un alta percentuale degli ingressi possibili
- Quale logica e quale approccio usare?

Testing a scatola aperta

- Testing a scatola aperta (white box)
 - Mi metto nei panni del compilatore prima e soprattutto dell'esecutore dopo
 - Cerco di capire come vanno le cose al variare dei rami di codice eseguiti
 - I commenti nel programma aiutano

Testing a scatola chiusa

- Testing scatola chiusa (black box)
 - Si opera sui valori di ingresso supponendo di non sapere nulla di come funziona il programma
 - Si provano i valori <u>agli</u> <u>estremi, nel mezzo, fuori</u> <u>dagli estremi</u> degli intervalli consentiti

Fallimento 1/2

- Se troviamo un caso in cui il programma non si comporta correttamento, siamo di fronte ad un caso di fallimento del programma
- Vi sono fondamentalmente due tipi di fallimento:

Fallimento 2/2

- 1)Il programma viene terminato forzatamente dal sistema operativo
 - Esempio: divisione per zero
- 2)Il programma non viene terminato forzatamente, ma fornisce risultati scorretti

Debugging

- Ed una volta scoperto che il programma fallisce?
- Vuol dire che il programma contiene un errore
 - Spesso si usa il termine bug o baco
- Il passo successivo è <u>trovare</u>
 <u>l'errore</u>

Analisi del codice

- La prima cosa che possiamo fare per trovare l'errore è rileggere con cura il codice
 - Cercare di capire dove sta l'errore
 - Facendosi guidare, se possibile dal tipo di fallimento
 - Spesso non è facile

Tracing 1/3

- Come faccio a capire dove e perché fallisce un programma?
- Cosa accade all'esecuzione di ciascuna istruzione?
 - Eventuale cambio del flusso di esecuzione in conseguenza di
 - Lettura di un qualche valore
 - Scrittura di un valore

Tracing 2/3

- Cosa guida l'esecuzione di un programma?
 - Il valore delle variabili
- Come posso guardare il valore delle variabili mentre il programma è in esecuzione?
- Stampandolo (tracing)!

Tracing 3/3

- Inserire una cout << in un ciclo può creare problemi?
- Cosa succede se il ciclo non termina più?
- Possibili soluzioni?
 - Inserire delle letture da stdin per controllare il ritmo delle iterazioni durante l'esecuzione

Collaudo e correzione errori

- D'ora in poi, ogni volta che si scrive un programma:
 - Collaudarlo sempre a scatola aperta e chiusa
 - Trovare e correggere autonomamente gli errori, eventualmente con l'aiuto del tracing
- Adottare questo approccio vi condurrà verso la professionalità
 - nonché verso un buon voto alla prova pratica ...

Somma di quadrati

- somma_quadrati.cc
 - Mettere in pratica quanto appreso sul tracing se ci si imbatte in casi di fallimento

Valori di ritorno ed eccezioni

- Ritornare
 - -1 oppure in generale
 - un valore fuori dall'intervallo di valori di output attesi
 - in caso di errore è una buona norma?
- Soluzione migliore: meccanismo delle eccezioni del C++ (non lo vedremo in questo corso)

Riassunto

- Abbiamo visto
 - Chiamata di funzione con due parametri
 - Suddivisione di un doppio ciclo tra il main ed una funzione
 - Utilizzo delle cout << per il tracing

Difficoltà del debugging

- A questo appunto dovremmo aver acquisito abbastanza esperienza da aver capito fino in fondo che:
 - correggere gli errori è faticoso
- In merito c'è un problema molto serio:
 - Se introduciamo un secondo errore prima di esserci accorti del precedente, il debugging diviene molto più difficoltoso e lungo

Combinazione errori

- Se ne introduciamo anche un terzo siamo in guai seri
- In sintesi, la difficoltà ed il tempo di debugging aumentano esponenzialmente col numero di errori
 - perché gli errori possono
 combinare i loro effetti

Aggiunta codice ed errori

- Ma la nostra esperienza dovrebbe già averci insegnato che a peggiorare la situazione c'è anche il fatto che
 - Ogni riga di codice che si aggiunge ad un programma può introdurre nuovi errori
- Detto tutto questo, come facciamo a sviluppare il nostro programma tenendo al minimo l'attività di debugging?

Ciclo di sviluppo 1/3

- Un approccio estremamente efficace è il seguente:
 - Dato l'insieme di linee di codice che si dovrebbero scrivere per aggiungere una certa funzionalità ad un programma (o per scrivere il programma da zero)
 - Non scrivere tutto il codice subito
 - per poi iniziare a revisionarlo, compilarlo, collaudarlo solo dopo aver finito di scriverlo

Ciclo di sviluppo 2/3

- Al contrario, seguire <u>sempre</u> il seguente ciclo di sviluppo
 - Dividere la scrittura in micro-fasi successive:
 - Aggiungere una quantità minima di nuovo codice, tale che il programma dovrebbe perlomeno compilarsi
 - Analizzare subito il codice aggiunto
 - Provare a compilare
 - Se compila procedere con la successiva micro-fase, altrimenti correggere gli errori

Ciclo di sviluppo 3/3

- Se in una certa micro-fase si è aggiunto ormai abbastanza codice da avere una nuova versione funzionante del programma, allora
 - anche se ancora non si è arrivati alla versione completa a cui si deve arrivare,
 - collaudare subito la nuova versione parziale

Quantità minima di codice

- Qual è la quantità minima di codice per ogni micro-fase?
 - Non vi è una risposta precisa
 - Dipende dal problema e dalla confidenza che il programmatore ha nel codice che sta scrivendo
- In ogni caso, l'<u>errore tipico</u> di un programmatore inesperto è quello di <u>scrivere troppo</u> prima di provare

Approccio vincente

- D'ora in poi adottare sempre questo approccio nello sviluppo dei programmi
- Non farlo
 - quasi sempre allunga il tempo necessario per arrivare ad un programma funzionante
 - aumenta la probabilità che vi rimangano errori
 - rende estremamente più spiacevole lo sviluppo del programma

Generazione numeri primi

- gen_primi.cc
- Nella soluzione vedremo:
 - Invocazione di funzioni all'interno delle funzioni
 - Uso dell'istruzione vuota

Compiti per casa

- In ordine di difficoltà:
 - gen_primi_gemelli.cc
 - congettura_goldbach.txt
 - funz_quadrato_pieno.cc
 - verifica_data.cc
 - funz_pot_pos_overflow.txt
 - ricevimento_iter.cc