On Sequences Associated to the Invariant Theory of Rank Two Lie Algebras

Yi Zhang

Department of Foundational Mathematics Xi'an Jiaotong-Liverpool University, Suzhou, China

Joint work with Alin Bostan, Jordan Tirrell and Bruce Westbury

The On-Line Encyclopedia of Integer Sequences (OEIS)

OEIS is an online database of integer sequences, such as Fibonacci numbers (A000045), Catalan numbers (A000108).

Yi Zhang, XJTLU 2/:

Two families of sequences in OEIS

a (OEIS tag)	0	1	2	3	4	5
A059710	1	0	1	1	4	10
A108307	1	1	2	5	15	51
A108304	1	2	5	15	52	202

The first family of sequences (octant sequences)

a (OEIS tag)	0	1	2	3	4	5
A151366	1	0	2	2	12	30
A236408	1	1	3	9	33	131
A001181	1	2	6	22	92	422
A216947	1	3	11	49	221	1113

The second family of sequences (quadrant sequences)

- ▶ Those sequences are associated to the invariant theory of the exceptional simple Lie algebra G_2 of rank 2.
- The quadrant sequences are related to the octant sequences by the branching rules for SL(3) of G_2 .

Octant sequences

The first family of sequences can be interpreted as lattice walks restricted to the octant. We call them octant sequences.

- ▶ A059710: enumerates the multiplicities of the trivial representation in the tensor powers of *V*, which is the 7-D fundamental representation of *G*₂.
- ▶ A108307: enumerates enhanced 3-noncrossing set partitions.
- ▶ A108304: enumerates 3-noncrossing set partitions.

(Lin, 2018; Gil and Tirrell, 2019): A108307 and A108304 are related by the binomial transform.

Motivation and Contribution

(Bostan, Tirrell, Westbury and Z., 2019): A059710 and A108307 are also related by the binomial transform.

Mihailovs' conjecture: Let $T_3(n)$ be the *n*-th term of A059710. Then T_3 is determined by $T_3(0) = 1$, $T_3(1) = 0$, $T_3(2) = 1$ and

$$14(n+1)(n+2) T_3(n) + (n+2)(19n+75) T_3(n+1) +2(n+2)(2n+11) T_3(n+2) - (n+8)(n+9) T_3(n+3) = 0.$$

(Bostan, Tirrell, Westbury and Z., 2019): Three independent proofs of Mihailovs' conjecture.

- ► Two proofs are based on binomial relation between A059710 and A108307, together with a result by Bousquet-Mélou and Xin.
- ▶ The third one is a direct proof by the method of algebraic residues, which leads to closed formulae for the generating function of *T*₃ in terms of hypergeometric functions.

Quadrant sequences

The second family of sequences can be interpreted as lattice walks restricted to the quadrant. We call them quadrant sequences.

- ▶ A151366: enumerates nonpositive bipartite trivalent graphs.
- ▶ A236408: enumerates pasting diagrams.
- ▶ A001181: enumerates Baxter permutations.
- ▶ A216947: enumerates 2-coloured noncrossing set partitions.

Question: What are relations between quadrant sequences?

Motivation and Contribution

(Marberg, 2013): a combinatorial proof that A151366, A001181, and A216947 are related by binomial transforms.

(Bostan, Tirrell, Westbury and Z., 2019): Derive a uniform recurrence equation for quadrant sequences and show that they are related by binomial transform by the representation theory of simple Lie algebras.

Outline

 binomial relation between the first and second octant sequences

▶ Three independent proofs of Mihailovs' conjecture

▶ Recurrence relations for the quadrant sequences

Preliminaries

Definition 1 Let G be a reductive complex algebraic group and let V be a representation of G. The sequence associated to (G,V), denoted a_V , is the sequence whose n-th term is the multiplicity of the trivial representation in the tensor power $\otimes^n V$.

Example 1 Let V be the 7-D fundamental representation of G_2 . Then A059710 is the sequence associated with (G_2, V) .

Let a be a sequence with n-th term a(n), the binomial transform of a is the sequence, denoted $\mathcal{B}a$, whose n-th term is

$$\sum_{i=0}^{n} \binom{n}{i} a(i).$$

Preliminaries

Lemma 1 Assume a_V is the sequence associated to (G, V) as specified in Definition 1. Then $a_{V \oplus \mathbb{C}} = \mathcal{B}a_V$.

Lemma 2 Assume a enumerates walks in a lattice, confined to a domain D, using a set of steps S. Then \mathcal{B} a also enumerates walks in a lattice restricted to D with steps $S \coprod \{0\}$.

Lemma 3 Let G(t) be the generating function of a. For $k \in \mathbb{Z}$, denote the generating function of \mathcal{B}^k a by \mathcal{B}^kG . Then

$$(\mathcal{B}^k G)(t) = \frac{1}{1-k \ t} G\left(\frac{t}{1-k \ t}\right).$$

Let V be the 7-D fundamental representation of G_2 . Then

A059710 is the sequence associated to (G_2, V) . Let $T_3(n)$ be its n-th term.

A108307 enumerates enhanced 3-noncrossing set partitions. Let $E_3(n)$ be its n-th term.

In terms of lattice walks, we can interpret T_3 and E_3 as follows:

Steps in weight lattice of G_2

Steps in octant related to $E_3(n)$

In terms of lattice walks, we can interpret T_3 and E_3 as follows:

If we make a linear transformation $(x, y) \rightarrow (x + y, y)$, then it identifies the six non-zero steps, as well as the two domains.

Recall: Lemma 2 Assume a enumerates walks in a lattice, confined to a domain D, using a set of steps S. Then \mathcal{B} a also enumerates walks in a lattice restricted to D with steps $S \mid \{0\}$.

Recall: Lemma 2 Assume a enumerates walks in a lattice, confined to a domain D, using a set of steps S. Then \mathcal{B} a also enumerates walks in a lattice restricted to D with steps $S \mid I \mid \{0\}$.

By Lemma 2 and the previous figures, we conclude that E_3 is the binomial transform of T_3 .

Recall: Lemma 2 Assume a enumerates walks in a lattice, confined to a domain D, using a set of steps S. Then \mathcal{B} a also enumerates walks in a lattice restricted to D with steps $S \mid I \mid \{0\}$.

By Lemma 2 and the previous figures, we conclude that E_3 is the binomial transform of T_3 .

(Lin, 2018; Gil and Tirrell, 2019): A108307 and A108304 are related by the binomial transform.

Recall: Lemma 1 Assume a_V is the sequence associated to (G, V) as specified in Definition 1. Then $a_{V \oplus \mathbb{C}} = \mathcal{B}a_V$.

Thus, the octant sequences are sequences associated to

$$(G_2, V)$$
, $(G_2, V \oplus \mathbb{C})$, $(G_2, V \oplus 2\mathbb{C})$.

First proof of Mihailovs' conjecture

Mihailovs' conjecture: Let $T_3(n)$ be the *n*-th term of A059710. Then T_3 is determined by $T_3(0) = 1$, $T_3(1) = 0$, $T_3(2) = 1$ and

$$14(n+1)(n+2) T_3(n) + (n+2)(19n+75) T_3(n+1) +2(n+2)(2n+11) T_3(n+2) - (n+8)(n+9) T_3(n+3) = 0.$$

(Bousquet-Mélou and Xin, 2005): Let $E_3(n)$ be the *n*-th term of A108307. Then E_3 is given by $E_3(0) = E_3(1) = 1$, and

$$8(n+3)(n+1)E_3(n) + (7n^2 + 53n + 88)E_3(n+1) - (n+8)(n+7)E_3(n+2) = 0.$$

First proof of Mihailovs' conjecture

Recall: We prove that E_3 is the binomial transform of T_3 . Thus,

$$T_3(n) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} E_3(k).$$

Set
$$f(n, k) = (-1)^{n-k} \binom{n}{k} E_3(k)$$
.

- **b** By Bousquet-Mélou and Xin's result, f(n, k) is holonomic function, which satisfies ordinary difference equations for n and k, respectively.
- ▶ Idea: Using creative telescoping method (Zeilberger, 1990), which is an algorithmic approach to compute a differential/difference equation for the integration/sum of holonomic functions, to drive a recurrence equation for T₃.

Yi Zhang, XJTLU 15/2ï

First proof of Mihailovs' conjecture

Using the Koutschan's Mathematica package HolonomicFunctions.m that implements Chyzak's algorithm for creative telescoping, we find exactly the recurrence equation in Mihailovs' conjecture.

Prove

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Prove

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Set $f(n,k) = \binom{n}{k}$ and $F(n) = \sum_{k=0}^{n} \binom{n}{k}$. Find

$$1 \cdot f(n+1,k) + (-2) \cdot f(n,k) = \Delta_k \left(\frac{k}{k-n-1} \cdot f(n,k) \right) \quad (1)$$

Prove

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Set $f(n,k) = \binom{n}{k}$ and $F(n) = \sum_{k=0}^{n} \binom{n}{k}$. Find

$$1 \cdot f(n+1,k) + (-2) \cdot f(n,k) = \Delta_k \left(\frac{k}{k-n-1} \cdot f(n,k) \right) \quad (1)$$

Taking sums on both sides of (1) for k from $-\infty$ to ∞ , we get

$$\sum_{k=0}^{n+1} f(n+1,k) - 2\sum_{k=0}^{n} f(n,k) = 0$$

because f(n, k) = 0 if k < 0 or k > n. Thus, we have

Prove

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Set $f(n,k) = \binom{n}{k}$ and $F(n) = \sum_{k=0}^{n} \binom{n}{k}$. Find

$$1 \cdot f(n+1,k) + (-2) \cdot f(n,k) = \Delta_k \left(\frac{k}{k-n-1} \cdot f(n,k) \right) \quad (1)$$

Taking sums on both sides of (1) for k from $-\infty$ to ∞ , we get

$$\sum_{k=0}^{n+1} f(n+1,k) - 2\sum_{k=0}^{n} f(n,k) = 0$$

because f(n, k) = 0 if k < 0 or k > n. Thus, we have

$$F(n+1)-2F(n)=0.$$

Together with F(0) = 1, we get $F(n) = 2^n$.

Second proof of Mihailovs' conjecture

Recall: We prove that E_3 is the binomial transform of T_3 . Let $\mathcal{T}(t) = \sum_{n \geq 0} T_3(n)t^n$ and $\mathcal{E}(t) = \sum_{n \geq 0} E_3(n)t^n$. Then

$$\mathcal{T}(t) = rac{1}{1+t} \cdot \mathcal{E}\left(rac{t}{1+t}
ight).$$

- **)** By Bousquet-Mélou and Xin's result, we can derive an ODE for $\mathcal{E}(t)$.
- Vsing the closure properties of holonomic function (the sum, product and algebraic substitution of holonomic functions is still holonomic), we can derive an ODE for $\mathcal{T}(t)$ and convert it into a linear recurrence for $T_3(n)$, which is exactly the recurrence equation in Mihailovs' conjecture.

Third proof of Mihailovs' conjecture

Idea: In terms of lattice walks, we can interpret $T_3(n)$ to be the constant term of $W K^n$, where

$$K = (1 + x + y + xy + x^{-1} + y^{-1} + (xy)^{-1}),$$

and

$$W = x^{-2}y^{-3}(x^2y^3 - xy^3 + x^{-1}y^2 - x^{-2}y + x^{-3}y^{-1} - x^{-3}y^{-2} + x^{-2}y^{-3} - x^{-1}y^{-3} + xy^{-2} - x^2y^{-1} + x^3y - x^3y^2).$$

Let $\mathcal{T}(t) = \sum_{n\geq 0} T_3(n)t^n$. Then $\mathcal{T}(t)$ is the constant coefficient $[x^0y^0]$ of W/(1-tK). In other words, $\mathcal{T}(t)$ is equal to the algebraic residue of W/(xy-txyK), which is proportional to the contour integral of W/(xy-txyK) over a cycle.

Third proof of Mihailovs' conjecture

Using creative telescoping method, we can compute a 6-th order ODE for $\mathcal{T}(t)$. Moreover, by using factorization of differential operators, we can show that $L_3(\mathcal{T}(t))=0$, where $\partial=\frac{d}{dt}$ and

$$L_3 = t^2 (2 t + 1) (7 t - 1) (t + 1) \partial^3 + 2 t (t + 1) (63 t^2 + 22 t - 7) \partial^2 + (252 t^3 + 338 t^2 + 36 t - 42) \partial + 28 t (3 t + 4).$$

Converting it into a linear recurrence for $T_3(n)$, we get exactly the recurrence equation in Mihailovs' conjecture.

Yi Zhang, XJTLU 20/27

Closed formulae

By factorization of the operator L_3 and algorithms for solving 2-nd order ODEs, we derive the following closed formula for $\mathcal{T}(t)$:

$$\mathcal{T}(t) = \frac{1}{30 t^5} \left[R_1 \cdot {}_2F_1 \left(\frac{1}{3} \, {}_2^{\frac{2}{3}} ; \phi \right) + R_2 \cdot {}_2F_1 \left(\frac{2}{3} \, {}_3^{\frac{4}{3}} ; \phi \right) + 5 P \right],$$

where

$$R_1 = \frac{(t+1)^2 (214 t^3 + 45 t^2 + 60 t + 5)}{t-1},$$

$$R_2 = 6 \frac{t^2 (t+1)^2 (101 t^2 + 74 t + 5)}{(t-1)^2},$$

and

$$\phi = \frac{27(t+1)t^2}{(1-t)^3}, \qquad P = 28t^4 + 66t^3 + 46t^2 + 15t + 1.$$

Closed formulae

By elliptic curve theory, we derive an alternative formula for $\mathcal{T}(t)$:

$$\frac{P}{6 t^5} + \frac{(7 t - 1) (2 t + 1) (t + 1)}{360 t^5} \Big((155 t^2 + 182 t + 59) (11 t + 1) H(t) + (341 t^3 + 507 t^2 + 231 t + 1) (5 t + 1) H'(t) \Big),$$

where

$$H(t) = \frac{1}{g_2^{1/4}} \cdot {}_2F_1\left(\frac{1}{12}, \frac{5}{12}; \frac{1728}{J}\right),$$

$$J = \frac{(t-1)^3 (25 t^3 + 21 t^2 + 3 t - 1)^3}{t^6 (1-7 t) (2 t+1)^2 (t+1)^3},$$

and

$$g_2 = (t-1)(25t^3 + 21t^2 + 3t - 1).$$

Yi Zhang, XJTLU 22/27

Transcendence and asymptotics

Using those closed formulae, we can show that that $\mathcal{T}(t)$ is a transcendental power series and its n-th coefficient

$$T_3(n) \sim C \cdot \frac{7^n}{n}$$
, where $C = \frac{4117715}{864} \frac{\sqrt{3}}{\pi} \approx 2627.6$.

Yi Zhang, XJTLU 23/27

Recurrence relations for quadrant sequences

Definition 2 Let \tilde{V} be the defining representation of SL(3) and denote the dual by \tilde{V}^* . For $k \ge 0$, we define S_k to be the sequence associated to $(SL(3), \tilde{V} \oplus \tilde{V}^* \oplus k \mathbb{C})$.

Remark: SL(3) is the maximal subgroup of G_2 . Let V be the 7-D fundamental representation of G_2 . Then S_k is the the sequence associated to $(SL(3), (V \oplus k\mathbb{C}) \downarrow_{SL(3)})$.

Theorem (Bostan, Tirrell, Westbury and Z., 2019): The quadrant sequences S_0, S_1, S_2, S_3 are identical to the sequences in the second family listed in OEIS.

Lemma 4 Let \mathcal{G}_k be the generating function of \mathcal{S}_k , where $k \geq 0$. Then \mathcal{G}_k is the constant coefficient of $[x^0y^0]$ of W/(1-tK), where

$$K = k + x + y + x^{-1} + y^{-1} + \frac{x}{y} + \frac{y}{x}$$

and

$$W = 1 - \frac{x^2}{y} + x^3 - x^2y^2 + y^3 - \frac{y^2}{x}.$$

Recurrence relations for quadrant sequences

By Lemma 4, S_3 is identical to the sequence A216947.

(Marberg, 2013): The *n*-th term $C_2(n)$ of S_3 is given by $C_2(0) = 1$, $C_2(1) = 3$ and

$$(n+5)(n+6) \cdot C_2(n+2) - 2(5n^2 + 36n + 61) \cdot C_2(n+1) + 9(n+1)(n+4) \cdot C_2(n) = 0.$$

By Lemma 1, S_k 's are related by binomial transforms. Thus, by Lemma 3, the generating function of S_k is

$$\mathcal{G}_k(t) = rac{1}{1-kt} \cdot \mathcal{G}_3\left(rac{t}{1-kt}
ight)$$

where $G_3(t)$ is the generating function of S_3 .

Yi Zhang, XJTLU 25/27

Recurrence relations for quadrant sequences

Using closure properties of holonomic functions, we derive a uniform 4-th order recurrence equation for S_k with k as a parameter.

By comparing the recurrence equations between S_k 's and the sequences in the second family, and then checking initial terms, we show that

Corollary: The recurrence relations stated in OEIS for the sequences in the second family are true.

Yi Zhang, XJTLU 26/27

Summary

- A combinatorial proof of binomial relation between the first and second octant sequences
- Three independent proofs of Mihailovs' conjecture
 - ▶ Two proofs are based on binomial relation between the first and second octant sequences
 - A direct proof by the method of algebraic residues, which leads to closed formulae for the generating function of the first octant sequence
- A unified proof for recurrence relations of the quadrant sequences

Summary

- A combinatorial proof of binomial relation between the first and second octant sequences
- Three independent proofs of Mihailovs' conjecture
 - ▶ Two proofs are based on binomial relation between the first and second octant sequences
 - A direct proof by the method of algebraic residues, which leads to closed formulae for the generating function of the first octant sequence
- A unified proof for recurrence relations of the quadrant sequences

Thanks!