《計算機網路》

今年檢事官的計算機網路試題,都是十分基本的問題,沒有太過於艱澀的考題,且以觀念題爲主,觀念清楚的應考者,應可以取得不錯的成績。

試題評析

第一題是網路設備的名詞解釋,絕大部份應考者都可以取得分數。第二題則是考滑動窗口的基本觀念,取分並不難;唯題目所給條件似乎可以再詳細一些,否則合理的答案會不只一種。第三題是考有線與無線區網的兩個基本協定,亦可以容易拿到分數。第四題是分封交換網路傳輸時間的計算,平時演練過題型應可拿到分數,而且題目是最基本的計算型態。第五題是交換方式的比較;第六題則是 TCP 與 UDP 的比較,這兩題也是很基本。

綜觀今年檢事官的計算機網路試題,應考者都應該可以拿到很好的成績,預計取得 85 分或更高分的應考 者當不在少數。

一、解釋名詞:(二十五分)

- (一)增益器 (repeater)
- (二)橋接器 (bridge)
- (三)路徑器 (router)
- (四)第二層交換器 (layer-2 switch)
- (五)DNS (Domain Name System)

【擬答】

- (一)增益器是 OSI layer 1 的設備,主要在於將某條線路所接收到的訊號,往其他線路上增強之後輸出,以延伸線路的長度限制。
- (二)橋接器是 OSI layer 2 的設備,檢查訊框的正確性,錯誤會要求前一個節點重送;根據 MAC 位址來轉送訊框到正確的線路上,可以分隔網段(segment)以使不同的網段成爲獨立碰撞領域(collision domain),降低碰撞的發生機率。橋接器可以用來連接兩種不同的區域網路,進行訊框格式的轉換。
- (三)路徑器是 OSI layer 3 的設備,根據 network address,查尋路徑表(routing table)來選擇路徑,以轉送封包;路由器之間也可以相互交換路由資訊,來建立動態的路由表。
- (四)第二層交換器是 OSI layer 2 的設備,由先前經過的封包(或訊框)的 IP 位址(或 MAC 位址)學習每個位址所在的線路,來決定一個封包(或訊框)應該往那介面傳送,才能將其送到目的地。
- (五)DNS 是記載 domain name 與 IP 位址對應關係的系統,由階層式組織的多個 DNS servers 所構成,當用戶端以 domain name 要與 server 建立連線之前,會以 domain name 向 DNS server 查詢 server 的 IP 位址,然後才能與 server 建立連線。
- 二、IEEE 802.2 邏輯鏈結控制 (LLC) Type 2 提供滑動視窗的服務,工作站 A 與工作站 B 間採用滑動視窗傳送,工作站 A 的傳送視窗及接收視窗大小分別為 3 及 5,工作站 B 的傳送視窗及接收視窗大小分別為 5 及 3。請整理出以下之工作站 A 及工作站 B 傳送視窗及接收視窗結果。 (二十分)
 - (一)工作站 A 送三筆訊框給工作站 B, 其中第二筆流失。
 - (二)工作站 B 送四筆訊框給工作站 A,其中第三筆流失。
 - (三)工作站 A 送兩筆訊框給工作站 B, 其中第一筆流失。
 - (四)工作站 B 送四筆訊框給工作站 A,其中最後一筆流失。
 - (五)工作站 B 送五筆資料給工作站 B。

【擬答】

()		·							
(—)	A 傳送視窗	1	2	3	4	5	6	7	
	D按收租存	1	2	3	4	5	6	7	
()	B 接收視窗		2	3	4		0	/	
(二)	A 接收視窗	1	2	3	4	5	6	7	
	B 傳送視窗	1	2	3	4	5	6	7	
(=)	DI等达顺图	1						,	
(三)	A 傳送視窗	1	2	3	4	5	6	7	
	B 接收視窗	1	2	3	4	5	6	7	
(四)	A 接收視窗	1	2	3	4	5	6	7	8
	B 傳送視窗	1	2	3	4	5	6	7	
(五)	B 接收視窗	1	2	3	4	5	6	7	8
	B傳送視窗	1	2	3	4	5	6	7	

三、試簡單說明 IEEE 802.3 CSMA/CD 通訊協定及 IEEE 802.11 無線區域網路 (Wireless LAN) 通訊協定。(二十分)

【擬答】

- (—)IEEE802.3 CSMA/CD
 - (1)先偵測通道是否有載波,若沒有時立刻傳送出 frame。
 - (2)若偵測到有其它機器在使用通道,則一直偵測下去,等候到通道閒置時立即傳送 frame。
 - (3)送出訊框之後,必須同時由通道再將訊號接收回來,若收到的與接收的訊號不同,表示有碰撞發生。
 - (4)若發生碰撞時,會提前停止傳送,以節省通道頻寬。並且隨機等候一段的時間,再重新傳送。
- (二)IEEE802.11 CSMA/CA

- (1)資傳送之前,傳送端與接收端先互相交換控制訊框,傳送端會送一個要求傳送的控制框(RTS, request to send),說明傳送的資料框長度,接收端回應(CTS, clear to send)後才開始傳送。
- (2)資料傳送時,接收端會對每一個收到的訊框做出回應(ACK)。
- (3)唯一會碰撞的是兩個同時送出的 RTS,可以用隨機等候一段時間的方式來解決。
- 四、考慮傳送一個檔案大小為F bits 的資料從工作站A 到工作站B,工作站A、B 之間有兩條傳輸線(1 ink)和一個交換器(switch)S,因此工作站A 經由一條傳輸線連到交換器S,再經由另一條傳輸線從交換器S 連到工作站B,每條傳輸線的傳輸速率為B,兩條傳輸線的傳輸總延遲(delay)時間為d,交換器B 的處理時間(nodal processing)為B,假設傳輸時沒有發生壅塞(uncongested),所以沒有 ucuing 延遲(uncuing ucuing ucuing

【擬答】

$$d+P+\frac{S}{R}+\frac{F}{R}$$

五、試簡述電路交換網路(circuit-switched network)和封包交換網路(packet-switched network)之優缺點。(十分)

【擬答】

	優點	缺 點
circuit-switched	組封包。 3	1.建立連線(setup)需要較多的時間。 2.由於資料並不是持續不停傳送,故線路 的利用率會較低。 3.訊息有錯誤時,必須重傳整個訊息。
packet switched	1.不需要建立線路的時間。 2.訊息有錯誤時,只要重傳有錯的部份即可。 3.實際線路可以讓多個傳輸工作共用,故線 路的利用率較高。 4.當網路有壅塞狀況時,可以動態選擇其他 可用的路徑,以避開壅塞區域。	1.分割與重組封包會有時間的花費。 2.每個封包需要加上標頭,會增加傳送的 總資料量。 3.交換元件(如路由器)需要根據封包標頭 中的目的位址,來選擇路徑,需要花時 間。

六、TCP和 UDP 有何異同?請舉例一種應用程式採用 TCP 協定及一種應用程式採用 UDP 協定,並說明採用之理由。 (十分)

【擬答】

協定	特點	應用		
TCP	1.連接導向 2.可靠傳輸 3.全雙工傳輸 4.流量控制 5.錯誤控制	FTP:因爲整個檔案的資料內容都必須正確無誤,所以必須採用可靠的 TCP 協定來傳送。		
UDP	1.非連接導向 2.不可靠傳輸 3.單工傳輸	RTP(Real-time Transport Protocol):因 爲要快速傳送資料,且允許些許資料的錯 誤,故採用工作負擔較輕的 UDP。		