Question number	Scheme	Marks	
3 a	$\left \overrightarrow{OA} \right = \sqrt{p^2 + 16}$ and $\left \overrightarrow{OB} \right = \sqrt{4p^2 + 4p + 2}$		
	$ \sqrt{2} \overrightarrow{OA} = \overrightarrow{OB} \Rightarrow 2p^2 + 32 = 4p^2 + 4p + 2$	M1	
	$2p^2 + 4p - 30 = 0 \Rightarrow p^2 + 2p - 15 = 0$	M1	
	(p+5)(p-3)=0	M1	
	p = 3	A1 (4)	
b	$\overrightarrow{AB} = -3i + 4j + i + (2 \times 3' + 1)j = -2i + 11j$	M1 A1	
	$\left \overrightarrow{AB} \right = \sqrt{4' + 121'} \left[= 5\sqrt{5} \right]$	M1	
	$'\left[\frac{1}{5\sqrt{5}}\right]"\left(-2\mathbf{i}+11\mathbf{j}\right)'$	dM1	
	$(\underline{+}) \frac{1}{5\sqrt{5}} \left(-2\mathbf{i} + 11\mathbf{j} \right)$	A1 (5)	
	Total 9 marks		

Part	Mark	Notes
(a)	M1	For use of $\sqrt{2} \left \overrightarrow{OA} \right = \left \overrightarrow{OB} \right $ i.e., $\sqrt{2} \times \sqrt{p^2 + (-4)^2} = \sqrt{1 + (2p+1)^2} \Rightarrow \left(\sqrt{2} \times \sqrt{p^2 + 16} = \sqrt{4p^2 + 4p + 2} \right)$ They may find $\left \overrightarrow{OA} \right $ and $\left \overrightarrow{OB} \right $ separately. Award when combined with $\sqrt{2}$ and
	M1	condone arithmetical slips. For forming a 3TQ in any order. [The correct 3TQ is $2p^2 + 4p - 30 = 0$ or $p^2 + 2p - 15 = 0$]
	M1	For a correct attempt to solve their 3TQ by any valid method. They must reach a value of <i>p</i> for this mark.
	A1	For $p = 3$ If they also give $p = -5$ without evidence of rejecting this solution, withhold the A mark
(b)	M1	For the vector statement $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$ o.e. This can be implied by sight of $\overrightarrow{AB} = '-2'\mathbf{i} + '11'\mathbf{j}$ or $\overrightarrow{AB} = \begin{pmatrix} '-2' \\ '11' \end{pmatrix}$ If there is no vector statement you must check their vector for substitution of their p .
	A1	For the correct \overrightarrow{AB} (allow unsimplified) $(\overrightarrow{AB} = -2\mathbf{i} + 11\mathbf{j})$ and also allow $\overrightarrow{AB} = \begin{pmatrix} -2\\11 \end{pmatrix}$ Award for sight of $-2\mathbf{i} + 11\mathbf{j}$ only.
	M1	For using Pythagoras theorem on their \overrightarrow{AB} i.e., $\sqrt{(-2')^2 + 11'^2}$
	dM1 For correct method to find a unit vector using their values and their \overrightarrow{AB} NB: this mark is dependent on the previous M mark	
	A1	For $\frac{1}{5\sqrt{5}}(-2\mathbf{i}+11\mathbf{j})$ oe $\left[\text{Allow } -\frac{1}{5\sqrt{5}}(-2\mathbf{i}+11\mathbf{j})\right]$ OR $\overrightarrow{AB} = \pm \frac{1}{5\sqrt{5}}\begin{pmatrix} -2\\11 \end{pmatrix}$