

Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0121 –Arquitetura de Computadores

Aritmética Binária

Prof. Gustavo Girão girao@imd.ufrn.br

Baseado no material do Prof. Ricardo Weber (UFRGS)

Roteiro

- Números com sinal e sem sinal
- Adição e Subtração
- Multiplicação
- Divisão
- Representação de ponto flutuante.

Introdução

- Objetivos desta aula
 - Descrever como os números negativos são representados.
 - Mostrar o que acontece se uma operação cria um número muito maior do que poderia ser representado
 - Mostrar como são implementadas as operações aritméticas

- Existem algumas abordagens para representar números positivos e negativos em um sistema computacional.
 - Veremos 3 diferentes abordagens:
 - ♦ Sinal e Magnitude.

 - ♦ Complemento de 2.

- Sinal e magnitude.
 - O número binário possui um bit específico para tratamento do sinal.
 - ♦ Este bit é o primeiro bit. Quando 1 negativo, quando 0 positivo
 - Os demais bits representam o número.
 - o Exemplos:

$$000 = +0$$

$$001 = +1$$

$$010 = +2$$

$$011 = +3$$

$$100 = -0$$

$$101 = -1$$

$$110 = -2$$

$$111 = -3$$

- Sinal e Magnitude
 - o Problemas:
 - ♦ 0 positivo e 0 negativo.
 - ♦ Implementação em hardware mais complicada.
 - ♦ Operações aritméticas se tornam mais complicadas.

- Complemento de 1.
 - Melhoria da representação de sinal e magnitude. Utilizado ainda em alguns sistemas computacionais.
 - Utiliza 1 bit para indicar o sinal
 - Exemplos:

$$000 = +0$$

$$001 = +1$$

$$010 = +2$$

$$011 = +3$$

$$100 = -3$$

$$101 = -2$$

$$110 = -1$$

$$111 = -0$$

- Como é calculado um número em complemento de 1.
- Para números positivos, procedimento normal.
 - 00000111 = 7
- Para números negativos
 - 1000 0111 = 120.
- Para calcular o número negativo basta negarmos a parte sem sinal
- No exemplo acima
 - 000 0111 = 1111 000 = 120, como o sinal do número é 1, então fica -120.

- Complemento de 1
 - Ainda possui 0 positivo e 0 negativo
 - Também problemático para algumas operações aritméticas

- Complemento de 2
 - Melhoria da representação de complemento de 1, mais utilizada nos sistemas computacionais atuais.
 - Utiliza 1 bit para indicar o sinal
 - Exemplos:

$$000 = +0$$

$$001 = +1$$

$$010 = +2$$

$$011 = +3$$

$$100 = -4$$

$$101 = -3$$

$$110 = -2$$

$$111 = -1$$

- Como é calculado um número em complemento de 2.
- Para números positivos, procedimento normal.
 - 00000111 = 7
- Para números negativos
 - 1000 0111 = 121.
- Para calcular o número negativo basta negarmos a parte sem sinal (complemento de 1) e somarmos com 1.
- No exemplo acima
 - 000 0111 = 1111 000 + 1 = 121, como o sinal do número é 1, então fica -121.

- Complemento de 2
 - Só possui 0 (como positivo)
 - Facilita em muito as operações aritméticas (veremos isso nos próximos slides)

- Grande parte dos processadores dão suporte a instruções com sinal ou sem sinal.
- Basicamente, nas instruções sem sinal, o bit de sinal será considerado como bit integrante do número.
 - Todos os números são calculados como se fossem números positivos.
- Muitas das instruções que veremos para o Mips, possuem uma instrução correspondente para fazer a avaliação de números sem levar em conta o sinal.
 - Exemplos
 - ♦ sltu, sltiu, addu, subu, etc.

- Adição e Subtração
 - São as operações aritméticas mais simples para os processadores.
 - As operações funciona da mesmo forma que aprendemos na escola, só que agora, com números binários.
 - Exemplos:

$$0111$$
 0111 0110 $+ 0110$ $- 0101$

- Adição e Subtração
 - São as operações aritméticas mais simples para os processadores.
 - As operações funciona da mesmo forma que aprendemos na escola, só que agora, com números binários.
 - Exemplos:

$$0111$$
 0111 0110 $+ 0110$ $- 0101$ 0001 0001

- Adição e Subtração
 - A notação complemento de 2 facilita estas tarefas.
 - A seguinte subtração 7 6 pode ser feita das seguintes formas:
 - ♦ Forma tradicional

16

- Adição e Subtração
 - A notação complemento de 2 facilita estas tarefas.
 - A seguinte subtração 7 6 pode ser feita das seguintes formas:
 - ♦ Complemento de 2 (como uma soma).

- Observem que no último caso tivemos um pequeno problema:
 - A soma resultou em um valor que não pode ser representado em 32 bits.
 - Quando isso acontece, dizemos que ocorreu overflow.
 - Para os casos, como do exemplo acima, o overflow não teria maiores problemas, visto que podemos descartar o dígito 33 sem quaisquer problemas.

Aritmética binária avançada

- Detectando Overflow
- Multiplicação
- Divisão
- Ponto flutuante.

Detectando Overflow

- Como vimos, operações aritméticas estão sujeitas a overflow.
- O overflow acontece nos seguintes casos:
 - Ao somarmos dois positivos, obtemos um negativo.
 - Ao somarmos dois negativos, obtemos um positivo.
 - Ao subtrairmos um negativo de um positivo e obtemos um negativo.
 - Ao subtrairmos um positivo de um negativo e obtemos um positivo.

Detectando Overflow

O quadro a seguir ilustram estes casos:

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥0	≥0	< 0
A + B	< 0	< 0	≥0
A-B	≥0	< 0	< 0
A – B	< 0	≥0	≥0

Pode ocorrer overflow se A for 0?

Efeitos do overflow

- Se o bit extra gerado, for necessário, pode acontecer uma interrupção, (exceção):
 - Basicamente, ao detectar a interrupção, o controle saltará para um endereço predefinido para tratamento da interrupção.
 - O endereço interrompido é salvo para uma possível retomada.
 - ♦ No caso do MIPS, o endereço de retorno é salvo no registrador EPC (Exception program counter).
 - ♦ De novo, veremos estes detalhes na unidade 2.

Efeitos do overflow

- A linguagem de programação, bem como a finalidade da aplicação pode influir para este comportamento.
 - É provável que em um sistema de controle de vôo o software tenha uma preocupação maior com interrupção do que em uma lista de exercícios.
- O MIPS introduz algumas novas instruções (unsigned) para que overflow não seja detectado.
 - o addu, addiu, subu.

- Operação mais complexa do que adição
 - Na verdade ela representa um conjunto de adições.
- Necessita de mais tempo e mais área de silício para ser implementada
- Multiplicação quando operando é negativo:
 - Converta e multiplique.

• De volta ao primeiro grau ©

	1000	
X	1001	
	1000	
	0000	
0	000	
10	00	
10	01000	

De volta ao primeiro grau ☺

De volta ao primeiro grau ☺

Controle

Divisão

- Menos frequente e mais peculiar que a multiplicação.
- Pode ser efetuada através de sucessivas subtrações e deslocamentos.

Divisão: Como o hardware trabalha

Divisor 1000_{ten} | 1001010_{ten}

Dividend

Divisão: Como o hardware trabalha

Divisor
$$1000_{\text{ten}}$$
 1001010_{ten} Dividend -1000

Divisão: Como o hardware trabalha

Divisor
$$1000_{\text{ten}}$$
 1001010_{ten} Dividend -1000 10

Divisão: Como o hardware trabalha

	100	
$\mathrm{Divisor}\ 1000_{\mathrm{ten}}$	1001010 _{ten}	Dividend
	_1000	
	10	
	101	

MD019

Divisão: Como o hardware trabalha

	$1001_{ m ten}$	Quotient
$\mathrm{Divisor}\ 1000_{\mathrm{ten}}$	1001010 _{ten}	Dividend
	-1000	
	10	
	101	
	1010	
	-1000	
	$\overline{10_{ ext{ten}}}$	Remainder

34

REPRESENTAÇÃO DE PONTO FLUTUANTE

Ponto Flutuante

- Precisamos de uma maneira para representar
 - Números com frações, por exemplo, 3,1416
 - Números muito pequenos, por exemplo, 0,00000001
 - Números muito grandes, por exemplo, 3,15576 x 109
- Uma boa representação para os valores expressos anteriormente é a notação científica.
 - \circ 3,0 x 10⁰
- No caso de números binários a notação científica equivalente seria:
 - o 1,1 x 2¹

Ponto Flutuante

- Representação
 - Sinal, expoente, significando

 - ♦ Mais bits para a fração fornece mais precisão
 - ♦ Mais bits para o expoente, aumenta o range de valores.
- Os computadores, em geral, utilizam o padrão de ponto flutuante IEEE 754.
 - o Precisão única (float): expoente de 8 bits, fração de 23 bits.
 - Precisão dupla (double): expoente de 11 bits, fração de 52 bits.

O formato de precisão simples (float) ocupa 32

 O formato de precisão dupla (double) ocupa 64 bits.

- O bit mais à esquerda guarda o sinal do número:
 - o bit = 0 → número positivo
 - o bit = 1 → número negativo

 A mantissa é representada na forma normalizada (base binária):

$$1.b_{-1}b_{-2}b_{-3}\dots$$

- A mantissa é composta por:
 - o Algarismo 1
 - o Ponto de separação
 - Fração

- O algarismo 1 e o ponto de numeração não precisam ser armazenados, pois são os mesmos para todos os números reais representados.
- Caso a fração possua menos bits que o esperado, zeros devem ser colocados à direita, pois não têm significância.

fração = 1,110011

23 bits

fração

 Por razões históricas, o co-processador de ponto flutuante Intel não utiliza parte inteira implícita, ou seja, a parte inteira também é representada juntamente com a fração.

O formato de precisão estendida ocupa 80 bits.

- O expoente é representado na notação deslocada, ou excesso de N
- Maior expoente representável: 2ⁿ⁻¹
 - Representado por: 11...11
- Menor expoente representável: -(2ⁿ⁻¹ 1)
 - Representado por: 00...00

Notação excesso de N

Decimal	Complemento de dois	Notação excesso de N
+4		
+3	011	111
+2	010	110
+1	001	101
0	000	100
-1	111	011
-2	110	010
-3	101	001
-4	100	000

- Notação deslocada
 - Representação do valor zero: 01...11.
 - Representação do valor um: 10...00.
 - Demais valores: somar ao zero (deslocamento).

• Exemplo:

Mais exemplos:

sinalizado

Ponto flutuante: Operações aritméticas

- Operações aritméticas envolvendo ponto flutuantes sofrem do mesmo problema apresentado nas operações inteiras (overflow).
- Além de overflow, operações de ponto flutuante podem também resultar em underflow
 - Underflow é quando o resultado obtido é pequeno demais para ser representado em um número de ponto flutuante.

Ponto flutuante × Ponto fixo

Ponto flutuanto Adição

Ponto Flutuante: Multiplicação

Ponto Flutuante: Arredondamento

- Além do underflow, podemos ter problemas relativo a forma de arredondamento.
- Basicamente existem quatro formas de arredondamento:
 - Sempre arredondar para cima.
 - Sempre arredondar para baixo.
 - Truncamento.
 - Arredondar para o próximo par.

Referências

- STALLINGS, William. Arquitetura e organização de computadores. 10. ed. São Paulo: Pearson, 2017. 814 p.
 - Capítulo 9
- TOCCI, Ronald J; Widmer, Neal S. Sistemas Digitais: principios e Aplicações. 11. ed. São Paulo SP: Pearson, 2011, 817 p. ISBN 9788576050957
 - Capitulo 1

 PATTERSON, David A; HENNESSY, John L. Organização e projeto de computadores: A interface HARDWARE/SOFTWARE. Rio de Janeiro: Elsevier, 2005, 3ª edição.

Próxima Aula

Funções lógicas básicas