Introduction to fracture mechanics (mostly LEFM)

G. Anciaux

Civil Enginering, Materials Science, EPFL

Outline

- Historical perspective
- Atomistic view of fracture and defects
- Griffith's theory
- Irwin, stress intensity factor
- Mode mixity
- Plastic-zone size estimates
- Cohesive zone model
- Dynamic fracture

- **T. Anderson**. Fracture Mechanics: Fundamentals and Applications, Fourth Edition. (CRC Press, 2017).
- L. Freund. Dynamic Fracture Mechanics. (Cambridge University Press, 1990).
- **F. Barras**. When Dynamic Cracks Meet Disorder: A Journey along the Fracture Process Zone. EPFL (Lausanne), 2018.

Some rare structural failure events

Hawaii, April

24, 1988, plane looses 1/3 of its roof due to stress fracture, at 6,000 meters altitude...

Mineapolis,

August 1, 2007, collapse of I-35W bridge

Accidents used to be not so rare...

Historical perspective

- Hammurabi code (1750 BC): Darwinian design
- May 1453, siege of Constantinople: huge cast iron cannon explodes after firing three shots, killing 40 people
- Industrial revolution, modern era: accident skyrocket due to poor design (no stress analysis) and lack of materials understanding
 - 1919, explosion of molasse tank in Boston (40 dead, https://www.britannica.com/topic/Great-Molasses-Flood)
 - o 1920's: 200 dead/year in the US due to rupture of axis of wheels in trains
- Consequence: engineers sometimes use security coefficients of 10 in structures
- 1st significant progress: Griffith's theory 1920 (but still "academic" = intellectual curiosity)
- Founding element : liberty ships story (Fracture Mechanics born after World War II)
 - o German submarines sink cargo ships at 3X construction rate
 - Need drastic new design; call Henri Kaiser (construction engineer, built Hoover dam); Kaiser invents revolutionnary procedure: «all-welded hull», i.e. no rivets; success!!
 - o Until 1943: one vessel broke in 2 while sailing between Siberia and Alaska
 - o 2700 boats built in WWII, of which 400 sustained fracture under «low stress»
 - 10 broke in 2

Reasons:

- Defects in weld (inexperienced welder)
- Fracture initiated at deck (where there is a stress concentration)
- Low toughness steel (especially at low temperature)
- And no rivets to block propagating crack

\$\Large \Rightarrow\$ Irwin is called to start a lab at Naval Research Laboratory to study fracture mechanics

Birth of modern fracture mechanics:

- Defects and cracks are present in each structure.
- Can be detected with *Non-destructive Examination* (NDE)
- Engineer balances cost of reparation with risk of failure
- Concept of damage tolerance and fracture mechanics analysis (today backed up with numerical modeling)

S. Antolovich, A. Saxena, W. Gerberich. Fracture Mechanics - An Interpretive Technical History. Mechanics Research Communications. **91**,46-86. (2018)

Atomic view of fracture

Fracture \$\equiv\$ breaking of bonds

 $\$ Large E_{bond} = \int_{r_0}^\infty P dr\$\$

- Approximation: \$P(r) = P_c \sin(\frac{\pi r}{\lambda})\$
- Small displacements: \$P(r) = P_c \frac{\pi r}{\lambda}\$
- Bond rigidity: \$K = P_c\cdot(\pi/\lambda)\$
- $\simeq = P_c/A$ and $K = EA/\lambda$
- \$\sigma_c = \frac{E}{\pi} \$

\$\gamma_s = \frac{1}{2} \int_0^\lambda \sigma_c \sin\left(\frac{\pi r}
{\lambda}\right)dr = \sigma_c \frac{\lambda}{\pi} \equiv \text{surface energy} \equiv
[J\cdot m^{-2}]\$\$

Defects: create stress concentrations

Charles Inglis, 1913

Elliptical hole in plate: curvature
\$\rho = b^2/a\$

{b}\right) \Longleftrightarrow
\sigma_A = \sigma\left(1 +
2\sqrt{\frac{a}{\rho}}\right)\$\$

Limit \$a \gg b\$

\$\$\sigma_A = 2 \sigma \sqrt{\frac{a} {\rho}}\$\$

Problem, when $\rho \to 0$, \sigma_A \to \infty\$

i.e. in thin crack limit, all materials would break (leads to Griffith's theory)

But cracks cannot be infinitely thin, they plastify;

Atomically sharp crack: \$\rho = \lambda\$

\$\$\sigma_A = \sim 2\sigma
\sqrt{\frac{a}{\lambda}}\$\$

Fracture occurs if \$\sigma_A = \sigma_c\$

\$\$\Large \sigma_{\text{failure}} = \sqrt{\frac{E \gamma_s}{4a}}\$\$

Rq: atomistically sharp crack cannot exist due to plasticity

Griffith's energy criteria (1920): Simple and powerful model

Plate under far field load:

Alan Arnold Griffith

Definitions

- \$A = 2aB\$: cracked surface
- \$dA\$: surface growth of crack
- \$dE_{pot}\$: potential energy variation (external and internal forces)
- \$dW_s\$: work necessary to create new surfaces

Critical point for propagation of a crack:

 $\frac{dE}{dA} = \frac{dE_{pot}}{dA} + \frac{dW_s}{dA} \leq 0$ potential energy must be greater than energy necessary to create cracks}\$\$

At critical point:

 $\frac{dE_{pot}}{dA} = \frac{dW_s}{dA}$

It can be shown (Inglis) that

 $E_{pot} = E_{pot}^0 - \pi$

 $\label{eq:continuous} $$ \frac{\alpha^2 B}{E} = E_{pot}^0 - \frac{\pi^2 A^2}{4EB}$$$

so that:

 $\frac{dE_{pot}}{dA} = \frac{2\pi}{\sin^2 2 A}{4EB}$

Surface energy proportional to \$A\$

 $W_s = 2A \gamma_s$

so that:

 $\frac{dW_s}{dA} = 2\gamma_s$

\$\Rightarrow\$ Critical stress based on energetic criterion:

\$\$\Large \sigma_f = \sqrt{\frac{2E\gamma_s}{\pi a}}\$\$

- Very close to Inglis (\$\sqrt{\frac{E \gamma_s}{4a}}\$)
- Works ok for brittle materials (not good for ductile materials)
- Does not require defining curvature \$\rho\$, unlike Inglis
- Profound model:

Small cracks heal, large cracks grow

Griffith's length: $a_c = \frac{2E\gamma_amma_s}{\pi^2}$

From global to local analysis: stresses at crack tip

Rupture modes

\$\exists\$ analytical solutions: Westgaard 1939, Irwin 1957, Sneddon 1946, Williams 1957

H. Westergaard. Bearing Pressures and Cracks: Bearing Pressures Through a Slightly Waved Surface or Through a Nearly Flat Part of a Cylinder, and Related Problems of Cracks. Journal of Applied Mechanics. **6**,A49-A53. (1939)

I. Sneddon, N. Mott. *The Distribution of Stress in the Neighbourhood of a Crack in an Elastic Solid*. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. **187**(1009),229-260. (1946)

G. Irwin. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. Journal of Applied Mechanics. **24**(3),361-364. (1957)

\$\$\sigma_{ij} = \left(\frac{K}
{\sqrt{2\pi r}}\right) f_{ij}(\theta) +
\sum_{m = 0}^\infty A_m r^{\frac{m}}
{2}}g_{ij}^{(m)}(\theta)\$\$

Limit \$r \to 0\$, leading term is in \$\frac{1}{\sqrt{r}}\$

Stress singularity at crack tip!

M. Williams. *On the Stress Distribution at the Base of a Stationary Crack*. Journal of Applied Mechanics. **24**(1),109-114. (1956)

3 rupture modes

Mode I (opening)

Mode II (in-plane shear) Mode III (out-of-plane shear)

\$f_{ij}^I(\theta)\$, \$f_{ij}^{II}(\theta)\$ and \$f_{ij}^{III}(\theta)\$ are known adimentional functions of \$\theta\$, and are independent of the geometry

image from Anderson

Derivation of K: for through crack in an infinite plate under mode I opening

\$K\$ depends on geometry and loading

• Known analytical derivation for through crack:

 $K_I = \sigma \$

Other example, edge crack:

\$\$K_I = 1.12 \sigma\sqrt{\pi a}\$\$

Analytical derivation difficult

• Alternative: numerical evaluation

More analytical cases found in:

T. Anderson. Fracture Mechanics: Fundamentals and Applications, Fourth Edition. (CRC Press, 2017).

Equivalence between G and K: through crack example

Energy release rate:

 $G = -\frac{dE_{pot}}{dA} = \frac{\pi}{\pi} 2 a}{E}$

Stress intensity factor:

 $K_I = \sigma \$

Gives:

 $SG = \frac{K_I^2}{E}$

Mixed-mode (with Poisson effects):

 $$S = \frac{K_I^2}{E/(1-\ln u^2)} + \frac{K_{II}^2}{E/(1-\ln u^2)} + \frac{K_{III}^2}{2\mu}$

Key points of LEFM: Griffith 1921, Westergaard 1939, Irwin 1957

- Stress intensity factor: $\simeq (r, \theta) \cdot (K_{\infty}) = K_{\infty}$
- Predict energy release by crack advance: $G = \frac{1-\frac{2}{E}(K_I^2 + K_{II}^2) + \frac{K^2_{III}}{2\mu}}$
- Analyze the stability of crack in materials \$G < G_c\$

Crack tip plasticity: K dominated rupture

Stress singularity at crack tip, but stresses cannot be infinite

\$\$\Rightarrow \text{A plastic zone must exist}\$\$

Plastic/Process zone size can be estimated

• with the **Yield stress** \$\sigma_Y\$

 $\ \ = \frac{1}{\pi c_{1}}\left(\frac{K}{\sigma_{Y}\right)^2}$

Numerically:

- we will add a non-linear zone at crack tip to remove singularity
- cohesive zone model

Dynamic Fracture Mechanics: freund 1990, Kostrov and Das 1988

Moving crack (mode-III) in the \$x\$ direction at velocity \$v\$

Elastodynamic wave equation (mode-III)

 $u_{z,xx} + u_{z,yy} = \frac{1}{c_s^2} u_{z,tt}$

Apply the Lorentz transform: System of coordinates at tip

 $x_1 = \frac{x-v t}{\sqrt{1-v^2/c_s/2}}$, \quad x_2 = y, \quad x_3 = z, \quad t' = \frac{1 - vx/c^2}{\sqrt{1-v^2/c_s^2}}

For a semi-infinite crack (elliptic PDE if $v\l c_s\$, no shocks), equation shape is preserved

 $\$ \left(1 - \frac{v^2}{c_s^2}\right) u_{3,11} + u_{3,22} = \frac{1}{c_s^2} u_{3,t't'}

For a steady state propagating crack \$\partial/\partial t' = 0\$

 $\$ \left(1 - \frac{v^2}{c_s^2}\right) u_{3,11} + u_{3,22} = 0\$\$

Dynamic Stress Intensity Factor:

 $\$ \sigma_{yy} \simeq \frac{K^d_I}{\sqrt{2\pi r}} \sigma(v, \theta) = \frac{1}{\left(1-v^2/c_s^2\right)^4} \frac{K^s_I}{\sqrt{2\pi r}} \sigma(v, \theta)

\$K^s\$: static stress intensity factor

\$K^d\$: dynamic stress intensity factor Contraction of space when approaching wave speed (larger stresses) L. Freund. Dynamic Fracture Mechanics. (Cambridge University Press, 1990).

F. Barras. When Dynamic Cracks Meet Disorder: A Journey along the Fracture Process Zone. EPFL (Lausanne), 2018.

Asymptotic fields for dynamics crack: Mode I, Freund 1990

$$\sigma_{ij} = \frac{K_I(t)}{\sqrt{2\pi r}} \Sigma_{ij}^I(\theta, v) + \sigma_{ij}^{(1)} + o(1) \text{ as } r \to 0.$$
 (4.3.10)

The functions $\Sigma_{ij}^{I}(\theta, v)$ that represent the angular variation of stress components for any value of instantaneous crack tip speed v are

$$\begin{split} \Sigma_{11}^{I} &= \frac{1}{D} \left\{ (1 + \alpha_s^2) (1 + 2\alpha_d^2 - \alpha_s^2) \frac{\cos\frac{1}{2}\theta_d}{\sqrt{\gamma_d}} - 4\alpha_s \alpha_d \frac{\cos\frac{1}{2}\theta_s}{\sqrt{\gamma_s}} \right\}, \\ \Sigma_{12}^{I} &= \frac{2\alpha_d (1 + \alpha_s^2)}{D} \left\{ \frac{\sin\frac{1}{2}\theta_d}{\sqrt{\gamma_d}} - \frac{\sin\frac{1}{2}\theta_s}{\sqrt{\gamma_s}} \right\}, \\ \Sigma_{22}^{I} &= -\frac{1}{D} \left\{ (1 + \alpha_s^2)^2 \frac{\cos\frac{1}{2}\theta_d}{\sqrt{\gamma_d}} - 4\alpha_d \alpha_s \frac{\cos\frac{1}{2}\theta_s}{\sqrt{\gamma_s}} \right\}, \\ \text{where} \\ \gamma_d &= \sqrt{1 - (v \sin\theta/c_d)^2}, \quad \tan\theta_d = \alpha_d \tan\theta, \\ \gamma_s &= \sqrt{1 - (v \sin\theta/c_s)^2}, \quad \tan\theta_s = \alpha_s \tan\theta. \end{split} \tag{4.3.12}$$

L. Freund. Dynamic Fracture Mechanics. (Cambridge University Press, 1990).

Asymptotic fields for dynamic crack: Mode I, Freund 1990, Kostrov and Das 1988

Hoop stress

F. Barras. When Dynamic Cracks Meet Disorder: A Journey along the Fracture Process Zone. EPFL (Lausanne), 2018.

Asymptotic fields for dynamic crack: Maximum hoop stress

Dynamic energy release rate: Freund 1990, Kostrov and Das 1988

 $\label{eq:general} $$G(a, v) = \frac{1-\frac2}{E}\left[A_I(v) K_I^2 + A_{III}(v) K_{III}^2\right] + \frac{1}{2\mu} A_{III}(v) K_{III}^2$$$

- L. Freund. Dynamic Fracture Mechanics. (Cambridge University Press, 1990).
- **B. Kostrov, S. Das**. *Principles of Earthquake Source Mechanics*. (Cambridge University Press, 1989).

K dependance on crack speed: Freund, 1990

Freund's assumption: $\$ \\lambda \| \lambda \| \k(a, v) = \k(v) \| \k(a, v = 0) \\$

\$\$k_I(v) \simeq \frac{1-\nu/c_R} \\sqrt{1-v/c_d}\\$\$\$\$k_{II}(v) \simeq \\frac{1-\nu/c_R}{\sqrt{1-v/c_s}}\$\$\$\$k_{III}(v) \simeq \sqrt{1-v/c_s}\$\$\$\$

Dynamic energy release rate: Freund, 1990

 $\G(a, v) = \frac{1-nu^2}{E}A(v)k(v)^2K_I^2(a, v = 0) = G(a, v = 0)g(v)$

Crack tip equation of motion: Freund, 1999

- Infinite homogeneous plate
- Uniform crack speed
- \$G_{I, II} > 0\$ when \$v < c_R\$ \$\Rightarrow\$ Admissible crack speed

 $\label{lem:c_R} $$g \simeq G^{\footnotesize (1-\frac{v}{c_R}\right) \qquad \text{text{for } $v \leq c_R$$}$

\$G < 0\$, \$c_R < v < c_S\$ \$G \leq 0\$, \$v > c_S\$ \$G > 0\$, \$v = \sqrt{2} c_s\$ (mode \$II\$)

Table 2.1 – Summary of the admissible crack speeds predicted by LEFM.

	$0 < v_c < c_R$	$c_R \leq v_c < c_s$	$c_s < v_c < c_d$
Mode I	/	Х	Х
Mode II	/	X	1
Mode III	✓	✓	X

L. Freund. Dynamic Fracture Mechanics. (Cambridge University Press, 1990).

F. Barras. When Dynamic Cracks Meet Disorder: A Journey along the Fracture Process Zone. EPFL (Lausanne), 2018.

And is it working?

Kobayashi et al, 1974

Mode-I: no!

Mode-II: no!

A. Kobayashi, B. Wade, W. Bradley, S. Chiu. *Crack Branching in Homalite-100 Sheets*. Engineering Fracture Mechanics. **6**(1),81-92. (1974)

R. Archuleta. *A Faulting Model for the 1979 Imperial Valley Earthquake*. Journal of Geophysical Research: Solid Earth. **89**(B6),4559-4585. (1984)

A. Rosakis, O. Samudrala, D. Coker. *Cracks Faster than the Shear Wave Speed*. Science. **284**(5418),1337-1340. (1999)

A. Rosakis. *Intersonic Shear Cracks and Fault Ruptures*. Advances in Physics. **51**(4),1189-1257. (2002)

... but why?

Scheibert et al. 2010

Burridge 1973, Andrews 1976

Mode-I: Interplay between crack and microstructure

Mode-II: non-singular fracture theory

R. Burridge. Admissible Speeds for Plane-Strain Self-Similar Shear Cracks with Friction but Lacking Cohesion. Geophysical Journal International. **35**(4),439-455. (1973)

D. Andrews. *Rupture Velocity of Plane Strain Shear Cracks*. Journal of Geophysical Research (1896-1977). **81**(32),5679-5687. (1976)

J. Scheibert, C. Guerra, F. Célarié, D. Dalmas, D. Bonamy. *Brittle-Quasibrittle Transition in Dynamic Fracture: An Energetic Signature*. Physical Review Letters. **104**(4),045501. (2010)

F. Barras, R. Carpaij, P. Geubelle, J.-F. Molinari. Supershear Bursts in the Propagation of a Tensile Crack in Linear Elastic Material. Physical Review E. **98**(6),063002. (2018)

Mitigated results

- slow crack propagation speeds: ok
- \$v >\$ a few tenths of cs: not ok
- underestimates the dissipated energy
- overestimates the crack propagation speed (already for \$v > 0.65cR\$)

Three dynamic phases

Postmortem appearance of the fracture surfaces

- Mirror: smooth surfaces.
- Mist: surface roughen (interplay between a crack front and microstructure)
- Hackle: microbranching instability

Relativistic contraction brings microstructure heterogeneity at play!!

\$\$\Large \Rightarrow \text{Rupture front distorsion}\$\$

Bibliography

- **H. Westergaard**. Bearing Pressures and Cracks: Bearing Pressures Through a Slightly Waved Surface or Through a Nearly Flat Part of a Cylinder, and Related Problems of Cracks. Journal of Applied Mechanics. **6**,A49-A53. (1939) 10.1115/1.4008919
- **I. Sneddon, N. Mott**. *The Distribution of Stress in the Neighbourhood of a Crack in an Elastic Solid*. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. **187**(1009),229-260. (1946) <u>10.1098/rspa.1946.0077</u>
- **M. Williams**. *On the Stress Distribution at the Base of a Stationary Crack*. Journal of Applied Mechanics. **24**(1),109-114. (1956)
- **G. Irwin**. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. Journal of Applied Mechanics. **24**(3),361-364. (1957) <u>10.1115/1.4011547</u>
- **R. Burridge**. *Admissible Speeds for Plane-Strain Self-Similar Shear Cracks with Friction but Lacking Cohesion*. Geophysical Journal International. **35**(4),439-455. (1973) 10.1111/j.1365-246X.1973.tb00608.x
- **A. Kobayashi, B. Wade, W. Bradley, S. Chiu**. *Crack Branching in Homalite-100 Sheets*. Engineering Fracture Mechanics. **6**(1),81-92. (1974) <u>10.1016/0013-7944(74)90048-4</u>
- **D. Andrews**. *Rupture Velocity of Plane Strain Shear Cracks*. Journal of Geophysical Research (1896-1977). **81**(32),5679-5687. (1976) 10.1029/[B081i032p05679]
- **R. Archuleta**. *A Faulting Model for the 1979 Imperial Valley Earthquake*. Journal of Geophysical Research: Solid Earth. **89**(B6),4559-4585. (1984) 10.1029/JB089iB06p04559
- **B. Kostrov, S. Das.** *Principles of Earthquake Source Mechanics.* (Cambridge University Press, 1989).
- **L. Freund**. *Dynamic Fracture Mechanics*. (Cambridge University Press, 1990). 10.1017/CBO9780511546761
- **A. Rosakis, O. Samudrala, D. Coker**. *Cracks Faster than the Shear Wave Speed*. Science. **284**(5418),1337-1340. (1999) <u>10.1126/science.284.5418.1337</u>
- **A. Rosakis**. *Intersonic Shear Cracks and Fault Ruptures*. Advances in Physics. **51**(4),1189-1257. (2002) <u>10.1080/00018730210122328</u>
- J. Scheibert, C. Guerra, F. Célarié, D. Dalmas, D. Bonamy. *Brittle-Quasibrittle Transition in Dynamic Fracture: An Energetic Signature*. Physical Review Letters. **104**(4),045501. (2010) <u>10.1103/PhysRevLett.104.045501</u>
- **T. Anderson**. Fracture Mechanics: Fundamentals and Applications, Fourth Edition. (CRC Press, 2017). 10.1201/9781315370293

- **S. Antolovich, A. Saxena, W. Gerberich**. *Fracture Mechanics An Interpretive Technical History*. Mechanics Research Communications. **91**,46-86. (2018) 10.1016/j.mechrescom.2018.03.003
- **F. Barras, R. Carpaij, P. Geubelle, J.-F. Molinari**. Supershear Bursts in the Propagation of a Tensile Crack in Linear Elastic Material. Physical Review E. **98**(6),063002. (2018) <u>10.1103/PhysRevE.98.063002</u>
- **F. Barras**. When Dynamic Cracks Meet Disorder: A Journey along the Fracture Process Zone. EPFL (Lausanne), 2018. <u>10.5075/epfl-thesis-8956</u>