The Todd-Coxeter Algorithm

Raymond

CPU

ptimized Mode

Optimized Mod

GPU

Basic Model Optimized Model

The Todd-Coxeter Algorithm

David Allemang and Jacob Raymond

December 4th, 2019

The Purpose of Todd-Coxeter

The Todd-Coxeter Algorithm

Purpose

The purpose of the Todd-Coxeter Algorithm is to enumerate the cosets of a subgroup of a group from presentations.

Ex. Enumerating the cosets of $\langle a \mid a^2 = e \rangle$ in the group presented by $\langle a, b \mid a^2 = b^2 = (ab)^4 = e \rangle$.

- Can be used to solve the Word Problem
- Can be used to generate certain polyhedron

The Todd-Coxeter Algorithm

Ex.
$$G = \langle a, b \mid a^2 = b^2 = (ab)^3 \rangle$$
, $H = \langle e \rangle \leq G$

Coset Table

riolation lable(b)					
a	b	a	b	a	b
					0

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU

asic Model ptimized Mode

GPU

Basic Model

Ex. $G = \langle a, b \mid a^2 = b^2 = (ab)^3 \rangle$, $H = \langle e \rangle \leq G$

Coset Table

				` '	
a	b	a	b	a	b
1					0
0					1
	1	1	1	1	a b a b a 1 0

The Todd-Coxeter Algorithm

Ex. $G = \langle a, b \mid a^2 = b^2 = (ab)^3 \rangle$, $H = \langle e \rangle \leq G$

Coset Table

					` '	
	1 0	b	a	b	a	b
0	1				2	0
1	0	2				1
2				1	0	2

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU

Basic Model

GPU

Basic Model
Optimized Mod

Ex. $G = \langle a, b \mid a^2 = b^2 = (ab)^3 \rangle$, $H = \langle e \rangle \leq G$

Coset Table

	a	b
0	1	2
1	0	3
2		0
3		1

	a	b	<u>а</u>	b	a	b
0	1	3			2	0
1	0	2			3	1
0 1 2 3			3	1	0	2
3			2	0	1	3

The Todd-Coxeter Algorithm

Ex. $G = \langle a, b \mid a^2 = b^2 = (ab)^3 \rangle, H = \langle e \rangle \leq G$

Coset Table

	a	b
0	1	2
1	0	3
2	4	0
2		1
4	2	

	a	b	a	1 0 3	a	b
0	1	3		4	2	0
1	0	2	4		3	1
2	4		3	1	0	2
3		4	2	0	1	3
4	2	0	1	3		4

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU

Basic Model Optimized Mode

GPU

Basic Model
Optimized Mod

Ex. $G = \langle a, b \mid a^2 = b^2 = (ab)^3 \rangle$, $H = \langle e \rangle \leq G$

Coset Table

	a	b
0	1	2
1	0	3
2	4	0
2	5	1
4	5 2 3	<u>5</u>
5	3	<u>4</u>

					` '	
	a	b	a	b 4 5 1 0 3 2	a	b
0	1	3	<u>5</u>	4	2	0
1	0	2	<u>4</u>	<u>5</u>	3	1
2	4	5	3	1	0	2
3	5	4	2	0	1	3
4	2	0	1	3	5	4
5	3	1	0	2	4	5

Assumptions

The Todd-Coxeter Algorithm

- Only dealing with Coxeter Groups (and subgroups) which are Coxeter Groups)
- Generators are their own inverses (always the case with Coxeter groups)
- "Coincidences" do not occur

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU Basic Model

ptimized Mode

GPU

Basic Model
Optimized Model

Basic CPU Model

Memory transactions

The Todd-Coxeter Algorithm

Basic Model

Using a naïve algorithm, the following number of memory transactions are needed:

	Coset Table	Relation Table	Relations
Read	$C\sum_{i}[r_{i} -1]$	$C\sum_{i}[r_{i} -1]$	$C\sum_{i}[r_{i} -1]$
Write	$C\binom{g}{2}$	$C\sum_{i}[r_{i} +1]$	N/A (part of input)

For a total of

$$C\sum_{i} \left[4|r_{i}|-1\right] = C\left[4\sum_{i} |r_{i}| - \binom{g}{2}\right]$$

memory transactions

Specific Groups

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU Basic Model

isic Model otimized Mode

GPU

Basic Model Optimized Model For the specific groups we tested on CPU, these are the amount of memory transactions needed:

Group	Transactions
T_n	$8n^2(4n+13)$
B_n	$2^{n-1}n!(7n^2+n)$
H_4	892,800
E_6	6,480,000
E_7	496, 419, 840

Expected CPU times

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU Basic Model

Optimized Mod

GPU Basic Model Assuming a 100 GB/s capacity for a Mamba Node (each transaction is 4 bytes), 35ns latency per transaction.

Group	Transactions	Time (s)
T_{50}	4, 260, 000	0.32
T_{100}	33,040,000	2.48
T_{150}	110, 340, 000	8.28
T_{200}	260, 160, 000	19.51
T_{250}	506, 500, 000	38.00
B_5	345,600	0.026
H_4	892,800	0.067
B_6	5, 944, 320	0.45
E_6	6,480,000	0.49
B_7	112, 896, 000	8.47
E_7	496, 419, 840	37.23
B_8	2, 353, 397, 760	176.51

Basic CPU implementation

The Todd-Coxeter Algorithm

Allemang and Raymond

Basic Model

Optimized Mod

Basic Model
Optimized Mode

Pretty much exactly like the demonstration, parallelized relation table handling. 24 Hour total runtime

Group	Exp. Time (s)	Act. Time (s)
T_{50}	0.32	0.85
T_{100}	2.48	13.44
T_{150}	8.28	76.21 (1m16s)
T_{200}	19.51	331.47 (5m30s)
T_{250}	38.00	1312.11 (21m50s)
B_5	0.026	0.11
H_4	0.067	0.59
B_6	0.45	9.96
E_6	0.49	11.15
B_7	8.47	8472.46 (2h21m12s)
E_7	37.23	N/A (>21h)
B_8	176.51	N/A

Basic CPU cos/s

The Todd-Coxeter Algorithm

Allemang an Raymond

CPU Basic Model

otimized Mod

Optimized Woo

Basic N

Basic Model Optimized Model

Group	Exp. cos/s	Act. cos/s
T_{50}	31, 250	11,764
T_{100}	16, 129	2,976
T_{150}	10,869	1, 180
T_{200}	8,200	482
T_{250}	8,333	190
B_5	147,692	34,909
H_4	214, 925	24,406
B_6	102,400	4,626
E_6	105, 795	4,649
B_7	76, 165	76
E_7	77,975	N/A
B_8	58,477	N/A

The Todd-Coxeter Algorithm

Allemang and Raymond

GPU

Basic Model

Optimized Mode

Optimized Model

GPU

Basic Model

Optimized CPU Model

Optimizations

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU

Basic Model

Optimized Model

GPU Basic Model • Remove rows from Relation Table once complete

- Remove rows from Relation Table if coset appears in previous row
- Transpose Relation Tables
 - Only store start and end index/coset
- Store relations as 2 values, and use modulus on index to get generator, instead of lookup
- Add a coset after a single pass through the relation tables

Updated CPU Model

The Todd-Coxeter Algorithm

Allemang and Raymond

Basic Model

Ontimized Mode

Optimized Model

Basic Model

With some algorithmic optimization and carefully considering implementations details, the following amounts of memory transactions are required:

	Coset Table	Relation Table	Relations
Read	$\frac{C}{2}\sum_{i}\frac{C}{ r_i }$	$\frac{C}{2}\sum_{i}\frac{C}{ r_i }$	2Cg
Write	Cg	Cg	N/A (part of input)

For a total amount of memory transactions being

$$C\left[4g+C\sum_{i}|r_{i}|^{-1}\right]$$

Updated Expected Transactions

The Todd-Coxeter Algorithm

Optimized Model

Updated expected memory transactions

Group	Basic	Updated
$\overline{T_n}$	$8n^2(4n+13)$	$32n^2(n^2 + n + 2)$
B_n	$2^{n-1}n!(7n^2+n)$	$2^{n}n!\left[4n+2^{n}n!\left(\frac{3n^{2}+13n-5}{12}\right)\right]$
H_4	892,800	490,982,400
E_6	6,480,000	17, 917, 148, 160
E_7	496, 419, 840	80,062,673,080,320

Expected CPU times

The Todd-Coxeter Algorithm

Allemang and Raymond

Basic Model

Optimized Model

GPU

Assuming a 100 GB/s capacity for a Mamba Node (each transaction is 4 bytes).

Group	Transactions	Time (s)
T_{50}	204, 160, 000	0.0082
T_{100}	3, 232, 640, 000	0.13
T_{150}	16, 309, 440, 000	0.65
T_{200}	51, 458, 560, 000	2.06
T_{250}	125, 504, 000, 000	5.02
B_5	165, 964, 800	0.0066
H_4	490, 982, 400	0.020
B_6	32, 028, 549, 120	1.28
E_6	17, 917, 148, 160	0.72
B_7	8,080,842,792,960	323.23 (5m22s)
E_7	80,062,673,080,320	3202.51 (53m22s)
B_8	2,583,644,618,096,640	103346.0 (1d4h42m)

Optimized CPU Implementation

The Todd-Coxeter Algorithm

Allemang and Raymond

Basic Model
Optimized Model

Optimized Mode

Basic Model
Optimized Mode

Group	Basic Time (s)	Exp. Time (s)	Act. Time (s)
T_{50}	0.85	0.0082	0.15
T_{100}	13.44	0.13	0.63
T_{150}	76.21	0.65	1.45
T_{200}	331.47	2.06	2.76
T_{250}	1312.11	5.02	4.88
B_5	0.11	0.0066	0.063
H_4	0.59	0.020	0.24
B_6	9.96	1.28	1.26
E_6	11.15	0.72	1.49
B_7	8472.46	323.23	148.37 (2m18s)
E_7	N/A	3202.51	2938.87 (48m58s)
B_8	N/A	103346.0	N/A

Optimized CPU cos/s

The Todd-Coxeter Algorithm

Allemang an Raymond

CPU Basic Model

Optimized Model

GPU

Basic Model Optimized Mode

Group	Basic cos/s	Exp. cos/s	Act. cos/s
T_{50}	11,764	1,219,512	66,666
T_{100}	2,976	307, 692	63,492
T_{150}	1, 180	138, 461	62,068
T_{200}	482	77,669	57,971
T_{250}	190	49,800	51, 229
B_5	34,909	581,818	60,952
H_4	24, 406	720,000	60,000
B_6	4,626	36,000	36, 571
E_6	4,649	72,000	34, 791
B_7	76	1,995	4,348
E_7	N/A	906	987
B_8	N/A	99	N/A

Comparison to GAP

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU Basic Model

Optimized Model

GPU

Basic Model

Optimized Model

Groups, Algorithms, Programming (GAP) - a System for Computational Discrete Algebra gap-system.org

Contains an implementation of Todd-Coxeter

Group	Ours (s)	Gap (s)
H_4	0.24	0.184
E_6	1.49	0.942
B_7	148.37	14.122

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU Basic Model

asic Model ptimized Mode

GPU

Basic Model

Basic GPU Model

Basic GPU

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU

Basic Model

Optimized Model

Optimized Mode

Basic Model
Optimized Model

Naïvely we should expect similar memory accesses as CPU.

- Flatten all tables
- Lots of parallelism in relation tables
 - Execute "solving" passes on GPU
 - Race conditions still don't matter.
 - Checking when complete is expensive
- No parallelism in adding cosets
 - Major synchronization bottleneck
 - Either execute on device, or copy to host

Expected GPU times

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU

Basic Model

Optimized Model

Optimized Mode

Basic Model
Optimized Mode

Assuming a 240 GB/s capacity (from NVIDIA) and 10 ns latency per transaction for a Mamba Node (1 K80).

Group	Transactions	Time (s)
$\overline{T_{50}}$	4, 260, 000	0.043
T_{100}	33,040,000	0.33
T_{150}	110, 340, 000	1.11
T_{200}	260, 160, 000	2.61
T_{250}	506, 500, 000	5.073
B_5	345,600	0.0035
H_4	892, 800	0.0089
B_6	5, 944, 320	0.060
E_6	6,480,000	0.065
B_7	112, 896, 000	1.13
E_7	496, 419, 840	4.97
B_8	2, 353, 397, 760	23.57

Actual GPU times

The Todd-Coxeter Algorithm

Allemang an Raymond

CPU Basic Mod

basic Model Optimized Modi

GPU

Basic Model
Optimized Model

Group	Exp. Time (s)	Act. Time (s)
T_{50}	0.043	3.89485
T_{100}	0.33	22.3504
T_{150}	1.11	107.5
T_{200}	2.61	256.386
T_{250}	5.073	508.957
B_5	0.0035	1.24269
H_4	0.0089	4.30961
B_6	0.060	20.8581
E_6	0.065	23.1169
B_7	1.13	1382.62
E_7	4.97	14806.1
B_8	23.57	N/A

Basic GPU cos/s

The Todd-Coxeter Algorithm

Allemang an Raymond

CPU

asic Model Intimized Mode

Optimized Mod

GPU

Basic Model
Optimized Model

Group	Exp. cos/s	Act. cos/s
T_{50}	232, 558	2,567
T_{100}	121, 212	1,789
T_{150}	81,081	837
T_{200}	61,302	624
T_{250}	49, 280	491
B_5	1,097,142	3,090
H_4	1,617,977	3,341
B_6	768,000	2,209
E_6	797,538	2,242
B_7	570,902	466
E_7	584, 112	196
B_8	437,926	N/A

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU

oasic Model Optimized Mode

GPU

Basic Model
Optimized Model

Optimized GPU Model

Optimized GPU

The Todd-Coxeter Algorithm

Optimized Model

- Similar algorithm optimizations as on CPU
 - Compact relations
 - Don't check for completeness (Coxeter groups only)
 - "Forward deletion" not possible
- Store relation data in constant memory
- Pre-fetch coset data for new coset scanning

Improved Model

The Todd-Coxeter Algorithm

Optimized Model

Considering algorithm optimizations and restrictions (forward deletion):

	Coset Table	Relation Table	Relations
Read	$\frac{C^2}{2}\sum_i r_i $	$rac{C^2}{2}\sum_i r_i $	$\frac{C^2}{2}\sum_i r_i $
Write	$C\binom{g}{2}$	$C\sum_{i} r_{i} $	N/A (part of input)

For a total memory transactions being

$$C\binom{g}{2} + \left(\frac{3}{2}C^2 + C\right) \sum_{i} |r_i|$$

PCIe cost for coset table scanning: $C(\frac{Cg}{4.2.5Gtns} + 7.5 \cdot 10^{-6}s)$

Updated Expected Transactions

The Todd-Coxeter Algorithm

Allemang an Raymond

CPU Basic Model

asic Model ptimized Mode

GPU

Basic Model
Optimized Model

Group	Basic	Updated
$\overline{T_n}$	$8n^2(4n+13)$	$8n^2(6n^3 + 24n^2 + n + 7)$
B_n	$2^{n-1}n!(7n^2+n)$	$2^{n}n! \left[n^{2} \left(\frac{3}{2} 2^{n} n! + 1 \right) + \frac{n(n-1)}{2} \right]$
H_4	892,800	5,288,011,200
E_6	6,480,000	141,090,336,000
E_7	496, 418, 840	606, 790, 369, 704, 960

Expected GPU Times

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU Basic Model

Optimized Mode

Basic Model

Optimized Model

Group	Transactions	Time (s)
T_{50}	16, 201, 140, 000	16
T_{100}	499, 208, 560, 000	501
T_{150}	3,742,228,260,000	3,757 (1h)
T_{200}	15,667,266,240,000	15,732 (4h)
T_{250}	47, 625, 128, 500, 000	47,823 (13h)
B_5	553, 094, 400	0.5554
H_4	5, 288, 011, 200	5.3100
B_6	114, 664, 135, 680	115
E_6	141,080,336,000	141
B_7	30, 589, 261, 516, 800	30,716 (8.5h)
E_7	606, 790, 369, 704, 960	609, 318 (7d)
B_8	10, 228, 036, 068, 311, 040	10, 270, 652 (118d)

Optimized GPU Times

The Todd-Coxeter Algorithm

Allemang and Raymond

CPU

Basic Model

Optimized Mode

GPU

Basic Model

Optimized Model

Group	Basic Time (s)	Exp. Time (s)	Act. Time (s)
T_{50}	3.89485	16	4.33001
T_{100}	22.3504	501	23.661
T_{150}	107.5	3,757	103.069
T_{200}	256.386	15,732	246.577
T_{250}	508.957	47, 823	494.363
B_5	1.24269	0.5554	1.35973
H_4	4.30961	5.3100	4.76805
B_6	20.8581	115	22.5943
E_6	23.1169	141	25.1293
B_7	1382.62	30,716	1350.11
E_7	14806.1	609, 318	14657.7
B_8	N/A	10, 270, 652	N/A

Optimized GPU cos/s

The Todd-Coxeter Algorithm

Allemang an Raymond

CPU Basic Model

Optimized Model

GPU

Basic Model
Optimized Model

Group	Basic cos/s	Exp. cos/s	Act. cos/s
T_{50}	2,567	625	2,309
T_{100}	1,789	79	1,690
T_{150}	837	23	873
T_{200}	624	10	648
T_{250}	491	5	505
B_5	3,090	6,913	2,824
H_4	3,341	2,711	3,020
B_6	2, 209	400	2,039
E_6	2, 242	367	2,062
B_7	466	21	477
E_7	196	4	198
B_8	N/A	1	N/A