Stanford Poling Dataset

Nashville

Presenter: Rahul Bajaj

Stanford Policing Dataset

Dataset:

Initially we have 3092351 rows of data and 42 columns.

```
In [40]: df.columns
Out[40]: Index(['raw row number', 'date', 'time', 'location', 'lat', 'lng', 'precinct',
                'reporting area', 'zone', 'subject age', 'subject race', 'subject sex',
                'officer id hash', 'type', 'violation', 'arrest made',
                'citation issued', 'warning issued', 'outcome', 'contraband found',
                'contraband drugs', 'contraband weapons', 'frisk performed',
                'search conducted', 'search person', 'search vehicle', 'search basis',
                'reason for stop', 'vehicle registration state', 'notes',
                'raw verbal warning issued', 'raw written warning issued',
                'raw traffic citation issued', 'raw misd state citation issued',
                'raw suspect ethnicity', 'raw driver searched',
                'raw passenger searched', 'raw search consent', 'raw search arrest',
                'raw search warrant', 'raw search inventory', 'raw search plain view'],
               dtype='object')
```

Data Filtering

1. Filter 7 columns that have > 80% NaN values.

Data Filtering:

- 1. We have two fields: 'date' and 'time' which indicate the date of event and the time at which event occurred. Both these fields are in the string format, to perform calculations on these fields we create a new column called 'date_time' with to_datetime format.
- 2. We create an index for the 'date_time' field to access related data faster.
- 3. We convert the 'arrested' field from string to 'bool'
- 4. Finally, we analyse 3079529 rows and 37 columns of data.

Effect of Race on Crime

- What are the outcomes of traffic policing?
- 2) Does the driver race matter?

What is distribution of outcomes while traffic policing?

Outcomes for drivers of a particular race:

Most:

Warnings: Asians

Citation: Hispanic

Arrests: Hispanic

Does the gender of a driver have an impact on police behavior during a traffic stop?

- 1) Which are the different types of traffic rule violations?
- 2) Do the genders commit different violations?
- 3) Does gender affect who gets a speeding ticket?
- 4) Does gender affect whose vehicle is searched?
- 5) Does gender affect who is frisked during a search?

Types of violations

Interesting! Half of all violations are for moving violations, followed by equipment violations and safety violation.

Whether male and female drivers tend to commit different types of traffic violations?

Does gender affect who gets a speeding ticket?

Interesting! The data fails to show that gender has an impact on who gets a ticket for speeding.

Does gender affect whose vehicle is searched?

```
policing_df.groupby('subject_sex').search_conducted.mean()
subject_sex
female    0.023516
male    0.053492
Name: search_conducted, dtype: float64
```

Wow! Male drivers are searched more than twice as often as female drivers.

Even though men and women commit similar kinds of crime, searches are performed more on men for each violation type when compared to women!

violation	subject sex	
child restraint	female _	0.030345
	male	0.071795
investigative stop	female	0.094319
	male	0.184111
moving traffic violation	female	0.019689
	male	0.046677
parking violation	female	0.024733
	male	0.047719
registration	female	0.025768
	male	0.055277
safety violation	female	0.023334
	male	0.048620
seatbelt violation	female	0.031903
	male	0.060277
vehicle equipment violation	female	0.024817
	male	0.055152

Does gender affect who is frisked during a search?

Interesting! The frisk rate is higher for males than for females.

Effect of Time and Drugs on Crime

- 1) Does time of the day affect arrest rate?
- 2) What is the trend for drugs found vs search conducted?

Does time of the day affect arrest rate?

The arrest rate has a significant spike overnight, and then dips in the early morning hours.

Annual rate of drug related stops

The rate of drug-related stops nearly doubled over the course of 10 years

Search Conducted V/s Drugs Found Annually

Wow! The rate of drug-related stops increased even though the search rate decreased.

Effect of weather on Policing

Dataset

We consider the data from a single weather station (Nashville International Airport) in Nashville. This is not ideal, but it will still give us a general idea of the weather throughout the state.

Exploring the Dataset:

STATION: station ID

TAVG, TMIN, TMAX: Temperature

AWND, WSF2: Wind speed

WT01 .. WT22: Bad weather conditions (0-20)

Data Exploration

TAVG, TMIN, TMAX: Temperature

AWND, WSF2: Wind speed

Data processing

0:GOOD

1 - 4 : BAD

5 - 9: WORST

Does weather affect the arrest rate?

The arrest rate increases as the weather gets worse

violation	rating	
child restraint	bad	0.036522
	good	0.025097
	worse	0.181818
investigative stop	bad	0.079678
	good	0.085474
	worse	0.079046
moving traffic violation	bad	0.014834
	good	0.014513
	worse	0.018629
parking violation	bad	0.011006
	good	0.010638
	worse	0.024390
registration	bad	0.017268
	good	0.017018
	worse	0.015903
safety violation	bad	0.014873
	good	0.014501
	worse	0.017791
seatbelt violation	bad	0.017129
	good	0.016980
	worse	0.013739
vehicle equipment violation	bad .	0.014714
	good	0.014477
	worse	0.017332
Name: arrest made dtype: fl	nath4	

Name: arrest_made, dtype: float64

Predict arrests made

- Logistic Regression: uses a generalized linear equation to describe the directed dependencies among a set of variables.
 - A number of statistical assumptions must be met.
 - Overfitting a concern (rule of ten), as well as outliers.
- Random Forest: Top-down induction based approach to classification and prediction. Averages many decision trees (CARTs) together.
 - No statistical assumptions; can handle multicollinearity.
 - Robust to overfitting and outliers.

We perform Logistic Regression (linear) and Random Forest (non-linear) classifier to predict whether arrests would be made or not.

Classification performance of arrests made

Split data into train and test based on arrests made.

Y train (arrest made = 34752, arrest not made = 2113592)

Y test (arrest made = 14894, arrest not made = 905826)

Due to data imbalance, even though accuracy is very high but f1-score is very low

Logistic Regression						Random Forest				
					Train Classif	Train Classification				
Train Classif	ication					precision	recall	f1-score	support	
	precision	recall	f1-score	support						
2	2 22		27 1212		0	0.99	1.00	1.00	2113592	
0	0.99	1.00	1.00	2113592	1	0.97	0.47	0.63	34752	
1	0.97	0.47	0.63	34752			150 40	7.5		
				21.122.11	accuracy			0.99	2148344	
accuracy			0.99	2148344	macro avg	0.98	0.73	0.81	2148344	
macro avg	0.98	0.73	0.81	2148344	weighted avg	0.99	0.99	0.99	2148344	
weighted avg	0.99	0.99	0.99	2148344	weighted avg	0.99	0.99	0.99	2140344	
Test Classification				Test Classifi	Test Classification					
		cuppert	lest classifi			£1				
	precision	recatt	ii-score	support		precision	recall	f1-score	support	
0	0.99	1.00	1.00	905826	0	0.00	1 00	1 00	005036	
1	0.93	0.44	0.60	14894	0	0.99	1.00	1.00	905826	
_	0.95	0.44	0.00	14034	1	0.93	0.44	0.60	14894	
accuracy			0.99	920720						
macro avg	0.96	0.72	0.80	920720	accuracy			0.99	920720	
weighted avg	0.99	0.99	0.99	920720	macro avg	0.96	0.72	0.80	920720	
weighted avg	0.33	0.99	0.33	320720	weighted avg	0.99	0.99	0.99	920720	

Classification performance of arrests made

Randomly sampled 45,000 for each group to make a balanced dataset. Split data into train and test based on arrests made.

Y train (arrest made = 31500, arrest not made = 31500)

Y test (arrest made = 13500, arrest not made = 13500)

Even though we see a reduced accuracy from the previous results, here we observe that both the classes are performing equally well.

	Logistic F	Regressio	on			Random Forest				
Train Classif	ication precision	recall	f1-score	support	Train Classif	ication precision	recall	f1-score	support	
0 1	0.78 0.89	0.91 0.75	0.84 0.81	31500 31500	0 1	0.81 0.92	0.93 0.78	0.87 0.85	31500 31500	
accuracy macro avg weighted avg	0.84 0.84	0.83 0.83	0.83 0.83 0.83	63000 63000 63000	accuracy macro avg weighted avg	0.87 0.87	0.86 0.86	0.86 0.86 0.86	63000 63000 63000	
Test Classification precision recall f1-score support					Test Classifi	Test Classification precision recall f1-score support				
0 1	0.78 0.89	0.91 0.75	0.84 0.81	13500 13500	0 1	0.79 0.89	0.91 0.75	0.84 0.82	13500 13500	
accuracy macro avg weighted avg	0.84 0.84	0.83 0.83	0.83 0.83 0.83	27000 27000 27000	accuracy macro avg weighted avg	0.84 0.84	0.83 0.83	0.83 0.83 0.83	27000 27000 27000	

Improvements in the model:

We could further improve this model by:

- 1. Either upsampling the smaller class.
- Using additional quantitative metrics.
- 3. Using more algorithms to get an ensemble prediction score.

A strategy to handle imbalanced classes by repeatedly sample with replacement from the minority class to make it of equal size as the majority class.

ChrisAlbon

Thank you!

Code and Slides:

https://github.com/rabajaj0509/stanford-policing-dataset