论文阅读

ST-SAM: SAM-Driven Self-Training Framework for Semi-Supervised Camouflaged Object Detection

Semi-Supervised Camouflaged Object Detection (SSCOD): 半监督伪装目标检测

Segment Anything Model (SAM): 分割一切大模型

一些概念

- 1. 师生(Teacher-Student)框架:深度学习中的一种经典模型架构,其核心思想是通过让一个较小、较简单的模型(学生模型)向一个较大、较复杂且性能优异的模型(教师模型)学习,来实现模型压缩和性能提升等目的。
- 2. 伪装特定数据(camouflage-specific data):其所有特征都围绕"支撑伪装系统实现'目标 环境特征 匹配'"展开,本质是"为伪装设计、优化、评估提供量化依据",最终目标是降低目标在特定探测手 段下的"可探测性"。无论是军事、安防(如反恐伪装)还是民用(如野生动物保护中的隐蔽观测设备伪装)领域,数据特征均需贴合具体场景的"环境属性"与"探测威胁"。
- 3. 局部前景概率(the local foreground probability):在处理图像或视频数据时,算法需要区分 "前景" 和 "背景"。

前景(Foreground):指图像中需要重点关注、分析的目标(如行人、车辆、物体等);

背景(Background):指图像中衬托前景的环境区域(如路面、天空、墙壁等);

局部(Local):强调以图像的 "局部区域"(而非全局) 为分析单位,通常是单个像素、像素块或小窗口;

概率(Probability):用 0~1 之间的数值表示 "某局部区域属于前景的可能性"—— 数值越接近 1,该区域是前景的概率越高; 越接近 0,则更可能是背景。

模型

现有的基于师生框架的SSCOD方法在监督信息稀缺的情况下存在严重的预测偏差和误差传播问题,且 其多网络架构会导致较高的计算开销和有限的可扩展性,本文设计的ST-SAM框架,采用自训练策略, 根本上规避了模型间的预测偏差。此外,本文的设计还利用SAM在特定任务中的潜力,以减轻自训练的 误差累积。

基本结构:

1. 熵基动态过滤(Entropy-based Dynamic Filtering strategy, EDF)

EDF 模块通过局部熵计算、全局熵评估、不确定性筛选、像素加权、动态扩展五个关键步骤,完成对初始伪标签的清洗与优化,具体流程如下:

(1) 输入:初始伪标签的生成

首先,用少量标注数据(如 1%)预训练基础 COD(伪装目标检测)网络,再用该网络对无标签数据(D_U)进行预测,生成初始伪标签 P_i^I (i表示第i个无标签样本)。此时 P_i^I 因模型能力有限,包含大量噪声(如背景误判为目标、目标轮廓不完整)。

(2) 步骤 1: 计算局部与全局熵(量化不确定性)

熵(Entropy)是衡量概率分布不确定性的指标:熵值越高,预测结果越模糊(如像素既像目标又像背景);熵值越低,预测越确定。EDF 通过 "局部熵(E_{local}) + 全局熵(E_{global})" 双重维度评估伪标签的可靠性:

局部熵:评估像素级不确定性 全局熵:评估实例级不确定性

对初始伪标签 P_i^I 的每个像素,用7 imes7 窗口计算局部前景概率,再推导局部熵,量化该像素邻域的预测模糊度:

先对 P_i^I 进行归一化(Norm),再通过均值滤波(UF)得到每个像素的局部前景概率 p_f ,背景概率 $p_b=1-p_f$:

$$p_{f}=UF\left(Norm\left(P_{i}^{I}
ight) ,7 imes 7
ight)$$

基于 p_f 和 p_b ,用信息熵公式计算每个像素的局部熵,熵值越高表示该区域预测越不确定:

$$E_{local} = -p_f \log(p_f) - p_b \log(p_b)$$

对整个伪标签 P_i^I 计算全局前景概率 \tilde{p}_f (所有像素归一化后的均值),再推导全局熵,量化整个样本的预测可信度:

$$ilde{p}_f = rac{1}{H imes W} \sum Norm(P_i^I)$$

$$E_{global} = - ilde{p}_f \log(ilde{p}_f) - (1- ilde{p}_f) \log(1- ilde{p}_f)$$

 $(H \times W$ 为伪标签的像素尺寸)

(3) 步骤 2: 实例级筛选 (剔除高噪声样本)

基于局部熵与全局熵,定义不确定性指标 u_{α} ,筛选出可靠的伪标签样本:

不确定性指标计算:统计 "局部熵> 0.5× 全局熵" 的像素占比(N为总像素数, $\mathbb{I}(\cdot)$ 为指示函数),占比越高表示样本噪声越多:

$$u_{lpha} = rac{1}{N} \sum \mathbb{I} \left(E_{local} > E_{global} imes 0.5
ight)$$

样本保留规则:设定阈值 $au_{\alpha}=0.3$,仅保留 $u_{\alpha}< au_{\alpha}$ 的样本,直接剔除噪声严重的样本,避免早期训练引入大量误差:

Retain Sample If $u_{\alpha} < 0.3$, Else Discard

(4) 步骤 3: 像素级加权(抑制局部模糊区域)

对筛选后的样本,基于局部熵生成熵权重图,对不同可信度的像素分配不同权重,降低不确定区域对模型训练的干扰,最终得到熵加权伪标签 P_i^E :

$$P_i^E = P_i^I \cdot \left(0.5 + 0.5 \times (1 - E_{local})^k\right)$$

权重系数设计:k=1(实验验证的最优值),局部熵 E_{local} 越低,权重越接近 1(可信区域充分贡献); E_{local} 越高,权重越接近 0.5(模糊区域贡献减半)。

(5)动态扩展(适配模型渐进式学习)

考虑到模型训练初期能力有限,无法处理复杂样本,EDF采用随 epoch 动态扩展的策略,逐步增加伪标签的规模,实现"从易到难"的学习:

- 一、计算所有熵加权伪标签 P_i^E 的局部熵均值 $ar{E}_{local}$,按均值从小到大排序(均值越小表示样本越简单、可信);
- 二、初始训练阶段,仅选择排序靠前的少量低熵样本(如当前训练集规模x的等量样本)加入训练集;

三、随 epoch 增加,逐步扩大选择范围,纳入更多熵值稍高的样本(即更复杂的样本),直至所有无标签样本被充分利用。

2. 领域提示引导互校正(Domain Prompt-guided Mutual Correction strategy, DPC)

作用:注入领域知识到 SAM,生成高质量伪标签,与模型伪标签互校正。

DPC模块的核心目标是**解决SAM在伪装目标检测(COD)中的领域适配缺陷**——SAM虽经通用数据预训练具备强分割能力,但缺乏COD领域先验(如伪装目标与背景纹理高度相似、轮廓复杂),直接应用易误判;同时,自训练初期EDF模块输出的熵加权伪标签(P_i^E)仍存在边界模糊、小目标漏检等问题。DPC通过"领域提示转化+伪标签互校正",既为SAM注入COD知识,又修正伪标签噪声,生成高置信监督信号。

DPC模块以EDF输出的**熵加权伪标签P_i^E** 为输入,通过三步完成领域知识注入与伪标签优化:

(1) 步骤1: 生成混合提示(注入COD领域知识)

将 P_i^E 转化为SAM可理解的"点+框"混合提示($Prompt_{P-B}$),核心是注入COD领域三大先验知识:

• 框提示($Prompt_B$):确保目标区域完整性

过滤 P_i^E 中极小轮廓区域(排除噪声),保留有效目标轮廓 $Mask_i$ (i=1,...,n); 提取每个 $Mask_i$ 的最小外接矩形,坐标表示为 $[x_{min},y_{min},x_{max},y_{max}]$,公式如下:

$$Prompt_{B} = Mask_{i}\left[x_{min}, y_{min}, x_{max}, y_{max}
ight]$$

该提示告诉SAM: "COD场景中伪装目标需完整覆盖,避免因局部相似遗漏目标区域"。

• 点提示 ($Prompt_P$): 精准定位目标中心

计算每个 $Mask_i$ 的几何中心点 $c_i(x_i,y_i)$,验证是否在 $Mask_i$ 内部;若 c_i 在外部,通过轴向搜索($AxialS(\cdot)$)沿 $Mask_i$ 长轴方向找到最近内部点 c_i' ;最终点提示集为:

$$Prompt_P = \{c_i, IsInside(c_i) = 1\} \bigcup \{c_i', IsInside(c_i) = 0\}$$

该提示告诉SAM: "COD场景中需以目标核心为锚点,避免被背景纹理干扰定位"。

• **混合提示融合**: 将 $Prompt_B$ 与 $Prompt_P$ 结合为 $Prompt_{P-B}$,同时注入"区域完整性"与"中心定位"知识,适配COD复杂场景。

(2) 步骤2: SAM引导分割(生成 P_i^S)

将混合提示($Prompt_{P-B}$)与无标签图像输入SAM,利用SAM的强分割能力生成**SAM伪标签** P_i^S ,公式如下:

$$P_i^S = SAM (Image, Prompt_{P-B})$$

此时 P_i^S 因融入COD领域知识,相比直接使用SAM的输出,在伪装目标边界完整性、小目标检出率上显著提升。

步骤3: 伪标签互校正 (生成 P_i^C)

将 P_i^E 与 P_i^S **等比例融合**,相互修正误差:

- P_i^E : 虽经EDF过滤,但可能存在局部边界模糊;
- P_i^S : 虽分割精度高,但可能因提示偏差导致部分区域误判;
- 融合后生成高置信伪标签 P_i^C ,公式如下:

$$P_i^C = fuse\left(P_i^E, P_i^S\right)$$

3. COD 网络和损失函数

ST-SAM 框架的核心优势之一是模型灵活性—— COD 网络并非固定架构,可根据任务需求替换,文中实验采用基于经典 U-Net 改进的编码器 - 解码器结构(源自 Zhang 等人 2024 年的研究),该结构专为伪装目标检测设计,重点强化了多尺度特征融合与细节捕捉能力。

文中设计混合损失函数 \mathcal{L}_{total} ,公式定义为:

$$\mathcal{L}_{total} = \mathcal{L}_s + \alpha \cdot \mathcal{L}_{dice} + \beta \cdot \mathcal{L}_{UAL}$$

其中, α =4、 β =2为权重系数,用于平衡不同损失组件的贡献。

 \mathcal{L}_s 由加权二元交叉熵(wbce)与交并比损失(wiou)加权组成。

 \mathcal{L}_{dice} 是基于 Dice 系数的改进版本,引入平滑项S(通常取 1e-6)避免分母为 0,公式为:

$$\mathcal{L}_{dice} = 1 - rac{2 \cdot \sum \left(Pred^p \cdot Target^p
ight) + S}{\sum Pred^p + \sum Target^p + S}$$

 \mathcal{L}_{UAL} 是基于交叉熵的变体,引入动态权重系数 λ_{ual} (随学习率衰减而减小),公式为:

$$\mathcal{L}_{UAL} = \lambda_{ual} \cdot \sum \left(Pred \cdot log(Pred) + (1 - Pred) \cdot log(1 - Pred)
ight)$$

实验

对比实验

Table 1: Quantitative comparison between our method and other 11 SOTA methods on 4 benchmark datasets. '-' indicates the code or result is not available. The optimal and suboptimal results are represented in Red and Blue.

	CAMO CHAMELEON COD10K NC4K																			
Methods	E _ξ ↑	$S_{\alpha}\uparrow$	$F_{\beta}^{\omega} \uparrow$	$F_{\beta}\uparrow$	$M\downarrow$	E _ξ ↑		$F_{\beta}^{\omega}\uparrow$		$M\downarrow$	E _ξ ↑		$F_{\beta}^{\omega}\uparrow$	$F_{\beta} \uparrow$	$M\downarrow$	E _ξ ↑	$S_{\alpha} \uparrow$	$F_{\beta}^{\omega} \uparrow$	$F_{\beta}\uparrow$	$M\downarrow$
							Fully-	-Superv	ised M	ethods										
DSAM [44] MM '24	0.906	0.832	0.794	0.824	0.061	-		-	-	-	0.913	0.846	0.760	0.761	0.033	0.928	0.871	0.826	0.845	0.040
TJNet [37] AI '24	0.890	0.841	0.779	-	0.064	0.958	0.913	0.859	-	0.024	0.907	0.844	0.738	-	0.030	-	-	-	-	-
ICEG [14] ICLR '24	0.879	0.810	-	0.789	0.068	0.950	0.899	-	0.858	0.027	0.906	0.826	-	0.747	0.030	0.908	0.849	-	0.814	0.044
DINet [50] TMM '24	0.883	0.821	-	0.790	0.068	-	-	-	_	-	0.901	0.832	-	0.744	0.031	0.910	0.856	-	0.820	0.043
	Weakly-Supervised Methods																			
WS-SAM [13] NeurIPS '23	0.818	0.759	-	0.742	0.092	0.897	0.824	-	0.777	0.046	0.878	0.803	-	0.719	0.038	0.886	0.829	-	0.802	0.052
PSCOD [3] ECCV '24	0.872	0.798	0.727	-	0.074	-	-	-	-	-	0.859	0.784	0.650	-	0.042	0.889	0.822	0.748	-	0.051
CRNet [15] AAAI '23	0.815	0.735	0.641	-	0.092	0.897	0.818	0.744	-	0.046	0.832	0.733	0.576	-	0.049	-	-	-	-	-
ProMaC [19] NeurIPS '24	0.846	0.767	-	0.725	0.090	0.899	0.833	-	0.790	0.044	0.876	0.805	-	0.716	0.042	-	-	-	-	-
GenSAM [18] AAAI '24	0.775	0.719	-	0.659	0.113	0.807	0.764	-	0.680	0.090	0.838	0.775	-	0.681	0.067	-	-	-	-	-
							Semi-	Superv	ised Mo	ethods										
CamoTeacher [25] -1%	0.669	0.621	0.456	0.545	0.136	0.714	0.652	0.476	0.558	0.093	0.788	0.699	0.517	0.582	0.062	0.779	0.718	0.599	0.675	0.090
CamoTeacher -5%	0.711	0.669	0.523	0.601	0.122	0.785	0.729	0.587	0.656	0.070	0.827	0.745	0.583	0.644	0.050	0.834	0.777	0.677	0.739	0.071
CamoTeacher -10% ECCV '24	0.742	0.701	0.560	0.635	0.112	0.813	0.756	0.617	0.684	0.065	0.836	0.759	0.594	0.652	0.049	0.842	0.791	0.687	0.746	0.068
SSCOD [11] -1%	0.804	0.708	0.583	0.653	0.110	0.771	0.683	0.574	0.629	0.063	0.805	0.725	0.537	0.578	0.057	0.844	0.767	0.652	0.700	0.073
SSCOD -10%	0.806	0.737	0.638	0.708	0.094	0.878	0.805	0.707	0.751	0.047	0.852	0.779	0.639	0.676	0.042	0.868	0.808	0.729	0.775	0.059
SSCOD -20% MM '24	0.844	0.778	0.704	0.767	0.078	0.906	0.834	0.761	0.802	0.042	0.864	0.791	0.662	0.699	0.039	0.882	0.821	0.750	0.795	0.055
Ours -1%	0.879	0.819	0.753	0.804	0.070	0.920	0.848	0.778	0.815	0.038	0.884	0.824	0.713	0.737	0.032	0.907	0.855	0.795	0.830	0.043
Ours -5%	0.886	0.831	0.761	0.807	0.066	0.921	0.855	0.776	0.798	0.036	0.871	0.834	0.709	0.716	0.031	0.909	0.870	0.803	0.823	0.038
Ours -10%	0.886	0.835	0.778	0.818	0.063	0.919	0.850	0.770	0.792	0.036	0.882	0.837	0.723	0.729	0.029	0.911	0.868	0.807	0.830	0.038
Ours -20%	0.890	0.844	0.779	0.809	0.058	0.926	0.876	0.804	0.818	0.032	0.874	0.837	0.713	0.717	0.030	0.911	0.874	0.807	0.824	0.037

Figure 6: Qualitative comparison results between ST-SAM and SOTA COD models.

消融实验

模块的有效性:

- (1) baseline: 只用少量有标签样本集 \$D L\$
- (2) self-training: 经典的自训练策略,伪标签通过COD网络从无标签样本\$D_U\$获得,以直接扩展
- (3) 只加入EDF
- (4) 只加入DPC
- (5) EDF+DPC

Table 2: Ablation experiments on the effectiveness of each component, the best results are marked in Red.

ID	Variants		COD)10K		NC4K						
ID	variants	$E_{\xi} \uparrow$	$F^{\omega}_{\beta}\uparrow$	$F_{\beta} \uparrow$	$\mathcal{M}\downarrow$	$E_{\xi} \uparrow$	$F^{\omega}_{\beta}\uparrow$	$F_{\beta} \uparrow$	$\mathcal{M}\downarrow$			
1	Baseline	0.793	0.517	0.569	0.054	0.834	0.611	0.693	0.077			
2	Self-Training	0.807	0.535	0.585	0.057	0.830	0.628	0.688	0.078			
3	+EDF	0.868	0.676	0.708	0.037	0.883	0.748	0.804	0.056			
4	+DPC	0.856	0.655	0.684	0.038	0.879	0.740	0.778	0.052			
5	+EDF+DPC	0.884	0.713	0.737	0.032	0.907	0.795	0.830	0.043			

关于EDF的有效性:

EDF的动态扩展策略的有效性:

- (1) 一次性扩展所有合格样本
- (2)每一步按同等比例(20%)扩展样本进行学习
- (3) 随着训练轮次动态扩展

关于样本学习顺序:

- (1) 先学习高熵样本
- (2) 随机选择
- (3) 先学习低熵样本

Table 3: Ablation experiments on the effectiveness of EDF, the results marked in Red indicate the best performance.

ID	Variants	$ \begin{vmatrix} E_{\xi} \uparrow & F^{\omega}_{\beta} \uparrow \end{vmatrix} $		010K <i>F_β</i> ↑	$\mathcal{M}\downarrow \mid E_{\xi}\uparrow$		$F^{\omega}_{\beta} \uparrow F_{\beta} \uparrow$		$\mathcal{M}\downarrow$
1	One-shot	0.817	0.621	0.649	0.047	0.872	0.737	0.775	0.055
2	Equal Ratio	0.850	0.682	0.703	0.036	0.891	0.778	0.812	0.045
3	Epoch-Dynamic	0.884	0.713	0.737	0.032	0.907	0.795	0.830	0.043
4	H→L Entropy	0.788	0.525	0.590	0.059	0.813	0.612	0.685	0.078
5	Random Select	0.883	0.710	0.737	0.032	0.902	0.789	0.830	0.044
6	L→H Entropy	0.884	0.713	0.737	0.032	0.907	0.795	0.830	0.043

关于DPC的有效性:

关于不同提示策略:

- (1) 多点提示
- (2) 单框提示
- (3) 混合提示

关于融合方法:

- (1) 取交集
- (2) 取并集
- (3) 等比例融合

Table 4: Ablation experiments on the effectiveness of DPC, the results marked in Red indicate the best performance.

ID	Variants	$E_{\xi}\uparrow$	$F^{\omega}_{\beta} \uparrow$	^{010K} <i>F_β</i> ↑	$\mathcal{M}\downarrow \mid E_{\xi}\uparrow$	$F^{\omega}_{\beta}\uparrow$	^{24K} <i>F_β</i> ↑	$\mathcal{M}\downarrow$
1	Points	0.830	0.645	0.681	0.050 0.872 0.035 0.905 0.032 0.907	0.742	0.794	0.061
2	Box	0.876	0.701	0.731		0.795	0.827	0.044
3	P-B	0.884	0.713	<mark>0.737</mark>		0.795	0.830	0.043
4	Intersect	0.821	0.581	0.649	0.049 0.826 0.048 0.871 0.032 0.907	0.639	0.740	0.077
5	Union	0.800	0.622	0.626		0.752	0.762	0.049
6	Ratio	0.884	0.713	0.737		0.795	0.830	0.043

关于ST-SAM的可扩展性:

- (1) 用PRNet替代COD网络,PRNet是一种为全监督COD设计的轻量级网络。
- (2) 用BCE-IoU替代损失函数。

Table 5: Validation of the scalability of ST-SAM, the results marked in Red indicate the best performance.

ID	Variants		COD)10K			NC4K				
Ш	variants	$E_{\xi} \uparrow$	$F^{\omega}_{\beta}\uparrow$	$F_{\beta}\uparrow$	$M\downarrow$	$E_{\xi}\uparrow$	$F^{\omega}_{\beta}\uparrow$	$F_{\beta}\uparrow$	$\mathcal{M}\downarrow$		
1 2	ST-SAM(Light) ST-SAM(BCE-IoU)				0.040 0.034		0.741 0.798	0.796 0.826	0.051 0.040		
3 4	SSCOD ST-SAM	0.805 0.884	0.537 0.713	0.578 0.737	0.057 0.032	0.844 0.907	0.652 0.795	0.700 0.830	0.073 0.043		