Here is a Penrose (or Carter-Penrose diagram, or Conformal diagram) of a star collapsing to become a black hole.

What this picture does is collapse all of space into the x-axis and time into the y-axis. The idea is then that you can summarize all of the possible causal relationships in all of infinite space and all of time in one small finite picture. Here are what the labels mean:

- i^+ is where time is at + infinity, also called "timelike" infinity.
- i^- is where time is at infinity.
- i^0 is + infinity for space, , also called "spacelike" infinity. The zero here is because time is zero on this line?
- \mathcal{I}^+ is the boundary of the universe in the future at plus infinity.
- \mathcal{I}^- is the boundary of the universe in the past at minus infinity.
- \mathcal{H}^+ is position of the event horizon at plus infinity.
- \mathcal{I}^- is the boundary of the universe in the past at minus infinity.
- The coordinates v move "outward" with respect to the eventual black hole from past infinity to future infinity. The line at v=0 is the last vector that can escape the black hole after the event horizon has formed.
- The coordinates u move "inward" with respect to the eventual black hole from past infinity towards the event horizon. The line at $u = +\infty$ is the where the event horizon forms.
- The wavy line is the the singularity inside the black hole.
- The blue line is the star collapsing and forming the black hole.

Objects moving at the speed of light then move along lines that have a slope of exactly 45 degrees ($\pi/4$). These are also called "null" rays or trajectories in the literature.

