The Dark Side of Decentralized Target Tracking

Unknown Correlations and Communication Constraints

Robin Forsling

Introduction

Introduction

- Started at Saab 2016
- Industrial PhD student at Automatic Control, ISY, LiU between 2018–2023
- Main supervisor: Fredrik Gustafsson
- Research topic: Target tracking in decentralized sensor networks

A Target Tracking Problem

Multitarget tracking scene with measurements over multiple time instants

Refined picture using target tracking algorithms

Basic Target Tracking System

The Big Picture

- network-centric operations
- heterogenous agents: ships, aircraft, ground vehicles etc
- asymmetric capabilities
- distributed sensors
- information exchange

Sensor Network Architectures

Centralized sensor network

- possible optimal performance
- critical nodes, high complexity

Decentralized sensor network

- robust, modular, flexible
- dependencies (correlations)

Decentralized Target Tracking: System Perspective

Research Problem

Two subproblems

- 1. robust track fusion under unknown correlations
- 2. efficient usage of the communication resource

Outline

Resources: https://github.com/robinforsling/dtt/

■ Matlab[®] source code and thesis summary

Outline

Part I: Track fusion design and evaluation

- track fusion methods
- evaluation measures and analysis

Part II: Communication management design and implementation

• two frameworks for reducing the communication load

Part I: Track Fusion Design and

Evaluation

Decentralized Single-Target Tracking

Notation

- $x \in \mathbb{R}^{n_x}$: target state to be estimated
- *I*: identity matrix
- A^{T} : transpose of matrix (or vector) A
- A^{-1} : inverse of matrix A
- $A \succeq 0$: A is symmetric positive semidefinite
- $A \succ 0$: A is symmetric positive definite
- E(a): expected value of a
- cov(a): covariance (matrix) of a

Estimate Model

By (y_i, R_i) we denote the local estimate/track in ith agent, model as

$$y_i = H_i x + v_i R_i = \operatorname{cov}(v_i)$$

where R_i is the covariance of the noise v_i

In this presentation $H_i=I$ is assumed for simplicity, i.e., $y_i\in\mathbb{R}^{n_x}$

linear model, but not necessarily Cartesian!

Track Fusion: Optimal Method

Consider:

- (y_1, R_1) and (y_2, R_2) are to be fused
- $R_{12} = R_{21}^{\mathsf{T}} = \operatorname{cov}(\boldsymbol{y}_1, \boldsymbol{y}_2)$ is the cross-covariance between the estimates

An optimal fusion method is given by:

$$\hat{x} = K_1 y_1 + K_2 y_2 \qquad P = R_1 - K_2 S K_2^\mathsf{T}$$

where
$$K_1 = I - K_2$$
, $K_2 = (R_1 - R_{12})S^{-1}$, and $S = R_1 + R_2 - R_{12} - R_{12}^T$

Track Fusion: Decentralized Sensor Networks

Why not use the optimal fusion method? R_{12} is unknown!

Track Fusion: Naive Solution

The naive solution: assume that $R_{12} = 0$

Optimal fusion given that $R_{12} = 0$:

$$\hat{x} = P\left(R_1^{-1}y_1 + R_2^{-1}y_2\right)$$
 $P = \left(R_1^{-1} + R_2^{-1}\right)^{-1}$

If $R_{12} \neq 0$, the uncertainty P is underestimated — double counting of information

Track Fusion: Conservative Estimators

Issues:

- unknown correlations
- ullet if nonzero correlations are neglected the uncertainty P is underestimated

Possible solution: conservative estimators

Conservative Estimate

An estimate (\hat{x}, P) of x is *conservative* if

$$P - \mathrm{E}(\tilde{\boldsymbol{x}}\tilde{\boldsymbol{x}}^\mathsf{T}) \succeq 0$$

where $\tilde{\boldsymbol{x}} = \hat{\boldsymbol{x}} - x$ is the error

Conservative and Non-Conservative Estimates

Track Fusion: Conservative Methods

Task: Fuse (y_1, R_1) and (y_2, R_2) , where R_{12} is unknown

Conservative fusion methods:

- covarance intersection
- largest ellipsoid method
- inverse covariance intersection
- split covariance intersection
-

Covariance Intersection

Covariance Intersection

The estimates are fused using covariance intersection (CI) according to

$$\hat{x} = P\left(\omega R_1^{-1} y_1 + (1 - \omega) R_2^{-1} y_2\right) \qquad P = \left(\omega R_1^{-1} + (1 - \omega) R_2^{-1}\right)^{-1}$$

where $\omega \in [0,1]$ is computed by solving

$$\underset{\omega}{\text{minimize}} \quad J(P)$$

Similar in structure to the naive fusion method:

$$\hat{x} = P\left(R_1^{-1}y_1 + R_2^{-1}y_2\right)$$
 $P = \left(R_1^{-1} + R_2^{-1}\right)^{-1}$

Largest Ellipsoid Method

Largest Ellipsoid Method

The estimates are fused using the largest ellipsoid (LE) method according to

- 1. Factorize $R_1 = U_1 \Sigma_1 U_1^\mathsf{T}$ and let $T_1 = \Sigma_1^{-\frac{1}{2}} U_1^\mathsf{T}$. Factorize $T_1 R_2 T_1^\mathsf{T} = U_2 \Sigma_2 U_2^\mathsf{T}$ and let $T_2 = U_2^\mathsf{T}$.
- 2. Transform using $T = T_2T_1$ according to

$$z_1 = Ty_1$$
 $C_1 = TR_1T^{\mathsf{T}} = I$ $z_2 = Ty_2$ $C_2 = TR_2T^{\mathsf{T}}$

3. For each $i = 1, \ldots, n_x$, compute

$$([z]_i, [C]_{ii}) = \begin{cases} ([z_1]_i, 1), & \text{if } 1 \leq [C_2]_{ii}, \\ ([z_2]_i, [C_2]_{ii}), & \text{if } 1 > [C_2]_{ii}. \end{cases}$$

4. Transform back:

$$\hat{x} = T^{-1}z \qquad \qquad P = T^{-1}CT^{-\mathsf{T}}$$

Monte Carlo Evaluation

Monte Carlo (MC) based approach for evaluation:

- 1. Specify local sensors, local state estimation filters, and communication pattern.
- 2. Specify the considered track fusion methods.
- 3. Define a metrics for tracking performance and conservativeness.
- 4. Define characteristic target trajectories.
- 5. Tune the local filters for the characteristic trajectories.
- Using MC simulations, evaluate each fusion method with respect to performance and conservativeness.

An estimate at the ith MC run at time k is denoted (\hat{x}_k^i, P_k^i)

Performance Evaluation

Root mean squared error (RMSE) is a common measure for performance

requires the true state to be known — cannot be computed online

Root Mean Trace

The sampled root mean trace (RMT) at time k is defined as

$$\mathsf{RMT}_k = \sqrt{\frac{1}{M} \sum_{i=1}^M \mathrm{tr}(P_k^i)}$$

Conservativeness Evaluation

Since $P = LL^{\mathsf{T}} \succ 0$, the Cholesky factor L is invertible such that

$$P \succeq \mathrm{E}(\tilde{\boldsymbol{x}}\tilde{\boldsymbol{x}}^\mathsf{T}) \iff I \succeq L^{-1} \, \mathrm{E}(\tilde{\boldsymbol{x}}\tilde{\boldsymbol{x}}^\mathsf{T}) L^{-\mathsf{T}}$$

Hence (\hat{x}, P) is conservative iff

$$\lambda_{\max} \left(L^{-1} \operatorname{E}(\tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^{\mathsf{T}}) L^{-\mathsf{T}} \right) \leq 1$$

 $\lambda_{\max}(A)$ denotes the largest eigenvalue of a matrix A

Conservativeness Evaluation

Conservativeness Index

The sampled conservativeness index (COIN) at time k is defined as

$$\mathsf{COIN}_k = \lambda_{\max} \left(\underbrace{\frac{1}{M} \sum_{i=1}^{M} (L_k^i)^{-1} \tilde{x}_k^i (\tilde{x}_k^i)^\mathsf{T} (L_k^i)^{-\mathsf{T}}}_{\mathcal{C}_k} \right)$$

where $L_k^i(L_k^i)^{\mathsf{T}}=P_k^i$, \tilde{x}_k^i is the error in the ith MC run, and \mathcal{C}_k is the sampled normalized estimation error squared matrix

Want $COIN_k$ to be smaller than or equal to 1

Evaluation Scenario

Evaluation Results

Part II: Communication

Implementation

Management Design and

Communication Management: Data Reduction

Two methodologies:

- diagonal covariance approximation (DCA)
- dimension reduction (DR)

Diagonal Covariance Approximation

Problem:

- Agent 2 is about to transmit (y_2, R_2) to Agent 1
- limited communication capacity: the data (y_2,R_2) must be reduced

Observation: y_i scales as n_x and R_i as n_x^2

Simple solution: exchange (y_2,D_2) where D_2 is diagonal — essentially an n_x -dimensional vector

Diagonal Covariance Approximation: Example

Let
$$R_2 = \begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $D_2 = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$

Diagonal Covariance Approximation: Example

Let
$$R_2 = \begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $D_2 = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$

Agent 2 preserves conservativeness if (y_2, D_2^s) is exchanged

Diagonal Covariance Approximation: Two Options

Two options are considered:

- Agent 2 transmits (y_2, D_2^s) to Agent 1, where $D_2^s \succeq R_2$. In this case, Agent 2 has already preserved conservativeness, and hence, Agent 1 can use the received estimate directly without any additional action.
- Agent 2 transmits (y_2, D_2) to Agent 1. In this case, Agent 1 must explicitly handle that $D_2 \not\succeq R_2$ to ensure conservativeness after track fusion.

Diagonal Covariance Approximation: Eigenvalue Based Scaling

Eigenvalue Based Scaling

minimize
$$s$$
 subject to $D_2^s = sD_2 \succeq R_2$.

The solution is

$$s^{\star} = \lambda_{\max}(D_2^{-\frac{1}{2}}R_2D_2^{-\frac{1}{2}})$$

Diagonal Covariance Approximation: Hyperrectangle Enclosing

Agent 1 receives (y_2, D_2) from Agent 2

• Assume $R_2 = \left[\begin{smallmatrix} 4 & 1 \\ 1 & 1 \end{smallmatrix} \right]$ such that $D_2 = \left[\begin{smallmatrix} 4 & 0 \\ 0 & 1 \end{smallmatrix} \right]$

The parametrization given by

$$D_2^{\omega} = \begin{bmatrix} \frac{4}{\omega_1} & 0\\ 0 & \frac{1}{\omega_2} \end{bmatrix}$$

where $\omega_i > 0$ and $\sum_i \omega_i = 1$

Dimension Reduction: Basic Idea

Instead of transmitting (y_2,R_2) Agent 2 can transmit (y_Ψ,R_Ψ) where

$$y_{\Psi} = \Psi y_2 \qquad \qquad R_{\Psi} = \Psi R_2 \Psi^{\mathsf{T}}$$

and $\Psi \in \mathbb{R}^{m \times n_x}$ is a "wide matrix", i.e., $m < n_x$

This is a dimension reduction problem

Dimension Reduction: Designing Ψ

How to choose Ψ ? Optimize for fusion performance!

Assume that (y_1,R_1) and (y_Ψ,R_Ψ) are fused according to

$$\hat{x} = P\left(R_1^{-1}y_1 + \Psi^\mathsf{T}R_{\Psi}^{-1}y_{\Psi}\right)$$
 $P = \left(R_1^{-1} + \Psi^\mathsf{T}R_{\Psi}^{-1}\Psi\right)^{-1}$

which is optimal given that the estimates are uncorrelated

Dimension Reduction: Designing Ψ

Fusion Optimal Dimension Reduction

A fusion optimal Ψ^{\star} is computed by solving

$$\label{eq:problem} \underset{\Psi}{\text{minimize}} \quad \text{tr}(P).$$

where
$$P = \left(R_1^{-1} + \Psi^\mathsf{T} R_\Psi^{-1} \Psi\right)^{-1}$$

The solution is given by an eigenvalue problem!

Communication Reduction

Let $n_{\rm dca}$, $n_{\rm dr}$, and $n_{\rm full}$ denote the number of parameters to be transmitted using DCA, DR, and full estimates, respectively

Summary

Summary

Excluded material:

- the CLUE framework
- common information estimate keeping track of network common information
- practical and theoretical aspects related to the data reduction techniques

Related resources: https://github.com/robinforsling/dtt/

- Matlab[®] library source code for all examples and simulation
- thesis summary
- posters, papers, bibliography, figures