data wrangling() && ("manipulation" %in% R)


```
postgraduate workshop(
                                 > face() > logos()
 dept = "Biological Sciences",
 presenter = c(
    "Ruan van Mazijk",
    "MSc candidate"
```

> introduce())

> introduce()

• BSc + Hons here at UCT

> introduce())

BSc + Hons here at UCT

- Ecology & evolution
- (Mostly plant) comparative biology
- Biogeography

> introduce())

BSc + Hons here at UCT

- Ecology & evolution
- (Mostly plant) comparative biology
- Biogeography
- Been working with R for 4½ years
 - Every major project I've done...

> introduce()

More reproducible science

- More reproducible science
- Save time by:
 - Automating repetitive tasks
 - Eliminating human error

- More reproducible science
- Save time by:
 - Automating repetitive tasks
 - Eliminating human error
- Boost your skills
- Think about your data programmatically

Notes & slides will go up here:

tinyurl.com/r-with-ruan

(But I encourage you to make your own notes!)

> workshop\$outline

DAY 1

Tidy data principles & tidyr

DAY 1

DAY 2

DAY 3

Tidy data principles & tidyr

Manipulating data & an intro to dplyr

Extending your data
 with mutate(),
 summarise()

& friends

2 dialects of R:

2 dialects of R:

base

```
$ [] [[]]
apply() which() subset()
```

2 dialects of R:

base

```
$ [] [[]]
apply() which() subset()
```

tidyverse

data <- read.csv("my-data.csv")</pre>


```
data <- read.csv("my-data.csv")
data1 <- f(data, arg1 = "something")</pre>
```



```
data <- read.csv("my-data.csv")

data1 <- f(data, arg1 = "something")
data2 <- g(data1, another.thing = "blah")</pre>
```



```
data <- read.csv("my-data.csv")

data1 <- f(data, arg1 = "something")

data2 <- g(data1, another.thing = "blah")

data3 <- h(data2, a.setting = TRUE)</pre>
```



```
data <- read.csv("my-data.csv")</pre>
```

```
data1 <- f(data, arg1 = "something")
data2 <- g(data1, another.thing = "blah")
data3 <- h(data2, a.setting = TRUE)
data4 <- data3[data3$a.column == "cough", ]</pre>
```



```
data <- read.csv("my-data.csv")

data1 <- f(data, arg1 = "something")
data2 <- g(data1, another.thing = "blah")
data3 <- h(data2, a.setting = TRUE)
data4 <- data3[data3$a.column == "cough", ]</pre>
```

data <- read.csv("my-data.csv")</pre>

```
data <- read.csv("my-data.csv")
data <-</pre>
```

data

```
data <- read.csv("my-data.csv")

data <-
f(data, arg1 = "something")</pre>
```

```
data <- read.csv("my-data.csv")</pre>
data <-
    g(
      f(data, arg1 = "something"),
      another.thing = "blah"
```

```
data <- read.csv("my-data.csv")</pre>
data <-
  h(
    g(
      f(data, arg1 = "something"),
      another.thing = "blah"
    a.setting = TRUE
```



```
data <- read.csv("my-data.csv")</pre>
data <-
  h(
    g(
      f(data, arg1 = "something"),
      another.thing = "blah"
    a.setting = TRUE
```



```
data <- read.csv("my-data.csv")</pre>
data <-
  h(
      f(data, arg1 = "something"),
      another.thing = "blah"
    a.setting = TRUE
```



```
data <- read.csv("my-data.csv")</pre>
data
  h (
      f(data, arg1 = "something"),
      another.thing = "blah"
    a.setting = TRUE
```



```
data
  h(
      f(data, arg1 = "something"),
      another.thing = "blah"
    a.setting = TRUE
```

data <- read.csv("my-data.csv")</pre>


```
data <- read.csv("my-data.csv")</pre>
```

Solution: the pipe!

Solution: the pipe!

{ } [] [[]] <- = () , " " ' '

Read: "then"

Solution: the pipe!

{ } [] [[]] <- = () , " " ' '


```
data <- read.csv("my-data.csv")

data1 <- f(data, arg1 = "something")
data2 <- g(data1, another.thing = "blah")
data3 <- h(data2, a.setting = TRUE)
data4 <- data3[data3$a.column == "cough", ]</pre>
```

data

f(x)

f(x) sort(1:10)

f(x) x %>% f() sort(1:10)

f(x)

sort(1:10)

x %>% f()

1:10 %>% sort()

f(x, y) t.test(data\$x, data\$y)

f(x, y)

t.test(data\$x, data\$y)

x % % f(y)

data\$x %>% t.test(data\$y)


```
data <- read.csv("my-data.csv")

data1 <- f(data, arg1 = "something")
data2 <- g(data1, another.thing = "blah")
data3 <- h(data2, a.setting = TRUE)
data4 <- data3[data3$a.column == "cough", ]</pre>
```



```
data <- read.csv("my-data.csv")</pre>
```

x %>%

```
h(g(f(x)))

x %>%
f() %>%
```

```
h(g(f(x)))

x %>%

f() %>%

g() %>%
```



```
data <- read.csv("my-data.csv")</pre>
data <-
  h(
    g(
      f(data, arg1 = "something"),
      another.thing = "blah"
    a.setting = TRUE
```

```
data <- read.csv("my-data.csv")

data <- data %>%
  f(arg1 = "something") %>%
  g(another.thing = "blah") %>%
  h(a.setting = TRUE)
```

```
data <- read.csv("my-data.csv")</pre>
data <- data %>%
  f(arg1 = "something") %>%
  g(another.thing = "blah") %>%
                                          data
  h(a.setting = TRUE)
                                   Some subsetting
                                     new data
```

```
data <- read.csv("my-data.csv")

data <- data %>%
  f(arg1 = "something") %>%
  g(another.thing = "blah") %>%
  h(a.setting = TRUE)
```


> workshop\$outline[1:3]

DAY 1

DAY 2

DAY 3

Tidy data principles & tidyr

Manipulating data & an intro to dplyr

Extending your data
 with mutate(),
 summarise()

& friends

> workshop\$outline[[1]]

DAY 1

Tidy data principles & tidyr

> workshop\$outline[[1]]

DAY 1

Tidy data principles & tidyr

A motivating example...

An example data-collection scenario in biology

(A good way to collect your data!)

Site 1			Site 2			Site 3		
Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3

Site 1			Site 2			Site 3		
Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3
* 7	* 🖷	*	* *	*	*	* 7	* 7	* 7
* 🖷	* 🖷	* 🕌	* 🕌	**	* 7	* 7	* 🖷	* 7
* 7	*	* 🖷	*	*	*	* 7	* 7	**
* 7	* 7	* 🖷	*	*	*	*	*	*

One way to lay out your collected data...

Site 1			Site 2			Site 3			
Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3	
	* *								
* 🖷	* 🖷	* 🖷	*		* 7	* 🖷	* 7	**	
*	*	* 🖷			*	*	* 7	* 7	
* 7	* 7	*	* *		*		* *	**	

Site 1			Site 2			Site 3			
Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3	
	* *								
* 🖷	* 🖷	* 🖷	*		* 7	* 🖷	* 7	**	
*	*	* 🖷			*	*	* 7	* 7	
* 7	* 7	*	* *		*		* *	**	

Site 1	e 1 Site 2			Site 3				
Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3
							* 7	
* 7	* 🖷	* 7	*		* 7	* 7	* 7	**
*	*	*	*		*	*	*	* 7
*	*	*	*	*	* 7	*	* 🖷	*

Site 1	ite 1 Site 2			Site 3				
Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3	Sp 1	Sp 2	Sp 3
			* 7					,
* 7	* 🖷	* *	* 7	**	* 7	* 7	* 7	**
	* 🖷	* 🞢	*	*	* 7	*	*	*
*	* 🖷	* 🖷	*	*	* 7	* 7	**	* 7

	Site 1	Site 2	Site 3	
Sp	*	*	*	

Another way...

Sp	Site	*	

The "best" way.
(Will make your life easiest in the long-term.)

Site	*	
	Site	Site *

The "best" way.
(Will make your life easiest in the long-term.)

- 1. Each variable must have its own column
- 2. Each observation must have its own row
- 3. Each value, therefore, must have its own cell

tidyr

An R-package all about getting to this:

Verbs to tidy your data

Verbs to tidy your data

```
# Untidy observations?
gather()  # if > 1 observation per row
spread()  # if observations live in > 1 row
```

Verbs to tidy your data

```
# Untidy observations?
gather()  # if > 1 observation per row
spread()  # if observations live in > 1 row

# Untidy variables?
separate() # if > 1 variable per column
unite()  # if variables live in > 1 column
```

- Be clear on what your **observations** are:
 - Like, what unit of your study "counts" as an observation
 - E.g. Leaf traits: plant leaf vs plant individual
 - E.g. Reproductive success: egg size vs clutch size

- Be clear on what your **observations** are:
 - Like, what unit of your study "counts" as an observation
 - E.g. Leaf traits: plant leaf vs plant individual
 - E.g. Reproductive success: egg size vs clutch size
 - This will depend on your study &/or data!

- Be clear on what your **observations** are:
 - Like, what unit of your study "counts" as an observation
 - E.g. Leaf traits: plant leaf vs plant individual
 - E.g. Reproductive success: egg size vs clutch size
 - This will depend on your study &/or data!
- Variables are discrete, separate ideas!

- Be clear on what your **observations** are:
 - Like, what unit of your study "counts" as an observation
 - E.g. Leaf traits: plant leaf vs plant individual
 - E.g. Reproductive success: egg size vs clutch size
 - This will depend on your study &/or data!
- Variables are discrete, separate ideas!
 - But again, this will depend on your study &/or data!

> demo()