Activity 3

OBJECTIVE

To verify the algebraic identity:

$$(a + b)^2 = a^2 + 2ab + b^2$$

MATERIAL REQUIRED

Drawing sheet, cardboard, cellotape, coloured papers, cutter and ruler.

METHOD OF CONSTRUCTION

- 1. Cut out a square of side length *a* units from a drawing sheet/cardboard and name it as square ABCD [see Fig. 1].
- 2. Cut out another square of length *b* units from a drawing sheet/cardboard and name it as square CHGF [see Fig. 2].

 $\begin{bmatrix} b & b^2 & \\ & b & \\ C & b & \end{bmatrix}$

Fig. 2

- 3. Cut out a rectangle of length *a* units and breadth *b* units from a drawing sheet/cardbaord and name it as a rectangle DCFE [see Fig. 3].
- 4. Cut out another rectangle of length *b* units and breadth *a* units from a drawing sheet/cardboard and name it as a rectangle BIHC [see Fig. 4].

Mathematics 17

Н C ba В

Fig. 3

Fig. 4

- 5. Total area of these four cut-out figures
 - = Area of square ABCD + Area of square CHGF + Area of rectangle DCFE
 - + Area of rectangle BIHC

$$= a^2 + b^2 + ab + ba = a^2 + b^2 + 2ab.$$

6. Join the four quadrilaterals using cello-tape as shown in Fig. 5.

Clearly, AIGE is a square of side (a + b). Therefore, its area is $(a + b)^2$. The combined area of the constituent units = $a^2 + b^2 + ab + ab = a^2 + b^2 + 2ab$.

Hence, the algebraic identity $(a + b)^2 = a^2 + 2ab + b^2$

Here, area is in square units.

OBSERVATION

On actual measurement:

$$a = \dots, b = \dots, (a+b) = \dots,$$
So, $a^2 = \dots, b^2 = \dots, ab = \dots,$
 $(a+b)^2 = \dots, 2ab = \dots,$

Therefore, $(a+b)^2 = a^2 + 2ab + b^2$.

The identity may be verified by taking different values of a and b.

APPLICATION

The identity may be used for

- 1. calculating the square of a number expressed as the sum of two convenient numbers.
- 2. simplifications/factorisation of some algebraic expressions.

Mathematics 19