Week 6 - Unsupervised learning 1. PCA (PCR and PLS)

Anikó Lovik

a.lovik@fsw.leidenuniv.nl

Statistical learning 2024-03-13

Unsupervised learning

Topics for Weeks 6-7-8:

- Week 6: PCA (and maybe PCR, PLS)
- Week 7: Clustering (k-means and hierarchical)
- Week 8: Gaussian mixture modelling, maybe PCR, PLS

Materials:

- ISL2, chapter 12
- ISL2, chapter 6,: section 6.3 (pp. 251-261)
- Separate articles as examples

Topics for Week 6

- Supervised and unsupervised learning
- Principal component analysis
- 3 Supervised dimension reduction methods Principal components regression Partial least squares (Principal covariates regression)

ISL2 book:

PCA: chapter 12, sections 12.1-12.3 (pp. 497-516) PCR&PLS: chapter 6, section 6.3 (pp. 251-261)

Unsupervised vs. supervised methods

Unsupervised learning...

- has no criterion/label (Y) to supervise the learning
- instead of prediction → searching for structure in the data
 - groups of similar observations or variables
 - finds directions that explain most variance
- more exploratory in nature
- more difficult to assess the performance of the method
- interesting alternatives for high-dimensional problems
- sometimes used as pre-processing for supervised methods → identifying important variables when having many predictors

Different types of techniques

Dimension reduction techniques

- Principal Component Analysis (PCA)
- **E**xploratory **F**actor **A**nalysis (EFA)
- Correspondence analysis
- Canonical Correlation Analysis (CCA)
- Independent Component Analysis (ICA)
- Non-negative Matrix Factorisation (NMF)
- t-distributed Stochastic Neighbor Embedding (t-SNE)
- MultiDimensional Scaling (MDS)

Clustering techniques

- One-mode clustering
 - k-means clustering
 - Hierarchical clustering
 - Gaussian mixture analysis
 - Latent class analysis
- Two-mode clustering (bi-clustering)

Principal component analysis

 X_1, \ldots, X_p are correlated variables, z_{i1} (the first principal component for observation $i, i = 1, \ldots, n$) is the normalised linear combination of all these variables with the highest variance:

$$Z_{i1} = \phi_{11} X_{i1} + \dots + \phi_{p1} X_{ip} \tag{1}$$

with $\sum_{j=1}^{p} \phi_{j1}^2 = 1$ (\leftarrow this being the normalised part)

For the first component Z_1 then $\phi_{11},...,\phi_{p1}$ are obtained by solving:

$$\max_{\phi_{11},\dots,\phi_{p1}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^{2} \right\}$$
 (2)

After finding Z_1 , Z_2 again is the linear combination of X_1 , ..., X_p that has maximal variance and is uncorrelated with Z_1 .

Different views of principal component analysis

first view: find (uncorrelated) linear combinations of the (correlated) variables with largest variance across the samples

- summarizes (the variance in) the data into a small number of components (i.e., main directions in the data)
- low-dimensional representation of the dataset

second view: line (1D) or subspace (2D/3D) closest to the data in terms of squared distances (i.e., least squares approximation)

- (with centered variables): approximate x_{ij} with $\sum_{m=1}^{m} z_{im}\phi_{jm}$
- find z_{im} and ϕ_{jm} 's such that

$$\sum_{i=1}^{n} \sum_{j=1}^{p} (x_{ij} - \sum_{m=1}^{M} z_{im} \phi_{jm})^{2}$$
 (3)

is minimal \rightarrow with $\phi_1,...,\phi_m$ of length one and orthogonal to each other

A side note on the different views of PCA and its history

These analogies suggest that, in choosing among the infinity of possible modes of resolution of our variables into components, we begin with a component γ_1 whose contributions to the variances of the x_1 have as great a total as possible; that we next take a component γ_2 , independent of γ_1 , whose contribution to the residual variance is as great as possible; and that we proceed in this way to determine the components, not exceeding n in number, and perhaps neglecting those whose contributions to the total variance are small. This we shall call the method of principal components. Its technique will be considered in the subsequent sections.

[Hotelling, 1933]

Proportion of variance explained

i.e., how much of the information is not contained in the first few PC's?

The PVE of the *m*-th component is
$$\frac{\sum_{i=1}^{n} \left(\phi_{1m} \chi_{i,1} + \phi_{2m} \chi_{i,2} + \dots + \phi_{pm} \chi_{i,p} \right)^{2}}{\sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jm} \chi_{ij} \right)^{2} \sum_{i=1}^{n} \chi_{i,1}^{2} + \chi_{i,2}^{2} + \dots + \chi_{i,p}^{2}}$$

$$\frac{\sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jm} \chi_{ij} \right)^{2}}{\sum_{i=1}^{p} \sum_{j=1}^{n} \chi_{i,1}^{2} + \chi_{i,2}^{2} + \dots + \chi_{i,p}^{2}}$$
(4)

The PVE's of the min(n-1,p) components sum to one, and the PVE of the first m components can be interpreted similarly to R^2 .

Important concepts

- **component loadings** (ϕ_{jm}): weight of each variable in the components (for interpretation of the components)
- component scores (z_{im}): score of each case on the components (to see structure among the cases)
- proportion explained variance of each component: the variance of each component denotes the importance of that component

Scaling of variables

- Centering covariance matrix
- Centering + normalisation correlation matrix

How many components?

Maximum number of components is min(n,p) (or min(n-1,p) for scaled variables)

Several ways to decide:

- Kaiser's rule (1960): still a default setting in some software, stop to think before using it!
- Horn's parallel analysis (1965) Monte-Como
- Cattell's scree plot (1966)
- Velicer's minimum average partial test (MAP) (1976, 2000)
- Revelle & Rocklin's Very Simple Structure (VSS) (1979)
- ...and many more ...

In sum, no simple (or even single) answer possible!

Rotations

make C., Cs, Cs Contains diff tupes of information,

- In PCA, most variables load on the first factors
 - → rotation to simple structure: easier interpretation
- Rotation redistributes the PVE among the PC's
 - → successive maximisation of the of the unrotated components is lost
 - \rightarrow the total variance of the *m* components is more evenly distributed
- Two main types:
 - Orthogonal: e.g., varimax, quartimax

 Oblique: e.g., oblimin

 This is a few and the search of the s
- Analyses (with different rotations) are hard to compare

On the importance of checking the input data

Preliminary Eigenvalues: Total = 12101,4962 Average = 310,294776

	.11cluge = 510,254770							
	Eigenvalue	Difference	Proportion	Cumulative				
1	4676,24009	1460,08130	0,3864	0,3864				
2	3216,15879	1815,97618	0,2658	0,6522				
3	1400,18261	427,54074	0,1157	0,7679				
4	972,64188	249,03252	0,0804	0,8483				
5	723,60936	347,17931	0,0598	0,9081				
6	376,43005	139,10572	0,0311	0,9392				
7	237,32433	72,70745	0,0196	0,9588				
8	164,61688	46,18434	0,0136	0,9724				
9	118,43254	37,33710	0,0098	0,9822				
10	81,09545	28,89558	0,0067	0,9889				
11	52,19986	10,99219	0,0043	0,9932				
12	41,20767	31,51905	0,0034	0,9966				
13	9,68862	1,83732	0,0008	0,9974				
14	7,85130	0,45058	0,0006	0,9980				
15	7,40072	0,84302	0,0006	0,9986				
16	6,55769	2,03149	0,0005	0,9992				
17	4,52621	1,32161	0,0004	0,9996				
18	3,20460	0,57495	0,0003	0,9998				
19	2,62964	0,22822	0,0002	1,0000				
20	2,40143	1,13838	0,0002	1,0002				
21	1,26304	0,35406	0,0001	1,0003				

Preliminary Eigenvalues: Total = 12101,4962

Average = 310,294776							
		Eigenvalue	Difference	Proportion	Cumulative		
	22	0,90898	0,15866	0,0001	1,0004		
	23	0,75032	0,17589	0,0001	1,0005		
	24	0,57443	0,22816	0,0000	1,0005		
	25	0,34627	0,26690	0,0000	1,0006		
	26	0,07937	0,06851	0,0000	1,0006		
	27	0,01087	0,14854	0,0000	1,0006		
	28	-0,13767	0,08902	-0,0000	1,0006		
	29	-0,22669	0,04667	-0,0000	1,0005		
	30	-0,27336	0,10848	-0,0000	1,0005		
	31	-0,38184	0,07889	-0,0000	1,0005		
	32	-0,46072	0,05735	-0,0000	1,0004		
	33	-0,51807	0,05473	-0,0000	1,0004		
	34	-0,57280	0,12223	-0,0000	1,0004		
	35	-0,69503	0,08012	-0,0001	1,0003		
	36	-0,77515	0,03624	-0,0001	1,0002		
	37	-0,81139	0,17538	-0,0001	1,0002		
	38	-0,98677	0,01049	-0,0001	1,0001		
	39	-0,99726		-0,0001	1,0000		

Missing data

- Complete case analysis a.k.a. listwise deletion (dropping incomplete observations): wasteful, can cause bias
- Mean imputation: artificially reduces the variance
- Matrix completion (if MAR): finds PC's and imputes the missing values iteratively (still a single-value imputation and M needs to be set) - used in recommender systems

Other issues to consider with PCA

We have discussed the number of components, scaling, missing data and rotations.

PCA can be impacted by

- outliers
- number of variables loading on a component
- extremely skewed variables
- rounding

Many of these issues are more important with smaller samples.

Group Exercise

Please form groups of 2-4 students.

Look at the paper on Brightspace.

Dietary patterns and risk of nasopharyngeal carcinoma: a population-based case-control study in southern China

Tingting Huang.¹² Alexander Ploner,¹ Ellen T Chang.¹⁴ Qing Liu,¹5 Yonglin Cai,⁷⁸ Zhe Zhang.^{8,10} Guomin Chen,¹¹ Qihong Huang.¹³ Shanghang Xie,⁵⁸ Sumei Cao,⁵⁸ Weihua Ila,⁶ Yuming Zheng,⁷⁸ Jian Liao,¹¹ Yufeng Chen, ¹ Longde Lin,¹⁰ Ingemar Ernberg, ¹⁴ Guangwu Huang.¹⁰⁰ Yi Zeng,¹¹ Yixin Zeng,¹³ Hans-Olov Adami, ^{14,47} and Weinin Ye^{1,18}

¹Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden; ²Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; ³Center for Health Sciences, Exponent, Inc., Menlo Park, CA, USA; ⁴Stanford Cancer

Discuss the following questions with your group:

- What field is this application from?
- What is the aim of the study?
- How was PCA used in this study?
- How is PCA described in the study?
- How are PCA results presented in the study?

Supervised dimension reduction methods

Three methods to improve least squares linear regression model (see Week 5)

- Selection of predictors and fit least squares
 - (best) subset selection
- Shrinkage of regression coefficients (fit least squares with a constraint)
 - Reduces the variance and can perform variable selection
- Dimension reduction methods (fit least squares on derived predictors/features)
 - Based on forming linear combinations of the original variables
 - No explicit selection of variables
 - Not always easy to interpret the linear combinations
 - Reduces the variance because some constraint on the coefficients is imposed (but may lead to bias)
 - → penalty methods also constrain the coefficients
 - \rightarrow adding constraints is the only option when $n \ll p!$

Supervised dimension reduction methods

Two-step procedure

- Step 1: Compute new variables as linear combinations of the original predictors (e.g., z_m 's in PCA)
- Step 2: Perform least squares regression with the new variables

Bias-variance trade off

- The constraint increases the bias: it's a simpler model, less flexible
- However, it may reduce the variance

Principal Components Regression (PCR)

- Step 1: perform PCA (on standardized data) and take the first *M* components
 - Principal components are linear combinations of the original variables that have the largest variance
 - When predictors are correlated: a few principal components will capture most of the data
 - Later principal components are uncorrelated to former ones (no issue of multicollinearity)
 - When M = P: original least squares regression is obtained
 - Larger M gives a smaller bias but a larger variance
- Step 2: perform least squares regression with these M components
- Use cross-validation to determine M

PCR assumes that the direction of variation of the predictors is also the direction where the response is varying (i.e., the linear combinations are related to the response)

Partial Least Squares (PLS) regression

- Supervised way of selecting the linear combinations:
 - \rightarrow first identifies the $Z_1,...,Z_m$ components that explain a lot of variance in the predictors and that are strongly related with the response Y
- Coefficients are obtained from univariate regressions: directions are strongly determined by variables having the largest correlation with the response
 - \rightarrow use standardized predictors and response
- Procedure:
 - Compute loadings for Z_1 by regressing Y onto $X_j \rightarrow$ highest weights for X_j 's strongly related to Y.
 - To identify Z_2 : first adjust each variable by Z_1 and use the residuals for computing Z_2 same way as Z_1 .
 - When all Z₁,..., Z_m have been obtained: fit a least squares regression to predict Y.

Principal Covariates Regression (PCovR)

- Not in ISLR2, but good to know it exists
- Like PLS, it is popular in chemometrics
- Not a two-step procedure → simultaneously look for components that explain a lot of variance in the predictors and that are strongly related with the response
- Emphasis on dimension reduction or prediction can be adjusted through weights
 - → very flexible
- Implemented in R packages: PCovR and PCovR2.

Preparation for workgroup

Please read in ISLR2 book:

- PCA: chapter 12, sections 12.1-12.3 (pp. 497-516)
- PCR&PLS: chapter 6, section 6.3 (pp. 251-261)
 + relevant R labs (parts of sections 12.5, 6.5)

R Labs are also collected into one html file on Brightspace

→ (look under "Between Lecture + Workgroup")

References

Harold Hotelling (1933)

Analysis of a complex statistical variables into principal components

J Edu Psych 417-441