## Kwadratury Laboratorium 6

#### Jakub Ciszewski, Wiktor Smaga

3 czerwca 2024

## 1 Wstęp

Celem ćwiczenia jest porównanie jakie błędy generują metody Simpsona, trapezów oraz środkowych prostokątów.

### 2 Zadanie 1.

#### **2.1** Opis

Zadanie polega na obliczeniu wartość całki

$$\int_0^1 \frac{4}{1+x^2} \, dx = \pi$$

przy pomocy metody środkowych prostokątów, trapezów oraz Simpsona, dla liczby węzłów

$$2^m + 1$$
 dla  $m \in \{1, ..., 25\}$ 

Przy zadaniu skorzystałem z integrate.<br/>trapz i integrate.<br/>simps z biblioteki scipy oraz ze własnej funkcji liczącą całkę metodą środkowych prostokątów.

# 2.2 Porównanie wartości bezwzględnych błędów względnych

Metoda trapezów ma największy błąd bezwzględny. Bardzo podobny błąd występuje też dla metody środkowych prostokątów. Metoda Simpsona uzyskuje znacząco mniejsze błędy.



Wykres 1: Błąd względny w zależnosci od liczby ewaluacji funkcji podcałkowej

### 2.3 Porównanie $h_{\min}$ z wartością z laboratorium 1

| Metoda              | Minimalny błąd względny | Wartość h dla minimalnego błędu |
|---------------------|-------------------------|---------------------------------|
| Środkowe prostokąty | $7.07 \times 10^{-16}$  | $2.38 \times 10^{-7}$           |
| Trapezy             | $2.54 \times 10^{-15}$  | $2.38 \times 10^{-7}$           |
| Simpson             | $1.41 \times 10^{-16}$  | $5.96 \times 10^{-8}$           |

Tabela 1: Minimalne błędy względne dla różnych metod całkowania

wartość h z laboratorium 1 wynosiła:

$$h_{\min} = 9.12 \times 10^{-9}$$

| Metoda całkowania   | Różnica od $h_{\min}$ z laboratorium 1 |
|---------------------|----------------------------------------|
| Środkowe prostokąty | 25.13%                                 |
| Metoda trapezów     | 25.13%                                 |
| Metoda Simpsona     | 5.53%                                  |

Tabela 2: Różnice od  $h_{\min}$  dla różnych metod całkowania

## 2.4 Porównanie empirycznego rzędu zbieżności z rzędem teoretycznym

Empiryczny rząd zbieżności definiujemy jako stosunek dwóch kolejnych błędów:

$$p = \frac{\log\left(\frac{E_{i-1}}{E_i}\right)}{\log\left(\frac{h_{i-1}}{h_i}\right)}$$

Czyli w naszym przypadku przez to że wartość h zwiększa nam się dwukrotnie przy każdej iteracji:

$$p = \frac{\log\left(\frac{E_{i-1}}{E_i}\right)}{\log(2)}$$

Do obliczenia rzędu zbieżności empirycznej zastosowałem przedział m od 1 do 7, ponieważ dla większych m błąd metody simpsona przyjmuje wartość 0. Z wykresu wynika, że metoda środkowych prostokątów i trapezów ma zbieżny rząd zbieżności do rzedu przewidywanego. Natomiast wykres Simpsona jest znacząco różny od rzędu przewidywanego



Wykres 2: Porównanie empirycznego rzedu zbieżności z rzędem teoretycznym

## 3 Zadanie 2.

Celem zadania jest pokazanie różnicy między błędami metod z zadania 1 oraz metodą Gaussa-Legendre'a. Z racji tego, że metoda Gaussa Legendre'a dla mniejszych h oblicza się bardzo długo zamieściłem na wykresie tylko jego część.



Wykres 3: Porównanie metody Gaussa-Legendre'a z pozostałymi metodami

Jak wynika z tego wykresu dla ponad 10 ewaluacji zaczynna przeważać błąd obliczeniowy na błędem metody.



Wykres 4: Błąd względny w zależności od liczby ewaluacji funkcji podcałkowej dla metody Gaussa-Legendre'a

## 4 Wnioski

- 1. Metoda Gaussa-Legendre'a jest dokładniejsza od pozostałych metod dla małej liczby węzłów, natomiast zwiększenie liczby węzłów skutkuje szybkim wzrostem błędu numerycznego
- 2. Metody obliczania całki mają minimalne błedy względne dla podobnego hmin uzyskanego na pierwszych zajęciach
- 3. Empirycznie metoda Simpsona ma zdecydowanie większy rząd zbieżności niż teoretycznie, natomiast empiryczny rząd zbieżności metody środkowych prostokątów oraz trapezów jest podobny do przewidywanego