Regularization Methods for Linear Regression

Mathilde Mougeot

ENSIIE

2017-2018

Agenda

Lessons

- 3 plenatory lessons (MRR)
- 3 Practical work sessions using R (mrr)
- 10 Project sessions (ipR)

Before next session, install on your computer

- 1 R software, https://www.r-project.org/
- Rstudio, https://www.rstudio.com/

Documents are availabale (at this stage)

https://sites.google.com/site/MougeotMathilde/teaching

A word on data and predictive models

Data are everywhere

- Industry (Temperature, IR sensors...)
- Finance : transactions
- Marketing: consumer data.
- on your phone (GPS, mail, musique ...)
- ightarrow Data base are available everywhere : from small data set to Big Data

A word on data and predictive models

Data are everywhere

- Industry (Temperature, IR sensors...)
- · Finance: transactions
- Marketing: consumer data.
- on your phone (GPS, mail, musique ...)
- ightarrow Data base are available everywhere : from small data set to Big Data

Nowadays, predictive models are crutial for monitoring, for diagnosis

- Industry: Health monitoring, Energy...
- · Finance : forecast of the evolution of the market
- Marketing : scoring
- Health
- \rightarrow Machine learning models are used to mine, to operate the data.

Regularization Methods for Linear Regression

- -Linear regression and Regularized Linear Regression belongs to the Predictive model family.
- -Linear regression is an old model but still very useful! Gauss, 1785; Legendre 1805

Outline of the lesson

- Motivations
 - Ordinary Least Square -OLS- (geometrical approach)
 - The linear Model (probabilistic approach)
- Using R software for modeling

Evolution of the average age of the French population

	Α	В	С	D	E	F	G			
1		de l'âge moy			usqu'en 201	2				
2	Source : Insee, estimations de population.									
3			Âge moyen							
4		Ensemble	Hommes	Femmes	Ensemble	Hommes	Femmes			
5	1991	36,9	35,3	38,4	33,7	32,4	35,0			
6	1992	37,0	35,5	38,5	34,0	32,7	35,3			
7	1993	37,2	35,7	38,7	34,3	32,9	35,6			
8	1994	37,4	35,9	38,9	34,6	33,2	35,9			
9	1995	37,6	36,1	39,1	34,9	33,6	36,2			
10	1996	37,8	36,3	39,3	35,2	33,9	36,5			
11	1997	38,0	36,5	39,5	35,5	34,1	36,8			
12	1998	38,2	36,7	39,7	35,8	34,4	37,1			
13	1999	38,4	36,9	39,8	36,1	34,7	37,4			
14	2000	38,6	37,0	40,0	36,3	35,0	37,7			
15	2001	38,7	37,2	40,1	36,6	35,3	38,0			
16	2002	38,9	37,3	40,3	36,9	35,5	38,2			
17	2003	39,0	37,5	40,4	37,1	35,8	38,5			
18	2004	39,2	37,6	40,6	37,4	36,0	38,8			
19	2005	39,3	37.8	40.8	37,7	36,2	39,1			
20	2006	39.5	38.0	40.9	37.9	36.4	39.3			
21	2007	39,7	38.1	41,1	38,1	36.7	39,6			
22	2008 (r)	39.8	38.3	41.3	38.3	36.9	39.8			
23	2009 (r)	40.0	38.5	41.4	38,6	37,1	40.0			
24	2010 (p)	40.1	38.6	41.6	38.8	37.4	40.3			
25	2011 (p)	40,3	38.8	41.7	39,0	37,6	40.5			
26	2012 (p)	40,4	38.9	41.9	39.3	37,9	40.7			
27		es provisoire				01,0	10,1			
28		es révisées.	o, rodultato	u						
29	Champ:									
23	Champ:	riance.								

Evolution of the average age of the French population

Modeling the average age of the French population

Application : Social Networks

Facebook users:

an	user(million)					
31/12/04	0					
31/12/05	5					
31/12/06	10					
31/3/07	20					
30/12/07	60					
30/6/08	100					
30/12/08	150					
30/3/09	170					
30/6/09	200					
30/9/09	250					
30/12/09	300					
30/3/10	400					
30/6/10	500					
30/6/11	750					

Evolution of the number of Facebook users

Modeling the evolution of the number of Facebook users

10 / 65

Introduction: Regression model

- (Y,X): couple of variables Y: Target quantitative variable $X = (X_1, X_2, ..., X_p)$: Co-variates, quantitative variables
- The goal is to propose a Regression model to explain Y given X.
 The parameters of the model are computed using a set of data

$$Y = \mathcal{F}_{data}(X) = \mathcal{F}_{data}(X_1, \dots, X_p)$$

here, \mathcal{F} is a linear function.

- Questions :
 - What are the performances of this model?
 - What are the main explicative variables?
 - Is-it possible to use the model to predict new values? to forecast?
 - Can we improve the model?

Boston Housing Data

The original data are $n = 506$ observations on $p = 14$ variables,						
medv	median value, being the target variable					
crim	per capita crime rate by town					
zn	proportion of residential land zoned for lots over 25,000 sq.ft					
indus	proportion of non-retail business acres per town					
chas	Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)					
nox	nitric oxides concentration (parts per 10 million)					
rm	average number of rooms per dwelling					
age	proportion of owner-occupied units built prior to 1940					
dis	weighted distances to five Boston employment centres					
rad	index of accessibility to radial highways					
tax	full-value property-tax rate per USD 10,000					
ptratio	pupil-teacher ratio by town					
b	$1000(B-0.63)^2$ where B is the proportion of blacks by town					
lstat	percentage of lower status of the population					
medv	median value of owner-occupied homes in USD 1000's					

Boston Housing Data

The	data	:												
nř	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	Ь	Istat	medv
1	0.006	18	2.3	0	0.53	6.57	65.2	4.09	1	296	15.3	396.9	4.9	24.0
2	0.027	0	7.0	0	0.46	6.42	78.9	4.96	2	242	17.8	396.9	9.1	21.6
3	0.027	0	7.0	0	0.46	7.18	61.1	4.96	2	242	17.8	392.8	4.0	34.7
4	0.032	0	2.1	0	0.45	6.99	45.8	6.06	3	222	18.7	394.6	2.9	33.4
5	0.069	0	2.1	0	0.45	7.14	54.2	6.06	3	222	18.7	396.9	5.3	36.2

Boston Housing Data

- Model $Y = \mathcal{F}_{data}(X)$
- Evaluate the performances of the model
- What are the most important variables? (variable selection)
 - → sparse models, less complex, best performances
- Inference and simulation
 - → Ponctual estimation for new values of the co-variables
 - \rightarrow Confidence interval computation.

Outline

- Applications
- Ordinary Least Square (OLS) / Moindre Carrés Ordinaires (MCO)
- Linear Model
- Regularization methods : ridge, lasso

OLS

Ordinary Least Square (OLS)

Ordinary Least Square (OLS)

- Values/Variables :
 - Y, $Y \in \mathbb{R}$ value/ Target variable
 - $X = (X^1, ..., X^p), X \in \mathbb{R}^p$ values/ covariates

Ordinary Least Square (OLS)

- Values/Variables :
 - Y, $Y \in \mathbb{R}$ value/ Target variable
 - $X = (X^1, ..., X^p)$, $X \in \mathbb{R}^p$ values/ covariates
- Data : $S = \{(x_i, y_i) | i = 1, ..., n, y_i \in \mathbb{R}, x_i \in \mathbb{R}^p\}$

Ordinary Least Square (OLS)

- Values/Variables :
 - $Y, Y \in \mathbb{R}$ value/ Target variable
 - $X = (X^1, ..., X^p), X \in \mathbb{R}^p$ values/ covariates
- Data : $S = \{(x_i, y_i) | i = 1, ..., n, y_i \in \mathbb{R}, x_i \in \mathbb{R}^p\}$
- Goal : Modeling Y linearly with X, with a "small" ϵ term

$$Y = \beta_1 + \beta_2 X_2 + \dots + \beta_p X_p + \boxed{\epsilon}$$

$$Y = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \boxed{\epsilon}$$

$$Y = \sum_{j}^{p} \beta_j X_j + \boxed{\epsilon}$$

OLS

Ordinary Least Square (OLS)
Simple Linear Regression model

Simple Linear Regression : example

We only have one co-variable (X) to explain the target variable (Y). The scatter plot is represented by :

Simple Linear Regression: example

For all observation couples i, $1 \le i \le n$ (Y_i, X_i) , the goal is here to minimize $(Y_i - (\beta_1 + \beta_2 X_i))^2$

Régression

Formalism:

- Distance to a single point : $(y_i x_i\beta_2 \beta_1)^2$
- Distance to the whole sample : $\sum_{i=1}^{n} (y_i x_i \beta_2 \beta_1)^2$
 - \rightarrow Best line : intercept $\hat{\beta}_1$ and slope $\hat{\beta}_2$ such that $\sum_{i=1}^n (y_i x_i \beta_2 \beta_1)^2$ is minimum, among all possible values of β_1 and β_2 .

OLS estimator:

The values estimated by OLS (the estimates) for β_1 and β_2 verify :

$$(\hat{\beta}_1^{ols}, \hat{\beta}_2^{ols}) = \underset{\beta_1, \beta_2 \in \mathbb{R}^2}{\arg \min} \{ \sum_{i=1}^n (y_i - x_i \beta_2 - \beta_1)^2 \}$$

OLS estimator (observations):

The values estimated by OLS (the estimates) for β_1 and β_2 verify :

$$(\hat{\beta}_1^{ols}, \hat{\beta}_2^{ols}) = \underset{\beta_1, \beta_2 \in \mathbb{R}^2}{\arg \min} \{ \sum_{i=1}^n (y_i - x_i \beta_2 - \beta_1)^2 \}$$

OLS estimator (vector notations) : y, x, 1_n The values estimated by OLS (the estimates) for β_1 and β_2 verify :

$$(\hat{\beta}_{1}^{ols}, \hat{\beta}_{2}^{ols}) = \underset{\beta_{1}, \beta_{2} \in \mathbb{R}^{2}}{\arg \min} \|y - x\beta_{2} - 1_{n}\beta_{1}\|_{2}^{2}$$

OLS estimator (matrix notations Y (n,1); X (n,2)): The values estimated by OLS (the estimates) for β_1 and β_2 verify:

$$(\hat{\beta}_1^{ols}, \hat{\beta}_2^{ols}) = \underset{\beta_1, \beta_2 \in \mathbb{R}^2}{\operatorname{arg \, min}} \|Y - X\beta\|_2^2$$

4□ > 4□ > 4 = > 4 = > = 99

Theorem:

The OLS estimators have the following expressions :

$$\hat{\beta}_1 = \bar{y} - \hat{\beta}_2 \bar{x}$$

$$\hat{\beta}_2 = \frac{\sum_{i=1}^n (x_i - \hat{x})(y_i - \hat{y})}{\sum_{i=1}^2 (x_i - \bar{x})^2} = \frac{Cov(x, y)}{Var(x)}$$

Proof:

by zeroing the derivative of the objective function, which is convex.

For the simple linear model, the correlation coefficient may be very useful:

• r(x, y) : correlation coefficient/ coefficient de corrélation linéaire

$$r(x, y) = \frac{cov(X, Y)}{\sqrt{var(x)}\sqrt{var(y)}}$$

• r(x, y) = 1 if and only if Y = aX + b, linear relation between Y et X

For the simple linear model, the correlation coefficient may be very useful:

• r(x, y) : correlation coefficient/ coefficient de corrélation linéaire

$$r(x, y) = \frac{cov(X, Y)}{\sqrt{var(x)}\sqrt{var(y)}}$$

• r(x,y) = 1 if and only if Y = aX + b, linear relation between Y et X

R-square used in multiple regression

- $R^2 = \frac{Var\hat{Y}}{Var(Y)}$
- $R^2 \in [0,1]$
- Simple regression $R^2 = r^2$:

For the simple linear model, the correlation coefficient may be very useful:

• r(x, y) : correlation coefficient/ coefficient de corrélation linéaire

$$r(x, y) = \frac{cov(X, Y)}{\sqrt{var(x)}\sqrt{var(y)}}$$

• r(x,y) = 1 if and only if Y = aX + b, linear relation between Y et X

R-square used in multiple regression

- $R^2 = \frac{Var\hat{Y}}{Var(Y)}$
- $R^2 \in [0,1]$
- Simple regression $R^2 = r^2$:

Best Practices

The correlation coefficient equals 1 for these two cases :

Always looking at the data!!

OLS

Ordinary Least Square (OLS)
Multiple Linear Regression model

- We suppose $Y = \sum_{j=1}^{p} \beta_{j} X^{j} + \epsilon$ and $S = \{(x_{i}, y_{i}) | i = 1...n, y_{i} \in \mathbb{R} | x_{i} \in \mathbb{R}^{p}\}$
- The Quadratic error is defined by :

$$E(\beta) = \sum_{i}^{n} \epsilon_{i}^{2} = \sum_{i}^{n} (y_{i} - \sum_{j} x_{i}^{j} \beta_{j})^{2}$$

- We suppose $Y = \sum_{j=1}^{p} \beta_{j} X^{j} + \epsilon$ and $S = \{(x_{i}, y_{i}) | i = 1...n, y_{i} \in \mathbb{R} | x_{i} \in \mathbb{R}^{p}\}$
- The Quadratic error is defined by :

$$E(\beta) = \sum_{i=1}^{n} \epsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \sum_{j=1}^{n} x_{i}^{j} \beta_{j})^{2}$$

with matrix notation:

$$E(\beta) = (Y - X\beta)^{T}(Y - X\beta)$$

- We suppose $Y = \sum_{j=1}^{p} \beta_{j} X^{j} + \epsilon$ and $S = \{(x_{i}, y_{i}) | i = 1...n, y_{i} \in \mathbb{R} | x_{i} \in \mathbb{R}^{p}\}$
- The Quadratic error is defined by :

$$E(\beta) = \sum_{i=1}^{n} \epsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \sum_{j=1}^{n} x_{i}^{j} \beta_{j})^{2}$$

with matrix notation:

$$E(\beta) = (Y - X\beta)^{T}(Y - X\beta)$$

• **Goal** : To minimize the error $E(\beta)$ on the data set S. To compute $\hat{\beta} \in \mathbb{R}^p$:

$$\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} E(\beta)$$

Ordinary Least Square. multiple regression model

• We aim to compute β which minimize :

$$E(\beta) = ||Y - X\beta||_2^2$$

= $(Y - X\beta)^T (Y - X\beta)$

• Assumption : X^TX inversible. $(n \ge p)$

Theorem:

$$\hat{\beta}_{MCO} = (X^T X)^{-1} X^T Y$$

MCO

Estimation

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

MCO

Estimation

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

• Prediction Knowing $\hat{\beta}$ and given X_1,\ldots,X_p , the prediction of the target can be computed : $\hat{Y}=\sum_j \hat{\beta}_j X_j$

$$\hat{Y} = X\hat{\beta}
= X(X^TX)^{-1}X^TY$$

MCO

Estimation

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

• Prediction Knowing $\hat{\beta}$ and given X_1, \ldots, X_p , the prediction of the target can be computed : $\hat{Y} = \sum_j \hat{\beta}_j X_j$ $\hat{Y} = X \hat{\beta}$

$$Y = X\beta = X(X^TX)^{-1}X^TY$$

P Projection matrix on the Hyperplan (hat matrix)

$$P = X(X^TX)^{-1}X^T$$

$$P^2 = P$$

MCO

Estimation

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

• Prediction Knowing $\hat{\beta}$ and given X_1,\ldots,X_p , the prediction of the target can be computed : $\hat{Y}=\sum_j \hat{\beta}_j X_j$ $\hat{Y}=X\hat{\beta}$

$$Y = X\beta$$

= $X(X^TX)^{-1}X^TY$

- P Projection matrix on the Hyperplan (hat matrix) $P = X(X^TX)^{-1}X^T$
 - $P = \lambda(\lambda, \lambda), \lambda$ $P^2 = P$
- Residuals
 - $-\hat{\epsilon} = Y \hat{Y}$
 - Remarque : no assumption on the law or distribution of ϵ

Ordinary Least Square. Geometrical interpretation

$$\begin{array}{lcl} Y & = & \sum_{j}^{p} X^{j} \beta_{j} & + & \epsilon \\ \in \mathcal{R}^{n} & \in \mathcal{R}^{p} & & \in \mathcal{R}^{(n-p)} \end{array}$$

Ordinary Least Square. Properties

- Orthogonality:
 - $\hat{Y} \perp \hat{\epsilon}$
 - $X_j \perp \hat{\epsilon}$ $\forall j \in [1 \dots p] < X^j, \hat{\epsilon} >= 0$

Ordinary Least Square. Properties

- Orthogonality:
 - $-\hat{Y}\perp\hat{\epsilon}$
 - $X_i \perp \hat{\epsilon}$ $\forall j \in [1 \dots p] < X^j, \hat{\epsilon} >= 0$
- Residual average :
 - $\sum_{i} \hat{\epsilon}_{i} = 0$ if there is an intercept in the model $X^{1} = (1, 1, \dots, 1)$
 - \rightarrow the average point belongs to the hyperplan
 - $-\hat{\hat{Y}}\equiv \bar{Y}$

Ordinary Least Square. Properties

- Orthogonality:
 - $-\hat{Y}\mid\hat{\epsilon}$
 - $X_i \perp \hat{\epsilon}$ $\forall i \in [1 \dots p] < X^i, \hat{\epsilon} > = 0$
- Residual average :
 - $\sum_i \hat{\epsilon}_i = 0$ if there is an intercept in the model $X^1 = (1,1,\ldots,1)$
 - \rightarrow the average point belongs to the hyperplan
 - $-\hat{\hat{Y}}\equiv \bar{Y}$
- Analysis of Variance -ANAVAR- (Pythagore)
 - $var(Y) = var(\hat{Y}) + var(\hat{E})$

Multiple Linear model: example with R

```
head(mydata,3);

y x1 x2 x3

1 -2.20 0.38 0.98 0.46

2 -1.75 0.11 0.62 0.37

3 -0.24 0.80 0.59 0.87

...

> modlm=lm(y \sim x1+x2+x3,data=mydata);

Call:

lm(formula = y \sim x1+x2+x3, data = mydata)

Coefficients:

(Intercept) x1 x2 x3

0 02754 1 98163 -3 03612 0 01903
```

Multiple Linear model : example with R

```
> modlm = lm(y \sim x1 + x2 + x3, data = mydata);
> summary(modlm)
Im(formula = y \sim x1+x2+x3, data = mydata)
Residuals:
Min 1Q Median 3Q Max
-0.29 -0.075 -0.0035 0.073 0.281
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.02754 0.01503 1.833 0.0674.
      1.98163 0.01577 125.652 <2e-16 ***
×1
×2
      -3.03612 0.01621 -187.286 <2e-16 ***
x3
       0.01903 0.01576 1.208 0.2277
— Signif. codes: 0 /*** 0.001 /** 0.01 / * 0.05 / . 0.1/ 1
Residual standard error: 0.1009 on 496 degrees of freedom
Multiple R-squared: 0.9904, Adjusted R-squared: 0.9904
F-statistic : 1.707e+04 on 3 and 496 DF, p-value : < 2.2e-16
```

• R², R-square (French : coefficient de détermination)

• $R^2 = \frac{var(\hat{Y})}{var(Y)}$, remark : no unit

- R², R-square (French : coefficient de détermination)
 - $R^2 = \frac{var(\hat{Y})}{var(Y)}$, remark : no unit
 - $cos^2w = R^2 = \frac{||\hat{Y} \tilde{Y}_{1,n}||^2}{||Y \tilde{Y}_{1,n}||^2}$ w: angle between the centered vector $(Y - \bar{Y}_{1,n})$ and its centered prediction $(\hat{Y} - \hat{\bar{Y}}_{1,n})$

- R², R-square (French : coefficient de détermination)
 - $R^2 = \frac{var(\hat{Y})}{var(Y)}$, remark : no unit
 - $cos^2 w = R^2 = \frac{||\hat{Y} \bar{\hat{Y}}_{1,n}||^2}{||Y \bar{Y}_{1,n}||^2}$ w: angle between the centered vector $(Y - \bar{Y}_{1,n})$ and its centered prediction $(\hat{Y} - \hat{\bar{Y}}_{1n})$
- $var(\hat{E}) = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ $= (1 - R^2) var(Y)$, unit of Y^2

- R-square (for few variables)
 - $R^2 = \cos^2 \omega = \frac{Var\hat{Y}}{Var(Y)}$
 - $R^2 \in [0,1]$
 - R^2 = increases mechanically with the number of variables

- R-square (for few variables)
 - $R^2 = \cos^2 \omega = \frac{Var\hat{Y}}{Var(Y)}$
 - $R^2 \in [0,1]$
 - R^2 = increases mechanically with the number of variables
- Adjusted R-squared is sometimes preferred (penalization with the number of variables)
 - $R_{adi}^2 = 1 (1 R^2) \frac{n-1}{n-n}$
 - R_{adi}^2 may be negtive

- R-square (for few variables)
 - $R^2 = \cos^2 \omega = \frac{Var\hat{Y}}{Var(Y)}$
 - $R^2 \in [0,1]$
 - R^2 = increases mechanically with the number of variables
- Adjusted R-squared is sometimes preferred (penalization with the number of variables)
 - $R_{adj}^2 = 1 (1 R^2) \frac{n-1}{n-p}$
 - R_{adj}^2 may be negtive
- Residual study :
 - $\hat{\epsilon}_i = y_i \hat{y}_i \quad \forall i \in 1..n$
 - Vizualization of
 - $(\hat{\epsilon}_i, i) \ \forall i \in 1..n$
 - $(\hat{\epsilon}_i, y_i)$ homoscedastic vs heteroscedastic bissectrice model

- R-square (for few variables)
 - $R^2 = \cos^2 \omega = \frac{Var\hat{Y}}{Var(Y)}$
 - $R^2 \in [0,1]$
 - R^2 = increases mechanically with the number of variables
- Adjusted R-squared is sometimes preferred (penalization with the number of variables)
 - $R_{adi}^2 = 1 (1 R^2) \frac{n-1}{n-n}$
 - R_{adi}^2 may be negtive
- Residual study :
 - $\hat{\epsilon}_i = \mathbf{v}_i \hat{\mathbf{v}}_i \quad \forall i \in 1...n$
 - Vizualization of
 - $(\hat{\epsilon}_i, i) \forall i \in 1..n$
 - $(\hat{\epsilon}_i, y_i)$ homoscedastic vs heteroscedastic bissectrice model
- Prediction : Vizualization of
 - $(\hat{y}_i, y_i) \quad \forall i \in 1..n$
 - comparison with the first bisector.

Graphics (y_i, \hat{y}_i) $1 \le i \le j$ VERY USEFUL

$$\frac{\hat{\epsilon}_i}{S_E} = \frac{y_i - \hat{y}_i}{S_E}$$
 (no unit term)

Residual graph

 \rightarrow Random distribution. There is no information to be capture

《□》《意》《意》《意》 意》 今久♡
Mathilde Mouseot (ENSIIE) MRR2017 37 / 65

Ordinary Least Square: Student Residual graph

$$rac{\hat{\epsilon}_i}{S_E} = rac{y_i - \hat{y}_i}{S_E}$$
 (with non unit)

Residual graph function of Y

 \rightarrow Large values for some points? Outliers detection?

Ordinary Least Square: Student Residual graph

$$rac{\hat{\epsilon}_i}{S_E} = rac{y_i - \hat{y}_i}{S_E}$$
 (with non unit)

Graphe des résidus en fonction de Y

- \rightarrow there is still some information in the residuals.
- \rightarrow The model needs to be changed.

Ordinary Least Square: curse of dimension

Data set : $\{(y_i, x_i) | 1 \le i \le n\}$. One target variable, one covariable

$$ightarrow R^2 = R_{adj}^2 = -0.02$$

Ordinary Least Square: illustration of the impact of the number of covariables on the model initial data and OLS line

$$\rightarrow R^2 = R_{adj}^2 = -0.02$$

- 4日ト4団ト4ミト4ミト ミ か900

41 / 65

Ordinary Least Square: illustration of the impact of the number of covariables on the model

initial data and 48 more covariables $\mathcal{N}(0,1)$ are added to the initial data set.

$$\rightarrow R^2 = 0.99, R_{adi}^2 = 0.93$$

Ordinary Least Square : need to change the model (1/2)

initial data set:

Ordinary Least Square : need to change the model (1/2)

logarithmic transformation

MCO Regression. Some limits:

If X^TX is non inversible

- n >> p, collinearity between some X_i.
 - Pseudo-inverse, the solution is not unique
 - Variable selection
- p >> n, when the number of variables is larger than the number of observations
 - Regularization method
 - Ridge -*L*2-, Lasso -*L*1-.
 - Variable selection

OLS model

Ponctual estimation.

OLS, X^TX non inversible \rightarrow

Pseudo inverse computation

Solution (n > p), X^TX is non invertible with the rank k, k < p:

$$X^{T}X = U\Sigma^{2}U^{T}$$

$$=U\begin{pmatrix} \sigma_{1}^{2} & 0 & 0 & 0 \\ 0 & \vdots & 0 & 0 \\ 0 & 0 & \sigma_{k}^{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}U^{T}$$

$$=U_{k}\Sigma_{k}^{2}U_{k}^{T}$$

$$(X^TX)^{*-1} = U_k \Sigma_k^{2^{-1}} U_k^T \text{ avec } \Sigma_k^2 = \begin{pmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \vdots & 0 \\ 0 & 0 & \sigma_k^2 \end{pmatrix}$$

$$\hat{\beta} = (X^T X)^{*-1} X^T Y$$

The solution non unique

Outline

- Motivations
- Ordinary Least Square
- Linear Model
- Penalized regression, ridge, lasso

Linear Model

Probabilistic assumption on the residuals

LInear model

- We write : $Y = X\beta + \epsilon$ avec $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- We have

-
$$\epsilon_i = Y_i - \sum X_i^j \beta_j$$
 avec $f(\epsilon) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\epsilon^2}{2\sigma^2}}$ i.i.d.

LInear model

- We write : $Y = X\beta + \epsilon$ avec $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- We have

-
$$\epsilon_i = Y_i - \sum X_i^j \beta_j$$
 avec $f(\epsilon) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\epsilon^2}{2\sigma^2}}$ i.i.d.

• Residual density & Maximum Likelihood Estimation $f(\epsilon_1, \dots, \epsilon_n) = \prod_i f(\epsilon_i)$

Linear model

- We write : $Y = X\beta + \epsilon$ avec $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- We have

-
$$\epsilon_i = Y_i - \sum X_i^j \beta_j$$
 avec $f(\epsilon) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\epsilon^2}{2\sigma^2}}$ i.i.d.

Residual density & Maximum Likelihood Estimation $f(\epsilon_1, \dots, \epsilon_n) = \prod_i f(\epsilon_i) - \frac{1}{2} e^{-\sum_i \epsilon_i^2}$

$$= \frac{1}{(2\pi)^{n/2}\sigma^n} e^{-\frac{\sum \epsilon_i^2}{2\sigma^2}}$$

$$= \frac{1}{(2\pi)^{n/2}\sigma^{2n/2}} e^{-\frac{||Y - X\beta||^2}{2\sigma^2}}$$

Linear model

- We write : $Y = X\beta + \epsilon$ avec $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- We have

-
$$\epsilon_i = Y_i - \sum X_i^j \beta_j$$
 avec $f(\epsilon) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\epsilon^2}{2\sigma^2}}$ i.i.d.

Residual density & Maximum Likelihood Estimation

$$f(\epsilon_1, \dots, \epsilon_n) = \prod_i f(\epsilon_i)$$

$$= \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-\sum_i \epsilon_i^2}$$

$$= \frac{1}{(2\pi)^{n/2} \sigma^{2n/2}} e^{-\frac{||Y - X\beta||^2}{2\sigma^2}}$$

• the goal is to compute $\hat{\beta}$, σ^2 solutions of the maximum likelihood Estimation (MLE)

Same solution for the MLE and the OLS:

$$- \hat{\beta} = (X^T X)^{-1} X^T Y$$

$$- \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{i=n} \hat{\epsilon}_i^2$$

Linear model: What are the laws of the estimators?

$$Y = X\beta + \epsilon \text{ avec } \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Law of the estimators:

- Law of $\hat{\beta}$?
- Law of \hat{Y} ?
- Law of $\hat{\sigma}^2$?

Benefits

- \rightarrow let to compute confidence intervals for β and Y.
- \rightarrow let to test the parameters.

Law of $\hat{\beta}$:

$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X^T X)^{-1})$$

Law of $\hat{\beta}$:

$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X^T X)^{-1})$$

Expectation and Variance of $\hat{\beta}$?:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$
 et $Y = X\beta + \epsilon$

Law of $\hat{\beta}$:

$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X^T X)^{-1})$$

Expectation and Variance of $\hat{\beta}$?:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$
 et $Y = X\beta + \epsilon$

• $\mathbb{E}(\hat{\beta}) = \beta$ Non biased estimator $\mathbb{E}(\hat{\beta}) - \beta = 0$

Law of $\hat{\beta}$:

$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X^T X)^{-1})$$

Expectation and Variance of $\hat{\beta}$?:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$
 et $Y = X\beta + \epsilon$

- $\mathbb{E}(\hat{\beta}) = \beta$ Non biased estimator $\mathbb{E}(\hat{\beta}) \beta = 0$
- $Var(\hat{\beta}) = \sigma^{2}(X^{T}X)^{-1}$ $Var(\hat{\beta}) = (X^{T}X)^{-1}X^{T}([var(Y)]X(X^{T}X)^{-1}$ $= (X^{T}X)^{-1}X^{T}([var(\epsilon)]X(X^{T}X)^{-1}$ $= \sigma^{2}(X^{T}X)^{-1}$

•
$$\mathbb{E}[(\hat{\beta} - \beta)^2] = Var(\hat{\beta}) + 0$$

Recall $Var(aY) = aVar(Y)a^T$

Law of \hat{Y}

$$\hat{Y} \sim \mathcal{N}(X\beta, \sigma^2 X(X^T X)^{-1} X^T)$$

Expectation and Variance of \hat{Y} ?, $\hat{Y} = X\hat{\beta}$

Law of \hat{Y}

$$\hat{Y} \sim \mathcal{N}(X\beta, \sigma^2 X (X^T X)^{-1} X^T)$$

Expectation and Variance of \hat{Y} ?, $\hat{Y} = X\hat{\beta}$

•
$$\mathbb{E}(\hat{Y}) = X\beta$$

 $\mathbb{E}(\hat{Y}) = \mathbb{E}(X\hat{\beta}) = X\mathbb{E}(\hat{\beta}) = X\beta = \mathbb{E}(Y)$

Law of \hat{Y}

$$\hat{Y} \sim \mathcal{N}(X\beta, \sigma^2 X (X^T X)^{-1} X^T)$$

Expectation and Variance of \hat{Y} ?, $\hat{Y} = X\hat{\beta}$

•
$$\mathbb{E}(\hat{Y}) = X\beta$$

 $\mathbb{E}(\hat{Y}) = \mathbb{E}(X\hat{\beta}) = X\mathbb{E}(\hat{\beta}) = X\beta = \mathbb{E}(Y)$

•
$$Var(\hat{Y}) = \sigma^2 X(X^T X)^{-1} X^T$$

$$Var(\hat{Y}) = Var(X\hat{\beta})$$

$$= X Var(\hat{\beta}) X^T$$

$$= \sigma^2 X(X^T X)^{-1} X^T$$

Law of $\hat{\epsilon}$

$$\hat{\epsilon} \sim \mathcal{N}(0, \sigma^2(I_n - X(X^TX)^{-1}X^T))$$

Expectation and Variance of $\hat{\epsilon} = Y - \hat{Y}$?:

Law of $\hat{\epsilon}$

$$\widehat{\epsilon} \sim \mathcal{N}(0, \sigma^2(I_n - X(X^TX)^{-1}X^T))$$

Expectation and Variance of $\hat{\epsilon} = Y - \hat{Y}$?:

• $\mathbb{E}(\hat{\epsilon}) = 0$

Law of $\hat{\epsilon}$

$$\hat{\epsilon} \sim \mathcal{N}(0, \sigma^2(I_n - X(X^TX)^{-1}X^T))$$

Expectation and Variance of $\hat{\epsilon} = Y - \hat{Y}$?:

•
$$\mathbb{E}(\hat{\epsilon}) = 0$$

•
$$Var(\hat{\epsilon}) = \sigma^2(I_n - X(X^TX)^{-1}X^T)$$

$$Var(\hat{\epsilon}) = Var(Y - \hat{Y})$$

$$= Var(Y - X\hat{\beta})$$

$$= \sigma^2(I_n) - XVar(\hat{\beta})X^T$$

$$= \sigma^2(I_n - X(X^TX)^{-1}X^T)$$

Recal: $Var(aY) = aVar(Y)a^T$

Linear model: law of the estimators

Under the assumption that ϵ_i are i.i.d. with $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

Theorem

if $p \leq n$ and $X^T X$ inversible,

The vector
$$\begin{pmatrix} \hat{\beta} \\ \hat{\epsilon} \end{pmatrix}$$
 of dimension $(p+n)$ is a gaussian vector

with mean
$$\begin{pmatrix} \beta \\ 0 \end{pmatrix}$$
, and

and variance
$$\sigma^2 \left(\begin{array}{cc} (X^TX)^{-1} & 0 \\ 0 & I_n - X(X^TX)^{-1}X^T \end{array} \right)$$

Loi $\hat{\sigma}^2$

$$\frac{n-p}{\sigma^2}\hat{\sigma}^2 \sim \chi^2_{n-p}$$

We note :
$$\hat{\sigma}^2 = \frac{||\hat{\epsilon}||^2}{n-p}$$

Loi $\hat{\sigma}^2$

$$\frac{n-p}{\sigma^2}\hat{\sigma}^2 \sim \chi^2_{n-p}$$

We note :
$$\hat{\sigma}^2 = \frac{||\hat{\epsilon}||^2}{n-p}$$

$$||\hat{\epsilon}||^2 = \sum_i^n \hat{\epsilon}_i^2$$
 $||\hat{\epsilon}||^2$ suit une loi $\sigma^2 \chi^2 (n-p)$ (Cochran theorem)

Loi $\hat{\sigma}^2$

$$\frac{n-p}{\sigma^2}\hat{\sigma}^2 \sim \chi^2_{n-p}$$

We note :
$$\hat{\sigma}^2 = \frac{||\hat{\epsilon}||^2}{n-p}$$

$$||\hat{\epsilon}||^2 = \sum_i^n \hat{\epsilon}_i^2$$
 $||\hat{\epsilon}||^2$ suit une loi $\sigma^2 \chi^2 (n-p)$ (Cochran theorem)

Then, the expectation of $\hat{\sigma}^2 = \frac{||\hat{\epsilon}||^2}{n-p}$ is σ^2 , $(\mathbb{E}(\chi^2(n-p)) = n-p)$

We deduce the law of $\hat{\sigma}^2$:

$$\hat{\sigma}^2 \sim \frac{\sigma^2}{n-p} \chi^2(n-p)$$

Recall: Student theorem.

 $U\sim\mathcal{N}(0,1)$ and $V\sim\chi^2(d)$, U and V are independant, the, we have $Z=rac{U}{\sqrt{V/d}}$ follows a Student law of parameter d.

• Student Statistics : T

- Student Statistics : T
- Significativity test (bilateral)
 - $H_0: \beta_j = 0$ • $H_1: \beta_i \neq 0$

4□ ト 4部 ト 4 恵 ト 4 恵 ト 夏 9000

- Student Statistics : T
- Significativity test (bilateral)
 - $H_0: \beta_j = 0$
 - $H_1: \beta_j \neq 0$
- Decision with a risk α , Reject of H_0 if
 - $\frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 S_{j,i}}} > t_{n-p} (1-\alpha/2)$ with $S_{j,j}$ jème term of the diagnonal of $(X^T X)^{-1}$
 - pvalue $< \alpha$

- Student Statistics : T
- Significativity test (bilateral)
 - $H_0: \beta_j = 0$
 - $H_1: \beta_j \neq 0$
- Decision with a risk α , Reject of H_0 if
 - $\frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 S_{j,i}}} > t_{n-p} (1-\alpha/2)$ with $S_{j,j}$ jème term of the diagnonal of $(X^T X)^{-1}$
 - pvalue $< \alpha$
- Conclusion :
 - β_i is significatively different of zero
 - X_i a une influence dans le modèle

- Student Statistics : T
- Significativity test (bilateral)
 - $H_0: \beta_j = 0$
 - $H_1: \beta_j \neq 0$
- Decision with a risk α , Reject of H_0 if
 - $\frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 S_{j,j}}} > t_{n-p} (1-\alpha/2)$ with $S_{j,j}$ jème term of the diagnonal of $(X^T X)^{-1}$
 - pvalue $< \alpha$
- Conclusion :
 - β_i is significatively different of zero
 - X_i a une influence dans le modèle

Not true if there exists colinearity between the variables

Test of the model with a risk α

$$H_0: \quad \beta_2 = \beta_3 = \ldots = \beta_p = 0$$

 $H_1: \quad \exists j = 2, \ldots, p, \beta_j \neq 0$

Test of the model with a risk α

$$H_0: \quad \beta_2 = \beta_3 = \ldots = \beta_p = 0$$

 $H_1: \quad \exists j = 2, \ldots, p, \beta_j \neq 0$

Statistics

$$F = \frac{n-p}{p-1} \frac{||\hat{Y} - \hat{\bar{Y}}||^2}{||Y - \hat{Y}||^2} \sim Fisher(p-1, n-p)$$

Test of the model with a risk α

$$H_0: \beta_2 = \beta_3 = \dots = \beta_p = 0$$

 $H_1: \exists j = 2, \dots, p, \beta_j \neq 0$

Statistics

$$F = rac{n-p}{p-1}rac{||\hat{Y}- ilde{\hat{Y}}||^2}{||Y-\hat{Y}||^2} \sim \mathit{Fisher}(p-1,n-p)$$

Remarque : $\frac{n-p}{p-1}\frac{||\hat{Y}-\hat{Y}||^2}{||Y-\hat{Y}||^2} = \frac{SSE/(p-1)}{SSR/(n-p)}$ (E :Estimated ; R : Residuals)

Decision rule

- si $F_{obs} > q_{\alpha}^F$, H_0 is rejected, and there exist a coefficient which is not zero. **The regression is "useful"**
- si $F_{obs} \le q_{\alpha}^F$, H_0 is acceted, all the coefficients are supposed to be null The regression is not "useful"

• Fisher Statistic

- Fisher Statistic
- Significativity test (bilateral)
 - $H_0: \beta_2 = \ldots = \beta_p = 0$
 - $H_1: \exists \beta_j \neq 0$

- Fisher Statistic
- Significativity test (bilateral)

•
$$H_0: \beta_2 = \ldots = \beta_p = 0$$

- $H_1: \exists \beta_j \neq 0$
- Decision with a rish α , Reject H_0 if

• si
$$\frac{n-p}{p-1} \frac{R^2}{1-R^2} > f_{p-1,n-p} (1-\alpha)$$

- si pvalue $< \alpha$
- → The linear model has an added value

Remarque1 : sur la statistique de Fisher :

$$F = \frac{n-p}{p-1} \frac{R^2}{1-R^2}$$

The R^2 coefficient increase mechanically with the number of variables

Remarque1 : sur la statistique de Fisher :

$$F = \frac{n-p}{p-1} \frac{R^2}{1-R^2}$$

The R^2 coefficient increase mechanically with the number of variables

Remarque : the adjusted R^2 may be used

$$R_{adj}^2 = 1 - \frac{(1-R^2)(n-1)}{n-p}$$

The R_{adj}^2 does not increase ith the number of variables.

medv being the target variable	
crim per capita crime rate by town	
zn proportion of residential land zoned for lots over 25,000 sq.ft	
indus proportion of non-retail business acres per town	
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
nox nitric oxides concentration (parts per 10 million)	
rm average number of rooms per dwelling	
age proportion of owner-occupied units built prior to 1940	
dis weighted distances to five Boston employment centres	
rad index of accessibility to radial highways	
tax full-value property-tax rate per USD 10,000	
ptratio pupil-teacher ratio by town	
b $1000(B-0.63)^2$ where B is the proportion of blacks by town	
Istat percentage of lower status of the population	
medv median value of owner-occupied homes in USD 1000's	

Les données :

LCS	Les données .													
nř	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	medv
1	0.00632	18	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
2	0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
3	0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
4	0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
5	0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
					***						***			

MCO sous R

library(mlbench)

```
#Data data(BostonHousing) tab=BostonHousing;names(tab)
target="medv"; Y=tab[,target]; X=tab[,names(tab)!=target]; names(X)
#MCO resfit=lsfit(x=X,y=Y,intercept=T);
resfit$coef hist(resfit$res)
 Cst
        crim
                           chas
                    indus
                                 nox
                                        rm
                                              age
                                                   dis
                                                               tax
                                                                     ptratio
                                                                                 Istat
                                                                                       medy
 36.45
        -0.10
              0.046
                    0.020
                           2.68
                                -17.76
                                       3.80
                                             0.00
                                                   -1.47
                                                         0.30
                                                               -0.01
                                                                     -0.95
```

Modèle Linéaire sous R code R

reslm=lm(medv ~ .,data=tab); summary(reslm) **Résultats**:

n = 506, p = 14Residuals: Min 10 Median 30 Max -15.595 -2.730-0.5181.777 26.199 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *** crim -1.080e-01 3.286e-02 -3.287 0.001087 ** 4.642e-02 1.373e-02 3.382 0.000778 zn indus 2.056e-02 6.150e-02 0.334 0.738288 chas1 2.687e+00 8.616e-01 3.118 0.001925 ** -1.777e+01 3.820e+00 -4.6514.25e-06 nox *** rm 3.810e+00 4.179e-01 9.116 < 2e-16 *** 1.321e-02 0.052 0.958229 age 6.922e-04 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 *** rad 3.060e-01 6.635e-02 4.613 5.07e-06 *** tax -1.233e-02 3.760e-03 -3.280 0.001112 ** 1.308e-01 -7.283 ptratio -9.527e-01 1.31e-12 *** b 9.312e-03 2.686e-03 3.467 0.000573 *** 1stat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***

Signif. codes: 0 *** 0.001/ ** 0.01 /* 0.05 /. 0.1 / 1 Residual standard error: 4.745 on 492 degrees of freedom Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338 F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

Précautions

- Multicolinéarité
 la solution des MCO nécessite de calculer (X^TX)⁻¹.
 Lorsque le déterminant de cette matrice est très proche de zéro, le problème est mal conditionné.
- Choix des variables
 Le coefficient de détermination R² augmente en fonction du nombre de variables.
 - si $p = n R^2 = 1$, ce qui n'est pas forcément pertinent.

Démonstration sous R