(7) Probar que si $A \in \mathbb{K}^{n \times n}$ es una matriz nilpotente entonces 0 es el único autovalor de A. Usar esto para deducir que la matriz $Id_n - A$ es invertible (esta es otra demostración del ejercicio (13) del Práctico 3).

Recordens que A es nilpotente si existe he N tel que 1 = 0. Si A es nilpotente y v autovector con autovalor à, entonces $\Delta v = \lambda v$ y por ω tanto $\Delta^2 v = \Delta(\Delta v) = \Delta(\lambda v) = \lambda \Delta v = \lambda^2 v$. Iterando este argumento, obtenemos que $\Delta^k v = \lambda^k v$. Pero $1^k=0$ y por k tento $\lambda^k=0$ y en consecuence $\lambda=0$. Luego 0 es el único autovalor de A.

Thora ben, si O es el único autovalor de A, entonces $\mathcal{R}_A(\kappa) = \kappa^n$ y por lo tento $1 = \mathcal{R}_A(\Lambda) = \det(\mathrm{Id}_n - \Lambda)$.

Como el determinante de Idn-A es no nulo, esa matriz es invertible.