Presentation of raw data materials

t,f	x.px	y.px	comp	coul.renforcee	cote.renforce	id.bourdon	essai
1	569	296	capture	yellow	right	1	. 5
2	645	268	capture	yellow	right	1	. 5
3	653	292	capture	yellow	right	1	
4	650	292	capture	yellow	right	1	. 5
5	651	292	capture	yellow	right	1	. 5
6	660	272	capture	yellow	right	1	
7	652	292	capture	yellow	right	1	. 5 . 5
8	652	294	capture	yellow	right	1	. 5
9	655	292	capture	yellow	right	1	. 5
10	655	292	capture	yellow	right	1	. 5
11	664	276	capture	yellow	right	1	. 5 . 5
12	663	288	capture	yellow	right	1	. 5
13	660	289	capture	yellow	right	1	. 5 . 5
14	629	290	capture	yellow	right	1	
15	629	290	capture	yellow	right	1	. 5
16	629	290	capture	yellow	right	1	. 5
17	629	290	capture	yellow	right	1	
18	629		capture	yellow	right	1	

Example of 1 of 187 raw data .csv files

2D representation of trajectory of a bumblebee

List of analysis tasks in this project

Task 01: analysis of reinforced gate and fountain side

Task 02: analysis of reinforced gate and colour and fountain side

Determine the proportion of the bee that learned sucessful throughout first 15 trials

Task 03: Latency analysis between gate_test and fountain

Task 04: Latency analysis between gate_test and fountain side with reinforced side

Determine the latency from trials 1, 5, 10 and 15

Task 05: Average speed from gate_test to fountain

Determine the speed from trials 1, 5, 10 and 15

Task 1: analysis of reinforced gate and fountain side

Used information: fountain_left, fountain_right and reinforced side

Calculate fraction (congruent vs non-congruent) + SEM

Task 2: analysis of reinforced gate and colour and fountain side

Used informations: same from task 1 + reinforced color

Calculate fraction (blue vs yellow) + SEM

Task 03: Latency analysis between gate_test and fountain

Create 4 trial variables for trials 1, 5, 10, 15

Loop: trials < 16 and take only trials 1, 5, 10, 15

- Extract subset "fountain" and "gate_test"
- Using column t.f. to extract:
 - a = First time visit the fountain (tmin of subset "fountain")
 - b= Last time at the gate_test (tmax of subset "gate_test")
- Latency = a b
- Conversion to second
- Add the latency in corresponding trial variable

Calculate the average latency using mean()

Plot survival curve

- 1. Add libraries: *survival* and *survminer*
- 2. Create the survival object with *Surv(time, event)*
- 3. Compute an estimate of a survival curve using *survfit()*
- 4. Plot (title, axes, colours)

Task 04: Latency analysis between gate_test and fountain side with reinforced side

Create 4 trial variables for trials 1, 5, 10, 15

List: congruent and incongruent

Loop: trials < 16 and take only trials 1, 5, 10, 15

- Using columm t.f. to extract:
 - a = First time visit the fountain (tmin of subset "fountain")
 - b= Last time at the gate_test (tmax of subset "gate_test")
- Latency = a b
- Conversion to second
- Add the latency in corresponding trial variable

Only the congruent latencies

Calculate the average latency using mean()

Task 5: Average speed from gate_test to fountain

