2020 届高三 练习十八

班级 学号

一. 填空题(每题 3 分, 共 36 分)

已知集合 $M=\{i,i^2,\frac{1}{1},\frac{(1+i)^2}{1}\}$, i是虚数单位,Z为整数集,则集合 $Z\bigcap M$ 中的元素个数为

2. 若复数 $z=1+i+i^2+i^3+\cdots+i^{2022}+\frac{|3-4i|}{3-4i}$, 则 z 的共轭复数的虚部为

对任意复数 $z=x+yi(x,y\in R)$, i 为虚数单位,则下列结论正确的是 __. (填序号) ① $|z-\overline{z}| = 2y$; ② $|z|^2 = |x|^2 + |y|^2$; ③ $|z-\overline{z}| \ge 2x$; ④ $|z| \le |x| + |y|$.

4. 函数 $y = \cos x (x \in [\pi, \frac{3}{2}\pi))$ 的反函数为 $y = 2\pi - \alpha V \cos x$ (一么 x < 0)

已知w>0, 函数 $f(x)=\sin(wx+\frac{\pi}{4})$ 在 $(\frac{\pi}{2},\pi)$ 单调递增,则w的取值范围为 $(0,\frac{\pi}{4})$

6. 己知直线 l 与平面 α 成 45° 角,直线 $m \subsetneq \alpha$,若直线 l 在 α 内的射影与

直线 m 也成 45° 角,则 l 与 m 所成的角大小是 60°

如图,具有公共y轴的两个直角坐标平面 α 和 β 所成的二面角 $\alpha - y$ 轴 $- \beta$ 大小为 45° , 已知在 β 内的曲线 C' 的方程是 $y^2 = 4\sqrt{2}x'$, 曲线C'在平面 α 内射影的方程 $y^2 = 2px$,则p的值是 4

平行六面体 $ABCD-A_1B_1C_1D_1$ 中,底面是边长为 1 的正方形,侧棱 AA_1 的长为 2,且

9. 己知四面体 ABCD 中, AB=CD=2 , E 、 F 分别为 BC 、 AD 的中点,且异面直线 AB 与

CD 所成的角为 $\frac{\pi}{3}$,则 EF = 1 **小** [3]

10. 如图, 在平面四边形 ABCD 中, AB=BC=1, $AD=CD=\sqrt{2}$, $\angle DAB = \angle DCB = 90^{\circ}$, 点 P 为 AD 的中点, 点 M, N 分别在线段

BD, BC 上,则 $PM + \frac{\sqrt{2}}{2}MN$ 的最小值为____

点 P 和线段 AC 上的点 D, 满足 PD = DA, PB = BA, 则四面体 PBCD

13. 已知 $z_1, z_2, z_3 \in C$,下列结论正确的是(C) A. $\ddot{a}z_1^2 + z_2^2 + z_3^2 = 0$, $y_1 = z_2 = z_3 = 0$ B. $\ddot{a}z_1^2 + z_2^2 + z_3^2 > 0$, $y_1 = z_1^2 + z_2^2 > -z_3^2 > 0$ C. 若 $z_1^2 + z_2^2 > -z_3^2$,则 $z_1^2 + z_2^2 + z_3^2 > 0$ D. 若 $\overline{z_1} = -z_1$,则 z_1 为纯虚数.

14. 己知两个平面 α, β 和三条直线m, a, b,若 $\alpha \cap \beta = m$, $a \subsetneq \alpha 且 a \bot m$, $b \subsetneq \beta$,设 $\alpha 和 \beta$ 所成的一个二面角的大小为 θ_1 ,直线a和平面 β 所成的角的大小为 θ_2 ,直线a,b所成的角的 大小为 θ_3 ,则(\bigcup) A. $\theta_1 = \theta_2 \ge \theta_3$ B. $\theta_3 \ge \theta_1 = \theta_2$ C. $\theta_1 \ge \theta_3$, $\theta_2 \ge \theta_3$ D. $\theta_1 \ge \theta_2$, $\theta_3 \ge \theta_2$

15. 已知长方体 $ABCD - A_iB_iC_iD_i$ 中, 对角线 AC_i 与平面 A_iBD 交于点 O ,则 O 为 ΔA_iBD 的 \bigcirc) A. 外心 B. 内心 C. 重心 D. 垂心

16. 如图,在 ΔABC 中, $\angle ACB=90^{\circ}$, $\angle CAB=\theta$,M为AB的中点.将 ΔACM 沿着CM翻 折至 $\Delta A'CM$,使得 $A'M \perp MB$,则 θ 的取值不可能为(\triangle)

三. 解答题(共48分)

17. 如图, 在长方体 ABCD - A,B,C,D,中, AB=2, AD=1, A,A=1. 4' (1)证明直线 BC_1 平行于平面 D_1AC ;

(2)求直线 BC_1 到平面 D_1AC 的距离. $\frac{2}{3}$

18. 如图,在几何体 PABCD中,平面 PAB 上平面 ABCD,四边形 ABCD 是正方形, PA=PB, 且平面 PBC 上平面 PAC

4 (1)求证: AP 上平面 PBC:

4'(2)求直线 PD 与平面 PAC 所成角的正弦值. 5

19. 已知关于x的方程 $2\sin x + \cos x = m$ 在 $[0,2\pi]$ 内有两个不同的解 α,β (1)求实数m的取值范围: (2) 求 $\cos(\alpha-\beta)$ (用m表示).

20. 己知椭圆 E 的中心在坐标原点,左、右焦点 F_1 、 F_2 分别在 x 轴上,离心率为 $\frac{1}{2}$,在其上有一 动点A, A 到点F, 距离的最小值是 1,过A、F, 作一个平行四边形,顶点A, B, C, D 都在椭圆E 上,如图所示。 X^2 十 X^3 = X^4 (1) 求精图 E 的方程: X^4 十 X^4 = X^4 (2) 判断平行四边形 ABCD 能名为菱形,并说明理由: X^4 (3) 求平行四边形 ABCD 面积的最大值。

21. 己知无穷数列 $\{a_n\}$, $\{b_n\}$ 分别为等差数列与等比数列,其中 $a_n=3n-2$, $b_i=1$,记q(q>0)为 $\{b_n\}$ 的公比, S_n 为 $\{b_n\}$ 的前n项和,且满足: $S_{n+1} \le 4b_n (n \in N^*)$

(2) 记集合
$$A=\{x\mid x=a_n, n\in N^*\}$$
 , $B=\{x\mid x=b_n, n\in N^*\}$, $M=A\bigcup B$

$$4'$$
 ①将 $C_M\Lambda$ 中元素从小到大排列构成数列 $\{c_n\}$,求 $\{c_n\}$ 的通项公式: $C_n=2^{2n-1}$

$$\mathbf{4'}$$
②将 M 中元素从小到大排列构成数列 $\{d_n\}$,,求 $\{d_n\}$ 的前 n 项和 T_n