Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

К работе допущен 11.01.2021 07:30 Группа М3209

Работа выполнена 20.01.2021 15:05 Студент Бабурин Тимур

Преподаватель Ефремова Е. А. Отчет принят

Рабочий протокол и отчет по виртуальной лабораторной работе №4.03V

Кольца Ньютона

- 1. Цели работы: изучение интерференционной картины колец Ньютона. Определение радиуса кривизны плоско-выпуклой линзы с помощью интерференционной картины колец Ньютона.
- 2. Объект исследования: кольца Ньютона.
- 3. Метод экспериментального исследования:
 - Получение интерференционной картины с помощью специальной программы
- 4. Рабочие формулы и исходные данные.
 - $R = \frac{r_m^2 r_n^2}{(m-n)\lambda}$ радиус кривизны линзы (1)
 - $V = \frac{I_{max} I_{min}}{I_{max} + I_{min}}$ видность интерференционной картины (2)
 - $V(r) = a \left| sinc \left(\frac{\Delta \omega}{2c} \Delta_{opt} \right) \right|$ функция видности интерференционной картины (3)
 - $\Delta_{opt} = \frac{r^2}{R_{torn}}$ оптическая разность хода (4)

5. Схема установки

Главное окно программы и схема экспериментальной установки

6. Результаты прямых измерений и их обработки.

Изначальное дано согласно варианту:

Вариант 2						
n1	n2	λ1, нм	λ2, нм			
1,05	1,40	760	710			

Опыт №1 (монохроматическое излучение): с показателем преломления n1 = 1,05

№	Rсвет, мм	Rтемн, мм	R^2свет, мм^2	R^2темн, мм^2		
1	0,61250	0,860	0,37515625	0,7396		
2	1,05	1,2125	1,1025	1,47015625		
3	1,3525	1,480	1,82925625	2,1904		
4	1,5975	1,7075	2,55200625	2,91555625		
5	1,81	1,91	3,2761	3,6481		
6	2	2,0875	4	4,35765625		
7	2,172	2,257	4,717584	5,094049		
8	2,332	2,41	5,438224	5,8081		
9	2,485	-	6,175225	-		
Rкр, мм (радиус кривизны)						
486,578						

таблица 1. Монохроматическое излучение, n = 1,05

№	С вет, мм	Rтемн, мм	R^2свет, мм^2	R^2темн, мм^2	
1	0,535	0,750	0,286225	0,56255	
2	0,915	1,0525	0,837225	1,10775625	
3	1,1725	1,285	1,37475625	1,651225	
4	1,385	1,480	1,918225	2,1904	
5	1,57	1,655	2,4649	2,739025	
6	1,7325	1,81	3,00155625	3,2761	
7	1,882	1,955	3,541924	3,822025	
8	2,0255	2,0875	4,10265025	4,35765625	
9	2,152	2,215	4,631104	4,906225	
10	2,275	2,332	5,175625	5,438224	
11	2,390	2,447	5,7121	5,987809	
Rкр, мм (радиус кривизны)					
358,721					

таблица 2. Монохроматическое излучение, n = 1,40

Опыт №2 (Дихроматическое излучение):

I_{min}	I _{max}	R _{min} , MM	R _{max} , MM	r, mm	V	V _{reon}	Δ_{oht} , mm
0	0,9956	0	0,5225	0,26	1	0,9990113	0,000188
0,0208	0,9733	0,73	0,89	0,81	0,9720088	0,9094120	0,001829
0,0509	0,9325	1,03	1,15	1,085	0,8982877	0,7259440	0,003282
0,099	0,8689	1,26	1,36	1,31	0,7811612	0,4740048	0,004784
0,173	0,7872	1,45	1,54	1,495	0,6367432	0,2200136	0,006231
0,260	0,6949	1,62	1,70	1,66	0,4526867	0,0005072	0,007682
0,3580	0,59352	1,78	1,85	1,815	0,2333071	0,1530848	0,009183
0,46064	0,50301	1,91	1,96	1,935	0,043072	0,2114697	0,010438
0,47994	0,57281	2,00	2,05	2,025	0,0838894	0,2138422	0,011431
0,37855	0,6751	2,12	2,18	2,15	0,2707392	0,1613592	0,012886
0,2787	0,7051	2,24	2,29	2,265	0,4495977	0,0724441	0,014301
0,1885	0,85430	2,35	2,40	2,375	0,6263577	0,0223717	0,015724

таблица 3. Дихроматическое излучение

Опыт №3 (однородный сплошной спектр):

I _{min}	I _{max}	R _{min} , MM	R _{max} MM	r, mm	V	V _{reon}	$\Delta_{ m oht}$, mm
0	0,998	0	0,53	0,265	1,0000	0,99977	0,000196
0,013	0,989	0,73	0,89	0,81	0,9741	0,97967	0,001829
0,026	0,970	1,02	1,14	1,08	0,9478	0,93659	0,003252
0,043	0,937	1,25	1,35	1,3	0,9122	0,86970	0,004711
0,080	0,901	1,44	1,53	1,485	0,8369	0,78442	0,006147
0,120	0,855	1,61	1,69	1,65	0,7538	0,68319	0,007589
0,164	0,811	1,77	1,84	1,805	0,6636	0,56666	0,009082
0,217	0,756	1,91	1,98	1,945	0,5540	0,44595	0,010546
0,273	0,700	2,04	2,11	2,075	0,4388	0,32464	0,012003
0,331	0,644	2,16	2,23	2,195	0,3210	0,20942	0,013431
0,385	0,588	2,29	2,34	2,315	0,2086	0,09657	0,014940
0,441	0,532	2,39	2,46	2,425	0,0935	0,00051	0,016393

таблица 4. Однородный сплошной спектр

7. Графики

I относительно параметра "r,mm"

график 1. Монохроматическое излучение, n=1.05

I относительно параметра "r,mm"

график 2. Монохроматическое излучение, n = 1.40

график 3. Монохроматическое излучение, n = 1.05, зависимость радиуса от номера

Зависимость квадрата радиуса колец от порядкового номера

график 4. Монохроматическое излучение, n = 1.40, зависимость радиуса от номера

I относительно параметра "r,mm"

график 5. Дихроматическое излучение

I относительно параметра "r,mm"

график 6. Однородный сплошной спектр

график 7. Теоретическая и практическая видность дихроматического излучения

график 8. Теоретическая и практическая видность однородного сплошного спектра

8. Выводы

В ходе лабораторной работы было исследовано физическое явление колец Ньютона для монохроматической, дихроматической волн, а также для однородного сплошного спектра волн.

В ходе работы был определен радиус кривизны линзы для двух значений преломления среды, в которой находится линза (n1 = 1.05; n2 = 1.40). Отношение результатов получилось такое же, как и отношение преломлений среды. Это объясняется тем, что в расчетах была использована формула, предполагающая, что между линзой и поверхностью стекла находится воздушная прослойка с показателем преломления примерно равным 1.

Также в ходе работы было исследовано поведение функции видности для дихроматического излучения и однородного сплошного спектра. Здесь экспериментальные данные оказались в ожидаемых пределах от теоретических данных