> Differential Current:

$$\partial I_{d} = I_{d1} - I_{d2} = 2\xi$$

➤ Differential-Mode Output Voltage:

$$V_{od} = V_{o1} - V_{o2} = (V_{DD} - I_{d1}R_{D}) - (V_{DD} - I_{d2}R_{D})$$
$$= -(\partial I_{d})R_{D} = -2\xi R_{D}$$

> Note:

- When $V_{id} = 0$, $\xi = 0$, $\partial I_d = 0$, and $V_{od} = 0$
- This is the perfect DC bias point
- No need for interstage coupling capacitor
- $I_{D1} = I_{D2} = I_{SS}/2$
- $V_{Id} = 0 \Rightarrow$ Tie both gates to ground and use a negative power supply

> ac Analysis:

- The procedure adopted for npn DA can be lifted verbatim
- ➤ Differential-Mode Half-Circuit: Calculation of A_{dm}:
 - The common-source node is at ac ground (from symmetry)
 - Body is also at ac ground

$$\Rightarrow v_{bs} = 0 \Rightarrow g_{mb}v_{bs} = 0$$

Simple CS stage:

$$\Rightarrow A_{dm} = v_{od}/v_{id} = -g_m R_D$$
$$g_m = k_N \Delta V$$

Differential-Mode Half-Circuit

- Common-Mode Half-Circuit: Calculation of Acm:
 - CS(D) stage, but now with
 body effect present

$$\Rightarrow A_{cm} = v_{oc}/v_{ic}$$
$$= -g_m R_D/[1 + (g_m + g_{mb})2R_{SS}]$$

> Thus:

$$CMRR = 20\log_{10}(|A_{dm}/A_{cm}|)$$

 $\approx 20\log_{10}[2(g_{m} + g_{mb})R_{SS}]$

 \triangleright Again, R_{SS} plays no role in

 A_{dm} , but determines A_{cm} and CMRR

 \Rightarrow A high value of R_{SS} highly desirable

Common-Mode Half-Circuit

- > Actual situation is not so rosy and hunky-dory
- The DA can become unbalanced if there is a mismatch between the devices and/or the resistors, and our analysis would fail!
- ➤ Gives rise to *offset voltage* (for both npn and NMOS DA) and offset current (only for npn DA)
- This mismatch is caused by technology and is totally random
- Fortunately, the effect is not that severe, since there are technological innovations to match devices and/or resistors

Actively Loaded Amplifier Stages

- Main Goal: To reduce usage of resistors as much as possible and use transistors instead as active load
- Interesting to note that transistors offer much higher resistance than physical resistors, while occupying much smaller chip area

• npn CE Stage With pnp Active Load:

- \triangleright Q₁: *Driver*, Q₂: *Load*
- ► Identify Q_2 - Q_3 as a pnp current mirror
- ➤ Q₂-Q₃ constitute a *matched pair*
- ➤ Neglecting base currents:

$$I_{C2} = I_{REF}$$

➤ Biasing of the circuit is tricky

Circuit Diagram