No.	Definition	Denotati	Description
		on	ical Form and Logical Equivalence
2.1.1	Statement	LOG	A statement (or proposition) is a sentence that is true or false,
2.1.1	Otatement		but not both.
2.1.2	Negation	~p	If p is a statement variable, the negation of p is "not p " or "it is not
			the case that p " and is denoted $\sim p$.
2.1.3	Conjunction	$p \wedge q$	If p and q are statement variables, the conjunction of p and q is
			"p and q", denoted $p \wedge q$.
2.1.4	Disjunction	$p \vee q$	If p and q are statement variables, the disjunction of p and q is " p
			or q , denoted $p \vee q$.
2.1.5	Statement		A statement form (or propositional form) is an expression
	Form /		made up of statement variables and logical connectives that
	Proposition		becomes a statement when actual statements are substituted for
	al Form		the component statement variables.
2.1.6	Logical	P≡ Q	Two statement forms are called logically equivalent if, and only
	Equivalence		if, they have identical truth values for each possible substitution of statements for their statement variables.
			Statements for their statement variables.
			The logical equivalence of statement forms <i>P</i> and <i>Q</i> is denoted by
			$P \equiv Q$.
2.1.7	Tautology	t / true	A tautology is a statement form that is always true regardless of
	,		the truth values of the individual statements substituted for its
			statement variables. A statement whose form is a tautology is a
			tautological statement.
2.1.8	Contradictio	c / false	A contradiction is a statement form that is always false
	n		regardless of the truth values of the individual statements
			substituted for its statement variables. A statement whose form is
			a contradiction is a contradictory statement .
224	Conditional		Conditional Statements
2.2.1	Conditional	$p \rightarrow q$	If p and q are statement variables, the conditional of q by p is "if p then q " or " p implies q ", denoted $p \rightarrow q$.
			ρ then q or ρ implies q , denoted $\rho \rightarrow q$.
			It is false when p is true and q is false; otherwise it is true.
			it is false when p is true and q is false, sufferwise it is true.
			We called p the hypothesis (or antecedent) and q the conclusion
			(or consequent).
			this way of defining $p{ o}q$ gives us the nice intuitive property of the following
			statement which is the transitive rule of inference
			$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r).$ $p \rightarrow q$
			q → r
			hence, p → r
2.2.2	Contrapositi	$p \rightarrow q \equiv$	The contrapositive of a conditional statement "if p then q " is "if
	ve	~q → ~p	$\sim q$ then $\sim p$ ".
0.0.0			Symbolically, the contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$.
2.2.3	Converse	$q \rightarrow p$	The converse of a conditional statement "if p then q " is "if q then"
			<i>p</i> ".

			Symbolically, the converse of $p \rightarrow q$ is $q \rightarrow p$.
2.2.4	Inverse	~p → ~q	The inverse of a conditional statement "if p then q " is "if $\sim p$ then
		P / 9	$\sim q^{\prime\prime}$.
			Symbolically, the inverse of $p \rightarrow q$ is $\sim p \rightarrow \sim q$.
2.2.5	Only if	$p \rightarrow q \equiv$	If p and q are statements,
		~q → ~p	"p only if q" means "if not q then not p"
			Or, equivalently, "if p then q"
2.2.6	Biconditiona	$p \leftrightarrow q$	Given statement variables p and q , the biconditional of p and q
	l (iff)		is "p if, and only if, q" and is denoted $p \leftrightarrow q$.
			It is true if both p and q have the same truth values and is false if
			p and q have opposite truth values.
			The words if and only if are sometimes abbreviated iff.
2.2.7	Necessary	r → s	If <i>r</i> and <i>s</i> are statements,
	& Sufficient		"r is a sufficient condition for s":
	Conditions		• "if r then s"
		~r → ~s	"r is a necessary condition for s":
		s > r	"if not r then not s" (or "if s then r")
			Valid and Invalid Arguments
2.3.1	Argument		An argument (argument form) is a sequence of statements
			(statement forms). All statements in an argument (argument
			form), except for the final one, are called premises (or
			assumptions or hypothesis). The final statement (statement
			form) is called the conclusion . The symbol •, which is read
			"therefore", is normally placed just before the conclusion.
			To say that an argument form is valid means that no matter what
			particular statements are substituted for the statement variables in
			its premises, if the resulting premises are all true, then the
			conclusion is also true.
2.3.2	Sound and		An argument is called sound if, and only if, it is valid, and all its
2.5.2	Unsound		premises are true.
	Arguments		profitiood and true.
	, a garnonio		An argument that is not sound is called unsound .
		Pre	edicates and Quantified Statements
3.1.1	Predicate	Predicat	A predicate is a sentence that contains a finite number of
		е	variables and becomes a statement when specific values are
		symbols:	substituted for the variables.
		P, Q	
			The domain of a predicate variable is the set of all values that
		Predicat	may be substituted in place of the variable.
		е	"domain of discourse",
		Variables	"universe of discourse",
		: P(x),	"universal set", or
		Q(x, y)	• "universe".
3.1.2	Truth Set	{ <i>x</i> ∈ <i>D</i>	If $P(x)$ is a predicate and x has domain D, the truth set is the set
		P(x)	of all elements of D that make $P(x)$ true when they are substituted
		','	for x.

			The truth set of $P(x)$ is denoted $\{x \in D \mid P(x)\}$.
			 In set theory, is used to mean "such that".
3.1.3	Universal	∀ <i>x</i> ∈ <i>D</i> ,	Let $Q(x)$ be a predicate and D the domain of x . A universal
	Statement	Q(<i>x</i>)	statement is a statement of the form " $\forall x \in D$, $Q(x)$ ".
			• It is defined to be true iff $Q(x)$ is true for every x in D .
			It is defined to be false iff Q(x) is false for at least one x in
			D.
			A value for x for which $Q(x)$ is false is called a counterexample .
3.1.4	Existential	∃ <i>x</i> ∈ <i>D</i> s.t.	Let $Q(x)$ be a predicate and D the domain of x . An existential
	Statement	Q(<i>x</i>)	statement is a statement of the form " $\exists x \in D$ such that $Q(x)$ ".
			It is defined to be true iff Q(x) is true for at least one x in D.
			It is defined to be false iff Q(x) is false for all x in D.
			T
			The symbol ∃! is used to denote "there exists a unique" or "there
			is one and only one".
		Variant	 E.g. ∃! x ∈ Z⁺ such that x is even and prime. ts of Universal Conditional Statements
3.2.1	Contropositi		
3.2.1	Contrapositi ve		a statement of the form: $\forall x \in D (P(x) \to Q(x))$.
		-	$P(x) \to P(x)$
	Converse	$\forall x \in D(Q(x))$	
0.00	Inverse	•	$(x) \to -Q(x)$
3.2.2	Sufficient	$\forall x (r(x))$	" $\forall x, r(x)$ is a sufficient condition for $s(x)$ " means
	Condition	$\rightarrow s(x)$	" $\forall x (r(x) \rightarrow s(x))$ ".
			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
			" $\forall x, r(x)$ only if $s(x)$ " means " $\forall x (\sim s(x) \rightarrow \sim r(x))$ " or, equivalently,
	Nagagaani	\ / / - / - \	" $\forall x (r(x) \rightarrow s(x))$ ".
	Necessary condition	$\forall x (s(x))$	" $\forall x, r(x)$ is a necessary condition for $s(x)$ " means
	Condition	$\rightarrow r(x)$	" $\forall x \ (\sim r(x) \rightarrow \sim s(x))$ " or, equivalently, " $\forall x \ (s(x) \rightarrow r(x))$ ".
2.4.4	Valid	Arg	uments with Quantified Statements
3.4.1	Valid		Valid argument form: No matter what particular predicates are substituted for the
	argument form		predicate symbols in its premises, if the resulting premise
	101111		statements are all true, then the conclusion is also true.
			statements are all trae, then the conclusion is also trae.
			An argument is called valid if, and only if, its form is valid
Sets			3
5.1.1	Set		(1) A set is an unordered collection of objects
			(2) These objects are called the members or elements of the set.
			(3) Write
			a. $x \in A$ for x is an element of A;
			b. x ∉ A for x is not an element of A;
			c. $x, y \in A$ for x, y are elements of A;
			d. x, y ∉ A for x, y are not elements of A;
		l	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

5.1.3	Roster	{x1,	(1) The set whose only elements are x1, x2, , xn is denoted {x1,
	Notation	x2, ,	x2, , xn}.
		xn}.	
5.1.5	Set-builder	{x ∈ U :	Let U be a set and P(x) is a predicate over U. Then the set of all
	Notation	P(x)}	elements $x \in U$ such that $P(x)$ is true is denoted $\{x \in U : P(x)\}$.
			 read as "the set of all x in U such that P(x)".
			• Some write { } for { :}.
			 {y²: y is an odd integer}: the set of all objects of the form y²
			such that y is an odd integer
			• {t(y1, y2, , yn) : P(y1, y2, , yn)} to denote
			$\{x : \exists y1, y2, \dots, yn P(y1, y2, \dots, yn) \land x = t(y1, y2, \dots, yn)\}$
5.1.9	Equal sets	=	Two sets are equal if they have the same elements, i.e., for all sets A, B
			• $A = B \Leftrightarrow \forall z \ (z \in A \Leftrightarrow z \in B)$
5.1.15	Empty Set	Ø	The set with no element is called the empty set. It is denoted by \varnothing .
5.1.16	Subset	⊆	Let A, B be sets. Call A a subset of B, and write $A \subseteq B$, if
			$\forall z \ (z \in A \Rightarrow z \in B).$
			• Alternatively, we may say that B includes A, and write $B \supseteq A$ in
			this case.
5.1.19	Proper	Ç	Let A, B be sets. Call A a proper subset of B, and write A \subseteq B, if A \subseteq B
	Subset		and A 6= B. In this case, we may say that the inclusion of A in B is proper
			or strict.
			Power and Products of Sets
5.2.1	Power Set	<i>ア</i> (A), ዮ(A)	Let A be a set. The set of all subsets of A, denoted $\mathcal{P}(A)$, is called the
	-		power set of A.
5.2.3	Cardinality	A	(1) A set is finite if it has finitely many (distinct) elements. It is
			infinite if it is not finite.
			(2) Let A be a finite set. The cardinality of A, or the size of A, is the
			number of (distinct) elements in A. It is denoted by A .
5.2.6	Ordered	(x, y)	(3) Sets of size 1 are called singletons. An ordered pair is an expression of the form (x, y).
3.2.0	Pair	(A, y)	Let (x, y) and (x', y') be ordered pairs. Then
			• $(x, y) = (x', y') \Leftrightarrow x = x' \text{ and } y = y'$
5.2.8	Cartesian	A×B	Let A, B be sets. The Cartesian product of A and B, denoted A × B, is
0.2.0	Product	(A cross	defined to be
		B)	• $\{(x, y) : x \in A \text{ and } y \in B\}.$
			• {a, b} × {1, 2, 3} = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}.
			• {a, b} × {1, 2, 3} = 6 = 2 × 3 = {a, b} × {1, 2, 3} .
5.2.11	Ordered n-	(x1,	Let $n \in \{x \in Z : x > 2\}$. An ordered n-tuple is an expression of the form
	tuple	x2, ,	(x1, x2, , xn).
		xn).	• Let (x1, x2, , xn) and (x'1, x'2, , x'n) be ordered n-tuples.
			• Then $(x1, x2,, xn) = (x'1, x'2,, x'n) \Leftrightarrow x1 = x'1$ and $x2 =$
			x'2 and and $xn = x'n$
			• (1, 2, 5) 6= (2, 1, 5), although {1, 2, 5} = {2, 1, 5}.
5.2.13	Cartesian		Let $n \in \{x \in Z : x > 2\}$ and A1, A2, , An be sets. The Cartesian product
	Product of		of A1, A2, , An, denoted A1 \times A2 $\times \cdots \times$ An, is defined to be
	many sets		

			• {(x1, x2, , xn) : x1 ∈ A1 and x2 ∈ A2 and and xn ∈ An}
			If A is a set, then $A^n = \underbrace{A \times A \times \cdots \times A}_{A \times A}$.
			n-many A's
			Boolean Operations
5.3.1	Union, Intersection, Complemen t	U (union) ∩ (intersect) \ (minus)	 (1) The union of A and B, denoted A ∪ B, is defined by A ∪ B = {x : x ∈ A or x ∈ B}. (2) The intersection of A and B, denoted A ∩ B, is defined by A ∩ B = {x : x ∈ A and x ∈ B}. (3) The complement of B in A, denoted A − B or A \ B, is defined by A \ B = {x : x ∈ A and x 6∈ B}.
5.3.3	Complemen t	$\overline{B} = U \setminus B.$	Let B be a set. In a context where U is the universal set (so that implicitly U \supseteq B), the complement of B, denoted \overline{B} or B^c , is defined by $\overline{B} = U \setminus B$.
5.3.9	Disjoint Sets		 (1) Two sets A, B are disjoint if A ∩ B = Ø. (2) Sets A1, A2, , An are pairwise disjoint or mutually disjoint if Ai ∩ Aj = Ø for all distinct i, j ∈ {1, 2, , n}.
			Functions
6.1.1	Function		 Let A, B be sets. A function or a map from A to B is an assignment to each element of A exactly one element of B. f: A → B means "f is a function from A to B". Suppose f: A → B. (1) Let x ∈ A. Then f(x) denotes the element of B that f assigns x to. If y = f(x), then we say that f maps x to y, and we may write f: x → y. (2) A is called the domain of f, and B is called the codomain of f. (3) The range or the image of f is {f(x): x ∈ A} = {y ∈ B: y = f(x) for some x ∈ A}.
			$x \mapsto x^{\circ} + 23x$. Then f is the function with domain $\mathbb Z$ and codomain $\mathbb Z$ that assigns to each $x_0 \in \mathbb Z$ the value of $x_0^3 + 23x_0$. Thus $f(0) = 0^3 + 23 \times 0 = 0$ and $f(1) = 1^3 + 23 \times 1 = 24$. The range of f is $\{x^3 + 23x : x \in \mathbb Z\}$.
6.1.4	Identity Function	$Id_A: A \rightarrow A$ $X \mid \rightarrow X$	Let A be a set. Then the identity function on A is the function. • The domain, the codomain, and the range of idA are all A.
6.1.6	Absolute Value	x	Let absval: Q \rightarrow Q satisfying, for every x \in Q, $\operatorname{absval}(x) = \begin{cases} x, & \text{if } x \geqslant 0; \\ -x, & \text{otherwise.} \end{cases}$ $\bullet \text{the function absval has domain Q, codomain Q, and}$ $\forall x \in \mathbb{Q} \left((x \geqslant 0 \Rightarrow \operatorname{absval}(x) = x) \land \left(\sim (x \geqslant 0) \Rightarrow \operatorname{absval}(x) = -x \right) \right).$
6.1.9	Floor, ceil: Q → Z	$\lfloor x \rfloor$ and $\lceil x \rceil$	for each $x \in Q$, (1) floor(x) to be the largest integer y such that $y \le x$; and (2) ceil(x) to be the smallest integer y such that $y \ge x$.

6.1.12	Sequence		Definition 6.1.12. A sequence is a function a whose domain is \mathbb{Z} , $\mathbb{Z}_{\geqslant k}$ or $\{x \in \mathbb{Z} : k \leqslant x \leqslant \ell\}$ for some $k, \ell \in \mathbb{Z}$. If a is a sequence, then we may write a_n for $a(n)$.
Termi nolog y 6.1.18	Well- defined function		A function is well-defined if its definition ensures that every element of the domain is assigned exactly one element of the codomain.
6.1.19	Equal Functions	f = g	Two functions $f: A \rightarrow B$ and $g: C \rightarrow D$ are equal if (1) $A = C$ and $B = D$; and (2) $f(x) = g(x)$ for all $x \in A$.
6.1.22	Composite Function	g of (compose d with or circle)	 Let f: A → B and g: B → C. Then g ∘ f: A → C such that for every x ∈ A, (g ∘ f)(x) = g(f(x)) For g ∘ f to be well-defined, the codomain of f must equal the domain of g
			Injectivity and Surjectivity
6.2.1	Inverse		 Let f: A → B. (1) If X ⊆ A, then let f(X) = {y ∈ B : y = f(x) for some x ∈ X} = {f(x) : x ∈ X} (2) If Y ⊆ B, then let f −1 (Y) = {x ∈ A : y = f(x) for some y ∈ Y}. We call f(X) the (setwise) image of X, and f −1 (Y) the (setwise) preimage of Y under f If f: A → B, then f(A) is the range/image of f.
6.2.5	Surjection, Injection, Bijection (bijective function)		 Let f: A → B. (1) f is surjective or onto if ∀y ∈ B ∃x ∈ A (y = f(x)). (2) f is injective or one-to-one if ∀x, x' ∈ A (f(x) = f(x') ⇒ x = x') (3) f is bijective if it is both surjective and injective, i.e., ∀y ∈ B ∃!x ∈ A (y = f(x)). A function is surjective if and only if its codomain is equal to its range A function f: A → B is not surjective if and only if ∃y ∈ B ∀x ∈ A (y =/= f(x)). A function f: A → B is not injective if and only if ∃x, x' ∈ A (f(x) = f(x') ∧ x =/= x')
6.2.13	Inverse		Let $f : A \rightarrow B$. Then $g : B \rightarrow A$ is an inverse of f if $\bullet \forall x \in A \ \forall y \in B \ (y = f(x) \Leftrightarrow x = g(y))$
6.2.17	Inverse		The inverse of a function f is denoted f −1
			Cardinality
6.3.1	Same cardinality		 (Cantor). (1) Two set A, B are said to have the same cardinality if there is a bijection A → B. (2) A set is countable if it is finite or it has the same cardinality as Z>=0.

		 An infinite set B is countable if and only if there is a sequent b0, b1, b2, ∈ B in which every element of B appears example. 	
		once.	,
		Mathematical Induction (MI)	
Princi	MI	Let $m \in Z$. To prove that $\forall n \in Z > m P(n)$ is true, where each $P(n)$ is a	3
ple		proposition, it suffices to:	
7.1.1		 (base step) show that P(m) is true 	
		 (induction step) show that ∀k ∈ Z>=m (P(k) ⇒ P(k + 1)) is the assumption that P(k) is true is called the induction 	true
		hypothesis	
		Justification. The two steps ensure the following are true:	
		P(m) by the base step; $P(m) \Rightarrow P(m+1)$ by the induction step with $k=m$;	
		$P(m+1) \Rightarrow P(m+2)$ by the induction step with $k=m+1$;	
		$P(m+2) \Rightarrow P(m+3)$ by the induction step with $k=m+2$;	
D.:! '	Otuna is in B.41	We deduce that $P(m)$, $P(m+1)$, $P(m+2)$, are all true by a series of modus ponens.	••
Princi	Strong MI	To prove that $\forall n \in Z>0$ P(n) is true, where each P(n) is a propositio	n, it
ple 7.2.1		suffices to:	
7.2.1		• (base step) show that P(0), P(1),, P(m) are true;	<i>n</i> .
		• (induction step) show that $\forall k \in \mathbb{Z} >= 0$ (P(0) \land P(1) $\land \cdots \land$ P(1) $\land \cdots \land $	(K +
		m) \Rightarrow P(k + m + 1)) is true for some m \in Z>=0 Justification. The two steps ensure the following are true:	
		$P(0) \wedge P(1) \wedge \cdots \wedge P(m)$ by the base step;	
		$P(0) \wedge P(1) \wedge \cdots \wedge P(m) \Rightarrow P(m+1)$ by the induction step with $k=0$;	
		$P(0) \wedge P(1) \wedge \cdots \wedge P(m) \wedge P(m+1) \Rightarrow P(m+2)$ by the induction step with $k=1$; $P(0) \wedge P(1) \wedge \cdots \wedge P(m) \wedge P(m+1) \wedge P(m+2) \Rightarrow P(m+3)$ by the induction step	
		$(0) \land I(1) \land \cdots \land I(m) \land I(m+1) \land I(m+2) \Rightarrow I(m+3) \text{ by the induction step}$ with $k=2$;	
		We deduce that $P(0), P(1), P(2), P(3), \ldots$ are all true by a series of modus ponens. \Box	
7.2.2	Fibonacci	The Fibonacci sequence F0, F1, F2, is defined by setting	
	sequence	$F_0 = 0$ and $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for each $n \in Z >= 0$.	
		Recursion	
Termi	Recursively	A sequence a0, a1, a2, is said to be recursively defined if the	_
nolog	defined	definition of an involves a0, a1, , an–1 for all but finitely many n	1 ∈
у 7.3.1		Z>=0	
7.3.12	Well-	Designate a nonempty set Σ whose elements will be used as	
	Formed	propositional variables. Define the set WFF(Σ) recursively as follows	S
	Formula	(1) Every element p of Σ is in WFF(Σ). (base clause)	
	(WFF)	(2) If x, y are in WFF(Σ), then $\sim x$ and $(x \wedge y)$ and $(x \vee y)$ are in WFF(Σ). (recursion clause)	
		(3) Membership for WFF(Σ) can always be demonstrated by (finitely many) successive applications of the clauses above. (minimality clause)	
7.3.16	WFF	Definition 7.3.16. Designate a nonempty set Σ whose elements will be used as propositional variables. Define the set WFF ⁺ (Σ) recursively as follows.	
		(1) Every element p of Σ is in WFF ⁺ (Σ). (base clause)	
		(2) If x, y are in WFF ⁺ (Σ), then $(x \wedge y)$ and $(x \vee y)$ are in WFF ⁺ (Σ). (recursion clause)	
		(3) Membership for WFF $^+$ (Σ) can always be demonstrated by (finitely many) successive applications of the clauses above. (minimality clause)	

			Number Theory
			Divisibility
8.1.1	divides	d n	Let $n, d \in Z$. Then d is said to divide n if
			• $n = dk$ for some $k \in Z$.
			• $d \mid n$ for "d divides n", and $d \nmid n$ for "d does not divide n".
			 "n is divisible by d" or "n is a multiple of d" or "d is a
			factor/divisor of n"
8.1.17	n <u>div</u> d		Let $n \in Z$ and $d \in Z^+$. The unique q, $r \in Z$ given by the Division Theorem
	(quotient)		such that (n = dq + r and $0 \le r < d$) holds are called the quotient (n div d)
	n <u>mod</u> d		and the remainder (n mod d) when n is divided by d.
	(remainder)		 Remainder is always ≥ 0
8.1.21	Even and		(1) An integer is even if it is equal to $2k$ for some $k \in Z$.
	Odd		(2) An integer is odd if it is equal to $2k + 1$ for some $k \in Z$.
	integers		
			Prime Numbers
8.2.1			(1) A positive integer is prime if it has exactly two positive divisors.
			(2) A positive integer is composite if it has (strictly) more than two
			positive divisors.
			1 is neither prime nor composite because it has exactly one
			positive divisor.
			 Every integer n ≥ 2 is either prime or composite
	1	ı	Base-b representation (b ≥ 2)
8.3.1	Base-b		Definition 8.3.1. The base-b representation of a positive integer n is
	representati		$(a_\ell a_{\ell-1} \dots a_0)_b$
	on		where $\ell \in \mathbb{Z}_{\geqslant 0}$ and $a_0, a_1, \dots, a_\ell \in \{0, 1, \dots, b-1\}$ such that
			$n = a_{\ell}b^{\ell} + a_{\ell-1}b^{\ell-1} + \dots + a_0b^0$ and $a_{\ell} \neq 0$.
			The a_0, a_1, \ldots, a_ℓ here are called digits.
8.3.4	Names of		(1) Base-10 representations are called decimal representations.
0.0.4	base-b		(2) Base-2 representations are called binary representations.
	representati		(3) Base-8 representations are called octal representations.
	ons		(4) Base-16 representations are called hexadecimal
			representations.
			(5) Base-60 representations are called sexagesimal
			representations.
			, sp. 333.114.15.15.
			In hexadecimal representation, use respectively
			A B C D E F
			10 11 12 13 14 15
			Greatest Common Divisors
8.4.1.	Common		Let m, n ∈ Z.
	Divisor		(1) A common divisor of m and n is divisor of both m and n.
			(2) The greatest common divisor of m and n is denoted gcd(m, n)
			Hence, $gcd(a,b) \mid a$ and $gcd(a,b) \mid b$.
		Fu	Indamental Theorem of Arithmetic

8.5.1.	Linear		Let $m, n \in Z$. An integer linear combination of m and n is a number of
	Combinatio		the form ms + nt, where s, $t \in Z$.
0 5 7	n Prime		A prime factorization of an integer n is a way of writing n as a product
8.5.7.	Factorizatio		A prime factorization of an integer n is a way of writing n as a product of primes.
	n		e.g. $2 \times 2 \times 5 \times 5 = 2^2 5^2$
			Modular Arithmetic
8.6.1.	Congruence	≣	Let a, $b \in Z$ and $n \in Z +$.
			Then a is congruent to b modulo n if a mod n = b mod n. In this case, we write $a \equiv b \pmod{n}$.
8.6.8.	Additive Inverse		Let a, $b \in Z$ and $n \in Z +$. The integer b is an additive inverse of a modulo n if $a + b \equiv 0 \pmod{n}$.
8.6.15.	Multiplicativ e Inverse		Let $a \in Z$ and $n \in Z +$. A multiplicative inverse of a modulo n is an integer b such that $ab \equiv 1$
			(mod n).
8.6.18.	Coprime		Two integers a, n are coprime if gcd(a, n) = 1.
0.1.1	Doletter		Relations
9.1.1.	Relation		Let A, B be sets. (1) A relation from A to B is a subset of A \times B. (2) Let R be a relation from A to B and $(x, y) \in A \times B$. Then we may write $x R y$ for $(x, y) \in R$ and $x R y$ for $(x, y) \notin R$.
			e.g. Let S be the set of all NUS students and M be the set of all modules offered by the NUS. Then "is enrolled in" is a relation from S to M. As a set, this relation is $\{(x, y) \in S \times M : x \text{ is enrolled in } y\}.$
			e.g. Let A = $\{0, 1, 2\}$ and B = $\{1, 2, 3, 4\}$. Define the relation R from A to B by setting x R y \Leftrightarrow x < y. Then 0 R 1 and 0 R 2, but 2 \Re 1.
			As a set, R = {(0, 1),(0, 2),(0, 3),(0, 4),(1, 2),(1, 3),(1, 4),(2, 3),(2, 4)}. • Those (x, y) that fulfils the requirement (<) ∈ R.
			Arrow diagram. Let $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Consider the relation R from A to B defined by
			$R = \{(1, x), (1, y), (2, x), (2, y), (2, z), (3, z), (4, z)\}.$ One can represent this relation by the following arrow diagram, where the existence of an
			arrow from a to b indicates $a R b$:
			4
			3•
			2 y
			1
9.2.1.	Binary Relation		A (binary) relation on a set A is a relation from A to A
9.2.2.	Reflexive,		Let A be a set and R be a relation on A.
	Symmetric,		(1) R is reflexive if $\forall x \in A (x R x)$.
	Transitive		(2) R is symmetric if $\forall x, y \in A (x R y \Rightarrow y R x)$.
			(3) R is transitive if $\forall x, y, z \in A (x R y \land y R z \Rightarrow x R z)$.
			Note:
			 It is wrong to say that "a is reflexive", "b is reflexive", "c is not reflexive".
			We either say the relation <i>R</i> is reflexive or not reflexive.
			• We don't say an element of A is reflexive or not reflexive.

			 Reflexivity, symmetry and transitivity are properties of relations, not individual elements of A.
9.2.9.	Equivalence Relation		An equivalence relation is a relation that is reflexive, symmetric, and transitive.
9.2.10.	Equivalence Class	[x] _R or simply [x]	Let A be a set and R be an equivalence relation on A. For each $x \in A$, the equivalence class of x with respect to R, denoted $[x]_R$, is defined by $[x]_R = \{y \in A: x R y\}$. • Define A/R = $\{[x]_R: x \in A\}$. Example 9.2.12. Fix $n \in \mathbb{Z}^+$. The congruence-mod- n relation R_n on \mathbb{Z} is an equivalence relation. The equivalence classes are of the form $[x] = \{y \in \mathbb{Z}: x \equiv y \pmod{n}\} = \{x + nk: k \in \mathbb{Z}\},$
			where $x \in \mathbb{Z}$. So $\mathbb{Z}/R_n = \{\{x + nk : k \in \mathbb{Z}\} : x \in \mathbb{Z}\} = \{[0], [1], \dots, [n-1]\}.$ If $n = 2$, then there are two equivalence classes:
			$\{2k: k \in \mathbb{Z}\}$ and $\{2k+1: k \in \mathbb{Z}\}.$
Partition	S		
9.3.1.	Partition	С	A partition of a set A is a set C of nonempty subsets of A such that $(\ge 1) \ \forall x \in A \ \exists S \in C \ (x \in S);$ and $(\le 1) \ \forall x \in A \ \forall S, S' \in C \ (x \in S \land x \in S' \Rightarrow S = S')$ Elements of a partition are called components of the partition. e.g. The set $A = \{1, 2, 3\}$ has the following partitions: • $\{\{1\}, \{2\}, \{3\}\},$ • $\{\{1\}, \{2, 3\}\},$ • $\{\{2\}, \{1, 3\}\},$ • $\{\{3\}, \{1, 2\}\},$ • $\{\{1, 2, 3\}\}$ e.g. The congruence-mod-2 relation gives rise to the following partition of Z • $\{\{2k : k \in Z\}, \{2k + 1 : k \in Z\}\}$
Partial O	rders		((= = =)) (= = =))
9.4.1.	Partial Order	≤ < (for x ≤ y ∧ x ≠ y.)	Let A be a set and R be a relation on A. (1) R is antisymmetric if ∀x, y ∈ A (x R y ∧ y R x ⇒ x = y). (2) R is a (non-strict) partial order if R is reflexive, antisymmetric, and transitive. (3) Suppose R is a partial order. Let x, y ∈ A. Then x, y are comparable (under R) if x R y or y R x. (4) R is a (non-strict) total order if R is a partial order and ∀x, y ∈ A (x R y ∨ y R x). (connex) Note 9.4.2. A total order is always a partial order
			Note: "divides" relation on integers is a partial order
9.4.11.	Hasse Diagram		Let ≤ be a partial order on a set A. A Hasse diagram of ≤ satisfies the following condition for all x, y ∈ A • If x < y and no z ∈ A is such that x < z < y, then x is placed below y and there is a line joining x to y, else no line joins x to y. Example 9.4.13. Consider \$\mathcal{P}(\{1,2,3\})\$ partially ordered by the inclusion relation ⊆. A Hasse diagram is as follows: \[\begin{array}{c} \{1,2,3\} \\ \{1,2\} \{1,3\} \{2,3\} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
Linearisa	tion		

9.5.1.	Minimal,		Let ≤ be a partial order on a set A.
	Maximal,		(1) c is a minimal element if $\forall x \in A \ (x \le c \Rightarrow c = x)$.
	smallest,		(2) c is a maximal element if $\forall x \in A \ (c \le x \Rightarrow c = x)$.
	largest		(3) c is the smallest element (or the minimum element) if $\forall x \in A$ (c $\leq x$).
			(4) c is the largest element (or the maximum element) if $\forall x \in A \ (x \le c)$.
9.5.4.	Well-order		A well-order on a set A is a total order on A with respect to which every
			nonempty subset of A has a smallest element.
Tut 8	Inverse	R^{-1}	Let R be a relation from a set A to a set B.
	relation		R^{-1} is the inverse relation of R , i.e.
	. Glation		$R^{-1} = \{(y, x) : (x, y) \in R\}, \text{ or }$
			$y R^{-1} x \Leftrightarrow x R y$
			for each $y \in B$ and each $x \in A$.
Counting		ı	
Sample	Space		A sample space is the set of all possible outcomes of a random process or
			experiment.
Event			An event is a subset of a sample space.
No. of	elements	<i>A</i>	For a finite set A, A denotes the number of elements in A.
r-permu	utation	<i>P</i> (<i>n</i> , <i>r</i>)	An r-permutation of a set of <i>n</i> elements is an ordered selection of <i>r</i> elements taken from the set.
r-comb	ination	$\binom{n}{1}$	Let n and r be non-negative integers with $r \le n$.
		$\binom{n}{r}$	An r-combination of a set of <i>n</i> elements is a subset of <i>r</i> of the <i>n</i> elements.
			$\binom{n}{r}$, read "n choose r", denotes the number of subsets of size r (r-
			combinations) that can be chosen from a set of <i>n</i> elements.
			Other symbols used are $C(n, r)$, ${}_{n}C_{r}$, $C_{n,r}$, or ${}^{n}C_{r}$.
Multise	t		An <i>r</i> -combination with repetition allowed, or multiset of size <i>r</i> , chosen from a
			set X of n elements is an unordered selection of elements taken from X with
			repetition allowed.
			If V (
			If $X = \{x_1, x_2, \dots, x_n\}$, we write an <i>r</i> -combination with repetition allowed as
			$\left[x_{i_1}, x_{i_2}, \cdots, x_{i_r}\right]$ where each x_{i_j} is in X and some of the x_{i_j} may equal each
- Cym a at	ad Value		other.
Expecte	ed Value		Suppose the possible outcomes of an experiment, or random process, are real numbers $a_1, a_2, a_3, \cdots, a_n$ which occur with probabilities $p_1, p_2, p_3, \cdots, p_n$. The
			expected value of the process is
			n
			$\sum_{k=1} a_k p_k = a_1 p_1 + a_2 p_2 + a_3 p_3 + \dots + a_n p_n$
Linearit	y of		The expected value of the sum of random variables is equal to the sum of their
Expecta	ation		individual expected values, regardless of whether they are independent. For
			random variables X and Y ,
			E[X+Y] = E[X] + E[Y]
			For random variables X_1, X_2, \cdots, X_n and constants c_1, c_2, \cdots, c_n ,
			$E\left \sum_{i=1}^{n} c_i \cdot X_i\right = \sum_{i=1}^{n} (c_i \cdot E[X_i])$
Condition	nnal		Li=1 J i=1 Let A and B be events in a sample space S. If $P(A) \neq 0$, then the conditional
Probab			probability of B given A, denoted $P(B A)$, is
1 10000	cy		D(4 - D)
			$P(B A) = \frac{P(A \cap B)}{P(A)}$
			$P(A \cap B) = P(B A) \cdot P(A)$
			$P(A) = \frac{P(A \cap B)}{P(B A)}$
Indepe	ndent Events		If A and B are events in a sample space S, then A and B are independent , if and
			only if, $P(A \cap B) = P(A) \cdot P(B)$

D : :		
Pairwise Independent and Mutually Independent		Let A , B and C be events in a sample space S . A , B and C are pairwise independent , if and only if, they satisfy conditions $1-3$ below. They are mutually independent if, and only if, they satisfy all four conditions below. 1. $P(A \cap B) = P(A) \cdot P(B)$ 2. $P(A \cap C) = P(A) \cdot P(C)$ 3. $P(B \cap C) = P(B) \cdot P(C)$ 4. $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$
Graphs		
Edge		• An edge is said to be incident on each of its endpoints, and • two edges incident on the same endpoint are called adjacent edges . Parallel edges Isolated vertex • $e_1 = \{v_1, v_4\};$ • $e_2 = e_3 = \{v_2, v_3\};$ • $e_4 = \{v_3, v_4\};$ • $e_5 = \{v_4, v_4\};$ • $e_6 = \{v_6, v_7\}.$
Adjacent vertices		two vertices that are connected by an edge are called adjacent vertices ; and
Loop		a vertex that is an endpoint of a loop is said to be adjacent to itself.
Undirected graph	$e = \{v, w\}$	An undirected graph G consists of 2 finite sets: a nonempty set V of vertices and a set E of edges , where each (undirected) edge is associated with a set consisting of either one or two vertices called its endpoints . • We write $e = \{v, w\}$ for an undirected edge e incident on vertices v and w . Undirected graph $e_1 \qquad e_3 \qquad \text{Directed graph}$ $e_2 = \{v_1, v_3\}$ $v_2 \qquad e_4 \qquad v_3$ $v_3 \qquad e_5 \qquad e_2 = (v_2, v_1)$
Directed graph	e = (v, w)	A directed graph , or digraph , <i>G</i> , consists of 2 finite sets: a nonempty set <i>V</i> of vertices and a set <i>E</i> of directed edges , where each (directed) edge is associated with an ordered pair of vertices called its endpoints . • We write <i>e</i> = (<i>v</i> , <i>w</i>) for a directed edge <i>e</i> from vertex <i>v</i> to vertex <i>w</i> .
Simple graph		A simple graph is an undirected graph that does <u>not</u> have any loops or parallel edges. That is, there is at most one edge between each pair of distinct vertices. Simple graph Non simple graph Non simple graph
Complete graph		A complete graph on n vertices , $n > 0$, denoted K_n , is a simple graph with n vertices and exactly one edge connecting each pair of distinct vertices. (tut 11 Q5) A K_n graph has $\binom{n}{2} = \frac{n(n-1)}{2}$ edges. $v_1 \longrightarrow v_2 \longrightarrow v_2 \longrightarrow v_3 \longrightarrow v_4 \longrightarrow v_4 \longrightarrow v_5 \longrightarrow $

Bipartite graph		A bipartite graph (or bigraph) is a simple graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V . Bipartite
Complete Bipartite graph		A complete bipartite graph is a bipartite graph on two disjoint sets U and V such that every vertex in U connects to every vertex in V . If $ U =m$ and $ V =n$, the complete bipartite graph is denoted as $K_{m,n}$. $K_{2,5}$
Subgraph of a graph		A graph <i>H</i> is said to be a subgraph of graph <i>G</i> iff every vertex in <i>H</i> is also a vertex in <i>H</i> , every edge in <i>H</i> is also an edge in <i>G</i> , and every edge in <i>H</i> has the same endpoints as it has in <i>G</i> .
Degree of a vertex		Let G be a graph and v a vertex of G .
		The degree of v , denoted deg(v) , equals the number of edges that are incident on v , with an edge that is a loop counted twice.
Total degree of a graph		The total degree of G is the sum of the degrees of all the vertices of G .
		e_1 e_2 e_3 e_1 e_2 e_3 e_2 e_3 e_3 e_3 e_3 e_3 e_3 e_3 e_3 e_4 e_3 e_4 e_4 e_4 e_6 e_7 e_8 e_8 e_8 e_8 e_8 e_8 e_8
Walk	V ₀ e ₁ V ₁ e ₂ V _{n-1} e _n V _n	Let G be a graph, and let v and w be vertices of G . A walk from v to w is a finite alternating sequence of adjacent vertices and edges of G . Thus a walk has the form $v_0 e_1 v_1 e_2 \dots v_{n-1} e_n v_n$, where the v 's represent vertices, the e 's represent edges, $v_0 = v$, $v_n = w$, and for all $i \in \{1, 2,, n\}$, v_{i-1} and v_i are the endpoints of e_i . • The number of edges, n , is the length of the walk.
Trail		 The trivial walk from v to v consists of the single vertex v. A trail from v to w is a walk from v to w that does not contain a repeated edge.
Path		A path from v to w is a trail that does not contain a repeated vertex.
Closed walk		A closed walk is a walk that starts and ends at the same vertex.
Circuit (aka cycle)		Let $n \in \mathbb{Z}_{\geq 3}$. An undirected graph $G(V, E)$ where $V = \{x_1, x_2, \dots, x_n\}$ and $E = \{\{x_1, x_2\}, \{x_2, x_3\}, \dots, \{x_{n-1}, x_n\}, \{x_n, x_1\}\}$ is called a circuit/cycle .
Simple circuit		A simple circuit (or simple cycle) is a circuit that does not have any other repeated vertex except the first and last.
Cyclic graph		An undirected graph is cyclic if it contains a loop or a cycle; otherwise, it is acyclic .
Connectedness		 Two vertices v and w of a graph G are connected iff there is a walk from v to w.

	The graph G is connected iff give	en <i>any</i> two vertices <i>v</i> and <i>w</i> in <i>G</i> ,
	there is a walk from v to w. Sym	bolically, G is connected iff \forall vertices
	$v, w \in V(G), \exists a \text{ walk from } v \text{ to } w$	
	v_2 v_3 v_5 v_6	Connected
	v_1 v_4 v_5 v_6 v_8 v_7	Not connected
	v_2 v_4 v_5	Not connected
Connected component	A graph H is a connected component of a 1. The graph H is a subgraph of G; 2. The graph H is connected; and 3. No connected subgraph of G has vertices or edges that are not in	s H as a subgraph and contains H.
	v_2 e_2 v_4	v_5 e_3 v_6 v_8 v_7
	G has 3 connected components H_1 , H_2 and and edge sets E_1 , E_2 and E_3 , where	
	$V_1 = \{v_1, v_2, v_3\}$	$E_1 = \{e_1, e_2\}$
	$V_1 = \{v_1, v_2, v_3\}$ $V_2 = \{v_4\}$	$E_1 = (e_1, e_2)$ $E_2 = \emptyset$
	- 1.	_
Euler circuit	$V_3 = \{v_5, v_6, v_7, v_8\}$ Let G be a graph. An Euler circuit for G is	$E_3 = \{e_3, e_4, e_5\}$ a circuit that contains every vertex
Edior official	and every edge of G.	·
	· · · · · · · · · · · · · · · · · · ·	Euler circuit iff G is connected
Euler graph	and every vertex of G has pos An Eulerian graph is a graph that contain	-
_3.01 9.0pi1	Does each of the following grap	hs have an Euler circuit?
	(1) (2)	(3) (4)
	(5) (6)	(7) (8)
Euler trail	Let G be a graph, and let v and w be two	distinct vertices of G.

	An Euler trail/path from v to w is a sequence of adjacent edges and vertices that starts at v, ends at w, passes through every vertex of G at least once, and traverses every edge of G exactly once. The following graphs do not have an Euler circuit. Do they have an Euler trail? Yes Yes Adding an edge between the two vertices with odd degree will give us an Euler circuit.
Hamiltonian Circuit	 Given a graph G, a Hamiltonian circuit for G is a simple circuit that includes every vertex of G. That is, every vertex appears exactly once, except for the first and the last, which are the same.
Hamiltonian Graph (aka Hamilton graph)	A Hamiltonian graph is a graph that contains a Hamiltonian circuit. (Prop 10.2.6.) If a graph <i>G</i> has a Hamiltonian circuit, then <i>G</i> has a subgraph <i>H</i> with the following properties: 1. <i>H</i> contains every vertex of <i>G</i> . 2. <i>H</i> is connected. 3. <i>H</i> has the same number of edges as vertices. 4. Every vertex of <i>H</i> has degree 2.
Matrix	An $m \times n$ (read "m by n") matrix A over a set S is a rectangular array of elements of S arranged into m rows and n columns. $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix} \longrightarrow \underbrace{ith}_{n} \text{ row of } \mathbf{A}$ $\underbrace{\mathbf{A}}_{ith}_{ith}_{n} \text{ column of } \mathbf{A}$
Adjacency matrix of a directed graph	Let G be a directed graph with ordered vertices v_1, v_2, v_n . The adjacency matrix of G is the $n \times n$ matrix $\mathbf{A} = (a_{ij})$ over the set of nonnegative integers such that $a_{ij} = \text{the number of arrows from } v_i \text{ to } v_j \text{ for all } i, j = 1, 2,, n$. $v_1 v_2 v_3 v_1 v_2 v_3$ $v_1 v_2 v_3 v_1 v_2 v_3$ $v_1 v_2 v_3 v_1 v_2 v_3$ $v_2 v_3 v_1 v_2 v_3$ $v_3 v_1 v_2 v_3$
Adjacency Matrix of an Undirected Graph	Let G be an undirected graph with ordered vertices v_1, v_2, v_n . The adjacency matrix of G is the $n \times n$ matrix $\mathbf{A} = (a_{ij})$ over the set of non-negative integers such that $a_{ij} = 1$ the number of edges connecting v_i and v_j for all $i, j = 1, 2,, n$.

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Symmetric matrix	An $n \times n$ square matrix $A = (a_{ij})$ is called symmetric if, and only if, $a_{ij} = a_{ji}$ for all $i, j = 1, 2,, n$.
Scalar product of matrix	Suppose that all entries in matrices A and B are real numbers. If the number of elements, n , in the i th row of A equals the number of elements in the j th column of B , then the scalar product or dot product of the i th row of A and the j th column of B is the real number obtained as follows: $\begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$
Matrix multiplication	Let $\mathbf{A} = (a_{ij})$ be an $m \times k$ matrix and $\mathbf{B} = (b_{ij})$ an $k \times n$ matrix with real entries.
Identity matrix	The (matrix) product of A times B , denoted AB , is that matrix (c_{ij}) defined as follows: $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ik} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & & \vdots \\ \vdots & \vdots &$
Identity matrix	For each positive integer n , the $n \times n$ identity matrix, denoted $I_n = (\delta_{ij})$ or just I (if the size of the matrix is obvious from context), is the $n \times n$ matrix in which all the entries in the main diagonal are 1's and all other entries are 0's. In other words, $\delta_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases} \text{ for all } i, j = 1, 2,, n$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$
n th Power of a Matrix	For any $n \times n$ matrix A , the powers of A are defined as follows: $\mathbf{A}^0 = \mathbf{I}$ where I is the $n \times n$ identity matrix
Isomorphic Graph	$\mathbf{A}^n = \mathbf{A} \ \mathbf{A}^{n-1} \text{for all integers } n \ge 1$ Let $G = (V_G, E_G)$ and $G' = (V_{G'}, E_{G'})$ be two graphs.
ізопіогріїю Отарії	G is isomorphic to G' , denoted $G \cong G'$, if and only if there exist bijections $g\colon V_G \to V_{G'}$ and $h\colon E_G \to E_{G'}$ that preserve the edge-endpoint functions of G and G' in the sense that for all $v\in V_G$ and $e\in E_G$, v is an endpoint of $e\Leftrightarrow g(v)$ is an endpoint of e .

		Alternative definition: G is isomorphic to G' if and only if there exists a permutation $\pi\colon V_G\to V_{G'}$ such that $\{u,v\}\in E_G\Leftrightarrow \{\pi(u),\pi(v)\}\in E_{G'}.$ Show that the following two graphs are isomorphic. $e_1 \\ v_2 \\ e_3 \\ v_4 \\ v_5 \\ v_6 \\ v_6 \\ v_7 \\ v_8 \\ v_8$
Planar graph		A planar graph is a graph that can be drawn on a (two-dimensional) plane without edges crossing
		without edges crossing.
Complement graph		If G is a simple graph, the complement of G , denoted \overline{G} , is obtained as follows: the vertex set of \overline{G} is identical to the vertex set of G .
(tut 11)		However, two distinct vertices v and w of \overline{G} are connected by an edge if and only if v and w are not connected by an edge in G . The figure below shows a graph G and its complement \overline{G} . $G: \overline{G}: \overline{G}:$
Self-complementary		A self-complementary graph is isomorphic with its complement.
graph (tut 11) Triangle (tut 11)		A simple circuit (cycle) of length three is called a triangle.
arigio (tat 11)	Trees (The	e graph is assumed to be undirected here)
Circuit-free	,	A graph is said to be circuit-free if and only if it has no circuits.
Tree		A graph is called a tree if and only if it is circuit-free and connected. • A trivial tree is a graph that consists of a single vertex. Graph Tree Forest
Forest		A graph is called a forest if and only if it is circuit-free and not connected. (tut 11 Q6) a forest with v vertices and k components has (v - k) edges.

Terminal vertex (leaf) and internal vertex	 Let T be a tree. If T has only one or two vertices, then each is called a terminal vertex (or leaf). If T has at least three vertices, then a vertex of degree 1 in T is called a terminal vertex (or leaf), and a vertex of degree greater than 1 in T is called an internal vertex.
Rooted tree	A rooted tree is a tree in which there is one vertex that is distinguished from
	the others and is called the root .
Level	The level of a vertex is the number of edges along the unique path between it and the root.
Height	The height of a rooted tree is the maximum level of any vertex of the tree.
Child	Given the root or any internal vertex v of a rooted tree, the children of v are all those vertices that are adjacent to v and are one level farther away from the root than v .
Parent	If w is a child of v, then v is called the parent of w.
Siblings	Two distinct vertices that are both children of the same parent are called siblings.
Ancestor, descendant	Given two distinct vertices v and w , if v lies on the unique path between w and the root, then v is an ancestor of w , and w is a descendant of v . Root Level 0 Level 1 v is a child of v . v and w are siblings. Vertices in the enclosed region are descendants of v , which is an ancestor of each.
Binary tree	A binary tree is a rooted tree in which every parent has at most two children. Each child is designated either a left child or a right child (but not both), and every parent has at most one left child and one right child.
Full binary tree	A full binary tree is a binary tree in which each parent has exactly two children.
Left/Right subtree	Given any parent v in a binary tree T , if v has a left child, then the left subtree of v is the binary tree whose root is the left child of v , whose vertices consist of the left child of v and all its descendants, and whose edges consist of all those edges of T that connect the vertices of the left subtree. The right subtree of v is defined analogously.
Breadth-First Search	In breadth-first search (by E.F. Moore), it starts at the root and visits its adjacent vertices, and then moves to the next level.

Wu Xiaoyun AY20/21 Sem 1

Weighted graph	A weighted graph is a graph for which each edge has an associated positive real number weight. The sum of the weights of all the edges is the total weight of the graph. • If G is a weighted graph and e is an edge of G, then w(e) denotes the weight of e and w(G) denotes the total weight of G.
Minimum spanning tree	A minimum spanning tree for a connected weighted graph is a spanning tree that has the least possible total weight compared to all other spanning trees for the graph.

	Theorem	
	Logic of Quantified Statement	
Tut 1 Q9	The product of any two odd integers is an odd integer.	
Tut 1 Q10	If a,b,c are integers such that $a^2+b^2=c^2$, then a,b cannot both be odd	
Tut 2 Q3	$\forall a,b,c \in \mathbb{Z}$, if $a-b$ is even and $a-c$ is even, then $b-c$ is even	
Assignment 1 Q7	Let a be a rational number and b an irrational number. $a \neq 0 \rightarrow ab$ is irrational.	
Assignment 1 Q8	$\forall n \in \mathbb{Z} \ n^2 + n$ is even.	
Midterms Q21	T25. Suppose a and b are real numbers, if $ab > 0$, then both a and b are positive or both are negative. Prove that $\forall x \in \mathbb{R} ((x^2 > x) \to (x < 0) \lor (x > 1))$.	
3.2.1	Negation of a Universal Statement: • $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \text{ such that } \sim P(x)$	
3.2.2	Negation of an Existential Statement:	
	• $\sim (\exists x \in D \text{ s.t. } P(x)) \equiv \forall x \in D, \sim P(x)$	
3.2.3	Negations of Universal Conditional Statements:	
	• $\sim (\forall x (P(x) \rightarrow Q(x))) \equiv \exists x \text{ s.t. } (P(x) \land \sim Q(x))$	
	Methods of Proof	
4.3.1	Every integer is a rational number.	
4.3.2	The sum of any two rational numbers is rational.	
Corollary	The double of a rational number is rational. (special case of Theorem 4.3.2)	
4.2.3		
4.4.1	For all positive integers a and b , if $a \mid b$, then $a \leq b$.	
4.4.2	The only divisors of 1 are 1 and -1	
4.4.3	For all integers a , b and c , if $a \mid b$ and $b \mid c$, then $a \mid c$.	
4.7.1	There is no greatest integer.	
4.7.4	For all integers n , if n^2 is even than n is even.	
Set Theory		
5.1.14	There exists a unique set with no element, i.e.	
	 (existence) there is a set with no element; and 	
	 (uniqueness) for all sets A, B, if both A and B have no element, then A = B. 	
5.2.4	Let A be a finite set. Then $\mid \mathcal{P} \left(A \right) \mid$ = $2^{\mid A \mid}$.	
5.3.5	(Set Identities). For all set A, B, C in a context where U is the universal set, the following hold	

	Identity Laws $A \cup \emptyset = A$ $A \cap U = A$
	Universal Bound Laws $A \cup U = U$ $A \cap \emptyset = \emptyset$
	Idempotent Laws $A \cup A = A$ $A \cap A = A$
	Double Complement Law $\overline{(\overline{A})} = A$
	Commutative Laws $A \cup B = B \cup A$ $A \cap B = B \cap A$
	Associative Laws $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
	Distributive Laws $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	De Morgan's Laws $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$
	Absorption Laws $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$
	Complement Laws $A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$
	Set Difference Law $A \setminus B = A \cap \overline{B}$
	$\overline{\varnothing} = U$ $\overline{U} = \varnothing$
	One of De Morgan's Laws. Work in the universal set U . For all sets A, B ,
	$\overline{A \cup B} = \overline{A} \cap \overline{B}.$
5.3.11	(1) Let A, B be disjoint finite sets. Then $ A \cup B = A + B $.
	(2) Let A1, A2, , An be pairwise disjoint finite sets. Then
	A1 U A2 U · · · U An = A1 + A2 + · · · + An
5.3.12	(Inclusion–Exclusion Principle). For all finite sets A, B
5.5.22	• A∪B = A + B - A ∩ B .
Tut 3 Q4	$\{2n+1: n \in Z\} = \{2n-1: n \in Z\}.$
Tut 3 Q9	Let A, B be sets. A⊆B ⇔ A∪B = B.
Assignment 1	Let A , B be sets. Show that if $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$, then either $A \subseteq B$ or $B \subseteq A$.
Q10	Let A, b be sets. Only that if $f(A \cup b) \subseteq f(A) \cup f(b)$, then either $A \subseteq b$ of $b \subseteq A$.
	Functions
Exercise 6.1.8.	Show that the range of absval is Q≥0.
Exercise	Let $x \in Q$.
6.1.11.	(1) Show that math_floor(x) is the unique $y \in Z$ such that $y \in X < y + 1$.
	(2) Show that math_ceil(x) is the unique $y \in Z$ such that $y - 1 < x$ 6
6.1.26	Associativity of function composition:
	• Let $f: A \rightarrow B$ and $g: B \rightarrow C$ and $h: C \rightarrow D$. Then $(h \circ g) \circ f = h \circ (g \circ f)$.
Proposition	Uniqueness of inverses
6.2.16	• If g, g' are inverses of f : A \rightarrow B, then g = g'.
6.2.17	A function f : A \rightarrow B is bijective if and only if it has an inverse.
Proposition	Any subset A of a countable set B is countable
6.3.4	
Proposition	Every infinite set B has a countable infinite subset.
6.3.5	
6.3.6	(Cantor 1877). Z>= 0 × Z>=0 is countable (cartesian product)
Corollary 6.3.7	Q is countable (set of rational numbers)
6.3.8	(Cantor 1891). Let A be a countable infinite set. Then ${\mathcal P}$ (A) is not countable.
Corollary 6.3.9	R is not countable
Tut 4 Q4 (a)	Let $f: B \to C$.
, (-)	Suppose f is injective. Show that $g \circ f$ is injective whenever g is an injective function with domain C.
Tut 4 Q4 (b)	Suppose there exists a function g with domain C such that g ∘ f is injective. Show that f is injective.
Tut 4 Q5 (a)	Let $f: B \to C$.
ι ατ τ ασ (α)	Suppose f is surjective. Show that f ∘ h is surjective whenever h is a surjective
	function with codomain B.
Tut 4 Q5 (b)	Suppose we have a function h with codomain B such that f ∘ h is surjective. Show that f is surjective.
	

Tut 4 Q6	The order of a bijection f: $A \rightarrow A$ is defined to be the least $n \in Z_+$ such that
	$\underbrace{f \circ f \circ \ldots \circ f}_{n\text{-many } f\text{'s}} = \mathrm{id}_A.$
T.+ 4.07	
Tut 4 Q7	Let A, B, C be sets. Show that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ for all bijections $f: A \to B$ and all bijections $g: B \to C$.
Tut 4 Q9	Let f: A \rightarrow B be a function. Let X \subseteq A and Y \subseteq B.
100403	• It is always the case that $X \subseteq f^{-1}(f(X))$.
	 It is always the case that f(f⁻¹(Y)) ⊆ Y.
Midterms Q16	$\forall X \subseteq \mathbb{Z} \ f^{-1}(f(X)) \subseteq X$
	For $f: \mathbb{Z} \to \mathbb{Z}$, the above condition is satisfied if f is injective.
Midterms Q17	$\forall \ Y \subseteq \mathbb{Z} \ \ Y \subseteq f(f^{-1}(Y))$
	For $f: \mathbb{Z} \to \mathbb{Z}$, the above condition is satisfied if f is surjective.
7.7.7	Induction (Strong MI, elternative formulation). To prove that Va C 7: 0 D(n) is true, where each D(n) is
7.2.7	(Strong MI, alternative formulation). To prove that $\forall n \in \mathbb{Z} > 0$ P(n) is true, where each P(n) is
	a proposition, it suffices to show that $\forall \ell \in \mathbb{Z}_{\geq 0} \ \left(\forall i \in \mathbb{Z}_{\geq 0} \ \left(i < \ell \Rightarrow P(i) \right) \Rightarrow P(\ell) \right)$ is true.
720	
7.2.9	(Well-Ordering Principle).
Proposition	Every nonempty subset of $Z \ge 0$ (or $Z \ge m$ for a fixed m) has a smallest element
Proposition 7.3.4	There is a unique sequence a0, a1, a2, satisfying, for each $n \in Z \ge 0$, $a_0 = 0$ and $a_1 = 1$ and $a_{n+2} = a_{n+1} + a_n$.
7.3.5	$Z \ge 0$ is the unique set with the following properties \rightarrow recursive definition of $Z \ge 0$
7.3.3	(1) $0 \in \mathbb{Z}_{\geq 0}$. (base clause)
	(2) If $x \in \mathbb{Z}_{\geqslant 0}$, then $x + 1 \in \mathbb{Z}_{\geqslant 0}$. (recursion clause)
	(3) Membership for $\mathbb{Z}_{\geqslant 0}$ can always be demonstrated by (finitely many) successive applications of the clauses above. (minimality clause)
7.3.10	Theorem 7.3.10 (Structural induction over $2\mathbb{Z}_{\geqslant 1}$). To prove that $\forall n \in 2\mathbb{Z}_{\geqslant 1}$ $P(n)$ is true, where each $P(n)$ is a proposition, it suffices to:
	(base step) show that $P(2)$ is true; and
	(induction step) show that $\forall x \in 2\mathbb{Z}_{\geqslant 1} \ (P(x) \Rightarrow P(x+2))$ is true.
7.3.15	(Structural induction over WFF(Σ)).
	To prove that $\forall x \in WFF(\Sigma) P(x)$ is true, where each $P(x)$ is a proposition, it suffices to:
	(base step) show that $P(p)$ is true for every $p \in \Sigma$;
	(induction step) show that
	$\forall x, y \in \mathrm{WFF}(\Sigma) \ \big(P(x) \land P(y) \Rightarrow P(\sim p) \land P((x \land y)) \land P((x \lor y)) \big).$
7.3.18	(Structural induction over WFF+(Σ)).
	To prove that $\forall x \in WFF+(\Sigma) P(x)$ is true, where each $P(x)$ is a proposition, it suffices to:
	(base step) show that $P(p)$ is true for every $p \in \Sigma$;
	(induction step) show that
	$\forall x, y \in \mathrm{WFF}^+(\Sigma) \ (P(x) \land P(y) \Rightarrow P((x \land y)) \land P((x \lor y))).$
Lemma 7.3.19	Let Σ be a nonempty set. If $x \in WFF+(\Sigma)$, then assigning false to all the elements of Σ makes x evaluate to false.
7.3.20	The set $\{\Lambda, V\}$ is not a complete set of propositional connectives. In other words, for every nonempty set Σ , $\Xi x \in WFF(\Sigma) \forall y \in WFF+(\Sigma) y \equiv /\Xi x$.
Tut 5 Q1	$1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6} n(n+1)(2n+1).$
Tut 5 Q2	Let $x \in \mathbb{R}_{\geq -1}$. Prove by induction that $1 + nx \leq (1 + x)^n$ for all $n \in \mathbb{Z}_{\geq 1}$.
Tut 5 Q3	Prove by induction that 3 divides $n^3 + 11n$ for all $n \in \mathbb{Z}_{\geqslant 1}$.
	•

Tut 5 Q5 (As a conusing only non-negative specific proposition and specific proposition and specific proposition and specific proposition are dq + recorded for all $i \in \mathbb{Z}$. Tut 6 Q9 Lemma 8.2.4 Lemma 8.2.4 Lemma 8.2.5 Lemma 8.2.6 Radian are specific proposition are specific proposition are dq + recorded for all $i \in \mathbb{Z}$. Tut 6 Q9 Let $n \in \mathbb{Z}$ and $n \in \mathbb{Z}$ are specific proposition are specific proposition are specific proposition. This means are specific proposition are specific proposition. The specific proposition are specific proposition are specific proposition. The specific proposition are specific proposition are specific proposition. The specific proposition are specif	$\{b-1\}$ such that $n=a_\ell b^\ell + a_{\ell-1} b^{\ell-1} + \cdots + a_0 b^0 \text{and} a_\ell \neq 0.$ Greatest Common Divisors $\{0,0,1,1,2,\ldots,n\}$ $\{0,0,1,2,\ldots,n\}$
Tut 5 Q5 (As a conusing only non-negative value of positive (Hint: paylor). Tut 5 Q6 Prove by non-negative value of positive (Hint: paylor). Tut 5 Q7 Show by Lemma 8.1.5. Let n, d ∈ Z Lemma 8.1.9 Let d, n ∈ Z Lemma 8.1.9 Let d, n ∈ Z Lemma 8.1.10 Proposition (transitive deta, b, center of the paylor). 8.1.16 (Division n = dq + record). Tut 6 Q1 Let a, b of positive (Hint: paylor). Tut 6 Q5 Let n ∈ Z Tut 6 Q6 An integent of positive (Hint: paylor). Tut 6 Q9 Let n ∈ Z If 9 (a0) This means the paylor of positive (Hint: paylor). This means the paylor of paylor of paylor of paylor of paylor. Let n ∈ Z Proposition (Frime Display). Let n ∈ Z Let n ∈ Z Proposition (Euclid). 8.3.13 Theorem	$\{b-1\}$ such that $n=a_\ell b^\ell+a_{\ell-1}b^{\ell-1}+\cdots+a_0b^0\text{and} a_\ell\neq 0.$
Tut 5 Q5 (As a conusing only non-negative value of positive (Hint: paylor). Tut 5 Q6 Prove by non-negative value of positive (Hint: paylor). Tut 5 Q7 Show by Lemma 8.1.5. Let n, d ∈ Z Lemma 8.1.9 Let d, n ∈ Z Lemma 8.1.9 Let d, n ∈ Z Lemma 8.1.10 Proposition (transitive deta, b, center of the paylor). 8.1.16 (Division n = dq + record). Tut 6 Q1 Let a, b of positive (Hint: paylor). Tut 6 Q5 Let n ∈ Z Tut 6 Q6 An integent of positive (Hint: paylor). Tut 6 Q9 Let n ∈ Z If 9 (a0) This means the paylor of positive (Hint: paylor). This means the paylor of paylor of paylor of paylor of paylor. Let n ∈ Z Proposition (Frime Display). Let n ∈ Z Let n ∈ Z Proposition (Euclid). 8.3.13 Theorem	$b-1$ } such that
Tut 5 Q5 (As a conusing only non-negative with the months of the month	
Tut 5 Q5 (As a conusing only non-negative with the months of prove by non-negative with the months of proposition should be shown as the months of proposition shown as the months of proposi	n 8.3.13. For any $n \in \mathbb{Z}^+$, there exist unique $\ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \ldots, a_\ell \in$
Tut 5 Q5 (As a conusing only non-negative $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition (transitive let $d, n \in \mathbb{Z}$) 8.1.10 Proposition (transitive let $d, n \in \mathbb{Z}$) Lemma 8.1.14 (Closure let $d, n \in \mathbb{Z}$) 8.1.16 (Division $d, n \in \mathbb{Z}$) 8.1.16 (Division $d, n \in \mathbb{Z}$) Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q5 Let $d, n \in \mathbb{Z}$ Tut 6 Q6 An integer of positive (Hint: particle) (Hint: parti	Base-b Representation
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Show b	There are infinitely many prime numbers.
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by	· · · · · · · · · · · · · · · · · · ·
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition (transitive states and states are state	a composite positive integer. Then n has a prime divisor p ≤ √n.
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Show	≥2. Then n has a prime divisor.
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Lemma 8.1.10 (transitive let $d, n \in \mathbb{Z}$ 8.1.10 (Closure let $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.17 (Let $d, n \in \mathbb{Z}$ Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q5 Let $d, n \in \mathbb{Z}$ Tut 6 Q6 An integration of positive (Hint: particle) and the particle of $d, n \in \mathbb{Z}$ Tut 6 Q9 Let $d, n \in \mathbb{Z}$ Tut 6 Q6 This means of $d, n \in \mathbb{Z}$ Tut 6 Q9 Let $d, n \in \mathbb{Z}$ Tut 6 Q9 This means of $d, n \in \mathbb{Z}$	visor Lemma (non-standard name)).
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition (transitive let $d, n \in \mathbb{Z}$) 8.1.10 Proposition (transitive let $d, n \in \mathbb{Z}$) 8.1.12 Lemma 8.1.14 (Closure let $d, n \in \mathbb{Z}$) 8.1.16 (Division $d, n \in \mathbb{Z}$) 8.1.16 (Division $d, n \in \mathbb{Z}$) Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q5 Let $d, n \in \mathbb{Z}$ Tut 6 Q6 An integration Prove that $d, n \in \mathbb{Z}$ Tut 6 Q9 Let $d, n \in \mathbb{Z}$ Tut 6 Q9 This means $d, n \in \mathbb{Z}$ Tut 6 Q9 This means $d, n \in \mathbb{Z}$	Prime Numbers er n is composite if and only if n has a divisor d such that 1 < d < n.
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition (transitive let $d, n \in \mathbb{Z}$) 8.1.10 Proposition (transitive let $d, n \in \mathbb{Z}$) 8.1.12 Lemma 8.1.14 (Closure let $d, n \in \mathbb{Z}$) 8.1.16 (Division $d, n \in \mathbb{Z}$) 8.1.16 (Division $d, n \in \mathbb{Z}$) Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q5 Let $d, n \in \mathbb{Z}$ Tut 6 Q6 An integration Prove that $d, n \in \mathbb{Z}$ Tut 6 Q9 Let $d, n \in \mathbb{Z}$ Tut 6 Q9 This means $d, n \in \mathbb{Z}$ Tut 6 Q9 This means $d, n \in \mathbb{Z}$ This means $d, n \in \mathbb{Z}$	
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$ Range 8.1.10 Proposition (transitive let $d, n \in \mathbb{Z}$ Lemma 8.1.14 (Closure let $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ Range Prove that $d, n \in \mathbb{Z}$ Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q5 Let $d, n \in \mathbb{Z}$ Tut 6 Q6 An integration $d, n \in \mathbb{Z}$ Tut 6 Q9 Let $d, n \in \mathbb{Z}$	
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$ Range 8.1.10 Proposition (transitive let $d, n \in \mathbb{Z}$ Lemma 8.1.14 (Closure let $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ Range Prove that $d, n \in \mathbb{Z}$ Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q5 Let $d, n \in \mathbb{Z}$ Tut 6 Q6 An integration $d, n \in \mathbb{Z}$ Tut 6 Q9 Let $d, n \in \mathbb{Z}$	$10^{i} = 9 \times 10^{i-1} + 9 \times 10^{i-2} + \dots + 9 \times 10^{0} + 1$
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Lemma 8.1.10 Proposition (transitive states and states are st	ans that a number 9 n ⇔ 9 (the sum of digits of n).
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Lemma 8.1.10 Proposition Let $d, n \in \mathbb{Z}$ Lemma 8.1.14 (Closure Let $d, n \in \mathbb{Z}$ Lemma 8.1.14 (Closure Let $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.22 Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q5 Tut 6 Q6 An integonal Prove the of position (Hint: pations)	$+a_1+\cdots+a_\ell$).
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$ R.1.10 Proposition (transitive let $d, n \in \mathbb{Z}$ Lemma 8.1.14 (Closure Let $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ R.1.22 Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q5 Let $d, n \in \mathbb{Z}$ Tut 6 Q6 An integent Prove the of positive (Hint: particular)	$\mathbb{Z}_{\geqslant 1}$ with decimal representation $(a_{\ell}a_{\ell-1}\dots a_0)_{10}$. Prove that $9\mid n$ if and only
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$ 8.1.10 Proposition (transitive Let $d, n \in \mathbb{Z}$ Lemma 8.1.14 (Closure Let $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.22 Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q5 Let $d, n \in \mathbb{Z}$ Tut 6 Q6 An integent Prove the of positive position of the proventile of the	in up the divisors strictly bigger than the divisors strictly strialler than
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$ 8.1.10 Proposition (transitive Let $d, n \in \mathbb{Z}$ Lemma 8.1.14 (Closure Let $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.16 (Division $d, n \in \mathbb{Z}$ 8.1.22 Tut 6 Q1 Let $d, n \in \mathbb{Z}$ Tut 6 Q5 Let $d, n \in \mathbb{Z}$ Tut 6 Q6 An integent Prove the	/e divisors. ir up the divisors strictly bigger than √n and the divisors strictly smaller than
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Lemma 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$ 8.1.10 Proposition (transitive sample s.1.12 Let $a, b, c \in \mathbb{Z}$ Lemma 8.1.14 (Closure Let $a, b, c \in \mathbb{Z}$ 8.1.16 (Division $n = dq + r \in \mathbb{Z}$ 8.1.22 Tut 6 Q1 Let $a, b \in \mathbb{Z}$ Tut 6 Q5 Let $n \in \mathbb{Z}$ Tut 6 Q5 An integ	at a positive integer n is a perfect square if and only if it has an odd number
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$ Proposition (transitive sample s.1.10) Proposition (Closure Let $d, d \in \mathbb{Z}$ Lemma 8.1.14 (Closure Let $d, d \in \mathbb{Z}$ R.1.16 (Division $d, d \in \mathbb{Z}$ R.1.16 (Division $d, d \in \mathbb{Z}$ R.1.22 Tut 6 Q1 Let $d, d \in \mathbb{Z}$ Tut 6 Q1 Let $d, d \in \mathbb{Z}$	er n is said to be a perfect square if $n = k^2$ for some $k \in \mathbb{Z}$.
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$ 8.1.10 Proposition (transitive Let $d, n \in \mathbb{Z}$ Lemma 8.1.14 (Closure Let $d, n \in \mathbb{Z}$ R.1.16 (Division $d, n \in \mathbb{Z}$ R.1.16 (Division $d, n \in \mathbb{Z}$ R.1.20 Let $d, n \in \mathbb{Z}$ R.1.21 Let $d, n \in \mathbb{Z}$ R.1.22 Let $d, n \in \mathbb{Z}$ R.1.22 Let $d, n \in \mathbb{Z}$	and m = n + 1. m and n have no common prime divisor.
Tut 5 Q5 (As a conusing only non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$ Range 8.1.10 Proposition (transitive sample sampl	\in z. Show that if a b and b a, then a = b or a = - b.
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$ Proposition (transitive R.1.10) Proposition (Closure Let $d, n \in \mathbb{Z}$ Lemma 8.1.14 (Closure Let $d, n \in \mathbb{Z}$ R.1.16 (Division $d, n \in \mathbb{Z}$	
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that Show by Sho	Then n is either even or odd, but not both.
Tut 5 Q5 (As a conusing only non-negative with the second state of the second state	Theorem). For all $n \in Z$ and $d \in Z +$, there exist unique $q, r \in Z$ such that $r \in Z$ and $0 \le r < d$.
Tut 5 Q5 (As a conusing only rove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that the state of the st	d , m , $n \in \mathbb{Z}$. If $d \mid m$ and $d \mid n$, then $d \mid am + bn$.
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that Show by Sho	Lemma (non-standard name)).
Tut 5 Q5 (As a conusing only non-negative with the second state of the second state	c \in Z. If a b and b c, then a c.
Tut 5 Q5 (As a conusing only non-negative $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d, n \in \mathbb{Z}$ Proposition Let $d, n \in \mathbb{Z}$	ity of divisibility).
Tut 5 Q5 (As a conusing only Prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that Show by Sho	
Tut 5 Q5 (As a conusing only non-negative $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8 Show by Lemma 8.1.5. Let $n, d \in \mathbb{Z}$ Example 8.1.6. Let $n \in \mathbb{Z}$ Lemma 8.1.9 Let $d \in \mathbb{Z}$	Z. If d \mid n and n \neq 0, then \mid d \mid \leq \mid n \mid .
Tut 5 Q5 (As a conusing only Prove by non-negative $\forall n \in \mathbb{Z}_{\geqslant 1}$) Tut 5 Q7 Show that Show by Lemma 8.1.5. Let n, d \in	Z. If d n, then -d n and d -n and -d -n.
Tut 5 Q5(As a conusing only using only prove by non-negative $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q7Show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q8Show by	with $d \neq 0$. Then $1 \mid n$ and $n \mid n$ because $1 \times n = n = n \times 1$.
Tut 5 Q5(As a conusing only using only prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q7Show that	Z with $d \neq 0$. Then $d \mid n$ if and only if $n/d \in Z$.
Tut 5 Q5(As a conusing only using only prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q7Show that	Divisibility
Tut 5 Q5(As a conusing only using only prove by non-negat $\forall n \in \mathbb{Z}_{\geqslant 1}$ Tut 5 Q7Show that	Number Theory
Tut 5 Q5 (As a conusing only 1 tut 5 Q6 Prove by non-negative $\forall n \in \mathbb{Z}_{\geqslant 1}$	induction that $F_{n+1}^2 - F_{n+1}F_n - F_n^2 = (-1)^n$ for every $n \in \mathbb{Z}_{\geq 0}$.
Tut 5 Q5 (As a conusing only Tut 5 Q6 Prove by non-negat	at $F_{n+4} = 3F_{n+2} - F_n$ for all $n \in \mathbb{Z}_{\geq 0}$.
Tut 5 Q5 (As a conusing only Tut 5 Q6 Prove by	$\exists \ell \in \mathbb{Z}_{\geqslant 1} \ \exists i_1, i_2, \dots, i_\ell \in \mathbb{Z}_{\geqslant 0} \ (i_1 < i_2 < \dots < i_\ell \land n = 2^{i_1} + 2^{i_2} + \dots + 2^{i_\ell}).$
Tut 5 Q5 (As a conusing only	ive integer powers of 2, i.e.,
Tut 5 Q5 (As a con	7 3-dollar and 5-dollar coins.) induction that every positive integer can be written as a sum of distinct
	asequence, any integer-valued transaction over 8 dollars can be carried out
(Note tha	$\forall n \in \mathbb{Z}_{\geqslant 8} \ \exists x, y \in \mathbb{Z}_{\geqslant 0} \ (n = 3x + 5y).$
	$t a^{b^c} = a^{(b^c)}$ by convention.)
Tut 5 Q4 Let a be a	an odd integer. Prove by induction that 2^{n+2} divides $a^{2^n} - 1$ for all $n \in \mathbb{Z}_{\geq 1}$.

Remark 8.4.4.	In view of Proposition 8.1.10, for all m, $n \in Z$, if $m \ne 0$ or $n \ne 0$, then gcd(m, n) exists and is positive.
Question 8.4.5.	gcd(0, 0) does not exist
Exercise 8.4.6.	Let m, $p \in Z +$. Show that if p is prime, then either $gcd(m, p) = 1$ or $p \mid m$
Exercise 8.4.7.	Let m, n ∈ Z. Show that the common divisors of m and n are exactly the common divisors of
	m and $ n $, and hence $gcd(m, n) = gcd(m , n)$.
Lemma 8.4.11.	If x, y, $r \in Z$ such that x mod y = r, then $gcd(x, y) = gcd(y, r)$.
Tut 7 Q2	Let $a, b, c \in \mathbb{Z}$. Suppose $a \mid c$ and $b \mid c$, and $gcd(a, b) = 1$. Prove that $ab \mid c$.
Tut 7 Q3	Let $a, b, s, t \in \mathbb{Z}$ such that $as + bt = 1$. Show that $gcd(a, b) = 1$.
Tut 7 Q4	Let $a, b, s, t \in \mathbb{Z}$ s.t. $as + bt = \gcd(a, b)$. Show that $\gcd(s, t) = 1$.
Tut 7 Q5	Let $a, b \in \mathbb{Z}$ with $a \neq 0$ or $b \neq 0$. Prove that
	· ·
	$\gcd\left(\frac{a}{\gcd(a,b)}, \frac{b}{\gcd(a,b)}\right) = 1$
Tut 7 Q6	Let $a, b \in \mathbb{Z}$ with $a \neq 0$ or $b \neq 0$. Prove that an integer n is an integer linear combination of
1417 Q0	a and b if and only if $gcd(a,b) \mid n$.
	Fundamental Theorem of Arithmetic
8.5.2.	(Bezout's Lemma).
3.3.2.	Let m, $n \in Z$ with $n \neq 0$. Then gcd(m, n) is an integer linear combination of m and n.
Remark 8.5.4.	Let m, $n \in Z$ +. If s, $t \in Z$ such that $gcd(m, n) = ms + nt$, then by Exercise 8.4.7,
Kemark o.s.4.	• $gcd(-m, n) = gcd(m, n) = ms + nt = (-m)(-s) + nt;$
	• $gcd(m, n) = gcd(m, n) = ms + nt = ms + (-n)(-t);$ and
	• $gcd(m, -n) = gcd(m, n) = ms + nt = (-n)(-s) + (-n)(-t)$.
8.5.5.	(Euclid's Lemma).
0.5.5.	Let m, n, $p \in Z +$. If p is prime and p mn, then p m or p n.
Assignment 2	Let $a \in \mathbb{Z}_{\geqslant 2}$. Suppose that for all $m, n \in \mathbb{Z}_+$, if $a mn$, then $a m$ or $a n$. Show that a is prime.
Q2	Let $u \in \mathbb{Z}_{\geq 2}$. Suppose that for all m , $n \in \mathbb{Z}_{+}$, if $u_1 m n$, then $u_1 m$ or $u_1 n$. Show that u is printed.
Corollary	Corollary 8.5.6. Let $n, m_0, m_1, \ldots, m_n, p \in \mathbb{Z}^+$. If p is prime and $p \mid m_0 m_1 \ldots m_n$, then
8.5.6.	$p \mid m_i \text{ for some } i \in \{0, 1, \dots, n\}.$
8.5.9	(Fundamental Theorem of Arithmetic, aka Prime Factorization Theorem).
G.G.G	Every integer n ≥ 2 has a unique prime factorization in which the prime factors are arranged
	in nondecreasing order.
	 Unique due to "nondecreasing" and the exclusion of 1
	σ
	Modular Arithmetic
Lemma 8.6.2.	(alternative definitions of congruence).
	The following are equivalent for all a, $b \in Z$ and all $n \in Z +$
	(i) a ≡ b (mod n).
	(ii) $a = nk + b$ for some $k \in Z$.
	(iii) n (a – b).
Lemma 8.6.5.	Let a, b, c ∈ Z and n ∈ Z +.
	(1) (Reflexivity) a ≡ a (mod n).
	(2) (Symmetry) If $a \equiv b$ (mod n), then $b \equiv a$ (mod n).
	(3) (Transitivity) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.
Proposition	Let a, b, c, $d \in Z$ and $n \in Z + such that a \equiv b \pmod{n} and c \equiv d \pmod{n}.$
8.6.6.	Then $a + c \equiv b + d \pmod{n}$.
Proposition	Let a, b \in Z and n \in Z +.
8.6.10.	(1) −a is an additive inverse of a modulo n.
	(2) b is an additive inverse of a modulo n if and only if $b \equiv -a \pmod{n}$.
Corollary	Let n ∈ Z +.
8.6.11.	If a, b, $c \in Z$ such that $b + a \equiv c + a \pmod{n}$, then $b \equiv c \pmod{n}$.
Corollary	Let a, b, $x \in Z$ and $n \in Z +$.
8.6.12.	Then $x + a \equiv b \pmod{n}$ if and only if $x \equiv b - a \pmod{n}$.

Proposition	Let a, b, c, $d \in Z$ and $n \in Z + \text{such that } a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.		
8.6.13.	Then ac ≡ bd (mod n).		
Proposition 8.6.16.	 Let a ∈ Z and n ∈ Z +. (1) Let b, b' be multiplicative inverses of a modulo n. Then b ≡ b' (mod n). (2) Let b be a multiplicative inverse of a modulo n and b' ∈ Z such that b ≡ b' (mod n). Then b' is also a multiplicative inverse of a modulo n. 		
8.6.19.	Let $a \in Z$ and $n \in Z +$. Then a has a multiplicative inverse modulo n if and only if a and n are coprime		
Corollary 8.6.22.	Let $n \in Z +$. If a, c, $d \in Z$ such that $ca \equiv da \pmod{n}$ and $gcd(a, n) = 1$, then $c \equiv d \pmod{n}$.		
Corollary 8.6.23	Let $n \in Z +$. Suppose a, b, $c \in Z$, where b is a multiplicative inverse of a modulo n. Then $ax \equiv c \pmod{n} \Leftrightarrow x \equiv bc \pmod{n}$.		
	Relations		
Proposition 9.2.13.	Let R be an equivalence relation on a set A. The following are equivalent for all x, y \in A. (i) x R y. (ii) [x] = [y]. (iii) [x] \cap [y] \circ 6= \circ .		
9.3.4.	Let R be an equivalence relation on a set A. Then A/R is a partition of A.		
9.3.5.	Let C be a partition of a set A. Then there is an equivalence relation R on A such that $A/R = C$.		
Example 9.5.3.	 (1) Q+ under the non-strict less-than relation ≤ has neither a minimal element nor a maximal element. (2) Z + under the non-strict less-than relation ≤ has a smallest element but no maximal element. 		
Lemma 9.5.5.	Consider a partial order ≤ on a set A. (1) A smallest element is minimal. (2) There is at most one smallest element.		
Exercise 9.5.6.	Consider a partial order ≤ on a set A. (1) A largest element is maximal. (2) There is at most one largest element.		
Proposition 9.5.7.	With respect to any partial order \leq on a nonempty finite set A, one can find a minimal element.		
Exercise 9.5.8.	With respect to any partial order \leq on a nonempty finite set A, one can find a maximal element.		
9.5.9.	Let A be a set and \leq be a partial order on A. Then there exists a total order \leq * on A such that for all x, y \in A, x \leq y \Rightarrow x \leq * y.		
Tut 8 Q2	Let R be a relation on set A. Show that R is symmetric $\Leftrightarrow R = R^{-1}$.		
Note to self	A relation can be both symmetric and antisymmetric and it can be neither (but in most cases, it is either one).		
	Have a vertex for every element of the set. Draw an edge with an arrow from a vertex a to a vertex b iff a is related to b (i.e. aRb, or equivalently $(a,b) \in R$).		
	If an element is related to itself, draw a <i>loop</i> , and if a is related to b and b is related to a, instead of drawing a parallel edge, reuse the previous edge and just make the arrow double sided (\leftrightarrow)		
	For example, for the set $\{1,2,3\}\{1,2,3\}$ the relation R = $\{(1,1),(1,2),(2,3),(3,2)\}$ has the following graph:		

	set theoretical	graph theoretical
Symmetric	If aRb then bRa	All arrows (not loops) are double sided
Anti-Symmetric	If aRb and bRa then $a=b$	All arrows (not loops) are single sided

You see then that if there are *any* edges (not loops) they cannot simultaneously be double-sided and single-sided, but loops don't matter for either definition. Any relation on a set A that is both anti-symmetric and symmetric then has its graph consisting of only loops (i.e. is of the form $R = \{(a, a) \mid a \in S \subseteq A\}$ for some $S \subseteq A$.

Any relation whose graph contains *both* types of arrows (single-sided *and* doublesided) will be neither symmetric nor antisymmetric.

Partial orders

R is symmetric: $\forall x, y \in A \ (xRy \Rightarrow yRx)$.

Definition 9.4.1

Let A be a set and R be a relation on A.

R is a partial order if R is reflexive, antisymmetric and transitive.

Tut 8 Q5

Let A, B be nonempty sets and $f: A \to B$ be a surjection. Show that $\mathcal C$ is a partition on A where

$$C = \{ \{ x \in A : f(x) = y \} : y \in B \}$$

Observations:

- (1) The components of $\mathcal C$ are pairwise disjoint.
- (2) Union of all the components of \mathcal{C} is A.

Assignment Q5

Let \mathcal{C} be a partition of a set A. Show that there exist a set B and a surjection $f: A \to B$ such that

$$C = \{ \{ x \in A : f(x) = y \} : y \in B \}$$

Tut 8 Q7

Let \leq be a partial order on a set P, and a, $b \in P$

- a, b are **comparable** if $a \le b$ or $b \le a$.
- a, b are **compatible** if $\exists c \in P$ such that $a \leq c$ and $b \leq c$.
- in all partially ordered sets, any two comparable elements are compatible.
- But it is not true that any two compatible elements are comparable.

Counting and Probability

9.1.1.

(The Number of Elements in a List)

If m and n are integers and $m \le n$, then there are n - m + 1 integers from m to n inclusive.

9.2.1.

(The Multiplication/Product Rule)

	If an operation consists of k steps and		
	• the first step can be performed in n_1 ways,		
	• the second step can be performed in n_2 ways		
	(regardless of how the first step was performed),		
	• the k^{th} step can be performed in n_k ways		
	(regardless of how the preceding steps were performed),		
	Then the entire operation can be performed in		
	$n_1 \times n_2 \times n_3 \times \times n_k$ ways.		
9.2.2.	(Permutations)		
	The number of permutations of a set with $n \ (n \ge 1)$ elements is $n!$		
9.2.3.	(r-permutations from a set of n elements)		
	If n and r are integers and $1 \le r \le n$, then the number of r -permutations of a set of n		
	elements is given by the formula		
	$P(n,r) = n(n-1)(n-2) (n-r+1) = \frac{n!}{n!}$		
	$P(n,r) = n(n-1)(n-2)(n-r+1) = \frac{n!}{(n-r)!}$		
9.3.1.	(The Addition/Sum Rule)		
	Suppose a finite set A equals the union of k distinct mutually disjoint subsets $A_1, A_2,, A_k$.		
	Then $ A = A_1 + A_2 + + A_k $.		
9.3.2.	(The Difference Rule)		
	If A is a finite set and $B \subseteq A$, then $ A \setminus B = A - B $.		
9.3.3.	If A, B, and C are any finite sets, then		
	$ A \cup B = A + B - A \cap B $ and		
	$ A \cup B \cup C = A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C $		
Pigeonhole	A function from one finite set to a smaller finite set cannot be one-to-one: There must be at		
Principle	least 2 elements in the domain that have the same image in the co-domain.		
(PHP)			
Generalized	 For any function f from a finite set X with n elements to a finite set Y with m 		
PHP	elements and for any positive integer k, if $k < n/m$, then there is some $y \in Y$ such		
	that y is the image of at least $k + 1$ distinct elements of X.		
	 (Contrapositive) For any function f from a finite set X with n elements to a finite set 		
	Y with m elements and for any positive integer k, if for each $y \in Y$, $f^{-1}(\{y\})$ has at		
	most k elements, then X has at most km elements; in other words, $n \le km$.		
9.5.1.	The number of subsets of size r (or r -combinations) that can be chosen from a set of n		
3.3.2.	elements, $\binom{n}{r}$, is given by the formula		
	$\binom{n}{r} = \frac{P(n, r)}{r!} = \frac{n!}{r!(n-r)!}$		
	where n and r are non-negative integers with $r \le n$.		
9.5.2.	(Permutations with sets of indistinguishable objects)		
9.5.2.	Suppose a collection consists of <i>n</i> objects of which		
	 n₁ are of type 1 and are indistinguishable from each other n₁ are of type 2 and are indistinguishable from each other 		
	 n₂ are of type 2 and are indistinguishable from each other 		
	• n_k are of type k and are indistinguishable from each other		
	• and suppose that $n_1 + n_2 + + n_k = n$.		
	Then the number of distinguishable permutations of the n objects is $(n)(n-n)(n-n-n) = (n-n-n-n-n-n-n-n-n-n-n-n-n-n-n-n-n-n-n-$		
	$\binom{n}{n_1}\binom{n-n_1}{n_2}\binom{n-n_1-n_2}{n_3}\cdots\binom{n-n_1-n_2-\cdots-n_{k-1}}{n_k} = \frac{n!}{n_1!n_2!n_3!\cdots n_k!}$		
	$n_1 / (n_2 / (n_3 / n_1! n_2! n_3! \cdots n_k!)$		
0.04			
9.6.1.	(Number of <i>r</i> -combinations with Repetition Allowed)		
	The number of r -combination with repetition allowed (multisets of size r) that can be selected from a set of n elements is:		

	$\binom{r+n-1}{r}$
	\ 1 /
	This equals the number of ways r objects can be selected from n categories of objects with repetitions allowed.
9.7.1.	(Pascal's Formula)
	Let n and r be positive integers, $r \le n$. Then
	$\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$
9.7.2.	(Binomial Theorem)
	Given any real numbers a and b and any non-negative integer n,
	$\sum_{n=0}^{\infty} \binom{n}{n}$
	$(a+b)^n = \sum_{k=0}^{\infty} {n \choose k} a^{n-k} b^k$
	$\kappa = 0$
	$= a^{n} + {n \choose 1} a^{n-1} b^{1} + {n \choose 2} a^{n-2} b^{2} + \dots + {n \choose n-1} a^{1} b^{n-1} + b^{n}$
6.3.1 (Epp)	(No. of elements in a Power Set)
5.2.4. (Lawrence)	If a set X has n ($n \ge 0$) elements, then $\wp(X)$ has 2^n elements.
9.9.1.	(Bayes' Theorem)
5.5.2.	Suppose that a sample space S is a union of mutually disjoint events B_1 , B_2 , B_3 ,, B_n .
	Suppose A is an event in S, and suppose A and all the B_i have non-zero probabilities.
	If k is an integer with $1 \le k \le n$, then
	$P(B_k A) = \frac{P(A B_k) \cdot P(B_k)}{P(A B_1) \cdot P(B_1) + P(A B_2) \cdot P(B_2) + \dots + P(A B_n) \cdot P(B_n)}$
-	
Tut 9 Q6	How many possible functions $f: A \to B$ are there if $ A = n$ and $ B = k$?
	 Each of the n elements in A must be mapped to one of the k elements in B. Therefore, there are kⁿ possible functions f.
Tut 10 Q3	${m+n \choose r} = {m \choose r} {n \choose r} + {m \choose r} {n \choose r-1} + \dots + {m \choose r} {n \choose r} $ where $m, n \in \mathbb{Z}^+, r \le m$ and $r \le n$.
10.0 20 40	Then, for all integers $n \ge 0$,
	$\binom{2n}{n} = \binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2$
	$\binom{n}{n} = \binom{0}{0} + \binom{1}{1} + \dots + \binom{n}{n}$
	Graphs
10.1.1.	(The Handshake Theorem)
	If the vertices of G are $v_1, v_2,, v_n$, where $n \ge 0$, then the total degree of G
	$= deg(v_1) + deg(v_2) + + deg(v_n)$
0 11	$= 2 \times \text{(the number of edges of } G).$
Corollary 10.1.2.	The total degree of a graph is even.
Proposition	In any graph, there are an even number of vertices of odd degree.
10.1.3.	, 5 , , , , , , , , , , , , , , , , , ,
Lemma 10.2.1.	Let G be a graph.
	a. If G is connected, then any two distinct vertices of G can be connected by a path.
	b. If vertices <i>v</i> and <i>w</i> are part of a circuit in <i>G</i> and one edge is removed from the circuit, then there still exists a trail from <i>v</i> to <i>w</i> in <i>G</i> .
	c. If G is connected and G contains a circuit, then an edge of the circuit can be
	removed without disconnecting G.
10.2.2.	If a graph has an Euler circuit, then every vertex of the graph has positive even degree.
	 (Contrapositive) If some vertex of a graph has odd degree, then the graph doesn't
	have an Euler circuit.
10.2.3.	If a graph G is <u>connected</u> and the degree of every vertex of G is a positive <u>even integer</u> , then
10.2.4.	G has an Euler circuit.
LU.Z.4.	(combining 10.2.2. and 10.2.3.)

	A graph G has an Euler circuit iff G is connected and every vertex of G has positive even degree.		
Corollary	Let G be a graph, and let v and w be two distinct vertices of G.		
10.2.5	There is an Euler trail from v to w if and only if G is connected, v and w have odd degree, and		
	all other vertices of G have positive even degree.		
Proposition	If a graph G has a Hamiltonian circuit, then G has a subgraph H with the following		
10.2.6.	properties:		
	1. H contains every vertex of G.		
	2. H is connected.		
	3. H has the same number of edges as vertices.		
	4. Every vertex of <i>H</i> has degree 2.		
10.3.2.	If G is a graph with vertices $v_1, v_2,, v_m$ and A is the adjacency matrix of G, then for each		
	positive integer n and for all integers $i, j = 1, 2,, m$,		
	the <i>ij</i> -th entry of \mathbf{A}^n = the number of walks of length n from v_i to v_j .		
	Consider the adjacency matrix A of the graph G. $A = \begin{bmatrix} v_1 & v_2 & v_3 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$.		
	Compute A^2 : $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 6 & 2 \\ 2 & 2 & 4 \end{bmatrix}.$		
	Note that the entry in row 2 and column 2 is 6, which equals the number of walks of length 2 from v_2 to v_2 .		
	To compute a_{22} , you multiply row 2 of A with column 2 of A to obtain a sum of three terms:		
	Г1]		
	$\begin{bmatrix} 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = 1 \cdot 1 + 1 \cdot 1 + 2 \cdot 2.$		
10.4.1.	(Graph Isomorphism is an Equivalence Relation)		
	Let S be a set of graphs and let \cong be the relation of graph isomorphism on S. Then \cong is an		
	equivalence relation on S.		
Kuratowski's	A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of		
Theorem	the complete graph K_5 or the complete bipartite graph $K_{3,3}$.		
Euler's	For a connected planar simple graph $G = (V, E)$ with $e = E $ and $v = V $, if we let f be the		
Formula	number of faces, then $f = e - v + 2$.		
	$\begin{pmatrix} a_0 \end{pmatrix}$		
	e = 8		
	$\begin{pmatrix} a_1 \end{pmatrix} \qquad $		
	F3		
	(a_4) (a_5)		
Tut 11 Q2	Change that are an aircraft growth with at least 2 are the start and the start are the start and the start are the		
Tut 11 Q2	Show that every simple graph with at least 2 vertices has two vertices of the same degree. Prove that for any simple graph G with 6 vertices, G or its complementary graph G contains		
TUL II Q4	a triangle.		
	Trees		
Lemma 10.5.1	Any non-trivial tree has at least one vertex of degree 1.		
10.5.2.	Any tree with n vertices $(n > 0)$ has $n - 1$ edges.		
Exercise	Using Theorem 10.5.2, prove that a non-trivial tree has at least 2 vertices of degree 1.		
10.5.3.	If G is any connected graph, C is any circuit in G, and one of the edges of C is removed from G, then the graph that remains is still connected.		
	o, then the graph that remains is still conflicted.		

	$v_2 = e_2 = v_3$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10.5.4.	 If G is a connected graph with n vertices and n - 1 edges, then G is a tree. Note that although it is true that every connected graph with n vertices and n - 1 edges is a tree, it is not true that every graph with n vertices and n - 1 edges is a tree. E.g. this following graph has 5 vertices and 4 edges but it is not a tree
10.6.1.	(Full Binary Tree Theorem) If T is a full binary tree with k internal vertices, then T has a total of $2k + 1$ vertices and has $k + 1$ terminal vertices (leaves).
10.6.2.	For non-negative integers h , if T is any binary tree with height h and t terminal vertices (leaves), then $t \le 2^h$ Equivalently, $\log_2 t \le h$
Proposition 10.7.1	 Every connected graph has a spanning tree. Any two spanning trees for a graph have the same number of edges.

Definition	Symbol / Meaning		
Even integer	n is even $\Leftrightarrow \exists$ an integer k such that $n = 2k$ (iff)		
Odd integer	n is odd $\Leftrightarrow \exists$ an integer k such that $n = 2k + 1$ (iff)		
Prime integer	An integer n is prime iff $n > 1$ and for all positive integers r and s , if $n = rs$,		
	then either r or s equals n .		
	$\forall r,s\in\mathbb{Z}^+$, if $n=rs$ then either $r=1$ and $s=n$ or $r=n$ and $s=1$.		
Composite integer	An integer n is composite iff $n > 1$ and $n = rs$ for some integers r and s with		
	1 < r < n and $1 < s < n $.		
	$\exists \ r,s \in \mathbb{Z}^+ \text{ s.t. } n = rs \text{ and } 1 < r < n \text{ and } 1 < s < n.$		
Rational No.	A real number r is rational if, and only if, it can be expressed as a quotient of two		
	integers with a nonzero denominator.		
	A real number that is not rational is irrational.		
	r is rational $\iff \exists$ integers a and b such that $r = \frac{a}{b}$ and $b \ne 0$.		
Divisibility	If n and d are integers and $d \neq 0$, then n is divisible by d iff n equals d times		
	some integer.		
	$d \mid n$: " d divides n ".		
	Symbolically, if $n, d \in \mathbb{Z}$ and $d \neq 0$:		
	$d \mid n \iff \exists k \in \mathbb{Z}$ such that $n = dk$.		

Common mistakes	Wrong e.g.	Explanation
All birds can fly. $\forall x$, (Bird(x) \rightarrow Fly(x))	$\forall x$, Fly(Bird(x))	Bird(x) is a predicate ; it evaluates to true or false. This is like writing Fly(true) or Fly(false), which makes no sense.
	$\forall x$, (Bird(x) \land Fly(x))	This is saying everything must be a bird and it flies.
There is a bird that can fly.	$\exists x \text{ s.t. } (\text{Bird}(x) \rightarrow \text{Fly}(x))$	If there are no birds at all \rightarrow vacuously true (not the case)
∃x s.t. (Bird(x) ∧ Fly(x)) Not all birds can fly. (negation of the 1 st one)	$\forall x$, (Bird(x) $\rightarrow {}^{\sim}$ Fly(x))	All birds cannot fly
$\exists x \text{ s.t. } (\text{Bird}(x) \land \text{``Fly}(x))$	$\exists x \text{ s.t. } (\text{Bird}(x) \rightarrow \text{Fly}(x))$	Becomes a vacuously true case if there are no birds