E1. Problem 4. Modulation of Fourier Series

Let $x(\cdot)$ and $y(\cdot)$ be continuous-time signals with fundamental period to and Fourier series representations $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{ij\frac{2\pi}{16}kt}$ and $y(t) = \sum_{k=-\infty}^{\infty} b_k e^{ij\frac{2\pi}{16}kt}$

a) Show that the Fourier series coefficients of *2(t)= xlt) ylt), tell, with zll)= \sum_{k=-00}^{00} c_k e^{j\frac{2\pi}{L_0}} ht

$$\frac{1}{C_{k}} = \frac{1}{T_{0}} \int_{2}^{T_{0}} (t) e^{-j\frac{2\pi}{T_{0}}kt} dt = \frac{1}{T_{0}} \int_{2}^{T_{0}} (a_{n}e^{j\frac{2\pi}{T_{0}}kt}) \int_{m=30}^{\infty} (a_{n}e^{j\frac{2\pi}{T_{0}}kt}) \int_{m=30}^{\infty} (a_{n}e^{j\frac{2\pi}{T_{0}}kt}) e^{-j\frac{2\pi}{T_{0}}kt} dt = \frac{1}{T_{0}} \int_{2}^{T_{0}} \sum_{n=30}^{\infty} (a_{n}e^{j\frac{2\pi}{T_{0}}kt}) e^{-j\frac{2\pi}{T_{0}}kt} dt = \frac{1}{T_{0}} \int_{n}^{T_{0}} \sum_{n=30}^{\infty} (a_{n}e^{j\frac{2\pi}{T_{0}}kt}) e^{j\frac{2\pi}{T_{0}}kt} dt = \frac{1}{T_{0}} \int_{n}^{T_{0}} \sum_{n=30}^{\infty} (a_{n}e^{j\frac{2\pi}{T_{0}}kt}) e^{-j\frac{2\pi}{T_{0}}kt} dt = \frac{1}{T_{0}} \int_{n}^{T_{0}} \sum_{n=30}^{\infty} (a_{n}e^{j\frac{2\pi}{T_{0}}kt}) e$$

b) Use this result to compute the Fourier series coefficients of z(t)=cos2(ht), tell