

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 2 по дисциплине «Электротехника и схемотехника»

Тема: «Три схемы включения транзистора»

Вариант 1

Выполнил: Антипов И.С., студент группы ИУ8-43

Проверил: Ковынёв Н.В., преподаватель каф. ИУ8

1. Цель работы

Изучить, как влияют различные способы включения биполярного транзистора и величина сопротивления нагрузки на свойства усилительного каскада.

2. Теоретическая часть

Схема с ОЭ:

$$\begin{split} h_{119} &= r_{6'} + r_{6'9} = \frac{\tau_k}{C_k} + \frac{1 + h_{219}}{\frac{Ik_o}{\varphi_t}} \\ h_{219} &= \sqrt{h_{219min} * h_{219max}} \\ R_6 &= \frac{R_{61} * R_{62}}{R_{61} + R_{62}} \\ R_{\text{BX}} &= \frac{h_{119} * R_6}{h_{119} + R_6} \\ R_{\text{BMX}} &= \frac{R_{\text{BMX}0} * R_4}{R_{\text{BMX}0} + R_4} \\ R_{\text{BMX}0} &= R_{\text{K9}} \left(1 + \frac{h_{219} * r_9}{r_9 + r_{6'}}\right) \end{split}$$

$$K_u = \frac{h_{219} * R_k}{h_{112}}$$

$$K_i = h_{219}$$

Схема с ОБ:

$$h_{216} = \frac{h_{219}}{h_{219} + 1}$$

$$h_{116} = \frac{h_{119}}{1 + h_{219}}$$

$$h_{226} = \frac{h_{229}}{1 - h_{129} + h_{219}}$$

$$K_i = \frac{R_9}{R_9 + h_{116}} * \frac{h_{216}}{1 + h_{226} + R_k}$$

$$K_u = \frac{h_{216} * R_k}{h_{116}}$$

Схема с ОК:

$$K_u = \frac{(1 + h21_3)R_3}{h_{119} + (1 + h21_3)R_3}$$

$$K_i = h_{21K} = 1 + h_{219}$$

$$R_{BX} = h_{119} + (1 + h21_3)R_3$$

3. Практическая часть

1 задание:

Построим схему, необходимую для выполнения задания. (Рис. 1)

Рисунок 1 – Схема усилительного каскада на биполярном транзисторе с ОЭ

Результаты измерений приведены в таблице 1.

На Рис. 2 представлены показания осциллографа и плоттера для усилительного каскада на биполярном транзисторе с ОЭ.

Рисунок 2.1 — показание осциллографа для усилительного каскада на биполярном транзисторе с ОЭ

Рисунок 2.2 – показание плоттера для усилительного каскада на биполярном транзисторе с ОЭ

2 задание:

Построим схему, необходимую для выполнения задания. (Рис. 3)

Рисунок 3 – Схема усилительного каскада на биполярном транзисторе с ОБ

Результаты измерений приведены в таблице 1.

На Рис. 4 представлены показания осциллографа и плоттера для усилительного каскада на биполярном транзисторе с ОБ

Рисунок 4.1 – показание осциллографа для усилительного каскада на биполярном транзисторе с ОБ

Рисунок 4.2 — показание плоттера для усилительного каскада на биполярном транзисторе с $O\overline{b}$

Задание 3: Построим схему, необходимую для выполнения задания. (Рис. 5)

Рисунок 5 — Схема усилительного каскада на биполярном транзисторе с ОК Результаты измерений приведены в таблице 1.

Пара- метр	Схема включения транзистора					
	09		ОБ		OK	
Rex	Теор.	Экспер.	Теор.	Экспер.	Теор.	Экспер.
	396,37	812,5	4.594	13.8	14813	19830
Ki	Теор.	Экспер.	Теор.	Экспер.	Теор.	Экспер.
	94,8	96,4	0.969	0.8	95.8	127.47
Ku	Теор.	Экспер.	Теор.	Экспер.	Теор.	Экспер.
	10,9	6.02	10.5	2.7	0.97	0.98
Rвых	Теор.	Экспер.	Теор.	Экспер.	Теор.	Экспер.
	50,9	51,1	49.96	51.1	122.42	144.4

Таблица 1. Теоретические и экспериментальные результаты для трех схем включения транзистора

На Рис. 6 представлены показания осциллографа и плоттера для усилительного каскада на биполярном транзисторе с ОК.

Рисунок 6.1 — показание осциллографа для усилительного каскада на биполярном транзисторе с OK.

Рисунок 6.2 – показание плоттера для усилительного каскада на биполярном транзисторе с OK.

4. Выводы

В данной лабораторной работе мною были получены навыки работы в среде Multisim. Для выполнения заданий необходимо было построить 3 схемы и настроить осциллограф и плоттер. После этого было проведено исследование влияния различных способов включения биполярного транзистора и величины сопротивления нагрузки на свойства усилительного каскада.