Student's Assessment Number.....

THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

FORM TWO NATIONAL ASSESSMENT

035 ENGINEERING SCIENCE

Time: 2:30 Hours Year: 2023

Instructions

- 1. This paper consists of sections A, B and C with a total of ten (10) questions.
- 2. Answer all questions.
- 3. Section A and C carry fifteen (15) marks each, section B carries seventy (70) marks.
- 4. Cellular phones and any unathorized materials are **not** allowed in the assessmenmt room.
- 5. Write your **Assessment Number** at the top right hand corner of every page.

FOR AS	SSESSOR'S I	USE ONLY
QUESTION NUMBER	SCORE	ASSESSOR'S INITIALS
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		
CHECKER'S INIT	TALS	

Student's Assessment Numb	ber
SECTION	A (15 MARKS)
Answer all ques	tions in this section
1. Choose the correct answer from the given	ven alternatives and write its letter in the box
provided.	
i) An electrician wanted to minimize	e diameter of a wire to a accuracy of 0.01cm.
which measuring instrument shou	ld be used?
A. Micrometer crew gauge	C. Tape measure
B. Vernier caliper	D. Engineers caliper
ii) How can you minimize the fricti	ion that leads to unnecessary heat, noise and
wear?	
A. By reducing the speed of rub	bing surface in contact
B. By increasing the areas of the	e rubbing surface in contact
C. By lubricanting the rubbing s	surface in contact with grease and oil
D. By replacing the rubbing sur	faces parts with parts of graphite materials
iii) A form two teacher demostrated	practically the upthrust acting on a body and
the weight of a liquid it displaces.	Which laws was demostrated by the teacher?
A. The law of buoyancy	
B. The law of floatation	
C. The law of sinking	
D. The law of submerged	
iv) Magesa released an apple of a	mass m (kg) to fall freely from a height of
h (m). What will be the velocity	of an apple just beffore hitting the ground?
A. mgh	C. 2gh
\mathbf{R}^{-2mg}	$m\varrho$
B. $\frac{2mg}{h}$	D. $\sqrt{\frac{3}{h}}$

v) A motor vehicle mechanic set a small troll in motion on a horizontal surface by a force (F) Newtons. He pulled it by ameans of a rope inclined at 30° to the horizontal. How would you represent the horizontal force due to force F?

A. $F \times Cos 30^0 N$

C. *F x Cos* 60⁰ *N*

B. $F \times Sin 30^{\circ} N$

D. $F \times Sin 60^{\circ} N$

vi) Form two students visited a school workshop to learn torque of forces. One of them was assigned to untighten a wheel nut. The student failed to untighten a nut until the teacher gave him a circular pipe. What was the circular pipe for?

A. To increase force

- B. To reduce the torque
- C. To reduce force
- D. To increase the torque
- vii) In a racing car competition, a speedo meter of one racing car reads the following values of velocity "v" in time "t" as indicated in the table below:

t(s)	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
v(m/s)	0	12	26	36	48	60	60	60	60	60	50	40	30	20	10	0
VI							. A						U U	U U	U U	

Suggest the velocity time graph for the motion of the car.

Student's Assessment Number	•••••
viii) A person left his car on a full sunlight in a parking lot	and wen
shopping. He came back and found out that the pressure of air in	nside a car
tire is increased. What caused a change of the tyre pressure?	
A. Size of air molecules	
B. Number of air molecules	
C. Speed of air molecules	
D. Mass of air molecules	
ix) A man uses a hydraulic press to lift a container. If the hydraul	ic press is
frictionless, what will be the mechanical advantage of the press?	
A. Greater than velocity ration	
B. Equal to velocity	
C. Small than velocity ration	
D. Twice than velocity ration	
x) A student was studying the properties of image formedin	a pinhole
camera. When he places a candle several centimeters from the l	nole of the
camera, a verry small image was produced on the screen ot the	ne camera
Suggest the adjustment that can be made on the camera or box	to produce
a magnified image on the screen.	
A. To move the candle away from the pin hole	
B. To move the box away from the candle	
C. To move the box closer to the handle	

D. To move the hole larger than the pin hole

Student's Assessment Number

2. Match the electrical parameters in list A with their corresponding components in list B by writting the letter correct response beside the number in the table provided.

LIST A	LIST B
i) It allows electric current to pass through human	A. An electric lamp
body and metals.	B. Conductors
ii) It prevents serious electrical shocks	C. Coulomb
iii) It prevents the quantity of electricity.	D. Earth rod
iv) It is a pontential difference between two	E. Electric current
points.	F. Fuse
v) It prevents over loading of electric circuit.	G. Ressistance

List A	(i)	(ii)	(iii)	(iv)	(v)
List B					

Student's Assessment Number	••••••
SECTION B (70 MARKS)

Answer all questions from this section

3.	A uniform beam 4m long, is simply supported at two points A and B. Points A is 0.5m
	from left-hands ends and the point B is 1.5m from the right_hand end. The beam
	carries load of 600N at the lefts end, 800N at its centre and 400N at the right end.
	Determine the magnitude of the supporr reactions at A and B.

4. In a sugar industry the copper tubes of the boiler are 4.2m long at a temperature of Page 6 of 14

Student's Assessment Number
20°C. Determine the length of the tube when:
(a) Surrounded only by feed water at 10° C.
(b) The boiler is operating and the mean temperature of the tubes rises to 320°C.
Assume the coefficient of linear of expansion of copper to be 17x10 ⁻⁶ K.

5. Study careful the Figure given and answer the questions that follow:

(a) When switch "S" is closed, will the current flowing through A_1 be less or

	Student's Assessment Number
	greater than the current flowing through A ₂ ?
(b)	When the switch "S" is opened, why is the current flowing through A2 is
	smaller than when the switch is closed?
(c)	Why when the switch "S" is open, the current flowing through ammeter A_1
(0)	and A_2 is the same?
c) Cal	lculate the equivalent ressistance between point X and Y is closed.

6. (a) Why is reccommended to use a spanner of longer stem to loosen a nut on a bolt?

	Student's Assessment Number
	(b) The lighting gear on a vehicle body is situated 3m from the pivot. If the body contains two loads of 15kN and 7.5 Kn whose centres of gravity are 0.8m and 2m required from the gear to raise the body.
• • • •	
• • • •	
7.	A simple machine raises a load of 120 kg through a distance of 1.2m. The effort applied in the machine is 150N and it moves through a distance of 12m. Determine: a) The mechanical advantage. b) Velocity ratio. c) The efficiency of the machine. 8. A students performed an experiment to measure the density of a solid with an irregular shape by means of measuring cylinder and recorded the results as follows: Mass of an irregular solid, m=178g. Initial volume of water in the measuring cylinder, V ₁ =80cm. Final volume of water in the measuring cylinder, V ₂ =80cm.
	i mai voidine of water in the measuring cylinder, v ₂ -ovem.

Page 9 of 14

(a) Draw a net sketch diagram to show the levels of water in the measuring

	Stud	lent's	Assessment Number
cyli	nder:		
		(i)	Before the solid is immersed.
		(ii)	After the solid is immersed.
(b) For	mulate	an e	quation to find the difference in volume V_3 in terms of V_1 and V_2 .
	•••••		
	•••••		
	•••••		
	•••••	•••••	
	•••••		
	•••••		

(c) Use the equation you have formed in (b) to find the volume of the irregular Page $10 \ \text{of} \ 14$

	Student's Assessment Number
solid.	
(d) Dete	rmine the density of the irregular solid.

Student's Assessment Number	
9. Two poles were used to support one point of the tent. The forces of the two pole	:S
with their angle of inclination to the point of action are 5N at 25° and 8N at 112	20
respectively. Determine the resultant force by resolving these forces into horizonta	al
and vertical components.	
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••

Student's Assessment Number..... SECTION C (15 MARKS)

Answer all questions from this section
10. The bus started for rest and in 30 seconds reached a speed of 20m/s. The speed
remained steady for 15 second and decrease steadily until the bus stopped in 5
second later.
(a) Draw a velocity time graph.
(b) Use the diagram in (a) to calculate;
(i) The distance covered from start to end of the journey.
(ii) The acceleration during the motion

Student's Assessment Number