Lecture on HJB equation and viscosity solutions

Laurent Pfeiffer (Inria and CentraleSupélec, University Paris-Saclay)

[Objectives]

- Goal: finding global solutions to optimal control problems (in feedback form), by solving a nonlinear PDE.
- *Issues:* characterization of the value function with the Hamilton-Jacobi-Bellman equation.

[Bibliography]

The following references are related:

- M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, 1997.
- F. Bonnans et P. Rouchon, Commande et optimisation de systèmes dynamiques, Editions de l'Ecole Polytechnique, 2005. (Partie 3, Chapitres 3 et 4).

1. INTRODUCTION

[Introduction]

- Our results so far were based on optimality conditions (Pontryagin's principle).
- Now: a different approach, based on **dynamic programming**.

In some sense, more specific to optimal control.

- The dynamic programming principle is ubiquitous in optimization. A very general concept allowing to "split" some problems into a family of simpler problems.
- The central tool: the value function V.
 - \cdot Defined as the value of the optimization problem, expressed as a function of the initial state.
 - · Characterized as the unique **viscosity** solution of a non-linear partial differential equation (PDE) called **HJB equation**.

[Introduction]

- Interest: a globally optimal solution to the problem can be derived from V.
- Limitation: curse of dimensionality.
- Warning: focus on a specific class of problems. All concepts can be extended, in particular to a stochastic framework (finance), and to other nonlinear PDEs.

[Problem formulation]

Data of the problem and assumptions:

- A parameter $\lambda > 0$.
- A non-empty and compact subset U of \mathbb{R}^m .
- A bounded and L_f -Lipschitz continuous mapping $f:(u,y) \in U \times \mathbb{R}^n \to \mathbb{R}^n$, i.e.

$$||f||_{\infty} := \sup_{(u,y)\in U\times\mathbb{R}^n} ||f(u,y)|| < \infty,$$

 $||f(u_2, y_2) - f(u_1, y_1)|| \le L_f ||(u_2, y_2) - (u_1, y_1)||,$ for all (u_1, y_1) and $(u_2, y_2) \in U \times \mathbb{R}^n$.

• A bounded and L_{ℓ} -Lipschitz continuous mapping $\ell \colon (u, y) \in U \times \mathbb{R}^n \to \mathbb{R}$.

[Problem formulation]

- Notation: for any $\tau \in [0, \infty]$, \mathcal{U}_{τ} is the set of measurable functions from $(0, \tau)$ to U.
- State equation: for $x \in \mathbb{R}^n$ and $u \in \mathcal{U}_{\infty}$, there is a unique solution y[u, x] to the ODE

$$\dot{y}(t) = f(u(t), y(t)), \quad y(0) = x,$$

by the Picard-Lindelöf theorem (Cauchy-Lipschitz).

• Cost function W, for $u \in \mathcal{U}_{\infty}$ and $x \in \mathbb{R}^n$:

$$W(u,x) = \int_0^\infty e^{-\lambda t} \ell(u(t), y[u, x](t)) dt.$$

• Optimal control problem and value function V:

$$V(x) = \inf_{u \in \mathcal{U}_{\infty}} W(u, x). \tag{P(x)}$$

[Grönwall's lemma]

Lemma 1. (Grönwall's lemma). Let $\alpha>0$ and let $\beta>0$. Let $\theta\colon [0,\infty)\to \mathbb{R}$ be a continuous function such that

$$\theta(t) \le \alpha + \beta \int_0^t \theta(s) \, ds, \quad \forall t \in [0, \infty).$$

Then, $\theta(t) \leq \alpha e^{\beta t}$, for all $t \in [0, \infty)$.

Corollary 2. Let $u \in \mathcal{U}_{\infty}$. For all x and \tilde{x} , for all $t \geq 0$, it holds:

$$||y[u,x](t) - y[u,\tilde{x}](t)|| \le e^{L_f t} ||x - \tilde{x}||.$$

Proof. Grönwall's lemma with $\theta = ||y[u, x] - y[\tilde{u}, x]||$, $\alpha = ||x - \tilde{x}||$, $\beta = L_f$.

2. DYNAMIC PROGRAMMING PRINCIPLE

[Dynamic programming principle]

Theorem 3. (Dynamic programming (DP) principle). Let $\tau > 0$. Then for all $x \in \mathbb{R}^n$, abbreviating y = y[u, x],

$$V(x) = \inf_{u \in \mathcal{U}_{\tau}} \left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) dt + e^{-\lambda \tau} V(y(\tau)) \right).$$
(DPP)

- V(x) is the value function of an optimal control problem on the interval $(0, \tau)$.
- The original integral has been truncated:

$$\int_{\tau}^{\infty} e^{-\lambda t} \ell\big(u(t), y(t)\big) dt \qquad \rightsquigarrow \qquad e^{-\lambda \tau} V(y(\tau)).$$

The term $e^{-\lambda \tau}V(y(\tau))$ is the "optimal cost from τ to ∞ ".

[Flow property]

Lemma 4. (Flow property). Let $x \in \mathbb{R}^n$ and let $u \in$ \mathcal{U}_{∞} . Define:

- $u_1 = u_{|(0,\tau)} \in \mathcal{U}_{\tau}$
- $u_2 = u_{|(\tau,\infty)} \in L^{\infty}(\tau,\infty;U)$ $\tilde{u}_2 \in \mathcal{U}_{\infty}, \, \tilde{u}_2(t) = u_2(t+\tau).$

It holds:

$$y[u,x](t) = y \big[\tilde{u}_2, y[u_1,x](\tau) \big] (t-\tau),$$

for any $t > \tau$.

Remark. After time τ , one can forget u_1 and only remember $y[x, u_1](\tau)$.

[Proof]

Proof of the DP-principle. Let us denote

$$\tilde{V}(x) = \inf_{u \in \mathcal{U}_{\tau}} \left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) dt + e^{-\lambda \tau} V(y(\tau)) \right).$$

Step 1: $V \geq \tilde{V}$. Let $u, u_1, u_2, \text{ and } \tilde{u}_2 \text{ be as in Lemma}$

$$\begin{split} W(u,x) &= \int_0^\infty e^{-\lambda t} \ell \big(u(t), y[u,x](t) \big) \, \mathrm{d}t \\ &= \int_0^\tau e^{-\lambda t} \ell \big(u(t), y[u,x](t) \big) \, \mathrm{d}t \\ &+ e^{-\lambda \tau} \int_\tau^\infty e^{-\lambda (t-\tau)} \ell \big(u(t), y[u,x](t) \big) \, \mathrm{d}t \\ &= \int_0^\tau e^{-\lambda t} \ell \big(u(t), y[u,x](t) \big) \, \mathrm{d}t \\ &+ e^{-\lambda \tau} \int_0^\infty e^{-\lambda s} \ell \big(u(s+\tau), y[u,x](s+\tau) \big) \, \mathrm{d}s. \end{split}$$

[Proof]

We further have, for the last integral:

$$\int_0^\infty e^{-\lambda s} \ell(u(s+\tau), y[u, x](s+\tau)) ds$$

$$= \int_0^\infty e^{-\lambda s} \ell(\tilde{u}_2(s), y[\tilde{u}_2, y[u_1, x](\tau)](s)) ds$$

$$= W(\tilde{u}_2, y[u_1, x](\tau)) \ge V(y[u_1, x](\tau)).$$

Injecting in the above equality:

$$W(u,x) \ge \int_0^\tau e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) dt$$
$$+ e^{-\lambda \tau} V(y[u_1, x](\tau))$$
$$\ge \tilde{V}(x).$$

Minimizing with respect to u yields $V \geq \tilde{V}$.

Step 2: $\tilde{V} \leq V$. Let $\varepsilon > 0$. Let $u_1 \in \mathcal{U}_{\tau}$ be such that

$$\int_0^\tau e^{-\lambda t} \ell(u_1(t), y[u_1](t)) dt + e^{-\lambda \tau} V(y[u_1, x](\tau))$$

$$\leq \tilde{V}(x) + \varepsilon/2.$$

Let $\tilde{u}_2 \in \mathcal{U}_{\infty}$ be such that

$$W(\tilde{u}_2, y[u_1, x](\tau)) \le V(y[u_1, x](\tau)) + \varepsilon/2.$$

Let u be defined by

$$u(t) = \begin{cases} u_1(t) & \text{for a.e. } t \in (0, \tau), \\ \tilde{u}_2(t - \tau) & \text{for a.e. } t \in (\tau, \infty). \end{cases}$$

[Proof]

The same calculation as above yields:

$$W(u,x) = \int_0^{\tau} e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) dt + e^{-\lambda \tau} \underbrace{\int_0^{\infty} e^{-\lambda t} \ell(\tilde{u}_2(t), y[\tilde{u}_2(t), y[u_1, x](\tau)](t)) dt}_{=W(\tilde{u}_2, y[u_1, x](\tau)))}$$

Therefore,

$$W(u,x) \leq \int_0^{\tau} e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) dt + e^{-\lambda \tau} (V(y[u_1, x](\tau)) + \varepsilon/2)$$

$$\leq \tilde{V}(x) + \varepsilon.$$

It follows that

$$V(x) \le \tilde{V}(x) + \varepsilon, \quad \forall \varepsilon > 0.$$

[Decoupling]

Corollary 5. • Let $u \in \mathcal{U}_{\infty}$ be a solution to P(x). Let $\tau > 0$. Let u_1 and \tilde{u}_2 be defined as in Lemma

· u_1 is optimal in the DP principle

· \tilde{u}_2 is **optimal** for $P(y[u_1, x](\tau))$.

Conversely: let u_1 be a minimizer of (DPP). Let \tilde{u}_2 be a solution to $P(y[u_1,x])(\tau)$. Let $u\in\mathcal{U}_{\infty}$ be defined by

$$u(t) = \begin{cases} u_1(t) & \text{for a.e. } t \in (0,\tau) \\ \tilde{u}_2(t-\tau) & \text{for a.e. } t \in (\tau,\infty). \end{cases}$$

What can we do with the value function? If V is known, then the DP-principle allows to **decouple** the problem in time.

3. A FIRST CHARACTERIZATION OF THE VALUE **FUNCTION**

[Regularity of V]

Lemma 6. The value function V is bounded. It is also uniformly continuous, that is, for all $\varepsilon > 0$, there exists $\alpha > 0$ such that for all x and $\tilde{x} \in \mathbb{R}^n$,

$$\|\tilde{x} - x\| \le \alpha \Longrightarrow |V(\tilde{x}) - V(x)| \le \varepsilon.$$

Proof. Step 1: proof of boundedness. Let $x \in \mathbb{R}^n$ and $u \in \mathcal{U}_{\infty}$. We have

$$|W(x,u)| \le \int_0^\infty e^{-\lambda t} \|\ell\|_\infty \, \mathrm{d}t \le \frac{1}{\lambda} \|\ell\|_\infty.$$

Thus $|V(x)| \leq \frac{1}{\lambda} ||\ell||_{\infty}$.

[Regularity of V]

Step 2: proof of uniform continuity. Let $\varepsilon > 0$. Let $\alpha > 0$. Let x and \tilde{x} be such that $\|\tilde{x} - x\| \le \alpha$, we will specify α later. We have:

$$|V(\tilde{x}) - V(x)| = \left| \inf_{u \in \mathcal{U}_{\infty}} W(\tilde{x}, u) - \inf_{u \in \mathcal{U}_{\infty}} W(x, u) \right|$$

$$\leq \sup_{u \in \mathcal{U}_{\infty}} \left| W(\tilde{x}, u) - W(x, u) \right| \leq \Delta_{1} + \Delta_{2},$$

where

$$\Delta_1 = \sup_{u \in \mathcal{U}_{\infty}} \int_0^{\tau} e^{-\lambda t} \left| \ell(u(t), \tilde{y}(t)) - \ell(u(t), y(t)) \right| dt$$

$$\Delta_2 = \sup_{u \in \mathcal{U}_{\infty}} \int_{\tau}^{\infty} e^{-\lambda t} \left| \ell(u(t), \tilde{y}(t)) - \ell(u(t), y(t)) \right| dt,$$

where $\tilde{y} = y[\tilde{x}, u]$ and y = y[x, u] and where $\tau > 0$ is arbitrary.

[Regularity of V]

- Bound of Δ_1 . By Corollary 2, $\|\tilde{y}(t) - y(t)\| \le e^{L_f t} \|\tilde{x} - x\| \le e^{L_f \tau} \alpha, \quad \forall t \in [0, \tau].$ Therefore, $\Delta_1 \leq \tau L_{\ell} e^{L_f \tau} \alpha$.

 • Bound of Δ_2 . Since ℓ is bounded,

$$\Delta_2 \le 2 \|\ell\|_{\infty} \int_{\tau}^{\infty} e^{-\lambda t} dt = \frac{2 \|\ell\|_{\infty}}{\lambda} e^{-\lambda \tau}.$$

Conclusion: take $\tau > 0$ sufficiently large, so that $\Delta_2 \leq \frac{\varepsilon}{2}$.

Take then α sufficiently small, so that $\Delta_1 \leq \frac{\varepsilon}{2}$. The construction of α is independent of x and \tilde{x} . We have $|V(x) - V(\tilde{x})| \leq \varepsilon$.

[(More) regularity of V]

Lemma 7. We have

- if $\lambda < L_f$, then V is (λ/L_f) -Hölder continuous
- if $\lambda = L_f$, then V is α -Hölder continuous for all
- if $\lambda > L_f$, then V is Lipschitz continuous.

[(More) regularity of V]

Proof of the last case. We have

$$\begin{split} |V(\tilde{x}) - V(x)| \\ &\leq \sup_{u \in \mathcal{U}_{\infty}} \int_{0}^{\infty} e^{-\lambda t} |\ell(u(t), \tilde{y}(t)) - \ell(u(t), y(t))| \, \mathrm{d}t \\ &\leq \sup_{u \in \mathcal{U}_{\infty}} \int_{0}^{\infty} e^{-\lambda t} L_{\ell} \|\tilde{y}(t) - y(t)\| \, \mathrm{d}t \\ &\leq \int_{0}^{\infty} e^{-\lambda t} L_{\ell} e^{L_{f}t} \|\tilde{x} - x\| \, \mathrm{d}t \\ &\leq \frac{L_{\ell}}{\lambda - L_{f}} \|\tilde{x} - x\|. \end{split}$$

[DP-mapping]

Notation: $BUC(\mathbb{R}^n)$ is the set of **bounded and uniformly continuous** functions from \mathbb{R}^n to \mathbb{R} .

Lemma 8. The space $BUC(\mathbb{R}^n)$, equipped with the uniform norm (denoted $\|\cdot\|_{\infty}$) is a **Banach** space.

Fix $\tau > 0$. Consider the "**DP-mapping**" (also called Bellman operator):

$$\mathcal{T}: v \in BUC(\mathbb{R}^n) \mapsto \mathcal{T}v \in BUC(\mathbb{R}^n),$$

defined by

$$\mathcal{T}v(x) = \inf_{u \in \mathcal{U}_{\tau}} \left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) dt + e^{-\lambda \tau} v(y(\tau)) \right),$$
where $y = y[u, x].$

[DP-mapping]

Proof. Let $v \in BUC(\mathbb{R}^n)$. Let us verify that $\mathcal{T}v \in BUC(\mathbb{R}^n)$. Clearly $\mathcal{T}v$ is bounded.

Let $\varepsilon > 0$. Let $\alpha_0 > 0$ be such that

$$\|\tilde{x} - x\| \le \alpha_0 \Longrightarrow |v(\tilde{x}) - v(x)| \le \varepsilon/2.$$

Let $\alpha > 0$. Let x and $\tilde{x} \in \mathbb{R}^n$ be such that $\|\tilde{x} - x\| \le \alpha$. The value of α will be fixed later.

For all $u \in U_{\tau}$, for all $t \in [0, \tau]$, we have

$$||y[u, \tilde{x}](t) - y[u, x](t)|| \le e^{L_f t} ||\tilde{x} - x|| \le e^{L_f \tau} \alpha.$$

We have $|\mathcal{T}v(\tilde{x}) - \mathcal{T}v(x)| \leq \Delta_1 + \Delta_2$, with...

[DP-mapping]

$$\begin{split} \Delta_1 &= \sup_{u \in \mathcal{U}_\tau} \Big| \int_0^\tau e^{-\lambda t} \ell(u(t), y(t)) \, \mathrm{d}t \\ &- \int_0^\tau e^{-\lambda t} \ell(u(t), \tilde{y}(t)) \, \mathrm{d}t \Big|, \\ \Delta_2 &= \sup_{u \in \mathcal{U}_\tau} \Big| e^{-\lambda \tau} v(\tilde{y}(\tau)) - e^{-\lambda \tau} v(y(\tau)) \Big|. \end{split}$$

We fix now

$$\alpha = e^{-L_f \tau} \min \left(\alpha_0, \frac{\varepsilon}{2\tau} \right).$$

We have

$$\Delta_1 \leq \tau L_{\ell} e^{\tau L_f} \alpha \leq \varepsilon/2 \quad \text{and} \quad \Delta_2 \leq \varepsilon/2,$$

since $\|\tilde{y}(\tau) - y(\tau)\| \leq e^{L_f \tau} \alpha \leq \alpha_0$. Therefore,
 $|\mathcal{T}v(\tilde{x}) - \mathcal{T}v(x)| \leq \varepsilon$.

[DP-mapping]

Lemma 9. The operator \mathcal{T} is Lipschitz continuous with modulus $e^{-\lambda \tau}$.

Proof. Let $x \in \mathbb{R}^n$. We have

$$\begin{split} |\mathcal{T}\tilde{v}(x) - \mathcal{T}v(x)| &\leq \\ &\leq \sup_{u \in \mathcal{U}_{\tau}} \left| e^{-\lambda \tau} \tilde{v}(y[x, u](\tau)) - e^{-\lambda \tau} v(y[x, u](\tau)) \right| \\ &\leq e^{-\lambda \tau} \|\tilde{v} - v\|_{\infty}. \end{split}$$

We conclude that

$$\|\mathcal{T}\tilde{v} - \mathcal{T}v\|_{\infty} \le e^{-\lambda \tau} \|\tilde{v} - v\|_{\infty}.$$

[A characterization of V]

Lemma 10. The value function V is the **unique** solution of the fixed-point equation:

$$\mathcal{T}v = v, \quad v \in BUC(\mathbb{R}^n).$$

Proof.

- Existence: direct consequence of the DP principle (V = TV).
- Uniqueness: for any v such that $v = \mathcal{T}v$, we have $\|v V\|_{\infty} = \|\mathcal{T}v \mathcal{T}V\|_{\infty} \le e^{-\lambda \tau} \|v V\|_{\infty}$. Thus v = V

Remark: the dynamic programming principle entirely characterises the value function!

[Min-plus linearity]

Notation. Given v_1 and $v_2 \in BUC(\mathbb{R}^n)$, we write $v_1 \leq v_2$ if $v_1(x) \leq v_2(x)$ for all $x \in \mathbb{R}^n$. We define $\min(v_1, v_2) \in BUC(\mathbb{R}^n)$ by

$$\min(v_1, v_2)(x) = \min(v_1(x), v_2(x)), \quad \forall x \in \mathbb{R}^n.$$

Given $\alpha \in \mathbb{R}$, we define $v_1 + \alpha$ by $(v_1 + \alpha)(x) = v_1(x) + \alpha$.

Lemma 11. Let v_1 and $v_2 \in BUC(\mathbb{R}^n)$. Let $\alpha \in \mathbb{R}$. The map \mathcal{T} is monotone:

$$v_1 \le v_2 \Longrightarrow \mathcal{T}v_1 \le \mathcal{T}v_2$$

and min-plus linear:

$$\min(\mathcal{T}v_1, \mathcal{T}v_2) = \mathcal{T}\min(v_1, v_2),$$
$$\mathcal{T}(v + \alpha) = (\mathcal{T}v) + e^{-\lambda \tau}\alpha.$$

Proof: exercise.

4. HJB EQUATION: THE CLASSICAL SENSE

Hamiltonian

We define the **pre-Hamiltonian** H and the **Hamiltonian** H by

$$H(u, x, p) = \ell(u, x) + \langle p, f(u, x) \rangle,$$

$$\mathcal{H}(x, p) = \min_{u \in U} H(u, x, p).$$

Lemma 12. The mapping \mathcal{H} is **continuous**, **concave** with respect to p, and **Lipschitz continuous** with respect to p with modulus $||f||_{\infty}$.

Proof. The pre-Hamiltonian H is affine in p, thus concave in p. As an infimum of concave functions, \mathcal{H} is concave. We have:

$$\begin{aligned} |\mathcal{H}(x,\tilde{p}) - \mathcal{H}(x,p)| &\leq \sup_{u \in U} |H(u,x,\tilde{p}) - H(u,x,p)| \\ &\leq \sup_{u \in U} |\langle \tilde{p} - p, f(u,x) \rangle| \leq \|\tilde{p} - p\| \cdot \|f\|_{\infty}. \end{aligned}$$

[Informal derivation]

Notation: $C^1(\mathbb{R}^n)$, the set of continuously differentiable functions from \mathbb{R}^n to \mathbb{R} .

Lemma 13. Let $\Phi \in C^1(\mathbb{R}^n)$. Let $x \in \mathbb{R}^n$, let $u \in \mathcal{U}_{\infty}$, let y = y[u, x]. Consider the mapping:

$$\varphi \colon \tau \in [0, \infty) \mapsto \int_0^\tau e^{-\lambda t} \ell(u(t), y(t)) \, \mathrm{d}t + e^{-\lambda \tau} \Phi(y(\tau)) - \Phi(x).$$

Then $\varphi(0) = 0$ and $\varphi \in W^{1,\infty}(0,\infty)$ with

$$\dot{\varphi}(\tau) = e^{-\lambda \tau} \big(H(u(\tau), y(\tau), \nabla \Phi(y(\tau))) - \lambda \Phi(y(\tau)) \big).$$

In particular: $\dot{\varphi}(0) = H(u(0), x, \nabla \Phi(x)) - \lambda \Phi(x)$ (if u is continuous at 0).

[Informal derivation]

Proof. To simplify, we only consider the case where u is continuous, so that y is C^1 and φ is $C^1(\mathbb{R}^n)$. We have then:

$$\begin{split} \dot{\varphi}(\tau) &= e^{-\lambda \tau} \ell(u(\tau), y(\tau)) + e^{-\lambda \tau} \langle \nabla \Phi(y(\tau)), \dot{y}(\tau) \rangle \\ &- \lambda e^{-\lambda \tau} \Phi(y(\tau)) \end{split}$$

$$= e^{-\lambda \tau} \left[\ell(u(\tau), y(\tau)) + \langle \nabla \Phi(y(\tau)), f(u(\tau), y(\tau)) \rangle \right] \\ - \lambda e^{-\lambda \tau} \Phi(y(\tau))$$

$$= \ e^{-\lambda \tau} \big[H(u(\tau),y(\tau),\nabla \Phi(y(\tau))) - \lambda \Phi(y(\tau)) \big].$$

[HJB in the classical sense]

Theorem 14. Let $x \in \mathbb{R}^n$. Assume that

- \bullet V is continuously differentiable in a neighborhood of x
- P(x) has a solution \bar{u} which is continuous at time 0.

Then,
$$\lambda V(x) - \mathcal{H}(x, \nabla V(x)) = 0,$$
$$\bar{u}(0) \in \operatorname*{argmin}_{u_0 \in U} H(u_0, x, \nabla V(x)).$$

[HJB in the classical sense]

Proof. Step 1. Let $u_0 \in U$, let u be the constant control equal to u_0 , let y = y[u, x]. By the **dynamic programming** principle, we have:

$$0 \le \varphi(\tau) := \int_0^{\tau} e^{-\lambda t} \ell(u(t), y(t)) dt + e^{-\lambda \tau} V(y(\tau)) - V(x),$$

for all τ . Since $\varphi(0)=0$, we deduce from (*) that:

$$0 \le \dot{\varphi}(0) = H(u_0, x, \nabla V(x)) - \lambda V(x).$$

Therefore,

$$0 \le H(u_0, x, \nabla V(x)) - \lambda V(x), \quad \forall u_0 \in U.$$

[HJB in the classical sense]

Step 2. Let us apply the **dynamic programming principle** again. Redefining φ and setting $\bar{y} = y[\bar{u}, x]$, we obtain:

$$0 = \varphi(\tau) := \int_0^\tau e^{-\lambda t} \ell(\bar{u}(t), \bar{y}(t)) dt + e^{-\lambda \tau} V(\bar{y}(\tau)) - V(x),$$

for all $\tau \geq 0$. It follows that

$$0 = H(\bar{u}(0), x, \nabla V(x)) - \lambda V(x).$$

Step 3. It follows that for all $u_0 \in U$,

$$H(\bar{u}(0), x, \nabla V(x)) = \lambda V(x) \le H(u_0, x, \nabla V(x)).$$

Therefore, $H(\bar{u}(0), x, \nabla V(x)) = \mathcal{H}(x, \nabla V(x)).$

[HJB in the classical sense]

Corollary 15. Let $t \geq 0$, assume that \bar{u} is continuous in a neighborhood of t and that V is C^1 in a neighborhood of $\bar{y}(t)$, where $\bar{y} := y[\bar{u}, x]$. Then,

$$\bar{u}(t) \in \underset{u_0 \in U}{\operatorname{argmin}} \ H(u_0, \bar{y}(t), \nabla V(\bar{y}(t))).$$

[HJB in the classical sense]

Remarks.

Let us define the Q-function by $Q(u,y):=H(u,y,\nabla V(y)),$ assuming that $V\in C^1(\mathbb{R}^n).$

• If the minimizer is unique in the following relation, we have a **feedback law**:

$$\bar{u}(t) = \underset{U}{\operatorname{argmin}} \ Q(\cdot, \bar{y}(t)).$$

- In some cases, one can show that $\nabla V(\bar{y}(t)) = p(t)$, where p is defined by some adjoint equation \rightarrow **Pontryagin's principle**.
- In **Reinforcement Learning**, the approximation of *Q* is a central objective.

We will call the equation

$$\lambda v(x) - \mathcal{H}(x, \nabla v(x)) = 0, \quad \forall x \in \mathbb{R}^n$$
 (HJB)

Hamilton-Jacobi-Bellman equation, with unknown $v: \mathbb{R}^n \to \mathbb{R}$.

Remarks.

- In general V is not differentiable \rightarrow in which sense is the HJB equation to be understood?
- In Theorem 14, we have shown that $\bar{u}(t) \in \operatorname{argmin} H(u_0, y[\bar{u}(t), x], \nabla V(y[\bar{u}(t), x]))$, (under restrictive assumptions). We will see next that this necessary condition is also sufficient.

Theorem 16. (Verification). Let us assume the assumptions of Theorem 14 hold for all $x \in \mathbb{R}^n$, so that the **HJB equation is satisfied in the classical sense**. Let $x \in \mathbb{R}^n$. Assume that there exists a control \bar{u} such that

$$\bar{u}(t) \in \underset{u_0 \in U}{\operatorname{argmin}} \ H(u_0, \bar{y}(t), \nabla V(\bar{y}(t))),$$

where $\bar{y} = y[\bar{u}, x]$. Then \bar{u} is globally optimal.

Proof. Consider the function:

$$\varphi(\tau) = \int_0^\tau e^{-\lambda t} \ell(\bar{u}(t), \bar{y}(t)) dt + e^{-\lambda \tau} V(\bar{y}(\tau)) - V(x).$$

We have $\varphi(0) = 0$. Using (*) and Theorem 14, we obtain:

$$\dot{\varphi}(\tau) = e^{-\lambda \tau} \left[H(\bar{u}(\tau), \bar{y}(\tau), \nabla V(\bar{y}(\tau)) - V(\bar{y}(\tau)) \right]$$
$$= e^{-\lambda \tau} \left[\mathcal{H}(\bar{y}(\tau), \nabla V(\bar{y}(\tau))) - V(\bar{y}(\tau)) \right]$$
$$= 0.$$

Thus φ is constant, equal to 0. Its limit is given by:

$$0 = \int_0^\infty e^{-\lambda t} \ell(\bar{u}(t), \bar{y}(t)) \, dt - V(x) = W(x, \bar{u}) - V(x),$$

proving the optimality of \bar{u} .

5. HJB EQUATION: VISCOSITY SOLUTIONS

[Abstract PDE]

We consider an abstract PDE of the form:

$$\mathcal{F}(x, v(x), \nabla v(x)) = 0, \quad \forall x \in \mathbb{R}^n,$$

where $\mathcal{F}: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is continuous. It contains the HJB equation with

$$\mathcal{F}(x, v, p) = \lambda v - \mathcal{H}(x, p).$$

Goal of the section: showing that V is a viscosity solution to the HJB equation.

[Sub- and super-differentials]

Definition 17. Let $v: \mathbb{R}^n \to \mathbb{R}$. The following sets are called sub- and superdifferential, respectively:

$$D^{-}v(x) = \left\{ p \in \mathbb{R}^{n} \mid \liminf_{y \to x} \frac{v(y) - v(x) - \langle p, y - x \rangle}{\|y - x\|} \ge 0 \right\}$$
$$D^{+}v(x) = \left\{ p \in \mathbb{R}^{n} \mid \limsup_{y \to x} \frac{v(y) - v(x) - \langle p, y - x \rangle}{\|y - x\|} \le 0 \right\}.$$

$$D^+v(x) = \left\{ p \in \mathbb{R}^n \mid \limsup_{y \to x} \frac{v(y) - v(x) - \langle p, y - x \rangle}{\|y - x\|} \le 0 \right\}.$$

Exercise. Let v(x) = |x|. Show that $D^-v(0) = [-1, 1]$.

[Sub- and super-differentials]

We have the following characterization.

Lemma 18. Let $v: \mathbb{R}^n \to \mathbb{R}$ be continuous. Let $p \in$

- $p \in D^-v(x) \iff$ there exists $\Phi \in C^1(\mathbb{R}^n)$ such that $\nabla \Phi(x) = p$ and $v - \Phi$ has a local minimum
- $p \in D^+v(x) \iff$ there exists $\Phi \in C^1(\mathbb{R}^n)$ such that $\nabla \Phi(x) = p$ and $v - \Phi$ has a local maximum

Proof. The implication \Longrightarrow is admitted. The implication \iff is left as an exercise.

[Sub- and super-differentials]

Remark. In the above lemma, one can chose $\Phi(x) =$ v(x) without loss of generality. Thus, we have:

- $(v \Phi)$ has a local minimum in $x \iff v \Phi$ is nonnegative in a neighborhood of $x \iff v$ is locally bounded from below by Φ
- $(v \Phi)$ has a local maximum in $x \iff v \Phi$ is nonpositive in a neighborhood of $x \iff v$ is locally bounded from above by Φ

Remark. If v is Fréchet differentiable at x, then the sub- and superdifferential are equal to $\{\nabla v(x)\}$.

[Viscosity solutions]

Definition 19. Let $v: \mathbb{R}^n \to \mathbb{R}$. We call v a viscosity subsolution if

 $\mathcal{F}(x, v(x), p) \le 0, \quad \forall x \in \mathbb{R}^n, \ \forall p \in D^+ v(x)$

or, equivalently, if for all $\Phi \in C^1(\mathbb{R}^n)$ such that $v - \Phi$ has a local maximum in x,

$$\mathcal{F}(x, v(x), \nabla \Phi(x)) \leq 0.$$

[Viscosity solutions]

Definition 20. Let $v: \mathbb{R}^n \to \mathbb{R}$. We call v a **viscosity** supersolution if

$$\mathcal{F}(x, v(x), p) \ge 0, \quad \forall p \in D^- v(x)$$

or, equivalently, if for all $\Phi \in C^1(\mathbb{R}^n)$ such that $v - \Phi$ has a local minimum in x,

$$\mathcal{F}(x, v(x), \nabla \Phi(x)) \ge 0.$$

We call v a **viscosity solution** if it is a sub- and a supersolution.

[Viscosity solutions]

Theorem 21. The value function V is a **viscosity** solution of the HJB equation.

Step 1: V is a subsolution. Let $x \in \mathbb{R}^n$, let $\Phi \in C^1(\mathbb{R}^n)$ be such that $V - \Phi$ has a local maximizer in x and $V(x) = \Phi(x)$.

We have to prove that

$$\lambda v(x) - \mathcal{H}(x, \nabla \Phi(x)) \le 0.$$

Let $u_0 \in U$, let u be the constant control equal to u_0 and let y = y[u, x]. By the DPP, we have:

$$V(x) \le \int_0^\tau e^{-\lambda t} \ell(u_0, y(t)) dt + e^{-\lambda \tau} V(y(\tau)).$$

If τ is sufficiently small, we have $V(y(\tau)) \leq \Phi(y(\tau))$.

[Viscosity solutions]

This implies that for τ sufficiently small,

$$0 \le \int_0^\tau e^{-\lambda t} \ell(u_0, y(t)) \, \mathrm{d}t + e^{-\lambda \tau} \Phi(y(\tau)) - \Phi(x) =: \varphi(\tau).$$

Since $\varphi(0) = 0$, we deduce with (*) that

$$0 \le \dot{\varphi}(0) = H(u_0, x, \nabla \Phi(x)) - \lambda V(x).$$

Minimizing with respect to $u_0 \in U$, we obtain:

$$0 \le \mathcal{H}(x, \nabla \Phi(x)) - \lambda V(x),$$

as was to be proved.

[Viscosity solutions]

Step 2: V is supersolution. Let $x \in \mathbb{R}^n$, let $\Phi \in$ $C^1(\mathbb{R}^n)$ be such that $V - \Phi$ has a local minimizer in x and such that $V(x) = \Phi(x)$.

We have to prove that

$$\lambda V(x) - \mathcal{H}(x, \nabla \Phi(x)) \le 0.$$

It follows from the dynamic programming principle that for $\tau > 0$ small enough

 $\Phi(x) \ge$

$$\inf_{u \in \mathcal{U}_{\tau}} \underbrace{\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y[x, u](t)) dt + e^{-\lambda t} \Phi(y[x, u](\tau))}_{=:\varphi[u](\tau)}.$$

[Viscosity solutions] Thus by Lemma 13,

$$\begin{split} 0 & \geq \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} \dot{\varphi}[u](t) \, \mathrm{d}t \\ & = \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} e^{-\lambda t} \Big(H(u(t), y[u](t), \nabla \Phi(y[u](t)) - \lambda \Phi(y[u](t) \Big) \, \mathrm{d}t \\ & \geq \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} \underbrace{e^{-\lambda t} \Big(\mathcal{H}(y[u](t), \nabla \Phi(y[u](t)) - \lambda \Phi(y[u](t) \Big)}_{=: \psi[u](t)} \, \mathrm{d}t. \end{split}$$

We have $\psi[u](0) = \mathcal{H}(x, \nabla \Phi(x)) - \lambda V(x)$, in particular, $\psi[u](0)$ does not depend on u.

[Viscosity solutions]

Let $\varepsilon > 0$. There exists (exercise!) $\tau > 0$ such that

$$|\psi[u](t) - \psi[u](0)| \le \varepsilon, \quad \forall t \in [0, \tau], \ \forall u \in \mathcal{U}_{\infty}.$$

The previous inequality yields

$$0 \ge \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} (\psi[u](0) - \varepsilon) dt$$

$$\ge \tau(\mathcal{H}(x, \nabla \Phi(x)) - \lambda V(x) - \varepsilon).$$

Dividing by τ and sending ε to 0, we get the result.

[Viscosity solutions]

Theorem 22. (Comparison principle). Let v_1 be a subsolution to the HJB equation. Let v_2 be a supersolution to the HJB equation. Then

$$v_1(x) \le v_2(x), \quad \forall x \in \mathbb{R}^n.$$

Proof: admitted.

Corollary 23. The value function V is the **unique** viscosity solution.

Proof. By the comparison principle, any viscosity solution v is such that $v \leq V$ and $v \geq V$.