Machine Learning Notebook

Cong Bao

Contents

1	Intr	roduction	1		
	1.1	About this Notebook	1		
	1.2	Policy of Use	1		
2	Mathematics Basics				
	2.1	Probability	2		
		2.1.1 Basic Rules	2		
		2.1.2 Common Probability Distributions	4		
	2.2	Linear Algebra	5		
	2.3	Calculus	5		
	2.4	Informatics	5		
	2.5	Optimization	5		
3	Ma	chine Learning Basics	6		
4	Reg	gression	7		
	4.1	Linear Regression	7		
	4.2	Non-linear Regression	7		
	4.3	Logistic Regression	7		
5	Sup	port Vector Machines	8		
Bi	bliog	graphy	9		
A	Tes	t.	10		

Introduction

- 1.1 About this Notebook
- 1.2 Policy of Use

Mathematics Basics

2.1 Probability

2.1.1 Basic Rules

Three Axioms of Probability Let Ω be a sample space. A probability assigns a real number P(X) to each event $X \subseteq \Omega$ in such a way that

- 1. $P(X) \ge 0, \forall X$
- 2. If $X_1, X_2, ...$ are pairwise disjoint events $(X_1 \cap X_2 = \emptyset, i \neq j, i, j = 1, 2, ...)$, then $P(\bigcup_{i=1}^{\infty} X_i) = \sum_{i=1}^{\infty} P(X_i)$. (This property is called countable additivity.)
- 3. $P(\Omega) = 1$

Joint Probability The probability both event A and B occur. $P(X,Y) = P(X \cap Y)$.

Marginalization The probability distribution of any variable in a joint distribution can be recovered by integrating (or summing) over the other variables.

- 1. For continuous r.v. $P(x) = \int P(x,y) dy$; $P(y) = \int P(x,y) dx$.
- 2. For discrete r.v. $P(x) = \sum_{y} P(x, y)$; $P(y) = \sum_{x} P(x, y)$.
- 3. For mixed r.v. $P(x,y) = \sum_{w} \int P(w,x,y,z) dz$, where w is discrete and z is continuous.

Conditional Probability P(X = x | Y = y) is the probability X = x occurs given the knowledge Y = y occurs. Conditional probability can be extracted from joint probability that

$$P(x|y = y^*) = \frac{P(x, y = y^*)}{\int P(x, y = y^*) dx} = \frac{P(x, y = y^*)}{P(y = y^*)}$$

Usually, the formula is written as $P(x|y) = \frac{P(x,y)}{P(y)}$.

Product Rule The formula can be rearranged as P(x, y) = P(x|y) P(y) = P(y|x) P(x). In case of multiple variables

$$P(w, x, y, z) = P(w, x, y|z) P(z)$$

$$= P(w, x|y, z) P(y|z) P(z)$$

$$= P(w|x, y, z) P(x|y, z) P(y|z) P(z)$$

Independence If two variables x and y are independent, then r.v. x tells nothing about r.v. y (and vice-versa)

$$P(x|y) = P(x)$$

$$P(y|x) = P(y)$$

$$P(x,y) = P(x) P(y)$$

Baye's Rule By rearranging formula in Product Rule, we have

$$P(y|x) = \frac{P(x|y) P(y)}{P(x)}$$

$$= \frac{P(x|y) P(y)}{\int P(x,y) dy}$$

$$= \frac{P(x|y) P(y)}{\int P(x|y) P(y) dy}$$

Expectation Expectation tells us the excepted or average value of some function f(x), taking into account the distribution of x.

$$\mathbf{E}[f(x)] = \sum_{x} f(x)P(x)$$
$$\mathbf{E}[f(x)] = \int f(x)P(x) dx$$

Definition in two dimensions: $\mathbf{E}\left[f(x,y)\right] = \iint f(x,y)P\left(x,y\right)dx\ dy$

Function $f(\bullet)$	Expectation
x^k	k^{th} moment about zero
$(x-\mu_x)^k$	k^{th} moment about the mean

Function $f(\bullet)$	Expectation
x	mean, μ_x
$(x-\mu_x)^2$	variance
$(x-\mu_x)^3$	skew
$(x-\mu_x)^4$	kurtosis
$(x-\mu_x)(x-\mu_y)$	covariance of x and y

Besides, Expectation has the following four rules

- 1. Expected value of a constant is the constant $\mathbf{E}\left[\kappa\right] = \kappa$.
- 2. Expected value of constant times function is constant times excepted value of function $\mathbf{E}[kf(x)] = k\mathbf{E}[f(x)].$
- 3. Expectation of sum of functions is sum of expectation of functions $\mathbf{E}[f(x) + g(y)] = \mathbf{E}[f(x)] + \mathbf{E}[g(x)].$

2.1.2 Common Probability Distributions

Bernoulli Bernoulli distribution describes situation where only two possible outcomes y = 0/y = 1 or failure/success.

- 1. $P(x) = \mathbf{Bern}_x[\lambda] = \lambda^x (1 \lambda)^{1-x}$
- 2. univariate, discrete, binary
- 3. $x \in \{0, 1\}; \lambda \in [0, 1]$
- 4. $\mathbf{E}[x] = \lambda$, $\mathbf{Var}[x] = \lambda(1 \lambda)$

Beta Beta distribution is the conjugate distribution to Bernoulli distribution.

- 1. $P(\lambda) = \mathbf{Beta}_{\lambda}[\alpha, \beta] = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \lambda^{\alpha 1} (1 \lambda)^{\beta 1}$
- 2. univariate, continuous, unbounded
- 3. $\lambda \in \mathbb{R}$; $\alpha \in \mathbb{R}^+$, $\beta \in \mathbb{R}^+$
- 4. $\mathbf{E}[\lambda] = \frac{\alpha}{\alpha + \beta}$, $\mathbf{Var}[\lambda] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

Categorical Categorical distribution describes situation with K possible outcomes.

1.
$$P(x) = \mathbf{Cat}_x[\lambda], P(x = k) = \lambda_k, P(\mathbf{x} = \mathbf{e}_k) = \prod_{j=1}^K \lambda_j^{x_j} = \lambda_k$$

- 2. univariable, discrete, multi-valued
- 3. $x \in \{1, 2, \dots, K\}; \lambda_k \in [0, 1] \text{ where } \sum_k \lambda_k = 1$
- 4. $\mathbf{E}[x_i] = \lambda_i$, $\mathbf{Var}[x_i] = \lambda_i(1 \lambda_i)$, $\mathbf{Cov}[x_i, x_j] = -\lambda_i\lambda_j \ (i \neq j)$

Dirichlet Dirichlet distribution is the conjugate distribution to categorical distribution.

1.
$$P(\lambda) = \mathbf{Dir}_{\lambda}[\alpha] = \frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \lambda_k^{\alpha_k - 1}$$

2. multivariable, continuous, bounded, sums to one

3.
$$\boldsymbol{x} = [x_1, x_2, \dots, x_K]^\top$$
, $x_k \in [0, 1]$, $\sum_{k=1}^K x_k = 1$; $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, \dots, \alpha_K]$, $\alpha_k \in \mathbb{R}^+$

4.
$$\mathbf{E}[\lambda_i] = \frac{\alpha_i}{\sum_k \alpha_k}$$
, $\mathbf{Var}[\lambda_i] = \frac{\alpha_i(\sum_k \alpha_k - \alpha_i)}{(\sum_k \alpha_k)^2(\sum_k \alpha_k + 1)}$, $\mathbf{Cov}[\lambda_i, \lambda_j] = \frac{-\alpha_i \alpha_j}{(\sum_k \alpha_k)^2(\sum_k \alpha_k + 1)}$ $(i \neq j)$

Univariable Normal Univariable normal distribution describes single continuous variable.

1.
$$P(x) = \mathbf{Norm}_x[\mu, \sigma^2] = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- 2. univariable, continuous, unbounded
- 3. $x \in \mathbb{R}$; $\mu \in \mathbb{R}$, $\sigma^2 \in \mathbb{R}^+$
- 4. $\mathbf{E}[x] = \mu$, $\mathbf{Var}[x] = \sigma^2$

Normal Inverse Gamma

Multivariate Normal

Normal inverse Wishart

- 2.2 Linear Algebra
- 2.3 Calculus
- 2.4 Informatics
- 2.5 Optimization

Machine Learning Basics

Regression

- 4.1 Linear Regression
- 4.2 Non-linear Regression
- 4.3 Logistic Regression

Support Vector Machines

Bibliography

Appendix A

Test

test