

Introducción a la comunicación en red

Desarrollo de Sistemas en Red

Introducción

- Los sistemas distribuidos utilizan redes de área local, redes de área amplia e interredes para la comunicación
- El rendimiento, confiabilidad, escalabilidad, movilidad y calidad de servicio de las redes afectan su comportamiento y diseño.
- Los principios en los que se basan las redes incluyen:
 - protocolos en capas,
 - la conmutación de paquetes,
 - el enrutamiento y
 - la transmisión de datos.

 Las técnicas de interconexión de redes permiten integrar redes heterogéneas.

Internet es el principal ejemplo:

Sus protocolos se utilizan casi universalmente en sistemas distribuidos.

Los esquemas de direccionamiento y enrutamiento utilizados en Internet han resistido el impacto de su enorme crecimiento.

Se revisan para adaptarse al crecimiento y para cumplir con los nuevos requisitos de movilidad, seguridad y calidad de servicio.

- El desarrollo de sistemas en red es un tema amplio.
 - Consideraciones especiales para este tipo de sistemas de acuerdo con el contexto en el que se ejecutan:

 Las redes que se utilizan en los sistemas distribuidos se construyen a partir de una variedad de:

La funcionalidad resultante y el rendimiento disponible para un sistema distribuido se ve afectados por todo esto.

- Subsistema de comunicación: Colección de componentes de hardware y software que proporcionan las facilidades de comunicación para un sistema distribuido.
- Host: Las computadoras y otros dispositivos que usan la red para fines de comunicación.
- Nodo: Cualquier computadora o dispositivo de conmutación conectado a una red.

El término host o anfitrión se usa para referirse a las computadoras u otros dispositivos (tabletas, móviles, portátiles) conectados a una red que proveen y utilizan servicios de ella.

- Internet es un subsistema de comunicación que proporciona comunicación entre todos los hosts que están conectados a él.
 - Internet está construida de muchas subredes.
- Subred: Unidad de enrutamiento (entrega datos de una parte de Internet a otra); colección de nodos que pueden ser alcanzados en la misma red física.

- La infraestructura de Internet incluye:
 - Una arquitectura
 - Componentes de hardware y software
- Integran eficazmente diversas subredes en un solo servicio de comunicación de datos.

- El diseño de un subsistema de comunicaciones está fuertemente influenciado por:
 - Las características de los sistemas operativos utilizados en las computadoras que componen el sistema distribuido.
 - Las redes que los interconectan.

Esta presentación está destinada a:

Describir de manera general las redes de computadoras con referencia a los requisitos de comunicación de los sistemas distribuidos.

Resumir los aspectos de las redes de computadoras que son relevantes para los sistemas distribuidos.

Comunicación inter-computadoras

- La comunicación inter-computadoras se refiere a la transferencia de datos entre dos o más dispositivos de computación interconectados en una red de computadoras.
- Sin memoria compartida, las computadoras se necesitan comunicar.

Los enlaces directos no son prácticos - No escalan

Todos enlazados con todos

50 computadoras: Se necesitarían 1,225 enlaces y un dispositivo que permitiera 50 conexiones en cada computadora

¿Qué es una red?

En términos de computación

a network of data processing nodes that are interconnected for the purpose of data communication

ISO/IEC 2382-1:1993, Information technology — Vocabulary — Part 1: Fundamental terms

Conjunto de computadoras autónomas interconectadas para compartir información, recursos y ofrecer servicios

Tanenbaum, 2003

Arquitectura de red

Plano general (marco) que guía el diseño e implementación de una red de computadoras en cuanto a:

- ı. Topología
- II. Tipo
- III. Componentes y su funcionalidad
- IV. Protocolos de comunicación de datos
- v. Formatos de datos a emplear
- vi. Conjunto de servicios soportados

Otros conceptos

- Tecnologías de comunicación: Mecanismos empleados para intercambiar datos entre los dispositivos de red y de usuario final a través de los enlaces de comunicación.
- Protocolos de comunicación: Mecanismos formales para intercambiar mensajes entre los componentes de red.
- Arquitectura de protocolos: Incluye todos los protocolos utilizados para transportar mensajes a través de una cierta infraestructura de red e indica la forma en que estos protocolos interactúan entre sí.
- Servicios: Están principalmente vinculados con las aplicaciones y relacionados con la interfaz de red con los dispositivos y usuarios finales.

Topologías de red

Introducción a la comunicación en red

Topología de anillo

- Cada nodo está conectado exactamente a otros dos nodos formando una única ruta para los datos formando un anillo.
- En la topología básica, los mensajes viajan en una sola dirección (un nodo un rol como anfitrión [host] o como retransmisor [relay]):
 - Como anfitrión, cada nodo envía mensajes a otros nodos y recibe mensajes dirigidos a él.
 - Como un retransmisor, cada nodo envía los mensajes dirigidos a otros nodos al siguiente nodo del anillo.
- Su principal problema es la confiabalidad, si se pierde un enlace se impide la comunicación entre ciertos nodos.
- Anillos dobles = +confiabillidad y +costo
- Ejemplos: Protocolo Token Ring (IEEE 802.5)

Topología de estrella

- Cada nodo está conectado a un dispositivo central o hub el cual puede ser un hub de red, un switch o un router.
- Más robusta que la topología de anillo.
 - Si se pierde un enlace, solo el nodo conectado a dicho enlace pierde conexión y sin consecuencias para el resto de nodos.
- Existe un único punto de falla y de costo de despliegue y mantenimiento.
- Las tecnologías inalámbricas abaten el costo de mantenimiento.

Topología de bus

- Se utiliza un enlace como backbone para conectar todos los dispositivos en una red con el resto.
- Los host compiten para acceder al backbone y transmitir datos.
- Cuando un host gana acceso al medio, manda el mensaje el cual es recibido por todos los nodos aunque solo uno reaccionará a éste (el resto lo descartan).

 Ejemplos: Protocolo Token Bus (IEEE 802.4), Fiber Distributed Data Interface (RFC 1188)

Topología de árbol

- Combinación de las topologías de estrella y bus.
- Un hub conectado a nodos y hubs conectados entre sí.
- Los mensajes viajan por el árbol hasta alcanzar su destino.
- Mejor soporte a la escalabilidad.

Topología en malla (*mesh*)

- En una malla completa, cada dispositivo está directamente conectado todos los dispositivos dentro de la red.
- Extremadamente robustas por la redundancia pero altamente costosas.
- Más popular en redes inhalámbricas
- En una malla parcial, solo algunos dispositivos están conectados como en malla completa y otros a uno o dos dispositivos.
- Soporte a alto tráfico por la cantidad de caminos independientes y a la escalabilidad.

Topologías Ad-Hoc

- No dependen de una infraestructura de red en particular.
- Los host se comunican a través de caminos dinámicos establecidos y administrados por ellos mismos.
- Los mensajes viajan por "saltos" hasta alcanzar su destino.
- La topología cambia de forma dinámica con el tiempo.

- Sus mayores ventajas son la facilidad de despliegue, bajo costo y flexibilidad.
- El área geográfica de la red es variable, siendo posible agregar escalabilidad.
- Sufren de rutas impredecibles y rendimiento de transmisión.
- Debido a la movilidad, cada ruta puede romperse en cualquier momento, los dispositivos pueden salirse del rango de comunicación o desconectarse.

Topología Ad-Hoc

Topologías de redes

Componentes de red

- Los componentes de red son de dos tipos generales:
 - Enlaces (medios de transmisión)
 - Nodos (computadoras o dispositivos de conmutación)
 - Software (pilas de protocolos, controladores)
- Nos podemos referir al conjunto de estos elementos como sub-sistema de comunicación de un sistema distribuido

Componentes de red

Dispositivos que permiten el **intercambio de datos** entre las diferentes partes de la red junto con los dispositivos para usuarios finales.

Tipos de Enlaces de acuerdo al medio físico

- Pares trenzados
- Cables coaxiales
- Fibra óptica
- Ondas de radio
- Microondas
- Ondas infrarrojas
- Ondas de luz visible

Par trenzado

- Consiste de dos cables de cobre aislados entrelazados en forma de helice (en trenza).
- Este tipo de cable fue la base para la primera red ampliamente extendida:
 - Permitió tanto telefonía como transmisión de datos a bajas velocidades.
- Actualmente existen diferentes categorías y velocidades.

Cable coaxial

- Consiste de un núcleo de cobre rígido cubierto de material aislante.
- El aislante es ademas cubierto por un conductor cilíndrico, en forma de red, que a su vez es recubierto por plástico (hule).
- La velocidad en la transmisión de datos fue mejorada respecto al par trenzado (telefónico).
- La interferencia se redujo, siendo posible ofrecer servicios como la TV.

Coaxial cable

Cable coaxial

Tipos de enlaces

Fibra óptica

- Popular en la actualidad debido a su gran capacidad de ancho de banda y baja interferencia.
- Un cable de fibra óptica tiene tres elementos:
 - Un núcleo de vidrio: propaga luz
 - Un revestimiento de vidrio: tiene un índice de refracción bajo, manteniendo el haz de luz dentro del cable
 - Un recubrimiento plástico: usado para proteger la fibra

Fibra óptica

Tipos de enlaces

Ondas electromagnéticas

- Las dispositivos inalámbricos utilizan ondas electromagnéticas moduladas para enviar mensajes.
- Algunos utilizan transmisiones en canales de baja latencia (por ejemplo satelital), otros utilizan canales de alta velocidad, canales de baja frecuencia, de alta frecuencia, etc.

Tipo de Enlace	Medio de Transmisión	Velocidad de Transmisión	Distancia	Uso Común
Pares trenzados	Cobre (pares de cables trenzados)	Baja a media (hasta 10 Gbps)	Cortas a medias (hasta 100 m)	Telefonía, redes Ethernet
Cables coaxiales	Cobre (núcleo central con blindaje)	Media (hasta 1 Gbps)	Medias (hasta 500 m)	Televisión por cable, Internet
Fibra óptica	Vidrio o plástico (transmisión de luz)	Alta (hasta 100 Tbps)	Largas (hasta 100 km o más)	Internet de alta velocidad, redes troncales
Ondas de radio	Aire (frecuencias de radio)	Variable (desde kbps a Gbps)	Largas (varios km)	Radio, TV, comunicaciones móviles
Microondas	Aire (frecuencias de microondas)	Alta (hasta 10 Gbps)	Medias (hasta 50 km con línea de vista)	Comunicaciones satelitales, Wi-Fi
Ondas infrarrojas	Aire (infrarrojo)	Baja (hasta 16 Mbps)	Cortas (hasta 5 m)	Controles remotos, comunicación entre dispositivos
Ondas de luz visible	Aire o fibra óptica (luz visible)	Alta (hasta 10 Gbps)	Cortas a medias (varios metros)	Li-Fi, iluminación inteligente

Nodos

- Los nodos son dispositivos de distintos tipos, los más visibles son los utilizados por usuarios finales:
 - PCs/Laptops
 - Smart phones
 - Servidores
- Dispositivos de interconexión (inter-networking):
 - Repetidores, bridges, routers y gateways

Repetidores

- Amplifica, remodela y/o resincroniza una señal de entrada para incrementar su distancia de cobertura, mejorar su calidad y eficiencia en la transmisión de datos.
- No analizan el contenido de una transmisión de ninguna forma.
- Trabajan solo al nivel de la capa física.

Repetidores

Nodos

Bridges

- Es un dispositivo que reduce la cantidad de tráfico en una red al dividirla en dos segmentos.
- También permiten establecer un enlace de conexión entre dos redes
- Filtran el trafico de red y deciden si cierto tráfico debe pasar o no.
- Confinan el tráfico de un segmento, dando soporte a mayor escalabilidad e incrementando la eficiencia en la comunicación
- · Requieren de cierta información de red.
- Operan en la capa de enlace de datos.

Bridge

Nodos

Routers

- Es un dispositivo que interconecta diversas redes, transmitiendo datos de una red a otra de acuerdo a su dirección de destino.
- Los routers se comunican entre sí, colectan información de ruteo en tablas (forwarding tables).
- Basado en la información que tienen, los routers ejecutan algoritmos de enrutamiento para determinar el mejor camino entre dos hosts.
- Los routers trabajan en la capa de red.

Routers

Nodos

Gateway

- Son dispositivos de red que extienden la funcionalidad de un router para incluir servicios de la capa de aplicaciones
- Realiza modificaciones a los paquetes de datos para filtrar o bloquear cierto tipo de tráfico, modificando cabeceras, datos finales (trailing), modificación de tamaño de paquetes, aplicación de seguridad, etc.

Gateways

Nodos