Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

New Particle Search at CERN

Stage 1 - Displaced Vertex Identification

Αλέξανδρος Τσαγκαρόπουλος

Επιβλέποντες: Δημήτριος Φασουλιώτης, Στυλιανός Αγγελιδάκης

Περιεχόμενα

- 1 Εισαγωγή
- Επεξεργασία Δεδομένων
- 🗿 Αποτελέσματα

- Τα Interaction Points (IPs) είναι τα σημεία κατά μήκος του LHC όπου οι δέσμες πρωτονίων διασταυρώνονται και συγκρούονται.
- Ένα long-lived particle αποτελεί ένα σωμαδίο με σχετικά μεγάλο χρόνο ζωής το οποίο προβλέπεται από θεωρίες που επεκτείνουν το Standard Model.
- Μία Primary Vertex (PV) είναι το σημείο από όπου προέρχονται δύο ή περισσότερες τροχιές και συμπίπτει με το IP
- Μία Displaced Vertex (DV) είναι το σημείο όπου δύο ή περισσότερες τροχιές συγκλίνουν και βρίσκεται σε σημαντική απόσταση από το IP.

- Τα Interaction Points (IPs) είναι τα σημεία κατά μήκος του LHC όπου οι δέσμες πρωτονίων διασταυρώνονται και συγκρούονται.
- Ένα long-lived particle αποτελεί ένα σωμαδίο με σχετικά μεγάλο χρόνο ζωής το οποίο προβλέπεται από θεωρίες που επεκτείνουν το Standard Model.
- Μία Primary Vertex (PV) είναι το σημείο από όπου
- Μία Displaced Vertex (DV) είναι το σημείο όπου δύο ή

- Τα Interaction Points (IPs) είναι τα σημεία κατά μήκος του LHC όπου οι δέσμες πρωτονίων διασταυρώνονται και συγκρούονται.
- Ένα long-lived particle αποτελεί ένα σωμαδίο με σχετικά μεγάλο χρόνο ζωής το οποίο προβλέπεται από θεωρίες που επεκτείνουν το Standard Model.
- Μία Primary Vertex (PV) είναι το σημείο από όπου προέρχονται δύο ή περισσότερες τροχιές και συμπίπτει με το IP.
- Μία Displaced Vertex (DV) είναι το σημείο όπου δύο ή περισσότερες τροχιές συγκλίνουν και βρίσκεται σε σημαντική απόσταση από το IP.

- Τα Interaction Points (IPs) είναι τα σημεία κατά μήκος του LHC όπου οι δέσμες πρωτονίων διασταυρώνονται και συγκρούονται.
- Ένα long-lived particle αποτελεί ένα σωμαδίο με σχετικά μεγάλο χρόνο ζωής το οποίο προβλέπεται από θεωρίες που επεκτείνουν το Standard Model.
- Μία Primary Vertex (PV) είναι το σημείο από όπου προέργονται δύο ή περισσότερες τρογιές και συμπίπτει με το ΙΡ
- Μία Displaced Vertex (DV) είναι το σημείο όπου δύο ή περισσότερες τροχιές συγκλίνουν και βρίσκεται σε σημαντική απόσταση από το IP.

- Τα DV_{true} αναφέρονται στα πραγματικά DV που συναντώνται στα γεγονότα.
- Τα $\mathbf{DV_{reco}}$ αναφέρονται στα \mathbf{DV} που υπολογίζει το πρόγραμμα.
- Σφάλμα/Error ονομάζεται η απόσταση μεταξύ του DV_{true} και του αντίστοιχου DV_{reco}.
- Απόσταση μεταξύ δύο ευθειών ορίζουμε το ελάχιστο της απόστασης ενός σημείου της πρώτης από τη δεύτερη.

- Τα DV_{true} αναφέρονται στα πραγματικά DV που συναντώνται στα γεγονότα.
- Τα DV_{reco} αναφέρονται στα DV που υπολογίζει το πρόγραμμα.
- Σφάλμα/Error ονομάζεται η απόσταση μεταξύ του DV_{true} και του αντίστοιχου DV_{reco}.
- Απόσταση μεταξύ δύο ευθειών ορίζουμε το ελάχιστο της απόστασης ενός σημείου της πρώτης από τη δεύτερη.

- Τα DV_{true} αναφέρονται στα πραγματικά DV που συναντώνται στα γεγονότα.
- Τα DV_{reco} αναφέρονται στα DV που υπολογίζει το πρόγραμμα.
- Σφάλμα/Error ονομάζεται η απόσταση μεταξύ του DV_{true} και του αντίστοιχου DV_{reco}.
- Απόσταση μεταξύ δύο ευθειών ορίζουμε το ελάχιστο της απόστασης ενός σημείου της πρώτης από τη δεύτερη.

- Τα DV_{true} αναφέρονται στα πραγματικά DV που συναντώνται στα γεγονότα.
- Τα DV_{reco} αναφέρονται στα DV που υπολογίζει το πρόγραμμα.
- Σφάλμα/Error ονομάζεται η απόσταση μεταξύ του DV_{true} και του αντίστοιχου DV_{reco}.
- Απόσταση μεταξύ δύο ευθειών ορίζουμε το ελάχιστο της απόστασης ενός σημείου της πρώτης από τη δεύτερη.

- Ανάπτυξη αλγορίθμου που αναζητά και αναγνωρίζει τα DV_{true} που υπάρχουν σε πολλαπλά γεγονότα.
 - Δείκτες:
 - Efficiency: Ο λόγος των DV_{true} που αντιστοιχίζονται σε κάποιο DV_{rren} δια το συνολικό αριθμό των DV_{true}.
 - Purity: Ο λόγος των DV_{reco} που αντιστοιχίζονται σε κάποιο DV_{true} δια το συνολικό αριθμό των DV_{reco}.
 - Δεδομένα από Ιστογράμματα:
 - Αccuracy: Ο λόγος του αριθμού των DV_{reco} με σφάλμα μικρότερο από ένα όριο προς το συνολικό αριθμό των DV.......
 - Effectiveness: Σύγκριση αριθμού DV_{reco} και DV_{true}
- Σύγκριση αποτελεσμάτων με αυτά που προκύπτουν από ανθρώπινη είσοδο.

- Ανάπτυξη αλγορίθμου που αναζητά και αναγνωρίζει τα DV_{true} που υπάρχουν σε πολλαπλά γεγονότα.
 - Δείκτες:
 - **Εfficiency:** Ο λόγος των DV_{true} που αντιστοιχίζονται σε κάποιο DV_{true}, δια το συνολικό αριθμό των DV_{true}.
 - **2 Purity:** Ο λόγος των DV_{reco} που αντιστοιχίζονται σε κάποιο DV_{true} δια το συνολικό αριθμό των DV_{reco} .
 - Δεδομένα από Ιστογράμματα:
 - Αccuracy: Ο λόγος του αριθμού των DV_{reco} με σφάλμα μικρότερο από ένα όριο προς το συνολικό αριθμό των DV....
 - Effectiveness: Σύγκριση αριθμού DV_{reco} και DV_{true}
- Σύγκριση αποτελεσμάτων με αυτά που προκύπτουν από ανθρώπινη είσοδο.

Εισαγωγή

- Ανάπτυξη αλγορίθμου που αναζητά και αναγνωρίζει τα DV_{true} που υπάρχουν σε πολλαπλά γεγονότα.
 - Δείκτες:
 - **1 Efficiency:** Ο λόγος των DV_{true} που αντιστοιχίζονται σε κάποιο DV_{reco} δια το συνολικό αριθμό των DV_{true}.
 - Δεδομένα από Ιστογράμματα:

- Ανάπτυξη αλγορίθμου που αναζητά και αναγνωρίζει τα DV_{true} που υπάρχουν σε πολλαπλά γεγονότα.
 - Δείκτες:
 - **Efficiency:** Ο λόγος των DV_{true} που αντιστοιχίζονται σε κάποιο DV_{reco} δια το συνολικό αριθμό των DV_{true}.
 - **Purity:** Ο λόγος των DV_{reco} που αντιστοιχίζονται σε κάποιο DV_{true} δια το συνολικό αριθμό των DV_{reco}.
 - Δεδομένα από Ιστογράμματα:
 - Αccuracy: Ο λόγος του αριθμού των DV_{reco} με σφάλμα μικρότερο από ένα όριο προς το συνολικό αριθμό των DV_{reco}.
 - **Effectiveness:** Σύγκριση αριθμού DV_{reco} και DV_{true}
- Σύγκριση αποτελεσμάτων με αυτά που προκύπτουν από ανθρώπινη είσοδο.

Εισαγωγή

- Ανάπτυξη αλγορίθμου που αναζητά και αναγνωρίζει τα DV_{true} που υπάρχουν σε πολλαπλά γεγονότα.
 - Δείκτες:
 - **I Efficiency:** Ο λόγος των DV_{true} που αντιστοιχίζονται σε κάποιο DV_{reco} δια το συνολικό αριθμό των DV_{true}.
 - **Purity:** Ο λόγος των DV_{reco} που αντιστοιχίζονται σε κάποιο DV_{true} δια το συνολικό αριθμό των DV_{reco}.
 - Δεδομένα από Ιστογράμματα:
 - Αccuracy: Ο λόγος του αριθμού των DV_{reco} με σφάλμα μικρότερο από ένα όριο προς το συνολικό αριθμό των DV_{reco}
 - **2** Effectiveness: Σύγκριση αριθμού DV_{reco} και DV_{true}
- Σύγκριση αποτελεσμάτων με αυτά που προκύπτουν από ανθρώπινη είσοδο.

- Ανάπτυξη αλγορίθμου που αναζητά και αναγνωρίζει τα DV_{true} που υπάρχουν σε πολλαπλά γεγονότα.
 - Δείκτες:
 - **I Efficiency:** Ο λόγος των DV_{true} που αντιστοιχίζονται σε κάποιο DV_{reco} δια το συνολικό αριθμό των DV_{true}.
 - 2 Purity: Ο λόγος των DV_{reco} που αντιστοιχίζονται σε κάποιο DV_{true} δια το συνολικό αριθμό των DV_{reco}.
 - Δεδομένα από Ιστογράμματα:
 - Αccuracy: Ο λόγος του αριθμού των DV_{reco} με σφάλμα μικρότερο από ένα όριο προς το συνολικό αριθμό των DV_{reco}.
 - **2 Effectiveness:** Σύγκριση αριθμού DV_{reco} και DV_{true}
- Σύγκριση αποτελεσμάτων με αυτά που προκύπτουν από ανθρώπινη είσοδο.

- Ανάπτυξη αλγορίθμου που αναζητά και αναγνωρίζει τα DV_{true} που υπάρχουν σε πολλαπλά γεγονότα.
 - Δείκτες:
 - **I Efficiency:** Ο λόγος των DV_{true} που αντιστοιχίζονται σε κάποιο DV_{reco} δια το συνολικό αριθμό των DV_{true}.
 - 2 Purity: Ο λόγος των DV_{reco} που αντιστοιχίζονται σε κάποιο DV_{true} δια το συνολικό αριθμό των DV_{reco}.
 - Δεδομένα από Ιστογράμματα:
 - Αccuracy: Ο λόγος του αριθμού των DV_{reco} με σφάλμα μικρότερο από ένα όριο προς το συνολικό αριθμό των DV_{reco}.
 - **2 Effectiveness:** Σύγκριση αριθμού DV_{reco} και DV_{true}.
- Σύγκριση αποτελεσμάτων με αυτά που προκύπτουν από ανθρώπινη είσοδο.

Εισανωνή

- Ανάπτυξη αλγορίθμου που αναζητά και αναγνωρίζει τα DV_{true} που υπάρχουν σε πολλαπλά γεγονότα.
 - Δείκτες:
 - **1 Efficiency:** Ο λόγος των DV_{true} που αντιστοιχίζονται σε κάποιο DV_{reco} δια το συνολικό αριθμό των DV_{true}.
 - **Purity:** Ο λόγος των DV_{reco} που αντιστοιχίζονται σε κάποιο DV_{true} δια το συνολικό αριθμό των DV_{reco}.
 - Δεδομένα από Ιστογράμματα:
 - Accuracy: Ο λόγος του αριθμού των DV_{reco} με σφάλμα μικρότερο από ένα όριο προς το συνολικό αριθμό των DV_{reco} .
 - **2** Effectiveness: Σύγκριση αριθμού DV_{reco} και DV_{true}.
- Σύγκριση αποτελεσμάτων με αυτά που προκύπτουν από ανθρώπινη είσοδο.

- Ο αριθμός τους είναι 4300.
- Όλες οι τροχιές που σχετίζονται με PV έχουν αφαιρεθεί.
- Όλα τα γεγονότα περιέχουν τουλάχιστον ένα DV.
- Τα γεγονότα περιέχουν προσομοιωμένα δεδομένα
- Αριθμοί DV_{true}
 - Συνολικά: 5247
 - Γεγονότα με ένα DV_{frue}: 3358
 - Γεγονότα με δύο DV_{true}: 1868
 - Γενοτότα με τοία DV_{true}: 21.

Εισανωνή

- Ο αριθμός τους είναι 4300.
- Όλες οι τροχιές που σχετίζονται με PV έχουν αφαιρεθεί.

- Ο αριθμός τους είναι 4300.
- Όλες οι τροχιές που σχετίζονται με PV έχουν αφαιρεθεί.
- Όλα τα γεγονότα περιέχουν τουλάχιστον ένα DV.
- Τα γεγονότα περιέχουν προσομοιωμένα δεδομένα
- Αριθμοί DV_{true} :
 - Συνολικά: 5247
 - Γεγονότα με ένα DV_{true}: 3358
 - Γενονότα με δύο DV_{true} · 1868
 - Γενοτότα με τοία DV_{true}: 21.

- Ο αριθμός τους είναι 4300.
- Όλες οι τροχιές που σχετίζονται με PV έχουν αφαιρεθεί.
- Όλα τα γεγονότα περιέχουν τουλάχιστον ένα DV.
- Τα γεγονότα περιέχουν προσομοιωμένα δεδομένα.
- Αριθμοί DV_{true}
 - Συνολικά: 5247
 - Γεγονότα με ένα DV_{frue}: 3358
 - Γεγονότα με δύο DV_{true}: 1868
 - Γενοτότα με τοία DV_{true}: 21.

- Ο αριθμός τους είναι 4300.
- Όλες οι τροχιές που σχετίζονται με PV έχουν αφαιρεθεί.
- Όλα τα γεγονότα περιέγουν τουλάγιστον ένα DV.
- Τα γεγονότα περιέχουν προσομοιωμένα δεδομένα.
- Αριθμοί DV_{true}:
 - Συνολικά: 5247
 - Γεγονότα με ένα DV_{true}: 3358.
 - Γεγονότα με δύο DV_{true}: 1868.
 - Γενοτότα με τρία DV_{true}: 21.

- Ο αριθμός τους είναι 4300.
- Όλες οι τροχιές που σχετίζονται με PV έχουν αφαιρεθεί.
- Όλα τα γεγονότα περιέχουν τουλάχιστον ένα DV.
- Τα γεγονότα περιέχουν προσομοιωμένα δεδομένα.
- Αριθμοί DV_{true}:
 - Συνολικά: 5247.
 - Γεγονότα με ένα DV_{true}: 3358.
 - Γεγονότα με δύο DV_{true}: 1868.
 - Γενοτότα με τρία DV_{true}: 21.

- Ο αριθμός τους είναι 4300.
- Όλες οι τροχιές που σχετίζονται με PV έχουν αφαιρεθεί.
- Όλα τα γεγονότα περιέχουν τουλάχιστον ένα DV.
- Τα γεγονότα περιέχουν προσομοιωμένα δεδομένα.
- Αριθμοί DV_{true}:
 - Συνολικά: 5247.
 - Γεγονότα με ένα DV_{true}: 3358.
 - Γεγονότα με δύο DV_{frue}: 1868.
 - Γενοτότα με τρία DV_{true}: 21.

- Ο αριθμός τους είναι 4300.
- Όλες οι τροχιές που σχετίζονται με PV έχουν αφαιρεθεί.
- Όλα τα γεγονότα περιέχουν τουλάχιστον ένα DV.
- Τα γεγονότα περιέχουν προσομοιωμένα δεδομένα.
- Αριθμοί DV_{true}:
 - Συνολικά: 5247.
 - Γεγονότα με ένα DV_{true}: 3358.
 - Γεγονότα με δύο DV_{true}: 1868.
 - Γενοτότα με τρία DV_{true}: 21.

- Ο αριθμός τους είναι 4300.
- Ολες οι τροχιές που σχετίζονται με PV έχουν αφαιρεθεί.
- Όλα τα γεγονότα περιέχουν τουλάχιστον ένα DV.
- Τα γεγονότα περιέχουν προσομοιωμένα δεδομένα.
- Αριθμοί DV_{true}:
 - Συνολικά: 5247.
 - Γεγονότα με ένα DV_{true}: 3358.
 - Γεγονότα με δύο DV_{true}: 1868.
 - Γενοτότα με τρία DV_{true}: 21.

- Αριθμός DV_{true}.
- Η θέση κάθε DV_{true}.
- Αριθμός τροχιών.
- Το πρώτο σημείο P_i και το τελευταίο σημείο P_i' της *i*-οστής τροχιάς.

- Αριθμός DV_{true}.
- Η θέση κάθε DV_{true}.
- Αριθμός τροχιών.
- Το πρώτο σημείο P_i και το τελευταίο σημείο P'_i της i-οστής τροχιάς.

- Αριθμός DV_{true}.
- Η θέση κάθε DV_{true}.
- Αριθμός τροχιών.
- Το πρώτο σημείο P_i και το τελευταίο σημείο P_i της i-οστής τροχιάς.

- Αριθμός DV_{true}.
- Η θέση κάθε DV_{true}.
- Αριθμός τροχιών.
- Το πρώτο σημείο P_i και το τελευταίο σημείο P'_i της i-οστής τροχιάς.

Απόσταση Μεταξύ Ευθειών

$$\mathrm{OA} = r_{\mathrm{i}} + \frac{u \cdot (n_{\mathrm{j}} \times r_{\mathrm{o}})}{\left\|u\right\|^{2}} \, n_{\mathrm{i}}, \label{eq:oa}$$

$$OB = \mathbf{r}_{j} + \frac{\mathbf{u} \cdot (\mathbf{n}_{i} \times \mathbf{r}_{o})}{\left\|\mathbf{u}\right\|^{2}} \, \mathbf{n}_{j},$$

$$\begin{split} &\boldsymbol{n}_i \equiv \boldsymbol{r}_i' - \boldsymbol{r}_i, \ \boldsymbol{n}_j \equiv \boldsymbol{r}_j' - \boldsymbol{r}_j. \\ &\boldsymbol{u} \equiv \boldsymbol{n}_i \times \boldsymbol{n}_i, \ \boldsymbol{r}_o \equiv \boldsymbol{r}_i - \boldsymbol{r}_i, \end{split}$$

2 Συνθήκες Επιλογής DV_{reco}

- Κάθε DV_{reco}:
 - ανακατασκευάζεται από δύο τροχιές, και
 - είναι το μέσο του διανύσματος απόστασής τους.
- Ot youtes: $0 \le \theta_i$, $\theta_i \le \pi/2$.
- Η απόσταση τροχιών μικρότερη ή ίση του DVCut.
- Το DVCut μικραίνει εκθετικά για κάθε DV_{reco} που υπολογίζεται.

- Βολλαπλές Τροχιές που Ανήκουν σε DV_{reco}
- Έλεγχος για τροχιές που δεν έχουν χρησιμοποιηθεί για ανακατασκευή DV_{reso}.
- Η απόστασή τους:

$$d_{i} = \frac{\|(\mathbf{p} - \mathbf{r}_{i}) \times \mathbf{n}_{i})\|}{\|\mathbf{n}_{i}\|}, \ \mathbf{n}_{i} \equiv \mathbf{r}'_{i} - \mathbf{r}_{i}$$

από το DV_{reco} μικρότερη από TrajectoryCut = DVCut/2.

4 Τροχιές που Έχουν Χρησιμοποιηθεί

- Σε κάθε τροχιά αντιστοιχίζεται ένας δείκτης.
- Στον πίνακα usedLineIndex αποθηκεύονται οι δείκτες από τις τροχιές που έχουν χρησιμοποιηθεί:
 - Είτε για την ανακατασκευή κάποιου DV_{reco},
 - είτε γιατί ανήκουν σε κάποιο DV_{reco}

- 4 Τροχιές που Έχουν Χρησιμοποιηθεί
- Σε κάθε τροχιά αντιστοιχίζεται ένας δείκτης.
- Στον πίνακα usedLineIndex αποθηκεύονται οι δείκτες από τις τροχιές που έχουν χρησιμοποιηθεί:
 - Είτε για την ανακατασκευή κάποιου DV_{reco},
 - είτε γιατί ανήκουν σε κάποιο DV_{reco}

- 4 Τροχιές που Έχουν Χρησιμοποιηθεί
- Σε κάθε τροχιά αντιστοιχίζεται ένας δείκτης.
- Στον πίνακα usedLineIndex αποθηκεύονται οι δείκτες από τις τροχιές που έχουν χρησιμοποιηθεί:
 - Είτε για την ανακατασκευή κάποιου DV_{reco},
 - είτε γιατί ανήκουν σε κάποιο DV_{reco}.

- 4 Τροχιές που Έχουν Χρησιμοποιηθεί
- Σε κάθε τροχιά αντιστοιχίζεται ένας δείκτης.
- Στον πίνακα usedLineIndex αποθηκεύονται οι δείκτες από τις τροχιές που έχουν χρησιμοποιηθεί:
 - Είτε για την ανακατασκευή κάποιου DV_{reco},
 - είτε γιατί ανήκουν σε κάποιο DV_{reco}

- Τροχιές που Έχουν Χρησιμοποιηθεί
- Σε κάθε τροχιά αντιστοιχίζεται ένας δείκτης.
- Στον πίνακα usedLineIndex αποθηκεύονται οι δείκτες από τις τροχιές που έχουν χρησιμοποιηθεί:
 - Είτε για την ανακατασκευή κάποιου DV_{reco},
 - είτε γιατί ανήκουν σε κάποιο DV_{reco}.

⑤ Υπολογισμός Σφαλμάτων

Για κάθε DV_{reco} που υπολογίζεται ακολουθείται η εξής διαδικασία:

- Υπολογίζονται όλα τα σφάλματα με τα DV_{true} που υπάρχουν στο γεγονός.
- Το σφάλμα που αντιστοιχεί στο εκάστοτε DV_{reco} είναι το μικρότερο από τα παραπάνω.

5 Υπολογισμός Σφαλμάτων

Για κάθε DV_{reco} που υπολογίζεται ακολουθείται η εξής διαδικασία:

- Υπολογίζονται όλα τα σφάλματα με τα DV_{true} που υπάρχουν στο γεγονός.
- Το σφάλμα που αντιστοιχεί στο εκάστοτε DV_{reco} είναι το μικρότερο από τα παραπάνω.

5 Υπολογισμός Σφαλμάτων

Για κάθε DV_{reco} που υπολογίζεται ακολουθείται η εξής διαδικασία:

- Υπολογίζονται όλα τα σφάλματα με τα DV_{true} που υπάρχουν στο γεγονός.
- Το σφάλμα που αντιστοιχεί στο εκάστοτε DV_{reco} είναι το μικρότερο από τα παραπάνω.

Δείκτες

I Efficiency:

Επίπεδο	Συνολικά	Ένα DV_{true}	Δ ύο DV_{true}
x-y	0.95	0.97	0.91
$\rho - z$	0.97	0.99	0.94

2 Purity:

Επίπεδο	Συνολικά	Ένα DV_{true}	Δ ύο DV_{true}
x - y	0.71	0.64	0.90
$\rho - z$	0.73	0.65	0.92

Δείκτες

I Efficiency:

Επίπεδο	Συνολικά	$\text{Ena DV}_{\text{true}}$	Δ ύο DV_{true}
x-y	0.95	0.97	0.91
$\rho - z$	0.97	0.99	0.94

2 Purity:

Επίπεδο	Συνολικά	Ένα DV_{true}	Δύο DV _{true}
$\overline{x-y}$	0.71	0.64	0.90
$\rho - z$	0.73	0.65	0.92

Σφάλματα - Συνολικά

Accuracy = 0.997

Accuracy = 0.977

Σφάλματα - Δεδομένα με Ένα DV_{true}

Accuracy = 0.997

Accuracy = 0.989

Σφάλματα - Δεδομένα με Δύο DV_{true}

Accuracy = 0.999

Accuracy = 0.967

Σχετικός Αριθμός DV_{reco} και DV_{true}

Αριθμός \overline{DV}_{reco} και \overline{DV}_{true} - $\overline{\Sigma}$ υνολικά

Αριθμός DV_{reco} και DV_{true} - Δεδομένα με Ένα DV_{true}

Αριθμός DV_{reco} και DV_{true} - Δεδομένα με Δύο DV_{true}

