MATH 477/577. Due Nov. 18

Name: _____

Homework/Computer Assignment

ID: _____

Homework set # 5

DATE:	

Please read lectures $20 \sim 31$ in your textbook and review your lecture notes. Graduate students do problems with a star ONLY; undergraduate students do problems without a star ONLY. When submit your work, please use this problem sheet as your cover page.

Question 1.

Fundamental concepts on Gaussian Elimination. For both undergraduates and graduate students.

- (a): Problem 20.3.
- (b): Problem 21.6.
- (c): Problem 23.1.

Question 2.

Fundamental concepts on Gaussian Elimination. For both undergraduates and graduate students. In class, we derived LU = A, where $L = (L_1^{-1}L_2^{-1} \cdots L_{m-1}^{-1})$ and L_k is calculated using Gaussian multiplier $l_{jk} = \frac{a_{jk}}{a_{kk}}$. Let's define a vector $l_k = [0,0,\cdots l_{k+1,k}\cdots l_{m,k}]^T$.

(a): show that $L_k = I - l_k e_k^*$ and $(I - l_k e_k^*)(I + l_k e_k^*) = I$. This is why we can write down L_k^{-1} easily. (b): using the result from part (a), derive a formula for $L_k^{-1}L_{k+1}^{-1}$ and write down matrix $L = L_1^{-1}L_2^{-1}\cdots L_{m-1}^{-1}$ explicitly in terms of Gaussian multiplier.

Question 3.

Fundamental concepts on Eigenvalue Problems

- (a): Problem 24.1
- (b*): Problem 24.1
- (c*): Problem 25.1

Computer Assignment #5 for ALL students:

- (1): Do problem 22.2
- (2): Do problem 26.2 using the conclusion of 26.1.