**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

This listing of claims will replace all prior versions, and listings, of claims in the application.

## **Listing of Claims:**

1. (Currently amended) A method for logically remapping the commands to logical buttons for a navigational device <u>comprising a computing device</u> coupled to a physically rotate-able display device having a display, said navigational device having logical buttons and associated commands for such logical buttons, said method comprising;

determining an orientation for the display device detecting a change in orientation of the display from a first orientation to a second orientation at the computing device; and

responsive to the detection of the change in orientation of the display, automatically logically remapping the commands to the logical buttons based on the <u>second</u> orientation of the display device.

- 2. (Original) The method of claim 1 wherein the display device is a visual display device.
- 3. (Original) The method of claim 1 wherein the display device is a non-visual display device.
- 4. (Original) The method of claim 1 wherein the display device is one from the group comprising: visual display device, audio display device, and tactile display device.
- 5. (Currently amended) The method of claim 1 wherein, if the display on the display device is changed to a different orientation, presumably to match a change in a physical orientation of the display device, then the logical mapping of the commands to the logical buttons occurs automatically, further comprising detecting a change in orientation of the display device at the computing device and, responsive to the detection of the change in orientation of the display device, automatically changing the orientation of the display.

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

6. (Currently amended) The method of claim 1 wherein, if the display on the display device is changed to a different orientation, presumably to match a change in a physical orientation of the display device, then the logical mapping of the commands to the logical buttons occurs in response to user input, further comprising detecting a command to change the orientation of the display from the first orientation to the second orientation at the computing device and, responsive to the detection of the command, automatically changing the orientation of the display from the first orientation to the second orientation.

- 7. (Canceled)
- 8. (Canceled)
- 9. (Original) The method of claim 1 wherein, if the navigational control device is symmetrical both vertically and horizontally, the logical remapping rotates the commands to the logical buttons.
- 10. (Currently amended) The method of claim 1 wherein, for the navigational control device that are is symmetrical along a one axis, including but not limited to rocking wheels, super wheels, rocking dogbones, and super dogbones, and for reference purposes the one axis is initially oriented vertically, then the commands are logically remapped to the logical buttons, relative to the display devices original first orientation.
- 11. (Currently amended) The method of claim 10 wherein:

if the display device is rotated one quarter to the right, the commands for UP and DOWN are transposed;

if the display <del>device</del> is rotated one half to the right, then the commands for UP and DOWN are transposed, and the commands for PREV and NEXT are transposed; and

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

if the display device is rotated three-quarters to the right, then the commands for PREV and NEXT are transposed.

12. (Currently amended) A user interface system attached to a display device, said system implementing the method of claim 1 for logically remapping the commands to logical buttons for a navigational device coupled to a physically rotate-able display device having a display, said navigational device having logical buttons and associated commands for such logical buttons, said system comprising;

a subsystem for determining an orientation for the display device detecting a change in orientation of the display from a first orientation to a second orientation; and

a subsystem for, responsive to the detection of the change in orientation of the display, automatically logically remapping the commands to the logical buttons based on the second orientation of the display device.

- 13. (Currently amended) The <u>user interface</u> system of claim 12 wherein the display device is a visual display device.
- 14. (Currently amended) The <u>user interface</u> system of claim 12 wherein the display device is a non-visual display device.
- 15. (Currently amended) The <u>user interface</u> system of claim 12 wherein the display device is one from the group comprising: visual display device, audio display device, and tactile display device.
- 16. (Currently amended) The <u>user interface</u> system of claim 12 wherein, if the display on the display device is changed to a different orientation, presumably to match a change in a physical orientation of the display device, then the logical mapping of the commands to the

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

logical buttons occurs automatically, further comprising a subsystem for detecting a change in orientation of the display device, and a subsystem for, responsive to the detection of the change in orientation of the display device, automatically changing the orientation of the display.

17. (Currently amended) The <u>user interface</u> system of claim 12 <del>wherein, if the display on the display device is changed to a different orientation, presumably to match a change in a physical orientation of the display device, then the logical mapping of the commands to the logical buttons occurs in response to user input, further comprising a subsystem for detecting a command to change the orientation of the display from the first orientation to the second orientation, and a subsystem for, responsive to the detection of the command, automatically changing the orientation of the display from the first orientation to the second orientation.</del>

- 18. (Canceled)
- 19. (Canceled)
- 20. (Currently amended) The <u>user interface</u> system of claim 12 wherein, if the navigational control device is symmetrical both vertically and horizontally, the logical remapping rotates the commands to the logical buttons.
- 21. (Currently amended) The <u>user interface</u> system of claim 12 wherein, for the navigational control device that are <u>is</u> symmetrical along a one axis, including but not limited to rocking wheels, super wheels, rocking dogbones, and super dogbones, and for reference purposes the one axis is initially oriented vertically, then the commands are logically remapped to the logical buttons, relative to the <del>display devices original</del> first orientation.

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

22. (Currently amended) The <u>user interface</u> system of claim 21 wherein:

if the display <del>device</del> is rotated one quarter to the right, the commands for UP and DOWN are transposed;

if the display <del>device</del> is rotated one half to the right, then the commands for UP and DOWN are transposed, and the commands for PREV and NEXT are transposed; and

if the display device is rotated three-quarters to the right, then the commands for PREV and NEXT are transposed.

23. (Currently amended) A computer-readable medium having computer-readable instructions for a method of logically remapping the commands to logical buttons for a navigational device coupled to a physically rotate-able display device having a display, said navigational device having logical buttons and associated commands for such logical buttons, said method comprising;

determining an orientation for the display device detecting a change in orientation of the display from a first orientation to a second orientation; and

responsive to the detection of the change in orientation of the display, automatically logically remapping the commands to the logical buttons based on the <u>second</u> orientation of the display <u>device</u>.

- 24. (Currently amended) The computer-readable instructions medium of claim 23 wherein the display device is a visual display device.
- 25. (Currently amended) The computer-readable instructions medium of claim 23 wherein the display device is a non-visual display device.

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

26. (Currently amended) The computer-readable instructions medium of claim 23 wherein the display device is one from the group comprising: visual display device, audio display device, and tactile display device.

- 27. (Currently amended) The computer-readable instructions medium of claim 23 wherein, if the display on the display device is changed to a different orientation, presumably to match a change in a physical orientation of the display device, then the logical mapping of the commands to the logical buttons occurs automatically the method further comprises detecting a change in orientation of the display device and, responsive to the detection of the change in orientation of the display device, automatically changing the orientation of the display.
- 28. (Currently amended) The computer-readable instructions medium of claim 23 wherein, if the display on the display device is changed to a different orientation, presumably to match a change in a physical orientation of the display device, then the logical mapping of the commands to the logical buttons occurs in response to user input the method further comprises detecting a command to change the orientation of the display from the first orientation to the second orientation and, responsive to the detection of the command, automatically changing the orientation of the display from the first orientation to the second orientation.
- 29. (Canceled)
- 30. (Canceled)
- 31. (Currently amended) The computer-readable <u>instructions medium</u> of claim 23 wherein, if the navigational control device is symmetrical both vertically and horizontally, the logical remapping rotates the commands to the logical buttons.

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

32. (Currently amended) The computer-readable <u>instructions medium</u> of claim 23 wherein, for <u>the navigational control</u> device <u>that are is symmetrical along a one axis</u>, including but not limited to rocking wheels, super wheels, rocking dogbones, and super dogbones, and for reference purposes the one axis is initially oriented vertically, then the commands are logically remapped to the logical buttons, relative to the <u>display devices original</u> first orientation.

33. (Currently amended) The computer-readable instructions medium of claim 32 wherein:

if the display device is rotated one quarter to the right, the commands for UP and DOWN are transposed;

if the display device is rotated one half to the right, then the commands for UP and DOWN are transposed, and the commands for PREV and NEXT are transposed; and

if the display <del>device</del> is rotated three-quarters to the right, then the commands for PREV and NEXT are transposed.

34. (Currently Amended) A hardware control device for a method of logically remapping the commands to logical buttons for a navigational device coupled to a physically rotate-able display device having a display, said navigational device having logical buttons and associated commands for such logical buttons, said method navigational device further comprising:

determining an orientation for the display device a component configured to detect a change in orientation of the display from a first orientation to a second orientation[[;]] and, responsive to the detection of the change in orientation of the display, automatically logically remapping the commands to the logical buttons based on the second orientation of the display device.

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

35. (Original) The hardware control device of claim 34 wherein the display device is a

visual display device.

36. (Original) The hardware control device of claim 34 wherein the display device is a

non-visual display device.

37. (Original) The hardware control device of claim 34 wherein the display device is one

from the group comprising: visual display device, audio display device, and tactile display

device.

38. (Currently amended) The hardware control device of claim 34 wherein, if the display

on the display device is changed to a different orientation, presumably to match a change in a

physical orientation of the display device, then the logical mapping of the commands to the

logical buttons occurs automatically the component is further configured to detect a change in

orientation of the display device and, responsive to the detection of the change in orientation

of the display device, automatically changing the orientation of the display.

39. (Currently amended) The hardware control device of claim 34 wherein, if the display

on the display device is changed to a different orientation, presumably to match a change in a

physical orientation of the display device, then the logical mapping of the commands to the

logical buttons occurs in response to user input the component is further configured to detect

a command to change the orientation of the display from the first orientation to the second

orientation and, responsive to the detection of the command, automatically changing the

orientation of the display from the first orientation to the second orientation.

40. (Canceled)

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

41. (Canceled)

42. (Original) The hardware control device of claim 34 wherein, if the navigational

control device is symmetrical both vertically and horizontally, the logical remapping rotates

the commands to the logical buttons.

43. (Currently amended) The hardware control device of claim 34 wherein, for the

navigational control device that are is symmetrical along a one axis, including but not limited

to rocking wheels, super wheels, rocking dogbones, and super dogbones, and for reference

purposes the one axis is initially oriented vertically, then the commands are logically

remapped to the logical buttons, relative to the display devices original first orientation.

44. (Currently amended) The hardware control device of claim 43 wherein:

if the display device is rotated one quarter to the right, the commands for UP and

DOWN are transposed;

if the display device is rotated one half to the right, then the commands for UP and

DOWN are transposed, and the commands for PREV and NEXT are transposed; and

if the display device is rotated three-quarters to the right, then the commands for

PREV and NEXT are transposed.

45. (Canceled)

46. (Withdrawn) A system for increasing user interface effectiveness for a navigational

device coupled to a physically rotate-able display device having a display, said navigational

device having logical buttons and associated commands for such logical buttons, wherein

said navigational device is rotationally movable separate from the display device.

Page 11 of 19

**DOCKET NO.:** MSFT-3471/304033.02

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

47. (Withdrawn) The system of claim 46 wherein the navigational device is capable of being rotated in the opposite direction of the display device when the display device is being

**PATENT** 

rotated.

48. (Withdrawn) The system of claim 46 wherein the orientation of the navigational

device is capable of being rotated independently of the orientation of the display device.

49. (Withdrawn) A method for increasing user interface effectiveness for a navigational

device coupled to a physically rotate-able display device having a display, said navigational

device having logical buttons and associated commands for such logical buttons, and said

navigational device being rotationally movable separate from the display device, said method

comprising the rotation of said navigational device.

50. (Withdrawn) The method of claim 49 wherein the navigational device is rotated in

the opposite direction of the display device when the display device is being rotated.

51. (Withdrawn) The method of claim 49 wherein the orientation of the navigational

device is rotated independently of the orientation of the display device.

52. (Withdrawn) A computer-readable medium having computer-readable instructions

for a navigational device coupled to a physically rotate-able display device having a display,

said navigational device having logical buttons and associated commands for such logical

buttons, wherein said navigational device is rotationally movable separate from the display

device.

Page 12 of 19

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

53. (Withdrawn) The computer-readable medium of claim 52 wherein the navigational

device is capable of being rotated in the opposite direction of the display device when the

display device is being rotated.

54. (Withdrawn) The computer-readable medium of claim 52 wherein the orientation of

the navigational device is capable of being rotated independently of the orientation of the

display device.

55. (Withdrawn) A hardware control device for increasing user interface effectiveness

comprising a navigational device coupled to a physically rotate-able display device having a

display, said navigational device having logical buttons and associated commands for such

logical buttons, wherein said navigational device is rotationally movable separate from the

display device.

56. (Withdrawn) The hardware control device of claim 55 wherein the navigational

device is capable of being rotated in the opposite direction of the display device when the

display device is being rotated.

57. (Withdrawn) The hardware control device of claim 55 wherein the orientation of the

navigational device is capable of being rotated independently of the orientation of the display

device.

58. (Withdrawn) A method for increasing user interface effectiveness for a navigational

device coupled to a physically rotate-able display device having a display, said navigational

device having logical buttons and associated commands for such logical buttons, said method

for said navigational device comprising means by which said navigational device can be

rotated separate from the display device.

Page 13 of 19

**Application No.:** 10/769,691

Office Action Dated: November 12, 2008

59. (Withdrawn) The method of claim 58 wherein the navigational device comprises means for being rotated in the opposite direction of the display device when the display device is being rotated.

60. (Withdrawn) The method of claim 58 wherein the orientation of the navigational device comprises means for being rotated independently of the orientation of the display device.