ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Αλφάβητο είναι οποιοδήποτε πεπερασμένο σύνολο συμβόλων. Συμβολίζεται με Σ

Παραδείγματα:

- Σ={0,1} το δυαδικό αλφάβητο
- $\Sigma = \{a,b\}$
- Σ={Α,Β,Γ,...,Ω} το αλφάβητο των ελληνικών κεφαλαίων γραμμάτων

Έστω Σ ένα αλφάβητο.

- Γλώσσα του αλφαβήτου Σ είναι οποιοδήποτε υποσύνολο του Σ*. Συνήθως συμβολίζεται με L.
- Το σύνολο όλων των συμβολοσειρών που μπορούμε να παράγουμε από σύμβολα του Σ, συμβολίζεται με Σ*.
- Το σύνολο Σ* καλείται **αστέρι Kleene** του Σ και συμβολίζει την διάταξη 0 ή περισσότερων συμβόλων του Σ

Παράδειγμα

Έστω Σ={0,1} το δυαδικό αλφάβητο. Τότε:

 $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \dots\}$

Ορισμός: Μόνο τα παρακάτω είναι κανονικές εκφράσεις:

- Ø είναι η κ.ε. που αντιστοιχεί στην κενή γλώσσα.
- ε είναι η κ.ε. που αντιστοιχεί στην γλώσσα (ε)
- Για κάθε σύμβολο $\sigma \in \Sigma$, σ είναι η κ.ε. που αντιστοιχεί στην γλωσσα (σ)
- Αν r και s είναι εκφράσεις που αντιστοιχούν στις γλώσσες Lr και Ls, τότε και οι (rs), (r+s) και r^* είναι οι κανονικές εκφράσεις που αντιστοιχούν στις κανονικές νλώσσες LrLs, Lr + Ls,

Πράξεις Γλωσσών:

Έστω L, L₁, L₂ γλώσσες του αλφαβήτου Σ. Ορίζονται οι γλώσσες:

- <u>Ένωση Γλωσσών:</u> $L_1 \cup L_2 = \{w | w \in L_1 \text{ ή } w \in L_2\}$
- **Τομή Γλωσσών:** $L_1 \cap L_2 = \{w | w \in L_1 \text{ και } w \in L_2\}$
- Παράθεση (ή Συνένωση) Γλωσσών:

$$\mathbf{L}_1\mathbf{L}_2 = \{xy | x \in \mathbf{L}_1 \text{ kal } y \in \mathbf{L}_2\}$$

- Συμπλήρωμα Γλωσσας: $\overline{L} = \{w | w \notin L\}$
- **Αστέρι Kleene Γλωσσας:** $L^* = \{w | H w είναι παράθεση 0 \}$ ή περισσοτέρων συμβολοσειρών της L}.

Παραδείγματα κανονικών εκφράσεων στο αλφάβητο: Σ={0,1}

 L_1 ={ w | w τελειώνει με 1 } (0+1)*1

 $L_2=\{ w \mid w αρχίζει με 00 \}$ 00(0+1)*

 $L_3 = \{ w \mid w \pi \epsilon \rho i \epsilon \chi \epsilon i \tau o 01 \}$ (0+1)*01(0+1)*

 $L_4=\{ w \mid w \text{ έχει } \mu \eta \kappa \sigma \varsigma (\alpha \kappa \rho \iota \beta \omega \varsigma) 2 \}$ (0+1)(0+1)

 $L_s=\{ w \mid w$ έχει **μήκος** τουλάχιστον 2 $\}$ (0+1)(0+1)(0+1)*

 $L_6=\{ w \mid w$ έχει **μήκος** το πολύ 2 $\}$ ε+0+1+00+01+10+11

 $L_7=\{ w \mid w έχει$ **άρτιο** $μήκος \}$ ((0+1)(0+1))*

 $L_8=\{ w \mid w έχει περιττό μήκος \}$ ((0+1)(0+1))*(0+1)

 $L_{a}=\{ w \mid w$ έχει άρτιο μήκος **ή** αρχίζει με 00 $\}$

((0+1)(0+1))*+00(0+1)*

L₁₀={ w | w δεν αρχίζει με 01} $(00+10+11)(0+1)*+0+1+\epsilon$

 $L_{11} = { w | w δεν περιέχει το 01}$ 1*0*

(1*01*0)*1* L_{12} ={ w | w περιέχει **άρτια** 0}

ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΑ ΠΕΠΕΡΑΣΜΕΝΑ ΑΥΤΟΜΑΤΑ (ΝΠΑ)

ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Πεπερασμένο Αυτόματο Μ, της γλώσσας L είναι μία μηχανή που με είσοδο μία συμβολοσειρά $x \in \Sigma^*$

- Av $x \in L$ τότε «απαντά» NAI.
 - Ή πιο τυπικά... Αναγνωρίζει ή κάνει δεκτές τις συμβολοσειρές που ανήκουν στην L
- Av $x \notin L$ τότε «απαντά» OXI.
 - Ή πιο τυπικά... Απορρίπτει τις συμβολοσειρές που δεν ανήκουν στην L

Ντετερμινιστικό καλείται ένα Πεπερασμένο Αυτόματο αν από κάθε κατάσταση υπάρχει ακριβώς μία εξερχόμενη μετάβαση με κάθε σύμβολο του αλφαβήτου

Παράδειγμα 1

Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w $\in \{0,1\}^*$ | w τελειώνει με 00} είναι το ακόλουθο:

Και τυπικά περιγράφεται από την πεντάδα: $M=(Q, \Sigma, q_0, \delta, F)$ όπου:

- $Q=\{A,B,\Gamma\}$
- $\Sigma = \{0, 1\}$
- $q_0 = A$
- Η δ μπορεί να περιγραφεί από τον πίνακα μετάβασης:
- $F=\{\Gamma\}$

Παράδεινμα 2

Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της νλώσσας L={w $\in \{0,1\}^*$ | w έχει μήκος μεγαλύτερο από 2} είναι το ακόλουθο:

Παράδεινμα 3

To NΠA της γλώσσας L={ $\mathbf{w} \in \{0,1\}^* \mid \mathbf{w}$ έχει περιττό πλήθος 0} και το NΠA της γλώσσας L'= $\{w \in \{0,1\}^* \mid w \text{ έχει άρτιο πλήθος } 0\}$

Παράδειγμα 4

To NΠΑ της γλώσσας L={ $\mathbf{w} \in \{0,1\}^*$ | \mathbf{w} έχει περιττό πλήθος 0 και άρτιο πλήθος 1}

MH NTETEPMINIΣΤΙΚΑ ΠΕΠΕΡΑΣΜΕΝΑ AYTOMATA (ΜΠΑ) KANONIKEΣ ΓΛΩΣΣΕΣ www.psounis.gr

- Από μία κατάσταση μπορεί να μεταβαίνουμε σε διαφορετικές καταστάσεις με το ίδιο σύμβολο
- Από μία κατάσταση μπορεί να μην καθορίζεται μετάβαση με διάβασμα κάποιου συμβόλου
- Είναι δυνατές οι ε-μεταβάσεις (μεταβάσεις χωρίς διάβασμα κάποιου συμβόλου)

Τυπικά ένα ΜΠΑ μίας γλώσσας είναι ένα πεπερασμένο αυτόματο το οποίο:

- Απαντά ΝΑΙ για τις συμβολοσειρές που ανήκουν στην γλώσσα (πρέπει να υπάρχει μονοπάτι που οδηγεί σε τελική κατάσταση).
- Απαντά ΌΧΙ για τις συμβολοσειρές που δεν ανήκουν στην γλώσσα (δεν υπάρχει μονοπάτι που να οδηγεί σε τελική κατάσταση)

Παράδειγμα 1

Το Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας $L=(0+1)^*00$ είναι το ακόλουθο:

Και τυπικά περιγράφεται από την πεντάδα: $M=(Q, \Sigma, q_0, \delta, F)$ όπου:

- Q={A,B,Γ},
- $\Sigma = \{0,1\},$
- $q_0 = A$
- Η δ μπορεί να περιγραφεί από τον πίνακα μετάβασης:

	0	1
A	{A,B}	{A}
В	$\{\Gamma\}$	Ø
Γ	Ø	Ø

• F={Γ}

Παράδειγμα 2

Το Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας $L = 1(01+011)^*$ είναι το ακόλουθο:

Τρόπος Λειτουργίας με τη συμβολοσειρά 101011

Αρχή	1	О	1	0	1	1	ΤΕΛΟΣ
A -	В	Γ Δ	→B E	→Γ- →Δ- >⊗	→B- →E-	→⊗ →B	NAI

Διότι, η Β είναι τελική

Τρόπος Λειτουργίας με τη συμβολοσειρά 101000

							•
Αρχή	1	0	1	О	0	О	ΤΕΛΟΣ
Λ -	D _	L _r	D_	L _r _	3		OXI
A	D	1 _	\sim D \sim		70		UAI
		$\rightarrow \Delta$	→E \	$\rightarrow \Delta -$	→⊗		
		^	-	N _a	ľ		
	l	l .	l	── ⊗			

Διότι, δεν υπάρχει μονοπάτι που οδηγεί σε τελική

ΜΠΑ με ε-κινήσεις (ΜΠΑ-ε)

Από μία κατάσταση χωρίς διάβασμα (διάβασμα ε)

- Μένουμε στην ίδια κατάσταση
- Μεταβαίνουμε σε όσες καταστάσεις μπορούμε χωρίς διάβασμα (ακολουθώντας δηλαδή μονοπάτι ε-κινήσεων)

Ένα ΜΠΑ με ε-κινήσεις αναφέρεται και ως ΜΠΑ-ε

Παράδειγμα

Το Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας $L = (01)^*(10)^*(00)^*$ είναι το ακόλουθο:

Και τυπικά περιγράφεται από την πεντάδα: Μ=(Q,Σ,q₀, δ, F) όπου:

- $Q=\{A,B,\Gamma,\Delta,E,Z\},$
- $\Sigma = \{0,1\},$
- $q_0 = A$
- Η δ μπορεί να περιγραφεί από τον πίνακα μετάβασης:

	0	1	ε
A	{B}	Ø	$\{\Gamma\}$
В	Ø	{A}	Ø
Γ	Ø	$\{\Delta\}$	{E}
Δ	$\{\Gamma\}$	Ø	Ø
Е	{Z}	Ø	Ø
Z	{E}	Ø	Ø

 $F=\{A,\Gamma,E\}$

Τρόπος Λειτουργίας με τη συμβολοσειρά 0100

Απαντάει ΝΑΙ, διότι υπάρχει μονοπάτι που οδηγεί σε τελική κατάσταση με διάβασμα των συμβόλων.

Αρχή	3	О	3	1	3	0	3	О	3	ΤΕΛΟΣ
A	→A - →Γ - →E -	→B - →⊗ →Z -	→B- →Z-	→A- →⊗	→A- →Γ- →E-	→B →⊗ →Z-	→B - →Z -	→∞ →Z-	→Z	NAI

Τρόπος Λειτουργίας με τη συμβολοσειρά 0001

Απαντάει ΟΧΙ, διότι δεν υπάρχει μονοπάτι που οδηγεί σε τελική κατάσταση με διάβασμα των συμβόλων.

Αρχή	ε	0	ε	0	3	0	3	1	ε	ΤΕΛΟΣ
A	→A- →Γ- →E-	→ B— →⊗ → Z—	→ B- → Z-		→ E -	→ Z-	→Z -	→ ⊗		OXI

ΚΛΕΙΣΤΟΤΗΤΕΣ ΠΡΑΞΕΩΝ στις ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Ορισμός: Λέμε ότι ένα σύνολο είναι κλειστό σε μία πράξη, αν το αποτέλεσμα της πράξης επί δύο στοιχείων του συνόλου δίνει στοιχείο που παραμένει στο σύνολο:

- Οι φυσικοί είναι κλειστοί στην πράξη της πρόσθεσης.
- Οι φυσικοί δεν είναι κλειστοί στην πράξη του πολλαπλασιασμού.

Θεώρημα: Οι **κανονικές γλώσσες είναι κλειστές** και στις 5 πράξεις: Ένωση, Τομή, Συμπλήρωμα, Παράθεση, Αστέρι Kleene.

Κλειστότητα των Κανονικών Γλωσσών στην Ένωση

- Η L_1 είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω $\mathbf{r_1}$. Η $\mathbf{L_2}$ είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω \mathbf{r}_2
- Η L_1 U L_2 περιγράφεται από την κανονική έκφραση $\mathbf{r}_1 + \mathbf{r}_2$, άρα είναι κανονική γλώσσα.

Κλειστότητα των Κανονικών Γλωσσών στην Παράθεση

- Η L₁ είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω \mathbf{r}_1 . Η \mathbf{L}_2 είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω \mathbf{r}_2
- H L_1L_2 περιγράφεται από την κανονική έκφραση $\mathbf{r}_1\mathbf{r}_2$, άρα είναι κανονική γλώσσα.

Κλειστότητα των Κανονικών Γλωσσών στο Αστέρι Kleene

- Η L είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω r.
- Η L^* περιγράφεται από την κανονική έκφραση \boldsymbol{r}^* , άρα είναι κανονική γλώσσα.

Κλειστότητα των Κανονικών Γλωσσών στο Συμπλήρωμα

- Η L είναι κανονική άρα υπάρχει ένα ντετερμινιστικό πεπερασμένο αυτόματο Μ που αποφασίζει την γλώσσα.
- Κατασκευάζουμε ΝΠΑ για την \overline{L} ως εξής: Είναι το Μ, κάνοντας κάθε τελική: μη τελική και κάθε μη τελική: τελική.

Παράδειγμα:

Κλειστότητα των Κανονικών Γλωσσών στην Τομή

- Οι L_1, L_2 είναι κανονικές άρα υπάρχουν ντετερμινιστικά πεπερασμένα αυτόματα Μ₁, Μ₂ που τις αποφασίζουν
- Κατασκευάζουμε ΝΠΑ για την $L_1 \cap L_2$ ως εξής: Καταστάσεις: Καρτεσιανό Γινόμενο. Μεταβάσεις: Προσομοιώνουν τα αρχικά αυτόματα. Τελική: Συνδυασμός Τελικών.

ΝΠΑ για Ενωση: Τελικές: κάθε κατάσταση που περιέχει τελική **ΝΠΑ για Διαφορά:** Τελική της L_1 και μη τελική της L_2

Παράδειγμα:

ΜΕΤΑΤΡΟΠΗ ΚΑΝΟΝΙΚΗΣ ΕΚΦΡΑΣΗΣ σε ΜΠΑ-ε

1. Κανονικές Εκφράσεις για τις: \varnothing , ε , σ

και για μία συμβολοσειρά(π.χ. 001):

2. Κανόνας της παράθεσης : R_1R_2

- Φεύγουν ε-κινήσεις από τις τελικές του $M(R_1)$ προς την αρχική του M(R₂)
- Οι τελικές του $M(R_1)$ γίνονται μη τελικές καταστάσεις.

3. Κανόνας του Αστεριού Kleene: R*

- Προσθέτουμε μία νέα αρχική κατάσταση (που είναι και τελική)
- Με ε-κίνηση πάμε από την νέα αρχική στην προηγούμενη αρχική.
- Με ε-κινήσεις φεύγουμε από τις προηγούμενες τελικές προς την νέα αρχική.
- Οι προηγούμενες τελικές γίνονται μη τελικές καταστάσεις

3. Κανόνας του + : R₁+R₂

- Προσθέτουμε μία νέα αρχική κατάσταση
- Με ε-κινήσεις πηγαίνουμε από την νέα αρχική κατάσταση στις προηγούμενες αρχικές.

Παράδειγμα για τη γλώσσα L=(1+01)*

ΣΧΕΔΙΑΣΜΟΣ ΜΠΑ (ΚΕ σε ΜΠΑ εμπειρικά)

ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Μεθοδολογία 2: Αστέρι Kleene με συμβολοσειρές δημιουργεί κύκλο μήκους όσα και τα σύμβολα που παρατίθενται [Τελική η αρχική] KE: (01+110)* E

KE: (01+11)* (10+00)*

θα ενώνονται με ε-κινήση [Τελική η «δεξιότερη»]

Μεθοδολογία 3: Περίπλοκες κατασκευές που παρατίθενται

Μεθοδολογία 5: Αστέρι Kleene με περίπλοκη κατασκευή: κατασκευάζουμε πρώτα την εσωτερική παράσταση και στο τέλος με ε-κίνηση πάμε από τις τελικές στην αρχική. Η αρχική γίνεται μοναδική τελική.

Μεθοδολογία 4: Περίπλοκες κατασκευές που ενώνονται με +, θα φεύγουν ε-κινήσεις από νέα αρχική κατάσταση και θα κατασκευάζουμε ξεχωριστά τα μέρη

Απλοποίηση ε-κινήσεων

ΜΕΤΑΤΡΟΠΗ ΜΠΑ-ε σε ΜΠΑ

ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Εμπειρικά θα εφαρμόζουμε τον αλγόριθμο ως εξής:

- Θα βάζουμε τις ίδιες καταστάσεις
- Θα βάζουμε την ίδια αρχική και τις ίδιες τελικές.
- Θα παρατηρούμε αν υπάρχει μονοπάτι εκινήσεων από την αρχική σε κάποια τελική οπότε και η αρχική θα γίνεται τελική.
- Θα κατασκευάζουμε στο πρόχειρο ένα πίνακα μετάβασης που για κάθε κατ/ση και σύμβολο θα υπολογίζουμε το ε-σ-ε του:
- ε: που πάμε από την κατάσταση χωρίς διάβασμα συμβόλου (προσοχή ότι πάντα μένουμε και στην ίδια κατάσταση χωρίς διάβασμα συμβόλου)
- σ: που πηγαίνουμε από τις καταστάσεις του προηγούμενου βήματος με το σύμβολο που μελετάμε.
- ε: που πάμε από τις καταστάσεις του προηγούμενου βήματος χωρίς διάβασμα συμβόλου

Για παράδειγμα στο αυτόματο:

- Π.χ. για την κατ/ση Α με 0:
 - ε: Α,Β,Δ
 - 0:⊗,⊗,B
 - ε: Β,Δ

Τυπικά η μετάβαση είναι: .

$$\delta(A, 0) = \varepsilon \left(\hat{\delta}(\varepsilon(A), 0)\right) = \varepsilon \left(\hat{\delta}(\{A, B, \Delta\}, 0)\right) =$$

$$\varepsilon \left(\hat{\delta}(\{A\}, 0) \cup \hat{\delta}(\{B\}, 0) \cup \hat{\delta}(\{\Delta\}, 0)\right) =$$

$$\varepsilon(\{B\}) = \{B, \Delta\}$$

ΠΑΡΑΔΕΙΓΜΑ: Μετατρέπουμε το ακόλουθο ΜΠΑ-ε στο ισοδύναμο ΜΠΑ:

ΠΡΟΧΕΙΡΟ

	0	1
A	$\epsilon:A,B,\Delta$ $\circ:\otimes,\otimes,B$ $\epsilon:B,\Delta$	$\epsilon:A,B,\Delta$ $1:\otimes,\otimes,\Gamma$ $\epsilon:\Gamma$
В	ε:Β,Δ ο:⊗,Β ε:Β,Δ	ε:Β,Δ 1:⊗,Γ ε:Γ
Γ	ε:Γ ο:⊗ ε:	ε:Γ 1:Α ε:Α,Β,Δ
Δ	ε:Δ ο:Β ε:Β,Δ	ε:Δ 1:Γ ε:Γ

ΚΑΘΑΡΟ:

Ο πίνακας μετάβασης που προκύπτει από τον αλγόριθμο μετατροπής είναι:

	0	1
A	{B,Δ}	$\{\Gamma\}$
В	{B,Δ}	$\{\Gamma\}$
Γ	Ø	$\{A,B,\Delta\}$
Δ	{B,Δ}	$\{\Gamma\}$

Εμπειρικά θα εφαρμόζουμε τον αλγόριθμο ως εξής:

Θα κατασκευάζουμε τον πίνακα μετάβασης του νέου ΝΠΑ ως εξής:

- Θα βάζουμε μόνο την αρχική κατάσταση στον νέο πίνακα.
- Όποιες νέες καταστάσεις προκύπτουν θα τις θέτουμε προς μελέτη σε νέες γραμμές του πίνακα μετάβασης του ΝΠΑ.
- Η μελέτη μίας κατάστασης Χ με το σύμβολο σ γίνεται ως εξής:
 - Για κάθε κατάσταση που περιέχεται στο Χ καταγράφουμε το σύνολο των καταστάσεων που πηγαίνουμε με το σ (χρήσιμος ο πίνακας μετάβασης του ΜΠΑ). Τελικώς δίνουμε την ένωση των συνόλων αυτών.
- Ο πίνακας μετάβασης θα σταματά όταν δεν θα υπάρχουν νέες καταστάσεις προς διερεύνηση.
- Θα δίνουμε την σχηματική απεικόνιση του ΝΠΑ
 - Η αρχική κατάσταση είναι η ίδια
 - Οι τελικές καταστάσεις είναι όσες περιέχουν τελική του ΜΠΑ.

ΠΑΡΑΔΕΙΓΜΑ: Μετατρέπουμε το ακόλουθο ΜΠΑ στο ισοδύναμο ΝΠΑ:

ΠΡΟΧΕΙΡΟ (Πιν. Μεταβ.του ΜΠΑ)

	0	1
A	Ø	{B,Γ}
В	Ø	Ø
Γ	$\{\Gamma\}$	{B}

ΚΑΘΑΡΟ: Εφαρμόζω τον αλγόριθμο μετατροπής ΜΠΑ=>ΝΠΑ

	0	1
{A}	Ø	{B,Γ}
Ø	Ø	Ø
{B,Γ}	$\{\Gamma\}$	{B}
$\{\Gamma\}$	$\{\Gamma\}$	{B}
{B}	Ø	Ø

Παράδειγμα:

Απλοποιούμε το ΝΠΑ του σχήματος:

Κανόνας Απλοποίησης 1: Διαγράφονται οι καταστάσεις που δεν υπάρχει μονοπάτι από την αρχική κατάσταση σε αυτές.

Απλοποιείται η κατάσταση Δ (δεν υπάρχει μονοπάτι που να οδηγεί σε αυτήν από την αρχική κατάσταση)

Σημείωση:

Οι κανόνες απλοποίησης είναι επαναληπτικοί. Τους εφαρμόζουμε εωσότου να μην εφαρμόζονται άλλο.

Κανόνας Απλοποίησης 2: Ενοποιούνται καταστάσεις που είναι και οι δύο τελικές ή μη τελικές και έχουν την ίδια συμπεριφορά: Με το ίδιο σύμβολο πηγαίνουν στην ίδια κατάσταση.

Κατασκευάζουμε τον πίνακα μετάβασης του ΝΠΑ

		О	1
>	A	Γ	В
	В	Γ	В
	Γ	E	В
	Е	E	Z
f	Z	Е	Z

Οι Α,Β ενοποιούνται διότι έχουν την ίδια συμπεριφορά. Μετονομάζω σε Κ

Προκύπτει ο πίνακας μετάβασης

		0	1
>	K	Γ	K
	Γ	E	K
	Е	E	Z
f	Z	Е	Z

Δεν ενοποιούνται. Η μία είναι τελική και η άλλη μη τελική.

Και σχηματικά είναι:

ΛΗΜΜΑ ΑΝΤΛΗΣΗΣ για ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Το Λήμμα Άντλησης για Κανονικές Γλώσσες:

Έστω L μια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθμός n (μήκος άντλησης) τέτοιος ώστε κάθε $x \in L$ με $|\mathbf{x}| \geq n$ να μπορεί να γραφεί στην μορφή x = uvw όπου για τις συμβολοσειρές u, v και w ισχύει:

Άτοπο από το λήμμα άντλησης. Συνεπώς η γλώσσα

 $|uv| \leq n$

 $\{a^nb^{n+m}c^n|n,m\geq 0\}$ $\alpha^pb^{2p}c^p$

 $\alpha^p b^p c^p$

 $\{a^i b^j c^k | j = i + k\}$

Διάζευξη Συμβ/ρών

 $\overline{\{a^i b^j c^k | i = j \eta j = k\}}$

- $v \neq \varepsilon$
- $uv^mw \in L$ για κάθε φυσικό $m \geq 0$

Ιδιότητα	Συμβ/ρα	Δυναμη
$\frac{\mathbf{I}\mathbf{\sigma}\acute{\mathbf{o}}\mathbf{t}\mathbf{\eta}\mathbf{t}\mathbf{\alpha}}{\{0^n1^n\mid \mathbf{n}\geq 0\}}$	$0^p 1^p$	uv^2w
$\frac{\mathbf{A}\mathbf{v}\mathbf{\alpha}\mathbf{\lambda}\mathbf{o}\mathbf{v}\mathbf{i}\mathbf{\alpha}}{\{0^{2n}1^{3n}\mid n\geq 0\}}$	$0^{2p}1^{3p}$	uv^2w
$\frac{\Pi \alpha \lambda \iota \nu \delta \rho o \mu / \tau \alpha}{\{w c w^R \mid w \in \{a, b\}^*\}}$	$a^p b^p c b^p a^p$	uv^2w
$\frac{\mathbf{Aνισότητα}}{\{a^nb^m \mid n \le m\}}$	$\alpha^p b^p$	uv^2w
$\{a^n b^m \mid n < m\}$		uv^2w
$\{a^nb^m\mid n>m\}$	$\alpha^{p+1}b^p$	uv^0w
$\frac{\textbf{Συμμετρία στο Κέντρο}}{\{a^nb^mc^md^n \mathbf{n},\mathbf{m}\geq 0\}}$	$\alpha^p b^p c^p d^p$	uv^2w
$\begin{aligned} &\{a^{n+m}b^mc^n n,m\geq 0\}\\ &\{a^ib^jc^k\big i=j+k\} \end{aligned}$	$\alpha^{2p}b^pc^p$	uv^2w
$\left\{a^i b^j c^k \middle i > j + k\right\}$	$\alpha^{2p+1}b^pc^p$	uv^0w
	$\alpha^p b^p c^p d^p$	uv^2w

 uv^2w

 uv^2w

δεν είναι κανονική.

(1) Επιλέγουμε μια **συμβολοσειρά s** που ανήκει στην γλώσσα που το πρώτο σύμβολο είναι (α) υψωμένο τουλάχιστον στην ρ (β) ανήκει οριακά στην γλώσσα

- (2) Υπολογίζουμε το μήκος της συμβολοσειράς που επιλέξαμε στο (1)
- (3) Το uv θα περιέχεται στο πρώτο σύμβολο που έχουμε επιλέξει.
 - (4) Το πρώτο σύμβολο της s υψωμένο στην i

(5) Το πρώτο σύμβολο της s υψωμένο στην *j*

- (6) Ακριβώς ίδια συμβολοσειρά με την s όπου στον εκθέτη του 1ου σύμβολου θα έχει αφαιρεθεί TO -i-j
- (7) Θα είναι: $uv^2w \acute{\eta}$
- uv^0w
- (8) Αντίστοιχα από την επιλογή μας στο (7)
 - Θέτουμε + j στον 1° εκθέτη της s.
 - Θέτουμε -i στον 1° εκθέτη της s.
 - (9) Αιτιολογούμε γιατί η συμβολοσειρά που έχουμε δεν ανήκει στην γλώσσα.

ΔΙΑΚΡΙΝΟΜΈΝΕΣ ΣΥΜΒΟΛΟΣΕΙΡΕΣ

Έστω L μια κανονική γλώσσα. Ορίζουμε ότι:

- Δύο συμβολοσειρές x,y είναι διακρινόμενες ανά δυο αν και μόνο αν υπάρχει συμβολοσειρά z τέτοια ώστε μια μόνο από τις χζ και γζ να ανήκει στην γλώσσα.
- ΘΕΩΡΗΜΑ: Αν μια γλώσσα έχει η διακρινόμενες ανά δύο συμβολοσειρές, τότε το αυτόματό της θα πρέπει να έχει τουλάχιστον η καταστάσεις.

Χρήση του ορισμού για να αποδείξουμε ότι η γλώσσα L = $\{0^n 1^n | n \ge 0\}$ δεν είναι κανονική

Απόδειξη:

Υποθέτουμε ότι είναι κανονική. Συνεπώς θα υπάρχει πεπερασμένο αυτόματο με η καταστάσεις που την αναγνωρίζει.

Θεωρούμε τις συμβολοσειρές 0, 0^2 , 0^3 , 0^4 ,..., 0^m (όπου m>n)

Οι παραπάνω συμβολοσειρές είναι διακρινόμενες ανά δύο: Π.χ. Έστω 0^i και 0^j με $i \neq j$. Πρέπει να βρούμε ένα z τέτοιο ώστε ένα μόνο από τα $0^i z$ και $0^j z$ να ανήκει στην γλώσσα. Επιλέγουμε $z=1^i$ οπότε 0^i1^i ανήκει στην γλώσσα και $0^{j}1^{i}$ δεν ανήκει στην γλώσσα. Συνεπώς οι m συμβολοσειρές είναι διακρινόμενες ανά δύο.

Συνεπώς κάθε αυτόματό της θα έχει τουλάχιστον m>n καταστάσεις.

Άτοπο. Άρα η L δεν είναι κανονική.

Χρήση του ορισμού των διακρινόμενων συμβολοσειρών για να αποδείξουμε ότι ένα ΝΠΑ έχει ελάχιστο πλήθος καταστάσεων.

Απόδειξη: Το ακόλουθο ΝΠΑ της γλώσσας $L=\{w \in \{0,1\}^* \mid w\}$ τελειώνει με 00} έχει ελάχιστο πλήθος καταστάσεων:

Οι συμβολοσειρές $s_1 = \varepsilon$, $s_2 = 0$, $s_3 = 00$ είναι διακρινόμενες ανά δύο:

 s_1 και s_2 είναι διακρινόμενες. Επιλέγω z = 0 και έχουμε:

- $s_1 z = \varepsilon 0 = 0 \notin L$
- $S_2Z =$ 00 ∈ L

 s_1 και s_3 είναι διακρινόμενες. Επιλέγω $z = \varepsilon$ και έχουμε:

- $s_1 z = \varepsilon \varepsilon = \varepsilon \notin L$
- $s_3 z = 00\varepsilon = 00 \in L$

 s_2 και s_3 είναι διακρινόμενες. Επιλέγω $z = \varepsilon$ και έχουμε:

- $s_2 z = 0\varepsilon = 0 \notin L$
- $s_3 z = 00\varepsilon = 00 \in L$

Συνεπώς οποιοδήποτε ΝΠΑ της L απαιτεί τουλάχιστον 3 καταστάσεις.