Express Mail Label No.: EL824966863US

PATENT 199372003700

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the application of:

Osamu KURODA

Not yet assigned Serial No.:

Concurrently herewith Filing Date:

TRANSFERRING APPARATUS AND For:

APPARATUS FOR PROCESSING

SUBSTRATE

Examiner: Not yet assigned

Group Art Unit: Not yet assigned

TRANSMITTAL OF PRIORITY DOCUMENT

Box Patent Application **Assistant Commissioner for Patents** Washington, D.C. 20231

Dear Sir:

Enclosed herewith is a certified copy of Japanese Patent Application No. 2000-362989 filed November 29, 2000, from which priority is claimed under 35 U.S.C. 119 and Rule 55b.

Acknowledgement of the priority document is respectfully requested to ensure that the subject information appears on the printed patent.

Dated: November 28, 2001

Respectfully submitted,

Registration No. 44,415

Morrison & Foerster LLP 555 West Fifth Street

Suite 3500

Los Angeles, California 90013-1024

Telephone: (213) 892-5587 Facsimile: (213) 892-5454

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年11月29日

出願番号

Application Number:

特願2000-362989

出 願 人
Applicant(s):

東京エレクトロン株式会社

2001年10月19日

特許庁長官 Commissioner, Japan Patent Office

特2000-362989

【書類名】

特許願

【整理番号】

TKL00057

【提出日】

平成12年11月29日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

H01L 21/00

【発明者】

【住所又は居所】

佐賀県鳥栖市西新町1375番地41 東京エレクトロ

ン九州株式会社 佐賀事業所内

【氏名】

黒田 修

【発明者】

【住所又は居所】 佐賀県鳥栖市西新町1375番地41 東京エレクトロ

ン九州株式会社 佐賀事業所内

【氏名】

大神 官公

【特許出願人】

【識別番号】

000219967

【氏名又は名称】 東京エレクトロン株式会社

【代理人】

【識別番号】

100101557

【弁理士】

【氏名又は名称】

萩原 康司

【電話番号】

03-3226-6631

【選任した代理人】

【識別番号】 100096389

【弁理士】

【氏名又は名称】 金本 哲男

【電話番号】

03-3226-6631

【選任した代理人】

【識別番号】 100095957

【弁理士】

【氏名又は名称】 亀谷 美明

【電話番号】 03-3226-6631

【手数料の表示】

【予納台帳番号】 040268

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9602173

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 移送装置,基板処理装置及び基板処理システム 【特許請求の範囲】

【請求項1】 モータによって駆動される移動体と、

前記モータに直結されたアブソリュートエンコーダと、

前記アブソリュートエンコーダから出力される信号に基づいて前記移動体の位置を検出するコントローラとを備えていることを特徴とする、移送装置。

【請求項2】 モータによって駆動される移動体と, 該移動体の位置を検出する検出手段とを備えた移送装置であって,

前記検出手段は、前記モータに直結され前記モータの回転軸の回転量を検出して検出信号を出力するアブソリュートエンコーダと、該アブソリュートエンコーダから出力された検出信号を受けて位置情報を出力するドライバと、該ドライバから出力された位置情報を受けて前記移動体の位置を判別するコントローラとを備えていることを特徴とする、移送装置。

【請求項3】 互いに干渉する可能性のある少なくとも2つの移動体を備え

少なくとも1つの移動体はモータによって駆動され, 該移動体の位置を検出する 検出手段とを備えた移送装置であって,

前記検出手段は、前記モータに直結され前記モータの回転軸の回転量を検出して検出信号を出力するアブソリュートエンコーダと、該アブソリュートエンコーダから出力された検出信号を受けて位置情報を出力するドライバと、該ドライバから出力された位置情報を受けて前記移動体の位置を判別するコントローラとを備え、

前記コントローラは,移動体同士が干渉しないように制御することを特徴とする,移送装置。

【請求項4】 前記コントローラは、制御プログラムの設定を前記ドライバに入力し、前記ドライバは、この入力された設定に基づいて前記モータを制御することを特徴とする、請求項2又は3のいずれかに記載の移送装置。

【請求項5】 前記ドライバから前記コントローラに出力される位置情報は

,回転軸の回転中および/または回転停止時の前記移動体の位置が所定範囲内に あるか否かを検出して出力されるセンサ出力であることを特徴とする,請求項2 , 3又は4のいずれかに記載の移送装置。

【請求項6】 前記移動体は、基板を保持して移動する基板保持手段である ことを特徴とする、請求項1、2、3、4又は5のいずれかに記載の移送装置。

【請求項7】 基板を処理する処理槽と、請求項6に記載の移送装置とを備えた基板処理装置であって、

前記基板保持手段は、前記処理槽に対して基板を収納させるべく移動自在であることを特徴とする、基板処理装置。

【請求項8】 請求項7に記載の基板処理装置と,基板を搬送し,前記基板保持手段との間で基板を授受する搬送装置を備えた基板処理システムであって,

前記搬送装置は,基板を保持して搬送させる搬送保持手段と,前記搬送保持手段を移動させる搬送駆動手段を備え,

前記搬送駆動手段と前記モータを制御する制御手段を備えることを特徴とする、基板処理システム。

【請求項9】 前記制御手段は,前記基板保持手段と前記搬送保持手段を衝突させないように,前記搬送駆動手段と前記モータを制御することを特徴とする,請求項8に記載の基板処理システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、例えば半導体ウェハやLCD基板用ガラス等の基板の移送装置と、 これら基板を洗浄処理などを行う基板処理装置及び基板処理システムに関する。

[0002]

【従来の技術】

例えば半導体デバイスの製造プロセスにおいては、半導体ウェハ(以下、「ウェハ」という。)を洗浄液によって洗浄し、ウェハに付着したパーティクル、有機汚染物、金属不純物のコンタミネーションを除去する洗浄システムが使用されている。その中でも、洗浄液中にウェハを浸漬させて洗浄処理を行うウェット型

の洗浄装置を備えた洗浄システムが広く普及している。

[0003]

一般に、従来の洗浄装置は、洗浄液を充填した洗浄槽と、この洗浄槽内にウェハを浸漬させるウェハガイドを備えている。ウェハガイドは、鉛直に配置されたガイドス軸に沿って洗浄槽内と洗浄槽の上方の間を昇降自在であり、洗浄槽の上方においてウェハを受け取った後、洗浄槽内に下降することで、ウェハを洗浄液中に浸漬させ、ウェハの洗浄を行う。このような洗浄装置を多数備える洗浄システムには、キャリア内からウェハを取り出し、キャリア内にウェハを収納させるローダ・アンローダ部と、このローダ・アンローダ部と各洗浄装置の間でウェハを搬送する搬送装置を備えている。搬送装置は、各洗浄装置に沿ってウェハチャックを水平方向に移動させることにより、各洗浄装置に対してウェハチャックを水平方向に移動させることにより、各洗浄装置に対してウェハチャックを搬送し、例えば洗浄装置の洗浄槽の上方にウェハチャックを移動させた後、ウェハガイドが上昇することで、ウェハの受け渡しが行われる。

[0004]

このような洗浄システムでは、例えばウェハガイドとウェハチャックの衝突を避けるために、ウェハガイドの位置(高さ)を検出する必要がある。そこで従来は、前述のガイドス軸に沿って、各高さに光電センサを配置し、それら各光電センサによってウェハガイドの位置を検出している。

[0005]

【発明が解決しようとする課題】

このため従来は、多数の光電センサを各洗浄装置ごとに設置しなければならず、光電センサの個数が多くなっていた。しかも、光電センサの設置数が多ければ、その分、部品交換やメンテナンスが頻繁になる。また、ガイド乙軸が装置内部にあるような場合は、メンテナンスのたびにカバーなどを取り外して装置内部で作業しなくてはならないため、煩雑であった。

[0006]

従って本発明の目的は、位置検出を簡単にでき、しかもメンテナンスも容易な 移送装置、基板処理装置及び基板処理システムを提供することにある。

[0007]

【課題を解決するための手段】

上記課題を解決するために、請求項1にあっては、モータによって駆動される 移動体と、前記モータに直結されたアブソリュートエンコーダと、前記アブソリュートエンコーダから出力される信号に基づいて前記移動体の位置を検出するコントローラとを備えていることを特徴としている。

[0008]

請求項1の基板処理装置において、基板とは、半導体ウェハやLCD基板用ガラス等の基板などが例示され、その他、CD基板、プリント基板、セラミック基板などでも良い。

[0009]

請求項1の移送装置にあっては、コントローラは、モータに直結されたアブソ リュートエンコーダから出力される信号に基づいて移動体の位置を検出している ので、移動体の位置を容易に検出することができる。

[0010]

請求項2にあっては、モータによって駆動される移動体と、該移動体の位置を 検出する検出手段とを備えた移送装置であって、前記検出手段は、前記モータに 直結され前記モータの回転軸の回転量を検出して検出信号を出力するアブソリュ ートエンコーダと、該アブソリュートエンコーダから出力された検出信号を受け て位置情報を出力するドライバと、該ドライバから出力された位置情報を受けて 前記移動体の位置を判別するコントローラとを備えていることを特徴としている

[0011]

請求項2の移送装置にあっては、検出手段では、アブソリュートエンコーダによりモータの回転軸の回転量を検出して検出信号を出力し、この検出信号に基づいて例えばドライバにより移動体の位置を検出しているので、位置の検出が容易にできる。また、ドライバから位置情報をコントローラに出力することにより、コントローラは、例えば移動体の位置は指令どおりか確認する。ここで、アブソリュートエンコーダは、回転軸の回転量として例えば絶対角度を出力するので、ドライバは、その検出信号の出力値に基づいて移動体の位置を検出でき、しかも

アブソリュートエンコーダをもちいれば、例えば突然の停電が発生したような場合でも、移動体の位置を記憶しておくことができ、初期設定などをやり直す必要がない。

[0012]

請求項3にあっては、互いに干渉する可能性のある少なくとも2つの移動体を備え、少なくとも1つの移動体はモータによって駆動され、該移動体の位置を検出する検出手段とを備えた移送装置であって、前記検出手段は、モータに直結されモータの回転軸の回転量を検出して検出信号を出力するアブソリュートエンコーダと、該アブソリュートエンコーダから出力された検出信号を受けて位置情報を出力するドライバと、該ドライバから出力された位置情報を受けて前記移動体の位置を判別するコントローラとを備え、前記コントローラは、移動体同士が干渉しないように制御することを特徴としている。

[0013]

請求項2又は3に記載の移送装置において,請求項4に記載したように,前記 コントローラは,制御プログラムの設定を前記ドライバに入力し,前記ドライバ は,この入力された設定に基づいて前記モータを制御することが好ましい。また 請求項5に記載したように,前記ドライバから前記コントローラに出力される位 置情報は,回転軸の回転中および/または回転停止時の前記移動体の位置が所定 範囲内にあるか否かを検出して出力されるセンサ出力であっても良い。

[0014]

請求項6に記載したように,前記移動体は,基板を保持して移動する基板保持 手段であることが好ましい。

[0015]

請求項7にあっては、基板を処理する処理槽と、請求項6に記載の移送装置と を備えた基板処理装置であって、前記基板保持手段は、基板を処理する処理槽に 対して基板を収納させるべく移動自在であることを特徴としている。

[0016]

この請求項7の基板処理装置は、ウェハ等を例えば洗浄処理するための洗浄装置として具体化される。基板を処理する処理槽には、処理液として例えば洗浄液

が充填される。基板保持手段は、基板を保持して移動することにより、処理槽中 の処理液に基板を浸漬させることが可能である。

[0017]

請求項 8 にあっては、請求項 7 に記載の基板処理装置と、基板を搬送し、前記基板保持手段との間で基板を授受する搬送装置を備えた基板処理システムであって、前記搬送装置は、基板を保持して搬送させる搬送保持手段と、前記搬送保持手段を移動させる搬送駆動手段を備え、前記搬送駆動手段と前記モータを制御する制御手段を備えることを特徴としている。

[0018]

この請求項8に記載の基板処理システムにおいて,請求項9に記載したように ,前記制御手段は,前記基板保持手段と前記搬送保持手段を衝突させないように ,前記搬送駆動手段と前記モータを制御することが好ましい。

[0019]

【発明の実施の形態】

以下、本発明の好ましい実施の形態を、基板の一例としてウェハを洗浄するように構成された基板処理装置としての洗浄装置に基づいて説明する。図1は、本実施の形態にかかる洗浄装置11、12、13を備えた基板処理システムとしての洗浄システム1の斜視図である。この洗浄システム1は、ウェハWの洗浄及び乾燥を行うように構成されている。

[0020]

この洗浄システム1は、複数枚のウェハWを収納したキャリアCが搬入出されるキャリア搬入出部5と、キャリア内からウェハWを取り出し、キャリア内にウェハWを収納させるローダ・アンローダ部6と、ウェハWを洗浄、乾燥処理する洗浄・乾燥処理部7を備えている。キャリア搬入出部5とローダ・アンローダ部6の間では、移動体として、例えばウェハWを収納する収納可能な容器であるキャリアCを移送する移送アーム8によってキャリアCが移送される。洗浄・乾燥処理部7には、ローダ・アンローダ部6に近い方から順に、ウェハWを例えばIPA (イソプロピルアルコール)蒸気を用いて乾燥させるための乾燥装置10と、ウェハWに対して薬液成分を主体とした洗浄液によって洗浄処理を行い、その

後に純水によるリンス処理を行う、洗浄装置11,12,13とが配置されており、各洗浄装置11~13の洗浄液の薬液成分は、それぞれ種類が異なっている。洗浄・乾燥処理部7には、ローダ・アンローダ部6とこれら乾燥装置10及び各洗浄装置11,12,13の間でウェハWを搬送する搬送装置15が備えられている。

[0021]

図2に示すように、搬送装置15は、移動体として、ウェハWを保持して搬送させる搬送保持手段としての左右一対のウェハチャック20a、20bと、これらウェハチャック20a、20bを、ローダ・アンローダ部6、乾燥装置10及び各洗浄装置11~13に沿って水平方向に移動させる搬送駆動手段21を備えている。左右のウェハチャック20a、20bの間には、後述する移動体として基板保持手段、例えばウェハガイド31が通過できる隙間が形成されている。搬送駆動手段21は、洗浄システム1の長手方向(乾燥装置10及び各洗浄装置11~13の配置方向)に沿って延びたレール22をスライド移動するように構成されている。

[0022]

洗浄装置11~13は何れも同様の構成を有するので、洗浄装置11を例にとって説明する。図3は、洗浄装置11の縦断面図である。図3に示すように、洗浄装置11は、ウェハWを洗浄処理する処理槽としての洗浄槽30を備えている

[0023]

洗浄槽30は、ウェハWを収納するのに十分な大きさを有する箱形の内槽40 と、内槽40の開口部を取り囲んで装着された外槽41とを備えている。洗浄槽30内には、例えば純水や種々の薬液などといった洗浄液が充填されるようになっている。

[0024]

また洗浄装置11には、ウェハWを保持するウェハガイド31を備えた移送装置42が設けられており、この移送装置42は、洗浄槽30内にウェハWを収納させるべくウェハガイド31を昇降移動させる。

[0025]

図4に示すように、ウェハガイド31は、3本の平行な保持部材43a、43b、43cを備えている。各保持部材43a~43cには、ウェハWの周縁下部を保持する溝44が等間隔で例えば50箇所形成されている。そしてウェハガイド31は、例えばキャリアC2個分の50枚のウェハWの周縁部を、各保持部材43a~43cに形成された各溝44にそれぞれ挿入させることにより、複数枚のウェハWを等間隔で配列させた状態で保持できる構成となっている。

[0026]

各保持部材43a~43cは、いずれも水平姿勢で支持体45に固定されており、支持体45の裏面には、昇降部材46が取り付けられている。昇降部材46は、カバー体47の前面に形成された溝48を通り、図3に示すように、カバー体47内に収納されたボール・ナット機構50のナット51に接続されている。このナット51は、カバー体47内部において上下に延設されたガイドZ軸54に沿って移動自在に装着されていることにより、ウェハガイド31は、ガイドZ軸54に沿って昇降できるようになっている。

[0027]

ボール・ナット機構50のボールネジ軸52には、カップリング(図示せず)等を介して、モータ49の回転軸53が接続されている。この回転軸53と同軸上に、ボールネジ軸52及び後述するアブソリュートエンコーダ55の回転軸(図示せず)を備えるモータ49は、前述のウェハガイド31を昇降させる駆動手段としての役割を果たし、モータ49の稼働で回転軸53及びボールネジ軸52が正逆回転することにより、ウェハガイド31は昇降移動し、図3中において実線31で示したように洗浄槽30内に下降して、洗浄槽30内に充填された洗浄液中にウェハWを浸漬させた状態(洗浄位置A)と、図3中において一点鎖線31、で示したように洗浄槽30の上方に上昇して、洗浄槽30の上方にウェハWを持ち上げた状態(上昇位置B)とに上下に移動自在である。また、このようにモータ49の回転軸53(ボールネジ軸52)の正逆回転によってウェハガイド31が昇降移動させられることにより、モータ49の回転軸53の回転角度と、ウェハガイド31の位置(高さ)は比例関係になっている。

[0028]

先に説明した搬送装置15に設けられたウェハチャック20a,20bは,搬送駆動手段21の稼働によってレール22に沿ってスライド移動する際に,このように洗浄位置Aに移動(下降)したウェハガイド31と,上昇位置Bに移動(上昇)したウェハガイド31の間を通過できる位置に配置されている。

[0029]

モータ49には、アブソリュートエンコーダ55が直結して装着されている。 換言すると、モータ49とアブソリュートエンコーダ55とが別々の単体として ではなく、一体構造として構成されている。このアブソリュートエンコーダ55 は、モータ49の回転軸53の回転量、例えば回転位置に基づいてウェハガイド 31の位置を検出する検出手段の構成要素の1つをなし、例えば回転板に形成されたスリット模様により光の透過非透過パターンを形成し、このパターンから例 えばモータ49の回転軸53の任意の基準点からの回転位置、すなわち回転角度 (絶対角度)を検出可能である。前述のように、モータ49の回転軸53の回転 角度とウェハガイド31の位置が比例関係になっているので、このようにアブソ リュートエンコーダ55によって検出した駆動軸53の回転角度から、ウェハガイド31の位置を検出することが可能である。

[0030]

なお、代表して洗浄装置11について説明したが、他の洗浄装置12、13も 同様の構成を有しており、同様に処理槽としての洗浄槽30と、ウェハWの保持 手段としてのウェハガイド31を備えている。また同様に、他の洗浄装置12、 13においても、アブソリュートエンコーダ55によってモータ49の駆動軸5 3の絶対角度を検出することにより、ウェハガイド31の位置を検出することが 可能である。

[0031]

図5は、この実施の形態の洗浄システム1の制御系統を示すブロック図である。この洗浄システム1は、搬送装置15に設けられた搬送駆動手段21と、ウェハガイド31を上下に昇降させるモータ49を制御する制御手段60を備えており、制御手段60には、搬送駆動手段21に稼働命令を出力する搬送ドライバ6

1と、モータ49に稼働命令を出力する前述したドライバ62が設けられている。なお、このような制御系統は、モータを用いた全ての駆動手段に適用可能である。

[0032]

搬送ドライバ61と搬送駆動手段21はサーボ系として構成される。搬送ドライバ61に対して、搬送駆動手段21に内蔵されたエンコーダ(図示せず)から検出信号が出力される。搬送ドライバ61は、こうして入力された検出信号により、例えばウェハチャック20a、20bがレール22に沿ってスライド移動中であるとか、ウェハチャック20a、20bがローダ・アンローダ部6、乾燥装置10及び各洗浄装置11~13のいずれかにあるといった位置情報を得ることができる。搬送ドライバ61には、コントローラ63から例えばシーケンス制御プログラム等の設定が入力される。搬送ドライバ61は、こうして入力された設定に基づき、搬送駆動手段21の稼働を制御し、ウェハチャック20a、20bを所定の位置に移動させる。

[0033]

またコントローラ63に対して、レール22に沿って所定の間隔毎に設けられた多数の位置センサ64から検出信号が出力される。コントローラ63は、こうして入力された検出信号により、例えば各位置センサ64から順次検出信号が出力されることにより、ウェハチャック20a、20bがレール22に沿ってスライド移動中であるとか、各位置センサ64の何れか一つから検出信号は出力されることにより、ウェハチャック20a、20bがローダ・アンローダ部6、乾燥装置10及び各洗浄装置11~13のいずれかにあるといった位置情報を得ることができる。例えば洗浄装置11に対応して設けられた位置センサ64からON(あるいはOFF)信号が出力されることにより、コントローラ63は、洗浄装置11内の洗浄槽30の上方にウェハチャック20a、20bが位置していると認識し、その後、この位置センサ64からOFF(あるいはON)信号が出力されることにより、コントローラ63は、洗浄装置11内の洗浄槽30の上方からウェハチャック20a、20bが退出したと認識する。

[0034]

通常、ウェハチャック20a,20bを移動させる場合、コントローラ63から搬送ドライバ61に指令パルスが出力され、搬送ドライバ61から搬送駆動手段21に駆動電流が流れる。一方、搬送駆動手段21から搬送ドライバ61にウェハチャック20a,20bの位置はフィードバックされる。さらにコントローラ63では、各位置センサ64のセンサ出力からウェハチャック20a,20bの位置情報を得ることにより、ウェハチャック20a,20bが指令どおりに所定の位置に移動したかが確認される。

[0035]

モータ49, アブソリュートエンコーダ55及びドライバ62は, サーボ系として構成される。また, アブソリュートエンコーダ55, ドライバ62及びコントローラ63は, ウェハガイド31の位置を検出する検出手段として機能する。ドライバ62に対して, アブソリュートエンコーダ55からモータ49の回転軸53の回転角度の検出信号が入力される。前述のように, モータ49の回転軸53の回転角度とウェハガイド31の位置が比例関係になっており, ドライバ62は, アブソリュートエンコーダ55から入力された回転角度の検出信号に基づいてウェハガイド31の位置(高さ)を検出する。ドライバ62は, この検出により, 例えばウェハガイド31が洗浄位置Aもしくは上昇位置Bにあるとか, ウェハガイド31がそれら洗浄位置Aと上昇位置Bの間を昇降移動中であるといった位置情報を得ることができ, その位置情報をポジションセンサ出力としてコントローラ63に出力する。また, コントローラ63は, 例えばシーケンス制御プログラム等の設定をドライバ62に入力する。ドライバ62は, こうして入力された設定に基づき, モータ49の稼働を制御し, ウェハガイド31を所定の位置(高さ)に移動させる。

[0036]

また、洗浄位置Aや上昇位置B等のウェハガイド31の各位置(ポジショニング)を決定するためのティーチング作業では、例えばウェハガイド31を洗浄槽30内の所定位置に移動させ、その位置をドライバ62に洗浄位置Aとして設定する。この設定は、ウェハガイド31を洗浄槽30内の所定の位置に移動させたときのアブソリュートエンコーダ55からの検出信号の出力値を、洗浄位置Aに

対応する位置データとしてドライバ62に記憶させることにより行われる。また,このアブソリュートエンコーダ55からの検出信号の出力値を中心にプラス・マイナスの幅を若干もたせてドライバ62に記憶させることにより、任意の範囲で洗浄位置Aを設定しても良い。上昇位置Bをドライバ62に設定する場合は、ウェハガイド31を洗浄槽30の上方の所定位置に移動させ、そのときのアブソリュートエンコーダ55からの検出信号の出力値を、上昇位置Bに対応する位置データとしてドライバ62に記憶させることにより行われる。また、ドライバ62では、例えばウェハガイド31が洗浄位置Aにあるときの検出信号の出力値を原点基準値として設定し、例えばウェハガイド31が上昇位置Bにあるときの検出信号の出力値を関点の出力値をリミット値として設定する。このように各位置に対応して記憶される検出信号の出力値は、洗浄槽30内や上方でのウェハガイド31の所定位置(所定範囲)に対応する位置データとして捉えることもできるし、モータ49の回転軸53の回転角度すなわち回転位置に対応する回転データとして捉えることもできる。

[0037]

通常動作の際、例えばこのように設定された洗浄位置Aにウェハガイド31を下降させる場合、コントローラ63からドライバ62に指令パルスが出力され、ドライバ62からモータ49に駆動電流が流れる。一方、モータ49の回転軸53の回転角度の検出信号は、アブソリュートエンコーダ55からドライバ62に、絶対値の信号データとして出力される。ドライバ62は、こうして入力された検出信号によってウェハガイド31の位置情報を得て、この位置情報をポジションセンサ出力としてコントローラ63に出力する。コントローラ63は、こうして入力された位置情報によってウェハガイド31の位置は指令どおりかどうか確認する。また、上昇位置Bにウェハガイド31が上昇する場合も、同様の動作が実行される。なお、洗浄位置Aと上昇位置Bの間をウェハガイド31が昇降している間においても、アブソリュートエンコーダ55の検出信号の出力値から、ウェハガイド31の現在位置をコントローラ63に出力することもできる。このようにアブソリュートエンコーダ55の出力を位置センサの代わりをすることができるので、ウェハガイド31の通り道に位置センサを配置しなくても、コントロ

ーラ63はセンサ出力を得ることができる。

[0038]

また、前述したようにアブソリュートエンコーダ55は、モータ49の回転軸 53の任意の基準点からの回転位置,すなわち回転角度(絶対角度)を検出可能 であるので,従来のサーボ系に用いられるエンコーダでは,一旦電源を切った場 合,ウェハガイド31の現在位置を見失うおそれがあるが,本実施の形態にかか るサーボ系では、そのような心配がなく、常にウェハガイド31の現在位置が明 確に分かる。また、従来のサーボモータ(エンコーダ付き)の軸にベルト等を介 してアブソリュートエンコーダ55をつなげることも考えられるが,そのような 場合,ベルトの伸びなどによりモータ49の回転とアブソリュートエンコーダ5 5の回転とに誤差が生じる心配がある。更にベルトを介さずにサーボモータとア ブソリュートエンコーダ55を同軸上で結合したとしても,モータ49,エンコ ーダ、アブソリュートエンコーダ55の3機構分のスペースが必要となり、取り 付けスペースが拡大すると共に、サーボ系を構成するためのドライバ62とアブ ソリュートエンコーダ55の信号を受けとるための受信器とが必要となる。従っ て、モータ49にアブソリュートエンコーダ55を直結したサーボモータを用い ることにより、取り付けスペースを小さく抑えることができると共に、モータ4 9とアブソリュートエンコーダ55の回転誤差がなくなる等の効果を得ることが できる。

[0039]

コントローラ63には、メインコントローラ65から設定値などを入力できるようになっている。また、コントローラ63には、ウェハガイド31の位置情報とウェハチャック20a、20bの位置情報の何れもが入力されてウェハガイド31の位置とウェハチャック20a、20bの位置の両方を認識することができる。

[0040]

そして制御手段60では、ウェハガイド31とウェハチャック20a, 20b を衝突させないように、搬送駆動手段21とモータ49を制御する。例えばコントローラ63では、ウェハガイド31が前述の洗浄位置Aか、若しくは前述の上 昇位置 B にあることを確認してから、搬送駆動手段 2 1 を駆動させる信号を搬送ドライバ 6 1 に入力する。これにより、ウェハガイド 3 1 が洗浄位置 A か上昇位置 B のいずれかにある場合にのみ、ウェハチャック 2 0 a、2 0 b を洗浄槽 3 0 の上方に移動させ、また、ウェハチャック 2 0 a、2 0 b を洗浄槽 3 0 の上方から移動させることが可能となる。なお、ウェハガイド 3 1 が洗浄位置 A と上昇位置 B の間を昇降移動中である場合は、インターロックがかかることにより、コントローラ 6 3 は、搬送駆動手段 2 1 の駆動を停止させる信号を搬送ドライバ 6 1 に入力する。これにより、ウェハチャック 2 0 a、2 0 b は移動しない状態となる。

[0041]

またコントローラ63は、例えば搬送駆動手段21の駆動が停止していることを確認してから、モータ49を稼働させる信号をドライバ62に入力する。これにより、ウェハチャック20a、20bが停止している場合にのみ、モータ49の回転軸53が回転し、ウェハガイド31が昇降移動させることが可能となる。なお、ウェハチャック20a、20bが移動中である場合は、インターロックがかかることにより、コントローラ63は、モータ49の稼働を停止させる信号をドライバ62に入力する。これにより、ウェハガイド31は昇降移動しない状態となる。

[0042]

なお、洗浄システム1に備えられた他の洗浄装置12,13においても、制御手段60により同様の制御が行われ、ウェハガイド31とウェハチャック20a,20bを衝突させないように、搬送駆動手段21とモータ49が制御される。

[0043]

さて、以上のように構成された本発明の実施の形態にかかる洗浄システム1において、先ず図示しない搬送ロボットにより未だ洗浄されていないウェハWを例えば25枚ずつ収納したキャリアCがキャリア搬入出部5に載置される。このキャリア搬入出部5に搬入されたキャリアCは、移送アーム8によってローダ・アンローダ部6に移送される。そして、ローダ・アンローダ部6においてキャリアCから取り出されたウェハWは、搬送装置15のウェハチャック20a、20a

によって一括して把持される。そして、搬送装置15によってウェハWは、各洗 浄装置11~13に適宜搬送され、ウェハWの表面に付着しているパーティクル などの汚染物質が洗浄、除去され、最後に乾燥装置10に搬送されて乾燥処理さ れる。こうして所定の洗浄及び乾燥処理が終了したウェハWは、ローダ・アンロ ーダ部6に戻されて再びキャリアCに収納される。こうして、洗浄、乾燥後のウ ェハWを収納したキャリアCは、移送アーム8によってローダ・アンローダ部6 からキャリア搬入出部5に移送され、図示しない搬送ロボットによって搬出され る。

[0044]

ここで、搬送装置15によってウェハWが各洗浄装置11~13に対して搬入 出される際の動作及び制御を、図6~図14を用いて詳しく説明する。なお、代 表して洗浄装置11に対するウェハW搬入出について詳しく説明する。

[0045]

先ず、コントローラ63が搬送ドライバ61を通じて搬送駆動手段21の稼働を開始させるように制御することにより、図6に示すように、搬送装置15におけるウェハチャック20a、20bが洗浄装置11までスライド移動する。これにより、ウェハチャック20a、20bによって保持しているウェハWを、洗浄装置11に搬入する。なお、このように洗浄装置11にウェハWを搬入する場合は、ウェハガイド31は予め下降されており、ウェハガイド31は洗浄槽30内底部の洗浄位置Aに位置している。

[0046]

この場合、ウェハガイド31が洗浄位置Aに位置していることは、アブソリュートエンコーダ55から入力された回転角度の検出信号に基づいてドライバ62によって検出され、コントローラ63に認識されている。仮にウェハガイド31が洗浄位置Aに位置していない場合は、コントローラ63は、ウェハガイド31が洗浄位置Aに位置していないことを認識したことによって、インターロックをかけ、コントローラ63は搬送ドライバ61に対して搬送駆動手段21の稼働を停止させる命令を出す。これにより、ウェハチャック20a、20bのスライド移動は停止され、ウェハWを洗浄装置11に搬入する際において、ウェハガイド

31とウェハチャック20a,20bの衝突が防がれる。

[0047]

また、ドライバ62に入力された検出信号は、ドライバ62にウェハガイド31の位置をフィードバックするための信号として使われる他に、洗浄位置Aに対応してドライバ62に予め記憶されたデータと比較される。ドライバ62では、洗浄位置Aを規定する所定範囲内に、このアブソリュートエンコーダ55から入力された検出信号の出力値が収まっていれば、例えばON(あるいはOFF)信号を、位置情報すなわちポジションセンサ出力としてコントローラ63に出力する。これによって、ウェハガイド31の位置を検出するための光学式の位置センサ等を例えば洗浄槽30内に配置する必要がなく、ウェハガイド31などの移動体の位置を検出することができる。

[0048]

そして、ウェハチャック20a、20bによって保持されたウェハWが洗浄装置11に搬入され、図7に示すように、洗浄槽30の上方にウェハWが搬送されると、搬送装置15において、搬送駆動手段21の稼働は一旦停止する。この場合、ウェハチャック20a、20bの位置情報は、洗浄装置11に対応して設けられた位置センサ64を通じてコントローラ63に入力されており、コントローラ63は、ウェハチャック20a、20bによってウェハWが洗浄槽30の上方にまで搬送されたことを認識し、搬送ドライバ61を通じて搬送駆動手段21の稼働を停止するように制御する。こうして、洗浄装置11の洗浄槽30の上方にウェハWが搬入された状態となる。

[0049]

こうして洗浄槽30の上方にウェハWが搬入されると、コントローラ63はドライバ62を通じてモータ49を稼働させるように制御する。これにより、ウェハガイド31はガイド乙軸54に沿って上昇する。このとき、図8に示すように、ウェハガイド31は、洗浄位置Aから上昇位置Bに向かって上昇する途中で、ウェハチャック20a、20bの隙間を通過(上昇)する際にウェハチャック20a、20bからウェハWを受け取り、上昇位置Bまで上昇する。ウェハガイド31が上昇位置Bまで上昇したことは、アブソリュートエンコーダ55から入力

された回転角度の検出信号に基づいてドライバ62によって検出され、コントローラ63に認識される。コントローラ63は、ウェハガイド31が上昇位置Bまで上昇したことを認識したことにより、ドライバ62を通じてモータ49の稼働を停止させる。

[0050]

この場合も、ドライバ62に入力された検出信号は、上昇位置Bに対応してドライバ62に予め記憶されたデータと比較される。そして、ドライバ62では、洗浄位置Bを規定する所定範囲内に、このアブソリュートエンコーダ55から入力された検出信号の出力値が収まっていれば、例えばON(あるいはOFF)信号を、位置情報すなわちポジションセンサ出力としてコントローラ63に出力する。従って、洗浄槽30の上方にも光学式の位置センサ等を配置する必要がない

[0051]

また、モータ49の回転軸の停止位置(ウェハガイド31の停止位置)をセンサ出力するだけでなく、モータ49の回転軸の回転位置もセンサ出力することができる。例えばティーチング作業の際の設定により、例えば洗浄位置Aから上昇位置Bにウェハガイド31が移動する時のアブソリュートエンコーダ55からの検出信号の出力値のデータを予めドライバ62に記憶させることにより、通常動作の際のウェハガイド31は、どのエリアを移動中なのか(モータ49の回転軸53がどの位置を回転中なのか、すなわち回転角度)を位置情報としてコントローラ63にエリアセンサ出力によって送信することができる。洗浄位置Aから上昇位置Bの間のエリアは1つの設定する必要はなく、洗浄位置A寄りの第1エリア、洗浄位置Aと上昇位置Bの中間の第2エリア、上昇位置B寄りの第3エリアというように複数のエリアに細分化し、ウェハガイド31の現在位置をより正確に出力することができる。従って、ウェハガイドの動作位置を検出することができる。

[0052]

ウェハガイド31を上昇(下降)させる間に、電源が落ちた後(電源OFF後

)に通常動作に再び戻った場合でも、このアブソリュートエンコーダ55では、 イニシャライズして基準点を探し出す必要がなく、電源を落とす前(電源OFF 前)のモータ49の回転軸53の回転角度すなわち回転位置(ウェハガイド31 の位置)を保持することができる。従って、電源を復帰(電源ON)してからは 、素早く現在の位置から次の動作に移ることができる。

[0053]

次に、コントローラ63は、搬送ドライバ61を通じて再び搬送駆動手段21の稼働を開始させるように制御する。これにより、図9に示すように、ウェハチャック20a、20bをスライド移動させて、洗浄装置11から退出させる。こうしてウェハチャック20a、20bが洗浄装置11から退出したことは、先の位置センサ64から搬送ドライバ61を通じてコントローラ63に入力され、コントローラ63は、ウェハチャック20a、20bが洗浄装置11から退出したことを認識し、搬送ドライバ61を通じて搬送駆動手段21の稼働を停止するように制御する。

[0054]

こうしてウェハチャック20a, 20bが洗浄装置11から退出したことを認識したコントローラ63は、ドライバ62を通じてモータ49を再び稼働させるように制御し、ウェハガイド31をガイド乙軸54に沿って下降させる。こうして図10に示すように、ウェハガイド31が洗浄位置Aまで下降させられる。ウェハガイド31が洗浄位置Aまで下降したことは、アブソリュートエンコーダ55から入力された回転角度の検出信号に基づいてドライバ62によって検出され、コントローラ63に認識される。コントローラ63は、ウェハガイド31が洗浄位置Aまで下降したことを認識したことにより、ドライバ62を通じてモータ49の稼働を停止させる。そして、このようにウェハガイド31が洗浄位置Aまで下降したことにより、ウェハWは洗浄槽30内に収納された状態となり、洗浄槽30内に充填された洗浄液中にウェハWは浸漬され、ウェハWに対する洗浄が施される。

[0055]

洗浄装置11における所定の洗浄を終了した後,次に,コントローラ63はド

ライバ62を通じてモータ49を再び稼働させるように制御し、ウェハガイド3 1をガイドZ軸54に沿って上昇させる。こうして図11に示すように、ウェハガイド31は上昇位置Bまで上昇し、洗浄装置11における洗浄を終了したウェハWを洗浄槽30の上方に持ち上げる。ウェハガイド31が上昇位置Bまで上昇したことは、アブソリュートエンコーダ55から入力された回転角度の検出信号に基づいてドライバ62によって検出され、コントローラ63に認識される。コントローラ63は、ウェハガイド31が上昇位置Bまで上昇したことを認識したことにより、ドライバ62を通じてモータ49の稼働を停止させるように制御する。

[0056]

次に、コントローラ63は搬送ドライバ61を通じて搬送駆動手段21の稼働を再び開始させるように制御を行う。これにより、図12に示すように、ウェハチャック20a、20bがスライド移動して洗浄槽30の上方に再び位置することとなる。コントローラ63は、ウェハチャック20a、20bが洗浄槽30の上方まで移動したことを認識し、搬送ドライバ61を通じて搬送駆動手段21の稼働を停止するように制御する。

[0057]

なお、このようにウェハチャック20a、20bを洗浄槽30の上方に移動させる際には、ウェハガイド31が上昇位置Bに上昇していることが、アブソリュートエンコーダ55から入力された回転角度の検出信号に基づいてドライバ62によって検出され、コントローラ63に認識されている。仮にウェハガイド31が上昇位置Bに位置していない場合は、コントローラ63は、ウェハガイド31が上昇位置Bにないことを認識することにより、インターロックをかけ、コントローラ63は搬送ドライバ61に対して搬送駆動手段21の稼働を停止させる命令を出す。これにより、ウェハチャック20a、20bのスライド移動は停止され、ウェハガイド31とウェハチャック20a、20bの衝突が防がれる。

[0058]

こうしてウェハチャック20a,20bを洗浄槽30の上方まで移動させた後 ,次に,コントローラ63はドライバ62を通じてモータ49を再び稼働させる ように制御し、ウェハガイド31をガイド乙軸54に沿って下降させる。こうして図13に示すように、ウェハガイド31が上昇位置Bから洗浄位置Aに向かって下降する途中で、ウェハチャック20a、20bの隙間を通過(下降)する際に、ウェハガイド31からウェハチャック20a、20bにウェハWが受け渡される。これにより、ウェハガイド31はウェハWを保持しない状態となって、洗浄位置Aまで下降する。ウェハガイド31が洗浄位置Aまで下降したことは、アブソリュートエンコーダ55から入力された回転角度の検出信号に基づいてドライバ62によって検出され、コントローラ63に認識される。コントローラ63は、ウェハガイド31が洗浄位置Aまで下降したことを認識したことにより、ドライバ62を通じてモータ49の稼働を停止させるように制御する。

[0059]

次に、コントローラ63は、ウェハガイド31が洗浄位置Aまで下降したことを認識すると、搬送ドライバ61を通じて再び搬送駆動手段21の稼働を開始させるように制御を行う。そして図14に示すように、ウェハチャック20a、20bをレール22に沿ってスライド移動させて、洗浄装置11における洗浄を終了したウェハWを洗浄装置11から搬出させる。こうして洗浄装置11から搬出されたウェハWは、次に例えば洗浄装置12及び洗浄装置13に同様の工程に従って順次搬入され、各洗浄装置12、13における洗浄が行われる。こうして各洗浄装置11~13における洗浄を終了したウェハWは、先に説明したように乾燥装置10にて乾燥処理された後、ローダ・アンローダ部6にてキャリアCに収納され、搬入出部5において図示しない搬送ロボットによって搬出される。

[0060]

この実施の形態にかかる洗浄システム1によれば、アブソリュートエンコーダ 55によりウェハガイド31の位置を検出するので、従来のようにウェハガイド 31の位置を検出するために光電センサなどを多数設ける必要がなく、装置構成 を著しく簡素化でき、また、メンテンナンスも容易である。特にアブソリュートエンコーダ55は、例えば突然の停電が発生したような場合でも、回転軸53の 絶対角度からウェハガイド31の位置を記憶し、その後に装置が回復したときは、ウェハガイド31の位置をドライバ62によって直ちに検出でき、初期設定な

どをやり直す必要がない。また、制御手段60において、ウェハガイド31とウェハチャック20a,20bを衝突させないように、搬送駆動手段21とモータ49をインターロック制御しているので、安全を図ることができる。

[0061]

以上、本発明の好適な実施の形態の一例を示したが、本発明はここで説明した 形態に限定されない。例えば基板を収納するキャリアCを移送する移送アーム8 と搬送装置15のウェハチャック20a,20bとを衝突させないように、移送 アーム8のサーボ系を構成する移送駆動機構(図示せず)及び移送ドライバ(図 示せず)において、コントローラ63により移送ドライバに対してシーケンス制 御プログラム等の設定を入力し、移送駆動機構とモータ49をインターロック制 御すると良い。また、例えば処理槽は、洗浄液が充填される洗浄槽に限定されず 、その他の種々の処理液などを用いて洗浄以外の他の処理を基板に対して施すも のであっても良い。また、基板は半導体ウェハに限らず、その他のLCD基板用 ガラスやCD基板、プリント基板、セラミック基板などであっても良い。

[0062]

【発明の効果】

請求項1~9によれば、従来のような多数の光電センサを必要としない、構成が簡素化された移送装置、基板処理装置及び基板処理システムを提供できる。特に、アブソリュートエンコーダを用いたことにより、例えば突然の停電が発生したような場合でも、回転軸の絶対角度から保持手段の位置を検出しているので、停電後に装置が回復したときは、基板保持手段の位置を直ちに検出でき、初期設定などをやり直す必要がない。また、基板保持手段と搬送保持手段の衝突を避けて、安全を図ることができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態にかかる洗浄システムの斜視図である。

【図2】

搬送装置の斜視図である。

【図3】

本発明の実施の形態にかかる洗浄装置の縦断面図である。

【図4】

ウェハガイドの斜視図である。

【図5】

本発明の実施の形態にかかる洗浄システムの制御系統を示すブロック図である

【図6】

ウェハを洗浄装置に搬入する工程の説明図である。

【図7】

ウェハが洗浄槽の上方に搬送された工程の説明図である。

【図8】

ウェハをウェハガイドに受け取った工程の説明図である。

【図9】

ウェハチャックが洗浄装置から退出した工程の説明図である。

【図10】

ウェハを洗浄槽内に収納した工程の説明図である。

【図11】

洗浄を終了したウェハを洗浄槽の上方に持ち上げた工程の説明図である。

【図12】

ウェハチャックが洗浄槽の上方に再び位置した工程の説明図である。

【図13】

ウェハチャックにウェハが受け渡された工程の説明図である。

【図14】

洗浄装置における洗浄を終了したウェハを洗浄装置から搬出させた工程の説明 図である。

【符号の説明】

- A 洗浄位置
- B 上昇位置
- C キャリア・

特2000-362989

- W ウェハ
- 1 洗浄システム
- 11, 12, 13 洗浄装置
- 5 キャリア搬入出部
- 6 ローダ・アンローダ部
- 7 洗浄・乾燥処理部
- 8 移送アーム
- 10 乾燥装置
- 15 搬送装置
- 20a, 20b ウェハチャック
- 21 搬送駆動手段
- 31 ウェハガイド
- 30 洗浄槽
- 43a, 43b, 43c 保持部材
- 49 モータ
- 50 ボール・ナット機構
- 54 ガイドZ軸
- 53 回転軸
- 55 アブソリュートエンコーダ
- 60 制御手段
- 61 搬送ドライバ
- 62 ドライバ
- 63 コントローラ
- 65 メインコントローラ

【書類名】 図面 【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図10】

【図11】

【図12】

【図13】

【図14】

【書類名】 要約書

【要約】

【課題】 位置検出を簡単にでき、しかもメンテナンスも容易な移送装置、基板 処理装置及び基板処理システムを提供する

【解決手段】 ウェハWを洗浄処理する洗浄槽30と、ウェハWを保持し、洗浄槽30内にウェハWを収納させるべく昇降するウェハガイド31と、ウェハガイド31を昇降させるモータ32と、ウェハガイド31の位置を検出するためのアブソリュートエンコーダ33、ドライバ62、コントローラ63を備えた洗浄装置11である。アブソリュートエンコーダ33は、モータ49の回転軸53の回転角度を検出して検出信号をドライバ62に出力し、この検出信号に基づいてドライバ62はウェハガイド31の位置を検出し、ウェハガイド31の位置情報をコントローラ63に出力する。

【選択図】 図3

出願人履歴情報

識別番号

[000219967]

1. 変更年月日

1994年 9月 5日

[変更理由]

住所変更

住 所

東京都港区赤坂5丁目3番6号

氏 名

東京エレクトロン株式会社