난수생성이론

(Theory of Random Number Generation)

- 2020학년도 2학기 -

담당교수: 강주성 정보보안암호수학과 과학기술대학

강의 계획 (2020학년도 2학기)

- ◈ 교과목명 : 난수생성이론
 - 학수번호 139590-01
- ◈ 수강 대상
 - 정보보안암호수학과 3, 4 **학년**
- ◈ 교재
 - 강의노트 (가상대학에 1주일 전 배포)
- ◈ 평가 방법
 - 중간고사 30%, 기말고사 30%
 - 퀴즈 20%, 과제 10%, 출석 10%
- ◈ 온라인 수업 진행을 위한 주의사항
 - 지정된 동영상 시청 기간을 지켜야만 출석이 인정됨.
 - 과제, 퀴즈, 시험도 온라인으로 진행
 - ▶ 제출 요령을 정확히 준수해야 함.
 - ▶ 제출 마감 시간을 넘기지 말아야 함.

KMU 국민대익교 Dept. of Information Security, Cryptology, and Mathematics

Prof. Ju-Sung Kang

강의 내용 (2020년 2학기)

- ◈ 암호학적 난수발생기 개요 (Introduction)
- ◈ 난수성(randomness) 이해에 필요한 이론 (강의)
 - 확률론(Probability)
 - Events and probability, Random variables, Limiting theorems..
 - 확률과정론(Stochastic processes)
 - Random walks, Markov chain, Poisson process ...
 - 통계학(Statistics)
 - ▶ 추정(estimation), 가설검정(hypothetical tests) ...
- ◈ 난수발생기 구현 및 안전성 평가
 - 통계적 난수성 평가 방법 : NIST SP 800-22 문서
 - 엔트로피 추정 방법 : NIST SP 800-90b 문서
 - O PRNG 설계 및 구현: NIST SP 800-90a, NIST SP 800-90c 문서
 - O Linux RNG 안전성 분석

EMD 국민디역교 Dept. of Information Security, Cryptology, and Mathematics

Prof. Ju-Sung Kang

Chapter 1. Introduction

Dept. of Information Security, Cryptology, and Mathematics

난수발생기란?

- ◈ 난수발생기(RBG: Random Bit Generator)의 기능
 - 암호시스템에 필요한 **난수**(random number) 제공
 - 암호시스템과 암호모듈의 운용에 필수적인 요소(알고리즘)
- ◈ 요구되는 성질: 예측불가능성, 비편향성, 비트간 독립성

▶ 이상적으로는 "coin tossing (동전던지기)"의 결과를 기대

- ◈ 난수발생기의 용도
 - 대칭키 암호(블록/스트림 암호)에 사용되는 **키**, IV 생성
 - 공개키 암호의 각종 **파라미터** 생성 : 소수 생성, 확률적 공개키 암호 ...
 - 암호 프로토콜에 사용되는 각종 파라미터: nonce, salt ...

KMU 국민대역교 Dept. of Information Security, Cryptology, and Mathematics

Prof. Ju-Sung Kang

Linear congruential generators

- Linear congruential generator
 - O
 - O Toy example: n=10, a=3, b=5, x_0 =학번 끝자리
- Commonly used for simulation purposes
- Pass some statistical tests (Knuth, 1981)
 - O frequency, serial, poker, runs, autocorrelation tests, etc.
- Next number can be easily computed from the preceding ones
 - O even when x_0 , a, b, and n are not given (Plumstead, 1982)
- Predictable ⇒ entirely insecure for cryptographic purpose

Theoretical / Practical PRNGs

- PRNG vs. PRBG(Pseudorandom Bit Generator)
 - A random bit generator can be used to generate random numbers.
 - O PRBG: Theoretically-secure under number-theoretic assumptions.
 - O PRNG: Practical mechanism which use block ciphers or hash functions as the underlying primitive.
- Theoretically-secure PRBGs
 - O Blum-Micali (1984), Blum-Blum-Shub (1986), RSA PRBG (1988), etc.
 - O Not most popular ones:
- Practical PRNGs
 - O Standardized PRNGs.
 - The ANSI X9.17 PRNG, The FIPS 186 PRNG, IETF TLS-PRF...

KMU 국민대익교 Dept. of Information Security, Cryptology, and Mathematics

Prof. Ju-Sung Kang

Blum-Blum-Shub PRBG

Blum-Blum-Shub PRBG

- Summary: a pseudorandom bit sequence y_1, y_2, \dots, y_l of length l is generated.
- 1. Generate two large secret random and distinct primes p and q, each congruent to 3 modulo 4, and compute n = pq.
- 2. Select a random and secret seed $s \in [1, n-1]$ such that $\gcd(s,n)=1$, and compute
- 3. For $1 \le i \le l$ do the following:
 - (a) $x_i \leftarrow x_{i-1}^2 \pmod{n}$.
- 4. The output sequence is y_1, y_2, \ldots, y_l .
- O Blum-Blum-Shub (1984)
 - ➤ Intractability of quadratic residuosity problem ⇒ cryptographically strong PRBG
- O Vazirani-Vazirani (1985): proved under weaker assumption
 - ➤ Intractability of integer factorization ⇒ cryptographically strong PRBG

로인디역교 Dept. of Information Security, Cryptology, and Mathematics

난수발생기의 종류

- ◈ 하드웨어 난수발생기
 - 하드웨어 장치에서 발생되는 잡음원을 이용한 난수 생성
 - 잡음원의 편향(bias)된 성질을 보정하는 과정이 필요
 - 잡음원(엔트로피 소스): 열 잡음원, 링 오실레이터, 양자 현상 등
- ◈ 소프트웨어 난수발생기
 - O 외부의 잡음원 공급을 전제로 결정론적 알고리즘을 사용
 - 잡음원: OS잡음, 사용자 입력 등

EMU 국민대역교
Dept. of Information Security, Cryptology, and Mathematics

13

Prof. Ju-Sung Kang

잡음원의 종류

- ◈ 하드웨어 잡음원
 - 물리적 특성에 의존하는 잡음원
 - 종류 : 열 잡음원, 링 오실레이터, 양자물리 현상, 방사성 붕괴 등

- ◈ 소프트웨어 잡음원
 - 운영체제 또는 운영환경에 의존하는 잡음원
 - 종류: Crypto API, Processor Timer 등
 - ➤ Windows OS 잡음원: GetTickCount, GetCurrentId 등
 - ➤ Linux 잡음원: perfstat_disk_total, perfstat_cpu_total 등
 - ▶ JRE 잡음원: nanoTime, getProperty 등

MU 국민대역교 Dept. of Information Security, Cryptology, and Mathematics

Managing entropy pools

- O The entropy estimator *evaluates* input data and determines *the amount of entropy*.
- For each input, the *entropy counter* is adjusted to indicate how much entropy the pool holds.

• Generating random numbers

- When a user extracts data from the device /dev/random using the output function, the corresponding entropy counters are adjusted.
 - ➤ The output function is designed to **generate output** by *hashing* data in the output pool and simultaneously *updates* the pool by the **feedback function**.
 - ➤ If the counter needs to decrease to zero, the output request is **blocked**.
 - ➤ To produce **high quality random bits**, the output is not allowed unless the pool holds sufficient entropy.
- O By contrast, /dev/urandom returns as many bytes as required without blocking regardless of the status of its entropy counter.

EMU 국민대외교 Dept. of Information Security, Cryptology, and Mathematics

19

Prof. Ju-Sung Kang

	Entropy input (s	,
System Unique	Variable and Unguessable	External Random
Configuration files	Contents of screen	Cursor position with time
Drive configuration	Date and time	Keystroke timing
Environment strings	High resolution clock samples	Microphone input (with microphone connected)
	Last key pressed	Mouse click timing
	Log file blocks	Mouse movement
	Memory statistics	Video input
	Network statistics	
	Process statistics	
	Program counter for other processes or threads	
Iess "		More
less ntropy ◀		→ More

Summary

- ◈ 난수발생기에 요구되는 성질
 - O Unpredictability, Unbiasedness, Independence
- ◈ 암호학적으로 안전한 난수발생기의 구성 요소
 - O TRNG(entropy source) + PRNG
- ◈ 난수발생기의 안전성 평가 방법
 - TRNG 출력 수열에 대한 엔트로피 추정 방법
 - O RNG 출력 수열에 대한 통계적 난수성 검정 방법
- ◈ 난수발생기의 종류
 - 하드웨어/소프트웨어 난수발생기
 - OS 기반 난수발생기
 - 각종 표준 난수발생기

EMU 국민대의교 Dept. of Information Security, Cryptology, and Mathematics

27

Prof. Ju-Sung Kang