Redes de Proyecto: Método del Camino Crítico Rodrigo Maranzana

Redes de proyectos

Son representaciones de proyectos mediante grafos.

Los nodos simbolizan eventos y los arcos tareas.

 El objetivo es la optimización de los tiempos involucrados en el grafo, para calendarizar el proyecto.

Componentes de la red de proyectos: eventos

Evento: hito en una línea de tiempo. Implica el inicio o fin de una tarea. Los eventos son nodos en un grafo de proyectos.

- Evento i.
- Fechas del evento en tiempo absoluto sobre el calendario.
 - Ft_i : Fecha temprana del evento i. Mínima fecha de ocurrencia del evento e.
 - FT_i : Fecha tardía del evento i. Máxima fecha de ocurrencia el evento e.

Componentes de la red de proyectos: eventos

Representación:

Ejemplo:

- Evento 2.
- Ft_e : 2 semanas
- FT_e : 3 semanas.

Componentes de la red de proyectos: tareas

Tarea: proceso de transformación que consume recursos, entre ellos tiempo sobre un calendario.

Las tareas son arcos en un grafo de proyectos.

- Tarea k.
- D_k : tiempo de ejecución requerido por la tarea k.

Una tarea siempre está definida por eventos de inicio y fin.

Tarea k de tiempo de proceso D_k .

Definida por evento de:

- Inicio i de fecha temprana Ft_i y fecha tardía FT_i .
- Fin j de fecha temprana Ft_j y fecha tardía FT_j .

- Los eventos pueden ser movidos entre sus cotas tempranas y tardías.
- Suponemos tiempos de tareas rígidos.

El evento j, está condicionado por el evento i y la tarea k.

El evento j, está condicionado por el evento i y la tarea k:

• Una tarea que inicia a tiempo temprano de inicio "i", condiciona el tiempo temprano de finalización "j".

$$Ft_i = Ft_i + D_k$$

El evento j, está condicionado por el evento i y la tarea k:

Una tarea que inicia a tiempo tardío de inicio "i", condiciona el tiempo tardío de finalización "j":

$$FT_i = FT_i + D_k$$

En el método CPM (explicado más adelante), el tiempo tardío del evento "i" suele ser la incógnita, por lo tanto:

$$FT_i = FT_j - D_k$$

Representación de tareas y eventos en un grafo de proyectos.

Tarea k de tiempo de proceso D_k .

Definida por evento de:

- Inicio i de fecha temprana Ft_i y fecha tardía FT_i .
- Fin j de fecha temprana Ft_j y fecha tardía FT_j .

Dependencia de más de una tarea

Tener en cuenta que:

Las fechas tempranas y tardías no indican cuándo empiezan o finalizan las tareas compromentidas en ese evento.

Indican cuándo debe ocurrir como mínimo (temprana) y máximo (tardía) el evento y dar inicio o fin a algunas de las tareas comprometidas.

Recordar: Los eventos de fin, pueden ser el inicio de otros.

Dependencia de más de una tarea: tiempo temprano

Condición de dependencia:

En fecha temprana, el evento "c" no puede concretarse hasta que hayan finalizado las tareas "ac" y "bc".

Dependencia de más de una tarea: tiempo temprano

Dependencia de más de una tarea: tiempo temprano

La tarea "bc" es la última en finalizar, si todas comienzan a fecha temprana.

La tarea "bc" es la que determina el tiempo temprano del evento "c".

Por lo tanto:

$$Ft_c = \max(Ft_a + D_{ac}; Ft_b + D_{bc}) = Ft_b + D_{bc}$$

Dependencia de más de una tarea: tiempo tardío

Condición de dependencia:

En fecha tardía, el evento "a", debe iniciar la tarea que pueda comenzar primero en calendario entre "ab" y "ac".

Eventos condicionados por más de una tarea

La tarea "ab" es la primera en comenzar, si todas comienzan a fecha tardía.

La tarea "ab" es la que determina el tiempo tardío del evento "c".

Por lo tanto:

$$FT_a = \min(FT_b - D_{ab}; FT_c - D_{ac}) = FT_b - D_{ab}$$

Redes o Grafos de Proyectos

Representación de tareas y eventos en un grafo de proyectos.

- El inicio es un evento puntual, del que parten todas las primeras tareas.
- El fin es un evento puntual al que confluyen todas las últimas tareas.
- Existe precedencia entre tareas, lo que genera comportamiento en serie.

Métricas de tareas: márgenes

Margen independiente:

Cuánto puede retrasarse o adelantarse el inicio de la tarea sin perjudicar tareas anteriores o posteriores.

$$MI_{ij} = Ft_j - FT_i - D_{ij}$$

Métricas de tareas: margen independiente

$$MI_{ac} = Ft_c - FT_a - D_{ac}$$

Métricas de tareas: márgenes

Margen total:

Cuánto puede retrasarse una tarea sin retrasar la totalidad del proyecto. Puede impactar en otras tareas.

$$MT_{ij} = FT_j - Ft_i - D_{ij}$$

Tarea crítica: cuando el margen total resulta 0.

Es decir, el restraso de esta tarea compromete el proyecto.

Métricas de tareas: margen total

$$MT_{ac} = FT_c - Ft_a - D_{ac}$$

Métricas de tareas: márgenes

Margen libre:

Cuánto puede retrasarse una tarea sin afectar el comienzo de las posteriores.

$$ML_{ij} = Ft_j - Ft_i - D_{ij}$$

Métricas de tareas: margen libre

$$MT_{ac} = Ft_c - Ft_a - D_{ac}$$

Métricas de tareas: resumen

Margen independiente: $MI_{ij} = Ft_j - FT_i - D_{ij}$

Margen total: $MT_{ij} = FT_j - Ft_i - D_{ij}$

Margen libre: $ML_{ij} = Ft_j - Ft_i - D_{ij}$

Método del Camino Crítico (CPM)

Algoritmo de optimización de redes en donde un grafo representa las tareas de un proyecto y sus relaciones.

El objetivo es encontrar el conjunto de tareas críticas.

Los supuestos del CPM:

- El inicio es un evento puntual, del que parten todas las primeras tareas.
- El fin es un evento puntual al que confluyen todas las últimas tareas.
- Existe precedencia entre tareas, lo que genera comportamiento en serie.
- La criticidad de cada tarea depende de la precedencia y la configuración de tiempos.

Método del Camino Crítico (CPM)

Procedimiento general:

- 1- Crear grafo de proyectos. Matriz de incidencia.
- 2- Calcular fechas tempranas.
- 3- Calcular fechas tardías.
- 4- Calcular métricas, especialmente margen total.
- 5- Determinar tareas críticas.

Grafo de proyectos desde precedencias

Recordar que las tareas son arcos.

La columna "precedente" en una tabla de precedencias indica las tareas obligatorias anteriores de la analizada.

Tarea	Precedente
Α	
В	Α
С	
D	С
Е	B, D

Grafo de proyectos desde precedencias

Recordar que las tareas son arcos.

La columna "precedente" en una tabla de precedencias indica las tareas obligatorias anteriores de la analizada.

Tarea	Precedente
Α	
В	Α
С	
D	С
Е	B, D

Matriz de incidencia del grafo de proyectos

Indica la relación entre los nodos y los arcos, o tareas y eventos del proyecto. Es una matriz nodo-arco.

Matriz de adyacencia de eventos del grafo de proyectos

Indica la relación de adyacencia, es una matriz nodo-nodo.

Matriz de precedencia de eventos del grafo de proyectos

Indica la relación de adyacencia, es una matriz nodo-nodo.

Cálculo de fechas tempranas

Sabemos que la fecha de inicio siempre es 0.

Calculamos en orden desde el inicio al final, mientras tengamos datos.

Cálculo de fechas tempranas

De adelante hacia atrás, en el grafo, calculamos para cada nodo j:

$$Ft_j = Ft_i + D_{ij}$$

En el caso de existir varios nodos entrantes "i" al nodo final "j", decidimos:

$$Ft_j = \max(\{Ft_i + D_{ij}\})$$

Cálculo de fechas tempranas

Una vez alcanzado el nodo final, se condiciona:

$$Ft_{final} = FT_{final}$$

- De esta manera existe una sola fecha de finalización.
- La optimización ocurre dentro del grafo y no se permite mover el fin.

Cálculo de fechas tardías

De atrás hacia adelante, en el grafo, calculamos las fechas tardías.

Al llegar a la tarea inicial, la fecha tardía debe ser 0: el inicio temprano o tardío implica comenzar en 0.

Cálculo de fechas tardías

De atrás hacia adelante, en el grafo, calculamos para cada nodo j:

$$FT_i = FT_j - D_{ij}$$

En el caso de existir varios nodos salientes "j" del nodo inicial "i", decidimos:

$$FT_i = \min(\{FT_j - D_{ij}\})$$

Cálculo de márgenes totales y tareas críticas

Para cada tarea calculamos:

Margen total:

$$MT_{ij} = FT_j - Ft_i - D_{ij}$$

En caso de resultar 0, la anotamos como crítica.

Camino crítico

El camino crítico es el conjunto de tareas críticas. Ninguna tiene margen de retraso.

En caso de retrasarse alguna tarea crítica, es necesario renegociar la finalización del proyecto.

Camino crítico

El camino crítico tiene relación con el problema logístico de "Shortest Path", aunque visto desde otra perspectiva: representa el "camino más largo".

Tareas ficticias

- Son tareas que surgen de la representación del grafo de proyecto y no de la realidad.
- Son consecuencia de representar las tareas como arcos.
- Necesarias para respetar la precedencia en determinadas situaciones puntuales.
- Tienen duración nula, no impactan directamente en la finalización del proyecto.
- El camino crítico puede pasar por la tarea ficticia.

Tarea	Precedente	Duración
С	А, В	D_C
D	В	D_D

Tarea	Precedente	Duración
С	А, В	D_C
D	В	D_D

Tarea	Precedente	Duración
С	A, B	$D_{\mathcal{C}}$
D	В	D_D

Esta solución es incorrecta, porque D no tiene de precedente a A.

Tarea	Precedente	Duración
С	A, B	D_C
D	В	D_D

Tarea	Precedente	Duración
С	А, В	D_C
D	В	D_D

Tarea	Precedente	Duración
С	А, В	D_C
D	В	D_D

El calendario se calcula luego de obtener los márgenes y camino crítico.

Las tareas críticas no tienen margen de movimiento, ya que retrasarían todo el proyecto.

Las tareas no críticas pueden comenzar entre dos fechas:

- Primera fecha de comienzo.
- Última fecha de comienzo.

Calendario de fechas tempranas:

Todas las tareas son ejecutadas a primera fecha de comienzo.

Calendario de fechas tardías:

Todas las tareas son ejecutadas a última fecha de comienzo.

Calendario de fechas tardías:

Se prefiere desde un punto de vista financiero, permitiendo el desembolso de capital a final del período.

Calendario de fechas tempranas:

Se prefiere desde un punto de vista de riesgo de ejecución. Es una visión más conservadora y permite la rápida ejecución de tareas minimizando ventanas con eventos externos.

