Reg. No

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Fifth and Seventh Semester

18ECE242J - PATTERN RECOGNITION AND NEURAL NETWORKS

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
 ii. Part - B and Part - C should be answered in answer booklet.

ii. Pa	art - B and Part - C should be answered in a	answer booklet.				
Time: 3 Hours			Max. Marks: 100			
PART - A $(20 \times 1 = 20 \text{ Marks})$ Answer all Questions			Mar	ks BL	СО	
1.	Which defines type-I error in the classified(A) The person is healthy but identified as a patient.(C) The person is a patient but identified as a patient.	ation of healthy and patient? (B) The person is healthy and identified as healthy. (D) The person is patient but identified as healthy.	1	I	1	
2.	Find the classifier which is the benchmark (A) Bayes classifier (C) discriminant classifier	for a classifier design. (B) Nearest neighbor classifier (D) Neural network	1	2	1	
3.	Find the approach in which the discriminant function uses a recognition function. (A) Template matching (B) Neural network (C) Syntactic (D) Statistical			3	1	
4.	What is the work of preprocessing? (A) Reduce the data dimension. (C) Noise is removed	(B) Selection of best feature(D) Feature space is divided in to decision	1	2	1	
5.	 Identify the drawback of the non-parametr (A) Incapable of proving a good representation of true conditional density (C) The density is to be determined entirely by the data. 	ic method. (B) The number of parameters in the model grows with the size of the data set (D) Assuming a specific functional form for the density model is difficult.	1	2	2	
6.	Pick the algorithm where clustering is used (A) supervised learning (C) reinforcement learning	I. (B) unsupervised learning (D) both unsupervised and reinforcement learning	I	2	2	
7.	Calculate Manhattan distance of the data p (A) 2 (C) 8	oints xi=(3,4,5) and xj=(5,7,8) (B) 4 (D) 16	1	3	2	
8.	Choose the method, where the distance be furthest data points of 2 clusters. (A) Centroid (C) Complete link	tween 2 clusters is the distance between 2 (B) Average link (D) Single link	1	2	2	

9.	Find the value of the of output of thresh threshold active function is more than 0. (A) 0 (C) 0.5	hold activation function, if input to the (B) 1 (D) -1	1	3	3
10.	Identify the learning method, also known as (A) supervised learning (C) reinforcement learning only	s learning without a teacher. (B) unsupervised learning only (D) both unsupervised and reinforcement learning	1	1	3
11.	Choose the learning method, in which the computed by subtracting the output from the (A) Error-correction learning (C) Hebbian learning		1	2	3
12.	Pick the threshold value for the McCullon A (A) 0 (C) 2	AND logic (B) 1 (D) -1	1	3	3
13.	Identify the architecture in which the inputare not the same. (A) Auto-associative memory network	t training vector and output target vector (B) Hetero associative memory network	1	2	4
	(C) Hopfield network	(D) Both the auto-associative memory network and Hopfield network			
14.	Choose which technique does not have a tra (A) Auto-associative memory network	ining algorithm. (B) Hetero associative memory network	-1	2	4
	(C) Hopfield network	(D) Boltzmann machine			
15.	Identify the logic gate, which is impossible network.		1	2	4
	(A) AND (C) XOR	(B) OR (D) NOT			
16.	Identify the initial weight between which layers are trained in the forward-only counter propagation network after input vectors are presented to input units. (A) Input and Cluster (B) Cluster and Output (C) Input and Output (D) output and competitive layer			2	4
17.	Find which uses the supervised learning tech	hnique.	1	2	5
	(A) ART1 (C) Fuzzy ARTMAP	(B) ART2 (D) SOM			
18.	Find the number of nodes in the distance-2 grid of rectangular grid topology. (A) 12 (B) 24 (C) 6 (D) 18			2	5
19.	Identify the correct statement for ART1.(A) . It is the supervised clustering of binary input vectors(C) It is the unsupervised clustering of binary input vectors.	(B) It is the unsupervised clustering of real-valued input vectors.(D) It is the supervised clustering of real-valued input vectors.	1	2	5
20.	Find the number of output layers needed for (A) 10 (C) 5	recognition digits 0 to 5 (B) 8 (D) 6	1	3	5
PART - B $(5 \times 4 = 20 \text{ Marks})$ Answer any 5 Questions				s BL	СО

21.	. Write a short note on the Nearest neighbor classifier.				4	2	1
22.	Explain the agglomerative algorithm.				4	2	2
23.	$x_1 \mid 1 \mid 1$	1 1	1 0		4	3	2
	$x_2 = 0$	1 1	0 1				
	(i) Create a conf	usion matrix stance using the	Jaccard coefficient	with 1 having the highe	st		
24.	Write a short note on Hebbian learning.				4	2	3
25.	Illustrate the Hebb rule with a target created by the OR logic function.				4	3	3
26.	CDNNI				4	2	4
27.	Explain about hexagon	al grid topology.			4	2	5
	PART - C ($5 \times 12 = 60 \text{ Marks}$)				Mark	is BL	CO
	1	Answer all					
28.	Basket-A 40 Basket-B 30 Basket-C 30 Calculate condition Compute condition Find posterior pro	go Dragon fruit 30 15 40 tional probability I obability P(Drago Bayes classifier - Dragon fruit).	P(Basket-C Drago P(Basket-B Mango) on fruit Basket-A). output for basket-	on fruit). A and basket-B? (Class	12	3	1
29.	(a) Illustrate the K means clustering algorithm with an example. (OR) (b) Assume we have a text collection D of 900 documents from 3 topics (or 3 classes), science, sports, and politics. Each class has 300 documents. Each document in D is labeled with one of the topics (classes). We use this collection to perform clustering to find 3 clusters. Note that class/topic labels are not used in clustering. Calculate entropy and purity for each cluster and overall cluster.					3	2
	Cluster	Science	Sports	Politics			
	1	250	20	10			
	2	20 .	180	80			
	Total	300	300	300			
	Lotal	1300	1300	1000			

30. (a) Calculate the new weight of the multilayer perceptron neural network. If $x_1 = 1$, $x_2 = 0$, $w_{01}=0.2$, $w_{02}=0.6$, $w_{11}=0.6$, $w_{21}=-0.2$, $w_{12}=-0.3$, $w_{22}=0.4$, $w_0=-0.2$, $w_1=0.4$, $w_2=0.1$. Target output=1, Learning rate=0.25, use binary sigmoid activation function.

(OR)

(b) (i) Using the Hebb rule, find weights required to perform the following classification of given input pattern: + symbol represents the value 1, and empty sequence indicates -1. Consider 'I' belongs to a member of the class has a target value 1 and 'O' does not belong to the member of the class so has a target value of -1. Implement a manual method to calculate new weight and bias

- (ii) Explain credit assignment.
- 31. (a) Elaborate training and testing algorithm of discrete Hopfield network (OR)
- 12 3 4

12

3

3

- (b) (i) Calculate the output and weight of an auto-associative memory network for input of [1 -1 1 -1]
 - (ii) Write the training and testing algorithm of auto-associative memory.
- 32. (a) Describe Adaptive Resonance Theory ART2 algorithm and illustrate its architecture.

12 3

(OR)

(b) Summarize Kohonen SOM (KSOM) with a neat architecture diagram and training algorithm.

* * * * *