= + x € 2.8 We can see that Vman XT, thus with a higher temperature, we tend to have an increasing V, in other words, a bluer object. Urdv = Urds $\Delta = \frac{C}{V} \Rightarrow d\lambda = d\frac{C}{V} = -\frac{C}{V^2}dv$, $V = \frac{C}{\lambda}$ while $Uv = \frac{92hV^3}{C^2} = \frac{1}{6^{10}KT_{-1}}$ C>. while $w = c^{2}$ $e^{kv k x} - dv = u_{2}(-\frac{c}{v^{2}}) dv$ $\Rightarrow u_{k} = \frac{8xh\sqrt{\frac{1}{e^{hv/kT}-1}}}{e^{hv/kT}-1} = \frac{8xhc}{a^{f}} = \frac{e^{hc/2kT}-1}{e^{hc/2kT}-1}$ $P = -i\hbar \frac{\partial}{\partial x} \Rightarrow \langle p \rangle = -i\hbar \int \sqrt{\frac{\partial V}{\partial x}} \, dx$ while $-\frac{\hbar^2}{2m} \frac{\partial^2 V}{\partial x^2} + V(x)V = -i\hbar \frac{\partial V}{\partial x}$ $\Rightarrow \frac{\partial \langle p \rangle}{\partial t} = -i\hbar \int \left[\sqrt{t} + \sqrt{t} + \sqrt{t} + \sqrt{t} \right] dx$ $= \int \left[\left(\frac{4^2}{2m} + \frac{4^2}{xx} \right) + \frac{4^2}{x} + \frac{4^2}{xx} + \frac{4^$ integrate by part \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} = \frac{1}{1/2} \frac{1}{1/2} - \frac{1}{1/2} \frac{1}{1/2} - \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} - \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} - \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} - \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} - \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} - \frac{1}{1/2} \frac{1}{1/2} + \frac{1}{1/2} \frac{1}{1/2} - \frac{1}{1/2} + \frac{1}{1/2} \frac{1}{1/2} + - boundary conditions of 4. It all its derivatives $= - \int \int_{x}^{x} \int_{xx}^{x} dx = - \int \int_{x}^{x} dy = - \int \int_{x}^{x} \int_{-\infty}^{\infty} + \int \int_{x}^{x} \int_{x}^{x} dx$

$$\Rightarrow \frac{347}{34} = \int [-\frac{4}{34} + \frac{4}{14} + \frac{4}{34} + \frac{4}{14} + \frac{4}{34} + \frac{4}{14} + \frac{4}{34} + \frac$$

e)
$$\langle x^{2} \rangle = \int_{-\infty}^{\infty} dx \, x^{2} + \frac{1}{2} = \int_{-\infty}^{\infty} dx \, x^{2} = \int_{$$