Fachbereich Mathematik & Informatik

Freie Universität Berlin

Prof. Dr. Christof Schütte, A. Hartkopf

3. Übung zur Vorlesung

Computerorientierte Mathematik 2

SoSe 2012

https://dms-numerik.mi.fu-berlin.de/knowledgeTree/jump.php?VL=coma2

Abgabe: Mo 14.05.2012, 10:00 Uhr, Tutorenfächer, Arnimallee 3, 1. OG

Allgemeine Hinweise

Jedes Übungblatt beinhaltet 12 Punkte. Werden bei Programmieraufgaben Testläufe gefordert, protokollieren Sie diese mit dem matlab-Befehl diary. Legen Sie ferner ein Programm bei, daß alle geforderten Testläufe ausführt und ohne Angabe von Argumenten gestartet werden kann.

Alle Programmieraufgaben und Protokolle müssen pünktlich per E-Mail als Anhang an den jeweiligen Tutor geschickt werden. Die Betreff/Subject-Zeile muss dabei **immer** mit dem Text [CoMa2] beginnen. Aus dem Text der E-Mail muss hervorgehen, wer an der Bearbeitung der Aufgaben mitgewirkt hat. Auerdem sind Ausdrucke der Dateien zusammen mit den Theorieaufgaben abzugeben.

1. Aufgabe (4 Punkte)

Schreiben Sie ein matlab-Programm aitken(x,fx,z), das mit Hilfe des Schemas von Aitken-Neville die Auswertung des durch die Stützstellen x mit Funktionswerten fx bestimmten Interpolationspolynoms an der Stelle z vornimmt.

2. Aufgabe (4 Punkte)

Beweisen Sie, daß die dividierten Differenzen von der Reihenfolge der Stützstellen unabhängig sind. Genauer: Sei $\sigma \in S_{n+1}$ eine Permutation der Zahlen $0, \ldots, n$, so gilt

$$f[x_0, x_1, \dots, x_n] = f[x_{\sigma(0)}, x_{\sigma(1)}, \dots, x_{\sigma(n)}].$$

3. Aufgabe (4 Punkte)

Es soll der Wert einer unbekannten Funktion $f: \mathbb{R} \to \mathbb{R}$ an einer Stelle \tilde{x} approximiert werden. Bekannt sind für $\varepsilon > 0$ die Werte f(0) = 0, f(1) = 0 und $f(1 + \epsilon) = 1$.

Berechnen Sie das Lagrangesche Interpolationspolynom p_L und das Newtonsche Interpolationspolynom p_N zu den Stützstellen $0, 1, 1 + \epsilon$, und bringen Sie die Polynome auf die Form

$$p_L(x) = a_d x^d + \dots + a_1 x + a_0,$$
 $p_N(x) = b_d x^d + \dots + b_1 x + b_0.$

Was stellen Sie fest? Begründen Sie Ihre Beobachtung.