Module 3 Recurrence Relations Assignment

Tyler Kim tkj9ep

October 11, 2022

Response 1

- 1. The algorithm would take in two integer inputs, $int\ start$ and $int\ end$, and would return an integer. The algorithm would check if end-start==2, if so the algorithm would call f([0],[1]). If f([0],[1])==-1, then the algorithm returns the parameter start and if f([0],[1])==1, then the algorithm returns the parameter end. Else, the algorithm would calculate mid by taking the size, n, and dividing it by 2. If n is even, the algorithm would check if the left or right side of the array is bigger by calling f([0..mid], [mid..end]). If f([0..mid], [mid..end]) == -1, then the algorithm would recursively call on itself with start=0 and end=mid. If the function resulted in 1, then the algorithm will call on [mid..end] of array instead. If n is odd, then the function would check if the left half and right half (excluding the exact middle value) of the array is bigger or not. If calling f([0..mid],[mid+1..end]) is 0, then mid must be the index. If not, then the algorithm will proceed the recursion calls like previously described.
- 2. The recurrence relation is $T(n) = T(\frac{n}{2}) + 2f()$ because the algorithm makes one recursive call and calls f() twice at most.
- 3. **Given**: $T(n) = T(\frac{n}{2}) + 2f()$

Unroll the Recurrence

let d denotes level of unrolling and let f() denote $\Theta(max(|l_1||l_2|))$

$$\begin{array}{l} d=1 \colon T(n)=T(\frac{n}{2})+2f() \\ d=2 \colon T(n)=[T(\frac{n}{4})+2f()]+2f()=T(\frac{n}{4})+4f() \\ d=3 \colon T(n)=[T(\frac{n}{8})+2f()]+4f()=T(\frac{n}{8})+6f() \\ d=4 \colon T(n)=[T(\frac{n}{16})+2f()]+6f()=T(\frac{n}{16})+8f() \end{array}$$

General pattern: $T(n) = T(\frac{n}{2^d}) + 2df()$

The base case when T(1) is reached when $d = \log n$ Solve for d:

$$\frac{n}{2^d} = 1$$
$$n = 2^d$$

$$\log n = d$$

Plug d back in:
$$T(n) = T(\frac{N}{2^{\log n}}) + 2\log n f() = T(1) + 2\log n f() = 2\log n [\max |l_1||l_2|]$$

$$\Theta(\log n)$$

Response 2

Given: T(n) = T(n-1) + n

Unroll the Recurrence

Let d denote level of unrolling

$$\begin{array}{l} d=1:\ T(n)=T(n-1)+n\\ d=2:\ T(n)=[T(n-2)+(n-1)]+n=T(n-2)+2n-1\\ d=3:\ T(n)=[T(n-3)+(n-2)]+2n-1=T(n-3)+3n-3\\ d=4:\ T(n)=[T(n-4)+(n-4)]+3n-3=T(n-4)+4n-7 \end{array}$$

General Pattern: $T(n) = T(n-d) + dn - (2^{d-1}-1)$

The base case when T(1) is reached when n-d=1.

Solve for d:

$$n - d = 1$$
$$-d = 1 - n$$
$$d = n - 1$$

Plug d back in:

$$T(n) = T(n - (n - 1)) + (n - 1)n - (2^{n-1-1} - 1)$$

$$T(n) = T(1) + n^2 - n - 2^{n-1} + 1$$

$$T(n) = n^2 - n - 2^{n-2} + 1 = \Theta(2^n)$$

$$\therefore \Theta(2^n)$$

Response 3

Response 4

Given: $T(n) = 2T(\frac{n}{4}) + 1$

Apply Master Theorem:

A = 2, B = 4,
$$f(n) = 1$$

 $k = \frac{\log 2}{\log 4} = \frac{1}{2}$

$$k = \frac{\log 2}{\log 4} = \frac{1}{2}$$

Compare f(n) = 1 to $n^{\frac{1}{2}}$

Since $f(n) = O(n^{\frac{1}{2} - \epsilon})$ where $\epsilon = \frac{1}{2}$, Case 1 applies:

 $T(n) \in \Theta(n^{\frac{1}{2}})$

The solution must be $T(n) = \Theta(n)$ since $k = \frac{1}{2}$ and rounds up to 1

Response 5

Given: $T(n) = 2T(\frac{n}{4}) + \sqrt{n}$

Apply Master Theorem:

A = 2, B = 4,
$$f(n) = \sqrt{n}$$

 $k = \frac{\log 2}{\log 4} = \frac{1}{2}$

$$k = \frac{\log 2}{\log 4} = \frac{1}{2}$$

Compare $f(n) = \sqrt{n}$ to $n^{\frac{1}{2}}$

Since $f(n) = \sqrt{n}$ is equal to $n^k = n^{\frac{1}{2}}$, then we apply Case 2:

$$T(n) = \Theta f(n)log(n) = \Theta(n^{\frac{1}{2}}log(n^{\frac{1}{2}}))$$

 $\therefore \Theta(nlog(n))$

Response 6

Given: $T(n) = 2T(\frac{n}{2}) + n$

Apply Master Theorem:

$$A = 2, B = 4, f(n) = n$$

 $k = \frac{\log 2}{\log 4} = \frac{1}{2}$

$$k = \frac{\log 2}{\log 4} = \frac{1}{2}$$

Compare f(n) = n to $n^{\frac{1}{2}}$

Since $n^{\frac{1}{2}-\epsilon}$ results in $\epsilon = \frac{1}{2}$, and $cf(n) \geq n^{\frac{1}{2}}$, apply Case 3:

 $T(n) \in \Theta(f(n)).$

 $\therefore \Theta(n)$

Response 7

Given:
$$T(n) = 2T(\frac{n}{4}) + n^2$$

Apply Master Theorem:

A = 2, B = 4,
$$f(n) = n^2$$

 $k = \frac{\log 2}{\log 4} = \frac{1}{2}$

$$k = \frac{\log 2}{\log 4} = \frac{1}{2}$$

Compare $f(n) = n^2$ and $n^{\frac{1}{2}}$ Since $n^{\frac{1}{2}+\epsilon}$ results in $\epsilon = 1.5$ and $cf(n) \ge n^{\frac{1}{2}}$, apply Case 3:

 $T(n) \in \Theta f(n)$.

$$\Theta(f(n))$$