IoT Security (lecture notes)

3rd April 2019

Introduction

- Today, "smart" means "insecure"
- "If it does what I want it to do, I don't care that it is part of a botnet"
- The IoT security problem is primarily a <u>cultural</u> one

Global Risk Landscape 2019

1 Extreme weather events

Pailure of climate-change mitigation and adaptation

3 Natural disasters

Cyber-attacks

Source: World Economic Forum Global Risks Report 2019 http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf

Notable cybersecurity articles related to IoT

- Hackers Remotely Kill A Jeep On The Highway (2015)
 - https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
- "Internet of Things" security is hilariously broken and getting worse (2016)
 - https://arstechnica.com/information-technology/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/
- Millions Of Private Messages Between Parents And Kids Hacked In Cloud Pets Security Breach (2017)
 - http://www.huffingtonpost.com.au/2017/02/28/millions-of-private-messages-between-parents-and-kids-hacked-in_a_21816860/
- CovertBand: Activity Information Leakage using Music | University of Washington (2017)
 - http://musicattacks.cs.washington.edu/activity-information-leakage.pdf

Notable cybersecurity articles related to IoT (continued)

- Burger King 'O.K. Google' Ad Doesn't Seem O.K. With Google (2017)
 - https://www.nytimes.com/2017/04/12/business/burger-king-tv-ad-google-home.html
- Hackers Found a (not-so-easy) way to make the Amazon Echo a spy bug (2018)
 - https://www.wired.com/story/hackers-turn-amazon-echo-into-spy-bug
- Amazon's Alexa started ordering people dollhouses after hearing its name on TV (2017)
 - https://www.theverge.com/2017/1/7/14200210/amazon-alexa-tech-news-anchor-order-dollhouse
- Smart cities around the world were exposed to simple hacks (2018)
 - https://www.cnet.com/news/smart-cities-around-the-world-were-exposed-to-simple-hacks/
- McAfee Researchers Find Poor Security Exposes Medical Data to Cybercriminals (2018)
 - https://securingtomorrow.mcafee.com/mcafee-labs/mcafee-researchers-find-poor-security-exposes-medical-data-to-cybercriminals/

Notable cybersecurity articles related to IoT (continued)

- Hacking pacemakers, insulin pumps and patients' vital signs in real time (2018)
 - https://www.csoonline.com/article/3296633/security/hacking-pacemakers-insulin-pumps-and-patients-vital-signs-in-real-time.html
- This Guy Hacked Hundreds Of Planes From The Ground (2018)
 - https://www.forbes.com/sites/thomasbrewster/2018/08/09/this-guy-hacked-hundreds-of-planes-from-the-ground/
- New flaws in 4G, 5G allow attackers to intercept calls and track phone locations (2019)
 - https://techcrunch.com/2019/02/24/new-4g-5g-security-flaws/

Cybersecurity is ultimately a risk management exercise

Source: How to Measure Anything in Cybersecurity Risk – Hubbard & Seiersen

McAfee Global Threat Intelligence received on average 49 billion queries per day in Q3 2018

We register around 8 new threat samples every second

Source: McAfee (Dec 2018)

Data breaches

87% of breaches took "minutes or less" for attackers to gain access 68% of breaches were undiscovered for one or more months

How do attackers get in?

- 48% featured hacking
- 30% included malware
- 17% involved errors
- 17% were social attacks
- 12% were nation-state-affiliated
- 50% involved organised crime
- 73% were perpetrated primarily by external parties
- 27% were perpetrated primarily by insiders

Top cloud security risks

- Data Breach / Loss
- Insufficient Identity, Credential and Access Management (including Account Hijacking and Malicious Insiders)
- Cyber Threats / Abuse and Nefarious Use of Cloud Services / DoS
- Insecure Interfaces and APIs
- Insufficient Due Diligence
- System and / or Shared Technology Vulnerabilities

NIST Cyber Security Framework

Identify **Protect** Detect Respond Recover Anomalies and Asset Management Recovery Planning Access Control Events Business Awareness and Security Continuous Environment Training mprovements Monitoring Governance Data Security Detection Processes Communications Info Protection Risk Assessment Processes and **Procedures** Maintenance Protective

Technology

(1) CIS Controls[™]

Australian Signals Directorate (ASD) Essential Eight

Threat: To prevent malware running					
Application whitelisting TOP 4	Patch applications TOP 4				
A whitelist only allows selected software applications to run on computers.	A patch fixes security vulnerabilities in software applications.				
Disable untrusted Microsoft Office macros	User application hardening				
Microsoft Office applications can use software known as 'macros' to automate routine tasks.	Block web browser access to Adobe Flash Player (uninstall if possible), web ads and untrusted Java code on the Internet.				
Threat: To limit the extent of incidents and	recover data				
Restrict administrative privileges TOP 4	Patch operating systems TOP 4				
Only use administrator privileges for managing systems, installing legitimate software and applying software patches. These should be restricted to only those that need them.	A patch fixes security vulnerabilities in operating systems.				
Multi-factor authentication	Daily backup of important data				
This is when a user is only granted access after successfully presenting multiple, separate pieces of evidence. Typically something you know, like a passphrase; something you have, like a physical token; and/or something you are, like biometric data.	Regularly back up all data and store it securely offline.				

Source: https://cyber.gov.au

Key IoT security challenges

Low powered	Limited computing capabilities mean difficulty implementing security controls (e.g. encryption).
Standards and regulation	Lack of government regulation and standards mean most are not designed with security in mind.
Lifecycle management	Keeping devices up to date is not something that is currently well managed, leading to security vulnerabilities potentially remaining unpatched indefinitely.
Transport protocols	The sheer number of emerging connection protocols makes them difficult to manage and secure.
Physical access	Devices are increasingly unlikely to be located in physically secure sites, significantly increasing the opportunities for attackers to compromise their integrity.
Number of devices	IoT deployments are largely uncontrolled environments (in the context of security) where the number of devices grows exponentially, making it extremely challenging for cyber security teams to govern and manage.
Availability and continuity	Devices are often not designed without alternate options to maintain availability of both functionality and connectivity in the event of failure.

Common IoT security weaknesses

Interface
(web/cloud/mobile/physical)

Security configurability

Authentication/authorisation

Network connectivity and services

Confidentiality & integrity verification

Software & hardware (incl. firmware, memory, sensors)

IoT data security concerns

Data Confidentiality

- · Insufficient authentication/authorization
- Insecure interfaces (web, mobile, cloud, etc.)
- · Lack of transport encryption
- · Confidentiality preserving
- Access control

Privacy

- Privacy, data protection and information security risk management
- Privacy by design and privacy by default
- · Data protection legislation
- Traceability/profiling/unlawful processing

Trust

- Identity management system
- Insecure software/firmware
- Ensuring continuity and availability of services
- Realization of malicious attacks against loT devices and system
- Loss of user control/difficult in making decision

Information a hacker could obtain from an IoT device

Source: https://heimdalsecurity.com/blog/internet-of-things-security/

Source: https://www.beechamresearch.com/

In a nutshell...

Source: https://www.netburner.com/learn/architectural-frameworks-in-the-iot-civilization/

Six principles of IoT Security Architecture

Source: IoT Analytics * **User**: can represent a person, device, system, or application

IoT wireless protocols

Key wireless technologies and their characteristics											
	5G	BLE	Cat-M1	LoRaWAN	LTE-A	NB-IoT	Sigfox	Wi-Fi	Zigbee		
Open standards or proprietary	Open standards	Open standards	Open standards	Proprietary	Open standards	Open standards	Proprietary	Open standards	Open standards		
Public or private	Public/ private	Private	Public	Public/ private	Public/ private	Public	Public	Public/ private	Private		
Range	Wide	Short	Wide	Wide	Wide	Wide	Wide	Local	Short		
Low or high bandwidth	High/low	Low	Low	Low	High	Low	Low	High	Low		
Licensed or unlicensed spectrum	Licensed/ Unlicensed	Unlicensed	Licensed	Unlicensed	Licensed/ Unlicensed	Licensed	Unlicensed	Unlicensed	Unlicensed		
Current Global Status	Not launched	Widely available	Limited availability	Limited availability	Widely available	Limited availability	Limited availability	Widely available	Widely available		

Source: https://www.ihsmarkit.com

Industrial Internet of Things (IIOT)

Source: https://www.iiconsortium.org/IISF.htm

IoT Attack Surface

- 11. Weak Guessable, or Hardcoded Passwords
- I2. Insecure Network Services
- 13. Insecure Ecosystem Interfaces
- I4. Lack of Secure Update Mechanism
- 15. Use of Insecure or Outdated Components
- I6. Insufficient Privacy Protection
- I7. Insecure Data Transfer and Storage
- 18. Lack of Device Management
- I9. Insecure Default Settings
- I10. Lack of Physical Hardening

Advanced cyber defence

Architecture

Advanced cyber defence **Bringing it all together**

Compromise Maneuver Execute Prepare Take a risk-based Continuously monitor, Assume an adaptive Implement an trust environment approach automated and remediate, and adapt integrated detect and Understand your data Track user and device User awareness and response capability and assets education identity, integrity and Firewall/Proxy/IPS can behaviour Adopt a maturity and Proactive patching block malicious and traffic controls framework Monitor data at rest, in Whitelisting, Proactively hunt for threats motion and in use sandboxing, encryption, Ensure regular review and loCs and rehearsal of your access control, multi-Back up and restore files incident response factor authentication, Use data analytics keep a recent backup limit privileged access offsite and "air gapped" program

How do we solve the problem and give ourselves more time for fun?

- Do not underestimate the threat; assume they are already in the system
- Cooperation and collaboration is critical; enough with protectionism
- Stop playing the hapless victim; take responsibility and be proactive

"I've never found it hard to hack most people. If you listen to them, watch them, their vulnerabilities are like a neon sign screwed into their heads." – Mr. Robot

