Arquiteturas Paralelas e Distribuídas

Análise de desempenho e depuração de programas paralelos

Eduardo Furlan Miranda 2025-02-01

Baseado em: CHARÃO, A. S. Análise de desempenho de programas paralelos. 2011.

- Objetivo
 - Introduzir conceitos usados na análise de desempenho de programas paralelos
- Conceitos
 - Aceleração
 - Eficiência
 - Escalabilidade

Execução sequencial X paralela

Fator de aceleração (speedup)

$$S(n) = \frac{tempo de execução serial}{tempo de execução paralela} = \frac{t_s}{t_p}$$

ideal para máquina paralela com n processadores/núcleos

$$E = \frac{tempo de execução serial}{t.exec.paralela \times n^{\underline{o}} de processadores} = \frac{t_s}{t_p \times n}$$

$$E = \frac{S(n)}{n} \times 100\%$$

A eficiência fornece a fração de tempo que os processadores estão sendo utilizados

Speedup

- S(n) > n (superlinear)
 - O desempenho do programa paralelo é mais do que n vezes mais rápido do que o programa sequencial
 - O algoritmo sequencial original não é a maneira mais eficiente de resolver o problema
 - A arquitetura da máquina paralela possui características específicas, como memória extra ou um sistema de cache mais eficiente
 - Ex.: se cada processador em um sistema paralelo tiver sua própria memória, o conjunto total disponível pode ser maior do que em um sistema sequencial
 - Isso pode reduzir a necessidade de troca de dados entre a memória principal e a memória cache, resultando em um speedup > que o esperado
- S(n) < n (sub-ótimo)
 - Lei de Ahmdal
 - Sobrecarga do paralelismo (ex.: comunicação)

Speedup máximo

Lei de Amdahl (1967)

• O fator de speedup é dado por

$$S(n) = \frac{t_s}{ft_s + (1-f)\frac{t_s}{n}} = \frac{n}{1 + (n-1)f}$$

- Speedup limitado pela fração serial
- Considera que o tamanho do problema é fixo
- Speedup máximo: $S_{max} = 1 / f$

Lei de Amdahl

- Mesmo com número infinito de processadores o speedup é limitado a 1/f
 - Ex.: para f = 5%, o speedup máximo é 1/0,05 = 20, independente de n

Sobrecargas na execução paralela

- Em vermelho, tempos gastos à mais, além do que foi gasto no cálculo sequencial
 - Ex.: ações ou esperas para comunicação, sincronização, criação de threads/processos

Escalabilidade

- Escalabilidade de hardware ou de arquitetura
 - Aumento do tamanho do sistema aumenta o desempenho
 - Facilidade de agregar processadores
- Escalabilidade do algoritmo paralelo
 - Problema de tamanho fixo
 - Problema de tamanho variável

Escalabilidade

- Escalabilidade do algoritmo
 - Algoritmo pode suportar um aumento do tamanho do problema com um aumento baixo e limitado dos passos de computação
 - Ex. 1: adição de matrizes duplica o tamanho da matriz, duplica número de passos
 - Ex. 2: multiplicação de matrizes duplica o tamanho da matriz, quadruplica número de passos

Lei de Gustafson (1988)

```
Speedup = f + P(1-f)
```

onde

f = fração serial do problema escalonado (a parte que não pode ser paralelizada)

(1-f) = fração paralela do problema escalonado

P = quantidade de processadores

- Reavalia a lei de Amdahl sob o ponto de vista da escalabilidade
- O tamanho do problema aumenta com o número de processadores
 - Pode-se resolver problemas maiores no mesmo intervalo de tempo
- Considera que o tempo de execução paralelo é fixo

Amdahl

- s' = parte serial
- p' = parte paralela
- s' corresponde à fração serial (f)
- p' corresponde à fração paralela (1-f)
- N = quantidade de processadores

- Na análise de desempenho é necessário conhecer os tempos de execução
- Speedup, Eficiência e Escalabilidade são conceitos fundamentais na análise de desempenho
- Lei de Amdahl: o speedup máximo é limitado pela fração serial do código, em um problema fixo
- Lei de Gustafson: o speedup cresce com a escala do problema junto com o número de processadores
- Sobrecargas e escalabilidade: a execução paralela tem sobrecargas, e a escalabilidade do algoritmo suporta aumento no tamanho do problema