Lab Report1

Arnav Yadnopavit- EE24BTECH11007 Prajwal - EE24BTECH11051

February 11, 2025

Objective

To analyze the magnitude and phase response of 1-stage, 2-stage, and 3-stage RC low-pass filters using Bode plots.

Apparatus

- Resistors $(1k\Omega \text{ each})$
- Capacitors (100nF each)
- Function generator
- Oscilloscope

Theory

A low-pass filter allows low-frequency signals to pass while attenuating higher-frequency signals. The transfer function for an n-stage RC low-pass filter is given by:

$$H_n(s) = \frac{V_C(s)}{V_0(s)} = \frac{1}{(1 + RCs)^n}$$
 (1)

where R is the resistance and C is the capacitance.

The magnitude response in dB is:

$$|H_n(j\omega)|_{dB} = 20n \log_{10} \left(\frac{1}{\sqrt{1 + (\omega RC)^2}} \right)$$
 (2)

The phase response is:

$$\angle H_n(j\omega) = -n \tan^{-1}(\omega RC) \tag{3}$$

Procedure

- 1. Assemble the RC low-pass filter circuits for 1-stage, 2-stage, and 3-stage configurations.
- 2. Apply an AC signal of varying frequency using the function generator.
- 3. Measure the output voltage using the oscilloscope.
- 4. Compute the magnitude and phase response.
- 5. Plot the Bode magnitude and phase graphs.

Readings

Frequency (Hz)	$ H_n(j\omega) _{dB}(dB)$	Phase (deg)
10^{2}	0	-0.3
10^{3}	-0.81643989	-3.0
10^{4}	-28.54232711	-30.0

Table 1: Stage1

Frequency (Hz)	$ H_n(j\omega) _{dB}(dB)$	Phase (deg)
10^{2}	0	-14.4
10^{3}	-8.31030888	-60.48
10^{4}	-57.64807176	48.24

Table 2: Stage2

Frequency (Hz)	$ H_n(j\omega) _{dB}(dB)$	Phase (deg)
10^{2}	0	-14.4
10^{3}	-17.35001135	-86.4
10^{4}	-59.13023121	-79.2

Table 3: Stage3

Graphs

Stage1

Stage2

Thank You