13. Übung AuD

Dominic Deckert

26. Januar 2017

Previously on ...

- ► Semi-Ring
- ► Aho-Algorithmus

mA_G

$$\begin{pmatrix} \{\varepsilon\} & \{b\} & \{b\} \\ \emptyset & \{\varepsilon\} & \{a\} \\ \{c\} & \emptyset & \{\varepsilon\} \end{pmatrix}$$

b)

$$\begin{pmatrix} \{\varepsilon\} & \{b\} & \{b\} \\ \emptyset & \{\varepsilon\} & \{a\} \\ \{c\} & \{cb\} & \{\varepsilon, cb\} \end{pmatrix} = D_G^1$$

$$\begin{pmatrix} \{\varepsilon\} & \{b\} & \{b, ba\} \\ \emptyset & \{\varepsilon\} & \{a\} \\ \{c\} & \{cb\} & \{\varepsilon, cb, cba\} \end{pmatrix} = D_G^2$$

c), d)

$$\begin{pmatrix}
\{bc, bac\}^* & \{bc, bac\}^* \circ \{b\} & \{bc, bac\}^* \circ \{b, ba\} \\
\{a\} \circ \{cb, cba\}^* \circ \{c\} & \{a\} \circ \{cb, cba\}^* \circ \{cb\} & \{a\} \circ \{cb, cba\}^* \circ \{cb\} \\
\{cb, cba\}^* \circ \{c\} & \{cb, cba\}^* \circ \{cb\} & \{cb, cba\}^*
\end{pmatrix} = D_G$$

$$D_{G'}(3,3) = \{cb, ba, cba\}^*$$

Zufallsexperimente

Zufallsexperiment:

- Ausgang kann nicht vorhergesagt werden
- wiederholbar(ohne dass sich verschiedene Experimente beeinflussen)

X: mögliche Ausgänge eines Zufallsexperiment

Korpus $h:X \to \mathbb{R}^\infty_{>0}$ "zählt" Ausgänge bei mehrfacher Wiederholung

Größe eines Korpus:
$$|h| = \sum_{x \in X} h(x)$$

Likelihood

Zufallsexperimente können durch Wahrscheinlichkeitsverteilung p beschrieben werden

$$p: X \to [0,1] \text{ mit } \sum_{x \in X} p(x) = 1$$

Menge aller Wahrscheinlichkeitsverteilungen über X: $\mathcal{M}(X)$

"Wahrscheinlichkeit", dass ein Korpus von einem bestimmten p erzeugt wird:

Likelihood
$$L(h, p) = \prod_{x \in X} p(x)^{h(x)}$$

Aufgabe: Gegeben einen Korpus, welche Wahrscheinlichkeitsverteilung hat diesen Korpus höchstwahrscheinlich erzeugt?

Wahrscheinlichkeitsmodell

Einschränkung der möglichen Wahrscheinlichkeiten: $M\subseteq \mathcal{M}(X)$ Häufig anhand von Wissen/ Annahmen über das Zufallsexperiment Wahrscheinlichstes p: Maximum-Likelihood-Schätzung $mle(M,h)=argmax_{p\in M}\{L(h,p)\}$ relative Häufigkeitsverteilung $rfe(h)(x)=\frac{h(x)}{|h|}$ Wenn $rfe(h)\in M$, dann ist mle(M,h)=rfe(h)

a)

$$X = \{1, 2, 3, 4, 5, 6\}$$

 $|h| = 18$
 $M = \{p \in \mathcal{M}(X) | \forall i \in X : p(i) = p(6 - i)\}$

X	1	2	3	4	5	6
h(x)	3	5	1	1	5	3
rfe(h)	$\frac{1}{6}$	$\frac{5}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{5}{18}$	$\frac{1}{6}$

 $rfe \in M$, also rfe(h) = mle(M, h)

b)

$$X = \{K, Z\}^2$$

 $|h| = 18$
 $M = \{p \in \mathcal{M}(X) | \exists p_1, p_2 \in \mathcal{M}(\{K, Z\}) : p(x_1, x_2) = p_1(x_1) \cdot p_2(x_2)\}$

×	(K, K)	(K, Z)	(Z, K)	(Z, Z)
h(x)	2	4	4	8
rfe(h)	$\frac{1}{9}$	$\frac{2}{9}$	<u>2</u> 9	4 9

Mit $p_1(K) = p_2(K) = \frac{1}{3}$ folgt: $rfe \in M$, also rfe(h) = mle(M, h)

c)

$$X = \{R, S, W\}$$

$$|h| = 10$$

$$M = \{p \in \mathcal{M}(X) | \forall i \in X : 5p(i) \in \mathbb{N}\}$$

×	W	S	R
h(x)	4	2	4
rfe(h)	$\frac{2}{5}$	$\frac{1}{5}$	<u>2</u> 5

$$rfe \in M$$
, also $rfe(h) = mle(M, h)$

unvollständiger Korpus

Manchmal sind von Zufalsexperiment nicht die Ausgänge (aus X) bekannt, sondern nur Interpretation der Ausgänge

Y: mögliche Interpretationen eines Ausgangs $x \in X$

vield : $X \rightarrow Y$ interpretiert Ausgänge

Analysator $A: Y \to Y$ analysiert Beobachtungen d.h. $x \in A(yield(x))$ Korpus unvollständiger Daten $h: Y \to \mathbb{R}^{\infty}_{>0}$ gibt Anzahl der Beobachtungen an (tatsächliche Ausgänge nicht bekannt)

EM

Ziel: Gegeben einen unvollständigen Korpus, welches $q \in M$ hat dann die höchste Likelihood?

→ nichtlineare Optimierung

Ansatz: schrittweises Erzeugen immer besserer q^i durch EM-Algorithmus

E-Schritt: Erzeuge aus letzter Wahrscheinlichkeitsverteilung (hypothetischen) vollständigen Korpus

$$h^{i}(x) = h(yield(x)) \cdot \frac{q^{i-1}(x)}{\sum_{x' \in A(yield(x))} q^{i-1}(x')}$$

ightarrow vollständiger Korpus wird aus unvollständigem anhand bedingter Wahrscheinlichkeit normiert

M-Schritt: Bestimme $q^i = mle(M, h^i)$

Berechnungen

Rechenregeln für diese Aufgabe:

- Münzen unabhängig, dh. $q_0(x_1, x_2) = q_0^1(x_1) \cdot q_0^2(x_2)$
- ► Teil-Korpora für erste / zweite Münze: addiere im vollständigen Korpus alle zugehörigen Elemente auf

Bsp:
$$h_1^1(R) = h_1(R, Z) + h_1(R, K)$$

$$A(win) = \{(K, K), (Z, Z)\}$$

X	(K,K)	(Z, Z)	(K, Z)	(Z, K)	(R, K)	(R, Z)
yield(x)	win	win	lose	lose	lose	lose
q_0	$\frac{2}{15}$	$\frac{4}{15}$	$\frac{4}{15}$	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{2}{15}$
h_1	2	4	8	4	2	4
q_1	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{6}$

X^1	K	Z	R	X^2	K	Z
h_1^1	10	8	6	h_1^2	8	16
q_1^1	$\frac{5}{12}$	$\frac{1}{3}$	$\frac{1}{4}$	q_1^2	$\frac{1}{3}$	$\frac{2}{3}$

$$A(lose) = \{(r, r), (g, g), (b, b)\}$$

X	(r,r)	(g,g)	(b,b)	(r, g)	(r, b)	(g, r)	(g, b)	(b, r)	(b, g)
yield(x)	lose	lose	lose	win	win	win	win	win	win
q_0	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{24}$	$\frac{1}{12}$
h_1	9	12	3	6	3	2	2	1	2
q_1	9 40	$\frac{12}{40}$	$\frac{3}{40}$	<u>6</u> 40	3 40	$\frac{2}{40}$	$\frac{2}{40}$	$\frac{1}{40}$	$\frac{2}{40}$

X^1	r	g	b	X^2	r	g	b
h_1^1	18	16	6	h_1^2	12	20	8
q_1^1	$\frac{9}{20}$	<u>2</u> 5	$\frac{3}{20}$	q_1^2	$\frac{3}{10}$	$\frac{1}{2}$	$\frac{1}{5}$