

AMERICAN INTERNATIONAL UNIVERSITY BANGLADESH

Assignment Title:	Lab Report				
Assignment No:	3		Date of Submission:	15-02- 2022	
Course Title:	Data Com	munication			
Course Code:	00408		Section: E		
Semester:	Spring	2021-22	Course Teacher:	Tanjil Amin	

No	Name	ID	Program
1	Samir Faisal	19-41037-2	BSc [CSE]

Title: Analog Signal quantization using MATLAB

Contents

Title: Analog Signal quantization using MATLAB	1
Performance Task Question's Answer.	2
FIGURE 1: QUANTIZATION USING METHOD-1	3
FIGURE 2: OUANTIZATION USING METHOD-2	4

Performance Task Question's Answer

Using Method-1(Loop)

```
A=1;
B=9;
C=4;
D=1;
E=0:
F=3;
G=7;
H=2;
fs=50000;
t=0:1/fs:0.05;
xt = (H+5)*cos(2*pi*((D+E+5)*10)*t) + (H+7)*sin(2*pi*((E+F+10)*10)*t);
Nsamples=length(xt);
quantised out=zeros(1,Nsamples);
del=(max(xt)-min(xt))/(2^H+2);
Llow=min(xt)+del/2;
Lhigh=max(xt)-del/2;
for i=Llow:del:Lhigh
     for j=1:Nsamples
       if(((i-del/2) \le xt(j)) & (xt(j) \le (i+del/2)))
          quantised out(j)=i;
       end
     end
end
plot(t,xt,'r-.','linewidth',1.5);
hold on;
plot(t,quantised out,'k-.','linewidth',1.5);
xlabel('time');
ylabel('amplitude');
title('example of manual quantization method 1');
legend('Original signal','quantized signal');
```


Figure 1: quantization using method-1

Using Method-2(Calculation)

```
A=1;
B=9;
C=4;
D=1;
E=0;
F=3;
G=7;
H=2;
fs=50000;
t=0:1/fs:0.05;
xt=(H+5)*cos(2*pi*((D+E+5)*10)*t)+ (H+7)*sin(2*pi*((E+F+10)*10)*t);
L=(12-2^H);
```

```
delta=(max(xt)-min(xt))/(L-1);
xtq=max(xt)+(round((xt-min(xt))/delta)).*delta;
plot(t,xt,'r-.','linewidth',1.5);
hold on;
plot(t,xtq,'k-.','linewidth',1.5);
xlabel('time');
ylabel('amplitude');
title('example of manual quantization method 2');
legend('Original signal','quantized signal');
```


Figure 2: quantization using method-2