

Calhoun: The NPS Institutional Archive DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1962-05-21

The design and construction of a high vacuum bearing test apparatus.

Walker, Melvin E.

<http://hdl.handle.net/10945/11945>

Downloaded from NPS Archive: Calhoun

<http://www.nps.edu/library>

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community.

Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

NPS ARCHIVE
1962.06
WALKER, M.

THE DESIGN AND CONSTRUCTION OF A
HIGH VACUUM BEARING TEST APPARATUS

by
Melvin E. Walker

Massachusetts Institute of Technology

B.S. in M.E.

May 21, 1962

Thesis
W22214

THE DESIGN AND CONSTRUCTION OF A
HIGH VACUUM BEARING TEST APPARATUS

by

MELVIN E. WALKER
"

Submitted in Partial Fulfillment

of the Requirements for the
Degree of Bachelor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1962

Library
U. S. Naval Postgraduate School
Monterey, California

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Prof. R. W Mann for his encouragement and guidance throughout this project.

This thesis was sponsored by the Harvard Solar Satellite Project at the Harvard College Observatory. I would like to thank Nathan Hazen and the staff at the Harvard College Observatory for this opportunity and the consideration which they gave me.

TABLE OF CONTENTS

Acknowledgements	1
Abstract	2
1.1 Introduction	3
1.2 Background	3
1.3 Thesis Problem Statement	4
2.1 Conventional Bearing Techniques	4
2.2.1 Performance Data of Conventional Bearings	6
2.2.2 Performance Data of Bearings in a Vacuum	7
3. Design Criteria	8
3.1 Number of Bearing Test Stations	8
3.2 Test Bearing Load and Speed	8
3.3 Measurable Torque Range	9
3.4 Test Pressure	10
4.1 Functional Description of Bearing Test Apparatus	10
4.2 Component Description	12
4.2.1 The Drive System	12
4.2.2 The Test Station	15
4.2.3 The Base Plate	20
5. Operation Parameters of the Bearing Test Apparatus	21
6. Discussion of Experimental Work	22

6.1 Drive System	22
6.2 Transducer Calibration	23
6.3 Bearing Testing	23
Appendix I. Transducer Spring Calculation	25
Appendix II. Choice of Drive System	27
Appendix III. Choice of Torque Measuring Device	28
Appendix IV. Choice of Teflon Bearing for Apparatus	30

LIST OF ILLUSTRATIONS

Fig. 1. Schematic representation of high vacuum bearing test apparatus	11
Fig. 2. Set-up by which the apparatus drive system was tested.	14
Fig. 3. One of the magnet wheels of the magnetic coupling.	14
Fig. 4. Bearing test apparatus showing the base plate, the center drive wheel and two test stations.	16
Fig. 5. Test station calibration jig being used to locate knife-edge.	17
Fig. 6. Calibration jig being used to calibrate torque measuring transducer.	20

LIST OF DRAWINGS

B-5201	Bracket, Plunger	31
A-5202	Spring	32
A-5203	Block, Spring	33
A-5204	Knife-edge	34
B-5205	Wheel, Driving	35
A-5206	Wheel, Driven	36
B-5207	Housing, Test Bearing	37
B-5208	Bracket, Magnet	38
B-5209	Block, Bearing Test Station	39
A-5210	Bearing, Teflon, Plain	40
A-5211	Shaft, Test bearing	41
A-5212	Block, Base Plate Support	42
A-5213	Bearing, Teflon, Flanged	43
B-5214	Wheel, Magnet	44
B-5215	Plate, Base	45
B-5216	Bracket, Transducer	46
A-5223	Stop, Test Station	47
A-5217	Retainer, Test Station	48

A-5219	Bracket, Adjustment	49
B-5220	Base	50
A-5221	Knife-Edge	51
A-5222	Support, Side	52

$\tau^{\alpha\beta} - \tau^{\beta\alpha} = i\delta^{\alpha\beta}$

ABSTRACT

The growing interest in the exploration of the universe makes mandatory new machines which must operate under the extreme temperatures and the high vacuum (10^{-6} to 10^{-13} mm Hg.) of outer space. A critical problem is that of developing bearings which will operate for long, unattended periods of time. Conventional bearings cannot be used because the liquid lubricants are quickly evaporated by the low pressure, and the solid lubricants wear or chip away, exposing the clean metal. If two perfectly clean surfaces come in contact, they weld together and then leave a rough surface when they are torn apart. This does not happen in our atmosphere because the metal surface quickly adsorbs films of oxygen and water vapor which act as lubricants.

There are many proposed designs for bearings which can operate under this high vacuum, but there is very little empirical data on the performance and useful life of these bearings. The purpose of this thesis is to design and construct an apparatus which will measure the performance of instrument bearings operating in a high vacuum.

1.1 INTRODUCTION

Man's ideas and ambitions have always been far in advance of the materials necessary to fulfill them. His greatest ambition today is to leave the earth and travel throughout the universe. In any vehicle traveling through space, friction, wear, and lubrication may well constitute the greatest materials problem.

1.2 BACKGROUND

The first extensive study of friction conditions in a vacuum was performed by T. P. Hughes in 1939. He found that the coefficient of friction of copper on copper in a vacuum of 10^{-6} mm Hg. was approximately 10 times the coefficient in air. This same experiment and similar experiments have been performed numerous times since 1939, but all these people were interested specifically in the mechanism of friction and wear.

There had been very little interest in bearing operation in a vacuum until the last few years. This interest was spurred by the development of the orbital satellite. I was first introduced to the problems of bearings operating in a vacuum at the Harvard College Observatory.

During my Senior year at M.I.T., I worked part time on the Harvard Solar Satellite Project. My work there was concerned primarily with the design of a grating drive system for an orbiting solar spectrometer. It was impossible to hermetically seal the spectrometer because it operated in a high ultraviolet frequency range which would not pass through a lens. This made it necessary for all the parts of the spectrometer to be exposed to the high vacuum. The need for bearings to operate in this grating drive system suggested the need for some means of testing bearings in a high vacuum. I chose this to be my Bachelor thesis problem.

1.3 THESIS PROBLEM STATEMENT

The purpose of my thesis is to devise a means for collecting emperical data on bearing performance under space-like conditions. The thesis consists of the designing and the construction of an apparatus that will continuously measure and record the running torque of bearings inside an evacuated bell jar.

2.1 CONVENTIONAL BEARING TECHNIQUES

Lubrication techniques are usually divided into two

general catagories, hydrodynamic lubrication and boundary lubrication. Hydrodynamic lubrication depends upon having a continuous fluid layer separate the two surfaces and exert sufficient pressure to keep them from touching. It is difficult to insure hydrodynamic lubrication on earth,, and even more difficult in space where the low pressure (10^{-6} to 10^{-13} mm Hg.) will make retention of the fluid a problem. In space there is also the increased difficulty of resupply of the lubricant because of long-time unattended operation and the absence of gravity. Moreover, there is the problem of lubricant depositing upon the surface of optical and electrical equipment that might be near by.

In boundary lubrication, the solid surfaces actually rub against each other. A liquid lubricant may or may not be present. On earth, exposed solid surfaces quickly adsorb films of oxygen and water vapor. The surfaces are thus "dirty", and the "dirt" acts as a lubricant and plays a major part in reducing friction under conditions of boundary lubrication. When metal surfaces are clean and free from adsorbed films of atmospheric gases, they commonly tend to weld to each other on contact; wear rates and coefficients

of friction are then very high. The cleaning of surfaces in space takes place by loss of adsorbed gases into the vacuum. Mechanical wear between mating surfaces provides a mechanism for removing any hard oxide coating that might have formed on the surfaces. Once the surfaces are clean, they will tend to stay clean in space.

It has been shown that both conventional types of lubrication are inadequate for long-term space application, but in space as on earth, the load and speed at which the bearing is operated greatly affect its useful life. There are a number of suggested bearing designs that appear to get around the space-imposed problems, but there are little empirical data that can be used in the designing of space vehicles.

2.2.1 PERFORMANCE DATA OF CONVENTIONAL BEARINGS

Every bearing catalog contains charts or nomograms which aid in the selection of the proper bearing and lubricant for a given application. These charts give the approximate frictional torque and the expected life of the bearing for any combination of load and speed.

There is no analytical method known by which the torque and useful life of a ball bearing can be calculated. All

the performance data found in bearing catalogs were obtained by testing many bearings under a given operating condition and then performing a statistical analysis upon the data. It is necessary to do this at enough load-speed combinations so that smooth curves can be drawn between the points on a graph. These charts, therefore, apply only to well lubricated bearings operating in the earth's atmosphere. Thus, this data is not applicable in choosing a bearing intended to operate in outer space.

2.2.2 PERFORMANCE DATA OF BEARINGS IN A VACUUM.

There are many proposed solutions to the problem of unsatisfactory bearing operation in a high vacuum, but none of these have warranted the rigorous testing necessary to obtain a complete array of performance data.

To choose a bearing for a particular application, it is necessary to test several types of bearings under the actual operating conditions, and then choose the one that gives the most desirable combination of torque and useful life.

The purpose of the bearing test apparatus is to fulfill this need and to eventually collect enough data from

which the above mentioned charts can be completed for any bearing that looks promising for space application.

3. DESIGN CRITERIA

3.1 NUMBER OF TEST STATIONS

Since all bearing performance specifications are statistical, the more bearings tested, the more reliable the processed data will be. In the design of the test apparatus, space was of primary importance because the entire apparatus had to fit inside of a 14-inch bell jar. This limited the number of bearings that could be tested at one time. Another factor which must be considered is the complexity of the apparatus. If it is too complex, it is more subject to mechanical or electrical failure, and it is more difficult to set up for a test run. The complexity of the apparatus also increases its cost.

After considering all the above factors, I chose a criterion of 10 to 20 test stations.

3.2 TEST BEARING LOAD AND SPEED

Conventional instrument bearings are tested at radial and axial loads of 0 to 30 lb, and speeds up to 30,000 rpm.

This results in an overall frictional torque range of 100 to 100,000 milligram millimeters.

I expect bearings in a vacuum to be operated at much lighter loads because of the effect of elastic deformation of the bearing material. The deformation causes the hard oxide coating of the metal to crack and thus exposes the clean metal. For this reason, I thought a maximum radial load of 10 lb and an axial load of 5 lb would be adequate for the testing of instrument bearings in a vacuum.

I chose a maximum test speed of 2000 rpm. because this includes the speed of most electric motors and because I felt a higher speed would introduce vibration caused by unbalanced rotating masses.

3.3 MEASURABLE TORQUE RANGE

Although I am testing at lighter loads and slower speeds than those listed in the catalog, I expect higher torques of bearings operating in a vacuum. This will be especially true if journal bearings are used. For this reason I think the apparatus should be capable of measuring torques from 100 to 1,000,000 milligram-millimeters.

3.4 TEST PRESSURE

Ideally, I would like to test the bearings at a pressure of 10^{-13} mm Hg. which is the pressure beyond 4000 miles from earth. A pressure this low cannot be reached in the laboratory without special equipment and conditions which are not compatible with the tests I wish to perform. Therefore, I have to be satisfied with a pressure of 10^{-7} to 10^{-8} mm Hg. which I can obtain. This pressure corresponds to approximately 250 miles from earth which is equal to or greater than the orbital radius of most of our satellites.

4.1 FUNCTIONAL DESCRIPTION OF BEARING TEST APPARATUS

The drive motor which supplies the torque to the test bearings is mounted under the bell jar base plate. (see Fig. 1) A magnetic drive transmits rotational motion through the base plate to the center drive wheel. A small driven wheel on each test station rides against the center drive wheel. The inner race of the test bearing is rotated by the shaft which passes through the test station driven wheel. A cantilevered spring is used to keep the outer race from rotating. The displacement of the spring is proportional

FIG. 1
SCHEMATIC REPRESENTATION
OF HIGH VACUUM BEARING
TEST APPARATUS.

to the bearing frictional torque, and the displacement of the transducer core attached to the spring determines the amplitude of the signal out of the transducer. Therefore, the signal out of the transducer is proportional to the bearing frictional torque and it can be displayed on a meter or recorded on a strip chart recorder.

The apparatus will be used for the selection of the best type of bearing for a particular application. This will be accomplished by setting the speed and load equal to that of the actual situation and inserting the different types of bearings into the eight test stations. By running tests at a number of combinations of load and speed, bearing torque (or bearing life) vs. rotational speed can be plotted with bearing load as a third parameter.

4.2 COMPONENT DESCRIPTION

The bearing test apparatus is made up of a drive system, eight bearing test stations, and a base plate.

4.2.1 THE DRIVE SYSTEM

The drive system consists of a variable speed DC motor, a magnetic coupling, and a central drive wheel (see Fig. 1). The DC motor (90 to 3000 rpm) is mounted vertically underneath

the bell jar base plate which is a one-inch thick aluminum plate. A recess is milled in the bottom of the base plate to permit the two wheels of the magnetic coupling to be mounted 7/32 inches apart. In the set-up shown in Fig. 2, a plain sheet of 3/16 aluminum plate was used to test the drive system.

Two identical magnet wheels are used to transmit the torque through the base plate (see Fig. 3). One is mounted on the motor shaft and the other one is mounted on a shaft running vertically through the test apparatus base plate. The magnet wheel consists of an aluminum disc with 65 horseshoe magnets mounted in an array such that 13 alternating north and south poles are formed around the disc. It is important to always have like poles adjacent to each other on the disc or some of the magnetic flux lines will be between adjacent magnets rather than through the base plate to the opposite wheel. With a spacing of 7/32 in. between the wheels, a torque of 40 in. oz. (2880 gm cm) can be transmitted by the magnetic coupling.

The center drive wheel which provides the rotational motion to each of the eight test stations is locked to the

Fig. 2 Set-up by which the apparatus drive system was tested.

Fig. 3 One of the magnet wheels of the magnetic coupling.

upper end of the shaft holding the driven magnet wheel. A buna-N o'ring is used as a tire on the center drive wheel to prevent metal to metal contact with the test station wheel. It also prevents vibration from being transferred to the test stations.

4.2.2 THE TEST STATION

The test station block supports a vertical shaft which has locked to it, the wheel that is driven by the center drive wheel. (see Fig. 4 and Dwg. D-5101) The test bearing is placed in a housing and slipped onto the top end of this shaft; the inner race rotates with the shaft, but the outer race is held stationary by a pin in the housing coming in contact with a cantilevered spring. The greater the frictional torque, the more the end of the cantilever spring is displaced. This displacement is measured by a variable reluctance transformer and can be displayed on a meter or recorded by a strip-chart recorder.

To calibrate the bearing test station, it is placed on the calibration jig as shown in fig. 5. The shaft of the test station is brought in contact with a flat on the

Fig. 4

Bearing test apparatus showing the base plate, the center drive wheel
and two test stations.

Fig. 5

Test station calibration jig being used to locate knife-edge.

calibration jig. To insure that the force from the bearing housing pin is perpendicular to the cantilevered spring, the knife-edge of the test station is placed on the centerline of the test station block. This is accomplished by adjusting the spring block until the test station knife-edge comes in contact with the one on the calibration jig. Accurate adjustment is obtained by placing an 0-80 screw through the hole of the adjustment bracket of the calibration jig and screwing it into the spring block (see Dwg. B-5105). When the spring block locking screw is loosened, the block can be accurately moved back and forth by turning the 0-80 screw.

To calibrate the transducer of the test station, the calibration jig is placed on its side as shown in fig. 6. The input to the transducer primary is adjusted to a prescribed frequency and amplitude. Weights are then hung on the knife-edge of the test station and the transducer output voltage is read. A force vs. voltage curve can be drawn. The force can be converted to torque by multiplying it by 1/4 in., the torque arm of the bearing housing pin. In

fig. 6, the transducer output voltage was measured on an oscilloscope because an output demodulator had not yet been obtained.

After the transducer has been calibrated, the calibration jig is turned upright again. The test bearing and housing can now be put in place. The bearing is subjected to a radial load by a magnet as of yet not received from the factory. The magnet bracket is held in place by two screws in the holes next to the bearing spring block. The magnetic pull on the bearing housing will be adjusted by changing the separation between the magnet and the bearing housing (see Dwg. D-5101). A record of force vs. separation will have to be made and this will then be used to apply the proper radial load to the bearing. The test station is now ready to be placed on the base plate.

The three calibrations discussed above need be performed only once. The bearing housing can be lifted off without disturbing the magnet, the transducer, or the spring block.

Fig. 6 Calibration jig being used to calibrate torque measuring transducer.

4.2.3 THE BASE PLATE

The base plate supports the center drive wheel which supplies motion to the eight test stations. Eight vertical dowel pins are provided as supports for the test stations (see Fig. 4). A spring plunger is used to hold the test station in contact with the center drive wheel. If one test bearing has failed, that test station can be uncoupled from the center drive wheel by energizing a solenoid. This pivots the test station on its dowel pin support and pulls it away from the center drive wheel. When the test station

is pulled away, a pin drops over the edge of the plunger bracket and holds the test station in place. The solenoid can then be de-energized.

5. OPERATION PARAMETERS OF THE BEARING TEST APPARATUS

After the design was completed, the following operating parameters were available.

Bearing Test Stations	8
Bearing Test Speed	90 to 2000 rpm
Radial Load	0 to 5 lb
Axial Load	.1 to 1 lb
Measurable Torque	100 to 300,000 mg-mm
Test Pressure	10^{-7} to 10^{-8} mm Hg.

Eight bearing test stations was the maximum number I could accomodate without making it necessary to recalibrate each torque measuring device before each test run.

The radial and axial loads must be applied without imposing any torque upon the test bearing. This can be accomplished only by the application of a body force on a symmetrical body. An axial load can be applied by placing weights upon the bearing housing. The bulkiness of the

weights limit the axial load to approximately one pound.

A magnetic force is the only practical body force that can be used to apply a radial load to the test bearing. This limits the radial load to approximately 5 pounds.

The transducer calibration yielded a measurable torque range of 100 to 300,000 mg-mm. If it is found desirable to increase this torque range, the spring specifications can be calculated as prescribed in the appendix.

6. DISCUSSION OF EXPERIMENTAL WORK

6.1 DRIVE SYSTEM

The drive system has been tested and found to transmit 40 in. oz (2880 gm cm) of torque. This is approximately three times the calculated torque required.

Originally there was a 1/8 in. o'ring on the center drive wheel and the test station wheel was pushed against it with constant force. This caused the test station to follow every irregularity in the tire. By replacing the o'ring with a thicker one (3/16 in. wide) and by placing an adjustable stop on the inside of the test station, the

vibrations were eliminated. The thicker o'ring permitted, more deflection of the rubber. The stop held the test station wheel from following every depression in the tire, yet the tire would expand enough so that the two wheels never broke contact.

6.2 TRANSDUCER CALIBRATION

The transducer was first calibrated by placing a micrometer head against the test station knife-edge. The displacement sensitivity was found to be 0.05 volts/0.001 in.

A force calibration was made by hanging weights upon the test station knife-edge. This produced a force sensitivity of 0.040 volts/gram, or a torque sensitivity of .063 volts/gm cm. In the English system, this is 4.54 volts/in. oz. All of the calibrations made were linear within the accuracy of the oscilloscope voltage readings.

6.3 BEARING TESTING

I have two completed test stations. As soon as the vacuum system is put back together, I plan to test two dry ball bearings. If the data looks reliable, I will have the

other 6 test stations manufactured and proceed on a test schedule for testing the performance of solid lubricants in a vacuum.

APPENDIX I. TRANSDUCER SPRING CALCULATION

The range of the measurable torque of the bearing test station can be adjusted to cover most any range simply by changing the spring dimensions. The displacement of the end of the spring (y) is small compared to the spring length(L), therefore a classical cantilevered beam equation can be used.

$$y = \frac{4 \times P \times L^3}{E \times W \times t^3}$$

Choose the maximum displacement equal to 0.030 in.. at maximum torque to be measured.

P = max. torque (in. lb)/0.250 in.

y = 0.030 in.

L = 1.875 in.

E = Youngs Modulus of spring material.

W = Spring width (in.)

t = Spring Thickness (in.)

All the parameters of the above equation are fixed except for W and t . Any combination of W and t can be used so long as W does not exceed 0.250 in.

APPENDIX II. CHOICE OF DRIVE SYSTEM

There are many reasons for choosing this particular drive system. First, since any motor must have some type of bearings, it is questionable as to how long a motor could successfully operate in a vacuum. Second, there is no air surrounding the motor in a vacuum, and therefore, there is no means of cooling other than radiation. Third, this source of heat inside the bell jar is undesirable because it makes it more difficult to reach low pressure. Fourth, it is impractical to have a vacuum tight mechanical feed-thru at these low pressures. This leaves very little choice other than a magnetic coupling. The magnetic coupling has the further advantage that it transmits no mechanical vibration from the motor to the test apparatus.

APPENDIX III. CHOICE OF TORQUE MEASURING DEVICE.

There are numerous direct reading torque meters on the market, but these are quite expensive and are not designed to operate at extremely low pressures. Strain gage type transducers were disregarded because one gage would not cover the required range without going to very expensive specials. Variable capacitance type gages were considered, but these were found also to be very expensive and rather short lived with capacitance changing with time. For these reasons, the L.V.D.T. which is a standard item except for the teflon coated leads, was chosen.

The transducer is a linear variable-reluctance differential transformer, Sanborn model #595 DT-50. It is sensitive to 1 microinch of core displacement, but in my case a resolution of only 100 microinches is required.

Another reason for choosing this transducer is that the core can be cantilevered from the spring and thus never come in contact with the transducer coil. This eliminates all friction in the torque measuring device except for the housing pin rubbing against the knife-edge. Most torque

meters depend upon having bearing with a frictional torque an order of magnitude less than the smallest torque measured.

APPENDIX IV. CHOICE OF TEFLON BEARINGS FOR APPARATUS.

Teflon bearings were chosen to be used in this bearing test apparatus because teflon is rather stable in a high vacuum, and it has low frictional torque for a dry journal bearing. The torque is still relatively high when it is compared with the torque of ball bearings; this is the reason it is not applicable to many situations where the power consumed is of prime importance. Teflon is difficult to machine to close tolerances; this also makes it undesirable because it is difficult to get the proper fit between the bearing and the shaft.

The teflon bearings, used in this test apparatus, were made to standard bearing dimensions; if a suitable ball bearing can be found for high vacuum operation, it will be a simple matter to change the bearings.

NUMBER
B-5201
REV

REVISIONS	
REV	DESCRIPTION

UNLESS OTHERWISE SPECIFIED
DIMENSIONS IN INCHES - TOLERANCES ON
FRACTIONS DECIMALS ANGLES
 $\pm \frac{1}{64}$ $\pm .005$ $\pm \#$
MATERIAL & SIZE
2024-T4 ALUMINUM
FINISH
BLACK ANODIZE

NO	QUAN	NUMBER	DESCRIPTION
			HARVARD COLLEGE OBSERVATORY CAMBRIDGE 38 MASSACHUSETTS
APPLICATION			
NEXT ASSEMBLY	USED ON	D-5101	
APPR	NLH	5/17/62	
CHECK			
DRAWN	H. Walker	2/5/62	
	SIGNATURE	DATE	
SCALE	NUMBER		REV LTR
2/1	B-5201		

REV	DESCRIPTION	DATE	APPROVED
REVISIONS			

.025

2.187

.093 → ← 2.000

.073 (#49 DR.) DIA. THRU.
2 HOLES REQ'D.

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS ANGLES $\pm \frac{1}{16}$ $\pm .003$ $\pm \frac{1}{16}$		APPLICATION NEXT ASSEMBLY	USED ON D-5101	HARVARD COLLEGE OBSERVATORY
MATERIAL & SIZE 1095 SPRINGS STEEL				CAMBRIDGE 38 MASSACHUSETTS
FINISH NONE	APPR NL/H	5/17/62	TITLE SPRING	
	CHECK			
	DRAWN H. H. H.	7-14-62	SCALE 2/1	NUMBER A-5202
				REV LTR

REV	DESCRIPTION	DATE	APPROVED
REVISIONS			

LA.0005

NOTE:
REMOVE ALL BURRS
& SHARP EDGES.

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON				APPLICATION	
FRACTIONS	DECIMALS	ANGLES		NEXT ASSEMBLY	USED ON
$\pm \frac{1}{64}$	$\pm .005$	$\pm 1^\circ$		D-5101	
MATERIAL & SIZE 2024-T4 ALUMINUM				APPR NLH	5/17/62
				CHECK	
				DRAWN <i>M. P. Miller</i>	12-12-62
				SIGNATURE	DATE
FINISH GOLD ANODIZED				SCALE 2/1	
				NUMBER A-5202	
				REV LTR	

REVISIONS	REV	DESCRIPTION	DATE	APPROVED
-----------	-----	-------------	------	----------

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS $\pm \frac{1}{64}$ $\pm .005$ $\pm \frac{1}{16}$		APPLICATION NEXT ASSEMBLY D-5101		HARVARD COLLEGE OBSERVATORY
MATERIAL & SIZE		APPR	NLT/	CAMBRIDGE 38 MASSACHUSETTS
# 1-72NF-2 x 1/2 LG HEX. HD.			5/17/62	TITLE
S.S.		CHECK		KNIFE EDGE
DRAWN <i>W.W. Jee</i> 2-14-62				
FINISH <i>NONE</i>		SIGNATURE	DATE	SCALE .4 / NUMBER A-5204 REV LTR

34

NUMBER B-5205
REV

REVISIONS
REV

DESCRIPTION

DATE APPROVED

UNLESS OTHERWISE SPECIFIED
DIMENSIONS IN INCHES - TOLERANCES ON
FRACTIONS DECIMALS ANGLES
 $\pm \frac{1}{16}$ $\pm .005$ $\pm \frac{1}{16}$

MATERIAL & SIZE

2024-T4 ALUMINUM

FINISH CLEAR ANODIZED

NO	QUAN	NUMBER	DESCRIPTION
APPLICATION			
NEXT ASSEMBLY	USED ON		
D-5101			
MATERIAL & SIZE			
2024-T4 ALUMINUM	APPR	N/LH	5/17/62
CHECK			
DRAWN	Met Waith	3-16-62	
SIGNATURE			
SCALE	1/1	NUMBER	B-5205
REV LTR			

HARVARD COLLEGE
OBSERVATORY
CAMBRIDGE 38 MASSACHUSETTS

TITLE WHEEL, DRIVING

REVISIONS

REV	DESCRIPTION	DATE	APPROVED
.062			

.370 $\pm .005$

.250

#2-56NC-2 THRU.

36

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS ANGLES $\pm .005$ $\pm .005$ $\pm .005$			APPLICATION	
MATERIAL & SIZE	NEXT ASSEMBLY	USED ON	APPR	CHECK
2024-T4 ALUMINUM	D-5101		N/L H/	S//7/62
FINISH CLEAR ANODIZED	DRAWN		H/	
			SCALE	NUMBER
			DATE	A-5206
			REV LTR	/

HARVARD COLLEGE
OBSERVATORY
CAMBRIDGE 38 MASSACHUSETTS
WHEEL, DRIVEN.

TITLE

NUMBER	B-5207
REV	

REVISIONS		DATE	APPROVED
REV	DESCRIPTION	DATE	APPROVED

NOTES:

- REF. LINE -A- IS \perp OF .6250 DIA.
- REMOVE ALL BURRS & SHARP EDGES.

UNLESS OTHERWISE SPECIFIED
DIMENSIONS IN INCHES - TOLERANCES ON
FRACTIONS DECIMALS ANGLES
 $\pm 1/64$ $\pm .005$ $\pm \#$

MATERIAL & SIZE

HOUSING:
ANNEALED 1020 STEEL.
PIN: 303 STAINLESS.

FINISH

NONE

NO	QUAN	NUMBER	DESCRIPTION
APPLICATION		NEXT ASSEMBLY USED ON	
D-5101			
APPR	NLI	5/17/62	HARVARD COLLEGE
CHECK			OBSERVATORY
DRAWN	Met. Wm.	2-2-62	CAMBRIDGE 38 MASSACHUSETTS
SCALE	2/1	NUMBER	HOUSING, TEST BEARING.
		B-5207	REV LTR

REVISIONS		DESCRIPTION	DATE	APPROVED
REV				

UNLESS OTHERWISE SPECIFIED
DIMENSIONS IN INCHES - TOLERANCES ON
FRACTIONS DECIMALS ANGLES
 $\pm .005$ $\pm \frac{1}{64}$

MATERIAL & SIZE	APPR	N.L.H	5/17/62	APPLICATION
	CHECK			USED ON
FINISH	DRAWN	1/1/62	BRACKET, MAGNET	TITLE
	SIGNATURE	DATE	B-5208	NUMBER
				REV LTR

2024-T4 ALUMINUM
BLACK Anodized

HARVARD COLLEGE
OBSERVATORY
CAMBRIDGE 38 MASSACHUSETTS

38

REV
NUMBER B-5209

REVISIONS	
REV	DESCRIPTION
DATE APPROVED	

NOTES:

1. REF. LINE -A- IS $\frac{1}{4}$ OF .250 & .500 BORE.
2. REMOVE ALL BURRS & SHARP EDGES.
3. SNAP RING GROOVE DIMENSIONS.
.530 ± .002 DIA x .039 ± .002 WIDE.

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS ANGLES		
$\pm \frac{1}{64}$	$\pm .005$	$\pm \#$
MATERIAL & SIZE	APPR	CHECK
2024-T4 ALUMINUM	N/LH	
FINISH	DRAWN	SIGNATURE
VAPOR BLAST & BLACK ANODIZE.	McWalker	1/29/62
SCALE	NUMBER	REV LTR
1/1	B-5209	

DESCRIPTION		
APPLICATION	NEXT ASSEMBLY	USED ON
HARVARD COLLEGE OBSERVATORY	D-5101	
CAMBRIDGE 38 MASSACHUSETTS		
TITLE		
BLOCK, BEARING TEST STATION		
SCALE	NUMBER	REV LTR
1/1	B-5209	

REV	DESCRIPTION	DATE	APPROVED

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON DECIMALS $\pm \frac{1}{16}$		APPLICATION NEXT ASSEMBLY USED ON		HARVARD COLLEGE OBSERVATORY		CAMBRIDGE 38 MASSACHUSETTS	
MATERIAL & SIZE			D-5101				
TEFLON		APPR	N.L.H	5/17/62			
		CHECK					
		DRAWN	H. H. Parker	228-62	SCALE		
	NONE				4/	NUMBER	A-5210
						REV LTR	

TITLE
BEARING, TEFLON, PLAIN.

REVISIONS

REV	DESCRIPTION	DATE	APPROVED

CHAMFER .020 x 45°, BOTH ENDS.

GROOVE D/A., $220 \pm .002$ TYP.
 $.002$ T.I.R.
 $.029 \pm .003$ TYP.

$.24975 \pm .0001$ D/A.

NOTE.

REMOVE ALL BURRS &
SHARP EDGES.

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS $\pm .005$		APPLICATION NEXT ASSEMBLY USED ON	
$\frac{1}{64}$	$\pm .005$	D-5101	
MATERIAL & SIZE		P/C ULTRA PRECISION SHAFT/NUS # A620	
FINISH		APPR NLH	S/17½, 2
N.C. N.E.		CHECK	
		DRAWN <i>M. Wallin</i>	SCALE 1/21/5
		SIGNATURE	NUMBER A-5211
		DATE	REV LTR

41

REV	DESCRIPTION	DATE	APPROVED

UNLESS OTHERWISE SPECIFIED
DIMENSIONS IN INCHES - TOLERANCES ON
FRACTIONS DECIMALS ANGLES
 $\pm .005$ $\pm .005$ $\pm .005$

MATERIAL & SIZE

CAMBRIDGE 38 MASSACHUSETTS

APPR	NEXT ASSEMBLY	USED ON
NL11	S/17/62	D-5101

TITLE

BLock, base plate support

CHECK	DRAWN
✓	✓

REV LTR

SCALE	NUMBER
1/1	A-52-1

HARVARD COLLEGE
OBSERVATORY

REVISIONS

REV	DESCRIPTION	DATE	APPROVED

← .187 →

.031 $^{+.000}_{-.005}$

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS $\pm .005$		APPLICATION NEXT ASSEMBLY USED ON		HARVARD COLLEGE OBSERVATORY		CAMBRIDGE 38 MASSACHUSETTS	
MATERIAL & SIZE			D-5101				
TEFLON		APPR	NL H	5/17 1/2	TITLE	BEARING, TEFLON, FLANGED.	
FINISH		CHECK					
NONE		DRAWN	<i>W. Wilkins</i>	.2510-28-62	SCALE	NUMBER	A - 5213
		SIGNATURE			DATE		REV LTR

REV	
NUMBER	B-5214

REVISIONS		DESCRIPTION	DATE	APPROVED
REV				

4-40NC-2, THRU.
65 HOLES REQ'D. AS SHOWN.
26 HOLES ON 2.062 D.B.C.
26 HOLES ON 1.750 D.B.C.
13 HOLES ON 1.437 D.B.C.

*# 4-40NC-2, THRU.
2 HOLES REQ'D.

UNLESS OTHERWISE SPECIFIED
DIMENSIONS IN INCHES - TOLERANCES ON
FRACTIONS DECIMALS ANGLES
 $\pm \frac{1}{64}$ $\pm .005$ $\pm 15'$
MATERIAL & SIZE
2024-T4 ALUMINUM
FINISH
CLEAR ANODIZED

NO	QUAN	NUMBER	DESCRIPTION
APPLICATION			
NEXT ASSEMBLY	USED ON		
D-5101			
APPR	NLH	5/17/62	HARVARD COLLEGE OBSERVATORY CAMBRIDGE 38 MASSACHUSETTS
CHECK			
DRAWN	Met. Wallace	2-23-62 <td>WHEEL, MAGNET</td>	WHEEL, MAGNET
SCALE	1/1	NUMBER	B-5214
SIGNATURE		DATE	REV LTR

REV
NUMBER B-5215

REVISIONS		DATE	APPROVED
REV	DESCRIPTION		

UNLESS OTHERWISE SPECIFIED
DIMENSIONS IN INCHES - TOLERANCES ON
FRACTIONS DECIMALS ANGLES
 $\pm \frac{1}{64}$ $\pm .025$ $\pm 15'$
MATERIAL & SIZE
2024-T4 ALUMINUM
FINISH
BLACK ANODIZE

NO	QUAN	NUMBER	DESCRIPTION	
APPLICATION		NEXT ASSEMBLY		USED ON
D-5101				
APPR	NLH	5/17/62		
CHECK				
DRAWN	Mel Walker	3-7-62	TITLE	PLATE, BASE.
			SCALE	1/2
			NUMBER	B-5215
			REV LTR	

HARVARD COLLEGE
OBSERVATORY
CAMBRIDGE 38 MASSACHUSETTS

NUMBER B-5216
REV

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS ANGLES $\pm \frac{1}{16}$ $\pm .005$ $\pm \frac{1}{2}$		
APPLICATION NEXT ASSEMBLY USED ON		
MATERIAL & SIZE 2024-T4 ALUMINUM		
APPR	N/LH	5/17/62
CHECK		
DRAWN	Mel Walker	2-5-62
	SIGNATURE	DATE
FINISH	BLACK ANODIZE	

DESCRIPTION	
HARVARD COLLEGE OBSERVATORY CAMBRIDGE 38 MASSACHUSETTS	
TITLE BRACKET, TRANSDUCER	
SCALE 2/1	NUMBER B-5216
REV LTR	

REVISIONS	REV	DESCRIPTION	DATE	APPROVED
-----------	-----	-------------	------	----------

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS $\pm .005$		APPLICATION NEXT ASSEMBLY	USED ON
$\pm \frac{1}{64}$			
MATERIAL & SIZE			
2024-T4 ALUMINUM		APPR NLH	5/7/62
FINISH NC/NR		CHECK	
DRAWN <i>[Signature]</i>		DRAWN <i>[Signature]</i>	SCALE 1/16
SIGNATURE		DATE	TITLE STOP, TEST STATION
			NUMBER A-5223
			REV LTR

17

REVISIONS	DESCRIPTION	DATE	APPROVED
REV			

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON DECIMALS		APPLICATION	
FRACTIONS	ANGLES	NEXT ASSEMBLY	USED ON
$\pm \frac{1}{64}$	$\pm .005$	B-5105	
MATERIAL & SIZE			
303 STAINLESS STEEL		APPR	MLH
		CHECK	5/17/62
FINISH		DRAWN	H. H. H. 5-10-62
VAPOR BLAST		SIGNATURE	DATE

TITLE
RETAINER, TEST STATION

SCALE
NUMBER
A-5217

REV LTR

REVISIONS			
REV	DESCRIPTION	DATE	APPROVED

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS ANGLES		APPLICATION NEXT ASSEMBLY USED ON	
$\pm \frac{1}{64}$	$\pm .005$	$\pm \frac{1}{64}$	$B - 5105$
MATERIAL & SIZE		APPR NLH 5 $\frac{1}{16}$ 2	
303 STAINLESS STEEL		CHECK	TITLE BRACKET, ADJUSTMENT
FINISH VAPOR BLAST		DRAWN <i>W. Walker</i> 3-10-62	SCALE $\frac{1}{16}$
		SIGNATURE	NUMBER A-5219
		DATE	REV LTR

REV
NUMBER B-5220

REVISIONS	
REV	DESCRIPTION
	DATE
	APPROVED

6-32 NC-2, THRU.
7 HOLES REQ'D AS
SHOWN.

NO	QUAN	NUMBER	DESCRIPTION
APPLICATION			
NEXT ASSEMBLY		USED ON	
B-5105			
MATERIAL & SIZE			
2024-T4 ALUMINUM			
FRACTIONS	DECIMALS	ANGLES	
± 1/64	± .005	± 4°	
FINISH			
BLACK ANODIZED			
APPR	NLH	5/17/62	
CHECK			
DRAWN	Mel Walker	3-10-62	
	SIGNATURE	DATE	
SCALE	NUMBER		REV LTR
1/1	B-5220		

HARVARD COLLEGE
OBSERVATORY
CAMBRIDGE 38 MASSACHUSETTS
TITLE
BASE

REV	DESCRIPTION	DATE	APPROVED

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS ANGLES		APPLICATION NEXT ASSEMBLY		USED ON	
$\pm \frac{1}{64}$ $\pm .005$ $\pm \frac{\pi}{4}$		B-5/05		S-17/12	
MATERIAL & SIZE		APPR	A/L/H	CHECK	TITLE
303 STAINLESS STEEL					KNIFE EDGE.
FINISH	VAPOR BLAST	DRAWN	W.H. 3-10-62	SIGNATURE	NUMBER
					A-5221
					REV LTR

51

REVISIONS		REV	DESCRIPTION	DATE	APPROVED

.093 #2-.56NC .2 x $\frac{3}{16}$ DEEP. 2 HOLES REQ'D.

-.166 DIA. (±19 DR.) THRU.
3 HOLES REQ'D.

-.312

1.625 →

← 1.125 →

2.000 →

→ .375 ←

.125 Y

.125 Y
.375 Y

→ .625 ←

← → .625
→ → .250

UNLESS OTHERWISE SPECIFIED
DIMENSIONS IN INCHES - TOLERANCES ON
FRACTIONS DECIMALS ANGLES
 $\pm \frac{1}{64}$ ± .005 ± $\frac{1}{64}$

303 STAINLESS STEEL

MATERIAL & SIZE

FINISH VAPOR BLAST

APPLICATION
NEXT ASSEMBLY USED ON
B-5105

APPR N/L/H 5/17/62
CHECK

DRAWN W.H. 3-10 62
SIGNATURE DATE

SCALE NUMBER
1/1 A-5222

HARVARD COLLEGE
OBSERVATORY
CAMBRIDGE 38 MASSACHUSETTS

SUPPORT, SIDE.

52
REV LTR
A-5222

REVISIONS	
REV	DESCRIPTION
DATE	APPROVED

REV	NUMBER
	B-5105

NO	QUAN	NUMBER	DESCRIPTION
11	1		SHAFT, PIC # A6-13.
10	1		SPACER, PIC # B8-12.
9	2		SCREW, #6-32NC-2 x 3/8 LG, BIND. HD., S.S.
8	2		SCREW, #6-32NC-2 x 3/8 LG, FIL. HD., S.S.
7	3		SCREW, #6-32NC-2 x 5/8 LG, BIND. HD., S.S.
6	2		SCREW, #2-56NC-2 x 1/4 LG, FIL. HD. S.S.
5	1	A-5221	KNIFE EDGE.
4	1	B-5220	BASE.
3	1	A-5219	BRACKET, ADJUSTMENT.
2	1	A-5222	SUPPORT, SIDE.
1	1	A-5217	RETAINER, TEST STATION.

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS ANGLES $\pm \frac{1}{16}$ $\pm \frac{1}{16}$ $\pm 1^\circ$		
APPLICATION		
NEXT ASSEMBLY		USED ON
 MATERIAL & SIZE $\frac{1}{4}$		
APPR	NLH	5/17/62
CHECK		
DRAWN	M. J. Walker	3-9-62
FINISH $\frac{1}{16}$		SIGNATURE DATE
SCALE	1/1	NUMBER
	B-5105	REV LTR

REVISIONS			
REV		DESCRIPTION	DATE
			APPROVED

43	16		SCREW, 2-56 NC-2 x 3/8 LG, FLAT HD., SS.
42	3		SCREW, 4-20HC-2 x 3/4 LG., BIND.HD., S.S.
41	8		NUT, HEX, 6-40NF-2, S.S.
40	8		SCREW, 6-40NF-2 x 3/8 LG, FIL.HD., S.S.
39	8	A-5223	STOP, TEST STATION.
38	3	A-5212	BLOCK, BASE PLATE SUPPORT.
37	32		SCREW, #4-40NC-2 x 1/4 LG., BIND.HD.; SS.
36	16		SCREW, #4-40NC-2 x 1/2 LG, BIND. HD., S.S.
35	8	B-5216	BRACKET, TRANSDUCER.
34	1	B-5215	PLATE, BASE.
33	1	B-5214	WHEEL, MAGNET, DRIVEN.
32	130		MAGNET, ARNOLD ENG. # 3241.
31	1		SHAFT, DRIVE, PIC # A6-20.
30	10	A-5213	BEARING, TEFLON, FLANGED.
29	16		WASHER, THRUST.
28	8		NUT, HEX, # 1-72NF-2, SS.
27	8	A-5211	SHAFT; TEST BEARING.
26	3	A-5210	BEARING, TEFLON, PLAIN.
25	10		SET SCREW, #2-56 x 1/8 LG, SK.HD., NO-MAR
24	8		SPACER, PIC # B8-12
13	8	B-5209	BLOCK, BEARING TEST STATION.
12	8	B-5208	BRACKET, MAGNET.

43	16		SCREW, 2-56NC-2 x 3/8 LG, FLAT HD., SS.
42	3		SCREW, 1/4-20NC-2 x 3/4 LG., BIND. HD., S.S.
41	8		NUT, HEX, 6-40NF-2, S.S.
40	8		SCREW, 6-40NF-2 x 3/8 LG, FIL. HD., S.S.
39	8	A-5223	STOP, TEST STATION.
38	3	A-5212	BLOCK, BASE PLATE SUPPORT.
37	32		SCREW, #4-40NC-2 x 1/4 LG, BIND. HD., SS.
36	16		SCREW, #4-40NC-2 x 1/2 LG, BIND. HD., S.S.
35	8	B-5216	BRACKET, TRANSDUCER.
34	1	B-5215	PLATE, BASE.
33	1	B-5214	WHEEL, MAGNET, DRIVEN.
32	130		MAGNET, ARNOLD ENG. # 3241.
31	1		SHAFT, DRIVE, PIC # A6-20.
30	10	A-5213	BEARING, TEFLON, FLANGED.
29	16		WASHER, THRUST.
28	8		NUT, HEX, # 1-72NF-2, SS.
27	8	A-5211	SHAFT, TEST BEARING.
26	8	A-5210	BEARING, TEFLON, PLAIN.
25	10		SET SCREW, #2-56 x 1/8 LG, SK. HD., NO-MAR
24	8		SPACER, PIC # B8-12
23	8	B-5209	BLOCK, BEARING TEST STATION.
22	8	B-5208	BRACKET, MAGNET.

NUMBER	D-5101	REV
--------	--------	-----

21	24		SCREW, #4-40NC-2 x 3/8 LG., FIL. HD., SS.
20	8		SCREW, #4-48NF-2 x 3/4 LG., FIL. HD., S.S.
19	24		SNAP RING, TRUARC # 5103-25.
18	8		SNAP RING, TRUARC # N5001-62.
17	8		TEST BEARING.
16	8	B-5207	HOUSING, TEST BEARING.
15	8	A-5206	WHEEL, DRIVEN.
14	8		SOLENOID, GUARDIAN 22 INT. 24DC.
13	8		PIN, DOWEL, PIC # A6-13.
12	1	B-5205	WHEEL, DRIVING.
11	1		O-RING, PARKER # 2-334, BUNA-N.
10	8	A-5204	KNIFE EDGE.
9	16		SCREW, #1-72NF-2 x 1/2 LG, BIND. HD., SS.
8	8	A-5203	BLOCK, SPRING.
7	8	A-5202	SPRING.
6	8		TRANSDUCER, LINEAR SYN # 595DT-050.
5	8		MAGNET, LOAD.
4	8		PIN, STOP, PIC # A1-13.
3	8		SET SCREW, NO-MAR #2-56 x 5/32 LG.
2	8		PLUNGER, VLER # S51.
1	8	B-5201	BRACKET, PLUNGER.

NO	QUAN	NUMBER	DESCRIPTION
APPLICATION			
NEXT ASSEMBLY		USED ON	
APPR	NLH	5/17/62	
CHECK			
DRAWN	McWalker	1/21/61	
SIGNATURE		DATE	
SCALE	NUMBER	REV LTR	
/1	D-5101		

UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES - TOLERANCES ON FRACTIONS DECIMALS ANGLES \pm \pm \pm		
MATERIAL & SIZE #		
FINISH #		

HARVARD COLLEGE
OBSERVATORY
CAMBRIDGE 38 MASSACHUSETTS

TITLE
TEST APPARATUS,
BEARING, HIGH VACUUM.

SCALE NUMBER REV LTR
1/1 D-5101

thesW22214

The design and construction of a high va

3 2768 001 92873 2

DUDLEY KNOX LIBRARY