ECSE 403 lab assignment Fall 2018, assignment 4 Instructor: Prof. P. E. Caines

Due 26^{th} october 2018

Lab TA: Borna Sayedana

1 Objective

The main goal of this assignment is to design and implement P,PI,PD, and PID controllers for cart's position system.

2 Your responsibility

Your responsibility is to answer all questions which have been asked throughout this assignment and submit all your answers in addition to Matlab codes and Simulink results.

3 Questions

- 1. Derive the closed loop transfer function of a proportional position controller for the cart system(analytically). Identify ζ and ω_n from the closed loop transfer function and compute them for $K_p = [5, 10, 20, 50]$ (Since you have derived a similar result in assignment 2, part 9 you can just plug in new coefficients) [10 marks]
- 2. Implement (experimentally) a proportional position controller in your Simulink model and plot the step response for $K_p = [5, 10, 20, 50]$. Explain as K_p increases, how do the rise time, overshoot, steady state error and damping change?[15 marks]
- 3. Tuning value of K_p , find an appropriate gain for proportional controller, i.e. change the value of K_p to get a step response with relatively low rise time while over shoot is relatively small.

Give the value of K_p and plot the step response. Report corresponding values for the rise time, maximum overshoot, settling time and steady state error from experimental results. [15 marks]

- 4. Compare the experimental step response with theoretical step response. Explain some of the reasons for the difference between the two step responses. [10 marks]
- 5. Estimate the frequency response of the closed loop system (position control) using $\omega = [1, 2, 5, 10, 20, 50] \frac{rad}{s}$ for Kp = 10 and Kp = 50 and plot the Bode diagram. [15 marks]
- 6. Plot both the Bode diagram you found in previous lab experimentally for the open-loop system(position as the output) and Bode diagram in question 5, on one figure. Explain the effect of a proportional feedback controller on frequency response. [5 marks]
- 7. Add a differentiating block and design a PD controller in the form of

$$C_{PD}(s) = K_p + K_d.s$$

- (a) Using a fixed K_p (K_p you found in question 3), increase the value of K_d gradually and explain the effect of adding a differentiating operator on step response of the system. Report the best K_d and plot step response of the system with PD controller along with best P controller (Question 3) on one figure. [10 marks]
- (b) Try to tune K_d and K_p , simultaneously. Report best combination of K_d and K_p you have found and plot the step response of the new PD controller. [10 marks]
- 8. Remove the differentiating block and replace it with an integrator to design a PI controller of the form

$$C_{PI}(s) = K_p + \frac{K_i}{s}$$

- (a) Using a fixed K_p (K_p you found in question 3), increase the value of K_i gradually and explain the effect of adding an integrator operator on step response of the system. Report the best K_i and plot step response of the system with PI controller along with best P controller (Question 3) on one figure. [10 marks]
- (b) Try to tune K_i and K_p , simultaneously. Report best combination of K_i and K_p you have found and plot the step response of the new PI controller. [10 marks]
- 9. Now add a differentiating block, to design a PID controller of the form

$$C_{PID}(s) = K_p + \frac{K_i}{s} + K_d.s$$

- (a) Using values of K_d and K_p (in question 7), increase the value of K_i gradually and explain the effect of adding an integrator operator on step response of the system. Report the best K_i and plot step response of PID controller along with the best PD controller (Question 7) on one figure. [10 marks]
- (b) Using values of K_i and K_p (in question 8), increase the value of K_d gradually and explain the effect of adding a differentiating operator on step response of the system. Report the best K_d and plot step response of PID controller along with the best PI controller (Question 8) on one figure. [10 marks]
- (c) Try to tune all the three parameters K_p , K_i , K_d simultaneously to find a suitable step response. (report the parameters and plot the step response) [20 marks]
- (d) By keeping two of the parameters fixed and increasing the third one, complete following chart. Write the effect of each of these controller gains on different parameters of the step response.[15 marks]

Table 1: PID controller

Gain	Rise Time	Overshoot	Settling time	Steady state error
K_p				
K_d				
K_i				