

Set-up steps

- 1, Reading the chip ID
- 2, DAC scan
- 3, Calibrating the internal test pulse
- 4, Measuring noise S-curves
- 5, Calibrating threshold
- 6, Trimming Threshold
- 7, Taking Data

Most of this talk refers to the above set-up steps

Refer to the VFAT2 user manual for register functionality and address locations !!!

Functional routines that could be done once the set-up is complete

Noise characterisation of all channels in a single VFAT2 (with and without GEM) Study hybrid performance.

Estimation of detector channel capacitance.

Production test routines.

- 1, Reading the chip ID
- 2, DAC scan
- 3, Calibrating the internal test pulse
- 4, Measuring noise S-curves
- 5, Calibrating threshold
- 6, Trimming Threshold
- 7, Taking Data

Noise characterisation and mapping of all VFATs on a chamber. Study GEB performance.

Noise characterisation and mapping of all VFATs in the system. Study system performance.

Interface with CMS, Event house keeping etc Data taking and MIP calibration. Test beams

VFAT2 operation cycle

VFAT2 internal registers

Figure 4: A schematic view of the programmable registers.

VFAT2	.1 The Control Registers VFAT2 has four "Control Registers" labelled Cont.Reg. 0, to Cont.Reg. 3 which ave bit allocations as shown in tables 4, 5, 6 and 7.									
7										
							SleepB Sleep/Run			
	Table 4: Control Register 0									
7	7 6 5 4 3 2 1 0									
ReHitCT (1)								DACsel (0)		
Table 5: Control Register 1										
						2		1	0	
7	6	5	4	3						
7 DigInSel	6 MSPulse- Length	5 MSPulse- Length	MSPulse- Length	HitCoun Sel	t- Hi	tCount	- H	itCount- Sel	HitCount- Sel	
								1	0	

Principal Registers :						
Reg. Name	Hardwired	Software Default	Reg.	Reg.		
	Sleep value	Value	Add.	type		
Cont.Reg(0)	0000 0000	0000 0000	0	W/R		
Cont.Reg $\langle 1 \rangle$	0000 0000	0000 0000	1	W/F		
IPreampIn	0000 0000	1010 1000	2	W/F		
IPreampFeed	0000 0000	0101 0000	3	W/F		
IPreampOut	0000 0000	1001 0110	4	W/F		
IShaper	0000 0000	1001 0110	5	W/F		
IShaperFeed	0000 0000	0110 0100	6	W/F		
IComp	0000 0000	0111 1000	7	W/F		
ChipID(0)			8	RO		
ChipID $\langle 1 \rangle$			9	RO		
CmpiD(1)			9	no		
UpsetReg.			10	RO		
HitCount0			11	RO		
HitCount1			12	RO		
HitCount2			13	RO		
ExtRegPointer	0000 0000	0000 0000	14	W/F		
ExtRegData	0000 0000	0000 0000	15	W/F		
		ed Registers :				
Lat	1000 0000	1000 0000	*0	W/F		
ChanReg $\langle 1:128\rangle$	0000 0000	0000 0000	*1 to *128	W/F		
VCal	0000 0000	0110 0100	129	W/F		
VThreshold1	0000 0000	0000 0000	★130	W/F		
VThreshold2	0000 0000	0001 1010	*131	W/F		
V I III esiloid2	0000 0000	0001 1010	*101	**/1		
CalPhase	0000 0000	0000 0000	★132	W/F		
G . D (0)	0000 0000	0000 0000	*133	W/F		
$Cont.Reg\langle 2 \rangle$				l		
Cont.Reg(2)	0000 0000	0000 0000	★134	W/F		

Table 17: The VFAT2 Register Sleep settings

16

Example of TOTEM "setup"control panel

VFATD	ebugger - Beta	Version						
Control	Tests							
Chip IE	D 0xee73							
Positio								Commands
		U 0x7F	▼ I²C Cha	annel 0x10 ₹	Device 0:	x10 →		Commands
					230			Scan for FECs and CCUs
Contro	ol Registers CalMode	CalPol	,	MSPol	TrigMode	Run		Initialize VFAT access
CR0:	Normal	• +ve	<u> </u>	+ve <u>▼</u>	No Trig	<u>▼</u> Run	₹ ₹	Chip
	ReHITCT	LVDSP	owerSave I	ProbeMode	DACsel			
CR1:	6,4 µs	→ OFF		OFF ▼	OFF	▼	₹	Read
	DigInSel	11		HitCountSel			_	Write
CR2:		± 1 clock		Fast OR 💌			✓	✓ Compare written values
CR3:	OFF OFF	→ OFF		TrimDAC-range o <u>→</u>			✓	Select all registers
								Select none
Biasin			12/10/27/10/20			Counters		
IPream	npIn 0 npFeed 0		Latency VCal	0		Upset HitCount 0	0	XML File :
IPrean			VThresh			HitCount 1	0	Load Save
IShape	A 12		VThresh			HitCount 2	0	
IShape	erFeed 0		CalPhase	e 135 ° ₹				Show Array in Console
IComp	0					Read C	counters	Silon / may in colosic
Chann	nel Register #1			Othe	er Channel F	tegisters		
☐ Ca	al 0 TrimDAC	3		CH #	# □ Cal	TrimDAC		
☐ Ca	al 1 0	✓		2	Vi	sk 0	✓	
□ Ма	ask			-			1	About Quit
				Che	ange this on	e Change	to all	

Read Chip ID

2.1 Power On

The chip will enter SLEEP mode directly on application of power to the chip.

2.1.2 Read ChipID

Each chip has a unique identifier hardwired inside that may be read via I2C through principal registers 8 and 9. The identifier should be used to create a directory in which the measured results of this particular chip can be stored.

DAC scanning

One by one, select DAC and scan it to obtain

This can be stored and use as a lookup table for setting the required bias current or voltage

DAC	V or I	Exact V or I	General DAC	General DAC
Name		required	setting (bin)	setting (dec)
IPreampIn	I	168uA	10101000	168
IPreampOut	I	$30\mathrm{uA}$	10010110	150
IPreampFeed	I	80uA	01010000	80
IShaper	I	$30\mathrm{uA}$	10010110	150
IShaperFeed	I	20uA	01100100	100
IComp	I	60uA	01111000	120
VTh1	V			
VTh2	\mathbf{V}			
VCal	V			

Table 28: Bias requirements and general DAC settings.

Calibration and noise measurements.

Qin = 100fF * (Vhi - Vlow)

Qin = 0.1fC/mV of CalOut

DACoV = DCU_value * 463uV * 2

ADC on OH v1

DACoI = (DCU_value * xuV) / 2k

Calibrating VCal

After the DAC Scan you have Charge Injected vs VCal DAC vlaue

Figure 17: Injected charge

VCal

Calibrating Threshold range

Measure VCal, VT1 and VT2 DAC response via DCU

Vt1 and Vt2 DAC response

Total range of VT1 or VT2 = 0.9472 volts

VFAT2 Thresholds (1)

VFAT has one main threshold control which is common for all channels.

Main threshold controlled by the difference between two voltages VT1 & VT2.

Roman Pot silicon

Positive signal charge Requires a positive threshold

VT2 - VT1 > 0

To increase threshold w.r.t. signal:

Increase DAC value (VT2-VT1)

GEM and CSC

Negative signal charge Requires a negative threshold

VT1 - VT2 > 0

To increase threshold w.r.t. signal:

Increase DAC value (VT1-VT2)

Thresholds

Question: Does a given ΔVT always give the same threshold irrespective of VT1 and VT2 absolute values???

Answer: No!!

Hence stick to the left of the curve.

Silicon:

For signals of positive charge:

VT1 = 0 constant, VT2 variable

GEMs:

For signals of negative charge:

VT2 = 0 constant, VT1 variable

Positive Threshold	VT1 = 0	VT2 = variable
Negative Threshold	VT1 = variable	VT2 = 0

Table 29: Controlling thresholds

S-Curve

Delta Vt2 (Vt1=0) Silicon

Convert to electrons: Divide by 1.6*10^-19

Figure 18: The S-curve

Example of TOTEM S-curves

Minimum noise free threshold

Sweep threshold and monitor hits on the S bits both with and without detector connected.

Minimum threshold = $\sqrt{(ENC^2 + Threshold \sigma^2)}$

Trim-DAC functionality

5 bit TrimDAC for each channel

3 bits for TrimDAC range settings

Constant threshold:

- 1, Measure thresholds for all channels with TrimDACs = 00000 & 11111
- 2, Select TrimDAC range to have the smallest gap possible between the two histograms.
- 3, For each channel, adjust TrimDAC to central point.

OR

Constant clarity:

1, Adjust TrimDAC for each channel to achieve constant

Threshold / (S/N)

Within limits, depends on the S/N variations of the detector.

Trimming thresholds

- i) For a given threshold setting two histograms can be made of measured thresholds for all channels, one with all TrimDAC settings = 00000 and the other with TrimDAC settings 11111.
- ii) If these histograms are well separated, the TrimDAC range should be adjusted so that the two histograms are as close as possible without overlap.
- iii) On a channel by channel basis; the TrimDAC should be adjusted to the midpoint between the two histograms.
- iv) A new histogram of extracted values with adjusted TrimDAC values should give a smaller sigma for the spread.

Table 30: Trimming of thresholds

Requires automated loop from thresholds measured from s-curves to adjusted trimDAC settings.

Measuring thresholds

The S-curve mean is the threshold.

Note: VCal is on the x-axis in order to be able to express threshold in terms of input charge needed to go through the threshold.

TrimDAC range (measured)

Y-axis is VCal

TrimDAC range 7, \triangle Vcal = \sim 100 \Rightarrow 100 * 8⁻¹⁷ = \sim 8 fC for RP signals (or \sim 40% of dynamic range)

TrimDAC range 0, \triangle Vcal = $\sim 5 \rightarrow 5 * 8^{-17} = \sim 0.4 fC$

Extract detector capacitance

Do S-curves for all channels without detector connected.

Do S-curves for all channels with detector connected.

Detector capacitance => ENC (with det) – ENC (without det) / noise slope (~50 e/pF)