UNIVERSIDAD DEL QUINDIO Programa de Ingeniería de Sistemas y Computación ESTRUCTURAS DE DATOS PARCIAL II

Ejercicios a desarrollar:

- **1.** Cree un método que reciba como parámetro una Lista Simple y retorne la misma Lista, pero invertida, use Pilas.
- 2. Se tiene una pila de enteros positivos. Con las operaciones básicas de pilas y colas escribir un método para poner todos los elementos primos de la pila en la cola. **Retorne** la cola final.
- 3. Dada una Cola de Personas (nombre, edad, sexo), escribir un método que quite de la cola a los hombres cuya edad está entre los 30 y 50 años, los demás elementos de la Cola deben quedar en el mismo orden en el que estaban originalmente.
- **4.** Escriba un método que lea un número entero positivo e imprima su representación binaria, use pilas o colas. El método debe retornar un entero. Ejemplo:

- **5.** Escriba un método que reciba como parámetro una cadena de caracteres y que usando una Pila determine si sus paréntesis, llaves y corchetes están balanceados. Debe retornar un boolean. Ejemplo: "(6-7)/4]" está mala. "[(1+2)*4]+5" está bien
- **6.** Convertir las siguientes expresiones a notación prefija y postfija y evaluar la expresión a b.

(A + B) * C - (D - E) * (F + G)				
caracter	accion	pila		
a(5)	meter (5)	5		
b(8)	meter (8)	8,5		
+	p2 = 8 op1=5 r=13 meter(13)	13		
c(9)	meter (9)	9,13		
*	op2 = 9 op1=13 r=117 meter(117)	117		
d(13)	meter (13)	13,117		
e(1)	meter (1)	1,13,117		
_	op2=1 op1=13 r=12 meter(12)	12,117		
f(21)	meter (21)	21,12,117		
g(4)	meter (4)	4,21,12,117		
+	op2=4 op1=21 r=25 meter(25)	25,12,117		
*	op2=12 op1=25 r=300 meter(300)	300,117		
	op2= 300 op1=117 r=-183	-183		
fin cadena	meter(-183) fin evaluacion	-183		
iiii cadena	nn evaluacion	-183		

-*+ABC*-DE+FG

pos fija

AB+C*DE-FG+*-

b) 4*(5+6-(8/2^3)-7)-1

1			
4*(5+6-(8/2^3)-	-7)-1		
caracter	accion	pila	
	meter (4)	4	-
5	meter (5)	5,4	
6	meter (6)	6,5,4	
	op2= 6		
	op1=5		
+	r= 11	11 4	
T	meter (11)	11,4	+
	meter (8)	8,11,4	
	meter (2)	2,8,11,4	
3	meter (3)	3,2,8,11,4	
	op2= 3		
	op1=2 r=8		
۸	meter(8)	8,8,11,4	
	op2=8		
	op1=8		
,	r=1	1 11 4	
/	meter (1)	1,11,4	+
	op2=1 op1=11		
	r= 10		
-	meter(10)	10,4	
7	meter(7)	7,10,4	
	op2=7		
	op1=10		
	r=3	2.4	
-	meter(3) op2=3	3,4	
	op2=3 op1=4		
	r=12		
*	meter(12)	12	!
1	meter (1)	1,12	
	op2=1		
	op1=12 r = 11		
-	meter(11)	11	
fin cadena	fin evaluacion	11	

PREFIJA

-*4 - - +56/8^2371

POSFIJA

456+823^/-7 -*1 -

d) ((3*(6+(8*3^3)-1)*1)*19)-20

prefija

-***3-+6*8^3 3 1 1 19 20

posfija

3 6 8 3 3 ^*+1 -*1 *19 *20-

Insertar el valor 2 después de una suma.

Codificar un método **recursivo** en Java que, recibiendo como parámetro una lista simple, inserte en esta lista un nuevo elemento con valor igual a dos, después de todo elemento de la lista simple que el valor sea igual a la la suma de todas los valores de la lista.

Observaciones:

- No se permite la utilización de ninguna estructura de datos auxiliar.
- Sólo se permitirá la realización de un único recorrido en la lista.
- Se supone que la suma de todos los valores contenidas en la lista nunca va a ser cero.
- El método que es llamado para resolver el problema recibe solo la lista como parámetro.

EJEMPLO:

En la lista mostrada en la parte superior de la figura, como puede apreciarse, la suma de todos sus valores es 1 + 2 + 3 + 2 + (-6) = 2.

Por tanto el método deberá devolver la mencionada lista en la situación mostrada en la parte inferior de la figura.

