Analog Integrated Systems Design

Lecture 09 Digital-to-Analog Conversion (1)

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Resistor String (Ladder) DAC Ungl

Simply a voltage divider using 2^N identical unit resistors

No. of switches = 2^N (every unit element needs a switch)

This is an example of a unary (thermometer) DAC function as it depends

Monotonicity is guaranteed

The decoder is a bit complex

No Way Ustage on Unit element (m+1)

and the no. of

Switch is large So,

Switches is Very Very

difficult.

Switches is Very Very

difficult.

(W. Kester, ADI, 2005) 2

R-2R Ladder DAC

Binary.

- ☐ Current splits equally at each level → Binary weighted currents
- ☐ At each node, looking downward the equivalent impedance is R
 - Each branch can be replaced by a resistance R with no effect on current splitting
- ☐ Current splits equally at each node between the "R" branch and the "2R" branch

R-2R Ladder DAC

- Current splits equally at each node
 - The binary weighted currents are combined by switches
- □ No. of switches ~ N 1 not Complex at Touting.
- No complex decoder is required
- Assume Tref = 8 mA and Current 75 ☐ Monotonicity is NOT guaranteed 4 REF/2 REF/4 REF/8 not Splitting equally at

$$011 \rightarrow |5mt|$$

100 - 14 mh

12R 2R 1/2N 3 I out 75

The Summertion of weighted

[M. Pelgrom, 2017] A two-Way Switch either MSB 09: Digital-to-Analog Conversion (1) dumps wirent to god

or to the output

Current Domain DAC

 \Box Unary implementation: 2^N switches, monotonic, complex decoder

☐ Binary implementation: ~ N switches, monotonicity not guaranteed

09: Digital-to-Analog Conversion (1)

[M. Pelgrom, 2017]

Unary (thermometer) Implementation

- \square No. of elements = 2^N
 - Unit elements can be resistors, capacitors, currents, etc
- \square No. of switches = 2^N (every unit element needs a switch)
- Monotonicity is guaranteed
- A.k.a. thermometer code

$$B_{ii} = \sum_{i=0}^{i=2^{N}-1} b_i = b_0 + b_1 + b_2 \dots + b_{2^{N}-1}$$

Unary series: 1,1,1,1,1,1,1,1...

Binary Implementation

- \square No. of elements $\sim N$
 - Note that large elements are still composed of small matched unit elements
- \square No. of switches $\sim N$ (several unit elements share the same switch)
- ☐ Monotonicity is NOT guaranteed
 - Worst case error occurs at mid-scale transition

$$B_b = \sum_{i=0}^{i=N-1} b_i 2^i = b_0 + b_1 2^1 + b_2 2^2 \dots + b_{N-1} 2^{N-1}$$

Binary series: 20,21,22,23,24 ... 2N-1

09: Digital-to-Analog Conversion (1)

Unary vs Binary

0	-
1	Δ_0
11	Δ_0 + Δ_1
111	Δ_0 + Δ_1 + Δ_2
1111	Δ_0 + Δ_1 + Δ_2 + Δ_3
11111	Δ_0 ++ Δ_4
111111	Δ_0 ++ Δ_5
1111111	Δ_0 ++ Δ_6
11111111	Δ_0 ++ Δ_6 + Δ_7
111111111	Δ_0 ++ Δ_B
1111111111	Δ_0 ++ Δ_9
1111111111	Δ_0 ++ Δ_{10}
11111111111	Δ_0 ++ Δ_{11}
111111111111	Δ_0 ++ Δ_{12}
11111111111111	Δ_0 ++ Δ_{13}
111111111111111	Δ_0 ++ Δ_{14}

errors are mainly due to mismatch

	0000	-
	0001	Δ_{0}
	0010	Δ_1
	0011	$\Delta_0 + \Delta_1$
	0100	Δ_2
	0101	$\Delta_0 + \Delta_2$
	0110	$\Delta_1 + \Delta_2$
\Box	0111	XXXXX BY
	1000 /	λ_{y}
	1001	$\Delta_0 + \Delta_3$
	1010	$\Delta_1 + \Delta_3$
	1011	$\Delta_0 + \Delta_1 + \Delta_3$
	1100	$\Delta_2 * \Delta_3$
	1101	$\Delta_0 * \Delta_2 * \Delta_3$
	1110	$\Delta_1 * \Delta_2 * \Delta_3$
	1111	$\Delta_0 + \Delta_1 + \Delta_2 + \Delta_3$

09: Digital-to-Analog Conversion (1)

Static DAC Errors

- ☐ Static DAC errors mainly due to component mismatch
- ☐ Mismatch can be systematic or random
- ☐ Systematic mismatch (can be reduced by good design and layout)
 - Edge effects in arrays
 - Process gradients
 - Contact resistance
 - Finite current source output resistance
- Random mismatch
 - Doping, lithography, etc.
 - Often Gaussian distribution (central limit theorem)

Random Mismatch

MOS transistors	$\sigma_{\Delta VT} = \frac{A_{VT}}{\sqrt{WL}}$	$A_{VT} = 1 \text{mV}_{\text{jtm/nm}} [74.91]$
MOS transistors	$\frac{\sigma_{\Delta\beta}}{\beta} = \frac{A_{\beta}}{\sqrt{WL}}$ $\sigma_{\Delta Vbe} = \frac{A_{Vbe}}{\sqrt{WL}}$	$A_{\beta} = 1 - 2\% \mu \text{m} [74.91]$
Bipolar transistors (BiCMOS)	$\sigma_{\Delta Vbe} = \frac{A_{Vbe}}{\sqrt{WI}}$	$A_{Vbe} = 0.3 \mathrm{mV} \mu \mathrm{m} [90]$
Bipolar SiGe	V 1112	$A_{Vbe} = \text{ImV} \mu \text{m} [99]$
Diffused/poly resistors	$\frac{\partial \Delta R}{R} = \frac{A_R}{\sqrt{WI}}$	$A_R = 0.5/5 \% \mu \text{m}$
Plate, fringe capacitors	$\frac{\sigma_{\Delta}R}{R} = \frac{A_R}{\sqrt{WL}}$ $\frac{\sigma_{\Delta}C}{C} = \frac{A_C}{\sqrt{C \text{ in fF}}}$	$A_C = 0.3 - 0.5 \% \sqrt{\text{fF}} [78]$
Small capacitors < 21F	V.C. in IP	$A_C = 0.7\% \sqrt{\text{fF}} [82]$

09: Digital-to-Analog Conversion (1)

[M. Pelgrom, 2017] 10

Guidelines for Matched Components

1	Matching components are of the same material, have the same form, dimensions, and orientation				
2	The potentials, temperatures, pressures, and other environmental factors are identical				
3	Currents in components run in parallel, not anti-parallel, or perpendicular				
4	Only use cross-coupled structures if there is a clear reason for that (e.g., temperature gradient). Identify the heat centers				
5	Avoid overlay of wiring on matching components.				
6	Use star-connected wiring for power, clock, and signal				
7	Apply symmetrical (dummy) structures up to 20 µm away from sensitive structures				
8	Keep supply and ground wiring together and take care that no other circuits dump the return current in a ground line				
9	Check on voltage drops in power lines				
10	Stay 200 µm away from the die edges to reduce stress from packaging				
11	Tiling patterns are automatically inserted and can lead to unpredictable coupling, isolation thickness variations, and stress. Do not switch off the tiling pattern generation, but define a symmetrically placed tiling pattern yourself.				

09: Digital-to-Analog Conversion (1)

[M. Peigrom, 2017] 11

Normal Distribution

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where, μ is the expected value and standard deviation: $\sigma = (E(X^2) - \mu^2)$

Expectation

Yield

- Probability calculated numerically by erf (error function)
 - $C = X/\sigma$ is known as confidence interval

$$P(-C = X = -C) = \frac{1}{\sqrt{2\pi}} \int\limits_C e^{-\frac{X^2}{2}} dX = erf\left(\frac{C}{\sqrt{2}}\right)$$

09 Digital-to-Analog Conversion (1)

[B. Murmann, Stanford, EE315B, 2013] 13

Yield

- Probability calculated numerically by erf (error function)
 - $C = X/\sigma$ is known as confidence interval

X/o	$P(-X \le x \le X) [\%]$	ХJσ	P(-X ≤ x ≤ X) [%
0.2000	15.8519	2 2000	97.2193
0.4000	31 0843	2 4000	98.3605
0.6000	45 1494	2 6000	99.0678
0.8000	57 6289	2.8000	99.4890
1.0000	68.2689	3 0000	99.7300
1.2000	76 9861	3 2000	99.8626
1.4000	83 8487	3 4000	99.9326
1 6000	89 0401	3 6000	99.9682
1.8000	92 6139	3 8000	99.9855
2.0000	95 4500	4 0000	99.9937

99 Digital-to-Analog Conversion (1)

[H.K., Berkeley, EECS 247, 2010] 14

Normal Distribution Example

☐ Measurements show that the offset voltage of a batch of operational amplifiers follows a Gaussian distribution with $\sigma = 2mV$ and $\mu \neq 0$

- Find the fraction of opamps with |Vos| < 6mV
 - $X/\sigma = 3 \rightarrow 99.73 \%$ yield
- ☐ Find the fraction of opamps with |Vos| < 400uV:
 - $X/\sigma = 0.2 \rightarrow 15.85 \%$ yield

Unary DAC DNL

- $f \square$ Assume the value of the m-th unit element in a unary array is u(m)
 - Due to variations: u(m) = u + du
 - \mathcal{D} The standard deviation of mismatch is σ_{du}
 - β Expectation (mean): E[u(m)] = u (no Systematic errors)
 - H Standard deviation: $\sigma[u(m)] = \sigma_{du}$
 - δ Normalized std deviation: $\sigma_{\frac{du}{u}} = \frac{\sigma_{du}}{u}$
- ☐ For any transition in the unary N-bit DAC
 - $DNL = \underbrace{u(m)}_{m} 1$
 - E[DNL] = 0
 - $\sigma[DNL] = \sigma_{DNL} = \sigma_{\underline{du}}$
- The DNL is independent on no. of bits!

09: Digital-to-Analog Conversion (1)

Unary DAC INL

☐ It can be shown that

 $\sigma_{INL}^2(m) = \frac{m(2^N - m)}{2^N} \sigma_{\frac{du}{n}}^2$

 $\sigma_{INL}^2 = 2^{N-2} \sigma_{\frac{du}{u}}^2 \qquad \Rightarrow \qquad \sigma_{INL} = 2^{\frac{N}{2}-1} \sigma_{\frac{du}{u}}$

lacksquare σ_{INL} depends on no. of bits

09: Digital-to-Analog Conversion (1)

[M. Pelgrom, 2017]

1

16

Unary DAC DNL/INL Example

- \square Note that max σ_{INL} occurs at mid-transition (statistical result)
 - But max INL for every DAC is not necessarily at mid-transition

09: Digital-to-Analog Conversion (1)

[M. Pelgrom, 2017]

Unary DAC DNL Example

- Assume a unary N-bit resistor string DAC
- \Box If $\sigma_{\frac{dR}{R}}$ = 1%, what DNL spec goes into the DAC datasheet so that 99.73 % of all converters meet the spec?

- 99.73 % yield → X/σ = 3
 DNL spec = 3 × σ_{DNL} = 3 × 1% = 3% = ±0.03 LSB
 701 Teas
- Zola Trans _180;
- Independent of N?!

للكود سَاد الله واحل ال DAC اكم في الحسب

while Trans 15 Jan 10! ☐ There is a flaw in this example. Why?

Con Trans II vi Some d'Ul, DAC II Test vil

هساوی بید واکنه ی الحسن العرف می کیر اوی بی ماهشون

09: Digital-to-Analog Conversion (1)

[B. Murmann, Stanford, EE315B, 2013] 19

Unary DAC DNL Example

- \Box For N-bit unary DAC we have 2^N elements
- ☐ For the DAC to pass the DNL spec, every element must pass
- \Box P(all elements pass spec) = P(each element passes the spec)²
- \square 0.9973 = $P_{new} ^2^N \rightarrow P_{new} = (0.9973)^{\frac{1}{2^N}}$

 - N = 8-bit: $P_{new} = 0.99995708$
 - N = 16-bit:
- $P_{new} = 0.99999929$
- calculate modified confidence intervals using MATLAB
 - N = 8-bit: C = $\sqrt{2}$ *erfinv(P_{new}) = 4 → DNL spec = ± 0.04 LSB
 - N = 16-bit: C = $\sqrt{2}$ *erfinv(P_{new}) = 5 → DNL spec = ± 0.05 LSB
- ☐ For complex DAC architectures, running Monte Carlo simulations in MATLAB may be easier than deriving yield expression

09: Digital-to-Analog Conversion (1)

[B. Murmann, Stanford, EE315B, 2013] 20

Binary DAC DNL

- ☐ Worst case transition occurs at mid-scale
 - 100...0 → 011...1

$$DNL = \frac{\left(u_{2^{N-1}} + u_{2^{N-1}+1} + \dots + u_{2^{N}-1}\right) - \left(u_{1} + \dots + u_{2^{N-1}-1}\right)}{u} - 1$$

$$U_{\text{assume 8-bit DAC}} \longrightarrow U_{\text{asst}} C_{\text{ase}}$$

☐ All DAC elements are involved in the transition

ved in the transition
$$\sigma^{2}[DNL] = \sigma_{DNL}^{2} = (2^{N}-1) \sigma_{du}^{2}$$

 $\sigma_{DNL} \approx 2^{\frac{N}{2}} \sigma_{du}$ $\approx 0.100 \rightarrow 0.01 + 0.05 + 0.06 + 0.07 = 0.000 =$

-dealy = U-1 = 0

09: Digital-to-Analog Conversion (1)

Binary DAC INL

lacktriangledown Max σ_{INL} same as in unary (at mid-transition)

$$\sigma_{INL}^2 = 2^{N-2} \sigma_{\underline{du}}^2$$

$$\sigma_{INL} = 2^{\frac{N}{2} - 1} \sigma_{\underline{du}}$$

09: Digital-to-Analog Conversion (1)

22

Binary DAC DNL/INL Example

- ☐ The DNL plot is symmetric
- Worst case DNL occurs at binary transitions

$$2^{N-1}, 2^{N-1} \pm 2^{N-2}, 2^{N-1} \pm 2^{N-2} \pm 2^{N-3}, \dots$$

☐ The INL shows a repetitive pattern

. note that, the worst Case of is a mid-scale but for DNL it can be something else

09: Digital-to-Analog Conversion (1)

[M. Pelgrom, 2017]

23

Unary vs Binary

Ref: C. Lin and K. Bult, "A 10-b, 500- MSample/s CMOS DAC in 0.6 mm2," IEEE Journal of Solid-State Circuits, vol. 33, pp. 1948 - 1958, December 1998.

Note: σ_{ϵ} =2%

Thermometer

Binary

09: Digital-to-Analog Conversion (1)

[H.K., Berkeley, EECS 247, 2010] 24

Unary vs Binary

09: Digital-to-Analog Conversion (1)

[H.K., Berkeley, EECS 247, 2010] 25

Segmentation

- \Box Use unary for MSBs (N_{unary}) and binary for LSBs (N_{binary})
- ☐ The unary steps must have the accuracy of an LSB
- ☐ Binary errors will appear "periodically" over all unary sections

09: Digital-to-Analog Conversion (1)

[M. Pelgrom, 2017]

26

Segmented DAC

09: Digital-to-Analog Conversion (1)

[W. Kester, ADI, 2005] 27

Segmented DAC DNL

- \Box Use unary for MSBs (N_{unary}) and binary for LSBs (N_{binary})
- \Box Worst case occurs when LSB DAC turns off (N_{binary}) and one more MSB DAC element
 - Same as binary weighted DAC with $(N_{binary} + 1)$ bits

$$\sigma^{2}[DNL] = \sigma_{DNL}^{2} = (2^{N_{binary}+1} - 1) \sigma_{\frac{du}{u}}^{2}$$
$$\sigma_{DNL} \approx 2^{\frac{N_{binary}+1}{2}} \sigma_{\frac{du}{u}}$$

09: Digital-to-Analog Conversion (1)

28

Segmented DAC INL

 \square Max σ_{INL} same as in unary (at mid-transition)

$$\sigma_{INL}^2 = 2^{N-2} \sigma_{\underline{du}}^2$$

$$\sigma_{INL} = 2^{\frac{N}{2} - 1} \sigma_{\frac{du}{u}}$$

 $\overline{\sigma_{INL} = 2^{\frac{N}{2} - 1} \sigma_{\frac{du}{u}}} \quad \text{Same as Unary and}$

09: Digital-to-Analog Conversion (1)

DNL/INL Summary

	GINL	σ_{DNL}	No. of switches
Unary (thermometer)		$\frac{\sigma_{du}}{u}$	$2^{N}-1$
Segmented	$2^{\frac{N}{2}-1}\sigma_{\frac{du}{u}}$	$2^{\frac{N_{binary}+1}{2}}\sigma_{\frac{\mathbf{d}u}{u}}$	$2^{N_{unary}} - 1 + N_{binary}$
Binary		$2^{\frac{N}{2}}\sigma_{\frac{du}{4}}$	N

09: Digital-to-Analog Conversion (1)

Example: N = 12, $\sigma_{du/u}=1\%$

CONTROL STATE OF THE WAY AND THE STATE OF	AND THE PROPERTY OF THE PARTY OF THE PARTY.	TO THE SECOND SE	CONTRACTOR OF THE STATE OF THE
	σ _{INL} (LSB)	σ _{DNL} (LSB)	No. of switches
Unary (thermometer)		0.01	4095
Segmented (6u+6b)		0.11	63 + 6
Segmented (5u+7b)	0.32	0.16	31+7
Binary		0.64	12

09: Digital-to-Analog Conversion (1)

[H.K., Berkeley, EECS 247, 2010] 31

DAC Architectures

	Unary	Binary
Voltage	Resistor string	R-2R
	Flash ADC	Low-performance DAC
Current	Current matrix	Current splitting
	High bandwidth DAC	
Charge/capacitor	Capacitor bank	Capacitor bank
	Low power DAC	
Time	PWM, $\Sigma\Delta$ mod	Limited by distortion
	Low bandwidth DAC	

In italic the main application area is indicated

09: Digital-to-Analog Conversion (1)

[M. Pelgrom, 2017] 32