Transformations of Quadratic Functions - Worksheet

MCR3U Iensen

SOLUTIONS

1) For each of the following graphs:

- i) describe the transformations in order (a \rightarrow k \rightarrow d \rightarrow c)
- ii) create a table of values for the transformed function
- iii) graph the transformed function

x	у	
-3	9	
-2	4	
- \	J	
0	0	
١		
2	4	
-		

Key points for

 $y = x^2$

a)
$$y = -x^2 + 2$$

- 1) vertical respection (-4)
- 2) shift up 2 (4+2)

X	-4+2
-3	-7
- 2	-2
- \	1
0	2
{	1
2	-2
3	-7
	/

b)
$$y = (x-3)^2 + 1$$

- 1) shift right 3 units (2+3) 2) shift up 1 unit (y+1)

1	
4+1	
10	
5	
2	
1	
2	
5	
10	
	0 5 2 1 2 5

c)
$$y = 2x^2 - 5$$

- 1) vertical stretch bato 2 (24)
- 2) shift down 5 units (y 5)

X	24-5
-3	13
-2	3
-{	-3
0	-5
1 (4	- 3
2	3
3	13

e)
$$y = -(x+2)^2 + 4$$

- 1) votice) restection (-4)
- 2) Shift 1897 2 units (x-2)
- 3) shift up Yunits (y+11)

2-2	-4-4
= 5	-5
-4	0 =
-3	3
- 7)	4
F 1	3
0	ō
1	-5
	J

d)
$$y = -3(x+1)^2$$

(-3, 9)

(-1,1) (0,0) (1,1) (2,1) (3,9)

1) vertical steech by 3 and vertical reflection (-34)
2) phase skift 18+1 unit (X-1)

f)
$$y = -\frac{1}{2}x^2$$

1) vertical stretch boto & and vortical restlection ()

X	52
-3	-4.5
-2	-2
-1	-0.5
0	0
1	-0.5
2	-2
3	-4.5

2) For each function g(x):

- describe the transformations from the parent function $f(x) = x^2$
- ii) create a table of values of image points for the transformed function
- iii) graph the transformed function and write its equation

(-a,4)	
--------	--

(-131)

(-3, 9)

- (0,9)
 - (1, 1)
 - (2,4)
 - (3,9)

a)
$$g(x) = -2f\left[\frac{1}{2}(x+2)\right]$$

- 1) wortical smetch boto 2; wartical reflection (-24)
- 2) horizontal stretch baso 2 (ax)
- 3) shift lost 2 units (x-2)

$$g(x) = -2\left(\frac{1}{2}(x+2)\right)^{2}$$

$$g(x) = -2\left(\frac{1}{2}(x+2)\right)^{2}$$

$$g(x) = -\frac{1}{2}(x+2)^{2}$$

b)
$$g(x) = 4f(x-3) - 2$$

- 1) votice stretch boto 4 (44)
- a) shift right 3 units (243) 3) shift down 2 units (y-a)

$$g(x) = 4(x-3)^2 - 2$$

c)
$$y = 2f(x+4) - 3$$

- 1) vertical smotch box a (ay)
- 2) shift 1094 units (x-4)
- 3) shift down 3 units (y-3)

$$y = 2(x+4)^2 - 3$$

d)
$$y = \frac{1}{2}f[-2(x+2)] - 3$$

- 1) vertical compression bodo & (4)
- 2) horroutal compression base & ; horroutal reflection (2)
- 3) lest 2 units (x-2)
- 4) down 3 units (y-3)

$$\frac{2}{-2}$$
 - 2 $\frac{9}{2}$ - 3

-0.5 | 1.5 | -1 | -1 | -1.5 | -2.5 | -2.5 | -3.5 | -3.5 | -3.5 | 1.6

$$g(x) = \frac{1}{2} \left[-a(x+2) \right]^2 - 3$$