CloudTP: A Cloud-based Flexible Trajectory Preprocessing Framework

Sijie Ruan¹, Ruiyuan Li¹, Jie Bao², Tianfu He³, Yu Zheng^{1,4}

¹Xidian University

²Microsoft Research Asia

³Harbin Institute of Technology

⁴Chinese Academy of Sciences

Motivations

➤ Wide Applications of Trajectory Data

Travel Time **Estimation**

Air Quality **Prediction**

➤ Massive Data and Complicated Algo.

Taxi Traj. in BJ

Map Matching

➤ Complex Steps and Different Modes

Noise Filtering, X Segmentation,

Walk, Bike, Car, ...

Overview

- ➤ Processing Pipeline
- ➤ Distributed Computing
- ➤ Customizable
- ➤ Support Multi. Modes

System Framework

Cloud + Client Deployment

public class MySegmenter implements Segmenter a0verride public List<GPSTraj> segment(GPSTraj gpsTraj) { int ptsNum = 10; List<GPSTraj> trajList = **new** ArrayList<>(); List<GPSPoint> pts = gpsTraj.getPtList(); for (int i=0; (i+1)*ptsNum <= pts.size(); i++) {</pre> List<GPSPoint> subPts = pts.subList(i*ptsNum, (i+1)*ptsNum); trajList.add(new GPSTraj(gpsTraj.getoID(), subPts)); return trajList;

Visualization & Statistics & Result Retrieving

Examples

Bike Lane Planning

Trip Temporal Distribution