UF_GDT_characteristic_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_characteristic_t
- UF_GDT_characteristic_p_t

Overview

Defines the set of valid feature control frame characteristic GD&T types

Data Members

UF_GDT_STRAIGHTNESS_TYPE

GDT form type - straightness

UF GDT FLATNESS TYPE

GDT form type - flatness

UF_GDT_CIRCULAR_TYPE

GDT form type - circular

UF_GDT_CYLINDRICAL_TYPE

GDT form type _ cylindrical

UF_GDT_LINE_PROFILE_TYPE

GDT profile type - line profile

UF GDT SURFACE PROFILE TYPE

GDT profile type - surface profile

UF_GDT_ANGULAR_TYPE

GDT orientation type - angular

UF_GDT_PERPENDICULAR_TYPE

GDT orientation type - perpendicular

UF_GDT_PARALLEL_TYPE

GDT orientation type - parallel

UF_GDT_POSITION_TYPE

GDT position type - position

UF_GDT_CONCENTRIC_TYPE

GDT position type - concentric

UF_GDT_SYMMETRIC_TYPE

GDT position type - symmetric

UF_GDT_CIRCULAR_RUNOUT_TYPE

GDT runout type - circular runout

UF_GDT_TOTAL_RUNOUT_TYPE

GDT runout type - total runout

UF_GDT_data_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_data_type_t
- UF_GDT_data_type_p_t

Overview

Defines an enumerated type for each data structure inside the GD&T module used in the UF_GDT_free routine

Data Members

UF_GDT_DATA_FRAME_TYPE

UF_GDT_data_frame_t

UF_GDT_DATUM_IDENT_TYPE

UF_GDT_datum_identifier_t

UF GDT DATUM REF TYPE

UF_GDT_datum_reference_t

UF_GDT_DESCRIPT_TYPE

UF_GDT_description_t

UF_GDT_DIRECTED_DIM_TYPE

UF_GDT_directed_dimension_t

UF_GDT_FCF_TYPE

UF_GDT_fcf_t

UF GDT MOD DATA TYPE

UF_GDT_modifier_data_t

UF_GDT_MULTI_DATUM_TYPE

UF_GDT_multiple_datum_t

UF_GDT_SIZE_TOL_TYPE

UF_GDT_size_tolerance_t

UF_GDT_STATISTICAL_TYPE

UF_GDT_statistical_info_t

UF_GDT_SURFACE_PARMS_TYPE

UF_GDT_surface_parms_t

UF_GDT_TARGET_POINT_TYPE

UF_GDT_datum_target_point_t

UF_GDT_TARGET_LINE_TYPE

UF_GDT_datum_target_line_t

UF_GDT_TARGET_AREA_TYPE

Obsolete in V15.0

UF GDT TOL VALUE TYPE

UF_GDT_tolerance_value_t

UF_GDT_TOL_ZONE_TYPE

UF_GDT_tolerance_zone_t

UF GDT FEAT PARMS TYPE

UF_GDT_feature_parms_t

UF_GDT_DIA_AREA_TYPE

UF GDT target dia area t

UF_GDT_RECT_AREA_TYPE

UF_GDT_target_rect_area_t

UF GDT CYL AREA TYPE

UF GDT target cyl area t

UF_GDT_UDEF_AREA_TYPE

UF_GDT_target_udef_area_t

UF_GDT_ANNOTATION_TAGS_TYPE

UF_GDT_annotation_tags_t

UF_GDT_CALLOUT_STR_TYPE

UF_GDT_callout_strings_t

UF_GDT_DEPTH_TOL_TYPE

UF_GDT_depth_tolerance_t

UF_GDT_LIM_FITS_TOL_TYPE

UF_GDT_limits_and_fits_tolerance_t

UF_GDT_DATUM_REF_FRAME_TYPE

UF_GDT_drf_data_t

UF_GDT_THREAD_TYPE

UF_GDT_thread_data_t

UF_GDT_MODL_DATA_TYPE

UF_GDT_modl_data_t

UF GDT PRODUCT ATT TYPE

UF GDT product attribute t

UF_GDT_datum_assoc_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_datum_assoc_type_t
- UF GDT datum assoc type p t

Overview

Defines an enumerated type for each method of associating a datum display instance to the model.

Data Members

UF_GDT_FEATURE_EDGE

datum is attached to a feature edge

UF GDT DOTTED DATUM

datum is attached to stub of dotted leader

UF GDT ATTACHED TO FCF

datum is attached to an fcf

UF_GDT_ATTACHED_TO_STUB

datum is attached to a leader stub

UF_GDT_DIRECTED_DATUM

datum is part of a directed datum instance

UF GDT EXTENSION LINE

datum is attached to a dimension ext. line

UF_GDT_default_gage_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_default_gage_type_t
- UF GDT default gage type p t

Overview

The following enumerated type defines the restrained condition for a GD&T part

Data Members

UF_GDT_SEPARATE_GAGE = 1

UF_GDT_SIMULTANEOUS_GAGE = 2

UF_GDT_directed_dimension_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- · UF GDT directed dimension type t
- UF_GDT_directed_dimension_type_p_t

Overview

The following enumerated type defines the directed dimension types available in the tolerancing module.

Data Members

UF_GDT_LINEAR_DIRECTED_DIMENSION

Linear directed dimension

UF_GDT_ANGULAR_DIRECTED_DIMENSION

Angular directed dimension

UF_GDT_edge_select_type_e (view source)

Defined in: uf_gdt.h

Also known as:

UF_GDT_edge_select_type_tUF_GDT_edge_select_type_p_t

Overview

The following enumerated type defines the different feature edge selection methods for GD&T,

Data Members

```
UF_GDT_EDGE_SELECT_ON = 1

UF_GDT_EDGE_SELECT_OFF = 2

UF_GDT_EDGE_SELECT_ALWAYS = 3
```

UF_GDT_feature_type_e (view source)

Defined in: uf_gdt.h

Also known as:

UF_GDT_feature_type_tUF GDT feature type p t

Overview

Defines the valid set of feature types which can describe the geometry of a tolerance feature

Data Members

UF_GDT_GENERAL_FEATURE

General feature type

UF_GDT_SLOT_FEATURE

Slot feature type

UF_GDT_TAB_FEATURE

Tab feature type

UF_GDT_HOLE_FEATURE

Hole feature type

UF_GDT_PIN_FEATURE

Pin feature type

UF GDT SOCKET FEATURE

Socket feature type

UF_GDT_BALL_FEATURE

Ball feature type

UF_GDT_ELONGATED_HOLE_FEATURE

Elongated hole feature type

UF_GDT_PLANE_FEATURE

Plane feature type

UF_GDT_BOUNDED_FEATURE

Bounded feature type

UF_GDT_TAPERED_HOLE_FEATURE

Tapered hole feature type

UF_GDT_TAPERED_PIN_FEATURE

Tapered pin feature type

UF_GDT_HOLLOW_TORUS_FEATURE

Hollow torus feature type

UF_GDT_SOLID_TORUS_FEATURE

Solid torus feature type

UF_GDT_HOLLOW_REVOLVED_FEATURE

Hollow revolved feature type

UF_GDT_SOLID_REVOLVED_FEATURE

Solid revolved feature type

UF_GDT_COUNTERBORE_HOLE_FEATURE

Counterbore hole feature type

UF GDT COUNTERSINK HOLE FEATURE

Countersink hole feature type

UF_GDT_EDGE_BLEND_FEATURE

Edge blend feature type

UF_GDT_THICKNESS_GAP_FEATURE

Thickness/Gap feature type

UF_GDT_STEPPED_SHAFT_FEATURE

Stepped shaft feature type

UF_GDT_STEPPED_HOLE_FEATURE

Stepped hole feature type

UF_GDT_COMPLEX_ELONGATED_HOLE_FEATURE

Complex elongated hole feature type

UF_GDT_OPPOSED_POINT_FEATURE

Opposed point element feature type

UF_GDT_OPPOSED_LINE_FEATURE

Opposed line element feature type

UF GDT THREAD FEATURE

Thread Feature Type

UF GDT_MODEL_AXIS_FEATURE

Modeling Axis Feature Type

UF_GDT_MODEL_PLANE_FEATURE

Modeling Plane Feature Type

UF_GDT_SPLINE_FEATURE

Spline feature type

UF_GDT_GEAR_FEATURE

Gear feature type

UF GDT CIRCULAR TOOTH THICKNESS FEATURE

Circular tooth thickness type

UF_GDT_CIRCULAR_SPACE_WIDTH_FEATURE

Circular space width type

UF_GDT_PIN_MEASUREMENT_FEATURE

Pin measurement feature

UF_GDT_geometric_definition_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_geometric_definition_type_t
- UF_GDT_geometric_definition_type_p_t

Overview

The following enumerated type defines the orientation and region types available in the tolerancing module.

Data Members

UF_GDT_ALL_GEOMETRY

No Definition

UF_GDT_PLANAR_ORIENTATION

Planar Orientation

UF GDT PLANAR CROSS SECTION

Planar Cross Section

UF_GDT_REGION

Region

UF_GDT_POINT

Point

UF_GDT_RECTANGULAR_REGION

Rectangular Bounded Region

UF_GDT_CIRCULAR_REGION

Circular Bounded Region

UF_GDT_index_display_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_index_display_type_t
- UF_GDT_index_display_type_p_t

Overview

The following enumerated type defines the valid index display methods for GD&T,

Data Members

```
UF_GDT_UNIQUE = 0
```

UF_GDT_PART_BASED

UF_GDT_leader_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_leader_type_t
- UF_GDT_leader_type_p_t

Overview

The following enumerated type defines the leader terminator symbols

Data Members

```
UF_GDT_LEADER_NON_TERMINATED = 0
```

UF_GDT_LEADER_DATUM

UF_GDT_LEADER_ARROWHEAD

UF_GDT_LEADER_DOT

UF_GDT_limits_and_fits_display_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_limits_and_fits_display_type_t
- UF_GDT_limits_and_fits_display_type_p_t

Overview

2025/6/13 11:03 UF_GDT Types

The following data structures are defined for limits and fits tolerance, These are used by the limits and fits tolerance ask, set routines.

Functions affected by the modification of these structure are:

```
UF_GDT_ask_depth_tolerance_parms
UF_GDT_set_depth_tolerance_parms
UF_GDT_set_depth_tolerance_parms
```

Data Members

```
UF_GDT_DEFAULT_DISPLAY_TYPE = 0

UF_GDT_LIMITS_DISPLAY_TYPE

UF_GDT_TOLERANCE_DISPLAY_TYPE

UF_GDT_NORMAL_DISPLAY_TYPE
```

UF_GDT_material_modifier_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_material_modifier_t
- UF_GDT_material_modifier_p_t

Overview

Defines the allowable material condition modifiers for feature control frame and datum specifications

Data Members

UF_GDT_MMC

Maximum material condition modifier

UF_GDT_LMC

Least material condition modifier

UF GDT RFS

Regardless of feature size modifier

UF_GDT_TANGENTIAL

Tangential zone modifier NOTE: The tangential modifier may only be used to modify the tolerance zone of feature control frames. It may not be used to modify datum identifiers, targets, or references

UF_GDT_NO_MOD

No material modifier. NOTE: The UF_GDT_NO_MOD type should be used in place of the RFS type for ASME 1994 and ISO applications

UF_GDT_modifier_types_e (view source)

Defined in: uf_gdt.h

Also known as:

2025/6/13 11:03

- UF_GDT_modifier_types_t
- UF_GDT_modifier_types_p_t

Overview

Defines the allowable zone modifiers for a feature control frame

Data Members

UF GDT FREE STATE

Free state zone refinement (all)

UF_GDT_UNIT_BASIS_LENGTH

Unit basis length refinement (straightness)

UF_GDT_UNIT_BASIS_AREA

Unit basis area refinement (flatness)

UF GDT PROJECTED ZONE

Projected zone refinement (position)

UF GDT STATISTICAL

Statistical refinement (many)

UF_GDT_NO_MODIFIERS

No modifiers

UF_GDT_MAX_BONUS

MAX bonus tolerance specification

UF_GDT_PATTERN_COUNT

Obsolete in V16.0

UF_GDT_INDIVIDUAL_COUNT

Obsolete in V16.0

UF_GDT_SEP_REQT

Obsolete in V16.0

UF GDT SIM REQT

Obsolete in V16.0

UF_GDT_BOUNDARY

Obsolete in V16.0

UF GDT ALL OVER

Obsolete in V16.0

UF GDT AVG DIA

Obsolete in V16.0

UF_GDT_COAX_HOLE_COUNT

Obsolete in V16.0

UF_GDT_NON_MANDATORY_MFG_DATA

Obsolete in V16.0

UF_GDT_NO_PERFECT_MMC_FORM

Obsolete in V16.0

UF GDT PERFECT MMC ORIENTATION

Obsolete in V16.0

UF_GDT_PERFECT_MMC_COAXIALITY

Obsolete in V16.0

UF GDT PERFECT MMC SYM FEAT LOC

Obsolete in V16.0

UF_GDT_SURFACE_COUNT

Obsolete in V16.0

UF GDT THRU

Obsolete in V16.0

UF GDT THRU HOLE

Obsolete in V16.0

UF_GDT_modl_parameter_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_modl_parameter_t
- UF_GDT_modl_parameter_p_t

Overview

The following enumerated type defines the parameter used to map the faces of the modeling feature to the tolerance feature.

Following describes each enum type, how it is related to the modeling feature parameter and how to use it to create tolerance features based on modeling features -

UF GDT MODL PARAM INVALID:

This enum type is reserved by the system for inernal use. It is not available for use.

UF GDT MODL PARAM NONE:

When this enum type is used, the system knows exactly how to map the faces of modeling feature to tolerance features.

Use with following modeling features -

1. Simple Hole

Modeling Feature Parameter: Hole Diameter

Tolerance feature will reference face defined by Hole Diameter parameter

2. Extrude/Revolve

Tolerance feature will reference cylindrical face in the modeling feature and create GDT pin/hole type tolerance features

3. Cylindrical Pocket

Modeling Feature Parameter: Pocket Diameter

Tolerance feature will reference face defined by Pocket Diameter parameter

4. Counterbore Hole

System will create complex tolerance features/subfeatures -

2025/6/13 11:03 UF GDT Types

Complex feature - References hole and counterbore faces

Complex subfeature 1 - References hole face

Complex subfeature 2 - References counterbore face

5. Countersink Hole

System will create complex tolerance features/subfeatures -

Complex feature - References countersink and hole faces

Complex subfeature 1 - References hole face

Complex subfeature 2 - References countersink face

Cross-section definition subfeature for complex subfeature 2

6. Symbolic Thread

System will create complex tolerance features/subfeatures -

Complex feature - References cylindrical face on which thread resides

Complex subfeature - References modeling thread feature

7. Boss

Modeling Feature Parameter: Boss Diameter

Tolerance feature will reference face defined by Boss Diameter parameter

8. Edge Blend

Modeling Feature Parameter: Radius

Tolerance feature will reference faces defined by Radius parameter

UF GDT MODL PARAM ALL:

Use this enum type to create a GDT general type tolerance feature that references all the faces of the modeling feature. Currently, this is not enabled.

UF GDT MODL PARAM HOLE:

Use this enum type when creating tolerance feature that will reference cylindrical face of the modeling feature.

Use with following modeling features -

1. Counterbore Hole, Countersink Hole

Modeling Feature Parameter: Hole Diameter

Tolerance feature will reference faces defined by Hole Diameter parameter

UF GDT MODL PARAM COUNTERBORE:

Use this enum type when creating tolerance feature that will reference cylindrical face of the Counterbore Hole modeling feature.

Modeling Feature Parameter: Counterbore Diameter

Tolerance feature will reference faces defined by Counterbore Diameter parameter

UF GDT MODL PARAM COUNTERSINK:

Use this enum type when creating tolerance feature that will reference conical face of the Countersink Hole modeling feature.

Tolerance feature will reference conical faces

UF GDT MODL PARAM X LENGTH:

Use this enum type when creating tolerance feature that will reference faces of the modeling feature along the X-axis of the feature.

Use with following modeling features -

1. Rectangular Slot, Ball End Slot, U Slot, T Slot

Modeling Feature Parameter: Length

Tolerance feature will reference faces that are defined by Length

2. Rectangular Pad, Rectangular Pocket

Modeling Feature Parameter: X Length

Tolerance feature will reference faces that are defined by X Length parameter

UF GDT MODL PARAM Y LENGTH:

Use this enum type when creating tolerance feature that will reference faces of the modeling feature along the Y-axis of the feature.

Use with following modeling features -

1. Rectangular Slot, U Slot

Modeling Feature Parameter: Width

Tolerance feature will reference faces that are defined by Width

parameter

2. Ball End Slot

Modeling Feature Parameter: Ball Diameter

Tolerance feature will reference faces separated by distance equal to

the ball diameter

3. T Slot

Modeling Feature Parameter: Bottom Width

Tolerance feature will reference faces that are defined by Bottom Width

parameter

4. Rectangular Pad, Rectangular Pocket

Modeling Feature Parameter: Y Length

Tolerance feature will reference faces that are defined by Y Length

parameter

UF GDT MODL PARAM X LENGTH TOP:

Use this enum type when creating tolerance feature that will reference top faces of the T Slot modeling feature along the X-axis of the feature. Modeling Feature Parameter: None

UF GDT MODL PARAM Y LENGTH TOP:

Use this enum type when creating tolerance feature that will reference top faces of the T Slot modeling feature along the Y-axis of the feature. Modeling Feature Parameter: Top Width

Data Members

UF_GDT_MODL_PARAM_INVALID

UF_GDT_MODL_PARAM_NONE

UF_GDT_MODL_PARAM_ALL

UF_GDT_MODL_PARAM_HOLE

UF_GDT_MODL_PARAM_COUNTERBORE

UF_GDT_MODL_PARAM_COUNTERSINK

UF_GDT_MODL_PARAM_X_LENGTH

UF_GDT_MODL_PARAM_Y_LENGTH

UF_GDT_MODL_PARAM_X_LENGTH_TOP

UF_GDT_MODL_PARAM_Y_LENGTH_TOP

UF_GDT_pattern_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_pattern_type_tUF_GDT_pattern_type_p_t
- Overview

Defines the valid pattern types for a tolerance feature

Data Members

UF_GDT_NO_PATTERN

UF_GDT_RADIAL_PATTERN

Obsolete in V16

UF GDT RECTANGULAR PATTERN

Obsolete in V16

UF_GDT_ARBITRARY_PATTERN

UF_GDT_precedence_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_precedence_t
- UF_GDT_precedence_p_t

Data Members

UF_GDT_PRECEDENCE_NONE = 0

No Precedence

UF_GDT_PRECEDENCE_PRIMARY

Primary datum reference

UF_GDT_PRECEDENCE_SECONDARY

Secondary datum reference

UF_GDT_PRECEDENCE_TERTIARY

Tertiary datum reference

UF_GDT_profile_type_e (view source)

Defined in: uf_gdt.h

Also known as:

UF_GDT_profile_type_tUF_GDT_profile_type_p_t

Overview

Defines the allowable types of profile tolerances. Outside if defined to be the direction away from material and inside the direction into material.

Data Members

UF_GDT_PROFILE_EQ_BILATERAL

equally disposed bilateral

UF_GDT_PROFILE_UNILATERAL_OUT

unilateral outside

UF GDT PROFILE UNILATERAL IN

unilateral inside

UF_GDT_PROFILE_UNEQ_BILATERAL

unequally disposed bilateral

UF_GDT_relation_type_e (view source)

Defined in: uf_gdt.h

Also known as:

• UF_GDT_relation_type_t

Overview

The following enumerated type is used to specify the type of master model link which is to be broken from the "break relationship" function.

Data Members

UF GDT PULL RELATION TYPE

link between pulled feature and component

UF_GDT_restrained_condition_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_restrained_condition_type_t
- UF_GDT_restrained_condition_type_p_t

Overview

The following enumerated type defines the default part gaging standards for GD&T

Data Members

```
UF_GDT_FREE_STATE_CONDITION = 1
```

UF_GDT_RESTRAINED_CONDITION = 2

UF_GDT_size_value_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_size_value_type_t
- UF GDT size value type p t

Overview

The following enumerated type defines the size tolerance value types available in the tolernacing module.

Data Members

UF_GDT_NO_SIZE

No size tolerance value

UF GDT LINEAR SIZE

Linear size tolerance

UF_GDT_RADIAL_SIZE

Radial size tolerance

UF_GDT_DIAMETRAL_SIZE

Diametral size tolerance

UF_GDT_ANGULAR_MAJOR_SIZE

Angular major size tolerance

UF GDT ANGULAR MINOR SIZE

Angular minor size tolerance

UF_GDT_standard_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_standard_t
- UF_GDT_standard_p_t

Overview

Defines the standards that are supported by the Geometric Tolerancing module

Data Members

UF_GDT_NO_STANDARD

Standard not specified

UF_GDT_ANSI_1982

ANSI Y14.5M - 1982 standard

UF GDT ASME 1994

ASME Y14.5M - 1994 standard

UF GDT ISO 1983

ISO 1101: 1983 standard

UF_GDT_standard_keyword_id_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_standard_keyword_id_t
- UF_GDT_standard_keyword_id_p_t

Overview

Defines the standard keyword ids

Data Members

UF_GDT_PATTERN_COUNT_KEYWORD

Pattern Count (3X, etc)

UF_GDT_INDIVIDUAL_COUNT_KEYWORD

INDIVIDUALLY applied

UF_GDT_SEP_REQT_KEYWORD

SEP REQT applied

UF_GDT_SIM_REQT_KEYWORD

SIM REQT applied

UF_GDT_BOUNDARY_KEYWORD

BOUNDARY condition applied

UF GDT ALL OVER KEYWORD

ALL OVER applied to surfaces

UF_GDT_AVG_DIA_KEYWORD

AVG DIAM applied to size tolerances

UF_GDT_COAX_HOLE_COUNT_KEYWORD

nX COAXIAL HOLES applied

${\tt UF_GDT_NON_MANDATORY_MFG_DATA_KEYWORD}$

NON-MANDATORY MFG DATA applied

UF_GDT_NO_PERFECT_MMC_FORM_KEYWORD

NON-PERFECT FORM AT MMC applied

UF_GDT_PERFECT_MMC_ORIENTATION_KEYWORD

UF_GDT_PERFECT_MMC_COAXIALITY_KEYWORD

UF_GDT_PERFECT_MMC_SYM_FEAT_LOC_KEYWORD

UF_GDT_SURFACE_COUNT_KEYWORD

n SURFACES applied

UF_GDT_THRU_KEYWORD

THRU applied to feature

UF GDT THRU HOLE KEYWORD

THRU HOLE applied to feature

UF_GDT_SIM_REQT_N_KEYWORD

SIM REQT N applied to feature

UF_GDT_MAJOR_DIA_KEYWORD

MAJOR DIA applied to thread feature

UF_GDT_MINOR_DIA_KEYWORD

MINOR DIA applied to thread feature

UF_GDT_PITCH_DIA_KEYWORD

PITCH DIA applied to thread feature

UF_GDT_INTERRUPTED_KEYWORD

UF GDT stub direction e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_stub_direction_t
- UF_GDT_stub_direction_p_t

Overview

The following enumerated type defines the leader stub direction

Data Members

UF_GDT_STUB_LEFT = 1

UF_GDT_STUB_RIGHT

UF_GDT_STUB_UP

UF_GDT_STUB_DOWN

UF_GDT_text_location_e (view source)

Defined in: uf_gdt.h

Also known as:

- · UF GDT text location t
- UF_GDT_text_location_p_t

Overview

The following enumerated type defines the allowable types of appended text locations.

Data Members

UF GDT ABOVE

above appended text

UF_GDT_BELOW

below appended text

UF_GDT_BEFORE

before appended text

UF GDT AFTER

after appended text

UF_GDT_tol_format_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_tol_format_tUF_GDT_tol_format_p_t

Overview

Defines the valid tolerance display formats for a size tolerance

Data Members

UF_GDT_LIM_MINUS_BEFORE_PLUS

Limits minus before plus

UF_GDT_LIM_PLUS_BEFORE_MINUS

Limits plus before minus

UF_GDT_LIM_MINUS_OVER_PLUS

Limits minus over plus

UF_GDT_LIM_PLUS_OVER_MINUS

Limits plus over minus

UF_GDT_PLUS_OVER_MINUS

Tolerance plus over minus

UF GDT MINUS OVER PLUS

Tolerance minus over plus

UF_GDT_PLUS_MINUS

Tolerance plus minus

UF_GDT_NO_TOLERANCE

No tolerance defined

UF_GDT_tolerance_type_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_tolerance_type_t
- UF_GDT_tolerance_type_p_t

Overview

Defines the type of tolerances that can be part of a tolerance feature Tolerance features may include a number of these different types

Data Members

UF_GDT_DATUM_TARGET_POINT_TYPE = 0

Datum target point tolerance type

UF_GDT_DATUM_TARGET_LINE_TYPE = 1

Datum target line tolerance type

UF_GDT_DATUM_IDENTIFIER_TYPE = 3

Datum identifier type

UF_GDT_DATUM_MULTIPLE_TYPE = 4

Special Multiple datum type

UF_GDT_GEOMETRIC_TOLERANCE_TYPE = 5

Geometric tolerance type

UF_GDT_SIZE_TOLERANCE_TYPE = 6

Size Tolerance type

UF_GDT_DATUM_TARGET_DIA_TYPE = 7

Circular datum target areas

UF_GDT_DATUM_TARGET_RECT_TYPE = 8

Rectangular datum target areas

UF_GDT_DIRECTED_DIMENSION_TYPE = 9

Directed dimension type

UF_GDT_DATUM_TARGET_CYL_TYPE = 10

Cylindrical datum target areas

UF_GDT_WALL_THICKNESS_TYPE = 11

Wall thickness tolerance type

UF_GDT_DEPTH_TOLERANCE_TYPE = 12

Depth Tolerance type

UF_GDT_LIMITS_AND_FITS_TOLERANCE_TYPE = 13

Limits and fits tolerance type

UF_GDT_THREAD_TOLERANCE_TYPE = 14

Thread tolerance type

UF GDT DATUM TARGET USER DEFINED TYPE = 15

User defined datum target type

UF_GDT_zone_shape_e (view source)

Defined in: uf_gdt.h

Also known as:

- UF_GDT_zone_shape_t
- UF_GDT_zone_shape_p_t

Overview

Defines the possible tolerance zone shapes for a feature control frame

Data Members

UF_GDT_SHAPE_PLANAR

Planar tolerance zone - Planar zones define a tolerance zone which runs parallel to a flat or complex plane.

UF_GDT_SHAPE_CYLINDRICAL

Cylindrical tolerance zone - Cylindrical zones define a tolerance zone which surrounds the AXIS of a cylindrical feature.

UF_GDT_SHAPE_SPHERICAL

Spherical tolerance - Spherical zones define a tolerance zone surrounding the center of a spherical feature.

UF_GDT_SHAPE_OFFSET

Profile zone - Offset zones define unilateral or bilateral tolerance zones used for profile tolerances.