Package 'discretizeCtsDTMC'

June 20, 2020

Title Discretize a Continuous-valued Discrete-time Markov

Version 0.0.0.9000

Description Package discretizeCtsDTMC creates a discrete approximation to a Markov process defined on a continuous state space in discrete time.

Once the state space is discretized, discretizeCtsDTMC provides tools to estimate the transition matrices and analyze the Markov process.

It is used to model a population of individuals, each following a continuous-state Markov process in discrete time.

License GPL-3 Encoding UTF-8 LazyData true RoxygenNote 7.0.2

R topics documented:

Index		•
	test_fore_dev	4
	state_breaks	
	sim_pop_MC	4
	forecast_distn	
	find_atoms	
	est_trans_mats	
	cut_states	
	aaa-discretizeCtsDTMC	

aaa-discretizeCtsDTMC Discretize a Continuous-state Discrete-time Markov Chain

Description

discretizeCtsDTMC creates a discrete approximation to a Markov process defined on a continuous state space in discrete time. Once the state space is discretized, discretizeCtsDTMC provides tools to estimate the transition matrices and analyze the Markov process.

Note

We'll think of a better name later.

2 est_trans_mats

See Also

multinom function in nnet package for estimating the transition matrices. DTMCPack and markovchain for analyzing the discrete-time Markov model once the continuous state space is discretized.

cut_states

Discretize a Variable Defined on a Continuous State Space

Description

cut_states transforms a variable defined on a continuous state space into a discrete variable.

Usage

```
cut_states(x_cts, breaks)
```

Arguments

x_cts a numeric vector of observations from a continuous random variable with dis-

continuities in the distribution function.

breaks a numeric vector of thresholds for allocating elements of the continuous state

space to discrete state space.

Value

a categorical variable with states for each variable that correspond to elements in the continuous state space.

est_trans_mats

Estimate Transition Matrices

Description

est_trans_mats estimates transition matrices from a discrete-state, discrete-time Markov process.

Usage

```
est_trans_mats(x, time_stamp, id, n_lags, Hessian = FALSE)
```

Arguments

a numeric vector of observations from a discrete random variable. time_stamp a vector of time stamps that correspond to the observations in x. a vector of labels to identify different individuals in the population. id an integer number of lags to define the order of the Markov process. n_lags

Hessian

an indicator to specify whether the Hessian matrices are returned for each col-

umn of the transition matrices (default is FALSE).

Value

trans_mats an array of transition matrices for the Markov process.

find_atoms 3

find_atoms	Find Points of Discontinuity in the CDF	

Description

find_atoms finds points of discontinuity in the CDF of a continuous random variable.

Usage

```
find_atoms(x)
```

Arguments

x a numeric vector of observations from a continuous random variable with discontinuities in the distribution function.

Value

a numeric vector of points in the sample space at which there are discontinuities in the distribution function, which are sometimes referred to as "atoms".

|--|

Description

forecast_distn calculates a forecast of a probability distribution for a population governed by a discrete-state, discrete-time Markov process.

Usage

```
forecast_distn(trans_mats, init_probs, n_ahead)
```

Arguments

trans_mats an array of transition matrices for the Markov process.

init_probs a numeric probability vector that defines the initial proportions of the population

in each state.

n_ahead an integer number of lags that defines the order of the Markov process.

Value

a n_ahead-row numeric matrix of probability vectors that define the forecasted proportion of the population in each state at each time.

4 state_breaks

sim_pop_MC	Simulate a Population of Individuals following a Markov Chain

Description

sim_pop_MC draws a realization of a population of individuals, each following a discrete-time Markov process. It can be used for a parametric bootstrap procedure when the large sample properties may not hold.

Usage

```
sim_pop_MC(trans_mats, init_probs, n_ahead, n_ind)
```

Arguments

trans_mats an array of transition matrices for the Markov process.

init_probs a numeric probability vector that defines the initial proportions of the population

in each state.

n_ahead an integer number of lags that defines the order of the Markov process.

n_ind an integer number of individuals in the cross-section.

Value

a data frame of realizations for individuals in the cross-section, including id labels for individuals and time stamps for each time period.

state_breaks	Divide a Continuous State Space into Intervals

Description

state_breaks calculates a vector of thresholds for allocating elements of a continuous state space to a discrete state space

Usage

```
state_breaks(x)
```

Arguments

x a numeric vector of observations from a continuous random variable with discontinuities in the distribution function.

Value

a numeric vector of thresholds for allocating elements of the continuous state space to a discrete state space.

test_fore_dev 5

test_fore_dev	
---------------	--

Description

test_fore_dev tests for a deviation from a forecasted population by calculating the Kullback-Leibler divergence statistic and p-values from the quantiles of the chi-squared distribution.

Usage

```
test_fore_dev(x, time_stamp, id, out_probs)
```

Arguments

х	a numeric vector of observations of a discrete random variable from the out-of-sample forecast period.
time_stamp	a vector of time stamps that correspond to the observations in x.
id	a vector of labels to identify different individuals in the population.
out_probs	a n_ahead-row numeric matrix probability vector that defines the forecasted proportions of the population in each state.

Value

a data frame of Kullback-Leibler divergence statistics and p-values from the quantiles of the chi-squared distribution.

Index

```
aaa-discretizeCtsDTMC, 1
cut_states, 2
est_trans_mats, 2
find_atoms, 3
forecast_distn, 3
sim_pop_MC, 4
state_breaks, 4
test_fore_dev, 5
```