Partiel

Durée: trois heures

Documents et calculatrices non autorisés

Exercice 1 (2 points)

Soit
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 4 \\ 3 & 2 & -3 \end{pmatrix}$$
.

Déterminer la matrice A^{-1} en prenant soin de vérifier (au brouillon) le résultat final.

Exercice 2 (3 points)

On se palce dans $\mathbb{R}_2[X]$. Dans les trois questions suivantes, vos réponses doivent être justifiées.

- 1. $\mathcal{B}_1 = (X^2 + X, X + 3)$ engendre-t-elle $\mathbb{R}_2[X]$?
- 2. $\mathscr{B}_2 = (2, X+1, 2X^2, X^2+3)$ est-elle une famille libre de $\mathbb{R}_2[X]$?
- 3. $\mathcal{B}_3 = (1, X+1, X^2+2X)$ est-elle une base de $\mathbb{R}_2[X]$?

Exercice 3 (3 points)

Soient E, F deux \mathbb{R} -ev et $f \in \mathcal{L}(E, F)$.

- 1. Montrer que Ker(f) et Im(f) sont des \mathbb{R} -ev.
- 2. Montrer que f est injective si et seulement si $Ker(f) = \{0\}$.
- 3. Montrer que f est surjective si et seulement si Im(f) = F.

Exercice 4 (3 points)

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \longmapsto & (x+y-z,x-y-3z) \end{array} \right.$$

- 1. Montrer que f est linéaire.
- 2. Déterminer le noyau de f et exhiber une de ses bases.
- 3. En déduire, via le théorème du rang, la dimension de l'image de f puis en déduire l'image de f.

Exercice 5 (3 points)

Les familles suivantes sont-elles libres? Justifiez votre réponse.

- 1. Dans \mathbb{R}^3 : ((1,-2,3), (-1,-2,1), (5,2,3)).
- 2. Dans $\mathbb{R}^\mathbb{R}: (f: x \mapsto x \; , \; g: x \mapsto x^2 \; , \; h: x \mapsto e^{2x}).$
- 3. Dans $\mathcal{M}_2(\mathbb{R}): (A,B)$ où $A=\left(\begin{array}{cc} 1 & 1 \\ -3 & 4 \end{array}\right)$ et $B=\left(\begin{array}{cc} 6 & -2 \\ 1 & 4 \end{array}\right)$.

Exercice 6 (4 points)

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (3x-5y,-2y) \end{array} \right.$$

On note \mathscr{B}_1 la base canonique de \mathbb{R}^2 et $\mathscr{B}_2 = ((1,1), (-1,0))$ une autre base de \mathbb{R}^2 . De plus, on note id l'endomorphisme identité de \mathbb{R}^2

- 1. Déterminer $A = \operatorname{Mat}_{\mathcal{B}_1}(f)$, matrice de f relativement à la base \mathcal{B}_1 .
- 2. Déterminer $D = \operatorname{Mat}_{\mathscr{B}_2}(f)$, matrice de f relativement à la base \mathscr{B}_2 .
- 3. Expliquer pour quoi $\mathrm{Mat}_{\mathscr{B}_2,\mathscr{B}_1}(id)=\left(\begin{array}{cc} 1 & -1\\ 1 & 0 \end{array}\right).$ On note P cette matrice.
- 4. Inverser P puis calculer $P^{-1}AP$. Que remarquez-vous?

Exercice 7 (3 points)

Soit
$$(x,y,z) \in \mathbb{R}^3$$
 tel que $x^2 + y^2 + z^2 = 1$. Posons $U = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $M = \begin{pmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{pmatrix}$ et $P = U^t U$.

N.B.: Soit $A = (a_{i,j}) \in \mathscr{M}_{n,p}(\mathbb{R})$. On appelle transposée de A la matrice ${}^tA = (b_{i,j}) \in \mathscr{M}_{p,n}(\mathbb{R})$ obtenue en échangeant les lignes et les colonnes de A, c'est-à-dire, pour tout $(i,j) \in [1,p] \times [1,n]$, $b_{i,j} = a_{j,i}$.

Par exemple, la matrice transposée de
$$A=\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right)$$
 est ${}^tA=\left(\begin{array}{ccc} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{array}\right).$

- 1. Calculer tUU et en déduire que $P^2 = P$.
- 2. Montrer que MP = 0 et PM = 0.