Geometría de curvas y superficies Curso 2020-2021 Primera entrega de ejercicios 21 de marzo de 2021

Se deberá subir, a la entrega de Moodle habilitada al efecto, un único pdf (creado a partir de un archivo LATEX, de un escaneado o de fotografías nítidas con el móvil) antes del **domingo 21 de marzo a las 23:55**.

Los ejercicios pueden realizarse por parejas o individualmente.

Se valorará especialmente la **claridad** de las explicaciones proporcionadas y la **escritura deta- llada** de los argumentos.

La calificación de esta entrega contará para la nota final de la asignatura.

- 1. Sea γ una curva espacial birregular.
- a) Si todas las rectas tangentes γ pasan por un punto fijo, ¿qué tipo de curva es γ ?
- b) Si todos los planos normales de γ pasan por un punto fijo, ¿qué tipo de curva es γ ?
- **2.** Curvas esféricas. Sea $\gamma: I \subseteq \mathbb{R} \to \mathbb{R}^3$ una curva birregular parametrizada por longitud de arco para la que $\tau(s) \neq 0$ para todo $s \in I$ y tal que su traza está contenida en la esfera de centro \mathbf{p} y radio r > 0.
- a) Demuestra que, para todo $s \in I$, se tiene

$$\boldsymbol{\gamma}(s) = \mathbf{p} - \frac{1}{\kappa(s)}\mathbf{n}(s) + \frac{d}{ds}\left(\frac{1}{\kappa(s)}\right)\frac{1}{\tau(s)}\mathbf{b}(s).$$

b) Usando el apartado anterior, concluye que, en general, la curvatura y torsión de una curva esférica satisfacen la siguiente ecuación:

$$\frac{1}{\kappa^2} + \left(\frac{d}{ds}\left(\frac{1}{\kappa}\right)\right)^2 \frac{1}{\tau^2} = r^2. \tag{1}$$

c) Usando el apartado anterior, deduce que para todo $s \in I$ se tiene

$$\kappa(s) \ge \frac{1}{r}.$$

d) Recíprocamente, demuestra que si las funciones de curvatura κ y torsión τ de una curva birregular γ parametrizada por longitud de arco son tales que $\kappa'(s), \tau(s) \neq 0$ para todo $s \in I$ y se verifica (1), entonces la traza de γ está contenida en una esfera de radio r.

Extra Considera la curva de Viviani¹, parametrizada mediante

$$\gamma(t) = (\cos^2(t), \cos(t)\sin(s), \sin(t)).$$

Dibuja la traza de γ y comprueba que está contenida en la esfera unidad. Verifica que su curvatura y torsión vienen dados por

$$\kappa(t) = \frac{\sqrt{3\cos^2(t) + 5}}{(\cos^2(t) + 1)^{\frac{3}{2}}}, \qquad \tau(t) = -\frac{6\cos(t)}{3\cos^2(t) + 5}.$$

Concluye que se satisface la ecuación

$$\left(\frac{\tau}{\kappa}\right)^2 + \left(\frac{d}{dt}\left(\frac{1}{\kappa}\right)\right)^2 \frac{1}{||\dot{\gamma}||^2} = \tau^2.$$

¿Qué relación tiene esta ecuación con (1)?

Cuidado: la curva de Viviani no está parametrizada por longitud de arco.

¹La traza de esta curva viene dada por la intersección de una circunferencia centrada en el origen de radio 1 y el cilindro de radio $\frac{1}{2}$ centrado en $(\frac{1}{2},0,0)$.