Supervised Learning의 종류

(know the answer)

- Regression (連刊)

 (本的子型 +)
- Classification (場)

 りをなるとかる (マコルションハル)
 - · UMupervised Learning: Don't know Answer.
 - · Re enforced ment Learning,

 Sple BZZIR) = 12/21 Zel 2/21/2/2/2

Supervised Learning의 종류

• 예측하려는 변수의 종류에 따라

• Regression (회귀): 연속 변수를 예측

• Classification (분류): 이산 변수를 예측

회귀 vs. 분류

- 예측하는 변수가 다름(연속 vs. 이산)
- 오류의 형태가 다름

- 회귀: 예측과 실제의 거리
- 분류: 예측과 실제의 차이
 - 예: 고릴라로 예측했는데 판다

평가지표의 종류

• 분류에서 확률로 예측할 때 로그-우도

분류에서 나올 수 있는 경우

		예측	
		양성 Positive	음성 Negative
실제	양성	진양성	위음성
	Positive	True Positive	False Negative
	음성	위양성	진음성
	Negative	False Positive	True Negative

정확도 Accuracy

		예측	
		양성 Positive	음성 Negative
실제	양성	진양성	위음성
	Positive	True Positive	False Negative
	음성	위양성	진음성
	Negative	False Positive	True Negative

정밀도 Precision

a) हमिन्ना क्रिक्ट क्रिक क्रिक्ट क्रिक क्रिक क्रिक्ट क्रिक क्रिक्ट क्रिक क्रिक

842		예측	
		양성 Positive	음성 Negative
실제	양성	진양성	위음성
	Positive	True Positive	False Negative
	음성	위양성	진음성
	Negative	False Positive	True Negative

재현율 Recall

Lo 对验室是是为了可是

. डिक्ना जीवपूर्व प्रिथित

		예측	
		양성 Positive	음성 Negative
실제	양성	진양성	위음성
	Positive	True Positive	False Negative
	음성	위양성	진음성
	Negative	False Positive	True Negative

Kappa

$$Kappa = \frac{O - E}{1 - E}$$

O: observed accuracy, E: Expected Accuracy

F1 score

ex) 10 km / Tgoken L [132 80km X]

• 정밀도와 재현율의 조화평균

日民, 今至一些是现代的

$$F_1 = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

LM의 정규화

• RMSE만 최소화하는 대신

• RMSE + (w의 크기)를 동시에 최적화

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

SCHOLOGIAN COVER FETTING) -> CHOSS Validation -> 2000 Validation -> 20

•
$$q = 1$$

- w의 절대값의 합도 함께 최소화
- w를 0으로 만드는 경향이 있음 까서 날 있다.
- 변수 선택의 기능

1/30/1996 2/40 LASSOE 1 1200. SIGNE SEGUENTANT 264.

Lasso

Ridge

• q = 2

alteres Lasso det overtiting

• w의 제곱의 합도 함께 최소화

• 대체로 Lasso에 비해 예측력이 좋음

• 변수 선택 X

Ridge

Elastic Net

• RMSE + Lasso + Ridge

• Lambda: 정규화항의 가중치

• Alpha: 정규화항에서 Lasso의 비중

→ CV로 결정

Logistic Regression

Linear Model for Classification

