

UNIVERSITATEA TRANSILVANIA DIN BRAŞOV

Departamentul Autovehicule și Transporturi Disciplina Organe de Mașini

PROIECT DE AN LA DISCIPLINA Organe de Maşini

Autor: Student Bogdan CHIRION

Programul de studii: Robotică

Grupa: 4LF811

Coordonatori: Prof. univ. dr. ing. Gheorghe MOGAN Dr. ing. Eugen BUTILĂ

UNIVERSITATEA TRANSILVANIA DIN BRAŞOV

FACULTATEA DE INGINERIE MECANICĂ

Disciplina Organe de Maşini

MEMORIU TEHNIC

Autor: Student Bogdan CHIRION

Grupa: 4LF811

Coordonatori: Prof. univ. dr. ing. Gheorghe MOGAN

Dr. ing. Eugen BUTILĂ

CUPRINS

	Introd	ucere		5
1.	Aspec	te gener	rale și tema de proiectare	6
	1.1.	Aspec	ete generale	6
	1.2.	Obiec	tive şi date de proiectare	6
		1.2.1.	Obiectivele proiectului	6
		1.2.2.	Date de proiectare	7
2.	Schen	na struct	turală funcțional-constructivă și parametri cinetostatici	7
	2.1.	Schem	na structurală funcțional-constructivă	7
	2.2.	Prame	tri cinetostatici	8
3.	Predir	nension	area angrenajului	10
	3.1.	Alegei	rea tipului oţelului, tratamentelor termice şi tehnologiilor	10
	3.2.	Predin	nensionarea angrenajului cilindric	13
		3.2.1.	Determinarea modulului frontal	13
		3.2.2.	Standardizarea modulului și parametri geometrici principali	15
		3.2.3.	Modelarea dinților roților în angrenare (CATIA)	15
		3.2.4.	Standardizarea distanței dintre axe și parametri geometrici principali	17
		3.2.5.	Modelarea și verificarea angrenajului deplasat (CATIA)	18
		3.2.6.	Modelarea și verificarea angrenării (CATIA)	19
4.	Predir	nension	area arborilor și alegerea rulmenților	21
	4.1.	Alegei	rea tipului oţelului, tratamentelor termice şi tehnologiilor	21
	4.2.	Alegei	rea structurilor constructive alubansamblelor arborilor	23
		4.2.1.	Alegerea materialelor arborilor și tratamentelor termice	23
		4.2.2.	Calculul de predimensionare al arborilor	23
		4.2.3.	Standardizarea capetelor arborilor de intrare/ieşire	23
	4.3.	Alegei	rea rulmenților și montajelor	23
		4.3.1.	Alegerea rulmenților	23
		4.3.2.	Alegerea montajelor rulmenților	24
5.	Mode	larea și :	simularea cinematică a mecanismului	25
	5.1.	Genera	area și simularea modelului cinematic	25
6.	Verifi	carea (d	imensionarea) angrenajului	26
	6.1.	Verific	carea (dimensionarea) angrenajului cilindric	31
		6.1.1.	Geometria angrenajului și roților cilindrice	31
		6.1.2.	Alegerea procedeelor de prelucrare și de lubrifiere (ungere)	32
		6.1.3.	Determinarea factorilor de corecție.	33
		6.1.4.	Determinarea coeficienților de siguranță și verificare/dimensionare	34
		6.1.5.	Parametri de executie și montaj a angrenajului si roților dințate conice	34

7.	Forțe î	n angrenajul cilindric	35
	7.1.	Schema forțelor din angrenaj	35
	7.2.	Determinarea forțelor din angrenaj	36
8.	Aleger	ea și calculul asamblărilor cu pene paralele	37
	8.1.	Alegerea formelor și dimensiunilor penelor paralele	37
	8.2.	Calculul asamblărilor cu pene paralele	37
9.		tarea formei și generarea modelelor în catia ale parturilor pentru subansamblele bale	37
10.	Genera	are subansamble rulmenți, arbori și angrenaj	38
11.	Genera	are subansamble carcase	41
12.	Genera	are model 3D ansambu	42
13.	Verific	carea arborilor	43
	13.1.	Verificarea arborelui de intrare	43
14.	Verific	carea rulmenților	51
	14.1.	Verificare rulmenți radiali pentru arborele de intrare	51
15.	Model	area și generarea desenului de ansamblu	53
16.	Model	area și generarea desenelor de execuție	
	Biblio	grafie	54

ANEXE (aplcații în CATIA)

- 1. Modelul dintilor rotilor nedeplasate în angrenare
- 2. Modelul angrenajului cilindric cu danturi deplasate
- 3. Model pentru simularea și verificarea angrenării
- 4. Modelul 3D al reductorului
- 5. Desenul de ansamblu al reductorului
- 6. Desene de execuție

INTRODUCERE

Scopul proiectului de an la disciplina Organe de maşini implică dezvoltarea de abilități practice
ale studenților de proiectare și sintetizare a cunoștințelor de mecanică, rezistența materialelor, tehnologia
materialelor, organe de mașini I și reprezentare grafică în decursul anilor I și II, precum și modul în care
aceștia pot rezolva în mod independent o lucrare de proiectare, pe baza algoritmilor, metodelor specifice
și programelor avansate din domeniu.

se vor prezenta (pe această pagin	ă) aspecte ge	enerale legate de	construcția și	proiectarea
reductoarelor de turație				

Autorul,

1. ASPECTE GENERALE ŞI TEMA DE PROIECTARE

1.1 ASPECTE GENERALE

Reductorul de turație este un sistem mecanic demontabil, cu mișcări relative între elemente active (de obicei, roți dințate) care are ca <u>parametri de intrare</u>, puterea (momentul de torsiune) și turația (viteza unghiulară) arborelui de intrare, și ca <u>parametri de ieșire</u>, puterea (momentul de torsiune) și turația (viteza unghiulară) arborelui de ieșire.

Pe lângă <u>funcția principală</u> de transmitere a momentului de torsiune și mișcării de rotație prin

angrenajele cu roti dințate conice și cilindrice se urmărește și îndeplinirea următoarelor <u>funcții auxiliare</u>: respectarea prevederilor de interschimbabilitate cerute de standardele din domeniu; respectarea condițiilor de protecție a omului și mediului.

1.2 OBIECTIVE ȘI DATE DE PROIECTARE

1.2.1 OBIECTIVELE PROIECTULUI

Obiectivul principal

Dobândirea și dezvoltarea de cunoștințe și abilități pentru identificarea, calculul și proiectarea formei elementelor componente ale transmisiilor mecanice, cu precădere reductoare conico-cilindrice, în vederea execuției și montajului acestora.

Obiective specifice

- dezvoltarea de cunoştinţe fundamentale privind calculul şi proiectarea elementelor transmisiilor mecanice, inclusiv aspecte privind alegerea materialelor şi a tehnologiile de execuţie şi montaj;
- calculul elementelor şi subansamblelor specializate ale transmisiilor mecanice de tip reductor de turație conico-cilindric (angrenaje, roți dințate, arbori, rulmenți etc.);
- dezvoltarea de cunoștințe de identificare şi proiectare a formelor elementelor şi subansamblelor transmisiilor mecanice, cu precădere a reductoarelor conico-cilindrice;
- dezvoltarea de abilități practice de utilizare a pachetelor performante de calcul (MDESIGN) și pentru proiectare (CATIA);
- dezvoltarea de abilități practice de elaborare a documentației grafice (modele 3D, desene de ansamblu și de execuție);
- dezvoltarea de abilități practice de elaborare a documentației scrise (memoriul tehnic).

1.2.2 DATE DE PROIECTARE

Tema de proiectare a unui produs, de obicei, este lansată de către un beneficiar și reprezintă o înșiruire de date, cerințe și condiții tehnice care constituie caracteristicile și performanțele impuse viitorului produs.

În tabelul următor se prezintă datele de proiectare impuse pentru o situație practică cerută, unde P_i [kW] reprezintă puterea la intrare, n_i [rot/min] - turația la intrare, i_R - raportul de transmitere al reductorului, L_h^{imp} [ore] - durata de funcționare impusă, PA - planul axelor roților angrenajului cilindric: orizontal (H) sau vertical (V), z_1^{cil} - numărul de dinți ai pinionului cilindric.

P _i [kW]	n _i [rot/min]	i_R	L _{h imp} [ore]	PA	$\mathrm{z}_{1}^{\mathrm{cil}}$
18,5	2000	2,5	9000	Vj	17

Condiții de funcționare și constructive

Condiții de funcționare:

- tipul mașinii (utilajului) în care se integrează: elevator auto sau stand testare frâne;
- tipul încărcării exterioare: alternativă cu șocuri;
- tipul motorului de acționare: electric, asincron cu rotorul în scurtcircuit;
- nivel de vibrații și zgomot, max 25 dB.
- caracteristicile mediului în care funcționeză: temperaura (- 20 ... 60 $^{\rm o}$ C), umiditate max 30 g/m³;

Condiții constructive: ieșirea pe partea stângă; arborele de ieșire plin.

<u>Condiții ecologice</u>: utilizarea de materiale și tehnologii eco, reciclarea materialelor, protecția vieții; volum minim; greutate minimă.

Domenii de utilizare

Reductorul de turație de proiectat se poate întegra în mașini de ridicat și transportat (de ex. elevatoare pentru ridicarea autoturismelor).

2. SCHEMA STRUCTURALĂ FUNCȚIONAL-CONSTRUCTIVĂ ȘI PARAMETRI CINETOSTATICI

2.1 SCHEMA STRUCTURALĂ FUNCȚIONAL-CONSTRUCTIVĂ

În figură se prezintă schema structurală funcțional-constructivă generală a reductoarelor conicocilindrice în două trepte. Din punct de vedere funcțional se evidențiază următoare elemente: I – angrenaj conic ortogonal cu dantură înclinită (curbă); II – angrenaj cilindic cu dantură înclinată; 1^{I} – pinion conic; 2^{I} – roată conică; 1^{II} – pinion cilindric; 2^{II} – roată cilindrică; A_{1} – arborele de intrare; A_{2} – arborele intermediar; A_{3} – arborele de ieșire; $L_{A}^{A_{1}}$ – lagărul A_{1} ; $L_{B}^{A_{2}}$ – lagărul A_{2} ; $L_{B}^{A_{3}}$ – lagărul A_{3} ; $L_{B}^{A_{3}}$ – lagărul A_{4} al arborelui A_{5} ; $L_{B}^{A_{4}}$ – lagărul A_{5} al arborelui A_{5} ; $L_{B}^{A_{5}}$ – lagărul A_{5} 0 al arborelui A_{5} 0.

Din punct de vedere constructiv, reductorul de turație formează un ansamblu compus din subansamble și elemente constructive. Subansamblele sunt structuri independente, care se evidențiază printr-un grup compact compus, în configurație minimală, din cel puțin două elemente constructive sau din alte subansamble și elemente constructive, în interacțiune permanentă, formate ținându-se cont, cu precădere, de tehnologiile de montaj, de întreținere și de exploatare.

În cazul reductoarelor conico-cilindrice se definesc următoarele subansamble: S_C – subasamblul carcasă; S_{A_1} - <u>subansamblul arborelui de intrare</u>, format din pinionul cilindric (1^I) fixat pe arborele de intrare (A_1) care la rândul său este fixat pe două lagăre ($L_A^{A_1}$ și $L_B^{A_1}$), se sprijină pe subansamblul carcasa S_C ; S_{A_2} - <u>subansamblul arborelui de ieșire</u>, format din roata cilindrică (2^I) fixat pe arborele de ieșire (A_2) care la rândul său este fixat pe două lagăre ($L_A^{A_2}$ și $L_B^{A_2}$), se sprijină pe subansamblul carcasa S_C .

2.2 PARAMETRI CINETOSTATICI

Numere de dinți și rapoarte de transmitere/angrenare

Considerând valorile numerelor de dinți ai pinionului cilindric, $\mathbf{z}_1^I = \mathbf{z}_1^{\text{cil}}$ se determină valoarea numărului de dinți ai roții cilindrice,

$$z_2^I = z_1^{cil} i_R = 17 * 2.5 = 42.5$$

Se adoptă, $z_2^I = 43$

Astfel, se recalculează raportul de angrenare al angrenajului cilindric și al reductorului,

$$u_{\text{rec1}}^{\text{II}} = \frac{z_2^{\text{I}}}{z_1^{\text{I}}} = \frac{43}{17} = 2,53.$$

și raportul de transmitere,

$$i_{R rec1} = u_{rec1}^{I} = 2,53$$

În tabelul următor se prezintă sintetic aceste valori precum și abaterea A_b rapotului de transmitere recalculat față de cel impus care respectă abatera acceptabilă de max $\pm 2\%$.

$\mathbf{z}_1^{\mathrm{I}}$	$\mathbf{z}_2^{\mathrm{I}}$	u _{rec1}	i ^I rec1	A_b
17	43	2.53	2,53	-1,19%

Puteri, turații și momente de torsiune

Valorile puterilor la nivelul arborilor reductorului sunt:

$$P_1 = P_i = 18,5 \text{ kW},$$

$$P_2 = \eta^I P_i = 0.96 * 18.5 = 17.76 \text{ kW},$$

Valorile turațiilor la nivelul arborilor reductorului sunt:

$$n_1 = n_i = 2000 \text{ rot/min},$$

$$n_2 = \frac{n_1}{u_{rec_1}^I} = \frac{2000}{2,53} = 790,51 \text{ rot/min.}$$

Valorile momentelor de torsiune la nivelul arborilor reductorului sunt:

$$M_{t1} = M_{ti} = \frac{_{30}}{^{\pi}} \, 10^6 \, \frac{P_i}{n_i} = \frac{_{30}}{^{\pi}} \, 10^6 \, \frac{_{20,425}}{_{625}} = 88331 \, \, \text{Nmm},$$

$$M_{t2} = M_{t1} u_{rec1}^{I} \eta I = 88331 * 2,53* 0,96 = 214538 \text{ Nmm}.$$

Obs. S-a considerat $\eta^{I} = 0.96$, randamentul angrenajului cilindric.

Aceste valori sunt sintetzate în următorul tabel

Arborele	Puterea [kW]	Turația [rot/min]	Momentul de torsiune [Nmm]
Arborele intrare (A_1)	$P_1 = 18,5$	$n_1 = 2000$	$M_{t1} = 88331$
Arborele de ieşire (A ₂)	$P_2 = 17,76$	$n_2 = 790,51$	$M_{t2} = 214538$

3. PREDIMENSIONAREA ANGRENAJULUI

3.1 ALEGEREA TIPULUI OŢELULUI, TRATAMENTELOR TERMICE ŞI TEHNOLOGIILOR

Alegerea tipului oțelului și tratamentelor termice

Deoarece, $M_{ti} = 88331 \text{ Nmm} > 30000...40000 \text{ Nmm}$, se va adopta pentru roţile angrenajului oţel de cementare.

Alegerea oțelului, durităților și rezistențelor

Pentru ambele roți dințate se adoptă oțelul, 21MoMnCr12 (oțel cu 0,21% C aliat cu Molibden, Mangan și Crom 1,2%) cu caracteristicile mecanice din tabel.

Oţelul	curgere,	Rezistenţa la rupere, σ _r [MPa]	Tratamentul termic de bază	Duritățile flancurilor dinților roților	Duritățile zonelor interioare ale dinților	Tensiunea limită la contact, σ _{Hlim} [MPa]	Tensiunea limită la încovoiere, σ _{Flim} [MPa]
21MoMnCr 12	850	1100	Cementare	$HRC_{1,2} = 60$	$HB_{1,2} = 300$	1530	400

Procedee de prelucrare a danturii

Corespunzător tipului materialului și tratamentului termic adoptate se impune prelucrarea prin <u>frezare</u> înainte de cementare și prin <u>rectificare</u> după călire și revenre înaltă.

3.2 PREDIMENSIONAREA ANGRENAJULUI CILINDRIC

3.2.1 DETERMINAREA MODULULUI FRONTAL

Schema de calcul

În figură se prezintă schema de calcul a angrenajului cilindric în care se evidențiază momentul de torsiune al pinionului (T_1) și parametri geometrici de calcul: diametrul de divizare al pinionului (d_1) , diametrul de divizare al roții (d_2) , lățimea danturii pinionului (b_1) , lățimea danturii roții (b_2) , distanța dintre axe de referință (a), unghiul de înclinare a danturii (β) .

Date de intrare

În tabel sunt sintetizate valorile paramettilor de calcul cunoscuți.

Denumirea parametrului	Simbolul	Valoarea	Unitatea de măsură
Raportul de angrenare	u	2,53	-
Numărul de dinți al pinionului	\mathbf{z}_1	17	-
Momentul de torsiune al pinionului	T_1	88331	Q
Turația pinionului conic	n_p	2000	rot/min
Durata de funcționare impusă	L _{h imp}	9000	ore
Tensiunea limită la oboseala de contact,	σ_{Hlim}	1530	MPa
Tensiunea limită la oboseala încovoiere,	σ_{Flim}	400	MPa
Unghiul de înclinare a danturii	β	10	° (grade)

Calculul modulului frontal din solicitarea de contact

Valoarea modului exterior din solicitarea de contact se determină cu relația,

$$m_{H} = \sqrt[3]{\frac{2T_{1} \ K_{A}K_{v}K_{H\beta}K_{H\alpha}}{\psi_{\text{d}} \ z_{1}^{\,\text{a}}\sigma_{\text{HP}}^{2}} (Z_{E}Z_{\epsilon}Z_{H}Z_{\beta})^{2} \frac{u \pm 1}{u}}$$

conform datelor următoare:

Calculează

m_H = 2.757859763252 mm

unde, T_1 reprezintă momentul de torsiune al pinionului (M_{t2}), u - raportul de angrenare al angrenajului cilindric, β - unghiul de înclinare a danturii, z_1 - numărul de dinți ai pinionului cilindric, K_A - factorul regimului de funcționare, K_v - factorul dinamic, $K_{H\alpha}$ - factorul repartizării neuniforme a sarcinii pe perechile de dinți aflate în angrenare pentru solicitarea de contact, $K_{H\beta}$ - factorul repartizării neuniforme a sarcinii pe lungimea dintelui pentru solicitarea de contact, Z_E - factorul de elasticitate a materialelor

roților, Z_H - factorul zonei de contact, Z_ϵ - factorul gradului de acoperire pentru solicitarea de contact, $\psi_d = b/d_1$ - factorul de lățime, σ_{HP} - tensiunea admisibilă la solicitarea de contact.

Calculul modulului frontal exterior din solicitarea de încovoiere

Valoarea modului frontal din solicitarea de încovoiere se determină cu relația,

$$m_F = \sqrt[a]{\frac{2~T_1}{\psi_d~z_1^2 cos\beta}} \, K_A K_v K_{F\beta} K_{F\alpha} Y_\varepsilon Y_\beta \, \max\left(\frac{Y_{\text{Sa1}} Y_{\text{Fa1}}}{\sigma_{\text{FP1}}} \, , \frac{Y_{\text{Sa2}} Y_{\text{Fa2}}}{\sigma_{\text{FP2}}}\right)$$

conform datelor următoare:

unde, T_1 reprezintă momentul de torsiune al pinionului (M_{t2}), u - raportul de angrenare al angrenajului cilindric, β - unghiul de înclinare a danturii curbe, z_1 - numărul de dinți al pinionului cilindric, K_A - factorul regimului de funcționare, K_v - factorul dinamic, $K_{F\alpha}$ - factorul repartizării neuniforme a sarcinii pe perechile de dinți aflate în angrenare pentru solicitarea de încovoiere, $K_{F\beta}$ - factorul repartizării neuniforme a sarcinii pe lungimea dintelui pentru solicitarea de încovoiere, Y_{Fa1} - factorul de formă a dinților pinionului cilindric, Y_{Fa2} - factorul de formă a dinților roții cilindrice, Y_{Sa1} - factorul de corecție a tensiunii la baza dinților pinionului cilindric, Y_{Sa2} - factorul de corecție a tensiunii la baza dinților roții cilindrice, Y_{β} - factorul înclinării dinților, Y_{ϵ} - factorul gradului de acoperire pentru solicitarea de încovoiere, ψ_d = b/d_1 - factorul de lățime, σ_{FP1} - tensiunea admisibilă la solicitarea de încovoiere pentru roată.

Modulul frontal calculat al danturii

Ținând cont de valorile modului frontal exterior obținute din calculele la contact și încovoiere reyultă, $m_c = max (m_H, m_F) = max (2,757; 2,612) = 2,757 mm$.

Astfel, se evidențiază că solicitarea de contact este solicitarea principală.

3.2.2 STANDARDIZAREA MODULULUI NORMAL ŞI PARAMETRI GEOMETRICI PRINCIPALI

Ca urmare a standardizării modulului normal se pot determina parametri principali ai angrenajului cilindric.

Parametrul	Simbolul	Valoarea [mm]	Observații
Modulul frontal calculat	m_c	2,757	
Modulul normal calculat	$m_{nc} = m_c \cos \beta$	2,715	
Modulul normal (standardizat)	m_n	3	
Modulul frontal	$m = \frac{m_n}{\cos \beta}$	3,046	
Diametrul de divizare al pinonului	$d_1 = m z_1$	51,782	$a = (d_1 + d_2)/2,$
Diametrul de divizare al roţii	$d_2 = m z_2$	130,978	91,38 =
Distanța dintre axe de referință	$a = \frac{m_n(z_1 + z_2)}{2\cos\beta}$	91,38	(51,782+130,978)/2 (se verifică)
Lățimea danturii roții	$b_2 = \psi_d d_1$	41	
Lățimea danturii pinionului	$b_1 = b_2 + 46$	45	

3.2.3 MODELAREA DINȚILOR ROȚILOR ÎN ANGRENARE (CATIA)

Personalizarea datelor de intrare în aplicația CATIA

Date de intrare`=	Simbol teoretic	Semnificația
alfa_n=20deg	α_n	Unghiul de presiune (angrenare) normal [°]
— <mark>■</mark> ha_n=1	\mathbf{h}^*_{an}	Coeficientul înălțimii capului dintelui
c_n=0.25	c _{0n} *	Coeficientul jocului la piciorul dintelui
	ρ_n^*	Coeficientul razei de racordare
rho_n=0.375	z_1	Numărul de dinți ai pinionului
z1=17 z2		Numărul de dinți ai roții
−⑤ z2=43	m_n	Modulul normal [mm]
	β	Unghiul de înclinare a danturii [°]
beta=10deg	a_{w}	Distanța dintre axe (reală) [mm]
aw=91.38mm	X_{n1}	Coeficientul deplasării de profil a danturii pinionului (zero, roţi nedeplasate)
— <mark>Б</mark> ∮ xn1=0 —Б g=4mm	g	Grosimea coroanei [mm]

Verificarea modelului CATIA

Verificarea modelului CATIA			T
Parametri angrenaj și rotj`=	Simbol teoretic	Semnificația	Verificare
	u	Raportul de angrenare	u >1; 2,53 > 1
−[u=2.529411765=z2 /	m	Modulul frontal [mm]	$m > m_n$; 3,046 > 3
— [m_t=3.046mm=m_n,	a	Distanța dintre axe de referință [mm]	a = a _w ; 91,38 = 91,38
─ৄ a=91.388mm=m_t * (α	Unghiul de presiune frontal [°]	$\alpha > \alpha_n$; 20,284 > 20
−	α_{w}	Unghiul de angrenare frontal [°]	$\alpha_{\rm w} = \alpha$; 20,269=20,284
alfaw=20.269deg=ac	$a_{ m w}$	Distanța dintre axe reală [mm]	$a_w (aw_rec) = a$ 91,38 = 91,38
—[aw_rec=91.38 m m = m	$\mathbf{X}_{\mathbf{n}\mathbf{s}}$	Suma coeficeienților depasărilor	$x_{ns} = -0.002$
— xns=-0.002797415=(X_{n2}	Coeficientul deplasării roții	$x_{n2} = -0.002$
xn2=-0.002797415=x	r_{d1}	Raza cercului de divizare al pinionului [mm]	$r_{d1} + r_{d2} = a$
−€ rd1=25.893mm=m_t	r_{d2}	Raza cercului de divizare al roţii [mm]	25,893+65,495=91,38
─ॡ rd2=65.495mm=m_t ─ॡ rw1=25.891mm=m_t	$r_{\rm w1}$	Raza cercului de rostogolire al pinionului [mm]	$r_{w1} = r_{d1}; 25,891 = 25,893$
- rw2=65.489mm=m_t	r_{w2}	Raza cercului de rostogolire al roții [mm]	$r_{w2} = r_{d2}$; 65,489=65,495
− [€] rf1=22.143mm=m_n	$r_{\rm fl}$	Raza cercului de picior al pinionului [mm]	$r_{\rm fl} < r_{\rm dl}; 22,143 < 25,893$
rf2=61.737mm=m_n	r_{f2}	Raza cercului de picior al roții [mm]	$r_{f2} < r_{d2}$; 61,737 < 65,495
ra1=28.893mm=(2*a	r _{a1}	Raza cercului de divizare al pinionului [mm]	$r_{al} > r_{dl}; 28,893 > 25,893$
ra2=68.487 m m = (2*a	r _{a2}	Raza cercului de divizare al roţii [mm]	$r_{a2} > r_{d2}$; 68,487 > 65,495

Modelul CATIA

3.2.4 STANDARDIZAREA DISTANŢEI DINTRE AXE ŞI PARAMETRI GEOMETRICI PRINCIPALI

Alegerea (standardizarea) distanței dintre axe

Pentru distanța dintre axe standard, $a_w = 90$ mm, restricțiile impuse în vederea realizării angrenajului cu distanța dintre axe impusă - $0.5m_n < a_w - a \le m_n$ devin:

 $-0.5 \cdot 3 < 90 - 91.38 \le 4$ sau $-1.5 < -1.38 \le 3$???. Se observă că ambele restricții sunt îndeplinite și nu se impune modificarea parametrilor angrenajului nedeplasat.

Modificarea parametrilor angrenajului de referință

Considerând, u^{II}_{rec1}= 2,53 ,se determină numerele de dinți teoretice:

$$z_1 = \frac{2 a_w \cos \beta}{m_n (u_{rec1}^{II} + 1)} = \frac{2.90 \cos 10}{3 (2.53 + 1)} = 16.73;$$

$$z_2 = u \ z_1 = 2,53 \ . \ 16,73 = 42.34;$$

Ca urmare a rounjirilor se pot considera 4 perechi (z_1, z_2) posibile)

Numărul de	Numărul	Raportul de	Abaterea raportului de	Distanța dintre		
dinți ai	de dinți ai	angrenare	angrenare, u ^{II} față de	axe de referință		
pinionului,	roţii,	recalculat,	$u_{ m rec1}^{ m II}$	recalculată, a ^r		
\mathbf{z}_1	\mathbf{z}_2	$u_{rec2}^{II} = z_2/z_1$	A _b [%]	[mm]		
17	43	2,53	0	91,388		
17	44	2,59	-2,37	92.911		
18	43	2,39	-5,53	92,911		
18	44	2,44	-3,55	94,434		
Obs. [z ₁] sau [z ₂	Obs. [z ₁] sau [z ₂] reprezintă partea întreagă a valorilor numerelor de dinți					

Dintre cele 4 posibilități din acest table se adoptă perechea $(z_1, z_2) = (17, 43)$ cu distanța dintre axe de referință recalculată $a^r = 91,38 > 90$ mm. Astfel rezultă angrenaj MINUS, care asigură rezistențe la contact și încovoiere mărite.

Determinarea parametrilor geometrici ai angrenajului deplasat

Denumirea parametrului	Relația de calcul	Valoarea	Unitatea de măsură	Observații
Unghiul de presiune frontal	$\alpha = \operatorname{arctg} \frac{\operatorname{tg} \alpha_n}{\cos \beta}$	20,283	[°]	$\alpha_n=20^{\rm o}$
Unghiul de angrenare frontal	$\alpha_{\rm w} = \arccos(\frac{a}{a_{\rm w}}\cos\alpha)$	17,73	[°]	
Suma coeficienți depasărilor de profil ale danturilor roților	$x_{ns} = \frac{(inv\alpha_{w.} - inv\alpha)(z_2 + z_1)}{2 tg\alpha \cos\beta}$	-0.43		

Coeficientul			
deplasării de profil a danturii	$x_{n1} = \frac{x_{ns}}{2} + \left(0.5 - \frac{x_{ns}}{2}\right) \frac{\log(z_2/z_1)}{\log\left(\frac{z_1 z_2}{100 (\cos \beta)^6}\right)}$	0	$x_{n2} = -0.43$
pinionului			

Pentru asigurarea distanței dintre axe impusă $(a_w = 90 \text{ mm})$ și pentru asigurarea unei angrenări corespunzătoare, în continuare, se vor considera următoarele valori:

Numărul de dinți ai pinionului, z ₁	Numărul de dinți ai roții, z ₂	Coeficientul deplasării de profil a danturii pinionului, x _{n1}	Coeficientul deplasării de profil a danturii roții, x _{n2}	Raportul de angrenare recalaculat, u ^{II} _{rec2}
17	43	0	-0,43	2,53

3.2.5 MODELAREA ŞI VERIFICAREA ANGRENAJULUI DEPLASAT (CATIA)

Personalizare date de intrare

r ersonauzare aaie ae	ınırare	
Parameters [] (49)	$\alpha_{\rm n}$	Unghiul de presiune (angrenare) normal [°]
`Date de intrare`=	h _{an}	Coeficientul înălțimii capului dintelui
─	c _{0n} *	Coeficientul jocului la piciorul dintelui
na_n=1	$ ho_{ m n}^*$	Coeficientul razei de racordare
rho_n=0.375	z_1	Numărul de dinți ai pinionului (modificat)
z1 = 17	\mathbf{z}_2	Numărul de dinți ai roții (modificat)
□ z2=43	m_n	Modulul normal [mm]
	β	Unghiul de înclinare a danturii [°]
beta=10deg aw=90mm	a_{w}	Distanța dintre axe reală [mm]
	X _{n1}	Coeficientul deplasării de profil a danturii pinionului (calculat)
g=4mm	g	Grosimea coroanei [mm]

Verificarea modelului

Parametri angrenaj și rotj`:	Simbol teoretic	Semnificația	Verificare
u=2.529411765=z2 /z1	u	Raportul de angrenare	$u = u_{rec2}^{II}; 2,53$
m_t=3.046mm=m_n / co	m	Modulul frontal [mm]	$m > m_n$; 3,046 > 3
a=91.388mm=m_t * (z1 -	a	Distanța dintre axe de referință [mm]	$a > a_w$; 91,38 > 90 (angr MINUS)
alfa=20.284deg=atan(tar	α	Unghiul de presiune frontal [°]	$\alpha > \alpha_{\rm w}, 20,284 > 20,269$
alfaw=17.738deg=acos(a	α_{w}	Unghiul de angrenare fronatl [°]	(angr. MINUS
aw_rec=90mm=m_t * (z2	a_{w}	Distanța dintre axe reală [mm] (verificare)	a _w < a; 90 < 91,38 (angr. MINUS)
xns=-0.43558171=(tan(a	X _{ns}	Suma coeficeienților depasărilor	$x_{ns} < 0$; -0,43 > 0 (angr.
xn2=-0.43558171=xns -	X_{n2}	Coeficientul deplasării roții	MINUS)
rd1=25.893mm=m_t *z1 rd2=65.495mm=m_t *z2	$r_{ m d1}$	Raza cercului de divizare al pinionului [mm]	$r_{w1,2} < r_{d1,2}$ (angr. MINUS)
rw1=25.5mm=m_t*z1/2*	$r_{ m d2}$	Raza cercului de divizare al roţii [mm]	25,5 < 25,893 ; 64,5 < 65,495
rw2=64.5mm=m_t*z2/2* rf1=22.143mm=m_n * (z	$r_{\rm w1}$	Raza cercului de rostogolire al pinionului [mm]	$ \begin{vmatrix} r_{d1} + r_{d2} = a; \\ 25,893+65,495=91,38 \end{vmatrix} $
rf2=60.438mm=m_n * (zi	r_{w2}	Raza cercului de rostogolire al roţii [mm]	$\begin{vmatrix} r_{w1} + r_{w2} = a_w; 25,5 + 64,5 \\ = 90 \end{vmatrix}$
ra2=67.107mm=(2*aw_re	\mathbf{r}_{fl}	Raza cercului de picior al pinionului [mm]	$r_{\rm fl} < r_{\rm w1}; 22,143 < 25,5$

r_{f2}	Raza cercului de picior al roții [mm]	$r_{\rm f2} < r_{\rm w2}; 60,438 < 64,5$
r_{a1}	Raza cercului de divizare al pinionului [mm]	$r_{a1} > r_{w1}$; 28,812 > 25,5
r_{a2}	Raza cercului de divizare al roţii [mm]	$r_{a2} > r_{w2}$; 67,107 > 65,5

Verificarea ascuțirii dinților roților Prin măsurare pe modelul CATIA, $s_1=0.537\ mm\$ şi $s_2=1.727\ mm.$

3.2.6 MODELAREA ȘI VERIFICAREA ANGRENĂRII (CATIA)

Modelul CATIA

Simularea angrenării și verificarea continuității

Schema continuității angrenării

<u>Semnificațiile parametrilor</u>: C – polul angrenării; T_1T_2 – segmentul teoretic de angrenare; AB – segmentul real de angrenare; K_1K_2 - segmentul de angrenare unipară (numai o pereche de dinți în contact); AK_1 și K_2B – segmente de angrenare bipară (două perechi de dinți în angrenare simultan); p_b – pasul pe cercul de bază

Determinarea valorii aproximative a gradului de acoperire frontal prin măsurare:

$$\epsilon_{\alpha}^{m} = \frac{AB}{P_{b}} = \frac{T_{1}B - T_{1}A}{p_{b}} = = \frac{15,94 - 2,4725}{8} = 1,68343$$

Valorile numerice sunt obținute prin măsurare de cel puțin două ori, conform tebelului de mai sus; în această relația s-au considerat mediile aritmetice ale valorilor măsurate.

Determinarea valorii exacte a gradului de acoperire frontal prin calcul cu relația,

$$\epsilon_{\alpha} = \frac{\left(2\cos\beta\sqrt{r_{a1}^{2} - r_{b1}^{2}} + \sqrt{r_{a2}^{2} - r_{b2}^{2}} - 2 a_{w}\sin\alpha_{w}\right)}{2\pi m_{n}\cos\alpha},$$

pentru care din modelul CATIA rezultă,

Abaterea valorii gradului de acoperire obținut prin măsurare, $\epsilon_{\alpha}^{m}=1,68343$, în raport cu gradul de acoperire calculat, $\epsilon_{\alpha}=1,68023$, este +0.19

4. PREDIMENSIONAREA ARBORILOR ȘI ALEGEREA RULMENȚILOR

4.1 ALEGEREA STRUCTURILOR CONSTRUCTIVE ALUBANSAMBLELOR ARBORILOR

Subansamble arbori de intrare, intermediar și de ieșire Rulment radial-axial cu bile

Semnificații parametri

 d_{A1}^{ST} – diametrul capului arborelui de intrare (standardizat), L_{A1}^{ST} – lungimea capului arborelui de intrare (standardizat), d_{A2}^{ST} – diametrul capului arborelui de ieșire (standardizat), L_{A2}^{ST} – lungimea capului arborelui de ieșire (standardizat), d_{A2}^{r} – diametrul arborelui de ieșire (tronsonul de așezare a roții cilindrice), d_{R1} – diametrul interior al rulmenților arborelui de ieșire.

4.2 PREDIMENSIONAREA ARBORILOR

4.2.1 ALEGEREA MATERIALELOR ARBORILOR ŞI TRATAMENTELOR TERMICE

Caracteristicile oțelurilor și tratamentele termice

	3 3							
0.11	Limita la	í	Tensiunea admisibilă la încovoiere [MPa]		Tratamentul	Duritatea la	Duritatea	
Oţelul	curgere/rupe re [MPa]		Pulsatorie	Alternant simetrică	termic	suprafață	în interior	
Marca	σ_{c}/σ_{r}	σ _{aiI}	σ _{aiII}	σ _{aiIII}	Îmbunătățire/ Cementare	HB/HRC	НВ	
	Arb	orele de	intrare (cor	p comun cu	pinionul cilindr	ric)		
21MoMnCr12	1100	330	150	90	Cementare	60 HRC	250 HB	
	Arborele de ieşire							
C45	1100	330	150	90	Cementare	60 HRC	300 HB	

4.2.2. CALCULUL DE PREDIMENSIONARE A ARBORILOR

De ce predimensionare din solicitarea de torsiune?

Deoarece nu se poate face dimensionare cu laurea în considerare și a solicitării de încovoiere, necunoscând, la această etapă, valorile momentelor de încovoiere. Diagramele momentelor de încovoiere se vor putea determina numai după definitivarea configurațiilor arborilor ca urmare a generării formelor acestora ca modele 3D cavasifinale în CATIA.

Relația de calcul

$$d_{Ai} = \sqrt[3]{\frac{16\,M_{ti}}{\pi\,\tau_{ati}}},$$

unde, considerând $i=1, 2, d_{A1}$ reprezintă diametrul arborelui de intrare, d_{A2} - diametrul arborelui de ieșire, M_{t1} - momentul de torsiune al arborelui de ieșire, τ_{at1} - tensiunea admisibilă la torsiune a materialului arborelui de intrare, τ_{at2} - tensiunea admisibilă la torsiune a materialului arborelui de ieșire.

Valorile parametrilor de calcul

Parametrul	Arbore de intrare (A_1)	Arbore de ieşire (A_3)
Momentul de torsiune	$M_{t1} = 88331 \text{ Nmm}$	$M_{t2} = 214538 \text{ Nmm}$
Tensiunea admisibilă	$\tau_{at1} = 20 \text{ MPa}$	$\tau_{at2} = 15 \text{ MPa}$
Diametrul	$d_{A1} = 28 \text{ MPa}$	$d_{A2} = 42 \text{ mm}$

Obs. Valorile diametrelor se vor rotunji.

4.2.3 STANDARDIZAREA CAPETELOR ARBORILOR DE INTRARE/IEŞIRE

Formă și dimensiuni

Valorile parametrilor

	Denumire parametru	Arbore de intrare (A1)	Arbore de ieşire (A2)
D	iametrul standard	$d_{A1}^{ST} = \frac{28}{28} \text{ mm}$	$d_{A2}^{ST} = 42 \text{ mm}$
Lı	ungimea standard	$L_{A1}^{ST} = 42 \text{ mm}$	$L_{A2}^{ST} = 52 \text{ mm}$

Obs. S-au adoptat capete de arbori cu lungime scurtă.

4.3 ALEGEREA RULMENŢILOR ŞI MONTAJELOR

4.3.1 ALEGEREA RULMENŢILOR

Date despre rulmenți

	Tipul			Dimen	siuni [n	nm]		Capacitatea
Arborele	rulmentului	Simbol	d	D	В	Т	a	dinamică C [N]
e intrare (var. II)	Radial-axial cu bile	7208-	40	80	18	ı	34	32000
o iosiro	Dadial on bila		50	00	20			36500
e intrare (var. II) e ieşire		7208- B-JP 6210	40	80 90		-		

Obs.

- diametrele tronsoanelor pe care se montează rulmenții: $d_{R1} = 40$ mm, $d_{R2} = 50$ mm;
- pentru arborele de ieșire se adoptă diametrul tronsonului pe care se montează roata cilindrică, $d_{A2}^r = d_{R2} + 10 \text{ mm} = 60 \text{ mm}.$

Montaje cu rulmenți

Arbore de intrare

Arbore de ieşire

5. MODELAREA ȘI SIMULAREA CINEMATICĂ A **MECANISMULUI**

5.1 GENERAREA ȘI SIMULAREA MODELULUI CINEMATIC

Model cinematic

Obs. La simularea prin intermediul modelului cinematic generat în CATIA se va urmări procesele de angrenare în regimul animație.

6. VERIFICAREA (DIMENSIONAREA) ANGRENAJULUI

6.1 VERIFICAREA (DIMENSIONAREA) ANGRENAJULUI CILINDRIC

6.1.1 GEOMETRIA ANGRENAJULUI ŞI ROŢILOR CILINDRICE

Geometria angrenajului și roților cilindrice $z_2 = |43|$ β = 10 a_w = 90 grade $z_1 = 17$ $m_n = 3$ $x_{n1} = 0.2327$ $x_{n2} = -23472$ $\psi_d = 0.8$ Obs. Pentru dantură dreaptă se consideră: $\beta = 0$; $m_n = m$; $x_{n1,2} = x_{1,2}$; $\alpha_t = \alpha$; $\alpha_{vvt} = \alpha_{vv}$ Calculează Parametrii angrenajului: α_{wn} = 17.4927487772 grade $\alpha_{wt} = |17.73822555638|_{grade}$ a = 91.3883950697 mm α₊ = 20.2835594545' grade m = 3.04627983565 grade Parametrii roților: d₁ = 51.7867572061 mm d₂ = 130.9900329332 mm d_{b1} = 48.57537993010 mm d_{b2} = 122.867137470′ mm da2 = 132.8170427938 mm d_{wl} = 51 $d_{w2} = 129$ $d_{a1} = 140887.0099670$ mm d_{fl} = 45.6829572061 mm $d_{f2} = -140708.509967$ mm s_{nl} = 5.22056422146 mm $s_{n2} = -51253.9436431$ mm b₁ = 47 b₂ = 42 $> x_{nmin} = -1.63869079684$ $x_{n1} = 0.2327$ > x_{nmin1}= |-0.04320333828 $x_{n2} = -23472$ Parametrii geometrici ai roților pentru verificarea conformităților de execuție: $N_1 = 2$ $W_{Nn1} = 14.5083096189$ mm $< W_{Nmax 1} = 257.390932887$ mm ? $W_{Nn2} = -48125.6396296 \text{ mm} < W_{Nmax2} = 226.7491551632 \text{ mm}$? $N_2 = 5$ S_{cn1} = 4.60987421663(mm h_{cnl} = 70416.7726764; mm $S_{cn2} = -45258.3711795$ mm h_{rn1} = 8237.26348528! mm Gradele de acoperire: $\varepsilon_{\text{omin}} = 1.2 < \varepsilon_{\text{o}} = 7847.11837127([\text{mm}] < \varepsilon_{\text{omax}} = 2$ = 0.865958262811 mm ε_ν = 7847.98432953' mm Parametri angrenaj și roți echivalente:

 $z_{n1} = \boxed{17.73445675086}$ $z_{n2} = \boxed{44.85774354636}$ $d_{n1} = \boxed{53.20337025258}$ mm $d_{n2} = \boxed{134.5732306388}$ mm $d_{n1} = \boxed{49.99481442736}$ mm $d_{n2} = \boxed{126.4574717868}$ mm $d_{n1} = \boxed{140888.4265808}$ mm $d_{n2} = \boxed{136.4002404998}$ mm $d_{n3} = \boxed{136.4002404998}$ mm $d_{n4} = \boxed{136.4002404998}$ mm

6.1.2 ALEGEREA PROCEDEELOR DE PRELUCRARE ŞI DE LUBRIFIERE (UNGERE)

Viteza periferică a roților în polul angrenării

Schema de calcul a vitezei periferice pentru angrenajul cilindric

Relația de calcul a vitezei periferice

$$v = \frac{\pi d_{w1} n_p}{60.1000}$$
 [m/s],

Date cunoscute:

n _p = 2000	rot/min	$d_{w1}/d_{m1} =$	51	mr

Calculează

v = 5.340707511102 m/s

Alegerea treptei de precizie și procedeelor de prelucrare

Tipul danturii cilindrice	Treapta de precizie	Procedeul de prelucrare			
Înclinată	7	Frezare grosolană (înainte de cementare) + rectificare (după cementare și călire)			

Alegerea rugozităților

Tipul danturii cilindrice	Rugozitatea flancului, $R_{a_f}\left[\mu m\right]$	Rugozitatea racordării, R _{a_r} [µm]	Procedeul de prelucrare final	
Înclinată	0,2	0,4q	Rectificare grosolană	

Alegerea tipului lubrifiantului (uleiului) și vâscozității acestuia

Deorece viteza periferică a angrenajului cilindric este mai mică decât cea a angrenajului conic (v. subcap. 6.1.3) tipul uleiului va fi cel ales pentru angrenajul conic (TIN 125 EP).

6.1.3 PARAMETRI DE EXECUTIE ȘI MONTAJ A ANGRENAJULUI SI ROȚILOR DINȚATE CONICE

Jocuri, abateri și toleranțe ale angrenajului și roților cilindrice

Jocului minim necesar, $j_{min}^{nec} = (0.01...0.03)m_n = (0.01...0.03) 3 = (0.03...0.09)$ mm; se adoptă 0.07 mm (70 μ m).

Jocul minim normal, $j_{nmin} = 87 \mu m$;

Tipul ajustajului, B.

Tipul toleranței jocului dintre flancuri, b

Toleranțele bătăii radiale: F_r = 36 μm, pentru pinion; = 50 μm, pentru roată.

Abatererile minime ale cotelor peste dinți: E_{ws} = 100 μm, pentru pinion; E_{ws} = 120 μm, pentru roată.

Toleranțele cotelor peste dinți: $T_w = 55 \mu m$, pentru pinion; $T_w = 70 \mu m$, pentru roată.

Abatererile minime ale grosimilor dinților pe coarde constante: $E_{cs} = 100 \mu m$, pentru pinion; $E_{cs} =$ 140 µm, pentru roată.

Toleranțele grosimii dintelui pe coarda constantă: T_c = 90 μm, pentru pinion; T_c = 140 μm, pentru roată.

Abaterile limită ale distanței dintre axe, $f_a = \pm 60 \mu m$.

Personalizarea cotelor angrenajului și roților $((W_{Nn})_{-E_{Ws}-T_{W}}^{-E_{Ws}}; (\bar{s}_{cn})_{-E_{cs}-T_{c}}^{-E_{cs}}; a_{w} \pm f_{a})$:

- cota peste 3 dinți, $31_{-0,16}^{-0,1}$ și coarda constantă, $6,56_{-0,16}^{-0,1}$, la înălțimea $h_{cn} = 4,3$ mm, pentru pinion;

- cota peste 9 dinți, $104,93^{-0,18}_{-0,28}$ și coarda constantă, $5,82^{-0,1}_{-0,16}$, la înălțimea $h_{cn}=3,3$ mm, pentru roată:
- distanța dintre axe, $90 \pm 0,009$ mm.

7. FORŢE ÎN ANGRENAJ

7.1 SCHEMA FORTELOR DIN ANGRENAJUL CILINDRIC

Direcțiile și sensurile forțelor

Direcțiile și sensurile forțelor din angrenaje

Forța tangențială: direcție tangentă la cercurile de rostogolire; sensul opus vitezei (forță rezistentă), pentru roata conducătoare, și același sens cu viteza (forță motoare), pentru roata condusă.

Forța radială: direcție radială; sensul spre centrul roții.

Forța axială: direcție axială; sensul determinat de direcția de înclinare a dintelui și de sensul de rotatie al rotii.

Schema forțelor

Semnificațiile notațiilor:

<u>Elemente structurale</u>: I – angrenaj cilindric; 1^I – pinion cilindric; 2^I – roată cilindrică. <u>Forțe în angrenajul cilindric</u>: – forța tangențială din angrenajul cilindric; – forța radială din angrenajul cilindric; – forța axială din angrenajul cilindric

7.2 DETERMINAREA FORŢELOR DIN ANGRENAJUL CILINDRIC

Calculul forțelor

$$T_1 = 214538 \qquad Nmm \qquad d_{w1} = 51 \qquad mm$$

$$\beta = 10 \qquad grade \qquad \alpha_{wt} = 17.73 \qquad grade$$

$$Calculeaz T_t = 8413.25490196(N)$$

$$T_r = 2689.86678928(N) \qquad T_s = 1483.48383479(N)$$

Valorile forțelor

Angrenajul	Cilindric					
Forța	F_{t}	F_{r}	F_a			
Valoarea forței [N]	8413,2	2689,8	1483			

8. ALEGEREA ȘI CALCULUL ASAMBLĂRILOR CU PENE PARALELE

8.1 ALEGEREA FORMELOR ŞI DIMENSIUNILOR PENELOR PARALELE

Tipurile și formelor penelor paralele

8.2 CALCULUL ASAMBLĂRILOR CU PENE PARALELE

Calcul lungimii necesare a penei din solicitarea de strivire,

$$l_c = \frac{4 M_t}{d h \sigma_{as}}.$$

Determinarea numărului de pene

Deoarece $l_c \le L_b$, se adoptă o singură pană.

Date de calcul și valori dimensiuni

Denumirea penei/	Pană paralelă I	Pană paralelă II	Pană paralelă III		
Parametrul	(tip A)	(tip A)	(tip C)		
d [mm]	$d_{A1}^{ST}=28$	$d_{A3}^{r} = 50$	$d_{A3}^{ST} = 42$		
b[mm]	8	14	12		
h [mm]	7	9	8		
$M_t[Nmm]$	$M_{t1} = 88331$	$M_{t2} = 214538$	$M_{t2} = 214538$		
σ _{as} [MPa]	80	110	110		
l _c [mm]	22.53	17.34	81.26		
1 [mm] (STAS)	32	36	90		
t ₁ [mm]	4,0	5,5	5,0		
$t_2[mm]$	3,3	3,8	3,3		

9. PROIECTAREA FORMEI ȘI GENERAREA MODELELOR ÎN CATIA ALE PARTURILOR PENTRU SUBANSAMBLELE PRINCIPALE

La proiectaea formei și generarea modelelor parturilor s-a ținut cont de recomandările din Anexa 9.1.

10. GENERARE SUBANSAMBLE RULMENŢI, ARBORI ŞI ANGRENAJE

Subansamble rulmenți

Subansamblu arbore de intrare

Subansamblu arbore de intrare .CATProduct

Subansamblu arbore de ieşire

11. GENERARE SUBANSAMBLE CARCASE

Subansamblu carcasă inferioară Vj Subansamblu carcasa inferioara Vj.CATProduct 64mm 0 0 90mm 0 0 0 140mm

Subansamblu carcasă superioară Vj

12. GENERARE MODEL 3D ANSAMBU

Ansamblu H

13. VERIFICAREA ARBORILOR

13.1 VERIFICAREA ARBORELUI DE INTRARE (RCil Vj)

Date de intrare

Schema arborelui conform schiţei CATIA

Valori diametre și lungimi

Diametrele si lungimile tronsoanelor: conform schiței CATIA (v. schema de mai sus).

Distanțe de poziționare a reacțiunilor (v. schemele 1.1, 1.2 și 1.3), B = 18 mm.

Grosimea coroanei dintate, g = 3 mm.

<u>Diametrul de rostogolire al pinionului</u>, $d_{wl} = 51$ mm.

<u>Lungimile de calcul</u>: $L_1 = 51$ mm; $L_2 = 141$;.

Valori forțe și momente

Momentul de torsiune, $M_{t1} = 88331$ Nmm.

Forțele de încărcare a pinionului cilindric: tangențială, $F_t = 8413,2$ N; radială, $F_r = 2689,8$ N; axială, $F_a^I = 1483$ N.

Forța de încărcare a capului arborelui, $F_e = F_r = 2689,8 \text{ N}.$

Momentele de încovoiere, $M_{11} = F_a d_{w1}/2 = 1483 *51/2 = 37816,5 mm.$

Turația arborelui

n = 2000 rot/min, turația arborelui de intrare.

Date despre material

<u>Tipul oțelului și tratamentul termic</u>:16MnCr5, Cementare (carburare+călire+revenire înaltă).

Modelul arborelui în MDESIGN

Calculation graphic Y-X-plane

Calculation graphic Z-X-plane

Valorile parametrilor geometrici ai tronsoanelor Shaft geometry

Nr.	Dal	Dil	Dar	Dir	L	R _z	r	d:	t:
	mm	mm	mm	mm	mm	μm	mm	mm	mm
1	28	0	28	0	42	3,2	1	0	0
2	34	0	34	0	18	1,6	0,8	0	0
3	36	0	36	0	14,5	6,3	1	0	0
4/	38,28	0	38,28	0	43	3,2	1	0	0
	6		6						
5	36	0	36	0	14,5	6,3	0,8	0	0
6	34	0	34	0	18	1,6	0	0	0

Date privind poziția punctului de calcul a săgeții la încovoiere; turația; considerarea greutății proprii, efectului giroscopic și rigidității rulmenților

Calculation of the deflection for point x = 96 mm Shaft speed n : 2000 1/min Considering weight - horizontal or vertical horizontal shaft Consider gyroscope effect? No Consider bearing stiffness? No

Date despre rulmenți

Bearing

Nr.	Type =	Position x =	Radial bearing	Torsional bearing	Bending bearing
		mm	stiffness c _r =	stiffness c_{α} =	stiffness $c_{\beta} =$
			N/m	N·m	N·m
1	Locating bearing ->	51	1e+015	0	0
2	Locating bearing <-	141	1e+015	0	0

Date privind caracteristicile încărcărilor

Loading Data

Type of loading: tension-pressure

Type of loading: bending

Dynamically pure cyclic

Dynamically pure cyclic

Dynamically pure cyclic

Dynamically pure cyclic

Factor for maximum loading (tension-pressure) 1
Factor for maximum loading (bending) 1
Factor for maximum loading (torsion) 1

Date despre încărcarea cu forțe axiale Axial forces F_{ax}

Nr.	Position x = mm	Amount = N	Radius = mm	Angle α =
1	96	-1483	19,143	0

Date despre încărcarea cu forțe radiale Radial forces $\mathbf{F_r}$

Nr.	Position x = mm	Amount = N	Angle $\alpha = 0$
1	96	-2689,8	90

Date despre încărcarea cu momente de torsiune Torsion

Nr.	Position x =	Torsion moments M _t :	Power P:	Transition part =
	mm	N·mm	kW	
1	21	88331	0	drive
2	96	88331	0	takeoff

Date despre încărcări, calculul la oboseală și coeficienți de siguranță

Specifications about the load/loadings

Loading case Constant mean stress (loading case 1)

Calculation of finite-life fatique strength?

Load cycles until fatique strength $N_D = 1000000$

Required load cycles $N_L = 10000000$ Slope exponent of S-N curve normal stress $q_c : 5$

Slope exponent of S-N curve normal stress q_{σ} : 5 Slope exponent of S-N curve shear stress q_{τ} : 8

Minimum safety against fatigue fracture $S_{Dmin} = 1,2$ Minimum safety against residual deformation $S_{Fmin} = 1,2$

Minimum safety against incipient crack with hard surface $S_{Gmin} = 1,2$

Date despre material

Material number

Material Data

Strength values according to MDESIGN database

Material designation 16MnCr5

1.7131

Gage diameter $d_B = 16$ mm

For the gage diameter

Valorile reacțiunilor în reazeme (lagăre cu rulmenți)

Supporting forces:

No.	Туре	Positio n x mm	Radial force in the Y-axis R _y N	Radial force in the Z-axis R _z N	Result. radial force R N	Axial force in the X-axis R _{ax} N	Tilting moment in the Y-axis N·m	Tilting moment in the Z-axis N·m	Result. tilting moment N·m
1	Locating bearing ->	51	322,388	1344,9	1383	1483	0	0	0
2	Locating bearing <-	141	-311,798	1344,9	1380,57	0	0	0	0

Obs. Valorile forțelor de reacțiune R (rezultanta) se folosesc pentru calculul rulmenților.

Verificarea arborelui de intrare la solicitări compuse

Diagrama momentelor de încovoiere în planul YX

Bending moment in the Y-X-plane

Diagrama momentelor de încovoiere în planul ZX

Trend of curve of the bending moment curve in the Z-X plane

Diagrama momentelor de încovoiere rezultante

Trend of curve of the bending moment (combined characteristic)

Resulting maximum bending moment:

Position x = 96 mmAmount $M_{bmax} = 62,175 \text{ N} \cdot \text{m}$

Diagrama momentelor de torsiune

Trend of curve of the torsional moment

Diagrama tensiunilor de încovoiere rezultante

Maximum value of the bending stress (combined characteristic)

Resulting maximum bending stress:

Position x = 96Amount $\sigma_{bmax} = 11,285$

Maximum value of the torsional stress (combined characteristic)

N/mm²

Resulting maximum	torsional	stress:
-------------------	-----------	---------

Position	X	=	21	mm
Amount	τ _{tmax}	=	20,493	N/mm²

Diagrama tensiunilor echivalente

Equivalent stress development (resultant)

Diagrama coeficientului de siguranță

Safety factor against yielding (diagram section up to 5*minimum safety)

Verificarea arborelui de intrare la solicitări compuse $S_{Fmin} \ge S_F$ cu $S_{Fmin} = 11,217; 16,592 > 1,2$ (se verifică)

Verificare la deformații de încovoiere (flexionale)

Diagramele săgeților și rotirilor

Deflection and angle of deflection (combined characteristic)

Valorile săgeților și rotirilor maxime și la jumătatea tronsonului cu dantura

Resulting maximum deflection:		/	_	
Position	X	=	0	mm
Amount	y _{max}	<u> </u>	0,003348	mm
Angle of the maximum deflection:				
Position	X		50,143	mm
Amount	Θ	=	0,003761	0

Calculation results for point	x	= 1	96	mm
Trend of curve of the transverse force	Q_{X}	=	1381,548	N
deflection	y_{x}	=	0,001878	mm
Angle of deflection	Θ	=	0,00056	0

Verificarea arborelui la deformații flexionale

- verificarea la deformații liniare (săgeți) în zona angrenajului, $y_x \le y_a$; $y_a = (0,01...0,03) * 4 = 0,04...0,12$ mm; 0,001878 < 0,04...0,12 mm (se verifică)
- verificarea la deformații liniare (săgeți) maxime: $y_{max} \le y_a$; $y_a = 2.5 * 10^{-4} * 181 = 0.0452$ mm; 0.003348 < 0.0452 mm (se verifică);
- verificare la deformații unghiulare (rotiri) maxime în lagăre: $\Theta_{max} \leq \Theta_a$; $\theta_a = 1,7.10^{-3} \text{ rad} = 1,7.10^{-3} 180/\pi = 0,97^{\circ}$; $0,003761 < 0,97^{\circ}$ (se verifică).

Verificarea arborelui la solicitări variabile (oboseală)

Diagrama coeficientului de siguranță la oboseală

Safety against fatigue fracture (diagram section up to 5*minimum safety)

Verificarea arborelui intermediar la solicitări variabile (oboseală) $S_{Dmin} \ge S_D$: 9,376 > 1,2 (se verifică).

Verificarea la vibrații

Turațiile și vitezele critice la torsiune Critical torsional shaft speed values

No.	Critical shaft speed values n _b 1/min	Eigenfrequencies ω rad/s
1	9972,69	1044,34
2	794768,86	83228
3	1293572,19	135462,56
4	1916498,61	200695,27
5	2612433	273573,34

Turațiile și vitezele critice la încovoiere

No.	Critical shaft speed values n _b 1/min	Eigenfrequencies ω rad/s
1	315076,69	32994,75
2	578193,57	60548,29
3	1457528,83	152632,06
4	1679194,72	175844,86
5	2537408,65	265716,81

Verificarea la vibrații

- torsionale, $(0...n) \neq (0,8...1,2)$ f₀: $(0...2000) \neq (0,8...1,2)$ 9972,69;
 - $(0...2000) \neq (7978,152...11967,228)$ rot/min (se verifică).
- flexionale (de încovoiere), $(0...n) \neq (0,8...1,2)f_0$: $(0...2000) \neq (0,8...1,2)$ 31507,69; $(0...2000) \neq (25206,152...37809,228)$ rot/min (se verifică).

14. VERIFICAREA RULMENŢILOR

14.1 VERIFICARE RULMENŢI RADIALI PENTRU ARBORELE DE INTRARE

Schema de încărcare a rulmenților radiali ai arborelui de intrare

Date de intrare

Forțele exterioare

- radiale: $F_{rA} = 1383 \text{ N}$, $F_{rB} = 1380,57 \text{ N}$
- axiale: F_{a1} = ± 1483 N; forța F_{a1} în funcție de sensul de rotație poate avea semnul + (de la stânga la dreapta) sau (de la dreapta la stânga) și deci în funcție de acestea se impune studiul în 2 cazuri.

Tipul rulmentului și sarcina (capacitatea) dinamică de bază

Rulment radial-axial cu bile (cod 7208-B-JP) cu sarcina dinamică de bază C = 32000 N, din catalog pentru rulmenți..

Factorii de influență pentru calcul

Deoarece $\frac{F_a}{F_{rA}}$ = 1,07 respectiv $\frac{F_a}{F_{rB}}$ = 1,07 am ales urmatorii factori de influenta din tabel : e = 1,14 , X = 1, Y = 0,55.

Turația arborelui

Rulmenții se rotesc cu turația arborelui de intrare, $n = n_1 = 2000$ rot/min.

Durata de funcționare

Durata de funcționare a rulmenților este egală cu cea impusă RCil, $L_{h \text{ imp}} = 9000$ ore.

Sarcinile dinamice echivalente (rulmentul cel mai încărcat)

Pentru rulmentul din lagărul $L_A^{A_1}$

$$\frac{F_{a1}}{F_{rA}} = \frac{1483}{1383} = 1,07 < e = 1,14$$

Sarcina dinamică echivalentă,

$$P_A = X F_{rA} + Y F_{a1} = 1 * 1383 + 0.55 * 1483 = 2198.65 N.$$

Pentru rulmentul din lagărul $L_B^{A_1}$

$$\frac{F_{a1}}{F_{rB}} = \frac{1483}{1380,57} = 1,07 < e = 1,14;$$

Sarcina dinamică echivalentă,

$$P_B = X F_{rB} + Y F_{a1} = 1 *1380,57 + 0,55 * 1483 = 2196,22 N.$$

Deoarece, $P_A > P_B$, rezultă că rulmentul din lagărul $L_A^{A_1}$ este cel mai încărcat

Verificarea rulmentului cel mai înărcat

Determinara durabilității rulmentului cel mai încărcat

$$L_A = \left(\frac{c}{P_A}\right)^p = \left(\frac{32000}{2198,65}\right)^3 = 3083,057 \text{ milioane de rotații.}$$

Determinara duratei de funcționare a rulmentului cel mai încărcat

$$L_{hA} = \, \frac{L_A \, 10^6}{n_1 \, \, 60} \, \, = \, \, \, \frac{3083,057 \, . \, \, 10^6}{2000 \, . \, \, 60} = 25692,141 \, \, ore,$$

Verificarea rulmentului cel mai încărcat

$$L_{hA} > L_{h imp}$$
; 25692,141> 9000 (se verifică);

15. MODELAREA ŞI GENERAREA DESENULUI DE ANSAMBLU

16. MODELAREA ȘI GENERAREA DESENELOR DE EXECUȚIE

Desen de execuție roată cilindrică cu dantură înclinată

BIBLIOGRAFIE

- 1. Jula, A. ş.a. Organe de maşini, vol. I,II. Universitatea din Braşov, 1986, 1989.
- 2. Mogan, Gh. ş.a. Organe de maşini. Teorie-Proiectare-Aplicații, Ed Universității Transilvania din Braşov, 2012 (format electronic: www.mg.rrv.ro, user name: student; password: mogan).
- 3. Moldovean, Gh. ș.a. Angrenaje cilindrice și conice. Calcul și construcție. Ed. LuxLibris, Brașov, 2001.
- 4. Moldovean, Gh. ș.a. Angrenaje cilindrice și conice. Metodici de proiectare. Ed. LuxLibris, Brașov, 2002.
- 5. Rădulescu, C. Organe de mașini, vol. I, II, III. Universitatea Transilvania din Brașov, 1985.
- 6. *** Culegere de norme și extrase din standarde pentru proiectarea elementelor componente ale mașinilor, vol. I. și II. Universitatea din Brașov, 1984.