Probability Models

Sample Space:

flipping a coin,
$$S = \{H,T\}$$

Rolling a die, $S = \{1,2,3,4,5,6\}$
Flipping 2 coins, $S = \{HH, HT, TH, TT\}$

* Event: Any subset E of sample space S is called an Event:

* IF $EF = \phi$, then E an F are said to be mutually exclusive. $EnE^{e} = \phi$, $S^{e} = \phi$, $S = EUE^{c}$

Probability:

(i)
$$0 \le P(E) \le 1$$

(ii)
$$P(s) = 1$$

(iii) E. E. mutually exclusive events, $P(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} P(E_n)$

$$P(S) = 1 = P(EVE^{c}) = P(E) + P(E^{c})$$
 [" $EE^{c} = \emptyset$]

$$P(E^c) = 1 - P(E)$$

Ly complement of event E

*
$$P(EUF) = P(E) + P(F) - P(ENF)$$

$$S = \{HH, HT, TH, TT\}$$

$$E = \{HH, HT\}, P(E) = \frac{2}{4} = \frac{1}{2}$$

$$P(EUF) = P(E) + P(F) - P(ENF)$$

$$= \frac{1}{2} + \frac{1}{2} - \frac{1}{4}$$

$$= \frac{3}{4} + \frac{1}{2} - \frac{1}{4}$$

$$= \frac{3}{4} + \frac{1}{2} - \frac{1}{4} - \frac{1}{4} + \frac{1}{2} - \frac{1}{4} + \frac{$$

$$F = \{ FAF, FF \}, P(F) = P(F) + P(F) + P(G) - P(FG) - P(FG) + P(FG) +$$

*
$$P(EUFUG) = P(E)$$
 - $\sum_{i=1}^{n} P(E_i) - \sum_{i\neq j} P(E_iE_j) + \sum_{i\neq j\neq k} P(E_iE_jE_k) - \cdots$
* $P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i) - \sum_{i\neq j} P(E_iE_j) + \sum_{i\neq j\neq k} P(E_iE_jE_k) - \cdots$
+ $(-1)^{n+1} P(E_iE_2...E_n)$