

# Aspect-based Sentiment Classification with Graph Convolutional Networks

Hyunjae Kim

Data Mining & Information Systems Lab.

Department of Computer Science and Engineering,

College of Informatics, Korea University

1

#### Sentiment Classification





### Aspect-Based Sentiment Classification



Great food but the service was dreadful

Aspects: <u>Food</u>, <u>Service</u>

Sentiments:

 $\underline{Food} \rightarrow \underline{good}$ ,  $\underline{Service} \rightarrow \underline{bad}$ 

### Limitations of Previous Models (1/2)



Attention-based models

Its <u>size</u> is <u>ideal</u> and <u>the weight</u> is <u>acceptable</u>.

Good food bad service

### Limitations of Previous Models (1/2)



CNN-based models

The <u>staff</u> a bit more friendly.

The <u>staff</u> should be a bit more friendly.

## Limitations of Previous Models (2/2)



The <u>staff</u> should be a bit more friendly

CNNs - the sentiment of an aspect is usually determined by key phrases instead of individual words.

#### Solution



#### **Utilizing GCN!**

- Two papers accepted at EMNLP 2019
  - Aspect-based Sentiment Classification with Aspectspecific <u>Graph Convolutional Networks</u>
  - Syntax-Aware Aspect Level Sentiment Classification with <u>Graph Attention Networks</u>

# Approach 1 (1/3)





## Approach 1 (2/3)



$$\tilde{\mathbf{h}}_i^l = \sum_{j=1}^n \mathbf{A}_{ij} \mathbf{W}^l \mathbf{g}_j^{l-1}$$
 (2)

$$\mathbf{h}_i^l = \text{ReLU}(\tilde{\mathbf{h}}_i^l / (d_i + 1) + \mathbf{b}^l) \tag{3}$$

$$\mathbf{g}_i^l = \mathcal{F}(\mathbf{h}_i^l) \tag{4}$$

$$q_{i} = \begin{cases} 1 - \frac{\tau + 1 - i}{n} & 1 \le i < \tau + 1 \\ 0 & \tau + 1 \le i \le \tau + m \\ 1 - \frac{i - \tau - m}{n} & \tau + m < i \le n \end{cases}$$
 (5)

$$\mathcal{F}(\mathbf{h}_i^l) = q_i \mathbf{h}_i^l \tag{6}$$

position weights

## Approach 1 (3/3)



$$\beta_t = \sum_{i=1}^n \mathbf{h}_t^{c\top} \mathbf{h}_i^L = \sum_{i=\tau+1}^{\tau+m} \mathbf{h}_t^{c\top} \mathbf{h}_i^L$$
 (8)

 Aspect-specific Masking

$$\alpha_t = \frac{\exp(\beta_t)}{\sum_{i=1}^n \exp(\beta_i)}$$
 (9)

 Aspect-specific Attention

$$\mathbf{r} = \sum_{t=1}^{n} \alpha_t \mathbf{h}_t^c \tag{10}$$

$$\mathbf{p} = \operatorname{softmax}(\mathbf{W}_p \mathbf{r} + \mathbf{b}_p) \tag{11}$$

#### Approach 2



$$h_{l+1}^i = \prod_{k=1}^K \sigma(\sum_{j \in n[i]} \alpha_{lk}^{ij} W_{lk} h_l^j)$$
 (1)

$$\alpha_{lk}^{ij} = \frac{exp(f(a_{lk}^{T}[W_{lk}h_{l}^{i}||W_{lk}h_{l}^{j}]))}{\sum_{u \in n[i]} exp(f(a_{lk}^{T}[W_{lk}h_{l}^{i}||W_{lk}h_{l}^{u}]))}$$
(2)

$$H_{l+1} = GAT(H_l, A; \Theta_l) \tag{3}$$

$$H_{l+1}, C_{l+1} = LSTM(GAT(H_l, A; \Theta_l), (H_l, C_l))$$
  
 $H_0, C_0 = LSTM(XW_p + [b_p]_N, (0, 0))$ 

#### **Datasets**



| Dataset |       | # Pos.  | # Neu. | # Neg. |  |
|---------|-------|---------|--------|--------|--|
| TWITTER | Train | 1561    | 3127   | 1560   |  |
|         | Test  | 173     | 346    | 173    |  |
| LAP14   | Train | 994 464 |        | 870    |  |
| LAI 14  | Test  | 341     | 169    | 128    |  |
| REST14  | Train | 2164    | 637    | 807    |  |
|         | Test  | 728     | 196    | 196    |  |
| REST15  | Train | 912     | 36     | 256    |  |
| 1120110 | Test  | 326     | 34     | 182    |  |
| REST16  | Train | 1240    | 69     | 439    |  |
|         | Test  | 469     | 30     | 117    |  |

#### Results



| Model .              | TWITTER                     |                             | LAP14                                         |                                               | REST14                                       |                                              | REST15                                  |                                         | REST16                                          |                                                 |
|----------------------|-----------------------------|-----------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------|-------------------------------------------------|
|                      | Acc.                        | F1                          | Acc.                                          | F1                                            | Acc.                                         | F1                                           | Acc.                                    | F1                                      | Acc.                                            | F1                                              |
| SVM                  | 63.40 <sup>‡</sup>          | 63.30 <sup>‡</sup>          | 70.49 <sup>‡</sup>                            | N/A                                           | 80.16 <sup>‡</sup>                           | N/A                                          | N/A                                     | N/A                                     | N/A                                             | N/A                                             |
| LSTM                 | 69.56                       | 67.70                       | 69.28                                         | 63.09                                         | 78.13                                        | 67.47                                        | 77.37                                   | 55.17                                   | 86.80                                           | 63.88                                           |
| MemNet               | 71.48                       | 69.90                       | 70.64                                         | 65.17                                         | 79.61                                        | 69.64                                        | 77.31                                   | 58.28                                   | 85.44                                           | 65.99                                           |
| AOA                  | 72.30                       | 70.20                       | 72.62                                         | 67.52                                         | 79.97                                        | 70.42                                        | 78.17                                   | 57.02                                   | 87.50                                           | 66.21                                           |
| IAN                  | 72.50                       | 70.81                       | 72.05                                         | 67.38                                         | 79.26                                        | 70.09                                        | 78.54                                   | 52.65                                   | 84.74                                           | 55.21                                           |
| TNet-LF              | 72.98                       | 71.43                       | 74.61                                         | 70.14                                         | 80.42                                        | 71.03                                        | 78.47                                   | 59.47                                   | 89.07                                           | 70.43                                           |
| ASCNN                | 71.05                       | 69.45                       | 72.62                                         | 66.72                                         | 81.73                                        | 73.10                                        | 78.47                                   | 58.90                                   | 87.39                                           | 64.56                                           |
| ASGCN-DT<br>ASGCN-DG | 71.53<br>72.15 <sup>†</sup> | 69.68<br>70.40 <sup>†</sup> | 74.14 <sup>†</sup> <b>75.55</b> <sup>†‡</sup> | 69.24 <sup>†</sup> <b>71.05</b> <sup>†‡</sup> | <b>80.86</b> <sup>‡</sup> 80.77 <sup>‡</sup> | <b>72.19</b> <sup>‡</sup> 72.02 <sup>‡</sup> | 79.34 <sup>†‡</sup> 79.89 <sup>†‡</sup> | 60.78 <sup>†‡</sup> 61.89 <sup>†‡</sup> | 88.69 <sup>†</sup><br><b>88.99</b> <sup>†</sup> | 66.64 <sup>†</sup><br><b>67.48</b> <sup>†</sup> |

a possible reason, supect, conjecture, ...

## Ablation Study



| Model                                                      | TWITTER        |                | LAP14          |       | REST14         |       | REST15 |    | REST16         |                |
|------------------------------------------------------------|----------------|----------------|----------------|-------|----------------|-------|--------|----|----------------|----------------|
|                                                            | Acc.           | F1             | Acc.           | F1    | Acc.           | F1    | Acc.   | F1 | Acc.           | F1             |
| BiLSTM+Attn<br>ASGCN-DG                                    | 71.24<br>72.15 | 69.55<br>70.40 | 72.83<br>75.55 |       | 79.85<br>80.77 |       |        |    | 87.28<br>88.99 | 68.18<br>67.48 |
| ASGCN-DG w/o pos.<br>ASGCN-DG w/o mask<br>ASGCN-DG w/o GCN | 72.64          | 70.63          |                | 66.56 | 79.02          | 68.29 |        |    |                | 61.41          |

- Removal of pos → performance increases on Twitter and Rest14.
- The GCN does not work well as expected on the datasets not sensitive to syntax information.

# Case Study



| Model    | Aspect    | Attention visualization                                    | Prediction            | Label    |     |
|----------|-----------|------------------------------------------------------------|-----------------------|----------|-----|
| MemNet   | food      | great food but the service was dreadful!                   | negative <sub>x</sub> | positive |     |
|          | staff     | The staff should be a bit more friendly.                   | positive <sub>x</sub> | negative | . ( |
|          | Windows 8 | Did not enjoy the new Windows 8 and touchscreen functions. | positive <sub>x</sub> | negative |     |
|          | food      | great food but the service was dreadful!                   | positive.             | positive |     |
| IAN      | staff     | The staff should be a bit more friendly.                   | positive, negative    |          |     |
| IAN      | Windows 8 | Did not enjoy the new Windows 8 and touchscreen functions. | neutral <sub>x</sub>  | negative |     |
|          | food      | great food but the service was dreadful!                   | positive.             | positive | _   |
| A CONNI  | staff     | The staff should be a bit more friendly.                   | neutral <sub>x</sub>  | negative | ,   |
| ASCNN    | Windows 8 | Did not enjoy the new Windows 8 and touchscreen functions. | negative.             | negative |     |
| ASGCN-DG | food      | great food but the service was dreadful!                   | positive.             | positive |     |
|          | staff     | The staff should be a bit more friendly.                   | negative.             | negative | ,   |
|          | Windows 8 | Did not enjoy the new Windows 8 and touchscreen functions. | negative.             | negative |     |
|          |           | <u> </u>                                                   |                       |          |     |

0/3

1/3

2/3

3/3

- long-range
- multi-word

# **GGeut**

