Basic Probability and Its Applications in AI

Bui Van Tai

In this section, we'll examine several examples of probability applied to different types of data.

3.1 Naive Bayes Classifier for Discrete Random Variables

Problem Example: Predicting Whether to Play Tennis

We are given a small dataset to predict whether a person will play tennis based on four **discrete features** (a "naive" hypothesis, yet effective): Outlook, Temperature, Humidity and Wind.

Dataset (5 Samples)

Outlook	Temp	Humidity	Wind	Play
Sunny	Hot	High	Weak	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	High	Strong	No
Sunny	Cool	High	Strong	???

Step 1: Bayes's Theorem Overview

We want to compute:

$$P(\text{Play=Yes} \mid X), \quad P(\text{Play=No} \mid X)$$

where

$$X = (\text{Outlook} = \text{Sunny}, \text{Temp} = \text{Cool}, \text{Humidity} = \text{High}, \text{Wind} = \text{Strong})$$

According to Bayes's Theorem:

$$P(\text{Class} \mid X) = \frac{P(X \mid \text{Class}) \cdot P(\text{Class})}{P(X)}$$

Since P(X) is constant for both classes, we compare:

$$P(X \mid Yes) \cdot P(Yes)$$
 and $P(X \mid No) \cdot P(No)$

Step 1: Compute Prior Probabilites

From the dataset:

$$P(\text{Yes}) = \frac{3}{5} = 0.6$$
 , $P(\text{No}) = \frac{2}{5} = 0.4$

Step 2: Likelihoods (with Laplace Smoothing)

Apply Laplace smoothing (add-one) to avoid zero probabilities

$$P(x_i \mid \text{Class}) = \frac{\text{count}(x_i, \text{Class}) + 1}{\text{count}(\text{Class}) + N_i}$$

Where N_i is the number of possible values for feature i.

- Outlook: 3 values (Sunny, Overcast, Rain)
- Temperature: 3 values (Hot, Mild, Cool)

- Humidity: 2 values (High, Normal)
- Wind: 2 values (Weak, Strong)

Step 3: Compute Likelihoods

For Class = Yes (3 samples)

$$P(X \mid \text{Yes}) = P(\text{Sunny} \mid \text{Yes}) \cdot P(\text{Cool} \mid \text{Yes}) \cdot P(\text{High} \mid \text{Yes}) \cdot P(\text{Strong} \mid \text{Yes})$$

$$= \frac{1+1}{3+3} \cdot \frac{1+1}{3+3} \cdot \frac{2+1}{3+2} \cdot \frac{0+1}{3+2} = \frac{2}{6} \cdot \frac{2}{6} \cdot \frac{3}{5} \cdot \frac{1}{5} = \frac{12}{900}$$

$$P(X \mid \text{Yes}) \cdot P(\text{Yes}) = \frac{12}{900} \cdot 0.6 = \frac{7.2}{900} \approx 0.008$$

For Class = No (2 samples)

$$P(X \mid \text{No}) = P(\text{Sunny} \mid \text{No}) \cdot P(\text{Cool} \mid \text{No}) \cdot P(\text{High} \mid \text{No}) \cdot P(\text{Strong} \mid \text{No})$$

$$= \frac{1+1}{2+3} \cdot \frac{0+1}{2+3} \cdot \frac{2+1}{2+2} \cdot \frac{1+1}{2+2} = \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{3}{4} \cdot \frac{2}{4} = \frac{12}{400}$$

$$P(X \mid \text{No}) \cdot P(\text{No}) = \frac{12}{400} \cdot 0.4 = \frac{4.8}{400} = 0.012$$

Conclusion

Since:

$$P(\text{No} \mid X) > P(\text{Yes} \mid X)$$

We conclude that the person will **not play tennis**.

Python Code

```
# Training data (5 samples)
  data = [
        = [
['Sunny', 'Hot', 'High', 'Weak', 'No'],
['Overcast', 'Hot', 'High', 'Weak', 'Yes'],
['Rain', 'Mild', 'High', 'Weak', 'Yes'],
['Sunny', 'Cool', 'Normal', 'Weak', 'Yes'],
['Rain', 'Mild', 'High', 'Strong', 'No']
10 # Input to predict
11 X = ['Sunny', 'Cool', 'High', 'Strong']
13 # Extract labels and features
labels = [row[-1] for row in data]
features = [row[:-1] for row in data
# Calculate prior probability P(Class)
def prior_prob(class_label):
        return sum(1 for label in labels if label = class_label) / len(labels)
21 # Calculate conditional probability P(x_i | Class) with Laplace smoothing
   def cond_prob(feature_idx , feature_val , class_label):
        count = 0
23
24
        total = 0
        unique_vals = set (row [feature_idx] for row in features)
25
26
        for i, row in enumerate (features):
             if labels[i] == class_label:
28
                  total += 1
29
                  if row[feature_idx] == feature_val:
                       count += 1
31
```

```
# Apply Laplace smoothing
33
34
        return (count + 1) / (total + len(unique_vals))
35
# Compute P(X | Yes) * P(Yes)
yes_prob = prior_prob('Yes')
for i in range (len(X)):
       yes\_prob *= cond\_prob(i, X[i], 'Yes')
40
# Compute P(X | No) * P(No)
42 no_prob = prior_prob('No')
  for i in range (len(X)):
43
        no_prob *= cond_prob(i, X[i], 'No')
# Final prediction
print(f"P(X | Yes) * P(Yes) = {yes_prob}")
print(f"P(X | No) * P(No) = {no_prob}")
if yes_prob > no_prob:
       print("=> Prediction: Play")
51 else:
print ("=> Prediction: Do not play")
```

Listing 1: Naive Bayes Classifier

Output

```
P(X \mid Yes) * P(Yes) = 0.008

P(X \mid No) * P(No) = 0.012

P(X \mid No) * P(No) = 0.012
```

3.2 Naive Bayes for Continuous Random Variable

Unlike discrete variables, which can take only a finite or countable set of distinct values, *continuous* variables can take infinite number of possible values (height, weight, temperature,...).

This example shows how to apply Navie Bayes Classifier to continuous data using Gaussian distribution.

We are given 5 BMI values and their corresponding class labels:

BMI (x)	Class (y)	
18	0 (Healthy)	
20	0	
22	0	
26	1 (Sick)	
28	1	
24	???	

We want to classify a new sample with BMI=24.

Step 1: Compute mean and variance for each class

For class C_0 (Healthy):

General formulas:

$$\mu_0 = \frac{1}{n_0} \sum_{i=1}^{n_0} x_i$$
 and $\sigma_0^2 = \frac{1}{n_0} \sum_{i=1}^{n_0} (x_i - \mu_0)^2$

Apply to data: [18, 20, 22]

$$\mu_0 = \frac{18 + 20 + 22}{3} = 20$$

$$\sigma_0^2 = \frac{(18 - 20)^2 + (20 - 20)^2 + (22 - 20)^2}{3} = \frac{8}{3} \approx 2.67$$

$$\sigma_0 = \sqrt{2.67} \approx 1.63$$

For Class C_1 (Sick):

Apply to data: [26, 28]

$$\mu_1 = \frac{26+28}{2} = 27$$
 , $\sigma_1^2 = \frac{(26-27)^2 + (28-27)^2}{2} = 1$, $\sigma_1 = \sqrt{1} = 1$

Step 2: Compute Pior Probabilities

$$P(C_0) = \frac{n_0}{n} = \frac{3}{5} = 0.6$$

$$P(C_1) = \frac{n_1}{n} = \frac{2}{5} = 0.4$$

Step 3: Use Gaussian Probability Density Function

General formula:

$$P(x|C_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \cdot e^{-\frac{(x-\mu_k)^2}{2\sigma_k^2}}$$

For class 0:

$$P(x = 24|C_0) = \frac{1}{\sqrt{2\pi \cdot 2.67}} \cdot e^{-\frac{(24-20)^2}{2 \cdot 2.67}} \approx 0.0122$$

$$P(C_0|x=24) \propto 0.0122 \cdot 0.6 = 0.0073$$

For class 1:

$$P(x = 24|C_1) = \frac{1}{\sqrt{2\pi \cdot 1}} \cdot e^{-\frac{(24-27)^2}{2\cdot 1}} \approx 0.0044$$

$$P(C_1|x=24) \propto 0.0044 \cdot 0.4 = 0.0018$$

Step 4: Final Prediction

$$P(C_0|x=24) \propto 0.0073$$
 $P(C_1|x=24) \propto 0.0018 \Rightarrow \text{Predict Class 0 (Healthy)}$

Python Code

We use scikit-learn library, which provides efficient and easy-to-use tools for implementing Naive Bayes Classifier models, making the process simpler.

```
from sklearn.naive_bayes import GaussianNB
import numpy as np

# Input data
K = np.array([[18], [20], [22], [26], [28]])
y = np.array([0, 0, 0, 1, 1])

# Train model
model = GaussianNB()
model.fit(X, y)

# Predict for BMI = 24
x_test = np.array([[24]])
predicted_class = model.predict(x_test)
print("Predicted class:", predicted_class[0])
```

Listing 2: NBC For Continuous Random Variable

Predicted class: 0

Bayes' theorem demonstrates its wide-ranging and adaptable applicability in various problem domains and data types.