Uegentlige (uekte) integraler (9.5)

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} f(x) dx$$

Hvis f har en vertikal asymptote i $x = x_0$, definerer vi

$$\int_{a}^{x_{0}} f(x) dx = \lim_{t \to x_{0}} \int_{a}^{t} f(x) dx \quad \text{for } a < x.$$

$$\int_{X_{o}} f(x) dx \stackrel{\text{def}}{=} \lim_{t \to x_{o}^{+}} \int_{t} f(x) dx \quad \text{for } b > x_{o}$$

uke44.notebook October 28, 2015

ek. 1
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \int_{1}^{\infty} \frac{1}{x^{2}} dx$$

$$= \lim_{b \to \infty} \left[-\frac{1}{b} - \left(-\frac{1}{1} \right) \right] = \lim_{b \to \infty} \left[1 - \frac{1}{b} \right] = 1.$$

$$= \lim_{b \to \infty} \left[-\frac{1}{b} - \left(-\frac{1}{1} \right) \right] = \lim_{b \to \infty} \left[1 - \frac{1}{b} \right] = 1.$$

$$= \lim_{b \to \infty} \left[\ln |x| \right]_{1}^{b} = \lim_{b \to \infty} \left[\ln |b| - \ln 1 \right]$$

$$= \lim_{b \to \infty} \left[\ln |x| \right]_{1}^{b} = \lim_{b \to \infty} \left[\ln |b| - \ln 1 \right]$$

$$= \lim_{b \to \infty} \left[\ln |x| \right]_{1}^{b} = \lim_{b \to \infty} \left[\ln |a| - \ln 1 \right]$$

$$= \lim_{b \to \infty} \left[-\frac{1}{x^{2}} \right]_{1}^{b} = \lim_{b \to \infty} \left[\frac{1}{x^{2}} - 1 \right] = +\infty$$

$$= \lim_{b \to \infty} \left[-\frac{1}{1} - \left(-\frac{1}{t} \right) \right] = \lim_{b \to \infty} \left[\frac{1}{t} - 1 \right] = +\infty$$

Huis vi får et endelig tall som svar på et nekte integral, sier vi at integralet konvergerer. I motsatt fall sier vi at integralet divergerer.

Teorem (p-integralene)

Integralet
$$\int \frac{1}{x^p} dx$$
 konvergerer for $p > 1$ og

divergerer for $p \leq 1$.

Bevis Kan anta
$$p \neq 1$$
, siden vi vet at det gir divergens. Far

$$\int_{-\infty}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{-\infty}^{\infty} x^{-p} dx$$

$$= \lim_{b \to \infty} \left[\frac{1}{-p+1} x^{-p+1} \right]_{1}^{b} = \lim_{b \to \infty} \left[\frac{1}{1-p} b^{1-p} - \frac{1}{1-p} \cdot 1 \right]$$

$$= \frac{1}{1-p} \lim_{b \to \infty} \left[b^{1-p} - 1 \right]$$
Her går b^{1-p} mot $+\infty$ hvis $p < 1$, og mot 0 hvis $p > 1$.

Teorem (Sammenlikningslesten for integraler)

La f og g være kontinuerlige med $0 \le g(x) \le f(x)$ for alle x > a. Da:

(i) Huis $\int_{a}^{\infty} f(x) dx$ konv., så konv. også $\int_{a}^{\infty} g(x) dx$.

(ii) Huis $\int_{a}^{\infty} g(x) dx$ div., så div. også $\int_{a}^{\infty} f(x) dx$

Bevis Se bok. U

eks. $\int \frac{1}{x^2 + \sin^2 x} dx$ Konvergerer dette?

Vi har $0 \leqslant \frac{1}{x^2 + \sin^2 x} \leqslant \frac{1}{x^2}$ Bruker
Sammenlikn.
testen punkt (i)

Vi vet at $\int_{1}^{\infty} \frac{1}{x^2} dx$ konvergerer (p-integral, $\rho = 2$)

Ergo konvergerer integralet vart ved sammenlikningstesten. []

Teorem (Grense-sammenlikningstesten for integraler)

Gitt integralene $\int_{\alpha}^{\infty} f(x) dx$ og $\int_{\alpha}^{\infty} g(x) dx$, der f og g er positive og kontinuer(:ge. Hvis $L = \lim_{x \to \infty} \frac{f(x)}{g(x)} \quad \text{fins og } 0 < L < \infty$

så enten konvergerer begge integralene eller divergerer begge integralene.

Bevis Velg konstanter P og Q slik at O < P < L < Q. Siden $f(x)/g(x) \rightarrow L$, har vi for tilstrekkelig store x

$$P < \frac{f(x)}{g(x)} < Q$$
, $dvs.$ $P \cdot g(x) < f(x) < Q \cdot g(x)$.

Vi bruker så den vanlige sammenlikningstesten:

$$\int f(x) dx \text{ konv.} \Rightarrow \int P \cdot g(x) dx \text{ konv.} dvs. \int g(x) dx \text{ konv.}$$

 $\int f(x) dx \text{ div.} \Rightarrow \int Q \cdot g(x) dx \text{ div.} \int g(x) dx \text{ div.} \bigcup$

eks.
$$\int \frac{x+1}{5/2} dx$$
 Konvergerer dette?

$$\frac{3l_2}{\frac{\times}{sl_2}} = \frac{1}{\times}$$

Funksjonen "går som" $\frac{3/2}{x} = \frac{1}{x}$ (gir divergent)

Vi sammenlikner derfor med $q(x) = \frac{1}{x}$ i grensesammenlikningsfesten:

Altså divergerer integralet vart ved greuse-sml. - festen, fordi vi vet at

$$\int_{-\infty}^{\infty} \frac{1}{x} dx$$
 divergerer. \square