- 1. (a) i. **Solution:** The language 1^* is an infinite fooling set. For any non-negative integers $i \neq j$, the strings $x = 1^i$ and $y = 1^j$ are distinguished by the suffix $z = 01^i0$: $xz = 1^i01^i0 \in L$ because it matches the form 0^01^0w where $w = 1^i0$. On the other hand, $yz = 1^j01^i0 \notin L$: since the string starts with 1, we need k = 0, so 1^j01^i0 would have to be of the form w, which is impossible.
 - ii. **Solution:** The language 0^+ is an infinite fooling set. For any positive integers $i \neq j$, the strings $x = 0^i$ and $y = 0^j$ are distinguished by the suffix $z = 10^i$: $xz = 0^i 10^i$ has two blocks of zeros of equal length, thus $xz \in L$. On the other hand, $yz = 0^j 10^i$ has only two blocks of zeros 0^j and 0^i of different lengths, so $yz \notin L$.
 - iii. **Solution:** The language L itself is an infinite fooling set. For any integers j > i > 0, the strings $x = 0^i$ and $y = 0^j$ are distinguished by the suffix $z = 0^{3i^2 + 3i + 1}$: $xz = 0^{i^3 + 3i^2 + 3i + 1} = 0^{(i+1)^3} \in L$. On the other hand, $yz = 0^{j^3 + 3i^2 + 3i + 1} \notin L$, because $j^3 < j^3 + 3i^2 + 3i + 1 < j^3 + 3j^2 + 3j + 1 = (j+1)^3$.
 - (b) **Solution:** Let $L'' = L' \setminus L$. Then L'' is regular since it is finite, and all finite languages are regular. Suppose $L \cup L'$ is regular. This implies $L = (L \cup L') \setminus L''$ is regular, since the difference between two regular languages is also regular. This contradicts the fact that L is not regular.

For the example, let $L = \{0^n 1^n \mid n \ge 0\}$ which is not regular and $L' = \{0, 1\}^*$ which is infinite. Then $L \cup L' = \{0, 1\}^*$ is regular.

Rubric: On a scale of 10 points:

- 6 points for (a), 2 points for each subquestion:
 - 1 point for a proper setup: an infinite fooling set, x, y which are arbitrary pairs in the fooling set, z which is arbitrary string, and proving exactly one of $\{xz, yz\}$ is in L. No further points if this part is incorrect.
 - 1 point for correctly proving z distinguishes x, y.
 - -0.5 for each minor error.
- 4 points for (b):
 - 3 points for the proof.
 - 1 points for the example.
 - -0.5 each minor error.

- 2. Describe a context free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
 - (a) $\{a^i b^j c^k d^{\ell} \mid i, j, k, \ell \ge 0 \text{ and } i + \ell = j + k\}.$

Solution: Consider following two cases,

- Case 1: $\{a^i b^j c^k d^l | i \le j, i + l = j + k\}$
- Case 2: $\{a^i b^j c^k d^l | i > j, i + l = j + k\}$

For Case 1. Since the number of a's is at most as the number of b's in the string. Therefore, we can represent the beginning of the string as $a^i b^{i+x}$ (i.e., j=i+x). Since there are l d's, the string must be in the form of $a^i b^{i+x} c^{l-x} d^l$ in order to keep the sum of the number of b's and c's to equal i+l. We can rewrite this as $a^i b^i$ followed by $b^x c^{l-x} d^l$. The first group can be generated by $A \to aAb \mid \varepsilon$. And the second group can be generated by $X \to bXd \mid C$ together with $C \to cCd \mid \varepsilon$. Putting these together gives us $L \to AX$, which handles Case 1.

For Case 2, we have l < k, and the solution is similar to Case 1. But now the grouping is the following form $a^i b^{i-x} c^{l+x} d^l$. This can be regroup as $a^i b^{i-x} c^x$ and $c^l d^l$.

$$S \to L \mid M$$
 strings of the form $a^i b^j c^k d^l$, s.t. $i + l = j + k$ $L \to AX$ strings of the form $a^i b^j c^k d^l$, s.t. $i \le j, i + l = j + k$ $A \to aAb \mid \varepsilon$ strings of the form $a^i b^i$, for some $i \ge 0$ $X \to bXd \mid C$ strings of the form $b^j c^{k-j} d^k$, for some $j, k \ge 0$ $C \to cCd \mid \varepsilon$ strings of the form $c^i d^i$, for some $i \ge 0$ $M \to YC$ strings of the form $a^i b^j c^k d^l$, s.t. $i > j, i + l = j + k$ $Y \to aYc \mid A$ strings of the form $a^i b^{i-j} c^j$, for some $i, j \ge 0$

(b) $L = \{0, 1\}^* \setminus \{0^n 1^n \mid n \ge 0\}$. In other words the complement of the language $\{0^n 1^n \mid n \ge 0\}$.

Solution: L is the union of the language $L_1 = \{0^m 1^n \mid m \neq n, m, n \geq 0\}$ and the language $L_2 = (0+1)^* 10(0+1)^*$. L_1 is contained in L by its definition. L_2 is contained in L because L_2 is the complement of $0^* 1^*$. $0^* 1^*$ is the union of L_1 and $\{0^n 1^n \mid n \geq 0\}$.

On the other hand, $\forall w \in L$ is either in L_1 or L_2 by the definition of L. Since if $w \notin L_1 \cup L_2$, then $w \notin L_1$ and $w \notin L_2$. By the definition of L, L_1 and L_2 . $w \in \{0^n 1^n \mid L_1 \in L_2\}$

 $n \ge 0$ }. This contradicts with the assumption that $w \in L$.

$$S \to T \mid X$$

$${0,1}^* \setminus {0^n 1^n \mid n \ge 0}$$

$$T \rightarrow 0T1 | A | B$$

$$\{0^m 1^n \mid m \neq n, m, n \geq 0\}$$

$$A \rightarrow 0 \mid 0A$$

$$0^{+}$$

$$B \rightarrow 1 \mid 1B$$

$$X \rightarrow Z10Z$$

$$(0+1)^*10(0+1)^*$$

$$Z \rightarrow \varepsilon \mid 0Z \mid 1Z$$

$$(0+1)^*$$

Rubric: 10 points = 5 for each part:

- (a) part
 - 1 for identify two cases.
 - 2 for a correct grammar. (These are not the only correct solutions.)
 - 2 for a clear explanation of the grammar.
 - if the solution is not understandable and no explanation, give 0.
- (b) part
 - 3 for a correct grammar. (These are not the only correct solutions.)
 - 2 for a clear explanation of the grammar.
 - if the solution is not understandable and no explanation, give 0.

- 3. Let $L = \{0^i \mathbf{1}^j \mathbf{2}^k \mid k = 2(i+j)\}.$
 - (a) Show that L is context-free by describing a grammar for L.

Solution:

$$S \rightarrow 0S22 \mid B$$

$$\{0^{i}1^{j}2^{k} \mid k = 2(i+j)\}$$

$$B \rightarrow 1B22 \mid \varepsilon$$

$$\{1^{j}2^{k} \mid k = 2j\}$$

(b) Prove that your grammar G is correct. You need to prove that $L \subseteq L(G)$ and $L(G) \subseteq L$ where G is your grammar from the previous part.

Solution: We will first prove a separate lemma that we will use in the solution. Let the language $L' = \{1^j 2^k \mid k = 2j\}$

Lemma 1. $L' \subseteq L(B)$.

Proof: Let w be an arbitrary string in L'. By definition, $w = \mathbf{1}^j 2^{2j}$ for some nonnegative integer j. Assume that $\mathbf{1}^l 2^{2l} \in L(B)$ for every non-negative integer l < j. There are two cases to consider.

- If |w| = 0, then $\mathbf{1}^0 \mathbf{2}^0 = \varepsilon$. The rule $B \to \varepsilon$ implies that $B \leadsto \varepsilon$ and therefore $B \leadsto^* \varepsilon$.
- Suppose j > 0. Then $w = 1^n 2^{2n}$ for some non-negative integer n. Then the first character in w must be 1 and the string must end with 22. The inductive hypothesis implies that $B \rightsquigarrow 1^{j-1} 2^{2(j-1)}$. The rule $B \rightarrow 1B22$ implies that $B \rightsquigarrow 1B22 \rightsquigarrow^* 1^j 2^{2j}$.

Lemma 2. $L(B) \subseteq L'$.

Proof: Let w be an arbitrary string in L(B). Assume that L' contains every string $x \in L(B)$ such that |x| < |w|. There are two cases to consider.

- If |w| = 0, then $\mathbf{1}^0 \mathbf{2}^0 = \varepsilon$. The rule $B \to \varepsilon$ implies that $B \leadsto \varepsilon$ and therefore $B \leadsto^* \varepsilon$.
- Suppose |w| > 0. The inductive hypothesis implies that $B \rightsquigarrow^* \mathbf{1}^{n-1} \mathbf{2}^{2(n-1)}$. The rule $B \to \mathbf{1}B22$ implies that $B \rightsquigarrow^* \mathbf{1}B22 \rightsquigarrow^* \mathbf{1}^n \mathbf{2}^{2n}$.

Lemma 3. $L \subseteq L(S)$

Proof (induction on i): Let w be an arbitrary string in L. By definition, $w = 0^i 1^j 2^{2(i+j)}$ for some non-negative integers i and j. Assume that $0^h 1^j 2^{2(h+j)} \in L(S)$ for all non-negative integers h < i. There are two cases to consider.

- If i = 0, then $w = \mathbf{1}^{j} \mathbf{2}^{2j}$. Lemma 1 immediately implies $S \leadsto B \leadsto^* w$.
- Suppose i > 0. Then $w = 0 \cdot 0^{i-1} 1^j 2^{i+j-2} \cdot 22$. The inductive hypothesis implies that $S \rightsquigarrow 0^{i-1} 1^j 2^{2(i+j)-2} \in L(S)$. It follows that $S \rightsquigarrow 0S22 \rightsquigarrow^* w$.

In both cases, we conclude that $S \leadsto^* w$.

Together, $L' \subseteq L(B)$ and $L(B) \subseteq L'$ imply that L' = L(B)

Proof (Another proof, this time by induction on |w|): Let w be an arbitrary string in L. Assume that L(S) contains every string $x \in L$ such that |x| < |w|. There are three cases to consider.

- If $w = \varepsilon$, then $S \leadsto B \leadsto \varepsilon$.
- Suppose w = 0x for some string x. Then $w = 0^i 1^j 2^{2(i+j)}$ where i > 0, so w must end with 22. Thus, we have w = 0y22, where $y \in L$. The induction hypothesis implies that $y \in L(S)$. We conclude that $S \leadsto 0S22 \leadsto^* w$.
- Suppose w = 1x for some string x. Then $w = 1^j 2^{2j}$ for some j > 0, and therefore $S \rightsquigarrow B \rightsquigarrow^* w$ by Lemma 1.

In both cases, we conclude that $S \leadsto^* w$. Note that |w| cannot start with 2, because every string in L that has a 2 has a \odot or 1 before it.

Lemma 4. $L(S) \subseteq L$.

Proof: Let w be an arbitrary string in L(S). Assume L contains every string $x \in L(S)$ such that |x| < |w|. There are two cases to consider

- Suppose w = 0x22 for some $x \in L(S)$. The induction hypothesis implies that $x = 0^i 1^j 2^{(i+j)}$ for some integers i and j. It follows that $w = 0^{i+1} 1^j 2^{2(i+j)+2}$, and therefore $w \in L$.
- Suppose $w \in L(B)$. Lemma 2 implies that $w = 1^{l} 2^{2l}$ for some integer l. It follows immediately that $w = 0^{0} 1^{l} 2^{0+2l} \in L$.

In both cases, we conclude that $w \in L$.

Together, Lemmas 3 and 4 imply that L = L(S).

Rubric: 10 points:

- part (a) = 4 points. As usual, this is not the only correct grammar.
- part (b) = 6 points = 3 points for ⊆ + 3 points for ⊇ (standard induction rubric, scaled).