Arithmétique Terminale Maths Expertes Partie 2. PGCD et théorèmes fondamentaux

Lycée Pierre Mendes France - Tunis

Table des matières

1	PGCD de deux entiers	2
	1.1 Diviseurs communs à deux entiers	2
	1.2 Définition et propriétés	3
	1.3 Algorithme d'Euclide	4
	1.4 Conséquences	4
	Entiers premiers entre eux	5
3	Le théorème de Bézout	6
	3.1 Coefficients de Bézout	
	3.2 Identité de Bézout	6
4	Le théorème de Gauss	7
5	Équations diophantiennes	8

1 PGCD de deux entiers

1.1 Diviseurs communs à deux entiers

Pour tous les entiers relatifs a et b, on note D(a;b) l'ensemble des diviseurs communs à a et b. On a donc $D(a;b)=D(b;a)=D(a)\cap D(b)$.

Déterminer D(12; 18).

Propriété 1 (conséquences immédiates)

Soient a et b deux entiers relatifs.

- $D(a;b) \subset D(b)$
- $D(a;0) = \dots$
- $D(1;a) = \dots$

• D(a;b) = D(|a|;|b|)

......

• Si $b \mid a$, alors $D(a; b) = \dots$

Propriété 2

Soient a et b deux entiers relatifs.

- 1. Pour tout entier k, D(a;b) = D(a kb;b)En particulier, D(a;b) = D(a - b;b).
- 2. Si $b \in \mathbb{N}^*$ et si r est le reste de la division euclidienne de a par b, alors D(a;b) = D(b;r).

Démonstration 1

 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
 •		
• • • • • • • • • • • • • • • • • • • •		
 •		
 •		

1.2 Définition et propriétés

Propriété 3

Γ.	ropriete 3
	Étant donnés deux entiers relatifs a et b non simultanément nuls, l'ensemble $D(a;b)$ admet un plus grand élément.
D	émonstration 2
D	éfinition 2
	Étant donnés deux entiers relatifs a et b non simultanément nuls, le plus grand élément de l'ensemble $D(a;b)$ est appelé plus grand diviseur commun de a et b . On le note indifféremment $pgcd(a;b)$ ou $PGCD(a;b)$.
	xemple $(12;18) = \{-6; -3; -2; -1; 1; 2; 3; 6\}$ donc $pgcd(12;18) = \dots$
\mathbf{P}	ropriété 4 (conséquences immédiates)
	Soient a et b deux entiers relatifs avec $b \neq 0$.
	• $pgcd(b;0) = \dots$ • $pgcd(a;1) = \dots$ • $pgcd(a;b) = pgcd(a ; b)$ • $pgcd(a;b) = pgcd(b;a)$ (on parle definition of the proof of th
\mathbf{P}	ropriété 5
	Soient a et b deux entiers relatifs avec $b \neq 0$. Pour tout $k \in \mathbb{Z}$, $pgcd(a;b) = pgcd(a-kb;b)$. En partculier : $pgcd(a;b) = pgcd(a-b;b)$
D	émonstration 3

Propriété 6 (lemme d'Euclide)

Soient a un entier relatif et b un entier naturel non nul. Si r est le reste de la division euclidienne de a par b, alors pgcd(a;b) = pgcd(b;r).

$\underline{\mathbf{D}}$	Démonstration 4	
\mathbf{E}	Exercice	
	Soient a et b deux entiers naturels non nuls. Montrer que $pgcd(4a + 9b; 3a + 7b) = pgcd(a; b)$)

.....

1.3 Algorithme d'Euclide

Propriété 7 (Algorithme d'Euclide)

Soient a et b deux entiers naturels tels que $0 < b \le a$.

L'algorithme suivant permet en un nombre fini d'étapes de calculer le pgcd de a et b :

- 1. Calculer le reste r de la division euclidienne de a par b.
- 2. Si r = 0, alors pgcd(a; b) = b sinon remplacer a par b et b par r et revenir en 1.

Le pgcd de a et b est le dernier reste non nul.

D	$ \stackrel{\text{\'e}monstration 5}{=} $
1.	4 Conséquences
P	ropriété 8
	Soient a et b deux entiers naturels tels que $b \neq 0$. Alors :
	D(a;b) = D(pgcd(a;b))
D	émonstration 6

	Soient a et b deux entiers relatifs tels que $b \neq 0$. Pour tout entier relatif k,
	$pgcd(ka;kb) = \dots$
$\underline{\mathbf{D}}$	émonstration 7
2	Entiers premiers entre eux
D	éfinition 3 On dit que deux entiers relatifs non nuls sont premiers entre eux lorsque leur pgcd est égal à 1, ce qui est équivalent à dire que leurs seuls diviseurs communs sont 1 et -1.
	xemple et 39 sont premiers entre eux.
14	-
14 P :	et 39 sont premiers entre eux. ropriété 10 Soient a et b deux entiers relatifs non nuls. $d = pgcd(a; b)$ si, et seulement si, il existe deux entiers relatifs a' et b' premiers entre eux tels
14 P :	ropriété 10 Soient a et b deux entiers relatifs non nuls. $d = pgcd(a; b) \text{ si, et seulement si, il existe deux entiers relatifs } a' \text{ et } b' \text{ premiers entre eux tels que } a = da' \text{ et } b = db'$

Remarque

Conséquence très pratique et déjà bien connue : tout nombre rationnel s'écrit sous forme irréductible $\frac{a}{b}$, où a et b sont des entiers premiers entre eux.

3 Le théorème de Bézout

3.1 Coefficients de Bézout

T		
Pron	riété	- 1 1
P		

Soient a et b deux entiers relatifs non nul et soit δ leur pgcd. Alors il existe un couple d'entiers relatifs (u, v) tel que $\delta = au + bv$.

Démonstration 9	
Exemple $pgcd(6; 15) = 3 \text{ et } 3 = 6 \times 3 - 15 \times 1 \text{ ou encore } 3 = 15 \times 3 - 6 \times 7.$	
Remarques	
• Souvent, pour déterminer les coefficients de Bézout, on procède par tâtonnement. Mais existe des algorithmes.	il
\bullet La réciproque de la propriété est fausse! En effet, $15\times30+22\times(-20)=10,$ ma $\operatorname{pgcd}(15;22)\neq10.$	ais
3.2 Identité de Bézout	
Γ héorème 1 (th éorè me de B é $zout$)	
Deux entiers relatifs non nuls a et b sont premiers entre eux si, et seulement si, il existe de entiers relatifs u et v tels que $au + bv = 1$	ux
Démonstration 10	
Evenning.	
Exercice n est un entier naturel. Montrer que $a = 3n + 7$ et $b = 2n + 5$ sont premiers entre eux.	

Exercice		
Soient a , b et c des entiers relatifs. Montrer que si a est premier avec b et c , alors a est premier avec leur produit bc .		
4 Le théorème de Gauss		
Soient a, b et c trois entiers relatifs non nuls.		
$Si \ a \mid bc \ et \ a \ est \ premier \ avec \ b, \ alors \ a \mid c.$		
Démanaturation 11		
Démonstration 11		
Remarque		
L'hypothèse « a et b sont premiers entre eux » est indispensable! Par exemple, $6 \mid 14 \times 16$ pourtant 6 ne divise ni 14 ni 15 .		
Propriété 12 (conséquence du théorème de Gauss)		
Soient a, b et c trois entiers relatifs non nuls. Si les deux entiers a et b divisent c et son premiers entre eux alors leur produit ab divise c.		
Démonstration 12		

Remarque

L'hypothèse « a et b sont premiers entre eux » est indispensable! Par exemple, 60 est divisible par 6 et 4 mais n'est pas divisible par $6 \times 4 = 24$.

5 Équations diophantiennes

Une équation diophantienne est une équation du type ax + by = c d'inconnue le couple (x;y) et où a, b, c sont trois entiers relatifs. Voici trois exemples de résolutions d'équations diophantiennes. Nous nous en servirons comme modèle.

Énoncé 1. Déterminer les entiers x et y tels que $5x = 3y$.	
Énoncé 2. Déterminer les entiers x et y tels que $2x + 3y = 1$.	
Enough 2. Determiner les entiers x et y tels que $2x + 6y = 1$.	
Énoncé 3. Déterminer les entiers x et y tels que $2x + 3y = 5$.	
Enough 5. Determiner les entiers x et y tels que $2x + 3y = 0$.	