Part I: Intro NLP & Task at Hand

Part I: Intro NLP & Task at Hand

Intro NLP

Outline

- i. Intro NLP
- ii. Task at hand
- iii. Working data
- iv. Machine learning pipeline
- v. Quanteda universe

Intro NLP What is NLP?

Natural Language Processing (NLP) is a theoretically motivated range of *computational techniques* for analyzing and representing *naturally occurring texts* at one or more *levels of linguistic analysis* for the purpose of achieving *human-like language processing* for a *range of tasks or applications* (Liddy, 2001).

Intro NLP Human-like Language Processing

- How to make human language comprehensible to machines?
 - Numerical **vector** representation
 - Characterization by probabilities

Intro NLP Naturally Occurring Texts

- Basically, any form of human communication
 - Written text
 - Speech
- Different types in different levels of formality
 - News articles
 - Customer reviews
 - Social media posts
 - •
- Different languages

Intro NLP Levels of Linguistic Analysis

- Morphological how are words composed?
- Lexical what do single words mean?
- **Syntactic** what is the grammatical structure of a sentence?
- **Semantic** what meaning does a sentence convey?
- Discourse how do sentence interact to form a text?
- Pragmatic what is there between the lines?

Intro NLP Tasks

- High-level tasks
 - Speech recognition
 - Word-sense disambiguation (WSD)
 - Named entity recognition (NER)
 - Relationship extraction
 - Error identification and recovery
 - Automatic summarization
 - Machine translation
 - Topic extraction
 - Sentiment analysis

Intro NLP Tasks

- Low-level tasks
 - Sentence boundary detection
 - Tokenization
 - Part-of-speech (POS) tagging
 - Stemming
 - Lemmatization
 - Shallow parsing
 - •

Intro NLP Computational Techniques

- Available techniques largely depending on the task to solve
 - Standard machine learning techniques for classification tasks

- → E.g., sentiment analysis
- Generative models for unsupervised tasks

- \rightarrow E.g., topic modeling
- Deep learning models for various tasks
 - \rightarrow E.g., translation with RNN
- State of the art: transformer models (BERT, GPT-3)
 - Idea: teach them as much as possible about the language as a whole (pre-training) and fine-tune to specific tasks

Intro NLP Challenges

- Variety of languages
 - Around 7,000 living tongues
 - Many low-resource languages
 - Large differences in grammatical structure, alphabet, scripting systems
- Irregularities
 - Synonyms
 - Homonyms
 - General
 - Cases

Intro NLP Challenges

- Contextual dependencies
 - Ambiguities
 - Domain-specific vocabulary
 - Varying formality
- Complex constructs
 - Humor
 - Irony
 - Sarcasm
 - Colloquialisms

- Individual expression
 - Style
 - Emotion
- Errors
 - Transcription/translation errors
 - Misspelling

Evaluation of NLP tasks

Intro NLP Applications

Part I: Intro NLP & Task at Hand

Task at Hand

Working data **Generation**

All data generated by scraping the web

scraping is legal so long as it does not involve breaking security barriers explicitly in place to guard against such automatic data extraction

- Various sources:
 - https://www.bundestag.de/abgeordnete
 - Individual party websites
 - Twitter API

Working data Structure

- Required information (on MP level)
 - Name
 - Party
 - Electoral district & associated meta data
 - Twitter username
 - Posted tweets
 - Date
 - Text
 - Number of likes, retweets
 - Number of followers

Working data Structure

Variable	Туре	Description
last_name	chr	MP's last name
first_name	chr	MP's first name
party	factor	MP's political part
bundesland	factor	Federal state of MP's electoral district
unemployment_rate	num	Unemployment rate in MP's electoral district during 2017 election
user_name	chr	MP's username on Twitter
followers_count	num	MP's number of followers on Twitter at scraping time
created_at	date	Time stamp of tweet creation
location	chr	Location of tweet creation
text	chr	Tweet text
favorite_count	num	Number of likes for tweet at scraping time
retweet_count	num	Number of retweets for tweet at scraping time

Working data **Example**

"Merkel-Regierung geht vor Erdogan in die Knie. Auf meine Frage, ob nach Auffassung der Bundesregierung die Ermordung der Armenier 1915/16 ein "Völkermord" war, eiert sie nur rum. Ihr sei die Position des Bundestages dazu "bekannt". Sie selbst hat dazu keine. #erbärmlich #feige https://t.co/bkwSflCJan"

Working data Particularities

- Twitter idiosyncrasies
 - Extremely short texts
 - Often in response to recent event without explicitly naming it
 - Informal language with tendency to containing spelling mistakes
 - Special tokens: emojis, hashtags
- Political context
 - Specific vocabulary
 - Sometimes rather formal after all (and few emojis)
 - Many solely informative tweets
 - Tendency toward negative sentiment

German language

Task Analytical Objective

Task Topic Extraction

- **Topic extraction** aka **topic modeling**: finding latent thematic clusters within a collection of texts
- Goal: assign each document a topic probability vector / topic label
- Used for
 - Information retrieval
 - Clustering
 - Supporting upstream tasks

for instance, sentiment analysis

• Unsupervised task: both topics and their number unknown

Task Sentiment Analysis

- Sentiment analysis: identifying and analyzing affective states
- Relevant subtask: polarity detection
- **Goal**: assign each document a polarity label ∈ {positive, negative}
- Used for
 - Customer relationship management
 - Social media analysis

alternative, rule-based approaches exist

• Supervised task: requiring labeled training data (typically)

Task Topic-Specific Sentiment Analysis

• Idea: domain / topic dependence of sentiment predictors

e.g., "Sozialleistungen" possibly positively connotated in social security context but negatively connotated in asylum politics

- → Combine topic extraction and sentiment analysis
- Implementation
 - R: word embeddings per topic
 - BERT: aspect-based sentiment analysis

underlying assumption: one aspect per document

ML Pipeline Analytical Sequence

Scraping Labeling Data cleaning **Extraction of Twitter tokens** Extraction of lexical features Extraction of dictionary features Extraction of unigrams **Extraction of POS tags Sentiment analysis** Word embeddings Topic modeling Dynamic features

ML Pipeline Static vs Dynamic features

- Fundamental principle in machine learning: dichotomy between **training and test sphere**
 - → Avoid **bias** in performance estimation

- **Static** features
 - Solely determined on single-observation level
 - E.g., POS tags
- Dynamic features
 - Affected by surrounding observations
 - E.g., topic labels

may be computed before training

must be computed during training

Quanteda Universe Package

- Benoit et al. (2018)
- Convenient text handling in R
 - Designated classes for textual data (with easy conversion to and from data.frame & friends)
 - **User-friendly** syntax
 - Fast computation
 - Compatibility with spacyr package (Benoit et al., 2020)
 - → Wrapper for Python's popular spaCy package used for, i.a., **POS tagging**

tutorials for getting started on https://tutorials.quanteda.io/

```
[Word = smallest entity of text \rightarrow words]

[Sentence = sequence of w words \rightarrow sentences]

[Paragraph = sequence of s sentences \rightarrow not relevant]

[Document = sequence of p paragraphs \rightarrow tweets]
```

corpus

- Most basic class to handle text data
- Collection of documents + document-level variables → tweets + meta data

lower-level corpora, e.g., as collections of paragraphs, also possible

tokens

- Representing documents as a collection of tokens
 - → tokens per tweet + meta data
- Token: sequence of characters grouped together as a useful semantic unit
 - → Single words, n-grams, ...
- During tokenization, we will often
 - Remove punctuation
 - Remove stopwords
 - Omit cases (e.g., lowercase everything)
 - Perform stemming / lemmatization
- Goal: representation of texts by tokens that co-occur across documents

doc_id	text	author	nationality
2	Politics have no relation to morals. Politics is too serious a matter to be left to the politicians.	Niccolo Machiavelli Charles de Gaulle	Italian French
. 3	In politics stupidity is not a handicap.	Napoleon Bonaparte	French


```
Corpus consisting of 3 documents and 2 docvars.

1:
"Politics have no relation to morals."

2:
"Politics is too serious a matter to be left to the politicia..."

3:
"In politics stupidity is not a handicap."
```



```
Tokens consisting of 3 documents and 2 docvars.

1:
[1] "Politics" "relation" "morals"

2:
[1] "Politics" "serious" "matter" "left" "politicians"

3:
[1] "politics" "stupidity" "handicap"
```

- dfm
 - Document-feature matrix
 - Token count per document → word occurrence per tweet + meta data
 - Methods
 - Weighting schemes, such as tf-idf
 - Counting matches with a list of words
 - Extracting **top** features
 - Performing dictionary look-ups

- fcm
 - Feature co-occurrence matrix
 - Tokens co-occurrence count across corpus \rightarrow co-occurrence across tweets

Feature co-occurrence matrix of: 9 by 9 features.												
features												
features	politics	relation	morals	serious	matter	left	politicians	stupidity	handicap			
politics	0	1	1	1	1	1	1	1	1			
relation	0	0	1	0	0	0	0	0	0			
morals	0	0	0	0	0	0	0	0	0			
serious	0	0	0	0	1	1	1	0	0			
matter	0	0	0	0	0	1	1	0	0			
left	0	0	0	0	0	0	1	0	0			
politicians	0	0	0	0	0	0	0	0	0			
stupidity	0	0	0	0	0	0	0	0	1			
handicap	0	0	0	0	0	0	0	0	0			

- dictionary
 - Essentially, named list
 - Specifying dimensions with associated items
 - Look-up on document level → dictionary item count per tweet

```
Dictionary object with 2 key entries.
- [political]:
- politics, politicians
- [critical]:
- morals, stupidity, handicap
```



```
Document-feature matrix of: 3 documents, 2 features (16.7% sparse) and 2 docvars. features docs political critical

1 1 1
2 2 0
3 1 2
```

Quanteda Universe Scope

 Purpose of quanteda: handling text corpora and performing basic analysis of their components

Within scope

- Organizing text documents
- Tokenization
- Descriptive analyses

Out of scope

 Higher-level text analysis such as topic modeling or sentiment analysis pre-processing with
quanteda

downstream analyses with other tools

Part I: Intro NLP & Task at Hand

Literature and References

- Jacob Eisenstein (2019): Introduction to Natural Language Processing, MIT Press
- Liddy, E.D. 2001. Natural Language Processing. In Encyclopedia of Library and Information Science, 2nd Ed. NY. Marcel Decker, Inc.
- Prakash M Nadkarni, Lucila Ohno-Machado, Wendy W Chapman, Natural language processing: an introduction, Journal of the American Medical Informatics Association, Volume 18, Issue 5, September 2011, Pages 544–551, https://doi.org/10.1136/amiajnl-2011-000464
- I. Vayansky and S.A.P. Kumar, A review of topic modeling methods, Information Systems (2020), doi: https://doi.org/10.1016/j.is.2020.101582.
- Benoit, Kenneth, Kohei Watanabe, Haiyan Wang, Paul Nulty, Adam Obeng, Stefan Müller, and Akitaka Matsuo. (2018) "quanteda: An R package for the quantitative analysis of textual data". Journal of Open Source Software. 3(30), 774. https://doi.org/10.21105/joss.00774.