CMSC 130 - Logic Design and Digital Computer Circuits Handout # 3: LOGIC FUNCTIONS, DIAGRAMS AND BOOLEAN ALGEBRA

Theorems of Boolean Algebra

Identity	X + 0 = X	X • 1 = X
Contra-identity	X + 1 = 1	$X \cdot 0 = 0$
Inverse	X + X' = 1	X • X'= 0
Idempotency	X + X = X	$X \bullet X = X$
Involution	(X')' = X	
Commutativity	X + Y = Y + X	XY = YX
Associativity	X + (Y + Z) = (X + Y) + Z	X(YZ) = (XY)Z
Distributivity	X (Y + Z) = XY + XZ	X + YZ = (X + Y)(X + Z)
De Morgan's	(X + Y)' = X'Y'	(XY)'=X'+Y'
Absorption	X + XY = X	X(X + Y) = X

Operator Precedence: (), NOT, AND, OR (from highest to lowest)

Minterms and Maxterms for three binary variables:

			Minterms		Maxt	erms
X	Y	Z	Term	Designation	Term	Designation
0	0	0	X'Y'Z'	m ₀	X + Y + Z	M_0
0	0	1	X'Y'Z	m_1	X + Y + Z'	M_1
0	1	0	X'Y Z'	m_2	X + Y'+ Z	M_2
0	1	1	X'Y Z	m ₃	X + Y'+ Z'	M_3
1	0	0	X Y'Z'	m_4	X'+ Y + Z	M_4
1	0	1	X Y'Z	m ₅	X'+Y+Z'	M_5
1	1	0	X Y Z'	m_6	X'+ Y'+ Z	M_6
1	1	1	XYZ	m_7	X'+ Y'+ Z'	M_7

Operators and Logic Gates

Name	Algebraic Function	Symbol	Truth Table
NOT	F= x'	$\stackrel{\textstyle \downarrow}{ }$	x F 0 1 1 0
AND	F= xy		x y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	F= x + y		x y F 1 0 0 0 1 1 1 0 1 1 1 1
NOR	F= (x + y)'	\Rightarrow	x y F 0 0 1 0 1 0 1 0 0 1 1 0

1

Name	Algebraic Function	Symbol	Truth Table
NAND	F= (xy)'		x y F 0 0 1 0 1 1 1 0 1 1 1 0
XOR	$F = xy' + x'y = x \oplus y$		x y F 0 0 0 0 1 1 1 0 1 1 1 0
XNOR	F= xy + x'y'= x ⊙ y	$\rightrightarrows \triangleright$	x y F 0 0 1 0 1 0 1 0 0 1 1 1

Example1: Assuming w=0, x=0, y=1, and z=1, Find the resulting value of the following function: F=(wx)'+y'z'+(x+z)+(x'+w')'.

Solution:

$$F = (wx)' + y'z' + (x+z) + (x' + w')'$$

$$F = (0 \cdot 0)' + (1' \cdot 1') + (0+1)' + (0' + 0')'$$

$$F = (0)' + (0 \cdot 0) + (1)' + (1+1)'$$

$$F = 1 + 0 + 0 + 0$$

$$F = 1$$

Example2: Construct the truth table for the following function. F = x' + x'y + x'z.

Solution:

Х	у	Z	F
х 0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Example3: Write the expressions (in Canonical form) for the following truth table. Then construct the corresponding logic circuits for them.

X 0	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Solutions

a. Minterms:
$$F = x'y'z + x'yz' + xy'z' + xy'z$$

= $\Sigma(m1, m2, m4, m5)$

b. Maxterms:

$$F = (x+y+z)(x+y'+z')(x'+y'+z)(x'+y'+z')$$

= $\Pi(M0,M3,M6,M7)$

Example4: Prove or disprove the following Boolean equation.

$$xy + (x'y') + x'yz = xyz' + (x'y') + yz$$

Solution: xy(1) + x'y' + x'yz identity

xy(z+z') + x'y' + x'yz inverse xyz + xyz' + x'y' + x'yz distributivity xyz' + xyz + x'yz + x'y' commutativity xyz' + yz(x+x') + x'y' distributivity xyz' + yz(1) + x'y' inverse

xyz'+ yz + x'y' identity xyz'+ x'y'+ yz commutativity

Example5: Use Boolean Algebra to simplify the following expression.

Indicate the theorem used for each step.

(x'y')+(x'y)+(yz')+(xz')

Solution: x'(y'+y) + (yz')+(xz') distributivity

x'(1) + yz' + xz' inverse x' + yz' + xz' identity

x'+xz'+yz' commutativity (x'+x)(x'+z')+yz' distributivity (1)(x'+z')+yz' inverse (x'+z')+yz' identity x'+(z'+yz') associativity x'+z'(1+y) distributivity x'+z'(1) contra-identity

x'+z' identity