American Computer Science League

2018-2019

Contest #4

JUNIOR DIVISION SOLUTIONS

1. Graph Theory									1. As shown
	0 1	1 1	0 1	1 0	0	1 1			
	0 0	0	1 0 1	0 1 0	0	0			
	1	0	1 0	1 0	1	0			
2. Graph Theory									2. 16
To find the number of paths of length 2, add the entries in the square of the adjacency matrix. The sum is 16.	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	1 (0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 1 1 0) 1) 0) 1	$ \begin{array}{c c} 1 & 2 \\ 1 & 0 \\ 1 & 0 \end{array} $	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 1 0 1 1 0 0 0 0	1 2 1 1 0	2 0 3 0 1	
3. Digital Electronics The circuit translates to the following Boolean expression: $(A+B)\overline{B}$ $(A+B)\overline{B} = A\overline{B} + B\overline{B} = A\overline{B} + 0 = A\overline{B}$ This is TRUE only when both are TRUE. So $(1,0)$ makes the circuit TRUE.								3. (1, 0)	
4. Digital Electronics The circuit translates to: $\overline{(AB)(\overline{B+C})} + \overline{C}$ Note: the operands within a gate may be commuted.								$4. \ \overline{(AB)(\overline{B+C})} + \overline{C}$	
5. What Does This Program Do? - Strings The first loop divides the string into two strings: B = "EJEEIHEGADEAE" and C = "NWRSYSTRNSTT". The next loop eliminates E's from B and S's from C resulting in D = "JIHGADA" and E = "NWRYTRNTT". The last loop drops A's from D and R's from E within the first 6 characters of each and constructs F from the middle outwards. The output is GIJNWY.								5. GIJNWY	