Differential Equations Plus (Math 286)

- **H53** Compute the Taylor series of $z \mapsto 1/(z^2 + 1)$ at a = 1 and a = 1 + i. Hint: Proceed as for $z \mapsto 1/(1-z)$ in the lecture and then use partial fractions.
- H54 Using power series, solve each of the following initial-value problems:

a)
$$t(2-t)y'' - 6(t-1)y' - 4y = 0$$
, $y(1) = 1$, $y'(1) = 0$;

b)
$$y'' + (t^2 + 2t + 1)y' - (4 + 4t)y = 0$$
, $y(-1) = 0$, $y'(-1) = 1$.

- **H55** a) Find 2 linearly independent solutions of $y'' + t^3y' + 3t^2y = 0$.
 - b) Find the first 5 terms in the Taylor series expansion about t = 0 of the solution y(t) of the initial value problem

$$y'' + t^3y' + 3t^2y = e^t$$
, $y(0) = y'(0) = 0$.

H56 A Problem from Friday's Lecture

Suppose (α_n) and (u_n) are sequences of nonnegative real numbers satisfying

$$\alpha_n \le \sum_{k=0}^{n-1} \frac{M(k+1)}{n(n-1)} \alpha_k \quad (n \ge 2),$$

$$u_n = \sum_{k=0}^{n-1} \frac{M(k+1)}{n(n-1)} u_k \quad (n \ge 2),$$

$$u_0 = \alpha_0, \ u_1 = \alpha_1$$

for some constant M > 0.

- a) Show $\alpha_n \leq u_n$ for all n.
- b) Show $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = 1$.

Hint: Express u_{n+1} in terms of u_n .

c) Is the sequence (u_n) (and hence (α_n) as well) necessarily bounded from above?

Due on Wed Nov 24, 6 pm

Exercise H56 c) is optional, but should be handed in together with H56 a), b).