

Mahindra University Hyderabad École Centrale School of Engineering Minor I Examinations, September-2023

Program: B. Tech. Branch: CM Year: II Semester: I Subject: Algebra (MA 2106)

Date: 19/09/2023

Time Duration: 90 Minutes

Start Time: 10.00 AM Max. Marks: 30

Instructions:

1. There are 6 questions, all of which are compulsory.

2. Justify your answer wherever required.

1. State "True" or "False". Negative marking (-1) will apply in case of each incorrect answer.

[5] M

5 M

- (i) If A and B are subgroups of a group G, then $A \cup B$ is also a subgroup of G.
- (ii) In every group G there exists a non-identity element of finite order.
- (iii) $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$ is a subgroup of \mathbb{Z}_{14} .
- (iv) If A and B are subgroups of a group G, then $A \cap B$ is also a subgroup of G.
- (v) If H is a finite subset of an infinite group G such that it is closed under the operation of G, then H is a subgroup of G.

2. Determine if the following sets G, with the operation indicated, form a group. If not, point out which of the group axioms fail?

(1)
$$G = \mathbb{Z}, \quad a * b = a + b + ab.$$
 [2]

(ii)
$$G = \mathbb{Q} - \{-1\}, \quad a * b = a + b + ab.$$
 [3]

3. Let G be a group. The centralizer of an element $x \in G$, denoted by $C_G(x)$ is defined as follows: [4] M

$$C_G(x) = \{ y \in G \mid xy = yx. \}$$

Show that $C_G(x)$ is a subgroup of G.

Fill in the blanks:	
(i) Order of $\overline{6}$ in \mathbb{Z}_{11} is —.	[1]
(ii) Order of $\overline{5}$ in $U(18)$ is —.	[2]
U(20) is —.	[1]
	[2]
Inverse of $\overline{7}$ in $U(11)$ is —	[2]
