Simulaciones de Filtro de Kalman Dinámica de movimiento de un vehículo

Enunciado

Considere un vehículo que se desplaza definiendo una trayectoria tal que la posición en cada instante resulta p(t), con una velocidad v(t) y una aceleración a(t), definidas en un plano de coordenadas [x,y] de acuerdo a:

$$m{p} = \left[egin{array}{c} p_x \ p_y \end{array}
ight] \quad m{v} = \left[egin{array}{c} v_x \ v_y \end{array}
ight] \quad m{a} = \left[egin{array}{c} a_x \ a_y \end{array}
ight]$$

Asumiendo que la dinámica del movimiento satisface las siguientes ecuaciones:

$$egin{cases} \dot{m{p}}(t) = m{v}(t) \ \dot{m{v}}(t) = m{a}(t) \ \dot{m{a}}(t) = m{0} \end{cases}$$

Ejercicio 1

- (a) Defina las variables de estado asociadas a las ecuaciones de movimiento en tiempo continuo y la matriz de estados A.
- (b) Implemente en Matlab la matriz de estados de tiempo discreto A_d , suponiendo que se mide en forma periódica, con un tiempo de muestreo h=1s. Defina también la matriz de covarianza de ruido del proceso Q_d sabiendo que las varianzas de ruido de proceso discreto, parael sistema de estados de la ecuación (1), resultan: $\sigma_{\xi p}^2 = 3 \times 10^{-4}$, $\sigma_{\xi v}^2 = 2 \times 10^{-3}$ y $\sigma_{\xi a}^2 = 10^{-2}$, asumiendo que las coordenadas x e y poseen igual varianza.

$$\boldsymbol{x}_{k+1} = A_d \boldsymbol{x}_k + \boldsymbol{\xi}_k$$
 $\boldsymbol{\xi}_k = \begin{bmatrix} \xi_{px} & \xi_{py} & \xi_{vx} & \xi_{vy} & \xi_{ax} & \xi_{ay} \end{bmatrix}^t$ (1)

Ejercicio 2

Implemente el filtro de Kalman de acuerdo a los datos del punto anterior. Utilice el archivo "datos.mat" para extraer las muestras de posición, velocidad, aceleración y tiempo, que consideraremos "ideales", correspondientes al movimiento de un vehículo. Asuma como condiciones iniciales $\mathbf{x}_0 = [40 - 200 \ 0 \ 0 \ 0]^t$ para el vector de estados y $P_{0/0} = \text{diag}([100^2 \ 100^2 \ 1 \ 1 \ 0,1 \ 0,1])$ para la matriz de inicial de covarianza de los estados.

(a) Medición de la posición: Defina la matriz C de salida. Utilice los datos suministrados para generar mediciones de posición agregando ruido gaussiano aditivo con desvío $\sigma_p = 60 \ m$ (para ambas coordenadas $x \ e \ y$). Defina en este caso la matriz de covarianza para el ruido de medición R. Grafique la trayectoria $\mathbf{p} = [p_x, p_y]^t$ (real, estimada y medición) y

los estados p_x , p_y , v_x , v_y , a_x y a_y en función del tiempo. Verifique la validez del algoritmo de Kalman graficando las innovaciones y observando si son un proceso blanco. Determine cuántos estados no observables tiene el sistema.

- (b) Medición de la velocidad: Repita el ítem a), pero generando mediciones de velocidad agregando a los datos disponibles ruido aditivo con desvío $\sigma_v = 2 m/s$.
- (c) Medición de la aceleración: Repita el ítem a), pero generando mediciones de aceleración agregando a los datos disponibles ruido aditivo con desvío $\sigma_a = 0.1 \ m/s^2$.

Ejercicio 3

Suponiendo que se mide la posición afectada por ruido blanco gaussiano con desvío $\sigma_p = 60 \ m$, grafique la trayectoria $\mathbf{p} = [p_x, p_y]^t$ y el error de cada estado en función del tiempo, observando la convergencia para cada una de las siguientes condiciones iniciales:

- 1. $\boldsymbol{x}_0 = [40 200 \ 0 \ 0 \ 0]^t$
 - $P_{0/0} = \mathrm{diag}([100^4 \ 100^4 \ 10^2 \ 10^2 \ 10 \ 10])$
- 2. $\boldsymbol{x}_0 = [200 3000 \ 0 \ 0 \ 0]^t$
 - $P_{0/0} = \mathrm{diag}([100^4 \ 100^4 \ 10^2 \ 10^2 \ 10 \ 10])$
- 3. $\boldsymbol{x}_0 = [40 200 \ 0 \ 0 \ 0]^t$
 - $\bullet \ P_{0/0} = \mathrm{diag}([0.1\ 0.1\ 10^{-5}\ 10^{-5}\ 10^{-7}\ 10^{-7}])$
- 4. $\mathbf{x}_0 = [200 3000 \ 0 \ 0 \ 0]^t$
 - $P_{0/0} = \operatorname{diag}([0.1 \ 0.1 \ 10^{-5} \ 10^{-5} \ 10^{-7} \ 10^{-7}])$

Ejercicio 4

- (a) Repetir el punto 2.a) agregándole un sesgo $b = [30 \ 45]^t$ a las mediciones de posición. Redefinir el espacio de estados para estimar el sesgo y graficar las componentes de posición reales superpuestas a las estimadas por Kalman sin corregir y las componentes estimadas corregidas (es decir, restándole el sesgo a la anterior).
- (b) Repetir el punto 2.a) agregándole un sesgo $\boldsymbol{b} = [0,2 \ 0,3]^t$ a las mediciones de velocidad. Redefinir el espacio de estados para estimar el sesgo y graficar las componentes de velocidad reales superpuestas a las estimadas por Kalman sin corregir y las componentes estimadas corregidas (es decir, restándole el sesgo a la anterior).