Algebraizing Propositional Logic

Yudai Kubono

March 25, 2023

Japan Advanced Institute of Science and Technology

Basic Notions

- (Algebraic) Similarity type is a pair $\mathcal{F} = \langle F, \rho \rangle$, where F is a non-empty set of function symbols, and ρ is a function $F \to \mathbb{N}$ assigning a finite rank (arity) to each function symbol.
- Algebras of type $\mathcal F$ is a tuple $\mathfrak A=\langle A,I\rangle$, where A is a non-empty carrier, and I is an interpretation, that is a function assigning n-ary operations on A to each function symbol f of rank n. Notationally, we write $\langle A,f_{\mathfrak A}\rangle_{f\in F}$ for such an algebra.
- Let $\mathfrak A$ and $\mathfrak B$ be algebras of the same similarity type. A function $\eta:A\to B$ is a homomorphism if for all $f_{\mathfrak A}, a_1\cdots a_n, \, \eta f_{\mathfrak A}(a_i,\cdots,a_n)=f_{\mathfrak B}(\eta(a_i),\cdots,\eta(a_n)),$ where n is the rank of $f_{\mathfrak A}$. Besides, we call $\mathfrak B$ the homomorphic image of $\mathfrak A$ if η is a surjective homomorphism.

- ▶ Let $\langle A, f_{\mathfrak{A}} \rangle_{f \in F}$ be an algebra. If $B \subseteq A$ is closed under every operations $f_{\mathfrak{A}}$, $\mathfrak{B} = \langle A, f_{\mathfrak{A}} \upharpoonright_B \rangle_{f \in F}$ is a subalgebra of the algebra.
- ▶ $\mathfrak{A} = \langle A, f_{\mathfrak{A}} \rangle$ is a (direct) product of $\{\mathfrak{A}_i\}_{i \in \mathcal{I}}$ where $A = \prod_{i \in \mathcal{I}} A_i$, and $f_{\mathfrak{A}}$ is defined componentwisely: for each $i \in \mathcal{I}$, $f_{\mathfrak{A}}(a_1, \cdots, a_n)(i) = f_{\mathfrak{A}_i}(a_1(i), \cdots, a_n(i))$, where $a_n(i) \coloneqq \pi_i(a)$ where $\pi_i : A \to A_i$ is a projection.
- A class is called a variety if the class is closed under homomorphic images, subalgebras and direct products. $\mathbb{V}(C)$ denotes the smallest variety containing C.

- ▶ Let X be a set of variables, and \mathcal{F} be a similarity type. $\operatorname{Term}_{\mathcal{F}}(X)$ is the smallest set of \mathcal{F} -terms over X, which are recursively composed of X and function symbols in F.
- An function $\theta: X \to A$ is called an assignment. the extention $\tilde{\theta}: \operatorname{Term}_F(X) \to A$ called a meaning is defined as follow: $\tilde{\theta}(p) = \theta(p)$; $\tilde{\theta}(c) = c_{\mathfrak{A}}$; $\tilde{\theta}(f(t_1, \dots, t_n)) = f(\tilde{\theta}(t_1), \dots, \tilde{\theta}(t_n))$, where $p \in X$.
- An equation is a pair of $\mathrm{Term}_{\mathcal{F}}(X)$. An equation $t \approx t'$ is true in an algebra if $\tilde{\theta}(t) = \tilde{\theta}(t')$ for all θ on \mathfrak{A} . It is denoted by $\mathfrak{A} \vDash t \approx t'$. The algebra is called a model for $t \approx t'$.

- ightharpoonup A class of algebras is equationally definable if there is a set of equations E such that the class precisely contains models for E.
- ▶ Birkhoff's theorem: a class of algebras is equationally definable if and only if it is a variety.

Equational Logic

- Let E be a set of equations. A derivation of E is a list of equations such that every element is axioms (elements in E), has the form of $t \approx t$, or is obtained from earlier elements using symmetry, transitivity, replacement (congruence), or substitution rules.
- ▶ An equation (formula) is derivable from E, which is denoted by $E \vdash t \approx u$ if the equation appears at the end of a derivation of E.
- ▶ Completeness theorem: for every equations $t \approx u$, $E \vDash t \approx u \Leftrightarrow E \vdash t \approx u$, where $E \vDash t \approx u$ is defined by $\mathfrak{A} \vDash E \Rightarrow \mathfrak{A} \vDash t \approx u$.

Algebraizing Propositional Logic

- ▶ A term algebra of \mathcal{F} over X is a tuple $\mathfrak{Term}_{\mathfrak{F}}(X) = \langle \mathrm{Term}_{\mathcal{F}}(X), I \rangle$, where $I(f)(t_1, \dots, t_n) := f(t_1, \dots, t_n)$.
- The propositional formula algebra over X is the term algebra of type Bool $\mathcal B$ over X, that is $\mathfrak{Form}_{\mathcal B}(X)=\langle \mathrm{Form}_{\mathcal B}(X),-,+,\perp\rangle$, where $-\varphi:=\neg\varphi$, and $\varphi+\psi:=\varphi\vee\psi$ (type Bool: $\langle\{\neg,\vee,\bot\},\rho\rangle$ such that $\rho(\neg)=1,\rho(\vee)=2$, and $\rho(\bot)=0$).
- ▶ The algebra of truth value 2 is a tuple $\langle \{1,0\},-,+,0\rangle$, where $-a\coloneqq 1-a$, and $a+b\coloneqq \max(a,b)$.
- ▶ Given an assignment θ , we obtain a meaning $\tilde{\theta}$:Form_{\mathcal{F}} $(X) \to \{1,0\}$, that is a homomorphism.

Theorem 1

 $\models_{\text{CL}} \varphi \Leftrightarrow 2 \models \varphi \approx \top.$

- ▶ A set algebra $\mathfrak S$ of A is a subalgebra of a power set algebra $\mathfrak P$ of A, which is a tuple $\mathfrak P = \langle \mathcal P(A), {}^-, \cup, \emptyset \rangle$.
- ▶ A power of 2 is the (direct) product of $(2_i)_{i \in \mathcal{I}}$.

Lemma 1

Every power set algebra is isomorphic to a power of 2.

Lemma 2

The validity of equations preserves under taking a direct product and a subalgebra.

Theorem 2

 $\models_{\mathsf{CL}} \varphi \Leftrightarrow \mathfrak{S} \models \varphi \approx \top.$

- ► A relation ≡ of provable equivalence is congruence on the propositional formula algebra.
- ▶ Lindenbaum-Tarski algebra is a tuple $\mathfrak{L}_{\equiv}(X) = \langle \operatorname{Form}_{\mathcal{B}}(X)/\equiv, -, +, 0 \rangle$, where $-[\varphi] \coloneqq [\neg \varphi], \ [\varphi] + [\psi] \coloneqq [\varphi \lor \psi], \ \text{and} \ 0 \coloneqq [\bot].$

Theorem 3

$$\vdash \varphi \Leftrightarrow \mathfrak{L}_{\equiv}(X) \vDash \varphi \approx \top$$

- ► An algebra of type Bool is called a boolean algebra iff it satisfies commutativity, associativity, distributivity, identity, and complementation. BA denotes the class of boolean algebras.
- lacktriangle All of 2, \mathfrak{S} , and $\mathfrak{L}_{\equiv}(X)$ are the examples of boolean algebras.

Theorem 4

 $\vdash \varphi \Leftrightarrow BA \vDash \varphi \approx \top$

Theorem 5 (Stone's Representation Theorem)

Any boolean algebra is isomorphic to a set algebra.

Theorem 6 (Completeness Theorem)

 $\vdash \varphi \Leftrightarrow \vDash \varphi$

Reference

[1] Blackburn, P., Rijke, M., and Venema, Y. (2001). *Modal Logic*. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107050884