THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH4406

Introduction to Partial Differential Equations Tutorial 11

Problem 1. Consider the following initial and boundary value problem

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2} - u & \text{for } 0 < x < \pi \text{ and } t > 0 \\ u(0, t) = u(\pi, t) = 0 \\ u(x, 0) = 0 \\ \frac{\partial u}{\partial t}(x, 0) = 3 \sin 3x. \end{cases}$$
 (1)

Answer the following questions:

- (i) Solve the initial and boundary value problem (1). To obtain full credit, you must show all details (including deriving ordinary differential equations, solving eigenvalue problem, \cdots , etc.) and express your final solution u without any undetermined coefficients.
- (ii) Prove or disprove

$$\lim_{t\to\infty}u(x,t)=0.$$

Problem 2. Solve the Laplace's equation

$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

inside a quarter-circle with radius 1 $(0 \le r \le 1, 0 \le \theta \le \frac{\pi}{2})$ subject to the boundary conditions

$$\frac{\partial u}{\partial \theta}(r,0) = u\left(r,\frac{\pi}{2}\right) = 0$$
 and $u(1,\theta) = 4\cos\theta$

by the *method of separation of variables*. In order to obtain full credit, you must show all steps (including deriving ordinary differential equations, solving eigenvalue problem, …, etc.) and express your final answer without any undetermined coefficients.

Problem 3. Consider the following initial and boundary value problem:

$$\begin{cases} \frac{\partial u}{\partial t} = 5\frac{\partial^2 u}{\partial x^2} & \text{for } 0 < x < 2, \ t > 0 \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(2, t) = 0 \\ u(x, 0) = \begin{cases} 0 & \text{if } 0 < x \le 1 \\ 1 & \text{if } 1 < x < 2 \end{cases} \end{cases}$$
(2)

and answer the following questions:

- (i) Solve the initial and boundary value problem (2). To obtain full credit, you must show all details (including deriving ordinary differential equations, solving eigenvalue problem, \cdots , etc.) and express your final solution u without any undetermined coefficients.
- (ii) Prove or disprove

$$\lim_{t\to\infty}u(x,t)=0.$$