الشبكة التربوية التونسية www.edunet.tn

REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ET DE LA FORMATION

SESSION PRINCIPALE EXAMEN DU BACCALAURÉAT SESSION DE JUIN 2009

SECTION: MATHEMATIQUES

EPREUVE: MATHEMATIQUES

DURÉE: 4 Heures

COEFFICIENT: 4

Exercice 1 (3 points)

Pour chacune des questions suivantes, une seule des trois réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Une réponse correcte vaut 0,75 point, une réponse fausse ou l'absence de réponse vaut 0 point.

- 1) Dans le plan muni d'un repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$, on considère le point A d'affixe $1+i\sqrt{3}$. L'image du point A par la rotation de centre O et d'angle $-\frac{\pi}{2}$ est le point d'affixe
 - a) $-\sqrt{3} + i$
- b) $\sqrt{3} i$

- c) $-\sqrt{3} i$
- 2) Si z est un nombre complexe non nul d'argument $\frac{\pi}{6}$ alors un argument de $i\overline{z}$ est
 - a) $-\frac{\pi}{6}$
- b) $\frac{\pi}{6}$

- c) $\frac{\pi}{3}$
- 3) Pour tout entier naturel n, on pose $a_n = 2^n + 3^n$,

alors $a_n \equiv 0 \pmod{5}$ pour

- a) tout entier naturel n pair
- b) tout entier naturel n
- c) tout entier naturel n impair
- 4) Un questionnaire à choix multiples (QCM) comporte quatre questions. Pour chaque question, trois réponses sont proposées dont une seule est exacte. Un candidat répond au hasard à chacune des quatre questions de ce QCM.

1

La probabilité pour que ses quatre réponses soient toutes exactes est

a) $\frac{1}{3}$

b) $\frac{1}{3^4}$

c) $1 - \left(\frac{2}{3}\right)^4$

الشبكة التربوية التونسية www.edunet.tn

Exercice 2 (5 points)

Soit f la fonction définie sur [0, 1] par $f(x) = \ln(1 - \sqrt{x})$.

On note (\mathscr{C}) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) a) Montrer que $\lim_{x\to 0^+} \frac{f(x)}{x} = -\infty$.
 - b) On donne ci-dessous le tableau de variation de la fonction f.

Tracer (@). (On précisera la demi-tangente à (@) en O).

- a) Montrer que f réalise une bijection de [0, 1 [sur]-∞, 0].
 (On notera f⁻¹ la fonction réciproque de f et (Γ) sa courbe représentative dans le repère (O, i, j).
 - b) Tracer (Γ). (On précisera la demi-tangente à (Γ) en O).
- 3) a) Montrer que, pour tout $x \in]-\infty$, 0], $f^{-1}(x) = (e^x 1)^2$.
 - b) Calculer l'aire \mathcal{A} de la partie du plan limitée par la courbe (Γ) et les droites d'équations $x = -\ln 2$; x = 0 et y = 0.
 - c) En déduire la valeur de $\int_0^{\frac{1}{4}} \ln(1-\sqrt{x}) dx$.

Exercice 3 (5 points)

Dans le plan orienté, on considère un triangle ABC isocèle et rectangle en A tel que $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{2} \ [2\pi]$.

On désigne par I, J, K et L les milieux respectifs des segments [AB] , [BC] , [AC] et [JC] .

- 1) Faire une figure.
- 2) Soit f la similitude directe de centre J, qui envoie A sur K.
 - a) Déterminer l'angle et le rapport de f.
 - b) Justifier que f(K) = L.
 - c) Soit H le milieu du segment [A J]. Justifier que f(I) = H .

الشبكة التربوية التونسية www.edunet.tn

3) On munit le plan du repère orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AC})$.

Soit ϕ l'application du plan dans lui-même qui à tout point M d'affixe z associe le point M' d'affixe z' tel que $z' = -\left(\frac{1+i}{2}\right)\overline{z} + \frac{1+i}{2}$.

- a) Montrer que φ est une similitude indirecte de centre C.
- b) Donner les affixes des points I, K, J et H.
- c) Déterminer $\phi(I)$ et $\phi(J)$.
- d) Déduire alors que ϕ = f o $s_{(IK)}$, (où f est la similitude définie dans 2° et $s_{(IK)}$ est la symétrie orthogonale d'axe (IK)).
- 4) Soit Δ l'axe de la similitude indirecte φ.
 - a) Tracer A.
 - b) La droite Δ coupe les droites (IK) et (HL) respectivement en P et Q . Montrer que $\phi(P)$ = f(P) et en déduire que $\phi(P)$ = Q .

Exercice 4 (4 points)

Dans le plan rapporté à un repère orthonormé direct $\left(0,\,\vec{i},\,\vec{j}\right)$, on considère l'ellipse (\mathcal{E}) d'équation $x^2+\frac{y^2}{4}=1$ et on désigne par M le point de coordonnées $(\cos\theta\,,\,2\sin\theta)$, où θ est un réel de $\left[0\,,\,\frac{\pi}{2}\right]$.

- 1) a) Déterminer, par leurs coordonnées, les sommets et les foyers de (\mathcal{E}) .
 - b) Tracer (\mathcal{E}) et placer ses foyers.
 - c) Vérifier que le point M appartient à (\mathfrak{E}) .
- 2) Soit (T) la tangente à (\mathcal{E}) en M.

 Montrer qu'une équation de (T) dans le repère $\left(0, \vec{i}, \vec{j}\right)$ est $2x \cos \theta + y \sin \theta 2 = 0$.
- 3) On désigne respectivement par P et Q les points d'intersection de (T) avec l'axe des abscisses et l'axe des ordonnées et on désigne par A l'aire du triangle OPO.
 - a) Montrer que $\mathscr{A} = \frac{2}{\sin(2\theta)}$.
 - b) En déduire que l'aire ${\mathscr A}$ est minimale si et seulement si M est le milieu du segment [PQ].

3

الشبكة التربوية التونسية www.edunet.tn

Exercice 5 (3 points)

- 1) Résoudre l'équation différentielle y" + y = 0.
- 2) Soit E l'ensemble des fonctions définies et deux fois dérivables sur \mathbb{R} telles que pour tout $x \in \mathbb{R}$, $f'(x) + f\left(\frac{\pi}{2} x\right) = 0$, où f' désigne la fonction dérivée de f.
 - a) Soit g la fonction définie sur IR par g(x) = cos x.
 Vérifier que g est un élément de E.
 - b) Soit f un élément de E . Vérifier que, pour tout réel x , $f''(x) = f'(\frac{\pi}{2} x)$.
 - c) En déduire que si f est un élément de E alors f est une solution de l'équation différentielle y" + y = 0.
 - d) Déterminer alors l'ensemble E.