

Алгоритмы и структуры данных

Лекция 8

Алгоритмы на графах

План лекции

- Графы. Представление графов.
- Обход графа. Поиск путей в графах. BFS. DFS.
- Топологическая сортировка.
- Компоненты связности. Алгоритм Косарайю.
- Поиск остовных деревьев в графе. Алгоритмы Прима и Краскала.
- Алгоритм Дейкстры и его связь с жадными алгоритмами.
- Алгоритм Флойда-Уоршалла и его связь с динамическим программированием.
- Потоки на графах. Максимальный поток.

2 / 149

Графы. Представление графов.

Графы: применение

- Географические карты. Какой маршрут из Москвы в Лондон требует наименьших расходов? Какой маршрут из Москвы в Лондон требует наименьшего времени? Требуется информация о связях между городами и о стоимости этих связей.
- Микросхемы. Транзисторы, резисторы и конденсаторы связаны между собой проводниками. Есть ли короткие замыкания в системе? Можно ли так переставить компоненты, чтобы не было пересечения проводников?
- Расписания задач. Одна задача не может быть начата без решения других, следовательно имеются связи между задачами. Как составить график решения задач так, чтобы весь процесс завершился за наименьшее время?

Графы: применение

- Компьютерные сети. Узлы конечные устройства, компьютеры, планшеты, телефоны, коммутаторы, маршрутизаторы... Каждая связь обладает свойствами латентности и пропускной способности. По какому маршруту послать сообщение, чтобы она было доставлено до адресата за наименьшее время? Есть ли в сети «критические узлы», отказ которых приведёт к разделению сети на несвязные компоненты?
- Структура программы. Узлы функции в программе. Связи может ли одна функция вызвать другую (статический анализ) или что она вызовет в процессе исполнения программы (динамический анализ). Чтобы узнать, какие ресурсы потребуется выделять системе, требуется граф,

- Ориентированный граф: G = (V, E) есть пара из V конечного множества и E подмножества множества $V \times V$.
- Вершины графа: элементы множества V (vertex, vertices).
- Рёбра графа: элементы множества E (edges, связи).
- Неориентированный граф: рёбра есть неупорядоченные пары.
- ullet Петля: ребро из вершины v_1 в вершину v_2 , где $v_1=v_2$.

- ullet Смежные вершины: v_i и v_j смежны, если имеется связь (v_i,v_j) .
- ullet Множество смежных вершин: обозначаем Adj[v]
- ullet Степень вершины: величина |Adj[v]|
- ullet Путь из v_0 в v_n : последовательность рёбер, таких, что $e_1=(v_0,v_1)$, $e_2=(v_1,v_2)\dots e_n=(v_{n-1},v_n)$.
- Простой путь: путь, в котором все вершины попарно различны.
- ullet Длина пути: количество n рёбер в пути.
- ullet Цикл: путь, в котором $v_0 = v_n$.

7 / 149

- **Неориентированный связный граф**: для любой пары вершин существует путь.
- Связная компонента вершины v: множество вершин неориентированного графа, до которых существует путь из v.
- ullet Расстояние между $\delta(v_i,v_j)$: длина кратчайшего пути из v_i в v_j .

$$\delta(u, v) = 0 \Leftrightarrow u = v$$

$$\delta(u, v) \le \delta(u, v') + \delta(v', v)$$

- Дерево: связный граф без циклов.
- Граф со взвешенными рёбрами: каждому ребру приписан вес c(u,v).

Ориентированный граф.

Типичные: задачи на графах

- Проверка графа на связность.
- Является ли граф деревом.
- ullet Найти кратчайший путь из u в v.
- Найти цикл, проходящий по всем рёбрам ровно один раз (цикл Эйлера).
- Найти цикл, проходящий по всем вершинам ровно один раз (цикл Гамильтона).
- Проверка на планарность определить, можно ли нарисовать граф на плоскости без самопересечений.

- Каждой вершине сопоставляется множество смежных с ней.
- Всё представляется в виде матрицы смежности.
- Всё представляется в виде списка рёбер.

11 / 149

Представление графа в памяти в виде матрицы смежности

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	0	1
3	1	0	0	0	1	0
4	0	1	1	0	0	0
5	0	0	1	1	0	1
6	0	0	0	1	1	0

Представление графа в памяти в виде множеств смежности


```
v_1: \{2,4\}
```

 $v_2: \{6\}$

 $v_3:\{1,5\}$

 $v_4:\{2,3\}$

 $v_5: \{3,4,6\}$

 $v_6: \{4,5\}$

13 / 149

Представление взвешенного графа в памяти в виде матрицы смежности

	1	2	3	4	5	6
1	0	5	0	10	0	0
2	0	0	0	0	0	11
3	15	0	0	0	2	0
4	0	2	4	0	0	0
5	0	0	0	7	0	6
6	0	0	0	4	4	0

Представление взвешенного графа в памяти в виде множеств смежности


```
v_1: \{(2,5), (4,10)\}
v_2: \{(6,11)\}
```

$$v_3: \{(1,15),(5,2)\}$$

$$v_4: \{(2,2), (3,4)\}$$

$$v_5: \{(4,7), (6,6)\}$$

$$v_6: \{(4,4), (5,4)\}$$

Представление взвешенного графа в памяти в виде списка рёбер

$$\{from, to, cost\}\dots$$

 $\{\{1, 2, 5\}, \{1, 4, 10\}, \{2, 6, 11\}, \{3, 1, 15\}, \{3, 5, 2\},$
 $\{4, 2, 2\}, \{5, 4, 7\}, \{5, 6, 6\}, \{6, 4, 4\}, \{6, 5, 4\}\}$

Преимущества и недостатки методов представления:

Представление	Матрица	Множества	Список
	смежности	смежности	рёбер
Занимаемая	$O(V ^2)$	O(V + E)	O(E)
память			
	Простой	Требует мало	Можно
Особенности	доступ	памяти для	иметь
		ряда графов	мультирёбра

Обход графа. Поиск путей в графах. BFS. DFS.

Поиск в ширину: алгоритм BFS

- Этот алгоритм сначала пытается обработать всех соседей текущей вершины.
- Используется абстракция очередь с методами enqueue и dequeue.
- Термин: предшественник $\pi(u)$ на пути от s: предпоследняя вершина в кратчайшем пути из s в u.
- Используются цвета:
 - Белый для непросмотренных вершин.
 - Серый для обрабатываемых вершин.
 - Чёрный для обработанных вершин.

19 / 149

Обход графа: поиск в ширину от s, BFS

Просмотр вершин графа в порядке возрастания расстояния от s.

```
1: procedure BFS(G: Graph, s: Vertex)
         for all u \in V[G] \setminus \{s\} do
 3:
             d[u] \leftarrow \infty; c[u] \leftarrow \text{white}; \pi[u] \leftarrow \text{nil}
 4:
        end for
 5: d[s] \leftarrow 0; c[s] \leftarrow \text{grey}
 6:
      Q.enqueue(s)
 7:
       while Q \neq \emptyset do
 8:
             u \leftarrow Q.dequeue()
 9:
             for all v \in Adj[u] do
                  if c[v] = white then
10:
                       Q.engueue(v)
11:
                      d[v] \leftarrow d[u] + 1
12:
13:
                      \pi[v] = u; \quad c[v] = \text{grey}
14:
                  end if
15:
             end for
16:
             c[u] \leftarrow \mathsf{black}
17:
         end while
18: end procedure
```

Начало алгоритма.

$$\begin{aligned} d &= \{0, \infty, \infty, \infty, \infty, \infty\} \\ \pi &= \{nil, nil, nil, nil, nil, nil\} \\ Q &= \{v_1\} \end{aligned}$$

После первого прохождения цикла While

$$d = \{0, 1, \infty, 1, \infty, \infty\}$$

$$\pi = \{nil, v_1, nil, v_1, nil, nil\}$$

$$Q = \{v_4, v_2\}$$

После второго прохождения цикла While

$$d = \{0, 1, 2, 1, \infty, \infty\}$$

$$\pi = \{nil, v_1, v_4, v_1, nil, nil\}$$

$$Q = \{v_2, v_3\}$$

После третьего прохождения цикла While

$$d = \{0, 1, 2, 1, \infty, 2\}$$

$$\pi = \{nil, v_1, v_4, v_1, nil, v_2\}$$

$$Q = \{v_3, v_6\}$$

После четвёртого прохождения цикла While

$$d = \{0, 1, 2, 1, 3, 2\}$$

$$\pi = \{nil, v_1, v_4, v_1, v_3, v_2\}$$

$$Q = \{v_6, v_5\}$$

Алгоритмы на графах 4 мая 2021 г. 25 / **149**

Завершение алгоритма

$$d = \{0, 1, 2, 1, 3, 2\}$$

$$\pi = \{nil, v_1, v_4, v_1, v_3, v_2\}$$

$$Q = \{\}$$

Алгоритм BFS: свойства

Сложность алгоритма:

- представление в виде множества смежности:
 - ▶ Инициализация: O(|V|)
 - ▶ Каждая вершина обрабатывается не более одного раза. Проверяются все смежные вершины.

$$\sum_{v \in V} |Adj(v)| = O(|E|)$$

▶ T = O(|V| + |E|)

Поиск в глубину: алгоритм DFS

- Этот алгоритм пытается идти вглубь, пока это возможно.
- Обнаружив вершину, алгоритм не возвращается, пока не обработает её полностью.
- Используются переменные
 - *time* глобальные часы.
 - lacktriangledown d[u] время начала обработки вершины. u
 - f[u] время окончания обработки вершины. u
 - ▶ $\pi[u]$ предшественник вершины u.

Алгоритм DFS

```
1: procedure DFS(G:Graph)
        for all u \in V[G] do
            c[u] \leftarrow \text{white}; \qquad \pi[u] \leftarrow \text{nil}
 3:
        end for
 4:
 5:
    time \leftarrow 0
    for all u \in V[G] do
 6:
 7:
            if c[u] = white then
                DFS-vizit(u)
 8:
            end if
        end for
10:
11: end procedure
```

Алгоритм DFS

```
1: procedure DFS-VIZIT(u : Vertex)
        c[u] \leftarrow \mathsf{grey}
    time \leftarrow time + 1
 4:
     d[u] \leftarrow time
     for all v \in Adj[u] do
 5:
             if c[v] = white then
 6:
                 \pi[v] \leftarrow u
 7:
                 DFS-vizit(v)
 8:
             end if
 9:
      end for
10:
     c[u] \leftarrow \mathsf{black}
11:
    time \leftarrow time + 1
12:
        f[u] \leftarrow time
13:
14: end procedure
```

Начинается обход с вершины v_1

Около каждой вершины пишем два числа: время входа в вершину и через знак / — время выхода из вершины.

Первый рекурсивный вызов DFS-vizit (v_4)

Второй рекурсивный вызов DFS-vizit (v_2)

Пятый рекурсивный вызов DFS-vizit (v_5)

Выход из пятой рекурсии вызова DFS-vizit (v_5)

Выход из рекурсии вызов DFS-vizit(v_2)

Прогон алгоритма DFS

Завершение алгоритма

Алгоритм DFS

- \bullet Сложность алгоритма для представления в виде множества смежности равна O(|V|+|E|)
- Этот алгоритм не находит кратчайшие маршруты!

Задача: имеется ориентированный граф G = (V, E) без циклов.

Требуется указать такой порядок вершин на множестве V, что любое ребро ведёт из меньшей вершины к большей.

Требуемая структура данных: L — очередь с операцией enqueue.

```
1: procedure TopoSort(G: Graph)
       L \leftarrow 0
     for all u \in V[G] do
           c[u] \leftarrow \mathsf{white};
       end for
 5:
 6:
     time \leftarrow 0
       for all u \in V[G] do
 7:
           if c[v] = white then
 8:
                DFS-vizit(u)
           end if
10:
        end for
11:
12: end procedure
```

```
1: procedure DFS-VIZIT(u : Vertex)
       c[u] \leftarrow \mathsf{grey}
     for all v \in Adj[u] do
 3:
            if c[v] = white then
 4:
                \pi[v] \leftarrow u
 5:
                DFS-vizit(u)
 6:
 7:
            end if
      end for
 8:
     c[u] \leftarrow \mathsf{black}
       L.enqueue(u)
10:
11: end procedure
```

Прогон алгоритма топологической сортировки

Пусть обход начнётся с вершины \emph{v}_1

Прогон алгоритма топологической сортировки

Результат обхода.

Порядок вершин (добавляем в начало по номерам): $V_1, V_2, V_4, V_6, V_5, V_3$

Поиск компонент связности

Поиск компонент связности

- Для неориентированных графов: запустив поиск BFS или DFS.
- Все выкрашенные по завершении поиска вершины образуют компоненту связности.
- Выбирается произвольным образом необработанная вершина и алгоритм повторяется, формируя другую компоненту связности.
- Алгоритм заканчивается, когда не остаётся необработанных вершин.

Поиск компонент связности

- Для ориентированных графов: результаты зависят от порядка обхода вершин.
- Компонента сильной связности ориентированного графа: максимальное по размеру множество вершин, взаимно достижимых друг из друга.

- Проведём полный DFS поиск.
- ullet В алгоритме полного DFS не специфицировано, с какой вершины начинается поиск o можно выбрать произвольную.

Обход с вершины v_2 :

- Заменим направления всех рёбер (перевернём все стрелки).
- ullet Каждое ребро $u \to v$ заменяется на $v \to u$.

- Обходим ещё раз. Начальная вершина из необработанных, у которой наибольшие значение времени выхода.
- Обход из вершины 2 покрасил вершины v_1, v_2, v_3 и v_4 .
- Остались непокрашенные вершины v_5, v_6, v_7 и v_8 .
- Повторяем, пока останутся непокрашенные вершины.

Номер	1	2	3	4	5	6	7	8
Вход/выход	12/13	1/16	11/14	10/15	2/9	4/5	3/8	6/7

• Каждый «малый» проход алгоритма DFS даст нам вершины, которые принадлежат одной компоненте сильной связности.

• Рассматривая компоненту сильной связности как единую мета-вершину, мы получаем новый граф, который называется конденсацией исходного графа или конденсированным графом.

ロ ト 4 個 ト 4 章 ト 4 章 ト 章 - かく(^)

Остовные деревья

Остовное дерево: ещё немного терминов

- С точки зрения теории графов дерево есть ациклический связный граф.
- Множество деревьев называется лесом (forest) или бором.
- Остовное дерево связного графа подграф, который содержит все вершины графа и представляет собой полное дерево.
- Остовный лес графа лес, содержащий все вершины графа.

Минимальное остовное дерево

- Построение остовных деревьев одна из основных задач в компьютерных сетях.
- Решение задачи как спланировать маршрут от одного узла сети до других.
- Для некоторого типа узлов в передаче сообщений недопустимо иметь несколько возможных маршрутов. Например, если компьютер соединён с маршрутизатором по Wi-Fi и Ethernet одновременно, то в некоторых операционных системах сообщения от компьютера до маршрутизатора не будут доходить из-за наличия цикла.
- Построение остовного дерева избавление от циклов в графе.

Остовные деревья

Каждый из узлов имеет информацию о связях с соседями (рёбрах). Каждое ребро имеет вес.

Остовное дерево

- Множество достижимых узлов из некоторого *корневого* узла P_r должно совпадать с полным множеством.
- Для каждого узла должен быть ровно один маршрут до любого из достижимых узлов.

Это — остовное дерево для корневого узла P_r .

Минимальное остовное дерево

Задача: определение кратчайшего пути из корневого узла.

Минимальное остовное дерево:

Минимальное остовное дерево

- MST Minimal Spanning Tree.
- Минимальное остовное дерево взвешенного графа есть остовное дерево, вес которого (сумма его всех рёбер) не превосходит вес любого другого остовного дерева.
- Именно минимальные остовные деревья больше всего интересуют проектировщиков сетей.
- Сечение графа разбиение множества вершин графа на два непересекающихся подмножества.
- **Перекрёстное ребро** ребро, соединяющее вершину одного множества с вершиной другого множества.

• Лемма. Если T — произвольное остовное дерево, то добавление любого ребра e между двумя вершинами u и v создаёт цикл, содержащий вершины u,v и ребро e.

61 / 149

- Лемма. При любом сечении графа каждое минимальное перекрёстное ребро принадлежит некоторому MST-дереву и каждое MST-дерево содержит перекрёстное ребро.
- Доказательство от противного. Пусть e минимальное перекрёстное ребро, не принадлежащее ни одному МЅТ и пусть T МЅТ дерево, не содержащее e. Добавим e в T. В этом графе есть цикл, содержащий e и он содержит ребро e', с весом, не меньшим e. Если удалить e', то получится остовное дерево не большего веса, что противоречит условию минимальности T или предположению, что e не содержится в T.

62 / 149

• Следствие. Каждое ребро дерева MST есть минимальное перекрёстное ребро, определяемое вершинами поддеревьев, соединённых этим ребром.

- Лемма (без доказательства). Пусть имеется граф G и ребро e. Пусть граф G' есть граф, полученный добавлением ребра e к графу G. Результатом добавления ребра e в MST графа G и последующего удаления максимального ребра из полученного цикла будет MST графа G'.
- Эта лемма выявляет рёбра, которые не должны входить в MST.

Алгоритмы поиска MST

Алгоритм Прима

- Используется сечение графа на два подграфа древесных вершин и недревесных вершин.
- Выбираем произвольную вершину. Это MST дерево, состоящее из одной древесной вершины.
- Выбираем минимальное перекрёстное ребро между MST множеством и недревесным множеством.
- Повторяем операцию до тех пор, пока все вершины не окажутся в дереве.

Исходный граф.

Вершина 0 — корневая. Переводим её в MST. Проверяем все веса из MST в не MST.

(0-2) самое лёгкое ребро. Переводим вершину 2 и ребро (0-2) в MST.

Отмечаем все рёбра из MST в не MST.

Переносим вершину 7 и ребро (0-7) в MST.

Отмечаем все рёбра из MST в не MST.

Переносим вершину 1 и ребро (1-7) в MST.

Отмечаем все рёбра из MST в не MST.

Переносим вершину 6 и ребро (7-6) в MST.

Отмечаем все рёбра из MST в не MST.

Переносим вершину 4 и ребро (7-4) в MST.

Отмечаем все рёбра из MST в не MST.

Переносим вершину 3 и ребро (3-4) в MST.

Все вершины в MST.

- В данном виде алгоритм не очень эффективен.
- На каждом шаге мы забываем про те рёбра, который уже проверяли.
- Введём понятие накопителя.
- Накопитель содержит множество рёбер-кандидатов.
- Каждый раз в MST включается самое лёгкое ребро.

Более эффективная реализация алгоритма Прима

- Выбираем произвольную вершину. Это MST дерево, состоящее из одной вершины. Делаем вершину текущей.
- Помещаем в накопитель все рёбра, которые ведут из этой вершины в не MST узлы. Если в какой-либо из узлов уже ведёт ребро с большей длиной, заменяем его ребром с меньшей длиной.
- Выбираем ребро с минимальным весом из накопителя.
- Повторяем операцию до тех пор, пока все вершины не окажутся в дереве.

- Алгоритм Прима обобщение поиска на графе.
- Накопитель представляется очередью с приоритетами.
- Используется операция «извлечь минимальное».
- Используется операция «увеличить приоритет».
- Такой поиск на графе называется PFS поиск по приоритету.
- ullet Сложность алгоритма $O(|E|\log |V|)$.

Алгоритм Краскала (Kruscal).

- Один из самых старых алгоритмов на графах (1956).
- Предварительное условие: связность графа.
 - Создаётся число непересекающихся множеств по количеству вершин и каждая вершина составляет своё множество.
 - 2 Множество MST вначале пусто.
 - Из всех рёбер, не принадлежащих MST выбирается самое короткое из всех рёбер, не образующих цикл. Вершины ребра должны принадлежать различным множествам.
 - Выбранное ребро добавляется к множеству МST
 - Множества, которым принадлежат вершины выбранного ребра, сливаются в единое.
 - **6** Если размер множества MST стал равен |V|-1, то алгоритм завершён, иначе отправляемся к пункту 3.

Список рёбер упорядочен по возрастанию:

СПИСО	r pc	оср	yno	РЛД	UTCII	по в	Japac	танин	0.		
i	3	0	1	0	0	6	3	4	0	0	4
j	5	2	7	7	1	7	4	5	6	5	6
W_{ij}	4	7	7	9	10	10	11	15	22	26	30

Таблица принадлежности вершин множествам:

V_i	0	1	2	3	4	5	6	7
p	0	1	2	3	4	5	6	7

Алгоритм Краскала:первая итерация

Вершины 3 и 5 самого короткого ребра в разных множествах \to отправляем ребро в множество MST и объединяем множества.

Ī	V_i	0	1	2	3	4	5	6	7
	p	0	1	2	3	4	3	6	7

Алгоритм Краскала:вторая итерация

Два подходящих ребра с одинаковым весом:

i	0	1	0	0	6	3	4	0	0	4
j	2	7	7	1	7	4	5	6	5	6
W_{ij}	7	7	9	10	10	11	15	22	26	30

Лемма. При равных подходящих рёбрах можно выбирать произвольное.

Доказательство. Если добавление первого ребра не помешает добавлению второго, то, всё ОК.

Если помешает (добавление второго создаст цикл), то можно удалить любое из них, общий вес дерева останется неизменным.

Алгоритм Краскала:вторая итерация

Выберем ребро (0,2) и поместим вершину 2 в множество номер 0.

V_i	0	1	2	3	4	5	6	7
p	0	1	0	3	4	3	6	7

Алгоритм Краскала: третья итерация

Ребро (1,7) привело к слиянию множеств 1 и 7.

V_i	0	1	2	3	4	5	6	7
p	0	1	0	3	4	3	6	1

Алгоритм Краскала: четвёртая итерация

Самым коротким ребром из оставшихся оказалось ребро (0,7).

Нам нужно слить два множества — одно, содержащее $\{0,2\}$ и другое — содержащее $\{1,7\}.$

90 / 149

Алгоритм Краскала: четвёртая итерация

V_i	0	1	2	3	4	5	6	7
p	0	1	0	3	4	3	6	1

- Пусть новое множество получит номер 0.
- Нужно ли найти в массиве p все единицы (номер второго множества) и заменить их на нули (номер того множества, куда переходят элементы первого)?
- Можно быстрее, используя *систему непересекающихся множеств* Union-Find или Disjoint Set Union, DSU.

Система непересекающихся множеств, DSU

Абстракция DSU реализует три операции:

- \bullet create(n) создать набор множеств из n элементов.
- \bullet find_root(x) найти представителя множества.
- \bullet merge(1,r) сливает два множества 1 и r.

Система непересекающихся множеств: $find_root(x)$

V_i	0	1	2	3	4	5	6	7
p	0	1	0	3	4	3	6	1

- p[7] == 1 номер множества, он же и представитель.
- Если для слияния множеств {0,2} и {1,7} поместим в р[7] число 0, то для вершины 1 представителем останется 1, что неверно (после слияния вершина 1 должна принадлежать множеству 0).
- Так как p[7] ==1, то и у седьмой, и у первой вершины представители одинаковые.
- ullet Если номер вершины совпадает с номером представителя, то, в массив р при исполнении ничего не было записано \to эта вершина есть корень дерева.

93 / 149

Система непересекающихся множеств

• После слияния нужно заменить всех родителей вершины на нового представителя. Это делается изящным рекурсивным алгоритмом:

```
int find_root(int r) {
   if (p[r] == r) return r; // A trivial case
   return p[r] = find_root(p[r]); A recursive case
}
```

94 / 149

Система непересекающихся множеств

- merge(1,r). Для сохранения корректности алгоритма вполне достаточно любого из присвоений: p[1] = r или p[r] = 1. Всю дальнейшую корректировку родителей в дальнейшем сделает метод find_root.
- Приёмы балансировки деревьев:
 - Использование ещё одного массива, хранящего длины деревьев: слияние производится к более короткому дереву.
 - Случайный выбор дерева-приёмника.

```
void merge(int 1, int r) {
    l = find_root(1); r = find_root(r);
    if (rand() % 2) p[1] = r;
    else p[r] = 1;
}
```

• Важно: операция слияния начинается с операции поиска, которая заменяет аргументы значениями корней их деревьев!

V_i	0	1	2	3	4	5	6	7
p	0	1	0	3	4	3	6	1

- Определяем, каким деревьям принадлежат концы ребра (0,7).
- find_root(0) вернёт 0 как номер множества.
- find_root(7) сначала убедится, что в p[7] лежит 1 и вызовет find_root(1), после чего, возможно, заменит p[7] на 1 и вернёт 1.

- Концы ребра 0 принадлежат разным множествам \rightarrow сливаем множества, вызвав merge (0,7).
- Операция merge заменит свои аргументы, 0 и 7, корнями деревьев, которым принадлежат 0 и 7, то есть, 0 и 1 соответственно.
- B p[1] помещается 0 и деревья слиты.
- Обратите внимание на то, что в р[7] всё ещё находится 1!.

V_i	0	1	2	3	4	5	6	7
p	0	0	0	3	4	3	6	1

Следующее peбpo — (6,7). find_root(7) установит p[7]=0. Это же значение будет присвоено и p[6].

- 711-				-	T	-		
V_i	0	1	2	3	4	5	6	7
p	0	0	0	3	4	3	0	0

На следующем этапе ребро (3,4) окажется самым коротким.

V_i	0	1	2	3	4	5	6	7
p	0	0	0	3	3	3	0	0

Концы рёбер (4,5) и (0,6) принадлежат одним множествам. Ребро (4,7) подходит. Количество рёбер в множестве МЅТ достигло 7=N-1. Конец.

V_i	0	1	2	3	4	5	6	7
p	0	0	0	3	0	3	0	0

Алгоритм Краскала: сложность

- Первая часть алгоритма сортировка рёбер. Сложность этой операции $O(|E|\log|E|)$.
- В 1984 году Tarjan доказал, используя функцию Аккермана, что операция поиска в DSU имеет сложность амортизированную O(1).
- ullet Сложность всего алгоритма Краскала и есть $O(|E|\log|E|).$
- Для достаточно разреженных графов он обычно быстрее алгоритма Прима, для заполненных наоборот.

Дерево кратчайших путей — SPT

ullet Пусть задан граф G и вершина s. Дерево кратчайших путей для sподграф, содержащий s и все вершины, достижимые из s, образующий направленное поддерево с корнем в s, где каждый путь от вершины s до вершины u является кратчайшим из всех возможных путей.

- Строит SPT (Shortest Path Tree).
- Определяет длины кратчайших путей от заданной вершины до остальных.
- Обязательное условие: граф не должен содержать рёбер с отрицательным весом.

- В SPT заносится корневой узел (исток).
- На каждом шаге в SPT добавляется одно ребро, которое формирует кратчайший путь из истока в не-SPT.
- Вершины заносятся в SPT в порядке их расстояния по SPT от начальной вершины.

Жадная стратегия.

- ullet Пусть найдено оптимальное множество U.
- ullet Изначально оно состоит из вершины s
- ullet Длины кратчайших путей до вершин множества обозначим, как $d(s,v),v\in U.$
- ullet Среди вершин, смежных с U находим вершину $u,u \notin U$ такую, что достигается минимум

$$\min_{v \in U, u \notin U} d(s, v) + w(v, u).$$

ullet Обновляем множество $U:U\leftarrow U\cup\{u\}$ и повторяем операцию.

Используются переменные:

- ullet d[u] длина кратчайшего пути из вершины s до вершины u.
- ullet $\pi[u]$ предшественник u в кратчайшем пути от s.
- ullet w(u,v) вес пути из u в v (длина ребра, вес ребра, метрика пути).
- ullet Q приоритетная по значению d очередь узлов на обработку.
- ullet U множество вершин с уже известным финальным расстоянием.

```
1: procedure DIJKSTRA(G: Graph; w: weights; s: Vertex)
         for all v \in V do
 2:
             d[v] \leftarrow \infty
 3:
             \pi[v] \leftarrow nil
 4:
       end for
 5:
     d[s] \leftarrow 0
 6:
     U \leftarrow \emptyset
 7:
     Q \leftarrow V
 8:
         while Q \neq \emptyset do
 9:
10:
             u \leftarrow Q.extractMin()
             U \leftarrow U \cup \{u\}
11:
             for all v \in Adj[u], v \notin U do
12:
                  Relax(u,v)
13:
             end for
14:
         end while
15:
16: end procedure
```

```
1: procedure Relax(u, v : Vertex)
2: if d[v] > d[u] + w(u, v) then
3: d[v] = d[u] + w(u, v)
4: \pi[v] \leftarrow u
5: end if
6: end procedure
```

- ullet Операция Relax релаксация
- Два вида релаксации:
 - Релаксация ребра. Даёт ли продвижение по данному ребру новый кратчайший путь?
 - ► Релаксация пути. Даёт ли прохождение через данную вершину новый кратчайший путь, соединяющий две другие заданные вершины.

Исходный граф

v1 в SPT, v2, v3 и v4 — в накопителе.

Выбран узел v2. Корректируются расстояния от него. Релаксация: $(1 \to 4)$

заменён на $(1 \to 2 \to 4)$.

Выбран узел v3.

В накопитель отправляется v5. Релаксация: $(1 \to 2 \to 6)$ заменено на $(1 \to 2 \to 4 \to 6)$, $(1 \to 3)$ Ha $(1 \to 2 \to 4 \to 3)$

Алгоритм Дейкстры: сложность

- ullet Имеется |V|-1 шаг.
- На каждом шаге корректировка расстояние до соседей (просмотреть все рёбра) и выбор минимального из накопителя.
- ullet Для насыщенных деревьев сложность алгоритма $O(V^2 \log V)$

Множественный алгоритм Дейкстры

- Если мы хотим построить таблицу минимальных расстояний от каждого до каждого, то вычисление таблиц для каждого узла в отдельности имеет сложность $O(N^2 \log N)$.
- Вычисление таблиц для всех узлов имеет сложность $N \cdot O(N^2 \log N) = O(N^3 \log N)$
- ullet Существует более быстрый алгоритм, имеющий сложность $O(N^3)$.

Построение таблиц маршрутизации.

- Известен с 1962 года.
- Определяет кратчайшие пути во взвешенном графе, описанном матрицей смежности.
- В матрице смежности число, находящееся в i-й строке и j-м столбце есть вес связи между ними.
- Изменим представление и будем полагать, что в матрице смежности $C_{ij} = \infty$, если узлы i и j не являются соседями.
- На входе алгоритм принимает модифицированную матрицу смежности, а на выходе эта матрица будет содержать в элементе C_{ij} вес кратчайшего пути из P_i в P_j .
- Допускается наличие путей с отрицательным весом.
- Не должно быть циклов с отрицательной длиной.

Сам алгоритм может быть описан в рекурсивной форме как

$$D_{ij}^{(k)} = egin{cases} C_{ij}, & \text{если } k = 0, \\ \min\left(D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)}
ight), & \text{если } k \geqslant 1 \end{cases}$$

Это — задача динамического программирования.

Этапы прохождения алгоритма для графа

Исходная матрица смежности:

$$D^{(0)} = \begin{bmatrix} P_0 & P_1 & P_2 & P_3 & P_4 & P_5 \\ P_0 & 0 & \infty & \infty & \infty & 3 & 2 \\ P_1 & \infty & 0 & \infty & \infty & \infty & 4 \\ P_2 & \infty & 7 & 0 & 3 & 12 & \infty \\ P_3 & \infty & \infty & \infty & 0 & \infty & \infty \\ P_4 & \infty & \infty & 2 & \infty & 0 & \infty \\ P_5 & \infty & \infty & 4 & 2 & 5 & 0 \end{bmatrix}$$

Начальная матрица $D^{(0)}$ содержит метрики всех наилучших маршрутов единичной длины. Каждая следующая итерация алгоритма добавляет в матрицу $D^{(i+1)}$ элементы, связанные с маршрутами длины i, на единицу большей.

После первой итерации матрицы не изменяются.

После второй итерации получается следующее (красным цветом помечены изменившиеся элементы таблиц):

		P_0	P_1	P_2	P_3	P_4	P_5
	P_0	0	∞	∞	∞	3	2
	P_1	∞	0	∞	∞	∞	4
$D^{(2)} =$	P_2	∞	7	0	3	12	11
	P_3	∞	∞	∞	0	∞	∞
	P_4	∞	∞	∞	∞	0	∞
	P_5	∞	∞	4	2	5	2 4 11 ∞ ∞ 0

$$D^{(3)} = \begin{bmatrix} P_0 & P_1 & P_2 & P_3 & P_4 & P_5 \\ P_0 & 0 & \infty & \infty & \infty & 3 & 2 \\ P_1 & \infty & 0 & \infty & \infty & \infty & 4 \\ P_2 & \infty & 7 & 0 & 3 & 12 & 11 \\ P_3 & \infty & \infty & \infty & 0 & \infty & \infty \\ P_4 & \infty & \infty & \infty & \infty & 0 & \infty \\ P_5 & \infty & \mathbf{11} & 4 & 2 & 5 & 0 \end{bmatrix}$$

Результат четвёртой и пятой итерации совпадает с результатом третьей. Шестая, последняя итерация:

		P_0	P_1 13 0 7 ∞ ∞ 11	P_2	P_3	P_4	P_5
	P_0	0	13	6	4	3	2
	P_1	∞	0	8	6	9	4
$D^{(6)} =$	P_2	∞	7	0	3	12	11
	P_3	∞	∞	∞	0	∞	∞
	P_4	∞	∞	∞	∞	0	∞
	P_5	∞	11	4	2	5	0

- Предположим, что мы сидим за рулём автомобиля.
- Дорожная сеть граф.
- Алгоритм Дейкстры определит, за какое время мы доберёмся до любого пункта назначения.
- Как определить все ли автомобили могут проехать по данному маршруту, или пропускная способность транспортной сети ограничена?
- Москва 9 мая: все хотят попасть в центр на парад, но часть дорог вообще перекрыта, а часть имеет ограниченную ширину.
- Как узнать максимальное число автомобилей, которые могут проехать в центр за, скажем, один час?
- Требуется найти **максимальный поток** между стартом и финишем, источником и стоком.

- Толчок: вторая мировая война, Д. Б. Данциг, отдел статистического управления ВВС США.
- Нужна математическая модель, каким образом можно быстро сконцентрировать войска и войсковую инфраструктуру вблизи критических точек на театре военных действий.
- Более общая задача: определения пропускной способности рёбер транспортного графа поставлена им в 1951 году.
- 1955 год: Лестер Форд и Делберт Фалкерсон разработали алгоритм, решающий именно эту задачу.
- Хорошее решение данной задачи критически важно для современных транспортных графов (Москва: более 100000 узлов).

Поиск максимального потока: термины

- Ёмкость ребра максимальное интенсивность потока, проходящего через ребро.
- Насыщенное ребро ребро, по которому проходит максимальный поток.

Поиск максимального потока: алгоритм

Алгоритм ищет максимальны поток в сети из источника (source) в сток (destination).

- ullet Каждому ребру ставится в соответствие пара чисел (c,l).
- c достигнутый до сих пор поток по ребру, вначале он равен нулю, затем это число будет только увеличиваться, пока не достигнет l, ёмкости ребра.
- ullet Если по ребру (u,v) мы пустили прямой поток, пустим такой же в обратном направлении (v,u), добавив, если надо, отсутствующее ребро.
- Алгоритм продолжается, когда на хотя бы одном маршруте из s все рёбра ненасыщенные, то есть на всех рёбрах c < l.

- Ищем любой маршрут, содержащий только ненасыщенные рёбра из s в d. Если такого нет, то алгоритм закончен, искомый поток есть сумма потоков всех рёбер, приходящих в d.
- 2 Мы нашли дополняющий маршрут. Определяем значение максимального потока m, который мы можем пропустить по данному маршруту. Он определяется как минимальная из всех возможных разностей ёмкости l и существующего потока c по всем рёбрам маршрута.
- f 3 K каждому из c на маршруте прибавляем m. Хотя бы одно ребро станет насыщенным.
- Возвращаемся к (1).

Поиск максимального потока: подопытный граф.

Ищем максимальный поток из V_1 в V_6 .

- ullet Найдём произвольный маршрут из s в d. Пусть v1 o v3 o v6.
- ullet Наименьшая разница между l и c равна 8, пропускаем поток с интенсивностью 8 по этому маршруту.

- ullet Ребро $V_3 o V_6$ стало насыщенным.
- ullet Добавим обратное ребро $V_6 o V_3$.

ullet Находим новый путь из V_1 в V_6 .

- ullet Он сделал насыщенными рёбра $V_1
 ightarrow V_3$ и $V_3
 ightarrow V_4.$
- Добавим обратные рёбра.

ullet Новый поиск дал нам новый путь $V_1 o V_2 o V_6$.

• Насыщаем рёбра этого пути и добавляем обратные.

• Следующий поиск дал нам поток интенсивностью 2.

• Он насытил ребро $V_4 o V_5$.

• Потоки искать всё сложнее, но мы нашли один с интенсивностью 4.

• Мы всё насытили и вот результат:

Максимальный ли это поток? Сейчас он равен 26.

• Мы всё насытили и вот результат:

Максимальный ли это поток? Сейчас он равен 26. Вспомним про обратные рёбра.

ullet Пропустим единицу потока по маршруту $V_1 o V_4 o V_3 o V_2 o V_6$.

- ullet Но ведь у нас уже есть две единицы потока из V_3 в V_4 .
- Объединим потоки из V_3 в V_4 (пять единиц) и из V_4 в V_3 (две единицы).

• Больше ничего никуда не добавить — алгоритм завершён.

Из V_1 выходит 27 единиц из 35 возможных, в V_6 приходит 27 из 29 возможных. Что можно расширить, чтобы увеличить пропускную способность?

Спасибо за внимание.

Не забудь отметиться на портале

вт, 22 сентября 18:00 Онлайн - Perl Мастер-Perl	ср, 23 сентября 18:00 Онлайн - QA Ручное тестирование	чт, 24 сентября 18:00 Онлайн - Perl Мастер-Perl	пт, 25 сентября Занятий нет	сб, 26 сентября Занятий нет	вс, 27 сентября Занятий нет	пн, 28 сентября 18:00 Онлайн - QA (Рут Автоматизированное т
Ручное тестирован: Уже сегодня состоится	ие приложений (открыты наша первая лекция. Пожа подключите камеры, хочет по конференцию тут.	луйста, установите zoom и п	Изменить		улучшите свою посещи преподаватель в своё	т новичка до
Всем привет!	ІЫЙ ПОСТ ие приложений (открыты и обучения в Техноатоме!	й курс)	Изменить	Удалить	Оттавьте отзыв о заня улучшить учебный про Оставить отзыв	

Все отзывы анонимны ©