cre 1150 Bruce Suc

5) How long does it take a 10 kHz sine wave to complete 100 cycles?

$$\frac{1}{T} = \int T = 1 \text{ cycle}$$

$$\frac{1}{T} = T$$

$$\frac{1}{100} = T \times 100$$

$$\frac{1}{104} = T$$

$$\frac{1}{104} = T$$

104 = T

T100 cycles = 10-2

8) For the sine wave in Figure 11-77, determine the peak to peak, rms, average values.

Useful information

V, = 25 V

objectives

23

runs vattage voltage

Vavg

 $2V_{p} = V_{pp} = 2x 25 = 50 Y = 4p$ $\frac{V_{p}}{V_{2}} = V_{pms} = \frac{25}{V_{2}} = 17.678 V$ $\frac{2V_{p}}{V_{2}} = V_{oug}$ $V_{oug} = 17.7 V$ $V_{oug} = \frac{2x25}{V_{2}} = 15.915 V$ $V_{oug} = \frac{2x25}{V_{2}} = 15.915 V$

13) make a spech of two sine waves as follows:

Sine wave A as reference. Sine wave B lags A by 90°.

sin(6)	Sin (0+90)	0	
0 0	0.965	D	W950
0,258-0,256	0.866 0.965	15	2/5-15
	0.707 0.866	30	225 -30
A 7 D1 -0.707	0.5 0.707	45	240 -45
0.866-0.866	0.258 0.5	60	278 -60
0, 965 -0.965	0,256	75	285 - 75
0,463	0	90	295 306 - 90
		102	
		120	3-15 315
		100	330 330
		165	3 60
		1 80	, 00

14)6) a certain sine wave has a Positive going zero crossing at 0° and an runs value of 201 Calculate its instantaneous value of each of the following angles. Juns V Sin (330) = 15,4047V , h) = Vp Sin (3250) (Vsin(33) = 15.4 V Verns = Ve h) V sin (325) = -12.2234 Vs:n(325) = -16,2V 20 V2 = Vp = 28.284 28.3 V = Vp

20) Draw a phasor diagram to represent the sine waves in Figure 11-78 with respect to 0° as reference.