Data Preprocessing Report

Sahil Karande

July 28, 2024

Project Title

Machine Learning Mastery: From Basics to Advanced

1 Concepts Used

1.1 Data Manipulation with Pandas

- pd.read_csv("Data.csv"): Reads data from a CSV file into a DataFrame.
- df.head(): Displays the first few rows of the DataFrame to preview the data.
- df.dtypes: Shows the data types of each column in the DataFrame.

1.2 Handling Missing Values

Concept: Missing values in the dataset must be addressed for accurate analysis and modeling.

- SimpleImputer: Replaces missing values with a specified strategy, such as the mean of the column.
 - fit_transform(): Fits the imputer on the data and replaces missing values with the mean.
 - **Example**: Missing values are filled with the mean of the respective column.

1.3 Encoding Categorical Data

Concept: Machine learning algorithms require numerical inputs. Categorical data must be converted into numerical format.

- LabelEncoder: Converts categorical labels into numerical values.
 - fit_transform(): Transforms categorical labels into numerical values.
 - **Example**: Converts 'Yes' to 1 and 'No' to 0.
- OneHotEncoder: Converts categorical features into binary vectors.
 - Example: Converts 'Mumbai', 'Nagpur', and 'Pune' into binary vectors.
- ColumnTransformer: Applies one-hot encoding to specified columns and leaves others unchanged.
 - Example: Applies one-hot encoding to the first column of the dataset.

1.4 Splitting the Dataset

Concept: Splitting the dataset into training and testing sets is crucial for evaluating model performance.

- train_test_split(X, y, test_size=0.2, random_state=0): Divides data into training (80%) and testing (20%) sets, with a fixed random seed for reproducibility.

1.5 Feature Scaling

Concept: Standardizing features to have a mean of 0 and a standard deviation of 1 improves the performance of many machine learning algorithms.

- StandardScaler: Standardizes feature values by removing the mean and scaling to unit variance.
 - fit_transform(X_train): Computes scaling parameters from the training set and applies the transformation.
 - transform(X_test): Applies the same scaling to the test set.

2 Key Concepts and Tools to Remember

- Data Manipulation

- pd.read_csv()
- df.head()
- df.dtypes

- Handling Missing Values

- SimpleImputer
- fit_transform()
- strategy='mean'

- Encoding Categorical Data

- LabelEncoder
- OneHotEncoder
- ColumnTransformer

Splitting the Dataset

- train_test_split()
- test_size
- random_state

Feature Scaling

- StandardScaler
- fit_transform()
- transform()