Сортировка за линейное время Дискретный анализ 2017/18

2 сентября 2017 г.

Литература

- ► Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание, М.:Вильямс, 2005, стр. 220-239, глава 8, «Сортировка за линейное время»
- ► Седжвик Р. Алгоритмы на С++, М.:Вильямс, 2014, стр. 374-405, глава 10, «Поразрядная сортировка»
- ► Кнут Д. Искусство программирования, том 3. Сортировка и поиск, 2-е издание, М.:Вильямс, 2014, стр. 372-378, глава 5.4.7, «Внешняя поразрядная сортировка»

Оценки

Асимптотические обозначения Нижняя оценка сортировок сравнением

Алгоритмы

Сортировка подсчётом Поразрядная сортировка Карманная сортировка

Внешняя сортировка

Внешняя поразрядная сортировка

Сортировка за линейное время

Оценки

Асимптотические обозначения

Нижняя оценка сортировок сравнением

Алгоритмы

Сортировка подсчётом Поразрядная сортировка Карманная сортировка

Внешняя сортировка

Внешняя поразрядная сортировка

Асимптотические обозначения

- f(n)=O(g(n)), если существуют положительные константы c и n_0 такие что $0\leqslant f(n)\leqslant cg(n)$ для всех $n\geqslant n_0$ (асимптотическая верхняя граница)
- $f(n) = \Omega(g(n))$, если существуют положительные константы c и n_0 , такие что $0 \leqslant cg(n) \leqslant f(n)$ для всех $n \geqslant n_0$ (асимптотическая нижняя граница)
- $f(n) = \Theta(g(n))$, если существуют положительные константы c_1 , c_2 и n_0 такие что $0 \leqslant c_1 g(n) \leqslant f(n) \leqslant c_2 g(n)$ для всех $n \geqslant n_0$ (асимптотически точная оценка)

Линейность

- f(n) = O(n)
- ▶ n размерность задачи
- ▶ Линейность (функция f(n)):
 - количество элементарных операций;
 - объём оперативной памяти;
 - могут оцениваться другие параметры: количество процессорных ядер или серверов.

Линейность

Скользкие места

- ▶ В строгом смысле элементарные операции выполняемые машиной Тьюринга (или эквивалентной моделью) команды
- В практическом смысле элементарность операций определяется реальным процессором
- Не может быть алгоритма, работающего за O(n) и не укладывающегося в O(n) по памяти

На практике

- Всегда есть физические ограничения: размер оперативной памяти, жёстких дисков
- Иерархия оперативной памяти: регистры, кэш-память L1, L2, DRAM, жёсткие диски, распределённые файловые системы
- ightharpoonup Константа c может быть слишком большой

Сортировка за линейное время

Оценки

Асимптотические обозначения

Нижняя оценка сортировок сравнением

Алгоритмы

Сортировка подсчётом Поразрядная сортировка Карманная сортировка

Внешняя сортировка

Внешняя поразрядная сортировка

Сортировка сравнением

- ▶ Последовательность $\langle a_1, a_2, \dots, a_n \rangle$
- ▶ При сортировке используются только попарные сравнения: $a_i < a_j, \ a_i \le a_j, \ a_i = a_j, \ a_i \ge a_j, \ a_i > a_j$
- ▶ Предполагаем, что все элементы различны, тем самым можно считать что используется только $a_i \leq a_j$

Модель дерева решений

Дерево решений:

- полное бинарное дерево, в котором представлены операции сравнения элементов;
- внутренние узлы помечены меткой $i:j,\ 1\leq i,j\leq n$, указывающие на сравнение a_i и a_j ;
- ▶ лист помечен перестановкой $\langle \pi(1), \pi(2), \dots, \pi(n) \rangle$, дающей окончательное упорядочение элементов $\langle a_{\pi(1)} \leq a_{\pi(2)} \leq \dots \leq a_{\pi(n)} \rangle$;
- корректность сортировки сравнением: соответствующее дерево решений должно содержать все n! перестановок исходных n элементов, к которым можно проложить путь реального выполнения сортировки («достижимые» листья).

Сортировка вставкой трёх элементов

$$\langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$$

Нижняя оценка для наихудшего случая

Теорема

В наихудшем случае в ходе выполнения любого алгоритма сортировки сравнением выполняется $\Omega(n\log_2 n)$ сравнений.

Доказательство.

Для дерева решений сортировки n элементов и высотой h с l достижимыми листьями:

$$n! \le l \le 2^h \Rightarrow h \ge \log_2(n!) = \Omega(n \log_2 n)$$

Последнее равенство можно получить из формулы Стирлинга или разложением логарифма произведения.

Сортировка за линейное время

Оценки

Асимптотические обозначения Нижняя оценка сортировок сравнением

Алгоритмы

Сортировка подсчётом

Поразрядная сортировка Карманная сортировка

Внешняя сортировка

Внешняя поразрядная сортировка

Общая идея

- $ightharpoonup \langle a_1,\ldots,a_n \rangle$, $a_i \in \mathbb{N} \cup \{0\}$ u $a_i \leq k$
- lacktriangle Если k=O(n), то время работы равно $\Theta(n)$
- ▶ Для каждого a_i определяется $c_i = |\{a_k | a_k < a_i\}|$
- $lacktriangleright c_i$ определяет местоположение a_i в отсортированной последовательности

Алгоритм

```
Counting-Sort(A)
   for i \leftarrow 0 to k
        C[i] \leftarrow 0
3 for j \leftarrow 1 to length[A]
         C[A[j]] \leftarrow C[A[j]] + 1
 6 for i \leftarrow 1 to k
        C[i] \leftarrow C[i] + C[i-1]
 8 // В C[i] — количество элементов, не превышающих i
   for j \leftarrow length[A] downto 1
10
         B[C[A[i]]] \leftarrow A[i]
         C[A[j]] \leftarrow C[A[j]] - 1
11
```


Свойства сортировки подсчётом

- Не является сортировкой сравнением: ни одна пара элементов не сравнивается друг с другом
- ightharpoonup Линейная (вернее, $\Theta(k+n)$, но при k=O(n) время выполнения $\Theta(n)$)
- Устойчивая (стабильная)
- ▶ Требует дополнительную память под массивы C и B размером k и n соответственно

Сортировка за линейное время

Оценки

Асимптотические обозначения Нижняя оценка сортировок сравнением

Алгоритмы

Сортировка подсчётом

Поразрядная сортировка

Карманная сортировка

Внешняя сортировка

Внешняя поразрядная сортировка

Общая идея

- lacktriangledown d-значные числа последовательно сортируются по разрядам: от младшего к старшему
- ▶ При использовании устойчивой сортировки корректное упорядочивание
- ▶ Если внутренняя сортировка линейная, то и поразрядная сортировка тоже линейная

329
457
657
839
436
720
355

329		7	2	0
457		3	5	5
657		4	3	6
839	\Rightarrow	4	5	7
436		6	5	7
720		3	2	9
355		8	3	9

329		7	2	0		7	2	0
457		3	5	5		3	2	9
657		4	3	6		4	3	6
839	\Rightarrow	4	5	7	\Rightarrow	8	3	9
436		6	5	7		3	5	5
720		3	2	9		4	5	7
355		8	3	9		6	5	7

329		7	2	0		7	2	0		3	2	9
457		3	5	5		3	2	9		3	5	5
657		4	3	6		4	3	6		4	3	6
839	\Rightarrow	4	5	7	\Rightarrow	8	3	9	\Rightarrow	4	5	7
436		6	5	7		3	5	5		6	5	7
720		3	2	9		4	5	7		7	2	0
355		8	3	9		6	5	7		8	3	9

Алгоритм

Radix-Sort(A, d)

- 1 for $i \leftarrow 1$ to d
- 2 Устойчивая сортировка массива A по i-ой цифре

Теорема

Для n d-значных чисел, в которых каждая цифра принимает одно из k значений, алгоритм $\operatorname{RADIX-SORT}$ позволяет выполнить корректную сортировку за время $\Theta(d(n+k))$, если внутренняя устойчивая сортировка имеет время работы $\Theta(n+k)$.

Какие внутренние параметры выбрать?

Теорема

Для n b-битовых чисел и натурального числа $r \leq b$ (цифры из r битов) алгоритм Radix-Sort выполнит сортировку за время $\Theta\left(\frac{b}{r}(n+2^r)\right)$.

Какие внутренние параметры выбрать?

Теорема

Для n b-битовых чисел и натурального числа $r \leq b$ (цифры из r битов) алгоритм Radix-Sort выполнит сортировку за время $\Theta\left(\frac{b}{r}(n+2^r)\right)$.

Тем самым:

- lacktriangle Для $b < \lfloor \log_2(n) \rfloor$ асимптотически оптимален выбор r = b.
- lacktriangle A для $b \geq \lfloor \log_2(n) \rfloor$: $r = \lfloor \log_2(n) \rfloor$

Свойства поразрядной сортировки

- Линейная, устойчивая, требуется дополнительная память (из-за сортировки подсчётом)
- Может понадобиться много проходов
- Несмотря на асимптотическую линейность, для конкретных значений n и r сортировки сравнением могут быть предпочтительнее из-за разных значений постоянных множителей

Вариации поразрядной сортировки

- ▶ Рассмотренная версия LSD (Least Significant Digit) сортирует от младшего разряда к старшему
- MSD (Most Significant Digit) идет от старшего разряда к младшему, разбивая исходный список на корзинки по значению разряда
- ▶ Окончание когда просмотрели все разряды или все корзины имеют размер 1
- ightharpoonup Сложность MSD версии O(kn)

Сортировка за линейное время

Оценки

Асимптотические обозначения Нижняя оценка сортировок сравнением

Алгоритмы

Сортировка подсчётом Поразрядная сортировка

Карманная сортировка

Внешняя сортировка

Внешняя поразрядная сортировка

Общая идея

- На вход поступают n вещественных чисел, порождённых случайным процессом и равномерно распределённых в интервале [0,1)
- ightharpoonup [0,1) разбивается на n одинаковых интервалов (карманов, buckets)
- Числа помещаются в список, соответствующий каждому карману; так как распределение равномерное, в одном кармане появляется не очень много чисел
- Все списки сортируются (вставкой)
- Результат получается объединением (один проход по всем спискам)

Алгоритм

```
ВИСКЕТ-SORT(A)

1 n \leftarrow length[A]

2 for i \leftarrow 1 to n

3 Вставить элемент A[i] в список B[\lfloor nA[i] \rfloor]

4 for i \leftarrow 0 to n-1

5 Сортировка вставкой списка B[i]

6 Объединение списков B[0], B[1], \ldots, B[n-1]
```

	A		B
1	.78	0	Ø
2	.17	1	$\langle .12, .17 \rangle$
3	.39	2	$\langle .21, .23, .26 \rangle$
4	.26	3	$\langle .39 \rangle$
5	.72	4	Ø
6	.94	5	Ø
7	.21	6	$\langle .68 \rangle$
8	.12	7	$\langle .72, .78 \rangle$
9	.23	8	Ø
10	.68	9	$\langle .94 \rangle$

Корректность

- $ightharpoonup a_i$ и a_j , $0 \le i, j \le n$
- $a_i \le a_j \Rightarrow \lfloor n * a_i \rfloor \le \lfloor n * a_j \rfloor$
- $lacktriangledown a_i$ и a_j попали в один интервал по определению
- lacktriangle a_i и a_j попали в разные интервалы сохраняется порядок при слиянии интервалов

Линейность

 n_i — количество элементов в кармане B[i]. Тогда время работы алгоритма:

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \Rightarrow E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])$$

Для всех $i=0,1,\ldots,n-1$:

$$E[n_i^2] = 2 - \frac{1}{n} \Rightarrow T(n) = \Theta(n) + n \cdot O\left(2 - \frac{1}{n}\right) = \Theta(n)$$

Количество элементов в одном кармане

$$X_{ij} = I\{A[j] \in B[i]\} \Rightarrow n_i = \sum_{j=1}^n X_{ij},$$

$$E[n_i^2] = \sum_{j=1}^n E[X_{ij}^2] + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} E[X_{ij}X_{ik}],$$

$$E[X_{ij}^2] = 1 \cdot \frac{1}{n} + 0 \cdot \left(1 - \frac{1}{n}\right) = \frac{1}{n},$$

$$E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}] = \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n^2},$$

$$E[n_i^2] = n \cdot \frac{1}{n} + n(n-1) \cdot \frac{1}{n^2} = 1 + \frac{n-1}{n} = 2 - \frac{1}{n}.$$

Сортировка за линейное время

Оценки

Асимптотические обозначения Нижняя оценка сортировок сравнением

Алгоритмы

Сортировка подсчётом Поразрядная сортировка Карманная сортировка

Внешняя сортировка

Внешняя поразрядная сортировка

Основные моменты

- ▶ Данные хранятся на внешнем носителе
- Размера оперативной памяти недостаточно для того, чтобы поместить в нее все данные
- Необходимо минимизировать количество обращений к носителю
- ▶ Основной метод сортировка слиянием

Файл содержит только целые числа от 0 до 7.

Pass	$File_1$	$File_2$	$File_3$	$File_4$
0	{0,1,,7}			
1			{0,2,4,6}	{1,3,5,7}
2	{0,4}{1,5}	{2,6}{3,7}		
3			{0}{1}{2}{3}	{4}{5}{6}{7}
3.5			{0}{1}{7}	

Общая идея

- Первый файл изначально содержит исходную последовательность, второй файл пустой, сортирующий бит – младший
- Проходим по первому файлу, записываем в третий все элементы, у которых сортирующий бит равен нулю, в четвертый – единице
- Повторяем алгоритм для второго файла
- Третий файл становится первым, четвертый вторым
- Увеличиваем сортирующий бит на 1, повторяем алгоритм, пока не достигнем старшего бита

Алгоритм

```
EXT-RADIX-SORT(Files[])
     bit \leftarrow 0
     while bit \leq MAX BIT
          while ReadItem(Files[0], item)
 4
               if GetBit(item, bit) == 0
                          WriteItem(Files[2], item)
 5
 6
               else
                          WriteItem(Files[3], item)
 8
          /\!\!/ Аналогично для Files[1]
 9
          Files[0] \leftarrow Files[2]
          Files[1] \leftarrow Files[3]
10
11
          bit \leftarrow bit + 1
```

Еще один пример

Файл содержит целые числа от 0 до 9.

	$File_1$	$File_2$	$File_3$	$File_4$
0	{0, 1,, 9}			
1		{0,2,4,7}	{1,5,6}	{3,8,9}
1.4	{0}		{1,5,6}{2,7}	{3,8,9}{4}
1.9	{0}{1}{2}	{6}{7}		{3,8,9}{4}{5}
2.2	{0}{1}{2}{3}	{6}{7}{8}	{9}	{4}{5}
2.8	{0}{1}{9}			

Еще один пример

Файл содержит целые числа от 0 до 9.

	$File_1$	$File_2$	$File_3$	$File_4$
0	$\{0, 1, \ldots, 9\}$			
1		{0,2,4,7}	{1,5,6}	{3,8,9}
1.4	{0}		{1,5,6}{2,7}	{3,8,9}{4}
1.9	{0}{1}{2}	{6}{7}		{3,8,9}{4}{5}
2.2	{0}{1}{2}{3}	{6}{7}{8}	{9}	{4}{5}
2.8	{0}{1}{9}			

- ▶ Всего 2.8 прохода по содержимому файла
- Для предыдущего алгоритма было 3.5 прохода
- ▶ При подсчете проходов предполагается, что числа имеют равную частоту