Photoisomerization dynamics of solar thermal fuels with TDDFT excited-state forces

David A. Strubbe and Jeffrey C. Grossman

Department of Materials Science and Engineering
Massachusetts Institute of Technology

Fall MRS

Solar thermal fuels

sunlight → chemical energy → heat solar cell + battery + resistor

Key performance metrics

Absorption cross-section
Quantum yield of photoisomerization
Energy stored per molecule (weight, volume)
Barrier to thermal reversion (lifetime)

Azobenzene:

UV excitation 0.6 eV storage 1.0 eV thermal barrier

Templating and functionalization

Improved energy storage and thermal barrier (lifetime)

Synthesized and experimentally verified

What about quantum yield? barriers, quenching, sensitization

Potential energy surfaces for photoisomerization

trans

T. J. Kucharski, Y. Tian, S. Akbulatov, and R. Boulatov, *Energy Environ. Sci.* 4, 4449 (2011)

Potential energy surfaces for photoisomerization

Too many degrees of freedom to vary all.

Which are the key ones?

Follow forces.

TDDFT: need efficient method for large system!

constrained DFT for azobenzene

M. L. Tiago, S. Ismail-Beigi, and S. G. Louie, *J. Chem. Phys.* **122**, 094311 (2005)

Excited-state forces in TDDFT

$$E_{\rm S} = E_0 + \omega$$

$$\partial E_{\rm S} = \partial E_0 + \partial \omega$$

Derivative of excitation energy with respect to atomic displacements.

Ground-state forces from DFT (= 0 at equilibrium)

Tamm-Dancoff approximation (for simplicity)

$$H^{(2)}|A\rangle = \omega |A\rangle$$

$$\langle cv|H^{(2)}|c'v'\rangle = (\epsilon_c - \epsilon_v) \delta_{cc'} \delta_{vv'} + \langle cv|v + f_{xc}|c'v'\rangle$$

S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999)

$$\omega = \langle A | H^{(2)} | A \rangle$$

A = e-h state c = unoccupied v = occupied

Excited-state forces in TDDFT

Analytic derivative: Hellman-Feynman Theorem

$$\partial \omega = \langle A | \partial H^{(2)} | A \rangle$$

$$\langle cv|\,\partial H^{(2)}\,|c'v'\rangle = \langle c'|\,\partial H\,|c\rangle\,\delta_{vv'} - \langle v|\,\partial H\,|v'\rangle\,\delta_{cc'} + \langle cv|\,K_{xc}\partial\rho\,|c'v'\rangle$$

Hartree derivative is zero, so would be exact exchange

Density-functional perturbation theory

$$(H - \epsilon_v) |\partial v\rangle = -\partial H |v\rangle$$

Implemented in Octopus real-space TDDFT code

Using adiabatic LDA functional (VWN parameterization)

www.tddft.org/programs/octopus

X. Andrade, J. Alberdi-Rodriguez, D. A. Strubbe, *et al.*, *J. Phys.: Condens. Matter* **24**, 233202 (2012)

Comparison to other approaches for excited-state forces

Standard approaches use sum over states instead of DFPT *e.g.* J. Hütter, *J. Chem. Phys.* **118**, 3928 (2003)

Based on earlier work on TDDFT Casida equation forces with DFPT A. Sitt, L. Kronik, S. Ismail-Beigi, and J. R. Chelikowsky, *Phys. Rev. A* **76**, 054501 (2007) T. Tsukagoshi, and O. Sugino, Phys. Rev. A **86**, 064501 (2012)

Now, no further expansion in unoccupied states required.

Inspired by corresponding approach to Bethe-Salpeter equation

$$\epsilon_{ck}^{\text{KS}} - \epsilon_{vk}^{\text{KS}} \to \epsilon_{ck}^{\text{GW}} - \epsilon_{vk}^{\text{GW}}$$
$$f_{\text{xc}}(r, r') \to \left\langle c'k', ck | \epsilon^{-1} \hat{v} | v'k'vk \right\rangle + \left\langle vck | \hat{v} | v'c'k' \right\rangle$$

S. Ismail-Beigi and S. G. Louie, *Phys. Rev. Lett.* **90**, 076401 (2003)

D. A. Strubbe, PhD thesis, University of California, Berkeley (2012)

Benchmark adiabatic LDA/TDDFT against more powerful theory

trans-azobenzene: initial forces

3.5 Zybuy 2.5 2.5 1.5 0 0 1 2 3 4 5 6 Energy / eV

Lowest singlet, 2.0 eV Forces ~ 0.06 eV/Å

Resonant impulsive stimulated Raman spectroscopy

D. P. Hoffman, S. R. Ellis, and R. A. Mathies, *J. Phys. Chem. A* **117**, 11472 (2013)

cis-azobenzene: initial forces

Forces ~ 0.04 eV/Å

norbornadiene

quadricyclane

0.9 eV storage1.4 eV thermal barrier

Lowest singlet, 4.6 eV Forces ~ 0.03 eV/Å Lowest singlet, 4.0 eV Forces ~ 0.03 eV/Å

Conclusions

Improved formulation of excited-state forces in TDDFT
Implemented in freely available Octopus code

www.tddft.org/programs/octopus

Access to photoisomerization dynamics of large and complex systems Initial forces on *trans*-azobenzene consistent with spectroscopy

Acknowledgments

Based on earlier work on TDDFT Casida equation forces

A. Sitt, L. Kronik, S. Ismail-Beigi, and J. R. Chelikowsky, *Phys. Rev. A* 76, 054501 (2007) T. Tsukagoshi, and O. Sugino, Phys. Rev. A 86, 064501 (2012)

Now, no further expansion in unoccupied states required.

No calculation of expensive Hartree ("exchange") terms

Degenerate perturbation theory

Correct derivative of Casida S^1/2 matrices possible

show Casida here, or QC approaches?

Extended Lagrangian for Tamm-Dancoff approximation (as in Rothlisberger talk)

- F. Furche and R. Ahlrichs, *J. Chem. Phys.* **117**, 7433 (2002)
- J. Hütter, J. Chem. Phys. 118, 3928 (2003)