Welcome to Math 1910!

Math 1910: Calculus for Engineers

TA: David Mehrle*

25 August 2016

Last Time	Today	Upcoming
Nothing	Introductions	HW Due 1 Sep.
	Derivatives Review	Quiz on 1 Sep.

Administrative

- All course information can be found on https://blackboard.cornell.edu/
- Section is review, practice problems, homework questions, etc.
- Occasionally there will be workshops with engineering applications
- Homework is due on Thursdays and graded for completion.
- Quizzes every Thursday with questions straight from homework.

Derivatives Review

• Given a function *f* , the **derivative** of *f* at the point *a* is defined by

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

- The line tangent to (a, f(a)) is y f(a) = f'(a)(x a).
 - (cf)' = cf' if c is a constant.
 - $\bullet \ (f+g)'=f'+g'$
 - Product rule:

$$(fg)' = f'g + fg'.$$

• Quotient rule:
$$\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$$
.

• Chain rule:

$$(f(g(x)))' = f'(g(x))g'(x).$$

^{*}rhymes with "early"

- **Implicit differentiation** is used to compute $\frac{dy}{dx}$ when the variables x and y are related by an equation, such as $x^3 y^3 = 4$.
- The first derivative test: If *f* is differentiable and *c* is a critical point, then the type of critical point can be found in the table.

Sign Change	Type of Critical Point
From + to -	Local max
From - to +	Local min

• A function f is **concave up** on (a,b) if f' is increasing, and **concave down** if f is decreasing. A **point of inflection** is a point (c, f(c)) where the concavity changes. We can use the first derivative test on f' to find the inflection points.

Problems

(1) Compute $\frac{dy}{dx}$.

(a)
$$y = 3x^5 - 7x^2 + 4$$

(b) $y = \frac{x}{x^2 + 1}$
(c) $y = (x^4 - 9x)^6$
(d) $y = \sqrt{x + \sqrt{x}}$
(e) $y = \tan(x)$
(f) $y = \sin(2x)\cos^2(x)$
(g) $y = \tan(\sqrt{1 + \csc x})$
(h) $x^3 - y^3 = 4$
(i) $y = xy^2 + 2x^2$
(j) $y = \sin(x + y)$

- (2) Find the points on the graph of $f(x) = x^3 3x^2 + x + 4$ where the tangent line has slope 10.
- (3) Find the critical points of f and determine if they are minima or maxima.

(a)
$$f(x) = x^3 - 4x^2 + 4x$$
 (c) $f(x) = x^{2/3}(1-x)$
(b) $f(x) = x^2(x+2)^3$

(4) Find the points of inflection of the function *f*

(a)
$$f(x) = x^3 - 4x^2 + 4x$$
 (c) $f(x) = \frac{x^2}{x^2 + 4}$ (b) $f(x) = x - 2\cos x$

(5) Find conditions on a and b that ensure $f(x) = x^3 + ax + b$ is increasing on $(-\infty, \infty)$.

2