Деление многочленов с остатком.

Пусть F - поле и $f(x),g(x)\in F[x]$ и $g(x)\neq 0.$ Тогда $\exists !\ q(x),r(x):f(x)=q(x)\cdot g(x)+r(x)$, при этом $\deg r(x)<\deg g(x).$

q(x) - частное

r(x) - остаток

Доказательство

$$f(x) = a_k x^k + \dots + a_0$$

 $g(x) = b_m x^m + \dots + b_0$

- I. Докажем существование. В случае $k < m \ q(x) = 0,$ а r(x) = f(x). В случае $k \geq m$ докажем по индукции по k-m:
 - ${ extbf{I}}.$ База индукции: k-m=0. Тогда $r(x)=f(x)-rac{a_k}{b_k}g(x)$ и $q(x)=rac{a_k}{b_k}$
 - 2. Шаг индукции: k-m>0. Предположим, что теорема доказана для всех значений, меньших, чем k-m. Тогда возьмём $q(x)=\frac{a_k}{b_k}x^{k-m}$ и $h(x)=f(x)-\frac{a_k}{b_k}x^{k-m}g(x)$. Тогда $\deg h(x)< k$. Тогда для h(x) воспользуемся предположением индукции. Тогда

$$egin{split} f(x) &= h(x) + rac{a_k}{b_k} x^{k-m} g(x) = \ &= rac{a_k}{b_m} x^{k-m} g(x) + q_1(x) g(x) + r_1(x) = \ &= (rac{a_k}{b_m} x^{k-m} + q_1(x)) g(x) + r_1(x) \end{split}$$

2. Единственность. Предположим, что есть два разложения:

$$f(x)=q_1(x)g(x)+r_1(x)=q_2(x)g(x)+r_2(x).$$
 Тогда $q_1(x)g(x)+r_1(x)=q_2(x)g(x)+r_2(x) \ q_1(x)g(x)-q_2(x)g(x)=r_2(x)-r_1(x) \ (q_1(x)-q_2(x))g(x)=r_2(x)-r_1(x))$ *

Если мы умножаем на $g(x) \neq 0$, то степень многочлена не уменьшается. Тогда если $q_1(x) \neq q_2(x)$, то в (*) степени равных многочленов отличаются. Поэтому (*) выполняется только если $q_1(x) = q_2(x) \implies r_1(x) = r_2(x)$.