

HSC Assessment Task 2 March 2009

Name:	Tarchare
Ivame:	Teacher:

Mathematics

Time allowed —70 minutes

Instructions

- Approved calculators may be used.
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks awarded are shown on each question.
- Total marks 50
- Attempt all questions.
- Start each question on a new page.

Question	1	2	3	4	5	Total /50	%
Marks		========					
/10							

Ouestion 1	Marks 10

- a) The curve $y = ax^2 + 4x 5$ has a gradient of 10 when x = 2. 2 Find the value of a.
- b) Find the domain over which the curve $y = x^3 x^2 8x + 4$ is increasing. 2
- c) Use calculus to identify and determine the nature of any stationary points 6 and points of inflection of the function $y = x^3 12x$. Hence, sketch the curve.

Question 2 Marks 10

- a) (i) Determine whether $y = x^7$ is an odd or even function or neither. 1
 - (ii) Hence evaluate $\int_{3}^{3} x^{7} dx$.
- b) The efficiency, E percent, of a particular spark plug when the gap is set to x mm, is given by $E = 800x 1600x^2$. Find the gap setting which gives maximum efficiency.
- c) Two circles have radii a and b cm such that a + b = 16.

 4 Find the minimum sum of their areas.

a) Find the following integrals:

$$(i) \qquad \int (2x+3)^2 \, dx$$

2

(ii)
$$\int \frac{1}{x^2} dx$$

2

b) (i) Consider a quadrant of a circle of radius 2 units. Dividing the area of the quadrant into five equal sub-intervals produced the following table of ordinates.

x	0	0.4	0.8	1.2	1.6	2.0
у	2	1.96	1.83	1.60	1.20	0

Use the Trapezoidal Rule to find an approximate area of the quadrant. (Write your answer to two decimal places.)

- (ii) Calculate the area of a quadrant of a circle of radius 2 units using the formula $A = \pi r^2$.
- (iii) Explain why your approximation of the area is an underestimate. 1

a) Find the area between the curve $y = x^2 + 4$, the x-axis and the ordinates x = 2 and x = 4.

2

- b) Calculate the area between the curve y = x(x + 1)(x 2), the x-axis and the ordinates x = 1 and x = 3.
- 4
- c) What is the area between the curve $y = \sqrt{1 x}$ and the y-axis, between the ordinates where x = 0 and $x = \frac{3}{4}$?

Question 5 Marks 10

- a) Find the area of the region bounded by the graphs of $y = x^2$ and $y = x^3$.

3

- b) A parabolic mirror is made by revolving the area bounded by the parabola $y = \frac{1}{2}x^2$, the y-axis and the line y = 4, about the y-axis.

 What volume does it occupy?
- c) Calculate the volume when the shaded area is revolved around the x-axis. 4

)
$$y = ax^{2} + 4x - 5$$

 $dy = 2ax + 4$ $\rightarrow 1$
 dx
 $yradient = 10 when = 12$
 $2a \cdot 2 + 4 = 10$
 $4a = 6$
 $a = \frac{3}{2} \rightarrow 1$

b)
$$y = x^{3} - x^{2} - 8x + 4$$

 $3x^{2} - 2x - 8$
 $dx = (3x + 4)(x - 2)$
 $= 0 \text{ when } x = -\frac{4}{3}, 2 \rightarrow 0$

exelving weff of
$$\frac{dy}{dx} > 0$$

i. $\frac{dy}{dx} > 0$ when $x < \frac{-\frac{4}{3}}{3}, 2 \to 0$

$$y = x^{3} - 12x$$

$$= 3x^{2} - 12$$

$$= 3(x^{2} - 4)$$

$$= 3(x - 2)(x + 2)$$

$$= 0 \text{ when } x = +2, -2 - 20$$

$$y = -16, 16 - 20$$

$$y' = 6x$$

$$= 0 \text{ when } x = 2$$

$$\therefore \text{ min. at } (2, -16) - 20$$

$$< 0 \text{ when } x = -2$$

$$\therefore \text{ max. at } (-2, 16) - 20$$

$$= 0 \text{ when } x = 0$$

$$y' \neq 0 \text{ when } x = 0$$

a) (i) let
$$f(x) = x^7$$

$$f(-x) = (-x)^7$$

$$= -x$$

$$= -f(x) \rightarrow 0$$

$$\therefore f(x) \text{ in an ODD function.}$$

(ii)
$$\int_{-3}^{3} x^{7} dx = 0 \rightarrow 0$$
as $f(x) = 0$

b)
$$E = 800 \times -1600 \times^{2}$$

 $\therefore \frac{dF}{dx} = 800 - 3200 \times \longrightarrow 0$
 $= 0$ when $3200 \times = 800$
 $\therefore \times = \frac{900}{3200}$
 $= \frac{1}{4} \times 0$

$$\frac{d^2E}{dn^2} = -3200$$

$$<0 \rightarrow 0$$

... I a mascinaum in E when scal mus

$$a+b=16$$

...
$$f$$
 a minimum area when $a = 8$
and $b = 8$ cm.
 $a + b = 16$
 $b = 16 - a$
... D inimum area = $2 \times 64T$ $\rightarrow 0$
 $= 128T$ cm²

$$A = \pi a^{2} + \pi b^{2}$$

$$= \pi a^{2} + \pi (16 - a)^{2} - \pi (16 - a)^{2}$$

$$= \pi \left[a^{2} + 256 - 32a + a^{2} \right]$$

$$= \pi \left[2a^{2} - 32a + 256 \right]$$

$$= 2\pi \left[a^{2} - 16a + 128 \right]$$

$$dA = 2\pi \left(2a - 16 \right)$$

$$da = 4\pi \left(a - 8 \right)$$

$$= 0 \text{ when } a = 8$$

$$\therefore b = 8$$

Question 3

Question 3

a) (i)
$$\int (2x+3)^2 dx = \frac{(2x+3)^3}{3x^2} + C$$

$$= \frac{1}{6}(2x+3)^3 + C$$

$$(ii) \int_{x}^{x} dx = \int_{x}^{x^{-2}} dx \rightarrow 0$$

$$= \frac{x^{-1}}{-1} + C \rightarrow 0$$

$$= -\frac{1}{x} + C$$

b) (i)
$$A = \frac{1}{2} \left[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \right] \rightarrow 0$$

$$= \frac{0.4}{2} \left[(2+0) + 2(1.96 + 1.83 + 1.60 + 1.20) \right] \rightarrow 0$$

$$= 0.2 \left[2 + 2 \times 6.59 \right]$$

$$= 3.036$$

2 3.04 units 2 -> 1)

Approximation is an underestimate because the trapezia arkall within the guadant. : the sum of the trapezia is less than the area of the guadrant. Question 4

$$A = \begin{cases} x^{2} + 4x \\ 2x^{3} + 4x \\ 3x^{4} + 8 \end{cases}$$

$$= \begin{cases} \frac{x^{3}}{3} + 4x \\ \frac{x^{3}}{3} + 8 \end{cases}$$

$$= \frac{56}{3} + 8$$

$$= \frac{80}{3} \text{ unit}^{2}$$

$$= \frac{80}{3} \text{ unit}^{2}$$

b)
$$y = x(x+1)(x-2)$$

= 0 when $x = 0, -1, 2$

When icali, 14 = 1 x 2x-1 When x = 3, y = 3x4x

$$Area = \left| \int_{1}^{2} x(x+1)(x-2) dx \right| + \int_{2}^{3} x(x+1)(x-2) dx - 7(1)$$

$$= \left| \int_{1}^{2} (x^{2}-x^{2}-2x) dx \right| + \int_{2}^{3} (x^{2}-x^{2}-2x) dx$$

$$= \left| \left[\frac{x^{4}}{4} - \frac{x^{3}}{5} - 7(^{2}) \right]^{2} \right| - 7(1)$$

$$+ \left[\frac{x^{4}}{4} - \frac{x^{3}}{5} - 7(^{2}) \right]^{3}$$

$$= \left| \left[4 - \frac{8}{3} - 4 \right] - \left[\frac{1}{4} - \frac{1}{5} - 1 \right] \right| + \left[\frac{81}{4} - 9 - 9 \right] - \left[4 - \frac{8}{5} - 4 \right]$$

= | -3 -4 +3+1 | + 9 + 8

= 12 + 2 ,0

= 78 = (5.4°

Question 5

Let
$$x^{3} = x^{2}$$

 $\therefore x^{3} - x^{2} = 0$
 $\therefore x^{2}(x-1) = 0$
 $\therefore x^{2}(x-1) = 0$

Let
$$x^{3} = x^{2}$$
 $\therefore x^{3} - x^{2} = 0$
 $\therefore x^{2}(x-1) = 0$
 $\therefore x = 0, 1 \rightarrow 0$
 $\Rightarrow = (x^{2} dx - (x^{3} dx - 70))$

$$A = \int_{0}^{1} x^{2} dx - \int_{0}^{1} x^{3} dx - \int_{0}^{1} x^{3} dx - \int_{0}^{1} x^{3} dx - \int_{0}^{1} (x^{2} - x^{3}) dx$$

$$= \int_{0}^{1}$$

$$\frac{y}{y} = \int_{x-1}^{x-1}$$

= 32t unity 3 2 33.51 43

$$V = \pi \int_{1}^{5} (\sqrt{3x-1})^{2} dx + \pi \int_{5}^{7} (7-x)^{2} dx = 0$$

$$= \pi \int_{5}^{5} (x-1) dx + \pi \int_{5}^{7} (49-14x+x^{2}) dx$$

$$= \pi \int_{2}^{2} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2}) dx$$

$$= \pi \int_{2}^{2} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2}) dx$$

$$= \pi \int_{2}^{2} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{2}^{2} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (49-14x+x^{2})^{2} dx$$

$$= \pi \int_{5}^{7} (x-1)^{2} dx + \pi \int_{5}^{7} (x-1)^{2}$$

4=2x2

$$= \sqrt{2y} \rightarrow 0$$

$$= \sqrt{32y} \rightarrow 0$$

$$= \sqrt{52y} \rightarrow 0$$

$$= \sqrt{5$$