Sinais e Sistemas Electrónicos

Capítulo 7: Díodos e Aplicações

Sinais e Sistemas Electrónicos - 2023/2024

Sumário

- Introdução;
- Fundamentos físicos do díodo;
- Junção pn em equilíbrio, inversamente e directamente polarizada;
- Característica corrente/tensão do díodo;
- Parâmetros mais importantes do díodo valores típicos;
- Modelos simplificados para análise de circuitos;
- Rectificadores: meia onda; onda completa; filtragem;
- Díodo Zener e aplicações;
- Díodo LED e foto-díodo.

Introdução

- O díodo é o componente electrónico (não linear) mais simples;
- Distingue-se por conduzir apenas num sentido: a aplicação mais comum é em circuitos de rectificação.

E. Martins, DETI Universidade de Aveiro

7-3

Sinais e Sistemas Electrónicos - 2023/2024

Fundamentos físicos do díodo

Semicondutores

- Elementos com 4 electrões de valência, e.g. silício;
- Valores de condutividade entre a dos isoladores e a dos condutores.

E. Martins, DETI Universidade de Aveiro

7-5

Sinais e Sistemas Electrónicos - 2023/2024

Semicondutores

- A 0 Kelvin o Si não tem electrões livres condutividade é zero;
- Temperatura rompe algumas ligações, gerando electrões livres.

7-6

Semicondutores

• Semicondutores distinguem-se dos condutores por terem dois tipos de

- Electrões (cargas negativas);
- **Lacunas** (cargas positivas).

Criação de uma lacuna

Sempre que um electrão salta de uma ligação covalente para uma lacuna, deixa uma carga positiva: é como se a lacuna se deslocasse.

E. Martins, DETI Universidade de Aveiro

7-7

Sinais e Sistemas Electrónicos - 2023/2024

Dopagem

• Para aumentar a condutividade, o silício é *dopado*, ou seja misturado com outros elementos.

Dopagem com elemento com 5 electrões de valência (e.g fósforo - P)

Dopagem com elemento com 3 electrões de valência (e.g boro -

Semicondutores do tipos n e p

• Um semicondutor do tipo *n* ou *p* tem apenas melhor condutividade que uma semicondutor intrínseco.

• A magia acontece quando os dois tipos de semicondutor entram em contacto, formando um díodo de junção...

E. Martins, DETI Universidade de Aveiro

7-9

Sinais e Sistemas Electrónicos - 2023/2024

A junção pn

• ... em contacto, as lacunas do lado p e os electrões do lado n, mais próximos da junção, recombinam-se.

dipolo

- Os iões próximos da junção deixam de estar electricamente *cobertos*, criando um dipolo eléctrico;
- Este dipolo opõem-se ao movimento de lacunas de $p \rightarrow n$ e electrões de $n \rightarrow p$.

A junção pn em equilíbrio

- A região do dipolo chama-se de depleção porque está vazia de cargas móveis;
- O dipolo estabelece um campo eléctrico, E que trava a difusão de electrões e lacunas através da junção;
- À diferença de potencial do dipolo chamamos potencial de barreira, V_b ;
- No silício o valor do potencial de barreira é tipicamente de *0.7V*.
- A junção pn é um díodo...

7-11

Sinais e Sistemas Electrónicos - 2023/2024

A junção pn polarizada inversamente

- O + da fonte externa atrai electrões e
 o atrai lacunas, aumentando o
 numero de iões a descoberto;
- A carga total na região de depleção aumenta, ou seja a largura desta aumenta;
- A barreira de potencial aumenta (de V_b para V_b + V_R) e os portadores não passam;
- O díodo não conduz!

A junção pn polarizada directamente

- O + da fonte externa repele lacunas em direcção à junção; o – repele electrões também em direcção à junção;
- Se V_D for superior ao potencial de barreira (V_b) a região de depleção quase desaparece;
- Electrões e lacunas conseguem atravessar sem dificuldade a região de depleção;
- O díodo conduz!

E. Martins, DETI Universidade de Aveiro

7-13

Sinais e Sistemas Electrónicos - 2023/2024

Característica corrente/tensão do díodo

Característica corrente-tensão

- Duas regiões principais de funcionamento:
 - \triangleright Polarização inversa: v < 0;
 - \triangleright Polarização directa: v > 0.

E. Martins, DETI Universidade de Aveiro

7-15

Sinais e Sistemas Electrónicos - 2023/2024

Polarização directa

 Nesta região, a corrente cresce exponencialmente com a tensão sendo dada aproximadamente por

$$i = I_S \left(e^{v/nV_T} - 1 \right)$$

 I_S – corrente de saturação inversa (para díodos de sinal: $10^{-15}A$);

 V_T – tensão térmica: 25mV a 20°C;

n – coeficiente de emissão: constante empírica de valor entre 1 e 2.

Polarização directa – observações importantes

- Devido à característica exponencial, abaixo de 0.5V o díodo quase não conduz. Esta é a tensão de cut-in;
- Em condução normal, a tensão v varia em apenas 0.12V (n = 2) por cada década (10x) de variação de i;
- Em condução normal, o valor típico de *v* é entre 0.6 e 0.8*V*.

E. Martins, DETI Universidade de Aveiro

7-17

Sinais e Sistemas Electrónicos - 2023/2024

Polarização inversa

• Para valores negativos de v, bastante inferiores a nV_T , a corrente i é dada por

$$i = I_S \left(e^{v/nV_T} - 1 \right) \approx -I_S$$

que é a *corrente de saturação inversa* da junção, da ordem dos *10-15A*, (bastante insensível a *v*)

7-18

Região de breakdown

- Campo eléctrico elevado causa um aumento súbito da corrente;
- Ocorre em todos os díodos circuito externo deve limitar a corrente no díodo;
- Há díodos especificamente desenhados de forma a funcionar na região de breakdown – os díodos Zener.

E. Martins, DETI Universidade de Aveiro

7-19

Sinais e Sistemas Electrónicos - 2023/2024

Características de díodos comuns

1N4007 (díodo *de potência*)

Características		1N4148	1N4007
V_F	Tensão directa		
	@ 10mA	0.7V	0.6V
	@ 1A		1.1V
$I_{F(max)}$	Corrente directa máxima	0.3A	<i>1A</i>
$V_{R(max)}$	Tensão inversa máxima	75V	1000V
$I_{R(max)}$	Corrente inversa máxima @ 25°C	10nA	5μΑ
	@ 100°C		5μA 50μA
P _(max)	Potência máxima dissipada	0.5W	3W

Modelos simplificados do díodo

E. Martins, DETI Universidade de Aveiro

7-21

Sinais e Sistemas Electrónicos - 2023/2024

Modelos do díodo para análise de circuitos

- Exponencial baseado na relação exponencial i(v). É o mais preciso mas também o mais difícil de usar.
- Na prática, os modelos que se usam são:
 - > Tensão constante;
 - > Ideal.

Modelo de tensão constante

• Curva i(v) do díodo é simplificada para uma linha vertical – despreza-se r_D ;

• Em condução, o díodo apresenta uma tensão V_D constante (0.7V);

• É o modelo mais popular para análise rápida manual. É um dos que iremos usar mais.

7-23

Sinais e Sistemas Electrónicos - 2023/2024

Modelo ideal

• Considera que o díodo é um interruptor ideal com $V_F = 0V$;

$$i = 0V$$

$$v = 0V$$
OFF
$$v = 0V$$
ON

- Válido só em aplicações com tensões muito maiores que as tensões normais de condução do díodo;
- Útil numa primeira análise de circuitos com vários díodos.

Modelo ideal

- Díodo on;
- Tensão no díodo é 0V;
- Corrente é limitada apenas pela resistência.

$$I_{D1} = \frac{10 - 0}{1K} = 10mA$$

$$I_{D1} \downarrow = 1 \text{ k}\Omega$$

$$V = 0V$$

$$V = 0V$$

$$V = 0V$$

Díodo off;

- Corrente no díodo é *0A*;
- Tensão inversa do díodo é a tensão de alimentação.

E. Martins, DETI Universidade de Aveiro

7-25

Sinais e Sistemas Electrónicos - 2023/2024

Rectificadores

Rectificadores

• É uma das aplicações práticas mais importantes dos díodos;

Fonte de alimentação DC

E. Martins, DETI Universidade de Aveiro

7-27

Sinais e Sistemas Electrónicos - 2023/2024

Rectificador de meia onda

• A tensão v_0 segue v_s (a menos de V_D) nas arcadas positivas:

$$v_0 \approx v_S - V_D$$

Rectificador de onda completa - em ponte

Sinais e Sistemas Electrónicos - 2023/2024

Rectificador de meia onda com filtragem

• Condensador carrega na primeira arcada positiva; depois não tem por onde descarregar.

A tensão v_o é
 puramente DC, mas
 apenas porque não temos
 carga na saída.

Rectificador de meia onda com filtragem

- Condensador carrega até ao valor
- depois D corta e o condensador descarrega sobre R;
 - D volta a conduzir quando V_I ultrapassa a tensão no condensador;
 - Quando maior C menor será a ondulação residual a tensão de ripple, V_r .

E. Martins, DETI Universidade de Aveiro

7-31

Sinais e Sistemas Electrónicos - 2023/2024

Rectificador de onda completa com filtragem

• Neste caso a frequência de ripple é o dobro da frequência do sinal sinusoidal

A expressão para V_r é

$$V_r = V_P \frac{T}{2RC}$$

• Para o mesmo valor de ripple o condensador pode ter metade do valor. A corrente no díodo é menor.

Díodos Zener e aplicações

E. Martins, DETI Universidade de Aveiro

7-33

Sinais e Sistemas Electrónicos - 2023/2024

Díodo Zener

Tensão de Zener

• Díodos especialmente concebidos para operar na região de *breakdown*.

- Valor de V_Z é determinado pelo grau de dopagem das regiões n e p;
- Fabricados com valores padrão de V_Z entre 2V e centenas de Volt;
- O facto de V_Z variar muito pouco com a corrente, torna o zener útil para regular tensões, e.g. atenuar o ripple duma tensão (rectificada).

breakdown

Díodo Zener - modelos

Características importantes:

- $\gt V_Z$: Especificado para uma dada corrente de teste I_{ZT} ;
- r_Z: Resistência dinâmica, igual ao inverso do declive na região de breakdown.

Modelos do zener:

Tensão constante

Linear

E. Martins, DETI Universidade de Aveiro

7-35

Sinais e Sistemas Electrónicos - 2023/2024

Características tipícas de díodos zener - exemplo

Série BZX79- Valores desde 2.1 a 75V

BZX79-XXX	$V_{Z}(V)$	$r_{Z}(\Omega)$	$I_{ZT}(mA)$
3V3	3.3	85	5
5V1	5.1	40	5
6V8	6.8	6	5
12	12	10	5
24	24	25	5

$$V_{F} = 0.9V @ 10mA;$$

 $P_{max} = 0.5W;$
 $I_{Zmax} = P_{max} / V_{Z}$

Aplicação 1: Zener como regulador de tensão

• A partir duma bateria de automóvel, cuja tensão pode variar entre 13.8V e 10.5V, queremos gerar uma tensão constante de 6.8V.

$$10.5V \le V_{bat} \le 13.8V$$
 $V_Z = 6.8V \implies$ Zener BZX79-6V8

A corrente I_Z deve ser o mais próxima possível de $I_{ZT} = 5mA$.

Tomando o valor médio de V_{bat} :

$$\overline{V_{bat}} = (10.5 + 13.8)/2 = 12.2V$$

$$R = \frac{\overline{V_{bat}} - V_Z}{I_{ZT}} = \frac{12.2 - 6.8}{5} \approx 1K$$

E. Martins, DETI Universidade de Aveiro

7-37

Sinais e Sistemas Electrónicos - 2023/2024

Aplicação 2: Zener como limitador (clipper)

Se o valor de v_1 for baixo, tal que

$$-(V_{Z1}+V_F) < v_I < (V_F+V_{Z2}) \implies v_\theta$$
 acompanha v_I

Se v_I for elevado a ponto de Z_1 e Z_2 conduzirem... $\Rightarrow v_0$ fica limitado superiormente a $V_F + V_{Z2}$

Se v_I baixar a ponto de Z_1 e Z_2 conduzirem... $\Rightarrow v_0$ fica limitado inferiormente a $-(V_{Z1} + V_F)$

7-38

Díodo LED e fotodíodo

E. Martins, DETI Universidade de Aveiro

7-39

Sinais e Sistemas Electrónicos - 2023/2024

Díodo LED (Light-Emitting Diodes)

- A recombinação de electrões e lacunas nos semicondutores usados (e.g GaAs, GaP) resulta na emissão de fotões: *electroluminescência*;
- A cor da luz (λ) depende dos dopantes usados e pode ser visível ou não (IR);
- Tensão directa, V_F , depende muito da cor do LED, variando de 1.7 (vermelho) a 3.3V (azul);
- Disponíveis em potências de *mW* até *Watts* (LEDs usados em iluminação).

Fotodíodo

- Funcionam em polarização inversa;
- Fotões incidentes na região de depleção geram pares electrão-lacuna (foto-ionização), aumentando a corrente inversa, I_S , do díodo;
- Usados como detectores/medidores de intensidade luminosa.

E. Martins, DETI Universidade de Aveiro

7-41