Name:

Mark: _____

Mini-math Div 3/4: Wednesday, February 10, 2021 (15 minutes)

1. (2 points) Choose the integral that is the limit of the Riemann Sum: $\lim_{n\to\infty}\sum_{k=1}^n\left(1+\frac{4k}{n}\right)^2\cdot\frac{4}{n}$

A.
$$\int_{1}^{5} (1+x)^{2} dx$$
 B. $\int_{1}^{5} x^{2} dx$ C. $\int_{0}^{4} (1+4x)^{2} dx$ D. $\int_{0}^{4} x^{2} dx$

2. (2 points) Choose the integral that is the limit of the Riemann Sum: $\lim_{n\to\infty}\sum_{k=1}^n\left(\sqrt{2+\frac{k}{n}}\right)\cdot\left(\frac{2}{n}\right)$

A.
$$\int_0^2 \sqrt{2 + \frac{x}{2}} dx$$
 B. $\int_0^2 \sqrt{2 + x} dx$ C. $\int_0^2 \sqrt{2 + 2x} dx$ D. $\int_0^2 \sqrt{1 + x} dx$

3. (2 points) Choose the Riemann Sum whose limit is the integral: $\int_0^3 \sin(x^3 - 1) dx$

A.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \sin\left(\left(\frac{k}{n}\right)^3 - 1\right) \cdot \left(\frac{1}{n}\right)$$

B.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \sin\left(\left(\frac{k}{n}\right)^3 - 1\right) \cdot \left(\frac{3}{n}\right)$$

C.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \sin\left(\left(\frac{3k}{n}\right)^3 - 1\right) \cdot \left(\frac{1}{n}\right)$$

D.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \sin\left(\left(\frac{3k}{n}\right)^3 - 1\right) \cdot \left(\frac{3}{n}\right)$$