MU Test Plan — Test 11 (β – Δ Q Phase Diagram)

Goal

Map survival regimes as a function of:

- β (Truth strength)
- ΔQ = Q_fast Q_slow (action cost gap)

We'll visualize where the system shows:

- Coexistence (near-degenerate): both branches sizable
- Hierarchical coexistence: slow dominates, fast suppressed but nonzero
- Near-collapse of fast: fast effectively negligible

Parameters

- $\hbar = 0.1$
- y = 1.0
- β sweep: 8.0 \rightarrow 10.0 (step 0.25)
- ΔQ sweep: generated by varying fast-path slope (we'll produce a range that spans small to large ΔQ)
- Slow path: r slow(t) = 0.25*t
- Fast paths: r_fast(t) = offset + slope*t, with offset=0.6 and slopes in a list to span ΔQ
- Selector: T(r) = 1/(1 + |r 0.25|)
- Window: 1.0

Predictions

- For small ΔQ and moderate β , coexistence: $w_{\rm fast}/w_{\rm slow} \sim O(1)$.
- As ΔQ increases, the ratio drops exponentially: $\log(w_{\rm f}/w_{\rm s}) \approx -\Delta Q/\hbar \log({\rm wf/ws}) \approx -\Delta Q/\hbar$ (Hierarchy Law).
- As β increases, absolute weights rise, but ratios follow $\Delta Q/\hbar$, so phase boundaries mostly vertical in the $(\beta, \Delta Q)$ plane (weak β -dependence of ratio).

What to look for

- Heatmap of log10(w_fast / w_slow) with contour lines to separate regimes:
 - $\circ \ge -1$ (ratio ≥ 0.1): coexistence
 - (-1, -4]: hierarchical coexistence
 - ≤ -6: fast effectively collapsed