Практичне завдання № 5 ЛІНІЙНІ БЛОКОВІ КОДИ

5.1. Згідно з варіантами, поданими в табл. 5.1, закодувати двійкову послідовність X кодами, що виявляють помилки (назви кодів наведені у другому стовпчику табл. 5.1). Виявити, у якому з отриманих повідомлень, закодованих першим та другим кодом є помилка. Прийняті повідомлення наведено у четвертому стовпчику табл. 5.1.

Прийняті позначення: $\Pi p \Pi - \text{код 3}$ перевіркою на парність, $\Pi p H - \text{код 3}$ перевіркою на непарність, $\Pi \Pi - \text{код 3}$ простим повторенням, IK - інверсний код. Таблиця 5.1.

Варіант	X	Коди	Послідовності для коду 1/2
1	1111111010	ПрН, ПП	Y1=100011100101, Y2=0000001111100 / Y1=001011101101011101, Y2=1011010010110100
2	001101100111	ПрН, ІК	Y1=001101011011, Y2=1100110010111 / Y1=111110011000001100, Y2=000101010110010101
3	0001001001	ПрН, ПП	Y1=110011100001, Y2=110100011000 / Y1=10100011010001, Y2=10100001010100
4	000101110101	ПрН, ПП	Y1=11101100001, Y2=0001101000000 / Y1=100100001101100001, Y2=10100011010001
5	101111010001	ПрП, ІК	Y1=1100000111111, Y2=11100011110 / Y1=1011000001001111, Y2=011111110100000000
6	00100111000	ПрН, ІК	Y1=0011000101011, Y2=00000010011 / Y1=00010101110101, Y2=11000001011111
7	00010110101	ПрН, ІК	Y1=1000101100101, Y2=100010001110 / Y1=000111100111000011, Y2=1001110101100110
8	0000000100	ПрП, ІК	Y1=0001100000111, Y2=11000111010 / Y1=01101001000011, Y2=0011010111001010
9	1101010110	ПрП, ПП	Y1=011100010111, Y2=0000001001101 / Y1=010100001010100001, Y2=1011000010110010
10	0110011110	ПрН, ІК	Y1=10100101110, Y2=01010101100 / Y1=1110100100010110, Y2=1010110000010011
11	00001001011	ПрН, ІК	Y1=0111010111101, Y2=0111010101110 / Y1=10010100110101, Y2=010001111111100
12	000111000010	ПрП, ІК	Y1=000100010101, Y2=011101101010 / Y1=110001111001110000, Y2=001101111110100
13	1111100100	ПрН, ІК	Y1=00111011011, Y2=00111011111 / Y1=11110010000100, Y2=11011100010001
14	1111010101	ПрП, ПП	Y1=111010010010, Y2=110011101001 / Y1=111101011111011, Y2=1100011011000110
15	101011011111	ПрН, ІК	Y1=0001100111110, Y2=01101111110 / Y1=11100000000111, Y2=10110100100101
16	01110011100	ПрН, ПП	Y1=01111010100, Y2=010110111010 / Y1=110100111110100111, Y2=011101010011100010

5.2. Згідно з варіантами, поданими в табл. 5.2, закодувати двійкову послідовність X ітеративним кодом, здатним виявляти та виправляти однократні помилки, та визначити надлишковість коду. Показати процес виявлення та виправлення однократної помилки у прийнятій двійковій послідовності Y, наведеній у табл. 5.2.

Таблиця 5.2.

Варіант	Двійкова послідовність <i>X</i>	Прийнята послідовність У
1	1001010111011100	010001000000000000001110110101101110
2	1000111110000101	001100110101001000010001111001001001
3	0100000111100110	011111100010001100000000001010110011
4	0010110000101110	0100110111110000101111101
5	1101101000101000	001010111010011110111011011011101110
6	1110100111100100	1110000101110000111101100
7	0110110100101100	111010001001010011010001101000011011
8	011111000001	0111110001000001111101001
9	010100001001	0100111101010110000011111011011111100
10	111001110110	001111010001001000101000010111100001
11	0110000001111100	110110100001001011011011000110000011
12	000111100011	1100000011100101100110100
13	101001101101	1101111101101010000010111
14	010000110011	101101100111000110001110011000001010
15	001110100010	10000111110010111110011001111111000101
16	01110101111001011	0001000000110110000011101

5.3. Згідно з варіантами, поданими в табл. 5.3, визначити, які з наведених двійкових послідовностей лінійного блокового (5,9)-коду містять помилку та виправити її, якщо відомо, що код побудований за твірною матрицею

$$G_{5,9} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Таблиця 5.3.

Варіант	Y_1	Y_2	Y_3
1	011000011	001011001	000100000
2	110000110	110000101	011011010
3	100111010	000001010	101000101
4	110000110	111011111	000011100
5	100011010	100100000	111011010
6	100110011	010110011	100110000
7	010101010	001101111	000000101
8	000111010	110101111	010101001
9	100011001	001101100	101010101
10	110101111	011011100	111111001
11	100000000	100100000	001101111
12	001001111	000011010	101110011
13	010001100	010011111	100110011
14	010011111	011011111	010011001
15	100100011	011001001	001011100
16	110000011	011111001	000110011

5.4. Згідно з варіантами, поданими в табл. 5.4, визначити, які з наведених двійкових послідовностей лінійного блокового (5,9)-коду містять помилку та виправити її, якщо відомо, що перевірна матриця коду має вигляд

$$H_{4,9} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Таблиця 5.4.

Варіант	Y_1	Y_2	Y_3
1	111101010	010011001	011000011
2	011111010	000101001	110100101
3	011101010	010110000	011010000
4	011111001	101011111	101100101
5	001000011	010110000	011101010
6	001000000	000010011	101000101
7	110011100	110000000	110000011
8	001101010	110111100	011011001
9	001010101	101101100	101001111
10	011010011	001000000	010110110
11	100110110	110101111	011101001
12	100110110	000000000	101010110
13	101101100	110111100	111111001
14	111011111	000101001	101100110
15	100000110	100000011	001011001
16	000110110	001100101	010110110

5.5. Згідно з варіантами, поданими в табл. 5.5, закодувати кодами Хеммінга для заданих параметрів d_{\min} двійкову послідовність X, визначити надлишковість коду та показати процес виправлення однократної помилки (для коду з $d_{\min} = 3$) або виявлення будь якої двократної помилки (для коду з $d_{\min} = 4$) у прийнятих двійкових послідовностях Y.

Таблиця 5.5.

Варіант	$X(d_{\min}=3)$	$Y(d_{\min}=3)$	$X(d_{\min}=4)$	$Y(d_{\min}=4)$
1	110010000000101	000100111	01110000000101	011100101100
2	01110	001001010001	1000010111000	10100110110110
3	1101101	00011000000011011101	100101010001	1000011100000
4	010010000	0111110000101011010	0011101	1010110010001110
5	01101000111	0011101001110000110	101111101111	10111000011
6	11110	010010010001	100001000111	0001100111011100
7	001100	11011100111010010111	101100110011101	00101011110011
8	0010	00000100011	100001	0110101000
9	1010	01101100101101111	0111000111	10110001110
10	10111	0011100	101110010	0001000100000000011
11	0000	10000010001110101001	1111011010	1100001111
12	0101000111	101111010101010	0100101	011101101011011
13	100001010010011	00101110100001001111	10101010	001011101001
14	010100	1111100001010111101	00110110	011010110011001001100
15	1101101011000	001000011	10101	011010100111001
16	101010	001111000	00110000000	11001010