

Model Optimization and Tuning Phase

Date	28 July 2025
Project Title	Flight Delays Prediction Using Machine Learning
Maximum Marks	10 Marks

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values		
Decision Tree	- Criterion: ['gini', 'entropy'] - Splitter: ['best', 'random'] - Max Depth: [10, 20, 30, 40] - Min Samples Split: [2, 5, 10] - Min Samples Leaf: [1, 2, 4] Criterion: gini Max Depth: 20 Min Samples Split: 2 Min Samples Leaf: 1			
Random Forest	- n_estimators: [50, 100, 200] - Criterion: ['gini', 'entropy'] - Max Depth: [10, 20, 30] - Min Samples Split: [2, 5] - Min Samples Leaf: [1, 2]	n_estimators: 100 Criterion: gini Max Depth: 20 Min Samples Split: 2		
SVM	- Kernel: ['linear', 'rbf'] - C: [0.1, 1, 10] - Gamma: ['scale', 'auto'] Kernel: linear C: 1.0 Gamma: scale			
LightGBM	- n_estimators: [50, 100, 200] - Learning Rate: [0.05, 0.1, 0.2] - Num Leaves: [20, 31, 40]	n_estimators: 100 Learning Rate: 0.1 Num Leaves: 31		

Performance Metrics Comparison Report (2 Marks):

Model	Metrics
Decision Tree	Classification Report: precision recall f1-score support
	False 0.99 0.99 0.99 1802 True 0.97 0.97 0.97 445
	accuracy 0.99 2247 macro avg 0.98 0.98 0.98 2247 weighted avg 0.99 0.99 0.99 2247
	Confusion Matrix: [[1790 12] [12 433]]
Random Forest	Classification Report: precision recall f1-score support
	False 0.90 0.99 0.94 1802 True 0.93 0.58 0.71 445
	accuracy 0.91 2247 macro avg 0.92 0.78 0.83 2247 weighted avg 0.91 0.91 0.90 2247
	Confusion Matrix: [[1782
SVM	Classification Report: precision recall f1-score support
	False 0.80 1.00 0.89 1802 True 0.00 0.00 0.00 445
	accuracy 0.80 2247 macro avg 0.40 0.50 0.45 2247 weighted avg 0.64 0.80 0.71 2247
	Confusion Matrix: [[1802 0] [445 0]]

LightGBM	Classification	n Report: precision	recall	f1-score	support
	False	0.98	0.99	0.98	1802
	True	0.95	0.93	0.94	445
	accuracy			0.98	2247
	macro avg	0.97	0.96	0.96	2247
	weighted avg	0.98	0.98	0.98	2247
	Confusion Matr [[1780 22] [33 412]]	rix:			, ,

Final Model Selection Justification Report (2 Marks):

Final Model	Justification
Decision Tree	Highest Performance: The Decision Tree achieved the highest accuracy (98.9%) and F1-score (0.97) among all tested models (Random Forest, SVM, and LightGBM).
	Dataset Size and Simplicity: With a dataset of 11,231 rows, a Decision Tree is highly efficient, interpretable, and sufficient for capturing the key decision patterns without overfitting.
	Low Complexity & Fast Predictions: Unlike SVM or LightGBM, the Decision Tree is computationally lightweight, making it ideal for real-time predictions in the Flask web app.
	Interpretability: Decision Trees provide clear decision rules,

which makes it easy to explain the reasoning behind predictions, useful for operational deployment in airports/airlines.

No Hyperparameter Dependency:

The model performed extremely well even with default hyperparameters, indicating that the dataset features are naturally separable for this prediction task.