

SEQUENCE LISTING

<110> Honkanen, Richard E.
Dean, Nicholas M

<120> ANTISENSE OLIGONUCLEOTIDE MODUATION OF HUMAN SERINE/THREONINE PROTEIN PHOSPHATASE GENE EXPRESSION

<130> ISPH-0741

<150> US 09/825,497
<151> 2001-04-03

<150> US 09/371,252
<151> 1999-08-10

<150> US 08/975,211
<151> 1997-11-20

<160> 72

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 1
tcgcctccg ccatcgccat

20

<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 2
ttcagagctc catcagccgg

20

<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 3
gtaggccagg ctgcgggtgc 20

<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 4
ccgctgtact catcctcaat 20

<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 5
tccccacata ctgtaatctt 20

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 6
gtacttggcc ttcacctcac 20

<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 7
ccaggttgtt ctcttccaag 20

<210> 8
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 8
agagccctgg aggtggatgt 20

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 9
cgcccccggcc gtcacacctcac 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 10
cctaccggct ctgcaaacct 20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 11
gccccagctg ctccacacctc 20

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 12
gggccctatt gcttgagtgg 20

<210> 13
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 13
cccaagcttag cccccaccatg 20

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 14
gtgcgatcgt tgcggtagc 20

<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 15
gctctactcc gccccatgcc 20

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 16
ccatggccca cccccggcgc 20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 17

tgatctccgc catggcccac

20

<210> 18

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 18

cggtccacaa agtccccat

20

<210> 19

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 19

gaggcccccg tgcacgcaga

20

<210> 20

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 20

acgtcactgc caaataggtt

20

<210> 21

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 21

tgccacatcc ccacagcggt

20

<210> 22

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 22

gggagcagcc tcaaagatga

20

<210> 23

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 23

gatggcagag tcacagtgg

20

<210> 24

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 24

gggacagcag agccaggaca

20

<210> 25

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 25

aacttcatgg ttcaagtgg

20

<210> 26

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 26

ccatcgccctt cccaccgccc

20

<210> 27

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 27

catatttga gtggtgcttc

20

<210> 28

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 28

tggcacattc atggttccct

20

<210> 29

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 29

ctccatgaca gcagaatatac

20

<210> 30

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 30

gcaataattg ggcgcaaaaa

20

<210> 31

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 31

gcttgcttg tgatcataacc

20

<210> 32

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 32

gattcagagc accctagggc

20

<210> 33

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 33

agtgatgctg gcaagggttga

20

<210> 34

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 34

cccaagaagg cagcatgtgt

20

<210> 35

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 35

aatggacggg ttcaggcctg

20

<210> 36

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 36

aaagcataat cggtcactcg

20

<210> 37

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 37

cacggatttg tacacggtca

20

<210> 38

<211> 180

<212> DNA

<213> H. sapiens

<400> 38

ccgcaggac attgcgttgg cgctgacggt cgctggcgcc cgttgccagg gtaggggtcg 60
 ctttgcggca tggcgatggc ggagggcgag aggactgagt gtgctgagcc cccccgggac 120
 gaaccccccgg ctgatggagc tctgaagcgg gcagaggagc tcaagactca ggccaatgac 180

<210> 39

<211> 1987

<212> DNA

<213> H. sapiens

<400> 39

cgagaggact gagtgtgctg agcccccccg ggacgaaccc ccggctgatg gagctctgaa 60
 gcgggcagag gagctaaga ctcaggccaa tgactacttc aaagccaagg actacgagaa 120
 cgcacatcaag ttctacagcc aggcacatcg gctgaacccc agcaatgcca tctactatgg 180
 caaccgcagc ctggcctacc tgcgcactga gtgcgtatggc tacgcgcctgg gagacgcccac 240
 gcgggccatt gagctggaca agaagtcat caagggttat taccgcggg ctgcagccaa 300
 catggcactg ggcaagttcc gggccgcgtc gcgagactac gagacgggtgg tcaaggtgaa 360
 gccccatgac aaggatgcca aaatgaaaata ccaggagtgc aacaagatcg tgaagcagaa 420
 ggccttgag cgggccatcg cgggcgacga gcacaagcgc tccgtgggtgg actcgctgga 480
 catcgagac atgaccatttgc aggtgagta cagcgcaccc aagcttgaag acggcaaagt 540
 gacaatcgtt ttcatgaagg agctcatgca gtggtaacaag gaccagaaga aactgcacccg 600
 gaaatgtgcc taccagattc tggtagggcgtt caaaggaggtc ctctccaagc tgagcacgt 660
 cgtggaaacc acactcaaag agacagagaa gattacagta tgtggggaca cccatggcca 720
 gttctatgac ctccctcaaca tattcgagct caacggtta ccctcgggaga ccaaccccta 780
 tatatttaat ggtgactttg tggaccggg ctcctcttct gttagaagtga tcctcaccc 840
 tttccggcttc aagctccctgt acccagatca ctttcacctc cttcgaggca accacgagac 900
 agacaacatg aaccagatct acggtttcga gggtaggtg aaggccaagt acacagccca 960
 gatgtacgag ctcttttagcg aggtgttcga gtggctcccg ttggcccaagt gcatcaacgg 1020
 caaagtgcgtg atcatgcacg gaggcctgtt cagtgaagac ggtgtcaccc tggatgacat 1080

ccggaaaatt	gagcggaaatc	gacaacccccc	agattcaggg	cccatgtgtg	acctgctctg	1140
gtcaagatcca	cagccacaga	acgggcgctc	gatcagcaag	cggggcgtga	gctgtcagtt	1200
tgggcctgac	gtcaccaagg	ccttcttgg	agagaacaac	ctggactata	tcatccgcag	1260
ccacgaagtc	aaggccgagg	gctacgaggt	ggctcacgga	ggccgctgtg	tcaccgtctt	1320
ctctgcccc	aactactcg	accagatggg	gaacaaagcc	tcctacatcc	acctccaggg	1380
ctctgaccta	cggcctcagt	tccaccagt	cacagcagt	cctcatccca	acgtcaagcc	1440
catggcttat	gccaacacgc	tgctgcagct	aggaatgtat	tgaggtgacg	ggcggggcgg	1500
cctgcacccc	agggcccctc	caatcccacc	ggaccaggc	cctggcttag	gggcagagca	1560
ggccccgccc	cagggcaatg	ttggacccccc	tttactttg	taaagtttg	atttattccc	1620
ctttaggtt	gcagaggggg	tagggcaga	gtcagggct	gccagaggg	tctgctccct	1680
ggacagagag	gaaggaggtg	gagcagctgg	ggctggggc	acagcctgg	cattctgtgg	1740
ggaggccgtc	ctcggggtgg	ggtggggccg	agtggctgcc	ctgccccct	catttgcatt	1800
gctccccc	cactcaagca	atagggcccc	gccataggaa	gaccccccaga	gagaggggtca	1860
gcaggggggc	ccgcctcg	cctccccc	tatagcccc	tggggggct	aggctggggc	1920
tcacccccc	ccccagctat	tttatgtctg	taattaaata	tgttaaaata	aagtcttattat	1980
cggaagt						1987

<210> 40
<211> 1887
<212> DNA
<213> H. sapiens

<400> 40						
ggactgagtg	tgctgagccc	ccccgggacg	aaccccccgc	tgtggagct	ctgaagcggg	60
cagaggagct	caagactcag	gccaatgact	acttcaaagc	caaggactac	gagaacgcca	120
tcaagttcta	cagccaggcc	atcgagctga	accccagcaa	tgccatctac	tatggcaacc	180
gcagcctggc	ctacctgcgc	actgagtgct	atggctacgc	gctgggagac	gccacgcggg	240
ccattgagct	ggacaagaag	tacatcaagg	gttattaccg	ccgggctgcc	agcaacatgg	300
caactggca	gttccgggccc	gcgctgcgag	actacagac	ggtggtcaag	gtgaagcccc	360
atgacaagga	tgccaaaatg	aaataccagg	agtcaacaa	gatctgtgaag	cagaaggccct	420
ttgagggggc	catcgccggc	gacgagcaca	agcgctccgt	ggtggactcg	ctggacatcg	480
agagcatgac	cattgaggat	gagtacagcg	gaccaagct	tgaagacggc	aaagtgcaca	540
tcagtttcat	gaaggagctc	atcgagtgg	acaaggacca	gaagaaaactg	cacccggaaat	600
gtgcctacca	gattctggta	caggtcaaaag	aggtctcttc	caagctgagc	acgctcgtgg	660
aaaccacact	caaagagaca	gagaagatta	cagtatgtgg	ggacacccat	ggccagttct	720
atgacctct	caacatattc	gagctcaacg	gttaccctc	ggagaccaac	ccctatatat	780
ttaatggta	ctttgtggac	cgaggctcct	tctctgtaga	agtgtatcc	accctttcg	840
gcttcaagct	cctgtaccca	gatcaacttc	acctccttc	aggcaaccac	gagacagaca	900
acatgaacca	gatctacggt	ttcgagggtg	aggtgaaggc	caagtacaca	gcccgatgt	960
acgagcttt	tagcgaggtg	ttcgagtgcc	tcccgttggc	ccagtgcate	aacggcaaag	1020
tgctgatcat	gcacggaggc	ctgttcagtg	aagacggtgt	caccctggat	gacatccgga	1080
aaatttgcgc	gaatcgacaa	ccccccagatt	caggcccatt	gtgtgacctg	ctctggtcag	1140
atccacagcc	acagaacggg	cgctcgatca	gcaagcgggg	cgtgacgtgt	cagtttgggc	1200
ctgacgtcac	caaggccctc	ttgaaagaga	acaacctgg	ctatatcatc	cgcagccacg	1260
aagtcaaggc	cgagggctac	gaggtggctc	acggaggccg	ctgtgtcacc	gtcttctcg	1320
cccccaacta	ctgcgaccag	atggggaaaca	aagccctcta	catccaccc	cagggctctg	1380
gtgaggtgac	gggcggggcg	gcctgcatcc	cagggccct	ccaatcccac	cggaccagg	1440
ccctgggcta	ggggcagagc	aggccccgc	ccaggcaat	gttggacccc	cttttacttt	1500
gtaaagttt	tatttattcc	ccctttagtt	gcagaggggg	tagggcaga	gtcaggggct	1560
ggccagaggg	tctgctccct	ggacagagag	gaaggaggtg	gagcagctgg	ggctggggca	1620
cagcctgggc	attctgtgg	gaggccgtcc	tcgggggtgg	gtggggccga	gtggctgccc	1680
tgcccccc	atttgcattt	ctccctcccc	actcaagcaa	tagggcccc	ccataggaag	1740
acccccc	agagggtcag	cagggggggcc	ccgcctgcgc	ctccctctt	atagccccat	1800
gtggggccta	ggctggggct	cacccccc	cccagctatt	ttatgtctgt	aattaaatat	1860
gttaaaataa	agtcttattatc	ggaagt				1887

<210> 41
<211> 1360
<212> DNA
<213> H. sapiens

<400> 41

cgccggcgt	cgaaagcgg	gtgaaagagg	gaggcaggga	gccggagagc	cggAACCGGA	60
gtcgacgg	cgagacccc	tgtcggtgc	ggagggggcg	gcggccccga	ctctgaccgc	120
cgccgggggt	ggccatggc	ggagatcagc	gacctggacc	ggcagatcga	gcagctgcgt	180
cgctcgagc	tcatcaagga	gagcgaagtc	aaggccctgt	gcgctaaggc	cagagagatc	240
ttggtagagg	agagcaacgt	gcagagggtg	gactcgccag	tcacagtgt	cggcgacatc	300
catggacaat	tctatgacct	caaagagctg	ttcagagtag	gtggcgacgt	ccctgagacc	360
aactacctct	tcatggggga	cttgtggac	cgtggcttct	atagcgtcga	aacgttcctc	420
ctgctgctgg	cacttaaggt	tcgctatcct	gatcgcatca	cactgatccg	gggcaaccat	480
gagagtgcgc	agatcacgca	ggtctatggc	ttctacgatg	agtgcctgcg	caagtacggc	540
tcggtgactg	tgtggccta	ctgcactgag	atcttgact	acctcagcct	gtcagccatc	600
atcgatggca	agatcttctg	cgtgcacggg	ggcctctccc	cctccatcca	gaccctggat	660
cagattcgg	caatcgaccg	aaagcaagag	gtgcctcatg	atggggccat	gtgtgacctc	720
ctctggtctg	acccagaaga	caccacaggc	tggggcgtga	gccccggagg	agccggctac	780
ctatttggca	gtgacgtggt	ggcccagttc	aacgcagcca	atgacattga	catgatctgc	840
cgtgcccacc	aactggtgat	ggaagggtac	aagtggcact	tcaatgagac	ggtgctca	900
gtgtggtcgg	caccaacta	ctgctaccgc	tgtggaatg	tggcagccat	tttggagctg	960
gacgagcata	tccagaaaaga	tttcatcata	tttgaggctg	ctccccaaga	gacacggggc	1020
atcccctcca	agaagcccgt	ggccgactac	ttcctgtgac	cccggccggc	ccctgcccc	1080
tccaaccctt	ctggccctcg	caccactgtg	actctgccc	tttcctcaga	cgaggcgtgg	1140
gggggctgtc	ctggctctgc	tgtcccaaa	gagggtgcct	tcgagggtga	ggacttctct	1200
ggagaggcct	ggagaccttag	ctccatgttc	ctcctctct	ctcccccactt	gaaccatgaa	1260
gtttccaata	atttttttt	cttttttcc	tttttttct	gtttgtttt	agataaaaat	1320
ttttgagaaa	aaaaatgaaa	aattctaata	aaagaagaaa			1360

<210> 42
<211> 2263
<212> DNA
<213> H. sapiens

<400> 42

aggaagttagg	gagcgggggtg	gcaggggggg	gaccggccgc	ggctgctgcc	accggccgcca	60
ccaccgcctc	tgctcggtgc	gtggaaagg	aggtgtgagt	cccgccgcgc	agccgcggcg	120
gcggcgctgc	gggagggtcg	gcgggtggaa	ggcgatggcg	gatttagata	aactcaacat	180
cgacagcatt	atccaaacggc	tgtggaaat	gagagggtcc	aagcctggta	agaatgtcca	240
gcttcaggag	aatgaaatca	gaggactgtg	ctttaaagtct	cgtgaaatct	ttctcagtca	300
gcctatccta	ctagaacttg	aagcaccact	caaaatatgt	ggtgacatcc	atggacaata	360
ctatgattt	ctgcgacttt	ttgagtagcg	tggttccca	ccagaaagca	actacgttt	420
tcttggggac	tatgtggaca	ggggaaagca	gtcattggag	acgatctgcc	tcttactggc	480
ctacaaaata	aaatatcctg	agaattttt	tcttcaga	gggaaccatg	aatgtgccag	540
catcaacaga	atttatggat	tttatgtga	atgtaaaaga	agataacaaca	ttaaactatg	600
aaaaactttc	acagactgtt	ttaactgttt	accgatagca	gccatcggtg	atgagaagat	660
attctgctgt	catggaggtt	tatcaccaga	tcttcaatct	atggagcaga	ttcggcgaat	720
tatgcgacca	actgatgtac	cagatcaagg	tcttctttgt	gatctttgt	ggtctgaccc	780
cgataaaagat	gtcttaggct	ggggtaaaaa	tgacagagga	gtgtccttca	catttgggtgc	840
agaagtgggt	gaaaatttc	tccataagca	tgatttggat	cttataatgta	gagcccatca	900
ggtgggtgaa	gatggatatg	aatttttgc	aaagaggcag	ttggtcactc	tgtttctgc	960
gccccattat	tgcgagagt	ttgacaatgc	aggtgccatg	atgagtgtgg	atgaaacact	1020
aatgtgttct	tttcagattt	taaagcctgc	agagaaaaag	aagccaaatg	ccacgagacc	1080
tgttaacgcct	ccaaggggta	tgatcacaaa	gcaagcaaag	aatagatgt	cgtttgaca	1140
ctgcctagtc	gggacttgta	acatagagta	tataaccctc	attttaaga	ctgtaatgt	1200

tactggtcag	tttgctcaga	tagatctgtg	tttgcgggg	cccttccttc	cattttgat	1260
tttagtgaatg	gcatttgctg	gttataacag	caaataaaaa	actcttcact	ccaaaaagaa	1320
aagtgttttgc	tttttaatt	ctctgttcct	tttgc当地	attttaatga	tggtgtt当地	1380
gctgtacacc	ccaggacagt	ttatcctgtc	tgaggagtaa	gtgtacaatt	gatctttt	1440
aattcagtagc	aaccataat	catgtaaatg	ctcatttct	tttagacata	aagagagccc	1500
tagggtgctc	tgaatctgt	catgttcttgc	tcataaaaatg	catactgttgc	atacaaaacca	1560
ctgtgaacat	tttttatgg	agaattttgt	ttcaaaaggga	ttgcttttc	ctctcattgt	1620
cttggatgt	acaaactagt	ttttatagct	atcaacatta	ggagtaactt	tcaaccttgc	1680
cagcatca	ggtatgtat	atatttaatt	aaagcacact	tttccccgac	cgtataactt	1740
aaatgacaaa	gccattttt	taaatatgg	tgactcttc	ctaaagccaa	agtttctgtt	1800
gaattatgtt	ttgacacacc	cctaagtaca	agggtgtatg	gttgtataca	catgctgcct	1860
tcttggggat	tcaaaaacag	gttttgatt	ttgaatagca	attagtgata	tagtgcgtt	1920
taagctacta	acgataaaaag	gtaataacat	tttatacatat	ttccatata	tctattcatt	1980
aagtaatctt	tttacagtttgc	catcaggcct	gaaccgtcc	attcagaaag	cttcaaatta	2040
tagaaacaaat	actgttctat	acgagtgacc	gattatgttgc	tctttggcct	acattctta	2100
ttctgcgggt	aagttgaggc	ttataagtta	aaacaaagga	actaacttac	tgtccaccag	2160
tttatacaga	actcacagta	cctatgactt	ttttaacta	agatctgtt	aaaaagaaat	2220
ctgtttcaac	agatgaccgt	gtacaatacc	gtgtggtaa	aat		2263

<210> 43

<220>

<400> 43

000

<210> 44

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 44

tcttgagctc ctctgccccgc

20

<210> 45

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 45

ggcgttctcg tagtccttgg

20

<210> 46

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 46

ctgcggttgc catagtagat

20

<210> 47

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 47

cactcagtgc gcaggttaggc

20

<210> 48

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 48

cagctcaatg gccccgcgtgg

20

<210> 49

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 49

cagcgcggcc cggaaccttgc

20

<210> 50

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 50

acgatcttgt tgcactcctg

20

<210> 51

<211> 20

<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 51
cgcgatggcc cgctcaaagg 20

<210> 52
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 52
tgtccagcga gtccaccacg 20

<210> 53
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 53
gtcttcaagc ttgggtccgc 20

<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 54
catttccggc gcagtttctt 20

<210> 55
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 55

15
gaggcatag aactggccat 20

<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 56
gtctccgagg gtaaaaccgtt 20

<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 57
aaggagcctc ggtccacaaa 20

<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 58
tctgtctcggttgccctcg 20

<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 59
tggccttcac ctcaccctcg 20

<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 60
gccaacggga gccactcgaa 20

<210> 61
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 61
gggttgtcga ttccgctcaa 20

<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 62
cccgttctgt ggctgtggat 20

<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 63
agaaggcctt ggtgacgtca 20

<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 64
acggtgacac agcggcctcc 20

<210> 65
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 65

gtggaactga ggccgttagt

20

<210> 66

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 66

aggccatggg cttgacgttg

20

<210> 67

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 67

ccgccccgcc cgtcacacctca

20

<210> 68

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 68

cagggcctgg gtccggtgtgg

20

<210> 69

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 69

ccctacccccc tctgcaaacc

20

<210> 70
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 70
agaccctctg gccagcccc 20

<210> 71
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 71
actcggccccc accccacccc 20

<210> 72
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 72
gagccccagc ctagccccac 20