

ПРОЕКТ

Модул 8 - Разработка на софтуер Тема: Scientific Calculator.

Изготвили:

Име: Катерина Александрова Димитрова

Име: Петър Павлов Бакларов

Име: Асен Иванов Царев

Име: Маттео Иванов

Клас: **ХІ клас**

Училище: ПРОФИЛИРАНА ПРИРОДОМАТЕМАТИЧЕСКА

ГИМНАЗИЯ "Васил Левски" и Езикова гимназия "Иван Вазов" гр.

Смолян

Проверил: Красимира Юрукова

Съдържание

1.	Описание на проекта	3
2.	Блокова схема	3
3.	Електрическа схема	5
4.	Списък съставни части	6
5.	Монтажна схема	10
6.	Сорс код – описание на функционалността	11
7.	Линк към GitHub, TinkerCad	19
Q	Заключение	19

1. Описание на проекта

- ➤ Темата на проектната работа е научен калкулатор. Той представлява калкулатор, който използва Arduino платка и LCD дисплей. Разработената вградена система, позволява на потребителя да извършва различни математически операции и да види визуализиращият се резултат на LCD екрана. Според това, кой от бутоните е натиснат от потребителя, програмата го разпознава като дадена математическа операция или число, и извършва съответните действия с въведените данни. Включени са различни операции като събиране, изваждане, умножение, деление, изчисляване на корен квадратен, тригонометричните функции синус и косинус и повдигане на дадено число на избраната степен. Програмата включва една обработка на грешка и тя е проверка за деление на нула и извеждане на съобщения на LCD екрана.
- Проектът се осъществява с помощта на симулационната платформа TinkerCad.
 Създадена е както работеща симулация и функционира перфектно.
- ▶ Целта на проекта е да предостави удобен и лесен за използване калкулатор, който може да бъде изграден с достъпни електронни компоненти и да се използва за различни математически задачи.
- След като обмислихме идеята и разпределихме задачите, всеки член от екипа взе участие в разработването на всяка част от проекта. Създадохме симулация в TinkerCad. След успешното създаване на симулацията, преминахме към дебъгване на проекта и създаването на електрическа и блок схема и таблица с компоненти. Накрая, написахме документацията и подготвихме презентацията за нашия проект.

2. Блокова схема

Представената блокова схема е визуализираната на блокова схема 1

Блокова схема 1

3. Електрическа схема

Представената електрическа схема е разделена на две части. Тя е визуализираната на фиг. 1 и фиг. 2

Фигура 1

Фигура 2

4. Списък съставни части

> Списък със съставни части

NAME	QUANTITY	COMPONENT
U1	1	Arduino Uno R3
U2	1	LCD 16 x 2
R1 R6 R17	3	1 kΩ Resistor
Rpot1	1	250 kΩ Potentiometer
S1 S2	22	Pushbutton

	T	
S3		
S4		
S5		
S6		
S7		
S8		
S10		
S11		
S9		
S12		
S13		
S14		
S15		
S16		
S17		
S18		
S19		
S20		
S21		
S22		
R2	1	51 Ω Resistor
R3	1	57 Ω Resistor
R5	1	71 Ω Resistor
R7	1	81 Ω Resistor
R8	1	90 Ω Resistor
R9	1	107 Ω Resistor

R10	1	121 Ω Resistor
R11	1	143 Ω Resistor
R5	1	71 Ω Resistor
R13	1	205 Ω Resistor
R14	1	257 Ω Resistor
R15	1	321 Ω Resistor
R16	1	424 Ω Resistor
R18	1	243 Ω Resistor
R19	1	171 Ω Resistor
R20	1	227 Ω Resistor
R4	1	64 Ω Resistor
R21	1	315 Ω Resistor
R16	1	424 Ω Resistor
R18	1	243 Ω Resistor

4	Α	В	С	D	E	F	G
1	Name	Quantity	Component		Name	Quantity	Component
2	U1	1	Arduino Uno R3		R2	1	51 Ω Resistor
3	U2	1	LCD 16 x 2		R3	1	57 Ω Resistor
4					R5	1	71 Ω Resistor
5	R1 R6	3	1 kΩ Resistor		R7	1	81 Ω Resistor
6	R17				R8	1	90 Ω Resistor
7	Rpot1	1	250 kΩ Potentiometer		R9	1	107 Ω Resistor
8					R10	1	121 Ω Resistor
9	S1				R11	1	143 Ω Resistor
10	S2 S3 S4				R12	1	172 Ω Resistor
11	S5				R13	1	205 Ω Resistor
12	S6				R14	1	257 Ω Resistor
13	S7 S8				R15	1	321 Ω Resistor
14	S10			R16	1	424 Ω Resistor	
15	S11				R18	1	243 Ω Resistor
16	S9	-00	B 11 0		R19	1	171 Ω Resistor
17	812	22	Pushbutton		R20	1	227 Ω Resistor
18	S13				R4	1	64 Ω Resistor
19	S14				R21	1	315 Ω Resistor
20	S15				R22	1	462 Ω Resistor
21	S16 S17				R23	1	750 Ω Resistor
22	S17 S18						
23	S19						
24	S20						
25	S21						
26	S22						
27							
28							
29							

Съставни части 1

5. Монтажна схема

> Монтажна схема 1

Монтажна схема 1

6. Сорс код – описание на функционалността

- ➤ Сорс код:
- № Инициализира комуникация и дисплея LiquidCrystal. Непрекъснато чете аналогови входове от двата пина (АО и А1). Ако се открие някакъв вход (стойността не е равна на 1023), се извиква функцията detectButtons(). Ако е готово за изчисление (calculatable e true), се извиква функцията calculateResult(). Извежда резултата на LCD. Изчиства LCD дисплея след забавяне от 500 милисекунди.
- ▶ detectButtons() Чете аналогови стойности от A0 и A1. В зависимост от стойността от A1, извършва различни действия. Ако е натиснат бутон за число (0-9), добавя цифрата към текущия резултат. Ако е натиснат бутон "=", задава втория аргумент за изчисление и задава calculatable на true. Ако е натиснат бутон за аритметична операция (+, -, *, /), задава операцията, запазва текущия резултат като първи аргумент и нулира резултата. В зависимост от стойността от A0, извършва допълнителни операции като извикване на последния отговор, извършване на логаритмични функции, тригонометрични функции.
- ➤ calculateResult() Изчислява резултата въз основа на запазената операция и аргументи. Обработва аритметични операции (+, -, *, /) и различни математически функции (log10, sin, cos, sqrt). Извежда съобщение за грешка на LCD ако се опитва да се раздели на нула.
- displayResult() Извежда текущото състояние на калкулатора на LCD. Показва първия аргумент, операцията и втория аргумент (ако има такъв). Ако е готово за изчисление (calculatable e true), извежда резултата.

```
#include <LiquidCrystal.h>
       #include <math.h>
 2
 3
       LiquidCrystal 1cd(13, 12, A2, A3, A4, A5);
 4
 5
 6
       unsigned long int firstArg = 0, secondArg = 0;
 7
       double result = 0;
8
       double ans = 0;
9
       bool calculatable = false;
       String operation = "";
10
11
12 ∨ void setup()
13
14
         Serial.begin(9600);
15
         lcd.begin(16, 2);
         lcd.print("Scientific-Calc");
16
17
         delay(1000);
18
         lcd.clear();
19
       }
20
21 ∨ void loop() {
22
         int valueA0 = analogRead(A0);
23
         int valueA1 = analogRead(A1);
         if (valueA0 != 1023 || valueA1 != 1023) {
24
25
               detectButtons();
26
         }
27
         if (calculatable) {
28
               calculateResult();
29
30
         displayResult();
         delay(500);
31
         lcd.clear();
32
```

```
33
34
       void detectButtons() {
36
         int valueA0 = analogRead(A0);
37
         int valueA1 = analogRead(A1);
         switch (valueA1) { //switch on the larger keypad (basic operations)
38
           case 0: // number 0
39
40
               {
41
               if (result == 0) {
42
               result = 0;
43
                } else {
                        result *= 10;
44
45
46
47
               break;
48
               case 50: // number 1
49
               if (result == 0) {
50
51
               result = 1;
52
                } else {
               result = result * 10 + 1;
53
54
55
56
               break;
                case 100: // number 2
57
58
                if (result == 0) {
59
               result = 2;
60
               } else {
61
62
                        result = result * 10 + 2;
63
                }
64
65
               break;
               case 150: // number 3
66
67
               if (result == 0) {
68
69
               result = 3;
70
                } else {
71
                   result = result * 10 + 3;
72
                }
73
```

```
74
            break;
 75
                case 200: // number 4
 76
                if (result == 0) {
 77
                result = 4;
 78
 79
                } else {
                        result = result * 10 + 4;
 80
 81
82
 83
                break;
                case 250: // number 5
 84
85
                {
                if (result == 0) {
86
                result = 5;
87
 88
                } else {
 89
                        result = result * 10 + 5;
90
                }
                }
91
 92
                break;
                case 300: // number 6
93
 94
                if (result == 0) {
95
                result = 6;
96
97
                } else {
98
                        result = result * 10 + 6;
99
100
101
                break;
                case 350: // number 7
102
103
                {
                if (result == 0) {
104
105
                result = 7;
106
                } else {
107
                        result = result * 10 + 7;
108
                }
109
                break;
110
                case 400: // number 8
111
112
113
                if (result == 0) {
114
                result = 8;
```

```
115
                 } else {
116
                         result = result * 10 + 8;
117
118
119
                 break;
                case 450: // number 9
120
121
122
                 if (result == 0) {
123
                 result = 9;
124
                 } else {
125
                         result = result * 10 + 9;
126
                 }
127
                 }
128
                 break;
129
            case 500: //=
130
            {
131
                 secondArg = result;
132
                 calculatable = true;
133
134
                 break;
            case 550: //multiplication
135
136
            {
137
                 operation = "*";
138
                 firstArg = result;
139
                 result = 0;
140
141
                 break;
            case 600: //division
142
143
            {
                 operation = "/";
144
145
                 firstArg = result;
146
                 result = 0;
147
            }
148
                 break;
            case 650: //subtraction
149
150
            {
151
                 operation = "-";
152
                 firstArg = result;
                 result = 0;
153
154
155
                 break;
```

```
156
             case 700: //addition
157
            {
158
                 operation = "+";
                 firstArg = result;
159
160
                 result = 0;
161
            }
162
                 break;
163
164
          switch (valueA0) { //switch on smaller keypad (complicated operations)
165
166
                 case 0: //ans
                 result = ans;
167
168
                 break;
169
             case 200: //log10
                 operation = "log10";
170
171
                 break;
             case 300: //cos
172
173
                 operation = "cos";
174
                 break;
             case 400: //sin
175
                 operation = "sin";
176
                 break;
177
178
             case 500: //x^y
                 operation = "^";
179
                 firstArg = result;
180
                 result = 0;
181
182
                 break;
            case 600: //sqrt
183
                 operation = "sqrt";
184
185
                 break;
186
             case 700: //clr
187
                 operation = "";
188
                 firstArg = 0;
189
                 secondArg = 0;
190
                 ans = result;
191
                 result = 0;
                 calculatable = false;
192
193
                 break;
194
195
196
          delay(500);
```

```
197
198
199
        void calculateResult() {
200
          result = 0;
          if (operation.equals("+")) {
201
                result = firstArg + secondArg;
202
203
          if (operation.equals("-")) {
204
                result = firstArg - secondArg;
205
206
          }
207
          if (operation.equals("*")) {
208
                result = firstArg * secondArg;
209
210
          if (operation.equals("/")) {
211
            if (secondArg == 0) {
212
                lcd.setCursor(0, 1);
213
                lcd.print("Can't divide by 0");
214
            }
215
                result = (float)firstArg / secondArg;
216
217
          if (operation.equals("log10")) {
                result = log10(secondArg);
218
219
          if (operation.equals("sin")) {
220
221
                result = sin(secondArg);
222
223
          if (operation.equals("cos")) {
                result = cos(secondArg);
224
225
          if (operation.equals("^")) {
226
                result = pow(firstArg, secondArg);
227
228
229
          if (operation.equals("sqrt")) {
230
                result = sqrt(secondArg);
231
          }
232
          //resultText = new String(result);
233
234
235 ∨ void displayResult() {
236
          lcd.setCursor(0, 0);
          if (firstArg != 0) {
237
            lcd.print(firstArg);
238
```

```
239
240
           else {
241
             lcd.print(result, 0);
242
          if (!operation.equals("")) {
243
244
                 lcd.print(operation);
245
           }
246
           else {
             lcd.print(" ");
247
248
           }
          if (secondArg != 0) {
249
250
             lcd.print(secondArg);
251
           }
           else if (firstArg != 0) {
252
253
             lcd.print(result, 0);
254
           }
          if (calculatable) {
255
             if (firstArg == 0) {
256
257
               lcd.clear();
               lcd.print(operation);
258
259
               lcd.print(secondArg);
260
             Ŧ
261
             lcd.print(" = ");
             lcd.print(result, 2);
262
263
           }
264
```

Резисторите се използват, за да се свържат бутоните към един пин.

7. Линк към GitHub, TinkerCad

- ➤ TinkerCad Link
- https://www.tinkercad.com/things/7LO7A2wiD7R-copy-of-project-module-8/editel?sharecode=GNh6WFG-WGh9ctIyL7fgSFLxO-9XOmSvVyPHAaL6WXg
- ➢ GitHub
- https://github.com/cathy-09/Project-module-8

8. Заключение

- Успяхме да сътворим проект с Arduino платка симулативно. В следствие на тази работа ще можем да работим с Arduino, а и ще сме по-добре запознати с това как работят компютърните и електрическите вградени системи.
- > Използвани технологии TinkerCad, GitHub, Microsoft Word, Microsoft PowerPoint
- ➤ Използвани сайтове Youtube, https://resistorcolorcodecalc.com/