Modelo 4

Las siguientes preguntas solo tienen una respuesta correcta. Cada respuesta correcta suma 1 punto, cada incorrecta resta 1/3 y las no contestadas no puntúan. El test completo evalúa sobre 4 puntos del total del examen.

Tabla de notación	
h	Función hash
	Concatenación
\mathbf{K}_{pub}^{E}	Cifrado con clave pública del emisor
\mathbf{K}_{prv}^{E}	Cifrado con clave privada del emisor
\mathbf{K}_{pub}^{R}	Cifrado con clave pública del receptor
K_{prv}^R	Cifrado con clave privada del receptor

- 1. Si se puede hacer una prueba de fuerza bruta contra una password cada 1 ms. ¿Cuánto se tardará como máximo en encontrar la clave si la password está construida con 6 letras minúsculas aleatorias?
 - A. Poco más de 4 días
 - B. Poco más de 1 minuto
 - C. Poco más de 11 minutos
 - D. Poco más de 1 h
 - E. Poco más de 11 h
 - F. Poco más de 1 día
 - G. Poco más de 11 días
 - H. Poco más de 1 meses
 - I. Poco más de 4 minutos
 - J. Poco más de 44 minutos
 - K. Poco más de 4 h
 - L. Poco más de 44 h
 - M. Poco más de 44 días
 - N. Poco más de 4 meses
- 2. En una comunicación codificada con una codificación de bloques hemos conseguido descifrar parte de la comunicación. Sabemos que los bloques son de 3 bits y hemos conseguido saber que el mensaje codificado 1101000001010101111011 como mensaje plano es 111010101???100000110001. ¿Qué se puede afirmar sobre las tres incógnitas?
 - A. Que valen 011
 - B. Que valen 000
 - C. Que valen 001
 - D. Que valen 010
 - E. Que valen 100
 - F. Que valen 101
 - G. Que valen 110
 - H. Que valen 111
 - I. Que no podemos saber su valor
- 3. Queremos transferir un fichero de gran tamaño (F) asegurando la privacidad del envío y su integridad (E=emisor, R=receptor). ¿Cuál de los siguientes esquemas es correcto?
 - **A.** $h(F)|K_{pub}^E(K_S)|K_S(F)$
 - B. $h(F)|K_{pub}^{E}(h(F))|K_{S}(F)$
 - C. $h(F)|K_{nub}^E(F)$
 - D. $K_{pub}^E(h(F)|F)$
 - E. $K_{pub}^E(K_S)|K_S(h(F)|F)$
 - F. $h(F)|K_{pub}^{E}(F)$

- G. $K_{pub}^E(F)$
- H. $h(F)|K_{nriv}^R(h(F))|K_S(F)$
- I. $h(F)|K_{priv}^R(F)$
- J. $K_{priv}^{R}(h(F)|F)$
- K. $K_{priv}^R(K_S)|K_S(h(F)|F)$
- L. $h(F)|K_{priv}^R(F)$
- $M. K_{priv}^R(F)$
- N. $h(F)|K_{priv}^R(K_S)|K_S(F)$
- 4. Para enviar un email privado es necesario y suficiente:
 - A. Codificar la clave simétrica con la clave pública del receptor y concatenarla con el mensaje codificado con la clave simétrica.
 - B. Codificar el mensaje con RSA usando la clave pública del receptor
 - C. Codificar el mensaje con RSA usando la clave privada del emisor
 - D. Hacer el HASH del mensaje, codificarlo con la clave pública del receptor y concatenar con el mensaje.
 - E. Codificar la clave simétrica con la clave privada del emisor y concatenarlo con el mensaje codificado con la clave pública del receptor.
 - F. Realizar el HASH del mensaje, concatenarlo con el mensaje, cifrarlo todo con la clave simétrica y concatenar la clave simétrica codificada con la clave pública del receptor.
 - G. Codificar la clave simétrica con la clave privada del emisor y concatenarla con el mensaje codificado con la clave simétrica.
 - H. Codificar la clave simétrica con la clave privada del receptor y concatenarla con el mensaje codificado con la clave simétrica.
 - I. Utilizar firmas digitales.
- 5. Imagina un cifrador en bloque en modo CBC. ¿Cuál es la entrada al bloque de cifrado de la primera etapa si el primer bloque del mensaje en claro es $m_1 = 0110b$ e IV = 1111b?
 - A. 1000b
 - B. 1010b
 - **C.** 1001b
 - D. No es posible determinar su valor
- 6. Utilizando la notación que se encuentra en la tabla, ¿cuál es la expresión que determina la firma digital de un mensaje m?
 - A. $K_{pub}^E(h(m))$
 - **B.** $K_{prv}^E(h(m))$
 - C. $K_{prv}^{R}(h(m))$
 - D. $h(m)|K_{prv}^E(m)$
- 7. ¿Qué garantiza la firma digital de un documento?
 - A. La integridad del documento y la autenticación del emisor
 - B. La integridad del documento
 - C. La autenticación del emisor
 - D. Ninguna de las respuestas es correcta (excepto ésta, obviamente)
- 8. Imagina un criptosistema RSA con claves pública y privada $\{5,35\}$ y $\{d,35\}$, respectivamente. ¿Cuál de los siguientes es un valor aceptable para d?
 - **A.** 5
 - B. 7
 - C. 11
 - D. 4

- 9. ¿Cuál de las siguientes afirmaciones sobre el uso de 'salt' para almacenar contraseñas es verdadera?
 - A. Lo que se guarda en el sistema es el hash calculado sobre la combinación de valor 'salt' y la contraseña: HASH(salt + contraseña).
 - B. El valor 'salt' se calcula en base al hash de cada contraseña.
 - C. El valor 'salt' sólo debe almacenarse hasheado, de otra forma el sistema pierde seguridad.
 - D. Si el 'salt' no es más largo de 8 caracteres, usando tablas Rainbow se puede revertir cualquier contraseña inmediatamente.
- 10. ¿Cuál de las siguientes afirmaciones sobre los firewalls e IDS es falsa?
 - A. La única diferencia entre un IDS y un firewall es que el IDS puede hacer inspección profunda de paquetes.
 - B. Un firewall sólo puede analizar el encabezado de los paquetes TCP/IP.
 - C. Es posible, y tiene sentido, colocar múltiples sensores IDS en una misma red.
 - D. Un firewall puede hacer ciertas comprobaciones de estado para filtrar los paquetes.
- 11. ¿Cuál de estas afirmaciones sobre los certificados digitales es verdadera?
 - A. El objetivo de un certificado digital es que cualquiera pueda obtener, de forma segura, la clave pública de otro usuario.
 - B. El objetivo de un certificado digital es que cualquiera pueda obtener, de forma segura, a la clave privada de la autoridad certificadora.
 - C. El objetivo de un certificado digital es que cualquiera pueda obtener, de forma segura, a la clave privada de otro usuario.
 - D. El objetivo de un certificado digital es que cualquiera pueda obtener, de forma segura, la clave pública de la autoridad certificadora.
- 12. ¿Cuál de estas afirmaciones sobre el protocolo SSH es falsa?
 - A. Se encarga de la autenticación del cliente.
 - B. Se encarga de la autenticación del servidor.
 - C. Se encarga del establecimiento de un canal cifrado para garantizar la confidencialidad de la comunicación.
 - D. Se encarga de la comprobación de la integridad de los mensajes.
 - E. Se encarga de la generación de un identificador único de sesión.