Crystallographic and Magnetic Structure of Li₂MnO₃

PIERRE STROBEL AND BERNADETTE LAMBERT-ANDRON

Laboratoire de Cristallographie CNRS, associé à l'U.S.T.M.G., 166X, 38042 Grenoble Cedex, France

Received November 4, 1987, in revised form January 11, 1988

The structure of Li₂MnO₃ was refined on a single crystal: space group C2/m, a = 493.7(1), b =853.2(1), c = 503.0(2) pm, $\beta = 109.46(3)^{\circ}$, Z = 4, R = 0.020, $R_{\rm w} = 0.027$ for 619 independent reflections with $I > 5\sigma$. Distortions in the ordered rocksalt superstructure are induced by the cis positions of Mn⁴⁻ in the O^2 coordination octahedra. Powders of Li_2MnO_3 are slightly disordered with $12 \pm 3\%$ Mn on the Li sites. They are antiferromagnetic with $T_{\rm N}=36.5~{\rm K}$; the cell is doubled along c, corresponding to opposite moments on alternating Mn-containing layers along c. A comparison of structural data of rocksalt-related A_2BO_3 compounds (A = Li, Na; B = tetravalent metal) shows that many previously reported cells could be indexed in smaller monoclinic or hexagonal cells. 40 1988 Academic Press, Inc.

Introduction

During a study of hydrothermal syntheses in the Li-Mn-O system, single crystals of Li₂Mn^{IV}O₃ were grown (1). This compound is known to crystallize in the Li₂SnO₃-type structure, an ordered rocksalt superstructure with cationic (111) planes alternatively occupied by Li and by (LiSn₂) layers (2). There is some confusion in the literature about the actual cell symmetry of Li₂MnO₃ (given as orthorhombic (2) or monoclinic C2/c (3), but cubic and hexagonal forms were also reported (4)). No single-crystal structure refinement has been published. In the Li₂SnO₃ structure, tetravalent cations lie in layers (forming a honeycomb planar sublattice for complete $(\text{Li}M_2^{4+})$ ordering) separated by O, Li, and O layers. Li₂MnO₃ orders antiferromagnetically at $\approx 50 \text{ K}$ (3), as expected for octahedral site d^3 ions with edge-sharing between adjacent octahedra (5). The Mn4+ sublat-0022-4596/88 \$3.00

tice, however, differs from that in other Mn⁴⁺-containing antiferromagnetic oxides for which the magnetic structure has been determined, like β -MnO₂ (rutile-type) and BaMnO₃, which contain infinite linear chains of edge- or face-sharing (Mn⁴⁺O₆) octahedra (6, 7), and Ca₂MnO₄, with K₂NiF₄ type structure (8).

We present in this paper (i) a single-crystal refinement of the Li₂MnO₃ structure and (ii) the determination of its magnetic structure below T_N by powder neutron diffraction. It will be shown that single crystals belong to a cell symmetry different from all those previously proposed, and that Li-Mn disorder occurs in powders prepared by solid-state reaction. The magnetic structure involves a doubling of the crystallographic cell in the direction perpendicular to the cation layers. Finally, the relationships between the various cells proposed in the rocksalt-related A₂BO₃ compounds are discussed.

Experimental

The synthesis of single crystals of Li_2MnO_3 has been described previously (1). The crystal used in this study was obtained from a lithium chloride flux. Powder samples for neutron diffraction were prepared by repeated firings of stoichiometric mixtures of lithium carbonate and β -manganese dioxide at 850°C, with intermittent grindings. A final annealing at 1000°C for 50 hr resulted in a significant narrowing of the X-ray diffraction lines of the powdered sample. Preliminary examination using precession photographs were consistent with Jansen's proposed space group P2/c (3).

A single crystal of Li₂MnO₃ with dimensions $0.16 \times 0.14 \times 0.04$ mm³ was examined using a computer-controlled Enraf-Nonius CAD4 X-ray diffractometer at 293 K. Ag $K\alpha$ radiation was used with the ω scan mode in the range $2 < \theta < 30^{\circ}$ with 1.5° scan range. The standard reflections were monitored after every 200 reflections. A total of 2465 reflections were collected over a half-sphere, yielding 619 independent data by averaging equivalent reflections with I > 5σ . No absorption correction was performed. The lattice parameters were obtained by least-squares refinement of the setting angles of 25 reflections with $2\theta >$ 20° , using $\lambda(AgK\alpha) = 0.55936 \text{ Å}$.

Powder neutron diffraction spectra were recorded between 4 and 80 K using the D1B high-resolution powder diffractometer at the Institut Laue-Langevin, Grenoble. A neutron wavelength of 2.522 Å was used to collect data at 2θ intervals of 0.2° in the angular range $10 < 2\theta < 90^\circ$. The sample (ca. 15 g) was placed in a cylindrical vanadium container of 12 mm diameter.

Results and Discussion

1. X-Ray Structure Determination

Space group and cell parameters. Examination of the data revealed that all reflec-

tions indexed in Jansen's cell obeyed the condition h + k + l all odd or all even (this condition is also met in Jansen's powder diagram (3)). This F-cell was converted into a monoclinic C-cell with halved cell volume using the following transformation matrix (J= Jansen's, S = Strobel's cell):

$$\begin{bmatrix} a_{S} \\ b_{S} \\ c_{S} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a_{J} \\ b_{J} \\ c_{J} \end{bmatrix}. \quad [A]$$

Refined cell parameters at 293 K are a = 493.7(1), b = 853.2(1), c = 503.0(2) pm, $\beta = 109.46(3)^{\circ}$, Z = 4. Possible space groups were C2 or C2/m. A piezoelectricity test on Li₂MnO₃ powder was negative. Wilson's symmetry test also supported the centrosymmetrical group, and we considered the space group to be C2/m.

Structure refinement. The manganese atomic positions were determined using the Patterson method. Oxygen and lithium atomic positions were subsequently revealed by Fourier and difference-Fourier maps. All atomic positions were refined with an isotropic full-matrix least squares using the SDP package on a PDP-11 computer. Anisotropic thermal parameters of Li1, a very light atom in a special position, could not be refined. The final residuals were R = 0.020 and $R_w = 0.027$, where $R_w = [\Sigma w(|F_0| - |F_c|)^2 / \Sigma w F_0^2]^{1/2}$ with w = 1/2 $\sigma(F_0)^2$ (a list of observed and calculated structure factors is available on request). The final positional parameters are listed in Table I. Bond distances are listed in Table 11.

Structure description. The structure is essentially as proposed from powder work by Jansen and Hoppe (3). These authors, however, did not notice the occurrence of a mirror plane parallel to the ac plane in their cell. This mirror results from the stacking of the (Mn₂Li) layers, which differs from that in Li₂SnO₃ (see Fig. 1). They noted that the structure is pseudo-orthorhombic with

TABLE I								
Final Position and Thermal Parameters of Li ₂ MnO ₃ at 293 K	ζ							

Atom	Site	\mathcal{X}	y	z	$eta_{ m eq}$	$oldsymbol{eta}_{11}$	eta_{22}	eta_{33}	β_{12}	$oldsymbol{eta}_{13}$	eta_{23}
Mn	4g	0	0.16708(2)	0	0.244(2)	0.00251(4)	0.00063(2)	0.00365(4)	0	0.00199(7)	0
Lil	2b	0	0.5	0	$0.28(3)^{\hat{b}}$						
Li2	2c	0	0	0.5	1.10(6)	0.013(1)	0.0047(4)	0.0103(10)	0	0.013(2)	0
Li3	4h	0	0.6606(3)	0.5	1.01(4)	0.012(1)	0.0030(3)	0.0101(9)	0	0.002(1)	0
D1	4i	0.2189(2)	0	0.2273(2)	0.41(1)	0.0046(2)	0.00104(7)	0.0053(2)	0	0.0016(3)	0
02	8i	0.2540(1)	0.32119(7)	0.2233(1)	0.420(7)	0.0048(2)	0.00142(5)	0.0050(2)	-0.0009(1)	0.0039(3)	-0.0007(

^a Anisotropic thermal parameters are defined by $T = \exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + \beta_{13}hl + \beta_{23}kl)]$.

^b Not refined anisotropically.

Ftg. 1. ORTEP ab plane projections of the structures of Li₂MnO₃ (a) and Li₂SnO₃ (b, from Ref. (19)), showing three successive layers along c. Filled circles, Mn or Sn; open circles, Li; anions (in cubic compact arrangement) are omitted for clarity.

TABLE II Interatomic Distances in Li2MnO3 at 293 K (in pm)

Mn-O1	191.90(5) [×2]
Mn-O2	190.38(6) [×4]
Li1-01	206.98(11) [×2]
-O2	205.39(6) [×4]
Li2-O1	200.87(11) [×2]
-O2	214.68(6) [×4]
Li3-O1	210.12(19) [×2]
-O2	216.60(8) [×4]
Mn-Mn(1)	285.01(3)
-Mn(2)	284.41(1)

Note. Estimated standard errors in parentheses.

 $l_0 = (h_1 + 3l_1)/2$. But this relationship implies $h_{\rm J}+l_{\rm J}=2n$. In conjunction with the C-centered lattice condition $h_1 = k_1 = 2n$, this results in (h_1, k_1, l_1) all odd or all even, i.e., a face-centered lattice, therefore, the cell transformation to a C-cell of half volume used here (Z = 4). Bond distances and angles (Table II) show that the (Mn₂Li₁) layers are little distorted. The six Mn-O distances are equal within 0.8%, and the same applies to Li1-O distances. Mn⁴⁺ ions (ionic radius 53 pm (9)) fit octahedral sites of the close-compact oxide network quite well (theoretical octahedral site radius: $140(\sqrt{2}-1)=58$ pm). Li-O bond lengths for Li1 (average 205.9 pm) and in the Lionly layer (average 210.2 pm for both Li2 and Li3) are significantly shorter than the sum of ionic radii (216 pm). All coordination octahedra are distorted. Two effects contribute to the distortions: (i) the size difference between Mn⁴⁺ and Li⁺, (ii) the high charge on Mn⁴⁺ ions, which occur in cis position in the coordination octahedra of oxide ions. The Mn-Mn repulsion is minimized by large Mn-O-Mn angles (see Fig. 2a). This in turn gives cation coordination polyhedra with small O-M-O angles for the O-O edges shared with neighboring MnO₆ octahedra (81.6 to 84.4°) (see Fig.

1b). Bond distances are more scattered in the Li-only layers than in the (Mn₂Li1) layers. The Li2O₆ octahedron is compressed along the *trans* O1–O1 direction, while the Li3O₆ octahedron includes three different Li–O distances (see Fig. 2). The β angle corresponds within experimental errors to the dihedral angle between faces of the regular octahedron (109.47°).

2. Magnetic Structure at 4.2 K

Neutron diffraction patterns on annealed powder below T_N exhibit magnetic reflections, which can be indexed with a propagation vector $\mathbf{k} = [00\frac{1}{2}]$, i.e., in a cell with doubled c parameter (see Fig. 3). The cell constants at 4.2 K are a = 492.9(6), b =850.3(8), $c = 1004.0(12) \text{ pm}, \beta = 109.29(8)^{\circ}$. These features confirm the occurrence of antiferromagnetism with moments of opposite signs at z and z + 1. The value of T_N , extrapolated from the temperature variation of magnetic reflection intensities (Fig. 4) is 36.5 ± 0.5 K. All magnetic reflections obey the condition h + k = 2n. The magnetic ions Mn⁴⁺ (labeled 1 . . . 4) occupy the position 4(g) in the crystal cell, namely:

(1) 0, y, 0; (2)
$$\frac{1}{2}$$
, y + $\frac{1}{2}$, 0;
(3) 0, -y, 0; (4) $\frac{1}{2}$, $\frac{1}{2}$ - y, 0.

Using Bertaut's macroscopic method (10), which supposes that the Heisenberg-Néel exchange hamiltonian remains invariant for the propagation vector \mathbf{k} in the C2/m group operations, the possible spin configurations are,

$$\begin{split} \Gamma_{1g} \colon F_{y} &= S_{1y} + S_{2y} + S_{3y} + S_{4y} \\ \Gamma_{2u} \colon C_{x} &= S_{1x} + S_{2x} - S_{3x} - S_{4x}; \\ C_{z} &= S_{1z} + S_{2z} - S_{3z} - S_{4z} \\ \Gamma_{3g} \colon F_{x} &= S_{1x} + S_{2x} + S_{3x} + S_{4x}; \\ F_{z} &= S_{1z} + S_{2z} + S_{3z} + S_{4z} \\ \Gamma_{4u} \colon C_{y} &= S_{1y} + S_{2y} - S_{3y} - S_{4y}, \end{split}$$

where the Γ 's are the irreducible representations of the group.

Fig. 2. Coordination octahedra (with interatomic distances in pm) and angles of O (top) and Li in the Li layers (bottom).

For a collinear structure, the magnetic intensity is given by

$$I_n = \frac{e^2 \gamma^2}{mc^2} \cdot F_{\mathrm{M}}^2(\mathbf{h}) \sin^2 \alpha,$$

where e, m, and c have their usual meaning, γ is the neutron magnetic moment, $F_{\rm M}$ is the magnetic structure factor, and α is the angle between the spin direction and the diffusion vector \mathbf{h} . From the absence of 001 reflections, only the F_z component is permitted for the F mode.

Difficulties in obtaining reasonable values of the Mn atom magnetic moment prompted us to refine the X-ray pattern of the powder used for neutron diffraction work. This X-ray line intensity fitting (11)

showed evidence of manganese vacancies on the 4g site. The reliability factors, $R_{\rm w}$, are 0.11 and 0.07 for a 4g site occupation by Mn atoms equal to 1 and 0.88 ± 0.03 , respectively. The latter solution corresponds to a $Mn_{(4g)}$ vacancy fraction equal to ≈ 0.12 . The number of observed intensities is not sufficient to determine accurately a possible distribution of Mn atoms on Li sites. This effect could not be seen so clearly from the neutron spectra, because of the fairly small difference between the Fermi lengths of Li and Mn (-0.35 and -0.22 10^{12} cm, respectively (13)). Partial exchange of 0.12 Mn for Li on octahedral sites is quite possible in such a structure, in view of the similarity in ionic radii between Li and

Fig. 3. Powder neutron diffraction pattern at 4.2 K; * = magnetic reflections (for their indexation, see Table III).

 Mn^{4+} and common occurrence of cationic disorder in A_2BO_3 structures (see Section 3).

Taking into account this manganese atomic disorder, least-squares refinements

FIG. 4. Intensity of the magnetic (-111) reflection as a function of temperature.

of the possible models (12) gives the best agreement between calculated and observed intensities for the solution $F_z = S_{1z} + S_{2z} + S_{3z} + S_{4z}$ with R = 0.045 (Table III). Magnetic form factors were taken from Ref. (14). The scale factor was determined from the ratio of observed and calculated nuclear intensities. The experimental magnetic moment $\mu_{\rm Mn}$ is (2.7 \pm 0.3) Bohr magnetons, in good agreement with the spin-

TABLE III

OBSERVED AND CALCULATED

MAGNETIC INTENSITIES AT 4.2 K

h	k	14	I_{obs}	$I_{ m calc}$	
-1	1	1	3.99(12)	3.692	
0	2	1	3.03(8)	3.104	
1	1	1	2.15(10)	2.158	
-1	1	3	1.30(8)	1.447	
0	2	3	0.79(12)	0.940	
2	2	1	1.20(25)	0.973	

^a Indexed in magnetic (*c*-doubled) cell.

only theoretical magnetic moment of Mn⁴⁺. The C_z solution also yields a satisfactory fit (R = 0.050), but with an unrealistically small value of μ_{Mn} ($\ll 1$ μ_{B}).

The solution F_z corresponds to a ferromagnetic arrangement of the spins in the (Mn₂Li) planes, with antiparallel stacking of these layers along c. It can be compared to that of Ca₂MnO₄, another oxide with a layered arrangement of the Mn⁴⁺ sublattice $(K_2NiF_4 \text{ structure})$ (8). Both give rise to an antiparallel stacking of the layers along c. In the layers, however, the interactions are found to be of opposite sign. One significant difference in the superexchange paths between the K₂NiF₄ and Li₂MnO₃ structures should be pointed out. The MnO₆ octahedra share corners in the former and edges in the latter, leading to Mn-O-Mn angles equal to 180 and $\approx 90^{\circ}$, respectively. For d^3 ions, the 90° superexchange angle gives rise to both positive and negative interactions (5). Given the additional difficulty introduced by the manganese vacancies, a comprehensive discussion of these interactions has not been attempted.

3. On the Crystal Chemistry of A_2BO_3 Compounds

Numerous A_2BO_3 compounds have been reported in Jansen's cell (Z = 8), which is typified by Li₂SnO₃, or in an orthorhombic C-centered cell to which it can be reduced when $\cos \beta_{\rm J} = -a_{\rm J}/3c_{\rm J} \, (\mathbf{c}_0 = -\mathbf{a}_{\rm J} - 3\mathbf{c}_{\rm J}) \, (2)$. These cells will be referred to hereafter as mC8 and oC24 cells, respectively (where m and o stand for "monoclinic" and "orthorhombic," and the numerals are equal to Z). The crystal chemistry of A_2BO_3 compounds derived from the rocksalt structure type is actually more complex. Polymorphism has been reported in numerous compounds (see Table 2 in Ref. (15)). Depending on cation ordering and site distortions, the symmetry can vary from cubic to monoclinic. Single-crystal data were available previously for two compounds only,

and the published structural refinement yielded rather high R values for both (see Table IV). A survey of compounds reported as "Li₂SnO₃ type" (with powder X-ray patterns indexed in the mC8, oC24, or oC12 cell) shows that, within the accuracy of the data, most of these patterns obey (i) the face-centered condition (h, k, l) all odd or all even, (ii) the metric condition for orthorhombic symmetry cos $\beta_J = -a_J/3c_J$, (iii) the metric condition for hexagonal symmetry $b/a = \sqrt{3}$ (see Table IV).

Lang (2) studied the symmetries resulting from various stackings of the AB_2 layers along c. The "most probable" stackings correspond to space groups C2/m (Z=4), $P3_212$ (Z = 6), and C/c (Z = 8). Structural refinements confirm this: for A_2BO_3 compounds synthesized in single-crystal form (i.e., annealed for long periods in thermodynamic equilibrium conditions), structural studies lead to mC cells with Z = 4 (Li_2ZrO_3, Li_2MnO_3) or $Z = 8 (Li_2TiO_3,$ Li₂SnO₃), with the expected space group. In the case of Li₂ZrO₃, a recent neutron powder diffraction study (16) gave a C2/c(Z = 4) cell corresponding to a cation distribution different from the Li₂SnO₃ type ([Li₂Zr] layers only). The symmetry of powders obviously depend on their preparation conditions, as shown by several examples of polymorphism. For Li₂MnO₃, we noticed that powders annealed at 1000°C showed X-ray and neutron diffraction lines much sharper than those synthesized at \approx 850°C, but the indexation is identical and consistent with the single-crystal cell mC4 (for monoclinic C-centered with Z = 4) [Cubic and hexagonal polymorphs were prepared by slow decomposition of Li₃MnO₄ at low temperature (4)]. Moreover, Hodeau et al. (16) showed that Li₂SnO₃ powder contains lithium vacancies. Most literature data for powders prepared by solid-state reaction, which were indexed using the mC8 (or mC24 with tripled c parameter), oC12, oC24 cells (and in the case of Na₂SnO₃, in a

TABLE IV CRYSTAL DATA FOR ROCKSALT-RELATED A_2BO_3 Compounds

		Published		Alternate indexation	
Compound	Reference ^a	cell ^h	Notes ^c	(parameters in pm)	
Li ₂ TiO ₃	(17)	mC8	XCR C2/c		
	8-249		R = 8.6% for $n = 460$		
Li ₂ ZrO ₃	(16)	mC4	NPR $C2/c$, $R = 5.01\%$		
** **	, ,		all [Li2Zr] layers similar		
Li_2HfO_3	23-1183	mC4			
Li ₂ MoO ₃	α : 21-517	cF32/3			
	β: 21-515	mC8	hkl all even	h6: $a = 496.6(2)$	
	(18)		$\Deltaeta < 0.1^\circ$	c = 1493(1)	
			b/a = 1.732		
Li ₂ MnO ₃	(4)	cF4/3	Low-temp. form		
		h6	Low-temp. form		
	This work		XCR C2/m	mC4	
			R = 2.0% for $n = 619$		
Li ₂ PdO ₃	30-760	Powder pattern		h6: $a = 509.2(8)$	
		unindexed		c = 1434(5)	
Li ₂ PtO ₃	29-820	h6			
Li_2SnO_3	(16, 19)	mC8	XCR, NPR C2/c		
	31-761		R = 10.5% for $n = 1462$		
	(20)	h6	High-temp. form		
Li ₂ PbO ₃	23-360	o 24	hkl all even	h6: $a = 548.3(1)$	
			b/a = 1.732	c = 1509.5(3)	
Na ₂ CeO ₃	(21)	cF4/3			
Na ₂ TbO ₃	21-1162	o 12	b/a = 1.731	h6: a = 578.9(5)	
				c = 1660(4)	
Na ₂ ZrO ₃	8-242	mC24	hkl all even	mC4: a = 547.7, b = 971	
				$c = 574.5, \beta = 110.9^{\circ}$	
	21-1179	h48	Other supercell		
Na ₂ HfO ₃	(2)	o 12	b/a = 1.730	h6: $a = 558.3(4)$	
				c = 1640(2)	
Na_2RuO_3	(15)	Pseudo-h6			
Na_2PtO_3	12-97	o 24	hkl all even	h6: $a = 539.9(4)$	
			b/a = 1.733	c = 1586(2)	
	α : 27-774	mC8	hkl all odd or all even	h6: $a = 541.9(2)$	
			$\Delta \beta = 0.1^{\circ}, b/a = 1.734$	c = 1590.4(7)	
	β (15):	oF16	Other supercell		
Na_2SnO_3	30-1252	tc (?)	Indexation in h6 includes	h6: $a = 552.8(3)$	
			2 lines unindexed in tc	c = 1639.3(14)	
Na_2PbO_3	(2) "B": 8-245	cF4/3			
	"A": 8-251	mC24	hkl all even	h6: $a = 568.3(3)$	
				c = 1641(1)	

^a Unbracketed number = JCPDS reference.

 $^{^{}h}$ c, cubic; h, hexagonal; m, monoclinic; o, orthorhombic, te = triclinic; C, F, I, usual Bravais lattice symbols; numerals, Z value.

^c XCR, X-ray single-crystal refinement; NPR, neutron profile refinement; n, number of independent reflections; $\Delta \beta = \beta (\text{m cell}) - \beta (\text{o cell})$.

Ftg. 5. Relationships between various cells for rock-salt-related A_2BO_3 compounds.

triclinic cell unrelated to rocksalt-type supercells) fit very well the smaller mC4 or h6 cell. The latter corresponds to the third stacking case predicted by Lang (2). Corrected parameters (obtained from least-square fitting of the literature or JCPDS data) are given in Table IV. The relationships between these various cells are given in Fig. 5.

Conclusion

The single-crystal structure determination of Li_2MnO_3 has shown that the actual cell is a Z=4 cell with C2/m space group. The magnetic cell below T_N is doubled along \mathbf{c} and consists most probably of antiparallel layers of Mn spins along \mathbf{c} . The powder used for this determination was slightly disordered. A survey of literature data shows that cationic disorder in rock-salt-type-related structures is commonplace and can provide an explanation for the variety of cell symmetries reported from X-ray powder data.

Acknowledgment

The authors thank J. Pannetier (Institut Laue-Langevin) for his assistance in the neutron diffraction experiments and for helpful discussions.

References

- P. Strobel, J. P. Levy, and J. C. Joubert, J. Crystal Growth 66, 257 (1984).
- 2. G. LANG, Z. Anorg. Allg. Chem. 348, 246 (1966).
- 3. M. Jansen and R. Hoppe, Z. Anorg. Allg. Chem. **397**, 279 (1973).
- 4. G. MEYER AND R. HOPPE, Z. Anorg. Allg. Chem. 424, 257 (1976).
- 5. J. B. GOODENOUGH, Phys. Rev. 117, 1442 (1960).
- A. Yoshimori, J. Phys. Soc. Japan 14, 807 (1959).
- 7. A. Nørlund Christensen and G. Ollivier, J. Solid State Chem. 4, 131 (1972).
- D. E. Cox, G. Shirane, R. J. Birgeneau, and J. B. McChesney, *Phys. Rev.* 188, 930 (1969).
- 9. R. D. Shannon, *Acta Crystallogr. Sect. A* **32**, 751 (1976).
- E. F. BERTAUT, Acta Crystallogr. Sect. A 24, 217 (1968).
- 11. "Program AFFIST," Argonne Library (1980).
- P. WOLFERS, A. M. S. Library, Institut Laue-Langevin, Grenoble (1976).
- V. F. SEARS, Atomic Energy of Canada Report AECL-8490 (1984).
- R. E. WATSON AND A. J. FREEMAN, Acta Crystallogr. 14, 27 (1961).
- J. HAUCK, Acta Crystallogr. Sect. A 36, 228 (1980).
- J. L. HODEAU, M. MAREZIO, A. SANTORO, AND R. S. ROTH, J. Solid State Chem. 45, 170 (1982).
- J. F. DORRIAN AND R. E. NEWNHAM, Mater. Res. Bull. 4, 179 (1969).
- J. M. REAU, M. POUCHARD, AND P. HAGENMUL-LER, Bull. Soc. Chim. Fr., 4294 (1967).
- G. KREUZBURG, F. STEWNER, AND R. HOPPE, Z. Anorg. Allg. Chem. 379, 242 (1970).
- M. TRÖMEL AND J. HAUCK, Z. Anorg. Allg. Chem. 373, 8 (1970).
- 21. R. W. G. WYKOFF, "Crystal Structures," 2nd ed., Vol. 2, p. 532, Interscience, New York (1967).
- W. URLAND AND R. HOPPE, Z. Anorg. Allg. Chem. 392, 23 (1972).