Homework 1: Review of materials

your name

Due: January 27th at 11:59 PM

Problem 1: Prove that the Binomial distribution arises as a sum of n iid Bernoulli trials each with success probability p.

Problem 2: Let $l(\theta)$ denote a twice continuously differentiable log likelihood corresponding to an iid sample under density f_{θ} where n is the sample size. The score function is defined as

$$u(\theta) = \frac{\partial l(\theta)}{\partial \theta},$$

and the Fisher information matrix is defined as

$$I(\theta) = -\mathrm{E}\left(\frac{\partial^2 l(\theta)}{\partial \theta^2}\right),$$

where the expectation is over the assumed distribution for the data when the parameter value is θ . Prove that

$$E(u(\theta)) = 0$$
 and $Var(u(\theta)) = I(\theta)$.

Problem 3: Let $Y \sim \text{binomial}(n, \pi)$ and let $T_n = \hat{\pi} = Y/n$. Use the CLT and the Delta Method to construct an asymptotic confidence interval for logit(π). Note that this recipe does not work when the estimated success probability is on the boundary of its support, ie $\hat{\pi} = 0$ or $\hat{\pi} = 1$. Why?