EE610 – Image Processing

Amit Sethi asethi, 7483

Spatial domain is defined as the domain of pixels in the image grid

A special case

- Process each pixel with a W×W window around it
- W = 2M+1

- When M=0,
 - g(x,y) = T[f(x,y)]

a.k.a. Intensity Transform

- Else,
 - $g(x,y) = T[N_f(x,y)]$

Contrast stretching and thresholding

Some basic intensity transformations

Negative of an image

Log transformation in log domain

• $s = c \log (1+r)$

Power-law (gamma transformation)

•
$$s = c r^{\gamma}$$

CRT's needed gamma correction

Gamma 1, .6, .4, .3

Gamma 1, 3, 4, 5

Contrast stretching vs. thresholding

Highlighting a range of intensities

Some results of intensity highlighting

Bit-plane splicing

Different bit planes of an image

Higher bit planes contain the most information

Image versions and their histograms

(Strictly) monotonically increasing functions for intensity transformations

Goal of histogram equalization

Relation between # pixels and probability of an intensity

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Relation between a random variable and its transform

$$s = T(r)$$

$$\frac{ds}{dr} = \frac{dT(r)}{dr}$$

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

Transform for equalization

$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

$$\frac{ds}{dr} = \frac{dT(r)}{dr}$$

$$= (L-1)\frac{d}{dr} \left[\int_0^r p_r(w) dw \right]$$

$$= (L-1)p_r(r)$$

$$= p_r(r) \left| \frac{1}{(L-1)p_r(r)} \right|$$

$$= \frac{1}{L-1} \quad 0 \le s \le L-1$$

Discrete version of equalizing transformation

$$s_k = T(r_k) = (L - 1) \sum_{j=0}^k p_r(r_j)$$

$$= \frac{(L-1)}{MN} \sum_{j=0}^{k} n_j \qquad k = 0, 1, 2, \dots, L-1$$

$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

Equalizing a discrete histogram

Histogram equalization on different starting images

One can also specify a histogram

Now we need two transformations

$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

$$G(z) = (L - 1) \int_0^z p_z(t) dt = s$$

$$z = G^{-1}[T(r)] = G^{-1}(s)$$

- Obtain pdf
- Compute G(z)
- Compute *G*⁻¹(*s*)
- First equalize,
 then apply G⁻¹(s)

For discrete values, it cannot be perfect

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

Original image

Equalized image

Image with histogram specification

Global vs local histogram equalization

Basics of spatial filtering

Correlation and convolution in 2-D

Correlation vs. convolution in 2-D

$$w(x, y) \approx f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)$$

$$w(x, y) \star f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

Correlation as a vector operation

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$$R = w_1 z_1 + w_2 z_2 + \dots + w_{mn} z_{mn}$$

$$= \sum_{k=1}^{mn} w_k z_k$$

$$= \mathbf{w}^T \mathbf{z}$$

Smoothing (low pass filters)

1/9 ×	1	1	1
	1	1	1
	1	1	1

$$h(x, y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Averaging with box filters of sizes 1, 3, 5, 9, 15, and 35

Filtering followed by thresholding

Filtering as weighted average

$$g(x, y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t)}$$

Nonlinear filters such as median filter (right) are better suited many times

Derivatives of intensity profiles

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Sobel operators for directional edges

$$g_x = \frac{\partial f}{\partial x} = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$

$$g_y = \frac{\partial f}{\partial y} = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$$

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Source: Digital Image Processing, Gonzalez and Woods, Prentice Hall

Original and Sobel gradient

Laplacian as an isotropic second derivative

Source: Digital Image Processing, Gonzalez and Woods, Prentice Hall

Practical implementation of Laplacian

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

$$g(x, y) = f(x, y) + c \left[\nabla^2 f(x, y) \right]$$

Results of sharpening

Source: Digital Image Processing, Gonzalez and Woods, Prentice Hall

Unsharp masking

- Blur the original image.
- mask = original blurred
- output = original + mask

$$g_{\text{mask}}(x, y) = f(x, y) - \overline{f}(x, y)$$

$$g(x, y) = f(x, y) + k * g_{\text{mask}}(x, y)$$

Sample results of unsharp masking

Original,
Laplacian,
Sharpened,
Sobel gradient

Smoothened Sobel, c*e, a+f, power law transformation

