Analisi Appunti per lo scritto

Veronica Mungai

A.A. 2021/2022

1 Limiti

Portare tutti gli "o piccoli" allo stesso livello e piccolo consiglio: partire dal punto del limite dove è più facile vedere fino a che punto bisogna spingersi per lo sviluppo di Taylor. Con i prodotti di fatto basta svolgere fino al primo termine diverso da 0, mentre con le somme e differenze bisogna svolgere fino al primo termine che non subisce cancellazioni. Gli sviluppi di Taylor possono essere usati solo quando $x_o = l, l \in R$, per gli altri casi si usa De L'Hospital. Attenzione che quando $x_o \neq 0$, bisogna svolgere da capo completamente gli sviluppi perché potrebbero presentare notevoli differenze.

1.1 Sviluppi di Taylor:

- $sinx = x \frac{x^3}{3!} + \frac{x^5}{5!} + \dots (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$
- cosx = [li finirò prima o poi, meanwhile guardare le schede]

2 Serie

Somma della serie = limite delle somme parziali. La serie è convergente se esiste il limite della somma parziale per n che tende a ∞ . Se ho due serie convergenti anche la serie il cui elemento generico è la somma degli elementi generici delle due è convergente. Stessa cosa vale nel caso in cui, data una serie convergente, moltiplichi il suo termine generico per uno scalare. Sono delle specie di proprietà di linearità.

2.1 Condizione necessaria per la convergenza di una serie

Il termine generale della serie deve tendere a 0 per n che tende a ∞ . Non vale il contrario. Ultima spiaggia nel caso non si possano usare gli altri criteri.

2.2 Serie particolari

• Serie geometrica:

$$\sum_{j=0}^{\infty} r^j$$

Interessante il caso con |r| < 1 perché per il caso complementare la serie non potrebbe convergere dato che viola la C-N.

• Serie armonica:

$$\sum_{n=0}^{\infty} \frac{1}{n}$$

Sempre divergente.

• Serie armonica generalizzata:

$$\sum_{n=0}^{\infty} \frac{1}{n^{\alpha}}$$

Converge per $\alpha > 1$, diverge altrimenti.

2.3 Criteri:

• Teorema del confronto(non-neg): $0 \le a_n \le b_n$ per ogni j, se

$$\sum_{j=1}^{\infty} b_j$$

converge anche

$$\sum_{j=1}^{\infty} a_j$$

(i limiti potrebbero essere diversi). Viceversa se $0 \le a_n \le b_n$ per ogni j, se

$$\sum_{j=1}^{\infty} a_j$$

diverge allora anche

$$\sum_{j=1}^{\infty} b_j$$

diverge.

• Criterio del confronto asintotico (non-neg): siano $a_n, b_n > 0$ tali che $\frac{a_n}{b_n} \longrightarrow c \neq 0$, allora

$$\sum_{n=1}^{\infty} a_n$$

converge se e solo se

$$\sum_{n=1}^{\infty} b_n$$

converge.

• Criterio del rapporto(non-neg): $\frac{a_{n+1}}{a_n} \longrightarrow n \longrightarrow +\infty$, la serie

$$\sum_{n=1}^{\infty} a_n$$

converge se r < 1, diverge se r > 1, non è stabilito dal criterio se r = 1.

• Criterio della radice(non-neg): $\sqrt[n]{a_n} \longrightarrow n \longrightarrow +\infty$, la serie

$$\sum_{n=1}^{\infty} a_n$$

converge se r < 1, diverge se r > 1, non è stabilito dal criterio se r = 1.

- Assoluta convergenza: le serie assolutamente convergenti sono semplicemente convergenti (ma non vale sempre il contrario), si guarda l'assoluta convergenza quando non ho una serie a segno variabile e non posso fare uso del criterio di Leibniz. Una volta portata la serie a termini non-neg posso usare gli altri criteri.
- Criterio di Leibniz:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

è convergente se a_n è una successione a termini non negativi che decrescendo tende a 0.

3 Alcune cose degne di nota

- $(\frac{a}{b})^x < 1$, a < b (un tipico risultato dei criteri del rapporto e della radice) la disuguaglianza è valida per x > 0
- $\bullet\,$ Attenzione il segni delle potenze, se ho x^n non è detto che mi dia sempre un valore positivo.
- Formula di Stirling: $n! \sim n^n e^{-n} \sqrt{2n\pi}$
- Per dimostrare che una successione è decrescente si può calcolare la derivata prima della sua funzione associata e verificare che sia negativa per tutto il dominio.

4 Studio di funzione

Fare meno cose possibili in relazione alla richiesta del quesito. È necessario solo un grafico qualitativo. Organizzare lo svolgimento in questo modo:

- Dominio.
- Limiti agli estremi del dominio/eventuali punti di discontinuità (se l'intervallo su cui è definita la funzione è chiuso bisogna calcolare la funzione in quel punto e non farne il limite).
- Derivata prima.
- Segno della derivata prima.
- Immagine dei punti dove la derivata si annulla per capire eventuali massimi e/o minimi.
- Se proprio necessario (ma come ultima cosa) il segno della funzione.

5 Integrali

Modalità di integrazione:

- Funzioni elementari (attenzione a funzioni strane come arccosx, arcsinx, arctgx etc...)
- Sostituzione di variabile (sempre valido anche come ultima risorsa).
- Integrazione per parti $\int f'(x)g(x)dx = f(x)g(x) \int f(x)g'(x)dx$.
- Nel caso di polinomi e frazioni:
 - Se il grado del numeratore è maggiore di quello del denominatore si fa la divisione tra polinomi.
 - Se il grado del numeratore è minore di quello del denominatore si usano i tre blocchi:
 - * $\int \frac{1}{(x-x_o)^m dx}$, se m=1 si usa il logaritmo, altrimenti si fa utilizzo delle regole per le potenze.
 - * $\int \frac{1}{x^2 + ax + b} dx$ in base a come si comporta il denominatore si può propendere per l'arctgx (o eventualmente rifarcisi utilizzando il completamento del quadrato e un cambio di variabile), oppure si cercano i coefficienti A e B (o, nel caso di polinomi di II grado non aventi radici reali al denominatore Ax + B).
 - * $\int \frac{2x+a}{x^2+ax+b} dx$ (derivata prima del denominatore al numeratore), si risolve con un cambio di variabile e un logaritmo.

Per quanto riguarda gli integrali definiti ricordarsi di sostituire **tutti** i termini (compreso $e^0 = 1$).

6 Equazioni differenziali

Scrivere subito le soluzioni banali che potrebbero emergere dall'equazione a un primo sguardo, perché potrebbero non essere comprese nella soluzione finale. Quando compaiono i valori assoluti si può studiare solo un caso perché è sttao verificato che entrambe le strade portano allo stesso risultato.

6.1 I ordine y' = a(x)y + f(x)

 $y = e^{\int a(x)dx} \int e^{\int -a(x)dx} f(x)$ Dall'integrale si ricava una costante di integrazione.

6.2 II ordine ay'' + by' + cy = f(x)

 $y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}+y_p$ dove $y_p=e^{\lambda_1x}\int e^{-\lambda_1x}e^{\lambda_2x}\int e^{-\lambda_2x}f(x)dx$ dove λ_1,λ_2 sono le radici (reali o complesse) del polinomio caratteristico. Per ricercare y_p (nel caso f(x) sia un polinomio) si cerca un polinomio dello stesso grado (ipotizzando sia di II grado) del tipo Ax^2+Bx+C , ne si calcolano la derivata prima e seconda e si inserisce il tutto nell'equazione differenziale. Attraverso un sistema si ricavano i valori dei coefficienti A,B,C, che saranno i valori dei coefficienti della soluzione paricolare. **Piccola annotazione**: le soluzioni di un'equazione differenziale del II ordine omogenea che ammette radici complesse coniugate si possono scrivere anche come: $y=e^{\lambda_1x}(C_1cos(\lambda_2x)+C_2sin(\lambda_2x))$. La y_p si ricava come al solito.

6.3 Omogenee di secondo grado

Ci si riconduce a equazioni che sappiamo svolgere (v. sopra).