Determinants

Dhruv Kohli

Motivation

Introduction

Properties of

Determinant

Formulas i

Determinan

Applications

01

Bibliography

Determinants

Dhruv Kohli

Department of Mathematics Indian Institute of Technology, Guwahati

Outline

Determinants

Dhruv Kohl

....

Introductio

Properties of the

Determinant

the

Determinant

Applications

Determinant

- 1 Motivation
- 2 Introduction
- 3 Properties of the Determinant
- 4 Formulas for the Determinant
- 5 Applications of Determinant
 - 6 Bibliography

Motivation

Determinants

Dhruv Kohl

Motivation

Introduction

Properties of the

Formulas for the Determinant

Applications of

ot Determinant

- How to test invertibility of a matrix?
- How to compute volume of a box in *n* dimensions?
- Any explicit formula for the solution of Ax = b?
- Any explicit formula for pivots of A?
- What is the dependence of $A^{-1}b$ on each element of b?

Introduction

Determinants

Dhruv Kohl

Introduction

Properties o

the Determinant

the
Determinant

Applications of -

Oi Determinant

- 1 Determinant is defined only for square matrices.
- 2 $det A = 0 \iff A$ is singular.
- 3 detA =volume of a box in n-dimensional space.
- 4 $detA = \pm (product of pivots)$ where the sign depends on number of row exchanges in elimination. Even number of exchanges implies positive sign.
- The simple things about the determinant are not the explicit formulas, but the properties it possesses.

Properties of the Determinant

Determinants

Dhruv Kohl

Motivation

Properties of the Determinant

Formulas for the

Applications of

oi Determinant

Bibliography

det I = 1.

- 2 Determinant changes sign when two rows are exchanged because determinant of a permutation matrix P is ± 1 . If the number of row exchanges required to bring P to I is even then detP=1 else -1.
- 3 Determinant depends linearly on a row. Proof by determinant computing determinant along that row.

$$\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$
$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Properties of the Determinant

Determinants

Dhruv Kohli

Motivation

Properties of the Determinant

the Determinant

of Determinant

- If two rows of A are equal then det A = 0. Proof: use 2.
- **Subtracting** a multiple of one row from another leaves the same determinant. Proof: use 3 and 4.
- 6 If A has a zero row, then det A = 0. Proof: use 5 and 4.
- If A is triangular then detA = product of diagonal entries. Proof: use 5 to derive diagonal matrix, then use 3 and 1.
- **13** $det A = \pm (product of pivots), <math>det A = 0 \iff A$ is singular. Proof: elimination leads to U which has pivots on the diagonal. For singular matrices one of the row will be zero. Then use 7.
- det $A = detA^T$. Proof: $A = P^TLU$, $A^T = U^TL^TP$ and $detP^TP = detI = 1$. This means we can exchange rows by columns in above results.¹

¹Singular case separately for 7,8,9,10

Formulas for the Determinant

Determinants

Dhruv Kohli

Introduction

Properties of the

Formulas for the Determinant

Applications of

Bibliography

If A is invertible then PA = LDU, $detP = \pm 1$ and product rule gives $detA = \pm detLdetDdetU = \pm (product of pivots)$

2 Suppose $A_{n \times n}$ is split into n^n terms by applying property 3 to each row in the following way -

$$\begin{vmatrix} a+0 & 0+b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & d \end{vmatrix}$$

Among n^n terms only n! terms will be non-zero when the non-zero terms are in different columns otherwise there will be atleast one column of 0s making determinant 0. The n! terms correspond to n! permutations of $(1, \ldots, n)$ which gives another formula for determinant:

$$det A = \sum_{\mathbf{a} | \mathbf{a} | P' \mathbf{s}} a_{1\alpha} a_{2\beta} \dots a_{n\gamma} det P$$

Formulas for the Determinant

Determinants

Dhruv Kohl

Introduction

Properties of the

Determinant Formulas for

the Determinant

Applications of

Determinant

o Consider the terms involving a_11 . This means $\alpha=1$. This leaves some permutation (β,\ldots,γ) of resulting columns $(2,\ldots,n)$. We collect all those terms as C_{11} which is the determinant of the submatrix formed by deleting row 1 and column 1.

$$C_{11} = \sum_{\mathsf{all}\ P'\mathsf{s}\ \mathsf{s.t.}\ P_{11} = 1} a_{2\beta} \dots a_{n\gamma} det P$$
 $det A = a_{11} C_{11} + a_{12} C_{12} + \dots + a_{1n} C_{1n}$
 $C_{ij} = (-1)^{i+j} M_{ij}$

 M_{ij} is called a minor (smaller determinant) which is obtained by computing the determinant of the matrix when *i*th row and *j*th column are deleted.

Applications of Determinant

Determinants

Dhruv Kohl

Motivation

Introduction

Properties o

Formulas for the

Determinant Applications

of Determinant

Bibliogra

Result 1 - Computation of inverse A^{-1}

$$A^{-1} = C^T/detA \implies AC^T = detA I$$
Proof - Hints:

$$(AC^T)_{ij} = \sum_{k=1}^n A_{ik} C_{jk} = det A \mathbb{I}(i=j)$$

Note that when $i \neq j$, $(AC^T)_{ij}$ represents determinant of the matrix A with ith row copied into jth row (2 rows are equal).

Result 2 - Solution of Ax = b

 $x_j = detB_j/detA$ where B_j is A with b in jth column.

Proof - Hints:

$$(A^{-1}b)_j = \left(\frac{C^T}{\det A}b\right)_j = \frac{\sum_{k=1}^n C_{kj}b_k}{\det A} = \frac{\det B_j}{\det A}$$

Applications of Determinant contd.

Determinants

Dhruv Kohl

Motivation Introduction

Properties o

Formulas for the Determinant

Applications of Determinant

Bibliogran

Result 3 - Volume of a box

Volume of a box whose edges are in rows of A equals det A. Proof - Hints: If edges are \bot and are of length $I_1, I_2, ..., I_n$,

$$AA^{T} = diag(I_{i}^{2}) \implies det(AA^{T}) = det(A)^{2} = \prod_{i=1}^{n} I_{i}^{2}$$

Sign of detA will indicate whether the edges form a RH-set of coord. x-y-z or a LH-set y-x-z. If the edges are $\not\perp$ then with row ops. it can be made \bot by reducing matrix to RREF. Det. is invariant to row ops, so vol. stays same.

Result 4 - Formula of pivots

$$d_k = det A_k / det A_{k-1}$$
, A_k is left submatrix of A of order k . $A_k = L_k D_k U_k \implies det A_k = \prod_{i=1}^k d_i \implies d_k = \frac{det A_k}{det A_{k-1}}$

Applications of Determinant contd.

Determinants

Dhruv Kohl

Motivation

Introduction

the

Formulas for the Determinant

Determinant Applications

of Determinant

Bibliography

Result 5

Elemination can be completed without row exchanges i.e.

P = I and A = LU if and only if the leading submatrices

 A_1, A_2, \ldots, A_n are all non-singular.

Proof - Hints: Follows from result 4.

Bibliography

Determinants

Dhruv Kohl

Motivation

the

Determinan

Formulas f

the

Determinan

Application:

Determinan

Bibliograph

Gilbert Strang. *Linear algebra and its applications*. Belmont, CA: Thomson, Brooks/Cole, 2006.