

Outline and Reading

- Breadth-first search (§6.3.3)
 - Algorithm
 - Example
 - Properties
 - Analysis
 - Applications
- ◆ DFS vs. BFS (§6.3.3)
 - Comparison of applications
 - Comparison of edge labels

- Breadth-first search
 (BFS) is a general
 technique for traversing
 a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- ♦ BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS Algorithm

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)

Input graph G

Output labeling of the edges and partition of the vertices of *G*

for all $u \in G.vertices()$

setLabel(u, UNEXPLORED)

for all $e \in G.edges()$

setLabel(e, UNEXPLORED)

for all $v \in G.vertices()$

if getLabel(v) = UNEXPLOREDBFS(G, v)

```
Algorithm BFS(G, s)
```

```
L_0 \leftarrow new empty sequence L_0.insertLast(s) setLabel(s, VISITED) i \leftarrow 0
```

while $\neg L_i$ is Empty()

 $L_{i+1} \leftarrow$ new empty sequence

for all $v \in L_i$ elements()

for all $e \in G.incidentEdges(v)$

if getLabel(e) = UNEXPLORED

 $w \leftarrow opposite(v,e)$

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

setLabel(w, VISITED)

 L_{i+1} .insertLast(w)

else

setLabel(e, CROSS)

 $i \leftarrow i + 1$

Example

Example (cont.)

Example (cont.)

9/30/2022 7:48 AM

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- \bullet Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- lacktriangle Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- \bullet BFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	1	V
Shortest paths		v
Biconnected components	1	

9/30/2022 7:48 AM

DFS vs. BFS (cont.)

Back edge (v, w)

 w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

w is in the same level as
v or in the next level in
the tree of discovery
edges

