

Table of Contents

HOW DOES IT WORK?	
Fusion of Software with Hardware	6
• Schematic	8
WORK-IN-PROGRESS WALK THROUGH	9
Finished Work	9
• Chassis	10
Wiring	11
Motor Wires Harness	12

ByteRider documentation

Add your content using reStructuredText syntax. See the reStructuredText documentation for details.

INTRODUCTION

HOW DOES IT WORK?

The BitByteRider RC car is powered by ESP32-C3 Breadboard & Power adapter development board.

Reserved Pins & GPIOs

The following table summarizes GPIOs and pins reserved for operations purposes.

The GPIO numbers correspond to those on the ESP32-C3 WROOM microcontroller. The Pin number corresponds to the pin on the Breadboard and Power adapter development board.

x- and y- axis

The **GPIOO** and **GPIO1** assigned to measuring the voltage of x- and y- axis of the Joystick. Lastly, there is a group of GPIO pairs responsible for PWM for DC motors.

Direction and Speed

The two DC motors on the left side are wired to the dedicated PWM channels in pairs. This means that PWM channels can control rotation speed and direction of DC motors in pairs (i.e. left and right side). Consequently, only four PWM channels are required for controlling the direction of the RC car. Based on this constraint, the RC car can only move front, back, and rotate left and right. Any other movements are not possible (i.e. diagonal).

A pair of PWM channels are required for defining rotation speed and direction of the DC motors on each side. In particular, **GPIO6** and **GPIO5** provide PWM to the left- and right- side DC motors to rotate in a **clockwise** direction. Similarly, **GPIO4** and **GPIO7** provide PWM to the left- and right- side DC motors to rotate in a **counter-clockwise** direction. Changing PWM on each channel determines the speed and direction of the RC car.

GPIO	Pin	Function	Notes
0	16	Joystick x-axis	ADC1_CH0
1	15	Joystick y-axis	ADC1_CH1
8	5	Joystick push button	
6	4	PWM for clockwise rotation of left-side motors	LEDC_CHANNEL_1
5	3	PWM for clockwise rotation of right-side motors	LEDC_CHANNEL_0
4	2	PWM for counter-clockwise rotation of right-side motors	LEDC_CHANNEL_2
7	6	PWM for counter-clockwise rotation of left-side motors	LEDC_CHANNEL_3

Fusion of Software with Hardware

The struct for storing motors PWM values.

```
struct motors_rpm {
    int motor1_rpm_pwm;
    int motor2_rpm_pwm;
    int motor3_rpm_pwm;
    int motor4_rpm_pwm;
};
```

The function for updating motors' PWM values.

```
buffer.motor1 rpm pwm = 0;
    buffer.motor2_rpm_pwm = 0;
    buffer.motor3 rpm pwm = 0;
    buffer.motor4 rpm pwm = 0;
    // Display brief summary of data being sent.
    ESP_LOGI(TAG, "Joystick (x,y) position ( 0x%04X, 0x%04X )",
(uint8 t)buffer.x axis, (uint8 t)buffer.y axis);
    ESP_LOGI(TAG, "pwm 1, pwm 2 [ 0x%04X, 0x%04X ]",
(uint8_t)buffer.pwm, (uint8_t)buffer.pwm);
    ESP_LOGI(TAG, "pwm 3, pwm 4 [ 0x%04X, 0x%04X ]",
(uint8 t)buffer.pwm, (uint8 t)buffer.pwm);
    // Call ESP-NOW function to send data (MAC address of receiver,
pointer to the memory holding data & data length)
    uint8 t result = esp now send(receiver mac, &buffer,
sizeof(buffer));
    // If status is NOT OK, display error message and error code (in
hexadecimal).
    if (result != 0) {
       ESP_LOGE("ESP-NOW", "Error sending data! Error code:
0x%04X", result);
        deletePeer();
    }
    else
        ESP_LOGW("ESP-NOW", "Data was sent.");
}
```

The rc_send_data_task() function runs every 0.1 second to transmit the data to the receiver.

```
// Continous, periodic task that sends data.
static void rc_send_data_task (void *arg) {
    while (true) {
        if (esp_now_is_peer_exist(receiver_mac))
            sendData();
        vTaskDelay (100 / portTICK_PERIOD_MS);
    }
}
```

Schematic

WORK-IN-PROGRESS WALK THROUGH

Finished Work

Chassis

Completed chassis with only DC motor controllers installed.

Wiring

Completed wiring.

Motor Wires Harness

DC Motors wires secured inside harnes.

