COMP9020: Foundations of Computer Science

Assignment 1

Name: Hongpei Luo

zID: z5246892

Problem 1:

(a) There are 8 functions:

1.
$$f(a) = 0$$
 $f(b) = 0$ $f(c) = 0$; 2. $f(a) = 0$ $f(b) = 0$ $f(c) = 1$;

3.
$$f(a) = 0$$
 $f(b) = 1$ $f(c) = 0$; 4. $f(a) = 1$ $f(b) = 0$ $f(c) = 0$;

5.
$$f(a) = 1$$
 $f(b) = 1$ $f(c) = 0$; 6. $f(a) = 1$ $f(b) = 0$ $f(c) = 1$;

7.
$$f(a) = 0$$
 $f(b) = 1$ $f(c) = 1$; 8. $f(a) = 1$ $f(b) = 1$ $f(c) = 1$;

(b) $Pow({a,b,c}) = {\lambda, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}$

The number of functions in $f:\{a,b,c\} \rightarrow \{0,1\}$ is exact equal to the number of sets in Pow($\{a,b,c\}$). As there are 3 elements in $\{a,b,c\}$, 2 elements in $\{0,1\}$, there would be $2^3 = 8$ functions which applies t the relation. Above, there would be 8 one-to-one relations between them.

- (c) (i) There are n^m functions from A to B.
 - (ii) A has $\sum_{i=0}^{n} C_n^i = 2^n$ possibly outputs, so there are $(2^n)^m = 2^{mn}$ relations are between A and B.
 - (iii) For A, because $\sum_{i=0}^{m} i = [m(m+1)]/2$, so there are $2^{[m(m+1)]/2} = 2^{(m^2+m/2)}$ symmetric relations on A.

Problem 2:

(a) Five element of $S_{2,-3}$: 0, 2, -3, 5, -5.

m	0	1	0	1	-1
n	0	0	1	-1	1
$S_{2,-3}$	0	2	-3	5	-5

(b) Five element of $S_{12,16}$:0, 12, 16, -4, 28.

m	0	1	0	1	1
n	0	0	1	-1	1
S _{12,16}	0	12	16	-4	28

(c) Prove $S_{x,y} \subseteq \{n : n \in \mathbb{Z} \text{ and } d \mid n\}$:

 \forall d = gcd(x,y), \therefore d | x and d | y, which means $x = k_1 d$, $y = k_2 d$ $(k_1, k_2 \in \mathbb{Z})$

 $\therefore n = kd = mx + ny = k_1 dm + k_2 dn \quad (k, k_1, k_2, m, n \in \mathbb{Z}).$

 $\therefore n = kd = (k_1 m + k_2 n)d$

So that $S_{x,y} \subseteq \{n : n \in \mathbb{Z} \text{ and } d \mid n\}$ is proved.

(d) We can assume z = m'x + n'y $(m', n' \in \mathbb{Z})$,

$$\therefore z \mid n \quad \therefore \quad n = k'z \quad (k' \in \mathbb{Z})$$

$$\therefore n = k'z = k'(m'x + n'y) = (k'm')x + (k'n')y$$

 \therefore $\{n : n \in \mathbb{Z} \text{ and } z \mid n\} \subseteq S_{x,y}$ is proved.

(e) According to content above, z = m'x + n'y $(m', n' \in \mathbb{Z})$

$$z = m'k_1d + n'k_2d = (m'k_1 + n'k_2)d$$

$$\therefore$$
 Also, $k_1, k_2 \in \mathbb{Z}$ $\therefore d \mid z$

Because z > 0, and d > 0, $z \ge d$ is proved.

(f) Assume that there has $a = m_1 x + n_1 y$ $(m_1, n_1 \in \mathbb{Z})$ in $S_{x,y}$, at the same time, z = m'x + n'y $(m', n' \in \mathbb{Z})$,

Because Z is the smallest positive number in $S_{x,y}$, there has a > z.

So a can be shown as a = cz + b $(c, b \in \mathbb{Z})$,

which means $b = m_1 x + n_1 y - c(m'x + n'y) = (m_2 - cm')x + (n_2 - cn')y$.

This is contradictory with z is the smallest element in $S_{x,y}$, so a,b doesn't exist.

So, the smallest common divisor of $S_{x,y}$ is Z.

Above, $z \le d$ is proved.

Problem 3:

(a)
$$(A*B)*(A*B)$$

$$= (A^c \cup B^c)*(A^c \cup B^c)$$

$$= (A^c \cup B^c)^c \cup (A^c \cup B^c)^c$$

$$= ((A \cap B)^c)^c \cup ((A \cap B)^c)^c$$

$$= (A \cap B) \cup (A \cap B)$$

$$= A \cap B$$

[de Morgan's Laws]

[Double complementation]

[Idempotence]

Therefore, $(A*B)*(A*B) = A \cap B$

(b)
$$A^c = A^c \cup A^c$$

= $A * A$

[Idempotence]

Therefore, $A^c = A * A$

(c)
$$\emptyset = u^c$$
 [Idempotence]
 $= u^c \cup u^c$ [Complementation]
 $= (A \cup A^c)^c \cup (A \cup A^c)^c$
 $= (A \cup A^c) * (A \cup A^c)$ [Idempotence]
 $= ((A \cap A) \cup A^c) * ((A \cap A) \cup A^c)$ [de Morgan's Laws]
 $= (((A^c)^c) \cap (A^c)^c) \cup A^c) * (((A^c)^c) \cap (A^c)^c) \cup A^c)$ [Double complementation]
 $= ((A^c \cup A^c)^c \cup A^c) * ((A^c \cup A^c)^c \cup A^c)$
 $= ((A * A) * A) * ((A * A) * A)$

Therefore,
$$\emptyset = ((A*A)*A)*((A*A)*A)$$

(d)
$$A/B = A \cap B^c$$

 $= (A \cap B^c) \cup (A \cap B^c)$ [Idempotence]
 $= (B^c \cap A) \cup (B^c \cap A)$ [Commutativity]
 $= (B^c \cap (A^c)^c) \cup (B^c \cap (A^c)^c)$ [Double complementation]
 $= (B \cup A^c)^c \cup (B \cup A^c)^c$ [de Morgan's Laws]
 $= (B \cup A^c)^* (B \cup A^c)$
 $= (u \cap (B \cup A^c))^* (u \cap (B \cup A^c))$
 $= ((A \cup A^c) \cap (B \cup A^c))^* ((A \cup A^c) \cap (B \cup A^c))$ [de Morgan's Laws]
 $= ((A \cap B) \cup A^c)^* ((A \cap B) \cup A^c)$
 $= (((A^c \cup B^c)^c \cup A^c)^* (((A^c \cup B^c)^c \cup A^c))$ [de Morgan's Laws]
 $= ((A^c \cup B^c)^c \cup A^c)^* (((A^c \cup B^c)^c \cup A^c))$ [de Morgan's Laws]
 $= ((A^c \cup B^c)^* A)^* ((A^c \cup B^c)^* A)$ [de Morgan's Laws]

Therefore, A/B = ((A * B) * A) * ((A * B) * A)

Problem 4:

- (a) $\Sigma^* = \{\lambda, a, b, aa, bb, ab, ba, aaa, bbb, \dots \}$ $\Sigma^* \times \Sigma^* = \{\lambda, aa, ab, ba, bb, aaaa, aabb, bbaa, bbb, \dots \}$ Two words can be $\{a\}, \{b\}.$
- (b) \therefore v = aba = wz, there has four possibilities: 1. $z = \lambda$, w = aba; 2. z = a, w = ba; 3. z = ab, w = a; 4. z = aba, w = λ . $\therefore R^{\leftarrow}(\{aba\}) = \{\lambda, a, ab, aba\}$

Above, R is a partial order.

(c) To show that R is a partial order, the point is proving R can satisfy (R), (AS), (T).
(R): For all w∈ Σ*, (w, w) ∈ R, so R is reflexive;
(AS): For all w,v∈ Σ*, when (w,v) and (v,w)∈ R, it exists w=v, so R is antisymmetric;
(T): For all w,v∈ Σ*, there exists a z fits z∈ Σ* such that v = wz,
So, when (w,v)∈ R, and (v,x)∈ R, then v = wz', x = vz", besides, cause z = z'z", there must exist x = wz, which means (w,x)∈ R. So R is transitive.

Problem 5:

$$\therefore x \mid yz \qquad \qquad \therefore yz = kx \quad (k \in \mathbb{Z})$$

$$\therefore$$
 gcd(x,y) =1 \therefore x and y are co-prime.

There are three situation for this proving:

1.
$$x = 1$$
 $y \ne 1$

$$x, z \in \mathbb{Z}$$
, and $x \mid yz$

And 1 can be divided by any integers, so $x \mid z$ is proved.

2.
$$x \neq 1$$
 $y = 1$

When y=1, $x \mid yz = x \mid z$, so it is proved.

3.
$$x \neq 1$$
 $y \neq 1$

According to the known conditions in Problem 2, $d = \gcd(x,y)$, and $\gcd(x,y)=1$ in Problem 5, we can know m'x+n'y=1. Also, $x \mid yz$, $\therefore x \mid [(1-m'x)/n']z$, cause $n' \in \mathbb{Z}$, $x \mid [(1-m'x)/n']z$ can be shown as $x \mid (1-m'x)z$. Which means, $x \mid z - (m'z)x$, since $m', z \in \mathbb{Z}$, $x \mid z$.

Above, $x \mid z$ can be proved.