MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE SECRETARIAT GENERAL

DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR

DIRECTION DE L'ENSEIGNEMENT SUPERIEUR Service d'Appui au Baccalauréat

BACCALAUREAT DE L'ENSEIGNEMENT GENERAI

SESSION 2013

Série:

C

Epreuve de: MATHEMATIQUES

Durée

4 heures

Code matière: 009

Coefficients: 5

NB: - L'exercice et les deux problèmes sont obligatoires

- Machine à calculer scientifique non programmable autorisée.

- Papiers millimétrés autorisés.

EXERCICE 1: 4 points

A - Arithmétique

1 – Un nombre A s'écrit 121 en base 4 et 221 en base n, $n \in \mathbb{N}^*$. Déterminer n.

(0,25 pt)

2 – Prouver que, pour tout entier naturel n, $2^{6n+1} + 9^{n+1} \equiv 0$ [11].

(0,5 pt)

3 – Résoudre dans INxIN le système $\begin{cases} PGCD(a;b) = 6 \\ PPCM(a;b) = 240 \end{cases}$

(0,75 pt)

B - Probabilité

 $n \in \mathbb{N}^*$. On dispose de n boules numérotées de 1 à n. On veut placer ces boules dans n boîtes numérotées de 1 à n; chaque boîte pouvant contenir de 0 à n boules.

1 – Pour n = 4, calculer la probabilité de chacun des événements suivants :

E: « Chaque boîte contient une boule ».

(0,25 pt)

F: « Chaque boîte contient une boule de telle sorte que la boîte et la boule ont le même numéro ». (0,25 pt)

G: « La boîte numérotée 1 contient exactement deux boules ».

(0,25 pt)

2 – Pour $n \ge 2$, on désigne par $P_n(k)$ la probabilité pour que la boîte numérotée 1 contienne exactement k boule(s), $k \in \{0,1,2,...,n\}$.

a) Démontrer que, pour tout
$$n$$
, $P_n(k) = C_n^k \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k}$

b) En déduire que :
$$\sum_{k=0}^{n} C_n^k (n-1)^{n-k} = n^n$$
. (0,75 pt)

PROBLEME 1: 7 points

NB: Les parties A et B sont indépendantes.

Partie A

Dans le plan complexe \mathcal{G} , on considère le carré direct ABCD de centre I. Quels que soient les points M et N du plan, on note par :

 $r_{\rm M}$ la rotation de centre M et d'angle $\frac{\pi}{2}$.

 $t_{\overline{MN}}$ la translation de vecteur \overline{MN} .

 $\mathcal{S}_{\text{(MN)}}$ la réflexion d'axe (MN).

1°/ En décomposant $r_{\!\scriptscriptstyle A}$ et $r_{\!\scriptscriptstyle B}$, déterminer la nature et les éléments géométriques de $r_{\!\scriptscriptstyle B}\circ r_{\!\scriptscriptstyle A}$.

(0,5 pt)

2°/ Le plan \mathcal{P} est rapporté au repère orthonormal $R = (A, \vec{u}, \vec{v})$ où $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AD}$.	
a) Déterminer la forme algébrique de $a = \frac{Z_A - Z_C}{Z_B - Z_C}$.	(0,25 pt)
b) En déduire l'angle et le rapport de la similitude plane directe de centre C qui transforme B en A 3°/ Soit $f = \mathcal{S}_{(AD)} \circ r_A \circ t_{\overline{AC}}$.	(0,5 pt)
 a) Démontrer que f est un antidéplacement. b) En décomposant convenablement r_A, préciser la nature et les éléments caractéristiques de f. c) En déduire l'expression complexe de f. 	(0,75 pt) (0,75 pt) (0,75 pt)
Partie B 1° Etant donné un nombre réel θ.	(7-17
Résoudre dans $\mathbb C$ l'équation à variable t , (E_{θ}) : $t^2-2t\cos\theta+1=0$. En déduire les solutions dans $\mathbb C$ de l'équation à variable	(0,75 pt)
complexe z , (E_{θ}^{\sharp}) : $z^4 - 2z^2 \cos \theta + 1 = 0$.	(0,5 pt)
2° On désigne par A, B, C et D les images des solutions de l'équation $\left(E_{\frac{\pi}{3}}^{\sharp}\right)$ telles que : $Re(z_A) < o$; $Im(z_B) < o$ avec $z_B = -z_A$; $z_D = \overline{z}_A$ et $z_C = \overline{z}_B$ où z_A, z_B, z_C et z_D sont les affixes respectives des points A, B, C et D.	14U 1 1
 a) Placer les points A, B, C et D sur le cercle trigonométrique d'unité 3 cm. b) Pour quelle valeur de θ les points A, B, C et D sont-ils les sommets d'un carré ? 3° - A, B, C et D étant les sommets du rectangle défini dans la question 2° - a) et λ un réel tel que λ ∈ [-1; 1]. On appelle G_λ le barycentre du système des points pondérés S_λ = {(A; λ² + 1); (B; λ); (D; - λ)}. 	(0,5 pt) (0,25 pt)
a) Exprimer \overline{AG}_{λ} en fonction de \overline{BD} . b) On pose $(E) = \{M \in \mathscr{S} \text{ tel que } \ 2\overline{MA} + \overline{MB} - \overline{MD}\ = \ 2\overline{MA} - \overline{MB} + \overline{MD}\ \}$.	(0,5 pt)
Déterminer et construire (E).	(1 pt)
PROBLEME 2: 9 points	
Soit f la fonction définie sur l'intervalle $]o; +\infty[$ par : $\begin{cases} f(x) = x^2 - 1 - 2 \ln x \text{ si } x \in]o; 1[\\ f(x) = (3x - 3) e^{-x} \text{ si } x \geq 1 \end{cases}$	
On note par (C) sa courbe dans un repère orthonormé d'unité graphique 4 cm.	

Partie A

alte A	
a) Démontrer que f est continue au point d'abscisse 1. b) Etudier la dérivabilité de f au point d'abscisse 1.	(0,5 pt)
2° a) Etudier, suivant les valeurs de x, le sens de variation de f.	(0,75 pt)
b) Dresser alors le tableau de variation de f.	(0,75 pt)
3° a) Démontrer que f admet un unique point d'inflexion I que l'on précisera.	(0,5 pt)
b) Déterminer l'équation de la tangente (T) à (C) au point I.	(0,75 pt)
c) Tracer (T) et (C) dans le même renère en président le	(0,5 pt)
c) Tracer (T) et (C) dans le même repère en précisant les demi-tangentes au poir	nt d'abscisse 1. (1,5 pt)

Partie B

Pour tout réel λ tel que $0 < \lambda < 1$, on pose I $(\lambda) = \int_{\lambda}^{1} f(t) dt$.

Quels que soient les entiers n et k tels que : $n \ge 2$ et $1 \le k \le n - 1$, on pose $S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$.

1°/a) A l'aide d'une intégration par parties détarraine et (a)	$\prod_{k=1}^{n} (n)$	25	*
1°/ a) A l'aide d'une intégration par parties, déterminer I (λ) en fonction de λ . b) Calculer alors $\lim_{\lambda \to o} I(\lambda)$.			(0,5 pt)
$\lambda \rightarrow 0$			(0,25 pt)

2°/a) Démontrer que
$$\frac{1}{n}f\left(\frac{k+1}{n}\right) \le \int_{\frac{k}{n}}^{\frac{k+1}{n}}f(t) dt \le \frac{1}{n}f\left(\frac{k}{n}\right)$$
.

b) En déduire que
$$\frac{1}{n} \sum_{k=2}^{n} f\left(\frac{k}{n}\right) \le \int_{\frac{1}{n}}^{1} f(t) dt \le \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right)$$
. (0,5 pt)

c) Démontrer alors que I
$$\left(\frac{1}{n}\right) \le S_n \le I\left(\frac{1}{n}\right) + \frac{1}{n}f\left(\frac{1}{n}\right)$$
. (0,75 pt)

d) Déterminer
$$\lim_{t\to o} t f(t)$$
.

e) Calculer **ainsi**
$$\lim_{n \to +\infty} S_n$$
. (0,5 pt)

NB: Pour la construction, on prend $e^{-1} = 0.4$; $e^{-2} = 0.2$ et $e^{-3} = 0.05$.