Approximate Computing and Microfluidic Cooling for Enhanced Machine Learning

Hardik Sharma †William Wahby

†Thomas Sarvey †Muhannad S. Bakir Hadi Esmaeilzadeh Alternative Computing Technologies (ACT) Lab Georgia Institute of Technology

†Integrated 3D Systems (I3DS) Group Georgia Institute of Technology

Data growth vs. Performance

Performance growth trends: Esmaeilzadeh et al, "Dark Silicon and the End of Multicore Scaling," ISCA 2011

Programmability vs. Efficiency

Heat limits system performance

Better cooling improves performance

First Proposed in 1981

Non-functional characterization in 2013

Microfluidically-cooled Stratix V FPGA

Original Die

Delidded die

Etched Microfluidic Heat Sink

Microfluidically-cooled Stratix V FPGA

Junction-to-ambient $R_{th} \approx 0.08^{\circ}\text{C/W}$ Nominally expect **only 40 °C increase** over ambient at **500W** power dissipation

Approximate Computing for FPGA Acceleration

Deep Neural Networks have high tolerance to approximation.

(DeepCompression ICLR2016)

Relaxing Precision will yield higher performance.

- Increased parallelism through reduced resource usage.
- Reduce bandwidth.

Challenges in Hardware Acceleration

Compilation flow

We present a comprehensive framework for accelerating DNNs from high-level abstractions

Benchmarks

LENET	Character recognition	C->P->C->P->I->A->I	
Siamese	Character recognition	C->P->C->P->I->A->I->A	
CIFAR 10 -Quick	Object Recognition	C->P->A->N->C->A->P->N->C- >A->P->I	
CIFAR 10 -Full	Object Recognition	C->P->A->C->A->P->C->A->P- >I->I	
DJINN ASR	Speech to text Decoder	I->A->I->A->I->A- >I->A->I	

Evaluated Platforms

FPGA	Altera Stratix V TDP:25W \$6999		Xilinx Zynq 7000 ZC702 TDP: 2W \$129	
CPU	Intel Xeon E3-1276 V3 TDP: 84W \$339		ARM Cortex 15 TDP: 5W \$191	
GPU	Tegra K1 GPU TDP: 10 W \$191	GeForce G TDP: : \$15	110	Tesla K40 TDP: 235 W \$5499

Speedup over CPUs

DnnWeaver achieves a speedup of up to 7.1x Xeon.

Performance-per-watt over CPUs

DnnWeaver is up to 36x more power efficient than Xeon.

3 cores available

3 cores available

Microfluidic Cooling

4 cores available

Approximate Computing

12 cores available

Microfluidic Cooling

4 cores available

Approximate Computing

Microfluidic Cooling

16 cores available

Questions?

Backup

Speedup over GPUs

DnnWeaver provides an average of **0.8x** speedup over GTX 650Ti

Performance-per-watt over GPUs

3D stacking complicates heat removal

Tier-specific microfluidic cooling

