

Principio di funzionamento

- OpenVPN riproduce con software in user space i concetti di transport e tunnel mode di IPSec
- Serve comunque un piccolo componente kernel space: la generazione di interfacce di rete virtuali, rispettivamente di tipo tap e tun
 - queste interfacce si usano esattamente come quelle reali
 - i pacchetti inviati a un'interfaccia reale sono inviate al device driver della scheda hardware
 - i pacchetti inviati a un'interfaccia virtuale sono inviati al processo che le ha create

Tunnel mode

Simuliamo una rete che collega due siti remoti:

Tunnel mode

Le due reti vedono normale instradamento IP

Tunnel vs. transport

- Come si vede, l'interfaccia tun è un puro artificio per creare una connessione punto-punto tra i due gateway mediata da OpenVPN
- Dal punto di vista delle applicazioni, gli indirizzi delle interfacce tun sono trasparenti e non appartengono a nessuna delle subnet effettivamente utilizzzate da client e server
- Per rendere una macchina remota virtualmente parte di una rete locale si ricorre al transport mode, tipicamente associato al bridging

Transport mode

Simuliamo una rete che collega un host a una rete remota come se ne facesse fisicamente parte

Transport mode

Simuliamo una rete che collega un host a una rete remota come se ne facesse fisicamente parte

Static key vs. SSL/TLS

La modalità "static key" di OpenVPN è la più semplice da abilitare:

- unica chiave di cifratura simmetrica condivisa fra Client e Server VPN
- -pratica per configurazione statica tunnel mode
- -non è possibile autenticare gli utenti

La modalità SSL/TLS:

- richiede la generazione di una coppia di chiavi e dei relativi certificati per la mutua autenticazione di Client e Server
- necessaria per gestire correttamente multiutenza in transport mode

Site-to-site: predisposizione delle macchine

Simuliamo una rete che collega due siti remoti:

Configurazione con chiave condivisa

- Spegniamo la VM Router e la cloniamo cambiando i MAC su una nuova VM Router-Client.
- Accendiamo Router-Client
- Modifichiamo il file /etc/network/interfaces per
 - dare a eth3 l'indirizzo 192.168.56.204
 - disabilitare eth1
- Eseguiamo le operazioni che serviranno su entrambe le copie
- Creiamo la chiave condivisa

```
cd /etc/openvpn
sudo openvpn --genkey --secret static.key
sudo chmod 600 /etc/openvpn/static.key
```

Configurazione con chiave condivisa

Come utente root, creiamo con un editor il file di configurazione

/etc/openvpn/server.conf
contenente queste direttive:

```
dev tun
local 192.168.56.204
ifconfig 10.1.0.1 10.1.0.2
secret static.key
script-security 3
up .//route.up
verb 3
```

Configurazione con chiave condivisa

Come utente root, creiamo con un editor il file /etc/openvpn/route.up contenente:

```
#!/bin/bash
/sbin/ip r add 10.9.9.0/24 via 10.1.0.2
```

e lo rendiamo eseguibile con
sudo chmod +x /etc/openvpn/route.up

Shutdown della macchina

Clonazione e personalizzazione

- Spegniamo la VM Router-Client e la cloniamo su Router-Server cambiando i MAC
- Accendiamo Router-Server
- Modifichiamo
 - il file /etc/network/interfaces per
 - dare a eth3 l'indirizzo 192.168.56.205
 - riattivare eth1
 - disabilitare eth2
 - il file /etc/openvpn/server.conf
 - lo rinominiamo client.conf
 - sostituiamo la keyword local con remote
 - invertiamo gli indirizzi di ifconfig
 - | il file /etc/openvpn/route.up:
 - /sbin/ip r add 10.1.1.0/24 via 10.1.0.1

Avvio e test

- Riavviamo Router-Server
- Avviamo Router-Client
- Avviamo il servizio su entrambe le macchine con sudo systemctl start openvpn
 - Nota: non riparte automaticamente al boot a meno che non si dia anche il comando sudo systemctl enable openvpn
- Test vari:
 - ping
 - traceroute
 - tcpdump/wireshark sulle diverse interfacce (reali e virtuali)

Road Warrior

Viene così definita la configurazione di un client su rete pubblica che vuole accedere alla rete aziendale

Road Warrior bridged vs. routed

Per consentire la comunicazione tra il Client VPN e gli host della rete remota vi sono due possibili strade:

- configurare la tabella di routing del Server VPN per instradare i pacchetti da e verso la rete del Client
- configurare un bridge ethernet per connettere l'interfaccia VPN del Server con l'interfaccia ethernet connessa alla rete locale
 - questa soluzione consente al client l'uso di protocolli basati su LAN broadcast (discovery di servizi ed enumerazione di risorse)
 - l'assegnamento di un ip della rete aziendale semplifica la configurazione di servizi e firewall
- Nel seguito verrà descritto come configurare una connessione VPN tra le macchine virtuali Client e Router utilizzando la modalità SSL/TSL e il bridging delle interfacce

Configurazione bridge su Router (1)

- Installare il pacchetto bridge-utils:
 - -avendo accesso a Internet:

```
sudo apt install bridge-utils
```

- -dal Lab:
 - scaricare dal sito del corso sull'host il pacchetto e copiarlo su Router
 - installarlo con sudo dpkg -i bridge-utils_1.5-9_amd64.deb
- Modificare il file /etc/network/interfaces cambiando la configurazione di eth1 e aggiungendo quella del bridge br0 (vedi slide successiva)
- Riavviare il servizio di networking
 - sudo systemctl restart networking
- Verificare la corretta configurazione del bridge con il comando
 - sudo brctl show

Configurazione bridge su Router (2)

```
auto eth1
iface eth1 inet manual
  up ip link set $IFACE up promisc on
  down ip link set $IFACE down promisc off
auto br0
iface br0 inet static
  address 10.9.9.254
  netmask 255.255.25.0
 # network interfaces on which to enable the bridge
  bridge_ports eth1
  # optional configurations if the machine is a VM
  bridge fd 9  ## forward delay time
  bridge hello 2 ## hello time
  bridge maxage 12 ## maximum message age
  bridge stp off ## spanning tree protocol
```

Generazione dei certificati (1)

- L'installazione di OpenVPN porta sul sistema come dipendenza anche una serie di script chiamati "easy-rsa" per la creazione dei certificati.
- Per mantenere separate le operazioni di OpenVPN da eventuali altre attività coi certificati, si crei una copia di questi script nella directory /etc/openvpn

```
sudo cp -r /usr/share/easy-rsa /etc/openvpn/
sudo chown -R $USER /etc/openvpn/easy-rsa/
```


Generazione dei certificati (2)

Nel file /etc/openvpn/easy-rsa/vars è necessario inserire i dati di default dell'ente a cui viene rilasciato il certificato (i valori predefiniti si trovano verso la fine del file):

```
export KEY_COUNTRY="IT"
export KEY_PROVINCE="B0"
export KEY_CITY="Bologna"
export KEY_ORG="Unibo"
export KEY_EMAIL="info@example.com"
```


Generazione dei certificati (3)

Creare i certificati con i seguenti comandi:

```
cd /etc/openvpn/easy-rsa/
source vars
./clean-all (solo la prima volta, fa pulizia di tutte le chiavi)
```

- Creazione dei certificati e delle chiavi per la CA:
 - ./build-ca
- Creazione dei certificati e delle chiavi per il Server OpenVPN :
 - ./build-key-server server
- Creazione dei parametri crittografici di Diffie-Hellman:
 - ./build-dh

Generazione dei certificati (4)

Creare i certificati per un utente sul Client:

```
cd /etc/openvpn/easy-rsa/
./build-key user1
```

Linkare la directory contenete i certificati in /etc/openvpn

```
cd /etc/openvpn/
sudo ln -s easy-rsa/keys keys
```


Configurazione di OpenVPN sul Router (1)

Creare gli script per connettere e disconnettere l'interfaccia tap dal bridge

/etc/openvpn/up.sh

```
#!/bin/sh

BR=$1
DEV=$2
MTU=$3
/sbin/ifconfig $DEV mtu $MTU promisc up
/usr/sbin/brctl addif $BR $DEV
```

/etc/openvpn/down.sh

```
#!/bin/sh

BR=$1

DEV=$2
/usr/sbin/brctl delif $BR $DEV
/sbin/ifconfig $DEV down
```

Configurazione di OpenVPN sul Router (2)

Rendere eseguibili i due script:

```
sudo chmod 755 /etc/openvpn/down.sh
sudo chmod 755 /etc/openvpn/up.sh
```

Creare i file di configurazione /etc/openvpn/server.conf

scaricandolo dal sito del corso

Riavviare il servizio OpenVPN sudo systemctl restart openvpn

Configurazione del Client (1)

Installare OpenVPN sul Client:

```
sudo apt-get install openvpn
```

Creare la directory che ospiterà i certificati:

```
sudo mkdir /etc/openvpn/keys
sudo chown -R $USER /etc/openvpn/keys
```

Copiare i certificati della CA e dell'utente su Client creati in precedenza sul Router:

```
scp las@192.168.56.202:/etc/openvpn/keys/ca.crt
/etc/openvpn/keys/
scp las@192.168.56.202:/etc/openvpn/keys/user1.crt /
etc/openvpn/keys/
scp las@192.168.56.202:/etc/openvpn/keys/user1.key /
etc/openvpn/keys/
```

Configurazione del Client (2)

- Creare il file /etc/openvpn/client.conf scaricandolo dal sito del corso
- Riavviare il servizio OpenVPN sudo service openvpn restart
- Test vari:
 - ping
 - traceroute
 - tcpdump/wireshark sulle diverse interfacce (reali e virtuali)

