Preliminares: Familias de conjuntos

Sea X un conjunto. Denotamos el conjunto potencia de X como $\mathcal{P}(X)$ y al complemento de X por X^c .

Definición 1. Sean X e I conjuntos y $\mathcal{U} \subseteq \mathcal{P}(X)$. Una familia de conjuntos indexada en I es una función $f: I \to \mathcal{U}$.

Los elementos de la familia son los valores de la función f. En este caso, denotamos por U_{α} a cada uno de los valores de f, es decir, si $f: I \to \mathcal{U}$ es una familia de conjuntos,

$$U_{\alpha} := f(\alpha).$$

Así, denotamos a la familia de conjuntos como $(U_{\alpha})_{\alpha \in I}$.

Ejemplo 2. Sean X un conjunto no vacío, $I := \{1, 2, 3\}$. Sean $R, S, T \subseteq X$. Definimos $f: I \to \{R, S, T\}$ mediante f(1) := R, f(2) := S y f(3) := T. Entonces, $U_1 = R$, $U_2 = S$ y $U_3 = T$, y $(U_{\alpha})_{\alpha \in I} = (U_1, U_2, U_3) = (R, S, T)$.

Ejemplo 3. Para cada $n \in \mathbb{N}$ considere el conjunto $\left(\frac{1}{n}, 1\right) \subseteq \mathbb{R}$. Entonces, la función $f \colon \mathbb{N} \to \mathcal{P}(\mathbb{R})$ donde $f(n) = \left[\frac{1}{n}, 1\right]$ es una familia de conjuntos. Un modo convencional de denotar a esta familia es $\left(\left[\frac{1}{n}, 1\right]\right)_{n \in \mathbb{N}}$.

Definición 4 (Unión de una familia arbitraria de conjuntos). Sea $(U_{\alpha})_{\alpha \in I}$ una colección arbitraria de conjuntos. Entonces,

$$x \in \bigcup_{\alpha \in I} U_{\alpha} \iff \exists \alpha \in I, \ x \in U_{\alpha}.$$

Definición 5 (Intersección de una familia arbitraria de conjuntos). Sea $(U_{\alpha})_{\alpha \in I}$ una colección arbitraria de conjuntos. Entonces,

$$x \in \bigcap_{\alpha \in I} U_{\alpha} \iff \forall \alpha \in I, \ x \in U_{\alpha}.$$

Ejemplo 6. Considere la familia $((0, \frac{1}{n}))_{n \in \mathbb{N}}$. Entonces, $\bigcup_{k \in \mathbb{N}} (0, \frac{1}{k}) = (0, 1)$.

Demostración. Si $x \in \bigcup_{k \in \mathbb{N}} (0, \frac{1}{n})$, existe $k \in \mathbb{N}$ tal que $x \in (0, \frac{1}{k})$. Luego, 0 < x y $x < \frac{1}{k} < 1$. Por lo que $x \in (0, 1)$.

Si $x \in (0,1)$, por la propiedad arquimediana existe $n_0 \in \mathbb{N}$ tal que $\frac{1}{x} > n_0$, esto es, $\frac{1}{n_0} > x$. Por lo tanto, $x \in \left(0, \frac{1}{n_0}\right)$. Luego, $x \in \bigcup_{k \in \mathbb{N}} \left(0, \frac{1}{k}\right)$.

Ejemplo 7. Considere la familia $\left(\left(-\frac{1}{n},\frac{1}{n}\right)\right)_{n\in\mathbb{N}}$. Entonces, $\bigcap_{n\in\mathbb{N}}\left(-\frac{1}{n},\frac{1}{n}\right)=\{0\}$.

Demostración. Es claro que para cada $n \in \mathbb{N}$, $\{0\} \subseteq \left(-\frac{1}{n}, \frac{1}{n}\right)$. Luego, $\{0\} \subseteq \bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right)$. Sea $x \in \bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right)$. Entonces, para cada $n \in \mathbb{N}$, $-\frac{1}{n} < x < \frac{1}{n}$. De manera equivalente, para cada $n \in \mathbb{N}$, $0 \le |x| < \frac{1}{n}$. Es decir, x = 0. Por lo tanto, $\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) \subseteq \{0\}$. \square

Proposición 8 (Leyes de Morgan). Sea $(U_{\alpha})_{{\alpha}\in I}$. Entonces se satisfacen

a)
$$\left(\bigcup_{\alpha \in I} U_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} U_{\alpha}^{c}$$
.

b)
$$\left(\bigcap_{\alpha \in I} U_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} U_{\alpha}^{c}$$
.

Demostración. Ejercicio.

Conjuntos abiertos y cerrados

Comenzaremos esta sección con definiciones.

Definición 9. Sea $a \in \mathbb{R}^n$ y $\varepsilon > 0$. Definimos la bola con centro en a y radio ε como el conjunto

$$B(a,\varepsilon) := \{x \in \mathbb{R}^n : ||x - a|| < \varepsilon\}.$$

Definición 10. Sea $A \subseteq \mathbb{R}^n$. Decimos que A es un conjunto abierto en \mathbb{R}^n si para todo $a \in A$ existe $\delta > 0$ tal que

$$B(a, \delta) \subseteq A$$
.

Ejemplo 11. Para cada $a \in \mathbb{R}^n$ y cada $\varepsilon > 0$, $B(a, \varepsilon)$ es un conjunto abierto.

Demostración. Sea $x \in B(a,\varepsilon)$. Entonces, $\|x-a\| < \varepsilon$. Sea $r \coloneqq \varepsilon - \|x-a\|$ y sea $y \in B(x,r)$. Entonces, aplicando la desigualdad del triángulo y acotando $\|y-x\| < r$, tenemos

$$||y - a|| \le ||y - x|| + ||x - a|| < \varepsilon.$$

Por lo tanto, $y \in B(a, \varepsilon)$. Como y fue arbitrario, concluimos que $B(x, r) \subseteq B(a, \varepsilon)$. Así, $B(a, \varepsilon)$ es un abierto en \mathbb{R}^n .

Proposición 12. Las siguientes afirmaciones son ciertas:

- 1. \mathbb{R}^n y \varnothing son conjuntos abiertos.
- 2. Sea $(U_{\alpha})_{\alpha \in I}$ una familia de conjuntos abiertos. Entonces, $\bigcup_{\alpha \in I} U_{\alpha}$ es abierto.
- 3. Sean U_1 y U_2 abiertos. Entonces, $U_1 \cap U_2$ es abierto.

Demostración. 1. Sea $a \in \mathbb{R}^n$. Entonces, $B(a,1) \subseteq \mathbb{R}^n$, por definición. Por lo tanto, \mathbb{R}^n es abierto. Por otro lado, \varnothing es abierto por vacuidad.

- 2. Sea $x \in \bigcup_{\alpha \in I} U_{\alpha}$. Entonces, existe $\alpha_1 \in I$ tal que $x \in U_{\alpha_1}$. Sabemos que para cada $\alpha \in I$, U_{α} es abierto. Luego, existe r > 0 tal que $B(x, r) \subseteq U_{\alpha_1} \subseteq \bigcup_{\alpha \in I} U_{\alpha}$. Por lo tanto, $\bigcup_{\alpha \in I} U_{\alpha}$ es abierto.
- 3. Sea $x \in U_1 \cap U_2$. Entonces $x \in U_1$ y $x \in U_2$. Por lo tanto, existe $r_1 > 0$ y $r_2 > 0$ tales que

$$B(x, r_1) \subseteq U_1, \qquad B(x, r_2) \subseteq U_2.$$

Hacemos $r := \min\{r_1, r_2\}$. Sea $y \in B(x, r)$. Entonces,

$$||y - x|| < r \le r_1, \qquad ||y - x|| < r \le r_2.$$

Por lo tanto, $y \in B(x, r_1) \subseteq U_1$ y $y \in B(x, r_2) \subseteq U_2$. Luego, $B(x, r) \subseteq U_1 \cap U_2$. Es decir, $U_1 \cap U_2$ es abierto.

Definición 13. Sea $V \subseteq \mathbb{R}^n$. Decimos que V es un conjunto cerrado en \mathbb{R}^n si V^c es abierto.

Note que las definiciones de abierto y cerrado no se excluyen entre sí. Que un conjunto no sea abierto no implica que sea cerrado y viceversa.

Proposición 14. Las siquientes afirmaciones son ciertas:

- 1. \mathbb{R}^n $y \varnothing$ son conjuntos cerrados.
- 2. Sea $(U_{\alpha})_{\alpha \in I}$ una familia de conjuntos cerrados. Entonces, $\bigcap_{\alpha \in I} U_{\alpha}$ es cerrado.
- 3. Sean U_1 y U_2 abiertos. Entonces, $U_1 \bigcup U_2$ es abierto.

Demostración. Ejercicio.

Puntos interiores, de adherencia y de acumulación

Definición 15. Sean $X \subseteq \mathbb{R}^n$ y $a \in X$. Decimos que a es punto interior de X si existe $\varepsilon > 0$ tal que $B(a, \varepsilon) \subseteq X$.

Definimos el interior de X, X° , como el conjunto de todos los puntos interiores de X:

$$X^{\circ} := \{ a \in X : \exists r > 0, B(a, r) \subseteq X \}.$$

Proposición 16. Sea $X \subseteq \mathbb{R}^n$. Entonces X° es abierto.

Demostración. Ejercicio.

Definición 17. Sean $X \subseteq \mathbb{R}^n$ y $a \in \mathbb{R}^n$. Decimos que a es punto de adherencia de X, si para cada $\varepsilon > 0$, $B(a, \varepsilon) \cap X \neq \emptyset$.

Definimos la cerradura de X, \overline{X} , como el conjunto de todos los puntos de adherencia de X:

$$\overline{X} \coloneqq \{ y \in \mathbb{R}^n \colon \ \forall \, \varepsilon > 0, \ B(y, \varepsilon) \cap X \neq \varnothing \}$$

П

Proposición 18. Sea $X \subseteq \mathbb{R}^n$. Entonces, \overline{X} es cerrado.

Demostración. Ejercicio.

Proposición 19. Sea $X \subseteq \mathbb{R}^n$. Entonces X es cerrado si y solo si $\overline{X} = X$.

 $Demostración. \implies$ Suponemos que X es cerrado. De la definición de \overline{X} , tenemos $X\subseteq \overline{X}$. Por otro lado, sea $a\in \overline{X}$ y supongamos que $a\notin X$. Como X es cerrado, existe r>0 tal que $B(a,r)\subseteq X^c$. Luego, $B(a,r)\bigcap X\neq\varnothing$, lo cual es una contradicción, pues $a\in \overline{X}$. Por lo tanto, $a\in X$. Como a fue arbitrario, $\overline{X}\subseteq X$.

 \Leftarrow Supongamos que $\overline{X} = X$. Por la proposición 18, se tiene el resultado.

Definición 20. Sean $X \subseteq \mathbb{R}^n$ y $a \in \mathbb{R}^n$. Decimos que a es punto de acumulación de X, si para todo $\varepsilon > 0$, $(B(a, \varepsilon) \setminus \{a\}) \cap X \neq \emptyset$.

Definimos el conjunto derivado de X, X' como el conjunto de todos sus puntos de acumulación:

$$X'\coloneqq\{a\in\mathbb{R}^n\colon\ \forall\,\varepsilon>0\ (B(a,\varepsilon)\backslash\{a\})\}.$$

Ejercicios

- 1. Para cada $k \in \mathbb{N}$, definimos $A_k := \{x \in \mathbb{R}^2 : x_2 \ge k\}$. Demuestre que
 - a) Para cada $k \in \mathbb{N}$, $A_{k+1} \subseteq A_k$.
 - b) $\bigcup_{k\in\mathbb{N}} A_k = A_1$.
- 2. Demuestre la proposición 8.
- 3. En los siguientes incisos, muestre que cada conjunto es abierto y haga un dibujo del conjunto:
 - a) $A := \{x \in \mathbb{R}^n : x_1 > 0, x_2 > 0\}.$
 - b) $A := \{x \in \mathbb{R}^n : ||x||_1 < 1\}.$

- c) $A := \{ x \in \mathbb{R}^2 : 1 < x_1 < x_2 \}.$
- 4. Sean $n \in \mathbb{N}$ y U_1, \ldots, U_n subconjuntos abiertos de \mathbb{R}^n . Demuestre que $\bigcap_{j=1}^n U_j$ es abierto. Sugerencia: Seguir la demostración del inciso 3. de la proposición 12.
- 5. Dar un ejemplo de una familia de abiertos tal que su intersección no es un conjunto abierto.
- 6. Demuestre la proposición 14.
- 7. Sea $a \in \mathbb{R}^n$. Demuestre que $\{a\}$ es un conjunto cerrado en \mathbb{R}^n .
- 8. Sean $n \in \mathbb{N}$ y $a_1, \ldots, a_n \in \mathbb{R}$. Demuestre que $\{a_1, \ldots, a_n\}$ es cerrado en \mathbb{R} .
- 9. Demuestre la proposición 16.
- 10. En \mathbb{R} , sea A := (0,1]. Demuestre que A no es abierto ni cerrado. Encontrar \overline{A} y A° .
- 11. Sea $X \subseteq \mathbb{R}^n$. Demuestre que $X \subseteq \overline{X}$.
- 12. Demuestre la proposición 18.
- 13. Sea $X \subseteq \mathbb{R}^n$. Demuestre que X' es cerrado.
- 14. Sea $X \subseteq \mathbb{R}^n$. Demuestre que $\overline{X} = X \cup X'$.