Logique et raisonnement

Logique

1. Connecteurs logiques \neg , \wedge , \vee , (\oplus ou \vee)

La négation \neg , pour les ensembles, correspond au complémentaire du sous ensemble A dans E, noté $\mathcal{C}_E A$, \overline{A} ou A^C Négation \neq Contraire (Non jeune \neq vieux) La conjonction \land pour ET, correspond à l'intersection \cap .

La disjonction \vee OU, correspond à l'union \cup .

La disjonction exclusive \oplus ou \veebar XOR, l'une des deux vrais et l'autre nécessairement fausse. Correspond à la différence symétrique Δ .

Règles de Morgan : $\neg(P \lor Q) \Leftrightarrow (\neg P) \land (\neg Q)$ $\neg(P \land Q) \Leftrightarrow (\neg P) \lor (\neg Q)$

Produit cartésien : $A \times B = \{(a, b), a \in A \ et \ b \in B\}$

 $\begin{array}{ccc} \textbf{Distributivit\'e}: & (P \lor Q) \land R \Leftrightarrow (P \land R) \lor (Q \land R) \\ & (P \land Q) \lor R \Leftrightarrow (P \lor R) \land (Q \lor R) \end{array}$

2. Connecteurs logiques \Rightarrow et \Leftrightarrow

 $\begin{array}{l} \textbf{L'implication} \ de \ P \ \grave{a} \ Q \ n'est \ fausse \\ que \ lorsque \ P \ est \ vraie \ et \ Q \ fausse. \end{array}$

Correspond à : $\neg P \lor Q$ Négation : $P \land \neg Q$ Réciproque : $Q \Rightarrow P$ Contraposée : $(\neg Q) \Rightarrow (\neg P)$ (même valeur de vérité).

Р	Q	$P \Rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

L'équivalence de P et Q n'est vraie que si P et Q ont même valeur de vérité. L'équivalence a la même valeur de vérité que la double implication (nécessaire et suffisant).

Р	Q	$P \Leftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

3. Quantificateurs

 $\forall x \in A, P(x) :$ quel que soit x élément de A (ou pour tout x appartenant à A). **Négation :** $\exists x \in A, \neg P(x)$ $\exists x \in A, P(x) :$ il existe au moins un élément x de A **Négation :** $\forall x \in A, \neg P(x)$

 $\exists ! x \in A, P(x) : \text{il y a existence et } \mathbf{unicit\'e} \text{ de l'élément } x \text{ dans } A \text{ vérifiant la propriét\'e} P$

Méthodes de raisonnement

1. Raisonnement direct

(Par déduction ou hypothèse auxiliaire). Hypothèse \Rightarrow Conclusion.

2. Raisonnement par disjonction des cas

Raisonnement direct dans lequel l'hypothèse peut de décomposer en plusieurs autres hypothèses $H \Leftrightarrow H_1 \wedge H_2$

On montre ensuite $H_1 \Rightarrow C$ et $H_2 \Rightarrow C$

3. Raisonnement par contraposition

$$(H \Rightarrow C) \Leftrightarrow (\neg C \Rightarrow \neg H)$$

Exemple : La contraposée de « $\forall n \in \mathbb{Z}$, si n est pair, alors n^2 est pair. » est « Si n^2 est impair, alors n est impair »

4. Raisonnement par l'absurde

On suppose le contraire et on montre que cela vient contredire une proposition vraie.

Exemple: Démontrons que $\sqrt{2}$ est irrationnel \rightarrow sup-

posons que $\sqrt{2}$ est rationnel. On aurait donc $2=\frac{p^2}{q^2}$ avec $(p,q)\in\mathbb{N}^2$ et p et q premiers entre eux. Donc $p^2=2q^2$ alors p pair, p=2p' d'où $q^2=2p'^2$ donc q serait pair. Ainsi, p et q ne seraient pas premiers entre eux, on a bien une contradiction.

5. Raisonnement par contre-exemple

Il suffit de trouver un contre exemple pour prouver qu'une propriété est fausse.

6. Raisonnement par récurrence simple

- On montre que P(0) est vraie (propriété initialisée ou fondée)
- On suppose P(n) et on montre P(n+1) (hérédité)

7. Raisonnement par analyse-synthèse

- Analyse : on établit une liste de potentielles solutions parmi lesquelles toutes les solutions réelles sont nécessairement incluses.
- Synthèse : pour chacune de ces solutions, on détermine si elles sont viables ou non.

- Mathématiques 2 -

Généralités sur les fonctions

Généralités

1. Différence entre applications et fonctions

Une application est une relation entre deux ensembles.

Une fonction est une application d'une partie D_f d'un ensemble de départ. D_f est appelé ensemble de définition. Une fonction n'est donc pas forcément définie sur l'entièreté de l'ensemble de départ.

2. Image directe

L'image directe d'un ensemble A par une fonction f est l'**ensemble des images** de A par f: $f(A) = \{f(x) \mid x \in A\}$

3. Image réciproque

L'image réciproque est l'ensemble des antécédents d'un ensemble. C'est l'image directe de l'ensemble par f^{-1} .

4. Restriction

On note $f_{|A}(x) = f(x)$ pour tout $x \in A$, avec $A \subset D_f$.

5. Composition

 $f \circ g(x) = f(g(x))$ **Associative** mais non commutative: $(f \circ g) \circ h = f \circ (g \circ h)$

6. Injectivité

Au plus un antécédent.

Fonction injective : $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. Non injective : $\exists (x_1, x_2) \in D_f^2 / f(x_1) = f(x_2) \land x_1 \neq x_2$

7. Surjectivité

Au moins un antécédent.

Fonction surjective : $\forall y \in F, \ \exists x \in D_f \ / \ y = f(x)$. Non surjective : $\exists y \in F \ / \ \forall x \in D_f, \ y \neq f(x)$

8. Bijectivité ou Réciprocité

Exactement un antécédent.

À la fois injective et surjective : $\forall y \in F, \exists ! x \in D_f / y = f(x)$. On note alors $x = f^{-1}(y)$ la bijection réciproque de f.

Fonctions de $\mathbb R$ dans $\mathbb R$

1. Sens de variation

 $f \circ g$ est:

- Croissante si f et g sont de même monotonie.
- Décroissante si f et g sont de sens de monotonies contraires.

Si f est strictement monotone, alors elle est injective (au plus un antécédent par image).

2. Majorant et minorant

- α maximum de A si α est à la fois majorant et élément de A : $\alpha = \max(A)$ (resp. $\min(A)$).
- α borne supérieure de A si α est le plus petit des majorants : $\alpha = \sup(A)$ (resp. $\inf(A)$).
 - si A est non vide non majoré : $\sup(A) = +\infty$
- si A est non vide non minoré : $\inf(A) = -\infty$ Si le maximum existe, il est égal à la borne supérieure.

3. Parité

- Si f et g sont paires, f + g est paire (resp. impaires).
- Si f et g ont même parité, $f \times g$ est paire (resp. f/g).
- Si f et g ont des parités contraires, $f \times g$ est impaire (resp. f/g).
- Si f est paire, $g \circ f$ est paire.
- Si f est impaire, $g \circ f$ a la même parité que g.

4. Périodicité

T-périodique si $\forall (x, x+T) \in D_f^2$, f(x+T) = f(x).

- Si f et g sont T-périodiques,
- f + g et $f \times g$ sont T-périodiques.
- Si f est T-périodique, $g \circ f$ est T-périodique.

5. Bijectivité et symétrie

- Si f est une bijection, C_f et $C_{f^{-1}}$ sont symétriques par rapport à y = x.
- $-x \mapsto f(-x)$: symétrie par l'axe des ordonnées.
- $x \mapsto -f(x)$: symétrie par l'axe des abscisses.
- $-x \mapsto f(x+a)$: translation de vecteur $-a\overrightarrow{\imath}$.
- $-x \mapsto f(x) + a$: translation de vecteur $b\overrightarrow{\jmath}$.
- $-x \mapsto f(ax)$: réduction/agrandissement sur axe x.
- $-x \mapsto af(x)$: réduction/agrandissement sur axe y.

Mathématiques 3 -

Fonctions usuelles

Fonction partie entière

E(x) = |x| (Plus grand entier inférieur ou égal à x).

- $--E(x) \le x < E(x) + 1 \text{ et } x 1 < E(x) \le x.$
- $-E(x) = x \Leftrightarrow x \in \mathbb{Z}.$
- $\forall n \in \mathbb{Z}, \ E(x+n) = E(x) + n$

Fonction log, exp et puissances

1. Logarithme naturel / népérien

 $\forall x > 0$, $\ln(a)$ vaut l'aire sous la courbe de $\frac{1}{a}$ entre 1 et a.

On note e tel que $\ln(e) = 1$ (base du logarithme népérien).

Sa bijection réciproque est la fonction exponentielle, dont l'unique dérivée vérifiant la condition initiale f(0) = 1est elle même.

2. Fonctions logarithmes

$$\log_b(a) = \frac{\ln a}{\ln b}.$$

 \log_e : népérien, \log_2 : binaire, \log_{10} : décimal (\log). De même, $\exp_a(x) = a^x$.

3. Fonctions puissances

 X^a est bijective de réciproque $X^{\frac{1}{a}}$ $(a \neq 0)$

Sur \mathbb{R}^*_{\perp} :

 X^a est croissante si a > 0 et décroissante si a < 0.

Fonctions trigonométriques

Angles opposés:

 $\sin(-\theta) = -\sin(\theta).$ $\cos(-\theta) = \cos(\theta)$

Angles supplémentaires :

 $\overline{\cos(\pi - \theta) = -\cos(\theta)}$ $\sin(\pi - \theta) = \sin(\theta)$

 $\cos(\pi + \theta) = -\cos(\theta)$ $\sin(\pi + \theta) = -\sin(\theta)$

Angles complémentaires :

 $\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$ $\sin\left(\frac{\pi}{2} + \theta\right) = \cos(\theta)$ $\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$ $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta)$

Somme des angles:

 $\cos(\theta + \varphi) = \cos\theta\cos\varphi - \sin\theta\sin\varphi$ $\cos(\theta - \varphi) = \cos\theta\cos\varphi + \sin\theta\sin\varphi$

 $\sin(\theta + \varphi) = \sin\theta\cos\varphi + \cos\theta\sin\varphi$

 $\sin(\theta - \varphi) = \sin\theta\cos\varphi - \cos\theta\sin\varphi$

 $\cos(2\theta) = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$ $\sin(2\theta) = 2\sin\theta\cos\theta$

Fonctions hyperboliques

Cosinus hyperbolique:

 $\cosh(x) = \frac{e^x + e^{-x}}{2}$

Sinus hyperbolique:

 $\sinh(x) = \frac{e^x - e^{-x}}{2}$

- Fonction paire
- Fonction impaire
- Fonction impaire

— Strictement croissante

Tangeante hyperbolique:

- Strict. décroissante sur \mathbb{R}_{-} — Strict. croissante sur \mathbb{R}_+
- Strictement croissante
- Définie sur \mathbb{R} .

Lien avec sinus et cosinus:

- $--\cosh(a+b) = \cosh a \cosh b + \sinh a \sinh b$
- $--\sinh(a+b) = \sinh a \cosh b + \cosh a \sinh b$
- $-\cosh^2 a \sinh^2 a = 1$

 $\cosh a = \cos(ia)$

sinh a = -i sin(ia)

Mathématiques 4 -

Polynômes

Définitions

$\deg(0) = -\infty$

Opérations:

- $P = Q \Leftrightarrow$ même degré et mêmes coefs.
- $\deg(P+Q) \le \max(\deg(p), \deg(Q))$
- $-- \deg(P \times Q) = \deg(p) + \deg(Q)$
- $\deg(P \circ Q) \le \deg(p) \times \deg(Q)$

Division euclidienne et racines

Les polynômes peuvent être divisés par un polynôme non nul, au même titre que les réels.

Soit α une racine de P, alors P est divisible par $(X - \alpha)$. Un polynôme P admet n racines avec $n \leq \deg(P)$.

Un polynôme a la même limite en $+\infty$ et en $-\infty$ que son terme de plus haut degré.

Si un polynôme P est de degré impair, alors P a au moins une racine réelle.

Formule de Taylor

La dérivée d'un polynôme
$$P = \sum_{k=0}^n a_k X^k$$
 est donnée par : $P' = \sum_{k=1}^n k a_k X^{k-1}$

Pour la dérivée k-ième, on retrouve k! pour le premier coefficient. Ainsi, on a $\forall k \leq \deg(P), P^{(k)}(0) = k! \ a_k$

Ainsi, on a
$$P = \sum_{k=0}^n \frac{P^{(k)}(0)}{k!} X^k$$

Généralisation (formule de Taylor) :
$$P = \sum_{k=0}^{n} \frac{P^{(k)}(\alpha)}{k!} (X - \alpha)^k$$

Racines multiples

 α est une racine d'ordre de multiplicité m de P si $P=(X-\alpha)^m$ Q avec $Q(\alpha)\neq 0$. (Racine simple, double, triple, ...).

La formule de Taylor permet de donner une caractérisation de la multiplicité : α est une racine de P d'ordre de multiplicité m ssi :

$$\begin{cases} P(\alpha) = P'(\alpha) = \dots = P^{(m-1)}(\alpha) = 0\\ P^{(m)}(\alpha) \neq 0 \end{cases}$$
(4.1)

(Par exemple, pour une racine double, la tangente est horizontale, et pour une racine triple, il y a en plus un point d'inflexion).

Factorisation

Tout polynôme P à coefficient dans \mathbb{C} admet exactement $\deg(P)$ racines complexes, comptées avec leur ordre de multiplicité.

Si z est une racine complexe (non réelle) de P et de multiplicité m, alors \overline{z} est de même une racine de P de multiplicité m.

- Mathématiques 5 -

Espaces vectoriels

Structure d'espace vectoriel

Un ensemble E est un \mathbb{K} -espace vectoriel (\mathbb{K} désigne \mathbb{R} ou \mathbb{C}) si il est muni d'une loi interne + et d'une loi externe \cdot .

On redéfinit les lois de bases (commutativité et associativité de l'addition, élément neutre...).

Sous espaces vectoriels

F est un sous-espace vectoriel de E si F est une partie de E, avec $(E, +, \cdot)$ et $(F, +, \cdot)$ des \mathbb{K} -espace vectoriel.

Stabilité par combinaison linéaire :

$$F \text{ est un s.e.v de } E \iff \begin{cases} F \neq \emptyset \text{ (Un s.e.v. contient toujours le vecteur nul)} \\ \forall (\alpha, \beta, \overrightarrow{u}, \overrightarrow{v}) \in \mathbb{K}^2 \times F^2, \ \alpha \overrightarrow{u} + \beta \overrightarrow{v} \in F \\ \text{(F est stable par combinaison linéaire)} \end{cases}$$
(5.1)

L'intersection de deux s.e.v est un s.e.v. Ce n'est pas le cas pour l'union.

Sous-espace vectoriel engendré par A (Vect(A)): c'est le plus petit s.e.v. de E contenant A.

Par convention : $Vect(\emptyset) = \overrightarrow{0_E}$

On dit que Vect(A) est constitué de toutes les combinaisons linéaires des vecteurs de A.

Dimension d'un espace vectoriel