参考文献

- [1] HOLD-GEOFFROY Y, SUNKAVALLI K, HADAP S, et al. Deep outdoor illumination estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7312-7321.
- [2] GARDNER M A, SUNKAVALLI K, YUMER E, et al. Learning to predict indoor illumination from a single image[J]. ACM Transactions on Graphics (TOG), 2017, 36(6):176.
- [3] XIAO J, EHINGER K A, OLIVA A, et al. Recognizing scene viewpoint using panoramic place representation[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012: 2695-2702.
- [4] REINHARD E, WARD G, PATTANAIK S, et al. High dynamic range imaging: Acquisition, display, and image-based lighting[M]. Elsevier, 2005.
- [5] RAMAMOORTHI R, HANRAHAN P. An efficient representation for irradiance environment maps[C]//Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, 2001: 497-500.
- [6] GREEN R. Spherical harmonic lighting: The gritty details[C]//Archives of the Game Developers Conference: volume 56. 2003: 4.
- [7] SLOAN P P. Stupid spherical harmonics (sh) tricks[C]//Game developers conference: volume 9. 2008: 42.
- [8] PEREZ R, SEALS R, MICHALSKY J. All-weather model for sky luminance distribution—preliminary configuration and validation[J]. Solar energy, 1993, 50(3):235-245.
- [9] NISHITA T, DOBASHI Y, NAKAMAE E. Display of clouds taking into account multiple anisotropic scattering and sky light[C]//Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, 1996: 379-386.
- [10] SIRAI T N T, NAKAMAE K T E. Display of the earth taking into account atmospheric scattering[C]//Siggraph: volume 93. Citeseer, 1993: 175.
- [11] PREETHAM S. A practical analytic model for daylight[J]. 1999.
- [12] RAAB M, SEIBERT D, KELLER A. Unbiased global illumination with participating media [M]//Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, 2008: 591-605.
- [13] HOSEK L, WILKIE A. An analytic model for full spectral sky-dome radiance[J]. ACM Transactions on Graphics (TOG), 2012, 31(4):95.
- [14] HOŠEKHOŠEK L, WILKIE A. Adding a solar-radiance function to the hošek-wilkie skylight model[J]. IEEE computer graphics and applications, 2013, 33(3):44-52.
- [15] NG R, RAMAMOORTHI R, HANRAHAN P. All-frequency shadows using non-linear wavelet lighting approximation[C]//ACM Transactions on Graphics (TOG): volume 22. ACM, 2003: 376-381.

- [16] LEGENDRE C, YU X, LIU D, et al. Practical multispectral lighting reproduction[J]. ACM Transactions on Graphics (TOG), 2016, 35(4):32.
- [17] WEBER H, PRÉVOST D, LALONDE J F. Learning to estimate indoor lighting from 3d objects[C]//2018 International Conference on 3D Vision (3DV). IEEE, 2018: 199-207.
- [18] DEBEVEC P. Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography[C]//Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM, 1998: 189-198.
- [19] DEBEVEC P, GRAHAM P, BUSCH J, et al. A single-shot light probe[C]//ACM SIGGRAPH 2012 Talks. ACM, 2012: 10.
- [20] NISHINO K, NAYAR S K. Eyes for relighting[J]. ACM Transactions on Graphics (TOG), 2004, 23(3):704-711.
- [21] WANG Y, LIU Z, HUA G, et al. Face re-lighting from a single image under harsh lighting conditions[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007: 1-8.
- [22] TSUMURA N, DANG M N, MAKINO T, et al. Estimating the directions to light sources using images of eye for reconstructing 3d human face[C]//Color and Imaging Conference: volume 2003. Society for Imaging Science and Technology, 2003: 77-81.
- [23] WEN Z, LIU Z, HUANG T S. Face relighting with radiance environment maps[C]//2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings.: volume 2. IEEE, 2003: II-158.
- [24] SHIM H. Faces as light probes for relighting[J]. Optical Engineering, 2012, 51(7):077002.
- [25] KNORR S B, KURZ D. Real-time illumination estimation from faces for coherent rendering [C]//2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2014: 113-122.
- [26] SHAHLAEI D, BLANZ V. Realistic inverse lighting from a single 2d image of a face, taken under unknown and complex lighting[C]//2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG): volume 1. IEEE, 2015: 1-8.
- [27] YAO Y, KAWAMURA H, KOJIMA A. The hand as a shading probe[C]//ACM SIGGRAPH 2013 Posters. ACM, 2013: 108.
- [28] COSSAIRT O, NAYAR S, RAMAMOORTHI R. Light field transfer: global illumination between real and synthetic objects[C]//ACM Transactions on Graphics (TOG): volume 27. ACM, 2008: 57.
- [29] IMAI Y, KATO Y, KADOI H, et al. Estimation of multiple illuminants based on specular highlight detection[C]//International Workshop on Computational Color Imaging. Springer, 2011: 85-98.
- [30] CALIAN D A, MITCHELL K, NOWROUZEZAHRAI D, et al. The shading probe: Fast

- appearance acquisition for mobile ar[C]//SIGGRAPH Asia 2013 Technical Briefs. ACM, 2013: 20.
- [31] PILET J, GEIGER A, LAGGER P, et al. An all-in-one solution to geometric and photometric calibration[C]//2006 IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE, 2006: 69-78.
- [32] YOO J D, LEE K H. Real time light source estimation using a fish-eye lens with nd filters[C]// 2008 International Symposium on Ubiquitous Virtual Reality. IEEE, 2008: 41-42.
- [33] TOCCI M D, KISER C, TOCCI N, et al. A versatile hdr video production system[C]//ACM Transactions on Graphics (TOG): volume 30. ACM, 2011: 41.
- [34] MANAKOV A, RESTREPO J, KLEHM O, et al. A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging[J]. ACM Transactions on Graphics, 2013, 32(4):47-1.
- [35] KÁN P. Interactive hdr environment map capturing on mobile devices.[C]//Eurographics (Short Papers). 2015: 29-32.
- [36] KNECHT M, TRAXLER C, MATTAUSCH O, et al. Reciprocal shading for mixed reality[J]. Computers & Graphics, 2012, 36(7):846-856.
- [37] MEILLAND M, BARAT C, COMPORT A. 3d high dynamic range dense visual slam and its application to real-time object re-lighting[C]//2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2013: 143-152.
- [38] BARRON J T, MALIK J. Intrinsic scene properties from a single rgb-d image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013: 17-24.
- [39] ZHANG E, COHEN M F, CURLESS B. Emptying, refurnishing, and relighting indoor spaces [J]. ACM Transactions on Graphics (TOG), 2016, 35(6):174.
- [40] LI Y, LU H, SHUM H Y, et al. Multiple-cue illumination estimation in textured scenes[C]// Proceedings Ninth IEEE International Conference on Computer Vision. IEEE, 2003: 1366-1373.
- [41] RAMAMOORTHI R, HANRAHAN P. A signal-processing framework for inverse rendering [C]//Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, 2001: 117-128.
- [42] SATO I, SATO Y, IKEUCHI K. Illumination from shadows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(3):290-300.
- [43] WANG Y, SAMARAS D. Estimation of multiple illuminants from a single image of arbitrary known geometry[C]//European conference on computer vision. Springer, 2002: 272-288.
- [44] Panagopoulos A, Wang C, Samaras D, et al. Illumination estimation and cast shadow detection through a higher-order graphical model[C/OL]//CVPR 2011. 2011: 673-680. DOI: 10.1109/CVPR.2011.5995585.
- [45] BARRON J T, MALIK J. Shape, illumination, and reflectance from shading[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(8):1670-1687.

- [46] LOPEZ-MORENO J, HADAP S, REINHARD E, et al. Compositing images through light source detection[J]. Computers & Graphics, 2010, 34(6):698-707.
- [47] SATO I, SATO Y, IKEUCHI K. Acquiring a radiance distribution to superimpose virtual objects onto a real scene[J]. IEEE transactions on visualization and computer graphics, 1999, 5(1):1-12.
- [48] NISHINO K, ZHANG Z, IKEUCHI K. Determining reflectance parameters and illumination distribution from a sparse set of images for view-dependent image synthesis[C]//Proceedings Eighth IEEE international conference on computer vision. ICCV 2001: volume 1. IEEE, 2001: 599-606.
- [49] NISHINO K, IKEUCHI K, ZHANG Z. Re-rendering from a sparse set of images[J]. Department of Computer Science, Drexel University, 2005.
- [50] YU T, WANG H, AHUJA N, et al. Sparse lumigraph relighting by illumination and reflectance estimation from multi-view images [C]//ACM SIGGRAPH 2006 Sketches. ACM, 2006: 175.
- [51] WU C, WILBURN B, MATSUSHITA Y, et al. High-quality shape from multi-view stereo and shading under general illumination[C]//CVPR 2011. IEEE, 2011: 969-976.
- [52] SHAN Q, ADAMS R, CURLESS B, et al. The visual turing test for scene reconstruction[C]// 2013 International Conference on 3D Vision-3DV 2013. IEEE, 2013: 25-32.
- [53] LALONDE J F, MATTHEWS I. Lighting estimation in outdoor image collections[C]//2014 2nd International Conference on 3D Vision: volume 1. IEEE, 2014: 131-138.
- [54] MARSCHNER S R, GREENBERG D P. Inverse lighting for photography[C]//Color and Imaging Conference: volume 1997. Society for Imaging Science and Technology, 1997: 262-265.
- [55] HABER T, FUCHS C, BEKAER P, et al. Relighting objects from image collections[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009: 627-634.
- [56] KEMELMACHER-SHLIZERMAN I, BASRI R. 3d face reconstruction from a single image using a single reference face shape[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(2):394-405.
- [57] GARRIDO P, VALGAERTS L, WU C, et al. Reconstructing detailed dynamic face geometry from monocular video.[J]. ACM Trans. Graph., 2013, 32(6):158-1.
- [58] LI C, ZHOU K, LIN S. Intrinsic face image decomposition with human face priors[C]// European Conference on Computer Vision. Springer, 2014: 218-233.
- [59] OKABE T, SATO I, SATO Y. Spherical harmonics vs. haar wavelets: Basis for recovering illumination from cast shadows[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.: volume 1. IEEE, 2004: I-I.
- [60] LALONDE J F, NARASIMHAN S G, EFROS A A. What does the sky tell us about the camera?[C]//European conference on computer vision. Springer, 2008: 354-367.
- [61] LALONDE J F, NARASIMHAN S G, EFROS A A. What do the sun and the sky tell us about the camera?[J]. International Journal of Computer Vision, 2010, 88(1):24-51.

- [62] LALONDE J F, EFROS A A, NARASIMHAN S G. Estimating the natural illumination conditions from a single outdoor image[J]. International Journal of Computer Vision, 2012, 98(2):123-145.
- [63] SUNKAVALLI K, ROMEIRO F, MATUSIK W, et al. What do color changes reveal about an outdoor scene?[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008: 1-8.
- [64] XING G, ZHOU X, PENG Q, et al. Lighting simulation of augmented outdoor scene based on a legacy photograph[C]//Computer Graphics Forum: volume 32. Wiley Online Library, 2013: 101-110.
- [65] KARSCH K, HEDAU V, FORSYTH D, et al. Rendering synthetic objects into legacy photographs[C]//ACM Transactions on Graphics (TOG): volume 30. ACM, 2011: 157.
- [66] KARSCH K, SUNKAVALLI K, HADAP S, et al. Automatic scene inference for 3d object compositing[J]. ACM Transactions on Graphics (TOG), 2014, 33(3):32.
- [67] CHEN X, JIN X, WANG K. Lighting virtual objects in a single image via coarse scene understanding[J]. Science China Information Sciences, 2014, 57(9):1-14.
- [68] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
- [69] DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database [C]//2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009: 248-255.
- [70] CHANG A X, FUNKHOUSER T, GUIBAS L, et al. Shapenet: An information-rich 3d model repository[J]. arXiv preprint arXiv:1512.03012, 2015.
- [71] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
- [72] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
- [73] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
- [74] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
- [75] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, 2015: 234-241.
- [76] CHAITANYA C R A, KAPLANYAN A S, SCHIED C, et al. Interactive reconstruction of monte carlo image sequences using a recurrent denoising autoencoder[J]. ACM Transactions on Graphics (TOG), 2017, 36(4):98.

- [77] KARRAS T, AILA T, LAINE S, et al. Audio-driven facial animation by joint end-to-end learning of pose and emotion[J]. ACM Transactions on Graphics (TOG), 2017, 36(4):94.
- [78] CALIAN D A, LALONDE J F, GOTARDO P, et al. From faces to outdoor light probes[C]// Computer Graphics Forum: volume 37. Wiley Online Library, 2018: 51-61.
- [79] YI R, ZHU C, TAN P, et al. Faces as lighting probes via unsupervised deep highlight extraction [C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 317-333.
- [80] GEORGOULIS S, REMATAS K, RITSCHEL T, et al. Delight-net: Decomposing reflectance maps into specular materials and natural illumination[J]. arXiv preprint arXiv:1603.08240, 2016.
- [81] GEORGOULIS S, REMATAS K, RITSCHEL T, et al. Natural illumination from multiple materials using deep learning[J]. arXiv preprint arXiv:1611.09325, 2016.
- [82] MANDL D, YI K M, MOHR P, et al. Learning lightprobes for mixed reality illumination [C]//2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2017: 82-89.
- [83] PTGUI. new hourse internet services b.v, holland[EB/OL]. 2000. https://www.ptgui.com/.
- [84] WIKIPEDIA. panorama[EB/OL]. 2019. https://www.wikipedia.org/.
- [85] XIAOMI. Xiaomi Panoramic Camera[EB/OL]. 2016. https://www.mi.com/mj-panorama-camera/.
- [86] GREGZAAL.COM. How to create your own hdr environment maps[EB/OL]. 2016. http://blog.gregzaal.com/2016/03/16/make-your-own-hdri/.
- [87] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167, 2015.
- [88] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proc. icml: volume 30. 2013: 3.
- [89] TIELEMAN T, HINTON G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural networks for machine learning, 2012, 4(2): 26-31.
- [90] REMATAS K, RITSCHEL T, FRITZ M, et al. Deep reflectance maps[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 4508-4516.
- [91] SLOAN P P, KAUTZ J, SNYDER J. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments[C]//ACM Transactions on Graphics (TOG): volume 21. ACM, 2002: 527-536.
- [92] ZHOU B, LAPEDRIZA A, KHOSLA A, et al. Places: A 10 million image database for scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.
- [93] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.