Your Name Goes Here	
Math 387 Analysis I	
Homework 7	

Problem List	
3.3 {1,5,7}	
3.4 {2,3,7}	

H/T: Last Names Spring 2016

Due: Wednesday, March 23

Unassigned, but suggested: Problems 3,6,8 in Section 3.3 Unassigned, but suggested: Problems 1,4,5,6 in Section 3.4

7.1 Problem 3.3.1

Find an example of a discontinuous function $f:[0,1]\to\mathbb{R}$ where the intermediate value theorem fails.

Solution.

7.2 Problem 3.3.5

Suppose g(x) is a polynomial of odd degree d such that

$$g(x) = x^d + b_{d-1}x^{d-1} + \dots + b_1x + b_0,$$

for some real numbers $b_0, b_1, \ldots, b_{d-1}$. Show that there exists a $K \in \mathbb{N}$ such that g(-K) < 0. Hint: Make sure to use the fact that d is odd. You will have to use that $(-n)^d = -(n^d)$.

Solution.

7.3 Problem 3.3.7

Suppose $f:[a,b]\to\mathbb{R}$ is a continuous function. Prove that the direct image f([a,b]) is a closed and bounded interval or a single number.

Solution.

7.4 Problem 3.4.2

Let $f:(a,b)\to\mathbb{R}$ be a uniformly continuous function. Finish the proof of Theorem 3.4.6 by showing that the limit $\lim_{x\to b} f(x)$ exists.

Solution.

7.5 Problem 3.4.3

Show that $f:(c,\infty)\to\mathbb{R}$ for some c>0 and defined by f(x):=1/x is Lipschitz continuous.

Solution.

7.6 Problem 3.4.7

Let $f:(0,1)\to\mathbb{R}$ be a bounded continuous function. Show that the function g(x):=x(1-x)f(x) is uniformly continuous.

 \Box