md_summary_contrasts

Jacob Salminen

2024-04-19

Packages

```
# install.packages(c("tidyverse", "purrr", "R.matlab", "readxl", "dplyr"))
library(readxl);
library(purrr)
library(tidyverse);
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                      v readr
                                   2.1.5
## v forcats 1.0.0
                        v stringr
                                   1.5.1
## v ggplot2 3.5.0
                        v tibble
                                   3.2.1
## v lubridate 1.9.3
                        v tidyr
                                   1.3.1
## -- Conflicts -----
                                            ## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(tibble)
library(knitr);
library(gtsummary)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
      group_rows
```

GTSUMMARY THEME

```
# my_theme <-
# list(
# "tbl_summary-str:default_con_type" = "continuous2",
# "tbl_summary-str:continuous_stat" = c(
# "{median} ({p25} - {p75})",
# "{mean} ({sd})",</pre>
```

```
"{min} - {max}"
#
#
#
      "tbl_summary-str:categorical_stat" = "{n} / {N} ({p}%)",
      "style_number-arg:big.mark" = "",
#
      "tbl_summary-fn:percent_fun" = function(x) style_percent(x, digits = 3)
#
# my_theme <-
  list()
# gtsummary::set_gtsummary_theme(my_theme)
gtsummary::set_gtsummary_theme(theme_gtsummary_journal("jama"))
## Setting theme 'JAMA'
## Setting theme 'JAMA'
# reset_gtsummary_theme()
```

load table

```
excel_dir <-"M:/jsalminen/GitHub/par_EEGProcessing/src/_data/MIM_dataset/_studies/04162024_MIM_YAOAN89_
eegt <- read_excel(excel_dir,sheet="Sheet1")</pre>
```

get unique entries

```
clusters = unique(eegt$cluster_id);
subjects = unique(eegt$subj_char);
groups = unique(eegt$group_char);
eeg_measures = c('theta_avg_power', 'alpha_avg_power', 'beta_avg_power', 'aperiodic_exp', 'aperiodic_offset
```

get speeds only

```
eegt <- filter_at(eegt,vars('cond_char'), any_vars(. %in% c('0.25','0.5','0.75','1.0')))
flat_speeds = unique(eegt$cond_char)
eegt$cond_char <- as.numeric(eegt$cond_char)</pre>
```

get terrains only (if applicable)

```
# eegt <- filter_at(eegt,vars('cond_char'), any_vars(. %in% c('flat','low','med','high')))
# eegt <- filter_at(eegt,vars('cond_char'), any_vars(. %in% c('high')))
# eegt$terr_ord_speed <- cut(eegt$speed_ms, 4, ordered = TRUE)</pre>
```

convert speeds to ordered & groups to factors

Cluster:	3									
	EEG T	neta	EEG Alpha		EEG B	eta	Aperiodic Exp.		Aperiodic Offset	
Characteristic	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI
(Intercept)	0.99***	0.85 to 1.1	3.5***	3.3 to 3.8	1.9***	1.8 to 2.1	1.3***	1.3 to 1.3	-0.51***	-0.58 to -0.44
speed_ord										
speed_ord.L	-0.07	-0.35 to 0.21	-0.20	-0.71 to 0.30	-0.04	-0.34 to 0.25	-0.04	-0.11 to 0.03	-0.05	-0.18 to 0.09
speed_ord.Q	0.00	-0.28 to 0.28	-0.04	-0.54 to 0.47	-0.09	-0.39 to 0.21	-0.02	-0.09 to 0.05	-0.01	-0.15 to 0.13
speed_ord.C	-0.05	-0.33 to 0.23	-0.19	-0.70 to 0.31	-0.03	-0.33 to 0.27	0.01	-0.06 to 0.08	0.01	-0.12 to 0.15

¹ p<0.05; p<0.01; p<0.001

 $^{^2~{\}rm CI}={\rm Confidence~Interval}$

Cluster:	4									
	EEG TI	heta	EEG Alpha		EEG B	eta	Aperiodic	Exp.	Aperiodic Offset	
Characteristic	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI						
(Intercept)	0.94***	0.80 to 1.1	1.4***	1.2 to 1.6	1.6***	1.4 to 1.8	1.0***	1.0 to 1.1	-0.92***	-1.0 to -0.82
speed_ord										
speed_ord.L	0.19	-0.09 to 0.46	-0.10	-0.57 to 0.36	-0.13	-0.49 to 0.22	0.03	-0.06 to 0.11	0.03	-0.18 to 0.24
speed_ord.Q	0.01	-0.27 to 0.28	0.04	-0.43 to 0.50	0.00	-0.36 to 0.35	0.00	-0.08 to 0.09	0.01	-0.20 to 0.22
speed_ord.C	-0.09	-0.37 to 0.18	0.00	-0.46 to 0.47	0.01	-0.34 to 0.37	0.02	-0.06 to 0.10	0.03	-0.18 to 0.24

¹ p<0.05; p<0.01; p<0.001

```
eegt <- mutate(eegt,across(c('group_char'), factor))
eegt$speed_ord <- cut(eegt$cond_char, 4, ordered = TRUE)
eegt <- mutate(eegt,across(c('cond_char'), factor))
head(eegt)</pre>
```

```
## # A tibble: 6 x 122
```

```
speed_ms subj_id subj_cl_ind subj_char comp_id design_id cond_id cond_char
##
        <dbl> <chr>
                            <dbl> <chr>
                                               <dbl> <chr>
                                                               <chr>
                                                                        <fct>
         0.86 1
                                1 H1002
                                                   8 2
                                                                        0.25
## 1
## 2
         0.87 2
                                 2 H1004
                                                  11 2
                                                                        0.25
                                                               1
## 3
         0.91 3
                                3 H1007
                                                   8 2
                                                               1
                                                                        0.25
## 4
         0.67 4
                                4 H1009
                                                   4 2
                                                                        0.25
                                                               1
         0.78 5
                                                   1 2
## 5
                                 5 H1010
                                                                1
                                                                        0.25
                                6 H1012
## 6
         0.7 7
                                                   5 2
                                                                        0.25
                                                               1
## # i 114 more variables: group id <chr>, cluster id <chr>, aperiodic exp <dbl>,
       aperiodic_offset <dbl>, central_freq_1 <dbl>, central_freq_2 <dbl>,
## #
```

central_freq_3 <dbl>, power_1 <dbl>, power_2 <dbl>, power_3 <dbl>,

r_squared <dbl>, theta_avg_power <dbl>, alpha_avg_power <dbl>,

beta_avg_power <dbl>, theta_1 <dbl>, theta_2 <dbl>, theta_3 <dbl>,

theta_4 <dbl>, alpha_1 <dbl>, alpha_2 <dbl>, alpha_3 <dbl>, alpha_4 <dbl>,

alpha_5 <lgl>, alpha_6 <lgl>, beta_1 <dbl>, beta_2 <dbl>, beta_3 <dbl>, ...

eegt\$group_speed_code = paste(eegt\$group_char,eegt\$cond_char,sep="_")

Cluster:	5									
	EEG T	heta	EEG A	lpha	EEG E	leta	Aperiodic	Exp.	Aperiodic	Offset
Characteristic	Beta (95% CI)	95% CI								
(Intercept)	0.29***	0.19 to 0.39	3.1***	2.8 to 3.5	3.0***	2.8 to 3.2	1.0***	0.98 to 1.0	-1.2***	-1.2 to -1.1
speed_ord										
speed_ord.L	0.08	-0.12 to 0.28	-0.22	-0.92 to 0.47	-0.22	-0.61 to 0.17	0.03	-0.02 to 0.09	0.05	-0.07 to 0.18
speed_ord.Q	0.02	-0.18 to 0.22	0.18	-0.51 to 0.88	0.05	-0.34 to 0.44	0.00	-0.05 to 0.06	0.00	-0.13 to 0.12
speed_ord.C	-0.02	-0.22 to 0.18	-0.05	-0.75 to 0.65	-0.06	-0.45 to 0.33	0.00	-0.06 to 0.06	0.01	-0.12 to 0.13
1 -0.05 -0.0	-0.001				-					

¹ p<0.05; p<0.01; p<0.001

 $^{^2}$ CI = Confidence Interval

 $^{^2}$ CI = Confidence Interval

Cluster:	6									
	EEG TI	heta	EEG A	lpha	EEG B	eta	Aperiodic	Exp.	Aperiodic Offset	
Characteristic	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI						
(Intercept)	1.2***	1.0 to 1.3	0.61***	0.45 to 0.76	1.2***	1.0 to 1.4	1.0***	1.0 to 1.1	-1.2***	-1.4 to -1.1
speed_ord										
speed_ord.L	0.19	-0.11 to 0.49	0.05	-0.26 to 0.36	-0.07	-0.42 to 0.28	0.02	-0.06 to 0.10	0.03	-0.17 to 0.24
speed_ord.Q	0.01	-0.29 to 0.30	0.11	-0.20 to 0.42	0.03	-0.32 to 0.38	0.00	-0.08 to 0.07	-0.01	-0.22 to 0.20
speed_ord.C	-0.02	-0.31 to 0.28	0.00	-0.31 to 0.31	0.03	-0.32 to 0.37	0.00	-0.08 to 0.08	0.01	-0.20 to 0.22

¹ p<0.05; p<0.01; p<0.001 ² CI = Confidence Interval

Cluster:	7									
	EEG T	heta	EEG Alpha		EEG Beta		Aperiodic Exp.		Aperiodic Offset	
Characteristic		95% CI	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI
(Intercept)	0.55***	0.44 to 0.66	2.5***	2.2 to 2.8	0.88***	0.72 to 1.0	0.92***	0.87 to 0.98	-0.89***	-1.0 to -0.76
speed_ord										
speed_ord.L	0.05	-0.17 to 0.27	-0.18	-0.87 to 0.51	-0.10	-0.41 to 0.21	0.01	-0.11 to 0.12	0.05	-0.21 to 0.31
speed_ord.Q	-0.03	-0.25 to 0.19	0.10	-0.59 to 0.79	0.02	-0.29 to 0.33	-0.02	-0.13 to 0.10	-0.01	-0.27 to 0.26
speed_ord.C	-0.06	-0.28 to 0.16	-0.08	-0.77 to 0.61	0.01	-0.30 to 0.32	0.01	-0.11 to 0.12	0.01	-0.25 to 0.28

¹ p<0.05; p<0.01; p<0.001 ² CI = Confidence Interval

Cluster:	8									
	EEG TI	neta	EEG A	lpha	EEG B	eta	Aperiodic	Exp.	Aperiodic Offset	
Characteristic	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI						
(Intercept)	0.66***	0.47 to 0.85	3.5***	3.0 to 3.9	1.4***	1.2 to 1.6	0.91***	0.86 to 0.96	-1.0***	-1.1 to -0.92
speed_ord										
speed_ord.L	0.03	-0.35 to 0.40	-0.32	-1.2 to 0.56	-0.18	-0.57 to 0.20	0.05	-0.06 to 0.15	0.10	-0.08 to 0.29
speed_ord.Q	0.01	-0.37 to 0.38	0.00	-0.88 to 0.89	-0.04	-0.43 to 0.34	-0.03	-0.14 to 0.07	-0.02	-0.21 to 0.16
speed_ord.C	-0.05	-0.42 to 0.33	-0.05	-0.93 to 0.83	-0.01	-0.39 to 0.38	0.00	-0.11 to 0.10	0.00	-0.18 to 0.19

 $^{^{-1}}$ p<0.05; p<0.01; p<0.001 2 CI = Confidence Interval

Cluster:	9									
	EEG TI	heta	EEG A	lpha	EEG B	eta	Aperiodio	Exp.	Aperiodic Offset	
Characteristic	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI						
(Intercept)	0.51***	0.41 to 0.61	1.9***	1.7 to 2.2	2.6***	2.4 to 2.9	0.97***	0.93 to 1.0	-1.2***	-1.3 to -1.1
speed_ord										
speed_ord.L	0.13	-0.08 to 0.33	-0.09	-0.66 to 0.47	-0.17	-0.68 to 0.34	0.03	-0.03 to 0.10	0.05	-0.09 to 0.19
speed_ord.Q	-0.01	-0.21 to 0.19	0.12	-0.45 to 0.68	0.01	-0.49 to 0.52	0.01	-0.05 to 0.08	0.01	-0.13 to 0.15
speed_ord.C	-0.07	-0.27 to 0.14	-0.03	-0.60 to 0.53	-0.04	-0.55 to 0.47	0.01	-0.06 to 0.07	0.02	-0.12 to 0.15

¹ p<0.05; p<0.01; p<0.001 ² CI = Confidence Interval

Cluster:	10									
•	EEG TI	EEG Theta EEG Alpha			EEG B	eta	Aperiodio	Exp.	Aperiodic Offset	
Characteristic	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI
(Intercept)	0.63***	0.53 to 0.73	2.4***	2.1 to 2.7	1.6***	1.4 to 1.8	1.1***	1.0 to 1.1	-0.99***	-1.1 to -0.91
speed_ord										
speed_ord.L	0.16	-0.04 to 0.36	-0.18	-0.86 to 0.49	-0.13	-0.48 to 0.23	0.02	-0.05 to 0.08	0.03	-0.13 to 0.20
speed_ord.Q	0.05	-0.15 to 0.25	0.19	-0.49 to 0.87	0.06	-0.29 to 0.42	-0.03	-0.10 to 0.04	-0.03	-0.20 to 0.13
speed_ord.C	-0.05	-0.25 to 0.15	-0.06	-0.74 to 0.61	-0.01	-0.36 to 0.35	0.01	-0.06 to 0.07	0.01	-0.16 to 0.17

¹ p<0.05; p<0.01; p<0.001 ² CI = Confidence Interval

Cluster:	11									
	EEG T	heta	EEG A	lpha	EEG B	leta	Aperiodic	Exp.	Aperiodic	Offset
Characteristic	Beta (95% CI)	95% CI								
(Intercept)	0.41***	0.34 to 0.48	2.7***	2.4 to 3.0	1.5***	1.4 to 1.7	0.97***	0.93 to 1.0	-0.96***	-1.0 to -0.88
speed_ord										
speed_ord.L	0.12	-0.02 to 0.25	-0.19	-0.78 to 0.41	-0.06	-0.37 to 0.25	0.00	-0.08 to 0.09	0.04	-0.11 to 0.20
speed_ord.Q	-0.01	-0.14 to 0.13	0.17	-0.42 to 0.76	-0.01	-0.32 to 0.30	-0.01	-0.10 to 0.07	0.00	-0.16 to 0.15
speed_ord.C	-0.06	-0.19 to 0.08	-0.07	-0.67 to 0.52	0.00	-0.31 to 0.31	0.02	-0.06 to 0.11	0.03	-0.12 to 0.18

¹ p<0.05; p<0.01; p<0.001 ² CI = Confidence Interval

Cluster:	12									
	EEG TI	heta	EEG A	lpha	EEG B	eta	Aperiodio	Exp.	Aperiodic Offset	
Characteristic	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI						
(Intercept)	0.30***	0.19 to 0.40	3.1***	2.8 to 3.4	2.7***	2.5 to 2.9	1.0***	0.97 to 1.0	-1.0***	-1.1 to -0.97
speed_ord										
speed_ord.L	-0.02	-0.23 to 0.19	-0.37	-1.0 to 0.26	-0.26	-0.63 to 0.11	0.02	-0.05 to 0.09	0.04	-0.10 to 0.18
speed_ord.Q	0.01	-0.20 to 0.22	0.06	-0.57 to 0.70	-0.09	-0.46 to 0.27	-0.01	-0.08 to 0.06	0.00	-0.14 to 0.14
speed_ord.C	0.00	-0.21 to 0.21	-0.02	-0.66 to 0.61	-0.01	-0.38 to 0.36	0.00	-0.07 to 0.07	0.00	-0.14 to 0.14

 $^{^{1}}$ p<0.05; p<0.01; p<0.001 2 CI = Confidence Interval

Cluster:	13									
•	EEG T	heta	EEG A	pha	EEG B	eta	Aperiodic	Exp.	Aperiodic Offset	
Characteristic	Beta (95% CI)	95% CI	Beta (95% CI)	95% CI						
(Intercept)	0.70***	0.57 to 0.83	1.1***	0.87 to 1.2	0.92***	0.78 to 1.1	0.99***	0.95 to 1.0	-0.96***	-1.1 to -0.85
speed_ord										
speed_ord.L	0.16	-0.10 to 0.43	-0.04	-0.41 to 0.33	-0.10	-0.37 to 0.17	0.01	-0.07 to 0.10	0.03	-0.18 to 0.25
speed_ord.Q	-0.06	-0.32 to 0.21	0.03	-0.34 to 0.40	-0.05	-0.31 to 0.22	0.00	-0.09 to 0.08	0.00	-0.22 to 0.22
speed_ord.C	-0.01	-0.27 to 0.25	-0.02	-0.39 to 0.35	0.00	-0.27 to 0.27	0.01	-0.07 to 0.09	0.01	-0.21 to 0.23

¹ p<0.05; p<0.01; p<0.001 ² CI = Confidence Interval

Cluster:	14									
	EEG T	heta	EEG A	lpha	EEG B	eta	Aperiodic	Exp.	Aperiodic	Offset
Characteristic	Beta (95% CI)	95% CI								
(Intercept)	0.67***	0.53 to 0.80	1.3***	1.0 to 1.5	2.0***	1.8 to 2.2	1.0***	0.98 to 1.0	-1.3***	-1.3 to -1.2
speed_ord										
speed_ord.L	0.13	-0.14 to 0.41	-0.15	-0.65 to 0.35	-0.20	-0.66 to 0.26	0.04	-0.02 to 0.09	0.06	-0.07 to 0.18
speed_ord.Q	0.05	-0.22 to 0.33	0.21	-0.29 to 0.71	0.05	-0.41 to 0.51	-0.01	-0.07 to 0.04	-0.02	-0.14 to 0.11
speed_ord.C	-0.06	-0.33 to 0.22	0.00	-0.50 to 0.50	0.01	-0.45 to 0.46	0.01	-0.04 to 0.07	0.02	-0.10 to 0.14
1										

p < 0.05; p < 0.01; p < 0.001² CI = Confidence Interval

Cluster Polynomial Constrast Summaries

THETA T-TESTS

Cluster: 3 Theta Average Power t-tests

EEG Var Group_Speed	1 Group_Speed_2	N1	N2	tstat	p-value	*sig.
theta_avg_power H1000's_0.25	H1000's 0.5	23	23	0.04	0.97	ns
theta_avg_power H1000's_0.25	$H1000's_0.75$	23	23	0.02	0.98	$_{ m ns}$
theta_avg_power H1000's_0.25	H1000's 1	23	23	-0.15	0.88	ns
theta_avg_power H1000's_0.25	$H2000's_0.25$	23	18	-1.86	0.08	$_{ m ns}$
theta_avg_power H1000's_0.25	$H2000's_0.5$	23	18	-1.79	0.09	ns
theta_avg_power H1000's_0.25	$H2000's_0.75$	23	18	-1.81	0.08	$_{ m ns}$
theta_avg_power H1000's_0.25	H2000's_1	23	18	-1.80	0.09	ns
theta_avg_power H1000's_0.25	$H3000's_0.25$	23	23	-5.28	0.00	****
theta_avg_power H1000's_0.25	$H3000's_0.5$	23	23	-4.60	0.00	****
theta_avg_power H1000's_0.25	$H3000's_0.75$	23	23	-5.01	0.00	****
theta_avg_power H1000's_0.25	H3000's_1	23	23	-4.30	0.00	***
theta_avg_power H1000's_0.5	$\rm H1000's_0.75$	23	23	-0.02	0.98	ns
theta_avg_power H1000's_0.5	H1000's_1	23	23	-0.20	0.84	ns
theta_avg_power H1000's_0.5	$H2000's_0.25$	23	18	-1.90	0.07	ns
theta_avg_power H1000's_0.5	$H2000's_0.5$	23	18	-1.83	0.08	ns
theta_avg_power H1000's_0.5	$H2000's_0.75$	23	18	-1.86	0.08	ns
theta_avg_power H1000's_0.5	H2000's_1	23	18	-1.84	0.08	ns
theta_avg_power $H1000$ 's_ 0.5	${ m H3000's} { m _0.25}$	23	23	-5.37	0.00	****
theta_avg_power H1000's_0.5	${ m H3000's} { m _0.5}$	23	23	-4.68	0.00	****
theta_avg_power H1000's_0.5	${ m H3000's} { m _0.75}$	23	23	-5.09	0.00	****
theta_avg_power H1000's_0.5	$H3000's_{1}$	23	23	-4.37	0.00	***
theta_avg_power H1000's_0.75	$\rm H1000's_1$	23	23	-0.18	0.86	ns
theta_avg_power H1000's_0.75	${ m H2000's} { m _0.25}$	23	18	-1.89	0.07	ns
theta_avg_power H1000's_0.75	${ m H2000's} { m _0.5}$	23	18	-1.82	0.08	ns
theta_avg_power H1000's_0.75	${ m H2000's} { m _0.75}$	23	18	-1.85	0.08	ns
theta_avg_power H1000's_0.75	$H2000's_{1}$	23	18	-1.84	0.08	ns
theta_avg_power $H1000$ 's_ 0.75	${ m H3000's} { m _0.25}$	23	23	-5.36	0.00	****
theta_avg_power $H1000$ 's_ 0.75	${ m H3000's} { m _0.5}$	23	23	-4.67	0.00	****
theta_avg_power H1000's_0.75	${ m H3000's} { m _0.75}$	23	23	-5.09	0.00	****
theta_avg_power H1000's_0.75	$H3000's_{1}$	23	23	-4.36	0.00	***
theta_avg_power H1000's_1	${\rm H}2000' {\rm s} _0.25$	23	18	-1.81	0.09	ns
theta_avg_power H1000's_1	$H2000's_0.5$	23	18	-1.73	0.10	ns
theta_avg_power H1000's_1	${ m H2000's} { m _0.75}$	23	18	-1.75	0.09	ns
theta_avg_power H1000's_1	H2000's_1	23	18	-1.74	0.10	$_{ m ns}$
theta_avg_power H1000's_1	$H3000's_0.25$	23	23	-5.24	0.00	****
theta_avg_power H1000's_1	$H3000's_0.5$	23	23	-4.56	0.00	****
theta_avg_power H1000's_1	$H3000's_0.75$	23	23	-4.97	0.00	****
~ - —						

EEG Var Group_S	Gpeed_1 Group_	_Speed_2 N1	N2	tstat	$p ext{-}value$	*sig.
theta_avg_power H1000's_	_1 H3000'	s_1 23	23	-4.25	0.00	***
theta_avg_power H2000's_		$s_0.5$ 18	18	0.18	0.86	ns
theta_avg_power H2000's_	_0.25 H2000'	$s_0.75$ 18	18	0.27	0.79	ns
theta_avg_power H2000's_	0.25 H2000'	s_1 18	18	0.29	0.77	ns
theta_avg_power H2000's_	0.25 H3000'	$s_0.25$ 18	23	-2.14	0.04	*
theta_avg_power H2000's_	0.25 H3000'	$s_0.5$ 18	23	-1.75	0.09	ns
theta_avg_power H2000's_	0.25 H3000'	$s_0.75$ 18	23	-2.03	0.05	*
theta_avg_power H2000's_	0.25 H3000'	s_1 18	23	-1.51	0.14	ns
theta_avg_power H2000's_	0.5 H2000'	$s_0.75$ 18	18	0.09	0.93	ns
theta_avg_power H2000's_	_0.5 H2000'	s_1 18	18	0.11	0.91	ns
theta_avg_power H2000's_	_0.5 H3000'	$s_0.25$ 18	23	-2.47	0.02	*
theta_avg_power H2000's_	_0.5 H3000'	$s_0.5$ 18	23	-2.04	0.05	*
theta_avg_power H2000's_	_0.5 H3000'	$s_0.75$ 18	23	-2.34	0.03	*
theta_avg_power H2000's_	_0.5 H3000'	s_1 18	23	-1.79	0.08	ns
theta_avg_power H2000's_	0.75 H2000'	s_1 18	18	0.03	0.98	ns
theta_avg_power H2000's_	_0.75 H3000'	$s_0.25$ 18	23	-2.66	0.01	*
theta_avg_power H2000's_	_0.75 H3000'	$s_0.5$ 18	23	-2.22	0.03	*
theta_avg_power H2000's_	_0.75 H3000'	$s_0.75$ 18	23	-2.52	0.02	*
theta_avg_power H2000's_	_0.75 H3000'	s_1 18	23	-1.96	0.06	ns
theta_avg_power H2000's_	_1 H3000'	$s_0.25$ 18	23	-2.71	0.01	**
theta_avg_power H2000's_	_1 H3000'	$s_0.5$ 18	23	-2.26	0.03	*
theta_avg_power H2000's_	_1 H3000'	$s_0.75$ 18	23	-2.57	0.01	*
theta_avg_power H2000's_	_1 H3000'	s_1 18	23	-2.00	0.05	ns
theta_avg_power H3000's_	_0.25 H3000'	$s_0.5$ 23	23	0.40	0.69	ns
theta_avg_power H3000's_		$s_0.75$ 23	23	0.10	0.92	ns
theta_avg_power H3000's_	_0.25 H3000'	s_1 23	23	0.67	0.51	$_{ m ns}$
theta_avg_power H3000's_	0.5 H3000'	$s_{-}^{-}0.75$ 23	23	-0.30	0.77	$_{ m ns}$
theta_avg_power H3000's_	0.5 H3000'	s_1 23	23	0.26	0.79	$_{ m ns}$
theta_avg_power H3000's_	0.75 H3000'	s_1 23	23	0.56	0.58	ns

Cluster: 4 Theta Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta_avg_power	H1000's_0.25	H1000's_0.5	18	18	-0.03	0.98	ns
theta_avg_power	H1000's_0.25	$H1000's_0.75$	18	18	-1.20	0.24	ns
$theta_avg_power$	H1000's_0.25	H1000's_1	18	18	-0.89	0.38	ns
$theta_avg_power$	H1000's_0.25	$\rm H2000's_0.25$	18	16	1.11	0.28	ns
$theta_avg_power$	H1000's_0.25	$H2000's_0.5$	18	16	1.22	0.23	ns
$theta_avg_power$	H1000's_0.25	$\rm H2000's_0.75$	18	16	0.80	0.43	ns
$theta_avg_power$	H1000's_0.25	H2000's_1	18	16	0.38	0.71	ns
$theta_avg_power$	H1000's_0.25	${ m H3000's} { m _0.25}$	18	16	2.25	0.03	*
theta_avg_power	H1000's_0.25	$H3000's_0.5$	18	16	2.45	0.02	*
theta_avg_power	H1000's_0.25	$H3000's_0.75$	18	16	1.97	0.06	ns
theta_avg_power	H1000's_0.25	H3000's_1	18	16	1.88	0.07	ns
$theta_avg_power$	H1000's_0.5	$\rm H1000's_0.75$	18	18	-1.15	0.26	ns
$theta_avg_power$	H1000's_0.5	H1000's_1	18	18	-0.84	0.41	ns
$theta_avg_power$	H1000's_0.5	$\rm H2000's_0.25$	18	16	1.12	0.27	ns
theta_avg_power	$\rm H1000's_0.5$	$H2000's_0.5$	18	16	1.23	0.23	ns
theta_avg_power	H1000's_0.5	$H2000's_0.75$	18	16	0.81	0.42	ns
theta_avg_power	H1000's_0.5	H2000's_1	18	16	0.39	0.70	ns

EEG Var Gr	roup_Speed_1	Group_Speed_2	N1	N2	tstat	p-value	*sig.
theta_avg_power H1	1000's_0.5	${ m H3000's} { m _0.25}$	18	16	2.24	0.03	*
theta_avg_power H1	$1000's_0.5$	${ m H3000's} { m _0.5}$	18	16	2.43	0.02	*
theta_avg_power H1	$1000' s_0.5$	${ m H3000's} { m _0.75}$	18	16	1.96	0.06	ns
theta_avg_power H1	$1000's_0.5$	$H3000's_1$	18	16	1.87	0.07	ns
theta_avg_power H1	$1000's_0.75$	$\rm H1000's_1$	18	18	0.32	0.75	ns
theta_avg_power H1	$1000' s_0.75$	${\rm H}2000' {\rm s} _0.25$	18	16	2.11	0.04	*
theta_avg_power H1	$1000' s_0.75$	$H2000's_0.5$	18	16	2.28	0.03	*
theta_avg_power H1	$1000' s_0.75$	$H2000's_0.75$	18	16	1.82	0.08	ns
theta_avg_power H1	$1000's_0.75$	$H2000's_1$	18	16	1.39	0.17	ns
theta_avg_power H1	$1000's_0.75$	${ m H3000's} { m _0.25}$	18	16	3.32	0.00	**
theta_avg_power H1	$1000' s_{-}0.75$	$H3000's_0.5$	18	16	3.56	0.00	**
theta_avg_power H1		H3000's_0.75	18	16	3.10	0.00	**
theta_avg_power H1		H3000's_1	18	16	2.96	0.01	**
theta_avg_power H1		H2000's 0.25	18	16	1.86	0.07	ns
theta_avg_power H1		H2000's_0.5	18	16	2.01	0.05	ns
theta_avg_power H1		H2000's 0.75	18	16	1.56	0.13	ns
theta_avg_power H1		H2000's 1	18	16	1.13	0.27	ns
theta_avg_power H1		H3000's 0.25	18	16	3.06	0.00	**
theta_avg_power H1		H3000's 0.5	18	16	3.29	0.00	**
theta_avg_power H1		H3000's 0.75	18	16	2.82	0.01	**
theta_avg_power H1		H3000's 1	18	16	2.70	0.01	*
theta_avg_power H2		H2000's 0.5	16	16	0.03	0.98	ns
theta_avg_power H2		H2000's 0.75	16	16	-0.29	0.77	ns
theta_avg_power H2		H2000's 1	16	16	-0.65	0.52	ns
theta_avg_power H2		H3000's_0.25	16	16	0.87	0.39	ns
theta_avg_power H2		H3000's_0.5	16	16	0.97	0.34	ns
theta_avg_power H2		H3000's 0.75	16	16	0.56	0.58	ns
theta_avg_power H2		H3000's 1	16	16	0.55	0.59	ns
theta_avg_power H2		H2000's 0.75	16	16	-0.34	0.74	ns
theta_avg_power H2		H2000's 1	16	16	-0.71	0.48	ns
theta_avg_power H2		H3000's_0.25	16	16	0.90	0.38	ns
theta_avg_power H2		H3000's_0.5	16	16	1.01	0.32	ns
theta avg power H2		H3000's 0.75	16	16	0.57	0.57	ns
theta avg power H2		H3000's 1	16	16	0.55	0.59	ns
theta avg power H2		H2000's 1	16	16	-0.36	0.72	ns
theta_avg_power H2		H3000's_0.25	16	16	1.20	0.24	ns
theta_avg_power H2		H3000's 0.5	16	16	1.32	0.20	ns
theta avg power H2		H3000's 0.75	16	16	0.90	0.38	ns
theta_avg_power H2		H3000's 1	16	16	0.87	0.39	ns
theta_avg_power H2		H3000's 0.25	16	16	1.57	0.13	ns
theta_avg_power H2		H3000's 0.5	16	16	1.70	0.10	ns
theta_avg_power H2		H3000's 0.75	16	16	1.29	0.21	ns
theta_avg_power H2		H3000's 1	16	16	1.25	0.22	ns
theta_avg_power H3		H3000's 0.5	16	16	0.08	0.94	ns
theta avg power H3		H3000's 0.75	16	16	-0.39	0.70	ns
theta_avg_power H3		H3000's 1	16	16	-0.36	0.72	ns
theta_avg_power H3		H3000's 0.75	16	16	-0.49	0.63	ns
theta_avg_power H3		H3000's 1	16	16	-0.46	0.65	ns
theta_avg_power H3		H3000's 1	16	16	0.01	0.99	ns
					U.U±		

Cluster: 5 Theta Average Power t-tests

theta_avg_power H1000's_0.25 H1000's_0.75 24 24 -0.65 0.52 ns theta_avg_power H1000's_0.25 H1000's_1 24 24 -0.65 0.52 ns theta_avg_power H1000's_0.25 H1000's_1 24 24 -0.65 0.52 ns theta_avg_power H1000's_0.25 H2000's_0.25 24 21 1.40 0.17 ns theta_avg_power H1000's_0.25 H2000's_0.75 24 21 1.84 0.07 ns theta_avg_power H1000's_0.25 H2000's_0.75 24 21 1.84 0.07 ns theta_avg_power H1000's_0.25 H2000's_0.75 24 21 0.67 0.51 ns theta_avg_power H1000's_0.25 H2000's_0.75 24 22 0.67 0.57 ns theta_avg_power H1000's_0.25 H2000's_0.5 24 22 0.67 0.79 ns theta_avg_power H1000's_0.25 H3000's_0.5 24 22 0.43 0.67 ns theta_avg_power H1000's_0.25 H3000's_0.5 24 22 0.43 0.67 ns theta_avg_power H1000's_0.25 H3000's_0.5 24 22 0.63 0.68 ns theta_avg_power H1000's_0.25 H3000's_0.75 24 22 0.63 0.82 ns theta_avg_power H1000's_0.5 H1000's_0.75 24 22 0.63 0.82 ns theta_avg_power H1000's_0.5 H1000's_0.75 24 22 0.63 0.82 ns theta_avg_power H1000's_0.5 H1000's_0.75 24 24 0.03 0.82 ns theta_avg_power H1000's_0.5 H2000's_0.25 24 21 1.75 0.00 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 1.75 0.00 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 0.02 0.36 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.45 0.66 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.45 0.66 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.80 0.43 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.80 0.43 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.64 0.53 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.60 0.40 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.60 0.44 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.60 0.43 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.60 0.60 ns t	EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta awg power H1000's 0.25		H1000's_0.5	24	24	-0.37	0.71	ns
theta_awg_power H1000's_0.25		$\rm H1000's_0.75$	24	24	-0.77	0.44	ns
theta_avg_power H1000's_0.25	theta_avg_power $H1000$ 's_ 0.25	H1000's_1	24	24	-0.65	0.52	ns
theta_avg_power H1000's_0.25 H2000's_0.75	theta_avg_power $H1000$ 's_ 0.25	${\rm H}2000'{\rm s}_0.25$	24	21	1.40	0.17	ns
theta_avg_power H1000's_0.25 H2000's_1.24 21 0.57 0.57 ns theta avg_power H1000's_0.25 H300's_0.25 24 22 0.43 0.67 ns theta_avg_power H1000's_0.25 H300's_0.75 24 22 0.43 0.67 ns theta_avg_power H1000's_0.25 H300's_0.75 24 22 0.37 0.57 ns theta_avg_power H1000's_0.25 H300's_0.75 24 22 0.33 0.82 ns theta_avg_power H1000's_0.5 H1000's_0.75 24 24 24 -0.41 0.68 ns theta_avg_power H1000's_0.5 H1000's_0.75 24 24 24 -0.28 0.78 ns theta_avg_power H1000's_0.5 H2000's_0.25 24 21 1.75 0.09 ns theta_avg_power H1000's_0.5 H2000's_0.25 24 21 1.75 0.09 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 2.24 0.03 ** theta_avg_power H1000's_0.5 H2000's_0.75 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_0.75 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_0.75 24 21 0.09 0.36 ns theta_avg_power H1000's_0.5 H2000's_0.75 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.44 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.44 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.00 0.43 ns theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.04 ** theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.04 ** theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.75	theta_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.5}$	24	21	1.84	0.07	ns
theta_avg_power H1000's_0.25 H3000's_0.25 24 22 0.27 0.79 ns theta_avg_power H1000's_0.25 H3000's_0.5 24 22 0.43 0.67 ns theta_avg_power H1000's_0.25 H3000's_0.75 24 22 0.57 0.57 ns theta_avg_power H1000's_0.25 H3000's_0.75 24 22 0.23 0.82 ns theta_avg_power H1000's_0.5 H1000's_0.75 24 24 24 0.41 0.68 ns theta_avg_power H1000's_0.5 H1000's_0.75 24 24 0.28 0.78 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 1.75 0.09 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 1.75 0.09 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 1.75 0.09 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 0.92 0.36 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_0.75 H2000's_0.5 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H2000's_0.5 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.5 24 21 2.63 0.01 * theta_avg_power H1000's_0.75 H3000's_0.5 24 21 2.63 0.01 * theta_avg_power H1000's_0.75 H3000's_0.5 24 21 2.63 0.01 * theta_avg_power H1000's_0.75 H3000's_0.5 24 21 2.10 0.90 0.5 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.80 0.40 ns theta_	theta_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.75$	24	21	0.67	0.51	ns
theta_avg_power_H1000's_0.25	theta_avg_power $H1000$ 's_ 0.25	H2000's_1	24	21	0.57	0.57	ns
theta_avg_power_H1000's_0.25	theta_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	24	22	0.27	0.79	ns
theta_avg_power H1000's_0.25 H3000's_1 24 22 0.23 0.82 ns theta_avg_power H1000's_0.5 H1000's_1 24 24 -0.41 0.68 ns theta_avg_power H1000's_0.5 H1000's_1 24 24 -0.28 0.78 ns theta_avg_power H1000's_0.5 H2000's_0.25 24 21 1.75 0.09 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 1.75 0.09 ns theta_avg_power H1000's_0.5 H2000's_0.75 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_0.75 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.64 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.64 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.64 0.66 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.64 0.66 ns theta_avg_power H1000's_0.75 H3000's_1 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H2000's_0.25 24 21 0.11 0.04 *theta_avg_power H1000's_0.75 H2000's_0.25 24 21 0.11 0.04 *theta_avg_power H1000's_0.75 H2000's_0.25 24 21 0.10 0.04 *theta_avg_power H1000's_0.75 H2000's_0.75 24 21 0.66 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 0.60 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 0.20 0.01 *theta_avg_power H1000's_0.75 H3000's_0.75 24 21 0.20 0.01 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.70 0.70 0.70 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.	theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	24	22	0.43	0.67	ns
theta_avg_power_H1000's_0.5	theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.75$	24	22	0.57	0.57	ns
theta_avg_power H1000's_0.5 H1000's_1 24 24 21 1.75 0.09 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 21 1.75 0.09 ns theta_avg_power H1000's_0.5 H2000's_0.75 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_0.75 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_0.75 24 21 0.02 0.36 ns theta_avg_power H1000's_0.5 H2000's_1 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H2000's_0.5 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.5 H3000's_1.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.75 H2000's_1.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.5 24 21 2.63 0.01 * theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.30 0.48 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.80 0.05 ns theta_avg_power H1000's_1 H2000's_0.75 24 22 0.80 0.05 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 0.20 0.05 ns theta_avg_power H1000's_1 H2000's_0.75 24 22 0.80 0.43 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.23 0.82 ns theta_avg_power H2	theta_avg_power H1000's_0.25	H3000's_1	24	22	0.23	0.82	ns
theta_avg_power_H1000's_0.5	theta_avg_power H1000's_0.5	$H1000's_0.75$	24	24	-0.41	0.68	ns
theta_avg_power H1000's_0.5 H2000's_0.75 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_1 24 21 1.00 0.32 ns theta_avg_power H1000's_0.5 H2000's_1 24 21 0.92 0.36 ns theta_avg_power H1000's_0.5 H3000's_0.25 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.60 0.43 ns theta_avg_power H1000's_0.5 H3000's_1 24 22 0.65 0.66 ns theta_avg_power H1000's_0.5 H3000's_1 24 22 0.60 0.43 ns theta_avg_power H1000's_0.75 H1000's_1 24 22 0.64 0.13 0.90 ns theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H3000's_0.25 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.75 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 0.06 0.34 ns theta_avg_power H1000's_1 H2000's_0.75 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H2000's_0.75 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H2000's_0.75 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.60 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.60 0.65 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.60 0.64 0.53 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 21 0.06 0.34 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 22 0.60 0.34 ns theta_avg_power H200		H1000's_1	24	24	-0.28	0.78	ns
theta_avg_power H1000's_0.5 H2000's_0.75	theta_avg_power H1000's_0.5	$H2000's_0.25$	24	21	1.75	0.09	ns
theta_avg_power H1000's_0.5 H2000's_1 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.55 24 22 0.80 0.64 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.5 H3000's_1 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H2000's_1 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.55 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.55 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.55 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.55 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.55 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.55 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 2.53 0.01 * theta_avg_power H1000's_1 H2000's_0.55 24 21 2.06 0.22 ns theta_avg_power H1000's_1 H3000's_0.55 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.55 24 22 0.60 0.34 ns theta_avg_power H1000's_1 H3000's_0.55 24 22 0.60 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.5 21 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 22 0.60 0.34 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_po	theta_avg_power H1000's_0.5	$H2000's_0.5$	24	21	2.24	0.03	*
theta_avg_power H1000's_0.5 H2000's_1 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.55 24 22 0.80 0.64 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.5 H3000's_1 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H2000's_1 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.55 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.55 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.55 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.55 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.55 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.55 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 2.53 0.01 * theta_avg_power H1000's_1 H2000's_0.55 24 21 2.06 0.22 ns theta_avg_power H1000's_1 H3000's_0.55 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.55 24 22 0.60 0.34 ns theta_avg_power H1000's_1 H3000's_0.55 24 22 0.60 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.5 21 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 22 0.60 0.34 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_po	theta_avg_power H1000's_0.5	$H2000's_0.75$	24	21	1.00	0.32	ns
theta_avg_power H1000's_0.5 H3000's_0.25 24 22 0.48 0.64 ns theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.60 0.53 ns theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.5 H3000's_1 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H1000's_1 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H1000's_1 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 24 21 2.13 0.01 ** theta_avg_power H1000's_0.75 H2000's_0.5 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.5 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.53 0.01 ** theta_avg_power H1000's_1 H2000's_0.5 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.34 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.34 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.34 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.5 H2000's_0.5 21 22 0.66 0.51 ns theta_avg_power H2000's_0.5 H2000's_0.5 21 22 0.66 0.51 ns theta_avg_power H2000's_0.5 H2000's_0.5 21 22 0.66 0.51 ns theta_avg_power H2000's_0.5 H2000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21		H2000's 1	24	21	0.92	0.36	ns
theta_avg_power H1000's_0.5 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_0.5 H3000's_1 24 22 0.45 0.66 ns theta_avg_power H1000's_0.5 H3000's_1 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H1000's_1 24 24 0.13 0.90 ns theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.5 24 21 2.63 0.01 * theta_avg_power H1000's_0.75 H2000's_0.5 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.5 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.5 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.5 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.34 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.34 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.		H3000's 0.25	24	22	0.48	0.64	ns
theta_avg_power H1000's_0.5 H3000's_0.75 24 22 0.80 0.43 ns theta_avg_power H1000's_0.5 H3000's_1 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H1000's_1 24 24 21 0.13 0.90 ns theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.5 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.5 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.25 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.5 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.34 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.34 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 22 0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 22 0.66 0.51 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.54 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 20 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_		H3000's 0.5	24	22	0.64	0.53	ns
theta_avg_power H1000's_0.5 H3000's_1 24 22 0.45 0.66 ns theta_avg_power H1000's_0.75 H1000's_1 24 24 21 0.13 0.90 ns theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.5 24 21 2.13 0.01 * theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_1 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.25 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.25 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.25 24 21 0.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 0.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 0.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.55 24 21 0.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.34 ns theta_avg_power H1000's_1 H3000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.26 0.50 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 22 0.66 0.51 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.36 0.34 ns theta_avg_power H2000's_0.5 H3000			24	22	0.80	0.43	ns
theta_avg_power H1000's_0.75 H2000's_0.25 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.5 24 21 2.11 0.04 * theta_avg_power H1000's_0.75 H2000's_0.5 24 21 2.63 0.01 * theta_avg_power H1000's_0.75 H2000's_0.5 24 21 2.63 0.01 * theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_1 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.25 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.25 24 21 0.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.34 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.34 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.26 0.51 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22	~ -	H3000's 1	24	22	0.45	0.66	ns
theta_avg_power H1000's_0.75							
theta_avg_power H1000's_0.75	~ -		24				*
theta_avg_power H1000's_0.75 H2000's_0.75 24 21 1.36 0.18 ns theta_avg_power H1000's_0.75 H2000's_1 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.25 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.70 0.49 ns theta_avg_power H1000's_0.75 H3000's_0.25 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.25 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.53 0.01 * theta_avg_power H1000's_1 H2000's_0.5 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.	~ -		24		2.63	0.01	*
theta_avg_power H1000's_0.75 H2000's_0.25 24 21 1.29 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.25 24 22 0.71 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.55 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 1.04 0.31 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 1.04 0.31 ns theta_avg_power H1000's_1 H2000's_0.25 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.53 0.01 * theta_avg_power H1000's_1 H2000's_0.5 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H2000's_0.5 H200's_0			24		1.36	0.18	ns
theta_avg_power H1000's_0.75 H3000's_0.25 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.5 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 1.04 0.31 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.25 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.53 0.01 * theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.55 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.55 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.66 0.54 ns theta_avg_power H2000's_1 H3000's_0.5 24 22 0.66 0.54 ns theta_avg_power H2000's_1 H3000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.64 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.64 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 0.68 0.50 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 0.66 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 0.66 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 0.696 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 0.696 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 0.696 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 0.696 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 0.696 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 0.66 0.55 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 0.66 0.55 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 0			24			0.20	ns
theta_avg_power H1000's_0.75 H3000's_0.55 24 22 0.87 0.39 ns theta_avg_power H1000's_0.75 H3000's_0.75 24 22 1.04 0.31 ns theta_avg_power H1000's_0.75 H3000's_1 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.25 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.53 0.01 * theta_avg_power H1000's_1 H2000's_0.5 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.25 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.60 0.43 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.60 0.34 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.60 0.34 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.62 0.54 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 0.34 0.74 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.75 21 21 0.06 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 0.066 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 22 0.66 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 22 0.766 0.46 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 22 0.766 0.46 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 0.25 12 0.060 0.55 ns theta_avg_powe							
theta_avg_power H1000's_0.75 H3000's_0.75 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.25 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.53 0.01 * theta_avg_power H1000's_1 H2000's_0.5 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_1 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.80 0.43 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.066 0.51 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 0.044 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 0.044 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 0.068 0.50 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 0.068 0.50 ns theta_avg_power H2000's_0.5 H3000's_0.75 21 21 0.096 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 0.096 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 0.096 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 22 0.76 0.46 ns theta_avg_power H2000's_0.5 H2000's_0.25 21 22 0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 0.76 0.46 ns							
theta_avg_power H1000's_0.75 H3000's_1 24 22 0.70 0.49 ns theta_avg_power H1000's_1 H2000's_0.25 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.53 0.01 * theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_1 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.80 0.43 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.62 0.54 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 -0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 22 -0.60 0.55 ns							
theta_avg_power H1000's_1 H2000's_0.25 24 21 2.00 0.05 ns theta_avg_power H1000's_1 H2000's_0.5 24 21 2.53 0.01 * theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_1 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.80 0.43 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H1000's_1 H3000's_1 24 22 0.62 0.54 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_0.5 1 21 21 -0.66 0.51 ns theta_avg_power H2000's_0.25 H3000's_0.25 1 21 21 -0.81 0.43 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.5 1 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H2000's_0.5 1 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H2000's_0.5 1 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.25 1 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 1 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 1 20 20 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 1 20 20 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 1 20 20 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 1 20 20 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 1 20 20 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 1 20 20 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 1 20 20 -0.76							
theta_avg_power H1000's_1 H2000's_0.5 24 21 2.53 0.01 * theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_1 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.80 0.43 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.62 0.54 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_0.25 12 21 21 0.81 0.43 ns theta_avg_power H2000'	~ <u>-</u>		24			0.05	ns
theta_avg_power H1000's_1 H2000's_0.75 24 21 1.26 0.22 ns theta_avg_power H1000's_1 H2000's_1 24 21 1.18 0.24 ns theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.80 0.43 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H1000's_1 H3000's_1 24 22 0.62 0.54 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_1 21 21 0.81 0.43 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.34 0.74 ns theta_avg_power H2000's_0.25 H3000's_1 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 21 0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 21 0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 21 0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 21 0.114 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 0.76 0.46 ns	~ -		24			0.01	*
theta_avg_power H1000's_1 H2000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.80 0.43 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.62 0.54 ns theta_avg_power H1000's_1 H3000's_1 24 22 0.62 0.54 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_1 21 21 0.81 0.43 ns theta_avg_power H2000's_0.25 H2000's_1 21 21 0.81 0.43 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 0.34 0.74 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 0.68 0.50 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.25 21 22 0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 0.76 0.46 ns			24				ns
theta_avg_power H1000's_1 H3000's_0.25 24 22 0.64 0.53 ns theta_avg_power H1000's_1 H3000's_0.5 24 22 0.80 0.43 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H1000's_1 H3000's_0.75 24 22 0.62 0.54 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 -0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_1 21 21 21 -0.81 0.43 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 -0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.34 0.74 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 -0.60 0.55 ns			24			0.24	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_ v <u>-</u>						
theta_avg_power H1000's_1 H3000's_0.75 24 22 0.96 0.34 ns theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 -0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 -0.81 0.43 ns theta_avg_power H2000's_0.25 H2000's_0.25 21 22 -0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 -0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.34 0.74 ns theta_avg_power H2000's_0.25 H3000's_1 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.60 0.55 ns							
theta_avg_power H1000's_1 H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 -0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_1 21 21 -0.81 0.43 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 -0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.34 0.74 ns theta_avg_power H2000's_0.25 H3000's_1 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.60 0.55 ns							
theta_avg_power H2000's_0.25 H2000's_0.5 21 21 0.23 0.82 ns theta_avg_power H2000's_0.25 H2000's_0.75 21 21 -0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_1 21 21 -0.81 0.43 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 -0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.34 0.74 ns theta_avg_power H2000's_0.25 H3000's_1 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.60 0.55 ns							
theta_avg_power H2000's_0.25 H2000's_0.75 21 21 -0.66 0.51 ns theta_avg_power H2000's_0.25 H2000's_1 21 21 -0.81 0.43 ns theta_avg_power H2000's_0.25 H3000's_0.25 21 22 -0.59 0.56 ns theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.34 0.74 ns theta_avg_power H2000's_0.25 H3000's_1 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 -0.60 0.55 ns							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
theta_avg_power H2000's_0.25 H3000's_0.5 21 22 -0.44 0.66 ns theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.34 0.74 ns theta_avg_power H2000's_0.25 H3000's_1 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 -0.60 0.55 ns							
theta_avg_power H2000's_0.25 H3000's_0.75 21 22 -0.34 0.74 ns theta_avg_power H2000's_0.25 H3000's_1 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 -0.60 0.55 ns							
theta_avg_power H2000's_0.25 H3000's_1 21 22 -0.68 0.50 ns theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 -0.60 0.55 ns	~ -						
theta_avg_power H2000's_0.5 H2000's_0.75 21 21 -0.96 0.34 ns theta_avg_power H2000's_0.5 H2000's_1 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 -0.60 0.55 ns							
theta_avg_power H2000's_0.5 H2000's_1 21 21 -1.14 0.26 ns theta_avg_power H2000's_0.5 H3000's_0.25 21 22 -0.76 0.46 ns theta_avg_power H2000's_0.5 H3000's_0.5 21 22 -0.60 0.55 ns							
theta_avg_power H2000's_0.5							
theta_avg_power H2000's_0.5 H3000's_0.5 21 22 -0.60 0.55 ns	~ <u>-</u>						
	~ -						
	~ -						

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
theta_avg_power	H2000's_0.5	H3000's_1	21	22	-0.86	0.40	ns
theta_avg_power	H2000's_0.75	H2000's_1	21	21	-0.12	0.91	ns
theta_avg_power	H2000's_0.75	${ m H3000's} { m _0.25}$	21	22	-0.15	0.88	ns
theta_avg_power	$H2000's_0.75$	${ m H3000's} { m _0.5}$	21	22	0.00	1.00	$_{ m ns}$
theta_avg_power	$H2000's_0.75$	${ m H}3000' { m s}_0.75$	21	22	0.12	0.90	$_{ m ns}$
theta_avg_power	$H2000's_0.75$	H3000's_1	21	22	-0.21	0.83	ns
theta_avg_power	H2000's_1	${ m H3000's} { m _0.25}$	21	22	-0.08	0.94	$_{ m ns}$
theta_avg_power	H2000's_1	${ m H3000's} { m _0.5}$	21	22	0.08	0.94	$_{ m ns}$
theta_avg_power	H2000's_1	${ m H}3000' { m s}_0.75$	21	22	0.20	0.84	$_{ m ns}$
theta_avg_power	H2000's_1	$H3000's_{1}$	21	22	-0.14	0.89	$_{ m ns}$
theta_avg_power	$H3000's_0.25$	${ m H3000's} { m _0.5}$	22	22	0.12	0.90	$_{ m ns}$
theta_avg_power	$H3000's_0.25$	${ m H}3000' { m s}_0.75$	22	22	0.22	0.83	$_{ m ns}$
theta_avg_power	$H3000's_0.25$	$H3000's_{1}$	22	22	-0.04	0.97	$_{ m ns}$
theta_avg_power	$H3000's_0.5$	${ m H}3000' { m s}_0.75$	22	22	0.10	0.92	$_{ m ns}$
theta_avg_power	H3000's_0.5	H3000's_1	22	22	-0.17	0.87	ns
theta_avg_power	H3000's_0.75	H3000's_1	22	22	-0.27	0.79	ns

Cluster: 6 Theta Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
$theta_avg_power$	$\rm H1000's_0.25$	$\rm H1000's_0.5$	18	18	0.06	0.95	ns
$theta_avg_power$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	18	18	-0.17	0.87	ns
$theta_avg_power$	$\rm H1000's_0.25$	$\rm H1000's_1$	18	18	-0.28	0.78	ns
$theta_avg_power$	$\rm H1000's_0.25$	$H2000's_0.25$	18	13	2.46	0.02	*
$theta_avg_power$	$\rm H1000's_0.25$	$H2000's_0.5$	18	13	1.84	0.08	ns
theta_avg_power	$\rm H1000's_0.25$	$\rm H2000's_0.75$	18	13	1.00	0.33	ns
$theta_avg_power$	$\rm H1000's_0.25$	$H2000's_1$	18	13	0.88	0.39	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H}3000'{ m s}_0.25$	18	11	1.28	0.22	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H}3000{ m 's}_0.5$	18	11	1.15	0.26	ns
theta_avg_power	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	18	11	1.01	0.32	ns
theta_avg_power	$\rm H1000's_0.25$	H3000's_1	18	11	0.61	0.55	ns
theta_avg_power	$\rm H1000's_0.5$	$\rm H1000's_0.75$	18	18	-0.25	0.80	ns
theta_avg_power	$\rm H1000's_0.5$	H1000's_1	18	18	-0.37	0.72	ns
theta_avg_power	$\rm H1000's_0.5$	$\rm H2000's_0.25$	18	13	2.65	0.01	*
theta_avg_power	$\rm H1000's_0.5$	$H2000's_0.5$	18	13	1.96	0.06	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H2000's} { m _0.75}$	18	13	1.01	0.32	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H2000's_1$	18	13	0.89	0.38	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H}3000'{ m s}_0.25$	18	11	1.29	0.22	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H3000's_0.5$	18	11	1.16	0.26	ns
theta_avg_power	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	18	11	1.01	0.32	ns
theta_avg_power	$\rm H1000's_0.5$	H3000's_1	18	11	0.60	0.56	ns
theta_avg_power	$\rm H1000's_0.75$	H1000's_1	18	18	-0.12	0.90	ns
theta_avg_power	$\rm H1000's_0.75$	$\rm H2000's_0.25$	18	13	2.95	0.01	**
$theta_avg_power$	$\rm H1000's_0.75$	${\rm H}2000' {\rm s}_0.5$	18	13	2.24	0.03	*
theta_avg_power	$\rm H1000's_0.75$	$\rm H2000's_0.75$	18	13	1.25	0.22	ns
theta_avg_power	$\rm H1000's_0.75$	$H2000's_1$	18	13	1.12	0.27	ns
theta_avg_power	$\rm H1000's_0.75$	$H3000's_0.25$	18	11	1.47	0.16	ns
theta_avg_power	$\rm H1000's_0.75$	$H3000's_0.5$	18	11	1.35	0.20	ns
theta_avg_power	$\rm H1000's_0.75$	$H3000's_0.75$	18	11	1.19	0.25	ns
theta_avg_power	$\rm H1000's_0.75$	H3000's_1	18	11	0.78	0.45	$_{ m ns}$

EEG Var	Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
theta_avg_power	H1000's 1	H2000's 0.25	18	13	3.02	0.00	**
theta avg power		H2000's 0.5	18	13	2.33	0.03	*
theta_avg_power	H1000's_1	H2000's_0.75	18	13	1.34	0.19	ns
theta_avg_power	H1000's_1	H2000's_1	18	13	1.22	0.23	ns
theta_avg_power	H1000's_1	H3000's_0.25	18	11	1.55	0.14	ns
theta_avg_power	H1000's_1	$H3000's_0.5$	18	11	1.43	0.17	ns
theta_avg_power	H1000's_1	$H3000's_0.75$	18	11	1.27	0.22	ns
theta_avg_power	H1000's_1	H3000's_1	18	11	0.86	0.40	ns
theta_avg_power	$H2000's_0.25$	$H2000's_0.5$	13	13	-0.70	0.49	ns
theta_avg_power	$H2000's_0.25$	$H2000's_0.75$	13	13	-1.30	0.21	ns
theta_avg_power	$H2000's_0.25$	H2000's_1	13	13	-1.43	0.17	ns
theta_avg_power	$H2000's_0.25$	$H3000's_0.25$	13	11	-0.46	0.65	ns
theta_avg_power	$H2000's_0.25$	$H3000's_0.5$	13	11	-0.63	0.54	ns
theta_avg_power	$H2000's_0.25$	$H3000's_0.75$	13	11	-0.70	0.50	ns
theta_avg_power	$\rm H2000's_0.25$	H3000's_1	13	11	-1.18	0.26	ns
theta_avg_power	$H2000's_0.5$	$\rm H2000's_0.75$	13	13	-0.70	0.49	ns
theta_avg_power	$H2000's_0.5$	H2000's_1	13	13	-0.83	0.42	ns
theta_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.25}$	13	11	-0.02	0.98	ns
theta_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.5}$	13	11	-0.18	0.86	ns
theta_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.75}$	13	11	-0.27	0.79	ns
theta_avg_power	$H2000's_0.5$	H3000's_1	13	11	-0.73	0.47	ns
theta_avg_power	$H2000's_0.75$	H2000's_1	13	13	-0.12	0.91	ns
theta_avg_power	${\rm H}2000{\rm 's}_0.75$	${ m H3000's} { m _0.25}$	13	11	0.47	0.64	ns
theta_avg_power	${\rm H}2000{\rm 's}_0.75$	${ m H3000's} { m _0.5}$	13	11	0.34	0.74	ns
theta_avg_power	${\rm H}2000{\rm 's}_0.75$	${ m H3000's} { m _0.75}$	13	11	0.23	0.82	ns
theta_avg_power	${\rm H}2000{\rm 's}_0.75$	H3000's_1	13	11	-0.19	0.85	ns
theta_avg_power	H2000's_1	${ m H3000's} { m _0.25}$	13	11	0.57	0.58	ns
theta_avg_power	H2000's_1	${ m H3000's} { m _0.5}$	13	11	0.43	0.67	ns
theta_avg_power	H2000's_1	${ m H3000's} { m _0.75}$	13	11	0.32	0.75	ns
theta_avg_power	H2000's_1	H3000's_1	13	11	-0.09	0.93	ns
theta_avg_power	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.5}$	11	11	-0.13	0.90	ns
theta_avg_power	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.75}$	11	11	-0.20	0.84	ns
$theta_avg_power$	${ m H3000's} { m _0.25}$	H3000's_1	11	11	-0.57	0.58	ns
$theta_avg_power$	${ m H3000's} { m _0.5}$	${ m H3000's} { m _0.75}$	11	11	-0.08	0.94	ns
$theta_avg_power$	${ m H3000's} { m _0.5}$	H3000's_1	11	11	-0.45	0.66	ns
theta_avg_power	${ m H}3000{ m 's}_0.75$	H3000's_1	11	11	-0.36	0.72	ns

Cluster: 7 Theta Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta_avg_power	$\rm H1000's_0.25$	$\rm H1000's_0.5$	16	16	-0.21	0.84	ns
$theta_avg_power$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	16	16	-0.57	0.58	ns
$theta_avg_power$	$\rm H1000's_0.25$	H1000's_1	16	16	0.09	0.93	ns
$theta_avg_power$	$\rm H1000's_0.25$	${\rm H}2000' {\rm s}_0.25$	16	11	-0.58	0.56	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H2000's} { m _0.5}$	16	11	-0.59	0.56	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H2000's} { m _0.75}$	16	11	-0.75	0.46	ns
$theta_avg_power$	$\rm H1000's_0.25$	$H2000's_{1}$	16	11	-1.51	0.14	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	16	11	-0.34	0.74	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H}3000' { m s}_0.5$	16	11	-0.12	0.91	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	16	11	-0.60	0.55	ns

EEG Var	Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta_avg_power	$\rm H1000's_0.25$	$H3000's_1$	16	11	-0.08	0.94	ns
theta_avg_power	$\rm H1000's_0.5$	$\rm H1000's_0.75$	16	16	-0.37	0.71	ns
theta_avg_power	$\rm H1000's_0.5$	H1000's_1	16	16	0.34	0.73	ns
theta_avg_power	$\rm H1000's_0.5$	$H2000's_0.25$	16	11	-0.36	0.72	ns
theta_avg_power	$\rm H1000's_0.5$	$H2000's_0.5$	16	11	-0.37	0.72	ns
theta_avg_power		$\rm H2000's_0.75$	16	11	-0.52	0.61	ns
theta_avg_power	$\rm H1000's_0.5$	H2000's_1	16	11	-1.29	0.21	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H}3000'{ m s}_0.25$	16	11	-0.15	0.88	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H}3000{ m 's}_0.5$	16	11	0.11	0.92	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H}3000{ m 's}_0.75$	16	11	-0.41	0.68	ns
$theta_avg_power$	$\rm H1000's_0.5$	H3000's_1	16	11	0.12	0.90	ns
$theta_avg_power$	$\rm H1000's_0.75$	H1000's_1	16	16	0.76	0.46	ns
$theta_avg_power$	$\rm H1000's_0.75$	$\rm H2000's_0.25$	16	11	0.05	0.96	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H2000's_0.5$	16	11	0.04	0.96	ns
$theta_avg_power$	$\rm H1000's_0.75$	${ m H2000's} { m _0.75}$	16	11	-0.08	0.94	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H2000's_1$	16	11	-0.84	0.41	ns
$theta_avg_power$	$\rm H1000's_0.75$	${ m H}3000'{ m s}_0.25$	16	11	0.19	0.85	ns
$theta_avg_power$	$\rm H1000's_0.75$	${ m H}3000{ m 's}_0.5$	16	11	0.50	0.62	ns
$theta_avg_power$	$\rm H1000's_0.75$	${ m H}3000{ m 's}_0.75$	16	11	-0.06	0.95	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H3000's_1$	16	11	0.48	0.64	ns
$theta_avg_power$	H1000's_1	${\rm H}2000'{\rm s}_0.25$	16	11	-0.84	0.41	ns
$theta_avg_power$	H1000's_1	${\rm H}2000' {\rm s} _0.5$	16	11	-0.84	0.41	ns
$theta_avg_power$	H1000's_1	$\rm H2000's_0.75$	16	11	-1.08	0.29	ns
$theta_avg_power$	H1000's_1	H2000's_1	16	11	-1.97	0.06	ns
$theta_avg_power$	H1000's_1	${ m H}3000'{ m s}_0.25$	16	11	-0.47	0.65	ns
$theta_avg_power$	H1000's_1	${ m H}3000{ m 's}_0.5$	16	11	-0.25	0.80	ns
$theta_avg_power$	H1000's_1	${ m H}3000'{ m s}_0.75$	16	11	-0.78	0.44	ns
$theta_avg_power$	$\rm H1000's_1$	H3000's_1	16	11	-0.19	0.86	ns
$theta_avg_power$	$\rm H2000's_0.25$	$\rm H2000's_0.5$	11	11	-0.01	0.99	ns
$theta_avg_power$	$\rm H2000's_0.25$	$\rm H2000's_0.75$	11	11	-0.16	0.88	ns
$theta_avg_power$		$H2000's_1$	11	11	-1.02	0.32	ns
$theta_avg_power$		$H3000's_0.25$	11	11	0.16	0.88	ns
$theta_avg_power$	$H2000's_0.25$	$H3000's_0.5$	11	11	0.52	0.61	ns
$theta_avg_power$		$H3000's_0.75$	11	11	-0.11	0.91	ns
$theta_avg_power$		H3000's_1	11	11	0.49	0.63	ns
$theta_avg_power$		${ m H2000's}_{-0.75}$	11	11	-0.14	0.89	ns
$theta_avg_power$		H2000's_1	11	11	-1.00	0.33	ns
$theta_avg_power$		$H3000's_0.25$	11	11	0.16	0.87	ns
$theta_avg_power$		$H3000's_0.5$	11	11	0.52	0.61	ns
theta_avg_power		H3000's_0.75	11	11	-0.11	0.92	ns
theta_avg_power		H3000's_1	11	11	0.49	0.63	ns
theta_avg_power		H2000's_1	11	11	-0.91	0.38	ns
theta_avg_power		H3000's_0.25	11	11	0.28	0.78	ns
theta_avg_power		H3000's_0.5	11	11	0.70	0.49	ns
theta_avg_power		H3000's_0.75	11	11	0.01	0.99	ns
theta_avg_power		H3000's_1	11	11	0.64	0.53	ns
theta_avg_power		H3000's_0.25	11	11	0.98	0.34	ns
theta_avg_power		H3000's_0.5	11	11	1.53	0.14	ns
theta_avg_power		H3000's_0.75	11	11	0.74	0.47	ns
theta_avg_power		H3000's_1	11	11	1.40	0.18	ns
theta_avg_power		H3000's_0.5	11	11	0.26	0.80	ns
theta_avg_power	H3000′s_0.25	H3000's_0.75	11	11	-0.23	0.82	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta_avg_power	H3000's_0.25	H3000's_1	11	11	0.26	0.80	ns
theta_avg_power	H3000's_0.5	$H3000's_0.75$	11	11	-0.54	0.60	ns
theta_avg_power	H3000's_0.5	H3000's_1	11	11	0.03	0.98	ns
theta_avg_power	H3000's_0.75	H3000's_1	11	11	0.52	0.61	ns

Cluster: 8 Theta Average Power t-tests

theta_avg_power H1000's_0.25	EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
theta_avg_power H1000's_0.25 H2000's_0.25 15 8 1.56 0.05 0.96 ns theta_avg_power H1000's_0.25 H2000's_0.5 15 8 1.56 0.04 ns theta_avg_power H1000's_0.25 H2000's_0.5 15 8 1.05 0.31 ns theta_avg_power H1000's_0.25 H2000's_0.75 15 8 1.05 0.31 ns theta_avg_power H1000's_0.25 H2000's_1 15 8 1.04 0.32 ns theta_avg_power H1000's_0.25 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.25 H3000's_0.25 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.70 0.50 ns theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.25 H3000's_1 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.5 H1000's_0.75 15 15 0.17 0.87 ns theta_avg_power H1000's_0.5 H1000's_0.75 15 15 0.03 0.97 ns theta_avg_power H1000's_0.5 H2000's_0.5 15 8 1.51 0.03 0.97 ns theta_avg_power H1000's_0.5 H2000's_0.5 15 8 1.89 0.07 ns theta_avg_power H1000's_0.5 H2000's_0.5 15 8 1.89 0.07 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.69 0.63 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.52 0.16 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 11 -0.69 0.60 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 11 -0.69 0.60 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 11 -0.69 0.60 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 11 -0.66 0.44 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 11 -0.69 0.60 0.31 ns theta_avg_power H1000's_1 H2		H1000's_0.5	15	15	0.01	0.99	ns
theta_avg_power H1000's_0.25	theta_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	15	15	0.19	0.85	ns
theta_avg_power H1000's_0.25 H2000's_0.75 15 8 1.05 0.31 ns theta_avg_power H1000's_0.25 H2000's_0.75 15 8 1.05 0.31 ns theta_avg_power H1000's_0.25 H2000's_1 15 8 1.04 0.32 ns theta_avg_power H1000's_0.25 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.25 H3000's_0.5 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.25 H3000's_1 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.25 H3000's_1 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.5 H1000's_0.75 15 15 0.17 0.87 ns theta_avg_power H1000's_0.5 H1000's_1 15 15 0.03 0.97 ns theta_avg_power H1000's_0.5 H2000's_0.25 15 8 1.55 0.17 0.87 ns theta_avg_power H1000's_0.5 H2000's_0.25 15 8 1.89 0.07 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.02 0.33 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.66 0.65 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.60 0.63 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 11 -0.60 0.63 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.60 0.60 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.60 0.60 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.60 0.60 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.60 0.60 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.60 0.60 0.36 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.60 0.60 0.31 ns theta_avg_power H1000's_1 H2000's_0.5 15 15 11 -0.67 0.61 0.81 ns theta_avg_power H100	theta_avg_power $H1000$ 's_ 0.25	H1000's_1	15	15	0.05	0.96	$_{ m ns}$
theta_avg_power H1000's_0.25	theta_avg_power $H1000$ 's_ 0.25	${\rm H}2000{\rm 's}_0.25$	15	8	1.56	0.14	$_{ m ns}$
theta_avg_power H1000's_0.25	theta_avg_power $H1000$ 's_ 0.25	${\rm H}2000{\rm 's}_0.5$	15	8	1.97	0.06	$_{ m ns}$
theta_avg_power H1000's_0.25 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.25 H3000's_0.5 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.5 H1000's_0.75 15 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.5 H1000's_0.75 15 15 0.17 0.87 ns theta_avg_power H1000's_0.5 H2000's_0.25 15 8 1.51 0.17 0.87 ns theta_avg_power H1000's_0.5 H2000's_0.25 15 8 1.51 0.15 ns theta_avg_power H1000's_0.5 H2000's_0.5 15 8 1.89 0.07 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.62 0.55 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.69 0.50 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 0.99 0.35 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 0.99 0.35 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 0.99 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.69 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.69 0.36 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.69 0.36 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.67 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.67 0.50 0.32 ns theta_avg_power H1000's_1 H2000's_0.75 15 1	theta_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.75$	15	8	1.05	0.31	$_{ m ns}$
theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.5 H1000's_0.75 15 15 15 0.17 0.87 ns theta_avg_power H1000's_0.5 H1000's_1 15 15 0.03 0.97 ns theta_avg_power H1000's_0.5 H2000's_0.25 15 8 1.51 0.15 ns theta_avg_power H1000's_0.5 H2000's_0.5 15 8 1.89 0.07 ns theta_avg_power H1000's_0.5 H2000's_0.5 15 8 1.89 0.07 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.60 0.65 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.69 0.50 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.83 0.42 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 0.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.75 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.75 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.75 15 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.67 0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.50 0.62 n	theta_avg_power $H1000$ 's_ 0.25	H2000's_1	15	8	1.04	0.32	$_{ m ns}$
theta_avg_power H1000's_0.25 H3000's_0.75 15 11 -0.70 0.50 ns theta_avg_power H1000's_0.25 H3000's_1 15 11 -0.50 0.62 ns theta_avg_power H1000's_0.5 H1000's_0.75 15 15 15 0.17 0.87 ns theta_avg_power H1000's_0.5 H1000's_0.5 15 15 0.03 0.97 ns theta_avg_power H1000's_0.5 H2000's_0.25 15 8 1.51 0.15 ns theta_avg_power H1000's_0.5 H2000's_0.5 15 8 1.89 0.07 ns theta_avg_power H1000's_0.5 H2000's_0.5 15 8 1.02 0.33 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H2000's_1 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H2000's_1 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H3000's_1 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.69 0.50 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.69 0.50 ns theta_avg_power H1000's_0.5 H3000's_1 15 11 -0.69 0.50 ns theta_avg_power H1000's_0.5 H3000's_1 15 15 -0.16 0.88 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.69 0.56 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.65 0.52 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.65 0.52 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.67 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.67 0.40 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.67 0.40 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.67 0.40 ns theta_avg_power H1000's_1 H2000's_0.5 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.5 15 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.5 15 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg	theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.25$	15	11	-0.62	0.54	$_{ m ns}$
theta_avg_power H1000's_0.25	theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	15	11	-0.46	0.65	$_{ m ns}$
theta_avg_power H1000's_0.5 H1000's_0.75 15 15 0.17 0.87 ns theta_avg_power H1000's_0.5 H1000's_1 15 15 0.03 0.97 ns theta_avg_power H1000's_0.5 H2000's_0.25 15 8 1.51 0.15 ns theta_avg_power H1000's_0.5 H2000's_0.5 15 8 1.89 0.07 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.69 0.50 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.69 0.50 ns theta_avg_power H1000's_0.5 H3000's_1 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.52 0.16 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.52 0.16 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 0.97 0.35 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.65 0.52 ns theta_avg_power H1000's_1 H200's_0.5 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.5 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.5 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.5 15 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.5 15 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.5 15 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.5 15 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.67 0.51 0.59 ns theta_avg_power	theta_avg_power H1000's_0.25	$H3000's_0.75$	15	11	-0.70	0.50	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	theta_avg_power H1000's_0.25	H3000's_1	15	11	-0.50	0.62	$_{ m ns}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	theta_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	15	15	0.17	0.87	$_{ m ns}$
theta_avg_power H1000's_0.5 H2000's_0.5 15 8 1.89 0.07 ns theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H2000's_1 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.5 H3000's_1 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.5 H3000's_1 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.52 0.16 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.97 0.35 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.97 0.35 ns theta_avg_power H1000's_0.75 H2000's_1 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.59 0.56 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.65 0.52 ns theta_avg_power H1000's_0.75 H3000's_0.75 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_0.75 15 11 -0.65 0.52 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.14 ns theta_avg_power H1000's_1 H2000's_0.55 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.55 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.55 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.5 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.55 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.55 15 11 -0.50 0.59 ns	theta_avg_power $H1000$ 's_ 0.5	H1000's_1	15	15	0.03	0.97	$_{ m ns}$
theta_avg_power H1000's_0.5 H2000's_0.75 15 8 1.02 0.33 ns theta_avg_power H1000's_0.5 H2000's_1 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.69 0.50 ns theta_avg_power H1000's_0.5 H3000's_1 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.75 H1000's_1 15 15 -0.16 0.88 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.52 0.16 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.97 0.35 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.97 0.35 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.59 0.56 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_0.75 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_0.75 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_0.75 15 11 -0.65 0.52 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.14 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.75 15 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.75 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.75 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H2000's_0.55 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.55 15 11 -0.50 0.62 ns	theta_avg_power H1000's_0.5	$H2000's_0.25$	15	8	1.51	0.15	ns
theta_avg_power H1000's_0.5 H2000's_1 15 8 1.00 0.33 ns theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.69 0.50 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.5 H3000's_1 15 15 -0.16 0.88 ns theta_avg_power H1000's_0.75 H1000's_1 15 15 -0.16 0.88 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.52 0.16 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 0.97 0.35 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 0.97 0.35 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.59 0.56 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.65 0.52 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.65 0.52 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.65 0.52 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 8 1.60 0.14 ns theta_avg_power H1000's_1 H2000's_0.55 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.55 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.55 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.55 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.55 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.55 15 11 -0.55 0.59 ns	theta_avg_power H1000's_0.5	$H2000's_0.5$	15	8	1.89	0.07	ns
theta_avg_power H1000's_0.5 H3000's_0.25 15 11 -0.62 0.54 ns theta_avg_power H1000's_0.5 H3000's_0.5 15 11 -0.46 0.65 ns theta_avg_power H1000's_0.5 H3000's_0.75 15 11 -0.69 0.50 ns theta_avg_power H1000's_0.5 H3000's_1 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.75 H3000's_1 15 15 -0.16 0.88 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.52 0.16 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.97 0.35 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.97 0.35 ns theta_avg_power H1000's_0.75 H2000's_1 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.59 0.56 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.65 0.52 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.65 0.52 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 8 1.60 0.14 ns theta_avg_power H1000's_1 H2000's_0.5 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.75 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.55 0.59 ns	theta_avg_power H1000's_0.5	$H2000's_0.75$	15	8	1.02	0.33	$_{ m ns}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	theta_avg_power H1000's_0.5	H2000's_1	15	8	1.00	0.33	$_{ m ns}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	theta_avg_power H1000's_0.5	$H3000's_0.25$	15	11	-0.62	0.54	$_{ m ns}$
theta_avg_power H1000's_0.5 H3000's_1 15 11 -0.50 0.63 ns theta_avg_power H1000's_0.75 H1000's_1 15 15 -0.16 0.88 ns theta_avg_power H1000's_0.75 H2000's_0.25 15 8 1.52 0.16 ns theta_avg_power H1000's_0.75 H2000's_0.5 15 8 1.98 0.07 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.97 0.35 ns theta_avg_power H1000's_0.75 H2000's_0.75 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.59 0.56 ns theta_avg_power H1000's_0.75 H3000's_0.75 15 11 -0.65 0.52 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 8 1.60 0.14 ns theta_avg_power H1000's_1 <t< td=""><td>theta_avg_power H1000's_0.5</td><td>H3000's_0.5</td><td>15</td><td>11</td><td>-0.46</td><td>0.65</td><td>$_{ m ns}$</td></t<>	theta_avg_power H1000's_0.5	H3000's_0.5	15	11	-0.46	0.65	$_{ m ns}$
theta_avg_power H1000's_0.75	theta_avg_power H1000's_0.5	$H3000's_0.75$	15	11	-0.69	0.50	$_{ m ns}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	theta_avg_power H1000's_0.5	H3000's_1	15	11	-0.50	0.63	$_{ m ns}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	theta_avg_power H1000's_0.75	H1000's_1	15	15	-0.16	0.88	$_{ m ns}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	theta_avg_power H1000's_0.75	$H2000's_0.25$	15	8	1.52	0.16	$_{ m ns}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		H2000's 0.5	15	8	1.98	0.07	$_{ m ns}$
theta_avg_power H1000's_0.75 H2000's_1 15 8 0.96 0.36 ns theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.59 0.56 ns theta_avg_power H1000's_0.75 H3000's_0.75 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_1 15 11 -0.65 0.52 ns theta_avg_power H1000's_1 H2000's_0.25 15 8 1.60 0.14 ns theta_avg_power H1000's_1 H2000's_0.5 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.25 15 15 8 1.05 0.32 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.55 0.59 ns		H2000's 0.75	15		0.97	0.35	$_{ m ns}$
theta_avg_power H1000's_0.75 H3000's_0.25 15 11 -0.76 0.46 ns theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.59 0.56 ns theta_avg_power H1000's_0.75 H3000's_0.75 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_1 15 11 -0.65 0.52 ns theta_avg_power H1000's_1 H2000's_0.25 15 8 1.60 0.14 ns theta_avg_power H1000's_1 H2000's_0.5 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_1 15 8 1.05 0.32 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.55 0.59 ns		_			0.96		ns
theta_avg_power H1000's_0.75 H3000's_0.5 15 11 -0.59 0.56 ns theta_avg_power H1000's_0.75 H3000's_0.75 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_1 15 11 -0.65 0.52 ns theta_avg_power H1000's_1 H2000's_0.25 15 8 1.60 0.14 ns theta_avg_power H1000's_1 H2000's_0.5 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_1 15 8 1.05 0.32 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.55 0.59 ns		 -			-0.76		ns
theta_avg_power H1000's_0.75 H3000's_0.75 15 11 -0.83 0.42 ns theta_avg_power H1000's_0.75 H3000's_1 15 11 -0.65 0.52 ns theta_avg_power H1000's_1 H2000's_0.25 15 8 1.60 0.14 ns theta_avg_power H1000's_1 H2000's_0.5 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.05 0.32 ns theta_avg_power H1000's_1 H2000's_1 15 8 1.05 0.32 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_1 15 11 -0.55 0.59 ns		_			-0.59		$_{ m ns}$
theta_avg_power H1000's_0.75 H3000's_1 15 11 -0.65 0.52 ns theta_avg_power H1000's_1 H2000's_0.25 15 8 1.60 0.14 ns theta_avg_power H1000's_1 H2000's_0.5 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_1 15 8 1.05 0.32 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_1 15 11 -0.55 0.59 ns	~ <u>-</u>	 -			-0.83		ns
theta_avg_power H1000's_1 H2000's_0.25 15 8 1.60 0.14 ns theta_avg_power H1000's_1 H2000's_0.5 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_1 15 8 1.05 0.32 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_1 15 11 -0.55 0.59 ns	~ <u>-</u>	 -			-0.65	0.52	ns
theta_avg_power H1000's_1 H2000's_0.5 15 8 2.08 0.06 ns theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_1 15 8 1.05 0.32 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_1 15 11 -0.55 0.59 ns	~ <u>-</u>	 -					
theta_avg_power H1000's_1 H2000's_0.75 15 8 1.06 0.31 ns theta_avg_power H1000's_1 H2000's_1 15 8 1.05 0.32 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_1 15 11 -0.55 0.59 ns	~ -	 -					
theta_avg_power H1000's_1 H2000's_1 15 8 1.05 0.32 ns theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_1 15 11 -0.55 0.59 ns		 -			1.06		
theta_avg_power H1000's_1 H3000's_0.25 15 11 -0.67 0.51 ns theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_1 15 11 -0.55 0.59 ns		_					
theta_avg_power H1000's_1 H3000's_0.5 15 11 -0.50 0.62 ns theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_1 15 11 -0.55 0.59 ns		_					
theta_avg_power H1000's_1 H3000's_0.75 15 11 -0.75 0.47 ns theta_avg_power H1000's_1 H3000's_1 15 11 -0.55 0.59 ns	~ -						
theta_avg_power $H1000$ 's_1 $H3000$ 's_1 15 11 -0.55 0.59 ns							ns
011000 0.5 polici iii0000 0.20	theta avg power H2000's 0.25	H2000's 0.5	8	8	0.05	0.96	ns
theta avg power H2000's 0.25 H2000's 0.75 8 8 -0.39 0.70 ns		_					
theta_avg_power H2000's_0.25 H2000's_1 8 8 -0.45 0.66 ns		 -					
theta_avg_power H2000's_0.25 H3000's_0.25 8 11 -1.68 0.11 ns		_					

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
theta_avg_power	H2000's_0.25	H3000's_0.5	8	11	-1.56	0.14	ns
theta_avg_power	H2000's_0.25	$H3000's_0.75$	8	11	-1.72	0.10	ns
theta_avg_power	H2000's_0.25	H3000's_1	8	11	-1.67	0.11	ns
theta_avg_power	H2000's_0.5	${\rm H}2000{\rm 's}_0.75$	8	8	-0.49	0.63	ns
theta_avg_power	H2000's_0.5	H2000's_1	8	8	-0.56	0.58	ns
theta_avg_power	H2000's_0.5	${ m H3000's} { m _0.25}$	8	11	-1.89	0.08	ns
theta_avg_power	H2000's_0.5	$H3000's_0.5$	8	11	-1.76	0.10	ns
theta_avg_power	H2000's_0.5	${ m H3000's} { m _0.75}$	8	11	-1.92	0.07	ns
theta_avg_power	H2000's_0.5	H3000's_1	8	11	-1.92	0.07	ns
theta_avg_power	H2000's_0.75	H2000's_1	8	8	-0.04	0.96	ns
theta_avg_power	H2000's_0.75	${ m H3000's} { m _0.25}$	8	11	-1.32	0.21	ns
theta_avg_power	H2000's_0.75	$H3000's_0.5$	8	11	-1.18	0.25	ns
theta_avg_power	H2000's_0.75	${ m H3000's} { m _0.75}$	8	11	-1.37	0.19	ns
theta_avg_power	H2000's_0.75	H3000's_1	8	11	-1.26	0.22	ns
theta_avg_power	H2000's_1	$H3000's_0.25$	8	11	-1.30	0.21	ns
theta_avg_power	H2000's_1	$H3000's_0.5$	8	11	-1.17	0.26	ns
theta_avg_power	H2000's_1	${ m H3000's} { m _0.75}$	8	11	-1.35	0.19	ns
theta_avg_power	H2000's_1	H3000's_1	8	11	-1.25	0.23	ns
theta_avg_power	H3000's_0.25	${ m H3000's} { m _0.5}$	11	11	0.14	0.89	ns
theta_avg_power	H3000's_0.25	${ m H}3000{ m 's}_0.75$	11	11	-0.08	0.94	ns
theta_avg_power	H3000's_0.25	H3000's_1	11	11	0.15	0.88	ns
theta_avg_power	H3000's_0.5	${ m H3000's} { m _0.75}$	11	11	-0.22	0.83	ns
theta_avg_power	H3000's_0.5	H3000's_1	11	11	0.00	1.00	ns
theta_avg_power	H3000's_0.75	H3000's_1	11	11	0.23	0.82	ns

Cluster: 9 Theta Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta_avg_power	· H1000's_0.25	H1000's_0.5	24	24	0.15	0.88	ns
theta_avg_power	H1000's_0.25	$\rm H1000's_0.75$	24	24	-0.69	0.50	ns
theta_avg_power	H1000's_0.25	H1000's_1	24	24	-0.43	0.67	ns
theta_avg_power	H1000's_0.25	${\rm H}2000' {\rm s}_0.25$	24	15	1.66	0.11	ns
theta_avg_power	H1000's_0.25	$H2000's_0.5$	24	15	1.69	0.10	ns
theta_avg_power	H1000's_0.25	$\rm H2000's_0.75$	24	15	0.91	0.37	ns
theta_avg_power	H1000's_0.25	H2000's_1	24	15	0.87	0.39	ns
theta_avg_power	H1000's_0.25	${ m H}3000{ m 's}_0.25$	24	22	2.28	0.03	*
theta_avg_power	H1000's_0.25	$H3000's_0.5$	24	22	1.97	0.06	ns
theta_avg_power	H1000's_0.25	$H3000's_0.75$	24	22	1.53	0.13	ns
theta_avg_power	H1000's_0.25	H3000's_1	24	22	1.37	0.18	ns
theta_avg_power	H1000's_0.5	$\rm H1000's_0.75$	24	24	-0.78	0.44	ns
theta_avg_power	H1000's_0.5	H1000's_1	24	24	-0.55	0.59	ns
theta_avg_power	H1000's_0.5	$H2000's_0.25$	24	15	1.39	0.17	ns
theta_avg_power	H1000's_0.5	$H2000's_0.5$	24	15	1.42	0.16	ns
theta_avg_power	H1000's_0.5	$\rm H2000's_0.75$	24	15	0.71	0.48	ns
theta_avg_power	H1000's_0.5	H2000's_1	24	15	0.67	0.51	ns
theta_avg_power	H1000's_0.5	${ m H3000's} { m _0.25}$	24	22	1.92	0.06	ns
theta_avg_power	H1000's_0.5	$H3000's_0.5$	24	22	1.63	0.11	ns
theta_avg_power	H1000's_0.5	$H3000's_0.75$	24	22	1.27	0.21	ns
theta_avg_power	H1000's_0.5	H3000's_1	24	22	1.13	0.27	ns
theta_avg_power	H1000's_0.75	H1000's_1	24	24	0.31	0.76	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
theta_avg_power H1000's_0.75	${ m H2000's} { m _0.25}$	24	15	2.15	0.04	*
theta_avg_power $H1000$ 's_ 0.75	$H2000's_0.5$	24	15	2.17	0.04	*
theta_avg_power $H1000$ 's_ 0.75	$H2000's_0.75$	24	15	1.46	0.15	ns
theta_avg_power $H1000$ 's_ 0.75	$H2000's_1$	24	15	1.42	0.16	ns
theta_avg_power $H1000$ 's_ 0.75	${ m H3000's} { m _0.25}$	24	22	2.71	0.01	**
theta_avg_power $H1000$ 's_ 0.75	${ m H}3000{ m 's}_0.5$	24	22	2.44	0.02	*
theta_avg_power $H1000$ 's_ 0.75	${ m H3000's} { m _0.75}$	24	22	2.03	0.05	*
theta_avg_power $H1000$ 's_ 0.75	H3000's_1	24	22	1.89	0.07	ns
theta_avg_power H1000's_1	${ m H2000's} { m _0.25}$	24	15	2.07	0.05	*
theta_avg_power H1000's_1	${ m H2000's} { m _0.5}$	24	15	2.09	0.04	*
theta_avg_power H1000's_1	$H2000's_0.75$	24	15	1.30	0.20	ns
theta_avg_power $H1000$ 's_1	$H2000's_1$	24	15	1.26	0.22	ns
theta_avg_power H1000's_1	${ m H3000's} { m _0.25}$	24	22	2.73	0.01	**
theta_avg_power H1000's_1	${ m H3000's} { m _0.5}$	24	22	2.43	0.02	*
theta_avg_power H1000's_1	${ m H3000's} { m _0.75}$	24	22	1.94	0.06	ns
theta_avg_power $H1000$ 's_1	H3000's_1	24	22	1.78	0.08	ns
theta_avg_power $H2000$ 's_ 0.25	${ m H2000's} { m _0.5}$	15	15	0.06	0.95	ns
theta_avg_power $H2000$ 's_ 0.25	$H2000's_0.75$	15	15	-0.65	0.52	ns
theta_avg_power $H2000$ 's_ 0.25	H2000's_1	15	15	-0.69	0.50	ns
theta_avg_power $H2000$ 's_ 0.25	$H3000's_0.25$	15	22	0.44	0.66	ns
theta_avg_power $H2000$ 's_ 0.25	$H3000's_0.5$	15	22	0.11	0.91	ns
theta_avg_power $H2000$ 's_ 0.25	$H3000's_0.75$	15	22	-0.10	0.92	ns
theta_avg_power $H2000$ 's_ 0.25	H3000's_1	15	22	-0.25	0.80	ns
theta_avg_power $H2000$ 's_ 0.5	$H2000's_0.75$	15	15	-0.70	0.49	ns
theta_avg_power $H2000$ 's_ 0.5	H2000's_1	15	15	-0.74	0.47	ns
theta_avg_power $H2000$ 's_ 0.5	$H3000's_0.25$	15	22	0.37	0.72	ns
theta_avg_power $H2000$ 's_ 0.5	$H3000's_0.5$	15	22	0.04	0.97	ns
theta_avg_power $H2000$ 's_ 0.5	$H3000's_0.75$	15	22	-0.16	0.87	ns
theta_avg_power $H2000$ 's_ 0.5	H3000's_1	15	22	-0.30	0.76	ns
theta_avg_power $H2000$ 's_ 0.75	H2000's_1	15	15	-0.04	0.97	ns
theta_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.25}$	15	22	1.12	0.27	ns
theta_avg_power $H2000$ 's_ 0.75	$H3000's_0.5$	15	22	0.82	0.42	ns
theta_avg_power $H2000$ 's_ 0.75	$H3000's_0.75$	15	22	0.54	0.59	ns
theta_avg_power $H2000$ 's_ 0.75	H3000's_1	15	22	0.40	0.69	ns
theta_avg_power H2000's_1	${ m H3000's} { m _0.25}$	15	22	1.16	0.26	ns
theta_avg_power H2000's_1	${ m H3000's} { m _0.5}$	15	22	0.86	0.40	ns
theta_avg_power H2000's_1	$H3000's_0.75$	15	22	0.58	0.56	ns
theta_avg_power H2000's_1	H3000's_1	15	22	0.44	0.66	ns
theta_avg_power H3000's_0.25	$H3000's_0.5$	22	22	-0.38	0.71	$_{ m ns}$
theta_avg_power H3000's_0.25	$H3000's_0.75$	22	22	-0.55	0.59	ns
theta_avg_power H3000's_0.25	$H3000's_1$	22	22	-0.70	0.49	ns
theta_avg_power H3000's_0.5	H3000's_0.75	22	22	-0.22	0.82	ns
theta_avg_power H3000's_0.5	H3000's_1	22	22	-0.38	0.70	ns
theta_avg_power H3000's_0.75	H3000's_1	22	22	-0.15	0.88	$_{ m ns}$

Cluster: 10 Theta Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
theta_avg_pow	ver H1000's_0.25	H1000's_0.5	23	23	-0.21	0.83	ns
theta avg pow	ver H1000's_0.25	H1000's 0.75	23	23	0.13	0.90	$_{ m ns}$

EEG Var	Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta_avg_power	$\rm H1000's_0.25$	H1000's_1	23	23	-0.41	0.68	ns
theta_avg_power	$\rm H1000's_0.25$	$\rm H2000's_0.25$	23	17	0.89	0.38	ns
theta_avg_power	$\rm H1000's_0.25$	$H2000's_0.5$	23	17	1.58	0.12	ns
theta_avg_power		$\rm H2000's_0.75$	23	17	-0.14	0.89	ns
theta_avg_power	$\rm H1000's_0.25$	H2000's_1	23	17	-0.17	0.87	ns
theta_avg_power		${ m H}3000{ m 's}_0.25$	23	17	0.43	0.67	ns
theta_avg_power	$\rm H1000's_0.25$	$H3000's_0.5$	23	17	0.52	0.61	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H}3000{ m 's}_0.75$	23	17	-0.21	0.83	ns
$theta_avg_power$	$\rm H1000's_0.25$	$H3000's_1$	23	17	-0.58	0.56	ns
$theta_avg_power$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	23	23	0.33	0.74	ns
$theta_avg_power$	$\rm H1000's_0.5$	H1000's_1	23	23	-0.16	0.87	ns
$theta_avg_power$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s} _0.25$	23	17	1.01	0.32	ns
$theta_avg_power$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s} _0.5$	23	17	1.66	0.10	ns
$theta_avg_power$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s} _0.75$	23	17	0.03	0.98	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H2000's_1$	23	17	0.00	1.00	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H3000's_0.25$	23	17	0.58	0.56	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H3000's_0.5$	23	17	0.66	0.51	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H}3000{ m 's}_0.75$	23	17	-0.01	0.99	ns
$theta_avg_power$	$\rm H1000's_0.5$	H3000's_1	23	17	-0.36	0.72	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H1000's_{1}$	23	23	-0.56	0.58	ns
$theta_avg_power$	$\rm H1000's_0.75$	${\rm H}2000' {\rm s}_0.25$	23	17	0.82	0.42	ns
$theta_avg_power$	$\rm H1000's_0.75$	${\rm H}2000' {\rm s} _0.5$	23	17	1.52	0.14	ns
$theta_avg_power$	$\rm H1000's_0.75$	$\rm H2000's_0.75$	23	17	-0.24	0.81	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H2000's_1$	23	17	-0.26	0.80	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H3000's_0.25$	23	17	0.35	0.73	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H3000's_0.5$	23	17	0.43	0.67	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H3000's_0.75$	23	17	-0.33	0.75	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H3000's_1$	23	17	-0.71	0.48	ns
$theta_avg_power$		$H2000's_0.25$	23	17	1.22	0.23	ns
$theta_avg_power$		$H2000's_0.5$	23	17	1.95	0.06	ns
$theta_avg_power$		$H2000's_0.75$	23	17	0.17	0.87	ns
$theta_avg_power$		H2000's_1	23	17	0.12	0.91	ns
$theta_avg_power$		$H3000's_0.25$	23	17	0.76	0.45	ns
$theta_avg_power$		$H3000's_0.5$	23	17	0.85	0.40	ns
$theta_avg_power$		$H3000's_0.75$	23	17	0.13	0.90	ns
$theta_avg_power$		$\rm H3000's_1$	23	17	-0.24	0.81	ns
$theta_avg_power$		$H2000's_0.5$	17	17	0.49	0.63	ns
theta_avg_power		$H2000's_0.75$	17	17	-0.86	0.39	ns
theta_avg_power		H2000's_1	17	17	-0.85	0.40	ns
theta_avg_power		H3000's_0.25	17	17	-0.40	0.69	ns
theta_avg_power		$H3000's_0.5$	17	17	-0.33	0.74	ns
theta_avg_power		H3000's_0.75	17	17	-0.98	0.33	ns
theta_avg_power		H3000's_1	17	17	-1.29	0.21	ns
theta_avg_power		H2000's_0.75	17	17	-1.40	0.17	ns
theta_avg_power		H2000's_1	17	17	-1.35	0.19	ns
theta_avg_power		H3000's_0.25	17	17	-0.92	0.36	ns
theta_avg_power		H3000's_0.5	17	17	-0.86	0.40	ns
theta_avg_power		H3000's_0.75	17	17 17	-1.59	0.12	ns
theta_avg_power		H3000's_1	17	17	-1.92	0.06	ns
theta_avg_power		H2000's_1	17	17 17	-0.03	0.98	ns
theta_avg_power		H3000's_0.25	17	17	0.48	0.63	ns
theta_avg_power	H2000′s_0.75	$H3000's_0.5$	17	17	0.55	0.58	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
theta_avg_power	H2000's_0.75	H3000's_0.75	17	17	-0.04	0.97	ns
theta_avg_power	$\rm H2000's_0.75$	$H3000's_1$	17	17	-0.34	0.74	ns
theta_avg_power	H2000's_1	${ m H3000's} { m _0.25}$	17	17	0.49	0.63	ns
theta_avg_power	H2000's_1	${ m H3000's} { m _0.5}$	17	17	0.55	0.58	ns
$theta_avg_power$	$H2000's_{1}$	${ m H3000's} { m _0.75}$	17	17	-0.01	0.99	ns
$theta_avg_power$	H2000's_1	$H3000's_{1}$	17	17	-0.29	0.78	ns
$theta_avg_power$	${ m H}3000{ m 's}_0.25$	${ m H3000's} { m _0.5}$	17	17	0.07	0.95	ns
theta_avg_power	${ m H}3000{ m 's}_0.25$	${ m H3000's} { m _0.75}$	17	17	-0.57	0.57	$_{ m ns}$
theta_avg_power	${ m H}3000{ m 's}_0.25$	${ m H3000's}{ m _1}$	17	17	-0.88	0.39	$_{ m ns}$
theta_avg_power	${ m H}3000{ m 's}_0.5$	${ m H3000's} { m _0.75}$	17	17	-0.65	0.52	$_{ m ns}$
theta_avg_power	${ m H}3000{ m 's}_0.5$	${ m H3000's}{ m _1}$	17	17	-0.96	0.35	$_{ m ns}$
$theta_avg_power$	${ m H}3000{ m 's}_0.75$	${ m H3000's}{ m _1}$	17	17	-0.33	0.75	ns

Cluster: 11 Theta Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta_avg_power	H1000's_0.25	H1000's_0.5	29	29	-0.64	0.52	ns
theta_avg_power	$\rm H1000's_0.25$	$\rm H1000's_0.75$	29	29	-1.58	0.12	ns
theta_avg_power	$\rm H1000's_0.25$	H1000's_1	29	29	-1.24	0.22	$_{ m ns}$
theta_avg_power	$\rm H1000's_0.25$	${\rm H}2000' {\rm s}_0.25$	29	15	0.20	0.84	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.25$	${\rm H}2000{\rm 's}_0.5$	29	15	0.80	0.43	$_{ m ns}$
theta_avg_power	$\rm H1000's_0.25$	${\rm H}2000{\rm 's}_0.75$	29	15	0.12	0.90	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.25$	$H2000's_{1}$	29	15	-0.46	0.65	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	29	19	-1.79	0.08	$_{ m ns}$
theta_avg_power	$\rm H1000's_0.25$	${ m H3000's} { m _0.5}$	29	19	-1.50	0.14	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	29	19	-2.51	0.02	*
$theta_avg_power$	$\rm H1000's_0.25$	$H3000's_{1}$	29	19	-2.46	0.02	*
$theta_avg_power$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	29	29	-0.79	0.43	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.5$	H1000's_1	29	29	-0.48	0.63	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.5$	${\rm H}2000{\rm 's}_0.25$	29	15	0.71	0.49	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.5$	$H2000's_0.5$	29	15	1.35	0.19	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.5$	$\rm H2000's_0.75$	29	15	0.74	0.46	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.5$	H2000's_1	29	15	-0.06	0.96	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	29	19	-1.25	0.22	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	29	19	-1.00	0.33	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.5$	$H3000's_0.75$	29	19	-2.00	0.06	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.5$	H3000's_1	29	19	-1.90	0.07	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.75$	H1000's_1	29	29	0.34	0.73	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.75$	$\rm H2000's_0.25$	29	15	1.42	0.17	$_{ m ns}$
$theta_avg_power$		$H2000's_0.5$	29	15	2.27	0.03	*
$theta_avg_power$	$\rm H1000's_0.75$	$\rm H2000's_0.75$	29	15	1.65	0.11	$_{ m ns}$
$theta_avg_power$		$H2000's_1$	29	15	0.43	0.67	ns
$theta_avg_power$	_	$H3000's_0.25$	29	19	-0.71	0.48	ns
$theta_avg_power$	-	$H3000's_0.5$	29	19	-0.47	0.64	ns
$theta_avg_power$		$H3000's_0.75$	29	19	-1.54	0.14	ns
$theta_avg_power$	$\rm H1000's_0.75$	H3000's_1	29	19	-1.40	0.17	ns
$theta_avg_power$	H1000's_1	$H2000's_0.25$	29	15	1.15	0.26	ns
$theta_avg_power$		$H2000's_0.5$	29	15	1.95	0.06	ns
$theta_avg_power$		$\rm H2000's_0.75$	29	15	1.32	0.20	ns
$theta_avg_power$	$\rm H1000's_1$	H2000's_1	29	15	0.24	0.81	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
theta_avg_power H1000's_1	${ m H3000's} { m _0.25}$	29	19	-0.94	0.35	ns
theta_avg_power H1000's_1	$H3000's_0.5$	29	19	-0.69	0.49	ns
theta_avg_power H1000's_1	$H3000's_0.75$	29	19	-1.75	0.09	ns
theta_avg_power H1000's_1	${ m H3000's}{ m _1}$	29	19	-1.63	0.11	ns
theta_avg_power $H2000$ 's_ 0.25	${\rm H}2000' {\rm s} _0.5$	15	15	0.44	0.66	ns
theta_avg_power $H2000$ 's_ 0.25	$\rm H2000's_0.75$	15	15	-0.10	0.92	ns
theta_avg_power $H2000$ 's_ 0.25	$H2000's_1$	15	15	-0.55	0.59	ns
theta_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.25}$	15	19	-1.71	0.10	ns
theta_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.5}$	15	19	-1.47	0.15	ns
theta_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.75}$	15	19	-2.38	0.02	*
theta_avg_power $H2000$ 's_ 0.25	H3000's_1	15	19	-2.30	0.03	*
theta_avg_power $H2000$ 's_ 0.5	$\rm H2000's_0.75$	15	15	-0.67	0.51	ns
theta_avg_power $H2000$ 's_ 0.5	H2000's_1	15	15	-0.93	0.36	ns
theta_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.25}$	15	19	-2.30	0.03	*
theta_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.5}$	15	19	-2.01	0.05	ns
theta_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.75}$	15	19	-2.96	0.01	**
theta_avg_power $H2000$ 's_ 0.5	H3000's_1	15	19	-2.95	0.01	**
theta_avg_power $H2000$ 's_ 0.75	H2000's_1	15	15	-0.53	0.60	ns
theta_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.25}$	15	19	-1.85	0.07	ns
theta_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.5}$	15	19	-1.57	0.13	ns
theta_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.75}$	15	19	-2.56	0.02	*
theta_avg_power $H2000$ 's_ 0.75	H3000's_1	15	19	-2.51	0.02	*
theta_avg_power $H2000$ 's_1	${ m H3000's} { m _0.25}$	15	19	-0.87	0.39	ns
theta_avg_power $H2000$ 's_1	${ m H3000's} { m _0.5}$	15	19	-0.70	0.49	ns
theta_avg_power $H2000$ 's_1	${ m H3000's} { m _0.75}$	15	19	-1.48	0.15	ns
theta_avg_power $H2000$ 's_1	H3000's_1	15	19	-1.36	0.18	ns
theta_avg_power $H3000$ 's_ 0.25	${ m H3000's} { m _0.5}$	19	19	0.17	0.86	ns
theta_avg_power $H3000$ 's_ 0.25	${ m H3000's} { m _0.75}$	19	19	-0.74	0.46	ns
theta_avg_power $H3000$ 's_ 0.25	H3000's_1	19	19	-0.56	0.58	ns
theta_avg_power $H3000$ 's_ 0.5	${ m H}3000' { m s}_0.75$	19	19	-0.88	0.38	ns
theta_avg_power $H3000$ 's_ 0.5	$H3000's_1$	19	19	-0.72	0.48	ns
theta_avg_power $H3000$ 's_ 0.75	$H3000's_1$	19	19	0.21	0.84	ns

Cluster: 12 Theta Average Power t-tests

EEG Var Group	p_Speed_1	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
theta_avg_power H100	0's_0.25	H1000's_0.5	24	24	0.18	0.86	ns
theta_avg_power H100	$0's_0.25$	$\rm H1000's_0.75$	24	24	0.44	0.66	ns
theta_avg_power H100	$0's_0.25$	$\rm H1000's_1$	24	24	0.47	0.64	ns
theta_avg_power H100	$0's_0.25$	${\rm H}2000' {\rm s}_0.25$	24	14	1.18	0.25	ns
theta_avg_power H100	$0's_0.25$	${ m H2000's} { m _0.5}$	24	14	1.52	0.14	$_{ m ns}$
theta_avg_power H100	$0's_0.25$	${ m H2000's} { m _0.75}$	24	14	0.89	0.38	$_{ m ns}$
theta_avg_power H100	$0's_0.25$	${\rm H}2000' {\rm s}_1$	24	14	1.09	0.28	$_{ m ns}$
theta_avg_power H100	$0's_0.25$	${ m H3000's} { m _0.25}$	24	20	0.65	0.52	ns
theta_avg_power H100	$0's_0.25$	${ m H3000's} { m _0.5}$	24	20	0.64	0.53	ns
theta_avg_power H100	$0's_0.25$	${ m H3000's} { m _0.75}$	24	20	0.79	0.44	$_{ m ns}$
theta_avg_power H100	$0's_0.25$	${ m H3000's}{ m _1}$	24	20	0.63	0.53	$_{ m ns}$
theta_avg_power H100	$0's_0.5$	$\rm H1000's_0.75$	24	24	0.24	0.81	$_{ m ns}$
theta_avg_power H100	$0's_0.5$	$\rm H1000's_1$	24	24	0.26	0.80	ns
theta_avg_power H100	$0's_0.5$	${\rm H}2000' {\rm s}_0.25$	24	14	1.04	0.31	ns

EEG Var	Group_Speed_1	Group_Speed_2	N1	N2	tstat	p-value	*sig.
theta_avg_power	H1000's 0.5	H2000's 0.5	24	14	1.34	0.19	ns
theta_avg_power		H2000's 0.75	24	14	0.76	0.46	ns
theta_avg_power		H2000's 1	24	14	0.95	0.35	ns
theta_avg_power		H3000's 0.25	$\overline{24}$	20	0.53	0.60	ns
theta_avg_power		H3000's 0.5	24	20	0.52	0.60	ns
theta_avg_power		H3000's 0.75	$\frac{21}{24}$	20	0.67	0.51	ns
theta_avg_power		H3000's 1	$\overline{24}$	20	0.52	0.61	ns
theta_avg_power		H1000's 1	24	$\frac{26}{24}$	0.01	0.99	ns
theta avg power		H2000's 0.25	24	14	0.93	0.36	ns
theta avg power		H2000's 0.5	24	14	1.26	0.22	ns
theta_avg_power	 -	H2000's 0.75	24	14	0.64	0.53	ns
theta_avg_power		H2000's 1	24	14	0.83	0.41	ns
theta_avg_power		H3000's 0.25	24	20	0.41	0.69	ns
theta_avg_power		H3000's 0.5	24	20	0.41	0.69	ns
theta_avg_power		H3000's 0.75	$\frac{24}{24}$	20	$0.40 \\ 0.56$	$0.09 \\ 0.58$	ns
theta avg power		H3000's 1	24	20	0.40	0.69	ns
theta avg power		H2000's 0.25	$\frac{24}{24}$	14	0.40 0.95	0.09 0.36	
theta_avg_power	 -	H2000's 0.5	$\frac{24}{24}$	14	1.29	0.30 0.21	ns
theta_avg_power		H2000's 0.75	$\frac{24}{24}$	14	0.64	0.21 0.53	ns
~ -		_	$\frac{24}{24}$	14	0.04 0.84	0.33 0.41	ns
theta_avg_power		H2000's_1	$\frac{24}{24}$				ns
theta_avg_power		H3000's_0.25		20	0.41	0.69	ns
theta_avg_power		H3000's_0.5	24	20	0.40	0.69	ns
theta_avg_power		H3000's_0.75	24	20	0.56	0.58	ns
theta_avg_power		H3000's_1	24	20	0.40	0.69	ns
theta_avg_power		H2000's_0.5	14	14	0.09	0.93	ns
theta_avg_power		H2000's_0.75	14	14	-0.21	0.83	ns
theta_avg_power		H2000's_1	14	14	-0.11	0.92	ns
theta_avg_power		H3000's_0.25	14	20	-0.32	0.75	ns
theta_avg_power		H3000's_0.5	14	20	-0.33	0.75	ns
theta_avg_power		H3000's_0.75	14	20	-0.19	0.85	ns
theta_avg_power	 -	H3000's_1	14	20	-0.30	0.76	ns
theta_avg_power		H2000's_0.75	14	14	-0.33	0.75	ns
theta_avg_power	 -	H2000's_1	14	14	-0.22	0.83	$_{ m ns}$
theta_avg_power		H3000's_0.25	14	20	-0.43	0.67	$_{ m ns}$
theta_avg_power		H3000's_0.5	14	20	-0.44	0.67	ns
theta_avg_power		H3000's_0.75	14	20	-0.28	0.78	$_{ m ns}$
theta_avg_power		H3000's_1	14	20	-0.41	0.69	ns
theta_avg_power		H2000's_1	14	14	0.11	0.91	$_{ m ns}$
theta_avg_power		H3000's_0.25	14	20	-0.12	0.90	$_{ m ns}$
theta_avg_power		H3000's_0.5	14	20	-0.13	0.90	$_{ m ns}$
theta_avg_power		H3000's_0.75	14	20	0.01	1.00	$_{ m ns}$
theta_avg_power	 -	H3000's_1	14	20	-0.11	0.91	$_{ m ns}$
theta_avg_power		$H3000's_0.25$	14	20	-0.23	0.82	ns
$theta_avg_power$	 -	$H3000's_0.5$	14	20	-0.24	0.81	ns
$theta_avg_power$		$H3000's_0.75$	14	20	-0.09	0.93	ns
$theta_avg_power$	_	H3000's_1	14	20	-0.21	0.83	ns
theta_avg_power		$H3000's_0.5$	20	20	-0.01	1.00	$_{ m ns}$
$theta_avg_power$		$H3000's_0.75$	20	20	0.12	0.91	ns
$theta_avg_power$		$\rm H3000's_1$	20	20	0.01	1.00	ns
$theta_avg_power$	${ m H3000's} { m _0.5}$	${ m H}3000{ m 's}_0.75$	20	20	0.13	0.90	ns
$theta_avg_power$		$\rm H3000's_1$	20	20	0.01	0.99	ns
theta_avg_power	H3000's_0.75	H3000's_1	20	20	-0.11	0.91	ns

Cluster: 13 Theta Average Power t-tests

theta_avg_power H1000's_0.25 H1000's_0.75 22 22 -0.88 0.70 ns heta_avg_power H1000's_0.25 H1000's_0.75 22 22 -0.88 0.38 ns theta_avg_power H1000's_0.25 H2000's_0.25 22 12 2.00 0.04 *theta_avg_power H1000's_0.25 H2000's_0.25 22 12 2.20 0.04 *theta_avg_power H1000's_0.25 H2000's_0.75 22 12 2.04 0.05 *theta_avg_power H1000's_0.25 H2000's_0.75 22 12 2.04 0.05 *theta_avg_power H1000's_0.25 H2000's_0.75 22 12 2.04 0.05 *theta_avg_power H1000's_0.25 H2000's_0.75 22 12 2.06 0.04 *theta_avg_power H1000's_0.25 H2000's_0.75 22 12 2.06 0.04 *theta_avg_power H1000's_0.25 H3000's_0.25 22 13 0.68 0.50 ns theta_avg_power H1000's_0.25 H3000's_0.5 22 13 0.68 0.50 ns theta_avg_power H1000's_0.25 H3000's_0.75 22 13 0.68 0.50 ns theta_avg_power H1000's_0.25 H3000's_0.75 22 13 0.06 0.50 ns theta_avg_power H1000's_0.25 H3000's_0.75 22 13 0.04 0.60 ns theta_avg_power H1000's_0.5 H1000's_0.75 22 22 13 0.01 0.99 ns theta_avg_power H1000's_0.5 H1000's_0.75 22 22 12 0.51 0.61 ns theta_avg_power H1000's_0.5 H1000's_0.75 22 22 12 0.51 0.61 ns theta_avg_power H1000's_0.5 H2000's_0.25 22 12 2.279 0.01 **theta_avg_power H1000's_0.5 H2000's_0.75 22 12 2.279 0.01 **theta_avg_power H1000's_0.5 H3000's_0.25 22 13 1.94 0.06 ns theta_avg_power H1000's_0.5 H3000's_0.5 22 13 1.94 0.06 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.94 0.06 ns theta_avg_power H1000's_0.75 H3000's_0.75 22 12 3.36 0.00 **theta_avg_power H1000's_0.75 H3000's_0.75 22 13 1.46 0.00 **theta_avg_power H1000's_1 H3000's_0.75 12 12 12 0.01 0.00 0.0	EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta avg power H1000's 0.25 H2000's 0.25 22 12 2.20 0.04 * theta avg power H1000's 0.25 H2000's 0.25 22 12 1.98 0.06 ns theta avg power H1000's 0.25 H2000's 0.5 22 12 1.98 0.06 ns theta avg power H1000's 0.25 H2000's 0.75 22 12 2.04 0.05 * theta avg power H1000's 0.25 H200's 0.75 22 12 2.04 0.05 * theta avg power H1000's 0.25 H300's 0.75 22 12 2.04 0.05 * theta avg power H1000's 0.25 H300's 0.25 22 13 1.49 0.15 ns theta avg power H1000's 0.25 H300's 0.5 22 13 0.68 0.50 ns theta avg power H1000's 0.25 H300's 0.75 22 13 0.68 0.50 ns theta avg power H1000's 0.25 H300's 0.75 22 13 0.01 0.99 ns theta avg power H1000's 0.25 H300's 1 22 13 0.01 0.99 ns theta avg power H1000's 0.5 H100's 1 22 12 2.79 0.01 ** theta avg power H1000's 0.5 H200's 0.75 22 12 2.79 0.01 ** theta avg power H1000's 0.5 H200's 0.75 22 12 2.79 0.01 ** theta avg power H1000's 0.5 H200's 0.75 22 12 2.79 0.01 ** theta avg power H1000's 0.5 H200's 1.75 22 12 2.79 0.01 ** theta avg power H1000's 0.5 H200's 1.75 22 12 2.79 0.01 ** theta avg power H1000's 0.5 H200's 1.75 22 12 2.79 0.01 ** theta avg power H1000's 0.5 H200's 1.75 22 12 2.79 0.01 ** theta avg power H1000's 0.5 H200's 1.75 22 12 2.79 0.01 ** theta avg power H1000's 0.5 H300's 0.75 22 12 2.79 0.01 ** theta avg power H1000's 0.5 H300's 1.22 13 1.94 0.06 ns theta avg power H1000's 0.5 H300's 0.75 22 13 1.94 0.06 ns theta avg power H1000's 0.75 H300's 0.75 22 13 1.03 0.31 ns theta avg power H1000's 0.75 H300's 0.75 22 13 1.03 0.32 0.75 ns theta avg power H1000's 0.75 H300's 0.75 22 13 1.03 0.32 0.75 ns theta avg power H1000's 0.75 H300's 0.75 22 12 3.46 0.00 ** theta avg power H1000's 0.75 H300's 0.75 22 13 3.46 0.00 ** theta avg power H1000's 0.75 H300's 0.75 22 12 3.40 0.00 ** theta avg power H1000's 0.75 H300's 0.75 22 12 3.06 0.00 ** theta avg power H1000's 0.75 H300's 0.75 22 12 3.06 0.00 ** theta avg power H1000's 0.75 H300's 0.75 22 13 0.72 0.48 ns theta avg power H1000's 1 H300's 0.75 22 13 0.72 0.48 ns theta avg power H1000's 1 H300's 0.75 22 13 0.72 0.48 ns theta avg power H1000's 1	theta_avg_power H1000's_0.25	H1000's_0.5	22	22	-0.38	0.70	ns
theta_avg_power H1000's_0.25 H2000's_0.75 22 12 1.98 0.06 ns theta_avg_power H1000's_0.25 H2000's_0.75 22 12 1.98 0.06 ns theta_avg_power H1000's_0.25 H2000's_0.75 22 12 2.04 0.05 * theta_avg_power H1000's_0.25 H2000's_0.75 22 12 2.04 0.05 * theta_avg_power H1000's_0.25 H2000's_0.75 22 12 2.06 0.04 * theta_avg_power H1000's_0.25 H3000's_0.5 22 13 1.49 0.15 ns theta_avg_power H1000's_0.25 H3000's_0.5 22 13 0.68 0.50 ns theta_avg_power H1000's_0.25 H3000's_0.75 22 13 0.54 0.60 ns theta_avg_power H1000's_0.25 H3000's_0.75 22 13 0.54 0.60 ns theta_avg_power H1000's_0.5 H1000's_0.75 22 22 0.051 0.61 ns theta_avg_power H1000's_0.5 H1000's_0.75 22 22 0.051 0.61 ns theta_avg_power H1000's_0.5 H1000's_0.75 22 22 0.051 0.61 ns theta_avg_power H1000's_0.5 H200's_0.75 22 12 2.79 0.01 ** theta_avg_power H1000's_0.5 H200's_0.5 22 12 2.52 0.02 ** theta_avg_power H1000's_0.5 H200's_0.75 22 12 2.53 0.01 ** theta_avg_power H1000's_0.5 H200's_0.75 22 12 2.63 0.01 ** theta_avg_power H1000's_0.5 H200's_0.5 22 12 2.79 0.01 ** theta_avg_power H1000's_0.5 H200's_0.75 22 12 2.63 0.01 ** theta_avg_power H1000's_0.5 H300's_0.5 22 13 1.03 0.31 ns theta_avg_power H1000's_0.5 H300's_0.5 22 13 1.03 0.88 0.39 ns theta_avg_power H1000's_0.75 H200's_0.75 22 12 3.08 0.00 ** theta_avg_power H1000's_0.75 H200's_0.75 22 12 3.08 0.00 ** theta_avg_power H1000's_0.75 H200's_0.75 22 12 3.09 0.00 ** theta_avg_power H1000's_0.75 H200's_0.75 22 12 3.10 0.00 ** theta_avg_power H1000's_0.75 H200's_0.75 22 12 3.10 0.00 ** theta_avg_power H1000's_0.75 H300's_0.25 22 12 3.10 0.00 ** theta_avg_power H1000's_0.75 H300's_0.25 22 12 3.10 0.00 ** theta_avg_power H1000's_0.75 H300's_0.25 22 13 1.46 0.00 ** theta_avg_power H1000's_0.75 H300's_0.75 22 12 3.08 0.00 ** theta_avg_power H1000's_0.75 H300's_0.75 22 12 3.08 0.00 ** theta_avg_power H1000's_0.75 H300's_0.75 22 12 3.046 0.00 ** theta_avg_p	theta_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	22	22	-0.88	0.38	ns
theta_avg_power H1000's_0.25	theta_avg_power $H1000$ 's_ 0.25	H1000's_1	22	22	-0.55	0.59	ns
theta_avg_power H1000's_0.25	theta_avg_power H1000's_0.25	$\rm H2000's_0.25$	22	12	2.20	0.04	*
theta_awg_power H1000's_0.25	theta_avg_power $H1000$ 's_ 0.25	${\rm H}2000'{\rm s}_0.5$	22	12	1.98	0.06	ns
Hatela_avg_power H1000's_0.25	theta_avg_power $H1000$ 's_ 0.25	$H2000's_0.75$	22	12	2.04	0.05	*
theta avg power H1000's 0.25	theta_avg_power $H1000$ 's_ 0.25	H2000's_1	22	12	2.16	0.04	*
theta avg power H1000's 0.25 H3000's 0.75 22 13 0.01 0.99 ns theta avg power H1000's 0.5 H1000's 0.75 22 22 22 -0.51 0.61 ns theta avg power H1000's 0.5 H1000's 0.75 22 22 22 -0.51 0.61 ns theta avg power H1000's 0.5 H2000's 0.5 22 12 22 -0.51 0.61 ns theta avg power H1000's 0.5 H2000's 0.5 22 12 2.79 0.01 *** theta avg power H1000's 0.5 H2000's 0.5 22 12 2.79 0.01 *** theta avg power H1000's 0.5 H2000's 0.5 22 12 2.52 0.02 * theta avg power H1000's 0.5 H2000's 0.5 22 12 2.79 0.01 *** theta avg power H1000's 0.5 H2000's 0.75 22 12 2.79 0.01 *** theta avg power H1000's 0.5 H2000's 0.75 22 13 1.94 0.06 ns theta avg power H1000's 0.5 H3000's 0.25 22 13 1.94 0.06 ns theta avg power H1000's 0.5 H3000's 0.5 22 13 1.94 0.06 ns theta avg power H1000's 0.5 H3000's 0.75 22 13 0.88 0.39 ns theta avg power H1000's 0.5 H3000's 0.75 22 13 0.88 0.39 ns theta avg power H1000's 0.75 H3000's 1 22 13 0.88 0.39 ns theta avg power H1000's 0.75 H2000's 0.5 22 12 3.46 0.00 *** theta avg power H1000's 0.75 H2000's 0.5 22 12 3.46 0.00 *** theta avg power H1000's 0.75 H2000's 0.5 22 12 3.40 0.00 *** theta avg power H1000's 0.75 H2000's 0.5 22 12 3.40 0.00 *** theta avg power H1000's 0.75 H2000's 0.5 22 12 3.50 0.00 *** theta avg power H1000's 0.75 H2000's 0.5 22 12 3.50 0.00 *** theta avg power H1000's 0.75 H3000's 0.25 22 13 1.46 0.02 ** theta avg power H1000's 0.75 H3000's 0.5 22 13 1.31 0.20 ns theta avg power H1000's 0.75 H3000's 0.75 22 13 1.31 0.20 ns theta avg power H1000's 1 H2000's 0.75 22 13 1.31 0.20 ns theta avg power H1000's 1 H2000's 0.75 22 13 1.31 0.20 ns theta avg power H1000's 1 H2000's 0.75 22 13 1.31 0.20 ns theta avg power H1000's 1 H2000's 0.75 22 13 0.46 0.00 *** theta avg power H1000's 1 H2000's 0.5 22 12 12 0.06 0.00 *** theta avg power H1000's 1 H2000's 0.75 22 13 0.45 0.66 ns theta avg power H1000's 1 H2000's 0.5 22 12 12 0.06 0.01 *** theta avg power H1000's 1 H2000's 0.5 12 12 12 0.01 0.90 ns theta avg power H1000's 1 H3000's 0.5 12 12 12 0.01 0.90 ns theta avg power H2000's 0.25 H2000's 0.5 12 13 0.41 0.69	theta_avg_power H1000's_0.25	${ m H3000's} { m _0.25}$	22	13	1.49	0.15	ns
theta_avg_power H1000's_0.25 H3000's_1 22 13 0.01 0.99 ns theta_avg_power H1000's_0.5 H1000's_1 22 22 -0.51 0.61 ns theta_avg_power H1000's_0.5 H1000's_1 22 22 22 -0.56 0.87 ns theta_avg_power H1000's_0.5 H2000's_0.25 22 12 2.79 0.01 ** theta_avg_power H1000's_0.5 H2000's_0.75 22 12 2.52 0.02 ** theta_avg_power H1000's_0.5 H2000's_0.75 22 12 2.63 0.01 ** theta_avg_power H1000's_0.5 H2000's_0.75 22 12 2.63 0.01 ** theta_avg_power H1000's_0.5 H2000's_0.75 22 12 2.63 0.01 ** theta_avg_power H1000's_0.5 H2000's_0.5 22 13 1.94 0.06 ns theta_avg_power H1000's_0.5 H3000's_0.5 22 13 1.94 0.06 ns theta_avg_power H1000's_0.5 H3000's_0.5 22 13 1.94 0.06 ns theta_avg_power H1000's_0.5 H3000's_0.75 22 13 0.32 0.75 ns theta_avg_power H1000's_0.5 H3000's_0.75 22 13 0.32 0.75 ns theta_avg_power H1000's_0.5 H3000's_0.75 22 13 0.32 0.75 ns theta_avg_power H1000's_0.75 H2000's_0.25 22 12 3.44 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.25 22 12 3.44 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.14 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.14 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.50 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 0.75 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 0.75 22 12 3.04 0.02 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 12 3.04 0.02 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.75 22 12 3.0 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 13 0.72 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 12 0.06 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.5 12 12 0.06 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.5 12 12 0.00 0.00 0.00 ns theta_avg_power H1000's_0.5 H2000's_0.5 12 12 0.01 0.00 ns theta_avg_power H1000's_0.25 H2000's_0.5 12 13 0.04 0	theta_avg_power H1000's_0.25	$H3000's_0.5$	22	13	0.68	0.50	ns
theta_avg_power_H1000's_0.5	theta_avg_power H1000's_0.25	$H3000's_0.75$	22	13	0.54	0.60	ns
theta_avg_power_H1000's_0.5	theta_avg_power H1000's_0.25	H3000's_1	22	13	0.01	0.99	ns
theta_avg_power_H1000's_0.5	theta_avg_power H1000's_0.5	$H1000's_0.75$	22	22	-0.51	0.61	ns
theta_avg_power H1000's_0.5 H2000's_0.5 22 12 2.52 0.02 * theta_avg_power H1000's_0.5 H2000's_0.75 22 12 2.53 0.01 ** theta_avg_power H1000's_0.5 H2000's_1 22 12 2.59 0.01 ** theta_avg_power H1000's_0.5 H2000's_1 22 12 2.79 0.01 ** theta_avg_power H1000's_0.5 H3000's_0.25 22 13 1.94 0.06 ns theta_avg_power H1000's_0.5 H3000's_0.75 22 13 1.03 0.31 ns theta_avg_power H1000's_0.5 H3000's_0.75 22 13 0.88 0.39 ns theta_avg_power H1000's_0.5 H3000's_1 22 13 0.88 0.39 ns theta_avg_power H1000's_0.75 H2000's_1 22 12 3.08 0.32 0.75 ns theta_avg_power H1000's_0.75 H2000's_0.25 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 12 3.06 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 12 3.06 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 12 3.06 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 12 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.75 22 13 1.31 0.20 ns theta_avg_power H1000's_1 H2000's_0.75 22 12 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.75 22 12 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.75 22 12 2.76 0.01 ** theta_avg_power H1000's_1 H2000's_0.75 22 12 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.75 22 12 2.76 0.01 ** theta_avg_power H1000's_1 H2000's_0.75 22 13 0.02 0.00 0.00 ** theta_avg_power H1000's_1 H2000's_0.75 22 13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	theta_avg_power H1000's_0.5	H1000's_1	22	22	-0.16	0.87	ns
theta_avg_power H1000's_0.5 H2000's_0.75	theta_avg_power H1000's_0.5	$H2000's_0.25$	22	12	2.79	0.01	**
theta_avg_power H1000's_0.5 H2000's_0.5 22 13 1.94 0.06 ns theta_avg_power H1000's_0.5 H3000's_0.5 22 13 1.03 0.31 ns theta_avg_power H1000's_0.5 H3000's_0.5 22 13 0.32 0.75 ns theta_avg_power H1000's_0.5 H3000's_1 22 13 0.32 0.75 ns theta_avg_power H1000's_0.5 H3000's_1 22 13 0.32 0.75 ns theta_avg_power H1000's_0.5 H1000's_1 22 22 23 0.35 0.72 ns theta_avg_power H1000's_0.75 H1000's_0.5 22 12 3.46 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.46 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.14 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.14 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.50 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.50 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.5 22 13 2.46 0.02 ** theta_avg_power H1000's_0.75 H3000's_0.25 22 13 3.46 0.02 ** theta_avg_power H1000's_0.75 H3000's_0.25 22 13 3.46 0.02 ** theta_avg_power H1000's_0.75 H3000's_0.25 22 13 3.46 0.02 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 13 3.46 0.02 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 13 3.46 0.02 ** theta_avg_power H1000's_0.75 H3000's_0.75 22 13 1.31 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.75 22 12 3.06 0.00 *** theta_avg_power H1000's_1 H2000's_0.25 22 12 3.06 0.00 *** theta_avg_power H1000's_1 H2000's_0.5 22 12 3.06 0.00 *** theta_avg_power H1000's_1 H2000's_0.5 22 12 3.06 0.00 *** theta_avg_power H1000's_1 H2000's_0.75 22 12 2.89 0.01 *** theta_avg_power H1000's_1 H2000's_0.75 22 13 0.45 0.66 ns theta_avg_power H1000's_1 H2000's_0.75 22 13 0.45 0.66 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 12 12 0.01 0.84 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 12 12 0.01 0.84 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 13 0.40 0.96 ns theta_avg_power	theta_avg_power H1000's_0.5	$H2000's_0.5$	22	12	2.52	0.02	*
theta_avg_power H1000's_0.5 H2000's_1 22 12 13 1.94 0.06 ns theta_avg_power H1000's_0.5 H3000's_0.55 22 13 1.94 0.06 ns theta_avg_power H1000's_0.5 H3000's_0.75 22 13 0.88 0.39 ns theta_avg_power H1000's_0.5 H3000's_0.75 22 13 0.88 0.39 ns theta_avg_power H1000's_0.5 H3000's_0.75 22 13 0.82 0.75 ns theta_avg_power H1000's_0.5 H3000's_1 22 13 0.32 0.75 ns theta_avg_power H1000's_0.75 H2000's_0.25 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.25 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.50 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 13 3.46 0.02 * theta_avg_power H1000's_0.75 H3000's_0.5 22 13 3.40 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 13 3.40 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 13 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.5 22 12 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.5 22 12 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.5 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H3000's_0.5 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H3000's_0.5 22 13 3.18 0.23 0.00 ** theta_avg_power H1000's_1 H3000's_0.5 22 13 0.43 0.04 ** theta_avg_power H1000's_1 H3000's_0.5 22 13 0.43 0.04 ** theta_avg_power H1000's_1 H3000's_0.5 22 13 0.45 0.66 ns theta_avg_power H2000's_0.25 H2000's_0.5 12 13 0.45 0.66 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 13 0.49 0.49 0.66 ns theta_avg_power H2000's_0.5 H2000's_0.5 H2000's_0.5 12 13 0.029 0.78 ns theta_avg_power	theta_avg_power H1000's_0.5	$H2000's_0.75$	22	12	2.63	0.01	*
theta_avg_power H1000's_0.5 H3000's_0.25 22 13 1.94 0.06 ns theta_avg_power H1000's_0.5 H3000's_0.5 22 13 1.03 0.31 ns theta_avg_power H1000's_0.5 H3000's_0.75 22 13 0.88 0.39 ns theta_avg_power H1000's_0.5 H3000's_1 22 13 0.32 0.75 ns theta_avg_power H1000's_0.75 H1000's_1 22 22 23 0.35 0.72 ns theta_avg_power H1000's_0.75 H2000's_0.25 22 12 3.46 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.44 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.29 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.29 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.29 0.00 *** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.29 0.00 *** theta_avg_power H1000's_0.75 H2000's_1 22 12 3.50 0.00 *** theta_avg_power H1000's_0.75 H3000's_0.5 22 13 2.46 0.02 ** theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.75 22 13 0.72 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 13 0.72 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 12 3.06 0.00 *** theta_avg_power H1000's_1 H2000's_0.5 22 12 2.76 0.01 *** theta_avg_power H1000's_1 H2000's_0.5 22 12 2.89 0.01 *** theta_avg_power H1000's_1 H3000's_0.5 22 13 2.30 0.00 *** theta_avg_power H1000's_1 H3000's_0.5 22 13 0.83 0.00 *** theta_avg_power H1000's_1 H3000's_0.5 22 13 0.45 0.66 ns theta_avg_power H1000's_1 H3000's_0.5 22 13 0.45 0.66 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 12 0.01 0.83 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 13 0.04 0.69 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 13 0.04 0.96 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 13 0.04 0.96 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 13 0.09 0.78 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 13 0.09 0.78 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 13 0.09 0.78 ns theta_avg_power H2000's_0.5		H2000's_1	22	12	2.79	0.01	**
theta_avg_power H1000's_0.5 H3000's_0.5 22 13 0.88 0.39 ns theta_avg_power H1000's_0.5 H3000's_1 22 13 0.82 0.75 ns theta_avg_power H1000's_0.5 H3000's_1 22 22 23 0.35 0.72 ns theta_avg_power H1000's_0.75 H1000's_0.25 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.25 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.25 22 13 3.50 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.25 22 13 3.50 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.25 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.25 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 13 0.72 0.48 ns theta_avg_power H1000's_0.75 H3000's_0.25 22 13 0.72 0.48 ns theta_avg_power H1000's_1 H2000's_0.25 22 12 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.5 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H3000's_0.5 22 13 0.80 0.00 ** theta_avg_power H1000's_1 H3000's_0.5 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H3000's_0.5 22 13 0.30 0.00 ** theta_avg_power H1000's_1 H3000's_0.5 22 13 0.45 0.66 ns theta_avg_power H1000's_1 H3000's_0.5 22 13 0.45 0.66 ns theta_avg_power H2000's_0.25 H2000's_0.5 12 13 0.45 0.66 ns theta_avg_power H2000's_0.25 H2000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.25 H2000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.25 H3000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.25 H3000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.25 H3000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 13 0.40 0.96 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 13 0.40 0.96 ns theta_avg_power H2000's_0.5 H3000'		$H3000's_0.25$	22	13	1.94	0.06	ns
theta_avg_power H1000's_0.5 H3000's_0.75		$H3000's_0.5$	22	13	1.03	0.31	ns
theta_avg_power H1000's_0.5 H3000's_1 22 13 0.32 0.75 ns theta_avg_power H1000's_0.75 H1000's_1 22 22 0.35 0.72 ns theta_avg_power H1000's_0.75 H2000's_0.25 22 12 3.46 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.5 22 12 3.14 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H2000's_1 22 12 3.50 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.25 22 13 2.46 0.02 * theta_avg_power H1000's_0.75 H3000's_0.25 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.31 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.75 22 13 1.31 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.5 22 13 0.72 0.48 ns theta_avg_power H1000's_1 H2000's_0.25 22 12 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.25 22 12 2.76 0.01 ** theta_avg_power H1000's_1 H2000's_0.5 22 12 2.76 0.01 ** theta_avg_power H1000's_1 H2000's_0.75 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H2000's_0.75 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H2000's_0.75 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H2000's_0.5 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H3000's_0.5 22 13 1.18 0.25 ns theta_avg_power H1000's_1 H3000's_0.5 22 13 0.88 0.00 ** theta_avg_power H1000's_1 H3000's_0.5 22 13 0.04 ** theta_avg_power H1000's_1 H3000's_0.5 12 12 0.03 0.90 ns theta_avg_power H1000's_1 H3000's_0.75 22 13 0.04 0.32 ns theta_avg_power H1000's_1 H3000's_0.75 12 12 0.01 0.83 ns theta_avg_power H2000's_0.25 H2000's_0.75 12 12 0.01 0.84 ns theta_avg_power H2000's_0.25 H2000's_0.75 12 13 0.04 0.96 ns theta_avg_power H2000's_0.25 H3000's_0.5 12 13 0.04 0.96 ns theta_avg_power H2000's_0.5 H2000's_0.75 12 13 0.04 0.96 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 13 0.04 0.99 0.78 ns theta_avg_power H2000's_0.5 H3000's_0.5		H3000's 0.75	22	13	0.88	0.39	ns
theta_avg_power H1000's_0.75	~ -	H3000's 1	22	13	0.32	0.75	ns
theta_avg_power H1000's_0.75 H2000's_0.55 22 12 3.14 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H2000's_0.75 22 12 3.29 0.00 ** theta_avg_power H1000's_0.75 H3000's_1 22 12 3.50 0.00 ** theta_avg_power H1000's_0.75 H3000's_0.25 22 13 2.46 0.02 * theta_avg_power H1000's_0.75 H3000's_0.5 22 13 1.46 0.16 ns theta_avg_power H1000's_0.75 H3000's_0.75 22 13 1.31 0.20 ns theta_avg_power H1000's_0.75 H3000's_0.75 22 13 0.72 0.48 ns theta_avg_power H1000's_1 H2000's_0.25 22 12 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.5 22 12 2.76 0.01 ** theta_avg_power H1000's_1 H2000's_0.5 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H2000's_0.75 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H2000's_0.5 22 12 3.08 0.00 ** theta_avg_power H1000's_1 H3000's_0.5 22 13 1.18 0.25 ns theta_avg_power H1000's_1 H3000's_0.5 22 13 1.18 0.25 ns theta_avg_power H1000's_1 H3000's_0.5 22 13 1.18 0.25 ns theta_avg_power H1000's_1 H3000's_0.5 22 13 0.45 0.66 ns theta_avg_power H1000's_1 H3000's_0.5 12 13 0.45 0.66 ns theta_avg_power H2000's_0.25 H2000's_0.5 12 12 0.013 0.90 ns theta_avg_power H2000's_0.25 H2000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.25 H2000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.25 H3000's_0.5 12 13 0.41 0.69 ns theta_avg_power H2000's_0.25 H3000's_0.5 12 13 0.46 0.96 ns theta_avg_power H2000's_0.25 H3000's_0.5 12 13 0.04 0.96 ns theta_avg_power H2000's_0.5 H2000's_0.75 12 12 0.00 0.00 0.95 ns theta_avg_power H2000's_0.5 H2000's_0.75 12 12 0.00 0.00 0.95 ns theta_avg_power H2000's_0.5 H2000's_0.75 12 12 0.00 0.00 0.95 ns theta_avg_power H2000's_0.5 H2000's_0.75 12 12 0.00 0.00 0.95 ns theta_avg_power H2000's_0.5 H2000's_0.75 12 12 0.00 0.96 ns theta_avg_power H2000's_0.5 H2000's_0.75 12 12 0.00 0.96 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 13 0.00 0.96 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 13 0.00 0.96 ns theta_avg_power H2000's_0.5 H2000's_0.5 12 13 0.00 0.96 ns	~ -	H1000's_1	22	22	0.35	0.72	ns
theta_avg_power H1000's_0.75	~ -	H2000's 0.25	22	12	3.46	0.00	**
theta_avg_power H1000's_0.75		H2000's 0.5	22	12	3.14	0.00	**
theta_avg_power H1000's_0.75					3.29	0.00	**
theta_avg_power H1000's_0.75						0.00	**
theta_avg_power H1000's_0.75			22		2.46	0.02	*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			22		1.46	0.16	ns
theta_avg_power H1000's_0.75			22		1.31	0.20	ns
theta_avg_power H1000's_1 H2000's_0.25 22 12 3.06 0.00 ** theta_avg_power H1000's_1 H2000's_0.5 22 12 2.76 0.01 ** theta_avg_power H1000's_1 H2000's_0.75 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H2000's_1 22 12 3.08 0.00 ** theta_avg_power H1000's_1 H3000's_0.25 22 13 2.13 0.04 * theta_avg_power H1000's_1 H3000's_0.5 22 13 1.18 0.25 ns theta_avg_power H1000's_1 H3000's_0.5 22 13 1.02 0.32 ns theta_avg_power H1000's_1 H3000's_0.75 22 13 1.02 0.32 ns theta_avg_power H2000's_0.25 H2000's_0.5 12 12 12 -0.13 0.90 ns theta_avg_power H2000's_0.25 H2000's_0.5 12 12 12 -0.21 0.84 ns theta_avg_power H2000's_			22		0.72	0.48	ns
theta_avg_power H1000's_1 H2000's_0.5 22 12 2.76 0.01 ** theta_avg_power H1000's_1 H2000's_0.75 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H2000's_1 22 12 3.08 0.00 ** theta_avg_power H1000's_1 H3000's_0.25 22 13 2.13 0.04 * theta_avg_power H1000's_1 H3000's_0.5 22 13 1.18 0.25 ns theta_avg_power H1000's_1 H3000's_0.5 22 13 1.02 0.32 ns theta_avg_power H1000's_1 H3000's_0.75 22 13 1.02 0.32 ns theta_avg_power H1000's_1 H3000's_0.75 12 12 12 -0.13 0.90 ns theta_avg_power H2000's_0.25 H2000's_0.75 12 12 -0.21 0.83 ns theta_avg_power H2000's_0.25 H2000's_0.25 12 13 -0.41 0.69 ns theta_avg_power H2000's_0.25	~ <u>-</u>	H2000's 0.25	22	12	3.06	0.00	**
theta_avg_power H1000's_1 H2000's_0.75 22 12 2.89 0.01 ** theta_avg_power H1000's_1 H2000's_1 22 12 3.08 0.00 ** theta_avg_power H1000's_1 H3000's_0.25 22 13 2.13 0.04 * theta_avg_power H1000's_1 H3000's_0.5 22 13 1.18 0.25 ns theta_avg_power H1000's_1 H3000's_0.75 22 13 1.02 0.32 ns theta_avg_power H1000's_1 H3000's_0.75 22 13 0.45 0.66 ns theta_avg_power H1000's_1 H3000's_0.5 12 12 12 -0.13 0.90 ns theta_avg_power H2000's_0.25 H2000's_0.5 12 12 12 -0.13 0.90 ns theta_avg_power H2000's_0.25 H2000's_0.75 12 12 12 -0.21 0.83 ns theta_avg_power H2000's_0.25 H2000's_1 12 12 12 -0.21 0.84 ns theta_avg_power H2000's_0.25 H3000's_0.25 12 13 -0.41 0.69 ns theta_avg_power H2000's_0.25 H3000's_0.5 12 13 -1.01 0.33 ns theta_avg_power H2000's_0.25 H3000's_0.75 12 13 -1.18 0.26 ns theta_avg_power H2000's_0.25 H3000's_1 12 13 -1.64 0.12 ns theta_avg_power H2000's_0.5 H2000's_1 12 12 12 -0.06 0.95 ns theta_avg_power H2000's_0.5 H2000's_1 12 12 12 -0.06 0.95 ns theta_avg_power H2000's_0.5 H2000's_1 12 12 12 -0.04 0.96 ns theta_avg_power H2000's_0.5 H3000's_0.25 12 13 -0.29 0.78 ns theta_avg_power H2000's_0.5 H3000's_0.25 12 13 -0.29 0.78 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 13 -0.89 0.39 ns	~ <u>-</u>	H2000's 0.5	22	12	2.76	0.01	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		H2000's 0.75	22	12	2.89	0.01	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			22				**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			22				*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			22				ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			22				ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	theta avg power H2000's 0.25					0.90	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		H2000's 0.75			-0.21	0.83	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	theta avg power H2000's 0.25	H2000's 1			-0.21	0.84	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ -						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ -						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ -						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ -						
theta_avg_power H2000's_0.5 H3000's_0.25 12 13 -0.29 0.78 ns theta_avg_power H2000's_0.5 H3000's_0.5 12 13 -0.89 0.39 ns							
theta_avg_power $H2000$ 's_0.5 $H3000$ 's_0.5 12 13 -0.89 0.39 ns							
v -	~ -						
	~ -						

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
theta_avg_power	H2000's_0.5	H3000's_1	12	13	-1.51	0.15	ns
theta_avg_power	H2000's_0.75	$H2000's_1$	12	12	0.03	0.98	ns
theta_avg_power	H2000's_0.75	${ m H3000's} { m _0.25}$	12	13	-0.25	0.80	ns
theta_avg_power	$H2000's_0.75$	${ m H}3000'{ m s}_0.5$	12	13	-0.88	0.39	ns
theta_avg_power	$H2000's_0.75$	${ m H}3000{ m 's}_0.75$	12	13	-1.05	0.31	ns
theta_avg_power	$H2000's_0.75$	H3000's_1	12	13	-1.52	0.15	ns
theta_avg_power	H2000's_1	${ m H3000's} { m _0.25}$	12	13	-0.28	0.78	ns
theta_avg_power	H2000's_1	${ m H}3000'{ m s}_0.5$	12	13	-0.92	0.37	ns
theta_avg_power	H2000's_1	${ m H}3000{ m 's}_0.75$	12	13	-1.10	0.29	ns
theta_avg_power	H2000's_1	$H3000's_1$	12	13	-1.58	0.14	ns
theta_avg_power	$H3000's_0.25$	${ m H}3000'{ m s}_0.5$	13	13	-0.60	0.56	ns
theta_avg_power	$H3000's_0.25$	${ m H}3000{ m 's}_0.75$	13	13	-0.75	0.46	ns
theta_avg_power	$H3000's_0.25$	$H3000's_1$	13	13	-1.20	0.24	ns
theta_avg_power	$H3000's_0.5$	${ m H}3000{ m 's}_0.75$	13	13	-0.13	0.90	ns
theta_avg_power	H3000's_0.5	H3000's_1	13	13	-0.57	0.57	ns
theta_avg_power	H3000's_0.75	H3000's_1	13	13	-0.44	0.66	ns

Cluster: 14 Theta Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta_avg_power	H1000's_0.25	H1000's_0.5	22	22	0.23	0.82	ns
$theta_avg_power$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	22	22	-0.26	0.80	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.25$	H1000's_1	22	22	-0.25	0.81	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.25$	${\rm H}2000' {\rm s}_0.25$	22	16	2.69	0.01	*
$theta_avg_power$	$\rm H1000's_0.25$	${\rm H}2000' {\rm s}_0.5$	22	16	3.10	0.00	**
$theta_avg_power$	$\rm H1000's_0.25$	${\rm H}2000{\rm 's}_0.75$	22	16	2.74	0.01	*
$theta_avg_power$	$\rm H1000's_0.25$	$H2000's_{1}$	22	16	1.92	0.06	$_{ m ns}$
$theta_avg_power$	$\rm H1000's_0.25$	${ m H}3000' { m s}_0.25$	22	18	2.64	0.01	*
$theta_avg_power$	$\rm H1000's_0.25$	$H3000's_0.5$	22	18	2.39	0.02	*
$theta_avg_power$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	22	18	2.10	0.04	*
$theta_avg_power$	$\rm H1000's_0.25$	H3000's_1	22	18	2.18	0.04	*
theta_avg_power	$\rm H1000's_0.5$	$\rm H1000's_0.75$	22	22	-0.51	0.62	$_{ m ns}$
theta_avg_power	$\rm H1000's_0.5$	H1000's_1	22	22	-0.48	0.63	ns
theta_avg_power	$\rm H1000's_0.5$	$H2000's_0.25$	22	16	2.52	0.02	*
theta_avg_power	$\rm H1000's_0.5$	$H2000's_0.5$	22	16	2.94	0.01	**
theta_avg_power	$\rm H1000's_0.5$	${\rm H}2000' {\rm s}_0.75$	22	16	2.56	0.02	*
theta_avg_power	$\rm H1000's_0.5$	$H2000's_{1}$	22	16	1.71	0.10	$_{ m ns}$
theta_avg_power	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	22	18	2.47	0.02	*
theta_avg_power	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	22	18	2.21	0.03	*
theta_avg_power	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	22	18	1.92	0.06	$_{ m ns}$
theta_avg_power		H3000's_1	22	18	1.99	0.05	ns
theta_avg_power	$\rm H1000's_0.75$	H1000's_1	22	22	0.01	0.99	ns
theta_avg_power	$\rm H1000's_0.75$	$H2000's_0.25$	22	16	3.27	0.00	**
theta_avg_power	$\rm H1000's_0.75$	H2000's_0.5	22	16	3.75	0.00	***
theta_avg_power	$\rm H1000's_0.75$	$H2000's_0.75$	22	16	3.34	0.00	**
theta_avg_power	$\rm H1000's_0.75$	H2000's_1	22	16	2.40	0.02	*
theta_avg_power		H3000's_0.25	22	18	3.17	0.00	**
theta avg power	H1000's 0.75	H3000's 0.5	22	18	2.87	0.01	**
theta_avg_power	H1000's 0.75	H3000's 0.75	22	18	2.57	0.01	*
theta avg power		H3000's 1	22	18	2.68	0.01	*

theta_avg_power H1000's_1 H2000's_0.5 22 16 3.11 0.00 ** theta_avg_power H1000's_1 H2000's_0.5 22 16 3.56 0.00 ** theta_avg_power H1000's_1 H2000's_0.75 22 16 3.56 0.00 ** theta_avg_power H1000's_1 H2000's_1 22 16 2.29 0.03 * theta_avg_power H1000's_1 H3000's_0.25 22 18 3.03 0.00 ** theta_avg_power H1000's_1 H3000's_0.5 22 18 2.75 0.01 ** theta_avg_power H1000's_1 H3000's_0.75 22 18 2.46 0.02 * theta_avg_power H1000's_1 H3000's_0.75 22 18 2.46 0.02 * theta_avg_power H2000's_1 H3000's_0.75 22 18 2.46 0.01 ** theta_avg_power H2000's_0.25 H2000's_0.75 16 16 0.49 0.63 ms theta_avg_power H2000's_0.25 H2000's_0.75 16 16 0.49 0.63 ms theta_avg_power H2000's_0.25 H2000's_0.75 16 16 0.49 0.032 ms theta_avg_power H2000's_0.25 H3000's_0.25 16 18 0.12 0.90 ms theta_avg_power H2000's_0.25 H3000's_0.25 16 18 0.12 0.90 ms theta_avg_power H2000's_0.25 H3000's_0.75 16 18 0.12 0.90 ms theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.12 0.90 ms theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.54 0.60 ms theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.57 0.57 ms theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.59 0.56 ms theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.29 0.77 ms theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.03 0.40 ms theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.03 0.60 ms theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.03 0.00 ms theta_avg_power H2000's_0.75 H3000's_0.75 16 18 0.03 0.00 0.03 ms theta_avg_power H2000's_0.75 H3000's_0.75 16 18 0.03 0.00 0.03 ms theta_avg_power H2000's_0.75 H3000's_0.75 16 18 0.03 0.00 0.03 ms theta_avg_power H2000's_0.75 H3000's_0.75 16 18 0.03 0.00 0.03 ms theta_avg_power H2000's_0.75 H3000's_0.75 16 18 0.03 0.00 0.03 ms theta_avg_power H2000's_0.75 H3000's_0.75 16 18 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0	EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
theta_avg_power H1000's_1 H2000's_0.75 22 16 3.56 0.00 ** theta_avg_power H1000's_1 H2000's_0.75 22 16 3.17 0.00 ** theta_avg_power H1000's_1 H2000's_0.25 22 18 3.03 0.00 ** theta_avg_power H1000's_1 H3000's_0.5 22 18 3.03 0.00 ** theta_avg_power H1000's_1 H3000's_0.5 22 18 2.75 0.01 ** theta_avg_power H1000's_1 H3000's_0.75 22 18 2.46 0.02 ** theta_avg_power H1000's_1 H3000's_0.75 22 18 2.56 0.01 ** theta_avg_power H2000's_0.25 H2000's_0.5 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.75 16 16 -0.05 0.96 ns theta_avg_power H2000's_0.25 H2000's_0.75 16 16 -0.05 0.96 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 0.12 0.90 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 18 0.15 0.59 0.56 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 18 0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 18 0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.99 0.37 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.09 0.33 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.09 0.33 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.33 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.33 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.33 ns theta_avg_powe	theta_avg_power	H1000's_1	H2000's_0.25	22	16	3.11	0.00	**
theta_avg_power H1000's_1 H2000's_0.5 22 18 3.03 0.00 ** theta_avg_power H1000's_1 H3000's_0.25 22 18 3.03 0.00 ** theta_avg_power H1000's_1 H3000's_0.5 22 18 2.75 0.01 ** theta_avg_power H1000's_1 H3000's_0.5 22 18 2.56 0.01 ** theta_avg_power H1000's_1 H3000's_0.75 22 18 2.46 0.02 * theta_avg_power H1000's_1 H3000's_1 22 18 2.56 0.01 ** theta_avg_power H2000's_0.25 H2000's_0.5 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.5 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 0.05 0.96 ns theta_avg_power H2000's_0.25 H2000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.57 0.57 ns theta_avg_power H2000's_0.5 H3000's_1 16 18 0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_1 16 16 0.059 0.56 ns theta_avg_power H2000's_0.5 H2000's_1 16 16 0.059 0.56 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.03 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.03 0.30 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.03 0.30 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.03 0.30 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.03 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.03 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.03 0.70 ns theta_avg_power H2000's_0.75 H3000's_0.5 18 18 0.03 0.70 ns theta_avg_power H2000's_0.75 H3000's_0.5 18 18 0.03 0.70 ns theta_avg_power H3000's_0.5 H3000's_0.5 18 18 0.03 0.70 ns theta_avg_power H3000's_0.5 H3000's_0.			$H2000's_0.5$	22	16	3.56	0.00	**
theta_avg_power H1000's_1 H3000's_0.25 22 18 3.03 .00 0 ** theta_avg_power H1000's_1 H3000's_0.5 22 18 2.75 0.01 ** theta_avg_power H1000's_1 H3000's_0.5 22 18 2.46 0.02 * theta_avg_power H1000's_1 H3000's_0.75 22 18 2.46 0.01 ** theta_avg_power H1000's_1 H3000's_1 22 18 2.56 0.01 ** theta_avg_power H2000's_0.25 H2000's_0.5 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.75 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.75 16 16 0.40 0.32 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 0.54 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.54 0.60 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 18 0.54 0.60 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 18 0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 18 0.59 0.56 ns theta_avg_power H2000's_0.5 H3000's_0.25 16 18 0.59 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.09 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.09 0.93 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.99 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.99 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.99 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.99 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.09 0.99 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.09 0.99 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 0.09 0.99 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.75 18 18 18 0.09 0.09 0.90 0.90 ns	theta_avg_power	H1000's_1	$H2000's_0.75$	22	16	3.17	0.00	**
theta_avg_power H1000's_1 H3000's_0.5 22 18 2.75 0.01 ** theta_avg_power H1000's_1 H3000's_0.75 22 18 2.46 0.02 * theta_avg_power H1000's_1 H3000's_0.75 22 18 2.46 0.02 * theta_avg_power H1000's_1 H3000's_0.75 22 18 2.56 0.01 ** theta_avg_power H2000's_0.25 H2000's_0.5 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.75 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.5 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.25 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.54 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_0.5 16 18 0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_0.5 16 16 0.59 0.56 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 16 0.59 0.56 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.09 0.79 0.30 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.03 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.03 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.30 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.39 0.70 ns theta_avg_power H2000's_1 H3000's_0.5 18 18 18 0.06 0.55 ns theta_avg_power H2000's_1 H3000's_0.5 18 18 18 0.06 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.5 18 18 18 0.06 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.5 18 18 18 0.06 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.5 18 18 18 0.06 0.57 ns theta_avg_power H3000's_0.5 H3000's_0.5 H3000's_0.75 18 18 18 0.06 0.57 ns	theta avg power	H1000's 1	H2000's 1	22	16	2.29	0.03	*
theta_avg_power H1000's_1 H3000's_0.5 22 18 2.75 0.01 ** theta_avg_power H1000's_1 H3000's_0.75 22 18 2.46 0.02 * theta_avg_power H1000's_1 H3000's_1 22 18 2.56 0.01 ** theta_avg_power H2000's_0.25 H2000's_0.5 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.75 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_1 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_1 16 16 0.005 0.96 ns theta_avg_power H2000's_0.25 H3000's_0.25 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 0.054 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 0.059 0.56 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 0.059 0.56 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.03 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.03 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.03 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.33 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.05 0.33 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.05 0.33 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.07 0.33 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.05 0.39 0.70 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.06 0.55 ns theta_avg_power H2000's_0.5 H3000's_0.5 18 18 18 0.06 0.55 ns theta_avg_pow	theta avg power	H1000's 1	H3000's 0.25	22	18	3.03	0.00	**
theta_avg_power H1000's_1 H3000's_0.75 22 18 2.46 0.02 * theta_avg_power H1000's_1 H3000's_1 22 18 2.56 0.01 * theta_avg_power H2000's_0.25 H2000's_0.5 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.75 16 16 0.096 ns theta_avg_power H2000's_0.25 H2000's_1 1 16 16 -0.05 0.96 ns theta_avg_power H2000's_0.25 H3000's_0.25 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 0.57 0.57 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_1 1 16 18 0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_1 1 16 18 0.59 0.56 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.98 0.34 ns theta_avg_power H2000's_0.75 H2000's_1 1 16 18 0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.75 18 18 0.06 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 0.06 0.55 ns theta_avg_power H3000's			H3000's_0.5	22	18	2.75	0.01	**
theta_avg_power H2000's_0.25 H2000's_0.5 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.75 16 16 0.49 0.63 ns theta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 -0.05 0.96 ns theta_avg_power H2000's_0.25 H2000's_0.25 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.25 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 -0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 -0.54 0.60 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 -0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 18 -0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 16 -0.59 0.56 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 18 -0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.25 16 18 -0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 -0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.03 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.56 0.58 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.04 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.39 0.70 ns theta_avg_power H2000's_1 H3000's_0.5 18 18 0.060 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.66 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.66 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.66 0.57 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.66 0.57 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.66 0.57 ns			$H3000's_0.75$	22	18	2.46	0.02	*
theta_avg_power H2000's_0.25	theta_avg_power	H1000's_1	H3000's_1	22	18	2.56	0.01	*
theta_avg_power H2000's_0.25 H3000's_0.25 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 0.54 0.60 ns theta_avg_power H2000's_0.25 H3000's_1 16 18 0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 0.59 0.56 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 0.0.59 0.56 ns theta_avg_power H2000's_0.5 H2000's_1 16 16 0.53 0.14 ns theta_avg_power H2000's_0.5 H3000's_0.25 16 18 0.029 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.053 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 0.053 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_1 16 16 18 0.05 0.30 ns theta_avg_power H2000's_0.75 H3000's_1 16 16 16 0.102 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.05 0.30 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.05 0.30 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.05 0.30 0.60 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.05 0.30 0.60 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.04 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.04 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 18 18 18 0.02 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 18 0.060 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 18 0.060 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.5 18 18 18 0.060 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 0.060 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 0.060 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 0.060 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 0.060 0.55 ns theta_avg_power H3000's	theta_avg_power	H2000's_0.25	$H2000's_0.5$	16	16	0.49	0.63	ns
theta_avg_power H2000's_0.25 H3000's_1 16 16 -1.00 0.32 ns theta_avg_power H2000's_0.25 H3000's_0.25 16 18 0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 -0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.5 16 18 -0.54 0.60 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 -0.54 0.60 ns theta_avg_power H2000's_0.25 H3000's_1 16 18 -0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 -0.59 0.56 ns theta_avg_power H2000's_0.5 H2000's_1 16 16 -0.59 0.56 ns theta_avg_power H2000's_0.5 H2000's_1 16 16 -1.53 0.14 ns theta_avg_power H2000's_0.5 H3000's_0.25 16 18 -0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 -0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_1 1 16 18 -1.05 0.30 ns theta_avg_power H2000's_0.75 H3000's_1 1 16 18 -1.05 0.30 ns theta_avg_power H2000's_0.75 H3000's_1 1 16 16 -1.02 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.53 0.60 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 18 18 0.036 0.72 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.060 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.060 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.060 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.5 18 18 0.060 0.55 ns theta_avg	theta_avg_power	H2000's_0.25	$H2000's_0.75$	16	16	-0.05	0.96	ns
theta_avg_power H2000's_0.25 H3000's_0.5 16 18 -0.12 0.90 ns theta_avg_power H2000's_0.25 H3000's_0.75 16 18 -0.54 0.60 ns theta_avg_power H2000's_0.25 H3000's_1 16 18 -0.57 0.57 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 -0.59 0.56 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 -0.59 0.56 ns theta_avg_power H2000's_0.5 H3000's_0.25 16 18 -0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.25 16 18 -0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 -0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 -0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_1 16 18 -1.05 0.30 ns theta_avg_power H2000's_0.75 H2000's_1 16 16 -1.02 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.56 0.58 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 -0.56 0.58 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.72 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.060 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.060 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 0.060 0.55 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 0.060 0.57 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 0			H2000's_1	16	16	-1.00	0.32	ns
theta_avg_power H2000's_0.25	theta_avg_power	H2000's_0.25	$H3000's_0.25$	16	18	0.12	0.90	ns
theta_avg_power H2000's_0.25			$H3000's_0.5$	16	18	-0.12	0.90	ns
theta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 -0.59 0.56 ns theta_avg_power H2000's_0.5 H2000's_0.75 16 16 16 -0.59 0.56 ns theta_avg_power H2000's_0.5 H2000's_1 16 16 -1.53 0.14 ns theta_avg_power H2000's_0.5 H3000's_0.25 16 18 -0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 -0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_1 16 18 -1.05 0.30 ns theta_avg_power H2000's_0.75 H3000's_1 16 16 16 -1.02 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.56 0.58 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 0.03 0.60 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.5 18 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.66 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.66 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.66 0.55 ns			H3000's 0.75	16	18	-0.54	0.60	ns
theta_avg_power H2000's_0.5 H2000's_0.75 16 16 16 -0.59 0.56 ns theta_avg_power H2000's_0.5 H2000's_1 16 16 16 -1.53 0.14 ns theta_avg_power H2000's_0.5 H3000's_0.25 16 18 -0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 -0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_1 16 18 -1.05 0.30 ns theta_avg_power H2000's_0.75 H2000's_1 16 16 -1.02 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.56 0.58 ns theta_avg_power H2000's_1 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.72 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.36 0.72 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.060 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.060 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 0.5 H3000's_0.75 18 18 18 -0.66 0.72 ns theta_avg_power H3000's_0.5 0.5 H3000's_0.75 18 18 18 -0.66 0.72 ns theta_avg_power H3000's_0.5 0.5 H3000's_0.75 18 18 18 -0.66 0.72 ns theta_avg_power H3000's_0.5 0.5 H3000's_0.75 18 18 18 -0.66 0.72 ns theta_avg_power H3000's_0.5 0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 0.5 H3000's_0.75 18 18 18 -0.37 0.71 ns			H3000's_1	16	18	-0.57	0.57	ns
theta_avg_power H2000's_0.5 H3000's_0.25 16 18 -0.29 0.77 ns theta_avg_power H2000's_0.5 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.5 H3000's_0.75 16 18 -0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_1 16 18 -1.05 0.30 ns theta_avg_power H2000's_0.75 H2000's_1 16 16 -1.02 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.56 0.58 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.39 0.70 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.030 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_			$H2000's_0.75$	16	16	-0.59	0.56	ns
theta_avg_power H2000's_0.5	theta_avg_power	H2000's_0.5	H2000's_1	16	16	-1.53	0.14	ns
theta_avg_power H2000's_0.5 H3000's_0.75 16 18 -0.98 0.34 ns theta_avg_power H2000's_0.5 H3000's_1 16 16 18 -1.05 0.30 ns theta_avg_power H2000's_0.75 H2000's_1 16 16 -1.02 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_1 16 18 -0.56 0.58 ns theta_avg_power H2000's_1 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 0.5 H3000's_0.75 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 -0.37 0.71 ns	theta_avg_power	H2000's_0.5	${ m H3000's} { m _0.25}$	16	18	-0.29	0.77	ns
theta_avg_power H2000's_0.5 H3000's_1 16 18 -1.05 0.30 ns theta_avg_power H2000's_0.75 H2000's_1 16 16 -1.02 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_1 16 18 -0.56 0.58 ns theta_avg_power H2000's_1 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.22 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns	theta_avg_power	H2000's_0.5	$H3000's_0.5$	16	18	-0.53	0.60	ns
theta_avg_power H2000's_0.75 H2000's_1 16 16 -1.02 0.32 ns theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.56 0.58 ns theta_avg_power H2000's_1 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.37 0.71 ns	theta_avg_power	H2000's_0.5	$H3000's_0.75$	16	18	-0.98	0.34	ns
theta_avg_power H2000's_0.75 H3000's_0.25 16 18 0.17 0.86 ns theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_1 16 18 -0.56 0.58 ns theta_avg_power H2000's_1 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.39 0.70 ns theta_avg_power H2000's_1 H3000's_0.5 18 18 -0.22 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_1 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.37 0.71 ns	theta_avg_power	H2000's_0.5	H3000's_1	16	18	-1.05	0.30	ns
theta_avg_power H2000's_0.75 H3000's_0.5 16 18 -0.09 0.93 ns theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_1 16 18 -0.56 0.58 ns theta_avg_power H2000's_1 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_1 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.22 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.37 0.71 ns	theta_avg_power	H2000's_0.75	H2000's_1	16	16	-1.02	0.32	ns
theta_avg_power H2000's_0.75 H3000's_0.75 16 18 -0.53 0.60 ns theta_avg_power H2000's_0.75 H3000's_1 16 18 -0.56 0.58 ns theta_avg_power H2000's_1 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_1 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.22 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_1 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns	theta_avg_power	H2000's_0.75	${ m H3000's} { m _0.25}$	16	18	0.17	0.86	ns
theta_avg_power H2000's_0.75 H3000's_1 16 18 -0.56 0.58 ns theta_avg_power H2000's_1 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_1 16 18 0.39 0.70 ns theta_avg_power H2000's_1 H3000's_1 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.22 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_1 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 18 -0.37 0.71 ns	$theta_avg_power$	H2000's_0.75	${ m H3000's} { m _0.5}$	16	18	-0.09	0.93	ns
theta_avg_power H2000's_1 H3000's_0.25 16 18 1.02 0.31 ns theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_1 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.22 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_1 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.37 0.71 ns	$theta_avg_power$	H2000's_0.75	${ m H3000's} { m _0.75}$	16	18	-0.53	0.60	ns
theta_avg_power H2000's_1 H3000's_0.5 16 18 0.74 0.47 ns theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_1 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.22 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_1 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.37 0.71 ns	$theta_avg_power$	H2000's_0.75	H3000's_1	16	18	-0.56	0.58	ns
theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_1 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.22 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_1 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.37 0.71 ns	$theta_avg_power$	H2000's_1	${ m H3000's} { m _0.25}$	16	18	1.02	0.31	ns
theta_avg_power H2000's_1 H3000's_0.75 16 18 0.36 0.72 ns theta_avg_power H2000's_1 H3000's_1 16 18 0.39 0.70 ns theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.22 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_1 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.37 0.71 ns	theta_avg_power	H2000's_1	$H3000's_0.5$	16	18	0.74	0.47	ns
theta_avg_power H3000's_0.25 H3000's_0.5 18 18 -0.22 0.83 ns theta_avg_power H3000's_0.25 H3000's_0.75 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_1 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.37 0.71 ns			$H3000's_0.75$	16	18	0.36	0.72	ns
theta_avg_power H3000's_0.25 H3000's_0.75 18 18 -0.60 0.55 ns theta_avg_power H3000's_0.25 H3000's_1 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.37 0.71 ns	theta_avg_power	H2000's_1	H3000's_1	16	18	0.39	0.70	ns
theta_avg_power H3000's_0.25 H3000's_1 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.37 0.71 ns	theta_avg_power	H3000's_0.25	$H3000's_0.5$	18	18	-0.22	0.83	ns
theta_avg_power H3000's_0.25 H3000's_1 18 18 -0.63 0.53 ns theta_avg_power H3000's_0.5 H3000's_0.75 18 18 -0.36 0.72 ns theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.37 0.71 ns	theta_avg_power	H3000's_0.25	$H3000's_0.75$	18	18	-0.60	0.55	ns
theta_avg_power H3000's_0.5 H3000's_1 18 18 -0.37 0.71 ns			H3000's_1	18	18	-0.63	0.53	ns
= 0=1 = =			${ m H3000's} { m _0.75}$	18	18	-0.36	0.72	ns
theta_avg_power H3000's_0.75 H3000's_1 18 18 0.01 1.00 ns	~ -		H3000's_1	18	18	-0.37	0.71	ns
	theta_avg_power	H3000's_0.75	H3000's_1	18	18	0.01	1.00	ns

ALPHA T-TESTS

Cluster: 3 Alpha Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_powe	er H1000's_0.25	$\rm H1000's_0.5$	23	23	0.69	0.50	ns
alpha_avg_powe	er H1000's_0.25	$\rm H1000's_0.75$	23	23	0.34	0.74	ns
alpha_avg_powe	er H1000's_0.25	H1000's_1	23	23	0.50	0.62	ns
alpha_avg_powe	er H1000's_0.25	$H2000's_0.25$	23	18	1.72	0.09	ns
alpha_avg_powe	er H1000's_0.25	$H2000's_0.5$	23	18	1.80	0.08	ns
alpha_avg_powe	er H1000's_0.25	$H2000's_0.75$	23	18	1.76	0.09	ns
alpha_avg_powe	er H1000's_0.25	H2000's_1	23	18	2.14	0.04	*

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	H3000's_0.25	23	23	1.26	0.21	ns
alpha_avg_power H1000's_0.25	H3000's 0.5	23	23	1.46	0.15	ns
alpha avg power H1000's 0.25	H3000's 0.75	23	23	1.09	0.28	ns
alpha_avg_power H1000's_0.25	H3000's 1	23	23	1.93	0.06	ns
alpha_avg_power H1000's_0.5	H1000's 0.75	23	23	-0.33	0.74	ns
alpha_avg_power H1000's_0.5	H1000's 1	23	23	-0.14	0.89	ns
alpha avg power H1000's 0.5	H2000's 0.25	23	18	1.10	0.28	ns
alpha_avg_power H1000's_0.5	H2000's 0.5	23	18	1.18	0.24	ns
alpha_avg_power H1000's_0.5	H2000's 0.75	23	18	1.13	0.27	ns
alpha_avg_power H1000's_0.5	H2000's 1	23	18	1.52	0.14	ns
alpha_avg_power H1000's_0.5	H3000's 0.25	23	23	0.52	0.61	ns
alpha_avg_power H1000's_0.5	H3000's 0.5	23	23	0.74	0.46	ns
alpha_avg_power H1000's_0.5	H3000's 0.75	$\frac{23}{23}$	23	0.36	0.40	ns
alpha_avg_power H1000's_0.5 alpha_avg_power H1000's_0.5	H3000's 1	23	23	1.24	0.12 0.22	
alpha_avg_power H1000's_0.5 alpha_avg_power H1000's_0.75	H1000's 1	23	23 23	0.17	0.22	ns
alpha_avg_power H1000's_0.75 alpha_avg_power H1000's_0.75	H2000's 0.25	23	18	1.37	0.30	ns
	H2000's 0.5	23 23	18	1.37 1.45	0.15	ns
alpha_avg_power H1000's_0.75	H2000's 0.75					ns
alpha_avg_power H1000's_0.75	_	23	18	1.40	0.17	ns
alpha_avg_power H1000's_0.75	H2000's_1	23	18	1.78	0.08	ns
alpha_avg_power H1000's_0.75	H3000's_0.25	23	23	0.86	0.39	ns
alpha_avg_power H1000's_0.75	H3000's_0.5	23	23	1.06	0.29	ns
alpha_avg_power H1000's_0.75	H3000's_0.75	23	23	0.70	0.49	ns
alpha_avg_power H1000's_0.75	H3000's_1	23	23	1.54	0.13	ns
alpha_avg_power H1000's_1	H2000's_0.25	23	18	1.16	0.25	ns
alpha_avg_power H1000's_1	H2000's_0.5	23	18	1.24	0.22	ns
alpha_avg_power H1000's_1	H2000's_0.75	23	18	1.19	0.24	ns
alpha_avg_power H1000's_1	H2000's_1	23	18	1.56	0.13	ns
alpha_avg_power H1000's_1	H3000's_0.25	23	23	0.63	0.53	ns
alpha_avg_power H1000's_1	$H3000's_0.5$	23	23	0.83	0.41	ns
alpha_avg_power H1000's_1	$H3000's_0.75$	23	23	0.48	0.63	ns
alpha_avg_power $H1000$ 's_1	H3000's_1	23	23	1.29	0.20	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_0.5$	18	18	0.08	0.94	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_0.75$	18	18	0.01	0.99	ns
alpha_avg_power $H2000$ 's_ 0.25	H2000's_1	18	18	0.38	0.71	ns
alpha_avg_power $H2000$ 's_ 0.25	$H3000's_0.25$	18	23	-0.75	0.46	ns
alpha_avg_power H2000's_0.25	${ m H3000's} { m _0.5}$	18	23	-0.50	0.62	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.75}$	18	23	-0.85	0.40	ns
alpha_avg_power H2000's_0.25	H3000's_1	18	23	0.00	1.00	ns
alpha_avg_power H2000's_0.5	$H2000's_0.75$	18	18	-0.07	0.95	ns
alpha_avg_power H2000's_0.5	H2000's_1	18	18	0.30	0.76	ns
alpha_avg_power H2000's_0.5	$H3000's_0.25$	18	23	-0.84	0.41	ns
alpha_avg_power H2000's_0.5	H3000's 0.5	18	23	-0.59	0.56	$_{ m ns}$
alpha avg power H2000's 0.5	H3000's 0.75	18	23	-0.94	0.36	$_{ m ns}$
alpha_avg_power H2000's_0.5	H3000's 1	18	23	-0.08	0.94	ns
alpha avg power H2000's 0.75	H2000's 1	18	18	0.38	0.71	ns
alpha avg power H2000's 0.75	H3000's 0.25	18	23	-0.77	0.44	ns
alpha_avg_power H2000's_0.75	H3000's 0.5	18	23	-0.52	0.60	ns
alpha_avg_power H2000's_0.75	H3000's 0.75	18	23	-0.88	0.39	ns
alpha_avg_power H2000's_0.75	H3000's 1	18	23	-0.01	0.99	ns
alpha_avg_power H2000's_1	H3000's 0.25	18	23	-1.22	0.23	ns
alpha_avg_power H2000's_1	H3000's 0.5	18	23	-0.95	0.35	ns
alpha_avg_power H2000's_1	H3000's 0.75	18	23	-1.30	0.20	ns
a.p.i.a. a. 8_power 112000 s_1	110000 B_0.10	10	20	1.00	0.20	1113

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_powe	er H2000's_1	H3000's_1	18	23	-0.42	0.67	ns
alpha_avg_powe	er H3000's_0.25	${ m H3000's} { m _0.5}$	23	23	0.28	0.78	ns
alpha_avg_powe	er H3000's_0.25	${ m H3000's} { m _0.75}$	23	23	-0.16	0.87	ns
alpha_avg_powe	er H3000's_0.25	H3000's_1	23	23	0.88	0.38	ns
alpha_avg_powe	er H3000's_0.5	${ m H3000's} { m _0.75}$	23	23	-0.42	0.68	ns
alpha_avg_powe	er H3000's_0.5	H3000's_1	23	23	0.59	0.56	ns
alpha_avg_powe	er H3000's_0.75	H3000's_1	23	23	0.99	0.33	ns

Cluster: 4 Alpha Average Power t-tests

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	H1000's_0.5	18	18	0.09	0.93	ns
alpha_avg_power H1000's_0.25	$\rm H1000's_0.75$	18	18	0.09	0.93	ns
alpha_avg_power $H1000$ 's_ 0.25	H1000's_1	18	18	0.03	0.97	ns
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.25$	18	16	-1.40	0.17	ns
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.5$	18	16	-1.29	0.21	ns
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.75$	18	16	-1.05	0.30	ns
alpha_avg_power $H1000$ 's_ 0.25	H2000's_1	18	16	-1.06	0.30	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	18	16	-1.19	0.24	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H}3000'{ m s}_0.5$	18	16	-0.97	0.34	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.75}$	18	16	-1.01	0.32	ns
alpha_avg_power $H1000$ 's_ 0.25	H3000's_1	18	16	-0.89	0.38	ns
alpha_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	18	18	-0.01	1.00	ns
alpha_avg_power $H1000$ 's_ 0.5	H1000's_1	18	18	-0.06	0.96	ns
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.25$	18	16	-1.47	0.16	ns
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.5$	18	16	-1.37	0.18	ns
alpha_avg_power H1000's_0.5	$H2000's_0.75$	18	16	-1.13	0.27	ns
alpha_avg_power H1000's_0.5	H2000's_1	18	16	-1.13	0.27	ns
alpha_avg_power H1000's_0.5	$H3000's_0.25$	18	16	-1.27	0.21	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_0.5$	18	16	-1.04	0.30	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_0.75$	18	16	-1.09	0.28	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_1$	18	16	-0.97	0.34	$_{ m ns}$
alpha_avg_power H1000's_0.75	H1000's_1	18	18	-0.06	0.96	$_{ m ns}$
alpha_avg_power H1000's_0.75	$H2000's_0.25$	18	16	-1.52	0.14	ns
alpha_avg_power H1000's_0.75	$H2000's_0.5$	18	16	-1.42	0.17	ns
alpha_avg_power $H1000$ 's_ 0.75	$H2000's_0.75$	18	16	-1.18	0.25	$_{ m ns}$
alpha_avg_power H1000's_0.75	H2000's_1	18	16	-1.17	0.26	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.75	$H3000's_0.25$	18	16	-1.34	0.19	ns
alpha_avg_power $H1000$ 's_ 0.75	$H3000's_0.5$	18	16	-1.09	0.29	$_{ m ns}$
alpha_avg_power H1000's_0.75	$H3000's_0.75$	18	16	-1.14	0.26	ns
$alpha_avg_power~H1000$'s $_0.75$	H3000's_1	18	16	-1.02	0.32	ns
alpha_avg_power H1000's_1	${ m H2000's} { m _0.25}$	18	16	-1.46	0.16	ns
$alpha_avg_power~H1000$'s $_1$	${ m H2000's} { m _0.5}$	18	16	-1.36	0.19	ns
alpha_avg_power H1000's_1	$H2000's_0.75$	18	16	-1.12	0.28	ns
$alpha_avg_power~H1000$'s $_1$	H2000's_1	18	16	-1.11	0.28	ns
alpha_avg_power $H1000$ 's_1	${ m H3000's} { m _0.25}$	18	16	-1.27	0.22	$_{ m ns}$
alpha_avg_power $H1000$ 's_1	${ m H3000's} { m _0.5}$	18	16	-1.03	0.31	ns
alpha_avg_power $H1000$ 's_1	${ m H3000's} { m _0.75}$	18	16	-1.08	0.29	$_{ m ns}$
alpha_avg_power $H1000$ 's_1	H3000's_1	18	16	-0.96	0.35	ns
alpha_avg_power H2000's_0.25	${ m H2000's} { m _0.5}$	16	16	0.14	0.89	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H2000's_0.25	${ m H2000's} { m _0.75}$	16	16	0.40	0.69	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_1$	16	16	0.31	0.76	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.25}$	16	16	0.34	0.74	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.5}$	16	16	0.48	0.63	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.75}$	16	16	0.45	0.66	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.25	H3000's_1	16	16	0.61	0.54	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.5	$\rm H2000's_0.75$	16	16	0.27	0.79	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.5	$H2000's_1$	16	16	0.17	0.86	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.25}$	16	16	0.20	0.84	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.5	${ m H}3000{ m 's}_0.5$	16	16	0.35	0.73	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.5	${ m H}3000{ m 's}_0.75$	16	16	0.31	0.76	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.5	H3000's_1	16	16	0.48	0.64	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.75	$H2000's_1$	16	16	-0.08	0.93	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.25}$	16	16	-0.08	0.94	$_{ m ns}$
alpha_avg_power H2000's_0.75	${ m H3000's} { m _0.5}$	16	16	0.08	0.94	ns
alpha_avg_power H2000's_0.75	${ m H3000's} { m _0.75}$	16	16	0.04	0.97	ns
alpha_avg_power $H2000$ 's_ 0.75	$H3000's_1$	16	16	0.21	0.84	$_{ m ns}$
alpha_avg_power H2000's_1	${ m H3000's} { m _0.25}$	16	16	0.01	0.99	$_{ m ns}$
alpha_avg_power H2000's_1	${ m H3000's} { m _0.5}$	16	16	0.16	0.87	$_{ m ns}$
alpha_avg_power H2000's_1	$H3000's_0.75$	16	16	0.12	0.90	$_{ m ns}$
alpha_avg_power H2000's_1	H3000's_1	16	16	0.28	0.78	$_{ m ns}$
alpha_avg_power H3000's_0.25	$H3000's_0.5$	16	16	0.17	0.87	$_{ m ns}$
alpha_avg_power H3000's_0.25	$H3000's_0.75$	16	16	0.12	0.90	$_{ m ns}$
alpha_avg_power H3000's_0.25	H3000's_1	16	16	0.30	0.76	$_{ m ns}$
alpha_avg_power H3000's_0.5	$H3000's_0.75$	16	16	-0.04	0.97	$_{ m ns}$
alpha_avg_power H3000's_0.5	$H3000's_1$	16	16	0.12	0.90	ns
alpha_avg_power H3000's_0.75	H3000's_1	16	16	0.17	0.87	ns

Cluster: 5 Alpha Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power	H1000's_0.25	$H1000's_0.5$	24	24	0.46	0.65	ns
$alpha_avg_power$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	24	24	0.41	0.68	ns
alpha_avg_power	$\rm H1000's_0.25$	$\rm H1000's_1$	24	24	0.06	0.95	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.25$	${\rm H}2000' {\rm s}_0.25$	24	21	1.91	0.06	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.25$	${ m H2000's} { m _0.5}$	24	21	2.44	0.02	*
alpha_avg_power	$\rm H1000's_0.25$	${ m H2000's} { m _0.75}$	24	21	2.46	0.02	*
alpha_avg_power	$\rm H1000's_0.25$	$H2000's_1$	24	21	2.42	0.02	*
alpha_avg_power	$\rm H1000's_0.25$	${ m H}3000'{ m s}_0.25$	24	22	0.46	0.64	$_{ m ns}$
alpha_avg_power	H1000's_0.25	$H3000's_0.5$	24	22	0.81	0.42	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.25$	${ m H}3000{ m 's}_0.75$	24	22	0.94	0.36	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.25$	H3000's_1	24	22	1.25	0.22	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.5$	$\rm H1000's_0.75$	24	24	-0.06	0.95	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.5$	$\rm H1000's_1$	24	24	-0.38	0.70	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.5$	${\rm H}2000' {\rm s}_0.25$	24	21	1.46	0.15	$_{ m ns}$
alpha_avg_power	H1000's_0.5	$H2000's_0.5$	24	21	1.96	0.06	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.5$	$\rm H2000's_0.75$	24	21	2.00	0.05	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.5$	$H2000's_1$	24	21	1.95	0.06	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	24	22	0.09	0.93	$_{ m ns}$
alpha_avg_power	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	24	22	0.44	0.66	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
alpha_avg_power H1000's_0.5	${ m H3000's} { m _0.75}$	24	22	0.55	0.59	ns
alpha_avg_power $H1000$ 's_ 0.5	H3000's_1	24	22	0.85	0.40	ns
alpha_avg_power $H1000$ 's_ 0.75	H1000's_1	24	24	-0.33	0.74	ns
alpha_avg_power H1000's_0.75	$H2000's_0.25$	24	21	1.55	0.13	ns
alpha_avg_power H1000's_0.75	$H2000's_0.5$	24	21	2.07	0.04	*
alpha_avg_power H1000's_0.75	$\rm H2000's_0.75$	24	21	2.11	0.04	*
alpha_avg_power H1000's_0.75	H2000's_1	24	21	2.06	0.05	*
alpha_avg_power H1000's_0.75	$H3000's_0.25$	24	22	0.14	0.89	ns
alpha_avg_power H1000's_0.75	$H3000's_0.5$	24	22	0.49	0.63	$_{ m ns}$
alpha_avg_power H1000's_0.75	$H3000's_0.75$	24	22	0.61	0.55	$_{ m ns}$
alpha_avg_power H1000's_0.75	H3000's 1	24	22	0.91	0.37	$_{ m ns}$
alpha_avg_power H1000's_1	H2000's 0.25	24	21	1.78	0.08	ns
alpha_avg_power H1000's_1	H2000's 0.5	24	21	2.27	0.03	*
alpha_avg_power H1000's_1	H2000's 0.75	24	21	2.30	0.03	*
alpha_avg_power H1000's_1	H2000's 1	24	21	2.26	0.03	*
alpha_avg_power H1000's_1	H3000's_0.25	24	22	0.40	0.69	ns
alpha_avg_power H1000's_1	H3000's 0.5	24	22	0.74	0.46	ns
alpha_avg_power H1000's_1	H3000's 0.75	24	22	0.86	0.40	ns
alpha_avg_power H1000's_1	H3000's 1	24	22	1.16	0.25	ns
alpha_avg_power H2000's_0.25	H2000's 0.5	21	21	0.41	0.69	ns
alpha_avg_power H2000's_0.25	H2000's 0.75	21	21	0.48	0.63	ns
alpha_avg_power H2000's_0.25	H2000's 1	21	21	0.41	0.68	ns
alpha_avg_power H2000's_0.25	H3000's_0.25	$\overline{21}$	$\frac{-}{22}$	-1.10	0.28	ns
alpha_avg_power H2000's_0.25	H3000's 0.5	21	$\frac{-}{22}$	-0.77	0.44	ns
alpha_avg_power H2000's_0.25	H3000's 0.75	21	$\frac{-}{22}$	-0.70	0.49	ns
alpha_avg_power H2000's_0.25	H3000's 1	21	$\frac{-}{22}$	-0.47	0.64	ns
alpha_avg_power H2000's_0.5	H2000's 0.75	21	21	0.09	0.93	ns
alpha_avg_power H2000's_0.5	H2000's 1	21	21	0.01	0.99	ns
alpha_avg_power H2000's_0.5	H3000's 0.25	21	$\frac{1}{2}$	-1.47	0.15	ns
alpha_avg_power H2000's_0.5	H3000's 0.5	21	$\frac{-}{22}$	-1.14	0.26	ns
alpha_avg_power H2000's_0.5	H3000's 0.75	21	$\frac{-}{22}$	-1.08	0.29	ns
alpha_avg_power H2000's_0.5	H3000's 1	21	22	-0.86	0.40	ns
alpha_avg_power H2000's_0.75	H2000's 1	21	21	-0.08	0.94	ns
alpha_avg_power H2000's_0.75	H3000's 0.25	21	$\frac{1}{2}$	-1.52	0.14	ns
alpha_avg_power H2000's_0.75	H3000's 0.5	21	$\frac{-}{22}$	-1.19	0.24	ns
alpha_avg_power H2000's_0.75	H3000's_0.75	21	22	-1.13	0.27	ns
alpha_avg_power H2000's_0.75	H3000's_1	21	$\frac{-}{22}$	-0.92	0.36	ns
alpha avg power H2000's 1	H3000's 0.25	21	22	-1.47	0.15	ns
alpha_avg_power H2000's_1	H3000's 0.5	21	22	-1.14	0.26	ns
alpha_avg_power H2000's_1	H3000's 0.75	21	22	-1.07	0.29	ns
alpha_avg_power H2000's_1	H3000's 1	21	22	-0.86	0.40	ns
alpha_avg_power H3000's_0.25	H3000's 0.5	22	22	0.30	0.77	ns
alpha_avg_power H3000's_0.25	H3000's 0.75	22	22	0.39	0.70	ns
alpha_avg_power H3000's_0.25	H3000's 1	22	22	0.63	0.53	ns
alpha avg power H3000's 0.5	H3000's 0.75	$\frac{22}{22}$	$\frac{22}{22}$	0.08	0.93	ns
alpha_avg_power H3000's_0.5 alpha_avg_power H3000's_0.5	H3000's 1	$\frac{22}{22}$	$\frac{22}{22}$	0.32	0.75	ns
alpha avg power H3000's 0.75	H3000's 1	$\frac{22}{22}$	$\frac{22}{22}$	0.32 0.24	0.73	ns
arbita_ar8_bower 119000 s_0.19	110000 p_1	44	44	0.44	0.01	112

Cluster: 6 Alpha Average Power t-tests

EEG Var Group_Speed_1	Group_Speed_2	N1	N2	tstat	p-value	*sig.
alpha_avg_power H1000's_0.25	H1000's_0.5	18	18	0.59	0.56	ns
alpha_avg_power H1000's_0.25	$H1000's_0.75$	18	18	0.87	0.39	ns
alpha_avg_power $H1000$ 's_ 0.25	H1000's_1	18	18	-0.04	0.97	ns
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_0.25$	18	13	0.95	0.35	ns
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000{\rm 's}_0.5$	18	13	1.08	0.30	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.75$	18	13	0.70	0.50	ns
alpha_avg_power $H1000$ 's_ 0.25	H2000's_1	18	13	0.59	0.56	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	18	11	0.70	0.50	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	18	11	0.65	0.53	ns
alpha_avg_power $H1000$ 's_ 0.25	H3000's_0.75	18	11	0.76	0.46	ns
alpha_avg_power $H1000$ 's_ 0.25	H3000's_1	18	11	0.59	0.57	ns
alpha_avg_power $H1000$ 's_ 0.5	H1000's_0.75	18	18	0.20	0.84	ns
alpha_avg_power H1000's_0.5	H1000's_1	18	18	-0.66	0.51	ns
alpha_avg_power H1000's_0.5	$H2000's_0.25$	18	13	0.54	0.60	ns
alpha_avg_power H1000's_0.5	$H2000's_0.5$	18	13	0.66	0.52	ns
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.75$	18	13	0.27	0.79	ns
alpha_avg_power $H1000$ 's_ 0.5	H2000's_1	18	13	0.08	0.94	ns
alpha_avg_power H1000's_0.5	$H3000's_0.25$	18	11	0.26	0.80	ns
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_0.5$	18	11	0.23	0.82	ns
alpha_avg_power H1000's_0.5	${ m H}3000{ m 's}_0.75$	18	11	0.31	0.76	ns
alpha_avg_power $H1000$ 's_ 0.5	H3000's_1	18	11	0.21	0.84	ns
alpha_avg_power H1000's_0.75	H1000's_1	18	18	-0.97	0.34	ns
alpha_avg_power $H1000$ 's_ 0.75	${\rm H}2000' {\rm s} _0.25$	18	13	0.43	0.67	ns
alpha_avg_power H1000's_0.75	$H2000's_0.5$	18	13	0.57	0.58	ns
alpha_avg_power H1000's_0.75	$H2000's_0.75$	18	13	0.15	0.89	ns
alpha_avg_power H1000's_0.75	H2000's_1	18	13	-0.08	0.94	ns
alpha_avg_power H1000's_0.75	$H3000's_0.25$	18	11	0.13	0.90	ns
alpha_avg_power H1000's_0.75	$H3000's_0.5$	18	11	0.11	0.92	ns
alpha_avg_power H1000's_0.75	$H3000's_0.75$	18	11	0.18	0.86	ns
alpha_avg_power H1000's_0.75	H3000's_1	18	11	0.09	0.93	ns
alpha_avg_power H1000's_1	$H2000's_0.25$	18	13	1.00	0.33	ns
alpha_avg_power H1000's_1	$H2000's_0.5$	18	13	1.13	0.28	ns
alpha_avg_power H1000's_1	$H2000's_0.75$	18	13	0.74	0.47	ns
alpha_avg_power H1000's_1	H2000's_1	18	13	0.64	0.53	ns
alpha_avg_power H1000's_1	$H3000's_0.25$	18	11	0.74	0.47	ns
alpha_avg_power H1000's_1	$H3000's_0.5$	18	11	0.69	0.50	ns
alpha_avg_power H1000's_1	$H3000's_0.75$	18	11	0.81	0.43	ns
alpha_avg_power H1000's_1	H3000's_1	18	11	0.62	0.54	ns
alpha_avg_power H2000's_0.25	$H2000's_0.5$	13	13	0.11	0.92	ns
alpha_avg_power H2000's_0.25	$H2000's_0.75$	13	13	-0.23	0.82	ns
alpha_avg_power H2000's_0.25	H2000's_1	13	13	-0.43	0.67	ns
alpha_avg_power H2000's_0.25	$H3000's_0.25$	13	11	-0.25	0.81	ns
alpha_avg_power H2000's_0.25	$H3000's_0.5$	13	11	-0.25	0.80	ns
alpha_avg_power H2000's_0.25	$H3000's_0.75$	13	11	-0.22	0.83	ns
alpha_avg_power H2000's_0.25	H3000's_1	13	11	-0.24	0.81	ns
alpha_avg_power H2000's_0.5	H2000's_0.75	13	13	-0.34	0.74	$_{ m ns}$
alpha_avg_power H2000's_0.5	H2000's_1	13	13	-0.55	0.59	$_{ m ns}$
alpha_avg_power H2000's_0.5	H3000's_0.25	13	11	-0.36	0.72	ns
alpha_avg_power H2000's_0.5	H3000's_0.5	13	11	-0.36	0.72	ns
alpha_avg_power H2000's_0.5	H3000's 0.75	13	11	-0.33	0.74	ns
alpha_avg_power H2000's_0.5	H3000's 1	13	11	-0.34	0.73	ns
alpha_avg_power H2000's_0.75	H2000's 1	13	13	-0.18	0.86	ns
- = =	_					

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_powe	er H2000's_0.75	H3000's_0.25	13	11	-0.01	0.99	ns
alpha_avg_powe	er H2000's_0.75	$H3000's_0.5$	13	11	-0.03	0.98	$_{ m ns}$
alpha_avg_powe	er H2000's_0.75	$H3000's_0.75$	13	11	0.02	0.98	$_{ m ns}$
alpha_avg_powe	er H2000's_0.75	H3000's_1	13	11	-0.03	0.98	$_{ m ns}$
alpha_avg_powe	er H2000's_1	${ m H3000's} { m _0.25}$	13	11	0.17	0.86	$_{ m ns}$
alpha_avg_powe	er H2000's_1	${ m H3000's} { m _0.5}$	13	11	0.15	0.88	ns
alpha_avg_powe	er H2000's_1	$H3000's_0.75$	13	11	0.22	0.83	$_{ m ns}$
alpha_avg_powe	er H2000's_1	${ m H3000's}{ m _1}$	13	11	0.14	0.89	ns
alpha_avg_powe	er H3000's_0.25	$H3000's_0.5$	11	11	-0.02	0.99	$_{ m ns}$
alpha_avg_powe	er H3000's_0.25	$H3000's_0.75$	11	11	0.04	0.97	$_{ m ns}$
alpha_avg_powe	er H3000's_0.25	H3000's_1	11	11	-0.02	0.99	$_{ m ns}$
alpha_avg_powe	er H3000's_0.5	$H3000's_0.75$	11	11	0.05	0.96	$_{ m ns}$
alpha_avg_powe	er H3000's_0.5	H3000's_1	11	11	0.00	1.00	$_{ m ns}$
alpha_avg_powe	er H3000's_0.75	$\rm H3000's_1$	11	11	-0.05	0.96	ns

Cluster: 7 Alpha Average Power t-tests

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	H1000's_0.5	16	16	0.32	0.75	ns
alpha_avg_power H1000's_0.25	$H1000's_0.75$	16	16	0.56	0.58	ns
alpha_avg_power H1000's_0.25	H1000's_1	16	16	0.46	0.65	ns
alpha_avg_power H1000's_0.25	$H2000's_0.25$	16	11	-2.09	0.06	ns
alpha_avg_power H1000's_0.25	$H2000's_0.5$	16	11	-2.06	0.06	ns
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_0.75$	16	11	-2.09	0.06	ns
alpha_avg_power H1000's_0.25	H2000's_1	16	11	-1.71	0.11	ns
alpha_avg_power H1000's_0.25	$H3000's_0.25$	16	11	-2.14	0.05	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.5}$	16	11	-1.87	0.08	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.75}$	16	11	-1.91	0.08	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${ m H}3000{ m 's}_1$	16	11	-1.77	0.10	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	16	16	0.23	0.82	$_{ m ns}$
alpha_avg_power H1000's_0.5	H1000's_1	16	16	0.13	0.90	$_{ m ns}$
alpha_avg_power H1000's_0.5	${ m H2000's} { m _0.25}$	16	11	-2.22	0.04	*
alpha_avg_power H1000's_0.5	${ m H2000's} { m _0.5}$	16	11	-2.22	0.04	*
alpha_avg_power H1000's_0.5	$\rm H2000's_0.75$	16	11	-2.25	0.04	*
alpha_avg_power H1000's_0.5	$H2000's_1$	16	11	-1.85	0.09	$_{ m ns}$
alpha_avg_power H1000's_0.5	$H3000's_0.25$	16	11	-2.29	0.04	*
alpha_avg_power H1000's_0.5	$H3000's_0.5$	16	11	-2.03	0.06	ns
alpha_avg_power H1000's_0.5	$H3000's_0.75$	16	11	-2.06	0.06	ns
alpha_avg_power H1000's_0.5	H3000's_1	16	11	-1.93	0.07	ns
alpha_avg_power H1000's_0.75	H1000's_1	16	16	-0.09	0.93	$_{ m ns}$
alpha_avg_power H1000's_0.75	${ m H2000's} { m _0.25}$	16	11	-2.34	0.04	*
alpha_avg_power H1000's_0.75	${ m H2000's} { m _0.5}$	16	11	-2.36	0.03	*
alpha_avg_power H1000's_0.75	$H2000's_0.75$	16	11	-2.38	0.03	*
alpha_avg_power H1000's_0.75	$H2000's_1$	16	11	-1.96	0.07	$_{ m ns}$
alpha_avg_power H1000's_0.75	${ m H3000's} { m _0.25}$	16	11	-2.42	0.03	*
alpha_avg_power H1000's_0.75	${ m H3000's} { m _0.5}$	16	11	-2.17	0.05	*
alpha_avg_power $H1000$ 's_ 0.75	${ m H3000's} { m _0.75}$	16	11	-2.19	0.05	*
alpha_avg_power $H1000$ 's_ 0.75	$H3000's_1$	16	11	-2.06	0.06	ns
alpha_avg_power H1000's_1	${\rm H}2000' {\rm s}_0.25$	16	11	-2.28	0.04	*
alpha_avg_power $H1000$ 's_1	${ m H2000's} { m _0.5}$	16	11	-2.29	0.04	*

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_1	H2000's_0.75	16	11	-2.32	0.04	*
alpha_avg_power H1000's_1	H2000's_1	16	11	-1.91	0.08	ns
alpha_avg_power H1000's_1	${ m H3000's} { m _0.25}$	16	11	-2.35	0.03	*
alpha_avg_power H1000's_1	${ m H3000's} { m _0.5}$	16	11	-2.10	0.05	ns
alpha_avg_power H1000's_1	${ m H3000's} { m _0.75}$	16	11	-2.12	0.05	ns
alpha_avg_power H1000's_1	$H3000's_{1}$	16	11	-2.00	0.06	ns
alpha_avg_power $H2000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.5$	11	11	0.31	0.76	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H2000's} { m _0.75}$	11	11	0.24	0.81	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_1$	11	11	0.24	0.81	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.25}$	11	11	0.14	0.89	ns
alpha_avg_power $H2000$ 's_ 0.25	$H3000's_0.5$	11	11	0.44	0.67	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H}3000{ m 's}_0.75$	11	11	0.29	0.78	ns
alpha_avg_power $H2000$ 's_ 0.25	H3000's_1	11	11	0.49	0.63	ns
alpha_avg_power H2000's_0.5	$H2000's_0.75$	11	11	-0.07	0.94	ns
alpha_avg_power $H2000$ 's_ 0.5	H2000's_1	11	11	-0.03	0.97	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.25}$	11	11	-0.18	0.86	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.5}$	11	11	0.15	0.88	$_{ m ns}$
alpha_avg_power H2000's_0.5	${ m H3000's} { m _0.75}$	11	11	-0.01	0.99	ns
alpha_avg_power $H2000$ 's_ 0.5	$H3000's_1$	11	11	0.21	0.84	ns
alpha_avg_power $H2000$ 's_ 0.75	$H2000's_1$	11	11	0.03	0.98	ns
alpha_avg_power H2000's_0.75	${ m H3000's} { m _0.25}$	11	11	-0.11	0.92	ns
alpha_avg_power H2000's_0.75	$H3000's_0.5$	11	11	0.22	0.83	ns
alpha_avg_power $H2000$ 's_ 0.75	${ m H}3000{ m 's}_0.75$	11	11	0.06	0.96	ns
alpha_avg_power $H2000$ 's_ 0.75	$H3000's_1$	11	11	0.28	0.79	ns
alpha_avg_power H2000's_1	${ m H3000's} { m _0.25}$	11	11	-0.12	0.90	ns
alpha_avg_power H2000's_1	${ m H3000's} { m _0.5}$	11	11	0.16	0.87	ns
alpha_avg_power H2000's_1	${ m H3000's} { m _0.75}$	11	11	0.02	0.98	ns
alpha_avg_power H2000's_1	H3000's_1	11	11	0.22	0.83	ns
alpha_avg_power H3000's_0.25	$H3000's_0.5$	11	11	0.32	0.76	ns
alpha_avg_power H3000's_0.25	$H3000's_0.75$	11	11	0.16	0.88	ns
alpha_avg_power H3000's_0.25	H3000's_1	11	11	0.37	0.71	ns
alpha_avg_power H3000's_0.5	H3000's_0.75	11	11	-0.15	0.88	ns
alpha_avg_power H3000's_0.5	H3000's_1	11	11	0.06	0.95	ns
alpha_avg_power H3000's_0.75	H3000's_1	11	11	0.21	0.84	ns

Cluster: 8 Alpha Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
alpha_avg_powe	r H1000's_0.25	H1000's_0.5	15	15	0.21	0.83	ns
alpha_avg_powe	r H1000's_0.25	$\rm H1000's_0.75$	15	15	0.22	0.82	ns
alpha_avg_powe	r H1000's_0.25	$\rm H1000's_1$	15	15	0.24	0.81	$_{ m ns}$
alpha_avg_powe	r H1000's_0.25	$\rm H2000's_0.25$	15	8	1.06	0.31	$_{ m ns}$
alpha_avg_powe	r H1000's_0.25	$\rm H2000's_0.5$	15	8	0.84	0.41	$_{ m ns}$
alpha_avg_powe	r H1000's_0.25	$\rm H2000's_0.75$	15	8	0.80	0.44	$_{ m ns}$
alpha_avg_powe	r H1000's_0.25	H2000's_1	15	8	0.98	0.34	$_{ m ns}$
alpha_avg_powe	r H1000's_0.25	${ m H3000's} { m _0.25}$	15	11	-1.65	0.11	$_{ m ns}$
alpha_avg_powe	r H1000's_0.25	${ m H3000's} { m _0.5}$	15	11	-1.17	0.26	$_{ m ns}$
alpha_avg_powe	r H1000's_0.25	$H3000's_0.75$	15	11	-0.93	0.36	$_{ m ns}$
alpha_avg_powe	r H1000's_0.25	H3000's_1	15	11	-0.58	0.57	$_{ m ns}$
alpha_avg_powe	r H1000's_0.5	$\rm H1000's_0.75$	15	15	0.01	0.99	ns

alpha_avg_power H1000's_0.5 H2000's_0.25 15 8 0.83 0.42 r alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 0.63 0.54 r alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 0.60 0.56 r alpha_avg_power H1000's_0.5 H2000's_1 15 8 0.77 0.45 r alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 -1.77 0.09 r alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 -1.30 0.21 r alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 -1.07 0.30 r alpha_avg_power H1000's_0.5 H3000's_1 15 11 -0.74 0.47 r alpha_avg_power H1000's_0.75 H1000's_1 15 15 10 0.02 0.98 r	
alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 0.63 0.54 r alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 0.60 0.56 r alpha_avg_power H1000's_0.5 H2000's_1 15 8 0.77 0.45 r alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 -1.77 0.09 r alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 -1.30 0.21 r alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 -1.07 0.30 r alpha_avg_power H1000's_0.5 H3000's_1 15 11 -0.74 0.47 r alpha_avg_power H1000's_0.75 H1000's_1 15 15 0.02 0.98 r	\mathbf{S}
alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 0.60 0.56 r alpha_avg_power H1000's_0.5 H2000's_1 15 8 0.77 0.45 r alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 -1.77 0.09 r alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 -1.30 0.21 r alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 -1.07 0.30 r alpha_avg_power H1000's_0.5 H3000's_1 15 11 -0.74 0.47 r alpha_avg_power H1000's_0.75 H1000's_1 15 15 0.02 0.98 r	ıs
alpha_avg_power H1000's_0.5 H2000's_1 15 8 0.77 0.45 r alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 -1.77 0.09 r alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 -1.30 0.21 r alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 -1.07 0.30 r alpha_avg_power H1000's_0.5 H3000's_1 15 11 -0.74 0.47 r alpha_avg_power H1000's_0.75 H1000's_1 15 15 0.02 0.98 r	ıs
alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 -1.77 0.09 r alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 -1.30 0.21 r alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 -1.07 0.30 r alpha_avg_power H1000's_0.5 H3000's_1 15 11 -0.74 0.47 r alpha_avg_power H1000's_0.75 H1000's_1 15 15 0.02 0.98 r	ıs
alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 -1.30 0.21 r alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 -1.07 0.30 r alpha_avg_power H1000's_0.5 H3000's_1 15 11 -0.74 0.47 r alpha_avg_power H1000's_0.75 H1000's_1 15 15 0.02 0.98 r	ıs
alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 -1.07 0.30 r alpha_avg_power H1000's_0.5 H3000's_1 15 11 -0.74 0.47 r alpha_avg_power H1000's_0.75 H1000's_1 15 15 0.02 0.98 r	ıs
alpha_avg_power H1000's_0.5 H3000's_1 15 11 -0.74 0.47 r alpha_avg_power H1000's_0.75 H1000's_1 15 15 0.02 0.98 r	ıs
alpha_avg_power H1000's_0.75 H1000's_1 15 15 0.02 0.98 r	ıs
	ıs
alpha avg nower H1000's 0.75 H2000's 0.25 15 8 0.84 0.42 r	ıs
ωρμω_ωτδροντεί 111000 5_0.10 112000 5_0.20 10 0 0.04 0.42 1	ıs
alpha_avg_power H1000's_0.75	ıs
1 = 0=1 =	ıs
1 = 0=1 =	ıs
alpha_avg_power H1000's_0.75 H3000's_0.25 15 11 -1.80 0.09 r	ıs
alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 -1.33 0.20 r	ıs
alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 -1.09 0.29 r	ıs
alpha_avg_power H1000's_0.75 H3000's_1 15 11 -0.76 0.46 r	ıs
alpha_avg_power H1000's_1	ıs
alpha_avg_power H1000's_1 H3000's_0.25 15 11 -1.79 0.09 r	ıs
alpha_avg_power H1000's_1	ıs
alpha_avg_power H1000's_1 H3000's_0.75 15 11 -1.09 0.29 r	ıs
alpha_avg_power H1000's_1 H3000's_1 15 11 -0.76 0.46 r	ıs
alpha_avg_power H2000's_0.25	ıs
alpha_avg_power H2000's_0.25	ıs
alpha_avg_power H2000's_0.25	ıs
alpha_avg_power H2000's_0.25 H3000's_0.25 8 11 -2.38 0.03	k
alpha_avg_power H2000's_0.25 H3000's_0.5 8 11 -1.94 0.07 r	ıs
alpha_avg_power H2000's_0.25 H3000's_0.75 8 11 -1.72 0.10 r	ıs
alpha_avg_power H2000's_0.25 H3000's_1 8 11 -1.44 0.17 r	ıs
alpha_avg_power H2000's_0.5	ıs
alpha_avg_power H2000's_0.5	ıs
alpha_avg_power H2000's_0.5 H3000's_0.25 8 11 -2.18 0.04	k
alpha_avg_power H2000's_0.5	ıs
1.1	ıs
alpha_avg_power H2000's_0.5	ıs
alpha_avg_power H2000's_0.75 H2000's_1 8 8 0.14 0.89 r	ıs
alpha_avg_power H2000's_0.75 H3000's_0.25 8 11 -2.08 0.05 r	ıs
alpha_avg_power H2000's_0.75 H3000's_0.5 8 11 -1.68 0.11 r	ıs
alpha_avg_power H2000's_0.75 H3000's_0.75 8 11 -1.47 0.16 r	ıs
alpha_avg_power H2000's_0.75 H3000's_1 8 11 -1.20 0.25 r	ıs
alpha_avg_power H2000's_1 H3000's_0.25 8 11 -2.26 0.04	k
alpha_avg_power H2000's_1 H3000's_0.5 8 11 -1.85 0.08 r	ıs
1.1	ıs
	ıs

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_pov	ver H3000's_0.5	H3000's_1	11	11	0.55	0.59	ns
alpha_avg_pov	ver H3000's_0.75	H3000's_1	11	11	0.35	0.73	ns

Cluster: 9 Alpha Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
alpha_avg_power	· H1000's_0.25	H1000's_0.5	24	24	0.39	0.70	ns
alpha_avg_power	· H1000's_0.25	$\rm H1000's_0.75$	24	24	0.31	0.76	ns
alpha_avg_power	· H1000's_0.25	H1000's_1	24	24	0.16	0.88	ns
alpha_avg_power	· H1000's_0.25	$H2000's_0.25$	24	15	0.33	0.74	ns
alpha_avg_power		$H2000's_0.5$	24	15	0.90	0.37	ns
alpha_avg_power	· H1000's_0.25	$H2000's_0.75$	24	15	0.91	0.37	ns
alpha_avg_power	· H1000's_0.25	$H2000's_1$	24	15	0.55	0.58	ns
alpha_avg_power	· H1000's_0.25	${ m H3000's} { m _0.25}$	24	22	-0.16	0.87	ns
alpha_avg_power	· H1000's_0.25	${ m H3000's} { m _0.5}$	24	22	-0.09	0.92	ns
alpha_avg_power	· H1000's_0.25	${ m H3000's} { m _0.75}$	24	22	-0.02	0.99	ns
alpha_avg_power	· H1000's_0.25	$H3000's_1$	24	22	0.11	0.92	ns
alpha_avg_power	· H1000's_0.5	$\rm H1000's_0.75$	24	24	-0.09	0.93	ns
alpha_avg_power	· H1000's_0.5	H1000's_1	24	24	-0.23	0.82	ns
alpha_avg_power	· H1000's_0.5	${\rm H}2000' {\rm s}_0.25$	24	15	-0.03	0.98	ns
alpha_avg_power	· H1000's_0.5	${\rm H}2000' {\rm s}_0.5$	24	15	0.56	0.58	ns
alpha_avg_power	· H1000's_0.5	$H2000's_0.75$	24	15	0.55	0.58	ns
alpha_avg_power	· H1000's_0.5	H2000's_1	24	15	0.18	0.86	ns
alpha_avg_power	· H1000's_0.5	$H3000's_0.25$	24	22	-0.47	0.64	$_{ m ns}$
alpha_avg_power	· H1000's_0.5	$H3000's_0.5$	24	22	-0.41	0.69	$_{ m ns}$
alpha_avg_power	· H1000's_0.5	$H3000's_0.75$	24	22	-0.34	0.74	$_{ m ns}$
alpha_avg_power	· H1000's_0.5	H3000's_1	24	22	-0.23	0.82	ns
alpha_avg_power	· H1000's_0.75	H1000's_1	24	24	-0.15	0.88	ns
alpha_avg_power		$H2000's_0.25$	24	15	0.05	0.96	ns
alpha_avg_power	· H1000's_0.75	${\rm H}2000' {\rm s}_0.5$	24	15	0.65	0.52	ns
alpha_avg_power	· H1000's_0.75	${ m H2000's} { m _0.75}$	24	15	0.64	0.52	ns
alpha_avg_power	· H1000's_0.75	$H2000's_1$	24	15	0.26	0.79	ns
alpha_avg_power	· H1000's_0.75	${ m H3000's} { m _0.25}$	24	22	-0.40	0.69	ns
alpha_avg_power	· H1000's_0.75	${ m H3000's} { m _0.5}$	24	22	-0.34	0.74	ns
alpha_avg_power	· H1000's_0.75	${ m H3000's} { m _0.75}$	24	22	-0.27	0.79	ns
alpha_avg_power	· H1000's_0.75	$H3000's_1$	24	22	-0.16	0.88	ns
alpha_avg_power	H1000's_1	${\rm H}2000' {\rm s}_0.25$	24	15	0.19	0.85	ns
alpha_avg_power	H1000's_1	${ m H2000's} { m _0.5}$	24	15	0.76	0.45	ns
alpha_avg_power	H1000's_1	${ m H2000's} { m _0.75}$	24	15	0.76	0.45	ns
alpha_avg_power	· H1000's_1	$H2000's_1$	24	15	0.40	0.70	ns
alpha_avg_power	· H1000's_1	${ m H3000's} { m _0.25}$	24	22	-0.29	0.78	ns
alpha_avg_power	· H1000's_1	${ m H3000's} { m _0.5}$	24	22	-0.22	0.83	ns
alpha_avg_power		$H3000's_0.75$	24	22	-0.15	0.88	ns
alpha_avg_power	· H1000's_1	$H3000's_1$	24	22	-0.03	0.98	ns
alpha_avg_power	H2000's_0.25	$H2000's_0.5$	15	15	0.54	0.59	ns
alpha_avg_power	H2000's_0.25	$H2000's_0.75$	15	15	0.53	0.60	ns
alpha_avg_power	H2000's_0.25	H2000's_1	15	15	0.19	0.85	ns
alpha_avg_power	· H2000's_0.25	$H3000's_0.25$	15	22	-0.42	0.68	ns
alpha_avg_power		H3000's_0.5	15	22	-0.36	0.72	ns
alpha_avg_power	H2000's_0.25	${ m H3000's} { m _0.75}$	15	22	-0.30	0.77	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_powe	er H2000's_0.25	H3000's_1	15	22	-0.19	0.85	ns
alpha_avg_powe	er H2000's_0.5	$H2000's_0.75$	15	15	-0.05	0.96	ns
alpha_avg_powe	er H2000's_0.5	H2000's_1	15	15	-0.38	0.71	ns
alpha_avg_powe	er H2000's_0.5	${ m H3000's} { m _0.25}$	15	22	-0.86	0.40	ns
alpha_avg_powe	er H2000's_0.5	${ m H3000's} { m _0.5}$	15	22	-0.81	0.42	$_{ m ns}$
alpha_avg_powe	er H2000's_0.5	${ m H3000's} { m _0.75}$	15	22	-0.77	0.45	$_{ m ns}$
alpha_avg_powe	er H2000's_0.5	H3000's_1	15	22	-0.68	0.50	$_{ m ns}$
alpha_avg_powe	er H2000's_0.75	H2000's_1	15	15	-0.36	0.72	$_{ m ns}$
alpha_avg_powe	er H2000's_0.75	${ m H3000's} { m _0.25}$	15	22	-0.85	0.40	$_{ m ns}$
alpha_avg_powe	er H2000's_0.75	$H3000's_0.5$	15	22	-0.80	0.43	$_{ m ns}$
alpha_avg_powe	er H2000's_0.75	$H3000's_0.75$	15	22	-0.76	0.45	$_{ m ns}$
alpha_avg_powe	er H2000's_0.75	H3000's_1	15	22	-0.67	0.51	$_{ m ns}$
alpha_avg_powe	er H2000's_1	$H3000's_0.25$	15	22	-0.59	0.56	$_{ m ns}$
alpha_avg_powe	er H2000's_1	$H3000's_0.5$	15	22	-0.53	0.60	$_{ m ns}$
alpha_avg_powe	er H2000's_1	$H3000's_0.75$	15	22	-0.47	0.64	$_{ m ns}$
alpha_avg_powe	er H2000's_1	H3000's_1	15	22	-0.37	0.72	$_{ m ns}$
alpha_avg_powe	er H3000's_0.25	$H3000's_0.5$	22	22	0.06	0.95	$_{ m ns}$
alpha_avg_powe	er H3000's_0.25	$H3000's_0.75$	22	22	0.13	0.89	ns
alpha_avg_powe	er H3000's_0.25	H3000's_1	22	22	0.24	0.81	ns
alpha_avg_powe		$H3000's_0.75$	22	22	0.07	0.94	ns
alpha_avg_powe	er H3000's_0.5	H3000's_1	22	22	0.17	0.86	ns
alpha_avg_powe		H3000's_1	22	22	0.11	0.92	ns

Cluster: 10 Alpha Average Power t-tests

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	H1000's_0.5	23	23	0.38	0.70	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	23	23	0.49	0.63	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	H1000's_1	23	23	0.28	0.78	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000{\rm 's}_0.25$	23	17	-0.45	0.66	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_0.5$	23	17	-0.12	0.91	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.75$	23	17	-0.22	0.82	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	H2000's_1	23	17	-0.11	0.92	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${ m H}3000{ m 's}_0.25$	23	17	0.37	0.72	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	23	17	0.94	0.36	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.75$	23	17	0.93	0.36	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	H3000's_1	23	17	0.79	0.43	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	23	23	0.10	0.92	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	H1000's_1	23	23	-0.11	0.92	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$\rm H2000's_0.25$	23	17	-0.73	0.47	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.5$	23	17	-0.42	0.67	ns
alpha_avg_power $H1000$ 's_ 0.5	$\rm H2000's_0.75$	23	17	-0.52	0.60	ns
alpha_avg_power $H1000$ 's_ 0.5	H2000's_1	23	17	-0.41	0.69	ns
alpha_avg_power $H1000$ 's_ 0.5	${ m H3000's} { m _0.25}$	23	17	0.01	0.99	ns
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_0.5$	23	17	0.54	0.59	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_0.75$	23	17	0.53	0.60	ns
alpha_avg_power H1000's_0.5	H3000's_1	23	17	0.41	0.69	ns
alpha_avg_power $H1000$ 's_ 0.75	H1000's_1	23	23	-0.21	0.84	ns
alpha_avg_power $H1000$ 's_ 0.75	$H2000's_0.25$	23	17	-0.81	0.42	ns
alpha_avg_power $H1000$ 's_ 0.75	${\rm H}2000{\rm 's}_0.5$	23	17	-0.51	0.61	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
alpha_avg_power H1000's_0.75	H2000's_0.75	23	17	-0.61	0.55	ns
alpha_avg_power H1000's_0.75	H2000's_1	23	17	-0.49	0.62	ns
alpha_avg_power H1000's_0.75	$H3000's_0.25$	23	17	-0.09	0.93	ns
alpha_avg_power H1000's_0.75	$H3000's_0.5$	23	17	0.45	0.66	ns
alpha_avg_power H1000's_0.75	H3000's_0.75	23	17	0.44	0.66	ns
alpha_avg_power H1000's_0.75	H3000's_1	23	17	0.32	0.75	ns
alpha_avg_power H1000's_1	$H2000's_0.25$	23	17	-0.66	0.51	ns
alpha_avg_power H1000's_1	$H2000's_0.5$	23	17	-0.34	0.73	ns
alpha_avg_power H1000's_1	$H2000's_0.75$	23	17	-0.45	0.66	ns
alpha_avg_power H1000's_1	H2000's_1	23	17	-0.33	0.74	ns
alpha_avg_power H1000's_1	${ m H3000's} { m _0.25}$	23	17	0.11	0.92	ns
alpha_avg_power H1000's_1	$H3000's_0.5$	23	17	0.66	0.52	ns
alpha_avg_power H1000's_1	${ m H}3000{ m 's}_0.75$	23	17	0.65	0.52	ns
alpha_avg_power H1000's_1	H3000's_1	23	17	0.52	0.60	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_0.5$	17	17	0.30	0.77	ns
alpha_avg_power $H2000$ 's_ 0.25	${\rm H}2000{\rm 's}_0.75$	17	17	0.20	0.84	ns
alpha_avg_power $H2000$ 's_ 0.25	H2000's_1	17	17	0.30	0.76	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.25}$	17	17	0.72	0.48	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.5}$	17	17	1.15	0.26	ns
alpha_avg_power $H2000$ 's_ 0.25	$H3000's_0.75$	17	17	1.15	0.26	ns
alpha_avg_power $H2000$ 's_ 0.25	H3000's_1	17	17	1.04	0.30	ns
alpha_avg_power $H2000$ 's_ 0.5	$\rm H2000's_0.75$	17	17	-0.10	0.92	ns
alpha_avg_power $H2000$ 's_ 0.5	H2000's_1	17	17	0.01	1.00	ns
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.25}$	17	17	0.42	0.68	ns
alpha_avg_power $H2000$ 's_ 0.5	$H3000's_0.5$	17	17	0.87	0.39	ns
alpha_avg_power $H2000$ 's_ 0.5	$H3000's_0.75$	17	17	0.87	0.39	ns
alpha_avg_power $H2000$ 's_ 0.5	H3000's_1	17	17	0.76	0.45	ns
alpha_avg_power $H2000$ 's_ 0.75	H2000's_1	17	17	0.10	0.92	ns
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.25}$	17	17	0.51	0.61	ns
alpha_avg_power $H2000$ 's_ 0.75	$H3000's_0.5$	17	17	0.96	0.34	ns
alpha_avg_power $H2000$ 's_ 0.75	$H3000's_0.75$	17	17	0.96	0.35	ns
alpha_avg_power $H2000$ 's_ 0.75	H3000's_1	17	17	0.85	0.40	ns
alpha_avg_power $H2000$ 's_1	${ m H3000's} { m _0.25}$	17	17	0.40	0.69	ns
alpha_avg_power H2000's_1	$H3000's_0.5$	17	17	0.85	0.40	ns
alpha_avg_power H2000's_1	${ m H}3000{ m 's}_0.75$	17	17	0.85	0.40	ns
alpha_avg_power H2000's_1	H3000's_1	17	17	0.74	0.46	ns
alpha_avg_power $H3000$ 's_ 0.25	$H3000's_0.5$	17	17	0.50	0.62	ns
alpha_avg_power $H3000$ 's_ 0.25	$H3000's_0.75$	17	17	0.50	0.62	ns
alpha_avg_power $H3000$ 's_ 0.25	H3000's_1	17	17	0.38	0.71	ns
alpha_avg_power $H3000$ 's_ 0.5	${ m H3000's} { m _0.75}$	17	17	0.00	1.00	ns
alpha_avg_power $H3000$ 's_ 0.5	H3000's_1	17	17	-0.12	0.90	ns
alpha_avg_power H3000's_0.75	H3000's_1	17	17	-0.12	0.91	ns

Cluster: 11 Alpha Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_po	wer H1000's_0.25	H1000's_0.5	29	29	0.62	0.54	ns
alpha_avg_po	wer H1000's_0.25	$\rm H1000's_0.75$	29	29	0.53	0.60	ns
alpha_avg_po	wer H1000's_0.25	H1000's_1	29	29	0.46	0.65	ns
alpha avg po	wer H1000's_0.25	H2000's 0.25	29	15	0.59	0.56	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	${ m H2000's} { m _0.5}$	29	15	0.57	0.57	ns
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_0.75$	29	15	0.54	0.60	ns
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_1$	29	15	0.61	0.55	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	29	19	0.97	0.34	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	29	19	1.68	0.10	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.75$	29	19	1.84	0.07	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_1$	29	19	1.76	0.09	ns
alpha_avg_power $H1000$ 's_ 0.5	$H1000's_0.75$	29	29	-0.09	0.93	ns
alpha_avg_power H1000's_0.5	H1000's_1	29	29	-0.13	0.90	ns
alpha_avg_power H1000's_0.5	$H2000's_0.25$	29	15	0.09	0.93	ns
alpha_avg_power H1000's_0.5	$H2000's_0.5$	29	15	0.09	0.93	ns
alpha_avg_power H1000's_0.5	$H2000's_0.75$	29	15	0.07	0.94	ns
alpha_avg_power H1000's_0.5	$H2000's_1$	29	15	0.13	0.90	ns
alpha_avg_power H1000's_0.5	$H3000's_0.25$	29	19	0.34	0.74	ns
alpha_avg_power H1000's_0.5	$H3000's_0.5$	29	19	1.04	0.31	ns
alpha_avg_power H1000's_0.5	$H3000's_0.75$	29	19	1.17	0.25	ns
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_1$	29	19	1.08	0.28	ns
alpha_avg_power $H1000$ 's_ 0.75	H1000's_1	29	29	-0.05	0.96	ns
alpha_avg_power H1000's_0.75	$H2000's_0.25$	29	15	0.17	0.87	ns
alpha_avg_power H1000's_0.75	$H2000's_0.5$	29	15	0.16	0.87	ns
$alpha_avg_power~H1000$'s $_0.75$	$H2000's_0.75$	29	15	0.14	0.89	ns
alpha_avg_power $H1000$ 's_ 0.75	$H2000's_{1}$	29	15	0.20	0.84	ns
alpha_avg_power $H1000$ 's_ 0.75	$H3000's_0.25$	29	19	0.43	0.67	ns
$alpha_avg_power~H1000$'s $_0.75$	$H3000's_0.5$	29	19	1.14	0.26	ns
$alpha_avg_power~H1000$'s $_0.75$	$H3000's_0.75$	29	19	1.28	0.21	ns
alpha_avg_power $H1000$ 's_ 0.75	$H3000's_1$	29	19	1.20	0.24	ns
alpha_avg_power $H1000$ 's_1	${ m H2000's} { m _0.25}$	29	15	0.20	0.84	ns
alpha_avg_power H1000's_1	${ m H2000's} { m _0.5}$	29	15	0.19	0.85	ns
alpha_avg_power H1000's_1	$\rm H2000's_0.75$	29	15	0.17	0.86	ns
alpha_avg_power H1000's_1	$H2000's_{1}$	29	15	0.23	0.82	ns
alpha_avg_power H1000's_1	${ m H3000's} { m _0.25}$	29	19	0.46	0.65	ns
alpha_avg_power H1000's_1	${ m H3000's} { m _0.5}$	29	19	1.12	0.27	ns
alpha_avg_power H1000's_1	$H3000's_0.75$	29	19	1.25	0.22	ns
alpha_avg_power H1000's_1	$H3000's_1$	29	19	1.17	0.25	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_0.5$	15	15	0.00	1.00	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_0.75$	15	15	-0.01	0.99	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_1$	15	15	0.04	0.97	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.25}$	15	19	0.17	0.87	ns
alpha_avg_power H2000's_0.25	${ m H3000's} { m _0.5}$	15	19	0.71	0.49	ns
alpha_avg_power $H2000$ 's_ 0.25	$H3000's_0.75$	15	19	0.79	0.44	ns
alpha_avg_power $H2000$ 's_ 0.25	$H3000's_1$	15	19	0.72	0.48	ns
alpha_avg_power $H2000$ 's_ 0.5	$H2000's_0.75$	15	15	-0.01	0.99	ns
alpha_avg_power H2000's_0.5	$H2000's_1$	15	15	0.04	0.97	ns
alpha_avg_power H2000's_0.5	$H3000's_0.25$	15	19	0.16	0.87	ns
alpha_avg_power H2000's_0.5	$H3000's_0.5$	15	19	0.69	0.50	ns
alpha_avg_power H2000's_0.5	$H3000's_0.75$	15	19	0.77	0.45	ns
alpha_avg_power H2000's_0.5	H3000's_1	15	19	0.70	0.49	ns
alpha_avg_power H2000's_0.75	H2000's_1	15	15	0.05	0.96	ns
alpha_avg_power H2000's_0.75	$H3000's_0.25$	15	19	0.17	0.87	$_{ m ns}$
alpha_avg_power H2000's_0.75	H3000's_0.5	15	19	0.67	0.51	ns
alpha_avg_power H2000's_0.75	H3000's_0.75	15	19	0.75	0.46	ns
alpha_avg_power H2000's_0.75	H3000's_1	15	19	0.69	0.50	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
alpha_avg_power H2000's_1	${ m H3000's} { m _0.25}$	15	19	0.12	0.91	ns
alpha_avg_power H2000's_1	$H3000's_0.5$	15	19	0.64	0.53	$_{ m ns}$
alpha_avg_power H2000's_1	${ m H3000's} { m _0.75}$	15	19	0.72	0.48	$_{ m ns}$
alpha_avg_power H2000's_1	H3000's_1	15	19	0.65	0.52	ns
alpha_avg_power $H3000$ 's_ 0.25	${ m H}3000{ m 's}_0.5$	19	19	0.72	0.47	ns
alpha_avg_power $H3000$ 's_ 0.25	$H3000's_0.75$	19	19	0.85	0.40	$_{ m ns}$
alpha_avg_power $H3000$ 's_ 0.25	H3000's_1	19	19	0.76	0.45	ns
alpha_avg_power $H3000$ 's_ 0.5	${ m H}3000{ m 's}_0.75$	19	19	0.10	0.92	ns
alpha_avg_power $H3000$ 's_ 0.5	H3000's_1	19	19	-0.01	1.00	ns
alpha_avg_power $H3000$ 's_ 0.75	${ m H}3000'{ m s}_1$	19	19	-0.11	0.91	ns

Cluster: 12 Alpha Average Power t-tests

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.5$	24	24	0.55	0.59	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	24	24	0.70	0.49	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H1000's_1$	24	24	0.69	0.50	ns
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s} _0.25$	24	14	0.63	0.53	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.5}$	24	14	0.68	0.50	ns
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_0.75$	24	14	0.78	0.44	ns
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_1$	24	14	1.04	0.31	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	24	20	1.59	0.12	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's}{ m _0.5}$	24	20	1.97	0.06	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.75}$	24	20	2.22	0.03	*
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_1$	24	20	2.42	0.02	*
alpha_avg_power H1000's_0.5	$\rm H1000's_0.75$	24	24	0.15	0.88	ns
alpha_avg_power $H1000$ 's_ 0.5	H1000's_1	24	24	0.18	0.86	ns
alpha_avg_power H1000's_0.5	${\rm H}2000' {\rm s} _0.25$	24	14	0.20	0.84	ns
alpha_avg_power H1000's_0.5	$H2000's_0.5$	24	14	0.22	0.83	ns
alpha_avg_power H1000's_0.5	$H2000's_0.75$	24	14	0.36	0.72	ns
alpha_avg_power H1000's_0.5	$H2000's_1$	24	14	0.65	0.52	ns
alpha_avg_power H1000's_0.5	${ m H3000's} { m _0.25}$	24	20	1.15	0.26	ns
alpha_avg_power H1000's_0.5	$H3000's_0.5$	24	20	1.55	0.13	ns
alpha_avg_power H1000's_0.5	$H3000's_0.75$	24	20	1.81	0.08	ns
alpha_avg_power H1000's_0.5	$H3000's_1$	24	20	2.03	0.05	*
alpha_avg_power H1000's_0.75	H1000's_1	24	24	0.04	0.97	ns
alpha_avg_power $H1000$ 's_ 0.75	${\rm H}2000' {\rm s} _0.25$	24	14	0.08	0.94	ns
alpha_avg_power H1000's_0.75	$H2000's_0.5$	24	14	0.10	0.92	ns
alpha_avg_power H1000's_0.75	$H2000's_0.75$	24	14	0.25	0.80	ns
alpha_avg_power H1000's_0.75	$H2000's_1$	24	14	0.54	0.60	ns
alpha_avg_power H1000's_0.75	${ m H3000's} { m _0.25}$	24	20	1.02	0.31	ns
alpha_avg_power H1000's_0.75	$H3000's_0.5$	24	20	1.42	0.16	ns
alpha_avg_power H1000's_0.75	$H3000's_0.75$	24	20	1.69	0.10	ns
alpha_avg_power $H1000$ 's_ 0.75	$H3000's_1$	24	20	1.91	0.06	ns
alpha_avg_power H1000's_1	$H2000's_0.25$	24	14	0.05	0.96	ns
alpha_avg_power $H1000$ 's_1	${ m H2000's} { m _0.5}$	24	14	0.06	0.96	$_{ m ns}$
alpha_avg_power H1000's_1	${ m H2000's} { m _0.75}$	24	14	0.21	0.84	ns
alpha_avg_power H1000's_1	$H2000's_{1}$	24	14	0.48	0.63	ns
alpha_avg_power H1000's_1	${ m H3000's} { m _0.25}$	24	20	0.91	0.37	ns
alpha_avg_power H1000's_1	${ m H3000's} { m _0.5}$	24	20	1.28	0.21	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_1	${ m H3000's} { m _0.75}$	24	20	1.52	0.14	ns
alpha_avg_power H1000's_1	H3000's_1	24	20	1.73	0.09	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_0.5$	14	14	0.00	1.00	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_0.75$	14	14	0.14	0.89	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_1$	14	14	0.39	0.70	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.25}$	14	20	0.72	0.48	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.5}$	14	20	1.01	0.32	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.75}$	14	20	1.21	0.24	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's}{ m _1}$	14	20	1.39	0.18	ns
alpha_avg_power H2000's_0.5	$H2000's_0.75$	14	14	0.15	0.88	ns
alpha_avg_power H2000's_0.5	$H2000's_1$	14	14	0.40	0.69	ns
alpha_avg_power H2000's_0.5	${ m H3000's} { m _0.25}$	14	20	0.77	0.45	ns
alpha_avg_power H2000's_0.5	$H3000's_0.5$	14	20	1.08	0.29	ns
alpha_avg_power H2000's_0.5	$H3000's_0.75$	14	20	1.30	0.20	ns
alpha_avg_power $H2000$ 's_ 0.5	H3000's_1	14	20	1.49	0.15	ns
alpha_avg_power H2000's_0.75	$H2000's_1$	14	14	0.24	0.81	ns
alpha_avg_power H2000's_0.75	${ m H3000's} { m _0.25}$	14	20	0.54	0.59	ns
alpha_avg_power H2000's_0.75	$H3000's_0.5$	14	20	0.82	0.42	$_{ m ns}$
alpha_avg_power H2000's_0.75	$H3000's_0.75$	14	20	1.02	0.32	ns
alpha_avg_power H2000's_0.75	$H3000's_1$	14	20	1.19	0.25	ns
alpha_avg_power H2000's_1	${ m H3000's} { m _0.25}$	14	20	0.26	0.80	ns
alpha_avg_power H2000's_1	$H3000's_0.5$	14	20	0.53	0.60	$_{ m ns}$
alpha_avg_power H2000's_1	$H3000's_0.75$	14	20	0.73	0.47	ns
alpha_avg_power H2000's_1	$H3000's_1$	14	20	0.90	0.38	ns
alpha_avg_power H3000's_0.25	$H3000's_0.5$	20	20	0.33	0.74	ns
alpha_avg_power H3000's_0.25	$H3000's_0.75$	20	20	0.58	0.57	ns
alpha_avg_power H3000's_0.25	$H3000's_1$	20	20	0.79	0.44	ns
alpha_avg_power H3000's_0.5	${ m H3000's} { m _0.75}$	20	20	0.25	0.80	ns
alpha_avg_power H3000's_0.5	H3000's_1	20	20	0.47	0.64	ns
alpha_avg_power H3000's_0.75	$\rm H3000's_1$	20	20	0.22	0.83	ns

Cluster: 13 Alpha Average Power t-tests

EEG Var Group_Speed_	1 Group_Speed_2	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	$\rm H1000's_0.5$	22	22	0.23	0.82	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	22	22	0.20	0.84	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	$\rm H1000's_1$	22	22	0.18	0.85	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.25}$	22	12	0.81	0.43	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.5}$	22	12	0.78	0.44	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.75}$	22	12	0.88	0.39	ns
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000'{\rm s}_1$	22	12	0.82	0.42	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	22	13	0.58	0.57	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	22	13	0.80	0.43	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.75$	22	13	0.74	0.46	ns
alpha_avg_power $H1000$ 's_ 0.25	H3000's_1	22	13	0.86	0.40	ns
alpha_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	22	22	-0.04	0.97	ns
alpha_avg_power $H1000$ 's_ 0.5	H1000's_1	22	22	-0.06	0.95	ns
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.25$	22	12	0.63	0.53	ns
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.5$	22	12	0.62	0.54	ns
alpha_avg_power $H1000$ 's_ 0.5	${ m H2000's} { m _0.75}$	22	12	0.70	0.49	ns

EEG Var	Group_Speed_1	Group_Speed_2	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power	H1000's_0.5	$H2000's_{1}$	22	12	0.65	0.52	ns
alpha_avg_power	H1000's_0.5	${ m H3000's} { m _0.25}$	22	13	0.39	0.70	ns
alpha_avg_power	H1000's_0.5	${ m H3000's} { m _0.5}$	22	13	0.60	0.55	ns
alpha_avg_power	H1000's_0.5	${ m H}3000'{ m s}_0.75$	22	13	0.55	0.58	ns
alpha_avg_power	H1000's_0.5	H3000's_1	22	13	0.65	0.52	ns
alpha_avg_power	H1000's_0.75	H1000's_1	22	22	-0.02	0.98	ns
alpha_avg_power	H1000's_0.75	$H2000's_0.25$	22	12	0.67	0.51	ns
alpha_avg_power	H1000's_0.75	$H2000's_0.5$	22	12	0.65	0.52	ns
alpha_avg_power	H1000's_0.75	$H2000's_0.75$	22	12	0.74	0.47	ns
alpha_avg_power	H1000's_0.75	H2000's_1	22	12	0.69	0.50	ns
alpha_avg_power	H1000's_0.75	$H3000's_0.25$	22	13	0.43	0.67	ns
alpha_avg_power		H3000's 0.5	22	13	0.64	0.52	ns
alpha_avg_power		H3000's 0.75	22	13	0.60	0.56	ns
alpha_avg_power		H3000's 1	22	13	0.70	0.49	ns
alpha_avg_power		$H2000's_0.25$	22	12	0.69	0.50	ns
alpha_avg_power		H2000's 0.5	22	12	0.67	0.51	ns
alpha_avg_power		H2000's 0.75	22	12	0.76	0.46	ns
alpha_avg_power		H2000's 1	22	12	0.70	0.49	ns
alpha_avg_power		H3000's 0.25	$\frac{-}{22}$	13	0.45	0.66	ns
alpha_avg_power		H3000's 0.5	$\frac{-}{22}$	13	0.67	0.51	ns
alpha_avg_power		H3000's 0.75	22	13	0.61	0.54	ns
alpha_avg_power		H3000's 1	22	13	0.72	0.48	ns
alpha_avg_power		H2000's_0.5	$\frac{12}{12}$	12	0.02	0.99	ns
alpha_avg_power		H2000's 0.75	$\frac{12}{12}$	12	0.02	0.98	ns
alpha_avg_power		H2000's 1	12	12	0.02	0.97	ns
alpha_avg_power		H3000's 0.25	12	13	-0.23	0.82	ns
alpha_avg_power		H3000's 0.5	$\frac{12}{12}$	13	-0.28	0.94	ns
alpha_avg_power		H3000's 0.75	$\frac{12}{12}$	13	-0.11	0.92	ns
alpha_avg_power		H3000's 1	$\frac{12}{12}$	13	-0.11	0.94	ns
alpha_avg_power		H2000's 0.75	$\frac{12}{12}$	12	0.01	0.94	ns
alpha_avg_power		H2000's 1	12	12	0.01 0.02	0.99	
alpha_avg_power		H3000's_0.25	$\frac{12}{12}$	13	-0.24	0.99	ns
alpha_avg_power		H3000's_0.25	12	13	-0.24	0.92	ns
alpha avg power			12	13 13	-0.10 -0.12		ns
		H3000's_0.75		13 13		0.91	ns
alpha_avg_power		H3000's_1	12		-0.09	0.93	ns
alpha_avg_power		H2000's_1	12	12	0.01	0.99	ns
alpha_avg_power		H3000's_0.25	12	13	-0.27	0.79	ns
alpha_avg_power		H3000's_0.5	12	13	-0.11	0.91	$_{ m ns}$
alpha_avg_power		H3000's_0.75	12	13	-0.13	0.89	ns
alpha_avg_power		H3000's_1	12	13	-0.10	0.92	$_{ m ns}$
alpha_avg_power		H3000's_0.25	12	13	-0.26	0.80	ns
alpha_avg_power		H3000's_0.5	12	13	-0.12	0.91	ns
alpha_avg_power		H3000's_0.75	12	13	-0.14	0.89	$_{ m ns}$
alpha_avg_power		H3000's_1	12	13	-0.11	0.92	$_{ m ns}$
alpha_avg_power		H3000's_0.5	13	13	0.16	0.87	ns
alpha_avg_power		H3000's_0.75	13	13	0.14	0.89	ns
alpha_avg_power		H3000's_1	13	13	0.18	0.86	$_{ m ns}$
alpha_avg_power		$H3000's_0.75$	13	13	-0.03	0.98	ns
alpha_avg_power		H3000's_1	13	13	0.01	0.99	ns
alpha_avg_power	H3000's_0.75	H3000's_1	13	13	0.04	0.97	ns

Cluster: 14 Alpha Average Power t-tests

EEG Var Grou	p_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H100		$\rm H1000's_0.5$	22	22	0.75	0.46	ns
alpha_avg_power H100		$H1000's_0.75$	22	22	0.81	0.42	ns
alpha_avg_power H100		H1000's_1	22	22	0.19	0.85	ns
alpha_avg_power H100	$0's_0.25$	${ m H2000's} { m _0.25}$	22	16	-0.31	0.76	$_{ m ns}$
alpha_avg_power H100	$0's_0.25$	$H2000's_0.5$	22	16	0.06	0.95	ns
alpha_avg_power H100	$0's_0.25$	$H2000's_0.75$	22	16	0.35	0.73	ns
alpha_avg_power H100	$0's_0.25$	$H2000's_1$	22	16	-0.17	0.86	$_{ m ns}$
alpha_avg_power H100	$0's_0.25$	${ m H3000's} { m _0.25}$	22	18	0.02	0.99	ns
alpha_avg_power H100	$0's_0.25$	${ m H3000's} { m _0.5}$	22	18	0.31	0.76	ns
alpha_avg_power H100	$0's_0.25$	${ m H3000's} { m _0.75}$	22	18	0.49	0.63	ns
alpha_avg_power H100	$0's_0.25$	$H3000's_1$	22	18	0.82	0.42	ns
alpha_avg_power H100	$0's_0.5$	$\rm H1000's_0.75$	22	22	-0.01	1.00	ns
alpha_avg_power H100	$0's_0.5$	$\rm H1000's_1$	22	22	-0.52	0.60	ns
alpha_avg_power H100	$0's_0.5$	${\rm H}2000' {\rm s} _0.25$	22	16	-0.78	0.44	ns
alpha_avg_power H100	$0's_0.5$	$H2000's_0.5$	22	16	-0.43	0.67	ns
alpha_avg_power H100	$0's_0.5$	$\rm H2000's_0.75$	22	16	-0.23	0.82	ns
alpha_avg_power H100	$0's_0.5$	$H2000's_1$	22	16	-0.72	0.48	ns
alpha_avg_power H100	$0's_0.5$	$H3000's_0.25$	22	18	-0.59	0.56	ns
alpha_avg_power H100	$0's_0.5$	$H3000's_0.5$	22	18	-0.36	0.72	ns
alpha_avg_power H100	$0's_0.5$	$H3000's_0.75$	22	18	-0.25	0.80	ns
alpha_avg_power H100	$0's_{-}0.5$	H3000's_1	22	18	0.08	0.94	ns
alpha_avg_power H100	$0's_0.75$	H1000's_1	22	22	-0.56	0.58	ns
alpha_avg_power H100	$0's_0.75$	$H2000's_0.25$	22	16	-0.81	0.43	ns
alpha_avg_power H100	$0's_0.75$	$H2000's_0.5$	22	16	-0.44	0.66	ns
alpha_avg_power H100	$0's_{-}0.75$	$H2000's_0.75$	22	16	-0.24	0.81	ns
alpha_avg_power H100	$0's_{-}0.75$	H2000's_1	22	16	-0.75	0.46	ns
alpha_avg_power H100	$0's_{-}0.75$	$H3000's_0.25$	22	18	-0.62	0.54	ns
alpha_avg_power H100	$0's_{-}0.75$	$H3000's_0.5$	22	18	-0.38	0.70	ns
alpha_avg_power H100	0's 0.75	H3000's 0.75	22	18	-0.27	0.79	ns
alpha_avg_power H100	$0's_{-}0.75$	H3000's_1	22	18	0.09	0.93	ns
alpha_avg_power H100	0's_1	$H2000's_0.25$	22	16	-0.42	0.68	ns
alpha_avg_power H100	0's_1	$H2000's_0.5$	22	16	-0.06	0.95	ns
alpha_avg_power H100	0's_1	$H2000's_0.75$	22	16	0.19	0.85	ns
alpha_avg_power H100		H2000's_1	22	16	-0.31	0.76	ns
alpha_avg_power H100	0's_1	$H3000's_0.25$	22	18	-0.14	0.89	ns
alpha_avg_power H100	0's_1	$H3000's_0.5$	22	18	0.12	0.90	ns
alpha_avg_power H100		$H3000's_0.75$	22	18	0.28	0.78	ns
alpha_avg_power H100		H3000's_1	22	18	0.59	0.56	ns
alpha_avg_power H200	$0's_{-}0.25$	$H2000's_0.5$	16	16	0.29	0.77	ns
alpha_avg_power H200	$0's_{-}0.25$	$H2000's_0.75$	16	16	0.52	0.61	ns
alpha_avg_power H200	$0's_{-}0.25$	H2000's_1	16	16	0.14	0.89	ns
alpha_avg_power H200	$0's_{-}0.25$	$H3000's_0.25$	16	18	0.29	0.77	ns
alpha_avg_power H200	$0's_{-}0.25$	$H3000's_0.5$	16	18	0.50	0.62	ns
alpha_avg_power H200		H3000's_0.75	16	18	0.62	0.54	ns
alpha_avg_power H200		H3000's_1	16	18	0.83	0.42	ns
alpha_avg_power H200		H2000's_0.75	16	16	0.20	0.84	ns
alpha_avg_power H200		H2000's_1	16	16	-0.18	0.86	$_{ m ns}$
alpha_avg_power H200		H3000's_0.25	16	18	-0.04	0.97	ns
alpha_avg_power H200		H3000's_0.5	16	18	0.15	0.88	ns
alpha_avg_power H200		H3000's_0.75	16	18	0.26	0.80	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
alpha_avg_power H2000's_0.5	H3000's_1	16	18	0.48	0.64	ns
alpha_avg_power H2000's_0.75	H2000's_1	16	16	-0.43	0.67	$_{ m ns}$
alpha_avg_power H2000's_0.75	${ m H3000's} { m _0.25}$	16	18	-0.29	0.78	$_{ m ns}$
alpha_avg_power H2000's_0.75	$H3000's_0.5$	16	18	-0.08	0.94	$_{ m ns}$
alpha_avg_power H2000's_0.75	$H3000's_0.75$	16	18	0.03	0.98	$_{ m ns}$
alpha_avg_power H2000's_0.75	$H3000's_1$	16	18	0.29	0.78	ns
alpha_avg_power H2000's_1	${ m H3000's} { m _0.25}$	16	18	0.17	0.87	$_{ m ns}$
alpha_avg_power H2000's_1	${ m H3000's} { m _0.5}$	16	18	0.40	0.69	ns
alpha_avg_power H2000's_1	${ m H3000's} { m _0.75}$	16	18	0.53	0.60	ns
alpha_avg_power H2000's_1	$H3000's_1$	16	18	0.78	0.44	ns
alpha_avg_power H3000's_0.25	$H3000's_0.5$	18	18	0.24	0.81	$_{ m ns}$
alpha_avg_power H3000's_0.25	$H3000's_0.75$	18	18	0.38	0.70	$_{ m ns}$
alpha_avg_power H3000's_0.25	H3000's_1	18	18	0.65	0.52	$_{ m ns}$
alpha_avg_power H3000's_0.5	$H3000's_0.75$	18	18	0.13	0.89	$_{ m ns}$
alpha_avg_power $H3000$ 's_ 0.5	H3000's_1	18	18	0.43	0.67	$_{ m ns}$
alpha_avg_power H3000's_0.75	$\rm H3000's_1$	18	18	0.33	0.74	ns

BETA T-TESTS

Cluster: 3 Beta Average Power t-tests

oup_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
000's_0.25	H1000's_0.5	23	23	0.46	0.65	ns
$000's_0.25$	$\rm H1000's_0.75$	23	23	0.16	0.87	ns
$000's_0.25$	H1000's_1	23	23	0.20	0.84	ns
$000's_0.25$	$H2000's_0.25$	23	18	1.32	0.20	ns
$000's_0.25$	$H2000's_0.5$	23	18	1.06	0.30	ns
$000's_0.25$	$H2000's_0.75$	23	18	1.22	0.23	ns
$000's_0.25$	H2000's_1	23	18	1.52	0.14	$_{ m ns}$
$000's_0.25$	${ m H3000's} { m _0.25}$	23	23	3.22	0.00	**
$000's_0.25$	$H3000's_0.5$	23	23	2.65	0.01	*
$000's_0.25$	$H3000's_0.75$	23	23	2.57	0.01	*
$000's_0.25$	H3000's_1	23	23	3.50	0.00	**
$000's_0.5$	$\rm H1000's_0.75$	23	23	-0.31	0.76	$_{ m ns}$
$000's_0.5$	H1000's_1	23	23	-0.27	0.79	$_{ m ns}$
$000's_0.5$	$\rm H2000's_0.25$	23	18	1.07	0.30	$_{ m ns}$
$000's_0.5$	${\rm H}2000'{\rm s}_0.5$	23	18	0.80	0.43	$_{ m ns}$
$000's_0.5$	${\rm H}2000'{\rm s}_0.75$	23	18	0.95	0.35	$_{ m ns}$
$000's_0.5$	$\rm H2000's_1$	23	18	1.26	0.22	$_{ m ns}$
$000's_0.5$	${ m H3000's} { m _0.25}$	23	23	2.99	0.00	**
$000's_0.5$	${ m H3000's}{ m _0.5}$	23	23	2.40	0.02	*
$000's_0.5$	${ m H}3000'{ m s}_0.75$	23	23	2.31	0.03	*
$000's_0.5$	${ m H}3000'{ m s}_1$	23	23	3.28	0.00	**
$000's_0.75$	H1000's_1	23	23	0.04	0.97	$_{ m ns}$
$000's_0.75$	${\rm H}2000'{\rm s}_0.25$	23	18	1.24	0.23	$_{ m ns}$
$000' s_0.75$	${\rm H}2000'{\rm s}_0.5$	23	18	0.98	0.34	ns
$000' s_0.75$	${\rm H}2000'{\rm s}_0.75$	23	18	1.13	0.27	ns
$000's_0.75$	$H2000's_1$	23	18	1.44	0.16	ns
$000' s_0.75$	${ m H3000's} { m _0.25}$	23	23	3.18	0.00	**
	000's_0.25 000's_0.25 000's_0.25 000's_0.25 000's_0.25 000's_0.25 000's_0.25 000's_0.25 000's_0.25 000's_0.25 000's_0.25 000's_0.5	000's_0.25	0000's_0.25 H1000's_0.5 23 0000's_0.25 H1000's_0.75 23 000's_0.25 H1000's_1 23 000's_0.25 H2000's_0.25 23 000's_0.25 H2000's_0.5 23 000's_0.25 H2000's_0.5 23 000's_0.25 H2000's_0.75 23 000's_0.25 H2000's_1 23 000's_0.25 H3000's_0.25 23 000's_0.25 H3000's_0.5 23 000's_0.25 H3000's_0.5 23 000's_0.25 H3000's_0.5 23 000's_0.25 H3000's_0.75 23 000's_0.5 H1000's_0.75 23 000's_0.5 H1000's_0.75 23 000's_0.5 H2000's_0.5 23 000's_0.5 H2000's_0.5 23 000's_0.5 H2000's_0.5 23 000's_0.5 H3000's_0.5 23 000's_0.5 H3000's_0.5 23 000's_0.5 H3000's_0.5 23 000's_0.5<	000's_0.25	000's_0.25	000's_0.25

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
beta_avg_power	$\rm H1000's_0.75$	$H3000's_0.5$	23	23	2.59	0.01	*
beta_avg_power	$H1000's_0.75$	$H3000's_0.75$	23	23	2.50	0.02	*
beta_avg_power	$\rm H1000's_0.75$	H3000's_1	23	23	3.46	0.00	**
beta_avg_power	H1000's_1	${\rm H}2000' {\rm s}_0.25$	23	18	1.22	0.23	ns
beta_avg_power	H1000's_1	$H2000's_0.5$	23	18	0.96	0.35	ns
beta_avg_power	H1000's_1	$\rm H2000's_0.75$	23	18	1.11	0.28	ns
beta_avg_power	H1000's_1	H2000's_1	23	18	1.42	0.17	ns
beta_avg_power	H1000's_1	${ m H3000's} { m _0.25}$	23	23	3.16	0.00	**
beta_avg_power	H1000's_1	${ m H3000's} { m _0.5}$	23	23	2.57	0.01	*
beta_avg_power	H1000's_1	$H3000's_0.75$	23	23	2.48	0.02	*
beta_avg_power	$H1000's_1$	H3000's_1	23	23	3.45	0.00	**
beta_avg_power	$\rm H2000's_0.25$	$\rm H2000's_0.5$	18	18	-0.23	0.82	ns
beta_avg_power	$\rm H2000's_0.25$	$\rm H2000's_0.75$	18	18	-0.16	0.88	ns
beta_avg_power	$\rm H2000's_0.25$	H2000's_1	18	18	0.09	0.93	ns
beta_avg_power	${\rm H}2000' {\rm s} _0.25$	${ m H3000's} { m _0.25}$	18	23	0.94	0.36	ns
beta_avg_power	${\rm H}2000' {\rm s} _0.25$	${ m H3000's} { m _0.5}$	18	23	0.60	0.55	ns
beta_avg_power	${\rm H}2000' {\rm s} _0.25$	${ m H3000's} { m _0.75}$	18	23	0.56	0.58	ns
beta_avg_power	${\rm H}2000' {\rm s} _0.25$	H3000's_1	18	23	1.18	0.25	ns
beta_avg_power	${\rm H}2000' {\rm s} _0.5$	${\rm H}2000' {\rm s}_0.75$	18	18	0.08	0.94	ns
beta_avg_power	${\rm H}2000' {\rm s} _0.5$	$H2000's_{1}$	18	18	0.33	0.75	ns
beta_avg_power	${\rm H}2000' {\rm s} _0.5$	${ m H3000's} { m _0.25}$	18	23	1.24	0.23	ns
beta_avg_power	${\rm H}2000' {\rm s} _0.5$	${ m H3000's}{ m _}0.5$	18	23	0.89	0.38	ns
beta_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.75}$	18	23	0.84	0.41	ns
beta_avg_power	$H2000's_0.5$	H3000's_1	18	23	1.48	0.15	ns
beta_avg_power	$\rm H2000's_0.75$	H2000's_1	18	18	0.26	0.80	ns
beta_avg_power	$\rm H2000's_0.75$	${ m H3000's} { m _0.25}$	18	23	1.20	0.24	ns
beta_avg_power	$\rm H2000's_0.75$	${ m H3000's}{ m _0.5}$	18	23	0.83	0.41	ns
beta_avg_power	${\rm H}2000{\rm 's}_0.75$	${ m H3000's} { m _0.75}$	18	23	0.79	0.44	ns
beta_avg_power	$\rm H2000's_0.75$	H3000's_1	18	23	1.45	0.16	ns
beta_avg_power	$H2000's_{1}$	${ m H3000's} { m _0.25}$	18	23	0.88	0.38	ns
beta_avg_power	$H2000's_1$	${ m H3000's}{ m _}0.5$	18	23	0.53	0.60	ns
beta_avg_power	$H2000's_{1}$	${ m H3000's} { m _0.75}$	18	23	0.48	0.63	ns
beta_avg_power	$H2000's_{1}$	H3000's_1	18	23	1.14	0.26	ns
beta_avg_power	${ m H3000's} { m _0.25}$	${ m H3000's}{ m _0.5}$	23	23	-0.43	0.67	ns
beta_avg_power	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.75}$	23	23	-0.47	0.64	ns
beta_avg_power	${ m H3000's} { m _0.25}$	H3000's_1	23	23	0.34	0.74	ns
beta_avg_power	${ m H3000's} { m _0.5}$	${ m H3000's} { m _0.75}$	23	23	-0.05	0.96	ns
beta_avg_power		${ m H3000's_1}$	23	23	0.75	0.46	ns
beta_avg_power	${ m H3000's} { m _0.75}$	H3000's_1	23	23	0.79	0.44	ns

Cluster: 4 Beta Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_powe	er H1000's_0.25	$\rm H1000's_0.5$	18	18	-0.15	0.88	ns
beta_avg_powe	er H1000's_0.25	$\rm H1000's_0.75$	18	18	-0.07	0.95	$_{ m ns}$
beta_avg_powe	er H1000's_0.25	$\rm H1000's_1$	18	18	-0.06	0.95	$_{ m ns}$
beta_avg_powe	er H1000's_0.25	${\rm H}2000' {\rm s} _0.25$	18	16	-2.18	0.04	*
beta_avg_powe	er H1000's_0.25	${\rm H}2000' {\rm s} _0.5$	18	16	-1.79	0.09	$_{ m ns}$
beta_avg_powe	er H1000's_0.25	${ m H2000's} { m _0.75}$	18	16	-1.70	0.10	$_{ m ns}$
beta_avg_powe	er H1000's_0.25	H2000's_1	18	16	-1.68	0.11	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power H1000's_0.25	H3000's_0.25	18	16	-2.09	0.05	*
beta_avg_power H1000's_0.25	H3000's 0.5	18	16	-2.15	0.04	*
beta_avg_power H1000's_0.25	H3000's 0.75	18	16	-1.76	0.09	ns
beta_avg_power H1000's_0.25	H3000's 1	18	16	-1.65	0.11	ns
beta avg power H1000's 0.5	H1000's 0.75	18	18	0.09	0.93	ns
beta_avg_power H1000's_0.5	H1000's 1	18	18	0.09	0.93	ns
beta_avg_power H1000's_0.5	H2000's 0.25	18	16	-2.07	0.05	ns
beta_avg_power H1000's_0.5	H2000's 0.5	18	16	-1.68	0.11	ns
beta_avg_power H1000's_0.5	H2000's 0.75	18	16	-1.59	0.13	ns
beta_avg_power H1000's_0.5	H2000's 1	18	16	-1.54	0.14	ns
beta_avg_power H1000's_0.5	H3000's 0.25	18	16	-1.97	0.06	ns
beta_avg_power H1000's_0.5	H3000's 0.5	18	16	-2.02	0.06	ns
beta_avg_power H1000's_0.5	H3000's 0.75	18	16	-1.63	0.12	ns
beta_avg_power H1000's_0.5	H3000's 1	18	16	-1.52	0.14	ns
beta_avg_power H1000's_0.75	H1000's 1	18	18	0.00	1.00	ns
beta avg power H1000's 0.75	H2000's 0.25	18	16	-2.15	0.04	*
beta_avg_power H1000's_0.75	H2000's 0.5	18	16	-1.76	0.09	ns
beta_avg_power H1000's_0.75	H2000's 0.75	18	16	-1.67	0.11	ns
beta_avg_power H1000's_0.75	H2000's 1	18	16	-1.64	0.11	ns
beta_avg_power H1000's_0.75	H3000's 0.25	18	16	-2.06	0.05	ns
beta avg power H1000's 0.75	H3000's 0.5	18	16	-2.12	0.04	*
beta_avg_power H1000's_0.75	H3000's 0.75	18	16	-1.72	0.10	ns
beta_avg_power H1000's_0.75	H3000's_0.75	18	16	-1.61	0.10	ns
beta_avg_power H1000's_1	H2000's 0.25	18	16	-2.13	0.12 0.05	*
beta_avg_power H1000's_1 beta_avg_power H1000's_1	H2000's 0.5	18	16	-1.74	0.10	ns
beta_avg_power H1000's_1 beta_avg_power H1000's_1	H2000's 0.75	18	16	-1.64	0.10	ns
beta_avg_power H1000's_1 beta_avg_power H1000's_1	H2000's 1	18	16	-1.61	0.12 0.12	
beta_avg_power H1000's_1 beta_avg_power H1000's_1	H3000's 0.25	18	16	-2.02	0.12 0.06	ns
beta_avg_power H1000's_1 beta_avg_power H1000's_1	H3000's 0.5	18	16	-2.02	0.05	$_{*}^{\mathrm{ns}}$
beta_avg_power H1000's_1 beta_avg_power H1000's_1	H3000's 0.75	18	16	-2.03 -1.69	0.03 0.10	
beta_avg_power H1000's_1 beta_avg_power H1000's_1	H3000's 1	18	16	-1.58	0.10	ns
beta_avg_power H2000's_0.25	H2000's 0.5	16	16 16	0.31	$0.13 \\ 0.76$	ns
beta_avg_power H2000's_0.25 beta_avg_power H2000's 0.25	H2000's 0.75	16	16	0.31 0.45	0.76	ns
	H2000's 1	16	16 16	$0.45 \\ 0.71$	$0.00 \\ 0.48$	ns
beta_avg_power H2000's_0.25	H3000's 0.25			0.71		ns
beta_avg_power H2000's_0.25		16	16		0.78	ns
beta_avg_power H2000's_0.25	H3000's_0.5	16	16	0.29	0.77	ns
beta_avg_power H2000's_0.25	H3000's_0.75	16	16	0.55	0.59	ns
beta_avg_power H2000's_0.25	H3000's_1	16	16	0.65	0.52	ns
beta_avg_power H2000's_0.5	H2000's_0.75	16	16	0.14	0.89	ns
beta_avg_power H2000's_0.5	H2000's_1	16	16	0.37	0.72	ns
beta_avg_power H2000's_0.5	H3000's_0.25	16	16	-0.05	0.96	ns
beta_avg_power H2000's_0.5	H3000's_0.5	16	16	-0.04	0.96	ns
beta_avg_power H2000's_0.5	H3000's_0.75	16	16	0.21	0.83	ns
beta_avg_power H2000's_0.5	H3000's_1	16	16	0.31	0.76	ns
beta_avg_power H2000's_0.75	H2000's_1	16	16	0.23	0.82	ns
beta_avg_power H2000's_0.75	H3000's_0.25	16	16	-0.20	0.84	ns
beta_avg_power H2000's_0.75	H3000's_0.5	16	16	-0.19	0.85	ns
beta_avg_power H2000's_0.75	H3000's_0.75	16	16	0.07	0.94	ns
beta_avg_power H2000's_0.75	H3000's_1	16	16	0.18	0.86	ns
beta_avg_power H2000's_1	H3000's_0.25	16	16	-0.46	0.65	ns
beta_avg_power H2000's_1	H3000's_0.5	16	16	-0.46	0.65	$_{ m ns}$
beta_avg_power H2000's_1	$H3000's_0.75$	16	16	-0.16	0.87	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
beta_avg_power	· H2000's_1	H3000's_1	16	16	-0.05	0.96	ns
beta_avg_power	· H3000's_0.25	${ m H3000's} { m _0.5}$	16	16	0.01	0.99	ns
beta_avg_power	· H3000's_0.25	${ m H3000's} { m _0.75}$	16	16	0.29	0.78	ns
beta_avg_power	· H3000's_0.25	${ m H3000's}{ m _1}$	16	16	0.40	0.69	$_{ m ns}$
beta_avg_power	· H3000's_0.5	${ m H3000's} { m _0.75}$	16	16	0.28	0.78	$_{ m ns}$
beta_avg_power	· H3000's_0.5	H3000's_1	16	16	0.40	0.69	ns
beta_avg_power	H3000's_0.75	$\rm H3000's_1$	16	16	0.11	0.92	ns

Cluster: 5 Beta Average Power t-tests

EEG Var G	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power H	[1000's_0.25	H1000's_0.5	24	24	0.77	0.44	ns
beta_avg_power H		H1000's_0.75	24	24	0.77	0.44	ns
beta_avg_power H		H1000's_1	24	24	0.69	0.49	ns
beta_avg_power H	[1000's_0.25	$H2000's_0.25$	24	21	1.37	0.18	ns
beta_avg_power H	$[1000]$'s $_0.25$	$H2000's_0.5$	24	21	1.89	0.07	ns
beta_avg_power H	$[1000] s_0.25$	$\rm H2000's_0.75$	24	21	1.88	0.07	ns
beta_avg_power H	$[1000] s_0.25$	$H2000's_1$	24	21	2.24	0.03	*
beta_avg_power H	$[1000] s_0.25$	${ m H3000's} { m _0.25}$	24	22	-1.35	0.19	ns
beta_avg_power H	$[1000] s_0.25$	${ m H3000's}{ m _0.5}$	24	22	-1.09	0.28	ns
beta_avg_power H	$[1000] s_0.25$	${ m H3000's} { m _0.75}$	24	22	-0.87	0.39	ns
beta_avg_power H	$[1000] s_0.25$	$\rm H3000's_1$	24	22	-0.40	0.69	ns
beta_avg_power H	$[1000] s_0.5$	$\rm H1000's_0.75$	24	24	-0.03	0.98	ns
beta_avg_power H	$[1000] s_0.5$	H1000's_1	24	24	-0.11	0.91	ns
beta_avg_power H	$[1000] s_0.5$	${\rm H}2000' {\rm s} _0.25$	24	21	0.80	0.43	ns
beta_avg_power H	$[1000] s_0.5$	${\rm H}2000' {\rm s} _0.5$	24	21	1.28	0.21	ns
beta_avg_power H	$[1000] s_0.5$	${ m H2000's} { m _0.75}$	24	21	1.27	0.21	ns
beta_avg_power H	$[1000] s_0.5$	$\rm H2000's_1$	24	21	1.61	0.12	ns
beta_avg_power H		${ m H3000's} { m _0.25}$	24	22	-1.91	0.06	ns
beta_avg_power H	$[1000]$ 's_0.5	${ m H}3000'{ m s}_0.5$	24	22	-1.66	0.10	ns
beta_avg_power H	$[1000] s_0.5$	${ m H3000's} { m _0.75}$	24	22	-1.44	0.16	ns
beta_avg_power H	$[1000]$ 's_0.5	H3000's_1	24	22	-1.00	0.32	ns
beta_avg_power H	$[1000] s_0.75$	H1000's_1	24	24	-0.09	0.93	ns
beta_avg_power H		${\rm H}2000' {\rm s}_0.25$	24	21	0.83	0.41	ns
beta_avg_power H		${\rm H}2000' {\rm s}_0.5$	24	21	1.33	0.19	ns
beta_avg_power H	$[1000] s_0.75$	$\rm H2000's_0.75$	24	21	1.32	0.20	ns
beta_avg_power H	$[1000] s_0.75$	$H2000's_1$	24	21	1.66	0.11	ns
beta_avg_power H	$[1000] s_0.75$	${ m H3000's} { m _0.25}$	24	22	-1.93	0.06	ns
beta_avg_power H	$[1000] s_0.75$	${ m H3000's} { m _0.5}$	24	22	-1.67	0.10	ns
beta_avg_power H	$[1000] s_0.75$	${ m H3000's} { m _0.75}$	24	22	-1.44	0.16	ns
beta_avg_power H	$[1000] s_0.75$	${ m H}3000{ m 's}_1$	24	22	-1.00	0.32	ns
beta_avg_power H	[1000's_1	${\rm H}2000' {\rm s} _0.25$	24	21	0.90	0.38	ns
beta_avg_power H	[1000's_1	${\rm H}2000' {\rm s} _0.5$	24	21	1.40	0.17	ns
beta_avg_power H	[1000's_1	${\rm H}2000' {\rm s} _0.75$	24	21	1.39	0.17	ns
beta_avg_power H	[1000's_1	$\rm H2000's_1$	24	21	1.73	0.09	ns
beta_avg_power H	[1000's_1	${ m H3000's} { m _0.25}$	24	22	-1.87	0.07	ns
beta_avg_power H	[1000's_1	${ m H3000's} { m _0.5}$	24	22	-1.61	0.12	ns
beta_avg_power H	[1000's_1	${ m H3000's} { m _0.75}$	24	22	-1.39	0.17	ns
beta_avg_power H	[1000's_1	${ m H3000's_1}$	24	22	-0.94	0.35	ns
beta_avg_power H	$[2000]$ 's_ 0.25	${\rm H}2000' {\rm s}_0.5$	21	21	0.37	0.71	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power	H2000's_0.25	$\rm H2000's_0.75$	21	21	0.37	0.71	ns
beta_avg_power	H2000's_0.25	$H2000's_{1}$	21	21	0.61	0.54	$_{ m ns}$
beta_avg_power	H2000's_0.25	${ m H3000's} { m _0.25}$	21	22	-2.23	0.03	*
beta_avg_power	H2000's_0.25	${ m H3000's} { m _0.5}$	21	22	-2.03	0.05	*
beta_avg_power	H2000's_0.25	${ m H3000's} { m _0.75}$	21	22	-1.85	0.07	$_{ m ns}$
beta_avg_power	H2000's_0.25	${ m H3000's}{ m _1}$	21	22	-1.51	0.14	$_{ m ns}$
beta_avg_power	H2000's_0.5	${\rm H}2000' {\rm s}_0.75$	21	21	0.00	1.00	$_{ m ns}$
beta_avg_power	H2000's_0.5	H2000's_1	21	21	0.24	0.81	$_{ m ns}$
beta_avg_power	H2000's_0.5	${ m H3000's} { m _0.25}$	21	22	-2.69	0.01	*
beta_avg_power	H2000's_0.5	${ m H3000's} { m _0.5}$	21	22	-2.48	0.02	*
beta_avg_power	H2000's_0.5	${ m H3000's} { m _0.75}$	21	22	-2.29	0.03	*
beta_avg_power	H2000's_0.5	H3000's_1	21	22	-1.96	0.06	ns
beta_avg_power	H2000's_0.75	H2000's_1	21	21	0.24	0.81	ns
beta_avg_power	H2000's_0.75	$H3000's_0.25$	21	22	-2.68	0.01	*
beta_avg_power	H2000's_0.75	${ m H3000's}{ m _}0.5$	21	22	-2.47	0.02	*
beta_avg_power	H2000's_0.75	${ m H3000's} { m _0.75}$	21	22	-2.28	0.03	*
beta_avg_power	H2000's_0.75	H3000's_1	21	22	-1.95	0.06	$_{ m ns}$
beta_avg_power	H2000's_1	${ m H3000's} { m _0.25}$	21	22	-3.00	0.00	**
beta_avg_power	H2000's_1	$H3000's_0.5$	21	22	-2.78	0.01	**
beta_avg_power	H2000's_1	$H3000's_0.75$	21	22	-2.58	0.01	*
beta_avg_power	H2000's_1	H3000's_1	21	22	-2.25	0.03	*
beta_avg_power	H3000's_0.25	$H3000's_0.5$	22	22	0.21	0.83	ns
beta_avg_power	H3000's_0.25	${ m H3000's} { m _0.75}$	22	22	0.37	0.71	$_{ m ns}$
beta_avg_power	H3000's_0.25	H3000's_1	22	22	0.82	0.42	ns
beta_avg_power		${ m H3000's} { m _0.75}$	22	22	0.16	0.87	ns
beta_avg_power	H3000's_0.5	H3000's_1	22	22	0.60	0.55	ns
beta_avg_power		H3000's_1	22	22	0.42	0.67	ns

Cluster: 6 Beta Average Power t-tests

EEG Var Group	$_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power H1000	's_0.25	$\rm H1000's_0.5$	18	18	0.06	0.95	ns
beta_avg_power H1000	's_0.25	$\rm H1000's_0.75$	18	18	0.68	0.50	ns
beta_avg_power H1000	$s_0.25$	$\rm H1000's_1$	18	18	0.37	0.72	ns
beta_avg_power H1000	$s_0.25$	${\rm H}2000' {\rm s}_0.25$	18	13	0.58	0.57	ns
beta_avg_power H1000	$s_0.25$	${ m H2000's} { m _0.5}$	18	13	0.81	0.43	ns
beta_avg_power H1000	$s_0.25$	${ m H2000's} { m _0.75}$	18	13	0.89	0.38	ns
beta_avg_power H1000	$s_0.25$	H2000's_1	18	13	0.78	0.45	ns
beta_avg_power H1000	$s_0.25$	${ m H3000's} { m _0.25}$	18	11	0.36	0.72	ns
beta_avg_power H1000	$s_0.25$	${ m H}3000'{ m s}_0.5$	18	11	0.37	0.72	ns
beta_avg_power H1000	$s_0.25$	${ m H}3000{ m 's}_0.75$	18	11	0.21	0.83	ns
beta_avg_power H1000	$s_0.25$	$H3000's_{1}$	18	11	0.48	0.64	ns
beta_avg_power H1000	$s_0.5$	$\rm H1000's_0.75$	18	18	0.62	0.54	ns
beta_avg_power H1000	$s_0.5$	H1000's_1	18	18	0.30	0.76	ns
beta_avg_power H1000	$s_0.5$	${ m H2000's} { m _0.25}$	18	13	0.54	0.60	ns
beta_avg_power H1000	$s_0.5$	${ m H2000's} { m _0.5}$	18	13	0.78	0.45	ns
beta_avg_power H1000	$s_0.5$	${ m H2000's} { m _0.75}$	18	13	0.85	0.41	ns
beta_avg_power H1000	$s_0.5$	$\rm H2000's_1$	18	13	0.74	0.47	ns
beta_avg_power H1000	$s_0.5$	${ m H}3000'{ m s}_0.25$	18	11	0.32	0.75	$_{ m ns}$
beta_avg_power H1000	's_0.5	$\rm H3000's_0.5$	18	11	0.33	0.75	ns

EEG Var	Group_Speed_1	Group_Speed_2	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power	H1000's_0.5	H3000's_0.75	18	11	0.18	0.86	ns
beta_avg_power	$\rm H1000's_0.5$	H3000's_1	18	11	0.44	0.66	ns
beta_avg_power	$\rm H1000's_0.75$	H1000's_1	18	18	-0.33	0.74	ns
beta_avg_power	$H1000's_0.75$	$H2000's_0.25$	18	13	0.20	0.85	$_{ m ns}$
beta_avg_power		$H2000's_0.5$	18	13	0.43	0.68	ns
beta_avg_power		$\rm H2000's_0.75$	18	13	0.50	0.62	ns
beta_avg_power	$H1000's_0.75$	H2000's_1	18	13	0.38	0.71	$_{ m ns}$
beta_avg_power	$H1000's_0.75$	$H3000's_0.25$	18	11	-0.10	0.92	ns
beta_avg_power		$H3000's_0.5$	18	11	-0.07	0.95	ns
beta_avg_power	$H1000's_0.75$	$H3000's_0.75$	18	11	-0.21	0.84	$_{ m ns}$
beta_avg_power		H3000's 1	18	11	0.06	0.95	ns
beta_avg_power		H2000's 0.25	18	13	0.37	0.71	ns
beta_avg_power		H2000's 0.5	18	13	0.61	0.55	ns
beta_avg_power		H2000's 0.75	18	13	0.68	0.50	ns
beta_avg_power		H2000's 1	18	13	0.56	0.58	ns
beta avg power		H3000's 0.25	18	11	0.12	0.91	ns
beta_avg_power		H3000's 0.5	18	11	0.14	0.89	ns
beta_avg_power		H3000's 0.75	18	11	-0.01	0.99	ns
beta_avg_power		H3000's 1	18	11	0.26	0.80	ns
beta_avg_power		H2000's 0.5	13	13	0.17	0.87	ns
beta_avg_power		H2000's 0.75	13	13	0.22	0.83	ns
beta_avg_power		H2000's 1	13	13	0.12	0.90	ns
beta_avg_power		H3000's_0.25	13	11	-0.24	0.81	ns
beta_avg_power		H3000's 0.5	13	11	-0.21	0.84	ns
beta_avg_power		H3000's 0.75	13	11	-0.31	0.76	ns
beta_avg_power		H3000's 1	13	11	-0.12	0.91	ns
beta_avg_power		H2000's 0.75	13	13	0.05	0.96	ns
beta_avg_power		H2000's 1	13	13	-0.05	0.96	ns
beta_avg_power		H3000's 0.25	13	11	-0.43	0.67	ns
beta_avg_power		H3000's 0.5	13	11	-0.39	0.70	ns
beta_avg_power		H3000's 0.75	13	11	-0.49	0.63	ns
beta_avg_power		H3000's 1	13	11	-0.30	0.77	ns
beta_avg_power		H2000's 1	13	13	-0.10	0.92	ns
beta avg power		H3000's 0.25	13	11	-0.49	0.63	ns
beta_avg_power		H3000's 0.5	13	11	-0.45	0.66	ns
beta_avg_power		H3000's_0.75	13	11	-0.55	0.59	ns
beta_avg_power		H3000's_1	13	11	-0.35	0.73	ns
beta_avg_power		H3000's 0.25	13	11	-0.38	0.70	ns
beta_avg_power		H3000's 0.5	13	11	-0.35	0.73	ns
beta_avg_power		H3000's 0.75	13	11	-0.45	0.66	ns
beta avg power		H3000's 1	13	11	-0.25	0.80	ns
beta_avg_power		H3000's 0.5	11	11	0.02	0.98	ns
beta_avg_power		H3000's 0.75	11	11	-0.10	0.92	ns
beta_avg_power		H3000's 1	11	11	0.12	0.90	ns
beta_avg_power		H3000's 0.75	11	11	-0.11	0.91	ns
beta_avg_power		H3000's 1	11	11	0.10	0.92	ns
beta_avg_power		H3000's 1	11	11	0.21	0.84	ns
					U.=1	0.01	

Cluster: 7 Beta Average Power t-tests

EEG Var Group_Speed	<u>!1</u>	Group_Speed_2	N1	N2	tstat	p-value	*sig.
beta_avg_power H1000's_0.25	<u> </u>	H1000's 0.5	16	16	-0.18	0.86	ns
beta_avg_power H1000's_0.25		$H1000's_{-}0.75$	16	16	0.21	0.83	ns
beta_avg_power H1000's_0.25	5	H1000's_1	16	16	0.60	0.55	ns
beta_avg_power H1000's_0.25	ó	$H2000's_0.25$	16	11	0.09	0.93	ns
beta_avg_power H1000's_0.25		$H2000's_0.5$	16	11	0.28	0.78	ns
beta_avg_power H1000's_0.25	ó	$H2000's_0.75$	16	11	0.30	0.76	ns
beta_avg_power H1000's_0.25	ó	$H2000's_{1}$	16	11	-0.05	0.96	ns
beta_avg_power H1000's_0.25	5	${ m H3000's} { m _0.25}$	16	11	-0.23	0.82	ns
beta_avg_power H1000's_0.25	5	${ m H3000's} { m _0.5}$	16	11	0.30	0.77	ns
beta_avg_power H1000's_0.25	5	${ m H3000's} { m _0.75}$	16	11	0.54	0.60	ns
beta_avg_power H1000's_0.25	ó	$H3000's_{1}$	16	11	0.92	0.37	ns
beta_avg_power $H1000$ 's_0.5		$\rm H1000's_0.75$	16	16	0.39	0.70	ns
beta_avg_power $H1000$ 's_0.5		H1000's_1	16	16	0.77	0.45	ns
beta_avg_power $H1000$ 's_0.5		$H2000's_0.25$	16	11	0.19	0.85	ns
beta_avg_power $H1000$ 's_0.5		$H2000's_0.5$	16	11	0.38	0.71	ns
beta_avg_power $H1000$ 's_0.5		$H2000's_0.75$	16	11	0.40	0.70	ns
beta_avg_power $H1000$ 's_0.5		$H2000's_{1}$	16	11	0.04	0.97	ns
beta_avg_power $H1000$ 's_0.5		${ m H3000's} { m _0.25}$	16	11	-0.09	0.93	ns
beta_avg_power $H1000$ 's_0.5		${ m H3000's} { m _0.5}$	16	11	0.44	0.67	ns
beta_avg_power H1000's_0.5		${ m H3000's} { m _0.75}$	16	11	0.68	0.50	ns
beta_avg_power H1000's_0.5		$H3000's_1$	16	11	1.06	0.30	ns
beta_avg_power H1000's_0.75	ó	H1000's_1	16	16	0.41	0.68	ns
beta_avg_power H1000's_0.75	ó	$\rm H2000's_0.25$	16	11	-0.01	0.99	ns
beta_avg_power H1000's_0.75	ó	$H2000's_0.5$	16	11	0.18	0.86	ns
beta_avg_power H1000's_0.75	5	$H2000's_0.75$	16	11	0.20	0.84	ns
beta_avg_power H1000's_0.75	ó	$H2000's_1$	16	11	-0.15	0.88	ns
beta_avg_power H1000's_0.75	ó	${ m H3000's} { m _0.25}$	16	11	-0.40	0.69	ns
beta_avg_power H1000's_0.75	ó	$H3000's_0.5$	16	11	0.14	0.89	ns
beta_avg_power H1000's_0.75	5	$H3000's_0.75$	16	11	0.38	0.71	ns
beta_avg_power H1000's_0.75	ó	$H3000's_1$	16	11	0.77	0.45	ns
beta_avg_power H1000's_1		$H2000's_0.25$	16	11	-0.20	0.84	ns
beta_avg_power H1000's_1		$H2000's_0.5$	16	11	-0.02	0.98	ns
beta_avg_power H1000's_1		$\rm H2000's_0.75$	16	11	0.01	0.99	ns
beta_avg_power H1000's_1		$H2000's_1$	16	11	-0.33	0.74	ns
beta_avg_power H1000's_1		${ m H3000's} { m _0.25}$	16	11	-0.69	0.50	ns
beta_avg_power H1000's_1		$H3000's_0.5$	16	11	-0.17	0.86	ns
beta_avg_power H1000's_1		$H3000's_0.75$	16	11	0.05	0.96	ns
beta_avg_power H1000's_1		$H3000's_1$	16	11	0.41	0.69	ns
beta_avg_power H2000's_0.25	5	$H2000's_0.5$	11	11	0.14	0.89	ns
beta_avg_power H2000's_0.25	5	$H2000's_0.75$	11	11	0.16	0.88	ns
beta_avg_power H2000's_0.25	5	$H2000's_{1}$	11	11	-0.11	0.91	ns
beta_avg_power H2000's_0.25	5	$H3000's_0.25$	11	11	-0.23	0.82	ns
beta_avg_power H2000's_0.25	ó	$H3000's_0.5$	11	11	0.09	0.93	ns
beta_avg_power H2000's_0.25	5	$H3000's_0.75$	11	11	0.22	0.83	ns
beta_avg_power H2000's_0.25	5	$H3000's_1$	11	11	0.41	0.69	ns
beta_avg_power H2000's_0.5		$\rm H2000's_0.75$	11	11	0.02	0.98	ns
beta_avg_power H2000's_0.5		$H2000's_{1}$	11	11	-0.25	0.81	ns
beta_avg_power H2000's_0.5		${ m H3000's} { m _0.25}$	11	11	-0.41	0.69	ns
beta_avg_power H2000's_0.5		${ m H3000's} { m _0.5}$	11	11	-0.08	0.93	ns
beta_avg_power H2000's_0.5		${ m H3000's} { m _0.75}$	11	11	0.05	0.96	ns
beta_avg_power H2000's_0.5		$H3000's_{1}$	11	11	0.24	0.81	ns
beta_avg_power H2000's_0.75	5	$\rm H2000's_1$	11	11	-0.26	0.80	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power	H2000's_0.75	H3000's_0.25	11	11	-0.42	0.68	ns
beta_avg_power	H2000's_0.75	$H3000's_0.5$	11	11	-0.11	0.92	ns
beta_avg_power	H2000's_0.75	$H3000's_0.75$	11	11	0.02	0.98	ns
beta_avg_power	H2000's_0.75	H3000's_1	11	11	0.21	0.84	$_{ m ns}$
beta_avg_power	H2000's_1	${ m H3000's} { m _0.25}$	11	11	-0.09	0.93	ns
beta_avg_power	H2000's_1	${ m H3000's} { m _0.5}$	11	11	0.22	0.83	$_{ m ns}$
beta_avg_power	H2000's_1	${ m H3000's} { m _0.75}$	11	11	0.34	0.74	$_{ m ns}$
beta_avg_power	H2000's_1	H3000's_1	11	11	0.53	0.61	$_{ m ns}$
beta_avg_power	H3000's_0.25	${ m H3000's} { m _0.5}$	11	11	0.45	0.66	$_{ m ns}$
beta_avg_power	H3000's_0.25	${ m H3000's} { m _0.75}$	11	11	0.65	0.52	$_{ m ns}$
beta_avg_power	H3000's_0.25	H3000's_1	11	11	0.95	0.35	ns
beta_avg_power	H3000's_0.5	$H3000's_0.75$	11	11	0.19	0.85	ns
beta_avg_power	H3000's_0.5	H3000's_1	11	11	0.49	0.63	ns
beta_avg_power	H3000's_0.75	$\rm H3000's_1$	11	11	0.30	0.77	ns

Cluster: 8 Beta Average Power t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power	· H1000's_0.25	H1000's_0.5	15	15	0.26	0.80	ns
beta_avg_power	· H1000's_0.25	$\rm H1000's_0.75$	15	15	0.45	0.65	ns
beta_avg_power	· H1000's_0.25	H1000's_1	15	15	0.45	0.66	ns
beta_avg_power	· H1000's_0.25	$H2000's_0.25$	15	8	0.63	0.54	ns
beta_avg_power	· H1000's_0.25	$H2000's_0.5$	15	8	0.40	0.70	ns
beta_avg_power	· H1000's_0.25	$H2000's_0.75$	15	8	0.42	0.68	ns
beta_avg_power	· H1000's_0.25	H2000's_1	15	8	0.79	0.45	ns
beta_avg_power	· H1000's_0.25	${ m H3000's} { m _0.25}$	15	11	-0.93	0.36	ns
beta_avg_power	· H1000's_0.25	${ m H3000's} { m _0.5}$	15	11	-0.60	0.56	ns
beta_avg_power	· H1000's_0.25	${ m H3000's} { m _0.75}$	15	11	-0.25	0.81	ns
beta_avg_power	· H1000's_0.25	H3000's_1	15	11	0.37	0.71	ns
beta_avg_power	· H1000's_0.5	$\rm H1000's_0.75$	15	15	0.15	0.88	ns
beta_avg_power	· H1000's_0.5	H1000's_1	15	15	0.15	0.88	ns
beta_avg_power	· H1000's_0.5	${\rm H}2000' {\rm s}_0.25$	15	8	0.46	0.66	ns
beta_avg_power	· H1000's_0.5	${\rm H}2000' {\rm s}_0.5$	15	8	0.24	0.81	ns
beta_avg_power	H1000's_0.5	${\rm H}2000' {\rm s}_0.75$	15	8	0.27	0.79	$_{ m ns}$
beta_avg_power	· H1000's_0.5	H2000's_1	15	8	0.62	0.55	ns
beta_avg_power	H1000's_0.5	${ m H3000's} { m _0.25}$	15	11	-1.09	0.29	$_{ m ns}$
beta_avg_power	H1000's_0.5	${ m H3000's} { m _0.5}$	15	11	-0.78	0.44	$_{ m ns}$
beta_avg_power	· H1000's_0.5	${ m H3000's} { m _0.75}$	15	11	-0.46	0.65	ns
beta_avg_power	· H1000's_0.5	H3000's_1	15	11	0.13	0.90	ns
beta_avg_power	· H1000's_0.75	H1000's_1	15	15	0.01	0.99	ns
beta_avg_power	· H1000's_0.75	${\rm H}2000' {\rm s}_0.25$	15	8	0.39	0.71	ns
beta_avg_power	· H1000's_0.75	${\rm H}2000' {\rm s}_0.5$	15	8	0.17	0.87	ns
beta_avg_power	· H1000's_0.75	$H2000's_0.75$	15	8	0.20	0.85	ns
beta_avg_power	· H1000's_0.75	H2000's_1	15	8	0.55	0.59	ns
beta_avg_power	· H1000's_0.75	$H3000's_0.25$	15	11	-1.36	0.19	ns
beta_avg_power	· H1000's_0.75	$H3000's_0.5$	15	11	-0.99	0.34	ns
beta_avg_power	· H1000's_0.75	$H3000's_0.75$	15	11	-0.65	0.52	ns
beta_avg_power	· H1000's_0.75	H3000's_1	15	11	0.00	1.00	ns
beta_avg_power	· H1000's_1	H2000's_0.25	15	8	0.38	0.71	ns
beta_avg_power	· H1000's_1	H2000's_0.5	15	8	0.16	0.88	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
$beta_avg_power~H1000's_1$	${\rm H}2000' {\rm s}_0.75$	15	8	0.19	0.86	ns
beta_avg_power H1000's_1	H2000's_1	15	8	0.54	0.60	ns
beta_avg_power H1000's_1	${ m H3000's} { m _0.25}$	15	11	-1.33	0.20	ns
beta_avg_power H1000's_1	${ m H}3000'{ m s}_0.5$	15	11	-0.97	0.34	ns
beta_avg_power H1000's_1	${ m H}3000' { m s}_0.75$	15	11	-0.64	0.53	ns
beta_avg_power H1000's_1	H3000's_1	15	11	-0.01	0.99	ns
$beta_avg_power~H2000's_0.25$	${ m H2000's} { m _0.5}$	8	8	-0.16	0.87	ns
$beta_avg_power~H2000's_0.25$	$\rm H2000's_0.75$	8	8	-0.13	0.90	ns
$beta_avg_power~H2000's_0.25$	H2000's_1	8	8	0.14	0.89	ns
$beta_avg_power~H2000's_0.25$	${ m H3000's} { m _0.25}$	8	11	-1.15	0.28	ns
$beta_avg_power~H2000's_0.25$	${ m H}3000'{ m s}_0.5$	8	11	-0.96	0.36	ns
$beta_avg_power~H2000's_0.25$	${ m H}3000'{ m s}_0.75$	8	11	-0.75	0.47	ns
$beta_avg_power~H2000's_0.25$	H3000's_1	8	11	-0.36	0.72	ns
$beta_avg_power~H2000's_0.5$	${\rm H}2000' {\rm s}_0.75$	8	8	0.03	0.98	ns
$beta_avg_power~H2000's_0.5$	H2000's_1	8	8	0.29	0.77	ns
$beta_avg_power~H2000's_0.5$	${ m H3000's} { m _0.25}$	8	11	-0.92	0.38	ns
$beta_avg_power~H2000's_0.5$	${ m H3000's} { m _0.5}$	8	11	-0.73	0.48	ns
$beta_avg_power~H2000's_0.5$	${ m H3000's} { m _0.75}$	8	11	-0.53	0.61	ns
$beta_avg_power~H2000's_0.5$	H3000's_1	8	11	-0.16	0.88	ns
$beta_avg_power~H2000's_0.75$	H2000's_1	8	8	0.26	0.80	ns
$beta_avg_power~H2000's_0.75$	${ m H3000's} { m _0.25}$	8	11	-0.92	0.38	ns
$beta_avg_power~H2000's_0.75$	${ m H}3000'{ m s}_0.5$	8	11	-0.75	0.47	ns
$beta_avg_power~H2000's_0.75$	${ m H3000's} { m _0.75}$	8	11	-0.55	0.60	ns
$beta_avg_power~H2000's_0.75$	H3000's_1	8	11	-0.18	0.86	ns
$beta_avg_power~H2000$ 's_1	${ m H3000's} { m _0.25}$	8	11	-1.29	0.23	ns
$beta_avg_power~H2000$ 's_1	${ m H3000's} { m _0.5}$	8	11	-1.10	0.30	ns
beta_avg_power H2000's_1	$H3000's_0.75$	8	11	-0.90	0.39	ns
beta_avg_power H2000's_1	H3000's_1	8	11	-0.52	0.61	ns
$beta_avg_power~H3000's_0.25$	${ m H}3000'{ m s}_0.5$	11	11	0.26	0.80	ns
$beta_avg_power~H3000's_0.25$	${ m H}3000' { m s}_0.75$	11	11	0.60	0.55	ns
$beta_avg_power~H3000's_0.25$	H3000's_1	11	11	1.15	0.26	ns
$beta_avg_power~H3000's_0.5$	${ m H3000's} { m _0.75}$	11	11	0.32	0.75	ns
$beta_avg_power~H3000's_0.5$	H3000's_1	11	11	0.85	0.40	ns
$beta_avg_power~H3000's_0.75$	$\rm H3000's_1$	11	11	0.56	0.58	ns

Cluster: 9 Beta Average Power t-tests

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power H1000's_0.25	H1000's_0.5	24	24	0.23	0.82	ns
$beta_avg_power~H1000's_0.25$	$\rm H1000's_0.75$	24	24	0.11	0.91	ns
$beta_avg_power~H1000's_0.25$	H1000's_1	24	24	0.42	0.68	ns
$beta_avg_power~H1000's_0.25$	$H2000's_0.25$	24	15	-0.63	0.54	ns
$beta_avg_power~H1000's_0.25$	${\rm H}2000' {\rm s}_0.5$	24	15	-0.29	0.77	ns
$beta_avg_power~H1000's_0.25$	${ m H2000's} { m _0.75}$	24	15	-0.29	0.78	ns
$beta_avg_power~H1000's_0.25$	H2000's_1	24	15	-0.44	0.66	ns
$beta_avg_power~H1000's_0.25$	${ m H3000's} { m _0.25}$	24	22	-2.29	0.03	*
$beta_avg_power~H1000's_0.25$	${ m H3000's} { m _0.5}$	24	22	-2.11	0.04	*
$beta_avg_power~H1000's_0.25$	${ m H3000's} { m _0.75}$	24	22	-1.95	0.06	ns
$beta_avg_power~H1000's_0.25$	$H3000's_1$	24	22	-1.69	0.10	ns
$beta_avg_power~H1000's_0.5$	$\rm H1000's_0.75$	24	24	-0.12	0.91	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
$beta_avg_power~H1000's_0.5$	$\rm H1000's_1$	24	24	0.20	0.84	ns
$beta_avg_power~H1000's_0.5$	$\rm H2000's_0.25$	24	15	-0.80	0.43	ns
beta_avg_power $H1000$ 's_0.5	$H2000's_0.5$	24	15	-0.47	0.64	ns
$beta_avg_power~H1000's_0.5$	$H2000's_0.75$	24	15	-0.46	0.65	ns
$beta_avg_power~H1000's_0.5$	$H2000's_{1}$	24	15	-0.62	0.54	ns
beta_avg_power $H1000$ 's_ 0.5	$H3000's_0.25$	24	22	-2.64	0.01	*
beta_avg_power $H1000$ 's_ 0.5	$H3000's_0.5$	24	22	-2.43	0.02	*
beta_avg_power H1000's_0.5	$H3000's_0.75$	24	22	-2.26	0.03	*
beta_avg_power H1000's_0.5	H3000's_1	24	22	-2.02	0.05	*
beta_avg_power H1000's_0.75	H1000's_1	24	24	0.31	0.76	ns
beta_avg_power H1000's_0.75	$H2000's_0.25$	24	15	-0.71	0.48	ns
$beta_avg_power~H1000's_0.75$	$H2000's_0.5$	24	15	-0.38	0.71	ns
$beta_avg_power~H1000's_0.75$	$H2000's_0.75$	24	15	-0.37	0.71	ns
$beta_avg_power~H1000's_0.75$	$H2000's_{1}$	24	15	-0.53	0.60	ns
beta_avg_power H1000's_0.75	$H3000's_0.25$	24	22	-2.46	0.02	*
beta_avg_power H1000's_0.75	$H3000's_0.5$	24	22	-2.26	0.03	*
$beta_avg_power~H1000's_0.75$	$H3000's_0.75$	24	22	-2.10	0.04	*
$beta_avg_power~H1000's_0.75$	H3000's_1	24	22	-1.85	0.07	ns
beta_avg_power H1000's_1	$H2000's_0.25$	24	15	-0.94	0.36	ns
beta_avg_power H1000's_1	$H2000's_0.5$	24	15	-0.61	0.55	ns
beta_avg_power H1000's_1	$\rm H2000's_0.75$	24	15	-0.60	0.56	ns
$beta_avg_power~H1000's_1$	H2000's_1	24	15	-0.75	0.46	ns
beta_avg_power H1000's_1	${ m H3000's} { m _0.25}$	24	22	-2.85	0.01	**
$beta_avg_power~H1000's_1$	$H3000's_0.5$	24	22	-2.63	0.01	*
$beta_avg_power~H1000's_1$	${ m H}3000{ m 's}_0.75$	24	22	-2.46	0.02	*
$beta_avg_power~H1000's_1$	H3000's_1	24	22	-2.22	0.03	*
$beta_avg_power~H2000's_0.25$	${\rm H}2000{\rm 's}_0.5$	15	15	0.29	0.77	ns
$beta_avg_power~H2000's_0.25$	$\rm H2000's_0.75$	15	15	0.29	0.77	ns
$beta_avg_power~H2000's_0.25$	H2000's_1	15	15	0.16	0.87	ns
$beta_avg_power~H2000$'s $_0.25$	${ m H3000's} { m _0.25}$	15	22	-1.04	0.31	ns
$beta_avg_power~H2000's_0.25$	${ m H3000's} { m _0.5}$	15	22	-0.95	0.35	ns
$beta_avg_power~H2000's_0.25$	${ m H}3000{ m 's}_0.75$	15	22	-0.82	0.42	ns
$beta_avg_power~H2000's_0.25$	H3000's_1	15	22	-0.59	0.56	ns
$beta_avg_power~H2000's_0.5$	${\rm H}2000{\rm 's}_0.75$	15	15	0.00	1.00	ns
$beta_avg_power~H2000's_0.5$	$H2000's_{1}$	15	15	-0.13	0.90	ns
beta_avg_power $H2000$ 's_0.5	${ m H3000's} { m _0.25}$	15	22	-1.43	0.16	ns
beta_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.5}$	15	22	-1.33	0.19	ns
beta_avg_power $H2000$ 's_0.5	${ m H3000's} { m _0.75}$	15	22	-1.20	0.24	ns
beta_avg_power H2000's_0.5	H3000's_1	15	22	-0.97	0.34	ns
$beta_avg_power~H2000's_0.75$	$H2000's_{1}$	15	15	-0.13	0.90	ns
$beta_avg_power~H2000's_0.75$	${ m H3000's} { m _0.25}$	15	22	-1.43	0.16	ns
$beta_avg_power~H2000$'s $_0.75$	${ m H3000's} { m _0.5}$	15	22	-1.33	0.20	ns
$beta_avg_power~H2000's_0.75$	${ m H3000's} { m _0.75}$	15	22	-1.19	0.24	ns
beta_avg_power H2000's_0.75	H3000's_1	15	22	-0.97	0.34	ns
beta_avg_power H2000's_1	$H3000's_0.25$	15	22	-1.25	0.22	ns
beta_avg_power H2000's_1	${ m H3000's} { m _0.5}$	15	22	-1.16	0.26	ns
beta_avg_power H2000's_1	$H3000's_0.75$	15	22	-1.02	0.32	ns
beta_avg_power H2000's_1	H3000's_1	15	22	-0.80	0.43	ns
beta_avg_power H3000's_0.25	$H3000's_0.5$	22	22	0.09	0.93	ns
beta_avg_power H3000's_0.25	$H3000's_0.75$	22	22	0.28	0.78	ns
beta_avg_power H3000's_0.25	H3000's_1	22	22	0.62	0.54	ns
beta_avg_power H3000's_0.5	${ m H3000's} { m _0.75}$	22	22	0.18	0.86	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power H3000's_0.5	H3000's_1	22	22	0.51	0.61	ns
$beta_avg_power~H3000's_0.75$	$\rm H3000's_1$	22	22	0.32	0.75	ns

Cluster: 10 Beta Average Power t-tests

EEC V C C	1 (N T 1	Ma	4-4-4		*-:
EEG Var Group_Speed_		N1	N2	tstat	p-value	*sig.
beta_avg_power H1000's_0.25	$\rm H1000's_0.5$	23	23	0.44	0.66	ns
beta_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	23	23	0.36	0.72	ns
beta_avg_power H1000's_0.25	$\rm H1000's_1$	23	23	0.13	0.89	$_{ m ns}$
beta_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.25}$	23	17	-1.33	0.20	ns
beta_avg_power H1000's_0.25	${ m H2000's} { m _0.5}$	23	17	-1.26	0.22	$_{ m ns}$
beta_avg_power H1000's_0.25	$H2000's_0.75$	23	17	-1.10	0.28	ns
beta_avg_power $H1000$ 's_ 0.25	$H2000's_{1}$	23	17	-0.89	0.38	ns
$beta_avg_power~H1000's_0.25$	$H3000's_0.25$	23	17	0.03	0.98	ns
$beta_avg_power~H1000's_0.25$	$H3000's_0.5$	23	17	0.31	0.76	ns
beta_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.75}$	23	17	0.62	0.54	ns
beta_avg_power $H1000$ 's_ 0.25	H3000's_1	23	17	0.62	0.54	ns
$beta_avg_power~H1000's_0.5$	$\rm H1000's_0.75$	23	23	-0.08	0.94	$_{ m ns}$
$beta_avg_power~H1000's_0.5$	H1000's_1	23	23	-0.31	0.76	ns
beta_avg_power $H1000$ 's_ 0.5	$\rm H2000's_0.25$	23	17	-1.69	0.10	ns
$beta_avg_power~H1000's_0.5$	${ m H2000's} { m _0.5}$	23	17	-1.66	0.11	$_{ m ns}$
$beta_avg_power~H1000's_0.5$	${ m H2000's} { m _0.75}$	23	17	-1.50	0.14	$_{ m ns}$
$beta_avg_power~H1000's_0.5$	H2000's_1	23	17	-1.28	0.21	$_{ m ns}$
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.25}$	23	17	-0.41	0.68	$_{ m ns}$
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.5}$	23	17	-0.13	0.89	$_{ m ns}$
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.75}$	23	17	0.20	0.84	$_{ m ns}$
beta_avg_power $H1000$ 's_ 0.5	H3000's_1	23	17	0.22	0.83	$_{ m ns}$
$beta_avg_power~H1000's_0.75$	H1000's_1	23	23	-0.23	0.82	$_{ m ns}$
beta_avg_power H1000's_0.75	${\rm H}2000' {\rm s}_0.25$	23	17	-1.62	0.12	$_{ m ns}$
beta_avg_power H1000's_0.75	${\rm H}2000' {\rm s}_0.5$	23	17	-1.58	0.12	$_{ m ns}$
beta_avg_power H1000's_0.75	${ m H2000's} { m _0.75}$	23	17	-1.42	0.17	ns
beta_avg_power H1000's_0.75	$H2000's_{1}$	23	17	-1.21	0.24	ns
beta_avg_power H1000's_0.75	${ m H3000's} { m _0.25}$	23	17	-0.33	0.74	ns
beta_avg_power H1000's_0.75	$H3000's_0.5$	23	17	-0.05	0.96	$_{ m ns}$
beta_avg_power H1000's_0.75	${ m H3000's} { m _0.75}$	23	17	0.28	0.78	$_{ m ns}$
beta_avg_power H1000's_0.75	H3000's_1	23	17	0.29	0.77	$_{ m ns}$
beta_avg_power H1000's_1	H2000's 0.25	23	17	-1.45	0.16	ns
beta_avg_power H1000's_1	${ m H2000's} { m _0.5}$	23	17	-1.39	0.17	$_{ m ns}$
beta_avg_power H1000's_1	H2000's 0.75	23	17	-1.23	0.23	ns
beta avg power H1000's 1	H2000's 1	23	17	-1.01	0.32	ns
beta_avg_power H1000's_1	H3000's 0.25	23	17	-0.10	0.92	ns
beta_avg_power H1000's_1	$H3000$ 's_0.5	23	17	0.18	0.86	ns
beta_avg_power H1000's_1	$H3000$ 's_0.75	23	17	0.50	0.62	ns
beta avg power H1000's 1	H3000's_1	23	17	0.51	0.62	ns
beta_avg_power H2000's_0.25	H2000's 0.5	17	17	0.14	0.89	ns
beta avg power H2000's 0.25	H2000's 0.75	17	17	0.28	0.78	ns
beta avg power H2000's 0.25	H2000's 1	17	17	0.46	0.65	ns
beta_avg_power H2000's_0.25	H3000's_0.25	17	17	1.35	0.19	ns
beta_avg_power H2000's_0.25	H3000's 0.5	17	17	1.59	0.12	ns
beta_avg_power H2000's_0.25	H3000's_0.75	17	17	1.81	0.08	ns
		-•			0.00	

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power	H2000's_0.25	H3000's_1	17	17	1.79	0.08	ns
beta_avg_power	H2000's_0.5	$H2000's_0.75$	17	17	0.14	0.89	ns
beta_avg_power	H2000's_0.5	H2000's_1	17	17	0.33	0.74	$_{ m ns}$
beta_avg_power	H2000's_0.5	${ m H3000's} { m _0.25}$	17	17	1.29	0.21	ns
beta_avg_power	H2000's_0.5	${ m H}3000{ m 's}_0.5$	17	17	1.54	0.13	$_{ m ns}$
beta_avg_power	H2000's_0.5	${ m H}3000'{ m s}_0.75$	17	17	1.78	0.09	ns
beta_avg_power	H2000's_0.5	H3000's_1	17	17	1.76	0.09	$_{ m ns}$
beta_avg_power	H2000's_0.75	H2000's_1	17	17	0.19	0.85	$_{ m ns}$
beta_avg_power	H2000's_0.75	${ m H3000's} { m _0.25}$	17	17	1.13	0.27	$_{ m ns}$
beta_avg_power	H2000's_0.75	${ m H}3000{ m 's}_0.5$	17	17	1.38	0.18	$_{ m ns}$
beta_avg_power	H2000's_0.75	${ m H}3000{ m 's}_0.75$	17	17	1.62	0.12	$_{ m ns}$
beta_avg_power	H2000's_0.75	H3000's_1	17	17	1.61	0.12	$_{ m ns}$
beta_avg_power	H2000's_1	${ m H3000's} { m _0.25}$	17	17	0.91	0.37	$_{ m ns}$
beta_avg_power	H2000's_1	${ m H}3000'{ m s}_0.5$	17	17	1.17	0.25	$_{ m ns}$
beta_avg_power	H2000's_1	${ m H}3000{ m 's}_0.75$	17	17	1.41	0.17	$_{ m ns}$
beta_avg_power	H2000's_1	H3000's_1	17	17	1.40	0.17	$_{ m ns}$
beta_avg_power	H3000's_0.25	${ m H}3000{ m 's}_0.5$	17	17	0.28	0.78	ns
beta_avg_power	H3000's_0.25	${ m H}3000{ m 's}_0.75$	17	17	0.59	0.56	$_{ m ns}$
beta_avg_power	H3000's_0.25	H3000's_1	17	17	0.59	0.56	$_{ m ns}$
beta_avg_power	H3000's_0.5	${ m H3000's} { m _0.75}$	17	17	0.33	0.74	$_{ m ns}$
beta_avg_power	H3000's_0.5	H3000's_1	17	17	0.34	0.74	ns
beta_avg_power	H3000's_0.75	H3000's_1	17	17	0.02	0.99	ns

Cluster: 11 Beta Average Power t-tests

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
$beta_avg_power~H1000's_0.25$	$\rm H1000's_0.5$	29	29	0.33	0.75	ns
$beta_avg_power~H1000's_0.25$	$\rm H1000's_0.75$	29	29	0.33	0.74	ns
$beta_avg_power~H1000's_0.25$	H1000's_1	29	29	0.27	0.79	ns
$beta_avg_power~H1000's_0.25$	${\rm H}2000' {\rm s}_0.25$	29	15	-0.57	0.58	ns
$beta_avg_power~H1000's_0.25$	$H2000's_0.5$	29	15	-0.65	0.52	ns
$beta_avg_power~H1000's_0.25$	$\rm H2000's_0.75$	29	15	-0.67	0.51	ns
$beta_avg_power~H1000's_0.25$	H2000's_1	29	15	-0.45	0.66	ns
$beta_avg_power~H1000's_0.25$	${ m H3000's} { m _0.25}$	29	19	1.45	0.16	ns
$beta_avg_power~H1000's_0.25$	${ m H3000's}{ m _0.5}$	29	19	1.26	0.21	ns
$beta_avg_power~H1000's_0.25$	${ m H3000's} { m _0.75}$	29	19	1.56	0.12	ns
$beta_avg_power~H1000's_0.25$	H3000's_1	29	19	1.87	0.07	ns
$beta_avg_power~H1000's_0.5$	$\rm H1000's_0.75$	29	29	0.00	1.00	ns
$beta_avg_power~H1000's_0.5$	H1000's_1	29	29	-0.05	0.96	ns
$beta_avg_power~H1000's_0.5$	$\rm H2000's_0.25$	29	15	-0.79	0.44	ns
$beta_avg_power~H1000$'s $_0.5$	$H2000's_0.5$	29	15	-0.88	0.39	ns
$beta_avg_power~H1000's_0.5$	$\rm H2000's_0.75$	29	15	-0.89	0.38	ns
$beta_avg_power~H1000's_0.5$	H2000's_1	29	15	-0.66	0.52	ns
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.25}$	29	19	1.09	0.28	ns
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.5}$	29	19	0.91	0.37	ns
$beta_avg_power~H1000's_0.5$	${ m H}3000{ m 's}_0.75$	29	19	1.20	0.23	ns
$beta_avg_power~H1000$'s $_0.5$	H3000's_1	29	19	1.50	0.14	ns
$beta_avg_power~H1000$'s $_0.75$	H1000's_1	29	29	-0.06	0.95	ns
$beta_avg_power~H1000's_0.75$	$H2000's_0.25$	29	15	-0.80	0.43	ns
$beta_avg_power~H1000's_0.75$	${\rm H}2000' {\rm s}_0.5$	29	15	-0.89	0.38	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
beta_avg_power H1000's_0.75	H2000's_0.75	29	15	-0.90	0.38	ns
beta_avg_power H1000's_0.75	H2000's_1	29	15	-0.67	0.51	ns
beta_avg_power H1000's_0.75	$H3000's_0.25$	29	19	1.11	0.27	ns
beta_avg_power H1000's_0.75	$H3000's_0.5$	29	19	0.92	0.36	ns
beta_avg_power H1000's_0.75	$H3000's_0.75$	29	19	1.22	0.23	ns
beta_avg_power H1000's_0.75	H3000's_1	29	19	1.53	0.13	ns
beta_avg_power H1000's_1	$H2000's_0.25$	29	15	-0.75	0.46	ns
beta_avg_power H1000's_1	$H2000's_0.5$	29	15	-0.84	0.41	ns
beta_avg_power H1000's_1	$H2000's_0.75$	29	15	-0.85	0.40	ns
beta_avg_power H1000's_1	H2000's_1	29	15	-0.62	0.54	ns
beta_avg_power H1000's_1	$H3000's_0.25$	29	19	1.14	0.26	ns
beta_avg_power H1000's_1	$H3000's_0.5$	29	19	0.96	0.34	ns
beta_avg_power H1000's_1	$H3000's_0.75$	29	19	1.25	0.22	ns
beta_avg_power H1000's_1	H3000's_1	29	19	1.55	0.13	ns
beta_avg_power H2000's_0.25	$H2000's_0.5$	15	15	-0.08	0.94	ns
beta_avg_power H2000's_0.25	$H2000's_0.75$	15	15	-0.11	0.92	ns
beta_avg_power H2000's_0.25	H2000's_1	15	15	0.05	0.96	ns
beta_avg_power H2000's_0.25	$H3000's_0.25$	15	19	1.58	0.13	ns
beta_avg_power H2000's_0.25	$H3000's_0.5$	15	19	1.45	0.16	ns
beta_avg_power H2000's_0.25	$H3000's_0.75$	15	19	1.66	0.11	ns
beta_avg_power H2000's_0.25	H3000's_1	15	19	1.86	0.08	ns
beta_avg_power H2000's_0.5	$H2000's_0.75$	15	15	-0.03	0.97	ns
beta_avg_power H2000's_0.5	H2000's_1	15	15	0.13	0.90	ns
beta_avg_power H2000's_0.5	$H3000's_0.25$	15	19	1.66	0.11	ns
beta_avg_power H2000's_0.5	$H3000's_0.5$	15	19	1.53	0.14	ns
beta_avg_power H2000's_0.5	$H3000's_0.75$	15	19	1.74	0.10	ns
beta_avg_power H2000's_0.5	H3000's_1	15	19	1.94	0.07	ns
beta_avg_power H2000's_0.75	H2000's_1	15	15	0.15	0.88	ns
beta_avg_power H2000's_0.75	$H3000's_0.25$	15	19	1.64	0.12	ns
beta_avg_power H2000's_0.75	$H3000's_0.5$	15	19	1.52	0.14	ns
beta_avg_power H2000's_0.75	$H3000's_0.75$	15	19	1.72	0.10	ns
$beta_avg_power~H2000$'s $_0.75$	H3000's_1	15	19	1.92	0.07	ns
beta_avg_power H2000's_1	$H3000's_0.25$	15	19	1.37	0.19	ns
beta_avg_power H2000's_1	$H3000's_0.5$	15	19	1.25	0.22	ns
beta_avg_power H2000's_1	$H3000's_0.75$	15	19	1.44	0.16	ns
beta_avg_power H2000's_1	H3000's_1	15	19	1.63	0.12	ns
$beta_avg_power~H3000's_0.25$	$H3000's_0.5$	19	19	-0.19	0.85	ns
beta_avg_power H3000's_0.25	$H3000's_0.75$	19	19	0.12	0.90	ns
beta_avg_power H3000's_0.25	H3000's_1	19	19	0.42	0.68	ns
beta_avg_power H3000's_0.5	$H3000's_0.75$	19	19	0.31	0.76	ns
beta_avg_power H3000's_0.5	$H3000's_1$	19	19	0.61	0.54	ns
$beta_avg_power~H3000's_0.75$	$\rm H3000's_1$	19	19	0.29	0.77	ns

Cluster: 12 Beta Average Power t-tests

-							
$EEG\ Var$	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_powe	r H1000's 0.25	H1000's 0.5	24	24	0.19	0.85	ns
beta_avg_powe		H1000's_0.75	24	24	0.27	0.78	ns
beta_avg_powe	r H1000's_0.25	H1000's_1	24	24	0.60	0.55	ns
beta_avg_powe	r H1000's 0.25	H2000's 0.25	24	14	-0.88	0.39	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
beta_avg_power H1000's_0.25	H2000's 0.5	24	14	-0.81	0.43	ns
beta_avg_power H1000's_0.25	$H2000's_0.75$	24	14	-0.48	0.63	ns
beta_avg_power H1000's_0.25	H2000's_1	24	14	-0.23	0.82	ns
beta_avg_power H1000's_0.25	$H3000's_0.25$	24	20	-0.66	0.51	ns
beta_avg_power H1000's_0.25	$H3000's_0.5$	24	20	-0.72	0.48	ns
$beta_avg_power~H1000's_0.25$	$H3000's_0.75$	24	20	-0.34	0.74	ns
$beta_avg_power~H1000's_0.25$	H3000's_1	24	20	0.57	0.57	ns
beta_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	24	24	0.08	0.93	ns
beta_avg_power $H1000$ 's_ 0.5	H1000's_1	24	24	0.42	0.68	ns
$beta_avg_power~H1000's_0.5$	${\rm H}2000'{\rm s}_0.25$	24	14	-1.03	0.32	ns
$beta_avg_power~H1000's_0.5$	$H2000's_0.5$	24	14	-0.96	0.35	ns
$beta_avg_power~H1000's_0.5$	${ m H2000's} { m _0.75}$	24	14	-0.62	0.54	ns
$beta_avg_power~H1000's_0.5$	H2000's_1	24	14	-0.37	0.71	ns
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.25}$	24	20	-0.84	0.41	ns
$beta_avg_power~H1000's_0.5$	$H3000's_0.5$	24	20	-0.90	0.37	ns
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.75}$	24	20	-0.52	0.61	ns
$beta_avg_power~H1000's_0.5$	H3000's_1	24	20	0.40	0.69	ns
$beta_avg_power~H1000's_0.75$	H1000's_1	24	24	0.34	0.74	ns
$beta_avg_power~H1000's_0.75$	$H2000's_0.25$	24	14	-1.10	0.28	ns
$beta_avg_power~H1000's_0.75$	$H2000's_0.5$	24	14	-1.02	0.32	ns
$beta_avg_power~H1000's_0.75$	$H2000's_0.75$	24	14	-0.68	0.50	ns
beta_avg_power H1000's_0.75	H2000's_1	24	14	-0.43	0.67	ns
beta_avg_power H1000's_0.75	$H3000's_0.25$	24	20	-0.92	0.37	ns
beta_avg_power H1000's_0.75	$H3000's_0.5$	24	20	-0.99	0.33	ns
beta_avg_power H1000's_0.75	$H3000's_0.75$	24	20	-0.60	0.55	ns
beta_avg_power H1000's_0.75	H3000's_1	24	20	0.33	0.74	ns
beta_avg_power H1000's_1	$H2000's_0.25$	24	14	-1.33	0.20	ns
beta_avg_power H1000's_1	$H2000's_0.5$	24	14	-1.25	0.22	ns
beta_avg_power H1000's_1	$H2000's_0.75$	24	14	-0.90	0.38	ns
beta_avg_power H1000's_1	H2000's 1	24	14	-0.67	0.51	ns
beta_avg_power H1000's_1	H3000's 0.25	24	20	-1.19	0.24	ns
beta_avg_power H1000's_1	H3000's_0.5	24	20	-1.27	0.21	ns
beta_avg_power H1000's_1	$H3000's_0.75$	24	20	-0.89	0.38	ns
beta_avg_power H1000's_1	H3000's 1	24	20	0.03	0.98	ns
beta avg power H2000's 0.25	H2000's 0.5	14	14	0.04	0.97	ns
beta_avg_power H2000's_0.25	$H2000's_0.75$	14	14	0.28	0.78	ns
beta_avg_power H2000's_0.25	H2000's_1	14	14	0.54	0.59	ns
beta_avg_power H2000's_0.25	H3000's 0.25	14	20	0.28	0.78	ns
beta avg power H2000's 0.25	H3000's 0.5	14	20	0.27	0.79	ns
beta_avg_power H2000's_0.25	H3000's_0.75	14	20	0.56	0.58	ns
beta_avg_power H2000's_0.25	H3000's_1	14	20	1.28	0.21	ns
beta_avg_power H2000's_0.5	H2000's 0.75	14	14	0.24	0.81	ns
beta avg power H2000's 0.5	H2000's 1	14	14	0.50	0.62	ns
beta_avg_power H2000's_0.5	H3000's 0.25	14	20	0.23	0.82	ns
beta_avg_power H2000's_0.5	H3000's 0.5	14	20	0.23	0.82	ns
beta_avg_power H2000's_0.5	H3000's 0.75	14	20	0.51	0.62	ns
beta_avg_power H2000's_0.5	H3000's 1	14	20	1.21	0.24	ns
beta_avg_power H2000's_0.75	H2000's_1	14	14	0.23	0.82	ns
beta_avg_power H2000's_0.75	H3000's 0.25	14	20	-0.05	0.96	ns
beta_avg_power H2000's_0.75	H3000's 0.5	14	20	-0.06	0.95	ns
beta_avg_power H2000's_0.75	H3000's 0.75	14	20	0.21	0.84	ns
beta_avg_power H2000's_0.75	H3000's_1	14	20	0.88	0.39	ns
	_					

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
beta_avg_power	r H2000's_1	H3000's_0.25	14	20	-0.32	0.75	ns
beta_avg_power	r H2000's_1	$H3000's_0.5$	14	20	-0.34	0.73	$_{ m ns}$
beta_avg_power	r H2000's_1	$H3000's_0.75$	14	20	-0.05	0.96	$_{ m ns}$
beta_avg_power	r H2000's_1	$H3000's_1$	14	20	0.66	0.52	$_{ m ns}$
beta_avg_power	H3000's_0.25	$H3000's_0.5$	20	20	-0.02	0.99	$_{ m ns}$
beta_avg_power	r H3000's_0.25	${ m H3000's} { m _0.75}$	20	20	0.31	0.76	$_{ m ns}$
beta_avg_power	r H3000's_0.25	${ m H3000's}{ m _1}$	20	20	1.12	0.27	$_{ m ns}$
beta_avg_power	r H3000's_0.5	${ m H3000's} { m _0.75}$	20	20	0.34	0.73	$_{ m ns}$
beta_avg_power	r H3000's_0.5	${ m H3000's}{ m _1}$	20	20	1.19	0.24	$_{ m ns}$
beta_avg_power	H3000's_0.75	$\rm H3000's_1$	20	20	0.84	0.41	ns

Cluster: 13 Beta Average Power t-tests

beta_avg_power H1000's_0.25 H1000's_0.75 22 22 0.01 0.99 ns beta_avg_power H1000's_0.25 H1000's_1.75 22 22 0.01 0.99 ns beta_avg_power H1000's_0.25 H1000's_1.22 22 0.01 0.99 ns beta_avg_power H1000's_0.25 H2000's_0.25 22 12 0.03 0.74 ns beta_avg_power H1000's_0.25 H2000's_0.5 22 12 0.03 0.74 ns beta_avg_power H1000's_0.25 H2000's_0.5 22 12 0.050 0.63 ns beta_avg_power H1000's_0.25 H2000's_0.5 22 12 0.050 0.63 ns beta_avg_power H1000's_0.25 H2000's_1.5 22 12 0.15 0.88 ns beta_avg_power H1000's_0.25 H2000's_1.5 22 12 0.15 0.91 ns beta_avg_power H1000's_0.25 H2000's_1.5 22 13 0.058 0.57 ns beta_avg_power H1000's_0.25 H3000's_0.5 22 13 0.032 0.76 ns beta_avg_power H1000's_0.25 H3000's_0.5 22 13 0.032 0.76 ns beta_avg_power H1000's_0.25 H3000's_0.75 22 13 0.032 0.76 ns beta_avg_power H1000's_0.25 H3000's_1.5 22 13 0.17 0.86 ns beta_avg_power H1000's_0.5 H3000's_1.5 22 13 0.17 0.86 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 22 0.28 0.78 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 12 0.03 0.98 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 12 0.08 0.78 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 12 0.08 0.78 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 12 0.08 0.78 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 12 0.03 0.99 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 12 0.07 0.87 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 12 0.07 0.87 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 12 0.07 0.87 ns beta_avg_power H1000's_0.5 H3000's_0.75 22 12 0.09 0.93 ns beta_avg_power H1000's_0.5 H3000's_0.75 22 12 0.017 0.87 ns beta_avg_power H1000's_0.5 H3000's_0.75 22 13 0.061 0.55 ns beta_avg_power H1000's_0.5 H3000's_0.75 22 13 0.061 0.55 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 13 0.034 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 13 0.04 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 0.034 0.76 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 0.015 0.88 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 0.015 0.88 ns beta_avg_power H1000's_0.75 H3000's_0.75 22 13 0.066 0.95 ns beta_avg_power H100	EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power H1000's_0.25 H2000's_0.25 22 12 -0.34 0.74 ns beta_avg_power H1000's_0.25 H2000's_0.25 22 12 -0.34 0.74 ns beta_avg_power H1000's_0.25 H2000's_0.5 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.25 H2000's_0.75 22 12 -0.15 0.88 ns beta_avg_power H1000's_0.25 H2000's_0.75 22 12 -0.15 0.88 ns beta_avg_power H1000's_0.25 H2000's_0.75 22 12 -0.15 0.88 ns beta_avg_power H1000's_0.25 H3000's_0.25 22 13 -0.58 0.57 ns beta_avg_power H1000's_0.25 H3000's_0.25 22 13 -0.58 0.57 ns beta_avg_power H1000's_0.25 H3000's_0.5 22 13 -0.32 0.76 ns beta_avg_power H1000's_0.25 H3000's_0.75 22 13 -0.32 0.76 ns beta_avg_power H1000's_0.25 H3000's_0.75 22 13 -0.29 0.77 ns beta_avg_power H1000's_0.25 H3000's_0.75 22 22 -0.03 0.98 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 22 -0.03 0.98 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 22 -0.03 0.98 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 12 -0.36 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 12 -0.36 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 12 -0.17 0.87 ns beta_avg_power H1000's_0.5 H3000's_0.5 22 13 -0.34 0.74 ns beta_avg_power H1000's_0.5 H3000's_0.75 22 13 -0.34 0.74 ns beta_avg_power H1000's_0.5 H3000's_0.75 22 13 -0.34 0.74 ns beta_avg_power H1000's_0.5 H3000's_0.75 22 12 -0.15 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.57 0.57 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.57 0.57 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H3000's_0.55 22 12 -0.51 0.62 ns be	beta_avg_power H1000's_0.25	$\rm H1000's_0.5$	22	22	0.04	0.97	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.25$	$\rm H1000's_0.75$	22	22	0.01	0.99	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.25$	H1000's_1	22	22	0.33	0.74	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.25$	${\rm H}2000{\rm 's}_0.25$	22	12	-0.34	0.74	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.25$	${\rm H}2000{\rm 's}_0.5$	22	12	-0.50	0.63	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.25$	${ m H2000's} { m _0.75}$	22	12	-0.15	0.88	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.25$	${\rm H}2000{\rm 's}_1$	22	12	0.12	0.91	ns
beta_avg_power H1000's_0.25	$beta_avg_power~H1000's_0.25$	${ m H3000's} { m _0.25}$	22	13	-0.58	0.57	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.25$	${ m H3000's}{ m _0.5}$	22	13	-0.32	0.76	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.25$	${ m H3000's} { m _0.75}$	22	13	-0.29	0.77	ns
beta_avg_power H1000's_0.5 H1000's_1 22 22 0.28 0.78 ns beta_avg_power H1000's_0.5 H2000's_0.25 22 12 -0.36 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 12 -0.51 0.62 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 12 -0.17 0.87 ns beta_avg_power H1000's_0.5 H2000's_1 22 12 -0.17 0.87 ns beta_avg_power H1000's_0.5 H3000's_0.5 22 13 -0.61 0.55 ns beta_avg_power H1000's_0.5 H3000's_0.5 22 13 -0.61 0.55 ns beta_avg_power H1000's_0.5 H3000's_0.75 22 13 -0.34 0.74 ns beta_avg_power H1000's_0.5 H3000's_1 22 13 0.14 0.89 ns beta_avg_power H1000's_0.5 H300's_0.5 22 12 0.31 0.76 ns beta_avg_power H1000's_0.75 H2000's_0.25 <td>$beta_avg_power~H1000's_0.25$</td> <td>$H3000's_1$</td> <td>22</td> <td>13</td> <td>0.17</td> <td>0.86</td> <td>ns</td>	$beta_avg_power~H1000's_0.25$	$H3000's_1$	22	13	0.17	0.86	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.5$	$\rm H1000's_0.75$	22	22	-0.03	0.98	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.5$	H1000's_1	22	22	0.28	0.78	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		${ m H2000's} { m _0.25}$	22	12	-0.36	0.72	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.5$	${ m H2000's} { m _0.5}$	22	12	-0.51	0.62	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.5$	${ m H2000's} { m _0.75}$	22	12	-0.17	0.87	$_{ m ns}$
beta_avg_power H1000's_0.5 H3000's_0.5 22 13 -0.34 0.74 ns beta_avg_power H1000's_0.5 H3000's_0.75 22 13 -0.32 0.75 ns beta_avg_power H1000's_0.5 H3000's_1 22 22 0.31 0.14 0.89 ns beta_avg_power H1000's_0.75 H1000's_1 22 22 0.31 0.76 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 12 -0.34 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 -0.15 0.88 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 0.11 0.91 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 13 -0.57 0.57 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 13 -0.57 0.57 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 13 -0.32 0.76 ns beta_avg_power H1000's_0.75 H3000's_0.75 22 13 -0.32 0.76 ns beta_avg_power H1000's_0.75 H3000's_0.75 22 13 0.16 0.88 ns beta_avg_power H1000's_0.75 H3000's_0.75 22 13 0.16 0.88 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 12 -0.51 0.62 ns beta_avg_power H1000's_1 H2000's_0.55 22 12 -0.51 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 22 12 -0.51 0.62 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.65 0.53 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.65 0.53 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.66 0.95 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.06 0.95 ns beta_avg_power H1000's_1 H2000's_0.75 22 13 -0.82 0.42 ns	$beta_avg_power~H1000's_0.5$	$H2000's_{1}$	22	12	0.09	0.93	ns
beta_avg_power H1000's_0.5 H3000's_0.75 22 13 -0.32 0.75 ns beta_avg_power H1000's_0.5 H3000's_1 22 22 0.31 0.76 ns beta_avg_power H1000's_0.75 H1000's_1 22 22 0.31 0.76 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 12 -0.34 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.15 0.88 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 -0.15 0.88 ns beta_avg_power H1000's_0.75 H2000's_1 22 12 0.11 0.91 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 13 -0.57 0.57 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 13 -0.57 0.57 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 13 -0.32 0.76 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 13 -0.32 0.76 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 13 -0.29 0.77 ns beta_avg_power H1000's_0.75 H3000's_1 22 13 0.16 0.88 ns beta_avg_power H1000's_1 H2000's_0.25 22 12 -0.51 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 22 12 -0.51 0.62 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.65 0.53 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.31 0.76 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.06 0.95 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.06 0.95 ns beta_avg_power H1000's_1 H2000's_0.75 22 13 -0.06 0.95 ns	$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.25}$	22	13	-0.61	0.55	ns
beta_avg_power H1000's_0.5 H3000's_1 22 13 0.14 0.89 ns beta_avg_power H1000's_0.75 H1000's_1 22 22 22 0.31 0.76 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 12 -0.34 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 -0.15 0.88 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 -0.15 0.88 ns beta_avg_power H1000's_0.75 H2000's_1 22 12 0.11 0.91 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 13 -0.57 0.57 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 13 -0.32 0.76 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 13 -0.32 0.76 ns beta_avg_power H1000's_0.75 H3000's_0.75 22 13 -0.29 0.77 ns beta_avg_power H1000's_0.75 H3000's_1 22 13 0.16 0.88 ns beta_avg_power H1000's_1 H2000's_0.25 22 12 -0.51 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 22 12 -0.65 0.53 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.65 0.53 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.31 0.76 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.66 0.95 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.06 0.95 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.06 0.95 ns beta_avg_power H1000's_1 H2000's_0.25 22 13 -0.82 0.42 ns	$beta_avg_power~H1000's_0.5$	${ m H3000's}{ m _0.5}$	22	13	-0.34	0.74	ns
beta_avg_power H1000's_0.75 H1000's_1 22 22 12 -0.34 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 -0.15 0.88 ns beta_avg_power H1000's_0.75 H2000's_1 22 12 0.11 0.91 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 13 -0.57 0.57 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 13 -0.57 0.57 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 13 -0.32 0.76 ns beta_avg_power H1000's_0.75 H3000's_0.75 22 13 -0.29 0.77 ns beta_avg_power H1000's_0.75 H3000's_1 22 13 0.16 0.88 ns beta_avg_power H1000's_0.75 H3000's_1 22 13 0.16 0.88 ns beta_avg_power H1000's_1 H2000's_0.25 22 12 -0.51 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 22 12 -0.65 0.53 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.31 0.76 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.31 0.76 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.06 0.95 ns beta_avg_power H1000's_1 H2000's_0.25 22 12 -0.06 0.95 ns beta_avg_power H1000's_1 H2000's_0.25 22 13 -0.82 0.42 ns	$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.75}$	22		-0.32	0.75	ns
beta_avg_power H1000's_0.75	$beta_avg_power~H1000's_0.5$	$H3000's_1$	22	13	0.14	0.89	ns
beta_avg_power H1000's_0.75 H2000's_0.5 22 12 -0.50 0.63 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 12 -0.15 0.88 ns beta_avg_power H1000's_0.75 H2000's_1 22 12 0.11 0.91 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 13 -0.57 0.57 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 13 -0.32 0.76 ns beta_avg_power H1000's_0.75 H3000's_0.75 22 13 -0.29 0.77 ns beta_avg_power H1000's_0.75 H3000's_1 22 13 0.16 0.88 ns beta_avg_power H1000's_1 H2000's_0.25 22 12 -0.51 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 22 12 -0.65 0.53 ns beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.65 0.53 ns beta_avg_power H1000's_1 H2000's_0.7	$beta_avg_power~H1000's_0.75$	H1000's_1	22	22	0.31	0.76	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.75$	${ m H2000's} { m _0.25}$	22	12	-0.34	0.74	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.75$	${ m H2000's} { m _0.5}$	22		-0.50	0.63	ns
beta_avg_power H1000's_0.75	$beta_avg_power~H1000's_0.75$	${ m H2000's} { m _0.75}$	22	12	-0.15	0.88	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$H2000's_{1}$			0.11	0.91	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.75$	${ m H3000's} { m _0.25}$	22	13	-0.57	0.57	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.75$	${ m H3000's}{ m _0.5}$	22	13	-0.32	0.76	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.75$	${ m H3000's} { m _0.75}$			-0.29	0.77	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$beta_avg_power~H1000's_0.75$	$H3000's_{1}$		13	0.16	0.88	ns
beta_avg_power H1000's_1 H2000's_0.75 22 12 -0.31 0.76 ns beta_avg_power H1000's_1 H2000's_1 22 12 -0.06 0.95 ns beta_avg_power H1000's_1 H3000's_0.25 22 13 -0.82 0.42 ns	$beta_avg_power~H1000's_1$	-					ns
beta_avg_power H1000's_1 H2000's_1 22 12 -0.06 0.95 ns beta_avg_power H1000's_1 H3000's_0.25 22 13 -0.82 0.42 ns	_ v_i	-					ns
beta_avg_power H1000's_1 H3000's_0.25 22 13 -0.82 0.42 ns	$beta_avg_power~H1000's_1$	${ m H2000's} { m _0.75}$			-0.31	0.76	$_{ m ns}$
_ 0_1	$beta_avg_power~H1000's_1$	${\rm H}2000'{\rm s}_1$		12	-0.06	0.95	$_{ m ns}$
$beta_avg_power~H1000's_1~~H3000's_0.5~~22~~13~~-0.54~~0.60~~ns$	$beta_avg_power~H1000's_1$	${ m H3000's} { m _0.25}$	22	13	-0.82	0.42	$_{ m ns}$
	$beta_avg_power~H1000's_1$	${ m H3000's} { m _0.5}$	22	13	-0.54	0.60	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power	H1000's_1	H3000's_0.75	22	13	-0.54	0.60	ns
beta_avg_power	H1000's_1	H3000's_1	22	13	-0.09	0.93	ns
beta_avg_power	H2000's_0.25	$H2000's_0.5$	12	12	-0.14	0.89	ns
beta_avg_power	H2000's_0.25	$H2000's_0.75$	12	12	0.14	0.89	ns
beta_avg_power	H2000's_0.25	H2000's_1	12	12	0.36	0.72	ns
beta_avg_power	H2000's_0.25	${ m H3000's} { m _0.25}$	12	13	-0.07	0.95	ns
beta_avg_power	H2000's_0.25	${ m H3000's}{ m _0.5}$	12	13	0.09	0.93	ns
beta_avg_power	H2000's_0.25	${ m H3000's} { m _0.75}$	12	13	0.12	0.90	ns
beta_avg_power	H2000's_0.25	H3000's_1	12	13	0.42	0.68	ns
beta_avg_power	H2000's_0.5	$H2000's_0.75$	12	12	0.28	0.78	ns
beta_avg_power	H2000's_0.5	H2000's_1	12	12	0.49	0.63	ns
beta_avg_power	H2000's_0.5	$H3000's_0.25$	12	13	0.10	0.92	ns
beta_avg_power	H2000's_0.5	$H3000's_0.5$	12	13	0.24	0.81	ns
beta_avg_power	H2000's_0.5	$H3000's_0.75$	12	13	0.28	0.78	ns
beta_avg_power	H2000's_0.5	H3000's_1	12	13	0.56	0.58	ns
beta_avg_power	H2000's_0.75	H2000's_1	12	12	0.20	0.84	ns
beta_avg_power	H2000's_0.75	${ m H3000's} { m _0.25}$	12	13	-0.24	0.81	ns
beta_avg_power	H2000's_0.75	${ m H3000's}{ m _0.5}$	12	13	-0.08	0.94	ns
beta_avg_power	H2000's_0.75	${ m H3000's} { m _0.75}$	12	13	-0.05	0.96	ns
beta_avg_power	H2000's_0.75	H3000's_1	12	13	0.24	0.81	ns
beta_avg_power	H2000's_1	${ m H3000's} { m _0.25}$	12	13	-0.50	0.62	ns
beta_avg_power	H2000's_1	${ m H3000's} { m _0.5}$	12	13	-0.32	0.75	ns
beta_avg_power	H2000's_1	${ m H3000's} { m _0.75}$	12	13	-0.30	0.76	ns
beta_avg_power	H2000's_1	H3000's_1	12	13	0.00	1.00	ns
beta_avg_power	H3000's_0.25	${ m H3000's}{ m _0.5}$	13	13	0.19	0.85	ns
beta_avg_power	H3000's_0.25	${ m H3000's} { m _0.75}$	13	13	0.24	0.81	ns
beta_avg_power	H3000's_0.25	H3000's_1	13	13	0.65	0.52	ns
beta_avg_power	H3000's_0.5	${ m H3000's} { m _0.75}$	13	13	0.04	0.97	ns
beta_avg_power	H3000's_0.5	H3000's_1	13	13	0.41	0.69	ns
beta_avg_power	H3000's_0.75	$\rm H3000's_1$	13	13	0.40	0.70	ns

Cluster: 14 Beta Average Power t-tests

EEG Var Group_Speed	d_1 Group_Speed_2	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power H1000's_0.2	5 H1000's_0.5	22	22	0.44	0.66	ns
beta_avg_power H1000's_0.2	5 H1000's_0.75	22	22	0.44	0.66	ns
beta_avg_power H1000's_0.2	5 H1000's_1	22	22	0.34	0.74	ns
beta_avg_power H1000's_0.2	5 H2000's_0.25	22	16	-1.01	0.32	ns
beta_avg_power H1000's_0.2	5 H2000's_0.5	22	16	-0.85	0.40	ns
beta_avg_power H1000's_0.2	5 H2000's_0.75	22	16	-0.64	0.52	ns
beta_avg_power H1000's_0.2	5 H2000's_1	22	16	-0.57	0.57	ns
beta_avg_power H1000's_0.2	5 H3000's_0.25	22	18	-2.52	0.02	*
beta_avg_power H1000's_0.2	5 H3000's_0.5	22	18	-2.37	0.02	*
beta_avg_power H1000's_0.2	$5 H3000$ 's_0.75	22	18	-2.02	0.05	ns
beta_avg_power H1000's_0.2	5 H3000's_1	22	18	-1.75	0.09	ns
beta_avg_power H1000's_0.5	$\rm H1000's_0.75$	22	22	0.00	1.00	ns
beta_avg_power H1000's_0.5	H1000's_1	22	22	-0.10	0.92	ns
beta_avg_power H1000's_0.5	$H2000's_0.25$	22	16	-1.43	0.16	ns
beta_avg_power H1000's_0.5	${\rm H}2000' {\rm s}_0.5$	22	16	-1.28	0.21	ns
beta_avg_power H1000's_0.5	$H2000's_0.75$	22	16	-1.07	0.29	ns

EEG Var	Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
beta_avg_power	H1000's_0.5	H2000's_1	22	16	-0.99	0.33	ns
beta_avg_power	$H1000's_0.5$	$H3000's_0.25$	22	18	-2.99	0.00	**
beta_avg_power		H3000's 0.5	22	18	-2.82	0.01	**
beta_avg_power		H3000's 0.75	22	18	-2.47	0.02	*
beta_avg_power		H3000's 1	22	18	-2.20	0.04	*
beta_avg_power		H1000's 1	22	22	-0.11	0.92	ns
beta_avg_power		H2000's 0.25	22	16	-1.43	0.16	ns
beta avg power		H2000's 0.5	22	16	-1.28	0.21	ns
beta_avg_power	-	H2000's 0.75	22	16	-1.07	0.29	ns
beta_avg_power		H2000's 1	22	16	-0.99	0.33	ns
beta_avg_power		H3000's 0.25	22	18	-2.98	0.00	**
beta_avg_power		H3000's 0.5	22	18	-2.82	0.01	**
beta_avg_power		H3000's 0.75	22	18	-2.47	0.02	*
beta_avg_power		H3000's 1	22	18	-2.19	0.04	*
beta_avg_power		H2000's 0.25	22	16	-1.35	0.19	ns
beta avg power		H2000's 0.5	22	16	-1.19	0.24	ns
beta_avg_power	-	H2000's 0.75	22	16	-0.98	0.33	ns
beta_avg_power		H2000's 1	22	16	-0.91	0.37	ns
beta_avg_power		H3000's 0.25	22	18	-2.91	0.01	**
beta_avg_power		H3000's 0.5	22	18	-2.75	0.01	**
beta avg power		H3000's 0.75	22	18	-2.39	0.02	*
beta_avg_power	-	H3000's 1	22	18	-2.12	0.04	*
beta_avg_power		H2000's 0.5	16	16	0.18	0.86	ns
beta_avg_power		H2000's 0.75	16	16	0.38	0.71	ns
beta_avg_power		H2000's 1	16	16	0.42	0.67	ns
beta_avg_power		H3000's 0.25	16	18	-1.37	0.18	ns
beta_avg_power		H3000's 0.5	16	18	-1.25	$0.10 \\ 0.22$	ns
beta_avg_power		H3000's 0.75	16	18	-0.92	0.36	ns
beta_avg_power		H3000's 1	16	18	-0.68	0.50	ns
beta_avg_power		H2000's 0.75	16	16	0.20	0.84	ns
beta_avg_power		H2000's 1	16	16	0.25	0.80	ns
beta_avg_power		H3000's 0.25	16	18	-1.59	0.12	ns
beta_avg_power		H3000's 0.5	16	18	-1.47	0.15	ns
beta_avg_power	-	H3000's 0.75	16	18	-1.13	0.26	ns
beta_avg_power		H3000's 1	16	18	-0.88	0.38	ns
beta_avg_power		H2000's_1	16	16	0.06	0.96	ns
beta_avg_power		H3000's 0.25	16	18	-1.80	0.08	ns
beta_avg_power		H3000's 0.5	16	18	-1.67	0.10	ns
beta_avg_power beta avg_power		H3000's 0.75	16	18	-1.33	0.19	ns
beta_avg_power		H3000's 1	16	18	-1.08	0.19 0.29	ns
beta_avg_power		H3000's 0.25	16	18	-1.83	0.08	ns
beta_avg_power		H3000's 0.5	16	18	-1.70	0.10	ns
beta_avg_power beta_avg_power	_	H3000's 0.75	16	18	-1.70	0.18	ns
beta_avg_power	_	H3000's 1	16	18	-1.12	0.13 0.27	ns
beta_avg_power	-	H3000's 0.5	18	18	0.09	0.93	ns
beta_avg_power		H3000's 0.75	18	18	0.03 0.43	0.67	
beta_avg_power beta avg_power		H3000's 1	18	18	$0.43 \\ 0.68$	$0.67 \\ 0.50$	ns
beta_avg_power beta_avg_power	_	H3000's_0.75	18	18	0.08 0.33	$0.50 \\ 0.74$	ns ns
beta_avg_power		H3000's 1	18	18	0.53 0.58	$0.74 \\ 0.57$	ns
beta_avg_power		H3000's 1	18	18	0.38 0.24	0.81	
beta_avg_power	119000 2_0.79	119000 2_1	10	10	0.24	0.01	ns

APERIODIC EXPONENT T-TESTS

Cluster: 3 Aperiodic Exponent t-tests

$EEG\ Var$	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	23	23	-0.16	0.88	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	23	23	0.43	0.67	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	23	23	0.21	0.84	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.25$	23	18	0.95	0.35	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	23	18	0.77	0.45	ns
aperiodic_exp	$\rm H1000's_0.25$	$H2000's_0.75$	23	18	1.10	0.28	ns
aperiodic_exp	$\rm H1000's_0.25$	H2000's_1	23	18	1.23	0.23	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.25$	23	23	-3.38	0.00	**
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.5$	23	23	-3.78	0.00	***
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.75$	23	23	-3.22	0.00	**
aperiodic_exp	$\rm H1000's_0.25$	H3000's_1	23	23	-2.39	0.02	*
aperiodic_exp	$\rm H1000's_0.5$	$H1000's_0.75$	23	23	0.62	0.54	ns
aperiodic_exp	$\rm H1000's_0.5$	H1000's_1	23	23	0.37	0.71	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.25$	23	18	1.06	0.30	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.5$	23	18	0.87	0.39	ns
aperiodic_exp	$H1000's_0.5$	$H2000's_0.75$	23	18	1.24	0.23	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.5$	H2000's_1	23	18	1.37	0.18	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.25$	23	23	-3.35	0.00	**
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.5$	23	23	-3.78	0.00	***
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.75$	23	23	-3.21	0.00	**
aperiodic_exp	$\rm H1000's_0.5$	H3000's_1	23	23	-2.35	0.02	*
aperiodic_exp	$\rm H1000's_0.75$	H1000's_1	23	23	-0.21	0.83	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.25$	23	18	0.70	0.49	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.5$	23	18	0.54	0.59	ns
aperiodic_exp	$H1000's_{-}0.75$	H2000's_0.75	23	18	0.80	0.43	ns
aperiodic_exp	$\rm H1000's_0.75$	H2000's_1	23	18	0.96	0.35	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.25$	23	23	-3.73	0.00	***
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.5$	23	23	-4.19	0.00	***
aperiodic_exp	$H1000's_0.75$	$H3000's_0.75$	23	23	-3.64	0.00	***
aperiodic_exp	$\rm H1000's_0.75$	H3000's_1	23	23	-2.84	0.01	**
aperiodic_exp	H1000's_1	$H2000's_0.25$	23	18	0.82	0.42	ns
aperiodic_exp	H1000's_1	$H2000's_0.5$	23	18	0.65	0.52	ns
aperiodic_exp	H1000's_1	$H2000's_0.75$	23	18	0.94	0.36	ns
aperiodic_exp	H1000's_1	H2000's_1	23	18	1.08	0.29	ns
aperiodic_exp	H1000's_1	$H3000's_0.25$	23	23	-3.50	0.00	**
aperiodic_exp	H1000's_1	$H3000's_0.5$	23	23	-3.91	0.00	***
aperiodic_exp	H1000's_1	$H3000's_0.75$	23	23	-3.37	0.00	**
aperiodic_exp	H1000's_1	H3000's_1	23	23	-2.55	0.01	*
aperiodic_exp	$H2000's_0.25$	$H2000's_0.5$	18	18	-0.08	0.94	ns
aperiodic_exp	H2000's 0.25	H2000's 0.75	18	18	-0.04	0.96	ns
aperiodic_exp	H2000's 0.25	H2000's 1	18	18	0.11	0.91	ns
aperiodic_exp	$H2000's_{-}0.25$	H3000's_0.25	18	23	-3.27	0.00	**
aperiodic_exp	H2000's_0.25	H3000's_0.5	18	23	-3.47	0.00	**
aperiodic_exp	H2000's_0.25	H3000's_0.75	18	23	-3.06	0.00	**
aperiodic_exp	H2000's_0.25	H3000's_1	18	23	-2.46	0.02	*
aperiodic_exp	H2000's_0.5	H2000's_0.75	18	18	0.05	0.96	ns
aperiodic_exp	${\rm H}2000{\rm 's}_0.5$	H2000's_1	18	18	0.20	0.85	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H2000's_0.5	H3000's_0.25	18	23	-2.99	0.00	**
aperiodic_exp	H2000's_0.5	H3000's_0.5	18	23	-3.15	0.00	**
aperiodic_exp	$H2000's_0.5$	$H3000's_0.75$	18	23	-2.76	0.01	*
aperiodic_exp	$H2000's_0.5$	H3000's_1	18	23	-2.18	0.04	*
aperiodic_exp	$H2000's_0.75$	H2000's_1	18	18	0.18	0.86	$_{ m ns}$
aperiodic_exp	${ m H2000's} { m _0.75}$	$H3000's_0.25$	18	23	-3.72	0.00	***
aperiodic_exp	$H2000's_0.75$	$H3000's_0.5$	18	23	-4.02	0.00	***
aperiodic_exp	$H2000's_0.75$	$H3000's_0.75$	18	23	-3.56	0.00	**
aperiodic_exp	$H2000's_0.75$	H3000's_1	18	23	-2.89	0.01	**
aperiodic_exp	H2000's_1	$H3000's_0.25$	18	23	-3.73	0.00	***
aperiodic_exp	H2000's_1	$H3000's_0.5$	18	23	-4.00	0.00	***
aperiodic exp	H2000's 1	$H3000's_0.75$	18	23	-3.56	0.00	**
aperiodic_exp	H2000's_1	H3000's_1	18	23	-2.91	0.01	**
aperiodic exp	H3000's 0.25	H3000's 0.5	23	23	-0.02	0.98	$_{ m ns}$
aperiodic_exp	H3000's_0.25	H3000's_0.75	23	23	0.53	0.60	$_{ m ns}$
aperiodic_exp	$H3000's_0.25$	H3000's_1	23	23	1.39	0.17	$_{ m ns}$
aperiodic_exp	$H3000's_0.5$	$H3000's_0.75$	23	23	0.60	0.55	$_{ m ns}$
aperiodic_exp	H3000's_0.5	H3000's_1	23	23	1.55	0.13	$_{ m ns}$
aperiodic_exp	H3000's_0.75	H3000's_1	23	23	0.94	0.35	$_{ m ns}$

Cluster: 4 Aperiodic Exponent t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	18	18	-0.56	0.58	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	18	18	-0.09	0.93	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	18	18	-0.50	0.62	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.25$	18	16	-0.02	0.98	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	18	16	-0.07	0.94	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.75$	18	16	-0.38	0.71	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H2000's_1	18	16	-0.45	0.66	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.25$	18	16	-1.14	0.26	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.5$	18	16	-1.16	0.25	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.75$	18	16	-0.98	0.33	ns
aperiodic_exp	$\rm H1000's_0.25$	H3000's_1	18	16	-1.51	0.14	ns
aperiodic_exp	$\rm H1000's_0.5$	$H1000's_0.75$	18	18	0.45	0.66	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H1000's_1	18	18	0.07	0.94	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.25$	18	16	0.61	0.55	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.5$	18	16	0.54	0.60	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.75$	18	16	0.27	0.79	ns
aperiodic_exp	$\rm H1000's_0.5$	H2000's_1	18	16	0.23	0.82	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.25$	18	16	-0.53	0.60	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.5$	18	16	-0.54	0.59	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.75$	18	16	-0.37	0.72	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H3000's_1	18	16	-0.86	0.40	ns
aperiodic_exp	$\rm H1000's_0.75$	H1000's_1	18	18	-0.39	0.70	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.25$	18	16	0.08	0.94	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.5$	18	16	0.03	0.98	ns
aperiodic_exp	$\rm H1000's_0.75$	${ m H2000's} { m _0.75}$	18	16	-0.26	0.80	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_{1}$	18	16	-0.32	0.75	ns
aperiodic_exp	$\rm H1000's_0.75$	${ m H3000's} { m _0.25}$	18	16	-0.99	0.33	ns
_							

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.75	H3000's_0.5	18	16	-1.01	0.32	ns
aperiodic_exp	$H1000's_0.75$	$H3000's_0.75$	18	16	-0.84	0.41	ns
aperiodic_exp	$H1000's_0.75$	H3000's_1	18	16	-1.33	0.19	ns
aperiodic_exp	H1000's_1	$H2000's_0.25$	18	16	0.54	0.59	ns
aperiodic_exp	H1000's_1	$H2000's_0.5$	18	16	0.47	0.64	ns
aperiodic_exp	H1000's_1	$H2000's_0.75$	18	16	0.19	0.85	ns
aperiodic_exp	H1000's_1	H2000's_1	18	16	0.14	0.89	ns
$aperiodic_exp$	$\rm H1000's_1$	$H3000's_0.25$	18	16	-0.61	0.54	ns
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.5}$	18	16	-0.63	0.54	ns
aperiodic_exp	H1000's_1	$H3000's_0.75$	18	16	-0.45	0.65	ns
$aperiodic_exp$	H1000's_1	$H3000's_1$	18	16	-0.96	0.35	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H2000's} { m _0.5}$	16	16	-0.05	0.96	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H2000's} { m _0.75}$	16	16	-0.42	0.68	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	$H2000's_1$	16	16	-0.51	0.61	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.25}$	16	16	-1.29	0.21	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.5}$	16	16	-1.32	0.20	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.75}$	16	16	-1.11	0.28	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's}{ m _1}$	16	16	-1.74	0.09	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H2000's} { m _0.75}$	16	16	-0.34	0.74	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	${\rm H}2000'{\rm s}_1$	16	16	-0.42	0.68	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's} { m _0.25}$	16	16	-1.17	0.25	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's} { m _0.5}$	16	16	-1.19	0.24	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's} { m _0.75}$	16	16	-1.00	0.33	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	H3000's_1	16	16	-1.58	0.12	ns
$aperiodic_exp$	$\rm H2000's_0.75$	H2000's_1	16	16	-0.07	0.95	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.25}$	16	16	-0.93	0.36	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.5}$	16	16	-0.95	0.35	ns
$aperiodic_exp$	$\rm H2000's_0.75$	${ m H3000's} { m _0.75}$	16	16	-0.74	0.47	ns
$aperiodic_exp$	$\rm H2000's_0.75$	H3000's_1	16	16	-1.36	0.18	ns
$aperiodic_exp$	H2000's_1	${ m H3000's} { m _0.25}$	16	16	-0.91	0.37	ns
$aperiodic_exp$	H2000's_1	$H3000's_0.5$	16	16	-0.94	0.36	ns
$aperiodic_exp$	$H2000's_1$	$H3000's_0.75$	16	16	-0.72	0.48	ns
$aperiodic_exp$	$H2000's_{1}$	H3000's_1	16	16	-1.38	0.18	ns
$aperiodic_exp$	$H3000's_0.25$	$H3000's_0.5$	16	16	0.00	1.00	ns
$aperiodic_exp$	$H3000's_0.25$	$H3000's_0.75$	16	16	0.18	0.86	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	H3000's_1	16	16	-0.34	0.74	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	${ m H}3000{ m 's}_0.75$	16	16	0.18	0.86	ns
$aperiodic_exp$	$H3000's_0.5$	H3000's_1	16	16	-0.34	0.73	ns
aperiodic_exp	H3000's_0.75	H3000's_1	16	16	-0.53	0.60	ns

Cluster: 5 Aperiodic Exponent t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	24	24	-0.11	0.92	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	24	24	-0.32	0.75	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.25$	H1000's_1	24	24	-0.24	0.81	ns
aperiodic_exp	$\rm H1000's_0.25$	$H2000's_0.25$	24	21	3.20	0.00	**
aperiodic_exp	$\rm H1000's_0.25$	$H2000's_0.5$	24	21	2.78	0.01	**
aperiodic_exp	$H1000's_0.25$	$H2000's_0.75$	24	21	2.73	0.01	**
aperiodic exp	H1000's 0.25	H2000's 1	24	21	2.48	0.02	*

EEG Var	Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H3000's_0.25	24	22	2.27	0.03	*
aperiodic_exp	$\rm H1000's_0.25$	H3000's_0.5	24	22	2.13	0.04	*
aperiodic_exp	$\rm H1000's_0.25$	H3000's_0.75	24	22	1.87	0.07	ns
aperiodic_exp	$\rm H1000's_0.25$	H3000's_1	24	22	1.41	0.17	ns
aperiodic_exp	$\rm H1000's_0.5$	$H1000's_0.75$	24	24	-0.19	0.85	ns
aperiodic_exp	$\rm H1000's_0.5$	H1000's_1	24	24	-0.12	0.90	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.25$	24	21	3.16	0.00	**
aperiodic_exp	$\rm H1000's_0.5$	H2000's_0.5	24	21	2.77	0.01	**
aperiodic_exp	$\rm H1000's_0.5$	H2000's_0.75	24	21	2.70	0.01	**
aperiodic_exp	$\rm H1000's_0.5$	H2000's_1	24	21	2.47	0.02	*
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	24	22	2.27	0.03	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_0.5$	24	22	2.12	0.04	*
aperiodic_exp	$\rm H1000's_0.5$	H3000's_0.75	24	22	1.89	0.07	ns
aperiodic_exp	$\rm H1000's_0.5$	H3000's_1	24	22	1.44	0.16	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	24	24	0.07	0.94	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.25$	24	21	3.48	0.00	**
aperiodic_exp	$\rm H1000's_0.75$	H2000's_0.5	24	21	3.03	0.00	**
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.75$	24	21	3.04	0.00	**
aperiodic_exp	$\rm H1000's_0.75$	H2000's_1	24	21	2.78	0.01	**
aperiodic_exp	$\rm H1000's_0.75$	H3000's_0.25	24	22	2.56	0.01	*
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.5$	24	22	2.43	0.02	*
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.75$	24	22	2.14	0.04	*
aperiodic_exp	$\rm H1000's_0.75$	H3000's_1	24	22	1.72	0.09	ns
aperiodic_exp	H1000's_1	H2000's_0.25	24	21	3.42	0.00	**
aperiodic_exp	H1000's_1	H2000's_0.5	24	21	2.97	0.00	**
aperiodic_exp	H1000's_1	H2000's_0.75	24	21	2.97	0.00	**
$aperiodic_exp$	H1000's_1	H2000's_1	24	21	2.71	0.01	**
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.25}$	24	22	2.49	0.02	*
$aperiodic_exp$	H1000's_1	$H3000's_0.5$	24	22	2.36	0.02	*
$aperiodic_exp$	H1000's_1	${ m H}3000{ m 's}_0.75$	24	22	2.08	0.04	*
$aperiodic_exp$	H1000's_1	H3000's_1	24	22	1.65	0.11	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$H2000's_0.5$	21	21	-0.11	0.92	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$H2000's_0.75$	21	21	-0.67	0.51	ns
$aperiodic_exp$	$\rm H2000's_0.25$	H2000's_1	21	21	-0.82	0.42	ns
$aperiodic_exp$	$\rm H2000's_0.25$	${ m H3000's} { m _0.25}$	21	22	-0.89	0.38	ns
$aperiodic_exp$	${\rm H}2000'{\rm s}_0.25$	${ m H3000's}{ m _0.5}$	21	22	-1.22	0.23	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$H3000's_0.75$	21	22	-1.12	0.27	ns
$aperiodic_exp$	$\rm H2000's_0.25$	H3000's_1	21	22	-1.95	0.06	ns
$aperiodic_exp$	$\rm H2000's_0.5$	$\rm H2000's_0.75$	21	21	-0.49	0.62	ns
$aperiodic_exp$	$H2000's_0.5$	H2000's_1	21	21	-0.63	0.53	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.25$	21	22	-0.71	0.48	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.5$	21	22	-0.99	0.33	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.75$	21	22	-0.93	0.36	ns
$aperiodic_exp$	$H2000's_0.5$	H3000's_1	21	22	-1.64	0.11	ns
aperiodic_exp	H2000's_0.75	H2000's_1	21	21	-0.17	0.86	$_{ m ns}$
$aperiodic_exp$	$H2000's_0.75$	$H3000's_0.25$	21	22	-0.28	0.78	ns
aperiodic_exp	H2000's_0.75	H3000's_0.5	21	22	-0.59	0.56	ns
aperiodic_exp	H2000's_0.75	H3000's_0.75	21	22	-0.55	0.58	ns
aperiodic_exp	H2000's_0.75	H3000's_1	21	22	-1.37	0.18	ns
aperiodic_exp	H2000's_1	H3000's_0.25	21	22	-0.11	0.92	ns
aperiodic_exp	H2000's_1	H3000's_0.5	21	22	-0.40	0.69	ns
$aperiodic_exp$	H2000's_1	$H3000's_0.75$	21	22	-0.38	0.70	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H2000's_1	H3000's_1	21	22	-1.15	0.26	ns
aperiodic_exp	${ m H3000's} { m _0.25}$	$H3000's_0.5$	22	22	-0.28	0.78	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_0.75$	22	22	-0.27	0.79	$_{ m ns}$
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_1$	22	22	-1.00	0.32	$_{ m ns}$
$aperiodic_exp$	$H3000's_0.5$	$H3000's_0.75$	22	22	-0.02	0.98	$_{ m ns}$
$aperiodic_exp$	${ m H}3000'{ m s}_0.5$	H3000's_1	22	22	-0.76	0.45	$_{ m ns}$
$aperiodic_exp$	${ m H3000's} { m _0.75}$	$\rm H3000's_1$	22	22	-0.65	0.52	ns

Cluster: 6 Aperiodic Exponent t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	18	18	-0.40	0.69	ns
aperiodic_exp	$\rm H1000's_0.25$	$\rm H1000's_0.75$	18	18	-0.34	0.74	ns
aperiodic_exp	$\rm H1000's_0.25$	H1000's_1	18	18	-0.48	0.64	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000' {\rm s} _0.25$	18	13	1.49	0.15	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	18	13	1.19	0.24	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.75$	18	13	0.91	0.37	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_1$	18	13	1.40	0.17	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	18	11	-0.47	0.65	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.5}$	18	11	-0.30	0.77	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H}3000'{ m s}_0.75$	18	11	-0.29	0.77	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_1$	18	11	-0.81	0.43	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	18	18	0.08	0.93	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_1$	18	18	-0.07	0.95	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s} _0.25$	18	13	1.86	0.07	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s} _0.5$	18	13	1.56	0.13	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H2000's} { m _0.75}$	18	13	1.31	0.20	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_1$	18	13	1.81	0.08	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	18	11	-0.17	0.86	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	18	11	0.03	0.98	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	18	11	0.06	0.95	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_1$	18	11	-0.48	0.64	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	18	18	-0.15	0.88	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H2000's} { m _0.25}$	18	13	1.85	0.08	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H2000's} { m _0.5}$	18	13	1.53	0.14	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.75$	18	13	1.28	0.21	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_1$	18	13	1.81	0.08	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.25$	18	11	-0.24	0.82	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.5$	18	11	-0.04	0.97	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.75$	18	11	-0.01	1.00	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_1$	18	11	-0.56	0.58	ns
$aperiodic_exp$	H1000's_1	${ m H2000's} { m _0.25}$	18	13	1.95	0.06	ns
$aperiodic_exp$	H1000's_1	${ m H2000's} { m _0.5}$	18	13	1.64	0.11	ns
$aperiodic_exp$	H1000's_1	$H2000's_0.75$	18	13	1.40	0.17	ns
$aperiodic_exp$	$\rm H1000's_1$	H2000's_1	18	13	1.92	0.06	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_1$	${ m H3000's} { m _0.25}$	18	11	-0.13	0.90	$_{ m ns}$
$aperiodic_exp$	H1000's_1	${ m H}3000'{ m s}_0.5$	18	11	0.09	0.93	ns
$aperiodic_exp$	H1000's_1	${ m H}3000'{ m s}_0.75$	18	11	0.12	0.90	ns
$aperiodic_exp$	$\rm H1000's_1$	H3000's_1	18	11	-0.43	0.67	ns
$aperiodic_exp$	${ m H2000's} { m _0.25}$	${ m H2000's} { m _0.5}$	13	13	-0.25	0.80	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	${\rm H}2000' {\rm s}_0.25$	${\rm H}2000{\rm 's}_0.75$	13	13	-0.63	0.53	ns
aperiodic_exp	${ m H2000's} { m _0.25}$	H2000's_1	13	13	-0.22	0.83	ns
aperiodic_exp	${ m H2000's} { m _0.25}$	$H3000's_0.25$	13	11	-1.56	0.14	ns
$aperiodic_exp$	${ m H2000's} { m _0.25}$	$H3000's_0.5$	13	11	-1.51	0.14	ns
$aperiodic_exp$	${ m H2000's} { m _0.25}$	${ m H3000's} { m _0.75}$	13	11	-1.60	0.12	ns
$aperiodic_exp$	${ m H2000's} { m _0.25}$	$H3000's_1$	13	11	-2.02	0.06	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	$\rm H2000's_0.75$	13	13	-0.35	0.73	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	$H2000's_1$	13	13	0.06	0.95	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's} { m _0.25}$	13	11	-1.35	0.20	ns
aperiodic_exp	${ m H2000's} { m _0.5}$	$H3000's_0.5$	13	11	-1.27	0.22	ns
aperiodic_exp	${ m H2000's} { m _0.5}$	$H3000's_0.75$	13	11	-1.34	0.20	ns
aperiodic_exp	${ m H2000's} { m _0.5}$	H3000's_1	13	11	-1.77	0.09	ns
aperiodic_exp	${ m H2000's} { m _0.75}$	H2000's_1	13	13	0.46	0.65	ns
aperiodic_exp	${ m H2000's} { m _0.75}$	$H3000's_0.25$	13	11	-1.13	0.27	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.5}$	13	11	-1.04	0.31	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.75}$	13	11	-1.09	0.29	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	$H3000's_1$	13	11	-1.56	0.14	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's} { m _0.25}$	13	11	-1.48	0.16	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	$H3000's_0.5$	13	11	-1.43	0.17	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's} { m _0.75}$	13	11	-1.52	0.14	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	$H3000's_1$	13	11	-1.97	0.06	ns
aperiodic_exp	${ m H3000's} { m _0.25}$	$H3000's_0.5$	11	11	0.18	0.86	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.75}$	11	11	0.21	0.84	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_1$	11	11	-0.23	0.82	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	${ m H3000's} { m _0.75}$	11	11	0.03	0.98	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	$H3000's_1$	11	11	-0.44	0.66	ns
aperiodic_exp	H3000's_0.75	H3000's_1	11	11	-0.49	0.63	ns

Cluster: 7 Aperiodic Exponent t-tests

$EEG\ Var$	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	16	16	-0.55	0.59	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	16	16	-0.55	0.59	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	16	16	-0.52	0.61	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000{\rm 's}_0.25$	16	11	1.62	0.12	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	16	11	1.62	0.12	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.75$	16	11	1.75	0.09	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_{1}$	16	11	1.56	0.14	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	16	11	-0.40	0.70	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.5}$	16	11	-0.35	0.73	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	16	11	-0.33	0.74	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's}{ m _1}$	16	11	-0.27	0.79	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	16	16	-0.01	1.00	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H1000's_1	16	16	0.04	0.96	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H2000's} { m _0.25}$	16	11	2.13	0.04	*
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s} _0.5$	16	11	2.17	0.04	*
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000 {\rm 's} _0.75$	16	11	2.28	0.03	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_1$	16	11	2.01	0.06	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	16	11	-0.03	0.98	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	16	11	-0.01	0.99	ns

EEG Var	Group_Speed_1	Group_Speed_2	N1	N2	tstat	p-value	*sig.
aperiodic_exp	H1000's_0.5	$H3000's_0.75$	16	11	0.01	0.99	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_1$	16	11	0.09	0.93	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	16	16	0.05	0.96	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.25$	16	11	2.11	0.05	*
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.5$	16	11	2.15	0.04	*
$aperiodic_exp$	$\rm H1000's_0.75$	${\rm H}2000' {\rm s}_0.75$	16	11	2.26	0.03	*
$aperiodic_exp$	$\rm H1000's_0.75$	H2000's_1	16	11	2.00	0.06	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.25$	16	11	-0.03	0.98	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.5$	16	11	-0.01	1.00	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.75$	16	11	0.01	0.99	ns
aperiodic_exp	$\rm H1000's_0.75$	H3000's_1	16	11	0.10	0.92	ns
aperiodic_exp	H1000's_1	$H2000's_0.25$	16	11	2.14	0.04	*
aperiodic_exp	H1000's_1	$H2000's_0.5$	16	11	2.18	0.04	*
aperiodic_exp	H1000's_1	$H2000's_0.75$	16	11	2.30	0.03	*
aperiodic_exp	H1000's_1	H2000's_1	16	11	2.02	0.06	ns
aperiodic_exp	H1000's_1	H3000's_0.25	16	11	-0.06	0.95	$_{ m ns}$
aperiodic_exp	H1000's_1	$H3000's_0.5$	16	11	-0.04	0.97	ns
aperiodic_exp	H1000's_1	$H3000's_0.75$	16	11	-0.02	0.99	ns
aperiodic_exp	H1000's 1	H3000's 1	16	11	0.06	0.95	ns
aperiodic_exp	H2000's_0.25	H2000's 0.5	11	11	-0.10	0.92	ns
aperiodic_exp	H2000's 0.25	H2000's 0.75	11	11	0.08	0.93	ns
aperiodic_exp	H2000's_0.25	H2000's 1	11	11	0.11	0.92	ns
aperiodic_exp	$H2000's_{-}0.25$	H3000's_0.25	11	11	-1.52	0.15	ns
aperiodic_exp	$H2000's_0.25$	$H3000's_0.5$	11	11	-1.41	0.18	ns
aperiodic_exp	$H2000's_0.25$	$H3000's_0.75$	11	11	-1.39	0.18	ns
aperiodic_exp	$H2000's_0.25$	H3000's_1	11	11	-1.40	0.18	ns
aperiodic_exp	H2000's 0.5	H2000's 0.75	11	11	0.20	0.85	ns
aperiodic_exp	H2000's 0.5	H2000's 1	11	11	0.21	0.84	ns
aperiodic_exp	H2000's 0.5	H3000's 0.25	11	11	-1.49	0.16	ns
aperiodic_exp	H2000's 0.5	H3000's 0.5	11	11	-1.38	0.19	ns
aperiodic_exp	H2000's 0.5	H3000's 0.75	11	11	-1.36	0.19	ns
aperiodic_exp	H2000's_0.5	H3000's_1	11	11	-1.36	0.19	ns
aperiodic_exp	$H2000's_0.75$	H2000's_1	11	11	0.03	0.97	ns
aperiodic_exp	$H2000's_0.75$	$H3000's_0.25$	11	11	-1.60	0.13	ns
aperiodic_exp	$H2000's_0.75$	$H3000's_0.5$	11	11	-1.49	0.16	ns
aperiodic_exp	$H2000's_{-}0.75$	H3000's_0.75	11	11	-1.47	0.16	ns
aperiodic exp	H2000's_0.75	H3000's_1	11	11	-1.48	0.16	ns
aperiodic exp	H2000's_1	H3000's_0.25	11	11	-1.52	0.15	ns
aperiodic_exp	H2000's_1	H3000's 0.5	11	11	-1.42	0.17	ns
aperiodic_exp	H2000's_1	H3000's_0.75	11	11	-1.40	0.18	ns
aperiodic_exp	H2000's_1	H3000's_1	11	11	-1.40	0.18	ns
aperiodic_exp	H3000's_0.25	H3000's_0.5	11	11	0.01	0.99	ns
aperiodic_exp	H3000's_0.25	H3000's_0.75	11	11	0.03	0.98	ns
aperiodic_exp	H3000's_0.25	H3000's_1	11	11	0.10	0.92	ns
aperiodic_exp	H3000's 0.5	H3000's 0.75	11	11	0.02	0.99	ns
aperiodic_exp	H3000's_0.5	H3000's 1	11	11	0.08	0.94	ns
aperiodic_exp	H3000's_0.75	H3000's_1	11	11	0.06	0.95	ns

Cluster: 8 Aperiodic Exponent t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	15	15	-0.46	0.65	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	15	15	-0.76	0.45	ns
aperiodic_exp	$\rm H1000's_0.25$	H1000's_1	15	15	-0.49	0.62	ns
aperiodic_exp	$\rm H1000's_0.25$	$H2000's_0.25$	15	8	3.17	0.00	**
aperiodic_exp	$\rm H1000's_0.25$	$H2000's_0.5$	15	8	2.56	0.02	*
aperiodic_exp	$H1000's_0.25$	H2000's_0.75	15	8	1.96	0.07	ns
aperiodic_exp	$\rm H1000's_0.25$	H2000's 1	15	8	1.26	0.23	ns
aperiodic_exp	H1000's 0.25	H3000's 0.25	15	11	0.43	0.67	ns
aperiodic_exp	H1000's 0.25	H3000's 0.5	15	11	0.05	0.96	ns
aperiodic_exp	H1000's 0.25	H3000's 0.75	15	11	0.02	0.98	ns
aperiodic_exp	H1000's 0.25	H3000's 1	15	11	0.44	0.66	ns
aperiodic_exp	H1000's 0.5	H1000's 0.75	15	15	-0.35	0.73	ns
aperiodic_exp	H1000's 0.5	H1000's 1	15	15	-0.06	0.95	ns
aperiodic_exp	H1000's 0.5	H2000's 0.25	15	8	4.20	0.00	***
aperiodic_exp	H1000's_0.5	H2000's 0.5	15	8	3.42	0.00	**
aperiodic exp	H1000's_0.5	H2000's 0.75	15	8	2.60	0.02	*
aperiodic exp	H1000's_0.5	H2000's 1	15	8	1.69	0.12	ns
aperiodic_exp	H1000's 0.5	H3000's 0.25	15	11	0.87	0.39	ns
aperiodic_exp	H1000's 0.5	H3000's 0.5	15	11	0.51	0.62	ns
aperiodic_exp	H1000's 0.5	H3000's 0.75	15	11	0.47	0.64	ns
aperiodic_exp	H1000's 0.5	H3000's 1	15	11	0.99	0.34	ns
aperiodic_exp	H1000's 0.75	H1000's 1	15	15	0.28	0.78	ns
aperiodic_exp	H1000's_0.75	H2000's 0.25	15	8	4.52	0.00	***
aperiodic_exp	H1000's_0.75	H2000's 0.5	15	8	3.72	0.00	**
aperiodic_exp	H1000's 0.75	H2000's 0.75	15	8	2.86	0.01	*
aperiodic_exp	H1000's 0.75	H2000's 1	15	8	1.90	0.09	ns
aperiodic_exp	H1000's 0.75	H3000's 0.25	15	11	1.13	0.27	ns
aperiodic_exp	H1000's 0.75	H3000's 0.5	15	11	0.79	0.44	ns
aperiodic_exp	H1000's 0.75	H3000's 0.75	15	11	0.75	0.46	ns
aperiodic_exp	H1000's 0.75	H3000's 1	15	11	1.29	0.40	ns
aperiodic_exp	H1000's_0.75	H2000's 0.25	15 15	8	4.05	0.00	***
aperiodic exp	H1000's 1	H2000's 0.5	15	8	3.32	0.00	**
aperiodic_exp	H1000's_1	H2000's 0.75	15	8	2.56	0.02	*
aperiodic_exp	H1000's_1	H2000's 1	15	8	1.69	0.02 0.12	ns
aperiodic_exp	H1000's_1	H3000's 0.25	15 15	11	0.89	$0.12 \\ 0.38$	ns
aperiodic_exp	H1000's 1	H3000's_0.25	15 15	11	0.53 0.54	0.60	
aperiodic_exp	H1000's_1	H3000's_0.75	15 15	11	0.54	0.62	$\frac{\text{ns}}{\text{ns}}$
aperiodic_exp	H1000's_1	H3000's_1	15 15	11	0.99	0.33	ns
aperiodic_exp	H2000's 0.25	H2000's 0.5	8	8	-0.52	0.60	
aperiodic_exp	H2000's_0.25	H2000's_0.75	8	8	-0.80	0.01 0.44	ns ns
aperiodic_exp	H2000's_0.25	H2000's 1	8	8	-1.00	0.44 0.34	ns
aperiodic_exp	H2000's_0.25	H3000's 0.25	8	11	-2.31	0.04	*
aperiodic_exp	H2000's_0.25	H3000's 0.5	8	11	-3.00	0.03	**
aperiodic_exp	H2000's_0.25	H3000's 0.75	8	11	-3.00 -3.03	0.01	**
-	H2000's 0.25	H3000's 1	8	11	-3.03 -2.81	0.01	*
aperiodic_exp	H2000's 0.5	H2000's 0.75			-2.01 -0.33		
aperiodic_exp			8	8		0.74	ns
aperiodic_exp	H2000's_0.5	H2000's_1	8	8 11	-0.62	0.55	ns
aperiodic_exp	H2000's_0.5	H3000's_0.25	8	11 11	-1.81	0.09	ns *
aperiodic_exp	H2000's_0.5	H3000's_0.5	8	11 11	-2.42 2.45	0.03	*
aperiodic_exp	H2000's_0.5	H3000's_0.75	8	11	-2.45	0.03	*
aperiodic_exp	H2000's_0.5	H3000's_1	8	11	-2.19	0.04	
aperiodic_exp	$H2000's_0.75$	H2000's_1	8	8	-0.33	0.75	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H2000's_0.75	H3000's_0.25	8	11	-1.36	0.19	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.75$	${ m H3000's} { m _0.5}$	8	11	-1.86	0.08	ns
aperiodic_exp	$\rm H2000's_0.75$	$H3000's_0.75$	8	11	-1.88	0.08	ns
aperiodic_exp	${ m H2000's} { m _0.75}$	H3000's_1	8	11	-1.60	0.13	ns
aperiodic_exp	H2000's_1	$H3000's_0.25$	8	11	-0.84	0.42	ns
$aperiodic_exp$	H2000's_1	$H3000's_0.5$	8	11	-1.20	0.25	$_{ m ns}$
aperiodic_exp	$H2000's_1$	$H3000's_0.75$	8	11	-1.22	0.24	ns
$aperiodic_exp$	H2000's_1	$H3000's_1$	8	11	-0.96	0.36	$_{ m ns}$
aperiodic_exp	${ m H3000's} { m _0.25}$	$H3000's_0.5$	11	11	-0.37	0.71	ns
aperiodic_exp	${ m H3000's} { m _0.25}$	$H3000's_0.75$	11	11	-0.40	0.69	ns
aperiodic_exp	${ m H3000's} { m _0.25}$	H3000's_1	11	11	-0.05	0.96	ns
aperiodic_exp	$H3000's_0.5$	$H3000's_0.75$	11	11	-0.03	0.98	$_{ m ns}$
aperiodic_exp	$H3000's_0.5$	H3000's_1	11	11	0.37	0.71	$_{ m ns}$
aperiodic_exp	${ m H3000's} { m _0.75}$	$\rm H3000's_1$	11	11	0.40	0.69	ns

Cluster: 9 Aperiodic Exponent t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	$\rm H1000's_0.25$	$\rm H1000's_0.5$	24	24	-0.34	0.74	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	24	24	-0.04	0.97	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	24	24	-0.49	0.62	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000{\rm 's}_0.25$	24	15	2.33	0.03	*
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000' {\rm s}_0.5$	24	15	2.07	0.05	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000{\rm 's}_0.75$	24	15	2.23	0.03	*
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_1$	24	15	1.73	0.09	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	24	22	1.75	0.09	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.5$	24	22	1.67	0.10	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H}3000{ m 's}_0.75$	24	22	1.49	0.14	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H3000's_1	24	22	1.10	0.28	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	24	24	0.30	0.77	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H1000's_1	24	24	-0.16	0.88	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_0.25$	24	15	2.66	0.01	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.5$	24	15	2.33	0.03	*
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_0.75$	24	15	2.59	0.01	*
$aperiodic_exp$	$\rm H1000's_0.5$	H2000's_1	24	15	2.07	0.05	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_0.25$	24	22	2.11	0.04	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_0.5$	24	22	2.02	0.05	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_0.75$	24	22	1.85	0.07	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H3000's_1	24	22	1.44	0.16	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	24	24	-0.45	0.66	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.25$	24	15	2.34	0.03	*
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.5$	24	15	2.08	0.05	*
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.75$	24	15	2.25	0.03	*
$aperiodic_exp$	$\rm H1000's_0.75$	H2000's_1	24	15	1.75	0.09	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.25$	24	22	1.77	0.08	ns
$aperiodic_exp$	$H1000's_0.75$	$H3000's_0.5$	24	22	1.69	0.10	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.75$	24	22	1.51	0.14	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H3000's_1	24	22	1.12	0.27	ns
$aperiodic_exp$	H1000's_1	${\rm H}2000{\rm 's}_0.25$	24	15	2.79	0.01	**
$aperiodic_exp$	H1000's_1	${\rm H}2000{\rm 's}_0.5$	24	15	2.44	0.02	*

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_1	H2000's_0.75	24	15	2.74	0.01	*
aperiodic_exp	H1000's_1	H2000's_1	24	15	2.21	0.04	*
$aperiodic_exp$	$H1000's_1$	$H3000's_0.25$	24	22	2.26	0.03	*
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.5}$	24	22	2.17	0.04	*
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.75}$	24	22	2.00	0.05	ns
$aperiodic_exp$	H1000's_1	${ m H3000's}{ m _1}$	24	22	1.59	0.12	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H2000's} { m _0.5}$	15	15	0.09	0.93	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H2000's} { m _0.75}$	15	15	-0.25	0.80	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${\rm H}2000'{\rm s}_1$	15	15	-0.63	0.54	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.25}$	15	22	-0.74	0.47	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.5}$	15	22	-0.75	0.46	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.75}$	15	22	-0.95	0.35	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's}{ m _1}$	15	22	-1.27	0.21	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	${ m H2000's} { m _0.75}$	15	15	-0.31	0.76	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	$H2000's_1$	15	15	-0.64	0.53	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	${ m H3000's} { m _0.25}$	15	22	-0.73	0.48	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	${ m H3000's} { m _0.5}$	15	22	-0.74	0.47	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	${ m H3000's} { m _0.75}$	15	22	-0.91	0.37	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	${ m H3000's}{ m _1}$	15	22	-1.19	0.25	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.75$	${\rm H}2000'{\rm s}_1$	15	15	-0.40	0.69	ns
$aperiodic_exp$	$H2000's_0.75$	${ m H3000's} { m _0.25}$	15	22	-0.51	0.61	ns
$aperiodic_exp$	$H2000's_0.75$	${ m H3000's} { m _0.5}$	15	22	-0.53	0.60	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.75$	${ m H3000's} { m _0.75}$	15	22	-0.75	0.46	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.75$	${ m H3000's}{ m _1}$	15	22	-1.09	0.28	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.25}$	15	22	-0.08	0.93	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.5}$	15	22	-0.11	0.91	ns
aperiodic_exp	$H2000's_1$	${ m H3000's} { m _0.75}$	15	22	-0.31	0.76	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's}{ m _1}$	15	22	-0.65	0.52	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.5}$	22	22	-0.03	0.97	ns
aperiodic_exp	${ m H3000's} { m _0.25}$	$H3000's_0.75$	22	22	-0.24	0.81	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	H3000's_1	22	22	-0.60	0.55	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.5$	${ m H3000's} { m _0.75}$	22	22	-0.20	0.84	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.5$	H3000's_1	22	22	-0.55	0.58	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.75$	H3000's_1	22	22	-0.36	0.72	ns

Cluster: 10 Aperiodic Exponent t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	23	23	-0.45	0.65	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	23	23	-0.52	0.61	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	23	23	-0.36	0.72	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.25$	23	17	0.46	0.65	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	23	17	0.40	0.69	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.75$	23	17	0.26	0.79	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H2000's_1	23	17	0.50	0.62	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	23	17	-0.02	0.99	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.5}$	23	17	-0.93	0.36	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	23	17	-0.75	0.46	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H3000's_1	23	17	-0.48	0.64	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	23	23	-0.06	0.95	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.5	H1000's_1	23	23	0.08	0.93	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.25$	23	17	1.02	0.32	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.5$	23	17	0.96	0.34	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.75$	23	17	0.83	0.41	ns
aperiodic_exp	$\rm H1000's_0.5$	H2000's_1	23	17	1.06	0.29	ns
aperiodic_exp	H1000's_0.5	H3000's_0.25	23	17	0.51	0.62	ns
aperiodic_exp	$H1000's_0.5$	$H3000's_0.5$	23	17	-0.47	0.64	ns
aperiodic_exp	H1000's 0.5	H3000's 0.75	23	17	-0.25	0.80	$_{ m ns}$
aperiodic exp	H1000's 0.5	H3000's 1	23	17	0.05	0.96	$_{ m ns}$
aperiodic_exp	H1000's 0.75	H1000's 1	23	23	0.14	0.89	ns
aperiodic_exp	H1000's 0.75	H2000's 0.25	23	17	1.11	0.27	ns
aperiodic_exp	H1000's 0.75	H2000's 0.5	23	17	1.05	0.30	ns
aperiodic_exp	H1000's 0.75	H2000's 0.75	23	17	0.92	0.36	ns
aperiodic_exp	H1000's 0.75	H2000's 1	23	17	1.16	0.26	ns
aperiodic exp	H1000's_0.75	H3000's 0.25	23	17	0.59	0.56	ns
aperiodic exp	H1000's_0.75	H3000's 0.5	23	17	-0.42	0.68	ns
aperiodic_exp	H1000's_0.75	H3000's 0.75	23	17	-0.19	0.85	ns
aperiodic_exp	H1000's 0.75	H3000's 1	23	17	0.13	0.90	ns
aperiodic_exp	H1000's 1	H2000's 0.25	23	17	0.90	0.38	ns
aperiodic_exp	H1000's 1	H2000's 0.5	23	17	0.84	0.41	ns
aperiodic_exp	H1000's 1	H2000's 0.75	23	17	0.71	0.48	ns
aperiodic_exp	H1000's 1	H2000's 1	23	17	0.94	0.35	ns
aperiodic_exp	H1000's_1	H3000's 0.25	23	17	0.40	0.69	ns
aperiodic_exp	H1000's 1	H3000's 0.5	23	17	-0.55	0.58	ns
aperiodic_exp	H1000's 1	H3000's 0.75	23	17	-0.34	0.74	ns
aperiodic_exp	H1000's 1	H3000's 1	23	17	-0.05	0.96	ns
aperiodic_exp	H2000's 0.25	H2000's 0.5	17	17	-0.07	0.94	ns
aperiodic_exp	H2000's 0.25	H2000's 0.75	17	17	-0.26	0.80	ns
aperiodic_exp	H2000's 0.25	H2000's 1	17	17	0.05	0.96	ns
aperiodic_exp	H2000's 0.25	H3000's 0.25	17	17	-0.58	0.57	ns
aperiodic_exp	H2000's 0.25	H3000's 0.5	17	17	-1.67	0.10	ns
aperiodic exp	H2000's 0.25	H3000's 0.75	17	17	-1.50	0.14	ns
aperiodic_exp	H2000's 0.25	H3000's 1	17	17	-1.21	0.24	ns
aperiodic_exp	H2000's 0.5	H2000's 0.75	17	17	-0.19	0.85	ns
aperiodic_exp	H2000's 0.5	H2000's 1	17	17	0.13	0.90	ns
aperiodic_exp	H2000's_0.5	H3000's_0.25	17	17	-0.51	0.61	ns
aperiodic exp	H2000's_0.5	H3000's_0.5	17	17	-1.62	0.12	ns
aperiodic_exp	H2000's_0.5	H3000's 0.75	17	17	-1.45	0.16	ns
aperiodic exp	H2000's 0.5	H3000's 1	17	17	-1.15	0.26	ns
aperiodic_exp	H2000's 0.75	H2000's_1	17	17	0.32	0.75	ns
aperiodic exp	H2000's_0.75	H3000's 0.25	17	17	-0.35	0.73	ns
aperiodic_exp	H2000's_0.75	H3000's 0.5	17	17	-1.50	0.14	ns
aperiodic_exp	H2000's_0.75	H3000's 0.75	17	17	-1.32	0.20	ns
aperiodic_exp	H2000's_0.75	H3000's 1	17	17	-1.00	0.33	ns
aperiodic exp	H2000's_1	H3000's 0.25	17	17	-0.63	0.53	ns
aperiodic_exp	H2000's 1	H3000's 0.5	17	17	-1.72	0.09	ns
aperiodic_exp	H2000's 1	H3000's 0.75	17	17	-1.56	0.03 0.13	ns
aperiodic_exp	H2000's_1	H3000's 1	17	17	-1.27	0.13 0.22	ns
aperiodic_exp	H3000's_0.25	H3000's_0.5	17	17	-1.10	0.28	ns
aperiodic_exp	H3000's_0.25	H3000's 0.75	17	17	-0.89	0.38	ns
aperiodic_exp	H3000's_0.25	H3000's 1	17	17	-0.57	0.57	ns
aperiodic_exp	H3000's 0.5	H3000's 0.75	17	17	0.28	0.78	ns
aportouto_oxp	110000 5_0.0	110000 5_0.10	-1		0.20	0.10	110

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
	H3000's_0.5 H3000's_0.75	H3000's_1 H3000's_1	17 17	17 17	$0.65 \\ 0.39$	$0.52 \\ 0.70$	ns ns

Cluster: 11 Aperiodic Exponent t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	$\rm H1000's_0.5$	29	29	-0.63	0.53	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	29	29	-0.17	0.87	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$H1000's_1$	29	29	-0.49	0.63	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000' {\rm s} _0.25$	29	15	-0.04	0.97	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.25$	$H2000's_0.5$	29	15	0.01	0.99	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H2000's_0.75$	29	15	0.17	0.87	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_1$	29	15	-0.08	0.93	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.25$	29	19	0.37	0.72	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.5$	29	19	0.10	0.92	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	29	19	0.35	0.73	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_1$	29	19	0.53	0.60	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	29	29	0.49	0.63	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.5$	$H1000's_1$	29	29	0.15	0.88	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s} _0.25$	29	15	0.50	0.62	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.5$	29	15	0.61	0.55	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.75$	29	15	0.73	0.47	ns
aperiodic_exp	$\rm H1000's_0.5$	H2000's_1	29	15	0.47	0.64	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.25$	29	19	0.86	0.40	ns
aperiodic_exp	H1000's_0.5	$H3000's_0.5$	29	19	0.65	0.52	$_{ m ns}$
aperiodic_exp	H1000's_0.5	$H3000's_0.75$	29	19	0.84	0.41	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.5$	H3000's_1	29	19	0.98	0.33	ns
aperiodic_exp	$\rm H1000's_0.75$	H1000's_1	29	29	-0.34	0.74	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.25$	29	15	0.11	0.92	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.5$	29	15	0.17	0.87	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.75$	29	15	0.32	0.75	ns
aperiodic_exp	$\rm H1000's_0.75$	H2000's_1	29	15	0.06	0.95	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.25$	29	19	0.50	0.62	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.5$	29	19	0.25	0.81	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.75$	29	19	0.49	0.63	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_1$	29	19	0.66	0.52	$_{ m ns}$
aperiodic_exp	H1000's_1	$\rm H2000's_0.25$	29	15	0.38	0.70	$_{ m ns}$
aperiodic_exp	H1000's_1	$H2000's_0.5$	29	15	0.47	0.64	$_{ m ns}$
aperiodic_exp	H1000's_1	$H2000's_0.75$	29	15	0.61	0.55	ns
aperiodic_exp	H1000's_1	H2000's_1	29	15	0.35	0.73	$_{ m ns}$
aperiodic_exp	H1000's_1	$H3000's_0.25$	29	19	0.75	0.46	ns
aperiodic_exp	H1000's_1	$H3000's_0.5$	29	19	0.53	0.60	$_{ m ns}$
aperiodic_exp	H1000's_1	$H3000's_0.75$	29	19	0.74	0.47	ns
aperiodic_exp	H1000's_1	$H3000's_1$	29	19	0.89	0.38	$_{ m ns}$
aperiodic_exp	$H2000's_0.25$	$H2000's_0.5$	15	15	0.04	0.96	$_{ m ns}$
aperiodic_exp	${ m H2000's} { m _0.25}$	$H2000's_0.75$	15	15	0.18	0.86	ns
aperiodic_exp	$H2000's_0.25$	H2000's_1	15	15	-0.04	0.97	ns
aperiodic_exp	$H2000's_0.25$	H3000's_0.25	15	19	0.36	0.72	ns
aperiodic_exp	$H2000's_{-}0.25$	H3000's_0.5	15	19	0.12	0.91	ns
aperiodic_exp	H2000's_0.25	H3000's_0.75	15	19	0.35	0.73	ns
		_					

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H2000's_0.25	H3000's_1	15	19	0.52	0.61	ns
$aperiodic_exp$	$H2000's_0.5$	$H2000's_0.75$	15	15	0.15	0.88	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	H2000's_1	15	15	-0.09	0.93	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	${ m H3000's} { m _0.25}$	15	19	0.34	0.73	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	${ m H3000's} { m _0.5}$	15	19	0.08	0.94	ns
$aperiodic_exp$	$\rm H2000's_0.5$	${ m H3000's} { m _0.75}$	15	19	0.33	0.75	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	$H3000's_1$	15	19	0.51	0.62	ns
aperiodic_exp	$\rm H2000's_0.75$	H2000's_1	15	15	-0.23	0.82	ns
$aperiodic_exp$	$\rm H2000's_0.75$	$H3000's_0.25$	15	19	0.21	0.84	ns
$aperiodic_exp$	$\rm H2000's_0.75$	$H3000's_0.5$	15	19	-0.06	0.95	ns
$aperiodic_exp$	$\rm H2000's_0.75$	$H3000's_0.75$	15	19	0.19	0.85	ns
aperiodic_exp	$\rm H2000's_0.75$	H3000's_1	15	19	0.38	0.71	ns
aperiodic_exp	$H2000's_1$	$H3000's_0.25$	15	19	0.41	0.69	ns
aperiodic_exp	$H2000's_1$	$H3000's_0.5$	15	19	0.16	0.87	ns
aperiodic_exp	$H2000's_1$	${ m H3000's} { m _0.75}$	15	19	0.39	0.70	ns
$aperiodic_exp$	H2000's_1	H3000's_1	15	19	0.56	0.58	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_0.5$	19	19	-0.26	0.80	ns
aperiodic_exp	${ m H3000's} { m _0.25}$	$H3000's_0.75$	19	19	-0.01	0.99	ns
aperiodic_exp	$H3000's_0.25$	H3000's_1	19	19	0.17	0.86	ns
aperiodic_exp	$H3000's_0.5$	$H3000's_0.75$	19	19	0.24	0.81	ns
aperiodic_exp	$H3000's_0.5$	H3000's_1	19	19	0.43	0.67	ns
aperiodic_exp	${ m H3000's} { m _0.75}$	H3000's_1	19	19	0.19	0.85	ns

Cluster: 12 Aperiodic Exponent t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	24	24	-0.13	0.90	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	24	24	-0.27	0.79	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_1$	24	24	-0.19	0.85	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000 {\rm 's} _0.25$	24	14	2.32	0.03	*
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000'{\rm s}_0.5$	24	14	2.21	0.03	*
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H2000's} { m _0.75}$	24	14	1.83	0.08	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_1$	24	14	1.76	0.09	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	24	20	1.75	0.09	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.5}$	24	20	1.62	0.11	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	24	20	1.65	0.11	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's}{ m _1}$	24	20	1.78	0.08	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	24	24	-0.14	0.89	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_1$	24	24	-0.06	0.95	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000 {\rm 's} _0.25$	24	14	2.42	0.02	*
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000{\rm 's}_0.5$	24	14	2.30	0.03	*
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_0.75$	24	14	1.93	0.06	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_1$	24	14	1.87	0.07	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	24	20	1.84	0.07	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	24	20	1.73	0.09	ns
aperiodic_exp	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	24	20	1.75	0.09	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_1$	24	20	1.88	0.07	ns
aperiodic_exp	$\rm H1000's_0.75$	H1000's_1	24	24	0.08	0.94	ns
aperiodic_exp	$\rm H1000's_0.75$	${\rm H}2000' {\rm s} _0.25$	24	14	2.59	0.01	*
$aperiodic_exp$	$\rm H1000's_0.75$	${\rm H}2000' {\rm s}_0.5$	24	14	2.48	0.02	*

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.75$	24	14	2.12	0.04	*
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_1$	24	14	2.05	0.05	*
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.25$	24	20	2.00	0.05	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.5$	24	20	1.89	0.07	ns
aperiodic_exp	$H1000's_0.75$	$H3000's_0.75$	24	20	1.91	0.06	ns
aperiodic_exp	$\rm H1000's_0.75$	H3000's_1	24	20	2.05	0.05	*
aperiodic_exp	H1000's_1	$H2000's_0.25$	24	14	2.59	0.01	*
aperiodic_exp	H1000's_1	$H2000's_0.5$	24	14	2.48	0.02	*
aperiodic_exp	H1000's_1	$H2000's_0.75$	24	14	2.11	0.04	*
aperiodic_exp	H1000's_1	H2000's_1	24	14	2.03	0.05	*
aperiodic_exp	H1000's_1	$H3000's_0.25$	24	20	1.98	0.06	ns
aperiodic_exp	H1000's_1	$H3000's_0.5$	24	20	1.87	0.07	ns
aperiodic_exp	H1000's_1	$H3000's_0.75$	24	20	1.88	0.07	ns
aperiodic exp	H1000's 1	H3000's 1	24	20	2.03	0.05	*
aperiodic_exp	$H2000's_0.25$	$H2000's_0.5$	14	14	-0.19	0.85	ns
aperiodic_exp	$H2000's_0.25$	$H2000's_0.75$	14	14	-0.75	0.46	ns
aperiodic_exp	$H2000's_0.25$	H2000's_1	14	14	-0.78	0.44	ns
aperiodic_exp	$H2000's_0.25$	$H3000's_0.25$	14	20	-0.41	0.68	ns
aperiodic_exp	$H2000's_0.25$	$H3000's_0.5$	14	20	-0.68	0.50	ns
aperiodic_exp	$H2000's_0.25$	$H3000's_0.75$	14	20	-0.57	0.57	ns
aperiodic_exp	$H2000's_0.25$	H3000's_1	14	20	-0.56	0.58	ns
aperiodic_exp	$H2000's_0.5$	$H2000's_0.75$	14	14	-0.56	0.58	ns
aperiodic_exp	$H2000's_0.5$	H2000's_1	14	14	-0.60	0.56	ns
aperiodic_exp	$H2000's_0.5$	$H3000's_0.25$	14	20	-0.25	0.80	ns
aperiodic_exp	$H2000's_0.5$	$H3000's_0.5$	14	20	-0.52	0.61	ns
aperiodic_exp	$\rm H2000's_0.5$	$H3000's_0.75$	14	20	-0.41	0.68	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_1$	14	20	-0.39	0.70	ns
$aperiodic_exp$	$H2000's_0.75$	$H2000's_1$	14	14	-0.05	0.96	ns
$aperiodic_exp$	$H2000's_0.75$	${ m H3000's} { m _0.25}$	14	20	0.21	0.83	ns
$aperiodic_exp$	$H2000's_0.75$	${ m H3000's} { m _0.5}$	14	20	-0.03	0.98	ns
$aperiodic_exp$	$H2000's_0.75$	${ m H3000's} { m _0.75}$	14	20	0.06	0.95	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.75$	${ m H3000's}{ m _1}$	14	20	0.12	0.91	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.25}$	14	20	0.25	0.81	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.5}$	14	20	0.01	0.99	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.75}$	14	20	0.10	0.92	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's}{ m _1}$	14	20	0.16	0.88	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.25$	${ m H3000's} { m _0.5}$	20	20	-0.22	0.83	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.25$	${ m H3000's} { m _0.75}$	20	20	-0.14	0.89	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.25$	H3000's_1	20	20	-0.10	0.92	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.5$	${ m H3000's} { m _0.75}$	20	20	0.08	0.94	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.5$	H3000's_1	20	20	0.13	0.90	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.75$	H3000's_1	20	20	0.05	0.96	ns

Cluster: 13 Aperiodic Exponent t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	$\rm H1000's_0.5$	22	22	-0.28	0.78	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	22	22	-0.17	0.86	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_1$	22	22	-0.61	0.55	ns
aperiodic exp	H1000's 0.25	H2000's 0.25	22	12	2.28	0.03	*

EEG Var	Group_Speed_1	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	$\rm H1000's_0.25$	H2000's_0.5	22	12	2.08	0.05	*
aperiodic_exp	$\rm H1000's_0.25$	$H2000's_0.75$	22	12	1.88	0.07	ns
aperiodic_exp	$\rm H1000's_0.25$	H2000's_1	22	12	2.07	0.05	*
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.25$	22	13	0.43	0.67	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.5$	22	13	0.57	0.58	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.75$	22	13	0.62	0.54	ns
aperiodic_exp	$\rm H1000's_0.25$	H3000's_1	22	13	1.02	0.32	ns
aperiodic_exp	$\rm H1000's_0.5$	$\rm H1000's_0.75$	22	22	0.10	0.92	ns
aperiodic_exp	$\rm H1000's_0.5$	H1000's_1	22	22	-0.32	0.75	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.25$	22	12	2.57	0.02	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.5$	22	12	2.38	0.03	*
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.75$	22	12	2.16	0.04	*
aperiodic_exp	$\rm H1000's_0.5$	H2000's_1	22	12	2.40	0.02	*
aperiodic_exp	$\rm H1000's_0.5$	H3000's_0.25	22	13	0.66	0.52	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.5$	22	13	0.84	0.41	ns
aperiodic_exp	$\rm H1000's_0.5$	H3000's_0.75	22	13	0.90	0.38	ns
aperiodic_exp	$\rm H1000's_0.5$	H3000's_1	22	13	1.31	0.20	ns
aperiodic_exp	$\rm H1000's_0.75$	H1000's_1	22	22	-0.42	0.68	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.25$	22	12	2.41	0.02	*
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.5$	22	12	2.22	0.04	*
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.75$	22	12	2.02	0.06	ns
aperiodic_exp	$\rm H1000's_0.75$	H2000's_1	22	12	2.23	0.03	*
aperiodic_exp	$\rm H1000's_0.75$	H3000's_0.25	22	13	0.56	0.58	ns
aperiodic_exp	$\rm H1000's_0.75$	H3000's_0.5	22	13	0.72	0.48	ns
aperiodic_exp	$\rm H1000's_0.75$	H3000's_0.75	22	13	0.78	0.44	ns
aperiodic_exp	$\rm H1000's_0.75$	H3000's_1	22	13	1.17	0.25	ns
$aperiodic_exp$	H1000's_1	$\rm H2000's_0.25$	22	12	2.95	0.01	**
$aperiodic_exp$	H1000's_1	$H2000's_0.5$	22	12	2.79	0.01	*
$aperiodic_exp$	H1000's_1	$\rm H2000's_0.75$	22	12	2.51	0.02	*
$aperiodic_exp$	H1000's_1	H2000's_1	22	12	2.85	0.01	**
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.25}$	22	13	0.92	0.37	ns
$aperiodic_exp$	H1000's_1	$H3000's_0.5$	22	13	1.16	0.26	ns
$aperiodic_exp$	H1000's_1	${ m H}3000{ m 's}_0.75$	22	13	1.24	0.23	ns
$aperiodic_exp$	H1000's_1	H3000's_1	22	13	1.67	0.11	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$\rm H2000's_0.5$	12	12	-0.28	0.78	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$H2000's_0.75$	12	12	-0.33	0.74	ns
$aperiodic_exp$	$\rm H2000's_0.25$	H2000's_1	12	12	-0.44	0.66	ns
$aperiodic_exp$	$\rm H2000's_0.25$	${ m H3000's} { m _0.25}$	12	13	-1.51	0.14	ns
$aperiodic_exp$	$\rm H2000's_0.25$	${ m H3000's} { m _0.5}$	12	13	-1.64	0.12	ns
$aperiodic_exp$	$H2000's_0.25$	$H3000's_0.75$	12	13	-1.64	0.12	ns
$aperiodic_exp$	$H2000's_0.25$	$H3000's_1$	12	13	-1.29	0.21	ns
$aperiodic_exp$	$H2000's_0.5$	$H2000's_0.75$	12	12	-0.06	0.95	ns
$aperiodic_exp$	$H2000's_0.5$	$H2000's_1$	12	12	-0.15	0.88	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.25$	12	13	-1.30	0.21	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.5$	12	13	-1.41	0.17	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.75$	12	13	-1.41	0.17	ns
$aperiodic_exp$	$H2000's_0.5$	H3000's_1	12	13	-1.04	0.31	ns
aperiodic_exp	H2000's_0.75	H2000's_1	12	12	-0.07	0.94	ns
aperiodic_exp	H2000's_0.75	H3000's_0.25	12	13	-1.19	0.25	ns
aperiodic_exp	H2000's_0.75	H3000's_0.5	12	13	-1.27	0.22	ns
aperiodic_exp	H2000's_0.75	H3000's_0.75	12	13	-1.27	0.22	ns
$aperiodic_exp$	$H2000's_0.75$	H3000's_1	12	13	-0.92	0.37	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	p-value	*sig.
aperiodic_exp	H2000's_1	H3000's_0.25	12	13	-1.24	0.23	ns
$aperiodic_exp$	$H2000's_1$	${ m H3000's} { m _0.5}$	12	13	-1.36	0.19	ns
aperiodic_exp	$H2000's_1$	$H3000's_0.75$	12	13	-1.36	0.19	ns
$aperiodic_exp$	H2000's_1	$H3000's_1$	12	13	-0.96	0.35	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_0.5$	13	13	0.06	0.96	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_0.75$	13	13	0.09	0.93	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_1$	13	13	0.41	0.68	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	$H3000's_0.75$	13	13	0.04	0.97	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	$H3000's_1$	13	13	0.41	0.69	ns
$aperiodic_exp$	${ m H3000's} { m _0.75}$	$\rm H3000's_1$	13	13	0.38	0.71	ns

Cluster: 14 Aperiodic Exponent t-tests

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	$\rm H1000's_0.25$	$\rm H1000's_0.5$	22	22	-0.52	0.60	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	22	22	-0.47	0.64	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	22	22	-0.38	0.70	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H2000's} { m _0.25}$	22	16	2.13	0.04	*
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H2000's} { m _0.5}$	22	16	1.74	0.09	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H2000's_0.75$	22	16	1.71	0.10	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H2000's_1	22	16	1.41	0.17	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	22	18	1.37	0.18	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.5}$	22	18	0.78	0.44	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	22	18	0.75	0.46	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H3000's_1	22	18	0.15	0.88	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	22	22	0.06	0.95	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H1000's_1	22	22	0.16	0.88	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H2000's} { m _0.25}$	22	16	2.84	0.01	**
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H2000's} { m _0.5}$	22	16	2.46	0.02	*
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_0.75$	22	16	2.38	0.02	*
$aperiodic_exp$	$\rm H1000's_0.5$	H2000's_1	22	16	2.12	0.04	*
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	22	18	1.95	0.06	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	22	18	1.37	0.18	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	22	18	1.37	0.18	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H3000's_1	22	18	0.69	0.49	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	22	22	0.10	0.92	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.25$	22	16	2.80	0.01	**
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H2000's} { m _0.5}$	22	16	2.42	0.02	*
$aperiodic_exp$	$\rm H1000's_0.75$	$\rm H2000's_0.75$	22	16	2.34	0.03	*
$aperiodic_exp$	$\rm H1000's_0.75$	H2000's_1	22	16	2.08	0.04	*
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H3000's} { m _0.25}$	22	18	1.91	0.06	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.5$	22	18	1.33	0.19	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.75$	22	18	1.32	0.19	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H3000's_1	22	18	0.64	0.52	ns
$aperiodic_exp$	H1000's_1	${ m H2000's} { m _0.25}$	22	16	2.73	0.01	**
$aperiodic_exp$	H1000's_1	${\rm H}2000'{\rm s}_0.5$	22	16	2.34	0.03	*
$aperiodic_exp$	H1000's_1	${\rm H}2000{\rm 's}_0.75$	22	16	2.27	0.03	*
$aperiodic_exp$	H1000's_1	H2000's_1	22	16	2.00	0.05	$_{ m ns}$
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.25}$	22	18	1.84	0.07	$_{ m ns}$
aperiodic exp	H1000's 1	H3000's 0.5	22	18	1.24	0.22	$_{ m ns}$

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	tstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_1	$H3000's_0.75$	22	18	1.23	0.22	ns
$aperiodic_exp$	H1000's_1	H3000's_1	22	18	0.55	0.58	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${\rm H}2000' {\rm s}_0.5$	16	16	-0.53	0.60	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${\rm H}2000' {\rm s}_0.75$	16	16	-0.42	0.67	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	$H2000's_1$	16	16	-0.90	0.37	ns
$aperiodic_exp$	$\rm H2000's_0.25$	${ m H3000's} { m _0.25}$	16	18	-0.60	0.56	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$H3000's_0.5$	16	18	-1.37	0.18	ns
$aperiodic_exp$	$\rm H2000's_0.25$	${ m H}3000{ m 's}_0.75$	16	18	-1.51	0.14	ns
$aperiodic_exp$	${ m H2000's} { m _0.25}$	H3000's_1	16	18	-2.03	0.05	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	$\rm H2000's_0.75$	16	16	0.07	0.94	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	H2000's_1	16	16	-0.39	0.70	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's} { m _0.25}$	16	18	-0.15	0.88	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's} { m _0.5}$	16	18	-0.93	0.36	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's} { m _0.75}$	16	18	-1.05	0.30	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	H3000's_1	16	18	-1.62	0.12	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	H2000's_1	16	16	-0.44	0.66	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.25}$	16	18	-0.21	0.84	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.5}$	16	18	-0.94	0.35	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.75}$	16	18	-1.06	0.30	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	H3000's_1	16	18	-1.60	0.12	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's} { m _0.25}$	16	18	0.17	0.86	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's} { m _0.5}$	16	18	-0.58	0.56	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.75}$	16	18	-0.69	0.49	ns
$aperiodic_exp$	$H2000's_{1}$	H3000's_1	16	18	-1.29	0.21	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.5}$	18	18	-0.66	0.52	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.75}$	18	18	-0.75	0.46	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	H3000's_1	18	18	-1.26	0.22	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	${ m H3000's} { m _0.75}$	18	18	-0.07	0.95	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	H3000's_1	18	18	-0.65	0.52	ns
$aperiodic_exp$	${ m H3000's} { m _0.75}$	$\rm H3000's_1$	18	18	-0.61	0.55	ns

THETA WILCOXON TESTS

Cluster: 3 Theta Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power H1000's_0.25	H1000's_0.5	23	23	254	0.83	ns
theta_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	23	23	259	0.91	ns
theta_avg_power $H1000$ 's_ 0.25	H1000's_1	23	23	254	0.83	ns
theta_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.25$	23	18	173	0.38	ns
theta_avg_power $H1000$ 's_ 0.25	$H2000's_0.5$	23	18	162	0.24	ns
theta_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.75$	23	18	160	0.22	ns
theta_avg_power $H1000$ 's_ 0.25	H2000's_1	23	18	166	0.29	ns
theta_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	23	23	64	0.00	****
theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	23	23	96	0.00	***
theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.75$	23	23	77	0.00	****
theta_avg_power $H1000$ 's_ 0.25	H3000's_1	23	23	100	0.00	***
theta_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	23	23	263	0.98	$_{ m ns}$
theta_avg_power $H1000$ 's_ 0.5	H1000's_1	23	23	268	0.95	ns

EDG V		<i>a a</i> : :	37.	3.7.0	TT7		٠.
EEG Var	Group_Speed_1	Group_Speed_2	N1	N2	Wstat	p-value	*sig.
theta_avg_power	$\rm H1000's_0.5$	${\rm H}2000' {\rm s}_0.25$	23	18	177	0.44	ns
theta_avg_power	$\rm H1000's_0.5$	$\rm H2000's_0.5$	23	18	169	0.33	ns
theta_avg_power	$\rm H1000's_0.5$	$\rm H2000's_0.75$	23	18	163	0.26	ns
theta_avg_power	$\rm H1000's_0.5$	H2000's_1	23	18	166	0.29	ns
theta_avg_power	$\rm H1000's_0.5$	$H3000's_0.25$	23	23	66	0.00	****
theta_avg_power		$H3000's_0.5$	23	23	99	0.00	***
theta_avg_power	$\rm H1000's_0.5$	$H3000's_0.75$	23	23	77	0.00	****
theta_avg_power	$\rm H1000's_0.5$	H3000's_1	23	23	103	0.00	***
theta_avg_power		H1000's_1	23	23	258	0.90	$_{ m ns}$
theta_avg_power	$H1000's_0.75$	$H2000's_0.25$	23	18	172	0.37	$_{ m ns}$
theta_avg_power		H2000's 0.5	23	18	164	0.27	$_{ m ns}$
theta_avg_power		H2000's 0.75	23	18	163	0.26	$_{ m ns}$
theta_avg_power		H2000's 1	23	18	175	0.41	ns
theta_avg_power		H3000's 0.25	23	23	61	0.00	****
theta_avg_power		H3000's 0.5	23	23	96	0.00	***
theta_avg_power		H3000's 0.75	23	23	78	0.00	****
theta_avg_power		H3000's 1	23	23	101	0.00	***
theta_avg_power		H2000's 0.25	23	18	171	0.36	ns
theta_avg_power		H2000's 0.5	23	18	173	0.38	ns
theta_avg_power		H2000's 0.75	23	18	163	0.26	ns
theta_avg_power		H2000's 1	23	18	175	0.41	ns
theta_avg_power		H3000's 0.25	23	23	67	0.00	****
theta_avg_power		H3000's 0.5	23	23	99	0.00	***
theta_avg_power		H3000's 0.75	23	23	74	0.00	****
theta_avg_power		H3000's 1	23	23	94	0.00	****
theta_avg_power		H2000's 0.5	18	18	163	0.99	ns
theta_avg_power		H2000's 0.75	18	18	161	0.99	ns
theta_avg_power		H2000's 1	18	18	161	0.99	ns
theta_avg_power		H3000's 0.25	18	$\frac{10}{23}$	125	0.03	*
theta_avg_power		H3000's 0.5	18	23	134	0.06	ns
theta_avg_power		H3000's 0.75	18	$\frac{23}{23}$	124	0.03	*
theta_avg_power		H3000's 1	18	23	142	0.09	ns
theta_avg_power		H2000's 0.75	18	18	161	0.99	ns
theta_avg_power		H2000's 1	18	18	163	0.99	ns
theta_avg_power		H3000's 0.25	18	$\frac{10}{23}$	114	0.01	*
theta_avg_power		H3000's_0.25	18	23	128	$0.01 \\ 0.04$	*
theta_avg_power		H3000's 0.75	18	$\frac{23}{23}$	117	0.04	*
theta_avg_power		H3000's 1	18	23	133	0.02 0.05	ne
theta_avg_power		H2000's 1	18	18	161	0.09	ns
theta_avg_power		H3000's 0.25	18	$\frac{10}{23}$	111	0.99	$_{*}^{\mathrm{ns}}$
theta_avg_power		H3000's 0.5	18	23	129	0.01 0.04	*
theta_avg_power		H3000's 0.75	18	23 23	116	0.04 0.02	*
theta avg power		H3000's 1	18	23 23	134	0.02 0.06	
		H3000's 0.25		23 23	134 107	0.00	ns **
theta_avg_power		_	18				*
theta_avg_power theta_avg_power		H3000's_0.5 H3000's 0.75	18 18	23 23	$\frac{122}{116}$	$0.03 \\ 0.02$	*
		_					*
theta_avg_power		H3000's_1	18	23	131	0.05	
theta_avg_power		H3000's_0.5	23	23	285	0.66	ns
theta_avg_power		H3000's_0.75	23	23	269	0.93	ns
theta_avg_power		H3000's_1	23	23	294	0.53	ns
theta_avg_power		H3000's_0.75	23	23	248	0.73	ns
theta_avg_power	п3000°S_0.5	H3000's_1	23	23	269	0.93	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power	· H3000's_0.75	H3000's_1	23	23	291	0.57	ns

Cluster: 4 Theta Wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power	H1000's 0.25	H1000's 0.5	18	18	160	0.96	ns
theta_avg_power		$H1000's_0.75$	18	18	123	0.23	$_{ m ns}$
theta_avg_power		H1000's_1	18	18	137	0.44	$_{ m ns}$
theta_avg_power		H2000's_0.25	18	16	188	0.14	ns
theta_avg_power	· H1000's_0.25	$H2000's_0.5$	18	16	184	0.17	ns
theta_avg_power	· H1000's_0.25	$H2000's_0.75$	18	16	178	0.25	ns
theta_avg_power	· H1000's_0.25	H2000's_1	18	16	163	0.53	ns
theta_avg_power	· H1000's_0.25	$H3000's_0.25$	18	16	221	0.01	**
theta_avg_power	· H1000's_0.25	$H3000's_0.5$	18	16	227	0.00	**
theta_avg_power	· H1000's_0.25	${ m H3000's} { m _0.75}$	18	16	210	0.02	*
theta_avg_power	· H1000's_0.25	H3000's_1	18	16	212	0.02	*
theta_avg_power	· H1000's_0.5	$\rm H1000's_0.75$	18	18	121	0.20	$_{ m ns}$
theta_avg_power	· H1000's_0.5	H1000's_1	18	18	133	0.37	ns
theta_avg_power	· H1000's_0.5	$H2000's_0.25$	18	16	191	0.11	ns
theta_avg_power		$H2000's_0.5$	18	16	189	0.13	$_{ m ns}$
theta_avg_power	H1000's 0.5	H2000's 0.75	18	16	181	0.21	$_{ m ns}$
theta_avg_power		H2000's 1	18	16	161	0.57	$_{ m ns}$
theta_avg_power		H3000's_0.25	18	16	220	0.01	**
theta_avg_power		H3000's 0.5	18	16	230	0.00	**
theta_avg_power		H3000's 0.75	18	16	215	0.01	*
theta_avg_power		H3000's 1	18	16	212	0.02	*
theta_avg_power		H1000's 1	18	18	171	0.79	$_{ m ns}$
theta_avg_power		H2000's 0.25	18	16	212	0.02	*
theta_avg_power		H2000's 0.5	18	16	211	0.02	*
theta_avg_power		H2000's 0.75	18	16	203	0.04	*
theta_avg_power		H2000's 1	18	16	185	0.16	ns
theta_avg_power		H3000's 0.25	18	16	238	0.00	***
theta_avg_power		H3000's 0.5	18	16	243	0.00	***
theta_avg_power		H3000's 0.75	18	16	232	0.00	**
theta_avg_power		H3000's 1	18	16	232	0.00	**
theta_avg_power		H2000's 0.25	18	16	204	0.04	*
theta_avg_power		H2000's 0.5	18	16	200	0.06	ns
theta_avg_power		H2000's 0.75	18	16	194	0.09	ns
theta_avg_power		H2000's 1	18	16	184	0.17	ns
theta_avg_power		H3000's 0.25	18	16	233	0.00	**
theta avg power		H3000's 0.5	18	16	237	0.00	***
theta_avg_power		H3000's 0.75	18	16	225	0.00	**
theta_avg_power		H3000's 1	18	16	229	0.00	**
theta_avg_power		H2000's 0.5	16	16	121	0.81	ns
theta_avg_power		H2000's 0.75	16	16	116	0.67	ns
theta_avg_power		H2000's 1	16	16	106	0.42	ns
theta_avg_power		H3000's 0.25	16	16	143	0.59	ns
theta_avg_power		H3000's 0.5	16	16	144	0.56	ns
theta avg power		H3000's 0.75	16	16	132	0.90	ns
theta_avg_power		H3000's 1	16	16	132	0.90	ns
oncoa_avg_power	112000 5_0.20	110000 5_1	10	10	102	0.00	110

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power	H2000's_0.5	H2000's_0.75	16	16	123	0.87	ns
theta_avg_power	$H2000's_0.5$	H2000's_1	16	16	111	0.54	ns
theta_avg_power	$H2000's_0.5$	$H3000's_0.25$	16	16	151	0.40	ns
theta_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.5}$	16	16	151	0.40	ns
theta_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.75}$	16	16	135	0.81	ns
theta_avg_power	$H2000's_0.5$	H3000's_1	16	16	142	0.62	ns
theta_avg_power	$H2000's_0.75$	H2000's_1	16	16	116	0.67	ns
theta_avg_power	$H2000's_0.75$	${ m H3000's} { m _0.25}$	16	16	160	0.24	ns
theta_avg_power	$\rm H2000's_0.75$	$H3000's_0.5$	16	16	156	0.30	ns
theta_avg_power	$\rm H2000's_0.75$	${ m H}3000{ m 's}_0.75$	16	16	134	0.84	ns
theta_avg_power	$\rm H2000's_0.75$	H3000's_1	16	16	144	0.56	ns
theta_avg_power	H2000's_1	${ m H3000's} { m _0.25}$	16	16	168	0.14	ns
theta_avg_power	H2000's_1	$H3000's_0.5$	16	16	162	0.21	ns
theta_avg_power	H2000's_1	${ m H}3000{ m 's}_0.75$	16	16	151	0.40	ns
theta_avg_power	H2000's_1	H3000's_1	16	16	154	0.34	ns
theta_avg_power	$H3000's_0.25$	$H3000's_0.5$	16	16	126	0.96	ns
theta_avg_power	$H3000's_0.25$	${ m H}3000{ m 's}_0.75$	16	16	101	0.32	ns
theta_avg_power	$H3000's_0.25$	H3000's_1	16	16	105	0.40	ns
theta_avg_power	$H3000's_0.5$	${ m H}3000{ m 's}_0.75$	16	16	100	0.30	ns
theta_avg_power	$H3000's_0.5$	H3000's_1	16	16	105	0.40	ns
theta_avg_power	H3000's_0.75	H3000's_1	16	16	135	0.81	ns

Cluster: 5 Theta Wilcoxon

EEG Var Group_Speed_	1 Group_Speed_2	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power H1000's_0.25	H1000's_0.5	24	24	265	0.65	ns
theta_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	24	24	241	0.34	ns
theta_avg_power $H1000$ 's_ 0.25	H1000's_1	24	24	260	0.57	ns
theta_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.25$	24	21	340	0.05	*
theta_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.5$	24	21	357	0.02	*
theta_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.75$	24	21	307	0.22	ns
theta_avg_power $H1000$ 's_ 0.25	$H2000's_{1}$	24	21	293	0.36	ns
theta_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	24	22	354	0.05	*
theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	24	22	349	0.06	ns
theta_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.75}$	24	22	360	0.04	*
theta_avg_power $H1000$ 's_ 0.25	H3000's_1	24	22	337	0.11	ns
theta_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	24	24	270	0.72	ns
theta_avg_power $H1000$ 's_ 0.5	H1000's_1	24	24	275	0.80	ns
theta_avg_power $H1000$ 's_ 0.5	${\rm H}2000' {\rm s}_0.25$	24	21	355	0.02	*
theta_avg_power $H1000$ 's_ 0.5	${\rm H}2000' {\rm s}_0.5$	24	21	364	0.01	*
theta_avg_power $H1000$ 's_ 0.5	${\rm H}2000' {\rm s}_0.75$	24	21	320	0.12	ns
theta_avg_power $H1000$ 's_ 0.5	H2000's_1	24	21	308	0.21	ns
theta_avg_power $H1000$ 's_ 0.5	$H3000's_0.25$	24	22	366	0.03	*
theta_avg_power $H1000$ 's_ 0.5	$H3000's_0.5$	24	22	359	0.04	*
theta_avg_power $H1000$ 's_ 0.5	${ m H3000's} { m _0.75}$	24	22	374	0.01	*
theta_avg_power $H1000$ 's_ 0.5	H3000's_1	24	22	350	0.06	ns
theta_avg_power $H1000$ 's_ 0.75	H1000's_1	24	24	294	0.91	ns
theta_avg_power $H1000$ 's_ 0.75	$H2000's_0.25$	24	21	372	0.01	**
theta_avg_power $H1000$ 's_ 0.75	$H2000's_0.5$	24	21	381	0.00	**
theta_avg_power $H1000$ 's_ 0.75	${\rm H}2000' {\rm s}_0.75$	24	21	340	0.05	*

EEG Var Group_Speed	1	N1	N2	Wstat	p-value	*sig.
theta_avg_power H1000's_0.75	H2000's 1	24	21	330	0.08	ns
theta_avg_power H1000's_0.75		24	22	374	0.01	*
theta avg power H1000's 0.75		24	22	377	0.01	*
theta_avg_power H1000's_0.75	H3000's 0.75	24	22	387	0.01	**
theta_avg_power H1000's_0.75		24	22	363	0.03	*
theta_avg_power H1000's_1	$H2000's_0.25$	24	21	366	0.01	**
theta_avg_power H1000's_1	$H2000's_0.5$	24	21	376	0.00	**
theta_avg_power H1000's_1	$H2000's_0.75$	24	21	329	0.08	ns
theta_avg_power H1000's_1	H2000's_1	24	21	321	0.12	ns
theta_avg_power H1000's_1	$H3000's_0.25$	24	22	368	0.02	*
theta_avg_power H1000's_1	$H3000's_0.5$	24	22	373	0.02	*
theta_avg_power H1000's_1	$H3000's_0.75$	24	22	380	0.01	*
theta_avg_power H1000's_1	H3000's_1	24	22	358	0.04	*
theta_avg_power H2000's_0.25	H2000's_0.5	21	21	223	0.96	ns
theta_avg_power H2000's_0.25		21	21	181	0.33	ns
theta_avg_power H2000's_0.25		21	21	164	0.16	ns
theta_avg_power H2000's_0.25		21	22	247	0.71	ns
theta_avg_power H2000's_0.25	H3000's_0.5	21	22	237	0.90	ns
theta_avg_power H2000's_0.25	H3000's_0.75	21	22	245	0.74	ns
theta_avg_power H2000's_0.25	H3000's_1	21	22	216	0.73	ns
theta_avg_power H2000's_0.5	$H2000's_0.75$	21	21	174	0.25	ns
theta_avg_power H2000's_0.5	H2000's_1	21	21	167	0.18	ns
theta_avg_power H2000's_0.5	$H3000's_0.25$	21	22	247	0.71	ns
theta_avg_power H2000's_0.5	$H3000's_0.5$	21	22	239	0.86	ns
theta_avg_power $H2000$ 's_0.5	${ m H}3000{ m 's}_0.75$	21	22	246	0.73	ns
theta_avg_power $H2000$ 's_0.5	H3000's_1	21	22	221	0.82	ns
theta_avg_power H2000's_0.75	H2000's_1	21	21	214	0.88	ns
theta_avg_power H2000's_0.75	H3000's_0.25	21	22	285	0.20	ns
theta_avg_power H2000's_0.75	H3000's_0.5	21	22	278	0.26	ns
theta_avg_power H2000's_0.75	H3000's_0.75	21	22	273	0.32	ns
theta_avg_power H2000's_0.75	H3000's_1	21	22	258	0.52	ns
theta_avg_power $H2000$ 's_1	${ m H3000's} { m _0.25}$	21	22	286	0.19	ns
theta_avg_power $H2000$ 's_1	$H3000's_0.5$	21	22	288	0.17	ns
theta_avg_power $H2000$ 's_1	$H3000's_0.75$	21	22	286	0.19	ns
theta_avg_power $H2000$ 's_1	H3000's_1	21	22	269	0.37	ns
theta_avg_power H3000's_0.25	H3000's_0.5	22	22	239	0.95	ns
theta_avg_power $H3000$ 's_ 0.25		22	22	242	1.00	ns
theta_avg_power $H3000$ 's_ 0.25	H3000's_1	22	22	217	0.57	ns
theta_avg_power $H3000$ 's_0.5	${ m H3000's} { m _0.75}$	22	22	246	0.94	ns
theta_avg_power $H3000$ 's_ 0.5	H3000's_1	22	22	225	0.70	$_{ m ns}$
theta_avg_power H3000's_0.75	H3000's_1	22	22	218	0.58	ns

Cluster: 6 Theta Wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power	· H1000's_0.25	H1000's_0.5	18	18	162	1.00	ns
theta_avg_power	H1000's_0.25	$\rm H1000's_0.75$	18	18	152	0.77	ns
theta_avg_power	H1000's_0.25	$\rm H1000's_1$	18	18	152	0.77	ns
theta_avg_power	H1000's_0.25	${\rm H}2000' {\rm s}_0.25$	18	13	166	0.05	ns
theta_avg_power	H1000's_0.25	${\rm H}2000' {\rm s}_0.5$	18	13	149	0.21	ns

FEC Vom	1 Cmas: C1 0	7.7.4	MO	IJI7 a 4 a 4	m ~~1~·-	*~:
EEG Var Group_Speed_		N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power $H1000$ 's_ 0.25	$H2000's_0.75$	18	13	136	0.47	ns
theta_avg_power $H1000$ 's_ 0.25	$H2000's_1$	18	13	138	0.42	ns
theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.25$	18	11	131	0.16	ns
theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	18	11	127	0.22	ns
theta_avg_power H1000's_0.25	$H3000's_0.75$	18	11	128	0.20	ns
theta_avg_power H1000's_0.25	H3000's_1	18	11	115	0.49	ns
theta_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	18	18	154	0.81	ns
theta_avg_power H1000's_0.5	H1000's_1	18	18	153	0.79	ns
theta_avg_power H1000's_0.5	H2000's_0.25	18	13	175	0.02	*
theta_avg_power H1000's_0.5	H2000's_0.5	18	13	159	0.10	ns
theta_avg_power H1000's_0.5	H2000's_0.75	18	13	145	0.28	ns
theta_avg_power H1000's_0.5	H2000's_1	18	13	140	0.37	ns
theta_avg_power H1000's_0.5	H3000's_0.25	18	11	141	0.06	ns
theta_avg_power H1000's_0.5	H3000's_0.5	18	11	135	0.11	ns
theta_avg_power H1000's_0.5	H3000's_0.75	18	11	136	0.10	ns
theta_avg_power H1000's_0.5	H3000's_1	18	11	123	0.30	ns
theta_avg_power H1000's_0.75	H1000's_1	18	18	160	0.96	ns
theta_avg_power H1000's_0.75	H2000's_0.25	18	13	180	0.01	*
theta_avg_power H1000's_0.75	H2000's_0.5	18	13	167	0.05	*
theta_avg_power H1000's_0.75	H2000's_0.75	18	13	155	0.14	ns
theta_avg_power H1000's_0.75	H2000's_1	18	13	149	0.21	ns
theta_avg_power H1000's_0.75	H3000's_0.25	18	11	141	0.06	$_{ m ns}$
theta_avg_power H1000's_0.75	H3000's_0.5	18	11	141	0.06	ns
theta_avg_power H1000's_0.75	H3000's_0.75	18	11	140	0.07	$_{ m ns}$
theta_avg_power H1000's_0.75	H3000's_1	18	11	122	0.32	ns
theta_avg_power H1000's_1	H2000's_0.25	18	13	182	0.01	**
theta_avg_power H1000's_1	H2000's_0.5	18	13	169	0.04	
theta_avg_power H1000's_1	H2000's_0.75	18	13	153	0.16	ns
theta_avg_power H1000's_1	H2000's_1	18	13	148	0.23	$_*$
theta_avg_power H1000's_1	H3000's_0.25	18	11	151	0.02	*
theta_avg_power H1000's_1	H3000's_0.5	18	11	146	0.04	
theta_avg_power H1000's_1	H3000's_0.75	18	11	140	0.07	ns
theta_avg_power H1000's_1	H3000's_1	18	11	$\frac{127}{70}$	0.22	ns
theta_avg_power H2000's_0.25	H2000's_0.5	13	13	70 63	0.48	ns
theta_avg_power H2000's_0.25	H2000's_0.75	13	13	58	0.29	ns
theta_avg_power H2000's_0.25	H2000's_1	13	13		0.19	ns
theta_avg_power H2000's_0.25 theta avg_power H2000's_0.25	H3000's_0.25 H3000's 0.5	13 13	11 11	79 68	$0.69 \\ 0.86$	ns
theta_avg_power H2000's_0.25 theta_avg_power H2000's_0.25	H3000's 0.75	13	11	61	0.50	ns
theta_avg_power H2000's_0.25 theta_avg_power H2000's_0.25	H3000's 1	13 13	11	55	0.37	ns
theta_avg_power H2000's_0.25 theta_avg_power H2000's_0.5	H2000's 0.75	13	13	73	0.58	ns
theta_avg_power H2000's_0.5 theta_avg_power H2000's_0.5	H2000's 1	13	13	66	0.36	ns
theta avg power H2000's 0.5	H3000's 0.25	13	11	82	0.50 0.57	ns ns
theta avg power H2000's 0.5	H3000's 0.5	13	11	78	0.57	ns
theta avg power H2000's 0.5	H3000's 0.75	13	11	72	1.00	
theta_avg_power H2000's 0.5	H3000's 1	13	11	66	0.78	ns ns
theta_avg_power H2000's_0.5 theta_avg_power H2000's_0.75	H2000's 1	13	13	79	0.78	ns
theta_avg_power H2000's_0.75	H3000's 0.25	13	11	92	0.30 0.25	ns
theta_avg_power H2000's_0.75	H3000's 0.5	13	11	85	0.46	ns
theta_avg_power H2000's_0.75	H3000's 0.75	13	11	78	0.73	ns
theta_avg_power H2000's_0.75	H3000's 1	13	11	73	0.96	ns
theta_avg_power H2000's_1	H3000's 0.25	13	11	90	0.30	ns
	110000 5_0.20	10	11	00	0.00	110

EEG Var G	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power H	[2000's_1	H3000's_0.5	13	11	86	0.42	ns
theta_avg_power H	[2000's_1	${ m H3000's} { m _0.75}$	13	11	81	0.61	ns
theta_avg_power H	[2000's_1	H3000's_1	13	11	73	0.96	ns
theta_avg_power H	$[3000]$'s $_0.25$	${ m H3000's} { m _0.5}$	11	11	56	0.80	ns
theta_avg_power H	$[3000]$'s $_0.25$	${ m H3000's} { m _0.75}$	11	11	53	0.65	ns
theta_avg_power H	$[3000] s_0.25$	$\rm H3000's_1$	11	11	44	0.30	ns
theta_avg_power H	$[3000] s_0.5$	${ m H3000's} { m _0.75}$	11	11	56	0.80	ns
theta_avg_power H	$[3000] s_0.5$	$\rm H3000's_1$	11	11	49	0.48	ns
theta_avg_power H	$[3000] s_0.75$	$\rm H3000's_1$	11	11	49	0.48	ns

Cluster: 7 Theta Wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power	H1000's_0.25	H1000's_0.5	16	16	114	0.62	ns
theta_avg_power		H1000's_0.75	16	16	102	0.34	$_{ m ns}$
theta avg power	H1000's 0.25	H1000's 1	16	16	109	0.49	$_{ m ns}$
theta_avg_power	H1000's_0.25	H2000's_0.25	16	11	66	0.29	$_{ m ns}$
theta_avg_power	H1000's_0.25	H2000's_0.5	16	11	68	0.34	ns
theta_avg_power	H1000's_0.25	H2000's_0.75	16	11	57	0.13	ns
theta_avg_power		H2000's_1	16	11	47	0.04	*
theta_avg_power	H1000's_0.25	H3000's_0.25	16	11	77	0.61	ns
theta_avg_power	H1000's_0.25	H3000's_0.5	16	11	74	0.51	ns
theta_avg_power	H1000's_0.25	H3000's_0.75	16	11	72	0.45	ns
theta_avg_power	H1000's_0.25	H3000's_1	16	11	80	0.72	ns
theta_avg_power	H1000's_0.5	$H1000's_0.75$	16	16	109	0.49	ns
theta_avg_power	$\rm H1000's_0.5$	H1000's_1	16	16	120	0.78	ns
theta_avg_power	$\rm H1000's_0.5$	$H2000's_0.25$	16	11	66	0.29	ns
theta_avg_power	$\rm H1000's_0.5$	$H2000's_0.5$	16	11	69	0.37	$_{ m ns}$
theta_avg_power	$\rm H1000's_0.5$	$H2000's_0.75$	16	11	60	0.18	ns
theta_avg_power	$\rm H1000's_0.5$	H2000's_1	16	11	51	0.07	ns
theta_avg_power	$\rm H1000's_0.5$	${ m H}3000{ m 's}_0.25$	16	11	87	0.98	ns
theta_avg_power	$\rm H1000's_0.5$	$H3000's_0.5$	16	11	81	0.75	ns
theta_avg_power	$\rm H1000's_0.5$	$H3000's_0.75$	16	11	74	0.51	ns
theta_avg_power	$\rm H1000's_0.5$	H3000's_1	16	11	85	0.90	ns
theta_avg_power	$\rm H1000's_0.75$	H1000's_1	16	16	142	0.62	ns
theta_avg_power	$\rm H1000's_0.75$	$\rm H2000's_0.25$	16	11	79	0.68	ns
theta_avg_power	$\rm H1000's_0.75$	$H2000's_0.5$	16	11	77	0.61	ns
theta_avg_power	$\rm H1000's_0.75$	$\rm H2000's_0.75$	16	11	71	0.42	ns
theta_avg_power	$\rm H1000's_0.75$	H2000's_1	16	11	62	0.21	ns
theta_avg_power	$\rm H1000's_0.75$	${ m H3000's} { m _0.25}$	16	11	95	0.75	ns
theta_avg_power	$H1000's_0.75$	$H3000's_0.5$	16	11	90	0.94	ns
theta_avg_power	$\rm H1000's_0.75$	${ m H}3000'{ m s}_0.75$	16	11	92	0.86	ns
theta_avg_power	$\rm H1000's_0.75$	H3000's_1	16	11	98	0.64	ns
theta_avg_power	H1000's_1	$\rm H2000's_0.25$	16	11	78	0.64	ns
theta_avg_power	H1000's_1	$H2000's_0.5$	16	11	75	0.54	ns
theta_avg_power	H1000's_1	$\rm H2000's_0.75$	16	11	63	0.23	ns
theta_avg_power	H1000's_1	H2000's_1	16	11	49	0.06	ns
theta_avg_power	H1000's_1	${ m H3000's} { m _0.25}$	16	11	89	0.98	ns
theta_avg_power		${ m H3000's}{ m _0.5}$	16	11	88	1.00	ns
theta_avg_power	H1000's_1	${ m H3000's} { m _0.75}$	16	11	80	0.72	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
theta_avg_power H1000's_1	H3000's_1	16	11	97	0.68	ns
theta_avg_power $H2000$ 's_ 0.25	$H2000's_0.5$	11	11	62	0.95	ns
theta_avg_power H2000's_0.25	$H2000's_0.75$	11	11	58	0.90	ns
theta_avg_power H2000's_0.25	H2000's_1	11	11	45	0.33	ns
theta_avg_power $H2000$ 's_ 0.25	$H3000's_0.25$	11	11	68	0.65	ns
theta_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.5}$	11	11	70	0.56	ns
theta_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.75}$	11	11	62	0.95	ns
theta_avg_power $H2000$ 's_ 0.25	H3000's_1	11	11	68	0.65	ns
theta_avg_power $H2000$ 's_0.5	$\rm H2000's_0.75$	11	11	59	0.95	ns
theta_avg_power H2000's_0.5	H2000's_1	11	11	47	0.40	ns
theta_avg_power H2000's_0.5	$H3000's_0.25$	11	11	68	0.65	ns
theta_avg_power H2000's_0.5	$H3000's_0.5$	11	11	66	0.75	ns
theta_avg_power H2000's_0.5	$H3000's_0.75$	11	11	62	0.95	ns
theta_avg_power H2000's_0.5	H3000's_1	11	11	70	0.56	ns
theta_avg_power H2000's_0.75	H2000's_1	11	11	46	0.36	ns
theta_avg_power H2000's_0.75	$H3000's_0.25$	11	11	74	0.40	ns
theta_avg_power H2000's_0.75	$H3000's_0.5$	11	11	73	0.44	ns
theta_avg_power H2000's_0.75	$H3000's_0.75$	11	11	67	0.70	ns
theta_avg_power H2000's_0.75	H3000's_1	11	11	80	0.22	ns
theta_avg_power H2000's_1	$H3000's_0.25$	11	11	84	0.13	ns
theta_avg_power H2000's_1	$H3000's_0.5$	11	11	82	0.17	ns
theta_avg_power H2000's_1	$H3000's_0.75$	11	11	75	0.36	ns
theta_avg_power H2000's_1	H3000's_1	11	11	86	0.10	ns
theta_avg_power H3000's_0.25	$H3000's_0.5$	11	11	59	0.95	ns
theta_avg_power H3000's_0.25	$H3000's_0.75$	11	11	55	0.75	ns
theta avg power H3000's 0.25	H3000's 1	11	11	66	0.75	ns
theta_avg_power H3000's_0.5	H3000's_0.75	11	11	56	0.80	ns
theta_avg_power H3000's_0.5	H3000's_1	11	11	63	0.90	ns
theta_avg_power H3000's_0.75	H3000's_1	11	11	68	0.65	ns

Cluster: 8 Theta Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power H1000's_0.25	H1000's_0.5	15	15	112	1.00	ns
theta_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	15	15	108	0.87	ns
theta_avg_power $H1000$ 's_ 0.25	H1000's_1	15	15	104	0.74	ns
theta_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.25}$	15	8	103	0.00	**
theta_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.5}$	15	8	104	0.00	**
theta_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.75}$	15	8	92	0.04	*
theta_avg_power $H1000$ 's_ 0.25	$H2000's_{1}$	15	8	89	0.06	ns
theta_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	15	11	77	0.80	ns
theta_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.5}$	15	11	84	0.96	ns
theta_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.75}$	15	11	79	0.88	ns
theta_avg_power $H1000$ 's_ 0.25	$H3000's_1$	15	11	78	0.84	ns
theta_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	15	15	100	0.62	ns
theta_avg_power $H1000$ 's_ 0.5	H1000's_1	15	15	101	0.65	ns
theta_avg_power $H1000$ 's_ 0.5	${ m H2000's} { m _0.25}$	15	8	101	0.01	**
theta_avg_power $H1000$ 's_ 0.5	${ m H2000's} { m _0.5}$	15	8	100	0.01	**
theta_avg_power H1000's_0.5	${ m H2000's} { m _0.75}$	15	8	94	0.03	*
theta_avg_power $H1000$ 's_ 0.5	$\rm H2000's_1$	15	8	89	0.06	ns

EEG Var Group_Speed_1	Group_Speed_2	N1	N2	Wstat	p-value	*sig.
theta_avg_power H1000's_0.5	H3000's_0.25	15	11	78	0.84	ns
theta_avg_power H1000's_0.5	$H3000's_0.5$	15	11	87	0.84	ns
theta_avg_power H1000's_0.5	$H3000's_0.75$	15	11	80	0.92	$_{ m ns}$
theta_avg_power H1000's_0.5	H3000's_1	15	11	77	0.80	ns
theta_avg_power H1000's_0.75	H1000's 1	15	15	110	0.94	ns
theta_avg_power H1000's_0.75	H2000's 0.25	15	8	99	0.01	*
theta_avg_power H1000's_0.75	H2000's 0.5	15	8	100	0.01	**
theta_avg_power H1000's_0.75	H2000's 0.75	15	8	94	0.03	*
theta_avg_power H1000's_0.75	H2000's 1	15	8	90	0.06	ns
theta_avg_power H1000's_0.75	H3000's 0.25	15	11	81	0.96	ns
theta_avg_power H1000's_0.75	H3000's 0.5	15	11	87	0.84	ns
theta_avg_power H1000's_0.75	H3000's 0.75	15	11	85	0.92	ns
theta_avg_power H1000's_0.75	H3000's 1	15	11	76	0.76	ns
theta_avg_power H1000's_1	H2000's 0.25	15	8	99	0.01	*
theta avg power H1000's 1	H2000's 0.5	15	8	99	0.01	*
theta_avg_power H1000's_1	H2000's 0.75	15	8	95	0.02	*
theta_avg_power H1000's_1	H2000's 1	15	8	90	0.06	ns
theta_avg_power H1000's_1	H3000's 0.25	15	11	83	1.00	ns
theta_avg_power H1000's_1	H3000's 0.5	15	11	86	0.88	ns
theta_avg_power H1000's_1	H3000's 0.75	15	11	87	0.84	ns
theta_avg_power H1000's_1	H3000's 1	15	11	81	0.96	ns
theta_avg_power H2000's_0.25	H2000's 0.5	8	8	24	0.44	ns
theta_avg_power H2000's_0.25	H2000's 0.75	8	8	20	0.23	ns
theta_avg_power H2000's_0.25	H2000's 1	8	8	16	0.10	ns
theta_avg_power H2000's_0.25	H3000's 0.25	8	11	18	0.03	*
theta_avg_power H2000's_0.25	H3000's 0.5	8	11	21	0.06	ns
theta_avg_power H2000's_0.25	H3000's 0.75	8	11	17	0.03	*
theta_avg_power H2000's_0.25	H3000's 1	8	11	14	0.01	*
theta_avg_power H2000's_0.5	H2000's 0.75	8	8	17	0.13	ns
theta_avg_power H2000's_0.5	H2000's 1	8	8	25	0.50	ns
theta_avg_power H2000's_0.5	H3000's 0.25	8	11	20	0.05	ns
theta_avg_power H2000's_0.5	H3000's 0.5	8	11	20	0.05	ns
theta_avg_power H2000's_0.5	H3000's 0.75	8	11	15	0.02	*
theta_avg_power H2000's_0.5	H3000's 1	8	11	9	0.00	**
theta_avg_power H2000's_0.75	H2000's 1	8	8	33	0.96	ns
theta avg power H2000's 0.75	H3000's_0.25	8	11	25	0.13	ns
theta_avg_power H2000's_0.75	H3000's_0.5	8	11	28	0.21	ns
theta_avg_power H2000's_0.75	H3000's 0.75	8	11	$\frac{20}{22}$	0.07	ns
theta_avg_power H2000's_0.75	H3000's 1	8	11	20	0.05	ns
theta_avg_power H2000's_1	H3000's 0.25	8	11	27	0.18	ns
theta avg power H2000's 1	H3000's 0.5	8	11	30	0.27	ns
theta avg power H2000's 1	H3000's 0.75	8	11	26	0.15	ns
theta_avg_power H2000's_1	H3000's 1	8	11	20	0.05	ns
theta_avg_power H3000's_0.25	H3000's 0.5	11	11	65	0.80	ns
theta_avg_power H3000's_0.25	H3000's 0.75	11	11	60	1.00	ns
theta_avg_power H3000's_0.25 theta_avg_power H3000's_0.25	H3000's 1	11	11	62	0.95	ns
theta_avg_power H3000's_0.25 theta_avg_power H3000's_0.5	H3000's 0.75	11	11	54	$0.90 \\ 0.70$	ns
theta_avg_power H3000's_0.5 theta_avg_power H3000's_0.5	H3000's 1	11	11	5 4 58	0.70	ns
theta avg power H3000's 0.75	H3000's 1	11	11	64	0.90 0.85	ns
avgpower_110000 5_0.70	110000 p_1	11	11	04	0.00	119

Cluster: 9 Theta Wilcoxon

EEG Var	Group_Speed_1	Group_Speed_2	N1	N2	Wstat	p-value	*sig.
theta_avg_power	H1000's_0.25	H1000's_0.5	24	24	308	0.69	ns
theta_avg_power	$\rm H1000's_0.25$	$\rm H1000's_0.75$	24	24	262	0.60	ns
$theta_avg_power$	$\rm H1000's_0.25$	H1000's_1	24	24	270	0.72	ns
$theta_avg_power$	$\rm H1000's_0.25$	${\rm H}2000{\rm 's}_0.25$	24	15	232	0.14	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H2000's} { m _0.5}$	24	15	236	0.11	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H2000's} { m _0.75}$	24	15	215	0.32	ns
$theta_avg_power$	$\rm H1000's_0.25$	$H2000's_{1}$	24	15	212	0.37	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	24	22	374	0.01	*
$theta_avg_power$	$\rm H1000's_0.25$	$H3000's_0.5$	24	22	350	0.06	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	24	22	349	0.06	ns
$theta_avg_power$	$H1000's_0.25$	H3000's_1	24	22	342	0.09	ns
$theta_avg_power$		$\rm H1000's_0.75$	24	24	235	0.28	ns
$theta_avg_power$		H1000's_1	24	24	239	0.32	ns
$theta_avg_power$	$\rm H1000's_0.5$	$\rm H2000's_0.25$	24	15	223	0.22	ns
$theta_avg_power$	$H1000's_0.5$	$H2000's_0.5$	24	15	221	0.25	ns
$theta_avg_power$		$H2000's_0.75$	24	15	201	0.56	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H2000's_{1}$	24	15	191	0.76	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	24	22	349	0.06	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	24	22	326	0.18	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	24	22	325	0.18	ns
theta_avg_power	$\rm H1000's_0.5$	${ m H3000's}{ m _1}$	24	22	328	0.16	ns
theta_avg_power	$\rm H1000's_0.75$	H1000's_1	24	24	296	0.88	ns
theta_avg_power	$\rm H1000's_0.75$	${\rm H}2000{\rm 's}_0.25$	24	15	240	0.09	ns
theta_avg_power	$\rm H1000's_0.75$	$H2000's_0.5$	24	15	249	0.05	*
theta_avg_power		$H2000's_0.75$	24	15	227	0.18	ns
theta_avg_power	$\rm H1000's_0.75$	H2000's_1	24	15	225	0.20	ns
theta_avg_power		$H3000's_0.25$	24	22	386	0.01	**
theta_avg_power		$H3000's_0.5$	24	22	363	0.03	*
theta_avg_power	$\rm H1000's_0.75$	$H3000's_0.75$	24	22	370	0.02	*
theta_avg_power	$\rm H1000's_0.75$	H3000's_1	24	22	360	0.04	*
theta_avg_power		$H2000's_0.25$	24	15	244	0.07	ns
theta_avg_power		$H2000's_0.5$	24	15	244	0.07	ns
theta_avg_power	H1000's_1	$H2000's_0.75$	24	15	227	0.18	ns
theta_avg_power		H2000's_1	24	15	221	0.25	ns
theta_avg_power	H1000's_1	$H3000's_0.25$	24	22	393	0.00	**
theta_avg_power		$H3000's_0.5$	24	22	367	0.02	*
theta_avg_power		$H3000's_0.75$	24	22	360	0.04	*
theta_avg_power	H1000's 1	H3000's_1	24	22	363	0.03	*
theta_avg_power		H2000's 0.5	15	15	111	0.97	ns
theta_avg_power		H2000's_0.75	15	15	89	0.34	ns
theta_avg_power	$H2000's_0.25$	H2000's_1	15	15	96	0.51	ns
theta_avg_power	$H2000's_0.25$	$H3000's_0.25$	15	22	181	0.64	ns
theta_avg_power	H2000's 0.25	H3000's 0.5	15	22	169	0.92	ns
theta avg power		H3000's 0.75	15	22	170	0.89	ns
theta_avg_power	H2000's 0.25	H3000's 1	15	22	159	0.87	ns
theta_avg_power		H2000's_0.75	15	15	95	0.49	ns
theta_avg_power		H2000's_1	15	15	94	0.46	ns
theta_avg_power		H3000's_0.25	15	22	173	0.82	ns
theta_avg_power		H3000's_0.5	15	22	166	0.99	ns
theta_avg_power		H3000's 0.75	15	22	169	0.92	ns
theta_avg_power		H3000's_1	15	22	164	0.99	ns
theta_avg_power		H2000's_1	15	15	110	0.94	ns
_ 0_1							

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
theta_avg_power	· H2000's_0.75	H3000's_0.25	15	22	204	0.24	ns
theta_avg_power	H2000's_0.75	$H3000's_0.5$	15	22	189	0.47	ns
theta_avg_power	H2000's_0.75	$H3000's_0.75$	15	22	189	0.47	ns
theta_avg_power	H2000's_0.75	H3000's_1	15	22	184	0.57	ns
theta_avg_power	H2000's_1	$H3000's_0.25$	15	22	206	0.21	ns
theta_avg_power	H2000's_1	$H3000's_0.5$	15	22	192	0.42	$_{ m ns}$
theta_avg_power	H2000's_1	${ m H}3000{ m 's}_0.75$	15	22	193	0.40	$_{ m ns}$
theta_avg_power	H2000's_1	H3000's_1	15	22	191	0.44	$_{ m ns}$
theta_avg_power	· H3000's_0.25	$H3000's_0.5$	22	22	219	0.60	$_{ m ns}$
theta_avg_power	H3000's_0.25	$H3000's_0.75$	22	22	222	0.65	ns
theta_avg_power	H3000's_0.25	H3000's_1	22	22	221	0.63	ns
theta_avg_power	H3000's_0.5	$H3000's_0.75$	22	22	245	0.95	ns
theta_avg_power	H3000's_0.5	H3000's_1	22	22	237	0.92	$_{ m ns}$
theta_avg_power	H3000's_0.75	H3000's_1	22	22	240	0.97	ns

Cluster: 10 Theta Wilcoxon

EEG Var Group_Spee	d_1 Group_Speed_2	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power H1000's_0.2	25 H1000's_0.5	23	23	272	0.88	ns
theta_avg_power H1000's_0.2	e5 H1000's_0.75	23	23	267	0.96	ns
theta_avg_power H1000's_0.2	25 H1000's_1	23	23	240	0.60	ns
theta_avg_power H1000's_0.2	25 H2000's_0.25	23	17	240	0.23	ns
theta_avg_power H1000's_0.2	25 H2000's_0.5	23	17	272	0.04	*
theta_avg_power H1000's_0.2	25 H2000's_0.75	23	17	196	1.00	ns
theta_avg_power H1000's_0.2	25 H2000's_1	23	17	213	0.64	ns
theta_avg_power H1000's_0.2	25 H3000's_0.25	23	17	231	0.34	ns
theta_avg_power H1000's_0.2	25 H3000's_0.5	23	17	233	0.32	ns
theta_avg_power H1000's_0.2	25 H3000's_0.75	23	17	192	0.94	ns
theta_avg_power H1000's_0.2	25 H3000's_1	23	17	172	0.53	ns
theta_avg_power H1000's_0.5	H1000's_0.75	23	23	251	0.78	ns
theta_avg_power H1000's_0.5	H1000's_1	23	23	235	0.53	ns
theta_avg_power H1000's_0.5		23	17	246	0.17	ns
theta_avg_power H1000's_0.5		23	17	276	0.03	*
theta_avg_power H1000's_0.5		23	17	205	0.81	ns
theta_avg_power H1000's_0.5		23	17	220	0.52	ns
theta_avg_power H1000's_0.5		23	17	245	0.18	ns
theta_avg_power H1000's_0.5	H3000's_0.5	23	17	244	0.19	ns
theta_avg_power H1000's_0.5	H3000's_0.75	23	17	185	0.79	ns
theta_avg_power H1000's_0.5	H3000's_1	23	17	177	0.63	ns
theta_avg_power H1000's_0.7	75 H1000's_1	23	23	240	0.60	ns
theta_avg_power H1000's_0.7	75 H2000's_0.25	23	17	245	0.18	ns
theta_avg_power H1000's_0.7	75 H2000's_0.5	23	17	276	0.03	*
theta_avg_power H1000's_0.7	75 H2000's_0.75	23	17	201	0.89	ns
theta_avg_power H1000's_0.7	'5 H2000's_1	23	17	221	0.50	ns
theta_avg_power H1000's_0.7	75 H3000's_0.25	23	17	231	0.34	ns
theta_avg_power H1000's_0.7	75 H3000's_0.5	23	17	237	0.26	ns
theta_avg_power H1000's_0.7	75 H3000's_0.75	23	17	190	0.89	ns
theta_avg_power H1000's_0.7	75 H3000's_1	23	17	165	0.42	ns
theta_avg_power $H1000$ 's_1	${\rm H}2000 {\rm 's}_0.25$	23	17	262	0.07	ns
theta_avg_power H1000's_1	${\rm H}2000{\rm 's}_0.5$	23	17	287	0.01	*

EEG Var Group	p_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power H1000)'s_1	$H2000's_0.75$	23	17	209	0.72	ns
theta_avg_power H1000)'s_1	$H2000's_1$	23	17	228	0.39	ns
theta_avg_power H1000)'s_1	${ m H3000's} { m _0.25}$	23	17	241	0.22	ns
theta_avg_power H1000)'s_1	$H3000's_0.5$	23	17	244	0.19	ns
theta_avg_power H1000)'s_1	${ m H3000's} { m _0.75}$	23	17	209	0.72	ns
theta_avg_power H1000)'s_1	${ m H3000's}{ m _1}$	23	17	188	0.85	ns
theta_avg_power H2000	0.25	${ m H2000's} { m _0.5}$	17	17	164	0.52	ns
theta_avg_power H2000	0.25	${ m H2000's} { m _0.75}$	17	17	108	0.22	ns
theta_avg_power H2000	0.25	${\rm H}2000'{\rm s}_1$	17	17	117	0.36	ns
theta_avg_power H2000	0.25	${ m H3000's} { m _0.25}$	17	17	135	0.76	ns
theta_avg_power H2000	0.25	${ m H3000's} { m _0.5}$	17	17	132	0.68	ns
theta_avg_power H2000	0.25	${ m H3000's} { m _0.75}$	17	17	106	0.19	ns
theta_avg_power H2000		${ m H3000's}{ m _1}$	17	17	90	0.06	ns
theta_avg_power H2000	0.5°	${ m H2000's} { m _0.75}$	17	17	94	0.09	ns
theta_avg_power H2000	0.5°	$H2000's_{1}$	17	17	103	0.16	ns
theta_avg_power H2000		${ m H3000's} { m _0.25}$	17	17	121	0.43	ns
theta_avg_power H2000		$H3000's_0.5$	17	17	119	0.39	ns
theta_avg_power H2000		${ m H3000's} { m _0.75}$	17	17	82	0.03	*
theta_avg_power H2000	0.5°	$H3000's_{1}$	17	17	73	0.01	*
theta_avg_power H2000	$0's_{-}0.75$	$H2000's_{1}$	17	17	146	0.97	ns
theta_avg_power H2000	0.75	${ m H3000's} { m _0.25}$	17	17	167	0.45	ns
theta_avg_power H2000	0.75	$H3000's_0.5$	17	17	165	0.50	ns
theta_avg_power H2000	0.75	${ m H3000's} { m _0.75}$	17	17	133	0.71	ns
theta_avg_power H2000		$H3000's_{1}$	17	17	123	0.47	ns
theta_avg_power H2000		${ m H3000's} { m _0.25}$	17	17	160	0.61	ns
theta_avg_power H2000		$H3000's_0.5$	17	17	159	0.63	ns
theta_avg_power H2000)'s_1	${ m H3000's} { m _0.75}$	17	17	125	0.52	ns
theta_avg_power H2000)'s_1	$H3000's_{1}$	17	17	114	0.31	ns
theta_avg_power H3000	0.25	$H3000's_0.5$	17	17	146	0.97	ns
theta_avg_power H3000	0.25	${ m H3000's} { m _0.75}$	17	17	113	0.29	ns
theta_avg_power H3000		$H3000's_{1}$	17	17	109	0.23	ns
theta_avg_power H3000	0.5°	${ m H}3000'{ m s}_0.75$	17	17	111	0.26	ns
theta_avg_power H3000	0.5°	$H3000's_1$	17	17	102	0.15	ns
theta_avg_power H3000)'s_0.75	H3000's_1	17	17	131	0.66	ns

Cluster: 11 Theta Wilcoxon

$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
H1000's_0.25	H1000's_0.5	29	29	391	0.65	ns
$\rm H1000's_0.25$	$\rm H1000's_0.75$	29	29	325	0.14	ns
$\rm H1000's_0.25$	H1000's_1	29	29	341	0.22	ns
$\rm H1000's_0.25$	$H2000's_0.25$	29	15	239	0.61	ns
$\rm H1000's_0.25$	${\rm H}2000{\rm 's}_0.5$	29	15	257	0.34	ns
$\rm H1000's_0.25$	${\rm H}2000{\rm 's}_0.75$	29	15	216	0.98	ns
$\rm H1000's_0.25$	H2000's_1	29	15	215	0.96	ns
$\rm H1000's_0.25$	$H3000's_0.25$	29	19	205	0.14	ns
$\rm H1000's_0.25$	$H3000's_0.5$	29	19	218	0.23	ns
$\rm H1000's_0.25$	$H3000's_0.75$	29	19	164	0.02	*
$H1000's_0.25$	H3000's_1	29	19	170	0.03	*
$\rm H1000's_0.5$	$\rm H1000's_0.75$	29	29	353	0.30	ns
	H1000's_0.25 H1000's_0.25 H1000's_0.25 H1000's_0.25 H1000's_0.25 H1000's_0.25 H1000's_0.25 H1000's_0.25 H1000's_0.25 H1000's_0.25 H1000's_0.25 H1000's_0.25	H1000's_0.25 H1000's_0.5 H1000's_0.25 H1000's_0.75 H1000's_0.25 H1000's_1 H1000's_0.25 H2000's_0.25 H1000's_0.25 H2000's_0.5 H1000's_0.25 H2000's_0.5 H1000's_0.25 H2000's_0.75 H1000's_0.25 H2000's_1 H1000's_0.25 H3000's_0.25 H1000's_0.25 H3000's_0.25 H1000's_0.25 H3000's_0.5 H1000's_0.25 H3000's_0.5 H1000's_0.25 H3000's_0.75 H1000's_0.25 H3000's_0.75	H1000's_0.25 H1000's_0.5 29 H1000's_0.25 H1000's_0.75 29 H1000's_0.25 H1000's_1 29 H1000's_0.25 H2000's_0.25 29 H1000's_0.25 H2000's_0.25 29 H1000's_0.25 H2000's_0.5 29 H1000's_0.25 H2000's_0.75 29 H1000's_0.25 H2000's_1 29 H1000's_0.25 H3000's_0.25 29 H1000's_0.25 H3000's_0.5 29 H1000's_0.25 H3000's_0.75 29 H1000's_0.25 H3000's_0.75 29 H1000's_0.25 H3000's_0.75 29 H1000's_0.25 H3000's_0.75 29	H1000's_0.25 H1000's_0.5 29 29 H1000's_0.25 H1000's_0.75 29 29 H1000's_0.25 H1000's_1 29 29 H1000's_0.25 H2000's_0.25 29 15 H1000's_0.25 H2000's_0.5 29 15 H1000's_0.25 H2000's_0.75 29 15 H1000's_0.25 H2000's_1 29 15 H1000's_0.25 H3000's_0.25 29 19 H1000's_0.25 H3000's_0.25 29 19 H1000's_0.25 H3000's_0.75 29 19 H1000's_0.25 H3000's_0.75 29 19 H1000's_0.25 H3000's_0.75 29 19	H1000's_0.25 H1000's_0.5 29 29 391 H1000's_0.25 H1000's_0.75 29 29 325 H1000's_0.25 H1000's_1 29 29 341 H1000's_0.25 H2000's_0.25 29 15 239 H1000's_0.25 H2000's_0.5 29 15 257 H1000's_0.25 H2000's_0.75 29 15 216 H1000's_0.25 H2000's_1 29 15 215 H1000's_0.25 H3000's_0.25 29 19 205 H1000's_0.25 H3000's_0.25 29 19 218 H1000's_0.25 H3000's_0.75 29 19 164 H1000's_0.25 H3000's_0.75 29 19 170	H1000's_0.25 H1000's_0.5 29 29 391 0.65 H1000's_0.25 H1000's_0.75 29 29 325 0.14 H1000's_0.25 H1000's_1 29 29 341 0.22 H1000's_0.25 H2000's_0.25 29 15 239 0.61 H1000's_0.25 H2000's_0.5 29 15 257 0.34 H1000's_0.25 H2000's_0.75 29 15 216 0.98 H1000's_0.25 H2000's_1 29 15 215 0.96 H1000's_0.25 H3000's_0.25 29 19 205 0.14 H1000's_0.25 H3000's_0.5 29 19 218 0.23 H1000's_0.25 H3000's_0.75 29 19 164 0.02 H1000's_0.25 H3000's_0.75 29 19 170 0.03

EEG Var	Group_Speed_1	Group_Speed_2	N1	N2	Wstat	p-value	*sig.
theta_avg_power	H1000's_0.5	H1000's_1	29	29	371	0.45	ns
theta_avg_power	$\rm H1000's_0.5$	$\rm H2000's_0.25$	29	15	256	0.35	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H2000's_0.5$	29	15	268	0.22	ns
$theta_avg_power$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s} _0.75$	29	15	235	0.68	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H2000's_1$	29	15	235	0.68	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H}3000'{ m s}_0.25$	29	19	229	0.34	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H3000's_0.5$	29	19	232	0.37	ns
$theta_avg_power$	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	29	19	183	0.05	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H3000's_1$	29	19	186	0.06	ns
$theta_avg_power$	$\rm H1000's_0.75$	$\rm H1000's_1$	29	29	437	0.80	ns
$theta_avg_power$	$H1000's_0.75$	$H2000's_0.25$	29	15	295	0.06	ns
$theta_avg_power$		$H2000's_0.5$	29	15	305	0.03	*
$theta_avg_power$		$H2000's_0.75$	29	15	276	0.15	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H2000's_{1}$	29	15	271	0.19	ns
$theta_avg_power$	$H1000's_0.75$	$H3000's_0.25$	29	19	262	0.79	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H3000's_0.5$	29	19	269	0.90	ns
$theta_avg_power$	$\rm H1000's_0.75$	${ m H}3000{ m 's}_0.75$	29	19	225	0.30	ns
$theta_avg_power$	$\rm H1000's_0.75$	$H3000's_1$	29	19	218	0.23	ns
$theta_avg_power$	H1000's_1	$\rm H2000's_0.25$	29	15	283	0.11	ns
theta_avg_power	$\rm H1000's_1$	$H2000's_0.5$	29	15	299	0.04	*
theta_avg_power	$\rm H1000's_1$	$H2000's_0.75$	29	15	269	0.21	ns
theta_avg_power	H1000's_1	$H2000's_1$	29	15	267	0.23	ns
theta_avg_power	H1000's_1	${ m H3000's} { m _0.25}$	29	19	253	0.65	ns
theta_avg_power	H1000's_1	$H3000's_0.5$	29	19	257	0.71	ns
theta_avg_power		$H3000's_0.75$	29	19	212	0.19	ns
theta_avg_power		H3000's 1	29	19	204	0.14	ns
theta_avg_power		H2000's_0.5	15	15	118	0.84	ns
theta_avg_power		H2000's 0.75	15	15	103	0.71	ns
theta_avg_power		H2000's 1	15	15	103	0.71	ns
theta_avg_power		H3000's_0.25	15	19	88	0.06	ns
theta_avg_power		H3000's 0.5	15	19	92	0.08	ns
theta_avg_power		H3000's_0.75	15	19	67	0.01	**
theta_avg_power		H3000's 1	15	19	72	0.01	*
theta_avg_power		H2000's_0.75	15	15	95	0.49	ns
theta_avg_power		H2000's 1	15	15	93	0.44	ns
theta_avg_power		H3000's_0.25	15	19	73	0.01	*
theta_avg_power		H3000's_0.5	15	19	84	0.04	*
theta_avg_power		H3000's_0.75	15	19	56	0.00	**
theta_avg_power		H3000's 1	15	19	67	0.01	**
theta_avg_power		H2000's_1	15	15	116	0.90	ns
theta avg power		H3000's 0.25	15	19	96	0.11	ns
theta_avg_power		H3000's 0.5	15	19	104	0.19	ns
theta avg power		H3000's 0.75	15	19	81	0.03	*
theta avg power	_	H3000's_1	15	19	77	0.02	*
theta_avg_power	_	H3000's 0.25	15	19	104	0.19	ns
theta_avg_power		H3000's 0.5	15	19	109	0.26	ns
theta_avg_power		H3000's 0.75	15	19	85	0.05	*
theta_avg_power		H3000's 1	15	19	79	0.03	*
theta_avg_power		H3000's 0.5	19	19	183	0.95	ns
theta_avg_power		H3000's 0.75	19	19	150	0.38	ns
theta_avg_power		H3000's 1	19	19	157	0.51	ns
theta_avg_power		H3000's 0.75	19	19	149	0.37	ns
	22222_0.0					J.J.	

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power	· H3000's_0.5	H3000's_1	19	19	151	0.40	ns
theta_avg_power	· H3000's_0.75	$H3000's_{1}$	19	19	180	1.00	ns

Cluster: 12 Theta Wilcoxon

EEG Var Group_Speed_	1 $Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power H1000's_0.25	H1000's_0.5	24	24	306	0.72	ns
theta_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	24	24	298	0.85	ns
theta_avg_power $H1000$ 's_ 0.25	H1000's_1	24	24	292	0.94	ns
theta_avg_power $H1000$ 's_ 0.25	$H2000's_0.25$	24	14	241	0.03	*
theta_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.5$	24	14	239	0.03	*
theta_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.75}$	24	14	233	0.05	ns
theta_avg_power $H1000$ 's_ 0.25	H2000's_1	24	14	238	0.03	*
theta_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	24	20	341	0.02	*
theta_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.5}$	24	20	336	0.02	*
theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.75$	24	20	339	0.02	*
theta_avg_power $H1000$ 's_ 0.25	H3000's_1	24	20	326	0.04	*
theta_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	24	24	280	0.88	$_{ m ns}$
theta_avg_power $H1000$ 's_ 0.5	H1000's_1	24	24	274	0.78	ns
theta_avg_power $H1000$ 's_ 0.5	$H2000's_0.25$	24	14	234	0.05	*
theta_avg_power $H1000$ 's_ 0.5	$H2000's_0.5$	24	14	229	0.07	ns
theta_avg_power H1000's_0.5	$H2000's_0.75$	24	14	221	0.11	ns
theta_avg_power H1000's_0.5	H2000's_1	24	14	226	0.08	ns
theta_avg_power H1000's_0.5	$H3000's_0.25$	24	20	329	0.04	*
theta_avg_power H1000's_0.5	$H3000's_0.5$	24	20	323	0.05	$_{ m ns}$
theta_avg_power H1000's_0.5	$H3000's_0.75$	24	20	331	0.03	*
theta_avg_power H1000's_0.5	H3000's_1	24	20	314	0.08	$_{ m ns}$
theta_avg_power H1000's_0.75	H1000's_1	24	24	281	0.89	$_{ m ns}$
theta_avg_power H1000's_0.75	$H2000's_0.25$	24	14	231	0.06	$_{ m ns}$
theta_avg_power H1000's_0.75	H2000's 0.5	24	14	231	0.06	$_{ m ns}$
theta avg power H1000's 0.75	H2000's 0.75	24	14	222	0.11	$_{ m ns}$
theta avg power H1000's 0.75	H2000's 1	24	14	227	0.08	$_{ m ns}$
theta avg power H1000's 0.75	H3000's 0.25	24	20	328	0.04	*
theta_avg_power H1000's_0.75	H3000's 0.5	24	20	328	0.04	*
theta_avg_power H1000's_0.75	H3000's 0.75	24	20	330	0.03	*
theta_avg_power H1000's_0.75	H3000's 1	24	20	315	0.08	ns
theta_avg_power H1000's_1	H2000's 0.25	24	14	236	0.04	*
theta_avg_power H1000's_1	H2000's 0.5	24	14	231	0.06	ns
theta avg power H1000's 1	H2000's 0.75	24	14	229	0.07	ns
theta avg power H1000's 1	H2000's 1	24	14	230	0.06	$_{ m ns}$
theta_avg_power H1000's_1	H3000's 0.25	24	20	333	0.03	*
theta_avg_power H1000's_1	$H3000's_0.5$	24	20	330	0.03	*
theta_avg_power H1000's_1	H3000's 0.75	24	20	334	0.03	*
theta avg power H1000's 1	H3000's 1	24	20	321	0.06	ns
theta avg power H2000's 0.25	H2000's 0.5	14	14	90	0.73	ns
theta_avg_power H2000's_0.25	H2000's 0.75	$\overline{14}$	14	85	0.57	ns
theta_avg_power H2000's_0.25	H2000's 1	14	14	88	0.67	ns
theta avg power H2000's 0.25	H3000's 0.25	14	20	145	0.88	ns
theta avg power H2000's 0.25	H3000's 0.5	14	20	140	1.00	ns
theta avg power H2000's 0.25	H3000's 0.75	14	20	141	0.99	ns
					0.00	110

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
theta_avg_power	H2000's_0.25	H3000's_1	14	20	134	0.85	ns
theta_avg_power	H2000's_0.5	$H2000's_0.75$	14	14	93	0.84	ns
theta_avg_power	H2000's_0.5	H2000's_1	14	14	94	0.87	ns
theta_avg_power	H2000's_0.5	$H3000's_0.25$	14	20	150	0.74	ns
theta_avg_power	H2000's_0.5	$H3000's_0.5$	14	20	150	0.74	ns
theta_avg_power	$H2000's_0.5$	${ m H}3000{ m 's}_0.75$	14	20	154	0.64	ns
theta_avg_power	H2000's_0.5	H3000's_1	14	20	143	0.93	ns
theta_avg_power	$H2000's_0.75$	$H2000's_1$	14	14	99	0.98	ns
theta_avg_power	$H2000's_0.75$	${ m H3000's} { m _0.25}$	14	20	157	0.57	ns
theta_avg_power	$H2000's_0.75$	$H3000's_0.5$	14	20	151	0.72	ns
theta_avg_power	$H2000's_0.75$	${ m H3000's} { m _0.75}$	14	20	157	0.57	ns
theta_avg_power	H2000's_0.75	H3000's_1	14	20	144	0.90	ns
theta_avg_power	H2000's_1	$H3000's_0.25$	14	20	159	0.52	ns
theta_avg_power	H2000's_1	$H3000's_0.5$	14	20	153	0.67	ns
theta_avg_power	H2000's_1	${ m H3000's} { m _0.75}$	14	20	154	0.64	ns
theta_avg_power	H2000's_1	H3000's_1	14	20	142	0.96	ns
theta_avg_power	$H3000's_0.25$	$H3000's_0.5$	20	20	195	0.90	ns
theta_avg_power	$H3000's_0.25$	${ m H3000's} { m _0.75}$	20	20	200	1.00	ns
theta_avg_power	H3000's_0.25	H3000's_1	20	20	185	0.70	ns
theta_avg_power		$H3000's_0.75$	20	20	207	0.86	ns
theta_avg_power	$H3000's_0.5$	H3000's_1	20	20	187	0.74	ns
theta_avg_power		$\rm H3000's_1$	20	20	182	0.64	ns

Cluster: 13 Theta Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
theta_avg_power H1000's_0.25	H1000's_0.5	22	22	210	0.46	ns
theta_avg_power H1000's_0.25	$\rm H1000's_0.75$	22	22	181	0.16	ns
theta_avg_power H1000's_0.25	H1000's_1	22	22	202	0.36	ns
theta_avg_power H1000's_0.25	$H2000's_0.25$	22	12	186	0.05	ns
theta_avg_power $H1000$ 's_ 0.25	$H2000's_0.5$	22	12	187	0.05	*
theta_avg_power $H1000$ 's_ 0.25	$H2000's_0.75$	22	12	180	0.09	ns
theta_avg_power $H1000$ 's_ 0.25	H2000's_1	22	12	174	0.14	ns
theta_avg_power H1000's_0.25	${ m H3000's} { m _0.25}$	22	13	203	0.04	*
theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	22	13	185	0.16	ns
theta_avg_power $H1000$ 's_ 0.25	$H3000's_0.75$	22	13	175	0.29	ns
theta_avg_power $H1000$ 's_ 0.25	H3000's_1	22	13	149	0.85	ns
theta_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	22	22	209	0.45	ns
theta_avg_power $H1000$ 's_ 0.5	H1000's_1	22	22	229	0.77	ns
theta_avg_power H1000's_0.5	H2000's_0.25	22	12	196	0.02	*
theta_avg_power H1000's_0.5	H2000's_0.5	22	12	200	0.01	*
theta_avg_power H1000's_0.5	$H2000's_0.75$	22	12	196	0.02	*
theta_avg_power H1000's_0.5	H2000's_1	22	12	191	0.03	*
theta_avg_power H1000's_0.5	H3000's_0.25	22	13	210	0.02	*
theta_avg_power H1000's_0.5	H3000's_0.5	22	13	196	0.07	$_{ m ns}$
theta_avg_power H1000's_0.5	H3000's_0.75	22	13	186	0.15	$_{ m ns}$
theta_avg_power H1000's_0.5	H3000's_1	22	13	168	0.41	ns
theta_avg_power H1000's_0.75	H1000's_1	22	22	260	0.68	ns
theta_avg_power H1000's_0.75	H2000's_0.25	22	12	212	0.00	**
theta_avg_power H1000's_0.75	$H2000's_0.5$	22	12	210	0.00	**

theta_avg_power H1000's_0.75	** ** **
theta_avg_power H1000's_0.75 H2000's_1 22 12 0.00	
	**
theta_avg_power H1000's_0.75 H3000's_0.25 22 13 224 0.00	
theta_avg_power H1000's_0.75 H3000's_0.5 22 13 207 0.03	*
theta_avg_power H1000's_0.75 H3000's_0.75 22 13 196 0.07	ns
theta_avg_power H1000's_0.75 H3000's_1 22 13 180 0.22	ns
theta_avg_power H1000's_1 H2000's_0.25 22 12 202 0.01	*
theta_avg_power H1000's_1 H2000's_0.5 22 12 200 0.01	*
theta_avg_power H1000's_1 H2000's_0.75 22 12 201 0.01	*
theta_avg_power H1000's_1 H2000's_1 22 12 200 0.01	*
theta_avg_power H1000's_1 H3000's_0.25 22 13 214 0.01	*
theta_avg_power H1000's_1 H3000's_0.5 22 13 198 0.06	ns
theta_avg_power H1000's_1 H3000's_0.75 22 13 188 0.13	ns
theta_avg_power H1000's_1 H3000's_1 22 13 168 0.41	ns
theta_avg_power H2000's_0.25 H2000's_0.5 12 12 74 0.93	ns
theta_avg_power H2000's_0.25 H2000's_0.75 12 12 65 0.71	ns
theta_avg_power H2000's_0.25 H2000's_1 12 12 59 0.48	ns
theta_avg_power H2000's_0.25 H3000's_0.25 12 13 84 0.77	ns
theta_avg_power H2000's_0.25 H3000's_0.5 12 13 70 0.69	ns
theta_avg_power H2000's_0.25 H3000's_0.75 12 13 68 0.61	ns
theta_avg_power H2000's_0.25 H3000's_1 12 13 54 0.20	ns
theta_avg_power H2000's_0.5 H2000's_0.75 12 12 60 0.51	ns
theta_avg_power H2000's_0.5 H2000's_1 12 12 56 0.38	ns
theta_avg_power H2000's_0.5 H3000's_0.25 12 13 82 0.85	ns
theta_avg_power H2000's_0.5 H3000's_0.5 12 13 67 0.57	ns
theta_avg_power H2000's_0.5 H3000's_0.75 12 13 61 0.38	ns
theta_avg_power H2000's_0.5 H3000's_1 12 13 51 0.15	ns
theta_avg_power H2000's_0.75 H2000's_1 12 12 62 0.59	ns
theta_avg_power H2000's_0.75 H3000's_0.25 12 13 90 0.54	ns
theta_avg_power H2000's_0.75 H3000's_0.5 12 13 78 1.00	ns
theta_avg_power H2000's_0.75 H3000's_0.75 12 13 73 0.81	ns
theta_avg_power H2000's_0.75 H3000's_1 12 13 55 0.22	ns
theta_avg_power H2000's_1 H3000's_0.25 12 13 91 0.50	ns
theta_avg_power H2000's_1 H3000's_0.5 12 13 81 0.89	ns
theta_avg_power H2000's_1 H3000's_0.75 12 13 74 0.85	ns
theta_avg_power H2000's_1 H3000's_1 12 13 58 0.30	ns
theta_avg_power H3000's_0.25 H3000's_0.5 13 13 71 0.51	ns
theta_avg_power H3000's_0.25 H3000's_0.75 13 13 66 0.36	ns
theta_avg_power H3000's_0.25 H3000's_1 13 13 55 0.14	ns
theta_avg_power H3000's_0.5 H3000's_0.75 13 13 79 0.80	ns
theta_avg_power H3000's_0.5 H3000's_1 13 13 68 0.42	ns
theta_avg_power H3000's_0.75 H3000's_1 13 13 73 0.58	ns

Cluster: 14 Theta Wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power	H1000's_0.25	H1000's_0.5	22	22	241	0.99	ns
theta_avg_power	H1000's_0.25	$\rm H1000's_0.75$	22	22	211	0.48	$_{ m ns}$
theta_avg_power	$\rm H1000's_0.25$	H1000's_1	22	22	218	0.58	ns
theta_avg_power	$\rm H1000's_0.25$	${\rm H}2000{\rm 's}_0.25$	22	16	251	0.03	*

EEG Var	Group_Speed_1	Group_Speed_2	N1	N2	Wstat	$p ext{-}value$	*sig.
theta_avg_power	H1000's_0.25	H2000's_0.5	22	16	268	0.01	**
theta_avg_power	$\rm H1000's_0.25$	$H2000's_0.75$	22	16	245	0.04	*
$theta_avg_power$	$\rm H1000's_0.25$	$H2000's_1$	22	16	223	0.17	ns
$theta_avg_power$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	22	18	303	0.00	**
$theta_avg_power$	$\rm H1000's_0.25$	${ m H}3000{ m 's}_0.5$	22	18	297	0.01	**
$theta_avg_power$	$\rm H1000's_0.25$	${ m H}3000{ m 's}_0.75$	22	18	277	0.03	*
$theta_avg_power$	$\rm H1000's_0.25$	H3000's_1	22	18	278	0.03	*
$theta_avg_power$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	22	22	207	0.42	ns
$theta_avg_power$	$\rm H1000's_0.5$	H1000's_1	22	22	213	0.51	ns
$theta_avg_power$	$\rm H1000's_0.5$	$\rm H2000's_0.25$	22	16	246	0.04	*
$theta_avg_power$	$\rm H1000's_0.5$	$H2000's_0.5$	22	16	268	0.01	**
$theta_avg_power$		$\rm H2000's_0.75$	22	16	249	0.03	*
$theta_avg_power$	$\rm H1000's_0.5$	H2000's_1	22	16	222	0.18	ns
$theta_avg_power$	$\rm H1000's_0.5$	$H3000's_0.25$	22	18	301	0.00	**
$theta_avg_power$	$\rm H1000's_0.5$	$H3000's_0.5$	22	18	299	0.00	**
$theta_avg_power$	$\rm H1000's_0.5$	$H3000's_0.75$	22	18	272	0.04	*
$theta_avg_power$	$\rm H1000's_0.5$	${ m H3000's}{ m _1}$	22	18	279	0.03	*
$theta_avg_power$	$\rm H1000's_0.75$	H1000's_1	22	22	247	0.92	ns
theta_avg_power	$\rm H1000's_0.75$	$\rm H2000's_0.25$	22	16	284	0.00	***
theta_avg_power	$\rm H1000's_0.75$	$H2000's_0.5$	22	16	294	0.00	***
theta_avg_power	$\rm H1000's_0.75$	$\rm H2000's_0.75$	22	16	279	0.00	**
theta_avg_power	$\rm H1000's_0.75$	H2000's_1	22	16	247	0.04	*
theta_avg_power	$\rm H1000's_0.75$	$H3000's_0.25$	22	18	317	0.00	***
theta_avg_power		$H3000's_0.5$	22	18	316	0.00	***
theta_avg_power		$H3000's_0.75$	22	18	299	0.00	**
theta_avg_power		H3000's_1	22	18	297	0.01	**
theta_avg_power		${\rm H}2000' {\rm s}_0.25$	22	16	269	0.00	**
theta_avg_power	H1000's_1	$H2000's_0.5$	22	16	282	0.00	**
theta_avg_power	H1000's_1	$H2000's_0.75$	22	16	267	0.01	**
theta_avg_power		H2000's 1	22	16	240	0.06	ns
theta_avg_power		$H3000's_0.25$	22	18	312	0.00	**
theta_avg_power		H3000's_0.5	22	18	310	0.00	**
theta_avg_power		H3000's 0.75	22	18	292	0.01	**
theta_avg_power		H3000's_1	22	18	295	0.01	**
theta_avg_power	H2000's 0.25	H2000's 0.5	16	16	130	0.96	ns
theta_avg_power		H2000's_0.75	16	16	115	0.64	ns
theta_avg_power		H2000's_1	16	16	100	0.30	ns
theta_avg_power		H3000's_0.25	16	18	171	0.36	ns
theta_avg_power		H3000's 0.5	16	18	168	0.42	ns
theta_avg_power		H3000's_0.75	16	18	144	1.00	ns
theta_avg_power		H3000's_1	16	18	136	0.80	ns
theta avg power		H2000's 0.75	16	16	104	0.38	ns
theta avg power	H2000's 0.5	H2000's 1	16	16	86	0.12	ns
theta avg power	H2000's 0.5	H3000's 0.25	16	18	166	0.46	ns
theta avg power	H2000's 0.5	H3000's 0.5	16	18	159	0.62	ns
theta_avg_power		H3000's_0.75	16	18	141	0.93	ns
theta_avg_power		H3000's_1	16	18	124	0.51	ns
theta_avg_power		H2000's_1	16	16	103	0.36	ns
theta_avg_power		H3000's_0.25	16	18	179	0.24	ns
theta_avg_power		H3000's_0.5	16	18	174	0.31	$_{ m ns}$
theta_avg_power		H3000's_0.75	16	18	153	0.77	$_{ m ns}$
theta_avg_power		H3000's_1	16	18	143	0.99	ns
_							

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
theta_avg_power	H2000's_1	H3000's_0.25	16	18	185	0.16	ns
theta_avg_power	H2000's_1	$H3000's_0.5$	16	18	177	0.27	$_{ m ns}$
theta_avg_power	H2000's_1	$H3000's_0.75$	16	18	166	0.46	$_{ m ns}$
theta_avg_power	H2000's_1	H3000's_1	16	18	162	0.55	$_{ m ns}$
theta_avg_power	$H3000's_0.25$	$H3000's_0.5$	18	18	157	0.89	$_{ m ns}$
theta_avg_power	$H3000's_0.25$	${ m H}3000{ m 's}_0.75$	18	18	142	0.54	$_{ m ns}$
theta_avg_power	$H3000's_0.25$	H3000's_1	18	18	129	0.31	$_{ m ns}$
theta_avg_power	$H3000's_0.5$	$H3000's_0.75$	18	18	151	0.74	$_{ m ns}$
theta_avg_power	$H3000's_0.5$	H3000's_1	18	18	138	0.46	$_{ m ns}$
theta_avg_power	$H3000's_0.75$	$\rm H3000's_1$	18	18	150	0.72	ns

ALPHA WILCOXON TESTS

Cluster: 3 Alpha Wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
alpha_avg_powe	er H1000's_0.25	H1000's_0.5	23	23	304	0.40	ns
alpha_avg_powe		$H1000's_0.75$	23	23	291	0.57	$_{ m ns}$
alpha_avg_powe		H1000's_1	23	23	299	0.46	$_{ m ns}$
alpha_avg_powe		$H2000's_0.25$	23	18	258	0.19	ns
alpha_avg_powe	er H1000's_0.25	$H2000's_0.5$	23	18	266	0.12	ns
alpha_avg_powe	er H1000's_0.25	$H2000's_0.75$	23	18	257	0.20	$_{ m ns}$
alpha_avg_powe	er H1000's_0.25	H2000's_1	23	18	279	0.06	$_{ m ns}$
alpha_avg_powe	er H1000's_0.25	$H3000's_0.25$	23	23	306	0.37	$_{ m ns}$
alpha_avg_powe	er H1000's_0.25	$H3000's_0.5$	23	23	323	0.20	$_{ m ns}$
alpha_avg_powe	er H1000's_0.25	${ m H3000's} { m _0.75}$	23	23	308	0.35	ns
alpha_avg_powe	er H1000's_0.25	H3000's_1	23	23	351	0.06	ns
alpha_avg_powe	er H1000's_0.5	$\rm H1000's_0.75$	23	23	253	0.81	$_{ m ns}$
alpha_avg_powe	er H1000's_0.5	H1000's_1	23	23	263	0.98	$_{ m ns}$
alpha_avg_powe	er H1000's_0.5	${\rm H}2000' {\rm s} _0.25$	23	18	238	0.43	$_{ m ns}$
alpha_avg_powe	er H1000's_0.5	${\rm H}2000{\rm 's}_0.5$	23	18	243	0.36	ns
alpha_avg_powe	er H1000's_0.5	$\rm H2000's_0.75$	23	18	239	0.41	$_{ m ns}$
alpha_avg_powe	er H1000's_0.5	H2000's_1	23	18	256	0.20	$_{ m ns}$
alpha_avg_powe	er H1000's_0.5	${ m H3000's} { m _0.25}$	23	23	277	0.79	$_{ m ns}$
alpha_avg_powe		${ m H3000's} { m _0.5}$	23	23	291	0.57	$_{ m ns}$
alpha_avg_powe	er H1000's_0.5	${ m H3000's} { m _0.75}$	23	23	274	0.84	$_{ m ns}$
alpha_avg_powe	er H1000's_0.5	H3000's_1	23	23	323	0.20	ns
alpha_avg_powe	er H1000's_0.75	H1000's_1	23	23	277	0.79	ns
alpha_avg_powe	er H1000's_0.75	${ m H2000's} { m _0.25}$	23	18	253	0.23	$_{ m ns}$
alpha_avg_powe	er H1000's_0.75	$\rm H2000's_0.5$	23	18	249	0.28	$_{ m ns}$
alpha_avg_powe		$H2000's_0.75$	23	18	249	0.28	ns
alpha_avg_powe	er H1000's_0.75	H2000's_1	23	18	261	0.16	$_{ m ns}$
alpha_avg_powe	er H1000's_0.75	${ m H3000's} { m _0.25}$	23	23	290	0.59	$_{ m ns}$
alpha_avg_powe		${ m H3000's} { m _0.5}$	23	23	303	0.41	$_{ m ns}$
alpha_avg_powe	er H1000's_0.75	${ m H3000's} { m _0.75}$	23	23	288	0.62	$_{ m ns}$
alpha_avg_powe	er H1000's_0.75	H3000's_1	23	23	324	0.20	$_{ m ns}$
alpha_avg_powe	er H1000's_1	${\rm H}2000' {\rm s}_0.25$	23	18	240	0.40	ns
alpha_avg_powe	er H1000's_1	${\rm H}2000{\rm 's}_0.5$	23	18	240	0.40	ns
alpha_avg_powe	er H1000's_1	${\rm H}2000{\rm 's}_0.75$	23	18	239	0.41	ns

EEG Var Group_Speed	l_1 Group_Speed_2	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_1	${\rm H}2000'{\rm s}_1$	23	18	259	0.18	ns
alpha_avg_power H1000's_1	$H3000's_0.25$	23	23	274	0.84	ns
alpha_avg_power H1000's_1	$H3000's_0.5$	23	23	288	0.62	ns
alpha_avg_power H1000's_1	$H3000's_0.75$	23	23	271	0.90	ns
alpha_avg_power H1000's_1	H3000's_1	23	23	324	0.20	ns
alpha_avg_power H2000's_0.25	6 H2000's_0.5	18	18	164	0.96	ns
alpha_avg_power H2000's_0.25	6 H2000's_0.75	18	18	160	0.96	ns
alpha_avg_power H2000's_0.25	6 H2000's_1	18	18	172	0.77	ns
alpha_avg_power H2000's_0.25	6 H3000's_0.25	18	23	189	0.65	ns
alpha_avg_power H2000's_0.25	6 H3000's_0.5	18	23	196	0.78	ns
alpha_avg_power H2000's_0.25	6 H3000's_0.75	18	23	175	0.41	ns
alpha_avg_power H2000's_0.25	6 H3000's_1	18	23	219	0.76	ns
alpha_avg_power H2000's_0.5	$H2000's_0.75$	18	18	161	0.99	ns
alpha_avg_power H2000's_0.5	H2000's_1	18	18	175	0.70	ns
alpha_avg_power H2000's_0.5	$H3000's_0.25$	18	23	184	0.56	ns
alpha_avg_power H2000's_0.5	$H3000's_0.5$	18	23	194	0.74	ns
alpha_avg_power H2000's_0.5	$H3000's_0.75$	18	23	182	0.52	ns
alpha_avg_power H2000's_0.5	H3000's_1	18	23	214	0.87	ns
alpha_avg_power H2000's_0.75	6 H2000's_1	18	18	175	0.70	ns
alpha_avg_power H2000's_0.75	6 H3000's_0.25	18	23	186	0.59	ns
alpha_avg_power H2000's_0.75	6 H3000's_0.5	18	23	198	0.82	ns
alpha_avg_power H2000's_0.75	6 H3000's_0.75	18	23	185	0.58	ns
alpha_avg_power H2000's_0.75	6 H3000's_1	18	23	219	0.76	ns
alpha_avg_power H2000's_1	$H3000's_0.25$	18	23	164	0.27	ns
alpha_avg_power H2000's_1	$H3000's_0.5$	18	23	176	0.43	ns
alpha_avg_power H2000's_1	$H3000's_0.75$	18	23	159	0.22	ns
alpha_avg_power H2000's_1	H3000's_1	18	23	203	0.93	ns
alpha_avg_power H3000's_0.25	6 H3000's_0.5	23	23	285	0.66	ns
alpha avg power H3000's 0.25		23	23	264	1.00	$_{ m ns}$
alpha_avg_power H3000's_0.25	6 H3000's_1	23	23	311	0.32	ns
alpha_avg_power H3000's_0.5	H3000's_0.75	23	23	249	0.74	ns
alpha_avg_power H3000's_0.5	H3000's_1	23	23	296	0.50	ns
alpha_avg_power H3000's_0.75	6 H3000's_1	23	23	321	0.22	ns

Cluster: 4 Alpha Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
alpha_avg_power H1000's_0.25	H1000's 0.5	18	18	166	0.91	ns
alpha_avg_power H1000's_0.25	H1000's_0.75	18	18	162	1.00	ns
alpha_avg_power H1000's_0.25	H1000's_1	18	18	166	0.91	ns
alpha_avg_power H1000's_0.25	$H2000's_0.25$	18	16	114	0.31	ns
alpha_avg_power H1000's_0.25	$H2000's_0.5$	18	16	113	0.30	ns
alpha_avg_power H1000's_0.25	H2000's_0.75	18	16	122	0.46	ns
alpha_avg_power H1000's_0.25	H2000's_1	18	16	129	0.62	ns
alpha_avg_power H1000's_0.25	$H3000's_0.25$	18	16	113	0.30	ns
alpha_avg_power H1000's_0.25	$H3000's_0.5$	18	16	126	0.55	ns
alpha_avg_power H1000's_0.25	$H3000's_0.75$	18	16	129	0.62	ns
alpha_avg_power H1000's_0.25	H3000's_1	18	16	121	0.44	ns
alpha_avg_power H1000's_0.5	$H1000's_0.75$	18	18	159	0.94	ns
alpha_avg_power H1000's_0.5	H1000's_1	18	18	158	0.91	ns

EFG. II.	<i>a a</i> 1 <i>a</i>	37.4	3.7.0	TT7	7	
EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power $H1000$ 's_ 0.5	${\rm H}2000' {\rm s}_0.25$	18	16	112	0.28	ns
alpha_avg_power $H1000$ 's_ 0.5	${\rm H}2000' {\rm s} _0.5$	18	16	111	0.27	ns
alpha_avg_power H1000's_0.5	$H2000's_0.75$	18	16	121	0.44	ns
alpha_avg_power H1000's_0.5	$H2000's_1$	18	16	125	0.53	ns
alpha_avg_power H1000's_0.5	$H3000's_0.25$	18	16	110	0.25	ns
alpha_avg_power H1000's_0.5	$H3000's_0.5$	18	16	118	0.38	ns
alpha_avg_power H1000's_0.5	$H3000's_0.75$	18	16	115	0.33	ns
alpha_avg_power H1000's_0.5	H3000's_1	18	16	123	0.48	ns
alpha_avg_power H1000's_0.75	H1000's_1	18	18	163	0.99	ns
alpha_avg_power H1000's_0.75	$H2000's_0.25$	18	16	117	0.36	ns
alpha_avg_power H1000's_0.75	H2000's 0.5	18	16	116	0.35	ns
alpha_avg_power H1000's_0.75	H2000's 0.75	18	16	119	0.40	ns
alpha_avg_power H1000's_0.75	H2000's 1	18	16	124	0.51	ns
alpha_avg_power H1000's_0.75	H3000's 0.25	18	16	106	0.20	ns
alpha_avg_power H1000's_0.75	H3000's 0.5	18	16	117	0.36	ns
alpha_avg_power H1000's_0.75	H3000's 0.75	18	16	123	0.48	ns
alpha_avg_power H1000's_0.75	H3000's 1	18	16	116	0.35	ns
alpha_avg_power H1000's_1	H2000's 0.25	18	16	113	0.30	ns
alpha_avg_power H1000's_1	H2000's 0.5	18	16	113	0.30	ns
alpha_avg_power H1000's_1	H2000's 0.75	18	16	120	0.42	ns
alpha_avg_power H1000's_1	H2000's 1	18	16	126	0.55	ns
alpha_avg_power H1000's_1	H3000's 0.25	18	16	110	0.25	ns
alpha_avg_power H1000's_1	H3000's 0.5	18	16	117	0.36	ns
alpha_avg_power H1000's_1	H3000's 0.75	18	16	120	0.42	ns
alpha_avg_power H1000's_1	H3000's 1	18	16	121	0.44	ns
alpha_avg_power H2000's_0.25	H2000's 0.5	16	16	133	0.87	ns
alpha_avg_power H2000's_0.25	H2000's 0.75	16	16	136	0.78	ns
alpha_avg_power H2000's_0.25	H2000's 1	16	16	141	0.64	ns
alpha_avg_power H2000's_0.25	H3000's 0.25	16	16	131	0.93	ns
alpha_avg_power H2000's_0.25	H3000's 0.5	16	16	138	0.72	ns
alpha_avg_power H2000's_0.25	H3000's 0.75	16	16	137	0.75	ns
alpha_avg_power H2000's_0.25	H3000's 1	16	16	139	0.70	ns
alpha_avg_power H2000's_0.5	H2000's 0.75	16	16	138	0.72	ns
alpha_avg_power H2000's_0.5	H2000's 1	16	16	139	0.70	ns
alpha_avg_power H2000's_0.5	H3000's 0.25	16	16	133	0.87	ns
alpha_avg_power H2000's_0.5	H3000's_0.5	16	16	137	0.75	ns
alpha_avg_power H2000's_0.5	H3000's_0.75	16	16	137	0.75	ns
alpha_avg_power H2000's_0.5	H3000's 1	16	16	139	0.70	ns
alpha_avg_power H2000's_0.75	H2000's 1	16	16	130	0.96	ns
alpha avg power H2000's 0.75	H3000's 0.25	16	16	127	0.98	ns
alpha_avg_power H2000's_0.75	H3000's 0.5	16	16	133	0.87	ns
alpha_avg_power H2000's_0.75	H3000's 0.75	16	16	130	0.96	ns
alpha_avg_power H2000's_0.75	H3000's 1	16	16	132	0.90	ns
alpha avg power H2000's 1	H3000's 0.25	16	16	121	0.81	ns
alpha_avg_power H2000's_1	H3000's 0.5	16	16	128	1.00	ns
alpha_avg_power H2000's_1 alpha_avg_power H2000's_1	H3000's 0.75	16	16	125	0.93	ns
alpha_avg_power H2000's_1 alpha_avg_power H2000's_1	H3000's 1	16	16	$\frac{120}{122}$	0.84	ns
alpha_avg_power H3000's_0.25	H3000's 0.5	16	16	138	0.34 0.72	ns
alpha_avg_power H3000's_0.25	H3000's 0.75	16	16	137	0.72 0.75	ns
alpha_avg_power H3000's_0.25 alpha_avg_power H3000's_0.25	H3000's 1	16	16	136	0.78	ns
alpha_avg_power H3000's_0.25 alpha_avg_power H3000's_0.5	H3000's 0.75	16	16	129	0.78	ns
alpha_avg_power H3000's_0.5 alpha_avg_power H3000's_0.5	H3000's 1	16	16	$\frac{129}{125}$	0.93	
aipiia_avg_powci 110000 5_0.0	110000 2_1	10	10	120	0.30	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_powe	r H3000's_0.75	H3000's_1	16	16	134	0.84	ns

Cluster: 5 Alpha Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	$H1000's_0.5$	24	24	313	0.62	ns
$alpha_avg_power~H1000$'s $_0.25$	$\rm H1000's_0.75$	24	24	308	0.69	$_{ m ns}$
$alpha_avg_power~H1000$'s $_0.25$	H1000's_1	24	24	297	0.86	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_0.25$	24	21	346	0.03	*
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_0.5$	24	21	355	0.02	*
alpha_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.75$	24	21	363	0.01	*
alpha_avg_power $H1000$ 's_ 0.25	H2000's_1	24	21	360	0.01	*
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.25$	24	22	304	0.39	ns
alpha_avg_power H1000's_0.25	$H3000's_0.5$	24	22	318	0.24	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.75$	24	22	324	0.19	ns
alpha_avg_power $H1000$ 's_ 0.25	H3000's_1	24	22	330	0.15	ns
$alpha_avg_power~H1000's_0.5$	$\rm H1000's_0.75$	24	24	287	0.99	ns
alpha_avg_power $H1000$ 's_ 0.5	H1000's_1	24	24	279	0.86	$_{ m ns}$
$alpha_avg_power~H1000's_0.5$	$H2000's_0.25$	24	21	322	0.11	ns
alpha_avg_power H1000's_0.5	$H2000's_0.5$	24	21	336	0.06	ns
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.75$	24	21	345	0.03	*
alpha_avg_power H1000's_0.5	H2000's_1	24	21	348	0.03	*
$alpha_avg_power~H1000$'s $_0.5$	$H3000's_0.25$	24	22	292	0.55	$_{ m ns}$
alpha_avg_power H1000's_0.5	$H3000's_0.5$	24	22	307	0.35	$_{ m ns}$
alpha_avg_power H1000's_0.5	$H3000's_0.75$	24	22	314	0.28	ns
alpha_avg_power H1000's_0.5	H3000's_1	24	22	318	0.24	$_{ m ns}$
alpha_avg_power H1000's_0.75	H1000's_1	24	24	284	0.94	ns
alpha_avg_power H1000's_0.75	$H2000's_0.25$	24	21	333	0.07	ns
alpha_avg_power H1000's_0.75	$H2000's_0.5$	24	21	342	0.04	*
alpha_avg_power H1000's_0.75	$H2000's_0.75$	24	21	355	0.02	*
alpha_avg_power H1000's_0.75	H2000's_1	24	21	354	0.02	*
alpha_avg_power H1000's_0.75	H3000's 0.25	24	22	297	0.48	$_{ m ns}$
alpha_avg_power H1000's_0.75	H3000's 0.5	24	22	309	0.33	$_{ m ns}$
alpha_avg_power H1000's_0.75	H3000's 0.75	24	22	320	0.22	$_{ m ns}$
alpha_avg_power H1000's_0.75	H3000's 1	24	22	329	0.16	$_{ m ns}$
alpha_avg_power H1000's_1	H2000's_0.25	24	21	328	0.09	$_{ m ns}$
alpha_avg_power H1000's_1	H2000's_0.5	24	21	349	0.03	*
alpha_avg_power H1000's_1	$H2000's_{-}0.75$	24	21	349	0.03	*
alpha_avg_power H1000's_1	H2000's 1	24	21	347	0.03	*
alpha_avg_power H1000's_1	H3000's 0.25	24	22	303	0.40	$_{ m ns}$
alpha_avg_power H1000's_1	H3000's 0.5	24	22	314	0.28	ns
alpha_avg_power H1000's_1	H3000's_0.75	24	22	321	0.22	$_{ m ns}$
alpha_avg_power H1000's_1	H3000's 1	24	22	331	0.14	ns
alpha avg power H2000's 0.25	H2000's_0.5	21	21	232	0.78	ns
alpha_avg_power H2000's_0.25	$H2000$ 's_0.75	21	21	244	0.57	$_{ m ns}$
alpha_avg_power H2000's_0.25	H2000's 1	21	21	226	0.90	ns
alpha_avg_power H2000's_0.25	H3000's 0.25	$\overline{21}$	$\frac{1}{22}$	203	0.51	ns
alpha_avg_power H2000's_0.25	H3000's 0.5	21	22	220	0.80	ns
alpha avg power H2000's 0.25	H3000's 0.75	21	22	221	0.82	ns
alpha_avg_power H2000's_0.25	H3000's 1	21	22	230	0.99	ns
				-50	0.00	210

EEG Var Group_Speed	1 Group_Speed_2	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H2000's_0.5	${ m H2000's} { m _0.75}$	21	21	226	0.90	ns
alpha_avg_power H2000's_0.5	$H2000's_{1}$	21	21	217	0.94	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.25}$	21	22	192	0.35	ns
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.5}$	21	22	214	0.69	ns
alpha_avg_power $H2000$ 's_ 0.5	${ m H}3000'{ m s}_0.75$	21	22	207	0.57	ns
alpha_avg_power $H2000$ 's_ 0.5	$H3000's_1$	21	22	210	0.62	ns
alpha_avg_power $H2000$ 's_ 0.75	$H2000's_{1}$	21	21	207	0.75	ns
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.25}$	21	22	191	0.34	ns
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.5}$	21	22	209	0.60	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.75}$	21	22	207	0.57	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.75	$H3000's_1$	21	22	212	0.66	$_{ m ns}$
alpha_avg_power H2000's_1	${ m H3000's} { m _0.25}$	21	22	198	0.43	$_{ m ns}$
alpha_avg_power H2000's_1	${ m H3000's} { m _0.5}$	21	22	215	0.71	$_{ m ns}$
alpha_avg_power H2000's_1	${ m H3000's} { m _0.75}$	21	22	214	0.69	$_{ m ns}$
$alpha_avg_power~H2000's_1$	$H3000's_1$	21	22	225	0.90	$_{ m ns}$
alpha_avg_power $H3000$ 's_ 0.25	${ m H}3000'{ m s}_0.5$	22	22	255	0.77	$_{ m ns}$
alpha_avg_power $H3000$ 's_ 0.25	${ m H3000's} { m _0.75}$	22	22	261	0.67	ns
alpha_avg_power $H3000$ 's_ 0.25	$H3000's_1$	22	22	268	0.55	$_{ m ns}$
alpha_avg_power $H3000$ 's_ 0.5	${ m H3000's} { m _0.75}$	22	22	241	0.99	$_{ m ns}$
alpha_avg_power $H3000$ 's_ 0.5	$\mathrm{H3000's}_1$	22	22	253	0.81	ns
alpha_avg_power H3000's_0.75	H3000's_1	22	22	251	0.84	ns

Cluster: 6 Alpha Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
alpha_avg_power H1000's_0.25	$\rm H1000's_0.5$	18	18	181	0.56	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	18	18	198	0.26	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	H1000's_1	18	18	174	0.72	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.25$	18	13	153	0.16	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.5$	18	13	154	0.15	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.75$	18	13	158	0.11	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_1$	18	13	148	0.23	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	18	11	122	0.32	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.5}$	18	11	119	0.39	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.75}$	18	11	116	0.47	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_1$	18	11	122	0.32	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	18	18	168	0.86	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	H1000's_1	18	18	155	0.84	$_{ m ns}$
$alpha_avg_power~H1000's_0.5$	${\rm H}2000' {\rm s} _0.25$	18	13	138	0.42	ns
alpha_avg_power $H1000$ 's_ 0.5	$\rm H2000's_0.5$	18	13	142	0.33	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$\rm H2000's_0.75$	18	13	144	0.29	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_1$	18	13	131	0.59	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	${ m H3000's} { m _0.25}$	18	11	111	0.61	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_0.5$	18	11	110	0.64	$_{ m ns}$
$alpha_avg_power~H1000's_0.5$	$H3000's_0.75$	18	11	109	0.67	ns
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_1$	18	11	111	0.61	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.75	H1000's_1	18	18	139	0.48	$_{ m ns}$
$alpha_avg_power~H1000's_0.75$	${\rm H}2000' {\rm s} _0.25$	18	13	143	0.31	ns
alpha_avg_power $H1000$ 's_ 0.75	${ m H2000's} { m _0.5}$	18	13	144	0.29	ns
alpha_avg_power $H1000$ 's_ 0.75	${ m H2000's} { m _0.75}$	18	13	140	0.37	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
alpha_avg_power H1000's_0.75	H2000's_1	18	13	124	0.80	ns
alpha_avg_power H1000's_0.75	${ m H3000's} { m _0.25}$	18	11	111	0.61	ns
alpha_avg_power H1000's_0.75	${ m H3000's} { m _0.5}$	18	11	109	0.67	ns
alpha_avg_power $H1000$ 's_ 0.75	${ m H}3000' { m s}_0.75$	18	11	111	0.61	ns
alpha_avg_power $H1000$ 's_ 0.75	H3000's_1	18	11	114	0.52	ns
alpha_avg_power $H1000$ 's_1	${\rm H}2000' {\rm s}_0.25$	18	13	154	0.15	ns
alpha_avg_power H1000's_1	${ m H2000's} { m _0.5}$	18	13	159	0.10	ns
alpha_avg_power H1000's_1	$\rm H2000's_0.75$	18	13	158	0.11	ns
alpha_avg_power H1000's_1	$H2000's_{1}$	18	13	143	0.31	ns
alpha_avg_power H1000's_1	${ m H3000's} { m _0.25}$	18	11	126	0.24	ns
alpha_avg_power H1000's_1	${ m H3000's}{ m _0.5}$	18	11	120	0.36	ns
alpha_avg_power H1000's_1	${ m H3000's} { m _0.75}$	18	11	124	0.28	ns
alpha_avg_power H1000's_1	$H3000's_1$	18	11	120	0.36	ns
alpha_avg_power $H2000$ 's_ 0.25	${\rm H}2000' {\rm s} _0.5$	13	13	86	0.96	ns
alpha_avg_power $H2000$ 's_ 0.25	$\rm H2000's_0.75$	13	13	74	0.61	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_1$	13	13	67	0.39	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.25}$	13	11	63	0.65	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's}{ m _0.5}$	13	11	64	0.69	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.75}$	13	11	62	0.61	ns
alpha_avg_power $H2000$ 's_ 0.25	H3000's_1	13	11	62	0.61	ns
alpha_avg_power H2000's_0.5	${ m H2000's} { m _0.75}$	13	13	71	0.51	ns
alpha_avg_power H2000's_0.5	$H2000's_1$	13	13	64	0.31	ns
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.25}$	13	11	58	0.46	ns
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.5}$	13	11	63	0.65	ns
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.75}$	13	11	59	0.49	ns
alpha_avg_power $H2000$ 's_ 0.5	$H3000's_1$	13	11	62	0.61	ns
alpha_avg_power $H2000$ 's_ 0.75	$H2000's_{1}$	13	13	70	0.48	ns
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.25}$	13	11	68	0.86	ns
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.5}$	13	11	73	0.96	ns
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.75}$	13	11	67	0.82	ns
alpha_avg_power $H2000$ 's_ 0.75	$H3000's_1$	13	11	70	0.96	ns
alpha_avg_power H2000's_1	$H3000's_0.25$	13	11	79	0.69	ns
alpha_avg_power H2000's_1	$H3000's_0.5$	13	11	80	0.65	ns
alpha_avg_power H2000's_1	$H3000's_0.75$	13	11	81	0.61	ns
alpha_avg_power H2000's_1	$H3000's_1$	13	11	76	0.82	ns
alpha_avg_power $H3000$ 's_ 0.25	$H3000's_0.5$	11	11	62	0.95	ns
alpha_avg_power $H3000$ 's_ 0.25	$H3000's_0.75$	11	11	64	0.85	ns
alpha_avg_power $H3000$ 's_ 0.25	H3000's_1	11	11	61	1.00	ns
alpha_avg_power $H3000$ 's_ 0.5	${ m H3000's} { m _0.75}$	11	11	63	0.90	ns
alpha_avg_power $H3000$ 's_ 0.5	H3000's_1	11	11	64	0.85	ns
alpha_avg_power H3000's_0.75	H3000's_1	11	11	61	1.00	ns

Cluster: 7 Alpha Wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_po	ower H1000's_0.25	H1000's_0.5	16	16	135	0.81	ns
alpha_avg_po	ower H1000's_0.25	$\rm H1000's_0.75$	16	16	148	0.47	$_{ m ns}$
alpha_avg_po	ower H1000's_0.25	H1000's_1	16	16	145	0.54	$_{ m ns}$
alpha_avg_po	ower H1000's_0.25	$H2000's_0.25$	16	11	48	0.05	$_{ m ns}$
alpha avg po	ower H1000's 0.25	H2000's 0.5	16	11	47	0.04	*

	alpha_avg_power H1000's_0.25 H2000's_1 1 alpha_avg_power H1000's_0.25 H3000's_0.25 1 alpha_avg_power H1000's_0.25 H3000's_0.5 1 alpha_avg_power H1000's_0.25 H3000's_0.75 1 alpha_avg_power H1000's_0.25 H3000's_1 1 alpha_avg_power H1000's_0.5 H1000's_0.75 1 alpha_avg_power H1000's_0.5 H2000's_0.25 1 alpha_avg_power H1000's_0.5 H2000's_0.5 1 alpha_avg_power H1000's_0.5 H2000's_0.75 1 alpha_avg_power H1000's_0.5 H2000's_0.75 1 alpha_avg_power H1000's_0.5 H2000's_0.75 1 alpha_avg_power H1000's_0.5 H3000's_0.25 1 alpha_avg_power H1000's_0.5 H3000's_0.25 1 alpha_avg_power H1000's_0.5 H3000's_0.5 1	1 N2	Wstat	$p ext{-}value$	*sig.
	alpha_avg_power H1000's_0.25 H3000's_0.25 19 alpha_avg_power H1000's_0.25 H3000's_0.5 19 alpha_avg_power H1000's_0.25 H3000's_0.75 19 alpha_avg_power H1000's_0.25 H3000's_1 19 alpha_avg_power H1000's_0.5 H1000's_0.75 19 alpha_avg_power H1000's_0.5 H1000's_1 19 alpha_avg_power H1000's_0.5 H2000's_0.25 19 alpha_avg_power H1000's_0.5 H2000's_0.5 19 alpha_avg_power H1000's_0.5 H2000's_0.75 19 alpha_avg_power H1000's_0.5 H3000's_0.5 19 alpha_avg_power H1000's_0.5 H3000's_0.5 19 alpha_avg_power H1000's_0.5 H3000's_0.5 19	6 11	46	0.04	*
alpha_avg_power H1000's_0.25 H3000's_0.75 16 11 52 0.08 ns alpha_avg_power H1000's_0.25 H3000's_0.75 16 11 53 0.09 ns alpha_avg_power H1000's_0.25 H3000's_1 16 11 53 0.09 ns alpha_avg_power H1000's_0.5 H1000's_0.75 16 16 134 0.84 ns alpha_avg_power H1000's_0.5 H2000's_0.25 16 11 46 0.04 * alpha_avg_power H1000's_0.5 H2000's_0.75 16 11 46 0.04 * alpha_avg_power H1000's_0.5 H2000's_0.75 16 11 44 0.03 * alpha_avg_power H1000's_0.5 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_0.75 H300's_0.75	alpha_avg_power H1000's_0.25 H3000's_0.5 10 alpha_avg_power H1000's_0.25 H3000's_0.75 11 alpha_avg_power H1000's_0.25 H3000's_0.75 12 alpha_avg_power H1000's_0.5 H1000's_0.75 14 alpha_avg_power H1000's_0.5 H1000's_0.5 12 alpha_avg_power H1000's_0.5 H2000's_0.25 14 alpha_avg_power H1000's_0.5 H2000's_0.5 12 alpha_avg_power H1000's_0.5 H2000's_0.75 14 alpha_avg_power H1000's_0.5 H2000's_0.25 14 alpha_avg_power H1000's_0.5 H3000's_0.25 14 alpha_avg_power H1000's_0.5 H3000's_0.5 15 alpha_avg_power H1000's_0.5 H3000's_0.5 16 alpha_avg_power H1000's_0.5 H3000's_0.5 16	6 11	56	0.12	ns
alpha_avg_power H1000's_0.25 H3000's_0.75 16 11 53 0.09 ns alpha_avg_power H1000's_0.5 H3000's_1.75 16 11 61 0.20 ns alpha_avg_power H1000's_0.5 H1000's_0.75 16 16 134 0.84 ns alpha_avg_power H1000's_0.5 H2000's_0.25 16 11 46 0.04 * alpha_avg_power H1000's_0.5 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.75	alpha_avg_power H1000's_0.25 H3000's_0.75 10 alpha_avg_power H1000's_0.25 H3000's_1 11 alpha_avg_power H1000's_0.5 H1000's_0.75 12 alpha_avg_power H1000's_0.5 H1000's_1 12 alpha_avg_power H1000's_0.5 H2000's_0.25 12 alpha_avg_power H1000's_0.5 H2000's_0.5 12 alpha_avg_power H1000's_0.5 H2000's_0.75 12 alpha_avg_power H1000's_0.5 H2000's_0.75 12 alpha_avg_power H1000's_0.5 H3000's_0.25 13 alpha_avg_power H1000's_0.5 H3000's_0.5 14 alpha_avg_power H1000's_0.5 H3000's_0.5 14	6 11	52	0.08	ns
	alpha_avg_power H1000's_0.25 H3000's_1 1 alpha_avg_power H1000's_0.5 H1000's_0.75 1 alpha_avg_power H1000's_0.5 H1000's_1 1 alpha_avg_power H1000's_0.5 H2000's_0.25 1 alpha_avg_power H1000's_0.5 H2000's_0.5 1 alpha_avg_power H1000's_0.5 H2000's_0.75 1 alpha_avg_power H1000's_0.5 H2000's_1 1 alpha_avg_power H1000's_0.5 H3000's_0.25 1 alpha_avg_power H1000's_0.5 H3000's_0.5 1 alpha_avg_power H1000's_0.5 H3000's_0.5 1	6 11	52	0.08	ns
alpha avg power H1000's 0.5 H1000's 0.75 16 16 134 0.84 ns alpha avg power H1000's 0.5 H2000's 0.25 16 16 137 0.75 ns alpha avg power H1000's 0.5 H2000's 0.25 16 11 46 0.04 * alpha avg power H1000's 0.5 H2000's 0.75 16 11 44 0.03 * alpha avg power H1000's 0.5 H2000's 0.75 16 11 44 0.03 * alpha avg power H1000's 0.5 H2000's 0.5 16 11 47 0.04 * alpha avg power H1000's 0.5 H3000's 0.5 16 11 47 0.04 * alpha avg power H1000's 0.5 H3000's 0.75 16 11 55 0.11 ns alpha avg power H1000's 0.75 H2000's 0.25 16 11 45 0.03 * alpha avg power H1000's 0.75 H2000's 0.75 16 11 44 0.03 * alpha avg power H1000's 0.75 H2000's 0.75	alpha_avg_power H1000's_0.5 H1000's_0.75 1 alpha_avg_power H1000's_0.5 H1000's_1 1 alpha_avg_power H1000's_0.5 H2000's_0.25 1 alpha_avg_power H1000's_0.5 H2000's_0.5 1 alpha_avg_power H1000's_0.5 H2000's_0.75 1 alpha_avg_power H1000's_0.5 H2000's_1 1 alpha_avg_power H1000's_0.5 H3000's_0.25 1 alpha_avg_power H1000's_0.5 H3000's_0.5 1	6 11	53	0.09	ns
alpha_avg_power H1000's_0.5 H1000's_0.25 16 16 137 0.75 ns alpha_avg_power H1000's_0.5 H2000's_0.25 16 11 46 0.04 * alpha_avg_power H1000's_0.5 H2000's_0.75 16 11 46 0.04 * alpha_avg_power H1000's_0.5 H2000's_0.75 16 11 44 0.03 * alpha_avg_power H1000's_0.5 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 44 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75	alpha_avg_power H1000's_0.5 H1000's_1 1 alpha_avg_power H1000's_0.5 H2000's_0.25 1 alpha_avg_power H1000's_0.5 H2000's_0.5 1 alpha_avg_power H1000's_0.5 H2000's_0.75 1 alpha_avg_power H1000's_0.5 H2000's_1 1 alpha_avg_power H1000's_0.5 H3000's_0.25 1 alpha_avg_power H1000's_0.5 H3000's_0.5 1 alpha_avg_power H1000's_0.5 H3000's_0.5 1	6 11	61	0.20	ns
alpha avg	alpha_avg_power H1000's_0.5 H2000's_0.25 10 alpha_avg_power H1000's_0.5 H2000's_0.5 10 alpha_avg_power H1000's_0.5 H2000's_0.75 10 alpha_avg_power H1000's_0.5 H2000's_1 10 alpha_avg_power H1000's_0.5 H3000's_0.25 10 alpha_avg_power H1000's_0.5 H3000's_0.5 10 alpha_avg_power H1000's_0.5 H3000's_0.5 10	6 16	134	0.84	ns
apha avg power H1000's 0.5 H2000's 0.5 16 11 46 0.04 * alpha avg power H1000's 0.5 H2000's 0.75 16 11 44 0.03 * alpha avg power H1000's 0.5 H2000's 0.75 16 11 47 0.04 * alpha avg power H1000's 0.5 H3000's 0.5 16 11 47 0.04 * alpha avg power H1000's 0.5 H3000's 0.5 16 11 47 0.04 * alpha avg power H1000's 0.5 H3000's 0.5 16 11 47 0.04 * alpha avg power H1000's 0.5 H3000's 0.75 16 11 47 0.04 * alpha avg power H1000's 0.5 H3000's 0.75 16 11 47 0.04 * alpha avg power H1000's 0.75 H1000's 1 16 16 127 0.98 ns alpha avg power H1000's 0.75 H2000's 0.25 16 11 45 0.03 * alpha avg power H1000's 0.75 H2000's 0.25 16 11 45 0.03 * alpha avg power H1000's 0.75 H2000's 0.25 16 11 42 0.02 * alpha avg power H1000's 0.75 H2000's 0.75 16 11 42 0.02 * alpha avg power H1000's 0.75 H2000's 0.75 16 11 42 0.02 * alpha avg power H1000's 0.75 H2000's 0.75 16 11 42 0.02 * alpha avg power H1000's 0.75 H3000's 0.25 16 11 45 0.03 * alpha avg power H1000's 0.75 H3000's 0.25 16 11 45 0.03 * alpha avg power H1000's 0.75 H3000's 0.75 16 11 45 0.03 * alpha avg power H1000's 0.75 H3000's 0.75 16 11 45 0.03 * alpha avg power H1000's 0.75 H3000's 0.75 16 11 45 0.03 * alpha avg power H1000's 0.75 H3000's 0.75 16 11 45 0.03 * alpha avg power H1000's 0.75 H3000's 0.75 16 11 45 0.03 * alpha avg power H1000's 0.75 H3000's 0.75 16 11 45 0.03 * alpha avg power H1000's 1 H2000's 0.75 16 11 45 0.03 * alpha avg power H1000's 1 H2000's 0.75 16 11 47 0.04 * alpha avg power H1000's 1 H2000's 0.75 16 11 47 0.04 * alpha avg power H1000's 1 H2000's 0.75 16 11 47 0.04 * alpha avg power H1000's 1 H2000's 0.75 16 11 47 0.04 * alpha avg power H1000's 1 H2000's 0.75 16 11 47 0.04 * alpha avg power H1000's 1 H2000's 0.75 16 11 47 0.04 * alpha avg power H1000's 1 H2000's 0.75 16 11 47 0.04 * alpha avg power H1000's 1 H3000's 0.75 16 11 47 0.04 * alpha avg power H1000's 1 H3000's 0.75 16 11 47 0.04 * alpha avg power H1000's 1 H3000's 0.75 16 11 47 0.04 * alpha avg power H2000's 0.75 H3000's 0.75 16 11 11 60 0.00 ns alpha avg power H2000's 0.75 H3000's 0.75 11 11 60 0.00 ns	alpha_avg_power H1000's_0.5 H2000's_0.5 10 alpha_avg_power H1000's_0.5 H2000's_0.75 11 alpha_avg_power H1000's_0.5 H2000's_1 11 alpha_avg_power H1000's_0.5 H3000's_0.25 12 alpha_avg_power H1000's_0.5 H3000's_0.5 14	6 16	137	0.75	ns
alpha_avg_power H1000's_0.5 H2000's_0.75 16 11 44 0.03 *alpha_avg_power H1000's_0.5 H3000's_0.25 16 11 47 0.04 *alpha_avg_power H1000's_0.5 H3000's_0.25 16 11 47 0.04 *alpha_avg_power H1000's_0.5 H3000's_0.5 16 11 47 0.04 *alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 55 0.11 ns alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 55 0.11 ns alpha_avg_power H1000's_0.5 H3000's_1 16 16 127 0.98 ns alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 45 0.03 *alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 45 0.03 *alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 44 0.03 *alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 44 0.03 *alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 *alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 *alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 46 0.04 *alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 46 0.04 *alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 48 0.05 ns alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 48 0.05 ns alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 48 0.05 ns alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 45 0.03 *alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 45 0.03 *alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 45 0.03 *alpha_avg_power H1000's_0.75 H200's_0.5 16 11 45 0.03 *alpha_avg_power H1000's_1 H2000's_0.75 16 11 45 0.03 *alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 *alpha_avg_power H1000's_1 H3000's_0.75 16 11 47 0.04 *alpha_avg_power H1000's_0.25 H2000's_0.75 11 11 68 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 69 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.5 11 11 16 0 1.00 ns alpha_avg_power H2000's_	alpha_avg_power H1000's_0.5 H2000's_0.75 10 alpha_avg_power H1000's_0.5 H2000's_1 10 alpha_avg_power H1000's_0.5 H3000's_0.25 10 alpha_avg_power H1000's_0.5 H3000's_0.5 10	6 11	46	0.04	*
alpha_avg_power H1000's_0.5 H2000's_1 16 11 54 0.10 ns alpha_avg_power H1000's_0.5 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 55 0.11 ns alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 55 0.11 ns alpha_avg_power H1000's_0.5 H3000's_1.5 16 11 55 0.11 ns alpha_avg_power H1000's_0.75 H1000's_1.6 16 16 17 53 0.09 ns alpha_avg_power H1000's_0.75 H1000's_1.6 16 16 16 127 0.98 ns alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 44 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 44 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 44 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 46 0.04 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 46 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.25 16 11 46 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 48 0.05 ns alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.75 16 11 47 0.04 * alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 68 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 69 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 69 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 60	alpha_avg_power H1000's_0.5 H2000's_1 1 alpha_avg_power H1000's_0.5 H3000's_0.25 1 alpha_avg_power H1000's_0.5 H3000's_0.5 1	6 11	46	0.04	*
alpha_avg_power H1000's_0.5 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 55 0.11 ns alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 53 0.09 ns alpha_avg_power H1000's_0.5 H3000's_1 16 16 127 0.98 ns alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 44 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.5 16 11 44 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_1 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H2000's_1 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.55 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.55 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H300's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H300's_0.5 16 11 47 0.04 * alpha_avg_power H2000's_0.5 H2000's_0.5 16 11 11 64 0.85 ns alpha_avg_power H2000's_0.5 H2000's_0.5 11 11 68 0.65 ns alpha_avg_power H2000's_0.5 H2000's_0.5 11 11 60 0.90 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 16	alpha_avg_power H1000's_0.5 H3000's_0.25 1 alpha_avg_power H1000's_0.5 H3000's_0.5 1	6 11	44	0.03	*
alpha_avg_power H1000's_0.5 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_0.5 H3000's_0.75 16 11 55 0.11 ns alpha_avg_power H1000's_0.75 H1000's_1 1 16 16 127 0.98 ns alpha_avg_power H1000's_0.75 H1000's_1 1 16 16 16 127 0.98 ns alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 44 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 46 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.25 16 11 46 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 48 0.05 ns alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 52 0.08 ns alpha_avg_power H2000's_0.5 H2000's_0.5 11 11 66 0.80 ns alpha_avg_power H2000's_0.5 H2000's_0.5 11 11 66 0.80 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 66 0.80 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 66 0.00 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 16 00 0.00 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 16 00 0.00 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 16 00 0.00 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 0.00 ns	alpha_avg_power H1000's_0.5 H3000's_0.5 1	6 11	54	0.10	ns
apha_avg_power H1000's_0.5 H3000's_0.75 H3000's_1 16 11 55 0.11 ns alpha_avg_power H1000's_0.5 H3000's_1 16 16 11 53 0.09 ns alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.5 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_0.5 16 11 42 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.5 16 11 46 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 ns alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.75 H200's_0.75 H2		6 11	47	0.04	*
alpha_avg_power H1000's_0.75 H3000's_1 16 16 11 53 0.09 ns alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 44 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_0.5 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5	alpha avg power U1000's 0.5 U2000's 0.75	6 11	47	0.04	*
alpha_avg_power H1000's_0.75 H1000's_0.25 16 16 127 0.98 ns alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_0.5 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H3000's_0.25 16 11 46 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 48 0.05 ns alpha_avg_power H1000's_1 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 <	aipha_avg_power 111000 s_0.5	6 11	55	0.11	ns
alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.5 16 11 44 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_0.25 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H3000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 48 0.05 ns alpha_avg_power H1000's_1 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 1	alpha_avg_power H1000's_0.5	6 11	53	0.09	ns
alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 44 0.03 * alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_1 16 11 52 0.08 ns alpha_avg_power H1000's_0.75 H3000's_0.25 16 11 46 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 48 0.05 ns alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 <td>alpha_avg_power H1000's_0.75 H1000's_1 1</td> <td>6 16</td> <td>127</td> <td>0.98</td> <td>ns</td>	alpha_avg_power H1000's_0.75 H1000's_1 1	6 16	127	0.98	ns
alpha_avg_power H1000's_0.75 H2000's_0.75 16 11 42 0.02 * alpha_avg_power H1000's_0.75 H2000's_1 16 11 52 0.08 ns alpha_avg_power H1000's_0.75 H3000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 48 0.05 ns alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H2000's_0.5 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.5 H2000's_0.5 11 11 66 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 66 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 66 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H2000's_0.5 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 66 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_p	alpha_avg_power H1000's_0.75	6 11	45	0.03	*
alpha_avg_power H1000's_0.75		6 11	44	0.03	*
alpha_avg_power H1000's_0.75 H3000's_0.25 16 11 46 0.04 * alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 48 0.05 ns alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H2000's_0.25 H2000's_0.75 16	alpha_avg_power H1000's_0.75	6 11	42	0.02	*
alpha_avg_power H1000's_0.75 H3000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 45 0.03 * alpha_avg_power H1000's_0.75 H3000's_1 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_1 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 52 0.08 ns alpha_avg_power H2000's_0.1 H3000's_0.5 16 11 52 0.08 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 66 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 69 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 60 0.90 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 60 0.90 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power	alpha_avg_power H1000's_0.75	6 11	52	0.08	ns
alpha_avg_power H1000's_0.75 H3000's_0.75 16 11 48 0.05 ns alpha_avg_power H1000's_0.75 H3000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 52 0.08 ns alpha_avg_power H1000's_1 H3000's_0.5 16 11 52 0.08 ns alpha_avg_power H1000's_1 H3000's_0.5 11 11 52 0.08 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 66 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 16 01.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 60 0.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 11 63 0.90 ns alpha	alpha_avg_power H1000's_0.75 H3000's_0.25 1	6 11	46	0.04	*
alpha_avg_power H1000's_0.75 H3000's_0.25 16 11 50 0.06 ns alpha_avg_power H1000's_1 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H2000's_0.25 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H2000's_0.25 H2000's_0.5 11	alpha_avg_power H1000's_0.75 H3000's_0.5	6 11	45	0.03	*
alpha_avg_power H1000's_1 H2000's_0.25 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 52 0.08 ns alpha_avg_power H2000's_0.25 H2000's_0.75 16 11 53 0.09 ns alpha_avg_power H2000's_0.25 H2000's_0.5 1 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.5		6 11	48	0.05	ns
alpha_avg_power H1000's_1 H2000's_0.5 16 11 45 0.03 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 52 0.08 ns alpha_avg_power H1000's_1 H3000's_0.5 16 11 52 0.08 ns alpha_avg_power H1000's_1 H3000's_0.5 16 11 53 0.09 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 64 0.85 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11	alpha_avg_power H1000's_0.75 H3000's_1 1	6 11	50	0.06	ns
alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H2000's_0.75 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.75 16 11 52 0.08 ns alpha_avg_power H1000's_1 H3000's_0.75 16 11 52 0.08 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 64 0.85 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 64 0.85 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11	alpha_avg_power H1000's_1	6 11	45	0.03	*
alpha_avg_power H1000's_1 H2000's_0.75 16 11 52 0.08 ns alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.75 16 11 52 0.08 ns alpha_avg_power H2000's_0.25 H2000's_0.5 16 11 53 0.09 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 64 0.85 ns alpha_avg_power H2000's_0.25 H3000's_0.25 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.5 H2000's_0.75 1	alpha_avg_power H1000's_1	6 11	45	0.03	*
alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.5 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.75 16 11 52 0.08 ns alpha_avg_power H1000's_1 H3000's_0.25 16 11 53 0.09 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 64 0.85 ns alpha_avg_power H2000's_0.25 H2000's_1 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.25 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 62 0.95 ns alpha_avg_power H2000's	alpha_avg_power H1000's_1	6 11	47	0.04	*
alpha_avg_power H1000's_1 H3000's_0.25 16 11 47 0.04 * alpha_avg_power H1000's_1 H3000's_0.75 16 11 52 0.08 ns alpha_avg_power H1000's_1 H3000's_0.75 16 11 53 0.09 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 64 0.85 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.25 11 11 59 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.5	alpha_avg_power H1000's_1	6 11	52	0.08	ns
alpha_avg_power H1000's_1 H3000's_0.75 16 11 52 0.08 ns alpha_avg_power H1000's_1 H3000's_0.75 16 11 53 0.09 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 66 0.85 ns alpha_avg_power H2000's_0.25 H2000's_0.25 11 11 15 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.25 11 11 59 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 66 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 66 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H2000's_0.5 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 16 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 16 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 16 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 11 60 0.00 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 11 60 0.00 ns alpha_avg_	alpha_avg_power H1000's_1	6 11	47	0.04	*
alpha_avg_power H1000's_1 H3000's_1 16 11 53 0.09 ns alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 64 0.85 ns alpha_avg_power H2000's_0.25 H2000's_1 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.25 11 11 59 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 15 69 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.25 11 11 15 6 0.80 n	alpha_avg_power H1000's_1	6 11	47	0.04	*
alpha_avg_power H2000's_0.25 H2000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 64 0.85 ns alpha_avg_power H2000's_0.25 H2000's_1 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.25 11 11 59 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 62 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 63 0.90 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 15 69 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 1.00	alpha_avg_power H1000's_1 H3000's_0.75 1	6 11	52	0.08	ns
alpha_avg_power H2000's_0.25 H2000's_0.75 11 11 64 0.85 ns alpha_avg_power H2000's_0.25 H2000's_1 11 11 16 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.25 11 11 59 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 62 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 63 0.90 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 15 6 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 11 60 <t< td=""><td></td><td>6 11</td><td>53</td><td>0.09</td><td>$_{ m ns}$</td></t<>		6 11	53	0.09	$_{ m ns}$
alpha_avg_power H2000's_0.25 H2000's_1 11 11 68 0.65 ns alpha_avg_power H2000's_0.25 H3000's_0.25 11 11 59 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 62 0.95 ns alpha_avg_power H2000's_0.25 H3000's_1 11 11 63 0.90 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 15 59 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 16 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 15 60 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 <td>alpha_avg_power H2000's_0.25</td> <td>1 11</td> <td>65</td> <td>0.80</td> <td>$_{ m ns}$</td>	alpha_avg_power H2000's_0.25	1 11	65	0.80	$_{ m ns}$
alpha_avg_power H2000's_0.25 H3000's_0.25 11 11 59 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 62 0.95 ns alpha_avg_power H2000's_0.25 H3000's_1 11 11 63 0.90 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.25 11 11 15 60 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 11 64 0.					ns
alpha_avg_power H2000's_0.25 H3000's_0.5 11 11 65 0.80 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 62 0.95 ns alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 11 63 0.90 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.25 11 11 56 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 60 1.00 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 16 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 16 0.90 ns	alpha_avg_power H2000's_0.25	1 11	68	0.65	$_{ m ns}$
alpha_avg_power H2000's_0.25 H3000's_0.75 11 11 62 0.95 ns alpha_avg_power H2000's_0.25 H3000's_1 11 11 13 63 0.90 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.25 11 11 56 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 11 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 15 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 11 6	alpha_avg_power H2000's_0.25 H3000's_0.25 1	1 11	59	0.95	$_{ m ns}$
alpha_avg_power H2000's_0.25 H3000's_1 11 11 63 0.90 ns alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.25 11 11 56 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H3000's_1 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_1 11 11 11 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 15 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 15 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 16 0.95 <td>alpha_avg_power H2000's_0.25 H3000's_0.5 1</td> <td>1 11</td> <td>65</td> <td>0.80</td> <td>$_{ m ns}$</td>	alpha_avg_power H2000's_0.25 H3000's_0.5 1	1 11	65	0.80	$_{ m ns}$
alpha_avg_power H2000's_0.5 H2000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H2000's_1 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.25 11 11 56 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H3000's_1 11 11 60 1.00 ns alpha_avg_power H2000's_0.75 H2000's_1 11 11 11 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 15 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 62 0.95 ns					$_{ m ns}$
alpha_avg_power H2000's_0.5 H2000's_1 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.5 H3000's_0.25 11 11 56 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H3000's_1 11 11 60 1.00 ns alpha_avg_power H2000's_0.75 H2000's_1 11 11 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 15 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 62 0.95 ns				0.90	ns
alpha_avg_power H2000's_0.5 H3000's_0.25 11 11 56 0.80 ns alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H3000's_1 11 11 60 1.00 ns alpha_avg_power H2000's_0.75 H2000's_1 11 11 14 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 15 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 16 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 62 0.95 ns					$_{ m ns}$
alpha_avg_power H2000's_0.5 H3000's_0.5 11 11 62 0.95 ns alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H3000's_1 11 11 60 1.00 ns alpha_avg_power H2000's_0.75 H2000's_1 11 11 11 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 15 8 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 62 0.95 ns					$_{ m ns}$
alpha_avg_power H2000's_0.5 H3000's_0.75 11 11 59 0.95 ns alpha_avg_power H2000's_0.5 H3000's_1 11 11 11 60 1.00 ns alpha_avg_power H2000's_0.75 H2000's_1 11 11 11 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 58 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 62 0.95 ns					ns
alpha_avg_power H2000's_0.5 H3000's_1 11 11 60 1.00 ns alpha_avg_power H2000's_0.75 H2000's_1 11 11 11 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 58 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 62 0.95 ns					$_{ m ns}$
alpha_avg_power H2000's_0.75 H2000's_1 11 11 64 0.85 ns alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 58 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 62 0.95 ns					10.0
alpha_avg_power H2000's_0.75 H3000's_0.25 11 11 58 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 62 0.95 ns					115
alpha_avg_power H2000's_0.75 H3000's_0.5 11 11 63 0.90 ns alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 62 0.95 ns			60	1.00	
alpha_avg_power H2000's_0.75 H3000's_0.75 11 11 62 0.95 ns			60 64	$1.00 \\ 0.85$	ns
			60 64 58	1.00 0.85 0.90	ns ns
alpha avg power H2000's 0.75 H3000's 1 11 11 64 0.85 ns		1 11	60 64 58 63	1.00 0.85 0.90 0.90	ns ns ns
		1 11 1 11	60 64 58 63 62	1.00 0.85 0.90 0.90 0.95	ns ns ns
alpha_avg_power H2000's_1 H3000's_0.25 11 11 54 0.70 ns	alpha_avg_power H2000's_1 H3000's_0.25 1	1 11 1 11 1 11	60 64 58 63 62 64	1.00 0.85 0.90 0.90 0.95 0.85	ns ns ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_powe	r H2000's_1	H3000's_0.5	11	11	58	0.90	ns
alpha_avg_powe	r H2000's_1	$H3000's_0.75$	11	11	59	0.95	$_{ m ns}$
alpha_avg_powe	r H2000's_1	$H3000's_1$	11	11	60	1.00	$_{ m ns}$
alpha_avg_powe	r H3000's_0.25	$H3000's_0.5$	11	11	66	0.75	$_{ m ns}$
alpha_avg_powe	r H3000's_0.25	$H3000's_0.75$	11	11	65	0.80	ns
alpha_avg_powe	r H3000's_0.25	$H3000's_1$	11	11	67	0.70	$_{ m ns}$
alpha_avg_powe	r H3000's_0.5	$H3000's_0.75$	11	11	58	0.90	$_{ m ns}$
alpha_avg_powe	r H3000's_0.5	H3000's_1	11	11	61	1.00	$_{ m ns}$
alpha_avg_powe	r H3000's_0.75	$\rm H3000's_1$	11	11	66	0.75	ns

Cluster: 8 Alpha Wilcoxon

alpha_avg_power H1000's_0.25 H1000's_0.25 H1000's_0.75 15 15 123 0.68 ns alpha_avg_power H1000's_0.25 H1000's_0.75 15 15 121 0.74 ns alpha_avg_power H1000's_0.25 H1000's_1 15 15 124 0.65 ns alpha_avg_power H1000's_0.25 H2000's_0.25 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H2000's_0.75 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H2000's_0.75 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H2000's_0.75 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H3000's_0.5 15 11 54 0.15 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 15 11 70 0.55 ns alpha_avg_	EEG Var Group_Sp	peed_1 Group_Speed_	_2 N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25 H1000's_0.25 H2000's_0.25 15 15 124 0.65 ns alpha_avg_power H1000's_0.25 H2000's_0.25 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H2000's_0.75 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H2000's_0.75 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H3000's_0.25 15 11 57 0.20 ns alpha_avg_power H1000's_0.25 H3000's_0.25 15 11 57 0.20 ns alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 66 0.41 ns alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H1000's_0.75 15 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 70 0.55 ns alpha_av			15	15	123	0.68	ns
alpha_avg_power H1000's_0.25 H2000's_0.25 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H2000's_0.5 15 8 73 0.43 ns alpha_avg_power H1000's_0.25 H2000's_0.75 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H2000's_1 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H3000's_0.25 15 11 54 0.15 ns alpha_avg_power H1000's_0.25 H3000's_0.5 15 11 57 0.20 ns alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H1000's_0.5 15 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H2000's_0.25 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2	alpha_avg_power H1000's_0	0.25 H1000's_0.75	15	15	121	0.74	ns
alpha_avg_power H1000's_0.25 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_0.25 H2000's_0.75 15 8 75 0.36 ns alpha_avg_power H1000's_0.25 H2000's_0.25 15 11 54 0.15 ns alpha_avg_power H1000's_0.25 H3000's_0.25 15 11 57 0.20 ns alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 57 0.20 ns alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 66 0.41 ns alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 66 0.41 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 15 115 0.94 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 69 0.59 ns alpha_avg_power H1000's_0.5 H2000's_0.5 <td>alpha_avg_power H1000's_0</td> <td>0.25 H1000's_1</td> <td>15</td> <td>15</td> <td>124</td> <td>0.65</td> <td>ns</td>	alpha_avg_power H1000's_0	0.25 H1000's_1	15	15	124	0.65	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	alpha_avg_power H1000's_0	0.25 H2000's_0.25	15	8	75	0.36	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	alpha_avg_power H1000's_0	0.25 H2000's_0.5	15	8	73	0.43	ns
alpha_avg_power H1000's_0.25 H3000's_0.25 15 11 54 0.15 ns alpha_avg_power H1000's_0.25 H3000's_0.5 15 11 57 0.20 ns alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 66 0.41 ns alpha_avg_power H1000's_0.5 H3000's_1 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H1000's_0.75 15 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H1000's_0.75 15 15 11 100 ns alpha_avg_power H1000's_0.5 H2000's_0.25 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.5 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000'	alpha_avg_power H1000's_0	0.25 H2000's_0.75	15	8	75	0.36	ns
alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 57 0.20 ns alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 66 0.41 ns alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H1000's_0.75 15 15 115 0.94 ns alpha_avg_power H1000's_0.5 H1000's_0.75 15 15 112 1.00 ns alpha_avg_power H1000's_0.5 H2000's_0.25 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 69 0.59 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 72 0.47 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 47 0.07 ns alpha_avg_power H1000's_0.75 H3000's_0.75	alpha_avg_power H1000's_0	0.25 H2000's_1	15	8	75	0.36	ns
alpha_avg_power H1000's_0.25 H3000's_0.75 15 11 66 0.41 ns alpha_avg_power H1000's_0.25 H3000's_1 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H1000's_0.75 15 15 115 0.94 ns alpha_avg_power H1000's_0.5 H1000's_0.5 H2000's_0.25 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 69 0.59 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 72 0.47 ns alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 62 0.30 ns alpha_avg_power H1000's_0.75	alpha_avg_power H1000's_0	0.25 H3000's_0.25	15	11	54	0.15	ns
alpha_avg_power H1000's_0.25 H3000's_1 15 11 70 0.54 ns alpha_avg_power H1000's_0.5 H1000's_0.75 15 15 115 0.94 ns alpha_avg_power H1000's_0.5 H1000's_0.5 15 15 112 1.00 ns alpha_avg_power H1000's_0.5 H2000's_0.25 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 69 0.59 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 72 0.47 ns alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 62 0.30 ns alpha_avg_power H1000's_0.75 H3000's_0.75	alpha_avg_power H1000's_0	0.25 H3000's_0.5	15	11	57	0.20	ns
alpha_avg_power H1000's_0.5 H1000's_0.75 15 15 15 115 0.94 ns alpha_avg_power H1000's_0.5 H1000's_1 15 15 112 1.00 ns alpha_avg_power H1000's_0.5 H2000's_0.25 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 69 0.59 ns alpha_avg_power H1000's_0.5 H2000's_1 15 8 72 0.47 ns alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 62 0.30 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 64 0.36 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H2000's_	alpha_avg_power H1000's_0	0.25 H3000's_0.75	15	11	66	0.41	ns
alpha_avg_power H1000's_0.5 H1000's_1 15 15 112 1.00 ns alpha_avg_power H1000's_0.5 H2000's_0.25 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 69 0.59 ns alpha_avg_power H1000's_0.5 H2000's_1 15 8 72 0.47 ns alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 62 0.30 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5	alpha_avg_power H1000's_0	0.25 H3000's_1	15	11	70	0.54	ns
alpha_avg_power H1000's_0.5 H2000's_0.25 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 69 0.59 ns alpha_avg_power H1000's_0.5 H2000's_1 15 8 72 0.47 ns alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 56 0.18 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 62 0.30 ns alpha_avg_power H1000's_0.5 H3000's_1 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 <	alpha_avg_power H1000's_0	0.5 H1000's_0.75	15	15	115	0.94	ns
alpha_avg_power H1000's_0.5 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 69 0.59 ns alpha_avg_power H1000's_0.5 H2000's_1 15 8 72 0.47 ns alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 62 0.30 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 62 0.30 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 64 0.36 ns alpha_avg_power H1000's_0.5 H3000's_1 15 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H1000's_1 15 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 71 0.51 ns	alpha_avg_power H1000's_0	0.5 H1000's_1	15	15	112	1.00	ns
alpha_avg_power H1000's_0.5 H2000's_0.75 15 8 69 0.59 ns alpha_avg_power H1000's_0.5 H2000's_1 15 8 72 0.47 ns alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 56 0.18 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 62 0.30 ns alpha_avg_power H1000's_0.5 H3000's_1 15 11 64 0.36 ns alpha_avg_power H1000's_0.5 H3000's_1 15 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H1000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H3000's_0.	alpha_avg_power H1000's_0	0.5 H2000's_0.25	15	8	70	0.55	ns
alpha_avg_power H1000's_0.5 H2000's_1 15 8 72 0.47 ns alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 56 0.18 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 62 0.30 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H3000's_1 15 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 72 0.47 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 15 11 47 0.07 ns	alpha_avg_power H1000's_0	0.5 H2000's_0.5	15	8	70	0.55	ns
alpha_avg_power H1000's_0.5 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 56 0.18 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 62 0.30 ns alpha_avg_power H1000's_0.5 H3000's_1 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H1000's_1 15 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 72 0.47 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 47 0.07 ns	alpha_avg_power H1000's_0	0.5 H2000's_0.75	15	8	69	0.59	ns
alpha_avg_power H1000's_0.5 H3000's_0.5 15 11 56 0.18 ns alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 62 0.30 ns alpha_avg_power H1000's_0.5 H3000's_1 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H1000's_1 15 15 119 0.81 ns alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 72 0.47 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 15 11 47 0.07 ns alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 61 0.28 ns	alpha_avg_power H1000's_0	0.5 H2000's_1	15	8	72	0.47	ns
alpha_avg_power H1000's_0.5 H3000's_0.75 15 11 62 0.30 ns alpha_avg_power H1000's_0.5 H3000's_1 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H1000's_1 15 15 119 0.81 ns alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 72 0.47 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 65 0.38 ns al	alpha_avg_power H1000's_0	0.5 H3000's_0.25	15	11	47	0.07	ns
alpha_avg_power H1000's_0.5 H3000's_1 15 11 64 0.36 ns alpha_avg_power H1000's_0.75 H1000's_1 15 15 119 0.81 ns alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 72 0.47 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 15 11 47 0.07 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 61 0.28 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 15 11 65 0.38 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 72 0.47 ns	alpha_avg_power H1000's_0	0.5 H3000's_0.5	15	11	56	0.18	$_{ m ns}$
alpha_avg_power H1000's_0.75 H1000's_1 15 15 119 0.81 ns alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 72 0.47 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 55 0.16 ns alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 61 0.28 ns alpha_avg_power H1000's_0.75 H3000's_0.5 15 15 11 65 0.38 ns alpha_avg_power H1000's_1 H2000's_0.5 15 8 72 0.47 ns	alpha_avg_power H1000's_0	0.5 H3000's_0.75	15	11	62	0.30	ns
alpha_avg_power H1000's_0.75 H2000's_0.25 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 72 0.47 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 55 0.16 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 61 0.28 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 61 0.28 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 65 0.38 ns alpha_avg_power H1000's_1 H2000's_0.25 15 8 72 0.47 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power	alpha_avg_power H1000's_0	0.5 H3000's_1	15	11	64	0.36	ns
alpha_avg_power H1000's_0.75 H2000's_0.5 15 8 72 0.47 ns alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_1 15 8 73 0.43 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 55 0.16 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 61 0.28 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 65 0.38 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 8 72 0.47 ns alpha_avg_power H1000's_1 H2000's_0.25 15 8 70 0.55 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's	alpha_avg_power H1000's_0	0.75 H1000's_1	15	15	119	0.81	ns
alpha_avg_power H1000's_0.75 H2000's_0.75 15 8 71 0.51 ns alpha_avg_power H1000's_0.75 H2000's_1 15 8 73 0.43 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 55 0.16 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 61 0.28 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 65 0.38 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 8 72 0.47 ns alpha_avg_power H1000's_1 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 75 0.36 ns alpha_avg_power H1000's_1<	alpha_avg_power H1000's_0	0.75 H2000's_0.25	15	8	71	0.51	ns
alpha_avg_power H1000's_0.75 H2000's_1 15 8 73 0.43 ns alpha_avg_power H1000's_0.75 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 55 0.16 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 61 0.28 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 65 0.38 ns alpha_avg_power H1000's_1 H2000's_0.25 15 8 72 0.47 ns alpha_avg_power H1000's_1 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 75 0.36 ns alpha_avg_power H1000's_1 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_1 H3000's_0.55 15 11 47 0.07 ns alpha_avg_power H1000	alpha_avg_power H1000's_0	0.75 H2000's_0.5	15	8	72	0.47	ns
alpha_avg_power H1000's_0.75 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 55 0.16 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 61 0.28 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 65 0.38 ns alpha_avg_power H1000's_1 H2000's_0.25 15 8 72 0.47 ns alpha_avg_power H1000's_1 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_1 15 8 75 0.36 ns alpha_avg_power H1000's_1 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_1 H3000's_0.5 15 11 58 0.22 ns	alpha_avg_power H1000's_0	0.75 H2000's_0.75	15	8	71	0.51	ns
alpha_avg_power H1000's_0.75 H3000's_0.5 15 11 55 0.16 ns alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 61 0.28 ns alpha_avg_power H1000's_0.75 H3000's_1 15 11 65 0.38 ns alpha_avg_power H1000's_1 H2000's_0.25 15 8 72 0.47 ns alpha_avg_power H1000's_1 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_1 15 8 75 0.36 ns alpha_avg_power H1000's_1 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_1 H3000's_0.5 15 11 58 0.22 ns	alpha_avg_power H1000's_0	0.75 H2000's_1	15	8	73	0.43	ns
alpha_avg_power H1000's_0.75 H3000's_0.75 15 11 61 0.28 ns alpha_avg_power H1000's_0.75 H3000's_1 15 11 65 0.38 ns alpha_avg_power H1000's_1 H2000's_0.25 15 8 72 0.47 ns alpha_avg_power H1000's_1 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_1 15 8 75 0.36 ns alpha_avg_power H1000's_1 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_1 H3000's_0.5 15 11 58 0.22 ns	alpha_avg_power H1000's_0	0.75 H3000's_0.25	15	11	47	0.07	ns
alpha_avg_power H1000's_0.75 H3000's_1 15 11 65 0.38 ns alpha_avg_power H1000's_1 H2000's_0.25 15 8 72 0.47 ns alpha_avg_power H1000's_1 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_1 15 8 75 0.36 ns alpha_avg_power H1000's_1 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_1 H3000's_0.5 15 11 58 0.22 ns	alpha_avg_power H1000's_0	0.75 H3000's_0.5	15	11	55	0.16	ns
alpha_avg_power H1000's_1 H2000's_0.25 15 8 72 0.47 ns alpha_avg_power H1000's_1 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_1 15 8 75 0.36 ns alpha_avg_power H1000's_1 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_1 H3000's_0.5 15 11 58 0.22 ns	alpha_avg_power H1000's_0	0.75 H3000's_0.75	15	11	61	0.28	ns
alpha_avg_power H1000's_1 H2000's_0.5 15 8 70 0.55 ns alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_1 15 8 75 0.36 ns alpha_avg_power H1000's_1 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_1 H3000's_0.5 15 11 58 0.22 ns	alpha_avg_power H1000's_0	0.75 H3000's_1	15	11	65	0.38	ns
alpha_avg_power H1000's_1 H2000's_0.75 15 8 73 0.43 ns alpha_avg_power H1000's_1 H2000's_1 15 8 75 0.36 ns alpha_avg_power H1000's_1 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_1 H3000's_0.5 15 11 58 0.22 ns	alpha_avg_power H1000's_1	H2000's_0.25	15	8	72	0.47	ns
alpha_avg_power H1000's_1 H2000's_1 15 8 75 0.36 ns alpha_avg_power H1000's_1 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_1 H3000's_0.5 15 11 58 0.22 ns	alpha_avg_power H1000's_1	H2000's_0.5	15	8	70	0.55	ns
alpha_avg_power H1000's_1 H3000's_0.25 15 11 47 0.07 ns alpha_avg_power H1000's_1 H3000's_0.5 15 11 58 0.22 ns	alpha_avg_power H1000's_1	H2000's_0.75	15	8	73	0.43	ns
alpha_avg_power H1000's_1 H3000's_0.5 15 11 58 0.22 ns	alpha_avg_power H1000's_1	H2000's_1	15	8	75	0.36	ns
1 = 0=1 = =	alpha_avg_power H1000's_1	H3000's_0.25	15	11	47	0.07	ns
	alpha_avg_power H1000's_1	H3000's_0.5	15	11	58	0.22	ns
			15	11	63	0.33	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_1	H3000's_1	15	11	63	0.33	ns
alpha_avg_power H2000's_0.25	${\rm H}2000' {\rm s}_0.5$	8	8	31	0.96	ns
alpha_avg_power H2000's_0.25	$H2000's_0.75$	8	8	32	1.00	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_1$	8	8	32	1.00	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.25}$	8	11	21	0.06	ns
alpha_avg_power H2000's_0.25	${ m H3000's} { m _0.5}$	8	11	23	0.09	ns
alpha_avg_power H2000's_0.25	${ m H3000's} { m _0.75}$	8	11	27	0.18	ns
alpha_avg_power H2000's_0.25	H3000's_1	8	11	27	0.18	ns
alpha_avg_power H2000's_0.5	$\rm H2000's_0.75$	8	8	32	1.00	ns
alpha_avg_power $H2000$ 's_ 0.5	H2000's_1	8	8	32	1.00	ns
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.25}$	8	11	18	0.03	*
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.5}$	8	11	23	0.09	ns
alpha_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.75}$	8	11	28	0.21	ns
alpha_avg_power $H2000$ 's_ 0.5	H3000's_1	8	11	29	0.24	ns
alpha_avg_power H2000's_0.75	H2000's_1	8	8	31	0.96	ns
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.25}$	8	11	18	0.03	*
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.5}$	8	11	23	0.09	ns
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.75}$	8	11	30	0.27	ns
alpha_avg_power H2000's_0.75	H3000's_1	8	11	28	0.21	ns
alpha_avg_power H2000's_1	${ m H3000's} { m _0.25}$	8	11	18	0.03	*
alpha_avg_power H2000's_1	$H3000's_0.5$	8	11	24	0.11	ns
alpha_avg_power H2000's_1	${ m H3000's} { m _0.75}$	8	11	27	0.18	ns
alpha_avg_power H2000's_1	$H3000's_1$	8	11	27	0.18	ns
alpha_avg_power H3000's_0.25	$H3000's_0.5$	11	11	65	0.80	ns
alpha_avg_power H3000's_0.25	$H3000's_0.75$	11	11	68	0.65	ns
alpha_avg_power H3000's_0.25	H3000's_1	11	11	74	0.40	ns
alpha_avg_power H3000's_0.5	${ m H}3000' { m s}_0.75$	11	11	64	0.85	ns
alpha_avg_power H3000's_0.5	H3000's_1	11	11	69	0.61	ns
alpha_avg_power H3000's_0.75	$\rm H3000's_1$	11	11	67	0.70	ns

Cluster: 9 Alpha Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	H1000's_0.5	24	24	298	0.85	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	24	24	299	0.83	ns
alpha_avg_power $H1000$ 's_ 0.25	H1000's_1	24	24	294	0.91	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.25}$	24	15	188	0.83	ns
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.5$	24	15	195	0.68	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${ m H2000's} { m _0.75}$	24	15	190	0.79	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_1$	24	15	189	0.81	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${ m H}3000'{ m s}_0.25$	24	22	293	0.53	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${ m H}3000{ m 's}_0.5$	24	22	283	0.69	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${ m H}3000{ m 's}_0.75$	24	22	287	0.62	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	H3000's_1	24	22	284	0.67	ns
alpha_avg_power H1000's_0.5	$\rm H1000's_0.75$	24	24	291	0.96	ns
alpha_avg_power $H1000$ 's_ 0.5	$\rm H1000's_1$	24	24	290	0.98	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	${\rm H}2000' {\rm s}_0.25$	24	15	178	0.97	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	${\rm H}2000' {\rm s}_0.5$	24	15	193	0.72	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.75$	24	15	183	0.94	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.5	$\rm H2000's_1$	24	15	184	0.92	ns

EEG Var Group_Speed	1 Group_Speed_2	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power $H1000$ 's_ 0.5	${ m H3000's} { m _0.25}$	24	22	282	0.70	ns
alpha_avg_power $H1000$ 's_ 0.5	${ m H3000's} { m _0.5}$	24	22	274	0.84	ns
alpha_avg_power $H1000$ 's_ 0.5	${ m H3000's} { m _0.75}$	24	22	273	0.85	ns
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_1$	24	22	273	0.85	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.75	H1000's_1	24	24	297	0.86	ns
alpha_avg_power H1000's_0.75	$H2000's_0.25$	24	15	176	0.92	ns
alpha_avg_power H1000's_0.75	${ m H2000's} { m _0.5}$	24	15	190	0.79	ns
alpha_avg_power H1000's_0.75	${ m H2000's} { m _0.75}$	24	15	189	0.81	ns
alpha_avg_power H1000's_0.75	$H2000's_{1}$	24	15	176	0.92	ns
alpha_avg_power H1000's_0.75	$H3000's_0.25$	24	22	282	0.70	ns
alpha_avg_power H1000's_0.75	$H3000's_0.5$	24	22	276	0.80	ns
alpha_avg_power H1000's_0.75	${ m H3000's} { m _0.75}$	24	22	280	0.74	ns
alpha_avg_power H1000's_0.75	$H3000's_1$	24	22	280	0.74	ns
alpha_avg_power H1000's_1	${ m H2000's} { m _0.25}$	24	15	181	0.99	ns
alpha_avg_power H1000's_1	$H2000's_0.5$	24	15	189	0.81	ns
alpha_avg_power H1000's_1	$H2000's_0.75$	24	15	186	0.88	ns
alpha_avg_power $H1000$ 's_1	$H2000's_1$	24	15	183	0.94	ns
alpha_avg_power H1000's_1	${ m H3000's} { m _0.25}$	24	22	283	0.69	ns
alpha_avg_power $H1000$ 's_1	$H3000's_0.5$	24	22	277	0.78	ns
alpha_avg_power $H1000$ 's_1	$H3000's_0.75$	24	22	280	0.74	ns
alpha_avg_power H1000's_1	$H3000's_1$	24	22	282	0.70	ns
alpha_avg_power H2000's_0.25	${ m H2000's} { m _0.5}$	15	15	128	0.54	ns
alpha_avg_power $H2000$ 's_ 0.25	${ m H2000's} { m _0.75}$	15	15	125	0.62	ns
alpha_avg_power $H2000$ 's_ 0.25	$H2000's_1$	15	15	117	0.87	ns
alpha_avg_power $H2000$ 's_ 0.25	$H3000's_0.25$	15	22	176	0.75	ns
alpha_avg_power $H2000$ 's_ 0.25	$H3000's_0.5$	15	22	176	0.75	ns
alpha_avg_power $H2000$ 's_ 0.25	$H3000's_0.75$	15	22	175	0.77	ns
alpha_avg_power $H2000$ 's_ 0.25	$H3000's_1$	15	22	183	0.59	ns
alpha_avg_power $H2000$ 's_ 0.5	$H2000's_0.75$	15	15	118	0.84	ns
alpha_avg_power $H2000$ 's_ 0.5	$H2000's_1$	15	15	99	0.60	ns
alpha_avg_power $H2000$ 's_ 0.5	$H3000's_0.25$	15	22	159	0.87	ns
alpha_avg_power $H2000$ 's_ 0.5	$H3000's_0.5$	15	22	170	0.89	ns
alpha_avg_power H2000's_0.5	$ m H3000's_0.75$	15	22	164	0.99	ns
alpha_avg_power H2000's_0.5	$H3000's_1$	15	22	174	0.80	ns
alpha_avg_power $H2000$ 's_ 0.75	$H2000's_1$	15	15	103	0.71	ns
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.25}$	15	22	169	0.92	ns
alpha_avg_power H2000's_0.75	$H3000's_0.5$	15	22	172	0.84	ns
alpha_avg_power H2000's_0.75	$ m H3000's_0.75$	15	22	166	0.99	ns
alpha_avg_power H2000's_0.75	$H3000's_1$	15	22	169	0.92	ns
alpha_avg_power H2000's_1	${ m H3000's} { m _0.25}$	15	22	178	0.70	ns
alpha_avg_power H2000's_1	$H3000's_0.5$	15	22	178	0.70	ns
alpha_avg_power H2000's_1	$H3000's_0.75$	15	22	176	0.75	ns
alpha_avg_power H2000's_1	$H3000's_1$	15	22	181	0.64	ns
alpha_avg_power H3000's_0.25	$H3000's_0.5$	22	22	239	0.95	ns
alpha_avg_power H3000's_0.25	H3000's_0.75	22	22	238	0.94	ns
alpha_avg_power H3000's_0.25	H3000's_1	22	22	240	0.97	ns
alpha_avg_power H3000's_0.5	$H3000's_0.75$	22	22	240	0.97	ns
alpha_avg_power H3000's_0.5	H3000's_1	22	22	236	0.90	$_{ m ns}$
alpha_avg_power H3000's_0.75	H3000's_1	22	22	239	0.95	ns

Cluster: 10 Alpha Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	H1000's_0.5	23	23	290	0.59	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	23	23	299	0.46	ns
alpha_avg_power $H1000$ 's_ 0.25	$H1000's_{1}$	23	23	286	0.65	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.25$	23	17	181	0.70	ns
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_0.5$	23	17	197	0.98	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.75$	23	17	190	0.89	ns
alpha_avg_power $H1000$ 's_ 0.25	$H2000's_{1}$	23	17	188	0.85	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.25$	23	17	213	0.64	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	23	17	229	0.37	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H}3000{ m 's}_0.75$	23	17	230	0.36	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_1$	23	17	218	0.55	ns
alpha_avg_power H1000's_0.5	$\rm H1000's_0.75$	23	23	263	0.98	ns
alpha_avg_power $H1000$ 's_ 0.5	$\rm H1000's_1$	23	23	253	0.81	ns
alpha_avg_power $H1000$ 's_ 0.5	${\rm H}2000{\rm 's}_0.25$	23	17	166	0.43	ns
alpha_avg_power H1000's_0.5	$H2000's_0.5$	23	17	179	0.66	ns
alpha_avg_power H1000's_0.5	$\rm H2000's_0.75$	23	17	171	0.52	ns
alpha_avg_power H1000's_0.5	$H2000's_1$	23	17	176	0.61	ns
alpha_avg_power H1000's_0.5	$H3000's_0.25$	23	17	198	0.96	ns
alpha_avg_power H1000's_0.5	$H3000's_0.5$	23	17	210	0.70	ns
alpha_avg_power H1000's_0.5	$H3000's_0.75$	23	17	208	0.74	ns
alpha_avg_power H1000's_0.5	H3000's_1	23	17	205	0.81	ns
alpha_avg_power H1000's_0.75	H1000's_1	23	23	254	0.83	ns
alpha_avg_power H1000's_0.75	$H2000's_0.25$	23	17	163	0.39	ns
alpha_avg_power H1000's_0.75	$H2000's_0.5$	23	17	177	0.63	ns
alpha_avg_power H1000's_0.75	$H2000's_0.75$	23	17	175	0.59	ns
alpha_avg_power H1000's_0.75	H2000's_1	23	17	178	0.64	ns
alpha_avg_power H1000's_0.75	$H3000's_0.25$	23	17	194	0.98	ns
alpha_avg_power H1000's_0.75	$H3000's_0.5$	23	17	210	0.70	ns
alpha_avg_power H1000's_0.75	$H3000's_0.75$	23	17	206	0.79	ns
alpha_avg_power H1000's_0.75	H3000's_1	23	17	202	0.87	ns
alpha_avg_power H1000's_1	${\rm H}2000' {\rm s}_0.25$	23	17	170	0.50	ns
alpha_avg_power H1000's_1	$H2000's_0.5$	23	17	186	0.81	ns
alpha_avg_power H1000's_1	$H2000's_0.75$	23	17	176	0.61	ns
alpha_avg_power H1000's_1	H2000's_1	23	17	184	0.77	ns
alpha_avg_power H1000's_1	$H3000's_0.25$	23	17	202	0.87	ns
alpha_avg_power H1000's_1	$H3000's_0.5$	23	17	223	0.46	ns
alpha_avg_power H1000's_1	$H3000's_0.75$	23	17	216	0.59	ns
alpha_avg_power H1000's_1	H3000's_1	23	17	212	0.66	ns
alpha_avg_power H2000's_0.25	$H2000's_0.5$	17	17	154	0.76	ns
alpha_avg_power H2000's_0.25	$H2000's_0.75$	17	17	145	1.00	ns
alpha_avg_power H2000's_0.25	H2000's_1	17	17	150	0.86	ns
alpha avg power H2000's 0.25	H3000's 0.25	17	17	167	0.45	ns
alpha avg power H2000's 0.25	H3000's 0.5	17	17	178	0.26	ns
alpha avg power H2000's 0.25	H3000's 0.75	17	17	179	0.24	ns
alpha_avg_power H2000's_0.25	H3000's 1	17	17	174	0.32	ns
alpha_avg_power H2000's_0.5	H2000's_0.75	17	17	137	0.81	ns
alpha_avg_power H2000's_0.5	H2000's_1	17	17	141	0.92	ns
alpha_avg_power H2000's_0.5	H3000's_0.25	17	17	156	0.71	ns
alpha_avg_power H2000's_0.5	H3000's_0.5	17	17	167	0.45	ns
alpha_avg_power H2000's_0.5	H3000's_0.75	17	17	169	0.41	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H2000's_0.5	H3000's_1	17	17	161	0.59	ns
alpha_avg_power H2000's_0.75	$H2000's_1$	17	17	153	0.79	$_{ m ns}$
alpha_avg_power $H2000$ 's_ 0.75	${ m H3000's} { m _0.25}$	17	17	162	0.56	ns
alpha_avg_power H2000's_0.75	${ m H3000's}{ m _0.5}$	17	17	177	0.27	$_{ m ns}$
alpha_avg_power H2000's_0.75	${ m H3000's} { m _0.75}$	17	17	168	0.43	$_{ m ns}$
$alpha_avg_power~H2000's_0.75$	$H3000's_{1}$	17	17	167	0.45	ns
alpha_avg_power H2000's_1	${ m H3000's} { m _0.25}$	17	17	154	0.76	ns
alpha_avg_power H2000's_1	$H3000's_0.5$	17	17	164	0.52	ns
alpha_avg_power H2000's_1	${ m H}3000{ m 's}_0.75$	17	17	166	0.47	ns
alpha_avg_power H2000's_1	$H3000's_{1}$	17	17	162	0.56	ns
alpha_avg_power $H3000$ 's_ 0.25	$H3000's_0.5$	17	17	159	0.63	ns
alpha_avg_power $H3000$ 's_ 0.25	$H3000's_0.75$	17	17	157	0.68	ns
alpha_avg_power $H3000$ 's_ 0.25	$H3000's_{1}$	17	17	153	0.79	ns
alpha_avg_power $H3000$ 's_ 0.5	${ m H3000's} { m _0.75}$	17	17	143	0.97	$_{ m ns}$
alpha_avg_power $H3000$ 's_ 0.5	$H3000's_{1}$	17	17	141	0.92	ns
alpha_avg_power $H3000$ 's_ 0.75	$\rm H3000's_1$	17	17	144	1.00	ns

Cluster: 11 Alpha Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	H1000's_0.5	29	29	467	0.48	ns
alpha_avg_power H1000's_0.25	$\rm H1000's_0.75$	29	29	463	0.52	ns
alpha_avg_power $H1000$ 's_ 0.25	H1000's_1	29	29	460	0.55	ns
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.25$	29	15	248	0.46	ns
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.5$	29	15	254	0.38	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H2000's_0.75$	29	15	250	0.43	ns
alpha_avg_power $H1000$ 's_ 0.25	H2000's_1	29	15	257	0.34	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.25}$	29	19	303	0.57	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_0.5$	29	19	324	0.32	ns
alpha_avg_power $H1000$ 's_ 0.25	${ m H}3000{ m 's}_0.75$	29	19	330	0.26	ns
alpha_avg_power $H1000$ 's_ 0.25	$H3000's_1$	29	19	320	0.36	ns
$alpha_avg_power~H1000$'s $_0.5$	$\rm H1000's_0.75$	29	29	410	0.88	ns
$alpha_avg_power~H1000$'s $_0.5$	H1000's_1	29	29	421	1.00	ns
$alpha_avg_power~H1000$'s $_0.5$	${\rm H}2000' {\rm s}_0.25$	29	15	216	0.98	ns
$alpha_avg_power~H1000$'s $_0.5$	${\rm H}2000' {\rm s}_0.5$	29	15	231	0.75	ns
alpha_avg_power H1000's_0.5	$\rm H2000's_0.75$	29	15	228	0.81	ns
alpha_avg_power H1000's_0.5	H2000's_1	29	15	228	0.81	ns
alpha_avg_power H1000's_0.5	${ m H3000's} { m _0.25}$	29	19	271	0.93	ns
alpha_avg_power H1000's_0.5	$H3000's_0.5$	29	19	299	0.63	ns
alpha_avg_power H1000's_0.5	${ m H}3000'{ m s}_0.75$	29	19	299	0.63	ns
alpha_avg_power H1000's_0.5	H3000's_1	29	19	295	0.69	ns
alpha_avg_power H1000's_0.75	H1000's_1	29	29	423	0.98	ns
alpha_avg_power H1000's_0.75	$\rm H2000's_0.25$	29	15	226	0.84	ns
$alpha_avg_power~H1000$'s $_0.75$	$\rm H2000's_0.5$	29	15	232	0.73	ns
alpha_avg_power H1000's_0.75	$\rm H2000's_0.75$	29	15	233	0.71	ns
alpha_avg_power H1000's_0.75	H2000's_1	29	15	234	0.70	ns
alpha_avg_power H1000's_0.75	${ m H3000's} { m _0.25}$	29	19	276	1.00	ns
alpha_avg_power $H1000$ 's_ 0.75	${ m H3000's} { m _0.5}$	29	19	301	0.60	ns
alpha_avg_power $H1000$ 's_ 0.75	${ m H3000's} { m _0.75}$	29	19	309	0.49	ns
alpha_avg_power $H1000$ 's_ 0.75	H3000's_1	29	19	300	0.62	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power	r H1000's_1	H2000's_0.25	29	15	219	0.98	ns
alpha_avg_power	r H1000's_1	$H2000's_0.5$	29	15	226	0.84	ns
alpha_avg_power	r H1000's_1	$H2000's_0.75$	29	15	226	0.84	ns
alpha_avg_power	r H1000's_1	$H2000's_1$	29	15	219	0.98	ns
alpha_avg_power	r H1000's_1	$H3000's_0.25$	29	19	272	0.95	$_{ m ns}$
alpha_avg_power		$H3000's_0.5$	29	19	294	0.71	ns
alpha_avg_power	r H1000's_1	$H3000's_0.75$	29	19	303	0.57	ns
alpha_avg_power	r H1000's_1	$H3000's_1$	29	19	289	0.79	ns
alpha_avg_power	r H2000's_0.25	$H2000's_0.5$	15	15	118	0.84	ns
alpha_avg_power	r H2000's_0.25	$H2000's_0.75$	15	15	118	0.84	ns
alpha_avg_power		$H2000's_1$	15	15	119	0.81	$_{ m ns}$
alpha_avg_power	r H2000's_0.25	$H3000's_0.25$	15	19	130	0.68	$_{ m ns}$
alpha_avg_power		$H3000's_0.5$	15	19	148	0.86	$_{ m ns}$
alpha_avg_power	r H2000's_0.25	$H3000's_0.75$	15	19	147	0.89	$_{ m ns}$
alpha_avg_power		H3000's_1	15	19	145	0.94	ns
alpha_avg_power		$H2000's_0.75$	15	15	113	1.00	ns
alpha_avg_power	r H2000's_0.5	$H2000's_1$	15	15	118	0.84	ns
alpha_avg_power	r H2000's_0.5	${ m H3000's} { m _0.25}$	15	19	133	0.76	ns
alpha_avg_power	r H2000's_0.5	$H3000's_0.5$	15	19	152	0.76	ns
alpha_avg_power	r H2000's_0.5	$H3000's_0.75$	15	19	148	0.86	ns
alpha_avg_power	r H2000's_0.5	H3000's_1	15	19	151	0.78	ns
alpha_avg_power	r H2000's_0.75	$H2000's_1$	15	15	121	0.74	ns
alpha_avg_power	r H2000's_0.75	${ m H3000's} { m _0.25}$	15	19	128	0.63	$_{ m ns}$
alpha_avg_power	r H2000's_0.75	${ m H3000's} { m _0.5}$	15	19	151	0.78	$_{ m ns}$
alpha_avg_power	r H2000's_0.75	${ m H3000's} { m _0.75}$	15	19	146	0.92	$_{ m ns}$
alpha_avg_power	r H2000's_0.75	${ m H3000's}{ m _1}$	15	19	150	0.81	$_{ m ns}$
alpha_avg_power	r H2000's_1	${ m H3000's} { m _0.25}$	15	19	132	0.73	$_{ m ns}$
alpha_avg_power	r H2000's_1	${ m H3000's} { m _0.5}$	15	19	146	0.92	$_{ m ns}$
alpha_avg_power	r H2000's_1	$H3000's_0.75$	15	19	148	0.86	$_{ m ns}$
alpha_avg_power	r H2000's_1	$H3000's_1$	15	19	145	0.94	$_{ m ns}$
alpha_avg_power	r H3000's_0.25	$H3000's_0.5$	19	19	200	0.58	$_{ m ns}$
alpha_avg_power	r H3000's_0.25	${ m H3000's} { m _0.75}$	19	19	210	0.40	$_{ m ns}$
alpha_avg_power	r H3000's_0.25	$H3000's_1$	19	19	199	0.60	$_{ m ns}$
alpha_avg_power	r H3000's_0.5	${ m H3000's} { m _0.75}$	19	19	182	0.98	ns
alpha_avg_power	r H3000's_0.5	H3000's_1	19	19	177	0.93	ns
alpha_avg_power	r H3000's_0.75	$\rm H3000's_1$	19	19	176	0.91	ns

Cluster: 12 Alpha Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	$\rm H1000's_0.5$	24	24	308	0.69	ns
alpha_avg_power H1000's_0.25	$\rm H1000's_0.75$	24	24	316	0.57	$_{ m ns}$
alpha_avg_power H1000's_0.25	H1000's_1	24	24	322	0.49	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.25$	24	14	192	0.48	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.5$	24	14	186	0.60	$_{ m ns}$
alpha_avg_power H1000's_0.25	$H2000's_0.75$	24	14	200	0.34	$_{ m ns}$
alpha_avg_power H1000's_0.25	H2000's_1	24	14	215	0.16	$_{ m ns}$
alpha_avg_power H1000's_0.25	${ m H3000's} { m _0.25}$	24	20	304	0.14	$_{ m ns}$
alpha_avg_power H1000's_0.25	$H3000's_0.5$	24	20	320	0.06	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${ m H3000's} { m _0.75}$	24	20	333	0.03	*

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
alpha_avg_power H1000's_0.25	H3000's_1	24	20	333	0.03	*
alpha_avg_power H1000's_0.5	$\rm H1000's_0.75$	24	24	302	0.78	ns
alpha_avg_power $H1000$ 's_ 0.5	H1000's_1	24	24	305	0.74	ns
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.25$	24	14	183	0.66	ns
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.5$	24	14	175	0.85	ns
alpha_avg_power $H1000$ 's_ 0.5	$H2000's_0.75$	24	14	188	0.56	ns
alpha_avg_power $H1000$ 's_ 0.5	H2000's_1	24	14	199	0.36	ns
alpha_avg_power $H1000$ 's_ 0.5	${ m H3000's} { m _0.25}$	24	20	292	0.23	ns
alpha_avg_power $H1000$ 's_ 0.5	${ m H3000's} { m _0.5}$	24	20	305	0.13	ns
alpha_avg_power $H1000$ 's_ 0.5	$H3000's_0.75$	24	20	320	0.06	ns
alpha_avg_power $H1000$ 's_ 0.5	H3000's_1	24	20	332	0.03	*
alpha_avg_power $H1000$ 's_ 0.75	H1000's_1	24	24	302	0.78	ns
alpha_avg_power $H1000$ 's_ 0.75	$H2000's_0.25$	24	14	178	0.78	ns
alpha_avg_power $H1000$ 's_ 0.75	$H2000's_0.5$	24	14	169	0.99	ns
alpha_avg_power $H1000$ 's_ 0.75	$H2000's_0.75$	24	14	184	0.64	ns
alpha_avg_power H1000's_0.75	H2000's_1	24	14	196	0.41	ns
alpha_avg_power H1000's_0.75	$H3000's_0.25$	24	20	284	0.31	ns
alpha_avg_power H1000's_0.75	$H3000's_0.5$	24	20	300	0.16	ns
alpha_avg_power H1000's_0.75	$H3000's_0.75$	24	20	316	0.07	ns
alpha_avg_power H1000's_0.75	H3000's_1	24	20	335	0.03	*
alpha_avg_power H1000's_1	$H2000's_0.25$	24	14	168	1.00	ns
alpha_avg_power H1000's_1	H2000's_0.5	24	14	161	0.85	ns
alpha_avg_power H1000's_1	H2000's_0.75	24	14	174	0.87	ns
alpha_avg_power H1000's_1	H2000's_1	24	14	188	0.56	ns
alpha_avg_power H1000's_1	H3000's_0.25	24	20	273	0.45	ns
alpha_avg_power H1000's_1	H3000's_0.5	24	20	294	0.21	ns
alpha_avg_power H1000's_1	H3000's_0.75	24	20	310	0.10	ns
alpha_avg_power H1000's_1	H3000's_1	24	20	319	0.06	ns
alpha_avg_power H2000's_0.25	H2000's_0.5	14	14	95	0.91	ns
alpha_avg_power H2000's_0.25	H2000's_0.75	14	14	105	0.77	ns
alpha_avg_power H2000's_0.25	H2000's_1	14	14	110	0.60	ns
alpha_avg_power H2000's_0.25	H3000's_0.25	14	20	157	0.57	ns
alpha_avg_power H2000's_0.25	H3000's_0.5	14	20	165	0.40	ns
alpha_avg_power H2000's_0.25	H3000's_0.75	14	20	175	0.23	ns
alpha_avg_power H2000's_0.25	H3000's_1	14	20	185	0.12	ns
alpha_avg_power H2000's_0.5	H2000's_0.75	14	14	108	0.67	ns
alpha_avg_power H2000's_0.5	H2000's_1	14	14	117	0.40	ns
alpha_avg_power H2000's_0.5	H3000's_0.25	14	20	166	0.38	ns
alpha_avg_power H2000's_0.5	H3000's_0.5	14	20	170	0.31	ns
alpha_avg_power H2000's_0.5	H3000's_0.75	14	20	180	0.17	ns
alpha_avg_power H2000's_0.5	H3000's_1	14	20	186	0.11	ns
alpha_avg_power H2000's_0.75	H2000's_1	14	14	103	0.84	ns
alpha_avg_power H2000's_0.75	H3000's_0.25	14	20	150	0.74	ns
alpha_avg_power H2000's_0.75	H3000's_0.5	14	20	156	0.59	ns
alpha_avg_power H2000's_0.75	H3000's_0.75	14	20	161	0.48	ns
alpha_avg_power H2000's_0.75	H3000's_1	14	20	173	0.26	ns
alpha_avg_power H2000's_1	H3000's_0.25	14	20	142	0.96	ns
alpha_avg_power H2000's_1	H3000's_0.5	14	20	151	0.72	ns
alpha_avg_power H2000's_1	H3000's_0.75	14	20	157	0.57	ns
alpha_avg_power H2000's_1	H3000's_1	14	20	169	0.32	ns
alpha_avg_power H3000's_0.25	H3000's_0.5	20	20	210	0.80	ns
alpha_avg_power H3000's_0.25	$H3000's_0.75$	20	20	226	0.50	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H3000's_0.25	H3000's_1	20	20	233	0.38	ns
alpha_avg_power H3000's_0.5	$H3000's_0.75$	20	20	218	0.64	$_{ m ns}$
alpha_avg_power $H3000$ 's_ 0.5	$H3000's_1$	20	20	233	0.38	$_{ m ns}$
alpha_avg_power $H3000$ 's_ 0.75	$\rm H3000's_1$	20	20	219	0.62	ns

Cluster: 13 Alpha Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
alpha_avg_power H1000's_0.25	H1000's_0.5	22	22	253	0.81	ns
alpha_avg_power $H1000$ 's_ 0.25	$\rm H1000's_0.75$	22	22	251	0.84	ns
alpha_avg_power $H1000$ 's_ 0.25	H1000's_1	22	22	245	0.95	$_{ m ns}$
alpha_avg_power $H1000$ 's_ 0.25	${\rm H}2000' {\rm s}_0.25$	22	12	164	0.26	$_{ m ns}$
alpha_avg_power H1000's_0.25	$H2000's_0.5$	22	12	170	0.18	$_{ m ns}$
alpha_avg_power H1000's_0.25	$H2000's_0.75$	22	12	167	0.22	$_{ m ns}$
alpha_avg_power H1000's_0.25	H2000's_1	22	12	176	0.12	$_{ m ns}$
alpha_avg_power H1000's_0.25	$H3000's_0.25$	22	13	163	0.51	$_{ m ns}$
alpha_avg_power H1000's_0.25	$H3000's_0.5$	22	13	167	0.43	$_{ m ns}$
alpha_avg_power H1000's_0.25	$H3000's_0.75$	22	13	164	0.49	ns
alpha_avg_power H1000's_0.25	H3000's_1	22	13	168	0.41	$_{ m ns}$
alpha_avg_power H1000's_0.5	$\rm H1000's_0.75$	22	22	242	1.00	$_{ m ns}$
alpha_avg_power H1000's_0.5	H1000's_1	22	22	231	0.81	$_{ m ns}$
alpha_avg_power H1000's_0.5	$H2000's_0.25$	22	12	165	0.24	$_{ m ns}$
alpha_avg_power H1000's_0.5	$H2000's_0.5$	22	12	166	0.23	$_{ m ns}$
alpha_avg_power H1000's_0.5	$H2000's_0.75$	22	12	161	0.31	$_{ m ns}$
alpha_avg_power H1000's_0.5	H2000's_1	22	12	166	0.23	ns
alpha_avg_power H1000's_0.5	$H3000's_0.25$	22	13	160	0.58	ns
alpha_avg_power H1000's_0.5	$H3000's_0.5$	22	13	165	0.47	$_{ m ns}$
alpha_avg_power H1000's_0.5	$H3000's_0.75$	22	13	169	0.39	ns
alpha_avg_power H1000's_0.5	H3000's_1	22	13	162	0.53	ns
alpha_avg_power H1000's_0.75	H1000's_1	22	22	238	0.94	ns
alpha_avg_power H1000's_0.75	$H2000's_0.25$	22	12	164	0.26	ns
alpha_avg_power H1000's_0.75	$H2000's_0.5$	22	12	172	0.16	ns
alpha_avg_power H1000's_0.75	$H2000's_0.75$	22	12	164	0.26	$_{ m ns}$
alpha_avg_power H1000's_0.75	H2000's_1	22	12	176	0.12	$_{ m ns}$
alpha_avg_power H1000's_0.75	H3000's 0.25	22	13	159	0.60	$_{ m ns}$
alpha_avg_power H1000's_0.75	$H3000's_0.5$	22	13	164	0.49	ns
alpha_avg_power H1000's_0.75	H3000's_0.75	22	13	163	0.51	$_{ m ns}$
alpha_avg_power H1000's_0.75	H3000's_1	22	13	164	0.49	$_{ m ns}$
alpha_avg_power H1000's_1	$H2000's_0.25$	22	12	165	0.24	ns
alpha_avg_power H1000's_1	$H2000's_0.5$	22	12	172	0.16	$_{ m ns}$
alpha_avg_power H1000's_1	$H2000's_0.75$	22	12	168	0.20	$_{ m ns}$
alpha_avg_power H1000's_1	H2000's_1	22	12	175	0.13	$_{ m ns}$
alpha_avg_power H1000's_1	H3000's_0.25	22	13	161	0.56	$_{ m ns}$
alpha_avg_power H1000's_1	H3000's_0.5	22	13	167	0.43	$_{ m ns}$
alpha_avg_power H1000's_1	H3000's_0.75	22	13	166	0.45	$_{ m ns}$
alpha_avg_power H1000's_1	H3000's 1	22	13	168	0.41	$_{ m ns}$
alpha_avg_power H2000's_0.25	H2000's_0.5	12	12	74	0.93	ns
alpha_avg_power H2000's_0.25	H2000's_0.75	12	12	67	0.80	ns
alpha_avg_power H2000's_0.25	H2000's 1	12	12	73	0.98	ns
alpha_avg_power H2000's_0.25	$H3000$ 's_0.25	12	13	71	0.73	ns

EEG Var Group_Spe	eed_1 Group_Speed_2	2 N1	N2	Wstat	p-value	*sig.
alpha_avg_power H2000's_0	.25 H3000's_0.5	12	13	75	0.89	ns
alpha_avg_power H2000's_0	.25 H3000's_0.75	12	13	74	0.85	ns
alpha_avg_power H2000's_0	.25 H3000's_1	12	13	70	0.69	ns
alpha_avg_power $H2000$ 's_0	.5 H2000's_0.75	12	12	65	0.71	ns
alpha_avg_power H2000's_0		12	12	71	0.98	ns
alpha_avg_power H2000's_0	.5 H3000's_0.25	12	13	70	0.69	ns
alpha_avg_power H2000's_0		12	13	72	0.77	ns
alpha_avg_power H2000's_0	.5 H3000's_0.75	12	13	72	0.77	ns
alpha_avg_power H2000's_0	.5 H3000's_1	12	13	71	0.73	ns
alpha_avg_power H2000's_0		12	12	76	0.84	ns
alpha_avg_power H2000's_0	.75 H3000's_0.25	12	13	74	0.85	ns
alpha_avg_power H2000's_0		12	13	76	0.94	ns
alpha_avg_power H2000's_0		12	13	77	0.98	ns
alpha_avg_power H2000's_0		12	13	71	0.73	ns
alpha_avg_power H2000's_1		12	13	75	0.89	ns
alpha_avg_power H2000's_1	${ m H3000's}{ m _0.5}$	12	13	74	0.85	ns
alpha_avg_power H2000's_1	$H3000's_0.75$	12	13	72	0.77	ns
alpha_avg_power H2000's_1		12	13	71	0.73	ns
alpha_avg_power H3000's_0		13	13	88	0.88	ns
alpha_avg_power H3000's_0	.25 H3000's_0.75	13	13	91	0.76	ns
alpha_avg_power H3000's_0	.25 H3000's_1	13	13	86	0.96	ns
alpha_avg_power H3000's_0	.5 H3000's_0.75	13	13	84	1.00	ns
alpha_avg_power H3000's_0		13	13	82	0.92	ns
alpha_avg_power H3000's_0	.75 H3000's_1	13	13	84	1.00	ns

Cluster: 14 Alpha Wilcoxon

EEG Var Group	o_Speed_1	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
alpha_avg_power H1000)'s_0.25	H1000's_0.5	22	22	305	0.14	ns
alpha_avg_power H1000	0.25	$\rm H1000's_0.75$	22	22	291	0.26	ns
alpha_avg_power H1000)'s_0.25	H1000's_1	22	22	270	0.52	ns
alpha_avg_power H1000	0.25	${\rm H}2000' {\rm s} _0.25$	22	16	192	0.65	ns
alpha_avg_power H1000)'s_0.25	${ m H2000's} { m _0.5}$	22	16	208	0.36	ns
alpha_avg_power H1000	0.25	$H2000's_0.75$	22	16	225	0.15	ns
alpha_avg_power H1000	0.25	$H2000's_1$	22	16	195	0.59	ns
alpha_avg_power H1000	0.25	${ m H3000's} { m _0.25}$	22	18	230	0.40	ns
alpha_avg_power H1000	0.25	$H3000's_0.5$	22	18	236	0.31	ns
alpha_avg_power H1000	0.25	$H3000's_0.75$	22	18	228	0.43	ns
alpha_avg_power H1000	0.25	$H3000's_1$	22	18	248	0.18	ns
alpha_avg_power H1000	$0.5_{-0.5}$	$\rm H1000's_0.75$	22	22	219	0.60	ns
alpha_avg_power H1000	$0.5_{-0.5}$	H1000's_1	22	22	200	0.33	ns
alpha_avg_power H1000		$\rm H2000's_0.25$	22	16	156	0.57	ns
alpha_avg_power H1000	0.5	$H2000's_0.5$	22	16	172	0.92	ns
alpha_avg_power H1000	$0.5_{-0.5}$	$H2000's_0.75$	22	16	184	0.83	ns
alpha_avg_power H1000	0.5	$H2000's_1$	22	16	154	0.53	ns
alpha_avg_power H1000	0.5	${ m H3000's} { m _0.25}$	22	18	194	0.92	ns
alpha_avg_power H1000	0.5	${ m H3000's}{ m _0.5}$	22	18	190	0.84	ns
alpha_avg_power H1000	0.5	${ m H3000's} { m _0.75}$	22	18	184	0.72	ns
alpha_avg_power H1000)'s_0.5	${ m H3000's_1}$	22	18	201	0.95	ns
alpha_avg_power H1000	0.75	H1000's 1	22	22	215	0.54	$_{ m ns}$

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
alpha_avg_power	H1000's_0.75	H2000's_0.25	22	16	165	0.76	ns
alpha_avg_power	$\rm H1000's_0.75$	$H2000's_0.5$	22	16	181	0.90	ns
alpha_avg_power	H1000's_0.75	$\rm H2000's_0.75$	22	16	194	0.61	ns
alpha_avg_power	$\rm H1000's_0.75$	H2000's_1	22	16	165	0.76	ns
alpha_avg_power	$\rm H1000's_0.75$	$H3000's_0.25$	22	18	204	0.88	ns
alpha_avg_power	$\rm H1000's_0.75$	${ m H3000's} { m _0.5}$	22	18	203	0.90	ns
alpha_avg_power	$\rm H1000's_0.75$	${ m H}3000{ m 's}_0.75$	22	18	197	0.99	ns
alpha_avg_power	$\rm H1000's_0.75$	H3000's_1	22	18	219	0.58	ns
alpha_avg_power	H1000's_1	$\rm H2000's_0.25$	22	16	181	0.90	ns
alpha_avg_power	H1000's_1	${ m H2000's} { m _0.5}$	22	16	194	0.61	ns
alpha_avg_power	H1000's_1	$\rm H2000's_0.75$	22	16	206	0.39	ns
alpha_avg_power	H1000's_1	H2000's_1	22	16	177	0.99	ns
alpha_avg_power	H1000's_1	${ m H3000's} { m _0.25}$	22	18	215	0.66	ns
alpha_avg_power	H1000's_1	$H3000's_0.5$	22	18	222	0.53	ns
alpha_avg_power	H1000's_1	${ m H}3000{ m 's}_0.75$	22	18	218	0.60	ns
alpha_avg_power	H1000's_1	H3000's_1	22	18	234	0.34	ns
alpha_avg_power	$H2000's_0.25$	$H2000's_0.5$	16	16	140	0.67	ns
alpha_avg_power	$H2000's_0.25$	$\rm H2000's_0.75$	16	16	144	0.56	ns
alpha_avg_power	$H2000's_0.25$	H2000's_1	16	16	128	1.00	ns
alpha_avg_power	$H2000's_0.25$	${ m H3000's} { m _0.25}$	16	18	153	0.77	ns
alpha_avg_power	$H2000's_0.25$	${ m H}3000'{ m s}_0.5$	16	18	150	0.85	ns
alpha_avg_power		${ m H3000's} { m _0.75}$	16	18	148	0.90	ns
alpha_avg_power	$H2000's_0.25$	H3000's_1	16	18	164	0.51	ns
alpha_avg_power	$H2000's_0.5$	$H2000's_0.75$	16	16	133	0.87	ns
alpha_avg_power	$H2000's_0.5$	H2000's_1	16	16	114	0.62	ns
alpha_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.25}$	16	18	137	0.82	ns
alpha_avg_power	$H2000's_0.5$	${ m H}3000'{ m s}_0.5$	16	18	140	0.90	ns
alpha_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.75}$	16	18	141	0.93	ns
alpha_avg_power	$H2000's_0.5$	H3000's_1	16	18	144	1.00	ns
alpha_avg_power		H2000's_1	16	16	107	0.44	ns
alpha_avg_power		${ m H3000's} { m _0.25}$	16	18	139	0.88	ns
alpha_avg_power		$H3000's_0.5$	16	18	131	0.67	ns
alpha_avg_power	$H2000's_0.75$	$H3000's_0.75$	16	18	127	0.57	ns
alpha_avg_power		H3000's_1	16	18	147	0.93	ns
alpha_avg_power		$H3000's_0.25$	16	18	154	0.75	ns
alpha_avg_power		$H3000's_0.5$	16	18	159	0.62	ns
alpha_avg_power	H2000's_1	$H3000's_0.75$	16	18	153	0.77	ns
alpha_avg_power	H2000's_1	H3000's_1	16	18	165	0.48	ns
alpha_avg_power		$H3000's_0.5$	18	18	156	0.86	ns
alpha_avg_power		$H3000's_0.75$	18	18	158	0.91	ns
alpha_avg_power		H3000's_1	18	18	175	0.70	ns
alpha_avg_power		$H3000's_0.75$	18	18	154	0.81	ns
alpha_avg_power		H3000's_1	18	18	174	0.72	ns
alpha_avg_power	H3000's_0.75	H3000's_1	18	18	174	0.72	ns

BETA WILCOXON TESTS

Cluster: 3 Beta Wilcoxon

EEG Var Group_Spee	d_1	Group_Speed_2	N1	N2	Wstat	$p ext{-}value$	*sig.
beta avg power H1000's 0.2	25	H1000's 0.5	23	23	292	0.56	ns
beta avg power H1000's 0.2		H1000's 0.75	23	23	284	0.68	ns
beta avg power H1000's 0.2	5	H1000's 1	23	23	281	0.73	ns
beta avg power H1000's 0.2	5	H2000's 0.25	23	18	265	0.13	ns
beta_avg_power H1000's_0.2	25	H2000's_0.5	23	18	255	0.22	ns
beta_avg_power H1000's_0.2	25	H2000's_0.75	23	18	253	0.23	ns
beta_avg_power H1000's_0.2	25	H2000's_1	23	18	269	0.11	ns
beta_avg_power H1000's_0.2	25	$H3000's_0.25$	23	23	414	0.00	***
beta_avg_power H1000's_0.2	25	$H3000's_0.5$	23	23	390	0.00	**
beta_avg_power H1000's_0.2	5	${ m H3000's} { m _0.75}$	23	23	390	0.00	**
beta_avg_power H1000's_0.2	25	$H3000's_1$	23	23	419	0.00	***
beta_avg_power H1000's_0.5	•	$\rm H1000's_0.75$	23	23	249	0.74	ns
beta_avg_power H1000's_0.5	•	$H1000's_1$	23	23	246	0.70	ns
beta_avg_power H1000's_0.5	•	$H2000's_0.25$	23	18	259	0.18	ns
beta_avg_power H1000's_0.5	,	${ m H2000's} { m _0.5}$	23	18	238	0.43	ns
beta_avg_power H1000's_0.5	,	${ m H2000's} { m _0.75}$	23	18	241	0.38	ns
beta_avg_power H1000's_0.5	,	$H2000's_1$	23	18	264	0.14	ns
beta_avg_power H1000's_0.5	· •	${ m H3000's} { m _0.25}$	23	23	410	0.00	**
beta_avg_power H1000's_0.5	•	$H3000's_0.5$	23	23	386	0.01	**
beta_avg_power H1000's_0.5	•	${ m H3000's} { m _0.75}$	23	23	381	0.01	**
beta_avg_power H1000's_0.5	•	$H3000's_1$	23	23	420	0.00	***
beta_avg_power H1000's_0.7	5	$H1000's_1$	23	23	266	0.98	ns
beta_avg_power H1000's_0.7	5	${\rm H}2000' {\rm s} _0.25$	23	18	263	0.15	ns
beta_avg_power H1000's_0.7	5	$H2000's_0.5$	23	18	244	0.34	ns
beta_avg_power H1000's_0.7	5	$H2000's_0.75$	23	18	239	0.41	ns
beta_avg_power H1000's_0.7	5	$H2000's_1$	23	18	268	0.11	ns
beta_avg_power H1000's_0.7	5	${ m H3000's} { m _0.25}$	23	23	409	0.00	**
beta_avg_power H1000's_0.7	5	$H3000's_0.5$	23	23	392	0.00	**
beta_avg_power H1000's_0.7	5	${ m H3000's} { m _0.75}$	23	23	391	0.00	**
beta_avg_power H1000's_0.7	5	${ m H3000's}{ m _1}$	23	23	428	0.00	***
$beta_avg_power~H1000$ 's_1		${\rm H}2000' {\rm s} _0.25$	23	18	260	0.17	ns
$beta_avg_power~H1000's_1$		${ m H2000's} { m _0.5}$	23	18	243	0.36	ns
$beta_avg_power~H1000's_1$		${ m H2000's} { m _0.75}$	23	18	245	0.33	ns
$beta_avg_power~H1000$ 's_1		$H2000's_1$	23	18	268	0.11	ns
$beta_avg_power~H1000's_1$		${ m H3000's} { m _0.25}$	23	23	415	0.00	***
$beta_avg_power~H1000's_1$		${ m H3000's} { m _0.5}$	23	23	391	0.00	**
$beta_avg_power~H1000's_1$		${ m H3000's} { m _0.75}$	23	23	384	0.01	**
$beta_avg_power~H1000's_1$		H3000's_1	23	23	424	0.00	***
beta_avg_power H2000's_0.2	25	${ m H2000's} { m _0.5}$	18	18	152	0.77	ns
beta_avg_power H2000's_0.2	25	$H2000's_0.75$	18	18	155	0.84	ns
beta_avg_power H2000's_0.2	25	$H2000's_1$	18	18	161	0.99	ns
beta_avg_power H2000's_0.2	25	${ m H3000's} { m _0.25}$	18	23	226	0.63	ns
beta_avg_power H2000's_0.2	25	$H3000's_0.5$	18	23	218	0.78	ns
beta_avg_power H2000's_0.2	25	${ m H}3000'{ m s}_0.75$	18	23	216	0.82	ns
beta_avg_power H2000's_0.2	25	H3000's_1	18	23	244	0.34	ns
beta_avg_power H2000's_0.5		$H2000's_0.75$	18	18	164	0.96	ns
beta_avg_power H2000's_0.5	,	H2000's_1	18	18	171	0.79	ns
beta_avg_power H2000's_0.5	,	${ m H3000's} { m _0.25}$	18	23	246	0.32	$_{ m ns}$
beta_avg_power H2000's_0.5		${ m H3000's} { m _0.5}$	18	23	229	0.58	ns
beta_avg_power H2000's_0.5	,	${ m H3000's} { m _0.75}$	18	23	232	0.52	$_{ m ns}$
beta_avg_power H2000's_0.5	,	$\rm H3000's_1$	18	23	258	0.19	$_{ m ns}$
beta_avg_power H2000's_0.7	5	H2000's_1	18	18	173	0.74	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power	· H2000's_0.75	H3000's_0.25	18	23	243	0.36	ns
beta_avg_power	H2000's_0.75	${ m H3000's} { m _0.5}$	18	23	234	0.49	ns
beta_avg_power	H2000's_0.75	$H3000's_0.75$	18	23	237	0.44	ns
beta_avg_power	H2000's_0.75	H3000's_1	18	23	259	0.18	ns
beta_avg_power	· H2000's_1	${ m H3000's} { m _0.25}$	18	23	233	0.51	ns
beta_avg_power	H2000's_1	${ m H}3000'{ m s}_0.5$	18	23	227	0.61	ns
beta_avg_power	· H2000's_1	$H3000's_0.75$	18	23	220	0.74	ns
beta_avg_power	· H2000's_1	H3000's_1	18	23	247	0.30	ns
beta_avg_power	· H3000's_0.25	${ m H3000's} { m _0.5}$	23	23	251	0.78	ns
beta_avg_power	· H3000's_0.25	$H3000's_0.75$	23	23	244	0.66	ns
beta_avg_power	· H3000's_0.25	H3000's_1	23	23	286	0.65	ns
beta_avg_power	· H3000's_0.5	$H3000's_0.75$	23	23	263	0.98	ns
beta_avg_power	· H3000's_0.5	H3000's_1	23	23	308	0.35	ns
beta_avg_power	· H3000's_0.75	$\rm H3000's_1$	23	23	314	0.28	ns

Cluster: 4 Beta Wilcoxon

EEG Var Group_Speed	1 Group_Speed_2	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power H1000's_0.25	H1000's_0.5	18	18	156	0.86	ns
$beta_avg_power~H1000's_0.25$	$\rm H1000's_0.75$	18	18	162	1.00	ns
$beta_avg_power~H1000's_0.25$	H1000's_1	18	18	164	0.96	ns
$beta_avg_power~H1000's_0.25$	$H2000's_0.25$	18	16	102	0.15	ns
$beta_avg_power~H1000's_0.25$	$H2000's_0.5$	18	16	110	0.25	ns
$beta_avg_power~H1000's_0.25$	${ m H2000's} { m _0.75}$	18	16	112	0.28	$_{ m ns}$
$beta_avg_power~H1000's_0.25$	$H2000's_1$	18	16	109	0.24	$_{ m ns}$
$beta_avg_power~H1000's_0.25$	${ m H3000's} { m _0.25}$	18	16	98	0.12	ns
$beta_avg_power~H1000's_0.25$	${ m H3000's} { m _0.5}$	18	16	91	0.07	ns
$beta_avg_power~H1000's_0.25$	${ m H3000's} { m _0.75}$	18	16	104	0.17	ns
$beta_avg_power~H1000's_0.25$	H3000's_1	18	16	106	0.20	ns
$beta_avg_power~H1000's_0.5$	$\rm H1000's_0.75$	18	18	163	0.99	ns
$beta_avg_power~H1000's_0.5$	H1000's_1	18	18	170	0.81	ns
$beta_avg_power~H1000's_0.5$	${ m H2000's} { m _0.25}$	18	16	100	0.14	ns
$beta_avg_power~H1000's_0.5$	${ m H2000's} { m _0.5}$	18	16	117	0.36	ns
$beta_avg_power~H1000's_0.5$	${ m H2000's} { m _0.75}$	18	16	116	0.35	ns
$beta_avg_power~H1000's_0.5$	$H2000's_{1}$	18	16	109	0.24	ns
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.25}$	18	16	103	0.16	ns
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.5}$	18	16	96	0.10	ns
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.75}$	18	16	108	0.22	ns
$beta_avg_power~H1000's_0.5$	H3000's_1	18	16	114	0.31	ns
$beta_avg_power~H1000's_0.75$	H1000's_1	18	18	166	0.91	ns
$beta_avg_power~H1000's_0.75$	${ m H2000's} { m _0.25}$	18	16	102	0.15	ns
$beta_avg_power~H1000's_0.75$	${ m H2000's} { m _0.5}$	18	16	113	0.30	ns
$beta_avg_power~H1000's_0.75$	${ m H2000's} { m _0.75}$	18	16	114	0.31	ns
$beta_avg_power~H1000's_0.75$	H2000's_1	18	16	108	0.22	ns
$beta_avg_power~H1000's_0.75$	${ m H3000's} { m _0.25}$	18	16	104	0.17	$_{ m ns}$
$beta_avg_power~H1000's_0.75$	${ m H3000's} { m _0.5}$	18	16	98	0.12	ns
$beta_avg_power~H1000's_0.75$	${ m H3000's} { m _0.75}$	18	16	111	0.27	ns
beta_avg_power H1000's_0.75	$H3000's_{1}$	18	16	116	0.35	ns
beta_avg_power H1000's_1	$H2000's_0.25$	18	16	101	0.14	ns
beta_avg_power H1000's_1	$\rm H2000's_0.5$	18	16	114	0.31	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
beta_avg_power	H1000's_1	H2000's_0.75	18	16	114	0.31	ns
beta_avg_power		H2000's_1	18	16	107	0.21	ns
beta_avg_power	H1000's_1	${ m H3000's} { m _0.25}$	18	16	99	0.13	ns
beta_avg_power	H1000's_1	$H3000's_0.5$	18	16	96	0.10	ns
beta_avg_power	H1000's_1	$H3000's_0.75$	18	16	109	0.24	ns
beta_avg_power	H1000's_1	$H3000's_1$	18	16	112	0.28	ns
beta_avg_power	$\rm H2000's_0.25$	$H2000's_0.5$	16	16	137	0.75	ns
beta_avg_power	$\rm H2000's_0.25$	$\rm H2000's_0.75$	16	16	142	0.62	ns
beta_avg_power	$\rm H2000's_0.25$	$H2000's_1$	16	16	144	0.56	ns
beta_avg_power	$\rm H2000's_0.25$	${ m H3000's} { m _0.25}$	16	16	136	0.78	ns
beta_avg_power	$H2000's_0.25$	$H3000's_0.5$	16	16	133	0.87	ns
beta_avg_power	$H2000's_0.25$	$H3000's_0.75$	16	16	142	0.62	ns
beta_avg_power	$H2000's_0.25$	H3000's_1	16	16	145	0.54	ns
beta_avg_power	$H2000's_0.5$	$H2000's_0.75$	16	16	131	0.93	ns
beta_avg_power	$H2000's_0.5$	$H2000's_1$	16	16	136	0.78	ns
beta_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.25}$	16	16	126	0.96	ns
beta_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.5}$	16	16	125	0.93	ns
beta_avg_power	$H2000's_0.5$	${ m H3000's} { m _0.75}$	16	16	131	0.93	ns
beta_avg_power	$H2000's_0.5$	$H3000's_1$	16	16	135	0.81	ns
beta_avg_power	$\rm H2000's_0.75$	$H2000's_1$	16	16	134	0.84	ns
beta_avg_power	$\rm H2000's_0.75$	${ m H3000's} { m _0.25}$	16	16	118	0.72	ns
beta_avg_power	$H2000's_0.75$	$H3000's_0.5$	16	16	120	0.78	ns
beta_avg_power	$\rm H2000's_0.75$	${ m H3000's} { m _0.75}$	16	16	130	0.96	ns
beta_avg_power	$\rm H2000's_0.75$	$H3000's_1$	16	16	130	0.96	ns
beta_avg_power	$H2000's_1$	${ m H3000's} { m _0.25}$	16	16	117	0.70	ns
beta_avg_power	H2000's_1	$H3000's_0.5$	16	16	117	0.70	ns
beta_avg_power	$H2000's_1$	$H3000's_0.75$	16	16	124	0.90	ns
beta_avg_power	$H2000's_1$	H3000's_1	16	16	126	0.96	ns
beta_avg_power	$H3000's_0.25$	$H3000's_0.5$	16	16	130	0.96	ns
beta_avg_power	$H3000's_0.25$	$H3000's_0.75$	16	16	139	0.70	$_{ m ns}$
beta_avg_power	$H3000's_0.25$	H3000's_1	16	16	143	0.59	$_{ m ns}$
beta_avg_power	$H3000's_0.5$	H3000's_0.75	16	16	137	0.75	ns
beta_avg_power	$H3000's_0.5$	H3000's_1	16	16	140	0.67	ns
beta_avg_power	${ m H3000's} { m _0.75}$	$H3000's_1$	16	16	131	0.93	ns

Cluster: 5 Beta Wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_powe	er H1000's_0.25	$\rm H1000's_0.5$	24	24	330	0.40	ns
beta_avg_powe	er H1000's_0.25	$\rm H1000's_0.75$	24	24	335	0.34	ns
beta_avg_powe	er H1000's_0.25	$\rm H1000's_1$	24	24	333	0.36	ns
beta_avg_powe	er H1000's_0.25	$\rm H2000's_0.25$	24	21	339	0.05	*
beta_avg_powe	er H1000's_0.25	$H2000's_0.5$	24	21	356	0.02	*
beta_avg_powe	er H1000's_0.25	$H2000's_0.75$	24	21	370	0.01	**
beta_avg_powe	er H1000's_0.25	H2000's_1	24	21	375	0.00	**
beta_avg_powe	er H1000's_0.25	$H3000's_0.25$	24	22	195	0.13	ns
beta_avg_powe	er H1000's_0.25	$H3000's_0.5$	24	22	190	0.11	ns
beta_avg_powe	er H1000's_0.25	$H3000's_0.75$	24	22	206	0.21	ns
beta_avg_powe	er H1000's_0.25	H3000's_1	24	22	217	0.31	ns
beta_avg_powe	er H1000's_0.5	$\rm H1000's_0.75$	24	24	287	0.99	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power H1000's_0.5	H1000's_1	24	24	273	0.77	ns
beta_avg_power H1000's_0.5	$H2000's_0.25$	24	21	319	0.13	ns
beta_avg_power H1000's_0.5	${\rm H}2000' {\rm s}_0.5$	24	21	333	0.07	ns
beta_avg_power H1000's_0.5	$H2000's_0.75$	24	21	348	0.03	*
beta_avg_power H1000's_0.5	H2000's_1	24	21	351	0.02	*
beta_avg_power H1000's_0.5	${ m H3000's} { m _0.25}$	24	22	173	0.05	*
beta_avg_power H1000's_0.5	${ m H3000's} { m _0.5}$	24	22	176	0.05	ns
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.75}$	24	22	190	0.11	ns
$beta_avg_power~H1000's_0.5$	${ m H3000's}{ m _1}$	24	22	205	0.20	ns
$beta_avg_power~H1000's_0.75$	$\rm H1000's_1$	24	24	273	0.77	ns
$beta_avg_power~H1000's_0.75$	${\rm H}2000' {\rm s}_0.25$	24	21	321	0.12	ns
$beta_avg_power~H1000's_0.75$	${\rm H}2000' {\rm s} _0.5$	24	21	338	0.05	ns
$beta_avg_power~H1000's_0.75$	$\rm H2000's_0.75$	24	21	352	0.02	*
$beta_avg_power~H1000's_0.75$	$H2000's_{1}$	24	21	349	0.03	*
$beta_avg_power~H1000$'s $_0.75$	$H3000's_0.25$	24	22	171	0.04	*
$beta_avg_power~H1000's_0.75$	${ m H3000's} { m _0.5}$	24	22	173	0.05	*
$beta_avg_power~H1000's_0.75$	${ m H}3000'{ m s}_0.75$	24	22	189	0.10	ns
$beta_avg_power~H1000's_0.75$	${ m H3000's}{ m _1}$	24	22	201	0.17	ns
beta_avg_power H1000's_1	${\rm H}2000' {\rm s}_0.25$	24	21	324	0.10	ns
beta_avg_power H1000's_1	${\rm H}2000' {\rm s} _0.5$	24	21	335	0.06	ns
beta_avg_power H1000's_1	${ m H2000's} { m _0.75}$	24	21	351	0.02	*
beta_avg_power H1000's_1	H2000's_1	24	21	352	0.02	*
beta_avg_power H1000's_1	${ m H3000's} { m _0.25}$	24	22	171	0.04	*
beta_avg_power H1000's_1	${ m H3000's}{ m _0.5}$	24	22	171	0.04	*
beta_avg_power H1000's_1	${ m H3000's} { m _0.75}$	24	22	190	0.11	ns
beta_avg_power H1000's_1	${ m H3000's}{ m _1}$	24	22	204	0.19	ns
$beta_avg_power~H2000's_0.25$	${\rm H}2000'{\rm s}_0.5$	21	21	244	0.57	ns
$beta_avg_power~H2000's_0.25$	$\rm H2000's_0.75$	21	21	234	0.75	ns
$beta_avg_power~H2000's_0.25$	$H2000's_{1}$	21	21	247	0.52	ns
$beta_avg_power~H2000's_0.25$	${ m H3000's} { m _0.25}$	21	22	143	0.03	*
$beta_avg_power~H2000's_0.25$	$H3000's_0.5$	21	22	152	0.06	ns
$beta_avg_power~H2000's_0.25$	${ m H}3000{ m 's}_0.75$	21	22	160	0.09	ns
$beta_avg_power~H2000's_0.25$	H3000's_1	21	22	165	0.11	ns
beta_avg_power $H2000$ 's_ 0.5	$H2000's_0.75$	21	21	218	0.96	ns
$beta_avg_power~H2000's_0.5$	$H2000's_1$	21	21	220	1.00	ns
$beta_avg_power~H2000's_0.5$	${ m H3000's} { m _0.25}$	21	22	127	0.01	*
beta_avg_power $H2000$ 's_ 0.5	$H3000's_0.5$	21	22	144	0.04	*
beta_avg_power $H2000$ 's_ 0.5	${ m H}3000{ m 's}_0.75$	21	22	143	0.03	*
beta_avg_power $H2000$ 's_ 0.5	H3000's_1	21	22	152	0.06	ns
$beta_avg_power H2000's_0.75$	$H2000's_1$	21	21	223	0.96	ns
$beta_avg_power H2000's_0.75$	${ m H3000's} { m _0.25}$	21	22	120	0.01	**
$beta_avg_power H2000's_0.75$	$H3000's_0.5$	21	22	138	0.02	*
$beta_avg_power~H2000's_0.75$	$H3000's_0.75$	21	22	137	0.02	*
$beta_avg_power H2000's_0.75$	H3000's_1	21	22	139	0.03	*
beta_avg_power H2000's_1	H3000's_0.25	21	22	114	0.00	**
beta_avg_power H2000's_1	H3000's_0.5	21	22	123	0.01	**
beta_avg_power H2000's_1	H3000's_0.75	21	22	128	0.01	*
beta_avg_power H2000's_1	H3000's_1	21	22	132	0.02	*
beta_avg_power H3000's_0.25	H3000's_0.5	22	22	244	0.97	ns
beta_avg_power H3000's_0.25	H3000's_0.75	22	22	254	0.79	ns
beta_avg_power H3000's_0.25	H3000's_1	22	22	280	0.38	ns
beta_avg_power H3000's_0.5	$H3000's_0.75$	22	22	252	0.82	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power	· H3000's_0.5	H3000's_1	22	22	279	0.40	ns
beta_avg_power	· H3000's_0.75	H3000's_1	22	22	265	0.60	ns

Cluster: 6 Beta Wilcoxon

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
beta_avg_power H1000's_0.25	H1000's_0.5	18	18	161	0.99	ns
beta avg power H1000's 0.25	H1000's 0.75	18	18	183	0.52	$_{ m ns}$
beta_avg_power H1000's_0.25	H1000's_1	18	18	179	0.61	$_{ m ns}$
beta_avg_power H1000's_0.25	$H2000's_0.25$	18	13	153	0.16	$_{ m ns}$
beta_avg_power H1000's_0.25	$H2000's_0.5$	18	13	161	0.08	$_{ m ns}$
beta_avg_power H1000's_0.25	$H2000's_0.75$	18	13	159	0.10	$_{ m ns}$
beta_avg_power H1000's_0.25	$H2000's_{1}$	18	13	155	0.14	$_{ m ns}$
beta avg power H1000's 0.25	H3000's 0.25	18	11	111	0.61	$_{ m ns}$
beta avg power H1000's 0.25	H3000's 0.5	18	11	113	0.55	$_{ m ns}$
beta_avg_power H1000's_0.25	H3000's 0.75	18	11	115	0.49	$_{ m ns}$
beta_avg_power H1000's_0.25	H3000's 1	18	11	119	0.39	$_{ m ns}$
beta_avg_power H1000's_0.5	$H1000's_0.75$	18	18	182	0.54	$_{ m ns}$
beta_avg_power H1000's_0.5	H1000's 1	18	18	169	0.84	$_{ m ns}$
beta_avg_power H1000's_0.5	H2000's 0.25	18	13	151	0.18	$_{ m ns}$
beta_avg_power H1000's_0.5	H2000's 0.5	18	13	157	0.12	$_{ m ns}$
beta avg power H1000's 0.5	H2000's 0.75	18	13	162	0.07	$_{ m ns}$
beta avg power H1000's 0.5	H2000's 1	18	13	152	0.17	ns
beta avg power H1000's 0.5	H3000's 0.25	18	11	110	0.64	$_{ m ns}$
beta avg power H1000's 0.5	H3000's 0.5	18	11	112	0.58	ns
beta avg power H1000's 0.5	H3000's 0.75	18	11	112	0.58	$_{ m ns}$
beta avg power H1000's 0.5	H3000's 1	18	11	120	0.36	$_{ m ns}$
beta_avg_power H1000's_0.75	H1000's 1	18	18	158	0.91	$_{ m ns}$
beta_avg_power H1000's_0.75	H2000's 0.25	18	13	146	0.26	ns
beta_avg_power H1000's_0.75	H2000's 0.5	18	13	158	0.11	ns
beta avg power H1000's 0.75	H2000's 0.75	18	13	155	0.14	ns
beta avg power H1000's 0.75	H2000's 1	18	13	146	0.26	ns
beta avg power H1000's 0.75	H3000's 0.25	18	11	100	0.98	ns
beta_avg_power H1000's_0.75	H3000's 0.5	18	11	105	0.81	$_{ m ns}$
beta_avg_power H1000's_0.75	H3000's 0.75	18	11	106	0.77	$_{ m ns}$
beta_avg_power H1000's_0.75	H3000's 1	18	11	111	0.61	ns
beta_avg_power H1000's_1	H2000's 0.25	18	13	151	0.18	ns
beta_avg_power H1000's_1	H2000's 0.5	18	13	158	0.11	ns
beta_avg_power H1000's_1	H2000's 0.75	18	13	157	0.12	ns
beta avg power H1000's 1	H2000's 1	18	13	156	0.12	ns
beta_avg_power H1000's_1	H3000's 0.25	18	11	112	0.58	ns
beta_avg_power H1000's_1	$H3000's_0.5$	18	11	114	0.52	$_{ m ns}$
beta_avg_power H1000's_1	H3000's_0.75	18	11	111	0.61	ns
beta_avg_power H1000's_1	H3000's 1	18	11	117	0.44	ns
beta_avg_power H2000's_0.25	H2000's 0.5	13	13	91	0.76	ns
beta_avg_power H2000's_0.25	H2000's 0.75	13	13	94	0.65	ns
beta_avg_power H2000's_0.25	H2000's 1	13	13	83	0.96	ns
beta_avg_power H2000's_0.25	H3000's 0.25	13	11	59	0.49	ns
beta avg power H2000's 0.25	H3000's 0.5	13	11	63	0.65	ns
beta_avg_power H2000's_0.25	H3000's 0.75	13	11	56	0.39	ns
	<u>-</u>	~	_			

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
beta_avg_power	· H2000's_0.25	H3000's_1	13	11	62	0.61	ns
beta_avg_power	· H2000's_0.5	$\rm H2000's_0.75$	13	13	91	0.76	ns
beta_avg_power	: H2000's_0.5	H2000's_1	13	13	82	0.92	ns
beta_avg_power	· H2000's_0.5	${ m H3000's} { m _0.25}$	13	11	52	0.28	ns
beta_avg_power	· H2000's_0.5	${ m H3000's}{ m _0.5}$	13	11	55	0.36	ns
beta_avg_power	· H2000's_0.5	${ m H3000's} { m _0.75}$	13	11	54	0.33	ns
beta_avg_power	· H2000's_0.5	${ m H3000's}{ m _1}$	13	11	59	0.49	ns
beta_avg_power	· H2000's_0.75	$H2000's_{1}$	13	13	79	0.80	ns
beta_avg_power	· H2000's_0.75	${ m H3000's} { m _0.25}$	13	11	52	0.28	ns
beta_avg_power	· H2000's_0.75	${ m H3000's}{ m _0.5}$	13	11	54	0.33	ns
beta_avg_power	· H2000's_0.75	${ m H3000's} { m _0.75}$	13	11	51	0.25	ns
beta_avg_power	· H2000's_0.75	${ m H3000's}{ m _1}$	13	11	58	0.46	ns
beta_avg_power	· H2000's_1	${ m H3000's} { m _0.25}$	13	11	55	0.36	ns
beta_avg_power	· H2000's_1	$H3000's_0.5$	13	11	58	0.46	ns
beta_avg_power	· H2000's_1	${ m H3000's} { m _0.75}$	13	11	54	0.33	ns
beta_avg_power	· H2000's_1	${ m H3000's}{ m _1}$	13	11	64	0.69	ns
beta_avg_power	· H3000's_0.25	${ m H3000's}{ m _0.5}$	11	11	63	0.90	ns
beta_avg_power	· H3000's_0.25	${ m H3000's} { m _0.75}$	11	11	59	0.95	ns
beta_avg_power	· H3000's_0.25	H3000's_1	11	11	66	0.75	ns
beta_avg_power	· H3000's_0.5	${ m H3000's} { m _0.75}$	11	11	57	0.85	ns
beta_avg_power	· H3000's_0.5	H3000's_1	11	11	64	0.85	ns
beta_avg_power	· H3000's_0.75	H3000's_1	11	11	66	0.75	ns

Cluster: 7 Beta Wilcoxon

EEG Var Group_S	$Speed_1 Group_Speed_1$	_2 N1	N2	Wstat	p-value	*sig.
beta_avg_power H1000's_	_0.25 H1000's0.5	16	16	124	0.90	ns
beta_avg_power H1000's_	_0.25 H1000's0.75	16	16	131	0.93	ns
beta_avg_power H1000's_	_0.25 H1000's_1	16	16	143	0.59	ns
beta_avg_power H1000's_	_0.25 H2000's0.25	16	11	110	0.29	ns
beta_avg_power H1000's_	_0.25 H2000's0.5	16	11	110	0.29	ns
beta_avg_power $H1000$ 's_	_0.25 H2000's0.75	16	11	110	0.29	ns
beta_avg_power $H1000$ 's_	_0.25 H2000's_1	16	11	106	0.39	ns
$beta_avg_power~H1000$ 's_	_0.25 H3000's0.25	16	11	86	0.94	ns
$beta_avg_power~H1000$ 's_	_0.25 H3000's0.5	16	11	96	0.72	ns
$beta_avg_power~H1000$ 's_	_0.25 H3000's0.75	16	11	100	0.58	ns
$beta_avg_power~H1000$ 's_	_0.25 H3000's_1	16	11	105	0.42	ns
$beta_avg_power~H1000$ 's_	_0.5 H1000's0.75	16	16	134	0.84	ns
$beta_avg_power~H1000$ 's_	_0.5 H1000's1	16	16	146	0.52	ns
$beta_avg_power~H1000$ 's_	_0.5 H2000's0.25	16	11	110	0.29	ns
$beta_avg_power~H1000$ 's_	_0.5 H2000's0.5	16	11	111	0.27	ns
beta_avg_power H1000's_	_0.5 H2000's0.75	16	11	115	0.20	ns
beta_avg_power H1000's_	$_{-}0.5$ H2000's $_{-}1$	16	11	110	0.29	ns
beta_avg_power H1000's_	_0.5 H3000's0.25	16	11	87	0.98	ns
$beta_avg_power~H1000$ 's_	_0.5 H3000's0.5	16	11	99	0.61	ns
$beta_avg_power~H1000$ 's_	_0.5 H3000's0.75	16	11	101	0.54	ns
beta_avg_power H1000's_	_0.5 H3000's_1	16	11	108	0.34	ns
beta_avg_power H1000's_	_0.75 H1000's_1	16	16	140	0.67	ns
beta_avg_power $H1000$ 's_	_0.75 H2000's0.25	16	11	107	0.37	ns
$beta_avg_power~H1000's_$	_0.75 H2000's0.5	16	11	110	0.29	ns

EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
beta_avg_power H1000's_0.75	${ m H2000's} { m _0.75}$	16	11	111	0.27	ns
beta_avg_power H1000's_0.75	$H2000's_1$	16	11	108	0.34	ns
beta_avg_power H1000's_0.75	$H3000's_0.25$	16	11	80	0.72	ns
beta_avg_power H1000's_0.75	$H3000's_0.5$	16	11	95	0.75	ns
beta_avg_power H1000's_0.75	$H3000's_0.75$	16	11	97	0.68	ns
beta_avg_power H1000's_0.75	$H3000's_1$	16	11	100	0.58	ns
beta_avg_power H1000's_1	$\rm H2000's_0.25$	16	11	105	0.42	ns
beta_avg_power H1000's_1	$H2000's_0.5$	16	11	108	0.34	ns
beta_avg_power H1000's_1	$\rm H2000's_0.75$	16	11	107	0.37	ns
beta_avg_power H1000's_1	$H2000's_1$	16	11	101	0.54	ns
beta_avg_power H1000's_1	${ m H3000's} { m _0.25}$	16	11	82	0.79	ns
beta_avg_power H1000's_1	$H3000's_0.5$	16	11	89	0.98	ns
beta_avg_power H1000's_1	$H3000's_0.75$	16	11	93	0.83	ns
beta_avg_power H1000's_1	H3000's_1	16	11	95	0.75	ns
$beta_avg_power~H2000$'s $_0.25$	$H2000's_0.5$	11	11	67	0.70	ns
$beta_avg_power~H2000's_0.25$	$\rm H2000's_0.75$	11	11	69	0.61	ns
$beta_avg_power~H2000's_0.25$	$H2000's_1$	11	11	62	0.95	ns
$beta_avg_power~H2000's_0.25$	${ m H3000's} { m _0.25}$	11	11	50	0.52	ns
$beta_avg_power~H2000's_0.25$	$H3000's_0.5$	11	11	52	0.61	ns
$beta_avg_power~H2000's_0.25$	$H3000's_0.75$	11	11	56	0.80	ns
$beta_avg_power~H2000's_0.25$	$H3000's_1$	11	11	57	0.85	ns
$beta_avg_power~H2000$'s $_0.5$	$\rm H2000's_0.75$	11	11	59	0.95	ns
$beta_avg_power~H2000$'s $_0.5$	$H2000's_1$	11	11	55	0.75	ns
$beta_avg_power~H2000$'s $_0.5$	${ m H3000's} { m _0.25}$	11	11	44	0.30	ns
$beta_avg_power~H2000$'s $_0.5$	$H3000's_0.5$	11	11	50	0.52	ns
$beta_avg_power~H2000$'s $_0.5$	$H3000's_0.75$	11	11	51	0.56	ns
$beta_avg_power~H2000's_0.5$	$H3000's_1$	11	11	58	0.90	ns
$beta_avg_power~H2000's_0.75$	$H2000's_1$	11	11	57	0.85	ns
$beta_avg_power~H2000$'s $_0.75$	${ m H3000's} { m _0.25}$	11	11	43	0.27	ns
$beta_avg_power~H2000$'s $_0.75$	$H3000's_0.5$	11	11	49	0.48	ns
$beta_avg_power~H2000$'s $_0.75$	$H3000's_0.75$	11	11	51	0.56	ns
$beta_avg_power~H2000's_0.75$	$H3000's_1$	11	11	58	0.90	ns
beta_avg_power H2000's_1	${ m H3000's} { m _0.25}$	11	11	48	0.44	ns
beta_avg_power H2000's_1	${ m H3000's}{ m _0.5}$	11	11	53	0.65	ns
beta_avg_power H2000's_1	$H3000's_0.75$	11	11	53	0.65	ns
beta_avg_power H2000's_1	$H3000's_1$	11	11	57	0.85	ns
$beta_avg_power~H3000$'s $_0.25$	$H3000's_0.5$	11	11	68	0.65	ns
$beta_avg_power~H3000$'s $_0.25$	$H3000's_0.75$	11	11	69	0.61	ns
$beta_avg_power~H3000's_0.25$	${ m H3000's_1}$	11	11	76	0.33	ns
$beta_avg_power~H3000's_0.5$	${ m H3000's} { m _0.75}$	11	11	60	1.00	ns
$beta_avg_power~H3000's_0.5$	${ m H3000's_1}$	11	11	69	0.61	ns
$beta_avg_power~H3000's_0.75$	$\rm H3000's_1$	11	11	65	0.80	ns

Cluster: 8 Beta Wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_powe	er H1000's_0.25	H1000's_0.5	15	15	124	0.65	ns
beta_avg_powe	er H1000's_0.25	$\rm H1000's_0.75$	15	15	119	0.81	$_{ m ns}$
beta_avg_powe	er H1000's_0.25	H1000's_1	15	15	121	0.74	$_{ m ns}$
beta_avg_powe	er H1000's_0.25	${\rm H}2000' {\rm s}_0.25$	15	8	82	0.17	ns

EEG Var Group_	_Speed1	Group_Speed_2	N1	N2	Wstat	p-value	*sig.
beta_avg_power H1000's		${\rm H}2000{\rm 's}_0.5$	15	8	77	0.29	ns
beta_avg_power H1000's		${ m H2000's} { m _0.75}$	15	8	75	0.36	ns
beta_avg_power H1000's	$s_{-}0.25$	H2000's_1	15	8	82	0.17	ns
beta_avg_power H1000's	$s_{-}0.25$	${ m H3000's} { m _0.25}$	15	11	68	0.47	ns
beta_avg_power H1000's	$s_{-}0.25$	${ m H3000's} { m _0.5}$	15	11	74	0.68	ns
beta_avg_power H1000's	$s_{-}0.25$	${ m H3000's} { m _0.75}$	15	11	75	0.72	ns
beta_avg_power H1000's	$s_{-}0.25$	$H3000's_1$	15	11	93	0.61	ns
beta_avg_power H1000's	$s_{-}0.5$	$\rm H1000's_0.75$	15	15	115	0.94	ns
beta_avg_power H1000's	$s_{-}0.5$	H1000's_1	15	15	113	1.00	ns
beta_avg_power H1000's	$s_{-}0.5$	${\rm H}2000' {\rm s} _0.25$	15	8	77	0.29	ns
beta_avg_power H1000's	$s_{-}0.5$	$\rm H2000's_0.5$	15	8	72	0.47	ns
beta_avg_power H1000's	$s_{-}0.5$	${ m H2000's} { m _0.75}$	15	8	74	0.39	ns
beta_avg_power H1000's	$s_{-}0.5$	$H2000's_1$	15	8	80	0.21	ns
beta_avg_power H1000's	$s_{-}0.5$	${ m H3000's} { m _0.25}$	15	11	63	0.33	ns
beta_avg_power H1000's	$s_{-}0.5$	$H3000's_0.5$	15	11	66	0.41	ns
beta_avg_power H1000's	$s_{-}0.5$	${ m H3000's} { m _0.75}$	15	11	73	0.65	ns
beta_avg_power H1000's	$s_{-}0.5$	H3000's_1	15	11	85	0.92	$_{ m ns}$
beta_avg_power H1000's	$s_{-}0.75$	H1000's_1	15	15	111	0.97	ns
beta_avg_power H1000's	s = 0.75	H2000's 0.25	15	8	77	0.29	ns
beta_avg_power H1000's		H2000's 0.5	15	8	71	0.51	ns
beta_avg_power H1000's		H2000's 0.75	15	8	73	0.43	ns
beta_avg_power H1000's		H2000's 1	15	8	79	0.24	ns
beta_avg_power H1000's		$H3000's_0.25$	15	11	59	0.24	ns
beta_avg_power H1000's		H3000's_0.5	15	11	62	0.30	ns
beta_avg_power H1000's		H3000's 0.75	15	11	69	0.51	ns
beta_avg_power H1000's		H3000's 1	15	11	88	0.80	ns
beta_avg_power H1000's		H2000's 0.25	15	8	77	0.29	ns
beta_avg_power H1000's		H2000's_0.5	15	8	71	0.51	ns
beta_avg_power H1000's		H2000's 0.75	15	8	71	0.51	ns
beta_avg_power H1000's		H2000's 1	15	8	78	0.26	ns
beta_avg_power H1000's		H3000's 0.25	15	11	60	0.26	ns
beta_avg_power H1000's		H3000's_0.5	15	11	64	0.36	ns
beta_avg_power H1000's		H3000's_0.75	15	11	72	0.61	ns
beta_avg_power H1000's		H3000's 1	15	11	82	1.00	ns
beta avg power H2000's		H2000's 0.5	8	8	28	0.72	ns
beta_avg_power H2000's		H2000's_0.75	8	8	28	0.72	ns
beta_avg_power H2000's		H2000's_1	8	8	35	0.80	ns
beta_avg_power H2000's		H3000's_0.25	8	11	$\frac{33}{27}$	0.18	ns
beta_avg_power H2000's		H3000's 0.5	8	11	29	0.24	ns
beta_avg_power H2000's		H3000's_0.75	8	11	$\frac{23}{32}$	0.35	ns
beta avg power H2000's		H3000's_1	8	11	33	0.40	ns
beta_avg_power H2000's		H2000's 0.75	8	8	33	0.96	ns
beta_avg_power H2000's		H2000's 1	8	8	38	0.57	ns
beta_avg_power H2000's		H3000's 0.25	8	11	$\frac{30}{32}$	0.35	ns
beta_avg_power H2000's		H3000's 0.5	8	11	33	0.40	ns
beta_avg_power H2000's		H3000's 0.75	8	11	33	0.40	ns
beta_avg_power H2000's		H3000's 1	8	11	36	0.40 0.54	
beta_avg_power H2000's		H2000's_1	8	8	30 37	$0.54 \\ 0.64$	ns ns
beta_avg_power H2000's		H3000's_0.25	8	11	30	0.04 0.27	ns
beta_avg_power H2000's		H3000's_0.25	8	11	$\frac{30}{32}$	0.27 0.35	
beta_avg_power H2000's		H3000's 0.75	8	11	$\frac{32}{32}$	$0.35 \\ 0.35$	ns
<u> </u>		H3000's 1		11	32 33	$0.35 \\ 0.40$	ns
beta_avg_power H2000's	s_0.75	115000 S_1	8	11	აა	0.40	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
beta_avg_power	H2000's_1	H3000's_0.25	8	11	25	0.13	ns
beta_avg_power	H2000's_1	$H3000's_0.5$	8	11	26	0.15	$_{ m ns}$
beta_avg_power	H2000's_1	${ m H3000's} { m _0.75}$	8	11	29	0.24	$_{ m ns}$
beta_avg_power	H2000's_1	H3000's_1	8	11	31	0.31	$_{ m ns}$
beta_avg_power	H3000's_0.25	$H3000's_0.5$	11	11	64	0.85	$_{ m ns}$
beta_avg_power	H3000's_0.25	${ m H}3000{ m 's}_0.75$	11	11	77	0.30	$_{ m ns}$
beta_avg_power	H3000's_0.25	H3000's_1	11	11	76	0.33	$_{ m ns}$
beta_avg_power	H3000's_0.5	${ m H}3000{ m 's}_0.75$	11	11	69	0.61	$_{ m ns}$
beta_avg_power	H3000's_0.5	H3000's_1	11	11	76	0.33	$_{ m ns}$
beta_avg_power	H3000's_0.75	$\rm H3000's_1$	11	11	73	0.44	ns

Cluster: 9 Beta Wilcoxon

beta_avg_power H1000's_0.25	EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
beta_avg_power H1000's_0.25 H1000's_0.25 H2000's_0.25 24 24 29 0.83 ns beta_avg_power H1000's_0.25 H2000's_0.25 24 15 173 0.85 ns beta_avg_power H1000's_0.25 H2000's_0.5 24 15 178 0.97 ns beta_avg_power H1000's_0.25 H2000's_0.75 24 15 183 0.94 ns beta_avg_power H1000's_0.25 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.25 H3000's_0.5 24 22 167 0.03 * beta_avg_power H1000's_0.25 H3000's_0.5 24 22 179 0.06 ns beta_avg_power H1000's_0.25 H3000's_1 24 22 179 0.06 ns beta_avg_power H1000's_0.5 H1000's_0.5 24 22 179 0.06 ns beta_avg_power H1000's_0.5 H1000's_0.5 124 24 281 0.89 ns beta_avg_power H1000's_0.5	beta_avg_power	H1000's_0.25	H1000's_0.5	24	24	285	0.96	ns
beta_avg_power H1000's_0.25 H2000's_0.25 24 15 173 0.85 ns beta_avg_power H1000's_0.25 H2000's_0.55 24 15 178 0.97 ns beta_avg_power H1000's_0.25 H2000's_0.75 24 15 183 0.94 ns beta_avg_power H1000's_0.25 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.25 H3000's_0.25 24 22 167 0.03 * beta_avg_power H1000's_0.25 H3000's_0.55 24 22 179 0.06 ns beta_avg_power H1000's_0.25 H3000's_0.75 24 22 179 0.06 ns beta_avg_power H1000's_0.5 H3000's_1 24 22 179 0.06 ns beta_avg_power H1000's_0.5 H3000's_0.75 24 22 179 0.06 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 24 281 0.89 ns beta_avg_power H1000's_0.5 H2000's_0.5	beta_avg_power	$\rm H1000's_0.25$	$\rm H1000's_0.75$	24	24	291	0.96	ns
beta_avg_power H1000's_0.25 H2000's_0.75 24 15 178 0.97 ns beta_avg_power H1000's_0.25 H2000's_0.75 24 15 183 0.94 ns beta_avg_power H1000's_0.25 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.25 H3000's_0.25 24 22 167 0.03 * beta_avg_power H1000's_0.25 H3000's_0.5 24 22 180 0.07 ns beta_avg_power H1000's_0.25 H3000's_0.75 24 22 179 0.06 ns beta_avg_power H1000's_0.25 H3000's_0.75 24 22 193 0.12 ns beta_avg_power H1000's_0.25 H3000's_0.75 24 22 193 0.12 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 24 299 0.83 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75	beta_avg_power	$\rm H1000's_0.25$	H1000's_1	24	24	299	0.83	ns
beta_avg_power H1000's_0.25 H2000's_0.75 24 15 183 0.94 ns beta_avg_power H1000's_0.25 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.25 H3000's_0.25 24 22 167 0.03 * beta_avg_power H1000's_0.25 H3000's_0.5 24 22 180 0.07 ns beta_avg_power H1000's_0.25 H3000's_0.75 24 22 179 0.06 ns beta_avg_power H1000's_0.25 H3000's_0.75 24 22 193 0.12 ns beta_avg_power H1000's_0.5 H1000's_0.75 24 24 281 0.89 ns beta_avg_power H1000's_0.5 H1000's_0.5 124 24 299 0.83 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 167 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 177 0.94 ns beta_avg_power H1000's_0.5 H3000's_0.5	beta_avg_power	$\rm H1000's_0.25$	$\rm H2000's_0.25$	24	15	173	0.85	ns
beta_avg_power H1000's_0.25 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.25 H3000's_0.25 24 22 167 0.03 * beta_avg_power H1000's_0.25 H3000's_0.5 24 22 180 0.07 ns beta_avg_power H1000's_0.25 H3000's_0.75 24 22 179 0.06 ns beta_avg_power H1000's_0.25 H3000's_1 24 22 179 0.06 ns beta_avg_power H1000's_0.5 H3000's_0.75 24 22 193 0.12 ns beta_avg_power H1000's_0.5 H1000's_1 24 24 281 0.89 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 167 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 177 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 177 0.94 ns beta_avg_power H1000's_0.5 H3000's_0.25 <	beta_avg_power	$\rm H1000's_0.25$	$H2000's_0.5$	24	15	178	0.97	$_{ m ns}$
beta_avg_power H1000's_0.25	beta_avg_power	$\rm H1000's_0.25$	$H2000's_0.75$	24	15	183	0.94	ns
beta_avg_power H1000's_0.25 H3000's_0.55 24 22 179 0.06 ns beta_avg_power H1000's_0.25 H3000's_0.75 24 22 179 0.06 ns beta_avg_power H1000's_0.25 H3000's_1 24 22 193 0.12 ns beta_avg_power H1000's_0.5 H1000's_0.75 24 22 193 0.12 ns beta_avg_power H1000's_0.5 H1000's_1 24 24 29 0.83 ns beta_avg_power H1000's_0.5 H2000's_0.25 24 15 167 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 167 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H3000's_0.5 24 15 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 24 15 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 24 12 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.5 24 12 173 0.05 * beta_avg_power H1000's_0.5 H3000's_0.5 12 12 173 0.05 * beta_avg_power H1000's_0.5 H3000's_0.5 12 12 173 0.05 ns beta_avg_power H1000's_0.75 H2000's_0.5 12 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 12 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 12 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 12 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.5 12 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.5 12 15 177 0.99 ns beta_avg_power H1000's_0.75 H3000's_0.5 12 12 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.5 12 12 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.5 12 12 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.5 12 175 0.0	beta_avg_power	$\rm H1000's_0.25$	H2000's_1	24	15	174	0.88	ns
beta_avg_power H1000's_0.25 H3000's_0.75 24 22 179 0.06 ns beta_avg_power H1000's_0.25 H3000's_1 24 22 193 0.12 ns beta_avg_power H1000's_0.5 H1000's_0.75 24 24 281 0.89 ns beta_avg_power H1000's_0.5 H1000's_0.5 24 24 299 0.83 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 167 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 177 0.94 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H3000's_0.25 24 22 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_1 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H1000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 22 175 0.05 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 22 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.5 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.5 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_0.5 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.55 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.55 24 15	beta_avg_power	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	24	22	167	0.03	*
beta_avg_ power H1000's_0.25 H3000's_1 24 22 193 0.12 ns beta_avg_ power H1000's_0.5 H1000's_0.75 24 24 281 0.89 ns beta_avg_ power H1000's_0.5 H1000's_1 24 24 299 0.83 ns beta_avg_ power H1000's_0.5 H2000's_0.25 24 15 167 0.72 ns beta_avg_ power H1000's_0.5 H2000's_0.5 24 15 174 0.88 ns beta_avg_ power H1000's_0.5 H2000's_0.75 24 15 177 0.94 ns beta_avg_ power H1000's_0.5 H2000's_0.75 24 15 177 0.94 ns beta_avg_ power H1000's_0.5 H3000's_0.25 24 22 160 0.02 * beta_avg_ power H1000's_0.5 H3000's_0.25 24 22 172 0.04 * beta_avg_ power H1000's_0.5 H3000's_0.5 24 22 173 0.05 * beta_avg_ power H1000's_0.75 H2000's_0.5	beta_avg_power	$\rm H1000's_0.25$	$H3000's_0.5$	24	22	180	0.07	ns
beta_avg_power H1000's_0.5 H1000's_0.75 24 24 29 0.83 ns beta_avg_power H1000's_0.5 H1000's_1 24 24 29 0.83 ns beta_avg_power H1000's_0.5 H2000's_0.25 24 15 167 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 177 0.94 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 22 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.25 24 22 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 185 0.08 ns beta_avg_power H1000's_0.5 H3000's_0.75 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 173 0.85 ns beta_avg_power H1000's_0.75 H3000's_0.25 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_0.75 H3000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 25 149 0.01 *	beta_avg_power	$\rm H1000's_0.25$	$H3000's_0.75$	24	22	179	0.06	ns
beta_avg_power H1000's_0.5 H2000's_0.25 24 15 167 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.55 24 15 167 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 177 0.94 ns beta_avg_power H1000's_0.5 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H3000's_0.25 24 22 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.99 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 173 0.85 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.25 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 25 149 0.01 *	beta_avg_power	$\rm H1000's_0.25$	H3000's_1	24	22	193	0.12	ns
beta_avg_power H1000's_0.5 H2000's_0.25 24 15 167 0.72 ns beta_avg_power H1000's_0.5 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 177 0.94 ns beta_avg_power H1000's_0.5 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H3000's_0.25 24 22 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_1 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_1 24 22 173 0.05 * beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 <td>beta_avg_power</td> <td>$\rm H1000's_0.5$</td> <td>$\rm H1000's_0.75$</td> <td>24</td> <td>24</td> <td>281</td> <td>0.89</td> <td>$_{ m ns}$</td>	beta_avg_power	$\rm H1000's_0.5$	$\rm H1000's_0.75$	24	24	281	0.89	$_{ m ns}$
beta_avg_power H1000's_0.5 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 24 15 177 0.94 ns beta_avg_power H1000's_0.5 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H3000's_0.25 24 22 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H3000's_1 24 24 302 0.78 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.75	beta_avg_power	$\rm H1000's_0.5$	H1000's_1	24	24	299	0.83	$_{ m ns}$
beta_avg_power H1000's_0.5 H2000's_0.75 24 15 177 0.94 ns beta_avg_power H1000's_0.5 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H3000's_0.25 24 22 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H3000's_0.75	beta_avg_power	$\rm H1000's_0.5$	$H2000's_0.25$	24	15	167	0.72	ns
beta_avg_power H1000's_0.5 H2000's_1 24 15 174 0.88 ns beta_avg_power H1000's_0.5 H3000's_0.25 24 22 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.5 H1000's_1 24 24 302 0.78 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 173 0.85 ns beta_avg_power H1000's_0.75 H3000's_0.25 <	beta_avg_power	$\rm H1000's_0.5$	$\rm H2000's_0.5$	24	15	174	0.88	ns
beta_avg_power H1000's_0.5 H3000's_0.25 24 22 160 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H1000's_1 24 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_1 24 15 173 0.85 ns beta_avg_power H1000's_0.75 H3000's_1 24 15 173 0.85 ns beta_avg_power H1000's_0.75 H3000's_0.25 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.75 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_0.75 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_0.75 24 22 188 0.10 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 171 0.81 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 171 0.81 ns	beta_avg_power	$\rm H1000's_0.5$	$\rm H2000's_0.75$	24	15	177	0.94	$_{ m ns}$
beta_avg_power H1000's_0.5 H3000's_0.5 24 22 172 0.04 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H1000's_1 24 24 302 0.78 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_1 24 15 173 0.85 ns beta_avg_power H1000's_0.75 H3000's_0.25 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.5 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_0.75 24 22 188 0.10 ns beta_avg_power H1000's_1 H2000's_0.25 24 15 162 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 171 0.81 ns beta_avg_power H1000's_1 H2000's_0.75 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_0.5$	$H2000's_1$	24	15	174	0.88	ns
beta_avg_power H1000's_0.5 H3000's_0.75 24 22 173 0.05 * beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H1000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.99 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_1 24 15 173 0.85 ns beta_avg_power H1000's_0.75 H3000's_0.25 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.25 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.5 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_0.75 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_0.75 24 22 188 0.10 ns beta_avg_power H1000's_1 H2000's_0.25 24 15 162 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 171 0.81 ns beta_avg_power H1000's_1 H2000's_0.25 24 15 171 0.81 ns beta_avg_power H1000's_1 H3000's_0.25 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	24	22	160	0.02	*
beta_avg_power H1000's_0.5 H3000's_1 24 22 185 0.08 ns beta_avg_power H1000's_0.75 H1000's_1 24 24 24 302 0.78 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_1 24 15 173 0.85 ns beta_avg_power H1000's_0.75 H3000's_0.25 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.5 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_1 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_1 24 22 188 0.10 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 162 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 171 0.81 ns beta_avg_power H1000's_1 H2000's_0.25 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	24	22	172	0.04	*
beta_avg_power H1000's_0.75 H1000's_1 24 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.25 24 15 168 0.74 ns beta_avg_power H1000's_0.75 H2000's_0.5 24 15 177 0.94 ns beta_avg_power H1000's_0.75 H2000's_0.75 24 15 179 0.99 ns beta_avg_power H1000's_0.75 H2000's_1 24 15 173 0.85 ns beta_avg_power H1000's_0.75 H3000's_0.25 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.5 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_1 24 22 188 0.10 ns beta_avg_power H1000's_1 H2000's_0.25 24 15 162 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 171 0.81 ns beta_avg_power H1000's_1 H2000's_1 24 15 171 0.81 ns beta_avg_power H1000's_1 H3000's_0.25 24 25 149 0.01 *	beta_avg_power	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	24	22	173	0.05	*
beta_avg_power H1000's_0.75	beta_avg_power	$\rm H1000's_0.5$	$H3000's_1$	24	22	185	0.08	$_{ m ns}$
beta_avg_power H1000's_0.75	beta_avg_power	$\rm H1000's_0.75$	H1000's_1	24	24	302	0.78	$_{ m ns}$
beta_avg_power H1000's_0.75	beta_avg_power	$\rm H1000's_0.75$	${\rm H}2000' {\rm s}_0.25$	24	15	168	0.74	ns
beta_avg_power H1000's_0.75	beta_avg_power	$\rm H1000's_0.75$	${ m H2000's} { m _0.5}$	24	15	177	0.94	ns
beta_avg_power H1000's_0.75 H3000's_0.25 24 22 164 0.03 * beta_avg_power H1000's_0.75 H3000's_0.5 24 22 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.75 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_1 24 22 188 0.10 ns beta_avg_power H1000's_1 H2000's_0.25 24 15 162 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 171 0.81 ns beta_avg_power H1000's_1 H3000's_0.25 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_0.75$	${ m H2000's} { m _0.75}$	24	15	179	0.99	ns
beta_avg_power H1000's_0.75 H3000's_0.5 24 22 175 0.05 ns beta_avg_power H1000's_0.75 H3000's_0.75 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_1 24 22 188 0.10 ns beta_avg_power H1000's_1 H2000's_0.25 24 15 162 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 171 0.81 ns beta_avg_power H1000's_1 H3000's_0.25 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_0.75$	H2000's_1	24	15	173	0.85	$_{ m ns}$
beta_avg_power H1000's_0.75 H3000's_0.75 24 22 174 0.05 * beta_avg_power H1000's_0.75 H3000's_1 24 22 188 0.10 ns beta_avg_power H1000's_1 H2000's_0.25 24 15 162 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_1 24 15 171 0.81 ns beta_avg_power H1000's_1 H3000's_0.25 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_0.75$	${ m H3000's} { m _0.25}$	24	22	164	0.03	*
beta_avg_power H1000's_0.75 H3000's_1 24 22 188 0.10 ns beta_avg_power H1000's_1 H2000's_0.25 24 15 162 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_1 24 15 171 0.81 ns beta_avg_power H1000's_1 H3000's_0.25 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_0.75$	${ m H3000's} { m _0.5}$	24	22	175	0.05	$_{ m ns}$
beta_avg_power H1000's_1 H2000's_0.25 24 15 162 0.62 ns beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_1 24 15 171 0.81 ns beta_avg_power H1000's_1 H3000's_0.25 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_0.75$	${ m H3000's} { m _0.75}$	24	22	174	0.05	*
beta_avg_power H1000's_1 H2000's_0.5 24 15 174 0.88 ns beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_1 24 15 171 0.81 ns beta_avg_power H1000's_1 H3000's_0.25 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_0.75$	${ m H3000's}{ m _1}$	24	22	188	0.10	$_{ m ns}$
beta_avg_power H1000's_1 H2000's_0.75 24 15 175 0.90 ns beta_avg_power H1000's_1 H2000's_1 24 15 171 0.81 ns beta_avg_power H1000's_1 H3000's_0.25 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_1$	${\rm H}2000' {\rm s}_0.25$	24	15	162	0.62	$_{ m ns}$
beta_avg_power H1000's_1 H2000's_1 24 15 171 0.81 ns beta_avg_power H1000's_1 H3000's_0.25 24 22 149 0.01 *	$beta_avg_power$	$\rm H1000's_1$	${\rm H}2000{\rm 's}_0.5$	24	15	174	0.88	ns
beta_avg_power H1000's_1 H3000's_0.25 24 22 149 0.01 *	beta_avg_power	$\rm H1000's_1$	${\rm H}2000 {\rm 's} _0.75$	24	15	175	0.90	ns
11000 5_1 11000 5_0.20 24 22 145 0.01	$beta_avg_power$	H1000's_1	$H2000's_{1}$	24	15	171	0.81	
beta_avg_power H1000's_1 H3000's_0.5 24 22 160 0.02 *	beta_avg_power	$\rm H1000's_1$	${ m H3000's} { m _0.25}$	24	22	149	0.01	*
	beta_avg_power	$\rm H1000's_1$	${ m H3000's}{ m _0.5}$	24	22	160	0.02	*

EEG Var	Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
beta_avg_power H	H1000's_1	H3000's_0.75	24	22	162	0.03	*
beta_avg_power H	H1000's_1	H3000's_1	24	22	172	0.04	*
beta_avg_power H	H2000's_0.25	$H2000's_0.5$	15	15	124	0.65	ns
beta_avg_power H	$12000's_0.25$	$\rm H2000's_0.75$	15	15	119	0.81	ns
beta_avg_power H	$12000's_0.25$	H2000's_1	15	15	120	0.78	ns
beta_avg_power H	12000 's_0.25	$H3000's_0.25$	15	22	120	0.17	ns
beta_avg_power H	12000 's_0.25	$H3000's_0.5$	15	22	123	0.20	ns
beta_avg_power H	12000 's_0.25	$H3000's_0.75$	15	22	126	0.24	ns
beta_avg_power H	12000 's_0.25	H3000's_1	15	22	136	0.38	ns
beta_avg_power H		$\rm H2000's_0.75$	15	15	110	0.94	ns
beta_avg_power H		$H2000's_{1}$	15	15	110	0.94	ns
beta_avg_power H	$12000's_0.5$	$H3000's_0.25$	15	22	109	0.09	ns
beta_avg_power H	$12000's_0.5$	$H3000's_0.5$	15	22	111	0.10	ns
beta_avg_power H	$12000's_0.5$	$H3000's_0.75$	15	22	121	0.18	ns
beta_avg_power H	$12000's_0.5$	H3000's_1	15	22	122	0.19	ns
beta_avg_power H	$12000's_0.75$	H2000's_1	15	15	112	1.00	ns
beta_avg_power H	$12000's_0.75$	$H3000's_0.25$	15	22	106	0.07	ns
beta_avg_power H	$12000's_0.75$	$H3000's_0.5$	15	22	113	0.11	ns
beta_avg_power H	$12000's_0.75$	$H3000's_0.75$	15	22	118	0.15	ns
beta_avg_power H	$12000's_0.75$	H3000's_1	15	22	125	0.22	ns
beta_avg_power H	H2000's_1	$H3000's_0.25$	15	22	111	0.10	ns
beta_avg_power H	H2000's_1	${ m H3000's} { m _0.5}$	15	22	116	0.14	$_{ m ns}$
beta_avg_power H	H2000's_1	$H3000's_0.75$	15	22	121	0.18	ns
beta_avg_power H	H2000's_1	H3000's_1	15	22	128	0.26	ns
beta_avg_power H	13000 's_0.25	$H3000's_0.5$	22	22	245	0.95	ns
beta_avg_power H	$13000's_0.25$	${ m H}3000{ m 's}_0.75$	22	22	255	0.77	ns
beta_avg_power H	$13000's_0.25$	$H3000's_1$	22	22	270	0.52	ns
beta_avg_power H	$13000's_0.5$	${ m H}3000'{ m s}_0.75$	22	22	249	0.88	ns
beta_avg_power H	$13000's_0.5$	$H3000's_1$	22	22	264	0.62	ns
beta_avg_power H	H3000's_0.75	$\rm H3000's_1$	22	22	261	0.67	ns

Cluster: 10 Beta Wilcoxon

EEG Var Group_Speed_	$_1$ $Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power H1000's_0.25	H1000's_0.5	23	23	284	0.68	ns
beta_avg_power H1000's_0.25	$\rm H1000's_0.75$	23	23	284	0.68	ns
beta_avg_power H1000's_0.25	$H1000's_1$	23	23	264	1.00	ns
beta_avg_power H1000's_0.25	${\rm H}2000{\rm 's}_0.25$	23	17	153	0.25	ns
beta_avg_power H1000's_0.25	${\rm H}2000{\rm 's}_0.5$	23	17	147	0.19	ns
beta_avg_power H1000's_0.25	${\rm H}2000{\rm 's}_0.75$	23	17	160	0.34	ns
beta_avg_power $H1000$ 's_ 0.25	$H2000's_1$	23	17	168	0.46	ns
beta_avg_power H1000's_0.25	${ m H3000's} { m _0.25}$	23	17	187	0.83	ns
beta_avg_power H1000's_0.25	${ m H3000's}{ m _0.5}$	23	17	200	0.91	ns
beta_avg_power H1000's_0.25	${ m H3000's} { m _0.75}$	23	17	216	0.59	ns
beta_avg_power $H1000$ 's_ 0.25	$H3000's_{1}$	23	17	215	0.61	ns
beta_avg_power $H1000$ 's_ 0.5	$\rm H1000's_0.75$	23	23	258	0.90	ns
beta_avg_power $H1000$ 's_ 0.5	$H1000's_1$	23	23	244	0.66	ns
beta_avg_power $H1000$ 's_ 0.5	${\rm H}2000{\rm 's}_0.25$	23	17	142	0.15	ns
beta_avg_power $H1000$ 's_ 0.5	${\rm H}2000{\rm 's}_0.5$	23	17	139	0.13	ns
$beta_avg_power~H1000's_0.5$	${ m H2000's} { m _0.75}$	23	17	147	0.19	ns

beta_avg_power H1000's_0.5 H2000's_1 23 17 154 0.26 beta_avg_power H1000's_0.5 H3000's_0.25 23 17 177 0.63 beta_avg_power H1000's_0.5 H3000's_0.5 23 17 183 0.74 beta_avg_power H1000's_0.5 H3000's_0.75 23 17 202 0.87 beta_avg_power H1000's_0.5 H3000's_1 23 17 199 0.94 beta_avg_power H1000's_0.75 H1000's_1 23 23 247 0.71 beta_avg_power H1000's_0.75 H2000's_0.25 23 17 150 0.22 beta_avg_power H1000's_0.75 H2000's_0.5 23 17 150 0.22 beta_avg_power H1000's_0.75 H2000's_0.5 23 17 152 0.24 beta_avg_power H1000's_0.75 H2000's_0.75 23 17 157 0.30 beta_avg_power H1000's_0.75 H2000's_0.75 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18 beta_avg_power H1000's_1 H2000's_0.75 23 17 146 0.18 beta_avg_power H1000's_1 H2000's_0.75 23 17 146 0.18	ns n
beta_avg_power H1000's_0.5 H3000's_0.5 23 17 183 0.74 beta_avg_power H1000's_0.5 H3000's_0.75 23 17 202 0.87 beta_avg_power H1000's_0.5 H3000's_1 23 17 199 0.94 beta_avg_power H1000's_0.75 H1000's_1 23 23 247 0.71 beta_avg_power H1000's_0.75 H2000's_0.25 23 17 150 0.22 beta_avg_power H1000's_0.75 H2000's_0.5 23 17 144 0.16 beta_avg_power H1000's_0.75 H2000's_0.75 23 17 152 0.24 beta_avg_power H1000's_0.75 H2000's_1 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5<	ns
beta_avg_power H1000's_0.5 H3000's_0.75 23 17 202 0.87 beta_avg_power H1000's_0.5 H3000's_1 23 17 199 0.94 beta_avg_power H1000's_0.75 H1000's_1 23 23 247 0.71 beta_avg_power H1000's_0.75 H2000's_0.25 23 17 150 0.22 beta_avg_power H1000's_0.75 H2000's_0.5 23 17 144 0.16 beta_avg_power H1000's_0.75 H2000's_0.75 23 17 152 0.24 beta_avg_power H1000's_0.75 H2000's_0.75 23 17 157 0.30 beta_avg_power H1000's_0.75 H2000's_1 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_1 23 17 205 0.81 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns
beta_avg_power H1000's_0.5 H3000's_1 23 17 199 0.94 beta_avg_power H1000's_0.75 H1000's_1 23 23 247 0.71 beta_avg_power H1000's_0.75 H2000's_0.25 23 17 150 0.22 beta_avg_power H1000's_0.75 H2000's_0.5 23 17 144 0.16 beta_avg_power H1000's_0.75 H2000's_0.75 23 17 152 0.24 beta_avg_power H1000's_0.75 H2000's_1 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns
beta_avg_power H1000's_0.5 H3000's_1 23 17 199 0.94 beta_avg_power H1000's_0.75 H1000's_1 23 23 247 0.71 beta_avg_power H1000's_0.75 H2000's_0.25 23 17 150 0.22 beta_avg_power H1000's_0.75 H2000's_0.5 23 17 144 0.16 beta_avg_power H1000's_0.75 H2000's_0.75 23 17 152 0.24 beta_avg_power H1000's_0.75 H2000's_1 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns
beta_avg_power H1000's_0.75 H1000's_1 23 23 247 0.71 beta_avg_power H1000's_0.75 H2000's_0.25 23 17 150 0.22 beta_avg_power H1000's_0.75 H2000's_0.5 23 17 144 0.16 beta_avg_power H1000's_0.75 H2000's_0.75 23 17 152 0.24 beta_avg_power H1000's_0.75 H2000's_1 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns ns ns ns ns ns ns ns ns
beta_avg_power H1000's_0.75 H2000's_0.5 23 17 144 0.16 beta_avg_power H1000's_0.75 H2000's_0.75 23 17 152 0.24 beta_avg_power H1000's_0.75 H2000's_1 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_1 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns ns ns ns ns ns ns
beta_avg_power H1000's_0.75 H2000's_0.75 23 17 152 0.24 beta_avg_power H1000's_0.75 H2000's_1 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_1 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns ns ns ns ns ns
beta_avg_power H1000's_0.75 H2000's_1 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_1 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns ns ns ns ns
beta_avg_power H1000's_0.75 H2000's_1 23 17 157 0.30 beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_1 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns ns ns ns
beta_avg_power H1000's_0.75 H3000's_0.25 23 17 172 0.53 beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_1 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns ns ns ns
beta_avg_power H1000's_0.75 H3000's_0.5 23 17 185 0.79 beta_avg_power H1000's_0.75 H3000's_0.75 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_1 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns ns ns
beta_avg_power H1000's_0.75 H3000's_0.75 23 17 208 0.74 beta_avg_power H1000's_0.75 H3000's_1 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns ns ns
beta_avg_power H1000's_0.75 H3000's_1 23 17 205 0.81 beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns ns
beta_avg_power H1000's_1 H2000's_0.25 23 17 143 0.16 beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	ns
beta_avg_power H1000's_1 H2000's_0.5 23 17 146 0.18	
= 0=1 =	110
beta_avg_power 111000 b_1	$_{ m ns}$
beta_avg_power H1000's_1 H2000's_1 23 17 158 0.32	ns
beta_avg_power H1000's_1 H3000's_0.25 23 17 181 0.70	ns
beta_avg_power H1000's_1 H3000's_0.25 23 17 193 0.96	ns
beta_avg_power H1000's_1 H3000's_0.5 23 17 195 0.50 beta_avg_power H1000's_1 H3000's_0.75 23 17 0.57	
	ns
_ _	ns
	ns
= 0=1 =	ns
beta_avg_power H2000's_0.25 H2000's_1 17 17 162 0.56	ns
beta_avg_power H2000's_0.25 H3000's_0.25 17 17 178 0.26	ns
beta_avg_power H2000's_0.25 H3000's_0.5 17 17 180 0.23	ns
beta_avg_power H2000's_0.25 H3000's_0.75 17 17 184 0.18	ns
beta_avg_power H2000's_0.25 H3000's_1 17 17 190 0.12	ns
beta_avg_power H2000's_0.5 H2000's_0.75 17 17 151 0.84	ns
beta_avg_power H2000's_0.5 H2000's_1 17 17 156 0.71	ns
beta_avg_power H2000's_0.5 H3000's_0.25 17 17 179 0.24	ns
beta_avg_power H2000's_0.5 H3000's_0.5 17 17 185 0.17	$_{ m ns}$
beta_avg_power H2000's_0.5 H3000's_0.75 17 17 192 0.11	ns
beta_avg_power H2000's_0.5 H3000's_1 17 17 191 0.11	ns
beta_avg_power H2000's_0.75 H2000's_1 17 17 151 0.84	ns
beta_avg_power H2000's_0.75 H3000's_0.25 17 17 167 0.45	ns
beta_avg_power H2000's_0.75 H3000's_0.5 17 17 174 0.32	$_{ m ns}$
beta_avg_power H2000's_0.75 H3000's_0.75 17 17 186 0.16	ns
beta_avg_power H2000's_0.75 H3000's_1 17 17 185 0.17	ns
beta_avg_power H2000's_1 H3000's_0.25 17 17 166 0.47	ns
beta_avg_power H2000's_1 H3000's_0.5 17 17 17 0.27	ns
beta_avg_power H2000's_1 H3000's_0.75 17 17 17 0.27	$_{ m ns}$
beta_avg_power H2000's_1 H3000's_1 17 17 185 0.17	$_{ m ns}$
beta_avg_power H3000's_0.25 H3000's_0.5 17 17 153 0.79	$_{ m ns}$
beta_avg_power H3000's_0.25 H3000's_0.75 17 17 166 0.47	$_{ m ns}$
beta_avg_power H3000's_0.25 H3000's_1 17 17 167 0.45	$_{ m ns}$
beta_avg_power H3000's_0.5 H3000's_0.75 17 17 158 0.66	$_{ m ns}$
beta_avg_power H3000's_0.5 H3000's_1 17 17 162 0.56	$_{ m ns}$
beta_avg_power H3000's_0.75 H3000's_1 17 17 146 0.97	$_{ m ns}$

Cluster: 11 Beta Wilcoxon

EEG Var Grou	up_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power H100	$00's_0.25$	$\rm H1000's_0.5$	29	29	450	0.65	ns
beta_avg_power H100		$\rm H1000's_0.75$	29	29	449	0.67	ns
beta_avg_power H100	$00's_0.25$	H1000's_1	29	29	454	0.61	ns
beta_avg_power H100	$00's_0.25$	${\rm H}2000' {\rm s}_0.25$	29	15	201	0.70	ns
beta_avg_power H100	$00's_0.25$	${\rm H}2000' {\rm s}_0.5$	29	15	204	0.75	ns
beta_avg_power H100	$00's_0.25$	${\rm H}2000' {\rm s}_0.75$	29	15	201	0.70	ns
beta_avg_power H100	$00's_0.25$	$H2000's_1$	29	15	222	0.92	ns
beta_avg_power H100	$00's_0.25$	${ m H3000's} { m _0.25}$	29	19	331	0.25	ns
beta_avg_power H100	$00's_0.25$	$H3000's_0.5$	29	19	321	0.35	ns
beta_avg_power H100	$00's_{-}0.25$	$H3000's_0.75$	29	19	330	0.26	ns
beta_avg_power H100	$00's_0.25$	H3000's_1	29	19	355	0.10	ns
beta_avg_power H100	$00's_{-}0.5$	$H1000's_0.75$	29	29	414	0.93	ns
beta avg power H100		H1000's 1	29	29	423	0.98	ns
beta avg power H100	00's 0.5	H2000's 0.25	29	15	189	0.49	ns
beta avg power H100		H2000's 0.5	29	15	187	0.46	ns
beta avg power H100		H2000's 0.75	29	15	184	0.42	ns
beta avg power H100		H2000's 1	29	15	207	0.81	ns
beta avg power H100		H3000's 0.25	29	19	313	0.44	ns
beta avg power H100	_	H3000's 0.5	29	19	303	0.57	ns
beta avg power H100		H3000's 0.75	29	19	313	0.44	ns
beta_avg_power H100		H3000's 1	29	19	328	0.28	ns
beta_avg_power H100		H1000's 1	29	29	435	0.83	ns
beta_avg_power H100		H2000's 0.25	29	15	186	0.45	ns
beta_avg_power H100		H2000's 0.5	29	15	191	0.52	ns
beta_avg_power H100		H2000's 0.75	29	15	186	0.45	ns
beta_avg_power H100		H2000's 1	29	15	211	0.88	ns
beta_avg_power H100 beta avg_power H100		H3000's 0.25	29	19	313	0.44	ns
beta_avg_power H100 beta_avg_power H100		H3000's 0.5	29	19	302	0.59	ns
beta_avg_power H100		H3000's 0.75	29	19	315	0.42	ns
beta_avg_power H100 beta_avg_power H100		H3000's 1	29	19	332	0.42 0.24	ns
beta_avg_power H100 beta_avg_power H100		H2000's 0.25	29	15	183	0.40	ns
beta_avg_power H100 beta_avg_power H100		H2000's 0.5	29	15	186	0.45	ns
beta_avg_power H100 beta_avg_power H100		H2000's 0.75	29	15 15	184	0.43 0.42	ns
beta_avg_power H100 beta_avg_power H100		H2000's 1	29	15 15	200	$0.42 \\ 0.68$	
beta_avg_power H100 beta_avg_power H100		H3000's 0.25	29	19	$\frac{200}{314}$	0.03 0.43	ns
		H3000's_0.25	29	19	306	0.43 0.53	ns
beta_avg_power H100		H3000's 0.75	29	19 19	319	$0.35 \\ 0.37$	ns
beta_avg_power H100							ns
beta_avg_power H100		H3000's_1	29	19	334	0.22	ns
beta_avg_power H200		H2000's_0.5	15	15	112	1.00	ns
beta_avg_power H200		H2000's_0.75	15 15	15	110	0.94	ns
beta_avg_power H200		H2000's_1	15	15	121	0.74	ns
beta_avg_power H200		H3000's_0.25	15	19	175	0.27	ns
beta_avg_power H200		H3000's_0.5	15 15	19	172	0.32	ns
beta_avg_power H200		H3000's_0.75	15 15	19	178	0.23	ns
beta_avg_power H200		H3000's_1	15 15	19	185	0.15	ns
beta_avg_power H200		H2000's_0.75	15	15	111	0.97	ns
beta_avg_power H200		H2000's_1	15	15	120	0.78	ns
beta_avg_power H200		H3000's_0.25	15	19	181	0.19	ns
beta_avg_power H200		H3000's_0.5	15	19	173	0.30	ns
beta_avg_power H200	0.5	$H3000's_0.75$	15	19	180	0.20	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power	H2000's_0.5	H3000's_1	15	19	193	0.08	ns
beta_avg_power	${\rm H}2000{\rm 's}_0.75$	H2000's_1	15	15	122	0.71	$_{ m ns}$
beta_avg_power	${\rm H}2000{\rm 's}_0.75$	$H3000's_0.25$	15	19	173	0.30	$_{ m ns}$
beta_avg_power	${\rm H}2000{\rm 's}_0.75$	$H3000's_0.5$	15	19	170	0.35	$_{ m ns}$
beta_avg_power	${\rm H}2000{\rm 's}_0.75$	$H3000's_0.75$	15	19	177	0.24	$_{ m ns}$
beta_avg_power	${\rm H}2000{\rm 's}_0.75$	H3000's_1	15	19	185	0.15	$_{ m ns}$
beta_avg_power	$H2000's_{1}$	${ m H3000's} { m _0.25}$	15	19	167	0.41	$_{ m ns}$
beta_avg_power	$H2000's_{1}$	${ m H3000's}{ m _0.5}$	15	19	161	0.54	$_{ m ns}$
beta_avg_power	$H2000's_{1}$	${ m H3000's} { m _0.75}$	15	19	170	0.35	$_{ m ns}$
beta_avg_power	$H2000's_{1}$	H3000's_1	15	19	177	0.24	$_{ m ns}$
beta_avg_power	${ m H}3000{ m 's}_0.25$	${ m H3000's}{ m _0.5}$	19	19	172	0.82	$_{ m ns}$
beta_avg_power	${ m H}3000{ m 's}_0.25$	${ m H3000's} { m _0.75}$	19	19	184	0.93	$_{ m ns}$
beta_avg_power	${ m H}3000{ m 's}_0.25$	H3000's_1	19	19	198	0.62	$_{ m ns}$
beta_avg_power	${ m H}3000{ m 's}_0.5$	$H3000's_0.75$	19	19	195	0.69	$_{ m ns}$
beta_avg_power	${ m H}3000{ m 's}_0.5$	H3000's_1	19	19	203	0.52	ns
beta_avg_power	H3000's_0.75	H3000's_1	19	19	186	0.88	ns

Cluster: 12 Beta Wilcoxon

EEG Var Gr	roup_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power H1	$000's_0.25$	$\rm H1000's_0.5$	24	24	295	0.89	$_{ m ns}$
beta_avg_power H1	$000's_0.25$	$\rm H1000's_0.75$	24	24	294	0.91	ns
beta_avg_power H1	$000's_0.25$	H1000's_1	24	24	313	0.62	ns
beta_avg_power H1	_	$H2000's_0.25$	24	14	140	0.41	ns
beta_avg_power H1	000 's_ 0.25	$H2000's_0.5$	24	14	144	0.48	ns
beta_avg_power H1	$000' s_{-}0.25$	$\rm H2000's_0.75$	24	14	163	0.89	ns
beta_avg_power H1	000 's_ 0.25	H2000's_1	24	14	173	0.89	ns
beta_avg_power H1	000 's_ 0.25	${ m H3000's} { m _0.25}$	24	20	207	0.45	ns
beta_avg_power H1	000 's_ 0.25	${ m H}3000{ m 's}_0.5$	24	20	204	0.41	ns
beta_avg_power H1	000 's_ 0.25	${ m H3000's} { m _0.75}$	24	20	227	0.77	ns
beta_avg_power H1	000 's $_0.25$	H3000's_1	24	20	255	0.74	ns
beta_avg_power H1	$000's_0.5$	$\rm H1000's_0.75$	24	24	285	0.96	ns
beta_avg_power H1	$000's_0.5$	H1000's_1	24	24	309	0.68	ns
beta_avg_power H1		$H2000's_0.25$	24	14	138	0.38	ns
beta_avg_power H1	$000's_0.5$	$\rm H2000's_0.5$	24	14	149	0.58	ns
beta_avg_power H1	$000's_0.5$	$\rm H2000's_0.75$	24	14	161	0.85	ns
beta_avg_power H1	$000's_0.5$	H2000's_1	24	14	166	0.96	ns
beta_avg_power H1	$000's_0.5$	${ m H3000's} { m _0.25}$	24	20	200	0.36	ns
beta_avg_power H1	$000's_0.5$	${ m H3000's} { m _0.5}$	24	20	199	0.34	ns
beta_avg_power H1	$000's_0.5$	${ m H}3000'{ m s}_0.75$	24	20	218	0.62	ns
beta_avg_power H1	$000's_0.5$	H3000's_1	24	20	255	0.74	ns
beta_avg_power H1	$000' s_{-}0.75$	H1000's_1	24	24	315	0.59	ns
beta_avg_power H1	000 's $_0.75$	${\rm H}2000' {\rm s}_0.25$	24	14	138	0.38	ns
beta_avg_power H1	000 's $_0.75$	$\rm H2000's_0.5$	24	14	147	0.54	ns
beta_avg_power H1	000 's $_0.75$	$\rm H2000's_0.75$	24	14	162	0.87	ns
beta_avg_power H1	000 's $_0.75$	H2000's_1	24	14	168	1.00	ns
beta_avg_power H1	$000's_0.75$	${ m H3000's} { m _0.25}$	24	20	204	0.41	ns
beta_avg_power H1	$000's_0.75$	${ m H3000's}{ m _0.5}$	24	20	198	0.33	ns
beta_avg_power H1	$000's_0.75$	${ m H3000's} { m _0.75}$	24	20	220	0.65	ns
beta avg power H1	000's 0.75	H3000's 1	24	20	253	0.77	ns

EEG Var Group_Speed	_1	N1	N2	Wstat	p-value	*sig.
beta_avg_power H1000's_1	H2000's 0.25	24	14	128	0.23	ns
beta_avg_power H1000's_1	$H2000's_0.5$	24	14	142	0.44	ns
beta_avg_power H1000's_1	$H2000's_0.75$	24	14	149	0.58	$_{ m ns}$
beta_avg_power H1000's_1	$H2000's_{1}$	24	14	154	0.69	$_{ m ns}$
beta_avg_power H1000's_1	$H3000's_0.25$	24	20	184	0.19	ns
beta_avg_power H1000's_1	$H3000's_0.5$	24	20	189	0.24	ns
beta_avg_power H1000's_1	$H3000's_0.75$	24	20	206	0.43	ns
beta_avg_power H1000's_1	$H3000's_1$	24	20	235	0.92	ns
beta_avg_power H2000's_0.25	$H2000's_0.5$	14	14	103	0.84	ns
beta_avg_power H2000's_0.25	$H2000's_0.75$	14	14	105	0.77	ns
beta_avg_power H2000's_0.25	$H2000's_1$	14	14	108	0.67	ns
beta_avg_power H2000's_0.25	$H3000's_0.25$	14	20	146	0.85	ns
beta_avg_power H2000's_0.25	$H3000's_0.5$	14	20	143	0.93	ns
beta_avg_power H2000's_0.25	$H3000's_0.75$	14	20	152	0.69	ns
beta_avg_power H2000's_0.25	$H3000's_1$	14	20	175	0.23	ns
beta_avg_power $H2000$ 's_ 0.5	$\rm H2000's_0.75$	14	14	107	0.70	ns
beta_avg_power $H2000$ 's_ 0.5	$H2000's_1$	14	14	107	0.70	ns
beta_avg_power $H2000$ 's_ 0.5	$H3000's_0.25$	14	20	136	0.90	ns
beta_avg_power $H2000$ 's_ 0.5	$H3000's_0.5$	14	20	138	0.96	ns
beta_avg_power $H2000$ 's_ 0.5	${ m H3000's} { m _0.75}$	14	20	147	0.82	ns
beta_avg_power $H2000$ 's_ 0.5	$H3000's_1$	14	20	166	0.38	ns
beta_avg_power H2000's_0.75	$H2000's_1$	14	14	101	0.91	ns
beta_avg_power H2000's_0.75	${ m H3000's} { m _0.25}$	14	20	129	0.72	ns
beta_avg_power H2000's_0.75	${ m H3000's} { m _0.5}$	14	20	135	0.88	ns
beta_avg_power H2000's_0.75	${ m H3000's} { m _0.75}$	14	20	140	1.00	ns
beta_avg_power $H2000$ 's_ 0.75	$H3000's_1$	14	20	156	0.59	ns
beta_avg_power H2000's_1	$H3000's_0.25$	14	20	124	0.59	ns
beta_avg_power H2000's_1	$H3000's_0.5$	14	20	123	0.57	ns
$beta_avg_power~H2000's_1$	$H3000's_0.75$	14	20	135	0.88	ns
beta_avg_power H2000's_1	$H3000's_1$	14	20	152	0.69	ns
beta_avg_power H3000's_0.25	$H3000's_0.5$	20	20	204	0.92	ns
beta_avg_power H3000's_0.25	${ m H3000's} { m _0.75}$	20	20	216	0.68	ns
beta_avg_power H3000's_0.25	$H3000's_1$	20	20	241	0.28	ns
beta_avg_power $H3000$ 's_ 0.5	$H3000's_0.75$	20	20	213	0.74	ns
$beta_avg_power~H3000's_0.5$	H3000's_1	20	20	245	0.23	ns
beta_avg_power H3000's_0.75	$H3000's_1$	20	20	230	0.43	ns

Cluster: 13 Beta Wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power	H1000's_0.25	H1000's_0.5	22	22	247	0.92	ns
beta_avg_power	· H1000's_0.25	$\rm H1000's_0.75$	22	22	249	0.88	ns
beta_avg_power	· H1000's_0.25	H1000's_1	22	22	261	0.67	ns
beta_avg_power	· H1000's_0.25	$H2000's_0.25$	22	12	146	0.63	ns
beta_avg_power	· H1000's_0.25	$H2000's_0.5$	22	12	147	0.61	ns
beta_avg_power	· H1000's_0.25	$H2000's_0.75$	22	12	160	0.33	$_{ m ns}$
beta_avg_power	· H1000's_0.25	H2000's_1	22	12	170	0.18	$_{ m ns}$
beta_avg_power	· H1000's_0.25	${ m H3000's} { m _0.25}$	22	13	132	0.72	ns
beta_avg_power	· H1000's_0.25	${ m H3000's} { m _0.5}$	22	13	140	0.93	$_{ m ns}$
beta_avg_power	H1000's_0.25	${ m H3000's} { m _0.75}$	22	13	138	0.88	$_{ m ns}$

EEG Var Group_Speed_	1 Group_Speed_2	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power H1000's_0.25	H3000's_1	22	13	150	0.83	ns
beta_avg_power H1000's_0.5	$\rm H1000's_0.75$	22	22	243	0.99	ns
beta_avg_power H1000's_0.5	H1000's_1	22	22	250	0.86	ns
beta_avg_power H1000's_0.5	${\rm H}2000' {\rm s}_0.25$	22	12	143	0.71	ns
beta_avg_power H1000's_0.5	$H2000's_0.5$	22	12	142	0.74	ns
beta_avg_power H1000's_0.5	${\rm H}2000' {\rm s}_0.75$	22	12	156	0.40	ns
beta_avg_power $H1000$ 's_ 0.5	$H2000's_{1}$	22	12	169	0.19	ns
$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.25}$	22	13	126	0.58	ns
$beta_avg_power~H1000's_0.5$	${ m H}3000'{ m s}_0.5$	22	13	139	0.91	ns
$beta_avg_power~H1000's_0.5$	${ m H}3000' { m s}_0.75$	22	13	132	0.72	ns
$beta_avg_power~H1000's_0.5$	H3000's_1	22	13	142	0.99	ns
$beta_avg_power~H1000's_0.75$	H1000's_1	22	22	245	0.95	ns
$beta_avg_power~H1000's_0.75$	${\rm H}2000' {\rm s}_0.25$	22	12	140	0.79	ns
$beta_avg_power~H1000's_0.75$	${\rm H}2000'{\rm s}_0.5$	22	12	144	0.68	ns
$beta_avg_power~H1000's_0.75$	$\rm H2000's_0.75$	22	12	157	0.38	ns
$beta_avg_power~H1000's_0.75$	H2000's_1	22	12	165	0.24	ns
$beta_avg_power~H1000's_0.75$	${ m H3000's} { m _0.25}$	22	13	125	0.56	ns
$beta_avg_power~H1000's_0.75$	${ m H3000's} { m _0.5}$	22	13	138	0.88	ns
$beta_avg_power~H1000's_0.75$	${ m H}3000' { m s}_0.75$	22	13	134	0.78	ns
$beta_avg_power~H1000's_0.75$	$H3000's_1$	22	13	144	0.99	ns
$beta_avg_power~H1000's_1$	${\rm H}2000' {\rm s}_0.25$	22	12	140	0.79	ns
$beta_avg_power~H1000$ 's_1	${\rm H}2000'{\rm s}_0.5$	22	12	137	0.87	ns
beta_avg_power H1000's_1	$\rm H2000's_0.75$	22	12	155	0.42	ns
beta_avg_power H1000's_1	H2000's_1	22	12	164	0.26	ns
beta_avg_power H1000's_1	${ m H3000's} { m _0.25}$	22	13	124	0.53	ns
beta_avg_power H1000's_1	${ m H}3000'{ m s}_0.5$	22	13	132	0.72	ns
$beta_avg_power~H1000's_1$	${ m H3000's} { m _0.75}$	22	13	134	0.78	ns
beta_avg_power H1000's_1	H3000's_1	22	13	140	0.93	ns
$beta_avg_power~H2000's_0.25$	${ m H2000's} { m _0.5}$	12	12	72	1.00	ns
$beta_avg_power~H2000's_0.25$	$\rm H2000's_0.75$	12	12	78	0.76	ns
$beta_avg_power~H2000's_0.25$	H2000's_1	12	12	84	0.51	ns
beta_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.25}$	12	13	64	0.47	ns
beta_avg_power $H2000$ 's_ 0.25	$H3000's_0.5$	12	13	72	0.77	ns
beta_avg_power $H2000$ 's_ 0.25	${ m H3000's} { m _0.75}$	12	13	66	0.54	ns
beta_avg_power H2000's_0.25	$H3000's_1$	12	13	73	0.81	ns
$beta_avg_power~H2000's_0.5$	${ m H2000's}_{-0.75}$	12	12	78	0.76	ns
beta_avg_power $H2000$ 's_0.5	$H2000's_1$	12	12	80	0.67	ns
beta_avg_power H2000's_0.5	$H3000's_0.25$	12	13	65	0.50	ns
beta_avg_power H2000's_0.5	$H3000's_0.5$	12	13	68	0.61	ns
beta_avg_power H2000's_0.5	$H3000's_0.75$	12	13	70	0.69	ns
beta_avg_power H2000's_0.5	H3000's_1	12	13	77	0.98	ns
beta_avg_power H2000's_0.75	H2000's_1	12	12	82	0.59	ns
beta_avg_power H2000's_0.75	H3000's_0.25	12	13	59	0.32	ns
beta_avg_power H2000's_0.75	H3000's_0.5	12	13	64	0.47	ns
beta_avg_power H2000's_0.75	H3000's_0.75	12	13	58	0.30	ns
beta_avg_power H2000's_0.75	H3000's_1	12	13	65	0.50	ns
beta_avg_power H2000's_1	H3000's_0.25	12	13	51	0.15	ns
beta_avg_power H2000's_1	H3000's_0.5	12	13	60	0.35	ns
beta_avg_power H2000's_1	H3000's_0.75	12	13	54	0.20	ns
beta_avg_power H2000's_1	H3000's_1	12	13	64	0.47	ns
beta_avg_power H3000's_0.25	H3000's_0.5	13	13	89	0.84	ns
beta_avg_power H3000's_0.25	$H3000's_0.75$	13	13	89	0.84	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
beta_avg_power	H3000's_0.25	H3000's_1	13	13	94	0.65	ns
beta_avg_power	· H3000's_0.5	${ m H3000's} { m _0.75}$	13	13	84	1.00	$_{ m ns}$
beta_avg_power	· H3000's_0.5	H3000's_1	13	13	92	0.72	$_{ m ns}$
beta_avg_power	· H3000's_0.75	H3000's_1	13	13	90	0.80	$_{ m ns}$

Cluster: 14 Beta Wilcoxon

beta_avg_power H1000's_0.25 H1000's_0.5 22 22 275 0.45 ns beta_avg_power H1000's_0.25 H1000's_1 22 22 22 275 0.45 ns beta_avg_power H1000's_0.25 H1000's_1 22 22 22 275 0.45 ns beta_avg_power H1000's_0.25 H1000's_1 22 22 22 256 0.75 ns beta_avg_power H1000's_0.25 H2000's_0.5 22 16 138 0.27 ns beta_avg_power H1000's_0.25 H2000's_0.5 22 16 146 0.39 ns beta_avg_power H1000's_0.25 H2000's_0.75 22 16 155 0.55 ns beta_avg_power H1000's_0.25 H2000's_0.75 22 16 167 0.80 ns beta_avg_power H1000's_0.25 H3000's_0.25 22 18 89 0.00 ** beta_avg_power H1000's_0.25 H3000's_0.25 22 18 89 0.00 ** beta_avg_power H1000's_0.25 H3000's_0.5 22 18 93 0.00 ** beta_avg_power H1000's_0.25 H3000's_0.75 22 18 107 0.01 * beta_avg_power H1000's_0.25 H3000's_0.75 22 18 107 0.01 * beta_avg_power H1000's_0.5 H3000's_0.75 22 18 107 0.01 * beta_avg_power H1000's_0.5 H1000's_0.75 22 22 235 0.88 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 22 231 0.81 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 18 81 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 81 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 81 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 82 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H2000's_0.5 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H2000's_0.75 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H300	EEG Var Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	m malus	*sig.
beta_avg_ power H1000's_0.25						p-value	· sig.
beta_avg_power H1000's_0.25		_					ns
beta_avg_power H1000's_0.25 H2000's_0.25 22 16 138 0.27 ns beta_avg_power H1000's_0.25 H2000's_0.75 22 16 146 0.39 ns beta_avg_power H1000's_0.25 H2000's_0.75 22 16 146 0.39 ns beta_avg_power H1000's_0.25 H2000's_0.75 22 16 167 0.80 ns beta_avg_power H1000's_0.25 H3000's_0.25 22 18 89 0.00 ** beta_avg_power H1000's_0.25 H3000's_0.75 22 18 197 0.01 ** beta_avg_power H1000's_0.25 H3000's_0.75 22 18 126 0.05 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 22 235 0.88 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ns</td>							ns
beta_avg_power H1000's_0.25		_					ns
beta_avg_power H1000's_0.25		_					ns
beta_avg_power H1000's_0.25 H2000's_1 22 16 167 0.80 ns beta_avg_power H1000's_0.25 H3000's_0.25 22 18 89 0.00 ** beta_avg_power H1000's_0.25 H3000's_0.5 22 18 93 0.00 ** beta_avg_power H1000's_0.25 H3000's_0.75 22 18 107 0.01 * beta_avg_power H1000's_0.5 H1000's_0.75 22 28 18 106 0.05 ns beta_avg_power H1000's_0.5 H1000's_0.5 H2000's_0.25 22 22 231 0.81 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 16 133 0.34 ns beta_avg_power H1000's_0.5 H3000's_0.5 22 18 81 0.00 ** beta_avg_power H1000'		_					ns
beta_avg_power H1000's_0.25 H3000's_0.25 22 18 89 0.00 ** beta_avg_power H1000's_0.25 H3000's_0.5 22 18 93 0.00 ** beta_avg_power H1000's_0.25 H3000's_0.75 22 18 107 0.001 ** beta_avg_power H1000's_0.5 H1000's_0.75 22 18 126 0.05 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 22 22 231 0.81 ns beta_avg_power H1000's_0.5 H2000's_0.25 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_1.5 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_1.2 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H3000's_0.25 22 18 81 0.00 ** beta_avg_power H1000's_0.5 H3	_ v_i	_					ns
beta_avg_power H1000's_0.25 H3000's_0.75 22 18 93 0.00 ** beta_avg_power H1000's_0.25 H3000's_0.75 22 18 107 0.01 * beta_avg_power H1000's_0.25 H3000's_0.75 22 18 126 0.05 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 22 235 0.88 ns beta_avg_power H1000's_0.5 H1000's_0.5 12000's_0.25 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 18 1 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 10 0.00 ** beta_avg_power H1000's_0.5 <		_					
beta_avg_power H1000's_0.25 H3000's_0.75 22 18 126 0.05 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 22 23 0.88 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 22 23 0.81 ns beta_avg_power H1000's_0.5 H2000's_0.25 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.25 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.25 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 143 0.34 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 18 81 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 113 0.02 * beta_avg_power H1000's_0.5 H3000's_1 22 18 113 0.02 * beta_avg_power H1000's_0.5 H3000's_1 22 18 113 0.02 * beta_avg_power H1000's_0.5 H3000's_1 22 18 101 0.01 ** beta_avg_power H1000's_0.5 H3000's_1 22 18 113 0.02 * beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 144 0.36 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 89 0.00 ** beta_avg_power H1000's_1 H2000's_0.5 22 18 89 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_		_					
beta_avg_power H1000's_0.25 H2000's_1 22 22 23 35 0.88 ns beta_avg_power H1000's_0.5 H1000's_0.75 22 22 22 231 0.81 ns beta_avg_power H1000's_0.5 H1000's_0.5 122 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 18 81 0.00 *** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 *** beta_avg_power H1000's_0.5 H3000's_0.75 22 18 101 0.01 *** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 113 0.02 * beta_avg_power H1000's_0.5 H3000's_1 22 18 113 0.02 * beta_avg_power H1000's_0.5 H3000's_1 22 18 113 0.02 * beta_avg_power H1000's_0.75 H2000's_0.5 22 16 122 0.11 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 87 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 87 0.00 ** beta_avg_power H1000's_1 H2000's_0.5 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 87 0.00 ** beta_avg_power		_					
beta_avg_power H1000's_0.5 H1000's_0.75 22 22 235 0.88 ns beta_avg_power H1000's_0.5 H1000's_1 22 22 231 0.81 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_1 22 16 143 0.34 ns beta_avg_power H1000's_0.5 H3000's_0.25 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_1 22 18 101 0.01 ** beta_avg_power H1000's_0.75 H2000's_1 22 18 101 0.01 ** beta_avg_power H1000's_0.75 H2000's_0.75 22<	<u> </u>	_					*
beta_avg_power H1000's_0.5 H1000's_1. 22 22 231 0.81 ns beta_avg_power H1000's_0.5 H2000's_0.25 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 143 0.34 ns beta_avg_power H1000's_0.5 H3000's_0.25 22 18 1 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_0.5 H3000's_0.75 22 18 113 0.02 * beta_avg_power H1000's_0.75 H2000's_0.75 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.75		_					ns
beta_avg_power H1000's_0.5 H2000's_0.5 22 16 120 0.10 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_1 22 16 143 0.34 ns beta_avg_power H1000's_0.5 H3000's_0.25 22 18 81 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_0.5 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_0.5 H3000's_1 22 18 101 0.01 ** beta_avg_power H1000's_0.75 H2000's_1 22 22 226 0.72 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.75							ns
beta_avg_power H1000's_0.5 H2000's_0.5 22 16 128 0.16 ns beta_avg_power H1000's_0.5 H2000's_0.75 22 16 139 0.28 ns beta_avg_power H1000's_0.5 H2000's_0.5 22 16 143 0.34 ns beta_avg_power H1000's_0.5 H3000's_0.25 22 18 81 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.55 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_0.5 H3000's_0.75 22 18 113 0.02 * beta_avg_power H1000's_0.5 H3000's_0.5 22 18 113 0.02 * beta_avg_power H1000's_0.75 H2000's_0.25 22 16 122 0.11 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H200's_0.75		_					ns
beta_avg_power H1000's_0.5 H2000's_0.75	beta_avg_power H1000's_0.5						ns
beta_avg_power H1000's_0.5 H2000's_1 22 16 143 0.34 ns beta_avg_power H1000's_0.5 H3000's_0.25 22 18 81 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_0.5 H3000's_1 22 18 101 0.01 ** beta_avg_power H1000's_0.5 H3000's_1 22 22 226 0.72 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 16 122 0.11 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 <td< td=""><td>_ v_i</td><td></td><td></td><td></td><td></td><td></td><td>ns</td></td<>	_ v_i						ns
beta_avg_power H1000's_0.5 H3000's_0.25 22 18 81 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_0.5 H3000's_1 22 18 113 0.02 * beta_avg_power H1000's_0.75 H1000's_1 22 22 22 226 0.72 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 16 122 0.11 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 144 0.36 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 103 0.01 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 103 0.01 ** beta_avg_power H1000's_1 H2000's_0.5 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 140 0.30 ns beta_avg_power H1000's_1 H3000's_0.5 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 89 0 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 89 0 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 89 0 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 0.75 22 18 101 0.01 ** beta_avg_power H2000's_0.5 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns	beta_avg_power H1000's_0.5	-					ns
beta_avg_power H1000's_0.5 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.5 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_0.5 H3000's_1 22 18 113 0.02 * beta_avg_power H1000's_0.75 H1000's_1 22 22 22 226 0.72 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 16 122 0.11 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 144 0.36 ns beta_avg_power H1000's_0.75 H3000's_0.5 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 103 0.01 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 18 90 0.00 ** beta_avg_power H1000's_1 H2000's_0.75 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H2000's_0.5 H2000's_0.5 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 141 0.64 ns	$beta_avg_power~H1000$'s $_0.5$						
beta_avg_power H1000's_0.5 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_0.5 H3000's_1 22 18 113 0.02 * beta_avg_power H1000's_0.75 H1000's_1 22 22 22 226 0.72 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 16 122 0.11 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 144 0.36 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.25 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns	beta_avg_power H1000's_0.5	_					
beta_avg_power H1000's_0.5 H3000's_1 22 18 113 0.02 * beta_avg_power H1000's_0.75 H1000's_1 22 22 22 226 0.72 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 16 122 0.11 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_1 22 16 144 0.36 ns beta_avg_power H1000's_0.75 H2000's_1 22 16 144 0.36 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 103 0.01 ** beta_avg_power H1000's_0.75 H3000's_0.25 22 18 103 0.01 ** beta_avg_power H1000's_0.75 H3000's_0.25 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.25 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.25 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 12 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 12 18 101 0.01 ** beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 141 0.64 ns	$beta_avg_power~H1000$'s $_0.5$	$H3000's_0.5$		18	92	0.00	
beta_avg_power H1000's_0.75 H1000's_0.25 22 22 226 0.72 ns beta_avg_power H1000's_0.75 H2000's_0.25 22 16 122 0.11 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_1 22 16 144 0.36 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 103 0.01 ** beta_avg_power H1000's_0.75 H3000's_1 22 18 103 0.01 ** beta_avg_power H1000's_1 H2000's_0.25 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.25 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns	$beta_avg_power~H1000's_0.5$	${ m H3000's} { m _0.75}$		18	101	0.01	
beta_avg_power H1000's_0.75 H2000's_0.25 22 16 122 0.11 ns beta_avg_power H1000's_0.75 H2000's_0.5 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_1 22 16 144 0.36 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_1 H2000's_0.25 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.5 <td< td=""><td>$beta_avg_power~H1000's_0.5$</td><td>H3000's_1</td><td></td><td>18</td><td>113</td><td>0.02</td><td>*</td></td<>	$beta_avg_power~H1000's_0.5$	H3000's_1		18	113	0.02	*
beta_avg_power H1000's_0.75 H2000's_0.55 22 16 131 0.19 ns beta_avg_power H1000's_0.75 H2000's_0.75 22 16 138 0.27 ns beta_avg_power H1000's_0.75 H2000's_1 22 16 144 0.36 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_1 22 18 103 0.01 ** beta_avg_power H1000's_1 H2000's_0.25 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H2000's_1 H3000's_0.5 12 18 101 0.01 ** beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.5 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns	$beta_avg_power~H1000's_0.75$	H1000's_1	22	22	226	0.72	ns
beta_avg_power H1000's_0.75	$beta_avg_power~H1000's_0.75$	${\rm H}2000' {\rm s}_0.25$	22	16	122	0.11	ns
beta_avg_power H1000's_0.75 H2000's_1 22 16 144 0.36 ns beta_avg_power H1000's_0.75 H3000's_0.25 22 18 82 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.5 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_1 22 18 103 0.01 ** beta_avg_power H1000's_1 H2000's_0.25 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_1 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 12 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 12 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns	$beta_avg_power~H1000$'s $_0.75$	${ m H2000's} { m _0.5}$	22	16	131	0.19	ns
beta_avg_power H1000's_0.75	$beta_avg_power~H1000's_0.75$	${\rm H}2000' {\rm s}_0.75$	22	16	138	0.27	ns
beta_avg_power H1000's_0.75 H3000's_0.55 22 18 84 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_1 22 18 103 0.01 ** beta_avg_power H1000's_1 H2000's_0.25 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_1 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_1 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.5 12 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns	$beta_avg_power~H1000$'s $_0.75$	H2000's_1	22	16	144	0.36	ns
beta_avg_power H1000's_0.75 H3000's_0.75 22 18 92 0.00 ** beta_avg_power H1000's_0.75 H3000's_0.75 22 18 103 0.01 ** beta_avg_power H1000's_1 H2000's_0.25 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_1 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns	$beta_avg_power~H1000's_0.75$	${ m H3000's} { m _0.25}$	22	18	82	0.00	**
beta_avg_power H1000's_0.75 H3000's_1.75 22 18 103 0.01 ** beta_avg_power H1000's_1 H2000's_0.25 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_1 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.75 12 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns	$beta_avg_power~H1000's_0.75$	$H3000's_0.5$	22	18	84	0.00	**
beta_avg_power H1000's_1 H2000's_0.25 22 16 129 0.17 ns beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_1 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_1 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.75 12 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns	$beta_avg_power~H1000's_0.75$	${ m H3000's} { m _0.75}$	22	18	92	0.00	**
beta_avg_power H1000's_1 H2000's_0.5 22 16 137 0.26 ns beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_1 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_1 22 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_1 16 16 16 142 0.62 ns	$beta_avg_power~H1000's_0.75$	H3000's_1	22	18	103	0.01	**
beta_avg_power H1000's_1 H2000's_0.75 22 16 140 0.30 ns beta_avg_power H1000's_1 H2000's_1 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_1 22 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 142 0.62 ns	beta_avg_power H1000's_1	$H2000's_0.25$	22	16	129	0.17	ns
beta_avg_power H1000's_1 H2000's_1 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_1 22 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_1 16 16 142 0.62 ns	beta_avg_power H1000's_1	$H2000's_0.5$	22	16	137	0.26	ns
beta_avg_power H1000's_1 H2000's_1 22 16 149 0.44 ns beta_avg_power H1000's_1 H3000's_0.25 22 18 87 0.00 ** beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_1 22 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_1 16 16 142 0.62 ns	beta_avg_power H1000's_1	$H2000's_0.75$	22	16	140	0.30	ns
beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_1 22 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_1 16 16 142 0.62 ns		H2000's_1	22	16	149	0.44	ns
beta_avg_power H1000's_1 H3000's_0.5 22 18 90 0.00 ** beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_1 22 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_1 16 16 142 0.62 ns	beta_avg_power H1000's_1	$H3000's_0.25$	22	18	87	0.00	**
beta_avg_power H1000's_1 H3000's_0.75 22 18 101 0.01 ** beta_avg_power H1000's_1 H3000's_1 22 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_1 16 16 142 0.62 ns		$H3000's_0.5$	22	18	90	0.00	**
beta_avg_power H1000's_1 H3000's_1 22 18 112 0.02 * beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_1 16 16 142 0.62 ns			22	18			**
beta_avg_power H2000's_0.25 H2000's_0.5 16 16 132 0.90 ns beta_avg_power H2000's_0.25 H2000's_0.75 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_1 16 16 142 0.62 ns							*
beta_avg_power H2000's_0.25 H2000's_0.75 16 16 141 0.64 ns beta_avg_power H2000's_0.25 H2000's_1 16 16 142 0.62 ns	<u> </u>	_					ns
beta_avg_power H2000's_0.25 H2000's_1 16 16 142 0.62 ns	~ -						
<u> </u>		_					
Deta_avg_power_fi2000 s_0.25	beta_avg_power H2000's_0.25	$H3000$ 's_0.25	16	18	99	0.13	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
beta_avg_power	· H2000's_0.25	H3000's_0.5	16	18	107	0.21	ns
beta_avg_power	H2000's_0.25	${ m H3000's} { m _0.75}$	16	18	115	0.33	ns
beta_avg_power	H2000's_0.25	H3000's_1	16	18	125	0.53	$_{ m ns}$
beta_avg_power	· H2000's_0.5	${\rm H}2000{\rm 's}_0.75$	16	16	133	0.87	ns
beta_avg_power	H2000's_0.5	H2000's_1	16	16	134	0.84	ns
beta_avg_power	: H2000's_0.5	${ m H3000's} { m _0.25}$	16	18	101	0.14	ns
beta_avg_power	H2000's_0.5	${ m H3000's} { m _0.5}$	16	18	100	0.14	ns
beta_avg_power	H2000's_0.5	${ m H}3000{ m 's}_0.75$	16	18	111	0.27	$_{ m ns}$
beta_avg_power	· H2000's_0.5	H3000's_1	16	18	117	0.36	$_{ m ns}$
beta_avg_power	· H2000's_0.75	H2000's_1	16	16	129	0.98	$_{ m ns}$
beta_avg_power	· H2000's_0.75	${ m H3000's} { m _0.25}$	16	18	88	0.06	$_{ m ns}$
beta_avg_power	· H2000's_0.75	${ m H3000's} { m _0.5}$	16	18	93	0.08	$_{ m ns}$
beta_avg_power	· H2000's_0.75	${ m H3000's} { m _0.75}$	16	18	101	0.14	$_{ m ns}$
beta_avg_power	· H2000's_0.75	H3000's_1	16	18	111	0.27	$_{ m ns}$
beta_avg_power	· H2000's_1	${ m H3000's} { m _0.25}$	16	18	86	0.05	*
beta_avg_power	· H2000's_1	${ m H}3000{ m 's}_0.5$	16	18	91	0.07	$_{ m ns}$
beta_avg_power	· H2000's_1	${ m H3000's} { m _0.75}$	16	18	99	0.13	$_{ m ns}$
beta_avg_power	· H2000's_1	H3000's_1	16	18	107	0.21	$_{ m ns}$
beta_avg_power	· H3000's_0.25	${ m H3000's} { m _0.5}$	18	18	175	0.70	$_{ m ns}$
beta_avg_power	· H3000's_0.25	${ m H3000's} { m _0.75}$	18	18	187	0.44	$_{ m ns}$
beta_avg_power	· H3000's_0.25	H3000's_1	18	18	195	0.31	$_{ m ns}$
beta_avg_power	· H3000's_0.5	${ m H3000's} { m _0.75}$	18	18	174	0.72	$_{ m ns}$
beta_avg_power	· H3000's_0.5	H3000's_1	18	18	184	0.50	$_{ m ns}$
beta_avg_power	: H3000's_0.75	H3000's_1	18	18	175	0.70	ns

APERIODIC EXPONENT WILCOXON TESTS

Cluster: 3 Aperiodic Exponent wilcoxon

$EEG\ Var$	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	23	23	256	0.86	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	23	23	281	0.73	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	23	23	272	0.88	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.25$	23	18	257	0.20	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	23	18	242	0.37	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H2000's_0.75$	23	18	251	0.26	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_1$	23	18	265	0.13	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	23	23	114	0.00	***
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.5$	23	23	116	0.00	***
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.75$	23	23	129	0.00	**
$aperiodic_exp$	$\rm H1000's_0.25$	H3000's_1	23	23	157	0.02	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H1000's_0.75$	23	23	292	0.56	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H1000's_1	23	23	277	0.79	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.25$	23	18	259	0.18	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s}_0.5$	23	18	248	0.29	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_0.75$	23	18	261	0.16	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H2000's_1	23	18	273	0.09	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_0.25$	23	23	116	0.00	***
aperiodic_exp	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	23	23	111	0.00	***

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	23	23	129	0.00	**
$aperiodic_exp$	$\rm H1000's_0.5$	H3000's_1	23	23	160	0.02	*
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	23	23	255	0.84	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${\rm H}2000' {\rm s}_0.25$	23	18	241	0.38	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.5$	23	18	230	0.56	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${\rm H}2000' {\rm s}_0.75$	23	18	241	0.38	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H2000's_1	23	18	253	0.23	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.25$	23	23	99	0.00	***
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.5$	23	23	100	0.00	***
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.75$	23	23	117	0.00	***
aperiodic_exp	H1000's 0.75	H3000's 1	23	23	141	0.01	**
aperiodic_exp	H1000's 1	H2000's 0.25	23	18	250	0.27	ns
aperiodic_exp	H1000's 1	H2000's 0.5	23	18	235	0.47	ns
aperiodic_exp	H1000's 1	H2000's 0.75	23	18	242	0.37	ns
aperiodic_exp	H1000's 1	H2000's 1	23	18	263	0.15	ns
aperiodic_exp	H1000's 1	H3000's 0.25	23	23	107	0.00	***
aperiodic_exp	H1000's 1	H3000's 0.5	23	23	111	0.00	***
aperiodic_exp	H1000's 1	H3000's 0.75	23	23	132	0.00	**
aperiodic exp	H1000's 1	H3000's 1	23	23	151	0.01	*
aperiodic_exp	H2000's 0.25	H2000's 0.5	18	18	154	0.81	ns
aperiodic exp	H2000's 0.25	H2000's 0.75	18	18	161	0.99	ns
aperiodic exp	H2000's 0.25	H2000's 1	18	18	167	0.89	ns
aperiodic_exp	H2000's 0.25	H3000's 0.25	18	$\frac{10}{23}$	84	0.00	***
aperiodic_exp	H2000's 0.25	H3000's 0.5	18	23	82	0.00	***
aperiodic_exp	H2000's 0.25	H3000's 0.75	18	23	93	0.00	**
aperiodic_exp	H2000's 0.25	H3000's 1	18	23	105	0.01	**
aperiodic exp	H2000's 0.5	H2000's 0.75	18	18	168	0.86	ns
aperiodic_exp	H2000's 0.5	H2000's 1	18	18	178	0.63	
aperiodic_exp	H2000's 0.5	H3000's 0.25	18	$\frac{10}{23}$	94	0.00	ns **
aperiodic_exp	H2000's 0.5	H3000's 0.5	18	23 23	88	0.00	**
aperiodic_exp	H2000's 0.5	H3000's 0.75	18	23 23	97	0.00	**
	_	H3000's 1	18	23 23	97 114	0.00 0.01	*
aperiodic_exp	H2000's_0.5	_					
aperiodic_exp	H2000's_0.75	H2000's_1	18	18	163	0.99	ns ***
aperiodic_exp	H2000's_0.75	H3000's_0.25	18	23	$78 \\ 72$	0.00	***
aperiodic_exp	H2000's_0.75	H3000's_0.5	18	23		0.00	***
aperiodic_exp	H2000's_0.75	H3000's_0.75	18	23	84	0.00	**
aperiodic_exp	H2000's_0.75	H3000's_1	18	23	105	0.01	***
aperiodic_exp	H2000's_1	H3000's_0.25	18	23	75 74	0.00	***
aperiodic_exp	H2000's_1	H3000's_0.5	18	23	74	0.00	***
aperiodic_exp	H2000's_1	H3000's_0.75	18	23	80	0.00	**
aperiodic_exp	H2000's_1	H3000's_1	18	23	100	0.00	
aperiodic_exp	H3000's_0.25	H3000's_0.5	23	23	257	0.88	ns
aperiodic_exp	H3000's_0.25	H3000's_0.75	23	23	285	0.66	$_{ m ns}$
aperiodic_exp	H3000's_0.25	H3000's_1	23	23	328	0.17	ns
aperiodic_exp	H3000's_0.5	H3000's_0.75	23	23	294	0.53	ns
aperiodic_exp	H3000's_0.5	H3000's_1	23	23	343	0.09	ns
aperiodic_exp	H3000's_0.75	H3000's_1	23	23	312	0.30	ns

Cluster: 4 Aperiodic Exponent wilcoxon

EEG Var	Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	18	18	144	0.58	ns
aperiodic_exp	$\rm H1000's_0.25$	$\rm H1000's_0.75$	18	18	158	0.91	ns
aperiodic_exp	$\rm H1000's_0.25$	H1000's_1	18	18	149	0.70	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.25$	18	16	149	0.88	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	18	16	144	1.00	ns
aperiodic_exp	$\rm H1000's_0.25$	$H2000's_0.75$	18	16	137	0.82	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H2000's_1	18	16	134	0.75	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.25$	18	16	113	0.30	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.5$	18	16	112	0.28	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.75$	18	16	115	0.33	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H3000's_1	18	16	104	0.17	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	18	18	169	0.84	ns
aperiodic_exp	$\rm H1000's_0.5$	H1000's_1	18	18	157	0.89	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.25$	18	16	167	0.44	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.5$	18	16	156	0.70	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_0.75$	18	16	151	0.82	ns
aperiodic_exp	$\rm H1000's_0.5$	H2000's_1	18	16	150	0.85	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	18	16	129	0.62	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_0.5$	18	16	129	0.62	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_0.75$	18	16	139	0.88	ns
aperiodic_exp	$\rm H1000's_0.5$	H3000's_1	18	16	119	0.40	ns
aperiodic_exp	$\rm H1000's_0.75$	H1000's_1	18	18	149	0.70	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$\rm H2000's_0.25$	18	16	153	0.77	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.5$	18	16	140	0.90	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.75$	18	16	144	1.00	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H2000's_1	18	16	135	0.77	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H3000's} { m _0.25}$	18	16	113	0.30	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.5$	18	16	118	0.38	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H3000's} { m _0.75}$	18	16	121	0.44	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_{1}$	18	16	107	0.21	ns
$aperiodic_exp$	H1000's_1	${\rm H}2000' {\rm s}_0.25$	18	16	175	0.30	ns
$aperiodic_exp$	H1000's_1	$\rm H2000's_0.5$	18	16	168	0.42	ns
$aperiodic_exp$	H1000's_1	$\rm H2000's_0.75$	18	16	157	0.67	ns
$aperiodic_exp$	H1000's_1	H2000's_1	18	16	157	0.67	ns
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.25}$	18	16	128	0.60	ns
$aperiodic_exp$	H1000's_1	$H3000's_0.5$	18	16	134	0.75	ns
$aperiodic_exp$	H1000's_1	${ m H}3000{ m 's}_0.75$	18	16	134	0.75	ns
$aperiodic_exp$	H1000's_1	H3000's_1	18	16	120	0.42	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$\rm H2000's_0.5$	16	16	120	0.78	ns
$aperiodic_exp$	$H2000's_0.25$	$H2000's_0.75$	16	16	116	0.67	ns
$aperiodic_exp$	$H2000's_0.25$	$H2000's_1$	16	16	110	0.52	ns
$aperiodic_exp$	$H2000's_0.25$	$H3000's_0.25$	16	16	99	0.29	ns
$aperiodic_exp$	$H2000's_0.25$	$H3000's_0.5$	16	16	102	0.34	ns
$aperiodic_exp$	$H2000's_0.25$	$H3000's_0.75$	16	16	101	0.32	ns
$aperiodic_exp$	$H2000's_0.25$	H3000's_1	16	16	88	0.14	ns
$aperiodic_exp$	$H2000's_0.5$	$H2000's_0.75$	16	16	124	0.90	ns
$aperiodic_exp$	$H2000's_0.5$	$H2000's_1$	16	16	125	0.93	ns
aperiodic_exp	H2000's_0.5	H3000's_0.25	16	16	105	0.40	ns
aperiodic_exp	H2000's_0.5	H3000's_0.5	16	16	105	0.40	ns
aperiodic_exp	H2000's_0.5	H3000's_0.75	16	16	109	0.49	ns
aperiodic_exp	H2000's_0.5	H3000's_1	16	16	93	0.20	ns
$aperiodic_exp$	$H2000's_0.75$	H2000's_1	16	16	125	0.93	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H2000's_0.75	H3000's_0.25	16	16	107	0.44	ns
$aperiodic_exp$	$\rm H2000's_0.75$	$H3000's_0.5$	16	16	110	0.52	ns
aperiodic_exp	$\rm H2000's_0.75$	$H3000's_0.75$	16	16	116	0.67	ns
aperiodic_exp	$\rm H2000's_0.75$	H3000's_1	16	16	96	0.24	ns
aperiodic_exp	H2000's_1	$H3000's_0.25$	16	16	98	0.27	ns
$aperiodic_exp$	H2000's_1	$H3000's_0.5$	16	16	104	0.38	ns
$aperiodic_exp$	H2000's_1	$H3000's_0.75$	16	16	106	0.42	ns
aperiodic_exp	$H2000's_1$	H3000's_1	16	16	95	0.22	ns
aperiodic_exp	$H3000's_0.25$	$H3000's_0.5$	16	16	128	1.00	ns
aperiodic_exp	${ m H3000's} { m _0.25}$	$H3000's_0.75$	16	16	133	0.87	ns
aperiodic_exp	${ m H3000's} { m _0.25}$	H3000's_1	16	16	120	0.78	ns
aperiodic_exp	$H3000's_0.5$	$H3000's_0.75$	16	16	138	0.72	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	H3000's_1	16	16	120	0.78	ns
$aperiodic_exp$	${ m H3000's} { m _0.75}$	$\rm H3000's_1$	16	16	111	0.54	ns

Cluster: 5 Aperiodic Exponent wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.5$	24	24	272	0.75	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	24	24	264	0.63	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_1$	24	24	267	0.68	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H2000's} { m _0.25}$	24	21	398	0.00	***
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H2000's} { m _0.5}$	24	21	387	0.00	**
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H2000's} { m _0.75}$	24	21	385	0.00	**
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000'{\rm s}_1$	24	21	375	0.00	**
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	24	22	399	0.00	**
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.5}$	24	22	401	0.00	**
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	24	22	382	0.01	**
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's}{ m _1}$	24	22	366	0.03	*
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	24	24	278	0.85	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_1$	24	24	285	0.96	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H2000's} { m _0.25}$	24	21	395	0.00	***
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H2000's} { m _0.5}$	24	21	385	0.00	**
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H2000's} { m _0.75}$	24	21	382	0.00	**
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000'{\rm s}_1$	24	21	377	0.00	**
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	24	22	396	0.00	**
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	24	22	395	0.00	**
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	24	22	379	0.01	*
$aperiodic_exp$	$\rm H1000's_0.5$	H3000's_1	24	22	372	0.02	*
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	24	24	300	0.81	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H2000's} { m _0.25}$	24	21	408	0.00	***
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H2000's} { m _0.5}$	24	21	397	0.00	***
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H2000's} { m _0.75}$	24	21	393	0.00	**
$aperiodic_exp$	$\rm H1000's_0.75$	H2000's_1	24	21	383	0.00	**
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H3000's} { m _0.25}$	24	22	408	0.00	**
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H3000's} { m _0.5}$	24	22	407	0.00	**
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H}3000{ m 's}_0.75$	24	22	396	0.00	**
$aperiodic_exp$	$\rm H1000's_0.75$	H3000's_1	24	22	381	0.01	**
$aperiodic_exp$	$\rm H1000's_1$	$H2000's_0.25$	24	21	402	0.00	***
$aperiodic_exp$	H1000's_1	$H2000's_0.5$	24	21	394	0.00	***

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
aperiodic_exp	H1000's_1	$H2000's_0.75$	24	21	391	0.00	**
$aperiodic_exp$	$\rm H1000's_1$	$H2000's_1$	24	21	384	0.00	**
$aperiodic_exp$	$\rm H1000's_1$	${ m H3000's} { m _0.25}$	24	22	407	0.00	**
$aperiodic_exp$	$\rm H1000's_1$	${ m H3000's} { m _0.5}$	24	22	407	0.00	**
$aperiodic_exp$	$\rm H1000's_1$	${ m H3000's} { m _0.75}$	24	22	391	0.00	**
$aperiodic_exp$	$\rm H1000's_1$	${ m H3000's}{ m _1}$	24	22	382	0.01	**
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H2000's} { m _0.5}$	21	21	204	0.69	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H2000's} { m _0.75}$	21	21	190	0.45	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	$H2000's_1$	21	21	192	0.48	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.25}$	21	22	203	0.51	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.5}$	21	22	199	0.45	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.75}$	21	22	167	0.12	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	$H3000's_1$	21	22	142	0.03	*
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H2000's} { m _0.75}$	21	21	206	0.73	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${\rm H}2000'{\rm s}_1$	21	21	203	0.67	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's} { m _0.25}$	21	22	217	0.74	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's} { m _0.5}$	21	22	211	0.64	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's} { m _0.75}$	21	22	184	0.26	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	${ m H3000's}{ m _1}$	21	22	163	0.10	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${\rm H}2000'{\rm s}_1$	21	21	214	0.88	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.25}$	21	22	224	0.88	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.5}$	21	22	225	0.90	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.75}$	21	22	193	0.37	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's}{ m _1}$	21	22	168	0.13	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's} { m _0.25}$	21	22	232	0.99	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.5}$	21	22	228	0.95	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's} { m _0.75}$	21	22	203	0.51	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's}{ m _1}$	21	22	182	0.24	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.5}$	22	22	238	0.94	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.75}$	22	22	211	0.48	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	H3000's_1	22	22	184	0.18	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	${ m H3000's} { m _0.75}$	22	22	207	0.42	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	H3000's_1	22	22	188	0.21	ns
$aperiodic_exp$	${ m H3000's} { m _0.75}$	H3000's_1	22	22	212	0.49	$_{ m ns}$

Cluster: 6 Aperiodic Exponent wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	18	18	146	0.63	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	18	18	152	0.77	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	18	18	151	0.74	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000' {\rm s} _0.25$	18	13	152	0.17	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	18	13	145	0.28	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H2000's} { m _0.75}$	18	13	135	0.49	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H2000's_1	18	13	148	0.23	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	18	11	87	0.61	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.5}$	18	11	93	0.81	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.75$	18	11	95	0.88	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H3000's_1	18	11	84	0.52	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	18	18	164	0.96	ns

EEG Var	Group_Speed_1	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.5	H1000's_1	18	18	165	0.94	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.25$	18	13	161	0.08	ns
aperiodic_exp	$\rm H1000's_0.5$	H2000's_0.5	18	13	156	0.12	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.75$	18	13	153	0.16	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H2000's_1	18	13	162	0.07	ns
aperiodic_exp	$\rm H1000's_0.5$	H3000's_0.25	18	11	98	0.98	ns
aperiodic_exp	$\rm H1000's_0.5$	H3000's_0.5	18	11	109	0.67	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.75$	18	11	107	0.74	ns
aperiodic_exp	$\rm H1000's_0.5$	H3000's_1	18	11	95	0.88	ns
aperiodic_exp	$\rm H1000's_0.75$	H1000's_1	18	18	159	0.94	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.25$	18	13	159	0.10	ns
aperiodic_exp	$\rm H1000's_0.75$	H2000's_0.5	18	13	153	0.16	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.75$	18	13	146	0.26	ns
aperiodic_exp	$\rm H1000's_0.75$	H2000's_1	18	13	155	0.14	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.25$	18	11	94	0.84	ns
aperiodic_exp	$\rm H1000's_0.75$	H3000's_0.5	18	11	102	0.91	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.75$	18	11	101	0.95	ns
aperiodic_exp	$\rm H1000's_0.75$	H3000's_1	18	11	91	0.74	ns
aperiodic_exp	H1000's_1	$H2000's_0.25$	18	13	165	0.06	ns
aperiodic_exp	H1000's_1	H2000's_0.5	18	13	156	0.12	ns
aperiodic_exp	H1000's_1	$H2000's_0.75$	18	13	150	0.20	ns
aperiodic_exp	H1000's_1	H2000's_1	18	13	156	0.12	ns
aperiodic_exp	H1000's_1	H3000's_0.25	18	11	95	0.88	ns
aperiodic_exp	H1000's_1	H3000's_0.5	18	11	103	0.88	ns
aperiodic_exp	H1000's_1	$H3000's_0.75$	18	11	101	0.95	ns
$aperiodic_exp$	H1000's_1	H3000's_1	18	11	90	0.71	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$H2000's_0.5$	13	13	81	0.88	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$\rm H2000's_0.75$	13	13	70	0.48	ns
$aperiodic_exp$	$\rm H2000's_0.25$	H2000's_1	13	13	74	0.61	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.25}$	13	11	44	0.12	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H}3000{ m 's}_0.5$	13	11	49	0.21	ns
$aperiodic_exp$	$\rm H2000's_0.25$	${ m H}3000{ m 's}_0.75$	13	11	44	0.12	ns
$aperiodic_exp$	$\rm H2000's_0.25$	H3000's_1	13	11	40	0.07	ns
$aperiodic_exp$	$\rm H2000's_0.5$	$\rm H2000's_0.75$	13	13	74	0.61	ns
$aperiodic_exp$	$\rm H2000's_0.5$	H2000's_1	13	13	79	0.80	ns
$aperiodic_exp$	$\rm H2000's_0.5$	${ m H3000's} { m _0.25}$	13	11	48	0.19	ns
$aperiodic_exp$	$\rm H2000's_0.5$	${ m H3000's} { m _0.5}$	13	11	50	0.23	ns
$aperiodic_exp$	$\rm H2000's_0.5$	${ m H}3000{ m 's}_0.75$	13	11	49	0.21	ns
$aperiodic_exp$	$\rm H2000's_0.5$	H3000's_1	13	11	42	0.09	ns
$aperiodic_exp$	$H2000's_0.75$	H2000's_1	13	13	93	0.69	ns
$aperiodic_exp$	$H2000's_0.75$	$H3000's_0.25$	13	11	51	0.25	ns
$aperiodic_exp$	$H2000's_0.75$	$H3000's_0.5$	13	11	56	0.39	ns
$aperiodic_exp$	$H2000's_0.75$	$H3000's_0.75$	13	11	57	0.42	ns
$aperiodic_exp$	$H2000's_0.75$	$H3000's_1$	13	11	50	0.23	ns
$aperiodic_exp$	H2000's_1	$H3000's_0.25$	13	11	43	0.11	ns
$aperiodic_exp$	H2000's_1	$H3000's_0.5$	13	11	48	0.19	ns
$aperiodic_exp$	$\rm H2000's_1$	${ m H}3000{ m 's}_0.75$	13	11	47	0.17	ns
$aperiodic_exp$	$H2000's_1$	H3000's_1	13	11	43	0.11	ns
$aperiodic_exp$	$H3000's_0.25$	$H3000's_0.5$	11	11	62	0.95	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.75}$	11	11	63	0.90	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	H3000's_1	11	11	60	1.00	ns
$aperiodic_exp$	$H3000's_0.5$	$H3000's_0.75$	11	11	62	0.95	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	${ m H3000's} { m _0.5}$	H3000's_1	11	11	55	0.75	ns
$aperiodic_exp$	${ m H}3000' { m s}_0.75$	H3000's_1	11	11	54	0.70	ns

Cluster: 7 Aperiodic Exponent wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	16	16	111	0.54	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	16	16	112	0.56	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	16	16	111	0.54	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.25$	16	11	123	0.09	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000' {\rm s} _0.5$	16	11	122	0.10	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H2000's_0.75$	16	11	124	0.08	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.25$	H2000's_1	16	11	122	0.10	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.25$	16	11	96	0.72	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.5$	16	11	91	0.90	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.75$	16	11	92	0.86	ns
aperiodic_exp	$H1000's_0.25$	H3000's_1	16	11	93	0.83	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.5$	$\rm H1000's_0.75$	16	16	122	0.84	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H1000's_1	16	16	136	0.78	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_0.25$	16	11	133	0.03	*
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.5$	16	11	133	0.03	*
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_0.75$	16	11	136	0.02	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_1$	16	11	133	0.03	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_0.25$	16	11	101	0.54	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	16	11	99	0.61	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	16	11	100	0.58	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	H3000's_1	16	11	99	0.61	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	16	16	135	0.81	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H2000's} { m _0.25}$	16	11	133	0.03	*
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H2000's} { m _0.5}$	16	11	131	0.03	*
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H2000's} { m _0.75}$	16	11	134	0.02	*
$aperiodic_exp$	$\rm H1000's_0.75$	H2000's_1	16	11	132	0.03	*
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.25$	16	11	100	0.58	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H3000's} { m _0.5}$	16	11	97	0.68	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H3000's} { m _0.75}$	16	11	96	0.72	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H3000's_1	16	11	97	0.68	ns
$aperiodic_exp$	H1000's_1	${ m H2000's} { m _0.25}$	16	11	135	0.02	*
$aperiodic_exp$	H1000's_1	$H2000's_0.5$	16	11	137	0.01	*
$aperiodic_exp$	H1000's_1	${ m H2000's} { m _0.75}$	16	11	137	0.01	*
$aperiodic_exp$	H1000's_1	H2000's_1	16	11	133	0.03	*
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.25}$	16	11	100	0.58	ns
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.5}$	16	11	100	0.58	ns
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.75}$	16	11	100	0.58	ns
$aperiodic_exp$	H1000's_1	H3000's_1	16	11	98	0.64	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$\rm H2000's_0.5$	11	11	60	1.00	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$\rm H2000's_0.75$	11	11	63	0.90	ns
$aperiodic_exp$	${ m H2000's} { m _0.25}$	H2000's_1	11	11	60	1.00	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.25}$	11	11	42	0.24	ns
$aperiodic_exp$	${ m H2000's} { m _0.25}$	${ m H3000's} { m _0.5}$	11	11	43	0.27	ns
$aperiodic_exp$	${\rm H}2000{\rm 's}_0.25$	${ m H}3000{ m 's}_0.75$	11	11	44	0.30	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	p-value	*sig.
aperiodic_exp	H2000's_0.25	H3000's_1	11	11	47	0.40	ns
aperiodic_exp	$H2000's_0.5$	$H2000's_0.75$	11	11	60	1.00	ns
aperiodic_exp	$H2000's_0.5$	H2000's_1	11	11	55	0.75	ns
aperiodic_exp	$H2000's_0.5$	$H3000's_0.25$	11	11	44	0.30	ns
aperiodic_exp	$H2000's_0.5$	$H3000's_0.5$	11	11	44	0.30	ns
$aperiodic_exp$	$\rm H2000's_0.5$	$H3000's_0.75$	11	11	43	0.27	ns
$aperiodic_exp$	$\rm H2000's_0.5$	$H3000's_1$	11	11	47	0.40	ns
$aperiodic_exp$	$\rm H2000's_0.75$	$H2000's_1$	11	11	56	0.80	ns
$aperiodic_exp$	$\rm H2000's_0.75$	${ m H3000's} { m _0.25}$	11	11	43	0.27	ns
$aperiodic_exp$	$\rm H2000's_0.75$	$H3000's_0.5$	11	11	43	0.27	ns
$aperiodic_exp$	$\rm H2000's_0.75$	$H3000's_0.75$	11	11	44	0.30	ns
$aperiodic_exp$	$\rm H2000's_0.75$	$H3000's_1$	11	11	46	0.36	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.25}$	11	11	48	0.44	ns
$aperiodic_exp$	$H2000's_1$	${ m H3000's} { m _0.5}$	11	11	46	0.36	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.75}$	11	11	50	0.52	ns
$aperiodic_exp$	$H2000's_{1}$	H3000's_1	11	11	47	0.40	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_0.5$	11	11	60	1.00	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_0.75$	11	11	62	0.95	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_1$	11	11	60	1.00	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	${ m H3000's} { m _0.75}$	11	11	62	0.95	ns
aperiodic_exp	${ m H3000's} { m _0.5}$	H3000's_1	11	11	62	0.95	ns
aperiodic_exp	${ m H}3000{ m 's}_0.75$	$\rm H3000's_1$	11	11	62	0.95	ns

Cluster: 8 Aperiodic Exponent wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	15	15	108	0.87	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	15	15	103	0.71	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	15	15	103	0.71	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000' {\rm s}_0.25$	15	8	98	0.01	*
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	15	8	96	0.02	*
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H2000's_0.75$	15	8	92	0.04	*
$aperiodic_exp$	$\rm H1000's_0.25$	H2000's_1	15	8	82	0.17	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	15	11	92	0.65	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.5}$	15	11	84	0.96	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	15	11	85	0.92	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H3000's_1	15	11	95	0.54	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	15	15	105	0.78	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H1000's_1	15	15	107	0.84	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H2000's} { m _0.25}$	15	8	106	0.00	**
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s}_0.5$	15	8	102	0.00	**
$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s}_0.75$	15	8	97	0.02	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_1$	15	8	86	0.10	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	15	11	100	0.38	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	15	11	88	0.80	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	15	11	91	0.68	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H3000's_1	15	11	99	0.41	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	15	15	116	0.90	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.25$	15	8	111	0.00	***
$aperiodic_exp$	$\rm H1000's_0.75$	${\rm H}2000{\rm 's}_0.5$	15	8	108	0.00	**

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.75	H2000's_0.75	15	8	98	0.01	*
aperiodic_exp	$\rm H1000's_0.75$	H2000's_1	15	8	92	0.04	*
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.25$	15	11	105	0.26	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.5$	15	11	95	0.54	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.75$	15	11	95	0.54	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_1$	15	11	110	0.16	ns
$aperiodic_exp$	H1000's_1	${\rm H}2000' {\rm s} _0.25$	15	8	105	0.00	**
$aperiodic_exp$	H1000's_1	${\rm H}2000' {\rm s} _0.5$	15	8	102	0.00	**
$aperiodic_exp$	H1000's_1	${ m H2000's}_{-0.75}$	15	8	98	0.01	*
$aperiodic_exp$	H1000's_1	${\rm H}2000' {\rm s}_1$	15	8	87	0.09	ns
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.25}$	15	11	97	0.47	ns
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.5}$	15	11	92	0.65	ns
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.75}$	15	11	91	0.68	ns
$aperiodic_exp$	H1000's_1	$H3000's_1$	15	11	100	0.38	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$\rm H2000's_0.5$	8	8	24	0.44	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H2000's} { m _0.75}$	8	8	24	0.44	$_{ m ns}$
$aperiodic_exp$	$\rm H2000's_0.25$	H2000's_1	8	8	21	0.28	ns
$aperiodic_exp$	$\rm H2000's_0.25$	${ m H3000's} { m _0.25}$	8	11	20	0.05	ns
$aperiodic_exp$	$\rm H2000's_0.25$	${ m H3000's} { m _0.5}$	8	11	18	0.03	*
$aperiodic_exp$	$\rm H2000's_0.25$	${ m H3000's} { m _0.75}$	8	11	15	0.02	*
$aperiodic_exp$	$\rm H2000's_0.25$	H3000's_1	8	11	18	0.03	*
$aperiodic_exp$	$\rm H2000's_0.5$	$\rm H2000's_0.75$	8	8	28	0.72	ns
$aperiodic_exp$	$H2000's_0.5$	H2000's_1	8	8	27	0.64	ns
$aperiodic_exp$	$\rm H2000's_0.5$	${ m H3000's} { m _0.25}$	8	11	23	0.09	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.5$	8	11	21	0.06	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.75$	8	11	19	0.04	*
$aperiodic_exp$	$H2000's_0.5$	H3000's_1	8	11	23	0.09	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	H2000's_1	8	8	31	0.96	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	$H3000's_0.25$	8	11	33	0.40	ns
$aperiodic_exp$	$H2000's_0.75$	$H3000's_0.5$	8	11	26	0.15	ns
$aperiodic_exp$	$H2000's_0.75$	$H3000's_0.75$	8	11	25	0.13	ns
$aperiodic_exp$	$H2000's_0.75$	$H3000's_1$	8	11	28	0.21	ns
$aperiodic_exp$	$H2000's_1$	$H3000's_0.25$	8	11	36	0.54	ns
$aperiodic_exp$	$H2000's_1$	$H3000's_0.5$	8	11	32	0.35	ns
$aperiodic_exp$	$H2000's_1$	$H3000's_0.75$	8	11	30	0.27	ns
$aperiodic_exp$	$H2000's_1$	H3000's_1	8	11	34	0.44	ns
$aperiodic_exp$	$H3000's_0.25$	$H3000's_0.5$	11	11	51	0.56	ns
$aperiodic_exp$	$H3000's_0.25$	$H3000's_0.75$	11	11	53	0.65	ns
$aperiodic_exp$	$H3000's_0.25$	H3000's_1	11	11	62	0.95	ns
$aperiodic_exp$	$H3000's_0.5$	$H3000's_0.75$	11	11	63	0.90	$_{ m ns}$
$aperiodic_exp$	$H3000's_0.5$	H3000's_1	11	11	65	0.80	$_{ m ns}$
aperiodic_exp	H3000's_0.75	H3000's_1	11	11	65	0.80	ns

Cluster: 9 Aperiodic Exponent wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	24	24	270	0.72	ns
aperiodic_exp	$\rm H1000's_0.25$	$H1000's_0.75$	24	24	281	0.89	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	24	24	263	0.62	ns
aperiodic exp	H1000's 0.25	H2000's 0.25	24	15	255	0.03	*

EEG Var	Group_Speed_1	Group_Speed_2	N1	N2	Wstat	p-value	*sig.
aperiodic_exp	$\rm H1000's_0.25$	$H2000's_0.5$	24	15	247	0.05	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.75$	24	15	252	0.04	*
aperiodic_exp	$\rm H1000's_0.25$	H2000's_1	24	15	238	0.10	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.25$	24	22	342	0.09	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.5}$	24	22	333	0.13	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.75$	24	22	334	0.13	ns
aperiodic_exp	$\rm H1000's_0.25$	H3000's_1	24	22	316	0.26	ns
aperiodic_exp	$\rm H1000's_0.5$	$H1000's_0.75$	24	24	288	1.00	ns
aperiodic_exp	$\rm H1000's_0.5$	H1000's_1	24	24	277	0.83	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.25$	24	15	272	0.01	**
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.5$	24	15	265	0.01	*
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.75$	24	15	260	0.02	*
$aperiodic_exp$	$\rm H1000's_0.5$	H2000's_1	24	15	248	0.05	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.25$	24	22	363	0.03	*
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.5}$	24	22	347	0.07	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H3000's} { m _0.75}$	24	22	344	0.08	ns
aperiodic_exp	$\rm H1000's_0.5$	H3000's_1	24	22	339	0.10	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	24	24	275	0.80	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.25$	24	15	257	0.03	*
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.5$	24	15	249	0.05	*
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.75$	24	15	255	0.03	*
aperiodic_exp	$\rm H1000's_0.75$	H2000's_1	24	15	247	0.05	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H3000's} { m _0.25}$	24	22	348	0.07	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.5$	24	22	338	0.11	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.75$	24	22	331	0.14	ns
aperiodic_exp	$\rm H1000's_0.75$	H3000's_1	24	22	317	0.25	ns
$aperiodic_exp$	H1000's_1	$H2000's_0.25$	24	15	274	0.01	**
$aperiodic_exp$	H1000's_1	$H2000's_0.5$	24	15	265	0.01	*
$aperiodic_exp$	H1000's_1	$H2000's_0.75$	24	15	269	0.01	**
$aperiodic_exp$	H1000's_1	H2000's_1	24	15	257	0.03	*
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.25}$	24	22	367	0.02	*
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.5}$	24	22	355	0.05	*
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.75}$	24	22	350	0.06	ns
$aperiodic_exp$	H1000's_1	H3000's_1	24	22	338	0.11	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$H2000's_0.5$	15	15	108	0.87	ns
$aperiodic_exp$	${\rm H}2000'{\rm s}_0.25$	${ m H2000's} { m _0.75}$	15	15	104	0.74	ns
$aperiodic_exp$	$\rm H2000's_0.25$	H2000's_1	15	15	95	0.49	ns
$aperiodic_exp$	$\rm H2000's_0.25$	${ m H3000's} { m _0.25}$	15	22	144	0.53	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$H3000's_0.5$	15	22	142	0.49	ns
$aperiodic_exp$	$H2000's_0.25$	H3000's_0.75	15	22	137	0.40	ns
$aperiodic_exp$	$H2000's_0.25$	H3000's_1	15	22	128	0.26	ns
$aperiodic_exp$	$H2000's_0.5$	$\rm H2000's_0.75$	15	15	109	0.90	ns
$aperiodic_exp$	$H2000's_0.5$	H2000's_1	15	15	98	0.57	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.25$	15	22	146	0.57	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.5$	15	22	145	0.55	ns
$aperiodic_exp$	${ m H2000's} { m _0.5}$	$H3000's_0.75$	15	22	141	0.47	ns
$aperiodic_exp$	$H2000's_0.5$	H3000's_1	15	22	135	0.37	ns
$aperiodic_exp$	$\rm H2000's_0.75$	H2000's_1	15	15	104	0.74	ns
$aperiodic_exp$	$H2000's_0.75$	$H3000's_0.25$	15	22	147	0.59	ns
$aperiodic_exp$	$\rm H2000's_0.75$	${ m H3000's} { m _0.5}$	15	22	149	0.64	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	$H3000's_0.75$	15	22	144	0.53	ns
$aperiodic_exp$	$H2000's_0.75$	H3000's_1	15	22	138	0.42	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H2000's_1	H3000's_0.25	15	22	159	0.87	ns
$aperiodic_exp$	H2000's_1	$H3000's_0.5$	15	22	161	0.92	ns
$aperiodic_exp$	H2000's_1	$H3000's_0.75$	15	22	157	0.82	ns
$aperiodic_exp$	H2000's_1	$H3000's_1$	15	22	149	0.64	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_0.5$	22	22	240	0.97	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.25$	${ m H3000's} { m _0.75}$	22	22	234	0.86	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.25$	H3000's_1	22	22	219	0.60	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.5$	${ m H3000's} { m _0.75}$	22	22	239	0.95	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.5$	H3000's_1	22	22	222	0.65	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.75$	H3000's_1	22	22	230	0.79	ns

Cluster: 10 Aperiodic Exponent wilcoxon

$EEG\ Var$	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	23	23	254	0.83	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	23	23	243	0.65	ns
aperiodic_exp	$\rm H1000's_0.25$	H1000's_1	23	23	244	0.66	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.25$	23	17	226	0.42	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	23	17	220	0.52	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.75$	23	17	223	0.46	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_1$	23	17	227	0.40	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	23	17	213	0.64	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.5$	23	17	179	0.66	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.75$	23	17	189	0.87	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_1$	23	17	197	0.98	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	23	23	260	0.93	ns
aperiodic_exp	$\rm H1000's_0.5$	$H1000's_1$	23	23	264	1.00	ns
aperiodic_exp	$\rm H1000's_0.5$	$\rm H2000's_0.25$	23	17	243	0.20	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.5$	23	17	237	0.26	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.75$	23	17	238	0.25	ns
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_1$	23	17	246	0.17	ns
aperiodic_exp	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	23	17	237	0.26	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.5$	23	17	190	0.89	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.75$	23	17	205	0.81	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_1$	23	17	217	0.57	ns
aperiodic_exp	$\rm H1000's_0.75$	$H1000's_1$	23	23	263	0.98	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$\rm H2000's_0.25$	23	17	247	0.16	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.5$	23	17	243	0.20	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_0.75$	23	17	241	0.22	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H2000's_1$	23	17	246	0.17	ns
$aperiodic_exp$	$\rm H1000's_0.75$	${ m H3000's} { m _0.25}$	23	17	230	0.36	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.5$	23	17	193	0.96	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_0.75$	23	17	205	0.81	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$H3000's_1$	23	17	213	0.64	ns
$aperiodic_exp$	$\rm H1000's_1$	${\rm H}2000' {\rm s} _0.25$	23	17	247	0.16	ns
$aperiodic_exp$	$\rm H1000's_1$	$H2000's_0.5$	23	17	246	0.17	ns
$aperiodic_exp$	$\rm H1000's_1$	$H2000's_0.75$	23	17	238	0.25	ns
$aperiodic_exp$	$\rm H1000's_1$	$H2000's_{1}$	23	17	244	0.19	ns
$aperiodic_exp$	$\rm H1000's_1$	${ m H3000's} { m _0.25}$	23	17	229	0.37	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_1$	${ m H3000's} { m _0.5}$	23	17	191	0.91	$_{ m ns}$

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_1	$H3000's_0.75$	23	17	204	0.83	ns
$aperiodic_exp$	H1000's_1	$H3000's_1$	23	17	213	0.64	ns
aperiodic_exp	${\rm H}2000' {\rm s}_0.25$	$H2000's_0.5$	17	17	147	0.95	ns
aperiodic_exp	${\rm H}2000' {\rm s}_0.25$	$H2000's_0.75$	17	17	133	0.71	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	$H2000's_1$	17	17	139	0.86	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.25}$	17	17	122	0.45	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.5}$	17	17	99	0.12	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H3000's} { m _0.75}$	17	17	100	0.13	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	$H3000's_1$	17	17	107	0.20	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	$H2000's_0.75$	17	17	133	0.71	ns
aperiodic_exp	${\rm H}2000' {\rm s}_0.5$	$H2000's_1$	17	17	147	0.95	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	${ m H3000's} { m _0.25}$	17	17	122	0.45	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	$H3000's_0.5$	17	17	97	0.11	ns
aperiodic_exp	${\rm H}2000' {\rm s}_0.5$	$H3000's_0.75$	17	17	100	0.13	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	H3000's_1	17	17	105	0.18	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	H2000's_1	17	17	154	0.76	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.25}$	17	17	133	0.71	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.5}$	17	17	100	0.13	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.75}$	17	17	100	0.13	ns
$aperiodic_exp$	$\rm H2000's_0.75$	H3000's_1	17	17	112	0.27	$_{ m ns}$
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.25}$	17	17	120	0.41	ns
$aperiodic_exp$	$H2000's_{1}$	${ m H3000's} { m _0.5}$	17	17	96	0.10	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's} { m _0.75}$	17	17	96	0.10	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	H3000's_1	17	17	105	0.18	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.5}$	17	17	112	0.27	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.75}$	17	17	111	0.26	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	H3000's_1	17	17	120	0.41	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	${ m H3000's} { m _0.75}$	17	17	147	0.95	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	$H3000's_1$	17	17	160	0.61	ns
$aperiodic_exp$	${ m H3000's} { m _0.75}$	$\rm H3000's_1$	17	17	158	0.66	ns

Cluster: 11 Aperiodic Exponent wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	29	29	391	0.65	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	29	29	417	0.96	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	29	29	408	0.85	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H2000's_0.25$	29	15	233	0.71	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	29	15	235	0.68	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.75$	29	15	237	0.64	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	H2000's_1	29	15	232	0.73	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.25}$	29	19	277	0.98	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$H3000's_0.5$	29	19	275	1.00	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	29	19	275	1.00	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	H3000's_1	29	19	275	1.00	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	29	29	447	0.69	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	H1000's_1	29	29	437	0.80	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_0.25$	29	15	253	0.39	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.5$	29	15	257	0.34	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H2000's} { m _0.75}$	29	15	254	0.38	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_1$	29	15	251	0.42	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H}3000'{ m s}_0.25$	29	19	295	0.69	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_0.5$	29	19	297	0.66	ns
$aperiodic_exp$	$\rm H1000's_0.5$	${ m H}3000' { m s}_0.75$	29	19	291	0.75	ns
aperiodic_exp	$\rm H1000's_0.5$	H3000's_1	29	19	297	0.66	ns
$aperiodic_exp$	$\rm H1000's_0.75$	H1000's_1	29	29	403	0.79	ns
$aperiodic_exp$	$\rm H1000's_0.75$	$\rm H2000's_0.25$	29	15	241	0.57	ns
aperiodic_exp	$H1000's_0.75$	$H2000's_0.5$	29	15	236	0.66	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.75$	29	15	238	0.62	ns
aperiodic exp	H1000's 0.75	H2000's 1	29	15	235	0.68	$_{ m ns}$
aperiodic_exp	H1000's 0.75	H3000's 0.25	29	19	276	1.00	ns
aperiodic_exp	H1000's 0.75	H3000's 0.5	29	19	275	1.00	ns
aperiodic_exp	H1000's 0.75	H3000's 0.75	29	19	273	0.97	ns
aperiodic_exp	H1000's 0.75	H3000's 1	29	19	275	1.00	ns
aperiodic_exp	H1000's 1	H2000's 0.25	29	15	244	0.52	ns
aperiodic exp	H1000's 1	H2000's 0.5	29	15	250	0.43	ns
aperiodic_exp	H1000's 1	H2000's 0.75	29	15	249	0.45	ns
aperiodic exp	H1000's 1	H2000's 1	29	15	243	0.54	ns
aperiodic_exp	H1000's 1	H3000's 0.25	29	19	282	0.90	ns
aperiodic exp	H1000's 1	H3000's 0.5	29	19	279	0.95	ns
aperiodic exp	H1000's 1	H3000's 0.75	29	19	280	0.93	ns
aperiodic_exp aperiodic exp	H1000's 1	H3000's 1	29	19	283	0.88	ns
aperiodic_exp	H2000's_0.25	H2000's_0.5	15	15	112	1.00	ns
aperiodic_exp	H2000's_0.25	H2000's 0.75	15	15	114	0.97	ns
aperiodic_exp	H2000's_0.25	H2000's 1	15	15	110	0.94	ns
aperiodic_exp	H2000's_0.25	H3000's 0.25	15	19	135	0.81	
aperiodic_exp	H2000's_0.25	H3000's 0.5	15 15	19	132	0.73	ns
-		H3000's 0.75	15 15	19	132 132	$0.73 \\ 0.73$	ns
aperiodic_exp	H2000's_0.25	 -	15 15	19	132 132	$0.73 \\ 0.73$	ns
aperiodic_exp	H2000's_0.25	H3000's_1					ns
aperiodic_exp	H2000's_0.5	H2000's_0.75	15	15	114	0.97	ns
aperiodic_exp	H2000's_0.5	H2000's_1	15	15	109	0.90	ns
aperiodic_exp	H2000's_0.5	H3000's_0.25	15	19	138	0.89	ns
aperiodic_exp	H2000's_0.5	H3000's_0.5	15	19	132	0.73	ns
aperiodic_exp	H2000's_0.5	H3000's_0.75	15	19	134	0.78	ns
aperiodic_exp	H2000's_0.5	H3000's_1	15	19	133	0.76	ns
aperiodic_exp	H2000's_0.75	H2000's_1	15	15	109	0.90	ns
aperiodic_exp	H2000's_0.75	H3000's_0.25	15	19	136	0.84	$_{ m ns}$
aperiodic_exp	H2000's_0.75	H3000's_0.5	15	19	134	0.78	ns
aperiodic_exp	H2000's_0.75	H3000's_0.75	15	19	135	0.81	ns
aperiodic_exp	H2000's_0.75	H3000's_1	15	19	135	0.81	ns
$aperiodic_exp$	$H2000's_1$	$H3000's_0.25$	15	19	139	0.92	ns
$aperiodic_exp$	H2000's_1	$H3000's_0.5$	15	19	133	0.76	ns
aperiodic_exp	H2000's_1	H3000's_0.75	15	19	135	0.81	ns
$aperiodic_exp$	H2000's_1	H3000's_1	15	19	137	0.86	ns
$aperiodic_exp$	$H3000's_0.25$	${ m H3000's} { m _0.5}$	19	19	174	0.86	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.75}$	19	19	174	0.86	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	H3000's_1	19	19	178	0.95	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.5$	${ m H3000's} { m _0.75}$	19	19	179	0.98	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	$H3000's_{1}$	19	19	182	0.98	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.75$	H3000's_1	19	19	179	0.98	ns

Cluster: 12 Aperiodic Exponent wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	24	24	277	0.83	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	24	24	266	0.66	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H1000's_1	24	24	275	0.80	ns
$aperiodic_exp$	$\rm H1000's_0.25$	${\rm H}2000' {\rm s}_0.25$	24	14	240	0.03	*
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H2000's} { m _0.5}$	24	14	239	0.03	*
$aperiodic_exp$	$\rm H1000's_0.25$	${ m H2000's} { m _0.75}$	24	14	231	0.06	ns
$aperiodic_exp$	$\rm H1000's_0.25$	H2000's_1	24	14	231	0.06	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.25$	24	20	323	0.05	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.5$	24	20	317	0.07	ns
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.75$	24	20	314	0.08	ns
aperiodic_exp	$\rm H1000's_0.25$	H3000's_1	24	20	323	0.05	ns
aperiodic exp	H1000's 0.5	H1000's 0.75	24	24	277	0.83	ns
aperiodic_exp	H1000's 0.5	H1000's 1	24	24	280	0.88	$_{ m ns}$
aperiodic_exp	H1000's 0.5	H2000's 0.25	24	14	253	0.01	**
aperiodic_exp	H1000's 0.5	H2000's 0.5	24	14	248	0.01	*
aperiodic_exp	H1000's 0.5	H2000's 0.75	24	14	243	0.02	*
aperiodic_exp	H1000's 0.5	H2000's 1	24	14	239	0.03	*
aperiodic_exp	H1000's 0.5	H3000's 0.25	24	20	327	0.04	*
aperiodic_exp	H1000's 0.5	H3000's 0.5	$\overline{24}$	20	327	0.04	*
aperiodic exp	H1000's 0.5	H3000's 0.75	$\overline{24}$	20	330	0.03	*
aperiodic exp	H1000's 0.5	H3000's 1	24	20	337	0.02	*
aperiodic_exp	H1000's 0.75	H1000's 1	$\frac{24}{24}$	$\frac{26}{24}$	298	0.85	ns
aperiodic_exp	H1000's 0.75	H2000's 0.25	24	14	251	0.01	*
aperiodic_exp	H1000's 0.75	H2000's 0.5	24	14	248	0.01	*
aperiodic_exp	H1000's 0.75	H2000's 0.75	24	14	240	0.03	*
aperiodic_exp	H1000's 0.75	H2000's 1	24	14	238	0.03	*
aperiodic exp	H1000's 0.75	H3000's 0.25	24	20	330	0.03	*
aperiodic exp	H1000's 0.75	H3000's 0.5	24	20	327	0.04	*
aperiodic exp	H1000's 0.75	H3000's 0.75	24	20	331	0.03	*
aperiodic_exp	H1000's 0.75	H3000's 1	$\frac{21}{24}$	20	339	0.02	*
aperiodic_exp	H1000's 1	H2000's 0.25	24	14	249	0.01	*
aperiodic_exp	H1000's_1	H2000's 0.5	$\frac{21}{24}$	14	246	0.02	*
aperiodic exp	H1000's_1	H2000's 0.75	$\frac{24}{24}$	14	238	0.02	*
aperiodic exp	H1000's_1	H2000's 1	$\frac{24}{24}$	14	$\frac{236}{236}$	0.03 0.04	*
aperiodic exp	H1000's 1	H3000's 0.25	$\frac{24}{24}$	20	325	0.04 0.05	*
aperiodic_exp	H1000's 1	H3000's_0.25	$\frac{24}{24}$	20	323	0.05	ns
aperiodic_exp	H1000's 1	H3000's 0.75	$\frac{24}{24}$	20	$\frac{323}{328}$	0.03 0.04	*
aperiodic_exp	H1000's_1	H3000's 1	24	$\frac{20}{20}$	340	0.04 0.02	*
aperiodic_exp	H2000's_0.25	H2000's_0.5	14	14	99	0.02 0.98	ns
aperiodic exp	H2000's_0.25	H2000's 0.75	14	14	82	0.48	ns
aperiodic_exp	H2000's_0.25	H2000's 1	14	14	80	0.43	ns
aperiodic_exp	H2000's_0.25	H3000's 0.25	14	20	134	$0.45 \\ 0.85$	ns
aperiodic_exp aperiodic exp	H2000's_0.25	H3000's 0.5	14 14	20	134	0.80	
aperiodic_exp aperiodic exp	H2000's_0.25 H2000's_0.25	H3000's 0.75	$\frac{14}{14}$	20	132 134	0.80 0.85	ns
aperiodic_exp aperiodic exp	H2000's 0.25	H3000's 1	$\frac{14}{14}$	20	134 135		ns
aperiodic_exp aperiodic exp	H2000's 0.5	H2000's_1 H2000's 0.75	$\frac{14}{14}$	20 14		0.88	ns
			$\frac{14}{14}$	$\frac{14}{14}$	84 77	$0.54 \\ 0.35$	ns
aperiodic_exp	H2000's_0.5	H2000's_1					ns
aperiodic_exp	H2000's_0.5	H3000's_0.25	14	20	143	0.93	ns
aperiodic_exp	H2000's_0.5	H3000's_0.5	14	20	135	0.88	ns
aperiodic_exp	$H2000's_0.5$	$H3000's_0.75$	14	20	142	0.96	$_{ m ns}$

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H2000's_0.5	H3000's_1	14	20	135	0.88	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	$H2000's_1$	14	14	99	0.98	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	${ m H3000's} { m _0.25}$	14	20	151	0.72	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	$H3000's_0.5$	14	20	153	0.67	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	$H3000's_0.75$	14	20	160	0.50	ns
$aperiodic_exp$	${ m H2000's} { m _0.75}$	H3000's_1	14	20	155	0.62	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's} { m _0.25}$	14	20	155	0.62	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's} { m _0.5}$	14	20	154	0.64	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's} { m _0.75}$	14	20	154	0.64	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_1$	${ m H3000's}{ m _1}$	14	20	153	0.67	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.5}$	20	20	192	0.84	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.75}$	20	20	194	0.88	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	H3000's_1	20	20	188	0.76	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	$H3000's_0.75$	20	20	205	0.90	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	H3000's_1	20	20	203	0.95	ns
aperiodic_exp	${ m H3000's} { m _0.75}$	H3000's_1	20	20	197	0.95	ns

Cluster: 13 Aperiodic Exponent wilcoxon

aperiodic_exp H1000's_0.25 H1000's_0.5 22 22 22 231 0.81 ns aperiodic_exp H1000's_0.25 H1000's_0.75 22 22 22 231 0.81 ns aperiodic_exp H1000's_0.25 H1000's_1 22 22 22 221 0.63 ns aperiodic_exp H1000's_0.25 H2000's_0.25 22 12 194 0.03 * aperiodic_exp H1000's_0.25 H2000's_0.5 22 12 184 0.06 ns aperiodic_exp H1000's_0.25 H2000's_0.5 22 12 181 0.88 ns aperiodic_exp H1000's_0.25 H2000's_0.75 22 12 181 0.08 ns aperiodic_exp H1000's_0.25 H2000's_1 22 12 186 0.05 ns aperiodic_exp H1000's_0.25 H3000's_0.25 22 13 168 0.41 ns aperiodic_exp H1000's_0.25 H3000's_0.25 22 13 168 0.41 ns aperiodic_exp H1000's_0.25 H3000's_0.25 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.75 22 13 180 0.22 ns aperiodic_exp H1000's_0.5 H3000's_1 22 13 180 0.22 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 23 13 180 0.22 ns aperiodic_exp H1000's_0.5 H2000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.75 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 170 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiod	EEG Var	Group Speed 1	Group Speed 2	N1	N2	Wstat	p-value	*sig.
aperiodic_exp H1000's_0.25 H1000's_0.75 22 22 231 0.81 ns aperiodic_exp H1000's_0.25 H1000's_1 22 22 22 221 0.63 ns aperiodic_exp H1000's_0.25 H2000's_0.25 22 12 194 0.03 * aperiodic_exp H1000's_0.25 H2000's_0.5 22 12 184 0.06 ns aperiodic_exp H1000's_0.25 H2000's_0.75 22 12 181 0.08 ns aperiodic_exp H1000's_0.25 H2000's_0.75 22 12 186 0.05 ns aperiodic_exp H1000's_0.25 H2000's_0.75 22 12 186 0.05 ns aperiodic_exp H1000's_0.25 H3000's_0.25 22 13 168 0.41 ns aperiodic_exp H1000's_0.25 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_1 22 13 180 0.22 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 237 0.92 ns aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 193 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000							1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
aperiodic_exp H1000's_0.25 H2000's_0.25 22 12 194 0.03 * aperiodic_exp H1000's_0.25 H2000's_0.5 22 12 184 0.06 ns aperiodic_exp H1000's_0.25 H2000's_0.75 22 12 181 0.08 ns aperiodic_exp H1000's_0.25 H2000's_1 22 12 186 0.05 ns aperiodic_exp H1000's_0.25 H2000's_0.25 22 13 168 0.41 ns aperiodic_exp H1000's_0.25 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 22 23 13 180 0.22 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 23 13 180 0.22 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 23 13 180 0.22 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H2000's_0.5 22 22 23 0.92 ns aperiodic_exp H1000's_0.5 H2000's_0.5 22 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 199 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 190 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 182 0.19 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 *			_					
aperiodic_exp H1000's_0.25 H2000's_0.55 22 12 184 0.06 ns aperiodic_exp H1000's_0.25 H2000's_0.75 22 12 181 0.08 ns aperiodic_exp H1000's_0.25 H2000's_0.75 22 12 181 0.08 ns aperiodic_exp H1000's_0.25 H2000's_0.25 22 12 186 0.05 ns aperiodic_exp H1000's_0.25 H3000's_0.25 22 13 168 0.41 ns aperiodic_exp H1000's_0.25 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.75 22 13 180 0.22 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 22 23 13 180 0.22 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H2000's_0.25 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 160 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.55 22 13 160 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.55 22 13 160 0.39 ns ap	-	_						
aperiodic_exp H1000's_0.25 H2000's_0.75 22 12 181 0.08 ns aperiodic_exp H1000's_0.25 H2000's_1 22 12 186 0.05 ns aperiodic_exp H1000's_0.25 H3000's_0.25 22 13 168 0.41 ns aperiodic_exp H1000's_0.25 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_1 22 13 180 0.22 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 *aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 *aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 *aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 *aperiodic_exp H1000's_0.5 H3000's_0.25 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 182 0.19 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 12 189 0.04 *aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 189 0.04 *aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 189 0.04 *aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 *aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 *aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 *aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 *aperiodic_exp H1000's_0.75 H2000's_0.25 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H2		_	_					
aperiodic_exp $H1000$ 's_0.25 $H2000$ 's_1 22 12 186 0.05 $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$								
aperiodic_exp H1000's_0.25 H3000's_0.25 22 13 168 0.41 ns aperiodic_exp H1000's_0.25 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_1 22 13 180 0.22 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 23 248 0.90 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 24 248 0.90 ns aperiodic_exp H1000's_0.5 H2000's_0.25 22 12 198 0.02 *aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 *aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 195 0.02 *aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 195 0.02 *aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 *aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 *aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 *aperiodic_exp H1000's_0.5 H3000's_0.25 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 182 0.19 ns aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 189 0.04 *aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 *aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 *aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 *aperiodic_exp H1000's_0.75 H3000's_0.75 22 12 188 0.04 *aperiodic_exp H1000's_0.75 H3000's_0.75 22 12 188 0.04 *aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 160 0.39 ns								
aperiodic_exp H1000's_0.25 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.25 H3000's_1 22 13 180 0.22 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 24 248 0.90 ns aperiodic_exp H1000's_0.5 H1000's_1 22 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H2000's_0.25 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H2000's_0.25 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 195 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.25 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 182 0.19 ns aperiodic_exp H1000's_0.5 H3000's_0.1 22 23 23 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 180 0.03 ns aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 180 0.03 ns aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 180 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 180 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 180 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 180 0.03 ns aperiodic_exp H1000's_0.75 H2000's_0.55 22 13 160 0.39 ns aperiodic_exp H	-	_						$_{ m ns}$
aperiodic_exp H1000's_0.25 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H1000's_0.5 22 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H2000's_0.5 22 22 22 237 0.92 ns aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 195 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.5 122 13 182 0.19 ns aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 199 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H2000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 160 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 160 0.39 ns								ns
aperiodic_exp H1000's_0.25 H3000's_1 22 13 180 0.22 ns aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H1000's_1 22 22 22 237 0.92 ns aperiodic_exp H1000's_0.5 H2000's_0.25 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 195 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 195 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H2000's_1 22 12 192 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.25 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_1 22 23 23 0.82 ns aperiodic_exp H1000's_0.5 H3000's_1 22 23 23 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 18 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns		-						ns
aperiodic_exp H1000's_0.5 H1000's_0.75 22 22 248 0.90 ns aperiodic_exp H1000's_0.5 H1000's_1 22 22 22 237 0.92 ns aperiodic_exp H1000's_0.5 H2000's_0.25 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 1995 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 1995 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 1995 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 1992 0.03 * aperiodic_exp H1000's_0.5 H2000's_0.25 22 12 1992 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.25 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 182 0.19 ns aperiodic_exp H1000's_0.5 H1000's_1 22 22 23 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns		_						ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_		22	13	180	0.22	ns
aperiodic_exp H1000's_0.5 H2000's_0.25 22 12 198 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.5 22 12 195 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H2000's_1 22 12 192 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.25 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_1 22 13 182 0.19 ns aperiodic_exp H1000's_0.5 H3000's_1 22 22 23 0.82 ns aperiodic_exp H1000's_0.75 H1000's_1 22 22 22 232 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns	aperiodic_exp	$\rm H1000's_0.5$	H1000's_0.75	22	22	248	0.90	ns
aperiodic_exp H1000's_0.5 H2000's_0.55 22 12 195 0.02 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H2000's_1 22 12 192 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.25 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_1 22 13 182 0.19 ns aperiodic_exp H1000's_0.5 H3000's_1 22 22 23 0.82 ns aperiodic_exp H1000's_0.75 H1000's_1 22 22 22 232 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_1 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns	$aperiodic_exp$	$\rm H1000's_0.5$	H1000's_1	22	22	237	0.92	ns
aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 189 0.04 * aperiodic_exp H1000's_0.5 H2000's_0.75 22 12 192 0.03 * aperiodic_exp H1000's_0.5 H2000's_1 22 12 192 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.25 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_1 22 13 182 0.19 ns aperiodic_exp H1000's_0.5 H3000's_1 22 22 23 0.82 ns aperiodic_exp H1000's_0.75 H1000's_1 22 22 22 232 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns	$aperiodic_exp$	$\rm H1000's_0.5$	${\rm H}2000' {\rm s} _0.25$	22	12	198	0.02	*
aperiodic_exp H1000's_0.5 H2000's_1 22 12 192 0.03 * aperiodic_exp H1000's_0.5 H3000's_0.25 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_1 22 13 182 0.19 ns aperiodic_exp H1000's_0.5 H3000's_1 22 22 23 0.82 ns aperiodic_exp H1000's_0.75 H1000's_1 22 22 23 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns	$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.5$	22	12	195	0.02	*
aperiodic_exp H1000's_0.5 H3000's_0.25 22 13 166 0.45 ns aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_1 22 13 182 0.19 ns aperiodic_exp H1000's_0.75 H1000's_1 22 22 23 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns	$aperiodic_exp$	$\rm H1000's_0.5$	${ m H2000's} { m _0.75}$	22	12	189	0.04	*
aperiodic_exp H1000's_0.5 H3000's_0.5 22 13 172 0.34 ns aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_1 22 13 182 0.19 ns aperiodic_exp H1000's_0.75 H1000's_1 22 22 232 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H3000's_0.25 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H30	$aperiodic_exp$	$\rm H1000's_0.5$	H2000's_1	22	12	192	0.03	*
aperiodic_exp H1000's_0.5 H3000's_0.75 22 13 173 0.32 ns aperiodic_exp H1000's_0.5 H3000's_1 22 13 182 0.19 ns aperiodic_exp H1000's_0.75 H1000's_1 22 22 232 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_1 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 162 0.53 ns	aperiodic_exp	$\rm H1000's_0.5$	${ m H3000's} { m _0.25}$	22	13	166	0.45	ns
aperiodic_exp H1000's_0.5 H3000's_1 22 13 182 0.19 ns aperiodic_exp H1000's_0.75 H1000's_1 22 22 232 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_1 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_1 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 162 0.53 ns	$aperiodic_exp$	$\rm H1000's_0.5$	$H3000's_0.5$	22	13	172	0.34	ns
aperiodic_exp H1000's_0.75 H1000's_1 22 22 232 0.82 ns aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 193 0.03 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_1 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 162 0.53 ns	aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.75$	22	13	173	0.32	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	aperiodic_exp	$\rm H1000's_0.5$	H3000's_1	22	13	182	0.19	ns
aperiodic_exp H1000's_0.75 H2000's_0.25 22 12 189 0.04 * aperiodic_exp H1000's_0.75 H2000's_0.5 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_1 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 162 0.53 ns	aperiodic_exp	$H1000's_0.75$	H1000's_1	22	22	232	0.82	ns
aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_0.75 22 12 184 0.06 ns aperiodic_exp H1000's_0.75 H2000's_1 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 162 0.53 ns	aperiodic exp	H1000's 0.75	H2000's 0.25	22	12	193	0.03	*
aperiodic_exp H1000's_0.75 H2000's_1 22 12 188 0.04 * aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 162 0.53 ns	aperiodic_exp	$H1000's_0.75$	$H2000's_0.5$	22	12	189	0.04	*
aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 162 0.53 ns	aperiodic exp	H1000's 0.75	H2000's 0.75	22	12	184	0.06	$_{ m ns}$
aperiodic_exp H1000's_0.75 H3000's_0.25 22 13 171 0.35 ns aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 162 0.53 ns	aperiodic_exp	$\rm H1000's_0.75$	H2000's_1	22	12	188	0.04	*
aperiodic_exp H1000's_0.75 H3000's_0.5 22 13 169 0.39 ns aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 162 0.53 ns		_	H3000's 0.25	22	13	171	0.35	ns
aperiodic_exp H1000's_0.75 H3000's_0.75 22 13 162 0.53 ns		-		22		169		ns
		-		22	13	162	0.53	ns
	aperiodic exp	H1000's 0.75	H3000's 1	22		174	0.30	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_1	$\rm H2000's_0.25$	22	12	204	0.01	**
$aperiodic_exp$	H1000's_1	${ m H2000's} { m _0.5}$	22	12	200	0.01	*
$aperiodic_exp$	H1000's_1	${\rm H}2000' {\rm s} _0.75$	22	12	194	0.03	*
$aperiodic_exp$	H1000's_1	H2000's_1	22	12	201	0.01	*
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.25}$	22	13	179	0.23	ns
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.5}$	22	13	183	0.18	ns
$aperiodic_exp$	H1000's_1	${ m H3000's} { m _0.75}$	22	13	182	0.19	ns
$aperiodic_exp$	H1000's_1	H3000's_1	22	13	189	0.12	ns
$aperiodic_exp$	${\rm H}2000' {\rm s} _0.25$	$H2000's_0.5$	12	12	63	0.63	ns
$aperiodic_exp$	${\rm H}2000' {\rm s} _0.25$	$\rm H2000's_0.75$	12	12	62	0.59	ns
$aperiodic_exp$	${\rm H}2000' {\rm s} _0.25$	$H2000's_1$	12	12	61	0.55	ns
aperiodic_exp	${\rm H}2000' {\rm s}_0.25$	$H3000's_0.25$	12	13	55	0.22	ns
aperiodic_exp	${\rm H}2000' {\rm s}_0.25$	$H3000's_0.5$	12	13	51	0.15	ns
aperiodic_exp	${\rm H}2000' {\rm s}_0.25$	$H3000's_0.75$	12	13	52	0.17	ns
$aperiodic_exp$	${\rm H}2000' {\rm s} _0.25$	$H3000's_1$	12	13	55	0.22	ns
aperiodic_exp	$H2000's_0.5$	$H2000's_0.75$	12	12	71	0.98	ns
aperiodic_exp	$H2000's_0.5$	H2000's_1	12	12	66	0.76	ns
$aperiodic_exp$	${\rm H}2000' {\rm s} _0.5$	${ m H3000's} { m _0.25}$	12	13	58	0.30	ns
aperiodic_exp	$H2000's_0.5$	$H3000's_0.5$	12	13	57	0.27	ns
aperiodic_exp	$H2000's_0.5$	$H3000's_0.75$	12	13	56	0.25	ns
aperiodic_exp	$H2000's_0.5$	H3000's_1	12	13	60	0.35	ns
aperiodic_exp	$H2000's_0.75$	H2000's_1	12	12	71	0.98	ns
$aperiodic_exp$	$\rm H2000's_0.75$	${ m H3000's} { m _0.25}$	12	13	58	0.30	ns
$aperiodic_exp$	$\rm H2000's_0.75$	$H3000's_0.5$	12	13	56	0.25	ns
aperiodic_exp	$H2000's_0.75$	$H3000's_0.75$	12	13	57	0.27	ns
aperiodic_exp	$H2000's_0.75$	H3000's_1	12	13	62	0.41	ns
aperiodic_exp	H2000's_1	$H3000's_0.25$	12	13	61	0.38	ns
aperiodic_exp	H2000's_1	$H3000's_0.5$	12	13	56	0.25	ns
aperiodic_exp	H2000's_1	$H3000's_0.75$	12	13	54	0.20	ns
aperiodic_exp	H2000's_1	H3000's_1	12	13	63	0.44	ns
aperiodic_exp	$H3000's_0.25$	H3000's 0.5	13	13	80	0.84	$_{ m ns}$
aperiodic_exp	H3000's_0.25	H3000's_0.75	13	13	79	0.80	ns
aperiodic_exp	${ m H3000's} { m _0.25}$	H3000's_1	13	13	84	1.00	ns
aperiodic_exp	H3000's_0.5	H3000's_0.75	13	13	80	0.84	ns
aperiodic_exp	H3000's_0.5	H3000's_1	13	13	87	0.92	ns
aperiodic_exp	$H3000's_0.75$	H3000's_1	13	13	92	0.72	ns

Cluster: 14 Aperiodic Exponent wilcoxon

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	H1000's_0.25	H1000's_0.5	22	22	215	0.54	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$\rm H1000's_0.75$	22	22	206	0.41	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.25$	H1000's_1	22	22	211	0.48	ns
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.25$	22	16	236	0.08	$_{ m ns}$
$aperiodic_exp$	$\rm H1000's_0.25$	$H2000's_0.5$	22	16	215	0.26	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.25$	$H2000's_0.75$	22	16	218	0.22	ns
aperiodic_exp	$\rm H1000's_0.25$	H2000's_1	22	16	205	0.40	ns
aperiodic_exp	$H1000's_0.25$	H3000's_0.25	22	18	227	0.44	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.25$	$H3000's_0.5$	22	18	202	0.92	$_{ m ns}$
aperiodic_exp	$\rm H1000's_0.25$	${ m H3000's} { m _0.75}$	22	18	196	0.97	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	$\rm H1000's_0.25$	H3000's_1	22	18	182	0.68	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H1000's_0.75$	22	22	235	0.88	ns
$aperiodic_exp$	$\rm H1000's_0.5$	H1000's_1	22	22	248	0.90	ns
$aperiodic_exp$	$\rm H1000's_0.5$	$\rm H2000's_0.25$	22	16	266	0.01	**
$aperiodic_exp$	$\rm H1000's_0.5$	$H2000's_0.5$	22	16	247	0.04	*
aperiodic_exp	$\rm H1000's_0.5$	$H2000's_0.75$	22	16	246	0.04	*
aperiodic_exp	$\rm H1000's_0.5$	H2000's_1	22	16	239	0.06	ns
aperiodic_exp	$H1000's_0.5$	$H3000's_0.25$	22	18	256	0.12	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.5$	22	18	235	0.32	ns
aperiodic_exp	$\rm H1000's_0.5$	$H3000's_0.75$	22	18	229	0.41	ns
aperiodic_exp	$H1000's_0.5$	H3000's_1	22	18	207	0.82	ns
aperiodic_exp	$\rm H1000's_0.75$	H1000's_1	22	22	244	0.97	ns
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.25$	22	16	265	0.01	**
aperiodic_exp	$\rm H1000's_0.75$	$H2000's_0.5$	22	16	245	0.04	*
aperiodic_exp	$H1000's_{-}0.75$	$H2000's_{-}0.75$	22	16	249	0.03	*
aperiodic_exp	$\rm H1000's_0.75$	H2000's_1	22	16	239	0.06	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.25$	22	18	257	0.11	ns
aperiodic_exp	$\rm H1000's_0.75$	$H3000's_0.5$	22	18	236	0.31	ns
aperiodic_exp	H1000's_0.75	H3000's 0.75	22	18	235	0.32	ns
aperiodic_exp	H1000's 0.75	H3000's 1	22	18	208	0.80	ns
aperiodic_exp	H1000's 1	H2000's 0.25	22	16	257	0.02	*
aperiodic exp	H1000's 1	H2000's 0.5	22	16	242	0.05	ns
aperiodic_exp	H1000's_1	H2000's_0.75	22	16	235	0.08	ns
aperiodic_exp	H1000's_1	H2000's 1	22	16	232	0.10	ns
aperiodic_exp	H1000's_1	H3000's_0.25	22	18	247	0.19	ns
aperiodic_exp	H1000's_1	$H3000's_0.5$	22	18	227	0.44	ns
aperiodic_exp	H1000's_1	$H3000's_0.75$	22	18	220	0.56	ns
aperiodic_exp	H1000's_1	H3000's_1	22	18	202	0.92	ns
aperiodic_exp	${\rm H}2000' {\rm s} _0.25$	$H2000's_0.5$	16	16	111	0.54	ns
aperiodic_exp	${\rm H}2000' {\rm s} _0.25$	$H2000's_0.75$	16	16	110	0.52	ns
aperiodic_exp	${\rm H}2000' {\rm s} _0.25$	H2000's_1	16	16	100	0.30	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.25$	${ m H}3000' { m s}_0.25$	16	18	112	0.28	ns
$aperiodic_exp$	${\rm H}2000' {\rm s} _0.25$	$H3000's_0.5$	16	18	95	0.10	ns
$aperiodic_exp$	$\rm H2000's_0.25$	$H3000's_0.75$	16	18	88	0.06	ns
$aperiodic_exp$	${\rm H}2000' {\rm s} _0.25$	H3000's_1	16	18	78	0.02	*
$aperiodic_exp$	$H2000's_0.5$	$\rm H2000's_0.75$	16	16	128	1.00	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	$H2000's_{1}$	16	16	120	0.78	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	${ m H3000's} { m _0.25}$	16	18	124	0.51	ns
$aperiodic_exp$	$H2000's_0.5$	$H3000's_0.5$	16	18	107	0.21	ns
$aperiodic_exp$	$H2000's_0.5$	${ m H}3000'{ m s}_0.75$	16	18	104	0.17	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.5$	$H3000's_{1}$	16	18	90	0.06	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.75$	$H2000's_{1}$	16	16	116	0.67	ns
$aperiodic_exp$	$\rm H2000's_0.75$	${ m H3000's} { m _0.25}$	16	18	123	0.48	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.75$	${ m H}3000' { m s}_0.5$	16	18	112	0.28	ns
$aperiodic_exp$	$\rm H2000's_0.75$	$H3000's_0.75$	16	18	110	0.25	ns
$aperiodic_exp$	${\rm H}2000' {\rm s}_0.75$	$H3000's_{1}$	16	18	95	0.10	ns
$aperiodic_exp$	H2000's_1	${ m H3000's} { m _0.25}$	16	18	133	0.72	ns
$aperiodic_exp$	H2000's_1	${ m H3000's} { m _0.5}$	16	18	120	0.42	ns
$aperiodic_exp$	H2000's_1	${ m H3000's} { m _0.75}$	16	18	116	0.35	ns
$aperiodic_exp$	H2000's_1	H3000's_1	16	18	97	0.11	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	${ m H3000's} { m _0.5}$	18	18	145	0.61	ns
$aperiodic_exp$	${ m H3000's} { m _0.25}$	$H3000's_0.75$	18	18	140	0.50	ns

EEG Var	$Group_Speed_1$	$Group_Speed_2$	N1	N2	Wstat	$p ext{-}value$	*sig.
aperiodic_exp	${ m H3000's} { m _0.25}$	H3000's_1	18	18	122	0.21	ns
$aperiodic_exp$	${ m H3000's} { m _0.5}$	${ m H}3000'{ m s}_0.75$	18	18	158	0.91	ns
$aperiodic_exp$	${ m H}3000'{ m s}_0.5$	H3000's_1	18	18	141	0.52	ns
$aperiodic_exp$	${ m H3000's} { m _0.75}$	$\rm H3000's_1$	18	18	144	0.58	ns

LOOP through clusters & get t
tests