5.2 Problem 1.a

Use Euler's method to approximation solutions for

```
y' = te^{3t} - 2y, for 0 \le t \le 1, with y(0) = 0 and h = 0.5
```

C Code

```
#include <stdio.h>
#include <math.h>
double f(double t, double w);
int main()
   int n = 30, i;
  double w = 0, a = 0, b = 1, t, h;
  h = (b - a) / (double) n;
   for (i = 0; i \le n; i++)
     t = a + i * h;
     w = w + h * f(t, w);
     printf("%d \t %1.8f \t %3.8f \t \n", i, t, w);
   }
  return 0;
}
double f(double t, double w)
{
   return t * exp(3 * t) - 2 * w;
}
```

Results

```
i t w

0 0.00000000 0.00000000
1 0.05000000 0.00290459
2 0.10000000 0.00936342
3 0.15000000 0.02018942
```

```
0.20000000 0.03639167
5
   0.25000000 0.05921500
6
   0.30000000 0.09018755
7
   0.35000000 0.13117769
   0.40000000
                0.18446226
8
9
   0.45000000
                0.25280811
10
    0.50000000
                 0.33956952
    0.55000000
                 0.44880451
11
    0.60000000
12
                 0.58541349
13
    0.65000000
                 0.75530448
14
    0.70000000
                 0.96558998
15
    0.75000000
                 1.22482108
16
    0.80000000
                 1.54326603
17
    0.85000000
                 1.93324133
18
    0.9000000
                 2.40950513
19
    0.95000000
                 2.98972425
20
    1.00000000
                 3.69502867
```

5.2 Problem 1.c

Use Euler's method to approximate the solutions for

$$y' = 1 + (y/t)$$
, for $0 \le t \le 1$, with $y(0) = 1$

```
#include <stdio.h>
#include <math.h>

double f(double t, double w);

int main()
{
    int n = 20, i;
    double w = 2, a = 1, b = 2, t, h;
    h = (b - a) / (double) n;
    for (i = 0; i <= n; i++)
    {
        t = a + i * h;
        w = w + h * f(t, w);
        printf("%d \t %1.8f \t %3.8f \t \n", i, t, w);
    }

    return 0;
}</pre>
```

```
double f(double t, double w)
{
   return 1 + (w/t);
}
```

```
i
              t
0
    1.00000000
                 2.15000000
    1.05000000
                 2.30238095
1
2
   1.10000000
                 2.45703463
3
   1.15000000
                 2.61386222
    1.20000000
                 2.77277315
5
   1.25000000
                 2.93368408
6
   1.30000000
                 3.09651808
7
    1.35000000
                 3.26120393
8
    1.40000000
                 3.42767550
9
    1.45000000
                 3.59587121
10
    1.50000000
                  3.76573358
11
     1.55000000
                  3.93720886
12
     1.60000000
                  4.11024664
                  4.28479957
13
     1.65000000
14
     1.70000000
                  4.46082308
15
     1.75000000
                  4.63827517
16
     1.80000000
                  4.81711615
17
     1.85000000
                  4.99730848
18
     1.90000000
                  5.17881659
19
     1.95000000
                  5.36160676
     2.00000000
                  5.54564693
```

5.2 Problem 1.d

Use Euler's method to approximate the solutions for

```
y' = \cos 2t + \sin 3t, for 0 \le t \le 1, with y(0) = 1
```

```
#include <stdio.h>
#include <math.h>

double f(double t, double w);
```

```
int main()
{
   int n = 20, i;
   double w = 1, a = 0, b = 1, t, h;
  h = (b - a) / (double) n;
   for (i = 0; i \le n; i++)
   {
     t = a + i * h;
     w = w + h * f(t, w);
     printf("%d \t %1.8f \t %3.8f \t \n", i, t, w);
   }
  return 0;
}
double f(double t, double w)
  return cos(2*t) + sin(3*t);
}
```

```
t
i
  0.0000000 1.05000000
  0.05000000 1.10722211
  0.10000000 1.17100145
2
  0.15000000 1.24051656
3
  0.20000000 1.31480173
   0.25000000
               1.39276279
6
  0.30000000
              1.47319592
7
  0.35000000 1.55480919
              1.63624648
8
  0.4000000
9
   0.45000000
               1.71611315
               1.79300301
10 0.50000000
11
   0.55000000
               1.86552607
12
    0.60000000
                1.93233634
13
    0.65000000
                1.99215927
14
    0.70000000
                2.04381809
15
    0.75000000
                2.08625861
16
    0.80000000
                2.11857179
17
    0.85000000
                2.14001376
18
    0.90000000
                2.15002264
    0.95000000
19
                2.14823207
20
   1.00000000
                2.13448073
```

5.2 Problem 8.e

Use Taylor's method of order 4 with h=0.1 to approximate

$$y' = \frac{2}{t}y + t^2e^t, 1 \le t \le 2, y(1) = 0$$

with the exact solution

$$y(t) = t^2(e^t - e)$$

```
#include <stdio.h>
#include <math.h>
double f(double t, double w);
double y2(double t, double y);
double y3(double t, double y);
double exact(double t);
double taylor(double t, double y, double h);
int main()
{
   int n = 25, i;
   double w = 0, a = 1, b = 2, t, h;
  h = (b - a) / (double) n;
   for (i = 0; i \le n; i++)
      t = a + i * h;
     w = w + h * taylor(t, w, h);
     printf("%d \t %1.8f \t %3.8f \t %3.8f \t %3.8f \n", i, t, w, exact(t),
                      exact(t) - w);
   }
   return 0;
}
double f(double t, double w)
  return 2/t * w + t*t * exp(t);
double y2(double t, double y)
  return (-2/(t * t)) * y + 2 * t * exp(t) + t * t * exp(t) + 2 * t * f(t, y);
}
```

```
double y3(double t, double y)
{
    return (-4/(t*t*t) * y + 2*exp(t) + t*t*exp(t)) + (-2/(t*t) * f(t, y))
    + f(t, y) * 2 + 2 * t * y2(t, y);
}

double exact(double t)
{
    return t * t * (exp(t) - exp(1));
}

double taylor(double t, double y, double h)
{
    return f(t, y) + h/2 * y2(t, y) + (h*h*h)/6 * y3(t, y);
}
```

i 	t		w 	y(t)	error
0	1.00000000	0.11961948	0.00000000	-0.11961948	
1	1.0400000	0.26369547	0.11998750	-0.14370798	
2	1.08000000	0.43488933	0.26407030	-0.17081902	
3	1.12000000	0.63605321	0.43474039	-0.20131282	
4	1.16000000	0.87024209	0.63465419	-0.23558791	
5	1.20000000	1.14072644	0.86664254	-0.27408390	
6	1.24000000	1.45100557	1.13372112	-0.31728445	
7	1.28000000	1.80482194	1.43910158	-0.36572036	
8	1.32000000	2.20617611	1.78620315	-0.41997296	
9	1.36000000	2.65934269	2.17866506	-0.48067762	
10	1.40000000	3.16888718	2.62035955	-0.54852763	
11	1.44000000	3.73968379	3.11540565	-0.62427814	
12	1.48000000	4.37693427	3.66818370	-0.70875057	
13	1.52000000	5.08618786	4.28335075	-0.80283710	
14	1.56000000	5.87336236	4.96585672	-0.90750563	
15	1.60000000	6.74476643	5.72096153	-1.02380491	
16	1.64000000	7.70712318	6.55425311	-1.15287007	
17	1.68000000	8.76759506	7.47166654	-1.29592852	
18	1.72000000	9.93381022	8.47950405	-1.45430617	
19	1.76000000	11.21389031	9.58445628	-1.62943403	
20	1.80000000	12.61647998	10.79362466	5 -1.82285532	
21	1.84000000	14.15077790	12.11454498	3 -2.03623292	
22	1.88000000	15.82656961	13.55521229	-2.27135732	
23	1.92000000	17.65426228	15.12410717	7 -2.53015511	
24	1.96000000	19.64492128	16.83022338	3 -2.81469790	

The results become less accurate as t increases.

5.3 Problem 1.b

Use the Midpoint method to approximate the solution for

$$y' = te^{3t} - 2y, 0 \le t \le 1, y(0) = 0$$

and compare with the actual solution

$$y(t) = t + 1/(1-t)$$

```
#include <stdio.h>
#include <math.h>
double f(double t, double w);
double exact(double t);
int main()
{
   int n = 20, i;
   double w = 1, a = 2, b = 3, t, h;
  h = (b - a) / (double) n;
  for (i = 0; i \le n; i++)
      t = a + i * h;
     w = w + h * f(t + .5 * h, w + h * .5 * f(t, w));
     printf("%d \t %1.8f \t %3.8f \t %3.8f \t %3.8f \n", i, t, w, exact(t),
                                                                   exact(t) - w);
   }
   return 0;
}
double f(double t, double w)
  return 1.0 + (t - w)*(t - w);
double exact(double t)
```

```
return t + 1.0/(1.0 - t);
```

i	t	w		y(t)	error
0	2.00000000	1.09753125	1.00000000	-0.09753125	
1	2.05000000	1.19075661	1.09761905	-0.09313757	
2	2.10000000	1.28023492	1.19090909	-0.08932583	
3	2.15000000	1.36643244	1.28043478	-0.08599766	
4	2.20000000	1.44974129	1.36666667	-0.08307463	
5	2.25000000	1.53049357	1.45000000	-0.08049357	
6	2.30000000	1.60897239	1.53076923	-0.07820316	
7	2.35000000	1.68542062	1.60925926	-0.07616137	
8	2.40000000	1.76004775	1.68571429	-0.07433347	
9	2.45000000	1.83303544	1.76034483	-0.07269061	
10	2.50000000	1.90454197	1.83333333	-0.07120864	
11	2.55000000	1.97470593	1.90483871	-0.06986722	
12	2.60000000	2.04364913	1.97500000	-0.06864913	
13	2.65000000	2.11147909	2.04393939	-0.06753970	
14	2.70000000	2.17829109	2.11176471	-0.06652638	
15	2.75000000	2.24416982	2.17857143	-0.06559839	
16	2.80000000	2.30919086	2.2444444	-0.06474641	
17	2.85000000	2.37342183	2.30945946	-0.06396237	
18	2.90000000	2.43692343	2.37368421	-0.06323922	
19	2.95000000	2.49975031	2.43717949	-0.06257082	
20	3.00000000	2.56195178	2.50000000	-0.06195178	

As t increases, the results become more accurate.