Problem 1:

The definition of the Euler number is:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

where e = 2.718281828459

- a) Using single precision arithmetic: create a table of e versus n for $n=(10,10^2,10^3,10^5,10^5,10^6,10^7,10^8)$ What do you observe?
- b) Improve your estimation of e. Use SINGLE PRECISION Hint:

$$\log\left(1+\frac{1}{n}\right)^n = n\log\left(1+\frac{1}{n}\right)$$

$$\lim_{n\to\infty}\log\left(1+\frac{1}{n}\right) = \lim_{x\to 0}\log\left(1+x\right)$$
How can $\log\left(1+x\right)$ be approximated as $x\to 0$?

Problem 2:

Consider x=100. Apply
$$\sqrt{x}$$
 recursively, that is $doi=1...n: x=\sqrt{x}$

Then, reconstruct the original value of x:

$$do 1=1...n: x=x*x$$

for
$$n=2,5,10,20,30,40$$

What happens? Explain.

Perform all computations in SINGLE PRECISION.

Problem 3:

Compute:
$$z = \frac{e^x - 1}{x} as x \rightarrow 0$$

that is, for:
$$x = 10^{-5}$$
, 10^{-6} , 10^{-7} , 10^{-8} , 10^{-9} , 10^{-10} , 10^{-11} , 10^{-12} , 10^{-13} , 10^{-14} , 10^{-15}

Note that
$$\lim_{x\to 0} z=1$$
 (L'Hôpital's rule)

Alternative approach

Compute:
$$y=e^x$$

if y==1 then $z=1$
else $z=\frac{(y-1)}{\log y}$

Compare to the original approach.

Perform all computations in DOUBLE PRECISION

Problem 4:

Estimate the exponent of a DOUBLE PRECISION floating point number.

Expensive way: $\log_{10}|(x)|$

Alternative way: You learned about bit manipulation. Recall $\log_{10} x = \log_{10} 2 \times \log_2 x$ IEEE double precision format:

mantissa: 52 bitsexponent: 11 bits

- sign: 1bit

Remember that the exponent bits store the *biased* value of the base 2 exponent