```
In [1]:
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
import matplotlib.pyplot as plt
In [2]:
pd.options.mode.chained assignment = None
pd.options.display.max columns = 999
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast node interactivity = "all"
Data Processing
In [3]:
import pandas as pd
df = pd.read_csv('kiva_loans.csv')
df.head()
Out[3]:
        id funded_amount loan_amount
                                           activity
                                                         sector
                                                                      use country_code
                                                                                        country
                                                                                                   region currency
                                                                                                                   partne
                                                                    To buy
                                           Fruits &
                                                                  seasonal,
 0 653051
                    300.0
                                300.0
                                                                                    PK Pakistan
                                                                                                              PKR
                                                                                                                       2
                                                                                                   Lahore
                                                          Food
                                         Vegetables
                                                                 fresh fruits
                                                                    to sell.
                                                                  to repair
                                                                      and
                                                                  maintain
                    575.0
                                                                                                              PKR
 1 653053
                                575.0
                                          Rickshaw Transportation
                                                                                    PK Pakistan
                                                                                                   Lahore
                                                                                                                       2٠
                                                                  the auto
                                                                  rickshaw
                                                                   used ...
                                                                  To repair
                                                                  their old
 2 653068
                    150.0
                                150.0 Transportation Transportation
                                                                 cycle-van
                                                                                    IN
                                                                                           India Maynaguri
                                                                                                              INR
                                                                                                                       3
                                                                  and buy
                                                                 another ...
                                                                       to
                                                                  purchase
                                                                       an
 3 653063
                    200.0
                                200.0
                                                                                    PK Pakistan
                                                                                                              PKR
                                                           Arts embroidery
                                                                                                                       2
                                         Embroidery
                                                                                                   Lahore
                                                                  machine
                                                                    and a
                                                                   variet...
                                                                  purchase
                                                                                                    Abdul
 4 653084
                    400.0
                                400.0
                                          Milk Sales
                                                                                    PK Pakistan
                                                                                                              PKR
                                                          Food
                                                                                                                       2
                                                                                                  Hakeem
                                                                      one
                                                                   buffalo.
In [4]:
df.shape
Out[4]:
(671205, 20)
In [5]:
mpiRegion df=pd.read csv("kiva mpi region locations.csv")
mpiRegion df.head()
Out[5]:
```

LocationName

ISO

country

region world_region

MPI

geo

lat

lon

0	LocationName Afghanistan	A\$Q	Afgleanietan	Badak rsiian	world lite griena	0. MP /	(36.7347725, 70.8119952999999999999999999999999999999999	36.7347 F2	70.811 99
	Dadahia Afahanistan	450	A.f., ; _ t	Dadahia	Cauth Asia	0.400	(25.4674220, 62.760520.4)	25 407424	00.700500
1	Badghis, Afghanistan	AFG	Aignanistan	Badghis	South Asia	0.466	(35.1671339, 63.7695384)	35.16/134	63.769538
2	Baghlan, Afghanistan	AFG	Afghanistan	Baghlan	South Asia	0.300	(35.8042947, 69.2877535)	35.804295	69.287754
3	Balkh, Afghanistan	AFG	Afghanistan	Balkh	South Asia	0.301	(36.7550603, 66.8975372)	36.755060	66.897537
4	Bamyan, Afghanistan	AFG	Afghanistan	Bamyan	South Asia	0.325	(34.8100067, 67.8212104)	34.810007	67.821210

In [6]:

mpiRegion_df.shape

Out[6]:

(2772, 9)

In [7]:

```
loantheme_df=pd.read_csv("loan_theme_ids.csv")
#loantheme_df.head()
print(loantheme_df)
```

	id	Loan Theme ID	Loan Theme Type	Partner ID
0	638631	a1050000000skGl	General	151.0
1	640322	a1050000000skGl	General	151.0
2	641006	a1050000002X1ij	Higher Education	160.0
3	641019	a1050000002X1ij	Higher Education	160.0
4	641594	a1050000002VbsW	Subsistence Agriculture	336.0
779087	1444237	a1050000000wf0h	General	136.0
779088	1444238	a1050000000wf0h	General	136.0
779089	1444240	a1050000000wf0h	General	136.0
779090	1444241	a1050000000wf22	General	245.0
779091	1444243	a1050000000wf22	General	245.0

[779092 rows x 4 columns]

In [8]:

loantheme_df.shape

Out[8]:

(779092, 4)

In [9]:

```
loan_themes_by_region_df=pd.read_csv("loan_themes_by_region.csv")
loan_themes_by_region_df.head()
```

Out[9]:

	Partner ID	Field Partner Name	sector	Loan Theme ID	Loan Theme Type	country	forkiva	region	geocode_old	ISO	number	amount
0	9	KREDIT Microfinance Institution	General Financial Inclusion	a1050000000slfi	Higher Education	Cambodia	No	Banteay Meanchey	(13.75, 103.0)	KHM	1	450
1	9	KREDIT Microfinance Institution	General Financial Inclusion	a10500000068jPe	Vulnerable Populations	Cambodia	No	Battambang Province	NaN	KHM	58	20275
2	9	KREDIT Microfinance Institution	General Financial Inclusion	a1050000000slfi	Higher Education	Cambodia	No	Battambang Province	NaN	KHM	7	9150
3	9	KREDIT Microfinance Institution	General Financial Inclusion	a10500000068jPe	Vulnerable Populations	Cambodia	No	Kampong Cham Province	(12.0, 105.5)	KHM	1383	604950

```
Field
   Partner
                                                                    Karegion geocode_old ISO number amount
                              Loan Theme ID
             RREBPF
                                             Theme
                                                     country forkiva
                    General
       ID
                                           Sanitation
          Microfinance
                   Financial
                           a1050000002X1Uu
                                                                      Cham
                                                                             (12.0, 105.5)
                                                   Cambodia
                                                                                      KHM
                                                                                                     275
                                                                     Province
            Institution Inclusion
4
                                                                                                       •
In [10]:
loan_themes_by_region_df.shape
Out[10]:
(15736, 21)
In [11]:
listed dataframe=df.values.tolist()
#this matches with csv in list
#print(listed dataframe)
In [12]:
#converting the lender count column into numeric column for further analysis
df["lender_count"] = pd.to_numeric(df["lender_count"], downcast="float")
In [13]:
dataframe float=df.select dtypes(include ='float64')
#print(dataframe float)
dataframe float_list=list(dataframe_float.columns)
print(dataframe float list)
dataframe text=df.select dtypes(exclude ='float64')
#print(dataframe_text)
dataframe_text_list=list(dataframe_text.columns)
print(dataframe text list)
['funded_amount', 'loan_amount', 'partner_id', 'term_in_months']
['id', 'activity', 'sector', 'use', 'country_code', 'country', 'region', 'currency',
'posted time', 'disbursed time', 'funded time', 'lender count', 'tags', 'borrower genders',
'repayment interval', 'date']
In [14]:
#kiva loans
column heads=list(df)
print(column heads)
['id', 'funded_amount', 'loan_amount', 'activity', 'sector', 'use', 'country_code', 'country', 're
gion', 'currency', 'partner_id', 'posted_time', 'disbursed_time', 'funded_time', 'term_in_months',
'lender_count', 'tags', 'borrower_genders', 'repayment_interval', 'date']
In [15]:
dataframe float=df.select dtypes(include ='float')
dataframe_float_list=list(dataframe_float.columns)
print("column list with nominal values :" '\n')
print(dataframe float list)
dataframe text=df.select dtypes(exclude ='float64')
dataframe text list=list(dataframe text.columns)
print( '\n' "column list with numerical values :" '\n')
print(dataframe text list)
column list with nominal values :
['funded amount', 'loan amount', 'partner id', 'term in months']
```

```
column list with numerical values :
['id', 'activity', 'sector', 'use', 'country_code', 'country', 'region', 'currency',
'posted_time', 'disbursed_time', 'funded_time', 'lender_count', 'tags', 'borrower_genders',
'repayment interval', 'date']
In [16]:
mpiRegion=list(mpiRegion_df)
print(mpiRegion)
['LocationName', 'ISO', 'country', 'region', 'world region', 'MPI', 'geo', 'lat', 'lon']
In [17]:
loantheme=list(loantheme_df)
print(loantheme)
['id', 'Loan Theme ID', 'Loan Theme Type', 'Partner ID']
In [18]:
loan themes by region=list(loan_themes_by_region_df)
print(loan_themes_by_region)
['Partner ID', 'Field Partner Name', 'sector', 'Loan Theme ID', 'Loan Theme Type', 'country', 'forkiva', 'region', 'geocode_old', 'ISO', 'number', 'amount', 'LocationName', 'geocode', 'names', 'geo', 'lat', 'lon', 'mpi_region', 'mpi_geo', 'rural_pct']
In [19]:
df[df.loan amount == 100000]
Out[19]:
```

		id	funded_amount	loan_amount	activity	sector	use	country_code	country	region	currency	partner_id	1
	70499	722883	100000.0	100000.0	Agriculture	Agriculture	create more than 300 jobs for women and farmer	нт	Haiti	Les Cayes	USD	315.0	19:
4]												Þ

In [20]:

 $df[(df.loan_amount >= 50000) & (df.funded_amount >= 50000)]$

Out[20]:

region	country	country_code	use	sector	activity	loan_amount	funded_amount	id	
Arequipa	Peru	PE	to buy and sell Barefoot Power's Solar Lightin	Retail	Renewable Energy Products	50000.0	50000.0	687045	34196
Nairobi	Kenya	KE	To buy and sell Barefoot Power's solar lightin	Retail	Renewable Energy Products	50000.0	50000.0	695450	43182
Kampala	Uganda	UG	To buy and sell Barefoot Power solar lighting.	Retail	Renewable Energy Products	50000.0	50000.0	706146	53634
Les Cayes	Haiti	нт	create more than 300 jobs for women and farmer	Agriculture	Agriculture	100000.0	100000.0	722883	70499

	country	country_code	use to buy and plant	sector	activity	loan_amount	funded_amount		
o Cherá	Mexico	MX	resin producing pine trees. T	Agriculture	Agriculture	50000.0	50000.0	777718	126839
n Nairob	Kenya	KE	to fund its growing loan book and further deve	Agriculture	Agriculture	50000.0	50000.0	812995	163727
ı Kiga	Rwanda	RW	To work with 17 farming cooperatives to proces	Agriculture	Agriculture	50000.0	50000.0	859201	210975
Mexico Cit	Mexico	MX	to provide loans and career services for the l	Education	Higher education costs	50000.0	50000.0	870901	223120
ı Cerri	Albania	AL	to set up a garment social business that will	Clothing	Clothing	50000.0	50000.0	1055043	408295
ı Nal	Peru	PE	NaN	Construction	Construction	50000.0	50000.0	1055190	408465
a Kampal	Uganda	UG	to increase smallholder farmers' incomes by bu	Agriculture	Agriculture	50000.0	50000.0	1107992	447374
a Accr	Ghana	GH	To purchase raw materials in order to produce	Health	Health	50000.0	50000.0	1150277	490191
a Accr	Ghana	GH	to expand weather, farming information and fin	Agriculture	Agriculture	50000.0	50000.0	1152957	492809
a Nairot	Kenya	KE	To pay smallholder coffee farmers in rural Ken	Agriculture	Agriculture	50000.0	50000.0	1154951	494470
r Tsihomb	Madagascar	MG	to fund the harvest of seeds of 6,000 smallhol	Agriculture	Agriculture	50000.0	50000.0	1156972	496715
a Dar es Salaar	Tanzania	TZ	to purchase chicken feed & a delivery vehicle	Agriculture	Poultry	50000.0	50000.0	1169175	509048
i Nal	Malawi	MW	to mitigate CO2 & household air pollution, whi	Health	Health	50000.0	50000.0	1183609	523634
e Maput	Mozambique	MZ	to train & equip 200 rural merchants in Mozamb	Retail	Electronics Sales	50000.0	50000.0	1183916	523659
ı Lusak	Zambia	ZM	to distribute 200+ innovative & affordable pay	Retail	Renewable Energy Products	50000.0	50000.0	1186897	526100
n Nanyul	Kenya	KE	to enable 5,000 additional small- holder farmer	Agriculture	Agriculture	50000.0	50000.0	1198658	538248
i Petion-Vill	Haiti	нт	to bolster logistics of affordable water distr	Wholesale	Goods Distribution	50000.0	50000.0	1201708	541006
n Jub	South Sudan	SS	to provide community trauma services in South	Health	Health	50000.0	50000.0	1205071	544548
			to distributo						

548513	id 1209262	funded_amount 50000.0	loan_amount 50000.0	Renewable Energy	sector Retail	solar holfae	country_code ZW	country Zimbabwe	region Harare
				Products		systems throughout ru			
563074	1223392	50000.0	50000.0	Renewable Energy Products	Retail	to provide life- changing clean cookstoves and 	KE	Kenya	Nairobi
565733	1226382	50000.0	50000.0	Agriculture	Agriculture	to pay 600 farming families 100% above market	EC	Ecuador	Quito
583307	1245201	50000.0	50000.0	Agriculture	Agriculture	to support 800+ farmers by improving their pro	GT	Guatemala	Quetzaltenango
586970	1247422	50000.0	50000.0	Renewable Energy Products	Retail	to generate income to over 600 fishermen in Ta	TZ	Tanzania	MUSOMA
604502	1266423	50000.0	50000.0	Agriculture	Agriculture	to add value and jobs to the local economy by	ВЈ	Benin	Parakou
614869	1277100	50000.0	50000.0	Furniture Making	Manufacturing	create jobs through environmentally- friendly m	KE	Kenya	Nairobi
614922	1277084	50000.0	50000.0	Water Distribution	Services	to set up 13 new clean water businesses in nor	GH	Ghana	Tamale
618264	1280213	50000.0	50000.0	Farming	Agriculture	to provide income opportunities in remote Indo	ID	Indonesia	Simeulue
621860	1283951	50000.0	50000.0	Renewable Energy Products	Retail	to distribute 400 pay-as-you-go solar home sys	KE	Kenya	Nairobi
631904	1294308	50000.0	50000.0	Agriculture	Agriculture	double cashew nut export output and hire about	CI	Cote D'Ivoire	Kolia
4									Þ

In [21]:

```
print(df['activity'].unique())
```

```
['Fruits & Vegetables' 'Rickshaw' 'Transportation' 'Embroidery'
'Milk Sales' 'Services' 'Dairy' 'Beauty Salon' 'Manufacturing'
 'Food Production/Sales' 'Wholesale' 'General Store' 'Clothing Sales'
 'Poultry' 'Tailoring' 'Sewing' 'Bakery' 'Restaurant' 'Food Stall'
 'Farming' 'Construction Supplies' 'Personal Products Sales'
 'Home Products Sales' 'Natural Medicines' 'Fish Selling'
 'Education provider' 'Shoe Sales' 'Machinery Rental' 'Butcher Shop'
 'Pigs' 'Personal Expenses' 'Food Market' 'Cosmetics Sales'
 'Personal Housing Expenses' 'Retail' 'Energy' 'Grocery Store'
 'Construction' 'Agriculture' 'Motorcycle Transport' 'Charcoal Sales'
 'Food' 'Pharmacy' 'Fishing' 'Timber Sales' 'Cattle' 'Electronics Repair'
 'Electronics Sales' 'Vehicle' 'Cafe' 'Blacksmith'
 'Higher education costs' 'Used Clothing' 'Fuel/Firewood' 'Upholstery'
 'Catering' 'Animal Sales' 'Cereals' 'Vehicle Repairs' 'Arts'
 'Cloth & Dressmaking Supplies' 'Mobile Phones' 'Spare Parts' 'Clothing'
 'Metal Shop' 'Barber Shop' 'Furniture Making' 'Crafts' 'Home Energy'
 'Home Appliances' 'Wedding Expenses' 'Taxi' 'Secretarial Services'
 'Livestock' 'Property' 'Recycling' 'Farm Supplies' 'Auto Repair'
 'Beverages' 'Plastics Sales' 'Electrical Goods' 'Carpentry' 'Photography'
 'Jewelry' 'Bricks' 'Pub' 'Phone Use Sales' 'Water Distribution'
 'Paper Sales' 'Computers' 'Liquor Store / Off-License' 'Utilities'
 'Knitting' 'Weaving' 'Party Supplies' 'Medical Clinic' 'Internet Cafe'
 'Consumer Goods' 'Cement' 'Electrician' 'Primary/secondary school costs'
 'Veterinary Sales' 'Land Rental' 'Laundry' 'Call Center' 'Perfumes'
 'Hotel' 'Motorcycle Repair' 'Movie Tapes & DVDs' 'Quarrying'
 'Personal Medical Expenses' 'Bookstore' 'Decorations Sales'
 'Recycled Materials' 'Office Supplies' 'Souvenir Sales'
```

```
'Renewable Energy Products' 'Health' 'Printing' 'Phone Repair'
 'Traveling Sales' 'Flowers' 'Bicycle Repair' 'Entertainment'
 'Phone Accessories' 'Hardware' 'Used Shoes' 'Music Discs & Tapes' 'Games'
 'Balut-Making' 'Textiles' 'Child Care' 'Goods Distribution' 'Florist'
 'Cobbler' 'Dental' 'Bookbinding' 'Cheese Making' 'Bicycle Sales'
 'Well digging' 'Technology' 'Musical Performance' 'Waste Management'
 'Film' 'Tourism' 'Musical Instruments' 'Religious Articles'
 'Machine Shop' 'Cleaning Services' 'Sporting Good Sales' 'Patchwork'
 'Funerals' 'Air Conditioning' 'Communications' 'Adult Care'
 'Landscaping / Gardening' 'Aquaculture' 'Beekeeping' 'Event Planning'
 'Celebrations' 'Computer' 'Personal Care Products' 'Mobile Transactions']
In [22]:
df corr= df[['funded amount', 'loan amount', 'partner id', 'term in months', 'lender count']]
In [231:
print("Correlation Matrix")
correlation mat = df corr.corr(method='pearson')
print(correlation_mat)
print()
def get_redundant_pairs(df):
    "''Get diagonal and lower triangular pairs of correlation matrix""
    pairs to drop = set()
    cols = df.columns
    for i in range(0, df.shape[1]):
        for j in range (0, i+1):
           pairs_to_drop.add((cols[i], cols[j]))
    return pairs to drop
def get top abs correlations(df, n=5):
    au corr = df.corr().abs().unstack()
    labels to drop = get redundant pairs(df)
    au corr = au corr.drop(labels=labels to drop).sort values(ascending=False)
    return au_corr[0:n]
def get_below_abs_correlations(df, n=5):
    au corr = df.corr().abs().unstack()
    labels_to_drop = get_redundant_pairs(df)
    \verb"au_corr = au_corr.drop" (labels=labels_to_drop").sort_values (ascending={\tt True})
    return au corr[0:n]
print("Top Absolute Correlations")
print(get top abs correlations(df corr,15))
Correlation Matrix
               funded_amount loan_amount partner_id term_in_months \
                               0.945044
                 1.000000
                                            -0.075276 0.149310
-0.071251 0.184795
funded amount
                    0.945044
                                 1.000000 -0.071251
loan amount
                  -0.075276 -0.071251 1.000000
                                                             0.094878
partner id
                                                            1.000000
term in months
                   0.149310 0.184795 0.094878
                   0.849168
                                0.798697 -0.008575
                                                            0.227283
lender count
               lender count
                0.849168
funded amount
loan amount
                  0.798697
                  -0.008575
partner id
term in_months
                   0.227283
lender count
                   1.000000
Top Absolute Correlations
                                0.945044
funded_amount loan_amount
                                 0.849168
               lender_count
loan_amount lender_count 0.798697
term_in_months lender_count 0.227283
loan amount term in months 0.184795
funded amount term in months 0.149310
partner_id term_in_months 0.094878
funded_amount partner_id
                                 0.075276
loan_amount partner_id partner_id lender_count
                                 0.071251
                                0.008575
dtype: float64
```

```
In [24]:
```

```
corr_pairs = correlation_mat.unstack().sort_values(kind="quicksort")
print('\n', corr pairs)
partner_id fundeu_a....

funded_amount partner_id -0.0/52/c
-mount partner_id -0.071251
-mount -0.071251
               funded_amount -0.075276
lender count partner id
                               -0.008575
              lender count
                               -0.008575
partner id
                                0.094878
term_in_months partner_id
               term_in_months
partner_id funded_amount
                                 0.094878
               term_in_months
                                 0.149310
term_in_months funded_amount
                                0.149310
               loan amount
                                0.184795
loan amount
               term in months 0.184795
term_in_months lender_count
                                 0.227283
lender count
               term in months
                                 0.227283
                                0.798697
                loan amount
                              0.798697
loan amount
               lender count
lender count
               funded amount 0.849168
funded_amount lender_count 0.849168
               loan amount
                                 0.945044
               funded amount
loan amount
                                 0.945044
funded_amount funded_amount 1.000000
             partner_id
                                1.000000
partner id
loan_amount
               loan_amount
                                1.000000
term_in_months term_in_months
                                 1.000000
                                 1.000000
lender count
                lender count
dtype: float64
In [25]:
df corr= corr pairs.to frame()
dist df = df corr.reset index(level=[0,1])
attribute df=dist df.rename(columns={"level 0": "attribute One", "level 1":
"attribute Two",0:"Coeff"})
print(attribute df)
    attribute One
                    attribute Two
                    funded_amount -0.075276
Ω
      partner id
    funded amount
                     partner id -0.075276
1
2
                       partner id -0.071251
     loan amount
3
      partner id
                     loan amount -0.071251
4
     lender count
                      partner id -0.008575
5
      partner id
                     lender count -0.008575
                     partner id 0.094878
6
  term in months
      partner id term in months 0.094878
8
    funded_amount term_in_months 0.149310
9
   term_in_months funded_amount 0.149310
     erm_in_months loan_amount 0.184795
loan_amount term_in_months 0.184795
10
   term in months
11
12 term in months
                   lender count 0.227283
    lender count term in months 0.227283
13
    lender_count loan_amount 0.798697
14
                   lender_count 0.798697
funded amount 0.849168
1.5
      loan amount
    lender_count
16
                    lender_count 0.849168
   funded amount
17
                     loan amount 0.945044
18 funded amount
19
     loan_amount funded_amount 0.945044
20
    funded amount
                   funded_amount 1.000000
                      partner_id 1.000000 loan_amount 1.000000
21
       partner id
22
      loan amount
23 term in months term in months 1.000000
24
     lender_count
                   lender_count 1.000000
In [26]:
dfcorr= corr pairs.to frame()
dist df = dfcorr.reset index(level=[0,1])
attribute df=dist df.rename(columns={"level 0": "attribute One", "level 1":
```

```
"attribute Two", 0:"Coeff"})
#print(attribute df)
attribute df = attribute df.query("attribute One != attribute Two")
print(attribute df)
    attribute One
                    attribute Two
                                      Coeff
0
                    funded_amount -0.075276
      partner id
1
    funded_amount
                      partner_id -0.075276
                        partner_id -0.071251
2
     loan amount
                     loan amount -0.071251
       partner id
                      partner id -0.008575
4
    lender count
5
      partner id
                    lender_count -0.008575
                     partner_id 0.094878
   term in months
6
7
    partner_id term_in_months 0.094878
   funded amount term in months 0.149310
8
9
   term in months funded amount 0.149310
10 term_in_months
                    loan_amount 0.184795
     loan_amount term_in_months 0.184795
erm_in_months lender_count 0.227283
11
12 term_in_months
13
    lender_count term_in_months 0.227283
14
    lender count loan amount 0.798697
1.5
                     lender_count 0.798697
     loan_amount
16
     lender_count funded_amount 0.849168
17 funded_amount lender_count 0.849168
18 funded_amount loan_amount 0.945044
     loan amount funded amount 0.945044
19
In [27]:
result df = attribute df.drop duplicates(subset=['Coeff'], keep='first')
print(result df)
    attribute_One attribute_Two
                                      Coeff
                    funded_amount -0.075276
0
      partner_id
       loan_amount
2
                      partner id -0.071251
    lender count
                       partner id -0.008575
4
                     partner_id 0.094878
  term in months
8
   funded amount term in months 0.149310
10 term_in_months loan_amount 0.184795
                     lender_count 0.227283
loan_amount 0.798697
12 term in months
    lender_count
14
    lender count funded amount 0.849168
16
18 funded amount
                     loan amount 0.945044
In [28]:
threshold = 0.5
In [29]:
#if the threshold is more than 0.5 coeff
threshold df= result df[result df.Coeff > threshold]
print(threshold df)
   attribute_One attribute_Two
                                     Coeff
14 lender_count loan_amount 0.798697
16 lender_count funded_amount 0.849168
18 funded_amount loan_amount 0.945044
In [30]:
feature_extraction_df=threshold_df.loc[result_df['attribute_Two'] == 'loan_amount']
print(feature_extraction_df)
secondAttribute = list(feature_extraction_df['attribute_One'])
print('\n','attribute result when one attribute is entered and a related attribute is asked for '
"\n")
print(secondAttribute)
   attribute_One attribute_Two
                                   Coeff
```

```
lenaer count
                   Toan_amount U./9869/
18 funded amount
                   loan amount 0.945044
 attribute result when one attribute is entered and a related attribute is asked for
['lender_count', 'funded_amount']
In [31]:
#parsing all the rows of the dataset
def property(row):
    for row in listed dataframe:
        if row !=listed_dataframe[0]:
            i = 0
            for prop in row :
               print("""
                    <owl:Class rdf:ID = "{0}":"{1}"</pre>
            """ .format(column_heads[i],row[i]))
                i = i + 1
            print("""</owl:Class>""")
            print(i)
#print (property(True))
```

In [32]:

14

```
#declaration of class and subclass
#basic elements
def subclassOf(row):
                    return"""
                    <owl:Class rdf:ID = class:"{0}"</pre>
                    <owl:Class rdf:ID = class:"{1}"</pre>
                    <owl:Class rdf:ID = class:"{2}"</pre>
                    <owl:Class rdf:ID = class:"{3}"</pre>
                <rdf:subClassOf rdf:resource="{4}"/>
                <owl:oneOf rdf:parseType="sector">
                <owl:Thing rdf:about="#"/>
                 </owl:oneOf>
            </owl:Class>""" .format(row[0], row[1], row[2], row[3], row[4])
def individual(type):
    return"""
    <owl:Thing rdf:about="{0}"/>
    <owl:Thing rdf:about="{1}"/>
    <owl:Thing rdf:about="{2}"/>
    </owl:oneOf>
</owl:Class> """.format(type[0], type[1], type[2])
#Equivalence between Classes and properties
def equivalentClass():
   return """"
    <owl:Class rdf:ID="value">
  <owl:equivalentClass rdf:resource="&value1;value2"/>
</owl:Class>""".format()
#ENUMERATED CLASSES
def disjointclasses(column heads):
                    return """
                    <owlx:DisjointClasses>
                  <owlx:Class owlx:name="#{0}" />
                  <owlx:Class owlx:name="#{1}" />
                   <owlx:Class owlx:name="#{2}" />
                    <owlx:Class owlx:name="#{3}" />
                </owlx:DisjointClasses> """.format(column heads[0],column heads[1],column heads[2],
column heads[3])
def addProperty(prop):
                return"""
            <owlx:ObjectProperty owlx:name="{}">
          <owlx:domain owlx:class="" />
          <owlx:range owlx:class="WineGrape" />
        </owlx:ObjectProperty>
        """.format(prop)
```

In [33]:

```
text=("<rdf:RDF" '\n'
"xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    "xmlns:rdfs=\"http://www.w3.org/2000/01/rdf-schema#"
    "xmlns:owl=\"http://www.w3.org/2002/07/owl#"
    "xmlns:dc=\"http://purl.org/dc/elements/1.1/"
    "xmlns:iris=\"http://www.w3.org/kiva#>"
    )

#owl header"
owlheader=("<owl:Ontology rdf:about=\"http://www.linkeddatatools.com/kivadataset>"
"<dc:title>The iris dataset Ontology</dc:title>"
"<dc:description>An ontology construction in python</dc:description>"
"</owl:Ontology>")
```

In [34]:

```
def addProperty(prop):
    return""
    <owlx:ObjectProperty owlx:name="{}">
    <owlx:domain owlx:class="" />
    <owlx:range owlx:class="#definerange" />
    </owlx:ObjectProperty>
""".format(prop)
```

In [35]:

In [36]:

```
#output of file
end_rdf=('\n'"</rdf:RDF>")
"""</rdf:RDF>")
```

```
#print(ontology(),end_rdf)

In []:
#output of file that is generated
import sys
file = open('kivafile.owl', 'w+')
sys.stdout = file
#print(ontology(),end_rdf)

file.close()

In []:
```