

Prepared by: Ted Lee

Prepared on: 2025-04-09

Gender

Male

F

Age

18

18

1. Data Cleaning

- Handling missing values (imputation, removal)
 - from sklearn.impute import SimpleImputer
 - imputer = SimpleImputer(strategy='mean')

strategy='most_frequent'

- Removing duplicates
- Correcting inconsistencies (e.g., typos in categorical variables)

2. Data Transformation

- Normalization
 - Scaling numerical data to a specific range [0;1] using X' = (X Xmin) / (Xmax Xmin)
 - from sklearn.preprocessing import MinMaxScaler
 - o scaler = MinMaxScaler()
 - o normalized_data = scaler.fit_transform(data)
- Standardization
 - Scaling data to have a mean of 0 and a standard deviation of 1
 - \circ [-3;+3] X' = (X μ) / σ
 - from sklearn.preprocessing import StandardScaler
 - \$ scaler = StandardScaler()
 - standardized_data = scaler.fit_transform(data)
- Log Transformation (for skewed numerical data).
 - Log_data = np.log(data)

← Use this in all situations

Name

Ted

Ted

Mandy

3. Encoding Categorical Variables

- One-Hot Encoding
 - Converting independent categorical variables into binary vectors
 - Creating dummy variables
 - from sklearn.preprocessing import OneHotEncoder
 - onehot_encoder = OneHotEncoder(sparse=False)
 - onehot_encoded = onehot_encoder.fit_transform(categories)

City	Class	
НК	Α	
Macau	В	
PH	С	
inc)		

City	Macau	PH	Class
1	0	0	0
0	1	0	1
0	0	1	2

- Label Encoding
 - Converting dependent categories into numerical values
 - from sklearn.preprocessing import LabelEncoder
 - tabel_encoder = LabelEncoder()
 - encoded_labels = label_encoder.fit_transform(categories)
- **4. Data Reduction** (A) Feature selection

Selecting a subset of relevant features to reduce overfitting, decrease training time, and improve model interpretability.

- I. Filter Methods
 - Calculate the correlation coefficient between each feature and the target variable
 - E.g. Pearson correlation to predict house prices
 - correlation = diff[['Location', 'Size', 'Age', 'House Price']].corr()

4. Data Reduction – (A) Feature selection

- II. Wrapper Methods
 - Example Recursive Feature Elimination (RFE):
 - Use Case: Using a linear regression model, you start with all features, remove the one with the lowest absolute coefficient, re-fit the model, and repeat the process.
 - from sklearn.feature_selection import RFE
 - rfe = RFE(estimator=LinearRegression(), n_features_to_select=3)
 - rfe.fit(X_train, y_train)
 - ❖ selected_features = X.columns[rfe.support_]
 → It returns 'Location', 'Size' and 'Age'.

III. Embedded Methods

- Example Lasso Regression:
 - Use Case: In a dataset with many features, applying Lasso regression could reveal which features are most significant by setting less important feature coefficients to zero.
- from sklearn.linear_model import Lasso
- from sklearn.metrics import mean_squared_error, r2_score
- tasso = Lasso(alpha=0.1)
- lasso.fit(X_train, y_train)
- y pred = lasso.predict(X test)
- mse = mean_squared_error(y_test, y_pred)
- r2 = r2_score(y_test, y_pred)
- coefficients = pd.Series(lasso.coef_, index=X.columns)

4. Data Reduction – (A) Feature selection

IV. Tree-Based Methods

- Example **Feature Importance** from Decision Trees:
 - Use Case: Fit a Random Forest to a dataset and examine the **feature importance scores**, then select the top features based on those scores.

```
from sklearn.ensemble import RandomForestRegressor
```

- rf model = RandomForestRegressor(n estimators=100, random state=42)
- rf model.fit(X train, y train)
- importances = rf_model.feature_importances_
- importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': importances})
- importance df = importance df.sort values(by='Importance', ascending=False)

Univariate Selection

- Example Chi-Squared Test:
 - Use Case: In a dataset with several categorical features, you could apply the Chi-squared test to determine which features are significantly associated with the target class.
- from scipy import stats
- data = {'Gender': ['Male', 'Male', 'Female', 'Female', 'Male', 'Female', 'Male', 'Female'], 'Preference': ['Like', 'Dislike', 'Like', 'Dislike', 'Like', 'Like', 'Dislike', 'Dislike']}
- df = pd.DataFrame(data)
- contingency_table = pd.crosstab(df['Gender'], df['Preference'])
- chi2_stats, p_val, deg_of_freedom, expected_freq = stats.chi2_contingency(contingency_table)
- if p val < alpha:
- print("Reject the null hypothesis: Significant association between Gender and Preference.",

- **4. Data Reduction** (B) Dimensionality reduction techniques
 - i. Principal Component Analysis (PCA)
 - Overview: PCA is a linear dimensionality reduction technique that transforms the original features into a new set of uncorrelated features called principal components. These components capture the maximum variance in the data.
 - How it Works:
 - o PCA computes the eigenvectors and eigenvalues of the covariance matrix of the data.
 - o The eigenvectors (principal components) are ordered by their corresponding eigenvalues (variance captured).
 - The top k eigenvectors are selected to form a new feature space, where k is less than the original number of features.
 - Applications: PCA is widely used in data preprocessing, for noise reduction, and to visualize high-dimensional data in two
 or three dimensions.
 - from sklearn.decomposition import PCA
 - from sklearn.preprocessing import StandardScaler
 - # Standardize the datascaler = StandardScaler()
 - * X_scaled = scaler.fit_transform(X)
 - * # Apply PCA and reduce to 2 dimensions
 - \Rightarrow pca = PCA(n_components=2)
 - X_pca = pca.fit_transform(X_scaled)
 - # Create a DataFrame for easy plotting
 - ❖ df_pca = pd.DataFrame(data=X_pca, columns=['Principal Component 1', 'Principal Component 2'])
 - df_pca['Target'] = y

- **4. Data Reduction** (B) Dimensionality reduction techniques
 - i. Principal Component Analysis (PCA)

- **4. Data Reduction** (B) Dimensionality reduction techniques
 - ii. t-Distributed Stochastic Neighbor Embedding (t-SNE)
 - **Overview**: t-SNE is a non-linear dimensionality reduction technique particularly well-suited for visualization of high-dimensional data in low-dimensional spaces (usually 2D or 3D).
 - How it Works:
 - t-SNE converts similarities (distances) between points in a high-dimensional space into probabilities, creating a
 probability distribution for pairwise similarities.
 - o It then finds a lower-dimensional representation that reflects these probabilities as closely as possible.
 - The technique emphasizes preserving local structures, meaning that points that are close in high-dimensional space remain close in low-dimensional representation.
 - Applications: t-SNE is commonly used for visualizing complex datasets, such as word embeddings, image data, or clustering results.
 - from sklearn.manifold import TSNE
 - from sklearn.preprocessing import StandardScaler
 - scaler = StandardScaler()
 - * X_scaled = scaler.fit_transform(X)
 - ❖ # Apply t-SNE
 - tsne = TSNE(n components=2, random state=42)
 - * X_tsne = tsne.fit_transform(X_scaled)
 - tsne_df = pd.DataFrame(data=X_tsne, columns=['t-SNE Component 1', 't-SNE Component 2'])
 - tsne_df['Target'] = y

- **4. Data Reduction** (B) Dimensionality reduction techniques
 - ii. t-Distributed Stochastic Neighbor Embedding (t-SNE)

4. Data Reduction – (B) Dimensionality reduction techniques

iii. Linear Discriminant Analysis (LDA)

- **Overview**: LDA is a supervised dimensionality reduction technique used mainly for classification. It aims to maximize the separation between multiple classes.
- How it Works:
 - LDA computes the mean vectors of each class and the overall mean.
 - The within-class and between-class scatter matrices are calculated to find the linear combinations of features that best separate the classes.
 - o The resulting linear discriminants can be used for both dimensionality reduction and as classifiers.
- Applications: LDA is mainly used in scenarios where class labels are available and is effective in reducing the
 dimensionality of data for classification purposes.
- from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
- from sklearn.preprocessing import StandardScaler
- scaler = StandardScaler()
- * X_scaled = scaler.fit_transform(X)
- # Apply LDA
- tda = LinearDiscriminantAnalysis(n_components=2)
- X_lda = lda.fit_transform(X_scaled, y)
- ❖ Lda df = pd.DataFrame(data=X Lda, columns=['LDA Component 1', 'LDA Component 2'])
- Lda_df['Target'] = y

4. Data Reduction – (B) Dimensionality reduction techniques

iii. Linear Discriminant Analysis (LDA)

4. Data Reduction – (B) Dimensionality reduction techniques

iv. Autoencoders

- Overview: Autoencoders are a type of neural network used for unsupervised learning. They learn a compressed representation (encoding) of the input data.
- How it Works:
 - An autoencoder consists of two parts: an encoder that compresses the input into a lower-dimensional representation, and a decoder that reconstructs the input from this representation.
 - o The network is trained to minimize the reconstruction error (the difference between the input and output).
- **Applications**: Autoencoders are used in various tasks, including noise reduction, anomaly detection, and extracting meaningful features from data.

4. Data Reduction – (B) Dimensionality reduction techniques

v. Isomap

- Overview: Isomap is a non-linear dimensionality reduction technique that preserves the global geometric structure of the data.
- How it Works:
 - o Isomap computes the geodesic distances between data points on a manifold (using nearest neighbors).
 - It then applies classical multidimensional scaling (MDS) to embed this distance matrix into a lower-dimensional space.
- Applications: Isomap is effective when the data lies on a lower-dimensional manifold and is useful in various fields, including pattern recognition and image processing.
- from sklearn.manifold import Isomap
- from sklearn.preprocessing import StandardScaler
- scaler = StandardScaler()
- * X_scaled = scaler.fit_transform(X)
- # Apply Isomap
- isomap = Isomap(n components=2)
- * X_isomap = isomap.fit_transform(X_scaled)
- ❖ isomap_df = pd.DataFrame(data=X_isomap, columns=['Isomap Component 1', 'Isomap Component 2'])
- isomap_df['Target'] = y

4. Data Reduction – (C) Sampling (reducing the size of the dataset)

5. Data Integration:

- Combining data from different sources to create a unified dataset.
- online_sales = pd.read_csv('online_sales.csv')
- physical_sales = pd.read_csv('physical_sales.csv')
- integrated_sales = pd.concat([online_sales, physical_sales], ignore_index=True)

6. Data Discretization:

- Converting continuous variables into categorical ones.
- data = { 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva', 'Frank', 'Grace', 'Hannah'], 'Age': [4,
 15, 23, 45, 64, 12, 34, 89] }
- df = pd.DataFrame(data)
- # Define the age bins and corresponding labels
- ❖ bins = [0, 12, 19, 64, 100]
- Labels = ['Child', 'Teenager', 'Adult', 'Senior']
- # Use pd.cut to discretize the 'Age' column
- df['AgeGroup'] = pd.cut(df['Age'], bins=bins, labels=labels, right=True)

7. Feature Engineering:

Creating new features based on existing data to improve model performance.

8. Data Formatting:

Converting data into a suitable format for analysis (e.g., converting date formats).

9. Outlier Detection and Treatment:

• Identifying outliers and deciding whether to remove, replace, or keep them.

Statistical Tests

- i. Z-Score Method: Identifies outliers based on standard deviations from the mean. A common threshold is a z-score of ±3.
 - from scipy import stats
 - z_scores = np.abs(stats.zscore(df['Values']))
 - outliers_z = df[z_scores > 3]
- ii. IQR Method: Uses the interquartile range (IQR). Data points that fall below Q1 1.5 * IQR or above Q3 + 1.5 * IQR are considered outliers.
 - Q1 = df['Values'].quantile(0.25)
 - Q3 = df['Values'].quantile(0.75)
 - \Leftrightarrow IQR = Q3 Q1
 - Lower bound = Q1 1.5 * IQR
 - upper bound = Q3 + 1.5 * IQR
 - outliers_iqr = df[(df['Values'] < lower_bound) | (df['Values'] > upper_bound)]

10. Text Pre-processing (for text data):

- from nltk.corpus import stopwords
- from nltk.stem import PorterStemmer
- from nltk.tokenize import word_tokenize
- text_data = ["Hello, world! This is an example text.", "Text pre-processing is essential for NLP tasks."]
- # Initialize the stemmer and stopwords
- stemmer = PorterStemmer()
- stop_words = set(stopwords.words('english'))
- # Function for text pre-processing
- def preprocess(text):
- **♦** text = text.lower()
- text = text.translate(str.maketrans("", "", string.punctuation))
- tokens = word_tokenize(text)
- tokens = [word for word in tokens if word not in stop_words]
- tokens = [stemmer.stem(word) for word in tokens]
- return ' '.join(tokens)
- cleaned_data = [preprocess(text) for text in text_data]
- for original, cleaned in zip(text_data, cleaned_data):
- print(f"Original: {original}\nCleaned: {cleaned}\n")

- # 1. Lowercasing
- #2. Removing punctuation
- # 3. Tokenization → Split the sentence into words
- # 4. Removing stop words → E.g. 'the', 'is'
- # 5. Stemming → Change "Running" to "Run"
- # Rejoining tokens
- # Apply pre-processing to the text data
- # Display the cleaned text

