Predicting protein-protein dissociation rates from spontaneous association trajectories

Supervisor: Fabio Pietrucci

PRESENTATION OUTLINE

Data analysis

setting up the simulation box

finding a reaction coordinate

b running molecular dynamics

b building a stochastic model

assessing the quality of the simulations

e getting physico-chemical properties

SETTING UP THE SIMULATION BOX

Our system

Ribonuclease **Barnase** and its inhibitor **Barstar**

Get initial structures from experimental data

Place the proteins far apart and solvate
9 nm

Equilibrate with thermostat & barostat

RUNNING MOLECULAR DYNAMICS

ASSESSING THE QUALITY OF THE SIMULATIONS

The quality of the model depends on the quality of the data

Is the transition captured by the simulations?

Is the end structure the experimentally determined bound state?

5 water molecules are buried inside the interface

THE REACTION COORDINATE

Atomic coordinates of 100 000 atoms in 3 dimensions

 \rightarrow 3 ×100 000 degrees of freedom

Is there a way to reduce the **high dimensionality** all while keeping the system's **accuracy**?

Use reaction coordinates (RC)

Order parameter tracking progress of a reaction

•

Generic function of atomic coordinates

3N dimensions

1 dimension

How can we find such reaction coordinates?

Our approach

A variational principle: the optimal coordinate q yields the minimal kinetic rate

$$k_{\mathsf{A} \to \mathsf{B}} \leq k^{model}_{\mathsf{A} \to \mathsf{B}}$$

Zhang, Hartmann, and Schütte. Faraday discussions (2016)

Mouaffac, Palacio-Rodriguez & Pietrucci, JCTC (2023)

GETTING PHYSICO-CHEMICAL PROPERTIES

2 Overdamped Langevin equation

It only depends on one variable q: the reaction coordinate

Free energy (thermodynamics)

water contacts

Experimentally:

 $\Delta G_B = 32k_BT$

15

10

bound

pair contacts RMSD

0.6

0.8

unbound

0.4

Reaction coordinate

Diffusion profile (kinetics)

Dissociation rate $1 \qquad \int_{a}^{b} e^{\beta F(y)}$

90	
Method	k_{A-B}^{model} (s ⁻¹)
Experimental	8×10^{-6}
Interface RMSD	5.81×10^{-6}
Pair contacts	2.73×10^{-3}
Water contacts	1.60×10^{6}

∤

Rate is minimized

CONCLUSIONS

We need ~ 1 day of simulation time to calculate dissociation rates

This is impossible to compute using classical molecular dynamics

Using our framework we are able to predict dissociation rates from classical molecular dynamics