# UNIT 7 APPLICATIONS OF CHI-SQUARE IN PROBLEMS WITH CATEGORICAL DATA

| Struct | ture                          | Page Nos |
|--------|-------------------------------|----------|
| 7.1    | Introduction                  | 75       |
|        | Objectives                    | 75       |
| 7.2    | Goodness-of-fit               | 76       |
| 7.3    | Test of Independence          | 82       |
| 7.4    | Summary                       | 86       |
| 7.5    | Solutions to Exercises        | 87       |
| Append | dix: Multinomial Distribution | 89       |

## 7.1 INTRODUCTION

In this block, you have already studied several problems of testing of hypotheses. The tests that you have studied so far relate to problems where the sample data have been obtained from a continuous distribution, for example, the normal distribution. In practice, however, one often obtains data in which the sampled "observations" are classified into classes according to one or more attributes. For example, a sample of flowers can be classified according to their colour — some of the flowers in the sample could be white, the others could be purple. Again, suppose it is claimed that a vaccine controls a disease. To 'verify' the truth of this claim, a sample of N individuals is taken and these individuals can be classified according to two attributes — inoculated or not inoculated, and affected or not affected by the disease.

When the sampled data are classified according to one or more attributes, we say that we have a set of **categorical data**. How do we tackle the inference problems arising out of categorical data? In this unit we shall discuss the use of one of the most widely used tests, the chi-square test, in this context.

To start with, in Sec.7.2, we shall consider the use of the chi-square test in "goodness-of-fit" problems. Then, in Sec.7.3, we shall see how the chi-square test can help us compare two features of a population to see if there is any relationship between them or not. In other words, we test to see if the features occur independent of each other or not.

While studying this unit, please keep comparing the situations in this unit and Units 5 and 6 to really understand the difference in the questions being asked and answered.

#### **Objectives**

After studying this unit, you should be able to

- define categorical data;
- identify inference problems associated with categorical data;
- use the chi-square test for solving some inference problems arising in categorical data.

#### Statistical Inference

#### **GOODNESS-OF-FIT** 7.2

Let us begin by trying to solve Ms.Dalta's problem. She is the marketing director of a company that sells four types of steel almirahs. As part of her duties, she has to make sure that there is no loss of sales due to less stock availability. So far she has been ordering new cupboards assuming that the demand for all four types is the same.

Recently, however, the stock inventories have become more difficult to control. Therefore, Ms. Dalta feels that she should check whether her hypothesis of uniform demand is valid or not.

Can you apply any of the methods you have studied so far for helping Ms.Dalta? There is no parameter that she is estimating and no assumption regarding the distribution of the population. So Ms.Dalta needs to look for some new tools. What she needs to do is to test the hypothesis:

 $H_0$ : The demand is uniform for all four types of almirahs against

H<sub>A</sub>: The demand is not uniform for all four types of almirahs.

For doing this, she selects a sample of 80 almirahs sold over the past few months. Ms.Dalta assumes that the demand is uniform. So the probability of an almirah of Type i being bought is the same, for i = 1, 2, 3, 4. If we denote this probability by

 $p_i$ , then  $p_1 = p_2 = p_3 = p_4 = \frac{1}{4}$ . So, if the demand is uniform, she can expect  $80\left(\frac{1}{4}\right) = 20$  almirahs of each type to be sold. But the observed sales of each

type are 23, 19, 18 and 20, respectively. Her problem is to see how well her hypothesis of uniform demand fits the observed sales. In other words, how can this data set be used for testing  $H_0$ ?

More generally, suppose a sample of n individuals are classified into k classes. Suppose the number of individuals falling in the ith class is  $O_i$  (i = 1, ..., k). The problem of "goodness-of-fit" consists in testing the hypothesis,  $H_0$ , that the probability of an individual falling in the ith class is  $p_i$  (i = 1, ..., k), where

 $\sum_{i=1}^{K} p_i = 1$ . In other words, the hypothesis  $H_0$  to be tested is that the number of

individuals (in a sample of size n) falling in the ith class is  $np_i$  (i = 1, ..., k). This is to be tested against the hypothesis H<sub>A</sub>, that H<sub>0</sub> is not true.

So, in this general situation, the "expected" number of individuals falling in the ith class is  $E_i = np_i$  (i = 1, ..., k). Note that these "expected" numbers are known to us because to start with we assume H<sub>0</sub> and calculate them. That is, we assume that the probability of an individual falling in the ith class is  $p_i$  (i = 1, ..., k). Based on these numbers O<sub>1</sub>, O<sub>2</sub>, ..., O<sub>k</sub>, E<sub>1</sub>, E<sub>2</sub>, ..., E<sub>k</sub>, there is a way of testing the validity of H<sub>0</sub>. Let us see what this method is.

Let  $U = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$ . This statistic U, under some mild conditions, is known to

have an approximate chi-square distribution with k-1 degrees of freedom, where k is the number of classes. If we want to test the hypothesis  $H_0$  at the  $\alpha$ level of significance, then we need to find  $\chi^2_{\alpha,k-1}$ , from the standard  $\chi^2$ distribution tables (given at the end of this block). If  $U>\chi^2_{\alpha,\,k-1}$  , we reject  $H_0$ . Otherwise we do not reject H<sub>0</sub>.

Ho is the null hypothesis, and HA is the alternative hypothesis.

> Note that,  $\chi^2_{\alpha k-1}$  is denoted by ' $\chi^2_{\alpha}$  with k-1 degrees of freedom' in Unit 4.

U is also called the sample  $\chi^2$  value, or the observed value of  $\chi^2$ for the data.

To see how this test works, let us consider Ms.Dalta's data, presented in Table 1.

Table 1

| Type of almirah | Observed sales (O <sub>i</sub> ) | Expected sales (E <sub>i</sub> ) $= np_i = 80 \times \left(\frac{1}{4}\right)$ |
|-----------------|----------------------------------|--------------------------------------------------------------------------------|
| I               | 23                               | 20                                                                             |
| II              | 19                               | 20                                                                             |
| III             | 18                               | 20                                                                             |
| _ IV            | 20                               | 20                                                                             |

Here 
$$U = \frac{(O_1 - E_1)^2}{E_1} + \frac{(O_2 - E_2)^2}{E_2} + \frac{(O_3 - E_3)^2}{E_3} + \frac{(O_4 - E_4)^2}{E_4}$$

$$= \frac{(23 - 20)^2}{20} + \frac{(19 - 20)^2}{20} + \frac{(18 - 20)^2}{20} + \frac{(20 - 20)^2}{20}$$

$$= \frac{9 + 1 + 4 + 0}{20} = 0.7$$

Here k=4. If Ms.Dalta wants to test  $H_0$  at a 5% level of significance,  $\alpha=0.05$ . Now,  $\chi^2_{0.05,3}=7.815$ . Since  $U<\chi^2_{0.05,3}$ , Ms.Dalta does not reject  $H_0$ . In other words, Ms.Dalta concludes that the demand for the four types of almirahs is uniform.

Another example may help you to see how this test works.

**Example 1** (Experiment on the breeding of flowers of a certain species): Jaswant is interested in breeding flowers of a certain species. The experimental breeding can result in four possible types of flowers:

- (a) magenta flowers with a green stigma (MG),
- (b) magenta flowers with a red stigma (MR),
- (c) red flowers with a green stigma (RG),
- (d) red flowers with a red stigma(RR).

According to the well-known Mendel's law, these four kinds of flowers should come out in the ratio 9:3:3:1. Jaswant found that under her experiment, out of 160 flowers that bloomed, the number of flowers with types MG, MR, RG and RR were 84, 35, 28 and 13, respectively. She wants to find out whether these data are compatible with Mendel's law or not.

If they are compatible, then the probabilities of each of these types of blooming are  $p_1 = \frac{9}{16}$ ,  $p_2 = \frac{3}{16}$ ,  $p_3 = \frac{3}{16}$ , and  $p_4 = \frac{1}{16}$ . So Jaswant wants to test the hypothesis

H<sub>0</sub>: The distribution of the flower types is multinomial with  $p_1 = \frac{9}{16}$ ,  $p_2 = \frac{3}{16}$ ,  $p_3 = \frac{3}{16}$ ,  $p_4 = \frac{1}{16}$ .

H<sub>A</sub>: H<sub>0</sub> is not true, that is, the distribution is not multinomial with the specified probabilities.

Jaswant's data can be presented as shown in Table 2.



Fig.1

See the appendix to the unit for a brief introduction to the multinomial distribution.

Table 2

| Flower    | Observed number | Expected number |
|-----------|-----------------|-----------------|
| type      | $O_{i}$         | $E_i (= np_i)$  |
| MG        | 84              | 90              |
| MR        | 35              | 30              |
| RG        | 28              | 30              |
| RR        | _ 13            | 10              |
| Total (n) | 160             | 160             |

Here k = 4, and

$$U = \sum_{i=1}^{4} \frac{(O_i - E_i)^2}{E_i}$$

$$= \frac{(84 - 90)^2}{90} + \frac{(35 - 30)^2}{30} + \frac{(28 - 30)^2}{30} + \frac{(13 - 10)^2}{10}$$

$$= 2.27$$

Jaswant needs to compare this value with the appropriate critical  $\chi^2$ -value. She takes the significance level of the test as  $\alpha=0.05$ . Also, in this case, since the number of classes is 4, the degrees of freedom are 4-1=3. So, she finds  $\chi^2_{0.05,3}$ , which is 7.81. Since  $U=2.27<7.81=\chi^2_{0.05,3}$ , she does not reject  $H_0$ . Thus, Jaswant concludes that her data is compatible with Mendel's law.

\* \* \*

In the two situations above, the hypothetical probabilities  $p_1, p_2, \ldots$  were known to us from before because of the type of assumption  $H_0$  was. However, in some problems, these probabilities may have to be estimated from the data itself. The following example illustrates this.

**Example 2**: A consultant was employed by a city council to study the pattern of bus arrivals and departures at a very busy interstate bus terminus. Since many



Fig.2

arrival processes fit the Poisson distribution, she decided to test the following hypothesis:

H<sub>0</sub>: The arrivals are distributed as a Poisson random variable,

H<sub>A</sub>: The arrivals are not Poisson distributed.

She sampled the number of arrivals in 200 minutes. Then she grouped the arrivals into k=6 categories, and noted her observations, as shown in Column 2 of Table 3 below.

Applications of Chi-Square in Problems with Categorical Data

However, since the parameter of the Poisson distribution is unspecified in the hypothesis, the consultant needed to estimate this from the data itself. For this she first computed the sample mean as

$$\overline{x} = \frac{(1 \times 23) + (2 \times 45) + \dots + (5 \times 41)}{200}$$
= 2.96

So, she estimated the parameter of the Poisson distribution as  $\hat{\lambda} = 2.96$ .

With this value of  $\hat{\lambda}$ , she computed the Poisson probabilities for the different classes from the tables (which are also provided at the end of this block). These are shown in Column 3 of the table below.

| No. of    | Observed    | Prob. according  | Expected     |
|-----------|-------------|------------------|--------------|
| arrivals  | frequencies | to Poisson dist. | frequencies  |
| arrivais  | $O_{i}$     | p <sub>i</sub>   | $E_i(=np_i)$ |
| 0         | 10          | 0.0524           | 10.48        |
| 1         | 23          | 0.1545           | 30.90        |
| 2         | 45          | 0.2277           | 45.54        |
| 3         | 49          | 0.2238           | 44.76        |
| 4         | 32          | 0.1651           | 33.02        |
| 5 or more | 41          | 0.1765           | 35.30        |
| Total     | 200         | 1.0000           | 200.00       |

Table 3: Arrivals at ISBT

According to her data,

$$U = \frac{(10-10.48)^2}{10.48} + \frac{(23-30.90)^2}{30.9} + \dots + \frac{(41-35.3)^2}{35.3}$$
  
= 0.022 + 2.02 + 0.006 + 0.402 + 0.032 + 0.92  
= 3.402

Here k = 6 but one parameter has been estimated. So, the degrees of freedom associated with the chi-square distribution is (k-1)-1=k-2=4. The critical value of chi-square at 4 degrees of freedom and 1 percent level of significance is 13.27. Since 3.402 < 13.27, the consultant did not reject the null hypothesis. In other words, she was in a position to conclude that the arrivals and departures at the bus terminus were Poisson distributed.

\* \* \*

Let us now look at a problem involving normal distribution. While solving it, the following very important point about applying the  $\chi^2$ -test will show up.

**Remark 1:** If, corresponding to a category, say j, the expected value  $E_j$  is small, i.e., less than 5, then the chi-square approximation for the distribution of U will not be good. So, if the condition  $E_i \ge 5$  is not satisfied for all i, then we should combine the category j with  $E_j < 5$  with its adjacent categories j + 1, j + 2, ..., j + r, where  $E_j + E_{j+1} + \ldots + E_{j+r} \ge 5$  but  $E_j + E_{j+1} + \ldots + E_{j+r-1} < 5$ . The number of classes, accordingly, gets reduced by r.

This remark will become more clear as you study the solution of Problem 1.

**Problem 1:** A chemical company wants to know if its sales of a liquid chemical are normally distributed. This information will help them in planning and

To find p; for  $\lambda = 2.96$ , we take the average of the values in the columns corresponding to 2.9 and 3.0, respectively. Thus,  $p_1 = \frac{0.055 + 0.0498}{2} = 0.0524$ .

We assume that the upper limit of a class shows that quantities less than that limit are in the class. So, for example, 35.5 will be included in the third class interval, not the second one.

controlling the inventory. The sales record for a random sample of 200 days is given in Table 4.

Table 4

| Sales (in 1000 litres) | Number of days |
|------------------------|----------------|
| Less than 34.0         | 0              |
| 34.0-35.5              | 13             |
| 35.5-37.0              | 20             |
| 37.0-38.5              | 35             |
| 38.5-40.0              | 43             |
| 40.0-41.5              | 51             |
| 41.5-43.0              | 27             |
| 43.0-44.5              | 10             |
| 44.5-46.0              | 1              |
| 46.0 or more           | _ 0            |
| Total                  | 200            |

At the 5% level of significance, test the hypothesis that the company's sales are normally distributed.

**Solution:** Let us start by clearly stating our hypotheses.

H<sub>0</sub>: The company's sales are normally distributed. against

H<sub>A</sub>: The company's sales are **not** normally distributed.

Now, we assume for just now that  $H_0$  is valid. By methods known to us, we can calculate the sample mean and sample standard deviation  $\bar{x}$  and  $s_x$ . You can check that these are:

 $\bar{x} = 40.000$  litres,  $s_x = 2.5$  thousand litres.

Now, we need to find the expected frequencies E<sub>i</sub> corresponding to each O<sub>i</sub>. You know that  $E_i = 200 \times p_i$ , where  $p_i$  is the probability for each class in Table 4, computed under the assumption of normal distribution.

So, let us expand Table 4 to include all the class probabilities (Column 3), the expected frequencies (Column 4) and the corresponding values of  $\frac{(O_i - E_i)^2}{E_i}$ (Column 5).

To get the first entry in Column 3, we compute  $z = \frac{(x - \mu)}{\sigma}$  for x = 34. As you

know,  $\mu$  and  $\sigma$  are estimated by  $\overline{x}$  and  $s_x$ , respectively. So,  $z = \frac{(34-40)}{2.5} = -2.4$ .

Now, from the table of normal probabilities in the Block Appendix, you know that  $P[-2.4 \le Z \le 0] = P[0 \le Z \le 2.4] = 0.4918.$ 

So, the probability we want is

$$p_1 = 0.5 - P[-2.4 \le Z \le 0] = 0.5 - 0.4918 = 0.0082.$$
Therefore,  $F_2 = 200 (0.0082) = 1.64$ 

Therefore,  $E_1 = 200 (0.0082) = 1.64$ .

Similarly, you can compute the other expected frequencies and complete the 4th column of Table 5. You may wonder about the brackets in Columns 2, 3 and 4 of the table. This is because, as we have mentioned in Remark 1, the  $\chi^2$ goodness-of-fit test is a good approximation only if the Ei are not very small. This is why we have grouped the first two classes and the last two classes in Table

To fill in the fifth column of Table 5, we treat the bracketed classes as a single class. So,  $\frac{(O_1 - E_1)^2}{E_1} = \frac{(13 - 7.18)^2}{7.18} = 4.7176$ . You can similarly calculate the other entries of Column 5 in the table below.

Table 5

| Sales<br>(in 1000 litres)        | Observed frequency (O <sub>i</sub> ) | Class probability (p <sub>i</sub> ) | Expected frequency (E <sub>i</sub> ) | $\frac{(O_i - E_i)^2}{E_i}$ |
|----------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-----------------------------|
| less than 34.0<br>34.0 – 35.5    | 0<br>13_                             | 0.0082<br>0.0277                    | 1.64<br>5.54 7.18                    | 4.7176                      |
| 35.5 – 37.0                      | 20 , ,                               | 0.0792                              | 15.84                                | 1.0925                      |
| 37.0 - 38.5                      | 35                                   | 0.1592                              | 31.84                                | 0.3136                      |
| 38.5 - 40.0                      | 43                                   | 0.2257                              | 45.14                                | 0.1015                      |
| 40.0 - 41.5                      | 51                                   | 0.2257                              | 45.14                                | 0.7607                      |
| 41.5 - 43.0                      | 27                                   | 0.1592                              | 31.84                                | 0.7357                      |
| 43.0 - 44.5                      | 10                                   | 0.0792                              | 15.84                                | 2.1531                      |
| 44.5 – 46.0<br>greater than 46.0 | 0                                    | 0.0277                              | 5.54<br>1.64<br>7.18                 | 5.3193                      |

Applications of Chi-Square in Problems with Categorical Data

Now, summing up the entries in the last column of Table 5, we get U = 15.194.

Next, to see whether we accept or reject  $H_0$ , we look up the value of  $\chi^2$  at the 5% level of significance and for the appropriate number of degrees of freedom. Note that, though we started with the data categorised into 10 classes, we needed to group two sets of 2 frequencies each. So, for purposes of the  $\chi^2$  test we now have 8 classes. Also, we have estimated two parameters,  $\mu$  and  $\sigma$ . Therefore, the degrees of freedom are (8-1)-2=5.

So, from the  $\chi^2$  table, we find  $\chi^2_{0.05,5} = 11.07$ .

Since  $U > \chi^2_{0.05,5}$ , we must reject  $H_0$ . That is, the normal distribution is not a good fit to the data.

\* \* \*

Now try the following exercises.

E1) In Table 6 below you find the distribution of the heights for 100 college students. Estimate the mean and the standard deviation of the distribution. Check whether the sample is drawn from a normally distributed population at 5% level of significance.

Table 6

| Class (cm)    | Number of                  |
|---------------|----------------------------|
|               | students (O <sub>i</sub> ) |
| Less than 161 | 4                          |
| 161 - 164     | 11                         |
| 164 - 167     | 16                         |
| 167 - 170     | 19                         |
| 170 - 173     | 25                         |
| 173 - 176     | 18                         |
| 176 - 179     | 4                          |
| 179 - 182     | 2                          |
| 182 or more   | 1                          |
| Total         | 100                        |

E2) Test whether the observed frequencies, as given below, in 4 phenotypic classes AB, Ab, aB, ab are in agreement with the expected ratio 9: 3: 3: 1.

|   | Class     | AB  | Ab | aB | ab |
|---|-----------|-----|----|----|----|
| 1 | Frequency | 102 | 25 | 28 | 5  |

#### A die is rolled 1200 times with the following results: E3)

| No. that comes up | 1   | 2   | 3   | 4   | 5   | 6   |
|-------------------|-----|-----|-----|-----|-----|-----|
| Frequency         | 205 | 279 | 217 | 257 | 133 | 109 |

Test if the die is unbiased.

In all the situations so far, the problem was related to data that were classified according to one attribute. Now let us see how the  $\chi^2$  test can be used to infer about situations in which the data are classified according to two or more attributes.

#### TEST OF INDEPENDENCE 7.3

In this section we shall look at inference problems like the following one.

Dr. Surya had recently developed a serum that she thought might be effective in preventing colds. But, she needed to verify its efficacy. For this purpose she carried out an experiment,

One thousand individuals were classified into two groups of the same size. The serum was administered to the members of the first group only. The number of individuals in each group who caught a cold zero times, or once, or more than once during some period after the treatment was noted. The data are shown in the following table having 2 rows and 3 columns.



Table 7: Table showing the effect of serum



Dr.Surya's problem was to examine whether or not this serum is effective in preventing a cold. In other words, she wants to know if a person can catch a cold one or more times whether s/he has taken the serum or not. We can reword this as: is the treatment by the serum **independent** of the number of times of catching a cold?

So, Dr.Surya formulated the following null and alternative hypotheses to be tested:

H<sub>0</sub>: There is no interdependence between the serum treatment and the number of times of getting a cold.

 $H_A$ :  $H_0$  is not true, i.e., the serum has some effect on preventing colds.

To test  $H_0$  against  $H_A$  she planned to use the  $\chi^2$  test at the 5% significance level. As you know, to do so she needed to calculate the expected frequencies corresponding to each of the 6 entries in the  $2 \times 3$  table, Table 7, assuming H<sub>0</sub>, i..e., the independence of the number of times one gets a cold and of taking serum treatment.

Let us see how she obtained  $E_{11}$ . For this, she used the fact that out of the 1000 people, 476 had no cold. So, out of the 500 in the treatment group,



Fig.3: "Don't worry! You take this medicine, and you won't have any more colds in future."

$$\frac{476}{1000}$$
 × 500 = 238 were expected to not have any cold. Note that this is

Applications of Chi-Square in Problems with Categorical

(sum of the first row entries) × (sum of first column entries) (total sample size)

Similarly, she calculated the other expected frequencies:

$$E_{12} = 500 \times \frac{281}{1000} = 140.5, E_{13} = 121.5, E_{21} = 238, E_{22} = 140.5, E_{23} = 121.5.$$

Then . Surva calculated the sample statistic U as

$$U = \frac{(252 - 238)^2}{238} + \frac{(145 - 140.5)^2}{140.5} + \frac{(103 - 121.5)^2}{121.5} + \frac{(224 - 238)^2}{238} + \frac{(136 - 140.5)^2}{140.5} + \frac{(140 - 121.5)^2}{121.5} = 7.57$$

She took the significance level of the test as  $\alpha = 0.05$ . Also, in this case the number of degrees of freedom was (2-1)(3-1)=2. So, comparing the value of U with  $\chi^2_{0.05,2} = 5.99$ , she found that  $U > \chi^2_{0.05,2}$ 

So, she rejected H<sub>0</sub>, and concluded that the serum has some effect in preventing colds.

Let us look closely at the steps Dr. Surva went through for testing the independence of two features of the population under study.

- Step 1: She stated the hypothesis regarding the independence of two features of the sample.
- Step 2: As in the case of the goodness-of-fit tests, she noted the frequencies how many of each type of person (treated or untreated) had which kind of feature (the number of times they catch a cold). These frequencies were written in a table, called a contingency table.

In this case, the contingency table had 2 rows and 3 columns, because corresponding to each of the two groups of people there were 3 possibilities about the cold they did or did not catch. In brief, we say that the table was a  $2 \times 3$  contingency table.

Step 3: Corresponding to each of the 6 cells of the contingency table, Dr. Surva calculated the expected frequency. She did this as follows:  $E_{ij}$  = expected frequency for ith row and jth column = (sum of entries of ith row) (sum of entries of jth column)

(total sample size)

where i = 1, 2 and j = 1, 2, 3.

Then the sample  $\gamma^2$ , U, was calculated by Step 4:

$$U = \sum_{i=1}^{2} \sum_{j=1}^{3} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$
, where  $O_{ij}$  was the entry in the ith row and jth

column.

Note that, more generally, if she had had an  $m \times n$  contingency table, the value would be

For an m × n table, the number of degrees of freedom is (m-1)(n-1).

$$U = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$
, where m and n are natural numbers.

She compared this value with the value of  $\chi^2_{\alpha,d}$ , where  $\alpha$  is the level Step 5: of significance and d = (m - 1)(n - 1) is the number of degrees of freedom. Then, as you saw in Sec. 7.2, if  $U < \chi^2_{\alpha,d}$ ,  $H_0$  is accepted. Otherwise H<sub>0</sub> is rejected.

Another example may help you to clarify your understanding regarding the process of testing for independence.

**Example 4**: The Glorious Watch Company wants to find out if there is any relationship between the income of a person and the importance she attaches to the price of a brand name. Mr.Zafar, the Chief of the Marketing Division, wants to test the hypothesis

H<sub>0</sub>: Income of a person and importance to her of price attached are independent. against

 $H_A$ :  $H_0$  is not true.

Zafar does a survey among the customers. To analyse his results, he groups them into 3 income levels, and asks them to mark the level of importance they give on a 3-point scale — great, moderate or low. He noted the results in a contingency table (see Table 8). In this table, you will also find the expected frequency corresponding to each observed frequency written alongside. As you know, these will be calculated as follows:

$$E_{11} = \frac{\text{(sum of entries of first row) (sum of entries of first column)}}{\text{(total sample size)}}$$
$$= \frac{170 \times 187}{500} = 63.58.$$

All the other Eiis are calculated in the same way.

Table 8

|                    |                 | Feature 2 (Income) |                 |                 |          |                 |       |
|--------------------|-----------------|--------------------|-----------------|-----------------|----------|-----------------|-------|
| Feature 1          |                 | Low                | M               | iddle           | F        | Iigh            | Total |
| (Importance Level) | O <sub>i1</sub> | $\mathbf{E}_{i1}$  | O <sub>i2</sub> | E <sub>i2</sub> | $O_{i3}$ | E <sub>i3</sub> |       |
| Great              | 79              | 63.58              | 58              | 61.2            | 33       | 45.22           | 170   |
| Moderate           | 48              | 59.09              | 65              | 56.88           | 45       | 42.03           | 158   |
| Low                | 60              | 64.33              | 57              | 61.92           | 55       | 45.75           | 172   |
| Total              | 1               | 87                 | 1               | 80              | 1        | 33              | 500   |

So, the sample 
$$\chi^2$$
 value that Zafar calculated was
$$U = \frac{(79 - 63.58)^2}{63.58} + \frac{(58 - 61.2)^2}{61.2} + \dots + \frac{(57 - 61.92)^2}{61.92} + \frac{(55 - 45.75)^2}{45.75}$$

$$= 3.74 + 0.167 + 3.302 + 2.081 + 1.159 + 0.21 + 0.291 + 0.391 + 1.87$$

$$= 13.211$$

Applications of Chi-Square in Problems with Categorical Data

Then Zafar compared this with the value of  $\chi^2$  for (3-1) (3-1) = 4 degrees of freedom and at the 2% level of significance, which is  $\chi^2_{0.024} = 11.668$ .

He found  $U > \chi^2_{0.02,4}$ , which made him decide that he should reject  $H_0$ . In other words, Zafar is 98% certain that the level of income of a person is related to the importance she gives to the price of the brand of watches.

\* \* \*

In the example above, it is interesting to note that if Zafar had chosen to be 99% certain, then  $\chi^2_{0.01,4} = 13.277 > U$ . So that, he would not have rejected H<sub>0</sub>. What does this tell us about statistical analyses? Think about it.

And now here are some problems for you to solve.

E4) The data in the following table give mortality rates among vaccinated and non-vaccinated patients. Test if the vaccine has any effect in curing the disease.

| Categories     | Living | Dead | Total |
|----------------|--------|------|-------|
| Vaccinated     | 320    | 125  | 445   |
| Non-vaccinated | 98     | 230  | 328   |
| Total          | 418    | 355  | 773   |

E5) Do the following data on sociability of soldiers recruited in cities and villages suggest that city soldiers are more sociable than village soldiers?

| Sociability<br>Place | Sociable | Non-sociable |
|----------------------|----------|--------------|
| City                 | 13       | 6            |
| Village              | 7        | 14           |

E6) A group of 1650 school children were classified according to their performance in school tests and family economic level. Test if there is any association between these two attributes.

| Performance  Economic level | Very Good | Good | Average | Poor | Total |
|-----------------------------|-----------|------|---------|------|-------|
| Very Rich                   | 4         | 7    | 16      | 25   | 52    |
| Rich                        | 13        | 37   | 79      | 73   | 202   |
| Average                     | 105       | 372  | 298     | 175  | 950   |
| Poor                        | 36        | 213  | 75      | 123  | 446   |
| Total                       | 157       | 629  | 468     | 396  | 1650  |

E7) In an experiment to study whether smoking affects health, the following data were collected. Test the hypothesis that smoking does not affect health.

|                 | Light smoking | Moderate smoking | Heavy<br>smoking |
|-----------------|---------------|------------------|------------------|
| Health affected | 16            | 29               | 35               |
| Health not      | 36            | 23               | 17               |
| affected        |               |                  |                  |

In this section you have seen situations in which the population is tested to see if two or more common features of the population are related or not. This is as far as we intend to discuss the use of  $\chi^2$  for analysing categorical data. Let us end with a brief look at what we have covered in this unit.

### 7.4 SUMMARY

In this unit we have started with a look at data presented in the form of frequencies falling in different categories or classes. Based on such data we have undertaken different tests of hypotheses using the chi-squared distribution. We have considered two types of tests:

1) Test of goodness-of-fit: The hypotheses are given by

H<sub>0</sub>: The data fit a given distribution; against

 $H_A$ :  $H_0$  is not true, i.e., the data do not fit that distribution.

For testing whether  $H_0$  is acceptable, we consider the observed and expected frequencies of the various categories in the data.

Suppose there are k categories with  $O_i$  as the observed frequency and  $E_i$  as the expected frequency of the ith category. Then the sample  $\chi^2$  value is

$$U = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$

If  $H_0$  were acceptable, then this value should be less than  $\chi^2_{\alpha,k-s-1}$  with

 $100\alpha$  % significance level, where s is the number of parameters estimated in finding the expected frequencies.

So, if  $U < \chi^2_{\alpha, \, k-s-1}$ , then  $H_0$  is not rejected. Otherwise,  $H_0$  is rejected.

2) **Test of independence**: Suppose a population can be classified into r categories on the basis of feature A, and into c categories on the basis of feature B. The hypotheses are given by:

H<sub>0</sub>: There is no interdependence between the features A and B

 $H_A$ :  $H_0$  is not true, that is, A has an effect on B.

The data is presented in the form of an  $r \times c$  contingency table. Let  $n_{ij}$  be the frequency in the ith row and jth column and let

$$n_{i0} = \sum_i n_{ij}$$
 ,  $n_{0j} = \sum_i n_{ij}$  ,  $n = \sum_i \sum_i n_{ij}$ 

If the two classification criteria are mutually independent, the expected value  $E_{ij}$  for the ith row and jth column is given by

$$E_{ij} = \frac{n_{i0} \times n_{0j}}{n}$$

Then, the sample  $\chi^2$  value,  $U = \sum_{i=1}^r \sum_{j=1}^c \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$ .

If this value is less than  $\chi^2_{\alpha,(r-l)(c-l)}$ , then  $H_0$  is acceptable at the  $\alpha$  level of significance.

## 7.5 SOLUTIONS/ANSWERS

E1) Here  $\bar{x} = 170$ ,  $s^2 = 36$  and n = 100.

 $H_0$ : The sample is drawn from a population with normal distribution N (170.0,  $6^2$ ).

H<sub>A</sub>: H<sub>0</sub> is not true.

In order to solve this problem by the same method as in Example 1, we consider the classes in Table 6 corresponding to categories of a multinomial distribution. Let  $O_i$  be the observed value for the ith category. Then, what is the expected value for the ith category in this case? Since the population distribution is completely specified as  $N(170, 6^2)$  under the null hypothesis  $H_0$ , we can obtain the probability  $p_i$  with which the height of a student chosen randomly falls into the ith category. The expected value for the ith category is obtained by  $E_i = np_i$ . To compute the values  $p_i$ , the boundary points of the classes should be standardised by the population means and the standard deviation so as to make use of the table for a standard normal distribution. The standardised boundary points are given below in Table 11.

Table 11

| Boundary Points of Class (x <sub>i</sub> )     | 161  | 164  | 167  | 170 | 173 | 176 | 179 | 182 |
|------------------------------------------------|------|------|------|-----|-----|-----|-----|-----|
| Standardised Boundary Points (z <sub>i</sub> ) | -1.5 | -1.0 | -0.5 | 0.0 | 0.5 | 1.0 | 1.5 | 2.0 |

Here,  $z_i = \frac{x_i - 170.0}{6.0}$  The  $p_i$  and  $E_i$  values can be obtained as follows.

$$p_1 = P[-\infty < Z < -1.5] = 1 - P[-\infty < Z < 1.5] = 0.0668$$
;  $E_1 = 100 \times 0.0668 = 6.68$ 

$$p_2 = P[-1.5 \le Z < -1.0] = 0.0919$$
;  $E_2 = 9.19$ , and so on.

The values are all given in Table 12 below.

Table 12

| Class (cm)    | Number of students (O <sub>i</sub> ) | Probabilities (p <sub>i</sub> ) | Expected values $E_i$<br>$(=np_i)$ |
|---------------|--------------------------------------|---------------------------------|------------------------------------|
| Less than 161 | 4                                    | 0.0668                          | 6.68                               |
| 161 - 164     | 11                                   | 0.0919                          | 9.19                               |
| 164 - 167     | 16                                   | 0.1498                          | 14.98                              |
| 167 - 170     | 19                                   | 0.1915                          | 19.15                              |
| 170 - 173     | 25                                   | 0.1915                          | 19.15                              |
| 173 - 176     | 18                                   | 0.1498                          | 14.98                              |
| 176 - 179     | 4                                    | 0.0919                          | 9.19                               |
| 179 - 182     | 2 —                                  | 0.0440                          | 4.40 6.68                          |
| 182 or more   | 1 —                                  | 0.0228—                         | 2.28 —                             |
| Total         | 100                                  | 1.0000                          | 100                                |

Let us now test  $H_0$  against  $H_A$  at the 5% significance level.

Now, from Table 12,

$$U = \frac{(4-6.68)^2}{6.68} + \frac{(11-9.19)^2}{9.19} + \frac{(16-14.98)^2}{14.98} + \frac{(19-19.15)^2}{19.15} + \frac{(25-19.15)^2}{19.15} + \frac{(18-14.98)^2}{14.98} + \frac{(4-9.19)^2}{9.19} + \frac{(3-6.68)^2}{6.68}$$

$$= 8.86$$

Taking the significance level of the test  $\alpha = 0.05$ , we have  $\chi^2_{0.05.5} = 11.07$ .

The degrees of freedom 8-3=5, because the number of categories, after combining the last two categories is 8, and the number of parameters estimated is 2.

Since U =  $8.86 < 11.07 = \chi^2_{0.05,5}$ , we conclude that there is good agreement between the observed frequencies and the fitted values. So  $H_0$  is accepted.

E2) If the data are compatible with the given ratios, the expected frequencies are: AB: 90, Ab: 30, aB: 30, ab: 10.

The value of U is 5.07. This is less than  $\chi^2_{0.05, 3} = 7.815$ . Hence, we accept the null hypothesis that the given data are in agreement with the expected ratios.

E3) Here  $H_0$ : the expected frequency is 200 in each class.  $H_A$ :  $H_0$  is not true.

Therefore,  $U = 112.87 > \chi^2_{0.05,5} = 11.070$ . Hence, we conclude on the basis of the given data that we reject H<sub>0</sub>. So the die is not unbiased.

E4) The hypothesis here is:

H<sub>0</sub>: There is no effect of the vaccine on mortality.

 $H_A$ :  $H_0$  is not true.

The expected frequencies  $E_{ij}$  are given in the table below.

|                | Living | Dead | Total |
|----------------|--------|------|-------|
| Vaccinated     | 241    | 204  | 445   |
| Non-Vaccinated | 177    | 151  | 328   |
| Total          | 418    | 355  | 773   |

The observed value of  $\chi^2$  is U = 133.08.

The number of degrees of freedom = (2-1)(2-1) = 1.

$$\chi^2_{0.05,1} = 3.84 < U.$$

Hence, we conclude that we cannot accept  $H_0$ . So, on the basis of the given data, we conclude that the vaccine has a definite effect on the mortality rate.

E5)  $H_0$ : There is no interdependence between place and sociability level.  $H_A: H_0$  is not true.

The table of expected frequencies is

| Sociability | Social | Non-social | Total |
|-------------|--------|------------|-------|
| Place       | Social | Non-social | Total |
| City        | 9.5    | 9.5        | 19    |
| Village     | 10.5   | 10.5       | 21    |
| Total       | 20     | 20         | 40    |

So, U = 
$$12.25 \left( \frac{2}{9.5} + \frac{2}{10.5} \right) = 4.9.$$

The number of degrees of freedom = 1.

$$\chi^2_{0.05, 1} = 3.84 < U.$$

Therefore, we reject  $H_0$ . So, the data suggests that the place a soldier comes from affects her/his sociability level.

E6) The expected frequencies are given below:

| Performance |           |        |         |        |
|-------------|-----------|--------|---------|--------|
|             | Very Good | Good   | Average | Poor   |
| Economic    |           |        |         |        |
| level       |           |        |         |        |
| Very Rich   | 4.95      | 19.82  | 14.75   | 12.48  |
| Rich        | 9.22      | 77.00  | 57.29   | 48.48  |
| Average     | 90.39     | 362.15 | 269.45  | 228    |
| Poor        | 42.44     | 170.02 | 126.50  | 107.04 |

The value of the sample  $\chi^2$  is  $U = 127.61 > 25.0 = \chi^2_{0.05, 15}$ . Hence, the hypothesis of independence between the categories is rejected.

E7) Under the assumption that smoking does not affect health, the expected frequencies are given below.

|                     | Light smoking | Moderate smoking | Heavy smoking |
|---------------------|---------------|------------------|---------------|
| Health affected     | 26.67         | 26.67            | 26.67         |
| Health not affected | 25.33         | 25.33            | 25.33         |

The observed value of  $\chi^2$  is U = 14.52 >  $\chi^2_{0.05, 2}$  = 5.991. Hence, it is concluded on the basis of the given data that smoking affects health.

## **APPENDIX: MULTINOMIAL DISTRIBUTION**

This distribution is an extension of the binomial distribution that you studied in Unit 3. It shows up in the following situation:

There is an experiment which consists of n identical trials, which are independent. Each trial can have k possible outcomes. Suppose the probability of each of these outcomes is  $p_1, p_2, ..., p_k$ , with  $p_1 + p_2 ... + p_k = 1$ . These probabilities remain the same from trial to trial.

Mathematically, this situation is represented by considering k random variables  $X_1$ , ...,  $X_k$  with probabilities  $p_1$ , ...,  $p_k$  that  $X_1 = x_1$ , ...,  $X_k = x_k$ , respectively, where  $\sum_{i=1}^k x_i = n, \sum_{i=1}^k p_i = 1, p_i \neq 0 \forall i = 1, \dots, k.$  If the random vector  $(X_1, \dots, X_k)$  is

multinomially distributed, the 
$$P[X_1=x_1,\cdots,X_k=x_k]=\frac{n!}{x_1!\cdots x_k!}p_1^{X_1}\cdots p_k^{X_k}$$
.

So, if we are testing if a certain population is multinomially distributed, we will test

#### Statistical Inference

 $H_0$ : The population of size n is multinomially distributed with probabilities  $p_1,\,p_2,\,\ldots,\,p_k$  (known to us); against

 $H_{A}$ : The population is not multinomially distributed.

As in all the other cases discussed in the unit, if the  $np_i$  are not very small, then the test statistic  $U = \sum_{i=1}^k \frac{(O_i - np_i)^2}{np_i}$  has approximately a chi-squared distribution with (k-1) degrees of freedom. The approximation is usually good for  $E_i = np_i \ge 5$ .



Fig. 1 Sampling distribution of  $\overline{x}$  for different populations and different sample sizes.

TABLE 1
AREAS UNDER THE STANDARD NORMAL CURVE

This table shows the area between zero (the mean of a standard normal variable) and z. For example, if z = 1.50, this is the shaded area shown below which equals .4332.

|     |       |       |       | <u> </u> | 0     | 1.50  |       |       |        |               |
|-----|-------|-------|-------|----------|-------|-------|-------|-------|--------|---------------|
| z   | .00   | .01   | .02   | .03      | .04   | .05   | .06   | .07   | .08    | .09           |
| 0.0 | .0000 | .0040 | .0080 | .0120    | .0160 | .0199 | .0239 | .0279 | .0319  | .0359         |
| 0.1 | .0398 | .0438 | .0478 | .0517    | .0557 | .0596 | .0636 | .0675 | .0714  | .0753         |
| 0.2 | .0793 | .0832 | .0871 | .0910    | .0948 | .0987 | .1026 | .1064 | .1103  | .1141         |
| 0.3 | .1179 | .1217 | .1255 | .1293    | .1331 | .1368 | .1406 | .1443 | .1480  | .1517         |
| 0.4 | .1554 | .1591 | .1628 | .1664    | .1700 | .1736 | .1772 | .1808 | .1844  | .1879         |
| 0.5 | .1915 | .1950 | .1985 | .2019    | .2054 | .2088 | .2123 | .2157 | .2190  | .2224         |
| 0.6 | .2257 | .2291 | .2324 | .2357    | .2389 | .2422 | .2454 | .2486 | .2517  | .2549         |
| 0.7 | .2580 | .2611 | .2642 | .2673    | .2704 | .2734 | .2764 | .2794 | .2823  | .2852         |
| 0.8 | .2881 | .2910 | .2939 | .2967    | .2995 | .3023 | .3051 | .3078 | .3106  | .3133         |
| 0.9 | .3159 | .3186 | .3212 | .3238    | .3264 | .3289 | .3315 | .3340 | .3365  | .3389         |
| 1.0 | .3413 | .3438 | .3461 | .3485    | .3508 | .3531 | .3554 | .3577 | .3599  | .3621         |
| 1.1 | .3643 | .3665 | .3686 | .3708    | .3729 | .3749 | .3770 | .3790 | .3810  | .3830         |
| 1.2 | .3849 | .3869 | .3888 | .3907    | .3925 | .3944 | .3962 | .3980 | .3997  | .4015         |
| 1.3 | .4032 | .4049 | .4066 | .4082    | .4099 | .4115 | .4131 | .4147 | .4162  | .417 <b>7</b> |
| 1.4 | .4192 | .4207 | .4222 | .4236    | .4251 | .4265 | .4279 | .4292 | .4306  | .4319         |
| 1.5 | .4332 | .4345 | .4357 | .4370    | .4382 | .4394 | .4406 | .4418 | .4429  | .4441         |
| 1.6 | .4452 | .4463 | .4474 | .4484    | .4495 | .4505 | .4515 | .4525 | .4535  | .4545         |
| 1.7 | .4554 | .4564 | .4573 | .4582    | .4591 | .4599 | .4608 | .4616 | .4625  | .4633         |
| 1.8 | .4641 | .4649 | .4656 | .4664    | .4671 | .4678 | .4686 | .4693 | .4699  | .4706         |
| 1.9 | .4713 | .4719 | .4726 | .4732    | .4738 | .4744 | .4750 | .4756 | .4761  | .4767         |
| 2.0 | .4772 | .4778 | .4783 | .4788    | .4793 | .4798 | .4803 | .4808 | .4812  | .4817         |
| 2.1 | .4821 | .4826 | .4830 | .4834    | .4838 | .4842 | .4846 | .4850 | .4854  | .4857         |
| 2.2 | .4861 | .4864 | .4868 | .4871    | .4875 | .4878 | .4881 | .4884 | .4887  | .4890         |
| 2.3 | .4893 | .4896 | .4898 | .4901    | .4904 | .4906 | .4909 | .4911 | .4913. | .4916         |
| 2.4 | .4918 | .4920 | .4922 | .4925    | .4927 | .4929 | .4931 | .4932 | .4934  | .4936         |
| 2.5 | .4938 | .4940 | .4941 | .4943    | .4945 | .4946 | .4948 | .4949 | .4951  | .4952         |
| 2.6 | .4953 | .4955 | .4956 | .4957    | .4959 | .4960 | .4961 | .4962 | .4963  | .4964         |
| 2.7 | .4965 | .4966 | .4967 | .4968    | .4969 | .4970 | .4971 | .4972 | .4973  | .4974         |
| 2.8 | .4974 | .4975 | .4976 | .4977    | .4977 | .4978 | .4979 | .4979 | .4980  | .4981         |
| 2.9 | .4981 | .4982 | .4982 | .4983    | .4984 | .4984 | .4985 | .4985 | .4986  | .4986         |
| 3.0 | .4987 | .4987 | .4987 | .4988    | .4988 | .4989 | .4989 | .4989 | .4990  | .4990         |

Source: This table is adapted from National Bureau of Standards, Tables of Normal Probability Functions, Applied Mathematics Series 23, U.S. Department of Commerce, 1953.

TABLE-2 t-distribution



| ν    | t <sub>.100</sub> | t <sub>.050</sub> | t <sub>.025</sub>  | t <sub>.010</sub>  | f <sub>.005</sub>  | t <sub>.001</sub>  | t.0005                     |
|------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|----------------------------|
| ì    | 3.078             | 6.314             | 12.706             | 31.821             | 63.657             | 318.31             | 636.62                     |
| 2    | 1.886             | 2.920             | 4.303              | 6.965              | 9.925              | 22.326             | 31,598                     |
| 3    | 1.638             | 2.353             | 3.182              | 4.541              | 5.841              | 10.213             | 12.924                     |
| 4    | 1.533             | 2.132             | 2.776              | 3.7 <del>4</del> 7 | 4.604              | 7.173              | 8.610                      |
| 5    | 1.476             | 2.015             | 2.571              | 3.365              | 4.032              | 5.893              | 6.869                      |
| 6    | 1.440             | 1.943             | 2. <del>44</del> 7 | 3, 143             | 3.707              | 5.208              | 5.959                      |
| 7    | 1.415             | 1.895             | 2.365              | 2.998              | 3. <del>499</del>  | <del>4</del> .785  | 5. <del>4</del> 08         |
| 8    | 1.397             | 1.860             | 2.306              | 2.896              | 3.355              | 4.501              | 5.041                      |
| 9    | 1.383             | 1.833             | 2.262              | 2.821              | 3.250              | <b>4</b> .297      | 4.781                      |
| 18   | 1.372             | 1.812             | 2.228              | 2.764              | 3.169              | 4.1 <del>44</del>  | 4.587                      |
| - 11 | 1.363             | 1.796             | 2.201              | 2.718              | 3.106              | 4.025              | 4,437                      |
| 12   | 1.356             | 1.782             | 2.179              | 2.681              | 3.055              | 3.930              | 4.318                      |
| 13   | 1.350             | 1.771             | 2.160              | 2.650              | 3.012              | 3.852              | 4.221                      |
| 14   | 1.345             | 1.761             | 2.145              | 2.62 <del>1</del>  | 2.977              | 3.787              | <b>4</b> .1 <del>1</del> 0 |
| 15   | 1.341             | 1.753             | 2.131              | 2.602              | 2.9 <del>1</del> 7 | 3.733              | 4.073                      |
| 16   | 1.337             | 1.746             | 2.120              | 2.583              | 2.921              | 3.686              | 4.015                      |
| 17   | 1.333             | 1.740             | 2.110              | 2.567              | 2.898              | 3.6 <del>1</del> 6 | 3.965                      |
| 18   | 1.330             | 1.734             | 2.101              | 2.552              | 2.878              | 3.610              | 3.922                      |
| 19   | 1 328             | 1.729             | 2.093              | 2.539              | 2.861              | 3,579              | 3.883                      |
| 20   | 1.325             | 1.725             | 2.086              | 2.528              | 2.845              | 3.552              | 3.850                      |
| 21   | 1.323             | 1.721             | 2.080              | 2.518              | 2.831              | 3.527              | 3.819                      |
| 22   | 1.321             | 1.717             | 2.074              | 2.508              | 2.819              | 3,505              | 3.792                      |
| 23   | 1.319             | 1.71+             | 2.069              | 2.500              | 2.807              | 3. <del>4</del> 85 | 3.767                      |
| 24   | 1.318             | 1.711             | 2.064              | 2.492              | 2.797              | 3. <del>4</del> 67 | 3.7 <del>1</del> 5         |
| 25   | 1.316             | 1.708             | 2.060              | 2.485              | 2.787              | 3. <b>45</b> 0     | 3.725                      |
| 26   | 1.315             | 1.706             | 2.056              | 2. <del>4</del> 79 | 2.779              | 3,435              | 3.707                      |
| 27   | 1.314             | 1.703             | 2.052              | 2.473              | 2.771              | 3. <del>4</del> 21 | 3.690                      |
| 28   | 1.313             | 1.701             | 2.048              | 2. <del>1</del> 67 | 2.763              | 3.408              | 3.67 <del>4</del>          |
| 29   | 1.311             | 1.699             | 2.0+5              | 2.462              | 2.756              | 3.396              | 3.659                      |
| 30   | 1,310             | 1.697             | 2.042              | 2.457              | 2.750              | 3.385              | 3.6 <del>1</del> 6         |
| 40   | 1.303             | 1.68+             | 2.021              | 2. <del>1</del> 23 | 2.70 <del>1</del>  | 3.307              | 3, 551                     |
| 60   | 1.296             | 1.671             | 2.000              | 2.390              | 2.660              | 3.232              | 3. <b>4</b> 60             |
| 120  | 1.289             | 1.658             | 1.980              | 2.358              | 2.617              | 3:160              | 3.373                      |
| ∞ ˈ  | 1.282             | 1.645             | 1.960              | 2.326              | 2.576              | 3.090              | 3.291                      |

# TABLE-3 CHI-SQUARED DISTRIBUTION

| _     |                 | 000             |          | 252             |          |          |                       |          |          |          |                       |          |                       |
|-------|-----------------|-----------------|----------|-----------------|----------|----------|-----------------------|----------|----------|----------|-----------------------|----------|-----------------------|
| $\nu$ | $\alpha = .995$ | $\alpha = .990$ |          | $\alpha = .950$ |          |          |                       |          |          |          |                       |          | $\alpha = .005$       |
| 1     | 0.0000393       | 0.000157        | 0.000982 |                 | 0.01579  | 0.10153  | 0.45494               | 1.32330  | 2.70554  | 3.84146  | 5.02389               | 6.63490  | 7.87944               |
| 2     | 0.01003         | 0.02010         | 0.05064  | 0.10259         | 0.21072  | 0.57536  | 1.38629               | 2.77259  | 4.60517  | 5.99146  | 7.37776               | 9.21034  | 10.59663              |
| 3     | 0.07172         | 0.11483         | 0.21580  | 0.35185         | 0.58437  | 1.21253  | 2.36597               | 4.10834  | 6.25139  | 7.81473  | 9.34840               | 11.34487 | 12.83816              |
| 4     | 0.20699         | 0.29711         | 0.48442  | 0.71072         | 1.06362  | 1.92256  | 3.35669               | 5.38527  | 7.77944  | 9.48773  | 11.14329              | 13.27670 | 14.86026              |
| 5     | 0.41174         | 0.55430         | 0.83121  | 1.14548         | 1.61031  | 2.67460  | 4.35146               | 6.62568  | 9.23636  | 11.07050 | 12.83250              | 15.08627 | $16.7\overline{4960}$ |
| 6     | 0.67573         | 0.87209         | 1.23734  | 1.63538         | 2.20413  | 3.45460  | 5.34812               | 7.84080  | 10.64464 | 12.59159 | 14.44938              | 16.81189 | 18.54758              |
| 7     | 0.98926         | 1.23904         | 1.68987  | 2.16735         | 2.83311  | 4.25485  | 6.34581               | 9.03715  | 12.01704 | 14.06714 | 16.01276              | 18.47531 | 20.27774              |
| 8     | 1.34441         | 1.64650         | 2.17973  | 2.73264         | 3.48954  | 5.07064  | 7.34412               | 10.21885 | 13.36157 | 15.50731 | $17.5\overline{3455}$ | 20.09024 | 21.95495              |
| 9     | 1.73493         | 2.08790         | 2.70039  | 3.32511         | 4.16816  | 5.89883  | 8.34283               | 11.38875 | 14.68366 | 16.91898 | 19.02277              | 21.66599 | 23.58935              |
| 10    | 2.15586         | 2.55821         | 3.24697  | 3.94030         | 4.86518  | 6.73720  | 9.34182               | 12.54886 | 15.98718 | 18.30704 | 20.48318              | 23.20925 | 25.18818              |
| 11    | 2.60322         | 3.05348         | 3.81575  | 4.57481         | 5.57778  | 7.58414  | 10.34100              | 13.70069 | 17.27501 | 19.67514 | 21.92005              | 24.72497 | 26.75685              |
| 12    | 3.07382         | 3.57057         | 4.40379  | 5.22603         | 6.30380  | 8.43842  | 11.34032              | 14.84540 | 18.54935 | 21.02607 | 23.33666              | 26.21697 | 28.29952              |
| 13    | 3.56503         | 4.10692         | 5.00875  | 5.89186         | 7.04150  | 9.29907  | 12.33976              | 15.98391 | 19.81193 | 22.36203 | 24.73560              | 27.68825 | 29.81947              |
| 14    | 4.07467         | 4.66043         | 5.62873  | 6.57063         | 7.78953  | 10.16531 | 13.33927              | 17.11693 | 21.06414 | 23.68479 | 26.11895              | 29.14124 | 31.31935              |
| 15    | 4.60092         | 5.22935         | 6.26214  | 7.26094         | 8.54676  | 11.03654 | 14.33886              | 18.24509 | 22.30713 | 24.99579 | 27.48839              | 30.57791 | 32.80132              |
| 16    | 5.14221         | 5.81221         | 6.90766  | 7.96165         | 9.31224  | 11.91222 | 15.33850              | 19.36886 | 23.54183 | 26.29623 | 28.84535              | 31.99993 | 34.26719              |
| 17    | 5.69722         | 6.40776         | 7.56419  | 8.67176         | 10.08519 | 12.79193 | 16.33818              | 20.48868 | 24.76904 | 27.58711 | 30.19101              | 33.40866 | 35.71847              |
| 18    | 6.26480         | 7.01491         | 8.23075  | 9.39046         | 10.86494 | 13.67529 | 17.33790              | 21.60489 | 25.98942 | 28.86930 | 31.52638              | 34.80531 | 37.15645              |
| 19    | 6.84397         | 7.63273         | 8.90652  | 10.11701        | 11.65091 | 14.56200 | 18.33765              | 22.71781 | 27.20357 | 30.14353 | 32.85233              | 36.19087 | 38.58226              |
| 20    | 7.43384         | 8.26040         | 9.59078  | 10.85081        | 12.44261 | 15.45177 | 19.33743              | 23.82769 | 28.41198 | 31.41043 | 34.16961              | 37.56623 | 39.99685              |
| 21    | 8.03365         | 8.89720         | 10.28290 | 11.59131        | 13.23960 | 16.34438 | 20.33723              | 24.93478 | 29.61509 | 32.67057 | 35.47888              | 38.93217 | 41.40106              |
| 22    | 8.64272         | 9.54249         | 10.98232 | 12.33801        | 14.04149 | 17.23962 | $21.33\overline{704}$ | 26.03927 | 30.81328 | 33.92444 | 36.78071              | 40.28936 | 42.79565              |
| 23    | 9.26042         | 10.19572        | 11.68855 | 13.09051        | 14.84796 | 18.13730 | 22.33688              | 27.14134 | 32.00690 | 35.17246 | 38.07563              | 41.63840 | 44.18128              |
| 24    | 9.88623         | 10.85636        | 12.40115 | 13.84843        | 15.65868 | 19.03725 | $23.33\overline{673}$ | 28.24115 | 33.19624 | 36.41503 | 39.36408              | 42.97982 | 45.55851              |
| 25    | 10.51965        | 11.52398        | 13.11972 | 14.61141        | 16.47341 | 19.93934 | 24.33659              | 29.33885 | 34.38159 | 37.65248 | 40.64647              | 44.31410 | 46.92789              |
| 26    | 11.16024        | 12.19815        | 13.84390 | 15.37916        | 17.29188 | 20.84343 | 25.33646              | 30.43457 | 35.56317 | 38.88514 | 41.92317              | 45.64168 | 48.28988              |
| 27    | 11.80759        | 12.87850        | 14.57338 | 16.15140        | 18.11390 | 21.74940 | 26.33634              | 31.52841 | 36.74122 | 40.11327 | 43.19451              | 46.96294 | 49.64492              |
| 28    | 12.46134        | 13.56471        | 15.30786 | 16.92788        | 18.93924 | 22.65716 | 27.33623              | 32.62049 | 37.91592 | 41.33714 | 44.46079              | 48.27824 | 50.99338              |
| 29    | 13.12115        | 14.25645        | 16.04707 | 17.70837        | 19.76774 | 23.56659 | 28.33613              |          | 39.08747 |          | 45.72229              |          |                       |
| 30    | 13.78672        | 14.95346        | 16.79077 | 18.49266        | 20.59923 | 24.47761 | 29.33603              | 34.79974 | 40.25602 | 43.77297 | 46.97924              | 50.89218 | 53.67196              |
|       |                 |                 |          |                 |          |          |                       |          |          |          |                       |          |                       |

TABLE-4
F-distribution  $F_{0.05}$ 

| v <sub>2</sub> = Degrees of freedom |       | -     | -       |       |       |       |       | J = 1        | v <sub>1</sub> = Degrees of freedom for numerator | f freedom | for num | erator      |          |              |                 |                               |          |        |            |
|-------------------------------------|-------|-------|---------|-------|-------|-------|-------|--------------|---------------------------------------------------|-----------|---------|-------------|----------|--------------|-----------------|-------------------------------|----------|--------|------------|
| for<br>denominator                  | _     | 2     | m       | 4     | ×     | 9     | 7     | ∞ **         | 6                                                 | 10        | 13      | 15          | 20       | 24           | 30              | 04                            | 3        | 120    | 8          |
| _                                   | 191   | 200   | 216     | 225   | 230   | 234   | 237   | 239          | 241                                               | 242       | 244     | 246         | 248      | 249          | 250             | 152                           | 222      | 253    | 254        |
| 7                                   | 18.50 | 19.00 | 19.20   | 19.20 | 19.30 | 19.30 | 19.40 | 19.40        | 19.40                                             | 19.40     | 19.40   | 19.40       | 19.40    | 19.50        | 19.50           | 19.50                         | 19.50    | 19.50  | 19.50      |
| m                                   | 10.10 | 9.55  | 9.28    | 9.12  | 10.6  | \$.9  | 8.89  | 8.85         | 8.81                                              | 8.79      | 8.74    | 8.70        | 99.8     | 8.64         | 8.62            | 8.59                          | 8.57     | 8.55   | 8.53       |
| •                                   | 1.71  | ₹.9°  | 6.59    | 6.39  | 97.9  | 91.9  | 6.09  | <b>9</b> .04 | 9.00                                              | 5.96      | 5.91    | 5.86        | 5.80     | 5.77         | 5.75            | 5.72                          | 5.69     | 9.66   | 5.63       |
| s                                   | 19.9  | 5.79  | 5.41    | 5.19  | 5.05  | 4.95  | 4.88  | 4.82         | 4.71                                              | 4.74      | 4.68    | 4.62        | 4.56     | 4.53         | 4.50            | 4.46                          | 4.43     | 4.40   | 4.37       |
| ,                                   | - ;   | :     | ì       | • ;   | -     |       | ;     | •            | •                                                 | ,         | -       |             |          |              |                 | ;                             |          |        | 157        |
| •                                   | 5.99  | 5.14  | 9.79    | 4.53  | 6.39  | 4.28  | 4.21  | 4.15         | 0.4                                               | 8 :       | 8:3     | <b>3</b> :  | 3.87     | ž:           | 3.81            | 2.7                           | 5. Y     | 5 5    | 70.0       |
| 7                                   | 5.59  | 7 :   | 4.35    | 4.12  | 3.97  | 3.87  | 3.79  | 3.73         | 3.68                                              | 3 3       | 3.57    | 3.51        | 4        | 4.5          | 2.38            | \$ 5<br>5<br>6<br>7<br>7<br>8 | 3 2      | 77.5   | 5.65       |
| 90 (                                | 5.32  | 6.40  | 2 6     | 4 (   | 3.65  | 3.58  | 2.50  | 4.0          | 9.3                                               | 3.35      | 3.28    | 3.22        | 3.13     | 7 5          | 9 6             | 5.6                           | 2.0      | 76.7   | 2.75       |
| <b>5</b> ;                          | 21.5  | 97.   | 8 7     | 20.0  | 9 .   | 7.5   | 67.5  | 7.5          | 2.5                                               | £ 6       | ) 0.0   | 10.0        | X .F     | 2.5          | 00.7            | 777                           | 75.7     | 2 6    |            |
| 2                                   | 6     | 2     | <br>1/3 | 5.40  | 55.5  | 77.6  | • 1.  | )<br>()      | 3.02                                              | 96:7      | 16:7    | Ç9.7        | -        |              | 0               |                               | 70.7     | 2      |            |
| -                                   | 28.   | 3.98  | 3.59    | 3.36  | 3.20  | 3.09  | 3.01  | 2.95         | 2.90                                              | 2.85      | 2.79    | 2.72        | 2.65     | 2.61         | 2.57            | 2.53                          | 2.49     | 2.45   | 2.40       |
| 12                                  | 4.75  | 3.89  | 3.49    | 3.26  | 3.11  | 3.00  | 2.91  | 2.85         | 2.80                                              | 2.75      | 2.69    | 2.62        | 2.54     | 2.51         | 2.47            | 2.38                          | 2.38     | 2.30   | 2.30       |
| 13                                  | 4.67  | 3.81  | 3.41    | 3.18  | 3.03  | 2.92  | 2.83  | 2.77         | 1.71                                              | 2.67      | 2.60    | 2.53        | 2.46     | 2:42         | 2.38            | 2.34                          | 2.30     | 2.25   | 2.21       |
| 7                                   | 4.60  | 3.74  | 3.3     | 3.11  | 5.96  | 2.85  | 2.76  | 2.70         | 2.65                                              | 7.60      | 2.53    | 2.46        | 2.39     | 2.35         | 2.31            | 2.27                          | 2.22     | 2.18   | 2.13       |
| 15                                  | 4.54  | 3.68  | 3.29    | 3.06  | 2.90  | 2.79  | 1.71  | 2.64         | 2.59                                              | 2.54      | 2.48    | 2.40        | 2.33     | 2.29         | 2.25            | 2.20                          | 2.16     | 2.11   | 2.07       |
| 9                                   | 4.49  | 3.63  | 3.24    | 3.01  | 2.85  | 2.74  | 2.66  | 2.59         | 2.54                                              | 2.49      | 2.42    | 2.35        | 2.28     | 2.24         | 2.19            | 2.15                          | 2.11     | 2.06   | 2.01       |
| 11                                  | 3.45  | 3.59  | 3.20    | 5.96  | 2.81  | 2.70  | 7.61  | 2.55         | 2.49                                              | 2.45      | 2.38    | 2.31        | 2.23     | 2.19         | 2.15            | 2.10                          | 90.7     | 2.01   | 1.96       |
| 81                                  | 4.41  | 3.55  | 3.16    | 2.93  | 2.71  | 7.66  | 2.58  | 2.51         | 2.46                                              | 2.41      | 2.34    | 2.27        | 2.19     | 2.15         | 2.11            | 5.06                          | 2.02     | 1.97   | 1.93       |
| 19                                  | 4.38  | 3.52  | 3.13    | 2.90  | 2.74  | 2.63  | 7.SE  | 2.48         | 2.42                                              | 2.38      | 2.31    | 2.23        | 2.16     | 2.11         | 2.07            | 2.03                          | 1.98     | 1.93   | 1.88       |
| ,<br>20,                            | 4.35  | 3.49  | 3.10    | 2.87  | 2.71  | 2.60  | 2.51  | 2.45         | 2.39                                              | 2.35      | 2.28    | 2.20        | 2.12     | 2.08         | 7.<br>Z         | 1.99                          | 1.95     | 로<br>조 | <u>z</u> . |
| 21                                  | 4.32  | 3.47  | 3.07    | 2.84  | 2.68  | 2.57  | 2.49  | 2.42         | 2.37                                              | 2.32      | 2.25    | 2.18        | 2.10     | 2.05         | 2.01            | 9.1                           | 1.92     | 1.87   | 1.81       |
| 22                                  | 4.30  | 3.44  | 3.05    | 2.82  | 2.66  | 2.55  | 2.46  | 2.40         | 2.34                                              | 2.30      | 2.23    | 2:15        | 2.07     | 2.03         | 1.98            | 1.94                          | 1.89     | 1.84   | 1.78       |
| 23                                  | 4.28  | 3.42  | 3.03    | 2.80  | 7.64  | 2.53  | 2.44  | 2.37         | 2.32                                              | 2.27      | 2.20    | 2.13        | 2.03     | 2.01         | <br>96:<br>1:30 | 1.91                          | 98.1     | <br>8. | 1.76       |
| . 72                                | 4.26  | 3.40  | 3.01    | 2.78  | 2.62  | 2.51  | 2.42  | 2.36         | 5.30                                              | 2.23      | 2.18    | 2.11        | 2.03     | 1.98<br>86:1 | 3               | -89                           | <u>*</u> | 1.79   | 1.73       |
| গ্ন                                 | 4.24  | 3.39  | 2.99    | 2.76  | 2.60  | 2.49  | 2.40  | 2.34         | 2.28                                              | 2.24      | 2.16    | 5.09        | 2.01     | 96:1         | 1.92            | 1.87                          | 1.82     | 1.77   | 1.71       |
| 30                                  | 4.17  | 3.32  | 2.92    | 2.69  | •2.53 | 2.42  | 2.33  | 2.27         | 2.21                                              | 2.16      | 2.09    | 2.01        | 1.93     | 1.89         | 1.<br>28:       | 1.79                          | 1.74     | 1.68   | 1.62       |
| 9                                   | 4.08  | 3.23  | 2.84    | 7.61  | 2.45  | 2.34  | 2.25  | 2.18         | 2.12                                              | 7.08      | 5.00    | 1.92        | <b>3</b> | 1.79         | 1.74            | 1.69                          | 1.64     | 1.58   | 1.51       |
| 8                                   | 90.4  | 3.15  | 2.76    | 2.53  | 2.37  | 2.25  | 2.17  | 2.10         | 7.04                                              | 1.99      | 1.92    | <b>1.84</b> | 1.75     | 1.70         | 1.65            | 1.59                          | 1.53     | 1.47   | 1.39       |
| 071                                 | 3.92  | 3.07  | 2.68    | 2.45  | 2.29  | 2.18  | 5.09  | 2.02         | 1.96                                              | 1.91      | 1.83    | 1.75        | 99.      | 1.61         | 1.55            | 1.50                          | 1.43     | 1.35   | 1.25       |
| 8                                   | 3.84  | 3.00  | 2.60    | 2.37  | 2.21  | 2.10  | 2.01  | ₹<br>-       | 88.                                               | 1.83      | 1.75    | 1.67        | 1.57     | 1.52         | 94.             | 85.1<br>85.1                  | 1.32     | 1.22   | 8          |
|                                     |       | l     |         | l     |       |       |       |              |                                                   |           |         |             |          |              |                 |                               |          |        |            |

# TABLE-5 F-distribution

 $F_{0.01}$ 

|                                                   | 8                            | 6,366  | 36.10  | 13.50 | 600   | 3.0.Z    | 88.9 | 5.65  | 4.83  | 4.31 | 3.91 | 3.60 | 3.36 | 3.17  | 3.00 | 2.87     |         | 2.75 | 2 65 | 2.57 | 2.49      | 2.42 | 2.36 | 2.31     | 2.26       | 2.21 | 2.17 |      | 2.01 | 980      | 09.1 | 1.38       | 8.         |     |
|---------------------------------------------------|------------------------------|--------|--------|-------|-------|----------|------|-------|-------|------|------|------|------|-------|------|----------|---------|------|------|------|-----------|------|------|----------|------------|------|------|------|------|----------|------|------------|------------|-----|
| ν <sub>1</sub> = Degrees of freedom for numerator | 120                          | 6,339  | 50. 70 | 07.07 |       | <u> </u> | 6.97 | 5.74  | 4.95  | 4.40 | 8    | 3.69 | 3.45 | 3.25  | 3.09 | 2.96     |         | 2.84 | 2.75 | 99.2 | 2.58      | 2.52 | 2.46 | 2.40     | 2.35       | 2.31 | 2.27 |      | 2.11 | 1.92     | 1.73 | 1.53       | 1.32       |     |
|                                                   | 09                           | 6,313  | 26.20  | 13.70 | 0.00  | 7.70     | 7.06 | 5.82  | 5.03  | 4.48 | 4.08 | 3.78 | 3.54 | 3.34  | 3.18 | 3.96     |         | 2.93 | 2.83 | 2.75 | 2.67      | 2.61 | 2.55 | 2.50     | 2.45       | 2.40 | 2.36 |      | 2.21 | 2.07     | 1.84 | 99.1       | 1.47       |     |
|                                                   | 04                           | 6.287  | 36.40  | 13.70 | 30.00 | 67.6     | 7.14 | 16.5  | 5.12  | 4.57 | 4.17 | 3.86 | 3.62 | 3.43  | 3.27 | 3.13     |         | 3.02 | 2.92 | 2.84 | 2 76      | 2.69 | 2 64 | 2.58     | 2.54       | 2 49 | 2.45 |      | 2 30 | = :      | 1.94 | 1.76       | 1.59       | }   |
|                                                   | 30                           | 6.261  | 00.44  | 13 60 | 00.0  | 9.38     | 7.23 | 5.99  | \$.20 | 4.65 | 4.25 | 3 94 | 3.70 | 3.51  | 3.35 | 3.21     |         | 3.10 | 3.09 | 2.92 | 2.84      | 2.78 | 27.2 | 2.67     | 2.62       | 2.58 | 2.53 |      | 2.39 | 2 20     | 2.03 | 1.86       | 1.70       |     |
|                                                   | 24                           | 6,235  | 00.44  | 00.07 | 5.5   | 14.6     | 7.31 | 6.07  | 5.28  | 4.73 | 4.33 | 4 02 | 3.78 | 3.59  | 3.43 | 1 30     | •       | 3.18 | 308  | 3.00 | 2.92      | 2.86 | 2.80 | 2.75     | 2.70       | 7.66 | 2.62 |      | 2.47 | 2.29     | 2.12 | 1.95       | 1.79       |     |
|                                                   | 20                           | 6,209  | 99.40  | 07.97 | 00.4  | 9.55     | 7.40 | 919   | 5.36  | 18.4 | 4.41 | 01.4 | 2 8  | 99    | 3.51 | 1 17     | ). J.   | 3.26 | 3.16 | 3.08 | 3.00      | 2.94 | 2.88 | 2.83     | 2 78       | 2.74 | 2.70 | }    | 2.55 | 2.37     | 2.20 | 2.03       | 1.88       |     |
|                                                   | S                            | 6,157  | 99.40  | 26.97 | 07.41 | 9.72     | 7.56 | 6.31  | 5.52  | 4.96 | 4.56 | 7.7  | 10   | 3.82  | 3.66 | 30       | 2.32    | 3.41 | 3.31 | 3.23 | 3.15      | 3.09 | 3.03 | 2.98     | 2.93       | 2.89 | 2.85 |      | 2.70 | 2.52     | 2.35 | 2.19       | 2.04       |     |
|                                                   | 2                            | 901'9  | 99.40  | 27.10 | 04.4  | 68.6     | 27.7 | 6.47  | 5.67  | 5.11 | 4.71 | 4 40 | 4 16 | 3 96  | 3.80 | 147      | Ďi<br>Č | 3.55 | 3.46 | 3.37 | 3.30      | 3.23 | 3.17 | 3.12     | 3.07       | 3.03 | 2 99 |      | 2.84 | 7.66     | 2.50 | 2.34       | 2.18       |     |
|                                                   | 02                           | 6,056  | 99.40  | 27.20 | 14.50 | 01.01    | 7.87 | 6.62  | 5.81  | 5.26 | 4.85 | 75 7 | 4 30 | 01.4  | 8    | 1.80     | 2.00    | 3.69 | 3.59 | 3.51 | 3.43      | 3.37 | 3.31 | 3.26     | 3.21       | 3.17 | 3.13 |      | 2.98 | 2.80     | 2.63 | 2.47       | 2.32       |     |
|                                                   | 6                            | 6,023  | 99.40  | 27.30 | 14.70 | 10.20    | 7 98 | 6.72  | 5.91  | 5.35 | 16.4 | 4 63 | 4 39 | 4 19  | 4 03 | 3.80     | 3.63    | 3.78 | 3.68 | 3.60 | 3.52      | 3.46 | 3.40 | 3.35     | 3 30       | 3.26 | 3 22 |      | 3.07 | 2.89     | 2.72 | 2.56       | 2.41       |     |
|                                                   | 80                           | 5,982  | 99.40  | 27.50 | 14.80 | 10.30    | 01 8 | 6.84  | 603   | 5.47 | 5.06 |      | * V  | 20.4  | 4.4  |          | 90.4    | 3.89 | 3 79 | 3.71 | 3.63      | 3.56 | 3.51 | 3.45     | 141        | 3,36 | 333  | :    | 3.17 | 5.99     | 2.82 | 2.66       | 2.51       |     |
|                                                   | 7                            | 5,928. | 99.40  | 27.70 | 15.00 | 10.50    | 8 26 | 200   | × ×   | 5.61 | 5.20 | 00 1 | 4.67 | 4 4 4 | 200  | 07:      | 4.14    | 4 03 | 3 93 | 78.6 | 3.77      | 3.70 | 79.2 | 200      | 3 2        | 3.50 | 3.46 | ?    | 3.30 | 3.12     | 2.95 | 2.79       | 2.64       |     |
|                                                   | ٠                            | 8,859  | 99.30  | 27.90 | 15.20 | 10.70    | 0 47 | 7 10  | 6.17  | 2 80 | 5.39 |      | 5.07 | 79.4  | 70.4 | 9 :      | 4.32    | 4 20 | 91.4 | 2 2  | 7 6       | 3.87 | 5    | 2.01     | 3.7        | 177  | , 67 | 6.6  | 3.47 | 3.39     | 3.12 | 2.96       | 2.80       |     |
|                                                   | S                            | 5.764  | 99.30  | 28.20 | 15.50 | 0011     | 3,6  | 0.73  | 6.7.3 | 90.0 | 5.64 |      | 5.32 | 90.0  | 2.   | 2        |         | 4 44 | 7 7  | 2 7  | C7:       | 4.10 |      | 9        |            | 5 6  | 2.30 | 2.80 | 3.70 | 151      | 3.34 | 3.17       | 3.02       |     |
|                                                   | 4                            | 5,625  | 99.20  | 28.70 | 16.00 | 11.40    |      | 7.15  | 60.7  | , C  | 5.99 |      | 5.67 | 4.6   | 2.21 | 4        | 68.4    | 7.7  |      | 0.   | 65.4      | 4.43 | -    | <u>}</u> | <u>;</u> ; | 97.  | 77.  | £ .  | 4.02 | 3 83     | 365  | 74%        | 3.32       |     |
|                                                   | 3                            | 5,403  | 99.20  | 29.50 | 16.70 | 12.10    |      | 7.78  | ×.45  | 60.7 | 6.53 |      | 6.22 | 5.95  | 5.74 | 5.56     | 5.42    | ,    | 67.0 | 5.19 | 5.09      | 10.5 |      | 4.87     | 79.4       | 9.7  | 4.72 | 4.68 | 157  |          |      | 100        | 3.78       | , . |
|                                                   | 7                            | 5.000  | 99.00  | 30:80 | 18.00 | 13.30    | . ;  | 0.50  | 9.55  | 6.63 | 7 56 |      | 7.21 | 6.93  | 6.70 | 6.51     | 6.36    | ;    | 67.0 | 9.1  | 6.01      | 5.85 |      | 5.78     | 5.72       | 2.66 | 2.61 | 5.57 | 6 30 | 7.5      | 2.6  | 7.70       | 4.61       |     |
|                                                   | -                            | 4.052  | 98.50  | 34.10 | 21.20 | 16.30    |      | 13.70 | 12.20 | S S  | 9.0  | 3    | 9.65 | 9.33  | 9.07 | 8.86     | 8.68    | ;    | 8.53 | 8.40 | 8.29      | 8.19 |      | 8.02     | 7.95       | 7.88 | 7.82 | 7.7  | ,    | 00.7     |      | 5.         | 6.63       | ;   |
| ν <sub>2</sub> = Degrees                          | of freedom . for denominator | -      | . 7    | m     | •     | S        |      | 9     | 7     | od ( | • 5  | 2    | Ξ    | 13    | 13   | <u>4</u> | 15      | ,    | 91   | 17   | <u>se</u> | 19   | 2    | 21       | 22         | 23   | 74   | 22   | ć    | <u>0</u> | € ;  | n <b>9</b> | <u>2</u> 8 |     |