Regularization and Big Data

John Myles White

June 20, 2011

Data, data, data! I can't make bricks without clay!

But what makes data big?

What happens as $N \to \infty$?

Traditionally, good things:

- ► Law of Large Numbers
- Central Limit Theorem
- Consistent estimators
- Asymptotic guarantees
- ► Large sample theory

What happens as $D \to \infty$?

Traditionally, bad things:

- Underdetermined systems
- ▶ Infinitely many perfect models
- ► Massive overfitting

What leads to overfitting?

Example data:

- N = 200
- ▶ *D* = 1
- $y = \sin(4\pi x) + \epsilon$
- $ightharpoonup \epsilon \sim N(0, 0.75)$

Linear regression:

$$Y = \beta_0 + \beta_1 X$$

Polynomial regression:

- $Y = \beta_0 + \beta_1 X + \beta_2 X^2$
- $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3$
- **.**...
- $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \ldots + \beta_{20} X^{20}$

As $D \rightarrow N$, we fit the data better and better.

How do we prevent overfitting?

One approach:

- ▶ Split data into training set and test set
- Pick model that does best on held out test set

Another approach:

► Regularize our model

Unregularized models minimize prediction error:

- ▶ OLS regression
- ► Logistic regresion

$$\beta^* = \arg\min_{\beta} (Y - X\beta)^2$$

Regularized models minimize prediction error and model size:

- ▶ Ridge regression
- ► Lasso regression

$$\beta^* = \arg\min_{\beta} (Y - X\beta)^2 + \beta^2$$

$$\beta^* = \arg\min_{\beta} (Y - X\beta)^2 + |\beta|$$

The text regression problem:

- N documents
- ► *D* words
- Predict continuous value for each document from word counts

Examples:

- ▶ From IPO notices, predict stock volatility
- ▶ From press releases, predict Congress member's politics

We need regularization because we:

- Observe more words than documents
- ▶ Want sparse solutions, e.g. a few words that matter a lot

Hey, does anybody notice this crazy thing that we're on the road to socialism? I'm just saying. Wow. We got we got the SCHIPs thing going for us. That's great. How about that McDonalds two blocks from Ground Zero? That's killed more people than the nineteen hijackers.

Who thinks:

- 1. Text A was pro-Democrat and Text B was pro-Republican?
- 2. Text A was pro-Republican and Text A was pro-Democrat?

Corpus Statistics:

- \triangleright N = 1,408 unique documents
- \triangleright D = 20,521 unique words

Document A:

i want to talk about jobs lately it seems that everyone says they want to talk about jobs and that we'll get around to tackling jobs next week or the week after

Document B:

there was a major legislative accomplishment in washington last week and it's getting less attention than it deserves because it isn't national health care reform

Document Term Matrix:

Document	I	Want	Talk	Jobs	Week
А	1	2	2	3	2
В	0	0	0	0	1

- ▶ Fit Lasso regression to word counts
- ▶ Predict ideal points for senators

Top 10 Most Republican Terms:

Term	Value
okla	1.23
bailey	0.647
johnny	0.588
administering	0.561
neb	0.556
sam	0.542
986	0.532
texans	0.493
patriotism	0.466
demint	0.417

Top 10 Most Democratic Terms:

Term	Value
sherrod	-0.367
sheldon	-0.249
dec	-0.196
possess	-0.168
salaries	-0.158
tom	-0.152
debbie	-0.151
dark	-0.148
lautenberg	-0.133
fought	-0.106

Debugging:

- ▶ Too many names of senators in our list
- ▶ Strip out all the names from corpus
- ▶ Run analysis from scratch on clean corpus

Top 10 Most Republican Terms excluding Names:

-	
Term	Value
okla	1.13
neb	0.726
bailey	0.674
2415	0.638
986	0.578
kansans	0.543
administering	0.516
texans	0.467
profoundly	0.459
patriotism	0.430

Top 10 Most Democratic Terms excluding Names:

Term	Value	
cedar	-0.224	
chaired	-0.197	
dec	-0.158	
dark	-0.146	
blocked	-0.138	
reverses	-0.134	
1960s	-0.125	
insurers	-0.0958	
fought	-0.0926	
possess	-0.0923	