

Felipe P. Vista IV

(b) Chonbuk National University

Class Admin Matters

Grading

> Attendance

5%

Name (Original Name)	User Email	Join Time	Leave Time	Duration (Minutes)
		4/12/2021 9:12	4/12/2021 10:14	62
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:13	4/12/2021 9:13	1
		4/12/2021 9:13	4/12/2021 9:14	2
		4/12/2021 9:14	4/12/2021 9:14	1
		4/12/2021 9:14	4/12/2021 9:14	1
		4/12/2021 9:14	4/12/2021 10:14	60

Bad ZOOM User Name (Absent)

- ➤ Iphone → Not your name
- ➤ SiAko 202100001 → Wrong order
- ightharpoonup SiAko \rightarrow Name only
- \triangleright 202100001 \rightarrow ID Num only

ZOOM User Name (Present)

- University ID Num_Name
- ➤ 202100001 SiAko → GOOD (Present)

Name (Original Name)	User Email	Total Duration (Minutes)
		62
		63
		62
		62
		63
		62
		63

Class Admin Matters

Student Responsibilities

- ➤ Download/Install **ZOOM** app for online lecture
 - > Zoom profile must be your OASIS ID+name similar to OASIS
 - > Ex.: 202061234 YourName
 - If you are asked, but no reply, then you'll be out of zoom & mark absent
- Regularly login, check OLD IEILMS for updates, notifications
 - https://ieilmsold.jbnu.ac.kr
 - Presentations & lecture videos will be uploaded after class
- Regularly check Kakao Group Chat for class
 - > Everybody must have a Kakao talk account
 - Search & add account "botjok", introduce yourself and name of class ("Robotics"), then you will be added to the group chat

Intro To Robotics

FUZZY LOGIC CONTROL

Fuzzy Logic Control

Intro

- Control algorithms in Section 6
 - Exact math computations determine signals to control robot behaviour
 - Recall On-off, P, PI, PID Controllers
- Alternate approach is use of **fuzzy** logic
 - A control algorithm based on rules
- For **Ex.**: Cruise control system might have rules of the form
 - If car in front is far away or car in back is near, set the speed to fast.
 - If car in front is near, set the speed to slow.
- Logic is "fuzzy" since rules expressed in linguistic variables
 - Like **speed** whose values has no precise mathematical definition
 - But only imprecise linguistic specifications such as fast and slow

Fuzzy Logic Control

Intro

(Expert)

• Fuzzy Logic controller has three phases run sequentially

1) Fuzzify

- Values of sensors converted into values of the linguistic variables
 - Such as far, closing, near, called **premises**
- Each premise specify **certainty** w/c is prob of our **belief** that variable is true

2) Apply Rules

- Set of rules expresses the control algorithm
- Given set of premises \rightarrow a consequent is inferred
- Consequents also linguistic variables, ex: very fast, fast, cruise, slow, stop -

3) Defuzzify

- Consequents combined so as to produce crisp output
 - A <u>numerical value</u> that <u>controls</u> robot aspects such as power to motor

Fuzzy Logic Control

- > Fuzzify
- > Apply Rules
- ➤ Defuzzify

Fuzzy Logic Control

Fuzzify

Ex. Task: Robot approach an object & stop when very close to it

- When approaching an object
 - Value read by horizontal proximity sensor increase from $0 \rightarrow 100$
- Value returned by sensor is <u>fuzzified</u>
 - By converting it to a value of a linguistic variable
- Figure shows three graphs
 - Convert sensor values into certainties of linguistic variables

(a) Fuzzify the value of the horizontal proximity sensor

Fuzzy Logic Control

Fuzzify

Ex. Task: Robot approach an object & stop when very close to it

- Figure (a) shows three graphs
 - Convert sensor values into certainties of linguistic variables far, closing & near
 - X-axis: Value returned by sensor
 - Y-axis: Gives the premise for each variable, the certainty that the linguistic variable is true

(a) far_low, (b) closing_low, (c) far_high,(d) near_low, (e) closing_high (f) near_high

(a) Fuzzify the value of the horizontal proximity sensor

Fuzzy Logic Control

Fuzzify

Ex. Task: Robot approach an object & stop when very close to it

- The points in x-axis refer to thresholds
 - (a) far_low, (b) closing_low, (c) far_high,(d) near_low, (e) closing_high (f) near_high
 - If (sensor value < far_low) → completely certain object far away w/ certainty of 1</p>
 - If (closing_low < value < far_high) →
 somewhat certain object is far away, but also
 somewhat certain that it is closing.

(a) Fuzzify the value of the horizontal proximity sensor

- Fuzziness results from the overlapping ranges
 - When value is between points (b) and (c) →
 can't say w/ complete certainty if object is far away or closing
 - Ex. $v = 33 \rightarrow \text{far (certainty} = 0.15) & \text{closing (certainty} = 0.25)$

Fuzzy Logic Control

- > Fuzzify
- > Apply Rules
- ➤ Defuzzify

Fuzzy Logic Control

Apply Rules

- The three premises, certainties of far, closing & near
 - For computing five consequents using following rules
 - 1) If far then very fast
 - 2) If far and closing then fast -
 - 3) If closing then cruise
 - 4) If closing and near then slow-
 - 5) If near then stop
- Certainties of consequents
 - Are same as certainties of corresponding premises
 - When resulting from *Rules 1, 3, & 5*
 - Are computed from the minimum of the certainties of the premises
 - Such as when there are two premises (*Rules 2 & 4*)
 - Since **both** premises $must\ apply \rightarrow$ We can't be **more certain** of the consequent than we are of the smaller of the premises

Fuzzy Logic Control

Apply Rules

- For value *v* in the figure
 - Ex. $v = 33 \rightarrow far$ (certainty = 0.15) & closing (certainty = 0.25)
 - Rule 2 applies \rightarrow hence certainty of consequent is min(0.15, 0.25) = 0.15

- *Is to take their joint probability:*

$$p(A \cap B) = P(A) \cdot P(B)$$

- 1) If far then very fast
- 2) If far and closing then fast
- 3) If closing then cruise
- 4) If closing and near then slow
- 5) If near then stop
- Ex. $v = 33 \rightarrow far$ (certainty = 0.15) & closing (certainty = 0.25)
- Hence, certainty of the consequent is ?????, much less than certainty obtained from the minimum function.

Fuzzy Logic Control

Apply Rules

- For value v in the figure
 - Ex. $v = 33 \rightarrow far$ (certainty = 0.15) & closing (certainty = 0.25)
 - Rule 2 applies \rightarrow hence certainty of consequent is min(0.15, 0.25) = 0.15
- Another way of combining premises
 - *Is to take their joint probability:*

$$p(A \cap B) = P(A) \cdot P(B)$$

- 1) If far then very fast
- 2) If far and closing then fast
- 3) If closing then cruise
- 4) If closing and near then slow
- 5) If near then stop
- Ex. $v = 33 \rightarrow far$ (certainty = 0.15) & closing (certainty = 0.25)
- Hence, certainty of the consequent is (0.15)(0.25) = 0.0375, much less than certainty obtained from the minimum function.

Fuzzy Logic Control

May /

- 5(0 W - (1415e -

n. 1=50

Frit - 9

Defuzzify

Stop Slow Cruise Fat Ven Fart

Motor Value = 59 (D. Num)

moror-lest & 55 metrosynt & 59

Fuzzy Logic Control

Defuzzify

- Next step combining the consequents
 - Taking into account their certainties
- Figure given in (a)
 - motor powers for each five consequents
 - Ex.: If completely certain output is cruise
 → motor power should be set to 50;
 If less certain → motor power should
 be less or more
- Suppose certainty of consequent of **cruise** computed as **0.4**
 - Center triangle in (a) no longer relevant
 - Since certainty can never be more than 0.4 displayed as a trapezoid in (b)

(a) Defuzzify to obtain crisp motor setting

(b) Areas defined by certainties of the consequents

Defuzzify

- Let w & h be width & height of triangle
 - The area of trapezoid bounded by line at height h is: $wh' \left(1 - \frac{h'}{2h}\right)$

- Possible more than one consequent
 - Can have positive values
 - Areas defined by certainties of Trapezoids for consequent cruise (certainty=0.4) & fast (certainty=0.2) given in figure.
 - For $\mathbf{w} = 50$, $\mathbf{h} = 1$, $\mathbf{h}'_c = 0.4$ (cruise), $\mathbf{h}'_f = 0.2$ (fast), areas of the trapezoids a_c (cruise) and a_f (fast) are:

$$a_c = 50(6.4) / - \frac{6.4}{2(1)}$$
 $a_c = ?????$

$$a_{c} = 58(6.4) / - \frac{6.4}{2(0)}$$

$$a_{c} = ?????$$

$$a_{f} = ????$$

$$a_{f} = ????$$

$$a_{f} = ????$$

$$a_{f} = ????$$

$$a_{f} = ???$$

$$a_{f} = ??$$

100

Fuzzy Logic Control

Defuzzify

- Let w & h be width & height of triangle
 - The area of trapezoid bounded by line at height h'is:

0.0

0

25

- Possible more than one consequent
 - Can have positive values
 - Areas defined by certainties of Trapezoids for consequent cruise (certainty=0.4) & fast (certainty=0.2) given in figure.
 - For $\mathbf{w} = 50, \mathbf{h} = 1, \mathbf{h}'_c = 0.4(cruise), \mathbf{h}'_f = 0.2(fast),$ areas of the trapezoids a_c (cruise) and a_f (fast) are:

$$a_c = (50)(0.4)\left(1 - \frac{0.4}{2}\right) = 16, \quad a_f = (50)(0.2)\left(1 - \frac{0.2}{2}\right) = 9$$

75

50

motor

the consequents

Fuzzy Logic Control

Defuzzify

- To obtain a crisp value
 - The center of gravity is computed
 - It is sum of the areas of the trapezoids,
 weighed by value at center of the base of each trapezoid,
 divided by sum of the areas. i.e.:

$$\frac{\overline{a_c c_c} + \underline{a_f c_f}}{a_c + a_f} = ?????$$

- The value is closer to
 - Value associated with cruise rather than value associated with fast
 - Not surprising since the certainty of cruise is greater than the certainty of fast

Fuzzy Logic Control

Defuzzify

- To obtain a crisp value
 - The center of gravity is computed
 - It is sum of the areas of the trapezoids,
 weighed by value at center of the base of each trapezoid,
 divided by sum of the areas. i.e.:

$$\frac{a_c c_c + a_f c_f}{a_c + a_f} = \frac{(16)(50) + (9)(75)}{16 + 9} = \frac{59}{16}$$

- The value is closer to
 - Value associated with cruise rather than value associated with fast
 - Not surprising since the certainty of cruise is greater than the certainty of fast

Fuzzy Logic Control

Summary

- Fuzzy Logic Control
 - ❖ An alternative to classical control algorithms (On-Off, P, PI, PID)
- > Advantage
 - Does not demand precise mathematical specifications of robot's behaviour
 Which might be difficult to define
- Disadvantage
 - ❖ Behaviour of is not transparent as that of classical control algorithms
- We studied an example for fuzzy definitions of speed
- Other examples can be
 - * color: when does shade of range becomes orange
 - * temperature : when does a warm room become hot

Thank you.