- 1. Let t denote the total number of laps. The time for each lap grows exponentially, so the optimal solution uses each tire at most $O(\log U)$ laps. Let c[i] denote the minimum time for i laps, we can compute c in $O(n \log U)$ time. Then perform DP in $O(t \log U)$ time. $O((n+t) \log U)$.
- 2. $O(n\log\log U)$. https://leetcode-cn.com/problems/minimum-time-to-finish-the-race/solution/on-log-log-ude-zuo-fa-by-hqztrue-3vpx/

We can further get O(n + polylog U) for integers, by [1].

Minimum Time to Finish the Race

Submission Detail

Accepted Solutions Runtime Distribution

Runtime: $492\,$ ms, faster than 100.00% of C++ online submissions for Minimum Time to Finish the Race.

 $Memory\ Usage:\ 178.9\ MB,\ less\ than\ 81.97\%\ of\ C++\ online\ submissions\ for\ Minimum\ Time\ to\ Finish\ the\ Race.$

References

[1] Mihai Pătrașcu and Mikkel Thorup. Dynamic integer sets with optimal rank, select, and predecessor search. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 166–175. IEEE, 2014.