Lecture 20: Directed Graphs and Graph Algorithms

Hyungon Moon

Outline

- Directed graphs
- Shortest path algorithms

Outline

- Directed graphs
 - Digraph properties
 - Reachability
 - Topological sorting
- Shortest path algorithms

Digraphs

- A digraph is a graph whose edges are all directed
 - Short for "directed graph"
- Applications
 - one-way streets
 - flights
 - task scheduling

Digraph Properties

- A graph G=(V,E) such that
 - Each edge goes in one direction:
 - Edge (a,b) goes from a to b, but not b to a
- If G is simple, $m \le n (n-1)$
- If we keep in-edges and outedges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size

Digraph Application

 Scheduling: edge (a,b) means task a must be completed before b can be started

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- ☐ In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- ☐ A directed DFS starting at a vertex s determines the vertices reachable from s

Reachability

 DFS tree rooted at v: vertices reachable from v via directed paths

Strong Connectivity

- Each vertex can reach all other vertices
 - Run directedDFS for every vertex : O(n(n+m))

Strong Connectivity Algorithm

- Pick any vertex v in G
- Perform a DFS from v in G
 - If there's a w not visited, print "no"
- Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there's a w not visited, print "no"
 - Else, print "yes"
- Running time: O(n+m)
 - Requires only two directedDFS

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

$$v_1, ..., v_n$$
 of the vertices such that for every edge (v_i, v_i) , we have $i < j$

 Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints

Theorem

A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

Number vertices, so that (u,v) in E implies u < v

Algorithm for Topological Sorting

Running time: O(n + m)

```
Algorithm TopologicalSort(G)

H ← G // Temporary copy of G

n ← G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v ← n

n ← n − 1

Remove v from H
```


Implementation with DFS

- Simulate the algorithm by using depth-first search
- O(n+m) time.

```
Algorithm topologicalDFS(G)

Input dag G

Output topological ordering of G

n ← G.numVertices()

for all u iv G.vertices()

u.setLabel(UNEXPLORED)

for all v iv G.vertices()

if v.getLabel() = UNEXPLORED

topologicalDFS(G, v)
```

```
Algorithm topologicalDFS(G, v)
  Input graph G and a start vertex v of G
  Output labeling of the vertices of G
    in the connected component of v
  v.setLabel(VISITED)
  for all e iv v.outEdges()
     { outgoing edges }
    w \leftarrow e.opposite(v)
    if w.getLabel() = UNEXPLORED
       { e is a discovery edge }
       topologicalDFS(G, w)
    else
       { e is a forward or cross edge }
  Label v with topological number n
  n \leftarrow n-1
```


Outline

- Directed graphs
- Shortest path algorithms
 - Dijkstra
 - Bellman-ford

Shortest Paths

- Cities: vertices
- Roads : edges
- Cost : edge length
- Source: start vertex
- Destination : end vertex
- Graph: directed
 - Allow one-way road

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
 - In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Paths

- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v.
 - Length of a path is the sum of the weights of its edges.
- Example:
 - Shortest path between Providence and Honolulu

Shortest Path Problems

- Single-source shortest path problems
 - Find shortest paths from a source vertex s (which is given) to all other vertices in a graph.
 - If we just need to find a shortest path to one particular vertex, you can stop the algorithm earlier.
 - Solution: a shortest-path tree rooted at s
 - which is also a spanning tree of G.
 - Algorithms: Dijkstra's algorithm and Bellman-Ford algorithm
- All pairs shortest path problems
 - Find shortest paths between **every pair** of vertices in a graph
 - Solution: a data structure from which shortest paths can be quickly constructed by some path reconstruction algorithms.
 - Algorithms: Floyd-Warshall algorithm and Johnson's algorithm

Dijkstra Shortest Path Algorithm

- For graphs with non-negative weights
- Algorithm
 - Let D[v] be the length of a currently best, known path from s to v
 - Initially, D[s] = 0 and $D[v] = \infty$ for all other vertices.
 - Let S be a set of visited vertices.
 - Initially, S is empty.
 - Repeat the following steps until all vertices are added to S.
 - Among all vertices not in S, choose the vertex v with the smallest D[v] and add v to S
 - Edge Relaxation:

For every vertex v' adjacent to v and v' is not in S, update D[v']:

$$D[v'] = min (D[v'], D[v] + weight(v, v'))$$

 The algorithm will eventually terminate since S is monotonically expanding.

Edge Relaxation

- After a vertex v is added to S, check its adjacent neighbor v' if v reduces D[v']
 (i.e., the path that goes through v is shorter than the previous best path that
 yields D[v'])
 - D[v'] = min (D[v'], D[v] + weight(v, v'))
- If the value of D[v'] is updated, mark the edge (v, v') as "chosen"
 - If v' has another incoming edge that has been marked as chosen previously, unmark it.
 - When v' is added to S, the chosen incoming edge of v' will be part of the shortest-path tree.

Source: A

S:{A}

S:{A,B}

S:{A,B}

S: {A, B, D}

S: { A, B, C, D }

S: { A, B, C, D, F }

S: { A, B, C, D, F }

S: { A, B, C, D, F, G }

S: { A, B, C, D, E, F, G }

S: { A, B, C, D, E, F, G }

SCIENCE AND TECHNOLOGY

Optimality

- Once a vertex v is added to S, it is finalized—the shortest path from s to v has been found.
 - i.e., there is no $v' \notin S$ such that the path $s \to v' \to v$ is shorter than the path $s \to v$ using the vertices in S only.
 - Proof by contradiction: If such v' exists, D[v] > D[v'], which violates the fact that $D[v] \le D[v']$ when v is added to S

Green arrow: shortest path to node

Algorithm: Linear Search

```
temp = \{\}, S = \{\}
for all vertices v
  d(v) = inf
d(source) = 0
Put all vertices to temp
while temp is not empty : n
  v = d(v) is min in temp : n
  add v to S
  for all neighbor u of v : # neighbor
     if d(u) > d(v) + length(v, u)
        d(u) = d(v) + length(v, u)
             O(n<sup>2</sup>) for linear search
```


ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

Algorithm: Min Heap

```
temp = \{\}, S = \{\}
for all vertices v
  d(v) = inf
d(source) = 0
Put all vertices to temp
while temp is not empty : n
  v = d(v) is min in temp : log n
  add v to S
  for all neighbor u of v : # neighbor
     if d(u) > d(v) + length(v, u)
        d(u) = d(v) + length(v, u) : log n
            O((n+e)log(n)) for min heap
            O(n log(n) +e) for Fibonacci heap
```

How to Handle General Weights

Dijkstra does not work for negative weights

- No shortest path exists for a graph with cycles of negative length
 - We do not allow it

Bellman-Ford Algorithm

- Shortest path between two vertices of an nvertex graph
 - At most n-1 edges if there are no negative length cycles
- distⁿ⁻¹[u]
 - Shortest path from source to u having at most n-I edges

Bellman-Ford Algorithm

- Algorithm
 - Find distⁿ⁻¹[u] for <u>all</u> u in the graph
 - Update rule from k=1 to n-1
 - dist^k[u] = min{dist^{k-1}[u], min_i{dist^{k-1}[i] + length[i][u]}}
 i : all adjacent incoming vertex of u

		Dist [*] [i]						
	k	0	1	2	3	4	5	6
	1	0	6	5	5	~	8	~
,	2	0	3	3	5	5	4	∞
	3	0	1	3	5	2	4	7
	4	0	1	3	5	0	4	5
	5	0	1	3	5	0	4	3
	6	0	1	3	5	0	4	3

(a) directed graph

(b) distk

Bellman-Ford Algorithm

```
void Graph::BellmanFord(const int n, const int v)
      // distance initialization (distance for k=1)
      for(int i=0; i<n; i++) dist[i] = length[v][i];
  O(n) for (int k=2; k < n-1; k++)
O(h^2) / O(e)
          for (each u s.t u!=v and u has at least one incoming edge)
              for (each <i, u> in the graph)
                  if (dist[u]>dist[i]+length[i][u])
                      dist[u] = dist[i] + length[i][u];
```


Questions?

