Roll Number: _____

Thapar Institute of Engineering and Technology, Patiala

Department of Computer Science and Engineering

BE CSBS (1st Semester) MST

UCT203: Data Structures and Algorithms

21st March 2024

MM: 25 Time: 02 Hours; Name of Faculty: Dr. Rinkle Rani

Instruction: Attempt all questions in sequence.

Q	Questions	Marks	CO	BL
No.				
Q 1.	a) Write a recursive algorithm for binary search and apply the	(4)	CO2	L2
	same on the following sequence.			
	3, 5, 8, 14, 18, 23, 38, 57, 74, 90 Required			
	Item =5	(2)	CO1	L3
	b) Convert the following infix expression into the postfix			
	expression using stack as an intermediate structure.			
	p + (y * z - (a / b - g) * m) * x			
Q 2.	a) Write the sequence of steps (Algorithm) to delete last node	(4)	CO1	L2
	from a circular header singly linked list. Illustrate your change			
	of pointers with diagram.			
	b) Let p be a pointer as shown in the figure in a single linked list.	(3)	CO1	L3
	Write sequence of statements to swap the two nodes next to p in the above linked list.			
Q 3.	a) Write an algorithm/program that finds the largest element in a	(3.5)	CO1	L3
	two-dimensional integer array using a single loop.			
	b) Write algorithm/program for divide and conquer Quick sort.	(4)	CO2	L3
	Apply your logic on a sequence of elements to arrange them in			
	ascending order. Show the explicit use of stacks and location of			
	pivot during all the intermediate steps.			
Q 4.	Assume the list contains n elements $(n \ge 2)$ in the following	(4.5)	CO1	L4
	questions.			
	a) How many times is the comparison in statement S1 made?			
	b) What is the minimum and the maximum number of			
	times statements marked S2 get executed?			
	c) What is the significance of the value in the integer pointed to by j when the function completes?			

```
Node *remove-duplicates (Node* head, int *j)
Node *t1, *t2; *j=0;
t1 = head;
if (t1! = NULL)
    t2 = t1 ->next;
else return head;
 *j = 1;
if (t2 == NULL) return head;
while (t2 != NULL)
     if (t1.val != t2.val) -----> (S1)
        (*j)++;
        t1 -> next = t2;
        t1 = t2; ----> (S2)
        t2 = t2 ->next;
t1 -> next = NULL;
 return head;
```


