Reserve Accumulation, Macroeconomic Stabilization and Sovereign Risk

Javier Bianchi¹ César Sosa-Padilla²

¹Minneapolis Fed & NBER

²University of Notre Dame & Princeton IES

Data: large holdings of int'l reserves, particularly for countries w/currency pegs

 $\it Data:$ large holdings of int'l reserves, particularly for countries w/currency pegs

Data: large holdings of int'l reserves, particularly for countries w/currency pegs

$$\mathbb{PV}(G-T) = \mathbb{PV}(Seigniorage) + Reserves_0$$

 $\it Data:$ large holdings of int'l reserves, particularly for countries w/currency pegs

$$\mathbb{PV}(G-T) = \mathbb{PV}(Seigniorage) + Reserves_0$$

Data: large holdings of int'l reserves, particularly for countries w/currency pegs

Conventional view: reserves needed to sustain currency pegs

$$\mathbb{PV}(G-T) = \mathbb{PV}(Seigniorage) + Reserves_0$$

Only countries w/ sufficient reserves can run a peg

Data: large holdings of int'l reserves, particularly for countries w/currency pegs

$$\mathbb{PV}(G - T) = \mathbb{PV}(Seigniorage) + Reserves_0$$

- Only countries w/ sufficient reserves can run a peg
- ullet But seignoriage revenue is modest and has been \downarrow over time

Data: large holdings of int'l reserves, particularly for countries w/currency pegs

Conventional view: reserves needed to sustain currency pegs

$$\mathbb{PV}(G - T) = \mathbb{PV}(Seigniorage) + Reserves_0$$

- Only countries w/ sufficient reserves can run a peg
- ullet But seignoriage revenue is modest and has been \downarrow over time

Need theory that goes beyond purely fiscal backing argument

A theory of reserve accumulation based on ${\bf macro\text{-}stabilization}$ and ${\bf sovereign\ risk}$

A theory of reserve accumulation based on **macro-stabilization** and **sovereign risk**

Under peg, government chooses to accumulates more reserves

• Reserves are not strictly needed to keep parity

Reserves strongly reduce incentives to default

↑ Debt may reduce spreads if gov. buys reserves

A theory of reserve accumulation based on **macro-stabilization** and **sovereign risk**

Under peg, government chooses to accumulates more reserves

• Reserves are not strictly needed to keep parity

Reserves strongly reduce incentives to default

• ↑ Debt may *reduce* spreads if gov. buys reserves

Key insight: larger gross positions help smooth aggregate demand, mitigate recessions and facilitate repayment

A theory of reserve accumulation based on **macro-stabilization** and **sovereign risk**

Under peg, government chooses to accumulates more reserves

• Reserves are not strictly needed to keep parity

Reserves strongly reduce incentives to default

• ↑ Debt may *reduce* spreads if gov. buys reserves

Key insight: larger gross positions help smooth aggregate demand, mitigate recessions and facilitate repayment

Quantitatively: Macro-stabilization essential to account for observed reserve holdings

• Fixers hold 18% of GDP, floaters 4%

Related Literature

Two main related branches of the literature:

Reserve accumulation: Aizenmann and Lee (2005); Jeanne and Ranciere (2011); Durdu, Mendoza and Terrones (2009); Alfaro and Kanczuk (2009), Bianchi, Hatchondo and Martinez (2018); Hur and Kondo (2016); Amador et al. (2018); Arce, Bengui and Bianchi (2019); Bocola and Lorenzoni (2018); Cespedes and Chang (2019)

Sovereign default models with nominal rigidities: Na, Schmitt-Grohe, Uribe and Yue (2018); Bianchi, Ottonello and Presno (2016); Arellano, Bai and Mihalache (2018); Bianchi and Mondragon (2018)

Main Elements of the Model

- Small open economy (SOE) with T-NT goods:
 - Stochastic endowment for tradables y^T
 - Non-tradables produced with labor: $y^N = F(h)$
- Wages are downward rigid in domestic currency (SGU, 2016)
 - With fixed exchange rate, $\pi^{\star}=0$ and L.O.P. \Rightarrow wages are rigid in foreign currency $w\geq \bar{w}$
- Government issues non-contingent long-duration bonds (b) and saves in one-period risk free assets (a), all in units of T
 - Debt/Asset structure as Bianchi-Hatchondo-Martinez

Households

$$\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \{ u(c_{t}) \}$$

$$c = C(c^{T}, c^{N}) = [\omega(c^{T})^{-\mu} + (1 - \omega)(c^{N})^{-\mu}]^{-1/\mu}$$

Budget constraint in units of tradables

$$c_t^T + p_t^N c_t^N = y_t^T + \phi_t^N + w_t h_t^s - \tau_t$$

• ϕ^N firms' profits, τ_t taxes. No direct access to external credit.

$$\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \{ u(c_{t}) \}$$

$$c = C(c^{T}, c^{N}) = [\omega(c^{T})^{-\mu} + (1 - \omega)(c^{N})^{-\mu}]^{-1/\mu}$$

Budget constraint in units of tradables

$$c_t^T + p_t^N c_t^N = y_t^T + \phi_t^N + w_t h_t^s - \tau_t$$

- ϕ^N firms' profits, τ_t taxes. No direct access to external credit.
- Endowment of hours \bar{h} , but $h_t^s < \bar{h}$ when $w \ge \bar{w}$ binds.

Households

$$\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \{ u(c_{t}) \}$$

$$c = C(c^{T}, c^{N}) = [\omega(c^{T})^{-\mu} + (1 - \omega)(c^{N})^{-\mu}]^{-1/\mu}$$

• Budget constraint in units of tradables

$$c_{t}^{T} + p_{t}^{N} c_{t}^{N} = y_{t}^{T} + \phi_{t}^{N} + w_{t} h_{t}^{s} - \tau_{t}$$

- ϕ^N firms' profits, τ_t taxes. No direct access to external credit.
- Endowment of hours \bar{h} , but $h_t^s < \bar{h}$ when $w \ge \bar{w}$ binds.
- Optimality

$$p_t^N = \frac{1-\omega}{\omega} \left(\frac{c_t^T}{c_t^N}\right)^{1+\mu}$$

Firms

• Maximize profits given by

$$\phi_t^N = \max_{h_t} p_t^N F(h_t) - w_t h_t$$

• Firms' optimality condition is

$$p_t^N F'(h_t) = w_t$$

Firms

• Maximize profits given by

$$\phi_t^N = \max_{h_t} p_t^N F(h_t) - w_t h_t$$

• Firms' optimality condition is

$$p_t^N F'(h_t) = w_t$$

Equilibrium in the Labor Market

Assume: $F(h) = h^{\alpha}$ with $\alpha \in (0,1]$.

Using HH and firms optimality and $y^N = c^N$:

$$\mathcal{H}(c^T, w) = \left[\frac{1 - \omega}{\omega} \frac{\alpha}{w}\right]^{1/(1 + \alpha \mu)} (c^T)^{\frac{1 + \mu}{1 + \alpha \mu}}$$

$$\mathsf{Equilib.\ employment} = \left\{ \begin{array}{ll} \mathcal{H}(c^T, \bar{w}) & \quad \mathsf{for} \ w = \bar{w} \\ \\ \bar{h} & \quad \mathsf{for} \ w > \bar{w} \end{array} \right.$$

Equilibrium in the Labor Market

Assume: $F(h) = h^{\alpha}$ with $\alpha \in (0,1]$.

Using HH and firms optimality and $y^N = c^N$:

$$\mathcal{H}(c^{\mathsf{T}}, w) = \left[\frac{1-\omega}{\omega} \frac{\alpha}{w}\right]^{1/(1+\alpha\mu)} (c^{\mathsf{T}})^{\frac{1+\mu}{1+\alpha\mu}}$$

$$\mathsf{Equilib.\ employment} = \left\{ \begin{array}{ll} \mathcal{H}(c^T, \bar{w}) & \quad \mathsf{for} \ w = \bar{w} \\ \\ \bar{h} & \quad \mathsf{for} \ w > \bar{w} \end{array} \right.$$

Note: $\frac{\partial \mathcal{H}}{\partial c^T} > 0$

Asset/Debt Structure

- Long-term bond:
 - Bond pays $\delta [1, (1 \delta), (1 \delta)^2, (1 \delta)^3, ...]$
 - Law of motion for bonds $b_{t+1} = b_t(1-\delta) + i_t$
 - price is q

Asset/Debt Structure

- Long-term bond:
 - Bond pays $\delta [1, (1 \delta), (1 \delta)^2, (1 \delta)^3, ...]$
 - Law of motion for bonds $b_{t+1} = b_t(1-\delta) + i_t$
 - price is q
- Risk-free one-period asset which pays one unit of consumption
 - price is q_a

Asset/Debt Structure

- Long-term bond:
 - Bond pays $\delta [1, (1 \delta), (1 \delta)^2, (1 \delta)^3, ...]$
 - Law of motion for bonds $b_{t+1} = b_t(1 \delta) + i_t$
 - price is q
- Risk-free one-period asset which pays one unit of consumption
 - price is q_a
- Government's budget constraint if repay:

$$g + q_a a_{t+1} + \delta b_t = \tau_t + a_t + q_t \underbrace{\left(b_{t+1} - (1 - \delta)b_t\right)}_{i_t \text{ : debt issuance}}$$

• Government's budget constraint in default:

$$g + q_a a_{t+1} = \tau_t + a_t$$

• Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:

- Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:
 - SDF: m(s, s') with $s = \{y^T, \nu\}$

- Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:
 - SDF: m(s, s') with $s = \{y^T, \nu\}$
- Not essential for the analysis, but helps to capture global factors and match spread dynamics

- Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:
 - SDF: m(s, s') with $s = \{y^T, \nu\}$
- Not essential for the analysis, but helps to capture global factors and match spread dynamics
- Formulation follows Vasicek (77), constant r

$$q_a = \mathbb{E}_{s'|s} m(s,s') = e^{-r}$$

- Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:
 - SDF: m(s, s') with $s = \{y^T, \nu\}$
- Not essential for the analysis, but helps to capture global factors and match spread dynamics
- Formulation follows Vasicek (77), constant r

$$q_a = \mathbb{E}_{s'|s} m(s,s') = e^{-r}$$

Bond price given by:

$$q = \mathbb{E}_{s'|s} \left\{ m(s,s')(1-d') \left[\delta + (1-\delta) \ q' \right] \right\}$$

$$d' = \hat{d}(a', b', s'), \quad q' = q(a'', b'', s')$$

$$V(b, a, s) = \max_{d \in \{0, 1\}} \{(1 - d)V^{R}(b, a, s) + dV^{D}(a, s)\}$$

$$V\left(b,a,s\right) = \max_{d \in \left\{0,1\right\}} \left\{ \left(1-d\right) V^{R}\left(b,a,s\right) + dV^{D}\left(a,s\right) \right\}$$

Value of repayment:

$$\begin{split} V^{R}\left(b,a,s\right) &= \max_{b',a',h \leq \overline{h},c^{T}} \left\{ u(c^{T},F(h)) + \beta \mathbb{E}_{s'|s} \left[V\left(b',a',s'\right) \right] \right\} \\ \text{subject to} \\ c^{T} + g + q_{a}a' + \delta b &= a + y^{T} + q\left(b',a',\ y^{T}\right) \left(b' - (1-\delta)b\right) \\ h &\leq \mathcal{H}(c^{T},\bar{w}) \end{split}$$

$$V\left(b,a,s\right) = \max_{d \in \left\{0,1\right\}} \left\{ \left(1-d\right) V^{R}\left(b,a,s\right) + dV^{D}\left(a,s\right) \right\}$$

Value of repayment:

$$\begin{split} V^{R}\left(b,a,s\right) &= \max_{b',a',h \leq \overline{h},c^{T}} \left\{ u(c^{T},F(h)) + \beta \mathbb{E}_{s'|s} \left[V\left(b',a',s'\right) \right] \right\} \\ \text{subject to} \\ c^{T} + g + q_{a}a' + \delta b &= a + y^{T} + q\left(b',a',\ y^{T}\right) \left(b' - (1-\delta)b\right) \\ h &\leq \mathcal{H}(c^{T},\bar{w}) \end{split}$$

$$V\left(b,a,s\right) = \max_{d \in \left\{0,1\right\}} \left\{ \left(1-d\right) V^{R}\left(b,a,s\right) + dV^{D}\left(a,s\right) \right\}$$

Value of repayment:

$$V^{R}(b, a, s) = \max_{b', a', h \leq \overline{h}, c^{T}} \left\{ u(c^{T}, F(h)) + \beta \mathbb{E}_{s'|s} \left[V(b', a', s') \right] \right\}$$
subject to
$$c^{T} + g + q_{a}a' + \delta b = a + y^{T} + q\left(b', a', y^{T}\right) \left(b' - (1 - \delta)b\right)$$

$$h \leq \mathcal{H}(c^{T}, \overline{w})$$
[§]

 $\mathcal{H}(c^T, \bar{w}) o ext{implementability constraints associated with nominal rigidities}$

$$V(b, a, s) = \max_{d \in \{0,1\}} \{(1-d)V^{R}(b, a, s) + dV^{D}(a, s)\}$$

Value of repayment:

$$\begin{split} V^{R}\left(b,a,s\right) &= \max_{b',a',h \leq \overline{h},c^{T}} \left\{ u(c^{T},F(h)) + \beta \mathbb{E}_{s'|s} \left[V\left(b',a',s'\right) \right] \right\} \\ \text{subject to} \\ c^{T} + g + q_{a}a' + \delta b &= a + y^{T} + q\left(b',a',\ y^{T}\right) \left(b' - (1-\delta)b\right) \end{split}$$

$$b = a + y + q(b, a, y) (b - (1 - 0)b)$$

 $b \leq \mathcal{H}(c^T \bar{w})$

$$h \leq \mathcal{H}(c^T, \bar{w})$$

Value of default: total repudiation, utility cost of default,

 $[\xi]$

Optimal Portfolio: gains from borrowing to buy reserves

Optimal Portfolio: gains from borrowing to buy reserves

 \tilde{a} : reserves that can be purchased by issuing an extra unit of debt:

$$\tilde{a} = \frac{q + \frac{\partial q}{\partial b'}i}{q_a - \frac{\partial q}{\partial a'}i}$$

Optimal Portfolio: gains from borrowing to buy reserves

 \tilde{a} : reserves that can be purchased by issuing an extra unit of debt:

$$\tilde{a} = \frac{q + \frac{\partial q}{\partial b'}i}{q_a - \frac{\partial q}{\partial a'}i}$$

The effects on lifetime utility are:

$$\mathbb{E}_{s'|s} \left\{ \underbrace{\frac{\tilde{a}}{\text{Payoff in default}} \left(u_T' + \xi' \mathcal{H}_T'\right) d'}_{\text{Payoff in default}} + \underbrace{\frac{\tilde{a}}{\tilde{a}} \left(u_T' + \xi' \mathcal{H}_T'\right) d'}_{\text{Payoff in repayment}} \left(u_T' + \xi' \mathcal{H}_T'\right) (1 - d')}_{\text{Payoff in repayment}} \right\}$$

Optimal Portfolio: gains from borrowing to buy reserves

 \tilde{a} : reserves that can be purchased by issuing an extra unit of debt:

$$\tilde{a} = \frac{q + \frac{\partial q}{\partial b'}i}{q_a - \frac{\partial q}{\partial a'}i}$$

The effects on lifetime utility are:

$$\mathbb{E}_{s'|s} \left\{ \underbrace{ \underbrace{\tilde{a}}_{\text{Payoff in default}} \left(u_T' + \xi' \mathcal{H}_T' \right) d'}_{\text{Payoff in repayment}} + \underbrace{ \underbrace{\left[\tilde{a} - \delta - (1 - \delta) q' \right]}_{\text{Payoff in repayment}} \left(u_T' + \xi' \mathcal{H}_T' \right) (1 - d') }_{\text{Payoff in repayment}} \right\}$$

Net repayment payoffs are higher in bad times (low income, low q', high unemp.)

Optimal Portfolio: gains from borrowing to buy reserves

 \tilde{a} : reserves that can be purchased by issuing an extra unit of debt:

$$\tilde{a} = \frac{q + \frac{\partial q}{\partial b'}i}{q_a - \frac{\partial q}{\partial a'}i}$$

The effects on lifetime utility are:

$$\mathbb{E}_{s'|s} \left\{ \underbrace{\frac{\tilde{a}}{\tilde{a}} \underbrace{\left(u_T' + \xi' \mathcal{H}_T'\right) d'}_{\text{Payoff in default}} \cdot \underbrace{\left(u_T' + \xi' \mathcal{H}_T'\right) d'}_{\text{Payoff in repayment}} + \underbrace{\left[\tilde{a} - \delta - (1 - \delta) q'\right]}_{\text{Payoff in repayment}} \left(u_T' + \xi' \mathcal{H}_T'\right) (1 - d') \right\}}_{\text{Payoff in repayment}} \right\}$$

Net repayment payoffs are higher in bad times (low income, low q', high unemp.)

Remark With one-period debt ($\delta = 1$):

$$\mathbb{COV}_{s'|s}\Big(ilde{a}-\delta-(1-\delta)q'\,,\,ig(u_T'+\xi'\mathcal{H}_T'ig)\,\,(1-d')\Big)=0$$
 11/2

Benefits of reserve accumulation

We want to highlight two benefits of reserves:

- i. Higher reserves can reduce future unemployment.
- ii. Reserve accumulation may improve bond prices.

Benefits of reserve accumulation

We want to highlight two benefits of reserves:

- i. Higher reserves can reduce future unemployment.
- ii. Reserve accumulation may improve bond prices.

Exercise:

- Fix a point in the s.s. and a given level of consumption \bar{c} (e.g. the optimal one).
- Look at alternative a', and find b' that ensures $c = \bar{c}$.

Distribution of next-period unemployment for given (a', b')

Distribution of next-period unemployment for given (a', b')

Larger reserves financed with debt (keeping \emph{c} constant) reduces future unemployment

Borrowing to buy reserves may improve bond prices

Borrowing to buy reserves may improve bond prices

Key mechanism: Reserves increase V^R and V^D . If gov. is borrowing constrained (high unemployment), effect on V^R may dominate effect on V^D .

Quantitative Analysis

- Calibrate to the average of a panel of 17 EMEs (1993–2014).
- Benchmark = economy with wage rigidity.
- 1 model period = 1 year.

Utility function:

$$u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$$
, with $\gamma \neq 1$

Utility cost of defaulting:

$$\psi_d(y^T) = \psi_0 + \psi_1 \log(y^T)$$

Tradable income process:

$$\log(y_t^T) = (1 - \rho)\mu_v + \rho\log(y_{t-1}^T) + \epsilon_t$$

Quantitative Analysis – Functional forms

- Calibrate to the average of a panel of 17 EMEs (1993–2014).
- Benchmark = economy with wage rigidity.
- 1 model period = 1 year.

Utility function:

$$u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$$
, with $\gamma \neq 1$

Utility cost of defaulting:

$$\psi_d(y^T) = \psi_0 + \psi_1 \log(y^T)$$

Tradable income process:

$$\log(y_t^T) = (1 - \rho)\mu_v + \rho\log(y_{t-1}^T) + \epsilon_t$$

15/22

Quantitative Analysis – Functional forms

Utility function:

$$u(c) = \frac{c^{1-\gamma} - 1}{1-\gamma}$$
, with $\gamma \neq 1$

Utility cost of defaulting:

$$\psi_d(y^T) = \psi_0 + \psi_1 \log(y^T)$$

Tradable income process:

$$\log(y_t^T) = (1 - \rho)\mu_y + \rho \log(y_{t-1}^T) + \epsilon_t$$

with |
ho| < 1 and $\epsilon_t \sim \mathcal{N}(0, \sigma_\epsilon^2)$

Quantitative Analysis – Calibration

Parameter	Description	Value
$ \begin{array}{c} r \\ \alpha \\ \beta \\ \pi_{LH} \\ \pi_{HL} \\ \sigma_{\epsilon} \\ \rho \\ \mu_{y} \\ \delta \\ 1/(1+\mu) \\ \frac{\gamma}{h} \end{array} $	Risk-free rate Labor share in NT sector Domestic discount factor Prob. of transiting to high risk-premium Prob. of transiting to low risk-premium Std. dev of innovation to $log(y^T)$ Autocorrelation of $log(y^T)$ Mean of $log(y^T)$ Coupon decaying rate Intratemporal elast. of subs. Coefficient of relative risk aversion Time endowment	0.04 0.75 0.90 0.15 0.8 0.034 0.66 $-\frac{1}{2}\sigma_{\epsilon}^{2}$ 0.2845 $.44$ 2.273
	Parameters set by simulation	
$\begin{array}{c} \omega \\ \mathbf{g} \\ \psi_0 \\ \psi_1 \\ \kappa \\ \bar{\mathbf{w}} \end{array}$	Share of tradables Government consumption Default cost parameter Default cost parameter Pricing kernel parameter Lower bound on wages	0.3 0.25 2.4 19.5 22.5 0.8

Results: data and simulation moments

	Data	Model Benchmark
Targeted		
Mean debt (b/y)	42.0	42.5
Mean r_s	2.2	2.4
Δr_s w $/$ risk-prem. shock	2.0	2.0
Δ UR around crises	3.0	3.0
Mean g/y	12	12
Mean y^T/y	45	47
Non-Targeted		
$\sigma(c)/\sigma(y)$	1.1	1.1
$\sigma(r_s)$ (in %)	2.7	2.0
$\rho(r_s, y)$	-0.4	-0.7
Mean Reserves (a/y)	16	17.9
Mean Reserves/Debt (a/b)	36	37.4

Results: data and simulation moments

	Data	Model Benchmark
Targeted		
Mean debt (b/y)	42.0	42.5
Mean r_s	2.2	2.4
Δr_s w $/$ risk-prem. shock	2.0	2.0
Δ UR around crises	3.0	3.0
Mean g/y	12	12
Mean y^T/y	45	47
Non-Targeted		
$\sigma(c)/\sigma(y)$	1.1	1.1
$\sigma(r_s)$ (in %)	2.7	2.0
$\rho(r_s, y)$	-0.4	-0.7
Mean Reserves (a/y)	16	17.9
Mean Reserves/Debt (a/b)	36	37.4

Results: data and simulation moments

	Data	Model Benchmark	Model Flexible <i>w</i>
Targeted			
Mean debt (b/y)	42.0	42.5	42.0
Mean r_s	2.2	2.4	2.2
Δr_s w $/$ risk-prem. shock	2.0	2.0	1.9
Δ UR around crises	3.0	3.0	0.0
Mean g/y	12	12	11
Mean y^T/y	45	47	44
Non-Targeted			
$\sigma(c)/\sigma(y)$	1.1	1.1	1.2
$\sigma(r_s)$ (in %)	2.7	2.0	1.8
$\rho(r_s, y)$	-0.4	-0.7	-0.9
Mean Reserves (a/y)	16	17.9	3.6
Mean Reserves/Debt (a/b)	36	37.4	8.1

Reserves in the Data: Fixed vs. Flex

Welfare implications

Welfare gain of reserves

Welfare implications

Welfare gain of reserves

 Nominal rigidities reduce welfare by around 0.6% and are costlier if government does not accumulate reserves

Welfare implications

Welfare gain of reserves

- Nominal rigidities reduce welfare by around 0.6% and are costlier if government does not accumulate reserves
- Having access to reserves is welfare improving under fixed
 - Under flex, reserves may be welfare reducing because of debt-dilution is exacerbated

Inflation Targeting

	Data	Model	
		Benchmark	ΙΤ
Targeted			
Mean debt (b/y)	42.0	42.5	42.8
Mean r_s	2.2	2.4	2.7
Δr_s w $/$ risk-prem. shock	2.0	2.0	1.9
Δ UR around crises	3.0	3.0	1.0^{*}
Mean g/y	12	12	12
Mean y^T/y	45	47	48
Non-Targeted			
$\sigma(c)/\sigma(y)$	1.1	1.1	1.1
$\sigma(r_s)$ (in %)	2.7	2.0	2.2
$\rho(r_s,y)$	-0.4	-0.7	-0.7
Mean Reserves (a/y)	16	17.9	16.0
Mean Reserves/Debt (a/b)	36	37.4	33.3

Even moderate inflexibility of exchange rate is enough to generate substantial demand for reserves

Inflation Targeting

	Data	Model	
		Benchmark	IT
Targeted			
Mean debt (b/y)	42.0	42.5	42.8
Mean r_s	2.2	2.4	2.7
Δr_s w $/$ risk-prem. shock	2.0	2.0	1.9
Δ UR around crises	3.0	3.0	1.0^{*}
Mean g/y	12	12	12
Mean y^T/y	45	47	48
Non-Targeted			
$\sigma(c)/\sigma(y)$	1.1	1.1	1.1
$\sigma(r_s)$ (in %)	2.7	2.0	2.2
$\rho(r_s, y)$	-0.4	-0.7	-0.7
Mean Reserves (a/y)	16	17.9	16.0
Mean Reserves/Debt (a/b)	36	37.4	33.3

Even moderate inflexibility of exchange rate is enough to generate substantial demand for reserves

Inflation Targeting

	Data	Model	
		Benchmark	IT
Targeted			
Mean debt (b/y)	42.0	42.5	42.8
Mean r_s	2.2	2.4	2.7
Δr_s w $/$ risk-prem. shock	2.0	2.0	1.9
Δ UR around crises	3.0	3.0	1.0^{*}
Mean g/y	12	12	12
Mean y^T/y	45	47	48
Non-Targeted			
$\sigma(c)/\sigma(y)$	1.1	1.1	1.1
$\sigma(r_s)$ (in %)	2.7	2.0	2.2
$\rho(r_s, y)$	-0.4	-0.7	-0.7
Mean Reserves (a/y)	16	17.9	16.0
Mean Reserves/Debt (a/b)	36	37.4	33.3

Even moderate inflexibility of exchange rate is enough to generate substantial demand for reserves

Conclusions

- Provided a theory of reserve accum. for macro-stabilization and sovereign risk
- Reserves help reduce future unemployment risk and may improve bond prices

Conclusions

- Provided a theory of reserve accum. for macro-stabilization and sovereign risk
- Reserves help reduce future unemployment risk and may improve bond prices
- Aggregate demand effects essential to account for observed reserves in the data

Conclusions

- Provided a theory of reserve accum. for macro-stabilization and sovereign risk
- Reserves help reduce future unemployment risk and may improve bond prices
- Aggregate demand effects essential to account for observed reserves in the data
- Agenda:
 - Equilibrium Multiplicity
 - Temptation to abandon pegs—how reserves can help