Omacgol

$$U = \prod exp(\frac{P}{2}(a_{\rho}a_{-\rho} - a_{\rho}^{\dagger}a_{-\rho}))$$
 $exp(\frac{P}{2}(a_{q}a_{-q} - a_{q}^{\dagger}a_{-q}^{\dagger}))$ Kamuzumpyen

 c a_{ρ} , eau $q \neq \pm_{1}$, u corpanyelence

 c $exp(-\frac{P}{2}(a_{q}a_{-q} - a_{q}^{\dagger}a_{-q}^{\dagger}))$.

 Ji_{0} many

 $U = a_{\rho}U^{\dagger} = exp(P_{\rho}(a_{\rho}a_{-\rho} - a_{\rho}^{\dagger}a_{-\rho}^{\dagger}))$
 $exp(-P_{\rho}(a_{\rho}a_{-\rho} - a_{\rho}^{\dagger}a_{-\rho}^{\dagger}))$

[A,B] =
$$\varphi_{\rho}$$
 [$\alpha_{\rho}\alpha_{-\rho} - \alpha_{\rho}^{\dagger}\alpha_{-\rho}^{\dagger}$, α_{ρ}] =

= $-Y_{\rho}$ [$\alpha_{\rho}^{\dagger}\alpha_{-\rho}^{\dagger}$, α_{ρ}] = Y_{ρ} α_{ρ}^{\dagger}

[A,B]] = Y_{ρ}^{\prime} [$\alpha_{\rho}\alpha_{-\rho} - \alpha_{\rho}^{\dagger}\alpha_{-\rho}^{\dagger}$, $\alpha_{-\rho}^{\dagger}$] =

= Y_{ρ}^{\prime} [$\alpha_{\rho}\alpha_{-\rho}$, $\alpha_{-\rho}^{\dagger}$] = Y_{ρ}^{\prime} α_{ρ}

U mone gause.

U $\alpha_{\rho}U^{\dagger}$ = $\alpha_{\rho} + Y_{\rho}\alpha_{-\rho}^{\dagger} + \frac{Y_{\rho}^{\prime}}{2!}\alpha_{\rho} + \frac{Y_{\rho}^{\prime}}{3!}\alpha_{-\rho}^{\dagger} + \dots$ = $ch Y_{\rho} \alpha_{\rho} + sh Y_{\rho} \alpha_{\rho}^{\dagger}$

Illounce ospozace, we governorm.