5CCS2FC2: Foundations of Computing II

The Cook-Levin Theorem & Introduction to Graph Algorithms

Week 4

Dr Christopher Hampson

Department of Informatics

King's College London

Warm-up: Find the shortest path

Find the shortest path though the following graph that visits each vertex
 exactly once and returns to the starting point.

	\boldsymbol{A}	\boldsymbol{B}	C	D	$oldsymbol{E}$	$oldsymbol{F}$	
\boldsymbol{A}	ΓΟ	13	4	4	7	2]	
B	13	0	9	13	9	10	
\boldsymbol{C}	4	9	0	1	21	12	
D	4	13	1	0	7	3	
$oldsymbol{E}$	7	9	21	7	0	10	
$egin{array}{c} A & & & & & & & & & & & & & & & & & & $	2	10	12	3	10	0	

List of NP-complete Problems

- (Incomplete) List of NP-complete Problems
 - The Boolean Satisfiability Problem ✓
 - The Graph Colouring Problem ✓
 - The Clique problem
 - The Hamiltonian Cycle Problem
 - The Travelling Salesman Problem (TSP)
 - The Knapsack Problem

https://en.wikipedia.org/wiki/List_of_NP-complete_problems

More NP-complete Problems

The Hamiltonian Cycle Problem

Input) An undirected graph G = (V, E)Output) True if and only if there is a closed path through G that passes through every vertex exactly once Has a Hamiltonian Cycle

The Travelling Salesman Problem

Input) A complete weighted graph G=(V,d), where $d:V\times V\to \mathbb{R}$, and target distance D>0.

Output) True if and only if there is a *closed path* through G of length < D that passes through every vertex exactly once

The Knapsack Problem

Input) A collection of items $I = \{1, 2, ..., n\}$ each with weight w_i and value v_i , a target value V and a maximum capacity W.

Output) True if and only if there is subset of items $S \subseteq I$ such that $\sum_{i \in S} v_i > V$ and $\sum_{i \in S} w_i < W$.

Item 1

Weight: 10

Value: £60

Item 2

Weight: 20

Value : £ 100

Item 3

Weight: 30

Value : £ 120

$$V = £270$$
 $W = 70$ True

$$V = £200$$
 False

Relationships between NP-complete Problems

(The Existence of NP-Complete Problems)

Theorem (The Cook-Levin Theorem) The Boolean Satisfiability problem **SAT** is **NP**-complete.

(i.e. SAT is among the hardest problems in NP)

Proof (sketch): (you do NOT need to memorise this proof)

We want to show that every problem $X \in \mathbb{NP}$ can be reduced to SAT.

Step 1) Let $X \in \mathbb{NP}$ be any problem belonging to the class \mathbb{NP} .

By **definition** there is some NDTM ${\mathcal M}$ such that

 ${\mathcal M}$ has a polynomial-length computation that accepts $w \iff w \in X$

(for all input words $w \in \Sigma^*$)

Step 2) For each state $q \in Q$, symbol $a \in \Sigma$ and integers $i, t \leq T(n)$

 $\mathsf{cell}_{i,t}(a) = \mathsf{Cell}\,i$ of the \mathcal{M}' s tape contains symbol a at time t

 $\mathsf{head}_{i,t}$ = The tape head is in position i at time t

 $\mathsf{state}_{q,t}$ = The machine is in state q at time t

(where $T(n) \in O(n^k)$ is the worst-case termination-time of $\mathcal M$)

Step 3) With these propositional variables, we make the following claim:

Claim: We can write down a propositional formula that describes the behaviour of a NDTM on a given input

 $F_{\mathcal{M},w} = \mathcal{M}$ has a computation that accepts w

Step 4) We then have that

$$w \in X \qquad \Longleftrightarrow \qquad F_{\mathcal{M},w}$$
 if satisfiable

which is to say that $X \leq_p SAT$.

Step 5) Since we have assumed nothing special about X other than it can be solved by a NDTM in polynomial time (and space), we must have that

$$X \leq_p \mathsf{SAT}$$
 for all $X \in \mathsf{NP}$

which is to say that **SAT** is **NP-complete**

Q.E.D.

Graph Algorithms

Data Structures and Representaions

- Data Structures for Graphs
 - The type of data structure used to store a graph can affect the effeciency of your algorithms, and memory requirments

List of Edges

Edges	Edges
(1,5)	(2, 1)
(3, 4)	(5, 2)
(1,2)	(5, 1)
(2,4)	(3, 2)
(2,3)	(4, 2)
(2,5)	(4, 3)

Adjacency List

Vertex	Successors		
1	2,5		
2	1, 3, 4, 5		
3	2,4		
4	2,3,5		
5	1,2,4		

Adjacency Matrix

	1	2	_		5	
1	ГО	1	0	0 1 1 0 1	1]	
1 2 3 4 5	1	0	1	1	1	
3	0	1	0	1	0	
4	0	1	1	0	1	
5	1	1	0	1	0	

Breadth-First-Search (BFS)

- Step 1) Select a root node $r \in V$ and set d(r) = 0.
- Step 2) Add v to a queue.
- Step 3) De-queue the first element u from the queue.
- Step 4) For each vertex v adjacent to u, if d(v) is not yet defined, then set d(v) = d(u) + 1 and add v to the queue.
- Step 5) Repeat from Step 3 until the queue is empty.

Queue Empty so Terminate!

Theorem The worst-case termination time for Breadth-First-Search is O(|V| + |E|).

Proof:

- Each vertex is enqueued at most once and so the number of times that Step 3 and Step 5 are repeated is at most O(|V|)-times.
- Furthermore, for each vertex u we repeat Step 4 at most |Adj(u)|-times (where $Adj(u) \subseteq E$ is the set of adjacent vertices) In total, we repeat Step 4 at most O(|E|)-times, since

$$|\mathsf{Adj}(u_1)| + |\mathsf{Adj}(u_2)| + \cdots + |\mathsf{Adj}(u_n)| = |E|$$

Q.E.D.

Depth-First-Search (DFS)

- Step 1) Select a root node $r \in V$ and set d(r) = 0.
- Step 2) Add v to a stack.
- Step 3) Pop the first element u from the stack.
- Step 4) For each vertex v adjacent to u, if d(v) is not yet defined, then set d(v) = d(u) + 1 and push v to the stack.
- Step 5) Repeat from Step 3 until the stack is empty.

(the implementation appears differently in Cormen et.al, but the principle is the same)

Stack Empty so Terminate!

Theorem The worst-case termination time for Depth-First-Search is O(|V|+|E|).

Proof:

 The proof is almost identical to that of the Breadth-First-Search, replacing the queue for a stack.

Q.E.D.

End of Slides!

Feedback

Let me know how you found today's lecture!

https://goo.gl/forms/Q7NWfrgQiKOfKSJd2