INERTIA

A body cannot change its state of rest or uniform motion along a straight line. This property is called inertia. Inertia has no unit and no dimension.

- Inertia of Rest

Inability to change state of rest by itself.

- Inertia of Motion

Inability of a body to change its state of uniform motion by itself.

- Inertia of Direction

Inability of a body to change direction of motion by itself.

Newton's Second Law

F. = Rate of change of linear momentum.

Instantaneous

 $\overrightarrow{F}_{av} = \frac{\overrightarrow{\Delta p}}{\Delta t} = \frac{p_f - p_i}{\Delta t}$

MOMENTUM

P=m√

-It is a vector quantity having direction same as that of velocity

-Unit is kg m/s.

LIQUID JETS

 $F_{\text{mail}} = \rho A u^2 \quad (m = \rho A \Delta x, \frac{\Delta x}{\Delta +} = u)$

When liquid jet bounce back

When liquid jet strikes obliquely

 $F_{uu} = 2\rho Au^2 \cos\theta$ $F_{int} = -2\rho Au^2 \cos\theta$

Change in momentum=-2mu cos θ

NEWTON'S THIRD LAW

- A single isolated force is not possible.
- Counter force experienced by a body- reaction
- Action and reaction never act on the same body
- * Force exerted on body A by body B (action)
- * force exerted on body B by body A (reaction)

Normal Reaction

- Occurs when two surfaces are in contact with each other

Always perpendicular to the surface and is self-adjusting.

Restoring force developed when a longitudnal force is applied on a body

Ideal Rope

*Massless *Tension is same everywhere

*Can support only elongation

*Cannot support compressive force *On compression it becomes slack.

*Tension always acts away from the object.

can support both elongation and compression

SINGLE BLOCK

Horizontal Force

Acceleration is along x-axis only

Along y-axis a=0, N - Mg = Ma (Ma=0)N = MqAlong x-axis F - 0 = Ma $a = \frac{F}{M}$

Inclined Forces

it begins to accelerate.

- If, Fsinθ <Mq block remains in contact with ground
- If $F \sin \theta = Ma$ block just leaves contact with around

• If, Fsinθ >Ma

the block leaves contact with ground and

MOTION OF CONNECTED BODIES

Condition	Free body diagram	Equation	Force and acceleration
F M M2	$\xrightarrow{F} \xrightarrow{m_i} \xleftarrow{f}$	$F-f=m_1a$	$a = \frac{F}{m_1 + m_2}$
	$f \longrightarrow m_2$	$f = m_2 a$	$f = \frac{m_2 F}{m_1 + m_2}$
В	<i>m</i> , ← <i>f</i>	$f = m_1 a$	$a = \frac{F}{m_1 + m_2}$
M ₁	<i>f</i>	$F - f = m_2 a$	$f = \frac{m_1 F}{m_1 + m_2}$
В С	$\stackrel{d}{\longrightarrow} \stackrel{f_i}{\longrightarrow} f_i$	$F - f_1 = m_1 a$	$a = \frac{F}{m_1 + m_2 + m_3}$
F	<i>f</i> ₁	$f_1 - f_2 = m_2 a$	$f_1 = \frac{(m_2 + m_3)F}{m_1 + m_2 + m_3}$
	<i>3</i> → <i>6</i>	$f_2 = m_3 a$	$f_2 = \frac{m_3 F}{m_1 + m_2 + m_3}$
	-2 m ₃		

MOTION OF BLOCKS CONNECTED BY MASSLESS STRING

Condition	Free body diagram	Equation	Tension and acceleration
B A	<i>a T T T T T T T T T T</i>	$T=m_1a$	$a = \frac{F}{m_1 + m_2}$
T m ₂ F	<i>T</i>	$F-T=m_2a$	$T = \frac{m_1 F}{m_1 + m_2}$
	<i>F m</i> , <i>T</i>	$F-T=m_1a$	$a = \frac{F}{m_1 + m_2}$
F M T M2	7 m ₁	$T = m_2 a$	$T = \frac{m_2 F}{m_1 + m_2}$
		$T_1=m_1a$	$a = \frac{F}{m_1 + m_2 + m_3}$
A B C C m ₃ T ₂ m ₃ F	<i>T</i> ₁	$T_2 - T_1 = m_2 a$	$T_1 = \frac{m_1 F}{m_1 + m_2 + m_3}$
	<i>a</i> → F	$F - T_2 = m_3 a$	$T_2 = \frac{(m_1 + m_2)F}{m_1 + m_2 + m_3}$
	m₃ ₃		

LAWS OF MOTION

INCLINED PLANE + PULLEY

THICK ROPE

Tension will be different at different points.

Mass of x length of rope = $\frac{M}{L}$ X

Note: Mass of given length= $\frac{\text{total mass}}{\text{total length}} \times \frac{\text{given}}{\text{length}}$ = constant

LIFT PROBLEMS

Apparent weight of body in a lift

Reading of weighing machine = reaction force exerted by weighing machine (N)

Apparent weight ,(W_{apparent}) = Reaction

Case 1: Lift is at rest

R = mg , $W_{apparent} = W_{actual} = mg$

Case 2: Lift moving up or down with constant velocity

R = mg , $W_{apparent} = W_{actual} = mg$

Case 3: Accelerated upward at a rate of 'a'

 $R = m(g+a) = W_{apparent}$

W_{apparent} > W_{actual} → Feels over weight Accelerated upward at a rate of 'g'

R - mg = mg, R = 2mg, $W_{ann} = 2 \times W_{act}$

Case 4: Accelerated downward at a rate of 'a'

mg - R = ma, $R = m(g-a) = W_{abb}$, $W_{abb} < W_{act}$ Accelerated downward at a rate of 'g' [Freefall] mg - R = mg , R = mg - mg = 0 , $W_{app} = 0$

If a > g: body looses contact with the weighing machine and R becomes zero

Lift moves from ground floor to first floor

FRAME OF REFERENCE & PSEUDO FORCE Frame of Reference

A frame in which and observer is situated and makes his observation

Inertial frame of reference	Non-Inertial frame of reference
At rest or moving with uniform velocity along straight line. i.e unaccelerated	Accelerated frame of reference.
Holds Newton's law of motion	Newton's law of motion not applicable.

RELATIVE SLIPPING

Minimum force required to push the inclined plane such that "m" does not slip with respect to "M"

$$F = (m+M) g tan \theta$$
 , $a = g tan \theta$

Minimum acceleration "M" must be pushed such that there is no relative slipping.

Minimum mass such that there is no relative slipping

EQUILLIBRIUM & LAMI'S THEOREM

PARALLELOGRAM LAW

$$\vec{F} = \vec{F}_1 + \vec{F}_2$$
, $F = \sqrt{F_1^2 + F_2^2}$, $\tan \theta = \frac{F_2}{F_1}$

MAN-CAGE PROBLEM

IMPULSE

Large force acting for short period of time, As a result of impulse there will be a sudden change in momentum

$$F_{ip} = \frac{dp}{dt}$$

 $P_f - P_i = \int_{i_D}^{i} F_{i_D} dt = area under F - t graph$ I = Impulse = $P_f - P_i = \int_{p_i}^{t} F_{ip} dt$ = area of

ROD SLIDING ON A WALL

velocity of B towards $A = v \sin \theta$ velocity of A away from $B = ucos \theta$

FRICTION

Static friction

- It is a self adjusting force.
- The opposing force that comes into play, when object tends to move over the surface of other object, but the actual motion has not yet started.
- As applied force increases static friction also increases.
- If the applied force is increased than the force of static friction also increases.
- The body doesn't move untill maximum value of static friction is attained
- The value is called limiting friction or f

Kinetic friction

If the applied force is increased further and sets the body in motion, the friction opposing the motion is called kinetic friction.

ANGLE OF FRICTION

i) $F_{ext} = 0$

 $0 \le tan\theta \le \mu_c$ N < R < N $1+\mu_s^2$

iii)
$$f_{ext} = f_{smax}$$

$$R_{\text{max}} = N \sqrt{1 + \mu_s^2}$$

Angle made by resultant of normal (N) & frictional force(f) with normal

$$R = \sqrt{N^2 + f_s^2}$$
 R is resultant

$$\tan \theta = \frac{f_s}{N}$$

When
$$f_s = f_{s \text{ max}} R = N \sqrt{1 + \mu_s^2}$$

tan $\theta = \mu_e$ μ_e is Coefficient of friction

ANGLE OF REPOSE

iv) f > f smax

 θ = Angle of kinetic friction

As angle of inclined plane increases, R remains constant and when sliding starts R starts decreasing.

Variation of angle of friction.

As angle of inclined plane increases, angle of friction will also increases and as sliding starts its value becomes constant and $tan\theta = \mu_1$

Minimum & Maximum force (applied parallel to inclined plane)

 $F_{min} = mg (sin\theta - \mu_c cos\theta)$

is the minimum force required to angle of inclined plane is greater than angle of repose

 $mg(sin\theta - \mu_c cos\theta) \le F \le mg(sin\theta + \mu_c cos\theta)$

VERTICAL TRUCK BOX

If $a_0 > \frac{g}{\mu_2}$ then box does not slip

LAWS OF MOTION

PULLING FORCE & PUSHING FORCE

Fcosθ ≥ μ_s (mg-Fsinθ) $F_{pulling} = \frac{\mu_s mg}{\cos\theta + \mu \sin\theta}$

$$\mathsf{F} \ge \frac{\mu_{\mathsf{s}} \mathsf{m} \mathsf{g}}{\mathsf{cos} \theta + \mu_{\mathsf{s}} \mathsf{sin} \theta}$$

 $F\cos\theta \ge \mu_s(mg+F\sin\theta)$