506-58-13

ITS CO-ORBITING PLATFORMS, ARE NEEDED THAT ARE EVOLVABLE, ADAPTIVE, AND FAULT TOLERANT, MEET SAFETY RELATED CRITICALITIES; AND 3) THAT HIGH PERFORMANCE (>100 MBPS) IS REQUIRED COMMUNICATION LINKS OFFERS DYNAMIC AND HIGH PERFORMANCE ACCOMMODATION, AND 2) ALTERNATE PERFORMANCE PROCESSES; 2) THAT THE NETWORK SHOULD POSSESS FAULT TOLERANT PROPERTIES TO A NETWORK THAT USES FIBER OPTICS LINKS AND OPTICAL NODES; FIBER OPTICS WITH WAVELENGTH IF SPACE STATION IS TO HAVE AN INTEGRATED SYSTEM DATA NETWORK FORM WHERE VIDEO, VOICE, LOCAL AREA INFORMATION NETWORKS ARE CONSIDERED A MOST LIKELY TECHNOLOGY SOLUTION; ITS TOLERANT) PROPERTIES. ALSO, THE HIGH PERFORMANCE REQUIREMENT LEADS TO THE CONCEPT OF COMMUNICATION LINKS PROVIDE A CAPABILITY FOR SELF-CORRECTING AND REPAIRING (OR FAULT INFORMATION DATA SYSTEMS FOR ADVANCED AEROSPACE MISSIONS, SUCH AS SPACE STATION AND PRINCIPLE NEEDS ARE: 1) THAT INFORMATION FLOW BETWEEN DEVICES ON A NETWORK AND ITS HELPS MEET THESE NEEDS WITH THE FOLLOWING FEATURES: 1) SIMULTANEOUS ADAPTABLE DATA CONTROL REQUIRES IMPROVEMENT, PARTICULARLY FOR MODERATELY OR TIGHTLY COUPLED HIGH AND DATA ARE TO BE SIMULTANEOUSLY ACCOMMODATED. THE BRAIDED MESH FORM OF NETWORK DIVISION MULTIPLEXING WOULD BE USED.

STRUCT A LABORATORY HIGH PERFORMANCE NETWORK, POPULATE IT WITH HIGH PERFORMANCE NETWORK MULTIPLE PATH DATA COMMUNICATIONS FROM/TO OTHER NODES, AND PROVIDE FOR OVERALL CONTROL CURRENTLY BEING DEVELOPED THROUGH INTEGRATED OPTICS. FUTURE EFFORTS WOULD BE TO CON-THIS EFFORT IS TO RESEARCH AND CHARACTERIZE THE ARCHITECTURAL ISSUES OF THE BRAIDED MESH FORM OF NETWORK, AND ALSO TO DEVELOP AN OPTICAL NODE WHICH WOULD FORM THE USER OF THE NETWORK, SUCH A NODE NEEDS A MEANS OF LOW LOSS OPTICAL SWITCHING, WHICH IS INTERFACE INTO THE NETWORK, CONTROL USER ACCESS TO THE NETWORK, PROVIDE ADAPTABLE USER DEVICES, AND EVALUATE/CHARACTERIZE THE NETWORK,

INFORMATION NETWORK ARCHITECTURES

506-58-13/N. MURRAY

OBJECTIVE

INFORMATION NETWORK ARCHITECTURE - RESEARCH AND DEVELOP INFORMATION NETWORKS TO MEET THE SPACE STATION NEEDS OF SELF-CORRECTING AND REPAIRING, HIGH PERFORMANCE, EVOLVABILITY, ADAPTABILITY, SECURITY, AND EFFICIENCY.

RESEARCH, EVALUATE AND CHARACTERIZE THE ARCHITECTURAL TYPE NETWORKS.

- CENTRAL CONTROL, STATIC, SELF CORRECTING/REPAIRING (MESH)

- DISTRIBUTED CONTROL, ADAPTIVE, SELF CORRECTING/REPAIRING (MESH)

IN-HOUSE EMULATION RTI/NORTH CAROLINA STATE UNIVERSITY UNIVERSITY OF ILLINOIS, URBANNA C. S. DRAPER LABS

RESEARCH AND DEVELOP AN ADAPTIVE OPTIC NODE:

BATTELLE MEMORIAL INST.

- INTERMEDIATE OPTIC NODE

- OPTIC X-SWITCH TEST ARTICLE

HONEYWELL INC.

- FINAL OPTIC NODE

RESEARCH, EVALUATE AND CHARACTERIZE A HIGH PERFORMANCE, ADAPTIVE, OPTICAL NODE TYPE NETWORK, (FOCUSED TECHNOLOGY PROPOSAL)

MANNED SPACE STATION

REG	REQUIREMENTS FOR INFORMATION PROCESSING	CRITICALITY	PERFORMANCE
2 :-	EXPERIMENTS AND MANUFACTURING OBSERVATIONS	нтен	MODERATE
 	O EARTH O NEAR EARTH O SOLAR SYSTEM O DEEP SPACE		
w.	COMMUNICATIONS	нген	MODERATE
4.	CONSTRUCTION	HIGHER	HIGH
5.	STABILITY AND CONTROL	HIGHEST	MODERATE
٠.	AUTONOMY/AUTOMAINTENANCE	HIGHEST	MODERATE
7.	HOUSEKEEPING	HIGHEST	MODERATE
CRIT	CRITICALITY - HIGHEST IMPLIES MAN RATED OR SPACECRAFT RATED SAFETY. HIGH IMPLIES HIGH COST BUT NOT SAFETY RELATED.	SPACECRAFT RATED SAF F SAFETY RELATED.	ETY.
PERF	PERFORMANCE - COMMUNICATION • MODERATE ~ 50 MBPS • HIGH > 100 MBPS) MBPS PROCESSING 3PS	• MODERATE ~ 10 MOPS • HIGH > 50 MOPS

SUMMARY CHARACTERISTICS OF DATA TRAFFIC SOURCES

DELAY REQUIRE.	ALMOST Instantaneous	VARIABLE	FRACTION SEC. TO SECONDS	SECONDS TO MINUTES	SECONDS TO MINUTES	SECONDS TO Hours	ALMOST Instantaneous
HOLDING TIME	FONG	FONG	SHORT	SHORT	SHORT	MED TO LONG	LONG
CALL GEN. RATE	FOM	FOM	HIGH	FOM	FOM	ГОМ	ПОМ
RATE BPS	94K	94K	94K	94K	TBD	TBD	100M
NDM, MESSAGE LENGTH (BITS)	CONTINUOUS	CONTINUOUS	HUNDREDS TO THOUSANDS	HUNDREDS TO THOUSANDS	HUNDREDS	GREATER THAN	CONTINUOUS
TRAFFIC TYPE	STREAM VOICE	STREAM DATA	INTERACTIVE	INQUIRY/ RESPONSE DATA	DATA BASE Update	BULK DATE TRANSFER	DIGITAL VIDEO

INFORMATION NETWORK ARCHITECTURES

506-58-13/N. MURRAY

- INTEGRATED DATA, VOICE, VIDEO
- KEY ISSUES OF NETWORKS
- INFORMATION FLOW/OPERATING SYSTEM (SEPARATE DATA, CONTROL COMMUNICATIONS)
- SELF-CORRECTING AND REPAIRING/FAULT TOLERANCE (MESH TOPOLOGY)
- HIGH PERFORMANCE (FIBER OPTICS/INTEGRATED OPTICS, MESH TOPOLOGY)

METHODS FOR TIGHTLY COUPLED, HIGH PERFORMANCE, DISTRIBUTED PROCESSING ARE INADEQUATE; SELF SOLUTION THAT AFFECTS BOTH HARDWARE AND SOFTWARE. CURRENT SYSTEMS USE EXTENSIVE SOFTWARE INFORMATION FLOW BETWEEN COMPUTERS AND OTHER DEVICES REQUIRES A SYSTEM AND ARCHITECTURAL REAL-TIME, FULL MOTION, DIGITAL COLOR VIDEO REQUIRES DATA RATES IN EXCESS OF 100 MBPS. FOR THE INFORMATION FLOW RESULTING IN A SOFTWARE BOTTLENECK; CONTROL ALGORITHMS AND CORRECTING AND REPAIRING TECHNIQUES ARE NOT BEING FULLY APPLIED TO TODAY'S SYSTEMS.

- o HIGH PERFORMANCE o
- o FAULT TOLERANT o

EMULATION NODES

ALL PROCESSORS MOTOROLA M68K

NETWORK

ROUTING ALGORITHMS

1) NON-ADAPTIVE

- NO ATTEMPT TO ADJUST TO CHANGING NET CONDITIONS
- FIXED OR RANDOM ROUTING

2) CENTRALIZED ADAPTIVE

- CENTRAL AUTHORITY DICTATES ROUTING DECISIONS
- MORE NEAR OPTIMAL ROUTING
- ROUTING CONTROL CENTER CAN REPRESENT PERFORMANCE BOTTLENECK

3) ISOLATED ADAPTIVE

- INDEPENDENT OPERATION
- ADAPTABILITY VIA EXCLUSIVE USE OF LOCAL NODE DATA

4) DISTRIBUTED ADAPTIVE

- UTILIZE INTERNODE COOPERATION
- NODES EXCHANGE INFORMATION TO ARRIVE AT ROUTING DECISIONS

-MCQUILLAN, BBN

PATH SEARCH ALGORITHM

Purpose

- 1. Routing data through a meshed network
- 2. Establishing a circuit set up
- 3. Adaptive to topological changes
- 4. Simultaneous communication desirable

ROUTING ALGORITHM

Example: for node 3

DESTINATION NODE

	<u> </u>						
2,6,7	LP 1 → 5	LP 0 → 4	LP 3 → 2	LP 2 → 1			
4	LP 0 → 4	LP 1 → 5	LP 3 → 2	LP 2 → 1			
3	1	1	i	I			
2	LP 3 → 2	LP 2 → 1	LP 0 → 4	LP 1 → 5			
	LP 2 → 1	LP 3 → 2	LP 0 → 4	LP 1 → 5			
•	-	7	က	4			
	Link Priority						

85018364.5

ADAPTIVE NODE DEFINITION

TECHNOLOGY PARTITIONING OF NODE INTERFACE UNIT

INTELLIGENT OPTIC NODE TECHNOLOGY TIMELINE

FUNCTIONS	NEAR TERM (1-2 YEARS)	MEDIUM TERM (3-5 YEARS)	LONG TERM (5-10 YEARS)
• E/0	GaAlAs (discrete)	GaAlAs with drive/ detector electronics	Monolithic GaAs
• 0/E	Si		
• Fiber	Single mode, non-polarization preserving	ation preserving	polarization preserving?
• Taps, Delay	Fiber	SAW	TBD
Amplification	Si	GaAs	Monolithic GaAs
• Switching	LiNbO3 (bulk)	LiNbO ₃ / ZnO ?	ZnO? / ALGaAs
• Synchronization	Si / GaAs	GaAs (discrete)	Monolithic GaAs
• Frame/Address Recognition	Fiber / GaAs	SAW / GaAs	TBD
• Conflict Resolution	Si / GaAs	GaAs	Monolithic GaAs
• Routing	V	Si / GaAs (d	
Higher Level Protocols	c È	Si	

स्के कार्यक्षेत्र के अस्ति। कृष्यकृष्टित्रम्

SOURCE MATERIALS

WW	MATERIALS GaAs/GaA1As	InGaAsP	A11 nGaAs	InGa As	GaN	GaAsP
EMISSION WAVELENGTH	.829 µm	1.0-1.6 µm	1.0-20 ມເຕ	3.3-3.8	.4 µm	VISIBLE
LASERS	×	×	×	ON	ON	N0?
LED's	×	×	×	×	X?	×
INTEGRATABLE	YES	YES	YES		ON	ON
WITH ELECTRONICS	GaAs	InGaAs (LOW LEVEL)			NO	ON
EASE OF FABRICATION	MATURE	ALMOST MATURE LPE GROWTH	EXPERIMENTAL MBE/MOLVD	NEXT TO IMPOSSIBLE LPE	CONCEPTUAL	MATURE

ORIGINAL PAGE IS OF POOR QUALITY

cross	09	10	06	09
bar	40	06	10	40
Voltage	0 volts	+40 volts (-2 is +)	-20 volts	-40 volts

X-SWITCH LOSS ESTIMATES

	POLARIZATION PRESERVING FIBER	SINGLE MODE FIBER	MULTI MODE FIBER
INPUT	0.5	3,5	٥.
CR0SS ⁽¹⁾	0.1	0.1	0.1
BAR(2)	$0.2^{(3)}$	0,2 ⁽³⁾	$0.2^{(3)}$
WAVEGUIDE	0.5	5"0	0.5
OUTPUT	0.5	0.5	0.5
TOTAL	1.8 DB	4.8 DB	1.3 + X ⁽⁴⁾

(1) A SWITCH IN CROSS STATE
(2) A SWITCH IN THE BAR STATE
(3) TOTAL EXCESS LOSS
(4) X IS UNBOUNDED; COULD BE TIME DEPENDENT

OF POOR QUALITY

COMMON FEATURES FOR ALTERNATIVE DISTRIBUTED OPTICAL SWITCHING ARCHITECTURES

				:
ARCHITECTURE	LINEAR/STAR!	RING	ICIRCUIT	I PACKE
FUNCTIONS I	BUS :	BUS	SWITCH	I SWITC
	1		<u>MESH</u>	I MESH
!TRANSMITTER/ !	BURST I	SYNCHRONOUS	B U	JRST
EL RECEIVER 1	ASYNC I		LAS	YNC
<u></u> SWITCH 1	NO 1	1		
_I_COUPLERI				
SI CHANNELIZATION I				
<u> </u>		ŧ.		
AMPLIFIER I		COMMON FE	EATURES	
_ I_DELAYI				
I ADDRESS I				
✓ ∠I COMPARE I I I I I I I I I I I I I				
Y ST COMPARE		 •	SLOW	I FAST
I_RESOLUTION!		V i		<u> </u>
I ROUTING/GATEWAY I			-	1
jel HI LEVEL I	RING OR	1	MINIMAL	I SIMILA
PROTOCOL I	STAR	1		1 TO
	COMMON.	1		I RING O
<u> </u>				I STAR

TABLE (1)

