Private GPT LLMs: Azure OpenAl Service sicher deployen mit Terraform

think tecture

DWX 2024

Kenny Pflug
@feO2x
Software Architect Consultant

Kenny Pflug

Consultant Software Architect @ Thinktecture AG

- Distributed Systems with ASP.NET Core
- .NET internals
- Cloud-native

Thanks, Thorsten Hans 🍪

Today's menu

Main Course

- What is Azure OpenAl service?
- How can I integrate it with Azure private networking?
- How can I integrate it into apps available via the internet?
 (with Terraform Demo)
- How can I integrate it into my on-premise apps?

On the side

How can I stream responses from Azure OpenAI Service to my frontend?

What is Azure OpenAl Service?

- Platform as a Service (PaaS) offer from Microsoft Azure
- Run and interact one or more Large Language Models (LLMs) in one service instance
- The underlying Cloud infrastructure is shared with other Azure customers
- Built on top of Azure Resource Manager (ARM) and can be automated by Terraform,
 Pulumi, or Bicep
- Currently, you need to apply so that your
 Azure Subscription can use OpenAl Service

Demo Time A quick look at the final product

OpenAl Service PaaS – The Defaults (1)

When creating an Azure OpenAl Service resource, you get the following:

- A cognitive service instance, with the type of "OpenAI"
- A firewall for traffic management, as with almost every Azure PaaS service
- A public IP address which is routable via the internet
- Access to the service instance is authenticated via an API key

OpenAl Service PaaS – The Defaults (2)

For the public IP Address, an A record is created in Azure's Public DNS zone, which is used for IP Address resolution and TLS connections.

Why protect Azure OpenAl Service?

- By default, instances are available via the internet
- The service is secured via client access keys – this of course can become troublesome when one of these keys leak
- This becomes outright dangerous when an LLM has access to company data via data storage, indexes, or in Retrieval Augmented Generation (RAG) scenarios

Let's start with Virtual Networks...

- In Azure, Virtual Networks (VNETs) represent the core building block for private networking
- A VNET lives in a single subscription and single region, but can span multiple Availability Zones (AZs)
- A VNET can be divided into subnets
- Typically, RFC1918 CIDR ranges are used within VNETs

...and add Private Link

- Azure Private Link is one way to connect a PaaS service to a VNET
- From a subnet, an IP address will be allocated that becomes a read-only Network Interface Card (NIC)
- This NIC routes packets to the OpenAl service instance within Azure
- This works across Azure regions

Public DNS and Private Endpoints

When creating a Private Link, records in the Azure Public DNS will change:

- A new A record for myinstance.privatelink.openai.azure. com will be created which points to the public IP address of our OpenAl service instance
- the previous A record for myinstance.openai.azure.com will be turned into a CNAME record which points to the new A record

Important: our OpenAl Service instance is still available via the internet!

Azure Public DNS

CNAME Record

myinstance.openai.azure.com

myinstance.privatelink.openai.azure.com

Private DNS Zone

Services in our VNET want to access the private endpoint via its domain name.

- A private DNS zone encapsulates a domain and provides records for it to linked VNETs
- In our private DNS zone, we need to define an A record which points to the IP of the Private Endpoint

Introducing Network Security Groups

Network Security Groups (NSGs) can be used to allow and deny traffic

- They can be applied to VNET subnets or individual NICs (prefer the former)
- NSGs consist of rules that allow or deny traffic
- The sources and targets can be IPs, IP ranges, service tags, protocols, ports, or actions

Let's put it all together

Demo Time

Demo Time A close look at the source code

Stream data from Open AI to your frontend with C#

- The Azure.AI.OpenAI NuGet package can be used to access an (Azure) OpenAI service from C#.
- The key class here is OpenAIClient: the DTO you pass in are the messages and instructions for the AI assistant
- The call to the OpenAI will return an IAsyncEnumerable<T> which unfortunately is hard to use with JS/TS-based clients
- This is why we simply write plain text asynchronously to the response (long-living HTTP request)
- An alternative would be using SignalR

```
rivate static async Task StreamChatResponse(OpenAIClient openAiClient,
                                           OpenAiAccessOptions openAiAccessOptions,
                                           HttpResponse response,
                                           ChatDto dto,
                                           CancellationToken cancellationToken)
  response.StatusCode = StatusCodes.Status2000K;
  response.ContentType = "text/plain";
      new ChatRequestSystemMessage(
          "Please keep your answers short, they should be two paragraphs long or shorter.")
  messages.AddRange(
      dto.Messages.Select(
          m => m.Originator == Originators.Ai ?
              new ChatRequestUserMessage(m.Text)
  var options = new ChatCompletionsOptions(openAiAccessOptions.ModelName, messages)
      MaxTokens = 1000
  var streamingResponse = await openAiClient.GetChatCompletionsStreamingAsync(options, cancellationToken)
  await foreach (var item in streamingResponse)
      logger.Debug("{@StreamItem}", item);
      if (!item.ContentUpdate.IsNullOrEmpty()) // Do not ignore white space responses
          await response.WriteAsync(item.ContentUpdate, cancellationToken);
```


Receiving streams in Angular clients

- You can simply use the regular Angular HttpClient
- You need to report Progress, observe events, and the response type must be text
- The HTTP response will then not be buffered, but you will receive data from the observable every time the backend writes a chunk to the response body
- Depending on the HTTP event type, you can aggregate the data in a different way and provide a unified structure to the calling component

```
getAiResponse(chatMessages: ChatMessage[]): Observable<AiResponseDto> -
 const url = environment.apiBaseAddress + '/api/chat';
 const dto: ChatDto = { messages: chatMessages };
 return this.httpClient
   .post(
     url,
       reportProgress: true,
       observe: 'events',
       responseType: 'text'
     filter(event => event.type === HttpEventType.Response || event.type === HttpEventType.DownloadProgress)
     map(event => {
       let message: string = '';
       let isFinsihed: boolean = false;
       if (event.type === HttpEventType.DownloadProgress) {
         const progressEvent = event as HttpDownloadProgressEvent;
         if (progressEvent.partialText) {
          message = progressEvent.partialText;
       else if (event.type === HttpEventType.Response) {
         isFinsihed = true;
         if (event.body) {
          message = event.body;
       const responseDto: AiResponseDto = {
         message,
         isFinsihed
       return responseDto;
```

How can we further improve network security?

- Secure the web app with proper authentication (IDP, MFA)
- Implement a Hub-and-Spoke network topology with an Azure Firewall
- Secret management, for example via Azure Key Vault
- Save messages and responses
- Use advanced features that might require Sematic Kernel or LangChain support

How to connect to company networks to Azure VNETs?

There are several easy ways to connect your on-premise network to your Azure VNET:

- Point-to-Site (P2S): connects a single computer to the VNET – Azure Bastion is a managed solution
- Site-to-Site (S2S): connects a single on-premise network to a VNET

In both circumstances, an Azure VPN Gateway must be set up that allows access to the VNET.

Azure ExpressRoute

- VPN over the Internet might come with network fluctuations
- You can directly connect to Azure's Backbone network via ExpressRoute
- In a Peering Point facility, an ISP can connect your company network with Microsoft routers
- The "last mile" (from PP facility to your company network) is also usually provided by the ISP

Sources

- Security Best Practices for GenAl Applications (OpenAl) in Azure
- Azure OpenAl Service models
- Terraform Azure RM Cognitive Account Docs
- Angular HttpClient track and show request progress

Danke schön!

think tecture

Demos aus der Session:

https://github.com/thinktecture-labs/dwx-2024-host-

azure-openai-service-securely

https://www.thinktecture.com/wissen/

https://labs.thinktecture.com/

https://www.thinktecture.com/ueber-uns/karriere/

Werde Teil des Teams

Angular Developer mit UX/UI-Fokus (m/w/d)

ZUR STELLENBESCHREIBUNG >

.NET Developer mit Cloud-Fokus (m/ w/d)

ZUR STELLENBESCHREIBUNG >

Angular Developer (m/w/d)

ZUR STELLENBESCHREIBUNG >

Kenny Pflug

https://thinktecture.com/kenny-pflug