Discrete II Notes

Parth Mehrotra

February 15, 2017

Set Theory Review

Sets are collections of unique elements.

Complement

Everything that's not in the set. Denoted by A', A^C , or \overline{A}

Intersection

An operation that takes two sets, and returns the common elements between them. Denoted by $A\cap B$

Union

An operation that takes two sets, and returns a all the elements that are in A, B, and $A \cap B$. Denoted by $A \cup B$.

De Morgan's Laws

$$(A \cup B)^C = A^C \cap B^C$$
$$(A \cap B)^C = A^C \cup B^C$$

Disjoint Sets

Disjoint sets or **Mutually Exclusive** sets, are sets that have no elements in common. More formally: $(A \cup B) = \emptyset$

Intro to Probability

Sample Space of an experiment is the set of all possible outcomes of that experiment. An **event** is any collection (subset) of outcomes contained in the sample space S. An event is said to be **simple** if it consists of exactly one outcome and **compound** if it consists of more than one outcome.

Counting

For an ordered pair defined by (x, y) where x can be selected in n_1 ways, and y can be selected in n_2 ways, the number of pairs is n_1n_2 . Can be extended to k dimensions. This is known as the **Multiplication rule**.

Permutations

For k selections made with replacement on n distinct elements, there are n^k possible outcomes.

Without replacement however, there are n options for the first selection, n-1 choices for the next selection, and n-k+1 choice(s) for the k^{th} selection. This yields.

$$_{n}P_{k} = n(n-1)(n-2)\dots(n-k+1)$$

Combinations

Given n distinct objects, the number of **unordered** subsets of size k is given by ${}_{n}C_{k}$, or $\binom{n}{k}$ (n choose k).

$${}_{n}C_{k} = \frac{n!}{(n-k)!(k!)}$$

Overcounting

Overcounting with Groups

Bose Einstein