GIẢI CHI TIẾT ĐỀ SỐ 17

BẢNG ĐÁP ÁN PHẦN I

1.D	2.A	3.B	4.C	5.D	6.A	7.D	8.D	9.D	10.D
11.A	12.A								

BẢNG ĐÁP ÁN PHẦN II

Câu 1	a) Đúng	b) Đúng	c) Sai	d) Sai
Câu 2	a) Sai	b) Đúng	c) Sai	d) Đúng
Câu 3	a) Đúng	b) Đúng	c) Đúng	d) Sai
Câu 4	a) Sai	b) Sai	c) Đúng	d) Đúng

BẢNG ĐÁP ÁN PHẦN III

Câu 1: 8412	Câu 2: 12,7	Câu 3: 6	Câu 4: 62	Câu 5: 0,03	Câu 6: 100

- PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ Câu 1 đến Câu 12. Mỗi Câu hỏi thí sinh chỉ chọn một phương án.
- **Câu 1:** Ta có phương trình mặt phẳng (Oxz) là: y = 0
 - Khi đó khoảng cách từ điểm A(3;-2;4) đến mặt phẳng (Oxz) là:

$$d(A,(Oxz)) = \frac{|-2.1|}{\sqrt{1^2}} = 2$$

Chọn D.

Câu 2: • Ta có
$$\int (2x + \cos x) dx = x^2 + \sin x + C$$

Chọn A.

Câu 3: • Quan sát đồ thị hàm số đã cho dễ thấy, đồ thị hàm số có đường tiệm cận đứng là $x = -1 \Leftrightarrow x + 1 = 0$

Chọn B.

Câu 4: • Xét phương trình
$$5^x = 3 \Leftrightarrow x = \log_5 3$$

Chọn C.

Câu 5: • Ta có công thức tính tổng của 10 số hạng đầu tiên của cấp số cộng đã cho là:

$$S_{10} = \frac{10(u_1 + u_{10})}{2} = \frac{10(u_1 + u_1 + 9d)}{2} = \frac{10(1 + 1 + 9.2)}{2} = 100$$

Chon D.

Câu 6: • Xét hàm số
$$y = \frac{x^2 + 2x + 4}{x + 2}$$

- Điều kiện xác định: $x + 2 \neq 0 \Leftrightarrow x \neq -2$

- Đạo hàm
$$y' = \frac{\left(x^2 + 2x + 4\right)' \cdot \left(x + 2\right) - \left(x^2 + 2x + 4\right) \left(x + 2\right)'}{\left(x + 2\right)^2}$$

$$=\frac{(2x+2)(x+2)-(x^2+2x+4)}{(x+2)^2}$$

$$=\frac{2x^2+6x+4-x^2-2x-4}{(x+2)^2}$$

$$=\frac{x^2+4x}{\left(x+2\right)^2}$$

- Giải
$$y' = 0 \Leftrightarrow \frac{x^2 + 4x}{(x+2)^2} = 0 \Leftrightarrow x^2 + 4x = 0 \Leftrightarrow \begin{bmatrix} x = -4 \\ x = 0 \end{bmatrix}$$

- Ta có bảng biến thiên:

x		4	-2	,	0		$+\infty$
 <i>y'</i>	+ () –		_	0	+	
y	1	\			×	/	1

- Quan sát bảng biến thiên dễ thấy, hàm số đã cho nghịch biến trên các khoảng $\left(-4;-2\right)$ và $\left(-2;0\right)$

Chọn A.

- **Câu 7:** Theo lý thuyết hàm số $y = \sin x$, ta có:
 - Hàm số tuần hoàn với chu kỳ $2\pi \implies$ Loại A, C
 - Đồ thị hàm số đối xứng qua gốc tọa độ \Rightarrow Loại B

Chọn D.

Câu 8: • Xét tích phân
$$\int_{1}^{4} [f(x)+2] dx = \int_{1}^{4} f(x) dx + \int_{1}^{4} 2 dx$$

 $\Leftrightarrow F(x)|_{1}^{4} + 6 = F(4) - F(1) + 6 = 9 - 3 + 6 = 12$
Chọn D.

Câu 9: • Xét bất phương trình
$$\log_3(x-2) < 1$$
 (1)

- Điều kiện xác định $x-2>0 \Leftrightarrow x>2$
- Khi đó (1) $\Leftrightarrow x-2 < 3 \Leftrightarrow x < 5$
- Vậy tập nghiệm của bất phương trình đã cho là: (2;5)

Chọn D.

Câu 10: • Ta có công thức tính khoảng biến thiên của mẫu số liệu là $R = a_{k+1} - a_1$

- Khi đó khoảng biến thiên của mẫu số liệu đã cho là: R = 110 - 50 = 60

Chọn D.

Câu 11: • Gọi A là biến cố: "Xạ thủ A bắn trúng mục tiêu" B là biến cố: "Xạ thủ B bắn trúng mục tiêu"

$$\Rightarrow \begin{cases} P(A) = 0.8 \\ P(B) = 0.9 \end{cases} \Rightarrow \begin{cases} P(\overline{A}) = 1 - P(A) = 0.2 \\ P(\overline{B}) = 1 - P(B) = 0.1 \end{cases}$$

- Xét biến cố C: "Có đúng một xạ thủ bắn trúng mục tiêu"
- Trường hợp 1: Xạ thủ $\it A$ bắn trúng mục tiêu, xạ thủ $\it B$ bắt trượt
- \Rightarrow Xác suất của trường hợp này là $P(A).P(\overline{B}) = 0,8.0,1 = 0,08$
- Trường hợp 2: Xạ thủ A bắn trượt, xạ thủ B bắt trúng mục tiêu \Rightarrow Xác suất của trường hợp này là $P(\overline{A}).P(B) = 0, 2.0, 9 = 0,18$
- Vậy P(C) = 0.08 + 0.18 = 0.26

Chon A.

- Câu 12: Giả thiết cho S.ABCD là hình chóp đều:
 - Đáy ABCD là hình vuông \Rightarrow $AC \perp BD$. Đáp án B đúng
 - $SO \perp (ABCD) \Rightarrow SO \perp CD$. Đáp án D đúng
 - Ta có

$$\begin{cases} BD \perp AC \\ BD \perp SO \left(SO \perp (ABCD)\right) \Rightarrow BD \perp (SAC) \Rightarrow BD \perp SC \cdot \text{Dáp} \\ AC \cap SO = \{O\} \end{cases}$$

án C đúng

Chọn A.

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ Câu 1 đến Câu 4. Trong mỗi ý a), b), c), d) ở mỗi Câu, thí sinh chọn đúng (Đ) hoặc sai (S).

Câu 1: a) Đúng – Giải thích:

•
$$v_A' = \frac{1}{150}t^2 - \frac{47}{225}t + \frac{64}{45}$$

- Giải
$$v_A' = 0 \Leftrightarrow t = 10$$

 $t = \frac{64}{3}$, ta có bảng biến thiên:

 \Rightarrow Tốc độ chạy lớn nhất của vận động viên A trong khoảng 20 giây đầu là 6m/s tại thời điểm t = 10(s)

b) Đúng – Giải thích:

• Vì đồ thị hàm số $y = at^2 + bt$ đi qua các điểm (5;6),(25;10)

$$\Rightarrow \begin{cases} 25a + 5b = 6 \\ 625a + 25b = 10 \end{cases} \Leftrightarrow \begin{cases} a = -\frac{1}{25} \\ b = \frac{7}{5} \end{cases} \Rightarrow v_B = -\frac{1}{25}t^2 + \frac{7}{5}t(m/s)$$

• Khoảng cách của hai vận động viên sau 30 giây kể từ khi xuất phát là:

$$\left| s_A - s_B \right| = \left| \int_0^{30} v_A(t) dt - \int_0^{30} v_B(t) dt \right| = \left| \int_0^{30} \left(\frac{1}{450} t^3 - \frac{47}{450} t^2 + \frac{64}{45} t \right) dt - \int_0^{30} \left(-\frac{1}{25} t^2 + \frac{7}{5} t \right) dt \right| = \left| 150 - 270 \right| = 120 (m)$$

c) Sai – Giải thích:

• Vì
$$v_B = -\frac{1}{25}t^2 + \frac{7}{5}t \Rightarrow a = -\frac{1}{25}$$

d) Sai – Giải thích:

• Quãng đường vận động viên B chạy được trong 30 giây đầu là:

$$s_B = \int_0^{30} v_B(t) dt = \int_0^{30} \left(-\frac{1}{25} t^2 + \frac{7}{5} t \right) dt = 270(m)$$

Câu 2:

- a) Sai Giải thích:
- Khoảng cách d(m) từ nguồn sáng đến điểm P là: $d = \sqrt{h^2 + 12^2} = \sqrt{h^2 + 144}(m)$
- Cosin của góc θ được tính bởi: $\cos \theta = \frac{h}{d} = \frac{h}{\sqrt{h^2 + 144}}$
- Vì cường độ sáng I tại một điểm P trên vòng xuyến tỉ lệ thuận với cosin của góc θ và tỉ lệ nghịch với bình phương khoảng cách d(m) từ nguồn sáng đến điểm P

$$\Rightarrow I = f(h) = k \cdot \frac{\cos \theta}{d^2} = k \cdot \frac{h}{\sqrt{h^2 + 144}} \cdot \frac{1}{\left(h^2 + 144\right)} = k \cdot \frac{h}{\left(h^2 + 144\right)^{\frac{3}{2}}}$$

$$\Rightarrow f'(h) = k \cdot \frac{1 \cdot \left(h^2 + 144\right)^{\frac{3}{2}} - \frac{3}{2} \cdot 2h \cdot \left(h^2 + 144\right)^{\frac{1}{2}} \cdot h}{\left(h^2 + 144\right)^3} = k \cdot \frac{\left(h^2 + 144\right) \sqrt{h^2 + 144} - 3h^2 \cdot \sqrt{h^2 + 144}}{\left(h^2 + 144\right)^3}$$

$$\Rightarrow f'(h) = k \cdot \frac{\left(144 - 2h^2\right) \sqrt{h^2 + 144}}{\left(h^2 + 144\right)^3} = k \cdot \frac{144 - 2h^2}{\left(h^2 + 144\right)^2 \sqrt{h^2 + 144}}$$

b) Đúng – Giải thích:

• Tại $f'(h) = 0 \Leftrightarrow h = 6\sqrt{2}(h > 0)$ ta có bảng biến thiên:

h	0		$6\sqrt{2}$		$+\infty$
f (h)'		+	0	-	
f (h)	0	1	$\frac{\text{k.6}\sqrt{2}}{(6\sqrt{6})^3}$		0

 \Rightarrow Để cường độ ánh sáng I lớn nhất thì cột đèn phải cao $6\sqrt{2}m$

c) Sai – Giải thích:

$$\bullet \cos \theta = \frac{h}{d} = \frac{h}{\sqrt{h^2 + 144}}$$

- d) Đúng Giải thích:
- Vì cường độ sáng I tại một điểm P trên vòng xuyến tỉ lệ thuận với cosin của góc θ và tỉ lệ nghịch với bình phương khoảng cách d(m) từ nguồn sáng đến điểm P

$$\Rightarrow I = k \cdot \frac{\cos \theta}{d^2} (k > 0)$$

Câu 3: a) Đúng – Giải thích:

• Số tiền Aria nợ sau tháng đầu tiên được tính bởi công thức: $A_1 = P(1+r) - M(\$)$

b) Đúng – Giải thích:

• Vì lãi suất 1 năm (12 tháng) có lãi suất 8,25% \Rightarrow Lãi suất 1 tháng là $r = \frac{8,25\%}{12} = 0,6875\%$

c) Đúng – Giải thích:

• Vì sau 30 năm Aria trả hết nợ ta có:

$$0 = P(1+r)^{30.12} - \frac{M}{r} \left[(1+r)^{30.12} - 1 \right] \Leftrightarrow M = \frac{P.(1+r)^{360} \cdot r}{(1+r)^{360} - 1} \approx 2179(\$)$$

• Số tiền Aria trả sau 30 năm là $30.12.M = 784322(\$) \Rightarrow \frac{784322}{P} = \frac{784322}{290000} = 2,7 > 2,5$

d) Sai – Giải thích:

• Vì mỗi tháng Aria quyết định trả thêm 250\$ $\Rightarrow M' = M + 250 = 2429(\$)$

• Thời gian để Aria trả hết tiền mua nhà là:

$$0 = P(1+r)^n - \frac{M'}{r} \left[(1+r)^n - 1 \right] \Leftrightarrow 0 = \left(P - \frac{M'}{r} \right) (1+r)^n + \frac{M'}{r} \Leftrightarrow \left(1+r \right)^n = \frac{M'}{r \cdot \left(\frac{M'}{r} - P \right)} = \frac{M'}{M' - P \cdot r}$$

$$\Leftrightarrow n = \log_{(1+r)} \left(\frac{M'}{M' - P.r} \right) = 251 \text{ (tháng)} \approx 21 \text{ năm}$$

Câu 4:

Chiều cao (cm)	[70;80)	[80;90)	[90;100)	[100;110)	[110;120)
Số cây	9	20	33	25	15

a) Sai – Giải thích:

• Nếu tăng số cây của mỗi nhóm lên gấp 3 lần $\Rightarrow \begin{cases} \bar{x}' = \bar{x} \\ n' = 3.n \end{cases} \Rightarrow s^2' = s^2$

⇒ Phương sai của mẫu số liệu không đổi

b) Sai – Giải thích:

• Chiều cao trung bình của các cây vú sữa được tính bởi:

$$\overline{x} = \frac{9.75 + 20.85 + 33.95 + 25.105 + 15.115}{9 + 20 + 33 + 25 + 15} \approx 96,67 (cm)$$

c) Đúng – Giải thích:

• Cỡ mẫu của mẫu số liệu ghép nhóm là n = 9 + 20 + 33 + 25 + 15 = 102

d) Đúng – Giải thích:

• Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là: 120-70=50(cm)

• Khoảng biến thiên của mẫu số liệu gốc là: 117-71=46(cm)

 \Rightarrow 50 – 46 = 4(cm) \Rightarrow Khoảng biến thiên mẫu số liệu ghép nhóm đã cho lớn hơn bảng biến thiên của mẫu số liệu gốc là 4cm.

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ Câu 1 đến Câu 6.

- **Câu 1:** Giả sử hình chóp tứ giác đều *S.ABCD* minh họa cho kim tự tháp Lourve
 - Gọi O là tâm của đáy $ABCD \Rightarrow SO$ là đường cao của chóp đều $S.ABCD \Rightarrow SO = 20,6$
 - Lại có góc giữa cạnh bên và mặt đáy là

$$39^{\circ}46'22" \Rightarrow SCO = 39^{\circ}46'22"$$

- Mà
$$\tan SCO = \frac{SO}{OC} \Rightarrow \tan SCO = \frac{20,6}{OC} \Rightarrow OC = \frac{20,6}{\tan SCO}$$

• Hình chóp tứ giác đều có đáy ABCD là hình vuông

$$\Rightarrow AC \perp BD$$
 và $AC = BD$

$$\Rightarrow BC = \sqrt{OC^2 + OB^2} = \sqrt{2OC^2} = OC\sqrt{2}$$

$$\Rightarrow V_{S.ABCD} = \frac{1}{3}.SO.S_{ABCD} = \frac{1}{3}.20, 6.BC^2 = \frac{1}{3}.20, 6.OC^2.2 = \frac{1}{3}.20, 6.2.\frac{20, 6^2}{\left(\tan 39^\circ 46^\circ 22^\circ\right)^2} = 8412\left(m^3\right)$$

Đáp án: 8412

- **Câu 2:** Trong hệ tọa độ Oxy, gắn A là gốc tọa độ, AB gắn với trục hoành, AD gắn với trục tung $\Rightarrow H(0;40); Q(20;60); F(100;60)$
 - Giả sử đường cong có phương trình $f(x) = ax^3 + bx^2 + cx + d(a > 0)$

$$\Rightarrow f'(x) = 3ax^2 + 2bx + c$$

- Vì ba điểm H,Q,F thuộc đường cong, Q là điểm cực trị của đồ thị hàm số nên ta có:

$$\begin{cases} f(0) = 40 \\ f(20) = 60 \\ f(100) = 60 \\ f'(20) = 0 \end{cases} \Leftrightarrow \begin{cases} d = 40 \\ 8000a + 400b + 20c + d = 60 \\ 1000000a + 10000b + 100c + d = 60 \\ 1200a + 40b + c = 0 \end{cases} \Rightarrow \begin{cases} a = \frac{1}{2000} \\ b = -\frac{7}{100} \\ c = \frac{11}{5} \\ d = 40 \end{cases}$$

$$\Rightarrow f(x) = \frac{1}{2000}x^3 - \frac{7}{100}x^2 + \frac{11}{5}x + 40$$

- Vì M là trung điểm của AB nên M(50;0). Do đó, hoành độ điểm I là x=50.
- Ta có tung độ điểm I là $f(50) = \frac{75}{2}$.

- Do đó
$$MI = \frac{75}{2}(m) \Rightarrow NI = 80 - \frac{75}{2} = \frac{85}{2}(m)$$
.

 \Rightarrow Tổng số tiền mắc dây đèn trang trí đoạn MN là: $\frac{85}{2}.140 + \frac{75}{2}.180 = 12700$ đồng hay 12,7 triệu đồng.

Đáp án: 12,7

Câu 3: • Áp dụng phương pháp trải hình ta được

- Quãng đường ngắn nhất con kiến đi là M_1M_2 với $M_1(3;0); M_2(30;27) \Rightarrow \overline{M_1M_2}(27;27)$
- \Rightarrow Phương trình đường thẳng M_1M_2 : $\begin{cases} qua M_1(3;0) \\ VTCP \vec{u}(27;27) \end{cases}$ là $\frac{x-3}{27} = \frac{y-0}{27} \Leftrightarrow y = x-3$
- Ta có P(9;6);Q(12;9);R(18;15);S(21;18);T(27;24)
- Mà các điểm thuộc các mặt phẳng (OBB'O');(ODCB);(O'D'DO) đều có ít nhất 1 trong 3 (hoành độ, tung độ, cao độ) bằng 0 nên chỉ có các điểm nằm giữa $PQ;RS;TM_2$ thỏa mãn
- Có 6 điểm thỏa mãn là (10;7);(11;8);(19;16);(20;17);(28;25);(29;26)

Đáp án: 6

• Ta có $\overrightarrow{AM}(a;b-1;c-2); \overrightarrow{BM}(a-2;b+2;c-1); \overrightarrow{CM}(a+2;b;c-1)$

• Ta có
$$\overrightarrow{AM}(a;b-1;c-2); \overrightarrow{BM}(a-2;b+2;c-1); \overrightarrow{CM}(a+2;b;c-1)$$

- Lại có hệ $\begin{cases} AM = BM \\ AM = CM \Rightarrow \begin{cases} \sqrt{a^2 + (b-1)^2 + (c-2)^2} = \sqrt{(a-2)^2 + (b+2)^2 + (c-1)^2} \\ \sqrt{a^2 + (b-1)^2 + (c-2)^2} = \sqrt{(a+2)^2 + b^2 + (c-1)^2} \end{cases}$

$$\begin{cases} AM = BM \\ AM = CM \Rightarrow \begin{cases} \sqrt{a^2 + (b-1)^2 + (c-2)^2} = \sqrt{(a+2)^2 + b^2 + (c-1)^2} \\ 2a + 2b + c - 3 = 0 \end{cases}$$

$$\begin{cases} a^{2} + b^{2} - 2b + 1 + c^{2} - 4c + 4 = a^{2} - 4a + 4 + b^{2} + 4b + 4 + c^{2} - 2c + 1 \\ \Leftrightarrow \begin{cases} a^{2} + b^{2} - 2b + 1 + c^{2} - 4c + 4 = a^{2} + 4a + 4 + b^{2} + c^{2} - 2c + 1 \\ 2a + 2b + c - 3 = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} 4a - 6b - 2c - 4 = 0 \\ 4a + 2b + 2c = 0 \\ 2a + 2b + c - 3 = 0 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = 3 \\ c = -7 \end{cases}$$

$$\Leftrightarrow \begin{cases} 4a - 6b - 2c - 4 = 0 \\ 4a + 2b + 2c = 0 \\ 2a + 2b + c - 3 = 0 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = 3 \\ c = -7 \end{cases} \Rightarrow M(2;3;-7)$$

$$\Rightarrow OM^{2} = \left(\sqrt{(2-0)^{2} + (3-0)^{2} + (-7-0)^{2}}\right)^{2} = \left(\sqrt{62}\right)^{2} = 62$$

Đáp án: |62|

Câu 5: • Theo đề bài ta có:

- A là biến cố: "Người đó mắc bệnh X"
- B là biến cố: "Người đó dương tính với xét nghiệm Y:
- Tỉ lệ người mắc bệnh X là $0,2\% \Rightarrow P(A) = 0,002 \Rightarrow P(\overline{A}) = 1 P(A) = 0,998$
- Xét nghiệm Y luôn dương tính khi mắc bệnh X nên P(B|A)=1
- Tỉ lệ người không bị bệnh X nhưng vẫn dương tính với xét nghiệm Y là $6\% \Rightarrow P(B \mid \overline{A}) = 0,06$
- Ta cần tính P(A|B)
- Áp dụng công thức xác suất toàn phần ta có

$$P(B) = P(A).P(B|A) + P(\overline{A}).P(B|\overline{A}) = 0,002.1 + 0,998.0,06 = \frac{1547}{25000}$$

$$\Rightarrow P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(B|A).P(A)}{P(B)} = \frac{1.0,002}{\frac{1547}{25000}} = 0,03$$

Đáp án: |0,03|

• Số sản phẩm doanh nghiệp xuất khẩu là R(x)-Q(x)=x-200-(4200-x)=2x-4400Câu 6:

- Điều kiện:
$$\begin{cases} x - 200 > 0 \\ 4200 - x > 0 \iff 2200 < x < 4200 \\ 2x - 4400 > 0 \end{cases}$$

- Lãi xuất khẩu = Tiền thu được – Thuế - Chi phí sản xuất

$$=(2x-4400).(3200-a)-(2x-4400)x=(2x-4400).(3200-a-x)$$

$$\Rightarrow \frac{(2x - 4400) \cdot (3200 - a - x)}{(2x - 4400) \cdot a} = \frac{4}{1} \Rightarrow a = \frac{3200 - x}{5}$$

$$\Rightarrow$$
Lãi xuất khẩu là $f(x) = (2x - 4400) \cdot \left(3200 - \frac{3200 - x}{5} - x\right)$

• Sử dụng chức năng Table trong máy tính
$$f(x) = \sqrt{5} - x$$

$$5$$
Table Range Start: 2200 End : 4200 Step : 100

400000

- Khi x=2700 thì f(x) lớn nhất đồng nghĩa với giá bán 2700(\$) thì lợi nhuận lớn nhất

$$\Rightarrow a = \frac{3200 - 2700}{5} = 100$$

Đáp án: |100|