MATEMÁTICA I 2018

Capítulo 6
MATRICES

CONTENIDOS:

Matemáticos invitados: Arthur Cayley y James Joseph Sylvester

Las matrices como cuadros numéricos han sido usadas desde la antigüedad, fundamentalmente para resolver sistemas de ecuaciones lineales.

El libro chino *Nueve capítulos sobre el Arte de las matemáticas* (*Jiu Zhang Suan Shu*) que proviene del año 300 a 200 a.c., es el primer ejemplo conocido de uso del método de matrices para resolver sistemas de ecuaciones.

Después del desarrollo de la teoría de determinantes por Seki Kowa y Leibniz para facilitar la resolución de ecuaciones lineales, Carl Friederich Gauss y Wilhelm Jordan desarrollaron la eliminación de Gauss-Jordan, basada en las operaciones elementales, en el siglo XIX.

Fue James Joseph Sylvester quien utilizó por primera vez el término MATRIZ alrededor de 1848.

Cayley introdujo en 1858 la notación matricial, como forma abreviada de escribir un sistema de *m* ecuaciones lineales con *n* incógnitas.

Ambos nacieron en Inglaterra, Cayley nació en 1821 y fue abogado de profesión, mientras trabajaba en matemáticas en su tiempo libre, más adelante, conoce a Sylvester, que había nacido unos años antes, en 1814, y abandona la abogacía para dedicarse por completo a la matemática. Ambos trabajaron muchos años juntos e hicieron grandes aportes a la teoría de invariantes, campo relacionado con el álgebra lineal.

1. Introducción. Nociones básicas.

Una ecuación lineal con coeficientes reales $a_1, a_2, ..., a_n$, término independiente b e incógnitas $x_1, x_2, ..., x_n$ es una expresión de la forma $a_1.x_1 + a_2.x_2 + ... + a_n.x_n = b$, por ejemplo $\frac{2}{5}.x_1 + 5.x_2 - 8.x_3 = -1.$

Si se tienen dos o más ecuaciones lineales en las mismas incógnitas se tiene un sistema de m ecuaciones con n incógnitas. El siguiente es un sistema de 2 ecuaciones con 3 incógnitas (sistema 2x3):

S1:
$$\begin{cases} \frac{2}{5}.x_1 + 5.x_2 - 8.x_3 = -1 \\ x_1 + 6.x_2 - 4.x_3 = 9 \end{cases}$$

Una **solución** del mismo, cuando existe, será una terna ordenada de números (x_1^0, x_2^0, x_3^0) que satisfaga simultáneamente todas las ecuaciones del sistema.

Si en S_1 se cambian x_1 , x_2 , x_3 por, respectivamente, x, y, z o bien por u_1 , u_2 , u_3 el sistema es el mismo. De modo que toda la información del sistema se encuentra en los coeficientes y términos independientes *en el orden* que aparecen dispuestos, es decir en los

siguientes "cuadros" de números
$$A = \begin{pmatrix} \frac{2}{5} & 5 & -8 \\ 1 & 6 & -4 \end{pmatrix}$$
, $b = \begin{pmatrix} -1 \\ 9 \end{pmatrix}$ que llamaremos **matrices.**

A es una matriz 2x3 (2 filas por 3 columnas), b es una matriz 2x1 (2 filas por 1 columna).

Este es uno de los problemas más importantes en los que se aplican las matrices: la resolución de sistemas lineales de ecuaciones

Otra de las aplicaciones importantes que tienen las matrices es la **criptografía**. La criptografía es el estudio de las formas de transmitir mensajes en forma segura. En la década del 40 cuando se establece el inicio de la criptografía, estaba restringida prácticamente al campo de la estrategia militar. Hoy, la criptografía es de gran utilidad en muchísimas cosas que hacemos a diario: cuando utilizamos la tarjeta de crédito en un cajero automático para realizar una operación bancaria, necesitamos identificarnos con una clave, cuando accedemos a nuestra cuenta de correo electrónico, se nos pide una contraseña, etc.

Si numeramos las letras del abecedario de 1 a 27 y quisiéramos enviar como mensaje la letra J, puede elegirse como código el número 7 y multiplicar 7.10 ya que 10 es el número que le corresponde a la J. El mensaje enviado seria 70.

Si el receptor no conoce que el código es 7 podría pensar que se envió 5.14=70 o 10.7=70 o 7.10=70, y no puede decidir si la letra enviada es N(que correspondería al número 14 y el código sería 5) o G(que correspondería al número 7 y el código sería 10) o J(que corresponde al número 10 y el código sería 7).

El receptor entonces debe conocer el código y multiplicar el mensaje recibido por el inverso de ese número, en el caso de haber elegido código 7 sería: $70.\frac{1}{7} = 10$. Claro que este método para encriptar es muy vulnerable ya que hay un número muy pequeño de posibilidades y del contexto del mensaje podría deducirse la letra. También es cierto que si

en lugar de elegir el 7 eligiéramos el 345.678, aumenta significativamente la cantidad de posibilidades.

Este mismo proceso se utiliza para la encriptación con matrices, el código ya no es un número sino una matriz y el mensaje que se envía también se envía en una matriz, de modo que habrá que conocer la inversa de la matriz de código para recuperar el mensaje.

En general una *matriz m*x*n* tendrá la forma:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{24} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & a_{34} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & a_{m4} & \dots & a_{mn} \end{pmatrix}$$

Usamos en general letras mayúsculas de imprenta para nombrar a las matrices y la misma letra en minúscula con dos subíndices para nombrar a sus elementos, así

Para la matriz A, el elemento que está en la fila i columna j se nota a_{ij} .

El primer subíndice i de cada coeficiente indica la fila donde se encuentra dicho coeficiente, el segundo subíndice j indica en qué columna está, para i = 1, 2, ..., m, j = 1, 2, ..., n.

El conjunto de todas las matrices $m \times n$ con coeficientes $a_{ij} \in R$, se indica $R^{m \times n}$, decimos entonces que si:

A es una matriz de m filas y n columnas con números reales $A \in \mathbb{R}^{mxn}$

En el caso particular en que *m=n* decimos que las matrices son **cuadradas**, de lo contrario son **rectangulares**.

En una **matriz cuadrada** la *diagonal principal* está dada por los elementos que tienen igual número de fila que de columna, es decir: $(a_{11}, a_{22}, a_{33}, ..., a_{nn})$.

Por ejemplo $(5, \sqrt{3}, 9)$ es la diagonal principal de la siguiente matriz 3x3

$$B = \begin{pmatrix} 5 & 0 & -3 \\ \frac{1}{8} & \sqrt{3} & 0 \\ -1 & 35 & 9 \end{pmatrix}$$

Algunas clases especiales de matrices

Matriz nula:

Es una matriz cuadrada o rectangular en la que todos sus coeficientes son ceros.

Si llamamos b_{ij} a los elementos de la matriz nula nxm, definimos:

 $\mathbf{0}_{nxm}$ es la matriz tal que $b_{ij} = 0 \ \forall i, 1 \le i \le n \ y \ \forall j, 1 \le j \le m$

Observar que hay una matriz nula para cada dimensión.

Por ejemplo la matriz nula 2x2 es $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, se escribe con un subíndice para indicar la dimensión: 0_{2x2}

La matriz nula 3x2 es $\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$, se escribe: O_{3x2}

Matriz *triangular superior* (respectivamente *inferior*):

Es una matriz cuadrada en la que son ceros todos los coeficientes debajo (respectivamente arriba) de la diagonal principal.

Si $A \in \mathbb{R}^{n \times n}$ es triangular superior entonces $a_{ij} = 0 \ \forall i, \forall j, i > j$

Si $A \in \mathbb{R}^{nxn}$ es triangular inferior entonces $a_{ij} = 0 \ \forall i, \forall j, \ i < j$

La matriz A es una matriz 4x4, triangular superior y la matriz B es una matriz 4x4 triangular inferior:

$$A = \begin{pmatrix} 5 & 6 & 1 & 0 \\ 0 & 1 & -8 & 5 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 1 & 6 & 0 & 0 \\ 0 & 3 & 4 & 0 \\ 36 & -5 & 0 & -3 \end{pmatrix}$$

Los elementos que están debajo de la diagonal principal cumplen que la fila es mayor o igual que la columna y los que están arriba cumplen que la fila es menor o igual que la columna.

Notar que en la definición no se dice nada del resto de los elementos, es decir que también puede haber 0 en otros lugares como en la matriz B del ejemplo.

Matriz diagonal:

Es una matriz $n \times n$ en la que son 0 todos los coeficientes que no están en la diagonal principal.

Si $A \in \mathbb{R}^{n \times n}$ es diagonal entonces $a_{ij} = 0$ si $i \neq j$ $\forall i, \forall j$

Las siguientes son matrices diagonales:

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$$

Matriz identidad:

Es una matriz diagonal, en la que $\,$ los coeficientes de la diagonal principal son todos 1. Si llamamos e_{ij} a los elementos de la matriz identidad nxn, definimos:

$$I_n$$
 es la matriz tal que $e_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$

Observar que al igual que la matriz nula, hay una matriz identidad para cada dimensión.

Por ejemplo la matriz identidad 2x2 es $I=\begin{pmatrix}1&0\\0&1\end{pmatrix}$, se escribe con un subíndice para indicar la dimensión: I_2

La matriz identidad 3x3 es
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 , se escribe: I_3

2. Operaciones

Definimos en principio la igualdad de matrices.

Dadas dos matrices de la misma dimensión, $A \in \mathbb{R}^{mxn}$ y $B \in \mathbb{R}^{mxn}$ decimos que:

$$A = B$$
 si $a_{ij} = b_{ij} \ \forall i, 1 \le i \le m, \forall j, 1 \le j \le n$

2.1 Suma

Dadas dos matrices de la misma dimensión, $A \in \mathbb{R}^{mxn}$ y $B \in \mathbb{R}^{mxn}$ la suma de las matrices se define como una nueva matriz $C \in \mathbb{R}^{mxn}$ donde sus elementos son la suma de los elementos de A y de B en la misma posición:

Ejemplo 2.1:

Dadas
$$A y B \in \mathbb{R}^{2x3}$$
 $A = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 5 & 4 \end{pmatrix}$ $B = \begin{pmatrix} 3 & -1 & 1 \\ -3 & 3 & 4 \end{pmatrix}$, $A + B = \begin{pmatrix} 3 & 0 & 3 \\ 0 & 8 & 8 \end{pmatrix}$

La matriz C = A + B es el resultado de: $\begin{pmatrix} 0+3 & 1-1 & 2+1 \\ 3-3 & 5+3 & 4+4 \end{pmatrix}$

Suma de matrices

Sean las matrices, $A \in \mathbb{R}^{mxn}$ y $B \in \mathbb{R}^{mxn}$ se define la matriz suma C = A + BDonde $C \in \mathbb{R}^{mxn}$ y sus elementos $c_{ij} = a_{ij} + b_{ij}$ $\forall i, 1 \leq i \leq m, \forall j, 1 \leq j \leq n$

Propiedades

1) Asociatividad:

Para toda terna de matrices $A, B y C \in \mathbb{R}^{mxn}$ se cumple que

$$A + (B + C) = (A + B) + C$$

2) Existencia de elemento neutro:

Para toda matriz $A \in \mathbb{R}^{mxn}$, existe la matriz $0 \in \mathbb{R}^{mxn}$ tal que

$$A + O_{mxn} = O_{mxn} + A = A$$
.

3) Existencia de opuesto:

Para toda matriz $A \in \mathbb{R}^{mxn}$, existe una matriz $B \in \mathbb{R}^{mxn}$ tal que

$$A + B = B + A = O_{mxn} \quad .$$

B es la opuesta de A y se indica -A

Ejemplo 2.2: dada la matriz
$$A = \begin{pmatrix} 2 & -30 \\ \sqrt{3} & 4 \\ -1 & \frac{2}{5} \end{pmatrix}$$
, su opuesta es $-A = \begin{pmatrix} -2 & 30 \\ -\sqrt{3} & -4 \\ 1 & -\frac{2}{5} \end{pmatrix}$

Notar que gracias a la existencia del opuesto se define la resta de matrices, como la suma de una matriz y la opuesta de otra:

Dadas
$$C y D \in \mathbb{R}^{mxn}$$
 definimos $C - D = C + (-D)$

4) Conmutatividad:

Para todo par de matrices $A y B \in \mathbb{R}^{mxn}$ se cumple que

$$A + B = B + A$$

Demostración de la propiedad conmutativa:

Queremos ver que: A + B = B + A.

Llamemos C=A+B y D=B+A, entonces por la igualdad de matrices basta con probar que $c_{ij}=d_{ij}$ $\forall i,1\leq i\leq m, \forall j,1\leq j\leq n$

En efecto:
$$c_{ij} = a_{ij} + b_{ij} = b_{ij} + a_{ij} = d_{ij}$$
 $\forall i, 1 \le i \le m, \forall j, 1 \le j \le n$

Por definición de Por propiedad Por definición de Suma de matrices conmutativa de suma de matrices Los números reales

Hemos probado que C=D y por lo tanto A + B = B + A

2.2 Producto de un escalar (número real) por una matriz

Dadas una matriz $A \in \mathbb{R}^{mxn}$ y un número real α la matriz $C = \alpha.A$, $C \in \mathbb{R}^{mxn}$ es la matriz que resulta de multiplicar todos los elementos de A por el número real α .

Ejemplo 2.3:

Dados
$$A \in \mathbb{R}^{2x3}$$
 $y \alpha \in \mathbb{R}$, $\alpha = 3$, $A = \begin{pmatrix} 1 & 2 & 5 \\ -2 & 1 & 0 \end{pmatrix}$, $\alpha A = \begin{pmatrix} 3 & 6 & 15 \\ -6 & 3 & 0 \end{pmatrix}$

La matriz $C = \alpha A$ es el resultado de: $\begin{pmatrix} 3.1 & 3.2 & 3.5 \\ 3.(-2) & 3.1 & 3.0 \end{pmatrix}$

Producto por un escalar

Sea la matriz, $A \in \mathbb{R}^{mxn}$ y $\alpha \in \mathbb{R}$ se define la matriz producto por escalar $C = \alpha A$ Donde $C \in \mathbb{R}^{mxn}$ y sus elementos $c_{ij} = \alpha. \, a_{ij} \ \ \, \forall i, 1 \leq i \leq m, \forall j, 1 \leq j \leq n$

Propiedades

1) Para todo par de matrices $A y B \in \mathbb{R}^{mxn} y \alpha \in \mathbb{R}$ se cumple que:

$$\alpha.(A + B) = \alpha.A + \alpha.B$$

2) Para toda matriz $A \in \mathbb{R}^{mxn} y \alpha y \beta \in \mathbb{R}$ se cumple que:

$$(\alpha + \beta).A = \alpha.A + \beta.A$$

3) Para toda matriz $A \in \mathbb{R}^{mxn} y \alpha y \beta \in \mathbb{R}$ se cumple que:

$$(\alpha.\beta).A = \alpha.(\beta.A)$$

4) Para toda matriz $A \in \mathbb{R}^{mxn}$ se cumple que:

$$1. A = A$$

La definición de suma y producto por escalar con sus respectivas propiedades le dan a las matrices con esas operaciones la estructura de **Espacio vectorial**. No trabajaremos en este curso con espacios vectoriales pero se verá más adelante como una importante estructura con muchas aplicaciones, entre ellas la detección de errores en la transmisión de datos.

Las propiedades vistas para la suma no difieren de las propiedades de la suma de números reales. Son importantes porque nos permiten operar con matrices en ecuaciones.

Ejemplo 2.4:

Hallar la matriz $X \in \mathbb{R}^{3x^2}$ que cumpla:

$$\begin{pmatrix} 2 & -3 \\ 5 & 4 \\ 0 & 1 \end{pmatrix} + X = 3 \cdot \begin{pmatrix} 1 & 0 \\ -2 & 4 \\ 1 & 1 \end{pmatrix} + 3 \cdot \begin{pmatrix} 3 & 1 \\ 5 & 1 \\ 0 & 1 \end{pmatrix}$$

Tenemos que despejar X utilizando las propiedades vistas:

Por la propiedad 1 de producto por escalar y por definición de suma de matrices:

$$3.\begin{pmatrix} 1 & 0 \\ -2 & 4 \\ 1 & 1 \end{pmatrix} + 3.\begin{pmatrix} 3 & 1 \\ 5 & 1 \\ 0 & 1 \end{pmatrix} = 3.\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 4 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 3 & 1 \\ 5 & 1 \\ 0 & 1 \end{pmatrix} = 3.\begin{pmatrix} 4 & 1 \\ 3 & 5 \\ 1 & 2 \end{pmatrix}$$

Por definición de producto por escalar tenemos entonces que:

$$\begin{pmatrix} 2 & -3 \\ 5 & 4 \\ 0 & 1 \end{pmatrix} + X = \begin{pmatrix} 12 & 3 \\ 9 & 15 \\ 3 & 6 \end{pmatrix}$$

Entonces por la existencia del opuesto podemos sumar a ambos miembros el opuesto de *A*:

$$\begin{pmatrix} 2 & -3 \\ 5 & 4 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -2 & 3 \\ -5 & -4 \\ 0 & -1 \end{pmatrix} + X = \begin{pmatrix} 12 & 3 \\ 9 & 15 \\ 3 & 6 \end{pmatrix} + \begin{pmatrix} -2 & 3 \\ -5 & -4 \\ 0 & -1 \end{pmatrix}$$

Por definición de suma de matrices y por la existencia de elemento neutro tenemos:

$$X = \begin{pmatrix} 10 & 6 \\ 4 & 11 \\ 3 & 5 \end{pmatrix}$$

2.3 Producto de matrices

Dadas dos matrices, $A \in \mathbb{R}^{mxn}$ y $B \in \mathbb{R}^{nxt}$ el producto de las matrices se define como una nueva matriz $C \in \mathbb{R}^{mxt}$ donde sus elementos son el resultado sumar las multiplicaciones los elementos de cada fila de A con cada columna de B y la suma de los elementos de A:

Ejemplo 2.5:

Sean
$$A = \begin{pmatrix} 4 & 2 \\ 0 & 0 \\ 1 & 6 \end{pmatrix} \in \mathbb{R}^{3x2} \ y \ B = \begin{pmatrix} 3 & 5 \\ 1 & 3 \end{pmatrix} \in \mathbb{R}^{2x2}, \quad A.B = \begin{pmatrix} 4.3 + 2.1 & 4.5 + 2.3 \\ 0.3 + 0.1 & 0.5 + 0.3 \\ 1.3 + 6.1 & 1.5 + 6.3 \end{pmatrix} = \begin{pmatrix} 14 & 26 \\ 0 & 0 \\ 9 & 23 \end{pmatrix}$$

Una forma práctica de hacer el producto es ubicando las matrices de la siguiente manera:

$$\begin{pmatrix} 3 & 5 \\ 1 & 3 \end{pmatrix} = B$$

$$A = \begin{pmatrix} 4 & 2 \\ 0 & 0 \\ 1 & 6 \end{pmatrix} \qquad \begin{pmatrix} 4.3 + 2.1 \\ 0.3 + 0.1 \\ 1.3 + 6.1 \end{pmatrix} \qquad \begin{pmatrix} 4.5 + 2.3 \\ 0.5 + 0.3 \\ 1.5 + 6.3 \end{pmatrix} = C$$

El elemento $c_{11}=a_{11}.b_{11}+a_{12}.b_{21}$, se recorre la fila 1 de A y la columna 1 de B

El elemento $c_{12}=a_{11}.b_{12}+a_{12}.b_{22}$, se recorre la fila 1 de A y la columna 2 de B

. . .

El elemento $c_{23} = a_{21} \cdot b_{13} + a_{22} \cdot b_{23}$, se recorre la fila 2 de A y la columna 3 de B

Notar que para construir un elemento de C en la posición ij se recorre la fila i de A y la columna j de B, lo que da lugar a la siguiente definición:

Producto de matrices

Sean las matrices, $A \in \mathbb{R}^{mxn}$ y $B \in \mathbb{R}^{nxt}$ se define la matriz producto C = A.BDonde $C \in \mathbb{R}^{mxt}$ y sus elementos son:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \qquad \forall i, 1 \le i \le m, \quad \forall j, 1 \le j \le t$$

Observación:

Las matrices que multiplicamos en el ejemplo NO TIENEN LA MISMA DIMENSION, al multiplicar cada elemento de una fila de *A* por una columna de *B*, **deben coincidir el número de columnas de la primer matriz con el número de filas de la segunda.**

Con las matrices del ejemplo, el producto *B*. *A* no se puede hacer. Esto dice que el producto no está definido para cualquier par de matrices, solo para las matrices que cumplen esa relación entre columnas y filas.

Esta observación sugiere que EL PRODUCTO NO ES CONMUTATIVO, como veremos a continuación.

Propiedades

1) Asociatividad:

Para toda terna de matrices $A \in \mathbb{R}^{mxn}$, $B \in \mathbb{R}^{nxt}$ $y \in \mathbb{R}^{txq}$ se cumple que:

$$A.(B.C) = (A.B).C$$

Observar que todos los productos se pueden hacer.

2) Existencia de elemento neutro:

Para toda matriz $A \in \mathbb{R}^{nxn}$, existe la matriz I_n tal que:

$$A.I_n = I_n.A = A$$

La matriz Identidad es el elemento neutro en el producto de matrices cuadradas. Observar que al ser cuadradas pueden realizarse los productos a derecha y a izquierda.

Si A no es cuadrada y $A \in \mathbb{R}^{mxn}$ decimos que tiene un neutro a derecha y un neutro a izquierda, esto es: A. $I_n = I_m$. A = A

A derecha multiplicamos por la Identidad nxn y a izquierda por la Identidad mxm.

3) Distributividad del producto en la suma:

Para toda terna de matrices $A, B y C \in \mathbb{R}^{n \times n}$ se cumple que:

$$A.(B+C) = A.B + A.C$$
 y $(B+C).A = B.A + C.A$

Observar que las matrices al distribuir se mantienen en EL MISMO ORDEN.

4) NO SE CUMPLE la propiedad Conmutativa:

Ejemplo 2.6:

Sean
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$, resulta $A.B = \begin{pmatrix} 5 & 9 \\ 8 & 15 \end{pmatrix}$ y $B.A = \begin{pmatrix} -1 & -3 \\ 8 & 21 \end{pmatrix}$

Observación: esto no quiere decir que no haya matrices para las que sí se cumple, pero para hablar de una propiedad debe cumplirse **para todas las matrices** y esto no es cierto. Por ejemplo:

5) En los números naturales, enteros, reales se tiene la propiedad: $ab=0 \Rightarrow a=0 \lor b=0$.

En el producto de matrices tampoco es válida esa propiedad:

$$A.B = O$$
 no implica $A = O$ o $B = O$

Ejemplo 2.7:

Sean
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} -3 & 3 \\ 1 & -1 \end{pmatrix}$, el producto $A.B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ da la matriz nula, mientras que ni A ni B son nulas

6) La existencia de inversa NO ES una propiedad general de las matrices.

En los números reales, todo número tiene inverso multiplicativo, esto es, dado un número real a se busca otro que multiplicado por él de como resultado el neutro del producto, es decir : $a.a^{-1}=1$, por ejemplo: $2.\frac{1}{2}=1$, $5.\frac{1}{5}=1$, $34.\frac{1}{34}=1$, etc.

En las matrices deberíamos buscar, dada una matriz *A* otra matriz que multiplicada por ella de como resultado el neutro del producto, es decir *I*, teniendo en cuenta además que como el producto no es conmutativo, debe poder multiplicarse a derecha y a izquierda y ambos resultados deben dar la identidad. Para esto la única opción es que la matriz sea cuadrada, pero veremos que esto no es suficiente:

Ejemplo 2.8:

Sea $A=\begin{pmatrix}1&2\\0&0\end{pmatrix}$, tenemos que buscar una matriz $B=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ que multiplicada por A de como resultado la identidad:

$$\frac{\begin{pmatrix} a & b \\ c & d \end{pmatrix} = B}{A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}$$
 Entonces $1.a + 2.c = 1$ y $1.b + 2.d = 0$
$$0.a + 0.c = 0$$
 y $0.b + 0.d = 1$

La última ecuación nos dice 0 = 1 que es absurdo, es decir que no existen valores de a, b, c, y, d que cumplan las ecuaciones, por lo tanto la matriz A no tiene inversa.

Si una matriz no es cuadrada no posee inversa.

Algunas matrices cuadradas tienen inversa y otras no.

Como existen infinitas matrices cuadradas que tienen inversa e interesa conocerla, será un objetivo identificar aquéllas que tengan inversa y en tal caso calcularla.

En el parágrafo que sigue se dará la definición de matriz inversa y algunas propiedades, más adelante se tratará el problema de hallar la inversa cuando ésta exista.

Matriz Inversa

Sea $A \in \mathbb{R}^{nxn}$, A tiene inversa (se dice también que es invertible o no singular) si existe una matriz $B \in \mathbb{R}^{nxn}$ tal que: A.B = I y B.A = I

Recordar que como la conmutatividad no es una propiedad general del producto de matrices, se piden las dos condiciones.

En caso de que la matriz B de la definición exista, esta matriz se nota A^{-1} .

Observación: en los números reales notamos a la inversa de un número a como a^{-1} y también puede escribirse $\frac{1}{a}$. En el caso de las matrices esta última notación no es válida ya que supondría dividir por una matriz, operación que no está definida en este conjunto.

Proposición 2.1:

Si existe **B** en las condiciones de la definición de Matriz Inversa, ésta es única.

Demostración

Lo probaremos por el método del absurdo:

Existe B tal que A. B = I y B. A = I y no es única, es decir que existe otra matriz C tal que A. C = I y C. A = I

Si esto pasara entonces multiplicando la igualdad B.A = I por \mathcal{C} a ambos miembros a derecha tenemos:

$$(B.A).C = I.C = C$$
 (1)

Y multiplicando la igualdad A.C = I por B a ambos miembros a izquierda tenemos B.(A.C) = B.I = B (2)

Como el producto de matrices es asociativo de **(1)** (B.A). C = I. C = C tenemos que B.(A.C) = C y en **(2)** teníamos que B.(A.C) = B Absurdo

Es decir que **C=B**, por lo tanto la matriz **B** que cumple la Definición es única.

Proposición 2.2:

Sean A, B matrices nxn inversibles entonces $(A.B)^{-1} = B^{-1}.A^{-1}$.

Demostración

Lo demostraremos por el método directo:

Por hipótesis existen A^{-1} y B^{-1} .

Notar que como las matrices son nxn sus inversas y el producto entre ellas también lo son.

De acuerdo a la definición de matriz inversa debe probarse que multiplicando $B^{-1}.A^{-1}$ a izquierda y a derecha de A.B, en ambos casos se obtiene la identidad.

$$(A.B).(B^{-1}.A^{-1})=A.(B.B^{-1}).A^{-1}=A.I.A^{-1}=A.A^{-1}=I$$

Por propiedad Por definición Por ser I neutro

Asociativa de inversa en las matrices nxn

Además:

$$(B^{-1}.A^{-1}).(A.B) = B^{-1}.(A^{-1}.A).B = B^{-1}.I.B = B^{-1}.B = I$$
Por propiedad Por definición Por ser I neutro
Asociativa de inversa en las matrices nxn

Hemos encontrado entonces una matriz $B^{-1}.A^{-1}$ que multiplicada a izquierda y a derecha por la matriz A.B da la matriz Identidad, entonces $B^{-1}.A^{-1}$ y es la inversa de A.B Esto se nota como $(A.B)^{-1}=B^{-1}.A^{-1}$

Corolario

El resultado anterior se generaliza a cualquier número finito de matrices inversibles de un mismo orden nxn, esto es: $(A_1.A_2....A_n)^{-1} = (A_n)^{-1}....(A_2)^{-1}.(A_1)^{-1}$

2.4 Transposición de Matrices

La transposición es una operación que se realiza sobre una matriz, por eso se llama operación unaria. Esta operación intercambia las filas por las columnas en una misma matriz.

Ejemplo 2.9:

$$A = \begin{pmatrix} 2 & 3 & 5 & 8 \\ 1 & 0 & -3 & 5 \end{pmatrix} \qquad A^{T} = \begin{pmatrix} 2 & 1 \\ 3 & 0 \\ 5 & -3 \\ 8 & 5 \end{pmatrix}$$

Las filas de A^T son las columnas de A, las columnas de A^T son las filas de A.

Matriz traspuesta

Si \boldsymbol{A} es $\boldsymbol{m} \times \boldsymbol{n}$, su traspuesta \boldsymbol{A}^T es $\boldsymbol{n} \times \boldsymbol{m}$ y si llamamos a^*_{ij} a sus elementos, éstos son:

$$a^*_{ij} = a_{ji} \quad \forall i, 1 \le i \le n, \quad \forall j, 1 \le j \le m$$

Propiedades

Sean $A y B \in \mathbb{R}^{mxn}$

1)
$$(A^{\mathsf{T}})^{\mathsf{T}} = A$$

2)
$$(A + B)^T = A^T + B^T$$

3) Sea
$$k \in \mathbb{R}$$
 entonces $(k. A)^T = k. A^T$

4) Si
$$A y B \in \mathbb{R}^{n \times n}$$
, entonces $(A \cdot B)^{\mathsf{T}} = B^{\mathsf{T}} \cdot A^{\mathsf{T}}$

Demostraciones:

1) Si llamamos a^*_{ij} a los elementos de A^T y a^{**}_{ij} a los elementos de $(A^\mathsf{T})^\mathsf{T}$, queremos ver que $a^{**}_{ij} = a_{ij}$ $\forall i, 1 \leq i \leq m$, $\forall j, 1 \leq j \leq n$

En efecto
$$a^{**}_{ij} = a^*_{ji} = a_{ij}$$

Por definición de transposición

Por lo tanto ${a^{**}}_{ij} = a_{ij} \quad \forall i, 1 \leq i \leq m, \quad \forall j, 1 \leq j \leq n$

2) Si llamamos c^*_{ij} a los elementos de $(A+B)^t$ y a^*_{ij} y b^*_{ij} a los elementos de A^t y B^t respectivamente, queremos ver que $c^*_{ij} = a^*_{ij} + b^*_{ij}$ $\forall i, 1 \le i \le m$, $\forall j, 1 \le j \le n$

$$c^*_{ij} = c_{ji} = a_{ji} + b_{ji} = a^*_{ij} + b^*_{ij}$$

Por definición Por definición Por definición de transposición de suma de transposición

Por lo tanto $c^*_{ij} = a^*_{ij} + b^*_{ij}$ $\forall i, 1 \le i \le m$, $\forall j, 1 \le j \le n$

4) Llamemos C = A.B $y D = B^t.A^t$ y sean c^*_{ij} los elementos de C^t , a^*_{ij} y b^*_{ij} los elementos de A^t y B^t y como es usual a_{ij} y d_{ij} , los elementos de A y D respectivamente, queremos ver que $c^*_{ij} = d_{ij}$ $\forall i, 1 \leq i \leq n$, $\forall j, 1 \leq j \leq m$ En efecto, por definición de producto:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Entonces:

$$c^*_{ij} = c_{ji} = \sum_{k=1}^n a_{jk} \cdot b_{ki} = \sum_{k=1}^n a^*_{kj} \cdot b^*_{ik} = \sum_{k=1}^n b^*_{ik} \cdot a^*_{kj} = d_{ij}$$

Por definición Por definición Por definición Por conmutatividad Por definición de transposición de producto de transposición del producto en \mathbb{R} de producto Por lo tanto $c^*{}_{ij} = d_{ij} \quad \forall i, 1 \leq i \leq n, \quad \forall j, 1 \leq j \leq m$

Las operaciones vistas con sus propiedades nos permiten resolver ecuaciones con matrices.

Ejemplo 2.10:

Hallar la matriz
$$X \in \mathbb{R}^{2x3}$$
 que cumpla $\begin{pmatrix} 3 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} - X = \begin{pmatrix} 0 & 1 \\ -2 & 4 \\ 1 & 0 \end{pmatrix}^t \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & -1 \\ -1 & 1 & 1 \end{pmatrix}$

Resolvemos primero el lado derecho de la ecuación utilizando la definición de transposición:

$$\begin{pmatrix} 0 & 1 \\ -2 & 4 \\ 1 & 0 \end{pmatrix}^{t} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & -1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -2 & 1 \\ 1 & 4 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$

Ahora realizamos el producto:

$$\begin{pmatrix}
1 & 1 & 0 \\
0 & 2 & -1 \\
-1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & -2 & 1 \\
1 & 4 & 0
\end{pmatrix}
\begin{pmatrix}
-1 & -3 & 3 \\
1 & 9 & -4
\end{pmatrix}$$

Tenemos entonces que: $\begin{pmatrix} 3 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} - X = \begin{pmatrix} -1 & -3 & 3 \\ 1 & 9 & -4 \end{pmatrix}$

Sumamos el opuesto de $\begin{pmatrix} 3 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$ a ambos miembros:

$$\begin{pmatrix} 3 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} + \begin{pmatrix} -3 & -1 & 0 \\ 1 & -2 & -1 \end{pmatrix} - X = \begin{pmatrix} -1 & -3 & 3 \\ 1 & 9 & -4 \end{pmatrix} + \begin{pmatrix} -3 & -1 & 0 \\ 1 & -2 & -1 \end{pmatrix}$$

Como sumar una matriz con su opuesta nos da la matriz nula y ésta es el elemento neutro en la suma de matrices:

$$-X = \begin{pmatrix} -4 & -4 & 3\\ 2 & 7 & -5 \end{pmatrix}$$

Ahora aplicamos la operación de producto por escalar, en este caso -1:

$$X = \begin{pmatrix} 4 & 4 & -3 \\ -2 & -7 & 5 \end{pmatrix}$$

3. Operaciones elementales sobre las filas de una matriz

Definimos en primer lugar qué es una matriz escalonada y reducida por filas, ya que las operaciones elementales las haremos sobre las filas de una matriz para transformarla en una escalonada y reducida por filas.

3.1 Matriz escalonada y reducida por filas

Sea $A \in \mathbb{R}^{mxn}$, A está en forma escalonada y reducida por filas si:

- 1) el primer número distinto de cero de cada fila es 1, ese coeficiente se llama **coeficiente principal**.
- 2) si el número de ceros que precede al primer coeficiente no nulo va aumentando en las filas sucesivas.
- 3) en el resto de la columna donde hay coeficiente principal los elementos son 0.
- 4) si hay filas de 0 están al final.

Ejemplos 3.1:

Ay B no son escalonadas y reducidas por filas, sólo C es reducida y escalonada por filas.

$$A = \begin{pmatrix} 1 & 3 & 5 & 0 & 5 & 0 & 3 \\ 0 & 0 & 2 & 8 & 0 & 3 & 9 \\ 0 & 0 & 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 5 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 3 & 0 & 5 \\ 0 & 0 & 0 & 1 & 8 & 5 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 5 & 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 & -3 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

3.2 Operaciones elementales sobre las filas de una matriz.

Existen 3 tipos de *operaciones elementales* sobre las filas de una matriz que permiten llevar cualquier matriz $A \in \mathbb{R}^{mxn}$ a una matriz equivalente reducida y escalonada por filas:

- 1) Multiplicar una fila F_k de A por un escalar $\alpha \in \mathbb{R}$ no nulo, $F_k \leftarrow \alpha F_k$
- 2) Sumar a la fila F_h la fila F_k multiplicada por $\alpha \in \mathbb{R}$ no nulo, $F_h \leftarrow F_h + \alpha F_k$
- 3) Permutar dos filas $F_h \longleftrightarrow F_k$

Cada operación elemental **e** tiene su inversa **e**-1 que es también elemental y del mismo tipo que **e**. Es decir que si realizamos:

- 1) la operación de permutar la fila i con la fila k, la operación inversa es permutar la fila i con la fila k para volver a la misma matriz.
- 2) la operación de sumarle a la fila i la fila k multiplicada por α , la operación inversa es sumarle a la fila i la fila k multilicada por $(-\alpha)$
- 3) la operación de multiplicar la fila j por α , la operación inversa es multiplicar la fila j por $1/\alpha$.

Definición:

Dos matrices A, B se llaman **equivalentes por filas** si de una de ellas se pasa a la otra aplicando un número finito de operaciones elementales de fila.

$$A \approx_f B$$
 si $e_k \circ e_{k-1} \circ ... \circ e_2 \circ e_1(A) = B$

(Como cada e_i posee su inversa que también es una operación elemental, de B se puede llegar a A aplicando las inversas respectivas).

Ejemplo 3.2:

Hallar la matriz escalonada y reducida por filas equivalente con $A = \begin{pmatrix} 2 & 4 & 6 \\ 2 & 0 & 1 \end{pmatrix}$

Importante: Realizaremos operaciones elementales sobre la matriz en un orden determinado, esto es por columnas, primero pondremos el 1 en la posición fila 1 columna 1, luego pondremos 0 en el resto de la columna, después pondremos el 1 en la posición fila 2 columna 2 y buscamos 0 en el resto de la columna. Este orden no es caprichoso, nos garantiza que los 1 y 0 que vayamos obteniendo no cambiarán con ninguna operación.

$$A = \begin{pmatrix} 2 & 4 & 6 \\ 2 & 0 & 1 \end{pmatrix} \quad \left(F_1 \leftarrow \frac{1}{2} \cdot F_1 \right) \sim \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \end{pmatrix} \quad \left(F_2 \leftarrow F_2 - 2 \cdot F_1 \right) \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & -5 \end{pmatrix}$$
$$\left(F_2 \leftarrow -\frac{1}{4} \cdot F_2 \right) \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & \frac{5}{4} \end{pmatrix} \quad \left(F_1 \leftarrow F_1 - 2 \cdot F_2 \right) \right) \sim \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{5}{4} \end{pmatrix} = A_R$$

A esta última matriz la llamamos A_R que es la matriz escalonada y reducida por filas equivalente con A, esto se escribe $A \approx_f A_R$ o simplemente $A \approx A_R$

Notar que cada vez que realizamos una operación elemental no ponemos el signo =, sino \sim , también puede ponerse $\approx o \rightarrow$, pero no =, ya que las matrices son distintas, veremos que mantienen propiedades importantes.

Ejemplo 3.3:

Hallar la matriz escalonada y reducida por filas equivalente con $B = \begin{pmatrix} 3 & 6 \\ 1 & 2 \\ 9 & 18 \end{pmatrix}$

Nuevamente realizaremos operaciones elementales sobre la matriz en el mismo orden.

$$B = \begin{pmatrix} 3 & 6 \\ 1 & 2 \\ 9 & 18 \end{pmatrix} \quad \left(F_1 \leftarrow \frac{1}{3} \cdot F_1 \right) \sim \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 9 & 18 \end{pmatrix} \quad (F_2 \leftarrow F_2 - 1 \cdot F_1) \sim \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 9 & 18 \end{pmatrix}$$
$$(F_3 \leftarrow F_3 - 9 \cdot F_1) \sim \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = B_R$$

3.3 Rango

Definición

Se llama **rango** de una matriz A, indicado con r(A), al número de filas no nulas de la escalonada y reducida por filas A_R equivalente con A.

En los ejemplos de arriba, la matriz A tiene rango 2 mientras que la matriz B tiene rango 1.

Existen dos aplicaciones importantes de las operaciones elementales: el cálculo de la inversa de una matriz y la resolución de sistemas de ecuaciones lineales.

En el caso del cálculo de la inversa recuerde que la matriz debe ser cuadrada, si es cuadrada puede tener o no inversa, pero si no lo es, seguro que no tiene inversa.

3.4 Cálculo de la inversa de una matriz

El procedimiento que seguiremos es: dada una matriz $A \in \mathbb{R}^{nxn}$, construimos un cuadro con la matriz dada y la matriz Identidad a la derecha, luego realizaremos operaciones elementales para hallar la escalonada y reducida por filas, A_R , equivalente con A. Las operaciones elementales se hacen sobre A y sobre la identidad, como si fuera una matriz de nx2n. Si al llegar a A_R nos quedó la Identidad entonces la matriz identidad que transformamos es la inversa de A, sino, no tiene inversa.

Ejemplo 3.4:

Sea
$$A = \begin{pmatrix} 2 & 6 & -4 \\ 1 & 4 & 1 \\ 2 & 6 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
2 & 6 & -4 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 & 1 & 0 \\
2 & 6 & 1 & 0 & 0 & 1
\end{pmatrix}$$

$$F_1 \cdot \frac{1}{2} \rightarrow \begin{pmatrix} 1 & 3 & -2 & \frac{1}{2} & 0 & 0 \\ 1 & 4 & 1 & 0 & 1 & 0 \\ 2 & 6 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$F_2 - F_1 \rightarrow \begin{pmatrix} 1 & 3 & -2 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 3 & -\frac{1}{2} & 1 & 0 \\ 2 & 6 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$F_{3} - 2.F_{1} \rightarrow \begin{pmatrix} 1 & 3 & -2 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 3 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 5 & -1 & 0 & 1 \end{pmatrix}$$

$$F_1 - 3.F_2 \rightarrow \begin{pmatrix} 1 & 0 & -11 & 2 & -3 & 0 \\ 0 & 1 & 3 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 5 & -1 & 0 & 1 \end{pmatrix}$$

$$F_3.\frac{1}{5} \rightarrow \begin{pmatrix} 1 & 0 & -11 & 2 & -3 & 0 \\ 0 & 1 & 3 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 & -\frac{1}{5} & 0 & \frac{1}{5} \end{pmatrix}$$

$$F_{1} + 11F_{3} \qquad y \quad F_{2} - 3F_{3} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{5} & -3 & \frac{11}{5} \\ 1 & 0 & 0 & \frac{1}{5} & 1 & -\frac{3}{5} \\ 0 & 0 & 1 & -\frac{1}{5} & 0 & \frac{1}{5} \end{pmatrix}$$

Por la definición de equivalencia por filas resulta que:

 $A \approx_f I$ ya que la Identidad es el resultado de haberle aplicado a A 7 operaciones elementales: $e_7 \circ e_6 \circ ... \circ e_2 \circ e_1(A) = I$, y además

 $I \approx_f B$ ya que B es el resultado de haberle aplicado a la Identidad 7 operaciones elementales: $e_7 \circ e_6 \circ ... \circ e_2 \circ e_1(I) = B$, y como

$$e_7 \circ e_6 \circ ... \circ e_2 \circ e_1(A) = e_7 \circ e_6 \circ ... \circ e_2 \circ e_1(I.A) = e_7 \circ e_6 \circ ... \circ e_2 \circ e_1(I)A = BA=I$$

Además como se mencionó las operaciones elementales tienen inversa, en el sentido de que pueden aplicarse para volver a la matriz anterior, por eso A es el resultado de haberle aplicado a la identidad las inversas de las operaciones elementales:

$$A = e_1^{-1} \circ e_2^{-1} \circ ... \circ e_6^{-1} \circ e_7^{-1}$$
 (I) entonces $e_1^{-1} \circ e_2^{-1} \circ ... \circ e_6^{-1} \circ e_7^{-1}$ (I.B)=AB=I

De lo anterior resulta que B= A⁻¹

Importante:

Este procedimiento nos dice que:

 $A \in \mathbb{R}^{n \times n}$ y su rango es n si y sólo si A tiene inversa

Que es equivalente a decir:

 $A \in \mathbb{R}^{n \times n}$ y $A \approx I$ si y sólo si A tiene inversa

Ejercicios:

1) Dadas las matrices
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$, $C = \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix}$

Calcular: a) 3A-2B+C

b) A-3(B-C)

- 2) Sean A \in R^{4x5}, B \in R^{5x7}, C \in R^{4x5}, D \in R^{7x5}. Indicar cuáles de las siguientes operaciones son posibles y, en caso afirmativo, cuál es la cantidad de filas y de columnas de la matriz resultado
- a) A .B,

- b) B.A, c) A.C, d) C.B, e) A.B.D
- 3) En los casos que sea posible calcular A.B y B.A, ¿Es A.B = B.A?

a)
$$A = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$$

$$\mathsf{B} = \begin{pmatrix} 3 & -2 & 2 \\ 1 & 0 & -1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} -2 \\ 4 \\ 1 \end{pmatrix}$

$$B = \begin{pmatrix} -2\\4\\1 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 3 & 4 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$
 $B = \begin{pmatrix} 6 & -1 & 2 \\ 0 & 4 & 5 \\ -1 & 5 & 4 \end{pmatrix}$

4) Al igual que en los números reales definimos recursivamente la potencia natural de una matriz: $A^n = \begin{cases} I & \text{si } n = 0 \\ A \cdot A^{n-1} & \text{si } n > 1 \end{cases}$, es decir que A^n no es otra cosa que multiplicar n veces A^n por sí misma.

Dadas
$$A = \begin{pmatrix} 3 & 4 \\ -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 6 & -1 \\ 0 & 4 \end{pmatrix}$ calcular A², B³, A.B , 2A²+ B.A

- **5)** Dadas $A = \begin{pmatrix} 1 & 3 \\ -2 & 0 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$ establecer si es cierto que:
- a) $(A+B)(A-B) = A^2 B^2$
- b) $(A+B)^2 = A^2 + 2 AB + B^2$
- c) ¿Por qué valen (o no) las igualdades?

- **6)** Sean las matrices $A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$ $B = \begin{pmatrix} -3 & 3 \\ 1 & -1 \end{pmatrix}$
- a) Efectuar el producto A.B.
- b) De acuerdo al resultado indicar qué propiedad no es válida para el producto de matrices.
- **7)** Dadas las matrices $A = \begin{pmatrix} 6 & 9 \\ 4 & 6 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ $C = \begin{pmatrix} -2 & 1 \\ 3 & 2 \end{pmatrix}$
- a) Calcular A.B y A.C.
- b) ¿Es válida la propiedad cancelativa en el producto de matrices? (Recordar que la propiedad cancelativa de los números reales dice que: si a. b = a. c entonces b = c)
- **8)** Hallar los valores de *a* y de *b* para que se cumpla la siguiente igualdad:

$$\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} a & 5 \\ 0 & b \end{pmatrix} = \begin{pmatrix} 3 & 8 \\ 9 & 21 \end{pmatrix}$$

- **9)** Sea $A \in \mathbb{R}^{n \times n}$. Probar que si A tiene inversa, ésta es única.
- **10)** Sea *A* una matriz cuadrada 2x2. Probar que si *A* tiene una fila (o una columna) nula, entonces *A* no tiene inversa.
- **11)** Si $A, B, C, D \in \mathbb{R}^{n \times n}$ tienen inversa, deducir cuál es $(A.B.C.D)^{-1}$
- 12) Para las matrices del ejercicio 1, comprobar que $A^T + B^T = (A + B)^T$ y que $(A \cdot B)^T = B^T \cdot A^T$
- 13) Sea A una matriz nxn inversible. Probar que $(A^T)^{-1} = (A^{-1})^T$ (*Indicación*: Usar la definición de matriz inversa y propiedades de la traspuesta)
- **14)** Sea $A \in \mathbb{R}^{m \times n}$ y $k \in \mathbb{R}$, demostrar que $(k. A)^T = k. A^T$
- **15)** Llevar las siguientes matrices a la forma escalonada y reducida, indicando las operaciones elementales, indicar el rango de cada una.

$$A = \begin{pmatrix} 1 & -1 & 5 & 3 & 1 \\ 2 & -2 & 10 & 8 & 3 \\ 6 & -6 & 30 & 22 & 8 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 1 & 5 \\ 2 & 3 & -1 & 4 \\ -3 & -3 & 0 & -9 \end{pmatrix} \qquad C = \begin{pmatrix} -3 & 4 \\ 6 & -8 \end{pmatrix}$$

16) Hallar la inversa, si existe, de las siguientes matrices, mediante operaciones elementales e indicar el rango de cada una

$$A = \begin{pmatrix} 1 & 4 \\ -8 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 1 & 0 \\ 5 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix} \qquad D = \begin{pmatrix} -2 & 5 \\ 6 & -15 \end{pmatrix}$$

- **17)** Dada $A = \begin{pmatrix} 2 & -4 \\ 1 & k \end{pmatrix}$
- a) Hallar k para que sea $A^2 = \mathbf{O}$
- b) Hallado k, encontrar el rango de A y la inversa de I-A
- 18) Sea A una matriz nxn tal que A²= O, ¿Cuál es la inversa de (I+A)?

19) Dadas las matrices:
$$A = \begin{pmatrix} -3 & -9 & 0 \\ 0 & 2 & 0 \\ 6 & 18 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} a & 0 \\ 1 & -1 \\ 5 & b \end{pmatrix}$, $C = \begin{pmatrix} -12 & 9 \\ 2 & -2 \\ 29 & -8 \end{pmatrix}$

- a) Encontrar los números a y b tales que se cumpla A.B = C
- b) Encontrar si es que existe, la inversa de A.
- **20)** a) Dada $D = \begin{pmatrix} 1 & k \\ 5 & -1 \end{pmatrix}$ encontrar el valor de k para que sea $D^2 = \mathbf{O}$ (matriz nula)
 - **b)** Con el valor k encontrado, calcular el rango de D y (I-D).(I+D) =
- **21) a)** Encontrar los números a, b tales que (A+B).C=D, siendo:

$$A = \begin{pmatrix} 3 & 2 & 5 \\ 3 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 1 & -4 \\ -2 & 0 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} a & 0 \\ 2 & b \\ 0 & 3 \end{pmatrix}, \quad D = \begin{pmatrix} 9 & 6 \\ 5 & 4 \end{pmatrix}$$

b) Hallar (si existe) D^{-1} .

<u>Bibliografía</u>

- R. Espinosa Armenta, Matemáticas discretas, Editorial Alfaomega, Mexico, 2010
- Smith, et al , **Algebra, trigonometría y geometría analítica**, Pearson-Addison Wesley Longman, 1998
- Swokoski, Earl W. y Cole, Jeffery A., **Algebra y trigonometría con geometría analítica,** 11ma ed., Editorial Thomson, 2006