

MALZEMELERİN FİZİKSEL ÖZELLİKLERİ

- Hacimsel ve Erime Özellikleri
- 2. Isıl Özellikleri
- 3. Kütle Yayınımı (Difüzyonu)
- 4. Elektriksel özellikleri
- 5. Elektrokimyasal İşlemler

Doç.Dr. Murat VURAL - İTÜ Makine Fakültesi

Fiziksel Özelliklerin Tanımı

- Malzemelerin, mekanik olmayan fiziksel etkilere karşı davranışını belirleyen özellikleri
 - Hacimsel, ısıl, elektriksel ve elektrokimyasal özellikler
- Bir üründeki parçaların, mekanik gerilmelere dayanmaktan daha fazlasını yapmaları gerekir
 - Elektriği iletmeleri (veya iletkenliği önlemeleri), ısı transferine izin vermeleri (veya kaçmasını önlemeleri), ışığı geçirmeleri (veya bloke etmeleri) ve diğer pek çok fonksiyonu yerine getirmeleri gerekir

İmalatta Fiziksel Özellikler

- Fiziksel özellikler çoğu kez işlem performansını etkilediğinden dolayı imalatta önemlidir
 - Talaş kaldırmada, parça malzemesinin ısıl özelikleri, takım ömrünü belirleyen kesme sıcaklığını etkiler
 - Mikroelektronikte, Silisyum'un elektriksel özellikleri ve bu özelliklerin kimyasal ve fiziksel işlemlerle nasıl değiştirilebildiği, yarıiletken üretiminin esasını oluşturur

Hacimsel ve Erime Özellikleri

Katıların hacmiyle ilgili özellikleri ve bu özelliklerin sıcaklıktan nasıl etkilendiğiyle ilgilidir

- Yoğunluk
- Isıl genleşme
- Erime noktası (sıcaklığı)

Yoğunluk ve Özgül Kütle

- Yoğunluk = birim hacmin kütlesi
 - Tipik olarak g/cm³ 'tür
 - Atom sayısı ve bunun dışında atom çapı ve atomsal düzeni gibi diğer faktörler tarafından belirlenir
- Özgül kütle = suyun yoğunluğuna göre bir malzemenin yoğunluğu
 - Birimsiz oran
 - Özgül ağırlık ile karıştırılmamalıdır

Yoğunluk Niçin Önemlidir

- Belirli bir uygulama için malzeme seçimindeki bir kriter; ancak ilgilenilen tek özellik olmayabilir
- Dayanım da önemlidir ve bu iki özellik genellikle, çekme dayanımı/yoğunluk olan gerilme/ağırlık oranı şeklinde birbiriyle ilişkilendirilir
 - Uçak, otomobil ve, ağırlık ve enerjinin göz önünde bulundurulduğu benzeri ürünler için malzemelerin karşılaştırılmasında faydalıdır

Isıl Genleşme

- Malzemenin yoğunluğu, sıcaklığın bir fonksiyonudur
 - Genel olarak artan sıcaklıkla yoğunluk azalır
 - Hacim/Ağırlık oranı, artan sıcaklıkla artar
 - Isıl genleşme, sıcaklığın yoğunluk üzerindeki bu etkisine verilen isimdir
 - Isil genleşme katsayısı olarak ölçülür

Isil Genleşme Katsayısı

Her bir derece sıcaklık değişiminde uzunluktaki değişim; örn.: mm/mm/°C

- Ölçümü ve uygulaması daha kolay olduğu için, hacim oranından çok uzunluk oranı kullanılır
- Belirli bir sıcaklık değişiminde uzunluktaki değişim:

$$L_2 - L_1 = \alpha L_1 (T_2 - T_1)$$

burada α = ısıl genleşme katsayısı; L_1 ve L_2 sırasıyla T_1 ve T_2 sıcaklıklarına karşı gelen uzunluklardır

- 1 Uzunluk değişimi
- l₁ Başlangıç uzunluğu
- α Isil genleşme katsayısı
- Δt Sıcaklık değişimi $t_2 t_1$

İmalatta Isıl Genleşme

- İsil genleşme, büzerek ve genleştirerek takma montajlarında kullanılır
 - Parça, diğer bir parça üzerine takılmasını sağlamak üzere, boyutunu arttırmak için ısıtılır veya soğutulur
 - Parça oda sıcaklığına döndüğünde, sıkıca takılmış bir montaj elde edilir
- İsil genleşme, işlem sırasında malzeme içinde gelişen ısıl gerilmeler nedeniyle, ısıl işlem ve kaynakta bir problem olabilir

Elementlerin Erime Karakteristikleri

Bir saf elementin T_m erime sıcaklığı (noktası) = o elementin katı halden sıvı hale dönüştüğü sıcaklık

 Aynı sıcaklıkta ters dönüşüm de gerçekleşir ve buna da katılaşma (donma) sıcaklığı (noktası) adı verilir

Erime ısısı = Katıdan sıvıya dönüşümü gerçekleştirmek için T_m 'de gerekli enerji

Metal Alaşımlarının Erimesi

- Saf metallerin aksine, çoğu alaşımın tek bir erime noktası (sıcaklığı) yoktur
- Bunun yerine, erime solidüs denilen bir sıcaklıkta başlar ve sıcaklıkla artarak likidüs denilen bir sıcaklıkta tamamen sıvıya dönüşerek tamamlanır
 - İki sıcaklık arasında alaşım, katı ve erimiş metalin karışımından oluşur
 - İstisna: ötektik alaşımlar belirli bir sıcaklıkta erir (ve katılaşır)

Alaşımların Erimesi: Solidüs ve Likidüs

•

Doç.Dr. Murat VURAL - İTÜ Makine Fakültesi

 Nikel-Bakır alaşım sistemi için faz diyagramı

Kristal olmayan Malzemelerin Erimesi

- Kristal olmayan malzemelerde (camlar) katıdan sıvıya doğru yavaş bir geçiş oluşur
 - Katı malzeme, sıcaklık artarken yavaşça yumuşar, sonunda erime sıcaklığında sıvı hale gelir
 - Yumuşama sırasında malzeme, erime sıcaklığına yaklaştıkça (gitgide bir sıvıya benzer şekilde) artan bir plastisite kararlılığına sahiptir

Hacim/Ağırlık Değişimleri

Doç.Dr. Murat VURAL - İTÜ Makine Fakültesi

 İdeal bir saf metal, alaşım ve cam için Hacim/Ağırlık'ın sıcaklıkla değişimleri

Erimenin İmalattaki Önemi

•

- Metal dökümü metal eritilir ve ardından kalıp boşluğuna dökülür
 - Düşük erime sıcaklığına sahip metallerin dökümü genellikle daha kolaydır
- Plastik kalıplama polimerlerin erime karakteristikleri, hemen hemen tüm polimer şekillendirme yöntemlerinde önemlidir
- Toz metallerin sinterlenmesi sinterleme metali eritmez; ancak tozların birbirine bağlanması için sıcaklığın erime sıcaklığına yaklaşması gerekir

Isıl Özellikler

- Isıl enerji, malzemelerin değişimine neden olan atomların ısıl enerji seviyesini belirlediğinden, ısıl genleşme, erime ve erme ısısı, ısıl özelliklerdir
- Diğer ısıl özellikler:
 - Özgül ısı
 - Isıl iletkenlik
 - Bu özellikler bir madde içindeki ısının birikimi ve akışıyla ilgilidir

Özgül İsı

Birim malzeme kütlesinin sıcaklığını bir derece yükseltmek için gerekli ısı enerjisi miktarı

 Belirli ağırlıkta metali belirli bir sıcaklığa ısıtmak için gerekli enerjiyi tespit etmek için:

$$H = C W (T_2 - T_1)$$

burada H=ısı enerjisinin miktarı; C= malzemenin özgül ısısı; W= ağırlığı ve $(T_2-T_1)=$ sıcaklıktaki değişim

Hacimsel Özgül Isı

Birim hacim malzemenin sıcaklığını bir derece yükseltmek için gerekli ısı enerjisi miktarı

- Yoğunluk ρ'un özgül ısı C ile çarpımı
- Hacimsel özgül ısı = ρC

Doç.Dr. Murat VURAL - İTÜ Makine Fakültesi

Isıl İletkenlik

DIE

Bir malzemenin ısıl iletme fiziksel mekanizması aracılığıyla kendi içinden ısı transfer etme kabiliyeti

- Isıl ilekenlik, bir malzeme içinde sadece ısıl hareketlerle molekülden moleküle ısı enerjisi transferini içerir
 - Kütle transferi gerçekleşmez
- İsil iletkenlik katsayısı k metallerde genellikle yüksektir; seramik ve plastiklerde ise düşüktür
 - k'nin birimleri : J/s mm °C (Btu/inç saat °F)

Isıl Yayınabilirlik

lsı transferi analizlerinde genellikle "Isıl iletkenlik / hacimsel özgül ısı" oranı ile karşılaşılır

$$K = \frac{k}{\rho C}$$

İmalatta Isıl Özellikler

- İsi üretimi çoğu yöntemde yaygın olduğundan, imalatta önemlidir
 - Bazı durumlarda ısı işlemi gerçekleştiren enerjinin kendisidir
 - İsil işlemler; metal tozlarının ve seramiklerin sinterlenmesi
 - Bazı durumlarda ise ısı, işlemin bir sonucu olarak üretilir
 - Metallerin soğuk şekillendirilmesi ve talaşlı işlenmesi

Kütle Yayınımı (Difüzyonu)

Atomların veya moleküllerin bir malzeme içinde veya temas halindeki iki malzeme arasındaki sınır boyunca hareketi

- Bir malzeme (katı, sıvı veya gaz) içindeki atomların harekete geçirilmesi nedeniyle atomlar sürekli olarak hareket halindedir
 - Isil hareketlendirme seviyesinin yüksek olduğu sıvı ve gazlarda bir serbest dolaşım hareketidir
 - Metallerde atomsal hareket, kristal yapıdaki boşluklar ve diğer hatalar tarafından kolaylaştırılır

Kütle Yayınımı

 Temas halindeki iki blok: (1) başlangıçta her blok kendi bileşimine sahiptir; (2) zamanla, atomların karşılıklı değişimi başlar; (3) sonunda, üniform bileşim oluşur

İmalatta Kütle Yayınımı

- Yayınmaya dayalı yüzey sertleştirme işlemleri karbürizasyon ve nitrürasyonu içerir
- Yayınma (Difüzyon) kaynağı kalıcı bir bağ oluşturmak üzere iki parçanın birbirine bastırılması ve arayüzey boyunca yayınmaya izin verilmesiyle birleştirilmesinde kullanılır
- Yayınma ayrıca elektronik imalatında, "devre detayları" oluşturmak üzere bir yarı iletkenin yüzey kimyasının çok yerel bölgelerde değiştirilmesinde de kullanılmaktadır

Elektriksel Özellikler

- Mühendislik malzemeleri, elektrik iletme kabiliyeti bakımından geniş bir değişkenlik gösterir
- Elektrik akımının akışı, yük taşıyıcıların hareketinden oluşur - bir elektriksel yüke sahip sonsuz küçük parçacıklar
 - Katılarda, bu yük taşıyıcılar elektronlardır
 - Bir sıvı çözelti içinde ise, yük taşıyıcılar pozitif ve negatif iyonlardır

Elektriksel Özellikler

- Yük taşıyıcıların hareketi, elektriksel gerilimin varlığı tarafından oluşturulur
- Ve atomlar ve moleküller arasındaki bağ ve atomik yapılar gibi malzemenin iç karakteristikleri tarafından engellenir

Ohm kanunu: $I = \frac{E}{R}$

burada I = akım, [A], E = gerilim, [V], ve R = elektriksel direnç, [Ω]

Elektriksel Direnç

 Düzgün bir malzeme kesitindeki direnç (örn. Bir tel) iletkenin uzunluğuna "L", kesit alanına "A" ve malzemenin özgül direncine "r" bağlıdır

$$R = r \frac{L}{A}$$
 or $r = R \frac{A}{L}$

burada özgül direncin "r" birimi " Ω -m 2 /m" dir

Özgül Direnç

Bir malzemenin akan akıma karşı direnç gösterme kabiliyetini belirleyen özellik

Özgül direnç r'nin boyutu (Ω -m)

- Özgül direnç sabit değildir; diğer bir çok özellik gibi sıcaklıkla değişir
- Metaller halinde, sıcaklık arttıkça özgül direnç de artar

Özgül İletkenlik

- Bir malzemenin içinden geçen akıma karşı direnç göstermesinden daha çok iletkenliğinin ifade edilmesi daha uygundur
- Bir malzemenin özgül iletkenliği, basit bir ifadeyle özgül direncinin tersidir:

Elektriksel özgül iletkenlik = $\frac{1}{r}$

burada özgül iletkenliğin birimi $(\Omega-m)^{-1}$ dir

Malzemeler ve Elektriksel Özellikleri

 Metalsel bağları nedeniyle metaller en iyi elektrik iletkenidir

- Elektronları kovalent ve/veya iyonik bağlarla sıkıca bağlı olan çoğu seramik ve polimer türü kötü iletkendir
- Bu malzemelerin çoğu, yüksek özgül direnci nedeniyle yalıtkan olarak kullanılmaktadır

Yarı iletkenler

Özgül direnci iletkenler ile yalıtkanlar arasında bulunan bir malzeme

- En yaygın yarı iletken malzeme Silisyum'dur.
 Doğadaki bolluğu nedeniyle göreli olarak düşük maliyetlidir ve işlenmesi kolaydır
- Yarı iletkenleri eşsiz kılan özellik, entegre devreleri imal etmek üzere çok yerel bölgelerde yüzey kimyalarının iletkenliğinin önemli oranda değiştirilebilme kapasitesidir

İmalatta Elektriksel Özellikler

- Elektrik deşarjıyla işleme metallerden malzeme uzaklaştırmak için kıvılcım formunda elektrik enerjisini kullanır
- Ark kaynağı ve elektrik direnç kaynağı gibi en önemli kaynak yöntemleri, metali eritmek ve birleştirmek için elektrik enerjisini kullanır
- Yarı iletken malzemelerin elektriksel özelliklerinin değiştirilme kapasitesi, mikroelektronik üretiminin temelini oluşturur

Elektrokimya

Elektrik ile kimyasal değişimler arasındaki ilişkiyle ve elektrik ve kimyasal enerjinin birbirine dönüşümüyle ilgilenen bilim dalı

- Bir sulu çözeltide, bir asitin, bazın veya tuzun molekülleri, pozitif ve negatif yüklü iyonlar halinde ayrışır
 - İyonlar, çözeltideki yük taşıyıcılardır
 - Metalsel iletkenlerde elektronların oynadığı rolle aynı rolü oynayarak elektrik akımının iletilmesine sağlarlar

Elektrokimyasal İşlemlerdeki Terimler

- Elektrolit iyonize olmuş çözelti
- Elektrotlar elektrolitik iletkende akımın çözeltiye girdiği ve çıktığı yerler
 - Anot pozitif elektrot
 - Katot negatif elektrot
- Tüm düzenleme bir elektrolitik hücre (pil) adını alır

Elektroliz

- Çözeltide oluşan bu kimyasal değişikliklere verilen isim
- Her bir elektrotta, aşağıdaki kimyasal reaksiyonlar oluşur:
 - Metalin ayrışması ve dağılması
 - Çözeltiden gaz ayrışması

Doç.Dr. Murat VURAL - İTÜ Makine Fakültesi

Elektroliz Örneği

 Elektroliz örneği: suyun ayrışması
 Elektrolit = sulu

- Elektrolit = sulu sülfürik asit (H₂SO₄)
- Elektrotlar =
 platinyum ve karbon
 (her ikisi de kimyasal
 olarak soydur)

Suyun Ayrışmasındaki Kimyasal Reaksiyonlar

- Elektrolit H+ iyonlarına ve SO₄= iyonlarına ayrışır
- H+ iyonları negatif yüklü katot tarafından çekilir
 - Ulaştıktan sonra her biri bir elektron alır ve hidrojen gazı molekülü haline dönüşmek üzere birleşirler

$$2H^+ + 2e \rightarrow H_2$$
 (gaz)

Doç.Dr. Murat VURAL - İTÜ Makine Fakültesi

Suyun Ayrışmasındaki Kimyasal Reaksiyonlar

 SO₄= iyonları, anot tarafından çekilirler; ilave sülfürik asit ve oksijen açığa çıkarmayı sağlamak üzere elektronlarını transfer ederler

$$2SO_4$$
 - 4e + 2 H₂O \rightarrow 2H₂SO₄ + O₂

 H₂SO₄ ürünü tekrar SO₄= iyonlarına ayrışır ve proses bu şekilde devam eder

İmalat Yöntemlerinde Elektroliz

- Elektrokaplama dekoratif veya başka amaçlarla bir metali (örn. Krom) ince bir tabaka halinde ikinci bir metalin (örn. Çelik) yüzeyine ekleme işlemi
- Elektrokimyasal işleme Bir metal parçanın yüzeyinden malzeme uzaklaştırma yöntemi
- Hidrojen ve Oksijen gazları üretimi

Doç.Dr. Murat VURAL - İTÜ Makine Fakültesi

