

DLS Lab annual seminar

Octavio Villarreal March 16, 2017

Istituto Italiano di Tecnologia

Outline

- 1. Introduction
- 2. Master thesis: "Dynamic control of 3D directional drilling systems using state estimation"
- 3. Research proposal: "Locomotion control of HyQ using max-plus algebra linear systems" $\ensuremath{\mathsf{S}}$

Introduction

About me

Octavio Antonio Villarreal Magaña

- MSc. Mechanical Engineering, track Control Engineering (TUDelft, The Netherlands)
- BSc. Mechatronic Engineering (UNAM, Mexico)
- Research interests:
 - Control Methods for Robotics
 - Robust Control

Master thesis: "Dynamic control of 3D directional drilling systems

using state estimation"

Dynamic control of 3D directional drilling systems

• Challenging dynamic system

• Interesting robustness problem (not addressed here)

 Collaboration between researchers of TU Delft, TU Eindhoven and the University of Minnesota

Applications of directional drilling

• Extract oil, mineral and thermal energy resources

- Reach targets that need complex geometries such as:
 - Under a city or an ecosystem
 - Far from the drill rig
 - Relief for hazardous situations

General description of the system

BHA: Bottom hole assembly

Context

[Sugiura 2009]

• State-of-practice: constant RSS force (open loop)

Negative effects: kinking, rippling and spiraling

Consequences of negative effects: reduced penetration rate and accuracy

Research goal

Develop a control strategy for a 3D directional drilling system, that allows to drill boreholes with complex geometries, while avoiding undesired behaviors.

Scenario and challenges

• Function of length (not time)

- Model: nonlinearly coupled delay differential equations
- Control orientation of the bit

No access to measurements

Infinite number of poles (no pole-placement)

Approach and solution

 No measurements: state estimation using observers

 Infinite poles: spectral approach [Michiels and Niculescu 2007]

 Performance: optimize location of right-most dominant pole of the system

Simulation results

Research proposal: "Locomotion control of HyQ using max-plus

algebra linear systems"

Motivation

• Provide versatility to the types of gaits that the robot can perform

 Have a unified and systematic way to generate motions of the legs according to the scenario

Can be applied to other legged systems

General picture

General picture

Supervisory controller

Main goal

Decide **geometrical** and **time** gait parameters, based on sensory data, to overcome the scenario that the robot is facing.

Geometrical parameters

 Not necessarily the same for all four legs

- Examples of trajectory parameters:
 - Oscillator shape parameters
 [Barasuol et.al. 2013]
 - Control points of a Bézier (spline) curve [Hyun et.al. 2014]

Supervisory controller (continue)

Time parameters:

• Duty factor D_f

• Step frequency S_f

• Gait parameterization G (e.g., $G_{trot} = \{1, 4\} \prec \{2, 3\}$)

• Time difference vector Δ

Max-plus gait scheduler

Main goal

Using the **time**-related gait parameters provided by the supervisory controller, generate the times that each leg has to touch or leave the ground.

Max-plus gait scheduler (continue)

$G_{trot} = \{1,4\} \prec \{2,3\}$	3
$D_f = 0.58$	
$S_f = 0.42$	
$\Delta = \left[0.2, 0.2\right]$	

k	$g_1(k)$	$g_2(k)$	g ₃ (k)	$g_4(k)$	$I_1(k)$	l2(k)	$I_3(k)$	14(k)
0	0	0	0	0	0	0	0	0
1	2.4	3.6	3.6	2.4,	1.4	2.6	2.6	1.4
2	4.8	6	6	4.8	3.8	5	5	3.8
3	7.2	8.4	8.4	7.2	6.2	7.4	7.4	6.2
4	9.6	10.8	10.8	9.6	8.6	9.8	9.8	8.6
5	12	13.2	13.2	12	11	12.2	12.2	11

Max-plus gait scheduler (continue)

• Systematic coordinated gait generation

• Total cycle time analysis (max-plus linear systems theory)

• Coupling time analysis ("settling time")

Not computationally expensive

Continuous reference generator

Main goal

Making use of the **touchdown** and **lift-off** times of the max-plus gait scheduler, provide a reference trajectory for each of the legs.

Animation

Change of parameters at 10 seconds

Thank you. Questions or comments?

Group members:

- Claudio Semini
- Alex Oleg Posatskiy
- Yannick Berdou
- Yifu Gao
- Michele Focchi
- Victor Barasuol
- Romeo Orsolino
- Andreea Radulescu
- Carlos Mastalli
- Carlos Mastan
- Marco Camurri
- Marco Frigerio
- Roy Featherstone
- Josephus Driessen
- Antonios Gkikakis
- Roodra Singh