SQL Syntax

Bron: http://www.sql.su/

Data types

integer(size)	
int(size)	Hold integers only. The maximum number of digits
smallint(size)	are specified in parenthesis.
tinyint(size)	
decimal(size,d)	Hold numbers with fractions. The maximum number of digits are specified in "size". The
numeric(size,d)	maximum number of digits to the right of the decimal is specified in "d".
char(size)	Holds a fixed length string (can contain letters, numbers, and special characters). The fixed size is specified in parenthesis.
varchar(size)	Holds a variable length string (can contain letters, numbers, and special characters). The maximum size is specified in parenthesis.
date(yyyymmdd)	Holds a date

Database manipulation

CREATE DATABASE database_name	Create a database	CREATE DATABASE My_First_Database
DROP DATABASE database_name	Delete a database	DROP DATABASE My_First_Database

Table manipulation

CREATE TABLE "table_name" ("column_1" "data_type_for_column_1", "column_2" "data_type_for_column_2",)	Create a table in a database.	CREATE TABLE Person (LastName varchar, FirstName varchar, Address varchar, Age int)
DROP TABLE table_name	Delete a table.	DROP TABLE Person

Data manipulation

INSERT INTO table_name VALUES (value_1, value_2,)	Insert new rows into a table.	INSERT INTO Persons VALUES('Hussein', 'Saddam', 'White House')
INSERT INTO table_name (column1, column2,) VALUES (value_1, value_2,)	Insert new rows into a table.	<pre>INSERT INTO Persons (LastName, FirstName, Address) VALUES('Hussein', 'Saddam', 'White House')</pre>
UPDATE table_name SET column_name_1 = new_value_1, column_name_2 = new_value_2 WHERE column_name = some_value	Update one or several columns in rows.	UPDATE Person SET Address = 'ups' WHERE LastName = 'Hussein'
DELETE FROM table_name WHERE column_name = some_value	Delete rows in a table.	DELETE FROM Person WHERE LastName = 'Hussein'

Alias

SELECT column_name AS column_alias FROM table_name	Column name alias	SELECT LastName AS Family, FirstName AS Name FROM Persons
SELECT table_alias.column_name FROM table_name AS table_alias	Table name alias	SELECT LastName, FirstName FROM Persons AS Employees

Select

SELECT column_name(s) FROM table_name	Select data from a table.	SELECT LastName, FirstName FROM Persons
SELECT * FROM table_name	Select all data from a table.	SELECT * FROM Persons
SELECT DISTINCT column_name(s) FROM table_name	Select only distinct (different) data from a table.	SELECT DISTINCT LastName, FirstName FROM Persons
SELECT column_name(s) FROM table_name WHERE column operator value AND column operator value OR column operator value AND (OR)	Select only certain data from a table.	SELECT * FROM Persons WHERE (FirstName='Tove' OR FirstName='Stephen') AND LastName='Svendson'
SELECT column_name(s) FROM table_name WHERE column_name LIKE '%'	Search for a pattern. A "%" sign can be used to define wildcards (missing letters in the pattern) both before and after the pattern.	SELECT * FROM Persons WHERE FirstName LIKE '0%'
SELECT column_name(s) FROM table_name WHERE column_name IN (value1, value2,)	The IN operator may be used if you know the exact value you want to return for at least one of the columns.	SELECT * FROM Persons WHERE Year > 1970
SELECT column_name(s) FROM table_name WHERE column_name BETWEEN value1 AND value2;	The BETWEEN operator selects values within a range. The values can be numbers, text, or dates.	SELECT * FROM Products WHERE Price BETWEEN 10 AND 20;

Select data from a table with sort the rows.

SELECT column_name(s) FROM table_name ORDER BY row_1 DESC, row_3 ASC, ...

- ASC (ascend) is a alphabetical and numerical order (optional)
- DESC (descend) is a reverse alphabetical and numerical order

SELECT column_1, ...,
SUM(group_column_name)
FROM table_name
GROUP BY
group_column_name

GROUP BY... was added to SQL because aggregate functions (like SUM) return the aggregate of all column values every time they are called, and without the GROUP BY function it was impossible to find the sum for each individual group of column values.

SELECT Company, SUM(Amount) FROM Sales GROUP BY Company

SELECT column_1, ...,
SUM(group_column_name)
FROM table_name
GROUP BY
group_column_name
HAVING
SUM(group_column_name)
condition value

HAVING... was added to SQL because the WHERE keyword could not be used against aggregate functions (like SUM), and without HAVING... it would be impossible to test for result conditions.

SELECT Company, SUM(Amount) FROM Sales GROUP BY Company HAVING SUM(Amount)>10000

Operators

=	Equal
<>	Not equal
>	Greater than
<	Less than
>=	Greater than or equal
<=	Less than or equal
BETWEEN	Between an inclusive range
LIKE	Search for a pattern.

Aggregate functions

AVG(column)	Returns the average value of a column
COUNT(column)	Returns the number of rows (without a NULL value) of a column
MAX(column)	Returns the highest value of a column
MIN(column)	Returns the lowest value of a column
SUM(column)	Returns the total sum of a column

Join

SELECT column_1_name, column_2_name, ... FROM first_table_name INNER JOIN second_table_name ON first_table_name.keyfield = second_table_name.foreign_keyfield

The INNER JOIN returns all rows from both tables where there is a match. If there are rows in first table that do not have matches in second table, those rows will not be listed.

SELECT
Employees.Name,
Orders.Product
FROM Employees
INNER JOIN Orders
ON
Employees.Employee_ID
= Orders.Employee ID

SELECT column_1_name,
column_2_name, ...
FROM first_table_name
LEFT JOIN second_table_name
ON first_table_name.keyfield =
second_table_name.foreign_keyfield

The LEFT JOIN returns all the rows from the first table, even if there are no matches in the second table. If there are rows in first table that do not have matches in second table, those rows also will be listed.

SELECT
Employees.Name,
Orders.Product
FROM Employees
LEFT JOIN Orders
ON
Employees.Employee_ID
= Orders.Employee_ID

SELECT column_1_name, column_2_name, ... FROM first_table_name RIGHT JOIN second_table_name ON first_table_name.keyfield = second_table_name.foreign_keyfield The RIGHT JOIN returns all the rows from the second table, even if there are no matches in the first table. If there had been any rows in second table that did not have matches in first table, those rows also would have been listed.

SELECT
Employees.Name,
Orders.Product
FROM Employees
RIGHT JOIN Orders
ON
Employees.Employee_ID
= Orders.Employee ID