- 1) We start in fe_main Explicit. We need to calculate the system-level vector m_system, which is sdof x 1. Therefore, there is a mass associated with each system-level dof. We use the function fe_calculate Mass and provide type = direct_lumped.
- 2. The function fe-calculate Mass goes one of two ways, depending on if embedded_constraint = true or not. For now, assume embedded_constraint \neq true. In this case, we use fe-calculate Mass Direct Lumped and assume mesh-id = 0.
- (3.) We extract node and element info for mesh [0]. Then we loop over each element and use fe-mass Lumped to calculate element-level vector m-element, which is 24x1 for a hex element. We then use fe-scatter-plot to add the element-level m-element to the system-level m-system. Note that multiple elements contribute to the total mass at a single note.
- (4) In fe_masslumped we first extract the x,y,z coordinates for each node in the element under consideration. We then use fe_get_mats, with obj_interest = 0 to extract the material density rho. Next, we use fe_cal Volume to calculate volume_element.
- (5.) In fe_calvolume we use the nodal x, y, z coordinates of the element to calculate the volume. This is done by splitting up the hexahedron into five tetrahedrons,

Pg. 2(2			
W ^{±a} = IW ^{±1} = I	So NE NJ do con	sistent mass mat	rrix
I and I represent of nodes in th	ent the number		
Pg. 39			
Mri = 2 Mij	row-soun technique onsistent mass matrix		
1 2	onsistent mass matrix		
L diagonal mass			