1. Hansı model xətti deyil?

A)
$$y = a + bx_1 + cx_2$$

B)
$$y = a_0 + a_1 x_1 + a_2 x_2$$

C)
$$y = a + bx$$

D)
$$y = a_0 + a_1 x$$

2. Aktiv təcrübə hansı plana əsasən aparılır?

- A) plansız
- B qabaqcadan təşkil edilmiş planüzrə
 - て) ekstremal plan üzrə
 - D) təcili plan üzrə
- E) kritik plan üzrə

3. Kvadratik orta yayınma hansı xarakteristikanın kökaltı xarakteristikasıdır?

- A) Fişer meyarı
- B) dispersiya
- C) riyazi gözləmə
- D) korrelyasiya nisbəti
- E) korrelyasiya əmsalı

4. y=a+bx asılılığın a, b əmsallarını hesablamaq üçün Δ təyinedicisinin hansı düzgündür?

$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \end{vmatrix}$$

B)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} y_i x_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \end{vmatrix}$$

C)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \end{vmatrix}$$

D)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i x_i^2 \end{vmatrix}$$

E)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i x_i^2 \end{vmatrix}$$

5. Təcrübi üsullar nə zaman istifadə edilir?

- A) fiziki və kimyavi qanunauyğunluqları tamamilə məlum olan mürəkkəb texnoloji proseslərin riyazi modellərini gurmaq üçün
- B) fiziki və kimyavi ganunauyğunlugları tamamilə məlum olmanyan mürəkkəb texnoloji proseslərin analizi üçün
- C) fiziki və kimyavi qanunauyğunluqları tamamilə məlum olan mürəkkəb texnoloji proseslərin analizi üçün
- D) riyazi modellərin analizi üçün
- E) fiziki və kimyavi qanunauyğunluqları tamamilə məlum olmanyan mürəkkəb texnoloji proseslərin riyazi modellərini qurmaq üçün
- **6.** y = a + bx əlaqənin a və b əmsalları neçəyə bərabərdir?

X	10	20	30	40	50
Y	20	30	40	50	60

A) a = 10; b = 1B) a = 10; b = 10

C) a = 6; b = 10

D) a = 0; b = 6

E) a = 0; b = 10

7. $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4$ modelində neçə naməlum əmsal vardır?

A) 5

B) 14

C) 4

D) 44

E) 2

8. $y = a + b \frac{1}{a}$ asılılığın a əmsalı hansı düsturla hesablanır?

$$A = \frac{\sum_{i=1}^{N} \frac{y_i}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right) \left(\sum_{i=1}^{N} \frac{1}{x_i} y_i\right)}{N \sum_{i=1}^{N} \frac{1}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)^2}$$

B)
$$a = \frac{\sum_{i=1}^{N} \frac{y_i}{x_i^2} - \left(\sum_{i=1}^{N} \frac{y_i}{x_i}\right) \left(\sum_{i=1}^{N} \frac{1}{x_i} y_i\right)}{N \sum_{i=1}^{N} \frac{1}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)^2}$$

C)
$$a = \frac{\sum_{i=1}^{N} \frac{y_i}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right) \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)}{N \sum_{i=1}^{N} \frac{1}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)^2}$$

D)
$$a = \frac{\sum_{i=1}^{N} \frac{y_i}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right) \left(\sum_{i=1}^{N} \frac{1}{x_i} y_i\right)}{N \sum_{i=1}^{N} \frac{1}{x_i} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)^2}$$

E)
$$a = \frac{\sum_{i=1}^{N} \frac{1}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right) \left(\sum_{i=1}^{N} \frac{1}{x_i} y_i\right)}{N \sum_{i=1}^{N} \frac{1}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)^2}$$

9. $y = a + bx^2$ tənləyinin a və b əmsallarını hesablamaq üçün hansı çevirməni aparmaq lazımdır?

A)
$$z = bx2$$

B)
$$z = x^2$$
C) $z = \frac{b}{x^2}$

D)
$$z = x^2 + b$$

E)
$$z = \frac{y-a}{b}$$

10. $y = a + b \cdot \frac{1}{a}$ tənliyinin a və b əmsallarını hesablamaq üçün hansı çevirməni aparmaq lazımdır?

A)
$$z = (y-a)/b$$

B)
$$z = 1/bx$$

$$(z) z = 1/x$$

D)
$$z = b/x$$

E)
$$z = b/(y-a)$$

11. Kvadratik orta yayınma $\sigma_x = 5$. Dispersiya D_x neçəyə bərabərdir?

- A) 25
- **B) 265**
- C) 625
- D) 5
- E) 105

12. $y = a + b \ln x$ modelinin əmsallarını hesablamaq üçün

 $S = \sum_{i=1}^{n} (y_i - y_{ip})^2 = \sum_{i=1}^{n} (y_i - a - b \ln x_i)^2$ funksiyasının a -ə görə xüsusi törəməsi nəyə

$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{N} (y_i - a - b \ln x_i)$$

B)
$$\frac{\partial S}{\partial a} = 2\sum_{i=1}^{N} (y_i - a - bx_i)$$

C)
$$\frac{\partial S}{\partial a} = \sum_{i=1}^{N} (y_i - a - b \ln x_i)$$

D)
$$\frac{\partial S}{\partial a} = -\sum_{i=1}^{N} (y_i - a - b \ln x_i)$$

E)
$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{N} (y_i - a - b \ln x_i)^2$$

13. $y = a + b \cdot \ln x$ tənliyinin a və b əmsallarını hesablamaq üçün hansı çevirməni aparmaq lazımdır?

$$\mathsf{A)} \ \ z = e^{\frac{y-a}{b}}$$

B)
$$z = (y - a)/b$$

C)
$$z = b \cdot \ln x$$

$$\begin{array}{ccc}
D) & z = \ln x \\
E) & z = y - a
\end{array}$$

$$E$$
) $z = y - a$

14.
$$\Delta=80$$
, $\Delta_1=800$, $\Delta_2=400$, $\Delta_3=-80$ olduğu halda $y=a+bx+cx^2$ asılılığın a əmsalı neçəyə bərabərdir?

- A) 5
- B)10 C) -1

 - D) 3
 - E) -10

15.
$$y = a_0 + \sum_{i=1}^7 a_i x_i + \sum_{i=1}^7 a_{ii} x_i^2 + \sum_{i,j=1}^{C_j^2} a_{ij} x_i x_j$$
 çoxölçülü modelin sərbəst həddi daxil olmaqla cəmi neçə dənə əmsalı vardır?

- A) 15
- B) 14
- C) 35
- D) 21
- **E**) 36

16. Hansı şərtə riyazi model cavab verməlidir?

- A) mənfi olmamazlıq şərti
- B) adekvatlıq şərti
- C) korrektə şərti
- D) bərabərlik şərti
- E) sabitlik şərti

17. Orta qiymətlər $\overset{-}{x}=4$, $\overset{-}{y}=5$, $\overline{xy}=40$ və orta kvadratik yayınmalar $\sigma_x=10$, $\sigma_y=20$ olduğu halda r korrelyasiya əmsalının qiyməti neçəyə bərabərdir?

- A) 0,1
 - B) 0,2
 - C) 0,4
 - D) -0,2
 - E) 0,3

18. Riyazi modeli sadə statistika halında necə göstərmək olar?

A) $f(x_1, x_2, ..., x_i, ..., x_{n-1}, x_n) = z \rightarrow \max$

 $\left. \begin{array}{l} \text{pozision məhdudiyyətlər} \;\; \frac{x_{i \min} \leq x_{i} \leq x_{i \max}}{x_{i} \geq 0} \end{array} \right\}$

B) $f(x_1, x_2, ..., x_i, ..., x_{n-1}, x_n) = z \rightarrow \max$

 $\left. \begin{array}{l} \text{pozision məhdudiyyətlər} \;\; \frac{x_{i \min} \leq x_{i} \leq x_{i \max}}{x_{i} \geq 0} \end{array} \right\}$

C) $f(x_1, x_2, ..., x_j, ..., x_{n-1}, x_n) = z \to \max \left(\min \right)$

 $\left. \begin{array}{l} \text{pozision məhdudiyyətlər} \;\; \frac{x_{i\min} \leq x_i \leq x_{i\max}}{x_i \leq 0} \end{array} \right\}$

 $\left. \begin{array}{l} \text{pozision məhdudiyyətlər} \;\; \frac{x_{i \min} \leq x_{i} \leq x_{i \max}}{x_{i} \geq 0} \end{array} \right\}$

E) $f(x_1, x_2, ..., x_i, ..., x_{n-1}, x_n) = z \rightarrow \min$

 $\left. \begin{array}{l} \text{pozision məhdudiyyətlər} \;\; x_{i \min} \leq x_{i} \leq x_{i \max} \\ x_{i} \geq 0 \end{array} \right\}$

19. Modelləşdirmə mərhələsinə nı daxildir?

- A) grupdan kənar etmə
- B) integrallama
- (v) Həll metodunun seçimi
- D) differensiallanma
- E) cəmləmə

20. Dispersiya D_x =144 olduğu halda x parametrinin kvadratik orta yayınması neçəyə bərabərdir?

- A) 22
- B) 12
- **र**) 13
- D) 2
- E) 15

21. y=a+bx asılılığın a, b əmsallarını hesablamaq üçün Δ_1 təyinedicisinin hansı düzgündür?

A)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i y_i & \sum_{i=1}^{N} y_i x_i^2 \end{vmatrix}$$

$$\Delta_{1} = \begin{vmatrix} \sum_{i=1}^{N} y_{i} & \sum_{i=1}^{N} x_{i} \\ \sum_{i=1}^{N} x_{i} y_{i} & \sum_{i=1}^{N} x_{i}^{2} \end{vmatrix}$$

C)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i y_i \\ \sum_{i=1}^{N} x_i y_i & \sum_{i=1}^{N} x_i^2 \end{vmatrix}$$

D)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} x_i y_i^2 & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i y_i & \sum_{i=1}^{N} x_i^2 \end{vmatrix}$$

E)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i y_i^2 & \sum_{i=1}^{N} x_i^2 \end{vmatrix}$$

22. Modelləşdirmə prosesi hansı əsas mərhələlərdən ibarətdir?

- A) surət çıxama
- B) Məsələnin qoyuluşu
- Ć) siqnalların emalı
- D) sistemdən çıxma
- E) nəticə çıxarma

23. Funksional asılıq dedikdə nə başa düşülür?

- A) asılı olmayan faktorun bir giymətinə asılı olan faktorun ikidən çox giyməti uyğun olur
- B) asılı olmayan faktorun bir qiymətinə asılı olan faktorun bir qiyməti uyğun olur
- 🖒 asılı olmayan faktorun bir qiymətinə asılı olan faktorun üç qiyməti uyğun olur
- D) asılı olmayan faktorun bir qiymətinə asılı olan faktorun üçdən çox qiyməti uyğun olur
- E) asılı olmayan faktorun bir qiymətinə asılı olan faktorun bir neçə qiyməti uyğun olur

24. Hansı düsturla parametrin mərkəzləşmiş qiyməti hesablanır (m_x - riyazi gözləmə)?

A)
$$x^0 = x - m_x^2$$

B)
$$x^0 = x^2 - m_x$$

D)
$$x = x^2 - m_x^2$$

E)
$$x^0 = x + m_x$$

25. Sadalanan üsullardan hansının köməyinlə reqressiya tənliyinin əmsallarını hesablamaq olar?

- A) Çebişev
- B) xətti proqramlaşdırma üsulu
- C) Puasson üsulu
- (I)) ən kiçik kvadratlar üsulu
- E) diskret programlaşdırma üsulu

26. Modelləşdirmə prosesi hansı əsas mərhələlərdən ibarətdir?

- A) sistemdən çıxma
- B) nəticə çıxarma
- C) surət çıxama
- D) signalların emalı
- E) Məsələnin qoyuluşu

$oldsymbol{arphi}_{1}$. Korrelyasiya əmsalı hansı düstura görə hesablanır, burada $oldsymbol{\sigma}_{_{x}}$, $oldsymbol{\sigma}_{_{y}}$ – kvadratik orta yayınmalar, \bar{x} , \bar{y} , \bar{xy} – orta qiymətlərdir?

A)
$$r = \frac{\overline{xy} - \overline{xy}}{\sigma_x}$$

C)
$$r = \frac{\overline{xy} - \overline{xy}}{\sigma_y}$$

D)
$$r = \frac{(\overline{xy})^2 - \overline{xy}}{\sigma_x \sigma_y}$$

E) $r = \frac{\overline{xy} - \overline{x}\overline{y^2}}{\sigma_x \sigma_y}$

E)
$$r = \frac{\overline{xy} - \overline{x}\overline{y^2}}{\sigma_x \sigma_y}$$

28. Modelləsdirməmərhələsi hansıdır?

- A) analog-rəgəm çevirməsi
- B) rəqəm-analoq çevirməsi
- 🗘) Nəzəri əsasların öyrənilməsi və obyektin orijinalı haqqında məlumatın yığılması
 - Ď) cevirmə
 - E) normalaşma
- 29. $y = a + b \ln x$ asılılığın a əmsalı hansı düsturla hesablanır?

$$A = \frac{\sum_{i=1}^{N} y_i \sum_{i=1}^{N} (\ln x_i)^2 - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} y_i \ln x_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

B)
$$a = \frac{\sum_{i=1}^{N} y_i \sum_{i=1}^{N} (\ln x_i)^2 - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} y_i \ln y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

C)
$$a = \frac{\sum_{i=1}^{N} x_i \sum_{i=1}^{N} (\ln x_i)^2 - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} y_i \ln x_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

D)
$$a = \frac{\sum_{i=1}^{N} y_i \sum_{i=1}^{N} (\ln x_i)^2 - \sum_{i=1}^{N} \ln x_i + \sum_{i=1}^{N} y_i \ln x_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

E)
$$a = \frac{\sum_{i=1}^{N} y_i \sum_{i=1}^{N} (\ln y_i)^2 - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} y_i \ln x_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

30. Korrelyasiya əmsalı hansı düstura görə hesablanır?

A)
$$r = \frac{N\sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{\sqrt{\sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \sqrt{N\sum_{i=1}^{N} y_i^2 - \left(\sum_{i=1}^{N} y_i\right)^2}}$$

B)
$$r = \frac{\sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{\sqrt{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \sqrt{N \sum_{i=1}^{N} y_i^2 - \left(\sum_{i=1}^{N} y_i\right)^2}}$$

$$r = \frac{N\sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{\sqrt{N\sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \sqrt{N\sum_{i=1}^{N} y_i^2 - \left(\sum_{i=1}^{N} y_i\right)^2}}$$

D)
$$r = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{\sqrt{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)} \sqrt{N \sum_{i=1}^{N} y_i^2 - \left(\sum_{i=1}^{N} y_i\right)^2}}$$

E)
$$r = \frac{N\sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{\sqrt{N\sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \sqrt{N\sum_{i=1}^{N} y_i - \left(\sum_{i=1}^{N} y_i\right)^2}}$$

31. $y = ax^b$ asılılığın a, b əmsallarını təyin etmək üçün nəyi hesablamaq lazımdır?

A)
$$N$$
, $\sum_{i=1}^{N} \ln x_i$, $\sum_{i=1}^{N} (\ln x_i)^2$, $\sum_{i=1}^{N} \ln y_i$, $\sum_{i=1}^{N} \ln y_i \ln x_i$

B)
$$N$$
, $\sum_{i=1}^{N} \ln x_i$, $\sum_{i=1}^{N} (x_i)^2$, $\sum_{i=1}^{N} \ln y_i$, $\sum_{i=1}^{N} \ln y_i \ln x_i$

C)
$$N$$
, $\sum_{i=1}^{N} \ln x_i$, $\sum_{i=1}^{N} (\ln x_i)^2$, $\sum_{i=1}^{N} y_i$, $\sum_{i=1}^{N} \ln y_i \ln x_i$

D)
$$N$$
, $\sum_{i=1}^{N} x_i$, $\sum_{i=1}^{N} (\ln x_i)^2$, $\sum_{i=1}^{N} \ln y_i$, $\sum_{i=1}^{N} \ln y_i \ln x_i$

E)
$$N$$
, $\sum_{i=1}^{N} \ln x_i$, $\sum_{i=1}^{N} (\ln x_i)^2$, $\sum_{i=1}^{N} \ln y_i$, $\sum_{i=1}^{N} \ln y_i x_i$

32. x parametrinin orta kvadratik yayımı hansı düsturla hesablanır, $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$?

A)
$$\sigma_x = \sum_{i=1}^{N} (x_i - x^{-1})^2$$

B)
$$\sigma_x = \frac{1}{N} \sum_{i=1}^{N} x_i^2$$

C)
$$\sigma_x = \frac{1}{N^2} \sum_{i=1}^{N} (x_i - \bar{x})$$

D)
$$\sigma_x = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N}}$$

E)
$$\sigma_x = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N}$$

33. Fiziki modelləşdirmə nədən ibarətdir?

A) sonuncumodellər

- B) modelləşdirmə prinsipləri
- C) miqyas modelləri
- D) birgə modelləşdirmə
- E) son modellər

34. Aktiv təcrübi üsullarını hansı hallarda aparmaq olar?

- A) təcrübələrin aparılmasına imkan verən laboratoriya və yarımsənaye qurğularının riyazi modellərinin alınması üçün
- B) lakinyarımsənaye qurğularının riyazi modellərinin alınması üçün
- C) laboratoriya və yarımsənaye qurğularının analizi üçün
- D) sənaye qurğularının riyazi modellərinin alınması üçün
- E) lakin laboratoriya qurğularının riyazi modellərinin alınması üçün
- 35. $y = a + b \ln x$ modelinin əmsallarını hesablamaq üçün

$$S = \sum_{i=1}^{n} (y_i - y_{ip})^2 = \sum_{i=1}^{n} (y_i - a - b \ln x_i)^2$$
 funksiyasının b -ə görə xüsusi törəməsi nəyə

bərabərdir?

A)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} (y_i - a - \ln x_i) \ln x_i$$

B)
$$\frac{\partial S}{\partial b} = \sum_{i=1}^{N} (y_i - a - b \ln x_i) \ln x_i$$

C)
$$\frac{\partial S}{\partial b} = 2\sum_{i=1}^{N} (y_i - a - b \ln x_i) \ln x_i$$

D)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} (y_i - a - b \ln x_i) x_i$$

E)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} (y_i - a - b \ln x_i) \ln x_i$$

36. $y = ax^b$ asılılığın a, b əmsallarını hesablamaq üçün Δ təyinedicisinin hansı düzgündür?

A)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} (\ln x_i)^3 \end{vmatrix}$$

B)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln y_i x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

C)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \ln x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

D)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

E)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} y_i (\ln x_i)^2 \end{vmatrix}$$

37. Parametrin orta qiyməti hansı düsturla hesablanır?

A)
$$\bar{x} = \sum_{i=1}^{n} x_i^2 / n$$

$$\mathsf{B)} \ \, \overline{x} = \sum_{i=1}^n x_i \, \cdot n$$

$$C) \ \overline{x} = \sum_{i=1}^{n} x_i^2 n$$

D)
$$\bar{x} = \sum_{i=1}^{n} x_i^3 / n$$

$$\mathsf{E)} \ \, \bar{x} = \sum_{i=1}^n x_i \, \big/ n$$

38. Passiv təcrübədə alınan qiymətlərə əsasən $y=a_0+a_1x_1$ asılılığın a_0 əmsalını təyin etmək

х	12	13	14	15
У	36	39	42	45

- A) 3
- B) 2
- C) 8
- D) 0
- E) 7

39. Fiziki modelləşdirmə nəyə bölünür?

- A) siqnalmodelləşdirmə
- B) kanalmodelləşdirmə
- C) xüsusi modelləşdirmə
- D) normal modelləşdirmə
- E) analoqmodelləşdirmə

40.
$$\sum_{i=1}^{N} \frac{1}{x_i} y_i = 70$$
, $\sum_{i=1}^{N} \frac{1}{x_i} = 20$, $\sum_{i=1}^{N} y_i = 30$, $\sum_{i=1}^{N} \frac{1}{x_i^2} = 120$, $N = 20$ olduğu halda $y = a_0 + a_1 \frac{1}{x}$

asılılığın a_1 əmsalı neçəyə bərabərdir?

- A) 0.8
- B) 1
- C) 0.9
- D) 0.4

41. Hansı mərhələ modelləşdirmə mərhələsidir?

- A) Formallaşdırma.
- B) qruplaşdırma
- C) qeyri-stasionarlıq
- D) mərkəzləşdirmə
- E) stasionarliq

42. $y = a_0 + a_1 \ln x^2$ əlaqənin a_0 , a_1 əmsallarını hesablamaq üçün hansı çevirməni aparmaq lazımdır?

A)
$$z = \ln x^2$$

$$\mathsf{B)} \ \ z = \ln^2 x$$

C)
$$z = 1/\ln x^2$$

D)
$$z = x^{2}$$

$$\mathsf{E)} \ \ z = (\ln x)^2$$

43. 87. $y = a + bx + cx^2$ asılılığın b əmsalı hansı düsturla hesablanır?

A)
$$b = \frac{B}{D}$$
, burada

$$B = N \sum_{i=1}^{N} y_i x_i \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i x_i^2 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_$$

$$-\sum_{i=1}^{N} x_{i}^{4} \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} y_{i} x_{i} - \sum_{i=1}^{N} y_{i} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{4} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i} \sum_{i=1}^{N} x_{i}^{4}$$

$$D = N \sum_{i=1}^{N} x_i^3 \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^3 \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^3 -$$

$$-\sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{2} - N \sum_{i=1}^{N} x_{i}^{3} \sum_{i=1}^{N} x_{i}^{4} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i}^{4}$$

B)
$$b = \frac{D}{B}$$
, burada

$$B = N \sum_{i=1}^{N} y_i x_i \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i^3 \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 \sum_{i=1}^{N} y_i x_i^2 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_$$

$$-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}y_{i}x_{i}-N\sum_{i=1}^{N}y_{i}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}y_{i}\sum_{i=1}^{N}x_{i}^{4}$$

$$D = \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i \sum_$$

$$-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}-N\sum_{i=1}^{N}x_{i}^{3}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{4}$$

C)
$$b = \frac{B}{D}$$
, burada

$$B = N \sum_{i=1}^{N} y_i x_i \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i y_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i x_i^2 - \sum_{i=1}^{N} y_i x_i \sum_{i=1}^{N} y_i x_i^2 - \sum_{i=1}^{N$$

$$\begin{split} &-\sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} y_{i}x_{i} - N \sum_{i=1}^{N} y_{i}x_{i}^{2} \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1$$

44. Hansılar modelin növüdür?

- A) mənfimodel
- B) müsbət model
- C) grup modeli
- D) sinif modeli
- E) informasiya modeli

45. Hansı mərhələ modelləşdirmə mərhələsinə aiddir?

- A) obyektin reallaşdırılması
- B) prosesin reallaşdırılması
- C) modelin reallaşdırılması
- D) ədədi üsulun reallaşdırılması
- E) signalın reallaşdırılması

46. $y = a + b \ln x$ asılılığın a,b əmsallarını hesablamaq üçün Δ_2 təyinedicisinin hansı düzgündür?

A)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} \ln y_i & \sum_{i=1}^{N} y_i \ln x_i \end{vmatrix}$$

B)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} \ln x_i \end{vmatrix}$$

C)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} y_i \ln y_i \end{vmatrix}$$

D)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} y_i \ln x_i \end{vmatrix}$$

E)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} y_i \ln x_i \end{vmatrix}$$

47. Aktiv təcrübə zamanı nə nəzərdə tutulur?

- A) prosesə təsir edən bütün parametrlərin ardıcıl dəyişdirilməsi
- B) prosesə təsir edən çıxış parametrlərin ardıcıl dəyişdirilməsi
- C) prosesə təsir edən bütün parametrlərin eyni zamanda dəyişdirilməsi
- D) prosesə təsir edən çıxış parametrlərin eyni zamanda dəyişdirilməsi
- E) prosesə təsir etməyən bütün parametrlərin ardıcıl dəyişdirilməsi

48. y = a + bx asılılığın a, b əmsallarını hesablamaq üçün Δ_2 təyinedicisinin hansı düzgündür?

A)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i y_i^2 & \sum_{i=1}^{N} x_i y_i \end{vmatrix}$$

B)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i y_i \end{vmatrix}$$

C)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i y_i \end{vmatrix}$$

D)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i y_i^2 \end{vmatrix}$$

E)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i y_i \end{vmatrix}$$

49. y = a + bx asılılığın b əmsalı hansı düsturla hesablanır?

A)
$$b = (\sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i) / (N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2)$$

B)
$$b = (N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i) / (N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2)$$

C)
$$b = (N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i) / (\sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2)$$

D)
$$b = (N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i) / (N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i^2))$$

E)
$$b = (N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i) / (N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2)$$

50. y = a + bx asılılığın a, b əmsallarını təyin etmək üçün nəyi hesablamaq lazımdır?

A)
$$N$$
, $\sum_{i=1}^{N} x_i^3$, $\sum_{i=1}^{N} x_i^2$, $\sum_{i=1}^{N} y_i$, $\sum_{i=1}^{N} x_i y_i$

B)
$$N$$
, $\sum_{i=1}^{N} x_i$, $\sum_{i=1}^{N} x_i^2$, $\sum_{i=1}^{N} y_i$, $\sum_{i=1}^{N} x_i y_i$

C)
$$N$$
, $\sum_{i=1}^{N} x_i$, $\sum_{i=1}^{N} x_i^2$, $\sum_{i=1}^{N} y_i$, $\sum_{i=1}^{N} x_i^2 y_i$

D)
$$N^2$$
, $\sum_{i=1}^{N} x_i$, $\sum_{i=1}^{N} x_i^2$, $\sum_{i=1}^{N} y_i$, $\sum_{i=1}^{N} x_i y_i$

E)
$$N$$
, $\sum_{i=1}^{N} x_i$, $\sum_{i=1}^{N} x_i^2$, $\sum_{i=1}^{N} y_i^2$, $\sum_{i=1}^{N} x_i y_i$

51. $y = a + b \frac{1}{x}$ asılılığın a,b əmsallarını hesablamaq üçün Δ_2 təyinedicisinin hansı düzgündür?

A)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} \frac{y_i}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i} y_i \end{vmatrix}$$

B)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} \frac{1}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i} y_i \end{vmatrix}$$

C)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} \frac{1}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i} \end{vmatrix}$$

D)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} \frac{x_i}{y_i} \\ \sum_{i=1}^{N} \frac{1}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i} y_i \end{vmatrix}$$

E)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} x_i y_i \\ \sum_{i=1}^{N} \frac{1}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i} y_i \end{vmatrix}$$

52. $y = a + b \frac{1}{\lg x^2}$ reqressiya tənliyinin a və b əmsallarını hesablamaq üçün hansı

çevirməni aparmaq lazımdır?

A)
$$z = 1/\lg x^2$$

$$\mathsf{B)} \ \ z = b/\lg x^2$$

$$C) z = \sqrt{10^{\frac{y-a}{b}}}$$

D)
$$z = x^{2}$$

E)
$$z = (y-a)/b$$

53. Passiv təcrübədə alınan qiymətlərə əsasən $y=a_0+a_1x_1$ asılılığın a_1 əmsalını təyin etmək

X	12	13	14	15
У	36	39	42	45

- A) 2
- B) 3
- C) 4
- D) 1
- E) 5

54. $y = ax^b$ tənliyinin ən kiçik kvadratlar üsulu ilə a və b əmsallarını təyin etmək üçün hansı çevirmələri yerinə yetirmək lazımdır?

- A) loqarifmləşdirmək
- B) N -ə bölmək
- C) kuba yüksəltmək
- D) N -ə vurmaq
- E) kvadrata yüksəltmək

55. $\sum_{i=1}^{40} (x_i - \bar{x})(y_i - \bar{y}) = 400$, $\sigma_x = 4$, $\sigma_y = 5$ olduğu halda korreyasiya əmsalı neçəyə

bərabərdir?

A)
$$r = 0.15$$

B)
$$r = 0.5$$

C)
$$r = 0.05$$

D)
$$r = 5$$

E)
$$r = 0.25$$

56. $y = a + bx^3$ əlaqənin a və b əmsalları neçəyə bərabərdir?

X	2	3	4	5
Y	16	54	128	250

A)
$$a = 0$$
; $b = 2$

B)
$$a = 1$$
; $b = 3$

C)
$$a = 0$$
; $b = 5$

D)
$$a = 5$$
; $b = 1$

E)
$$a = 1$$
; $b = 3$

57. y = a + bx əlaqənin a və b əmsalları neçəyə bərabərdir?

X	10	20	30	40	50
Y	30	60	90	120	150

A)
$$a = 10$$
; $b = 4$

B)
$$a = 0$$
; $b = 0$

C)
$$a = 0$$
; $b = 3$

D)
$$a = 0$$
; $b = 1$

E)
$$a = 10$$
; $b = 3$

58. $y = a_0 + \sum_{i=1}^n a_i x_i + \sum_{i=1}^n a_{ii} x_i^2 + \sum_{i=1}^{C_n^2} a_{ij} x_i x_j$ çoxölçülü modelin əmsallarını hesablamaq üçün

hansı çevirmələri aparmaq lazımdır?

A)
$$z_i = x_i^2$$
, $z_{ij} = a_{ij}x_ix_j$

B)
$$z_i = x_i^2$$
, $z_{ii} = x_i x_i$

C)
$$z_i = a_{ii} x_i^2$$
, $z_{ij} = x_i x_j$

D)
$$z_i = x_i^2$$
, $z_{ii} = x_i x_i$

E)
$$z_i = a_{ii}x_i^2$$
, $z_{ij} = a_{ij}x_ix_j$

59. Hansı model xəttidir?

A)
$$y = 10 + 3x$$

B)
$$y = 10 + 3x^3$$

C)
$$y = 3x^4$$

D)
$$y = 10 + 3x^4$$

E)
$$y = 10 + 3x^2$$

60.
$$\sum_{i=1}^{N} x_i y_i = 70$$
, $\sum_{i=1}^{N} x_i = 20$, $\sum_{i=1}^{N} y_i = 25$, $\sum_{i=1}^{N} x_i^2 = 120$, $N = 20$ olduğu halda $y = a_0 + a_1 x_1$

asılılığın a_1 əmsalı neçəyə bərabərdir?

- A) 0.1
- B) 0.45
- C) 1
- D) 0.8
- E) 0.9

61. Hansı model qeyri-xəttidir?

- A) $y = a + bx_1 + cx_2$
- B) $y = a + bx_1 + cx_2 + dx_3$
- C) $y = a + bx_1$
- D) $y = a_0 + \sum_{i=1}^{5} a_i x_i$
- E) $y = a + bx_1x_2$

62.
$$\sum_{i=1}^{100} x_i = 100$$
, $\sum_{i=1}^{100} y_i = 20$, $\sum_{i=1}^{100} x_i y_i = 380$, dispersiyalar $D(x) = 25$, $D(y) = 144$ olduğu halda

korrelyasiya əmsalı neçəyə bərabərdir?

- A) 0.006
- B) 0.06
- C) 0.6
- D) 6
- E) 0

63. x və y təsadüfi kəmiyyətlərin müşahidəsi əsasındakı statistik göstəricilər aşağıdakıdır:

х	7	4	2	5
y	31	22	16	25

y = a + bx tənliyinin a və b əmsallarını təyin etməli.

- A) a = 1, b = 0
- B) a = 7, b = 14
- C) a = 10, b = 2
- D) a = 9, b = 3
- E) a = 10, b = 3

64. Kvadratik orta yayınması σ_x =25 olan x parametrinin ikinci tərtib mərkəzi momenti neçəyə bərabərdir?

- A) 315
- B) 625
- C) 25
- D) 5
- E) 215

65. $y = a + b \ln x$ asılılığın a , b əmsallarını hesablamaq üçün Δ təyinedicisinin hansı düzgündür?

A)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

B)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

C)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} \ln x_i^2 \end{vmatrix}$$

D)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \ln^2 x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

E)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

66. Aşağıdakı tənliklərin hansı çoxölçülü reqressiya tənliyini göstərir?

A)
$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

B)
$$y = a_0 - a_1 x^2 + a_2 x^4 - a_3 x^6$$

C)
$$y = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{a_3}{x^3}$$

D)
$$y = a_0 + a_1 \ln x + a_2 \ln x^2$$

E)
$$y = a_0 + a_1x_1 + a_2x_2 + a_3x_3$$

67. Hansı model çoxölçülüdür?

A)
$$y = a_0 + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3$$

B)
$$y = a_0 + a_1 x_1 + a_2 x_1^4 + a_3 x_1^3$$

C)
$$y = a_0 + a_1 x_1^2 + a_2 x_1^4 + a_3 x_1^3$$

$$y = a_0 + a_1 x_1^2 + a_2 x_1^3 + a_3 x_1^4 + a_4 x_1^5$$

E)
$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$$

68. $y = ax^b$ asılılığın b əmsalı hansı düsturla hesablanır?

A)
$$b = \frac{N \sum_{i=1}^{N} \ln y_i \ln x_i^2 - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} \ln y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

B)
$$b = \frac{N \sum_{i=1}^{N} \ln y_i \ln x_i - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} \ln y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

C)
$$b = \frac{N \sum_{i=1}^{N} \ln y_i \ln y_i x_i - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} \ln y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

D)
$$b = \frac{N \sum_{i=1}^{N} \ln y_i \ln x_i - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} \ln y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln y_i\right)^2}$$

E)
$$b = \frac{N \sum_{i=1}^{N} \ln y_i \ln x_i - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} \ln x_i y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

69. Sadalanan üsullardan hansı riyazi modelin alınması üsuluna aiddir?

- A) ən sürətli enmə üsulu
- B) qradiyent üsulu
- C) simpleks-üsul
- D) eksperimental (aktiv və passiv) üsulu
- E) ulduzşəkilli

70. Korrelyasiya analizi nəyi nəzərdə tutur?

- A) differensial tənliyin həlli
- B) inteqral tənliyin həlli
- C) reqressiya tənliyinin parametrlərinin təyini
- D) siqnalların analizi
- E) kvadrat tənliyin köklərinin təyini

71. Hansı model parabolikdir?

A)
$$y = a_0 + \sum_{i=1}^{5} a_i \sin x_i$$

B)
$$y = a + \log x_1 + cx_2 + dx_3$$

C)
$$y = a + bx_1$$

D)
$$y = a + bx_1 + cx_1^2$$

E)
$$y = a + bx_1 + c\frac{1}{x_2}$$

72. $\sum_{i=1}^{50} x_i y_i = 500$ olduğu halda \overline{xy} orta qiymət neçəyə bərabərdir?

- A) 20
- B) 40
- C) 10
- D) 50
- E) 30

73. Təcrübi üsullar hansı növ olur?

- A) aktiv və passiv
- B) passiv və informasiya
- C) informasiya və qeyri-informasiya
- D) aktiv və qeyri-aktiv
- E) aktiv və miqyas

74. $y = a + b - \frac{1}{2}$ asılılığın a, b əmsallarını hesablamaq üçün Δ təyinedicisinin hansı düzgündür?

A)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \frac{1}{x_i} \\ \sum_{i=1}^{N} \frac{1}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i^2} \end{vmatrix}$$

A)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \frac{1}{x_i} \\ \sum_{i=1}^{N} \frac{1}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i^2} \end{vmatrix}$$

B) $\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \frac{1}{x_i} \\ \sum_{i=1}^{N} \frac{1}{x_i^2} & \sum_{i=1}^{N} \frac{1}{x_i^2} \end{vmatrix}$

C)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} \frac{1}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i^2} \end{vmatrix}$$

D)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} \frac{1}{x_i} \\ \sum_{i=1}^{N} \frac{1}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i} \end{vmatrix}$$

E)
$$\Delta = \begin{vmatrix} \sum_{i=1}^{N} \frac{1}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i} \\ N & \sum_{i=1}^{N} \frac{1}{x_i^2} \end{vmatrix}$$

75. Hansı əməliyyatlar aktiv təcrübi üsullar zamanı aparılır?

- A) tədqiqat obyektinin giriş parametrləri xüsusi təcrübələr nəticəsində müəyyən qanunauyğunluqlarla dəyişdirilir və giriş parametrlərinin qiymətləri analiz edilir
- B) tədqiqat obyektinin giriş parametrləri ixtiyari dəyişdirilir və çıxış parametrlərinin qiymətləri analiz edilir
- C) tədqiqat obyektinin giriş parametrləri xüsusi təcrübələr nəticəsində müəyyən

qanunauyğunluqlarla dəyişdirilir və çıxış parametrlərinin qiymətləri analiz edilir

- D) tədqiqat obyektinin çıxış parametrləri xüsusi təcrübələr nəticəsində müəyyən qanunauyğunluqlarla dəyişdirilir və giriş parametrlərinin qiymətləri analiz edilir
- E) tədqiqat obyektinin çıxış parametrləri xüsusi təcrübələr nəticəsində müəyyən qanunauyğunluqlarla dəyişdirilir və çıxış parametrlərinin qiymətləri analiz edilir

76. İnformasiya modelləşdirmənin istifadəsi nəyə əsaslanır?

- A) dolayı metodlar
- B) məntiqi metodlar
- C) kompleks metodlar
- D) bilavasitəmetodlar
- E) grafiki metodlar

77.
$$\sum_{i=1}^{150} x_i y_i = 300$$
 olduğu halda \overline{xy} orta qiymət neçəyə bərabərdir?

- A) 2
- B) 40
- C) 20
- D) 30
- E) 10

78. Parametrin kvadratının orta qiyməti hansı düsturla hesablanır?

A)
$$x = \sum_{i=1}^{n} x_i / n^2$$

$$\mathsf{B)} \ \ x = \sum_{i=1}^n x_i^2 \cdot n$$

C)
$$x = \sum_{i=1}^{n} x_i^2 / n$$

D)
$$x = \sum_{i=1}^{n} x_i^2 / n^2$$

$$\mathsf{E)} \ \ \overline{x} = \sum_{i=1}^n x_i^2 \cdot n^2$$

79. Parametrin orta kubik qiyməti hansı düsturla hesablanır?

A)
$$x = \sum_{i=1}^{n} x_i^3 / n$$

B)
$$x = \sum_{i=1}^{n} x_i^3 / n^3$$

C)
$$x = \sum_{i=1}^{n} x_i / n^3$$

D)
$$x = \sum_{i=1}^{n^3} x_i^3 / n$$

E)
$$x = \sum_{i=n}^{n^3} x_i^3 / n$$

80. y = a + bx modelinin əmsallarını hesablamaq üçün

$$S = \sum_{i=1}^n (y_i - y_{ip})^2 = \sum_{i=1}^n (y_i - a - bx_i)^2$$
 funksiyasının b -ə görə xüsusi törəməsi nəyə

bərabərdir

A)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} (y_i - a - bx_i)$$

B)
$$\frac{\partial S}{\partial b} = 2\sum_{i=1}^{N} (y_i - a - bx_i)x_i$$

C)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} (y_i - a - bx_i)x_i^2$$

D)
$$\frac{\partial S}{\partial b} = -\sum_{i=1}^{N} (y_i - a - bx_i)x_i$$

E)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} (y_i - a - bx_i)x_i$$

81. Riyazi model əsasında qərar qəbul edilməsi məsələsi nədən idarətdir?

- A) məqsəd funksiyasının maksimallaşdırılan qiymətini, həmçinin bu ekstremal qiyməti təmin edən arqumentlərin konkret qiymətlərinin tapılması
- B) məqsəd funksiyasının ekstremal (maksimallaşdırılan və ya minimumlaşdırılan) qiymətinin tapılması
- C) məqsəd funksiyasının ekstremal (maksimallaşdırılan və ya minimumlaşdırılan) qiymətini, həmçinin bu ekstremal qiyməti təmin edən arqumentlərin konkret qiymətlərinin tapılması
- D) məqsəd funksiyasının ekstremal qiymətini, həmçinin minimal qiyməti təmin edən konkret həllin tapılması
- E) məqsəd funksiyasının ekstremal minimumlaşdırılan qiymətini, həmçinin bu ekstremal qiyməti təmin edən arqumentlərin konkret qiymətlərinin tapılması

82. y = a + bx asılılığın a əmsalı hansı düsturla hesablanır?

A)
$$a = \left(\sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^2 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i\right) / \left(N \sum_{i=1}^{N} y_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2\right)$$

B)
$$a = (\sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^2 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i) / (N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2)$$

C)
$$a = \left(\sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^2 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i\right) / \left(N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} y_i\right)^2\right)$$

D)
$$a = (\sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^2 - \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i y_i) / (N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2)$$

E)
$$a = (\sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i) / (N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2)$$

83. x və y arasında hansı əlaqə funksionaldır?

X	3	3	3	5	6
Y	10	12	8	17	17

A)

X	3	4	5	6	7
Y	30	40	50	60	70

B)

X	3	4	4	4	7
Y	10	10	10	15	25

C)

	X	3	3	4	5	5
D)	Y	8	9	9	12	10
וט	'					

•						
	X	3	4	4	5	6
⊏ \	Y	5	10	12	15	15
-						

84. Dispersiyanın qiymətini bildikdə hansı xarakteristikanın qiymətini hesablamaq olar?

- A) beşinci tərtibli başlanğıc moment
- B) üçüncü tərtibli mərkəzi moment
- C) riyazi gözləmə
- D) korrelyasiya funksiyası
- E) kvadratik orta yayınma

85.
$$\sum_{i=1}^{N} \ln x_i = 14$$
, $\sum_{i=1}^{N} \ln y_i = 50$, $\sum_{i=1}^{N} \ln x_i \ln y_i = 190$, $\sum_{i=1}^{N} (\ln x_i)^2 = 54$, $N = 4$ olduğu halda

 $y = ax^b$ asılılığın a əmsalı neçəyə bərabərdir?

- A) e^3
- B) 2
- C) 3
- D) 10^{2}
- E) e^2

86. Kvadratik orta yayınmanın qiymətini bildikdə hansı xarakteristikanı hesablamaq olar?

- A) korrelyasiya əmsalı
- B) korrelyasiya nisbəti
- C) Fişer meyarı
- D) dispersiya
- E) riyazi gözləmə

87.
$$\sum_{i=1}^{N} x_i y_i = 60$$
, $\sum_{i=1}^{N} x_i = 10$, $\sum_{i=1}^{N} y_i = 15$, $\sum_{i=1}^{N} x_i^2 = 110$, $N = 20$ olduğu halda $y = a_0 + a_1 x_1$

asılılığın a_1 əmsalı neçəyə bərabərdir?

- A) 1
- B) 0.1
- C) 0.8
- D) 0.9
- E) 0.5

88. Hansı formada model reallaşır?

- A) fiziki model
- B) siniflər modeli
- C) qruplar modeli

- D) işıq modeli
- E) siqnal modeli

89. İnformasiya modelləşdirməsinə hansı üsullar aiddir?

- A) nisbi üsullar
- B) riyazi üsullar
- C) müqayisəüsulları
- D) bilavasitə üsullar
- E) dolayı üsullar

90. $y=a+b\ln x$ asılılığın a ,b əmsallarını hesablamaq üçün Δ_1 təyinedicisinin hansı düzgündür?

A)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

B)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} \ln y_i \\ \sum_{i=1}^{N} y_i \ln x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

C)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} y_i \ln x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

D)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} y_i \ln x_i & \sum_{i=1}^{N} (\ln y_i x_i)^2 \end{vmatrix}$$

E)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} y_i \ln x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

91. Hansı informasiya modeli deyil?

- A) cədvəllər
- B) sxemlər
- C) blok-sxemlər
- D) bazalar
- E) qrafiklər

92. $y = a + b \frac{1}{x}$ asılılığın a,b əmsallarını hesablamaq üçün Δ_1 təyinedicisinin hansı düzgündür?

A)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} \frac{1}{x_i} \\ \sum_{i=1}^{N} \frac{1}{x_i} y_i & \sum_{i=1}^{N} \frac{1}{x_i^2} \end{vmatrix}$$

B)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} \frac{y_i}{x_i} \\ \sum_{i=1}^{N} \frac{1}{x_i} y_i & \sum_{i=1}^{N} \frac{1}{x_i^2} \end{vmatrix}$$

C)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} \frac{1}{x_i} \\ \sum_{i=1}^{N} \frac{1}{x_i} y_i & \sum_{i=1}^{N} \frac{1}{x_i^2} \end{vmatrix}$$

D)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} \frac{1}{x_i} \\ \sum_{i=1}^{N} \frac{1}{x_i} & \sum_{i=1}^{N} \frac{1}{x_i^2} \end{vmatrix}$$

E)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} \frac{1}{x_i} \\ \sum_{i=1}^{N} \frac{1}{x_i} y_i & \sum_{i=1}^{N} \frac{y_i}{x_i^2} \end{vmatrix}$$

93. Fiziki modelləşdirmə nədən ibarətdir?

- A) miqyas və informasiya modelləri
- B) riyazi və analoq modellər
- C) miqyas və analoq modelləri
- D) qrafiki və informasiya modelləri
- E) qrafiki və analoq modellər

94. Nə riyazi model ola bilməz?

- A) blok-sxem
- B) tənlik
- C) tənliklər sistemi
- D) çertyoj
- E) təsadüfi kəmiyyət

95. Hansı model çoxölçülü deyil?

A)
$$y = a_0 + \sum_{i=1}^{5} a_i \sin x_i$$

B)
$$y = ax_1 + bx_1^2 + cx_2^3$$

C)
$$y = a + bx_1 + c\frac{1}{x_2^2}$$

D)
$$y = a\cos x_1 + x_1 + cx_2 + dx_3$$

E)
$$y = ax_1 + bx_1^2 + cx_1^3$$

96. Passiv təcrübə nəticəsində x və y-ın alınmış qiymətlərinə əsasən $y=a_0+a_1x_1$ reqressiya tənliyinin a_0 əmsalının qiymətini təyin etməli

\mathcal{X}	2	3	4	5
У	4	6	8	10

- A) 2
- B) 0
- C) 3
- D) 4
- E) 11

97.
$$y = 10 + 3x_1 + 3x_2$$
 modelində neçə giriş dəyişəni vardır?

- A) 1
- B) 3
- C) 0
- D) 4
- E) 2

98. $y = a + bx + cx^2$ asılılığın a əmsalı hansı düsturla hesablanır?

A)
$$a = \frac{A}{D}$$
, burada

$$A = \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i x_i^2 + \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^$$

$$-\sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} y_{i} x_{i}^{2} - \sum_{i=1}^{N} y_{i} \sum_{i=1}^{N} x_{i}^{3} \sum_{i=1}^{N} x_{i}^{3} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i}^{4} \sum_{i=1}^{N} y_{i} x_{i}$$

$$D = \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^3$$

$$-\sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{2} - N \sum_{i=1}^{N} x_{i}^{3} \sum_{i=1}^{N} x_{i}^{3} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i}^{4}$$

B)
$$a = \frac{A}{D}$$
, burada

$$A = \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 \sum_{i=1}^{N} y_i x_i^2 + \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^3 \sum_{i=1}^{N} x_i^$$

$$-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}y_{i}x_{i}^{2}-\sum_{i=1}^{N}y_{i}\sum_{i=1}^{N}x_{i}^{3}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{4}\sum_{i=1}^{N}y_{i}x_{i}$$

$$D = N \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i \sum_{i$$

$$-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}-N\sum_{i=1}^{N}x_{i}^{3}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{3}$$

C)
$$a = \frac{D}{A}$$
, burada

$$A = \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 \sum_{i=1}^{N} y_i x_i^2 + \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^$$

$$\begin{split} &-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}y_{i}x_{i}^{2}-\sum_{i=1}^{N}y_{i}\sum_{i=1}^{N}x_{i}^{3}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{4}\sum_{i=1}^{N}y_{i}x_{i}\\ &D=N\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{4}+\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{3}+\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}-N\sum_{i=1}^{N}x_{i}^{3}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{4}\\ &-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}-N\sum_{i=1}^{N}x_{i}^{3}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{4}\\ &-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}-N\sum_{i=1}^{N}x_{i}^{3}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{4}\\ &-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}-N\sum_{i=1}^{N}x_{i}^{3}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{2}-N\sum_{i=1}^{N}x_{i}^{2}-N\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}^{3$$

$$A = \sum_{i=1}^{N} y_{i} \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{4} + \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i}^{3} \sum_{i=1}^{N} y_{i} x_{i}^{2} + \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} y_{i} x_{i} \sum_{i=1}^{N} x_{i}^{3} - \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} y_{i} x_{i}^{2} - \sum_{i=1}^{N} y_{i} \sum_{i=1}^{N} x_{i}^{3} \sum_{i=1}^{N} x_{i}^{3} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i}^{4} \sum_{i=1}^{N} y_{i} x_{i}$$

$$D = N \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{4} + \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{3} + \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} x_{i}^{3} - \sum_{i=1}^{N} x_{i} {3} - \sum_{i=1}^{N} x_{i}^{3} - \sum_{i=1}^{N} x_{i$$

$$-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}-N\sum_{i=1}^{N}x_{i}^{3}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{4}$$

E)
$$a = \frac{A}{D}$$
, burada

$$A = \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 \sum_{i=1}^{N} y_i x_i^2 + \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 \sum_{i=1}^{N} x_i^$$

$$-\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}y_{i}x_{i}^{2}-\sum_{i=1}^{N}y_{i}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}y_{i}x_{i}$$

$$D = N \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^4 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 - \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i^3 + \sum_{i=1}^{N$$

$$-2\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}\sum_{i=1}^{N}x_{i}^{2}-\sum_{i=1}^{N}x_{i}^{3}\sum_{i=1}^{N}x_{i}^{3}-\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}\sum_{i=1}^{N}x_{i}^{4}$$

99. Passiv təcrübə nəticəsində x və y-ın alınmış qiymətlərinə əsasən $y=a_0+a_1x_1$ reqressiya tənliyinin a_1 əmsalının qiymətini təyin etməli

х	2	3	4	5
y	4	6	8	10

- A) 11
- B) 3
- C) 2
- D) 4
- E) 0

100.
$$\sum_{i=1}^{N} \ln x_i = 14$$
, $\sum_{i=1}^{N} \ln y_i = 50$, $\sum_{i=1}^{N} \ln x_i \ln y_i = 190$, $\sum_{i=1}^{N} (\ln x_i)^2 = 54$, $N = 4$ olduğu halda

 $y = ax^b$ asılılığın b əmsalı neçəyə bərabərdir?

- A) 2
- B) 3
- C) e^2

101. Hansı funksiya məqsəd funksiyasıdır?

- A) bu funksiya arqumentləri mümkün ola bilməyən variantları, qiymətləri isə məqsədə nail olma ölçüsünü göstərən rəqəmləri göstərir
- B) bu funksiya arqumentləri mümkün ola bilən variantları, qiymətləri isə məqsədə nail olma ölçüsünü göstərən rəqəmləri göstərir
- C) bu funksiya arqumentləri mümkün ola bilən variantları, qiymətləri isə məqsədə nail olma ölçüsünü göstərən funksiyaları göstərir
- D) bu funksional arqumentləri mümkün ola bilən variantları, qiymətləri isə məqsədə nail olma ölçüsünü göstərən rəqəmləri göstərir
- E) bu funksiyanın arqumentləri kompleks rəqəmdir, qiymətləri isə məqsədə nail olma ölçüsünü göstərən rəqəmlərdir

102. Hansı əlaqə korrelyasiya əlaqəsi deyil?

	X	33	34	4	35	3	36	37	
	Y	330	34	0	350	3	60	370	
A)									
	X	3	4		4		5	6	
B)	Y	50	10	00	120	1	50	150)
D)									
	X	3	4		4		4	7	
	Y	104	10)4	109	1	53	254	1
C)									
	X	43	43	44	1 4	5	4 5	5	
D)	Y	80	90	90) 12	20	10	0	
	X	3		3	3		5	6	_
	Y	101	1	21	81	1	71	171	l
E)									_

103. Hansı qiymət optimal adlandırılır?

- A) maksimallaşdırılan giymət
- B) maksimallaşdırılan və ya minimumlaşdırılan qiymət
- C) sıfır qiymət
- D) minimumlaşdırılan qiymət
- E) maksimallaşdırılan müsbət qiymət

104. Modelin məhdudiyyətləri dedikdə nə başa düşülür?

- A) ehtiyatların (texnoloji parametrlərin) maksimal qiymətləri
- B) ehtiyatların (texnoloji parametrlərin) minimal qiymətləri
- C) ehtiyatların (texnoloji parametrlərin) kəmiyyət və keyfiyyətcə məhdudluğu
- D) modelin məhdudluq şərtləri
- E) texnoloji parametrlərin maksimal qiymətlərinə qoyulduğu məhdudluq şərtləri

105. Pozision məhdudiyyətləri ümumi şəkildə necə göstərmək olar?

$$A) \quad \begin{cases} x_{i \min} \le x_i \le x_{i \max} \\ x_i \ne 0 \end{cases}$$

$$\mathsf{B)} \quad \begin{cases} -x_{i\min} \le x_i \le x_{i\max} \\ x_i < 0 \end{cases}$$

$$C) \quad \begin{cases} x_{i \max} \le x_i \le x_{i \min} \\ x_i \le 0 \end{cases}$$

$$D) \quad \begin{cases} x_{i \min} \le x_i \le x_{i \max} \\ x_i \ge 0 \end{cases}$$

$$\mathsf{E}) \left. \begin{array}{l} x_{i \max} \le x_i \le x_{i \min} \\ x_i < 0 \end{array} \right\}$$

106. $y = a + b \frac{1}{x}$ asılılığın b əmsalı hansı düsturla hesablanır?

A)
$$b = \frac{\sum_{i=1}^{N} \frac{y_i}{x_i} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right) \left(\sum_{i=1}^{N} y_i\right)}{N \sum_{i=1}^{N} \frac{1}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)^2}$$

B)
$$b = \frac{N \sum_{i=1}^{N} \frac{y_i}{x_i} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right) \left(\sum_{i=1}^{N} y_i\right)}{\sum_{i=1}^{N} \frac{1}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)}$$

C)
$$b = \frac{N\sum_{i=1}^{N} \frac{1}{x_i} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right) \left(\sum_{i=1}^{N} y_i\right)}{N\sum_{i=1}^{N} \frac{1}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)^2}$$

D)
$$b = \frac{N \sum_{i=1}^{N} \frac{y_i}{x_i} - \left(\sum_{i=1}^{N} \frac{y_i}{x_i}\right) \left(\sum_{i=1}^{N} y_i\right)}{N \sum_{i=1}^{N} \frac{1}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)^2}$$

E)
$$b = \frac{N \sum_{i=1}^{N} \frac{y_i}{x_i} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right) \left(\sum_{i=1}^{N} y_i\right)}{N \sum_{i=1}^{N} \frac{1}{x_i^2} - \left(\sum_{i=1}^{N} \frac{1}{x_i}\right)^2}$$

107. Hansı məsələnin həlli üçün texnoloji prosesin riyazi modeli qurulur?

- A) optimal idarəetmə
- B) təsvirlərin tanınması
- C) verilənlər bazasının yaradılması
- D) filtrlənmə məsələsi
- E) kompüter rəsmxəti

108. Funksional asılılıq üçün x-ın bir qiymətinə y-ın neçə qiyməti uyğun gəlir?

- A) 4
- B) 3
- C) 1

109.

Х	0,1	0,2	0,5
Υ	10	5	2

olduğu halda $y = a + b \cdot \frac{1}{r}$ əlaqənin a və b əmsalları neçəyə

bərabərdir?

X	0,1	0,2	0,5
Y	10	5	2

A)
$$a = 0$$
; $b = 1$

B)
$$a = 1$$
; $b = 0$

C)
$$a = 10$$
; $b = 1$

D)
$$a = 1; b = 1$$

E)
$$a = 10$$
; $b = 0$

110. $y = a_0 + a_1 \frac{1}{x}$ əlaqənin a_0 , a_1 əmsallari neçəyə bərabərdir?

х	100	40	20	10
у	0.05	0.125	0.25	0.5

A)
$$a_0 = 0$$
, $a_1 = 2$

B)
$$a_0 = 0$$
, $a_1 = 5$

C)
$$a_0 = 10$$
, $a_1 = 2$

D)
$$a_0 = 3$$
, $a_1 = 2$

E)
$$a_0 = 20$$
, $a_1 = 12$

111. $y = a + bx + cx^2$ asılılığın a, b, c əmsallarını hesablamaq üçün Δ_3 təyinedicisinin hansı düzgündür?

A)
$$\Delta_3 = \begin{vmatrix} N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} y_i x_i \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} y_i x_i^2 \end{vmatrix}$$

B) $\Delta_3 = \begin{vmatrix} N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} y_i x_i^2 \end{vmatrix}$

B)
$$\Delta_3 = \begin{bmatrix} N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} y_i x_i \end{bmatrix}$$

C)
$$\Delta_3 = \begin{bmatrix} N & \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} y_i x_i \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} y_i x_i^2 \end{bmatrix}$$

D)
$$\Delta_3 = \begin{vmatrix} N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i^2 & \sum_{i=1}^{N} y_i x_i \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} y_i x_i^2 \end{vmatrix}$$

E)
$$\Delta_3 = \begin{bmatrix} N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} y_i x_i \\ \sum_{i=1}^{N} y_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} y_i x_i^2 \end{bmatrix}$$

112.
$$\sum_{i=1}^{N} \ln x_i = 25$$
, $\sum_{i=1}^{N} \ln y_i = 70$, $\sum_{i=1}^{N} \ln x_i \ln y_i = 370$, $\sum_{i=1}^{N} (\ln x_i)^2 = 135$, $N = 5$ olduğu halda

- $y = ax^b$ asılılıq üçün $\ln a$ neçəyə bərabərdir?
- A) 2
- B) e^2
- C) 4
- D) e^4
- E) 10^{2}

113. $y = a + b \ln x^3$ reqressiya tənliyinin a və b əmsallarını hesablamaq üçün hansı çevirməni aparmaq lazımdır?

- $A) \ z = b \ln x^3$
- B) $z = \ln x^3$
- C) $z = x^{3}$
- D) z = (y-a)/b

E)
$$z = \sqrt[3]{e^{\frac{y-a}{b}}}$$

114. Obyektin passiv üsulla tədqiq zamanı asılılıqlar necə təyin olunurlar?

- A) parametrlərin əvvəlki qiymətlərinə əsasən
- B) obyektə xarici təsir nəticəsində toplanmış məlumatlara əsasən
- C) giriş parametrlərin qiymətlərinə əsasən
- D) çıxış parametrlərin qiymətlərinə əsasən
- E) normal iş rejimində toplanmış məlumatların toplanmasına əsasən

115. «Qara qutu» dedikdə obyektin necə modeli nəzərdə tutulur?

- A) giriş və çıxış parametrlərinin müşahidəsi mümkün olan və daxili strukturu məlum olan obyektin modeli
- B) giriş və çıxış parametrlərinin müşahidəsi mümkün olmayan və daxili strukturu məlum olmayan obyektin modeli
- C) daxili strukturu məlum olan obyektin modeli
- D) giriş və çıxış parametrlərinin müşahidəsi mümkün olmayan
- E) giriş və çıxış parametrlərinin müşahidəsi mümkün olan, daxili strukturu isə məlum olmayan obyektin modeli
- 116. $y = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ modelində neçə giriş parametri vardır?
- A) 5
- B) 2
- C) 10
- D) 1
- E) 4
- 117. y = a + bx asılılığın a, b əmsallarını təyin etmək üçün hansı dəyişənlərinin cəmini hesablamaq lazımdır?
- A) x, y, x^2y, x^2
- B) x, y, xy, x^3
- C) x, y^2 , xy, x^2
- D) x, y, xy, x^2
- E) x, y, x^2y^2, x^2
- 118. $y = a + b \frac{1}{x}$ modelinin əmsallarını hesablamaq üçün
- $S = \sum_{i=1}^n (y_i y_{ip})^2 = \sum_{i=1}^n (y_i a b \frac{1}{x_i})^2 \text{ funksiyasının} b \text{ -ə görə xüsusi törəməsi nəyə}$

bərabərdir?

A)
$$\frac{\partial S}{\partial b} = 2\sum_{i=1}^{N} \left(y_i - a - b \frac{1}{x_i} \right) \frac{1}{x_i}$$

B)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} \left(y_i - a - b \frac{1}{x_i} \right)$$

C)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} \left(y_i - a - b \frac{1}{x_i} \right) \frac{1}{x_i}$$

D)
$$\frac{\partial S}{\partial b} = -\sum_{i=1}^{N} \left(y_i - a - b \frac{1}{x_i} \right) \frac{1}{x_i}$$

E)
$$\frac{\partial S}{\partial b} = \sum_{i=1}^{N} \left(y_i - a - b \frac{1}{x_i} \right) \frac{1}{x_i}$$

- 119. $y = a_0 + a_1x_1 + a_2x_2^2 + a_3x_3^3 + a_4x_4^2 + a_4x_4^3 + a_4x_4^4$ modelində neçə giriş parametri vardır?
- A) 10
- B) 5
- C) 2

- D) 4
- E) 1

120. $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3$ modelində neçə məlum olmayan əmsal vardır?

- A) 2
- B) 5
- C) 44
- D) 4
- E) 14

121. $y = a_0 + \sum_{i=1}^{6} a_i x_i + \sum_{i=1}^{6} a_{ii} x_i^2 + \sum_{i,i=1}^{C_6^2} a_{ij} x_i x_j$ çoxölçülü modelin neçə dənə a_{ij} əmsalı vardır?

- A) 15
- B) 6
- C) 27
- D) 12
- E) 12

122. Hansı model çoxölçülü deyil?

A)
$$y = a_0 + a_1 x_1 + a_2 x_1^4 + a_3 x_1^3$$

B)
$$y = a_0 + a_1 x_1^2 + a_2 x_2^4 + a_3 x_3^3$$

C)
$$y = a_0 + a_1 x_1^2 + a_2 x_2^3 + a_3 x_3^4 + a_4 x_4^5$$

D)
$$y = a_0 + a_1 x_1 + a_2 x_2^2 + a_3 x_3^3$$

E)
$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$$

123. $y = ax^b$ modelinin əmsallarını hesablamaq üçün

 $S = \sum_{i=1}^n (y_i - y_{ip})^2 = \sum_{i=1}^n (\ln y_i - \ln a - b \ln x_i)^2 \text{ funksiyasının} \ln a - \textbf{ə} \text{ görə xüsusi törəməsi nəyə}$

beraberdir?

A)
$$\frac{\partial S}{\partial \ln a} = -2\sum_{i=1}^{N} (\ln y_i - \ln a - b \ln x_i) \ln x_i$$

B)
$$\frac{\partial S}{\partial \ln a} = -\sum_{i=1}^{N} (\ln y_i - \ln a - b \ln x_i)$$

C)
$$\frac{\partial S}{\partial \ln a} = -2\sum_{i=1}^{N} (\ln y_i - \ln a - b \ln x_i)$$

D)
$$\frac{\partial S}{\partial \ln a} = -2\sum_{i=1}^{N} (\ln y_i - \ln a - b \ln y_i)$$

E)
$$\frac{\partial S}{\partial \ln a} = 2\sum_{i=1}^{N} (\ln y_i - \ln a - b \ln x_i)$$

124. Orta qiymətlər $\bar{x}=20$, $\bar{y}=3$, $\bar{xy}=66$, kvadratik orta yayınmalar $\sigma_x=2$, $\sigma_y=5$ olduğu halda korrelyasiya əmsalı neçəyə bərabərdir?

- A) 6
- B) 0.1
- C) 0.2

D) 0.3

E) 0.6

125. $y = a + b \ln x$ asılılığın a, b əmsallarını təyin etmək üçün nəyi hesablamaq lazımdır?

A)
$$N$$
, $\sum_{i=1}^{N} \ln x_i$, $\sum_{i=1}^{N} y_i$, $\sum_{i=1}^{N} \ln x_i y_i$, $\sum_{i=1}^{N} \ln x_i^2$

B)
$$N$$
, $\sum_{i=1}^{N} \ln x_i$, $\sum_{i=1}^{N} (\ln x_i)^2$, $\sum_{i=1}^{N} \ln y_i^3$, $\sum_{i=1}^{N} y_i \ln x_i$

C)
$$N$$
, $\sum_{i=1}^{N} \ln x_i$, $\sum_{i=1}^{N} (\ln x_i)^2$, $\sum_{i=1}^{N} y_i$, $\sum_{i=1}^{N} y_i \ln x_i$

D)
$$N$$
, $\sum_{i=1}^{N} \ln x_i$, $\sum_{i=1}^{N} (\ln x_i)^2$, $\sum_{i=1}^{N} \ln y_i$, $\sum_{i=1}^{N} y_i \ln x_i$

E)
$$N$$
, $\sum_{i=1}^{N} \ln y_i^2 \ln x_i$, $\sum_{i=1}^{N} (\ln x_i)^2$, $\sum_{i=1}^{N} y_i$, $\sum_{i=1}^{N} y_i \ln x_i$

126. Korrelyasiya sahəsi nəyə deyilir?

- A) üç kəmiyyətin eyni zamanda müşahidə olan qiymətlərinə uyğun nöqtələr ilə doldurulmuş sahə
- B) bütün kəmiyyətlərin eyni zamanda müşahidə olan qiymətlərinə uyğun nöqtələr ilə doldurulmuş sahə
- C) grafikdə göstərilmiş vektor
- D) qrafikdə göstərilmiş xətt
- E) iki kəmiyyətin eyni zamanda müşahidə olan qiymətlərinə uyğun nöqtələr ilə doldurulmuş sahə

127. Hansı asılılıq korrelyasiya asılılıği adlanır?

- A) asılı olmayan faktorun hər bir qiymətinə asılı faktorun heç bir qiyməti uyğun deyil
- B) asılı olmayan faktorun hər bir qiymətinə asılı faktorun bir qiyməti uyğundur
- C) asılı olmayan faktorun hər bir qiymətinə asılı olan faktorun bir sıra qiyməti uyğun gəlir və bu sıranın orta qiyməti asılı olmayan faktorun qiyməti dəyişdikcə müəyyən qanunauyğunluqla dəyişir
- D) asılı olmayan faktorun qiyməti dəyişdikcə asılı faktorun orta qiyməti dəyişmir
- E) asılı olmayan faktorun qiyməti dəyişdikcə korrelyasiya əmsalının qiyməti dəyişir

128. Hansı əlaqə korrelyasiya əlaqəsidir?

	X	12	1	3	1	4	1.	5_
۸۱	Y	24	2	6	2	8	3	0
A)								
	X	2	3	4		5		
	17		^	1	_	- 1	,	

,					
	X	2	3	4	5
D)	Y	10	15	20	25

-,					
	X	12	13	14	15
⊏/	Y	3	3	3	4

129. y = a + bx modelinin əmsallarını hesablamaq üçün

 $S = \sum_{i=1}^n (y_i - y_{ip})^2 = \sum_{i=1}^n (y_i - a - bx_i)^2 \text{ funksiyasının } a \text{-e göre xüsusi töremesi neye}$

bərabərdir?

A)
$$\frac{\partial S}{\partial a} = \sum_{i=1}^{N} (y_i - a - bx_i)$$

B)
$$\frac{\partial S}{\partial a} = 2\sum_{i=1}^{N} (y_i - a - bx_i)$$

C)
$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{N} (y_i - a + bx_i)$$

D)
$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{N} (y_i - a - bx_i)^2$$

E)
$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{N} (y_i - a - bx_i)$$

130.
$$\sum_{i=1}^{N} x_i = 14$$
, $\sum_{i=1}^{N} y_i = 56$, $\sum_{i=1}^{N} x_i^2 = 54$, $\sum_{i=1}^{N} x_i^3 = 224$, $\sum_{i=1}^{N} x_i^4 = 978$, $\sum_{i=1}^{N} y_i x_i = 186$, $\sum_{i=1}^{N} y_i x_i^2 = 682$,

N=4 olduğu halda $y=a+bx+cx^2$ asılılığın a əmsalı neçəyə bərabərdir?

- A) 15
- B) 10
- C) 2
- D) 3
- E) 5

131.
$$\sum_{i=1}^{10} x_i y_i = 60$$
, $\sum_{i=1}^{10} x_i = 10$, $\sum_{i=1}^{10} y_i = 15$, $\sum_{i=1}^{10} x_i^2 = 110$ olduğu halda $y = a_0 + a_1 x_1$ asılılığın a_0

əmsalı neçəyə bərabərdir?

- A) 0.95
- B) 1.05
- C) 0.15
- D) 2.85
- E) 15

132. Orta qiymətlər y=20, x=5, $a_1=2$ olduğu hal üçün $y=a_0+a_1x_1$ asılılığın a_0 əmsalı neçəyə bərabərdir?

- A) 10
- B) 20
- C) 5
- D) 2
- E) 30

133.
$$y = a + bx + cx^2$$
 modelinin əmsallarını hesablamaq üçün $S = \sum_{i=1}^{n} (y_i - y_{ip})^2 = \sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2)^2$ funksiyasının a -ə görə xüsusi törəməsi nəyə bərabərdir?

A)
$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{N} (y_i - a - bx_i - cx_i^2)^2$$

B)
$$\frac{\partial S}{\partial a} = 2\sum_{i=1}^{N} (y_i - a - bx_i - cx_i^2)$$

C)
$$\frac{\partial S}{\partial a} = -\sum_{i=1}^{N} (y_i - a - bx_i - cx_i^2)$$

D)
$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{N} (y_i - a + bx_i + cx_i^2)$$

E)
$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{N} (y_i - a - bx_i - cx_i^2)$$

134.
$$\sum_{i=1}^{N} \ln x_i = 10$$
, $\sum_{i=1}^{N} y_i = 30$, $\sum_{i=1}^{N} y_i \ln x_i = 80$, $\sum_{i=1}^{N} (\ln x_i)^2 = 120$, $N = 30$ olduğu halda

 $y = a_0 + a_1 \ln x$ asılılığın a_0 əmsalı neçəyə bərabərdir?

- A) 0.8
- B) 0.5
- C) 0.3
- D) 0.6
- E) 0.2

135.
$$\overline{y} = 60$$
, $\overline{x} = 15$, $a_1 = 3$ olduğu halda $y = a_0 + a_1 x_1$ asılılığın a_0 sərbəst həddi neçəyə bərabərdir?

- A) 15
- B) 6
- C) 9
- D) 13
- E) 2

136.
$$y = a + b \frac{1}{x}$$
 modelinin əmsallarını hesablamaq üçün

$$S = \sum_{i=1}^n (y_i - y_{ip})^2 = \sum_{i=1}^n (y_i - a - b \frac{1}{x_i})^2 \text{ funksiyasının } a \text{ -a görə xüsusi törəməsi nəyə}$$

bərabərdir?

A)
$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{N} \left(y_i - a - b \frac{1}{x_i} \right)$$

B)
$$\frac{\partial S}{\partial a} = -\sum_{i=1}^{N} \left(y_i - a - b \frac{1}{x_i} \right)$$

C)
$$\frac{\partial S}{\partial a} = \sum_{i=1}^{N} \left(y_i - a - b \frac{1}{x_i} \right)$$

D)
$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{N} \left(y_i - a + b \frac{1}{x_i} \right)$$

E)
$$\frac{\partial S}{\partial a} = 2\sum_{i=1}^{N} \left(y_i - a - b \frac{1}{x_i} \right)$$

137. $y = a + bx + cx^2$ asılılığın a , b , c əmsallarını hesablamaq üçün Δ təyinedicisinin hansı düzgündür?

A)
$$\Delta = \begin{vmatrix} N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4 \end{vmatrix}$$

B)
$$\Delta = \begin{bmatrix} N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4 \end{bmatrix}$$

C)
$$\Delta = \begin{bmatrix} N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} y_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4 \end{bmatrix}$$

D)
$$\Delta = \begin{bmatrix} N & \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4 \end{bmatrix}$$

E)
$$\Delta = \begin{bmatrix} N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4 \end{bmatrix}$$

138. y = a + bx əlaqənin korrelyasiya əmsalı neçəyə bərabərdir?

X	10	20	30	40	50
Y	20	30	40	50	60

A)
$$r = -0.3$$

B)
$$r = -0.2$$

C)
$$r = 1$$

D)
$$r = 0.2$$

E)
$$r = 0.3$$

139.
$$\sum_{i=1}^{N} \frac{1}{x_i} = 18$$
, $\sum_{i=1}^{N} y_i = 24$, $\sum_{i=1}^{N} \frac{1}{x_i^2} = 86$, $\sum_{i=1}^{N} \frac{1}{x_i} y_i = 98$, $N = 4$ olduğu halda $y = a + b \frac{1}{x}$

asılılığın a əmsalı neçəyə bərabərdir?

- A) 15
- B) -15
- C) 2
- D) -2.1
- E) 1/15

140. $y=a+bx+cx^2$ asılılığın a , b , c əmsallarını hesablamaq üçün Δ_1 təyinedicisinin hansı düzgündür?

A)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} y_i x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4 \end{vmatrix}$$

B)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} y_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} y_i x_i^2 & \sum_{i=1}^{N} y_i^3 & \sum_{i=1}^{N} x_i^4 \end{vmatrix}$$

C)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} y_i^2 x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4 \end{vmatrix}$$

D)
$$\Delta_1 = \begin{bmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} y_i x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4 \end{bmatrix}$$

E)
$$\Delta_1 = \begin{bmatrix} \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} y_i x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^3 \end{bmatrix}$$

141. $y = a + bx + cx^2$ asılılığın a,b, c əmsallarını hesablamaq üçün Δ_2 təyinedicisinin hansı düzgündür?

A)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} y_i^2 & \sum_{i=1}^{N} y_i x_i^2 & \sum_{i=1}^{N} x_i^4 \end{vmatrix}$$

B)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} y_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4 \end{vmatrix}$$

C)
$$\Delta_2 = \begin{bmatrix} N & \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} y_i^2 \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} y_i^3 \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} y_i x_i^2 & \sum_{i=1}^{N} y_i^4 \end{bmatrix}$$

D)
$$\Delta_2 = \begin{bmatrix} N & \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} y_i x_i^2 & \sum_{i=1}^{N} x_i^4 \end{bmatrix}$$

E)
$$\Delta_2 = \begin{bmatrix} N & \sum_{i=1}^{N} y_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} y_i x_i & \sum_{i=1}^{N} x_i^3 \\ \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} y_i x_i^2 & \sum_{i=1}^{N} x_i^4 \end{bmatrix}$$

142. $y = a + bx + cx^2$ modelinin əmsallarını hesablamaq üçün $S = \sum_{i=1}^{n} (y_i - y_{ip})^2 = \sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2)^2$ funksiyasının b -ə görə xüsusi törəməsi nəyə

bərabərdir?

A)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} (y_i - a - bx_i - cx_i^2)x_i^2$$

B)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} (y_i - a - bx_i - cx_i^2)x_i$$

C)
$$\frac{\partial S}{\partial b} = 2\sum_{i=1}^{N} (y_i - a - bx_i - cx_i^2)x_i$$

D)
$$\frac{\partial S}{\partial b} = -\sum_{i=1}^{N} (y_i - a - bx_i - cx_i^2)x_i$$

E)
$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{N} (y_i - a - bx_i - cx_i^2)$$

143.
$$\sum_{i=1}^{N} x_i = 14$$
, $\sum_{i=1}^{N} y_i = 56$, $\sum_{i=1}^{N} x_i^2 = 54$, $\sum_{i=1}^{N} x_i^3 = 224$, $\sum_{i=1}^{N} x_i^4 = 978$, $\sum_{i=1}^{N} y_i x_i = 186$, $\sum_{i=1}^{N} y_i x_i^2 = 682$,

N=4 olduğu halda $y=a+bx+cx^2$ asılılığın c əmsalı neçəyə bərabərdir?

- A) -5
- B) 1
- C) 25
- D) -20
- E) -1

144. Korrelyasiya əmsalı hansı düstura görə hesablanır, burada σ_x , σ_y – kvadratik orta yayınmalar, \bar{x} , \bar{y} – orta qiymətlərdir?

A)
$$r = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{N\sigma_x}$$

B)
$$r = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{N\sigma_x \sigma_y}$$

C)
$$r = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{N\sigma_y}$$

D)
$$r = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{N\sigma_x \sigma_y^2}$$

E)
$$r = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{N}$$

145. $y = a + b \ln x$ asılılığın b əmsalı hansı düsturla hesablanır?

A)
$$b = \frac{N \sum_{i=1}^{N} y_i \ln x_i - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

B)
$$b = \frac{N \sum_{i=1}^{N} y_i \ln x_i - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} y_i}{\sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

C)
$$b = \frac{N \sum_{i=1}^{N} y_i \ln y_i - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

D)
$$b = \frac{N \sum_{i=1}^{N} y_i \ln x_i - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} \ln y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

E)
$$b = \frac{\sum_{i=1}^{N} y_i \ln x_i - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

146. $y = ax^b$ asılılığın a,b əmsallarını təyin etmək üçün hansı dəyişənlərinin cəmini hesablamaq lazımdır?

A)
$$\ln x^2$$
, $\ln y$, $\ln x \ln y$, $(\ln x)^2$

B)
$$\ln x$$
, y, $\ln x \ln y$, $(\ln x)^2$

C)
$$\ln x$$
, $\ln y$, $\ln x \ln y$, $(x)^2$

D)
$$\ln x$$
, $\ln y$, $\ln x \ln y$, $(\ln x)^2$

E)
$$\ln x$$
, $\ln y$, $x \ln y$, $(\ln x)^2$

147. $y = ax^b$ asılılığın a,b əmsallarını hesablamaq üçün Δ_1 təyinedicisinin hansı düzgündür?

A)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} \ln y_i & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

B)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} \ln y_i & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln y_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

C)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} \ln y_i & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i \ln y_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

D)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} \ln y_i & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i \ln y_i & \sum_{i=1}^{N} (\ln y_i)^2 \end{vmatrix}$$

E)
$$\Delta_1 = \begin{vmatrix} \sum_{i=1}^{N} \ln y_i & \sum_{i=1}^{N} \ln y_i \\ \sum_{i=1}^{N} \ln x_i \ln y_i & \sum_{i=1}^{N} (\ln x_i)^2 \end{vmatrix}$$

148. $y = ax^b$ asılılığın a,b əmsallarını hesablamaq üçün Δ_2 təyinedicisinin hansı düzgündür?

A)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} \ln x_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} \ln y_i \ln x_i \end{vmatrix}$$

B)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} \ln y_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} \ln y_i \ln x_i \end{vmatrix}$$

C)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} \ln y_i \\ \sum_{i=1}^{N} y_i \ln x_i & \sum_{i=1}^{N} \ln y_i \ln x_i \end{vmatrix}$$

D)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} x_i \ln y_i \\ \sum_{i=1}^{N} \ln x_i & \sum_{i=1}^{N} \ln y_i \ln x_i \end{vmatrix}$$

E)
$$\Delta_2 = \begin{vmatrix} N & \sum_{i=1}^{N} \ln y_i \\ \sum_{i=1}^{N} \ln y_i & \sum_{i=1}^{N} \ln y_i \ln x_i \end{vmatrix}$$

149. $y = ax^b$ asılılığın a əmsalı hansı düsturla hesablanır?

A)
$$a = \frac{\sum_{i=1}^{N} \ln y_i \sum_{i=1}^{N} (\ln y_i)^2 - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} \ln x_i \ln y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

B)
$$a = \frac{\sum_{i=1}^{N} \ln y_i \sum_{i=1}^{N} (\ln x_i)^2 - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} \ln x_i \ln y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

C)
$$a = \frac{\sum_{i=1}^{N} \ln y_i \sum_{i=1}^{N} (\ln x_i)^2 - \sum_{i=1}^{N} \ln y_i \sum_{i=1}^{N} \ln x_i \ln y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

D)
$$a = \frac{\sum_{i=1}^{N} \ln y_i \sum_{i=1}^{N} (\ln x_i)^2 - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} \ln x_i \ln y_i}{N \sum_{i=1}^{N} (\ln y_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

E)
$$a = \frac{\sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} (\ln x_i)^2 - \sum_{i=1}^{N} \ln x_i \sum_{i=1}^{N} \ln x_i \ln y_i}{N \sum_{i=1}^{N} (\ln x_i)^2 - \left(\sum_{i=1}^{N} \ln x_i\right)^2}$$

150. $y = 10 + 8x_1 + 3x_2 + 5x_3 + 6x_4$ funksional asılılığın korrelyasiya əmsalı neçəyə bərabərdir?

- A) 33
- B) 1
- C) 5
- D) 0,15
- E) 122