MAT-266: Elementos de álgebra matricial

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Sea \mathbb{R}^n el espacio Euclidiano n-dimensional, de este modo $oldsymbol{x} \in \mathbb{R}^n$ representa la n-upla

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

de números reales.

Observación:

Siempre consideraremos x como un vector columna.

De este modo, podemos escribir

$$\boldsymbol{x} = (x_1, \dots, x_n)^{\top}.$$

Una matriz $oldsymbol{A} \in \mathbb{R}^{m imes n}$ es un arreglo de números reales

$$m{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix},$$

y escribimos $m{A}=(a_{ij}).$ Los números reales a_{ij} son llamados elementos de $m{A}.$

La suma de dos matrices del mismo orden es definida como

$$A + B = (a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij}),$$

el producto de una matriz por un escalar λ es

$$\lambda \mathbf{A} = \mathbf{A}\lambda = (\lambda a_{ij})$$

Propiedades:

Sean A,B y C matrices del mismo orden y λ,μ escalares. Entonces:

- (a) A + B = B + A,
- $(\mathsf{b})\ (\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}=\boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C}),$
- (c) $(\lambda + \mu)\mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A}$,
- (d) $\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$.

Una matriz cuyos elementos son todos cero se denomina matriz nula y se denota por 0. Tenemos que

$$\mathbf{A} + (-1)\mathbf{A} = \mathbf{0}.$$

Si ${m A}$ y ${m B}$ son matrices $m \times n$ y $n \times p$, respectivamente, se define el producto de ${m A}$ y ${m B}$ como

$$AB = C$$
, $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$, $i = 1, ..., m; j = 1, ..., p$.

Propiedades:

Sean A,B y C matrices de órdenes apropiados. Entonces:

- (a) (AB)C = A(BC),
- (b) A(B+C) = AB + AC,
- (c) (A + B)C = AC + BC.

La transpuesta de una matriz $\pmb{A}=(a_{ij})\in\mathbb{R}^{m\times n}$ es la matriz $n\times m$, \pmb{A}^{\top} cuyo elemento ij está dado por a_{ji} , esto es

$$\boldsymbol{A}^{\top}=(a_{ji}).$$

Propiedades:

Para ${m A}$ y ${m B}$ matrices de órdenes apropiados. Tenemos

- (a) $(\boldsymbol{A}^{\top})^{\top} = \boldsymbol{A}$,
- (b) $(\boldsymbol{A} + \boldsymbol{B})^{\top} = \boldsymbol{A}^{\top} + \boldsymbol{B}^{\top}$,
- (c) $(AB)^{\top} = B^{\top}A^{\top}$.

Definimos el producto interno entre dos vectores $oldsymbol{x},oldsymbol{y}\in\mathbb{R}^n$ como

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\top} \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i.$$

asociado al producto interno tenemos la norma Euclidiana (o largo) de un vector $m{x}$ definida como

$$\|oldsymbol{x}\| = \langle oldsymbol{x}, oldsymbol{x}
angle^{1/2} = \Big(\sum_{i=1}^n x_i^2\Big)^{1/2},$$

finalmente, la distancia Euclidiana entre dos vectores a y b se define como

$$d(\boldsymbol{a}, \boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|.$$

Propiedades:

Sean ${m a},\,{m b}$ y ${m c}$ vectores n-dimensionales y λ un escalar, entonces

- (a) $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \boldsymbol{b}, \boldsymbol{a} \rangle$,
- (b) $\langle oldsymbol{a}, oldsymbol{b} + oldsymbol{c}
 angle = \langle oldsymbol{a}, oldsymbol{b}
 angle + \langle oldsymbol{a}, oldsymbol{c}
 angle$,
- (c) $\lambda \langle \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \lambda \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \boldsymbol{a}, \lambda \boldsymbol{b} \rangle$,
- (d) $\langle \boldsymbol{a}, \boldsymbol{a} \rangle \geq 0$ con la igualdad sólo si $\boldsymbol{a} = \boldsymbol{0}$,
- (e) $\|a \pm b\|^2 = \|a\|^2 + \|b\|^2 \pm 2\langle a, b \rangle$,
- (f) $\|a + b\| \le \|a\| + \|b\|$.

Resultado (Desigualdad de Cauchy-Schwarz):

 $|\langle x,y \rangle| \leq \|x\| \, \|y\|$, $\forall x,y \in \mathbb{R}^n$ con la igualdad sólo si $x = \lambda y$, para algún $\lambda \in \mathbb{R}$.

Demostración:

Si $x = \lambda y$, el resultado es inmediato. Sino, note que

$$0 < \|\boldsymbol{x} - \lambda \boldsymbol{y}\|^2 = \|\boldsymbol{x}\|^2 + \lambda^2 \|\boldsymbol{y}\|^2 - 2\lambda \langle \boldsymbol{x}, \boldsymbol{y} \rangle, \quad \forall \lambda \in \mathbb{R},$$

de este modo el discriminante del polinomio cuadrático debe satisfacer $4\langle \pmb{x}, \pmb{y} \rangle^2 - 4\|\pmb{x}\|^2\|\pmb{y}\|^2 < 0.$

El ángulo θ entre dos vectores no nulos $m{x}, m{y}$ se define en términos de su producto interno como

$$\cos heta = rac{\langle oldsymbol{x}, oldsymbol{y}
angle}{\|oldsymbol{x}\| \|oldsymbol{y}\|} = rac{oldsymbol{x}^ op oldsymbol{y}}{\sqrt{oldsymbol{x}^ op oldsymbol{x}} \sqrt{oldsymbol{y}^ op oldsymbol{y}}},$$

dos vectores se dicen ortogonales sólo si $\mathbf{x}^{\top}\mathbf{y} = 0$.

Ejemplo:

Considere el vector centrado:

$$oldsymbol{u} = egin{pmatrix} x_1 - \overline{x} \ x_2 - \overline{x} \ dots \ x_n - \overline{x} \end{pmatrix} = oldsymbol{x} - \overline{x} \, oldsymbol{1}_n,$$

con $\mathbf{1}_n = (1, \dots, 1)^{\top}$ vector de 1's de dimensión $n \times 1$.

Note que

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \mathbf{1}^{\top} \boldsymbol{x}.$$

De este modo, podemos escribir

$$oldsymbol{u} = oldsymbol{x} - \overline{oldsymbol{x}} oldsymbol{1}_n = oldsymbol{x} - rac{1}{n} oldsymbol{1} oldsymbol{1}^ op oldsymbol{x} = oldsymbol{C} oldsymbol{x},$$

con $C = I - \frac{1}{n} \mathbf{1} \mathbf{1}^{ op}$ la matriz de centrado, y análogamente considere

$$v = y - \overline{y} \mathbf{1}_n = Cy.$$

De este modo,

$$\frac{\boldsymbol{u}^{\top}\boldsymbol{v}}{\sqrt{\boldsymbol{u}^{\top}\boldsymbol{u}}\sqrt{\boldsymbol{v}^{\top}\boldsymbol{v}}} = \frac{\sum_{i=1}^{n}(x_{i} - \overline{x})(y_{i} - \overline{y})}{\{\sum_{i=1}^{n}(x_{i} - \overline{x})^{2}\sum_{i=1}^{n}(y_{i} - \overline{y})^{2}\}^{1/2}},$$

es el coeficiente de correlación entre x e y.

En efecto,

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 = \boldsymbol{x}^\top \boldsymbol{x} - n \left(\frac{1}{n} \mathbf{1}^\top \boldsymbol{x}\right)^2$$
$$= \boldsymbol{x}^\top \boldsymbol{x} - n \left(\frac{1}{n} \boldsymbol{x}^\top \mathbf{1}\right) \left(\frac{1}{n} \mathbf{1}^\top \boldsymbol{x}\right)$$
$$= \boldsymbol{x}^\top \left(\boldsymbol{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^\top\right) \boldsymbol{x} = \boldsymbol{x}^\top \boldsymbol{C} \boldsymbol{x}.$$

Análogamente,

$$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n \overline{xy} = \boldsymbol{x}^{\top} \boldsymbol{y} - n \left(\frac{1}{n} \boldsymbol{1}^{\top} \boldsymbol{x}\right) \left(\frac{1}{n} \boldsymbol{1}^{\top} \boldsymbol{y}\right)$$
$$= \boldsymbol{x}^{\top} \boldsymbol{y} - n \left(\frac{1}{n} \boldsymbol{x}^{\top} \boldsymbol{1}\right) \left(\frac{1}{n} \boldsymbol{1}^{\top} \boldsymbol{y}\right)$$
$$= \boldsymbol{x}^{\top} \left(\boldsymbol{I} - \frac{1}{n} \boldsymbol{1} \boldsymbol{1}^{\top}\right) \boldsymbol{y} = \boldsymbol{x}^{\top} \boldsymbol{C} \boldsymbol{y}.$$

- Una matriz se dice cuadrada si tiene el mismo número de filas que de columnas.
- ▶ Una matriz cuadrada A es triangular inferior (superior) si $a_{ij} = 0$ para i < j (si $a_{ij} = 0$ para i > j).
- ▶ Una matriz cuadrada $A=(a_{ij})$ se dice simétrica si $A^{\top}=A$ y sesgo-simétrica si $A^{\top}=-A$.
- Una matriz cuadrada se dice ortogonal si

$$AA^{\top} = A^{\top}A = I$$

- ▶ Una matriz $A \in \mathbb{R}^{n \times n}$, se dice idempotente si $A^2 = A$.
- Decimos que A es matriz de proyección si es simétrica e idempotente, esto es, $A^{\top} = A$ y $A^2 = A$.
- Cualquier matriz B satisfaciendo $B^2 = A$ se dice raíz cuadrada de A y se denota como $A^{1/2}$.

Ejemplo:

Sea

$$C = I - \frac{1}{n}J_n, \qquad J_n = \mathbf{1}\mathbf{1}^\top,$$

la matriz de centrado. Tenemos que $oldsymbol{C}^{ op} = oldsymbol{C}$, y

$$\boldsymbol{C}^2 = \left(\boldsymbol{I} - \frac{1}{n}\boldsymbol{J}_n\right)\left(\boldsymbol{I} - \frac{1}{n}\boldsymbol{J}_n\right) = \boldsymbol{I} - \frac{1}{n}\boldsymbol{J}_n - \frac{1}{n}\boldsymbol{J}_n + \frac{1}{n^2}\boldsymbol{J}_n^2$$

pero $m{J}_n^2 = n m{J}_n$, luego $m{C}^2 = m{C}$ es matriz idempotente y simétrica.

Resultado:

Suponga ${m A}$ matriz $m \times m$, simétrica e idempotente. Entonces,

- (a) $a_{ii} \geq 0, i = 1, \dots, n.$
- (b) $a_{ii} \leq 1, i = 1, \ldots, n.$
- (c) $a_{ij}=a_{ji}=0$, para todo $j\neq i$, si $a_{ii}=0$ o $a_{ii}=1$.

Demostración:

Como A es simétrica e idempotente, tenemos

$$\boldsymbol{A} = \boldsymbol{A}^2 = \boldsymbol{A}^{\top} \boldsymbol{A},$$

de ahí que

$$a_{ii} = \sum_{j=1}^{n} a_{ji}^2,$$

que claramente es no negativo.

Además, podemos escribir

$$a_{ii} = a_{ii}^2 + \sum_{j \neq i} a_{ji}^2.$$

Por tanto, $a_{ii} \geq a_{ii}^2$ y de este modo (b) es satisfecha. Si $a_{ii}=0$ o bien $a_{ii}=1$, entonces $a_{ii}=a_{ii}^2$ y debemos tener

$$\sum_{i \neq i} a_{ji}^2 = 0,$$

lo que junto con las simetría de A, establece (c).

- ▶ Sea $a \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ y $B \in \mathbb{R}^{n \times m}$. La expresión $a^\top x$ se dice una forma lineal y $x^\top A x$ una forma cuadrática, mientras que $x^\top B y$ es una forma bilineal.
- lacktriangle Se asumirá que la matriz asociada a la forma cuadrática $m{x}^{ op} m{A} m{x}$ es simétrica. Note que

$$\boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x} = \frac{1}{2} \boldsymbol{x}^{\top} (\boldsymbol{A}^{\top} + \boldsymbol{A}) \boldsymbol{x},$$

en cuyo caso tenemos que ${\it B}$ es matriz simétrica.

- ▶ Decimos que una matriz simétrica A es definida positiva (negativa) si $x^\top Ax > 0$ ($x^\top Ax < 0$) para todo $x \neq 0$.
- ▶ Cuando ${m x}^{\top} {m A} {m x} \geq 0$ $({m x}^{\top} {m A} {m x} \leq 0)$ $\forall {m x}$ decimos que ${m A}$ es semidefinida positiva (negativa).
- lacktriangle $m{A}$ es (semi)definida negativa sólo si $-m{A}$ es (semi)definida positiva.
- lackbox Las matrices $B^ op B$ y $BB^ op$ son semidefinidas positivas

- Un conjunto de vectores x_1, \ldots, x_n se dice linealmente independiente si $\sum_i \alpha_i x_i = \mathbf{0}$ implica que todos los $\alpha_i = 0$.
- ▶ Sea $A \in \mathbb{R}^{m \times n}$, el rango columna (fila) de A es el número de columnas (filas) linealmente independientes. Denotamos el rango de A como

$$rg(\boldsymbol{A}).$$

Si $\operatorname{rg}(\boldsymbol{A})=n$ decimos que \boldsymbol{A} tiene rango columna completo.

Propiedades:

Sea $A \in \mathbb{R}^{m imes n}$ y B, C matrices de órdenes apropiados, entonces

- (a) $\operatorname{rg}(\boldsymbol{A}) = \operatorname{rg}(\boldsymbol{A}^{\top}) = \operatorname{rg}(\boldsymbol{A}^{\top}\boldsymbol{A}) = \operatorname{rg}(\boldsymbol{A}\boldsymbol{A}^{\top}),$
- (b) $rg(\mathbf{AB}) \le min\{rg(\mathbf{A}), rg(\mathbf{B})\},\$
- (c) $\operatorname{rg}(BAC) = \operatorname{rg}(A)$ si B y C son matrices de rango completo,
- (d) si $A \in \mathbb{R}^{m \times n}$ y Ax = 0 para algún $x \neq 0$, entonces $rg(A) \leq n 1$.

Ejemplo:

Sea $C = I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$ matriz de centrado $n \times n$. Entonces,

$$C1 = 1 - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} \mathbf{1} = \mathbf{1} - \mathbf{1} = \mathbf{0},$$

luego, tenemos que $\operatorname{rg}(\boldsymbol{C}) \leq n-1.$

Definición:

Sea ${\pmb A}$ una matriz cuadrada de orden $n \times n$. Decimos que ${\pmb A}$ es no singular si ${\rm rg}({\pmb A}) = n^1$. De este modo, para ${\pmb A}$ no singular, entonces existe una matriz no singular ${\pmb B}$ tal que

$$AB = BA = I_n$$
.

La matriz B, denotada A^{-1} es única y se denomina inversa de A.

Propiedades:

Siempre que todas las matrices inversas involucradas existan, tenemos que

- (a) $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$.
- (b) $(AB)^{-1} = B^{-1}A^{-1}$.
- (c) $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$.
- (d) $P^{-1} = P^{\top}$, si P es matriz ortogonal.
- (e) Si A > 0, entonces $A^{-1} > 0$.

 $^{^1}$ Si $\operatorname{rg}(A) < n$, decimos que A es singular

Propiedades:

Siempre que todas las matrices inversas involucradas existan, tenemos que

(f) (Teorema de Sherman-Morrison-Woodbury)

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1},$$

donde A,B,C y D son matrices $m\times m,\ m\times n,\ n\times n$ y $n\times m,$ respectivamente.

(g) Si $1 \pm \boldsymbol{v}^{\top} \boldsymbol{A}^{-1} \boldsymbol{u} \neq 0$, entonces

$$(A \pm uv^{\top})^{-1} = A^{-1} \mp \frac{A^{-1}uv^{\top}A^{-1}}{1 \pm v^{\top}A^{-1}u},$$

es conocida como la fórmula de Sherman-Morrison.

(h)
$$(\boldsymbol{I} + \lambda \boldsymbol{A})^{-1} = \boldsymbol{I} + \sum_{i=1}^{\infty} (-1)^i \lambda^i \boldsymbol{A}^i$$
.

Ejemplo:

Considere la matriz de correlación intra-clase $R(\tau) \in \mathbb{R}^{n \times n}$, la que también se denomina matriz de equicorrelación, definida por

$$\boldsymbol{R} = \phi \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix} = \phi [(1 - \rho)\boldsymbol{I} + \rho \boldsymbol{1} \boldsymbol{1}^{\top}], \qquad \boldsymbol{\tau} = (\phi, \rho)^{\top},$$

donde $\rho \in (-1,1)$ y $\phi > 0$. De este modo, $\boldsymbol{R}^{-1} = \phi^{-1}[(1-\rho)\boldsymbol{I} + \rho \boldsymbol{1}\boldsymbol{1}^{\top}]^{-1}$ y usando la Propiedad (f) con $\boldsymbol{A} = (1-\rho)\boldsymbol{I}$, $\boldsymbol{u} = \rho \boldsymbol{1}$ y $\boldsymbol{v} = \boldsymbol{1}$, tenemos que

$$\begin{split} \boldsymbol{R}^{-1} &= \frac{1}{\phi} \Big[\frac{1}{1-\rho} \boldsymbol{I} - \frac{\rho}{(1-\rho)^2} \frac{1}{1+n\rho(1-\rho)^{-1}} \mathbf{1} \mathbf{1}^\top \Big] \\ &= \frac{1}{\phi(1-\rho)} \Big[\boldsymbol{I} - \frac{\rho}{1+(n-1)\rho} \mathbf{1} \mathbf{1}^\top \Big] \end{split}$$

Ejemplo:

Considere la matriz

$$\mathbf{A} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

note que

$$\boldsymbol{A}\boldsymbol{A}^\top = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

y análogamente $m{A}^{ op}m{A} = m{I}$. Es decir, $m{A}$ es matriz ortogonal, y por tanto $m{A}^{-1} = m{A}^{ op}$.

Definición:

El determinante de una matriz corresponde a la función $\det: \mathbb{R}^{n \times n} \to \mathbb{R}$, denotada comúnmente como $|A| = \det(A)$ y definida como

$$|\mathbf{A}| = \sum (-1)^{\sigma(j_1, \dots, j_n)} \prod_{i=1}^n a_{ij_i}$$

donde la sumatoria es tomada sobre todas las permutaciones (j_1,\ldots,j_n) del conjunto de enteros $(1,\ldots,n)$, y $\sigma(j_1,\ldots,j_n)$ es el número de transposiciones necesarias para cambiar $(1,\ldots,n)$ en (j_1,\ldots,j_n)

Observación:

Podemos escribir el determinante de A como:

$$|A| = \sum_{j=1}^{n} a_{ij} c_{ij} = \sum_{j=1}^{n} a_{jk} c_{jk}, \text{ para } i, k = 1, \dots, n,$$

donde c_{ij} es el cofactor de a_{ij} , es decir, c_{ij} es $(-1)^{i+j}$ veces el menor de a_{ij} .

Propiedades:

Sea $\pmb{A} \in \mathbb{R}^{n \times n}$ y λ un escalar. Entonces

- (a) $|\boldsymbol{A}| = |\boldsymbol{A}^{\top}|$.
- (b) |AB| = |A||B|.
- (c) $|\lambda \mathbf{A}| = \lambda^n |\mathbf{A}|$.
- (d) $|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$, si \mathbf{A} es no singular.
- (e) Si A es matriz triangular, entonces $|A| = \prod_{i=1}^n a_{ii}$.
- (f) Si $A \in \mathbb{R}^{m \times n}$ y $B \in \mathbb{R}^{n \times m}$, entonces $|I_m + AB| = |I_n + BA|$.

Ejemplo:

Considere A matriz ortogonal, esto es, $A^{\top}A = AA^{\top} = I$. Entonces

$$|\mathbf{A}^{\top}\mathbf{A}| = |\mathbf{A}\mathbf{A}^{\top}| = 1,$$

luego, $|\mathbf{A}|^2 = 1$ y por tanto, $|\mathbf{A}| = \pm 1$.

Ejemplo:

Tenemos que

$$\mathbf{R} = \phi[(1-\rho)\mathbf{I}_n + \rho \mathbf{1} \mathbf{1}^{\top}] = \phi(1-\rho)[\mathbf{I}_n + \rho(1-\rho)^{-1} \mathbf{1} \mathbf{1}^{\top}],$$

de este modo,

$$|\mathbf{R}| = \phi^n (1 - \rho)^n [1 + \rho (1 - \rho)^{-1} \mathbf{1}^\top \mathbf{1}] = \phi^n (1 - \rho)^{n-1} (1 - \rho + n\rho)$$
$$= \phi^n (1 - \rho)^{n-1} [1 + \rho (n-1)].$$

Definición:

La traza de una matriz cuadrada $A \in \mathbb{R}^{n \times n}$, denotada por $\mathrm{tr}(A)$, es la suma de sus elementos diagonales:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} a_{ii}.$$

Propiedades:

Siempre que las operaciones matriciales están definidas

- (a) $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B}),$
- (b) $tr(\lambda \mathbf{A}) = \lambda tr(\mathbf{A})$ si λ es un escalar,
- (c) $\operatorname{tr}(\boldsymbol{A}^{\top}) = \operatorname{tr}(\boldsymbol{A}),$
- (d) tr(AB) = tr(BA) (propiedad cíclica de la traza),²
- (e) tr(A) = 0 si A = 0.

 $^{^2}$ Aunque AB y BA son cuadradas, no necesitan ser del mismo orden.

Ejemplo:

Considere $C = I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}$, entonces

$$\operatorname{tr}(\boldsymbol{C}) = \operatorname{tr}(\boldsymbol{I}) - \frac{1}{n}\operatorname{tr}(\mathbf{1}\mathbf{1}^{\top}) = n - \frac{1}{n}\mathbf{1}^{\top}\mathbf{1} = n - 1.$$

Ejemplo:

Sea $\pmb{X} \in \mathbb{R}^{n \times p}$ con $\operatorname{rg}(\pmb{X}) = p$ y considere $\pmb{H} = \pmb{X} (\pmb{X}^{\top} \pmb{X})^{-1} \pmb{X}^{\top}$, luego

$$\operatorname{tr} \boldsymbol{H} = \operatorname{tr} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} = \operatorname{tr} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{X} = \operatorname{tr} \boldsymbol{I}_p = p,$$

note además que $tr(\mathbf{I} - \mathbf{H}) = n - p$.

Ejemplo:

Considere $q = {m x}^{ op} {m A} {m x}$, tenemos que

$$q = \operatorname{tr}(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}) = \operatorname{tr}(\boldsymbol{A} \boldsymbol{x} \boldsymbol{x}^{\top})$$

Además, es directo que la normal vectorial (Euclidiana), satisface

$$\|\boldsymbol{x}\| = (\boldsymbol{x}^{\top}\boldsymbol{x})^{1/2} = (\operatorname{tr} \boldsymbol{x}\boldsymbol{x}^{\top})^{1/2},$$

de este modo, podemos definir una normal matricial como:

$$\|\boldsymbol{A}\| = (\operatorname{tr} \boldsymbol{A}^{\top} \boldsymbol{A})^{1/2}.$$

En efecto, se tiene que $\operatorname{tr}(\boldsymbol{A}^{\top}\boldsymbol{A}) \geq 0$ con la igualdad sólo si $\boldsymbol{A} = \boldsymbol{0}$.

Si $m{A}$ y $m{B}$ son matrices reales del mismo orden, una matriz compleja $m{Z}$ puede ser definida como

$$Z = A + iB$$
.

donde i denota la unidad imaginaria que satisface $i^2=-1$. El conjugado complejo de ${m Z}$, denotado por ${m Z}^H$, se define como

$$\mathbf{Z}^H = \mathbf{A}^\top - i\mathbf{B}^\top.$$

Una matriz $m{Z} \in \mathbb{C}^{n \times n}$ se dice Hermitiana 3 si $m{Z}^H = m{Z}$ y unitaria 4 si $m{Z}^H m{Z} = m{I}$.

³Equivalente compleio de una matriz simétrica

⁴Equivalente complejo de una matriz ortogonal

Sea ${m A}$ una matriz cuadrada $n \times n$. Los valores propios de ${m A}$ son definidos como las raíces de la ecuación característica

$$|\lambda \boldsymbol{I} - \boldsymbol{A}| = 0,$$

la ecuación anterior tiene n raíces, en general complejas y posiblemente con algunas repeticiones (multiplicidad).

Sea λ un valor propio de A, entonces existe un vector $v \neq 0 \in \mathbb{C}^n$ tal que $(\lambda I - A)v = 0$, esto es,

$$Av = \lambda v$$
.

el vector v se denomina vector propio asociado al valor propio λ .

Note que, si v es un vector propio, también lo es αv , $\forall \alpha \in \mathbb{C}$, y en particular $v/\|v\|$ es un vector propio normalizado.

Resultado:

Si $A \in \mathbb{C}^{n \times n}$ es matriz Hermitiana, entonces todos sus valores propios son reales.

Resultado:

Si ${m A}$ es matriz cuadrada $n \times n$ y ${m G}$ es matriz no singular $n \times n$, entonces ${m A}$ y ${m G}^{-1}{m A}{m G}$ tienen el mismo conjunto de valores propios (con las mismas multiplicidades)

Resultado:

Una matriz singular tiene al menos un valor propio cero.

Resultado:

Una matriz simétrica es definida positiva (semidefinida positiva) sólo si todos sus valores propios son positivos (no-negativos).

Resultado:

Una matriz idempotente sólo tiene valores propios 0 ó 1. Todos los valores propios de una matriz unitaria tienen modulo 1

Propiedades:

Sea A matrix $n \times n$, entonces

- (a) ${m A}^{ op}$ y ${m I} {m A}$ son idempotentes sólo si ${m A}$ es idempotente,
- (b) si ${m A}$ es idempotente, entonces ${
 m rg}({m A})={
 m tr}({m A})=r.$ Si ${
 m rg}({m A})=n$, entonces ${m A}={m I}.$

Ejemplo:

Sabemos que la matriz de centrado $oldsymbol{C}$ es matriz de proyección, luego

$$\operatorname{rg}(\boldsymbol{C}) = \operatorname{tr}(\boldsymbol{C}) = \operatorname{tr}(\boldsymbol{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}) = n - 1.$$

Resultado:

Si $A \in \mathbb{C}^{n \times n}$ es matriz Hermitiana y v_1 , v_2 son vectores propios asociados a λ_1 y λ_2 , respectivamente, donde $\lambda_1 \neq \lambda_2$. Entonces $v_1 \perp v_2$.

Resultado (Descomposición de Schur):

Sea $A\in\mathbb{C}^{n\times n}$. Entonces existe una matriz unitaria $U\in\mathbb{C}^{n\times n}$ y una matriz triangular M cuyos elementos diagonales son los valores propios de A, tal que

$$U^H A U = M.$$

Resultado (Descomposición espectral):

Sea $A\in\mathbb{C}^{n\times n}$ matriz Hermitiana. Entonces existe una matriz unitaria $U\in\mathbb{C}^{n\times n}$ tal que

$$U^H A U = \Lambda$$
,

donde $\Lambda=\mathrm{diag}(\lambda)$ es matriz diagonal cuyos elementos diagonales son los valores propios de A.

Resultado:

Sea ${m A}$ matriz simétrica n imes n, con valores propios $\lambda_1, \dots, \lambda_n$. Entonces

- (a) $\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \lambda_i$,
- (b) $|\mathbf{A}| = \prod_{i=1}^n \lambda_i$.

Resultado (Descomposición de Schur):

Si ${m A}$ es una matriz simétrica con r valores propios distintos de cero, entonces ${\rm rg}({m A})=r.$

Resultado:

Sea $oldsymbol{A}$ matriz definida positiva y $oldsymbol{B}$ semidefinida positiva. Entonces

$$|A+B| \geq |A|$$
,

con la igualdad sólo si B = 0.

Para dos matrices simétricas A y B, escribimos $A \geq B$ si A - B es semidefinida positiva. Análogamente, escribimos A > B si A - B es definida positiva.

Resultado:

Sean A, B matrices definidas positivas $n \times n$. Entonces A > B sólo si $B^{-1} > A^{-1}$.

Resultado:

Sean A y B matrices definidas positivas y $A-B\geq 0$. Entonces $|A|\geq |B|$ con la igualdad sólo si A=B.

Sea A una matriz $m \times n$. Considere particionar A como sigue

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix},$$

donde $m{A}_{11} \in \mathbb{R}^{m_1 imes n_1}$, $m{A}_{12} \in \mathbb{R}^{m_1 imes n_2}$, $m{A}_{21} \in \mathbb{R}^{m_2 imes n_1}$, $m{A}_{22} \in \mathbb{R}^{m_2 imes n_2}$, y $m_1 + m_2 = m$, $n_1 + n_2 = n$.

Sea $B \in \mathbb{R}^{m imes n}$ particionada de manera análoga a A, entonces

$$A + B = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{pmatrix}.$$

Suponga $C \in \mathbb{R}^{n \times p}$ particionada en submatrices C_{ij} , para i,j=1,2 con dimensiones adecuadas, entonces

$$\boldsymbol{AC} = \begin{pmatrix} \boldsymbol{A}_{11} \boldsymbol{C}_{11} + \boldsymbol{A}_{12} \boldsymbol{C}_{21} & \boldsymbol{A}_{11} \boldsymbol{C}_{12} + \boldsymbol{A}_{12} \boldsymbol{C}_{22} \\ \boldsymbol{A}_{21} \boldsymbol{C}_{11} + \boldsymbol{A}_{22} \boldsymbol{C}_{21} & \boldsymbol{A}_{21} \boldsymbol{C}_{12} + \boldsymbol{A}_{22} \boldsymbol{C}_{22} \end{pmatrix}.$$

La transpuesta de $oldsymbol{A}$ está dada por

$$\boldsymbol{A}^{\top} = \begin{pmatrix} \boldsymbol{A}_{11}^{\top} & \boldsymbol{A}_{21}^{\top} \\ \boldsymbol{A}_{12}^{\top} & \boldsymbol{A}_{22}^{\top} \end{pmatrix}.$$

Por otro lado,

$$|A| = |A_{11}||A_{22} - A_{21}A_{11}^{-1}A_{12}| = |A_{22}||A_{11} - A_{12}A_{22}^{-1}A_{21}|,$$

siempre que A_{11} y A_{22} sean matrices no singulares.

Si $m{A}_{12}$ y $m{A}_{21}$ son matrices nulas y si ambas $m{A}_{11}$ y $m{A}_{22}$ son matrices no singulares, entonces la inversa de $m{A}$ es

$$A^{-1} = \begin{pmatrix} A_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & A_{22}^{-1} \end{pmatrix}.$$

En general, si $m{A}$ es matriz no singular particionada y $m{D} = m{A}_{22} - m{A}_{21} m{A}_{11}^{-1} m{A}_{12}$ también es no singular, entonces

$$\boldsymbol{A}^{-1} = \begin{pmatrix} \boldsymbol{A}_{11}^{-1} + \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \boldsymbol{D}^{-1} \boldsymbol{A}_{21} \boldsymbol{A}_{11}^{-1} & -\boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \boldsymbol{D}^{-1} \\ -\boldsymbol{D}^{-1} \boldsymbol{A}_{21} \boldsymbol{A}_{11}^{-1} & \boldsymbol{D}^{-1} \end{pmatrix}.$$

Por otro lado, si $m{A}$ es no singular y $m{E} = m{A}_{11} - m{A}_{12} m{A}_{22}^{-1} m{A}_{21}$ es no singular, entonces

$$\boldsymbol{A}^{-1} = \begin{pmatrix} \boldsymbol{E}^{-1} & -\boldsymbol{E}^{-1}\boldsymbol{A}_{12}\boldsymbol{A}_{22}^{-1} \\ -\boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{21}\boldsymbol{E}^{-1} & \boldsymbol{A}_{22}^{-1} + \boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{21}\boldsymbol{E}^{-1}\boldsymbol{A}_{12}\boldsymbol{A}_{22}^{-1} \end{pmatrix}.$$

Definición:

Sea $\pmb{A} \in \mathbb{R}^{m \times n}$. La inversa Moore-Penrose (MP), $\pmb{G} \in \mathbb{R}^{n \times m}$ debe satisfacer las siguientes condiciones:

$$AGA = A, (1)$$

$$GAG = G, (2)$$

$$(\mathbf{A}\mathbf{G})^{\top} = \mathbf{A}\mathbf{G},\tag{3}$$

$$(GA)^{\top} = GA. \tag{4}$$

La inversa MP de A se denota comunmente como A^+ . Si G satisface sólo la condición en (1) entonces decimos que G es una inversa generalizada y la denotamos por A^- .

Resultado:

Para cada A, existe una única A^+ .

Propiedades:

- (a) ${m A}^+ = {m A}^{-1}$ para ${m A}$ matriz no singular,
- (b) $(A^+)^+ = A$,
- (c) $(A^{\top})^+ = (A^+)^{\top}$,
- (d) $A^+ = A$ si A es simétrica e idempotente,
- (e) AA^+ y A^+A son idempotentes,
- (f) $\operatorname{rg}(\mathbf{A}) = \operatorname{rg}(\mathbf{A}^+) = \operatorname{rg}(\mathbf{A}\mathbf{A}^+) = \operatorname{rg}(\mathbf{A}^+\mathbf{A})$,
- (g) $\mathbf{A}^{\top} \mathbf{A} \mathbf{A}^{+} = \mathbf{A} = \mathbf{A}^{+} \mathbf{A} \mathbf{A}^{\top}$,
- (h) $\boldsymbol{A}^{\top} \boldsymbol{A}^{+^{\top}} \boldsymbol{A}^{+} = \boldsymbol{A}^{+} = \boldsymbol{A}^{+} \boldsymbol{A}^{+^{\top}} \boldsymbol{A}^{\top}$,
- (i) $A^+ = (A^T A)^+ A^T = A^T (A A^T)^+$,
- (j) ${m A}^+ = ({m A}^{ op} {m A})^{-1} {m A}^{ op}$, si ${m A}$ tiene rango columna completo,
- (k) ${m A}^+ = {m A}^{ op} ({m A}{m A}^{ op})^{-1}$, si ${m A}$ tiene rango fila completo.

