Devoir Maison nº 26

Exercice 1

Donner le déterminant de la matrice $M = (|i-j|)_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$.

Exercice 2

On se donne dans cet exercice une famille $(X_{i,j})_{1 \le i,j \le n}$ de variables aléatoires mutuellement indépendantes suivant toute une loi de Rademacher, c'est-à-dire :

$$\forall (i,j) \in [1; n]^2, P(X=1) = P(X=-1) = \frac{1}{2}$$

On pose enfin $M=(X_{i,j})_{1\leq i,j}$ et le but de l'exercice est de donner la variance de $\det(M)$. Pour tout $\sigma\in S_n$, on note

$$Y_{\sigma} = X_{\sigma(1),1} X_{\sigma(2),2} \cdots X_{\sigma(n),n}$$

- 1. Pour tout $\sigma \in S_n$, donner l'espérance et de Y_{σ} . Donner également l'espérance de Y_{σ}^2 .
- 2. Soient $\sigma \neq \sigma'$ deux permutations distinctes. Justifier qu'il existe i tel que $\sigma(i) \neq \sigma'(i)$. Justifier que $X_{\sigma(i),i}X_{\sigma'(i),i}$ est indépendante de $\prod_{i \neq j} X_{\sigma(j),j}X_{\sigma'(j),j}$.
- 3. Prouver que $V(\det(M)) = n^2$.

Exercice 3 - Déterminant de Casorati

On se donne dans ce problème un entier $n \geq 1$ et on note $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit X un ensemble non vide et soient f_1, \ldots, f_n des applications de X dans \mathbb{K} . On appelle déterminant de Casorati de f_1, \ldots, f_n la fonction $C_{(f_1, \ldots, f_n)} : X^n \to \mathbb{K}$ définie par :

$$\forall (x_1, \dots, x_n) \in X^n, C_{(f_1, \dots, f_n)}(x_1, \dots, x_n) = \begin{vmatrix} f_1(x_1) & f_1(x_2) & \dots & f_1(x_n) \\ f_2(x_1) & f_2(x_2) & \dots & f_2(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ f_n(x_1) & f_n(x_2) & \dots & f_n(x_n) \end{vmatrix}$$

S'il n'y a pas de risque d'ambiguïté, on notera $C_n = C_{(f_1,\ldots,f_n)}$.

- 1. Dans cette question uniquement, on prend $X = \mathbb{R}$ et on note $f_1: x \mapsto \cos(x), f_2: x \mapsto \sin(x)$ et $f_3: x \mapsto \cos(x + \pi/4)$. Calculer, pour tous $x, y, z \in \mathbb{R}$, les quantités $C_2(x, y)$ et $C_3(x, y, z)$.
- 2. On suppose la famille (f_1, \ldots, f_n) liée (dans \mathbb{K}^X , le \mathbb{K} -espace vectoriel des fonctions de X dans \mathbb{K}). Montrer que C_n est la fonction nulle.
- 3. Réciproquement, supposons que $C_n=0$. Établir que (f_1,\ldots,f_n) est liée. Pour cela, on pourra supposer d'abord $C_{n-1}\neq 0$ et étudier la fonction

$$x \mapsto C_n(u_1, \dots, u_{n-1}, x)$$

où $(u_1, \ldots, u_{n-1}) \in X^{n-1}$ est tel que $C_{n-1}(u_1, \ldots, u_{n-1}) \neq 0$.

- 4. On suppose maintenant la famille (f_1,\ldots,f_n) libre. D'après ce qui précède, il existe $(u_1,\ldots,u_n)\in X^n$ tel que $C_n(u_1,\ldots,u_n)\neq 0$. Notons, pour tout $i\in [\![1\,];n]\!], F_i:X\to \mathbb{K}$ la i-ième application partielle de C_n en (u_1,\ldots,u_n) , c'est-à-dire : $F_i:x\mapsto C_n(u_1,\ldots,u_{i-1},x,u_{i+1},\ldots,u_n)$.
 - (a) Montrer qu'il existe des $\alpha_{i,j} \in \mathbb{K}$ tels que :

$$\forall i \in [1; n], \forall x \in X, F_i(x) = \sum_{j=1}^n \alpha_{i,j} f_j(x)$$

(b) Montrer que la matrice $P = (\alpha_{i,j})_{1 \leq i,j \leq n}$ est inversible et en déduire que $\text{Vect}(F_1,\ldots,F_n) = \text{Vect}(f_1,\ldots,f_n)$.

Page 1/3 2023/2024

MP2I Lycée Faidherbe

Exercice 4 - Premier déterminant de Smith

- 1. On note $P \in \mathcal{M}_n(\mathbb{R})$ la matrice dont le terme d'indice $(i,j) \in [1; n]^2$ vaut 1 si i divise j et vaut 0 sinon. Donner le déterminant de P.
- 2. Soit $f: \mathbb{N}^* \to \mathbb{C}$. Donner le terme général de $M = P^\top \times \Delta \times P$ où

$$\Delta = \begin{pmatrix} f(1) & 0 & \dots & 0 \\ 0 & f(2) & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & f(n) \end{pmatrix}$$

- 3. On définit la fonction μ de Möbius par
 - $\mu: \mathbb{N}^* \to \{0; 1; -1\}.$
 - $\mu(1) = 1$.
 - $\mu(n) = 0$ si n contient un facteur carré.

• $\mu(p_1 \dots p_r) = (-1)^r$ si les p_i sont des nombres premiers distincts.

De plus (cf. exercice 25 du chapitre 17), la fonction μ vérifie la propriété suivante :

$$\forall n \in \mathbb{N}^*, n \neq 1, \sum_{d|n} \mu(d) = 0$$

où la somme est prise sur les diviseurs de n. Montrer que si g est une fonction de \mathbb{N}^* dans \mathbb{R} et si, pour tout n, f(n) est défini par

$$f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) g(d)$$

alors $g(n) = \sum_{d|n} f(d)$. On admet (c'est la formule d'inversion de Möbius, cf. exercice 25 du chapitre 17) que la réciproque est vraie.

- 4. Soit $g: \mathbb{N}^* \to \mathbb{C}$. Posons $A_g = (g(i \land j))_{1 \le i,j \le n} \in \mathscr{M}_n(\mathbb{C})$. À l'aide de la fonction de Möbius, trouver une fonction $f: \mathbb{N}^* \to \mathbb{C}$ telle que la matrice M de la question précédente soit égale à A_g . En déduire $\det(A_g)$ en fonction de g.
- 5. (a) Montrer que

$$[\![\,1\,;\,n\,]\!]=\bigcup_{d\mid n}\{k\in[\![\,1\,;\,n\,]\!]\,|\,k\wedge n=d\}$$

et que cette union est disjointe.

- (b) Soit $n \in \mathbb{N}^*$ et soit $k \in [1; n]$. Soit d un diviseur positif de n. Montrer que $k \wedge n = d$ si et seulement si d divise k et si $(k/d) \wedge (n/d) = 1$.
- (c) On définit l'indicatrice d'Euler, notée φ , de la façon suivante : pour tout $n \in \mathbb{N}^*$, $\varphi(n)$ est le nombre d'éléments de [1; n] premiers avec n. Montrer que :

$$\forall n \in \mathbb{N}^*, \sum_{d|n} \mu\left(\frac{n}{d}\right) \times d = \varphi(n)$$

(d) En déduire la valeur du « premier déterminant de Smith » $\det((i \wedge j)_{1 \leq i,j \leq n})$. On exprimera cette valeur en fonction de l'indicatrice d'Euler.

Problème (facultatif) - Résultant de deux polynômes (d'après ENS Lyon-Cachan 2000)

Soit \mathbb{K} un corps. Soient n, m deux entiers naturels non nuls. Si $P = \sum_{i=0}^n a_i X^i$ et $Q = \sum_{j=0}^m b_j X^j$ sont deux éléments de

 $\mathbb{K}[X]$ de degrés respectifs n et m, on appelle résultant de P et Q (noté $\mathrm{Res}_{\mathbb{K}}(P,Q)$, ou plus simplement $\mathrm{Res}(P,Q)$ si aucune confusion n'est possible) le déterminant de la matrice carrée à coefficients dans \mathbb{K} de taille (n+m,n+m) suivante, dite matrice résultante :

Page 2/3 2023/2024

MP2I Lycée Faidherbe

où chaque a_i apparaît exactement m fois, et chaque b_j apparaît n fois. Noter que les m premiers coefficients diagonaux sont égaux à a_0 et que les n derniers sont égaux à b_m . Les parties B et C sont indépendantes et ne dépendent que de la question 4 de la partie A.

Partie A - La propriété fondamentale du résultant.

Soient $P = \sum_{i=0}^{n} a_i X^i$ et $Q = \sum_{j=0}^{m} b_j X^j$ deux éléments de $\mathbb{K}[X]$ de degrés respectifs n et m.

- 1. Montrer que P et Q ne sont pas premiers entre eux si et seulement s'il existe deux polynômes A et B non nuls de $\mathbb{K}[X]$ de degrés deg A < m et deg B < n tels que AP = BQ.
- 2. Donner la dimension des espaces vectoriels $\mathbb{K}_{n-1}[X] \times \mathbb{K}_{m-1}[X]$ et $\mathbb{K}_{n+m-1}[X]$.
- 3. Soit f l'application

$$f: \left\{ \begin{array}{l} \mathbb{K}_{m-1}[X] \times \mathbb{K}_{n-1}[X] \to \mathbb{K}_{n+m-1}[X] \\ (A,B) \mapsto AP + BQ \end{array} \right.$$

Montrer que f est linéaire et que sa matrice dans des bases que l'on précisera des espaces vectoriels source et but est la transposée de la matrice résultante de l'énoncé.

- 4. Montrer que P et Q sont premiers entre eux si et seulement si leur résultant est non nul.
- 5. Soit λ non nul. Montrer que $\operatorname{Res}_{\mathbb{K}}\left(\lambda^n P\left(\frac{X}{\lambda}\right), \lambda^m Q\left(\frac{X}{\lambda}\right)\right) = \lambda^{nm} \operatorname{Res}_{\mathbb{K}}(P,Q)$ (on pourra multiplier la j-ème colonne par λ^j).
- 6. Soit $P \in \mathbb{C}[X]$ non nul de degré n de coefficient dominant a. On appelle discriminant de P le résultant (sur \mathbb{C} donc) de P et P', multiplié par $\frac{(-1)^{n(n+1)/2}}{a}$.
 - (a) Montrer que P a une racine multiple si et seulement si son discriminant est nul.
 - (b) Dans le cas où $P = aX^2 + bX + c$ avec a non nul, retrouver le résultat connu : P a une racine double si et seulement si Δ est nul.
 - (c) Donner le discriminant du polynôme $X^3 + pX + q$.

Partie B - Nombres algébriques.

On rappelle qu'un nombre réel α est algébrique s'il annule un polynôme non nul à coefficients entiers. On notera \mathbb{K} le corps $\mathbb{Q}(X)$ dans la suite.

- 1. Mettre $P = (X Y)^3 + 2X^2Y^2$ sous la forme $P = a_0 + a_1Y + a_2Y^2 + a_3Y^3$ avec a_0, a_1, a_2, a_3 appartenant à \mathbb{K} . P est donc un polynôme en Y avec des coefficients dans \mathbb{K} . On note alors de façon intuitive $\mathbb{K}[Y]$ l'ensemble des polynômes en Y à coefficients dans K.
- 2. Donner le résultant des polynômes $X^2Y + XY^2 + X^3 + 1$ et 1 + XY, en tant qu'éléments de $\mathbb{K}[Y]$ (le résultant doit donc appartenir à K).
- 3. Soient z_1 et z_2 deux nombres algébriques annulant respectivement les polynômes P_1 et P_2 , éléments de $\mathbb{Z}[X]$. Montrer que $\mathrm{Res}_K(P_1(X-Y),P_2(Y))$ est un élément de $\mathbb{Z}[X]$ annulant z_1+z_2 .
- 4. En déduire un polynôme à coefficients entiers annulant $\sqrt{2} + \sqrt{7}$.
- 5. Montrer que l'ensemble des nombres algébriques est un corps.

Page 3/3 2023/2024