Threads test

- 1. Difficulty 0
 - 45 threads
 - 60 threads
 - 75 threads
 - 90 threads
- 2. Difficulty 3
 - 45 threads
 - 60 threads
 - 75 threads
 - 90 threads
- 3. Analysis

1. Difficulty 0

2. Difficulty 3

3. Analysis

Difficulty 0

Probability distribution

Moving average

Cumulative distribution

- 20초 미만 구간에서 90 스레드가 가장 많은 확률로 블록을 생성 할 것이라고 생각했던 것과는 달리 75 스레드가 가장 많은 블록을 생성 함.
- 하지만 누적분포를 보면 90스레드가 먼저 1로 수렴함 (75 스레드: 22,071 sec, 90 스레드: 21,756 sec)
- 75 스레드가 90 스레드 보다 블록을 더 빠르게 생성했지만, 평균과 멀리 떨어진 블록이 90 스레드보다 자주 발생하여 누적분포에서 90스레드 보다 느리게 수렴함
- 실험에서 1500개의 블록을 채굴 했을 때 75 스레드가 더 낮은 표준 편차를 보였지만, 블록의 개수가 증가하면 90 스레드가 더 낮은 표준 편차를 가질 것 이라고 예상 됨.

- 난이도 0.75 스레드

- 평균: 14.7145

- 표준편차: 14.0665

- 난이도 0, 90 스레드

- 평균: 14.5044

- 표준편차: 14.3967

Log distribution with regression

- 전체 시간의 N % 구간 까지 regression
- 스레드가 증가 할 수록 낮은 interval에서 계산한 mean과 실제 mean이 비슷해짐
- 즉, 스레드가 증가하면, 분산이 충분히 통제 될 것이라고 예상 됨.

Difficulty 3

Moving average

Cumulative distribution

Log distribution with regression

