2 College Scorecard Data

The US Department of Education collects data from every "college" level institution in America and makes a lot of data available under the College Scorecard.

- This question uses a curated extract of the college scorecard data. The variable names and definitions are at the end.
- This dataset has 23 variables of data on 1,695 four-year colleges.
- This dataset is on Canvas or at "https://raw.githubusercontent.com/AU-datascience/data/main/427-627/college_scorecard_extract_sep_2023.csv".

We want to predict the Endowment of a new colleges given the other variables as potential predictors.

In the following steps, build models to predict the College Endowment (ENDOWBEGIN) and use K=10-fold cross-validation to tune and evaluate predictive performance with set.seed(123) as appropriate.

- For each problem, describe your approach, your R code, the most important results, and your interpretation of the results.
- You may write your responses on this document by hand after running code in R and/or submit a file on Canvas with your approach, code, results, and interpretation of results.

2.1 Multiple Linear Regression Regularization

• Load the data and assign the name college to it. Get rid of any records with NAs and divided ENDOWBEGIN by 1 million to reduce the scale. Glimpse college.

```
"``{r}
# | message: false
library(tidyverse)
college <- read_csv("https://raw.githubusercontent.com/AU-
datascience/data/main/427-627/college_scorecard_extract_sep_2023.csv")
college <- na.omit(college)
college$ENDOWBEGIN <- college$ENDOWBEGIN/1000000
#college <-
read_csv("./data/college_scorecard_extract_sep_2023.csv")
#glimpse(college)
"``</pre>
```

- Fit a multiple linear regression of Endowment (*ENDOWBEGIN*) on all the other variables as a full model.
- How many predictors appear important with a p value less than 0.1?

Do any of the variables have a high generalized variance inflation factor GVIF? If any, which ones and do they make sense as having high GVIF given the other variables?

Refit a reduced model without MN_EARN_WNE_P10 and PCT_WHITE. Are there any changes in significant variables?

- Check the GVIF again and comment on any changes.
- Create a new data frame with the variables below (you can use the following code).
 - Remove the rows with REGION = "Outlying Regions".
 - Convert all character variables to factors.

 Use the {boot} package with college2 to report the prediction MSE for a full model (ENDOWBEGIN on the other data) based on K-10 fold cross-validation adjusted deviance.

2.2 Regularization via Shrinkage

Use LASSO with cross validation to model ENDOWBEGIN on the other variables in college2 and find the best lambda.

- Create model matrices for x and y.
- Use set.seed(123) for the cross validation.
- Plot the result of the cross validation.
- Show the result and identify whether lambda—min or lambda.1se has fewer non-zero variables?
- Show the coefficients for lambda.1se and discuss which were driven to zero if any.
- Do any of the +/- signs of the coefficients for the variables surprise you?

2.3 Principal components.

Calculate the principal components using the x model matrix you created earlier, with scaling, and show the scree plot.

Interpret the scree plot

Given the scree plot, choose to create either a PCR or a PLSR model.

Create the model with scaling and K=10 fold cross-validation. (Use seed 123)

How many principal components are

- Needed to explain 90% of the total variation among X-variables?
- Needed to explain 40% of the total variation of the response, ENDOWBEGIN?
- What is the optimal number of PCs based on adjusted Cross-Validation RMSEP?
- What is the adjusted Cross Validation MSEP for the optimal number of PCs?
- Show the validation plot.

2.4 Summary

Create a summary table showing the method, the MSE, and the number of predictors.

• Recommend a model for predicting ENDOWBEGIN for new observations and explain your choice.

Method	Predicted MSE	Number of Predictors
Linear Model (Reduced)		
LASSO lambda.1se		
PCR		
PLSR		

2.5 Classification with SVM (Optional Extra Credit 4 points)

We now want to predict whether a new college is Private or Public based on the data in college2.

Tune a Support Vector Machine model to find the best cost and kernel.

• Use the range of costs in seq(4.0, 6.0, 0.25) and the linear and radial kernels.

What is the best cost value and the best kernel and the cross-validated error rate?

• How many support vectors are there?

Plot the results looking at ${\tt ADM_RATE}$ and ${\tt AVGFACSAL}$.

• Comment on the plot

2.5.1 College Scorecard Data

Variable	Definition
ADM_RATE	Admission Rate
AGE_ENTRY	Average age of entry
AVGFACSAL	Average Faculty Salary
CONTROL	Public or Private Non-Profit
COSTT4_A	Cost of an Academic Year
ENDOWBEGIN	Endowment at the Beginning of the year
FEMALE	Percent Female Students
FIRST_GEN	Percent First Generation Students
GRAD_DEBT_MDN	Median Debt at Graduation
LOCALE	City, Suburban, Town or Rural
MD_EARN_WNE_P10	Median Earnings 10 years after enrollment
MN_EARN_WNE_P10	Mean earnings 10 years after enrollment
PCIP14	Percent Engineering Degrees
PCIP27	Percent Math Stat Degrees
PFTFAC	Percent Full Time Faculty
PCT_ASIAN	Percent Asian in Home Zip Code
PCT_BLACK	Percent Black in Home Zip Code
PCT_WHITE	Percent White in Home Zip Code
PCT_HISPANIC	Percent Hispanic in Home Zip Code
PCTPELL	Percent with Pell Grant
REGION	Location in United States
SAT_AVG	Average SAT Score
UGDS	Total Undergraduates