数据库系统原理

引用中国人民大学信息学院原版PPT 华中科技大学计算机学院左琼修改版

School of Computer Science and Technology, HUST 2020

第一章 绪论

- 1.1 数据库系统概述
- 1.2 数据模型
- 1.3 数据库系统的结构
- 1.4 数据库系统的组成
- 1.5 小结

1.3 数据库系统的结构

-数据库中数据如何存储?

数据库不仅存放数据的值,也需存放数据的语义。

数据的语义是通过存储数据的结构来实现的,库中数据有值与型两部分, 分别存放在数据文件和字典中。

- -数据模型中"型"和"值"的区别:
 - •型(Type):对某一类数据的结构和属性的说明。
 - •值(Value):是型的一个具体赋值。
 - 例如:

学生记录型: (学号, 姓名, 性别, 系别, 年龄, 籍贯)

一个记录值: (900201, 李明, 男, 计算机, 22, 江苏)

1.3.1数据库系统模式的概念

从数据库应用开发人员角度看,数据库系统通常采用三级模式结构,是数据库系统内部的系统结构。

•模式 (Schema)

- 数据库中全体数据的逻辑结构和特征的描述。
- 仅仅是型的描述,与具体的值无关。
- 反映的是数据的结构及其联系。
- 模式是相对稳定的。

-实例 (Instance)

- 模式的一个具体值;反映数据库某一时刻的状态;
- 同一个模式可以有很多实例;
- 实例随数据库中数据的更新而变动。

1.3.2数据库系统的三级模式

•数据库系统三级模式结构

- CODASYL (Conference On Data System Language, 美国数据系统语言协 商会)提出模式、外模式、内模式三级模式 的概念,三级模式之间有两级映象。

-模式的分级

- 从数据库用户的观点,即用户看到的数据库,与数据库的物理方面,即实际存储的数据库区分开来,数据库系统的模式是分级的。
- 提高了数据的逻辑独立性和物理独立性。

1. 模式 (Schema)

- •模式(也称逻辑模式)
 - -数据库中全体数据的逻辑结构和特征的描述;
 - 所有用户的公共数据视图——全局逻辑视图,综合了所有用户的需求。
 - 一个数据库只有一个模式。
 - 模式的地位:是数据库系统模式结构的中间层,独立于数据库的其他层次。
 - 与数据的物理存储细节和硬件环境无关;
 - 与具体的应用程序、开发工具及高级程序设计语言无关。

1. 模式 (Schema)

-模式的定义

- 数据的逻辑结构(数据项的名字、类型、取值范围等);
- 数据之间的联系;
- 数据有关的安全性、完整性要求。
- •模式一般由多个"记录"组成,包含数据库的所有信息。

如:某课程选修信息系统的数据库模式包括下列记录:

学生(学号,姓名,性别,系别,年龄)

课程(课程号,课程名)

选修(学号,课程号,成绩)

- 设计数据库模式结构时应首先确定数据库的逻辑模式。
- •模式的作用是为了支持数据的少冗余共享。

2. 外模式(external schema)

- -外模式(也称子模式subschema或用户模式):
 - -数据库用户(包括应用程序员和最终用户)使用的<mark>局部</mark>数据的逻辑结构 和特征的描述;
 - -数据库<mark>用户的数据视图</mark>,面向具体的应用程序,是与某一应用有关的数据的逻辑表示;
 - 定义在逻辑模式之上;
 - 独立于存储模式和存储设备;
 - 当应用需求发生较大变化、相应外模式不能满足其视图要求时、该外模式就得做相应改动;
 - -设计外模式时应充分考虑到应用的扩充性。

2. 外模式

- 外模式的地位: 介于模式与应用之间
 - •模式与外模式的关系:一对多
 - ○外模式通常是模式的子集;
 - ○一个数据库可以有多个外模式。反映了不同的用户的应用需求、看待数据的方式、对数据保密的要求;
 - ○对模式中同一数据,在外模式中的结构、类型、长度、保密级别等都可 以不同。
 - •外模式与应用的关系:一对多
 - ○同一外模式也可以为某一用户的多个应用系统所使用;
 - ○但一个应用程序只能使用一个外模式。

1.3.2 数据库的三级模式结构

学号 姓名 系别 补贴

外模式

劳资科

房产科

学号 姓名 性别 系别 住址

学籍科

学号 姓名 系别 学分 学位

THE PARTY OF THE P

人事科

学号 姓名 性别 系别 年龄 学位 出身

模式 vs. 外模式

模式 vs. 外模式

又如,数据库模式如下:

学生(学号,姓名,性别,系别,年龄)

课程(课程号,课程名)

选修(学号,课程号,成绩)

可定义子模式如下:

- ①单关系子模式: student_1 (学号, 姓名, 系别)
- ② 多关系子模式: SC(学号, 姓名, 课程号, 课程名, 成绩)
- -外模式的用途:
 - 1)支持不同用户建立适应局部应用特征的结构,每个用户只能看见和访问所对应的外模式中的数据;
 - 2) 简化应用处理;
 - 3) 提高安全性,保证数据库安全性的一个有力措施。

3. 内模式 (Internal schema)

- -内模式(也称存储模式storage schema或物理模式):
 - 是数据物理结构和存储方式的描述;
 - 是数据在数据库内部的表示方式,例:
 - ·记录的存储方式(顺序存储,按照B树结构存储,按hash方法存储)
 - -索引的组织方式
 - -数据是否压缩存储
 - -数据是否加密
 - -数据存储记录结构的规定
- •一个数据库只有一个内模式。

3. 内模式

•例如:学生记录,如果按<mark>堆</mark>存储,则插入一条新记录总是放在学生记录存储的最后,如图(a)所示。

如果按学号升序存储,则插入一条记录就要找到它应在的位置插入,如图(b)所示。

S10

3. 内模式

•如果按照学生<mark>年龄聚簇</mark>存放,假如新插入的S3是16岁,则应插入的位置如图(c)所示。

内模式的作用是支持用户 建立适应需求(如存取效 率、空间效率、数据安全)的物理结构。

图 记录不同的存储方式示意图

内模式依赖于它的全局逻辑结构; 独立于数据库的用户视图,即外模式。

1.3.2 数据库系统的三级模式

- -三级模式小结:
 - 内模式是整个数据库实际存储的表示,反映的是数据的存储观;
 - -概念模式是整个数据库的抽象表示,反映的是数据的全局观;
 - -外模式是概念模式的某一部分的抽象表示,反映的是数据的<mark>用</mark> 户观。

1.3.3 数据库的二级映像与数据独立性

- -三级模式是对数据的三个抽 象级别;
- -二级映象在DBMS内部实现这 三个抽象层次的联系和转换:
 - -外模式/模式映像
 - •模式 / 内模式映像

1. 外模式 / 模式映象

- -外模式/模式映像定义某一个外模式和模式之间的对应关系。
- •作用:保证数据的逻辑独立性
 - 当模式改变时,数据库管理员修改有关的外模式/模式映象,使外模式 保持不变;
 - 应用程序是依据数据的外模式编写的,从而应用程序不必修改,保证了数据与程序的逻辑独立性,简称数据的逻辑独立性。

1. 外模式 / 模式映象

student

SEX	AGE	NAME	NO
男	20	赵	301
男女	20 21	赵钱	301 302

Create View Stud(学号,姓名,性别,年龄)
As Select NO, NAME, AGE, SEX,
From student

学号	姓名	性别	年龄
301 302	赵钱	男女	20 21

student

XH	XM	XB	CSRQ
301 302	赵钱	男女	95.07.01 94.03.07

Create View Stud(学号,姓名,性别,年龄)
As Select XH,XM,XB,

datediff(year,CSRQ,getdate())

From student

2. 模式 / 内模式映像

•模式/内模式映象定义了数据全局逻辑结构与存储结构之间的对应关系。

如:说明逻辑记录和字段在内部是如何表示的。

- -数据库中模式 / 内模式映象是唯一的。
- •该映象定义通常包含在模式描述中。
- 保证数据的物理独立性:
 - -当数据库的存储结构改变了(例如选用了另一种存储结构),数据库管理员修改模式/内模式映象,使模式保持不变;
 - -存储结构变化的影响被限制在模式之下,这使数据的存储结构和存储方法独立于应用程序应用程序不受影响。保证了数据与程序的物理独立性, 简称数据的物理独立性。

三级模式结构的优点

- 保证数据的独立性

- ■将模式和内模式分开,保证了数据的物理独立性;
- 将外模式和模式分开,保证了数据的逻辑独立性。
- 简化了用户接口

按照外模式编写应用程序或敲入命令,而不需了解数据库内部的存储结构,方便用户使 用系统。

- 有利于数据共享
 - 在不同的外模式下可有多个用户共享系统中数据,减少了数据冗余。
- 利于数据的安全保密

在外模式下根据要求进行操作,不能对限定的数据操作,保证了其他数据的安全。

第一章 绪论

- 1.1 数据库系统概述
- 1.2 数据模型
- 1.3 数据库系统结构
- 1.4 数据库系统的组成
- 1.5 小结

1.4 数据库系统的组成

- 1. 硬件平台及数据库
- 2. 软件
- 3. 人员

- 1.硬件平台及数据库
- -数据库系统对硬件资源的要求:
 - (1) 足够大的内存 操作系统 DBMS的核心模块 数据缓冲区 应用程序
- (2) 足够大的外存 磁盘或磁盘阵列 >数据库 光盘、磁带 >数据备份

(3) 较高的通道?能力,提高数据传送率

2. 软件

- 1) DBMS
- 2) 支持DBMS运行的操作系统
- 3) 与数据库接口的高级语言及其编译系统
- 4) 以DBMS为核心的应用开发工具
- 5) 为特定应用环境开发的数据库应用系统

3. 人员

-不同的人员涉及不同的数据抽象级别,具有不同的数据视图,如图。

3. 人员:数据库管理员(DBA)

1) DBA: 负责全面管理和控制数据库系统。

具体职责:

- (1) 决定数据库中的信息内容和结构——DB设计;
- (2) 决定数据库的存储结构和存取策略——内模式设计;
- (3) 定义数据的安全性要求和完整性约束条件;
- (4) 监控数据库的使用和运行:
 - 周期性转储数据库: 数据文件、日志文件;
 - 系统故障恢复;介质故障恢复;
 - 监视审计文件。

(5) 数据库的改进和重组

- 性能监控和调优
- 定期对数据库进行重组织,以提高系统的性能
- 需求增加和改变时,数据库须需要重构造

3. 人员

2) 系统分析员

- 负责应用系统的需求分析和规范说明
- 与用户及DBA协商,确定系统的硬软件配置
- 参与数据库系统的概要设计

3) 数据库设计人员

- 参加用户需求调查和系统分析
- 确定数据库中的数据
- 设计数据库各级模式

4) 应用程序员

- 设计和编写应用系统的程序模块
- 进行调试和安装

5) 用户是指最终用户 (End User)。

最终用户通过应用系统的用户接口使用数据库。

3.人员:用户

1) 偶然用户

- 不经常访问数据库,但每次访问数据库时往往需要不同的数据库信息
- 企业或组织机构的高中级管理人员

2) 简单用户

- 主要工作是查询和更新数据库
- 银行的职员、机票预定人员、旅馆总台服务员

3) 复杂用户

- 工程师、科学家、经济学家、科技工作者等
- 直接使用数据库语言访问数据库,甚至能够基于数据库管理系统的API编制自己的 应用程序

1.5 小结

-数据库系统概述

- 数据库的基本概念
- 数据管理的发展过程

-数据模型

- 数据模型的三要素
- 概念模型, E-R 模型
- 三种主要数据库模型 (了解各种模型的主要特性)

-数据库系统的结构

- 数据库系统三级模式结构
- 数据库系统两层映像系统结构
- -数据库系统的组成

作业: P34 3,17 (请在超星平台提交作业)

回顾本章主要内容

- •什么是数据库系统?
- -产生DBMS的动机是什么?
- -如何设计数据库?
- -数据库系统的组成?
- •数据库系统的结构?

数据库系统是由DB、DBMS、应用系统、DBA组成的存储、管理、处理和维护数据的系统。

P7 1.1

数据模型, ER图

硬件平台+DB, 软件, 人员

三级模式, 二级映像

补: DBMS的工作流程

DBMS工作过程

在数据库系统中,当一个应用程序或用户需要存取数据库中的数据时,应用程序、DBMS、操作系统、硬件等几个方面必须协同工作,共同完成用户的请求。

应用程序从数据库读取一个数据通常需要以下步骤:

- 1. 应用程序A向DBMS发出从数据库中读数据记录的命令;
- 2. DBMS对该命令进行语法检查、语义检查,并调用应用程序A对应的子模式,检查A的存取权限,决定是否执行命令,如果拒绝执行,则向用户返回错误信息;
- 3. 在决定执行该命令后,DBMS调用模式,依据子模式/模式映象的定义, 确定应读入模式中的哪些记录;

DBMS工作过程(续)

- 4. DBMS调用物理模式,依据模式/物理模式映象的定义,决定从哪个文件、 用什么存取方式、读入哪个或哪些物理记录;
- 5. DBMS向操作系统发出执行读取所需物理记录的命令;
- 6. 操作系统执行读数据的有关操作;
- 7. 操作系统将数据从数据库的存储区送到系统缓冲区;
- 8. DBMS依据子模式/模式映象的定义,导出应用程序A所要读取记录的格式;
- 9. DBMS将数据记录从系统缓冲区传送到应用程序A的用户工作区:
- 10. DBMS向应用程序返回命令执行情况的状态信息。

PS. 数据库系统的体系结构

- 从数据库最终用户角度看(数据库系统外部的体系结构),数据库系统的体系结构分为:
 - 单用户结构
 - -客户/服务器 (Client/Server, 简称C/S模式)
 - -浏览器 / 应用服务器 / 数据库服务器多层结构(Browser/Server ,简 称B/S模式)
 - -主从式结构
 - -分布式结构
 - 并行数据库系统

客户/服务器模式的数据库系统结构

浏览器/服务器模式的数据库系统结构

分布式数据库应用

图 一个分布式数据库应用系统实例

MySQL的主从架构

据库的读性能。

RDBMS进展-for scalability

- 单节点设备到多节点机器
- -DB 共享存储
- -数据仓库应用和列存储数据库
- 并行数据库
- -分布式数据库
- -数据库非共享集群

主要用于: mission critical, high transaction OLTP systems

分布式数据库

- -分布式数据库 是地理上分布在计算机网络的不同结点,逻辑上属于同一系统的 数据库系统。
- -分布式数据库的主要特点是:
 - -数据是分布的
 - _数据是逻辑相关的
 - -结点的自治性
 - 支持分布式查询
 - 支持分布式事务

DM分布式数据库

分布式数据库系统的模式结构

DM非共享集群—对称无共享节点HA

- 1) 实现集群服务 器节点的查询 负载平衡;
- 2) 管理服务器节 点加入集群和 退出集群;
- 3) 处理服务器节 点出现故障的 情况、容灾;
- 4) 保持服务器节 点的数据的一 致性。

- DM MPP体系架构:

DM7 MPP集群

- 完全对等无共享

- 客户端:可连接任一节点(EP)

- 内部通信:高速邮件子系统

- 负载均衡:按列HASH散列划分数据,存储和查询自动化并行

-*容灾:每EP可配置数据守护系统(主备)*

提供基于数据 划分的高性能 大规模并行集 群功能,多个 节点能够并行 处理同一个请 求,提升系统 性能,并且通 过节点间的守 护技术来保证 系统中的任意 节点出现故障 时,仍然能够 提供不间断的 服务。

集成完全不 共享架构优 点,无需专 用硬件,无 单点问题

Chapter 1 ends. . .

追求

休息一会儿。。。

