Universidade Federal da Fronteira Sul - UFFS - Chapecó, SC

Curso de Ciência da computação

1º Prova Cálculo numérico (2º Sem/2024)

Prof.: Vitor José Petry

Aluno:

Iga Louter Bossi

2211100014

60

Instruções: A prova é individual e sem consulta. É permitido o uso de calculadora, desde que não tenha recursos gráficos e nem possibilidade de armazenar textos e/ou arquivos. Não é permitido o uso de celular. Na solução de questões com métodos iterativos, trabalhe sempre com quatro ou mais casas decimais.

- 1. Considere a função $f(x) = x^3 + 2x^2 3x 1$.
 - a. (1,0 pt.) Mostre que as três raízes de f, estão respectivamente nos intervalos: $\xi_1 \in [-3,-2]$, $\xi_2 \in [-1,0]$ e $\xi_3 \in [1,2]$.
 - b. (1,0 pt.) Use o método de Newton para encontrar ξ_1 com precisão $\epsilon < 10^{-2}$. Escolha para x_0 o extremo do intervalo de forma que $f(x_0).f''(x_0) > 0$.
 - c. (1,0 pt.) Use o método da secante para encontrar ξ_3 com precisão $\epsilon < 2.10^{-2}$. Para a obtenção de x_0 e x_1 , aplique duas vezes o método da bissecção.
- 2. (2,0 pts.) Use o método de Jordan para resolver o sistema linear

$$\begin{cases} x & +2y & -z & = & 2 \\ x & +y & +z & = & 4 \\ x & +2y & +4z & = & 3 \end{cases}$$

3. (2,0 pts.) Reescreva o sistema linear dado de forma a garantir a convergência dos métodos iterativos estudados. Justifique as alterações efetuadas. Em seguida, resolva o sistema usando o método de Gauss-Seidel com precisão de 5.10^{-2} e chute inicial $X_0 = [1 \ 1 \ 1]^t$.

$$\begin{cases} x +2y +4z = 7 \\ 2x -4y +z = -2 \\ 5x -2y +2z = 3 \end{cases}$$

- 4. Para um determinado dia, prevê-se que às 8 horas a temperatura seja de $17^{o}C$, às 12 horas de $25^{o}C$, às 16 horas de $26^{o}C$ e às 20 horas de $18^{o}C$.
 - a. (1.5 pts.) Usando interpolação de Lagrange (com polinômio de 3^o), obtenha a previsão da temperatura para as 11 horas e 30 minutos do mesmo dia.
 - b. (1,5 pts.) Usando interpolação com diferenças finitas (com polinômio de 3^o), obtenha a previsão da temperatura para as 17 horas do mesmo dia.