#### 4.2 ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

### Μορφές τριωνύμου

Η παράσταση  $\alpha x^2 + \beta x + \gamma$ ,  $\alpha \neq 0$  λέγεται τριώνυμο 2ου βαθμού ή, πιο απλά, τριώνυμο. Η διακρίνουσα  $\Delta$  της αντίστοιχης εξίσωσης  $\alpha x^2 + \beta x + \gamma = 0$  λέγεται και διακρίνουσα του τριωνύμου. Οι ρίζες της εξίσωσης  $\alpha x^2 + \beta x + \gamma = 0$ , δηλαδή οι  $x_1 = \frac{-\beta + \sqrt{\Delta}}{2\alpha}$  και  $x_2 = \frac{-\beta - \sqrt{\Delta}}{2\alpha}$  ονομάζονται και ρίζες του τριωνύμου.

To τριώνυμο  $\alpha x^2 + \beta x + \gamma, \, \alpha \neq 0$  μετασχηματίζεται ως εξής:

$$\begin{split} \alpha x^2 + \beta x + \gamma &= \alpha \Bigg( x^2 + \frac{\beta}{\alpha} x + \frac{\gamma}{\alpha} \Bigg) \\ &= \alpha \Bigg[ x^2 + 2 \cdot x \cdot \frac{\beta}{2\alpha} + \left( \frac{\beta}{2\alpha} \right)^2 - \left( \frac{\beta}{2\alpha} \right)^2 + \frac{\gamma}{\alpha} \Bigg] \\ &= \alpha \Bigg[ \left( x + \frac{\beta}{2\alpha} \right)^2 + \frac{4\alpha \gamma - \beta^2}{4\alpha^2} \Bigg]. \end{split}$$

Επομένως:

$$\alpha x^{2} + \beta x + \gamma = \alpha \left[ \left( x + \frac{\beta}{2\alpha} \right)^{2} - \frac{\Delta}{4\alpha^{2}} \right]$$
 (1).

Διακρίνουμε τώρα τις εξής περιπτώσεις:

•  $\Delta > 0$  . Tóte iscúei  $\Delta = (\sqrt{\Delta})^2$ , opóte écoume:

$$\begin{split} \alpha x^2 + \beta x + \gamma &= \alpha \Bigg[ \left( x + \frac{\beta}{2\alpha} \right)^2 - \left( \frac{\sqrt{\Delta}}{2\alpha} \right)^2 \Bigg] \\ &= \alpha \Bigg( x + \frac{\beta}{2\alpha} - \frac{\sqrt{\Delta}}{2\alpha} \Bigg) \Bigg( x + \frac{\beta}{2\alpha} + \frac{\sqrt{\Delta}}{2\alpha} \Bigg) \\ &= \alpha \Bigg[ x - \left( \frac{-\beta + \sqrt{\Delta}}{2\alpha} \right) \Bigg] \Bigg[ x - \left( \frac{-\beta - \sqrt{\Delta}}{2\alpha} \right) \Bigg]. \end{split}$$

Επομένως:

$$\alpha x^2 + \beta x + \gamma = \alpha (x - x_1)(x - x_2),$$

όπου  $x_1, x_2$  οι ρίζες του τριωνύμου.

Αρα, όταν  $\Delta > 0$ , τότε το τριώνυμο μετατρέπεται σε γινόμενο του α επί δύο πρωτοβάθμιους παράγοντες.

•  $\Delta = 0$ . Τότε από την ισότητα (1) έχουμε:

$$\alpha x^2 + \beta x + \gamma = \alpha \left( x + \frac{\beta}{2\alpha} \right)^2$$
.

Αρα, όταν  $\Delta = 0$ , τότε το τριώνυμο μετατρέπεται σε γινόμενο του α επί ένα τέλειο τετράγωνο.

•  $\Delta < 0$ . Τότε ισχύει  $|\Delta| = -\Delta$ , οπότε έχουμε:

$$\alpha x^2 + \beta x + \gamma = \alpha \left[ \left( x + \frac{\beta}{2\alpha} \right)^2 + \frac{|\Delta|}{4\alpha^2} \right].$$

Επειδή για κάθε  $x \in R$ , η παράσταση μέσα στην αγκύλη είναι θετική, το τριώνυμο δεν αναλύεται σε γινόμενο πρωτοβάθμιων παραγόντων.

Συνοψίζοντας τα παραπάνω συμπεράσματα για τις μορφές του τριωνύμου  $\alpha x^2 + \beta x + \gamma$ ,  $\alpha \neq 0$  με διακρίνουσα  $\Delta$  έχουμε:

- An D > 0, tóte:  $\alpha x^2 + \beta x + \gamma = \alpha (x-x_1)(x-x_2),$  όπου  $x_1, \, x_2$  oι ρίζες του τριωνύμου.
- Αν Δ = 0, τότε:

$$\alpha x^2 + \beta x + \gamma = \alpha \left( x + \frac{\beta}{2\alpha} \right)^2$$
.

Αν Δ < 0, τότε:</li>

$$\alpha x^2 + \beta x + \gamma = \alpha \left[ \left( x + \frac{\beta}{2\alpha} \right)^2 + \frac{\left| \Delta \right|}{4\alpha^2} \right].$$

Για παράδειγμα:

 $To τριώνυμο <math>2x^2 + 3x - 2$  έχει  $\Delta = 9 + 16 = 25 > 0$  και ρίζες  $x_1 = \frac{1}{2}$  και  $x_2 = -2$ . Επομένως:  $2x^2 + 3x - 2 = 2\left(x - \frac{1}{2}\right)(x + 2) = (2x - 1)(x + 2).$ 

✓ Το τριώνυμο  $\frac{1}{2}x^2 + 3x + \frac{9}{2}$  έχει  $\Delta = 9 - 4 \cdot \frac{1}{2} \cdot \frac{9}{2} = 0$  και  $\frac{\beta}{2\alpha} = -3$ . Επομένως:

**108** 4. ΑΝΙΣΩΣΕΙΣ

$$\frac{1}{2}x^2 + 3x + \frac{9}{2} = \frac{1}{2}(x - 3)^2.$$

✓ Το τριώνυμο  $2x^2 - 6x + 5$  έχει Δ = -4 < 0. Επομένως:

$$2x^{2} - 6x + 5 = 2\left[\left(x - \frac{3}{2}\right)^{2} + \frac{1}{4}\right].$$

### Πρόσημο των τιμών του τριωνύμου

Για να μελετήσουμε το πρόσημο των τιμών του τριωνύμου  $\alpha x^2 + \beta x + \gamma$ ,  $\alpha \neq 0$ , θα χρησιμοποιήσουμε τις μορφές του ανάλογα με τη διακρίνουσα.

• Αν Δ > 0, τότε, όπως είδαμε προηγουμένως, ισχύει:

$$\alpha x^2 + \beta x + \gamma = \alpha (x - x_1)(x - x_2)$$
 (1)

Υποθέτουμε ότι  $x_1 < x_2$  και τοποθετούμε τις ρίζες σε έναν άξονα.

Παρατηρούμε ότι:

 $\checkmark$  Av  $x < x_1 < x_2$  (Σχήμα), τότε  $x - x_1 < 0$  και  $x - x_2 < 0$ , οπότε  $(x - x_1)(x - x_2) > 0$ . Επομένως, λόγω της (1), το τριώνυμο είναι ομόσημο του α.





 $\begin{array}{l} \checkmark \quad \text{An } x_1 < x_2 < x \ (\text{Schma}), \ \text{tóte } x - x_1 > 0 \ \text{kai} \\ x - x_2 > 0, \ \text{opóte} \ (x - x_1)(x - x_2) > 0. \ \text{Επομένως}, \\ \text{λόγω thg } (1), \ \text{to triώνυμο είναι ομόσημο του } \alpha. \end{array}$ 

• An  $\Delta = 0$ , tote iscusi:

$$\alpha x^2 + \beta x + \gamma = \alpha \left( x + \frac{\beta}{2\alpha} \right)^2$$
.

Επομένως, το τριώνυμο είναι ομόσημο του α για κάθε πραγματικό  $x\neq -\frac{\beta}{2\alpha},$  ενώ μηδενίζεται για  $x=-\frac{\beta}{2\alpha}.$ 

• Av **Δ** < **0**, τότε ισχύει:

$$\alpha x^{2} + \beta x + \gamma = \alpha \left[ \left( x + \frac{\beta}{2\alpha} \right)^{2} + \frac{|\Delta|}{4\alpha^{2}} \right].$$

Όμως η παράσταση μέσα στην αγκύλη είναι θετική για κάθε πραγματικό αριθμό x. Επομένως το τριώνυμο είναι ομόσημο του α σε όλο το  $\mathbb R$ .

Τα παραπάνω συνοψίζονται στον πίνακα:

Το τριώνυμο  $\alpha x^2 + \beta x + \gamma$ ,  $\alpha \neq 0$  γίνεται:

- Ετερόσημο του  $\alpha$ , μόνο όταν είναι  $\Delta > 0$  και για τις τιμές του x, που βρίσκονται μεταξύ των ριζών.
- Μηδέν, όταν η τιμή του x είναι κάποια από τις ρίζες του τριωνύμου.
- Ομόσημο του α σε κάθε άλλη περίπτωση.

## $Aνισώσεις της μορφής <math>ax^2 + \beta x + \gamma > 0$ ή $ax^2 + \beta x + \gamma < 0$

Τα προηγούμενα συμπεράσματα χρησιμοποιούνται στην επίλυση ανισώσεων της μορφής  $\alpha x^2 + \beta x + \gamma > 0$  ή  $\alpha x^2 + \beta x + \gamma < 0$ ,  $\alpha \neq 0$ , τις οποίες ονομάζουμε **ανισώσεις δευτέρου βαθμού**. Ο τρόπος επίλυσης αυτών φαίνεται στα παρακάτω παραδείγματα.

#### ΠΑΡΑΔΕΙΓΜΑ 1ο

Να λυθούν οι ανισώσεις

i) 
$$2x^2 - 3x - 2 > 0$$

ii) 
$$2x^2 - 3x - 2 < 0$$

#### ΛΥΣΗ

Ζητάμε τις τιμές του x, για τις οποίες το τριώνυμο  $2x^2 - 3x - 2$  είναι θετικό στην περίπτωση (i) και αρνητικό στην περίπτωση (ii).

Το τριώνυμο έχει ρίζες τους αριθμούς  $-\frac{1}{2}$  και 2 και, επειδή  $\alpha=2>0$ , το πρόσημό του φαίνεται στον παρακάτω πίνακα.

| х    | -∞ |   | $-\frac{1}{2}$ |   | 2   |   | +∞ |
|------|----|---|----------------|---|-----|---|----|
| f(x) |    | + | · ·            | - | · · | + |    |

**110** 4. ΑΝΙΣΩΣΕΙΣ

Από τον πίνακα αυτόν προκύπτει ότι:

i) Η ανίσωση  $2x^2-3x-2>0$  έχει λύσεις τα  $x\in\mathbb{R}$  για τα οποία ισχύει  $x<-\frac{1}{2}$  ή x>2, δηλαδή τα  $x\in\left(-\infty,-\frac{1}{2}\right)\cup(2,+\infty)$ . Οι λύσεις αυτές εποπτικά φαίνονται στο παρακάτω σχήμα.



ii) Η ανίσωση  $2x^2 - 3x - 2 < 0$  έχει λύσεις τα x ∈ ℝ για τα οποία ισχύει  $-\frac{1}{2} < x < 2$ ,

δηλαδή τα  $x \in \left(-\frac{1}{2}, 2\right)$ . Οι λύσεις αυτές εποπτικά φαίνονται στο παρακάτω σχήμα.



#### ΠΑΡΑΔΕΙΓΜΑ 20

Nα λυθεί η ανίσωση  $2x^2 - 3x - 2 \le 0$ .

#### $\Lambda \Upsilon \Sigma H$

Ζητάμε τις τιμές του x, που είναι λύσεις της ανίσωσης  $2x^2-3x-2 < 0$  ή ρίζες της εξίσωσης  $2x^2-3x-2=0$ . Επομένως σύμφωνα με το 1ο παράδειγμα οι λύσεις της ανίσωσης  $2x^2-3x-2 \le 0$  είναι τα  $x \in \mathbb{R}$ , με  $-\frac{1}{2} \le x \le 2$ , δηλαδή τα  $x \in \left[-\frac{1}{2}, 2\right]$ . Οι λύσεις αυτές εποπτικά φαίνονται στο παρακάτω σχήμα.



#### ΠΑΡΑΔΕΙΓΜΑ 3ο

Να λυθούν οι ανισώσεις

i) 
$$x^2 - 2x + 1 > 0$$

ii) 
$$x^2 - 2x + 1 < 0$$
.

#### ΛΥΣΗ

Η διακρίνουσα του τριωνύμου  $x^2 - 2x + 1$  είναι  $\Delta = 0$ , οπότε έχει διπλή ρίζα τη x = 1. Άρα το τριώνυμο είναι ομόσημο του  $\alpha = 1$ , δηλαδή θετικό, για κάθε  $x \in \mathbb{R}$  με  $x \neq 1$ .

Επομένως οι λύσεις της ανίσωσης (i) είναι όλοι οι πραγματικοί αριθμοί x, με  $x \ne 1$ , ενώ η ανίσωση (ii) είναι αδύνατη.

Οι λύσεις της (i) εποπτικά φαίνονται στο παρακάτω σχήμα.



# ΠΑΡΑΔΕΙΓΜΑ 4ο

Nα λυθεί η ανίσωση  $x^2 + x + 1 > 0$ .

#### ΛΥΣΗ

Η διακρίνουσα του τριωνύμου  $x^2 + x + 1$  είναι  $\Delta = -3 < 0$ , οπότε το τριώνυμο είναι ομόσημο του  $\alpha = 1$ , δηλαδή θετικό, για κάθε  $x \in \mathbb{R}$ . Επομένως οι λύσεις της ανίσωσης είναι όλοι οι πραγματικοί αριθμοί.

## ΕΦΑΡΜΟΓΕΣ

1. Να βρεθούν οι τιμές του  $x \in \mathbb{R}$  για τις οποίες συναληθεύουν οι ανισώσεις:  $x^2 - 4x - 5 < 0 \text{ και } x^2 - x - 6 > 0.$ 

### ΛΥΣΗ

Λύνουμε κάθε ανίσωση χωριστά και μετά βρίσκουμε τις κοινές λύσεις. Έχουμε:

✓ 
$$x^2 - 4x - 5 < 0 \Leftrightarrow (x - 5)(x + 1) < 0 \Leftrightarrow -1 < x < 5$$

✓ 
$$x^2 - x - 6 > 0 \Leftrightarrow (x + 2)(x - 3) > 0 \Leftrightarrow x < -2 \text{ } \acute{\eta} \text{ } x > 3$$



Άρα οι ανισώσεις συναληθεύουν για x∈(3,5).

- 2. Dinetal  $\eta$  exispos  $x^2 (\alpha + 1)x + \alpha + 4 = 0$ ,  $\alpha \in \mathbb{R}$ .
  - i) Να βρεθεί η διακρίνουσα της εξίσωσης και να μελετηθεί το πρόσημό της.
  - ii) Για ποιες τιμές του α η εξίσωση έχει δύο ρίζες άνισες;
  - iii) Για ποιες τιμές του α η εξίσωση έχει διπλή ρίζα;
  - iv) Για ποιες τιμές του α η εξίσωση είναι αδύνατη στο  $\mathbb{R}$ ;

# ΛΥΣΗ

**i)** Έχουμε:

$$\Delta = [-(\alpha + 1)]^2 - 4 \cdot 1 \cdot (\alpha + 4) = \alpha^2 - 2\alpha - 15.$$

Παρατηρούμε ότι η διακρίνουσα είναι ένα τριώνυμο του α με διακρίνουσα

$$\Delta' = (-2)^2 - 4 \cdot 1 \cdot (-15) = 64 > 0.$$

Επομένως η διακρίνουσα Δ έχει ρίζες:

$$\alpha_1 = \frac{2+8}{2} = 5$$
 kai  $\alpha_2 = \frac{2-8}{2} = -3$ .

και το πρόσημό της φαίνεται στον παρακάτω πίνακα.

| α | -∞ |   | - 3 |     | 5 |   | +∞ |
|---|----|---|-----|-----|---|---|----|
| Δ |    | + | Q   | - ( | ) | + |    |

Από τον πίνακα αυτό προκύπτει ότι:

- ii) Η εξίσωση έχει δύο ρίζες άνισες αν  $\Delta > 0$ , δηλαδή αν  $\alpha < -3$  ή  $\alpha > 5$ .
- iii) Η εξίσωση έχει μία διπλή ρίζα αν  $\Delta = 0$ , δηλαδή αν  $\alpha = -3$  ή  $\alpha = 5$ .
- iv) H exisposh einal advinath an  $\Delta < 0$ , dhladh  $-3 < \alpha < 5$ .

## ΑΣΚΗΣΕΙΣ Α΄ ΟΜΑΔΑΣ

1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα:

i) 
$$x^2 - 3x + 2$$

ii) 
$$2x^2 - 3x - 2$$
.

2. Να απλοποιήσετε τις παραστάσεις:

i) 
$$\frac{x^2 - 3x + 2}{2x^2 - 3x - 2}$$

ii) 
$$\frac{2x^2 + 8x - 4}{x^2 - 49}$$

i) 
$$\frac{x^2 - 3x + 2}{2x^2 - 3x - 2}$$
 ii)  $\frac{2x^2 + 8x - 42}{x^2 - 49}$  iii)  $\frac{4x^2 - 12x + 9}{2x^2 - 5x + 3}$ .

**3.** Για τις διάφορες τιμές του  $x \in \mathbb{R}$ , να βρείτε το πρόσημο των τριωνύμων:

i) 
$$x^2 - 2x - 15$$

i) 
$$x^2 - 2x - 15$$
 ii)  $4x^2 - 4x + 1$ 

iii) 
$$x^2 - 4x + 13$$
.

**4.** Για τις διάφορες τιμές του  $x \in \mathbb{R}$ , να βρείτε το πρόσημο των τριωνύμων:

i) 
$$-x^2 + 4x - 3$$

ii) 
$$-9x^2 + 6x - 1$$

i) 
$$-x^2 + 4x - 3$$
 ii)  $-9x^2 + 6x - 1$  iii)  $-x^2 + 2x - 2$ .

5. Να λύσετε τις ανισώσεις:

i) 
$$5x^2 \le 20x$$

ii) 
$$x^2 + 3x \le 4$$
.

6. Να λύσετε τις ανισώσεις:

i) 
$$x^2 - x - 2 > 0$$

ii) 
$$2x^2 - 3x - 5 < 0$$
.

7. Να λύσετε τις ανισώσεις:

i) 
$$x^2 + 4 > 4x$$

**ii)** 
$$x^2 + 9 \le 6x$$
.

8. Να λύσετε τις ανισώσεις:

i) 
$$x^2 + 3x + 5 \le 0$$

ii) 
$$2x^2 - 3x + 20 > 0$$
.

**9.** Na lúsete thi aniswsh 
$$-\frac{1}{4}(x^2 - 4x + 3) > 0$$
.

- 10. Να βρείτε τις τιμές του  $x \in \mathbb{R}$  για τις οποίες ισχύει:  $2x 1 < x^2 4 < 12$ .
- 11. Na breite tiς timéς του  $x \in \mathbb{R}$  gia tiς οποίες συναληθεύουν οι ανισώσεις  $x^2 6x + 5 < 0$  kai  $x^2 5x + 6 > 0$ .

# ΑΣΚΗΣΕΙΣ Β΄ ΟΜΑΔΑΣ

1. i) Να μετατρέψετε σε γινόμενα παραγόντων τις παραστάσεις:

$$\alpha^2 + \alpha\beta - 2\beta^2$$
 kai  $\alpha^2 - \alpha\beta - 6\beta^2$ .

- ii) Να απλοποιήσετε την παράσταση  $\frac{\alpha^2 + \alpha\beta 2\beta^2}{\alpha^2 \alpha\beta 6\beta^2}$ .
- **2.** Να παραγοντοποιήσετε το τριώνυμο  $2x^2 + (2\beta \alpha)x \alpha\beta$ .
- 3. Να απλοποιήσετε την παράσταση  $\frac{x^2-\alpha x+\beta x-\alpha\beta}{x^2-3\alpha x+2\alpha^2}.$
- 4. Δίνεται η εξίσωση  $\lambda x^2 + 3\lambda x + \lambda + 5 = 0$ ,  $\lambda \in \mathbb{R}$ . Να βρείτε τις τιμές του  $\lambda$  για τις οποίες η εξίσωση:
  - ί) έχει ρίζες ίσες
- ii) έχει ρίζες άνισες
- iii) είναι αδύνατη.
- 5. Na breite tiς timές του  $\lambda \in \mathbb{R}$  για τις οποίες η ανίσωση  $x^2 + 3\lambda x + \lambda > 0$  αληθεύει για κάθε  $x \in \mathbb{R}$ .

4. ΑΝΙΣΩΣΕΙΣ

- **6.** Dinetal to triúndho  $(\lambda + 2)x^2 2\lambda x + 3\lambda, \lambda \neq -2$ .
  - i) Να βρείτε τη διακρίνουσα  $\Delta$  του τριωνύμου και να λύσετε την ανίσωση  $\Delta$  < 0.
  - ii) Na breite tiς timéς του  $\lambda$  gia tiς οποίες η ανίσωση  $(\lambda+2)x^2-2\lambda x+3\lambda<0,\,\lambda\ne-2$  αληθεύει gia κάθε  $x{\in}\mathbb{R}.$
- 7. Στο διπλανό σχήμα το ΑΒΓΔ είναι τετράγωνο πλευράς AB = 3 και το M είναι ένα σημείο της διαγωνίου ΑΓ. Να βρείτε τις θέσεις του σημείου M πάνω στη διαγώνιο ΑΓ για τις οποίες το άθροισμα των εμβαδών των σκιασμένων τετραγώνων είναι μικρότερο από 5.



- **8. i)** Na apodeíxete óti  $\alpha^2 \alpha\beta + \beta^2 > 0$  yia óla ta  $\alpha, \beta \in \mathbb{R}$  me  $\alpha, \beta \neq 0$ .
  - ii) Να καθορίσετε το πρόσημο της παράστασης  $A = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} 1$  για τις διάφορες τιμές των  $\alpha, \beta \neq 0$ .