Chen Zhaoyang HW2

Zhaoyang Chen 2/3/2020

```
library(tidyverse)
library(glmnet)
```

Conceptual exercises

Training/test error for subset selection

Step one

```
set.seed(1234)
eps = rnorm(1000, 0, 1) # generate epsilon
X = data.frame(matrix(0, 1000, 20)) # generate zero matrix to store random values
i = 1
while (i <= 20){
    mu = runif(1, -10, 10)
    theta = runif(1, 1, 10)
    X[,i] = rnorm(1000, mu, theta)
    i = i + 1
} # generate random x and store
beta = runif(20, -10, 10) # generate beta from U[-1, 1]
beta[abs(beta) <= 2] = 0 # set some values to zero
beta = matrix(beta, ncol = 1)
X = as.matrix(X)
X_beta = X %*% beta
Y = X_beta + eps # calculate y</pre>
```

Step two

```
data = data.frame(X, Y) # combine X and Y
data$id = 1:1000
train = data %>% sample_frac(.1) # training set
test = anti_join(data, train, by = 'id') # testing set
```

Step three

```
#install.packages('leaps')
library(leaps)
model = regsubsets(Y ~ ., train[,-22], nvmax = 20)
model_sum = summary(model)
results_best <- tibble(
   `adj_r2` = which.max(model_sum$adjr2), # Adjusted r-squared</pre>
```

```
BIC = which.min(model_sum$bic), # Schwartz's information criterion
  `c_p` = which.min(model_sum$cp) # Mallows' Cp
) %>%
  gather(statistic, best)

mse = model_sum$rss / 1000
plot(mse, xlab = "Number of Variables", ylab = "MSE", type = "b", main = 'Training set MSE associated w
```

Training set MSE associated with the best model of each size

Number of Variables

```
## [1] 1.443855e+03 1.066047e+03 6.631459e+02 5.142475e+02 3.073048e+02 ## [6] 1.916146e+02 1.144689e+02 6.064888e+01 4.050051e+01 2.157106e+01 ## [11] 8.882488e+00 4.901343e+00 1.113475e+00 7.615075e-02 7.253144e-02 ## [16] 7.227960e-02 7.208854e-02 7.185557e-02 7.180644e-02 7.180629e-02
```

When the number of variables is 20, we have the smallest MSE.

Step four

mse

```
mse = c()
i = 1
while (i <= 20){
   tb = as.data.frame(coef(model, i))
   name = row.names(tb)
   temp = test[,name[-1]]
   intercept = rep(1, 900)
   temp = cbind(intercept, temp)
   pred = as.matrix(temp) %*% as.matrix(tb[,1])
   actual = test['Y']</pre>
```

```
mse = c(mse, sum((as.data.frame(pred) - actual)^2) / 900)
i = i+1
}
plot(mse, xlab = "Number of Variables", ylab = "MSE", type = "b", main = 'Testing set MSE associated wi
```

Testing set MSE associated with the best model of each size

mse ## [1] 13505.936586 9139.687491 7234.795815 5919.617417 2881.470205 [6] 2147.973000 1448.539780 670.636064 475.538661 283.980773 ## [11] 114.073894 70.709761 19.865692 1.364781 1.348150 Г16Т 1.388273 1.383200 1.388587 1.392319 1.392560

Step five

From the plot, we can hardly tell which point is the lowest. However, from the table of mse I find that test mse come to the minimum when p=14. This is because the model overfit once p is too large and its generalization ability becomes terrible. As a result, the test mse will first decrease then increase.

Step six

```
beta_pre = as.data.frame(coef(model, 14))
beta; beta_pre

## [,1]
## [1,] 0.000000
## [2,] 5.475396
## [3,] 2.354963
## [4,] -3.029862
```

```
[5,] 2.848496
##
##
   [6,] 0.000000
##
   [7,] 0.000000
##
   [8,] 5.896982
##
   [9,] -9.676453
## [10,] 4.369937
## [11,] 0.000000
## [12,]
         2.003314
## [13,] 0.000000
## [14,] -5.454568
## [15,] 2.666605
## [16,] 7.837760
## [17,] 9.256451
## [18,] 8.474316
## [19,] 0.000000
## [20,] -9.018156
##
               coef(model, 14)
## (Intercept)
                    -0.7556694
## X2
                     5.4707913
## X3
                     2.3840446
## X4
                    -3.0558830
## X5
                     2.8534154
## X8
                     5.8962440
## X9
                    -9.6675532
## X10
                     4.4537709
## X12
                     1.9244380
## X14
                    -5.4218397
## X15
                     2.6440655
## X16
                     7.8371359
## X17
                     9.2208654
## X18
                     8.5161570
## X20
                    -9.0190482
```

For the true beta, we have 6 parameters whose value equals to 0 and the predicted beta also shows that those betas are omitted. Thus, I can conclude that the best model is accurate and close to the real model.

Step seven

```
beta = as.matrix(beta)
rownames(beta) = colnames(data)[1:20]

smse = c()
i = 1
while (i <= 20){
    tb = as.data.frame(coef(model, i))
    name = row.names(tb)[-1]
    beta_hat = tb[,1][-1]
    beta_act = beta[name,]
    smse = c(smse, sqrt(sum((beta_hat - beta_act)^2)))
    i = i+1
}
plot(smse, xlab = "Number of Variables", ylab = "MSE", type = "b", main = 'Beta difference associated w</pre>
```

Beta difference associated with the best model of each size

value is smallest when p = 14, which is exactly the best model. In other words, the predicted beta is most close to true beta when p = 14.

Application exercises

Question one

```
train = read_csv('data/gss_train.csv')
test = read_csv('data/gss_test.csv')

mse = function(actual, prediction){
   return(sum((actual - prediction)^2)/length(actual))
}

model_ols = lm(egalit_scale ~ ., data = train)
mse(test$egalit_scale, predict(model_ols, newdata = test[,-14]))
```

Question two

[1] 63.21363

```
x = as.matrix(train[,-14])
y = as.matrix(train[,14])
model_ridge = cv.glmnet(x, y, alpha = 0, nfolds = 10)
mse(test$egalit_scale, predict(model_ridge, newx = as.matrix(test[,-14])))
```

[1] 61.66853

Question three

```
model_lasso = cv.glmnet(x, y, alpha = 1, nfolds = 10)
mse(test$egalit_scale, predict(model_lasso, newx = as.matrix(test[,-14])))
## [1] 62.36956
```

Question four

```
alpha_seq = seq(0, 1, 0.1)
lambda_seq = seq(0, 12, length.out = 100)
error = 0
parameter = c(0, 0)
for (alpha in alpha_seq) {
  model = cv.glmnet(x, y, alpha = alpha, lambda = lambda_seq)
  if (error == 0){
    error = min(model$cvm)
    parameter[1] = alpha
    parameter[2] = model$lambda.min
  } else{
    if (min(model$cvm) < error){</pre>
      error = min(model$cvm)
      parameter[1] = alpha
      parameter[2] = model$lambda.min
    }
  }
model_elastic = glmnet(x, y, alpha = parameter[1], lambda = parameter[2])
mse(test$egalit_scale, predict(model_elastic, newx = as.matrix(test[,-14])))
```

```
## [1] 61.07957
model_elastic$beta@Dim[1] - length(model_elastic$beta@x)
```

[1] 47

Based on the four models I build above, the best model is the elastic model (alpha = 0.9; lambda = 0.242). The mean squared error is 61.07957, which is not very accurate. However, the performance of the other four models are very close to the elastic model so I tend to say that I have not improved the prediction accuracy through the adjustment of models.