

Indiquez les caractéristiques de la fonction f représentée ci-dessus sachant qu'elle est représentée par deux demi-droites ayant même origine :

- a. Domaine de définition de la fonction.
- b. Parité de la fonction.
- c. Variations de la fonction.
- **d.** Ensemble des solutions de l'équation f(x)=k. (On distinguera les cas où  $k<0\,,\,\,k=0$  et  $k>0\,.$ )
- **e.** Ensemble des solutions de l'inéquation f(x) < k. (On distinguera les cas où  $k < 0\,,\ k = 0$  et  $k > 0\,.$ )
- **f.** Ensemble des solutions de l'inéquation  $f(x)\geqslant k$ . (On distinguera les cas où  $k\leqslant 0$  et k>0.)
- g. De quelle fonction s'agit-il ?

Anna a tracé la courbe représentative d'une fonction f sur l'intervalle  $[0\,;+\infty[$  en bleu. Puis elle a retournée sa feuille et a repassé la courbe en rouge en inversant les axes des abscisses et des ordonnées. Elle a obtenu la courbe d'une nouvelle fonction g.

Courbe de la fonction f :



Courbe de la fonction g :



- **a.** Par lecture graphique, indiquez les images par la fonction f des nombres suivants : 1 ; 2,4 ; 3.
- **b.** Par lecture graphique, indiquez les images de
- 1, 2, 3 et 4 par la fonction g.
- **c.** Quelles sont les noms des fonctions f et g ?
- **d.** Donner les caractéristiques de la fonction g: domaine de définition, signe, variations, conservation de l'ordre.

E3 On considère la courbe représentative suivante d'une fonction f définie sur  $\mathbb{R}^*.$ 



- a. Déterminez par lecture graphique les images de
- 1, 2, 3 et 4 par la fonction f.
- b. Déterminez graphiquement la parité de la fonction f.
- **c.** Donnez les variations de la fonction f.
- **d.** La fonction conserve-t-elle l'ordre de -3 et -2 ;? de 2 et 3 ;? de -3 et 2 ? Expliquez.
- e. De quelle fonction s'agit-il?

**E4 VRAI/FAUX** Pour chaque affirmation, dire si elle est vraie ou fausse puis justifier à l'aide d'une propriété des fonctions.

**a.** 7 et -7 ont la même image par la fonction

**b.** 10 et -10 ont la même image par la fonction cube.

**c.**  $\sqrt{3}$  est la solution de l'équation  $x^2=3$ .

**d.** -2 est la solution de l'équation  $x^3=-8$ .

e.  $49 < (-8,5)^2 < 64$ .

f.  $-64 < (-3,2)^3 < -27$ .

**g.** La racine carrée de -2 est  $-\sqrt{2}$ .

**h.** La racine cubique de -2 est  $-\sqrt[3]{2}$ .

i.  $4 < 3\sqrt{2} < 5$  .

j.  $-\frac{1}{100}<-\frac{1}{99}<-\frac{1}{98}$ . En utilisant les représentation graphique des fonctions, résoudre les inéquations suivantes.

a.  $x^2 < 4$  .

b.  $x^2\geqslant 3$ . c.  $x^3<8$ .

d.  $x^3 \geqslant -27$ . e.  $\sqrt{x} < 15$ . f.  $\sqrt{x} \geqslant 12$ .

g. |x| < 5. h.  $|x| \geqslant 7$ .

i.  $\frac{1}{x}<\frac{1}{2}$  sur  $\mathbb{R}_+^*$ .

j.  $\frac{1}{x}\geqslant -3$  sur  $\mathbb{R}_{-}^{*}$ .

E6 Pour chacune des fonctions suivantes, résoudre l'équation f(x)=k puis l'inéquation f(x) < k en utilisant les connaissances sur les variations des fonctions.

a.  $f_1(x) = 3x + 4$  ; k = 5.

**b.**  $f_2(x) = 6 - 12x$  ; k = 3.