UM-SJTU JOINT INSTITUTE DISCRETE MATHEMATICS (VE203)

ASSIGNMENT 3

Name: Pan Chongdan ID: 516370910121

Date: October 12, 2017

Assume $A = \{x \in L | x \leq f(x)\}$, then $\forall x \in A, x \leq f(x) \leq f(f(x))$. Let $y = \lor A \Rightarrow f(y) = \lor A \Rightarrow y = f(y)$ Since $X \subseteq A, y$ is the greatest upper bound in X. Similarly, there exists z is the least lower bound in X.

 $\forall i \in I(x_i \in f(x)), \text{let } B = \{x \in L | \forall i \in I(x_i \leq f(x) \leq x)\}. \text{ Assume } u = \land B, \forall x \in B, u \leq x \Rightarrow f(u) \leq f(x) \leq x \Rightarrow f(u) \leq u.$

 $\forall x_i$ which is the lower bound of $B, x_i \leq u, x_i \leq u \Rightarrow x_i = f(x_i) \leq f[f(u)] \leq f(u) \leq u, \therefore u \in B \Rightarrow u \leq f(u) \Rightarrow u = f(u) \Rightarrow u \in X. \forall x_i, u \text{ is the least upper bound, similarly, we can find the greatest lower bound, so <math>(x, \leq)$ is a complete lattice.

 $f = 2x\sin(8x)$, it has 4 points of intersection with the graph of y = x during the interval [0,1].

2 Q2

Let $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by

$$f(x,y) = x^2 + 2y(x \ge y)$$

$$f(x,y) = 2x + 1 + y^2(x < y)$$

So f(0,0) = 0, f(1,0) = 1, f(0,1) = 2, f(1,1) = 3, f(2,0) = 4, f(2,1) = 5...

 \therefore f is an injection and $|\mathbb{N} \times \mathbb{N}| \leq |\mathbb{N}|$ and $\mathbb{N} \times \mathbb{N}$ is countable.

Since Cantor function Function is bijection, so its inverse function satisfies $|\mathbb{N} \times \mathbb{N}| \ge |\mathbb{N}|$ $\therefore |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$

(i) Since every natural number has a unique factorisation into primes, assume $f = (0, a_0), (1, a_1)...(n, a_n)$. n means the $(n+1)_{th}$ prime and a_n is (n+1)'s power-1. For example, assume $f = (0,0), (1,1) \rightarrow 2^{(0+1)} * 3^2 = 18$, so there exists a function $g: S \rightarrow \mathbb{N} \setminus \{0,1\}$, which is countable because $\mathbb{N} \setminus \{0,1\} \subset \mathbb{N}$. S is countable and $|S| \leq |\mathbb{N}|$.

There also exists a injection from $\mathbb{N} \to S, n \to \{(0,0), (1,1), (2,2)...(n,n)\}$, so $|\mathbb{N}| = |S|$

(ii) $f \leq_1 f$ because $\forall i \in A((f(i) = f(i)) \land ([n] = [n])), \therefore (S, \preceq)$ is symmetric.

Assume $f \leq_1 g$ and $\forall i \in A((f(i) = g(i)) \land ([n] \leq_1 [m]))$, it's clearly $g \not \leq_1 f$ because $\forall i \in A((f(i) = g(i)) \text{and}([n] \not\subseteq [m]))$.

Assume $f \leq_1 g$ and $(\exists i \in A)(f(i) < g(i) \land (\forall j < i)(f(i) = g(j)))$ then the i_g satisfying $g \leq f$ is bigger than i, but $g(i) \neq f(i) : (S, \leq_1)$ is antisymmetric.

Assume $(f \leq_1 g \text{ with } j = j_1) \land (g \leq_1 h \text{ with } j = j_2)$ and $h : [k] \to \mathbb{N}$, then $f \leq_1 h$ with $j = \min\{j_1, j_2\} : (S, \leq_1)$ is transitive and it's a partial order.

It's a linear order as long as we choose i as 0, then $\forall f, g$ has such relationship.

It;s also a well order because I can find the least element as $\{(0,0)\}$

It's not a chain complete or a lattice because $f = \{(0,1), (1,2), (2,5)\}, g = \{(0,5), (1,3), (2,4)\}$, f, g doesn't have a upper bound.

(iii) :: $(f(i) = f(i)) \land ([n] = [n])$:: $f \leq_2 f$

Assume $(f \leq_2 g) \land ([n] \subset [m])$ then $g \nleq_2 g$ because $[m] \nsubseteq [m]$.

Assume $f \leq_2 g$ and $g \leq_2 h : [k] \to \mathbb{N}$ then $f \leq_2 h$ because $([n] \subseteq [m] \subseteq [k]) \land (f(i) \leq g(i) \leq h(i))$

 $\therefore (S, \preceq_2)$ is a partial order.

It's not a linear order if f = (0,1), (1,5), g = (0,5), (1,2) then they have no relationship.

It's not a chain complete because the chain may not have a upper bound.

 $\forall f, g \in S, f = \{(0, a_0), (1, a_1)...(n, a_n)\} \text{ and } g = \{(0, b_0), (1, b_1)...(m, b_m)\}.$

Let $c_n = \max(a_n, b_n), d = \max(m, n)$, then $h = \{(0, c_0), (1, c_1)...(d, c_d)\}$ is the least upper bound.

Similarly, I can find the greatest lower bound, so it's a complete lattice.

4 Q4

$$f(x, y, z) = \frac{1}{2}(\pi(x, y) + z)(\pi(x, y) + z + 1) + z$$

(i) $\forall A, B, C \in X, A \subseteq A$, so (X, \subseteq) is reflexive.

if $A \subseteq B$, since $A \neq B : B \nsubseteq A$, so (X, \subseteq) is antisymmetric.

if $A \subseteq B, B \subseteq C$, then $A \subseteq C$, so (X, \subseteq) is transitive.

 $\therefore (X, \subseteq)$ is a partial order.

if $A = \{(1,2),(2,3)\}$, $B = \{(1,3),(2,4)\}$ then $A \nsubseteq B$ and $B \nsubseteq A$, so (X,\subseteq) is not a linear order.

A and B don't have a greatest lower bound, so (X,\subseteq) is not a lattice.

 (X, \subseteq) is chain complete because $\forall A \in X$, if A is a linear order, then $\vee A$ is the least upper bound.

- (ii) $\forall f_1, f_2 \in X$, if $f_1 \leq f_2$ and $f_1 = \{(a_1, b_1), (a_2, b_2)...(a_n, b_n)\}$, $f_2 = \{(a_1, b_1)...(a_n, b_n)...(a_m, b_m)\}$ (m > n) $g_1 = \{(a_1, b_1+1), (a_2, b_2+1)...(a_n, b_n+1)\}$, $g_2 = \{(a_1, b_1+1)...(a_n, b_n+1)...(a_m, b_m+1)\}$ $\therefore g_1 \leq g_2 \Rightarrow \phi_1$ is order preserving and it has a fixed point when $f = \emptyset$.
- (iii) Assume $f_1 = \{(1,1),(2,2)\}, f_2 = \{(1,1),(2,2),(3,3)\}, \text{ so } f_1, f_2 \in X \text{ and } f_1 \leq f_2.$ Then $g_1 = \{(0,0),(1,1),(2,2),(3,0),(4,0)...\}, g_2 = \{(0,0),(1,1),(2,2),(3,3),(4,0)...\}$ $g_1 \npreceq g_2 \Rightarrow \phi_2 \text{ is not order preserving and it doesn't has a fixed point because } f_n \neq g_n.$
- (iv) Assume $f_1 = \{(1,1),(2,2)\}, f_2 = \{(1,1),(2,2),(3,3)\}, \text{ so } f_1, f_2 \in X \text{ and } f_1 \leq f_2.$ Then $g_1 = \{(1,0),(2,2),(3,3),(4,0),...\}, g_2 = \{(1,0),(2,2),(3,3),(4,4),(5,0)...\}$ $g_1 \npreceq g_2 \Rightarrow \phi_3 \text{ is not order preserving.}$ If $f = \{(1,0),(2,1),(3,2),...(n,n-1)...\}, \text{then } g = \{(1,0),(2,1),(3,2),...(n,n-1)...\}$ So it has a fixed point.
- (v) X is not countable.

 $\forall M \in P(\mathbb{N}), M = \{N_0, N_1, N_2...\}, \text{ there exists function } f: P(\mathbb{N}) \to X \text{ such that } f(M) = \{(N_0, 0), (N_1, 0), (N_2, 0)...\}$

Since $N_0 \neq N_1 \neq N_2$, f(M) is a function $\in X$ and f is a injection. $|P(\mathbb{N})| \leq X$ $|\mathbb{N}| < |P(\mathbb{N})| \cdot |\mathbb{N}| < |X|$ and X is uncountable.

6 Q6

Since every non-zero rational number can be represented in the form $\frac{(-1)^k a}{b}$ where $k \in 0, 1$ and $a, b \in \mathbb{N}$ with $a, b \neq 0$ and the greatest common divisor of a and b is 1, let Q = f(a, b, k) and assume 0 = f(0, 1, 0), so there exists an injection $f : \mathbb{Q} \to \mathbb{N} \times \mathbb{N} \times \{0, 1\}$

Note that the cardinality of the range of f is actually smaller than $|\mathbb{N} \times \mathbb{N} \times \{0,1\}|$ because the greatest common divisor of a and b is 1.

 $|\mathbb{Q}| \leq |\mathbb{N} \times \mathbb{N} \times \{0,1\}| \leq |\mathbb{N} \times \mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, so \mathbb{Q} is countable.

Since $\mathbb{N} \subset \mathbb{Q}$, there also exists an injection $g: \mathbb{N} \to \mathbb{Q}, g(x) = x$, so $|\mathbb{N}| \leq |\mathbb{Q}|$

 $|\mathbb{N}| = |\mathbb{Q}|$

$$\frac{x(x+1)}{2}$$
 ≤ 223 + 1 ⇒ x < 21,
since 223 = $\frac{20*21}{2}$ + 13
∴ $x+y=20, x=7, y=13$