# Radiálne symetrické solitóny v nelineárnom Klein-Gordonovom modeli: Numerika, dynamika a dôkaz prísnej jedinečnosti (Radially Symmetric Solitons in a Non-linear Klein-Gordon Model:

# Numerics, Dynamics and Rigorous Uniqueness Proof)

Meno Kamil Vargovský<sup>1,\*</sup> and Mária Vargovská<sup>2</sup>

<sup>1</sup>Nezávislý výskumník, EUR ING

<sup>2</sup>Katedra výrobnej a automatizačnej techniky, Fakulta techniky, Technická univerzita vo Zvolene (Dated: 2. augusta 2025)

Predkladáme kompletnú analýzu statických, energeticky konečných riešení nelineárnej Klein–Gordonovej rovnice v  $\mathbb{R}^3$  s exponenciálnou nelinearitou. Numerickými metódami "shooting" určujeme rodinu solitónov, mapujeme jej parametrické vlastnosti, testujeme lineárnu i plnú dynamickú stabilitu a aplikujeme metódu posúvajúcich sa rovín na dôkaz jedinosti a radiálnej symetrie riešenia. Výsledky ukazujú existenciu stabilných, lokalizovaných riešení pre parametre spĺňajúce podmienku  $\gamma > 2|\alpha|/\beta$  a potvrdzujú ich robustnosť voči poruchám.

1

1

2

2

2

4

4

4

5

5

5

#### CONTENTS

| I.      | Úvod                                                                                               |  |  |  |
|---------|----------------------------------------------------------------------------------------------------|--|--|--|
| II.     | Formulácia modelu                                                                                  |  |  |  |
| III.    | Numerická existencia solitónu                                                                      |  |  |  |
| IV.     | Parametrická štúdia                                                                                |  |  |  |
| V.      | Lineárna stabilita a izolovanosť                                                                   |  |  |  |
| VI.     | Plne dynamické testy                                                                               |  |  |  |
| VII.    | Rigorózny dôkaz symetrie a monotónnosti<br>A. Hypotézy na nelinearitu<br>B. Metóda posúvania rovín |  |  |  |
| VIII.   | Záver                                                                                              |  |  |  |
|         | Acknowledgments                                                                                    |  |  |  |
|         | References                                                                                         |  |  |  |
| I. ÚVOD |                                                                                                    |  |  |  |

Lokalizované, energeticky konečné a časovo stabilné riešenia nelineárnych vlnových rovníc, známe ako solitóny, predstavujú jeden z pilierov modernej matematickej fyziky. Od ich prvého pozorovania ako osamelých vĺn na vodných kanáloch až po ich aplikácie v kvantovej teórii poľa, optických vláknach a kondenzovaných látkach, ich štúdium odhaľuje hlboké prepojenia medzi nelinearitou a stabilitou [1, 2]. Obzvlášť zaujímavé sú modely v troch priestorových rozmeroch, kde existencia stabilných solitónov nie je zaručená a často naráža na prekážky, ako je napríklad Derrickova teoréma

Nelineárna Klein-Gordonova rovnica, ktorú v tomto článku študujeme, slúži ako dôležitý model pre popis skalárnych polí s vlastnou interakciou [4]. Otázka existencie, jedinečnosti a symetrie jej statických riešení je ústredným problémom, ku ktorému zásadne prispeli práce Straussa [5] a neskôr Berestyckého a Lionsa [6]. Kľúčovým nástrojom pre dôkaz radiálnej symetrie a monotónnosti riešení sa stala metóda posúvajúcich sa rovín, ktorú formalizovali Gidas, Ni a Nirenberg [7].

Napriek silnému teoretickému aparátu si detailná analýza konkrétnych modelov vyžaduje robustné numerické metódy [8]. Metódy streľby (shooting methods) v kombinácii s algoritmami na hľadanie koreňov predstavujú osvedčený prístup k riešeniu nelineárnych okrajových úloh na nekonečnom intervale [9].

V tomto článku predkladáme komplexnú analýzu solitónových riešení pre špecifický model s exponenciálnou nelinearitou. Náš príspevok spája: (1) presnú numerickú konštrukciu rodiny solitónov, (2) detailnú parametrickú štúdiu ich vlastností, (3) overenie ich lineárnej stability, (4) testovanie robustnosti v plne dynamických simuláciách a (5) rigorózny dôkaz ich jedinečnosti a symetrie, čím poskytujeme ucelený obraz o tomto fyzikálnom systéme.

## II. FORMULÁCIA MODELU

Uvažujeme reálne skalárne pole  $\varepsilon(t, \mathbf{x})$  v troch priestorových rozmeroch, ktorého dynamika je opísaná Euler-Lagrangeovou rovnicou pre funkcionál akcie  $S = \int \mathcal{L} dt d^3x$ , kde hustota lagranžiánu je

$$\mathcal{L} = \frac{1}{2} \left( \frac{\partial \varepsilon}{\partial t} \right)^2 - \frac{\beta}{2} (\nabla \varepsilon)^2 - U(\varepsilon). \tag{2.1}$$

<sup>[3].</sup> Podobné modely nachádzajú uplatnenie napríklad pri popise topologických defektov v kozmológii, ako sú doménové steny, alebo ako efektívne teórie pre kvázičastice v systémoch kondenzovaných látok.

<sup>\*</sup> kamil.vargovsky@gmail.com

Potenciál  $U(\varepsilon)$  definuje vlastnú interakciu poľa a má tvar

$$U(\varepsilon) = \frac{\gamma}{2}\varepsilon^2 + 2|\alpha|(1 - e^{-\varepsilon}). \tag{2.2}$$

Parametre  $\beta, \gamma, \alpha$  sú reálne kladné konštanty. Zodpovedajúca pohybová rovnica je nelineárna Klein-Gordonova rovnica:

$$\frac{\partial^2 \varepsilon}{\partial t^2} - \beta \Delta \varepsilon + \frac{\mathrm{d}U}{\mathrm{d}\varepsilon} = 0, \tag{2.3}$$

kde  $\Delta$ je Laplaceov operátor a  $\frac{\mathrm{d} U}{\mathrm{d} \varepsilon} = \gamma \varepsilon + 2 |\alpha| e^{-\varepsilon}.$  Hľadáme statické riešenia, pre ktoré  $\frac{\partial \varepsilon}{\partial t} = 0$ . Rovnica sa zjednoduší na eliptickú parciálnu diferenciálnu rovnicu

$$\beta \Delta \varepsilon = \gamma \varepsilon + 2|\alpha|e^{-\varepsilon}. \tag{2.4}$$

Vzhľadom na predpoklad radiálnej symetrie,  $\varepsilon(\mathbf{x}) = \varepsilon(r)$ , kde  $r = |\mathbf{x}|$ , môžeme rovnicu prepísať do tvaru obyčajnej diferenciálnej rovnice:

$$\beta \left( \frac{\mathrm{d}^2 \varepsilon}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}\varepsilon}{\mathrm{d}r} \right) = \gamma \varepsilon + 2|\alpha| e^{-\varepsilon}. \tag{2.5}$$

Celková energia statickej konfigurácie je daná integrálom

$$\mathcal{E}[\varepsilon] = \int \left[ \frac{\beta}{2} (\nabla \varepsilon)^2 + U(\varepsilon) \right] d^3 x = 4\pi \int_0^\infty \left[ \frac{\beta}{2} \left( \frac{d\varepsilon}{dr} \right)^2 + U(\varepsilon) \right] r^2 dr.$$
(2.6)

Fyzikálne zmysluplné, lokalizované riešenia (solitóny) musia mať konečnú energiu, čo vyžaduje, aby  $\varepsilon(r) \to 0$  dostatočne rýchlo pre  $r \to \infty$ .

### III. NUMERICKÁ EXISTENCIA SOLITÓNU

Na nájdenie statických, radiálne symetrických riešení rovnice (2.5) sme použili metódu streľby (shooting method) kombinovanú s algoritmom na hľadanie koreňov. Pre dané parametre modelu  $(\beta, \gamma, \alpha)$  sa rovnica druhého rádu prepíše na sústavu dvoch rovníc prvého rádu, ktorú integrujeme od bodu blízkeho nule  $(r_{min}=10^{-4})$  smerom von pomocou adaptívneho Runge-Kutta riešiča 4. rádu. Hodnota poľa v počiatku,  $\varepsilon_0=\varepsilon(0)$ , slúži ako parameter streľby.

Fyzikálne zmysluplné riešenie solitónového typu musí spĺňať okrajovú podmienku  $\lim_{r\to\infty}\varepsilon(r)=0$ . Numericky sme zistili, že riešenie je extrémne citlivé na voľbu  $\varepsilon_0$ . Pre hodnoty vyššie ako istá kritická hodnota  $\varepsilon_0^*$  riešenie diverguje do  $+\infty$ , zatiaľ čo pre hodnoty nižšie ako  $\varepsilon_0^*$  riešenie prestrelí do záporných hodnôt a diverguje k $-\infty$ . Tieto divergujúce riešenia sú zobrazené na Obr. 1. Kritická hodnota  $\varepsilon_0^*$  teda zodpovedá jedinečnému, separátnemu profilu, ktorý asymptoticky konverguje k nule.

Túto hodnotu sme našli s vysokou presnosťou (typicky  $10^{-10}$ ) pomocou Brentovho algoritmu na hľadanie koreňov funkcie  $g(\varepsilon_0) = \varepsilon(r_{max})$ , kde  $r_{max}$  je dostatočne veľký polomer (napr.  $r_{max} = 30$ ). Výsledný solitónový profil pre  $\gamma = 3$  je znázornený na Obr. 1.

fig/profile\_gamma3.pdf

Figure 1. Profil solitónu  $\varepsilon(r)$  pre  $\gamma=3$  (modrá plná čiara), nájdený pre optimálnu počiatočnú hodnotu  $\varepsilon_0^*\approx 0.44328$ . Pre porovnanie sú zobrazené aj dve blízke, avšak divergujúce riešenia: jedno smerujúce k  $+\infty$  (červená prerušovaná) a druhé klesajúce k  $-\infty$  (zelená bodkovaná).

# IV. PARAMETRICKÁ ŠTÚDIA

Po overení existencie riešenia pre konkrétnu hodnotu  $\gamma$  sme vykonali systematickú parametrickú štúdiu, aby sme zmapovali rodinu solitónových riešení. Parametre  $\beta=1$  a  $|\alpha|=1$  sme ponechali fixné a menili sme  $\gamma$  v intervale od 2.2 do 3.5. Pre každú hodnotu  $\gamma$  sme zopakovali postup opísaný v sekcii III a vypočítali kľúčové charakteristiky solitónu.

Výsledné závislosti sú zhrnuté na Obr. 2 a Obr. 3. Pozorujeme, že so zvyšujúcim sa  $\gamma$  sa solitón stáva kompaktnejším (klesá charakteristický polomer  $R_{50}$ ) a silnejšie viazaným (klesá celková energia  $\mathcal{E}$ ). Naopak, ako sa  $\gamma$  blíži ku kritickej hodnote 2 z pravej strany, polomer aj energia prudko rastú, čo signalizuje stratu lokalizácie riešenia. Tento jav je v dokonalej zhode so správaním asymptotického koeficientu útlmu  $\kappa$ , ktorý, ako ukazuje Obr. 3, presne sleduje teoretickú predpoveď  $\kappa = \sqrt{(\gamma - 2|\alpha|)/\beta}$  (viď rovnicu ??). V limite  $\gamma \to 2^+$  ide  $\kappa \to 0$ , čo znamená, že exponenciálny útlm zaniká a chvost solitónu sa stáva pomalším, polynomiálnym. Kvantitatívne výsledky sú zhrnuté v Tabuľke I.

#### V. LINEÁRNA STABILITA A IZOLOVANOSŤ

Kľúčovou otázkou je stabilita nájdených statických riešení  $\varepsilon^*(r)$ . Uvažujme malé, časovo závislé poruchy okolo statického riešenia:  $\varepsilon(t,r) = \varepsilon^*(r) + \eta(t,r)$ . Dosadením do plnej pohybovej rovnice a linearizáciou v  $\eta$ 



Figure 2. Závislosť kľúčových vlastností solitónu od parametra  $\gamma$ : celková energia  $\mathcal{E}$ , charakteristický polomer  $R_{50}$  a počiatočná hodnota  $\varepsilon_0^*$ .

fig/kappa\_vs\_gamma.pdf

Figure 3. Porovnanie numericky zisteného koeficientu asymptotického útlmu  $\kappa_{fit}$  (modré body) s teoretickou predpoveďou  $\kappa_{teor}=\sqrt{\gamma-2}$  (červená čiara).

dostaneme rovnicu pre perturbácie:

$$\frac{\partial^2 \eta}{\partial t^2} + L\eta = 0, \tag{5.1}$$

kde L je lineárny, samoadjungovaný operátor

$$L = -\beta \Delta + U''(\varepsilon^*(r)). \tag{5.2}$$

Table I. Hlavné numerické parametre solitónu pre vybrané hodnoty  $\gamma$ .

| $\gamma$ | $\varepsilon_0^*$ | $\mathcal{E}$ | $R_{50}$ | $\kappa_{fit}$ |
|----------|-------------------|---------------|----------|----------------|
| 2.20     | 0.135             | 168.350       | 6.270    | 0.448          |
| 2.50     | 0.295             | 86.850        | 3.590    | 0.708          |
| 3.00     | 0.489             | 53.680        | 2.410    | 1.001          |
| 3.50     | 0.645             | 42.210        | 1.890    | 1.225          |

Pre radiálne symetrické poruchy má tvar

$$L = -\beta \left( \frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}}{\mathrm{d}r} \right) + \gamma - 2|\alpha| e^{-\varepsilon^*(r)}. \tag{5.3}$$

Hľadaním riešení v tvare  $\eta(t,r)=e^{i\omega t}\eta(r)$  prevedieme problém na hľadanie vlastných hodnôt operátora L:  $L\eta=\lambda\eta,$  kde  $\lambda=\omega^2.$  Riešenie  $\varepsilon^*$  je lineárne stabilné, ak všetky vlastné hodnoty  $\lambda$  sú nezáporné. Záporné  $\lambda$  by viedlo k imaginárnemu  $\omega$  a exponenciálne rastúcim módom

Spektrum operátora L sme našli numericky diskretizáciou na radiálnej mriežke pomocou metódy konečných diferencií a následným riešením výsledného maticového problému pomocou algoritmu Arnoldi (implementovaného v SCIPY.SPARSE.LINALG.EIGS). Závislosť najnižšej vlastnej hodnoty  $\lambda_0$  od parametra  $\gamma$  je zobrazená na Obr. 4.

fig/lambda0\_vs\_gamma.pdf

Figure 4. Závislosť najnižšej vlastnej hodnoty  $\lambda_0$  operátora stability L od parametra  $\gamma$ . Pre celý skúmaný rozsah platí  $\lambda_0 > 0$ , čo potvrdzuje lineárnu stabilitu solitónov.

Pre všetky  $\gamma > 2|\alpha|/\beta$  sme zistili, že  $\lambda_0 > 0$ . To nielen potvrdzuje lineárnu stabilitu, ale zároveň znamená, že operátor L je invertibilný. Z vety o implicitnej funkcii potom vyplýva, že nájdené riešenia sú izolované – v ich okolí neexistujú žiadne ďalšie vetvy statických riešení.

### VI. PLNE DYNAMICKÉ TESTY

Na overenie robustnosti solitónov sme vykonali plne dynamické simulácie nelineárnej rovnice (2.4) v čase. Použili sme metódu čiar, kde sme priestorové derivácie diskretizovali na rovnomernej mriežke a výslednú sústavu obyčajných diferenciálnych rovníc sme riešili v čase pomocou explicitného Runge-Kutta riešiča 4. rádu. Počas simulácie sme monitorovali celkovú energiu systému  $\mathcal{E}(t)$ , ktorá by mala byť v ideálnom prípade zachovaná.

Pripravili sme dva kľúčové scenáre na demonštráciu stability a jej absencie.

Scenár A: Stabilný solitón ( $\gamma=2.5$ ). Ako počiatočnú podmienku sme zvolili presné numerické riešenie  $\varepsilon^*(r)$  pre  $\gamma=2.5$ , ku ktorému sme pripočítali malú náhodnú poruchu s amplitúdou  $10^{-3}$ . Ako ukazuje Obr. 5, solitón je mimoriadne robustný. Počiatočná porucha sa z neho oddelí a vyžiari preč vo forme malých vĺn, zatiaľ čo centrálny pulz sa rýchlo ustáli späť do svojho pôvodného tvaru a zostáva nezmenený po dlhú dobu. Energia systému vykazuje len minimálne oscilácie, čo potvrdzuje stabilitu riešenia.

Scenár B: Subkritický rozpad ( $\gamma=1.9$ ). V tomto režime stabilný solitón neexistuje. Ako počiatočnú podmienku sme použili Gaussov pulz s amplitúdou a šírkou podobnou ako mal solitón v blízkosti kritickej hodnoty. Výsledok, zobrazený na Obr. 6, je jednoznačný. Bez dostatočnej "väzbovej sily" nelinearity sa pulz okamžite začne disperzívne rozplývať. Jeho amplitúda klesá a šírka rastie, až kým sa úplne nerozptýli v priestore. Tento výsledok vizuálne potvrdzuje, že podmienka  $\gamma>2|\alpha|/\beta$  je nutná pre existenciu stabilných, lokalizovaných riešení.



Figure 5. Časový vývoj stabilného solitónu ( $\gamma=2.5$ ) s pridanou malou poruchou. Profil sa rýchlo stabilizuje a zachováva svoj tvar.

fig/dynamics\_unstable.pdf

Figure 6. Časový vývoj Gaussovho pulzu v subkritickom režime ( $\gamma=1.9$ ). Pulz sa rýchlo a nezvratne rozplýva.

## VII. RIGORÓZNY DÔKAZ SYMETRIE A MONOTÓNNOSTI

V tejto sekcii poskytneme rigorózny dôkaz, že každé energeticky konečné, pozitívne riešenie rovnice (2.4) je nevyhnutne radiálne symetrické (až na posun v priestore) a monotónne klesajúce od svojho centra. Použijeme metódu posúvajúcich sa rovín (moving plane method), ktorú pre eliptické rovnice vyvinuli Gidas, Ni a Nirenberg [7].

# A. Hypotézy na nelinearitu

Prepíšme rovnicu (2.4) do kanonického tvaru  $-\Delta \varepsilon = F(\varepsilon)$ , kde

$$F(\varepsilon) = \frac{\gamma}{\beta}\varepsilon + \frac{2|\alpha|}{\beta}e^{-\varepsilon}.$$
 (7.1)

Pre aplikáciu metódy je potrebné overiť niekoľko kľúčových vlastností funkcie F:

- (H1) F je triedy  $C^1$ . Naša funkcia je hladká, teda H1 platí.
- (H2) F(0) < 0 a existuje  $\varepsilon_r > 0$  tak, že  $F(\varepsilon_r) = 0$ . Pre našu funkciu  $F(0) = -2|\alpha|/\beta < 0$  a  $F(\varepsilon) \to \infty$  pre  $\varepsilon \to \infty$ , takže koreň musí existovať. H2 platí.
- (H3)  $F'(\varepsilon) > 0$  pre všetky  $\varepsilon \ge 0$ . Derivácia  $F'(\varepsilon) = \gamma/\beta 2|\alpha|/\beta e^{-\varepsilon}$ . Podmienka stability  $\gamma > 2|\alpha|/\beta$  zaručuje, že  $F'(\varepsilon) > 0$ . H3 platí.

(H4) Subkritický rast. Naša funkcia rastie lineárne, čo je subkritické v $\mathbb{R}^3$ . H4 platí.

Keďže sú všetky predpoklady splnené, môžeme metódu aplikovať.

### B. Metóda posúvania rovín

Dôkaz prebieha v niekoľkých krokoch. Zvoľme ľubovoľný smer, napr.  $x_1$ . Pre reálny parameter  $\lambda$  definujme rovinu  $T_{\lambda} = \{x \in \mathbb{R}^3 | x_1 = \lambda\}$  a polpriestor  $\Sigma_{\lambda} = \{x \in \mathbb{R}^3 | x_1 < \lambda\}$ . Nech  $\varepsilon^{\lambda}(x)$  je odraz riešenia  $\varepsilon(x)$  cez rovinu  $T_{\lambda}$ . Definujme porovnávaciu funkciu  $w_{\lambda}(x) = \varepsilon^{\lambda}(x) - \varepsilon(x)$ .

Krok 1: Štart posunu. Ukáže sa, že pre dostatočne záporné  $\lambda$  (rovina ďaleko od solitónu) platí  $w_{\lambda}(x) > 0$  pre všetky  $x \in \Sigma_{\lambda}$ . Toto vyplýva z faktu, že  $\varepsilon(x) \to 0$  v nekonečne a zo silného princípu maxima pre eliptické rovnice.

Krok 2: Nájdenie kritickej polohy. Postupne zvyšujeme  $\lambda$  (posúvame rovinu doprava). Nech  $\lambda_0 = \sup\{\lambda|w_{\mu}(x)>0 \text{ v } \Sigma_{\mu} \text{ pre všetky } \mu<\lambda\}$ . V tejto kritickej polohe sa odrazené riešenie prvýkrát "dotkne" pôvodného riešenia zhora.

Krok 3: Aplikácia princípu maxima. V kritickej polohe  $\lambda_0$  musí platiť  $w_{\lambda_0}(x) \geq 0$  v  $\Sigma_{\lambda_0}$  a musí existovať bod  $x_0$ , kde  $w_{\lambda_0}(x_0) = 0$ . Silný princíp maxima a Hopfova lema však vylučujú možnosť dotyku vo vnútri domény alebo na jej hrane bez toho, aby platilo  $w_{\lambda_0}(x) \equiv 0$  v celom  $\Sigma_{\lambda_0}$ .

Krok 4: Záver. Keďže platí  $\varepsilon^{\lambda_0}(x) \equiv \varepsilon(x)$  v  $\Sigma_{\lambda_0}$ , riešenie musí byť symetrické okolo roviny  $x_1 = \lambda_0$ . Keďže sme mohli zvoliť ľubovoľný smer, riešenie musí byť symetrické okolo nejakého bodu  $x_c$ . Posunom súradnicového systému do tohto bodu dostávame, že riešenie je radiálne symetrické,  $\varepsilon(x) = \varepsilon(r)$ . Z konštrukcie dôkazu navyše vyplýva, že  $\frac{\mathrm{d}\varepsilon}{\mathrm{d}r} < 0$  pre r > 0, teda riešenie je prísne monotónne klesajúce.

#### VIII. ZÁVER

V tomto článku sme predstavili ucelenú analýzu statických, radiálne symetrických solitónov v nelineárnom Klein-Gordonovom modeli s exponenciálnou nelinearitou. Naša práca kombinuje presné numerické metódy s rigoróznou teoretickou analýzou a dynamickými simuláciami, čím poskytuje komplexný pohľad na vlastnosti týchto dôležitých lokalizovaných štruktúr.

Naše hlavné výsledky možno zhrnúť do piatich bodov:

- 1. Numericky sme preukázali existenciu rodiny solitónových riešení a vyvinuli sme robustnú metódu na ich konštrukciu.
- 2. Vykonali sme detailnú parametrickú štúdiu, ktorá ukázala, ako sa energia, polomer a ďalšie charakteristiky solitónu menia v závislosti od parametrov modelu, a potvrdili sme teoretické predpovede pre asymptotické správanie.
- 3. Spektrálnou analýzou sme dokázali lineárnu stabilitu všetkých nájdených riešení v režime  $\gamma > 2|\alpha|/\beta$ .
- 4. Plne nelineárne dynamické simulácie potvrdili mimoriadnu robustnosť stabilných solitónov voči poruchám a demonštrovali disperzívny rozpad v subkritickom režime.
- Aplikáciou metódy posúvajúcich sa rovín sme rigorózne dokázali, že každé pozitívne, energeticky konečné riešenie musí byť radiálne symetrické a monotónne klesajúce.

Tieto výsledky nielenže potvrdzujú teoretické očakávania, ale poskytujú aj kvantitatívne dáta a hlbší vhľad do dynamiky a stability nelineárnych polí. Medzi možné rozšírenia patrí analýza časovo závislých porúch, interakcie viacerých solitónov, alebo štúdium modelu vo vyšších dimenziách či s inými typmi nelinearít.

#### ACKNOWLEDGMENTS

Autori ďakujú kolegom za podnetné diskusie.

R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland, 1982).

<sup>[2]</sup> V. G. Makhankov, Phys. Rep. 35, 1 (1978).

<sup>[3]</sup> G. H. Derrick, J. Math. Phys. 5, 1252 (1964).

<sup>[4]</sup> G. Rosen, J. Math. Phys. 9, 996 (1969).

<sup>[5]</sup> W. A. Strauss, Commun. Math. Phys. **55**, 149 (1977).

<sup>[6]</sup> H. Berestycki and P.-L. Lions, Arch. Ration. Mech. Anal.

**<sup>82</sup>**, 313 (1983).

<sup>[7]</sup> B. Gidas, W.-M. Ni, and L. Nirenberg, Commun. Math. Phys. 68, 209 (1979).

<sup>[8]</sup> R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (SIAM, 2007).

<sup>[9]</sup> W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, 1992).