Challenges with digital assets today

Low scalability

- limited by blockchains, which are inherently inscalable
- no layer 2 assets

Poor privacy

- Everyone in the world sees the transactions
- Zero-knowledge is nearly absent for the assets even if it is present in blockchain (Monero, Grin, Beam, ...)

Challenges with digital assets today

• Inefficient smart contracts

- Asset ownership is mixed with contract business logic
- Pseudo-decentralized (governance problem)
- Not formally verified languages (security problem)

RGB was created to solve these issues

- Originally proposed by Giacomo Zucco & Peter Todd in 2016
- Supported by Tether Inc/Bitfinex & other sponsors in early 2019
- Pandora Core is the main subcontractor for technology development
- Governed by non-profit LNP/BP Standards Association, Switzerland

What is RGB?

Client-validated state and smart contract system working at Layer 2/3 in Bitcoin and Lightning Network.

- Works with Lightning Network
- No on-chain usage nor trackable footprint: client-validated paradigm
- Scales independently from blockchain
- Zero-knowledge & privacy built on best products
 - Mimblewhimble: Bulletproofs by Andrew Poelstra
 - Liquid: Confidential Assets by Blockstream

How RGB works?

we started with looking for problems to solve, not the solution to sell...

Problem 1: Blockchain does not scale

Problem 2: Blockchain is transparent

Solution: client-side validation

- Let's not put data into blockchain!
 - Solves scalability problems of Ethereum, EOS and other systems...
 - Now the whole world does not see our transactions
- Use blockchain as a cryptographically commitment layer
 - Commit to some extra-blockchain data with elliptic curve homomorphic properties
- Data/history is maintained by asset owner
- Proposed by Peter Todd

Transaction

Transaction

Transaction 1

Transaction 2

A unique event

Transaction

Transaction 1

Main components of RGB

- 1. Commitments in transactions, proving unique history
 - private
 - zero storage cost
 - work both with blockchain (layer 1) and Lightning Network (layer 2)
 - meaning extreme scalability
- 2. Off-chain data & code held by asset/contract owner
 - zero blockchain storage cost
 - assets are linked to transaction outputs, which define their ownership & prevent double-spending (single-use seals)
 - off-chain smart contract code defines asset evolution

Bitcoin blockchain: state ownership

two core theses

1. There always must be an owner

- Smart contract state is not a "public good" (Ethereum/"blockchain" approach); it must always have a well-defined ownership (private, multisig etc).
- RGB defines ownership by binding/assigning state to Bitcoin transaction outputs: whoever controls the output owns the associated state
- I.e. RGB leverages Bitcoin script security model and all its technologies (Schnorr/Taproot etc).

2. State ownership != state validation

- Ownership defines WHO can change the state
- Validation rules (client-side validation) define HOW it may change

2. State ownership != state validation

- Ownership controlled by Bitcoin script, at Bitcoin blockchain level (non-Turing complete)
- Validation rules controlled by RGB Schema with Simplicity script (Turing-complete)

This allows to avoid mistake done by "blockchain smart contracts" (Ethereum/EOS/Polkadot etc): mixing of layers & Turing completeness into non-scalable blockchain layer

Also it makes possible for smart contracts to operate on top of Layer 2 solutions (Lightning Network)

Smart contract is

- A pre-arranged agreement
- of trade (i.e. mutual voluntary exchange of goods)
- automatically executed under certain conditions, where "automatic" means
 - * anonymous: no KYC is done
 - * trustless: no need to do KYC to protect from the failure to execute contract

Smart contract components

- Agreement: the code
- Goods: digital assets
- Conditions: contract parties or external actors able to call some code

Smart contract components

- Agreement: the code
- Goods: digital assets -> Ownership
- Conditions: -> Access rights
 contract parties or external actors able to call some code

Ownership & access: core properties

- Ownership: digital assets must be owned by a well-defined party
- Access: a parties able to call the contract execution should be well-defined

Pure blockchain/layer 1 approach is wrong:

- Mixing code, ownership and access rights into a single layer ("blockchain")
- which is inherently *unscalable* and well-trackable (*anti-privacy*) since VERIFICATION is needed by the whole world
- With Turing-complete code operating at the same level,
 compromising security
- Running non-censorship-resistant consensus algorithms (PoS, PoW forks with small hashing power)

Smart contract language: Simplicity

- Proposed and developed by Russel O'Conner, Blockstream
- Planned to be included into Elements and Liquid
- Formal semantics
- Formally-verified language with proofs on execution
- Succinct (complete Schnorr signatures are just few kB)

RGB is an asset and smart-contract protocol for LNP/BP

Spectrum is DEX protocol for RGB assets & smart contract interaction over Lightning Network

Parts of LNP/BP technology stack

- Bitcoin blockchain: ownership & access rights
- RGB: data, metadata & Turing-complete business logic
- Lightning network: transaction scalability
- Spectrum: decentralized exchange & smart contract execution over Lightning Network

Bitcoin blockchain: state ownership

RGB is:

- "Sharding made right"
- "DAG made right"
- "Digital assets made right"
- "Smart contracts made right"
- "Confidentiality made right"

Spectrum is:

- "DEX made right"
- "Inter-blockchain protocol made right"

What is possible to do with RGB?

- Fungible assets & securities
 - Centrally or federation-issued
 - Issued anonymously or publicly
 - With possible secondary issuance, demurrage, inflation,
- Different forms of bearer rights
- Non-fungible assets (collectibles)
- Decentralized digital identity & roaming profiles
- Complex accounting systems & utility tokens

What is possible to do with RGB?

- Complex & highly-efficient smart-contract systems
 - Lightspeed: high-frequency micropayments on top of Lighting
 - Storm: trustless storage & messaging
 - Prometheus: trustless high-load computing & machine learning

And it's all:

- Scalable
- Confidential
- Working over Lighting Network
- With DEX functionality
- Operating as a bearer instrument