## Quantum Computation and Error Correction: Exercise Sheet 2

Hand over before the 04/11, 4pm.

**Problem 1. Universal quantum computing:** We want to show that the gate set CNOT, H, T is universal, i.e. we can approximate an arbitrary unitary gate to an arbitrary accuracy just by using these three gates in a n-qubit quantum circuit. Here, we only focus on the following problem statement: 'How does one achieve arbitrary single qubit unitary operation?' The approximation of general n-qubit gates then follows from the known fact that CNOT along with arbitrary one qubit gates is universal.

- **Problem 1.1.** (2 marks) Consider  $\frac{\pi}{4}$  rotation around  $\hat{z}$  (T) and  $\frac{\pi}{4}$  rotation around  $\hat{x}$  (HTH). Combine (i.e. look at THTH) these operations to **show** that the result is a rotation  $R_{\hat{n}}(\theta)$ ; where  $\vec{n} = \{\cos(\pi/8), \sin(\pi/8), \cos(\pi/8)\}$  and  $\theta = \cos^{-1}(\cos^2(\pi/8))$ .
- **Problem 1.2.** (1 mark) **Show** that repeating  $R_{\hat{n}}(\theta)$  approximates any amount of rotation about the axis  $\hat{n}$ . Hint: show that (i)  $R_{\hat{n}}(\theta)^k = R_{\hat{n}}(\theta_k)$  where you would give  $\theta_k$ , and (ii) that  $\theta_k = \theta_{k'}$  mod 2 implies k = k'.
- **Problem 1.3.** (2 marks) It can be shown that any unitary operation U for one qubit can be decomposed as:

$$U = R_{\hat{n}}(\theta_1) R_{\hat{m}}(\theta_2) R_{\hat{n}}(\theta_3)$$

(this is analogous to Euler's rotation). The second axis of arbitrary rotation  $\hat{m}$  can be easily deduced by applying Hadamard to the first one:  $R_{\hat{m}}(\theta) = HR_{\hat{n}}(\theta)H$ . Show that an arbitrary unitary operation on a single qubit is then given by,

$$U = R_{\hat{n}}(\theta)^{n_1} H R_{\hat{n}}(\theta)^{n_2} H R_{\hat{n}}(\theta)^{n_3}$$

where  $n_1, n_2, n_3$  are integers.

• **Problem 1.4.** (5 marks) **Implement** in python for a  $\pi/10$  rotation along the Z axis within a distance of 0.01 radian between the target and approximated rotation. To compute this distance, you may use:

```
def distance(U, V):
F = abs(np.trace(U.conj().T @ V)) / 2.0
F = min(1.0, max(0.0, F))
return acos(F)
```

where U and V are the target and approximated rotations respectively.

• Problem 1.5. (1 mark bonus) Conclude on the practicality of the scheme as the target precision increases.

**Problem 2. Querying algorithm for a 2-to-1 function:** Let f be a 2-to-1 function that maps a length-n binary string to length-n binary string, such that two different arguments x and y have the same image if and only if there is some binary string c such that  $y = x \oplus c$ . Note that if c is the bitstrings made of only zeros, then f is actually 1-to-1. The problem we are trying to solve is that if we have an oracle for f, then what is the best algorithm we can imagine to find c (which may be the zero string)?

• Problem 2.1. (0.5 marks) Lets's see an example with a length-3 binary string:

| x                 | 000  | 001  | 010  | 011  | 100  | 101  | 110  | 111  |  |
|-------------------|------|------|------|------|------|------|------|------|--|
| $\overline{f(x)}$ | 1010 | 0100 | 0110 | 1000 | 0110 | 1000 | 1010 | 0100 |  |

**Give** the value of c in this example. Note that the image bitstrings f(x) do not need to be of the same size as the arguments bitstrings x, as the example suggests.

- **Problem 2.2.** (0.5 marks) **Estimate** the complexity for such a classical solution for the case of length-n binary string.
- Problem 2.3. (1+1+0.5 marks) The quantum (boolean) oracle for the function f verifies,

$$U_f|x\rangle|0\rangle=|x\rangle|f(x)\rangle,$$

where the first register and the second register may not have the same number of qubits. We call a query the following algorithm:



step 1: start with two registers of n-qubits and m-qubits respectively, all initialized in the  $|0\rangle$  state:  $|\psi_1\rangle = |0^{\otimes n}\rangle|0^{\otimes n}\rangle$ ,

step 2: apply the many-Hadamard gate to first register:  $|\psi_2\rangle = H^{\otimes n} \otimes I^{\otimes m} |\psi_1\rangle$  (I being the identity),

step 3: apply the oracle:  $|\psi_3\rangle = U_f |\psi_2\rangle$ 

step 4: apply the many-Hadamard gate to first register again :  $|\psi_4\rangle = H^{\otimes n} \otimes I^{\otimes m} |\psi_3\rangle$ 

Calculate  $|\psi_4\rangle$  and the probability of measuring the state  $|k\rangle$  in the first register for a generic f. Then **simplify** the expression with the fact that only up to two terms, j and  $j \oplus c$ , would contribute to a given f(j).

**Show** that any bitstrings  $y_k$  obtained by measuring the first register satisfy  $y_k \cdot c = 0 \mod 2$ .

• Problem 2.4. (1 marks) Classical post-processing.

We say that  $y_k$  is independent from  $\{y_1, y_2, ..., y_{k-1}\}$  if there is no  $\{\epsilon_k = 0, 1\}$  such that  $y_k = \bigoplus_{i=1}^{k-1} y_i$ . For bitstrings of length n, it follows that there is at most n independent bitstrings. If we perform k queries, there is a probability  $p_k$  of finding n independents bitstrings from the results  $\{y_k\}$ , with  $p_k > 0$  if and only if k > n - 1.

Assuming that there are n independents bitstrings in  $\{y_k\}$ , find a classical algorithm that efficiently deduce c. What is its complexity?

- **Problem 2.5.** (0.5 mark) **Estimate** the total time complexity for the hybrid quantum algorithm (the quantum part + the classical post-processing), to solve the problem with a probability p. Compare with your answer for the purely classical algorithm.
- Problem 2.6. (5 marks) Implement the quantum algorithm in Qiskit.
- Problem 2.6. (1 bonus mark) Conclude.