Homework6

Yanyu Zheng yz2690 March 5, 2016

1. Chapter 9, problem 14

```
pack = c("Sleuth3", "dplyr", "ggplot2", "car")
lapply(pack, library, character.only = TRUE)
```

 \mathbf{a}

```
attach(ex0914)
pairs(ex0914)
```


b

```
fit = lm(Heart ~ Bank + Walk + Talk, ex0914)
fit
```

##

 \mathbf{c}

plot(fit\$fitted.values,fit\$residuals)

The variance of residuals seem to be constant throughout all levels of the fitted value. And no evidence for outliers was found.

 \mathbf{d}

summary(fit)

```
##
## Call:
## lm(formula = Heart ~ Bank + Walk + Talk, data = ex0914)
##
## Residuals:
## Min    1Q Median    3Q Max
## -8.4014 -3.0263    0.0602    2.6748    8.4646
##
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                3.1787
                           6.3369
                                    0.502
                                            0.6194
                0.4052
                           0.1971
                                    2.056
                                            0.0480 *
## Bank
## Walk
                0.4516
                           0.2009
                                    2.248
                                            0.0316 *
## Talk
                -0.1796
                           0.2222 -0.808
                                            0.4249
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.805 on 32 degrees of freedom
## Multiple R-squared: 0.2236, Adjusted R-squared: 0.1509
## F-statistic: 3.073 on 3 and 32 DF, p-value: 0.04162
detach(ex0914)
```

2. Chapter 9, problem 16

 \mathbf{a}

```
attach(ex0327)
scatterplot(PollenRemoved ~ DurationOfVisit | BeeType, ex0327, smoother = FALSE, reg.line = FALSE)
```


No. It does not appear to be a straight line.

b

scatterplot(logit(PollenRemoved) ~ DurationOfVisit | BeeType, ex0327, smoother = FALSE, reg.line = FALSE

 \mathbf{c}

scatterplot(logit(PollenRemoved) ~ log(DurationOfVisit) | BeeType, ex0327, smoother = FALSE, reg.line =

Logit VS Log seems most resonable to persuit.

d

##

```
fit2 = lm(logit(PollenRemoved) ~ log(DurationOfVisit) + BeeType + DurationOfVisit*BeeType)
summary(fit2)
##
## lm(formula = logit(PollenRemoved) ~ log(DurationOfVisit) + BeeType +
       DurationOfVisit * BeeType)
##
##
## Residuals:
##
       Min
                  1Q
                       Median
                                             Max
                                    3Q
  -1.45766 -0.31708 0.04816 0.40354
                                        1.05768
##
##
## Coefficients:
                                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                             0.577762 -6.617 5.14e-08 ***
                                 -3.823174
## log(DurationOfVisit)
                                                         5.122 7.16e-06 ***
                                  1.548448
                                             0.302326
## BeeTypeWorker
                                  0.723702
                                             0.398926
                                                         1.814
                                                                 0.0768 .
## DurationOfVisit
                                 -0.038601
                                                        -2.040
                                                                 0.0476 *
                                             0.018918
## BeeTypeWorker:DurationOfVisit 0.004891
                                             0.014069
                                                         0.348
                                                                 0.7299
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
## Residual standard error: 0.6229 on 42 degrees of freedom
## Multiple R-squared: 0.6574, Adjusted R-squared: 0.6247
## F-statistic: 20.14 on 4 and 42 DF, p-value: 2.524e-09
```

The pValue is 0.73, which means there's no evidence indicating the proportion of pollen depends on duration of visit differently for queens than for workers.

 \mathbf{e}

```
fit2e = lm(logit(PollenRemoved) ~ log(DurationOfVisit) + BeeType)
summary(fit2e)
##
## Call:
## lm(formula = logit(PollenRemoved) ~ log(DurationOfVisit) + BeeType)
## Residuals:
                 1Q
                     Median
                                   3Q
## -1.40852 -0.49627 0.08815 0.43598 1.15562
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                                    0.3842 -7.065 9.18e-09 ***
## (Intercept)
                        -2.7146
## log(DurationOfVisit)
                         0.8886
                                    0.1402
                                             6.339 1.07e-07 ***
## BeeTypeWorker
                         0.5697
                                    0.2364 2.409
                                                    0.0202 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.652 on 44 degrees of freedom
## Multiple R-squared: 0.6068, Adjusted R-squared: 0.5889
## F-statistic: 33.95 on 2 and 44 DF, p-value: 1.206e-09
detach(ex0327)
```

Yes, queens tend to remove a smaller proportion. The cross term has high correlation with the BeeType variable, making the model highly unstable. So the diffrence in pVlue is not surprising when removing the cross term.

3. Chapter 9, problem 18

 \mathbf{a}

```
attach(ex0918)
library("ggplot2")
Wings = c(Females, Males)
data3 = data.frame(Continent = c(Continent, Continent), Latitude = c(Latitude, Latitude), Wings = Wings
ggplot(data3, aes(x = Latitude, y = Wings, colour = factor(Continent), shape = Sex)) + geom_point(aes(s))
```


Yes. There's no significant difference between the data from NA and EU

- 4. Chapter 9, problem 20
- 5. Chapter 10, problem 19
- 6. Chapter 10, problem 28