Stochastic Dynamic Programmin

V. Leclère

December 8th 2023

- Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- 2 Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

- Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

- Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

Stochastic Controlled Dynamic System

A discrete time controlled stochastic dynamic system is defined by its *dynamic*

$$\boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1})$$

and initial state

$$\mathbf{x}_0 = \mathbf{\xi}_0$$

The variables

- x_t is the state of the system,
- u_t is the *control* applied to the system at time t,
- ξ_t is an exogeneous noise.

Usually, $x_t \in X_t$ and u_t belongs to a set depending upon the state: $u_t \in U_t(x_t)$.

Examples

- Stock of water in a dam:
 - x_t is the amount of water in the dam at time t,
 - **u**_t is the amount of water turbined at time **t**,
 - ξ_{t+1} is the inflow of water in [t, t+1].
- Boat in the ocean:
 - x_t is the position of the boat at time t,
 - u_t is the direction and speed chosen for [t, t+1],
 - ξ_{t+1} is the wind and current for [t, t+1].
- Subway network:
 - x_t is the position and speed of each train at time t,
 - u_t is the acceleration chosen at time t,
 - ξ_{t+1} is the delay due to passengers and incident on the network for [t, t+1].

More considerations about the state

- Physical state: the physical value of the controlled system.
 e.g. amount of water in your dam, position of your boat...
- Information state: physical state and information you have over noises. e.g.: amount of water and weather forecast...
- Knowledge state: your current belief over the actual information state (in case of noisy observations). Represented as a distribution law over information states.

The state, in the Dynamic Programming sense, is the information required to define an optimal solution.

Optimization Problem

$$\min_{\mathbf{u}} \qquad \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}) + K(\mathbf{x}_T)\Big]$$

$$s.t. \qquad \mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}), \qquad \mathbf{x}_0 = \boldsymbol{\xi}_0$$

$$\mathbf{u}_t \in \mathcal{U}_t(\mathbf{x}_t), \quad \mathbf{x}_t \in X_t$$

$$\sigma(\mathbf{u}_t) \subset \sigma(\boldsymbol{\xi}_0, \dots, \boldsymbol{\xi}_t)$$

Optimization Problem

$$\min_{\mathbf{u}} \quad \mathbb{E}\Big[\sum_{t=0}^{I-1} L_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}) + K(\mathbf{x}_T)\Big]$$
s.t.
$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}), \quad \mathbf{x}_0 = \boldsymbol{\xi}_0$$

$$\mathbf{u}_t \in \mathcal{U}_t(\mathbf{x}_t), \quad \mathbf{x}_t \in X_t$$

$$\sigma(\mathbf{u}_t) \subset \sigma(\boldsymbol{\xi}_0, \dots, \boldsymbol{\xi}_t)$$

- We want to minimize the expectation of the sum of costs.
- ② The system follows a dynamic given by the function f_t .
- **3** There are stagewise constraints on the controls and costs.
- The controls are functions of the past noises
 (= non-anticipativity).

Optimization Problem

$$\min_{\mathbf{\Phi}} \qquad \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}) + K(\mathbf{x}_T)\Big] \\
s.t. \qquad \mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}), \qquad \mathbf{x}_0 = \boldsymbol{\xi}_0 \\
\mathbf{u}_t \in \mathcal{U}_t(\mathbf{x}_t), \quad \mathbf{x}_t \in X_t \\
\mathbf{u}_t = \mathbf{\Phi}(\boldsymbol{\xi}_0, \dots, \boldsymbol{\xi}_t)$$

- We want to minimize the expectation of the sum of costs.
- ② The system follows a dynamic given by the function f_t .
- **3** There are stagewise constraints on the controls and costs.
- The controls are functions of the past noises
 (= non-anticipativity).

Optimization Problem with independence of noises

Assuming stagewise independence of the noises, we can compress information in the following way:

$$\min_{\mathbf{\Phi}} \qquad \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}) + K(\mathbf{x}_T)\Big] \\
s.t. \qquad \mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}), \qquad \mathbf{x}_0 = \boldsymbol{\xi}_0 \\
\mathbf{u}_t \in \mathcal{U}_t(\mathbf{x}_t), \quad \mathbf{x}_t \in X_t \\
\mathbf{u}_t = \mathbf{\Phi}_t(\boldsymbol{\xi}_0, \dots, \boldsymbol{\xi}_t)$$

Vincent Leclère Dynamic Programming 08/12/2023 6 / 36

Optimization Problem with independence of noises

Assuming stagewise independence of the noises, we can compress information in the following way:

$$\min_{\boldsymbol{\pi}} \qquad \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}) + K(\boldsymbol{x}_T)\Big]$$

$$s.t. \qquad \boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}), \qquad \boldsymbol{x}_0 = \boldsymbol{\xi}_0$$

$$\boldsymbol{u}_t \in \mathcal{U}_t(\boldsymbol{x}_t), \quad \boldsymbol{x}_t \in X_t$$

$$\boldsymbol{u}_t = \pi_t(\boldsymbol{x}_t)$$

Keeping only the state

For notational ease, we want to formulate Problem (??) only with states. Let $\mathcal{X}_t(x_t, \xi_{t+1})$ be the reachable states, i.e.,

$$\mathcal{X}_t(x_t, \xi_{t+1}) := \Big\{ x_{t+1} \in \mathbb{X}_{t+1} \mid \exists u_t \in \mathcal{U}_t(x_t, \xi_{t+1}), x_{t+1} = f_t(x_t, u_t, \xi_{t+1}) \Big\}.$$

And $c_t(x_t, x_{t+1}, \xi_{t+1})$ the transition cost from x_t to x_{t+1} , i.e.,

$$c_t(x_t, x_{t+1}, \xi_{t+1}) := \min_{u_t \in U_t(x_t, \xi_{t+1})} \Big\{ L_t(x_t, u_t, \xi_{t+1}) \quad | \quad x_{t+1} = f_t(x_t, u_t, \xi_{t+1}) \Big\}.$$

Then, under independance of noises, the optimization problem reads

$$\begin{split} \min_{\psi} \quad \mathbb{E} \Big[\sum_{t=0}^{T-1} c_t(\mathbf{x}_t, \mathbf{x}_{t+1}, \boldsymbol{\xi}_{t+1}) + K(\mathbf{x}_T) \Big] \\ s.t. \quad \mathbf{x}_{t+1} \in \mathcal{X}_t(\mathbf{x}_t, \boldsymbol{\xi}_{t+1}), \qquad \mathbf{x}_0 = \boldsymbol{\xi}_0 \\ \mathbf{x}_{t+1} = \psi_t(\mathbf{x}_t, \boldsymbol{\xi}_{t+1}) \end{split}$$

Keeping only the state

For notational ease, we want to formulate Problem (??) only with states. Let $\mathcal{X}_t(x_t, \xi_{t+1})$ be the reachable states, i.e.,

$$\mathcal{X}_t(x_t, \xi_{t+1}) := \Big\{ x_{t+1} \in \mathbb{X}_{t+1} \mid \exists u_t \in \mathcal{U}_t(x_t, \xi_{t+1}), x_{t+1} = f_t(x_t, u_t, \xi_{t+1}) \Big\}.$$

And $c_t(x_t, x_{t+1}, \xi_{t+1})$ the transition cost from x_t to x_{t+1} , i.e.,

$$c_t(x_t, x_{t+1}, \xi_{t+1}) := \min_{u_t \in U_t(x_t, \xi_{t+1})} \Big\{ L_t(x_t, u_t, \xi_{t+1}) \quad | \quad x_{t+1} = f_t(x_t, u_t, \xi_{t+1}) \Big\}.$$

Then, under independance of noises, the optimization problem reads

$$\begin{aligned} & \underset{\boldsymbol{\psi}}{\text{min}} \quad \mathbb{E}\Big[\sum_{t=0}^{T-1} c_t(\boldsymbol{x}_t, \boldsymbol{x}_{t+1}, \boldsymbol{\xi}_{t+1}) + K(\boldsymbol{x}_T)\Big] \\ & s.t. \quad \boldsymbol{x}_{t+1} \in \mathcal{X}_t(\boldsymbol{x}_t, \boldsymbol{\xi}_{t+1}), \qquad \boldsymbol{x}_0 = \boldsymbol{\xi}_0 \\ & \quad \boldsymbol{x}_{t+1} = \boldsymbol{\psi}_t(\boldsymbol{x}_t, \boldsymbol{\xi}_{t+1}) \end{aligned}$$

- Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

Bellman's Principle of Optimality

Richard Ernest Bellman (August 26, 1920 – March 19, 1984)

An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision (Richard Bellman)

The shortest path on a graph illustrates Bellman's Principle of Optimality

For an auto travel analogy, suppose that the fastest route from Los Angeles to Boston passes through **Chicago**.

The principle of optimality translates to obvious fact that the Chicago to Boston portion of the route is also the fastest route for a trip that starts from Chicago and ends in Boston. (Dimitri P. Bertsekas)

Idea behind dynamic programming

If noises are time independent, then

- \bullet The cost to go at time t depends only upon the current state.
- We can compute recursively the cost to go for each position, starting from the terminal state and computing optimal trajectories backward.

Optimal cost-to-go of being in state x at time t is: At time t, V_{t+1} gives the cost of the future.

Dynamic Programming is a time decomposition method

Idea behind dynamic programming

If noises are time independent, then

- \bullet The cost to go at time t depends only upon the current state.
- We can compute recursively the cost to go for each position, starting from the terminal state and computing optimal trajectories backward.

Optimal cost-to-go of being in state x at time t is: At time t, V_{t+1} gives the cost of the future.

Dynamic Programming is a time decomposition method.

Idea Behind Dynamic Programming

$$\min_{u_0 \in U_0(\mathbf{x}_0)} \mathbb{E} \left[L_0(\mathbf{x}_0, u_0, \boldsymbol{\xi}_1) + \min_{u_1, \dots u_{T-1}} \mathbb{E} \left[\sum_{t=1}^{T-1} L_t(\mathbf{x}_t, \boldsymbol{u}_t, \boldsymbol{w}_{t+1}) + K(\mathbf{x}_T) \right] \right] \\
s.t. \quad \mathbf{x}_1 = f_0(\mathbf{x}_0, u_0, \boldsymbol{\xi}_1) \\
\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}) \in X_{t+1}, \\
\mathbf{u}_t \in U_t(\mathbf{x}_t) \\
\sigma(\mathbf{u}_t) \subset \sigma(\boldsymbol{\xi}_0, \dots, \boldsymbol{\xi}_t)$$

Idea Behind Dynamic Programming

$$\begin{aligned} \min_{u_0 \in U_0(\mathbf{x}_0)} \mathbb{E} \bigg[L_0(\mathbf{x}_0, u_0, \boldsymbol{\xi}_1) + \min_{u_1, \dots u_{T-1}} \mathbb{E} \Big[\sum_{t=1}^{T-1} L_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{w}_{t+1}) + K(\boldsymbol{x}_T) \Big] \bigg] \\ s.t. & \quad \boldsymbol{x}_1 = f_0(\mathbf{x}_0, u_0, \boldsymbol{\xi}_1) \\ & \quad \boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}) \in X_{t+1}, \\ & \quad \boldsymbol{u}_t \in U_t(\boldsymbol{x}_t) \\ & \quad \sigma(\boldsymbol{u}_t) \subset \sigma(\boldsymbol{x}_t) \end{aligned}$$

Independence of noises

Idea Behind Dynamic Programming

$$\begin{aligned} \min_{u_0 \in U_0(\mathbf{x}_0)} \mathbb{E} \bigg[L_0(\mathbf{x}_0, u_0, \boldsymbol{\xi}_1) + \min_{u_1, \dots u_{T-1}} \mathbb{E} \Big[\sum_{t=1}^{T-1} L_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{w}_{t+1}) + K(\boldsymbol{x}_T) \Big] \bigg] \\ s.t. & \quad \boldsymbol{x}_1 = f_0(\mathbf{x}_0, u_0, \boldsymbol{\xi}_1) \\ & \quad \boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}) \in X_{t+1}, \\ & \quad \boldsymbol{u}_t \in U_t(\boldsymbol{x}_t) \\ & \quad \boldsymbol{\sigma}(\boldsymbol{u}_t) \subset \boldsymbol{\sigma}(\boldsymbol{x}_t) \end{aligned}$$

 $=: V_1(x_1)$

Independence of noises

Definition of Bellman Value Function

The Bellman's value function $V_{t_0}(x)$ is defined as the value of the problem starting at time t_0 from the state x. More precisely we have

$$V_{t_0}(\mathbf{x}) = \min \qquad \mathbb{E}\Big[\sum_{t=t_0}^{T-1} L_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}) + K(\mathbf{x}_T)\Big]$$

$$s.t. \qquad \mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}), \qquad \mathbf{x}_{t_0} = \mathbf{x}$$

$$\mathbf{u}_t \in \mathcal{U}_t(\mathbf{x}_t), \quad \mathbf{x}_t \in X_t$$

$$\sigma(\mathbf{u}_t) \subset \sigma(\boldsymbol{\xi}_0, \dots, \boldsymbol{\xi}_t)$$

Bellman's recursion

The core idea of Bellman's recursion is to see the total (expected) cost as the sum of the current cost and the future cost:

$$V_{t}(x_{t}) = \min_{u_{t}} \quad \mathbb{E}\left[L_{t}(x, u, \xi_{t+1}) + V_{t+1}(x_{t+1})\right]$$

$$x_{t+1} = f_{t}(x_{t}, u_{t}, \xi_{t+1})$$

$$u_{t} \in \mathcal{U}_{t}(x_{t})$$

$$x_{t+1} \in X_{t+1}$$

And we know the final cost function:

$$V_T(x_T) = K(x_T).$$

Dynamic Programming Algorithm - Discrete Case

```
Data: Problem parameters

Result: optimal strategy and value;

V_T \equiv K; V_t \equiv 0

for t: T-1 \rightarrow 0 do

for x \in \mathbb{X}_t do

V_t(x) = \min_{u \in \mathcal{U}_t(x)} \mathbb{E} \left[ L_t(x, u, \xi_{t+1}) + V_{t+1} \left( \underbrace{f_t(x, u, \xi_{t+1})}_{x_{t+1}} \right) \right]

Algorithm 1: Classical stochastic DP algorithm
```

Vincent Leclère Dynamic Programming 08/12/2023 14 / 36

Dynamic Programming Algorithm - Discrete Case

```
Data: Problem parameters
Result: optimal strategy and value;
V_T \equiv K : V_t \equiv 0
for t: T-1 \rightarrow 0 do
     for x \in \mathbb{X}_t do
           V_t(x) = +\infty;
           for u \in \mathcal{U}(x) do
                 Q_t(x,u) = \mathbb{E}\left[L_t(x,u,\boldsymbol{\xi}_{t+1}) + V_{t+1}\left(\underbrace{f_t(x,u,\boldsymbol{\xi}_{t+1})}\right)\right]
             if Q_t(x, u) < V_t(x) then V_t(x) = Q_t(x, u); \pi_t(x) = u;
             Algorithm 1: Classical stochastic DP algorithm
```

Vincent Leclère Dynamic Programming 08/12/2023 14 / 36

Dynamic Programming Algorithm - Discrete Case

```
Data: Problem parameters
Result: optimal strategy and value;
V_T \equiv K : V_t \equiv 0
for t: T-1 \rightarrow 0 do
     for x \in \mathbb{X}_t do
          V_t(x) = +\infty;
          for u \in \mathcal{U}(x) do
                for \xi \in \Xi_{t+1} do
                 x_{t+1}^{\xi} = f_t(x, u, \xi);
                     if x_{t\perp 1}^{\xi} \in X_t then
                          \dot{Q}_t(x, u, \xi) = L_t(x, u, \xi_{t+1}) + V_{t+1}(x_{t+1}^{\xi})
                      else
                       Q_t(x, u, \xi) = +\infty
                Q_t(x,u) = \sum_{\xi \in \Xi_{t+1}} \mathbb{P}(\boldsymbol{\xi}_{t+1} = \xi) \dot{Q}_t(x,u,\xi);
                if Q_t(x, u) < V_t(x) then
                  V_t(x) = Q_t(x, u); \qquad \pi_t(x) = u;
            Algorithm 1: Classical stochastic DP algorithm
```

3 curses of dimensionality

Complexity = $O(T \times |\mathbb{X}_t| \times |\mathbb{U}_t| \times |\Xi_t|)$ Linear in the number of time steps, but we have 3 curses of dimensionality:

- State. Complexity is exponential in the dimension of \mathbb{X}_t e.g. 3 independent states each taking 10 values leads to a loop over 1000 points.
- **Decision**. Complexity is exponential in the dimension of \mathbb{U}_t . \rightsquigarrow due to exhaustive minimization of inner problem. Can be accelerated using faster method (e.g. MILP solver).
- **Solution** Separation Separation
 - → due to expectation computation. Can be accelerated through Monte-Carlo approximation (still at least 1000 points)

n practice, DP is not used for a state of dimension more than 5.

3 curses of dimensionality

Complexity = $O(T \times |\mathbb{X}_t| \times |\mathbb{U}_t| \times |\Xi_t|)$ Linear in the number of time steps, but we have 3 curses of dimensionality:

- State. Complexity is exponential in the dimension of \mathbb{X}_t e.g. 3 independent states each taking 10 values leads to a loop over 1000 points.
- **Decision**. Complexity is exponential in the dimension of \mathbb{U}_t . \rightsquigarrow due to exhaustive minimization of inner problem. Can be accelerated using faster method (e.g. MILP solver).
- **Solution** Separation Separation
 - → due to expectation computation. Can be accelerated through Monte-Carlo approximation (still at least 1000 points)

In practice, DP is not used for a state of dimension more than 5.

Stochastic optimal control problen

Dynamic Programming principle

Example

Illustrating dynamic programming with the damsvalley example

Illustrating the curse of dimensionality

We are in dimension 5 (not so high in the world of big data!) with 52 timesteps (common in energy management) plus 5 controls and 5 independent noises.

- We discretize each state's dimension in 100 values:
 - $|\mathbb{X}_t| = 100^5 = 10^{10}$
- We discretize each control's dimension in 100 values: $|U_t| = 100^5 = 10^{10}$
- **3** We use optimal quantization to discretize the noises' space in 10 values: $|\Xi_t| = 10$

Number of flops: $\mathcal{O}(52\times 10^{10}\times 10^{10}\times 10)\approx \mathcal{O}(10^{23})$. In the TOP500, the best computer computes 10^{17} flops/s. Even with the most powerful computer, it takes at least 12 days to solve this problem.

- Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

A storage management example

A producer that needs to satisfy a weekly demand over 12 weeks.

- Storage capacity of 100 units, starting with 50 units.
- The producer can produce 0 (cost 0), 10 (cost 20) or 20 (cost 30) or 25 (cost 45) units per week.
- Demand is random and follows a stagewise independent uniform distribution on {0, 10, 20, 30, 40}.
- Storage cost 0.1 per unit per week.
- Unmet demand is lost and costs 5 per unit.
- Products remaining at the end are sold at 1 per unit.
- During a given week:
 - producer decide how much to produce during the week
 - demand is revealed and should be met with current stock and production
 - remaining stock is stored (at a cost), stock above capacity is lost

Exercise

- Formulate the problem as a stochastic dynamic program, underlying state, decision and noise.
- 2 Write the dynamic programming (Bellman's) equation.
- 3 Solve the problem with your favorite programming language.

- Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- 2 Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

- 1 Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- 2 Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

Requirements of stochastic DP

$$\min_{\pi} \qquad \mathbb{E}\left[\sum_{t=0}^{T-1} L_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}) + K(\boldsymbol{x}_T)\right]$$

$$s.t. \qquad \boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}), \qquad \boldsymbol{x}_0 = x_0$$

$$\boldsymbol{u}_t \in \mathcal{U}_t(\boldsymbol{x}_t), \quad \boldsymbol{x}_t \in X_t$$

$$\boldsymbol{u}_t = \pi_t(\boldsymbol{x}_t)$$

Assumptions:

- The noise are stagewise-independent.
- The only constraint linking stages is the dynamic equation: no coupling between stages.
- The cost function is additive over stages.
- We consider the expectation of costs.

Dynamic Programming Algorithm - Discrete Case

```
Data: Problem parameters

Result: optimal strategy and value;

V_T \equiv K; V_t \equiv 0

for t: T-1 \rightarrow 0 do

for x \in \mathbb{X}_t do

V_t(x) = \min_{u \in \mathcal{U}_t(x)} \mathbb{E} \left[ L_t(x, u, \xi_{t+1}) + V_{t+1} \left( \underbrace{f_t(x, u, \xi_{t+1})}_{x_{t+1}} \right) \right]

Algorithm 2: Classical stochastic DP algorithm
```

Dynamic Programming Algorithm - Discrete Case

```
Data: Problem parameters
Result: optimal strategy and value;
V_T \equiv K : V_t \equiv 0
for t: T-1 \rightarrow 0 do
     for x \in \mathbb{X}_t do
           V_t(x) = +\infty;
           for u \in \mathcal{U}(x) do
                 Q_t(x,u) = \mathbb{E}\left[L_t(x,u,\boldsymbol{\xi}_{t+1}) + V_{t+1}\left(\underbrace{f_t(x,u,\boldsymbol{\xi}_{t+1})}\right)\right]
            if Q_t(x, u) < V_t(x) then V_t(x) = Q_t(x, u); \pi_t(x) = u;
             Algorithm 2: Classical stochastic DP algorithm
```

Dynamic Programming Algorithm - Discrete Case

```
Data: Problem parameters
Result: optimal strategy and value;
V_T \equiv K : V_t \equiv 0
for t: T-1 \rightarrow 0 do
     for x \in \mathbb{X}_t do
          V_t(x) = +\infty;
          for u \in \mathcal{U}(x) do
                for \xi \in \Xi_{t+1} do
                x_{t+1}^{\xi} = f_t(x, u, \xi);
                    if x_{t\perp 1}^{\xi} \in X_t then
                          \dot{Q}_t(x, u, \xi) = L_t(x, u, \xi_{t+1}) + V_{t+1}(x_{t+1}^{\xi})
                     else
                     \dot{Q}_t(x, u, \xi) = +\infty
                Q_t(x,u) = \sum_{\xi \in \Xi_{t+1}} \mathbb{P}(\boldsymbol{\xi}_{t+1} = \xi) \dot{Q}_t(x,u,\xi);
                if Q_t(x, u) < V_t(x) then
                  V_t(x) = Q_t(x, u); \pi_t(x) = u;
            Algorithm 2: Classical stochastic DP algorithm
```

Markovian noise

Assume that $(\xi_t)_t$ is a Markovian noise, i.e. ξ_t only depends on x_t .

 We can recover the previous setting by defining an extended state

$$\tilde{x}_t = (\mathbf{x}_t, \mathbf{\xi}_t)$$

• Bellman equation then becomes:

$$V_t(x_t, \xi_t) := \min_{u_t \in \mathcal{U}_t(x_t)} \mathbb{E} \Big[L_t(x_t, u_t, \xi_{t+1}) \mid \xi_t = \xi_t \Big]$$

More precisely, it means that

- The value function V_t (and the optimal policy π_t depends on both the current physical state x_t and the current noise ξ_t .
- ② The probability used to average the cost to go in the algorithm is the conditional probability given \mathcal{E}_t .

Markovian noise

Assume that $(\xi_t)_t$ is a Markovian noise, i.e. ξ_t only depends on x_t .

 We can recover the previous setting by defining an extended state

$$\tilde{x}_t = (\boldsymbol{x}_t, \boldsymbol{\xi}_t)$$

• Bellman equation then becomes:

$$V_t(x_t, \xi_t) := \min_{u_t \in \mathcal{U}_t(x_t)} \mathbb{E} \Big[L_t(x_t, u_t, \boldsymbol{\xi}_{t+1}) \mid \boldsymbol{\xi}_t = \xi_t \Big]$$

More precisely, it means that

- ① The value function V_t (and the optimal policy π_t depends on both the current physical state x_t and the current noise ξ_t .
- ② The probability used to average the cost to go in the algorithm is the conditional probability given \mathcal{E}_t .

Markovian noise

Assume that $(\xi_t)_t$ is a Markovian noise, i.e. ξ_t only depends on x_t .

 We can recover the previous setting by defining an extended state

$$\tilde{x}_t = (\boldsymbol{x}_t, \boldsymbol{\xi}_t)$$

• Bellman equation then becomes:

$$V_t(x_t, \xi_t) := \min_{u_t \in \mathcal{U}_t(x_t)} \mathbb{E} \Big[L_t(x_t, u_t, \boldsymbol{\xi}_{t+1}) \mid \boldsymbol{\xi}_t = \xi_t \Big]$$

More precisely, it means that:

- The value function V_t (and the optimal policy π_t depends on both the current physical state x_t and the current noise ξ_t .
- ② The probability used to average the cost to go in the algorithm is the conditional probability given ξ_t .

Coupling control

Consider the following problem, with stagewise independent noise:

$$\min_{\pi} \quad \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}) + K(\mathbf{x}_T)\Big]$$

$$s.t. \quad \mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}), \quad \mathbf{x}_0 = \mathbf{x}_0$$

$$\mathbf{u}_t \in \mathcal{U}_t(\mathbf{x}_t), \quad \mathbf{x}_t \in X_t$$

$$\mathbf{u}_t = \pi_t(\mathbf{x}_t)$$

$$\|\mathbf{u}_t - \mathbf{u}_{t-1}\| \le \delta$$

Coupling control

Consider the following problem, with stagewise independent noise:

$$\min_{\pi} \quad \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}) + K(\mathbf{x}_T)\Big]$$

$$s.t. \quad \mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}), \quad \mathbf{x}_0 = \mathbf{x}_0$$

$$\mathbf{u}_t \in \mathcal{U}_t(\mathbf{x}_t), \quad \mathbf{x}_t \in X_t$$

$$\mathbf{u}_t = \pi_t(\mathbf{x}_t)$$

$$\|\mathbf{u}_t - \mathbf{u}_{t-1}\| \le \delta$$

Delayed control

Consider the following problem, with stagewise independent noise:

$$\min_{\pi} \qquad \mathbb{E}\left[\sum_{t=0}^{T-1} L_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}) + K(\boldsymbol{x}_T)\right]$$

$$s.t. \qquad \boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_{t-2}, \boldsymbol{\xi}_{t+1}), \qquad \boldsymbol{x}_0 = x_0$$

$$\boldsymbol{u}_t \in \mathcal{U}_t(\boldsymbol{x}_t), \quad \boldsymbol{x}_t \in X_t$$

$$\boldsymbol{u}_t = \pi_t(\boldsymbol{x}_t)$$

Delayed control

Consider the following problem, with stagewise independent noise:

$$\min_{\pi} \qquad \mathbb{E}\left[\sum_{t=0}^{T-1} L_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}) + K(\boldsymbol{x}_T)\right]$$

$$s.t. \qquad \boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_{t-2}, \boldsymbol{\xi}_{t+1}), \qquad \boldsymbol{x}_0 = x_0$$

$$\boldsymbol{u}_t \in \mathcal{U}_t(\boldsymbol{x}_t), \quad \boldsymbol{x}_t \in X_t$$

$$\boldsymbol{u}_t = \pi_t(\boldsymbol{x}_t)$$

Bankruptcy

Consider the following problem, with stagewise independent noise:

$$\begin{aligned} \min_{\pi} & & & \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}) + K(\boldsymbol{x}_T)\Big] \\ s.t. & & & & & & & & & & & \\ \boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}), & & & & & & & \\ \boldsymbol{u}_t \in \mathcal{U}_t(\boldsymbol{x}_t), & & & & & & & \\ \boldsymbol{u}_t = \pi_t(\boldsymbol{x}_t) & & & & & & & \end{aligned}$$

In addition, we assume that we start with a capital C_0 , and that we must never, under any circonstance, have a negative capital.

Bankruptcy

Consider the following problem, with stagewise independent noise:

$$\min_{\pi} \qquad \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}) + K(\boldsymbol{x}_T)\Big]$$

$$s.t. \qquad \boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{\xi}_{t+1}), \qquad \boldsymbol{x}_0 = x_0$$

$$\boldsymbol{u}_t \in \mathcal{U}_t(\boldsymbol{x}_t), \quad \boldsymbol{x}_t \in X_t$$

$$\boldsymbol{u}_t = \pi_t(\boldsymbol{x}_t)$$

In addition, we assume that we start with a capital C_0 , and that we must never, under any circonstance, have a negative capital. How can we solve this problem using Dynamic Programming?

Maximizing probability

Consider the following problem, with stagewise independent noise:

$$\min_{\pi} \qquad \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}) + K(\mathbf{x}_T)\Big] \\
s.t. \qquad \mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}), \qquad \mathbf{x}_0 = \mathbf{x}_0 \\
\mathbf{u}_t \in \mathcal{U}_t(\mathbf{x}_t), \quad \mathbf{x}_t \in X_t \\
\mathbf{u}_t = \pi_t(\mathbf{x}_t)$$

We are now reconsidering our objective function, and want to replace the expectation by the probability of the accumulated, at the end of the period, to be negative.

Presentation Outline

- Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

Dynamic Programming Algorithm - Discrete Case - HD

```
Data: Problem parameters 

Result: optimal trajectory and value; V_T \equiv K; V_t \equiv 0 

for t: T-1 \rightarrow 0 do 

\begin{vmatrix} \mathbf{for} \ x \in \mathbb{X}_t \ \mathbf{do} \\ V_t(x) = \mathbb{E} \left[ \min_{y \in \mathcal{X}_t(x, \boldsymbol{\xi}_{t+1})} \left( c_t(x, y, \boldsymbol{\xi}_{t+1}) + V_{t+1}(y) \right) \right] \end{vmatrix}
```

Algorithm 3: Classical stochastic dynamic programming algorithm

Vincent Leclère Dynamic Programming 08/12/2023 27 / 36

Dynamic Programming Algorithm - Discrete Case - HD

```
Data: Problem parameters

Result: optimal trajectory and value;

V_T \equiv K; V_t \equiv 0

for t: T-1 \rightarrow 0 do

for x \in \mathbb{X}_t do

for \xi \in \Xi_t do

\hat{V}_t(x,\xi) = \min_{y \in \mathcal{X}_t(x,\xi)} c_t(x,y,\xi) + V_{t+1}(y)

V_t(x) = V_t(x) + \mathbb{P}(\xi) \hat{V}_t(x,\xi)
```

Algorithm 3: Classical stochastic dynamic programming algorithm

Dynamic Programming Algorithm - Discrete Case - HD

```
Data: Problem parameters
Result: optimal trajectory and value;
V_T \equiv K : V_t \equiv 0
for t: T-1 \rightarrow 0 do
     for x \in \mathbb{X}_t do
           for \xi \in \Xi_t do
                \hat{V}_t(x,\xi) = \infty;
                for y \in \mathcal{X}_t(x,\xi) do
                      v_{y} = c_{t}(x, y, \xi) + V_{t+1}(y):
                     if v_v < \hat{V}_t(x,\xi) then

\hat{V}_t(x,\xi) = v_y ; 

\psi_t(x,\xi) = y ;

                 V_t(x) = V_t(x) + \mathbb{P}(\xi)\hat{V}_t(x,\xi)
```

Algorithm 3: Classical stochastic dynamic programming algorithm

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                           :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                         :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                           :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


Vincent Leclère Dynamic Programming 08/12/2023 28 / 36

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                           :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                           :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


Vincent Leclère Dynamic Programming 08/12/2023 28 / 36

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                         := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                           :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                           :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                          := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


Vincent Leclère Dynamic Programming 08/12/2023 28 / 36

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
        for x_{in} \in X_{t-1}^D do
                for \xi \in \Xi_t do
                                            \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                          x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                              :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
        Extend definition of \tilde{V}_t to X_t by
          interpolation
```


Algorithm 1: Discretized SDP

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                         :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                        \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                           :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                         :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


Vincent Leclère Dynamic Programming 08/12/2023 28 / 36

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                         :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                         :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


Vincent Leclère Dynamic Programming 08/12/2023 28 / 36

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                         :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                         :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                         :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                         :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                       :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                        := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                       :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                      :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                       :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                       := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                      :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                       :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                      :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                      :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                      :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                      := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                       \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                       x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                      :=\dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```



```
\tilde{V}_t \equiv 0
for t: T-1 \rightarrow 1 do
       for x_{in} \in X_{t-1}^D do
              for \xi \in \Xi_t do
                                      \ell_t(x_{in}, x_{out}, \xi) + \tilde{V}_{t+1}(x_{out})
                      x_{out} \in \mathcal{X}_t(x_{in}, \xi)
                                := \dot{\mathcal{B}}_t(\tilde{V}_{t+1})(x_{in},\xi)
       Extend definition of \tilde{V}_t to X_t by
         interpolation
         Algorithm 1: Discretized SDP
```


- The point of most DP methods is to produce approximations \tilde{V}_t of the true value function V_t .
- From any approximation \tilde{V}_t of V_t , we can define a cost-to-go induced policy ψ_t by solving the stage problem:

$$\min_{\mathbf{x}_{out}, u_t \in \mathcal{X}_t(\mathbf{x}_{\mathit{in}}, \xi_t)} \underbrace{\ell_{t+1}(\mathbf{x}_{\mathit{in}}, \mathbf{x}_t, u_t, \xi_t)}_{\text{transition costs}} + \underbrace{\tilde{V}(\mathbf{x}_{out})}_{\text{cost-to-go}}$$

- Thus a (sequence of) value functions approximations yields a policy, which can be simulated to obtain trajectories and costs.
- Often used to pass information from long-term to short-term problems.

¹Sometimes it can be of \dot{V}_t instead

- The point of most DP methods is to produce approximations \tilde{V}_t of the true value function V_t .
- From any approximation \tilde{V}_t of V_t , we can define a cost-to-go induced policy ψ_t by solving the stage problem:

$$\min_{\mathbf{x}_{out}, u_t \in \mathcal{X}_t(\mathbf{x}_{in}, \xi_t)} \underbrace{\ell_{t+1}(\mathbf{x}_{in}, \mathbf{x}_t, u_t, \xi_t)}_{\text{transition costs}} + \underbrace{\tilde{V}(\mathbf{x}_{out})}_{\text{cost-to-go}}$$

- Thus a (sequence of) value functions approximations yields a policy, which can be simulated to obtain trajectories and costs.
- Often used to pass information from long-term to short-term problems.

¹Sometimes it can be of \dot{V}_t instead

- The point of most DP methods is to produce approximations \tilde{V}_t of the true value function V_t .
- From any approximation \tilde{V}_t of V_t , we can define a cost-to-go induced policy ψ_t by solving the stage problem:

$$\min_{\mathbf{x}_{out}, u_t \in \mathcal{X}_t(\mathbf{x}_{in}, \xi_t)} \underbrace{\ell_{t+1}(\mathbf{x}_{in}, \mathbf{x}_t, u_t, \xi_t)}_{\text{transition costs}} + \underbrace{\tilde{V}(\mathbf{x}_{out})}_{\text{cost-to-go}}$$

- Thus a (sequence of) value functions approximations yields a policy, which can be simulated to obtain trajectories and costs.
- Often used to pass information from long-term to short-term problems.

¹Sometimes it can be of \dot{V}_t instead

- The point of most DP methods is to produce approximations \tilde{V}_t of the true value function V_t .
- From any approximation \tilde{V}_t of V_t , we can define a cost-to-go induced policy ψ_t by solving the stage problem:

$$\min_{\mathbf{x}_{out}, u_t \in \mathcal{X}_t(\mathbf{x}_{in}, \xi_t)} \underbrace{\ell_{t+1}(\mathbf{x}_{in}, \mathbf{x}_t, u_t, \xi_t)}_{\text{transition costs}} + \underbrace{\tilde{V}(\mathbf{x}_{out})}_{\text{cost-to-go}}$$

- Thus a (sequence of) value functions approximations yields a policy, which can be simulated to obtain trajectories and costs.
- Often used to pass information from long-term to short-term problems.

¹Sometimes it can be of \dot{V}_t instead

Presentation Outline

- Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

Presentation Outline

- Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

Linear Quadratic case

$$\min_{\pi} \qquad \mathbb{E}\left[\sum_{t=0}^{T-1} \boldsymbol{x}_{t}^{\top} Q_{t} \boldsymbol{x}_{t} + \boldsymbol{u}_{t}^{\top} R_{t} \boldsymbol{u}_{t} + \boldsymbol{x}_{T}^{\top} Q_{T} \boldsymbol{x}_{T}\right]$$

$$s.t. \qquad \boldsymbol{x}_{t+1} = A_{t} \boldsymbol{x}_{t} + B_{t} \boldsymbol{u}_{t} + \boldsymbol{\xi}_{t}, \qquad \boldsymbol{x}_{0} = \boldsymbol{x}_{0}$$

$$\boldsymbol{u}_{t} = \pi_{t}(\boldsymbol{x}_{t})$$

Under stagewise independence of the (centered) noise we can show that:

- **1** The value function is quadratic: $V_t(x_t) = x_t^{\top} K_t x_t + k_t$.
- 2 The optimal policy is linear: $\pi_t(x_t) = L_t x_t$.
- **3** With explicit (Riccati) formulas for K_t and L_t .

$$\begin{cases} K_{T} = Q_{T}, k_{T} = 0 \\ K_{t} = Q_{t} + A_{t}^{\top} K_{t+1} A_{t} - A_{t}^{\top} K_{t+1} B_{t} (R_{t} + B_{t}^{\top} K_{t+1} B_{t})^{-1} B_{t}^{\top} K_{t+1} A_{t} \\ L_{t} = -(R_{t} + B_{t}^{\top} K_{t+1} B_{t})^{-1} B_{t}^{\top} K_{t+1} A_{t} \end{cases}$$

ightharpoonup Can be solved for large dimension (say $n \sim 10^5$).

Linear Quadratic case

$$\min_{\pi} \qquad \mathbb{E}\left[\sum_{t=0}^{T-1} \boldsymbol{x}_{t}^{\top} Q_{t} \boldsymbol{x}_{t} + \boldsymbol{u}_{t}^{\top} R_{t} \boldsymbol{u}_{t} + \boldsymbol{x}_{T}^{\top} Q_{T} \boldsymbol{x}_{T}\right]$$

$$s.t. \qquad \boldsymbol{x}_{t+1} = A_{t} \boldsymbol{x}_{t} + B_{t} \boldsymbol{u}_{t} + \boldsymbol{\xi}_{t}, \qquad \boldsymbol{x}_{0} = \boldsymbol{x}_{0}$$

$$\boldsymbol{u}_{t} = \pi_{t}(\boldsymbol{x}_{t})$$

Under stagewise independence of the (centered) noise we can show that:

- **1** The value function is quadratic: $V_t(x_t) = x_t^{\top} K_t x_t + k_t$.
- 2 The optimal policy is linear: $\pi_t(x_t) = L_t x_t$.
- **3** With explicit (Riccati) formulas for K_t and L_t .

$$\begin{cases} K_{T} = Q_{T}, k_{T} = 0 \\ K_{t} = Q_{t} + A_{t}^{\top} K_{t+1} A_{t} - A_{t}^{\top} K_{t+1} B_{t} (R_{t} + B_{t}^{\top} K_{t+1} B_{t})^{-1} B_{t}^{\top} K_{t+1} A_{t} \\ L_{t} = -(R_{t} + B_{t}^{\top} K_{t+1} B_{t})^{-1} B_{t}^{\top} K_{t+1} A_{t} \end{cases}$$

ightharpoonup Can be solved for large dimension (say $n \sim 10^5$).

Presentation Outline

- Stochastic Dynamic Programming
 - Stochastic optimal control problem
 - Dynamic Programming principle
 - Example
- Extending the usage of dynamic programming
 - More flexibility in the framework
 - Continuous state space
- Structured problems
 - Linear Quadratic case
 - Linear convex case

From Dynamic Programming to SDDP

- DP is a flexible tool, hampered by the curses of dimensionality
- Numerical illustration (7 dams):
 - T = 52 weeks
 - $|S| = 100^7$ possible states
 - $|U| = 10^7$ possible controls
 - $|\xi_t| = 10 \ (10^{52} \ \text{scenarios})$
- \Rightarrow \approx 2 days on today's fastest super-computer (3.10⁶ years for 10 dams)
- ightharpoonup Can be solved² in ≈ 10 minutes

²Approximately, depending on the problem and precision required...

From Dynamic Programming to SDDP

- DP is a flexible tool, hampered by the curses of dimensionality
- Numerical illustration (7 dams):
 - T = 52 weeks
 - $|S| = 100^7$ possible states
 - $|U| = 10^7$ possible controls
 - $|\xi_t| = 10 \ (10^{52} \ \text{scenarios})$
- \Rightarrow \approx 2 days on today's fastest super-computer (3.10⁶ years for 10 dams)
- ightharpoonup Can be solved² in ≈ 10 minutes

²Approximately, depending on the problem and precision required...

Vincent Leclère Dynamic Programming 08/12/2023 31 / 36

From Dynamic Programming to SDDP

- DP is a flexible tool, hampered by the curses of dimensionality
- Numerical illustration (7 dams):
 - T = 52 weeks
 - $|S| = 100^7$ possible states
 - $|U| = 10^7$ possible controls
 - $|\xi_t| = 10 \ (10^{52} \ \text{scenarios})$
- \Rightarrow \approx 2 days on today's fastest super-computer (3.10⁶ years for 10 dams)
- ightharpoonup Can be solved² in ≈ 10 minutes

31 / 36

²Approximately, depending on the problem and precision required...

How can we be so much faster?

- Structural assumptions:
 - convexity
 - continuous state
 - duality tools
- Sampling instead of exhaustive computation
- Iteratively refining value function estimation at "the right places" only
- LP solvers
 - Stochastic Dual Dynamic Programming (SDDP) which
 - has been around for 30 years
 - is widely used in the energy community
 - has lots of extensions and variants
 - some convergence results, mainly asymptotic

Indepen
Finitely supp
Conve
Discrete
State discr
Progre

Maximur

The setting

- We are in a finite-time, stagewise independent framework.
- The state and control variables are continuous and bounded.
- The costs are convex (jointly in state and control).
- The dynamic is linear.
- The constraint on control is convex.
- We are in a relatively complete recourse framework.

Then, we can show that, the value function are convex, and we can approximate them by polyhedral functions.

Stochastic Dual Dynamic Programming: principle

The main idea is to update approximations of the value functions by adding cuts, in order to refine the approximations. We iterate the following steps:

Forward pass Given approximations of the value functions, we simulate the policy induced by these approximations, and obtain a trajectory.

Backward pass We refine the approximations by adding cuts, in order to make the approximations more precise around the trajectory.

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

And so on...

x

36 / 36

Final Cost
$$V_2 = V_2$$

X

Real Bellman function $V_1 = \mathcal{B}_1(V_2)$

Real Bellman function $V_0 = \mathcal{B}_0(V_1)$

Lower polyhedral approximation V_2 of V_2

Lower polyhedral approximation $\underline{V}_1 = \mathcal{B}_t(\underline{V}_2)$ of V_1

Lower polyhedral approximation $\underline{V}_0 = \mathcal{B}_t(\underline{V}_1)$ of V_0

Assume that we have lower polyhedral approximations of V_t

Obtain a lower bound on the value of our problem

Apply $\mathcal{F}_0(\overset{^{\times}}{\underline{V}_1^{(2)}})(x_0)$ and obtain $\overset{^{\times}}{\boldsymbol{X}_1^{(2)}}$

Draw a random realisation $x_1^{(2)}$ of $\boldsymbol{X}_1^{(2)}$

We apply $\overset{\scriptscriptstyle \times}{\mathcal{F}_1}(\underline{\overset{\scriptscriptstyle V(2)}{L_1}})(x_1^{(2)})$ and obtain $\boldsymbol{X}_2^{(2)}$

Draw a random realisation $x_2^{(2)}$ of $\boldsymbol{X}_2^{(2)}$

Compute a cut for V_2 at $x_2^{(2)}$

Add the cut to $\underline{V}_2^{(2)}$ which gives $\underline{\underline{V}_2^{(3)}}$

A new lower approximation of V_1 is $\mathcal{B}_1(\underline{V}_2^{(3)})$

Compute the face active at $x_1^{(2)}$

Add the cut to $\underline{V}_1^{(2)}$ which gives $\underline{\hat{V}}_1^{(3)}$

A new lower approximation of V_0 is $\mathcal{B}_0(\underline{V}_1^{(3)})$

Compute the face active at x_0

Compute the face active at x_0

Obtain a new lower bound