1.We use the "cache" in our implementation of forward and backward propagation to pass useful values to the next layer in the forward propagation. True/False? True	1 point
○ False	
2.During the backpropagation process, we use gradient descent to change the hyperparameters.True/False?True	1 point
○ False	
3.Considering the intermediate results below, which layers of a deep neural network are they likely to belong to?	1 point
Later layers of the deep neural network.	
Input layer of the deep neural network.	
Early layers of the deep neural network.	
Middle layers of the deep neural network.	
4.We can not use vectorization to calculate $da^{[l]}$ in backpropagation, we must use a for loop over all the examples. True/False? False	1 point
O True	
5.Assume we store the values for $n^{[I]}$ in an array called layer_dims, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units, and so on. Which of the following for-loops will allow you to initialize the parameters for the model?	1 point
for i in range(len(layer_dims)-1):	
parameter['W' + str(i+1)] = np.random.randn(layer_dims[i], layer_dims[i+1]) * 0.01	
parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01	

```
0
    for i in range(1, len(layer_dims)/2):
    parameter['W' + str(i)] = np.random.randn(layer\_dims[i], layer\_dims[i-1]) * 0.01
    parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01
    for i in range(len(layer_dims)-1):
    parameter['W' + str(i+1)] = np.random.randn(layer\_dims[i+1], layer\_dims[i]) * 0.01
    parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01
0
    for i in range(len(layer_dims)):
    parameter['W' + str(i+1)] = np.random.randn(layer\_dims[i+1], layer\_dims[i]) * 0.01
    parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01
```

1 point

What are all the values of $n^{[0]}$, $n^{[1]}$, $n^{[2]}$, $n^{[3]}$ and $n^{[4]}$?

6. Consider the following neural network:

- 4, 4, 3, 2
 4, 3, 2, 1
 4, 3, 2, 1
 4, 3, 2
 7.If L is the number of layers of a neural network then dZ^[L] = A^[L] Y. True/False?
 False
 True
 8.There are certain functions with the following properties:
 1 point
 (i) To compute the function using a shallow network circuit, you will need a large network (where we
 - (i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

O True

O False

9. Consider the following 2 hidden layers neural network:

1 point

Which of the following statements is true? (Check all that apply).

- \square $W^{[1]}$ will have shape (4, 3)
- \Box $b^{[1]}$ will have shape (1, 4)
- \square $W^{[2]}$ will have shape (3, 1)
- \square $W^{[2]}$ will have shape (1, 3)
- \square $W^{[2]}$ will have shape (4, 3)
- $\bigcap b^{[1]}$ will have shape (3, 1)
- \Box $b^{[1]}$ will have shape (4, 1)

10.Whereas the previous question used a specific network, in the general case what is the dimension of $b^{[l]}$, the bias vector associated with layer I? $ b^{[l]} \text{ has shape } (n^{[l]}, 1) $
$\bigcirc \ b^{[l]}$ has shape $(n^{[l+1]},1)$
$\bigcirc \ b^{[l]}$ has shape $(1,n^{[l-1]})$
$\bigcirc \ b^{[l]}$ has shape $(1,n^{[l]})$

1 point