Resquício da aula anterior: Método da substituição

Prof. Daniel Kikuti

Universidade Estadual de Maringá

Provar complexidade usando o Método da Substituição

$$T(n) = \begin{cases} 1 & \text{se } n = 1 \\ 4T(n/2) + n^2 & \text{se } n \ge 2 \end{cases}$$

Demostração de que $T(n) = O(n^2 \lg n)$

Pela definição, devemos mostrar que existem constantes c>0 e $n_0>0$ tal que $T(n)\leq cn^2\lg n,\ \forall n\geq n_0.$

Caso base: Para n=1, $T(1)=1>c(1)^2\lg 1=0$, ou seja, não é possível definir um c que satisfaça a definição. [fail]

Sem problemas, pois não somos obrigados a usar $n_0 = 1$.

Caso base: Considere n > 3 e os novos casos base $T(2) = 4T(1) + 2^2 = 8$ e $T(3) = 4.T(1) + 3^2 = 13$. Para n = 2, $T(2) < c2^2 \lg 2 = 4c$ para c > 2.

Para n=3, $T(3) \leq c3^2 \lg 3 \approx 14.26c$ para $c \geq 2$. [ok]

Provar complexidade usando o Método da Substituição

Demostração de que $T(n) = O(n^2 \lg n)$ (continuação)

Hipótese: Assuma que $T(k) \le ck^2 \lg k$ (para todo k < n, em particular para k = n/2). Queremos mostrar que quando k = n, $T(n) \le cn^2 \lg n$.

Passo:
$$T(n) = 4T(n/2) + n^2$$

$$\leq 4c(n/2)^2 \lg(n/2) + n^2$$

$$= cn^2 (\lg n - \lg 2) + n^2$$

$$= cn^2 \lg n - cn^2 + n^2$$

$$\leq cn^2 \lg n.$$

Note que para $c \geq 2, -cn^2 + n^2 \leq 0$; então se deixarmos de subtrair este residual teremos $T(n) \leq cn^2 \lg n$, concluindo a demonstração.

Método da substituição

Sutilezas...

- ▶ Considere a recorrência: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$.
- ▶ Vamos supor que T(n) = O(n).

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$\leq c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

$$= cn + 1.$$

- Aplicando o método da substituição, não conseguimos chegar na forma exata da indução (isto é, não chegamos em $T(n) \le cn$).
- ► Chute parece correto, mas as continhas não estão ajudando... Tentaremos subtrair um termo de menor ordem.

Método da substituição

Dada a recorrência:

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

Nova tentativa com uma hipótese mais forte

▶ **Hipótese:** $T(n) \le cn - d$, onde $d \ge 0$ é uma constante.

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$\leq c \lfloor n/2 \rfloor - d + c \lceil n/2 \rceil - d + 1$$

$$= cn - 2d + 1$$

$$\leq cn - d \text{ (para d } \geq 1\text{)}.$$

▶ Portanto, podemos concluir que $T(n) \in O(n)$.

Método da substituição

Dada a recorrência:

$$T(n) = T(|n/2|) + T(\lceil n/2 \rceil) + 1$$

Nova tentativa com uma hipótese mais forte

▶ **Hipótese:** $T(n) \le cn - d$, onde $d \ge 0$ é uma constante.

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$\leq c \lfloor n/2 \rfloor - d + c \lceil n/2 \rceil - d + 1$$

$$= cn - 2d + 1$$

$$\leq cn - d \text{ (para d } \geq 1).$$

▶ Portanto, podemos concluir que $T(n) \in O(n)$.

Alternativamente poderíamos provar que $T(n) \in O(n-1)$ e concluir (por transitividade) que como $n-1 \in O(n)$ então $T(n) \in O(n)$.

Sua vez

Exercício

- 1. $T(n) = 8T(n/2) + \Theta(n^2)$. Mostre que $T(n) = O(n^3)$.
- 2. $T(n) = 4T(n/2) + \Theta(n^2)$. Mostre que $T(n) = O(n^2)$ [Exercício 4.3-8 do Cormen tricky].