PIEO Trees for Fun and Profit

We assume familiarity with [?], adopt its notational conventions, and borrow many of its definitions!

1 Structure & Semantics

Definition 1.1. For sets S, D, and predicates F over D, let **PIEO**(S, D, F) denote the set of *PIEO*s that

- (1) hold entries in S, decorated with meta-data in D
- (2) are ordered by Rk
- (3) support predicates in F
- (4) admit partial functions

pop :
$$PIEO(S, D, F) \times F \rightarrow S \times PIEO(S, D, F)$$

push : $PIEO(S, D, F) \times S \times D \times Rk \rightarrow PIEO(S, D, F)$
proj : $PIEO(S, D, F) \times F \rightarrow PIFO(S)$

Maps push and pop are as usual. The *projection* proj(p, f) is the PIFO of entries in p with data satisfying f. These three maps play nicely together:

$$pop(p, f)$$
 is undefined $\iff pop(proj(p, f))$ is undefined (1)

$$pop(p, f) = (pkt, p') \iff pop(proj(p, f)) = (pkt, proj(p', f))$$
(2)

$$proj(push(p, s, d, r), f) = \begin{cases} push(proj(p, f), s, r) & f(d) \text{ holds true} \\ proj(p, f) & \text{otherwise} \end{cases}$$
(3)

We consider PIEOs p, p' equal if, for all $f \in F$, proj(p, f) = proj(p', f), i.e. their projections are always equal. For PIEO p, entry $s \in S$, and predicate $f \in F$, we write

- (1) |p| for the number of entries in p
- (2) $|p|_f$ for the number of entries in p satisfying f
- (3) $|p|_{s,f}$ for the number of times s occurs in p with associated $d \in D$ such that f(d) holds

We fix an opaque set **Data** and a collection \mathcal{F} of predicates defined on it. These predicates come with a total order \leq and the property that, $\forall d \in \mathbf{Data}$ and $f, f' \in \mathcal{F}, f \leq f' \land f(d) \implies f'(d)$.

Definition 1.2. The set of *PIEO trees* over $t \in \textbf{Topo}$, denoted **PIEOTree**(t), is defined inductively by

$$\begin{array}{ll} p \in \mathsf{PIEO}(\mathsf{Pkt},\mathsf{Data},\mathcal{F}) \\ \text{Leaf}(p) \in \mathsf{PIEOTree}(*) \end{array} \qquad \begin{array}{ll} n \in \mathbb{N} & ts \in \mathsf{Topo}^n & p \in \mathsf{PIEO}(\{1,\ldots,n\},\mathsf{Data},\mathcal{F}) \\ \forall i \in [1,n]. \ qs[i] \in \mathsf{PIEOTree}(ts[i]) \\ & \text{Internal}(qs,p) \in \mathsf{PIEO}(\mathsf{Node}(ts)) \end{array}$$

Definition 1.3. Define pop : $PIEOTree(t) \times \mathcal{F} \rightarrow Pkt \times PIEOTree(t)$ by

$$\frac{\operatorname{pop}(p,f) = (\operatorname{pkt},p')}{\operatorname{pop}(\operatorname{Leaf}(p),f) = (\operatorname{pkt},\operatorname{Leaf}(p'))} \frac{\operatorname{pop}(p,f) = (i,p') \quad \operatorname{pop}(qs[i],f) = (\operatorname{pkt},q')}{\operatorname{pop}(\operatorname{Internal}(qs,p),f) = (\operatorname{pkt},\operatorname{Internal}(qs[q'/i],p'))}$$

Definition 1.4. Define push : $PIEOTree(t) \times Pkt \times Data \times Path(t) \rightarrow PIEOTree(t)$ by

$$\frac{\operatorname{push}(p,\operatorname{pkt},d,r)=p'}{\operatorname{push}(\operatorname{Leaf}(p),\operatorname{pkt},d,r)=\operatorname{Leaf}(p')} \frac{\operatorname{push}(p,i,d,r)=p'}{\operatorname{push}(\operatorname{Internal}(qs,p),\operatorname{pkt},d,(i,r)::pt)=\operatorname{Internal}(qs[q'/i],p')}$$

Definition 1.5. Let $t \in \textbf{Topo}$. A *control* over t is a triple (s, q, z), where $s \in St$ is the *current state*, q is a PIEO tree of topology t, and

$$z: \mathsf{St} \times \mathsf{Pkt} \to \mathsf{Data} \times \mathsf{Path}(t) \times \mathsf{St}$$

is a function called the *scheduling transaction*.

2 Well-Formedness

Definition 2.1. Fix $f \in \mathcal{F}$. Define $|\cdot|_f : \mathsf{PIEOTree}(t) \to \mathbb{N}$ by

$$|\operatorname{Leaf}(p)|_f = |p|_f$$
 $|\operatorname{Internal}(qs, p)|_f = \sum_{i=1}^{|qs|} |qs[i]|_f$

We say that $q \in \mathbf{PIEOTree}(t)$ is well-formed w.r.t f, denoted $\vdash_f q$, if it adheres to the following rules.

$$\frac{\forall i \in [1, |qs|], \; \vdash_f qs[i] \land |p|_{i,f} = |qs[i]|_f}{\vdash_f \mathsf{Internal}(qs, p)}$$

We say q is well-formed, denoted $\vdash q$, if there exists $f \in \mathcal{F}$ such that, for all $f' \geq f$, $\vdash_{f'} q$.

Theorem 2.2. Let $t \in \mathsf{Topo}$, $\mathsf{pkt} \in \mathsf{Pkt}$, $d \in \mathsf{Data}$, $f \in \mathcal{F}$, and $q \in \mathsf{PIEOTree}(t)$ such that $\vdash q$.

- (1) If $pt \in \mathbf{Path}(t)$, then push(q, pkt, d, pt) is well-defined and $\vdash push(q, pkt, d, pt)$.
- (2) If $|q|_f > 0$, then pop(q, f) is well-defined and $\vdash q'$, where pop(q, f) = (pkt, q').

Proof. TBD

3 Projection

Definition 3.1. For $f \in \mathcal{F}$, define $\text{proj}_f : \text{PIEOTree}(t) \to \text{PIFOTree}(t)$ by

$$\frac{p' = \operatorname{proj}(p, f)}{\operatorname{proj}_f(\operatorname{Leaf}(p)) = \operatorname{Leaf}(p')} \qquad \frac{p' = \operatorname{proj}(p, f) \qquad \forall i \in [1, |qs|], \ qs'[i] = \operatorname{proj}_f(qs[i])}{\operatorname{proj}_f(\operatorname{Internal}(qs, p)) = \operatorname{Internal}(qs', p')}$$

Lemma 3.2. For $q, q' \in \mathsf{PIEOTree}(t)$,

$$\forall f \in \mathcal{F}, \operatorname{proj}_f(q) = \operatorname{proj}_f(q') \implies q = q'$$

Proof. Suppose $\operatorname{proj}_f(q) = \operatorname{proj}_f(q')$ for all $f \in \mathcal{F}$. We'll proceed by induction on t to show q = q'.

(Leaf) For t = *, let q = Leaf(p) and q' = Leaf(p'). Since

$$\operatorname{proj}_f(q) = \operatorname{Leaf}(\operatorname{proj}(p, f)) = \operatorname{Leaf}(\operatorname{proj}(p', f)) = \operatorname{proj}_f(q')$$

we know $\operatorname{proj}(p, f) = \operatorname{proj}(p', f)$ for all $f \in \mathcal{F}$. By $\ref{eq:projection}$, p = p' and hence q = q'.

(Node) For t = Node(ts) and n = |ts|, let q = Internal(qs, p) and q' = Internal(qs', p'). Notice

$$proj(p, f) = proj(p', f)$$

$$proj_f(qs[i]) = proj_f(qs'[i])$$

$$(i = 1, ..., n)$$

for all $f \in \mathcal{F}$. Hence, p = p' via ?? and qs = qs' by the inductive hypothesis, i.e. q = q'.

Lemma 3.3. For $q \in \mathsf{PIEOTree}(t)$ and $f \in \mathcal{F}$, $\mathsf{pop}(q, f)$ is undefined if and only if $\mathsf{pop}(\mathsf{proj}_f(q))$ is undefined.

Proof. We'll do induction on t.

(Leaf) For
$$t = *$$
, let $q = \text{Leaf}(p)$ and $\text{proj}_f(q) = \text{Leaf}(p')$. By **??** in **??**,

$$pop(q, f)$$
 is undefined $\iff pop(p, f)$ is undefined

$$\iff$$
 pop (p') is undefined

$$\iff$$
 pop(proj_f(q)) is undefined

(Node) For t = Node(ts), let q = Internal(qs, p) and $\text{proj}_f(q) = \text{Internal}(qs', p')$. As before,

$$pop(p, f)$$
 is undefined $\iff pop(p')$ is undefined

by ?? in ?? and

$$pop(qs[i], f)$$
 is undefined $\iff pop(qs'[i])$ is undefined $\forall i \in [1, |ts|]$

by the inductive hypothesis. Hence, using ?? in ??,

$$pop(q, f)$$
 is undefined $\iff pop(p, f)$ is undefined $\lor (pop(p, f) = (i, _) \land pop(qs[i], f)$ is undefined)

$$\iff$$
 pop (p') is undefined \lor (pop $(p') = (i, _) \land pop(qs'[i])$ is undefined)

$$\iff$$
 pop(proj_f(q)) is undefined

Lemma 3.4. For $q \in \mathsf{PIEOTree}(t)$ and $f \in \mathcal{F}$,

$$pop(q, f) = (pkt, q') \implies pop(proj_f(q)) = (pkt, proj_f(q'))$$

Proof. More induction on t!

(Leaf) For
$$t = *$$
, let

$$q = \text{Leaf}(p_1)$$
 $\text{proj}_f(q) = \text{Leaf}(p_2)$

$$q' = \text{Leaf}(p'_1)$$
 $\text{proj}_f(q') = \text{Leaf}(p'_2)$

$$pop(q, f) = (pkt, q') \implies pop(p_1, f) = (pkt, p'_1)$$

$$\implies pop(p_2) = pop(proj(p_1, f)) = (pkt, proj(p'_1, f)) = (pkt, p'_2)$$

$$\implies pop(proj_f(q)) = (pkt, proj_f(q'))$$

(Node) For t = Node(ts), Let

$$q = \operatorname{Internal}(qs_1, p_1)$$
 $\operatorname{proj}_f(q) = \operatorname{Internal}(qs_2, p_2)$
 $q' = \operatorname{Internal}(qs'_1, p'_1)$ $\operatorname{proj}_f(q') = \operatorname{Internal}(qs'_2, p'_2)$

Using ?? in ?? again and the inductive hypothesis,

$$\begin{aligned} \mathsf{pop}(q,f) &= (\mathsf{pkt},q') \implies \mathsf{pop}(p_1,f) = (i,p_1') \land \mathsf{pop}(qs_1[i],f) = (\mathsf{pkt},qs_1'[i]) \\ &\implies \mathsf{pop}(\mathsf{proj}(p_1,f)) = (i,\mathsf{proj}(p_1',f)) \land \mathsf{pop}(\mathsf{proj}_f(qs_1[i])) = (\mathsf{pkt},\mathsf{proj}_f(qs_1'[i])) \\ &\implies \mathsf{pop}(p_2) = (i,p_2') \land \mathsf{pop}(qs_2[i]) = (\mathsf{pkt},qs_2'[i]) \\ &\implies \mathsf{pop}(\mathsf{proj}_f(q)) = (\mathsf{pkt},\mathsf{proj}_f(q')) \end{aligned}$$

Lemma 3.5. For $q \in \mathsf{PIEOTree}(t)$, $\mathsf{pkt} \in \mathsf{Pkt}$, $d \in \mathsf{Data}$, $pt \in \mathsf{Path}(t)$, and $f \in \mathcal{F}$,

$$\operatorname{proj}_f(\operatorname{push}(q,\operatorname{pkt},d,\operatorname{pt})) = \begin{cases} \operatorname{push}(\operatorname{proj}_f(q),\operatorname{pkt},\operatorname{pt}) & f(d) \text{ holds true} \\ \operatorname{proj}_f(q) & \text{otherwise} \end{cases}$$

Proof. Even more induction on t!

(Leaf) For
$$t = *$$
, let $q = \text{Leaf}(p)$ and $pt = r$. By **??** in **??**.

$$\begin{split} \operatorname{proj}_f(\operatorname{push}(q,\operatorname{pkt},d,pt)) &= \operatorname{Leaf}(\operatorname{proj}(\operatorname{push}(p,\operatorname{pkt},d,r),f)) \\ &= \begin{cases} \operatorname{Leaf}(\operatorname{push}(\operatorname{proj}(p,f),\operatorname{pkt},r)) & f(d) \text{ holds true} \\ \operatorname{Leaf}(\operatorname{proj}(p,f)) & \text{otherwise} \end{cases} \\ &= \begin{cases} \operatorname{push}(\operatorname{proj}_f(q),\operatorname{pkt},pt) & f(d) \text{ holds true} \\ \operatorname{proj}_f(q) & \text{otherwise} \end{cases} \end{split}$$

(Node) For t = Node(ts), let pt = (i, r) :: pt' and

$$q = \mathsf{Internal}(qs, p)$$

$$\mathsf{proj}_f(q) = \mathsf{Internal}(qs', p')$$

$$\mathsf{push}(\mathsf{proj}_f(q), \mathsf{pkt}, pt) = \mathsf{Internal}(qs'', p'')$$

$$\mathsf{proj}_f(\mathsf{push}(q, \mathsf{pkt}, d, pt)) = \mathsf{Internal}(qs''', p''')$$

By ?? in ?? and the inductive hypothesis

$$p''' = \begin{cases} \operatorname{push}(\operatorname{proj}(p,f),i,r) & f(d) \text{ holds true} \\ \operatorname{proj}(p,f) & \text{otherwise} \end{cases}$$

$$= \begin{cases} \operatorname{push}(p',i,r) & f(d) \text{ holds true} \\ p' & \text{otherwise} \end{cases} = \begin{cases} p'' & f(d) \text{ holds true} \\ p' & \text{otherwise} \end{cases}$$

$$qs'''[i] = \begin{cases} \operatorname{push}(\operatorname{proj}_f(qs[i]), \operatorname{pkt}, pt') & f(d) \text{ holds true} \\ \operatorname{proj}_f(qs[i]) & \text{otherwise} \end{cases}$$

$$= \begin{cases} \operatorname{push}(qs'[i], \operatorname{pkt}, pt') & f(d) \text{ holds true} \\ qs'[i] & \text{otherwise} \end{cases}$$

$$= \begin{cases} \operatorname{qs''}[i] & f(d) \text{ holds true} \\ qs'[i] & \text{otherwise} \end{cases}$$

By inspection of ?? and ??,

$$qs'[j] = qs''[j] = qs'''[j] = proj_f(qs[j])$$

for all $j \in [1, |ts|]$ such that $j \neq i$. Hence,

$$qs''' = \begin{cases} qs'' & f(d) \text{ holds true} \\ qs' & \text{otherwise} \end{cases}$$

Putting everything together,

$$\begin{split} \operatorname{proj}_f(\operatorname{push}(q,\operatorname{pkt},d,pt)) &= \operatorname{Internal}(qs'',p''') \\ &= \begin{cases} \operatorname{Internal}(qs'',p'') & f(d) \text{ holds true} \\ \operatorname{Internal}(qs',p') & \text{otherwise} \end{cases} \\ &= \begin{cases} \operatorname{push}(\operatorname{proj}_f(q),\operatorname{pkt},pt) & f(d) \text{ holds true} \\ \operatorname{proj}_f(q) & \text{otherwise} \end{cases} \end{split}$$

4 Embedding & Simulation

Definition 4.1. Let $t_1, t_2 \in \textbf{Topo}$. We call a relation $R \subseteq \textbf{PIEOTree}(t_1) \times \textbf{PIEOTree}(t_2)$ a *simulation* if, for all pkt $\in \textbf{Pkt}$, $f \in \mathcal{F}$, and $g_1 R g_2$,

- (1) If $pop(q_1, f)$ is undefined, then so is $pop(q_2, f)$
- (2) If $pop(q_1, f) = (pkt, q'_1)$, then $pop(q_2, f) = (pkt, q'_2)$ such that $q'_1 R q'_2$.
- (3) For all $pt_1 \in \mathbf{Path}(t_1)$ and $d \in \mathbf{Data}$, there exists $pt_2 \in \mathbf{Path}(t_2)$ such that

$$push(q_1, pkt, d, pt_1) R push(q_2, pkt, d, pt_2)$$

If such a simulation exists, we say that q_1 is *simulated* by q_2 , and we write $q_1 \leq q_2$.

Remark 4.2. For all further discussion, we assume our embeddings are injective.

Definition 4.3. For t_1 , $t_2 \in \textbf{Topo}$, let f be an embedding from t_1 to t_2 . We lift f to a map \overline{f} from **PIEOTree** (t_1) to **PIEOTree** (t_2) inductively.

- For $t_1 = *$, define $\overline{f}(q) = q$. This is well-defined by [?, Lemma 5.2].
- For $t_1 = \text{Node}(ts_1)$, $n = |ts_1|$, q = Internal(qs, p), construct $\overline{f}_{\alpha}(q) \in \text{PIEOTree}(t_2/\alpha)$ for each prefix α of f(i) for some $i \in [1, n]$. Inductively, we'll build up from f(i)'s to ϵ and set $\overline{f}(q) = \overline{f}_{\epsilon}(q)$.
 - Let $\alpha = f(i)$ for some $i \in [1, n]$. We'll set $\overline{f}_{\alpha}(q) = \overline{f}_i(qs[i])$, where f_i embeds t_1/i into $t_2/f(i)$ as per [?, Lemma 5.2]. This well-defined by the injectivity of f.
 - Let α point to a transient node, say with m children. For $1 \leq j \leq m$ such that $\alpha \cdot j$ is not a prefix of some f(i), define $\overline{f}(q)_{\alpha \cdot j}$ to be the PIEO tree with empty PIEOs on all leaves and internal nodes. With this and recursion, we know $\overline{f}(q)_{\alpha \cdot j} \in \mathbf{PIEOTree}(t_2/(\alpha \cdot j))$ for all $j \in [1, m]$. We create a new PIEO p_{α} as follows:
 - (1) Start with p_{α} empty
 - (2) For each i in p such that $\alpha \cdot j$ is a prefix of f(i), push j into p_{α} with i's data and rank Finally, for all $j \in [1, m]$, set $qs_{\alpha}[j] = \overline{f}(q)_{\alpha \cdot j}$ and $\overline{f}(q)_{\alpha} = \operatorname{Internal}(qs_{\alpha}, p_{\alpha})$.

Theorem 4.4. The following diagram commutes

In other words, for $q \in \mathbf{PIEOTree}(t_1)$ and $g \in \mathcal{F}$, $\operatorname{proj}_g(\overline{f}(q)) = \widehat{f}(\operatorname{proj}_g(q))$.

Proof. We'll proceed by induction on t_1 . Suppose $t_1 = *$ and q = Leaf(p). By [?, Lemma 5.3], $t_2 = *$ as well. By ?? and [?, Definition 5.4], both \overline{f} and \widehat{f} are the identity. Hence,

$$\operatorname{proj}_g(\overline{f}(q)) = \operatorname{proj}_g(q) = \widehat{f}(\operatorname{proj}_g(q))$$

Suppose $t_1 = \text{Node}(ts)$ and q = Internal(qs, p). For any prefix α of f(i) for $i \in [1, |ts|]$, we'll show

$$\operatorname{proj}_{a}(\overline{f}(q)_{\alpha}) = \widehat{f}(\operatorname{proj}_{a}(q))_{\alpha} \tag{*}$$

by inverse induction on α . Instantiating **??** with $\alpha = \epsilon$ yields the desired result.

• For $\alpha = f(i)$, ?? holds by the outer inductive hypothesis because

$$\operatorname{proj}_{g}(\overline{f}(q)_{\alpha}) = \operatorname{proj}_{g}(\overline{f}_{i}(q)) = \widehat{f}_{i}(\operatorname{proj}_{g}(q)) = \widehat{f}(\operatorname{proj}_{g}(q))_{\alpha}$$

• Suppose α is some strict prefix of f(i), pointing to a node with m children. Let

$$\operatorname{proj}_g(\overline{f}(q)) = \operatorname{Internal}(qs', p')$$
 and $\widehat{f}(\operatorname{proj}_g(q)) = \operatorname{Internal}(qs'', p'')$

There's two parts to showing ??, namely qs' = qs'' and p' = p''.

- For all $i \in [1, m]$,

$$\operatorname{proj}_q(\overline{f}(q)_{\alpha \cdot j}) = \widehat{f}(\operatorname{proj}_q(q))_{\alpha \cdot j}$$

For j such that $\alpha \cdot j$ is a prefix of some f(i), this follows from the inner inductive hypothesis. For all other j, notice the LHS and RHS are both PIFO trees of topology t_2 , with empty PIFOs on all leaves and internal nodes. Hence, qs'[j] = qs''[j] for all $j \in [1, m]$, i.e. qs' = qs''.

- By inspection, it's clear following the construction for p_{α} from ?? and then computing the projection $\operatorname{proj}(p_{\alpha},g)$ yields the same result as following the recipe for p_{α} from [?, Definition 5.4] on the projection $\operatorname{proj}_g(q)$: that is, exactly when we filter out elements not satisfying g does not matter. Hence, p' = p''.

Lemma 4.5. Let $t_1, t_2 \in \textbf{Topo}$ and f be an embedding of t_1 inside t_2 . For $g \in \mathcal{F}$,

$$pop(q, g)$$
 is undefined $\implies pop(\overline{f}(q), g)$ is undefined

Proof. Suppose pop(q,g) is undefined. Applying both $\ref{proj}_g(q)$ and $[\ref{q}]$, Lemma 5.6], notice $pop(\widehat{f}(proj_g(q)))$ is undefined. By \ref{q} , $\widehat{f}(proj_g(q)) = proj_g(\overline{f}(q))$. Hence, $pop(proj_g(\overline{f}(q)))$ is undefined. Applying \ref{q} ? once more, $pop(\overline{f}(q),g)$ is undefined.

Lemma 4.6. Let t_1 , $t_2 \in \textbf{Topo}$ and f be an embedding of t_1 inside t_2 . For $g \in \mathcal{F}$,

$$pop(q, g) = (pkt, q') \implies pop(\overline{f}(q), g) = (pkt, \overline{f}(q'))$$

Almost a clone of the proof [?, Lemma 5.7].

Proof. We'll proceed by induction on t_1 . Suppose $t_1 = *$. By [?, Lemma 5.3], $t_2 = *$ as well. By ??, \overline{f} is the identity. Hence,

$$pop(q, g) = (pkt, q') \implies pop(\overline{f}(q), g) = pop(q, g) = (pkt, q') = (pkt, \overline{f}(q'))$$

Suppose $t_1 = Node(ts)$. Let

$$q = Internal(qs, p)$$
 $q' = Internal(qs', p')$ $pop(p, g) = (j, p')$

For any prefix α of some f(i) (where $i \in [1, |ts|]$), we'll show

$$pop(\overline{f}(q)_{\alpha}, g) = (pkt, \overline{f}(q')_{\alpha}) \qquad \text{if } \alpha \text{ is a prefix of } f(j)$$

$$\overline{f}(q)_{\alpha} = \overline{f}(q')_{\alpha} \qquad \text{otherwise}$$

by inverse induction on α . Instantiating ?? with $\alpha = \epsilon$ yields the desired result.

• Suppose $\alpha = f(i)$. If α is a prefix of f(j), i = j by injectivity and [?, Definition 5.2, Equation (3)]. Recall pop(qs[j], g) = (pkt, qs'[j]). Hence, by the outer inductive hypothesis,

$$pop(\overline{f}(q)_{\alpha}, g) = pop(\overline{f}_{j}(qs[j]), g) = (pkt, \overline{f}_{j}(qs'[j])) = (pkt, \overline{f}(q')_{\alpha})$$

• Once more, suppose $\alpha = f(i)$. If α is not a prefix of f(j), then $i \neq j$. Since qs[i] = qs'[i],

$$\overline{f}(q)_{\alpha} = \overline{f_i}(qs[i]) = \overline{f_i}(qs'[i]) = \overline{f}(q')_{\alpha}$$

• Suppose α is some strict prefix of f(j), pointing to a node with m children. Let

$$\overline{f}(q)_{\alpha} = \operatorname{Internal}(qs_{\alpha}, p_{\alpha})$$
 $\overline{f}(q')_{\alpha} = \operatorname{Internal}(qs'_{\alpha}, p'_{\alpha})$

There exists $k \in [1, m]$ such that $\alpha \cdot k$ is a prefix of f(j). By the inner inductive hypothesis,

$$qs_{\alpha}[i] = \overline{f}(q)_{\alpha \cdot i} = \overline{f}(q')_{\alpha \cdot i} = qs_{\alpha}[i] \text{ for } i \in [1, m] \text{ with } i \neq k$$

$$pop(qs_{\alpha}[k], q) = pop(\overline{f}(q)_{\alpha \cdot k}, q) = (pkt, \overline{f}(q')_{\alpha \cdot k}) = (pkt, qs'[k])$$
(!)

Via the construction in **??** and since pop(p, g) = p', $pop(p_{\alpha}, g) = (k, p'_{\alpha})$. Putting everything together, $pop(\overline{f}(q)_{\alpha}, g) = (pkt, \overline{f}(q')_{\alpha})$, as desired.

• Suppose α is some strict prefix of some f(i) but not f(i), pointing to a node with m children. Let

$$\overline{f}(q)_{\alpha} = \operatorname{Internal}(qs_{\alpha}, p_{\alpha})$$
 $\overline{f}(q')_{\alpha} = \operatorname{Internal}(qs'_{\alpha}, p'_{\alpha})$

Since p and p' agree on all indices i such that f(i) is a child of α , $p_{\alpha} = p'_{\alpha}$. For $i \in [1, m]$, since $\alpha \cdot i$ is not a prefix of f(j), the inner inductive hypothesis yields

$$qs_{\alpha}[i] = \overline{f}(q)_{\alpha \cdot i} = \overline{f}(q')_{\alpha \cdot i} = qs'_{\alpha}[i]$$
(!!)

Putting everything together, $\overline{f}(q)_{\alpha} = \overline{f}(q')_{\alpha}$, as desired.

NOTE: even when $\alpha \cdot i$ is not a prefix of any f(i), ?? and ?? hold! Both $\overline{f}(q)_{\alpha \cdot i}$ and $\overline{f}(q')_{\alpha \cdot i}$ would be PIEO trees with empty PIEOs on all leaf and internal nodes.

Lemma 4.7. Let $t_1, t_2 \in \textbf{Topo}$ and f be an embedding of t_1 inside t_2 . For $pkt \in \textbf{Pkt}$, $d \in \textbf{Data}$, and $pt \in \textbf{Path}(t_1)$,

$$\overline{f}(\operatorname{push}(q,\operatorname{pkt},d,pt)) = \operatorname{push}(\overline{f}(q),\operatorname{pkt},d,\widetilde{f}(pt))$$

Proof. Let $q_2 = \overline{f}(q_1)$. For $g \in \mathcal{F}$ such that g(d) holds true,

$$(\text{by } \ref{eq:proj}_g(\overline{f}(\text{push}(q_1, \text{pkt}, d, pt))) = \widehat{f}(\text{proj}_g(\text{push}(q_1, \text{pkt}, d, pt)))$$

$$= \widehat{f}(\operatorname{push}(\operatorname{proj}_g(q_1),\operatorname{pkt},pt))$$

(by [?, Lemma 5.9])
$$= \operatorname{push}(\widehat{f}(\operatorname{proj}_g(q_1)), \operatorname{pkt}, \widetilde{f}(pt))$$

$$= \operatorname{push}(\operatorname{proj}_g(q_2),\operatorname{pkt},\widetilde{f}(pt))$$

$$= \operatorname{proj}_{g}(\operatorname{push}(q_{2}, \operatorname{pkt}, d, \widetilde{f}(pt)))$$

For $g \in \mathcal{F}$ such that g(d) does not hold true,

(by
$$??$$
) $\operatorname{proj}_{a}(\overline{f}(\operatorname{push}(q_{1},\operatorname{pkt},d,pt))) = \widehat{f}(\operatorname{proj}_{a}(\operatorname{push}(q_{1},\operatorname{pkt},d,pt)))$

$$=\widehat{f}(\operatorname{proj}_g(q_1))$$

$$(\text{by } \ref{eq:condition}) = \operatorname{proj}_g(q_2)$$

$$= \operatorname{proj}_{g}(\operatorname{push}(q_{2}, \operatorname{pkt}, d, \widetilde{f}(pt)))$$

Overall, $\operatorname{proj}_g(\overline{f}(\operatorname{push}(q_1,\operatorname{pkt},d,pt))) = \operatorname{proj}_g(\operatorname{push}(q_2,\operatorname{pkt},d,\widetilde{f}(pt)))$ for all $g \in \mathcal{F}$. Hence,

$$\overline{f}(\operatorname{push}(q_1,\operatorname{pkt},d,pt)) = \operatorname{push}(q_2,\operatorname{pkt},d,\widetilde{f}(pt))$$

Theorem 4.8. Let $t_1, t_2 \in \textbf{Topo}$. If f embeds t_1 into t_2 , then

$$R = \{(q, \overline{f}(q)) \mid q \in \mathsf{PIEOTree}(t_1)\}$$

is a simulation.

by ??, as desired.

Proof. By ??, ??, and ??, the conditions from ?? hold.