

-Motivation

Unaligned 2D to 3D Translation with Conditional Vector-Quantized Code Diffusion using Transformers

Abril Corona-Figueroa, Sam Bond-Taylor, Neelanjan Bhowmik, Yona Falinie A. Gaus, Toby P. Breckon, Hubert P. H. Shum, Chris G. Willcocks Durham University, UK

Unpaired compression: Learn rich Vector-Quantized discrete 2D and 3D spaces independently.

2D images?

→ Can we model complex 3D objects from two

Unaligned inputs for real-world applications.

- (2) Model p(c|X) with a diffusion model parameterized with an unconstrained transformer.
 - c: VQ codes of 3D data.
 - $ullet oldsymbol{X} = \{oldsymbol{x}_1, \cdots, oldsymbol{x}_n\}$: set of VQ codes of all 2D views.

[1] Xingde Ying, et al. X2CT-GAN: Reconstructing CT from bi-planar X-rays with generative adversarial networks. CVPR, 2019.

[2] Md Aminur Rab Ratul, et al. CCX-rayNet: A Class Conditioned Convolutional Neural Network For Biplanar X-Rays to CT Volume. ISBI, 2021. [3] Abril Corona-Figueroa, et al. MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray, EMBC, 2022.

- Modeling Objects in Baggage Screening

Quantitative Evaluation

Baggage Security Screening dataset					
Method	↓ NLL	↑ Density	† Coverage	↑ SSIM	↑ PSNR
[1] X2CT-GAN	N/A	0.95	0.80	0.655	34.68
[2] CCX-rayNet	N/A	1.28	0.89	0.886	35.45
Ours	0.007	2.01	0.97	0.899	39.45
LIDC-IDRI (chest) dataset					
[1] X2CT-GAN	N/A	0.87	0.88	0.321	19.68
[2] CCX-rayNet	N/A	1.41	0.98	0.386	22.66
Ours	0.10	1.42	0.97	0.436	25.05

—Contributions

- **★** Full-coverage attention allows unaligned inputs.
- **★** Domain-invariance (e.g. imaging modalities).
- **★** Fast high-quality 3D samples.
- **★** Data likelihood representation.
- ★ Generative control (e.g. feature level).
- ★ Mode coverage (i.e. 2D & 3D distributions).
- **★** Global context of conditional 2D inputs.

Not requisite of:

- ☐ Camera priors like in NeRF.
- Local alignment of inputs like in CNNs.
- Many input views (i.e. 2 views suffice).
- Continuous latent representations.
- Hierarchical architectures.
- Deep architectures with skip-connections.

