

M. E. Rinker, Sr. School of Construction Management

Master Thesis Defense

Pleader: Qian Shi Chair: Dr. Flood

Committee members: Dr. Costin & Dr. Gheisari

Weigh-in-Motion (WIM) Problem

Weigh-in-Motion (WIM)

WIM problem is to determine the properties of the passing truck from bridge strain responses without causing the truck to stop completely. It can be divided into 3 parts:

- **X** Process of identification
- **X** Truck type classification
- X Obtain Axle loading, axle spacing, and speed of Truck

01 Efficient

significantly improve the efficiency of road transportation and avoid potential traffic accidents.

02 **Economical**

Construction costs on weighting stations and highway auxiliary roads can be avoided.

Literature Review: Developments of Weigh-in-Motion (WIM) With Artificial Neural Network

Truck Attribute

Figure 3-2. Nine truck types used in this research adopted from Gagarin and Flood's result (<u>Gargarin</u> & Flood, 1994)

Number of patterns for one truck: 2500

Total number of patterns : 2500 * 9 = 22500

- Axle load varies
- Axle spacing varies

Truck Type	Axle Loads (KN)						Axle Spacings (m)				
	1		2 3	4		5	5 1 and 2	2 and 3	3 and 4	4 and 5	5 and 6
1	13.3-53.4	8.8-80.1					2.74-6.10				
2	13.3-53.4	8.8-80.1	8.8-80.1				2.74-6.10	1.22			
3	13.3-53.4	8.8-80.1	8.8-80.1				2.74-4.98	5.49-11.6			
4	13.3-53.4	8.8-80.1	8.8-80.1	8.8-80.1			2.74-5.49	1.22	1.22		
5	13.3-62.3	8.8-71.2	8.8-71.2	8.8-80.1			2.74-6.10	1.22	6.10-11.6		
6	13.3-53.4	8.8-80.1	8.8-80.1	8.8-80.1			2.74-5.49	6.10-11.6	1.22		
7	13.3-53.4	8.8-71.2	8.8-71.2	8.8-80.1	8.8-80.1		2.74-6.10	1.22	6.10-11.6	1.22	
8	13.3-53.4	8.8-71.2	8.8-71.2	8.8-80.1	8.8-80.1	8.8-80.1	2.74-6.10	1.22	6.10-11.6	1.22	1.22
9	13.3-53.4	8.8-80.1	8.8-80.1	8.8-80.1	8.8-80.1		2.74-5.49	5.49	3.05	5.49	

Figure 3-3Axle load range and spacing range of nine truck types adopted from Gagarin and Flood's result (Gargarin & Flood, 1994)

Artificial Neural Network (ANN)

Conventional Artificial Neural Network

Self-organizing network (SORG)

Input: Vector of real-values

Output: Binary values.

Type 1:1 All the other type: 0

Binary networking system (EHAM)

Input: matrix of binary values.

Output: Sams as SORG

Support Vector Machine (SVM)

SVM one-vs-all

Input: Time-series data

Classification: Nine sub-model

Output: Binary values.

SVM one-vs-one

Input: Time-series data

Classification: 36 Nine sub-Model

Output: Binary values

Literature Review: Deep Learning (Deep Neural Network)

Recurrent Neural Network (RNN)

- Time series data
- Stimulate dependency
- Memory function

Convolutional neural network (CNN)

- Grid-like data
- Static analysis
- Public feature extraction

Room for Improvement

Bridge Model

Bridge Length	Velocity of Truck	Sample frequency	Number of	
			patterns for each	
			truck	
100 m	10 m/s	50 HZ	2500	

Truck Attribute

Figure 3-2. Nine truck types used in this research adopted from Gagarin and Flood's result (<u>Gargarin</u> & Flood, 1994)

Number of patterns for one truck: 2500

Total number of patterns : 2500 * 9 = 22500

- Axle load varies
- Axle spacing varies

Truck Type	Axle Loads (KN)						Axle Spacings (m)				
	1		2 3	4		5	5 1 and 2	2 and 3	3 and 4	4 and 5	5 and 6
1	13.3-53.4	8.8-80.1					2.74-6.10				
2	13.3-53.4	8.8-80.1	8.8-80.1				2.74-6.10	1.22			
3	13.3-53.4	8.8-80.1	8.8-80.1				2.74-4.98	5.49-11.6			
4	13.3-53.4	8.8-80.1	8.8-80.1	8.8-80.1			2.74-5.49	1.22	1.22		
5	13.3-62.3	8.8-71.2	8.8-71.2	8.8-80.1			2.74-6.10	1.22	6.10-11.6		
6	13.3-53.4	8.8-80.1	8.8-80.1	8.8-80.1			2.74-5.49	6.10-11.6	1.22		
7	13.3-53.4	8.8-71.2	8.8-71.2	8.8-80.1	8.8-80.1		2.74-6.10	1.22	6.10-11.6	1.22	
8	13.3-53.4	8.8-71.2	8.8-71.2	8.8-80.1	8.8-80.1	8.8-80.1	2.74-6.10	1.22	6.10-11.6	1.22	1.22
9	13.3-53.4	8.8-80.1	8.8-80.1	8.8-80.1	8.8-80.1		2.74-5.49	5.49	3.05	5.49	

Figure 3-3Axle load range and spacing range of nine truck types adopted from Gagarin and Flood's result (Gargarin & Flood, 1994)

Partial Data Plot

Truck 1

Truck 3

Truck 5

Truck 8

Noise Free VS Noise Level 10%

White Gaussian noise

$$\sigma_{np} = \sigma_{nf} + RMS(\sigma_{nf}) * N_i * N_{rand}$$
(3.4)

Where σ_{np} = Noise polluted Stress response of the Bridge, σ_{nf} = Noise free

Stress response of the Bridge, RMS = Root mean Square Value, N_i = Level of

Noise, N_{rand} = Random noise vector with zero mean and one standard Deviation

the response recording system cannot record the strain response accurately. So we use White Gaussian Noise to simulate the deficiency of the measurement system.

Recurrent Neural Network (RNN)

Figure 4-1. An unrolled RNN

Learning over a long-time range

Suitable for time-series data

Programming	Software	Architecture	Normalized	Categorical	Metrics	Data	Data
Language	Library		Exponential	Variables		Separation	Normalization
			Function	Form			
Python	TensorFlow	Long short-	Softmax	One-hot	Accuracy	45%: Training	Input: Time-
		term		Encoding		5%: Validation	series data.
		memory				50%: Testing	Output:
		(LSTM)					[001000000]

Accuracy and Loss Plot For 5% Level Noise from TensorFlow

Misclassification Results by RNN

Experiment Results and Analysis

Better Accuracy

Better Anti-Noise Ability

Unsolved Problem and Future Work

Truck Platooning

Truck Platooning

Truck platooning is the linking of two or more trucks in convoy, using connectivity technology and automated driving support systems. These vehicles automatically maintain a set, close distance between each other when they are connected for certain parts of a journey, for instance on motorways.

Truck Platooning is a very promising mode of transportation. In future work, we can also add this type of truck to the classification.

