

autocluster - AutoML toolkit for automated clustering

PyPi: https://pypi.org/project/autocluster/

Github: https://github.com/wywongbd/autocluster/

Members: Wen Yan, Jung Chan, Yungi Jeong, Seungjun Lee

The ML pipeline

Every single pipeline stage is very difficult!

Each of these stages is time consuming, and requires experienced data scientists.

Why don't we automate it?

The goal of AutoML

To automate each stage of the pipeline!

Focus of our project

Combined Algorithm Selection and Hyperparameter optimization;

or

CASH problem

Formal definition of CASH

$$A^*, \lambda^* \in \underset{A^{(j)} \in \mathcal{A}, \lambda \in \Lambda^{(j)}}{\operatorname{argmin}} \frac{1}{K} \sum_{n=1}^K \mathcal{L}(A^{(j)}, \lambda, D_{train}^{(i)}, D_{valid}^{(i)})$$

 A^*, λ^* are the optimal configurations from the search space which minimizes the k-fold cross validation loss.

Existing AutoML packages

Auto-sklearn

Automated model selection and hyperparameter optimization for regression and classification models in scikit-learn.

Featuretools

Performs automated feature engineering.

What about unsupervised learning tasks, like clustering?

Supervised vs. Unsupervised

Datasets are labeled.

Datasets are unlabeled.

**

Clustering Algorithms in scikit-learn

Project Scope and objectives:

Areas of focus

Clustering

CASH Optimization

Meta-learning

Objectives

- Adopt existing blackbox optimization methods to solve CASH optimization problem for clustering tasks
- Incorporate Meta-learning to enhance the convergence rate of CASH optimization
- Develop a Python package for automated clustering

Design & Implementation

Clustering, CASH Optimization, Meta-learning

CASH optimization for clustering

$$A^*, \lambda^* \in \underset{A^{(j)} \in \mathcal{A}, \lambda \in \Lambda^{(j)}}{\operatorname{argmin}} \frac{1}{K} \sum_{n=1}^K \mathcal{L}(A^{(j)}, \lambda, D_{train}^{(i)}, D_{valid}^{(i)})$$

The goal of CASH optimization is to identify the **optimal configuration** from the **search space** which minimizes the **objective function (k-fold cross validation loss)**.

For a clustering task,

1 configuration = 1 choice of dimension reduction algorithm + 1 choice of clustering algorithm + 1 setting of relevant hyperparameters

CASH: Search space - dimension reduction

Method	Hyperparameters
TSNE	n_components (integer)
	perplexity (float) early_exaggeration (float)
	n_components (integer)
PCA	<pre>svd_solver (categorical)</pre>
	whiten (categorical)
Incremental PCA	n_components (integer)
	whiten (categorical)
	<pre>batch_size (integer)</pre>
Kernel PCA	n_components (integer)
	kernel (categorical)
	n_components (integer)
Foot ICA	algorithm (categorical)
Fast ICA	fun (categorical)
	whiten (categorical)

and more

7 dimension reduction algorithms in total.

In actual implementation, we made dimension reduction an optional procedure.

CASH: Search space - clustering algorithm

Method	Scalabillity	Hyperparameters
K-Means [2]	Not scalable	n_clusters (integer)
Mini Batch K-Means [34]	Very large n_samples,	n_clusters (integer)
Mill Datell II Metallo [01]	medium n_clusters	<pre>batch_size (integer)</pre>
Affinity Propagation [17]	Not scalable with	damping (float)
rinning Propagation [11]	$n_samples$	affinity (categorical)
Mean Shift [8]	Not scalable with	bin_seeding (categorical)
	$n_samples$	bandwidth (float)
Spectral Clustering [39]	Medium n_samples,	n_clusters (integer)
	$small \ n_clusters$	eigen_solver (categorical)
opecial Clustering [55]		affinity (categorical)
		assign_labels (categorical)
A	Large n_samples	n_clusters (integer)
Agglomerative	and $n_{\text{-}}$ clusters	eigen_solver (categorical)
Clustering		affinity (categorical)
DDGGAN [11]	Very large n_samples,	eps (float)
DBSCAN [11]	$medium \ n_clusters$	${\tt min_samples}$ (integer)
	Very large n_samples,	min_samples (integer)
OPTICS [1]	large n_clusters	metric (categorical)

and more

10 clustering algorithms in total.

CASH: Loss functions

When labels are not given, how do we quantify the quality of clustering result?

Metric	Range	Normalized Form
Silhouette Coefficient [33]	$-1 \le x \le 1$	(1-x)/2
Davies-Bouldin Index [9]	$x \ge 0$	tanh(x)
Calinski-Harabasz Index [6]	$x \ge 0$	$1-\tanh(x)$

Basic idea:

If clusters overlap, quality is poor. If clusters are well-separated, quality is good.

CASH: Loss functions (continued)

Some conditions that we want to discourage. If any of them are met, **infinity** is returned.

- number_of_clusters_identified == 1:
 - To encourage the optimizer to segregate the data points and uncover more patterns.
- $\frac{\#\{\text{points in smallest cluster}\}}{\#\{\text{points in total}\}} < 0.01$:
 - To discourage the optimizer from favoring clustering results with extremely small clusters.
- $\frac{\#\{\text{points in smallest cluster}\}}{\#\{\text{points in largest cluster}\}} < 0.05$:
 - To discourage the optimizer from favoring clustering results with extremely small clusters.

Optimization method 1: Random Search

Grid Search vs Random Search?

Existing academic research shows that Random Search is superior to Grid Search.

Overview: Random Search

Optimization method 2: Bayesian Optimization

Smarter way to explore the search space.

Objective function

This is the blackbox function, **expensive** to evaluate.

Surrogate model

This model tries to **learn** the objective function from past evaluations.

Usually a Gaussian Process (GP) is used.

Acquisition function

This function **recommends** new configurations to be evaluated. Usually Expected Improvement (EI) is used.

Optimization method 2: Bayesian Optimization

Overview: Bayesian Optimization

Optimization method 3: Bayesian Optimization + Meta-learning

Meta-learning:

A method to **suggest good configurations** for a novel dataset based on configurations that are known to perform well on similar, previously evaluated, datasets.

Hypothesis: If 2 datasets are similar, their optimal configurations are similar.

Optimization method 3: Bayesian Optimization + Meta-learning

Training a warmstarter via Meta-learning:

- 1. Run Bayesian Optimization on a huge variety of benchmark datasets.
- 2. Save the best configurations obtained from those benchmark datasets.
- 3. When given a new dataset, find the **most similar benchmark datasets** to suggest good configurations to warmstart the Bayesian Optimization algorithm.

Optimization method 3: Bayesian Optimization + Meta-learning

How to characterize different datasets to identify similar datasets? Use **Meta-features!**

Features	Description	Variants
Number of Instances		log
Number of Features		log, ratio to instances
Number of Missing Values		% missing
Sparsity	$\frac{\#\{\text{missing values \& zeros}\}}{\#\{\text{all values}\}}$	
	Table 4: General metafeatures for the warms	tartor
Foatures		
Features	Description	Variants
Features Sparsity		
Sparsity	Description #{zeros}	Variants
	Description $\frac{\#\{zeros\}}{\#\{numerical\ values\}}$	Variants min, max, median,
Sparsity Skewness	Description #{zeros} #{numerical values} Asymmetry of probability distribution	Variants

Overview: Bayesian Optimization + Meta-learning

Testing & Results

An experiment to compare the 3 optimization methods.

Experimental Setup: Datasets

120 synthetic datasets.

- S-sets [14]: Synthetic 2-dimensional data with N=5000 vectors and k=15 Gaussian clusters with varying degrees of cluster overlap.
- A-sets [20]: Synthetic 2-dimensional data with increasing number of clusters. There are 150 vectors per cluster.
- Birch-sets [40]: Synthetic 2-dimensional data with N = 100,000 vectors and k = 100 clusters.
- G2 sets [27]: Gaussian clusters datasets with varying cluster overlap and dimensions.
- DIM-sets (high) [15]: High-dimensional datasets N = 1024 and k = 16 Gaussian clusters.
- DIM-sets (low) [21]: Low-dimensional synthetic data with Gaussian clusters.
- Unbalance [32]: Synthetic 2-dimensional data with N = 6500 vectors and k = 8 Gaussian clusters.

Experimental Setup: Train-test split

Bayesian Optimization + Meta-learning approach requires pre-training.

Test: 20 datasets (approx. 16.7%) were randomly selected from the pool of 120 clustering datasets.

Train: The remaining 100 datasets were used to pretrain the warmstarter.

Warmstarter retrieves the top 5 configurations from the top 5 nearest neighbors, giving a total of 25 configurations.

Experimental Setup: Optimization parameters

Optimization parameters (Testing):

- Number of iterations: 100. This is also equivalent to the number of evaluations.
- Cutoff time: 100 seconds. This is the maximum time allowed for evaluating a single configuration.
- Number of folds (k-fold cross validation loss): 3.
- Number of initial configurations from warmstarter: 25. This is only applicable for the SMAC + Warmstarting approach.

Empirical results: average convergence rate

Bayesian Optimization + Meta-learning on S-set

Figure 10: Clustering result on the S-sets (see section 3.1). The dataset comprises of 15 Gaussian clusters in 2-dimensional space with N=5000 points. The optimal configuration obtained by SMAC + Warmstarting consists of a TSNE dimension reduction model + Agglomerative clustering model with n_clusters = 13.

Bayesian Optimization + Meta-learning on DIM-set

Figure 11: Clustering result on the DIM-sets (see section 3.1). The dataset comprises of 16 Gaussian clusters in 128-dimensional space with N=1024 points. The optimal configuration obtained by SMAC + Warmstarting consists of a Truncated SVD dimension reduction model + Birch clustering model.

Bayesian Optimization + Meta-learning on DIM-set

Figure 9: Clustering result on the DIM-sets (see section 3.1). The dataset comprises of 9 Gaussian clusters in 14-dimensional space with N=2048 points. The optimal configuration obtained by SMAC + Warmstarting consists of a PCA dimension reduction model + Affinity Propagation clustering model.

Conclusion: Limitations and Further Research

Dimension Reduction

Dimension reduction algorithm and hyperparameters were included into the bayesian optimization process

Reasoning:

- Dimension reduction generally accepted to make the entire pipeline more efficient.
- Allows for clearer visualization by the end user.
- Allows clustering evaluation metrics to perform better.

Clustering Metrics

The clustering metrics all favor convex clustering.

But this means that the clustering algorithm does not perform well on non-convex

Limitations

Topological data analysis

Topological data analysis may solve the issue of evaluating non-convex clustering.

However, because these tools do not scale well with dataset size, we opted

Scalability issues

For larger datasets, evaluation can take very long.

Possible Fixes:

- Subsampling
- Multi-fidelity evaluation

Unanswered Questions

Is real world data convex?

Q and A