

Análisis Avanzado - Espacios Normados 2

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Repaso

Definición

Sea E espacio vectorial sobre $\mathbb R$. Una función $\|\cdot\|:E\to[0,+\infty)$ es una norma si verifica las siguientes propiedades

$$(1)(\|x+y\|) \leq \|x\| + \|y\|. \quad (dingval dod \quad \Delta)$$

- (2) $\|\lambda \cdot \mathbf{x}\| = |\lambda| \cdot \|\mathbf{x}\|$.
- (3) ||x|| = 0 si y sólo si x = 0.

Sea E espacio vectorial sobre $\mathbb R$. Una función $\|\cdot\|:E\to[0,+\infty)$ es una norma si verifica las siguientes propiedades

- (1) $||x+y|| \le ||x|| + ||y||$.
- (2) $\|\lambda \cdot \mathbf{x}\| = |\lambda| \cdot \|\mathbf{x}\|$.
- (3) ||x|| = 0 si y sólo si x = 0.

Un espacio vectorial *E* con una norma se llama un espacio normado.

Si *E* es un espacio normado, entonces es un espacio métrico con la distancia $\beta(x,y) = \|x-y\|$.

Si *E* es un espacio normado, entonces es un espacio métrico con la distancia d(x,y) = ||x-y||.

No todo espacio métrico es un espacio normado.

$$(R,d) d(x,y) = | \frac{x}{1+1x} - \frac{3}{1+1y} | d(2x,0) \neq \frac{3}{2} d(x,0).$$

Si *E* es un espacio normado, entonces es un espacio métrico con la distancia d(x, y) = ||x - y||.

No todo espacio métrico es un espacio normado.

Definición

Un espacio normado que es completo con la distancia d(x,y) = ||x-y|| se llama un espacio de Banach.

Si *E* es un espacio normado, entonces es un espacio métrico con la distancia d(x,y) = ||x - y||.

No todo espacio métrico es un espacio normado.

Definición

Un espacio normado que es completo con la distancia d(x,y) = ||x-y|| se llama un espacio de Banach.

En \mathbb{R}^n todas las normas son equivalentes.

Análisis Avanzado D. Carando - V. Paternostro

En \mathbb{R}^n todas las normas son equivalentes.

Proposición

Si \underline{E} es un espacio normado de dimensión $\underline{n} \in \mathbb{N}$, entonces existen un isomorfismo lineal de $\underline{T}: E \to \mathbb{R}^n$ y una norma en \mathbb{R}^n tal que \underline{T} es una isometría.

En \mathbb{R}^n todas las normas son equivalentes.

Proposición

Si E es un espacio normado de dimensión $n \in \mathbb{N}$, entonces existen un isomorfismo lineal de $T : E \to \mathbb{R}^n$ y una norma en \mathbb{R}^n tal que T es una isometría.

Corolario

Si E es un espacio normado de dimensión $n \in \mathbb{N}$, entonces es uniformemente homeomorfo a $(\mathbb{R}^n, \| \|_2)$ (donde el homeomorfismo es un isomorfismo lineal).

Corolario

Todo espacio normado de dimensión finita es completo (es Banach).

Corolario

Todo espacio normado de dimensión finita es completo (es Banach).

Corolario

En un espacio normado de dimensión finita, los conjuntos cerrados y acotados son compactos.

Observación

Si $T: \mathbb{R}^n \to \mathbb{R}^m$ es una transformación lineal.

Observación

Si $T: \mathbb{R}^n \to \mathbb{R}^m$ es una transformación lineal.

• Sabemos que *T* es una función continua si consideramos en ambos la norma 2.

Observación

Si T (\mathbb{R}^n)—(\mathbb{R}^m)es una transformación lineal.

- Sabemos que T es una función continua si consideramos en ambos la norma 2.
- Entonces, T es continua para cualquier par de normas que pongamos en \mathbb{R}^n y \mathbb{R}^m .

Observación

Si $T: \mathbb{R}^n \to \mathbb{R}^m$ es una transformación lineal.

- Sabemos que *T* es una función continua si consideramos en ambos la norma 2.
- Entonces, T es continua para cualquier par de normas que pongamos en \mathbb{R}^n y \mathbb{R}^m .
- Y lo mismo pasa con una transformación lineal entre dos espacios normados de dimensión finita.

Sean *E*, *F* dos espacios normados sobre R. Una aplicación

 $T: E \rightarrow F$ es un operador lineal continuo si

Sean E, F dos espacios normados sobre \mathbb{R} . Una aplicación

 $T: E \rightarrow F$ es un operador lineal continuo si

- Es una transformación lineal (u operador lineal):
 - T(x + y) = T(x) + T(y) para todo $x, y \in E$,
 - $T(\lambda x) = \lambda T(x)$ para todo escalar λ y todo $x \in E$.

Sean *E*, *F* dos espacios normados sobre \mathbb{R} . Una aplicación $T: E \to F$ es un operador lineal continuo si

- Es una transformación lineal (u operador lineal):
 - T(x + y) = T(x) + T(y) para todo $x, y \in E$,
 - $T(\lambda x) = \lambda T(x)$ para todo escalar λ y todo $x \in E$.
- Es una función continua, con las métricas que definen las normas.

Sup $T:E \rightarrow F$ of linear continuo en or Dado $\varepsilon > 0$, $\exists 0 > 0 / \| \times \|_{E} < \delta \Rightarrow \| T \times \| < \varepsilon$ To = 0 $X \in B_{E}(0,\delta) \qquad T \times E_{F}(0,\varepsilon)$ $T(B_{E}(0,\delta)) \subseteq B_{F}(0,\varepsilon)$

B(x,r) = B(0,r) + x XOCE gry Tes cont. en 20. Seo E>0. => 3 5>0 de la antimidad en 0.

 $x \in B_{\epsilon}(x_0, \delta) \Rightarrow ||x - x_0|| \langle \delta \rangle \Rightarrow x - x_0 \in B_{\epsilon}(0, \delta)$ $T(x-x) \in B_F(0, \varepsilon) \to T(x) - T(x) \in B_F(0, \varepsilon)$ $T(x) \to T(x) \to T(x) \to T(x) = T(x) = T(x) + T(x) = T$ = DITIXI-T(X)/(XE) = DITIXIE B(T(X), E) =) Tes couti mo en 20. = D Toutimo en 20 txcE Toutime en 0

=PTosutimo,
Mas avu, Tuniforme mente contrano.

· Seo xoEE y sup T cout. en 20. Jado Ero Joso/ 11x-xol/20-20 11 Tx-Txol/2E. Vecuus of Tes cout eu o. Dado E>0 truo el 500 de la arut, eu Xo. Si llylle = D y=y+x0-x0 => 1/x x01166 The 3>1/6x1-T(x0)//CE = 1/2//CE = 1/2 $T(x-x_0) = T(y)$ cont. eno

Sean $\underline{E,F}$ espacios normados, y $T:E\to F$ operador lineal. Son equivalentes:

Sean E, F espacios normados, y $T: E \to F$ operador lineal. Son equivalentes:

(1) T es continua en el origen.

Sean E, F espacios normados, y $T: E \to F$ operador lineal. Son equivalentes:

- (1) T es continua en el origen.
- (2) T es continua en algún punto.

Sean E, F espacios normados, y $T: E \to F$ operador lineal. Son equivalentes:

- (1) T es continua en el origen.
- (2) T es continua en algún punto.
- (3) T es continua.

Sean E, F espacios normados, y $T: E \to F$ operador lineal. Son equivalentes:

- (1) T es continua en el origen.
- (2) T es continua en algún punto.
- (3) T es continua.
- (4) T es uniformemente continua.

Decimos que un operador lineal $T: E \to F$ es acotado si existe *c* > o tal que

para todo $x \in E$.

 $||T(x)||_F \leq c||x||_E$

para todo $x \in E$.

Decimos que un operador lineal $T: E \to F$ es acotado si existe c > o tal que

$$||T(x)||_F \le c||x||_E \tag{1}$$

Equivalentemente, T es acotado si

$$\sup_{x \in B(0,1)} \|T(x)\|_F < \infty. \tag{2}$$

$$\frac{\partial e^{-1}}{\partial x} = \frac{1}{2}$$
 $\frac{\partial e^{-1}}{\partial x} = \frac{1}{2}$
 $\frac{\partial e^{-1}}{\partial x} = \frac{1}{2}$

$$(2) \Rightarrow (1) \qquad M = \text{Sub} \qquad 1|T_{X}|_{F} < \infty,$$

$$\times \in B(01)$$

$$\times \neq 0, \quad \text{Sea} \qquad y = \underset{(1+\varepsilon)|1\times 1}{\times} \qquad \text{para} \qquad \varepsilon \neq 0$$

$$\Rightarrow \quad y \in B_{\varepsilon}(0,1) \qquad (1|y|| = \underset{(\varepsilon+1)}{1|x|} \qquad (A)$$

$$\Rightarrow \quad 1|T(y)||_{F} \leq 17$$

$$||T(\frac{1}{(\varepsilon+1)}||x||) \qquad (1+\varepsilon)||x||$$

$$||T_{X}|| \leq (1+\varepsilon) \underset{(1+\varepsilon)}{\|x||} \qquad \forall \varepsilon \neq 0$$

$$\Rightarrow \quad ||T_{X}|| \leq (1+\varepsilon) \underset{(1+\varepsilon)}{\|x||} \qquad \forall \varepsilon \neq 0$$

Un operador lineal $T: E \to F$ es continuo si y sólo es acotado.

$$y \neq 0$$
 Sea $\mathcal{R} = \left(\frac{\partial^2 y}{\partial x^2}\right) = 0$ $|x| = \frac{\partial^2 y}{\partial x^2} = \frac{1|y|}{|y|} = \frac{\partial^2 y}{\partial x^2} = \frac{1|y|}{|y|} = \frac{\partial^2 y}{\partial x^2} = \frac$

Análisis Avanzado D. Carando - V. Paternostro

M-FCEN-UBA 12

Sean *E*, *F* espacios normados, y $T : E \rightarrow F$ operador lineal. Son equivalentes:

- (1) T es continua en el origen.
- (2) T es continua en algún punto.
- (3) T es continua.
- (4) T es uniformemente continua.

Sean E, F espacios normados, y $T: E \to F$ operador lineal. Son equivalentes:

- (1) T es continua en el origen.
- (2) T es continua en algún punto.
- (3) T es continua.
- (4) T es uniformemente continua.
- (5) Existe c > 0 tal que

$$||T(x)||_F \leq c||x||_E$$

para todo $x \in E$.

Funcionales lineales

Novuoli

Definición

Una funcional lineal es un operador lineal $\gamma : E \longrightarrow \mathbb{R}$.

Proposición

Sea $\gamma: E \to \mathbb{R}$ una funcional lineal. Entonces, γ es continua si y sólo si $Ker(\gamma)$ es un subespacio cerrado.

=> T'(301) escuedo.

H = Ker(r). Hes Clubb gry res continua Seo $x \in E \mid T(x) \neq 0$ = $D \mid E = H \oplus (x)$ Eu ejecto:

Hiterplano.

1) $y \in H \cap (x)$ = $D \cap Y = \lambda x$ $\lambda \in \mathbb{R}$ => 0= \(\tag{y} = \tag{x} \tag{x} = \tag{x} = \tag{x} \tag{x} = \tag{x} \tag{x} = \tag{x} \tag{x} = \tag{x} = \tag{x} \tag{x} = \tag{x} \tag{x} = \tag{x} \tag{x} = \tag{x} = \tag{x} \tag{x} = \tag{x} \tag{x} = \tag{x} \tag{x} = \tag{x} = \tag{x} \tag{x} = \tag{x} \tag{x} = \ ,2) Sup que yEE. Seo $Z = Y - \frac{r(y)}{r(x)} \times EE$, $r(Z) = r(A) - \frac{r(y)}{r(x)} = \frac{r(A)}{r(x)} = \frac{r(A)}{r(x)} + \frac{r(A)}{r(x)} = \frac{r(A)}{r(x)$

Análisis Avanzado

DM-FCEN-UBA

Si ye E = b [$y = h + \lambda x$, $\lambda \in \mathbb{R}$ = b $\gamma(y) = \gamma(h) + \lambda \gamma(x) \Rightarrow \lambda = \gamma(y) \Rightarrow y = h + \gamma(y) \cdot \lambda$. Sea d = d(x), H) = inf [11 x - w1] =: hetty Who Hes coundo, d>0 (Ejarciais P4 Ej11) Tomamos yet, y=h+ 7(8).x., hett. (||4||== || h + M(8) x | = || Hy) (hy + x) || = = |T(y)| . || \frac{1}{12} + \frac{1}{12} || = |T(y)| || \frac{1}{12} - \frac{(-1)}{12} || = |T(y)| || = SIT(8)1.d) = [IT(8)16 LIVILE) + y = Pres