DFA to Regular Expression-

The two popular methods for converting a DFA to its regular expression are-

- 1. Arden's Method
- 2. State Elimination Method

State Elimination Method-

This method involves the following steps in finding the regular expression for any given DFA-

Step-01:

Thumb Rule

The initial state of the DFA must not have any incoming edge.

• If there exists any incoming edge to the initial state, then create a new initial state having no incoming edge to it.

Example-

Thumb Rule

There must exist only one final state in the DFA.

• If there exists multiple final states in the DFA, then convert all the final states into non-final states and create a new single final state.

Example-

Step-03:

Thumb Rule

The final state of the DFA must not have any outgoing edge.

• If there exists any outgoing edge from the final state, then create a new final state having no outgoing edge from it.

Example-

- Eliminate all the intermediate states one by one.
- These states may be eliminated in any order.

In the end,

- Only an initial state going to the final state will be left.
- The cost of this transition is the required regular expression.

NOTE

The state elimination method can be applied to any finite automata.

 $(NFA, \in -NFA, DFA etc)$

PRACTICE PROBLEMS BASED ON CONVERTING DFA TO REGULAR EXPRESSION-Problem-01:

Find regular expression for the following DFA-

Solution-

Step-01:

- Initial state A has an incoming edge.
- So, we create a new initial state q_i.

The resulting DFA is-

Step-02:

- Final state B has an outgoing edge.
- So, we create a new final state \boldsymbol{q}_f

The resulting DFA is-

Step-03:

Now, we start eliminating the intermediate states.

First, let us eliminate state A.

- There is a path going from state \boldsymbol{q}_i to state \boldsymbol{B} via state $\boldsymbol{A}.$
- So, after eliminating state A, we put a direct path from state \boldsymbol{q}_i to state B having cost $\boldsymbol{\in}.0$ = 0
- There is a loop on state B using state A.
- So, after eliminating state A, we put a direct loop on state B having cost 1.0 = 10.

Eliminating state A, we get-

Now, let us eliminate state B.

- There is a path going from state \boldsymbol{q}_i to state \boldsymbol{q}_f via state $\boldsymbol{B}.$
- So, after eliminating state B, we put a direct path from state q_i to state q_f having cost 0. $(10)^*. \in = 0(10)^*$

Eliminating state B, we get-

From here,

Regular Expression = 0(10)*

NOTE-

In the above question,

- If we first eliminate state B and then state A, then regular expression would be = (01)*0.
- This is also the same and correct.

Problem-02:

Find regular expression for the following DFA-

Solution-

Step-01:

- There exist multiple final states.
- So, we convert them into a single final state.

The resulting DFA is-

Step-02:

Now, we start eliminating the intermediate states.

First, let us eliminate state q_4 .

- There is a path going from state q_2 to state q_f via state q_4 .
- So, after eliminating state q_4 , we put a direct path from state q_2 to state q_f having cost b. \in = b.

Step-03:

Now, let us eliminate state q_3 .

- There is a path going from state q_2 to state q_f via state q_3 .
- So, after eliminating state q_3 , we put a direct path from state q_2 to state q_f having cost c. \in c.

Now, let us eliminate state \mathbf{q}_5 .

- There is a path going from state \mathbf{q}_2 to state \mathbf{q}_f via state \mathbf{q}_5 .
- So, after eliminating state q_5 , we put a direct path from state q_2 to state q_f having cost d. \in = d.

Step-05:

Now, let us eliminate state q_2 .

- There is a path going from state \mathbf{q}_1 to state \mathbf{q}_f via state \mathbf{q}_2 .
- So, after eliminating state \mathbf{q}_2 , we put a direct path from state \mathbf{q}_1 to state \mathbf{q}_f having cost a. (b+c+d).

From here,

Regular Expression = a(b+c+d)

Problem-03:

Find regular expression for the following DFA-

Solution-

Step-01:

- Initial state \boldsymbol{q}_1 has an incoming edge.
- So, we create a new initial state q_i.

The resulting DFA is-

Step-02:

- Final state q_2 has an outgoing edge.
- So, we create a new final state $\boldsymbol{q}_{\boldsymbol{f}}.$

The resulting DFA is-

Step-03:

Now, we start eliminating the intermediate states.

First, let us eliminate state q_1 .

- There is a path going from state \boldsymbol{q}_i to state \boldsymbol{q}_2 via state \boldsymbol{q}_1 .
- So, after eliminating state q_1 , we put a direct path from state q_i to state q_2 having cost \in .c*.a = c*a
- There is a loop on state \boldsymbol{q}_2 using state \boldsymbol{q}_1 .
- So, after eliminating state q_1 , we put a direct loop on state q_2 having cost b.c*.a = bc*a

Eliminating state q_1 , we get-

Now, let us eliminate state q_2 .

- There is a path going from state \boldsymbol{q}_i to state \boldsymbol{q}_f via state \boldsymbol{q}_2 .
- So, after eliminating state q_2 , we put a direct path from state q_i to state q_f having cost $c*a(d+bc*a)*\in = c*a(d+bc*a)*$

Eliminating state q₂, we get-

From here,

Regular Expression = c*a(d+bc*a)*

Problem-04:

Find regular expression for the following DFA-

Solution-

Step-01:

- State D is a dead state as it does not reach to any final state.
- So, we eliminate state D and its associated edges.

The resulting DFA is-

Step-02:

- Initial state A has an incoming edge (self loop).
- So, we create a new initial state \boldsymbol{q}_i .

The resulting DFA is-

Step-03:

- There exist multiple final states.
- So, we convert them into a single final state.

The resulting DFA is-

Now, we start eliminating the intermediate states.

First, let us eliminate state C.

- There is a path going from state B to state \boldsymbol{q}_f via state C.
- So, after eliminating state C, we put a direct path from state B to state q_f having cost $b.b^*. \in bb^*$

Eliminating state C, we get-

Step-05:

Now, let us eliminate state B.

- There is a path going from state \boldsymbol{A} to state \boldsymbol{q}_f via state $\boldsymbol{B}.$
- So, after eliminating state B, we put a direct path from state A to state q_f having cost a.a*. $(bb^*+\in) = aa^*(bb^*+\in)$

Eliminating state B, we get-

Step-06:

Now, let us eliminate state A.

- There is a path going from state \boldsymbol{q}_i to state \boldsymbol{q}_f via state $\boldsymbol{A}.$
- So, after eliminating state A, we put a direct path from state q_i to state q_f having cost \in .b*. $(aa*(bb*+\in)+\in) = b*(aa*(bb*+\in)+\in)$

Eliminating state A, we get-

From here,

Regular Expression =
$$b*(aa*(bb*+\in)+\in)$$

We know, $bb^* + \in = b^*$

So, we can also write-

Regular Expression = $b*(aa*b*+\in)$

Problem-05:

Find regular expression for the following DFA-

Solution-

Step-01:

- Since initial state A has an incoming edge, so we create a new initial state $\boldsymbol{q}_i.$
- Since final state A has an outgoing edge, so we create a new final state $\boldsymbol{q}_{\boldsymbol{f}}.$

The resulting DFA is-

Step-02:

Now, we start eliminating the intermediate states.

First, let us eliminate state B.

- There is a path going from state C to state A via state B.
- So, after eliminating state B, we put a direct path from state C to state A having cost b.b = bb.
- There is a loop on state A using state B.
- So, after eliminating state B, we put a direct loop on state A having cost a.b = ab.

Eliminating state B, we get-

Step-03:

Now, let us eliminate state C.

- There is a loop on state A using state C.
- So, after eliminating state C, we put a direct loop on state A having cost b.(a+bb) = b(a+bb)

Eliminating state C, we get-

Step-04:

Now, let us eliminate state A.

- There is a path going from state \boldsymbol{q}_i to state \boldsymbol{q}_f via state $\boldsymbol{A}.$
- So, after eliminating state A, we put a direct path from state q_i to state q_f having cost ∈.(ab + b(a+bb))*∈ = (ab + b(a+bb))*

Eliminating state A, we get-

From here,

Regular Expression =
$$(ab + b(a+bb))*$$

Problem-06:

Find regular expression for the following DFA-

Solution-

- State B is a dead state as it does not reach to the final state.
- So, we eliminate state B and its associated edges.

The resulting DFA is-

From here,

Regular Expression = a

Problem-07:

Find regular expression for the following DFA-

Solution-

Step-01:

• There exist multiple final states.

• So, we create a new single final state.

The resulting DFA is-

Step-02:

Now, we start eliminating the intermediate states.

First, let us eliminate state B.

- There is a path going from state A to state \boldsymbol{q}_f via state B.
- So, after eliminating state B, we put a direct path from state A to state q_f having cost a.a*. ∈ = aa*.

Eliminating state B, we get-

Step-03:

Now, let us eliminate state C.

- There is a path going from state \boldsymbol{A} to state \boldsymbol{q}_f via state $\boldsymbol{C}.$
- So, after eliminating state C, we put a direct path from state A to state q_f having cost b.a*. ∈ ba*.

Eliminating state C, we get-

From here,

Regular Expression = aa* + ba*