7.4 The Dimension Theorem and Its Implications

Theorem (The Dimension Theorem for Matrices) *If A is an m* \times *n matrix, then*

rank(A) + nullity(A) = n.

The Dimension Theorem

Example Find rank and nullity of

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ -2 & 1 & -3 & -2 & -4 \\ 0 & 5 & -14 & -9 & 0 \\ 2 & 10 & -28 & -18 & 4 \end{bmatrix}$$

Extending a linearly independent set to a basis

Every linearly independent set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ in \mathbb{R}^n can be enlarged to a basis for \mathbb{R}^n .

Step 1. Form a matrix A that has $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ as row vectors.

Step 2. Find a basis $\mathbf{w}_{k+1}, \dots, \mathbf{w}_n$ for the null space of A by solving $A\mathbf{x} = \mathbf{0}$.

Step 3. Then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{w}_{k+1}, \dots, \mathbf{w}_k\}$ is a basis for \mathbb{R}^n .

Extending a linearly independent set to a basis

Example

Find a basis for \mathbb{R}^4 containing $\boldsymbol{v}_1=(1,3,-1,1)$ and $\boldsymbol{v}_2=(0,1,1,6).$

Consequences of Dimension Theorem

Theorem

If an $m \times n$ matrix A has rank k, then:

- (a) A has nullity n k.
- (b) Every row echelon form of *A* has *k* nonzero rows.
- (c) Every row echelon form of A has m k zero rows.
- (d) The homogeneous system $A\mathbf{x} = \mathbf{0}$ has k leading (pivot) variables and n k free variables.

Example

Can a 5×7 matrix A have a one-dimensional null space?

Dimension Theorem

Theorem (The Dimension Theorem for Subspaces) *If W is a subspace of* \mathbb{R}^n , *then*

$$\dim(W) + \dim(W^{\perp}) = n.$$

The unifying theorem

Theorem

If A is an $n \times n$ matrix, then the followings are equivalent.

- 1. The reduced row echelon form of A is I_n .
- 2. A is expressible as a product of elementary matrices.
- 3. A is invertible.
- 4. Ax = 0 has only the trivial solution.
- 5. $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- 6. $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- 7. The column vectors of A are linearly independent.
- 8. The row vectors of A are linearly independent.
- 9. $det(A) \neq 0$.
- 10. T_A is one-to-one.
- 11. T_A is onto.

The unifying theorem

- 14. The column vectors of A span \mathbb{R}^n .
- 15. The row vectors of A span \mathbb{R}^n .
- 16. The column vectors of *A* form a basis for \mathbb{R}^n .
- 17. The row vectors of *A* form a basis for \mathbb{R}^n .
- 18. rank(A) = n.
- 19. $\operatorname{nullity}(A) = 0$.

Hyperplanes

Theorem

If W is a subspace of \mathbb{R}^n with dimension n-1, then there is a nonzero vector \mathbf{a} for which $W=\mathbf{a}^\perp$; that is, W is a hyperplane through the origin of \mathbb{R}^n .

Let A be an $m \times n$ matrix. Then the followings are equivalent:

- rank(A) = 1
- ▶ nullity(A) = n 1.
- ▶ row(A) is a line through the origin of \mathbb{R}^n .
- ▶ null(A) is a hyperplane through the origin of \mathbb{R}^n .
- The row vectors of A are all scalar multiples of some nonzero vector a.

Theorem

If ${\bf u}$ is a nonzero $m \times 1$ matrix and ${\bf v}$ is a nonzero $n \times 1$ matrix, then the product

$$A = \mathbf{u}\mathbf{v}^T$$

has rank 1. Conversely, if A is an $m \times n$ matrix with rank 1, then A can be factored into a product of the above form.

Example

Let
$$\mathbf{u} = \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ -2 \\ -1 \end{bmatrix}$. Show that $\mathbf{u}\mathbf{v}^T$ has rank 1.

Example

Factor the rank 1 matrix $A = \begin{bmatrix} 2 & -4 & -6 & 0 \\ -3 & 6 & 9 & 0 \end{bmatrix}$ into a product of the form $\mathbf{u}\mathbf{v}^T$.

Symmetric rank 1 matrices

Theorem

If \mathbf{u} is a nonzero $n \times 1$ column vector, then the product $\mathbf{u}\mathbf{u}^T$ is a symmetric matrix of rank 1. Conversely, if A is a symmetric $n \times n$ matrix of rank 1, then it can be factored as $\mathbf{u}\mathbf{u}^T$ or else as $-\mathbf{u}\mathbf{u}^T$ for some nonzero $n \times 1$ column vector \mathbf{u} .