Continuous Fourier Transform Correspondence Table

$$\mathcal{F}\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt, \quad f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Notes: We use $j = \sqrt{-1}$. Distributions appear for non-absolutely integrable signals (e.g., δ and $\epsilon(t)$); p. v. denotes Cauchy principal value. We adopt $\mathrm{sinc}(x) = \frac{\sin x}{x}$ (non- π -normalized).

A. Common Transform Pairs (this convention)

Time domain $f(t)$	Frequency domain $F(\omega)$	Notes / Conditions
$\delta(t)$	1	Unit impulse
1	$2\pi \delta(\omega)$	Constant signal
$\mathrm{e}^{\mathrm{j}\omega_0 t}$	$2\pi \delta(\omega - \omega_0)$	Spectral line at ω_0
$\cos(\omega_0 t)$	$\underline{\pi} [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$	Real even line pair
$\sin(\omega_0 t)$	$\frac{\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right]}{\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)\right]}$	Imag. odd line pair
$\epsilon(t)$	$\pi \delta(\omega) + \text{p. v.} \left(\frac{1}{\text{j}\omega}\right)$	Step function (distribution)
$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$ (as p. v.)	$\operatorname{sgn}(t) = 2\epsilon(t) - 1$
$e^{-a t }, \ a > 0$	2a	Two-sided decaying exponential
$e^{-\frac{t^2}{2\sigma^2}}$	$\frac{\overline{a^2 + \omega^2}}{\sqrt{2\pi} \sigma \mathrm{e}^{-\frac{\sigma^2 \omega^2}{2}}}$	Gaussian (self-FT up to scale)
$\operatorname{rect}\!\left(rac{t}{T} ight)$	$T\operatorname{sinc}\left(\frac{\omega T}{2}\right)$	$rect(x) = 1 \text{ for } x < \frac{1}{2}$
$\operatorname{tri}\!\left(rac{t}{T} ight)$	$T\operatorname{sinc}\left(\frac{\omega T}{2}\right)^2$	Triangular pulse
$\frac{\sin(\widehat{\Omega}t)}{}$	$\pi {f 1}_{[-\Omega,\Omega]}(\omega)$	Ideal low-pass (rect band),
t	[22,22] (/	$\Omega > 0$
$\frac{1}{t}$	$-j\pi \operatorname{sgn}(\omega)$ (as p. v.)	Odd distribution
$(\epsilon(t+\frac{T}{2})-\epsilon(t-\frac{T}{2}))$	$2\frac{\sin(\omega T/2)}{\omega}$	Rect pulse, width T

B. Useful Properties

Time domain	Frequency domain	Comments
Linearity: $\mathcal{F}\{af + bg\}$	aF + bG	$a,b \in \mathbb{C}$
Time shift: $f(t-t_0)$	$\mathrm{e}^{-\mathrm{j}\omega t_0}F(\omega)$	Delay $t_0 \in \mathbb{R}$
Frequency shift (modulation): $e^{j\omega_0 t} f(t)$	$F(\omega - \omega_0)$	Shift by ω_0
Scaling: $f(at)$	$\frac{1}{ a }F(\frac{\omega}{a})$ $F(\omega)G(\omega)$ $\frac{1}{2\pi}(F*G)(\omega)$	$a \in \mathbb{R} \setminus \{0\}$
Convolution: $(f * g)(t)$	$F(\omega)G(\omega)$	$(f * g)(t) = \int f(\tau)g(t - \tau) d\tau$
Multiplication: $f(t)g(t)$	$\frac{1}{2\pi}(F*G)(\omega)$	Frequency convolution
Differentiation: $\frac{d^n}{dt^n}f(t)$	$(\mathrm{j}\omega)^n F(\omega)$	$n \in \mathbb{N}$
Time moment: $t f(t)$	$\mathrm{j} rac{dF}{d\omega} \ F^*(-\omega)$	Similarly $t^n \leftrightarrow j^n \frac{d^n F}{d\omega^n}$
Conjugation: $f^*(t)$	$F^{a\omega}(-\omega)$	If f real: $F(-\omega) = F^*(\omega)$
Even/odd: $f_e \leftrightarrow \Re\{F\},$	` '	Symmetry links
$f_o \leftrightarrow j \Im \{F\}$		
Time reversal: $f(-t)$	$F(-\omega)$	Mirror in ω
Duality: $F(t)$	$F(-\omega) \\ 2\pi f(-\omega)$	From this convention
Parseval/Plancherel	$\int f(t) ^2 dt = \frac{1}{2\pi} \int F(\omega) ^2 d\omega$	Energy conservation

Definitions (for this sheet).

- $\operatorname{sinc}(x) = \frac{\sin x}{x}$ with $\operatorname{sinc}(0) = 1$.
- $\operatorname{rect}(x) = 1$ for $|x| < \frac{1}{2}$ and 0 otherwise; $\operatorname{tri}(x) = \operatorname{rect} * \operatorname{rect}$.
- $\epsilon(t)$ is the unit step; $\operatorname{sgn}(t) = 2\epsilon(t) 1$.
- p. v. denotes the Cauchy principal value.