Notes: Nevanlinna analytical Continuation Method

Shuang Liang*

Institute of Physics, Chinese Academy of Sciences

(Dated: October 28, 2021)

Abstract

This is the abstract.

CONTENTS

I. The analytic continuation problem	2
II. How to solve?	2
III. Nevanlinna analytic continuation	2
A. Schur algorithm	2
References	4

^{*} sliang@iphy.ac.cn

I. THE ANALYTIC CONTINUATION PROBLEM

The analytic continuation problem seeks to extract real frequency dynamical information from imaginary-time correlation functions $G(\tau)$ data. Technically, this is a highly nontrivial task[1]. To see this, we use the relation between $G(\tau)$ and $A(\omega)$ [1, 2]:

$$G(\tau) = \int_{-\infty}^{\infty} d\omega \frac{e^{-\tau\omega}}{1 - \lambda e^{-\beta\omega}} A(\omega) = \int_{-\infty}^{\infty} d\omega K(\tau, \omega) A(\omega)$$
 (1)

where $K(\tau, \omega) = \frac{e^{-\tau \omega}}{1 - \lambda e^{-\beta \omega}}$ is the kernel. One may consider to solve the problem by firstly discretize τ and ω and get:

$$G(\tau_i) = \sum_{j=1}^{N_\omega} K_{ij} A(\omega_j)$$
 (2)

Then do SVD decomposition of rectangular matrix K, write $K_i j = U_{il} \lambda_l V_{lj}$. Finally the spectral function reads

$$A(\omega_j) = \sum_{l=1}^{N_\tau} \frac{1}{\lambda_l} V_{ij} \sum_{i=1}^{N_\omega} G(\tau_i) U_{il}$$
(3)

It seems fine at the first glanse. However, if we consider the properties of $K(\tau, \omega)$, we would notice that it is highly sigular since it is exponentially small for large $|\omega|$, so small errors $G(\tau)$ would be amplified by exponentially small λ_l . This problem is well-known ill-posed[3, 4] and enormous efforts have been made[].

II. HOW TO SOLVE?

. . .

Here we introduce the recently developed Nevanlinna analytic continuation method[5].

III. NEVANLINNA ANALYTIC CONTINUATION

A. Schur algorithm

The Nevanlinna analytic continuation method[5] is basically an interpolation method. In this method, one should firstly using conformal transforms to map the Masubara Green's functions \mathcal{G} , which is analytic in the upper half of the complex plane \mathcal{C}^+ and contains singularities in the lower half plane, to a closed unit disk $\bar{\mathcal{D}}$ in the complex plane. The

mappings are shown in fig. 1. It becomes a Schur class (\mathcal{S}) function and would have a continued fraction expansion where the parameters can be rescrively defined [6]. Then one can apply the Nevanlinna iterative algorithm to interpolate the Schur functions [7]. Finally, one can do a inverse conformal transform back to \mathcal{C}^+ and obtains $\mathcal{G}(z)$, it's then natural to do analytic continuation $z \to \omega + i0^+$. The calculation process is shown in fig. 2.

FIG. 1. Conformal mappings

FIG. 2. Calculation flow chart

For fermionic Green's functions, the mapping from C^+ to \bar{C}^- is simple. Since $\mathrm{Im}\mathcal{G}(z) \leq 0$ if $z \in \mathcal{C}^+$, the mapping is just to take $\mathcal{G} \to -\mathcal{G} = \mathcal{N}\mathcal{G}$ and $\mathcal{N}\mathcal{G} \subset N$. While for bosonic Green's functions, this mapping is a little bit complicated and we will discuss in the next section. The data set we have is $\{i\omega_n, \mathcal{G}(i\omega_n)\}\$, here we denote $\mathcal{Y}_n = i\omega_n$ and $\mathcal{C}_n = \mathcal{N}\mathcal{G}(i\omega_n) = -\mathcal{G}(i\omega_n)$.

Then we use the Möbius transform

$$h(z) = \frac{z - i}{z + i} \tag{4}$$

to map $C_n \subset N$ to $\theta(\mathcal{Y}_n) = h(C_n) \subset \bar{\mathcal{D}}$. The recursive final $\theta(z)$ can conveniently be written in a matrix form:

$$\theta(z)[z;\theta_{M+1}(z)] = \frac{a(z)\theta_{M+1}(z) + b(z)}{c(z)\theta_{M+1}(z) + d(z)}$$
(5)

where

$$\begin{pmatrix} a(z) & b(z) \\ c(z) & d(z) \end{pmatrix} = \prod_{n=1}^{M} \begin{pmatrix} h_1(z, \mathcal{Y}_j) & \phi_j \\ \phi_j^* h_1(z, \mathcal{Y}_j) & 1 \end{pmatrix}$$
(6)

where $h_1(z, \mathcal{Y}_n) = \frac{z - \mathcal{Y}_n}{z - \mathcal{Y}_n^*}$ is a conformal map form \mathcal{C}^+ to \mathcal{D} . $\theta_j(z)$ is the interpolation function of j-th step and $\phi_j = \theta_j(\mathcal{Y}_j)$. There is a freedom to choose $\theta_{M+1}(z)$. One can use this freedom to select the "best" of all consistent spectral functions.

- [1] Mark Jarrell and James E Gubernatis. Bayesian inference and the analytical continuation of imaginary-time quantum monte carlo data. *Physics Reports*, 269(3):133–195, 1996.
- [2] Ming-Wen Xiao. Lecture notes: Linear Response Theory. School of Physics, Nanjing University.
- [3] Forman S. Acton. Numerical Methods that Work (Spectrum). The Mathematical Association of America, 1997.
- [4] Ingo Peschel, Xiaoqun Wang, Matthias Kaulke, and Karen Hallberg. Density-Matrix Renormalization-a New Numerical Method in Physics: Lectures of a Seminar and Workshop Held at the max-planck-institut für physik komplexer systeme, Dresden, Germany, August 24th to September 18th, 1998. Springer, 1999.
- [5] Jiani Fei, Chia-Nan Yeh, and Emanuel Gull. Nevanlinna analytical continuation. *Physical Review Letters*, 126(5):056402, 2021.
- [6] J Schur. Über potenzreihen, die im innern des einheitskreises beschränkt sind. Journal für die reine und angewandte Mathematik (Crelles Journal), 1918(148):122–145, 1918.
- [7] Rolf Nevanlinna. Uber beschrankte funktionen, die in gegeben punkten vorgeschrieben werte annehmen. Ann. Acad. Sci. Fenn. Ser. A 1 Mat. Dissertationes, 1919.