

External(on-disk) Sorting

Chapter 13

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

1

Why Sort?

- * A classic problem in computer science!
- * Data requested in sorted order
 - e.g., find students in increasing *gpa* order
- * Sorting is first step in *bulk loading* B+ tree index.
- * Sorting useful for eliminating *duplicate copies* in a collection of records (Why?)
- * Sort-merge join algorithm involves sorting.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

2

2-Way Sort: Requires 3 Buffers

- * Pass 1: Read a page, sort it, write it.
 - only one buffer page is used
- * Pass 2, 3, ..., etc.:
 - three buffer pages used.

Database Management Systems 3ed, R. Kamakrishnan and J. Gel

why +1? because the first pass we need to sort each page locally how many pages we need to do this merge sort?

A: 3: 1 for left input page, 1 for right input page, 1 for output page

4

General External Merge Sort More than 3 buffer pages. How can we utilize them? To sort a file with N pages using B buffer pages: Pass 0: use B buffer pages. Produce [N/B] sorted runs of B pages each. Pass 2, ..., etc.: merge B-1 runs. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

5

Cost of External Merge Sort

- * Number of passes: $1 + \lceil \log_{B-1} \lceil N / B \rceil \rceil$
- Cost = 2N * (# of passes)
- E.g., with 5 buffer pages, to sort 108 page file:
 Pass 0: [108 / 5] = 22 sorted runs of 5 pages each
 - (last run is only 3 pages)
 Pass 1: [22 / 4] = 6 sorted runs of 20 pages each
 - Pass 1: | 22 / 4 | = 6 sorted runs of 20 pages each (last run is only 8 pages)
 - Pass 2: 2 sorted runs, 80 pages and 28 pages
 - Pass 3: Sorted file of 108 pages

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrk

Number of Passes of External Sort

N	B=3	B=5	B=9	B=17	B=129	B=257
100	7	4	3	2	1	1
1,000	10	5	4	3	2	2
10,000	13	7	5	4	2	2
100,000	17	9	6	5	3	3
1,000,000	20	10	7	5	3	3
10,000,000	23	12	8	6	4	3
100,000,000	26	14	9	7	4	4
1,000,000,000	30	15	10	8	5	4
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7						

7

Internal Sort Algorithm

- * Quicksort is a fast way to sort in memory.
- * An alternative is "tournament sort" (a.k.a. "heapsort")
 - **Top**: Read in *B* blocks
 - Output: move smallest record to output buffer
 - Read in a new record *r*
 - insert *r* into "heap"
 - if r not smallest, then **GOTO Output**
 - else remove *r* from "heap"
 - output "heap" in order; GOTO Top

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

8

More on Heapsort

- ❖ Fact: average length of a run in heapsort is 2*B*
 - The "snowplow" analogy
- * Worst-Case:
 - What is min length of a run?
 - How does this arise?
- Best-Case:
 - What is max length of a run?
 - How does this arise?
- * Quicksort is faster, but ...

Oatabase Management Systems 3ed, R. Ramakrishnan and J. Gehrk

I/O for External Merge Sort

- ge Sort
- * ... longer runs often means fewer passes!
- * Actually, do I/O a page at a time
- In fact, read a <u>block</u> of pages sequentially!
- Suggests we should make each buffer (input/output) be a block of pages.
 - But this will reduce fan-out during merge passes!
 - In practice, most files still sorted in 2-3 passes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

10

Number of Passes of Optimized Sort B=1,000 B=5,000 B=10,000 Ν 100 1 1 1 1,000 1 1 1 10,000 2 2 1 100,000 3 2 2 3 2 2 1,000,000 3 10,000,000 4 3 100,000,000 5 3 3

4

3

► Block size = 32, initial pass produces runs of size 2B.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

11

1,000,000,000

as we starts sorting the yellow pages,
starts to fetch green pages

Sorting Records!

- English Control
- * Sorting has become a blood sport!
 - Parallel sorting is the name of the game ...
- * Datamation: Sort 1M records of size 100 bytes
 - Typical DBMS: 15 minutes
 - World record: 3.5 *seconds*
 - 12-CPU SGI machine, 96 disks, 2GB of RAM
- New benchmarks proposed:
 - Minute Sort: How many can you sort in 1 minute?
 - Dollar Sort: How many can you sort for \$1.00?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

12

13

Using B+ Trees for Sorting

- * Scenario: Table to be sorted has B+ tree index on sorting column(s).
- * Idea: Can retrieve records in order by traversing leaf pages.
- * Is this a good idea?
- * Cases to consider:
 - B+ tree is clustered

Good idea!

• B+ tree is not clustered

Could be a very bad idea!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

14

14

Clustered B+ Tree Used for Sorting Cost: root to the leftmost leaf, then retrieve all leaf pages (Alternative 1) If Alternative 2 is used? Additional cost of retrieving data records: each page fetched just once. Data Entries "Sequence set") Data Records

					EN
External	Sorting	vs.	Uncl	lustered	Inde

N	Sorting	p=1	p=10	p=100
100	200	100	1,000	10,000
1,000	2,000	1,000	10,000	100,000
10,000	40,000	10,000	100,000	1,000,000
100,000	600,000	100,000	1,000,000	10,000,000
1,000,000	8,000,000	1,000,000	10,000,000	100,000,000
10,000,000	80,000,000	10,000,000	100,000,000	1,000,000,000

- ► N: number of pages
- **☞** *p*: # of records per page
- ► B=1,000 and block size=32 for sorting

if a page has x tuples: we need to touch x times per page.

While compared to external sorting, we only need to touch each page once

p=100 is the more realistic value.

17

Summary

- * External sorting is important; DBMS may dedicate part of buffer pool for sorting!
- * External merge sort minimizes disk I/O cost:
 - Pass 0: Produces sorted runs of size B (# buffer pages). Later passes: merge runs.
 - # of runs merged at a time depends on *B*, and *block size*.
 - Larger block size means less I/O cost per page.
 - Larger block size means smaller # runs merged.
 - In practice, # of runs rarely more than 2 or 3.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Summary, cont.

- En En
- * Choice of internal sort algorithm may matter:
 - Quicksort: Quick!
 - Heap/tournament sort: slower (2x), longer runs
- * The best sorts are wildly fast:
 - Despite 40+ years of research, we're still improving!
- * Clustered B+ tree is good for sorting; unclustered tree is usually very bad.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

19