Alcuni esercizi risolti di MATEMATICA DISCRETA C.L. Informatica

1. È assegnata la permutazione di S_9 :

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 5 & 9 & 7 & 4 & 6 & 2 & 8 & 3 \end{pmatrix}.$$

- (a) Scomporre f nel prodotto di cicli disgiunti e determinarne la classe di permutazione
- (b) determinare la permutazione inversa della permutazione f
- (c) determinare l'ordine di f nel gruppo (S_9, \circ)
- (d) scrivere gli elementi del sottogruppo H di (S_9, \circ) generato da f
- (e) determinare l'ordine di tutti gli elementi di H
- (f) scrivere la tabella di (H, \circ) .

Soluzione 1a) Risulta $f=(2\ 5\ 4\ 7\)\circ (3\ 9)$ e quindi f è di classe pari. Infatti $\sigma_1=(2\ 5\ 4\ 7\)$ e $\sigma_2=(3\ 9)$ sono due cicli di lunghezza pari e quindi di classe dispari, pertanto $\Delta(f)=\Delta(\sigma_1)\cdot\Delta(\sigma_2)=(-1)\cdot(-1)=1$.

1b) La permutazione inversa di f è:

$$f^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 7 & 9 & 5 & 2 & 6 & 4 & 8 & 3 \end{pmatrix}.$$

1c) L'ordine di f in (S_9, \cdot) è:

$$| f | = m.c.m.(| \sigma_1 |, | \sigma_2 |) = m.c.m.(4, 2) = 4.$$

- 1e) $H=< f>= \{f^n \mid n\in \mathbb{Z}\} = \{f,f^2,f^3,f^4=id\}$. Si può facilmente verificare che $f^2=(2\ 4)\circ(5\ 7)$, che $f^3=(2\ 7\ 4\ 5)\circ(3\ 9)$ e che in effetti $f^4=f^2\circ f^2=id$ (ciò a conferma del risultato teorico $|f|=min\{h\in \mathbb{N}^*\mid f^h=id\}$). Naturalmente tutte le altre potenze di f coincidono con una tra le permutazioni f,f^2,f^3,f^4 .
 - 1f) La tabella di (H, \circ) può essere scritta nei seguenti modi:

	•	id	f	f^2	f^3
i	d	id	f	f^2	f^3
	f	f	f^2	f^3	id
j	f^2	$\int f^2$	f^3	id	f
j	f^3	f^3	id	f	$\int f^2$

	id	f	f^2	f^3
$\mid id \mid$	id	$(2\ 5\ 4\ 7\)\circ\ (3\ 9)$	$(2\ 4)\circ(5\ 7)$	$(2\ 7\ 4\ 5)\circ(3\ 9)$
f	$(2\ 5\ 4\ 7\)\circ\ (3\ 9)$	$(2\ 4)\circ(5\ 7)$	$(2\ 7\ 4\ 5)\circ(3\ 9)$	id
\int_{0}^{2}	$(2\ 4)\circ(5\ 7)$	$(2\ 7\ 4\ 5)\circ(3\ 9)$	id	$(2\ 5\ 4\ 7\)\circ\ (3\ 9)$
\int_{0}^{3}	$(2\ 7\ 4\ 5)\circ(3\ 9)$	id	$(2\ 5\ 4\ 7\)\circ\ (3\ 9)$	$(2\ 4)\circ(5\ 7)$

- 2. Sia (G, \cdot) un gruppo di ordine 4.
 - (a) Se (G,\cdot) è ciclico, determinare l'ordine di tutti gli elementi di G
 - (b) se (G,\cdot) non è ciclico, determinare l'ordine di tutti gli elementi di G e scriverne la tabella moltiplicativa
 - (c) esibire un esempio di gruppo ciclico e di uno non ciclico di ordine 4.

Soluzione 2a) Sia g un generatore di (G, \cdot) . Allora

$$G = \{g^0 = 1_G, g, g^2, g^3\}.$$

Inoltre $|g^2|=\frac{4}{M.C.D.(4,2)}=2, \quad |g^3|=\frac{4}{M.C.D.(4,3)}=4$, e quindi g^3 è un altro generatore di (G,\cdot) .

2b) Sia $x \in G$, $x \neq 1_G$. Per il Teorema di Lagrange, |x| è un divisore di 4 e quindi può essere 1, 2, 4. Ma x non è l'elemento neutro e quindi $|x| \neq 1$; inoltre (G, \cdot) non è ciclico, pertanto nessun suo elemento può avere ordine 4 e dunque |x|=2, cioè ogni elemento di G diverso dall'unità di G ha ordine 2; ovvero, posto $G=\{1_g,a,b,c\}$, si ha |a|=|b|=|c|=2 e $a^2=b^2=c^2=1_G$. Inoltre deve essere $a\cdot b=b\cdot a=c$, $a\cdot c=c\cdot a=b$, $b\cdot c=c\cdot b=a$. Siano, infatti $x,y\in\{a,b,c\}$, $x\neq y$. Se fosse $x\cdot y=x$, allora moltiplicando a sinistra per x si avrebbe $x^2\cdot y=x^2$ e quindi $y=1_G$, assurdo. Analogamente si vede che non può essere $x\cdot y=y$. Si conclude che (G,\cdot) è abeliano e la tabella di (G,\cdot) (gruppo di Klein) è

	1_G	a	b	c
1_G	1_G	a	b	c
a	a	1_G	с	b
b	b	С	1_G	a
С	С	b	a	1_G

2c) Un esempio di gruppo ciclico di ordine 4 è $(\mathbb{Z}_4, +)$; anche il gruppo H dell'esercizio 1d) è un esempio di gruppo ciclico di ordine 4. Invece $(\mathbb{Z}_2 \oplus \mathbb{Z}_2, +)$ è un gruppo non ciclico di ordine 4, come si può controllare facilmente usando la formula |(a,b)| = m.c.m.(|a|,|b|) per calcolare gli ordini degli elementi di $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.