CISC 372 Network/Graph Embedding

• Part III: Network

Basic characteristics of network

Recommendation

 Supervised/Self-supervised learning on information network

PageRank

Graph Types

 Homogeneous Network vs Heterogenous Information Network

(a) Network instance

(b) Network schema

Graph Types

(a) Network instance

(b) Network schema

DEFINITION 2: Heterogeneous/homogeneous information Network. The information network is called heterogeneous information network if the types of objects $|\mathcal{A}| > 1$ or the types of relations $|\mathcal{R}| > 1$; otherwise, it is a homogeneous information network.

Graph Types

(a) Multi-relation

- Heterogenous Information Network
 - Example graph?
 - Social Media Platform
 - Users, Tags, Posts
 - Health Care System:
 - Doctors, Patients, Diseases, Devices

(c) Star-schema

(d) Multiple-hub

Reality is much more complicated

Assumption

- Graph Data
 - lie in a low dimensional manifold

 Complex non-relational graph structure -> low dimensional embedding space

Why Graph Embedding

- Latent Embedding -> Hidden Regularities of the Data
- Similar to Language Model, useful for a lot of downstream task
 - Link prediction
 - Node prediction
 - Recommendation
 - Tag Prediction

- Basic Idea -> Graph is similar to Text!
 - (if we randomly travel to through the graph)
 - Connection: Power laws

Figure 2: The power-law distribution of vertices appearing in short random walks (2a) follows a power-law, much like the distribution of words in natural language (2b).

- Word2Vec
 - Recall:

- Word2Vec
 - Create questions (and true answers) from the dataset to train the model.
 - The, baby, is, smiling, at, her, mom
 - Question: The, baby, is, ____, at, her, mom
 - Answer: smiling
 - The, baby, is, flying, at, her, mom
 - Question: The, baby, is, ____, at, her, mom
 - Answer: flying
- In fact, Sentence is GRAPH!

- Three steps:
 - Sequence Generation (random walk)
 - Representation mapping (embedding layer)
 - Prediction (through word2vec)

- Performance?
 - BlogCataLog classification
 - Flicker label prediction
 - Youtube Label Prediction

	% Labeled Nodes	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk	36.00	38.20	39.60	40.30	41.00	41.30	41.50	41.50	42.00
	SpectralClustering	31.06	34.95	37.27	38.93	39.97	40.99	41.66	42.42	42.62
	EdgeCluster	27.94	30.76	31.85	32.99	34.12	35.00	34.63	35.99	36.29
Micro-F1(%)	Modularity	27.35	30.74	31.77	32.97	34.09	36.13	36.08	37.23	38.18
	wvRN	19.51	24.34	25.62	28.82	30.37	31.81	32.19	33.33	34.28
	Majority	16.51	16.66	16.61	16.70	16.91	16.99	16.92	16.49	17.26
	DeepWalk	21.30	23.80	25.30	26.30	27.30	27.60	27.90	28.20	28.90
	SpectralClustering	19.14	23.57	25.97	27.46	28.31	29.46	30.13	31.38	31.78
	EdgeCluster	16.16	19.16	20.48	22.00	23.00	23.64	23.82	24.61	24.92
Macro-F1(%)	Modularity	17.36	20.00	20.80	21.85	22.65	23.41	23.89	24.20	24.97
	wvRN	6.25	10.13	11.64	14.24	15.86	17.18	17.98	18.86	19.57
	Majority	2.52	2.55	2.52	2.58	2.58	2.63	2.61	2.48	2.62

Table 2: Multi-label classification results in BlogCatalog

	% Labeled Nodes	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
	DEEPWALK	32.4	34.6	35.9	36.7	37.2	37.7	38.1	38.3	38.5	38.7
	SpectralClustering	27.43	30.11	31.63	32.69	33.31	33.95	34.46	34.81	35.14	35.41
Micro-F1(%)	EdgeCluster	25.75	28.53	29.14	30.31	30.85	31.53	31.75	31.76	32.19	32.84
	Modularity	22.75	25.29	27.3	27.6	28.05	29.33	29.43	28.89	29.17	29.2
	wvRN	17.7	14.43	15.72	20.97	19.83	19.42	19.22	21.25	22.51	22.73
	Majority	16.34	16.31	16.34	16.46	16.65	16.44	16.38	16.62	16.67	16.71
	DEEPWALK	14.0	17.3	19.6	21.1	22.1	22.9	23.6	24.1	24.6	25.0
	SpectralClustering	13.84	17.49	19.44	20.75	21.60	22.36	23.01	23.36	23.82	24.05
Macro-F1(%)	EdgeCluster	10.52	14.10	15.91	16.72	18.01	18.54	19.54	20.18	20.78	20.85
	Modularity	10.21	13.37	15.24	15.11	16.14	16.64	17.02	17.1	17.14	17.12
	wvRN	1.53	2.46	2.91	3.47	4.95	5.56	5.82	6.59	8.00	7.26
	Majority	0.45	0.44	0.45	0.46	0.47	0.44	0.45	0.47	0.47	0.47

Table 3: Multi-label classification results in FLICKR

Node2Vec

- Second order traversal
 - Breadth-first Sampling (BFS)
 - Depth-first Sampling (DFS)
 - BFS, DFS traversal yields very different sequence
 - BFS -> emphasize 1st order neighbor
 - DFS -> emphasize >2nd order neighbor

Node2Vec

- Controlled Random Walk
 - p return rate
 - q exploration rate

Node2Vec

Learning? Same as DeepWalk and Word2Vec

- Edge sampling instead of random walk
- Separate embedding space into
 - 1st order proximity
 - 2nd order proximity
- Avoid sequence generation
- More efficient and scalable
- the consideration of the second order proximity effectively complements the sparsity of the firstorder proximity and better preserves the global structure of the network.

- Edge sampling instead of random walk
- Separate embedding space into
 - 1st order proximity
 - 2nd order proximity
- Avoid sequence generation
- More efficient and scalable
- the consideration of the second order proximity effectively complements the sparsity of the firstorder proximity and better preserves the global structure of the network.

Table 3: Results of Wikipedia page classification on Wikipedia data set.

Metric	Algorithm	10%	20%	30%	40%	50%	60%	70%	80%	90%
	GF	79.63	80.51	80.94	81.18	81.38	81.54	81.63	81.71	81.78
	DeepWalk	78.89	79.92	80.41	80.69	80.92	81.08	81.21	81.35	81.42
Micro-F1	SkipGram	79.84	80.82	81.28	81.57	81.71	81.87	81.98	82.05	82.09
WHEFO-F I	LINE-SGD(1st)	76.03	77.05	77.57	77.85	78.08	78.25	78.39	78.44	78.49
	LINE-SGD(2nd)	74.68	76.53	77.54	78.18	78.63	78.96	79.19	79.40	79.57
	LINE(1st)	79.67	80.55	80.94	81.24	81.40	81.52	81.61	81.69	81.67
	LINE(2nd)	79.93	80.90	81.31	81.63	81.80	81.91	82.00	82.11	82.17
	LINE(1st+2nd)	81.04**	82.08**	82.58**	82.93**	83.16**	83.37**	83.52**	83.63**	83.74**
	GF	79.49	80.39	80.82	81.08	81.26	81.40	81.52	81.61	81.68
	DeepWalk	78.78	79.78	80.30	80.56	80.82	80.97	81.11	81.24	81.32
Macro-F1	SkipGram	79.74	80.71	81.15	81.46	81.63	81.78	81.88	81.98	82.01
Macro-F1	LINE-SGD(1st)	75.85	76.90	77.40	77.71	77.94	78.12	78.24	78.29	78.36
	LINE-SGD(2nd)	74.70	76.45	77.43	78.09	78.53	78.83	79.08	79.29	79.46
	LINE(1st)	79.54	80.44	80.82	81.13	81.29	81.43	81.51	81.60	81.59
	LINE(2nd)	79.82	80.81	81.22	81.52	81.71	81.82	81.92	82.00	82.07
	LINE(1st+2nd)	80.94**	81.99**	82.49**	82.83**	83.07**	83.29**	83.42**	83.55**	83.66**

Significantly outperforms GF at the: ** 0.01 and * 0.05 level, paired t-test.

Figure 2: Visualization of the co-author network. The authors are mapped to the 2-D space using the t-SNE package with learned embeddings as input. Color of a node indicates the community of the author. Red: "data Mining," blue: "machine learning," green: "computer vision."

metapath2vec

(a) DeepWalk / node2vec

(c) metapath2vec

(d) metapath2vec++

metapath2vec

consider the nature of multi-typed node & entities

META PATH EXAMPLES AND THEIR PHYSICAL MEANINGS ON BIBLIOGRAPHIC DATA.

Path instance	Meta path	Physical meaning			
Sun-NetClus-Han	Author Donor Author (ADA)	Authors collaborate on the same paper			
Sun-PathSim-Yu	Author-Paper-Author (APA)				
Sun-PathSim-VLDB-PathSim-Han	Author Donor Versio Donor Author (ADVDA)	Authors willish more on the come verse			
Sun-PathSim-VLDB-GenClus-Aggarwal	Author-Paper-Venue-Paper-Author (APVPA)	Authors publish papers on the same venue			
Sun-NetClus-KDD	Author Pener Venue (ABV)	Authors publish papers at a vanua			
Sun-PathSim-VLDB	Author-Paper-Venue (APV)	Authors publish papers at a venue			

Metapath2vec

Metapath2vec

Table 2: Multi-class venue node classification results in AMiner data.

Metric	Method	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk/node2vec	0.0723	0.1396	0.1905	0.2795	0.3427	0.3911	0.4424	0.4774	0.4955	0.4457
Macro-F1	LINE (1st+2nd)	0.2245	0.4629	0.7011	0.8473	0.8953	0.9203	0.9308	0.9466	0.9410	0.9466
масго-г1	PTE	0.1702	0.3388	0.6535	0.8304	0.8936	0.9210	0.9352	0.9505	0.9525	0.9489
	metapath2vec	0.3033	0.5247	0.8033	0.8971	0.9406	0.9532	0.9529	0.9701	0.9683	0.9670
	metapath2vec++	0.3090	0.5444	0.8049	0.8995	0.9468	0.9580	0.9561	0.9675	0.9533	0.9503
	DeepWalk/node2vec	0.1701	0.2142	0.2486	0.3266	0.3788	0.4090	0.4630	0.4975	0.5259	0.5286
Mione Et	LINE (1st+2nd)	0.3000	0.5167	0.7159	0.8457	0.8950	0.9209	0.9333	0.9500	0.9556	0.9571
Micro-F1	PTE	0.2512	0.4267	0.6879	0.8372	0.8950	0.9239	0.9352	0.9550	0.9667	0.9571
	metapath2vec	0.4173	0.5975	0.8327	0.9011	0.9400	0.9522	0.9537	0.9725	0.9815	0.9857
	metapath2vec++	0.4331	0.6192	0.8336	0.9032	0.9463	0.9582	0.9574	0.9700	0.9741	0.9786

Table 3: Multi-class author node classification results in AMiner data.

Metric	Method	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk/node2vec	0.7153	0.7222	0.7256	0.7270	0.7273	0.7274	0.7273	0.7271	0.7275	0.7275
Macro-F1	LINE (1st+2nd)	0.8849	0.8886	0.8911	0.8921	0.8926	0.8929	0.8934	0.8936	0.8938	0.8934
Macro-F1	PTE	0.8898	0.8940	0.897	0.8982	0.8987	0.8990	0.8997	0.8999	0.9002	0.9005
	metapath2vec	0.9216	0.9262	0.9292	0.9303	0.9309	0.9314	0.9315	0.9316	0.9319	0.9320
	metapath2vec++	0.9107	0.9156	0.9186	0.9199	0.9204	0.9207	0.9207	0.9208	0.9211	0.9212
	DeepWalk/node2vec	0.7312	0.7372	0.7402	0.7414	0.7418	0.7420	0.7419	0.7420	0.7425	0.7425
Micro-F1	LINE (1st+2nd)	0.8936	0.8969	0.8993	0.9002	0.9007	0.9010	0.9015	0.9016	0.9018	0.9017
MICIO-F1	PTE	0.8986	0.9023	0.9051	0.9061	0.9066	0.9068	0.9075	0.9077	0.9079	0.9082
	metapath2vec	0.9279	0.9319	0.9346	0.9356	0.9361	0.9365	0.9365	0.9365	0.9367	0.9369
	metapath2vec++	0.9173	0.9217	0.9243	0.9254	0.9259	0.9261	0.9261	0.9262	0.9264	0.9266

GraphSAGE

Semi-supervised learning

1. Sample neighborhood

2. Aggregate feature information from neighbors

3. Predict graph context and label using aggregated information

GraphSAGE

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

	Citation		Redo	dit	PPI		
Name	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	
Random	0.206	0.206	0.043	0.042	0.396	0.396	
Raw features	0.575	0.575	0.585	0.585	0.422	0.422	
DeepWalk	0.565	0.565	0.324	0.324	_	_	
DeepWalk + features	0.701	0.701	0.691	0.691	_	_	
GraphSAGE-GCN	0.742	0.772	0.908	0.930	0.465	0.500	
GraphSAGE-mean	0.778	0.820	0.897	0.950	0.486	0.598	
GraphSAGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.612	
GraphSAGE-pool	0.798	0.839	0.892	0.948	0.502	0.600	
% gain over feat.	39%	46%	55%	63%	19%	45%	

Figure 2: **A**: Timing experiments on Reddit data, with training batches of size 512 and inference on the full test set (79,534 nodes). **B**: Model performance with respect to the size of the sampled neighborhood, where the "neighborhood sample size" refers to the number of neighbors sampled at each depth for K = 2 with $S_1 = S_2$ (on the citation data using GraphSAGE-mean).