C.01.01.Z1 – Biblioteca Simplificada de Gás Ideal

Aplicação em FTHA - Finite Time Heat Addition Otto Engine Model

Prof. C. Naaktgeboren, PhD

C.01.01.Z1 – Biblioteca Simplificada de Gás Ideal

Modelo de Gás Ideal

Modelo de $\bar{c}_p(T)$ Polinomial:

$$\bar{c}_p(T) = \sum_{i=1}^4 a_i T^{i-1}, \qquad T_{min} \leqslant T \leqslant T_{max} \qquad \neg$$

$$\bar{c}_p(T) = a_1 + a_2 T + a_3 T^2 + a_4 T^3, \qquad T_{min} \leqslant T \leqslant T_{max} \qquad \neg$$

$$\bar{c}_v(T) = \bar{c}_p(T) - \bar{R} = \sum_{i=1}^4 b_i T^{i-1}, \qquad T_{min} \leqslant T \leqslant T_{max} \qquad \neg$$

$$b_1 = a_1 - \bar{R}, \qquad b_{i>1} = a_{i>1} \qquad \vdots$$

Armazenar a_i , T_{min} e T_{max} e saber as conversões (i) $a_i \rightarrow b_i$ e (ii) $\bar{c}_{p,v}(T) \rightarrow c_{p,v}(T)$

Equação de Estado (EoS): Comportamento P - T - v

$$Pv = RT$$
 $P\bar{v} = \bar{R}T$ \neg

$$P = \frac{RT}{v}$$
 $P = \frac{\bar{R}T}{\bar{v}}$ \neg

$$T = \frac{Pv}{R}$$
 $T = \frac{P\bar{v}}{\bar{R}}$ \neg

$$v = \frac{RT}{P}$$
 $\bar{v} = \frac{\bar{R}T}{P}$ \therefore

Cada equação com forma nas bases mássica, e molar, com $R = \bar{R}/M$ — armazenar \bar{R} e M!

Prof. C. Naaktgeboren, PhD C.01.01.Z1 – Biblioteca Simplificada de Gás Ideal

Modelo de Gás Ideal

Modelo de $\bar{c}_p(T)$ Polinomial: $\bar{u}(T)$

$$\bar{u}(T) = \int_{T_{ref}}^{T} \bar{c}_{v}(T) dT = \int_{T_{ref}}^{T} \sum_{i=1}^{4} b_{i} T^{i-1} dT, \qquad T_{min} \leqslant T \leqslant T_{max} \qquad \neg$$

$$\bar{u}(T) = \left(b_{1}T + \frac{b_{2}T^{2}}{2} + \frac{b_{3}T^{3}}{3} + \frac{b_{4}T^{4}}{4}\right)_{T}^{T}, \qquad T_{min} \leqslant T \leqslant T_{max} \qquad \therefore$$

- Armazenar T_{ref} ,
- Compor eficientemente a soma de produtos, e
- Saber as conversões $\bar{u}(T) \to u(T)$.

Modelo de Gás Ideal

Modelo de $\bar{c}_p(T)$ Polinomial: $\bar{h}(T) = \bar{u}(T) + \bar{R}T$

$$\bar{h}(T) = \int_{T_{ref}}^{T} \bar{c}_p(T) dT + \bar{R}T_{ref} = \int_{T_{ref}}^{T} \sum_{i=1}^{4} a_i T^{i-1} dT + \bar{R}T_{ref}, \quad T_{min} \leqslant T \leqslant T_{max} \qquad -1$$

$$\bar{h}(T) = \left(a_1 T + \frac{a_2 T^2}{2} + \frac{a_3 T^3}{3} + \frac{a_4 T^4}{4}\right)_{T_{ref}}^T + \bar{R} T_{ref}, \qquad T_{min} \leqslant T \leqslant T_{max}$$

- Compor eficientemente a soma de produtos, e
- Saber as conversões $\bar{h}(T) \to h(T)$.

nD C.01.01.Z1 – Biblioteca Simplificada de Gás Ideal

Modelo de Gás Ideal

Modelo de $\bar{c}_p(T)$ Polinomial: $\bar{s}^{\circ}(T)$

$$\bar{s}^{\circ}(T) = \int_{0}^{T} \frac{\bar{c}_{p}(T)}{T} dT = \int_{0}^{T_{ref}} \frac{\bar{c}_{p}(T)}{T} dT + \int_{T_{ref}}^{T} \frac{\bar{c}_{p}(T)}{T} dT, \quad T_{min} \leqslant T \leqslant T_{max} \qquad \neg$$

$$\bar{s}^{\circ}(T) = \bar{s}^{\circ}_{ref} + \int_{T_{ref}}^{T} \sum_{i=1}^{4} a_{i} T^{i-2} dT \qquad \qquad T_{min} \leqslant T \leqslant T_{max} \qquad \neg$$

$$\bar{s}^{\circ}(T) = \bar{s}^{\circ}_{ref} + \left(a_{1} \ln(T) + a_{2}T + \frac{a_{3}T^{2}}{2} + \frac{a_{4}T^{3}}{3} \right)_{T_{ref}}^{T}, \qquad T_{min} \leqslant T \leqslant T_{max} \qquad \therefore$$

- \bullet Armazenar $\overline{s}_{ref}^{\circ},$ compor eficientemente a soma de produtos, e
- Saber as conversões $\bar{s}^{\circ}(T) \to s^{\circ}(T)$.

C. Naaktgeboren, PhD C.01.01.Z1 – Biblioteca Simplificada de Gás Ideal