Action-Based Temporal Logics and Model Checking (part I)

Radu Mateescu

Inria and LIG / Convecs

http://convecs.inria.fr

Action-based temporal logics

Introduction

Modal logics

Branching-time logics

Why temporal logics?

- Need to specify high-level properties of concurrent systems, e.g.:
 - Mutual exclusion (at most one process in critical section)
 - Progress (each process eventually enters its critical section)
- **Temporal logics** (TLs):
 - formalisms describing the ordering of states (or actions) during the execution of a concurrent system
- TL specification = list of logical formulas, each one expressing a specific property of the system
- Benefits of TL [Manna-Pnueli-90]:
 - ► **Abstraction**: properties expressed in TL are independent from the description/implementation of the system
 - ► *Modularity*: one can add/change/remove a property without impacting the other properties of the specification

(Rough) classification of TLs

	State-based	Action-based
Linear-time	LTL (SPIN tool)	TLA (TLA+ tool)
(properties about execution	linear mu-calculus	action-based LTL (LTSA tool)
sequences)		,
Branching-time	CTL (nuSMV tool)	ACTL (JACK tool)
		ACTL*
(properties about execution trees)	CTL*	modal mu-calculus (CWB, Concurrency Factory, CADP)

Example

(coffee machine)

- A linear-time TL cannot distinguish the two LTSs M_1 and M_2 , which have the same set of execution sequences, but are not behaviourally equivalent (modulo *strong* bisimulation see Chapter on equivalences)
- A branching-time TL can capture nondeterminism and thus can distinguish M₁ and M₂

Interpretation of (branching-time) TLs on LTSs

- LTS model $M = \langle S, A, T, s_0 \rangle$, where:
 - ► S: set of states
 - A: set of actions (events)
 - $T \in S \times A \times S$: transition relation
 - ▶ s_0 ∈ S: initial state
- Interpretation of a formula φ on M:

$$[[\phi]] = \{ s \in S \mid s \mid = \phi \}$$

- [[ϕ]] is defined inductively on the structure of ϕ
- An LTS M satisfies a TL formula φ ($M \models φ$) iff its initial state satisfies φ:

$$M \mid = \phi \Leftrightarrow s_0 \mid = \phi \Leftrightarrow s_0 \in [[\phi]]$$

Running example: mutual exclusion with a semaphore

Description using communicating automata

LTS model

Modal logics

- These are the simplest logics allowing one to reason about the sequencing and branching of transitions in an LTS
- Basic modal operators:
 - ► Possibility

from a state, there exists (at least) an outgoing transition labeled by a given action and leading to a given state

► Necessity

from a state, all the outgoing transitions labeled by a given action lead to given states

Hennessy-Milner Logic (HML) [Hennessy-Milner-85]

Action predicates

(syntax)

$$\alpha ::= a$$

true

| false

 $\mid \alpha_1 \vee \alpha_2 \mid$

 $\mid \alpha_1 \wedge \alpha_2 \mid$

 $-\alpha_1$

 $\mid \alpha_1 \Rightarrow \alpha_2$

 $\mid \alpha_1 \Leftrightarrow \alpha_2 \mid$

atomic proposition
$$(a \in A)$$

constant "true"

constant "false"

disjunction

conjunction

negation

implication ($\neg \alpha_1 \lor \alpha_2$)

equivalence $(\alpha_1 \Rightarrow \alpha_2 \land \alpha_1 \Rightarrow \alpha_2)$

Action predicates

(semantics)

Let $M = (S, A, T, s_0)$. Interpretation $[[\alpha]] \subseteq A$:

- **■** [[*a*]] = { *a* }
- [[true]] = A
- **■** [[false]] = ∅

- $[[\neg \alpha_1]] = A \setminus [[\alpha_1]]$
- $[[\alpha_1 \Leftrightarrow \alpha_2]] = ((A \setminus [[\alpha_1]]) \cup [[\alpha_2]])$ $\cap ((A \setminus [[\alpha_2]]) \cup [[\alpha_1]])$

Examples

```
A = \{ NCS_0, NCS_1, CS_0, CS_1, REQ_0, REQ_1, REL_0, REL_1 \}
```

- $[[true]] = \{ NCS_0, NCS_1, CS_0, CS_1, REQ_0, REQ_1, REL_0, REL_1 \}$
- **■** [[false]] = ∅
- $[[NCS_0]] = {NCS_0}$
- $[[\neg NCS_0]] = \{ NCS_1, CS_0, CS_1, REQ_0, REQ_1, REL_0, REL_1 \}$
- $[[NCS_0 \land \neg NCS_1]] = {NCS_0} = [[NCS_0]]$
- $[[NCS_0 \lor NCS_1]] = \{NCS_0, NCS_1\}$
- $[[(NCS_0 \lor NCS_1) \land (NCS_0 \lor REQ_0)]] = \{NCS_0\}$
- $[[NCS_0 \land NCS_1]] = \emptyset = [[false]]$
- $[[NCS_0 \lor \neg NCS_0]] =$ $\{NCS_0, NCS_1, CS_0, CS_1, REQ_0, REQ_1, REL_0, REL_1\} = [[true]]$

HML logic

(syntax)

$$\phi ::= true$$

| false

 $| \phi_1 \vee \phi_2 |$

 $| \phi_1 \wedge \phi_2 |$

 $-\phi_1$

 $|\langle \alpha \rangle \varphi_1|$

 $[\alpha]\phi_1$

constant "true"

constant "false"

disjunction

conjunction

negation

possibility

necessity

$$[\alpha] \phi = \neg \langle \alpha \rangle \neg \phi$$

HML logic

(semantics)

Let $M = (S, A, T, s_0)$. Interpretation $[[\phi]] \subseteq S$:

- [[true]] = S
- **■** [[false]] = ∅
- \blacksquare [[$φ_1 \lor φ_2$]] = [[$φ_1$]] \cup [[$φ_2$]]
- $[[\neg \varphi_1]] = S \setminus [[\varphi_1]]$
- $[[\langle \alpha \rangle \varphi_1]] = \{ s \in S \mid \exists (s, a, s') \in T . \\ a \in [[\alpha]] \land s' \in [[\varphi_1]] \}$

Example (1/4)

Deadlock freedom: (true) true

Example (2/4)

Possible execution of a set of actions: $\langle CS_0 \vee CS_1 \rangle$ true

Example (3/4)

Forbidden execution of a set of actions: $[NCS_0 \lor NCS_1]$ false

Example (4/4)

Execution of an action sequence: $\langle REQ_0 \rangle \langle CS_0 \rangle \langle REL_0 \rangle$ true

Some identities

- Contradiction and tautology:
 - $\triangleright \langle \alpha \rangle$ false = \langle false $\rangle \phi$ = false
 - \blacktriangleright [α] true = [false] φ = true
- Distributivity of modalities over ∨ and ∧:

 - $[\alpha] \varphi_1 \wedge [\alpha] \varphi_2 = [\alpha] (\varphi_1 \wedge \varphi_2)$
 - $[\alpha_1] \phi \wedge [\alpha_2] \phi = [\alpha_1 \vee \alpha_2] \phi$
- Monotonicity of modalities over φ :
 - $(\phi_1 \Rightarrow \phi_2) \Rightarrow (\langle \alpha \rangle \phi_1 \Rightarrow \langle \alpha \rangle \phi_2) \wedge ([\alpha] \phi_1 \Rightarrow [\alpha] \phi_2)$
 - $(\alpha_1 \Rightarrow \alpha_2) \Rightarrow (\langle \alpha_1 \rangle \phi \Rightarrow \langle \alpha_2 \rangle \phi) \wedge ([\alpha_2] \phi \Rightarrow [\alpha_1] \phi)$

Exercises

Show the following identity in HML:

$$\langle \alpha \rangle$$
 true $\wedge [\alpha] \phi = \langle \alpha \rangle \phi \wedge [\alpha] \phi$

Show the following implications (monotonicity of modalities over α):

if
$$\alpha_1 \Rightarrow \alpha_2$$
 then $\langle \alpha_1 \rangle \phi \Rightarrow \langle \alpha_2 \rangle \phi$
if $\alpha_1 \Rightarrow \alpha_2$ then $[\alpha_2] \phi \Rightarrow [\alpha_1] \phi$

Characterization of branching

■ Modal formula distinguishing between M_1 and M_2 :

$$\varphi = [money] (\langle coffee \rangle true \land \langle tea \rangle true)$$

$$M_1 \mid = \varphi$$
 and $M_2 \not \models \varphi$

Exercise

- Characterize in HML the tree-like LTSs below
 - ► Action predicates:

```
I (leaf)
b (branch)
```


22

Exercise

- Characterize in HML the tree-like LTS below
 - ► Action predicates:

```
I (leaf)
b (branch)
t (trunk)
```


palm tree

Exercise

■ Characterize in HML the tree-like LTS below

Modal logics

(summary)

- Are able to express simple branching-time properties involving states $s \in S$ and actions $a \in A$ of an LTS
- But:
 - ► Take into account only a *finite* number of steps around a state (limited by the nesting of modalities)
 - Cannot express properties about transition sequences or subtrees of arbitrary length
- Example: the property

"from a state s, there exists a sequence leading to a state s' where the action a is executable"

cannot be expressed in modal logic, because it would need a formula of unknown length

 $\langle \text{ true } \rangle \langle \text{ true } \rangle \dots \langle \text{ true } \rangle \langle a \rangle \text{ true }$

Branching-time logics

- These logics allow one to reason about the (infinite) execution trees contained in an LTS
- Basic temporal operators:
 - Potentiality

from a state, there exists an outgoing, finite transition sequence leading to a given state

▶ Inevitability

from a state, all outgoing transition sequences lead, after a finite number of steps, to given states

Action-based Computation Tree Logic (ACTL) [DeNicola-Vaandrager-90]

(syntax)

$$\phi ::= true \mid false$$

$$\mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1$$

$$\mid E [\varphi_{1\alpha 1} \cup \varphi_{2}]$$

$$\mid E \left[\varphi_{1\alpha 1} U_{\alpha 2} \varphi_{2} \right]$$

$$\mid A [\phi_{1\alpha 1} \cup \phi_2]$$

$$\mid A [\varphi_{1\alpha 1} U_{\alpha 2} \varphi_2]$$

boolean constants

boolean connectors

potentiality 1

potentiality 2

inevitability 1

inevitability 2

(semantics – potentiality operators)

Let $M = (S, A, T, s_0)$. Interpretation $[[\phi]] \subseteq S$:

$$[[E [\varphi_{1\alpha} \cup \varphi_{2}]]] = \{ s \in S \mid \exists s(=s_{0}) \rightarrow a_{0}s_{1} \rightarrow a_{1}s_{2} \rightarrow \dots .$$

$$\exists k \geq 0. \ \forall 0 \leq i < k. \ (s_{i} \in [[\varphi_{1}]] \land a_{i} \in [[\alpha \lor \tau]]) \land$$

$$s_{k} \in [[\varphi_{2}]] \}$$

(semantics – inevitability operators)

 \blacksquare [[A [$φ_{1α}$ U $φ_2$]]]:

 \blacksquare [[A [$\varphi_{1\alpha 1}$ U_{α2} φ_{2}]]]:

(derived operators)

$$\blacksquare EF_{\alpha} \phi = E [true_{\alpha} U \phi]$$

$$\blacksquare AF_{\alpha} \phi = A [true_{\alpha} U \phi]$$

$$\blacksquare AG_{\alpha} \phi = \neg EF_{\alpha} \neg \phi$$

$$\mathsf{EG}_{\alpha} \, \varphi \qquad \mathsf{=} \, \neg \, \mathsf{AF}_{\alpha} \, \neg \varphi$$

dualities

$$\blacksquare \langle \alpha \rangle \varphi = E [tt_{ff} U_{\alpha} \varphi]$$

(weak) possibility

(weak) necessity

Example (1/4)

Potential reachability: **EF**_{¬REL1} (**CS**₀) true

Example (2/4)

Inevitable reachability: $AF_{\neg (REL0 \lor REL1)} \langle CS_0 \lor CS_1 \rangle$ true

Example (3/4)

Invariance: $AG_{\neg (NCS_0 \lor NCS_1)} \langle NCS_0 \lor NCS_1 \rangle$ true

Example (4/4)

Trajectory: **EG**_{CS0} [**CS**₀] false

Remark about inevitability

■ *Inevitable reachability*: all sequences going out of a state lead to states where an action *a* is executable

$$AF_{tt} \langle a \rangle$$
 true

- *Inevitable execution*: all sequences going out of a state contain the action *a*
- Inevitable execution ⇒ inevitable reachability but the converse does not hold:

$$s \mapsto b \mapsto a$$
 $b \mapsto c$
 $s \mid = AF_{tt} \langle a \rangle \text{ true}$

Inevitable execution must be expressed using the basic inevitability operators of ACTL:

$$s \not\models A [tt_{tt} U_a true]$$

Safety properties

- Informally, safety properties specify that "something bad never happens" during the execution of the system
- One way of expressing safety properties:

forbid undesirable execution sequences

Mutual exclusion:

$$\neg \langle CS_0 \rangle EF_{\neg RELO} \langle CS_1 \rangle true$$

= [CS_0] $AG_{\neg RELO}$ [CS_1] false

In ACTL, forbidding a sequence is expressed by combining the $[\alpha] \phi$ and $AG_{\alpha} \phi$ operators

Liveness properties

- Informally liveness properties specify that "something good eventually happens" during the execution of the system
- One way of expressing liveness properties:

require desirable execution sequences / trees

Potential release of the critical section:

$$\langle NCS_0 \rangle EF_{tt} \langle REQ_0 \rangle EF_{tt} \langle REL_0 \rangle true$$

Inevitable access to the critical section:

In ACTL, the existence of a sequence is expressed by combining the $\langle \alpha \rangle \phi$ and $EF_{\alpha} \phi$ operators

Branching-time logics

(summary)

- The temporal operators of ACTL: strictly more powerful than the HML modalities $\langle \alpha \rangle \phi$ and $[\alpha] \phi$
- They allow to express branching-time properties on an unbounded depth in an LTS
- But:
 - They do not allow to express the unbounded repetition of a subsequence
- Example: the property

"from a state s, there exists a sequence a.b.a.b ... a.b leading to a state s' where an action c is executable"

cannot be expressed in ACTL

