Bernstein-Sato polynomials in positive characteristic

Eamon Quinlan-Gallego

University of Michigan/University of Tokyo

- "Bernstein-Sato theory for arbitrary ideals in positive characteristic" arXiv1907.07297
- "Bernsetin-Sato roots for monomial ideals in prime characteristic" arXiv1907.11709

Let $R:=\mathbb{C}[x_1,\ldots,x_n]$ be a polynomial ring over \mathbb{C} and let $\mathfrak{a}\subseteq R$ be an ideal.

Let $R := \mathbb{C}[x_1, \dots, x_n]$ be a polynomial ring over \mathbb{C} and let $\mathfrak{a} \subseteq R$ be an ideal.

$$(R,\mathfrak{a}) \leadsto b_{\mathfrak{a}}(s) \in \mathbb{Q}[s].$$

Let $R := \mathbb{C}[x_1, \dots, x_n]$ be a polynomial ring over \mathbb{C} and let $\mathfrak{a} \subseteq R$ be an ideal.

$$(R,\mathfrak{a}) \rightsquigarrow b_{\mathfrak{a}}(s) \in \mathbb{Q}[s].$$

The invariant $b_{\mathfrak{a}}(s)$ is the Bernstein-Sato polynomial of \mathfrak{a} , and it reflects the singularities of \mathfrak{a} in a very subtle way.

Let $R := \mathbb{C}[x_1, \dots, x_n]$ be a polynomial ring over \mathbb{C} and let $\mathfrak{a} \subseteq R$ be an ideal.

$$(R,\mathfrak{a}) \leadsto b_{\mathfrak{a}}(s) \in \mathbb{Q}[s].$$

The invariant $b_a(s)$ is the Bernstein-Sato polynomial of a, and it reflects the singularities of a in a very subtle way.

Example

•
$$R = \mathbb{C}[x, y], \mathfrak{a} = (x^2y^2) \rightsquigarrow b_{\mathfrak{a}}(s) = (s + \frac{1}{2})^2(s+1)^2$$
.

Let $R := \mathbb{C}[x_1, \dots, x_n]$ be a polynomial ring over \mathbb{C} and let $\mathfrak{a} \subseteq R$ be an ideal.

$$(R,\mathfrak{a}) \rightsquigarrow b_{\mathfrak{a}}(s) \in \mathbb{Q}[s].$$

The invariant $b_a(s)$ is the Bernstein-Sato polynomial of a, and it reflects the singularities of a in a very subtle way.

Example

- $R = \mathbb{C}[x, y], \mathfrak{a} = (x^2y^2) \rightsquigarrow b_{\mathfrak{a}}(s) = (s + \frac{1}{2})^2(s+1)^2$.
- $R = \mathbb{C}[x, y], \mathfrak{a} = (x^2, y^3)$ $\leadsto b_{\mathfrak{a}}(s) = (s + \frac{5}{6})(s + \frac{7}{6})(s + \frac{8}{6})(s + \frac{9}{6})(s + \frac{10}{6})(s + \frac{12}{6}).$

Let $R := \mathbb{C}[x_1, \dots, x_n]$ be a polynomial ring over \mathbb{C} and let $\mathfrak{a} \subseteq R$ be an ideal.

$$(R,\mathfrak{a}) \rightsquigarrow b_{\mathfrak{a}}(s) \in \mathbb{Q}[s].$$

The invariant $b_{\mathfrak{a}}(s)$ is the Bernstein-Sato polynomial of \mathfrak{a} , and it reflects the singularities of \mathfrak{a} in a very subtle way.

Example

- $R = \mathbb{C}[x, y], \mathfrak{a} = (x^2y^2) \leadsto b_{\mathfrak{a}}(s) = (s + \frac{1}{2})^2(s+1)^2$.
- $R = \mathbb{C}[x, y], \mathfrak{a} = (x^2, y^3)$ $\Rightarrow b_{\mathfrak{a}}(s) = (s + \frac{5}{6})(s + \frac{7}{6})(s + \frac{8}{6})(s + \frac{9}{6})(s + \frac{10}{6})(s + \frac{12}{6}).$

Theorem (Kashiwara, Budur-Mustață-Saito)

The roots of $b_a(s)$ are rational and negative.

How does $b_{\mathfrak{a}}(s)$ measure singularities?

How does $b_a(s)$ measure singularities?

Theorem (Kollár, Ein-Lazarsfeld-Smith-Varolin, Budur-Mustață-Saito)

The log-canonical threshold $lct(\mathfrak{a})$ of \mathfrak{a} is the smallest root $b_{\mathfrak{a}}(-s)$, and every jumping number in $[lct(\mathfrak{a}), lct(\mathfrak{a}) + 1)$ is also a root of $b_{\mathfrak{a}}(-s)$.

How does $b_a(s)$ measure singularities?

Theorem (Kollár, Ein-Lazarsfeld-Smith-Varolin, Budur-Mustață-Saito)

The log-canonical threshold $lct(\mathfrak{a})$ of \mathfrak{a} is the smallest root $b_{\mathfrak{a}}(-s)$, and every jumping number in $[lct(\mathfrak{a}), lct(\mathfrak{a}) + 1)$ is also a root of $b_{\mathfrak{a}}(-s)$.

Questions:

- (1) Can we define Bernstein-Sato polynomial in characteristic p > 0?
- (2) Does it contain information about the F-pure thershold and F-jumping numbers of \mathfrak{a} ?

How does $b_a(s)$ measure singularities?

Theorem (Kollár, Ein-Lazarsfeld-Smith-Varolin, Budur-Mustață-Saito)

The log-canonical threshold $lct(\mathfrak{a})$ of \mathfrak{a} is the smallest root $b_{\mathfrak{a}}(-s)$, and every jumping number in $[lct(\mathfrak{a}), lct(\mathfrak{a}) + 1)$ is also a root of $b_{\mathfrak{a}}(-s)$.

Questions:

- (1) Can we define Bernstein-Sato polynomial in characteristic p > 0?
- (2) Does it contain information about the F-pure thershold and F-jumping numbers of \mathfrak{a} ?

For principal ideals a = (f) this was tackled by Mustață and Bitoun.

How does $b_a(s)$ measure singularities?

Theorem (Kollár, Ein-Lazarsfeld-Smith-Varolin, Budur-Mustață-Saito)

The log-canonical threshold $lct(\mathfrak{a})$ of \mathfrak{a} is the smallest root $b_{\mathfrak{a}}(-s)$, and every jumping number in $[lct(\mathfrak{a}), lct(\mathfrak{a}) + 1)$ is also a root of $b_{\mathfrak{a}}(-s)$.

Questions:

- (1) Can we define Bernstein-Sato polynomial in characteristic p > 0?
- (2) Does it contain information about the F-pure thershold and F-jumping numbers of \mathfrak{a} ?

For principal ideals $\mathfrak{a}=(f)$ this was tackled by Mustață and Bitoun.

We will only be able to define an analogue of the <u>roots</u>.

The definition when $k = \mathbb{C}$

Let $R := \mathbb{C}[x_1, \dots, x_n]$ and $\mathfrak{a} \subseteq R$.

The definition when $k = \mathbb{C}$

Let
$$R := \mathbb{C}[x_1, \dots, x_n]$$
 and $\mathfrak{a} \subseteq R$.

Step 1: Fix generators $\mathfrak{a}=(f_1,\ldots,f_r)$ for $\mathfrak{a}.$

The definition when $k = \mathbb{C}$

Let $R := \mathbb{C}[x_1, \dots, x_n]$ and $\mathfrak{a} \subseteq R$.

Step 1: Fix generators $\mathfrak{a}=(f_1,\ldots,f_r)$ for \mathfrak{a} .

Step 2: Construct a module N with an operator $s_1 \curvearrowright N$:

The definition when $k = \mathbb{C}$

Let
$$R := \mathbb{C}[x_1, \dots, x_n]$$
 and $\mathfrak{a} \subseteq R$.

- Step 1: Fix generators $\mathfrak{a} = (f_1, \dots, f_r)$ for \mathfrak{a} .
- Step 2: Construct a module N with an operator $s_1
 ightharpoonup N$:

$$H:=H_{(f_1-t_1,...,f_r-t_r)}^r(R[t_1,...,t_r]) \circlearrowleft D_{R[t_1,...,t_r]}.$$

The definition when $k = \mathbb{C}$

Let $R := \mathbb{C}[x_1, \dots, x_n]$ and $\mathfrak{a} \subseteq R$.

Step 1: Fix generators $\mathfrak{a} = (f_1, \dots, f_r)$ for \mathfrak{a} .

Step 2: Construct a module N with an operator $s_1
ightharpoonup N$:

$$H:=H^{r}_{(f_{1}-t_{1},...,f_{r}-t_{r})}(R[t_{1},...,t_{r}]) \circlearrowleft D_{R[t_{1},...,t_{r}]}.$$

Let
$$\delta = [(f_1 - t_1)^{-1} \cdots (f_r - t_r)^{-1}] \in H$$
.

The definition when $k = \mathbb{C}$

Let $R := \mathbb{C}[x_1, \dots, x_n]$ and $\mathfrak{a} \subseteq R$.

Step 1: Fix generators $\mathfrak{a} = (f_1, \ldots, f_r)$ for \mathfrak{a} .

Step 2: Construct a module N with an operator $s_1
ightharpoonup N$:

$$H := H^r_{(f_1-t_1,\ldots,f_r-t_r)}(R[t_1,\ldots,t_r]) \circlearrowleft D_{R[t_1,\ldots,t_r]}.$$

Let
$$\delta = [(f_1 - t_1)^{-1} \cdots (f_r - t_r)^{-1}] \in H$$
. Then:

$$N := \frac{(D_{R[t_1,\ldots,t_r]})_0 \cdot \delta}{(D_{R[t_1,\ldots,t_r]})_0 \cdot \mathfrak{a}\delta} \circlearrowleft s_1 := -\sum_{i=1}^r \partial_{t_i} t_i \quad (\deg t_i = 1)$$

The definition when $k = \mathbb{C}$

Let $R := \mathbb{C}[x_1, \dots, x_n]$ and $\mathfrak{a} \subseteq R$.

Step 1: Fix generators $\mathfrak{a} = (f_1, \ldots, f_r)$ for \mathfrak{a} .

Step 2: Construct a module N with an operator $s_1
ightharpoonup N$:

$$H:=H^r_{(f_1-t_1,\ldots,f_r-t_r)}(R[t_1,\ldots,t_r])\circlearrowleft D_{R[t_1,\ldots,t_r]}.$$

Let $\delta = [(f_1 - t_1)^{-1} \cdots (f_r - t_r)^{-1}] \in H$. Then:

$$N:=\frac{(D_{R[t_1,\ldots,t_r]})_0\cdot\delta}{(D_{R[t_1,\ldots,t_r]})_0\cdot\mathfrak{a}\delta}\circlearrowleft s_1:=-\sum_{i=1}^r\partial_{t_i}t_i\quad (\deg t_i=1)$$

Step 3: Then $b_{\mathfrak{a}}(s) = \operatorname{minpoly}(s_1 \curvearrowright N)$.

The definition when $k = \mathbb{C}$ char k = p > 0

Let
$$R = k \mathcal{D}[x_1, \ldots, x_n]$$
 and $\mathfrak{a} \subseteq R$.

Step 1: Fix generators $\mathfrak{a} = (f_1, \dots, f_r)$ for \mathfrak{a} .

Step 2: Construct a module N with an operator $s_1
ightharpoonup N$:

$$H := H^r_{(f_1-t_1,\ldots,f_r-t_r)}(R[t_1,\ldots,t_r]) \circlearrowleft D_{R[t_1,\ldots,t_r]}.$$

Let
$$\delta = [(f_1 - t_1)^{-1} \cdots (f_r - t_r)^{-1}] \in H$$
. Then:

$$N:=\frac{(D_{R[t_1,\ldots,t_r]})_0\cdot\delta}{(D_{R[t_1,\ldots,t_r]})_0\cdot\mathfrak{a}\delta}\circlearrowleft s_1:=-\sum_{i=1}^r\partial_{t_i}t_i\quad (\deg t_i=1)$$

Step 3: Then $b_{\mathfrak{a}}(s) = \operatorname{minpoly}(s_1 \curvearrowright N)$.

The definition when $k = \mathbb{C}$ char k = p > 0

Let $R = k \mathcal{D}[x_1, \ldots, x_n]$ and $\mathfrak{a} \subseteq R$.

Step 1: Fix generators $\mathfrak{a}=(f_1,\ldots,f_r)$ for $\mathfrak{a}.$ Works in char. p>0!

Step 2: Construct a module N with an operator $s_1
ightharpoonup N$:

$$H:=H^{r}_{(f_{1}-t_{1},...,f_{r}-t_{r})}(R[t_{1},...,t_{r}]) \circlearrowleft D_{R[t_{1},...,t_{r}]}.$$

Let
$$\delta = [(f_1 - t_1)^{-1} \cdots (f_r - t_r)^{-1}] \in H$$
. Then:

$$N := \frac{(D_{R[t_1,\ldots,t_r]})_0 \cdot \delta}{(D_{R[t_1,\ldots,t_r]})_0 \cdot \mathfrak{a}\delta} \circlearrowleft s_1 := -\sum_{i=1}^r \partial_{t_i} t_i \quad (\deg t_i = 1)$$

Step 3: Then $b_a(s) = \text{minpoly}(s_1 \curvearrowright N)$.

The definition when $k = \mathbb{C}$ char k = p > 0

Let $R = k \mathcal{D}[x_1, \dots, x_n]$ and $\mathfrak{a} \subseteq R$.

Step 1: Fix generators $\mathfrak{a}=(f_1,\ldots,f_r)$ for $\mathfrak{a}.$ Works in char. p>0!

Step 2: Construct a module N with an operator $s_1
ightharpoonup N$:

$$H:=H^{r}_{(f_{1}-t_{1},...,f_{r}-t_{r})}(R[t_{1},...,t_{r}]) \circlearrowleft D_{R[t_{1},...,t_{r}]}.$$

Let
$$\delta = [(f_1 - t_1)^{-1} \cdots (f_r - t_r)^{-1}] \in H$$
. Then:

$$N := \frac{(D_{R[t_1,\ldots,t_r]})_0 \cdot \delta}{(D_{R[t_1,\ldots,t_r]})_0 \cdot \mathfrak{a}\delta} \circlearrowleft s_1 := -\sum_{i=1}^r \partial_{t_i} t_i \quad (\deg t_i = 1)$$

Works in char. p > 0!

Step 3: Then $b_{\mathfrak{a}}(s) = \operatorname{minpoly}(s_1 \curvearrowright N)$.

The definition when $k = \mathbb{C}$ char k = p > 0

Let
$$R = k \mathcal{D}[x_1, \dots, x_n]$$
 and $\mathfrak{a} \subseteq R$.

Step 1: Fix generators $\mathfrak{a}=(f_1,\ldots,f_r)$ for $\mathfrak{a}.$ Works in char. p>0!

Step 2: Construct a module N with an operator $s_1
ightharpoonup N$:

$$H := H^r_{(f_1-t_1,\ldots,f_r-t_r)}(R[t_1,\ldots,t_r]) \circlearrowleft D_{R[t_1,\ldots,t_r]}.$$

Let
$$\delta = [(f_1 - t_1)^{-1} \cdots (f_r - t_r)^{-1}] \in H$$
. Then:

$$\mathcal{N}:=rac{(D_{R[t_1,...,t_r]})_0\cdot\delta}{(D_{R[t_1,...,t_r]})_0\cdot\mathfrak{a}\delta}\circlearrowleft s_1:=-\sum_{i=1}^r\partial_{t_i}t_i\quad (\deg t_i=1)$$

Works in char. p > 0!

Step 3: Then $b_a(s) = \text{minpoly}(s_1 \curvearrowright N)$. Problem in char. p > 0!

The definition when $k = \mathbb{C}$ char k = p > 0

Let $R = k \mathcal{D}[x_1, \dots, x_n]$ and $\mathfrak{a} \subseteq R$.

Step 1: Fix generators $\mathfrak{a}=(f_1,\ldots,f_r)$ for $\mathfrak{a}.$ Works in char. p>0!

Step 2: Construct a module N with an operator $s_1
ightharpoonup N$:

$$H := H^r_{(f_1-t_1,\ldots,f_r-t_r)}(R[t_1,\ldots,t_r]) \circlearrowleft D_{R[t_1,\ldots,t_r]}.$$

Let
$$\delta = [(f_1 - t_1)^{-1} \cdots (f_r - t_r)^{-1}] \in H$$
. Then:

$$N := \frac{(D_{R[t_1,\ldots,t_r]})_0 \cdot \delta}{(D_{R[t_1,\ldots,t_r]})_0 \cdot \mathfrak{a}\delta} \circlearrowleft s_1 := -\sum_{i=1}^r \partial_{t_i} t_i \quad (\deg t_i = 1)$$

Works in char. p > 0!

Step 3: Then $b_{\mathfrak{a}}(s) = \mathsf{minpoly}(s_1 \curvearrowright N)$. Problem in char. p > 0! minpoly $(s_1 \curvearrowright N) \in k[s]$, and we want to encode information about F-jumping numbers of $\mathfrak{a} \subseteq \mathbb{Q}$

The definition when char k = p > 0

We make use of the following *extra structure* in characteristic p > 0:

The definition when char k = p > 0

We make use of the following extra structure in characteristic p > 0:

ullet The ring $D_{R[t_1,...,t_r]}$ is an increasing union of subrings

$$D_{R[t_1,\ldots,t_r]}:=\bigcup_{\mathsf{e}=0}^\infty D_{R[t_1,\ldots,t_r]}^\mathsf{e}.$$

The definition when char k = p > 0

We make use of the following extra structure in characteristic p > 0:

•The ring $D_{R[t_1,...,t_r]}$ is an increasing union of subrings

$$D_{R[t_1,\ldots,t_r]}:=\bigcup_{e=0}^{\infty}D_{R[t_1,\ldots,t_r]}^e.$$

•Recall that

$$N:=\frac{(D_{R[t_1,\ldots,t_r]})_0\cdot\delta}{(D_{R[t_1,\ldots,t_r]})_0\cdot\mathfrak{a}\delta}.$$

The definition when char k = p > 0

We make use of the following extra structure in characteristic p > 0:

•The ring $D_{R[t_1,...,t_r]}$ is an increasing union of subrings

$$D_{R[t_1,...,t_r]} := \bigcup_{e=0}^{\infty} D_{R[t_1,...,t_r]}^e.$$

•Recall that

$$N:=\frac{(D_{R[t_1,\ldots,t_r]})_0\cdot\delta}{(D_{R[t_1,\ldots,t_r]})_0\cdot\mathfrak{a}\delta}.$$

•For all $e \in \mathbb{N}_0$ we can define

$$N^e := \frac{(D^e_{R[t_1,\dots,t_r]})_0 \cdot \delta}{(D^e_{R[t_1,\dots,t_r]})_0 \cdot \mathfrak{a}\delta}$$

The definition when char k = p > 0

We make use of the following extra structure in characteristic p > 0:

•The ring $D_{R[t_1,...,t_r]}$ is an increasing union of subrings

$$D_{R[t_1,...,t_r]} := \bigcup_{e=0}^{\infty} D_{R[t_1,...,t_r]}^e.$$

Recall that

$$N := \frac{(D_{R[t_1,\ldots,t_r]})_0 \cdot \delta}{(D_{R[t_1,\ldots,t_r]})_0 \cdot \mathfrak{a}\delta}.$$

•For all $e \in \mathbb{N}_0$ we can define

$$N^e := rac{(D^e_{R[t_1,\dots,t_r]})_0 \cdot \delta}{(D^e_{R[t_1,\dots,t_r]})_0 \cdot \mathfrak{a}\delta}$$

$$\implies N = \lim_{\to e} N^e$$

The definition when char k = p > 0

We make use of the following *extra structure* in characteristic p > 0:

$$\bullet \textit{N} = \text{lim}_{\rightarrow e}(\textit{N}^1 \rightarrow \textit{N}^2 \rightarrow \textit{N}^3 \rightarrow \cdots)$$

The definition when char k = p > 0

We make use of the following extra structure in characteristic p > 0:

- $ullet N = \lim_{
 ightarrow e} (N^1
 ightarrow N^2
 ightarrow N^3
 ightarrow \cdots)$
- •Whereas before we had only one operator

$$s_1 = s_{p^0} = -\sum_{i=1}^r \partial_{t_i} t_i$$

The definition when char k = p > 0

We make use of the following extra structure in characteristic p > 0:

- $ullet N = \lim_{
 ightarrow e} (N^1
 ightarrow N^2
 ightarrow N^3
 ightarrow \cdots)$
- •Whereas before we had only one operator

$$s_1 = s_{p^0} = -\sum_{i=1}^r \partial_{t_i} t_i$$

now we get an infinite family

$$s_{p^i} := -\sum_{\substack{(a_1, \dots, a_r) \in \mathbb{N}_0^r \\ a_1 + \dots + a_r = p^i}} \partial_{t_1}^{[a_1]} t_1^{a_1} \cdots \partial_{t_r}^{[a_r]} t_r^{a_r} \quad (i = 0, 1, 2, \dots)$$

The definition when char k = p > 0

We make use of the following *extra structure* in characteristic p > 0:

- $\bullet \textit{N} = \text{lim}_{\rightarrow e}(\textit{N}^1 \rightarrow \textit{N}^2 \rightarrow \textit{N}^3 \rightarrow \cdots)$
- •Infinitely many operators $s_{p^0}, s_{p^1}, s_{p^2}, \cdots$

The definition when char k = p > 0

We make use of the following *extra structure* in characteristic p > 0:

- $ullet N = \lim_{
 ightarrow e} (N^1
 ightarrow N^2
 ightarrow N^3
 ightarrow \cdots)$
- •Infinitely many operators $s_{p^0}, s_{p^1}, s_{p^2}, \cdots$

Properties:

The definition when char k = p > 0

We make use of the following *extra structure* in characteristic p > 0:

$$\bullet \textit{N} = \text{lim}_{\rightarrow e}(\textit{N}^1 \rightarrow \textit{N}^2 \rightarrow \textit{N}^3 \rightarrow \cdots)$$

•Infinitely many operators $s_{p^0}, s_{p^1}, s_{p^2}, \cdots$

Properties:

(1)
$$s_{p^i} \in (D^{i+1}_{R[t_1,\ldots,t_r]})_0$$
 and thus $s_{p^0}, s_{p^1},\ldots,s_{p^{e-1}} \curvearrowright N^e$.

The definition when char k = p > 0

We make use of the following extra structure in characteristic p > 0:

- $ullet N = \lim_{
 ightarrow e} (N^1
 ightarrow N^2
 ightarrow N^3
 ightarrow \cdots)$
- •Infinitely many operators $s_{p^0}, s_{p^1}, s_{p^2}, \cdots$

Properties:

- (1) $s_{p^i} \in (D^{i+1}_{R[t_1,\ldots,t_r]})_0$ and thus $s_{p^0}, s_{p^1},\ldots,s_{p^{e-1}} \curvearrowright N^e$.
- (2) For all $i, j, s_{p^i} s_{p^j} = s_{p^j} s_{p^i}$ for all i, j.

The definition when char k = p > 0

We make use of the following *extra structure* in characteristic p > 0:

- $\bullet \textit{N} = \text{lim}_{\rightarrow e}(\textit{N}^1 \rightarrow \textit{N}^2 \rightarrow \textit{N}^3 \rightarrow \cdots)$
- •Infinitely many operators $s_{p^0}, s_{p^1}, s_{p^2}, \cdots$

Properties:

- (1) $s_{p^i} \in (D^{i+1}_{R[t_1,\ldots,t_r]})_0$ and thus $s_{p^0}, s_{p^1},\ldots,s_{p^{e-1}} \curvearrowright N^e$.
- (2) For all $i, j, s_{p^i} s_{p^j} = s_{p^j} s_{p^i}$ for all i, j.
- (3) For all i, $s_{p^i}^p = s_{p^i}$ (equivalently, $\prod_{j=0}^{p-1} (s_{p^i} j) = 0$).

The definition when char k = p > 0

We make use of the following *extra structure* in characteristic p > 0:

- $ullet N = \lim_{
 ightarrow e} (N^1
 ightarrow N^2
 ightarrow N^3
 ightarrow \cdots)$
- •Infinitely many operators $s_{p^0}, s_{p^1}, s_{p^2}, \cdots$

Properties:

- (1) $s_{p^i} \in (D^{i+1}_{R[t_1,\ldots,t_r]})_0$ and thus $s_{p^0}, s_{p^1},\ldots,s_{p^{e-1}} \curvearrowright N^e$.
- (2) For all $i, j, s_{p^i} s_{p^j} = s_{p^j} s_{p^i}$ for all i, j.
- (3) For all i, $s_{p^i}^p = s_{p^i}$ (equivalently, $\prod_{j=0}^{p-1} (s_{p^i} j) = 0$).

$$\implies N^e = \bigoplus_{\alpha \in \mathbb{F}_p^e} N_{\alpha}^e$$

where, for
$$\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{e-1}) \in \mathbb{F}_p^e$$
, $N_{\alpha}^e = \{u \in N^e : s_{p^i} \cdot u = \alpha_i u \text{ for all } i = 0, 1, \dots, e-1\}$.

7 / 16

The definition when char k = p > 0

Summary:

The definition when char k = p > 0

Summary:

Theorem (QG19)

We have

$$N = \bigoplus_{\alpha \in \mathbb{F}^{\mathbb{N}}} N_{\alpha}$$

where, for $\alpha=(\alpha_0,\alpha_1,\dots)$, $N_\alpha:=\{u\in N: s_{p^i}\cdot u=\alpha_i u \text{ for all } i\in\mathbb{N}_0\}.$ Moreover, $\#\{\alpha\in\mathbb{F}_p^\mathbb{N}: N_\alpha\neq 0\}<\infty.$

The definition when char k = p > 0

Summary:

The definition when char k = p > 0

Summary:

 $\underline{\mathsf{Over}\;\mathbb{C}}$

$$N \circlearrowleft s_1$$

$$b_{\mathfrak{a}}(s) := \mathsf{minpoly}(s_1 \curvearrowright N)$$

The definition when char k = p > 0

Summary:

$\underline{\mathsf{Over}\;\mathbb{C}}$

$$N \circlearrowleft s_1$$

$$b_{\mathfrak{a}}(s) := \mathsf{minpoly}(s_1 \curvearrowright N)$$

$$N = \bigoplus_{\lambda \in \mathbb{C}} N_{\lambda}$$

where

$$N_{\lambda} = \{u | (s_1 - \lambda)^m u = 0 \text{ for } m \gg 0\},$$

and

Roots of
$$b_{\mathfrak{a}}(s) = \{\lambda | N_{\lambda} \neq 0\}.$$

The definition when char k = p > 0

Summary:

Over $\mathbb C$

$$N \circlearrowleft s_1$$

$$b_{\mathfrak{a}}(s) := \mathsf{minpoly}(s_1 \curvearrowright N)$$

$$N = \bigoplus_{\lambda \in \mathbb{C}} N_{\lambda}$$

where

$$N_{\lambda} = \{u | (s_1 - \lambda)^m u = 0 \text{ for } m \gg 0\},$$

and

Roots of
$$b_{\mathfrak{a}}(s) = \{\lambda | N_{\lambda} \neq 0\}.$$

When char k = p > 0

$$N \circlearrowleft s_{p^0}, s_{p^1}, s_{p^2}, \dots$$

$$N = \bigoplus_{\alpha \in \mathbb{F}_p^{\mathbb{N}}} N_{\alpha}$$

The definition when char k = p > 0

Recall:

$$\mathcal{N} = \bigoplus_{lpha \in \mathbb{F}_p^{\mathbb{N}}} \mathcal{N}_{lpha}, \text{ and } \#\{lpha \in \mathbb{F}_p^{\mathbb{N}} : \mathcal{N}_{lpha}
eq 0\} < \infty$$

The definition when char k = p > 0

Recall:

$$\mathcal{N} = \bigoplus_{lpha \in \mathbb{F}_p^{\mathbb{N}}} \mathcal{N}_{lpha}, \text{ and } \#\{lpha \in \mathbb{F}_p^{\mathbb{N}} : \mathcal{N}_{lpha}
eq 0\} < \infty$$

Definition

A p-adic integer $\alpha = \alpha_0 + p\alpha_1 + p^2\alpha_2 + \cdots \in \mathbb{Z}_p$ (where $\alpha_i \in \{0, 1, \dots, p-1\}$) is a **Bernstein-Sato root** of $\mathfrak a$ if $N_{(\alpha_0, \alpha_1, \dots)} \neq 0$.

ullet The set of Bernstein-Sato roots of ${\mathfrak a}$ are independent of the choice of generators used.

- $\bullet The$ set of Bernstein-Sato roots of $\mathfrak a$ are independent of the choice of generators used.
- ullet The definition of Bernstein-Sato root is compatible with the definition over $\mathbb C$ in a certain sense.

- $\bullet The$ set of Bernstein-Sato roots of $\mathfrak a$ are independent of the choice of generators used.
- ullet The definition of Bernstein-Sato root is compatible with the definition over $\mathbb C$ in a certain sense.
- •Notation: let $BS(\mathfrak{a})$ be the set of Bernstein-Sato roots of \mathfrak{a} .

- $\bullet The$ set of Bernstein-Sato roots of $\mathfrak a$ are independent of the choice of generators used.
- ullet The definition of Bernstein-Sato root is compatible with the definition over $\mathbb C$ in a certain sense.
- •Notation: let $BS(\mathfrak{a})$ be the set of Bernstein-Sato roots of \mathfrak{a} .

Theorem (QG19)

(1) The Bernstein-Sato roots of $\mathfrak a$ are rational and are negative, i.e. $BS(\mathfrak a)\subseteq \mathbb Z_{(p),<0}$.

- $\bullet The$ set of Bernstein-Sato roots of $\mathfrak a$ are independent of the choice of generators used.
- ullet The definition of Bernstein-Sato root is compatible with the definition over $\mathbb C$ in a certain sense.
- •Notation: let $BS(\mathfrak{a})$ be the set of Bernstein-Sato roots of \mathfrak{a} .

Theorem (QG19)

- (1) The Bernstein-Sato roots of $\mathfrak a$ are rational and are negative, i.e. $BS(\mathfrak a)\subseteq \mathbb Z_{(p),<0}$.
- (2) We have an equality of sets

$$BS(\mathfrak{a}) + \mathbb{Z} = -\{FJN \text{ of } \mathfrak{a} \text{ in } \mathbb{Z}_{(p)}\} + \mathbb{Z}.$$

- $\bullet The$ set of Bernstein-Sato roots of $\mathfrak a$ are independent of the choice of generators used.
- ullet The definition of Bernstein-Sato root is compatible with the definition over $\mathbb C$ in a certain sense.
- •Notation: let $BS(\mathfrak{a})$ be the set of Bernstein-Sato roots of \mathfrak{a} .

Theorem (QG19)

- (1) The Bernstein-Sato roots of $\mathfrak a$ are rational and are negative, i.e. $BS(\mathfrak a)\subseteq \mathbb Z_{(p),<0}.$
- (2) We have an equality of sets

$$BS(\mathfrak{a}) + \mathbb{Z} = -\{FJN \text{ of } \mathfrak{a} \text{ in } \mathbb{Z}_{(p)}\} + \mathbb{Z}.$$

(3) Let $\mathfrak{a} \subseteq \mathbb{Z}[x_1,\ldots,x_n]$ be a monomial ideal. Then for all $p\gg 0$ we have

$$BS(\mathfrak{a}_p) = \{ Roots \ of \ b_{\mathfrak{a}_{\mathbb{C}}}(s) \}.$$

Connection to ν -invariants

Connection to ν -invariants

ullet Given an ideal $J\subseteq R$ with $\mathfrak{a}\subseteq \sqrt{J}$, and an integer e>0, Mustață, Takagi and Watanabe defined

$$u_{\mathfrak{a}}^{J}(p^{e}) := \max\{s > 0 : \mathfrak{a}^{s} \not\subseteq J^{[p^{e}]}\}.$$

Connection to ν -invariants

ullet Given an ideal $J\subseteq R$ with $\mathfrak{a}\subseteq \sqrt{J}$, and an integer e>0, Mustață, Takagi and Watanabe defined

$$u_{\mathfrak{a}}^{J}(p^{e}) := \max\{s > 0 : \mathfrak{a}^{s} \not\subseteq J^{[p^{e}]}\}.$$

•We define, for a fixed integer e > 0,

$$\nu_{\mathfrak{a}}^{\bullet}(p^{e}) := \{\nu_{\mathfrak{a}}^{J}(p^{e}) : \sqrt{J} \supseteq \mathfrak{a}\} \subseteq \mathbb{N}_{0}$$

Connection to ν -invariants

ullet Given an ideal $J\subseteq R$ with $\mathfrak{a}\subseteq \sqrt{J}$, and an integer e>0, Mustață, Takagi and Watanabe defined

$$u_{\mathfrak{a}}^{J}(p^{e}) := \max\{s > 0 : \mathfrak{a}^{s} \not\subseteq J^{[p^{e}]}\}.$$

•We define, for a fixed integer e > 0,

$$\nu_{\mathfrak{a}}^{\bullet}(p^{e}):=\{\nu_{\mathfrak{a}}^{J}(p^{e}):\sqrt{J}\supseteq\mathfrak{a}\}\subseteq\mathbb{N}_{0}$$

$$\implies \nu_{\mathfrak{a}}^{\bullet}(p) \supseteq \nu_{\mathfrak{a}}^{\bullet}(p^2) \supseteq \nu_{\mathfrak{a}}^{\bullet}(p^3) \supseteq \cdots$$

Connection to ν -invariants

•Given an ideal $J\subseteq R$ with $\mathfrak{a}\subseteq \sqrt{J}$, and an integer e>0, Mustață, Takagi and Watanabe defined

$$u_{\mathfrak{a}}^{J}(p^{e}) := \max\{s > 0 : \mathfrak{a}^{s} \not\subseteq J^{[p^{e}]}\}.$$

•We define, for a fixed integer e > 0,

$$\nu_{\mathfrak{a}}^{\bullet}(p^{e}):=\{\nu_{\mathfrak{a}}^{J}(p^{e}):\sqrt{J}\supseteq\mathfrak{a}\}\subseteq\mathbb{N}_{0}$$

$$\implies \nu_{\mathfrak{a}}^{\bullet}(p) \supseteq \nu_{\mathfrak{a}}^{\bullet}(p^2) \supseteq \nu_{\mathfrak{a}}^{\bullet}(p^3) \supseteq \cdots$$

Proposition (QG19)

We have

$$BS(\mathfrak{a}) = \bigcap_{e=0}^{\infty} \overline{\nu_{\mathfrak{a}}^{\bullet}(p^e)}$$

where (-) denotes p-adic closure.

Examples

Example 1: Suppose R = k[x, y] and $\mathfrak{a} = (x^2 + y^3)$.

- (a) When $k=\mathbb{C}$, $b_{\mathfrak{a}}(s)=(s+\frac{5}{6})(s+1)(s+\frac{7}{6})$.
- (b) When char $k \equiv 1 \mod 3$ then $BS(\mathfrak{a}) = \{-5/6, -1\}$
- (c) When $2 \neq \operatorname{char} k \equiv 2 \mod 3$ then $BS(\mathfrak{a}) = \{-1\}$.

Examples

Example 2: Suppose R = k[x, y] and $\mathfrak{a} = (x^2, y^3)$.

- (a) When $k = \mathbb{C}$, $b_{\mathfrak{a}}(s) = (s+5/6)(s+7/6)(s+4/3)(s+3/2)(s+5/3)(s+2)$.
- (b) When char k = 2, $BS(\mathfrak{a}) = \{-4/3, -5/3, -2\}$.
- (c) When char k = 3, $BS(\mathfrak{a}) = \{-3/2, -2\}$.
- (d) When char k > 3, $BS(\mathfrak{a}) = \{-5/6, -7/6, -4/3, -3/2, -5/3, -2\}$.

(1) Suppose $fpt(\mathfrak{a}) \in \mathbb{Z}_{(p)}$. Is $-fpt(\mathfrak{a})$ the largest Bernstein-Sato root?

- (1) Suppose $fpt(\mathfrak{a}) \in \mathbb{Z}_{(p)}$. Is $-fpt(\mathfrak{a})$ the largest Bernstein-Sato root?
 - The analogue of this statement is true over \mathbb{C} . [Kollár, Ein-Lazarsfeld-Smith-Varolin, Budur-Mustață-Saito]

- (1) Suppose $fpt(\mathfrak{a}) \in \mathbb{Z}_{(p)}$. Is $-fpt(\mathfrak{a})$ the largest Bernstein-Sato root?
 - The analogue of this statement is true over C. [Kollár, Ein-Lazarsfeld-Smith-Varolin, Budur-Mustață-Saito]
 - We know this is true for principal ideals [Bitoun, 2018] and for monomial ideals when $p \gg 0$.

- (1) Suppose $fpt(\mathfrak{a}) \in \mathbb{Z}_{(p)}$. Is $-fpt(\mathfrak{a})$ the largest Bernstein-Sato root?
 - The analogue of this statement is true over C. [Kollár, Ein-Lazarsfeld-Smith-Varolin, Budur-Mustață-Saito]
 - We know this is true for principal ideals [Bitoun, 2018] and for monomial ideals when $p \gg 0$.
- (2) Can we define an analogue of multiplicity in characteristic p > 0?

Thank you for your attention