HST.722 Brain Mechanisms of Speech and Hearing Fall 2005

Dorsal Cochlear Nucleus September 14, 2005

Ken Hancock

Dorsal Cochlear Nucleus (DCN)

- Overview of the cochlear nucleus and its subdivisions
- Anatomy of the DCN
- Physiology of the DCN
- Functional considerations

Dorsal Cochlear Nucleus (DCN)

- Overview of the cochlear nucleus and its subdivisions
- Anatomy of the DCN
- Physiology of the DCN
- Functional considerations

The cochlear nucleus

AN fibers terminate in a "tonotopic" or "cochleotopic" pattern

Figure by MIT OCW.

Major subdivisions of the cochlear nucleus

Figure by MIT OCW.

Summary of pathways originating in the cochlear nucleus

Figure by MIT OCW.

Projections suggest DCN is a different animal than VCN

Figure by MIT OCW.

- (All roads lead to the inferior colliculus)
- VCN projects directly to structures dealing with binaural hearing and olivocochlear feedback
- DCN ???

- Overview of the cochlear nucleus and its subdivisions
 - DCN projections do not reveal its function
- Anatomy of the DCN
- Physiology of the DCN
- Functional considerations

- Overview of the cochlear nucleus and its subdivisions.
 - DCN projections do not reveal its function
- Anatomy of the DCN
- Physiology of the DCN
- Functional considerations

Figure by MIT OCW.

- Overview of the cochlear nucleus and its subdivisions.
 - DCN projections do not reveal its function
- Anatomy of the DCN
 - more complex than other CN subdivisions
 - nonauditory inputs
 - similar organization to cerebellar cortex
- Physiology of the DCN
- Functional considerations

- Overview of the cochlear nucleus and its subdivisions.
 - DCN projections do not reveal its function
- Anatomy of the DCN
 - more complex than other CN subdivisions
 - nonauditory inputs
 - similar organization to cerebellar cortex
- Physiology of the DCN
- Functional considerations

Photograph of Eric Young removed due to copyright reasons. Please see: http://www.bme.jhu.edu/labs/chb/people/index.php?page=ABOUT &user=eyoung

Response Map classification scheme

Figures by MIT OCW.

DCN: Vertical cells are type II and type III units

Figures by MIT OCW.

- Narrow V-shaped region of excitation
- No spontaneous activity
- •Tone response >> noise response

- V-shaped region of excitation
- Inhibitory sidebands

Evidence: Antidromic stimulation (Young 1980)

Antidromic stimulation .shock its axon

record from neuron

Figures by MIT OCW.

DCN: "Principal" cells are type III and type IV units

- "Island of excitation" & "Sea of inhibition"
- •BF rate-level curve inhibited at high levels
- Noise rate-level curve ~ monotonic

Figures by MIT OCW.

Neural circuitry underlying DCN physiology: type II units inhibit type IV units

Figures by MIT OCW.

Classic experiment: type II units inhibit type IV units

Figures by MIT OCW.

DCN physiology so far...

- type II units inhibit type IV units
- BUT this analysis based on pure-tone responses
- ⇒ what happens with more general stimuli???

Inhibition from type II units doesn't account for everything

Figure by MIT OCW.

- (DCN responses to broadband stimuli cannot be predicted from responses to tones: *nonlinear*)
- Type II units do not respond to notch noise—whither the inhibition?
- Response map has two inhibitory regions?

DCN notch noise sensitivity due to wideband inhibition

Nelken & Young 1994

PVCN: is the D-stellate cell the wideband inhibitor?

Figure by MIT OCW.

- such responses arise from radiate or stellate neurons (Smith & Rhode 1989)
- stellate cells send axons dorsally into the DCN, thus called "D-stellate cells" (Oertel et al. 1990)
- D-stellate cells are inhibitory (Doucet & Ryugo 1997)

- broadly-tuned, onset-chopper units are found in the PVCN (Winter & Palmer 1995)
- typically respond better to broadband noise than to tones

Figure by MIT OCW.

Summary: Circuitry of DCN deep layer

Figures by MIT OCW.

Summary of DCN anatomy and physiology

- Overview of the cochlear nucleus and its subdivisions
 - DCN projections do not reveal its function
- Anatomy of the DCN
 - more complex than other CN subdivisions
 - nonauditory inputs
 - similar organization to cerebellar cortex
- Physiology of the DCN
 - diverse response properties
 - complex interconnections
 - highly nonlinear
- Functional considerations

- Overview of the cochlear nucleus and its subdivisions
 - DCN projections do not reveal its function
- Anatomy of the DCN
 - more complex than other CN subdivisions
 - nonauditory inputs
 - similar organization to cerebellar cortex
- Physiology of the DCN
 - diverse response properties
 - complex interconnections
 - highly nonlinear
- Functional considerations

Filtering by the pinna provides cues to sound source location

Figures by MIT OCW.

Type IV units are sensitive to HRTF first notch

- type IV units are *inhibited* by notches centered on BF
- *null* in DCN population response may code for sound source location

Physiology

 \Rightarrow

Reiss & Young 2005

Behavior ⇒

May 2000

- Overview of the cochlear nucleus and its subdivisions
 - DCN projections do not reveal its function
- Anatomy of the DCN
 - more complex than other CN subdivisions
 - receives nonauditory inputs
 - has similar organization to cerebellar cortex
- Physiology of the DCN
 - diverse response properties
 - complex interconnections
 - highly nonlinear
- Functional considerations
 - coding sound source location based on pinna cues

DCN is a "cerebellum-like structure"

Figure by MIT OCW.

Synaptic plasticity: Long-Term Potentiation (LTP)

- "Classical" LTP demonstration at the hippocampal CA3-CA1 synapse
- LTP evoked by *tetanic* stimulation (mechanism involves NMDA receptors)

Tzounopoulos 2004

Electric fish provide clues to cerebellum-like function

black ghost knifefish (Apteronotus albifrons)

Photograph removed due to copyright reasons. Please see the Nelson Lab home page: http://nelson.beckman.uiuc.edu

- electrical activity detected by electric lateral line
- afferent activity transmitted to electric lateral line lobe (ELL), analogous to DCN

Electric fields provide information about nearby objects

Figures by MIT OCW.

- **BUT** the fish generates its *own* electric fields:
 - tail movements
 - ventilation
- ⇒ cerebellum-like ELL helps solve this problem

Bell 2001

What do cerebellum-like structures do???

- Subtract the expected input pattern from the actual input pattern to reveal unexpected or novel features of a stimulus.
 - DCN: pinna movement is expected to shift the first notch, independent of what the sound source is doing

- Overview of the cochlear nucleus and its subdivisions.
 - DCN projections do not reveal its function
- Anatomy of the DCN
 - more complex than other CN subdivisions
 - nonauditory inputs
 - similar organization to cerebellar cortex
- Physiology of the DCN
 - diverse response properties
 - complex interconnections
 - highly nonlinear
- Functional considerations: the DCN may...
 - code sound source location based on pinna cues
 - extract novel components of response

DCN may play a role in tinnitus

- percept of noise, ringing, buzzing, etc.
- affects up to 80% of the population
- 1 in 200 are debilitated
- (not voices in the head)

So why DCN? Because tinnitus...

- involves plasticity
- may involve somatosensory effects

- Overview of the cochlear nucleus and its subdivisions
 - DCN projections do not reveal its function
- Anatomy of the DCN
 - more complex than other CN subdivisions
 - nonauditory inputs
 - similar organization to cerebellar cortex
- Physiology of the DCN
 - diverse response properties
 - complex interconnections
 - highly nonlinear
- Functional considerations: the DCN may...
 - code sound source location based on pinna cues
 - extract novel components of response
 - contribute to tinnitus

Slide 5:

Ryugo DK, May SK (1993) The projections of intracellularly labeled auditory nerve fibers to the dorsal cochlear nucleus of cats. J Comp Neurol 329:20-35.

Slide 6:

Ehret G, Romand R, eds (1997) The Central Auditory System. New York: Oxford University Press.

Slide 7:

Ehret G, Romand R, eds (1997) The Central Auditory System. New York: Oxford University Press.

Slide 12:

Lorente de Nó R (1981) The Primary Acoustic Nuclei. New York: Raven.

Kane ES, Puglisi SG, Gordon BS (1981) Neuronal types in the deep dorsal cochlear nucleus of the cat. I. Giant neurons. J Comp Neurol 198:483-513.

Slide 15:

Young ED (1984) Response characteristics of neurons of the cochlear nuclei. In: Hearing Science (Berlin CI, ed), pp 423-460. San Diego: College-Hill. ISBN: 0316091693.

Slides 16, 18, 19:

Young ED (1984) Response characteristics of neurons of the cochlear nuclei. In: Hearing Science (Berlin Cl, ed), pp 423-460. San Diego: College-Hill.

Young ED, Davis KA (2001) Circuitry and Function of the Dorsal Cochlear Nucleus. In: Integrative Functions in the Mammalian Auditory Pathway (Oertel D, Popper AN, Fay RR, eds). New York: Springer-Verlag.

Slide 20:

VOIGT, H. F. AND YOUNG, E. D. Cross-correlation analysis of inhibitory interactions in dorsal cochlear nucleus. J. Neurophysiol. 64: 1590- 16 10, 1990.

Young ED, Davis KA (2001) Circuitry and Function of the Dorsal Cochlear Nucleus. In: Integrative Functions in the Mammalian Auditory Pathway (Oertel D, Popper AN, Fay RR, eds). New York: Springer-Verlag.

Slide 22:

Spirou GA, Young ED (1991) Organization of dorsal cochlear nucleus type IV unit response maps and their relationship to activation by band-limited noise. J Neurophysiol 66:1750-1768.

Slide 23:

Nelken I, Young ED (1994) Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. J Neurophysiol 71:2446-2462.

Slide 24:

Winter IM, Palmer AR (1995) Level dependence of cochlear nucleus onset unit responses and facilitation by second tones or broadband noise. J Neurophysiol 73:141-159.

Young ED, Davis KA (2001) Circuitry and Function of the Dorsal Cochlear Nucleus. In: Integrative Functions in the Mammalian Auditory Pathway (Oertel D, Popper AN, Fay RR, eds). New York: Springer-Verlag.

Oertel D, Wu SH, Garb MW, Dizack C (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurology 295:136-154.

Slide 25:

Spirou GA, Young ED (1991) Organization of dorsal cochlear nucleus type IV unit response maps and their relationship to activation by band-limited noise. J Neurophysiol 66:1750-1768.

Nelken I, Young ED (1994) Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. J Neurophysiol 71:2446-2462.

Young ED, Davis KA (2001) Circuitry and Function of the Dorsal Cochlear Nucleus. In: Integrative Functions in the Mammalian Auditory Pathway (Oertel D, Popper AN, Fay RR, eds). New York: Springer-Verlag.

Slide 26:

Oertel D, Wu SH, Garb MW, Dizack C (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurology 295:136-154.

Slide 29:

Geisler CD (1998) From Sound to Synapse: Physiology of the Mammalian Ear.: Oxford University Press.

Slide 30:

Young ED, Spirou GA, Rice JJ, Voigt HF (1992) Neural organization and responses to complex stimuli in the dorsal cochlear nucleus. Philos Trans R Soc Lond B Biol Sci 336:407-413.

Slide 32:

Bell CC (2001) Memory-based expectations in electrosensory systems. Curr Opin Neurobiol 11:481-487.

Slide 35:

Zakon HH (2003) Insight into the mechanisms of neuronal processing from electric fish. Curr Opin Neurobiol 13:744-750.