Sharp Concentration of Simple Random Tensors

Omar Al-Ghattas ¹ Jiaheng Chen ² Daniel Sanz-Alonso ¹

¹Department of Statistics, University of Chicago ²Committee on Computational and Applied Mathematics, University of Chicago

Theorem 1: sample moment tensor

Data: X, X_1, X_2, \ldots, X_N i.i.d. mean-zero sub-Gaussian random vectors in \mathbb{R}^d with covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$

Question: What is the difference between the sample moment tensor $\frac{1}{N} \sum_{i=1}^{N} X_i^{\otimes p}$ and the true moment tensor $\mathbb{E} X^{\otimes p}$?

Spectral norm (ℓ_2 **injective norm):** For a d-dimensional, p-th order tensor $T \in (\mathbb{R}^d)^{\otimes p}$,

$$||T|| := \sup_{\|v_1\|_2 = \dots = \|v_p\|_2 = 1} \langle T, v_1 \otimes \dots \otimes v_p \rangle.$$

Effective rank: $r(\Sigma):=\frac{\mathrm{Tr}(\Sigma)}{\|\Sigma\|}\in[1,d]$, quantifies the rate of eigenvalue decay

Theorem 1: For any integer $p \ge 2$ and any $u \ge 1$, it holds with probability at least $1 - \exp(-u)$ that

$$\left\| \frac{1}{N} \sum_{i=1}^{N} X_i^{\otimes p} - \mathbb{E} X^{\otimes p} \right\| \lesssim_p \|\Sigma\|^{p/2} \left(\sqrt{\frac{r(\Sigma)}{N}} + \frac{r(\Sigma)^{p/2}}{N} + \sqrt{\frac{u}{N}} + \frac{u^{p/2}}{N} \right).$$

As a corollary,

$$\mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}^{\otimes p}-\mathbb{E}X^{\otimes p}\right\|\lesssim_{p}\|\Sigma\|^{p/2}\left(\sqrt{\frac{r(\Sigma)}{N}}+\frac{r(\Sigma)^{p/2}}{N}\right).$$

Moreover, if X is Gaussian, then

$$\mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}^{\otimes p}-\mathbb{E}X^{\otimes p}\right\| \asymp_{p} \|\Sigma\|^{p/2}\left(\sqrt{\frac{r(\Sigma)}{N}}+\frac{r(\Sigma)^{p/2}}{N}\right).$$

Remarks:

- **Dimension-free:** Bound independent of ambient dimension d
- Generality: Holds for random variables in general separable Banach or Hilbert spaces
- Sharpness: Achieves optimal tail bound without extra logarithmic factors
- The case p=2 (sample covariance) was obtained by Koltchinskii and Lounici (2014)

Theorem 2: p-th order empirical process

Goal: Study the p-th order empirical process: $\sup_{f \in \mathcal{F}} \left| \frac{1}{N} \sum_{i=1}^{N} f^p(X_i) - \mathbb{E} f^p(X) \right|$ Motivation:

$$\left\| \frac{1}{N} \sum_{i=1}^{N} X_i^{\otimes p} - \mathbb{E} X^{\otimes p} \right\| = \sup_{\|v\|_2 = 1} \left| \left\langle \frac{1}{N} \sum_{i=1}^{N} X_i^{\otimes p} - \mathbb{E} X^{\otimes p}, v^{\otimes p} \right\rangle \right|$$

$$= \sup_{\|v\|_2 = 1} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, v \rangle^p - \mathbb{E} \langle X, v \rangle^p \right|$$

$$= \sup_{f \in \mathcal{F}} \left| \frac{1}{N} \sum_{i=1}^{N} f^p(X_i) - \mathbb{E} f^p(X) \right|, \quad \mathcal{F} = \{ \langle \cdot, v \rangle : \|v\|_2 = 1 \}$$

Definition (Orlicz ψ_2 -norm): For any function f on a probability space (Ω, μ) ,

$$||f||_{\psi_2} := \inf \left\{ c > 0 : \mathbb{E}_{X \sim \mu} \left[\exp \left(\frac{|f(X)|^2}{c^2} \right) \right] \le 2 \right\}.$$

Definition (ψ_2 -diameter): $d_{\psi_2}(\mathcal{F}) := \sup_{f \in \mathcal{F}} \|f\|_{\psi_2}$

Definition (Talagrand's γ **functional):** Let (\mathcal{F}, d) be a metric space. An admissible sequence is an increasing sequence $(\mathcal{F}_s)_{s\geq 0}\subset \mathcal{F}$ which satisfies $\mathcal{F}_s\subset \mathcal{F}_{s+1}, |\mathcal{F}_0|=1, |\mathcal{F}_s|\leq 2^{2^s}$ for $s\geq 1$, and $\bigcup_{s=0}^{\infty}\mathcal{F}_s$ is dense in \mathcal{F} . Let

$$\gamma(\mathcal{F}, d) := \inf \sup_{f \in \mathcal{F}} \sum_{s \ge 0} 2^{s/2} d(f, \mathcal{F}_s),$$

where the infimum is taken over all admissible sequences.

Theorem 2: p-th order empirical process (continued)

Theorem 2: Assume $0 \in \mathcal{F}$ or \mathcal{F} is symmetric (i.e., $f \in \mathcal{F}$ implies $-f \in \mathcal{F}$). For any $p \ge 2$ and $u \ge 1$, it holds with probability at least $1 - \exp(-u)$ that

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{N} \sum_{i=1}^{N} f^p(X_i) - \mathbb{E} f^p(X) \right| \lesssim_p \frac{\gamma(\mathcal{F}, \psi_2) d_{\psi_2}^{p-1}(\mathcal{F})}{\sqrt{N}} + \frac{\gamma^p(\mathcal{F}, \psi_2)}{N} + d_{\psi_2}^p(\mathcal{F}) \left(\sqrt{\frac{u}{N}} + \frac{u^{p/2}}{N} \right).$$

As a corollary,

$$\mathbb{E} \sup_{f \in \mathcal{F}} \left| \frac{1}{N} \sum_{i=1}^{N} f^p(X_i) - \mathbb{E} f^p(X) \right| \lesssim_p \frac{\gamma(\mathcal{F}, \psi_2) d_{\psi_2}^{p-1}(\mathcal{F})}{\sqrt{N}} + \frac{\gamma^p(\mathcal{F}, \psi_2)}{N}.$$

Remark: For the case p=2, the expectation bound was established by Klartag and Mendelson (2005) and by Mendelson, Pajor, and Tomczak-Jaegermann (2007); improved tail bounds were later obtained by Dirksen (2013) and Bednorz (2014).

Proof:

By symmetrization, reduce to analyzing the supremum of the Bernoulli process:

$$\sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{N} \varepsilon_{i} f^{p} \left(X_{i} \right) \right|$$

- Apply chaining methods carefully within the powerful framework developed by Mendelson (2016) for analyzing multiplier and product empirical processes.
- Key lemma: For any $m \ge 2$ and $u \ge 1$, with probability at least $1 2\exp(-u^2)$, it holds that

$$\sup_{f \in \mathcal{F}} \left(\sum_{i=1}^{N} |f|^m (X_i) \right)^{1/m} \lesssim_m \gamma(\mathcal{F}, \psi_2) + N^{1/m} d_{\psi_2}(\mathcal{F}) + d_{\psi_2}(\mathcal{F}) u.$$

• The key lemma itself is proved via chaining arguments, incorporating ideas from Bednorz (2014).

Proof of Theorem 1

- Apply Theorem 2 to the function class $\mathcal{F} = \{\langle \cdot, v \rangle : ||v||_2 = 1\}$.
- Since X is sub-Gaussian, the ψ_2 -norm of linear functionals is equivalent to the L_2 -norm:

$$d_{\psi_2}(\mathcal{F}) = \sup_{f \in \mathcal{F}} \|f\|_{\psi_2} \asymp \sup_{f \in \mathcal{F}} \|f\|_{L_2} = \sup_{\|v\| = 1} \left(\mathbb{E}\langle X, v \rangle^2 \right)^{1/2} = \|\Sigma\|^{1/2}.$$

• There exists a centered Gaussian random vector Y in \mathbb{R}^d with the same covariance Σ . For any $u, v \in \mathbb{S}^{d-1}$,

$$d_Y(u,v) := \left(\mathbb{E}(\langle Y,u\rangle - \langle Y,v\rangle)^2\right)^{1/2} = \langle u-v, \Sigma(u-v)\rangle^{1/2} = \|\langle \cdot,u\rangle - \langle \cdot,v\rangle\|_{L_2(\mu)},$$
 where μ is the law of X .

Talagrand's majorizing-measure theorem:

$$\gamma(\mathcal{F}, \psi_2) \asymp \gamma(\mathcal{F}, L_2) = \gamma(\mathbb{S}^{d-1}, d_Y) \asymp \mathbb{E} \sup_{u \in \mathbb{S}^{d-1}} \langle Y, u \rangle = \mathbb{E} \|Y\| \asymp (\mathbb{E} \|Y\|^2)^{1/2} = \operatorname{Tr}(\Sigma)^{1/2}.$$

Consequently,

$$\mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}^{\otimes p} - \mathbb{E}X^{\otimes p}\right\| = \mathbb{E}\sup_{\|v\|_{2}=1}\left|\frac{1}{N}\sum_{i=1}^{N}\langle X_{i},v\rangle^{p} - \mathbb{E}\langle X,v\rangle^{p}\right|$$

$$= \mathbb{E}\sup_{f\in\mathcal{F}}\left|\frac{1}{N}\sum_{i=1}^{N}f^{p}(X_{i}) - \mathbb{E}f^{p}(X)\right|$$

$$\lesssim_{p}\|\Sigma\|^{p/2}\left(\sqrt{\frac{r(\Sigma)}{N}} + \frac{r(\Sigma)^{p/2}}{N} + \sqrt{\frac{u}{N}} + \frac{u^{p/2}}{N}\right).$$

• The lower bound for the Gaussian case builds upon ideas from Koltchinskii and Lounici (2014).

Theorem 3: simple random tensor

Theorem 3: For any integer $p \ge 2$ and $1 \le k \le p$, let $X^{(k)}, X_1^{(k)}, \dots, X_N^{(k)}$ be i.i.d. mean-zero sub-Gaussian random vectors in \mathbb{R}^{d_k} with covariance matrix $\Sigma^{(k)}$. Then,

$$\mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}^{(1)}\otimes\cdots\otimes X_{i}^{(p)}-\mathbb{E}X^{(1)}\otimes\cdots\otimes X^{(p)}\right\|\lesssim_{p}\left(\prod_{k=1}^{p}\|\Sigma^{(k)}\|^{1/2}\right)\mathcal{E}_{N}\left((\Sigma^{(k)})_{k=1}^{p}\right),$$

where

$$\mathcal{E}_{N}\left((\Sigma^{(k)})_{k=1}^{p}\right) := \frac{1}{\sqrt{N}} \left(\sum_{k=1}^{p} r(\Sigma^{(k)})\right)^{1/2} + \frac{1}{N} \prod_{k=1}^{p} \left(r(\Sigma^{(k)}) + \log N\right)^{1/2}.$$

Moreover, if $(X_i^{(1)})_{i=1}^N,\ldots,(X_i^{(p)})_{i=1}^N,X^{(1)},\ldots,X^{(p)}$ are independent Gaussian, then

$$\mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}^{(1)}\otimes\cdots\otimes X_{i}^{(p)}-\mathbb{E}X^{(1)}\otimes\cdots\otimes X^{(p)}\right\| \asymp_{p} \left(\prod_{k=1}^{p}\|\Sigma^{(k)}\|^{1/2}\right)\mathcal{E}_{N}\left((\Sigma^{(k)})_{k=1}^{p}\right).$$

Remarks:

- The sequence of random variables $(X_i^{(k)})_{i=1}^N$ and $(X_i^{(k')})_{i=1}^N$ are not necessarily independent for $k \neq k'$.
- Achieves the optimal expectation bound; the logarithmic factors cannot be removed, as the bound can be reversed in the independent case.

• If
$$r(\Sigma^{(1)}) \ge \cdots \ge r(\Sigma^{(t)}) \ge \log N \ge r(\Sigma^{(t+1)}) \cdots \ge r(\Sigma^{(p)})$$
, then

$$\mathcal{E}_N\left((\Sigma^{(k)})_{k=1}^p\right) \asymp_p \sqrt{\frac{r(\Sigma^{(1)})}{N}} + \frac{(\log N)^{\frac{p-t}{2}}}{N} \prod_{k=1}^t r(\Sigma^{(k)})^{1/2}.$$

• If $X^{(1)}=\cdots=X^{(p)}$, $\Sigma^{(1)}=\cdots=\Sigma^{(p)}$, and $X_i^{(1)}=\cdots=X_i^{(p)}$ for all $1\leq i\leq N$, then Theorem 3 recovers the upper bound in Theorem 1:

$$\mathcal{E}_N\left((\Sigma^{(k)})_{k=1}^p\right) \asymp_p \sqrt{\frac{r(\Sigma)}{N}} + \frac{(r(\Sigma) + \log N)^{p/2}}{N} \asymp_p \sqrt{\frac{r(\Sigma)}{N}} + \frac{r(\Sigma)^{p/2}}{N}.$$

Theorem 4: multi-product empirical process

Theorem 4: For $1 \leq k \leq p$, let $X^{(k)}, X_1^{(k)}, \ldots, X_N^{(k)} \stackrel{\text{i.i.d.}}{\sim} \mu^{(k)}$ be a sequence of random variables on the probability space $(\Omega^{(k)}, \mu^{(k)})$, and let $\mathcal{F}^{(k)}$ be a class of functions defined on $(\Omega^{(k)}, \mu^{(k)})$. Assume $0 \in \mathcal{F}^{(k)}$ or $\mathcal{F}^{(k)}$ is symmetric (i.e., $f^{(k)} \in \mathcal{F}^{(k)}$ implies $-f^{(k)} \in \mathcal{F}^{(k)}$). Then,

$$\mathbb{E} \sup_{f^{(k)} \in \mathcal{F}^{(k)}, 1 \le k \le p} \left| \frac{1}{N} \sum_{i=1}^{N} \prod_{k=1}^{p} f^{(k)}(X_i^{(k)}) - \mathbb{E} \prod_{k=1}^{p} f^{(k)}(X^{(k)}) \right|$$

$$\lesssim_p \left(\prod_{k=1}^{p} d_{\psi_2}(\mathcal{F}^{(k)}) \right) \mathcal{E}_N((\mathcal{F}^{(k)})_{k=1}^p),$$

where

$$\mathcal{E}_{N}((\mathcal{F}^{(k)})_{k=1}^{p}) := \frac{\sum_{k=1}^{p} \bar{\gamma}(\mathcal{F}^{(k)}, \psi_{2})}{\sqrt{N}} + \frac{\prod_{k=1}^{p} \left(\bar{\gamma}(\mathcal{F}^{(k)}, \psi_{2}) + (\log N)^{1/2}\right)}{N},$$
$$\bar{\gamma}(\mathcal{F}^{(k)}, \psi_{2}) := \frac{\gamma(\mathcal{F}^{(k)}, \psi_{2})}{d_{\psi_{2}}(\mathcal{F}^{(k)})}.$$

References

- [1] Omar Al-Ghattas, Jiaheng Chen, and Daniel Sanz-Alonso. Sharp concentration of simple random tensors. arXiv preprint arXiv:2502.16916, 2025.
- [2] Witold Bednorz. Concentration via chaining method and its applications. arXiv preprint arXiv:1405.0676, 2014.
- [3] Jiaheng Chen and Daniel Sanz-Alonso. Sharp concentration of simple random tensors II: asymmetry. arXiv preprint, 2025. To appear.
- [4] Vladimir Koltchinskii and Karim Lounici. Concentration inequalities and moment bounds for sample covariance operators. Bernoulli, 23(1):110-133, 2017.
- [5] Shahar Mendelson. Upper bounds on product and multiplier empirical processes. Stochastic Processes and their Applications, 126(12):3652–3680, 2016.