Алгоритмы и модели вычислений.

Задание 8: линейное программирование

Сергей Володин, 272 гр.

задано 2014.03.27

(каноническое) Задача 32

(каноническое) Задача 33

(каноническое) Задача 34

$$A = \left\|a_{ij}\right\|_{i,j=1}^{m,n}.\ P_1 \stackrel{\text{\tiny def}}{=} \left[\exists p \in \mathbb{R}^m \colon A^T p < 0\right].\ P_2 \stackrel{\text{\tiny def}}{=} \left[\exists y \in \mathbb{R}^n \colon y \geqslant 0,\ y \neq 0,\ Ay = 0\right].\ Доказать:\ \urcorner P_1 \Leftrightarrow P_2$$

1. $e_i \stackrel{\text{def}}{=} \begin{vmatrix} 0 & \cdots & 1 & \cdots & 0 \\ & \vdots & & \ddots & 0 \end{vmatrix} \in \mathbb{R}^n \Rightarrow e \stackrel{\text{def}}{=} (e_1, ..., e_n)$ — стандартный базис в \mathbb{R}^n . Скалярное произведение (\cdot, \cdot) — тоже стандартное, т.е. матрица Грама в e единичная, т.е. $(\begin{vmatrix} x_1 \\ ... \\ x_n \end{vmatrix}, \begin{vmatrix} y_1 \\ ... \\ y_n \end{vmatrix}) = x_1 y_1 + ... + x_n y_n$

2. Пусть P_2 .

- (а) Тогда $\exists y \colon Ay = 0, \ y \geqslant 0, \ y \neq 0$. Обозначим столбцы матрицы $A = \|\underline{b_1} \quad \dots \quad \underline{b_n}\| \cdot y \in \mathbb{R}^n \Rightarrow y = \|y_1 \quad \dots \quad y_n\|^T$ Тогда $Ay = 0 \Leftrightarrow \|\underline{b_1} \quad \dots \quad \underline{b_n}\| \cdot \|y_1\| = 0 \Leftrightarrow \sum_{i=1}^n \underline{b_i} y_i \stackrel{(*)}{=} 0$. Условие $y \neq 0 \Rightarrow \exists i \in \overline{1,n} \colon y_i \neq 0$. Без ограничения общности это y_1 . Тогда в (*) перенесем всё, кроме $y_1\underline{b_1}$ в правую часть, и поделим на $y_1 \neq 0$: $\underline{b_1} = -\frac{y_2}{y_1}\underline{b_2} \dots \frac{y_n}{y_1}\underline{b_n}$
- (b) Рассмотрим $A^Tp = \left\| \frac{\underline{b_1}^T}{\dots} \right\| \cdot \left\| p_1 \right\| = \left\| \frac{(\underline{b_1}, p)}{\dots} \right\|$ $\left\| \underline{b_n}^T \right\| \cdot \left\| p_m \right\| = \left\| \frac{(\underline{b_1}, p)}{\dots} \right\|$
- (c) Предположим, что P_1 , т.е. $\exists p \colon \forall i \in \overline{1,n} \hookrightarrow (\underline{b_i},p) < 0$. Рассмотрим $(\underline{b_1},p) = (-\frac{y_2}{y_1}\underline{b_2} - ... - \frac{y_n}{y_1}\underline{b_n},p) = -\frac{y_2}{y_1}(\underline{b_2},p) - ... - \frac{y_n}{y_1}(\underline{b_n},p)$. Поскольку $(\underline{b_i},p) < 0, \ \frac{y_i}{y_1} \geqslant 0$, то $(b_1,p) \geqslant 0$ — противоречие.
- (d) Значит, $\neg P_1$.

(каноническое) Задача 35

(каноническое) Задача 36

(Тарасов, лекция 2014.04.01)

Фиксируем $k \in \mathbb{N}$, $\{t_i\}_{i=1}^k \subset \mathbb{R}$. Определим $\vec{r} \colon \mathbb{R} \to \mathbb{R}^4 : \vec{r}(t) \stackrel{\text{def}}{=} \|t^4 - t^3 - t^2 - t\|^T$. Рассмотрим точки $\vec{x}_i = \vec{r}(t_i)$. Рассмотрим $G \stackrel{\text{def}}{=} \operatorname{conv}(\{\vec{x}_i\}_{i=1}^k)$ — выпуклую оболочку этих точек. Фиксируем $i_1 \neq i_2 \in \overline{1,k}$. Докажем, что $\vec{x}_{i_1}, \vec{x}_{i_2}$ — вершины G, соединенные ребром $\stackrel{\text{def}}{\Leftrightarrow} \exists$ гиперплоскость $\pi \colon (\vec{x}_{i_1}, \vec{x}_{i_2} \in \pi)$ и (многогранник G лежит по одну сторону от π).

- 1. Определим многочлен $P(t)\stackrel{\text{\tiny def}}{=} (t-t_{i_1})^2\cdot (t-t_{i_2})^2 \equiv t^4+a_3t^3+a_2t^2+a_1t+a_0$
- 2. Определим гиперплоскость π . $\mathbb{R}^4 \ni \vec{x} \equiv \begin{vmatrix} x_1 & x_2 & x_3 & x_4 \end{vmatrix}^T \in \pi \Leftrightarrow F(\vec{x}) \equiv x_1 + a_3x_2 + a_2x_3 + a_1x_4 + a_0 = 0$.
- 3. Тогда $F(\vec{r}(t)) = P(t)$: $F(\vec{r}(t)) = F(t^4, t^3, t^2, t) = t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0$
- 4. t_{i_1} и t_{i_2} корни P(t), откуда $P(t_{i_1})=P(t_{i_2})=0$, значит, $F(\vec{x}_{i_1})=F(\vec{x}_{i_2})=0$, значит, $\vec{x}_{i_1},\vec{x}_{i_2}\in\pi$
- 5. Фиксируем $t \in \mathbb{R}$. Тогда $F(\vec{r}(t)) = P(t) \geqslant 0$. Значит, все точки $\{\vec{x}_i\}_{i=1}^k$ лежат по одну сторону от π . Значит, G лежит по одну сторону
- 6. Пусть $t: \vec{r}(t) \in \pi \Leftrightarrow F(\vec{r}(t)) = 0 \Leftrightarrow P(t) = 0 \Leftrightarrow t \in \{t_{i_1}, t_{i_2}\}$