Semantyka i weryfikacja programów

Bartosz Klin

(slajdy Andrzeja Tarleckiego)

Instytut Informatyki
Wydział Matematyki, Informatyki i Mechaniki
Uniwersytet Warszawski

http://www.mimuw.edu.pl/~klin

pok. 5680

klin@mimuw.edu.pl

Strona tego wykładu:

http://www.mimuw.edu.pl/~klin/sem19-20.html

Program Semantics & Verification

Bartosz Klin

(slides courtesy of Andrzej Tarlecki)

Institute of Informatics
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

http://www.mimuw.edu.pl/~klin office: 5680

klin@mimuw.edu.pl

This course:

http://www.mimuw.edu.pl/~klin/sem19-20.html

Denotational semantics for TINY

Semantic clauses

 $S \colon \mathbf{Stmt} \to \mathbf{STMT}$

Denotational semantics for TINY

The same clauses with notational sugar

 $S \colon \mathbf{Stmt} \to \mathbf{STMT}$

```
\begin{split} \mathcal{S}\llbracket x := e \rrbracket &= \lambda s : \mathbf{State}. s \llbracket x \mapsto \mathcal{E}\llbracket e \rrbracket \ s \rrbracket \\ \mathcal{S}\llbracket \mathbf{skip} \rrbracket &= i d_{\mathbf{State}} \\ \mathcal{S}\llbracket S_1; S_2 \rrbracket &= \mathcal{S}\llbracket S_1 \rrbracket; \mathcal{S}\llbracket S_2 \rrbracket \\ \mathcal{S}\llbracket \mathbf{if} \ b \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \rrbracket &= cond(\mathcal{B}\llbracket b \rrbracket, \mathcal{S}\llbracket S_1 \rrbracket, \mathcal{S}\llbracket S_2 \rrbracket) \\ \mathcal{S}\llbracket \mathbf{while} \ b \ \mathbf{do} \ S \rrbracket &= cond(\mathcal{B}\llbracket b \rrbracket, \mathcal{S}\llbracket S \rrbracket; \mathcal{S}\llbracket \mathbf{while} \ b \ \mathbf{do} \ S \rrbracket, i d_{\mathbf{State}}) \end{split}
```

Something wrong?

The clause for while:

$$\mathcal{S}[$$
while $b \text{ do } S]$ = $cond(\mathcal{B}[b], \mathcal{S}[S]; \mathcal{S}[$ while $b \text{ do } S], id_{State})$

is *not* compositional!

We "define":

??? S[while b do $S[] = \Phi(\ldots, S[$ while b do $S[], \ldots)$???

We need fixed point definitions

Potential problems with fixed point definitions

Consider fixed point definitions in $STMT = State \rightarrow State$, as

$$S[\mathbf{while}\ b\ \mathbf{do}\ S] = \Phi(\ldots, S[\mathbf{while}\ b\ \mathbf{do}\ S], \ldots)$$

Does a fixed point always exist?

$$f = \lambda s$$
:State. $ifte_{State}(f(s) \text{ is not defined}, s, f(s)[x \mapsto (f(s)x) + 1])$

Only some functionals Φ may be allowed

If a fixed point exists, is it unique?

$$f = \lambda s$$
:State. $f(s)[x \mapsto 2 * (f(s) x)]$

(or even: $f = \lambda s$:State.f(s))

Some "best" fixed point must be chosen

The guiding fixed point definition

Looking closer at the clause for while:

$$\mathcal{S}[$$
while $b \text{ do } S]$ = $\Phi(\mathcal{S}[$ while $b \text{ do } S]$)

where $\Phi \colon \mathbf{STMT} \to \mathbf{STMT}$ is defined as follows:

$$\Phi(F) = cond(\mathcal{B}[b], \mathcal{S}[S]; F, id_{State})$$

Whatever fixed point we choose, we want it to be adequate for our operational intuitions; we want a denotation $fix(\Phi) \in \mathbf{STMT}$ that is a fixed point of Φ (so that $\Phi(fix(\Phi)) = fix(\Phi)$) and is adequate for the operational semantics of while, i.e., such that

(while
$$b$$
 do S, s) $\Rightarrow^* s'$ **iff** $fix(\Phi) s = s'$

Right guess!

Suppose that we have such adequacy for S, i.e., $\langle S, s \rangle \Rightarrow^* s'$ iff S[S] s = s'. Right guess:

$$\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow^* s' \ \text{ iff } \ \text{ for some } n \geq 0, \Phi^n(\emptyset_{\mathbf{State} \rightharpoonup \mathbf{State}}) \ s = s'$$

where $\emptyset_{\text{State} \to \text{State}}$: State \to State is the function undefined everywhere, $\Phi^0(\emptyset_{\text{State} \to \text{State}}) = \emptyset_{\text{State} \to \text{State}}$, and $\Phi^{n+1}(\emptyset_{\text{State} \to \text{State}}) = \Phi(\Phi^n(\emptyset_{\text{State} \to \text{State}}))$.

Proof: in a moment.

Conclusion

$$\mathcal{S}[\mathbf{while}\ b\ \mathbf{do}\ S] = fix(\Phi) = \bigcup_{n\geq 0} \Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}})$$

This is well-defined, and yields the *least* fix-point of Φ , see below.

while $sqr \le n$ **do** rt := rt + 1; sqr := sqr + 2 * rt + 1

$$\Phi(F) = cond(\mathcal{B}[sqr \le n], \mathcal{S}[rt := rt + 1; sqr := sqr + 2 * rt + 1]; F, id_{State})$$

s(n,rt,sqr)	$\Phi^0(\emptyset)(s)$	$\Phi^1(\emptyset)(s)$	$\Phi^2(\emptyset)(s)$	$\Phi^3(\emptyset)(s)$	$\Phi^4(\emptyset)(s)$	• • •	$\bigcup \Phi^n(\emptyset)(s)$
0, 0, 1	?	0, 0, 1	0, 0, 1	0, 0, 1	0, 0, 1		0, 0, 1
1, 0, 1	?	?	1, 1, 4	1, 1, 4	1, 1, 4	• • •	1, 1, 4
2, 0, 1	?	?	2,1,4	2,1,4	2,1,4	• • •	2, 1, 4
3, 0, 1	?	?	3, 1, 4	3, 1, 4	3, 1, 4	• • •	3, 1, 4
4, 0, 1	?	?	?	4, 2, 9	4, 2, 9	• • •	4, 2, 9
• • •		• • •	• • •	• • •	• • •	• • •	• • •
8, 0, 1	?	?	?	8, 2, 9	8, 2, 9	• • •	8, 2, 9
9, 0, 1	?	?	?	?	9, 3, 16		9, 3, 16

 $\Phi(F) = cond(\mathcal{B}[sqr \le n], \mathcal{S}[rt := rt + 1; sqr := sqr + 2 * rt + 1]; F, id_{State})$

s(n,rt,sqr)	$\Phi^0(\emptyset)(s)$	$\Phi^1(\emptyset)(s)$	$\Phi^2(\emptyset)(s)$	$\Phi^3(\emptyset)(s)$	$\Phi^4(\emptyset)(s)$	• • •	$\bigcup \Phi^n(\emptyset)(s)$
0, 0, 1	?	0, 0, 1	0, 0, 1	0, 0, 1	0, 0, 1		0, 0, 1
1, 0, 1	?	?	1, 1, 4	1, 1, 4	1, 1, 4		1, 1, 4
1, 1, 4	?	1, 1, 4	1, 1, 4	1, 1, 4	1, 1, 4		1, 1, 4
2, 0, 1	?	?	2, 1, 4	2, 1, 4	2, 1, 4		2, 1, 4
2, 1, 4	?	2, 1, 4	2, 1, 4	2, 1, 4	2, 1, 4		2, 1, 4
3, 0, 1	?	?	3, 1, 4	3, 1, 4	3, 1, 4	• • •	3, 1, 4
3, 1, 4	?	3, 1, 4	3, 1, 4	3, 1, 4	3, 1, 4	• • •	3, 1, 4
4, 0, 1	?	?	?	4, 2, 9	4, 2, 9	• • •	4, 2, 9
4,1,4	?	?	4, 2, 9	4, 2, 9	4, 2, 9		4, 2, 9
4, 2, 9	?	4, 2, 9	4, 2, 9	4, 2, 9	4, 2, 9		4, 2, 9
	• • •	• • •	• • •	• • •	• • •		
9, 0, 1	?	?	?	?	9, 3, 16	• • •	9, 3, 16
9, 1, 4	?	?	?	9, 3, 16	9, 3, 16		9, 3, 16
9, 2, 9	?	?	9, 3, 16	9, 3, 16	9, 3, 16		9, 3, 16
9, 3, 16	?	9, 3, 16	9, 3, 16	9, 3, 16	9, 3, 16		9, 3, 16
					• • •		

Proof

" \Longrightarrow ": By induction on the length of the computation $\langle \mathbf{while}\ b\ \mathbf{do}\ S, s \rangle \Rightarrow^k s'$. k > 0: Then $\langle \mathbf{while}\ b\ \mathbf{do}\ S, s \rangle \Rightarrow \gamma \Rightarrow^{k-1} s'$. By cases on this first step:

- $\mathcal{B}[\![b]\!] s = \text{ff and } \gamma = s$. Then s' = s, and $\Phi(\emptyset_{\mathbf{State} \to \mathbf{State}}) s = s$. OK
- $\mathcal{B}[\![b]\!] s = \mathbf{tt}$ and $\gamma = \langle S; \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow^{k-1} s'$. Then $\langle S, s \rangle \Rightarrow^{k_1} \hat{s}$ and $\langle \mathbf{while} \ b \ \mathbf{do} \ S, \hat{s} \rangle \Rightarrow^{k_2} s'$, for some $\hat{s} \in \mathbf{State}$ and $k_1, k_2 > 0$ with $k_1 + k_2 = k 1$. Hence, $\mathcal{S}[\![S]\!] s = \hat{s}$ and $\Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}}) \hat{s} = s'$ for some $n \geq 0$. Thus, $\Phi^{n+1}(\emptyset_{\mathbf{State} \to \mathbf{State}}) s = s'$. OK

BTW: This relies only on S, s $s' \Rightarrow s' \Rightarrow S[S]$, s = s'

Proof

" \Leftarrow ": By induction on $n \geq 0$, assuming $\Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}})$ s = s'. n > 0: Then

 $\Phi^{n}(\emptyset_{\mathbf{State} \to \mathbf{State}}) \ s = cond(\mathcal{B}[\![b]\!], \mathcal{S}[\![S]\!]; \Phi^{n-1}(\emptyset_{\mathbf{State} \to \mathbf{State}}), id_{\mathbf{State}}) \ s.$

- $\mathcal{B}[\![b]\!] s = \text{ff}$: then $\Phi^n(\emptyset_{\text{State} \to \text{State}}) s = s$, so s' = s, and also $\langle \text{while } b \text{ do } S, s \rangle \Rightarrow s$. OK
- $\mathcal{B}\llbracket b \rrbracket s = \mathbf{tt}$: then $\Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}}) s = \Phi^{n-1}(\emptyset_{\mathbf{State} \to \mathbf{State}}) (\mathcal{S}\llbracket S \rrbracket s)$. Hence, $\langle \mathbf{while} \ b \ \mathbf{do} \ S, \mathcal{S}\llbracket S \rrbracket s \rangle \Rightarrow^* s'$, and since $\langle S, s \rangle \Rightarrow^* (\mathcal{S}\llbracket S \rrbracket s)$, we get $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow \langle S; \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow^* \langle \mathbf{while} \ b \ \mathbf{do} \ S, \mathcal{S}\llbracket S \rrbracket s \rangle \Rightarrow^* s'$. OK

BTW: This relies only on $|\langle S,s \rangle \Rightarrow^* s' \Longleftarrow \mathcal{S}[\![S]\!] \ s=s'$

Adequacy of denotational semantics

Fact: For each statement $S \in \mathbf{Stmt}$ and states $s, s' \in \mathbf{State}$,

$$\mathcal{S} \llbracket S \rrbracket \ s = s' \ \ \text{iff} \ \ \langle S, s \rangle \Rightarrow^* s'$$

Proof:

" \Longrightarrow ": By structural induction on S.

"\(\infty\)": By induction on the length of the computation $\langle S,s\rangle \Rightarrow^* s'$.

How general is this fixpoint construction?

For any sets X and Y, define the *information ordering* on partial functions from X to Y:

$$f \sqsubseteq g$$
 iff $[f(x)$ is defined implies $g(x)$ is defined and $f(x) = g(x)$

This is a *complete partial order* (c.p.o.) on $X \rightharpoonup Y$, i.e., it has the least element $\emptyset_{X \rightharpoonup Y}$ and limits (least upper bounds) of increasing chains:

$$f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq f_3 \sqsubseteq \cdots \sqsubseteq \bigcup_{n \in \mathbb{N}} f_n$$

Putting X = Y =State, we get a c.p.o. on the set STMT.

Continuous functions

Fact: For any $S \in \mathbf{Stmt}$ and $b \in \mathbf{BExp}$, the function

$$\Phi(F) = cond(\mathcal{B}[b], \mathcal{S}[S]; F, id_{State})$$

is monotone and even continuous:

- $\Phi(f) \sqsubseteq \Phi(g)$ if $f \sqsubseteq g$,
- ullet $\Phi\left(igcup_{n\in\mathbb{N}}f_n
 ight)=igcup_{n\in\mathbb{N}}\Phi(f_n)$ if $f_1\sqsubseteq f_2\sqsubseteq f_3\sqsubseteq\cdots$

Fact: (Kleene fixpoint theorem) Every continuous function Φ on a c.p.o. X has a least fixpoint, defined by:

$$\bigcup_{n\in\mathbb{N}}\Phi^n(\emptyset).$$

Continuous functions

Some functions are not continuous, or even not monotone. Recall our flawed "fixpoint definition":

$$f = \lambda s$$
:State. $ifte_{State}(f(s) \text{ is not defined}, s, f(s)[x \mapsto (f(s)x) + 1])$

This is supposed to be a fixpoint of the function $\Phi : \mathbf{STMT} \to \mathbf{STMT}$:

$$\Phi(F) = \lambda s$$
:State. $ifte_{\mathbf{State}}(F(s) \text{ is not defined}, s, F(s)[x \mapsto (F(s)x) + 1])$

This Φ is well-defined, but it is not monotone: $\emptyset_{\mathbf{State} \to \mathbf{State}} \sqsubseteq id_{\mathbf{State}}$, but

$$\Phi(\emptyset_{\mathbf{State} \to \mathbf{State}}) = id_{\mathbf{State}} \not\sqsubseteq \Phi(id_{\mathbf{State}}).$$

In practice, all "reasonable" functions that we are likely to write are continuous.