Logiques de programmes

1 Logique de Floyd-Hoare.

On considère des formules logiques, des assertions (définies formellement ci-après), que l'on notera A, A', B, etc. Un triplet de Hoare est de la forme $\{A\}c\{A'\}$ (la notation est inhabituelle pour les triplets, mais c'est une notation commune dans le cas des triplets de Hoare), où l'on nomme A la précondition et A' la postcondition.

Exemple 1. Les triplets suivants sont des triplets de Hoare :

- 1. $\{x \ge 1\}y := x + 2\{x \ge 1 \land y \ge 3\}$ qui est une conclusion naturelle;
- 2. $\{n \geq 1\}c_{\text{fact}}\{r=n!\}$ où l'on note c_{fact} la commande

$$x := n$$
; $z := 1$; while $(x > 0)$ do $(z := z \times x ; x := x - 1)$,

qui calcule naturellement la factorielle de n;

- 3. $\{x < 0\}c\{\text{true}\}$ même s'il ne nous dit rien d'intéressant (tout état mémoire vérifie true);
- 4. $\{x < 0\}c\{\text{false}\}\$ qui diverge dès lors que x < 0.

On considère un ensemble $I \ni i$ infini d'index, des « inconnues ». On commence par définir les expressions arithmétiques étendues

$$a ::= \underline{k} \mid a_1 \oplus a_2 \mid x \mid i$$
,

puis définit les assertions par la grammaire ci-dessous :

$$A ::= bv \mid A_1 \lor A_2 \mid A_1 \land A_2 \mid a_1 \ge a_2 \mid \exists i, A.$$

$$-1/5 -$$

On s'autorisera à étendre, implicitement, les opérations réalisées dans les expressions arithmétiques, et les comparaisons effectuées dans les assertions.

On ajoute la liaison d' α -conversion : les assertions $\exists i, x = 3 * i$ et $\exists j, x = 3 * j$ sont α -équivalentes. On note $i\ell(A)$ l'ensemble des index libres de l'assertion A, et on dira que A est close dès lors que $i\ell(A) = \emptyset$. On note aussi A[k/i] l'assertion A où $k \in \mathbb{Z}$ remplace $i \in I$.

Définition 1. Considérons A close et $\sigma \in \mathcal{M}$. On définit par induction sur A (4 cas) une relation constituée de couples (σ, A) , notés $\sigma \models A$ (« σ satisfait A »), et en notant $\sigma \not\models A$ lorsque (σ, A) n'est pas dans la relation :

- $\triangleright \ \sigma \models \mathsf{true} \ \forall \sigma \in \mathcal{M} ;$
- $\triangleright \ \sigma \models A_1 \lor A_2 \text{ si et seulement si } \sigma \models A_1 \text{ ou } \sigma \models A_2;$
- $ho \ \sigma \models a_1 \geq a_2$ si et seulement si on a $a_1, \sigma \downarrow k_1$ et $a_2, \sigma \downarrow k_2$ et $k_1 \geq k_2$;
- $\triangleright \sigma \models \exists i, A \text{ si et seulement s'il existe } k \in \mathbb{Z} \text{ tel que } \sigma \models A[k/i].$

On écrit $\models A$ (« A est valide ») lorsque pour tout σ tel que $dom(\sigma) \supseteq vars(A)$, on a $\sigma \models A$.

1.1 Règles de la logique de Hoare : dérivabilité des triplets de Hoare.

Les triplets de Hoare, notés $\{A\}c\{A'\}$ avec A et A' closes, où A est précondition, c est commande IMP, et A' est postcondition. On définit

Hugo Salou – L3 ens lyon

Théorie de la programmation

une relation $\vdash \{A\}c\{A'\}$ sur les triplets de Hoare :

$$\begin{array}{c|c} \vdash \{A \wedge b\}c_1\{A'\} & \vdash \{A \wedge \neg b\}c_2\{A'\} \\ \hline \vdash \{A\} \text{if } b \text{ then } c_1 \text{ else } c_2\{A'\} & \vdash \{A\} \text{skip}\{A\} \\ \hline \vdash \{A\}c_1\{A'\} & \vdash \{A'\}c_2\{A''\} & \vdash \{A \wedge b\}c\{A\} \\ \hline \vdash \{A\}c_1 \text{ ; } c_2\{A''\} & \hline \{A\} \text{while } b \text{ do } c\{A \wedge \neg B\} \\ \hline \models B \Rightarrow A \\ \vdash A \Rightarrow B' & \hline \{B\}c\{B'\} & \hline \{A[a/x]\}x := a\{A\} \end{array}$$

La dernière règle semble à l'envers, mais c'est parce que la logique de Hoare fonctionne fondamentalement à l'envers.

Dans la règle de dérivation pour la boucle while, l'assertion manipulée, A, est un invariant.

L'avant dernière règle s'appelle la règle de conséquence : on ne manipule pas le programme, la commande, mais plutôt les pré- et postconditions.

La relation $\vdash \{A\}c\{A'\}$ s'appelle la sémantique opérationnelle de IMP.

Définition 2. On définit la relation de satisfaction, sur les triplets de la forme $\{A\}c\{A'\}$ avec A, A' closes, avec $\sigma \models \{A\}c\{A'\}$ si et seulement si dès lors que $\sigma \models A$ et $c, \sigma \Downarrow \sigma'$ alors on a $\sigma' \models A'$.

On définit ensuite la relation de validité par $\models \{A\}c\{A'\}$ si et seulement si pour tout $\sigma \in \mathcal{M}$, $\sigma \models \{A\}c\{A'\}$.

Théorème 1 (Correction de la logique de Hoare.). Si $\vdash \{A\}c\{A'\}$ alors $\models \{A\}c\{A'\}$. **Preuve.** On procède par induction sur $\vdash \{A\}c\{A'\}$. Il y a 6 cas.

▶ Règle de conséquence. On sait

$$\models B \implies A \text{ et } \models A' \implies B',$$

et l'hypothèse d'induction. On doit montrer $\models \{B\}c\{B'\}$. Soit σ tel que $\models B$, et supposons $c, \sigma \Downarrow \sigma'$. On a $\models A$ par hypothèse. Puis, par hypothèse d'induction, $\sigma' \models A'$ et donc $\sigma' \models B'$.

- ightharpoonup Règle while. Considérons c= while b do c_0 . On sait par induction que $\models \{A \land b\}c_0\{A\}$ et l'hypothèse d'induction. Il faut montrer $\models \{A\}$ while b do $c_0\{A \land \neg b\}$, c'est à dire, si $\sigma \models A$ et (\star) : while b do $c_0, \sigma \Downarrow \sigma'$ alors $\sigma' \models A \land \neg b$. Pour montrer cela, il est nécessaire de faire une induction sur la dérivation de (\star) , « sur le nombre d'itérations dans la boucle ».
- ▶ Autres cas en exercice.

Le sens inverse, la réciproque, s'appelle la *complétude*. On l'étudiera rapidement après.

Remarque 1. Concrètement, on écrit des programmes annotés.

$$\begin{cases} \{x \ge 1\} \\ \{x \ge 1 \land x + 2 + x + 2 \ge 6\} \end{cases}$$

$$y := x + 2 ;$$

$$\{x \ge 1 \land y + y \ge 6\}$$

$$z := y + y$$

$$\begin{cases} \{x \ge 1 \land z \ge 6\} \\ \{x \ge 1 \land z \ge 6\} \end{cases}$$

Pour démontrer la complétude de la logique de Hoare, on s'appuie sur la notion de plus faible précondition : étant données une commande c et une assertion B, alors la plus faible précondition associée à c,B est l'ensemble des états mémoire

$$wp(c, B) := \{ \sigma \mid c, \sigma \Downarrow \sigma' \implies \sigma' \models B \}.$$

Ainsi, wp(c, B) est l'ensemble des états mémoire à partir duquels on aboutit à un état satisfaisant B, après une exécution terminante de c.

Proposition 1. Pour toute commande c et toute formule B, il existe une assertion W(c, B) telle que $\sigma \models W(c, B)$ si et seulement si $\sigma \in wp(c, B)$.

Preuve. On procède par induction sur c. Tout fonctionne, sauf pour while... Pour le cas de la boucle while, on utilise la caractérisation suivante :

$$\sigma \in \operatorname{wp}(\mathtt{while}\ b\ \mathtt{do}\ c_0, B)$$

 $\forall k, \forall \sigma_0, \dots, \sigma_k \text{ si } \sigma_0 = \sigma \text{ et } \forall i < k, (\sigma_i, b \Downarrow \text{ true et } c_0, \sigma_i \Downarrow \sigma_{i+1})$ alors $\sigma_k \models b \lor B$.

On peut définir cette assertion en définissant des assertions pour :

- \triangleright décrire un état mémoire $\sigma_i (X_1^i = v_1 \wedge \cdots \wedge X_n^i = v_n)$;
- \triangleright exprimer les conditions $\sigma_i, c \Downarrow \sigma_{i+1}$ par induction;
- \triangleright exprimer les quantifications $\forall k, \sigma_0, \ldots, \sigma_k \ldots$ on demande à Kurt Gödel.

Ainsi, on a bien une assertion W(c, B) telle que

$$\forall \sigma, \qquad \sigma \in \operatorname{wp}(c, B) \iff \sigma \models \operatorname{W}(c, B).$$