

- The Greedy Method Technique
- Fractional Knapsack Problem
- Task Scheduling
- Minimum Spanning Trees

Small Thinking

Small Thinking

Problem: Travel

1,500 KM

Walk Public Train Flight Transport

Problem: Travel

1,500 KM

24 Hrs

Walk Pu CAB Ro

Public Road Train Transport

r Flight Feasible Solution:

Train & Flight

Greedy!

Problem: Travel

1,500 KM

24 Hrs < 2000 INR

Walk Public Train
CAB Road Train
Transport

Feasible Solution: Train & Flight Optimal Solution: Train

Optimization Problem

AAD CSE SRMAP

Flight

23

The Greedy Method Technique

- The greedy method is a general algorithm design paradigm, built on the following elements:
 - configurations: different choices, collections, or values to find
 - objective function: a score assigned to configurations, which we want to either maximize or minimize
- It works best when applied to problems with the greedy-choice property:
 - a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

Making Change

- Problem: A dollar amount to reach and a collection of coin amounts to use to get there.
- Configuration: A dollar amount yet to return to a customer plus the coins already returned
- Objective function: Minimize number of coins returned.
- Greedy solution: Always return the largest coin you can
- ◆ Example 1: Coins are valued \$.32, \$.08, \$.01
 - Has the greedy-choice property, since no amount over \$.32 can be made with a minimum number of coins by omitting a \$.32 coin (similarly for amounts over \$.08, but under \$.32).
- ◆ Example 2: Coins are valued \$.30, \$.20, \$.05, \$.01
 - Does not have greedy-choice property, since \$.40 is best made with two \$.20's, but the greedy solution will pick three coins (which ones?)

The Fractional Knapsack Problem

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
 - In this case, we let x_i denote the amount we take of item i
 - Objective: maximize $\sum_{i \in S} b_i(x_i / w_i)$
 - Constraint: $\sum_{i \in S} x_i \leq W$

Example

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight

• Goal: Choose items with maximum total benefit but with weight at most W.

The Fractional Knapsack Algorithm

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)
 - (benefit to weight ratio) • Since $\sum_{i=1}^{n} b_i(x_i/w_i) = \sum_{i=1}^{n} (b_i/w_i)x_i$
 - Run time: O(n $\log^{i \in S}$ n). Why?
- Correctness: Suppose there is a better solution
 - there is an item i with higher value than a chosen item j, but x_i<w_i, x_i>0 and v_i<v_i
 - If we substitute some i with j, we get a better solution
 - How much of i: $min\{w_i-x_i, x_i\}$
 - Thus, there is no better solution than the greedy one

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit b_i and weight w_i ; max. weight W

Output: amount x_i of each item i to maximize benefit w/ weight at most W

for each item i in S

$$x_i \leftarrow 0$$
 $v_i \leftarrow b_i / w_i$ {value}
 $w \leftarrow 0$ {total weight}
while $w < W$

remove item i w/ highest v_i
 $x_i \leftarrow \min\{w_i, W - w\}$
 $w \leftarrow w + \min\{w_i, W - w\}$

- Given: a set T of n tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where s_i < f_i)
- Goal: Perform all the tasks using a minimum number of "machines."

Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: O(n log n). Why?
- Correctness: Suppose there is a better schedule.
 - We can use k-1 machines
 - The algorithm uses k
 - Let i be first task scheduled on machine k
 - Machine i must conflict with k-1 other tasks
 - But that means there is no non-conflicting schedule using k-1 machines

Algorithm taskSchedule(T)

Input: set T of tasks w/ start time s_i and finish time f_i

Output: non-conflicting schedule with minimum number of machines

$$m \leftarrow 0$$
 {no. of machines}

while T is not empty

remove task i w/ smallest s_i
if there's a machine j for i then
schedule i on machine j

else

$$m \leftarrow m + 1$$
schedule i on machine m

- Given: a set T of n tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where s_i < f_i)
 - [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)
- Goal: Perform all tasks on min. number of machines

