Segment trees and interval trees

Lecture 5

Antoine Vigneron

antoine.vigneron@jouy.inra.fr

INRA

Outline

- reference
 - textbook chapter 10
 - D. Mount Lectures 13 and 24
- segment trees
 - ⇒ stabbing queries
 - ⇒ rectangle intersection
- interval trees
 - ⇒ improvement
- higher dimension

Stabbing queries

- orthogonal range searching: data points, query rectangle
- stabbing problem: data rectangles, query point
- in one dimension
 - input: a set of n intervals, a query point q
 - output: the k intervals that contain q
- in \mathbb{R}^d
 - a box b is isothetic iff it can be written $b = [x_1, x_1'] \times [x_2, x_2'] \times \ldots \times [x_d, x_d']$
 - in other words it is axis—parallel
 - input: a set of n isothetic boxes, a query point q
 - output: the k boxes that contain q

Motivation

 in graphics and databases, objects are often stored in their bounding box

- query: which objects does point x belong to?
- first find objects whose bounding boxes intersect x

Segment trees

Segment tree

- a data structure to store intervals, or segments in \mathbb{R}^2
- allows to answer stabbing queries
 - in R²: report the segments that intersect a query vertical line l

- query time: $O(\log n + k)$
- space usage: $O(n \log n)$
- preprocessing time: $O(n \log n)$

Notations

- let $S = (s_1, s_2, \dots s_n)$ be a set of segments in \mathbb{R}^2
- let E be the set of the x-coordinates of the endpoints of the segments of S
- we assume general position, that is: |E| = 2n
- first sort E in increasing order
- $E = \{e_1 < e_2 < \dots e_{2n}\}$

Atomic intervals

- E splits \mathbb{R} into 2n + 1 atomic intervals:
 - $[-\infty, e_1]$
 - $[e_i, e_{i+1}]$ for $i \in \{1, 2, \dots 2n 1\}$
 - $[e_{2n},\infty]$
- these are the leaves of the segment tree

Internal nodes

- ullet the segment tree ${\mathcal T}$ is a balanced binary tree
- each internal node u with children v and v' is associated with an interval $I_u = I_v \cup I_v'$
- an elementary interval is an interval associated with a node of T (it can be an atomic interval)

Example

Partitioning a segment

- let $s \in S$ be a segment whose endpoints have x-coordinates e_i and e_j
- $[e_i, e_j]$ is split into several elementary intervals
- they are chosen as close as possible to the root
- s is stored in each node associated with these elementary intervals

Standard lists

- ullet each node u is associated with a *standard list* L_u
- let $e_i < e_j$ be the x-coordinates of the endpoints of $s \in S$
- then s is stored in L_u iff $I_u \subset [e_i, e_j]$ and $I_{parent(u)} \not\subset [e_i, e_j]$ (see previous slide and next slide)

Example

Answering a stabbing query

Answering a stabbing query

```
Algorithm ReportStabbing(u, x_l)
Input: root u of T, x-coordinate of l
Output: segments in S that cross l
1. if u == NULL
        then return
3. output L_u
4. if x_l \in I_{u.left}
5.
        then ReportStabbing(u.left, x_l)
6. if x_l \in I_{u.right}
        then ReportStabbing(u.right, x_l)
```

• it clearly takes $O(k + \log n)$ time

Inserting a segment

Insertion in a segment tree

```
Algorithm Insert(u, s)
Input: root u of T, segment s. Endpoints of s have
      x-coordinates x^- < x^+
     if I_u \subset [x^-, x^+]
2.
         then insert s into L_u
3.
        else
4.
               if [x^-, x^+] \cap I_{u.left} \neq \emptyset
5.
                   then Insert(u.left, s)
               if [x^-, x^+] \cap I_{u.right} \neq \emptyset
6.
                   then Insert(u.right, s)
7.
```

Property

- s is stored at most twice at each level of T
- proof:
 - by contradiction
 - if s stored at more than 2 nodes at level i
 - let u be the leftmost such node, u' be the rightmost
 - let v be another node at level i containing s

- then $I_{v.parent} \subset [x^-, x^+]$
- so s cannot be stored at v

Analysis

- property of previous slide implies
 - space usage: $O(n \log n)$
- insertion in $O(\log n)$ time (similar proof: four nodes at most are visited at each level)
- actually space usage is $\Theta(n \log n)$ (example?)
- query time: $O(k + \log n)$
- preprocessing
 - sort endpoints: $\Theta(n \log n)$ time
 - build empty segment tree over these endpoints: O(n) time
 - insert n segments into \mathcal{T} : $O(n \log n)$ time
 - overall: $\Theta(n \log n)$ preprocessing time

Rectangle intersection

Problem statement

- input: a set B of n isothetic boxes in \mathbb{R}^2
- output: all the intersecting pairs in B^2
- using segment trees, we give an $O(n \log n + k)$ time algorithm when k is the number of intersecting pairs
- note: this is optimal
- note: faster than our line segment intersection algorithm
- space usage: $\Theta(n \log n)$ due to segment trees
- space usage is not optimal (O(n)) is possible with optimal query time and preprocessing time)

Example

output: $(b_1, b_3), (b_2, b_3), (b_2, b_4), (b_3, b_4)$

Two kinds of intersections

overlap

- intersecting edges
- reporting for isothetic segments

inclusion

⇒ reduces to intersection • we can find them using stabbing queries

Reporting overlaps

- equivalent to reporting intersecting edges
- plane sweep approach
- sweep line status: BBST containing the horizontal line segments that intersect the sweep line, by increasing y-coordinates
- each time a vertical line segment is encountered, report intersection by range searching in the BBST
- preprocessing time: $O(n \log n)$ for sorting endpoints
- running time: $O(k + n \log n)$

Reporting inclusions

- still using plane sweep
- sweep line status: the boxes that intersect the sweep line l, in a segment tree with respect to y-coordinates
 - the endpoints are the y-coordinates of the horizontal edges of the boxes
 - at a given time, only rectangles that intersect l are in the segment tree
 - we can perform insertion and deletions in a segment tree in $O(\log n)$ time
- each time a vertex of a box is encountered, perform a stabbing query in the segment tree

Remarks

- at each step a box intersection can be reported several times
- in addition there can be overlap and vertex stabbing a box at the same time

 to obtain each intersecting pair only once, make some simple checks (how?)

Interval trees

Introduction

- interval trees allow to perform stabbing queries in one dimension
 - query time: $O(k + \log n)$
 - preprocessing time: $O(n \log n)$
 - space: O(n)
- reference: D. Mount notes, page 100 (vertical line stabbing queries) to page 103 (not including vertical segment stabbing queries)

Preliminary

- let x_{med} be the median of E
 - S_l : segments of S that are completely to the left of x_{med}
 - S_{med} : segments of S that contain x_{med}
 - S_r : segments of S that are completely to the right of x_{med}

Data structure

- recursive data structure
- left child of the root: interval tree storing S_l
- right child of the root: interval tree storing S_r
- at the root of the interval tree, we store S_{med} in two lists
 - M_L is sorted according to the coordinate of the left endpoint (in increasing order)
 - M_R is sorted according to the coordinate of the right endpoint (in decreasing order)

Example

$$M_l = (s_4, s_6, s_1)$$

 $M_r = (s_1, s_4, s_6)$

Interval tree on s_3 and s_5

Interval tree on s_2 and s_7

Stabbing queries

- query: x_q , find the intervals that contain x_q
- if $x_q < x_{med}$ then
 - Scan M_l in increasing order, and report segments that are stabbed. When x_q becomes smaller than the x-coordinate of the current left endpoint, stop.
 - recurse on S_l
- if $x_q > x_{med}$
 - analogous, but on the right side

Analysis

- query time
 - size of the subtree divided by at least two at each level
 - scanning through M_l or M_r : proportional to the number of reported intervals
 - conclusion: $O(k + \log n)$ time
- space usage: O(n) (each segment is stored in two lists, and the tree is balanced)
- preprocessing time: easy to do it in $O(n \log n)$ time

Stabbing queries in higher dimension

Approach

- in \mathbb{R}^d , a set B of n boxes
- for a query point q find all the boxes that contain it
- we use a multi-level segment tree
- inductive definition, induction on d
- first, we store B in a segment tree \mathcal{T} with respect to x_1 -coordinate
- for all node u of \mathcal{T} , associate a (d-1)-dimensional multi-level segment tree over L_u , with respect to $(x_2, x_3 \dots x_d)$

Performing queries

- search for q in \mathcal{T}
- for all nodes in the search path, query recursively the (d-1)-dimensional multi-level segment tree
- there are $\log n$ such queries
- by induction on d, we can prove that
 - query time: $O(k + \log^d n)$
 - space usage: $O(n \log^d n)$
 - preprocessing time : $O(n \log^d n)$

Improvements

- fractional cascading at the deepest level of the tree:
 - ullet gains a factor $\log n$ on the query time bound
- interval trees at the deepest level:
 - gains $\log n$ on the space bound