# VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

**BRNO UNIVERSITY OF TECHNOLOGY** 

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS

## TESTOVACIA SADA SLÚŽIACA NA ANALÝZU TUNED PROFILOV

BAKALÁRSKA PRÁCA BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR BRANISLAV BLAŠKOVIČ

BRNO 2012



## VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY



### FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS

## TESTOVACIA SADA SLÚŽIACA NA ANALÝZU TUNED PROFILOV

TESTSUITE FOR ANALYSIS OF PROPERTIES OF TUNED PROFILES

BAKALÁRSKA PRÁCA

**BACHELOR'S THESIS** 

**AUTOR PRÁCE** 

AUTHOR

BRANISLAV BLAŠKOVIČ

VEDÚCI PRÁCE

SUPERVISOR

Ing. ALEŠ SMRČKA, Ph.D.

BRNO 2012

### Abstrakt

Výťah (abstrakt) práce v slovenskom jazyku.

### **Abstract**

Výťah (abstrakt) práce v anglickom jazyku.

### Klíčová slova

tuned, testovanie, linux, fedora

## Keywords

tuned, testing, linux, fedora

## Citácia

Branislav Blaškovič: Testovacia sada slúžiaca na analýzu Tuned profilov, bakalárska práca, Brno, FIT VUT v Brně, 2012

## Testovacia sada slúžiaca na analýzu Tuned profilov

### Prehlásenie

| Prehlasujem, | že som tú | íto bakalársku | prácu vyp | racoval sár | n pod vede | ním pána    |           |
|--------------|-----------|----------------|-----------|-------------|------------|-------------|-----------|
|              |           |                |           |             |            |             |           |
|              |           |                |           |             |            | Branislav I | 3laškovič |
|              |           |                |           |             |            | 6. le       | dna 2013  |

## Poďakovanie

Poďakovanie.

Táto práca vznikla ako školské dielo na Vysokém učení technickém v Brne, Fakulte informačných technológií. Práca je chránená autorským zákonom a jej použitie bez udelenia oprávnenia autorom je nezákonné, s výnimkou zákonom definovaných prípadov.

<sup>©</sup> Branislav Blaškovič, 2012.

# Obsah

| 1 | Úvod                                                 | 2 |
|---|------------------------------------------------------|---|
| 2 | Popis komponenty tuned                               | 3 |
|   | 2.1 Profily                                          | 3 |
| 3 | Plán testovania pre Fedora Linux                     | 4 |
|   | 3.1 Test Plan Identifier                             | 4 |
|   | 3.2 References                                       | 4 |
|   | 3.3 Úvod                                             | 4 |
|   | 3.4 Testovacie položky                               | 4 |
|   | 3.5 Softvérové riziká                                | 4 |
|   | 3.6 Features to be Tested                            | 4 |
|   | 3.7 Features not to be Tested                        | 4 |
|   | 3.8 Approach                                         | 5 |
|   | 3.9 Item Pass/Fail Criteria                          | 5 |
|   | 3.10 Suspension Criteria and Resumption Requirements | 5 |
|   | 3.11 Test Deliverables                               | 5 |
|   | 3.12 Remaining Test Tasks                            | 5 |
|   | 3.13 Environmental Needs                             | 5 |
|   | 3.14 Staffing and Training Needs                     | 5 |
|   | 3.15 Responsibilities                                | 5 |
|   | 3.16 Schedule                                        | 5 |
|   | 3.17 Planning Risks and Contingencies                | 5 |
|   | 3.18 Approvals                                       | 5 |
|   | 3.19 Glossary                                        | 5 |
|   | 5.15 Clossary                                        | 0 |
| 4 |                                                      | 6 |
| 5 | Záver                                                | 7 |

# $\mathbf{\acute{U}vod}$

Každý linuxový server alebo osobný počítač môže slúžiť na niečo iné. Preto je veľmi náročné vytvoriť linuxovú distribúciu, ktorá by pokrývala požiadavky každého a bola optimalizovaná pre všetky operácie. Preto je potrebné systém nastaviť tak, aby presne vyhovoval naším potrebám a získali sme maximálny výkon pre naše potreby. Kedže sa jedná a množstvo druhov nastavení, vznikol balíček tuned [5], ktorý ich zahrňuje.

## Popis komponenty tuned

Balíček tuned je primárne napísaný pre linuxovú distribúciu Fedora a Red Hat Enterprise Linux. Démon tuned neustále beží, skenuje systém a upravuje nastavenia podľa potreby. Napríklad najväčšia záťaž na disk je štarte systému alebo pri ukladaní dat na disk (napríklad filmov). Inak je disk skoro nečinný. tuned dokáže optimalizovať zápis práve v tej dobe, keď je to potreba. Rovnako je to aj pri sieťových operáciach.

Súčasťou tuned je aj ktune, ktorý ladí systém na základe profilov. Každý z profilov slúži na iné zameranie a napriamo podľa toho upravuje systém, čím dosahujeme ešte lepšie výsledky.

### 2.1 Profily

Profily su hlavne zamerané na CPU, disky, sieť a FSB. Samotný balíček obsahuje niekoľko predvolených profilov a ako základný profil je po spustení tuned profil balanced.

Profily si môžeme aj samy vytvárať. Ak si nie sme istý, čo je potrebné upraviť, môžeme využiť odporúčania z programu powertop [3] a za pomoci skriptu powertop2tuned.py si nechať profil vytvoriť automaticky na základe výstupu z powertop.

## Plán testovania pre Fedora Linux

Plan testovania podla IEE829

#### 3.1 Test Plan Identifier

### 3.2 References

### 3.3 Úvod

Na testovanie tuned využijeme pomocnú knižnicu beakerlib [1] pre jednoduchšie písanie testov a prehľadnejšiu interpretáciu dosiahnutých výsledkov. Cieľom testov je analýza, či tuned profily spĺňajú požadované vlastnosti.

### 3.4 Testovacie položky

Napísané testy budú overovať správnu funkcionalitu tuned démona a taktiež ktune profilov v zameraní na CPU, disky a sieťové operácie. Všetky testy budú pripravené pre linuxovú distribúciu Fedora 17 [2].

#### 3.5 Softvérové riziká

V prípade zlyhania niektorých testov môže prísť k poškodeniu už pripojených diskov alebo k rozladeniu sieťových rozhraní. Preto je vhodné spúšťat sadu testov na virtuálnom stroji. V prípade vydania novej verzie tuned alebo inej použitej komponenty je tu riziko, že testy nebudú stabilné a môžu sa správať nepredvídateľne.

### 3.6 Features to be Tested

#### 3.7 Features not to be Tested

Pretože testy bežia na virtualizovanom hardvéri, nie všetko je možné otestovať. Napríklad virtuálny procesor nepodporuje Cx stavy  $^1$ , ktoré ovplyvňuje profil latency - performance

<sup>&</sup>lt;sup>1</sup>Cx sú stavy, v ktorých sa môže vyskytovať procesor, typicky firmy Intel. Tieto stavy sa volajú Spiacie stavy (ang. Sleep states) [4]. Spiace stavy procesoru slúžia na šetrenie energie.

a preto nie je možné spoľahlivo a automatizovane otestovať ich správu.

- 3.8 Approach
- 3.9 Item Pass/Fail Criteria
- 3.10 Suspension Criteria and Resumption Requirements
- 3.11 Test Deliverables
- 3.12 Remaining Test Tasks
- 3.13 Environmental Needs
- 3.14 Staffing and Training Needs
- 3.15 Responsibilities
- 3.16 Schedule
- 3.17 Planning Risks and Contingencies
- 3.18 Approvals
- 3.19 Glossary

# Záver

Zaver

Citacie, aby sa zobrazili: [7] [6] [8]

## Literatura

- [1] BeakerLib domovská stránka. https://fedorahosted.org/beakerlib.
- [2] Fedora domovská stránka. http://fedoraproject.org.
- [3] PowerTOP domovská stránka. https://01.org/powertop.
- [4] Spiace stavy sleep states. http://www.intel.com/support/processors/sb/CS-028739.htm.
- [5] Tuned domovská stránka. https://fedorahosted.org/tuned.
- [6] Jorgensen, P. C.: Software testing. Auerbach Publications, iSBN 0-8493-74-75-8.
- [7] Ron Patton: Testování softwaru. Computer Press Praha, 2002, iSBN 80-7226-636-5.
- [8] Ron Patton: Software testing Second edition. SAMS, 2005, iSBN 0-672-32798-8.