$\begin{array}{c} {\rm SoSe~2025} \\ \ddot{\rm U} {\rm bungsblatt~2} \\ {\rm Ausgabe:~24.04.2025} \end{array}$

Übungen zur Vorlesung "Logik" 2. Übungsblatt

H 2-1. Erfüllbarkeit und Co.

a) Kreuzen Sie in der Tabelle an, ob die betreffende Formel erfüllbar, falsifizierbar, unerfüllbar oder tautologisch ist. (3 Pkt.)

Formel	Erfüllbar	Falsifizierbar	Unerfüllbar	Tautologisch
$(A_1 \to A_2) \lor (A_2 \to A_1)$				
$(A_1 \lor A_2) \to A_1$				
$\neg((A_1 \leftrightarrow A_2) \lor (A_1 \leftrightarrow A_3) \lor (A_2 \leftrightarrow A_3))$				

b) In welcher der beiden möglichen Teilmengenbeziehungen stehen die Mengen M und N zueinander? Kurze Begründung. (1 Pkt.)

$$M = \{\varphi \mid \varphi \text{ ist tautologisch}\} \quad N = \{\neg \psi \mid \psi \text{ ist unerfüllbar}\}$$

H 2-2. Boolsche Funktionen

a) Nachfolgende Tabelle zeigt alle 2-stelligen Boolschen Funktionen (3 Pkt.)

$$f: \{0,1\} \times \{0,1\} \to \{0,1\}$$

$I(\varphi)$	$I(\psi)$	f^1	f_{\wedge}	f^3	f^4	f^5	f^6	f^7	f_{\vee}	f^9	f_{\leftrightarrow}	f^{11}	f^{12}	f^{13}	$f_{ ightarrow}$	f^{15}	f^{16}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1 0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Definieren Sie Formeln ξ_1 , ξ_2 , und ξ_3 unter Verwendung der Formeln φ und ψ sowie der Junktoren \wedge , \vee , \neg , sodass für alle $I \in \mathcal{B}$ gilt:

i)
$$I(\xi_1) = f^6(I(\varphi), I(\psi))$$

ii)
$$I(\xi_2) = f^9(I(\varphi), I(\psi))$$

iii)
$$I(\xi_3) = f^{12}(I(\varphi), I(\psi))$$

 $\mathit{Bsp.:}$ Für $\xi = \neg(\varphi \wedge \psi)$ ergibt sich $I(\xi) \ = \ f^{15}(I(\varphi), I(\psi))$

H 2-3. Wahrheitswertetabelle

a) Vervollständigen Sie nachfolgende Wahrheitswertetabelle.

(2 Pkt.)

A_1	A_2	A_3	$\neg A_2 \lor A_3$	$A_1 \to (\neg A_2 \lor A_3)$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

b) Ist die Formel $A_1 \to (\neg A_2 \lor A_3)$ falsifizierbar? Falls ja, geben Sie eine entsprechende Belegung an. (1 Pkt.)

H 2-4. Modelle und Folgerung

a) Seien $S, T \subseteq \mathcal{F}$ Formelmengen. Beweisen Sie die Antimonotonie des Modelloperators: Falls $S \subseteq T$, dann $\operatorname{Mod}(T) \subseteq \operatorname{Mod}(S)$. (2 Pkt.)

- **b)** Seien $\varphi, \psi, \xi \in \mathcal{F}$ Formeln mit $\operatorname{Mod}(\varphi) = \{I_1, I_2\}$, $\operatorname{Mod}(\psi) = \{I_2, I_3\}$ und $\operatorname{Mod}(\xi) = \{I_1, I_2, I_3, I_4\}$. Bestimmen Sie die nachfolgenden Mengen bzw. begründen Sie kurz, ob aufgeführte Folgerungsrelationen gelten: (3 Pkt.)
 - i) $\operatorname{Mod}(\xi \wedge \neg \psi)$
 - ii) $\varphi \models \psi$
 - iii) $\xi \models \psi \rightarrow \varphi$

H 2-5. Semantische Äquivalenz und Normalformen

a) Gegeben die Wahrheitstabelle einer Formel φ mit $s(\varphi) = \{A_1, A_2\}.$ (2 Pkt.)

A_1	A_2	φ
0	0	0
0	1	1
1	0	1
1	1	1

- i) Bestimmen Sie eine zu φ semantisch äquivalente Formel φ_K in KNF.
- ii) Bestimmen Sie eine zu φ semantisch äquivalente Formel φ_D in DNF.
- b) Welche der nachfolgenden Formeln sind semantisch äquivalent? Ohne Beweis.

(1 Pkt.)

$$\varphi_1 = A_1 \rightarrow (A_2 \rightarrow A_1)$$
 $\varphi_2 = A_1 \rightarrow A_1$ $\varphi_3 = A_2 \rightarrow (A_1 \rightarrow A_1)$

c) Beweisen Sie, dass: $A_1 \to A_2 \equiv \neg (A_1 \land \neg A_2)$ (2 Pkt.)

Termine:

- Abgabe der Aufgaben bis spätestens 04.05.2025 via moodle.
- Besprechung der Aufgaben ab Montag, dem 05.05.2025 (A-Woche).