Mushroom Classification

109901014 楊芷紜, 109304013張維蓁

一、目的

在世界各地,誤食蘑菇造成食物中毒的事件層出不窮;輕則導致頭暈昏厥,重者甚至會有休克的情形發生,現今仍未有明確辨別毒蘑菇的方法,因此我們想設計出能夠精準預測蘑菇是否能食用的模型。過程中會將dataset的資料丟入模型訓練後,再進行是否有毒性的分類,最後計算出模型的準確率,並繪製confusion matrix,讓結果更直觀。

同時也會針對不同模型進行比較, 觀察何者辨別的正確率較高, 並試著找出毒蘑菇的重要特徵。

6人誤食「白蘑菇中毒」醫見品種曝:名副其實的毒王-三立新聞 2022年4月20日 - 這款白色蘑菇,名為「白毒傘」,為傘菌目鵝膏菌科鵝膏菌屬的真菌,是致死率極高的毒蕈。「白毒傘」是中國南方地區常見的一種菇類,也被俗稱為「致命錦膏」...

yahoo.com https://tw.stock.yahoo.com > news > 誤食-致死率70-... :

誤食「致死率70%」毒菇!祖孫3人送醫不治

2021年9月10日 — 從祖孫3人食用後出現的狀況,專家推測他們吃下的可能是「亞稀褶黑菇」, 致死率達到70%,這種蘑菇只要小小一朵就能致命,吃了後人體將出現胃腸道症狀,包括...

Itn.com.tw https://news.itn.com.tw > news > world > breakingnews :

母女誤食自家庭院毒蘑菇澳洲:今年已發生19起-國際-自由時報 2022年5月18日 — 澳洲近日傳出有女子拿自家院內採集到的蘑菇做成料理,結果與12歲的女兒吃下後喝心、暈眩、發燒,緊急送醫急救,才得知竟誤食到有毒蘑菇;當地政府特別...

https://health.ltn.com.tw > article > breakingnews

健康網》兩家人誤食毒菇禍首又是綠摺菇

2021年9月21日 — 林澤揚表示,<mark>誤食</mark>綠褶菇後,1至3小時後會有噁心、嘔吐、腹痛、血便及脫水 等腸胃炎型中毒,若就醫處胃得官,一般都可恢復健康。 食藥署呼籲,避免自行採摘 ...

二、**Dataset**

從Kaggle上取得"Mushroom Attributes" dataset, 如下圖可見, dataset中共有8124個 samples, 每個sample都包含了22種特徵與1種ground truth (class), 而資料的類型為字串。

cap-s	h cap-s	ui cap-c	ol bruis	es odor	gill-a	tt: gill-sp	oa gill-si	z∈gill-co	olestalk-	sl stalk-	rcstalk-	sı stalk-	sı stalk-	ccstalk-	ccveil-t	yr veil-c	ol ring-r	nu ring-t	yjspore	- popu	la habit	atclass
0 b'x'	b's'	b'n'	b't'	b'p'	b'f'	b'c'	b'n'	b'k'	b'e'	b'e'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'k'	b's'	b'u'	b'p'
1 b'x'	b's'	b'y'	b't'	b'a'	b'f'	b'c'	b'b'	b'k'	b'e'	b'c'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'n'	b'n'	b'g'	b'e'
2 b'b'	b's'	b'w'	b't'	b'l'	b'f'	b'c'	b'b'	b'n'	b'e'	b'c'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'n'	b'n'	b'm'	b'e'
3 b'x'	b'y'	b'w'	b't'	b'p'	b'f'	b'c'	b'n'	b'n'	b'e'	b'e'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'k'	b's'	b'u'	b'p'
4 b'x'	b's'	b'g'	b'f'	b'n'	b'f'	b'w'	b'b'	b'k'	b't'	b'e'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'e'	b'n'	b'a'	b'g'	b'e'
5 b'x'	b'y'	b'y'	b't'	b'a'	b'f'	b'c'	b'b'	b'n'	b'e'	b'c'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'k'	b'n'	b'g'	b'e'
6 b'b'	b's'	b'w'	b't'	b'a'	b'f'	b'c'	b'b'	b'g'	b'e'	b'c'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'k'	b'n'	b'm'	b'e'
7 b'b'	b'y'	b'w'	b't'	b'l'	b'f'	b'c'	b'b'	b'n'	b'e'	b'c'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'n'	b's'	b'm'	b'e'
8 b'x'	b'y'	b'w'	b't'	b'p'	b'f'	b'c'	b'n'	b'p'	b'e'	b'e'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'k'	b'v'	b'g'	b'p'
9 b'b'	b's'	b'y'	b't'	b'a'	b'f'	b'c'	b'b'	b'g'	b'e'	b'c'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'k'	b's'	b'm'	b'e'
10 b'x'	b'y'	b'y'	b't'	b'l'	b'f'	b'c'	b'b'	b'g'	b'e'	b'c'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'n'	b'n'	b'g'	b'e'
11 b'x'	b'y'	b'y'	b't'	b'a'	b'f'	b'c'	b'b'	b'n'	b'e'	b'c'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'k'	b's'	b'm'	b'e'
12 b'b'	b's'	b'y'	b't'	b'a'	b'f'	b'c'	b'b'	b'w'	b'e'	b'c'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'n'	b's'	b'g'	b'e'
13 b'x'	b'y'	b'w'	b't'	b'p'	b'f'	b'c'	b'n'	b'k'	b'e'	b'e'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'n'	b'v'	b'u'	b'p'
14 b'x'	b'f'	b'n'	b'f'	b'n'	b'f'	b'w'	b'b'	b'n'	b't'	b'e'	b's'	b'f'	b'w'	b'w'	b'p'	b'w'	b'o'	b'e'	b'k'	b'a'	b'g'	b'e'
15 b's'	b'f'	b'g'	b'f'	b'n'	b'f'	b'c'	b'n'	b'k'	b'e'	b'e'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'n'	b'y'	b'u'	b'e'
16 b'f'	b'f'	b'w'	b'f'	b'n'	b'f'	b'w'	b'b'	b'k'	b't'	b'e'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'e'	b'n'	b'a'	b'g'	b'e'
17 b'x'	b's'	b'n'	b't'	b'p'	b'f'	b'c'	b'n'	b'n'	b'e'	b'e'	b's'	b's'	b'w'	b'w'	b'p'	b'w'	b'o'	b'p'	b'k'	b's'	b'g'	b'p'
18 h'v'	h'v'	h'w'	h't'	h'n'	h'f'	h'c'	h'n'	h'n'	h'e'	h'e'	h's'	h's'	h'w'	h'w'	h'n'	h'w'	h'o'	h'n'	h'n'	h's'	h'u'	h'n'

Dataset details

cap-shape	bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s						
cap-surface	fibrous=f, grooves=g, scaly=y, smooth=s						
cap-color	brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, red=e, white=w, yellow=y						
bruises%3F	bruises=t, no=f						
odor	almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s						
gill-attachment	attached=a, descending=d, free=f, notched=n						
gill-spacing	close=c, crowded=w, distant=d						
gill-size	broad=b, narrow=n						

gill-color	black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, orange=o, pink=p, purple=u, red=e, white=w, yellow=y					
stalk-shape	enlarging=e, tapering=t					
stalk-root	bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, missing=?					
stalk-surface-above-ring	fibrous=f, scaly=y, silky=k, smooth=s					
stalk-surface-below-ring	fibrous=f, scaly=y, silky=k, smooth=s					
stalk-color-above-ring	brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y					
stalk-color-below-ring	brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y					
veil-type	partial=p, universal=u					
veil-color	brown=n, orange=o, white=w, yellow=y					
ring-number	none=n, one=o, two=t					
ring-type	cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, sheathing=s, zone=z					
spore-print-color	black=k, brown=n, buff=b, chocolate=h, green=r, orange=o, purple=u, white=w, yellow=y					
population	abundant=a, clustered=c, numerous=n, scattered=s, several=v, solitary=y					
habitat	grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, woods=d					
class	edible=e, poisonous=p					

三、流程

四、方法

- Visualization:

為了確認data的分布情形,之後進行了data visualization,左邊為所有特徵的分布圖,右圖的深色柱為毒蘑菇,淺色為可食用蘑菇,進行兩者特徵之間分布的比較,從圖中可以發現到veil-type只有一種類型,因此之後會移除該特徵。

- Preparation:

- 1. 移除對模型的訓練沒有幫助的unnessasary information, 像是多餘的字串「b''」,或者是只有一個種類的特徵(veil-type)。
- 2. 利用train test split將8124個samples隨機分為training(70%, 共5686個samples)與 testing data(30%, 共2438個samples), 並將class當作label。
- 3. 由於我們的features都是字串,而非數值,因此需要用onehot encoder將這些字串轉為數字。每個特徵(feature)都有數個種類(type),去掉ground truth和veil-type後的所有特徵種類數即是欄數(n_column = 116)。值得注意的是,這些數值之間沒有連續性,也沒有相關性。此外,我們會確定training data與testing data都有116欄,才會繼續接下來的步驟。
- Poison score: 計算各個特徵類別與毒蘑菇的相關程度, 並將分數進行排序, 篩選出重要的特徵種類, 公式如下。

$$poison score = 特徵各類別樣本數 - \frac{poison sample 數}{特徵類別數量}$$

- Dimension reduction (Kernel PCA): Onehot encoding完後的data型態是sparse matrix, 將其轉換成dense matrix的形式後, 由於我們的資料是非線性的, 因此我們無法用傳統的 PCA降維, 而是需要用kernal PCA。我們分別降到2, 5, 10, 15維, 並使用"param_grid"找出最好的hyperparameter, 想看不同維度對模型表現的影響。

- Training different models (Logistic Regression, KNN, SVC, Naive Bayes, Decision Tree, Random Forest):用不同模型訓練data, 觀察彼此之間的表現差異。

五、結果

- TOP 10 Features

以poison score的分數進行排序,發現veil-color w是與毒蘑菇最有關聯性的特徵類別。

	n
veil-color_w	2028.250000
ring-number_o	1726.666667
population_v	1524.833333
gill-attachment_f	1339.500000
gill-spacing_c	1279.500000
odor_f	1171.222222
gill-color_b	962.416667
spore-print-color_w	944.222222
stalk-color-above-ring_w	921.222222
stalk-color-below-ring_w	903.222222

- Classification performance between models

以模型的角度來看,可以清楚看到KNN model的表現最好,即便特徵維度降到2維也還有將近9成的準確率。

降低維度的意義是精簡代入模型的特徵數,希望藉此增加處理效率。從我們的結果可以看到,若擷取少量特徵進行分類,呈現出的結果並不是太好,因此判斷蘑菇是否有毒,不是單一或者少數的特徵類別能夠決定的。綜合來說,我們認為將維度調整至10維是最理想的參數;在n=10時,用最精簡的特徵類別數,幾乎所有的模型都能達到它們最好的準確率,是cp值最高的決定。

模型/維度	n=2	n=5	n=10	n=15		
Logistic Regression	87.49%	95.00%	97.29%	97.37%		
KNN	89.29%	99.96%	100.00%	100.00%		
SVC	87.33%	94.34%	95.37%	95.45%		
Naive Bayes	48.28%	89.25%	92.53%	93.07%		
Decision Tree	57.88%	89.13%	96.55%	95.45%		
Random Forest	49.43%	92.04%	95.69%	94.83%		

- Confusion Matrix

六、討論

- Is poison score enough to evaluate?

→ 單看poison score會產生偏頗, 該類別可能與可食用蘑菇的相關性也很高, 不足以篩選出重要特徵類別, 因此加入edible score計算平均值, 可能會更好的找到分辨毒蘑菇相關的features。

我們使用與計算poison score相同的方式,算出edible score,將poison score與edible score 取平均值,公式如下。在進行排序之後發現與毒蘑菇最為相關的特徵類別是odor_f,可以看到原本的veil-color_w已不在前10項重要的特徵中,從先前的data visualization可以推測因edible/posionous的蘑菇都在veil-color_w中占極大的比例,因此調整過後的方法才能較正確的篩選出重要特徵。

- 因為Data不平均, 所以在切分test, train時可能會造成兩邊特徵種類數目不同, 在訓練模型時會因為欄位數不同而出現錯誤。

- → 套用stratified sampling可以解決這個問題。
- 特徵維度調整到n=15時, Random forest 和 Decision tree的表現反而變差。
- → 我們猜測是因為在15維度時, 帶入tree的特徵變多, 會導致depth變深, 所以結果反而較dim-10更差了。

- 調整參數?

→ 我們在做project時並沒有調整太多模型參數, 若能fine tuning 調整某些parameters應該能讓原本表現不是很好的模型更進步, 此外我們在訓練模型時也沒有做k-fold validation這個步驟, 即使test accuracy成果不錯, 但模型訓練效果不得而知。

- 應用:

加入特徵擷取技術再開發app,能夠讓這項辨別技術更易取得、更實用。不需大費周章地開電腦,只要打開手機app、拍照掃描,就能用來即時判斷蘑菇的毒性與否,希望以此減少因為誤食蘑菇造成的死傷人數。

七、資料來源

- 1. https://www.kaggle.com/datasets/ulrikthygepedersen/mushroom-attributes
- 2. https://www.kaggle.com/code/turksoyomer/classification-methods-on-mushroom-data-set/notebook#3.-Manipulating-Data
- 3. https://www.kaggle.com/code/adityapatil673/classification-traits-of-a-poisonous-mushroom#For-more-clarity-on-parts-of-a-mushroom
- 4. https://github.com/kanchitank/Mushroom-Classification/blob/master/Mushroom-Classification.ipvnb