Lecture 15: Hypothesis Testing Part II

Chapter 4.3

Previously... Statistical Hypothesis Testing

A hypothesis test is a method for using sample data to decide between two competing hypotheses about the population parameter:

Previously... Statistical Hypothesis Testing

A hypothesis test is a method for using sample data to decide between two competing hypotheses about the population parameter:

- ► A null hypothesis H₀.
 i.e. the status quo that is initially assumed to be true, but will be tested.
- ▶ An alternative hypothesis H_A . i.e. the challenger.

Previously... Statistical Hypothesis Testing

A hypothesis test is a method for using sample data to decide between two competing hypotheses about the population parameter:

- ▶ A null hypothesis H₀.
 i.e. the status quo that is initially assumed to be true, but will be tested.
- \blacktriangleright An alternative hypothesis H_A . i.e. the challenger.

There are two potential outcomes of a hypothesis test. Either we

- ► reject *H*₀
- ▶ fail to reject H₀

Previously... Decision Errors

Hypothesis tests will get things right sometimes and wrong sometimes:

Previously... Decision Errors

Hypothesis tests will get things right sometimes and wrong sometimes:

		Test conclusion	
		do not reject H_0	reject H_0 in favor of H_A
Truth	H_0 true	OK	Type I Error
	H_A true	Type II Error	OK

Previously... Decision Errors

Hypothesis tests will get things right sometimes and wrong sometimes:

		Test conclusion	
		do not reject H_0	reject H_0 in favor of H_A
Truth	H_0 true	OK	Type I Error
	H_A true	Type II Error	OK

Two kinds of errors:

- ► Type I Error: a false positive (test result)
- ► Type II Error: a false negative (test result)

Defendants must be proven "guilty beyond a reasonable doubt": in theory they would rather let a guilty person go free, than put an innocent person in jail.

Defendants must be proven "guilty beyond a reasonable doubt": in theory they would rather let a guilty person go free, than put an innocent person in jail.

- ► *H*₀: the defendant is innocent
- \blacktriangleright H_A : the defendant is guilty

Defendants must be proven "guilty beyond a reasonable doubt": in theory they would rather let a guilty person go free, than put an innocent person in jail.

- ▶ *H*₀: the defendant is innocent
- \blacktriangleright H_A : the defendant is guilty

thus "rejecting H_0 " is a guilty verdict \Rightarrow putting them in jail

Defendants must be proven "guilty beyond a reasonable doubt": in theory they would rather let a guilty person go free, than put an innocent person in jail.

- ▶ *H*₀: the defendant is innocent
- \blacktriangleright H_A : the defendant is guilty

thus "rejecting H_0 " is a guilty verdict \Rightarrow putting them in jail

In this case:

- Type I error is putting an innocent person in jail (considered worse)
- Type II error is letting a guilty person go free.

An example of where Type II errors are more serious: airport screening.

An example of where Type II errors are more serious: airport screening.

 H_0 : passenger X does not have a weapon

 H_A : passenger X has a weapon

An example of where Type II errors are more serious: airport screening.

 H_0 : passenger X does not have a weapon

 H_A : passenger X has a weapon

Failing to reject H_0 when H_A is true is not "patting down" passenger X when they have a weapon.

An example of where Type II errors are more serious: airport screening.

 H_0 : passenger X does not have a weapon

 H_A : passenger X has a weapon

Failing to reject H_0 when H_A is true is not "patting down" passenger X when they have a weapon.

Hence the long lines at airport security.

Goals for Today

- ► Define significance level
- ► Tie-in p-Values with sampling distributions
- Example

Significance Level

Say you flip a coin you think is fair 1000 times. Say you observe

Say you flip a coin you think is fair 1000 times. Say you observe

▶ 501 heads? Do you think the coin is biased?

Say you flip a coin you think is fair 1000 times. Say you observe

- ▶ 501 heads? Do you think the coin is biased?
- ▶ 525 heads? Do you think the coin is biased?

Say you flip a coin you think is fair 1000 times. Say you observe

- ▶ 501 heads? Do you think the coin is biased?
- ▶ 525 heads? Do you think the coin is biased?
- 900 heads? Do you think the coin is biased?

Intuitively, a p-value quantifies how extreme an observation is given the null hypothesis.

Intuitively, a p-value quantifies how extreme an observation is given the null hypothesis.

The smaller the p-value, the more extreme the observation, where the meaning of extreme depends on the context.

Intuitively, a p-value quantifies how extreme an observation is given the null hypothesis.

The smaller the p-value, the more extreme the observation, where the meaning of extreme depends on the context.

Note the p-value is different than the population proportion p (bad historical choice).

p-Values

Recall our Coin Example

Sampling Distribution of \hat{p}

Under H_0 that the coin is fair i.e. $p = p_0 = 0.5$, the sampling distribution of \hat{p} when n = 1000 is:

Say we observe...

Say we observe...

Say we observe...

A poll found that college students sleep about 7 hours a night. Researchers suspect that Reedies sleep more. They want to investigate this claim at a pre-specified $\alpha=0.05$ level.

A poll found that college students sleep about 7 hours a night. Researchers suspect that Reedies sleep more. They want to investigate this claim at a pre-specified $\alpha=0.05$ level. They sample n=110 Reedies and find that $\overline{x}=7.42$ and s=1.75 and the histogram looks like:

In our case, since H_A : $\mu > 7$, more extreme means to the right of z = 2.47.

Hence, the p-value is 0.007:

Since the p-value $0.007 < 0.05 = \alpha$, the pre-specified significance level, it has a high degree of extremeness, and thus we reject H_0 .

Since the p-value $0.007 < 0.05 = \alpha$, the pre-specified significance level, it has a high degree of extremeness, and thus we reject H_0 .

Interpretation: we reject (at the $\alpha=0.05$ significance level) the hypothesis that the average # of hours of Reedies sleep is 7, in favor of the hypothesis that sleep more.

Correct interpretation of the p-value: If the null hypothesis is true $(\mu = 7)$, the probability of observing a sample mean $\overline{x} = 7.42$ or greater is 0.007.

Correct interpretation of the p-value: If the null hypothesis is true ($\mu = 7$), the probability of observing a sample mean $\overline{x} = 7.42$ or greater is 0.007.

Incorrect interpretation of the p-value: The probability that the null hypothesis ($\mu=7$) is true is 0.007.

Two-Sided Alternative Hypothesis

Say instead we had a two-sided alternative hypothesis:

- ► H_0 : $\mu = 7$
- *H_A* : μ ≠ 7

Two-Sided Alternative Hypothesis

Say instead we had a two-sided alternative hypothesis:

- ► $H_0: \mu = 7$
- \vdash $H_A: \mu \neq 7$

The the p-value would be double: $2 \times 0.007 = 0.014$. Picture:

Next Time

- ▶ How big a sample size to I need? i.e. power calculations
- Statistical vs practical significance