Neural Machine Translation for Sumerian-English

What?

- To translate the entire Sumerian Ur-III corpora by making use of monolingual text across Semi-Supervised and Unsupervised techniques.
- Improve the previous work done for Sumerian-English Machine Translation.

#atf: lang sux
pisan-dub-ba
dub gid2-da
sze erin2 gi-zi
ba-zi dumu na-silim
i3-gal2

Why?

1.5M monolingual sentences
 v/s ~8k parallel.

 Trained on sparse and irregular data, resulting in lack of contextual understanding by the models.

#tr.en
Basket-of-tablets:
long-tablets,
barley of the (labor-)troops
Bazi, son of Nasilim,
are here;

What?

- To translate the entire Sumerian Ur-III corpora by making use of monolingual text across Semi-Supervised and Unsupervised techniques.
- Improve the previous work done for Sumerian - English Machine Translation.

#atf: lang sux

Why?

1.5M monolingual sentences
 v/s ~8k parallel.

- Trained on sparse and irregular data, resulting in lack of contextual understanding by the models.

#tr.en

pisan-dub-ba dub gid2-da sze erin2 gi-zi ba-zi dumu na-silim i3-gal2 Basket-of-tablets: long-tablets, barley of the (labor-)troops Bazi, son of Nasilim, are here;

Self-Supervision + Fine-Tuning

Initializing the model parameters after pre-training the encoder on the source and target side monolingual data using **MLM** and **TLM** tasks. [1][2]

Data Augmentation

Expanding the target-side monolingual data for pre-training by using **BERT** Embeddings, **CharSwap** and **WordNet** Synonyms. [3]

Back Translation

- [1] Cross-lingual Language Model Pretraining, Guillaume Lample and Alexis Conneau, 2019
- [2] MASS: Masked Sequence to Sequence Pre-training for Language Generation, Kaitao Song and Xu Tan and Tao Qin and Jianfeng Lu and Tie-Yan Liu, 2019
- [3] TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP} John X. Morris and Eli Lifland and Jin Yong Yoo and Jake Grigsby and Di Jin and Yanjun Qi, 2020
- [4] Understanding Back-Translation at Scale, Edunov, Sergey and Ott, Myle and Auli, Michael and Grangier, David, 2018
- [5] Investigating Backtranslation in Neural Machine Translation, Alberto Poncelas and D. Shterionovand A. Way and G. M. D. B. Wenniger and Peyman Passban, 2018

Self-Supervision + Fine-Tuning

Initializing the model parameters after pre-training the encoder on the source and target side monolingual data using **MLM** and **TLM** tasks. [1][2]

Data Augmentation

Expanding the target-side monolingual data for pre-training by using **BERT** Embeddings, **CharSwap** and **WordNet** Synonyms. [3]

Back Translation

- [1] Cross-lingual Language Model Pretraining, Guillaume Lample and Alexis Conneau, 2019
- [2] MASS: Masked Sequence to Sequence Pre-training for Language Generation, Kaitao Song and Xu Tan and Tao Qin and Jianfeng Lu and Tie-Yan Liu, 2019
- [3] TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP} John X. Morris and Eli Lifland and Jin Yong Yoo and Jake Grigsby and Di Jin and Yanjun Qi, 2020
- [4] Understanding Back-Translation at Scale, Edunov, Sergey and Ott, Myle and Auli, Michael and Grangier, David, 2018
- [5] Investigating Backtranslation in Neural Machine Translation, Alberto Poncelas and D. Shterionovand A. Way and G. M. D. B. Wenniger and Peyman Passban, 2018

Self Supervision

Self Supervision

Catastrophic Scarcity

- Sumerian text has been translated to English at the level of small words and phrases.
 This makes the target-side text of our parallel corpora incoherent with the general English text seen in other datasets.
- Obtaining target-side monolingual text which gives the model a true representation of the desired text becomes difficult.
- Semi-supervised techniques relying on monolingual texts suffer.

Self-Supervision + Fine-Tuning

Initializing the model parameters after pre-training the encoder on the source and target side monolingual data using **MLM** and **TLM** tasks. [1][2]

Data Augmentation

Expanding the target-side monolingual data for pre-training by using **BERT** Embeddings, **CharSwap** and **WordNet** Synonyms. [3]

Back Translation

- [1] Cross-lingual Language Model Pretraining, Guillaume Lample and Alexis Conneau, 2019
- [2] MASS: Masked Sequence to Sequence Pre-training for Language Generation, Kaitao Song and Xu Tan and Tao Qin and Jianfeng Lu and Tie-Yan Liu, 2019
- [3] TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP} John X. Morris and Eli Lifland and Jin Yong Yoo and Jake Grigsby and Di Jin and Yanjun Qi, 2020
- [4] Understanding Back-Translation at Scale, Edunov, Sergey and Ott, Myle and Auli, Michael and Grangier, David, 2018
- [5] Investigating Backtranslation in Neural Machine Translation, Alberto Poncelas and D. Shterionovand A. Way and G. M. D. B. Wenniger and Peyman Passban, 2018

Data Augmentation

- 1. <u>BERT</u>: Replacing words by the spatially closest words measured by **Cosine Similarity** in BERT Embeddings, with a threshold of 0.8.
- **2. WordNet**: Replacing words with WordNet **synonyms**.
- 3. <u>CharSwap</u>: Introduces certain character-level perturbations in the text by substituting, deleting, inserting, and swapping adjacent character tokens.

Self-Supervision + Fine-Tuning

Initialising the model parameters after pre-training the encoder on the source and target side monolingual data using **MLM** and **TLM** tasks.^{[1][2]}

Data Augmentation

Expanding the target-side monolingual data for pre-training by using **BERT** Embeddings, **CharSwap** and **WordNet** Synonyms. [3]

Back Translation

^[1] Cross-lingual Language Model Pretraining, Guillaume Lample and Alexis Conneau, 2019

^[2] MASS: Masked Sequence to Sequence Pre-training for Language Generation, Kaitao Song and Xu Tan and Tao Qin and Jianfeng Lu and Tie-Yan Liu, 2019

^[3] TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP} John X. Morris and Eli Lifland and Jin Yong Yoo and Jake Grigsby and Di Jin and Yanjun Qi, 2020

^[4] Understanding Back-Translation at Scale, Edunov, Sergey and Ott, Myle and Auli, Michael and Grangier, David, 2018

^[5] Investigating Backtranslation in Neural Machine Translation, Alberto Poncelas and D. Shterionovand A. Wayand G. M. D. B. Wenniger and Peyman Passban, 2018

Output Probabilities Back **Translation** Softmax Step-1 Linear Train a model using the existing Step-2 Add & Norm parallel corpora Divide the source-side monolingual Feed Forward data into 'n' shards. Add & Norm Add & Norm Step-3 Multi-Head Feed Attention Step-4 N× Forward Translate the adjacent shard Re-train the model using the using the trained model Add & Norm N× stacked data Add & Norm Masked Multi-Head Multi-Head Attention Attention Step-5 Repeat. Positional Positional Encoding Encoding Input Output Embedding Embedding Outputs (shifted right) $P_T + M_{T}^1 + ... + M_{T}^n$ $P_S + M_S^1 + ... + M_S^n$

Experimental Results

Technique	Supervised	Un- supervised	Semi- Supervised	Human Evaluation					
Vanilla Transformer	M-BT	•	-						
UrIIISeg	36.32			2.202					
UrIIIComp	33.45			2.242					
AllSeg	37.01			2.360					
AllComp	42.23			2.431					
+3*M-BT			41.98	2.358					
+5*M-BT			44.14	2.504					
+7*M-BT			42.95	2.367					
XLM									
MLM, Orig		4.49	15.04						
MLM + TLM, WMT		0.94	_						
Mixed		13.08	21.23	1.104, -					
Orig		12.73	24.64	1.294, -					
XLM + Data Augmentation									
BERT		13.06	29.50	1.320, 1.704					
WordNet		13.08	28.57	1.269, 1.690					
CharSwap		12.92	29.04						
BERT+WordNet		13.34	26.57	1.460, 1.666					
BERT+CharSwap +WordNet		13.23	30.10	-, 1.757					

Making sense of the models

Observing 'why' certain methods give higher metric scores than others.

Interpreting the results of various models using **gradient-based** and **perturbation-based** algorithms.

A net **attribution** for each output token is obtained, with respect to the spans of input text.

Created a generalisable pipeline for interpreting machine translation models.*

Actual	Human Expert	Model-1	Semi-Supervised DataAug XLM	Model-2	Unsupervised DataAug XLM	Model-3	Unsupervised Orig TLM XLM
Output Word	Visualisations	Output Word	Visualisations	Output Word	Visualisations	Output Word	Visualisations
	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	barley	#s zee-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	Monthy	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	Basketoftablets	#s sze-ba geme2 usz-bar kiszib ur-{d}asznan ugula #e
rations	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	rations	#s <mark>sze-ba</mark> geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	rations	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	rations	#s sze-ba gemeZ usz-bar kiszib ur-{d}asznan ugula #e
the	#s sze-ba gemeZ usz-bar kiszib3 ur-(d)asznan ugula #e	the	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	the	#s sze-ba geme2 usz-bar kiszib3 ur-[d]asznan ugula #e	the	#s sze-ba geme2 usz-bar kiszib ur-{d}asznan ugula #e
female	#s sze-ba gemez usz-bar kiszib3 ur-(d)asznan ugula #e	female	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	shephards	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	labortroops	#s sze-ba geme2 usz-bar kiszib ur-[d]asznan ugula #e
weavers	#s sze-ba geme2 <mark>usz-bar</mark> kiszib3 ur-(d)asznan ugula #e	weavers	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	weavers	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	weavers	#s sze-ba geme2 usz-bar kiszit ur-{d}asznan ugula #6
under	#s sze-ba gemeZ usz-bar kiszib3 ur-(d)asznan ugula #e	under	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	from	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan uguta #e	255	#s sze-ba geme2 usz-bar kiszit ur-(d)asznan ugula #e
seal	#s sze-ba geme2 usz-bar <mark>usz-b3</mark> ur-(d)asznan ugula #e	seal	#s sze-ba geme2 usz-bar kez/b3 ur-[d]asznan ugula #e	seal	#s sze-ba geme2 usz-bar kiszib3 ur-[d]asznan ugula #e	seal	#s sze-ba geme2 usz-bar kiszil ur-{d}asznan ugula #6
of	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	of	#s sze-ba geme2 usz-bar kiszib3 ur-[d]asznan ugula #e	of	#s sze-ba geme2 usz-bar kiszib3 ur-[d]asznan ugula #e	of	#s sze-ba gemeZ usz-bar kiszi ur-(d)asznan ugula #e
UrAnan	#s sze-ba geme2 usz-bar kiszib3 ur-[d]asznan ugula #e	Lugalniglagare	#s sze-ba geme2 usz-bar kitz 63 ur-(d)asznan ugula #e	Ninlil	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	weavers	#s sze-ba geme2 usz-bar kiszil ur-(d)asznan ugula #e
oreman	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	foreman	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula#e	foreman	#s sze-ba geme2 usz-bar kiszib3 ur-(d)asznan ugula #e	female	#s sze-ba geme2 usz-bar kiszi ur-(d)asznan ugula #

^{*} cdli-gh/Sumerian-English-NMT/interpretability

Potential Usage

For Assyriologists to decipher the meaning of phrases and Sumerian text which do not have a clearly defined meaning yet.

Future Work

Solving the issue of utf-8 encoding in the Sumerian text.

Dissect the problem of Catastrophic Scarcity across other Cuneiform Languages.

Deploying the Sumerian-English Translation pipeline to the CDLI Framework.

Working on the potential applications of the interpretability algorithms, specially for Sumerian.

Special Thanks to...

Émilie Pagé-Perron

Jacob L. Dahl

Ilya Khait

Lafont Bertrand

The entire MTAAC Team

Future Plans

Continue tuning and improving the project.

Inviting and guiding future contributions.

Work on more interesting developments around NLP for CDLI

Contributing as a Google Summer of Code student for 2021.

Thank you.