Main idea:

 $(\Omega, \mathcal{F}, P), P(\Omega) = 1$ a probability space.

If picking n points, $\{\omega_{n,k}\}_{k=1}^n$ "at random" from Ω , so all $\omega_{n,k} \in \Omega$, then the following will be true

$$\lim_{n\to\infty} \frac{\#\{k\in\{1,2,\ldots,n\};\omega_{n,k}\in E\}}{n} = P(E), \text{ for all } E\in\mathcal{F},$$

where # is the counting measure.

Nonsense:

 $\alpha: \mathbb{N} \to \Omega, n \in \mathbb{N}$, onto, but not one to one. Define $\#_n = \frac{1}{n} \#$, $N = \{1, 2, ..., n\}$. Then $(N, \mathcal{P}(N), \#_n)$ is a porobability space. Let $\alpha_n = \alpha|_N$, then this is an Ω valued random variable. Now we can define

$$P(E) = \lim_{n \to \infty} \#_n \alpha_n^{-1}(E)$$
, for all $E \in \mathcal{F}$

Random varaibles:

 (S, \mathcal{S}) a measurable space, $X : \Omega \to S$ is called a random variable when it is $(\mathcal{F}, \mathcal{S})$ -measurable.

Define $P_X : \mathcal{S} \to [0, +\infty]$ by $P_X(E) = P(\{\omega \in \Omega; X(\omega) \in E\})$, this is the image measure by X.

$$P_X(S) = P(\{\omega \in \Omega; X(\omega) \in S\}) = P(\Omega) = 1$$

So the image measure induced by a random variable is a probability measure on its state space.

 P_X is called the directribution of X.

Define $F_X : \mathbb{R} \to [0,1] = x \mapsto P_X((-\infty,x])$, this is called the cumulative distribution function.

From wikipedia:

"The probability density function of a random variable is the RadonNikodym derivative of the induced measure with respect to some base measure (usually the Lebesgue measure for continuous random variables)."

ADD many details here

Expectation:

Define the expectation value of X as $E(X) = \int_{\Omega} X dP$, the integral of X.

Suppose X is a simple function, then $X(\omega) = \sum_{k=1}^{n} c_k \chi_{E_k}(\omega), c_k \in S$, unique, and $E_k \in \mathcal{F}$ disjoint.

$$E(X) = \sum_{k=1}^{n} c_k P(E_k)$$

Discrete rv:

A discrete random variable X is one whose state space is countable. In this case there is a bijective map, $\gamma: S \to \mathbb{N}$, and clearly the function $\gamma \circ X$ is $(\mathcal{F}, \mathcal{P}(\mathbb{N}))$ -measurable.

We may write $S = \{x_k := \gamma^{-1}(k)\}_{k=1}^{\infty}$, and may define $E_k := X^{-1}(x_k)$, $X(\omega) = \sum_{k=1}^{\infty} x_k \chi_{E_k}$. If we temporarily adopt the notation " $p(x_k) = P(X = x_k)$ ":= $P(E_k)$, then

$$E(X) = \sum_{k \in \mathbb{N}} x_k p(x_k)$$

In this simple case Ω may not really be nescesary, as $(\{x_k\}, \mathcal{P}(\{x_k\}), p)$ is a probability space in it's own right, and note, with $\beta_n := X \circ \alpha_n$, α_n as in the above nonsense,

$$p(x_k) = \lim_{n \to \infty} \#_n \beta_n^{-1}(x_k)$$
, for all x_k

Conditional Expectation

 (X, \mathcal{A}, μ) a σ -finite measure space, and (X, \mathcal{F}) a measurable space, $\mathcal{F} \subset \mathcal{A}$. For any $f : X \to \mathbb{R}$, \mathcal{A} -measurable, $h : X \to \mathbb{R}$ is the conditional expectation of f with respect to \mathcal{F} if it is \mathcal{F} -measurable and for all $A \in \mathcal{F}$,

$$\int_A f \, d\mu = \int_A h \, d\mu,$$

we write $E[f|\mathcal{F}]$ for the conditional expectation of f w.r.t. \mathcal{F} .

If in addition, $f \in L^1(X, \mathcal{A}, \mu)$, then $\nu \in \mathcal{M}(X, \mathcal{A})$, where $\nu(E) := \int_E f \, d\mu$. $(X, \mathcal{F}, \mu|_{\mathcal{F}})$ is a measure space, $\nu|_{\mathcal{F}} \in \mathcal{M}(X, \mathcal{F})$, and $\nu|_{\mathcal{F}} \ll \mu|_{\mathcal{F}}$, then by the RNT, there exists a unique $h \in L^1(X, \mathcal{F}, \mu|_{\mathcal{F}})$ such that $\nu(E) = \int_E h \, d\mu|_{\mathcal{F}}$.

$$E[f|\mathcal{F}] = \frac{d\nu}{d\mu|_{\mathcal{F}}}, \text{ where } \nu(E) = \int_{E} f \, d\mu \text{ for all } E \in \mathcal{A}, \ f \in L^{1}(X, \mathcal{A}, \mu), \ \mathcal{F} \subset \mathcal{A}.$$

Remarks:

- 1. For (X, \mathcal{A}, μ) a measure space, $f, g: X \to \mathbb{R}$, \mathcal{A} -measurable. Then $\int_A f d\mu = \int_A g d\mu$ for all $A \in \mathcal{A} \Rightarrow f = g$, μ -a.e. Proof: let h = f g, $A^+ = h^{-1}([0, \infty])$, $A^- = h^{-1}([-\infty, 0])$. Then $h \ge 0$ on A^+ so $\int_{A^+} h d\mu = 0 \Rightarrow h = 0$ μ -a.e. on A^+ by the vanishing principle. Similarly, $h^- = 0$ μ -a.e. on A^- .
- 2. In (1), what is really needed for the result is that the integrals of f and g agree on $(f-g)^{-1}(\mathbb{R}^+) \in \mathcal{A}$ and $(f-g)^{-1}(\mathbb{R}^-) \in \mathcal{A}$.
- 3. Let h be the conditional expectation of f w.r.t. \mathcal{F} , with $F \subset \mathcal{A}$, $\Delta := f h$. h is \mathcal{F} -measurable, so is \mathcal{A} -measurable, so Δ is too, and so $\Delta^{-1}(\mathbb{R}^{+,0}) \in \mathcal{A}$, and $\Delta^{-1}(\mathbb{R}^{-}) \in \mathcal{A}$. By (2), if in addition, $\Delta^{-1}(\mathbb{R}^{+,0}) \in \mathcal{F}$, and $\Delta^{-1}(\mathbb{R}^{-}) \in \mathcal{F}$, then f = h μ -a.e., so in some sense, the larger \mathcal{F} is, the closer an approximation h is of f.