Take home exam Part II

Convex Unconstrained and Constrained Optimization

March 25, 2022

Gloria del Valle Cano gloria.valle@estudiante.uam.es

Problem 1. (1 point) We have worked out the elementary version of Lagrange multipliers assuming that from g(x,y)=0 we can find a function y=h(x) such that g(x,h(x))=0.

But sometimes what we get is that there is an h such that g(h(y), y) = 0. Rewrite the Lagrange multiplier analysis in the lecture slides under this assumption.

Problem 2. (3 points) We want to solve the following constrained minimization problem:

min
$$f(x,y) = x^2 + 2xy + 2y^2 - 3x + y$$

s.t. $x + y = 1$,
 $x \ge 0, y \ge 0$.

Argue first that f is convex and then:

- Write its Lagrangian with α, β the multipliers of the inequality constraints.
- Write the KKT conditions.
- Use them to solve the problem. For this consider separately the $(\alpha = \beta = 0), (\alpha > 0, \beta = 0), (\alpha = 0, \beta > 0), (\alpha > 0, \beta > 0)$ cases.

Problem 3. (1 point) Let $f: S \subset \mathbb{R}^d \to \mathbb{R}$ be a convex function on the convex set S and we extend it to an $\tilde{f}: \mathbb{R}^d \to \mathbb{R}$ as:

$$\tilde{f}(x) = f(x) \text{ if } x \in S.$$

= $+\infty \text{ if } x \notin S.$

Show that \tilde{f} is a convex function on \mathbb{R}^d . Assume that $a + \infty = \infty$ and that $a \cdot \infty = 1$ for a > 0.

Problem 4. (2 points) Prove **Jensen's inequality**: if f is convex on \mathbb{R}^d and $\sum_{1}^{k} \lambda_i = 1$, with $0 \le \lambda_i \le 1$ we have for any $x_1, ..., x_k \in \mathbb{R}^d$

$$f\left(\sum_{1}^{k} \lambda_{i} x_{i}\right) \leq \sum_{1}^{k} \lambda_{i} f(x_{i})$$

Hint: just write $\sum_{i=1}^{k} \lambda_i x_i = \lambda_1 x_1 + (1 - \lambda_1)$ for an appropriate v and apply repeatedly the definition of a convex function. Start with k = 3 and carry on.

Problem 5. (3 points) Prove that the following function is convex

$$f(x) = x^2 - 1,$$
 $|x| > 1$
= 0 $|x| \le 1$

and compute its proximal. Which are the fixed points of this proximal?