This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

BUNDESREPUBLIK DEUTSCHLAND

Deutsche Kl.:

45 l, **9/12** 12 p, 4/01

Schördensigentum

(1) (1)	Offenlegu	ngsschrift	1642352
ව ව න		Aktenzeichen: Anmeldetag:	P 16 42 352.2 (T 34051) 7. Juni 1967
43)		Offenlegungstag:	24. Februar 1972
39 39 39 39	Ausstellungspriorität: Unionspriorität Datum: Land: Aktenzeichen:		
59 61 52	Bezeichnung: Zusatz zu: Ausscheidung aus:	Herbicide Mittel und Verfah	ren zu ihrer Anwendung
7)	Anmelder:	Mitsui Toatsu Chemicals, Inc	c., Tokio
	Vertreter gem. § 16 PatG.		ann, E., DiplChem. Dr. rer. nat.; m. Dr.; Holzbauer, R., DiplPhys.; n
Ø	Als Erfinder benannt:	Ueno, Kisaburo, Kamakura; Hirose, Akira; Yokohama; T Kanagawa (Japan)	

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4 9. 1967 (BGBl. I S. 960): 29. 1. 1970

Dr. F. Zumstein sen. - Dr. E. Assmann
Dr. R. Koenigsberger - Dipl. Phys. R. Holzbau r
Er. F. Zumstein jun.
Patentanwälte
8 München 2, Bräuhausstraße 4/III.

Toyo Koatsu Industries, Incorporated, Tokyo, Japan

Herbicide Mittel und Verfahren zu ihrer Anwendung

Die Erfindung betrifft Verfahren und Mittel zur Inhibierung von unerwünschtem Pflanzenwachstum.

Gemäß der Erfindung werden neue herbicide Mittel und Verfahren zur Inhibierung von Pflanzenwachstum geschaffen, worin als aktives Herbicid ein Thiazolderivat der Formel

verwendet wird, in der R ein Alkyl- oder Alkenylrest mit 1 bis 4 Kohlenstoffatomen, R_1 Wasserstoff oder ein Methylrest und X Chlor, Brom oder die Nitrogruppe bedeuten.

BAD ORIGINAL

Die oben genannten Thiazolderivate inhibieren nicht nur wirksam das Wachstum großblättriger Pflanzen, sondern inhibieren auch selektiv das Wachstum derartiger Unkrautgräser, wie z.B. Fingergräser (crab grasses), Scheunenhofgräser (barnyard grasses), wilde Haferarten (wild oats) und Fuchsschwanzarten (foxtails) in Anwesenheit derart nützlicher Graspflanzen, wie z.B. Reis- und Gerstenpflanzen. Wenn die Verbindung auf die Erde aufgebracht wird, zeigt sie überhaupt keine Inhibierungswirkung auf die Keimung oder eine andere schädliche Wirkung auf irgendeine der großblättrigen Pflanzen und Graspflanzen. Wenn sie jedoch direkt auf die Stengel und Blätter derartiger Pflanzen aufgebracht wird, zeigt sie eine selektiv herbicide Wirkung gegen großblättrige Pflanzen und Unkrautgräser.

Die oben genannten Verbindungen, die leicht nach dem folgenden Verfahren hergestellt werden können, sind in Alkohol, Aceton, Benzol und Petroläther lösliche, aber in Wasser unlösliche Kristalle. Die Verbindung der oben angegebenen Formel, in der R, Wasserstoff bedeutet, wird durch Chlorierung, Bromierung oder Nitrierung des durch Umsetzung von Thioharnstoff und Monochloracetal oder Monochloracetaldehyd erhaltenen 2-Aminothiazols und Umsetzen des resultierenden 2-Amino-5-chlorthiazols, 2-Amino-5bromthiazols oder 2-Amino-5-nitrothiazols mit einer Fettsäure mit 2 bis 5 Kohlenstoffatomen, seinem Anhydrid oder seinem Säurechlorid erhalten. Auch die Verbindung der oben angegebenen Forwel, in der R₁ ein Methylrest ist, wird durch Chlorierung, Bromierung oder Nitrierung des 2-Amino-4-methyl-thiazols, das durch Kondensation von Monochloraceton und Thioharnstoff in Anwesenheit einer Base erhalten wurde, und Umsetzen des resultierenden 2-Amino-4methyl-5-chlorthiazols, 2-Amino-4-methyl-5-bromthiazols oder 2-Amino-4-methyl-5-nitrothiazols mit einer Fettsäure mit 2 bis 5 Kohlenstoffatomen, seinem Säureanhydrid oder seinem Säuvechlorid erhalten. Zu derartigen Verbindungen gehören z.B. 2-Acetylamino-5-chlorthiazol, 2-Propionyl-amino-5-chlorthiazol, 2-Isobutyrylamino-5-chlorthiazol, 2-Acryloylamino-5-bromthiazol, 2-Ace-tylamino-5-nitrothiazol, 2-Acetylamino-4-methyl-5-chlorthiazol, 2-Butyrylami-zol, 2-Propionylamino-4-methyl-5-chlorthiazol, 2-Butyrylami-no-4-methyl-5-chlorthiazol, 2-Valerylamino-4-methyl-5-chlor-thiazol, 2-Acetylamino-4-methyl-5-bromthiazol, 2-Propionyl-amino-4-methyl-5-bromthiazol, 2-Acetylamino-4-methyl-5-nitro-thiazol, 2-Propionylamino-4-methyl-5-nitrothiazol, 2-Butyryl-amino-4-methyl-5-nitrothiazol und 2-Valerylamino-4-methyl-5-nitrothiazol.

Das erfindungsgemäße Verfahren wird so durchgeführt, daß eine das Wachstum hemmende Menge des oben genannten Thiazolderivats auf die Stengel und Blätter (die aus dem Boden nerausragenden Teile) der unerwünschten Pflanzen aufgebracht wird. Die Zeit zur Aufbringung des oben genannten Thiazolderivats auf die unerwünschten Pflanzen ist bevorzugt die Periode zwischen der Entwicklungszeit des einen Blattes bis zur 6-Blatt-Periode bei einkeimblättrigen Pflanzen und die Periode nach der Keimblattentwicklungszeit bei 2-keimblättrigen Pflanzen. Das Thiazolderivat wird in einer Menge von 5 bis 200 g, vorzugsweise von 20 bis 50 g pro Ar angewendet.

Die ausgezeichnete herbicide Wirkung dieses Thiazolderivats macht die Anwendung einer kleinen Menge des einheitlich über eine große Fläche verteilten aktiven Zusatzes erforderlich. Das ist natürlich schwierig durchzuführen bei Verwendung des reinen Materials. Die Aufbringung auf unerwünschte Pflanzen kann jedoch leichter dadurch erfolgen, daß man das Volumen des Materials (bulk) steigert, z.B. durch Mischen dieses Thiazolderivats mit einem inerten Mittel oder Trägermittel.

Es werden so erfindungsgemäß neue herbicide Mittel geschaffen, die das Thiazolderivat innig dispergiert in einem inerten

Träger enthalten. Derartige Träger können entweder Feststoffe. wie z.B. Talk, Ton, Diatomeenerde, Sägemehl, Calciumcarbonat und dergleichen, oder Flüssigkeiten, wie z.B. Isophoron, Cyclohexanon, Toluol, Xylol, Methanol, Isopropanol, Aceton, Wasser und dergleichen sein, in denen das aktive Agens gelöst oder dispergiert sein kann. Bevorzugt liegt der aktive Wirkstoff in dem Mittel in einer Menge in dem Bereich von 0.1 bis 50% des Gewichts des Mittels vor. Dem Mittel kann auch ein oberflächenaktives Mittel zugefügt werden, um eine geeignete Dispersion oder Emulsion in einer Flüssigkeit, wie z.B. Wasser, zu erzielen, um wäßrige Sprays zu liefern Beispiele geeigneter oberflächenaktiver Agentien sind Alkylbenzol-sulfonsäuresalze, Polyglykol-Fettsäureester, Polyoxyäthylenglykol-Fettsäureester, Polyoxyäthylenglykol-polyol-Fettsäureester, Polyoxyäthylenglykol-sorbitan-alkylester, Polyoxyäthylenglykolalkyl-äther, Naphthalin-sulfonsäuresalze und Natriumsalze von Ligninsulfonsäure-Formaldehyd-Kondensaten. Bevorzugt liegt die Menge des oberflächenaktiven Agens in dem Mittel in dem Bereich von 0,05 bis 15 % des Gewichts des Mittels.

Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie jedoch zu beschränken. Die angegebenen Teile und Prozent-angaben sind auf das Gewicht bezogen.

Beispiel 1

BNSDOCID: «DE 1842%

Jeder der verschiedenen Harnstoffharz-Töpfe mit je einer Fläche von 1/10 000 Ar wurde mit 500 g luftgetrockneter Erde beschickt, die ein Sieb mit einer lichten Maschenwelte von 1,003 mm (16 mesh) passierte. Auf die Erde in jedem Topf wurde ein gemischtes Düngemittel, das je 50 g Stickstoff,

P205 und K20 enthielt, aufgebracht und gut damit vermischt. Der Wassergehalt der Erde wurde auf 60% der maximalen Wasseraufnahmefähigkeit der Erde gebracht. Je 20 Samenkörner von Reispflanzen, Scheunenhofgräsern (barnyard grasses), Oregon-Erbsen (oregon peas) und Rettichen wurden in jedem Topf eingesät und dann mit 30 g Erde bedeckt. Man ließ die Samenkörner in einem Treibhaus keimen und wachsen. Die Aussaatzeiten für die Scheunenhofgras-, Oregon-Erbsen- und Rettichsamenkörner waren jeweils 1 Tag, 7 Tage und 9 Tage nach der Aussaat der Reispflanzen-Samenkörner. 13 Tage nach dem Aussaattag der Reispilanzensamenkörrer ließ man 10 normal gewachsene Pflanzen in jedem Topf ungeschnitten, während die übrigen Pflanzen in jedem Topf abgeschnitten wurden. Je 2 ml der Suspensionen in Wasser von jeweils 5 000 mg/l 2-Acetylamino-5-chlorthiazol, 2-Acetylamino-5-nitrothiazol und 2-Acryloylamino-5-bromthiazol wurden gleichnäßig auf die Stengel und Blätter der Pflanzen in den einzelnen Töpfen gesprüht. 14 Tage nach der Aufsprühung der Suspension wurlen die Pflanzen herausgenommen und gewogen. Die Ergebnisse sind in der Tabelle I in Form von Werten angegeben, die auf den unbehandelten Kontrollwert gleich 100 bezogen sind. Die Werte sind Mittelwerte aus zwei Wiederholungen.

Tabelle I

,	Gew	icht der	Pflanze	
Verbindung	Reis- pflanzen	Scheu- nenhof- gräser	Oregon- Erbsen	Rettiche
2-Acetylamino-5- chlorthiazol	100,0	12,0	11,2	0,0
2-Acetylamino-5- nitrothiazol	93,4	45,0	40,3	38 , 2
2-Acryloylamino- 5-bromthiazol	82,9	49,0	50,7	27,0
Unbehandelte Kontrolle	100,0	100,0	100,0	100,0

Beispiel 2

Je 20 Saatkörner von Hirsen (millets), Reispflanzen, Scheunennofgräsern und chinesischen Kohlpflanzen (Chinese cabbages) wurden eingesät und wachsen gelassen auf die gleiche Weise wie Beispiel 1. Die Aussaattage der Reispflanzen-, Scheunenhofgras- und chinesischer Kohl-Saatkörner lagen jeweils 3 Tage, 4 Tage und 8 Tage nach demjenigen der Hirsesaatkörner. 18 Tage nach dem Aussaattag der Hirsesaatkörner wurden 10 normal gewachsene Pflanzen in jedem Topf ungeschnitten gelassen, während die übrigen Pflanzen in jedem Topf abgeschnitten wurden. Je 2 ml der Suspensionen in Wasser von jeweils 5 000 mg/l 2-Propionylamino-5-chlorthiazol und 2-Isobutyrylamino-5-chlorthiazol wurden gleichmäßig auf die Stengel und Blätter der Pflanzen in den getrennten Töpfen aufgesprüht. 16 Tage nach dem Aufsprühen der Suspensionen wurden die Pflanzen herausgenommen und ihre Höhen und Gewichte gemessen. Die Ergebnisse sind in der Tabelle II als Werte an-

gegeben, die auf den unbehandelten Kontrollwert gleich 100 bezogen sind. Die Ergebnisse sind Mittelwerte aus 2 Wiederholungen.

Tabelle II

	Höhe	der Pfl	anze	
Verbindung	Reis- pflanzen	Hirsen	Scheunenhof- gräser	Chinesische Kohlpflanzen
2-Propionylamino- 5-chlorthiazol	100,0	0,0	12,4	0,0
2-Isobutyrylamino- 5-chlorthiazol	94,5	0,0	33, 5	0,0
Unbehandelte Kontrolle	100,0	100,0	100,0	100,0
	Gewi	Pflanze		
2-Propionylamino- 5-chlorthiazol	100,0	0,0	14,0	0,0
2-Isobutyrylamino- 5-chlorthiazol	98,4	0,0	28,0	0,0
Unbehandelte Kontrolle	100,0	100,0	100,0	100,0

Beispiel 3

Je 20 Saatkörner von Reispflanzen, Hirsen und Chinesischen Kohlpflanzen wurden ausgesät und in der gleichen Weise wie in Beispiel 1 wachsen gelassen. Die Aussaattage der Reispflanzen und chinesischen Kohlsaatkörner lagen jeweis 3 Tage und 8 Tage nach denjenigen der Hirsesaatkörner. 18 Tage nach dem Aussaattag der Hirsesaatkörner wurden 10 normal gewachsene Pflanzen in jedem Topf ungeschnitten gelassen, während die übrigen Pflanzen in jedem Topf abgeschnitten wurden. Je 2 ml der Suspensionen in Wasser von jeweils 5000 mg/l 2-Acetylamino-4-methyl-5-chlorthiazol, 2-Propionyl-amino-4-methyl-5-chlorthiazol. 2-Butyrylamino-4-methyl-5-chlorthiazol, 2-Valerylamino-4-methyl-5-chlorthiazol, 2-Acetylamino-4-methyl-5-bromthiazol, 2-Propionylamino-4-methyl-5-bromthiazol. 2-Acetylamino-4-methyl-5-nitrothiazol, 2-Propicnylamino-4-methyl-5-nitrothiazol. 2-Butyrylamino-4-methyl-5-nitrothiazol, und 2-Valerylamino-4-methyl-5-nitrothiazol wurden gleichmäßig auf die Stengel und Blätter der Pflanzen in den getrennten Töpfen aufgesprüht. 16 Tage nach dem Aufsprühen der Suspensionen wurden die Pflanzen herausgenommen und ihre Höhen und Gewichte gemessen. Die Ergebnisse sind in der Tabelle III in der Form von Werten angegeben, die auf den unbehandelten Kontrollwert gleich 100 bezogen sind. Die Ergebnisse sind Mittelwerte von zwei Wiederholungen.

Pabelle III

	Höhe	der Pflanze	əz	Gewicht	der Pflanze	126
Verbindung	Reis- pflanzen	Hirsen	Chinesische Kohlpflanzen	Reis- pflanzen	Hirsen	Chinesische Kohlpflanzen
2-Acetylamino- 4-methyl-5- chlorthiazol	7,76	14,0	0	100	13,0	0
2-Propionyl- amino-4-methyl- 5-chlorthiazol	100	0	0	100	0	0
2-Butyrylamino- 4-methyl-5- chlorthiazol	100	0	0	100	0	0
2-Valerylamino- 4-methyl-5- chlorthiazol	100	35,7	16,3	100	9,4	5,5
2-Acetylamino- 4-methyl-5- bromthiazol	100	47,8	14,9	100	53,4	13,7
2-Propionyl- amino-4-methyl- 5-bromthiazol	100	11,2	0	100	34,5	0

Fortsetzung

Tabelle III

	Höhe	der Pflanze	ZP	Gew	Gewicht der Pflanze	flanze
Verbindung	Reis- pflanzen	Hirsen	Chinesische Kohlpflanzen	Reis- pflanzen	Hirsen	Chinesische Kohlpflanzen
2-Acetylamino- 4-methyl-5- nitrothiazol	90,5	0	0	100	0	0
2-Propiony1- amino-4-methy1- 5-nitro-thiazol	100	0	0	100	0	0
2-Butyrylamino- 4-methyl-5- nitrothiazol	100	21,3	11,3	100	7,5	3,4
2-Valerylamino- 4-methyl-5- nitrothiazol	100	59,7	35,2	100	34,5	10,3
Unbehandelte Kontrolle	100	100	100	100	100	100

Beispiel_4

Je 20 Saatkörner von Reispflanzen, Weizenarten, Hirsen, Scheumenhofgräsern und Haferarten und 200 mg Fingergräser wurden ausgesät und in getrennten Töpfen wachsen gelassen auf die gleiche Weise wie in Beispiel 1. Zum Zeitpunkt der 3-Blatt-Entwicklung jeder Pflanze wurden 10 normal gewachsene Pflanzen in jedem Topf ungeschnitten gelassen, während die übrigen Pflanzen in jedem Topf abgeschnitten wurden. Je 2 ml der Suspensionen in Wasser von jeweils 0,1, 0,2 und 0,5% 2-Proplonylamino-4methyl-5-chlorthiazol wurden gleichmäßig auf die Stengel und Blätter der Pflanzen in den getrennten Töpfen aufgesprüht. Einen Monat nach der Aufsprühung der Suspensionen wurden die Pflanzen herausgenommen und ihre Höhen und Gewichte gemessen. Die Ergebnisse sind in der Tabelle IV in Form von Werten angegeben. die auf den unbehandelten Kontrollwert gleich 100 bezogen sind. Die Werte sind Mittelwerte aus zwei Wiederholungen.

Tabelle IV

Konzentration		Höhe der	Pflanze			- 12
der Lösung in %	Reis- pflanzen	Weizen- arten	Hafer- arten	Scheu- nenhof- gräser	Hir- sen	Finger- gräser
0,1	100	100	6,8	8,0	2,1	4,0
0,2	100	100	. 0	0	0	0
0,5	77	64	0	0	0	0
Unbehandelte Kontrolle	100	100	100	100	100	100

Fortsetzung

Tabelle IV

Konzentration	Gew	icht der	Pflanze		,	
der Lösung in %	Reis- pflanzen	Weizen- arten	Hafer- arten	Scheu- nenhof- gräser	Hir- sen	Finger- gräser
0,1	100	95	8,7	4,0	0,5	4,7
0,2	100	85	0	0	0	0
0,5	85,5	72,5	0	0	0	0
Unbehandelte Kontrolle	100	100	100	100	100	100

Beispiel 5

Die Herstellung von Stäuben.

- 1. 5 Teile 2-Acetylamino-5-chlorthiazol und 95 Teile fein gepulverter Talk werden sorgfältig gemischt und dann gemahlen, um einen Staub zu liefern.
- 2. 1 Teil 2-Propionylamino-4-methyl-5-chlorthiazol und 99 Teile fein gepulvertes Calciumcarbonat werden sorgfältig gemischt und dann gemahlen, um einen Staub zu liefern.
- 3. 10 Teile 2-Propionylamino-4-methyl-5-nitrothiazol und 90 Teile Diatomeenerde werden sorgfältig gemischt und dann gemahlen, um einen Staub zu liefern.

Diese Stäube sind zur Aufbringung mit einer gebräuchlichen Pflanzenbestäubungsvorrichtung geeignet.

Beispiel 6

Die Herstellung von benetzbaren Pulvern.

- 1. 50 Teile 2-Isobutyrylamino-5-chlorthiazol, 45 Teile Bentonit und 5 Teile des Natriumsalzes eines Ligninsulfonsäure-Formaldehyd-Kondensats werden sorgfältig gemischt und dann gemahlen, um ein benetzbares Pulver zu liefern.
- 2. 30 Teile 2-Propionylamino-4-methyl-5-chlorthiazol, 60 Teile Kaolin und 10 Teile Natriumdodecylbenzolsulfonat werden sorgfältig gemischt und dann gemahlen, um ein benetzbares Pulver zu liefern.

Jedes dieser benetzbaren Pulver wird nach der Dispersion in Wasser als Spray angewendet, um die gewünschte Konzentration der aktiven Verbindungen zu liefern.

Beispiel 7

Die Herstellung emulgierbarer Konzentrate.

- 1. 20 Teile 2-Propionylamino-5-chlorthiazol, 50 Teile Isophoron, 20 Teile Dimethylsulfoxyd und 10 Teile Poly-oxyäthylen-Sorbitanmonolaurat werden vollständig miteinander vermischt, um ein emulgierbares Konzentrat zu liefern.
- 2. 30 Teile 2-Propionylamino-4-methyl-5-nitrothiazol, 30 Teile Isophoron, 30 Teile Xylol und 10 Teile Poly- äthylenglykol-monolaurat werden miteinander vermischt, um ein emulgierbares Konzentrat zu liefern.

Jedes dieser emulgierbaren Konzentrate liefert beim Mischen mit Wasser in geeigneten Mengen eine wäßrige Dispersion, die die gewünschte Konzentration der aktiven Verbindung enthält, und die als Spray angewendet wird.

Patentansprüche

1. Verfahren zur Kontrolle unerwünschter Vegetation, dadurch gekennzeichnet, daß auf die oberirdischen Teile dieser Vegetation eine das Pflanzenwachstum inhibierende Menge einer Verbindung der Formel

aufgebracht wird, in der R aus der Gruppe Alkyl- und Alkenylreste mit 1 bis 4 Kohlenstoffatomen, R₁ aus der Gruppe Wasserstoff und dem Methylrest und X aus der Gruppe Chlor-, Bromund Nitroreste ausgewählt wird.

- 2. Verfahren nach Anspruch 1 zur selektiven Inhibierung des Wachstums von Unkrautgräsern in Anwesenheit anderer Pflanzen, dadurch gekennzeichnet, daß die Verbindung auf die oberirdischen Teile dieser Unkrautgräser in einer Menge aufgebracht wird, die ausreicht, um das Wachstum dieser Unkrautgräser zu inhibieren.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß diese Verbindung in einer Menge von 5 bis 200 g pro Ar aufgebracht wird.
- 4. Herbicides Mittel, dadurch gekennzeichnet, daß es eine zur Erzielung der hebiciden Wirkung ausreichende Menge einer

Verbindung der Formel

in der R aus der Gruppe der Alkyl- und Alkenylreste mit 1 bis 4 Kohlenstoffatomen, R₁ aus der Gruppe Wasserstoff und dem Methylrest und X aus der Gruppe Chlor-, Brom- und Nitroreste ausgewählt wird, und einen inerten Träger enthält.

- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß diese Verbindung 2-Propionylamino-4-methyl-5-chlortniazol ist.
- 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß diese Verbindung 2-Butyrylamino-4-methyl-5-chlorthiazol ist.
- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß diese Verbindung 2-Acetylamino-4-methyl-5-nitrothiazol ist.
- 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß diese Verbindung 2-Propionylamino-4-methyl-5-nitrothiazol ist.
- 9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß diese Verbindung 2-Acetylamino-5-chlorthiazol ist.
- 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß diese Verbindung 2-Propionylamino-5-chlorthiazol ist.
- 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß diese Verbindung 2-Isobutyrylamino-5-chlorthiazol ist.

- 12. Mittel nach Anspruch 4, dadurch gekennzeichnet, daß diese Verbindung 2-Propionylamino-4-methyl-5-chlorthiazol ist.
- 13. Mittel nach Anspruch 4, dadurch gekennzeichnet, daß diese Verbindung 2-Butyrylamino-4-methyl-5-chlorthiazol ist.
- 14. Mittel nach Anspruch 4, dadurch gekennzeichnet, daß diese Verbindung 2-Acetylamino-4-methyl-5-nitrothiazol ist.
- 15. Mittel nach Anspruch 4, dadurch gekennzeichnet, daß diese Verbindung: 2-Propionylamino-4-methyl-5-nitrothiazol ist.
- 16. Mittel nach Anspruch 4, cadurch gekennzeichnet, daß diese Verbindung 2-Acetylamino-5-chlorthiazol ist.
- 17. Mittel nach Anspruch 4, dadurch gekennzeichnet, daß diese Verbindung 2-Propionylamino-5-chlorthiazol ist.
- 18. Mittel nach Auspruch 4, dadurch gekennzeichnet, daß diese Verbindung 2-Isobutyrylamino-5-chlorthiazol ist.

BAD ORIGINAL