Logic of Computer Science Lecture 7: Resolution SAT Solving

Emmanuel Kwesi Tandoh

University of Mines and Technology (UMaT)

June 2025

Knowledge | Truth | Excellence

Motivation

Why SAT Solving Matters

Many real-world problems—from planning and hardware verification to cryptography—reduce to SAT. Efficient SAT solvers power automated reasoning across industry and research.

temsep=6pt**Hardware Design:** Check circuit equivalence.temsep=6pt**Software Testing:** Generate inputs that cover edge cases.temsep=6pt**Al Planning:** Encode planning problems as SAT for efficient solution.

Warm-Up Question

Think-Pair-Share

Why do modern SAT solvers accept only CNF formulas? List benefits of CNF.

E. K. Tandoh (UMaT)

Learning Objectives

By the end of this lecture, you should be able to:

temsep=6ptConvert propositional formulas to CNF using simple steps.temsep=6ptUse resolution to detect unsatisfiability.temsep=6ptExplain the core ideas of the DPLL algorithm.temsep=6ptAppreciate how SAT solvers automate search.

4 / 13

Converting to CNF

CNF: A conjunction of clauses, each a disjunction of literals. Steps (Simplified):

- ullet Remove \leftrightarrow and \rightarrow using equivalences.
- Push negations to atoms (De Morgan).
- \odot Distribute \vee over \wedge .

Quick Example:

$$(p
ightarrow (q ee r)) \wedge (\lnot q
ightarrow \lnot p)$$

 $= (\neg p \lor q \lor r) \land (q \lor \neg p)$. This final form is ready for resolution.

5/13

Resolution Rule

Inference Rule

From $(C \vee p)$ and $(D \vee \neg p)$ infer $(C \vee D)$.

Intuition: Eliminates p by combining remaining literals.

Key Fact

Deriving the empty clause via resolution shows unsatisfiability.

6/13

DPLL Algorithm (Core Mechanics)

DPLL augments resolution with search and propagation: temsep=4pt**Unit Propagation:** If clause has single literal, assign it true.temsep=4pt**Pure Literal Elim:** If var appears only positive/negative, assign

accordingly.temsep=4pt**Decision:** Guess a var value and recurse.temsep=4pt**Backtracking:** On conflict (empty clause), undo last guess.

Practical Note: Modern solvers add learning and heuristics on top.

7 / 13

Example: Manual Resolution

Test CNF:

$$(p \vee q) \wedge (\neg p \vee r) \wedge (\neg q \vee \neg r).$$

temsep=4ptResolve on p: $(p \lor q), (\neg p \lor r) \to (q \lor r)$.temsep=4ptThen with $(\neg q \lor \neg r)$ on q: $(q \lor r), (\neg q \lor \neg r) \to (r \lor \neg r)$. (tautology)temsep=4ptAlternative resolution yields only tautologies.temsep=4ptNo empty clause produced \Rightarrow formula is SAT.

8 / 13

Example: DPLL Walkthrough

Formula as before.

- Guess p = True.
- Unit-propagate $r = \text{True from } (\neg p \lor r)$.
- ullet Unit-propagate q= False from $(\neg q \lor \neg r)$.
- \odot All clauses true \Rightarrow SAT assignment found.

E. K. Tandoh (UMaT)

In-Class Exercise

- **② CNF Conversion:** $(p \leftrightarrow (q \land \neg r)) \rightarrow s$.
- **Resolution:** Add $\neg s$ to your CNF; check for conflict.
- **DPLL Simulation:** On $(p \lor q \lor r) \land (\neg p \lor q) \land (\neg q \lor r)$, show two decision paths.

10 / 13

Summary Takeaways

temsep=6ptCNF is the lingua franca of SAT solving.temsep=6ptResolution provides a simple proof mechanism.temsep=6ptDPLL uses search + propagation to solve SAT efficiently.temsep=6ptReal solvers integrate learning and heuristics for scale.

11 / 13

References I

- M. Huth M. Ryan, Logic in Computer Science, Cambridge UP, 2004.
- S. Russell P. Norvig, Al: A Modern Approach, 4th ed., Pearson, 2020.
- A. Biere et al., Handbook of Satisfiability, IOS Press, 2009.
- R. Nieuwenhuis et al., "Solving SAT and SMT by Lazy Grounding," IJCAR 2006.

E. K. Tandoh (UMaT)

Thank You! Any questions?

13 / 13