

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C07K 13/00, 15/04, 17/02 C07H 21/04, C12N 15/09, 15/31 A61K 39/02		A1	(11) International Publication Number: WO 93/19090 (43) International Publication Date: 30 September 1993 (30.09.93).
(21) International Application Number: PCT/US93/02166 (22) International Filing Date: 16 March 1993 (16.03.93)		(81) Designated States: AU, BR, CA, FI, JP, KR, NO, RU, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority data: 9205704.1 16 March 1992 (16.03.92) GB		Published <i>With international search report.</i>	
(71)(72) Applicant and Inventor: BARENKAMP, Stephen, J. [US/US]; 16 Villawood Lane, Webster Grove, MO 63119-4954 (US).			
(74) Agent: BERKSTRESSER, Jerry, W.; Shoemaker and Mat-tare, 2001 Jefferson Davis Highway, 1203 Crystal Plaza Building 1, P.O. Box 2286, Arlington, VA 22202-0286 (US).			

(54) Title: HIGH MOLECULAR WEIGHT SURFACE PROTEINES OF NON-TYPEABLE HAEMOPHILUS

(57) Abstract

High molecular weight surface proteins of non-typeable *Haemophilus influenzae* which exhibit immunogenic properties and genes encoding the same are described. Specifically, genes coding for two immunodominant high molecular weight proteins, HMW1 and HMW2, have been cloned, expressed and sequenced, while genes coding for high molecular weight proteins HMW3 and HMW4 have been cloned, expressed and partially sequenced.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SK	Slovak Republic
CI	Côte d'Ivoire	LJ	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TG	Togo
DE	Germany	MG	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	US	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland				

TITLE OF INVENTIONHIGH MOLECULAR WEIGHT SURFACE PROTEINS
OF NON-TYPEABLE HAEMOPHILUSFIELD OF INVENTION

5 This invention relates to high molecular weight proteins of non-typeable haemophilus.

BACKGROUND TO THE INVENTION

10 Non-typeable Haemophilus influenzae are non-encapsulated organisms that are defined by their lack of reactivity with antisera against known H. influenzae capsular antigens.

15 These organisms commonly inhabit the upper respiratory tract of humans and are frequently responsible for infections, such as otitis media, sinusitis, conjunctivitis, bronchitis and pneumonia. Since these organisms do not have a polysaccharide capsule, they are not controlled by the present Haemophilus influenzae type b (Hib) vaccines, which are directed towards Hib bacterial capsular polysaccharides.

20 The non-typeable strains, however, do produce surface antigens that can elicit bactericidal antibodies. Two of the major outer membrane proteins, P2 and P6, have been identified as targets of human serum bactericidal activity. However, it has been shown that the P2 protein sequence is variable, in particular in the non-typeable Haemophilus strains. Thus, a P2-based vaccine would not protect against all strains of the organism.

25 There have previously been identified by Barenkamp et al (Pediatr. Infect. Dis. J., 9:333-339, 1990) a group of high-molecular-weight (HMW) proteins that appeared to be major targets of antibodies present in human convalescent sera. Examination of a series of middle ear isolates revealed the presence of one or two such proteins in most strains. However, prior to the present invention, the structures of these proteins were unknown as were pure isolates of such proteins.

SUMMARY OF INVENTION

The inventors, in an effort to further characterize the high molecular weight (HMW) Haemophilus proteins, have cloned, expressed and sequenced the genes coding for two immunodominant HMW proteins (designated HMW1 and HMW2) from a prototype non-typeable Haemophilus strain and have cloned, expressed and almost completely sequenced the genes coding for two additional immunodominant HMW proteins (designated HMW3 and HMW4) from another non-typeable Haemophilus strain.

In accordance with one aspect of the present invention, therefore, there is provided an isolated and purified gene coding for a high molecular weight protein of a non-typeable Haemophilus strain, particularly a gene coding for protein HMW1, HMW2, HMW3 or HMW4, as well as any variant or fragment of such protein which retains the immunological ability to protect against disease caused by a non-typeable Haemophilus strain. In another aspect, the invention provides a high molecular weight protein of non-typeable Haemophilus influenzae which is encoded by these genes.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 is a DNA sequence of a gene coding for protein HMW1 (SEQ ID NO: 1);

Figure 2 is a derived amino acid sequence of protein HMW1 (SEQ ID NO: 2);

Figure 3 is a DNA sequence of a gene coding for protein HMW2 (SEQ ID NO: 3);

Figure 4 is a derived amino acid sequence of HMW2 (SEQ ID NO: 4);

Figure 5A shows restriction maps of representative recombinant phages which contained the HMW1 or HMW2 structural genes, the locations of the structural genes being indicated by the shaded bars;

Figure 5B shows the restriction map of the T7 expression vector pT7-7;

Figure 6 contains the DNA sequence of a gene cluster for the hmw1 gene (SEQ ID NO: 5), comprising nucleotides 351 to 4958 (ORF a) (as in Figure 1), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5114-6748 and c nucleotides 7062-9011;

Figure 7 contains the DNA sequence of a gene cluster for the hmw2 gene (SEQ ID NO: 6), comprising nucleotides 792 to 5222 (ORF a) (as in Figure 3), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5375-7009, and c, nucleotides 7249-9198;

Figure 8 is a partial DNA sequence of a gene coding for protein HMW3 (SEQ ID NO: 7);

Figure 9 is a partial DNA sequence of a gene coding for protein HMW4 (SEQ ID NO: 8); and

Figure 10 is a comparison table for the derived amino acid sequence for proteins HMW1, HMW2, HMW3 and HMW4.

GENERAL DESCRIPTION OF INVENTION

The DNA sequences of the genes coding for HMW1 and HMW2, shown in Figures 1 and 3 respectively, were shown to be about 80% identical, with the first 1259 base pairs of the genes being identical. The derived amino acid sequences of the two HMW proteins, shown in Figures 2 and 4 respectively, are about 70% identical. Furthermore, the encoded proteins are antigenically related to the filamentous hemagglutinin surface protein of Bordetella pertussis. A monoclonal antibody prepared against filamentous hemagglutinin (FHA) of Bordetella pertussis was found to recognize both of the high molecular weight proteins. This data suggests that the HMW and FHA proteins may serve similar biological functions. The derived amino acid sequences of the HMW1 and HMW2 proteins show sequence similarity to that for the FHA protein. It has further been shown that these

antigenically-related proteins are produced by the majority of the non-typeable strains of Haemophilus. Antisera raised against the protein expressed by the HMW1 gene recognizes both the HMW2 protein and the B. pertussis FHA. The present invention includes an isolated and purified high molecular weight protein of non-typeable haemophilus which is antigenically related to the B. pertussis FHA, which may be obtained from natural sources or produced recombinantly.

A phage genomic library of a known strain of non-typeable Haemophilus was prepared by standard methods and the library was screened for clones expressing high molecular weight proteins, using a high titre antiserum against HMW's. A number of strongly reactive DNA clones were plaque-purified and sub-cloned into a T7 expression plasmid. It was found that they all expressed either one or the other of the two high-molecular-weight proteins designated HMW1 and HMW2, with apparent molecular weights of 125 and 120 kDa, respectively, encoded by open reading frames of 4.6 kb and 4.4 kb, respectively.

Representative clones expressing either HMW1 or HMW2 were further characterized and the genes isolated, purified and sequenced. The DNA sequence of HMW1 is shown in Figure 1 and the corresponding derived amino acid sequence in Figure 2. Similarly, the DNA sequence of HMW2 is shown in Figure 3 and the corresponding derived amino acid sequence in Figure 4. Partial purification of the isolated proteins and N-terminal sequence analysis indicated that the expressed proteins are truncated since their sequence starts at residue number 442 of both full length HMW1 and HMW2 gene products.

Subcloning studies with respect to the hmw1 and hmw2 genes indicated that correct processing of the HMW proteins required the products of additional downstream genes. It has been found that both the hmw1 and hmw2 genes are flanked by two additional downstream open

reading frames (ORFs), designated b and c, respectively, (see Figures 6 and 7).

5 The b ORFs are 1635 bp in length, extending from nucleotides 5114 to 6748 in the case of hmw1 and nucleotides 5375 to 7009 in the case of hmw2, with their derived amino acid sequences 99% identical. The derived amino acid sequences demonstrate similarity with the derived amino acid sequences of two genes which encode proteins required for secretion and activation of hemolysins of P. mirabilis and S. marcescens.

10 The c ORFs are 1950 bp in length, extending from nucleotides 7062 to 9011 in the case of hmw1 and nucleotides 7249 to 9198 in the case of hmw2, with their derived amino acid sequences 96% identical. The hmw1 c ORF is preceded by a series of 9 bp direct tandem repeats. In plasmid subclones, interruption of the hmw1 b or c ORF results in defective processing and secretion of the hmw1 structural gene product.

15 The two high molecular weight proteins have been isolated and purified and shown to be partially protective against otitis media in chinchillas and to function as adhesins. These results indicate the potential for use of such high molecular weight proteins and structurally-related proteins of other non-typeable strains of Haemophilus influenzae as components in non-typeable Haemophilus influenzae vaccines.

20 Since the proteins provided herein are good cross-reactive antigens and are present in the majority of non-typeable Haemophilus strains, it is evident that these HMW proteins may become integral constituents of a universal Haemophilus vaccine. Indeed, these proteins may be used not only as protective antigens against otitis, sinusitis and bronchitis caused by the non-typeable Haemophilus strains, but also may be used as carriers for the protective Hib polysaccharides in a conjugate vaccine against meningitis. The proteins also

may be used as carriers for other antigens, haptens and polysaccharides from other organisms, so as to induce immunity to such antigens, haptens and polysaccharides.

5 The nucleotide sequences encoding two high molecular weight proteins of a different non-typeable Haemophilus strain (designated HMW3 and HMW4) have been largely elucidated, and are presented in Figures 8 and 9. HMW3 has an apparent molecular weight of 125 kDa while HMW4 has an apparent molecular weight of 123 kDa. These high
10 molecular weight proteins are antigenically related to the HMW1 and HMW2 proteins and to FHA. Sequence analysis of HMW3 is approximately 85% complete and of HMW4 95% complete, with short stretches at the 5'-ends of each gene remaining to be sequenced.

15 Figure 10 contains a multiple sequence comparison of the derived amino acid sequences for the four high molecular weight proteins identified herein. As may be seen from this comparison, stretches of identical peptide sequence may be found throughout the length of the
20 comparison, with HMW3 more closely resembling HMW1 and HMW4 more closely resembling HMW2. This information is highly suggestive of a considerable sequence homology between high molecular weight proteins from various non-typeable Haemophilus strains.

25 In addition, mutants of non-typeable H. influenzae strains that are deficient in expression of HMW1 or HMW2 or both have been constructed and examined for their capacity to adhere to cultured human epithelial cells. The hmw1 and hmw2 gene clusters have been expressed in E. coli and have been examined for in vitro adherence. The results of such experimentation demonstrate that both HMW1 and HMW2 mediate attachment and hence are adhesins and that this function is present even in the absence of other H. influenzae surface structures.

30 35 With the isolation and purification of the high molecular weight proteins, the inventors are able to

determine the major protective epitopes by conventional epitope mapping and synthesize peptides corresponding to these determinants to be incorporated in fully synthetic or recombinant vaccines. Accordingly, the invention also
5 comprises a synthetic peptide having an amino acid sequence corresponding to at least one protective epitope of a high molecular weight protein of a non-typeable Haemophilus influenzae. Such peptides are of varying length that constitute portions of the high-molecular-weight proteins, that can be used to induce
10 immunity, either directly or as part of a conjugate, against the relative organisms and thus constitute vaccines for protection against the corresponding diseases.

15 The present invention also provides any variant or fragment of the proteins that retains the potential immunological ability to protect against disease caused by non-typeable Haemophilus strains. The variants may be constructed by partial deletions or mutations of the genes and expression of the resulting modified genes to give the protein variations.
20

EXAMPLES

Example 1:

25 Non-typeable H.influenzae strains 5 and 12 were isolated in pure culture from the middle ear fluid of children with acute otitis media. Chromosomal DNA from strain 12, providing genes encoding proteins HMW1 and HMW2, was prepared by preparing Sau3A partial restriction digests of chromosomal DNA and fractionating on sucrose gradients. Fractions containing DNA fragments in the 9 to 20 kbp range were pooled and a library was prepared by ligation into λ EMBL3 arms. Ligation mixtures were packaged in vitro and plate-amplified in a P2 lysogen of
30 E. coli LE392.

35 For plasmid subcloning studies, DNA from a representative recombinant phage was subcloned into the

T7 expression plasmid pT7-7, containing the T7 RNA polymerase promoter Φ 10, a ribosome-binding site and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (see Figure 5B).

5 DNA sequence analysis was performed by the dideoxy method and both strands of the HMW1 gene and a single strand of the HMW2 gene were sequenced.

10 Western immunoblot analysis was performed to identify the recombinant proteins being produced by 15 reactive phage clones. Phage lysates grown in LE392 cells or plaques picked directly from a lawn of LE392 cells on YT plates were solubilized in gel electrophoresis sample buffer prior to electrophoresis. Sodium dodecyl sulfate (SDS)-polyacrylamide gel 15 electrophoresis was performed on 7.5% or 11% polyacrylamide modified Laemmli gels. After transfer of the proteins to nitrocellulose sheets, the sheets were probed sequentially with an E. coli-absorbed human serum sample containing high-titer antibody to the high-molecular-weight proteins and then with alkaline phosphatase-conjugated goat anti-human immunoglobulin G (IgG) second antibody. Sera from healthy adults contains 20 high-titer antibody directed against surface-exposed high-molecular-weight proteins of non-typeable H. influenzae. One such serum sample was used as the 25 screening antiserum after having been extensively absorbed with LE392 cells.

To identify recombinant proteins being produced by 30 E. coli transformed with recombinant plasmids, the plasmids of interest were used to transform E. coli BL21 (DE3)/pLySS. The transformed strains were grown to an A₆₀₀ of 0.5 in L broth containing 50 μ g of ampicillin per ml. IPTG was then added to 1 mM. One hour later, cells were harvested, and a sonicate of the cells was prepared. 35 The protein concentrations of the samples were determined by the bicinchoninic acid method. Cell sonicates

containing 100 µg of total protein were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. The nitrocellulose was then probed sequentially with the E. coli-absorbed adult serum sample and then with alkaline phosphatase-conjugated goat anti-human IgG second antibody.

Western immunoblot analysis also was performed to determine whether homologous and heterologous non-typeable H. influenzae strains expressed high-molecular-weight proteins antigenically related to the protein encoded by the cloned HMW1 gene (rHMW1). Cell sonicates of bacterial cells were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. Nitrocellulose was probed sequentially with polyclonal rabbit rHMW1 antiserum and then with alkaline phosphatase-conjugated goat anti-rabbit IgG second antibody.

Finally, Western immunoblot analysis was performed to determine whether non-typeable Haemophilus strains expressed proteins antigenically related to the filamentous hemagglutinin protein of Bordetella pertussis. Monoclonal antibody X3C, a murine immunoglobulin G (IgG) antibody which recognizes filamentous hemagglutinin, was used to probe cell sonicates by Western blot. An alkaline phosphatase-conjugated goat anti-mouse IgG second antibody was used for detection.

To generate recombinant protein antiserum, E. coli BL21(DE3)/pLysS was transformed with pHMW1-4, and expression of recombinant protein was induced with IPTG, as described above. A cell sonicate of the bacterial cells was prepared and separated into a supernatant and pellet fraction by centrifugation at 10,000 x g for 30 min. The recombinant protein fractionated with the

pellet fraction. A rabbit was subcutaneously immunized on biweekly schedule with 1 mg of protein from the pellet fraction, the first dose given with Freund's complete adjuvant and subsequent doses with Freund's incomplete adjuvant. Following the fourth injection, the rabbit was bled. Prior to use in the Western blot assay, the antiserum was absorbed extensively with sonicates of the host E. coli strain transformed with cloning vector alone.

To assess the sharing of antigenic determinants between HMW1 and filamentous hemagglutinin, enzyme-linked immunosorbent assay (ELISA) plates (Costar, Cambridge, Mass.) were coated with 60 μ l of a 4-ug/ml solution of filamentous hemagglutinin in Dulbecco's phosphate-buffered saline per well for 2 h at room temperature. Wells were blocked for 1 h with 1% bovine serum albumin in Dulbecco's phosphate-buffered saline prior to addition of serum dilutions. rHMW1 antiserum was serially diluted in 0.1% Brij (Sigma, St. Louis, Mo.) in Dulbecco's phosphate-buffered saline and incubated for 3 h at room temperature. After being washed, the plates were incubated with peroxidase-conjugated goat anti-rabbit IgG antibody (Bio-Rad) for 2 h at room temperature and subsequently developed with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (Sigma) at a concentration of 0.54 mg/ml in 0.1 M sodium citrate buffer, pH 4.2, containing 0.03% H₂O₂. Absorbances were read on an automated ELISA reader.

Recombinant phage expressing HMW1 or HMW2 were recovered as follows. The non-typeable H. influenzae strain 12 genomic library was screened for clones expressing high-molecular-weight proteins with an E. coli-absorbed human serum sample containing a high titer of antibodies directed against the high-molecular-weight proteins.

Numerous strongly reactive clones were identified along with more weakly reactive ones. Twenty strongly reactive clones were plaque-purified and examined by Western blot for expression of recombinant proteins.

5 Each of the strongly reactive clones expressed one of two types of high-molecular-weight proteins, designated HMW1 and HMW2. The major immunoreactive protein bands in the HMW1 and HMW2 lysates migrated with apparent molecular masses of 125 and 120 kDa, respectively. In addition to

10 the major bands, each lysate contained minor protein bands of higher apparent molecular weight. Protein bands seen in the HMW2 lysates at molecular masses of less than 120 kDa were not regularly observed and presumably represent proteolytic degradation products. Lysates of

15 LE392 infected with the λ EMBL3 cloning vector alone were non-reactive when immunologically screened with the same serum sample. Thus, the observed activity was not due to cross-reactive E. coli proteins or λ EMBL3-encoded proteins.

20 Furthermore, the recombinant proteins were not simply binding immunoglobulin nonspecifically, since the proteins were not reactive with the goat anti-human IgG conjugate alone, with normal rabbit sera, or with serum from a number of healthy young infants.

25 Representative clones expressing either the HMW1 or HMW2 recombinant proteins were characterized further. The restriction maps of the two phage types were different from each other, including the regions encoding the HMW1 and HMW2 structural genes. Figure 5A shows restriction maps of representative recombinant phage which contained the HMW1 or HMW2 structural genes. The locations of the structural genes are indicated by the shaded bars.

30 HMW1 plasmid subclones were constructed by using the T7 expression plasmid T7-7 (Fig. 5A and B). HMW2 plasmid subclones also were constructed, and the results with

these latter subclones were similar to those observed with the HMW1 constructs.

The approximate location and direction of transcription of the HMW1 structure gene were initially determined by using plasmid pHMW1 (Fig. 5A). This plasmid was constructed by inserting the 8.5-kb BamHI-SallI fragment from λ HMW1 into BamHI- and Sall-cut pT7-7. E. coli transformed with pHMW1 expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa, which was strongly inducible with IPTG. This protein was significantly smaller than the 125-kDa major protein expressed by the parent phage, indicating that it either was being expressed as a fusion protein or was truncated at the carboxy terminus.

To more precisely localize the 3' end of the structural gene, additional plasmids were constructed with progressive deletions from the 3' end of the pHMW1 construct. Plasmid pHMW1-1 was constructed by digestion of pHMW1 with PstI, isolation of the resulting 8.8-kb fragment, and religation. Plasmid pHMW1-2 was constructed by digestion of pHMW1 with HindIII, isolation of the resulting 7.5-kb fragment, and religation. E. coli transformed with either plasmid pHMW1-1 or pHMW1-2 also expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa. These results indicated that the 3' end of the structural gene was 5' of the HindIII site.

To more precisely localize the 5' end of the gene, plasmids pHMW1-4 and pHMW1-7 were constructed. Plasmid pHMW1-4 was constructed by cloning the 5.1-kb BamHI-HindIII fragment from λ HMW1 into a pT7-7-derived plasmid containing the upstream 3.8-kb EcoRI-BamHi fragment. E. coli transformed with pHMW1-4 expressed an immunoreactive protein with an apparent molecular mass of approximately 160 kDa. Although protein production was inducible with IPTG, the levels of protein production in these

transformants were substantially lower than those with the pHMW1-2 transformants described above. Plasmid pHMW1-7 was constructed by digesting pHMW1-4 with NdeI and SpeI. The 9.0-kbp fragment generated by this double digestion was isolated, blunt ended, and religated. E. coli transformed with pHMW1-7 also expressed an immunoreactive protein with an apparent molecular mass of 160 kDa, a protein identical in size to that expressed by the pHMW1-4 transformants. The result indicated that the initiation codon for the HMW1 structural gene was 3' of the SpeI site. DNA sequence analysis confirmed this conclusion.

As noted above, the λ HMW1 phage clones expressed a major immunoreactive band of 125 kDa, whereas the HMW1 plasmid clones pHMW1-4 and pHMW1-7, which contained what was believed to be the full-length gene, expressed an immunoreactive protein of approximately 160 kDa. This size discrepancy was disconcerting. One possible explanation was that an additional gene or genes necessary for correct processing of the HMW1 gene product were deleted in the process of subcloning. To address this possibility, plasmid pHMW1-14 was constructed. This construct was generated by digesting pHMW1 with NdeI and MluI and inserting the 7.6-kbp NdeI-MluI fragment isolated from pHMW1-4. Such a construct would contain the full-length HMW1 gene as well as the DNA 3' of the HMW1 gene which was present in the original HMW1 phage. E. coli transformed with this plasmid expressed major immunoreactive proteins with apparent molecular masses of 125 and 160 kDa as well as additional degradation products. The 125- and 160-kDa bands were identical to the major and minor immunoreactive bands detected in the HMW1 phage lysates. Interestingly, the pHMW1-14 construct also expressed significant amounts of protein in the uninduced condition, a situation not observed with the earlier constructs.

The relationship between the 125- and 160-kDa proteins remains somewhat unclear. Sequence analysis, described below, reveals that the HMW1 gene would be predicted to encode a protein of 159 kDa. It is believed
5 that the 160-kDa protein is a precursor form of the mature 125-kDa protein, with the conversion from one protein to the other being dependent on the products of the two downstream genes.

Sequence analysis of the HMW1 gene (Figure 1) revealed a 4,608-bp open reading frame (ORF), beginning with an ATG codon at nucleotide 351 and ending with a TAG stop codon at nucleotide 4959. A putative ribosome-binding site with the sequence AGGAG begins 10 bp upstream of the putative initiation codon. Five other in-frame ATG codons are located within 250 bp of the beginning of the ORF, but none of these is preceded by a typical ribosome-binding site. The 5'-flanking region of the ORF contains a series of direct tandem repeats, with the 7-bp sequence ATCTTTC repeated 16 times. These tandem repeats stop 100 bp 5' of the putative initiation codon. An 8-bp inverted repeat characteristic of a rho-independent transcriptional terminator is present, beginning at nucleotide 4983, 25 bp 3' of the presumed translational stop. Multiple termination codons are present in all three reading frames both upstream and downstream of the ORF. The derived amino acid sequence of the protein encoded by the HMW1 gene (Figure 2) has a molecular weight of 159,000, in good agreement with the apparent molecular weights of the proteins expressed by
10 the HMW1-4 and HMW1-7 transformants. The derived amino acid sequence of the amino terminus does not demonstrate the characteristics of a typical signal sequence. The BamHI site used in generation of pHMW1 comprises bp 1743 through 1748 of the nucleotide sequence. The ORF downstream of the BamHI site would be predicted to encode
15 a protein of 111 kDa, in good agreement with the 115 kDa
20
25
30
35

estimated for the apparent molecular mass of the pHMW1-encoded fusion protein.

The sequence of the HMW2 gene (Figure 3) consists of a 4,431-bp ORF, beginning with an ATG codon at nucleotide 352 and ending with a TAG stop codon at nucleotide 4783. The first 1,259 bp of the ORF of the HMW2 gene are identical to those of the HMW1 gene. Thereafter, the sequences begin to diverge but are 80% identical overall. With the exception of a single base addition at nucleotide 93 of the HMW2 sequence, the 5'-flanking regions of the HMW1 and HMW2 genes are identical for 310 bp upstream from the respective initiation codons. Thus, the HMW2 gene is preceded by the same set of tandem repeats and the same putative ribosome-binding site which lies 5' of the HMW1 gene. A putative transcriptional terminator identical to that identified 3' of the HMW1 ORF is noted, beginning at nucleotide 4804. The discrepancy in the lengths of the two genes is principally accounted for by a 186-bp gap in the HMW2 sequence, beginning at nucleotide position 3839. The derived amino acid sequence of the protein encoded by the HMW2 gene (Figure 4) has a molecular weight of 155,000 and is 71% identical with the derived amino acid sequence of the HMW1 gene.

The derived amino acid sequences of both the HMW1 and HMW2 genes (Figures 2 and 4) demonstrated sequence similarity with the derived amino acid sequence of filamentous hemagglutinin of Bordetella pertussis, a surface-associated protein of this organism. The initial and optimized TFASTA scores for the HMW1-filamentous hemagglutinin sequence comparison were 87 and 186, respectively, with a word size of 2. The z score for the comparison was 45.8. The initial and optimized TFASTA scores for the HMW2-filamentous hemagglutinin sequence comparison were 68 and 196, respectively. The z score for the latter comparison was 48.7. The magnitudes of

the initial and optimized TFASTA scores and the z scores suggested that a biologically significant relationship existed between the HMW1 and HMW2 gene products and filamentous hemagglutinin. When the derived amino acid sequences of HMW1, HMW2, and filamentous hemagglutinin genes were aligned and compared, the similarities were most notable at the amino-terminal ends of the three sequences. Twelve of the first 22 amino acids in the predicted peptide sequences were identical. In additional, the sequences demonstrated a common five-amino-acid stretch, Asn-Pro-Asn-Gly-Ile, and several shorter stretches of sequence identity within the first 200 amino acids.

Example 2:

To further explore the HMW1-filamentous hemagglutinin relationship, the ability of antiserum prepared against the HMW1-4 recombinant protein (rHMW1) to recognize purified filamentous hemagglutinin was assessed. The rHMW1 antiserum demonstrated ELISA reactivity with filamentous hemagglutinin in a dose-dependent manner. Preimmune rabbit serum had minimal reactivity in this assay. The rHMW1 antiserum also was examined in a Western blot assay and demonstrated weak but positive reactivity with purified filamentous hemagglutinin in this system also.

To identify the native Haemophilus protein corresponding to the HMW1 gene product and to determine the extent to which proteins antigenically related to the HMW1 cloned gene product were common among other non-typeable H. influenzae strains, a panel of Haemophilus strains was screened by Western blot with the rHMW1 antiserum. The antiserum recognized both a 125- and a 120-kDa protein band in the homologous strain 12, the putative mature protein products of the HMW1 and HMW2 genes, respectively.

When used to screen heterologous non-typeable H. influenzae strains, rHMW1 antiserum recognized high-molecular-weight proteins in 75% of 125 epidemiologically unrelated strains. In general, the antiserum reacted with one or two protein bands in the 100- to 150-kDa range in each of the heterologous strains in a pattern similar but not identical to that seen in the homologous strain.

Monoclonal antibody X3C is a murine IgG antibody directed against the filamentous hemagglutinin protein of B. pertussis. This antibody can inhibit the binding of B. pertussis cells to Chinese hamster ovary cells and HeLa cells in culture and will inhibit hemagglutination of erythrocytes by purified filamentous hemagglutinin. A Western blot assay was performed in which this monoclonal antibody was screened against the same panel of non-typeable H. influenzae strains discussed above. Monoclonal antibody X3C recognized both the high-molecular-weight proteins in non-typeable H. influenzae strain 12 which were recognized by the recombinant-protein antiserum. In addition, the monoclonal antibody recognized protein bands in a subset of heterologous non-typeable H. influenzae strains which were identical to those recognized by the recombinant-protein antiserum. On occasion, the filamentous hemagglutinin monoclonal antibody appeared to recognize only one of the two bands which had been recognized by the recombinant-protein antiserum. Overall, monoclonal antibody X3C recognized high-molecular-weight protein bands identical to those recognized by the rHMW1 antiserum in approximately 35% of our collection of non-typeable H. influenzae strains.

Example 3:

Mutants deficient in expression of HMW1, MW2 or both proteins were constructed to examine the role of these proteins in bacterial adherence. The following strategy was employed. pHMW1-14 (see Example 1, Figure 5A) was

digested with BamHI and then ligated to a kanamycin cassette isolated on a 1.3-kb BamH1 fragment from pUC4K. The resultant plasmid (pHMW1-17) was linearized by digestion with XbaI and transformed into non-typeable H. influenzae strain 12, followed by selection for kanamycin resistant colonies. Southern analysis of a series of these colonies demonstrated two populations of transformants, one with an insertion in the HMW1 structural gene and the other with an insertion in the HMW2 structural gene. One mutant from each of these classes was selected for further studies.

Mutants deficient in expression of both proteins were recovered using the following protocol. After deletion of the 2.1-kb fragment of DNA between two EcoRI sites spanning the 3'-portion of the HMW1 structural gene in pHMW-15, the kanamycin cassette from pUC4K was inserted as a 1.3-kb EcoR1 fragment. The resulting plasmid (pHMW1-16) was linearized by digestion with XbaI and transformed into strain 12, followed again by selection for kanamycin resistant colonies. Southern analysis of a representative sampling of these colonies demonstrated that in seven of eight cases, insertion into both the HMW1 and HMW2 loci had occurred. One such mutant was selected for further studies.

To confirm the intended phenotypes, the mutant strains were examined by Western blot analysis with a polyclonal antiserum against recombinant HMW1 protein. The parental strain expressed both the 125-kD HMW1 and the 120-kD HMW2 protein. In contrast, the HMW2⁻ mutant failed to express the 120-kD protein, and the HMW1 mutant failed to express the 125-kD protein. The double mutant lacked expression of either protein. On the basis of whole cell lysates, outer membrane profiles, and colony morphology, the wild type strain and the mutants were otherwise identical with one another. Transmission

electron microscopy demonstrated that none of the four strains expressed pili.

The capacity of wild type strain 12 to adhere to Chang epithelial cells was examined. In such assays, 5 bacteria were inoculated into broth and allowed to grow to a density of $\sim 2 \times 10^9$ cfu/ml. Approximately 2×10^7 cfu were inoculated onto epithelial cell monolayers, and plates were gently centrifuged at $165 \times g$ for 5 minutes to facilitate contact between bacteria and the epithelial 10 surface. After incubation for 30 minutes at $37^\circ C$ in 5% CO₂, monolayers were rinsed 5 times with PBS to remove nonadherent organisms and were treated with trypsin-EDTA (0.05% trypsin, 0.5% EDTA) in PBS to release them from the plastic support. Well contents were agitated, and 15 dilutions were plated on solid medium to yield the number of adherent bacteria per monolayer. Percent adherence was calculated by dividing the number of adherent cfu per monolayer by the number of inoculated cfu.

As depicted in Table 1 below (the Tables appear at 20 the end of the descriptive text), this strain adhered quite efficiently, with nearly 90% of the inoculum binding to the monolayer. Adherence by the mutant expressing HMW1 but not HMW2 (HMW2⁻) was also quite efficient and comparable to that by the wild type strain. 25 In contrast, attachment by the strain expressing HMW2 but deficient in expression of HMW1 (HMW1⁻) was decreased about 15-fold relative to the wild type. Adherence by the double mutant (HMW1⁻/HMW2⁻) was decreased even further, approximately 50-fold compared with the wild 30 type and approximately 3-fold compared with the HMW1 mutant. Considered together, these results suggest that both the HMW1 protein and the, HMW2 protein influence attachment to Chang epithelial cells. Interestingly, optimal adherence to this cell line appears to require HMW1 but not HMW2. 35

Example 4:

Using the plasmids pHMW1-16 and pHMW1-17 (see Example 3) and following a scheme similar to that employed with strain 12 as described in Example 3, three non-typeable Haemophilus strain 5 mutants were isolated, including one with the kanamycin gene inserted into the hmw1-like (designated hmw3) locus, a second with an insertion in the hmw2-like (designated hmw4) locus, and a third with insertions in both loci. As predicted, Western immunoblot analysis demonstrated that the mutant with insertion of the kanamycin cassette into the hmw1-like locus had lost expression of the HMW3 125-kD protein, while the mutant with insertion into the hmw2-like locus failed to express the HMW4 123-kD protein. The mutant with a double insertion was unable to express either of the high molecular weight proteins.

As shown in Table 1 below, wild type strain 5 demonstrated high level adherence, with almost 80% of the inoculum adhering per monolayer. Adherence by the mutant deficient in expression of the HMW2-like protein was also quite high. In contrast, adherence by the mutant unable to express the HMW1-like protein was reduced about 5-fold relative to the wild type, and attachment by the double mutant was diminished even further (approximately 25-fold). Examination of Giemsa-stained samples confirmed these observations (not shown). Thus, the results with strain 5 corroborate the findings with strain 12 and the HMW1 and HMW2 proteins.

Example 5:

To confirm an adherence function for the HMW1 and HMW2 proteins and to examine the effect of HMW1 and HMW2 independently of other H. influenzae surface structures, the hmw1 and the hmw2 gene clusters were introduced into E. coli DH5 α , using plasmids pHMW1-14 and pHMW2-21, respectively. As a control, the cloning vector, pT7-7, was also transformed into E. coli DH5 α . Western blot

analysis demonstrated that E. coli DH5 α containing the hmw1 genes expressed a 125 kDa protein, while the same strain harboring the hmw2 genes expressed a 120-kDa protein. E. coli DH5 α containing pT7-7 failed to react with antiserum against recombinant HMW1. Transmission electron microscopy revealed no pili or other surface appendages on any of the E. coli strains.

Adherence by the E. coli strains was quantitated and compared with adherence by wild type non-typeable H. influenzae strain 12. As shown in Table 2 below, adherence by E. coli DH5 α containing vector alone was less than 1% of that for strain 12. In contrast, E. coli DH5 α harboring the hmw1 gene cluster demonstrated adherence levels comparable to those for strain 12. Adherence by E. coli DH5 α containing the hmw2 genes was approximately 6-fold lower than attachment by strain 12 but was increased 20-fold over adherence by E. coli DH5 α with pT7-7 alone. These results indicate that the HMW1 and HMW2 proteins are capable of independently mediating attachment to Chang conjunctival cells. These results are consistent with the results with the H. influenzae mutants reported in Examples 3 and 4, providing further evidence that, with Chang epithelial cells, HMW1 is a more efficient adhesin than is HMW2.

Experiments with E. coli HB101 harboring pT7-7, pHMW1-14, or pHMW2-21 confirmed the results obtained with the DH5 α derivatives (see Table 2).

Example 6:

HMW1 and HMW2 were isolated and purified from non-typeable H. influenzae (NTHI) strain 12 in the following manner. Non-typeable Haemophilus bacteria from frozen stock culture were streaked onto a chocolate plate and grown overnight at 37°C in an incubator with 5% CO₂. 50ml starter culture of brain heart infusion (BHI) broth, supplemented with 10 μ g/ml each of hemin and NAD was inoculated with growth on chocolate plate. The starter

culture was grown until the optical density (O.D. - 600nm) reached 0.6 to 0.8 and then the bacteria in the starter culture was used to inoculate six 500 ml flasks of supplemented BHI using 8 to 10 ml per flask. The 5 bacteria were grown in 500 ml flasks for an additional 5 to 6 hours at which time the O.D. was 1.5 or greater. Cultures were centrifuged at 10,000 rpm for 10 minutes.

Bacterial pellets were resuspended in a total volume 10 of 250 ml of an extraction solution comprising 0.5 M NaCl, 0.01 M Na₂EDTA, 0.01 M Tris 50 μM 1,10-phenanthroline, pH 7.5. The cells were not sonicated or otherwise disrupted. The resuspended cells were allowed 15 to sit on ice at 0°C for 60 minutes. The resuspended cells were centrifuged at 10,000 rpm for 10 minutes at 4°C to remove the majority of intact cells and cellular debris. The supernatant was collected and centrifuged at 100,000 xg for 60 minutes at 4°C. The supernatant again was collected and dialyzed overnight at 4°C against 0.01 M sodium phosphate, pH 6.0.

20 The sample was centrifuged at 10,000 rpm for 10 minutes at 4°C to remove insoluble debris precipitated from solution during dialysis. The supernatant was applied to a 10 ml CM Sepharose column which has been pre-equilibrated with 0.01 M sodium phosphate, pH 6. 25 Following application to this column, the column was washed with 0.01 M sodium phosphate. Proteins were elevated from the column with a 0 - 0.5M KCl gradient in 0.01 M Na phosphate, pH 6 and fractions were collected for gel examination. Coomassie gels of column fractions 30 were carried out to identify those fractions containing high molecular weight proteins. The fractions containing high molecular weight proteins were pooled and concentrated to a 1 to 3 ml volume in preparation for application of sample to gel filtration column.

35 A Sepharose CL-4B gel filtration column was equilibrated with phosphate-buffered saline, pH 7.5. The

concentrated high molecular weight protein sample was applied to the gel filtration column and column fractions were collected. Coomassie gels were performed on the column fractions to identify those containing high molecular weight proteins. The column fractions containing high molecular weight proteins were pooled.

The proteins were tested to determine whether they would protect against experimental otitis media caused by the homologous strain.

Chinchillas received three monthly subcutaneous injections with 40 µg of an HMW1-HMW2 protein mixture in Freund's adjuvant. One month after the last injection, the animals were challenged by intrabullar inoculation with 300 cfu of NTHI strain 12.

Infection developed in 5 of 5 control animals versus 5 of 10 immunized animals. Among infected animals, geometric mean bacterial counts in middle ear fluid 7 days post-challenge were 7.4×10^6 in control animals verus 1.3×10^5 in immunized animals.

Serum antibody titres following immunization were comparable in uninfected and infected animals. However, infection in immunized animals was uniformly associated with the appearance of bacteria down-regulated in expression of the HMW proteins, suggesting bacterial selection in response to immunologic pressure.

Although this data shows that protection following immunization was not complete, this data suggests the HMW adhesin proteins are potentially important protective antigens which may comprise one component of a multi-component NTHI vaccine.

Example 7:

A number of synthetic peptides were derived from HMW1. Antisera then was raised to these peptides. The anti-peptide antisera to peptide HMW1-P5 was shown to recognize HMW1. Peptide HMW1-P5 covers amino acids 1453 to 1481 of HMW1, has the sequence

VDEVIEAKRILEKVKDLSDEEREALAKLG (SEQ ID NO:9), and
represents bases 1498 to 1576 in Figure 10.

This finding demonstrates that the DNA sequence and
the derived protein is being interpreted in the correct
reading frame and that peptides derived from the sequence
can be produced which will be immunogenic.

SUMMARY OF DISCLOSURE

In summary of this disclosure, the present invention
provides high molecular weight proteins of non-typeable
10 Haemophilus, genes coding for the same and vaccines
incorporating such proteins. Modifications are possible
within the scope of this invention.

Table 1. Effect of mutation of high molecular weight proteins on adherence to Chang epithelial cells by nontypable *H. influenzae*.

ADHERENCE*		
Strain	% inoculum	relative to wild type†
Strain 12 derivatives		
wild type	87.7 ± 5.9	100.0 ± 6.7
HMW1- mutant	6.0 ± 0.9	6.8 ± 1.0
HMW2- mutant	89.9 ± 10.8	102.5 ± 12.3
HMW1-/HMW2- mutant	2.0 ± 0.3	2.3 ± 0.3
Strain 5 derivatives		
wild type	78.7 ± 3.2	100.0 ± 4.1
HMW1-like mutant	15.7 ± 2.6	19.9 ± 3.3
HMW2-like mutant	103.7 ± 14.0	131.7 ± 17.8
double mutant	3.5 ± 0.6	4.4 ± 0.8

* Numbers represent mean (\pm standard error of the mean) of measurements in triplicate or quadruplicate from representative experiments.

† Adherence values for strain 12 derivatives are relative to strain 12 wild type; values for strain 5 derivatives are relative to strain 5 wild type.

Table 2. Adherence by *E. coli* DH5 α and HB101 harboring *hmw1* or *hmw2* gene clusters.

<u>Strain*</u>	Adherence relative to <u><i>H. influenzae</i> strain 12†</u>
DH5 α (pT7-7)	0.7 \pm 0.02
DH5 α (pHMW1-14)	114.2 \pm 15.9
DH5 α (pHMW2-21)	14.0 \pm 3.7
HB101 (pT7-7)	1.2 \pm 0.5
HB101 (pHMW1-14)	93.6 \pm 15.8
HB101 (pHMW2-21)	3.6 \pm 0.9

* The plasmid pHMW1-14 contains the *hmw1* gene cluster, while pHMW2-21 contains the *hmw2* gene cluster; pT7-7 is the cloning vector used in these constructs.

† Numbers represent the mean (\pm standard error of the mean) of measurements made in triplicate from representative experiments.

CLAIMS

What I claim is:

1. An isolated and purified gene encoding a high molecular weight protein of a non-typeable Haemophilus strain.
2. The gene of claim 1 encoding protein HMW1, HMW2, HMW3 or HMW4 or a variant or fragment of said protein retaining the immunological ability to protect against disease caused by a non-typeable Haemophilus strain.
3. The gene of claim 2 having the DNA sequence shown in Figure 1 and encoding protein HMW1 having the derived amino acid sequence of Figure 2.
4. The gene of claim 2 having the DNA sequence shown in Figure 3 and encoding protein HMW2 having the derived amino acid sequence of Figure 4.
5. The gene claimed in claim 2 having the partial DNA sequence shown in Figure 8 and encoding protein HMW3 having the derived amino acid sequence of Figure 10.
6. The gene claimed in claim 2 having the partial DNA sequence shown in Figure 9 and encoding protein HMW4 having the derived amino acid sequence of Figure 10.
7. A purified and isolated gene cluster comprising a nucleotide sequence for a structural gene encoding a high molecular weight protein of a non-typeable Haemophilus strain and at least one downstream nucleotide sequence for an accessory gene for effecting expression of a gene product fully encoded by said structural gene.
8. The gene cluster claimed in claim 7 comprising a DNA sequence coding for protein HMW1 or HMW2 and two downstream accessory genes.
9. The gene cluster of claim 8 having the DNA sequence shown in Figure 6.
10. The gene cluster of claim 8 having the DNA sequence shown in Figure 7.
11. A high molecular weight protein of non-typeable Haemophilus which is encoded by a gene as defined in

claim 1, or any variant or fragment thereof retaining the immunological ability to protect against disease caused by a non-typeable Haemophilus strain.

12. The protein of claim 11 which is HMW1 encoded by the DNA sequence shown in Figure 1, having the derived amino acid sequence of Figure 2 and having an apparent molecular weight of 125 kDa.

13. The protein claim 11 which is HMW2 encoded by the DNA sequence shown in Figure 3 and having the derived amino acid sequence of Figure 4 and having an apparent molecular weight of 120 kDa.

14. An isolated and purified high molecular weight protein of non-typeable Haemophilus influenzae which is antigenically related to the filamentous hemagglutinin surface protein of Bordetella pertussis.

15. The protein of claim 14 which is HMW1, HMW2, HMW3 or HMW4.

16. A conjugate comprising a protein as claimed in claim 11 or 14 linked to a antigen, hapten or polysaccharide for eliciting an immune response to said antigen, hapten or polysaccharide.

17. The conjugate as claimed in claim 16 wherein said polysaccharide is a protective polysaccharide against Haemophilus influenzae type b.

18. A synthetic peptide having an amino acid sequence corresponding to at least one protective epitope of a high molecular weight protein of non-typeable Haemophilus influenzae.

19. The peptide of claim 18 wherein said protein is HMW1, HMW2, HMW3 or HMW4.

FIG. 1A. DNA SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN

I (HMM1)

1 ACAGCGTTCT CTTAATACTA GTACAAAACC ACAATAAAAT ATGACAAACA
 51 ACAATTACAA CACCTTTT GCAGTCTATA TGCCTAAAT ATT TTAAAAAATA
 101 GTATAAATCC GCCATATAAA ATGGTATAAT CTTCATCCTT TCATCTTTCA
 151 TCTTTCATCT TTTCATCTTTC ATCTTTCATC TTTCATCTT CATCTTTCAT
 201 CTTTCATCTT TCATCTTCA TCTTTCATCTT TTTCATCTT ACATGCCCTG
 251 ATGAAACGGAG GGAAGGGAGG GAGGGGCAAG AATGAAGAGG GAGGCTGAACG
 301 AACGCCAAATG ATAAAGTAAT TAAATTGTTC AACTAACCTT AGGAGAAAAT
 351 ATGAAACAAGC TATATCGTCT CAAATTCAGC AACAGCCCTGA ATGCTTTGCT
 401 TGCTGTGTCT GAATTGGCAC GGGGTGTGTA CCATTCCACA GAAAAGGCA
 451 GCGAAAAACC TGCTCGCATG AAAGTGGCTC ACTTAGCGTT AAAGCCACTT
 501 TCCGCTATGTT TACTATCTT AGGTGTAACA TCTTATCCAC AATCTGTTTT
 551 AGCAAGGGC TTACAAGGAA TGGATGTAGT ACACGGCACA GCCACTATGC
 601 AAGTAGATGG TAATAAAACC ATTATCCGCA ACAGTGTGTA CGATATCATT
 651 AATTGAAAC AATTAAACAT CGACCAAAAT GAAATGGTGC AGTTTTACAA
 701 AGAAAACAAAC AACTCCGCCG TATTCAAACCG TGTACATCT ACCAAATCT

FIG. 1B.

2 / 68

751	CCCAATTAAA	AGGGATTTTA	GATTCTAACG	GACAAGTCTT	TITTAATCAAC
801	CCAAATGGTA	TCACAATAGG	TAAAGACGCA	ATTATTAAACA	CTAATGGCTT
851	TACGGCTCT	ACGCTAGACA	TTCTAACGA	AAACATCAAG	GCGCGTAATT
901	TCACCTTCGA	GCAAACCAA	GATAAAGCGC	TCGCTGAAAT	TGTGAATCAC
951	GGTTTAATTAA	CTGTCGGTAA	AGACGGCAGT	GTAAAATCTTA	TTGGTGGCAA
1001	AGTGAAAAAC	GAGGGTGTGA	TTAGCGTAAA	TGGTGGCAGC	ATTTCCTTAC
1051	TCGCAGGGCA	AAAATCACC	ATCAGCGATA	TAATAAACCC	AACCATTACT
1101	TACAGCATTG	CCGGGCCCTGA	AAATGAAGCG	GTCAAATCTGG	GGGATATTCTT
1151	TGCCAAAGGC	GGTAACATTA	ATGTCGGTGC	TGCCACTATT	CGAAACCAAG
1201	GTAAACTTTC	TGCTGATTCT	GTAAGCAAAG	ATAAAAGCGG	CAATATTGTT
1251	CTTTCCGCCA	AGAGGGTGA	AGCGGAAATT	GGCGGTGTAA	TTTCCGCTCA
1301	AAATCAGCAA	GCTAAAGGGC	GCAAGCTGAT	GATTACAGGC	GATAAAAGTCA
1351	CATTAAAAC	AGGTGCAGTT	ATCGAACCTT	CAGGTAAGA	AGGGGGAGAA
1401	ACTTACCTTG	GGGGTGCACGA	GGGGGGGAA	GGTAAAAGG	GCATTCAATT
1451	AGCAAAGAAA	ACCTCTTTAG	AAAAGGCTC	AACCATCAAT	GTATCAGGCA
1501	AAGAAAAAGG	CGGACGGCGCT	ATTGTGTGGG	GCGATATTGC	GTAAATTGAC

FIG. 1C.

1551 GGCATATTAA ACGCTCAAGG TAGTGGTGAT ATCGCTAAA CGGGTGGTT
 1601 TGTGGAGACG TCGGGCCATG ATTATTTCAT CAAAGACAAT GCAATTGTTG
 1651 ACGCCAAGA GTGGTTGTTA GACCCGGATA ATGTATCTAT TAATGCAGAA
 1701 ACAGCAGGAC GCAGCAATAC TTCAGAAGAC GATGAATACA CGGGATCCGG
 1751 GAATAGTGCC AGCACCCAA AACGAAACAA AGAAAAGACA ACATTAACAA
 1801 ACACAACTCT TGAGAGTATA CTAAAAAAAG GTACCTTTGT TAACATCACT
 1851 GCTATCAC GCATCTATGT CAATAGCTCC ATTAAATTAT CCAATGGCAG
 1901 CTTAACTCTT TGGAGTGAGG GTCGGAGCGG TGGCGGGCGT GAGATTAACA
 1951 ACGATATTAC CACCGGTGAT GATACCAGAG GTGCAAACCT AACAAATTAC
 2001 TCAGGGGCT GGGTTGATGT TCATAAAAAT ATCTCACTCG GGGCGCAAGG
 2051 TAACATAAAC ATTACAGCTA AACAAAGATAT CGCCTTTGAG AAAGGAAGCA
 2101 ACCAAGTCAT TACAGGTCAA GGGACTATT CCTCAGGCCA TCAAAAAGGT
 2151 TTAGATTAA ATAATGTCCTC TCTAAACGGC ACTGGCAGCG GACTGCAATT
 2201 CACCACTAAA AGAACCAATA AATACGCTAT CACAAATAAA TTGGAAGGGA
 2251 CTTAAATAT TTCAAGGAAA GTGAACATCT CAATGGTTT ACCTAAAAAT
 2301 GAAAGTGGAT ATGATAAATT CAAAGGACGCC ACTTACTGGA ATTAAACCTC

FIG. 1D.

2351	CTTAAATGTT	TCCGAGAGTG	GCGACTTTAA	CCTCACTATT	GAATCCAGAG
2401	GAAGGGATAG	TGCAGGCACA	CTTACCCAGC	CTTATAATT	AAACGGTATA
2451	TCATTCACCA	AAGACACTAC	CTTTAATGTT	GAACGAAATG	CAAGAGTCAA
2501	CTTGTGACATC	AAGGCACCAA	TAGGGATAAA	TAAGTATTCT	AGTTTGAATT
2551	ACGGCATCATT	TAATGGAAAC	ATTTCAGTT	CGGGAGGGG	GAGTGTGAT
2601	TTCACACTTC	TCGCCTCATC	CTCTAACGTC	CAAACCCCCG	GTGTAGTTAT
2651	AAATCTAAA	TACTTTAATG	TTTCAACAGG	GTCAAGTTA	AGATTAAAA ⁴
2701	CTTCAGGCTC	AACAAAAACT	GGCTTCTCAA	TAGAGAAAGA	TTAAACTTTA ⁶
2751	AATGCCACCG	GAGGCAACAT	AACACTTTG	CAAGTTGAAG	GCACCGATGG
2801	AATGATTGGT	AAAGGCATTG	TAGCCAAAAA	AAACATAACC	TTTGAAGGAG
2851	GTAACATCAC	CTTGGCTCC	AGGAAAGCCG	TAACAGAAAT	CGAAGGCAAT
2901	GTRACTATCA	ATAACAACGC	TAACGTCACT	CTTATCGTT	CGGATTTGA
2951	CAACCATCAA	AAACCTTTAA	CTATTAAAAA	AGATGTCATC	ATTAATAGCG
3001	GCAACCTTAC	CGCTGGAGGC	AATATTGTCA	ATATAGCCGG	AAATCTTACC
3051	GTTGAAAGTA	ACGGCTAATT	CAAAGCTATC	ACAAATTCA	CTTTTAATGT
3101	AGGGGGCTTG	TTTGACACAA	AAGGCAATTTC	AAATATTCC	ATTGCCAAAG
3151	GAGGGGCTCG	CTTTAAAGAC	ATTGATAATT	CCAAGAATT	AAGCATTCAACC

FIG. 1E.

3201 ACCAACTCCA GCTCCACTTA CCGCACTATT ATAAGGGCA ATATAACCAA
 3251 TAAAACGGT GATTAAATA TTACGAACGA AGGTAGTGAT ACTGAAATGC
 3301 AAATTGGGG CGATGTCCTCG CAAAAGAAG GTAATCTCAC GATTCTTCT
 3351 GACAAATCA ATATTACCAA ACAGATAACA ATCAAGGCAG GTGTTGATGG
 3401 GGAGAATTCC GATTCAAGACCG CGACAAACAA TGCCAATCTA ACCATTAAAA
 3451 CCAAGAAATT GAAATTAAACG CAAGACCTAA ATATTTCAAGG TTTCAATAAA
 3501 GCAGAGATT CAGCTAAAGA TGCTAGTGAT TAACTATTG GTAACACCAA 5
 3551 TAGTGCTGAT GGTACTAATG CCAAAAAGT AACCTTTAAC CAGGTAAAG 60
 3601 ATTCAAAAT CTCTGCTGAC GGTCACAAAGG TGACACTACA CAGCAAAGTG
 3651 GAAACATCCG GTAGTAAATA CAACACTGAA GATAGCAGTG ACAATAATGC
 3701 CGGCCTTAACt ATCGATGCAA AAAATGTAAC AGTAAACAAAC AATATTACTT
 3751 CTCACAAAGC AGTGAGGCATC TCTGGGACAA GTGGAGAAAT TACCACTAAA
 3801 ACAGGTACAA CCATTAAACGC AACCACTGGT AACGTGGAGA TAACGGCTCA
 3851 AACAGGTAGT ATCCCTAGGTG GAATTGAGTC CAGCTCTGGC TCTGTAACAC
 3901 TTACTGCAAC CGAGGGCGCT CTTGCTGTAA GCAATATTTC GGGCAACACC
 3951 GTTACTGTAA CTGCAAATAG CGGTGCATTA ACCACTTGG CAGGCTCTAC

FIG. 1F.

6 / 68

4 001	AATTAAAGGA	ACCGAGAGTG	TAACCCTTC	AAGTCAAATCA	GGCGGATATCG
4 051	GCGGTACGAT	TTCCTGGTGGC	ACAGTAGAGG	TTAAAGCAAC	CGAAAGTTA
4 101	ACCACTCAAT	CCAAATTCAA	AATTAAAGCA	ACAACAGGCG	AGGCTAACCGT
4 151	AACAAAGTGCA	ACAGGTACAA	TTGGTGGTAC	GATTCCGGT	AATAACGGTAA
4 201	ATGTTACGGC	AAACGGCTGGC	GATTAAACAG	TTGGGAATGG	CGCAGAAATT
4 251	AATGCCGACAG	AAGGAGCTGC	AACCTTAAC	ACATCATCGG	GCAAATTAAAC
4 301	TACCGAAGCT	AGTTCACACA	TTACTTCAGC	CAAGGGTCAG	GTAAATCTTT
4 351	CAGCTCAGGA	TGGTAGCGTT	GCAGGAAGTA	TTAATGCCGC	CAATGTGACA
4 401	CTAAATACTA	CAGGCACTT	AACTACCGTG	AAGGGTTCAA	ACATTAATGC
4 451	AACCAGGGT	ACCTTGGTTA	TTAACGCAA	AGACGGCTGAG	CTAAATGGCG
4 501	CAGCATTGGG	TAACCACACA	GTGGTAAATG	CAACCAACGC	AAATGGCTCC
4 551	GGCAGGGTAA	TCGGGACAC	CTCAAGCAGA	GTGAACATCA	CTGGGGATT
4 601	AATCACAAATA	AATGGATTAA	ATATCATTTTC	AAAAAACGGT	ATAAACACCG
4 651	TACTGTTAAA	AGGGCGTTAA	ATTGATGTGA	AATACTTCA	ACCGGGTATA
4 701	GCAAGGGTAG	ATGAAGTAAT	TGAAGCGAAA	CGCATCCTTG	AGAAGGGTAAA
4 751	AGATTATCT	GATGAAGAAA	GAGAAGCGTT	AGCTAAACTT	GGAGTAAAGTG
4 801	CTGTACGTTT	TATTGAGCCA	AATAATAACAA	TTACAGTCGA	TACACAAAT

7/68

FIG. 1G.

4851	GAATTGCAA	CCAGACCATT	AAGTCGAATA	GTGATTCTTG	AAGGCAGGGC
4901	GTGTTCTCA	AACAGTGTATG	GCGCGACGGT	GTGCCGTTAAT	ATCGCTGATA
4951	ACGGGGGGTA	GCGGTCACTA	ATTGACAAGG	TAGATTTCAT	CCTGCCAATGA
5001	AGTCATTATA	TTTTCTGTATT	ATTACTGTG	TGGGTTAAAG	TTCAGTACGG
5051	GCTTTACCCA	TCTTGTAAAA	AATTACGGAG	AATACAATAA	AGTATTTTA
5101	ACAGGTTATT	ATTATG			

**FIG. 2A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT
PROTEIN I**

1	MNKIYRLKFS	KRLNALVAVS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
51	SAMILLSLGVIT	SIPQSVLASF	LQGMDVVHGT	ATMQVDGNKT	TIRNSVDAII
101	NWKQFNIDQN	EMVQFLQENN	NSAVFNRVTIS	NQISQLKGIL	DSNGQQVFLIN
151	PNGITIGKDA	IINTNGFTAS	TLDISNENIK	ARNFTFEQTK	DKALAEIVNH
201	GLITVGKDGS	VNLIGGKVKN	EGVVISVNGGS	ISLLAGQKIT	ISDIINNPTIT
251	YSIAAPNEA	VNLGDIIFAKG	GNINVRAATTI	RNQGKL.SADS	VSKDKSGNIV
301	LSAKEGEAEI	GGVISAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEGGE
351	TYLGGDERGE	GNKGQIQLAKK	TSLEKGSTIN	VSGKEKGGRA	IVWGDIALID
401	GNINAQGSGD	IAKTGGFVET	SGHDLFIKDN	AIVDAKEWLL	DFDNVSIINAE
451	TAGRSNTSED	DEYTGSNSA	STPKRNKEKT	TLTNTTLESI	LKKGTFVNIT
501	ANQRYYVNSS	INLSNGSLTL	WSEGRSGGGV	EINNDITITGD	DTRGANLTIV
551	SGGWVVDVHKN	ISLGQAQGNIN	ITAKQDIAFE	KGSNQVITGQ	GTITSGNQKG
601	FRFNNVSLNG	TGSGGLQFTTK	RTNKYAITNIK	FEGTLNISGK	VNIISMVL.PKN
651	ESGYDKFKGR	TYWNLTSLNV	SESGEFNLTI	DSRGSDSAQT	LTQPYNLNGL
701	SFNKDTTFMV	ERNARVNFDI	KAPIGINKYS	SLNYASFNGN	ISVSGGGGSV

FIG. 2B.

751 FTLLASSSNV QTPGVVINSK YFNVSTGSSL RFKTSGSTKT GFSIEKDLTL
 801 NATGGNITLL QVEGTDGMIG KGIVAKKNIT FEGGNITFGS RKAVTEIEGN
 851 VTINNNANTV LIGSDFDNHQ KPLTIKKDVT INSGNLTAGG NIVNIAGNLT
 901 VESNANFKAI TNFTENVGGL FDNKGNNSNIS IAKGGARFKD IDNSKNLSTIT
 951 TNSSSTYRTI ISGNITNKNG DLNITNEGSD TEMQIGGDVS QKEGNLTISS
 1001 DKINITKQIT IKAGVDGENS DSDATNNANL TIKTKELKLT QDLNISGFNK
 1051 AEITAKDGSD LTIGNTNSAD GTNAKKVTFN QVKDSKISAD GHKVTLHSKV 9/68
 1101 ETSGSNNNTE DSSDNNAGLT IDAKMVTVN NITSHKAVSI SATSGEITTK
 1151 TGTTINATTG NVEITAQTGS ILGGIESSSG SVTLTATEGA LAVSNISGN
 1201 VTVTANSGAL TTLAGSTIKG TESVTTSSQS GDIGGTISGG TVEVKATESL
 1251 TTQSNNSKIKA TTGEANVTS A TGTIGGTISG NTVNVTANAG DLTVNGNAGEI
 1301 NATEGAATLT TSSGKLTEA SSHITSAKGQ VNLSAQDGSV AGSINAANVT
 1351 LNTTGTLTV KGSNNINATSG TLVINIAKDAE LNGAALGNHT VVNATNANGS
 1401 GSVIATTSSR VNLITGDLITI NGLNIIISKNG INTVLLKGVK DVVKYIQPGI
 1451 ASVDEVIEAK RILEKVKDLS DEEREALAKL GVSAVRFIEP NNTITVDTQN
 1501 EFATRPLSRI VISEGRACFS NSDGATVCVN IADNGR

FIG. 3A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN II (HMW2)

1	TAATATACA AGATAATAAA AATAAATCAA GATTTTTGTG ATGACAAACA
51	ACAAATTACAA CACCTTTT GCAGTCTATA TGCAAAATT ATT TTAAAAAAAT
101	AGTATAAATC CGCCATATAA AATGGTATAA TCCTTCATCT TTCATCTTTA
151	ATCTTCATC TTTCATCTTT CATCTTCAT CTTCATCTT TCATCTTTCA
201	TCTTTCATCT TTTCATCTTC ATCTTCATC TTTCATCTT CACATGAAAT
251	GATGAACCGA GGGAAAGGGAG GGAGGGGCAA GAATGAAGAG GGAGCTGAAC O / 68
301	GAACGCAAAT GATAAAGTAA TTTAATTGTT CAACTAACCT TAGGAGAAA
351	TATGAAACAAAG ATATATCGTC TCAAATTCAAG CAAACGCCCTG AATGCCCTTG
401	TTGCTGTGTC TGAATTGGCA CGGGGTGTG ACCATTCCAC AGAAAAGGC
451	TTCCGCTATG TTACTATCTT TAGGTGTAAAC CACTTAGCGT TAAAGCCACT
501	TTCCGCTATG TTACTATCTT TAGGTGTAAAC ATCTATTCCA CAATCTGTCT
551	TAGCAAGCGG CTTACAAAGGA ATGGATGTAG TACACGGCAC AGCCACTATG
601	CAAGTAGATG GTAATAAAAC CATTATCCGC AACAGTGTG ACGCTATCAT
651	TAATTGGAAA CAATTAAACA TCGACCAAA TGAATGGTG CAGTTTTAC
701	AAGAAACAA CAACTCCGCC GTATTCAACC GTGTTACATC TAACCAAATC

FIG. 3B.

751 TCCCAATTAA AAGGGATT TT AGATTC TAAAC GGACAAGTCT TTTTAATCAA
 801 CCCAAATGGT ATCACAAATAG GTAAAGACGC AATTATTAAAC ACTAATGGCT
 851 TTACGGCTTC TAGGCTAGAC ATTCTTAACG AAAACATCAA GGGGGCGTAAT
 901 TTCACCTTCG AGCAAACCAA AGATAAAAGCG CTCGCTGAAA TTGTGAATCA
 951 CGGTTTAATT ACTGTCGGTA AAGACGGCAG TGTAAATCTT ATTGGTGGCA
 1001 AAGTGAAAAA CGAGGGTGTG ATTAGCGTAA ATCGTGGCAG CATTCTTTA
 1051 CTCGAGGGC AAAAATCAC CATCAGCGAT ATAATAAACCA ACCATTAC 1 / 68
 1101 TTACAGCATTT GCCGGCGCTG AAAATGAAGC GGTCAATCTG GGGATATT
 1151 TTGCCAAAGG CGGTAAACATT AATGTCCGTG CTGCCACTAT TCGAAACCAA
 1201 GGTAAACTTT CTGCTGATTCT TGTAAGCAA GATAAAAGCG GCAATATTGT
 1251 TCTTCCGCC AAAGAGGGTG AAGGGAAAT TGGCGGTGTA ATTTCGGCTC
 1301 AAAATCAGCA AGCTAAAGGC GGCAGGCTGA TGATTACAGG CGATAAAGTC
 1351 ACATTTAAA CAGGTGCAGT TATCGACCTT TCAGGTAAAG AAGGGGAGA
 1401 AACTTACCTT GGGGGTGCAG AGGGGGCGA AGGTAAAAAC GGCATTCAT
 1451 TAGCAAAGAA AACCTCTTTA GAAAAGGGCT CAACCATCAA TGTATCAGGC
 1501 AAAGAAAAAG GCGGACGGCGC TATTGTGTG GGGGATATTG CGTTAATTGA

FIG. 3C.

1551 CGGCAATATT AACGGCTCAAG GTAGTGGTGA TATCGCTAAA ACCGGTGGTT
 1601 TTGTGGAGAC ATCCGGGCAT TATTATCCA TTGACAGCAA TGCAATTGTT
 1651 AAAACAAAG AGTGGTTGCT AGACCCTGAT GATGTAACAA TTGAAAGCCGA
 1701 AGACCCCTT CGCAAATAATA CCGGTATAAA TGATGAAATT CCACAGGCCA
 1751 CCGGTGAGC AAGGGACCCCT AAAAAAATA GCGAACACTCAA AACAACGGCTA
 1801 ACCAATACAA CTATTCAAAATTATCTGAAA AACGGCCTGGAA CAATGAATAAT
 1851 AACGGCATCA AGAAAACTTA CCGTTAATAG CTCAATCAAC ATCGGAAGCA 12 / 68
 1901 ACTCCCACCTT AATTCTCCAT AGTAAAGGTC AGCGTGGCGG AGGCAGTCAG
 1951 ATTGATGGAG ATATTACTTC TAAAGGGGA ATTAAACCA TTATTCTGG
 2001 CGGATGGTT GATGTTCATTA AAAATATTAC GCTTGATCAG GGTTTTTAA
 2051 ATATTACCGC CGCTTCCGTA GC'TTTGAAG GTGGAAATAA CAAAGCACCG
 2101 GACGGGCAA ATGCTAAAT TGTCGCCAG GGCACTGTAA CCATTACAGG
 2151 AGAGGGAAA GATITCAGGG CTAACAACGT ATCTTTAAC GGAAACGGGTA
 2201 AAGGTCTGAA TATCATTCA TCAGTGAATA ATTAAACCCA CAATCTTAGT
 2251 GGCACAAATTAA ACATATCTGG GAATATAACA ATTAACCAA CTACGAGAAA
 2301 GAACACCTCG TATTGGCAA CCAGCCATGA TTCGGCACTGG AACGTCAGTG
 2351 CTCTTAATCT AGAGACAGGC GCAAATTAA CCTTTTAA ATACATTCA

FIG. 3D.

2401	AGCAATAGCA	AAGGCTTAAC	AACACAGTAT	AGAACAGTCTG	CAGGGGTGAA
2451	TTTTAACCGGC	GTAATGGCA	ACATGTCATT	CAATCTCAA	GAAGGGAGCGA
2501	AACTTAATT	CAAATTTAAA	CCAAACGAGA	ACATGAACAC	AAGCAAACCT
2551	TTACCAATT	GGTTTTAGC	CAATATCACCA	GCCACTGGTG	GGGGCTCTGT
2601	TTTTTTTGAT	ATATATGCCA	ACCATTCTGG	CAGAGGGCT	GAGTTAAAAA
2651	TGAGTGAAAT	TAATATCTCT	AACGGGGCTA	ATTTTACCTT	AAATTCCCCAT
2701	GTTCGGGCG	ATGACGCTTT	TAAAATCAAAC	AAAGACTAA	CCATAAATGCC
2751	AACCAATTCA	AATTTCAGCC	TCAGACAGAC	GAAAGATGAT	TTTTTATGACCG
2801	GGTACGCCACG	CAATGCCATC	AATTCAACCT	ACAACATATC	CATTCTGGGC
2851	GGTAATGTCA	CCCTTGGTGG	ACAAAACCTCA	AGCAGCAGCA	TTACGGGAA
2901	TATTACTATC	GAGAAAGCAG	CAAATGTTAC	GCTAGAAGCC	AATAACGCC
2951	CTAATCAGCA	AAACATAAGG	GATAGAGTTA	AAAACCTTGG	CAGCTTGCTC
3001	GTAAATGGCA	GTTTAAGTTT	AACTGGCGAA	AATGCAGATA	TTAAAGGCAA
3051	TCTCACTATT	TCAGAAAGCG	CCACTTTAA	AGGAAAGACT	AGAGATAACCC
3101	TAATATCAC	CGGCAATT	ACCAATAATG	GCACTGCCGA	AATTAATAATA
3151	ACACAAGGAG	TGGTAAAACT	TGGCAATGTT	ACCAATGATG	GTGATTTAAA

FIG. 3E.

3201 CATTACCACT CACGCTAAC GCAACCAAAG AAGCATC AAGCATCATC GGGGGAGATA
 3251 TAATCAACAA AAAAGGAAGC TTAATATTAA CAGACAGTAA TAATGATGCT
 3301 GAAATCCAAA TTGGGGCAA TATCTCGCAA AAGAAGGCA ACCTCACGAT
 3351 TTCTTCGAT AAAATTAAATA TCACCAAACA GATAACAAATC AAAAGGGTA
 3401 TTGATGGACA GGACTCTAGT TCAGATGCCA CAAGTAATGC CAACCTAACT
 3451 ATTAAACCA AAGAATTTGAA ATTGACAGAA GACCTAAGTA TTTCAGGTT
 3501 CAATAAGCA GAGATTACAG CCAAAAGATGG TAGAGATTAA ACTATGGCA 14 / 68
 3551 ACAGTAATGA CGGTAACAGC GGTGCCGAAG CCAAAACAGT AACTTTAAC
 3601 AATGTTAACG ATTCAAAAT CTCTGCTGAC GGTACAAATG TGACACTAA
 3651 TAGCAAAGTG AAAACATCTA GCAGGAAATGG CGGACGTGAA AGCAATAGCG
 3701 ACAACGATAC CGGCTTAACT ATTACTGCCA AAAATGTAGA AGTAACAAA
 3751 GATATTACT CTCTCAAAAC AGTAAATATC ACCGGCTCGG AAAAGGTAC
 3801 CACCACAGCA GGCTCGACCA TTAACGCAAC AAATGGCAA GCAAGTATTAA
 3851 CAACCAAAAC AGGTGATATC AGCGGTACGA TTTCGGTAA CACGGTAAGT
 3901 GTTAGGGCGA CTGGTGAATT AACCACTAAA TCCGGCTCAA AAATTGAAGC
 3951 GAAATCGGGT GAGGCTAATG TAACAAAGTGC AACAGGTACA ATTGGCGGTA

FIG. 3F.

4001 CAATTCCGG TAATACGGT AATGTTACGG CAAACGCTGG CGATTAAACA
 4051 GTTGGGAATG GCGCAGAAAT TAATGCCACA GAAGGGAGCTG CAACCTTAAC
 4101 CGCAACAGGG AATACCTTGA CTACTGAAGC CGGTTCTAGC ATCACTTCAA
 4151 CTAAGGGTCA GGTAGACCTC TTGGCTCAGA ATGGTAGCAT CGCAGGAAGC
 4201 ATTAATGCTG CTAAATGTGAC ATAAATAACT ACAGGCACCT TAACACCCGT
 4251 GGCAGGGCTCG GATATTAAG CAACCAGCGG CACCTTGTT ATTAAACGCAA
 4301 AAGATGCTAA GCTAAATGGT GATGCCATCAG GTGATAGTAC AGAAGTGAAT
 4351 GCAGTCAACG CAAGCGGCTC TGGTAGTGT ACTGGGGCAA CCTCAAGCAG 15 / 68
 4401 TGTGAATATC ACTGGGGATT TAAACACAGT AAATGGTTA AATATCATTT
 4451 CGAAAGATGG TAGAAACACT GTGGCCTAA GAGGCAGGA ATTGAGGTG
 4501 AAATATATCC AGCCAGGTGT AGCAAGTGTAA GAAGAAAGTAA TTGAAGCGAA
 4551 ACGCGTCCCT GAAAAGTAA AAGATTATC TGATGAAGAA AGAGAAACAT
 4601 TAGCTAACT TGGTGTAACT GCTGTACGTT TTGTTGAGCC AAATAATACA
 4651 ATTACAGTCA ATACACAAA TGAATTACA ACCAGACCGT CAAGTCAACT
 4701 GATAATTCTC GAAGGTAAGG CGTGTCTC AAGTGGTAAT GGCGCACGAG
 4751 TATGTACCAA TGTGCTGAC GATGGACAGC CGTAGTCAGT AATTGACAAAG
 4801 GTAGATTCA TCCTGCAATG AAGTCATTI ATTTCGTT ATTTCGTT TATTACTGT

16/68

FIG. 3G.

4851 GTGGGTTAAA GTTCAGTACG GGCTTTACCC ATCTTGTAAC AAATTACGGAA
4901 GAATACAATA AAGTATTTTT AACAGGGTTAT TATTATG

FIG. 4A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT**PROTEIN 2**

1	MNKIYRLKFS	KRLNALVAVS	EIARGCDHST	EKGSEKPARM	KVRHLALKPL
51	SAMLLSLGVVT	SIPQSVLNASG	LQGMDVVHGT	ATMQVDGNKT	IIRNSVDAII
101	NWKQFNIDQN	EMVQFLQENN	NSAVFNRVTS	NQISQLKGIL	DSNGQVFLIN
151	PNGITIGKDA	TINTNGFTAS	TLDISNENIK	ARNFTFEQTK	DKALAEIVNH
201	GLITVGKDGS	VNLIGGKVKN	EGVISVNNGS	ISLLAGQQKIT	ISDIINNPTIT
251	YSIAAPENEAA	VNLGDFIAKG	GNINVRAATTI	RNQGKLSADS	VSKDKSGNIV
301	LSAKEGEAEI	GGVISAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEGGE
351	TYLGGDERGE	GKNGIQLAKK	TSLEKGSTIN	VSGKEKGGRA	IVWGDTIALID
401	GNINAQGSGD	IAKTGGFVET	SGHDILFIKDN	AIVDAKEWLL	DFDNVSINAЕ
451	DPLRNNTGIN	DEFPTGTGEA	SDPKKNSELK	TTLTNTTISN	YLKNAWTMNI
501	TASRKLTVNS	SINIGSNSHL	ILHSKGQRGG	GVQIDGDITS	KGGNLTIYSG
551	GWVDVHKNIT	LDQGFLNITA	ASVAFEGGN	KARDAANAKI	VAQGTVTITG
601	EGKDFRANNV	SLNGTGKGLN	LISSVNNLTH	NLSGTINISG	NITINQTTTRK
651	NTSYWQTSHD	SHWNVSALNL	ETGANFTFIK	YISSNSKGLT	TQYRSSAGVN
701	FNGVNGNMSF	NLKEGAKVNF	KLKPNNMNT	SKPLPIRFLA	NITATGGSV

FIG. 4B.

751 FFDIYANHSG RGAELKMSEI NISNGANFTL NSHVRGDDAF KINKDLTINA
 801 TNSNFSLRQT KDDFYDGYAR NAINSTYNIS ILGGNVTLGG QNSSSSITGN
 851 ITIEKAANVT LEANNAPNQQ NIRDRVIKLG SLLVNGSLSL TGENADIKGN
 901 LTISESATFK GKTRDTLNIT GNFTNNNGTAE INITQGVVKL GNVTNNDGDLN
 951 ITTHAKRNQR SIIGGDIINK KGSLNITDSN NDAEIQIGGN ISQKEGNLTI
 1001 SSDKINITKQ ITIKKGIDGE DSSSDATSNNA NLTIKTKELK LTEDLSISGF
 1051 NKAETITAKDG RDLTIGNSND GNSGAEAKTV TFNNVKDSKI SADGHNVTLN
 1101 SKVKTSSSNG GRESNSDNDT GLTITAKNVE VNKDITSLKT VNITASEKVT
 1151 TTAGSTINAT NGKASITTTKT GDISGTISGN TVSVSATVDL TTSGSKIEA
 1201 KSGEANVTSA TGTIGGTISG NTVNVNTANAG DLTVGNGAEI NATEGAATLT
 1251 ATGNTLTEA GSSITSTKGQ VDLLAQNGSI AGSTINAANTV LNTTGTLTTV
 1301 AGSDIKATSG TLVINAKDAK LNGDASGDST EVNAVNASGS GSUTTAATSSS
 1351 VNIITGDLNTV NGLNIISKDG RNTVRLRGKE LEVKYIOPGV ASVEEVIEAK
 1401 RVLEKVKDLS DEERETLAKL GVSAVRFVEP NNTITVNTQN EFTTRPSSQV
 1451 IISSEGKACFS SGNGARVCTN VADDGQP

FIG. 5 A.

20/68

FIG. 5 B.

(A) Partial restriction maps of representative HMW1 and HMW2 recombinant phage and of HMW1 plasmid subclones. The shaded boxes indicate the locations of the structural genes. In the recombinant phage, transcription proceeds from left to right for the HMW1 gene and from right to left for the HMW2 gene. The methods used for construction of the plasmids shown are described in the text. (B) Restriction map of the T7 expression vector pT7-7. This vector contains the T7 RNA polymerase promoter ϕ 10, a ribosome - binding site (rbs), and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (37).

FIG. 6A.

1 ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA
 51 ACAATTACAA CACCTTTTT GCAGTCTATA TGCCTAAATT TTAAAAAATA
 101 GTATAAATCC GCCATATAAA ATGGTATAAT CTTCATCCTT TCATCTTTCA
 151 TCTTCATCT TTTCATCTTTC ATCTTTCATC TTTCATCTT CATCTTTCAT
 201 CTTTCATCTT TCATCTTTCA TCTTCATCTT TTTCATCTT ACATGAAATG
 251 ATGAAACGGAG GGAAGGGAGG GAGGGGCAAG AATGAAGAGG GAGCTGAACC
 301 AACGCCAATG ATAAAGTAAT TTAATTGTTT AACTAACCTT AGGAGAAAAT /
 351 ATGACAAGA TATATCGTCT CAAATTCAGC AACGCCCTGA ATGCTTTGGT
 401 TGCTGTGTCT GAATTGGCAC GGGTTGTGA CCATTCCACA GAAAAAGGCA
 451 GCGAAAAACC TGCTCGCATG AAAGTGGCTC ACTTAGCGTT AAAGCCACTT
 501 TCCGCTATGTT TACTATCTT AGGTGTAACA TCTTATCCAC ATCTGTTTT
 551 AGCAAGGGC TTACAAGGAA TGGATGTAGT ACACGGCACA GCCCACTATGC
 601 AAGTAGATGG TAATAAAACC ATTATCCGCA ACAGTGTGTA CGCTATCATT
 651 AATTGGAAC AATTAAACAT CGACCAAAAT GAAATGGTGC AGTTTTTACA
 701 AGAAAACAC AACTCCGCCG TATTCAAACCG TGTACATCT ACCAAATCT
 751 CCCAATTAAA AGGGATTAA GATTCTAACCG GACAAGTCTT TTTAATCAC

FIG. 6B.

22 / 68

801	CCAAATGGTA	TCACAATTAGG	TAAAGACGCA	ATTATTAACA	CTAATGGCTT
851	TACGGCTTCT	ACGCTAGACA	TTTCTAACGA	AAACATCAA	GCGCGTAATT
901	TCACCTTCCA	GCAAACCAA	GATAAAGCGC	TCGCTGAAT	TGTGAATCAC
951	GGTTAATT	CTGTCGGTAA	AGACGGCAGT	GTAAATCTTA	TTGGTGGCAA
1001	AGTGAAAAC	GAGGGTGTGA	TTAGCGTAAA	TGGTGGCAGC	ATTTCCTTTAC
1051	TCGCAGGCCA	AAAATCACC	ATCAGCGATA	TAATAAACCC	AACCATTACT
1101	TACAGCATTG	CCGGCCCTGA	AAATGAAGCG	GTCAATCTGG	GGGATATT
1151	TGCCAAAGGC	GGTAAACATTA	ATGTCGGTGC	TGCCACTATT	CGAAACCAAG
1251	CTTTCGGCCA	AAGAGGGTGA	AGCGGAAATT	GGCGGTGTAA	TTTCCGGCTCA
1301	AAATCAGCAA	GCTAAAGGCG	GCAAGCTGAT	GATTACAGGC	GATAAAGTCA
1351	CATTAAAAC	AGGTGCAGTT	ATCGAACCTTT	CAGGTAAAGA	AGGGGAGAA
1401	ACTTACCTTG	GGGGTGACGA	GCGCGGCCGA	GGTAAAAACG	GCATTCAATT
1451	AGCAAAGAAA	ACCTCTTGTAG	AAAAGGCTC	AACCATAAT	GTATCAGGCA
1501	AAGAAAAGG	CGGACGGCGCT	ATTGTGTGGG	GCGATATTGC	GTAAATTGAC
1551	GGCAATATT	ACGCTCAAGG	TAGTGGTGTAT	ATCGCTAAAA	CGGGTGGTT
1601	TGTGGAGACG	TCGGGGCATG	ATTTATTCAAT	CAAAGACAAAT	GCAATTGTTC

FIG. 6C.

1651 ACGCCAAAGA GTGGTTGTTA GACCCGGATA ATGTATCTAT TAATGGAGAA
 1701 ACAGGCAGGAC CCACCAATAC TTCAAGAAC GATGAATACA CGGGATCCGG
 1751 GAATAGTGCC AGCACCCCCAA AACGAAACAA AGAAAAGACA ACATTAACAA
 1801 ACACAACTCT TGAGAGTATA CTAaaaaaAG GTACCTTTGT TAACATCACT
 1851 GCTAATCAAC GCATCTATGT CAATAGCTCC ATTAAATTAT CCAATGGCAG
 1901 CTTAACTCTT TGGAGTGAGG GTCGGGAGGG TGCGGGCGTT GAGATTAACAA
 1951 ACGATATTAC CACCGGTGAT GATAACCAGAG GTGCCAAACTT AACAAATTAC 23 / 68
 2001 TCAGGGGGCT GGGTGTGATGT TCATAAAAT ATCTCACTCG GGGCGCAAGG
 2051 TAACATAAAC ATTACAGCTA AACAAAGATAT CGCCTTTGAG AAAGGAAGCA
 2101 ACCAAGTCAT TACAGGTCAA GGGACTATTAA CCTCAGGCCAA TCAAAAAGGT
 2151 TTTAGATTAA ATAATGTCTC TCTAAACGGC ACTGGCAGCG GACTGCAATT
 2201 CACCACTAAA AGAACCAAATA AATACGCTAT CACAAATAAA TTGAAAGGGAA
 2251 CTTTAAATAT TTCAGGGAAA GTGAACATCT CAATGGTTTT ACCTAAAAAT
 2301 GAAAGTGGAT ATGATAAAATT CAAAGGACGC ACTTACTGGA ATTTAACCTC
 2351 GAAAGTGGAT ATGATAAAATT CAAAGGACGC CCTCACTATT GACTCCAGAG
 2401 GAAGCCGATAG TGCAGGCACA CTTACCCAGC CTTATAATT AAACGGTATA
 2451 TCATTCAACAA AAGACACTAC CTTTAATGTT GAACGAAATG CAAGAGTCAA

FIG. 6D.

2501 CTTTGACATC AAGGCACCAA TAGGGATAAA TAAGTATCT AGTTTGAATT
 2551 ACGCATCATT TAATGAAAC ATTTCACTT CGGGAGGGGG GAGTGTGTGAT
 2601 TTCAACTTC TCGCCTCATC CTCTAACGTC CAAACCCCG GTGTAGTTAT
 2651 AAATTCTAAA TACTTTAATG TTTCAACAGG GTCAAGTTA AGATTAAAA
 2701 CTTTAGGCTC AACAAAAACT GGCTTCTCAA TAGAGAAAGA TTTAACTTTA
 2751 AATGCCACCG GAGGCAACAT AACACTTTTG CAAGTTGAAG GCACCGATGG
 2801 AATGATTGGT AAAGGCATTG TAGCCAAAA AACATAACC TTTGAAGGAG 24/68
 2851 GTAAAGATGAG GTTTGGCTCC AGGAAAGCCG TAAACAGAAAT CGAAGGCAAT
 2901 GTTACTATCA ATAACAACGC TAACGTCACT CTTATCGGTT CGGATTTGAA
 2951 CAACCATCAA AAACCTTTAA CTATTAAAA AGATGTCATC ATTAAATAGCG
 3001 GCAACCTTAC CGCTGGAGGC AATATTGTCA ATATAGCCGG AAATCTTAC
 3051 GTTGAAGTA ACGGCTAATT CAAAGCTATC ACAAAATTCA CTTTTAATGT
 3101 AGGGGGCTTG TTGACAAACA AAGGCAATTCA AAATATTTC ATTGCCAAAG
 3151 GAGGGGCTCG CTTAAAGAC ATTGATAATT CCAAGAATT AAGCATCACC
 3201 ACCAACTCCA GCTCCACTTA CCGCACTATT ATAAGGGCA ATATAACCAA
 3251 AAAAACGGT GATTAAATA TTACGAAACGA AGGTAGTGT ACTGAAATGCG

FIG. 6E.

3301 AAATGGCG CGATGTCG CAAAGAAC GTAATCTCAC GATTTCTTCT
 3351 GACAAATCA ATATTACCA ACAGATAACA ATCAAGGCAG GTGTTGATGG
 3401 GGAGAATTCC GATTGAGACG CGACAAACAA TGCCAATCTA ACCATAAAA
 3451 CCAAAGAATT GAAATTAACG CAAGACCTAA ATATTCAGG TTTCAATAAA
 3501 GCAGAGATT AAGCTAAAGA TGGTAGTGAT TTAACATTG GAAACACCAA
 3551 TAGTGCTGAT GGTACTAATG CCAAAAAGT AACCTTTAAC CAGGTTAAAG
 3601 ATTCAAAAT CTCTGCTGAC GGTACACAAGG TGACACTACA CAGCAAAGTG
 3651 GAAACATCCG GTAGTAATAA CAACACTGAA GATAGCAGTG ACAATAATGC
 3701 CGGCTTAACAT ATCGATGCAA AAAATGTAAC AGTAAACAAAC ATATTAACCT
 3751 CTCACAAAGC AGTGAGCATC TCTGGACAA GTGGAGAAAT TACCACTAAA
 3801 ACAGGGTACAA CCATTAACGC AACCACTGGT AACGTGGAGA TAACCGCTCA
 3851 AACAGGTAGT ATCCCTAGGTG GAATTGAGTC CAGCTCTGGC TCTGTAACAC
 3901 TTACTGCAAC CGAGGGCGCT CTTGCTGTAA GCAATATTTC GGGCAACACCC
 3951 GTTACTGTTA CTGCAAATAG CGGTGCCATTAA ACCACTTGG CAGGCTCTAC
 4001 AATTAAAGGA ACCGAGAGTG TAACCAACTTC AAGTCAATCA GGGGATATCG
 4051 GCGGTACGAT TTCTGGTGGC ACAGTAGAGG TTAAAGAAC CGAAAGTTA

FIG. 6F.

4101 ACCACTCAAT CCATTCAA AATTAAAGCA ACAACAGGCG AGGCTAACCGT
 4151 AACAAAGTGCA ACAGGTACAA TTGGTGGTAC GATTCCGGT AATACGGTAA
 4201 ATGTTACGGC AAACGGCTGGC GATTAAACAG TTGGGAATGG CGCAGAAATT
 4251 AATGGGACAG AAGGAGCTGC AACCTTAAC TACATCATCGG GCAATTAAAC
 4301 TACCGAAGCT AGTTCACACA TTACTTCAGC CAAGGGTCAG GTAAATCTTT
 4351 CAGCTCAGGA TGGTAGCGTT GCAGGAAGTA TTAATGCCGC CAATGTGACA
 4401 CTAAATACTA CAGGCCACTTT AACTACCGTG AAGGGTTCAA ACATTAATGCC
 4451 AACCGGGT ACCTTGGTTA TTAACGAAA AGACGGCTGAG CTAATGGCG 6 / 60
 4501 CAGCATTGGG TAACCACACA GTGGTAAATG CAACCAACGC AAATGGCTCC
 4551 GGCAGCGTAA TCGCGACAACTCAAGCAGA GTGAACATCA CTGGGGATTT
 4601 AATCACAAATA AATGGATTAA ATATCATTTCA AAAAACGGT ATAAACACCG
 4651 TACTGTTAAA AGGCCGTTAAA ATTGATGTGA AATACATTCA ACCGGGTATA
 4701 GCAAGCGTAG ATGAAGTAAT TGAAGCGAAA CGCATCCTTG AGAAGGTAAA
 4751 AGATTATCT GATGAAGAAA GAGAAGCGTT AGCTAAACTT GGCGTAAGTG
 4801 CTGTACGTTT TATTGAGCCA AATAATACAA TTACAGTCGA TACACAAAT
 4851 GAATTGCAA CCAGACCATT AAGTCGAATA GTGATTTCTG AAGGCAGGGC
 4901 GTGTTCTCA AACAGTGTAG GCGGACGGT GTGCGTTAAT ATCGCTGATA

FIG. 6G.

4951 ACGGGCGGT A GCGGTCAAGTA ATTGACAAGG TAGATTTCAT CCTGCAAATGA
 5001 AGTCATTTA TTTTCGTATT ATTACTGTG TGGTTAAAG TTCAGTACGG
 5051 GCTTTACCCA TCTTGTAAAA AATTACGGAG AATACAATAA AGTATTTTA
 5101 ACAGTTATT ATTATGAAAA ATATAAAAG CAGATTAAA CTCAGTGCAA
 5151 TATCAGTATT GCTTGGCCTG GCTTCTTCAT CATTGTATGC AGAAGGAAGCC
 5201 TTTTAGTAA AAGGCTTTCA GTTATCTGGT GCACTTGAAA CTTTAAGTGA
 5251 AGACGCCAA CTGTCTGTAG CAAATCTT ATCTAAATAAC CAAGGCTCGC 27/
 5301 AAACTTAAC AACCTAAA ACAGCACAGC TTGAATTACA GGCTGTGCTA 68
 5351 GATAAGATTG AGCCAAATAA GTTTGATGTG ATATTGCCAC ACAAAACCAT
 5401 TACGGATGGC AATATTATGT TTGAGCTAGT CTCGAATCA GCCGCAGAAA
 5451 GCCAAGTTT TTATAAGGCG AGCCAGGGTT ATAGTGAAGA AAATATCGCT
 5501 CGTAGCCTGC CATCTTGAA ACAAGGAAA GTGTATGAAG ATGGTCGTCA
 5551 GTGGTTTCGAT TTGCGTGAAT TCAATATGGC AAAAGAAAAT CCACTAAAG
 5601 TCACTCGGT GCATTACGAG TTAAACCCCTA AAAACAAAC CTCTGATTIG
 5651 GTAGTTGCAG GTTTTCGCC TTGCGAAA ACGCGTAGCT TTGTTTCCTA
 5701 TGATAATTTC GGGCAAGGG AGTTAACTA TCACGCTGTA AGTCTAGGTT

FIG. 6H.

5751 TTGTAAATGC CAATTGACC GGACATGATG ATGTATTAAA TCTAACGGCA
 5801 TTGACCAATG TAAAGCACC ATCAAATCT TATGCCGTAG GCATAGGATA
 5851 TACTTATCCG TTTATGATA AACACCAATC CTTAAGTCTT TATACCAGCA
 5901 TGAGTTATGC TGATTCTAAT GATATGACG GCTTACCAAG TGGCATTAAAT
 5951 CGTAATTAT CAAAGGTCA ATCTATCTCT GCGAATCTGA AATGGAGTTA
 6001 TTATCTCCG ACATTAAACC TTGGAATGGA AGACCAGTTT AAAATTAAATT
 6051 TAGGCTACAA CTACCGCCAT ATTAAATCAA CATCCGAGTT AACACCCCTG
 6101 GGTGCAACGA AGAAAAAATT TGCACTATCA GGCCTAAGTG CAGGCATTGA 28 /68
 6151 TGGACATATC CAATTACCC CTAAAACAAAT CTTTAAATT GATTAAACTC
 6201 ATCATATTAA CGCGACTAAA TTACCGGCT CTTTTGGAAT GGAGCGCATI
 6251 GGCGAACAT TTAAATCGCAG CTATCACATT AGCACAGCCA GTTTAGGGTT
 6301 GAGTCAAAGAG TTGCTCAAG GTTGGCATT TAGCAGTCAA TTATCGGGTC
 6351 AGTTTACTCT ACAAGATATA AGTAGCATAG ATTATTTCTC TGTAAACAGGT
 6401 ACTTATGGCG TCAGAGGCTT TAAATACGGC GGTGCAAGTG GTGAGGGCG
 6451 TCTTGTATGG CCTAATGAAT TAAGTATGCC AAAATACACC CGCTTTCAA
 6501 TCAGCCCTTA TGCCTTTAT GATGCAGGTC AGTTCCCGTTA TAATAGCGAA
 6551 AATGCTAAA CTTACGGCGA AGATATGCAC ACGGTATCCCT CTGGGGTTT

FIG. 6I.

6601 AGGCATTAAA ACCCTCTCTA CACAAACTT AAGCTTAGAT GCTTTGTTG
 6651 CTCGGTGGCTT TGCCTAATGCC AATAAGTGACA ATTGAAATGG CAACAAAAAA
 6701 CGCACAAAGCT CACCTACAAAC CTTCTGGGT AGATTAACAT TCAGTTCTA
 6751 ACCCTGAAAT TTAATCAACT GGTAAAGCGGT CCGCCTACCA GTTTATAACT
 6801 ATATGCTTTA CCCGCCAATT TACAGTCTAT ACCGAACCT GTTTTCATCC
 6851 TTATATATCA AACAAACTAA GCAAACCAAG CAAACCAAGC AAACCAAAGCA
 6901 AACCAAGCAA ACCAAGCAA CCAAGCAAAC CAAGCAAACC AAGCAAACCA 20
 6951 AGCAAACCAA GCAAACCAAG CAAACCAAGC AAACCAAGCA ATGCTAAAAA /60
 7001 ACAATTATA TGATAAACTA AAACATACTC CATAACCCTGG CAATACAAGG
 7051 GATTAAATAA TATGACAAAA GAAAATTAC AAAGTGTTC ACAAAATAAG
 7101 ACCGGCTTCAC TTGTAGAATC AAACAAACGAC CAAACTTCCC TGCAAATACT
 7151 TAAACAAACCA CCCAAACCCA ACCTATTACG CCTGGAACAA CATGTCGCCA
 7201 AAAAGATTA TGAGCTTGCT TGCCGGCGAAT TAATGGCGAT TTTGGAAAAA
 7251 ATGGACGGCTA ATTGTGGAGG CGTTCACCGAT ATTGAATTG ACGGCACCTGC
 7301 TCAGGCTGGCA TATCTACCCG AAAAAACTACT AATTCAATTG GCCACTCGTC
 7351 TCGCTTAATGCC ATTACAAACA CTCTTTCCG ACCCCGAAATT GGCAATTTC

FIG. 6J.

7401 GAAGAAGGG CATTAAAGAT GATTAGCCTG CAACGCTGGT TGACGCTGAT
 7451 TTTTGCCCTCT TCCCCCTACG TTAACGCCAGA CCATATTCTC ATAATAATA
 7501 ATATCAACCC AGATTCGGAA GGTGGCTTTC ATTAGCAAC AGACAACTCT
 7551 TCTATTGCTA AATTCTGTAT TTTTTACTTA CCCGAATCCA ATGTCATAAT
 7601 GAGTTTAGAT GCGTTATGGG CAGGGAAATCA ACAACTTGT GCTTCATTGT
 7651 GTTTGCGTT GCAGTCTTCA CGTTTTATTG GTACTGCATC TGGGTTTCAT
 7701 AAAAGAGCGG TGGTTTACA GTGGGTTCCCT AAAAAACTCG CCGAAATTGCG
 7751 TAATTTAGAT GAATTGGCTG CAAATATCCT TCATGATGTA TATATGCACT
 7801 GCAGTTATGA TTAGCAAAA AACCAAGCACG ATGTTAACGG TCCATTAAAC
 7851 GAACTTGTCC GCAAGCATAT CCTCACCGAA GGATGGCAAAG ACCGCTACCT
 7901 TTACACCTTA GGTAAAAAGG ACGGCAAACC TGTGATGATG GTACTGCTTG
 7951 AACATTAA TTCGGGACAT TCGATTATTC GCACGCCATTC AACTTCAATG
 8001 ATTGCTGCTC GAGAAAATT CTATTTAGTC GGCTTAGGCC ATGAGGGCGT
 8051 TGATAACATA GGTGGAGAAG TGTGACGA GTTCTTTGAA ATCAGTAGCA
 8101 ATAATAAT GGAGAGACTG TTTTTATCC GTAAACAGTG CGAAACTTTC
 8151 CACCCGCAG TGTCTATAT GCCAAGCATT GGCATGGATA TTACACGAT

FIG. 6K.

8201 TTTTGTGAGC AACACTCGGC TTGCCCTAT TCAAGCTGTA GCCTTGGTC
 8251 ATCCCTGCCAC TACGCCATTCT GAAATTATTG ATTATGTCAT CGTAGAACAT
 8301 GATTATGTGG GCAGTGAAAGA TTGTTAGC GAAACCCTT TACGCTTAC
 8351 CAAAGATGCC CTACCTTATG TACCATCTGC ACTCGCCCCA CAAAAGTGG
 8401 ATTATGTACT CAGGGAAAC CCTGAAGTAG TCAATATCGG TATTGCCGCT
 8451 ACCACAAATGA AATTAAACCC TGAATTTTG CTAACATTGC AAGAAATCAG
 8501 AGATAAAAGCT AAAGTCAAAA TACATTTCAC TTTCGCACTT GGACAATCAA
 8551 CAGGCTTGAC ACACCCCTAT GTCAAATGGT TTATCGAAAG CTATTTAGGT^{31/68}
 8601 GACGGATGCCA CTGCACATCC CCACGCACCT TATCACGATT ATCTGGCAAT
 8651 ATTGGCGTGT TGCGATATGC TACTAAATCC GTTTCCCTTC GGTAAATACTA
 8701 ACGGCATAAT TGATATGGTT ACATTAGGTT TAGTTGGTGT ATGCAAAACG
 8751 GGGGATGAAG TACATGAACA TATTGATGAA GGTCTGTTA AACGCTTAGG
 8801 ACTACCAGAA TGGCTGATAG CCGACACACG AGAAACATAT ATTGAATGTG
 8851 CTTTGGTCT AGCAGAAAC CATCAAGAAC GCCTTGAAC CCGTCGTTAC
 8901 ATCATAGAAA ACAACGGCTT ACAAAAGCTT TTTACAGGGCG ACCCTCGTC
 8951 ATTGGCAAA ATACTGCTTA AGAAAACAAA TGAATGGAAG CGGAAGCAGT
 9001 TGAGTAAAAA ATAACGGTTT TTAAAGTAA AAGTGGTAA AATTTCAAA

32 / 68

FIG. 6L.

9051	GGGTTTAA	AACCTCTCAA	AAATCAACCG	CACTTTATC	T'TTATAACGC
9101	TCCCGGGGC	TGACAGTTA	TCTCTTCTT	AAAATAACCA	TAAAATTGTG
9151	GCAATAGTTG	GGTAATCAA	TTCAATTGTT	GATACGGCAA	ACTAAAGACG
9201	GCGCGTTCTT	CGGCAGTCAT	C		

FIG. 7A.

1 CGCCCACTTCATA ATTGGGATT GTTGAATTCA AACTAACCAA AAAGTGC GGTT
 51 TAAATCTGT GGAGAAAATA GGTGTAGTG AAGAACGAGG TAATTGTTCA
 101 AAAGGATAAA GCTCTCTTAA TTGGGCATTG GTGGCGTTT CTTTTTCGGT
 151 TAATAGTAA TTATATTCTG GACGACTATG CAATCCACCA ACAACTTTAC
 201 CGTTGGTTT AAGCGTTAAT GTAAGTTCTT GCTCTTCTTG GCGAATAACGT
 251 AATCCCATT TTGTGTTAGC AAGAAAATGA TCGGGATAAT CATAATAAGGT
 301 GTTCCCCAA AATAAATTGTT GATGTTCTAA AATCATAAAT TTTGCAAGAT
 351 ATTGTGGCAA TTCAAATACCT ATTGTGGGG AAATGCCAA TTTTAATTCA
 401 ATTCTTGTA GCATAAATT TCCCACCTCAA ATCAAACGGT TAAATATAACA
 451 AGATAATAAA AATAAATCAA GATTGGTG ATGACAAACA ACAATTACAA
 501 CACCTTTTGCAGTCTATA TGCAAATATT TTAAAAAAAT AGTATAAATC
 551 CGCCATATAA AATGGTATAA TCTTTCATCT TTCACTCTTC ATCTTTCATC
 601 TTTCATCTT CATCTTCAT CTTTCATCTT TCATCTTCA TCTTTCATCT
 651 TTTCATCTTCATC ATCTTTCATC TTTCATCTT CACATGAAAT GATGAAACCGA
 701 GGGAAAGGGAG GGAGGGCAA GAATGAAGAG GGAGCTGAAC GAAACGCAAAT
 751 GATAAAGTAA TTAAATTGTT CAACTAACCT TAGGAGAAA TATGAAACAAG

33 / 68

FIG. 7B.

801 ATATATCGTC TCAAATTCAAG CAAACGCCCTG AATGCTTTGG TTGCTGTGTC
 851 TGAAATTGGCA CGGGGTTGTG ACCATTCCAC AGAAAAGGC AGCGAAAAAAC
 901 CTGCTCGCAT GAAAGTGGCT CACTTAGCGT TAAAGCCACT TTCCGCTATG
 951 TTACTATCTT TAGGTGTAAC ATCTATTCCA CAATCTGTT TAGCAAAGCGG
 1001 CAATTAAACA TCGACCAAAA TGAAATGGTG CAGTTTTAC AAGAAAACAA
 1051 GTAAATAAAC CATTATCCGC AACAGTGTG ACCGCTATCAT TAATTGGAAA
 1101 CAATTAAACA TCGACCAAAA TGAAATGGTG CAGTTTTAC AAGAAAACAA 34 / 68
 1151 CAACTCCGCC GTATTCAACC GTGTTACATC TAACCAAATC TCCCCAATTAA
 1201 AAGGGATT AGATTCTAAC GGACAAGTCT TTTTAATCAA CCCAAATGGT
 1251 ATCACAAATAG GTAAAGACGC AATTATTAAC ACTAATGGCT TTACGGCTTC
 1301 TACGCTAGAC ATTTCCTAACG AAAACATCAA GGC GGCTTAAT TTCACCTTCG
 1351 AGCAAACCAA AGATAAAGCG CTCGCGTGAAGA TTGTGAATCA CGGTTTAATT
 1401 ACTGTCGGTA AAGACGGCAG TGTAAATCTT ATGGTGGCA AAGTGAAGAA
 1451 CGAGGGTGTG ATTAGCGTAA ATGGTGGCAG CATTTCTTTA CTCGCAGGGC
 1501 AAAAAATCAC CATCAGCGAT ATAATAAACCA CAACCATTAC TTACAGGCATT
 1551 GCCGGCGCCTG AAAATGAAGC GGTCAATCTG GGGGATATTG TTGCCAAAGG

FIG. 7C.

1601 CGGTAACATT AATGTCCGTG CTGCCACTAT TCGAAACCAA GGTAAACTTT
 1651 CTGCTGATTC TGTAAGCAA GATAAAAGCG GCAATAATTGT TCTTTCCGCC
 1701 AAAGAGGGTG AAGCGGAAT TGCGGGTGT AAAATCAGCA
 1751 AGCTAAAGGC GGCAAGCTGA TGATTACAGG CGATAAAAGTC ACATTAAGAA
 1801 CAGGGCAGT TATCGACCTT TCAGGTAAG AAGGGGGAGA AACTTACCTT
 1851 GGCGGTGACG AGCGGGCGA AGGTAAAAAC GGCATTCAAT TAGCAAAGAA
 1901 AACCTCTTTA GAAAAGGCT CAACCCTCAA TGTATCAGGC AAAGAAAAAG
 1951 GGGGACGGGC TATTGTGTGG GGGGATATTG CGTTAATTGA CGGCAATTAT³⁵
 2001 AACGGCTCAAG GTAGTGGTGA TATCGCTAAA ACCGGTGGTT TTGTGGAGAC
 2051 ATCGGGCAT TATTATCCA TTGACAGCAA TGCAATTGTG AAAACAAAG
 2101 AGTGGTTGCT AGACCCTGAT GATGTAACAA TTGAAGCCGA AGACCCCCCTT
 2151 CGCAATAATA CCGGTATAAA TGATGAATTG CCAACAGGCA CGGTGAAGC
 2201 AAGCGACCCCT AAAAAAATA GCGAACTCAA ACAAACGCTA ACCAATACAA
 2251 CTATTCAAA TTATCTGAAA AACGGCTGGA CAATGAATAT AACGGCATCA
 2301 AGAAAACCTTA CCGTTAATAG CTCAAATCAAC ATCGGAAGCA ACTCCCACTT
 2351 AATTCTCCAT AGTAAAGGTC AGCGTGGCGG AGCGTGTTCAG ATTGATGGAG
 2401 ATATTACTTC TAAAGGGGA AATTAAACCA TTTATTCTGG CGGATGGGT

FIG. 7D.

2451 GATGTTCAT AAAATATTAC GCTTGATCAG GTGGAAATAA CAAAGCACGC GACGGGGCAA
 2501 CGCTTCCGTA GCCTTTGAAG GTGCTAAAT TGTGCCAG GGCACCTGTA CCATTACAGG AGAGGGAAAA
 2551 ATGCTAAAT TGTGCCAG GGCACCTGTA CCATTACAGG AGAGGGAAAA
 2601 GATTCAAGG CTAACACGT ATCTTAAAC GGAAACGGGTA AAGGTCTGAA
 2651 TATCATTCA TCAGTGAATA ATTTAACCA CAATCTTAGT GGCACAAATTA
 2701 ACATATCTGG GAATATAACA ATTAAACAAA CTACGGAGAA GAACACCTCG
 2751 TATTGGCAA CCAGCCATGA TTTCGCACTGG AACGTCAGTG CTCTTAATCT 36 / 68
 2801 AGAGACAGGC GCAAATTAA CCTTTATTAA ATACATTCA AGCAATAGCA
 2851 AAGGCTTAAC AACACAGTAT AGAACGCTCTG CAGGGGTGAA TTTTAACGGC
 2901 GTAAATGGCA ACATGTCATT CAATCTCAA GAAGGAGCGA AAGTTAAATT
 2951 CAAATTAAA CCAAACGAGA ACATGAACAC AAGCAAACCT TTACCAATTCA
 3001 GGTTTTAGC CAATATCACA GCCACTGGTG GGGGCTCTGT TTTTTTTGAT
 3051 ATATATGCC ACCATTCTGG CAGAGGGCT GAGTTAAAA TGAGTGAAT
 3101 TAATATCTCT AACGGCGCTA ATTTTACCTT AAATTCCAT GTTCGGGGCG
 3151 ATGACGCTT TAAAATCAAC AAAGACTTAA CCATAAATGC ACCAAATTCA
 3201 AATTTCAGGC TCAGACAGC GAAAGATGAT TTTTATGACG GGTACGCCAGC

FIG. 7E.

3251 CAATGCCATC AATTCAACCT ACAACATATC CATTCTGGGC GGTAAATGTCA
 3301 CCCTTGGTGG ACAAAACTCA AGCAGCAGGCA TTACGGGAA TATTACTATC
 3351 GAGAAAGCAG CAAATGTAC GCTAGAAGGCC AATAACGCC CTAATCAGCA
 3401 AACATAAGG GATAGAGTTA TAAAACCTTGC CAGCTTGCTC GTTAATGGGA
 3451 GTTTAAGTTT AACTGGCGAA AATGCAAGATA TTAAAGGCAA TCTCACTATT
 3501 TCAGAAAGCG CCACTTTAA AGGAAAGACT AGAGATACCC TAAATATCAC
 3551 CGGCAATTTC ACCAATAATG GCACTGCCGA AATTAATATA ACACAAGGAG
 3601 TGGTAAACT TGCCAATGTT ACCAATGATG GTGATTAAA CATTACCACT
 3651 CACGCTAAC GCAAACCAAG AAGCATTCACTC GGCGGAGATA TAATCAAACAA
 3701 AAAAGGAAGC TAAATATTA CAGACAGTAA TAATGATGCT GAAATCCAAA
 3751 TTGGCGCAA TATCTCGCAA AAAGAAGGCA ACCTCACCGAT TTCTTCCGAT
 3801 AAAATTAAATA TCACCAAACA GATAACAATC AAAAAGGGTA TTGATGGAGA
 3851 GGACCTCTAGT TCAGATGCGA CAAGTAATGCA CACCTAACT ATAAACCA
 3901 AAGAATTGAA ATTGACAGAA GACCTAAGTA TTTCAGGTTT CAATAAAGCA
 3951 GAGATTACAG CCAAAGATGG TAGAGATTAA ACTATTGGCA ACAGTAATGA
 4001 CGGTAACAGC GGTGCCGAAAG CCAAAACAGT AACCTTTAAC AATGTTAACG

37 / 68

FIG. 7F.

38 / 68

4 051	ATTCAAAT	CTCTGCTGAC	GGTCACAATG	TGACACTAAA	TAGCAAAGTG
4 101	AAACATCTA	GCAGCAATGG	CGGACGTGAA	AGCAATAGCG	ACAACGATAAC
4 151	CGGCTTAACT	ATTACTGCAA	AAAATGTAGA	AGTAAACAAA	GATATTACTT
4 201	CTCTCAAAAC	AGTAAATATC	ACCGCGTCGG	AAAAGGTAC	CACCACAGCA
4 251	GGCTCGACCA	TTAACGCAAC	AAATGGCAA	GCAAGTATTA	CAACCAAAAC
4 301	AGGTGATATC	AGCGGTACGA	TTTCCGGTAA	CACCGTAAGT	GTTAGCGCGA
4 351	CTGGTGATT	AACCACTAAA	TCCGGCTCAA	AAATTGAAGC	GAAATCGGGT
4 401	GAGGCTAATG	TAACAAAGTGC	AACAGGTACA	ATGGCGGTA	CAATTCCGG
4 451	TAATACGGTA	AATGTTACGG	CAAACGCTGG	CGATTAAACA	GTGGGAATG
4 501	GGCGAGAAAT	TAATGCCGACA	GAAGGGCTG	CAACCTTAAC	CGCAACAGGG
4 551	AATACCTTGA	CTACTGAAGC	CGGTTCTAGC	ATCACTCAA	CTAAGGGTCA
4 601	GGTAGACCTC	TTGGCTCAGA	ATGGTAGCAT	CGCAGGAAGC	ATTAATGCTG
4 651	CTAATGTCGAC	ATTAATATCT	ACAGGGCACCT	TAACCACCGT	GGCAGGGCTCG
4 701	GATATTAAAG	CAACCAGCGG	CACCTTGGT	ATTAACGCAA	AAGATGCTAA
4 751	GCTAAATGGT	GATGCATCAG	GTGATAGTAC	AGAAGTGAAT	GCAGTCAACCG
4 801	ACTGGGGATT	TGGTAGTGTG	ACTGGGGCAA	CCTCAAGCAG	TGTGAATATC
4 851	ACTGGGGATT	TAACACAGT	AAATGGTTA	AATATCATT	CGAAAGATGG

FIG. 7G.

4901 TAGAAACACT GTGGCCTTAA GAGCCAAGGA ATTGAGGGTG AAATATAATCC
 4951 AGCCAGGTGT AGCAAGTGT GAAGAAGTAA TTGAAGCGAA ACGCGTCCTT
 5001 GAAAAGTAA AAGATTATC TGATGAAGAA AGAGAAACAT TAGCTAACT
 5051 TGGTGTAACT GCTGTACGTT TTGTTGAGCC AAATAATACA ATTACAGTCA
 5101 ATACACAAA TGAAATTACA ACCAGACCGT CAAGTCAAGT GATAATTCTCT
 5151 GAAGGTAAGG CGTGTtCTC AAGTGGTAAT GGGCACGAG TATGTACCAA
 5201 TGT'TGCTGAC GATGGACAGC CGTAGTCAGT AATTGACAAG GTAGATTCA 39 /
 5251 TCCTGCAATG AAGTCATT TT ATTTCGTAT TATTACTGT GTGGGTTAAA 68
 5301 GTTCAGTAGC GGCTTTACCC ATCTTGTAAA AATTACGGA GAATACAATA
 5351 AAGTATTTTT AACAGGTTAT TATTATGAAA AATATAAAAA GCAGATTAAA
 5401 ACTCAGTGC AATATCAGTAT TGCTTGGCCT GGCTTCTCA TCATTGTATC
 5451 CAGAAGAACG GTTTTTAGTA AAAGGCTTTC AGTTATCTGG TGCACTTGAA
 5501 ACTTTAAGTG AAGACGCCA ACTGTCGTAA GCAAATCTT TATCTAAATA
 5551 CCAAGGCTCG CAAACTTAA CAAACCTAAA AACAGCACAG CTTGAATTAC
 5601 AGGCTGTGCT AGATAACATT GAGCCAAATA AATTGATGT GATATTGCCG
 5651 CAAACAAACCA TTACGGATGG CAATATCATG TTIGAGCTAG TCTCGAAATC

FIG. 7H.

5701 AGCCGAGAA AGCCAAGTT TTATAGGC GAGCCAGGGT TATAGTGAAG
 5751 AAAATATCGC TCGTAGCCCTG CCATCTTGTG ACAAGGAAA AGTGTATGAA
 5801 GATGGTCGTC AGTGGTTCGA TTGCGTGTGAA TTAAATTATGG CAAAGAAAA
 5851 CCCGCTTAAG GTTACCCGTG TACATTACGA ACTAAACCCT AAAACAAAA
 5901 CCTCTAATT GATAATTGCG GGCTTCTCGC CTTTTGGTAA AACGGTAGC
 5951 TTTATTTCTT ATGATAATT CGGGCGGAGA GAGTTAACT ACCAACGTTG
 6001 AAGCTTGGGT TTTGTTAATG CCAATTAAAC TGTCATGAT GATGTTAA
 6151 TTATACCACT ATGAGTTATG CTGATTCTAA TGATATCGAC GGCTTACAA 40 / 68
 6201 GTGGGATTAA TCGTAAATT TCAAAGGTC AATCTATCTC TGCGAATCTG
 6251 AAATGGAGTT ATTATCTCCC AACATTAAAC CTTGGCATGG AAGACCAATT
 6301 TAAATTAAAT TTAGGCTACA ACTACCGCCA TATTATCAA ACCTCCGGCT
 6351 TAAATCGCTT GGGTGAAACG AAGAAAAAAT TTGCAGTATC AGGGCTAAGT
 6401 GCAGGCATTG ATGGACATAT CCAATTACCA CCTAAACAA TCTTTAATAT
 6451 TGATTAACT CATCATTACCGAGTAA ATTACCAAGGC TCTTTGGAA
 6501 TGGAGGCCAT TGGCGAAACA TTAAATCGCA GCTATCACAT TAGCACAGCC
 6551 AGTTAGGGT TGAGTCAAGA GTTGCTCAA GGTTGGCATT TAGCAGTC
 6601 ATTATCAGGT CAATTACTC TACAAGATA TAGCAGTATA GATTATTCT

FIG. 7I.

6651	CTGTAACAGG	TACTTATGGC	GTCAGAGGGCT	TTAAATAACGG	CGGTGCAAGT
6701	GGTGAGCCGG	GTCTTGTATG	GGGTAATGAA	TTAAGTATGC	CAAATAACAC
6751	CCGCCTCCAA	ATCAGCCCTT	ATGCCGTTTA	TGATGCAGGT	CAGTTCCGTT
6801	ATAATAGCGA	AAATGCTAAA	ACTTACGGCG	AAGATATGCA	CACGGTATCC
6851	TCTGCCGGTT	TAGGCATTAA	AACCTCTCCCT	ACACAAAACT	TAAGCCTAGA
6901	TGCTTTGTT	GCTCGTGCCT	TTGCAAATGC	CAATAGTGAC	AATTGAAATG
6951	GCAACAAAAA	ACGGCACAAAGC	TCACCTACAA	CCTTCTGGG	41 GAGATTAACA
7001	TTCAGTTCT	AACCCGTGAAA	TTTAATCAAC	TGGTAAGCGGT	63 TCCGCCTACC
7051	AGTTTATAAC	TATATGCTTT	ACCCGCCAAT	TTACAGTCTA	TAGGCAAACCC
7101	TGTTTTTACCC	CTTATATATC	AAATAAACAA	GCTAAGCTGA	GCTAAGCAAA
7151	CCAAGCAAC	TCAAGCAAGC	CAAGTAATAC	TAaaaaAAACA	ATTTTATATGA
7201	TAAACTAAG	TATACTCCAT	GCCATGGCGA	TACAAGGGAT	TTAATAATAT
7251	GACAAAGAA	AATTGCAAA	ACGCTCCTCA	AGATGCGACC	GCTTTACTTG
7301	CGGAATTAG	CAACAAATCAA	ACTCCCCCTGC	GAATATTAA	ACAACCAACGC
7351	AAGCCCAGCC	TATTACGCTT	GGAACAAACAT	ATCGCAAAA	AAGATATTGA
7401	GTTTGCTTGT	CGTGAATTAA	TGGTGATTCT	GGAAAAAATG	GACGCGTAATT

FIG. 7J.

7451	TTGGAGGGGT	TCACGATATT	GAATTGACG	CACCCGGCTCA	GCTGGCATAT
7501	CTACCCGAAA	AATTACTAAT	TTATTTGCC	ACTCGTCTCG	CTAAATGCAAT
7551	TACAAACACTC	TTTCCGGACC	CCGAATTGGC	AATTCTGAA	GAAGGGGGGT
7601	TAAGATGAT	TAGCCTGCAA	CGCTGGTTGA	CGCTGATT	TGCCTCTTCC
7651	CCCTACGTTA	ACGGCAGACCA	TATTCTCAAT	AAATATAATA	TCAACCCAGA
7701	TTCCGAAGGT	GGCTTTCATT	TAGCAAACAGA	CAACTCTCT	ATTGCTAAAT
7751	TCTGTATT	TTACTTACCC	GAATCCAATG	TCAATATGAG	TTTAGATGCC
7801	TTATGGCAG	GGAAATCAACA	ACTTTGTGGCT	TCATTGTGTT	TTGGGTTGCA
7851	GTCTTCACGT	TTTATTGGTA	CCGCATCTGC	GTTTCATAAA	AGAGGGTGG
7901	TTTACAGTG	GTTCCTAAA	AAACTCGCCG	AAATTGCTAA	TTTAGATGAA
7951	TTGCCCTGCAA	ATATCCCTCA	TGATGTATAT	ATGCCACTGCA	GTTATGATT
8001	AGCAAAAC	AAGCACGATG	TTAACGGTCC	ATTAAACGAA	CTTGTCCGCA
8051	AGCATATCCT	CACGCAAGGA	TGGCAAGACCC	GCTACCTTTA	CACCTTAGGT
8101	AAAAGGACG	GCAAACCTGT	GATGATGGTA	CTGCTTGAAC	ATTTTAAATT
8151	GGGACATTG	ATTATCGTA	CACATTCAAC	TTCAATGATT	GCTGCTCGAG
8201	AAAATTCTA	TTAGTCGGC	TTAGGCCATG	AGGGCCATG	AAAATAGGT

FIG. 7K.

8251 CGAGAAGTGT TTGACGAGTT CTTTGAAATC AGTAGCAATA ATATAATGGA
 8301 GAGACTGTTT TTTATCCGTA AACAGTCGGA AACTTTCCAA CCCGCAGTGT
 8351 TCTATATGCC AAGCATTGGC ATGGATATTA CCACGATT TGTGAGCAAC
 8401 ACTCGGCTTG CCCCTATTCA AGCTGTAGCC CTGGGTCACTC CTGCCACTAC
 8451 GCATTCTGAA TTTATTGATT ATGTCATCGT AGAAGATGAT TATGTGGGCA
 8501 GTGAAGGATTG TTTCAGCGAA ACCCTTTAC GCTTACCCAA AGATGCCCTA
 8551 CCTTATGTAC CTTCTGCACT CGCCCCACAA AAAGTGGATT ATGTA
 8601 GGAAAACCCT GAAGTAGTC ATATCGGTAT TGCCGCTACC ACAATGAAAT /
 8651 TAAACCCCTGA ATTGGCTA ACATTGCAAG AAATCAGAGA TAAAGCTAA 43
 8701 GTCAAAATAC ATTTCATTT CGCACTTGG CAATCAAACAG GCTTGACACA
 8751 CCCTTATGTC AAATGGTTA TCGAAAGCTA TTAGGTGAC GATGCCACTG
 8801 CACATCCCCA CGCACCTTAT CACGATTATC TGGCAATATT GCGTGATTGCG
 8851 GATATGCTAC TAAATCCGTT TCCTTTCGGT AATACTAACG GCATAATTGCA
 8901 TATGGTTACA TTAGGTTAG TTGGGTATG CAAACGGGG GATGAAGTAC
 8951 ATGAAACATAT TGATGAAGGT CTGTTAAC ACCAGAATGCG
 9001 CTGATAGCCG ACACACGAGA AACATATATT GAATGTGCTT TGGGTCTAGC
 9051 AGAAAACCAT CAAGAACGCC TTGAAACTCCG TCGTTACATC ATAGAAAACA

44 / 68

FIG. 7L.

9101	ACGGCTTACA	AAAGCTTTTT	ACAGGGGACC	CTCGTCCATT	GGGCAAAATA
9151	CTGCTTAAGA	AAACAAATGA	ATGGAAGCGG	AAGCACTTGA	GTAAAAAATA
9201	ACGGTTTTT	AAAGTAAAAG	TGCGGTTAAT	TTTCAAAGCG	TTTTAAAAAC
9251	CTCTCAAAA	TCAACCGCAC	TTTTATCTTT	ATAACGATCC	GGCACGCTGA
9301	CAGTTATCA	GCCTCCCCGC	ATAAAACTCC	GCCTTTCATG	GCGGAGATT
9351	TAGCCAAAC	TGGCAGAAAT	TAAAGGCTAA	AATCACCAA	TTGCACCCACA
9401	AAATCACCAA	TACCCACAAA	AAA		

FIG. 8A.

1	GATCAATCTG	GGCGATATT	TG GCCAAAGG	TGGTAACATT	AATGTCCGGCG
51	CTGCCCACTAT	TCGCAATAAA	GGTAAACTTT	CTGCCGACTC	TGTAAGCAAA
101	GATAAAAGTG	GTAACATTTG	TCTCTCTGCC	AAAGAACGGTG	AAGCGGAAT
151	TGGCGGTGTA	ATTTCCCCTC	AAAATCAGCA	AGCCAAGGT	GGTAAGTTGA
201	TGATTAACAGG	CGATAAAAGTT	ACATTGAAAA	CGGGTGCAGT	TATCGACCTT
251	TCGGGTAAAG	AAGGGGGAGA	AACTTATCTT	GGCGGTGACG	AGCGTGGCGA
301	AGGTAAAAC	GGCATTCAAT	TAGCAAAGAA	AACCACTTTA	GAAAAGGCT
351	CAACAATTAA	TGTGTCAGGT	AAAGAAAAAG	GTGGGGCGGC	TATTGTATGG
401	GGCGATATTG	CGTTAATTGA	CGGCAATATT	AATGCCCAAG	GTAAAGATAT
451	CGCTAAACT	GGTGGTTTTG	TGGAGACGTC	GGGGCATTAC	TTATCCATTG
501	ATGATAACGC	AATTGTTAAA	ACAAAAGAAAT	GGCTACTAGA	CCCAGAGAAT
551	GTGACTATTG	AAGGCTCTTC	CGCTTCTCGC	GTCGAGCTGG	GTGCCGATAG
601	GAATTCCCAC	TCGGCAGAGG	TGATAAAAGT	GACCCTAAAA	AAAATAACAA
651	CCTCCTTGAC	AACACTAAC	AATAACCA	TTTCAAAATCT	TCTGAAAAGT
701	GCCCACGTGG	TGAACATAAC	GGCAAGGAGA	AAACTTACCG	TTAATAGCTC
751	TATCAGTATA	GAAAGAGGCT	CCCACTTAAT	TCTCCACAGT	GAAGGGTCAGG

FIG. 8B.

801 GCGGTCAAGG TGTTCAGATT GATAAAGATA TTACTCTCTGA AGGGCGGAAAT
 851 TTAACCATTT ATTCTGGCGG ATGGGTTGAT GTTCATAAAA ATATTACGCT
 901 TGGTAGCGGC TTTTTAACCA TCACAACTAA AGAAGGAGAT ATCGCCTTCG
 951 AAGACAAAGTC TGGACCGAAC AACCTAACCA TTACAGCCC AGGGACCAC
 1001 ACCTCAAGGTAA TAGTAACGG CTTAGATT ACAAACGTCT CTCTAAACAG
 1051 CCTTGGCGGA AAGCTGAGCT TTACTGACAG CAGAGAGGAC AGAGGTAGAA
 1101 GAACTAAAGGG TAATATCTCA AACAAATTG ACGGACGTT AAACATTCC
 1151 GGAACGTGAG ATATCTCAAT GAAAGCACCC AAAGTCAGCT GGTTTTACAG 46 / 60
 1201 AGACAAAGGA CGCACCTACT GGAACGTAAC CACTTTAAAT GTTACCTCGG
 1251 GTAGTAAATT TAACCTCTCC ATTGACAGCA CAGGAAGTGG CTCAACAGGT
 1301 CCAAGCATACT GCAATGCAGA ATAAATGGC ATAACATTAA ATAAAGCCAC
 1351 TTTTAAATATC GCACAAGGCT CAACAGCTAA CTTTAGCATE AAGGCATCAA
 1401 TAATGCCCTT TAAGAGTAAC GCTTAACCTACG CATTATTTAA TGAAGATATT
 1451 TCAGTCTCAG GGGGGGTAG CGTTAATTTC AAACCTAACG CCTCATCTAG
 1501 CAACATACAA ACCCCTGGCG TAATTATAAA ATCTCAAAAC TTTAATGTCT
 1551 CAGGAGGGTC AACTTTAAAT CTCAAGGGCTG AAGGTTCAAC AGAAACCGCT
 1601 TTTTCAATAG AAAATGATT AACTTAAAC GCCACCGGTG GCAATATAAC

FIG. 8C.

47 / 68

1651	AATCAGACAA	GTCGAGGGTA	CCGATTCA	CGTCAACAAA	GGTGTGGCAG
1701	CCAAAAAAA	CATAACTTT	AAAGGGGTA	ATATCACCTT	CGGCTCTCAA
1751	AAAGCCACAA	CAGAAATCAA	AGGCAATGTT	ACCATCAATA	AAAACACTAA
1801	CGCTACTCTT	CGTGGTGCAGA	ATTTTGCCGA	AAACAAATCG	CCTTTAAATA
1851	TAGCAGAAA	TGTTTATAAT	AATGCCAAC	TTACCACTGC	CGGCTCCATT
1901	ATCAATATAG	CCGGAAATCT	TACTGTTCA	AAAGGCGCTA	ACCTTCAAGC
1951	TATAACAAAT	TACACTTTA	ATGTAGCCGG	CTCATTTGAC	AACAATGGCC
2001	CTTCAAACAT	TTCATGCC	AGAGGAGGGG	CTAAATTAA	AGATATCAAT
2051	AACACCAGTA	GCTTAAATAT	TACCACCAAC	TCTGATACCA	CTTACCGCAC
2101	CATTATAAAA	GGCAATATAT	CCAACAAATC	AGGTGATTG	AATATTATTCG
2151	ATAAAAAAAG	CGACGGCTGAA	ATCCMAATTG	GGGCAATTAT	CTCACAAAAA
2201	GAAGGCAATC	TCACAAATTTC	TTCTGATAAA	GTAAATATTA	CCAATCAGAT
2251	AACAAATCAA	GCAGGGCTTG	AAGGGGGCG	TTCTGATTC	AGTGAGGCAG
2301	AAAATGCTAA	CCTAACIATT	CAAACCAAAAG	AGTTAAAATT	GGCAGGGAGAC
2351	CTAAATATT	CAGGCTTTAA	TAAAGCAGAA	ATTACAGCTA	AAATGGCAG
2401	TGATTAACT	ATTGGCAATG	CTAGCGGTGG	TAATGCTGAT	GCTAAAAAAG

FIG. 8D.

2451	TGACTTTGA	CAAGGTTAAA	GATTCAAAAA	TCTCGACTGA	CGGTACAAAT
2501	GTAACACTAA	ATAGCGAAGT	GAAAACGTCT	AATGGTAGTA	GCAATGGCTGG
2551	TAATGATAAC	AGCACCGGTT	TAACCATTTC	CGCAAAAGAT	GTAAACGGTAA
2601	ACAATAACGT	TACCTCCCAC	AAGACAATAA	ATATCTCTGC	CGCAGCAGGA
2651	AATGTAACAA	CCAAGGAAGG	CACAACATC	AATGCAAACCA	CAGGCAGCGT
2701	GGAAAGTAACT	GCTCAAAATG	GTACAATTAA	AGGCAACATT	ACCTCGCAA
2751	ATGTAACAGT	GACAGCAACCA	GAAAATCTTG	TTACCCACAGA	GAATGGCTGTC
2801	ATTAATGCCA	CCAGGGCAC	AGTAAACATT	AGTACAAAAA	CAGGGATAT ⁴⁰ /
2851	TAAAGGTTGGA	ATTGAATCAA	CTTCCGGTAA	TGTAATATT	ACAGCGAGCG ⁶⁰
2901	GCAATAACACT	TAAGGTAAGT	AATATCACTG	GTCAAGATGT	AACAGTAACA
2951	GCGGATGCAG	GAGCCTTGAC	AACTACAGCA	GGCTCAACCA	TTAGTGGCAC
3001	AACAGGCAAT	GCAAATATTAA	CAACCAAAAC	AGGTGATATC	AACGGTAAAG
3051	TTGAATCCAG	CTCCGGCTCT	GTAAACACTTG	TTGCAACTGG	AGCAACTCTT
3101	GCTGTAGGTA	ATATTCAGG	TACACTGTT	ACTATTACTG	CGGATAGCGG
3151	TAAATTAACC	TCCACAGTAG	GTCTACAAT	TAATGGGACT	AATAGTGTAA
3201	CCACCTCAAG	CCAATCAGGC	GATATTGAAG	GTACAATTTC	TGGTAATACA
3251	GTAAATGTTA	CAGCAAGCAC	TGGTGATTAA	ACTATTGGAA	ATAGTGCAA

FIG. 8E.

3301 AGTTGAAGCG AAAAATGGAG CTGCAAACCTT AACTGCTGAA TCAGGCCAAT
 3351 TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACCT
 3401 CTTACAGCCA AGGATAGCAG TATGCCAGGA AACATTAAATG CTGCTTAATGT
 3451 GACGTTAAAT ACCACAGGCA CTTTAACCTAC TACAGGGAT TCAAAGATTAA
 3501 ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAGATGC CAAATAGAT
 3551 GGTGCTGCAT CAGGTGACCCG CACAGTAGTA AATGCAACTA ACGCAAGTGG
 3601 CTCTGGTAAC GTGACTGCGA AAACCTCAAG CAGCGTGAAT ATCACCGGGG 49 / 68
 3651 ATTAAACAC AATAAATGGG TTAAATATCA TTTCGGAAAA TGGTAGAAC
 3701 ACTGTGGCT TAAGAGCCAA GGAAATTGAT GTGAAATATA TCCAACCAGG
 3751 TGTAGCAAGC GTAGAACAGG TAATTGAAGC GAAACGGCGTC CTTGAGAAAGG
 3801 TAAAAGATTT ATCTGATGAA GAAAGAGAAA CACTAGCCAA ACTTTGGTGTA
 3851 AGTGTGTAC GTTTCTGTGA GCCAAATAAT GCCATTACGG TTAATACACA
 3901 AAACGAGTTT ACAACCAAC CATCAAGTCA AGTGACAATT TCTGAAGGTA
 3951 AGGCCGTGTT CTCAAAGTGGT AATGGCCAC GAGTATGTAC CAATGTTGCT
 4001 GACGGATGGAC AGCAGTAGTC AGTAATTGAC AAGGTTAGATT TCATCCTGCA
 4051 ATGAAAGTCAT TTATTTTCG TATTATTAC TGTGTGGTT AAAGTTCAGT

50/68

FIG. 8F.

4101	ACGGGCTTTA	CCCACCTTGT	AAAAAATTAC	GAAAATACA	ATAAAGTATT
4151	TTAACAGGT	TATTATTATG	AAAACATAA	AAAGCAGATT	AAAACACTCAGT
4201	GCAATATCAA	TATTGCTTGG	CTTGGCTTCT	TCATCGACGT	ATGCAGAAGA
4251	AGCGTTTTTA	GTAAAAGGCT	TTCAAGTTATC	TGGCGCG	

FIG. 9A.

1 GGGAAATGAGC GTCGTACACG GTCAATAGC GTACAGCAAC CATGCAAGTA GACGGCAATA
 51 AAACCACTAT CCGTAATAGC GTCAATGCTA TCATCAATTG GAAACAAATT
 101 AACATTGACC AAAATGAAAT GGAGGCAGTTT TTACAAGAAA GCAGGCAACTC
 151 TGCCGTTTC AACCGTGTAA CATCTGACCA AATCTCCAA TAAAGGGA
 201 TTTTAGATTIC TAAACGGACAA GTCTTTTAA TCAACCCAA TGGTATCACA
 251 ATAGGTAAG ACCGAATATT TAACACTAAT GGCTTTACTG CTTCTACGCT
 301 AGACATTCT AACGAAAACAA TCAAGGGCGC TAATTTCACC CTTGAGCAA
 351 CCAAGGATAA AGCACTCGCT GAAATCGTGA ATCACGGTTT ATTACCGTT
 401 GGTAAAGACG GTAGCGTAAA CCTTATTGGT GGCAAAGTGA AAAACGAGGG
 451 CGTGATTAGC GTAAATGGCG GTAGTATTTC TTTACTTGCA GGGCAAAAA
 501 TCACCATCAG CGATATAATA AATCCAACCA TCACCTACAG CATTGCTGCA
 551 CCTGAAAACG AAGCGATCAA TCTGGCGAT ATTTTGCCA AAGGTGGTAA
 601 CATTAAATGTC CGCGCTGCCA CTATTGCAA TAAAGGTTAA CTTTCTGCCG
 651 ACTCTGTAAG CAAAGATAAA AGTGGTAACA TTGTTCTCTC TGCCAAAGAA
 701 GGTGAAGCGG AAATTGGCGG TGTAAATTTC GCTCAAAATC AGCAAGCCAA
 751 AGGTGTTAAG TTGATGATTA CAGGTGATAA AGTCACATTA AAAACAGGTG

51 / 68

FIG. 9B.

801	CAGTTATCGA	CCTTTCAGGT	AAAGAACGGG	GAGAGACTTA	TCTTGGCGGT
851	GATGAGCGTG	GGAAAGGTA	AAATGGTATT	CAATTAGCGA	AGAAAACCTC
901	TTTAGAAAAA	GGCTCGACAA	TTAATGTATC	AGGCAGGAA	AAAGGGGGC
951	GGCTATTGT	ATGGGGCAT	ATTGCATTAA	TTAATGGTAA	CATTAAATGCT
1001	CAAGGTAGCG	ATATTGCTAA	AACTGGGGC	TTTGTGGAAA	CATCAGGACA
1051	TGACTTATCC	ATTGGTGTG	ATGTGATGT	TGACGGCTAA	GAGTGGTTAT
1101	TAGACCCAGA	TGATGTTGCC	ATTGAAACTC	TTACATCTGG	ACCCAATAAT
1151	ACCGGGAAA	ACCAAGGATA	TACAACAGGA	GATGGGACTA	AAGAGTCACC
1201	TAAAGGTAAT	AGTATTCTA	AACCTACATT	ACAAACTCA	ACTCTTGAGC
1251	AAATCCTAAG	AAGAGGTTCT	TATGTTAATA	TCACTGCTAA	TAATAGAATT
1301	TATGTTAATA	GCTCCATCAA	CTTATCTAAT	GGCAGTTAA	CACTCACAC
1351	TAAACGAGAT	GGAGTTAAA	TTAACGGTGA	TATTACCTCA	AACGAAAATG
1401	GTAATTAAAC	CATTAAAGCA	GGCTCTGG	TTGATGTTCA	AAAAACATC
1451	ACGCTTGGTA	CGGGTTTTT	GAATATTGTC	GCTGGGGATT	CTGTAGCTTT
1501	TGAGAGGAG	GGCGATAAAG	CACGTAACCG	ACAGATGCT	CAAATTACCG
1551	CACAAGGGAC	GATAACCGTC	AATAAAGATG	ATAAAACAATT	TAGATTCAAT
1601	AATGTTATCTA	TTAACGGGAC	GGGCAAGGGT	TTAAAGTTA	TTGCAAATCA

FIG. 9C.

1651 AAATAATTTC ACTCATAAAT TTGATGGCGA AATTAACATA TCTGGAAATAG
 1701 TAACAATTAA CCAAACCACG AAAAAGATG TAAATACTG GAATGCATCA
 1751 AAAGACTCTT ACTGGAAATGT TTCTCTCTT ACTTTGAATA CGGTGCAAAA
 1801 ATTACCTTT ATAATTCG TTGATAGCGG CTCAAATTC CAAGATTGAA
 1851 GGTCATCACG TAGAAGTTTT GCAGGGGTAC ATTTAACGG CATCGGAGGC
 1901 AAAACAAACT TCAACATCGG AGCTAACGCA AAAGCCTTAT TAAATTAAA
 1951 ACCAAACGCC GCTACAGACC CAAAAAAGA ATTACCTATT ACTTTAACCG
 2001 CCAACATTAC AGCTACCGGT AACAGTGATA GCTCTGTGAT GTTTGACATA 53/68
 2051 CACGCCAATC TTACCTCTAG AGCTGCCGGC ATAAACATGG ATTCAATTAA
 2101 CATTACGGC GGGCTTGAAT TTTCCATAAAC ATCCCATAAT CGCAATTAGTA
 2151 ATGCTTTGAA ATCAAAAAA GACTTAACTA TAAATGCAAC TGGCTCGAAT
 2201 TTTAGTCTTA AGCAAACGAA AGATTCTTT TATAATGAAT ACAGCAAACA
 2251 CGCCATTAAAC TCAAGTCATA ATCTAACCAT TCTTGGCGGC AATGTCACTC
 2301 TAGGTGGGA AAATTCAAGC AGTAGCATT CGGGCAATTAT CAATATCACC
 2351 AATAAGCAA ATGTTACATT ACAAGCTGAC ACCAGCAACA GCAACACAGG
 2401 CTTGAAGAAA AGAACTCTAA CTCTGGCAA TATATCTGTT GAGGGGAATT

FIG. 9D.

2451 TAAGCCTAAC TGGTGCAAAT GCAAACATTG TCGGCAAATCT TTCTTATTGCCA
 2501 GAAGATTCCA CATTAAAGG AGAACGCCAGT GACAACCCTAA ACATCACCCGG
 2551 CACCTTTACC AACAAACGGTA CGGCCAACAT TAATAATAAA CAAGGGAGTGG
 2601 TAAAACCTCCA AGGGCATATT ATCAATAAAG GTGGTTTAAA TATCACTACT
 2651 AACGGCTCAG GCACCTCAAAA ACCATTATT AACGGAAATA TAACTAACGA
 2701 AAAAGGGGAC TTAAACATCA AGAATATAA AGCCGACGCC GAAATCCAAA
 2751 TTGGCGGCAA TATCTCACAA AAAGAAGGCC ATCTCACAAAT TTCTTCTGAT⁵⁴
 2801 AAAGTAAATA TTACCAATCA GATAACAAATC AAAGCAGGCC TTGAAGGGGG⁶⁸
 2851 GCGTTCTGAT TCAAGTGAGG CAGAAAATGC TAACCTAACT ATTCAAACCA
 2901 AAGAGTTAAA ATTGGCAGGA GACCTAAATA TTCAGGCTT TAATAAGCA
 2951 GAAATTACAG CTAAAATGG CAGTGATTAA ACTATTGGCA ATGCTAGCCG
 3001 TGGTAATGCT GATGGCTAAA AAGTGACTTT TGACAGGTT AAAGATTCAA
 3051 AAATCTCGAC TGACGGTCAC AATGTAACAC TAAATAGCGA AGTGAACACG
 3101 TCTAATGGTA GTAGCAATGC TGGTAATGAT AACAGCACCG GTTTAACCAT
 3151 TTCCGCAAAA GATGTAACGG TAAACAATAA CGTTACCTCC CACAAGACAA
 3201 TAAATATCTC TGCCGGCAGCA GGAAATGTA CAACCAAAGA AGGCACAACT
 3251 ATCAATGCAA CCACAGGCAG CGTGGAAAGTA ACTGCTCAAAT ATGGTACAAAT

FIG. 9E.

3301	TAAGGCCAAC	ATTACCTCGC	AAAATGTAAC	AGTGACGCC	ACAGAAATC
3351	TTGTACCAC	AGAGAATGGCT	GTCATTAATG	CAACCAGCGG	CACAGTAAAC
3401	ATTAGTACAA	AAACAGGGAA	TATTAAGGT	GGAATTGAAT	CAACTCCGG
3451	TAATGTAAT	ATTACAGCGA	GCGGCAATAAC	ACTTAAGGTA	AGTAATATCA
3501	CTGGTCAAGA	TGTTAACAGTA	ACAGCGGATG	CAGGAGCCTT	GACAACCTACAA
3551	GCAGGGCTCAA	CCATTAGTGC	GACAACAGGC	AATGCAAATA	TTACAAACAA
3601	AACAGGTGAT	ATCAAACGGTA	AAGTTGAATC	CAGCTCCGGC	TCTGTAACAC 55
3651	TTGTGTGCCAAC	TGGAGCAACT	CTTGCTGTAG	GTAAATATTTC	AGGTAAACACT 68
3701	GTRACTATTAA	CTGGGGATAG	CGGTAAATTAA	ACCTCCACAG	TAGGTTCTAC
3751	AATTAATGGG	ACTAATAGTG	TAACCAACCTC	AAGCCAATCA	GGCGATATTG
3801	AAGGTACAAAT	TTCTGGTAAT	ACAGTAAATG	TTACAGCAAG	CACTGGTGAT
3851	TTAACTATTG	GAAATAGTGC	AAAAGTTGAA	GCGAAAAATG	GAGCTGCAAC
3901	CTTAAC TGCT	GAATCAGGCCA	AATTAAACCAC	CCAAACAGGC	TCTAGCATTAA
3951	CCTCAAGCAA	TGGTCAGACA	ACTCTTACAG	CCAAGGATAG	CAGTATCGCA
4001	GGAAACATTA	ATGCTGCTAA	TGTGACGTTA	AATACCAACAG	GCACTTTAAC
4051	TACTACAGGG	GATTCAAAGA	TTAACGCAAC	CAGTGGTACC	TTAACAAATCA

FIG. 9F.

4101 ATGCAAAAGA TGCCAAATTA GATGGTGCCTG CATCAGGTGA CGGCACACAGTA
 4151 GTAAATGCAA CTAACGCAAG TGGCTCTGGT AACGTTGACTG CGAAAACCTC
 4201 AAGCAGCGTG AATATCACCG GGGATTAAA CACAATAAAT GGGTTAAATA
 4251 TCATTTCGGA AAATGGTAGA AACACTGTGC GCTTAAGAGG CAAGGAAATT
 4301 GATGTGAAAT ATATCCAACC AGGTGTAGCA AGCGTAGAAG AGGTAATTGA
 4351 AGCGAACCGC GTCCCTTGAGA AGGTAAAAGA TTTATCTGAT GAAGAAAGAG
 4401 AACACTAGC CAAACTTGGT GTAAGTGCCTG TACGTTTCGGT TGAGCCAAAT
 4451 AATGCCATT ACGTTAACATAC ACAAAACGAG TTTACAAACCA ACCATCAAG
 4501 TCAAGTGACA ATTTCCTGAAG GTAAAGGGCTG TTTCTCAAGT GGTAATGGCG
 4551 CACGAGTATG TACCAATGTT GCTGACGATG GACAGCAGTA GTCAGTAATT
 4601 GACAAGGTAG ATTTCATCCT GCAATGAAGT CATTTTATT TCGTATTATT
 4651 TACTGTGTGG GTAAAGTTCA AGTACGGCT TTACCCACCT TGAAAAAAT
 4701 TA

56 / 68

FIG. 10A. COMPARISON OF DERIVED AMINO ACID SEQUENCE

1	Hmw3.com
	Hmw4.com
	Hmw1.com	MNKIYRLKFS	KRLNALVAVS	ELARGCDHST	EKGSEKPARM	KVRHILALKPL
	Hmw2.com	MNKIYRLKFS	KRLNALVAVS	ELARGCDHST	EKGSEKPARM	KVRHILALKPL
						57 / 68
						100
51	Hmw3.com
	Hmw4.com	GMSVVFHGT	ATMQVDGNKT
	Hmw1.com	SAMILSLGV	SIPQSVLASG	LQGMSSVVFHGT	ATMQVDGNKT	TIRNSVNAAII
	Hmw2.com	SAMILSLGV	SIPQSVLASG	LQGMSSVVFHGT	ATMQVDGNKT	TIRNSVNAAII
						101
						150
1	Hmw3.com
	Hmw4.com	NWKQFNIDQN	EMEQFLQESS	NSAVFNRVTS	DQISQLKGIL	DSNGQVFLIN

FIG. 10B.

FIG. 10C.

Hmw4.com	YSIAAPENEA	INLGDIFAKG	GNINVRAATI	RNKGKILSADS	VSKDKSGNIV
Hmw1.com	YSIAAPENEA	VNLGDIFAKG	GNINVRAATI	RNKGKILSADS	VSKDKSGNIV
Hmw2.com	YSIAAPENEA	VNLGDIFAKG	GNINVRAATI	RNKGKILSADS	VSKDKSGNIV

301

Hmw3.com	LSAKEGEAEI	GGVISQAQNQQ	AKGGKLMITG	DKVTTLKKTGAV	IDLSGKEGGGE 59 / 68
Hmw4.com	LSAKEGEAEI	GGVISQAQNQQ	AKGGKLMITG	DKVTTLKKTGAV	IDLSGKEGGGE
Hmw1.com	LSAKEGEAEI	GGVISQAQNQQ	AKGGKLMITG	DKVTTLKKTGAV	IDLSGKEGGGE
Hmw2.com	LSAKEGEAEI	GGVISQAQNQQ	AKGGKLMITG	DKVTTLKKTGAV	IDLSGKEGGGE

351

Hmw3.com	TYLGGDERGE	GKNGIQLAKK	TITLEKGSTIN	VSGKEKGGRA	IVWDIALID
Hmw4.com	TYLGGDERGE	GKNGIQLAKK	TITLEKGSTIN	VSGKEKGGRA	IVWDIALID
Hmw1.com	TYLGGDERGE	GKNGIQLAKK	TITLEKGSTIN	VSGKEKGGRA	IVWDIALID
Hmw2.com	TYLGGDERGE	GKNGIQLAKK	TITLEKGSTIN	VSGKEKGGRA	IVWDIALID

350

400

FIG. 10D.

401

Hmw3 com GNINAQGK.D IAKTGGFVET SGHYLSIDDN AIVKTKEWLL DPENVTEAP
 Hmw4 com GNINAQGS.D IAKTGGFVET SGHDL SIGDD VIVDAKEWLL DPDDVSIETL
 Hmw1 com GNINAQGSGD IAKTGGFVET SGHDL FIKDN AIVDAKEWLL DP DNVTINAE
 Hmw2 com GNINAQGSGD IAKTGGFVET SGHYLSIESN AIVKTKEWLL DPDDVTEAE

450

Hmw3 com SASRVELGAD RN SHSAEVIK VTLKKNNNTSL TTLTNTTISN LIKSAHVNNI 60 / 68
 Hmw4 com TSGRNNTGEN QGYTTGDGTK ESPKGNSISK PTLTNSTLEQ ILRRGSSYVNI
 Hmw1 com TAGRSNTSED DEYTSGGNSA STPKRNKE.K TTLNTTLES ILRKGTFFVNI
 Hmw2 com DPLRNNTGIN DEFPTGTGEA SDPKKNISELK TTLTNTTISN YLKNAWTMNI

500

Hmw3 com TARRKLTVNS SISIERGSHL ILHSEGQGGQ GVQIDKDITS .E...GGNL
 Hmw4 com TANNRIYVNS SINLSNGS.L TLHTK..RD GVKINGDITS NE...NGNL
 Hmw1 com TANQRIYVNS SINL.SNGSL TLWSEGRSGG GVEINNDITT GDDTRGANLT
 Hmw2 com TASRKLT TVNS SINGSN GSHL ILHSKGQRGG GVQIDGDIT. ...SKGGNL

FIG. 10E.

551

Hmw3.com IYSGGWVDVH KNITLGS.GF LNITTKEGDI AFEDKSGR... .NNLTITAQ
 Hmw4.com IKAGSWVDVH KNITLGT.GF LNIVAGDS.V AFEREGDKAR NATDAQITAQ
 Hmw1.com IYSGGWVDVH KNIISLGAQGN INITAKQD.I AFEKGSNQV. ITGQ
 Hmw2.com IYSGGWVDVH KNITLD.QGF LNITA.AS.V AFEGGNNKAR DANNLTITAQ

551

Hmw3.com IYSGGWVDVH KNITLGS.GF LNITTKEGDI AFEDKSGR... .NNLTITAQ
 Hmw4.com IKAGSWVDVH KNITLGT.GF LNIVAGDS.V AFEREGDKAR NATDAQITAQ
 Hmw1.com IYSGGWVDVH KNIISLGAQGN INITAKQD.I AFEKGSNQV. ITGQ
 Hmw2.com IYSGGWVDVH KNITLD.QGF LNITA.AS.V AFEGGNNKAR DANNLTITAQ

601/68

Hmw3.com GTITSG.NSN GFRENNSVSLN SLGGKLSFTD SREDRGRRTK GNISNKFDGT
 Hmw4.com GTITVNKKDK QFRFNNVSIN GTGKGLIKFIQN.NFTHKFDGE
 Hmw1.com GTIT.SGNQK GFRFNNVSIN GTGSGLQFTT KRTN. K YAITNKFEQT
 Hmw2.com GTVTITGECK DFRAANNVSIN GTGKGLNITS SVNN.LTHNLSGT

601

Hmw3.com GTITSG.NSN GFRENNSVSLN SLGGKLSFTD SREDRGRRTK GNISNKFDGT
 Hmw4.com GTITVNKKDK QFRFNNVSIN GTGKGLIKFIQN.NFTHKFDGE
 Hmw1.com GTIT.SGNQK GFRFNNVSIN GTGSGLQFTT KRTN. K YAITNKFEQT
 Hmw2.com GTVTITGECK DFRAANNVSIN GTGKGLNITS SVNN.LTHNLSGT

650/68

Hmw3.com LNISGTVVDIS MKAPKVSWFY RD.KGRTYWN VTTLNVTSGS KFNLSIDSTG
 Hmw4.com INISGIVTIN QTTEKKDVKYW NA.SKDSYWN VSSLTLNTVQ KFTF.IKFVD
 Hmw1.com LNISGKVNIS MVLPKNESGY DKFKGRTYWN LTSLNVSESG EFNLTIIDSRG

651

Hmw3.com LNISGTVVDIS MKAPKVSWFY RD.KGRTYWN VTTLNVTSGS KFNLSIDSTG
 Hmw4.com INISGIVTIN QTTEKKDVKYW NA.SKDSYWN VSSLTLNTVQ KFTF.IKFVD
 Hmw1.com LNISGKVNIS MVLPKNESGY DKFKGRTYWN LTSLNVSESG EFNLTIIDSRG

FIG. 10F.

Hmw2com INITSGNITIN QTTRKNTSYW QTSHD. SHWN VSALNLETGA NFTF.IKYIS

701

750

Hmw3com SGSTG...PS IRNA..ELNG ITEN....KA TFNIAQGSTA NFSIKASIMP
 Hmw4com SGSNS...QD LRSSRRSFAG VHFNGIGGKT NFNIGANAKA LFKLKPNAAAT
 Hmw1com SDSAGTLTQ.PYNLNG ISFN...KDT TFNVERNARV NFDIKAPIGI
 Hmw2com SNSKGTLTQY RSSAGVNFG V..N...GMM SFNLKEGAKV NFKLKPNNM

62/68

751

800

Hmw3com FKSANYAL. FNEDIISVSG. .GGSVNFKLN ASSSNIQTPG VTIKSQNFNV
 Hmw4com DPKKELPIT. FNANITATGN SDSSVMFDIH A...NLTSRA AGINMDSINT
 Hmw1com NKYSSLNYAS FNGNISVSG. .GGSVDFTLI ASSSNVQTPG VVINSKYFNV
 Hmw2com NTSKPLPI.R FLANITATG. .GGSVFFDIY ANHS...GRG AELKMSEINI

801

850

Hmw3com SGGSTLNKA EGSTETAFSI ENDLNLNATG GNITIRQVEG T..DSRVNK
 Hmw4com TGGLDFSITS HNRNSNAFEI KKDLTINATG SNFSLKQTKD SFYNEYSKHA

FIG. 10G.

Hmw1.com STGSSLRFKTI SGSTKTGFSTI EKDLTINATG GNITLLQVEG T. . DGMIGKG
 Hmw2.com SNGANFTLNS HVRGDDAFKI NKDLTINATN SNFSLRQTKD DFYDGYARNA

851 900

Hmw3.com VAAKKKNITFK GGNITFGSOK ATTEIKGNVT INKNNTNATLR GANFAEN . . .
 Hmw4.com INSSHNLTIL GGNVTLGGEN SSSSITGNIN ITNKANVTLQ ADTSNSNTGL 63 / 68
 Hmw1.com IVAKKKNITFE GGNITFGSRK AVTEIEGNVT INNNANVTLI GSDFDNHQ. .
 Hmw2.com INSTYNISIL GGNVTLGGQN SSSSITGNIT IEKAANVTLE ANNAPNQQNI

901 950

Hmw3.com KSPLNIAGNV INNGNLTTAG SIINIAGNLT VSKGANLQAI TNYTFNVAGS
 Hmw4.com KKRTLTLGNI SVEGNLSLTG ANANTIVGNLS IAEDSTFKGE ASDNLNITGT
 Hmw1.com KPLTIKKDVI INSGNLTAGG NIVNIAGNLT VESNANFKAI TNFTFNVGGI
 Hmw2.com RDRVVIKLGSI LVNGSLSLTG ENADIKGNLT ISESATFKGK TRDTLNITGN

951 1000

FIG. 10H.

Hmw3.com	FDNNNGASNIS	IARGGAKFK.	DINNNTSSLNI	TTNSDFTTYRT	IIKGNTISNKS
Hmw4.com	FTNNNGTANIN	IKQGVVKLQG	DINNKGGGLNI	TTNASGTQKT	INGNITNEK
Hmw1.com	FDNKGNNSNIS	IAKGGAREFK.	DIDNSKNLSI	TTNSSSSTYRT	IISGNITTNKN
Hmw2.com	FTNNNGTAEIN	ITQGVVKLIG.	NVTNDGDLNI	TTHAKRNQRS	TI GGDI INNK
			1001	1050	
Hmw3.com	GDLNITIDKKs	DAEIQIGGNI	SQKEGNLTIS	SDKVNITNQI	TIKAGVEGGR
Hmw4.com	GDLNIKNIKA	DAEIQIGGNI	SQKEGNLTIS	SDKVNITNQI	TIKAGVEGGR
Hmw1.com	GDLNITNEGS	DTEMQIGGDI	SQKEGNLTIS	SDKINITKQI	TIKAGVDGEN
Hmw2.com	GSLNITDSNN	DAEIQIGGNI	SQKEGNLTIS	SDKINITKQI	TIKKGIDGED
			1051	1100	
Hmw3.com	SDSSEAENAN	LTIQTKELKL	AGDLNISGFN	KAEITAKNGS	DLTIGNASGG
Hmw4.com	SDSSEAENAN	LTIQTKELKL	AGDLNISGFN	KAEITAKNGS	DLTIGNASGG
Hmw1.com	SDSDATNNAN	LTIKTKELKL	TQDLNISGFN	KAEITAKDGS	DLTIGNTNSA
Hmw2.com	SSSDATSNAN	LTIKTKELKL	TEDLSISGFN	KAEITAKDGR	DLTIGNSNDG

FIG. 10I.

1101 1150

Hmw3com N..ADAKKVT FDKVKDSKIS TDGHNVTLNS EVKT..SNGS SNAGNDNSTG
 Hmw4com N..ADAKKVT FDKVKDSKIS TDGHNVTLNS EVKT..SNGS SNAGNDNSTG
 Hmw1com D.GTNAKKVT FNQVKDSKIS ADGHKVTLHS KVETSGSNNN TEDSSDNNAG
 Hmw2com MSGAEAKKVT FNNVKDSKIS ADGHNVTLNS KVKTSSSNGG RESNSDNDTG

1151 1200 65 / 68

Hmw3com LTISAKDVTV NNNVTSHKTI NISAAAGNVT TKEGTTINAT TGSVEVTAQN
 Hmw4com LTISAKDVTV NNNVTSHKTI NISAAAGNVT TKEGTTINAT TGSVEVTAQN
 Hmw1com LTIDAKNVTV NNNITSHKAV SISATSGEIT TKTGTTINAT TGNVEIT...
 Hmw2com LTITAKNVEV NKDVTSLIKTV NITA.SEKVT TTAGSTINAT NGKASIT...

1201 1250

Hmw3com GTIKGNITSQ NVTVTATENL VTTENAVINA TSGTVNISTK TGDIKGIES
 Hmw4com GTIKGNITSQ NVTVTATENL VTTENAVINA TSGTVNISTK TGDIKGIES
 Hmw1comAQ TGDIKGIES

FIG. 10J.

Hmw2com

.....TK T

1251

Hmw3com TSGNVNITAS GNTLKVSNIT QDVTVTADA GALT TAGST ISATTGNANI
 Hmw4com TSGNVNITAS GNTLKVSNIT QDVTVTADA GALT TAGST ISATTGNANI
 Hmw1com SSGSVTLLTAT EGALAVSNIS GNTVTVTANS GALT TAGST IKG. TESVTT
 Hmw2com

66 / 68

1300

1350

1301

Hmw3com TTKTGDDINGK VESSSGSVTL VATGATLAVG NISGNTVTIT ADSGKLITSTV
 Hmw4com TTKTGDDINGK VESSSGSVTL VATGATLAVG NISGNTVTIT ADSGKLITSTV
 Hmw1com SSQSGDIG..
 Hmw2comGDIS..
G TISGGTVEVK ATESLTQSN
G TISGNTVSVS ATVDLTTKSG

1351

Hmw3com GSTINGTNSV TTSSQSGDIE GTISGNTVNV TASTGDLTIG NSAKVEAKNG
 Hmw4com GSTINGTNSV TTSSQSGDIE GTISGNTVNV TASTGDLTIG NSAKVEAKNG

1400

FIG. 10K.

Hmw1.com SKIKATTGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEINATEG
 Hmw2.com SKIEAKSGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEINATEG

1401

Hmw3.com AATLTAESGK LTTQTGSSIT SSNGQTTLTA KDSSIAGNIN AANVTLNNTG
 Hmw4.com AATLTAESGK LTTQTGSSIT SSNGQTTLTA KDSSIAGNIN AANVTLNNTG
 Hmw1.com AATLTSSGK LTTEASSHIT SAKGQVNLSA QDSSVAGSIN AANVTLNNTG
 Hmw2.com AATLTATGNT LTTEAGSSIT STKGQVDILLA QNSSIAGNIN AANVTLNNTG

67 / 68

1450

Hmw3.com TLTTTGDSKI NATSGTLTIN AKDAKLDGAA SGDRTVVNAT NASGSGNVTA
 Hmw4.com TLTTTGDSKI NATSGTLTIN AKDAKLDGAA SGDRTVVNAT NASGSGNVTA
 Hmw1.com TLTTVKGSNI NATSGTLTIN AKDAELNGAA LGNHTVVNAT NANGSGSVIA
 Hmw2.com TLTTVAGSDI KATSGTLTIN AKDAKLNGDA SGDSTEVNAV NASGSGSVTA

1500

1451

1550
 1501

FIG. 10L.

Hmw3.com	KTSSSVNITG	LLNTINGLNI	ISENKRNTVR	LRGKEIDVKY	IOPGVASVEE
Hmw4.com	KTSSSVNITG	DLNTINGLNI	ISENKRNTVR	LRGKEIDVKY	IOPGVASVEE
Hmw1.com	TTSSRVNITG	DLITTINGLNI	ISKNGINTVL	LKGVKIDVKY	IOPGIASVDE
Hmw2.com	ATSSSVNITG	DLNNTVNGLNI	ISKDGRNTVR	LRGKEIEVKY	IOPGVASVEE

1551	VIEAKRVLEK	VKDLSDEERE	TLAKLGVSAY	RFVEPNNAIT	VNTQNEFTTK
Hmw3.com	VIEAKRVLEK	VKDLSDEERE	TLAKLGVSAY	RFVEPNNAIT	VNTQNEFTTK
Hmw4.com	VIEAKRVLEK	VKDLSDEERE	TLAKLGVSAY	RFVEPNNAIT	VNTQNEFTTK
Hmw1.com	VIEAKRILEK	VKDLSDEERE	ALAKLGVSAY	RFIEPNNTIT	VDTQNEFATR
Hmw2.com	VIEAKRVLEK	VKDLSDEERE	TLAKLGVSAY	RFVEPNNTIT	VNTQNEFTTR

1600					
68					
/68					
1601	PSSQVTISEG	KACFSSGNGA	RVCTNVADDG	QQ	
Hmw3.com	PSSQVTISEG	KACFSSGNGA	RVCTNVADDG	QQ	
Hmw4.com	PLSRIVISEG	RACFSNSDGA	TVCVNIADNG	R.	
Hmw1.com	PSSQVIISEG	KACFSSGNGA	RVCTNVADDG	QP	
Hmw2.com	PSSQVIISEG	KACFSSGNGA	RVCTNVADDG	QP	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US93/02166

A. CLASSIFICATION OF SUBJECT MATTER

IPC(S) :C07K 13/00, 15/04, 17/02; C07H 21/04; C12N 15/09, 15/31; A61K 39/02
 US CL :530/350, 825; 536/27; 424/88, 92; 435/69.3

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 530/350, 825; 536/27; 424/88, 92; 435/69.3

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

MEDLINE, APS, IG SUITE

search terms: high molecular weight protein, haemophilus

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y,P	The Journal of Infectious Diseases, Volume 165(Suppl.), issued August 1992, S.J.Barenkamp., "Outer Membrane Protein and Lipopolysaccharides of Nontypeable <i>Haemophilus influenzae</i> ", pages S181-S184, see entire document.	1-19
Y,P	Infection and Immunity, Volume 60(4), issued April 1992, S.J.Barenkamp et al, "Cloning, Expression and DNA Sequence Analysis of Genes Encoding Nontypeable <i>Haemophilus influenzae</i> High-Molecular-Weight Surface-Exposed Proteins Related to Filamentous Hemagglutinin of <i>Bordetella pertussis</i> , pages 1302-1313, see entire document.	1-19

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	T	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be part of particular relevance	X*	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	Y*	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	&	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search	Date of mailing of the international search report
14 May 1993	21 MAY 1993
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer MICHAEL TUSCAN <i>Nina Kryza f01</i>
Faxsimile No. NOT APPLICABLE	Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US93/02166

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Infection and Immunity, Volume 56(1), issued January 1988, E.J.Hansen, "Immune Enhancement of Pulmonary Clearance on Nontypable <i>Haemophilus influenzae</i> ", pages 182-190, see entire document, especially Figures 3 and 4.	1-19
Y	Infection and Immunity, Volume 52(2), issued May 1986, S.J.Barenkamp, "Protection by Serum Antibodies in Experimental Nontypable <i>Haemophilus influenzae</i> Otitis Media", pages 572-578, see Figures 1 and 2.	1-19
Y	Proceedings of the National Academy of Sciences USA, Volume 80, issued March 1983, R.A.Young et al, "Efficient Isolation of Genes by Using Antibody Probes", pages 1194-1198, see entire document.	1-19
Y	Infection and Immunity, Volume 45(3), issued September 1984, R. Schneerson et al, "Serum Antibody Responses of Juvenile and Infant Rhesus Monkeys Injected with <i>Haemophilus influenzae</i> Type b and Pneumococcus Type 6A Capsular Polysaccharide-Protein Conjugates", pages 582-591, see entire document.	16-17
Y	Journal of Molecular Biology, Volume 157, issued 1982, J.Kyte et al, "A Simple Method for Displaying the Hydropathic Character of a Protein", pages 105-132, see entire document.	18-19
Y	Proceedings of the National Academy of Sciences, Volume 78(6), issued June 1981, T.P.Hopp et al, "Prediction of Protein Antigenic Determinants from Amino Acid Sequences", pages 3824-3828, see entire document.	18-19