

Índice general

1 Conjuntos

«Nadie nos expulsará del paraíso que Cantor ha creado para nosotros»

David Hilbert

En esta unidad estudiaremos el concepto de *cardinal* de un conjunto. Con este concepto se pretende dar un significado a la noción de cantidad de elementos de un conjunto, en especial cuando este es "infinito". Como se verá, y por extraño que parezca, aunque el conjunto involucrado sea infinito de todas maneras podremos definir el cardinal de ese conjunto. Con esto implicitamente decimos que no todos los conjuntos infinitos tendrán el mismo cardinal. Empezaremos recordando algunas cuestiones básicas de teoría de conjuntos que, a la vez, nos servirán como referencia para las notaciones.

1.1 Repaso nociones básicas sobre conjuntos

La siguiente introducción está lejos de ser exhaustiva, solo recordaremos conceptos ya sabidos. Nos dentendremos algo más en aquellos puntos que puedan ser nuevos.

Definición 1.1.1 Dados dos conjuntos A y B denotaremos su *unión, intersección y diferencia* por: $A \cup B$, $A \cap B$ y A - B repectivamente. Estos nuevos conjuntos se definen por:

$$A \cup B = \{x : x \in A \lor x \in B\},\$$

$$A \cap B = \{x : x \in A \land x \in B\}$$

у

$$A - B = \{x : x \in A \land x \notin B\},\$$

respectivamente.

Por lo general, tendremos que los conjuntos con los que trabajaremos estarán contenidos en un conjunto que llamaremos el universo \mathcal{U} . Aceptado la existencia de este universo, frecuentemente usaremos la siguiente notación para el *complemento*

$$A^c = \mathcal{U} - A.$$

Además consideraremos la operación de diferencia simétrica, definiéndose por:

$$A \triangle B = (A - B) \cup (B - A).$$

Definición 1.1.2 [Kuratowski] Dados dos elementos arbitrarios a y b se define el par ordenado (a,b), por la siguiente igualdad

$$(a,b) = \{\{a\}, \{a,b\}\}.$$

La propiedad más relevante de pares ordenados es que si (a,b)=(c,d) entonces a=c y b=d. La demostración de este hecho la dejamos de ejercicio. Ahora consideramos el conjunto formado por todos los pares ordenados de elementos pertenecientes a conjuntos dados.

«David Hilbert (Königsberg, Prusia Oriental; 23 de enero de 1862-Gotinga, Alemania; 14 de febrero de 1943) fue un matemático alemán, reconocido como uno de los más influyentes del siglo XIX y principios del XX. Estableció su reputación como gran matemático y científico inventando y/o desarrollando un gran abanico de ideas, como la teoría de invariantes, la axiomatización de la geometría y la noción de espacio de Hilbert, uno de los fundamentos del análisis funcional. Hilbert y sus estudiantes proporcionaron partes significativas de la infraestructura matemática necesaria para la mecánica cuántica y la relatividad general. Fue uno de los fundadores de la teoría de la demostración, la lógica matemática y la distinción entre matemática v metamatemática. Adoptó v defendió vivamente la teoría de conjuntos y los números transfinitos de Cantor. Un ejemplo famoso de su liderazgo mundial en la matemática es su presentación en 1900 de un conjunto de problemas abiertos que incidió en el curso de gran parte de la investigación matemática del siglo XX.» (Wikipedia)

Definición 1.1.3 Sean A y B conjuntos. El *producto cartesiano* de A con B, denotado por $A \times B$, es el siguiente conjunto:

$$A \times B = \{(a, b) : a \in A \land b \in B\}.$$

La siguiente definición es bien conocida.

Definición 1.1.4 Una función f de A en B (abreviaremos esta frase por el siguiente símbolo: $f:A\longrightarrow B$), es un subconjunto del producto cartesiano $A\times B$ con la propiedad que: para todo $a\in A$ existe un único $b\in B$ tal que $(a,b)\in f$.

Suponemos que ya todos conocemos estos conceptos, asi como los conceptos relacionados de: imagen, la notación f(a), función inyectiva, suryectiva y biyectiva. Admitimos todo esto por sabido. Ahora introducimos una nueva notación.

Definición 1.1.5 Por B^A denotamos al conjunto de todas las funciones $f:A\longrightarrow B.$

Mas adelante daremos algunas explicaciones del porque de esta notación. Seguidamente damos las definiciones de los conjuntos imagen y preimagen de un conjunto dado por una función.

Conjunto f(C)

Definición 1.1.6 Dada una función $f:A\longrightarrow B$ y subconjuntos $C\subset A$ y $D\subset B$ definimos:

$$f(C) = \{ f(a) : a \in C \}$$

y

$$f^{-1}(D) = \{ a \in A : f(a) \in C \}.$$

Muy a menudo utilizaremos las propiedades que a continuación se enuncian. Las demostraciones, de las mismas, quedaran a cargo del alumno; ver Ejercicio 1.9.2 en la página 22.

Conjunto $f^{-1}(D)$

Proposición 1.1.1 Sea $f:A\longrightarrow B$ una función. Entonces

- 1. $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$.
- 2. $f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$.
- 3. $f(C_1 \cap C_2) \subset f(C_1) \cap f(C_2)$. Dar un ejemplo de que la igualdad no vale en general.
- **4.** $f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$.

También vamos a considerar el *conjunto de partes* de un conjunto dado, esto es el conjunto de todos sus subconjuntos. Explícitamente:

$$\mathscr{P}(A) = \{C : C \subset A\}.$$

Se pueden efectuar uniones e intersecciones de una cantidad arbitraria de conjuntos. Para poder enunciarlas debemos definir antes lo que entendemos por una familia subindicada de conjuntos (o brevemente familia de conjuntos).

Definición 1.1.7 Supongamos dado un conjunto I, al que nos referiremos como conjunto de índices, y una función $i:I\longrightarrow \mathscr{P}(A)$. Así tenemos que, para cada $i\in I$, existe un único subconjunto de A, que llamaremos A_i . Diremos entonces

que $\{A_i\}_{i\in I}$ es una familia subindicada de conjuntos por el conjunto de índices I.

Ahora podemos definir la unión y la intersección de una familia de esta índole de la siguiente manera

Definición 1.1.8 Definimos la unión e intersección de una familia $\{A_i\}_{i\in I}$ por:

$$\bigcup_{i \in I} A_i = \{a : \exists i \in I : a \in A_i\}$$

y

$$\bigcap_{i \in I} A_i = \{a : \forall i \in I : a \in A_i\}$$

respectivamente.

En el Ejercicio 1.9.1 en la página 21 podemos encontrar una serie de propiedades de go, 3 de marzo de 1845uniones e intersecciones de familias de conjuntos. Estas propiedades las usaremos con frecuencia. Por último, en esta revisión de conjuntos, expondremos el axioma de elección. Este es un axioma de la teoría de conjuntos. Hay que aclarar que es posible axiomatizar la teoría de conjuntos. Ver por ejemplo Axiomas de Zermelo-Fraenkel y los Von Neumann-Bernays-Gödel. De estas axiomatizaciones el mencionado axioma fórma parte. El axioma de elección ha ocasionado multitud de controversias en torno a su inserción o no en el restante conjunto de axiomas. No vamos a discutir aquí esta controversia ni tampoco la teoría axiomática de conjuntos pues esto nos desviaría de nuetros objetivos. Solo enunciaremos el axioma de elección, que usaremos frecuentemente.

Axioma. (Elección) Sea $\{A_i\}_{i\in I}$ una familia de conjuntos no vacios. Entonces existe una función

$$f: I \longrightarrow \bigcup_{i \in I} A_i.$$

con la propiedad que:

$$\forall i \in I : f(i) \in A_i$$
.

George Cantor (1845-1918)

Georg Ferdinand Ludwig Philipp Cantor (San Petersbur-Halle, 6 de enero de 1918) fue un matemático y lógico nacido en Rusia. Fue inventor con Dedekind y Frege de la teoría de conjuntos, que es la base de las matemáticas modernas. Gracias a sus atrevidas investigaciones sobre los conjuntos infinitos fue el primero capaz de formalizar la noción de infinito bajo la forma de los números transfinitos (cardinales y ordinales). (Wikipedia)

1.2 Definición de conjuntos coordinables

En esta sección definimos el concepto clave de esta unidad, a saber el concepto de que dos conjuntos sean coordinables. Este concepto fue introducido y explotado por George Cantor. Damos una breve discución para motivar nuestra definición.

Cuando alquién cuenta algún conjunto de cosas, establece una correspondencia entre los objetos que cuenta y un subconjunto de números naturales. En el proceso de conteo, algún objeto fue el primero en contarse, y se habrá dicho: "uno" para ese objeto. El proceso continua asignando, sucesivamente, el número dos, tres, etc, a los restantes objetos a contar, hasta que no queden más por contarse. Así, si en este proceso llegamos hasta el 20, por ejemplo, decimos que hay 20 objetos. Aunque no haya que percatarse de eso a los fines prácticos, lo que también hicimos fue establecer una correspondencia o función entre los objetos y el conjunto $\{1,\ldots,20\}$. Más aún, esta correspondencia fue biyectiva pues a cada número le correspondió solo uno de los objetos, es decir la función es inyectiva, y a cada objeto le correspondió algún número, es decir la función es suryectiva. En otras palabras contar un conjunto significa determinar el intervalo inicial Intervalo inicial: un condel conjunto de los números naturales para el cual exista una correspondencia biyectiva $\,$ junto de la forma: $\{j \in A\}$ con el conjunto que queremos contar. Conocer esto obviamente es inútil a los efectos $\mathbb{N}:1\leq j\leq n$, para los efectos de extender lo que llamamos "contar" a conjuntos infinitos. Lo que antecede sugiere la siguiente definición.

en más. llamaremos a este conjunto: \mathbb{N}_n

Definición 1.2.9 Dados dos conjuntos: A y B, se dirá que ellos son coordinables, escribiremos $A \sim B$, si existe una función biyectiva $f: A \longrightarrow B$.

Esta es nuestra definición de que dos conjuntos, finitos o no, tengan la misma cantidad de elementos. Como veremos, no todos los conjuntos infinitos son coordinables entre si. Es bueno notar que no es difícil demostrar que \sim es una relación de equivalencia (ver Ejercicio 1.9.3 en la página 22). Ahora veamos algunos ejemplos.

Ejemplo 1.2.1 Consideremos la función $f: \mathbb{N} \longrightarrow \{x \in \mathbb{N} : x \text{ es par}\}$, definida por f(x) = 2x. Facilmente se ve que f es una biyección entre los conjuntos indicados. De

ahí que: $\mathbb{N} \sim \{x \in \mathbb{N} : x \text{ es par}\}.$

En este ejemplo observamos que, desde nuestro punto de vista, el conjunto de los naturales tiene la misma cantidad de elementos que el conjunto de los naturales pares. Es decir, según nuestra concepción de cantidad de elementos, el todo no es mayor que una de sus partes. Este ejemplo ya lo había mencionado Galileo Galilei.

Ejemplo 1.2.2 Veamos que $\mathbb{R} \sim (0,1)$. En este caso se puede considerar la función

$$f(x) := \tan \left(\frac{2\pi x - \pi}{2} \right).$$

Dejamos como ejercicio corroborar que la función dada establece una biyección entre los conjuntos involucrados.

Los dos ejemplos anteriores muestran una característica importante de los conjuntos infinitos; un subconjunto de ellos puede ser coordinable con el conjunto total. Mientras que, los conjuntos finitos carecen de esta característica. Ver Ejercicio 1.9.12 en la página 23

1.3 Conjuntos numerables

Hasta el momento hemos hablado de conjuntos finitos e infinitos. Apelamos a la idea que todos nos forjamos en nuestras vidas sobre el significado de estos términos . Pero en este momento estamos en condiciones, a partir de la noción de coordinalidad, de definir de forma matemáticamente precisa los anteriores significados.

Definición 1.3.10 Diremos que un conjunto A es:

- 1. **finito** si existe un $n \in \mathbb{N}$ tal que $A \sim \mathbb{N}_n$.
- 2. infinito si no es finito.
- 3. numerable si $A \sim \mathbb{N}$.
- 4. a lo sumo numerable si es finito o numerable.

En virtud de que \sim es una realación de equivalencia, y especialmente por el carácter transitivo de esta, si $A \sim B$ y B tiene alguna de las cuatro propiedades de la definición anterior entonces A tendrá esa misma propiedad.

Recordemos que, por definición, una sucesión $\{a_i\}$ de elementos de un conjunto A es una función $f:\mathbb{N}\longrightarrow A$, donde $a_i=f(i)$. Vemos así que el concepto de numerabilidad está relacionado con el de sucesión. En efecto, si el conjunto A es numerable entonces sus elementos se pueden disponer en una sucesión, donde ningún término se repita.

Es oportuno que observemos que un conjunto no puede ser numerable y finito a la vez; dicho de otra forma, los conjuntos numerables son infinitos. Esto, como hemos definido los conceptos numerable y finito de manera precisa, tiene que ser demostrado.

Teorema 1.3.1 Un conjunto numerable es infinito.

Dem. Supongamos que, por lo contrario, existe un conjunto A numerable y, a la vez, finito. Así tendríamos que: $A \sim \mathbb{N}$ y $A \sim \mathbb{N}_n$, para algún $n \in \mathbb{N}$. Como \sim es una relación de

П

equivalencia , deducimos que $\mathbb{N} \sim \mathbb{N}_n$. Sea, pues, f una biyección: $f: \mathbb{N}_n \longrightarrow \mathbb{N}$. Ahora consideremos el natural $^1: k:=f(1)+\cdots+f(n)+1$. Como f es una biyección, existe algún m, con $1 \leq m \leq n$ tal que f(m)=k. Es decir

$$f(m) = f(1) + \cdots + f(n) + 1.$$

Seguramente, en el miembro derecho, uno de los términos es f(m). Este se puede cancelar con el miembro de la izquierda, quedando

$$0 = f(1) + \dots + f(m-1) + f(m+1) + \dots + f(n) + 1.$$

Esta igualdad es absurda pues el miembro de la derecha es mayor que 1.

Vamos a ver algunos otros conjuntos que también son numerables. Empezamos por el siguiente.

Proposición 1.3.2 Un subconjunto de un conjunto a lo sumo numerable es a lo sumo numerable.

 ${\it Dem.}\ {\it Sea}\ A\subset B, {\it con}\ B$ a lo sumo numerable. Se puede suponer que $B\subset \mathbb{N}.$ ¿Por qué? También podemos suponer que A es infinito, puesto que si fuera finito no habría nada que probar. Definimos una función $f:\mathbb{N}\longrightarrow A$ por induccion. Puesto que los números naturales son bien ordenados, tenemos que A tiene un primer elemento, digamos, $a_1.$ Definamos

$$f(1) = a_1.$$

Ahora definimos f(j) por:

$$f(j) = \text{el primer elemento del conjunto: } A - \{f(i) : 1 \le i \le j - 1\}.$$
 (1.1)

Esta definición es posible pues $A - \{f(i) : 1 \le i \le j-1\} \ne \emptyset$, de lo contrario A sería finito. Queda así definida la función f. Resta ver que es biyectiva.

Veamos, en primer lugar, que es inyectiva. Sea i>j. En virtud de (1.1), tenemos que $f(i) \notin \{f(k): 1 \leq k \leq i-1\}$ de lo cual, y como j < i, deducimos que $f(i) \neq f(j)$. Ahora veamos la suryectividad. Supongamos que existe un elemento $n \in A$ tal que

Ahora veamos la suryectividad. Supongamos que existe un elemento $n \in A$ tal que $n \notin f(\mathbb{N})$. Recordemos la Definición (1.1). Ella nos dice, en virtud de que $n \notin f(\mathbb{N})$, que f(i) < n, para todo i. Esto es debido a que f(i) es el mínimo del conjunto $A - \{f(k) : 1 \le k \le i-1\}$ y a que n pertenece a ese conjunto. Tenemos, entonces, que $f(\mathbb{N}) \subset \mathbb{N}_n$. Como consecuencia del Ejercicio 1.9.6 en la página 22 concluímos que $f(\mathbb{N})$ es finito. Pero como f es inyectiva $\mathbb{N} \sim f(\mathbb{N})$. Lo que es una contradicción pues \mathbb{N} es infinito.

Proposición 1.3.3 El conjuntos \mathbb{Z} , de los enteros, es numerable.

Dem. Construímos una función que establece una biyección entre los enteros positivos y los naturales pares y entre los enteros negativos y los naturales impares. La función es la siguiente:

$$f(x) = \left\{ \begin{array}{ll} 2x+2, & \text{si } x \geq 0; \\ -2x-1, & \text{si } x < 0. \end{array} \right.$$

Dejamos como ejercicio demostrar que, efectivamente, la función f es una biyección entre $\mathbb N$ y $\mathbb Z$. \square

¹El símbolo := se lee *igual por definición*. Esto es, el miembro de la izquierda es definido por el de la derecha

Proposición 1.3.4 El conjunto $\mathbb{N} \times \mathbb{N}$ es numerable.

Dem. La demostración de este enunciado ya no es tan sencilla. La idea se la debemos a G. Cantor. Primero presentaremos un razonamiento heurístico de la construcción de la biyección entre $\mathbb{N} \times \mathbb{N}$ y \mathbb{N} . En rigor de verdad, a los efectos lógicos de la demostración, toda esta parte de la demostración se podría obviar; pudiéndose dar la fórmula (1.5) sin dar ninguna justificación de como se nos ocurrió. Elegimos el camino contrario, explicar como obtener la fórmula.

Dispongamos del conjunto $\mathbb{N}\times\mathbb{N}$ en un arreglo del tipo de una matríz infinita, como sique:

Notar que, además de colocar los pares ordenados, hemos colocado algunas flechas. Estas flechas indican un camino. Este es el camino que seguiremos para enumerar los pares ordenados. Así, construiremos una función f que hará las siguientes asignaciones:

$$\begin{array}{ccc} f: \mathbb{N} \times \mathbb{N} & \longrightarrow \mathbb{N} \\ & (1,1) & \longmapsto 1 \\ & (1,2) & \longmapsto 2 \\ & (2,1) & \longmapsto 3 \\ & \vdots \end{array}$$

Observar que en nuestro camino vamos siguiendo diagonales de la matriz, de izquierda a derecha y de arriba hacia abajo. Cuando llegamos al margen izquierdo de la matriz saltamos al borde superior, para luego descender por la siguiente diagonal. Estas diagonales tienen $1,2,3,\ldots$ elementos. Agrupemos los números naturales de esa forma, es decir un primer grupo de uno, un segundo de dos y así sucesivamente:

$$\underbrace{1}_{1}\underbrace{2}_{2}\underbrace{3}_{2}\underbrace{4}_{3}\underbrace{5}_{6}\underbrace{7}_{4}\underbrace{8}_{4}\underbrace{9}_{10}\dots$$

Obsérvese que

$$\frac{j(j+1)}{2}=$$
 número final del agrupamiento j -ésimo. (1.2)

Por ejemplo: el grupo cuarto tiene por su último elemento el 10, que es igual a 4.5/2. Tambien tenemos que todos los pares ordenados sobre la misma diagonal, tienen la

característica de que sus componentes suman lo mismo. Numeremos las diagonales, de izquierda a derecha, empezando por 1. Así tenemos que la diagonal 1 posee el elemento (1,1), la diagonal dos tiene los elementos (1,2) y (2,1), etc. Por lo observado, tenemos la siguiente fórmula, para cualquier par (j,k)

$$j + k - 1 =$$
el número de la diagonal a la que pertenece (j, k) . (1.3)

El objetivo es poner en correspondencia la diagonal j-ésima con el grupo j-ésimo de naturales. Notar que, en virtud de (1.2), tenemos que

$$\frac{(j+k-1)(j+k)}{2} = \text{es el último número}$$
 del agrupamiento $j+k-1$ -ésimo. (1.4)

Así, si al primer miembro de (1.4) le restamos (j-1), obtenemos el número que ocupa el lugar j (contando de atras para adelante) del agrupamiento j+k-1 de naturales. Con esto probamos que la función que queriamos construir es:

$$f(j,k) := \frac{(j+k-1)(j+k)}{2} - j + 1. \tag{1.5}$$

El resto de la demostración lo dejamos como ejercicio. Es decir la demostración que (1.5) es biyectiva (ver Ejercicio 1.9.7 en la página 22).

Como consecuencia del Ejercicio 1.9.4 en la página 22 y de la Proposición anterior, podemos afirmar que si A y B son numerables, entonces $A \times B$ es numerable.

La siguiente propiedad también es útil para determinar si un conjunto es numerable.

Proposición 1.3.5 Sean A y B conjuntos, con B a lo sumo numerable.

- 1. Supongamos que existe una función inyectiva $f:A\longrightarrow B.$ Entonces A es a lo sumo numerable.
- 2. Supongamos que existe una aplicación suryectiva $f:B\longrightarrow A.$ Entonces A es a lo sumo numerable.

Dem. Veamos primero 1. La función f es una biyección entre A y su imagen f(A). Como B es a lo sumo numerable, y como consecuencia de la Proposición 1.3.2 en la página 7, tenemos que f(A) es a lo sumo numerable. Ahora, como $A \sim f(A)$ tenemos que A es a lo sumo numerable.

Ahora probemos 2. Como f es suryectiva, tenemos que $\forall a \in A : f^{-1}(\{a\}) \neq \emptyset$. Ahora, por el axioma de elección sabemos que existe al menos una función $g:A \longrightarrow B$ tal que $\forall a \in A : g(a) \in f^{-1}(\{a\})$. Si pudiéramos probar que la función g fuera inyectiva, entonces obtendríamos la tesis a partir del inciso 1, que ya fue demostrado. Veamos, pues, que g es inyectiva. Supongamos que $a_1, a_2 \in A$ y que $a_1 \neq a_2$. Afirmamos que $f^{-1}(\{a_1\}) \cap f^{-1}(\{a_2\}) = \emptyset$. En efecto, si $b \in f^{-1}(\{a_1\}) \cap f^{-1}(\{a_2\})$ entonces por un lado $f(b) = a_1$ y por otro $f(b) = a_2$, lo que es una contradicción pues $a_1 \neq a_2$. Luego, como $g(a_1) \in f^{-1}(\{a_1\})$ y $g(a_2) \in f^{-1}(\{a_2\})$ se tiene que $a_1 \neq a_2$.

Es interesante hacer notar que, utilizando el teorema anterior, podemos dar otra demostración, más concisa, de la Proposición 1.3.4 en la página anterior. En esta demostración hacemos uso del Teorema Fundamental de la Aritmética. Recordemos lo que este teorema nos dice:

Teorema 1.3.2 (Fundamental de la Aritmética) Todo entero positivo n se representa, de manera única, de la forma $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_j^{\alpha_j}$, donde p_1 , p_2 ,..., p_j son números primos y α_1 , α_2 ,..., α_j son enteros positivos.

Dem. alternativa de la Proposición 1.3.4 Definimos la siguiente función

$$f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$$

 $(n,m) \longrightarrow 2^n 3^m$.

Por el Teorema Fundamental de la Aritmética, y mas precisamente por la unicidad de la representación, tenemos, como 2 y 3 son primos, que si $2^n 3^m = 2^{n'} 3^{m'}$ entonces n=n' y m=m'. Por consiguiente la función f es inyectiva. Ahora, invocando la Proposición 1.3.5 en la página anterior concluímos que $\mathbb{N}\times\mathbb{N}$ es a lo sumo numerable. Lo que resta es, solo, ver que $\mathbb{N} \times \mathbb{N}$ no es finito. Esto se puede probar observando que $\mathbb{N} \times \mathbb{N}$ contiene el subconjunto $A = \{(1,n) : n \in \mathbb{N}\}$ que es coordinable con \mathbb{N} , ¿Cuál es la biyección?, y por consiguiente infinito. Así, $\mathbb{N} \times \mathbb{N}$ no puede ser finito, si lo fuera, Atambién lo sería, por ser un subconjunto de él. Lo que concluye la demostración.

El influyente matemáti-

co Karl Weierstrass 1815-1897 fue de los prime-

que afirma la numerabilidad de O, observó que

esto implicaba la exis-

tencia de una sucesión

Ahora podemos demostrar uno de los resultados más interesantes de esta teoría.

Teorema 1.3.3 El conjunto ℚ es numerable.

Dem. Sabemos que $\mathbb Z$ es numerable y dejamos como ejercicio demostrar que $\mathbb Z-\{0\}$ es $\ ^{ ext{ros}}$ en $\ ^{ ext{reconocer}}$ la $\ ^{ ext{im-}}$ numerable. Consecuentemente también $\mathbb{Z} \times (\mathbb{Z} - \{0\})$ es numerable. Podemos definir portancia del resultado la siguiente función:

$$f: \mathbb{Z} \times \mathbb{Z} - \{0\} \longrightarrow \mathbb{Q}$$

 $(n, m) \longmapsto \frac{n}{m}.$

Esta aplicación es survectiva. Por consiguiente, usando la parte 2. de la Proposición 1.3.5 en la página anterior, obtenemos que $\mathbb Q$ es a lo sumo numerable. Así $\mathbb Q$ es finito o numerable. Pero como $\mathbb Q$ es infinito, pues $\mathbb N\subset \mathbb Q$, tenemos que $\mathbb Q$ es numerable.

 $\{a_n\}$ tal que dado cualquier número real a existe una subsucesión $\{a_{n_k}\}$ tal que lím $a_{n_k} = a$.

Traduciendo nuestra interpretación de que dos conjuntos coordinables tienen la misma cantidad de elementos, vemos que hay tantos racionales como naturales. Esta afirmación es un tanto desconcertante. Sabemos que los racionales son densos dentro de los reales. Esto quiere decir que dentro de cada intervalo abierto, por chico que este fuere, siempre hay números racionales dentro. Sin embargo, uno puede poner en correspondencia \mathbb{N} y \mathbb{Q} .

A esta altura pareciera que todos los conjuntos resultan ser numerables, pero ya veremos, en la sección siguiente, que no es así.

Lema 1.3.1 Todo conjunto infinito tiene un subconjunto numerable.

Dem. Sea A un conjunto infinito. Usaremos un argumento similar a la demostración de la Proposición 1.3.2 en la página 7. Definimos inductivamente una función $f:\mathbb{N}\longrightarrow A$ de la siguiente manera. Puesto que A es infinito, en particular, es no vacio, así podemos encontrar un elemento $a_1 \in A$. Ponemos entonces

$$f(1) = a_1.$$

Ahora, supongamos que tenemos definida la función f, de tal manera que sea inyectiva, para $j=1,\ldots n$. Llamemos $f(j)=a_j$, para $j=1,\ldots,n$. Como A es infinito no puede ocurrir que $A-\{f(1),\ldots,f(n)\}=\emptyset$, de lo contrario f además de ser inyectiva, de \mathbb{N}_n en A, sería suryectiva; y de este modo $A \sim \mathbb{N}_n$ lo que implica que A es finito, contrariando nuestra hipótesis. Por consiguiente, podemos encontrar $a_{n+1} \in A - \{f(1), \dots, f(n)\}$. Definition $f(n+1) = a_{n+1}$.

Ahora veamos que f así definida es inyectiva. Sea $i \neq j$, podemos suponer que i < j. Sabemos que:

$$f(j) \notin \{f(1), \dots, f(j-1)\}.$$

Seguramente f(i) es un elemento del conjunto de la derecha, en la relación anterior, de modo que $f(j) \neq f(i)$, lo que demuestra la inyectividad. Ahora, f es biyectiva de $\mathbb N$ en $f(\mathbb N)$. Por consiguiente $f(\mathbb N)$ es un subconjunto de A numerable.

La siguiente proposición es útil para probar que algunos conjuntos son numerables. Antes de enunciarla, haremos una observación útil a la demostración. Afirmamos que si A es un conjunto a lo sumo numerable, entonces existe una función suryectiva de $\mathbb N$ en A. En efecto, si A es numerable, esto es claro puesto que existe una biyección de $\mathbb N$ en A. Si, por el contrario, A es finito, entonces existe una biyección de $\mathbb N_n$, para algún $n \in \mathbb N$, en A; en este caso extendemos la biyección a todo $\mathbb N$ de cualquier forma 2 , la función resultante es suryectiva, aunque ya no inyectiva.

Proposición 1.3.6 Sea I un conjunto de índices a lo sumo numerable. Supongamos que para cada $i \in I$ tenemos un conjunto A_i que, también, es a lo sumo numerable. Entonces $\bigcup_{i \in I} A_i$ es a lo sumo numerable.

 $\emph{Dem}.$ Como vimos, para cada $i \in I$ existe una función suryectiva $f_i: \mathbb{N} \longrightarrow A_i.$ Definimos:

$$f: \mathbb{N} \times I \longrightarrow \bigcup_{i \in I} A_i$$

 $(n, i) \longmapsto f_i(n).$

Esta función es suryectiva, pues si

$$a \in \bigcup_{i \in I} A_i$$

entonces $a \in A_{i_0}$, para algún i_0 ; ahora, utilizando la suryectividad de f_{i_0} , obtenemos un $n \in \mathbb{N}$ tal que $f_{i_0}(n) = a$. Es decir $f(n,i_0) = a$. Esto prueba que f es suryectiva. Ahora, como $\mathbb{N} \times I$ es a lo sumo numerable, en rigor es numerable, y por la Proposición 1.3.5 en la página 9, obtenemos la tesis.

1.4 Un conjunto no numerable

Vimos que $\mathbb N$ es numerable, por definición, y que $\mathbb Z$ y $\mathbb Q$ son también numerables. Ahora mostraremos un conjunto que no es a lo sumo numerable. No será otro que el conjunto de los numeros reales.

Teorema 1.4.4 El conjunto \mathbb{R} no es a lo sumo numerable.

Dem. Supongamos, por el contrario, que $\mathbb R$ es a lo sumo numerable. En virtud de la Proposición 1.3.2 en la página 7, tendríamos que el intervalo [0,1) sería también a lo sumo mostración se conoce conumerable. Como él es infinito entonces [0,1) sería numerable. Sea, entonces, una función biyectiva $f:\mathbb N\longrightarrow [0,1)$. Definamos $a_j:=f(j)$.

Como es sabido, cada número real r admite un desarrollo en expresión decimal infica de demostración ideanita del tipo da por George Cantor.

$$r = 0.r_1r_2r_3\ldots$$

Un pequeño inconveniente lo presenta el hecho de que esta expresión decimal no es única, puesto que, por ejemplo: $2{,}000\cdots=1{,}999\ldots$ Para avolir este problema convenimos que en nuestros desarrollos decimales no usaremos expresiones que tienen todos 9 a partir de cierto momento. Con esta convención, el desarrollo decimal es único.

El arguemnto de esta demostración se conoce como argumento diagonal de Cantor. Es un técnica de demostración ideada por George Cantor. Actualmente es utilizada frecuentemente para resolver otros tipos problemas

²Por ejemplo: ponemos f(j) = 1 para j > n

A los fines de clarificar nuestra demostración, es útil poner a la sucesión a_j de la siguiente manera :

$$a_1 = 0.a_{1,1}a_{1,2}a_{1,3} \dots$$

$$a_2 = 0.a_{2,1}a_{2,2}a_{2,3} \dots$$

$$\vdots$$

$$a_n = 0.a_{n,1}a_{n,2}a_{n,3} \dots$$

$$\vdots$$

Ahora definimos un número $r=0.r_1r_2\cdots\in[0,1)$, tomando en cuenta los valores de $a_{i,j}$ sobre la digonal principal, que no será igual a ninguno de los a_j . La definición es la siguiente:

$$r_n := \left\{ \begin{array}{ll} 2, & \operatorname{si} a_{n,n} < 2; \\ 1, & \operatorname{si} a_{n,n} \geq 2. \end{array} \right.$$

Tenemos que $r \neq a_j$ para todo j, pues, estos números seguramente son distintos en el lugar j de su desarrollo. Observar que si a_j tiene un número menor que 2 en ese lugar, entonces $r_j=2$, en cambio si un número mayor o igual que 2 ocupa el lugar j de a_j , entonces $r_j=1$. Por ende, como dijimos r no es ningún a_j . Esto demuestra que la función f no es suryectiva.

Utilizando el Ejemplo 1.2.2 en la página 6 y el Ejercicio 1.9.9 en la página 22, vemos que $\mathbb{R} \sim (0,1) \sim [0,1]$. Para cualquier intérvalo no trivial 3 I, ya sea abierto o cerrado, existe una biyección, de hecho una función lineal, de I en el intérvalo (0,1) o [0,1], dependiendo de si I es cerrado o abierto. Vemos así que todos los intérvalos no triviales son coordinables entre si y a su vez con \mathbb{R} .

1.5 Una aplicación: existencia de números trascendentes

En esta sección desarrollaremos una aplicación de los conceptos desarrollados en las secciones previas para demostrar un resultado de la matemática pura. Veremos como estos se pueden usar para demostrar la existencia de números trascendentes. Antes empezaremos con algunas definiciones.

Un polinomio es una expresión de la forma:

$$P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n,$$

donde $n\in\mathbb{N}$ se llama grado del polinomio y los a_j coeficientes del polinomio. Escribiremos que $P\in\mathbb{Z}[X]$, $P\in\mathbb{Q}[X]$ o $P\in\mathbb{C}[X]$ si los coeficientes son enteros, racionales o complejos respectivamente. Una raíz del polinomio P es un número $\alpha\in\mathbb{C}$ tal que

$$P(\alpha) = 0.$$

Observar que un número racional q=n/m es solución (o raíz del polinomio) de la siguiente ecuación:

$$P(X) := mX - n = 0.$$

Este polinomio P es de primer grado y además $P \in \mathbb{Z}[X]$. Reciprocamente, si q es solución de una ecuación polinomial P(X) = 0, donde P es de primer grado y con coeficientes en \mathbb{Z} , entonces q es racional.

Hemos aprendido que hay dos clases de reales, racionales e irracionales. En esta sección expondremos otros tipos de números reales, a saber los trascendentes.

³Por un intérvalo trivial entendemos un intérvalo que se reduce a un punto

Tomemos por caso el número $\sqrt{2}$, que como sabemos es irracional. A pesar de ello $\sqrt{2}$ es solución de una ecuación a coeficientes enteros de segundo grado. Nos referimos

 $X^2 - 2 = 0$.

Vemos que $\sqrt{2}$ tiene, si se nos permite por el momento esta expresión, un grado de irracionalidad no muy grande, puesto que es solución de una ecuación de segundo grado a coeficientes enteros. A los números irracionales satisfaciendo esta propiedad se los llama irracionales cuadráticos. Nos preguntamos ahora si existiran números que, acorde con la perspectiva anterior, tengan el mayor grado de irracionalidad posible. Esto es que no sean solución de ninguna ecuación polinomial a coeficientes enteros, no importa del grado que fuere. Llamaremos a estos números, cuya existencia es hipotética por el momento, trascendentes. A los restantes números los llamaremos algebraicos. Denotaremos por $\mathbb A$ al conjunto de números algebraicos y por $\mathbb T$ al conjunto de números trascendentes. Cualquier número que sea obtenido por medio de raices, del grado que fuere, de números enteros son algebraicos. Esto indica que resolver el problema planteado puede no ser fácil.

En esta sección mostraremos el argumento usado por G. Cantor, en 1874, para demostrar la existencia de números trascendentes. La situación es la siguiente: Cantor demostró que el conjunto de los números algebraicos es numerable. Luego, si el conjun- es trascendente. Posteto de los trascendentes lo fuera, también lo sería el conjunto $\mathbb R$ (unión de dos numerables riormente C. Hermite dees numerable), lo cual no es cierto. Así es que no solo los números trascendentes existen, sino que existen tantos como números reales hay. Dicho de otro modo, los números trascendentes son los más comunes entre los números reales. Los racionales, por el te y Lindemann, en 1882, contrario, son una excepción, habiendo de ellos solo una cantidad numerable.

Es bueno comentar que hubo matemáticos que se opusieron a G. Cantor y a su Teoría de Conjuntos. Quizas la gota que rebalso el vaso fue la anterior demostración de la existencia de números trascendentes. Pues es una manifestación de que la teoría de Cantor podía ser utilizada para demostrar cuestiones matemáticas profundas que no aparentaban tener nada que ver con la teoría de conjuntos.

La clave de la demostración es el siguiente lema.

Lema 1.5.2 El conjunto $\mathbb{Z}[X]$ es numerable.

Dem. Un polinomio en $\mathbb{Z}[X]$ y de grado n se puede identificar con la n+1-upla de enteros formada por sus coeficientes. Teniendo en cuenta esto, definimos la siguiente función:

$$f: \mathbb{Z}[X] \longrightarrow \bigcup_{n=1}^{\infty} \mathbb{Z}^n$$
,
 $a_0 + a_1 X + \dots + a_n X^n \longmapsto (a_0, a_1, \dots, a_n)$

donde

$$\mathbb{Z}^n := \underbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}_{n \text{ veces}}.$$

Por lo dicho con anterioridad, esta función es biyectiva.

Ahora bien, el conjunto \mathbb{Z}^n es numerable. Podemos probar esto usando inducción y el hecho de que el producto cartesiano de conjuntos numerables es numerable. Así, como construir la matemática consecuencia de la Proposición 1.3.6 en la página 11 obtenemos que

$$\bigcup_{n=1}^{\infty} \mathbb{Z}^n$$

es numerable. Como f es una biyección, $\mathbb{Z}[X]$ es numerable.

Como corolario obtenemos que el conjunto de números algebraicos es numerable.

El problema de la existencia de números trascendentes fue resuelto por Carl Louis Ferdinand von Liouville en 1844. El demostró que el número

$$L = \sum_{n=0}^{\infty} \frac{1}{10^{n!}}$$

mostró en 1873 que e=2,7172... es trascendenque π también lo es.

Uno de los mavores opositores a la Teoría de Conjunto de Cantor fue Leopold Kronecker (1823-1891). Kronecker rechazó la demostración de existencia de números trascendentes de Cantor. Sostuvo que había que evitar los argumentos con conjunto infinitos y a partir de los números naturales por medio de argumentos finitistas.

Corolario 1.5.1 El conjunto de números algebraicos es numerable.

Dem. Se tiene que

$$\mathbb{A} = \bigcup_{P \in \mathbb{Z}[X]} \{\alpha : P(\alpha) = 0\}.$$

Como es sabido de los cursos de álgebra, dado un polinomio P, de grado n, el conjunto $\{\alpha:P(\alpha)=0\}$ es finito, es mas, tiene a lo sumo n elementos. Ahora, en virtud de esto y la Proposición 1.3.6 en la página 11, obtenemos que $\mathbb A$ es a lo sumo numerable. Ciertamente, este conjunto es infinito, pues $\mathbb N$ está contenido en él, de modo que no tiene mas chance que la de ser numerable.

Como otro corolario obtenemos que $\mathbb{T} \neq \emptyset$. Pues de lo contrario, como $\mathbb{R} = \mathbb{A} \cup \mathbb{T}$ y como la unión de a lo sumo numerables es a lo sumo numerable, tendríamos que \mathbb{R} sería a lo sumo numerable, que es una contradicción. Pero en realidad podemos demostrar algo más fuerte que $\mathbb{T} \neq \emptyset$; podemos probar que $\mathbb{T} \sim \mathbb{R}$. Esto es consecuencia del siguiente teorema, que afirma que al sacarle un conjunto numerable a un conjunto coordinable con \mathbb{R} no alteramos la cantidad de elementos del conjunto.

Lema 1.5.3 Sean
$$A \sim \mathbb{R}$$
 y $B \sim \mathbb{N}$ tales que $B \subset A$. Entonces $A - B \sim \mathbb{R}$.

 ${\it Dem}.$ Tenemos que A-B es infinito, de lo contrario, por la Proposición 1.3.6 en la página 11, $A=(A-B)\cup B$ sería a lo sumo numerable, contradiciendo nuestras hipótesis. Como A-B es infinito, por el Lema 1.3.1 en la página 10, obtenemos un conjunto numerable $C\subset A-B.$ Como $B\cup C$ y C son numerables, existe una biyección $f:B\cup C\longrightarrow C.$ Ahora definimos la siguiente función:

$$\hat{f}: A \longrightarrow A - B$$

$$x \notin B \cup C \longmapsto x$$

$$x \in B \cup C \longmapsto f(x)$$

No es dificil demostar que \hat{f} es una biyección, de donde $A - B \sim A \sim \mathbb{R}$.

Corolario 1.5.2 $\mathbb{T} \sim \mathbb{R}$.

Dem. Aplicando el lema anterior, con $A = \mathbb{R}$ y $B = \mathbb{A}$, obtenemos la tesis.

1.6 Comparación de cardinales

En esta sección introduciremos una relación de orden entre conjuntos, esta, intuitivamente, corresponderá a la noción de: "tiene más elementos". Para conjuntos finitos todos estamos muy familiarizados con esta noción. También se suele decir que un conjuto tiene un cardinal mayor que el otro, para expresar esta idea de mayor cantidad de elementos. Informalmente ya hemos usado esta noción al decir que había más números reales que naturales. No obstante, en aquel momento, esa afirmación solo constituyó una interpretación de cierto resultado, otra manera de decirlo que fuera común a nuestra experiencia. En todo caso, no fue ni una definición ni nada que fuera plausible de ser demostrado. En esta sección, formalizaremos el concepto y posteriormente analizaremos algunas consecuencias de este.

Intuitivamente, decíamos que había más reales que naturales por que $\mathbb{N} \subset \mathbb{R}$ y por que $\mathbb{N} \sim \mathbb{R}$. Si queremos comparar dos conjuntos cualesquiera, puede ocurrir que ninguno de ellos sea un subconjunto del otro, o más aún que estos conjuntos sean disjuntos. ¿Cómo procedemos en ese caso?. Veamos un ejemplo. Consideremos el conjunto

⁴Por ≈ entendemos no coordinable

 $\mathbb{N}_0:=\mathbb{N}\times\{0\}=\{(n,0):n\in\mathbb{N}\}.$ ¿Cómo podríamos comparar este conjunto con \mathbb{R} ?. Tenemos que $\mathbb{N}_0\cap\mathbb{R}=\emptyset$, sin embargo, dentro de \mathbb{R} tenemos un subconjunto, precisamente \mathbb{N} , que es coordinable con \mathbb{N}_0 a traves de la biyección definida por f(n,0)=n. Podríamos decir entonces que, como \mathbb{N} tiene menos elementos que \mathbb{R} y \mathbb{N}_0 tiene la misma cantidad que \mathbb{N} , entonces \mathbb{N}_0 tiene menos que \mathbb{R} . Notemos que la función f, que es biyectiva de \mathbb{N}_0 en \mathbb{N} , es una aplicación inyectiva de \mathbb{N}_0 en \mathbb{R} . Esperemos que la discución de este ejemplo muestre la siguiente definición como natural.

Definición 1.6.11 Dados dos conjuntos A y B, diremos que $A \lesssim B$ si existe una aplicación inyectiva $f:A\longrightarrow B$. Si, además, $A\nsim B$ diremos entonces que $A\prec B$.

Ejemplo 1.6.3 Si A es un conjunto infinito, entonces $\mathbb{N} \lesssim A$. Esto es consecuencia del Lema 1.3.1 en la página 10

Ejemplo 1.6.4 Si A es un conjunto finito entonces $A \prec \mathbb{N}$. Esto es consecuencia de la definición y del Teorema 1.3.1 en la página 6.

Ejemplo 1.6.5 Tenemos las siguientes relaciones

$$\mathbb{N} \sim \mathbb{Z} \sim \mathbb{Q} \sim \mathbb{A} \prec \mathbb{T} \sim \mathbb{R}.$$

Ejemplo 1.6.6 Si $A \prec B$, $A \sim C$ y $B \sim D$, entonces $C \prec D$. A continuación justificamos esta afirmación. A causa de las hipótesis, existen: una función inyectiva $f:A\longrightarrow B$ y funciones biyectivas: $g:C\longrightarrow A$ y $h:B\longrightarrow D$.

$$\begin{array}{c|c}
A & \xrightarrow{f} & B \\
\downarrow g & & h \\
C & \xrightarrow{h \circ f \circ g} & D
\end{array}$$

La función $h\circ f\circ g$ es inyectiva, lo que demuestra que $C\precsim D$. Deberíamos ver que $C\nsim D$. Supongamos que, por el contrario, $C\sim D$. Sea $\phi:C\longrightarrow D$ una biyección entonces tendríamos el siguiente diagrama

$$\begin{array}{c|c}
A & \xrightarrow{h^{-1} \circ \phi \circ g^{-1}} & B \\
\downarrow & & & \downarrow \\
G & \xrightarrow{\phi} & D
\end{array}$$

y, puesto que las funciones intervinientes son todas biyecciones, tendríamos que $A \sim B$, contradiciendo, esto, nuestras hipótesis.

En el siguiente teorema podemos ver que para cualquier conjunto A hay otro conjunto que es mas grande, en el sentido de la Definición 1.6.11. Este conjunto será el conjunto de partes $\mathscr{P}(A)$.

Teorema 1.6.5 (Cantor) Para todo conjunto A, $A \prec \mathscr{P}(A)$.

Dem. Tenemos que probar que: $A \preceq \mathscr{P}(A)$ y $A \nsim \mathscr{P}(A)$. La siguiente función:

$$f: A \longrightarrow \mathscr{P}(A)$$
 $a \longmapsto \{a\}$

es inyectiva, de modo que $A \preceq \mathscr{P}(A)$.

Supongamos que existe una biyección $g:A\longrightarrow \mathscr{P}(A)$. Definimos el subconjunto B de A de la siguiente manera

$$B := \{ a \in A : a \notin g(a) \}.$$

Como q es survectiva, existe un $b \in A$ tal que q(b) = B. ¿Será o no cierto que $b \in B$? Si es cierto, por definición de B, tendríamos que $b \notin g(b) = B$, lo que es una contradicción. Si fuera falso, es decir $b \notin B$, nuevamente por la definición de B, deducimos que $b \in B$ g(b) = B, otra contradicción. De modo que, no importando cual, todos los casos nos conducen a una contradicción que es fruto de suponer que $A \sim \mathcal{P}(A)$.

Una propiedad importante de ≤ es su atisimetría, esta propiedad no es facil de probar.

Teorema 1.6.6 (Schröder-Bernstein) Si $A \lesssim B$ y $B \lesssim A$ entonces $A \sim B$.

Dem. Por las hipótesis, existen funciones inyectivas $f:A\longrightarrow B$ y $g:B\longrightarrow A$. Si la cardinalidad de A y alguna de estas funciones fuera suryectiva, entonces el teorema ya estaría probado. De $\mathscr{P}(A)$, construyo un pamodo que podemos suponer que no son suryectivas. Notar que $g:B\longrightarrow g(B)$ es radoja (esto es un razouna función biyectiva. Existe por lo tanto una función inversa, que es biyectiva, g^{-1} : $g(B) \longrightarrow B$. Construiremos una biyección de $\tilde{f}: A \longrightarrow B$, con el auxilio de f y g^{-1} , de la siguiente manera: Buscamos un subconjunto $\tilde{A} \subset A$ de forma tal que la función:

$$\tilde{f}(a) := \begin{cases} f(a), & \text{si } a \in \tilde{A}; \\ g^{-1}(a), & \text{si } a \notin \tilde{A}. \end{cases}$$
 (1.6)

sea biyectiva. Un primer requerimiento para esta función es que $\tilde{A}^c \subset g(B)$. Esto a causa de que si $a \in \tilde{A}^c$ entonces le aplicaremos g^{-1} a ese a, por consiguiente a debería estar en el dominio de g^{-1} , que es g(B). Dicho de otro modo, se debe cumplir que $g(B)^c\subset \tilde{A}$. Por simplicidad pongamos $A_1:=g(B)^c$ y $B_1:=f(A_1)$. Ver la Figura 1.1 en la página siquiente

Una primera aproximación sería intentar la construcción con $\tilde{A}=g(B)^c$. Seguramente así la función \tilde{f} , ver (1.6), está bien definida. La función \tilde{f} será suryectiva, pues g^{-1} es survectiva de g(B) en B. No obstante, con esa elección de \tilde{A} , la función \tilde{f} no es inyectiva pues cada elemento de B_1 es imágen, por esta \tilde{f} , de dos elementos, uno en A_1 y otro en q(B). De modo que esta elección de \tilde{A} todavía no nos sirve.

Lo que vamos a hacer ahora es agregarle a \tilde{A} el conjunto de todos los elementos de g(B) tales que g^{-1} los lleva a B_1 . Este conjunto es $A_2:=g(B_1)$. Definamos además $B_2:=f(A_2)$. Ahora $ilde{f}$ llevará $A_1\cup A_2$ en $B_1\cup B_2$. Nos preguntamos, ahora, si la elección $\tilde{A}:=A_1\cup A_2$ nos servirá. Lamentablemente, la respuesta es no⁵. Al haber agrandado $ilde{A}$ también se nos agrandó el conjunto de puntos en B que son imagen de dos puntos, antes era el B_1 , ahora apareció el B_2 . De modo que continuamos el proceso, es decir, definimos $A_3:=g(B_2)$, $B_3:=f(A_3ar)$ y así sucesivamente, ver Figura 1.2 en la página 18 . Nunca llegaremos, en una cantidad finita de pasos, al conjunto $ilde{A}$ con la propiedad deseada, puesto que al cabo de n pasos se nos genera el conjunto B_n donde las imagenes continuan superponiendosé. ¿Qué haremos entonces?. Lo que se hará es seguir este proceso indefinidamente, generando una sucesión de conjuntos A_n y B_n , y luego definir:

$$\tilde{A} := \bigcup_{n=1}^{\infty} A_n. \tag{1.7}$$

Definimos inductivamente conjuntos A_n y B_n de la siguiente manera:

$$\begin{cases} A_1 = g(B)^c, & B_1 = f(A_1) \\ A_{n+1} = g(B_n), & B_{n+1} = f(A_{n+1}) \end{cases}.$$

Bertrand Russel (1872-1970), inspirado en la demostración de Cantor sobre la relación entre namiento aparentemente coprrecto que lleva a una contradicción) de la teoría de conjuntos. Esta paradoja consiste en definir

$$B = \{A : A \notin A\}.$$

Puede verse facilmente que cualquiera de las siguientes afirmaciones: $A \in A$ y $A \notin A$ lleva a una contradicción.

⁵Podría ser que si, si la función f hubiera sido biyectiva desde un principio, cosa que descartamos

Figura 1.1: Las funciones $f ext{ y } g^{-1}$

Definamos \tilde{A} como en (1.7) y \tilde{f} como en (1.6). Veamos que $\tilde{f}:A\longrightarrow B$ es bivectiva.

Empecemos por la inyectividad. Sean $a,a'\in A$ dos puntos cualesquiera tales que $\tilde{f}(a)=\tilde{f}(a')$. Si a y a' están simultaneamente en \tilde{A} , o en \tilde{A}^c , tenemos que a=a' como consecuencia de que f y g^{-1} son inyectivas. Consideremos entonces el caso $a\in \tilde{A}$ y $a'\notin \tilde{A}$. Debemos llegar a una contradicción pues estamos suponiendo indirectamente que $a\neq a'$, por estar en conjuntos disjuntos, y que $\tilde{f}(a)=\tilde{f}(a')$. Tenemos que, para algún $n\in \mathbb{N}$, $a\in A_n$. Además, por la definición de \tilde{f} , $f(a)=g^{-1}(a')$. Por consiguiente g(f(a))=a'. Como $a\in A_n$, $f(a)\in B_n$ y $a'=g(f(a))\in A_{n+1}$. Esto contradice que $a'\notin \tilde{A}$.

Veamos ahora la suryectividad. Sea $b \in B$ cualquier punto. Si $b \in B_n$, para algún n, como $B_n = f(A_n)$, ciertamente existe un elemento $a \in A_n$ tal que f(a) = b. Ahora, por la definición de \tilde{f} , $\tilde{f}(a) = f(a) = b$. Supongamos, pues, que b no está en ningún B_n . Como una afirmación intermedia, probaremos que g(b) no está en ningún A_n . Supongamos, por el contrario, que existe un n tal que $g(b) \in A_n$. Tiene que ser n > 1, pues $A_1 = g(B)^c$ y $g(b) \in g(B)$. Así, por su definición y como n > 1, el conjunto A_n es igual a $g(B_{n-1})$. De modo que $g(b) \in g(B_{n-1})$. Esto implica que existe un $b' \in B_{n-1}$ tal que g(b) = g(b'). Pero, como g es inyectiva g(b) = g(b) y, por ende, $g(b) \in g(b)$ no está en ningún $g(b) \in g(b)$ era lo que queríamos probar.

Figura 1.2: Demostración del teorema de Schröder-Berstein

1.7 Números Cardinales

Hasta el momento hemos introducido la noción de cuando dos conjuntos tienen la misma cantidad de elementos. Pero no hemos definido el concepto de cantidad de elementos de un conjunto digamos A. A grandes rasgos esto debería ser una característica de todos los conjuntos coordinables con A y se denominará *cardinal* del conjunto A y lo denotaremos por #A. La definición precisa demanda desarrollar la Teoría de números ordinales, que no es la intención de estas notas. Nos vamos a tomar la licencia de invocar el concepto de cardinal a partir de la idea intuitiva que dimos de este concepto.

Se sabe que los números cardinales están ordenados con la relación de orden definida en la sección anterior. Concretamente escribiremos #A < #B cuando $A \prec B$. juntos, recursión, la teoría Se puede demostrar que este un buen orden, en el sentido que todo conjunto acotado de caos, y sucesión matemática infinita. Aunque los

Desde George Cantor es costumbre denotar los números cardinales con letras del alfabeto hebreo. Así el primer $cardinal\ transfinito^6$ es el que le corresponde a los números naturales y se denota por \aleph_0 . Como el conjunto de cardinales es bien ordenado existe un sucesor de \aleph_0 al que denominamos naturalmente \aleph_1 . Al cardinal que corresponde a los números reales lo denominamos c. Sabemos que $\aleph_0 < \aleph_1 \le c$ y George Cantor conjeturó que $c = \aleph_1$. Esta fue una de las más famosas conjeturas de la matemática y se denominó La Hipótesis del Continuo. George Cantor fracasó en hallar una demostración de la hipótesis del continuo. El gran matemático Kurt Gödel probó en 1938 que esta hipótesis es consistente con el sistema axiomático de la Teoría de conjuntos de Zermelo y Fraenkel, y por tanto puede ser tomado como un axioma nuevo para la teoría de conjuntos. Sin embargo, en 1963 Paul Cohen probó que la negación de la hipótesis del continuo también es consistente con los axiomas ZF, lo cual prueba que dicha hipótesis es totalmente independiente de los axiomas ZF. Esta situación es similar a la de

«Borges y la matemática es un libro de ensayo de 2006 de Guillermo Martínez que relata como varias ideas en la matemática moderna se hallan en la obra literaria del autor argentino Jorge Luis Borges, incluyendo conceptos como la teoría de conmática infinita. Aunque los enlaces más fuertes que Borges tuvo con la matemática son a través de la teoría de conjuntos infinitos de Georg Cantor. El título del cuento El Aleph se alude al uso de la letra hebrea de Cantor, álef (⋈) por denotar cardinalidad de conjun-

⁶Como es usual adoptaremos la denominación de transfinito en lugar de infinito como usamos hasta aquí

las geometrías no euclídeas.

No contento con introducir los números cardinales transfinitos George Cantor introdujo una aritmética entre ellos. Así por ejemplo si \aleph_a y \aleph_b son dos cardinales, buscamos dos conjuntos disjuntos cualesquiera A y B tales que $\#A = \aleph_a$ y $\#B = \aleph_b$ y definimos

$$\aleph_a + \aleph_b = \#A \cup B$$

$$\aleph_a \times \aleph_b = \#A \times B$$

$$\aleph_a^{\aleph_b} = \#A^B$$

$$2^{\aleph_a} = \#2^A$$

Algunas relaciones que hemos demostrado

$$\begin{array}{lll} \forall \aleph: \aleph & <2^\aleph & \text{(Por Teorema 1.6.5)} \\ \aleph_0 \times \aleph_0 & =\aleph_0 & \text{(Por Proposición 1.3.4)} \\ \aleph_0 + \aleph_0 & =\aleph_0 & \text{(Por Proposición 1.3.6)} \end{array}$$

1.8 Aplicaciones del Teorema de Schröder-Berstein

El teorema de Schröder-Berstein es una herramienta potente para probar coordinabilidad de conjuntos puesto que nos permite establecer coordinabilidad mostrando sólo que existen funciones inyectivas entre los conjuntos.

Habíamos visto que $\mathbb{R} \sim \mathbb{N}$. ¿ Qué ocurre con \mathbb{R}^2 , \mathbb{R}^3 ,...? ¿Serán estos conjuntos más "numerosos" que \mathbb{R} ? Esto es: ¿Serán no coordinables con \mathbb{R} ?. Recordando que $\#\mathbb{R} = c$ nos preguntamos si $c < c^2$. La respuesta a esta pregunta es negativa, es decir $\mathbb{R}^n \sim \mathbb{R}$ esto es $c^n = c$. Para ver esto basta demostrar que $(0,1)^2 \sim (0,1)$. El caso general es consecuencia del caso n=2, usando inducción, el Ejemplo 1.2.2 en la página 6 y el Ejercicio 1.9.4 en la página 22.

Teorema 1.8.7
$$(0,1)^2 \sim (0,1)$$
. En otras palabras $c^2 = c$.

Dem. Observar que $(0,1) \lesssim (0,1)^2$. Para demostrarlo considerar la función inyectiva f(x) = (x,1/2).

Veamos que $(0,1)^2 \lesssim (0,1)$. Debemos construir una función inyectiva $f:(0,1)^2 \longrightarrow (0,1)$. Sea $(x,y) \in (0,1)^2$. Consideremos las expresiones decimales $x=0.x_1x_2...$ e $y=0.y_1y_2...$, donde x_i e y_i son enteros entre 0 y 9, y no son todos 9 a partir de un momento en adelante. Entonces escribimos:

$$f(x,y) := 0.x_1y_1x_2y_2....$$

Es decir f intercala las expresiones decimales de x e y. Esta función es inyectiva, puesto que dos expresiones decimales iguales tienen todos sus dígitos correspondientes iguales. Esto concluye la demostración.

Es bueno notar que la función f, definida en la demostración anterior, no es suryectiva. Un número que no es imagen de ningún par es 0.909090... ¿Por qué será esto?

Por el Teorema 1.6.5 en la página 15 tenemos que $\mathbb{N} \prec \mathscr{P}(\mathbb{N})$. Desmostramos, además, que $\mathbb{N} \prec \mathbb{R}$. Nos preguntamos, ahora, que relación unirá $\mathscr{P}(\mathbb{N})$ con \mathbb{R} . Con el siguiente teorema probaremos que aquellos conjuntos son coordinables.

Teorema 1.8.8
$$\mathscr{P}(\mathbb{N}) \sim \mathbb{R}$$
. En otras palabras $2^{\aleph_0} = c$.

Dem. Probaremos que $\mathscr{P}(\mathbb{N}) \lesssim \mathbb{R}$ y después que $\mathscr{P}(\mathbb{N}) \succsim \mathbb{R}$.

Como $\mathscr{P}(\mathbb{N}) \sim \mathbf{2}^{\mathbb{N}}$ (Ejercicio 1.9.10 en la página 22), y por el Ejercicio 1.9.4 en la página 22 inciso 4, probaremos que $\mathscr{P}(\mathbb{N}) \preceq \mathbb{R}$ si podemos probar que $\mathbf{2}^{\mathbb{N}} \preceq \mathbb{R}$. Para

«Kurt Gödel; Brünn, Imperio austrohúngaro, actual República Checa, 28 de abril de 1906-Princeton, Estados Unidos; 14 de enero de 1978) fue un lógico, matemático y filósofo austríaco.

Se le considera uno de los lógicos más importantes de todos los tiempos. Su trabajo ha tenido un impacto inmenso en el pensamiento científico y filosófico del siglo XX. Gödel intentó emplear la lógica y la teoría de conjuntos para comprender los fundamentos de la matemática.

Se le conoce sobre todo por sus dos teoremas de la incompletitud, publicados en 1931. El más célebre establece que para todo sistema axiomático recursivo auto-consistente lo suficientemente poderoso como para describir la aritmética de los números naturales (la aritmética de Peano), existen proposiciones verdaderas sobre los naturales que no pueden demostrarse a partir de los axiomas. Para demostrar este teorema, desarrolló una técnica denominada ahora numeración de Gödel, que codifica expresiones formales como números naturales.

También demostró que la hipótesis del continuo no puede refutarse desde los axiomas aceptados de la teoría de conjuntos, si dichos axiomas son consistentes. » (Wikipedia)

este fin, consideremos la siguiente función:

$$T: \mathbf{2}^{\mathbb{N}} \longrightarrow \mathbb{R}$$

 $f \longmapsto 0.f(1)f(2)f(3)...$

Esto es la función f se aplica en un número cuya expansión decimal tiene solo ceros y unos. Esta función es inyectiva, pues si

$$0.f(1)f(2)f(3)... = 0.g(1)g(2)g(3)...$$

Entonces, por la unicidad de la expansión decimal⁷, tenemos que f(1)=g(1), f(2)=g(2),.... Por consiguiente las funciones son iguales. Lo que prueba la inyectividad. De este modo demostramos que $\mathbf{2}^{\mathbb{N}} \preceq \mathbb{R}$ y esto, por lo que explicamos anteriormente, implica que $\mathscr{P}(\mathbb{N}) \preceq \mathbb{R}$

que $\mathscr{P}(\mathbb{N}) \preceq \mathbb{R}$ Ahora debemos ver que $\mathscr{P}(\mathbb{N}) \succsim \mathbb{R}$. Utilizando los incisos 1. y 4. del Ejercicios 1.9.4 en la página 22, vemos que es suficiente probar que $\mathbb{R} \preceq \mathscr{P}(\mathbb{Q})$. Para hacer esto definimos la siguiente aplicación:

$$T: \mathbb{R} \longrightarrow \mathscr{P}(\mathbb{Q})$$
$$r \longmapsto \{q \in \mathbb{Q} : q < r\}$$

Veamos que la aplicación es inyectiva. Sean $r_1, r_2 \in \mathbb{R}$ números reales distintos, supongamos $r_1 < r_2$. Por la densidad de \mathbb{Q} , existe un $q_0 \in \mathbb{Q}$ tal que $q_0 \in (r_1, r_2)$. Así $q_0 \in \{q \in \mathbb{Q}: q < r_2\}$ y $q_0 \notin \{q \in \mathbb{Q}: q < r_1\}$. De modo que

$$\{q \in \mathbb{Q} : q < r_1\} \neq \{q \in \mathbb{Q} : q < r_2\}.$$

Es decir T es inyectiva.

Para finalizar demostraremos que $\mathbb{N}^{\mathbb{N}} \sim \mathbf{2}^{\mathbb{N}}$. Mas que el resultado en sí, vamos a resaltar su demostración, pues contiene una idea interesante.

Proposición 1.8.7 $\mathbb{N}^{\mathbb{N}} \sim \mathbf{2}^{\mathbb{N}}$. En lenguaje de cardinales $\aleph_0^{\aleph_0} = 2^{\aleph_0}$.

 $\emph{Dem}.$ Dado un conjunto X cualquiera, podemos interpretar una función $f \in X^{\mathbb{N}}$ como una sucesión de elementos de X, a la que podemos disponer de la siguiente manera:

$$f = (f(1), f(2), f(3), \dots).$$
 (1.8)

Si $X=\mathbb{N}$ entonces la sucesión será de números naturales y si $X=\mathbf{2}$ entonces la sucesión será de ceros y unos.

Interpretemos el segundo miembro de (1.8) como una palabra infinita. Si $X=\mathbb{N}$, esta palabras se compone de "letras" que pueden ser cualquier número natural. Si $X=\mathbf{2}$, esta "palabra" se escribe con solo dos "letras" el 0 y el 1. La pregunta es: ¿Cómo podemos "traducir" una palabra escrita con un alfabeto de infitas letras, a uno con solo dos?. La solución a esto es ingeniosa. Sea $f\in\mathbb{N}^\mathbb{N}$, usaremos el signo 1 para denotar las comas en la sucesión f y pondrémos tantos ceros como indiquen las cantidades f(j).

Veamos que esta función es inyectiva. Sean $f,g\in\mathbb{N}^\mathbb{N}$, con $f\neq g$. Sea

$$j = \min\{i : f(i) \neq g(i)\}.$$

⁷Recordemos que puede haber expresiones decimales distintas que representan el mismo número, estas son las expresiones que tienen todos nueves a partir de un momento en adelante, como por ejemplo 1=0.999....No obstante este problema no se nos presenta aquí pues la expresiones decimales que consideramos tienen solo 0 y 1

Tenemos que f(i) = g(i) para i < j. Escribamos las dos sucesiones

$$\underbrace{(\underbrace{0,...,0}_{f(1) \text{ ceros}},1,...,1,\underbrace{0,...,0}_{f(j-1) \text{ ceros}},1,\underbrace{0,...,0}_{f(j) \text{ ceros}},1,...)}_{f(j) \text{ ceros}}$$

$$\underbrace{(\underbrace{0,...,0}_{g(1) \text{ ceros}},1,...,1,\underbrace{0,...,0}_{g(j-1) \text{ ceros}},1,\underbrace{0,...,0}_{g(j) \text{ ceros}},1,...)}_{g(j) \text{ ceros}}$$

Notar que los primeros j-1 grupos de ceros son iguales, pues f(i)=g(i) para i< j, por consiguiente los primeros j-1 unos estan en la misma posición en las dos sucesiones. Pero $f(j) \neq g(j)$ y, por consiguiente, el grupo j-ésimo de ceros debe diferir en las dos sucesiones. Esto fuerza que si, por ejemplo, f(j) < g(j), entonces la sucesión f tendrá un uno donde la g tiene un cero.

Así $T(f) \neq T(g)$ y la función es inyectiva. Esto prueba que $\mathbb{N}^{\mathbb{N}} \lesssim \mathbf{2}^{\mathbb{N}}$. La otra desigualdad es más fácil de obtener pues

$$\begin{tabular}{ll} \bf 2 & \precsim \mathbb{N} & \text{pues unos es finito y el otro no} \\ \bf 2^{\mathbb{N}} & \precsim \mathbb{N}^{\mathbb{N}} & \text{por el Ejercicio 1.9.5} \\ \end{tabular}$$

Existe una demostración mucho más de que $\mathbb{N}^\mathbb{N} \preceq \mathbf{2}^\mathbb{N}$. Sin embargo preferimos la dada arriba por la idea interesante y potencialmente útil que contiene. Expogamos esta segunda demostración.

$$\mathbb{N} \lesssim \mathbf{2}^{\mathbb{N}}$$
 Teorema de Cantor $\mathbb{N}^{\mathbb{N}} \lesssim (\mathbf{2}^{\mathbb{N}})^{\mathbb{N}}$ Ejercicio 1.9.5 $\mathbb{N}^{\mathbb{N}} \lesssim \mathbf{2}^{\mathbb{N} \times \mathbb{N}}$ Ejercicio 1.9.5 $\mathbb{N}^{\mathbb{N}} \lesssim \mathbf{2}^{\mathbb{N}}$ Proposición 1.3.4 $\mathbb{N}^{\mathbb{N}} \lesssim \mathbf{2}^{\mathbb{N}}$ Ejercicio 1.9.4 inciso 3.

1.9 Ejercicios

у

Ejercicio 1.9.1 Sea $f:A\longrightarrow B$ una función cualquiera. Supongamos que $\{A_i\}_{i\in I}$ y $\{B_i\}_{i\in I}$ son familias subindicadas de conjuntos, donde los A_i y B_i son subconjuntos de A y B respectivamente. Demostrar las siguientes propiedades:

1.
$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c$$
.

2.
$$\left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} A_i^c$$
.

3.
$$f\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} f(A_i)$$
.

4. ¿Qué ocurre con
$$f\left(\bigcap_{i\in I}A_i\right)$$
?

5.
$$f^{-1}\left(\bigcup_{i\in I} B_i\right) = \bigcup_{i\in I} f^{-1}(B_i)$$
.

6.
$$f^{-1}(\bigcap_{i \in I} B_i) = \bigcap_{i \in I} f^{-1}(B_i)$$
.

Ejercicio 1.9.2 Demostrar las propiedades de la Proposición 1.1.1 en la página 4

Ejercicio 1.9.3 Probar que \sim es una relación de equivalencia.

Ejercicio 1.9.4 Supongamos que $A \sim B$ y $C \sim D$.

- 1. Demostrar que $\mathscr{P}(A) \sim \mathscr{P}(B)$.
- 2. Demostrar que $A \times C \sim B \times D$.
- 3. Demostrar que $A^C \sim B^D$.
- 4. Si $A \lesssim C$ entonces $B \lesssim D$.

Ejercicio 1.9.5 Sean A, B y C conjuntos no vacios. Demostrar que

- 1. $(A^B)^C \sim A^{B \times C}$.
- 2. Si $A \lesssim B$ entonces $A^C \lesssim B^C$.

Ejercicio 1.9.6 Demostrar que un subconjunto de un conjunto finito es finito.

Ejercicio 1.9.7 Demostrar que la función $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ definida por:

$$f(j,k) := \frac{(j+k-1)(j+k)}{2} - j + 1,$$

es una biyección.

Ejercicio 1.9.8 Encontrar, de manera explícita, una cantidad numerable de subconjuntos de $\mathbb N$, mutuamente disjuntos y cada uno de ellos numerable. Usar esto para dar otra demostración de que $\mathbb N \times \mathbb N$ es numerable.

Ejercicio 1.9.9 Demostrar, exhibiendo una biyección, que $(0,1) \sim [0,1]$

Ejercicio 1.9.10 Demostrar que el conjunto $\mathscr{P}(\mathbb{N})$ es coordinable con el conjunto $\mathbf{2}^{\mathbb{N}}$, donde $\mathbf{n}=\{0,1,...,n-1\}$. Recordar que, si A y B son conjuntos, $B^A:=\{f:f:A\longrightarrow B\}$. De este modo $\mathbf{2}^{\mathbb{N}}$ es el conjunto de funciones $f:\mathbb{N}\longrightarrow\{0,1\}$.

Ejercicio 1.9.11 Demostrar que, para cualquier conjunto A, $\mathcal{P}(A) \sim \mathbf{2}^A$.

Ejercicio 1.9.12 Demostrar que son equivalentes:

- 1. A es infinito.
- 2. A es coordinable con un subconjunto propio, es decir: Existe $B\subset A$, con $B\neq A$, tal que $A\sim B$.

Ejercicio 1.9.13 Sea A un conjunto infinito y $B\subset A$ numerable. Supongamos que A-B es infinito. Demostrar que $A-B\sim A$.

Ejercicio 1.9.14 Sean A y B conjuntos y supongamos que existe una funci'on f de A en B suprayectiva. Demostrar que $\#B \leq \#A$.

Ejercicio 1.9.15 Demostrar que el conjunto formado por todos los subconjuntos de $\mathbb N$ que son finitos, es numerable. ¿Qué ocurrira con el conjunto de todos los subconjuntos infinitos?

Ejercicio 1.9.16 Sea $\{A_i\}_{i\in I}$ una familia de intervalos de \mathbb{R} . Suponer que los conjuntos en la familia son mutuamente disjuntos, es decir: $A_i\cap A_j=\emptyset$ si $i\neq j$. Demostrar que el conjunto $\{A_i:i\in I\}$ es a lo sumo numerable.

Ejercicio 1.9.17 Recordemos que una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ se dice nodecreciente, si para todos $x,y \in \mathbb{R}$, tales que x < y, se tiene que $f(x) \le f(y)$. Dada una función nodecreciente, demostrar que el conjunto de todos los puntos de discontinuidad es a lo sumo numerable. *Ayuda*: Demostrar en primera instancia que los límites laterales:

$$\lim_{x \to a^+} f(x) \quad \text{y} \quad \lim_{x \to a^-} f(x)$$

existen para todo $a \in \mathbb{R}$. Luego aplicar el ejercicio anterior.

Ejercicio 1.9.18 Demostrar que $\mathbb{R}^{\mathbb{N}} \sim \mathbb{R}$ ($c^{\aleph_0} = c$).

Ejercicio 1.9.19 Como aprendimos $\mathbb{N} \sim \mathbb{Q}$, esto significa que existe una aplicación biyectiva $f: \mathbb{N} \longrightarrow \mathbb{Q}$, que nos permite enumerar \mathbb{Q} como una suceción $r_j := f(j)$. Definimos la aplicación:

$$T: C(\mathbb{R}) \longrightarrow \mathbb{R}^{\mathbb{N}}$$

$$f \longmapsto T_f$$

donde

$$T_f(j) := f(r_i).$$

1. Demostrar que T es inyectiva. Por consiguiente $C(\mathbb{R}) \lesssim \mathbb{R}^{\mathbb{N}}$.

2. Usando el inciso anterior, demostrar que $C(\mathbb{R}) \sim \mathbb{R}$, donde $C(\mathbb{R})$ es el conjunto de las funciones continuas de \mathbb{R} en si mismo.

2 Nociones Básicas de Topología

2.1 Espacios Métricos

2.1.1 Enfoque axiomático de las estructuras métricas

Uno de los conceptos fundamentales de la matemática es la noción de distancia. Esta noción está presente en multitud de actividades humanas, desde el comercio a la descripción del cosmos. En matemática medimos distancias en el plano y en el espacio y en las representaciones algebraicas de ellos \mathbb{R}^2 y \mathbb{R}^3 . Más generalmente en espacios euclideanos n-dimensionales \mathbb{R}^n . Desde comienzos del siglo XX los matemáticos fueron extendiendo la noción de distancia a conjuntos compuestos de los más diversos entes, matrices, funciones, funciones que actúan sobre funciones, etc. Esta ubicuidad y multiplicidad del concepto de distancia justifica un tratamiento axiomático de él.

Definición 2.1.1 Sea X un conjunto y $d: X \times X \to \mathbb{R}$ una función. Diremos que d es una *métrica* o *distancia* sobre X si satisface las siguientes propiedades:

i)
$$\forall x \forall y : d(x, y) = 0 \Leftrightarrow x = y$$
.

ii)
$$\forall x \forall y : d(x,y) = d(y,x)$$
.

iii)
$$\forall x \forall y \forall z : d(x,z) \leq d(x,y) + d(x,z)$$
.

Si d es una métrica sobre X diremos, entonces, que el par (X,d) es un espacio métrico.

La desigualdad iii) en la definición anterior se denomina desigualdad triágular, esto debido a que se la puede pensar como la relación entre un lado de un triágulo y la suma de los otros dos, ver figura en el margen.

Veamos ahora algunos ejemplos de espacios métricos.

Ejemplo 2.1.1 La función módulo $|.|:\mathbb{R}\to\mathbb{R}$ induce una métrica sobre \mathbb{R} , a saber: para $x,y\in\mathbb{R}$ definimos

$$d(x,y) = |x - y|. (2.1)$$

Ejemplo 2.1.2 Sobre \mathbb{R}^n consideremos la función distancia d definida por

$$d(\mathbf{x}, \mathbf{y}) := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2},$$
(2.2)

donde $\mathbf{x}=(x_1,\ldots,x_n)$ e $\mathbf{y}=(y_1,\ldots,y_n)$. Dejamos al alumno la demostración de que d es una métrica, ver Ejercicio 2.1.1 en la página 33. Esta métrica es conocida como *métrica euclidea* y es la métrica con la que estamos más familiarizados.

Ejemplo 2.1.3 Dado cualquier conjunto no vacío X, la función definida por:

$$d(x,y) := \left\{ \begin{array}{ll} 1, & \operatorname{si} x \neq y; \\ 0, & \operatorname{si} x = y. \end{array} \right.$$

es una métrica. Esta métrica se denomina métrica discreta.

Ejemplo 2.1.4 Dado un conjunto X, definamos $\mathcal{A}(X)$ como el conjunto de todas las funciones acotadas $f: X \to \mathbb{R}$. Entonces $(\mathcal{A}(X), d)$ es una métrica, donde:

$$d(f,g) := \sup_{x \in X} |f(x) - g(x)|. \tag{2.3}$$

Maurice René Fréchet; (Maligny, 2 de septiembre de 1878 - París, 4 de junio de 1973) fue un matemático francés. Trabajó en topología, teoría de la probabilidad y la estadística. Sus trabajos en análisis funcional lo empujaron a buscar un marco más general que el espacio euclídeo introduciendo la noción de espacio métrico.

Desigualdad triangular

Ejemplo 2.1.5 Sea $\mathcal{C}([0,1])$ el conjunto de funciones continuas $f:[0,1]\to\mathbb{R}$. Entonces $(\mathcal{C}([0,1]),d)$ es un espacio métrico, donde:

$$d(f,g) := \int_0^1 |f(x) - g(x)| dx.$$
 (2.4)

2.1.2 Bolas, esferas y diámetro

Definido lo que es una métrica y un espacio métrico, pasamos a definir algunas entidades de carácter geométrico, esta son el concepto de *bola*, *esfera* y *diámetro*.

Definición 2.1.2 Sea (X, d) un espacio métrico, $x \in X$ y r > 0.

a) Definimos la bola abierta B(x, r), con centro en x y radio r, por:

$$B(x,r) := \{ y \in X : d(x,y) < r \}.$$

b) Definimos la esfera E(x, r), con centro en x y radio r, por:

$$E(x,r) := \{ y \in X : d(x,y) = r \}.$$

Todos tenemos una concepción de lo que entendemos por una bola, quizas se nos venga a la mente, y de hecho es un ejemplo, un círculo en \mathbb{R}^2 . No obstante, debemos proceder con cuidado. Estamos considerando métricas generales, ocurrirá que en algunos espacios métricos las bolas no se parecen a lo que comunmente entendemos por este concepto. Esto es debido a que en nuestra vida cotidiana estamos habituados a considerar la métrica euclidea, pero en este curso trabajaremos con métricas muy generales.

En \mathbb{R} , con la métrica dada por el módulo, la bola centrada en $x \in \mathbb{R}$ y radio r, no es mas que el intervalo (x-r,x+r). En la figura $\ref{eq:constraints}$ en la página $\ref{eq:constraints}$ en la clase

Todavía mas curiosas son las bolas respecto a la métrica discreta. Sea (X,d) un espacio métrico discreto y $x\in X$, entonces:

$$B(x,r) = \left\{ \begin{array}{ll} \{x\}, & \text{si } r < 1; \\ X, & \text{si } r \geq 1. \end{array} \right.$$

La esfera la podemos pensar como el borde de la bola, que no está incluida en la bola abierta. También tenemos en este caso situaciones que, en un primer momento, nos pueden parecer extrañas. Como casi siempre, el mayor "grado de extrañamiento" se consigue con la métrica discreta. En este caso, si (X, d) es un espacio métrico discreto, tenemos:

$$E(x,r) = \left\{ \begin{array}{ll} \{x\}, & \text{si } r=0; \\ X-\{x\}, & \text{si } r=1; \\ \emptyset, & \text{si } r\neq 0 \text{ y } r\neq 1. \end{array} \right.$$

Pasamos a definir, ahora, el concepto de diámetro de un conjunto.

Definición 2.1.3 Sea (X,d) un espacio métrico y $A\subset X$. Definimos el diámetro del conjunto A por:

$$\delta(A) := \sup_{x,y \in A} d(x,y).$$

Eventualmente, podría ocurrir que $\delta(A) = +\infty$.

La figura ?? en la página ?? explica, por si sola, el significado del concepto de diámetro.

Definición 2.1.4 Un conjunto no vacío A se dirá acotado si $\delta(A) < \infty$.

Es oportuno aclarar que el concepto de acotación depende del conjunto en si mismo y de la métrica. Así puede ocurrir que un mismo conjunto sea acotado con una métrica y con otra no.

Ejemplo 2.1.6 En el espacio \mathbb{R} , con la métrica del módulo, el conjunto $(0, +\infty)$ es no acotado. En cambio, con la métrica discreta todo conjunto, y en particular el dado, lo es. También definiremos la distancia de un punto a un conjunto dado.

Definición 2.1.5 En un espacio métrico (X,d) se define la distancia de $x\in X$ a $A\subset X$ como

$$d(x,A) := \inf_{y \in A} d(x,y).$$

Demostremos que

$$\delta(B(x,r)) \le 2r.$$

Efectivamente, dados z e y en la bola B(x,r), tenemos, por la desigualdad triangular

$$d(y,z) \le d(y,x) + d(x,z) \le 2r.$$

Tomando supremo sobre z e y obtenemos la afirmación. Notar que ya no es cierto que $\delta(B(x,r))=2r$. En efecto, por ejemplo si (X,d) es un espacio métrico discreto, entonces $\delta(B(x,1/2))=0$.

Ahora probaremos que la unión de conjuntos acostados es, a la vez, un conjunto acotado.

Proposición 2.1.1 Sean (X,d) un espacio métrico, A y B subconjuntos acotados de X. Entonces $A \cup B$ es acotado.

Dem. Tenemos que probar que:

$$\delta(A \cup B) < \infty$$
.

Para esto, es suficiente demostrar que $\forall x,y \in A \cup B$ existe una constante M, independiente de x e y, tal que:

$$d(x,y) \leq M$$
.

Sean $z\in A$ y $w\in B$ dos cualesquiera puntos en los conjuntos indicados. A travez de esta demostración estos puntos estaran fijos, no importandonos que puntos sean, cualquiera conduce al mismo argumento. Tomemos, ahora, $x,y\in A\cup B$ cualesquiera, pero ya no estaran fijos. Si ocurriera que x e y estuvieran simultaneamente en uno mismo de los conjuntos, supongamos A, entonces tenemos que:

$$d(x,y) < \delta(A)$$
,

de modo que, en este caso, existe una constante M con la propiedad deseada. Debemos considerar el caso en que x e y esten en "conjuntos diferentes", digamos $x \in A$ e $y \in B$. Entonces tenemos:

$$d(x,y) \le d(x,z) + d(z,w) + d(w,y) \le \delta(A) + d(z,w) + \delta(B).$$

El miembro derecho, de la desigualdad anterior, es independiente de x e y, de modo que quedó demostrada la proposición.

2.1.3 Conjuntos abiertos

Uno de los conceptos más importantes, sino el más, de la Topología es el de conjunto abierto.

Definición 2.1.6 Sea (X,d) un e.m^a. Diremos que $A\subset X$ es un conjunto abierto si $\forall x\in A\exists r>0$ tal que:

$$B(x,r) \subset X$$
.

En la figura $\ref{eq:conjunto}$ en la página $\ref{eq:conjunto}$ podemos ver un ejemplo de conjunto abierto, en \mathbb{R}^2 con la métrica euclidea, y otro que no lo es. La diferencia es que en el conjunto b) el borde (en la parte recta del conjunto) forma parte del mismo conjunto, entonces si x está en este borde, toda bola centrada en x contiene puntos fuera del conjunto.

Un ejemplo, esperable, de conjunto abierto lo constituyen las bolas abiertas.

Proposición 2.1.2 Toda bola abierta es un conjunto abierto.

Dem. Sea $x \in X$ y r > 0. Consideremos la bola abierta B(x,r). Para demostrar que la bola es abierta, hay que encontrar, para todo $y \in B(x,r)$, un r' > 0 tal que

$$B(y,r') \subset B(x,r). \tag{2.5}$$

Sea, pues, $y \in B(x, r)$. Tomemos:

$$r' := r - d(x, y).$$

Ver la figura $\ref{eq:condition}$ en la página $\ref{eq:condition}$ para un gráfico de la situación. Este r' es mayor que cero. En efecto, como y está en la bola, tenemos que d(x,y) < r.

Ahora, veamos la inclusión 2.5. Sea $z \in B(y, r')$, entonces tenemos, por la desigual-dad triangular, que:

$$d(x,z) \le d(x,y) + d(y,z) < d(x,y) + r' < r.$$

Así $z \in B(x,r)$, que es lo que queríamos demostrar.

Ahora damos dos propiedades de conjuntos abiertos que tendrán mucha trascendencia más adelante.

Teorema 2.1.1 Sea I un conjunto de índices y $\{A_i\}_{i\in I}$ una familia de conjuntos abiertos. Entonces:

- a) La unión $\bigcup_{i \in I} A_i$ es un conjunto abierto.
- b) Si I es finito, la intersección $\bigcap_{i \in I} A_i$ es un conjunto abierto.

 $\mbox{\it Dem}.$ Empecemos por la propiedad a). Sea x un punto en la unión, es decir existe algún índice i_0 tal que $x\in A_{i_0}.$ Como este A_{i_0} es un conjunto abierto, deberá existir r>0 tal que $B(x,r)\subset A_{i_0}.$ Claramente la bola B(x,r), al ser un subconjunto de A_{i_0} es un subconjunto de la unión de todos los A_i , que es lo que teníamos que probar.

Ahora veamos b). Podemos suponer que, para algún $n \in \mathbb{N}$, tenemos que $I = \{1, \ldots, n\}$. Sea x un punto en la intersección. En este caso, $x \in A_i$, para todo i. Como cada A_i es abierto, existen radios r_i tales que $B(x, r_i) \subset A_i$. Definamos:

$$r:=\min\{r_1,\ldots,r_n\}.$$

El mínimo existe, y es mayor que cero, pues hay una cantidad finita de radios. Ahora tenemos que, como $r \leq r_i$, $B(x,r) \subset B(x,r_i) \subset A_i$, para todo $i \in I$. Por consiguiente B(x,r) es un subconjunto de la intersección de todos los A_i .

Es interesante notar que, en un e.m. discreto (X,d), todo subconjunto $A\subset X$ es abierto. Efectivamente, en un e.m. discreto $B(x,1/2)=\{x\}$ para todo $x\in X$. En particular, si $x\in A$ entonces $B(x,1/2)\subset A$.

Conjuntos abiertos y no abiertos.

Construcción de r'.

^aAbreviación para espacio métrico

2.1.4 Interior de un conjunto y entornos

Como es costumbre, empezamos con una definición.

Definición 2.1.7 Sea (X,d) un e.m. y $A\subset X$. Definimos el interior de A, denotaremos este conjunto A^0 , como el conjunto de todos los puntos $x\in A$ tales que existe un r>0 que satisface $B(x,r)\subset A$.

Hay una gran similitud de esta definición con la de conjunto abierto. De hecho se tiene que un conjunto A es abierto si y solo si $A=A^0$.

En \mathbb{R}^2 con la métrica euclidea podemos visualizar el interior de un conjunto como la parte del conjunto que no está sobre el borde de él, ver figura 2.1.

Figura 2.1: Interior de un conjunto

Tenemos una caracterización alternativa del interior de un conjunto.

Teorema 2.1.2 El interior de un conjunto A, es el mayor abierto contenido en A.

Dem. El hecho de que A^0 es abierto y está contenido en A, es consecuencia inmediata de la definición y lo dejamos como ejercicio. Vamos a demostrar que es el mayor de los abiertos contenido en A. Vale decir, hay que demostrar que si B es un abierto contenido en A, entonces $B\subset A^0$. Sea pues B abierto y $B\subset A$. Tomemos $x\in B$. Como B es abierto existe un r>0 tal que $B(x,r)\subset B\subset A$. Así, necesariamente $x\in A^0$. Lo que demuestra que $B\subset A^0$.

Daremos algunas propiedades de la operación de tomar el interior de un conjunto.

Teorema 2.1.3 Sea (X, d) un e.m., A y B subconjuntos de X.

- a) $(A^0)^0 = A^0$
- b) Si $A \subset B$ entonces $A^0 \subset B^0$.
- c) $(A \cap B)^0 = A^0 \cap B^0$.

Dem. a) Como dijimos, A^0 es abierto, por ende $(A^0)^0 = A^0$.

b) A^0 es un abierto y además está contenido en B, por consiguiente $A^0 \subset B^0$.

c) Como $A\cap B\subset A$ tenemos que, a acausa de b), $(A\cap B)^0\subset A^0$. De la misma manera $(A\cap B)^0\subset B^0$. Por consiguiente $(A\cap B)^0\subset A^0\cap B^0$. Para la otra inclusión, tener en cuenta que $A^0\cap B^0$ es un abierto contenido en $A\cap B$, por lo tanto $A^0\cap B^0\subset (A\cap B)^0$.

Definición 2.1.8 En un e.m. el exterior de un conjunto A es el interior de su complemento. En símbolos ponemos $\operatorname{Ext}(A) = (A^c)^0$.

Definición 2.1.9 Sea (X,d) un e.m. y $x\in X$. Diremos que V es un entorno de x si $x\in V^0$. También denotaremos por E(x) al conjunto de todos los entornos de x.

El anterior es otro de los conceptos claves de la topología. Observemos que un conjunto abierto es entorno de cada uno de sus puntos. La recíproca es también cierta, es decir si un conjunto es entorno de cada uno de sus puntos entonces es abierto.

Proposición 2.1.3 La intersección de una cantidad finita de entornos de un punto x en un e.m. (X,d) es, a su vez, un entorno de x.

Dem. Sean V_i , i=1,...,n, entornos de $x\in X$. Por definición $x\in V_i^0$ para todo i=1,...,n. Entonces $x\in V_1^0\cap\cdots\cap V_n^0=(V_1\cap\cdots\cap V_n)^0$. De modo que $V_1\cap\cdots\cap V_n$ es un entorno de x. Así queda establecida la propiedad que expresa la proposición. \square

2.1.5 Conjuntos cerrados y clausura de conjuntos

Ahora introduciremos el concepto de conjunto cerrado.

Definición 2.1.10 Un conjunto es cerrado si su complemento es abierto.

Esta sencilla definición hace las nociones de conjunto cerrado y abierto duales¹, así veremos que cada propiedad de conjuntos abiertos induce una correspondiente propiedad sobre conjuntos cerrados. Tener en cuenta esto en la siguiente teorema.

Teorema 2.1.4 Sea I un conjunto de índices y $\{F_i\}_{i\in I}$ una familia de conjuntos cerrados. Entonces:

- a) La intersección $\bigcap_{i \in I} F_i$ es un conjunto cerrado.
- b) Si I es finito, la unión $\bigcup_{i \in I} F_i$ es un conjunto cerrado.

Dem. La afirmaciones a) y b) de este teorema son duales de las a) y b) del Teorema 2.1.1 en la página 28. Por ejemplo, para demostrar a), observemos que, por definición, la siguiente es una familia de conjuntos abiertos: $\{F_i^c\}_{i\in I}$. De modo que por a) del Teorema 2.1.1 en la página 28 tenemos que:

$$\bigcup_{i \in I} F_i^c$$

¹Dos tipos de conceptos son duales cuando cualquier afirmación sobre uno de ellos se convierte en una afirmación sobre el otro. En este proceso de "transformación de enunciados" hay que traducir cada concepto por su dual. Por ejemplo, en el caso que nos ocupa, un conjunto cerrado muta en abierto y las intersecciones mutan en uniones y viceverza. Uniones e intersecciones son duales como consecuencia de las leyes de de Morgan

es un conjunto abierto. De allí que el complemento de este conjunto es cerrado. Pero el complemento de este conjunto es, en virtud de las leyes de de Morgan, la intersección de todos los F_i . La propiedad b) se obtiene de la misma manera.

Ejemplos de conjuntos cerrados son los intervalos cerrados de \mathbb{R} , con la métrica del módulo; las bolas cerradas en cualquier e.m., es decir los conjuntos de la forma:

$$B'(x,r) := \{ y \in X : d(x,y) \le r \}.$$

Las esferas también resultan ser conjuntos cerrados. Por otra parte, como en un e.m. discreto todo conjunto es abierto, todo conjunto, también, es cerrado. La demostración de que los anteriores son conjuntos cerrados las dejamos como ejercicios. A lo largo de esta materia veremos varios ejemplos mas de conjuntos cerrados, encomendamos al estudiante prestar atención a ellos, puesto que tan importante como aprender las definiciones y propiedades de determinado concepto, es conocer, y poder construir ejemplos de ese concepto.

El concepto de interior de un conjunto tiene su dual correspondiente.

Definición 2.1.11 Sea (X,d) un e.m.. La clausura de un conjunto $A\subset X$ se define y denota como se ve a continuación:

$$\overline{A}:=(\operatorname{Ext}(A))^c=\left[(A^c)^0\right]^c.$$

En \mathbb{R}^2 con la métrica euclidea podemos visualizar la clausura de un conjunto como el conjunto más su "borde", ver la figura 2.2.

Figura 2.2: Clausura de un conjunto

Tenemos la siguiente caracterización alternativa de clausura de un conjunto.

Proposición 2.1.4 Sea (X, d) un e.m. y $A \subset X$. Son equivalentes:

- a) $x \in \overline{A}$.
- b) $\forall r > 0 : B(x,r) \cap A \neq \emptyset$.

 ${\it Dem.}$ Veamos primero que a) \Rightarrow b). Sea $x\in \overline{A}$. Por definición $x\notin (A^c)^0$. Así, por definición de conjunto interior, tenemos que para todo r>0, $B(x,r)\nsubseteq A^c$. Es decir que para todo r>0 existe $y=y_r\in B(x,r)\cap A$. Esto prueba b).

Veamos ahora que b) \Rightarrow a). Sea, pues, x un punto satisfaciendo la propiedad b). Toda bola de radio x y centro r>0 corta al conjunto A. De modo que no existe una de tales bolas con la propiedad que este completamente contenida en el conjunto A^c . Esto nos

dice, por definicion de conjunto interior, que x no está en el interior de A^c . Dicho de otro modo $x \in [(A^c)^0]^c$.

Las propiedades del interior tienen propiedades duales correspondientes para la clausura.

Teorema 2.1.5 Sean (X,d) un e.m., A y B subconjuntos de X. Entonces tenemos que:

- a) $A \subset \overline{A}$.
- b) El conjunto \overline{A} es el menor conjunto cerrado que contiene a A.
- c) $\overline{\overline{A}} = \overline{A}$.
- d) Si $A \subset B$ entonces $\overline{A} \subset \overline{B}$.
- e) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- f) $x \in \overline{A} \Leftrightarrow d(x, A) = 0$

Dem. Veamos a) cuya propiedad dual es que $C^0 \subset C$. En efecto, tenemos que:

$$(A^c)^0 \subset A^c$$
.

Ahora, tomando complementos a ambos miembros², obtenemos que:

$$\overline{A} = \left[(A^c)^0 \right]^c \supset (A^c)^c = A.$$

Esto prueba a).

Veamos b). El conjunto \overline{A} es cerrado pues es el complemento del abierto $(A^c)^0$. Sea F un conjunto cerrado que contiene a A, hay que demostrar que $F \supset \overline{A}$. Entonces, tomando complemento, tenemos que F^c es un abierto contenido en A^c . Como $(A^c)^0$ es el mayor abierto contenido en A^c , tenemos que $F^c \subset (A^c)^0$. Ahora tomemos complemento a esta última inclusión y obtenemos

$$F\supset \left[(A^c)^0\right]^c=\overline{A},$$

que es lo que queríamos demostrar.

Como corolario de b), obtenemos que A es cerrado si, y solo si, $\overline{A}=A$. A su vez, como corolario de esto, obtemos c) y d).

Veamos e). Tenemos que:

$$\overline{A \cup B} = \left[(A \cup B)^c)^0 \right]^c$$
 Definición clausura
$$= \left[(A^c \cap B^c)^0 \right]^c$$
 Leyes de de Morgan
$$= \left[(A^c)^0 \cap (B^c)^0 \right]^c$$
 Propiedad dual del interior
$$= \left[(A^c)^0 \right]^c \cup \left[(B^c)^0 \right]^c$$
 Leyes de de Morgan
$$= \overline{A} \cup \overline{B}$$
 Definición de clausura

Que es lo que queríamos demostrar.

Por último demostremos f). Si $x\in\overline{A}$ entonces, como consecuancia de la proposición 2.1.4 en la página anterior, tenemos que para todo $n\in\mathbb{N}$ existe un $y_n\in A$ tal que $d(x,y_n)<1/n$, ver figura **??** en la página **??**.

Tenemos asi que

$$d(x,A) = \inf_{y \in A} d(x,y) \le d(x,y_n) \le \frac{1}{n}.$$

²La operación de complemento invierte las inclusiones

Y como la desigualdad es válida para todo $n \in \mathbb{N}$, obtenemos que d(x, A) = 0.

Recíprocamente, si d(x,A)=0 entonces, por definición del ínfimo, para todo r>0 existe un $y=y_r\in A$ tal que d(x,y)< r. Así tenemos que $B(x,r)\cap A\neq \emptyset$, para todo r>0. Esto, como sabemos, es equivalente a afirmar que $x\in \overline{A}$.

Por último estamos interesados en definir aquellos puntos que estan en lo que hemos denominado, sin ninguna precisión, borde de un conjunto.

Definición 2.1.12 Diremos que x pertenece a la *frontera* de un conjunto A cuando x está en la clausura de A y en la clausura de A^c . Llamamos al conjunto de todos los puntos frontera de A la *frontera* de A y denotaremnos este conjunto por ∂A .

La costumbre de denotar la frontera de un conjunto con el signo de una derivada proviene, suponemos, del calculo sobre variedades donde se observa que cierta integral de una "derivada" sobre un conjunto es igual a la integral de la función sobre la frontera del conjunto. Este resultado se conoce como Teorema de Stokes. El Teorema fundamenteal del Cálculo es un caso particular de este teorema. Es en este contexto donde se consigue una conexión entre derivadas y fronteras.

2.1.6 Ejercicios

Ejercicio 2.1.1 Demostrar que los siguientes son espacios métricos.

- a) (\mathbb{R}, d) donde d está definida en 2.1 en la página 25.
- b) (\mathbb{R}^n, d) donde d está definida en 2.2 en la página 25. Ayuda: Usar la desigueladad de Cauchy-Schwartz $\forall \mathbf{x} \in \mathbb{R}^n \forall \mathbf{y} \in \mathbb{R}^n$:

$$\sum_{i=1}^{n} x_i y_i \le \sqrt{\sum_{i=1}^{n} |x_i|^2} \sqrt{\sum_{i=1}^{n} |y_i|^2}$$

- c) (\mathbb{R}^n, d) , donde d es la función definida en ?? en la página ??.
- d) (\mathbb{R}^n, d) , donde d es la función definida en **??** en la página **??**.
- e) Probar que la métrica discreta es, valga la redundancia, una métrica.
- f) Demostrar que las ecuaciones 2.3 en la página 25 y 2.4 en la página 26 definen métricas.

Ejercicio 2.1.2 Sea (X,d) un espacio métrico. Demostrar que para todos x , y y z en X tenemos que:

$$|d(x,y) - d(x,z)| \le d(y,z).$$

Ejercicio 2.1.3 Sea (X, d) un espacio métrico y $A \subset X$. Demostrar que:

$$|d(x,A) - d(y,A)| \le d(x,y).$$

Ejercicio 2.1.4 Sea (X,d) un e.m., probar que las siguientes funciones son métricas sobre X:

a)
$$d_1(x,y) := \min\{1, d(x,y)\}.$$

b)
$$d_2(x,y) := \frac{d(x,y)}{1+d(x,y)}$$
.

Ejercicio 2.1.5 Sea (X,d) un e.m.. Demostrar que $\forall x,y\in X$, existe entornos $U\in E(x)$ y $V\in E(y)$ tales que $U\cap V=\emptyset$.

Ejercicio 2.1.6 Sea (X, d) u e.m.. Demostrar las siguientes propiedades:

- a) Si $A \subset X$ es finito, entonces X A es abierto.
- b) Si $A\subset X$ es abierto, entonces para todo conjunto B se tiene que $A\cap \overline{B}\subset \overline{A\cap B}$.
- c) Si A es abierto entonces $A \subset (\overline{A})^0$.
- d) Si A es cerrado entonces $(\overline{A})^0 \subset A$.

e)
$$(\overline{A})^0 = \overline{\left(\overline{\left((\overline{A})^0\right)}\right)}$$
.

$$\mathsf{f)} \ \overline{(A^0)} = \overline{\left(\overline{\left(\overline{(A^0)}\right)^0}\right)}.$$

- g) $A^0 = (\overline{A^c})^c$.
- h) $\partial A = \overline{A} A^0$.
- i) $\operatorname{Ext}(A) = (\overline{A})^c$.
- j) $\partial A^0 \subset \partial A$ y $\partial \overline{A} \subset \partial A$.
- k) $\partial(A\cup B)\subset\partial A\cup\partial B$, Si $\overline{A}\cap\overline{B}=\emptyset$ entonces vale la igualdad en la anterior inclusión.
- I) $d(A,B)=d(\overline{A},\overline{B})$, donde por definición:

$$d(A,B):=\inf_{x\in A,y\in B}d(x,y).$$

Ejercicio 2.1.7 Dar ejemplos de:

- a) $A \vee B$ abiertos de $\mathbb R$ tales que los siguientes conjuntos sean todos diferentes: $\overline{A} \cap \overline{B}$, $\overline{A} \cap \overline{B}$, $\overline{A} \cap B$, $\overline{A} \cap B$, $\overline{A} \cap B$.
- b) A y B intervalos de $\mathbb R$ tales que $A\cap \overline{B} \nsubseteq \overline{A\cap B}$.
- c) $A \subset \mathbb{R}^2$ tal que $\partial A = A$.
- d) A y B subconjuntos de \mathbb{R}^2 tales que entre los siguientes conjuntos no valga ninguna inclusión: $\partial A \cup \partial B \partial (A \cap B)$ y $\partial (A \cup B)$.

Ejercicio 2.1.8 Demostrar que los siguientes conjuntos de \mathbb{R}^2 y \mathbb{R}^3 , son abiertos con la métrica euclidea:

a)
$$\{(x,y) \in \mathbb{R}^2 : m < dig((x,y),(0,0)ig) < n\}$$
, donde $n,m \in \mathbb{N}$ y $m < n$.

- b) $\{(x,y) \in \mathbb{R}^2 : 0 < x < 1, \ 0 < y < 1, \ x \neq \frac{1}{n} \ \forall n \in \mathbb{N}\}.$
- c) $\{(x, y, z) \in \mathbb{R}^3 : x, y, z \in \mathbb{Z}\}^c$.

Ejercicio 2.1.9 Hallar la frontera y el diámetro del conjunto $\{\frac{1}{n} : n \in \mathbb{N}\}$.

Ejercicio 2.1.10 Demostrar que el diámetro de la dola unitaria en \mathbb{R}^2 con la métrica euclidea es 2.

Ejercicio 2.1.11 Un e.m. (X,d) se dice ultramétrico si d verifica la desigualdad ultramétrica, es decir:

$$d(x,y) \le \max\{d(x,z), d(z,y)\}.$$

Sea X un e.m. ultramétrico. Demostrar que:

- a) Si $d(x,y) \neq d(y,z)$ entonces $d(x,z) = \max\{d(x,y), d(y,z)\}$.
- b) Si $y\in B(x,r)$ entonces B(x,r)=B(y,r). Como consecuencia las bolas abiertas son también conjuntos cerrados.
- c) Si $y\in \overline{B(x,r)}$ entonces $\overline{B(y,r)}=\overline{B(x,r)}$. Las bolas cerradas son, también, conjuntos abiertos.
- d) Si dos bolas tienen intersección no vacía entonces una está contenidad en la otra.
- e) La distancia de dos bolas abiertas distintas de radio r, contenidas en una bola cerrada de radio r, es igual a r.

Ejercicio 2.1.12 Si (X, d) es un e.m. demostrar que

$$d'(x,y) = \log(1 + d(x,y))$$

define una nueva métrica sobre X. ¿Que tipo de conjunto son las bolas de esta métrica?

2.2 Subespacios de un espacio métrico

Sea (X,d) un e.m. e $Y\subset X$. La métrica d es una función definida sobre $X\times X$, luego podemos considerar su restricción a $Y\times Y$. Esta restricción también cumplirá, es inmediato verlo, los axiomas de una métrica. Por este motivo, el par (Y,d) es un e.m., por una abuso de notación denotaremos la restricción de d al conjunto $Y\times Y$ por el mismo símbolo d. Diremos que Y es un subespacio de X. Observar que la forma de las bolas en un subespacio puede ser diferente que en el espacio total, como puede verse en la figura $\ref{eq:total}$ en la página $\ref{eq:total}$. En este gráfico X es el espacio "total", Y el subespacio y x es un punto sobre la frontera de Y, entonces la bola en Y de centro X y radio Y0 es la parte que quedo cuadriculada en el dibujo. Pongamos $B_Y(x,r)$ 0 para la bola en Y2 de centro X3 y radio Y4, entonces tenemos la relación:

$$B_Y(x,r) := \{ y \in Y : d(x,y) < r \} = B(x,r) \cap Y, \tag{2.6}$$

donde B(x,r) es la bola en el espacio total.

El siguiente teorema nos dá una relación de los abiertos y cerrados en Y con los abiertos y cerrados en X.

Una bola en un subespacio

Teorema 2.2.6 Sea (X, d) un e.m. e $Y \subset X$. Entonces:

- a) El conjunto A es abierto en Y si y solo si existe un G abierto en X tal que $A=G\cap Y$.
- b) El conjunto C es cerrado en Y si y solo si existe un cerrado F en X tal que $C=Y\cap F$.

Dem. Veamos, primero, la propiedad a). Sea A un abierto en Y. Para cada $x \in A$ existe, de acuerdo a la Ecuación 2.6 en la página anterior, un radio $r_x > 0$ tal que:

$$B(x, r_x) \cap Y \subset A. \tag{2.7}$$

Definamos:

$$G := \bigcup_{x \in A} B(x, r_x).$$

El conjunto G es abierto, pues la unión de conjuntos abiertos resulta abierto. Además

$$G \cap Y = \bigcup_{x \in A} B(x, r_x) \cap Y = A.$$

La última igualdad es cierta por la ecuación 2.7 y por que cada $x \in A$ está en el conjunto $B(x, r_x) \cap Y$. De modo que, encontramos el conjunto que cumple la propiedad a).

Ahora la demostración de b) es sencilla de obtener. Sea C cerrado en Y, en particular $C \subset Y$, entonces Y - C es abierto en Y. Por a) existe un abierto G tal que:

$$Y - C = G \cap Y$$
.

Entonces

$$C = Y \cap G^c$$
.

Como el conjunto G^c es cerrado, obtenemos la tesis con $F=G^c$.

Proposición 2.2.5 Sea (X,d) un e.m. e $Y\subset X$ un subespacio. El conjunto $U\subset Y$ es un entorno de $x\in Y$ en el espacio (Y,d) si y solo si existe un entorno V de x en el e.m. (X,d) tal que $U=V\cap Y$.

Dem. Si U es un entorno de x en Y, entonces x está en el interior de U relativo a Y (pongamos U_Y^0 para este conjunto). Como U_Y^0 es un abierto en Y, por el teorema anterior, existe un abierto W tal que $U_Y^0 = Y \cap W$. Tomemos $V = W \cup U$. El conjunto V es un entorno de X en (X,d), pues contiene al conjunto W que lo es. Además $V \cap Y = U$, lo que demuestra la aserción.

Demostración de la Proposición 2.2.5

Proposición 2.2.6 Sea (X,d) un e.m. e $Y\subset X$ un subespacio. Supongamos que $A\subset Y$. Entonces la clausura de A en el subespacio Y (denotemos esto por \overline{A}^Y) es igual a $\overline{A}^Y=\overline{A}\cap Y$.

Dem. El conjunto $\overline{A} \cap Y$ es un cerrado en Y que contiene al conjunto A, de modo que $\overline{A}^Y \subset \overline{A} \cap Y$. Veamos la otra inclusión. Sea $x \in \overline{A} \cap Y$. Como $x \in \overline{A}$ entonces para todo entorno U de x, tenemos que $U \cap A \neq \emptyset$. Como $A \subset Y$ tenemos que $(U \cap Y) \cap A = U \cap A \neq \emptyset$. Así, como $U \cap Y$ es un entorno arbitrario de X en el subespacio Y, tenemos que $X \in \overline{A}^Y$.

2.2.1 Ejercicios

Ejercicio 2.2.13 Sea (X,d) un e.m., $A\subset X$ y $B\subset A$. Demostrar que $B^0\subset B^0_A$. Dar un ejemplo donde $B^0\neq B^0_A$.

Ejercicio 2.2.14 Sea (X,d) un e.m., B y C subconjuntos de X y $A\subset C\cap B$. Demostrar que A es abierto (cerrado) en $B\cup C$ si, y solo si, es abierto (respectivamente cerrado) en B y C.

Ejercicio 2.2.15 Sea $\{G_i\}_{i\in I}$ un cubrimiento por abiertos de un e.m. X. Demostrar que $F\subset X$ es cerrado si, y solo si, $F\cap G_i$ es cerrado en G_i para todo $i\in I$.

Ejercicio 2.2.16 Dar un ejemplo de un subespacio A de \mathbb{R}^2 tal que exista una bola abierta que es un conjunto cerrado, pero no una bola cerrada, y una bola cerrada que es un conjunto abierto, pero no una bola abierta. Ayuda: Considerar A formado por los puntos (0,1), (0,-1) y por un subconjunto apropiado del eje x.

2.3 Espacios separables

Definición 2.3.13 Sea (X,d) un e.m.. Un conjunto $A\subset X$ se dirá denso en $B\subset X$ si $\overline{A}\supset B$. Si el conjunto A es denso en X se dirá, brevemente, que A es denso.

Ejemplo 2.3.7 $\mathbb{R}-\{0\}$, \mathbb{Q} son densos en \mathbb{R} . **Ejemplo 2.3.8** Sea (X,d) un e.m discreto. Entonces A es denso si y solo si A=X. En efecto, tenemos que $\overline{A}=X$, de modo que si $x\in X$ todo entorno de x interseca al conjunto A. De modo que $B(x,1/2)\cap A\neq\emptyset$. Pero, como se sabe, $B(x,1/2)=\{x\}$, de modo que $x\in A$. Esto demuestra que X=A.

Definición 2.3.14 Un e.m. (X,d) se dirá separable si tiene un subconjunto denso y a lo sumo numerable.

Ejemplo 2.3.9 Como se dijo $\mathbb Q$ es un conjunto denso, además es numerable, por consiguiente $\mathbb R$ es separable.

Ējemplo 2.3.10 \mathbb{R}^n con la métrica euclidea es separable. Afirmamos que \mathbb{Q}^n es un conjunto denso y numerable. Para verlo, tomemos $x=(x_1,...,x_n)\in\mathbb{R}^n$ y veamos que está en $\overline{\mathbb{Q}^n}$. Para ello es suficiente probar que $B(x,r)\cap\mathbb{Q}^n\neq\emptyset$, para todo r>0. Sea r>0 un radio, no es muy dificil demostrar, ver la figura $\ref{eq:constraint}$ en la página $\ref{eq:constraint}$, la siguiente inclusión de un "cubo" en la bola:

$$(x_1 - \frac{r}{\sqrt{n}}, x_1 + \frac{r}{\sqrt{n}}) \times \cdots \times (x_n - \frac{r}{\sqrt{n}}, x_n + \frac{r}{\sqrt{n}}) \subset B(x, r).$$

Como $\mathbb Q$ es denso en $\mathbb R$ existen racionales $q_i\in (x_i-\frac{r}{\sqrt{n}},x_i+\frac{r}{\sqrt{n}})$, i=1,...,n. En virtud de esto $(q_1,...,q_n)\in \mathbb Q^n\cap B(x,r)$. Y así queda establecida la afirmación. **Ejemplo 2.3.11** Un e.m. discreto (X,d) es separable si y solo si X es a lo sumo nume-

Ejemplo 2.3.11 Un e.m. discreto (X,d) es separable si y solo si X es a lo sumo numerable. Como vimos en un ejemplo anterior el único conjunto denso que hay en un e.m. discreto es el total, de modo que si el espacio es separable X debe ser a lo sumo numerable.

Construcción del Ejemplo 2.3.10

Definición 2.3.15 En un e.m. (X,d), una familia de conjuntos abiertos $\{G_i\}_{i\in I}$ se dirá *base* si todo abierto se puede obtener como unión de miembros de la familia. Más precisamente, si G es un abierto cualquiera existe un subconjunto de subíndices $J\subset I$ tal que:

$$G = \bigcup_{i \in J} G_i.$$

Ejemplo 2.3.12 En cualquier e.m. (X,d) la familia de todas las bolas es una base. También es una base la familia de todas las bolas con radio igual a $1/n \operatorname{con} n \in \mathbb{N}$. En efecto, si G es un abierto cualquiera, para todo $x \in G$ existe un $r_x > 0$ tal que $B(x, r_x) \subset G$. Así podemos ver que

$$G = \bigcup_{x \in G} B(x, r_x),$$

lo que demuestra que G lo podemos escribir como unión de bolas. Para el otro caso elegimos un natural n_x suficientemente grande para que $1/n_x < r_x$.

Proposición 2.3.7 Una familia de abiertos $\{G_i\}_{i\in I}$ es una base si y solo si para todo $x\in X$ y para todo entorno $U\in E(x)$, existe un $i\in I$ tal que:

$$x \in G_i \subset U$$
.

 $extit{Dem.} \Rightarrow$). Sea $x \in X$ y $U \in E(x)$. Como la familia es base, tenemos que U^0 es unión de miembros de la familia. Además, por definición, tenemos que $x \in U^0$, estos dos hechos implican la tesis.

 $\stackrel{\cdot}{\Leftarrow}$) Sea G un abierto. Por hipótesis, para cada $x\in G$ encontramos un $i_x\in I$ tal que $x\in G_{i_x}\subset G$. Así tenemos que:

$$G = \bigcup_{x \in G} G_{i_x}.$$

Teorema 2.3.7 Un e.m. es separable si y solo si existe una base a lo sumo numerable.

 ${\it Dem.}\Leftarrow$). Sea $\{G_n\}_{n\in\mathbb{N}}$ una base numerable de abiertos (si hubiera una base finita el razonamiento es idéntico). Elijamos $a_n\in G_n$. El conjunto $D:=\{a_n:n\in\mathbb{N}\}$ es, entonces, a lo sumo numerable (${\it i}$, Por qué?). Además, veamos que es denso. Efectivamente, sea $x\in X$ un punto arbitrario y $U\in E(x)$. Como consecuencia de la Proposición 2.3.7 existe un $n\in\mathbb{N}$ tal que $x\in G_n\subset U$. Ahora tenemos el punto $a_n\in G_n$, y por ello $U\cap D\neq\emptyset$. Probamos así que todo entorno de x interseca a $x\in D$ 0. Como el x0 es arbitrario, aquello prueba que x1 es un conjunto denso.

 \Rightarrow). Sea D un conjunto denso y a lo sumo numerable. Definamos la siguiente familia de bolas abiertas:

$$\mathcal{A} := \{ B(x, \frac{1}{n}) : x \in D \land n \in \mathbb{N} \}.$$

Esta es una familia a lo sumo numerable, pues la siguiente función

$$T: \mathbb{N} \times D \longrightarrow \mathcal{A}$$

$$(n,x) \longmapsto B(x, \frac{1}{n})$$
(2.8)

es suryectiva.

Demostración del Teorema 2.3.7

Veamos que la familia propuesta es una base de abiertos usando la Proposición 2.3.7 en la página anterior. Sea $x \in X$ y $U \in E(x)$. Como $x \in U^0$, podemos elejir r>0 tal que $B(x,r) \subset U$. Sea, ahora, $n \in \mathbb{N}$ suficientemente grande, de modo que 2/n < r. Como D es denso debe existir un $a \in D$ tal que $a \in B(x,\frac{1}{n})$. Observesé que tenemos que $x \in B(a,1/n)$, ver Figura $\ref{eq:second}$?. Además, tenemos que $B(a,1/n) \subset B(x,r) \subset U$. Para demostrarlo, tomemos $y \in B(a,1/n)$. Entonces

$$d(x,y) \le d(x,a) + d(a,y) < \frac{1}{n} + \frac{1}{n} = \frac{2}{n} < r.$$

Tenemos así que $x \in B(a,1/n) \subset U$, como B(a,1/n) es un elemento de la familia propuesta, tenemos probada la propiedad de la Proposicion 2.3.7 en la página anterior y, de este modo, la familia propuesta resulta una base.

Corolario 2.3.1 Un subespacio de un espacio separable es separable.

Dem. Sea (X,d) un e.m. e $Y\subset X$. Sea $\{G_n\}_{n\in I}$ una base a lo sumo numerable de abiertos. Es fácil demostrar que la familia $\{G_n\cap Y\}_{n\in I}$ es una base de los abiertos de Y

2.3.1 Ejercicios

Ejercicio 2.3.17 Sea (X,d) un e.m. y $A\subset X$. Demostrar que $A\cup \operatorname{Ext}(A)$ es denso en A. ¿Será cierto que $A^0\cup\operatorname{Ext}(A)$ es, siempre, denso?

Ejercicio 2.3.18 Demostrar que $\mathbb{I}:=\mathbb{R}-\mathbb{Q}$ es separable. Exhibir un conjunto denso numerable.

Ejercicio 2.3.19 Sea $A \subset \mathbb{R}$. Definamos $B := \{x \in A | \exists y > x : (x,y) \cap A = \emptyset\}$. Demostrar que B es a lo sumo numerable.

Ejercicio 2.3.20 Sea (X,d) un e.m. y $A\subset X$. Diremos que $a\in A$ es un *punto aislado* de A si existe un entorno U de a tal que $U\cap A=\{a\}$. En la Figura \ref{a} en la página \ref{a} ? el conjunto A consiste de la parte sombreada y el punto a, este último es un punto aislado, pues el entorno U satisface la definición.

Por otra parte, un punto $a \in X$ es un *punto de acumulación* de A si, para todo entorno U de a se tiene que $(U - \{a\}) \cap A \neq \emptyset$.

Sea A un conjunto, B el conjunto de puntos de acumulación de A y C el conjunto de puntos aislados de A. Demostrar los siguientes items:

- a) B es cerrado, y $\overline{A} = B \cup C$.
- b) Si X es separable entonces C es numerable.

Ejercicio 2.3.21 Demostrar que (X,d) es separable si y solo si todo cubrimiento de X por abiertos^a tiene un subcubrimiento a lo sumo numerable^b. *Ayuda:* Sea $\{U_i\}_{i\in I}$ un cubrimiento de X y $\{G_n\}_{n\in\mathbb{N}}$ una base numerable. Para cada $n\in\mathbb{N}$ elegir un

 i_n tal que $G_n \subset U_{i_n}$. Luego la familia $\{U_{i_n}\}_{n \in \mathbb{N}}$ será un cubrimiento.

2.4 Funciones Continuas

Vamos a ver que, en el contexto de los espacios métricos, podemos definir el concepto de que una función sea continua.

Definición 2.4.16 Sean (X,d), (Y,d') dos e.m, $f:X\to Y$ una función y $x\in X$. Diremos que f es continua en x si para todo entorno $V\in E(f(x))$, existe un entorno de $U\in E(x)$ tal que $f(U)\subset V$ (ver Figura \ref{figura} en la página \ref{figura}). Diremos que $f:X\to Y$ es continua si es continua en cada punto de X.

Algunas veces es más práctico emplear las siguientes equivalencias de la definición de función continua en un punto.

Definición de función continua

Proposición 2.4.8 Sean (X,d), (Y,d') dos e.m, $f:X\to Y$ una función y $x\in X$. Entonces son equivalentes:

- i) f es continua en x.
- ii) Para todo entorno V de f(x), $f^{-1}(V)$ es un entorno de x.
- iii) Para todo $\varepsilon>0$ existe un $\delta>0$ tal que si $d(x,y)<\delta$ entonces $d'(f(x),f(y))<\varepsilon.$

 $egin{aligned} & {\sf Dem.} \ {\sf i}) \Rightarrow {\sf ii}). \ {\sf Sea} \ V \ {\sf un} \ {\sf entorno} \ {\sf de} \ f(x). \ {\sf En} \ {\sf virtud} \ {\sf de} \ {\sf la} \ {\sf definición, existe} \ {\sf un} \ {\sf entorno} \ U \ {\sf de} \ x \ {\sf tal} \ {\sf que} \ f(U) \subset V. \ {\sf As} \ {\sf i} \ {\sf tenemos} \ {\sf que} \ U \subset f^{-1}(V) \ {\sf y} \ {\sf como} \ U \ {\sf es} \ {\sf un} \ {\sf entorno} \ {\sf de} \ x, \ f^{-1}(V) \ {\sf también} \ {\sf lo} \ {\sf \acute{e}s}. \end{aligned}$

ii) \Rightarrow iii). Sea $\varepsilon>0$. La bola $B(f(x),\varepsilon)$ es un entorno de f(x), así, por ii), el conjunto $U:=f^{-1}(B(f(x),\varepsilon))$ es un entorno de x. Entonces $x\in U^0$, lo que implica que existe un $\delta>0$ tal que $B(x,\delta)\subset f^{-1}(B(f(x),\varepsilon))$. Esta inclusión es otra forma de afirmar iii).

iii) \Rightarrow i). Sea V un entorno de f(x). Entonces existe $\varepsilon>0$ tal que $B(f(x),\varepsilon)\subset V$. Por iii), existe un $\delta>0$ tal que si $d(x,y)<\delta$ entonces $d(f(x),f(y))<\varepsilon$. Esto afirma que $f(B(x,\delta))\subset B(f(x),\varepsilon)$. Como $B(f(x),\varepsilon)\subset V$, tenemos que $f(B(x,\delta))\subset V$. Pero $B(x,\delta)$ es un entorno de x, de modo que hemos establecido que f es continua en x

Ejemplo 2.4.13 Sea $f: X \to Y$ una función entre e.m.. Si (X,d) es discreto en-

tonces f es continua. Vale decir si el dominio de una función es un e.m. discreto la función es continua, no importa que función sea ni, que sea el codominio. En efecto, sea $x \in X$ y V un entorno de f(x). Como todo conjunto en un e.m. es abierto, $f^{-1}(V)$ es un abierto, además contiene a x, de este modo es un entorno de x, lo que demuestra la condición ii) de la Proposición 2.4.8. **Ejemplo 2.4.14** Sea (X,d) un e.m. e Y un subespacio de X. La inyección natural $j:Y\to X$, definida por j(x)=x es una función continua, como se puede corroborar facilmente, quedando esta demostración como ejercicio. **Ejemplo 2.4.15** Las funciones constantes son continuas, es decir: sea (X,d) y (Z,d') dos e.m. y $f:X\to Z$ definida por f(x)=a, donde a es un punto de Z, entonces f es continua. La demostración queda como ejercicio.

Proposición 2.4.9 Sea $f: X \to Y$ continua en x. Supongamos que $x \in \overline{A}$ entonces $f(x) \in \overline{f(A)}$.

^aUn cubrimiento por abiertos de X es una familia de conjuntos abiertos $\{G_i\}_{i\in I}$ tal que $X=\bigcup_{i\in I}G_i$.

^bEs decir existe una subfamilia a lo sumo numerable de la familia $\{G_i\}$ que también es un cubrimiento.

Dem. Sea V un entorno de f(x), hay que demostrar que $V \cap f(A) \neq \emptyset$. Pero, como f es continua en x, $f^{-1}(V)$ es un entorno de x. Ahora, ya que $x \in \overline{A}$, tenemos que $f^{-1}(V) \cap A \neq \emptyset$. Sea, pues, $y \in f^{-1}(V) \cap A$. Así, tenemos que $f(y) \in V \cap f(A)$. Luego $V \cap f(A) \neq \emptyset$.

Ahora vamos a dar una serie de equivalencias a que una función sea globalmente continua.

Teorema 2.4.8 Sean (X,d) e (Y,d') e.m. y $f:X\to Y$ una función. Los siguientes enunciados son equivalentes:

- a) f es continua.
- b) Si $A \subset Y$ es un abierto de Y, entonces $f^{-1}(A)$ es abierto de X.
- c) Si $A \subset Y$ es un cerrado de Y, entonces $f^{-1}(A)$ es un cerrado de X.
- d) Para todo subconjunto $A \subset X$ se tiene que $f(\overline{A}) \subset \overline{f(A)}$.

Dem. La Proposición 2.4.9 en la página anterior establece a) \Rightarrow d). Veamos que d) \Rightarrow c). Sea A cerrado en Y y $A' = f^{-1}(A)$. Entonces

$$f(\overline{A'}) \subset \overline{f(A')}$$
 Hipótesis $\subset \overline{A}$ definición de A' (2.9) $= A$ A es cerrado

Interpretación del inciso d) del Teorema 2.4.8

Luego

 $\overline{A'}\subset f^{-1}(f(\overline{A'}))$ Propiedad de la función imagen $\subset f^{-1}(A)$ Inclusión 2.9 =A' Definición de A'

Por otro lado, como es sabido, $A'\subset \overline{A'}$, luego $\overline{A'}=A'$, lo que implica que A' es cerrado. Ahora veamos que c) \Rightarrow b). Sea A abierto en Y. Entonces, A^c es cerrado en Y. Entonces, por c), $f^{-1}(A^c)$ es cerrado en X. Pero, $f^{-1}(A^c)=\left(f^{-1}(A)\right)^c$.

Por último veamos que b) \Rightarrow a). Sea $x \in X$ y V un entorno de f(x), entonces $f(x) \in V^0$. Por hipótesis $f^{-1}(V^0)$ es un abierto que contiene a x. De este modo $f^{-1}(V^0)$ es un entorno de x. Como $f^{-1}(V^0) \subset f^{-1}(V)$ tenemos que $f^{-1}(V)$ es un entorno de x también. Lo que prueba que f es continua en x.

La propiedad d) tiene una interpretación gráfica. Expresa el hecho que si un punto a está "pegado" a un conjunto A (en el sentido que $a\in\overline{A}$) entonces f(a) está "pegado" a f(A), ver Figura \ref{a} ?. Esto es así pues las funciones continuas aplican "puntos próximos" en "puntos próximos", y, al decir que $a\in\overline{A}$ estamos diciendo que a "está próximo" al conjunto A.

Ahora veamos que la composición de funciones continuas es continua.

Proposición 2.4.10 Sean (X,d), (Y,d'), (Z,d'') tres e.m., $f:X\to Y$ y $g:Y\to Z$ funciones tales que f es continua en $a\in X$ y g es continua en $f(a)\in Y$. Entonces $g\circ f:X\to Z$ es continua en a.

Dem. Sea W un entorno de g(f(a)). Como g es continua en f(a) entonces $V:=g^{-1}(W)$ es un entorno de f(a). Luego, como f es continua en a, $f^{-1}(V)=f^{-1}(g^{-1}(W))$ es un entorno de a. Esto implica la tesis, pues $f^{-1}(g^{-1}(W))=(g\circ f)^{-1}(W)$. \square

Corolario 2.4.2 Sea $f:X\to Y$ una función continua en a. Supongamos que $Z\subset X$ es un subespacio con $a\in Z$. Entonces la restricción de f al subespacio Z, con la métrica de subespacio, es continua en a.

Dem. La susodicha restricción es la composición de f con la inyección natural $j:Z\to X$. Por lo tanto el resultado sigue del hecho que la composición de funciones continuas es continua.

Otro concepto importante es el de función uniformemente continua.

Definición 2.4.17 Sea f una función entre dos e.m. (X,d) e (Y,d'). Diremos que f es *uniformemente continua* si para todo $\varepsilon>0$ existe un $\delta>0$ tal que $d'(f(x),f(y))<\varepsilon$, si $d(x,y)<\delta$.

No es facil entender la diferencia de esta definición con la que expresa que f es continua en cada punto de X. La diferencia es que el δ de esta definición es el mismo para todos los puntos de X. Mientras que decir que f es continua en cada punto de X implicaría, en principio, la existencia de un delta que puede depender del punto. Los siguientes ejemplos aclararan más esta definición.

Ejemplo 2.4.16 Las funciones constantes son uniformemente continuas. Dado un $\varepsilon > 0$ podemos tomar cualquier valor de δ que seguramente cumplirá la definición.

Ejemplo 2.4.17 Una función puede ser continua en todo punto y, sin embargo, no ser uniformemente continua, como muestra el siguiente ejemplo: Sea $f:\mathbb{R}\to\mathbb{R}$ definida por $f(x)=x^2$. Esta f es continua en todo punto y no uniformemente continua. En efecto, la diferencia $(a+h)^2-a^2=2ah+h^2$ tiende a $+\infty$ si a tiende a $+\infty$. De modo que asegurar que $h<\delta$ no implica que las imagenes de a+h y a esten cerca, no importando, para ello, cuan chico sea δ . Ver Figura $\ref{eq:continuous}$?

Si una función es uniformemente continua es continua en cada punto. La demostración de este hecho es bastante directa y simple.

$$f: X \longrightarrow \mathbb{R}$$

 $x \longmapsto d(x, A).$

es uniformemente continua. Esto es consecuencia de la desigualdad probada en el Ejercicio 2.1.3 en la página 33, a saber:

$$|d(x,A) - d(y,A)| < d(x,y).$$

2.4.1 Ejercicios

Ejercicio 2.4.22 Sean (X,d), (Y,d') e.m., A y B subconjuntos de X tales que $A \cup B = X$.

- i) Sea $f:X\to Y$ una función tal que $f_{|A}{}^a$ y $f_{|B}$ son ambas continuas en $x\in A\cap B$, probar que f es continua en x.
- ii) Dar un ejemplo de función tal que $f_{|A}$, $f_{|B}$ y $f_{|A\cap B}$ sean continuas pero f no lo sea.

Función no uniformemente continua

 $a_{f|A}$ denota la restricción de f al conjunto A

Ejercicio 2.4.23 Sean (X,d), (Y,d') e.m. y $f:X\to Y$ una función. Demostrar que son equivalentes:

- i) f es continua.
- ii) Para todo $B \subset Y$: $f^{-1}(B^0) \subset [f^{-1}(B)]^0$.
- iii) Para todo $B\subset Y$: $\overline{f^{-1}(B)}\subset f^{-1}(\overline{B})$.

Dar un ejemplo de función continua donde $\overline{f^{-1}(B)} \neq f^{-1}(\overline{B})$.

Ejercicio 2.4.24 Sean (X,d), (Y,d') e.m. y $f,g:X\to Y$ funciones continuas. Demostrar que:

- i) El conjunto $\{x \in X | f(x) = g(x)\}$ es cerrado.
- ii) Si f y g coinciden en un conjunto denso entonces son iguales.

Ejercicio 2.4.25 Sean (X, d), (Y, d') e.m.. Demostrar que son equivalentes

- i) Toda función $f: X \to Y$ es continua.
- ii) Todo punto de X es aislado^a.

2.5 Homeomorfismos e isometrías

Definición 2.5.18 Sean (X,d), (Y,d') dos e.m. y $f:X\to Y$ una función *biyectiva*. Diremos que f es un *homeomorfismo* si f y f^{-1} son ambas continuas. Dos e.m. tales que exista un homeomorfismo entre ellos se denominaran homeomorfos.

Ejemplo 2.5.19 Dos intervalos abiertos cualesquiera de $\mathbb R$ son homeomorfos, uno puede construir una función lineal, que son homeomorfismos, que aplique uno en el otro. Mientras que un intervalos abierto cualquiera (a,b) es homeomorfo a $\mathbb R$. Un homeomorfismo entre ambos es la función:

$$f:(a,b) \longrightarrow \mathbb{R}$$
$$x \longmapsto \tan\left(\pi \frac{2x - (a+b)}{2(b-a)}\right)$$

Ejemplo 2.5.20 Un intervalo cerrado ya no es homeomorfo a \mathbb{R} , esto lo demostraremos más adelante. No obstante podemos definir la $\mathit{recta}\ \mathit{real}\ \mathit{extendida}\ \mathit{que}\ \mathit{ser\'a}\ \mathit{homeomorfa}\ \mathit{a}\ \mathit{los}\ \mathit{intervalos}\ \mathit{cerrados}.$ Más precisamente, sea $f:\mathbb{R}\to (-1,1)$ la función f(x)=x/(1+|x|). No es difícil demostrar que f es biyectiva, de hecho analizando esta función con las herramientas aprendidas en Cálculo I vemos que tiene la forma de la Figura $\ref{modes}\ \mathit{end}\ \mathit{modes}\ \mathit{end}\ \mathit{e$

$$d(x,y) = |f(x) - f(y)|. (2.10)$$

Grafico de la función f(x) = x/(1+|x|)

^aPor abuso de lenguaje los e.m. con esta propiedad se denominan discretos

La función d es una métrica en $\overline{\mathbb{R}}$ (la sencilla demostración la desarrollaremos en clase). Con esta métrica el conjunto \mathbb{R} es acotado, de hecho $\delta(\mathbb{R})=2$. Además la función f resulta un homeomorfismo de $\overline{\mathbb{R}}$ en [-1,1] (este último con la métrica del módulo). En efecto, en virtud de la ecuación 2.10 en la página anterior, dado $\varepsilon>0$ basta elegir $\delta=\varepsilon$ para verificar que f es uniformemente continua. Si llamamos g a la inversa de f y reemplazamos g0 en 2.10 en la página anterior por g(t)1 y g(s)2 respectivamente, comprobamos que

$$d(g(t), g(s)) = |t - s|. (2.11)$$

Lo cual implica que g es uniformemente continua, por razones similares a las que invocamos para f. En particular f y su inversa son continuas, de modo que f es un homeomorfismo.

En el ejemplo anterior las funciones f y g tienen una propiedad más fuerte que la de ser homeomorfismos, esta propiedad la definimos a continuación.

Definición 2.5.19 Sean (X, d), (Y, d') dos e.m. y $f: X \to Y$ una función biyectiva. Se dirá que f es una *isometría* si para todos x e y en X se tiene que:

$$d'(f(x), f(y)) = d(x, y).$$

Si, entre dos e.m. existe una isometría diremos que los espacios son isométricos.

Una isometría es un homeomorfismo, la idea central de la demostración de esta afirmación está en el ejemplo anterior. Igual que en aquel ejemplo, hay que demostrar que la inversa de una isometría es, a la vez, una isometría.

Proposición 2.5.11 Sean (X,d), (Y,d') dos e.m. y $f:X\to Y$ una función biyectiva con inversa g. Entonces son equivalentes:

- i) f es un homeomorfismo.
- ii) $A \subset X$ es abierto si, y solo si, f(A) es abierto.

ii) \Rightarrow i). Tenemos que demostrar que f y g son continuas. Veamos, primero, que f es continua. Sea B un abierto de Y, hay que demostrar que $f^{-1}(B)=g(B)$ es un abierto de X. Pero B=f(g(B)) y B es abierto, entonces, por ii), g(B) es abierto. Veamos, ahora, que g es continua. Sea A abierto en X. Luego, por ii), $g^{-1}(A)=f(A)$ es abierto en Y, por lo cual, g es continua. \Box

Este teorema nos dice que si dos espacios son homeomorfos, entonces existe una correspondencia de los abiertos de uno con los del otro espacio.

El conjunto formado por todos los conjuntos abiertos, se denomina topología. Brevemente, digamos que un espacio topológico es un par (X, τ) , donde $\tau \subset \mathcal{P}(X)^3$, que satisface los siguientes axiomas:

- 1) $\emptyset, X \in \tau$
- 2) Si $G_i \in \tau$, para $i \in I$, entonces $\bigcup_{i \in I} G_i \in \tau$.
- 3) Si $G_i \in \tau$, para $i \in I$, e I es finito, entonces $\bigcap_{i \in I} G_i \in \tau$.

En un espacio topológico uno puede construir la nociones, que hemos construido para e.m., por ejemplo conjunto cerrado, interior, clausura, entorno, función continua y

 $^{{}^3\}mathcal{P}(X)$ es el conjunto de partes de X, es decir au es un conjunto cuyos elementos son subconjuntos de X

espacio separable. Por tanto, estas propiedades se denominan topológicas. Las propiedades topológicas son invariantes por homeomorfismos, por ejemplo si un espacio es separable, cualquier homeomorfo a él también lo es. Algunas propiedades no son topológicas, por ejemplo que una función sea uniformemente continua, puesto que para definir este concepto necesitamos de una métrica.

Un mismo conjunto X, puede tener dos métricas distintas, por ejemplo en $\mathbb R$ tenemos la métrica euclidea y la discreta. Podemos plantearnos que estas métricas den origen a una misma topología, si esto sucede diremos que las dos *métricas son equivalentes*.

2.5.1 Ejercicios

Ejercicio 2.5.26 Sean (X,d), (Y,d') e.m. y $f:X\to Y$ una función biyectiva. Demostrar que f es un homeomorfismo si, y solo si, para todo $A\subset X$ tenemos que $f(\overline{A})=\overline{f(A)}$.

Ejercicio 2.5.27 Demostrar:

- i) que las métricas sobre \mathbb{R}^n definidas en los Ejemplos 2.1.2 en la página 25, ?? en la página ?? y ?? en la página ?? son todas equivalentes.
- ii) que las distancias d , d_1 y d_2 del Ejercicio 2.1.4 en la página 33 son equivalentes.
- iii) Dados dos topologías τ_1 y τ_2 sobre el mismo espacio X decimos que τ_1 es más fina que τ_2 si $\tau_2 \subset \tau_1$. Demostrar que, sobre C([0,1]), la topología que genera la métrica del Ejemplo 2.1.4 en la página 25 es más fina que la topología que genera la métrica del Ejemplo 2.1.4 en la página 25 es más fina que la del Ejemplo 2.1.5 en la página 26.

2.6 Completitud

Una propiedad importante de los espacios métricos es la completitud. En esta unidad introducimos esta propiedad e indagamos algunas de sus consecuencias.

2.6.1 Sucesiones

Definición 2.6.20 Una sucesión en un e.m. (X,d) es una función $f: \mathbb{N} \to X$.

Esta el la definición formal de sucesión, no obstante cuando se trabaja con sucesiones no se hace alusión explícita a la función f de la definición. Normalmente una sucesión se introduce con el símbolo $\{a_n\}_{n\in\mathbb{N}}$ o, brevemente, $\{a_n\}$, asumiendo que los índices n son naturales. Claro está que, ímplicitamente, estos símbolos conllevan la función f. Esta es la función tal que $f(n)=a_n$.

Definición 2.6.21 Sea $\{a_n\}$ una sucesión en el e.m. (X,d). Diremos que esta sucesión *converge* al punto $a \in X$ (denotaremos esto por $a_n \to a$) si, y solo si, para todo entorno U de a existe un $n_0 = n_0(U)$ tal que cuando $n \geq n_0$ se tiene que $a_n \in U$. Sinteticamente, dado cualquier entorno, salvo posiblemente una cantidad finita de términos de la sucesión todos los términos restantes están incluídos en el entorno, ver la Figura $\ref{eq:condition}$ en la página $\ref{eq:condition}$?

La convergencia es una propiedad topológica. Confiamos en que el alumno tiene muchos ejemplos de sucesiones convergentes en $\mathbb R$, esto fué visto en Cálculo I. Vamos a ver que sucede en otros espacios métricos.

Ejemplo 2.6.21 En un e.m. discreto (X,d) si una sucesión $\{a_n\}$ converge al punto a, entonces a partir de un n_0 en adelante se tiene que $a_n=a_{n_0}$. En efecto, esto es consecuencia de considerar el siguiente entorno: $U=B(a,1/2)=\{a\}$.

Ejemplo 2.6.22 Consideremos el e.m. (C([0,1]),d), dondé C([0,1]) representa al conjunto de funciones continuas $f:[0,1]\to\mathbb{R}$ y d es la métrica definida en el Ejemplo 2.1.5 en la página 26. Consideremos las funciones definidas por:

Definición 2.6.21 en la página anterior

$$f(x) = \left\{ \begin{array}{ll} nx, & \text{si } 0 \leq x \leq \frac{1}{n}; \\ 2 - nx, & \text{si } \frac{1}{n} \leq x \leq \frac{2}{n}. \\ 0, & \text{si } \frac{1}{n} \leq x \leq 1. \end{array} \right.$$

En la Figura \ref{figura} en la página \ref{figura} , se pueden observar los gráficos de estas funciones. Es un ejercicio de Cálculo I demostrar que $f_n \to 0$ con la métrica propuesta. Sin embargo, sobre C([0,1]) tenemos definida otra métrica, a saber: la del Ejemplo 2.1.4 en la página 25. Con esta métrica la sucesión f_n no converge a ninguna función.

Es posible caracterizar algunos de los conceptos, que ya hemos visto, en términos de sucesiones. Por ejemplo, el concepto de clausura y continuidad.

Funciones del Ejemplo 2.6.22

Proposición 2.6.12 Sea (X,d) un e.m. y $A\subset X$. Entonces $a\in \overline{A}$ si, y solo si, existe una sucesion $a_n\in A$ tal que $a_n\to a$.

Dem. Supongamos que $a \in A$, entonces, para todo $n \in \mathbb{N}$ se tiene que $B(a,1/n) \cap A \neq \emptyset$. Sea, pues, $a_n \in B(a,1/n) \cap A$. Se puede ver, sin dificultad, que $a_n \to a$. Recíprocamente, supongamos que existe la sucesión $\{a_n\}$. Si U es un entorno arbitrario de a, entonces, puesto que $a \in \overline{A}$, tenemos que, para ciertos n, $a_n \in U$, luego, estos a_n , estan en la intersección de U con A, lo que implica que esta es no vacía. Eso prueba que $a \in \overline{A}$.

2.6.2 Sucesiones de Cauchy, espacios métricos completos

Definición 2.6.22

- i) Dada una sucesión $\{a_n\}$ en un e.m. (X,d), diremos que $\{a_n\}$ es una sucesión de Cauchy si: para todo $\varepsilon>0$ existe un $n_0=n_0(\varepsilon)^a$ tal que para $n,m\geq n_0$ tenemos que $d(a_n,a_m)<\varepsilon$. En otras palabras, para valores grandes de n los términos a_n están cerca entre si.
- ii) Un e.m. se dirá *completo* si, y solo si, todo sucesión de Cauchy en él es convergente.

Como acabamos de decir, en un e.m. completo toda sucesión de Cauchy converge. La reciproca de esta afirmación es siempre cierta, es decir en cualquier e.m. toda sucesión convergente es de Cauchy. En efecto, sea $\{a_n\}$ una sucesión convergente en (X,d) al punto a y sea $\varepsilon>0$. Existe un $N=N(\varepsilon)$ tal que para n>N se tiene que

$$d(a_n, a) < \frac{\varepsilon}{2}.$$

Luego, para n, m > N y por la desigualdad triágular, tenemos que

$$d(a_n, a_m) \le d(a_n, a) + d(a, a_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

 $^{^{}a}$ Con $n_0=n_0(arepsilon)$ queremos decir que el número n_0 depende de arepsilon pero que normalmente no usaremos la notación $n_0(arepsilon)$ sino, simplemente, n_0

Esto prueba que la sucesión es de Cauchy, como queríamos.

Un ejemplo importante de e.m. completo es \mathbb{R} . Esta propiedad de \mathbb{R} es enunciada, prácticamente, como un axióma. Hablaremos, mas no sea brevemente, de los "fundamentos" de los números reales en el apéndice al final de esta unidad, ver Sección $\ref{eq:constraint}$ en la página $\ref{eq:constraint}$. Sabiendo que \mathbb{R} con la métrica del módulo es completo podemos demostrar la completitud de otros e.m., como veremos más abajo. Antes de ver esto demostremos que toda sucesión convergente es de Cauchy

Ejemplo 2.6.23 \mathbb{R}^n con la métrica euclidea es un e.m. completo.⁴ Vamos a demostrar esta afirmación. Denotemos por letras en negritas \mathbf{x} , \mathbf{y} , \mathbf{z} , etc n-uplas en \mathbb{R}^n , es decir $\mathbf{x}=(x_1,\ldots,x_n)$ con $x_i\in\mathbb{R}$, $i=1,\ldots,n$. Consideremos una sucesión de Cauchy $\{\mathbf{x}_j\}_{j\in\mathbb{N}}$ en \mathbb{R}^n . Esto nos determina n sucesiones en \mathbb{R} , puesto que $\mathbf{x}_j=(x_1^j,\ldots,x_n^j)$. Veamos que, para cada i, $\{x_i^j\}_{j\in\mathbb{N}}$ es una sucesión de Cauchy en \mathbb{R} . Se tiene que:

$$|x_i^j - x_i^k| \le \sqrt{\sum_{s=1}^n (x_s^j - x_s^k)^2} \le d(\mathbf{x}_j, \mathbf{x}_k).$$

Como el último miembro se puede hacer tan chico como queramos, puesto que $\{\mathbf{x}_j\}$ es de Cauchy, podemos conseguir lo mismo para el primer miembro, esto es $\{x_i^j\}$ es de Cauchy. Así, como $\mathbb R$ es completo, existe un x_i , para $i=1,\ldots,n$ tal que $x_i^j\to x_i$, para $j\to\infty$. Definamos, pues, $\mathbf{x}=(x_1,\ldots,x_n)$ y veamos que $\mathbf{x}_j\to\mathbf{x}$. Sea $\varepsilon>0$, para cada $i=1,\ldots,n$ podemos hallar un $j(\varepsilon,i)$, es decir j depende de ε y de i, tal que para $j\geq j(\varepsilon,i)$ tenemos que:

$$|x_i^j - x_i| < \frac{\varepsilon}{\sqrt{n}}.$$

Así, si:

$$j \geq \max_{1 \leq i \leq n} j(\varepsilon, i)$$

entonces

$$d(\mathbf{x}_j - \mathbf{x}) = \sqrt{\sum_{i=1}^n (x_i^j - x_i)^2} = \sqrt{\sum_{i=1}^n \frac{\varepsilon^2}{n}} = \varepsilon,$$

lo que demuestra que $\mathbf{x}_i o \mathbf{x}$, como queríamos.

Ejemplo 2.6.24 El e.m. (C([0,1]),d), con d como en el Ejemplo 2.6.22 en la página anterior, no es completo. Consideremos las siguientes funciones, para n/geq2:

$$f_n(x) := \left\{ \begin{array}{ll} 1, & \text{si } 0 \leq x \leq \frac{1}{2}\text{;} \\ -nx + \frac{n+2}{2n}, & \text{si } \frac{1}{2} \leq x \leq \frac{1}{2} + \frac{1}{n}\text{;} \\ 0, & \text{si } \frac{1}{2} \leq x \leq 1. \end{array} \right.$$

en la Figura ?? en la página ?? graficamos estas funciones.

No es dificil convencerse que esta es una sucesi/ón de Cauchy, puesto que, para j,k/geqn tenemos que:

$$d(f_j,f_k) = \frac{1}{2}|\frac{1}{i} - \frac{1}{k}| \leq \frac{1}{n} \to 0 \quad \text{cuando} \quad n \to \infty.$$

Sin embargo estas funciones no convergen a ninguna función en C([0,1]). Para ver esto, supongamos que, por el contrario, existe $f\in C([0,1])$ tal que $f_n\to f$. Vamos a demostrar que, necesariamente, f debe valer 1 en el intervalo [0,1/2) y debe valer 0 en el intervalo (1/2,1), por tal motivo no podría ser continua contradiciendo las hipótesis. Vamos a demostrar solo que f es 0 en (1/2,1), la otra parte es similar y aun más facil. Supongamos que exista 1/2 < a < 1 tal que $f(a) \neq 0$, podemos suponer que f(a) > 0. Elijamos $\delta_1 > 0$ suficientemente pequeño de modo que $1/2 < a - \delta_1$ y elijamos $\delta_2 > 0$ suficientemente pequeño de modo que $1/2 < a - \delta_1$ y elijamos $\delta_2 > 0$ suficientemente pequeño de modo tal que f(x) > f(a)/2 para $x \in (a - \delta_2, a + \delta + 2)$ (esto es posible pues f es continua en a). Ahora, el número $\delta := \min\{\delta_1, \delta_2\}$ satisface

Funciones del Ejemplo 2.6.24

Construcción de la demostración en el Ejemplo 2.6.24

 $^{^4}$ Observar que, en virtud del Ejercicio 2.6.37 en la página 49 \mathbb{R}^n con cualquier métrica equivalente a la euclidea también resultará completo

las dos propiedades anteriores simultaneamente. Podemos encontrar un n_0 suficientemente grande para que $1/2+1/n< a-\delta$, cuando $n>n_0$, esto implica que f_n es idénticamente cero en el intervalo $(a-\delta,a+\delta)$, ver la Figura \ref{figura} en la página \ref{figura} .

Juntando todas las propiedades vistas en el párrafo anterior, deducimos que, para $n>n_0$,

$$d(f_n, f) = \int_0^1 |f_n - f| dx \ge \int_{a - \delta}^{a + \delta} |f_n - f| dx \ge \delta f(a) > 0.$$

De modo que f_n no converge a f, contradiciendo nuestras suposiciones. Ahora veremos que subespacios, de un e.m. completo, son, a su vez, completos.

Proposición 2.6.13 Sea (X, d) un e.m. completo e $Y \subset X$. Son equivalentes:

- i) (Y, d) es un subespacio completo.
- ii) Y es cerrado en X.

2.6.3 Ejercicios

Ejercicio 2.6.28 Consideremos el conjunto C([0,1]) donde tenemos definidas las dos métricas d_1 y d_2 de los Ejemplos 2.3 en la página 25 y 2.4 en la página 26 respectivamente. Determinar si las siguientes sucesiones son convergentes con estas métricas y si son de Cauchy.

- i) $f_n(x) := \frac{1}{n} \operatorname{sen}(nx)$.
- ii) $f_n(x) := x^n$.
- iii) $f_n(x) := nx^n$.

Ejercicio 2.6.29 Con la misma notación del ejercicio anterior demostrar que si $f_n \to f$ con la métrica d_1 entonces lo mismo ocurre con la métrica d_2 .

Ejercicio 2.6.30 Sean (X,d) e (Y,d') dos e.m. y $f:X\to Y$ un homeomorfismo. Demostrar que la sucesión $\{a_n\}$ es convergente en X si, y solo si, $f(a_n)$ es convergente en Y.

Ejercicio 2.6.31 Sea (X,d) un e.m., $a \in A$ y $A \subset X$. Demostrar que existe un sucesión $\{a_n\}$, con $a_n \in A$, para todo n, y:

$$\lim_{n \to \infty} d(a, a_n) = d(a, A).$$

Ejercicio 2.6.32 Sea $A \subset \mathbb{R}$ un conjunto acotado superiormente. Demostrar que existe una sucesión $\{a_n\}$, con $a_n \in A$, para todo n, y además:

$$\sup A = \lim_{n \to \infty} a_n.$$

Ejercicio 2.6.33 Demostrar que $(C([0,1]), d_1)$, con d_1 como en el Ejercicio 2.6.28, es un e.m. completo.

Ejercicio 2.6.34 Demostrar que un e.m. con una cantidad finita de elementos es completo.

Ejercicio 2.6.35 Demostrar que una sucesión de Cauchy es acotada.

Ejercicio 2.6.36 Sea $\{a_n\}$ una sucesión en un e.m. (X,d), demostrar que cualquierqa de las dos condiciones implica que $\{a_n\}$ es de Cauchy.

- i) $d(a_n, a_{n+1}) \leq \alpha^n$, con $0 < \alpha < 1$.
- ii) La siguiente serie es convergente:

$$\sum_{n=1}^{\infty} d(a_n, a_{n+1}).$$

Ejercicio 2.6.37 Sean d y d' dos métricas uniformemente equivalentes sobre el mismo espacio X. Demostrar que (X,d) es completo si, y solo si, (X,d') es completo.

Ejercicio 2.6.38 Sea $f:X\to Y$ una función uniformemente continua entre dos e.m.. Demostrar que si $\{a_n\}$ es de Cauchy en X entonces $\{f(a_n)\}$ es de Cauchy en Y. Dar un contraejemplo a la afirmación anterior suponiendo, solo, que f es continua. *Ayuda*: Considerar la recta extendida.

Ejercicio 2.6.39 Demostrar que el axioma de completitud de \mathbb{R} dado, se puede sustituír por cualquiera de los siguientes:

- i) Toda sucesión de Cauchy en ℝ converge.
- ii) Principio de Encajes de Intervalos. Sea $\{I_n\}_{n\in\mathbb{N}}$ una sucesión de intervalos cerrados tales que $I_{n+1}\subset I_n$, para todo n, entonces $\bigcap_{n\in\mathbb{N}}I_n\neq\emptyset$.

2.7 Compacidad

Es quizas con la noción de conjunto compacto donde encontraremos las diferencias más grandes entre la topología de \mathbb{R}^n y la de un espacio métrico arbitrario. En particular, ya no será válida la carectización de compacto como cerrado y acotado. Para obtener una caracterización necesitaremos un concepto más fuerte que la acotación, este será el de conjunto **totalmente acotado** y, a la vez, un concepto más fuerte que el de conjunto cerrado y en este caso usaremos la de conjunto completo.

Es interesante hacer notar que, en topología, interesan aquellas propiedades que se preservan por homeomorfismos. En este sentido vemos que la noción de conjunto cerrado acotado no se preserva por este tipo de aplicaciones (claro está, los espacios métricos involucrados deberían ser distintos que \mathbb{R}^n con la métrica euclidea). Por ejemplo,

como ya hemos visto, la identidad es un homeomorfismo de (\mathbb{R}^n, d) , con d la métrica euclidea, en (\mathbb{R}^n, d_1) , con

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

Ahora bien, como $0 \le d_1 < 1$ cualquier conjunto de \mathbb{R}^n tiene diámetro, respecto a d_1 menor o igual a 1 y, por ende, cualquier conjunto es acotado. Sin embargo, no todo conjunto es acotado respecto a la métrica euclidea. Por otra parte \mathbb{R}^n es cerrado en ambas métricas, pues es el conjunto total. Vemos así que el concepto de conjunto cerrado y acotado no necesariamente se preserva por homeomorfismos lo que relativiza su importancia.

Definición 2.7.23 Diremos que un conjunto A de un e.m. (X,d) es totalmente acotado si para cada $\varepsilon>0$ existe una cantidad finita de conjuntos de diámetro menor que ε cuya unión contiene a A. En otras palabras existen conjuntos A_i , i=1,...,n, con $\delta(A_i)<\varepsilon$ que satisfacen:

$$A \subset \bigcup_{i=1}^{n} A_i.$$

Ejercicio 2.7.40 Demostrar que un subconjunto de un conjunto totalmente acotado es totalmente acotado.

Veamos algunos ejemplos de conjuntos totalmente acotados y de conjuntos que no lo son.

Ejemplo 2.7.25 Cualquier intervalo acotado de $\mathbb R$ es totalmente acotado. Para justificar esta aseveración, tomemos $\varepsilon>0$ y un intervalo cualquiera de extremos a y b. Elijamos n suficientemente grande para que $1/n<\varepsilon$. Entonces los conjuntos

$$I_k := \left[\frac{k}{n}, \frac{k+1}{n}\right]$$
 , $k = 0, \dots, n-1$,

satisfacen la definición.

Ejemplo 2.7.26 Cualquier conjunto acotado en el espacio euclideo \mathbb{R}^n es totalmente acotado. Sea $A\subset\mathbb{R}^n$ un conjunto acotado, entonces A está contenido en un cubo de la forma $C:=[-m,m]\times\cdots\times[-m,m]=[-m,m]^n$. En virtud del Ejercicio 2.7.47 en la página 54 es suficiente demostrar que C es totalmente acotado. Sea $\varepsilon>0$. Tomemos k suficientemente grande para que

$$\frac{2\sqrt{n}m}{\varepsilon} < k \tag{2.12}$$

Ahora, partimos cada intervalo [-m,m] en k subintervalos de la misma longitud 1/k. Como puede observarse en la Figura $\ref{eq:composition}$, nos quedan determinados k^n cubos que

cubren el cubo C. Cada uno de estos cubos más chicos tiene diámetro $2\sqrt{n}m/k$, por consiguiente, por la desigualdad 2.12, el diámetro de ellos es menor que ε .

No es cierto, en general, que todo conjunto acotado en un e.m. sea totalmente acotado. Los siguientes ejemplos muestran esto.

Ejemplo 2.7.27 Sea (X,d) un e.m. discreto con X infinito. El conjunto X es acotado, de hecho $\delta(X)=1$; sin embargo no podemos cubrir X con conjuntos de diámetro menor que 1/2 (cualquier número menor que 1 serviría). Esto ocurre debido a que si un conjunto en un e.m. discreto tiene más de un elemento entonces su diámetro es 1. Así, si cubrimos X con una cantidad finita de conjuntos, alguno de los conjuntos del cubrimiento necesariamente tiene más de un elemento, de lo contrario X sería finito, por consiguiente el diámetro de este conjunto es 1 y no puede ser menor que 1/2.

Ejemplo 2.7.28 En C([0,1]), con la métrica del Ejemplo 2.1.4 en la página 25, la bola cerrada K(0,1) (0 denota la función que es constantemente igual a 0) no es un conjunto totalmente acotado. Para ver esto definimos la siguiente función:

Construcción del Ejemplo 2.7.26

$$f(x) := \left\{ \begin{array}{ll} 4(x - \frac{1}{2}), & \text{si } \frac{1}{2} \leq x \leq \frac{3}{4}; \\ -4(x - 1), & \text{si } \frac{3}{4} \leq x \leq 1; \\ 0, & \text{para los restantes } x; \end{array} \right.$$

y la siguiente sucesión de funciones $f_n(x) := f(2^n x)$. En la Figura ?? puede verse las gráficas de algunas de las funciones de la sucesión.

Puede demostrarse que la distancia de cualquiera de las funciones de la sucesión a otra es igual a 1 y que $f_n\in K(0,1)$. Sea $C:=\{f_n:n\in\mathbb{N}\}$, observemos que como subespacio C resulta ser un e.m. discreto, así, por el Ejemplo anterior y el Ejercicio 2.7.47 en la página 54, $\overline{B(0,1)}$ no puede ser totalmente acotado.

Ejemplo 2.7.29 Hay una interesante conexión de la total acotación con la dimensión. Para introducirla, véamos cuantas bolas abiertas de radio 1/2, en \mathbb{R}^n con la métrica euclidea, se necesitan, al menos, para cubrir la bola cerrada K(0,1). Denotemos por e_i los vectores canónicos

 $e_i := (0, \dots, 1, \dots, 0),$

para cubrir la bola cerrada
$$K(0,1)$$
. Denotemos por e_{\cdot}

donde el 1 está en el lugar j. Notesé que $e_j \in K(0,1)$ y que:

$$d(e_j, e_i) = \sqrt{2} \quad i \neq j.$$

De modo que, si $i \neq j$ entonces e_i y e_j no pueden estar en una misma bola de radio 1/2. De lo contrario, si $e_i, e_i \in B(x, 1/2)$, entonces

$$d(e_i, e_j) \le d(e_i, x) + d(x, e_j) < 1 < \sqrt{2},$$

que es una contradicción. De esta manera si cubrimos la bola cerrada K(0,1) por bolas abiertas de radio 1/2 necesitaremos, al menos, n de estas bolas. Es decir, la cantidad de estas bolas crece cuando aumenta la dimensión n. Esta observación nos lleva a conjeturar que si buscamos un espacio vectorial de dimensión infinita⁵ tenemos chances de construir conjuntos acotados, en particular la bola K(0,1), que no son totalmente acotados.

Ejercicio 2.7.41 Demostrar que en l_2 la bola cerrada K(0,1) no es totalmente acotada.

Recordemos que, en un e.m. (X,d), una familia de conjuntos abiertos $\{U_i\}_{i\in I}$ es un cubrimiento por abiertos de $A \subset X$ si

$$A \subset \bigcup_{i \in I} U_i$$
.

Definición 2.7.24 Un subconjunto A de un e.m. (X,d) se dirá **compacto** si, y solo si, todo cubrimiento por abiertos de A tiene un subcubrimiento finito. Es decir, si $\{U_i\}_{i\in I}$ es un cubrimiento de A_i existe un conjunto finito $F\subset I$ tal que $\{U_i\}_{i\in F}$ es un cubrimiento de A.

Teorema 2.7.9 (Caracterización de compacidad en espacios métricos) Sea (X, d)un espacio métrico. Entonces son equivalentes:

- 1. X es compacto;
- 2. X es totalmente acotado y completo.
- 3. Toda sucesión en X tiene una subsucesión convergente.

Funciones del Ejemplo 2.7.28

⁵Esto significa que no tiene una base finita

Dem. Veamos que $1\Rightarrow 3$. Por el absurdo supongamos que existe una sucesión $\{a_n\}$ en X que no tiene ninguna subsucesión convergente. Definamos Γ como la colección de todos los conjuntos abiertos G de X tales que G tiene una cantidad finita de elementos de la sucesión, es decir:

$$G \in \Gamma \Leftrightarrow \#\{n : a_n \in G\} < \infty.$$

Vamos a probar que Γ es un cubrimiento de X. Supongamos que $x \in X$ y $x \notin G$ para todo $G \in \Gamma$. De modo que, por definición, cada abierto que contiene a x contiene infinitos términos de la sucesión $\{a_n\}$. En particular, podemos encontrar n_1 tal que $a_{n_1} \in B(x,1)$. Ahora podemos encontrar $n_2 > n_1$ tal que $a_{n_2} \in B(x,\frac{1}{2})$. Y así continuamos, construímos una subsucesión a_{n_k} tal que $a_{n_k} \in B(x,\frac{1}{k})$. Lo que implica que a_{n_k} converge a x, contradiciendo nuestra suposición. De esta manera, Γ es un cubrimiento de X. Sea G_i , $i=1,\ldots,n$, un subcubrimiento finito de X. Es decir

$$X = G_1 \cup \cdots \cup G_n$$
.

Como cada G_i , $i=1,\ldots,n$, tiene una cantidad finita de términos de la sucesión, concluímos que X contiene una cantidad finita de términos de la sucesión, lo que, claro está, no puede ocurrir. Esto finaliza la demostración de $1\Rightarrow 3$.

Demostremos ahora que $3\Rightarrow 2$ empezando por ver que X es totalmente acotado. Nuevamente procedemos por el absurdo, suponiendo que X no es totalmente acotado. Esto implica que existe un $\varepsilon>0$ tal que X no se puede cubrir con una cantidad finita de conjuntos de diámetro ε . Sea a_1 cualquier punto de X. Como $B(a_1,\varepsilon)$ no cubre X, existe $a_2\in X-B(a_1,\varepsilon)$. Como $B(a_i,\varepsilon)$, i=1,2, no cubren X, existe un $a_3\in X-\left(B(a_1,\varepsilon)\cup B(a_2,\varepsilon)\right)$. Continuando de esta forma, contruímos una sucesión a_n tal que

$$a_n \in X - (B(a_1, \varepsilon) \cup \cdots \cup B(a_{n-1}, \varepsilon)).$$

De esta forma tendremos que:

$$d(a_i, a_j) \ge \varepsilon$$
 para $i \ne j$.

Por hipótesis la sucesión a_n tiene una subsucesión convergente, en particular esta subsucesión será de Cauchy. No obstante la desigualdad anterior implica que ninguna subsucesión de $\{a_n\}$ puede ser de Cauchy, contradicción que prueba que X es totalmente acotado.

Veamos ahora que X es completo. Sea $\{a_n\}$ una sucesión de Cauchy en X. Podemos extraer una subsucesión $\{a_{n_k}\}$ convergente a un $a\in X$. Sea $\varepsilon>0$. Puesto que $\{a_n\}$ es de Cauchy, pondemos encontrar N>0 tal que si n,m>N entonces:

$$d(a_n, a_m) < \frac{\varepsilon}{2}. (2.13)$$

Como a_{n_k} converge a a, podemos encontrar un n_k lo suficientemente grande para que $n_k>N$ y:

$$d(a_{n_k}, a) < \frac{\varepsilon}{2}.$$

Así, usando (2.13), tenemos que para n > N:

$$d(a_n, a) \le d(a_n, a_{n_k}) + d(a_{n_k}, a) < \varepsilon.$$

Por último veamos que $2\Rightarrow 1$. Para este fin elijamos un cubrimiento $\{G_\lambda\}_{\lambda\in L}$ arbitrario de X. Supongamos que este cubrimiento no tiene un subcubrimiento finito. Como X es totalmente acotado, acorde al Ejercicio 2.7.44, podemos cubrir a X por una cantidad finita de bolas de radio 1. Alguna de estas bolas no se podrá cubrir por una cantidad finita de G_λ , de lo contrario, si todas se cubren por una cantidad finita, como hay una cantidad finita de estas bolas, podríamos cubrir X por una cantidad finita de G_λ . Llamemos $B(x_1,1)$ a la bola que no se cubre por finitos G_λ . Como $B(x_1,1)$ es totalmente acotado, podemos aplicar la construcción anterior a $B(x_1,1)$ en lugar de X y con bolas de radio 1/2, en lugar de X0, obteniendo de esta forma una bola X1, X2, que no se cubre por una cantidad finita de X3. Además podemos suponer que X4, X5, que no se cubre por una cantidad finita de X5, X6, X7, X8, X8, X9, X9,

Continuamos de esta forma y producimos una sucesión $B(x_n,1/2^n)$ (aquí no basta que los radios tiendan a cero, sino que es necesario que la serie de radios converja) de bolas tales que ninguna de ellas se puede cubrir por una cantidad finita de G_λ . Veamos que la sucesión x_n es de Cauchy. Para esto tomemos

$$z_n \in B\left(x_n, \frac{1}{2^n}\right) \cap B\left(x_{n+1}, \frac{1}{2^{n+1}}\right).$$

Entonces

$$d(x_n, x_{n+1}) \le d(x_n, z_n) + d(z_n, x_{n+1}) < \frac{1}{2^n} + \frac{1}{2^{n+1}} < \frac{1}{2^{n-1}}.$$

Lo que permite utilizar el criterio de comparación para la convergencia de series para demostrar que:

$$\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty.$$

Acorde a un ejercicio de la práctica, esto implica que $\{x_n\}$ es de Cauchy, por ende converge a algún $x_0\in X$. Como G_λ es un cubrimiento, existe λ_0 tal que $x_0\in G_{\lambda_0}$. Como G_{λ_0} es abierto, existe un r>0 tal que

$$B(x_0, r) \subset G_{\lambda_0}. \tag{2.14}$$

Puesto que x_n converge a x_0 y $1/2^{n-1}$ converge a 0, podemos hallar n lo suficientemente grande para que:

$$d(x_n, x_0) < \frac{r}{2}$$
 y $\frac{1}{2^{n-1}} < \frac{r}{2}$. (2.15)

Veamos que esto, (2.15) y (2.14) implica que:

$$B\left(x_n, \frac{1}{2^n}\right) \subset B(x_0, r) \subset G_{\lambda_0}.$$
 (2.16)

En efecto, si:

$$y \in B\left(x_n, \frac{1}{2^n}\right),$$

entonces

$$d(y, x_0) \le d(y, x_n) + d(x_n, x_0) < \frac{1}{2^n} + \frac{r}{2} < r,$$

lo que prueba (2.16), siendo, además, esta inclusión una contradicción puesto que estamos cubriendo la bola $B(x_n,1/2^n)$ por un sólo G_{λ} , recordemos que estas bolas no se cubrían por finitos G_{λ} . (ya terminamos, ¡por fin!)

2.7.1 Ejercicios

Ejercicio 2.7.42 Demostrar que un espacio métrico discreto es compacto si, y solo si, es finito.

Ejercicio 2.7.43 Demostrar que un conjunto totalmente acotado es acotado.

Ejercicio 2.7.44 Demostrar que X es totalmente acotado si, y solo si, para cada $\varepsilon>0$ podemos cubrir X por una cantidad finita de bolas de radio ε .

Ejercicio 2.7.45 Demostrar que un conjunto compacto es cerrado y acotado.

Ejercicio 2.7.46 Demostrar que si $f:(X,d) \to (Y,d')$ es continua y X compacto entonces f(X) es compacto. Como corolario, demostrar que si $f:X \to \mathbb{R}$ y X es compacto entonces f alcanza un máximo y un mínimo.

Ejercicio 2.7.47 Demostrar que un subconjunto de un conjunto precompacto es precompacto.

Ejercicio 2.7.48 Sea (X,d) un e.m., A y B subconjuntos compactos de X. Demostrar que

- i) Existen puntos x e y en A tales que $d(x, y) = \delta(A)$.
- ii) Existe un $x \in A$ e $y \in B$ tales que d(x, y) = d(A, B).
- iii) Si $A \cap B = \emptyset$, entonces d(A, B) > 0.

Ejercicio 2.7.49 Sea $\{a_n\}$ una sucesión en un e.m. (X,d) tal que $a_n \to a$. Demostrar que el conjunto $\{a_n : n \in \mathbb{N}\} \cup \{a\}$ es compacto.

Ejercicio 2.7.50 Sean (X,d) e (Y,d') dos e.m. y $f:X\to Y$ una función. Demostrar que f es continua si, y solo si, $f_{|K}:K\to Y$ es continua para cada compacto K.

Ejercicio 2.7.51 Como se desprende de la teoría, el intervalo (0,1) no es cerrado en \mathbb{R} . Encontrar un cubrimiento de (0,1) que no tenga un subcubrimiento finito.

Ejercicio 2.7.52 Sea (X,d) un e.m. compacto y $f:X\to X$ una función continua. Supongamos que, para todo $x\in X$, se tiene que $f(x)\neq x$. Demostrar que existe $\varepsilon>0$ tal que $d(f(x),x)>\varepsilon$.

Ejercicio 2.7.53 Sea $A \subset \mathbb{R}$ no compacto, demostrar que existe una función continua $f:A \to \mathbb{R}$ que no es acotada. *Sugerencia* Como A es no compacto y $A \subset \mathbb{R}$ entonces o A es no acotado o A es no cerrado, considerar estos dos casos.

Ejercicio 2.7.54 Sea $\{K_n\}$ una sucesión de conjuntos compactos no vacios, tales que $K_n \supset K_{n+1}$. Demostrar que $\bigcap_{n \in \mathbb{N}} K_n \neq \emptyset$.

Ejercicio 2.7.55 Sea (X,d) un e.m. compacto y $\{U_i\}_{i\in I}$ un cubrimiento por abiertos de X. Demostrar que existe un $\varepsilon>0$ tal que toda bola de radio ε está contenida en, al menos, un U_i . Sugerencia Para cada $x\in X$ elegir r_x tal que $B(x,r_x)$ esta contenida en algún U_i . Tomar un subcubrimiento finito de estas bolas y luego considerar ε como el mínimo de las mitades de los radios de las bolas del subcubrimiento.

Ejercicio 2.7.56 Utilizar la siguiente "idea" para dar una demostración alternativa de que compacto implica completo. Tomar una suseción de Cauchy $\{a_n\}$ en X. De la desigualdad

$$|d(x, a_n) - d(x, a_m)| \le d(a_n, a_m) \quad n, m \in \mathbb{N} \ x \in X$$

concluír que $d(x,a_n)$ es una sucesión de Cauchy en $\mathbb R$ y de esto que la siguiente función esta bien definida:

$$f(x) := \lim_{n \to \infty} d(x, a_n).$$

Notar que $f:X\to\mathbb{R}$ y por ende f alcanza un mínimo en algún $a\in X$. Por último demostrar que a es el límite de a_n .

2.8 Conexión

La definición de conjunto **conexo**, **arco conexo** es idéntica a la que ya hemos estudiado. Los conjuntos conexos, así definidos, satisfacen las mismas propiedades que ya observamos para la métrica euclidea, con una excepción. El hecho que valga las mismas propiedades nos permite definir el concepto de **componente conexa** de la misma forma que lo hicimos para \mathbb{R}^n .

La propiedad que no continua valiendo, en espacios métricos en general, es aquella que afirmaba que las componentes conexas de conjuntos abiertos eran abiertas. Esto es así pues en la demostración de tal propiedad utilizamos que una bola era un conjunto conexo y por el siguiente ejercicio:

Ejercicio 2.8.57 Encontrar un ejemplo de espacio métrico que tenga bolas disconexas.

Para conservar tal propiedad podríamos "pedir" la hipótesis que las bolas sean conexas. No obstante observaremos que en tal demostración podríamos haber utilizado cualquier entorno conexo que fuera bola o no. Esto nos lleva a la siguiente definición:

Definición 2.8.25 Un espacio métrico (X,d) se llama **localmente conexo** si para todo $x \in X$ y r > 0 existe un entorno conexo V de x tal que $V \subset B(x,r) \subset X$.

 \mathbb{R}^n es localmente conexo, podemos utilizar como V la misma bola que aparece en la definición anterior. Lo curioso del caso es que hay espacios métricos (X,d) tales que X es conexo y, sin embargo, X no es localmente conexo.

Ejemplo 2.8.30 Sea $X = \mathbb{Q} \times \mathbb{R} \cup \{(x,0) : x \in \mathbb{R}\}$ y consideremos este X como subespacio de \mathbb{R}^2 . En la figura 2.3 hemos hecho un bosquejo, está claro que es imposible lograr exactitud, del gráfico X.

Notesé que si tomamos un punto en X pero no sobre el eje horizontal y consideramos una bola de centro x y un radio suficientemete chico de modo que la bola no interseque el mencionado eje, entonces $B(x,r)\cap X$ está compuesto de un conjunto de segmentos verticales disconexos entre si. Si ahora buscamos un conjunto conexo V tal que

Figura 2.3: El subespacio X

 $V\subset B(x,r)$ notaremos que V debería ser un subconjunto de alguno de los segmentos verticales, precisamente de aquel segmento que tenga el x dentro de si, pero tal V no será un entorno. Lo que prueba que el espacio (X.d) no es localmente conexo.

2.8.1 Ejercicios

Ejercicio 2.8.58 Demostrar que los siguientes conjuntos son disconexos:

- 1. $(0,3) \cup [4,6)$.
- 2. $\mathbb{R} \mathbb{Q}$.
- 3. $\{1/n : n \in \mathbb{N}\} \cup \{0\}$.

Ejercicio 2.8.59 ¿ Cuáles de los siguientes conjuntos son conexos? Justificar la respuesta.

- i) $\bigcup_{n\in\mathbb{N}}\{(x,\frac{1}{n}x):x\in\mathbb{R}\}.$
- ii) $\mathbb{R} \times \mathbb{R} \mathbb{I} \times \mathbb{I}$, donde \mathbb{I} son los números irracionales.
- iii) $\{(x,y) \in \mathbb{R}^2 : x \neq 1\}.$
- iv) $\{(x,y) \in \mathbb{R}^2 : x \neq 1\} \cup \{(1,0)\}.$

Ejercicio 2.8.60 Supongamos que A y B son conjuntos conexos de un e.m.. Demostrar, dando contraejemplos, que no necesariamente deben ser conexos los siguientes conjuntos $A \cap B$, $A \cup B$, ∂A y A^0 .

Ejercicio 2.8.61 Sea (X,d) un e.m. conexo e (Y,d) un e.m. discreto. Demostrar que una función $f:X\to Y$ continua es constante.

Ejercicio 2.8.62 Sean A y B subconjuntos conexos de un e.m. Demostra que si $\overline{A} \cap B \neq \emptyset$ entonces $A \cup B$ es conexo.

Ejercicio 2.8.63 Probar que todo espacio ultramétrico es totalmente disconexo.

Ejercicio 2.8.64 Sea $\{K_n\}$ una sucesión de conjuntos compactos y conexos de un e.m., supongamos que la sucesión es decreciente, es decir $K_n\supset K_{n+1}$. Demostrar que $\bigcap_{n\in\mathbb{N}}K_n$ es conexo. Dar un ejemplo de una sucesión como la anterior, cambiando compacto por cerrado, tal que $\bigcap_{n\in\mathbb{N}}K_n$ no sea conexo.

Ejercicio 2.8.65 Dado un conjunto A de un e.m. (X,d) definimos la función característica del conjunto A por:

$$1_A(x) := \left\{ \begin{array}{ll} 1, & \text{si } x \in A; \\ 0, & \text{si } x \notin A. \end{array} \right.$$

Demostrar que X es conexo si, y solo si, no existe una función característica 1_A , con $A \neq \emptyset$ y $A \neq X$, continua.

Ejercicio 2.8.66 Demostrar que el espacio métrico (X,d) es localmente conexo si, y sólo si, las componentes conexas de conjuntos abiertos son abiertas.

Ejercicio 2.8.67 Sea (X,d) un espacio métrico localmente conexo y compacto. Demostrar que X tiene, a lo sumo, una cantidad finita de componentes.

Ejercicio 2.8.68 Sea X,d un espacio métrico homeomorfo a $\mathbb Z$ demostrar que las componentes conexas de X son conjuntos unitarios. Este tipo de espacios se llaman totalmente disconexos.

3 Integral de Riemann

3.1 Introducción

« Bernard Riemann recibió su doctorado en 1851, su Habilitación en 1854. La habilitación confiere el reconocimiento de la capacidad de crear sustanciales contribuciones en la investigación más allá de la tesis doctoral, y es un prerequisito necesario para ocupar un cargo de profesor en una universidad Alemana. Riemann eligió como tema de habilitación el problema de las series de Fourier. Su tesis fue titulada Über die Darstellbarkeit einer Function durch eine trigonometrische Reine (Sobre la representación de una función por series trigonométricas) y respondía la pregunta: Cuándo una función definida en el intervalo $(-\pi,\pi)$ puede ser respresentada por la serie trigonométrica $a_0/2+\sum_{n=1}^\infty [a_n\cos(nx)+b_n\sin(nx)]$? En este trabajo es donde hallamos la Integral de Riemann, introducida en una sección corta antes del nucleo principal de la tesis, como parte del trabajo preparatorio que él necesitó desarrollar antes de abordar el problema de representabilidad por series trigonométricas. »

Bernhard Riemann 1826-1866

David M. Bressoud A Radical Approach to Lebesgue's Theory of Integration.

En este capítulo vamos a desarrollar el concepto de la integral de Riemman. Vamos a exponer la definición de la integral debida a Riemann y la ideada por J. G. Darboux. Mostraemos la equivalencia de las dos definiciones y discutiremos las propiedades de la integral, sus alcances y límites. Preparamos así el camino para la introducción de la integral de Lebesgue.

Debemos advertir al alumno que en este curso dejaremos un poco de lado las cuestiones procedimentales de cómo calcular integrales, aspecto que seguramente abordó en cursos anteriores y del cual nos vamos a valer. Tampoco debe esperar que las actividades prácticas se centren en esa dirección. Nuestro principal objetivo aquí es discutir la materia conceptual ligada a la integral y cómo es previsible las actividades prácticas estarán orientadas con ese propósito.

El concepto de integral encuentra su motivación en diversos problemas. Aparece cuando se busca el centro de masas de un determinado cuerpo, cuando se quieren hallar longitudes de arco, volúmenes, cuando se quiere reconstruir el movimiento de cuerpo conocida su velocidad, etc. La integral es utilizada en incontables otros conceptos matemáticos, como ser el mencionado már arriba relativo a las series de Fourier.

Quizás el problema más simple donde aparece la integral es el que utilizaremos como motivación para introducirla y es el concepto de área. Vamos a tratar de reconstruir este concepto desde su base, esto es analizando la noción de área de figuras tan simples como rectángulos, triángulos, etc.

Jean G. Darboux 1842-1917

3.2 Área de figuras elementales planas

El cálculo de áreas es necesario en multitud de actividades humanas, por ejemplo con el comercio. La cantidad de muchos productos y servicios se estima en medidas de área, por ejemplo: las telas, el trabajo de un colocador de pisos, el precio de la construcción, el valor de las extensiones de tierra, etc.

Por figuras elementales planas nos referimos a rectángulos, triángulos, trapecios, etc. Sin duda el alumno debe estar muy familiarizado con las áreas de estas figuras, el área de un rectángulo viene dada por la conocida fórmula $b \times h$, donde b es la base del rectángulo y b su altura. Ahora bien, ¿Cómo se llega a esta fórmula? Porque esta fórmula es apropiada para calcular el precio de un terreno por ejemplo. En esta sección vamos a justificar esta fórmula a partir de algunos hechos elementales.

Vamos a considerar un plano \mathcal{P} . En este plano \mathcal{P} supondremos fijada una unidad de longitud. Pretendemos asignar un área a las figuras, es decir a los subconjuntos, de \mathcal{P} . De ahora en más, cómo es usual en esta materia nos referiremos a medida en lugar de área. La medida es un concepto más general que el concepto de área. No obstante en el contexto en que estamos actualmente son sinónimos.

Queremos construir pues una función m tal que m(A) reppresente la medida de $A\subset \mathcal{P}.$ Ahora bien ¿qué podemos usar de guía con ese objetivo? Si, como dijimos, desconocemos todas las fórmulas previamente aprendidas, sobre que partimos para construir la medida o área. La respuesta es que tomaremos como principio rector ciertas propiedades que son deseables que una medida satisfaga. Ellas son las siguientes.

Positividad. debería ser una magnitud no negativa.

Invariancia por movimientos rígidos. Si una región es transformada en otra por medio de un movimiento rígido, ambas regiones deberían tener la misma área. Otra manera de expresar esta propiedad es diciendo que dos figuras congruentes tienen la misma área.

Aditividad. Si una región es la unión de cierta cantidad de regiones más chicas mutuamente disjuntas

Figura 3.1: El área del rectángulo es la suma de sus partes

Utilizando la segunda y tercer propiedad se pueden relacionar el área del rectángulo de la figura 3.1 con las cuatro regiones en la que es dividido.

Como veremos a lo largo de la materia la propiedad de aditividad debe ser estudiada con cuidado, esto ocurre por las intrincadas maneras en que una región puede ser unión de otras regiones. A lo largo de esta materia elaboraremos una teoría que nos dará una descripción precisa de a que conjuntos podemos asignarle una medida de modo que las propiedades previas sean ciertas.

Por el momento veamos como las propiedades anteriores determinan practicamente de manera unívoca la medida de regiones elementales planas.

Hablando de propiedades de la medida, supongamos que A y B son dos regiones con $A\subset B$. Entonces como $B=A\cup(B-A)$ y por la propiedad de aditividad y positividad

$$m(B) = m(A) + m(B - A) \ge m(A).$$

Descubrimos así que nuestra medida deberá tener adicionalmente la siguiente propiedad:

Monotonía. Si $A \subset B$ entonces $m(A) \leq m(B)$.

Podríamos por ejemplo elegir el círculo de radio uno como unidad de área. Así ya no tendríamos el problema de ese número raro π que aparece en la fórmula del área del círculo. ¡El área de cualquier círculo sería igual a

Es claro que si logramos construir una medida que satisfaga las propiedades anteriores cualquier multiplo por un número real positivo de ella seguirá cumpliendo las propiedades. Esto es una manera de expresar el hecho que podemos usar diferentes unidades de medición. Esta cuestión se sortea proponiendo la unidad de medida. Esta unidad es completamente arbitraria, ud. podría elegir su figura plana preferida como unidad de área. Cómo es habitual, elijamos el cuadrado cuyos lados miden la unidad de longitud previamente fijada.

Supongamos ahora que tenemos un rectángulo de un lado igual a la unidad y el otro de lado un racional n/m, $n,m\in\mathbb{N}$. Veamos que la aditividad, la invariancia por movimientos rígidos y el hecho que decidimos que el cuadrado de lados igual a la unidad determinan el área de este rectángulo. Primero observar que si dividimos el lado de cuadrado unidad en m segmentos iguales de longitud. Queda dividido el cuadrado en m rectángulos R_1,\ldots,R_m (ver figura en el margen), todos ellos congruentes entre si, de modo que todos tienen la misma medida, digamos $m(R_1)$. La unión de ellos es el cuadrado que por convención dijimos que tiene medida 1. De modo que por la aditividad debe ocurrir que $m(R_1)=\cdots=m(R_m))=1/m$. Recordemos nuestra pretención de inferir la medida de un rectángulo R de lado 1 y otro n/m. Este rectángulo esta compuesto de n rectángulos congruentes a los R_i , $i=1,\ldots,m$, nuevamente por la aditividad inferimos que m(R)=n/m.

Sea aĥora una rectángulo R con un lado unidad y el otro un real cualquiera l>0. Existen sendas sucesiones $0< q_k, p_k\in \mathbb{Q}$, $k\in \mathbb{N}$, tales que $q_1\leq q_2\leq \cdots \leq l\leq \cdots \leq p_2\leq p_1$ y lím $_{k\to\infty}q_k=\lim_{k\to\infty}p_k=l$. Consideremos una dos sucesiones de rectángulos R_k y S_k que comparten el lado de R igual a la unidad, mientras que el otro lado de R_k y S_k es igual a q_k y p_k respectivamente. Luego por la monotonía

$$R_5$$

$$R_4$$

$$R_3$$

$$R_2$$

$$R_1$$

Descomposición rectángulo ${\cal R}$

$$q_k = m(R_k) \le m(R) \le m(S_k) \le p_k.$$

Tomando límite cuando $k \to \infty$ inferimos que m(R) = l.

Figura 3.2: Áreas de otras figuras elementales.

A partir de las propiedades fundamentales que postulamos para la medida o área inferimos la famosa fórmula del área de un rectángulo en el caso que uno de los lados sea igual a la unidad. Para un rectángulo arbitrario. En la figura 3.2 se muestra como relacionar el área de un paralelepípedo con la de un rectángulo y la de un triángulo con la de un paralelepípedo para inferir las conocidas fórmulas para estas figuras.

3.3 Integral de Riemann

En esta sección abordaremos el problema del área de regiones planas. Vamos a contextualizarnos dentro del marco conceptual que nos brinda la geometría analítica. Mediante coordenadas cartesianas ortogonales los puntos del plano se identifican con pares ordenados $(x,y)\in\mathbb{R}^2$ y el plano con el conjunto \mathbb{R}^2 . Nuestro propósito es entonces definir la medida de subconjuntos de \mathbb{R}^2 . La geometría analítica abre así nuevas posibilidades para abordar el problema del área.

Nuestra primera aproximación será la que propuso Bernhard Riemann en 1854, pero seguiremos el enfoque de Jean Darboux. En esta parte de nuestra exposición consideraremos subconjuntos de \mathbb{R}^2 de un tipo especial, concretamente a conjuntos que quedan encerrados entre la gráfica de una función y del eje coordenadas x. Esto nos lleva alconcepto de integral.

Definición 3.3.1 (Partición) Sea [a,b] un intervalo. Una partición P es un conjunto ordenado y finito de puntos, donde el primer elemento es a y el último b. Es decir $P = \{x_0, x_1, \ldots, x_n\}$, donde $a = x_0 < x_1 < \cdots < x_n = b$.

Definición 3.3.2 (Sumas de Darboux) Sea $f:[a,b]\to\mathbb{R}$ una función acotada y $P=\{x_0,x_1,\ldots,x_n\}$ una partición de [a,b]. Consideremos las siguientes magnitudes

$$m_i := \inf\{f(x)|x \in [x_{i-1}, x_i]\}$$

$$M_i := \sup\{f(x)|x \in [x_{i-1}, x_i]\}$$

Definimos la Suma superior de Darboux como

$$\overline{S}(P, f) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}),$$

y la Suma inferior de Darboux como

$$\underline{S}(P,f) = \sum_{i=1}^{n} m_i(x_i - x_{i-1}),$$

Lema 3.3.1 (Monotonía sumas de Darboux) Sea $f:[a,b]\to\mathbb{R}$ una función acotada y $P=\{x_0,x_1,\ldots,x_n\}$ una partición de [a,b]. Supongamos que P' es otra partición que tiene un pnto más que P. Entoces

$$\underline{S}(P', f) \ge \underline{S}(P, f)$$
 y $\overline{S}(P', f) \le \overline{S}(P, f)$

Ejercicio 3.3.1 Sea $f:[a,b]\to\mathbb{R}$ una función acotada y P,P' particiones de [a,b] con $P\subset P'$. Demostrar que

$$S(P, f) \le S(P', f)$$
 y $\overline{S}(P', f) \le \overline{S}(P, f)$.

Inferir que para cualesquiera P,P' (sin importar que una este o no contenida dentro de la otra)

$$\underline{S}(P, f) \le \overline{S}(P, f).$$

Definición 3.3.3 (Funciones integrables) Sea $f:[a,b]\to\mathbb{R}$ una función acotada. Diremos que f es integrable Riemann si

$$\sup \{\underline{S}(P,f)|P \text{ partición de } [a,b]\} = \inf \{\overline{S}(P,f)|P \text{ partición de } [a,b]\}$$
 (3.1)

En caso que f sea integrable llamamos integral entre a y b de f al valor de los dos

Sumas de Darboux.

miembros de (3.1) y este número se denota

$$\int_{a}^{b} f(x)dx.$$

Teorema 3.3.1 (Primer criterio de integrabilidad) Sea $f:[a,b]\to\mathbb{R}$ una función acotada. Entonces f sea integrable si para todo $\varepsilon>0$ existe una partición P tal que

$$\overline{S}(P;f) - \underline{S}(P;f) < \varepsilon.$$
 (3.2)

Dem. La demo

Ejemplo 3.3.1 Sea $0 \le a < b$ veamos que

$$\int_{a}^{b} x dx = \frac{b^2}{2} - \frac{a^2}{2}.$$

Ejercicio 3.3.2 Sea $0 \le a < b$ veamos que

$$\int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3}.$$

Ayuda: Usar particiones uniformes y la fórmula $\sum_{i=1}^n n^2 = n(n+1)(2n+1)/6$.

Ejemplo 3.3.2 Sea $0 \le a < b$ y $n \in \mathbb{N}$, veamos que

$$\int_{a}^{b} x^{n} dx = \frac{b^{n+1}}{n+1} - \frac{a^{n+1}}{n+1}.$$

Usamos particiones no uniformes

Ejercicio 3.3.3 Sea $0 \le a < b$ y n un entero negativo, veamos que

$$\int_{a}^{b} x^{n} dx = \begin{cases} \frac{b^{n+1}}{n+1} - \frac{a^{n+1}}{n+1} & \text{si } n \neq -1\\ \ln(b) - \ln(a) & \text{si } n = -1 \end{cases}$$

Ejemplo 3.3.3 Sea $0 \le a < b \le \pi/2$, veamos que

$$\int_{a}^{b} \sin x dx = -(\cos(b) - \cos(a)).$$

Ejercicio 3.3.4 Sea $0 \le a < b \le \pi$, veamos que

$$\int_{a}^{b} \operatorname{sen} x dx = -(\cos(b) - \cos(a)).$$

Ejemplo 3.3.4 Usamos SymPy y sumas de Darboux aproximar el valor de π . Utilizamos el hecho que $\pi/4$ es el área de un cuarto de círculo de radio 1. Entonces

$$\pi = 4 \int_0^1 \sqrt{1 - x^2} dx.$$

```
from sympy import *
N=1000.0
lim=int(N+1)
x=symbols('x')
f=sqrt(1-x**2)
Sinf=sum([ f.subs(x,i/N)*1/N for i in range(1,lim)])
Ssup=sum([f.subs(x,(i-1)/N)*1/N for i in range(1,lim)])
```

Encontramos la estimación

 $3,13955546691103 \le \pi \le 3,14355546691103$

Ejercicio 3.3.5 Usando SymPy estimar las siguientes integrales

$$\int_{1}^{2} \frac{1}{x} dx,$$

comparar con ln(2),

$$\int_{-1}^{1} x^2 dx$$

¿A qué parece aproximarse las sumas inferiores y superiores?

$$\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx,$$

¿Por qué el resultado puede usarse para aproximar π ?

Teorema 3.3.2 (Propiedades elementales de la integral) Sean $f,g:[a,b]\to\mathbb{R}$ integrables, $\alpha,\beta\in\mathbb{R}$ y $c\in(a,b)$. Entonces

Linealidad $\alpha f + \beta g$ es integrable y

$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Monotonía Si $f(x) \leq g(x)$ para $x \in [a, b]$ entonces

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

Aditividad del Intervalo

$$\int_{a}^{b} \alpha f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Observación: Las propiedadades anteriores son compatibles con las propiedades que habíamos propuesto para el concepto de área en la sección .

3.4 Integrabilidad y continuidad

Teorema 3.4.3 (Segundo criterio de integrabilidad) Sea $f:[a,b]\to\mathbb{R}$ una función acotada. Entonces f sea integrable si para todo $\varepsilon>0$ existe un $\delta>0$ tal que para cualquier partición P que satisface

$$\max_i \{x_i - x_{i-1}\} < \delta,$$

se tiene que

$$\overline{S}(P;f) - \underline{S}(P;f) < \varepsilon.$$
 (3.3)

Dem. Agarrate catalina

Teorema 3.4.4 (Continuidad implica integrabilidad) Si $f:[a,b]\to\mathbb{R}$ es una función continua entonces es integrable.

Dem. hacer □

¿Qué ocurre con las funciones discontinuas? **Ejemplo 3.4.5** Es la función

$$H(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}.$$

Es discontinua en [-1, 1] pero integrable.

Ejemplo 3.4.6 Es la función $f:[0,1] \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & \text{ si } x \in \mathbb{Q} \\ 0 & \text{ si } x \notin \mathbb{Q} \end{cases}$$

Veamos que \underline{f} es discontinua en todo punto y no integrable.

Ejemplo 3.4.7 Es la función $f:[0,1]\to\mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{1}{q} & \text{ si } x = \frac{p}{q}, p, q \in \mathbb{Z}, \text{m.c.d}(p,q) = 1 \\ 0 & \text{ si } x \notin \mathbb{O} \end{cases}$$

Para graficarla

Veamos que es discontinua en todo punto racional y es integrable integrable. **Ejemplo 3.4.8** Sea $\mathbb{Q} \cap [0,1] = \{q_1,q_2,\ldots\}$ una numeración de los racionales del [0,1].

Definamos $f:[0,1] \to \mathbb{R}$ como

$$f(x) = \sum_{n=1}^{\infty} H(x - q_n),$$

donde H es la función de Heavside.

Función de Dirichlet

Función de Thomae

Función creciente y discontinua en $\mathbb{Q} \cap [0,1]$

Veamos que f es monotona no decreciente y discontinua en todo punto de $[0,1]\cap \mathbb{Q}$. Además f es integrable.

Definición 3.4.4 (Oscilación sobre un intervalo) Sea $f:[a,b]\to\mathbb{R}$ acotada y $I=[lpha,eta]\subset[a,b]$. Definimos la *oscilación* de f en I por

$$w(f, I) = \sup\{f(x) | x \in I\} - \inf\{f(x) | x \in I\}.$$

Ejemplo 3.4.9

- 1. Para la función de Dirichlet w(f, I) = 1 para todo I con interior no vacío.
- 2. Para la función de Heavside e $I = [\alpha, \beta]$

$$w(f,I) = \begin{cases} 1 & \text{si } 0 \in (\alpha,\beta] \\ 0 & \text{si } 0 \notin (\alpha,\beta] \end{cases}$$

- 3. Si $I^o \neq \emptyset$, f la función de Thomae e $I \subset [0,1]$ entonces $w(f,I) = 1/q^*$, donde q^* es el mínimo valor de q para el que existe $p \leq q$ tal que $p/q \in I$.
- 4. Para la función escalera discontinua e $I \subset [0,1]$

$$w(f,I) = \sum_{q_n \in I} \frac{1}{2^n}.$$

Definición 3.4.5 Sea $f:[a,b]\to\mathbb{R}$ acotada, $\sigma>0$ y $P=\{x_0,x_1,\ldots,x_n\}$ una partición. Definimos

$$I_{\sigma} := \{i \in \{1, \dots, n\} | w(f, [x_{i-1}, x_i]) > \sigma\}.$$

у

 $x_i - x_{i-1}$.

$$R(P, f, \sigma) = \sum_{i \in I_{\sigma}} (x_i - x_{i-1}).$$

Proposición 3.4.1 i f es continua en [a,b] para todo $\sigma>0$ existe $\delta>0$ tal que

$$\max_{i}(x_{i}-x_{i-1})<\delta\Rightarrow I_{\sigma}=\emptyset\Rightarrow R(P,f,\sigma)=0.$$

Ejemplo 3.4.10 Para la función de Dirichlet y para todo $0<\sigma<1$ y para toda partición de [0,1] tenemos $I_\sigma=\{x_1,\ldots,x_n\}$ y $R(P,f,\sigma)=[0,1]$ **Ejemplo 3.4.11** Para la función de Heavside, para todo $0<\sigma<1$ y para toda partición de [0,1] tenemos $I_\sigma=i$, donde i es el índice para el que $i\in(x_{i-1},x_i]$ y $R(P,F,\sigma)=1$

Teorema 3.4.5 (Criterio de integrabilidad de Riemann) Sea f acotada en [a,b] entonces f es integrable si y sólo si para todo $\varepsilon>0$ y $\sigma>0$ existe $\delta>0$ talque $R(P,f,\sigma)<\varepsilon.$

Ejemplo 3.4.12 Discutir los ejemplos Dirichlet, Heavside, Continuas, escalera discontinua

Ejemplo 3.4.13 Definimos

$$((x)) = x - [x + 0.5]$$

```
x=symbols('x')
g=x-floor(x+.5)
plot(g,(x,-5,5))
```

Definimos la función de Riemann Porque

$$f(x) = \sum_{n=1}^{\infty} \frac{((x))}{n^2}.$$

f=sum([g.subs(x,n*x)/n**2 for n in range(1,20)])plot(f,(x,0,1))

Demostramos que la función de Riemann es discontinua en los racionales p/q donde m.c.d(p,q)=1 y q par. Es integrable en [0,1].

Función de Riemann

Definición 3.4.6 (Oscilación de una función en un punto) Sea $f:[a,b]\to\mathbb{R}$ y $x\in[a,b]$ acotada definimos la *oscilación de f en x* como

$$w(f;x) = \inf_{x \in I^o} w(f,I),$$

donde el ínfimo se toma sobre todos los intervalos que contienen a x en su interior.

Ejercicio 3.4.6 f es continua en x si y solo si w(f;x)=0.

Definición 3.4.7 (Contenido exterior) Sea $S \subset \mathbb{R}$. Un cubrimiento finito de S es una colección de intervalos $\{[x_{i-1},x_i]\}_{i=1,\dots,n}$ tal que $S \subset \cup_{i=1}^n [x_{i-1},x_i]$.

El contenido exterior de S se define por

$$c_e(S) = \inf \sum_{i=1}^n (x_i - x_{i-1}),$$

donde el ínfimo es tomado sobre todos los cubrimientos finitos de S.

Teorema 3.4.6 (Criterio de integrabilidad de Hankel) Sea f acotada en [a,b] entonces f es integrable si y sólo si para todo $\sigma>0$ el conjunto $S_\sigma:=\{x\in [a,b]|w(f,x)>\sigma\}$ tiene contenido exterior igual a 0 ($c_e(S_\sigma)=0$).

3.5 Teorema Fundamental de Cálculo

3.6 Función de Volterra

```
import numpy as np import scipy.optimize from matplotlib import pyplot as plt Consideramos la función f(x) = x^2 \operatorname{sen}(1/x). def G(x): return x**2*np.\sin(1/x) x=np.arange(0,.15,0.0000001) y=G(x) plt.plot(x,y)
```


Figura 3.3: Función precursora de Volterra

```
def F(x):
    return 2*x*np.sin(1/x) - np.cos(1/x)
x = scipy.optimize.broyden2(F, .13, f_tol=1e-14)
x,1-x, G(x)
   Se alcanza un máximo en x = 0.13163878 y toma el valor G(x) = 0.016757715.
Hay que utilizar el punto simétrico a x, es decir 1-x=0.86836123.
  Definimos la función "madre".
def f0(x):
    x1=x[x<=0]
    x2=x[(x<=0.13163877)*(x>0)]
    x3=x[(x>0.13163877)*(x<0.868361226)]
    x4=x[(x>=0.868361226)*(x<1)]
    x5=x[x>=1]
    y1=np.zeros(np.shape(x1))
    y2=x2**2*np.sin(1/x2)
    y3=0.01675771541054875*np.ones(np.shape(x3))
    y4=(1-x4)**2*np.sin(1/(1-x4))
    y5=np.zeros(np.shape(x5))
    return np.concatenate((y1,y2,y3,y4,y5), axis=None)
```

Definimos la función de Volterra

```
def volterra(x,n,a=0,b=1):
    if n == 0:
        return 0

a1,b1 = 2.*a/3. + b/3., a/3. + 2.*b/3.
    pto_med = .5*(a+b)
    return volterra(x,n-1,a,a1) + (b1-a1)*f0((x-a1)/(b1-a1))\
    + volterra(x,n-1,b1,b)

Graficamos

x=np.arange(0,1,0.0000001)
y=volterra(x,12)
plt.plot(x,y)
```


Figura 3.4: Función de Volterra

3.7 Integral de Riemann y pasos al límite

4 Medida de Lebesgue en $\mathbb R$

4.1 Longitud de intervalos

4.2 Contexto

Medida exterior

Volúmen de rectángulos Sea $R=[a_1,b_1] imes \ldots imes [a_n,b_n] \subset \mathbb{R}^d$ un rectángulo cerrado

$$|R| := (b_1 - a_1) \cdots (b_n - a_n).$$

Medida exterior, definición Sea $E \subset \mathbb{R}^d$,

$$\boxed{m_*(E) := \inf \left\{ \sum_{j=1}^\infty |Q_j| \left| E \subset \bigcup_{j=1}^\infty Q_j, Q_j \text{ cubo cerrado }, j \in \mathbb{N} \right.\right\}}$$

Medida exterior, propiedades Propiedades

Monotonía: $E_1 \subset E_2 \Rightarrow m_*(E_1) \leq m_*(E_2)$

$$\sigma\text{-subaditividad: }E_j \in \mathbb{R}^d\text{, }j=1,2,\ldots\text{,} \Rightarrow \boxed{m_*\left(\bigcup_{j=1}^\infty E_j\right) \leq \sum_{j=1}^\infty m_*(E_j)}$$

 σ -aditividad: No se pudo demostrar la igualdad cuando los E_i son mutuamente disjuntos

Regularidad: $m_*(E) = \inf\{m_*(G)|G \text{ es abierto } G \supset E\}.$

Conjuntos medibles

Definición $E\subset\mathbb{R}^d$ se llama *medible Lebesgue* si para todo $\varepsilon>0$ existe $G\subset\mathbb{R}^d$ abierto, $G\supset E$ tal que

$$m_*(G-E)<\varepsilon$$

Si E es medible

$$m(E) := m_*(E).$$

Conjuntos medibles, propiedades Propiedades

- 1. Los conjuntos abiertos son medibles
- 2. Los conjuntos nulos ($m_*(Z) = 0$) son medibles
- 3. Las uniones e intersecciones numerables y las diferencias de conjuntos medibles resultan en conjuntos medibles.
- 4. $\underline{\sigma}$ -aditividad. $E_j \in \mathbb{R}^d$, $j=1,2,\ldots$, son medibles y $E_j \cap E_i = \emptyset$, $j \neq i$, \Rightarrow

$$m\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} m(E_j)$$

Problema Problema Podemos describir un conjunto medible como una estructura integrada por partes? Idealmente estas partes deberían ser más familiares y fáciles de caracterizar.

4.2.1 Aproximación

Aproximación por "estructuras" específicas Teorema (Aproximación de conjuntos medibles) Si E es medible Lebesque y ε es cualquier número real positivo:

- 1. Abiertos por exceso. Existe un abierto G con $E \subset G$ y $m(G-E) < \varepsilon$.
- 2. Cerrados por defecto. Existe un cerrado F con $F \subset E$ y $m(E-F) < \varepsilon$.
- 3. Compacto por defecto. Si $m(E)<\infty$, existe un compacto K con $E\supset K$ y $m(E-K)<\varepsilon$.
- 4. Elementales Si $m(E)<\infty$, existe una unión finita de cubos cerrados $K=\bigcup_{i=1}^N Q_i$ tal que $m(E\triangle K)<\varepsilon$.

Demostración Teorema Aproximación 1) Definición de conjunto medible.

2) Aplicando 1), existe un abierto $G \operatorname{con} G \supset E^c$ y

$$\varepsilon > m(G - E^c) = m(E \cap G) = m(E - G^c).$$

Debemos tomar $F = G^c$, que es cerrado y $F \subset E$.

3) Por 2) Sea F cerrado que aproxima a E por defecto con error a lo sumo ε :

$$m(E-F)<\varepsilon$$
.

Sea K_n , $n=1,\ldots$, su colección favorita de compactos con

$$K_1 \subset K_2 \subset \cdots$$
 y $\mathbb{R}^d = \bigcup_{n=1}^{\infty} K_n$.

Mi favorito: $K_n := \{x : |x| \le n\}$.

Demostración Teorema Aproximación 3) (continuación) Entonces $F_n:=F\cap K_n$ es compacto y

$$E-F_1\supset E-F_2\supset \cdots$$
 $y\bigcap_{n=1}^{\infty}(E-F_n)=E-F.$

Como $m(E-F_1) \leq m(E) < \infty$, el teorema de convergencia monótona de conjuntos

$$\lim_{n\to\infty} m(E-F_n) = m(E-F) < \varepsilon.$$

Luego existe un n suficientemente grande para que

$$m(E-F_n)<\varepsilon$$
.

Demostración Teorema Aproximación 4) Sean Q_j , $j=1,2,\ldots$, cubos con

$$E \subset \bigcup_{j=1}^{\infty} Q_j, \quad \sum_{j=1}^{\infty} m(Q_j) < m(E) + \frac{\varepsilon}{2}.$$

Como $m(E) < \infty$ la serie converge \Rightarrow existe N > 0 con

$$\sum_{j=N+1}^{\infty} m(Q_j) < \frac{\varepsilon}{2}.$$

Sea el cerrado

$$F = \bigcup_{j=1}^{N} Q_j$$

Demostración Teorema Aproximación **Entonces**

$$m(E\triangle F) = m(E - F) + m(F - E)$$

$$\leq m \left(\bigcup_{j=N+1}^{\infty} Q_j\right) + m \left(\bigcup_{j=1}^{\infty} Q_j - E\right)$$

$$\leq \sum_{j=N+1}^{\infty} m(Q_j) + \sum_{j=1}^{\infty} m(Q_j) - m(E)$$

$$< \varepsilon$$

4.2.2 Conjuntos G_{δ} y F_{σ}

Definición G_δ y F_σ Hasta el momento no hemos expresado un conjunto medible como una estructura, sino que lo hemos aproximado, en un cierto sentido, por conjuntos con estructuras determinadas. Para lograr el objetivo necesitamos introducir nuevos tipos

Definición G_δ y F_σ Un conjunto que es una intersección numerable de abiertos se denomina de clase G_{δ} . El complemento de un conjunto de clase G_{δ} se denomina de clase F_{σ} .

Observación: F es F_{σ} si es unión numerable de conjunto cerrados.

Ejemplos G_{δ} y F_{σ} Ejemplo 4.2.1 Obviamente todo abierto es G_{δ} . Ejemplo 4.2.2 Si $-\infty < a < b < \infty$, $[a,b] = \bigcap_{n=1}^{\infty} (a-\frac{1}{n},b+\frac{1}{n})$. Así todo intervalo compacto es G_{δ} . **Ejemplo 4.2.3** $\mathbb Q$ es F_{σ} pues es la unión numerable de conjuntos unitarios, que son

cerrados. Por consiguiente, los irracionales $\mathbb{R} - \mathbb{Q}$ es G_{δ} .

Ejemplo 4.2.4 \mathbb{Q} no es G_{δ} . Este hecho no es sencillo de demostrar y requiere un teorema profundo

Ejemplos G_{δ} y F_{σ}

Teorema de Baire Si (X,d) es un espacio métrico completo y $U_n\subset X, n=1,2,\ldots$, son abiertos y densos de X, entonces $\bigcap_{n=1}^\infty U_n$ es denso. Si $\mathbb Q$ fuese G_δ y U_n fuesen abiertos con $\mathbb Q=\bigcap_{n=1}^\infty U_n$, entonces cada U_n es denso. Si ahora $\mathbb Q=\{q_1,q_2,\ldots\}$ y ponemos $W_n=\mathbb R-\{q_n\}$, entonces cada W_n es abierto y denso. Si ponemos $\{V_n\}_{n=1}^\infty=\{U_n\}_{n=1}^\infty\cup\{W_n\}_{n=1}^\infty$, entonces $\{V_n\}_{n=1}^\infty$ es una colección de abiertos densos de $\mathbb R$ que contradice el teorema de Baire pues

$$\bigcap_{n=1}^{\infty} V_n = \bigcap_{n=1}^{\infty} U_n \cap \bigcap_{n=1}^{\infty} W_n = \mathbb{Q} \cap (\mathbb{R} - \mathbb{Q}) = \emptyset.$$

Teorema estructura conjuntos medibles Teorema Sea $E \subset \mathbb{R}^d$. Son equivalentes

- 1. E es medible,
- 2. Existe $H \subset \mathbb{R}^d$ de clase G_δ y Z nulo tal que E = H Z.
- 3. Existe $F \subset \mathbb{R}^d$ de clase F_{σ} y Z nulo tal que $E = F \cup Z$.

Demostración teorema estructura conjuntos medibles Claramente items 2 y 3 implican el 1.

1 \Rightarrow 2. Sean $n\in\mathbb{N}$ y $G_n\stackrel{\cdot}{\supset}E$ abiertos tales que

$$m(G_n - E) < \frac{1}{n}.$$

y sean

$$H = \bigcap_{n=1}^{\infty} G_n$$
 y $Z = H - E$.

H es G_{δ} , $E \subset H$ y

$$m(Z) = m(H - E) \le m(G_n - E) < \frac{1}{n}.$$

Como n es arbitrario m(Z) = 0.

Demostración teorema estructura conjuntos medibles Restaría ver 1 \Rightarrow 3. Si E es medible, E^c es medible y, por 1 \Rightarrow 2,

$$E^c = H - Z, \quad m(Z) = 0.$$

Si $F=H^c$, tomando complementos tenemos

$$E = F \cup Z$$
.

4.2.3 Conjuntos de Borel

 σ -álgebras

Definición Una colección de subconjuntos de un conjunto dado X, $\mathscr{A}\subset \mathcal{P}(X)$ se denomina σ -algebra si

- 1. $\emptyset \in \mathscr{A}$.
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
- 3. $A_i \in \mathcal{A}$, $i = 1, 2, \ldots$, $\Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

Observaciones: Si \mathscr{A} es una σ -algebra

- 1. $X = \emptyset^c \in \mathscr{A}$.
- 2. $A_i \in \mathscr{A}$, $i=1,2,\ldots$, $\Rightarrow A_i^c \in \mathscr{A}$, $i=1,2,\ldots$, $\Rightarrow \bigcup_{i=1}^{\infty} A_i^c \in \mathscr{A} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathscr{A}$

 σ -álgebras, ejemplos **Ejemplo 4.2.5**

- 1. Triviales $\mathscr{A} = \mathcal{P}(X)$ y $\mathscr{A} = \{\emptyset, X\}$.
- 2. El conjunto $\mathscr{M}=\mathscr{M}(\mathbb{R}^d)$ de todos los subconjuntos medibles Lebesgue de \mathbb{R}^d
- 3. El conjunto de los abiertos, cerrados, las clases G_δ y F_σ no forman σ -algebras. Es decir, no tenemos clases caracterizadas por propiedades topológicas que sean ejemplos de σ -algebras Cómo remediarlo?

 σ -álgebra generada

Ejercicio Si $\{\mathscr{A}_i\}_{i\in I}$ es una colección de σ -álgebras (reparar en que I es arbitrario) del conjunto X, entonces $\bigcap_{i\in I}\mathscr{A}_i$ es σ -álgebra.

Definicion Dado un subconjunto $\mathcal C$ de subconjuntos de X, $\mathcal C\subset\mathcal P(X)$, definimos la σ -álgebra generada por $\mathcal C$ como

$$\langle \mathcal{C} \rangle = \bigcap \{ \mathscr{A} | \mathcal{C} \subset \mathscr{A} \text{ y } \mathscr{A} \text{ es } \sigma\text{-algebra} \}.$$

Ejercicio $\langle \mathcal{C} \rangle$ es la menor σ -algebra que contiene a \mathcal{C} .

Definición Definición Sea $\mathcal{G}=\mathcal{G}(\mathbb{R}^d)$ la colección de todos los conjuntos abiertos de \mathbb{R}^d . Definimos la σ -algebra de Borel $\mathscr{B}=\mathscr{B}(\mathbb{R}^d)$ como $\mathscr{B}=\langle \mathcal{G}\rangle$

Ejercicio Demostrar que la σ -algebra \mathscr{B} es también generada por:

1. Los subconjuntos cerrados de \mathbb{R}^d .

П

- 2. Los subconjuntos compactos de \mathbb{R}^d .
- 3. Las bolas abiertas (o cerradas) de \mathbb{R}^d .
- 4. Los cubos de \mathbb{R}^d .

Observaciones

- 1. Claramente $G_{\delta}, F_{\sigma} \subset \mathscr{B}$.
- La definición de conjuntos de Borel es notable, pues definimos los conjuntos de Borel, definiendo la estructura que los contiene. Esto se manifiesta cuando se intenta demostrar alguna propiedad de los borelianos.

Ejemplo 4.2.6 Si $f:\mathbb{R}^d\to\mathbb{R}$ es continua y $B\in\mathscr{B}(\mathbb{R})$ entonces $f^{-1}(B)\in\mathscr{B}(\mathbb{R}^d)$. **Dem.** Definimos

$$\mathscr{A} = \{ A \subset \mathbb{R} | f^{-1}(A) \in \mathscr{B}(\mathbb{R}^d) \}.$$

Ejercicio 4.2.1 \mathscr{A} es una σ -algebra que contiene a los abiertos.

Entonces $\mathscr{B}(\mathbb{R})\subset\mathscr{A}$, que equivale a lo que queremos demostrar.

Borelianos y médibles

Corolario Sea $E \subset \mathbb{R}^d$. Son equivalentes

- 1. E es medible.
- 2. Existe $B \in \mathscr{B}(\mathbb{R}^d)$ y Z nulo tal que $E = B \cup Z$.

4.2.4 Preguntas

Pregunta 1

$$\mathcal{B}=\mathscr{M}$$
 ?

Respuesta: no.

Se justifica más adelante, depende de la construcción de un $A\subset\mathbb{R}$ con $A\notin\mathcal{M}$ y usa la función de Cantor.

Pregunta 2 Así como definimos los conjuntos G_{δ} y F_{σ} podemos considerar

- 1. Uniones numerables de conjuntos de clase G_{δ} : $G_{\delta\sigma}$,
- 2. Intersecciones numerables de conjuntos de clase F_{σ} : $F_{\sigma\delta t}$
- 3. :

¿Podríamos continuando este proceso construir 99?

Respuesta: Si, con muchas sutilesas lógicas. Se necesita el concepto de ordinal e inducción transfinita. Estamos en el terreno de la teoría descriptiva de conjuntos.

5 Medidas abstractas

«Me gustaría enfatizar nuevamente, antes de comenzar esta presentación, que la nueva definición será aplicable no solo a un espacio con n dimensiones sino a un conjunto abstracto. Es decir, ni siquiera es necesario, por ejemplo, suponer que sabemos cuál es el límite de elementos en este conjunto»

M. Frechet Sur l'intégrale d'une fonctionnelle étendueà un ensemble abstrait Bulletin de la S. M. F., tome 43 (1915), p. 248-265.

En todos los capítulos anteriores hemos tratado de fundar los conceptos que fuimos introduciendo relacionándolos con conceptos que juzgamos los precedían. cunado decimos "preceder" contemplamos tanto el orden lógico de la construcción como el grado de abstracción de los objetos de estudio.

En esta unidad plantéamos un salto cualitativo. Vamos abstraernos de la problemática que dió origen a la construcción de la medida en itengral de Lebesgue, esto es la noción de área, y consideraremos una teoría axiomática, donde postularemos como axiomas aquellas propiedades que se revelaron trascendentes en los capítulos anteriores. Este enfoque axiomático se abstrae a su vez de las entidades a las que pretendemos medir, en el sentido que ya no formularemos el concepto de medida para subconjuntos de \mathbb{R} , o el espacio euclideano \mathbb{R}^n . Introducieremos el concepto de *espacio de medida* como una abstracción de la construcción en capítulos anbteriores y veremos como este concepto induce un consecuente concepto de integral. En capítulos posteriores usaremos esta teoría para construir una medida sobre \mathbb{R}^n .

Las nociones introducidas aquí fueron presentadas por primera vez por M. Frechet en el artículo del cual fue extraída la cita con la que comensamos el presente capítulo.

La noción de medida abstracta es muy fructífera pues unifica multitud de instancias particulares de esta noción que aparecen en distintas áres de la matemática. además de contemplarla medida de Lebesgue

5.1 Algebras, σ -álgebras y clases monótonas

Definición 5.1.1 (Algebra de conjuntos) Sea X un conjunto y $\mathscr{A}\subset \mathcal{P}(X)$. Diremos que \mathscr{A} es un *álgebra* si:

- 1. $\emptyset \in \mathscr{A}$.
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$.
- 3. $A_i \in \mathcal{A}$, $i = 1, \ldots, n$, $\Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{A}$.

Ejercicio 5.1.1 Demostrar que los siguientes ejemplos definen álgebras de conjuntos.

- 1. La colección de todas las uniones de una cantidad finita de intervalos de \mathbb{R} , donde por intervalo inlcuímos tanto acotados como no y tanto abiertos como cerrados como ninguno de ambos.
- 2. Como en el ejemplo anterior, pero con los extremos de los intervalos en $\mathbb{Z} \cup \{\pm \infty\}$ o $\mathbb{Q} \cup \{\pm \infty\}$.
- 3. Más generalmente aún, como en los ejemplos anteriores, pero con los extremos de los intervalos en $A \cup \{\pm \infty\}$, donde $A \subset \mathbb{R}$.
- 4. Sea X un conjunto cualquiera y sean $A_i \subset X$, $i = 1, \ldots, n$, subconjuntos

mutuamente disjuntos tales que $X=\bigcup_{i=1}^n A_i$. El álgebra que proponemos es $\mathscr{A}=\{\bigcup_{i\in F} A_i|F\subset\{1,\dots,n\}\}$. Esto es todas las uniones posibles de los A_i . Eventualmente $F=\emptyset$ y la unión correspondiente es asumida igual a \emptyset .

Ejercicio 5.1.2 Demostrar que A es un álgebra si y solo si

- 1. $\emptyset \in \mathscr{A}$.
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$.
- 3. $A_i \in \mathcal{A}, i = 1, \ldots, n_i \Rightarrow \bigcap_{i=1}^n A_i \in \mathcal{A}.$

Definición 5.1.2 (Clases monótonas) Sea X un conjunto y $\mathscr{A} \subset \mathcal{P}(X)$. El conjunto \mathscr{A} se llamará clase monótona si

- 1. $A_i \in \mathcal{A}$, $A_i \subset A_{i+1}$, $i = 1, 2, ... \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.
- 2. $A_i \in \mathcal{A}$, $A_i \supset A_{i+1}$, $i = 1, 2, ... \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$.

Ejercicio 5.1.3 Demostrar que los siguientes ejemplos definen clases monótonas.

- 1. La colección de todos los intervalos de $\mathbb R$ de la forma $(a,+\infty)$ o $[a,+\infty)$ con $a\in [-\infty,+\infty).$
- 2. En \mathbb{R}^n la colección de de todas las bolas, tanto cerradas o abiertas, de centro 0 y radio $r\in[0,+\infty]$.
- 3. La colección de todos los subgrupos de un grupo dado G.

Recordemos del capítulo anterior.

Definición 5.1.3 (σ **-álgebra de conjuntos)** Sea X un conjunto y $\mathscr{A} \subset \mathcal{P}(X)$. Diremos que \mathscr{A} es una σ -álgebra si:

- 1. $\emptyset \in \mathscr{A}$.
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$.
- 3. $A_i \in \mathcal{A}$, i = 1, ..., $\Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

Ejercicio 5.1.4 Demostrar que \mathscr{A} es σ -álgebra si y sólo si es clase monótona y álgebra.

Ejercicio 5.1.5 Demostrar que $\mathscr A$ es σ -álgebra si y sólo si es álgebra y satisface que

$$\blacksquare \ E_n \in \mathscr{A} \text{, } n=1,2,\dots \text{y } E_i \cap E_j = \emptyset \text{, cuando } i \neq j \text{ implican que } \bigcup_{n=1}^\infty E_n \in \mathscr{A} \text{.}$$

5.2 Medidas

Definición 5.2.4 Sea X un conjunto y $\mathscr A$ una σ -álgebra. Una funcion $\mu:\mathscr A\to [0,+\infty]$ se llama una medida si para toda colección numerable de subconjuntos $A_i\in\mathscr A$, $i=1,\ldots$, mutuamente disjuntos entre si, $A_i\cap A_j=\emptyset$ cuando $i\neq j$, se satisface que $\bigcup_{i=1}^\infty A_i\in\mathscr A$. Al triplete $(X,\mathscr A,\mu)$ se lo denomina $espacio\ de\ medida$.

Ejercicio 5.2.6 Sea (X,\mathscr{A},μ) espacio de medida. Demostrar que se satisface las siguientes relaciones

- 1. $\mu(\emptyset) = 0$.
- 2. $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.
- 3. Si $\mu(B) < \infty$ y $B \subset A$ entonces $\mu(A B) = \mu(A) \mu(B)$.

Ejemplo 5.2.1 $(\mathbb{R}, \mathcal{M}, m)$, donde \mathcal{M} denota la σ -algebra de los conjuntos medibles Lebesgue y m la medida de Lebesgue, es un espacio de medida. Si en lugar de considerar la σ -álgebra \mathcal{M} consideramos la σ -álgebra \mathcal{B} de conjuntos medibles Borel, resulta en otro espacio de medida $(\mathbb{R}, \mathcal{B}, m)$, que no es más que la restricción de la medida a una sub- σ -álgebra.

Ejercicio 5.2.7 (Medida de conteo) Sea X es un conjunto y $\mathscr{A}=\mathcal{P}(X)$ la colección de todos los subconjuntos de X. Para $A\in\mathscr{A}$ escribamos $\mu(A)=\#A$, cuando A es finito, y $\mu(A)=+\infty$ cuando A no es finito. Demostrar que el triple (X,\mathscr{A},μ) es espacio de medida.

Ejercicio 5.2.8 Sea $X = \mathbb{N}$ y $\mathscr{A} = \mathcal{P}(\mathbb{N})$ la colección de todos los subconjuntos de \mathbb{N} . Supongamos dada una función $f : \mathbb{N} \to [0, +\infty]$. Para $A \in \mathscr{A}$ escribamos

$$\mu(A) = \sum_{n \in A} f(n),$$

Demostrar que el triple $(\mathbb{N}, \mathscr{A}, \mu)$ es espacio de medida. ¿Qué resulta μ si f(n)=1 para todo n? ¿Qué condición debe satisfacer f para que $\mu(A)<\infty$ para todo $A\subset\mathbb{N}$?

Ejercicio 5.2.9 Sea $X=\mathbb{N}$ y $\mathscr{A}=\mathcal{P}(\mathbb{N})$ la colección de todos los subconjuntos de \mathbb{N} . Sea k un natural fijo. Para $A\subset\mathbb{N}$ escribir

$$\mu(A) = \#\{n \in A : k|n\},\$$

es decir $\mu(A)$ cuenta cuantos multiplos de k hay en A. Demostrar que μ es medida. Demostrar que esta medida es una instancia de las medidas introducidas en (5.2.8).

Un ejemplo muy importante es provisto por la siguiente proposición

Proposición 5.2.1 Sea $f: \mathbb{R} \to [0, +\infty]$ una función integrable y no negativa. El triplete $(\mathbb{R}, \mathscr{M}, \mu_f)$ es espacio de medida, donde \mathscr{M} denota la σ -algebra de los

conjuntos medibles Lebesgue y

$$\mu_f(A) = \int_A f(x)dx.$$

Dem. Sólo hay que demostrar que μ_f es una medida. Sean $A_i \in \mathscr{A}$, $i=1,\ldots$, mutuamente disjuntos.

Ejercicio 5.2.10 Verificar la siguiente relación

$$\chi_{\bigcup_{i=1}^{\infty} A_i} = \sum_{i=1}^{\infty} \chi_{A_i}.$$

Luego por la intercambiabilidad entre integral y series de términos positivos

$$\mu_f\left(\bigcup_{i=1}^{\infty} A_i\right) = \int_{\bigcup_{i=1}^{\infty} A_i} f(x)dx = \int \chi_{\bigcup_{i=1}^{\infty} A_i} f(x)dx$$
$$= \int \sum_{i=1}^{\infty} \chi_{A_i} dx = \sum_{i=1}^{\infty} \int \chi_{A_i} dx = \sum_{i=1}^{\infty} \mu_f(A_i).$$

Ejercicio 5.2.11 (Delta de dirac) Sea X un conjunto no vacío cualquiera, $a \in X$ un punto fijo y $\mathscr{A} = \mathcal{P}(X)$. Definimos $\delta_a : \mathscr{A} \to [0, +\infty]$ por

$$\delta_a(A) = \left\{ \begin{array}{ll} 1 & \text{ si } a \in A \\ 0 & \text{ si } a \not\in A \end{array} \right.$$

Demostrar que (X, \mathscr{A}, δ) es un espacio de medida. La medida δ_a se denomina δ de Dirac.

Definición 5.2.5 (Completitud de medidas) Un espacio de medida se llama *completo* si $A\subset B\in\mathscr{A}$ y $\mu(B)=0$ implican $A\in\mathscr{A}$.

Ejemplo 5.2.2 $(\mathbb{R}, \mathcal{M}, m)$ es un espacio de medida completo, mientras que $(\mathbb{R}, \mathcal{B}, m)$ no lo es.

5.3 Medida exterior

Definición 5.3.6 (Medida exterior) Sea X un conjunto no vacío. Una función μ^* : $\mathcal{P}(X) \to [0, +\infty]$ se denomina una *medida exterior* si satisface que $\mu^*(\emptyset) = 0$.

Monotonía. $A_1 \subset A_2 \Rightarrow \mu^*(A_1) < \mu^*(A_2)$

$$\sigma$$
-subaditividad. $A_j \subset X$, $j=1,2,\ldots$, $\Rightarrow \mu^\star\left(\bigcup_{j=1}^\infty A_j\right) \leq \sum_{j=1}^\infty \mu^\star(A_j)$.

Ejemplo 5.3.3 La medida exterior que definimos sobre subconjuntos de \mathbb{R} es obviamente una medida exterior en el sentido de la definición anterior.

Paul Adrien Maurice Dirac, (Brístol, Reino Unido, 8 de agosto de 1902-Tallahassee, Estados Unidos, 20 de octubre de 1984) fue un ingeniero eléctrico, matemático y físico teórico británico que contribuyó de forma fundamental al desarrollo de la mecánica cuántica y la electrodinámica cuántica. **Ejercicio 5.3.12** La condición de σ -subaditividad de la medida exterior fue formulada para uniones de una cantidad numerable de conjuntos, demostrar que vale para una unión en cantidad finita.

Definición 5.3.7 (Conjuntos medibles de Carathéodory) Sea μ^{\star} una medida exterior sobre X y $E\subset X$. Diremos que E es *medible en el sentido de Charathéodory* si para todo $A\subset X$ se cumple que

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A - E).$$
 (5.1)

Observacion 5.3.1 A los efectos de chequear si un conjunto es medible es suficiente probar que se satisface la desigualdad

$$\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A - E).$$
 (5.2)

para todo A con medida exterior finita.

Teorema 5.3.1 Si μ^\star es una medida exterior sobre X y $\mathscr A$ el conjunto de todos los subconjuntos de X que son medibles según Carathéodory. Entonces $\mathscr A$ es una σ -álgebra y μ^\star restringido a $\mathscr A$ es una medida. El espacio de medida $(X,\mathscr A,\mu^\star)$ es completo

Dem. Que $\emptyset \in \mathscr{A}$ es una afirmación inmediata.

Si uno escribe la condición de Carathéodory para E^c queda exactamente igual que la respectiva condición para E. Esta observación justifica que $E \in \mathscr{A}$ implica que $E^c \in \mathscr{A}$

Sean $E-1, E_2 \in \mathscr{A}$ y $A \subset X$. Entonces

$$\mu^{\star}(A) \ge \mu^{\star}(A \cap E_2) + \mu^{\star}(A \cap E_2^c)$$

$$\ge \mu^{\star}(A \cap E_1 \cap E_2) + \mu^{\star}(A \cap E_2 \cap E_1^c)$$

$$+ \mu^{\star}(A \cap E_2^c \cap E_1) + \mu^{\star}(A \cap E_2^c \cap E_1^c)$$

Ahora los conjuntos $E_2\cap E_1$, $E_2\cap E_1^c$ y $E_1\cap E_2^c$ son mutuamente disjuntos y su unión es $E_1\cup E_2$. Esta observación aplicada a los tres primeros términos del último miembro de la desigualdad probada en el párrafo anterior resulta en

$$\mu^*(A) \ge \mu^*(A \cap (E_1 \cup E_2)) + \mu^*(A \cap (E_1 \cup E_2)^c).$$

De esta desiguldad concluímos que $E_2 \cup E_2 \in \mathscr{A}$. Esto a su vez implica que \mathscr{A} es (al menos) un álgebra. Queremos ver que en realidad es σ -álgebra.

Supongamos que $E_1 \cap E_2 = \emptyset$. Tomando $A = E_1 \cup E_2$ en (5.2) obtenemos

$$\mu^*(E_1 \cup E_2) \ge \mu^*(E_1) + \mu^*(E_2).$$

Ejercicio 5.3.13 Generalizar la desigualdad anterior de la siguiente forma. Si E_j , $j=1,\ldots,n$ son mutuamente disjuntos entonces

$$\mu^*(E_1 \cup \cdots \cup E_2) \ge \mu^*(E_1) + \cdots + \mu^*(E_n).$$

Siguiendo con la demostración, sean $E_n\in\mathscr{A}$, $n=1,2,\ldots$ una colección numerables de conjuntos mutuamente disjuntos en \mathscr{A} . Tomemos $G_n=\bigcup_{j=1}^n E_j$ y $G=\bigcup_{j=1}^\infty E_j$.

Como \mathscr{A} es un álgebra, $G_n \in \mathscr{A}$. Además usando sucesivamente la condición de Carathéodory

$$\mu^{\star}(G_{n} \cap A) \geq \mu^{\star}(G_{n} \cap A \cap E_{n}) + \mu^{\star}(G_{n} \cap A \cap E_{n}^{c})$$

$$= \mu^{\star}(A \cap E_{n}) + \mu^{\star}(G_{n-1} \cap A)$$

$$\geq \mu^{\star}(A \cap E_{n}) + \mu^{\star}(A \cap E_{n-1}) + \mu^{\star}(G_{n-2} \cap A)$$

$$\vdots$$

$$\geq \sum_{j=1}^{n} \mu^{\star}(A \cap E_{j}).$$
(5.3)

Ahora deducimos que para todo $A \subset X$

$$\mu^{\star}(A) \geq \mu^{\star}(A \cap G_n) + \mu^{\star}(A \cap G_n^c) \qquad (G_n \in \mathscr{A})$$

$$\geq \sum_{j=1}^n \mu^{\star}(A \cap E_j) + \mu^{\star}(A \cap G^c) \qquad (\text{Ecuación (5.3)}, G_n \subset G)$$

Tomando límite cuando $n \to \infty$

$$\begin{split} \mu^{\star}(A) & \geq \sum_{j=1}^{\infty} \mu^{\star}(A \cap E_{j}) + \mu^{\star}(A \cap G^{c}) \\ & \geq \mu^{\star} \left(A \cap \bigcup_{j=1}^{\infty} E_{j} \right) + \mu^{\star}(A \cap G^{c}) \qquad (\sigma - \text{subaditividad de } \mu^{\star}) \\ & \geq \mu^{\star} \left(A \cap G \right) + \mu^{\star}(A \cap G^{c}) \end{split}$$

Luego $G \in \mathscr{A}$. Ahora el Ejercicio 5.1.5 implican que \mathscr{A} es σ -álgebra. Además por el Ejercio5.3.13, para E_j , $j=1,\ldots$ mutuamente disjuntos en \mathscr{A} .

$$\mu^{\star}\left(\bigcup_{j=1}^{\infty}E_{j}\right)\geq\mu^{\star}\left(\bigcup_{j=1}^{n}E_{j}\right) \tag{monotonía de }\mu^{\star})$$

$$=\sum_{j=1}^{n}\mu^{\star}\left(E_{j}\right) \tag{Ejercicio 5.1.5}$$

Tomando límite cuando $n \to \infty$ obtenemos

$$\mu^{\star} \left(\bigcup_{j=1}^{\infty} E_j \right) \ge \sum_{j=1}^{\infty} \mu^{\star} \left(E_j \right)$$

Como la desigualdad inversa a la anterior es siempre cierta por la σ -subaditividad queda demostrado que μ^* es medida sobre $\mathscr A$ y finalizada la demostración del teorema. \square

5.4 Premedidas

Definición 5.4.8 (Premedida) Sea X un cojunto no vacío y \mathscr{A}_0 un álgebra de subconjuntos de X. Diremos que una función $\mu_0:\mathscr{A}_0\to[0,+\infty]$ es una **premedida** si satisface que

 \blacksquare Si $E_j\in\mathscr{A}_0$, $j=1,2,\ldots$ son mutuamente disjuntos y $\bigcup_{j=1}^\infty E_j\in\mathscr{A}_0$ entonces

$$\mu_0 \left(\bigcup_{j=1}^{\infty} E_j \right) = \sum_{j=1}^{\infty} \mu_0 \left(E_j \right)$$

Podemos construir medidas a partir de premedidas.

Lema 5.4.1 Sea μ_0 una premedida sobre el álgebra \mathscr{A}_0 de subconjuntos de X. Definimos $\mu^\star:\mathcal{P}(X)\to[0,+\infty]$ por

$$\mu^{\star}(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu_0(E_j) \mid E \subset \bigcup_{j=1}^{\infty} E_j, E_j \in \mathcal{A}_0 \right\} \tag{5.4}$$

Entonces μ^* es una medida exterior que satisface que $\mu^*(E) = \mu_0(E)$ para todo $E \in \mathcal{A}_0$ y que todo conjunto $E \in \mathcal{A}_0$ es medible en el sentido de Carathéodory.

Dem.

Ejercicio 5.4.14 Probar que μ^* definida en (5.4) define en efecto una medida exterior.

Teorema 5.4.2 (Extensión premedidas) Sea μ_0 una premedida sobre el álgebra \mathscr{A}_0 de subconjuntos de X. Entonces existe una extensión μ de μ_0 a la σ -algebra \mathscr{A} generada por \mathscr{A}_0 .

5.5 Medidas σ -finitas

Definición 5.5.9 Un espacio de medida (X, \mathcal{A}, μ) se llama σ -finita si existen conjuntos medibles E_n , $n=1,\ldots$, de medida finita tales que $X=\bigcup_{n=1}^\infty E_n$.

Ejercicio 5.5.15 Demostrar que la medida de Lebesgue sobre \mathbb{R} es σ -finita. Demotrar que la medida de conteo del ejercicio 5.2.8 es σ -finita si y sólo si X es a lo sumo numerable.

5.6 Integración en espacio de medida

Definición 5.6.10 (Funciones medibles) Sea (X, \mathcal{A}, μ) un espacio de medida. Una función $f: X \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ se llama *medible* si para todo $a \in \mathbb{R}$

$$f^{-1}([-\infty, a)) = \{x \in X \mid f(x) < a\}.$$

La mayoría de los resultados y definiciones establecidos en el contexto de la medida de Lebesgue en $\mathbb R$ se extienden si cambios al contexto de medidas abstractas. Enumeremos los más importantes.

- El concepto de propiedad válida en casi todo punto.
- Funciones simples. son funciones de la forma

$$\phi(x) = \sum_{k=1}^{n} a_k \chi_{E_k},$$

 $\operatorname{\mathsf{con}} a_k \in \mathbb{R} \ \mathsf{y} \ E_k \in \mathcal{A}$, $k = 1, \dots, n$.

Ejercicio 5.6.16 Demostrar que si $f:X \to \overline{\mathbb{R}}$ es medibles entonces si

- Integral de funciones medibles no-negativas.
- Teorema de Beppo-Levi.
- Lema Fatou.
- Teorema de la convergencia mayorada de Lebesgue

5.7 Medidas producto

Hemos sido capaces de definir una medida sobre subconjuntos de $\mathbb R$ que posee las propiedades que a priori queríamos que tuviese, particularmente la invariancia por traslaciones y tal que $\mu([0,1])=1$. El conjunto $\mathbb R$ es importante pues es el modelo del espacio euclideano unidimensional. Pero tan naturales como este conjunto son los espacios euclideanos n-dimensionales $\mathbb R^n$, sobre los cuales no tenemos definidas medidas, más que aquella definida en el ejemplo 5.2.8. En estos espacios es util tener una medida invariante por traslaciones y tal que $\mu([0,1]^n)=1$. Vamos a construit tales medidas en esta sección. Como $\mathbb R^n$ es elproducto cartesiano de n copias de $\mathbb R$, seremos capaces de construir una medida allí si somo capaces de construir medidas sobre productos cartesianos de espacios de medidas.

Definición 5.7.11 (Rectángulos medibles) Dados dos espacios de medida $(X_i, \mathscr{A}_i, \mu_i)$, i=1,2, un *rectángulo medible* es un conjunto de la forma $R=A_1\times A_2$, con $A_i\in \mathscr{A}_i$, i=1,2. Sea \mathscr{A}_0 la colección de todos los conjuntos que se pueden expresar como unión de una cantidad finita de restángulos medibles.

Ejercicio 5.7.17 Demostrar que \mathcal{A}_0 es una álgebra.

Definición 5.7.12 Si $A \times B$ es un rectángulo medible definimos

$$\mu_0(A \times B) = \mu_1(A)\mu_2(B).$$

Ejercicio 5.7.18 Supongamos que $A \times B$ es un rectángulo medible que es unión disjunta $\bigcup_{j=1}^{\infty} A_j \times B_j$ de otros rectángulos medibles $A_j \times B_j$, $j=1,\ldots$ Demostrar que

$$\chi_A \chi_B = \sum_{j=1}^{\infty} \chi_{A_j} \chi_{B_j} \tag{5.5}$$

Proposición 5.7.2 Supongamos que $A \times B$ es un rectángulo medible que es unión disjunta $\bigcup_{j=1}^{\infty} A_j \times B_j$ de otros rectángulos medibles $A_j \times B_j$, $j=1,\ldots$ Entonces

$$\mu_0(A \times B) = \sum_{j=1}^{\infty} \mu_0(A_j \times B_j). \tag{5.6}$$

Definición 5.7.13 Si $C\in\mathscr{A}_0$ con $C=\bigcup_{j=1}^nA_j\times B_j$, $A_j\times B_j=\emptyset$, si $i\neq j$, definimos

$$\mu_0(C) = \sum_{j=1}^n \mu_0(A_j \times B_j)$$

Proposición 5.7.3(Buena definición) La función μ_0 esta bien definida, i.e. si C admite dos representaciones distintas $C = \bigcup_{j=1}^n A_j \times B_j = \bigcup_{j=1}^n A_j' \times B_j'$ como unión de rectángulos medibles mutuamente disjuntos entonces

$$\sum_{j=1}^{n} \mu_0(A_j \times B_j) = \sum_{j=1}^{n} \mu_0(A'_j \times B'_j)$$

Proposición 5.7.4 La función μ_0 es una premedida para el algebra \mathscr{A}_0 .

Apéndice

5.8 Topología

Teorema 5.8.3 (Principio de encaje de intervalos) Sea $I_n=[a_n,b_n]\subset\mathbb{R}$ una sucessión de intervalos con las siguientes propiedades

- 1. $\forall n \in \mathbb{N} : I_n \subset I_{n+1}$,
- $2. \ \lim_{n \to \infty} (b_n a_n) = 0.$

Entonces $\bigcap_{n=1}^{\infty} I_n$ consiste de uno, y solo un, punto $x \in \mathbb{R}$.

Demostración.

Teorema 5.8.4 (Heine-Borel) Toda sucesión acotada de $\mathbb R$ tiene una subsucesión convergente.

Demostración. Uso encajes de intervalos.

Definición 5.8.14 (Continuidad uniforme) Sea $f:A\subset\mathbb{R}\to\mathbb{R}$ una función. Diremos que f es uniformemente continua si

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x,y \in A: |x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$

Ejemplo 5.8.4 arios ilustrando diferencia con continuidad

Teorema 5.8.5 Sea $f:[a,b] \to \mathbb{R}$ continua. Entonces f es uniformemente continua.

Demostración. Uso Heine-Borel □

BIBLIOGRAFÍA 83

Bibliografía

- [Abbott, 2002] Abbott, S. (2002). *Understanding Analysis*. Undergraduate Texts in Mathematics. Springer New York.
- [Acinas, 2019] Acinas, S. y Mazzone, F. (2019). Introducción al análisis matemático. En preparación, no publicado.
- [Bartle, 2014] Bartle, R. (2014). The Elements of Integration and Lebesgue Measure. Wiley Classics Library. Wiley.
- [Bressoud, 2007] Bressoud, D. (2007). A Radical Approach to Real Analysis. Classroom Resource Materials. Mathematical Association of America.
- [Bressoud, 2008] Bressoud, D. (2008). A Radical Approach to Lebesgue's Theory of Integration. Classroom resource materials. Cambridge University Press.
- [Fava and Zo, 1996] Fava, N. and Zo, F. (1996). *Medida e integral de Lebesgue*. Colección Textos Universitarios. Instituto Argentino de Matemática.
- [Hairer and Wanner, 2008] Hairer, E. and Wanner, G. (2008). *Analysis by Its History*. Undergraduate Texts in Mathematics. Springer New York.
- [Hawkins, 2001] Hawkins, T. (2001). Lebesgue's Theory of Integration: Its Origins and Development: Its Origins and Development. Ams Chelsea Publishing Series. American Mathematical Society.
- [Jones, 2001] Jones, F. (2001). Lebesgue Integration on Euclidean Space. Jones and Bartlett books in mathematics. Jones and Bartlett.
- [Ovchinnikov, 2014] Ovchinnikov, S. (2014). *Measure, Integral, Derivative: A Course on Lebesgue's Theory.* Universitext. Springer New York.
- [Stein and Shakarchi, 2009] Stein, E. and Shakarchi, R. (2009). *Real Analysis: Measure Theory, Integration, and Hilbert Spaces*. Princeton University Press.
- [Stillwell, 2013] Stillwell, J. (2013). *The Real Numbers: An Introduction to Set Theory and Analysis*. Undergraduate Texts in Mathematics. Springer International Publishing.
- [Tao, 2011] Tao, T. (2011). An Introduction to Measure Theory. Graduate studies in mathematics. American Mathematical Society.

Indice Conceptos

Indice de Personas

Berstein, Felix, 15 Borel, 82

Cantor, George, 2 Carathéodory, 77 Cohen, 17 Cohen, Paul, 17

Dedekind, Richard, 4 Dirac, 76 Fraenkel, Adolf , 17 Frechet, 24, 73 Frege, Friedrich Ludwig Gottlob , 4

Gödel, Kurt, 17 Galilei, Galileo, 5

Heine, 82 Hermite, 12 Hilbert, David, 2

Lindemann, 12 Liouville, Carl Louis Ferdinand von , 12

Schröder, Ernst, 15

Zermelo, Ernst, 17

Indice Símbolos

(a, b), 2
A-B, 2
$A \triangle B$, 2
$A \cap B$. 2

$$A \cup B$$
, 2
 $A \sim B$, 5
 A^c , 2
 B^A , 3

$$loph_0$$
, 17 $\bigcap_{i\in I}A_i$, 4 $\bigcup_{i\in I}A_i$, 4 $f:A\longrightarrow B$, 3