```
irror_mod.use_x = False
irror_mod.use_y = True
lrror_mod.use_z = False
operation == "MIRROR 7"
     ob.select= 1
```

. ic not be

Team TEMB

Bioinformatics track

X mirror to the selected ject.mirror_mirror_x"

int("please select exaction

-- OPERATOR CLASSES ----

TOT_MOD.mirror_object

peration == "MIRROR_X": irror_mod.use_x = True "Irror_mod.use_y = False irror_mod.use_z = False _operation == "MIRROR_Y"

object to mirror

WHO ARE WE?

Team TEMB

- Thomas Koefoed (Danish, BSc. Mol. Biomedicine)
- Ella Hedeboe (Danish, Mol. BSc. Biomedicine)
- Maria Matorra (Spanish, BSc. Genetics)
- Brede Sørland (Norwegian, BSc. Bioinformatics)

4 students from University of Copenhagen, studying a Master's degree in Bioinformatics ©

OUR APPROACH

DATA EXPLORATION INVESTIGATION SHOWS MISSING EXPECTED CORRELATIONS

Investigation

Average number of diagnoses per patient in each age group

Expectation

Strong positive correlation

Observation

No correlation

What about the real, un-synthesized?

DATA EXPLORATION INVESTIGATION SHOWS MISSING EXPECTED CORRELATIONS

Investigation

Average number of diagnoses per patient in each age group

Expectation

Strong positive correlation

Observation

No correlation

What about the real, un-synthesized?

SYNTHETIC VS. REAL DATA SET CORRELATION MATRIX OF VARIABLES

SYNTHETIC VS. REAL DATA SET CORRELATION MATRIX OF VARIABLES

SYNTHETIC VS. REAL DATA SET

PREDICTING TIME IN HOSPITAL USING LINEAR REGRESSION

Synthetic, $R^2 = 0.003$

Standardized variables	Weight
Age	-0.02
# lab procedures	0.02
# procedures	0.07
# medications	0.05
# out-patient visits	0.04
# emergency visits	0.04
# in-patient visits	0.13
# diagnoses	0.006
Intercept	4.03

Real, $R^2 = 0.27$

Standardized variables	Weight
Age	0.22
# lab procedures	0.60
# procedures	0.10
# medications	1.12
# out-patient visits	-0.11
# emergency visits	-0.06
# in-patient visits	0.15
# diagnoses	0.22
Intercept	4.42

CONCLUSION

- Synthetic data is a very useful approach, but important signals may be lost
- Quality must be investigated thoroughly before building predictive models

IDEAS FOR FUTURE WORK

- Use linear regression with more, non-numerical variables relevant for diabetes
- Use logistic regression instead of linear regression to predict future re-admission

THANKS TO THE ORGANIZERS FOR HOSTING THIS EVENT!

