Vorbesprechung: 2013

Aufgabe 1

- (a) P(genau 200 Unfälle)=
 - > dpois(x=200, lambda=200)
 - [1] 0.02819773
- (b) $P(\text{h\"{o}chstens 210 Unf\"{a}lle}) =$
 - > ppois(q=210, lambda=200)
 - [1] 0.772708
- (c) P(zwischen 190 und 210 Unfälle) =
 - > ppois(q=210, lambda=200) ppois(q=189, lambda=200)
 - [1] 0.5422097

Aufgabe 2

Da $X \sim \text{Poisson}(\lambda)$ mit $\lambda = 2$ gilt: $P(X = x) = \exp(-2)\frac{2^x}{x!}$

(a)
$$P(X = 0) = \exp(-2)\frac{2^0}{0!} = \exp(-2)\frac{1}{1} \approx 0.135$$

 (\mathbf{b})

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$
$$= 0.135 + 0.271 + 0.271 + 0.180$$
$$\approx 0.857$$

- (c) $P(X > 3) = 1 P(X \le 3) = 1 0.857 \approx 0.143$
- (d) Nach Kapitel 3.7.2 folgt: $Y \sim \text{Poisson}(6 \cdot \lambda) = \text{Poisson}(12)$

Aufgabe 3

Es gilt: $X_1 \sim \text{Bin}(n_1, \pi)$ und $X_2 \sim \text{Bin}(n_2, \pi)$; X_1 und X_2 sind unabhängig.

(a) Da X_1 und X_2 unabhängig sind, gilt:

$$P(X_1 = x_1 \cap X_2 = x_2) = P(X_1 = x_1) \cdot P(X_2 = x_2) ,$$
wobei $P(X_1 = x_1) = \binom{n_1}{x_1} \pi^{x_1} (1 - \pi)^{n_1 - x_1}$ und $P(X_2 = x_2) = \binom{n_2}{x_2} \pi^{x_2} (1 - \pi)^{n_2 - x_2} .$

(b)

$$\log(P(X_1 = x_1 \cap X_2 = x_2)) = \log(P(X_1 = x_1) \cdot P(X_2 = x_2))$$

$$= \log(P(X_1 = x_1)) + \log(P(X_2 = x_2))$$

$$= \log\left(\binom{n_1}{x_1}(1 - \pi)^{n_1 - x_1}\right) + \log\left(\binom{n_2}{x_2}\pi^{x_2}(1 - \pi)^{n_2 - x_2}\right)$$

$$= \log\left(\binom{n_1}{x_1}\right) + x_1 \cdot \log(\pi) + (n_1 - x_1) \cdot \log(1 - \pi)$$

$$+ \log\left(\binom{n_2}{x_2}\right) + x_2 \cdot \log(\pi) + (n_2 - x_2) \cdot \log(1 - \pi).$$

 (\mathbf{c})

$$\frac{\mathrm{d}}{\mathrm{d}\pi} \left\{ \log \left(\binom{n_1}{x_1} \right) + x_1 \cdot \log(\pi) + (n_1 - x_1) \cdot \log(1 - \pi) \right. \\
+ \log \left(\binom{n_2}{x_2} \right) + x_2 \cdot \log(\pi) + (n_2 - x_2) \cdot \log(1 - \pi) \right\} \\
= \frac{x_1}{\pi} - (n_1 - x_1) \cdot \frac{1}{1 - \pi} + \frac{x_2}{\pi} - (n_2 - x_2) \cdot \frac{1}{1 - \pi} \\
= \frac{x_1 + x_2}{\pi} - \frac{((n_1 + n_2) - (x_1 + x_2))}{1 - \pi} .$$

Wenn wir diesen Ausdruck gleich Null setzen und nach π auflösen, erhalten wir:

$$\pi = \frac{x_1 + x_2}{n_1 + n_2} \, .$$

Das Ergebnis ist also identisch mit dem Ergebnis, das wir erhalten hätten, wenn eine Person 30 + 50 = 80 Lose gezogen hätte und dabei 2 + 4 = 6 Gewinne gezogen hätte (da $X_1 + X_2 \sim \text{Bin}(n_1 + n_2, \pi)$).

Das hier gesehene Prinzip, einen Parameter zu schätzen, indem man mehrere unabhängige Beobachtungen kombiniert, ist die mit Abstand häufigste Schätzmethode in der Statistik.

Aufgabe 4

(a)
$$P(X=2) = \binom{10}{2} 0.3^2 0.7^8 = 0.23$$

$$P(X \le 2) = P(X=0) + P(x=1) + P(X=2) = 0.7^{10} + \binom{10}{1} 0.3^1 0.7^9 + \binom{10}{2} 0.3^2 0.7^8 = 0.38$$

- (b) 1. Modell: X ist die Anzahl erfolgreich behandelter Patienten, $X \sim \text{Bin}(10, \pi)$.
 - **2.** Die Nullhypothese ist $H_0: \pi = 0.3$, die Alternative ist $H_A: \pi > 0.3$.
 - **3.** Die Teststatistik ist $T: P(T=t|H_0) = \binom{10}{t} 0.3^t 0.7^{10-t}$
 - 4. Das Signifikanzniveau ist $\alpha = 0.05$.
 - **5.** Verwerfungsbereich:

Daher ist der Verwerfungsbereich $K = \{6, 7, 8, 9, 10\}.$

- **6.** Testentscheid: Da $4 \notin K$ wird H_0 nicht verworfen. Eine erhöhte Wirksamkeit des neuen Medikaments kann nicht nachgewiesen werden.
- (c) Die Macht eines Tests ist die Wahrscheinlichkeit, dass die Nullhypothese verworfen wird, wenn die Alternative stimmt: $P(T \in K|H_A)$. (Alternativ: Macht = $1-P(\text{Fehler 2. Art}) = 1-P(T \notin K|H_A)$)

Im konkreten Fall:

Macht =
$$\binom{10}{6} 0.6^6 0.4^4 + \binom{10}{7} 0.6^7 0.4^3 + \binom{10}{8} 0.6^8 0.4^2 + \binom{10}{9} 0.6^9 0.4 + 0.6^1 0 = 0.6331$$
.

Aufgabe 5

- 1. Modell: X: Anzahl defekter Reagenzgläser in einer Stichprobe aus 50 Reagenzgläsern. $X \sim \text{Bin}(50, \pi)$.
- 2. Nullhypothese: H_0 : $\pi = 0.1$ Alternative: H_A : $\pi < 0.1$
- 3. Teststatistik: T: Anzahl defekter Reagenzgläser in einer Stichprobe aus 50 Reagenzgläsern.

Verteilung der Teststatistik unter $H_0: T \sim \text{Bin}(50, 0.1)$

4. Signifikanzniveau: $\alpha = 0.05$

5. Verwerfungsbereich: Falls H_0 stimmt, gilt:

$$P(T=0) = 0.0052$$
 $P(T \le 0) = 0.0052$ $P(T=1) = 0.0286$ $P(T \le 1) = 0.0338$ $P(T=2) = 0.0779$ $P(T \le 2) = 0.1117$

Der Verwerfungsbereich K für ein Signifikanzniveau von 5% ist also gegeben durch $K = \{0, 1\}.$

6. Testentscheid: Der beobachtete Wert der Teststatistik ist t=3. Der beobachtete Wert der Teststatistik (t=3) liegt nicht im Verwerfungsbereich der Teststatistik (t=3). Die Nullhypothese kann daher auf dem 5% Signifikanzniveau nicht verworfen werden. Es kann also durchaus sein, dass der Anteil minderwertiger Gläser in der ganzen Lieferung 10% ist. Der Hersteller sollte also seine Lieferung nicht losschicken, sondern genauer untersuchen.

Aufgabe 6

(a) Wir müssen $P[X \le 1]$ berechnen im Falle von $\pi = 0.075$.

> pbinom(1,50,0.075)

[1] 0.1025006

Wenn die Lieferung also nur 7.5% defekte Gläser enthält, so können wir dies mit unserem Test (mit 50 Proben) nur in ca. 10% der Fälle nachweisen!

(b) Mit $\mathbf{pbinom(0:50, 150, 0.1)}$ sehen wir, dass der Verwerfungsbereich $K = \{T \leq 8\}$ ist. Wir erhalten

> pbinom(8,150,0.075)

[1] 0.2000952

Dank der grösseren Stichprobe ist auch die Macht grösser geworden.