Parallel Multi-objective Optimization on CPU Using Information Framework for Constructing Global Optimization Algorithms

Vladislav V. Sovrasov

State University of Nizhny Novgorod, Nizhny Novgorod, Russia sovrasov.vlad@gmail.com

Аbstract. В данной работе рассматривается параллельный алгоритм многокритериальной оптимизации. Рассматриваемый подход основан на применении информационно-статистического алгоритма к некоторой редуцированной однокритериальной задаче, множество глобальных оптимумов в которой совпадает с множеством слабоэффективных решений в исходной многокритериальной задаче. Последовательная версия данного метода была рассмотрена ранее. В данной работе к последовательному алгоритму многокритариальной оптимизации применяется схема распараллеливания по характеристикам, общая для всех информационно-статистических алгоритмов глобальной оптимизации. Также в работе впервые для многокритериального метода рассматривается одна из техник учёта локальных свойств оптимизируемой функции, позволяющая существенно ускорить сходимость.

Keywords: deterministi global optimization, multi-objective optimization, parallel numerical methods, derivative-free algorithms

1 Introduction

2 Problem Statement and Dimension Reduction

Задача многокритериальной оптимизации ставится следующим образом:

$$\min\{f(y): y \in D\}, D = \{y \in \mathbb{R}^n : a_i \leqslant y_i \leqslant b_i, i = \overline{1, n}\}$$
 (1)

Будем считать, что компоненты вектор-функции (частные критерии) $f_i(y), 1 \le i \le m$, удовлетоворяют в D условию Липшица с константами L_i :

$$|f_i(y_1) - f_i(y_2)| \le L_i ||y_1 - y_2||, y_1, y_2 \in D, 0 < L_i < \infty, i = \overline{1, m}$$

As the solution to the problem (1) usually accepted the set $S(D) \in D$ of strictly non-dominated points from the range of search, i. e.,

$$S(D) = \{ y \in D : \nexists z \in D, f_i(z) < f_i(y), 1 \leqslant i \leqslant m \}$$

$$(2)$$

which is usually referred as the set of semi-effective (or weakly effective) solutions. The conditions in the right-hand side of the definition (2) are known as the principle of weak Pareto-optimality (or Slater's optimality principle).

The use of the evolvents y(x) i.e. the curves filling the space are a classic dimension-reduction scheme for global optimization algorithms [?].

$${y \in R^N : -2^{-1} \leqslant y_i \leqslant 2^{-1}, 1 \leqslant i \leqslant N} = {y(x) : 0 \leqslant x \leqslant 1}$$

Such a mapping allows the reduction of a problem (1) stated in a multidimensional space to solving a one-dimensional problem at the expense of worsening its properties. In particular, the one-dimensional functions $f_i(y(x))$ are not Lipschitzian but a Hölderian functions:

$$|f_i(y(x_1)) - f_i(y(x_2))| \le H_i |x_1 - x_2|^{\frac{1}{N}}, x_1, x_2 \in [0, 1]$$
 (3)

where the Hölder constants H_i are related to the Lipschitz constant L_i by the relation

$$H_i = 4L_i d\sqrt{N}, d = \max\{b_i - a_i : 1 \leqslant i \leqslant n\}$$

Therefore, not limiting the generality, one can consider the solving of the one-dimensional problem $\min\{f(y(x)):x\in[0;1]\}$, satisfying Hölder condition. The issues of numerically building the mapping like a Peano curve and the corresponding theory have been considered in detail in [?]. Here we would note that an evolvent built numerically is an approximation to the theoretical Peano curve with a precision of the order 2^{-m} where m is the building parameter of the evolvent.

3 Description of the Parallel Algorithm With Local Refinement

Рассмотрим схему скаляризации редуцированной задачи (1), представленную в []. Пусть

$$\varphi(x) = \max\{h(x,y) : y \in [0;1]\}, x \in [0;1]. \tag{4}$$

Рассмотрим скалярную задачу

$$\varphi^* = \min\{\varphi(x) : x \in [0; 1]\}. \tag{5}$$

Как показано в [], множество слабо-эффективных решений редуцированной задачи (1) совпадает множеством глобально оптимальных решений задачи (5), т.е.

$$S([0;1]) = \{x \in [0;1] : \varphi(x) = \varphi^*\}$$
(6)

Также в [] показано, что функция $\varphi(x)$ удовлетворяет условию Гёльдера при выполнении требований (??). Таким образом, к функции $\varphi(x)$ можно применить информационно-статистический алгоритм глобального поиска, чтобы решить задачу (5). Однако, $\varphi(x)$ задаётся через оператор $\max\{...\}$, поэтому непосредственно вычислить её затруднительно. В [] приведена модификация

классического информационно-статистического алгоритма [], в которой значения $\varphi(x)$ вычисляются приближённо. Далее приведём модифициованную версию указанного алгоритма. Модификация заключается в использовании техники local refinement, описанной в [], а также в распараллеливании по характеристикам [].

Первые две итерации производятся в концевых точках $x^0=0$ и $x^1=1$ интервала [0;1]. Выбор точек $x^{k+j}, 1\leqslant j\leqslant p$ осуществляется по правилам:

Step 1. Renumber the points in the set $X_k = \{x^1, \dots, x^k\} \cup \{0\} \cup \{1\}$, which includes the boundary points of the interval [0,1] as well as the points of preceding trials, by the lower indices in order of increasing coordinate values i.e.

$$0 = x_0 < x_1 < \ldots < x_{k+1} = 1$$

Step 2. Compute the values

$$\mu_{\nu} = \max_{1 \leqslant i \leqslant k} \frac{|f_{\nu}(x_i) - f_{\nu}(x_{i-1})|}{\Delta_i}, 1 \leqslant \nu \leqslant m$$
 (7)

Step 3. Каждой точке x_i , $0 \le i \le k$, сопоставить значение

$$z_i = \max\{h(x_i, x_j) : 0 \leqslant j \leqslant k\},\tag{8}$$

где

$$h(x_i, x_j) = \min\{\frac{f_{\nu}(x_i) - f_{\nu}(x_j)}{\mu_{\nu}} : 1 \leqslant \nu \leqslant m\}, 0 \leqslant i, j \leqslant k$$
 (9)

Step 4. Для каждого интервала $(x_i, x_{i-1}), 1 \le i \le k$ вычислить величины

$$R(i) = \Delta_i + \frac{(z_i - z_{i-1})^2}{r^2 \Delta_i} - \frac{z_i + z_{i-1}}{2r}$$
 (10)

$$R^*(i) = \frac{R(i)}{\sqrt{(z_i - z^*)(z_{i-1} - z^*)} + 1.5^{-\alpha}},$$
(11)

называемые характеристиками. При этом $\Delta_i = (x_i - x_{i-1})^{\frac{1}{N}}, z^* = \min\{z_i : 1 \leq i \leq k\}, \text{ а } r > 1$ и $\alpha \in [10;30]$ — параметры метода.

Step 5. Если $q \neq 0$ и $s \mod q \neq 0$, то характеристики R(i), $1 \leqslant i \leqslant k+1$, упорядочить в порядке убывания

$$R(t_1) \geqslant R(t_2) \geqslant \cdots \geqslant R(t_k) \geqslant R(t_{k+1})$$

и выбрать p наибольших характеристик с номерами интервалов t_j , $1 \le j \le p$. Иначе то же самое сделать с характеристиками $R^*(i)$, $1 \le i \le k+1$. Здесь s — номер текущей итерации. q — параметр метода, отвечающий за степень интенсивности локального уточнения. Чем меньше q, тем чаще используются характеристики R^* , заставляющие метод выбирать следующие точки вблизи текущего найденного минимума.

Step 6. Провести новые испытания в точках x^{k+j} , $1 \le j \le p$:

$$x^{k+j} = \frac{x_{t_j} + x_{t_j-1}}{2} - \operatorname{sign}(z_{t_j} - z_{t_j-1}) \frac{|z_{t_j} - z_{t_j-1}|^n}{2r}$$
 (12)

Все p испытаний на этом шаге могут быть произведены параллельно на p вычислительных устройствах.

The algorithm is terminated if the condition $\Delta_{t_j} \leq \varepsilon$ is fulfilled at least for one of the numbers t_j , $1 \leq j \leq p$; here $\varepsilon > 0$ is the predefined accuracy. After the search is terminated, the set $S(\{x^0, \ldots, x^k\})$ of all non-dominated points of the truncated sequence $\{x^0, \ldots, x^k\}$ is accepted as an estimation for S from (6).

The theoretical substantiation of this method when p=1 and q=0 is presented in []. Siffitient condition of convergence is: exists an iteration such that $r\mu_{\nu} \geqslant 4H_{\nu}, 1 \leqslant \nu \leqslant m$.

4 Experimental Results

5 Conclusion

References

- Clarke, F., Ekeland, I.: Nonlinear oscillations and boundary-value problems for Hamiltonian systems. Arch. Rat. Mech. Anal. 78, 315-333 (1982)
- Clarke, F., Ekeland, I.: Solutions périodiques, du période donnée, des équations hamiltoniennes. Note CRAS Paris 287, 1013–1015 (1978)
- Michalek, R., Tarantello, G.: Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems. J. Diff. Eq. 72, 28-55 (1988)
- 4. Tarantello, G.: Subharmonic solutions for Hamiltonian systems via a \mathbb{Z}_p pseudoindex theory. Annali di Matematica Pura (to appear)
- 5. Rabinowitz, P.: On subharmonic solutions of a Hamiltonian system. Comm. Pure Appl. Math. 33, 609–633 (1980)