- 1. Whitening. Consider a dataset of n centered d-dimensional vectors x_1, x_2, \ldots, x_n , where n > d. Let u_1, \ldots, u_d be the principal directions of the dataset, and $\lambda_1, \ldots, \lambda_d$ the corresponding eigenvalues of the sample covariance matrix. We assume the sample covariance matrix is full rank.
 - a. If we duplicate each point, so that the data are now $x_1, x_1, x_2, x_2, \ldots, x_n, x_n$, what effect does this have on the principal directions and on the eigenvalues?
 - b. Find an orthogonal matrix $A \in \mathbb{R}^{d \times d}$, such that the transformed dataset Ax_1, Ax_2, \ldots, Ax_n has pairwise uncorrelated features.
 - c. Find a matrix $B \in \mathbb{R}^{d \times d}$, such that the transformed dataset Bx_1, Bx_2, \ldots, Bx_n has pairwise uncorrelated features and each entry $x_1[i], \ldots, x_n[i], 1 \le i \le d$, has unit sample variance.
 - d. Would using Bx_1, Bx_2, \ldots, Bx_n as features instead of the original dataset change the prediction of the response in a linear regression task?
- 2. Quadratic form. The following image shows the contour lines of the quadratic form $f(v) := v^T A v$ corresponding to a 2 × 2 symmetric matrix A. The unit circle is drawn in red:

- a. What are the eigenvalues of A?
- b. Can A be interpreted as a covariance matrix?
- c. Are there any points on the unit circle where the gradient of f equals zero?
- 3. PCA. We consider a dataset of d-dimensional vectors that is modeled as samples from a random vector

$$\tilde{y} := \tilde{x}v + \tilde{z},\tag{1}$$

- 1. Whitening. Consider a dataset of n centered d-dimensional vectors x_1, x_2, \ldots, x_n , where n > d. Let u_1, \ldots, u_d be the principal directions of the dataset, and $\lambda_1, \ldots, \lambda_d$ the corresponding eigenvalues of the sample covariance matrix. We assume the sample covariance matrix is full rank.
 - a. If we duplicate each point, so that the data are now $x_1, x_1, x_2, x_2, \ldots, x_n, x_n$, what effect does this have on the principal directions and on the eigenvalues?
 - b. Find an orthogonal matrix $A \in \mathbb{R}^{d \times d}$, such that the transformed dataset Ax_1, Ax_2, \ldots, Ax_n has pairwise uncorrelated features.
 - c. Find a matrix $B \in \mathbb{R}^{d \times d}$, such that the transformed dataset Bx_1, Bx_2, \ldots, Bx_n has pairwise uncorrelated features and each entry $x_1[i], \ldots, x_n[i], 1 \le i \le d$, has unit sample variance.
 - d. Would using Bx_1, Bx_2, \ldots, Bx_n as features instead of the original dataset change the prediction of the response in a linear regression task?
- 2. Quadratic form. The following image shows the contour lines of the quadratic form $f(v) := v^T A v$ corresponding to a 2 × 2 symmetric matrix A. The unit circle is drawn in red:

- a. What are the eigenvalues of A?
- b. Can A be interpreted as a covariance matrix?
- c. Are there any points on the unit circle where the gradient of f equals zero?
- 3. PCA. We consider a dataset of d-dimensional vectors that is modeled as samples from a random vector

$$\tilde{y} := \tilde{x}v + \tilde{z},\tag{1}$$

where $v \in \mathbb{R}^d$, $\tilde{x} \in R$ is a random variable with mean 0 and variance σ_{signal}^2 , v is a fixed deterministic vector, and $\tilde{z} \in R^d$ is a Gaussian random vector with independent entries, each of which has mean zero and variance σ_{noise}^2 . \tilde{x} and \tilde{z} are independent.

- a. Sketch some samples of \tilde{y} for d=2 when σ_{signal} is much larger than σ_{noise} . You can assume any v for the diagram.
- b. For the v you picked in part (a), sketch some samples of \tilde{y} for d=2 when σ_{signal} is much smaller than σ_{noise} .
- c. Is averaging the dataset a good algorithm for estimating v?
- d. Compute the covariance matrix of \tilde{y} .
- e. Express the eigendecomposition of the covariance matrix in terms of σ_{signal} , σ_{noise} , v, u_2 , ..., u_d . Here u_2 , ..., u_d are unit ℓ_2 -norm vectors that are orthogonal to v and each other.
- f. Suggest an algorithm to estimate the direction of v from the data.
- 4. Interference. A radar system is trying to estimate a signal that we model as a zero-mean random variable \tilde{y} with variance σ^2 . Due to interference, the signal is only observed about 50% of the time. In order to improve our chances, we take two independent measurements, modeled as a 2-dimensional random vector \tilde{x} with entries

$$x[i] = \begin{cases} y & \text{with probability } \frac{1}{2}, \\ \tilde{z}_i & \text{with probability } \frac{1}{2}, \end{cases}$$
 (2)

where \tilde{z}_1 and \tilde{z}_2 are zero-mean random variables with variance σ^2 that are independent from \tilde{y} and from each other. The events $\{\tilde{x}[1]=y\}$ and $\{\tilde{x}[2]=y\}$ are also independent.

a. What is the linear estimate of \tilde{y} given \tilde{x} that minimizes MSE? Hint: Use the fact that for any a, b, c, and d such that $ad \neq bc$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \tag{3}$$

Also, remember that by iterated expectation for any random variables \tilde{a} and \tilde{b} , $E(\tilde{b}) = E[E(\tilde{b} \mid \tilde{a})]$.

- b. What is the corresponding MSE?
- c. If $\tilde{x}[1] = \tilde{x}[2]$ we know that the estimate is perfect. Modify your estimate to return $\tilde{x}[1]$ if $\tilde{x}[1] = \tilde{x}[2]$, and otherwise return the linear estimate that minimizes MSE conditioned on $\tilde{x}[1] \neq \tilde{x}[2]$. What is the corresponding MSE?
- 5. Linear regression with dimensionality reduction. We want to fit a linear-regression model to a dataset $(x_1, y_1), \ldots, (x_n, y_n)$, where $x_i \in \mathbb{R}^p$ is the *i*th feature vector and $y_i \in \mathbb{R}$ is the corresponding response. The number of examples is larger than the number of features, n > p. The features turn out to be highly correlated. The matrix of features $X \in \mathbb{R}^{p \times n}$, whose *i*th column equals x_i , has rank r < p.
 - a. Does the least-squares cost problem

$$\min_{\beta \in \mathbb{R}^p} \|y - X^T \beta\|_2,\tag{4}$$

where $y[i] = y_i$, have a unique solution?

- b. Find a matrix $P \in \mathbb{R}^{r \times p}$ with orthonormal rows to perform dimensionality reduction on the feature vectors x_1, x_2, \ldots, x_n optimally, in the sense of preserving the sample variance. Express it in terms of the SVD of $X = USV^T$, where $U \in \mathbb{R}^{p \times r}$, $S \in \mathbb{R}^{r \times r}$, and $V \in \mathbb{R}^{n \times r}$ (note that this is the reduced SVD where all singular values are nonzero).
- c. Does the dimensionality reduction performed in the previous part preserve the ℓ_2 norms of the feature vectors x_1, x_2, \ldots, x_n completely?
- d. Assume that the data is generated by a linear model

$$y := X^T \beta_{\text{true}} + z, \tag{5}$$

where $z \in \mathbb{R}^n$ is additive noise. Explain how to fit a linear model to these data using the dimensionality-reduction matrix P so that the resulting least-squares problem has a unique solution. Write down the closed-form solution β_{LS} of the new least-squares problem in terms of the SVD of $X = USV^T$, β_{true} and z.

- e. Using β_{LS} can we obtain an accurate estimate of β_{true} when z is zero? If yes, does this automatically guarantee low prediction error for new values of y? If not, does this mean that we cannot use our model to predict new values of the response?
- 6. Linear regression with orthogonal features. Consider a linear regression problem where the rows of the feature matrix X are orthogonal to each other and have unit ℓ_2 norm. The matrix of features $X \in \mathbb{R}^{p \times n}$, has it's *i*th column equals the i^{th} data point x_i .
 - a. What are the OLS coefficients equal to?
 - b. Express the ridge-regression estimator of the coefficients as a function of the OLS estimator and the regularization parameter λ .
 - c. Assume an additive model for the data.

$$\tilde{y} = X^T \tilde{\beta} + \tilde{z},\tag{6}$$

where $\tilde{\beta}$ is a zero-mean p-dimensional random vector such that $\mathrm{E}(\|\tilde{\beta}\|_2^2) = 1$, and \tilde{z} is a zero-mean Gaussian iid noise vector with variance σ^2 independent from $\tilde{\beta}$. Compute the value of λ that minimizes the mean ℓ_2 -norm error $\mathrm{E}(\|\tilde{\beta}_{\mathrm{true}} - \tilde{\beta}_{\mathrm{RR}}\|_2^2)$, where $\tilde{\beta}_{\mathrm{RR}}$ is the ridge-regression estimator. How does it vary with the noise variance and the number of features?

where $v \in \mathbb{R}^d$, $\tilde{x} \in R$ is a random variable with mean 0 and variance σ_{signal}^2 , v is a fixed deterministic vector, and $\tilde{z} \in R^d$ is a Gaussian random vector with independent entries, each of which has mean zero and variance σ_{noise}^2 . \tilde{x} and \tilde{z} are independent.

- a. Sketch some samples of \tilde{y} for d=2 when σ_{signal} is much larger than σ_{noise} . You can assume any v for the diagram.
- b. For the v you picked in part (a), sketch some samples of \tilde{y} for d=2 when σ_{signal} is much smaller than σ_{noise} .
- c. Is averaging the dataset a good algorithm for estimating v?
- d. Compute the covariance matrix of \tilde{y} .
- e. Express the eigendecomposition of the covariance matrix in terms of σ_{signal} , σ_{noise} , v, u_2 , ..., u_d . Here u_2 , ..., u_d are unit ℓ_2 -norm vectors that are orthogonal to v and each other.
- f. Suggest an algorithm to estimate the direction of v from the data.
- 4. Interference. A radar system is trying to estimate a signal that we model as a zero-mean random variable \tilde{y} with variance σ^2 . Due to interference, the signal is only observed about 50% of the time. In order to improve our chances, we take two independent measurements, modeled as a 2-dimensional random vector \tilde{x} with entries

$$x[i] = \begin{cases} y & \text{with probability } \frac{1}{2}, \\ \tilde{z}_i & \text{with probability } \frac{1}{2}, \end{cases}$$
 (2)

where \tilde{z}_1 and \tilde{z}_2 are zero-mean random variables with variance σ^2 that are independent from \tilde{y} and from each other. The events $\{\tilde{x}[1]=y\}$ and $\{\tilde{x}[2]=y\}$ are also independent.

a. What is the linear estimate of \tilde{y} given \tilde{x} that minimizes MSE? Hint: Use the fact that for any a, b, c, and d such that $ad \neq bc$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \tag{3}$$

Also, remember that by iterated expectation for any random variables \tilde{a} and \tilde{b} , $E(\tilde{b}) = E[E(\tilde{b} \mid \tilde{a})]$.

- b. What is the corresponding MSE?
- c. If $\tilde{x}[1] = \tilde{x}[2]$ we know that the estimate is perfect. Modify your estimate to return $\tilde{x}[1]$ if $\tilde{x}[1] = \tilde{x}[2]$, and otherwise return the linear estimate that minimizes MSE conditioned on $\tilde{x}[1] \neq \tilde{x}[2]$. What is the corresponding MSE?
- 5. Linear regression with dimensionality reduction. We want to fit a linear-regression model to a dataset $(x_1, y_1), \ldots, (x_n, y_n)$, where $x_i \in \mathbb{R}^p$ is the *i*th feature vector and $y_i \in \mathbb{R}$ is the corresponding response. The number of examples is larger than the number of features, n > p. The features turn out to be highly correlated. The matrix of features $X \in \mathbb{R}^{p \times n}$, whose *i*th column equals x_i , has rank r < p.
 - a. Does the least-squares cost problem

$$\min_{\beta \in \mathbb{R}^p} \|y - X^T \beta\|_2,\tag{4}$$

where $y[i] = y_i$, have a unique solution?

- b. Find a matrix $P \in \mathbb{R}^{r \times p}$ with orthonormal rows to perform dimensionality reduction on the feature vectors x_1, x_2, \ldots, x_n optimally, in the sense of preserving the sample variance. Express it in terms of the SVD of $X = USV^T$, where $U \in \mathbb{R}^{p \times r}$, $S \in \mathbb{R}^{r \times r}$, and $V \in \mathbb{R}^{n \times r}$ (note that this is the reduced SVD where all singular values are nonzero).
- c. Does the dimensionality reduction performed in the previous part preserve the ℓ_2 norms of the feature vectors x_1, x_2, \ldots, x_n completely?
- d. Assume that the data is generated by a linear model

$$y := X^T \beta_{\text{true}} + z, \tag{5}$$

where $z \in \mathbb{R}^n$ is additive noise. Explain how to fit a linear model to these data using the dimensionality-reduction matrix P so that the resulting least-squares problem has a unique solution. Write down the closed-form solution β_{LS} of the new least-squares problem in terms of the SVD of $X = USV^T$, β_{true} and z.

- e. Using β_{LS} can we obtain an accurate estimate of β_{true} when z is zero? If yes, does this automatically guarantee low prediction error for new values of y? If not, does this mean that we cannot use our model to predict new values of the response?
- 6. Linear regression with orthogonal features. Consider a linear regression problem where the rows of the feature matrix X are orthogonal to each other and have unit ℓ_2 norm. The matrix of features $X \in \mathbb{R}^{p \times n}$, has it's *i*th column equals the i^{th} data point x_i .
 - a. What are the OLS coefficients equal to?
 - b. Express the ridge-regression estimator of the coefficients as a function of the OLS estimator and the regularization parameter λ .
 - c. Assume an additive model for the data.

$$\tilde{y} = X^T \tilde{\beta} + \tilde{z},\tag{6}$$

where $\tilde{\beta}$ is a zero-mean p-dimensional random vector such that $\mathrm{E}(\|\tilde{\beta}\|_2^2) = 1$, and \tilde{z} is a zero-mean Gaussian iid noise vector with variance σ^2 independent from $\tilde{\beta}$. Compute the value of λ that minimizes the mean ℓ_2 -norm error $\mathrm{E}(\|\tilde{\beta}_{\mathrm{true}} - \tilde{\beta}_{\mathrm{RR}}\|_2^2)$, where $\tilde{\beta}_{\mathrm{RR}}$ is the ridge-regression estimator. How does it vary with the noise variance and the number of features?