

13. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2020/21

12. Februar 2021

Abgabe bis 19. Februar 2021, 12:00 Uhr

Auf diesem Übungsblatt wird der Vorlesungsstoff bis Seite 132 des Vorlesungsskripts behandelt.

Aufgabe 49:

Die 2π -periodische Funktion $f: \mathbb{R} \to \mathbb{R}$ ist durch $f(x) = |x|^3$ für $x \in (-\pi, \pi]$ definiert. Berechnen Sie die Fourierreihe von f.

Aufgabe 50 (K):

Berechnen Sie jeweils für die 2π -periodischen Funktionen f die Fourierkoeffizienten. Bestimmen Sie alle $x \in \mathbb{R}$, in denen die zugehörige Fourierreihe konvergiert. In welchen Punkten wird die Funktion f durch die zugehörige Fourierreihe dargestellt?

(i)
$$f(x) := \begin{cases} 0, & x \in (-\pi, 0], \\ x, & x \in (0, \pi]. \end{cases}$$
 (ii) $f(x) := |x| \ (x \in (-\pi, \pi]).$

Aufgabe 51:

(i) Zeigen Sie, dass

$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2} = \left(\frac{x-\pi}{2}\right)^2 - \frac{\pi^2}{12}$$

für alle $x \in [0, 2\pi]$ gilt.

(ii) Es seien $a, b \in \mathbb{R}$ mit a < b und $g \in C^1([a, b])$. Zeigen Sie mithilfe partieller Integration, dass gilt:

$$\int_a^b g(x)\sin(nx)\,dx \xrightarrow{n\to\infty} 0 \quad \text{und} \quad \int_a^b g(x)\cos(nx)\,dx \xrightarrow{n\to\infty} 0.$$

Aufgabe 52 (K):

(i) Es sei $f: \mathbb{R} \to \mathbb{R}$ die 2π -periodische Funktion, welche durch

$$f(x) := \begin{cases} \sin\left(\frac{1}{2}(x-\pi)\right), & x \in (0,2\pi), \\ 0, & x = 2\pi. \end{cases}$$

definiert ist. Bestimmen Sie die Fourierreihe von f.

(ii) Berechnen Sie den Reihenwert von

$$\sum_{k=1}^{\infty} \frac{k^2}{(1-4k^2)^2}.$$

Hinweis: Parsevalsche Gleichung.

Information

Aufgrund der aktuellen Situation wird dieses Modul teilweise in digitaler Form angeboten. Die gesamte Abwicklung wird über das System ILIAS stattfinden. Melden Sie sich dafür mit Ihrem KIT-Account an und treten Sie dem Kurs **Höhere Mathematik I (Analysis) für die Fachrichtung Informatik** bei. Sie können diesem Kurs direkt über folgenden Link beitreten:

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung.

Zum Bearbeiten der Übungsblätter sollten Sie pro Woche etwa 9-10 Seiten des Skripts mithilfe der angebotenen Vorlesungsvideos durcharbeiten.

Übungsschein

Jede (K)-Aufgabe wird mit maximal 8 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-6 und 7-13 **jeweils** mindestens 48 bwz. 56 Punkte (50%) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal. Bitte beachten Sie den **Anmeldeschluss** am **21.02.2021**.