опубликовать свое релятивистское волновое уравнение, оно уже было независимо переоткрыто Оскаром Клейном [7] и Вальтером Гордоном [8]. По этой причине релятивистский вариант называется "уравнением Клейна—Гордона".

Шредингер вывел свое релятивистское волновое уравнение, заметив, что гамильтониан H и импульс \mathbf{p} "электрона Лоренца" с массой m и зарядом e, находящегося во внешнем векторном потенциале \mathbf{A} и кулоновском потенциале ϕ , связаны следующим соотношением 1):

$$0 = (H + e\phi)^2 - c^2(\mathbf{p} + e\mathbf{A}/c)^2 - m^2c^4.$$
 (1.1.2)

Соотношения де Бройля (1.1.1) для csofodhoй частицы, представленной плоской волной $\exp\{2\pi i(\boldsymbol{\kappa}\cdot\mathbf{x}-\nu t)\}$, можно получить, если произвести отождествление

$$\mathbf{p} = h\mathbf{k} \to -i\hbar\nabla, \qquad E = h\nu \to i\hbar\frac{\partial}{\partial t},$$
 (1.1.3)

где \hbar — удобное обозначение (введенное Дираком) для $h/2\pi$. Исходя из чисто формальной аналогии Шредингер предположил, что электрон во внешних полях \mathbf{A} , ϕ должен описываться волновой функцией $\psi(\mathbf{x},t)$, удовлетворяющей уравнению, получаемому при помощи той же самой замены в (1.1.2):

$$0 = \left[\left(i\hbar \frac{\partial}{\partial t} + e\phi \right)^2 - c^2 \left(-i\hbar \nabla + \frac{e\mathbf{A}}{c} \right)^2 - m^2 c^4 \right] \psi(\mathbf{x}, t). \tag{1.1.4}$$

В частности, для стационарных состояний в атоме водорода справедливы равенства $\mathbf{A}=0$ и $\phi=e/(4\pi r)$. Кроме того, в этом случае ψ зависит от времени t экспоненциально: $\exp(-iEt/\hbar)$. Поэтому (1.1.4) сводится к уравнению

$$0 = \left[\left(E + \frac{e^2}{4\pi r} \right)^2 - c^2 \hbar^2 \nabla^2 - m^2 c^4 \right] \psi(\mathbf{x}). \tag{1.1.5}$$

Решения уравнения (1.1.5) с наложенными на них разумными граничными условиями, определяют уровни энергии [9]

$$E = mc^{2} \left[1 - \frac{\alpha^{2}}{2n^{2}} - \frac{\alpha^{4}}{2n^{4}} \left(\frac{n}{l+1/2} - \frac{3}{4} \right) + \ldots \right], \tag{1.1.6}$$

где $\alpha \equiv e^2/(4\pi\hbar c)$ — "постоянная тонкой структуры", численное значение которой составляет приблизительно $1/137,\,n$ — положительное целое число, а l — орбитальный угловой момент в единицах \hbar , принимающий целочисленные значения в интервале $0\leqslant l\leqslant n-1$. Наличие

 $^{^{1})}$ Это соотношение лоренц-инвариантно, поскольку величины ${\bf A}$ и ϕ при преобразованиях Лоренца изменяются точно так же, как $c{f p}$ и E соответственно. Гамильтониан H и импульс ${\bf p}$ Шредингер представлял в виде частных производных действия, однако это неважно для нашего рассмотрения.