Question	Answer	Marks	Guidance
	State or imply $n \ln x + 2 \ln y = \ln C$	B1	
	Substitute values of $\ln y$ and $\ln x$, or equate gradient of line to $\pm \frac{1}{2}n$, but not $\pm n$,	M1	Using lnx and lny values
	and solve for n		
	Obtain $n = 0.8[0]$ or $0.8[00]$ or $\frac{4}{5}$	A1	
	Solve for C	M1	Using $\ln x$ and $\ln y$ values in equation of correct form, that is $\ln C$ not C . Allow $C = e^{2.668}$.
	Obtain $C = 14.41$	A1	Must be 2 d.p.
	Alternative method for question		
	Obtain two correct equations in n and C by substituting x and y values in the given equation	B1	$(2.886)^n \times (2.484)^2 = C \text{ and } (1.363)^n \times (3.353)^2 = C$
	Solve for <i>n</i>	M1	Using x and y values
	Obtain $n = 0.8[0]$ or $0.8[00]$ or $4/5$	A1	$\left(\frac{2.886}{1.363}\right)^n \times \left(\frac{2.484}{3.353}\right)^2 = 1$ leading to $n = 0.7995$
	Solve for C	M1	Using x and y values
	Obtain $C = 14.41$	A1	Must be 2 d.p.
		5	