KHOA CƠ KHÍ **BỘ MÔN CƠ ĐIỆN TỬ**

Bài 4: Lập trình ADC

1. Giới thiệu

Analog/Digital Converter (ADC – bộ chuyển đổi tương tự/số) là một trong những chức năng cơ bản của một vi điều khiển. PIC16F917 có 8 kênh ADC với độ phân giải là 10 bit.

Có 3 thanh ghi dùng để điều khiển hoạt động của môđun A/D là: ANSEL, ADCON0 và ADCON1.

1.1 Các ngõ vào tương tự

Các bit ANS<7:0> (ANSEL<7:0>) và các bit TRIS điều khiển hoạt động của các chân ngõ vào A/D. Đặt các bit TRIS tương ứng bằng 1 sẽ làm cho các mạch lái ngõ ra ở trạng thái tổng trở cao và đặt các bit ANSEL ở mức 1 sẽ vô hiệu hóa bộ đệm ngõ vào số.

1.2 Chọn kênh

Các bit CHS<2:0> (các bit ADCON0<4:2>) quyết định kênh nào sẽ được nối với mạch lấy mẫu.

1.3 Điện áp tham chiếu

Có 2 nguồn điện áp tham chiếu: V_{REF+} và V_{REF+} có thể kết nối với V_{DD} hoặc một nguồn điện áp ngoài. Tương tự, V_{REF-} có thể kết nối với V_{SS} hoặc một nguồn điện áp ngoài. Hai bit VCFG<1:0> dùng để lựa chọn nguồn điện áp tham chiếu.

1.4 Xung nhịp chuyển đổi

Một chu kỳ chuyển đổi từ tương tự sang số cần ít nhất $11~T_{AD}$ (thời gian chuyển đổi của 1~bit). Nguồn cung cấp xung nhịp cho ADC được lựa chọn thông qua các bit ADCS (ADCON1<6:4>). Có 7~lựa chọn nguồn xung nhịp:

- $F_{OSC}/2$
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- F_{RC} (nguồn dao đông nôi riêng)

Để việc chuyển đổi được chính xác, xung nhịp của ADC (1/ T_{AD}) cần phải đảm bảo T_{AD} thấp nhất là 1.6 μs (tần số xung nhịp \geq 625 KHz).

1.5 Kết quả chuyển đổi

Độ phân giải của bộ ADC là 10 bit nên kết quả chuyển đổi sẽ được lưu trong hai byte: ADRESH và ADRESL. Vì thế, kết quả chuyển đổi có thể được cung cấp dưới hai dạng: lệch trái hoặc lệch phải, qui định bởi bit ADFM (ADCON0<7>) [1].

Hình 2: ADC[2]

1.6 Các bước thực hiện việc chuyển đổi tương tự/số

- 1. Cài đặt các thông số
 - Định nghĩa các ngõ vào/ra tương tự/số (ANSEL)
 - Lựa chọn nguồn điện áp tham chiếu (ADCON0)
 - Lua chọn kênh ADC (ADCON0)
 - Lựa chọn xung nhịp ADC (ADCON1)
 - Khởi động ADC (ADCON0)
- 2. Cài đặt ngắt ADC (nếu cần)
 - Xóa bit ADIF (PIR1<6>)
 - Đặt bit ADIE (PIE1<6>)
 - Đặt các bit PEIE và GIE (INTCON<7:6>)
- 3. Đợi một khoảng thời gian đủ để quá trình chuyển đổi hoàn tất.
- 4. Bắt đầu chuyển đổi
 - Đặt bit GO/ DONE (ADCON0<1>)
- 5. Chờ quá trình chuyển đổi hoàn tất
 - \bullet Chờ đến khi bit GO/ $\overline{\text{DONE}}\;$ bị xóa (không sử dụng ngắt) hoặc chờ ngắt ADC
- 6. Đọc kết quả chuyển đổi lưu trong cặp thanh ghi (ADRESH:ADRESL); xóa bit ADIF nếu cần thiết.
- 7. Chờ ít nhất hai T_{AD} trước khi quay lại bước 1 hoặc bước 2 để tiếp tục chuyển đổi thêm một lần nữa.

Mục tiêu bài thí nghiệm:

- Đoc tín hiệu ADC về vi điều khiển.
- Đọc dữ liệu từ 1 hoặc 2 biến trở POT và hiển thị giá trị điện áp tương ứng lên LCD.
- Úng dụng ADC đo nhiệt độ.

2. Thiết bị thực hành/thí nghiệm

- Kit PICDEM Mechatronics
- 3 sơi dây nối

3. Nội dung thực hành, thí nghiệm

- 3.1 Thời lượng: 3 tiết cho mỗi nhóm sinh viên.
- 3.2 Nôi dung thí nghiêm

Code tham khảo về đọc dữ liệu ADC từ ngõ vào RA2/AN2 và biến thành ký tự ASCII để hiển thị trên LCD ở Phụ lục.

- 3.2.1 Đọc dữ liệu từ biến trở POT1 và hiển thị giá trị đọc được lên LCD
 - Dùng dây nối để nối chân POT1 (J4) với chân AN1 (J13) của PIC16F917.
 - Sử dụng đoạn code tham khảo ở trên, viết chương trình nhận vào giá trị nhị phân từ ADC và hiển thị giá trị thập phân tương ứng lên LCD.
- 3.2.2 Đọc dữ liệu từ biến trở POT2 và hiển thị giá trị điện áp tương ứng lên LCD
 - Dùng dây nối để nối chân POT2 (J4) với chân AN1 (J13) của PIC16F917.
 - Sử dụng đoạn code tham khảo ở trên, viết chương trình nhận vào giá trị nhị phân từ ADC và hiển thị giá trị điện áp tương ứng lên LCD.
- 3.2.3 Đọc dữ liêu từ cảm biến nhiệt đô và hiển thi nhiệt đô lên LCD
 - Dùng dây nối để nối chân TEMP (J4) với chân AN0 (J13) của PIC16F917.
 - Sử dụng đoạn code tham khảo ở trên, viết chương trình nhận vào giá trị điện áp từ cảm biến nhiệt độ TC1047/A và hiển thị giá trị nhiệt độ tương ứng lên LCD.

4. Kết quả thực hành, thí nghiệm (Lưu ý: Sinh viên nộp lại tờ này cho Giảng viên hướng dẫn		
	sau buổi thí nghiệm)	
4.1		giá trị hiển thị trên LCD là từ đến
4.2	Khi xoay đủ 1 vòng biến trở POT2, giá trị hiển thị trên LCD là từ đến	
4.3		
Но ч	và tên sinh viên:	Nhóm:
Ngà	y thực hành / thí nghiệm:	Ký tên:
5. 7	Tài liệu tham khảo	
[1] I	PICDEM™ Mechatronics Demonstrati	ion Board User's Guide.
[2]	ΓC1047/A datasheet (DS21498)	

PHŲ LŲC

```
#DEVICE ADC=10 // 10-bit resolution
unsigned int ADC_Value;
char *temp = "0000";
void main() {
     setup_adc(ADC_CLOCK_INTERNAL); //enables adc using internal clock
     setup_adc_ports(ALL_ANALOG); //sets all the adc pins to analog
     set_adc_channel(2); //the next read_adc call will read channel 2
do {
     delay_us(10); //a small delay is required after setting the channel and before read
     adc_value=read_adc(); //starts the conversion
     temp[0] = adc_value/1000 + 48; // Add 48 to get the ASCII character value
     temp[1] = (adc\_value/100)\%10 + 48;
     temp[2] = (adc\_value/10)\%10 + 48;
     temp[3] = adc\_value\%10 + 48;
   } while(1);
}
```