Taming the Zoo of Logical Systems by formalizing it

Michael Kohlhase & Florian Rabe

Professur für Wissensrepräsentation und -verarbeitung Informatik, FAU Erlangen-Nürnberg http://kwarc.info

5. - 9. Aug. 2019 - ESSLLI 2019 - Riga

What is Logic?

- ► Logic

 formal languages, inference and their relation with the world
 - Formal language \mathcal{FL} : set of formulae
 - ► Formula: sequence/tree of symbols
 - ► Model: things we understand
 - Interpretation: maps formulae into models
 - ► Validity: $\mathcal{M} \models \mathbf{A}$, iff $\llbracket \mathbf{A} \rrbracket^{\mathcal{M}} = \mathsf{T}$
 - ▶ Entailment: $A \models B$, iff $\mathcal{M} \models B$ for all $\mathcal{M} \models A$.
 - ► Inference: rules to transform (sets of) formulae
 - ► Syntax: formulae, inference
 - ► Semantics: models, interpr., validity, entailment

 $(2+3/7, \forall x.x+y=y+x)$ $(x,y,f,g,p,1,\pi,\in,\neg,\land\forall,\exists)$ (e.g. number theory) ([three plus five] = 8) (five greater three is valid) (generalize to $\mathcal{H} \models \mathbf{A}$)

(just a bunch of symbols)

 $(A, A \Rightarrow B \vdash B)$

(math. structures)

Important Question: relation between syntax and semantics?

The miracle of logics

Purely formal derivations are true in the real world!

Aug. 19; ESSLLI 2019

Modeling Natural Language Semantics

- ▶ Problem: Find formal (logic) system for the meaning of natural language
- History of ideas
 - Propositional logic [ancient Greeks like Aristotle]
 - *Every human is mortal
 - ightharpoonup First-Order Predicate logic [Frege ≤ 1900]
 - *I believe, that my audience already knows this.
 - ► Modal logic [Lewis18, Kripke65]
 - *A man sleeps. He snores. $((\exists X \cdot man(X) \land sleep(X))) \land snore(X)$
 - ► Various dynamic approaches (e.g. DRT, DPL)
 - *Most men wear black
 - ► Higher-order Logic, e.g. generalized quantifiers

Natural Language Semantics?

Representation language (MMT)

- MMT = module system for mathematical theories
- ► Formal syntax and semantics
 - needed for mathematical interface language
 - but how to avoid foundational commitment?
- ► Foundation-independence
 - identify aspects of underlying language that are necessary for large scale processing
 - ▶ formalize exactly those, be parametric in the rest
 - observation: most large scale operations need the same aspects
- Module system
 - preserve mathematical structure wherever possible
 - formal semantics for modularity
- Web-scalable
 - build on XML, OpenMath, OMDoc
 - URI-based logical identifiers for all declarations
- Implemented in the MMT API system.

Representing Logics and Foundations as Theories

Example 0.1. Logics and foundations represented as MMT theories

- ▶ **Definition 0.2.** Meta-relation between theories special case of inclusion
- Uniform Meaning Space: morphisms between formalizations in different logics become possible via meta-morphisms.
- ► Remark 0.3. Semantics of logics as views into foundations, e.g., folsem.
- ► Remark 0.4. Models represented as views into foundations (e.g. ZFC)
- **Example 0.5.** mod := $\{G \mapsto \mathbb{Z}, \circ \mapsto +, e \mapsto 0\}$ interprets Monoid in ZFC.