AN: PAT 2001-410091 Operation method for carbon dioxide gas turbine system, TI: involves using combustion chamber in which fuel is burnt with oxygen, with at least one turbine and one generator PN: DE19952884-A1 PD: 10.05.2001UU AB: NOVELTY - The operating method operates such that the exhaust gas (20) of the gas turbine (3) is led over a heat exchanger (11). The H2O is split off and the exhaust gases are fed to a condenser (4), which liquifies the CO2. One part of the CO2 and the non-condensable gases is separated and the other part of the CO2 is led to a pump (1). This delivers the liquid under critical CO2 at an overcritical pressure, to the combustion chamber (2) before the gas turbine (3), Here flue gases (21) are produced, with which the gas turbine (3) is driven.; USE - CO2 gas turbines. ADVANTAGE - Disposes of CO2 in environmentally friendly manner and eliminates the resulting nitrogen oxide or other non-condensable gases. DESCRIPTION OF DRAWING(S) - The figure shows a schematic representation of a CO2 power plant with gas turbine system. Pump 1 Combustion chamber 2 Gas turbine 3 Condenser 4 Generator 5 Valves 8-10 Heat exchanger 11-16 Compressor 18 Flue gases 21 PA: (ALLM) ABB ALSTOM POWER SCHWEIZ AG; UU IN: FRUTSCHI H U; FA: DE19952884-A1 10.05.2001; CO: DE; F02C-001/08; F02C-003/22; F02C-003/34; F02C-006/18; IC: DC: Q52; FN: 2001410091.gif DE1052884 03.11.1999;UU PR: 10.05.2001 FP: UP: 09.08.2001

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

(9) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

® Off nlegungsschrift

_® DE 199 52 884 A 1

(1) Aktenzeichen: 199 52 884.5
 (2) Anmeldetag: 3. 11. 1999
 (3) Offenlegungstag: 10. 5. 2001

(5) Int. Cl.⁷: F 02 C 3/22

F 02 C 1/08 F 02 C 6/18 F 02 C 3/34

① Anmelder:

ABB ALSTOM POWER (Schweiz) AG, Baden, Aargau, CH

(74) Vertreter:

Lück, G., Dipl.-Ing. Dr.rer.nat., Pat.-Anw., 79761 Waldshut-Tiengen

② Erfinder:

Frutschi, Hans Ulrich, Riniken, CH

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 197 28 151 A1
DE 43 03 174 A1
GB 21 40 873 A
US 58 32 712 A
US 58 02 840 A
US 51 75 995 A
US 44 98 289

JP Patent Abstracts of Japan:

0004191418 AA; 0004279729 AA; 0011315727 AA; 0009250359 AA; 0011241618 AA;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (4) CO₂-Gasturbinenanlage und Verfahren zum Betrieb derselben
- (3) Verfahren zum Betrieb eine CO₂-Gasturbinenanlage, die CO₂-Gasturbinenanlage, bestehend aus mindestens einer Brennkammer (2), in welche ein Brennstoff mit Sauerstoff verbrannt wird, mindestens einer Turbine (3) und mindestens einem Generator (5), dadurch gekennzeichnet, dass die Abgase (20) der Gasturbine (3) über einen Wärmetauscher (11) geleitet werden, danach H₂O abgespalten wird, wonach die Abgase (20) in einen Kondensator (4) gelangen, welcher das CO₂ verflüssigt und einen Teil des CO₂ und nicht kondensierbare Gase abschneidet, und der andere Teil des CO₂ über eine Pumpe (1), welche das verflüssigte, unterkritische CO₂ auf einen überkritischen Druck fördert, zur Brennkammer (2) vor der Gasturbine (3) gelangt, wo Rauchgase (21) erzeugt werden, mit denen die Gasturbine (3) betrieben wird.

Beschreibung

TECHNISCHES GEBIET

Bei der Erfindung handelt es sich um eine CO₂-Gasturbinenanlage und Verfahren zum Betrieb derselben.

STAND DER TECHNIK

Maschinen mit innerer Verbrennung verbrennen ihren 10 Brennstoff in komprimierter Atmosphärenluft und vermischen ihre Verbrennungsgase inhärent mit dieser Luft und dem nicht ausgenutzten Restsauerstoff. Die fast immer kohlenstoffhaltigen Brennstoffe erzeugen dabei unter anderen CO₂, welches als Treibhausgas gilt. Die verbreitete Nutzung 15 fossiler Brennstoffe setzt heute so grosse Mengen von CO₂ frei, dass dies in absehbarer Zeit ein Risiko für das Weltklima darstellen dürfte. Es ist daher bereits eine intensive Suche nach CO₂-freien Technologien im Gange.

Die Stromversorgung ist heute von der Nutzung fossiler 20 Brennstoffenergien in Maschinen mit innerer Verbrennung bestimmt, wobei die Entsorgung des stark verdünnten CO₂ in die Atmosphäre geschieht.

Eine weitere bekannte Möglichkeit ist die Rezirkulation von abgekühlten Abgasen in die Ansaugung von Maschinen mit innerer Verbrennung. Dies kann in einem Ausmass geschehen, dass der Sauerstoff der Luft gerade aufgebraucht wird. In diesem Fall bleibt das Abgas aber immer noch mit dem Luftstickstoff vermischt und das CO₂-Abscheidungsproblem ist damit nur marginal verkleinert.

Neben Stickoxiden erzeugen alle luftbetriebenen Verbrennungsmaschinen auch Stickoxide, welche als Luftschadstoffe wirken, und deren Entstehung mit kostspieligen Massnahmen bekämpft wird. Problematisch ist weiter bei einem CO₂-Kraftwerk die Abscheidung der in den Prozess 35 eingeschleppten Internet Gase.

DARSTELLUNG DER ERFINDUNG

Hier will die Erfindung Abhilfe schaffen. Der Erfindung, 40 wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Verfahren und einer Schaltung der eingangs genannten Art das anfallende CO₂ umweltschonend zu entsorgen, gleichzeitig liegt hier der Erfindung die Aufgabe zugrunde, die ebenfalls anfallenden Luftstickoxide 45 oder andere nicht kondensierbare Gase zu eliminieren.

Erfindungsgemäss wird die Aufgabe dadurch gelöst, dass die Abgase der Gasturbine über einen Wärmetauscher geleitet werden, danach H₂O abgespalten wird, wonach die Rauchgas in einen Kondensator gelangen, welcher das CO₂ verflüssigt und einen Teil des CO₂ und nicht kondensierbare Gase abscheidet, und der andere Teil des CO₂ über eine Pumpe, welche das verflüssigte, unterkritische CO₂ auf einen überkritischen Druck fördert, zur Brennkammer vor der Gasturbine gelangt, wo Rauchgase erzeugt werden, mit denen die Gasturbine betrieben wird.

Die wesentlichen Vorteile der Erfindung sind darin zu sehen, dass hier ein Verfahren vorgeschlagen wird, bei welchem das CO₂ in reiner Form und unter Druck, zwecks nachfolgender Verflüssigung, abgegeben wird.

Dabei geht das Verfahren von einem CO₂-Prozess mit einer inneren Verbrennung aus, bei welchem zur Erhitzung der sich im Kreislaufs befindlichen CO₂-Masse, welche Erhitzung vorzugsweise anhand eines gasförmigen Brennstoffes bewerkstelligt wird, nur jene erforderliche Sauerstoffmenge zugeführt wird, die zur Oxydation eben dieses Brennstoffs notwendig ist.

Durch eine entsprechende Abzapfung von CO2 aus dem

Kreislauf an geigneter Stelle kann fortlaufend der Aufladungsgrad und damit die Leistung des Prozesses geregelt werden.

Anschliessend, durch Auskondensierung des aus dem 5 Prozess ausgeschiedenen CO₂ wird sodann jener Aggregatzustand dieses Gases bewerkstelligt, bei welchem sich das anfallende CO₂ unter umweltschonenden Gesichtspunkten, insbesondere was die Treibhausproblematik betrifft, leicht entsorgen lässt.

Ein weiterer wesentlicher Vorteil der Erfindung ist darin zu sehen, dass hiermit Abhilfe gegen die Tatsache geschaffen wird, dass alle luftatmenden Verbrennungsmaschinen auch Stickoxide erzeugen, welche als Luftschadstoffe wirken und deren Entstehung mit kostspieligen Massnahmen bekämpft werden muss, dies nicht zuletzt im Lichte der weltweit restriktiven Gesetze über die zulässigen Schadstoffemissionen. Indem bei Rezirkulationsbetrieb mit reinem Sauerstoff kein Luftstickstoff in die Flamme kommt, entsteht auch kein NO_x. Falls der Brennstoff gebundenen Stickstoff mitbringen sollte, ist zwar mit einer geringen NO_x-Bildung zu rechnen. Da aber das Überschussgas eine viel kleiner Menge als das Abgas bei Luftbetrieb darstellt, ist dessen Nachbehandlung einfacher und billiger.

Weiter ist mit dem erfindungsgemässen CO₂-Kraftwerk eine Abscheidung von inerten Gasen, welche beispielsweise durch die gasförmige Energiezufuhr eingeschleppt werden, vereinfacht möglich. Auf diese Weise wird auch die Verunreinigung und der evtl. damit verbundenen Wirkungsgradverlust des CO₂-Kreislaufs minimiert.

Vorteilhafte und zweckmässige Ausführungen der erfindungsgemässen Aufgabenlösungen sind in den weiteren Ansprüchen gekennzeichnet.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

Es zeigen:

Fig. 1 eine schematische Darstellung eines CO₂-Kraftwerks mit erfindungsgemässer Schaltung,

Fig. 2 T-S-Diagramm des erfindungsgemässen CO₂-Kreislaufs.

Fig. 3 eine zweite Ausführungsform einer schematische Darstellung eines CO₂-Kraftwerks mit erfindungsgemässer Schaltung,

Fig. 4 T-S-Diagramm des erfindungsgemässen CO₂-Kreislaufs gemäss Fig. 3,

Fig. 5 eine dritte Ausführungsform einer schematische Darstellung eines CO₂-Kraftwerks mit erfindungsgemässer Schaltung und

Fig. 6 T-S-Diagramm des erfindungsgemässen CO₂-Kreislaufs gemäss Fig. 5.

Es sind nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche Elemente werden in verschiedenen Zeichnungen gleich bezeichnet.

WEG ZUR AUSFÜHRUNG DER ERFINDUNG

Fig. 1 zeigt eine Gasturbine 3 mit geschlossenem CO₂-Kreislauf nach erfindungsmässiger Schaltung. Dieser Kreislauf besteht aggregatenmässig aus einer Pumpe 1, einem mit dieser Pumpe 1 gekoppelten Generator 5, einer mit der Pumpe 1 gekoppelten Gasturbine 3, einer zwischen Pumpe 1 und Gasturbine 3 wirkende Brennkammer 2. Die Kopplung der Strömungsmaschinen 1 und 3 kann anhand einer gemeinsamen Welle 19 bewerkstelligt werden. Das von der Pumpe 1 angesaugte Kreislaufmedium, bei dem es sich vorwiegend um CO₂ handelt, strömt nach erfolgter Kompression durch die Pumpe 1 in die Brennkammer 2, in welcher die kalorische Aufbereitung dieses Mediums stattfindet, das

3

dann als Heissgase 21 die Gasturbine 3 beaufschlagt. Nach der Verdichtung wird das komprimierte Umlaufgas, wie bereits dargelegt, der Brennkammer 3 zugeführt. Die Abgase 20 der Gasturhine 3 werden an einem Wärmetauscher 11 vorbei geleitet, danach wird flüssiges Wasser über ein Ventil 10 abgespalten. Die Abgase 20 werden weiter in einen Kondensator 4 geleitet, in welchem sie verflüssigt werden. Über ein Ventil 8, das die Funktion eines Überschussgasventil erfüllt, wird dieser CO2-Anteil aus dem geschlossenen Kreislauf abgelassen. Das Umlaufgas besteht überwiegend aus 10 CO2, enthält aber allenfalls auch noch parasitische Gase, welche mit dem Sauerstoff und Brennstoff sowie beim Anfahren mit Luft eingeschleppt worden sind, sowie Umwandlungsprodukte davon, beispielsweise NO_X. Nach der Kondensation des CO2 in einem Kondensator 4 wird dieser verflüssigte CO2-Massenstrom zur Entsorgung abgeführt, beispielsweise und/oder vorzugsweise auf dem Meeresgrund oder in eine ausgebeutete Erdgaslagerstätte. Diese Entsorgung an geeigneter Stelle mit geeigneten Mitteln löst schlagartig und nachhaltig die Problematik des Treibhausef- 20 fekts durch den ständigen Ausstoss vom gasförmigen CO2 in die Atmosphäre. Daneben werden die parasitischen Gase ebenfalls in Wirkverbindung mit dem genannten Kondensator 4 über ein Ventil 9 ausgeschieden, wobei dieser sehr kleine Massenstrom einer weiteren Separation unterworfen 25 werden kann oder an die Atmosphäre abgegeben wird. Im Zusammenhang mit dem Betrieb der Brennkammer 2 wird die in einer Luftzerlegungsanlage produzierte Sauerstoffmenge 7 in einem Kompressor nachkomprimiert und über ein Regelorgan in die Brennkammer 2 eingegeben. Parallel 30 dazu strömt auch ein über ein Regelorgan entsprechend abgestimmter Brennstoff 6, der vorzugsweise Erdgas ist, oder auch andere Kohlenwasserstoffe oder CO oder Gemische derselben, in die Brennkammer 3, wobei mit der zugegebenen Sauerstoffmenge 7 die kalorische Aufbereitung des 35 komprimierten Umlaufgases bewerkstelligt wird. Das aus der Brennkammer kommende Heissgas wird anschliessend in der nachgeschalteten Gasturbine 2 entspannt. Im Sinne des hier gezeigten geschlossenen Kreislaufes werden die aus der Gasturbine 3 abströmenden Abgase 20 durch einen Wär- 40

Bei der hier gezeigten Schaltung handelt es sich streng genommen um einen quasi-geschlossenen Kreislauf, der druckfest ausgebildet ist, wobei bei verschiedenen Betriebsarten auch eine vakuumfeste Kreislaufführung möglich ist. 45 Durch Drosseln oder Öffnen des Überschussgasventils 8 lädt sich der Kreislauf von selbst auf oder ab, wobei der umlaufende Massenstrom und die Leistung entsprechend steigen oder sinken. Die Anlage hat im ganzen Druckbetrieb, soweit das CO2 innerhalb des Kondensationsbereichs E-A 50 liegt, etwa einen konstanten Wirkungsgrad.

metauscher 11 geleitet.

Der Kreisprozess der in der Fig. 1 dargestellten Schaltung einer CO2-Gasturbinenanlage wird in der Fig. 2 im T-S-Diagramm vom CO₂ verdeutlicht. Die Arbeitspunkte A, B, X, C, D, E entsprechen den in der Fig. 1 bezeichneten Punkten. 55 In der Fig. 2 wird auch das Nassdampfgebiet des CO₂ mit dem Kritischen Punkt KP dargestellt. Die Erfindung liegt darin, dass vom Arbeitspunkt D, welcher nach der Entspannung der Gasturbine vorliegt, durch den Wärmetauscher 11 und den Wärmetauscher 12 soviel Wärme entzogen wird, 60 1 Pumpe dass das CO2-Nassdampfgebiet erreicht und durchquert wird und CO2 in flüssiger Form vorliegt, welches einfach abgezogen werden kann. Durch den Einsatz der Pumpe 1, welche mit einer sehr kleinen Arbeitsleistung das flüssige CO₂ verdichtet und dadurch wieder in den gasförmigen Zu- 65 stand fördert (Arbeitspunkte von A nach B), wird in dieser Schaltung ein leistungsintensiver Kompressor vermieden. Im Prinzip ist es möglich, vom Arbeitspunkt B nach C durch

reine Energiezufuhr durch die Brennkammer 2 zu kommen. Ein Teil kann aber durch den regenerativen Einsatz der entzogenen Wärme erreicht werden, so dass bereits ein Arbeitspunkt X erreicht wird.

Fig. 3, eine im Grundprinzip der Fig. 1 sehr ähnlichen Schaltung, unterscheidet sich insbesondere gegenüber Fig. 1 darin, dass hier nur ein Teilstrom des CO2 das Nassdampfgebiet durchquert, während der andere Teilstrom vor dem Kondensator abgespalten und über einen Verdichter 18 geleitet wird, bevor es dem Kreislauf vor der Brennkammer 2 wieder zugeführt wird. Das hat den Vorteil, dass im Punkt O eine höhere Temperatur erreicht wird, weil die den Abgasen im Wärmetauscher 11 entzogene Wärme dem Kreislauf nach der Pumpe 1 durch einen Wärmetauscher 14 wieder zugeführt wird. Im T-S-Diagramm, welches in der Fig. 4 dargestellt ist, wird dieser rekuperative Einsatz der Wärme in dem Prozess durch die Arbeitspunkte D-N (Wärmeentzug nach der Gasturbine 3) und den Arbeitspunkten B-O (Wärmerückführung nach Pumpe 1) dargestellt. Ein Teil des CO2-Gases wird von N nach O durch polytrope Verdichtung vorgewärmt.

Die Fig. 5 zeigt einen geschlossenen mit CO2 aufgeladenen Gasturbinenprozess, welcher so betrieben wird, dass der Brennkammer 2 der Brennstoff, hier als CH4, und der dazugehörige Oxydator, hier als O2, zugeführt wird, wobei auch hier als Ziel feststeht, das entstandene überschüssige CO2 und das H2O an geeigneter Stelle auszuscheiden. In der Ausführungsform der Fig. 5 werden die Abgase 20, welche von der Gasturbine 3 kommen, in einem Verdichter 18 verdichtet und erst danach, nach rekuperativem Wärmeentzug, dem Kondensator 4 zugeführt, in welchem ein Teilstrom des verflüssigten CO₂ abgezogen wird. Der Verdichter 18 ist, wie auch in der Ausführungsform der Fig. 3, auf einer gemeinsamen Welle mit der Pumpe 1, der Gasturbine 3 und dem Generator 5 angeordnet. Die Fig. 5 zeigt den Einsatz dreier rekuperativer Wärmetauscher, welche die Wärme der Abgase 20 (durch Wärmetauscher 15, 16) und das erwärmte, verdichtete CO2 (nach Verdichter 18) der Leitung 17 nach der Pumpe 1 zuführt, welche das CO₂ mit maximal möglicher Vorwärmtemperatur zur Brennkammer 2 leitet. Das der Schaltung entsprechende T-S-Diagramm ist in der Fig. 6 dargestellt. Die Arbeitspunkte D-L (erster Wärmetauscher 16 nach Gasturbine 3), L-M (zweiter Wärmetauscher 15 nach Gasturbine 3), und I-H (Wärmetauscher 14 nach Verdichter 18) verdeutlichen diesen Wärmeübergang in der Fig. 6 zu den Arbeitspunkten B-F (korrespondierend auf der Seite der Leitung 17 zu den beiden Wärmetauschern 14, 15) und F-G (korrespondierend zu Wärmetauscher 16). Der Einsatz der Wärmetauscher 14, 15, 16 dient zur Brennstoffeinsparung. Nach wie vor wird Wasser durch ein Ventil 10 nach dem Wärmetauscher 14 abgespalten. Zusätzlich kann vor dem Verdichter 18 ein Wärmetauscher 13 angeordnet sein.

Die rein thermodynamische Schaltung dieser drei Kreislaufsysteme sind in Verbindung mit einer unmittelbaren Wärmezufuhr durch innere Verbrennung von kohlenstoffhaltigem Brennstoff mit O2 zu setzen.

BEZUGSZEICHENLISTE

- - 2 Brennkammer
 - 3 Gasturbine
 - 4 Kondensator
 - 5 Generator
- 6 Lcitung für CH4
 - 7 Leitung für O2
 - 8 Ventil
 - 9 Ventil

5

6

10 Ventil 11 Wärmetauscher 12 Wärmetauscher 13 Wärmetauscher 5 14 Wärmetauscher 15 Wärmetauscher 16 Wärmetauscher 17 Leitung nach Pumpe 1 18 Verdichter 19 Welle 10 20 Abgase 21 Heissgase A, B, C, D, E, F, G, H, I, L, K, M, N, O, X = Zustandspunkteim T-S-Diagramm vom CO2 15 KP Kritischer Punkt

Patentansprüche

1. Verfahren zum Betrieb einer CO2-Gasturbinenanlage, die CO2-Gasturbinenanlage bestehend aus minde- 20 stens einer Brennkammer (2), in welche ein Brennstoff mit Sauerstoff verbrannt wird, mindestens einer Turbine (3) und mindestens einem Generator (5), dadurch gekennzeichnet, dass die Abgase (20) der Gasturbine (3) über einen Wärmetauscher (11) geleitet werden, da- 25 nach H2O abgespalten wird, wonach die Abgase (20) in einen Kondensator (4) gelangen, welcher das CO₂ verflüssigt und einen Teil des CO2 und nicht kondensierbare Gase abscheidet, und der andere Teil des CO2 über eine Pumpe (1), welche das verflüssigte, unterkritische 30 CO2 auf einen überkritischen Druck fördert, zur Brennkammer (2) vor der Gasturbine (3) gelangt, wo Rauchgase (21) erzeugt werden, mit denen die Gasturbine (3) betrieben wird.

2. Verfahren zum Betrieb einer CO₂-Gasturbinenanlage gemäss Anspruch 1, dadurch gekennzeichnet, dass
ein Wärmetausch zwischen dem Wärmetauscher (11),
welcher nach der Gasturbine (3) angeordnet ist, und einem Wärmetauscher (14), welcher nach der Pumpe (1)
angeordnet ist, stattfindet.

3. Verfahren zum Betrieb einer CO₂-Gasturbinenanlage gemäss einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass ein Teil der noch unverflüssigten Rauchgase (20) nach dem Wärmetauscher (11) und vor dem Kondensator (4) an einen Verdichter (18) geleitet 45 werden, dort verdichtet werden und nach der Pumpe (1) vor der Brennkammer dem CO₂-Kreislauf wieder zugeführt werden.

4. Verfahren zum Betrieb einer CO₂-Gasturbinenanlage gemäss einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Rauchgase (20) nach der Gasturbine (3) vor dem Kondensator (4) verdichtet werden.

5. Verfahren zum Betrieb einer CO₂-Gasturbinenanlage gemäss Anspruch 4, dadurch gekennzeichnet, dass ein Wärmeaustausch stattfindet zwischen den Rauchgasen (20) und den verdichteten Rauchgasen nach dem Verdichter (18) auf der einen Seite und dem CO₂ nach der Pumpe (1), bevor es der Brennkammer (2) zugeführt wird, auf der anderen Seite.

6. Verfahren zum Betrieb einer CO₂-Gasturbinenanlage gemäss Anspruch 5, dadurch gekennzeichnet, dass der CO₂-Strom nach der Pumpe (1) geteilt wird, ein Teilstrom über einen Wärmetauscher (14) nach dem Verdichter (18) geleitet wird, der andere Teilstrom über einen Wärmetauscher (15) nach der Gasturbine (3) geleitet wird, die beiden Teilströme wieder zusammengeführt werden und vor der Brennkammer (2) über einen Wärmetauscher (16), geleitet werden, welcher mit den heissen Rauchgasen (20) direkt nach der Gasturbine (3) gespeist wird.

Hierzu 3 Seite(n) Zeichnungen

DECENTION - DE - 100 - 1

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 52 884 A1 F 02 C 3/22 10. Mai 2001

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 199 52 884 A1 F 02 C 3/22**10. Mai 2001

