П

12.2 Proof. Suppose $\limsup_{n\to\infty}|s_n|=0$. Then $\limsup_{N\to\infty}\sup\{|s_n|:n>N\}=0$. For all n>N, $\sup\{|s_n|:n>N\}\geq |s_n|\geq 0$ so by the Squeeze Lemma, $\lim_{n\to\infty}|s_n|=0$. Let $\varepsilon>0$. Then there is some $N_1>N$ such that for all $n>N_1>N$, $||s_n|-0|<\varepsilon$ so $||s_n||=|s_n|=|s_n-0|<\varepsilon$. Since ε was arbitrary, $\lim_{n\to\infty}s_n=0$. Now suppose $\lim_{n\to\infty}s_n=0$. Let $\varepsilon>0$. Then there is some $N_1\in\mathbb{N}$ such that for all $n>N_1$, $|s_n-0|=|s_n|<\varepsilon$ so ε is an upper bound on $|s_n|$. Then for all $n>N>N_1$, $|s_n|\leq \sup\{|s_n|:n>N\}<\varepsilon$. Since ε was arbitrary, $\lim_{N\to\infty}\sup\{|s_n|:n>N\}=0$ so $\limsup_{n\to\infty}|s_n|=0$.

Therefore, $\limsup_{n\to\infty} |s_n| = 0$ if and only if $\lim_{n\to\infty} s_n = 0$.

- 12.4 Proof. $\langle s_n \rangle$ is bounded so $\sup\{s_n : n > N\}$ exists. Likewise, $\langle t_n \rangle$ is bounded so $\sup\{t_n : n > N\}$ exists. Then for all n > N, $s_n \leq \sup\{s_n : n > N\}$ and $t_n \leq \sup\{t_n : n > N\}$. Hence, $s_n + t_n \leq \sup\{s_n : n > N\} + \sup\{t_n : n > N\}$ for all n > N. Since $\sup\{s_n : n > N\} + \sup\{t_n : n > N\}$ is an upper bound on $\{s_n + t_n : n > N\}$, $\sup\{s_n + t_n : n > N\}$ exists. Since it is the least upper bound, $\sup\{s_n + t_n : n > N\} \leq \sup\{s_n : n > N\} + \sup\{t_n : n > N\}$. Therefore, by (9.9c), $\limsup_{n \to \infty} s_n + t_n \leq \limsup_{n \to \infty} s_n + \limsup_{n \to \infty} t_n$.
- 12.8 Proof. $\langle s_n \rangle$ is bounded so $\sup\{s_n : n > N\}$ exists. Likewise, $\langle t_n \rangle$ is bounded so $\sup\{t_n : n > N\}$ exists. Then for all n > N, $s_n \leq \sup\{s_n : n > N\}$ and $t_n \leq \sup\{t_n : n > N\}$. Since $\langle s_n \rangle$ and $\langle t_n \rangle$ are sequences of non-negative numbers, $s_n t_n \leq \sup\{s_n : n > N\} \cdot \sup\{t_n : n > N\}$ for all n > N. Since $\sup\{s_n : n > N\} \cdot \sup\{t_n : n > N\}$ is an upper bound on $\{s_n t_n : n > N\}$, $\sup\{s_n t_n : n > N\}$ exists. Since it is the least upper bound, $\sup\{s_n t_n : n > N\} \leq \sup\{s_n : n > N\} \cdot \min\{t_n : n > N\}$. Therefore, by (9.9c), $\limsup_{n \to \infty} s_n t_n \leq \limsup_{n \to \infty} s_n \cdot \limsup_{n \to \infty} t_n$.
- 12.12 (a) We will first show that $\limsup_{n\to\infty}\sigma_n\leq \limsup_{n\to\infty}s_n$. Since $\sigma_n=\frac{1}{n}(s_1+s_2+\cdots+s_n)$ for all $n,N\in\mathbb{N}$ where n>N, $\sigma_n\leq \frac{1}{n}(s_1+s_2+\cdots+s_N+v_N+v_N+\cdots+v_N=\frac{1}{n}\sum_{i=1}^N(s_i)+\frac{n-N}{n}v_N$ where $v_N=\sup\{s_n:n>N\}$. Applying $\limsup_{n\to\infty}t$ to both sides, we get $\limsup_{n\to\infty}\sigma_n\leq \limsup_{n\to\infty}(\frac{1}{n}\sum_{i=1}^N(s_i)+\frac{n-N}{n}v_N)=v_N$. Then applying $\lim_{N\to\infty}t$ to both sides, we get that $\lim_{N\to\infty}(\limsup_{n\to\infty}\sigma_n)=\limsup_{n\to\infty}\sigma_n\leq \limsup_{n\to\infty}\sigma_n\leq \limsup_{n\to\infty}s_n$. Now, we will show that $\liminf_{n\to\infty}s_n\leq \liminf_{n\to\infty}\sigma_n$. Since $\sigma_n=\frac{1}{n}(s_1+s_2+\cdots+s_n)$ for all $n,N\in\mathbb{N}$ where n>N, $\sigma_n\geq \frac{1}{n}(s_1+s_2+\cdots+s_N+u_N+u_N+\cdots+u_N=\frac{1}{n}\sum_{i=1}^N(s_i)+\frac{n-N}{n}u_N$ where $u_N=\inf\{s_n:n>N\}$. Applying $\liminf_{n\to\infty}t$ to both sides, we get $\liminf_{n\to\infty}\sigma_n\geq \liminf_{n\to\infty}t$ to both sides, we get that $\lim_{N\to\infty}(\lim_{n\to\infty}t)=\lim_{n\to\infty}t$. Then applying $\lim_{N\to\infty}t$ to both sides, we get that $\lim_{N\to\infty}(\lim_{n\to\infty}t)=\lim_{n\to\infty}t$. Since $\lim_{n\to\infty}t$ in $\lim_{n\to\infty}t$, we have shown that $\lim_{n\to\infty}t$. Since $\lim_{n\to\infty}t$ in $\lim_{n\to\infty}t$, we have shown that $\lim_{n\to\infty}t$ in $\lim_{n\to\infty}t$.
 - (b) If $\lim_{n\to\infty} s_n$ exists and is equal to some $s\in\mathbb{R}$, then $\liminf_{n\to\infty} s_n$ and $\limsup_{n\to\infty} s_n$ exist and are equal to s as well. Then, $s\leq \liminf_{n\to\infty} \sigma_n\leq \limsup_{n\to\infty} \sigma_n\leq s$ so $s=\liminf_{n\to\infty} \sigma_n=\limsup_{n\to\infty} \sigma_n$. Therefore, $\lim_{n\to\infty} \sigma_n$ exists and $\lim_{n\to\infty} \sigma_n=s=\lim_{n\to\infty} s_n$. Since s was arbitrary, the claim holds whenever $\lim_{n\to\infty} s_n$ exists.
 - (c) Let $\langle s_n \rangle = \langle 2 + (-1)^n \rangle = \langle 1, 3, 1, 3, \dots \rangle$. Then, it is obvious that $\lim_{n \to \infty} s_n$ does not exist. Let $\sigma_n = \frac{1}{n}(s_1 + s_2 + \dots + s_n) = \frac{1}{n}((2 + (-1)^1) + (2 + (-1)^2) + \dots + (2 + (-1)^n)) = \frac{1}{n}(2n + (-1)^1 + (-1)^2 + \dots + (-1)^n)) = \frac{1}{n}(2n + (-1)^n)$. Since $\langle \sigma_n \rangle = \langle \frac{1}{n}(2n + (-1)^n) \rangle$, $\lim_{n \to \infty} \sigma_n = \lim_{n \to \infty} (2 + \frac{(-1)^n}{n}) = \lim_{n \to \infty} (2) + \lim_{n \to \infty} (\frac{(-1)^n}{n}) = 2 + 0 = 2$ by limit properties. Therefore, we have given an example where $\lim_{n \to \infty} \sigma_n$ exists, but $\lim_{n \to \infty} s_n$ does not exist.

18 February 2018 Page 1