Chapter IR:V

V. Retrieval Models

- Overview of Retrieval Models
- Empirical Models
- Boolean Retrieval
- Vector Space Model
- Probabilistic Models
- □ Binary Independence Model
- □ Okapi BM25
- Hidden Variable Models
- Latent Semantic Indexing
- □ Explicit Semantic Analysis
- Generative Models
- □ Language Models
- □ Combining Evidence
- Web Search
- □ Learning to Rank

Obviously, the terms found in a document $d \in D$ are somehow related to the semantics of d. Hidden variable models do not require this relation to be explicit and directly quantifiable.

The terms of a document $d \in D$ are a manifestation of its semantics, which actually relate to underlying concepts, ideas, or metaphors. This relation results from a common context and cultural background of author and reader.

Hidden Variable Models [Empirical Models] [Probabilistic Models] [Generative Models]

Obviously, the terms found in a document $d \in D$ are somehow related to the semantics of d. Hidden variable models do not require this relation to be explicit and directly quantifiable.

The terms of a document $d \in D$ are a manifestation of its semantics, which actually relate to underlying concepts, ideas, or metaphors. This relation results from a common context and cultural background of author and reader.

Discriminating factors of hidden variable models:

- 1. What a hidden variable represents (e.g., concept, aspect, topic).
- 2. How hidden variables relate to document d.
- 3. Extent of assumptions about independence.
- 4. Computation method for hidden variables.
- 5. Computation method of the relevance function $\rho(\mathbf{q}, \mathbf{d})$.

Term-Document Matrix

Consideration:

In an $m \times n$ term-document matrix, correlations can be observed because of synonymy, co-occurrence, repeated phrases, and n-grams.

Arguably, the m-dimensional representations of the documents can be mapped to lower-dimensional vector representations through a coordinate transformation, approximating the original vector space.

Idea:

Transform the high-dimensional vector representations to a low-dimensional space, approximating the original information as accurately as possible.

The resulting linear combinations of terms may be interpreted as hidden concepts.

Term-Document Matrix

Term-document matrix:

	d_1	d_2	 d_n
t_1	w_{1_1}	w_{1_2}	 w_{1_n}
t_2	w_{2_1}	w_{2_2}	 w_{2n}
÷			
t_m	w_{m_1}	w_{m_2}	 w_{m_n}

Term-Document Matrix

Term-document matrix:

	d_1	d_2	 d_n
t_1	w_{1_1}	w_{1_2}	 w_{1_n}
t_2	w_{2_1}	w_{2_2}	 w_{2n}
÷			
t_m	w_{m_1}	w_{m_2}	 w_{m_n}

Co-occurrence

	d_1	d_2	d_3	d_4
t_1	2	7	4	0
t_2	w_{2_1}	w_{2_2}	$w_{2_{3}}$	w_{2_4}
t_3	2	6	3	0
t_4	w_{4_1}	w_{4_2}	w_{4_4}	w_{4_4}

Term-Document Matrix

Term-document matrix:

	d_1	d_2	 d_n
t_1	w_{1_1}	w_{1_2}	 w_{1_n}
t_2	w_{2_1}	w_{2_2}	 w_{2n}
:			
t_m	w_{m_1}	w_{m_2}	 w_{m_n}

Co-occurrence

	d_1	d_2	d_3	d_4					
t_1	2	7	4	0					
t_2	w_{2_1}	w_{2_2}	$w_{2_{3}}$	w_{2_4}					
t_3	2	6	3	0					
t_4	w_{4_1}	w_{4_2}	w_{4_4}	w_{4_4}					
$t_1 \sim t_3$									

Repeated phrase

ſ	nepeated prirase								
	d_1	d_2	d_3	d_4					
t_1	1	2	4	0					
t_2	w_{2_1}	$w_{2_{2}}$	$w_{2_{3}}$	w_{2_4}					
t_3	2	4	7	0					
t_4	1	2	3	0					
t_1	$t_1 \sim 2 \cdot t_3 \wedge 1 \cdot t_4$								

Term-Document Matrix

Term-document matrix:

	d_1	d_2	 d_n
$\overline{}t_1$	w_{1_1}	w_{1_2}	 w_{1_n}
t_2	w_{2_1}	w_{2_2}	 w_{2n}
i			
t_{m}	w_{m_1}	w_{m_2}	 w_{m_n}

	Co-occurrence								
	d_1	d_2	d_3	d_4					
t_1	2	7	4	0					
t_2	w_{2_1}	w_{2_2}	$w_{2_{3}}$	w_{2_4}					
t_3	2	6	3	0					
t_4	w_{4_1}	w_{4_2}	w_{4_4}	w_{4_4}					
$t_1 \sim t_3$									

Repeated phrase d_4 d_1 d_2 d_3 t_1 $w_{2_{3}}$ t_2 w_{2_4} w_{2_1} $w_{2_{2}}$ t_3 0 3 0 t_4 $t_1 \sim 2 \cdot t_3 \wedge 1 \cdot t_4$

Synonym d_1 d_2 d_3 d_4 () t_1 w_{2_3} t_2 w_{2_1} $w_{2_{2}}$ w_{2_4} 0 t_3 0 t_4 $(t_1) \sim t_3 + t_4$

Remarks:

- \Box Co-occurrence: t_1 and t_3 occur (almost) always simultaneously.
- \Box Repeated phrase: A phrase exists, where t_1 (almost) always occurs with $2 \cdot t_3$ and one t_4 .
- $\ \square$ Synonym: For a given concept (here represented as (t_1)) holds that it can be described by either t_3 or t_4 .

Singular Value Decomposition

From linear algebra:

(1) Let A denote an $n \times n$ matrix, λ an eigenvalue of A with eigenvector x. Then:

$$A\mathbf{x} = \lambda \mathbf{x}$$

Singular Value Decomposition

From linear algebra:

(1) Let A denote an $n \times n$ matrix, λ an eigenvalue of A with eigenvector x. Then:

$$A\mathbf{x} = \lambda \mathbf{x}$$

(2) Let A denote a symmetric $n \times n$ matrix of rank r. Then A can be presented as follows:

$$A = U\Lambda U^T$$

 Λ is an $r \times r$ diagonal matrix occupied with the eigenvalues of A U is an $n \times r$ column orthonormal matrix: $U^T U = I$

Singular Value Decomposition

From linear algebra:

(1) Let A denote an $n \times n$ matrix, λ an eigenvalue of A with eigenvector x. Then:

$$A\mathbf{x} = \lambda \mathbf{x}$$

(2) Let A denote a symmetric $n \times n$ matrix of rank r. Then A can be presented as follows:

$$A = U \Lambda U^T$$

 Λ is an $r \times r$ diagonal matrix occupied with the eigenvalues of A U is an $n \times r$ column orthonormal matrix: $U^T U = I$

(3) Let A denote an $m \times n$ matrix of rank r. Then A can be presented as follows:

$$A = USV^T$$

U is an $m \times r$ column orthonormal matrix S is an $r \times r$ diagonal matrix occupied by the singular values of A V is an $n \times r$ column orthonormal matrix

Singular Value Decomposition

From linear algebra (continued):

(4) With $A = USV^T$ holds:

$$A^{T}A = (US V^{T})^{T}(US V^{T}) = VSU^{T}US V^{T} = VS^{2}V^{T}$$

The columns of V are eigenvectors of A^TA .

The singular values of A correspond to the square root of the eigenvalues of A^TA .

Singular Value Decomposition

From linear algebra (continued):

(4) With $A = USV^T$ holds:

$$A^{T}A = (US V^{T})^{T}(US V^{T}) = VSU^{T}US V^{T} = VS^{2}V^{T}$$

The columns of V are eigenvectors of A^TA .

The singular values of A correspond to the square root of the eigenvalues of A^TA .

(5) and moreover:

$$AA^T = (US V^T)(US V^T)^T = US V^T VSU^T = US^2 U^T$$

The columns of U are eigenvectors of AA^T .

The singular values of A correspond to the square root of the eigenvalues of AA^T

Singular Value Decomposition

From linear algebra (continued):

(4) With $A = USV^T$ holds:

$$A^{T}A = (US V^{T})^{T}(US V^{T}) = VSU^{T}US V^{T} = VS^{2}V^{T}$$

The columns of V are eigenvectors of A^TA .

The singular values of A correspond to the square root of the eigenvalues of A^TA .

(5) and moreover:

$$AA^{T} = (US V^{T})(US V^{T})^{T} = US V^{T}VSU^{T} = US^{2}U^{T}$$

The columns of U are eigenvectors of AA^T .

The singular values of A correspond to the square root of the eigenvalues of AA^T

(6) $A = USV^T$ can be written as sum of (dyadic) vector products:

$$A = s_1(\mathbf{u}_1\mathbf{v}_1^T) + s_2(\mathbf{u}_2\mathbf{v}_2^T) + \ldots + s_r(\mathbf{u}_r\mathbf{v}_r^T)$$

Approximation of A by omission of summands with smallest singular values.

Singular Value Decomposition

Singular value decomposition $A = USV^T$:

- U is column orthonormal
- S is diagonal, $r \leq \min\{m, n\}$

 V^T is row orthonormal

Singular Value Decomposition

Dimensionality reduction $A_k = U_k S_k V_k^T$:

 U_k is column orthonormal S_k is diagonal, k < r

 V_k^T is row orthonormal

Remarks:

- The eigenvalues of A result from the equation $\det(A \lambda I) = 0$. This equation defines a polynomial of n-th degree that has n roots, which can be real or complex and repeated. The corresponding eigenvectors are orthogonal.
- A symmetric matrix has real eigenvalues. A positive-definite matrix has only positive eigenvalues.
- ☐ The singular value decomposition generalizes the eigen decomposition to rectangular matrices.
- \Box Matrix multiplication and transposition: $(AB)^T = B^T A^T$
- \Box Matrix diagonalization or eigen decomposition of a square matrix A: $A = PDP^{-1}$, where D is a diagonal matrix with the eigenvalues of A, and P contains the eigenvectors of A. A is diagonalizable, iff it has n linearly independent eigenvectors.
- \Box $U^T = U^{-1}$, if U is an orthogonal matrix.
- \Box $U^TU=I$, if U is a column orthonormal matrix.
- Reducing the $r \times r$ diagonal matrix S to the smaller $k \times k$ diagonal matrix S_k is done by omitting the smallest diagonal elements, presuming the column vectors of U_k and V_k are ordered accordingly.
- \Box Typically, for a term-document matrix with rank of several thousands, k is chosen in the low hundreds.

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean Retrieval] [VSM] [BIM] [BM25] [ESA] [LM]

Document representations D.

- 1. The document representations of the vector space model are combined to form an $m \times n$ term-document matrix A.
- 2. By dimensionality reduction, A is turned into a concept-document matrix $\mathbf{D} = V_k^T$. \mathbf{D} represents the documents in a concept space (latent semantic space).

Query representations Q.

Starting from a query q's vector space model representation \mathbf{q} , the following operation transforms \mathbf{q} into the concept space:

$$\mathbf{q}' = \mathbf{q}^T U_k S_k^{-1}$$

Relevance function ρ .

 ρ is applied directly on the representations of documents and queries in concept space. The retrieval functions of the vector space model can be directly applied (e.g., cosine similarity).

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean Retrieval] [VSM] [BIM] [BM25] [ESA] [LM]

Document representations D.

- 1. The document representations of the vector space model are combined to form an $m \times n$ term-document matrix A.
- 2. By dimensionality reduction, A is turned into a concept-document matrix $\mathbf{D} = V_k^T$. D represents the documents in a concept space (latent semantic space).

Query representations Q.

Starting from a query q's vector space model representation \mathbf{q} , the following operation transforms \mathbf{q} into the concept space:

$$\mathbf{q}' = \mathbf{q}^T U_k S_k^{-1}$$

Relevance function ρ .

 ρ is applied directly on the representations of documents and queries in concept space. The retrieval functions of the vector space model can be directly applied (e.g., cosine similarity).

Example [Schek 2001]

Document collection *D*:

$\overline{d_1}$	Human machine interface for Lab ABC computer applications.
d_2	A survey of user opinion of computer system response time.
d_3	The EPS user interface management system.
d_4	System and human system engineering testing of EPS.
d_5	Relation of user-perceived response time to error measurement.
$\overline{d_6}$	The generation of random, binary, unordered trees.
d_7	The intersection graph of paths in trees.
d_8	Graph minors IV: Widths of trees and well-quasi-ordering.
d_9	Graph minors: A survey

Example [Schek 2001]

Document collection D:

```
Human machine interface for Lab ABC computer applications.
d_1
      A survey of user opinion of computer system response time.
d_2
      The EPS user interface management system.
d_3
      System and human system engineering testing of EPS.
d_4
      Relation of user-perceived response time to error measurement.
d_5
d_6
      The generation of random, binary, unordered trees.
      The intersection graph of paths in trees.
d_7
      Graph minors IV: Widths of trees and well-quasi-ordering.
d_8
      Graph minors: A survey
d_9
```

Query $q = \{ human, computer, interaction \}$

Example [Schek 2001]

Document collection *D*:

- d_1 Human machine interface for Lab ABC computer applications. d_2 A survey of user opinion of computer system response time.
- d_3 The EPS user interface management system.
- d_4 System and human system engineering testing of EPS.
- d_5 Relation of user-perceived response time to error measurement.
- d_6 The generation of random, binary, unordered trees.
- d_7 The intersection graph of paths in trees.
- d_8 Graph minors IV: Widths of trees and well-quasi-ordering.
- d_9 Graph minors: A survey

Query $q = \{ human, computer, interaction \}$

The documents have many relations, transitivley relating the query to them.

Remarks:

- \Box Retrieval in term-document space under the Boolean retrieval model with \land -connected terms in \mathbf{q} : result set $R = \emptyset$.
- □ Retrieval in term-document space under the Boolean retrieval model with \vee -connected terms in \mathbf{q} : result set $R = \{d_1, d_2, d_4\}$.
- \Box Retrieval in term-document space under the vector space model: result set $R = \{d_1, d_2, d_4\}$.

Example: Term-Document Matrix A

	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8	$\overline{d_9}$
human	1	<u>α2</u>	——————————————————————————————————————		——————————————————————————————————————				
interface	1		1	•					
computer	1	1	-						
user		1	1		1				
system		1	1	2					
response		1			1				
time		1			1				
EPS			1	1					
survey		1							1
trees						1	1	1	
graph							1	1	1
minors								1	1

Terms occurring in only one document, and stop words are omitted.

Example: Singular Value Decomposition $A = USV^T$

0.2214	-0.1132	0.2890	-0.4148	-0.1063	-0.3410	0.5227	-0.0605	-0.4067
0.1976	-0.0721	0.1350	-0.5522	0.2818	0.4959	-0.0704	-0.0099	-0.1089
0.2405	0.0432	-0.1644	-0.5950	-0.1068	-0.2550	-0.3022	0.0623	0.4924
0.4036	0.0571	-0.3378	0.0991	0.3317	0.3848	0.0029	-0.0004	0.0123
0.6445	-0.1673	0.3611	0.3335	-0.1590	-0.2065	-0.1658	0.0343	0.2707
0.2650	0.1072	-0.4260	0.0738	0.0803	-0.1697	0.2829	-0.0161	-0.0539
0.2650	0.1072	-0.4260	0.0738	0.0803	-0.1697	0.2829	-0.0161	-0.0539
0.3008	-0.1413	0.3303	0.1881	0.1148	0.2722	0.0330	-0.0190	-0.1653
0.2059	0.2736	-0.1776	-0.0324	-0.5372	0.0809	-0.4669	-0.0363	-0.5794
0.0127	0.4902	0.2311	0.0248	0.5942	-0.3921	-0.2883	0.2546	-0.2254
0.0361	0.6228	0.2231	0.0007	-0.0683	0.1149	0.1596	-0.6811	0.2320
0.0318	0.4505	0.1411	-0.0087	-0.3005	0.2773	0.3395	0.6784	0.1825

Example: Singular Value Decomposition $A = USV^T$

	0.2214	-0.1132	0.2890	-0.4148	-0.1063	-0.3410	0.5227	-0.0605	-0.4067	İ
	0.1976	-0.0721	0.1350	-0.5522	0.2818	0.4959	-0.0704	-0.0099	-0.1089	ì
	0.2405	0.0432	-0.1644	-0.5950	-0.1068	-0.2550	-0.3022	0.0623	0.4924	ì
	0.4036	0.0571	-0.3378	0.0991	0.3317	0.3848	0.0029	-0.0004	0.0123	Ì
U =	0.6445	-0.1673	0.3611	0.3335	-0.1590	-0.2065	-0.1658	0.0343	0.2707	Ì
	0.2650	0.1072	-0.4260	0.0738	0.0803	-0.1697	0.2829	-0.0161	-0.0539	ì
U —	0.2650	0.1072	-0.4260	0.0738	0.0803	-0.1697	0.2829	-0.0161	-0.0539	Ì
	0.3008	-0.1413	0.3303	0.1881	0.1148	0.2722	0.0330	-0.0190	-0.1653	ì
	0.2059	0.2736	-0.1776	-0.0324	-0.5372	0.0809	-0.4669	-0.0363	-0.5794	ì
	0.0127	0.4902	0.2311	0.0248	0.5942	-0.3921	-0.2883	0.2546	-0.2254	Ì
	0.0361	0.6228	0.2231	0.0007	-0.0683	0.1149	0.1596	-0.6811	0.2320	Ì
	0.0318	0.4505	0.1411	-0.0087	-0.3005	0.2773	0.3395	0.6784	0.1825	
	3.3409									
	0.0.00	2.5417								
			2.3539	1 0445						
S =				1.6445	1.5048					
\mathcal{D} —					1.50+0	1.3064				
							0.8459			
								0.5601	0.0007	
									0.3637	

Example: Singular Value Decomposition $A = USV^T$

U =	0.2214 0.1976 0.2405 0.4036 0.6445 0.2650 0.2650 0.3008 0.2059 0.0127 0.0361 0.0318	-0.1132 -0.0721 0.0432 0.0571 -0.1673 0.1072 0.1072 -0.1413 0.2736 0.4902 0.6228 0.4505	0.2890 0.1350 -0.1644 -0.3378 0.3611 -0.4260 -0.4260 0.3303 -0.1776 0.2311 0.2231 0.1411	-0.4148 -0.5522 -0.5950 0.0991 0.3335 0.0738 0.0738 0.1881 -0.0324 0.0248 0.0007 -0.0087	-0.1063 0.2818 -0.1068 0.3317 -0.1590 0.0803 0.0803 0.1148 -0.5372 0.5942 -0.0683 -0.3005	-0.3410 0.4959 -0.2550 0.3848 -0.2065 -0.1697 -0.1697 0.2722 0.0809 -0.3921 0.1149 0.2773	0.5227 -0.0704 -0.3022 0.0029 -0.1658 0.2829 0.2829 0.0330 -0.4669 -0.2883 0.1596 0.3395	-0.0605 -0.0099 0.0623 -0.0004 0.0343 -0.0161 -0.0190 -0.0363 0.2546 -0.6811 0.6784	-0.4067 -0.1089 0.4924 0.0123 0.2707 -0.0539 -0.1653 -0.5794 -0.2254 0.2320 0.1825
S =	3.3409	2.5417	2.3539	1.6445	1.5048	1.3064	0.8459	0.5601	0.3637
$V^T =$	0.1974 -0.0559 0.1103 -0.9498 0.0457 -0.0766 0.1773 -0.0144 -0.0637	0.6060 0.1656 -0.4973 -0.0286 -0.2063 -0.2565 -0.4330 0.0493 0.2428	0.4629 -0.1273 0.2076 0.0416 0.3783 0.7244 -0.2369 0.0088 0.0241	0.5421 -0.2318 0.5699 0.2677 -0.2056 -0.3689 0.2648 -0.0195 -0.0842	0.2795 0.1068 -0.5054 0.1500 0.3272 0.0348 0.6723 -0.0583 -0.2624	0.0038 0.1928 0.0982 0.0151 0.3948 -0.3002 -0.3408 0.4545 -0.6198	0.0146 0.4379 0.1930 0.0155 0.3495 -0.2122 -0.1522 -0.7615 0.0180	0.0241 0.6151 0.2529 0.0102 0.1498 0.0001 0.2491 0.4496 0.5199	0.0820 0.5299 0.0793 -0.0246 -0.6020 0.3622 0.0380 -0.0696 -0.4535

Example: Dimensionality Reduction $A_k = U_k S_k V_k^T$

U_k							
0.2214	-0.1132						
0.1976	-0.0721						
0.2405	0.0432						
0.4036	0.0571						
0.6445	-0.1673						
0.2650	0.1072						
0.2650	0.1072						
0.3008	-0.1413						
0.2059	0.2736						
0.0127	0.4902						

0.6228

0.4505

0.0361

0.0318

S_k							
3.3409	2.5417						
	2.0417						

				V_k^T		
0.1974	0.6060	0.4629	0.5421	0.2795	0.0038	0.0146
0.0559	0.1656	-0.1273	-0.2318	0.1068	0.1928	0.4379

0.0241 0.0820 0.6151 0.5299

Example: Dimensionality Reduction $A_k = U_k S_k V_k^T$

 V_k^T S_k U_k 3.3409 0.2214 -0.1132 0.1974 0.6060 0.4629 0.5421 0.2795 0.0038 0.0146 0.0241 0.1976 -0.0721 2.5417 -0.0559 0.1656 -0.1273 -0.2318 0.1068 0.1928 0.4379 0.6151 0.5299 0.2405 0.0432 0.4036 0.0571 0.6445 -0.1673 0.2650 0.1072 0.2650 0.1072 0.3008 -0.14130.2736 0.2059 0.0127 0.4902 0.6228 0.0361 0.0318 0.4505

 A_k

0.1621 0.4005 0.3790 0.1760-0.0527-0.1151 -0.1591-0.09180.4676 0.1406 0.3698 0.3290 0.1650 -0.0328-0.0706-0.0968-0.04300.1524 0.5050 0.3579 0.0242 0.0598 0.1240 0.4101 0.2362 0.0869 0.2580 0.8411 0.6057 0.0331 0.1218 0.1874 0.6974 0.3923 0.0832 0.4488 1.2344 1.0509 1.2658 0.5563 -0.0738-0.1547-0.2096-0.04890.2765 0.1596 0.5817 0.3752 0.0559 0.1322 0.1889 0.2169 0.4169 0.1596 0.5817 0.3752 0.4169 0.2765 0.0559 0.1322 0.1889 0.2169 0.5496 -0.10790.2185 0.5110 0.2425 -0.0654-0.1425-0.19660.0969 0.5321 0.2299 0.2118 0.2665 0.1368 0.3146 0.4444 0.4250 0.2321 -0.13890.2404 0.7674 0.6637 -0.0613 -0.2656 0.1449 0.5461 0.8487 -0.06470.3353 -0.1456 -0.3014 0.2028 0.3057 0.6949 0.9766 0.6155 -0.0431 0.2539 -0.0967 -0.2079 0.1519 0.2212 0.5029 0.7069

Example: Dimensionality Reduction $A_k = U_k S_k V_k^T$

2.5417

 U_k 0.2214 -0.1132 0.1976 -0.0721 0.2405 0.0432 0.4036 0.0571 0.6445 -0.1673 0.2650 0.1072 0.2650 0.1072 0.3008 -0.14130.2736 0.2059 0.4902 0.0127 0.6228 0.0361 0.0318 0.4505 S_k V_k^T 3.3409 0.1974 0.6060 0.4629 0.5421 0.27

 A_k

0.1621 0.4005 0.3790 -0.0527-0.1151 -0.1591-0.09180.4676 0.1760 0.3698 0.1406 0.3290 -0.0328-0.0706-0.0968-0.04300.1650 0.1524 0.5050 0.3579 0.0242 0.0598 0.1240 0.2362 0.08690.2580 0.8411 0.6057 0.0331 0.1874 0.4488 1.2344 1.0509 -0.0738-0.04890.1596 0.5817 0.3752 0.0559 0.1889 0.2169 0.4169 0.1596 0.5817 0.3752 0.0559 0.1322 0.1889 0.2169 0.2185 0.5496 -0.10790.5110 -0.0654-0.19660.0969 0.5321 0.2299 0.2665 0.1368 0.3146 0.4444 0.4250 0.2321 -0.13890.2404 0.7674 0.6637 -0.0613-0.2656 0.1449 0.5461 0.8487 -0.06470.3353 -0.1456-0.3014 0.2028 0.3057 0.6949 0.9766 0.6155 -0.0431 0.2539 -0.0967 -0.2079 0.1519 0.2212 0.5029 0.7069

 $\mathbf{q} \quad \mathbf{q}' = \mathbf{q}^T U_k S_k^{-1}$

1 0.1382 -0.0276

0

0

0

0

0

0

0

0

IR:V-120 Retrieval Models

Example: Retrieval in Concept Space

 $\varphi = 30^{\circ}$ → Documents must have a cosine similarity of >0.87 to the query vector \mathbf{q}' .

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ (continued)

Adding new documents:

- 1. add original document vector d as column to A_k
- 2. compute reduced document vector $\mathbf{d}' = \mathbf{d}^T U_k S_k^{-1}$ (compare with query representation)
- 3. add reduced document vector \mathbf{d}' to V_k^T

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ (continued)

Adding new terms:

- 1. add original term vector \mathbf{t} as row to A_k
- 2. compute reduced term vector $\mathbf{t}' = \mathbf{t}^T V_k S_k^{-1}$
- 3. add reduced term vector \mathbf{t}' as row to U_k

Example 2 [Schek 2001]

	d_1	d_2	d_3	d_4	d_5	d_6	$\overline{d_7}$
data	1	2	1	5	0	0	0
information	1	2	1	5	0	0	0
retrieval	1	2	1	5	0	0	0
brain	0	0	0	0	2	3	1
lung	0	0	0	0	2	3	1

Example 2 [Schek 2001]

	d_1	d_2	d_3	d_4	d_5	d_6	$\overline{d_7}$
data	1	2	1	5	0	0	0
information	1	2	1	5	0	0	0
retrieval	1	2	1	5	0	0	0
brain	0	0	0	0	2	3	1
lung	0	0	0	0	2	3	1

 $A = USV^T$, approximates: $A_k = U_k S_k V_k^T$

 $\mathsf{Rank}(A) = \mathbf{2}$, so that with k=2, it follows that $A_2 = A, \ U_2 = U, \ S_2 = S, \ V_2^T = V^T$:

Example 2 [Schek 2001]

	d_1	d_2	d_3	d_4	d_5	d_6	$\overline{d_7}$
data	1	2	1	5	0	0	0
information	1	2	1	5	0	0	0
retrieval	1	2	1	5	0	0	0
brain	0	0	0	0	2	3	1
lung	0	0	0	0	2	3	1

$$A = USV^T$$
, approximates: $A_k = U_k S_k V_k^T$

 $\mathsf{Rank}(A) = \mathsf{2}$, so that with k = 2, it follows that $A_2 = A, \ U_2 = U, \ S_2 = S, \ V_2^T = V^T$:

$$A = \begin{pmatrix} 0.58 & 0 \\ 0.58 & 0 \\ 0.58 & 0 \\ 0 & 0.71 \\ 0 & 0.71 \\ 0 & 0.71 \end{pmatrix} \times \begin{pmatrix} 9.64 & 0 \\ 0 & 5.29 \end{pmatrix} \times \begin{pmatrix} 0.18 & 0.36 & 0.18 & 0.9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.53 & 0.8 & 0.27 \end{pmatrix}$$

Remarks:

☐ There are two concepts; the computer science concept {data, information, retrieval} and the medicine concept {brain, lung}.

Example 2: Document Similarity Matrix A^TA

Example 2: Document Similarity Matrix A^TA

Interpretation. A^TA shows document clusters.

Example 2: Document Similarity Matrix A^TA

Interpretation. A^TA shows document clusters.

Explanation. Since $A^TA = VS^2V^T$, the rows of V_k^T are eigenvectors of A^TA , which denote uncorrelated principal directions of documents clusters:

$$V_2^T = \begin{pmatrix} 0.18 & 0.36 & 0.18 & 0.9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.53 & 0.8 & 0.27 \end{pmatrix}$$

 \rightarrow If d_1 is relevant, so are d_2, d_3, d_4 , but not d_5, d_6, d_7 .

Example 2: Term Similarity Matrix AA^T

Example 2: Term Similarity Matrix AA^T

Interpretation. AA^T shows term clusters, i.e., concepts, possibly synonyms.

Example 2: Term Similarity Matrix AA^T

Interpretation. AA^T shows term clusters, i.e., concepts, possibly synonyms.

Explanation. Since $AA^T = US^2U^T$, the columns of U_k are the eigenvectors of AA^T , which denote uncorrelated principal directions for concepts:

$$U_2 = \begin{pmatrix} 0.58 & 0 \\ 0.58 & 0 \\ 0.58 & 0 \\ 0 & 0.71 \\ 0 & 0.71 \\ 0 & 0.71 \end{pmatrix}$$

Discussion

Advantages:

- automatic discovery of hidden concepts
- syntactic detection of synonyms
- semantic query expansion based on syntactical analysis—not based on relevance feedback

Disadvantages:

- the effect of LSI in this domain is not fully understood; a theoretical connection to linguistics is only partially available
- LSI works best in a closed-set retrieval situation: the document collection is known, available, and does not change a lot
- \Box the singular value decomposition is computationally expensive, $O(n^3)$

Concept Hypothesis

Consideration:

An explicit manifestation of a concept is a document talking about it. However, most documents cover more than one concept at a time, and hardly any in depth.

Arguably, a (long) Wikipedia article covers exactly one concept in depth.

Idea:

Given a set D^* of Wikipedia articles, interpret their normalized representations D^* under the vector space model as explicit concepts, spanning a concept space.

Then a document can be embedded into the concept space, e.g., by computing its similarity under the vector space model to the concept representations in \mathbf{D}^* .

Caveat:

This concept hypothesis has been falsified. Other kinds of documents work, too.

 \rightarrow We say that a document in D^* represents a pseudo-concept.

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean Retrieval] [VSM] [BIM] [BM25] [LSI] [LM]

Document representations D.

- 1. Given a collection D^* of index documents, let A_{D^*} denote an $m \times n$ term-document matrix of the combined, normalized index document representations under the vector space model.
- 2. Starting from a normalized document d's vector space model representation d, its ESA representation is computed as follows:

$$\mathbf{d}' = A_{D^*}^T \cdot \mathbf{d}$$

D represents the documents in a pseudo-concept space, where each document $d^* \in D^*$ is interpreted as manifestation of one (orthogonal) pseudo-concept.

Query representations Q.

Query representations q' are computed like document representations.

Relevance function ρ .

 ρ is applied directly on the representations of documents and queries in concept space. The retrieva functions of the vector space model can be directly applied (e.g., cosine similarity).

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean Retrieval] [VSM] [BIM] [BM25] [LSI] [LM]

Document representations D.

- 1. Given a collection D^* of index documents, let A_{D^*} denote an $m \times n$ term-document matrix of the combined, normalized index document representations under the vector space model.
- 2. Starting from a normalized document d's vector space model representation d, its ESA representation is computed as follows:

$$\mathbf{d}' = A_{D^*}^T \cdot \mathbf{d}$$

D represents the documents in a pseudo-concept space, where each document $d^* \in D^*$ is interpreted as manifestation of one (orthogonal) pseudo-concept.

Query representations Q.

Query representations q' are computed like document representations.

Relevance function ρ .

 ρ is applied directly on the representations of documents and queries in concept space. The retrieval functions of the vector space model can be directly applied (e.g., cosine similarity).

Document Representation

Let $D^* = \{d_1, \ldots, d_m\}$ denote a collection of documents, called index documents, and let \mathbf{D}^* be the set of document representations under the vector space model.

Under explicit semantic analysis, a document d is represented by its vector space model similarities to D^* :

$$\mathbf{d}' = (\rho_{VSM}(\mathbf{d}_1, \mathbf{d}), \ldots, \rho_{VSM}(\mathbf{d}_m, \mathbf{d}))^T$$

Let ρ_{VSM} be the cosine similarity measure, and let $||\mathbf{d}_i|| = ||\mathbf{d}|| = 1$:

$$\mathbf{d}' = (\mathbf{d}_1^T \cdot \mathbf{d}, \ldots, \mathbf{d}_m^T \cdot \mathbf{d})^T = A_{D^*}^T \cdot \mathbf{d},$$

where A_{D^*} is the term-document matrix of D^* .

Relevance Function ρ

Given a query q and a document d, and an index collection D^* , let \mathbf{q}' and \mathbf{d}' denote the representations of q and d under the explicit semantic analysis model.

The relevance of document d to query q is computed using the cosine similarity:

$$\rho(\mathbf{q}', \mathbf{d}') = \frac{\mathbf{q}'^{T} \cdot \mathbf{d}'}{||\mathbf{q}'|| \cdot ||\mathbf{d}'||} \qquad \mathcal{O}(|q| \cdot |D^*|)$$

$$= \frac{(A_{D^*}^T \cdot \mathbf{q})^T \cdot A_{D^*}^T \cdot \mathbf{d}}{||\mathbf{q}'|| \cdot ||\mathbf{d}'||}$$

$$= \frac{\mathbf{q}^T \cdot A_{D^*} \cdot A_{D^*}^T \cdot \mathbf{d}}{\sqrt{\mathbf{q}^T \cdot A_{D^*} \cdot A_{D^*}^T \cdot \mathbf{q}} \cdot ||\mathbf{d}'||} \qquad \mathcal{O}(|q|)$$

The majority of the computations can be done offline.

Relevance Function ρ

The multiplication $A_{D^*} \cdot A_{D^*}^T$ yields a term co-occurrence matrix G:

Given term t_i and t_j from T, the matrix G has a non-zero value in its i-th row and its j-th value iff a document $d \in D^*$ exists that contains both t_i and t_j . Thus:

$$\rho(\mathbf{q}, \mathbf{d}) = \frac{\mathbf{q}^T \cdot G \cdot \mathbf{d}}{\sqrt{\mathbf{q}^T \cdot G \cdot \mathbf{q}} \cdot \sqrt{\mathbf{d}^T \cdot G \cdot \mathbf{d}}}$$

Discussion

Advantages:

- simple model
- better retrieval performance than basic models
- can be improved by using a tailored index collection

Disadvantages:

- concept hypothesis is weak; has been shown to also work with random documents
- requires high-dimensional representations >10.000 index documents
- computationally expensive