Министерство науки и высшего образования Российской Федерации Московский физико-технический институт (национальный исследовательский университет) Заочная физико-техническая школа

МАТЕМАТИКА

Планиметрия (часть II)

Решение задания №5 для 9-х классов

(2020-2021 учебный год)

г. Долгопрудный, 2021

Составитель: Т.С. Пиголкина, доцент кафедры высшей математики МФТИ.

Математика: решение задания №5 для 9-х классов (2020 — 2021 учебный год), 2021, 20 с.

Составитель:

Пиголкина Татьяна Сергеевна

Подписано 22.03.21. Формат 60×90 1/16. Бумага типографская. Печать офсетная. Усл. печ. л. 1,25. Уч.-изд. л. 1,11.

Заочная физико-техническая школа Московского физико-технического института (национального исследовательского университета)

Институтский пер., 9, г. Долгопрудный, Москов. обл., 141700. ЗФТШ, тел. (495) 408-51-45 — **заочное отделение**, тел. (498) 744-63-51 — **очно-заочное отделение**, тел. (498) 744-65-83 — **очное отделение**.

e-mail: zftsh@mail.mipt.ru

Наш сайт: zftsh.online

© МФТИ, ЗФТШ, 2021

Все права защищены. Воспроизведение учебно-методических материалов и материалов сайта ЗФТШ в любом виде, полностью или частично, допускается только с письменного разрешения правообладателей.

Контрольные вопросы

- **1(4). a)** В треугольник ABC вписана окружность. Может ли каждая из сторон делиться точкой касания в отношении 2:1?
- **б)** Около трапеции описана окружность. Докажите, что сумма оснований трапеции равна сумме боковых сторон.
- **в)** Треугольник ABC описан около окружности, угол B равен 60° , AC=7, полупериметр p=10. Найти стороны треугольника.

Δ 1 a(1). Пусть E, F, K — точки касания сторон AC, AB, BC и пусть AE = 2EC, EC = x (рис. 1). По свойству касательных AF = 2x, CK = x и BF = BK. Если сторона AB делится в том же отношении, то либо BF = 4x, либо BF = x. Если BF = 4x, то и BK = 4x и BK : KC = 4:1. Если же BF = x, то BK = x и BK : KC = 1:1.

Ответ: не может.

Рис. 1

Рис. 2

16(1). Пусть K, L, M, N- точки касания сторон трапеции (рис. 2). Отметив равные отрезки касательных через x, y, z и t, получим AB+CD=x+y+z+t и $AD+BC=x+t+y+z \Leftrightarrow AB+CD=AD+BC$, ч. т. д.

1в(2). Если
$$AK = x$$
 (рис. 3),то $AM = x$, $MC = 7 - x = CL \Rightarrow$ $\Rightarrow 2p = 2y + 2x + 2(7 - x) \Rightarrow$ $\Rightarrow 2p = 2y + 2 \cdot 7 \Rightarrow p = y + 7 \Rightarrow$ $\Rightarrow y = 10 - 7 = 3$. Итак $AB = x + 3$, $AC = 7$, $BC = 3 + 7 - x = 10 - x$. Теорема косинусов: $AC^2 = AB^2 + BC^2 - 2 \cdot AB \cdot BC \cdot \cos 60^\circ \Leftrightarrow \Leftrightarrow 49 = (x + 3)^2 + (10 - x)^2 - (x + 3)(10 - x) \Leftrightarrow$

 \Leftrightarrow 3x² - 21x + 30 = 0 \Leftrightarrow x² - 7x + 10 = 0 \Leftrightarrow

Рис. 3

 \Leftrightarrow $(x-2)(x-5) \Rightarrow$ Стороны 5, 8, 7. \blacktriangle

- 2(6). а) Когда около четырёхугольника можно описать окружность?
- **6)** Около четырёхугольника ABCD описана окружность. Прямые AB и CD пересекаются в точке K, а прямые AD и BC- в точке M (рис. 4). Найти величину угла BAD, если угол K равен 45° , а угол $M=25^{\circ}$.
 - в) Когда около трапеции можно описать окружность?
- г) В треугольнике ABC угол ACB равен 60° , биссектрисы AK и BD пересекаются в точке O. Можно ли около четырёхугольника DOKC описать окружность?
- Δ 2 a(1). Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противолежащих углов равна 180° .
- **2 б(2).** Около четырёхугольника ABCD описана окружность (рис. 4). Обозначим $\angle BAD = x$, тогда $\angle BCD = 180^{\circ} x$. Углы BCD и BCK -смежные, как и углы BCD и MCD, поэтому $\angle BCK = \angle MCD = x$. Угол ABC внешний для треугольника KBC, по теореме $\angle ABC = x + 45^{\circ}$. Угол ADC внешний для треугольника MCD, $\angle ADC = x + 25^{\circ}$. Углы ADC и ABC в сумме дают 180° : $2x + 70^{\circ} = 180^{\circ}$, $x = 55^{\circ}$.

Рис. 4

- **2** в(2). Около трапеции можно описать окружность тогда и только тогда, когда она равнобокая. Докажем это. 1) Если трапеция ABCD равнобокая (рис. 5), то $\angle A = \angle D$, а из параллельности $AD \parallel BC$ следует $\angle A + \angle B = 180^\circ$. В это равенство вместо $\angle A$ подставляем равный ему $\angle D$, получаем $\angle D + \angle B = 180^\circ \Rightarrow$ около равнобокой трапеции можно описать окружность.
- 2) Пусть трапеция *KLMN* вписана (рис. 6). Проведём диагональ *KM*. Накрест лежащие углы 1 и 2 равны. Равные вписанные углы опираются

на равные хорды: $KL = 2R\sin(\angle 1)$, $MN = 2R\cdot\sin(\angle 2) \Rightarrow KL = MN$, трапеция равнобокая.

- **2 г(1).** В треугольнике AOB углы, прилежащие к стороне AB, равны A/2 и B/2 (рис. 7), угол AOB равен $180^{\circ} \frac{A+B}{2}$, вертикальный к ним угол DOK, $\angle DOK = \angle AOB = 180^{\circ} \frac{A+B}{2}$. По условию $\angle C = 60^{\circ}$; из $A+B+C=180^{\circ}$ следует $A+B=120^{\circ}$, $\frac{A+B}{2}=60^{\circ}$, $\angle DOK=120^{\circ}$. В четырёхугольнике DOKC имеем $\angle DOK+\angle KCD=180^{\circ} \Rightarrow$ около него можно описать окружность. \blacktriangle
- **3(6).** а) Доказать равенство $a = 2R \sin \alpha$, где a хорда окружности радиуса R, а α величина вписанного угла, опирающегося на ходу a.
- **б)** Биссектриса угла B треугольника ABC пересекает описанную около треугольника окружность в точке S, AC = CS = 5. Чему равен угол ABC (рис. 9)?
- **в)** Около треугольника ABC описана окружность, угол A равен 15° , угол $B = 45^{\circ}$, $AB = 4\sqrt{3}$. Найти радиус окружности и длину стороны AC.

А 3 a(2). Пусть BC — хорда окружности с центром в точке O и радиуса R, BC = a и опирающийся на хорду BC вписанный угол равен α (рис. 8). Проведём диаметр CD. Если точка A и центр O лежат по одну сторону от прямой BC, то угол BAC, опирающийся на хорду BC, острый и $\angle BDC = \angle BAC = \alpha$. Из прямоугольного треугольника BDC следует $BC = CD\sin(\angle BDC)$, т. е. $a = 2R\sin\alpha$.

Если угол BAC — тупой (центр O и вершина A лежат по разные стороны от прямой BC), то $\angle BDC = 180^{\circ} - \alpha$ и $a = 2R\sin\left(180^{\circ} - \alpha\right) = 2R\sin\alpha$. Если угол α — прямой, то $a = 2R\sin90^{\circ} = 2R$.

3 б(2). По доказанной формуле $AC = 2R\sin B$, $CS = 2R\sin \frac{B}{2}$ \Rightarrow

$$\Rightarrow \frac{AC}{CS} = 1 \Rightarrow \frac{2R \cdot 2\sin\frac{B}{2}\cos\frac{B}{2}}{2R\sin\frac{B}{2}} = 2\cos\frac{B}{2} = 1 \Rightarrow \frac{B}{2} = 60^{\circ}, \qquad \underline{\angle ABC} = 120^{\circ}$$

(рис. 9).

3 в(2). В треугольнике сумма углов $\angle A + \angle B + \angle C = 180^{\circ}$, $\angle A + \angle B = 60^{\circ}$ (рис. 10) $\Rightarrow \angle C = 120^{\circ}$. По формуле $a = 2R \sin \alpha$ имеем

$$R = \frac{AB}{2\sin 120^{\circ}} = \frac{4\sqrt{3}}{\sqrt{3}} = 4$$
, $R = 4$, тогда $AC = 2R\sin 45^{\circ} = 4\sqrt{2}$.

- **4(5).** а) Хорды AB и CD окружности радиуса R пересекаются в точке M и перпендикулярны друг другу (рис. 11). Доказать, что $AC^2 + BD^2 = CB^2 + AD^2 = 4R^2$.
- **б)** Трапеция ABCD с основаниями AD=8 и BC=6 вписана в окружность. Диагонали AC и BD перпендикулярны друг другу. Найти радиус окружности, боковые стороны, высоту трапеции.

Рис. 11

Рис. 12

Рис. 13

А 4 a(2). Проведём хорду AD и обозначим $\alpha = \angle DAB$ (рис. 11). Угол DAB опирается на хорду $DB \Rightarrow DB = 2R \sin \alpha$. На хорду AC опирается угол

$$ADC = 90^{\circ} - \alpha \implies AC = 2R\sin(90^{\circ} - \alpha) = 2R\cos\alpha \implies DB^{2} + AC^{2} =$$

= $4R^{2}(\sin^{2}\alpha + \cos^{2}\alpha) = 4R^{2}$. Аналогично доказывается, что $BC^{2} + AD^{2} = 4R^{2}$.

4 б(3). Диагонали AC и BD- взаимно ортогональные хорды окружности, пусть её радиус R (рис. 12). По доказанному в **4 а)** $BC^2 + AD^2 = 4R^2$, $4R^2 = 36 + 64 = 100$, $R^2 = 25$, R = 5. Трапеция вписана, она равнобокая, стороны AB = CD и $AB^2 + CD^2 = 4R^2 \Rightarrow 2AB^2 = 100$, $AB^2 = 50$, $AB = CD = 5\sqrt{2}$.

Три точки — середины оснований и точка пересечения диагоналей, лежат на одной прямой MN = MO + ON, отрезок MO — медиана прямо- угольного треугольника BOC, $OM = \frac{1}{2}BC = 3$, аналогично

$$ON = \frac{1}{2}AD = 4$$
, тогда $MN = OM + ON = 7$. $MN -$ высота трапеции, $MN = 7$. \blacktriangle

- **5(5). а)** Как измеряется угол между касательной и хордой с общей точкой на окружности?
- **б)** MA касательная, MB секущая (рис. 14). Угол $AMB = 35^{\circ}$, угол $CAB = 65^{\circ}$. Чему равен угол ABM?
- в) Треугольник ABC со сторонами AC=3 и AB=4 вписан в окружность. Через точку A проведена касательная, которую прямая BC пересекает в точке M (рис. 15). Найти отношение площадей треугольника ABM и треугольника ABC.
- г) Треугольник ABC со сторонами AB=5, BC=8, AC=7 вписан в окружность. Найти расстояние от точки C до касательной к окружности, проходящей через точку A.
- Δ 5 a(1). Угол между касательной и хордой с общей точкой на окружности равен половине угловой меры дуги, заключённой между его сторонами, и равен любому вписанному углу, опирающемуся на эту дугу (рис. 13 напоминает доказательство).

5 б(1). Угол между касательной MA и хордой AC равен вписанному углу ABC (рис. 14). Обозначим его x, тогда из суммы углов треугольника легко находим x: $2x + 65^{\circ} + 35^{\circ} = 180^{\circ}$, $2x = 80^{\circ}$, $x = 40^{\circ}$.

Рис. 14

Рис. 15

5 B(1). Имеем
$$\triangle AMC \sim \triangle BMA$$
 (рис. 15), $\frac{AM}{BM} = \frac{AC}{AB} = \frac{MC}{MA} \Rightarrow$

$$\Rightarrow \frac{y}{x+z} = \frac{3}{4} = \frac{x}{y} \Rightarrow \begin{bmatrix} y = \frac{4}{3}x, \\ \frac{4}{3}x = \frac{3}{4}(x+z) \Rightarrow z = \frac{7}{9}x. \end{bmatrix}$$

Треугольники ABM и ABC имеют общую высоту из вершины A, их площади относятся как длины оснований:

$$\frac{S_{ABM}}{S_{ABC}} = \frac{BM}{BC} = \frac{z+x}{z} = \frac{\frac{7}{9}x+x}{\frac{7}{9}x} = \frac{16}{\frac{7}{9}}.$$

5 г(2). Угол между касательной AK и хордой AC равен вписанному углу ABC (рис. 16). Находим этот угол по теореме косинусов: $7^2 = 64 + 25 - 2 \cdot 8 \cdot 5 \cdot \cos B$, $\cos B = \frac{40}{2 \cdot 8 \cdot 5} = \frac{1}{2}$, $\angle ABC = 60^\circ = \angle CAK$. Если $CD \perp AK$, то $CD = AC \cdot \sin B = 7 \cdot \sin 60^\circ = \frac{7\sqrt{3}}{2}$.

Рис. 16

6(4). Две окружности радиусов R и r(R>r) внешне касаются в точке K. Одна прямая касается окружностей: большей в точке A, меньшей в точке C. Другая прямая касается окружностей: большей в

точке B, меньшей в точке D. Через точку K проведена общая внутренняя касательная, пересекающая прямую AC в точке M, а BD- в точке N.

- а) Найти угол АКС.
- **б)** Найти угол O_1MO_2 , где O_1 и O_2 центры соответственно большей и меньшей окружностей.
 - **в)** Найти длину отрезка AC.
 - г) Доказать параллельность прямых AB, MN, CD.

Рис. 17

\Delta Прямые l_1 и l_2 пересекаются в точке S (рис. 17). Обе окружности вписаны в угол BSA, значит, центр O_1 , как и центр O_2 , лежат на биссектрисе угла BSA. Биссектриса SO_1 является осью симметрии.

6 a(1). По свойству касательных MA = MK и $MC = MK \Rightarrow AM = MK = MC$.

В треугольнике *АКС* медиана *КМ* равна половине стороны *АС*. Получаем два равнобедренных треугольника (рис. 17a): $2\alpha + 2\beta = 180^{\circ} \Rightarrow \alpha + \beta = 90^{\circ}, \angle AKC = 90^{\circ}.$

6 б(1). Окружность с центром в точке O_1 вписана в угол AMN, а окружность с центром в точке O_2 – в угол CMN. Центр O_1 лежит на биссектрисе $\angle AMK$, центр O_2 – на биссектрисе $\angle CMK$. Углы AMK и

CMK – смежные, поэтому их биссектрисы MO_1 и MO_2 образуют прямой угол: $\angle O_1 MO_2 = 90^\circ$.

6 в(1). Пусть $O_2F \perp O_1A$ (рис. 176), тогда четырёхугольник AFO_2C- прямоугольник, $FO_2=AC$ и $FA=O_2C$ $\Rightarrow O_1F=R-r$. Из ΔFO_1O_2 находим $FO_2=\sqrt{\left(O_1O_2\right)^2-\left(O_1F\right)^2}=\sqrt{\left(R+r\right)^2-\left(R-r\right)^2}=2\sqrt{Rr}$.

Следовательно, и $\underline{AC=2\sqrt{Rr}} \Rightarrow KM=\sqrt{Rr}$, а в силу симметрии относительно биссектрисы SO_1 также имеем $BD=2\sqrt{Rr}$ и $MN=2\sqrt{Rr}$.

6 г(1). По свойству касательных SC = SD, $SA = SB \Rightarrow SA - SC = AC = SD - SB = BD$. Далее, треугольники CSD, ASB — равнобедренные, их биссектрисы являются высотами, т. е. $SP_2 \perp DC$ и $SP_1 \perp AB$. Наконец, линия центров перпендикулярна общей касательной $MN \Rightarrow MN \perp SK$. Три прямые AB, CD и MN перпендикулярны одной прямой и, следовательно, параллельны. \blacktriangle

- **7(6).** Площадь треугольника ABC равна S. Найти площадь заштрихованной фигуры, если:
 - а) MN средняя линия, MEFN трапеция и $BF = \frac{1}{3}BC$ (рис. 18),
 - **6)** AK:KB=2:1, AM:MC=1:4 и BL:LC=3:2 (рис. 19).

 Δ 7 **a**(3). Отрезок MN – средняя линия треугольника ABC (рис. 18), $MN \parallel AC$, $MN = \frac{1}{2}AC \implies \Delta MBN \sim \Delta ABC$. $S_{MBN} = \frac{1}{4}S_{ABC}$. Далее, MEFN – трапеция $\implies EF \parallel MN \implies EF \parallel AC \implies \Delta EBF \sim \Delta ABC$,

$$EF:AC=BF:BC \implies EF=rac{1}{3}AC \Rightarrow S_{EBF}=rac{1}{9}S_{ABC}.$$
 Находим $S_{MEFN}=S_{MBN}-S_{EBF}=\left(rac{1}{4}-rac{1}{9}
ight)S, \ S_{MEFN}=rac{5}{36}S.$

7 **б(3).** Используем утверждение 2.2° о сравнении площадей треугольников с общими углом. Введём обозначения (рис. 19):

$$S_1 = S_{AKM}$$
, $S_2 = S_{BKL}$, $S_3 = S_{CML}$ и у нас $S = S_{ABC}$.
 Имеем: $\frac{S_1}{S} = \frac{2x \cdot y}{3x \cdot 5y} = \frac{2}{15}$, $S_1 = \frac{2}{15}S$;
$$\frac{S_2}{S} = \frac{x \cdot 3z}{3x \cdot 5z} = \frac{1}{5}$$
, $S_2 = \frac{1}{5}S$;
$$\frac{S_3}{S} = \frac{4y \cdot 2z}{5y \cdot 5z} = \frac{8}{25}$$
, $S_3 = \frac{8}{25}S$.

Находим
$$S_1 + S_2 + S_3 = \left(\frac{2}{15} + \frac{1}{5} + \frac{1}{25}\right)S = \left(\frac{1}{3} + \frac{8}{25}\right)S = \frac{49}{75}S.$$

Искомая площадь равна
$$\left(1 - \frac{49}{75}\right)S = \frac{26}{75}S$$
.

- **8(3).** Площадь параллелограмма ABCD равна S. Найти площадь заштрихованной фигуры, если:
 - **a)** CM = MD (puc. 20);

6)
$$BK = \frac{1}{3}BC$$
 (puc. 21).

Рис. 20

Рис. 21

А 8 **a**(1). Проведём через точку M прямую, параллельную стороне AD до пересечения в точке N с прямой AB (рис. 20). По построению ANMD и NBCM — равные параллелограммы: BC = NM = AD,

$$AN = NB = CM = MD$$
. Площади их равны и равны $\frac{1}{2}S$.

Далее, диагональ параллелограмма делит его площадь пополам \Rightarrow \Rightarrow $S_{AMN}=\frac{1}{4}S=S_{BMN}.$ Итак, $S_{ABM}=\frac{1}{2}S.$

8 б(2). Пусть AD = a, по условию $KC = \frac{2}{3}a$ (рис. 21). Площадь треугольника ACD равна половине площади параллелограмма ABCD, т. e. $S_{ACD} = \frac{1}{2}S$. Далее, $\Delta AFD \sim \Delta CFK$ (по двум углам) $\Rightarrow \frac{AF}{FC} = \frac{AD}{CK}, \ \frac{AF}{FC} = \frac{a}{\frac{2}{3}a}, \ AF = \frac{3}{2}FC$. Из AC = AF + FC следует $AC = \left(\frac{3}{2} + 1\right)FC \Rightarrow FC = \frac{2}{5}AC$. По утверждению 2.1° о сравнении площадей $S_{DFC} = \frac{2}{5}S_{DAC} = \frac{2}{5}\left(\frac{1}{2}S\right)$. Итак, $S_{DFC} = \frac{1}{5}S$.

- **9(6).** а) Диагонали трапеции ABCD с основаниями AD и BC пересекаются в точке O. Площадь треугольника BOC равна 2, а площадь треугольника COD равна 6. Найти площадь трапеции.
- **6)** Отрезок MN с концами на боковых сторонах AB и CD трапеции ABCD параллелен основаниям трапеции, AD=7, BC=3, MN=4. Найти отношение площадей трапеций, на которые прямая MN разделила трапецию ABCD.
- в) Диагонали трапеции ABCD с основаниями AD и BC пересекаются в точке O, угол AOD равен 120° , AC=7, длина средней линии трапеции равна 6,5. Найти площадь трапеции.
- **А** 9 **a(2).** Площади треугольников с общей вершиной относятся как длины оснований (рис. 22) $\frac{S_{BCO}}{S_{COD}} = \frac{2}{6} = \frac{BO}{OD} \implies \frac{BO}{OD} = \frac{1}{3}$. Так как $\Delta BOC \sim \Delta DOA$, то $\frac{CO}{AO} = \frac{BO}{OD} \implies \frac{CO}{AO} = \frac{1}{3}$. Треугольники AOD и COD имеют общую высоту из вершины $D \implies \frac{S_{AOD}}{S_{COD}} = \frac{AO}{CO} = 3 \implies S_{AOD} = 3 \implies S$

Рис. 22

Рис. 23

Рис. 24

9 б(2). Задача аналогична Задаче 15 Задания (см. рис. 23): $CK \parallel BA$,

$$NL \parallel BA$$
, $\Delta KCN \sim \Delta LND$, $\frac{h_1}{h_2} = \frac{KN}{LD} = \frac{1}{3}$, $\frac{S_{MBCN}}{S_{AMND}} = \frac{(3+4)h_1}{(4+7)h_2} = \frac{7}{11} \cdot \frac{1}{3} = \frac{7}{\underline{33}}$.

9 в(2). Через точку D проведём прямую параллельно диагонали AC до пересечения в точке F с прямой BC (рис. 24).

ACFD — параллелограмм, CF = AD, DF = AC = 7, $\angle BDF = 120^\circ$. Площадь треугольника BDF равна площади трапеции: $S_{BDF} = \frac{1}{2} \cdot BF \cdot FK = \frac{a+b}{2} \cdot h = S_{ABCD}$.

В треугольнике *BDF* угол *BDF* равен 120° , BF = 13. Пусть BD = x. По теореме косинусов $BF^2 = BD^2 + DF^2 - 2 \cdot BD \cdot DF \cdot \cos 120^{\circ} \Leftrightarrow \Leftrightarrow 169 = x^2 + 49 + 7x \Leftrightarrow x^2 + 7x - 120 = 0, \ x = \frac{-7 + \sqrt{49 + 480}}{2} = \frac{\sqrt{529} - 7}{2} = 8$. Тогда $S_{ABCD} = 14\sqrt{3}$. \blacktriangle

Задачи

1(5). Окружность, вписанная в прямоугольный треугольник, точкой касания делит гипотенузу на отрезки m и n. Найти площадь треугольника.

Ответ: *mn*.

 Δ Пусть K, L, M — точки касания вписанной окружности сторон (рис. 25), BK = m, KA = n. По свойству касательных BL = m и AM = n, также знаем, что CL = CM = r — радиус вписанной окружности. По теореме Пифагора $BC^2 + AC^2 = AB^2$ \iff $(m+r)^2 + (n+r)^2 = (m+n)^2 \Leftrightarrow$ $\Leftrightarrow r^2 + r(m+n) = mn$, а площадь треугольника равна $S = \frac{1}{2}BC \cdot AC = \frac{1}{2}(m+r)(n+r) = \frac{1}{2}(r^2 + r(m+n) + mn)$. Подставляем в скобку значение $r^2 + r(m+n)$ и получаем $S = \frac{1}{2}(mn+mn) = mn$. \blacktriangle

 $A \xrightarrow{M K_1} D_1$

Рис. 25

Рис. 26

2(5). Продолжения высоты BD и биссектрисы BK треугольника ABC пересекают описанную около него окружность в точках D_1 и K_1 соответственно, при этом $BD = DD_1$ и $BK : BK_1 = 3 : 8$. Найти радиус окружности, если площадь треугольника ABC равна 30.

Otbet: $5\sqrt{2}$.

- **Δ** 1. Точка D середина хорды BD_1 , центр окружности лежит на перпендикуляре, проходящем через точку D, т. е. на прямой AC, $\Rightarrow AC$ диаметр окружности (рис. 26). Пусть радиус окружности равен R.
- 2. Вписанный угол ABC опирается на дугу AC, содержащую точку K_1 ; BK_1 биссектриса угла $ABC \Rightarrow AK_1 = K_1C$ (т. к. $\angle ABK_1 = \angle K_1BC$). Равные дуги стягиваются равными хордами, $AK_1 = K_1C$, треугольник AK_1C равнобедренный, если $K_1M \perp AC$, то точка M середина диаметра AC, т. е. точка M центр окружности и $K_1M = R$.

3.
$$\Delta MK_1K \sim \Delta DBK$$
, $\frac{K_1M}{BD} = \frac{K_1K}{BK}$. По условию $\frac{BK}{K_1K} = \frac{3}{5} \Rightarrow \frac{R}{BD} = \frac{5}{3}$, $BD = \frac{3}{5}R$. $\Rightarrow S_{ABC} = \frac{1}{2}AC \cdot BD = \frac{1}{2} \cdot 2R \cdot \frac{3}{5}R$. По условию $S_{ABC} = 30$. Из $\frac{3}{5}R^2 = 30$ следует $R = 5\sqrt{2}$.

3(5). Точка F лежит на продолжении стороны AD параллелограмма ABCD (AF > AD). Прямая BF пересекает диагональ AC в точке K, а сторону CD в точке P, при этом BK = 2, PF = 3. Найти отношение площади треугольника BAK к площади треугольника CPK.

Ответ: 4:1.

\Delta Пусть DF = x, KP = y, BC = a, тогда AD = a (рис. 27).

1. Имеем:
$$\Delta BPC \sim \Delta FPD \Rightarrow \frac{BC}{FD} = \frac{BP}{FP} = \frac{PC}{PD} \Leftrightarrow \frac{a}{x} = \frac{2+y}{3}$$
 (1)

И

$$\frac{a}{x} = \frac{PC}{PD} \tag{1'}$$

2. Далее:
$$\Delta AKF \sim \Delta CKB \Rightarrow \frac{AF}{BC} = \frac{KF}{KB} \Leftrightarrow \frac{a+x}{a} = \frac{3+y}{2} \Leftrightarrow 1+\frac{x}{a} = \frac{3+y}{2} \Rightarrow \frac{x}{a} = \frac{1+y}{2}.$$
 (2)

(1) и (2) получаем $\frac{2+y}{3} = \frac{2}{1+y} \iff y^2 + 3y - 4 = 0$ \Leftrightarrow $(y+4)(y-1)=0 \Rightarrow y=1$ (y>0). При y=1 из (2) следует x=a, т. е. DF = a, а из (1') будем иметь PC = PD, т. е. точка P – середина стороны CD.

3. Из подобия $\Delta BAK \sim \Delta PCK$ (коэффициент подобия $k = \frac{BK}{VD} = \frac{2}{1}$)

следует
$$\frac{S_{BAK}}{S_{PCK}} = \left(\frac{2}{1}\right)^2 = 4$$
.

Рис. 27

ABC – равнобедренный, AB = BC, Треугольник Окружность радиуса 6 касается отрезка АС и продолжения прямых BA и BC. Найти радиус окружности, вписанной в треугольник ABC, и площадь треугольника АВС.

Ответ:
$$r = \frac{3}{2}$$
, $S = 12$.

Δ 1. Центр O_1 окружности, вписанной в треугольник ABC, лежит на пересечении биссектрис BD и CL; центр O вписанной окружности лежит на биссектрисе угла ABC, т. е. на прямой BD, и на биссектрисе угла ACK (рис. 28).

Имеем: $BD \perp AC$, AD = DC = 3; углы BCD и DCK — смежные, поэтому биссектрисы CO_1 и CO этих углов образуют прямой угол O_1CO . В прямоугольном треугольнике O_1CO отрезок CD — высота к гипотенузе. По свойству высоты прямоугольного треугольника $CD^2 = DO_1 \cdot DO$, откуда $DO_1 = \frac{CD^2}{DO} = \frac{9}{6} = \frac{3}{2}$, DO_1 — радиус r вписанной в треугольник ABC окружности, $r = \frac{3}{2}$.

2. Пусть $O_1F \perp BC$ и $OK \perp BK$, $O_1F = r$, OK = 6. Треугольники BO_1F и BOK подобны, $\frac{O_1F}{OK} = \frac{BO_1}{BO}$. Обозначим $BO_1 = y$, вычислим $O_1O = O_1D + DO = \frac{3}{2} + 6 = \frac{15}{2}$ и перепишем пропорцию: $\frac{y}{y+15/2} = \frac{3/2}{6} \Rightarrow y = \frac{5}{2}$. Высота треугольника ABC равна BD. $BD = BO_1 + O_1D = \frac{5}{2} + \frac{3}{2} = 4$, $S_{ABC} = \frac{1}{2}AC \cdot BD = 12$.

5(6). В выпуклом четырёхугольнике *ABCD* расстояние от точки *M*, являющейся серединой стороны *AD*, до всех вершин одинаково. Найти длину стороны *AD*, если BC = 12, $\angle ABC = 110^{\circ}$, $\angle BCD = 115^{\circ}$.

Ответ: $12\sqrt{2}$.

\Delta Заметим, что точки A, B, C и D лежат на окружности с диаметром AD и точка M — центр этой окружности.

Проведём отрезки *BM* и *CM*, треугольники *AMB* и *DMC* – равнобедренные (рис. 29). Равные углы в треугольнике *AMB* обозначим α , а в треугольнике *DMC* – β .

Сумма углов выпуклого четырёхугольника ABCD равна 360° и равна $\alpha + 110^{\circ} + 115^{\circ} + \beta$, находим $\alpha + \beta = 135^{\circ}$.

Угол BMC — центральный угол, опирающийся на хорду BC. Вычислим $\angle BMC$: $\angle BMC = 180^{\circ} - \angle AMB - \angle CMD = 180^{\circ} - \left(180^{\circ} - 2\alpha\right)$ —

 $-\left(180^{\circ}-2\beta\right)=2\left(\alpha+\beta\right)-180^{\circ}=270^{\circ}-180^{\circ}=90^{\circ},\ \text{ и выразим }BC\ \text{по}$ формуле $BC=2R\cdot\sin\frac{\angle BMC}{2},\ \text{получаем }AD=2R=\frac{12}{\sin45^{\circ}}=12\sqrt{2}.$

Рис. 29

Рис. 30

6(5). В прямоугольной трапеции ABCD основание AD в два раза больше основания BC. Окружность, построенная на большей боковой стороне CD как на диаметре, касается стороны AB в точке M. Расстояние от точки до M стороны CD равно $6\sqrt{2}$. Найти радиус окружности.

Ответ: 9.

∆ 1. Боковая сторона CD — диаметр окружности, её середина — точка O — центр окружности: CO = OD = R (рис. 30). Окружность касается боковой стороны AB в точке M, $OM \perp AB$. Из $AB \perp AD$ следует $OM \parallel AD$ и OM — средняя линия. Итак, OM = R и $OM = \frac{AD + BC}{2}$. Если BC = x, то по условию AD = 2x и $R = \frac{3}{2}x$.

2. Пусть $CF \perp AD$, FD = AD - BC = x. Из треугольника CFD опреде-

ляем угол
$$\alpha = \angle ADC$$
: $\cos \alpha = \frac{FD}{CD} = \frac{x}{2R} = \frac{\frac{2}{3}R}{2R} = \frac{1}{3}$.

3. Пусть $MK \perp CD$. По условию $MK = 6\sqrt{2}$, а из треугольника MKO следует $MK = MO \cdot \sin \alpha$. Находим $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{2\sqrt{2}}{3}$ и $R = MO = \frac{MK}{\sin \alpha} = \frac{6\sqrt{2}}{2\sqrt{2}/3} = 9$.

7(6). В окружность радиуса 5 вписана трапеция ABCD, диагонали которой взаимно перпендикулярны, и большее основание AD = 8. Найти меньшее основание, боковую сторону и площадь трапеции.

OTBET: BC = 6; $AB = CD = 5\sqrt{2}$; S = 49.

- **∆** 1. Трапеция ABCD вписана в окружность S, она равнобокая. Её диагонали AC и BD- это две взаимно перпендикулярно пересекающиеся в точке O хорды окружности радиуса 5 (рис. 31). Как следует из ответа на контрольный вопрос 4a) $BC^2 + AD^2 = 4R^2$ и $AB^2 + CD^2 = 4R^2$. Зная R = 5 и AD = 8 находим $BC^2 = 100 64 = 36$, BC = 6; боковые стороны равны $\Rightarrow 2AB^2 = 4R^2$, $AB^2 = 50$, $AB = CD = 5\sqrt{2}$.
- 2. Если $CF \perp AD$, то по свойству равнобокой трапеции $FD = \frac{a-b}{2} = 1$.

Из треугольника CFD находим CF- высоту трапеции: $OF = \sqrt{CD^2 - FD^2} = 7$ и вычисляем площадь трапеции $S = \frac{1}{2}(6+8) \cdot 7 = 49$.

(Можно было найти отрезок MN, соединяющий середины оснований – он равен высоте и равен $\frac{1}{2}(AD+BC)=7$.) ▲

Рис. 31

Рис. 32

8(6). Около окружности описана равнобокая трапеция ABCD. Окружность касается боковой стороны AB в точке K, прямая DK пересекает окружность в точке P, при этом DP = 4, KP = 5.

Найти: **а)** длину основания AD, **б)** косинус угла KAD и **в)** радиус окружности.

Ответ: a) 12; б)
$$\frac{11}{16}$$
; в) $\frac{2}{3}\sqrt{15}$.

\Delta 1. Трапеция равнобокая, если M и N – середины оснований, то $MN \perp AD$ и MN – ось симметрии (рис. 32). По свойству касательных

AK = AM, DL = DM, M — середина AD. (Если O — центр вписанной окружности, то AO и DO — биссектрисы углов A и D, $\angle A = \angle D \Rightarrow \Delta AOD$ — равнобедренный, $OM \perp AD \Rightarrow AM = DM$). Пусть AD = 2x. По теореме о касательной и секущей имеем $MD^2 = DP \cdot DK \Leftrightarrow x^2 = 4 \cdot 9$, x = 6. В треугольнике AKD известны все три стороны AK = 6, AD = 12, KD = 9.

2. В равнобедренной описанной трапеции с основаниями a и b (a > b) нам известно (задача 17 из Задания) $\angle A = \angle D$, $\cos A = \frac{a - b}{a + b}$, $h = \sqrt{ab}$. Находим $\cos A$ из ΔAKD :

$$KD^2 = x^2 + (2x)^2 - 2 \cdot x \cdot 2x \cos A \Leftrightarrow 81 = x^2 (5 - 4 \cos A) \Leftrightarrow 5 - 4 \cos A =$$

$$= \frac{81}{36} = \frac{9}{4} \Leftrightarrow \cos A = \frac{11}{16}. \text{ Тогда } \frac{a - b}{a + b} = \frac{11}{16}, \quad 16a - 16b = 11a + 11b, \quad 5a = 27b,$$

$$b = \frac{5}{27} \cdot 12 = \frac{20}{9}, \quad h = \sqrt{ab} = \frac{4}{3}\sqrt{15}, \text{ радиус окружности } r = \frac{1}{2}h = \frac{2}{3}\sqrt{15}. \quad \blacktriangle$$

9(5). Внешняя касательная двух окружностей радиусов 2 и 5 в полтора раза больше внутренней касательной. Найти расстояние между центрами этих окружностей.

Ответ: 9.

 Λ 1. Пусть O_1- центр окружности радиуса 2 и O_2- центр окружности радиуса 5 (рис. 33) и пусть они касаются прямой l_1 в точках A и B соответственно, а прямой l_2 в точках C и D соответственно. AB- их внешняя касательная, CD- их внутренняя касательная. По условию $\frac{AB}{CD}=\frac{3}{2}$. Обозначим

CD = x, тогда $AB = \frac{3}{2}x$.

Рис. 33

2. Имеем: $O_1C \perp CD$, $O_2D \perp CD$. Через точку O_1 проведём прямую, параллельную CD до пересечения в точке F с прямой O_2D . Четырёх-угольник O_1CDF — прямоугольник, $O_1F = CD = x$ и $FD = O_1C = 2 \Rightarrow FO_2 = 7$. Проведём также прямую O_1O_2 . Треугольник O_1FO_2 прямо-угольный, $O_1O_2 = O_1F^2 + (FO_2)^2 \Leftrightarrow$

$$O_1 O_2^2 = x^2 + 49 \tag{1}$$

3. Проведём $O_1K \parallel AB$, $O_2K = O_2B - O_1A = 3$, $O_1K = AB = \frac{3}{2}x$. Из треугольника O_1O_2K следует $O_1O_2^2 = O_2K^2 + O_1K^2 \Leftrightarrow$

$$O_1 O_2^2 = 9 + \frac{9}{4} x^2 \tag{2}$$

Из (1)и (2) имеем $9 + \frac{9}{4}x^2 = x^2 + 49 \Rightarrow \frac{5}{4}x^2 = 40 \Rightarrow x^2 = 32$.

Подставляем в (1) и находим $O_1O_2 = \sqrt{32+49} = 9$.

10(5). К двум окружностям радиусов R и r (R > r), касающимся внешне, проведена общая внешняя касательная. В образовавшийся криволинейный треугольник вписана окружность (двух данных окружностей она касается внешне). Найти радиус этой окружности.

Ответ:
$$\frac{Rr}{\left(\sqrt{R}+\sqrt{r}\right)^2}.$$

∆ Пусть Q — центр третьей окружности, обозначим её радиус x, радиус большей окружности обозначим R, меньшей — r (рис. 34). Имеем: $O_1Q = R + x$, $O_2Q = r + x$. Нам известно, что $AB = 2\sqrt{Rr}$, $AC = 2\sqrt{Rx}$, $BC = 2\sqrt{rx}$ (ответ на контрольный вопрос 6в)). Из AB = AC + CB получаем уравнение $\sqrt{Rx} + \sqrt{rx} = \sqrt{Rr} \Leftrightarrow \sqrt{x} = \frac{\sqrt{Rr}}{\sqrt{R} + \sqrt{r}} \Leftrightarrow x = \frac{Rr}{\left(\sqrt{R} + \sqrt{r}\right)^2}$. **△**

Рис. 34