МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ Кафедра програмних систем і технологій

Дисципліна «**Ймовірнісні основи програмної інженерії**»

Лабораторна робота № 3

Виконав:	Мельничук Дмитро Олегович	Перевірив:	Вечерковська А.С.
Група	ІПЗ-24(1)	Дата перевірки	
Форма навчання	денна	Оцінка	
Спеціальність	121		

2022

ДВОВИМІРНА СТАТИСТИКА

Мета – навчитись використовувати на практиці набуті знання про міри в двовимірній статистиці.

Завдання

- 1. Намалюйте діаграму розсіювання для даних. Укажіть, чи існує тренд у даних. Якщо так, то вкажіть, чи ϵ це негативним трендом, чи позитивним.
- 2. Знайдіть центр ваги і коваріацію.
- 3. Знайти рівняння лініїї регресії у від х.
- 4. Розрахуйте коефіцієнт кореляції між даними.
- 5. Зробити висновок про залежності

Математична модель:

Завдання 1:

Для побудови діаграми розсіювання необхідно відокремити суму покупки та час проведений в магазині і відповідно підставити на осі ОХ та ОҮ.

Для знаходження тренду необхідно проаналізувати графік і побачити чи перший елемент відрізняється від останнього, якщо він буде більший від останнього то тренд спадаючий (негативний), якщо менший то спадаючий (позитивний)

Завдання 2:

Для знаходження центу ваги скористаємося формулою:

$$ec{r}_c = rac{\sum\limits_{i} m_i ec{r}_i}{\sum\limits_{i} m_i},$$

Де:

 r_c — Центр ваги

 m_i – поточний елемент X

 r_i – поточний елемент Y

Коваріація - це величина, яка відображає, наскільки дві випадкові величини спільно змінюються щодо їхніх значень.

Для її розрахунку скористаємося формулою:

$$Cov(X,Y) = \frac{\sum_{1}^{n}(x_{i} - \bar{x})(y_{i} - \bar{y})}{n}$$

Cov(X, Y) – коваріація

 X_i – поточний елемент X

 Y_i – поточний елемент Y

 \overline{X} — Середнє значення X

 \overline{Y} — Середн ε значення Y

n – кількість елементів

Завдання 3:

Для знаходження рівняння лінії регресії у від х використаємо формулу:

$$y - \overline{y} = b(x - \overline{x})$$

Знайдемо в за формулою:

$$b_{yx} = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

Завдання 4:

Для знаходження кореляції між даними використаємо формулу:

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Де:

r - кореляція

Завдання 5:

Проаналізувавши всі дані можна сказати, що залежність у від х ϵ прямопропорційною тобто зі збільшенням значення х значення у збільшується, відповідно і зі збільшення у збільшується х

Псевдокод алгоритмів:

Тренд:

- Викликається функція trand, в яку передаються значення вхідного масиву даних data
- Виконується перевірка:
 - чи час проведений в магазині в початку масиву більший ніж час проведений в магазині в кінці масиву, відповідно виводиться що існує негативний тренд,
 - чи час проведений в магазині в початку масиву менший ніж час проведений в магазині в кінці масиву, відповідно виводиться що існує позитивний тренд,
 - о якщо час однаковий, то виводиться повідомлення про відсутність тренду

Результат на консолі:

```
Positive trand
[[1.5, 12], [2.4, 19], [2.6, 29], [2.8, 34], [3.6, 26], [3.8, 32], [3.9, 45], [4.1, 30], [4.4, 28], [4.6, 40], [5.4, 43], [7.6, 82]]
```

Центр ваги:

- Викликається функція gravitycenter, в яку передається значення масиву даних data
- Створюються допоміжні змінні:
 - \circ chis, що відповідає за чисельник, встановлюється початкове значення 0
 - \circ znam, що відповідає за знаменник, встановлюється початкове значення 0
- Створюється цикл в якому перебираються кількість всіх пар даних масиву data, і встановлює відповідне значення тимчасової змінної і від 0 до останньої пари елементів
 - З кожною ітерацією додає до змінної chis добуток і тої пари елементів масиву data
 - 3 кожною ітерацією додає до змінної znam значення першого елемента в з і – тої пари елементів масиву data
- Повертає значення різниці chis та znam

Результат на консолі:

Коваріація:

- Викликається функція covariance, в яку передається значення масиву даних data
- Створюється додаткова змінна covariance зі значенням 0
- Викликається функція midleXY, в яку передається значення масиву data, в якій розраховуються змінні middleX, та middleY
- Створюється цикл в якому перебираються кількість всіх пар даних масиву data, і встановлює відповідне значення тимчасової змінної і від 0 до останньої пари елементів
 - о 3 кожною ітерацією циклу додає до змінної covariance добуток двох елементів, які складаються з :
 - Різниці першого елемента і-тої пари масиву data, та середнього значення х зі змінної middle
 - Різниці другого елемента і-тої пари масиву data, та середнього значення у зі змінної middle Y
- Повертає значення різниці змінної covariance та кількості пар елементів масиву data

Результат на консолі:

Covariance = 23.0

Рівняння лінії регресії:

- Викликається функція regretionline, в яку передається значення масиву даних data
- Створюються допоміжні зміні:
 - $\circ \;\; dob XY,$ яка рівна 0-для добутку х та у
 - o sumX, яка рівна 0 для суми елементів х
 - \circ sumY, яка рівна 0- для суми елементів у
 - \circ sumdobXX, яка рівна 0 для суми піднесення у квадрат елементів х
- Створюється цикл в якому перебираються кількість всіх пар даних масиву data, і встановлює відповідне значення тимчасової змінної і від 0 до останньої пари елементів
 - о 3 кожною ітерацією додає до змінної dobXY, добуток першого та другого елементів і-тої пари елементів масиву data
 - о 3 кожною ітерацією додає до змінної sumX, перший елемент і-тої пари елементів масиву data
 - З кожною ітерацією додає до змінної sumY, другий елемент і-тої пари елементів масиву data
 - о 3 кожною ітерацією додає до змінної sumdobXX, перший елемент і-тої пари елементів масиву data піднесений у квадрат
- Створюється змінна b, яка використовується для збереження різниці елементів:
 - Кількість елементів масиву помножена на зміну dobXY відняти добуток змінних sumX та sumY

- о Кількість елементів масиву помножена на зміну sumdobXX, відняти змінну sumX у квадраті
- Використаємо бібліотеку ѕутру для знаходження рівняння:
- Створимо символи X, Y для відображення, у формулах будемо використовувати їх аналоги x та у
- Створимо змінну line, в якій буде записано рівняння за допомогою фунції equal, яка прирівнює 2 значення:
 - \circ y middley [середн ϵ значення] у,
 - \circ b * (x middlex [середнє значення] x)
- виведемо значення рівняння відносно у за допомогою функції solve, в яку передамо значення змінної line та х
- виведемо значення рівняння відносно х за допомогою функції solve, в яку передамо значення змінної line та у

Результат на консолі:

```
Y = [9.95341848234409*X - 3.7353869271224]
X = [0.100467995169082*Y + 0.375286835748786]
```

Виведення графіку:

Кореляція:

- Викликається функція correliation, в яку передається значення масиву даних data
- Створюються допоміжні зміні:
 - o chis, яка рівна 0 числівника
 - \circ sumXX, яка рівна 0 для різниці поточного елемента х та середнього значення х
 - \circ sumYY, яка рівна 0 для різниці поточного елемента у та середнього значення у
- Створюється цикл в якому перебираються кількість всіх пар даних масиву data, і встановлює відповідне значення тимчасової змінної і від 0 до останньої пари елементів
 - З кожною ітерацією додає до змінної chis, добуток різниці першого елементу з і-тої пари масиву data і середнього значення х та другого елементу з і-тої пари масиву data і середнього значення у
 - З кожною ітерацією додає до змінної sumXX, піднесену у квадрат різницю першого елементу і-тої пари елементів масиву data та середнього значення х
 - З кожною ітерацією додає до змінної sumYY, піднесену у квадрат різницю першого елементу і-тої пари елементів масиву data та середнього значення у
- Повертає різницю числівника та квадратного корня добутку змінних sumXX та sumYY

Результат на консолі:

Correlation = 0.9010014623100246

Висновок:

Навчився на практиці використовувати набуті знання про міри в двовимірній статистиці, будувати діаграму розподілу та аналізувати її