Digital Image Processing

Dr. Vrijendra Singh

Indian Institute of Information Technology
Allahabad

Outline

- Fourier transformation
- Discrete Fourier Transformation
- Characteristics of Fourier Transformation
- Convolution Issues

Joseph Fourier (1768-1830)

Joseph Fourier, 21 March 1768-16 May 1030. (By permission of the Bibliothèque Municipale de Grenoble.)

Fourier Transform: a review

Basic ideas:

- ➤ A periodic function can be represented by the **sum** of sines/cosines functions of different frequencies, multiplied by a different coefficient.
- Non-periodic functions can also be represented as the integral of sines/cosines multiplied by weighing function.

A function and its trigonometric decomposition

Fourier transform basis functions

Approximating a square wave as the sum of sine waves.

DFT-Definition

Suppose

$$\mathbf{f} = [f_0, f_1, f_2, \dots, f_{N-1}]$$

is a sequence of length N. We define its discrete Fourier transform to be the sequence

$$\mathbf{F} = [F_0, F_1, F_2, \dots, F_{N-1}]$$

where

$$F_u = \frac{1}{N} \sum_{x=0}^{N-1} \exp\left[-2\pi i \frac{xu}{N}\right] f_x.$$

Any function can be written as the sum of an even and an odd function

f(x)

X

An arbitrary

function

$$E(x) \equiv [f(x) + f(-x)]/2$$

$$O(x) \equiv [f(x) - f(-x)]/2$$

$$f(x) = E(x) + O(x)$$

Fourier Cosine Series

Because cos(mt) is an even function, we can write an even function, f(t), as:

$$f(t) = \frac{1}{\pi} \sum_{m=0}^{\infty} F_m \cos(mt)$$

where series F_m is computed as

$$F_{m} = \int_{-\pi}^{\pi} f(t) \cos(mt) dt$$

Here we suppose f(t) is over the interval $(-\pi,\pi)$.

Fourier Sine Series

Because sin(mt) is an odd function, we can write any odd function, f(t), as:

$$f(t) = \frac{1}{\pi} \sum_{m=0}^{\infty} F'_m \sin(mt)$$

where the series F'_{m} is computed as

$$F'_{m} = \int_{-\pi}^{\pi} f(t) \sin(mt) dt$$

Fourier Series

So if f(t) is a general function, neither even nor odd, it can be written:

$$f(t) = \frac{1}{\pi} \sum_{m=0}^{\infty} F_m \cos(mt) + \frac{1}{\pi} \sum_{m=0}^{\infty} F'_m \sin(mt)$$

Even component

Odd component

where the Fourier series is

$$F_m = \int f(t) \cos(mt) dt \qquad F'_m = \int f(t) \sin(mt) dt$$

Ш

The Fourier Transform

Let F(m) incorporates both cosine and sine series coefficients, with the sine series distinguished by making it the imaginary component:

$$F(m) = F_m - jF_m' = \int f(t)\cos(mt)dt - j \cdot \int f(t)\sin(mt)dt$$

Let's now allow f(t) range from $-\infty$ to ∞ , we rewrite:

$$\Im\{f(t)\} = F(u) = \int_{-\infty}^{\infty} f(t) \exp(-j2\pi ut) dt$$

F(u) is called the Fourier Transform of f(t). We say that f(t) lives in the "time domain," and F(u) lives in the "frequency domain." u is called the frequency variable.

The Fourier Transform

time domain

frequency domain

$$d = a + b + c$$

time domain

frequency domain

time domain

frequency domain

time domain

frequency domain

The Inverse Fourier Transform

We go from f(t) to F(u) by

$$\Im\{f(t)\} = F(u) = \int_{-\infty}^{\infty} f(t) \exp(-j2\pi ut) dt$$

Fourier Transform

Given F(u), f(t) can be obtained by the inverse Fourier transform

$$\mathfrak{I}^{-1}\left\{F(u)\right\} = f(t) = \int_{-\infty}^{\infty} F(u) \exp(j2\pi ut) du$$

Inverse Fourier Transform

Discrete Fourier Transform (DFT)

A continuous function f(x) is discretized as:

$$\{f(x_0), f(x_0 + \Delta x), f(x_0 + 2\Delta x), ..., f(x_0 + (M-1)\Delta x)\}$$

Discrete Fourier Transform (DFT)

Let x denote the discrete values (x=0,1,2,...,M-1), i.e.

$$f(x) = f(x_0 + x\Delta x)$$

then

$$\{f(x_0), f(x_0 + \Delta x), f(x_0 + 2\Delta x), ..., f(x_0 + (M-1)\Delta x)\}$$

$$\{f(0), f(1), f(2), ..., f(M-1)\}\$$

Discrete Fourier Transform (DFT)

• The discrete Fourier transform pair that applies to sampled functions is given by:

$$F(u) = \frac{1}{1} \sum_{x=0}^{M-1} f(x) \exp(-j2\pi ux/M) \quad u=0,1,2,...,M-1$$

and

$$f(x) = \sum_{u=0}^{M-1} F(u) \exp(j2\pi ux/M) \qquad x=0,1,2,...,M-1$$

2-D Discrete Fourier Transform

In 2-D case, the DFT pair is:

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \exp(-j2\pi (ux/M + vy/N))$$

$$u=0,1,2,...,M-1$$
 and $v=0,1,2,...,N-1$

and:

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \exp(j2\pi(ux/M + vy/N))$$

$$x=0,1,2,...,M-1$$
 and $y=0,1,2,...,N-1$

Polar Coordinate Representation of FT

 The Fourier transform of a real function is generally complex and we use polar coordinates:

$$F(u,v) = R(u,v) + j \cdot I(u,v)$$

Polar coordinate

$$F(u,v) = |F(u,v)| \exp(j\phi(u,v))$$

Magnitude:
$$|F(u,v)| = [R^2(u,v) + I^2(u,v)]^{1/2}$$

Phase:
$$\phi(u,v) = \tan^{-1} \left[\frac{I(u,v)}{R(u,v)} \right]$$

Fourier Transform: shift

• It is common to multiply input image by $(-1)^{x+y}$ prior to computing the FT. This shift the center of the FT to (M/2,N/2).

$$\Im\{f(x,y)\} = F(u,v)$$

$$\Im\{f(x,y)(-1)^{x+y}\} = F(u-M/2,v-N/2)$$

Symmetry of FT

• For real image f(x,y), FT is conjugate symmetric:

$$F(u,v) = F^*(-u,-v)$$

• The magnitude of FT is symmetric:

$$|F(u,v)| = |F(-u,-v)|$$

The central part of FT, i.e. the low frequency components are responsible for the general gray-level appearance of an image.

The high frequency components of FT are responsible for the detail information of an image.

Frequency Domain Filtering

Frequency domain filtering operation

FIGURE 4.5 Basic steps for filtering in the frequency domain.

Frequency Domain Filtering

- Edges and sharp transitions (e.g., noise) in an image contribute significantly to high-frequency content of FT.
- Low frequency contents in the FT are responsible to the general appearance of the image over smooth areas.
- Blurring (smoothing) is achieved by attenuating range of high frequency components of FT.

Convolution in Time Domain

$$g(x,y)=h(x,y)\otimes f(x,y)$$

$$g(x,y) = \sum_{x'=0}^{M-1} \sum_{y'=0}^{M-1} h(x',y') f(x-x',y-y')$$

= $f(x,y)*h(x,y)$

- f(x,y) is the input image
- -g(x,y) is the filtered
- -h(x,y): impulse response

Convolution Theorem

$$G(u,v)=F(u,v)\cdot H(u,v)$$

$$\downarrow$$

$$g(x,y)=h(x,y)\otimes f(x,y)$$
Multiplication in Frequency Domain

Convolution in Time Domain

 Filtering in Frequency Domain with H(u,v) is equivalent to filtering in Spatial Domain with f(x,y).

blue line = sum of 3 sinusoids (20, 50, and 80 Hz) + random noise

red line = sum of 3 sinusoids without noise

blue line = sum of 3 sinusoids after filtering in time domain

1x average [1 1 1 1 1] / 5

blue line = sum of 3 sinusoids after filtering in frequency domain

cut-off 90 Hz

Examples of Filters

Separability