Analysis I

Die Mitarbeiter von http://mitschriebwiki.nomeata.de/

28. September 2017

Inhaltsverzeichnis

0	Vorl	bemerkungen	3
	0.1	Bezeichnungen	3
	0.2	Vollständige Induktion	5
1	Reelle und komplexe Zahlen		
	1.1	Geordnete Körper	9
	1.2	Suprema und reelle Zahlen	13
	1.3	Komplexe Zahlen	20
2	Kon	vergenz von Folgen	23
	2.1	Einfache Eigenschaften	23
	2.2	Monotone Folgen	27
	2.3	Teilfolgen und Vollständigkeit	31
3	Reihen 37		
	3.1	Konvergenzkriterien	37
	3.2	Einige Vertiefungen/Vermischtes	43
	3.3	Potenzreihen	48
4	Stetige Funktionen 52		
	4.1	Grenzwerte stetiger Funktionen	52
	4.2	Eigenschaften stetiger Funktionen	55
	4.3	Hauptsätze über stetige Funktionen	57
	4.4	Exponentialfunktion und ihre Verwandtschaft	59
5	Differentialrechnung 61		
	5.1	Rechenregeln	61
	5.2	Qualitative Eigenschaften differenzierbarer Funktionen	63
	5.3	Der Satz von Taylor	65
6	Integralrechnung 66		
	6.1	Riemann-Integrale	66
	6.2	Hauptsatz der Differential- und Integralrechnung	69
	6.3	Skalare Differentialgleichungen erster Ordnung	73
	6.4	Uneigentliche Integrale	77

0 Vorbemerkungen

0.1 Bezeichnungen

Allgemeine Bezeichnungen

- griechische Buchstaben: s. Übungsblatt.
- Thm = Theorem = Hauptsatz.
- Def. = Definition, ":=" heißt "steht für".
- Lem. = Lemma = Hilfssatz.
- Bew. = Beweis.
- Beh. = Behauptung.
- Ann. = Annahme.
- n.V. = nach Voraussetzung.
- Vor. = Voraussetzung.
- Bsp. = Beispiel.
- Bem. = Bemerkung.
- \square = Beweisende.

Logische Symbole

- \neg = nicht.
- $\wedge =$ und.
- \vee = oder.
- $\bullet \rightarrow = implizient.$
- \iff = equivalent.
- \forall = für alle.
- \exists = es existiert.
- \exists ! = es existiert genau eines.

Etwas zu Mengen

Mengen werden durch die Angabe ihrer Elemente definiert, z.B. $M = \{1, 2, 3\} = \{2, 1, 3\} = \text{die Menge, die aus } 1, 2 \text{ und } 3 \text{ besteht.}$

- $M = \mathbb{N} = \text{die Menge der natürlichen Zahlen}.$
- $M = \{x \in \mathbb{N} : x \text{ ist gerade}\} = \text{gerade Zahlen}.$
- \emptyset = leere Menge = $\{\}$.

Operationen mit Mengen M, N:

- $x \in M$, x ist ein Element von M." (Beispiel: $1 \in \{1, 2, 3\}$)
- $x \notin M$ "x ist kein Element von M."
- $M \subseteq N$ "M ist Teilmenge (TM) von M," d. h. wenn $x \in M$, dann auch $x \in N$, oder: $x \in M \implies x \in N$.
- $M = N M \subseteq N$ und $N \subseteq M$ und N haben die gleichen Elemente.
- $M \cap N = \{x : x \in M \text{ und } x \in N\} = \text{Schnittmenge} = \text{Menge der } x$, die in beiden Mengen liegen.
- $M \cup N = \{x : x \in M \text{ oder } x \in N\}$ = Vereinigungsmenge = Menge der x, die in einer der beiden Mengen liegen (oder auch in beiden).
- $M \times N = \{(x, y) : x \in M, y \in N\} = \text{Menge der geordneten Paare aus } M \text{ und } N.$ Ferner: $M^2 = M \times M, M^n = M \times \cdots \times M \text{ (}n\text{-fach) } \text{(}n \in \mathbb{N}\text{)}.$
- $M \setminus N = \{x \in M : x \notin N\} = \text{Differenzmenge} = \text{Menge der } x \text{ aus } M$, die nicht in N liegen.
- $\mathcal{P}(M) = \{N : N \subseteq M\}$ = Potenzmenge = die Menge aller Teilmengen von M.
- $\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$. Zugehörige Rechenregeln, siehe LA.

Abbildungen (Abb.) oder Funktionen (Fkt.):

Seien M und N Mengen. Eine Funktion $f: M \to N, x \mapsto f(x)$ besteht aus dem Definitionsbereich M, dem Bildbereich N und der Abbildungsvorschrift f, die jedem "Urbild" $x \in M$ genau ein "Bild" $f(x) \in N$ zuordnet. Streng genommen ist die Funktion das Tripel (f, M, N), man schreibt meistens nur f. Beispiel: $f: \mathbb{N} \to \mathbb{N}, x \mapsto 2x$. Hier schreibt man auch $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x$.

0.2 Vollständige Induktion

Wir setzen die natürlichen Zahlen $\mathbb{N} = \{1, 2, 3, \dots\}$, $(\mathbb{N}_0 = \{0, 1, 2, \dots\})$, die ganzen Zahlen \mathbb{Z} und die Brüche \mathbb{Q} samt ihren Rechenregeln vorraus.

Dann gilt das Prinzip der vollständigen Induktion (vollst. Ind.).

 $M \subseteq \mathbb{N}$ erfülle die beiden folgenden Bedingungen:

 $(IA) \ 1 \subseteq M$

(IS) Wenn ein $n \in \mathbb{N}$ zu M gehört, dann gehört auch der Nachfolger n+1 zu M. Beh. Dann gilt $M = \mathbb{N}$.

Beweis (indirekt). Annahme Die Behauptung sei falsch. Dann existiert ein $m \in \mathbb{N} \setminus M$. Nach (IA) ist $1 \in M$. Dann liefert (IS), dass $2 = 1 + 1 \in M$. Diesen Schritt wiederholt man (m-1) mal. Somit erhält man mit $m \in \mathbb{N}$ einen Widerspruch $(\frac{1}{2})$ zu $m \in \mathbb{N} \setminus M$. Also muss die Annahme falsch sein, d. h. die Behauptung ist wahr.

Eine Aussage ist ein "Satz", der entweder wahr oder falsch ist, z. B. 7+5=12, 3+n=n sind Aussagen. n+1 ist keine Aussage.

Beweisprinzip der vollständigen Induktion

Es seien für jedes $n \in \mathbb{N}$ Aussagen A(n) gegeben. Wir wollen zeigen, dass alle Aussagen wahr sind, d. h. $M := \{n \in \mathbb{N} : A(n) \text{ ist wahr}\}$ muss gleich \mathbb{N} sein. Nach dem Prinzip der vollständigen Induktion muss man also die folgenden Behauptung zeigen:

- (IA) Induktionsanfang: Man zeigt, dass A(1) wahr ist.
- (IS) Induktionsschluss: Es gelte die Induktionsvoraussetzung (IV): Für ein (festes, aber beliebiges) $n \in \mathbb{N}$ ist A(n) wahr.

Dann zeigt man, dass auch A(n+1) wahr ist. Dann folgt, dass alle A(n) wahr sind.

Beispiel 0.1. Zeige: $1 + 2 + 3 + \cdots + n = \frac{1}{2}n(n+1), \forall n \in \mathbb{N}$.

Beweis (per vollst. Ind.). Es sei $A(n): 1+\cdots+n=\frac{1}{2}n(n+1), n\in\mathbb{N}$.

IA: $n = 1 : 1 = \frac{1}{2} \cdot 1 \cdot 2 \implies A(1)$ ist wahr.

IS: Es gelten A(n) für ein $n \in \mathbb{N}$ (IV).

Dann:
$$(1 + \dots + n) + n + 1 \stackrel{\text{(IV)}}{=} \frac{1}{2}n(n+1) + (n+1) \cdot \frac{1}{2} \cdot 2 = \frac{1}{2}(n+1)(n+2)$$

 $\implies A(n+1) \text{ ist wahr. } \implies \text{IS ist gezeigt. } \implies \text{Beh. nach vollst. Ind.}$

Unbefriedigend ist die Schreibweise "+···+", dafür: "rekursive Def." des Summenzeichens: Gegeben seien $a_j \in \mathbb{Q}$ für jedes $j \in \mathbb{Z}$ mit $j \geq m$ für ein festes $m \in \mathbb{Z}$. Dann setzen wir:

$$\sum_{j=m}^{m} a_j := a_m.$$

Wir nehmen an, dass $\sum_{j=m}^{m+n} a_j$ für ein festes, aber beliegiges $n \in \mathbb{N}$ definiert sei. Dann definieren wir:

$$\sum_{j=m}^{m+n+1} a_j := \left(\sum_{j=m}^{m+n} a_j\right) + a_{m+n+1}.$$

Nach dem Induktionsprinzip ist die Menge: $M = \{n \in \mathbb{N} : \sum_{j=m}^{m+n} a_j \text{ ist def.} \}$ gleich \mathbb{N} . (Korrektur: Hier braucht man das Induktionsprinzip für $\mathbb{N}_0 = \{0, 1, 2, \dots\}$, siehe Übung.) Wir haben also den Ausdruck $\sum_{j=m}^k a_j$ für alle $k \in \mathbb{Z}$, $k \geq m$ definiert. Man schreibt oft

$$\sum_{j=m}^{k} a_j = a_m + \dots + a_k.$$
 Genauso definiert man:
$$\prod_{j=m}^{k} a_j = a_m \cdot a_{m+1} \cdots a_k.$$

Es gelten die üblichen Rechenregeln, wie man per Induktion zeigt. Dazu ein Beispiel, wobei m=1. Gegeben seien $a_j, b_j \in \mathbb{Q}, j \in \mathbb{N}$. Dann gilt:

$$A(n): \sum_{j=1}^{n} a_j + \sum_{j=1}^{n} b_j = \sum_{j=1}^{n} (a_j + b_j), \quad \forall n \in \mathbb{N}.$$

Beweis (per Ind.). IA: n = 1: $\sum_{j=1}^{1} a_j + \sum_{j=1}^{1} b_j \stackrel{\text{Def.}}{=} a_1 + b_1 \stackrel{\text{Def.}}{=} \sum_{j=1}^{1} (a_j + b_j) \implies A(1)$ ist wahr.

IS: Es gelte A(n) für ein $n \in \mathbb{N}$ (IV). Dann:

$$\sum_{j=1}^{n+1} a_j + \sum_{j=1}^{n+1} b_j \stackrel{\text{Def.}}{=} \left(\sum_{j=1}^n a_j + a_{n+1} \right) + \left(\sum_{j=1}^n b_j + b_{n+1} \right)$$

$$\stackrel{\text{Def.}}{=} \sum_{j=1}^n (a_j + b_j) + (a_{n+1} + b_{n+1}) \stackrel{\text{Def.}}{=} \sum_{j=1}^{n+1} (a_j + b_j).$$

 $\Longrightarrow A(n+1)$ ist wahr. \Longrightarrow IS gilt. $\Longrightarrow A(m)$ gilt $\forall m \in \mathbb{N}$.

Beispiel 0.2 (Geometrische Summenformel). Gegeben sei $q \in \mathbb{Q} \setminus \{1\}$. Beh. Dann gilt:

$$A(n): \sum_{j=0}^{n} q^{j} = \frac{q^{n+1} - 1}{q - 1}, \ \forall n \in \mathbb{N}.$$

Beweis (per Ind.). IA: (n = 1): $\sum_{j=0}^{1} q^{j} = q^{0} + q^{1} = 1 + q$,

$$\frac{q^2 - 1}{q - 1} = \frac{(q + 1)(q - 1)}{q - 1} = 1 + q$$
. ",=" $\Longrightarrow A(1)$ ist wahr.

IS: Es gelte A(n) für ein $n \in \mathbb{N}$ (IV). Dann:

$$\sum_{j=0}^{n+1} q^j = \sum_{j=0}^n q^j + q^{n+1} \overset{\text{(IV)}}{=} \frac{q^{n+1}-1}{q-1} + q^{n+1} = \frac{q^{n+1}-1+q^{n+2}-q^{n+1}}{q-1} = \frac{q^{n+2}-1}{q-1}.$$

 $\Longrightarrow A(n+1)$ gilt \Longrightarrow (IS) ist gezeigt. \Longrightarrow Ind. zeigt, dass A(n) für alle $n\in\mathbb{N}$ gilt. \square

Eine weitere rekursive Definition:

Fakultät: 0! = 1, 1! = 1. Wenn n! für ein $n \in \mathbb{N}$ definiert ist, dann setzt man $(n+1)! = (n+1) \cdot n!$. Man schreibt: $n! = 1 \cdot 2 \cdots n$.

Definition (Binomialkoeffizienten). Seien $n, j \in \mathbb{N}_0$ und $n \geq j$. Dann setzt man

$$\binom{n}{j} := \frac{n!}{j!(n-j)!} = \frac{1 \cdot 2 \cdots n}{(1 \cdot 2 \cdots j)(1 \cdot 2 \cdots (n-j))}.$$

Eigenschaften: $(n, j \in \mathbb{N}_0, n \ge j)$

a)
$$\binom{n}{n-j} = \frac{n!}{(n-j)!(n-n+j)!} = \binom{n}{j}.$$

$$\binom{n}{0} = \frac{n!}{0!n!} = 1 = \binom{n}{n}.$$

$$(0.1)$$

b) Sei
$$j \ge 1$$
. Dann: $\binom{n}{j-1} + \binom{n}{j} = \frac{n! \cdot j}{(j-1)!(n-j+1)! \cdot j} + \frac{n!(n-j+1)}{j! \cdot (n-j)!(n-j+1)}$

$$\stackrel{\text{Def. Fak.}}{=} \frac{j \cdot n! + (n - j + 1)n!}{j!(n - j + 1)!} \stackrel{\text{Def. Fak.}}{=} \frac{(n + 1)!}{j!(n + 1 - j)!} \stackrel{\text{Def.}}{=} \binom{n + 1}{j}$$
(0.2)

Beispiel 0.3 (Binomischer Satz). Seien $a, b \in \mathbb{Q}, n \in \mathbb{N}$. Dann

$$A(n): (a+b)^n = \sum_{j=0}^n \binom{n}{j} a^{n-j} b^j, \quad n \in \mathbb{N}.$$

Beweis (per Ind.). IA: (n = 1)

$$\sum_{j=0}^{1} {1 \choose j} a^{1-j} b^j \stackrel{(0.1)}{=} 1 \cdot a^1 \cdot b^0 + 1 \cdot a^0 \cdot b^1 = (a+b)^1.$$

 $\implies A(1)$ ist wahr.

IS: A(n) gelte für ein $n \in \mathbb{N}$ (IV).

$$(a+b)^{n+1} = (a+b)(a+b)^n \stackrel{\text{(IV)}}{=} (a+b) \sum_{j=0}^n \binom{n}{j} a^{n-j} b^j$$

$$= \sum_{j=0}^n \binom{n}{j} a^{n-j+1} \cdot b^j + \sum_{j=0}^n \binom{n}{j} a^{n-j} \cdot b^{j+1}$$
setze $l = j+1 \iff j = l-1$

$$= \sum_{j=0}^n \binom{n}{j} a^{n+1-j} \cdot b^j + \sum_{l=1}^{n+1} \binom{n}{l-1} a^{n+1-l} \cdot b^l$$

$$\stackrel{\text{(0.1)}}{=} \underbrace{a^{n+1}}_{(j=0)} \sum_{j=1}^n \underbrace{\binom{n}{j} + \binom{n}{j-1}}_{\stackrel{\text{(0.2)}}{=} \binom{n+1}{j}} \underbrace{a^{n+1-j} \cdot b^j}_{(j=l \text{ gesetzt})} + \underbrace{1 \cdot a^0 \cdot b^{n+1}}_{(j=n+1)}$$

$$= \sum_{j=0}^{n+1} \binom{n+1}{j} a^{n+1-j} \cdot b^j$$

 $\implies A(n+1)$ ist gezeigt \implies (IS) gilt. \implies Beh. folgt mit vollst. Ind.

1 Reelle und komplexe Zahlen

Wir definieren die reellen Zahlen "axiomatisch", d.h.: Man legt in einer Definition die Eigenschaften der reellen Zahlen fest, die im folgenden verwendet werden dürfen. Ausblick: \mathbb{R} ist ein "ordnungsvollständiger, geordneter Körper".

1.1 Geordnete Körper

Definition. Sei M eine nichtleere Menge. Eine Abbildung $*: M \times M \to M(x,y) \mapsto x * y$ heißt Verknüpfung auf M.

Definition 1.1. Seien K eine Menge, $0 \in K$, $1 \in K$ mit $0 \neq 1$, und "+" und "·" Verknüpfungen auf K. Dann heißt $(K, 0, 1, +, \cdot)$ ein $K\ddot{o}rper$, wenn die folgenden Eigenschaften für alle $x, y, z \in K$ gelten:

a) Assoziativgesetze:

$$(x + y) + z = x + (y + z)$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

b) neutrale Elemente:

$$x + 0 = x, \ x \cdot 1 = x$$

- c) inverse Elemente:
 - Zu jedem $x \in K$ existiert ein $a \in K$ mit x + a = 0.
 - Zu jedem $x \in K \setminus \{0\}$ existiert ein $b \in K$ mit $x \cdot b = 1$.
- d) Kommutativgesetze:

$$x + y = y + x$$
, $x \cdot y = y \cdot x$

e) Distributivgesetz:

$$(x+y) \cdot z = (x \cdot z) + (y \cdot z)$$

Man schreibt oft K anstelle $(K, 0, 1, +, \cdot)$.

Beispiel. a) \mathbb{Q} mit den üblichen $0, 1, +, \cdot$ ist ein Körper.

- b) \mathbb{Z} ist kein Körper, da es kein $b \in \mathbb{Z}$ gibt mit 2b = 1.
- c) Weitere Beispiele in linearer Algebra und Analysis I.

- Bemerkung. a) Wir schreiben -x für das Inverse Element von $x \in K$ bzgl. der Addition und $x^{-1} = \frac{1}{x}$ für das Inverse Element von $x \in K \setminus \{0\}$. Man lässt "·" und überflüssige Klammern meist weg. Dabei gilt "·" vor "+".
 - b) Die inversen Elemente sind eindeutig bestimmt (siehe LA). Man schreibt x-y statt x+(-y) und $\frac{x}{y}$ statt $x\cdot y^{-1}$.
 - c) Es gelten Rechenregeln wie in der Bruchrechnung (z.B. $0 \cdot x = 0$, -(-x) = x, usw.) [siehe LA]. Im folgenden wird dies ohne Kommentar in Ana I verwendet.

Definition 1.2. Sei M eine nichtleere Menge. Eine $Relation\ R$ auf M ist eine Teilmenge von $M\times M$. Man schreibt $x\sim_R y$ statt $(x,y)\in R$.

R ist Ordnungsrelation (oder Ordnung), wenn gelten:

- a) $\forall x \in M : x \sim_R x$ (reflexiv).
- b) $\forall x, y, z \in M$: Wenn $x \sim_R y$ und $y \sim_R z$, dann auch $x \sim_R z$ (transitiv).
- c) $\forall x, y \in M$: Wenn $x \sim_R y$ und $y \sim_R x$, dann gilt x = y (antisymmetrisch). Statt \sim_R schreibt man in diesem Fall meist \leq_R oder \geq_R . Eine Ordnung heißt total, wenn für beliebige $x, y \in M$ stets $x \leq y$ oder $y \leq x$ gilt.

Man schreibt x < y, wenn $x \le y$ und $x \ne y$, sowie $x \ge y$ statt $y \le x$ und y > x statt x < y.

Beispiel. a) Die übliche Ordnung auf \mathbb{Q} erfüllt Definition 1.2 und ist total. Hier:

b) Die Relation "n teilt m" für $n, m \in M$ ist eine nicht-totale Ordnung, z.B. 2 und 3 teilen sich nicht.

Definition 1.3. Ein geordneter Körper $K = (K, \leq)$ besteht aus einem Körper K und einer totalen Ordnung \leq , sodass die folgenden Eigenschaften gelten:

- a) $\forall x, y, z \in K$: Wenn x < y, dann x + z < y + z.
- b) $\forall x, y \in K$: Wenn x > 0 und y > 0, dann gilt xy > 0.

 $x \in K$ heißt positiv (negativ), wenn $x \ge 0$ ($x \le 0$). $x \in K$ heißt strikt positiv (strikt negativ), wenn x > 0 (x < 0). Man setzt

$$K_{+} = \{x \in K : x \ge 0\}, \ K_{-} = \{x \in K : x \le 0\}$$

Es gelten $K_+ \cap K_- = \{0\}$ (nach Def. 1.2 3), sowie $K_+ \cup K_- = K$ (wegen der Totalität).

Beispiel. $\mathbb Q$ mit der üblichen Ordnung ist ein geordneter Körper.

Satz 1.4. a) $y > x \iff y - x > 0$.

- b) a) $x < 0 \iff -x > 0$. b) $x > 0 \iff -x < 0$.
- c) Wenn x > 0 und y < 0, dann xy < 0.
- d) Wenn $x \neq 0$, dann $x^2 = x \cdot x > 0$. Speziell: $1 = 1^2 > 0$.
- e) Wenn x > 0, dann $\frac{1}{x} > 0$.

Beweis. a) Sei y>x. Addiere -x zu beiden Seiten. 1.3 1 liefert y-x>x-x=0. Sei y-x>0. Addiere x. 1.3 1 $\implies y=y-x+x>x$.

- b) a) Setze y = 0 in 1.
 - b) Ergibt sich, wenn man in 2a x durch -x ersetzt. (Beachte: -(-x) = x).
- c) Seien x > 0, $y < 0 \stackrel{2}{\Longrightarrow} -y > 0 \stackrel{1.3}{\Longrightarrow} 0 < x \cdot (-y) = -xy \stackrel{2}{\Longrightarrow} xy < 0$.
- d) Sei $x \neq 0$. Nach 2 und der Totalität der Ordnung gilt entweder x > 0 oder -x > 0. 4 folgt also aus 1.3 2 und $(-x)^2 = x^2$.
- e) Sei x>0. Ann. $\frac{1}{x}<0$. Dann $-\frac{1}{x}>0$ (nach 2) und somit $-1=x\cdot\left(-\frac{1}{x}\right)>0$ nach 1.3 2. Nach 4 und 2 folgt ξ . Da $\frac{1}{x}\neq 0$ folgt die Behauptung, da die Ordnung total ist.

Definition 1.5. Sei K ein geordneter Körper und $x \in K$.

Dann heißt
$$|x| := \begin{cases} x, & x > 0, \\ -x, & x < 0, \end{cases}$$
 der $Betrag \text{ von } x$.

Satz 1.6. Seien K ein geordneter Körper und $x, y \in K$. Dann gelten:

a)
$$|x| \ge 0$$
, $|x| = 0 \iff x = 0$.

b)
$$x \le |x|, -x \le |x|, |x| = |-x|.$$

$$c) |xy| = |x| \cdot |y|.$$

d)
$$|x + y| \le |x| + |y|$$
.

e)
$$|x - y| \ge |x| - |y|$$
.

Beweis. a) - c) folgen leicht aus Def. 1.5 und Satz 1.4.

d) Da
$$x \le |x|, y \le |y|$$
, folgt $x + y \stackrel{1.3}{\le} |x| + y \le |x| + |y|$.
Ebenso: $-(x + y) \le |x| + |y|$. Somit: $|x + y| \le |x| + |y|$.

e) Übungsblatt.

Definition 1.7. Seien K ein geordneter Körper und $a, b \in K$ mit a < b. Dann definiert man die beschränkten Intervalle

$$[a, b] = \{x \in K : a \le x \le b\}, [a, a] = \{a\} \text{ ("abgeschlossen")},$$

$$(a,b) = \{x \in K : a < x < b\}$$
 ("offen", statt $[a,b]$),

$$[a, b) = \{x \in K : a < x < b\},\$$

$$(a, b] = \{x \in K : a < x < b\},\$$

und die unbeschränkten Intervalle

$$[a, \infty) = \{x \in K : x \ge a\}, (-\infty, a] = \{x \in K : x \le a\},$$
 ("abgeschlossen"),

$$(a, \infty) = \{x \in K : x > a\},\ (-\infty, a) = \{x \in K : x < a\},\$$
 ("offen").

Beispiel. Für welche $x \in \mathbb{Q}$ gilt |2x - 3| + 2 > 3x - 5? (*)

Lösung: Betrag auflösen:

$$|2x - 3| = \begin{cases} 2x - 3, & x \ge \frac{3}{2}, \\ 3 - 2x, & x < \frac{3}{2}, \end{cases} \quad x \in \mathbb{Q}.$$

Fall 1: $x \ge \frac{3}{2}$. Dann:

(*)
$$\iff 2x - 3 + 2 > 3x - 5 \iff 2x - 1 > 3x - 5 \stackrel{1.3}{\iff} 4 > x.$$

Also: jedes $x \in \left[\frac{3}{2}, 4\right)$ erfüllt (*).

Fall 2:
$$x < \frac{3}{2}$$
. Dann:

$$(*) \iff 3 - 2x + 2 > 3x - 5 \stackrel{\text{1.3 1}}{\iff} 10 > 5x \stackrel{\text{(\"{U}b)}}{\iff} x < 2.$$

Also: jedes
$$x \in \left(-\infty, \frac{3}{2}\right)$$
 erfüllt (*).

$$\implies$$
 Lösungsmenge = $(-\infty, 4)$.

Satz 1.8 (Bernoulli-Ungleichung). Seien K ein geordneter Körper, x > -1 und $n \in \mathbb{N}$. Dann gilt

$$(1+x)^n \ge 1 + n \cdot x.$$

(Dabei wird $y^n = y \cdots y$ induktiv definiert.)

Beweis. (per Induktion)

- (IA) Beh. ist wahr für n = 1.
- (IS) Beh. gelte für ein $n \in \mathbb{N}$ (IV).

Dann:

$$(1+x)^{n+1} = \underbrace{(1+x)}_{>0, \text{ n.V. } [x>-1]} (1+x)^n \stackrel{(IV), \text{ "Üb}}{\ge} (1+x)(1+nx)$$
$$= 1 + (n+1)x + \underbrace{nx^2}_{>0} \stackrel{1.3}{\ge} 1 + (n+1)x.$$

$$\implies$$
 IS gilt $\stackrel{\text{Ind.}}{\Longrightarrow}$ Beh.

Lemma 1.9. Sei K ein geordneter Körper und $a, b \in K$ mit a < b. Dann gilt

$$a < \frac{a+b}{2} < b,$$

 $wobei\ 2 := 1 + 1.$

Beweis.
$$2a = a + a \stackrel{1.3}{<} a + b \stackrel{1.3}{<} b + b = 2b$$
. Division mit 2 liefert Beh.

1.2 Suprema und reelle Zahlen

Definition 1.10. Sei K geordneter Körper und $M \subseteq K$ nichtleer.

a) $a \in K$ ist eine obere (untere) Schranke von M, wenn $a \ge m$ ($a \le m$) für alle $m \in M$. M heißt nach oben (unten) beschränkt, wenn es eine obere (untere) Schranke besitzt. M heißt beschränkt, wenn es nach oben und nach unten beschränkt ist. Andernfall heißt M unbeschränkt.

b) $x \in K$ heißt Maximum (Minimum) von M, wenn es eine obere (untere) Schranke von M ist und wenn $x \in M$. Man schreibt dann $x = \max M$ ($x = \min M$).

Beispiel 1.11. a) Sei $M = (-\infty, b]$. Dann hat M die obere Schranke $b \in M$ gemäß Def. 1.7. Ferner hat M keine untere Schranke.

Beweis. Ann. $\exists a \in K \text{ mit } a \leq x \ \forall x \in M.$ Dann: a - 1 < a nach Satz 1.4.

$$\implies a-1 \le b \implies a-1 \in (-\infty,b] \implies \mbox{$\rlap/ 4$}.$$

$$\implies M$$
 hat keine untere Schranke.

b) Sei $N=(-\infty,b)$. Dann hat N auch die obere Schranke b, aber $b\notin N$. Beh. N hat kein max.

Beweis. Ann. Es gebe $a = \max N$. Da $a \in N$, folgt a < b. Somit folgt

$$a < \frac{a+b}{2} < b \text{ nach Lemma 1.9.} \implies \frac{a+b}{2} \in N \implies \notin \text{zu } a = \max N.$$

Bemerkung 1.12. In Def. 1.10 hat M höchstens ein max und höchstens ein min.

Beweis. (nur für max): Seien x,y Maxima von $M. \implies x \ge m \ \forall m \in M \implies x \ge y$. Genauso: $y \ge x$.

$$\implies x = y.$$

Definition 1.13. Sei K ein geordneter Körper und $M \subseteq K$ nichtleer.

- a) Sei M nach oben beschränkt. Wenn es eine kleinste obere Schranke von M gibt, dann heißt diese Supremum von M (man schreibt $\sup M$).
- b) Sei M nach unten beschränkt. Wenn es eine größte untere Schranke von M gibt, so heißt diese Infimum von M (inf M).

Beispiel 1.14. Sei $M = (-\infty, b)$. Beh. $b = \sup M$.

Beweis. Nach Def. 1.7. ist b eine obere Schranke von M. Ann. x sei eine echt kleinere obere Schranke von M. Nach Lemma 1.9 gilt:

$$x < \frac{x+b}{2} < b \implies \frac{x+b}{2} \in M \implies \mbox{$\rlap/ $\rlap/$} \ .$$

Bemerkung 1.15. a) Wenn es existiert, dann ist das Supremum gleich dem Minimum der oberen Schranke von M, sowie inf M das Maximum der unteren Schranken von M.

b) Nach 1 Bem. 1.12. besitzt also M höchstens ein sup und höchstens ein inf.

Beispiel 1.16. Seien $K = \mathbb{Q}$, $M = \{x \in \mathbb{Q}_+ : x^2 \le 2\}$.

Beh. sup M ex. nicht in \mathbb{Q} , wobei M beschränkt ist (mit oberer Schranke 2).

Beweis. Ann. es existiere $s = \sup M \in \mathbb{Q}$.

 $\implies \exists$ teilerfremde $p,q\in \mathbb{N}$ nit $s=\frac{\breve{p}}{q}.$ Nach Lemma 1.24 muss dann $s^2=2$ gelten.

$$\implies p^2 = 2q^2 \implies p^2 \text{ gerade } \implies p \text{ gerade } \implies \exists r \in \mathbb{N} : p = 2r$$

$$\implies 2q^2 = 4r^2 \implies q^2 = 2r^2 \implies q \text{ gerade} \implies \not p, q \text{ teilerfremd.}$$

 $\implies s$ kann nicht in \mathbb{Q} existieren.

(Beweis ohne Vorgriff: Amann/Escher Ana I. Bsp. I. 10.3.)

Bem. Haben gezeigt " $\sqrt{2} \notin \mathbb{Q}$ ".

Definition 1.17. Ein geordneter Körper K, in dem jede nach oben beschränkte nichtleere Menge ein Supremum besitzt, heißt *ordnungsvollständig*. Die *reellen Zahlen* \mathbb{R} sind ein ordnungsvollständiger geordneter Körper.

Bemerkung. a) \mathbb{Q} ist nach Bsp. 1.16 nicht ordnungsvollständig.

b) Man kann \mathbb{R} mit den Eigenschaften aus Def. 1.17 mit Mitteln der Mengentheorie konstruieren (Cantor, Dedekind ~1880). Durch Def. 1.17 ist \mathbb{R} eindeutig bestimmt ("bis auf einen ordnungserhaltenden Körperisomorphismus").

Siehe:

- Ebbinghaus et al. "Zahlen", 1992.
- E. Landau. Grundlagen der Analysis, 1934.
- Aman/Escher Thm. I.10.4.
- c) Wenn man die 1 in \mathbb{R} mit der 1 in \mathbb{Q} identifiziert, dann ist \mathbb{Q} in \mathbb{R} enthalten $(\mathbb{Q} \subseteq \mathbb{R})$, wobei für $x, y \in \mathbb{Q}$ die Verknüpfungen +, \cdot und die Relation \leq von \mathbb{R} mit denen von \mathbb{Q} übereinstimmen.

Denn: Man definiert in \mathbb{R} : $2:=1+1, 3:=2+1, \ldots$ Dabei liefern $+, \cdot, \leq$ von \mathbb{R} auf $1, 2, 3, \ldots$ die bekannten Verknüpfungen von \mathbb{N} , z.B. gilt auch Satz 1.4: $1 < 2 < 3 < \cdots$

Damit liegt auch -n in \mathbb{R} für $n \in \mathbb{N}$, sowie $\frac{p}{q} \in \mathbb{Q}$, für $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

Der Rest der Behauptung ist leicht (aber langwierig) zu zeigen.

Eigenschaften von $\mathbb R$ und sup, inf

Satz 1.18. Sei $M \subseteq \mathbb{R}$ nichtleer und nach oben (unten) beschränkt und $s \in \mathbb{R}$. Dann sind äquivalent:

- a) $s = \sup M \ (s = \inf M)$
- b) s ist eine obere (untere) Schranke und

$$\forall \varepsilon > 0 \ \exists x_{\varepsilon} \in M : s - \varepsilon < x_{\varepsilon} \le s \ (s \le x_{\varepsilon} < s + \varepsilon)$$

Beweis. (Nur für sup): Sei B die Menge der oberen Schranken von M. $1 \iff s = \min B \iff s$ ist obere Schranke von M und $\forall \varepsilon > 0 : s - \varepsilon \notin B$ (da s kleinste obere Schranke) $\iff s$ ist obere Schranke von M und $\forall \varepsilon > 0 \exists x_{\varepsilon} \in M : s - \varepsilon < x_{\varepsilon} \iff 2$

Satz 1.19. Sei $M \subseteq \mathbb{N}$ nichtleer. Dann exisitiert min M.

Beweis. Da $\mathbb{N} \subset \mathbb{R}$ und 1 eine untere Schranke von \mathbb{N} ist, exisitert $x = \inf M$. Nach Satz 1.18 mit $\varepsilon = \frac{1}{3}$ existiert ein $m_0 \in M$ mit $x \leq m_0 < x + \frac{1}{3} \leq m + \frac{1}{3}$ für alle $m \in M$. Für $m \in \mathbb{N}$ mit $m \neq m_0$ gilt $|m - m_0| \geq 1$. Also gilt $m_0 \leq m$ für alle $m \in M \implies m_0 = \min M$.

Satz 1.20. a) \mathbb{R} ist "archimedisch geordnet", d.h. $\forall x \in \mathbb{R} \ \exists n_x \in \mathbb{N} : n_x > x$

- $b) \ \forall \varepsilon \in \mathbb{R} \ mit \ \epsilon > 0 \ \exists n_{\varepsilon} \in \mathbb{N}, \ sodass \ \frac{1}{n_{\varepsilon}} < \varepsilon.$
- c) Sei $x \in \mathbb{R}$. Wenn $0 \le x \le \frac{1}{n}$ für alle $n \in \mathbb{N}$, dann x = 0.

Beweis. a) Annahme: Die Behauptung sei falsch, d.h. $\exists x_0 \in \mathbb{R} \ \forall n \in \mathbb{N} : n \leq x_0$. Somit exisitert $s = \sup \mathbb{N} \in \mathbb{R}$. Nach Satz 1.18 mit $\varepsilon = \frac{1}{2}$ exisitert dann $m \in \mathbb{N}$ mit

$$s - \frac{1}{2} < m \implies s < s + \frac{1}{2} < m + 1.$$

Da $m+1 \in \mathbb{N}$, kann s kein Supremum sein. $\nleq \implies 1$ gilt.

b) Sei $\varepsilon > 0$ gegeben. Setze $x = \frac{1}{\varepsilon} \in \mathbb{R}$. Nach 1 existiert $n_x \in \mathbb{N}$ mit $n_x > x = \frac{1}{\varepsilon} \implies \varepsilon > \frac{1}{n_x} \implies$ Beh. 2 mit $n_\varepsilon = n_x$.

c) folgt direkt aus 2.

Definition. Seien M, N nichtleere Mengen. Eine Abbildung $f: M \to N$ heißt injektiv, wenn $\forall x, y \in M$ mit $x \neq y: f(x) \neq f(y)$. Sie heißt surjektiv, wenn $\forall z \in n \exists x \in m$ it f(x) = z. f heißt bijektiv, wenn f injektiv und surjektiv ist, d.h. $\forall z \in N \exists ! x \in M$ mit f(x) = z. Für bijektive $f: M \to N$ definiert man die Umkehrabbildung $f^{-1}: N \to M$ durch $f^{-1}(z) = x$, wenn $f(x) = z, z \in N$.

Definition 1.21. Zwei Mengen M, N heißen gleichmächtig, wenn es ein bijektive Abbildung $f: M \to N$ gibt. M hat die Mächtigkeit (Kardinalität) $n \in \mathbb{N}$, wenn M und $\{1, 2, \ldots, n\}$ gleichmächtig sind. Wenn dies für kein $n \in \mathbb{N}$ der Fall ist, so ist M unendlich. Man schreibt dann #M = n bzw. $\#M = \infty$.

Beispiel. Sei $M = \{A, B, C\}$. Dann ist $f : M \to \{1, 2, 3\}$ mit f(A) = 1, f(B) = 3, f(C) = 2 eine bijektive Abbildung $\implies \#M = 3$.

Beachte: Wenn #M = n, dann gilt $M = x_1, \ldots, x_j$, wobei $x_j := f^{-1}(j)$ mit f aus Def. 1.21 und $j \in \{1, \ldots, n\}$. Wenn M und N gleichmächtig sind, dann #M = #N, da die Verkettung bijektiver Abbildungen bijektiv ist.

Bemerkung. Gleichmächtigkeit ist eine Äquivalenzrelation.

Satz 1.22. a) Sei $m \in \mathbb{N}$. Dann ist $\#\{j \in \mathbb{N} : j \geq m\} = \infty$. Speziell $\#\mathbb{N} = \infty$

b) Seien $a, b \in \mathbb{R}$ mit b > a. Dann $\#\{x \in \mathbb{Q} : a < x < b\} = \infty$

Beweis. a) Annahme: $\#\{j \in \mathbb{N} : j \geq m\} = n$. Dann $\exists x_1, \dots, x_n \in \mathbb{N}$ mit $M := \{j \in \mathbb{N} : j \geq m\} = x_1, \dots, x_n$. Dann $y = x_1 + \dots + x_n + 1 \in \mathbb{N}$ und

$$y > \begin{cases} m & \Longrightarrow y \in M \\ x_j, j \in \{1, \dots, n\} & \Longrightarrow y \notin M \end{cases} \Longrightarrow \sharp.$$

b) Zuerst konstruiert man ein $q \in \mathbb{Q} \cap (a, b)$. Nach Satz 1.20 $\exists n \in \mathbb{N} : b - a > \frac{1}{n} > 0$, also

$$nb > 1 + na \tag{*}$$

Sei $a \geq 0$. Dann existiert nach Satz 1.20 und Satz 1.19 ein minimales $k \in \mathbb{N}$ mit k > na. Sei a < 0. Dann erhallt man genauso ein minimales $l \in \mathbb{N}$ mit $l \geq -na$, also $-l \leq an$. Somit liegt

$$m := \begin{cases} k & , a \ge 0 \\ 1 - l & , a < 0 \end{cases}$$

in $\mathbb Z$ und $na < m \leq an+1 \stackrel{(*)}{<} nb \implies a < \frac{m}{n} < b, \ q := \frac{m}{n} \in \mathbb Q$. Nach Satz 1.20 $\exists j_0 \in \mathbb N$ mit $b-q > \frac{1}{j_0} > 0$. Sei $j \in J := \{k \in \mathbb N : k \geq j_0\} \implies q+\frac{1}{j} \in \mathbb Q$ und $a < q+\frac{1}{j} \leq q+\frac{1}{j_0} < b, \ \forall j \in J$. Die Menge $M = \{q+\frac{1}{j}, j \in J\}$ ist nach 1 unendlich da $f: J \to M, f(j) = b+\frac{1}{j}$ bijektiv ist.

Definition. Seien $A, B \subseteq R$. Dann setzt man

$$A+B:=\{x:\exists a\in A,b\in B \text{ mit } x=a+b\}$$

$$A\cdot B:=\{x:\exists a\in A,b\in B \text{ mit } x=a\cdot b\}$$
 speziell:
$$y+B=\{y\}+B=\{x=y+b,b\in B\}$$

$$y\cdot B=\{y\}\cdot B=\{x=y\cdot b,b\in B\}$$

Beispiel. [0;1] + [2;3] = [2;4]

Beweis. "⊆" ist klar. "⊇" Sei $x \in [2;3]$. Wenn $x \in [2;3]$, dann wähle $a = x - 2 \in [0;1]$ und b = 2Wenn $x \in [3;4]$, dann wähle $a = x - 3 \in [0;1]$ und b = 3In beiden Fällen: a + b = x **Satz 1.23.** Seien $A, B \subseteq \mathbb{R}$ nichtleer.

- a) Seien A und B nach oben beschränkt. Dann:
 - a) Wenn $A \subseteq B$, dann $\sup A \le \sup B$
 - b) $\sup(A+B) = \sup A + \sup B$
 - c) Wenn A, $B \subseteq (0, \infty)$, $dann \sup(A \cdot B) = \sup A \cdot \sup B$
- b) Seien A und B nach unten beschränkt. Dann gelten 1b und 1a von 1) auch für das Infimum. Weiter gelten:
 - a') $A \subseteq B \implies \inf A > \inf B$
 - d) -A ist nach oben beschränkt und inf $A = -\sup(-A)$, wobei $-A := (-1) \cdot A$.

Beweis. a) Sei $A \subseteq B$. Wenn z eine obere Schranke von B ist, dann auch von A. \Longrightarrow Beh. 1a.

b) Seien $x = \sup A$ und $y = \sup B$. Dann $x + y \ge a + b \, \forall a \in A, b \in B \implies x + y$ ist obere Schranke von A + B. Sei $\varepsilon > 0$ gegeben (fest aber beliebig). Setze $\eta = \frac{\varepsilon}{2} > 0$. Satz 1.18 liefert $a_{\eta} \in A$ und $b_{\eta} \in B$ mit $x - \eta < a_{\eta} \le x$ bzw. $y - \eta < b_{\eta} \le y \implies x + y - \underbrace{2\eta}_{\varepsilon} < \underbrace{a_{\eta} + b_{\eta}}_{\in A + B} \le x + y \stackrel{\text{1.18}}{\Longrightarrow}$ Beh. 1b (Rest in Übungen).

Potenzen mit rationalen Exponenten

Seien $a, b \in \mathbb{R}$ mit a, b > 0, $r = \frac{m}{n}$, $n \in \mathbb{N}$, $m \in \mathbb{Z}$ gegeben. Ziel: Definiere $a^{\frac{m}{n}}$ und zeige Potenzgesetze. Vorrausgesetzt wird dabei der Fall

$$a^{m} = \begin{cases} \underbrace{a \cdot a \cdots a}_{m \text{ mal}} & \text{für } m > 0 \\ 1 & \text{für } m = 0 \\ \frac{1}{a^{|m|}} & \text{für } m < 0 \end{cases}$$

Wir verwenden (wobei a, b > 0)

$$a < b \iff a^n < b^n \tag{1.1}$$

Beweis. " \Longrightarrow " $a < b \Longrightarrow a^2 < ab$ und $ab < b^2$ induktiv für alle $n \in \mathbb{N}$. " \Longleftrightarrow " Sei $a^n < b^n$. Annahme: $a \ge b \Longrightarrow a^n \ge b^n \Longrightarrow 4$ Hauptschritt: Fall m = 1. Sei $M = \{x \in \mathbb{R}_+ : x^n \le a\}$. Dann

a) $M \neq \emptyset$, da $0 \in M$

b) M hat obere Schranke 1 + a, denn Annahme: 1 + a hat keine obere Schranke: $x > 1 + a \text{ für } x \in M \xrightarrow{\text{(1.1)}} x^n \ge (1+a)^n \ge (1+a) \cdot 1^{n-1} > a$

Def. 1.17
$$\implies \exists w = \sup M$$
 (1.2)

Lemma 1.24. w ist die einzige positive reelle Lösung der Gleichung $y^n = a$.

a) Annahme: $w^n < a$. Sei $\varepsilon \in (0; 1]$. Dann $(w + \varepsilon)^n \stackrel{\text{Bsp. 0.3}}{=} \sum_{i=1}^n \binom{n}{i} w^j \varepsilon^{n-j}$ Beweis.

$$= w^n + \varepsilon \sum_{j=0}^{n-1} \binom{n}{j} \underbrace{w^j}_{>0} \underbrace{\varepsilon^{n-j-1}}_{<1} \leq w^n + \varepsilon \sum_{j=0}^n \binom{n}{j} w^i \overset{\mathrm{Bsp. } 0.3}{=} w^n + \varepsilon (1+w)^n.$$

Wähle speziell $\varepsilon = \min \left\{ 1, \frac{a - w^n}{(1 + w)^n} \right\} \in (0; 1]$

$$\implies (w+\varepsilon)^n \le w^n + \frac{a-w^n}{(1+w)^n} (1+w)^n = a$$

$$\implies w+\varepsilon \in M \implies \text{f zu } w = \sup M \implies w^n \ge a.$$

- b) Ähnlich sieht man $w^n \le a \implies w^n = a$
- c) Es gelte $v^n = a$ für ein $v \in \mathbb{R}_+$. Wenn v < (>) w, dann $v^n < (>) w^n$ nach (1.1)

Folgerung. Sei $x \in \mathbb{R}$. Dann ist $y = \sqrt{x^2}$ die einzige positive Lösung von $y^2 = x^2$. Weitere Lösung ist |x|

$$\stackrel{Eind.}{\Longrightarrow} \sqrt{x^2} = |x| \tag{1.3}$$

Definition 1.25. Sei $a \in \mathbb{R}$, a > 0, $n \in \mathbb{N}$, $m \in \mathbb{Z}$, $q = \frac{m}{n}$, w wie in (1.2). Dann setzen wir $\sqrt[n]{a} := a^{\frac{1}{n}} := w \text{ und } a^q := (a^{\frac{1}{n}})^m$

Satz 1.26. Seien $a, b \in \mathbb{R}$, a, b > 0, $p, q \in Q$. Dann gelten:

- $a) a^p b^p = (ab)^p$
- b) $a^p a^q = a^{p+q}$

c)
$$(a^p)^q = a^{pq}$$

d) $a > b > 0 \implies \begin{cases} a^p > b^p, & p > 0 \\ a^p < b^p, & p < 0 \end{cases}$

Beweis. a) Seien $a, b > 0, p = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$. Zu zeigen: $a^p b^p = (ab)^p$ Dann: $(a^{\frac{1}{n}}b^{\frac{1}{n}})^n = \underbrace{a^{\frac{1}{n}}b^{\frac{1}{n}}\cdots}_{n\text{-mal}} = (a^{\frac{1}{n}})^n(b^{\frac{1}{n}})^n \stackrel{1.24}{=} ab \stackrel{1.24}{\Longrightarrow} a^{\frac{1}{n}}b^{\frac{1}{n}} = (ab)^{\frac{1}{n}}$. $n\text{-te Potenz liefert Beh. 1. b), c) gehen so ähnlich.$

b) Sei
$$p = \frac{m}{n} \in \mathbb{Q}$$
m $a > b > 0$. Zu zeigen:
$$\begin{cases} p > 0 & \Longrightarrow a^p > b^p \\ p < 0 & \Longrightarrow a^p < b^p \end{cases}$$
 Annahme: $a^{\frac{1}{n}} \leq b^{\frac{1}{n}}, \ n \in \mathbb{N} \ a \overset{\text{Def.}}{=} (a^{\frac{1}{n}})^n \overset{1.1}{\leq} (b^{\frac{1}{n}})^n \overset{\text{Def.}}{=} b \not \in \Longrightarrow a^{\frac{1}{n}} > b^{\frac{1}{n}} \text{ n-te Potenz, } 1.1, \ \ddot{\text{Ubung }} 2.5, \ 1 \ \text{für } m < 0 \ \text{liefern } 4$

1.3 Komplexe Zahlen

Ausgangspunkt: Löse $x^2 = -1$ Nach Satz 1.4 hat diese Gleichung keine Lösung in einem geordneten Körper, insbesondere keine Lösung in \mathbb{R} . Idee: Konstruiere einen nicht geordneten Körper, der \mathbb{R} enthält und in dem $x^2 = -1$ lösbar ist.

Ansatz. Auf \mathbb{R}^2 gibt es (Vektor-)addition: $\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} x+u \\ y+v \end{pmatrix}$

Def.:
$$\begin{pmatrix} x \\ y \end{pmatrix} \cdot \begin{pmatrix} u \\ c \end{pmatrix} := \begin{pmatrix} xu - yv \\ xv + xy \end{pmatrix} \in \mathbb{R}^2$$
,

Bsp.:
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

Neue Bezeichnungen: 1 statt $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, i statt $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, x+iy=z statt $\begin{pmatrix} x \\ y \end{pmatrix}$ mit $x,y\in\mathbb{R}$ (also $i^2=-1$)

Definition. $\mathbb{C}:=\{z=x+iy:x,y\in\mathbb{R}\}$ Fasse $\mathbb{R}=\{z=x+i\cdot 0=x,x\in\mathbb{R}\}$ als Teilmenge von \mathbb{C} auf.

Seien $z=x+iy,\,w=u+iv$ für $x,y,u,v\in\mathbb{R}.$ Dann setzt man

$$z+w=(x+iy)+(u+iv):=(x+u)+i(y+v)\in\mathbb{C}$$

$$z \cdot w := (xu - yr) + i(yu + xv) \in \mathbb{C}$$

Beachte. Auf der rechten Seite der obigen Definition stehen in den Klammern nur reelle Ausdrücke, die somit wohldefiniert sind. Falls $z = x \in \mathbb{R}$ und $w = u \in \mathbb{R}$, so erhält man wieder die reelen +, - Lineare Algebra: $(\mathbb{C}, 0, 1, +, \cdot)$ ist ein Körper.

Definition 1.27. Sei $z=x+iy\in\mathbb{C}$ mit $x,y\in\mathbb{R}$. Dann heißt x der Realteil von z,y der Imaginärteil von $z,|z|_{\mathbb{C}}:=\sqrt{x^2+y^2}$ der Betrag von z und $\bar{z}:=x-iy$ das konjungiert Komplexe von z. Man schreibt $x=\operatorname{Re} z$ und $y=\operatorname{Im} z$.

Bemerkung. Für $z=x\in\mathbb{R}$ gilt $|x|_{\mathbb{C}}=\sqrt{x^2}\stackrel{??}{=}|x|_{\mathbb{R}}$. Somit schreiben wir |z| statt $|z|_{\mathbb{C}}$ für $z\in\mathbb{C}$.

Sei $z\in\mathbb{C},\ r\in\mathbb{R}, r>0$. Dann ist $B(z,r)=\{w\in\mathbb{C}:|z-w|< r\}$ die offene Kreisscheibe in \mathbb{R}^2 mit Mittelpunkt $z=\begin{pmatrix} x\\y \end{pmatrix}$ und Radius $r,\ \overline{B}(z,r)=\{w\in\mathbb{C}:|z-w|=r\}$ die $|z-w|\le r\}$ die abgeschlossene Kreisscheibe, $s(z,r)=\{w\in\mathbb{C}:|z-w|=r\}$ die Kreislinie.

Ferner: Sei $z = x \in \mathbb{R}$. Dann $B(x,r) \cap \mathbb{R} = \{x - r, x + r\}$.

Satz 1.28. Für $w, z \in \mathbb{C}$ gelten:

a)
$$\bar{z} = z$$
, $|z|^2 = z \cdot \bar{z}$ ($\Longrightarrow \frac{1}{z} = \frac{\bar{z}}{|z|^2}$, $z \neq 0$)

b)
$$\overline{z+w} = \overline{z} + \overline{w}, \ \overline{zw} = \overline{z} \cdot \overline{w}$$

c) Re
$$z = \frac{1}{2}(z + \bar{z})$$
, Im $z = \frac{1}{2}(z - \bar{z})$

d)
$$|\text{Re } z| \le |z|, |\text{Im } z| \le |z|, |\bar{z}| = |z|$$

$$e) \ |z| \ge 0, \ z = 0 \iff |z| = 0$$

$$f) |zw| = |z| \cdot |w|$$

$$g) \ |z+w| \leq |z| + |w| \ (Dreiecksungleichung)$$

$$||h|| ||z - w|| \ge ||z| - |w||$$

Beweis. Seien z = x + iy, w = u + iv für x, y, u, v $in\mathbb{R}$.

a1)
$$\bar{z} = \overline{x + i(-y)} = x - i(-y) = z$$

a2)
$$z\bar{z} = (x+iy)(x-iy) = x^2 - ixy + ixy - i^2y^2 = x^2 + y^2 = |z|^2$$

b1) ist klar

b2)
$$\overline{zw} = \overline{xu - yv + i(xv + yu)} = xu - yv - i(xv - yu) = xu - yv - ixv - iyu = (x - iy)(u - iv) = \overline{z}\overline{w}$$

c1)
$$z + \bar{z} = x + iy + x - iy = 2x \iff \frac{1}{2}(z + \bar{z} = x)$$

c2) genauso

d1)
$$|\operatorname{Re} z| = |x| \stackrel{??}{=} \sqrt{x^2} \stackrel{1.26}{\leq} \sqrt{x^2 + y^2} = |z|$$

d2) genauso

d3)
$$|\bar{z}| = \sqrt{x^2 + -y^2} = |z|$$

e1) klar

e2)
$$|z| = \sqrt{x^2 + y^2} = 0 \iff x^2 + y^2 = 0 \iff x = 0, y = 0$$

f)
$$|zw|^2 = zw \cdot \overline{zw} = z\overline{z}w\overline{w} \cdot |z|^2 |w|^2$$

g)
$$|z+w|^2 = (z+w)(\bar{z}+\bar{w}) = z\bar{z} + z\bar{w} + w\bar{z} + w\bar{w} = |z|^2 + z\bar{w} + w\bar{w} + |w|^2 \le z\bar{w} + z\bar{w$$

$$|z|^2 + 2\underbrace{|z\overline{w}|}_{|z|\cdot|w|} + |w|^2 = (|z| + |w|)^2 \implies \text{Beh.}$$

2 Konvergenz von Folgen

2.1 Einfache Eigenschaften

Definition 2.1. Eine Abbildung $A : \mathbb{N} \to \mathbb{C}$ heißt *Folge*. Man schreibt a_n statt A(n) für $n \in \mathbb{N}$ und $(a_n)_{n \geq 1}$ oder (a_n) statt A. Wenn $a_n \in \mathbb{R} \ \forall n \in \mathbb{N}$, so heißt (a_n) reelle Folge.

Definition 2.2. Seien (a_n) eine Folge und $a \in \mathbb{C}$. (a_n) konvergiert gegen a, wenn es zu jeden $\varepsilon > 0$ ein $N_{\varepsilon} \in \mathbb{N}$ gibt, sodass $|a_n - a| \leq \varepsilon$ für alle $n \geq N_{\varepsilon}$, wobei $n \in \mathbb{N}$, also

$$\forall \varepsilon > 0 \,\exists N_{\varepsilon} \in \mathbb{N} \,\forall n \geq N_{\varepsilon} : |a_n - a| \leq \varepsilon.$$

a heißt dann Grenzwert (oder Limes) von (a_n) und man schreibt " $a = \lim_{n \to \infty} a_n$ " oder " $a_n \to a$ für $n \to \infty$ ". Wenn (a_n) keinen Grenzwert hat, so heißt (a_n) divergent (div.).

Bemerkung. $|a_n - a| \le \varepsilon \iff a_n \in \overline{B}(a, \varepsilon) \iff \text{Abstand von } a_n \text{ und } a \text{ ist kleiner als } \varepsilon$ Bemerkung. Wenn $a_n \to 0$ für $n \to \infty$, dann heißt (a_n) Nullfolge (NF). Somit $a_n \to a$ für $n \to \infty \iff (|a_n - a|)_{n \ge 1}$ ist Nullfolge.

Beispiel 2.3. (Sei stets $n \in \mathbb{N}$)

a) Sei $z \in \mathbb{C}$ und $a_n = z \, \forall n$. Behauptung. $a_n \to z \, (n \to \infty)$.

Beweis. Sei $\varepsilon > 0$ beliebig gegeben. Wähle $N_{\varepsilon} = 1$. Sei $n \geq N_{\varepsilon} = 1$. Dann $|a_n - z| = 0 < \varepsilon$.

b) Sei $p \in \mathbb{Q}$ mit p > 0 und $a_n = n^{-p}$, also $(a_n) = (1, \frac{1}{2^p}, \frac{1}{3^p}, \dots)$. Behauptung. $a_n \to 0 \ (n \to \infty)$ (speziell für p = 1: $\frac{1}{n} \to 0 \ (n \to \infty)$.

Beweis. Sei $\varepsilon > 0$ beliebig gegeben. Wähle $N_{\varepsilon} \in \mathbb{N}$ mit $N_{\varepsilon} \geq \varepsilon^{-\frac{1}{p}}$ (N_{ε} existiert nach Satz 1.20). Sei $n \geq N_{\varepsilon}$. Dann:

$$|a_n - 0| = n^{-p} \stackrel{1.264}{\leq} N_{\varepsilon}^{-p} \stackrel{1.264}{\leq} \left(\varepsilon^{-\frac{1}{p}}\right)^{-p} = \varepsilon.$$

c) Sei $a_n = (-1)^n$. Behauptung. Diese Folge ist divergent. Beweis. Zu zeigen: $\forall a \in \mathbb{C} \exists \varepsilon_a > 0 \, \forall N \in \mathbb{N} \, \exists n = n_{a,N} \geq N : |a_N - a| > \varepsilon_a$.

- 1. Fall: a=1. Wähle $\varepsilon_1=1$. Sei $N\in\mathbb{N}$ gegeben. Sei $n\geq N$ ungerade. Dann $|a_n-a|=|-1-1|=2>1=\varepsilon_1$.
- 2. Fall: a = -1 genauso.
- 3. Fall: $a \in \mathbb{C} \setminus \{-1,1\}$. Wähle $\varepsilon_a = \frac{1}{2} \min\{|1-a|, |-1-a|\} > 0$. Sei $N \in \mathbb{N}$ gegeben. Wähle n = N. Dann

$$|a_n - a| = \begin{cases} |1 - a|, & \text{wenn } n \text{ gerade} \\ |-1 - a|, & \text{wenn } n \text{ ungerade} \end{cases} > \varepsilon_a.$$

Satz 2.4. Die Folge (a_n) konvergiere gegen $a \in \mathbb{C}$. Dann gelten:

- a) (a_n) ist beschränkt, d.h. $\exists M \geq 0 : |a_n| \leq M, \forall n \in \mathbb{N}.$
- b) Wenn $a_n \to b$ für $n \to \infty$ und $b \in \mathbb{C}$, dann a = b.

Beweis. a) Wähle $\varepsilon = 1$. Nach Def. 2.2 gibt es $N \in \mathbb{N}$ mit $|a_n - a| \leq 1$, $\forall n \geq N$

$$\implies |a_n| = |a_n - a + a| \stackrel{\triangle\text{-Ungl.}}{\leq} |a_n - a| + |a| \leq 1 + |a|, \forall n \geq N$$
$$\implies |a_n| \leq \max\{1 + |a|, |a_1|, |a_2|, \dots, |a_{N-1}|\} =: M, \forall n \in \mathbb{N}.$$

b) Sei $\varepsilon > 0$ gegeben. Nach Vorraussetzung und Def. 2.2 existieren $N_{\varepsilon,a} \in \mathbb{N}$ und $N_{\varepsilon,b} \in \mathbb{N}$, sodass $|a_n - a| \leq \varepsilon \, \forall n \geq N_{\varepsilon,a}$ und $|a_n - b| \leq \varepsilon \, \forall n \geq N_{\varepsilon,b}$. Setze $N_{\varepsilon} = \max\{N_{\varepsilon,a}, N_{\varepsilon,b}\}$. Dann

$$0 \le |a - b| = |a - a_n + a_n - b| \stackrel{\triangle \text{-Ungl.}}{\le} |a - a_n| + |a_n - b| \le 2\varepsilon$$

(nach obiger Abschätzung). Da $\varepsilon > 0$ beliebig war, folgt |a-b| = 0, also a=b (siehe Satz 1.203)

Beispiel 2.5. Sei $p \in \mathbb{Q}$ mit p > 0 und $a_n = n^p$ für $n \in \mathbb{N}$. Behauptung. (a_n) ist unbeschränkt, also divergent nach Satz 2.41

Beweis. Ann.: Es existiere ein $M \ge 0$ mit $a_n = n^p \le M, \ \forall n \in \mathbb{N} \implies n \le M^{\frac{1}{p}} \ \forall n \in \mathbb{N} \implies \text{\sharp Satz 1.20}$

Bemerkung 2.6. a) Sei $(a_n)_{n\geq 1}$ eine Folge. Es gebe ein $a\in\mathbb{C}$ und eine Konstante c>0, sodass:

$$\forall \varepsilon > 0 \,\exists N_{\varepsilon} \in \mathbb{N} \,\forall n \ge N_{\varepsilon} : |a_n - a| \le c\varepsilon \tag{*}$$

Behauptung. Dann $a_n \to a$ für $n \to \infty$.

Beweis. Setze
$$\eta = c\varepsilon \iff \varepsilon = \frac{\eta}{c}$$
. Setze $N_{\eta} = N_{\varepsilon}$. Dann liefert (*): $\forall \eta > 0 \,\exists N_{\eta} \in \mathbb{N} \,\forall n \geq N_{\eta} : |a_n - a| \leq \eta$

Vorsicht: c darf nicht von n, ε abhängen!

b) Für $n_0 \in \mathbb{Z}$ setze $J(n_0) = \{n \in \mathbb{Z} : n \geq n_0\}$. Eine Abbildung $A : J(n_0) \to \mathbb{C}$ bezeichnet man auch als Folge. Man schreibt wieder a_n statt A(n) und $(a_n)_{n\geq n_0}$ statt A. Die Konvergenz von $(a_n)_{n\geq n_0}$ definiert man wie in Def. 2.2, wobei man zusätzlich $N_{\varepsilon} \geq n_0$ fordert. Indem man $b_n := a_{n+n_0-1}$ für $n \in \mathbb{N}$ setzt, erhält man eine Folge $(b_n)_{n\geq 1}$ mit Indexbereich $J(n_0)$. Offenbar konvergiert $(a_n)_{n\geq n_0}$ genau dann, wenn $(b_n)_{n\geq 1}$ konvergiert, und die jeweiligen Grenzwerte sind gleich. Somit können wir uns weiterhin auf den Fall $n_0 = 1$ beschränken.

Satz 2.7. Seien $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ Folgen und $a,b\in\mathbb{C}$. Es gelte $a_n\to a$ und $b_n\to b$ für $n\to\infty$. Dann:

- $a) \ a_n + b_n \to a + b \ f \ddot{u} r \ n \to \infty$
- b) $a_n \cdot b_n \to ab \ f\ddot{u}r \ n \to \infty \ (speziell \ ab_n \to ab \ f\ddot{u}r \ n \to \infty)$
- c) Wenn $a \neq 0$, dann existiert ein $N \in \mathbb{N}$, sodass $a_n \neq 0$ für alle $n \geq N$ und es gilt $\frac{1}{a_n} \to \frac{1}{a}$ für $n \to \infty$ $(n \geq N)$.

Beweis. Sei $\varepsilon > 0$ (beliebig) gegeben. Nach Voraussetzung:

 $\exists N_{\varepsilon,a} \in \mathbb{N}, N_{\varepsilon,b} \in \mathbb{N}, \text{ sodass } |a_n - a| \le \varepsilon \, \forall n \ge N_{\varepsilon,a} \text{ und } |b_n - b| \le \varepsilon \, \forall n \ge N_{\varepsilon,b} \quad (2.1)$ Setze $N_{\varepsilon} = \max\{N_{\varepsilon,a}, N_{\varepsilon,b}\}$. Sei $n \ge N_{\varepsilon}$.

a)
$$|a_n + b_n - (a+b)| \stackrel{\triangle\text{-Ungl.}}{\leq} |a_n - b| + |b_n - b| \stackrel{(2.1)}{\leq} 2\varepsilon, \forall n \in \mathbb{N} \xrightarrow{\text{Bem 2.6}} \text{Beh. a}$$

b)
$$|a_n b_n - ab| = |(a_n - a)b + a(b_n - b)| \stackrel{\triangle \text{-Ungl., 1.28}}{\leq} |a_n - a| \cdot \underbrace{|b_n|}_{\leq M \text{ nach 2.4}} + |a| \cdot |b_n - b|$$

$$\stackrel{(2.1)}{\leq} (M + |a|) \cdot \varepsilon \quad \forall n \geq N_{\varepsilon} \xrightarrow{\text{Bem 2.6}} \text{Beh. b})$$

c) Sei $\varepsilon_0=\frac{|a|}{2}>0$ (da $a\neq 0$). Sei $N=N_{\varepsilon_0,\,a}\in\mathbb{N}$ aus (2.1). Dann gilt für $n\geq N$:

$$|a_n| = |a + a_n - a| \stackrel{1.288}{\geq} |a| - |a_n - a| \stackrel{(2.1)}{\geq} |a| - \varepsilon_0 = \frac{|a|}{2} > 0 \implies \text{erste Beh.}$$

Setze $\widetilde{N_{\varepsilon}} = \max\{N_{\varepsilon}, N\}$. Sei $n \geq \widetilde{N_{\varepsilon}}$. Dann:

$$\left|\frac{1}{\varepsilon_n} - \frac{1}{a}\right| = \left|\frac{a - a_n}{a_n}\right| \stackrel{1.288}{=} \frac{|a - a_n|}{|a| - |a_n|} \stackrel{(2.1)}{\leq} \frac{\varepsilon}{|a| \cdot \frac{|a|}{2}} \quad (\forall n \geq \widetilde{N_{\varepsilon}}).$$

 \implies Beh. c).

Beispiel 2.8.

$$a_n = \frac{3n^2 + 2n}{5n^2 + 4n + i}$$

Behauptung. $a_n \to \frac{3}{5}$ für $n \to \infty$

Beweis.

$$a_n = \frac{3 + \frac{2}{n}}{5 + \frac{4}{n} + \frac{i}{n^2}}, \quad n \in \mathbb{N}.$$

Nach Bsp. 2.3: $3 \to 3$, $5 \to 5$, $\frac{1}{n} \to 0$, $\frac{1}{n^2} \to 0$ $(n \to \infty)$. Satz 2.7: Zähler $\to 3 + 2 \cdot 0 = 3$, Nenner $\to 5 \neq 0$ $(n \to \infty)$ $\xrightarrow{\text{Satz 2.73}}$ $a_n \to \frac{3}{5}$ für $n \to \infty$

Satz 2.9. Seien $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$, $(c_n)_{n\geq 1}$ reelle Folgen mit $a_n \to a$ und $b_n \to b$ für $n \to \infty$. Dabei sei $a, b \in \mathbb{R}$ (dies gilt stets gemäß Satz 2.11). Sei $n_0 \in \mathbb{N}$.

- a) Wenn $a_n \leq b_n$ für $n \geq n_0$, dann $a \leq b$.
- b) Wenn $a_n \le c_n \le b_n$ für $n \ge n_0$ und a = b, dann $c_n \to a$ für $n \to \infty$ ("Sandwich-prinzip").

Beweis. Sei $\varepsilon > 0$ gegeben. Wie in (2.1) existiert ein $N_{\varepsilon} \in \mathbb{N}$, sodass

$$|a_n - a| \le \varepsilon, |b_n - b| \le \varepsilon \text{ für alle } n \ge N_{\varepsilon}$$
 (*)

Sei $n \ge \max\{N_{\varepsilon}, n_o\}$.

a) $a - b = a - a_n + \underbrace{a_n - b_n}_{\leq 0 \text{ (n.V.)}} + b_n - b \leq |a - a_n| + |b - b_n| \stackrel{(*)}{\leq} 2\varepsilon.$

Da $\varepsilon > 0$ beliebig ist, folgt $a-b \le 0$ (Wenn a-b > 0 wäre, dann folgte ξ mit Satz 1.203) $\implies a \le b$.

b)

$$|c_n - a| = \begin{cases} c_n - a & \leq b_n - a \leq |b_n - a| & \text{für } c_n \geq a \\ a - c_n & \leq a - a_n \leq |a_n - a| & \text{für } c_n < a \end{cases}$$

$$\stackrel{(*)}{\leq} \varepsilon \text{ für } n \geq \max\{N_{\varepsilon}, n_0\}, \text{ da } a = b \implies c_n \to a \text{ für } n \to \infty$$

Beispiel 2.10. Behauptung. Sei q > 0. Dann $a_n := q^{\frac{1}{n}} \to 1$ für $n \to \infty$. $(a_n) = (a, \sqrt{a}, \sqrt[3]{a}, \sqrt[4]{a}, \dots)$

Beweis. a) Sei zuerst $q \ge 1$. Dann $a_n \ge$ nach Satz 1.264. Weiter:

$$q = a_n^n = \left(1 + \underbrace{(a_n + 1)}_{>-1}\right)^n \stackrel{\text{Bernoulli-U.}}{\geq} 1 + n\left(a_n - 1\right)$$

$$\implies 0 \le a_n - 1 \le \frac{q - 1}{n} \to 0 \text{ für } n \to \infty$$

(nach Bsp. 2.3, Satz 2.7) \Longrightarrow nach Satz 2.92 $a_n-1\to 0 \implies a_n\to 1$ für $n\to\infty.$

b) Sei nun 0 < q < 1. Dann $\frac{1}{q} > 1$ und $\frac{1}{a_n} = \left(\frac{1}{a}\right)^{\frac{1}{n}} \to 1$ nach Teil a). Nach Satz 2.73 $\Longrightarrow a_n = \left(\frac{1}{a_n}\right)^{-1} \to 1$ für $n \to \infty$.

Satz 2.11. Sei (a_n) eine Folge. Dann:

- a) Sei zusätzlich $a_n \to a$ für $n \to \infty$. Dann gelten $\overline{a_n} \to \overline{a}$, $\operatorname{Re} a_n \to \operatorname{Re} a$, $\operatorname{Im} a_n \to \operatorname{Im} a$, $|a_n| \to |a|$ (jeweils für $n \to \infty$). Wenn zusätzlich (a_n) reell ist, dann ist $a \in \mathbb{R}$.
- b) Es gelte $\operatorname{Re} a_n \to b$ und $\operatorname{Im} a_n \to c$ für $n \to \infty$. Dann $a_n \to b + ic$ für $n \to \infty$.
- Beweis. a) $0 \le |\overline{a_n} \overline{a}| \stackrel{1.28}{=} |\overline{a_n a}| \stackrel{1.28}{=} |a_n a| \to 0$ für $n \to \infty$. Satz $2.92 \Longrightarrow |\overline{a_n} \overline{a}| \to 0 \Longrightarrow \overline{a_n} \to \overline{a}$ für $n \to \infty$. $\Longrightarrow \operatorname{Re} a_n \stackrel{1.28}{=} \frac{1}{2}(a_n + \overline{a_n}) \to \frac{1}{2}(a + \overline{a}) = \operatorname{Re} a$ für $n \to \infty$. Entsprechend $\operatorname{Im} a_n \to \operatorname{Im} a$ (verwende in beiden Fällen Satz 2.7). Ferner $||a_n| |a|| \stackrel{1.28}{\le} |a_n a| \stackrel{\text{n.V.}}{\to} 0$ $(n \to \infty)$. Satz $2.92 \Longrightarrow |a_n| \to |a|$ für $n \to \infty$. Wenn $a_n \in \mathbb{R}$, dann $\operatorname{Im} a_n = 0 \Longrightarrow \operatorname{Im} a = 0$.
 - b) $0 \le |a_n (b + ic)| = |(\operatorname{Re} a_n b) + i(\operatorname{Im} a_n c)| \stackrel{\triangle\text{-Ungl.}}{\le} |\operatorname{Re} a_n b| + |\operatorname{Im} a_n c| \to 0$, n. V. $(n \to \infty)$. Satz 2.92 \Longrightarrow Beh. b)

2.2 Monotone Folgen

Definition 2.12. Sei $(a_n)_{n\geq 1}$ eine reelle Folge.

- a) (a_n) wächst (strikt), wenn $a_{n+1} \ge a_n \ (a_{n+1} > a_n)$ für alle $n \in \mathbb{N}$.
- b) (a_n) fällt (strikt), wenn $a_{n+1} \le a_n \ (a_{n+1} < a_n)$ für alle $n \in \mathbb{N}$.
- c) (a_n) ist (strikt) monoton, wenn (a_n) (strikt) wächst oder (strikt) fällt.

Bemerkung. (a_n) wächst (strikt) \iff $(-a_n)$ fällt (strikt)

Beispiel 2.13. a) Sei $0 . Dann fällt <math>a_n = n^{-p}$ $(n \in \mathbb{N})$ strikt, da $(n+1)^{-p} < n^{-p}$ nach Satz 1.264.

- b) $a_n = \frac{n}{2n+1} = \frac{1}{2} \cdot \frac{2n+1-1}{2n+1} = \frac{1}{2} \frac{1}{2} \cdot \frac{1}{2n+1}$ wächst strikt, da $\frac{1}{2n+1}$ strikt fällt (vgl. a)).
- c) $a_n = (-1)^n$ ist nicht monoton, da $a_{n+1} = 1 > -1 = a_n$ für ungerade n und $a_{n+1} = -1 < 1 = a_n$ für gerade n.

Standardbsp. für divergente Folgen:

- a) $a_n = (-1)^n$ nicht monoton, aber beschränkt
- b) $a_n = n$ monoton, aber nicht beschränkt

Theorem 2.14. Sei $(a_n)_{n\geq 1}$ eine reelle Folge. Dann gelten:

a) Wenn (a_n) wächst und nach oben beschränkt ist, dann existiert

$$\lim_{n \to \infty} a_n = \sup_{n > 1} a_n := \sup \{ a_n : n \in \mathbb{N} \}$$

b) Wenn (a_n) fällt und nach unten beschränkt ist, dann existiert

$$\lim_{n \to \infty} a_n = \inf_{n > 1} a_n := \inf \left\{ a_n : n \in \mathbb{N} \right\}$$

Beweis. a) n. V. $\exists a := \sup_{n \geq 1} a_n$. Sei $\varepsilon > 0$ beliebig gegeben. Satz 1.18 $\Longrightarrow \exists N_{\varepsilon} \in \mathbb{N}$ mit $a - \varepsilon < a_{N_{\varepsilon}} \leq a$. Sei $n \geq N_{\varepsilon}$. Da (a_n) wächst und $a = \sup a_n$ gilt:

$$a - \varepsilon < a_{N_{\varepsilon}} < a_n \implies a_n - a < \varepsilon \quad \forall n > N_{\varepsilon}$$

b) Betrachte $-a_n$ und verwende Teil a) und Satz 1.232

Beispiel 2.15 (Heron-Verfahren zur Quadratwurzelbestimmung). Sei x>0 gegeben. Definiere rekursiv $a_1=1$ und $a_{n+1}=\frac{1}{2}(a_n+\frac{x}{a_n})$ für $n\in\mathbb{N}$. (Beachte: $a_1>0$. Wenn $a_n>0$, dann $a_{n+1}>0$ $\xrightarrow{\operatorname{Indukt.}} a_k>0$ für alle $k\in\mathbb{N}$. Behauptung. $a_n\to\sqrt{x}$ $(n\to\infty)$

Beweis. 1. Schritt: Zeige Konvergenz mit Thm. 2.14. Sei $n\in\mathbb{N}.$ Dann

$$a_{n+1} - a_n \stackrel{\text{Def.}}{=} \frac{a_n}{2} + \frac{x}{2a_n} - a_n = \underbrace{\frac{1}{2a_n}}_{\text{Vorzeichen?}} \underbrace{\left(x - a_n^2\right)}_{\text{Vorzeichen?}} \tag{*}$$

Sei $n \geq 2$. Dann

$$a_n^2 - x \stackrel{\text{Def.}}{=} \frac{1}{4} \left(a_{n-1} + \frac{x}{a_{n-1}} \right)^2 - x = \frac{1}{4} \left(a_{n-1}^2 + 2x + \frac{x^2}{a_{n-1}^2} - 4x \right) - y$$
$$= \frac{1}{4} \left(a_{n+1} - \frac{x}{a_{n-1}} \right)^2 \ge 0 \quad (**)$$

$$\xrightarrow[**]{(**)} a_{n+1} - a_n \le 0 \text{ und } a_n^2 \ge x \xrightarrow{1.26} a_n \ge \sqrt{x} \text{ (für } n \ge 2).$$

Thm. 2.14 $\Longrightarrow \exists a := \lim_{n \to \infty} a_n$.

2. Schritt: Berechne a mit Hilfe der Rekursion. Satz 2.9: $a \ge \sqrt{x} > 0$.

Ferner: $\underbrace{a_{n+1}}_{\to a} = \underbrace{\frac{1}{2} \left(a_n + \frac{x}{a_n} \right)}_{\to \frac{1}{2} \left(a + \frac{x}{a} \right)}$ für $n \to \infty$ (nach Satz 2.7, $a \neq 0$). Nach Satz 2.4:

$$a = \frac{1}{2}\left(a + \frac{x}{a}\right) \iff a = \frac{x}{a} \iff x = a^2 \iff a = \sqrt{x}$$

Beispiel 2.16 (Die Eulersche Zahl e). Sei $x \in \mathbb{N}$,

$$a_n = \left(1 + \frac{1}{n}\right)^n$$
, $b_n = \sum_{j=0}^n \frac{1}{j!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n!}$

Behauptung. $\exists \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n =: e \approx 2,71828...$

Beweis. Überblick:

Beh. a) (a_n) wächst strikt

Beh. b) $a_n \le b_n < 3 \,\forall n \in \mathbb{N}$

$$\implies \begin{cases} a) + b) + Thm. \ 2.14 & \Longrightarrow \exists \lim_{n \to \infty} a_n =: a, \lim_{n \to \infty} b_n =: b \\ b) + Satz \ 2.91 & \Longrightarrow a \le b \end{cases}$$
 (*)

Beh. c) $a \ge b$

Beachte: (b_n) wächst strikt.

 \Longrightarrow Beh.

a) Sei $n \in \mathbb{N}$. Dann

$$\frac{a_{n+1}}{a_n} = \left(1 + \frac{1}{n+1}\right) \frac{\left(1 + \frac{1}{n+1}\right)^n}{\left(1 + \frac{1}{n}\right)^n} = \frac{n+2}{n+1} \left(\frac{\frac{n+2}{n+1}}{\frac{n+1}{n}}\right)^n = \frac{n+2}{n+1} \left(\frac{(n+1)^2 - 1}{(n+1)^2}\right)^n$$

$$= \underbrace{\frac{n+2}{n+1}}_{>0} \left(1 - \underbrace{\frac{1}{(1+n)^2}}_{>-1}\right)^n \stackrel{1.8}{\geq} \frac{n+2}{n+1} \left(1 - \frac{n}{(1+n)^2}\right) = \frac{n+2}{n+1} \cdot \frac{1+n+n^2}{(1+n)}$$

$$= \underbrace{\frac{n^3 + 3n^2 + 3n + 2}{(1+n)^3}}_{=} \stackrel{\text{Bsp. 0.3}}{=} \frac{(n+1)^3 + 1}{(n+1)^3} > 1$$

 (b_n) wächst offensichtlich

$$a_n \stackrel{\text{Bsp. 0.3}}{=} \sum_{j=0}^n \binom{n}{j} \left(\frac{1}{n}\right)^j$$

Für $1 \le j \le n$ ist

$$\binom{n}{j} \frac{1}{n^{j}} = \frac{1}{j!} \cdot \frac{n!}{(n-j)!} \cdot \frac{1}{n^{j}} = \frac{1}{j!} \cdot \underbrace{\frac{n}{n}}_{=1} \cdot \underbrace{\frac{n-1}{n}}_{\in (0,1)} \cdot \underbrace{\frac{n-2}{n}}_{\in (0,1)} \cdots \underbrace{\frac{n-j+1}{n}}_{\in (0,1)} \le \frac{1}{j!} \le \frac{1}{2^{j-1}}$$

$$(+)$$

Behauptung. $2^{n-1} \leq n! \forall \in \mathbb{N}$

Beweis. (per vollst. Ind.)

IA: n = 1 ist klar.

IS: Beh. gelte für ein $n \in \mathbb{N}$ (IV).

$$\implies 2^n \stackrel{\text{IV}}{\leq} 2n! \leq (n+1)n! = (n+1)!$$

$$\implies a_n = 1 + \sum_{j=1}^n \binom{n}{j} \frac{1}{n^j} \stackrel{(+)}{\le} 1 + \sum_{j=1}^n \frac{1}{j!} = b_n$$

$$\le 1 + \sum_{j=1}^n \frac{1}{2^{j-1}} \stackrel{k:=j-1}{=} 1 + \sum_{k=0}^{n-1} \left(\frac{1}{2}\right)^k \stackrel{0.2}{=} 1 + \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} < 1 + \frac{1}{\frac{1}{2}} = 3$$

c) Sei $m \in \mathbb{N}$ und $n \ge m$, m fest. Wie in b):

$$a_{n} = 1 + \sum_{j=1}^{n} \underbrace{\frac{1}{j!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \frac{n-j+1}{n}}_{>0}$$

$$\geq 1 + \sum_{j=1}^{n} \underbrace{\frac{1}{j!} \underbrace{\left(1 - \frac{1}{n}\right)}_{\rightarrow 1(n \to \infty)} \cdots \underbrace{\left(1 - \frac{j-1}{n}\right)}_{\rightarrow 1(n \to \infty)} =: c_{mn} \quad (++)$$

nach Bsp. 2.3, Satz 2.7 $\Longrightarrow c_{mn} \to 1 + \sum_{j=1}^{m} \frac{1}{j!} = b_m$ für $n \to \infty$, m fest. Lasse $n \to \infty$ gehen in (++). Dann liefern (*) und Satz 2.9, dass $a \ge b_m$ für $m \in \mathbb{N}$. Mit $m \to \infty$, (*), Satz 2.9 folgt $a \ge b$.

2.3 Teilfolgen und Vollständigkeit

Motivation. $(a_n) = ((-1)^n) = (-1, 1, -1, 1, \dots)$ ist divergent, enthält aber konvergente "Teile".

Definition 2.17. Sei $(a_n)_{n\geq 1}$ eine Folge und $\varphi: \mathbb{N} \to \mathbb{N}$ eine strikt wachsende Funktion (d.h. $\varphi(n+1) > \varphi(n) \, \forall n \in \mathbb{N}$). Setze $b_j = a_{\varphi(j)}, j \in \mathbb{N}$. Dann heißt die Folge $(b_j)j_{j\geq 1}$ Teilfolge von $(a_n)_{n\geq 1}$ (TF). Man schreibt meist $(a_{n_j})_{j\geq 1}$ statt $(b_j)_{j\geq 1}$.

Beispiel. a) (a_n) ist Teilfolge von sich selbst, wähle $\varphi(j) = j \, \forall j \in \mathbb{N}$

- b) Sei $a_n = (-1)^n$. Wähle $\varphi(j) = 2j$ für $j \in \mathbb{N}$. Dann ist $b_j := a_{2j} = 1 \,\forall j \in \mathbb{N}$.
- c) Sei $a_n = \begin{cases} \frac{1}{n^2} & \text{wenn } n \text{ Primzahl} \\ 1 & \text{sonst} \end{cases}, n \in \mathbb{N}. (a_n) = (1, \frac{1}{4}, \frac{1}{9}, 1, \frac{1}{25}, 1, \cdots)$

Setze $\varphi(j) = j$ -te Primzahl, $j \in \mathbb{N}$. $\Longrightarrow (b_j) = (a_{\varphi(j)}) = (\frac{1}{4}, \frac{1}{9}, \frac{1}{25}, \cdots)$

Bemerkung. $a_n \to a \ (n \to \infty) \implies a_{n_j} \to a \ (j \to \infty)$ für jede Teilfolge.

Definition 2.18. Sei (a_n) eine Folge und $a \in \mathbb{C}$. Dann heißt a Häufungspunkt (HP) von (a_n) , wenn für jedes $\varepsilon > 0$ für unendlich viele n die Ungleichung $|a - a_n| \le \varepsilon$ gilt.

Beispiel. a) $(-1)^n$ hat HP +1 und -1, da $a_n \in \overline{B}(1,\varepsilon)$ für alle $\varepsilon > 0$ und alle geraden $n \in \mathbb{N}$, sowie $a_n \in \overline{B}(-1,\varepsilon)$ für alle $\varepsilon > 0$ und alle ungeraden $n \in \mathbb{N}$.

b) Die Folge $a_n = n$ hat keinen HP, da $|a_n - a_m| \ge 1$, $n \ne m$. Also liegt in einer Kugel $\overline{B}(a, \frac{1}{3})$ höchstens ein a_n .

Satz 2.19. Sei (a_n) eine Folge und $a \in \mathbb{C}$. Dann:

$$a \text{ ist HP} \iff \exists \text{ TF mit } a_{n_j} \to a \ (j \to \infty)$$

Beweis. " \Rightarrow " Sei a HP. Wir definieren rekursiv eine TF (a_{n_j}) mit $\left|a-a_{n_j}\right| \leq \frac{1}{j} \, \forall j \in \mathbb{N}$. $\Longrightarrow a_{n_j} \to a$ nach Satz 2.9 (für $j \to \infty$). Wähle $n_1 \in \mathbb{N}$ mit $|a_{n_1} - a| \leq 1$ (verwende Voraussetzung mit $\varepsilon = 1$). Sei n_{j-1} mit $n_{j-1} > n_{j-2}$ und $\left|a_{n_{j-1}} - a\right| \leq \frac{1}{j-1}$ gewählt. Nach Voraussetzung gibt es unendlich viele a_n in $\overline{B}(a, \frac{1}{j})$. Da $\{1, \ldots, n_{j-1}\}$ endlich ist, existiert ein $n_j > n_{j-1}$ mit $\left|a_{n_j} - a\right| \leq \frac{1}{j}$. Induktionsprinzip liefert gewünschte TF $a_{n_j} \to a$.

"⇐" Sei $a_{n_j} \to a \ (j \to \infty)$. Sei $\varepsilon > 0$ beliebig gegeben. Dann $\exists J_{\varepsilon} \in \mathbb{N} : \forall j \geq J_{\varepsilon} : |a_{n_j} - a| \leq \varepsilon$. Also $\#\{a_{n_j} : j \geq J_{\varepsilon}\} = \#\{j \in \mathbb{N} : j \geq J_{\varepsilon}\} = \infty$ nach Satz 1.22.

Korollar 2.20. Wenn $\exists \lim_{n\to\infty} a_n = a$, dann ist a der einzige Häufungspunkt von (a_n) .

Beweis. Satz 2.19 $\Longrightarrow a$ ist HP, da es der Limes ist. Sei b ein weiterer HP von (a_n) . Nach Satz 2.19 \exists TF $a_{n_j} \to b$ $(j \to \infty)$. Dann gilt aber auch $a_{n_j} \to a$ $(j \to \infty)$. Satz 2.4 $\Longrightarrow a = b$.

Sei (a_n) eine reelle beschränkte Folge. Setze $A_n = \{a_j : j \geq n\}$ für $n \in \mathbb{N}$. Beachte $A_{n+1} \subset A_n$, A_n ist beschränkt für alle $n \in \mathbb{N}$.

$$\implies \exists b_n := \sup A_n, c_n := \inf A_n, \text{ wobei } b_n \ge a_j \ge c_n \ \forall j \ge n$$
 (2.2)

Satz 1.231a liefert $b_1 \ge b_n \ge b_{n+1} \ge c_{n+1} \ge c_n \ge c_1 \ (\forall n \in \mathbb{N}. \text{ Nach Thm. 2.14 existieren}$

$$\lim_{n \to \infty} b_n = \inf_{n \in \mathbb{N}} b_n = \inf_{n \in \mathbb{N}} \sup_{j \ge n} a_j =: \overline{\lim}_{n \to \infty} a_n = \limsup_{n \to \infty} a_n \text{ ("Limes superior")}$$

$$\text{und } \lim_{n \to \infty} c_n = \sup_{n \in \mathbb{N}} c_n = \sup_{n \in \mathbb{N}} \inf_{j \ge n} a_j =: \underline{\lim}_{n \to \infty} a_n = \liminf_{n \to \infty} a_n \text{ ("Limes inferior")}$$

$$(2.3)$$

(2.2), Satz $2.9 \implies$

$$\underline{\lim_{n \to \infty}} a_n \le \overline{\lim_{n \to \infty}} a_n \tag{2.4}$$

Beispiel. $\overline{\lim}_{n\to\infty} (-1)^n = 1$, $\underline{\lim}_{n\to\infty} (-1)^n = -1$, da in A_n nur +1 und -1 stehen.

Theorem 2.21 (Satz von Bolzano-Weierstrass). Jede beschränkte Folge $(a_n)_{n\geq 1}$ hat eine konvergente Teilfolge und damit einen Häufungspunkt. Wenn die Folge außerdem reell ist, dann ist $\overline{\lim}_{n\to\infty} a_n$ das Maximum aller Häufungspunkte und $\underline{\lim}_{n\to\infty} a_n$ das Minimum aller Häufungspunkte.

Beweis. a) Sei (a_n) reell und beschränkt. Setze $\bar{a} = \overline{\lim}_{n \to \infty} a_n$. Suche TF $a_{n_j} \to \bar{a}$ $(j \to \infty)$. Wir wissen aus (2.2) und (2.3): $b_n = \sup_{j \ge n} a_j$ konvergiert gegen \bar{a} für $n \to \infty$. b_n muss nicht ein Folgeglied sein.

Definiere rekursiv die gewünschte TF (a_{n_j}) : wähle $N_1 \in \mathbb{N}$ mit $|\bar{a} - b_{N_1}| \leq \frac{1}{2}$. Da $b_{N_1} = \sup_{j \geq N_1} a_j$ ist, existiert nach Satz 1.18 ein $n_1 > N_1$ mit $|b_{N_1} - a_{n_1}| \leq \frac{1}{2} \implies |\bar{a} - a_{n_1}| \leq |\bar{a} - b_{N_1}| + |b_{N_1} - a_{n_1}| \leq 1$. Es $n_{j-1} > n_{j-2}$ konstruiert mit $|\bar{a} - a_{n_{j-1}}| \leq \frac{1}{j-1}$. Wähle $N_j > n_{j-1}$ mit $|\bar{a} - b_{N_j}| \leq \frac{1}{2j}$ (verwende (2.3)). Da $b_{N_j} = \sup_{k \geq N_j} a_k$ existiert nach Satz 1.18 ein $n_j \geq N_j > n_{j-1}$ mit $|b_{N_j} - a_{n_j}| \leq \frac{1}{2j}$ $\implies |\bar{a} - a_{n_j}| \leq |\bar{a} - b_{N_j}| + |b_{N_j} - a_{n_j}| \leq \frac{1}{j}$. Erhalten induktiv TF $a_{n_j} \to \bar{a}$. Insbesondere ist \bar{a} ein HP von (a_n) nach Satz 2.19. Entsprechend sieht man, dass $\underline{\lim}_{n \to \infty} a_n$ ist ein HP von (a_n) . Sei (a_{n_l}) eine weitere TF mit Grenzwert a.

$$\xrightarrow{2.19} \underbrace{c_{n_l}}_{-\frac{\lim}{n\to\infty}} \leq \underbrace{a_{n_l}}_{-\frac{1}{n}} \leq \underbrace{b_{n_l}}_{\overline{\lim}} a_n$$

b) Sei (a_n) eine beschränkte Folge (in \mathbb{C}). Sei $x_n = \operatorname{Re} a_n$, $y_n = \operatorname{Im} a_n$. Dann ist (nach Satz 1.28) $(x_n)_n$ beschränkt $\stackrel{\text{a}}{\Longrightarrow} \exists \operatorname{TF} x_{n_l} \to x \in \mathbb{R} \ (l \to \infty)$. Weiter ist $(y_{n_l})_l$ beschränkt $\stackrel{\text{a}}{\Longrightarrow} \exists \operatorname{TF} y_{n_{l_i}} \to y \in \mathbb{R} \ (j \to \infty)$. Damit gilt:

$$a_{n_{l_j}} = x_{n_{l_j}} + iy_{n_{l_j}} \to x + iy \ (j \to \infty).$$

Lemma 2.22. Sei (a_n) eine Folge mit den Häufungspunkten $\alpha_1, \ldots, \alpha_m$ und den zugehörigen Teilfolgen $a_{\varphi_1(j)} \to \alpha_1, \ldots, a_{\varphi_m(j)} \to \alpha_m$ $(j \to \infty)$. Jedes a_n liege in (mindestens) einer Teilfolge. Dann hat (a_n) keine weiteren Häufungspunkte.

Beweis. Annahme: Sei $\alpha \in \mathbb{C}$ ein weiterer HP. Satz $2.19 \Longrightarrow \exists \text{ TF } a_{n_l} \to \alpha \ (l \to \infty)$. Sei $\varepsilon_0 = \frac{1}{3} \min \{ |\alpha - \alpha_1|, |\alpha - \alpha_2|, \dots, |\alpha - \alpha_m| \} > 0$. Ferner existiert $L \in \mathbb{N} \min |a_{n_l} - \alpha| \le \varepsilon_0 \ \forall l \ge L$. $\Longrightarrow \text{Für } l \ge L, \ j \in \{1, \dots, m\} \text{ gilt } |a_{n_l} - \alpha_j| \ge |\alpha_j - \alpha| - |\alpha - a_{n_l}| \ge 3\varepsilon_0 - \varepsilon_0 = 2\varepsilon_0 \Longrightarrow a_{n_l} \notin B(\alpha_j, \varepsilon_0) \ \forall l \ge L, \ j \in \{1, \dots, m\}$. Andererseits liegen die a_{n_l} in mindestens einer TF die gegen ein α_j konvergiert $\Longrightarrow f$

Beispiel 2.23.

$$a_n = \begin{cases} (-1)^{\frac{n}{2}} \frac{1}{n} &, n \text{ gerade} \\ (-1)^{\frac{n+1}{2}} \frac{2n^2 + 3}{3n^2 - 1} &, n \text{ ungerade} \end{cases}$$

 \exists konv. TF:

$$b_k = a_{2k} = (-1)^k \cdot \frac{1}{2k} \to 0 \ (k \to \infty)$$

$$c_k = a_{4k+1} = \underbrace{(-1)^{2k+1}}_{=-1} \cdot \frac{2(4k+1)^2 + 3}{3(4k+1)^2 - 1} \to -\frac{2}{3} \ (k \to \infty)$$

$$d_k = a_{4k+3} = \underbrace{(-1)^{2k+2}}_{=-1} \cdot \frac{2(4k+3)^2 + 3}{3(4k+3)^2 - 1} \to \frac{2}{3} \ (k \to \infty)$$

 $\Longrightarrow \exists$ HP $-\frac{2}{3}$, 0, $\frac{2}{3}$. Nach Lemma 2.22 sind das alle HP der Folge. $\Longrightarrow \lim_{n\to\infty} a_n = \frac{2}{3}$, $\varprojlim_{n\to\infty} a_n = -\frac{2}{3}$.

Korollar 2.24. Sei (a_n) beschränkt und $a \in \mathbb{C}$. Dann gelten:

- a) $a_n \to a \ (n \to \infty) \iff (a_n)$ besitzt genau einen HP und dieser ist a
- b) Sei (a_n) reell. Dann konvergiert (a_n) genau dann, wenn $\underline{\lim}_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n$. In diesem Fall gilt $\lim_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n$.

Beweis. a) " \Rightarrow " Kor. 2.20.

- "\epsilon" Sei a der einzige HP von (a_n) . Annahme: $a_n \not\to a$ $(n \to \infty)$. Das heißt $\exists \varepsilon_0 > 0 : \forall N \in \mathbb{N} : \exists n \geq N : |a_n a| > \varepsilon_0$. Wir erhalten induktiv eine TF $(a_{n_l})_l$ mit $|a_{n_l} a| > \varepsilon_0 \, \forall l \in \mathbb{N}$ (vgl. Beweis von Satz 2.19). Andererseits: Da $(a_{n_l})_l$ beschränkt ist, liefert Thm. 2.21 eine konvergente TF $(a_{n_{l_j}})_j$. Nach Satz 2.19 und der Voraussetzung gilt $a_{n_{l_j}} \to a \not$
- b) Sei nun (a_n) reell. Dann zeigt Thm. 2.21 $\exists !$ HP von $(a_n) \iff \underline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n \stackrel{a)}{\Longrightarrow}$ Beh.

Bemerkung.

$$a_n = \begin{cases} 1 & , n \text{ gerade,} \\ n & , n \text{ ungerade,} \end{cases}$$

hat genau einen HP (=1), ist aber unbeschränkt, also divergent.

⇒ in 2.24 muss man Beschränktheit voraussetzen!

Definition 2.25. Eine Folge (a_n) heißt CAUCHY-Folge (CF), wenn es für jedes $\varepsilon > 0$ ein $N_{\varepsilon} \in \mathbb{N}$ gibt, sodass $|a_n - a_m| \leq \varepsilon$ für alle $n, m \geq N_{\varepsilon}$, d.h.

$$\forall \varepsilon > 0 \,\exists N_{\varepsilon} \in \mathbb{N} \,\forall n, m > N_{\varepsilon} : |a_n - a_m| < \varepsilon$$

Theorem 2.26. Eine Folge (a_n) konvergiert genau dann, wenn sie eine CAUCHY-Folge ist. (Man sagt, dass \mathbb{C} (und damit \mathbb{R}) vollständig sind.)

Beweis. " \Rightarrow " Sei $a_n \to a \ (n \to \infty)$. Für $\varepsilon > 0$ existiert also ein $N_{\varepsilon} \in \mathbb{N}$ mit $|a_k - a| \le \varepsilon$ für alle $k \ge N_{\varepsilon}$. Damit $|a_n - a_m| \le |a_n - a| + |a - a_m| \le 2\varepsilon$ für alle $n, m \ge N_{\varepsilon}$.

" \Leftarrow " Sei (a_n) eine CF. Nach Def. 2.25 mit $\varepsilon=1$ existiert ein $N_1\in\mathbb{N}$ mit $|a_n-a_{N_1}|\leq 1$ für alle $n\geq N_1$. $\Longrightarrow |a_n|\leq |a_n-a_{N_1}|+|a_{N_1}|\leq 1+|a_{N_1}|$ $(\forall n\geq N_1)$ $\Longrightarrow (a_n)$ ist beschränkt. Thm 2.21 \Longrightarrow existiert TF $a_{n_j}\to a$ $(j\to\infty)$. Sei $\varepsilon>0$ gegeben. Dann existiert ein $J_\varepsilon\in\mathbb{N}$ mit

$$\left| a_{n_j} - a \right| \le \varepsilon \ \forall j \ge J_{\varepsilon} \tag{*}$$

Sei ferner N_{ε} aus Def. 2.25. Wähle $n \geq N_{\varepsilon}$ Dann existiert ein $n_{j} \geq N_{\varepsilon}$ mit $j \geq J_{\varepsilon}$. Somit $|a_{n} - a| \leq |a_{n} - a_{n_{j}}| + |a_{n_{j}} - a| \leq \varepsilon + \varepsilon = 2\varepsilon$

Bemerkung. a) CAUCHY-Folgen haben also (in \mathbb{R} und \mathbb{C}) dieselben Eigenschaften wie konvergente Folgen (kann man auch direkt zeigen).

- b) In Bsp. 2.15 mit x=2 und $a_1=1$ ist $a_{n+1}=\frac{1}{2}\left(a_n+\frac{2}{a_n}\right)\in\mathbb{Q}$ (Beweis per Induktion). Ferner gilt $a_n\to\sqrt{2}$. Nach Bsp 1.16 gilt $\sqrt{2}\notin\mathbb{Q}\implies\mathbb{Q}$ ist nicht vollständig
- c) Bsp. $a_n = \sqrt{a_n}$. Folge ist unbeschränkt \implies divergent \implies keine CF. Andererseits: $0 \le \sqrt{n+1} \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \to 0 \ (n \to \infty)$. Also: Def 2.25 gilt für m = n+1, aber (a_n) ist keine CAUCHY-Folge.

Lemma 2.27. Sei (a_n) eine beschränkte und reelle Folge und $\varepsilon > 0$. Dann

$$\exists J_{\varepsilon} \in \mathbb{N} \ mit \ -\varepsilon + \varliminf_{n \to \infty} a_n \le a_j \le \varepsilon + \varlimsup_{n \to \infty} a_n \ \forall j \ge J_{\varepsilon}.$$

Beweis. Nach Satz 1.18 $\exists \overline{J_{\varepsilon}} \in \mathbb{N}$ mit

$$\varepsilon + \varlimsup_{n \to \infty} a_n \stackrel{2.3}{=} \varepsilon + \inf_{n \in \mathbb{N}} \sup_{j \ge n} a_j \stackrel{1.18}{\ge} \sup_{j \ge \overline{J_{\varepsilon}}} a_j \ge a_j \ \forall j \ge \overline{J_{\varepsilon}}.$$

Entprechend: $\exists \underline{J_{\varepsilon}} \in \mathbb{N} \text{ mit } a_j \geq -\varepsilon + \underline{\lim}_{n \to \infty} a_n \ \forall j \geq \underline{J_{\varepsilon}}. \implies \text{Beh. mit } J_{\varepsilon} = \max \{\overline{J_{\varepsilon}}, \underline{J_{\varepsilon}}\}.$

Satz 2.28. Seien (a_n) , (b_n) beschränkte reelle Folgen. Dann gelten:

$$\underline{\lim}_{n \to \infty} a_n = -\overline{\lim}_{n \to \infty} (-a_n)$$

b) Wenn $a_n \leq b_n$ für alle $n \in \mathbb{N}$, dann

$$\underline{\lim}_{n \to \infty} a_n \le \underline{\lim}_{n \to \infty} b_n, \ \overline{\lim}_{n \to \infty} a_n \le \overline{\lim}_{n \to \infty} b_n$$

c)

$$\frac{\lim_{n \to \infty} (a_n + b_n) \ge \underline{\lim}_{n \to \infty} a_n + \underline{\lim}_{n \to \infty} b_n}{\overline{\lim}_{n \to \infty} (a_n + b_n) \le \overline{\lim}_{n \to \infty} a_n + \overline{\lim}_{n \to \infty} b_n}$$

d) Seien $a_n, b_n \geq 0$ für alle $n \in \mathbb{N}$. Dann:

$$\overline{\lim}_{n \to \infty} (a_n \cdot b_n) \le \overline{\lim}_{n \to \infty} a_n \cdot \overline{\lim}_{n \to \infty} b_n$$

$$\underline{\lim}_{n \to \infty} (a_n \cdot b_n) \ge \underline{\lim}_{n \to \infty} a_n \cdot \underline{\lim}_{n \to \infty} b_n$$

e) Wenn in 3 oder 4 eine der beiden Folgen konvergiert, dann gilt "=" in den Aussagen.

Bemerkung. In 3 oder 4 kann "<" bzw. ">" gelten. Bsp.: $a_n = (-1)^n$, $b_n = (-1)^{n+1}$ $\Longrightarrow a_n + b_n = 0 \implies \overline{\lim}_{n \to \infty} a_n + b_n = 0$, $\overline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} b_n = 1$.

Beweis. a)

$$\underline{\lim}_{n \to \infty} a_n \stackrel{(2.3)}{=} \sup_{n \in \mathbb{N}} \inf_{j \ge n} a_j \stackrel{1.23}{=} \sup_{n \in \mathbb{N}} \left(-\sup_{j \ge n} \left(-a_j \right) \right) \stackrel{1.23}{=} -\inf_{n \in \mathbb{N}} \sup_{j \ge n} \left(-a_j \right) \stackrel{(2.3)}{=} -\overline{\lim}_{n \to \infty} \left(-a_n \right)$$

b) Sei $a_j \leq b_j \, \forall j$. Nach Def. ?? des Supremums $\sup_{j \geq n} a_j \leq \sup_{j \geq n} n_j \, \forall n \in \mathbb{N}$. Def. des Infimums liefert

$$\underbrace{\inf_{n \in \mathbb{N}} \sup_{j \ge n} a_j}_{= \overline{\lim_{n \to \infty}} a_n} \le \underbrace{\inf_{n \in \mathbb{N}} \sup_{j \ge n} b_j}_{= \overline{\lim_{n \to \infty}} b_n}$$

c) Sei $\varepsilon>0.$ Nach Lemma 1.18 $\exists N_{\varepsilon}\in\mathbb{N},$ sodass

$$a_{j} \leq \varepsilon + \overline{\lim}_{n \to \infty} a_{n}, b_{j} \leq \varepsilon + \overline{\lim}_{n \to \infty} b_{n} \ \forall j \geq N_{\varepsilon}.$$

$$\implies \overline{\lim}_{n \to \infty} (a_{n} + b_{n}) \stackrel{\text{Def.}}{\leq} \sup_{j \geq N_{\varepsilon}} (a_{j} + b_{j}) \geq 2\varepsilon + \overline{\lim}_{n \to \infty} a_{n} + \overline{\lim}_{n \to \infty} b_{n}.$$

Da $\varepsilon > 0$ beliebig ist, folgt Beh. c1). Andere Behauptungen zeigt man ähnlich.

Reihen

Ziel. Untersuche "unendliche Summen" $a_0 + a_1 + a_2 + \dots$ für eine gegebene Folge $(a_n)_{n\geq 0}.$

3.1 Konvergenzkriterien

Definition 3.1. Sei $(a_j)_{j\geq 0}$ gegeben und $n\in\mathbb{N}_0$. Dann heißt

$$s_n = \sum_{j=0}^n a_j$$

n-te Partialsumme und die Folge $(s_n)_{n\geq 0}$ heißt Reihe. Man schreibt statt (s_n) $\sum_{j\geq 0} a_j$ (oder $\sum_{j} a_{j}$ oder $\sum a_{j}$). Die Reihe konvergiert (bzw. divergiert), wenn $(s_{n})_{n\geq 0}$ konvergiert (bzw. divergiert).

Wenn Konvergenz vorliegt, dann bezeichnet man den Grenzwert von (s_n) mit $\sum a_j$ ("Reihenwert").

Beispiel 3.2. a) Sei $a_j = \frac{1}{i!}$ $(j \in \mathbb{N}_0)$.

$$\implies s_n = \sum_{j=0}^n \frac{1}{j!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n!} \longrightarrow e \ (n \to \infty), \text{ nach Bsp. 2.16.}$$

$$\implies \exists \sum_{j=0}^{\infty} \frac{1}{j!} = e.$$

b) Geometrische Reihe: Sei $z \in \mathbb{C}$ mit |z| < 1, $a_j = z^j$.

(Also
$$s_n = \sum_{j=0}^n z^j$$
, $(s_n) = 1, 1 + z, 1 + z + z^2 \cdots$)

Bsp. 0.2:
$$\sum_{j=0}^{n} z^{j} = \frac{1-z^{n+1}}{1-z} = \frac{1}{1-z} - \frac{z^{n+1}}{1-z}$$
, Übung: $z^{n+1} \to 0 \ (n \to \infty)$.

$$\implies \exists \sum_{j=0}^{\infty} z^j = \frac{1}{1-z}, \ |z| < 1.$$

Anderer Beweis: Sei |z| < 1. Setze $b_n = |z^{n+1}| = |z|^{n+1}$.

Dann: $0 \le b_{n+1} = |z| \cdot b_n \le b_n$.

Thm 2.14: $\exists b = \lim_{n \to \infty} b_n \ge 0$. Ferner folgt mit $n \to \infty$:

$$0 \le b = |z| \cdot b \stackrel{|z| < 1}{\Longrightarrow} b = 0.$$

c) Sei
$$a_j = \frac{1}{j(j+1)} = \frac{1}{j} - \frac{1}{j+1}, j \in \mathbb{N}.$$

$$\implies s_n = \sum_{j=1}^n \frac{1}{j(j+1)} = \underbrace{\sum_{j=1}^n \frac{1}{j}}_{k=j} - \underbrace{\sum_{j=1}^n \frac{1}{j+1}}_{k=j+1} = \sum_{k=1}^n \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k}$$
$$= 1 - \frac{1}{n+1} \longrightarrow 1 \ (n \to \infty) \implies \exists \sum_{j=1}^\infty \frac{1}{j(j+1)} = 1.$$

d) Harmonische Reihe: Sei $a_j = \frac{1}{i}, j \in \mathbb{N}.$

$$\implies s_n = \sum_{j=1}^n \frac{1}{j} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, \ n \in \mathbb{N}.$$

Behauptung: $s_{2^j} \geq 1 + \frac{j}{2} \ \forall j \in \mathbb{N}$.

 $\Rightarrow (s_n)$ unbeschränkt.

 \Rightarrow (s_n) divergiert, also $\sum \frac{1}{i}$ divergiert.

Beweis. (IA) j = 1.

$$s_2 = 1 + \frac{1}{2} \ge 1 + \frac{1}{2}$$

(IS): Es gelte: $s_{2^j} \ge 1 + \frac{j}{2}$ für ein $j \in \mathbb{N}$ (IV).

Dann:
$$s_{2^{j+1}} = \sum_{k=1}^{2^j} \frac{1}{k} + \sum_{k=2^{j+1}}^{2^{j+1}} \frac{1}{k} \stackrel{\text{(IV)}}{\geq} 1 + \frac{j}{2} + \frac{2^j}{2^{j+1}} = 1 + \frac{j+1}{2}$$

(da in zweiter Summe $k \leq 2^{j+1}$).

e) Sei $a_j = (-1)^j, j \in \mathbb{N}_0$. Für $n \in \mathbb{N}_0$:

$$s_n = \sum_{j=0}^n (-1)^j = \begin{cases} 1 - 1 + 1 - \dots + 1 - 1, & n \text{ ungerade} \\ 1 - 1 + 1 - \dots + 1 - 1 + 1, & n \text{ gerade} \end{cases} = \begin{cases} 0, & n \text{ ungerade} \\ 1, & n \text{ gerade} \end{cases}$$

 $\implies (s_n)_n$ hat 2 verschiedene HP, 0 und 1.

Kor. 2.24 \implies (s_n) divergiert, d.h. Reihe divergiert.

Bemerkung. Man definiert und behandelt Reihen, die bei $k_0 \in \mathbb{Z}$ beginnen (statt $k_0 = 0$ in Def. 3.1) genauso.

Satz 3.3. Seien $\sum a_k$, $\sum b_k$ konvergente Reihen und $\alpha, \beta \in \mathbb{C}$. Dann:

$$\exists \sum_{k=0}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{k=0}^{\infty} a_k + \beta \sum_{k=0}^{\infty} b_k.$$

Beweis.
$$\sum_{j=0}^{n} (\alpha a_j + \beta b_j) = \alpha \sum_{j=0}^{n} a_j + \beta \sum_{j=0}^{n} b_j \longrightarrow \alpha \sum_{j=0}^{\infty} a_j + \beta \sum_{j=0}^{\infty} b_j \ (n \to \infty)$$
(nach Voraussetzung und Satz 2.7).

Satz 3.4. Sei $a_j \geq 0$ für alle $j \in \mathbb{N}_0$ und die Partialsummen $(s_n)_{n \in \mathbb{N}_0}$ seien beschränkt. Dann:

$$\exists \sum_{j=0}^{\infty} a_j = \sup s_n.$$

Beweis. Es gilt
$$s_{n+1} - s_n = \sum_{j=0}^{n+1} a_j - \sum_{j=0}^n a_j = a_{n+1} \ge 0 \implies (s_n)$$
 wächst. Da (s_n) beschränkt, folgt Beh. aus Thm. 2.14.

Satz 3.5 (CAUCHY-Kriterium). Sei $(a_j)_{j\geq 0}$ gegeben. Die Reihe $\sum_j a_j$ konvergiert genau dann, wenn:

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n > m \ge N_{\varepsilon} : \left| \sum_{j=n+1}^{n} a_{j} \right|.$$
 (3.1)

Beweis.
$$\sum a_j$$
 konvergiert \iff $(s_n)_n = \left(\sum_{j=0}^n a_j\right)_n$ ist CF.

$$\iff \forall \varepsilon > 0 \; \exists N_\varepsilon \in \mathbb{N} \; \forall n > m \geq N_\varepsilon : \varepsilon \geq |s_n - s_m| = \left|\sum_{j=m+1}^n a_j\right|.$$

Korollar 3.6. Wenn $\sum a_j$ konvergiert, dann gilt $a_j \longrightarrow 0$ für $(j \rightarrow \infty)$.

Bemerkung. Umkehrung ist falsch! $\frac{1}{j} \longrightarrow 0$, aber $\sum \frac{1}{j}$ divergiert.

Beweis des Korollars. Wähle in (3.1)
$$n = m + 1 > N_{\varepsilon}$$
 und erhalte $\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall m \geq N_{\varepsilon} : |a_{m+1}| \leq \varepsilon.$

Beispiel 3.7. Für $|z| \ge 1$ ist $\sum_{j\ge 0} z^j$ divergent, da dann $|z^j| = |z|^j \ge 1$ keine Nullfolge (NF). (Speziallfall: z = -1, schon im Bsp. 3.25 behandelt.)

Satz 3.8 (Leibniz-Kriterium). Sei $b_k \geq b_{k+1} \geq 0$ für alle $k \in \mathbb{N}_0$ und $b_k \longrightarrow 0$ für $(k \to \infty)$. Dann:

$$\exists \sum_{k=0}^{\infty} (-1)^k b_k.$$

Beweis. Sei $n \in \mathbb{N}_0$. Dann:

$$s_{2n+2} - s_{2n} = \sum_{j=0}^{2n+2} (-1)^j b_j - \sum_{j=0}^{2n} (-1)^j b_j$$
$$= (-1)^{2n+2} b_{2n+2} + (-1)^{2n+1} b_{2n+1}$$
$$= b_{2n+2} - b_{2n+1} \le 0 \text{ n.V.}$$
$$\implies (s_n)_n \text{ fällt.}$$

Ebenso:

$$s_{2n+3} - s_{2n+1} = (-1)^{2n+3}b_{2n+3} + (-1)^{2n+2}b_{2n+2}$$

= $-b_{2n+3} + b_{2n+2} \ge 0$ n.V.
 $\Longrightarrow (s_{2n+1})_n$ wächst.

Damit:
$$s_1 \le s_{2n+1} = \underbrace{(-1)^{2n+1}b_{2n+1}}_{\le 0} + s_{2n} \le s_{2n} \le s_2.$$

$$\implies (s_{2n})_n, (s_{2n+1})_n \text{ sind beschränkt.}$$

Thm.
$$2.14 \Longrightarrow \exists s = \lim_{n \to \infty} s_{2n}, t = \lim_{n \to \infty} s_{2n+1}.$$

Thm.
$$2.14 \Longrightarrow \exists s = \lim_{n \to \infty} s_{2n}, t = \lim_{n \to \infty} s_{2n+1}.$$

Ferner: $t - s = \lim_{n \to \infty} (s_{2n+1} - s_{2n}) = \lim_{n \to \infty} (-1)^{2n+1} b_{2n+1} = 0$ (weil

$$\left| (-1)^{2n+1} b_{2n+1} \right| = b_{2n+1} \longrightarrow 0$$

nach Voraus.).

Lemma 2.22 $\implies s = t$ ist einziger HP von $(s_n)_n$. Nach Kor. 2.24 konvergiert (s_n) .

Beispiel 3.9. $\exists \sum_{k=1}^{\infty} (-1)^k \frac{1}{k} \stackrel{!}{=} -\ln 2$]. Denn: $b_k = \frac{1}{k}$ ist fallende NF ("alternierende Reihe").

Beachte: $\sum_{k} |(-1)^{k} \frac{1}{k}| = \sum_{k} \frac{1}{k}$ divergiert nach Bsp. 3.2.

Definition 3.10. Eine Reihe $\sum a_k$ konvergiert absolut, wenn die Reihe $\sum_k |a_k|$ der Beträge konvergiert.

a) Konv. ⇒ absolute Konvergenz (siehe Bsp. 3.9). Bemerkung 3.11.

- b) $a_k \ge 0$: Konvergenz = absolute Konvergenz.
- c) absolute Konvergenz \implies Konvergenz.

Beweis. Nach Satz 3.5 und der absoluten Konvergenz gilt: $\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N}$.

$$\forall n > m \ge N_{\varepsilon} : \varepsilon \ge \sum_{k=m+1}^{n} |a_k| \stackrel{\Delta\text{-Ungl.}}{\ge} \left| \sum_{k=m+1}^{n} a_k \right| \stackrel{3.5}{\Longrightarrow} \text{Beh.}$$

Satz 3.12 (Majorantenkriterium). Gegeben seien a_k, b_k für $k \in \mathbb{N}_0$. Dann:

a) Wenn $0 \le |a_k| \le |b_k| \ \forall k \in \mathbb{N}_0 \ und \ \sum_k b_k \ konvergiert, \ dann \ konvergiert \ \sum a_k \ absolut \ und$

$$\sum_{k=0}^{\infty} |a_k| \le \sum_{k=0}^{\infty} b_k.$$

b) Wenn $a_k \ge b_k \ge 0 \ \forall k \in \mathbb{N}_0 \ und \sum b_k \ divergiert, \ dann \ divergiert \sum a_k$.

Beweis. a)
$$\sum_{j=0}^{n} |a_j| \stackrel{\text{n.V.}}{\leq} \sum_{j=0}^{n} b_j \stackrel{\text{n.V.}}{\leq} \sum_{j=0}^{\infty} b_j$$
.

Satz 3.4
$$\Longrightarrow \exists \sum_{j=0}^{\infty} |a_j| \le \sum_{j=0}^{\infty} b_j$$
.

b) Annahme: $\sum a_k$ konvergiere $\stackrel{1}{\Longrightarrow} \sum b_k$ konvergiert \nleq Voraussetzung in 2. \Longrightarrow Beh. 2.

Beispiel 3.13. Beh. Sei $p \in \mathbb{Q}$. Dann konvergiert $\sum_{k \geq 1} k^{-p}$ für $p \geq 2$ und divergiert für $p \leq 1$.

Beweis.
$$p=2$$
: Sei $k\in\mathbb{N}$. Dann $k(k+1)\leq 2k^2\implies \frac{1}{k^2}\leq \frac{2}{k(k+1)}=b_k$

Bsp. 3.2, Satz 3.4
$$\Longrightarrow \exists \sum_{k=1}^{\infty} b_k = 2$$
. Satz 3.121 $\Longrightarrow \exists \sum_{k=1}^{\infty} \frac{1}{k^2} \le 2$.

Sei
$$p > 2$$
: $k^p = \underbrace{k^{p-2}}_{\geq 1_{p-2} = 1} k^2 \geq k^2$. $\Longrightarrow \frac{1}{k^p} \leq \frac{1}{k^2} \stackrel{3.121}{\Longrightarrow} \exists \sum_{k=1}^{k=1} \frac{1}{k^p}$

Sei
$$p \le 1$$
: Dann: $k^p = \underbrace{k^{p-1}}_{\le 1} k \le k \implies \frac{1}{k} \le \frac{1}{k^p}$. Bsp. 3.2: $\sum \frac{1}{k}$ div. $\xrightarrow{3.121}$ $\sum \frac{1}{k^p}$ div. \square

- **Satz 3.14** (Quotientenkriterium). Sei $(a_k)_{k\geq 0}$, sodass es ein $k_0 \geq 0$ gibt mit $a_k \neq 0$ für $k \geq k_0$ und sodass $\left(\frac{|a_{k+1}|}{|a_k|}\right)_{k\geq k_0}$ beschränkt sei. Dann gelten:
 - a) $\overline{\lim}_{k\to\infty} \frac{|a_{k+1}|}{|a_k|} < 1 \implies \sum_k a_k \text{ konvergient absolut.}$

b)
$$\lim_{k \to \infty} \frac{|a_{k+1}|}{|a_k|} < 1 \implies \sum_k a_k \text{ divergient.}$$

Beweis. a) Wähle $\varepsilon > 0$, sodass $q = \varepsilon + \overline{\lim}_{k \to \infty} \frac{|a_{k+1}|}{|a_k|} < 1$.

Nach Lemma 2.27 $\implies \exists K \in \mathbb{N} : \frac{|a_{k+1}|}{|a_k|} \le q$ für alle $k \ge K$, wobei $K \ge k_0$. Sei $k \ge K$. Dann:

$$|a_{k+1}| \le q \cdot |a_k| \le q^2 |a_{k-1}| \le \ldots \le q^{k-K+1} |a_K|$$
.

$$\operatorname{Bsp} 3.2 \colon \exists \sum_{k=K}^{\infty} q^{k-K+1} \stackrel{3.121}{\Longrightarrow} \exists \sum_{k=K}^{\infty} |a_{k+1}| \implies \exists \sum_{k=0}^{\infty} |a_k| \; (\operatorname{da} \, q < 1).$$

b) Ähnlich: $\exists K \ge k_0 \text{ mit } \frac{|a_{k+1}|}{|a_k|} \ge 1 \text{ für alle } k \ge K.$

$$\implies |a_j| \ge |a_k| \ne 0 \ \forall j \ge K$$

 $\implies (a_k)_k$ ist keine Nullfolge $\stackrel{3.6}{\Longrightarrow} \sum a_k$ divergiert.

Beispiel 3.15. a) Sei $z \in \mathbb{C}$ und $a_k = \frac{z^k}{k!}$ $(k \in \mathbb{N}_0)$. Damit:

$$\frac{|a_{k+1}|}{|a_k|} = \left| \frac{a_{k+1}}{a_k} \right| = \frac{\left| \frac{z^{k+1}}{(k+1)!} \right|}{\left| \frac{z^k}{k!} \right|} = \frac{z^{k+1}k!}{(k+1)!|z|^k} = \frac{|z|}{k+1} \longrightarrow 0 \ (k \to \infty) \ \forall z \in \mathbb{C}.$$

$$\xrightarrow{3.141} \sum_{k=0}^{\infty} \frac{z^k}{k!}$$
 konvergiert absolut $\forall z \in \mathbb{C}$.

b) Wenn $\lim_{k\to\infty} \frac{|a_{k+1}|}{|a_k|} \le 1 \le \overline{\lim_{k\to\infty}} \frac{|a_{k+1}|}{|a_k|}$, (*) dann ist in 3.14 keine allgemeine Aussage möglich, denn (vgl. Bsp. 3.13):

a)
$$a_k = \frac{1}{k}$$
. Dann $\left| \frac{a_{k+1}}{a_k} \right| = \frac{k}{k+1} \longrightarrow 1 \ (k \to \infty) \implies (*)$ gilt, also $\sum \frac{1}{k}$ divergiert.

b)
$$a_k = \frac{1}{k^2}$$
. Dann $\left| \frac{a_{k+1}}{a_k} \right| = \frac{k^2}{(k+1)^2} \longrightarrow 1 \ (k \to \infty) \implies (*)$ gilt, aber $\sum \frac{1}{k^2}$ konvergiert.

Satz 3.16 (Wurzelkriterium). Sei $(a_k)_{k\geq 0}$ eine Folge, sodass $\left(\sqrt[k]{|a_k|}\right)_{k\geq 0}$ beschränkt ist. Dann:

a)
$$\overline{\lim}_{k\to\infty} \sqrt[k]{|a_k|} < 1 \implies \sum a_k \text{ konvergient absolut.}$$

b)
$$\overline{\lim}_{k\to\infty} \sqrt[k]{|a_k|} > 1 \implies \sum a_k \text{ divergient.}$$

Beweis. a) Wähle $q \in \left(\overline{\lim}_{k \to \infty} \sqrt[k]{|a_k|}, 1\right)$.

Lemma 2.27 $\Longrightarrow \exists K \in \mathbb{N} : |a_k|^{\frac{1}{K}} \leq q, \, \forall k \geq K \implies |a_k| \leq q^k \, (\forall k \geq K).$

$$q < 1$$
: Bsp. 3.2 $\Longrightarrow \exists \sum_{k=0}^{\infty} q^k \stackrel{3.141}{\Longrightarrow} \exists \sum_{k=0}^{\infty} |a_k|$.

b) Nach Voraussetzung \exists TF mit $|a_{kj}|^{\frac{1}{k_j}} \ge 1$ $(\forall j)$.

$$\implies |a_{kj}| \ge 1 \ (\forall j \in \mathbb{N}) \implies (a_k)_k \text{ ist keine NF.} \stackrel{3.6}{\implies} \sum a_k \text{ divergiert.}$$

Beispiel 3.17. a) Sei $a_k = 2^k z^k$ für $k \in \mathbb{N}_0$ und ein festes $z \in \mathbb{C}$. Dann:

$$\sqrt[k]{|a_k|} = (2^k |z|^k)^{\frac{1}{k}} = 2|z| \begin{cases} <1, & |z| < \frac{1}{2} \\ >1, & |z| > \frac{1}{2} \end{cases}.$$

Satz 3.16 $\Longrightarrow \sum_{k\geq 0} 2^k z^k$ konvergiert absolut wenn $|z| < \frac{1}{2}$ und divergiert, wenn $|z| > \frac{1}{2}$.

b) Es ist keine allgemeine Aussage in 3.16 möglich, wenn $\overline{\lim}_{k\to\infty} \sqrt[k]{|a_k|} = 1$. (Gleiches Beispiel wie in Bsp. 3.152).

3.2 Einige Vertiefungen/Vermischtes

Beispiel 3.18 (Dezimaldarstellung). Sei $r \in \mathbb{R}$. Setze $m := \max \{k \in \mathbb{Z} : k \le r\} =: [r]$ ("Gaußklammer"). $\Longrightarrow x := r - m \in [0,1) \Longrightarrow \exists ! \ x_1 \in \{0,\ldots,9\} \ \text{mit} \ x_1 \cdot 10^{-1} \le x < (x_1+1) \cdot 10^{-1}$. Induktiv findet man für jedes n eine "Ziffer" $x_n \in \{0,\ldots,9\}$ mit

$$x_n \cdot 10^{-n} \le x - x_1 \cdot 10 - 1 - \dots - x_{n-1} \cdot 10^{-(n-1)} \le (x_n + 1) \cdot 10^{-n}$$

$$\implies 0 \le x - \sum_{j=1}^{n} x_j 10^{-j} < 10^n$$

$$\xrightarrow{n\to\infty} \exists x = \sum_{j=1}^{\infty} x_j 10^{-j} \text{ und } r = \lim_{n\to\infty} \underbrace{\left(m + \sum_{j=1}^{n} x_j 10^{-j}\right)}_{\in \mathbb{O}} = m + \sum_{j=0}^{\infty} x_j 10^{-j}.$$

Schreibweise: $r = m, x_1 x_2 x_3 \dots$

Frage: Hat r genau eine solche Darstellung?

Problem: Sei $x_k = 9$ für alle $k \ge l + 1$ und $x_l < 9$ für ein $l \in \mathbb{N}$, also

$$r = m, x_1 \dots x_l 9999 \dots \tag{*}$$

Beachte

$$\sum_{k=l+1}^{\infty} 9 \cdot 10^{-k} = 9 \left(\sum_{k=0}^{\infty} \left(\frac{1}{10} \right)^k - \sum_{k=0}^{l} \left(\frac{1}{10} \right)^k \right)$$

$$\stackrel{0.2,3.2}{=} 9 \left(\frac{1}{1 - \frac{1}{10}} - \frac{1 - 10^{-(l+1)}}{1 - \frac{1}{10}} \right) = 9 \frac{10^{-l-1}}{\frac{9}{10}} = 10^{-l}$$

r hat also zwei verschiedene Darstellungen, nämlich (*) und

$$r = m + \sum_{k=1}^{l-1} x_k 10^{-k} + (x_k + 1)10^{-l} = m, x_1 \dots x_{l-1}(x_l + 1)$$
 (**)

Man verwendet (**) statt (*). Also setzt man

$$\widetilde{x_k} = \begin{cases} x_k & , k = 1, \dots, l-1 \\ x_l + 1 & , k = l \\ 0 & , k > l \end{cases}$$

und verwendet $\widetilde{x_k}$ statt x_k . Entsprechend schreibt man statt $r=m,999\ldots$ nun r=m+1. Behauptung. Mit dieser Vereinbarung hat jedes $r\in\mathbb{R}$ genau eine Dezimaldarstellung $r=m,x_1x_2\ldots$ Umgekehrt definiert jede Folge $(x_k)_{k\geq 1}$ mit $x_k\in\{0,\ldots,9\}$ ein $x=\sum_{k=0}^{\infty}x_k10^{-k}\in[0,1]$.

Bemerkung. Hier kann man 10 durch jedes $b \in \mathbb{N}$ mit $b \geq 2$ ersetzen. Dann gilt $x_k \in \{0, 1, \dots, b-1\}$.

Beachte. Wir haben gezeigt: $\forall r \in \mathbb{R} \, \exists q_n \in \mathbb{Q} : q_n \to r \, (n \to \infty).$

Definition 3.19 (Cantor). Eine Menge M heißt $abz\ddot{a}hlbar$ unendlich, wenn sie gleichmächtig zu \mathbb{N} ist. M heißt $\ddot{u}berabz\ddot{a}hlbar$, wenn M weder abzählbar unendlich noch endlich ist.

Bemerkung. Wenn M abzählbar unendlich ist, dann setze $x_n = \varphi^{-1}(n), n \in \mathbb{N}$, wenn φ bijektive Abbildung $m \to \mathbb{N}$ ist, und schreibe $M = (x_1, x_2, x_3, \dots)$ als Folge.

Beispiel 3.20. a) Behauptung. \mathbb{Z} ist abzählbar unendlich.

Beweis. Betrachte

$$\varphi: \mathbb{N} \to \mathbb{Z}$$

$$n \mapsto \begin{cases} \frac{n}{2} &, n \text{ gerade} \\ -\frac{n-1}{2} &, n \text{ ungerade} \end{cases} \quad (n \in \mathbb{N})$$

zeige: φ ist bijektiv

TODO hier scheint in meinen Mitschrieb was zu fehlen...

b) $Behauptung. \mathbb{Q}$ ist abzählbar.

Beweis. Schreibe \mathbb{Q} in einem Schema (streiche ungekürzte Brüche).

- \leadsto Bild für Bijektion $\varphi:\mathbb{N}\to\mathbb{Q}$
- \Rightarrow \mathbb{Q} ist abzählbar, d.h. mit $q_n = \varphi(n), n \in \mathbb{N}$ gilt $\mathbb{Q} = (q_n)_{n \geq 1} = (0, 1, \frac{1}{2}, -\frac{1}{2}, -1, -2, \dots)$. Nach Bsp. 3.17 ist \mathbb{R} die Menge aller Häufungspunkte von \mathbb{Q} .
- c) Behauptung. (Cantor) M=(0,1) ist überabzählbar. (Damit ist auch $\mathbb R$ überabzählbar, da es eine Bijektion $f:\mathbb R\to (0,1)$ gibt, z.B. $f(x)=\frac12+\frac{x}{1+2|x|}$.

Beweis. Annahme: (0,1) sei abzählbar. Also existiert bijektives $\varphi : \mathbb{N} \to (0,1)$ mit $(0,1) = (x_n)_{n \geq 1}$, wobei $x_n = \varphi(n)$. Sei ξ_n die n-te Dezimalstelle von $x_n, n \in \mathbb{N}$. Setze

$$\eta_n = \begin{cases} 0, & \xi_n = 0 \\ 1, & \xi_n \neq 0 \end{cases} \neq \xi_n$$

Bsp. 3.17
$$\Longrightarrow \begin{cases} y = 0, \eta_1 \eta_2 \eta_3 \dots & \in (0, 1) \\ \text{Da } \eta_k \neq \xi_k \, \forall k \in \mathbb{N}, \, \text{ist} y \neq x_n \, \forall n \in \mathbb{N} \implies y \notin (0, 1) \end{cases}$$

Umordnung von Reihen

Beispiel 3.21. Nach Bsp. 3.9 konvergiert $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \cdots$. Definiere rekursiv eine "Umordnung" $(b_k)_{k\geq 1}$ von $a_k = (-1)^{k+1} \frac{1}{k}, k \in \mathbb{N}$.

Setze:
$$m=1$$
: $b_1:=1,\ b_2:=-\frac{1}{2} \Longrightarrow b_1+b_2 \geq \frac{1}{4}$
 $m=2$: $b_3:=\frac{1}{3},\ b_4:=\frac{1}{5},\ b_5:=-\frac{1}{4} \Longrightarrow b_3+b_4+b_5 \geq \frac{1}{2}$

Definiert seien $b_{n_m} = -\frac{1}{2m}$ für ein $m \in \mathbb{N}$ mit $m \ge 2$, sowie

$$b_{n_{m-1}+1} = \frac{1}{2l_{m+1}+1}, \dots, b_{n_{m-1}} = \frac{1}{2l_{m}-1}$$

für ein $l_m \in \mathbb{N}$. Da $\sum_{k \geq l_m} \frac{1}{2k+1}$ divergiert (Übung) finden wir ein $j \in \mathbb{N}$

$$b_{n_m+1} = \frac{1}{2l_m+1}, \dots, b_{n_m+j} = \frac{1}{2l+j},$$

sodass: $b_{n_m+1} + \dots + b_{n_m+j} \ge \frac{1}{4} + \frac{1}{2m+2}$.

Setze $n_{m+1}=n_m+j+1$ und $b_{n_{m+1}}=-\frac{1}{2m+2}$ \Longrightarrow erhalten rekursiv $(b_k)_{k\geq 1}$ mit

$$\sum_{k=1}^{n_m+1} b_n \ge (m+1)\frac{1}{4} \to \infty, \quad (m \to \infty)$$

Fazit. $\sum_{k\geq 0} a_k$ divergiert, obwohl die Reihe $\sum_{k=1}^{\infty} a_k$ mit den gleichen Summanden konvergiert! Also: Hier gilt kein "unendliches Kommutativgesetz".

Definition 3.22. Sei $\sum_{k\geq 0} a_k$ eine Reihe und $\varphi: \mathbb{N}_0 \to \mathbb{N}_0$ eine Bijektion. Setze $b_k = a_{\varphi(k)}$ für $k \in \mathbb{N}_0$. Die Reihe $\sum_k b_k$ heißt Umordnung von $\sum_k a_k$.

Satz 3.23. Sei $\sum_k a_k$ eine absolut konvergente Reihe. Dann konvergiert jede Umordnung von $\sum_k a_k$ gegen den Wert $\sum_k^{\infty} a_k$.

Beweis. Sei $\varepsilon > 0$ gegeben. Da $\sum |a_k|$ konvergiert, gilt:

$$\exists N_{\varepsilon} \in \mathbb{N} : \forall n \ge N_{\varepsilon} : \sum_{J=N_{\varepsilon}+1}^{n} |a_{J}| \le \varepsilon \quad \text{nach Satz 3.5}$$
 (*)

Sei $\varphi: \mathbb{N}_0 \to \mathbb{N}_0$ bijektiv. Sei $M_{\varepsilon} = \max \{ \varphi^{-1}(0), \dots, \varphi^{-1}(N_{\varepsilon}) \} \implies \{0, \dots, N_{\varepsilon} \} \subseteq \{ \varphi(0), \dots, \varphi(M_{\varepsilon}) \}.$

Seien $n \geq N_{\varepsilon}, m \geq M_{\varepsilon}$. Setze

$$D_{m,n} = \sum_{j=0}^{m} a_{\varphi(j)} + \sum_{j=0}^{n} (-a_j).$$

Als Summanden treten in $D_{m,n}$ nur $\pm a_k$ auf mit $k > N_{\varepsilon}$. (alle a_k mit $k \leq N_{\varepsilon}$ treten doppelt auf und kürzen sich).

$$\implies |D_{m,n}| \le \sum_{k=N_{\varepsilon}+1}^{\infty} |a_k| \stackrel{(*)}{\le} \varepsilon \quad \forall n \ge N_{\varepsilon}, m \ge M_{\varepsilon}$$

Da $\sum_{j=0}^{\infty} a_j$ existiert, folgt mit $n \to \infty$ und Satz 2.9, dass:

$$\exists \lim_{n \to \infty} |D_{m,n}| = \left| \sum_{j=0}^{m} a_{\varphi(j)} - \sum_{j=0}^{\infty} a_j \right| \le \varepsilon, \forall m \ge M_{\varepsilon}$$

Das ist die Behauptung.

Cauchyprodukte

Frage: Wie multipliziert man Reihen?

$$\left(\sum_{j=0}^{\infty} a_j\right) \left(\sum_{k=0}^{\infty} a_k\right) = \lim_{n \to \infty} \left(\sum_{j=0}^{n} a_j\right) \cdot \lim_{n \to \infty} \left(\sum_{k=0}^{n} a_k\right)$$

$$=:A_n$$

$$=:B_n$$
(3.2)

$$\stackrel{2.7}{=} \lim_{n \to \infty} A_n B_n = \lim_{n \to \infty} (a_0 + \dots + a_n)(b_0 + \dots + b_n)$$

Schema für Summanden $a_i b_k$:

TODO

Setze $Q_n = \{0, \ldots, n\}^n$, $D_n = \{(j, k) \in Q_n, k + j \le n\}$. Summiere $A_n B_n$ "diagonal", das heißt bilde zuerst

$$c_n = \sum_{l=0}^n a_l b_{n-l}, n \in \mathbb{N}$$
(3.3)

 $c_n = \text{Summe "uber } a_j b_k \text{ mit } j + k = n.$

Satz 3.24. Seien $\sum_k a_k$, $\sum_k b_k$ absolut konvergente Reihen. Seien c_n $(n \in \mathbb{N})$ in (3.3) definiert. Dann konvergiert $\sum_{n\geq 0} c_n$ absolut und es gilt:

$$\left(\sum_{j=0}^{\infty} a_j\right) \left(\sum_{k=0}^{\infty} a_k\right) = \sum_{n=0}^{\infty} c_n = \sum_{j=0}^{\infty} \sum_{j=0}^{n} a_j b_{n-j}$$
 (3.4)

Bemerkung. Satz ist (im Allgemeinen) falsch für konvergente, nicht absolut konvergente Reihen (siehe Übung).

Beweis. Seien A_n , B_n aus (3.2), $A_n^* = \sum_{j=0}^n |a_j|$, $B_n^* = \sum_{k=0}^n |b_k|$, $C_n = \sum_{j=0}^n c_j$. Nach Vorraussetzung $\exists A^* = \sum_{j=0}^\infty |a_j|$, $B^* = \sum_{k=0}^\infty |b_k|$. Dann:

$$|A_n B_n - C_n| = \left| \sum_{(j,k) \in Q_n \backslash D_n} a_j b_k \right| \le \sum_{(j,k) \in Q_n \backslash Q_{(\frac{n}{2})}} |a_j| \, |b_k|$$

$$= \sum_{(j,k) \in Q_n} |a_j| \, |b_k| - \sum_{(j,k) \in Q_{(\frac{n}{2})}} |a_j| \, |b_k|$$

$$= \underbrace{A_n^* B_n^*}_{\to A^* B^* \text{ nach Satz } 2.7} - \underbrace{A_{(\frac{n}{2})}^* B_{(\frac{n}{2})}^*}_{\to A^* B^* \text{ (da TF) } (n \to \infty)}$$

$$\implies \exists \lim_{n \to \infty} |A_n B_n - C_n| = 0$$

Da $A_n B_n \to AB(n \to \infty)$, folgt $\exists \sum_{n=0}^{\infty} C_n - AB \implies (3.4)$. Ferner:

$$\sum_{n=0}^{N} |c_n| \stackrel{(3.3)}{\leq} \sum_{n=0}^{N} \sum_{j=0}^{n} |a_j| |b_{n-j}| \leq A_N^* B_N^* \leq A^* B^*$$

für alle $N \in \mathbb{N}$. Nach Satz 3.4 folgt die absolute Konvergenz von $\sum c_n$.

Beispiel 3.25 (Exponentialreihe). Sei $z, w \in \mathbb{C}$, $\exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$. Die Reihe konvergiert absolut nach Bsp. 3.15 ($\forall z \in \mathbb{C}$). Beachte: $\exp(0) = 1$, $\exp(1) = e$ (Bsp. 3.17)

Behauptung:

a)
$$\exp(z+w) = \exp(z)\exp(w)$$

b)
$$\exp(z) \neq 0, \exp(-z) = \frac{1}{\exp(z)}$$

c) Sei $p \in \mathbb{Q}$: $\exp(p) = e^p$

Beweis. a)

$$\exp(z) \exp(w) \stackrel{\text{Satz 3.24}}{=} \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \frac{z^{j}}{j!} \frac{w^{n-j}}{(n-j)!} \frac{n!}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{\sum_{j=0}^{n} \binom{n}{j} z^{j} w^{n-j}}_{= \text{Bsp. 0.3: } (z+w)^{n}} = \exp(z+w)$$

b)
$$1 = \exp(0) = \exp(z - z) \stackrel{\text{a}}{=} \exp(z) \exp(-z) \implies \text{b}$$

c) Sei $p = \frac{m}{n}, m \in \mathbb{Z}.$ $n \in \mathbb{N}.$ Dann gilt für m > 0

$$\exp(p)^n = \underbrace{\exp(p) \cdots \exp(p)}_{n-\text{mal}} \stackrel{\text{a)}}{=} \exp(\underbrace{np}_{m}) = \exp(\underbrace{1 + \cdots + 1}_{m-\text{mal}}) = \exp(1)^m = e^m$$

$$\implies \exp(p) = e^{\frac{m}{n}}$$
. Fall $m < 0$ mit b).

3.3 Potenzreihen

Definition 3.26. Es sei $(a_k)_{k\geq 0}$ gegeben. Für $z\in\mathbb{C}$ heißt $\sum_{k\geq 0}a_kz^k$ Potenzreihe.

Bemerkung. Sei D die Menge der $z \in \mathbb{C}$, sodass die Potenzreihe konvergiert, dann ist $f: D \to \mathbb{C}$, $f(z) = \sum_{k=0}^{\infty} a_k z^k$ eine Funktion. Es gilt stets $0 \in D$, $f(0) = a_0$. (Man setzt $0^0 := 1$)

Definition 3.27. Der *Konvergenzradius* ϱ von $\sum a_k z^k$ ist gegeben durch:

$$\varrho = \begin{cases} \frac{1}{\lim\limits_{k \to \infty} \sqrt[k]{|a_k|}}, & \text{wenn } \left(\sqrt[k]{|a_k|}\right) \text{beschränkt und keine NF,} \\ 0, & \text{wenn } \left(\sqrt[k]{|a_k|}\right) \text{unbeschränkt,} \\ \infty, & \text{wenn } \left(\sqrt[k]{|a_k|}\right) \text{NF.} \end{cases}$$

Theorem 3.28. Sei ϱ der Konvergenzradius von $\sum_{k\geq 0} a_k z^k$. Dann gelten:

- a) $0 < \varrho < \infty$, dann konvergiert $\sum a_k z^k$ absolut für $|z| < \varrho$ und divergiert für $|z| > \varrho$, wobei $z \in \mathbb{C}$.
- b) Wenn $\varrho = 0$, dann divergiert $\sum a_k z^k$ für alle $z \in \mathbb{C} \setminus \{0\}$
- c) Wenn $\varrho = \infty$, dann konvergiert $\sum a_k z^k$ absolut für alle $z \in \mathbb{C}$

Also: $\varrho = \sup \{r \geq 0 : \sum a_k z^k \text{ konvergient } \forall z \in \mathbb{C} \text{ mit } |z| \leq r \} \text{ (dabei ist } \sup \mathbb{R}_+ := \infty).$

Beweis. Es gilt $\sqrt[k]{|a_k z^k|} = \left(|a_k| |z|^k\right)^{\frac{1}{k}} = |z| \sqrt[k]{|a_k|} =: b_k$

a) $\overline{\lim}_{k\to\infty} b_k \stackrel{5}{=} |z| \overline{\lim}_{k\to\infty} \sqrt[k]{|a_k|}$. Nach Wurzelkriterium:

$$\implies \begin{cases} |z| < \varrho \iff \overline{\lim} \, b_k < 1 \implies \sum a_k z^k \text{ konvergiert absolut} \\ |z| > \varrho \iff \overline{\lim} \, b_k > 1 \implies \sum a_k z^k \text{ divergiert} \end{cases}$$

- c) $\overline{\lim}_{k\to\infty} b_k = \lim_{k\to\infty} b_k = 0 \implies \sum a_k z^k$ konvergiert absolut $\forall z \in \mathbb{C}$ nach Wurzelkriterium
- b) Falls $|z| \neq 0$, dann ist (b_k) unbeschränkt $\Longrightarrow (b_k^k)$ ist unbeschränkt $\Longrightarrow (a_k z^k)$ ist keine NF. Nach Kor. 3.6 $\Longrightarrow \sum a_k z^k$ divergiert

Beispiel 3.29. a) Polynome $p(z) = a_0 + a_1 z + \cdots + a_n z^n \ (z \in \mathbb{C})$, wobei a_1, \ldots, a_n gegeben. Setze $a_j = 0$ für $j > n \implies \varrho = \infty \implies$ konvergiert $\forall z \in \mathbb{C}$

b) $\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$ konvergiert $\forall z \in \mathbb{C}$ nach Bsp. 3.15. Nach Thm. 3.28 gilt:

$$0 = \lim_{k \to \infty} \sqrt[k]{\frac{1}{k!}} = \lim_{k \to \infty} \frac{1}{\sqrt[k]{k!}}$$

$$(3.5)$$

da $\varrho = \infty$ und $a_k = \frac{1}{k!}$

- c) Geometrische Reihe $\sum_{k\geq 0} z^k$. Hier ist $a_k=1 \implies \varrho=1$. Genauer: Bsp. 3.2 liefert $\exists \sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$ für |z|<1. Bsp. 3.7 \implies Divergenz wenn $|z|\geq 1$.
- d) Sei $a_k = k!$. Nach (3.5) $\forall n \in \mathbb{N} \exists K_n \in \mathbb{N} : \frac{1}{\sqrt[k]{k!}} \leq \frac{1}{n} \ (\forall k \geq K_n) \implies n \leq \sqrt[k]{k!}$ ($\forall k \geq K_n$) $\Longrightarrow (\sqrt[k]{k!})_k$ ist unbeschränkt. Thm. 3.28 $\Longrightarrow \sum_k k! z^k$ konvergiert nur für z = 0, da $\rho = 0$.
- e) Betrachte $\sum_{k\geq 1} \frac{1}{k} (2z)^k$, d. h. $a_k = \frac{2^k}{k}$. Damit $\sqrt[k]{|a_k|} = \frac{2}{\sqrt[k]{k}} \to 2$ $(k \to \infty, \text{ Üb.})$ $\implies \varrho = \frac{1}{2}$. Also absolute Konvergenz für $|z| < \frac{1}{2}$, Divergenz für $|z| > \frac{1}{2}$. Hier gilt Konvergenz für $z = -\frac{1}{2}$, Divergenz für $z = \frac{1}{2}$ (nach Bsp. 3.9 und 3.2)

Bemerkung. Im Fall $|z| = \varrho \in (0, \infty)$ ist keine allgemeine Aussage möglich.

Satz 3.30. Es seien $\sum a_k z^k$, $\sum b_k z^k$ Potenzreihen mit Konvergenzradius ϱ_a , $\varrho_b > 0$ und $\alpha, \beta \in \mathbb{C}$. Dann gelten für $z \in \mathbb{C}$ mit $|z| < \min\{\varrho_a, \varrho_b\}$ (wobei $\min\{x, \infty\} = x$ für $x \in \mathbb{R}$)

a)
$$\exists \sum_{k=0}^{\infty} (\alpha a_k + \beta b_k) z^k = \alpha \sum_{k=0}^{\infty} a_k z^k + \beta \sum_{k=0}^{\infty} b_k z^k$$

$$b) \exists \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_j b_{n-j} \right) z^n = \left(\sum_{k=0}^{\infty} a_k z^k \right) \left(\sum_{k=0}^{\infty} b_k z^k \right)$$

Beweis. a) Thm. 3.28 und Satz 3.3

b) Thm. 3.28 und Satz 3.24, wobei in (3.3) gilt:

$$c_n = \sum_{j=0}^n a_j z^j b_{n-j} z^{n-j} = z^n \sum_{j=0}^n a_j b_{n-j}$$

Beispiel 3.31 (Sinus und Cosinus). Für $z \in \mathbb{C}$ konvergieren absolut:

$$\sin(z) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}, \quad \cos(z) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

Das sind Potenzreihen mit Koeffizienten

$$\sin\colon a_n = \begin{cases} \frac{(-1)^k}{(2k+1)!}, & n=2k+1 \text{ ungerade} \\ 0, & n \text{ gerade} \end{cases}, \quad \cos\colon a_n = \begin{cases} 0, & n \text{ ungerade} \\ \frac{(-1)^k}{(2k)!}, & n=2k \text{ gerade} \end{cases}$$

Beweis. Zeige $\rho = \infty$.

$$\sin: \sqrt[k]{|a_k|} = \begin{cases} 0, & n \text{ gerade} \\ \frac{1}{\sqrt[k]{n!}}, & n \text{ ungerade} \end{cases} \xrightarrow{(3.5)} 0, \quad n \to \infty$$

 \Box cos genauso.

Aus Reihen folgt:

$$\forall x \in \mathbb{R} \colon \cos x, \sin x \in \mathbb{R} \tag{3.6}$$

$$\forall z \in \mathbb{C} \colon \cos(-z) = \cos z, \quad \sin(-z) = -\sin z \tag{3.7}$$

Satz 3.32. Sei $z \in \mathbb{C}$. Dann gelten:

Euler:
$$\exp(iz) = \cos(z) + i\sin(z)$$
, $(\cos z)^2 + (\sin z)^2 = 1$

$$\cos z = \frac{1}{2}(\exp(iz) + \exp(-iz)), \quad \sin z = \frac{1}{2i}(\exp(iz) - \exp(-iz))$$
 (3.8)

 $F\ddot{u}r \ x \in \mathbb{R} \ folgt \ mit \ (3.6) \ \operatorname{Re} \exp(ix) = \cos x, \ \operatorname{Im} \exp(iz) = \sin x, \ |\exp(iz)| = 1, \ |\cos x|, \ |\sin x| \le 1.$

Beweis. Es gilt:
$$\exp(iz) = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} = \sum_{k=0}^{\infty} \frac{(i^2)^k z^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{i(i^2)^k z^{2k+1}}{(2k+1)!} \stackrel{i^2=-1}{=} \cos z + i \sin z$$
. Ferner $1 = \exp(iz - iz) \stackrel{(3.25)}{=} exp(iz) \cdot exp(i(z-z)) \stackrel{(3.7), \text{ Euler}}{=} (\cos z + i \sin z)(\cos z - i \sin z) = (\cos z)^2 + (\sin z)^2$. (3.8) folgt ähnlich aus Euler, (3.7)

Korollar 3.33. Seien $z, w \in \mathbb{C}$. Dann:

$$\begin{aligned} &-2\sin\left(\frac{z+w}{2}\right)\cdot\sin\left(\frac{z-w}{2}\right) \stackrel{3.8}{=} \\ &\frac{-2}{(2i)^2}\left(\exp\left(\frac{i}{2}(z+w)\right)-\exp\left(-\frac{i}{2}(z+w)\right)\right)\cdot\left(\exp\left(\frac{i}{2}(z+w)\right)\right)-\exp\left(-\frac{i}{2}(z-w)\right) \\ &\stackrel{(3.25)}{=} \frac{1}{2}\left(\exp\left(\frac{i}{2}2z\right)-\exp\left(\frac{i}{2}2w\right)-\exp\left(\frac{i}{2}(-2w)\right)+\exp\left(\frac{i}{2}(-2z)\right)\right) \end{aligned}$$

4 Stetige Funktionen

Ab jetzt wird (fast) immer in \mathbb{R} gerechnet, insbesondere B(x,r) = (x-r,x+r), $\overline{B}(x,r) = [x-r,x+r]$. Stets sei $D \neq \emptyset$.

4.1 Grenzwerte stetiger Funktionen

Definition 4.1. Sei $D \subseteq \mathbb{R}$. Dann heißt die Menge $\overline{D} := \{x \in \mathbb{R} : \exists x_n \in D \ (n \in \mathbb{N}) \text{ mit } x_n \to x, \ n \to \infty \}$ der Abschluss von D. D heißt abgeschlossen (abg.) falls $D = \overline{D}$.

Bemerkung. Es gilt $D \subseteq \overline{D}$ (Betrachte für $x \in D$ die Folge $(x_n)_{n \ge 1} = (x)_{n \ge 1}$)

Beispiel. Sei D = (0, 1], dann ist $\overline{D} = [0, 1]$

Beweis. Es gilt $0 \in \overline{D}$, da $\frac{1}{n} \in D$, $\frac{1}{n} \to 0$ $n \in \mathbb{N} \implies [0,1] \subseteq \overline{D}$. Umgekehrt: Sei $x_n \in (0,1] = D$ mit $x_n \to x$ für ein $x \in \mathbb{R}$. Satz 2.9: $0 \le x \le 1 \implies \overline{D} \subseteq [0,1] \implies \text{Beh}$.

Ebenso:

- a) $\overline{\mathbb{R} \setminus \{0\}} = \mathbb{R}$
- b) Abgeschlossene Intervalle im Sinne von Def. ?? sind abgeschlossen im Sinne von Def. 4.1, Bsp: $\overline{[0,1]} = [0,1]$.

Definition 4.2. Sei $D \subseteq \mathbb{R}$, $x_0 \in \overline{D}$, $y_0 \in \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ konvergiert gegen den Grenzwert y_0 , wenn für jede Folge $(x_n)_{n\geq 1} \subseteq D$ mit $x_n \to x_0$ $(n \to \infty)$ gilt: $f(x_n) \to y_0$ $(n \to \infty)$. Man schreibt dann $y_0 = \lim_{x \to x_0} f(x)$ oder $f(x) \to y_0$ für $x \to x_0$. Wenn man zusätzlich $x_n < x_0$, bzw. $x_n > x_0$ $(\forall n \in \mathbb{N})$ fordert, dann spricht man vom links-, bzw. rechtsseitigen Grenzwert und schreibt $y_0 = \lim_{x \to x_0^+} f(x)$, bzw. $y_0 = \lim_{x \to x_0^+} f(x)$.

Beispiel 4.3. a) Sei $D = \mathbb{R}$, $f(x) = x^2 + 3$, $x_0 \in \mathbb{R}$. Sei $x_n \in \mathbb{R}$, $x_n \to x_0$. Dann $f(x_n) = x_n^2 + 3 \to x_0^2 + 3$ ($n \to \infty$) nach Satz 2.7 $\Longrightarrow \lim_{x \to x_0} f(x) = x_0^2 + 3$

b) Sei $M \subseteq \mathbb{R}$. Setze

$$\mathbf{1}_{M}(x) = \begin{cases} 1, & x \in M \\ 0, & x \in \mathbb{R} \setminus M \end{cases}$$
 (charakteristische Funktion)

Behauptung. Sei $D = \mathbb{R}$, $f = \mathbf{1}_{R_+}$. Dann: $\lim_{x\to 0} f(x)$ existiert nicht.

Beweis. Wähle $x_n = (-1)^n \frac{1}{n} \to 0, n \to \infty$. Dann

$$f(x_n) = \begin{cases} 1, & n \text{ gerade} \\ 0, & n \text{ ungerade} \end{cases}$$

Sei
$$x_n \to 0$$
 $(n \to \infty)$. Wenn $x_n > 0$, dann $f(x_n) = 1$. Wenn $x_n < 0$, dann $f(x_n) = 0$ $\Longrightarrow \exists \lim_{x \to 0^+} f(x) = 1$, $\exists \lim_{x \to 0^-} f(x) = 0$

c) Sei $D = \mathbb{R} \setminus \{0\}$, $f(x) = \frac{1}{x}$, $x \in D$. Dann: $\lim_{x\to 0} f(x)$ existiert nicht, da $\frac{1}{n} \to 0$, aber $f(\frac{1}{n}) = n$ divergiert $(n \to \infty)$.

Satz 4.4 (ε - δ -Charakterisierung). Sei $D \subseteq \mathbb{R}$, $x_0 \in \overline{D}$, $f: D \to \mathbb{R}$, $y_0 \in \mathbb{R}$. Dann sind äquivalent:

- a) $\exists \lim_{x \to x_0} f(x) = y_0$
- b) $\forall \varepsilon > 0 \,\exists \delta_{\varepsilon} > 0 \,\forall x \in D \cap \overline{B}(x_0, \delta_{\varepsilon}) \, gilt: |f(x) y_0| \leq \varepsilon$

Beweis. a) Es gelte 2). Sei $x_n \in D$ $(n \in \mathbb{N})$ mit $x_n \to x_0$ beliebig gegeben $(n \to \infty)$. Sei $\varepsilon > 0$. Wähle $\delta_{\varepsilon} > 0$ aus 2). Dann $\exists N_{\varepsilon} \in \mathbb{N}$ mit $|x_n - x_0| \le \delta_{\varepsilon}$ für alle $n \ge N_{\varepsilon}$. 2) liefert: $|f(x_n) - y_0| \le \varepsilon$ $(\forall n \ge N_{\varepsilon}) \implies f(x_n) \to y_0, n \to \infty \implies 1$

b) Es gelte 1). Annahme: 2) sei falsch. Daraus folgt mit $\delta = \frac{1}{n}$: $\exists \varepsilon_{\delta} > 0 \,\forall n \in \mathbb{N} \,\exists x_n \in D$ mit $|x_0 - x_n| \leq \frac{1}{n}$ und $|f(x) - y_0| > \varepsilon_0$, d. h. $x_n \to x_0$ (Satz 2.9) und $f(x_n) \not\to y_0$ $(n \to \infty) \not \downarrow 1) \implies 2$

Satz 4.5. Es seien $D \subseteq \mathbb{R}$, $x_0 \in \overline{D}$, $f, g : D \to \mathbb{R}$, $y_0, z_0 \in \mathbb{R}$, sodass $\exists \lim_{x \to x_0} f(x) = y_0$, $\exists \lim_{x \to x_0} g(x) = z_0$. Dann gelten:

- a) $\exists \lim_{x \to x_0} (f(x) + g(x)) = y_0 + z_0$
- b) $\exists \lim_{x \to x_0} f(x)g(x) = y_0 z_0$
- c) $\exists \lim_{x \to x_0} |f(x)| = |y_0|$

d) Sei zusätzlich $y_0 \neq 0$. Dann $\exists r > 0$, sodass $|f(x)| \geq \frac{|y_0|}{2} > 0$ für alle $x \in D$ mit $|x - x_0| \leq r$. Ferner $\exists \lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{y_0}$

e) Sei zusätzlich $f(x) \leq g(x)$ für alle $x \in D$. Dann gilt $x_0 \leq z_0$. (Entsprechendes gilt $\lim_{x \to x_0^{\pm}}$)

Beweis. c) Sei $x_n \in D$ $(n \in \mathbb{N})$ mit $x_n \to x_0$ $(n \to \infty)$ beliebig gewählt. $\stackrel{\text{n.V}}{\Longrightarrow}$ $f(x_n) \to y_0 \stackrel{2.11}{\Longrightarrow} |f(x_n)| \to |y_0| (n \to \infty) \implies \text{Behauptung}$

d) Wähle $\varepsilon = \frac{|y_0|}{2} > 0$. Nach Teil 3 und Satz 4.4 $\exists r = \delta_{\varepsilon} > 0$, sodass für alle $x \in D \cap \overline{B}(x_0, r)$ gilt $\frac{|y_0|}{2} \ge ||f(x)| - |y_0|| \ge |y_0| - |f(x)| \iff |f(x)| \ge \frac{|y_0|}{2}$. Sei nun $x_n \to x_0$ $(n \to \infty)$ mit $x_n \in D \cap \overline{B}(x_0, r) \stackrel{\text{n.V.}}{\Longrightarrow} f(x_n) \to y_0 \stackrel{\text{2.7}}{\Longrightarrow} \frac{1}{f(x_n)} \to \frac{1}{y_0}$ $(n \to \infty)$ \Longrightarrow Behauptung

Uneigentliche Grenzwerte

Definition. Erweiterte Zahlengerade $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ (man schreibt oft ∞ statt $+\infty$). Ordnung: $-\infty < x < +\infty$ ($\forall x \in \mathbb{R}$), $|\pm\infty| := +\infty$

Definition 4.6. Man schreibt $\lim_{n\to\infty} x_n = +\infty \ (-\infty)$ für $x_n \in \mathbb{R}, n \in \mathbb{N}$, falls:

$$\forall K \in \mathbb{N} \,\exists N_K \in \mathbb{N} \,\forall n \geq N_K \colon x_n \geq K \, (x_n \leq -K)$$

Damit $n^2 \to \infty$, $-n^3 \to -\infty$ $(n \to \infty)$. Beachte: $((-1)^n)$ divergiert nach wie vor.

Bemerkung 4.7. a) Wenn $x_n \to \infty$ oder $x_n \to -\infty$, dann $\frac{1}{x_n} \to 0$ $(n \to \infty)$. (Beachte, nach Def. 4.6 gilt: $x_n \neq 0$, $n \geq N_1$)

- b) Wenn $x_n \to 0$ und ein $n_0 \in \mathbb{N}$ existiert mit $x_n > 0$ für alle $n \geq n_0$, dann geht $\frac{1}{x_n} \to +\infty$
- c) Wenn $x_n \to 0$, $x_n < 0$ $(\forall n \ge n_0)$, dann $\frac{1}{x_n} \to -\infty$

Beweis. a) Sei $x_n \to +\infty$ oder $x_n \to -\infty$ $(n \to \infty)$. Nach Def. 4.6 gilt

$$\forall K \in \mathbb{N} \,\exists N_K \in \mathbb{N} \,\forall n \ge N_K \colon |x_n| \ge K \iff 0 < \frac{1}{|x_n|} \le \frac{1}{K} =: \varepsilon,$$

d. h.
$$\frac{1}{x_n} \to 0$$
, $n \to \infty$.
b), c) zeigt man ähnlich.

In Anbetracht von 4.7.1) schreibt man

$$\frac{x}{+\infty} = 0, \ x \in \mathbb{R} \tag{4.1}$$

(damit gilt $\lim_{n\to\infty}\frac{1}{x_n}=\frac{1}{\lim_{n\to\infty}x_n}$ auch in Bem. 4.71) Wenn (x_n) nach oben (nach unten) unbeschränkt ist (wobei $x_n\in\mathbb{R}$) dann setzt man $\overline{\lim}_{n\to\infty}x_n:=\infty$ $\underline{\lim}_{n\to\infty}x_n:=-\infty$. Mit identischem Beweis gelten dann Wurzel- und Quotientenkriterium ohne die jeweilige Beschränktheitsvorraussetzung. Ferner liefert (4.1) und Bem. 4.7 in Thm. 3.28

$$\varrho = \frac{1}{\overline{\lim_{k \to \infty}}} \sqrt[k]{|a_k|}$$

Gilt auch wenn $\sqrt[k]{|a_k|}$ unbeschränkt $(\varrho = \frac{1}{\infty} = 0)$ oder wenn $\sqrt[k]{|a_k|} \to 0^+$ $(k \to \infty)$ $(,, \varrho = \frac{1}{0^+} = +\infty)$. Weiter schreibt man sup $D = +\infty$ wenn $D \subseteq \mathbb{R}$ nach oben unbeschränkt ist, sowie inf $D = -\infty$, wenn D nach unten unbeschränkt ist.

Sei $f: D \to \mathbb{R}$, $x_0 \in \overline{D}$, $y_0 \in \overline{R}$. Dann definiert man $\lim_{n \to x_0} f(x) = y_0$ wie in Def. 4.2, d. h. für alle $x_n \to x_0$ muss $f(x_n) \to y_0$ in $\overline{\mathbb{R}}$ gelten. Dabei ist $+\infty \in \overline{D}$ wenn sup $D = \infty$ und $-\infty \in \overline{D}$, wenn inf $D = -\infty$.

Beispiel. Mit Bem. 4.7 folgt $\lim_{x\to 0} \frac{1}{x^2} = +\infty$, $\lim_{x\to 0^+} \frac{1}{x} = \infty$, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$ und $\angle \lim_{x\to 0} \frac{1}{x}$.

4.2 Eigenschaften stetiger Funktionen

Definition 4.8. Seien $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D$. Dann heißt f stetig in x_0 , falls $\exists \lim_{x \to x_0} f(x) = f(x_0)$, d. h. für jede Folge $(x_n) \subseteq D$ mit $x_n \to x_0$ $(n \to \infty)$ gilt: $f(x_n) \to f(x_0)$ $(n \to \infty)$. f heißt stetig (auf D), wenn f für alle $x_0 \in D$ stetig ist. Man schreibt: $C(D) = \{f: D \to \mathbb{R}, f \text{ stetig}\}$.

Beispiel 4.9 (vgl. 4.3). a) Sei $D = \mathbb{R}$ und $c \in \mathbb{R}$ (fest gegeben). Dann sind die Funktionen f(x) = c, g(x) = x ($x \in \mathbb{R}$) stetig auf \mathbb{R} .

- b) Sei $D = \mathbb{R}_+, x_0, x_n \in D$. Übung: Wenn $x_n \to x_0$, dann $\sqrt{x_n} \to \sqrt{x_0}$ $(n \to \infty)$. Also ist $f(x) = \sqrt{x}$ stetig auf \mathbb{R}_+
- c) Sei $D = \mathbb{R}$ und $f = \mathbf{1}_{\mathbb{R}_+}$. $\Longrightarrow f$ ist stetig für $x_0 \in \mathbb{R} \setminus \{0\}$ aber unstetig für $x_0 = 0$, $\not\supseteq \lim_{x \to 0} f(x)$
- d) Sei $D = \mathbb{R} \setminus \{0\}$. Dann ist $f(x) = \frac{1}{x}$, $x \in D$ stetig auf D
- e) Sei $D = \mathbb{R}$, $f(x) = ... \Longrightarrow f$ unstetig in $x_0 = 0$, da $\not\exists \lim_{x \to 0^+} f(x)$

Definition. Seien $f, g: D \to \mathbb{R}$, $\alpha \in \mathbb{R}$. Dann definiere man die Funktion $f+g: D \to \mathbb{R}$ punktweise durch (f+g)(x):=f(x)+g(x) $(x\in D)$. Analog definiere man die Funktionen $\alpha f, f\cdot g, |f|$ und $\frac{1}{f}$ (soweit $f(x)\neq 0$). Ferner sei $f(D)=\{y\in \mathbb{R}: \exists x\in D: f(x)=y\}$ und $h: f(D)\to \mathbb{R}$. Dann definiert man die Komposition $h\circ f: D\to \mathbb{R}$ durch $(h\circ f)(x)=h(f(x)), x\in D$.

Satz 4.10. Seien $D \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$, $\alpha \in \mathbb{R}$, sowie $f, g : D \to \mathbb{R}$ stetig in x_0 und $h : f(D) \to \mathbb{R}$ stetig in $f(x_0)$. Dann sind die Funktionen f + g, fg (speziell αg), |f|, $h \circ f$ stetig bei x_0 . Wenn $f(x_0) \neq 0$, dann existiert nach Satz 4.5 ein x > 0 mit $f(x) \neq 0$ für $x \in \overline{B}(x_0, r) \cap D := \tilde{D}$. Ferner ist $\frac{1}{f} : \tilde{D} \to \mathbb{R}$ stetig in x_0 . (Also: C(D) ist ein Vektorraum).

Beweis (beispielhaft).. Sei $x_n \in D$ mit $x_n \to x_0$ $(n \to \infty)$. Dann $f(x_n) \in f(D)$, $f(x_n) \to f(x_0)$ $(n \to \infty)$ (da f stetig in x_0). Also: $h(f(x_n)) \to h(f(x_0))$, da h stetig in $f(x_0)$ $(n \to \infty)$. Somit ist $h \circ f$ stetig in x_0 . Der Rest folgt analog mit Satz 4.5.

Beispiel 4.11 (Satz 4.10 liefert:). a) Polynome sind auf \mathbb{R} stetig, da sie aus $p_0(x) = 1$, $p_1(x) = x$ zusammengesetzt sind.

- b) Rationale Funktionen $f = \frac{p}{q}$ sind auf $D = \{x \in \mathbb{R} : q(x) \neq 0\}$ stetig, als Quotient der Polynome p, q.
- c) $f(x) = \sqrt{1+3|x|}$ ist stetig auf $D = \mathbb{R}$, da $f = w \cdot g$ mit $w(y) = \sqrt{y}$ und $g(x) = 1+3|x|, g = 1+3|p_1|$.

Theorem 4.12. Sei $f(x) = \sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius $\varrho > 0$. Dann ist $f: B(0, \varrho) = (-\varrho, \varrho) \to \mathbb{R}$ stetig, d. h.

$$\lim_{x \to x_0} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x_0^n \quad (x_0 \in B(0, \varrho))$$

Beispiel. Stetig auf \mathbb{R} sind sin, cos, exp sowie $f(x) = \exp(1+2x^2)$ $(x \in \mathbb{R})$, da $f = \exp p$, $p(x) = 1 + 2x^2$ (Hier sei vorrübergehend $B(0, \infty) = \mathbb{R}$).

Beweis des Theorems.. Sei $x_0, x_n \in (-\varrho, \varrho)$ mit $x_n \to x_0$ $(n \to \infty)$. Setze $d := \varrho - |x_0| > 0$ $\Longrightarrow \exists x_0 \in \mathbb{N} : |x_n - x_0| \le \frac{d}{2} \ (\forall n \ge n_0)$

$$\implies |x_n| \le |x_n - x_0| + |x_0| \le \dots + |x_0| = \varrho - \frac{d}{2} < \varrho \quad (n \ge n_0)$$
 (*)

Setze $r=p-\dots$ Dann (nach Thm. 3.28) $\exists \dots$ Sei $\varepsilon>0$ beliebig, fest gegeben. Dann $\exists J_{\varepsilon}\in\mathbb{N}$, sodass

$$\sum_{j=J_{\varepsilon}+1}^{\infty} |a_j| \, r^j \le \varepsilon \tag{**}$$

Setze $p_{\varepsilon}(x) = \dots$

Satz 4.13. Seien $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D$. Dann sind äquivalent:

- a) f ist stetiq in x_0
- b) $\forall \varepsilon > 0 \,\exists \delta_{\varepsilon} > 0 \,\forall x \in D \cap \overline{B}(x_0, \delta_{\varepsilon}) : |f(x) f(x_0)| \le \varepsilon$
- c) $\forall \varepsilon > 0 \,\exists \delta_{\varepsilon} > 0 : f(D \cap \overline{B}(x_0, \delta_{\varepsilon})) : \dots$

Beweis. ...

Definition 4.14. Sei $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$. f heißt gleichmäßig stetig (glm stetig), wenn

$$\forall \varepsilon > 0 \,\exists \delta_{\varepsilon} > 0 \,\forall x, y \in D \,\, \text{mit} \,\, |x - y| \le \delta_{\varepsilon} \,\, \text{gilt} \, |f(x) - f(y)| \le \varepsilon$$
 (4.2)

(Im Gegensatz zu 4.132 hängt δ_{ε} nicht von x_0 ab).

Beispiel 4.15. a) Sei $D=(0,1], f(x)=\frac{1}{x}$. Sei $\varepsilon_0=1$, sei $\delta>0$ beliebig. Wähle $x\in(0,1]$ mit $x\leq 2\delta, y=\frac{x}{2}\Longrightarrow |x-y|=\frac{x}{2}\leq\delta.$...

b) Sei $D = \mathbb{R}$, $f(x) = x^2$. Sei $\varepsilon_0 = 1$, sei $\delta > 0$ beliebig. Wähle $x = \delta + \frac{1}{\delta}$, $y = \frac{1}{\delta}$ $\Longrightarrow |x - y| = \delta$, aber $|f(x) - f(y)| \dots > 1 = \varepsilon_0 \implies f$ nicht glm stetig, obwohl f stetig.

4.3 Hauptsätze über stetige Funktionen

Theorem 4.16. Sei $D \subseteq \mathbb{R}$ abgeschlossen und beschränkt, $f: D \to \mathbb{R}$ sei stetig. Dann: f ist glm. stetig. (Beispiel: D = [a, b])

Beweis. Annahme: f sei nicht glm. stetig. (4.2) (mit $\delta = \frac{1}{n}$) liefert:

$$\exists \varepsilon_0 > 0 \,\forall n \in \mathbb{N} \,\exists x_n, \, y_n \in D : |x_n - y_n| \le \frac{1}{n}, \, |f(x_n) - f(y_n)| > \varepsilon_0 \tag{*}$$

D beschränkt, Thm. 2.21 (=BW) $\Longrightarrow \exists$ TF $x_{n_k} \to x$ $(k \to \infty)$, $y_{n_{k_l}} \to y$ $(l \to \infty)$ $\Longrightarrow x, y \in \overline{D} \stackrel{\text{n.V.}}{=} D$. Ferner:

$$|x - y| \le \left| x - y_{n_{k_l}} \right| + \underbrace{\left| x_{n_{k_l}} - y_{n_{k_l}} \right|}_{\stackrel{(*)}{\le \frac{1}{n_{k_l}}}} + \left| y_{n_{k_l}} - y \right| \to 0 \quad (l \to \infty)$$

Definition 4.17. Sei $D \subseteq \mathbb{R}$ nicht abgeschlossen. $x_0, y_0 \in \mathbb{R}, x_0 \in \overline{D} \setminus D$. Die Funktion $\tilde{f}(x) = \begin{cases} f(x), & x \in D \\ y_0, & x = x_0 \end{cases}$ (definiert auf $\tilde{D} = D \cup \{x_0\}$) heißt stetige Fortsetzung von f in x_0 , wenn $\lim_{x \to x_0} f(x) = y_0$.

Beispiel 4.18. a) Sei
$$D = \mathbb{R} \setminus \{1\}$$
, $f(x) = \frac{x^2 - 1}{x - 1}$, $x \in D$, $x_0 = 1$, $y_0 = 2$ $\Longrightarrow \tilde{f}(x) = \begin{cases} \frac{x^2 - 1}{x - 1} = x + 1, & x \neq 1 \\ 2, & x = 1 \end{cases}$, also $\tilde{f}(x) = x + 1$, $x \in \tilde{D} = \mathbb{R}$.

Da \tilde{f} stetig auf \mathbb{R} , ist f in 1 stetig fortsetzbar. (Wenn man $y_0 = 3$ setzen würde, wäre \tilde{f} keine stetige Fortsetzung).

b) Sei $D = \mathbb{R} \setminus \{0\}$. Nicht stetig fortsetzbar sind $f(x) = \frac{1}{x}$, $f(x) = \mathbf{1}_{\mathbb{R}_+}(x)$, da jeweils $\lim_{x\to 0} f(x)$ nicht existiert. (siehe Bsp. 4.3)

Satz 4.19. Sei $f: D \to \mathbb{R}$ stetig, $x_0 \in \overline{D} \setminus D$, $x_0 \in \mathbb{R}$. Dann:

- a) Wenn f auf D gleichmäßig stetig ist, dann hat f in x_0 eine stetige Fortsetzung.
- b) Wenn $\tilde{D} = D \cup \{x_0\}$ abgeschlossen und beschränkt ist und f in x_0 stetig fortsetzbar ist, dann ist f mit D gleichmäßig stetig.

Beweis. b) Thm. 4.16: \tilde{f} ist gleichmäßig stetig auf \tilde{D} . $\Longrightarrow f$ gleichmäßig stetig auf D.

a) Sei f gleichmäßig stetig.

- a) Sei $x_n \in D$ mit $x_n \to x_0$. Sei $\varepsilon > 0$ gegeben. Sei δ_{ε} aus (4.2). Dann: $\exists N_{\varepsilon} : |x_n x_0| \leq \frac{\delta_{\varepsilon}}{2} \quad (\forall n \geq N_{\varepsilon}) \implies |x_n x_m| \leq |x_n x_0| + |x_0 x_m| \leq \delta_{\varepsilon} \quad (\forall n, m \geq N_{\varepsilon}) \stackrel{\text{(4.2)}}{\Longrightarrow} |f(n) f(x_m)| \leq \varepsilon \quad (\forall n, m \geq N_{\varepsilon})$. Thm. 2.26 $\Longrightarrow \exists \lim_{n \to \infty} f(x_n) =: y_0$
- b) Sei $\tilde{x_n}$ in D eine weitere Folge mit $\tilde{x_n} \to x_0$. Dann $\exists \tilde{N_\varepsilon} \ge N_\varepsilon$ mit $|\tilde{x_n} x_0| \le \frac{\delta_\varepsilon}{2} \ (\forall n \ge \tilde{N_\varepsilon}) \implies |x_n \tilde{x_n}| \le |x_n x_0| + |x_0 \tilde{x_n}| \le \delta_\varepsilon \ (\forall n \ge \tilde{N_\varepsilon})$ $\stackrel{(4.2)}{\Longrightarrow} |f(x_n) f(\tilde{x_n})| \le \varepsilon \ (\forall n \ge \tilde{N_\varepsilon}) \implies |f(\tilde{x_n}) y_0| \le |f(\tilde{x_n}) f(x_n)| + |f(x_n) y_0| \le \varepsilon + \lim_{m \to \infty} |f(x_n) f(x_m)| \le 2\varepsilon \ (\forall n \ge \tilde{N_\varepsilon}) \implies f(\tilde{x_n}) \to y_0 \implies \exists \lim_{x \to x_0} f(x) = y_0.$

Theorem 4.20 (Satz vom Maximum). Sei $D \subseteq \mathbb{R}$ abgeschlossen und beschränkt und $f: D \to \mathbb{R}$ stetig. Dann $\exists x_{\pm} \in D$ mit $f(x_{+}) = \max_{x \in D} f(x)$, $f(x_{-}) = \min_{x \in D} f(x)$. Insbesondere ist f beschränkt, $d.h. |f(x)| \leq M$ (:= $\max\{f(x_{+}), f(x_{-})\}$), $\forall x \in D$.

Beweis. a) ...

b) ...

Korollar 4.21. Sei $D \subseteq \mathbb{R}$ abgeschlossen und beschränkt, $f: D \to \mathbb{R}$ stetig, $f(x) > 0 \forall x \in D$. Dann: $f(x) \geq f(x_{-}) > 0$ ($\forall x \in D$), (wobei $x_{-} \in D$ aus Thm. 4.20).

Beispiel. Wenn D nicht abgeschlossen oder unbeschränkt, dann sind Thm. und Kor. im Allgemeinen falsch.

- a) $D = (0,1], f(x) = \frac{1}{x}$. $D = \mathbb{R}_+, g(x) = x$. $\Longrightarrow f, g$ stetig und unbeschränkt.
- b) $D = [1, \infty), f(x) = \frac{1}{x} > 0 \ \forall x \ge 1. \text{ Aber } \inf_{x \in D} f(x) = 0.$

Frage. Wie sieht Bild von f aus? f(D) kann Lücken haben, wenn:

Theorem 4.22 (Zwischenwertsatz/ZWS). Sei $f : [a, b] \to \mathbb{R}$ stetig. Dann: $f([a, b]) = [\min_{[a,b]} f, \max_{[a,b]} f]$. Also: $\forall y_0 \in [\min f, \max f] \exists x_0 \in [a,b]$ mit $f(x_0) = y_0$.

Beweis. ...
$$\Box$$

Korollar 4.23 (Nullstellensatz). Sei $f:[a,b] \to \mathbb{R}$ stetig und $f(a) \cdot f(b) \leq 0$. Dann $\exists x_* \in [a,b]: f(x_*) = 0$.

Beweis. Nach Vorraussetzung $f(x) \le 0 \le f(b)$, $f(b) \le 0 \le f(a) \implies 0 \in f([a, b])$. ZWS \implies Beh.

Korollar 4.24. Sei I ein Intervall und $f: I \to \mathbb{R}$ stetig. Dann ist f(I) ein Intervall (Intervallsatz).

Beweis. Annahme: f(I) sei kein Intervall $\Longrightarrow \exists a,b \in I \text{ mit } y := f(a) < f(b) =: z \text{ und } u \in (y,z) \text{ mit } u \notin f(I)$. Sei etwa a < b. ZWS $\Longrightarrow f([a,b])$ Intervall, $y,z \in f([a,b])$ $\Longrightarrow u \in f([a,b]) \Longrightarrow \sharp$

Beispiel 4.25. a) $D = \mathbb{R}_+$, $f(x) = x^k$ $(k \in \mathbb{N} \text{ fest})$. Dann f stetig, f(0) = 0, $f(x) \ge 0$ $(\forall x \ge 0)$, $f(n) \to \infty$ $(n \to \infty)$. Kor. 4.24: $f(\mathbb{R}_+) = \text{Intervall} \implies f(\mathbb{R}_+) = \mathbb{R}_+$

b) Such $x_0 \ge 0$: $\exp(-x_0) = x_0 \iff f(x_0) = \exp(-x_0) - x_0 = 0$. Hier f stetig: $f(0) = 1, f(1) = \frac{1}{e} - 1 < 0.4.23 \implies \exists x_0 : f(x_0) = 0.$

Definition 4.26.

Beispiel. a) ...

b) ...

Bemerkung 4.27.

Beweis. \Box

Theorem 4.28.

Beweis. \Box

Beispiel 4.29.

4.4 Exponentialfunktion und ihre Verwandtschaft

...

Definition 4.30.

Definition 4.31.

Bemerkung 4.32. ...

- a) ...
- b) ...
- c) ...
- d) ...
- e) ...
- f) ...

Trigonometrische Funktionen

...

Satz 4.33.

Definition.

...

Definition 4.34.

Definition 4.35.

Beispiel 4.36.

5 Differentialrechnung

Stets sei I ein Intervall das stets mehr als einen Punkt enthält.

5.1 Rechenregeln

Ziel: Finde beste lineare Approximation für f nahe bei x_0 . Idee: Betrachte Tangente bei $(x_0, f(x_0))$

 $t(x) = f(x_0) + m(x - x_0)$, wobei m = Tangentensteigung in $x_0 =$ Grenzwert der Steigung der Sekante in x_0, x_1 also $s(x) = f(x_0) + \underbrace{\frac{f(x_1) - f(x_0)}{x - x_0}}_{m(x_1)}(x - x_0)$

Definition 5.1. $f: I \to \mathbb{R}$ ist in $x_0 \in \mathbb{R}$ differenzierbar(diff'bar), falls $\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = :$ $f'(x_0) = \frac{\delta f}{\delta x}(x_0) \ f'(x_0)$ heißt Ableitung von f an x. f heißt diff'bar (auf I), wenn f in jedem $x_0 \in I$ diff'bar ist. Damm definiert man iterativ f'' = (f')', f(n) = (f(n-1))' $(n \in \mathbb{N})$ die n-te Ableitung. Entsprechend def. man die rechts/linksseite Ableitung:

$$\frac{d \pm f}{dx}(x_0) = \lim_{x \to x_0 \pm} \frac{f(x) - f(x_0)}{x - x_0}$$
(5.1)

Beweis. a) Die Fkt. $g(x) = \frac{f(x) - f(x_0)}{x - x_0}$ ist für $I(x_0)$ definiert

- b) Wenn I = [a, b] und $x_0 = a, b$, dann stimmen überein soweit existent.
- c) Sei f ind x diff'bar. Sei $g(x) = f(x_0) + a(x x_0)$ mit $a \neq f'(x_0)$ eine weitere Gerade durch $(x_0, f(x_0))$. Beh. $\exists \delta > 0 : |f(x) g(x)| > |f(x)| t(x)|$ für alle $x \in I$ $\{x_0\}, |x x_0| < \delta$

Beweis.
$$\left| \frac{f(x) - g(x)}{x - x_0} \right| = \left| \frac{f(x) - f(x_0)}{x - x_0} - q \right| \rightarrow |f'(x_0) - a| \neq 0, x \rightarrow x_0 \text{ genauso: } \left| \frac{f(x) - t(x)}{x - x_0} \right| \rightarrow 0, x \rightarrow x_0 \implies \exists \delta > 0 : \forall x \in I$$

$$\{x_0\} \text{ mit } |x - x_0| < \delta : \left| \frac{f(x) - g(x)}{x - x_0} \right| \geq \frac{1}{2} |f'(x_0) - a| > \frac{1}{4} |f'(x_0) - a| \geq \left| \frac{f(x) - t(x)}{x - x_0} \right| \implies Beh.$$

d) Andere Interpretation: Sei $u(t) \in \mathbb{R}$ eine Größe zur Zeit $t \in \mathbb{R}$ (z.B. Stoffmenge, Ort) und h > 0. Dann ist $\frac{1}{h}u(t+h) - u(t)$) der mittlere Zuwachs der Größe im Zeitintervall [t, t+h]. Somit

ist $n'(t) = \lim_{h\to 0} \frac{1}{h}(u(t+h) - u(t))$ die momentane Änderungsgeschwindigkeit der Größe. $u''(t)$ ist die Beschleunigung.
Beispiel 5.2. a) Seien $a, m \in \mathbb{R}$ fest gegeben. Setzte $f(x) = mx + a, x \in \mathbb{R}$. Sei $x_0 \in \mathbb{R}$. Dann $\frac{f(x) - f(x_0)}{x - x_0} = m(\forall x \neq x_0)$. $\Longrightarrow \exists f'(x_0) = m$
b) $f(x) = x $ für $x \in \mathbb{R}$. Dann $\exists f'(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$ Ferner $\exists \frac{d^+ f}{dx}(0) = \begin{cases} 1, & x > 0 \end{cases}$
c)
Satz 5.3.
Beweis.
Satz 5.4
a)
b)
c)
Beweis. a)
b)
c)
Korollar 5.5.
Satz 5.6.
Beweis. \Box
Satz 5.7.
Bemerkung.
Beweis.
Beispiel 5.8. a)
b)
Theorem 5.9.

a) ...

Be we is.

b)	
Beispiel 5.10. a)	
b)	
c)	
d)	
e)	
Beispiel 5.11.	
Definition 5.12.	
Bemerkung.	
5.2 Qualitative Eigenschaften differenzierbarer Funktionen	
Definition 5.13.	
Satz 5.14. a)	
b)	
c)	
Beweis.	
Bemerkung.	
Beispiel.	
Beweis.	
Theorem 5.15.	
Beweis.	
Satz 5.16.	
Beweis.	
Definition 5.17.	
Bemerkung 5.18. a)	

b)		
c)		
Korollar 5.19.		
Beweis.		
Satz 5.20. <i>a)</i>		
<i>b)</i>		
Bemerkung.		
Beweis.		
Beispiel 5.21.		
Beweis.		
Korollar 5.22.	a)	
<i>b)</i>		
Bemerkung.		
Beweis. a)		
b)		
Definition 5.23.		
Bemerkung.		
Satz 5.24.		
Beispiel 5.25.	a)	
Beweis.		
Beispiel 5.26.	a)	
Beweis.		
Theorem 5.27.	a)	
<i>b)</i>		
Beweis.		
Beispiel 5.28.	a)	
b)		
c)		
d)		

5.3 Der Satz von Taylor

Theorem 5.29.	
Beweis.	
Definition 5.30.	
Bemerkung 5.31. a)	
b)	
Theorem 5.32. $a)$	
<i>b)</i>	
c)	
Beispiel.	
Beweis.	
Definition 5.33.	
Beispiel 5.34. a)	
b)	
c)	
Newton-Verfahren	
Theorem 5.35.	
Beweis.	
Beispiel 5.36.	

6 Integralrechnung

6.1 Riemann-Integrale

(siehe Walter: Analysis I)

Definition 6.1. Sei $f:[a,b]\to\mathbb{R}$ beschränkt. Eine Zerlegung Z von [a,b] ist eine Menge der Form

$$Z = \{(t_0, t_1, \dots, t_n), (\tau_1, \tau_2, \dots, \tau_n) : a = t_0 < t_1 < \dots < t_n = b,$$

$$\tau_k \in I_k := [t_{k-1}, t_k] \text{ für } k = 1, \dots, n\},$$

wobei $n \in \mathbb{N}$ beliebig. $\mathcal{Z}(a,b)$ ist die Menge aller Zerlegungen von [a,b]. Die Riemann-Summe von f bzgl. $Z \in \mathcal{Z}(a,b)$ ist

$$S(f,Z) = \sum_{k=1}^{n} f(\tau_k)(t_k - t_{k-1}).$$

Man setzt $d_k = t_k - t_{k-1}$ und $|Z| = \max_{k=1,\dots,n} d_k$ (Feinheit). t_k heißt Teilungspunkt, τ_k heißt Stützstelle. Kurzschreibweise: $Z = \{t_k, \tau_k, k \leq n\}$. f heißt Riemann-integrierbar, falls es ein $J \in \mathbb{R}$ gibt, sodass für jede Folge $(Z_n) \subseteq \mathcal{Z}(a,b)$ mit $|Z_n| \to 0$ $(n \to \infty)$ gilt: $\exists \lim_{n \to \infty} S(f, Z_n) = J$. Dann heißt J das Riemann-Integral von f. Man schreibt

$$J = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

Ferner $R([a,b]):=\{f:[a,b]\to\mathbb{R}:f \text{ ist beschränkt und Riemann-integrierbar}\}.$

Lemma 6.2 (Cauchy-Kriterium). Sei $f : [a, b] \to \mathbb{R}$ beschränkt und $J \in \mathbb{R}$. Dann sind äquivalent:

a) f ist Riemann-integrierbar mit
$$J = \int_a^b f(x) dx$$

b) $\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \forall Z, Z' \in \mathcal{Z}(a,b) \ mit \ |Z|, |Z'| \leq \delta_{\varepsilon} \ gilt:$

$$|S(f,Z) - S(f,Z')| \le \varepsilon \tag{6.1}$$

Beweis. b) \Rightarrow a) Es gelte (6.1). Sei $Z_n \in \mathcal{Z}(a,b)$ mit $|Z_n| \to 0$ $(n \to \infty)$. Wähle $\varepsilon > 0$. Sei $\delta_{\varepsilon} > 0$ aus (6.1). Dann $\exists N_{\varepsilon} \in \mathbb{N}$ mit $|Z_j| \le \delta_{\varepsilon}$ für alle $j \ge N_{\varepsilon}$. (6.1) liefert $|S(f, Z_n) - S(f, Z_m)| \le \varepsilon$ für alle $n, m \ge N_{\varepsilon}$. Thm. 2.26 zeigt $\exists \lim_{m \to \infty} S(f, Z_m) = J$. Damit $|S(f, Z_n) - J| \le \varepsilon$ $(\forall n \ge N_{\varepsilon})$ (*) Sei $Z'_n \in \mathcal{Z}(a,b)$ mit $|Z'_n| \to 0$ $(n \to \infty)$. Dann $\exists N'_{\varepsilon} \ge N_{\varepsilon}$ mit $|Z'_n| \le \delta_{\varepsilon}$ für alle $n \ge N'_{\varepsilon} \stackrel{\text{f.1}}{\Longrightarrow} |S(f, Z_n) - S(f, Z'_n)| \le \varepsilon \ \forall n \ge N'_{\varepsilon}$ (**) $\Longrightarrow |S(f, Z'_n) - J| \le |S(f, Z'_n) - S(f, Z_n)| + |S(f, Z_n) - J| \le 2\varepsilon$ für alle $n \ge N'_{\varepsilon}$, nach (*), (**). $\Longrightarrow \exists \int_a^b f(x) \, dx = J$

- a) \Rightarrow b) f sei Riemann-integrierbar. Annahme: (6.1) sei falsch, also $\exists \varepsilon_0 > 0 \ \forall n \in \mathbb{N} \ \exists Z_n, Z'_n \in \mathcal{Z}(a,b) \ \text{mit} \ |Z_n|, |Z'_n| < \frac{1}{n}, \ \text{aber} \ |\underbrace{S(f,Z_n)}_{\text{n.V.} \to J} \underbrace{S(f,Z'_n)}_{\to J \ (n \to \infty)}| > \varepsilon \not\downarrow$
- **Beispiel 6.3.** a) Sei $a \leq c \leq d \leq b$, $\alpha \in \mathbb{R}$. Setze $f = \alpha \mathbf{1}_{[c,d]}$. Dann ist f Riemann-integrierbar und $\int_a^b f(x) \, \mathrm{d}x = \alpha(d-c)$. Speziell $\int_a^b \alpha \, \mathrm{d}x = \alpha(b-a)$, $\int_a^b \alpha \mathbf{1}_{[c,c]}(x) \, \mathrm{d}x = 0$.

Beweis. Sei $\varepsilon > 0$ gegeben. Sei $Z = \{t_j, \ \tau_j, \ j \le n\} \in \mathcal{Z}(a,b)$ mit $|Z| \le \varepsilon$. Seien $l \le m \le n$, sodass $c \in I_l$, $d \in I_m$. Dann $f(\tau_j) = \alpha$ für l < j < m und $f(\tau_j) = 0$ für j < l-1 und j > m+1.

$$|S(f,Z) - \alpha(d-c)| = \left| \sum_{j=l-1}^{m+1} f(\tau_j) d_j - \left(\sum_{j=l+1}^{m-1} \alpha d_j + \alpha \left(t_l - c + d - t_{m-1} \right) \right) \right| \\ \leq 6 |\alpha| |Z| \leq 6 |\alpha| \varepsilon$$

Mit $|Z_n| \to 0 \ (n \to \infty)$ folgt Beh.

b) Sei $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$. Behauptung. f ist nicht Riemann-Integrierbar.

Beweis. Sei $n \in \mathbb{N}$ gegeben. Setze $Z = \{t_k = \frac{k}{n}, k = 0, \dots, b; \tau_k = t_{k-1} \in \mathbb{Q}\},$ $Z' = \{t' = \frac{k}{n}, \tau'_k = \frac{k}{n} + \frac{\sqrt{2}}{2} \cdot \frac{1}{n}, k = 1, \dots, n\}. \implies |Z| = |Z'| = \frac{1}{n},$

$$S(f,Z) = \sum_{k=1}^{n} \underbrace{f(\tau_k)}_{=1} \cdot \frac{1}{n} = 1, \ S(f,Z') = \sum_{k=1}^{n} \underbrace{f(\tau'_k)}_{=0} \cdot \frac{1}{n} = 0$$

 \Longrightarrow (6.1) kann für $\varepsilon = \frac{1}{2}$ nicht gelten.

Bemerkung 6.4 (Verfeinerung). Seien $Z = \{t_k, \ \tau_k, \ k \leq n\} \in \mathcal{Z}(a,b)$ und $t'_1, \ldots, t'_l \in [a,b]$. Ordne die $t_k, \ t'_j$ zu $a = \hat{t}_0 < \hat{t}_1 < \cdots < \hat{t}_m = b$. Setze $\hat{I}_j = [\hat{t}_{j-1}, \hat{t}_j], \ \hat{d}_j = \hat{t}_j - \hat{t}_{j-1}$. Wenn $\hat{I}_j \subseteq [t_{k-1}, t_k]$, dann definiere Stützstellen $\hat{\tau}_j = \tau_k$. Dann ist $S(f, Z) = \sum_{j=1}^m f(\hat{\tau}_j)\hat{d}_j$ im Allgemeinen keine Riemann-Summe, weil u. U. $\hat{\tau}_j \notin \hat{I}_j$.

Satz 6.5. $C([a,b]) \subset R([a,b])$

Beweis. Sei $\varepsilon > 0$ und $f:[a,b] \to \mathbb{R}$ stetig. Thm 4.16 $\Longrightarrow f$ ist gleichmäßig stetig, d.h.

$$\exists \delta_{\varepsilon} > 0 \ \forall x, y \in [a, b] \ \text{mit} \ |x - y| \le \delta_{\varepsilon} \ \text{gilt:} \ |f(x) - f(y)| \le \varepsilon \tag{*}$$

Seien $Z = \{t_k, \ \tau_k\}, Z' = \{t_k', \ \tau_k'\} \in \mathcal{Z}(a,b)$ mit $|Z|, |Z'| \leq \frac{\delta_{\varepsilon}}{2}$. Verfeinere Z und Z' wie in Bem. 6.4 zu den gemeinsamen Teilungspunkten $\{t_k, t_i\} = \{\hat{t}_j\}$. Erhalte dabei Stützstellen $\hat{\tau}_j$ zu Z und $\hat{\tau}_j'$ zu Z', wobei $|\hat{\tau}_j - \hat{\tau}_j'| \leq 2\frac{\delta_{\varepsilon}}{2} = \delta_{\varepsilon}$, weil $\hat{I}_j \subseteq I_k \cap I_{l_j}'$ und $\hat{\tau}_j \in I_{k_j}, \ \hat{\tau}_j' \in \hat{I}_{l_j}$. Somit

$$|S(f,Z) - S(f,Z')| \stackrel{6.4}{=} \left| \sum_{j=1}^{m} f(\hat{\tau}_j) \hat{d}_j - \sum_{j=1}^{m} f(\hat{\tau}'j) \hat{d}_j \right| \leq \sum_{j=1}^{m} \underbrace{|f(\hat{\tau}_j) - f(\hat{\tau}'j)|}_{\stackrel{*}{=} \varepsilon} \hat{d}_j \leq \varepsilon(b-a)$$

Lemma $6.2 \implies Beh.$

Satz 6.6. Seien $f, g \in R([a,b]), \ \alpha, \beta \in \mathbb{R}, \ c \in [a,b], \ h : [a,b] \to \mathbb{R}$ beschränkt. Dann gelten:

a)
$$\alpha f + \beta g \in R([a,b])$$
 und $\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$

b) Wenn
$$f(x) \leq g(x)$$
 ($\forall x \in [a,b]$), $dann \int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$.

$$Speziell \left| \int_{a}^{b} f(x) dx \right| \leq (b-a) \sup_{a \leq x \leq b} |f(x)|.$$

c)
$$|f| \in R([a,b])$$
 und $\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$.

d)
$$h \in R([a,b]) \iff h|_{[a,c]} \in R([a,c]) \land h|_{[c,b]} \in R([c,b]).$$

$$Dann \int_a^b h(x) dx = \int_a^c h(x) dx + \int_c^b h(x) dx.$$

Beweis. Sei $Z_n = \{t_{j,n}; \tau_{j,n}; j \leq m_n\} \in \mathcal{Z}(a,b)$ mit $|Z_n| \to 0$ $(n \to \infty)$. Setze $d_{j,n} = t_{j,n} - t_{j-1,n}$.

a)

$$S(\alpha f + \beta g, Z_n) = \sum_{j=1}^{m_n} \alpha f(\tau_{j,n}) + \beta f(\tau_{j,n}) d_{j,n} = \alpha \underbrace{\sum_{j=1}^{m_n} f(\tau_{j,n}) d_{j,n}}_{\rightarrow \int_a^b f(x) dx} + \beta \underbrace{\sum_{j=1}^{m_n} g(\tau_{j,n}) d_{j,n}}_{\rightarrow \int_a^b g(x) dx \ (n \to \infty)}$$

b)
$$\underbrace{S(f, Z_n)}_{\substack{b \\ \rightarrow \int_a^b f(x) \, dx}} = \sum_{j=1}^{m_n} f(\tau_{j,n}) d_{j,n} \overset{\text{n.V.}}{\leq} \sum_{j=1}^{m_n} g(\tau_{j,n}) d_{j,n} = \underbrace{S(g, Z_n)}_{\substack{\rightarrow \int_a^b g(x) \, dx}}$$

- c) Abschätzung folgt aus $\pm f \leq \mathbf{1}_{[a,b]} \sup |f|$. Siehe Ilias.
- d) Siehe Ilias.

Man setzt für $f \in R([a,b])$, $a \le b \int_b^a f(x) dx := -\int_a^b f(x) dx$. Auch in diesem Fall gilt Satz 6.6 entsprechend.

6.2 Hauptsatz der Differential- und Integralrechnung

Definition 6.7. Sei $f:[a,b] \to \mathbb{R}$. Eine Funktion $F:[a,b] \to \mathbb{R}$ heißt Stammfunktion von f, wenn F differenzierbar ist und F'=f ist. Man schreibt $F=\int f \ \mathrm{d}t = \int f = f^{[1]}$. Beachte: mit F ist auch die Funktion F(x)+c für ein beliebiges $c\in\mathbb{R}$ $(x\in[a,b])$ eine Stammfunktion von f.

Lemma 6.8. Sei $f \in R([a,b])$ und f sei stetig bei $x_0 \in [a,b]$. Dann ist das unbestimmte Integral $F_0(x) = \int_a^x f(t) dt$, $x \in [a,b]$, differenzierbar bei x_0 und $F'(x_0) = f(x_0)$.

Beweis. Sei $x \in [a, b] \setminus \{x_0\}$. Dann

$$\left| \frac{1}{x - x_0} \left(F_0(x) - F_0(x_0) \right) - f(x_0) \right| \stackrel{\text{Bsp. 6.3}}{=}$$

$$\left| \frac{1}{x - x_0} \left(\int_a^x f(t) \, dt - \int_a^{x_0} f(t) \, dt \right) - \frac{1}{x - x_0} \int_{x_0}^x f(x_0) \, dt \right| \stackrel{\text{Satz 6.6}}{=}$$

$$\frac{1}{|x - x_0|} \left| \int_{x_0}^x \left(f(t) - f(x_0) \right) \, dt \right| \stackrel{\text{Satz 6.6}}{\leq} \frac{1}{|x - x_0|} |x - x_0| \underbrace{\sup_{|x_0 - t| \le |x - x_0|} |f(t) - f(x_0)|}_{\to 0 \ (x \to x_0)}$$

Theorem 6.9 (Hauptsatz der Differential- und Integralrechnung). a) $Sei f \in C([a, b])$. Dann ist jede Stammfunktion F gegeben durch

$$F(x) = F(a) + \int_{a}^{x} f(t) dt \quad (\forall x \in [a, b]).$$

Speziell x = b:

$$\int_{a}^{b} f(t) dt = F(b) - F(a) =: F|_{b}^{a}.$$

b) Sei
$$g \in C^1([a, b])$$
. Dann $\int_a^b g'(t) dt = g(b) - g(a)$.

Beweis. a) Lem. 6.8 $\Longrightarrow F_0(x) = \int_0^x f(t) dt$ ist eine Stammfunktion von f. Sei F eine weitere Stammfunktion von f. Dann $(F - F_0)' = f - f = 0 \xrightarrow{\text{TODO 5.20}} F(x) - F_0(a) = F(a) - F_0(a) = F(a)$.

b) folgt aus 1 mit f = g'.

Bemerkung. Für unstetige $f,\,g'$ ist der Hauptsatz viel schwieriger und zum Teil falsch. Ein Beispiel ist

 $g(x) = \begin{cases} x^{\frac{3}{2}} \cos \frac{1}{x} & , 0 < x \le 1\\ 0 & , x = 0. \end{cases}$

Wie in Bsp. TODO 5.11: g ist auf [0,1] differenzierbar und $g'(x) = \frac{3}{2}\sqrt{x}\sin\frac{1}{x}$, $x > 0 \implies g$ ist unbeschränkt und somit nicht Riemann-integrierbar. Also ist 6.9 2 nicht sinnvoll.

Beispiel 6.10. a) Wir kennen schon zahlreiche Stammfunktionen aus Kapitel 5.

b) Sei $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $|x| < \varrho$ = Konvergenzradius. Betrachte $F(x) = \sum_{n=1}^{\infty} \frac{1}{n+1} a_n x^{n+1}$. Wie im Beweis von Thm. TODO 5.9 zeigt man, dass F den gleichen Konvergenzradius $\varrho > 0$ hat. Thm. TODO 5.9 $\Longrightarrow F'(x) = f(x)$, $|x| < \varrho$. F ist also eine Stammfunktion von f. Beispiel:

$$f(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n} \quad (|x| < 1)$$

$$\implies F(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} \quad (|x| < 1)$$

ist Stammfunktion von f. Weitere Stammfunktion ist arctan. Da arctan 0 = 0 = F(x), folgt

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} \quad (|x| < 1).$$

c) Fläche A zwischen $f(x) = e^x$ und $g(x) = x^2 - \pi x$ $(0 \le x \le \pi)$. Beachte $f(\pi) \ge 0 \ge g(x)$ für alle $x \in [0, \pi]$. Also

$$A = \int_{0}^{\pi} (f(x) - g(x)) dx \stackrel{\text{HS}}{=} \left(e^{x} - \left(\frac{1}{3} x^{3} - \frac{\pi}{2} x^{2} \right) \right) \Big|_{0}^{\pi}$$
$$= e^{\pi} - \left(\frac{1}{3} \pi^{3} - \frac{\pi}{2} \pi^{2} \right) - (1 - 0) = e^{\pi} - \frac{\pi^{3}}{6} - 1.$$

Satz 6.11.

Beispiel 6.12.

Satz 6.13.

Beispiel 6.14.

Bemerkung 6.15 (Integration rationaler Funktionen). Sei $f(x) = \frac{p(x)}{q(x)}$, wobei p, q reelle gekürzte Polynome, q sei nicht konstant 0, höchster Koeffizient von p und q sei gleich 1.

- a) Polynomdivison: es existieren Polynome p_0 , r mit grad $p_0 \leq \operatorname{grad} q$, sodass $f = r + \frac{p_0}{q}$. $\implies r$ kann integriert werden
- b) Fundamentalsatz der Algebra: $\exists !\ z_1,\ldots,z_m\in\mathbb{C}\ (\text{mit}\ z_i\neq z_j\ \text{für}\ i\neq j)$ und $\exists !\ n_1,\ldots,n_m\in\mathbb{N},\ \text{sodass:}\ q(x)=(x-z_1)^{n_1}\cdot\ldots\cdot(x-z_m)^{n_m}.$
- c) Komplexe Partialbruchzerlegung (TODO Königsberger §4.3): $\exists ! \ c_{jk} \in \mathbb{C}$:

$$\frac{p_0(x)}{q(x)} = \frac{c_{11}}{(x - z_1)} + \dots + \frac{c_{1n_1}}{(x - z_1)^{n_1}} + \dots + \frac{c_{m1}}{(x - z_m)} + \dots + \frac{c_{mn_m}}{(x - z_m)^{n_m}}$$
(6.2)

- d) Integration:
 - a) Terme mit $c_{jk}, z_j \in \mathbb{R}$ in (6.2) können integriert werden (man hat Formel für Stammfunktion)
 - b) Komplexer Fall für Nennerpotenz k = 1: Da p_0 , q reell sind, gilt (für $x \in \mathbb{C}$):

$$\frac{p_0(x)}{q(x)} = \frac{\overline{p_0(\overline{x})}}{q(\overline{x})} \stackrel{(6.2)}{=} \sum_{j,k} \frac{c_{jk}}{(\overline{x} - z_j)^k} = \sum_{j,k} \frac{\overline{c_{jk}}}{(x - z_j)^k}$$

Da (6.2) eindeutig ist, gilt: wenn $c_{jk}, z_j \notin \mathbb{R}$, dann $\exists l \neq j$, sodass $\overline{z_j} = z_l$ und $\overline{c_{jk}} = c_{lk}$ (gleiches k). Für k = 1 treten im komplexen Fall also Terme der Form auf:

$$\frac{c}{x-z} + \frac{\overline{c}}{x-\overline{z}} = \frac{(c+\overline{c})x - (c\overline{z} + \overline{c}z)}{(x-z)(x-\overline{z})} = \frac{2\operatorname{Re}(c)x - 2\operatorname{Re}(c\overline{z})}{x^2 - 2\operatorname{Re}(z)x + |z|^2} =: \frac{ax+b}{x^2 + \alpha x + \beta},$$
(6.3)

mit $a, b, \alpha, \beta \in \mathbb{R}, \beta > \frac{\alpha^2}{4}$. Übung: Stammfunktion für (6.3)

e) Komplexer Fall für k > 1: Mit komplexer Integration erhält man:

$$\int \left(\frac{c}{(t-z)^k} + \frac{\overline{c}}{(t-\overline{z})^k}\right) dt = \frac{-2\operatorname{Re}\left(c(x-\overline{z})^k\right)}{(k+1)\left(x^2 - 2\operatorname{Re}\left(z\right)x + |z|^2\right)^{k-1}}$$
(6.4)

(siehe TODO Amann/Escher: Analysis II, Bem. II.5.10) reelle Methode: Walter, Analysis I, §11.5

Fazit. 2 zugestanden, findet man Formel für eine Stammfunktion von f.

Beispiel. a) Seien $a, b \in \mathbb{R}$ gegeben, $a \neq b, x \in \mathbb{R} \setminus \{a, b\}$.

$$f(x) = \frac{1}{(x-a)(x-b)} \stackrel{\text{(6.2), Ansatz}}{=} \frac{c_1}{x-a} + \frac{c_2}{x-b} \implies 1 = c_1(x-b) + c_2(x-a) \quad (*)$$

(für zu bestimmende $c_1, c_2 \in \mathbb{R}$)

Berechne c_1, c_2 : (*) gilt nach stetiger Fortsetzung für alle $x \in \mathbb{R}$. Einsetzen:

$$x = a: \quad 1 = c_1(a - b) \neq 0 \qquad \Longrightarrow c_1 = \frac{1}{a - b}$$

$$x = b: \quad 1 = 0 + c_2(b - a) \qquad \Longrightarrow c_2 = \frac{1}{b - a}$$

$$\Longrightarrow f(x) = \frac{1}{b - a} \left(-\frac{1}{x - a} + \frac{1}{x - b} \right)$$

$$\Longrightarrow \int f(t) dt = -\frac{1}{b - a} \left(\int \frac{dt}{t - a} - \int \frac{dt}{t - b} \right)$$

$$= -\frac{1}{b - a} (\ln|x - a| - \ln|x - b|)$$

$$= \frac{1}{a - b} \ln \left| \frac{x - a}{x - b} \right| \quad (x \neq a, b) \text{ (Probe!)}$$

b)
$$f(x) = \frac{x}{(1+x^2)(x-1)^2} \quad (x \neq 1)$$

Ansatz mit (6.2) und (6.3):

$$f(x) = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{cx+d}{1+x^2}, \text{ wobei } a, b, c, d \in \mathbb{R} \text{ zu bestimmen sind}$$

$$\implies x = a(x-1)(1+x^2) + b(1+x^2) + (cx+d)(x-1)^2 \tag{*}$$

Einsetzen:

$$x = 1: \quad 1 = 0 + 2b + 0 \qquad \Longrightarrow b = \frac{1}{2}$$

$$x = 0: \quad 0 = -a + b + d \quad \Longrightarrow a - d = \frac{1}{2}$$

$$(+)$$

Koeffizientenvergleich (vgl. Thm. TODO 5.28):

für
$$x^2$$
: $0 = a + 0 + c$ $\implies c = -a$
für x^3 : $0 = -a + b - 2c + d = -a + \frac{1}{2} + 2c + d$ $\implies a + b = -\frac{1}{2}$ (++)
(+) und (++): $2a = 0$ $\implies a = 0 = c$, $d = -\frac{1}{2}$
 $\implies f(x) = \frac{\frac{1}{2}}{(x-1)^2} - \frac{\frac{1}{2}}{1+x^2}$
 $\implies \int f(t) dt = \frac{1}{2} \int \left(\frac{1}{(t-1)^2} - \frac{1}{1+t^2}\right) dt = -\frac{1}{2} \left(\frac{1}{x-1} + \arctan x\right)$

6.3 Skalare Differentialgleichungen erster Ordnung

Beispiel (Zinseszins). Gegeben seien Anfangskapital u_0 , Anlage dauert Zinsrate nach Zeit $\frac{t}{n}$ mit Wiederanlage der Zinsen. u_k sei Kapital zur Zeit $\frac{kt}{n}$, $k = 0, \ldots, n$ $(n \in \mathbb{N})$.

$$\implies u_1 = u_0 + \frac{at}{n}u_0 = \left(1 + \frac{at}{n}\right)u_0$$

$$u_2 = u_1 + \frac{at}{n}u_1 = \left(1 + \frac{at}{n}\right)^2 u_0$$
iterativ: $u_n = \left(1 + \frac{at}{n}\right)^n u_0$

"instantane Wiederanlage" =TODO " $n \to \infty$ ". Damit $u_n \to e^{at}u_0$ (vgl. Aufg. 5.6, Aufg. 12.3 e). $\leadsto u(t) = e^{at}u_0$ = Kapital zur Zeit t bei instantaner Wiederanlage.

Nach Bem. TODO 5.21 ist $u \in C^1(\mathbb{R})$ die einzige Lösung von

$$\begin{cases} u'(t) = au(t) \\ u(0) = u_0 \end{cases} \quad (a, u_0 \in \mathbb{R} \text{ gegeben})$$

Andere Interpretation: $a = \frac{u'(t)}{u(t)} = \text{momentane}$, relative Änderung des Kapitals ("pro Kopf"). Weitere Beispiele für diese Differentialgleichung: Radioaktiver Zerfall (a < 0), Populationswachstum bei unbeschränktem Nahrungsangebot (u(t) = Stoffmenge)

 $\frac{u'}{u}=a$ " ist unplausibel für Population (etwa da $u(t)\to\infty$ $(t\to\infty)$ für a>0). Verhulst (1837): Gesetz für begrenztes Wachstum: $\frac{u'(t)}{u(t)}=\lambda-\frac{\lambda u(t)}{u_\infty}$ ist u(t)-abhängig. "mehr Konkurrenten" =TODO u(t) groß =TODO weniger Wachstum

$$\implies \begin{cases} u'(t) = \lambda \left(1 - \frac{u(t)}{u_{\infty}}\right) u(t) \\ u(0) = u_0 \end{cases}, \quad t \ge 0.$$
 (6.5)

Gegeben sind $\lambda, u_0, u_\infty > 0$ (λ : Wachstumsparameter, u_∞ : Sättigungsparameter, u_0 : Anfangswert). Gesucht: $u \in C^1(\mathbb{R}_+)$, das (6.5) für $t \geq 0$ löst.

Bemerkung. Spezielle, "stationäre" Lösungen: u(t) = 0 mit $u_0 = 0$ oder $u(t) = u_\infty$ mit $u_0 = u_\infty$ (für alle $t \in \mathbb{R}$). Im folgenden sei $u_0 \neq u_\infty$, $u_0 > 0$.

Lösung von (6.5): Wir nehmen an, es gebe eine Lösung $u \in C^1([0, b])$ von (6.5). Wenn $u_0 > u_\infty$ ($u_0 < u_\infty$), dann existiert ein $t_0 > 0$, sodass u(t) > 0, $u(t) > u_\infty$ ($u(t) < u_\infty$) für alle $0 \le t \le t_0$ (da u stetig und $u(0) = u_0$).

$$(6.5) \implies \frac{u'(s)}{(u_{\infty} - u(s))u(s)} = \frac{\lambda}{u_{\infty}} \quad (\forall \ 0 \le s \le t_0)$$

$$\xrightarrow{\int_0^t \dots ds} \int_0^t \frac{u'(s)}{(u_\infty - u(s))u(s)} ds = \int_0^t \frac{\lambda}{u_\infty} ds = \frac{\lambda}{u_\infty} t \quad (\forall \ 0 \le t \le t_0)$$

Substitution: x = u(s), $\frac{dx}{ds} = u'(s)$, $u(0) = u_0$

$$\Rightarrow \int_{u_0}^{u(t)} \frac{\mathrm{d}x}{(u_\infty - x)x} = \frac{1}{u_\infty} \ln \frac{x}{|x - u_\infty|} \Big|_{u_0}^{u(t)}$$

$$\xrightarrow{x>0} \frac{1}{u_\infty} \ln \frac{u(t)}{|u(t) - u_\infty|} = \frac{\lambda}{u_\infty} t + \frac{1}{u_\infty} \ln \frac{u_0}{|u_0 - u_\infty|}$$

$$\xrightarrow{u_\infty, \text{ exp}} \frac{u(t)}{|u(t) - u_\infty|} = e^{\lambda t} \frac{u_0}{|u_0 - u_\infty|}$$

$$\Rightarrow u(t) = \frac{u_0 u_\infty}{u_0 + (u_\infty - u_0)e^{\lambda t}}.$$

Probe zeigt, dass dieses u (6.5) für alle $t \ge 0$ löst. Es gilt:

- u(t) > 0 für alle $t \ge 0$ ($u_0 > 0$) (biologisch sinnvoll)
- $u(t) \to u_{\infty}$ für $t \to \infty$
- u(t) wächst und $u(t) < u_{\infty} \ (\forall t > 0)$, falls $u_0 < u_{\infty}$
- u(t) fällt und $u(t) > u_{\infty}$ ($\forall t > 0$), falls $u_0 > u_{\infty}$

Gegeben sei $f \in C([a, b])$, $g \in C(\mathbb{R}_+)$, $u_0 \in (a, b)$. Suchen $u \in C^1([0, \tau))$ und $\tau \in (0, \infty)$, sodass $u(t) \in (a, b)$ für alle $t \in [0, \tau)$ und

$$\begin{cases} u'(t) = g(t)f(u(t)), \\ u(0) = u_0 \end{cases}, \quad 0 \le t < \tau.$$
 (6.6)

(in (6.5):
$$f(x) = \left(1 - \frac{x}{u_{\infty}}\right) x$$
, $g(x) = \lambda$)

Satz 6.16 (Trennung der Variablen). Sei $f \in C((a,b))$, $g \in C(\mathbb{R}_+)$, $u_0 \in (a,b)$, $f(u_0) \neq 0$. Dann existiert ein $t_0 > 0$ und eine eindeutige Lösung $u \in C^1([0,t_0])$ von (6.6).

Beweis. Sei etwa $f(u_0) > 0$ und $\tau > 0$. Wähle $\varepsilon \in (0, f(u_0))$. Da f stetig ist, existiert $\delta > 0$ mit f(x) > 0 für alle $x \in [u_0 - \delta, u_0 + \delta] \subseteq (a, b)$. Sei $M := \max_{|x-u_0| \le \delta} f(x) < \infty$ (Satz vom Maximum). Setze $t_0 = \min \{\frac{\delta}{Mc}, T\}, c = \max_{0 \le t \le T} |g(t)|$.

a) Eindeutigkeit: Sie $u \in C^1([0,\tau))$ eine Lösung von (6.6). Annahme: $\tau > t_0$ und es existiere $t_1 \in (0,t_0)$ mit $|u(s)-u_0| \leq \delta$ für alle $0 \leq s < t_1$ und $|u(t_1)-u_0| = \delta$.

$$\implies |u(t_1) - u_0| \stackrel{\text{HS}}{=} \left| \int_0^{t_1} \underbrace{u'(s)}_{\stackrel{(6.6)}{=} f(u(s))g(s)} ds \right|$$

$$\stackrel{\text{Satz 6.6}}{\leq} \int_0^{t_1} |f(u(s))| |g(s)| ds \leq \int_0^{t_1} Mc \, ds \leq Mct_1 < Mct_0 = \delta \quad \cancel{\xi}$$

 $\implies |u(s) - u_0| \le \delta$ für alle $0 \le s < \min\{t_0, T\} =: \bar{t}$. Damit $(6.6) \implies \frac{u'(s)}{f(u(s))} = g(s)$.

$$\implies G(t) := \int_{0}^{t} g(s) \, \mathrm{d}s = \int_{0}^{t} u'(s) \, \mathrm{d}f(u(s)) s \stackrel{x=u(s)}{=} \int_{u_0}^{u(t)} \frac{\mathrm{d}x}{f(x)} \quad \text{für alle } 0 \le t < \bar{t}$$

$$\tag{6.7}$$

Setze $H(y) = \int_{u_0}^{y} \mathrm{d}x f(x)$ für $y \in [u_0 - \delta, u_0 + \delta] \implies H(u(t)) = G(t)$. H ist strikt wachsend

$$u(t) = H^{-1}(G(t)) \quad (\forall \ 0 \le t < \bar{t})$$
 (6.8)

b) Existenz: Sei u durch (6.8) für $0 \le t \le t_0$ gegeben. Dann $u(0) = H^{-1}(G(0)) = H^{-1}(0) = u_0$. Kettenregel und Umkehrsatz liefern:

$$\exists u'(t) = \frac{1}{H'(H^{-1}(G(t)))}G'(t) \stackrel{\text{HS}}{=} \frac{1}{H'(u(t))} \stackrel{\text{HS}}{=} \frac{1}{\frac{1}{f(u(t))}}g(t) = f(u(t))g(t)$$

 $\implies u \text{ löst } (6.6).$

Fazit: u aus (6.8) ist eine Lösung von (6.6) und jede weitere Lösung ist auf $[0, t_0]$ gleich diesem u und kann, falls $\tau < t_0$, zu u auf $[0, t_0]$ fortgesetzt werden.

Beispiel 6.17. a)

Betrachte
$$\begin{cases} u'(t) = u(t)^2 \\ u(0) = u_0 \end{cases}, t \ge 0. \text{ Es sei } u_0 > 0.$$

$$\implies f(x) = x^2, \ g(t) = 1.$$

$$\xrightarrow{\text{TV, (6.7)}} \int_{u_0}^{u(t)} \frac{\mathrm{d}x}{x^2} = \int_{0}^{t} 1 \ \mathrm{d}s = t$$

$$= -\frac{1}{x} |_{u_0}^{u(t)}|$$

$$\implies t = \frac{1}{u_0} - \frac{1}{u(t)}$$

$$\implies u(t) = \frac{1}{\frac{1}{u_0} - t} \text{ für } 0 \le t < \frac{1}{u_0} =: \tau$$

Zum Beispiel für $u_0=1$: $u(t)=\frac{1}{1-t}$ (Probe!). "blow up".

b)

Sei
$$a \in C(\mathbb{R}), \ u_0 \in \mathbb{R}$$
. Betrachte
$$\begin{cases} u'(t) = a(t)u(t) \\ u(0) = u_0 \end{cases}, t \ge 0.$$

 $\implies f(x) = x$. Sei $u_0 > 0$. Trennung der Variablen liefert

$$\int_{u_0}^{u(t)} \frac{\mathrm{d}x}{x} = \int_0^t a(s) \, \mathrm{d}s$$

$$= \ln u(t) - \ln u_0$$

$$\implies u(t) = \exp\left(\ln u_0 + \int_0^t a(s) \, \mathrm{d}s\right) = \exp\left(\int_0^t a(s) \, \mathrm{d}s\right) u_0$$

Probe zeigt: Dies löst die Gleichung für alle $t \in \mathbb{R}$ und $u_0 \in \mathbb{R}$.

c) $u'(t) = \sqrt{u(t)}$, u(0) = 0, $t \ge 0$. $\Longrightarrow f(x) = \sqrt{x}$, g(t) = 1. $\Longrightarrow f(0) = f(u_0) = 0$, haben Lösung $v(x) = 0 \ \forall x \in \mathbb{R}$. Führe Trennung der Variablen trotzdem durch. Sei u eine weitere Lösung, die auf $(0, t_0]$ ungleich 0 ist. Dann $\frac{u'(s)}{\sqrt{u(s)}} = 1$ für $0 < s \le t_0$. Sei $\varepsilon > 0$, $\varepsilon < t_0$

$$\xrightarrow{\text{TV}} \int_{\varepsilon}^{t} 1 \, ds = \int_{\varepsilon}^{t} \frac{u'(s)}{\sqrt{u(s)}} \, ds = \int_{u(\varepsilon)}^{u(t)} \frac{dx}{\sqrt{x}} = 2\left(\sqrt{u(t)} - \sqrt{u(\varepsilon)}\right).$$

 $\varepsilon \to 0$: $t = 2\sqrt{u(t)} \ (0 < t \le t_0) \implies u(t) = \frac{t^2}{4}$. Probe: u löst Gleichung.

6.4 Uneigentliche Integrale

Definition 6.18.	a)
b)	
Bemerkung 6.19.	a)
b)	
Beispiel 6.20.	a)
b)	
c)	
d)	
Satz 6.21. <i>a)</i>	
<i>b)</i>	
Beispiel 6.22.	a)
b)	
c)	
d)	
Beispiel 6.23.	
Beispiel 6.24.	
Trapezregel	