Credit Card Fraud Detection

Fight Against Financial Crime with Machine Learning

DSIF3 - 07 April 2022 Vincent Chua

Table of Contents

- Background
- Problem Statement
- Datasets
- Methodology
- Exploratory Data Analysis (EDA)
- □ Feature Engineering
- RFM Analysis
- Modeling & Evaluation
- Recommendations & Future Improvements

Background

Evolving of internet and popularity in using credit card for payments, **numbers of credit card fraud has been increased as compared to old days**. Although there is very low crime rate in Singapore, there is still fraud cases happens and it affect the credit card users as well as the bank. According to <u>Straits Times</u>, there were 1,848 police reports of transactions involving criminals phishing for banking and card details from victims - **up 462% from 2019's 329 cases**.

The purpose of fraud detection system is to **detect the anomaly credit card transactions and on halt the fraud transactions** on time while letting the normal transactions to be processed automatically.

With an effective fraud detection model in place, bank can save huge losses from fraud transactions, gain credibility from users and it also enable the algorithms to identify and adapt to new anomaly pattern from fraudster.

Problem Statement

To develop a fraud detection model aim to identify credit card fraud transactions via classification modeling. Model will be evaluated based on Recall Score and F1-Score.

Target Audience: MAS Regulators / Risk and Compliance Department Heads and Managers

Datasets

Credit Card Transactions Fraud Detection Dataset - Kaggle

- Train datasets of 1.3m rows
- Test datasets of 556k rows
- Transactions from 1st Jan 2019 31st Dec 2020
 - 1,000 customers with a pool of 800 merchants

Modeling Approach

- ☐ Logistic Regression
- ☐ Gaussian Naive Bayes
- Random Forest Classifier
- XGB Classifier
- CatBoost Classifier
- LGBM Classifier

Dataset - Target

- Train datasets with imbalance target class, only 0.58% of transactions labeled as 'Fraud'
- No numerical feature showing strong correlation against target (is_fraud)
- Transaction Amount
 (amt) is the only
 numerical feature have
 moderately positive
 correlation with Pearson
 Correlation Coefficient of
 0.22 against target

Transaction Amount Groups

- Very_high amount group have the less transactions, it have the highest fraud rate
- Fraud rate of very_high is about 300 times higher than very_low transaction amount group

- Chi-Square p-value < 0.05 (amt_group & target)</p>
- T-Test p-value < 0.05 (fraud rate for very_high & very_low)</p>

Age Groups

- Above_93 age group have the less transactions, it have the highest fraud rate
- Age about 73 have relatively higher fraud rate, the lowest fraud rate in age group between 33 to 43

- Chi-Square p-value < 0.05 (amt_group & target)</p>
- T-Test p-value < 0.05 (fraud rate for very_high & very_low)</p>

Category

- 2 out of 3 net transactions (Shopping & Misc) are the Top 2 fraud rate categories
- Grocery_pos & Shopping_pos are the Top 4 fraud transactions count and fraud rate categories
- Chi-Square p-value < 0.05 (category & target)</p>

	is_fraud	0	1
	category		
amt	entertainment	63.118913	503.535579
	food_dining	50.972816	120.076954
	gas_transport	63.675782	12.288204
	grocery_net	53.792817	12.162836
	grocery_pos	114.172234	311.989616
	health_fitness	54.234775	20.248421
	home	57.949319	257.432626
	kids_pets	57.620386	18.121674
	misc_net	70.359176	797.012852
	misc_pos	62.401757	218.284080
	personal_care	48.020643	26.170545
	shopping_net	72.142606	999.254939
	shopping_pos	73.977575	876.921815
	travel	111.798920	9.064569
			11

Transaction Month, Day of Week, Hour

- Month 3 and 5 have the highest fraud rate, while month 7 has the lowest fraud rate
- Saturday and Sunday have the highest number of transactions, Friday have the highest fraud rate, Tuesday have both lowest number of transactions and fraud rate
- Higher fraud rate happens from 10pm and started reducing at 3am

HOW PAYMENT PROCESSING WORKS

^{*}Orange arrow indicates card data verification flow

^{*}Green arrow indicates the response from banks and a credit card associations returned to a cardholder

^{*}Blue arrow indicates funds settlement in the acquiring bank

Feature Engineering

- Cumulative and Average Transaction Amount
- Difference in Transaction
 Amount from Last Transaction
- Difference in Transaction
 Datetime from Last Transaction
- Difference in Merchant <u>Distance</u> from Last Transaction

Cardholder Spending Behavior

- Number of Transactions
- Average Transaction Amount
- Minimum Transaction Amount
- Maximum Transaction Amount
- 1. Last 5 Minutes
- 2. Last 1 Hour
- 3. Last 24 Hours
- 4. Last 7 Days
- 5. Last 30 Days

Merchant Transaction Behavior

- Number of Transactions
- Average Transaction Amount
- Minimum Transaction Amount
- Maximum Transaction Amount
- I. Last 24 Hours
- 2. Last 7 Days
- 3. Last 14 Days
- 4. Last 30 Days

Feature Engineering - Others

RFM Analysis

- Identify **Recency Frequency & Monetary** to segmentize into different credit cardholders segmentations
- 4% Top_Cust, 9% High_value_cust, 27% Medium_Value_Cust, 34% Low_Value_Cust, 26% Lost_Cust
- Lost_Cust segment have about 10 times higher fraud rate than Top_Cust segment

- Chi-Square p-value < 0.05 (customer_segment & target)</p>
- T-Test p-value < 0.05 (top_cust & lost_cust)</p>

O3 Modeling & Evaluation

Modeling Process

Preprocessing - Remove multicollinearity, Dummify categorical variables, Train-Test Split

Model Selection - Baseline model: Logistic Regression

Hyperparameters Tuning with AutoML - PyCaret

Model Evaluation

Final Model & Fraud Detection

Model Selection

model	train accuracy	test accuracy	precision	recall	average precision	f1_score	roc_auc
CatBoostClassifier	0.999987	0.999429	0.983982	0.916356	0.902162	0.948966	0.999736
XGBClassifier	0.999969	0.999374	0.982699	0.907832	0.892659	0.943783	0.999546
Random Forest Classifier	1.000000	0.998760	0.985517	0.797549	0.787170	0.881625	0.995251
Logistic Regression	0.997269	0.997082	0.887594	0.567928	0.506591	0.692658	0.979961
LGBMClassifier	0.987712	0.986825	0.281170	0.819393	0.231434	0.418674	0.947420
Gaussian Naive Bayes	0.979104	0.978863	0.181049	0.752264	0.137631	0.291856	0.947807

- Maximize **Recall Score** to detect as many Fraud transactions as possible
- Then optimize **F1-Score** to get a balance with **Precision Score**, it is to minimize Type I (False Positive) Errors.
- CatBoost & XGBoost are the only models with all 3 metrics above 90%

Hyperparameters Tuning

	<u>Accuracy</u>	Precision	<u>Recall</u>	<u>F1</u>
CatBoost	0.9994	0.984	0.9163	0.949
XGB	0.9994	0.9827	0.9078	0.9438
XGB (tuned)	0.9994	0.9561	0.94	0.9479

- Perform Hyperparameters tuning using AutoML - PyCaret
- XGB turned out to be the best model after tuned with 20 iterations
- Although Precision Score and F1-Score reduce a bit, Recall Score has a huge improvement
- About 3% Type I (False Positive)
 Errors, which predicted as fraud but those are actual non-fraud transactions
- About 6% Type II (False Negative)
 Erros, which predicted as non-fraud
 but it those are actual fraud
 transactions

Top Predictors

- Most important features are average and maximum transactions amount in last 24 hour, and Grocery_pos Category
- Features that have strong positive impact on target are avg_last_24h, max_last_24h, amt, pre_amt, avg_last_7d, min_last_30d, max_merch_last_30d

Seature V

Final Model - Test Dataset (Unseen)

Recall Score: 90.72% F1 Score: 91.58% Precision Score: 92.45%

Reducing in Fraud Transactions Amount

90%

Reducing in Numbers of Fraud Transactions

92%

Reducing in False Alarm Triggered

 Stopping total \$ 1.07 million of fraud transaction amount from went through Detecting 1946 fraud transactions out of 2145 actual fraud transactions 159 False Alarm (Fraud Alert) Triggered to the cardholders instead of 2105 Recommendations
& Future
Improvements

Recommendations

Effective Fraud Detection Model

Top Predictors

App Verification

- Improve the efficiency and effectiveness on fraud detection by Risk and Compliance Team
- Reduce unnecessary false alarm triggered to the credit cardholders
- Allow bank save around 94%
 of losses from fraud
 transactions

- Identify Top Predictors and Features with strong impact on target for the team to implement action plan strategically to fight against financial crime
- The team can implement the additional authentication via phone app / sms to reduce the negative implications and user experience with the false alarm triggered
- Avoid transactions on halt unnecessarily

Future Improvements

Features Engineering

Explore other possibilities to engineer new features eg. demographically & geographically (jobs, income per capita by states)

Deep Learning Solutions

Explore Deep Learning Solutions and aim to achieve target recall score at minimal 95%

Time-Dependent Graph

Identify and capture the potential anomaly and fraud pattern

Real-Time Alert

Deploy the model for real-time alert and detection

Tableau: Credit Card Fraud Monitoring

Check out my Tableau Dashboard here!

https://tabsoft.co/376Gr5a

THANKS!

chua vincent@live.com

/in/vincentchua1989/

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**

APPENDIX 1 - RAW DATASET FEATURES

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1296675 entries, 0 to 1296674
Data columns (total 23 columns):
    Column
                           Non-Null Count
                                            Dtype
     020000000000000
                           _____
    Unnamed: 0
                          1296675 non-null int64
    trans date trans time 1296675 non-null object
    cc num
                           1296675 non-null int64
    merchant
                          1296675 non-null object
    category
                          1296675 non-null object
     amt
                           1296675 non-null float64
     first
                           1296675 non-null object
    last
                           1296675 non-null object
                           1296675 non-null object
     gender
     street
                           1296675 non-null object
    city
                           1296675 non-null object
    state
                           1296675 non-null object
 12 zip
                           1296675 non-null int64
 13 lat
                           1296675 non-null float64
    long
                           1296675 non-null float64
 15 city pop
                           1296675 non-null int64
 16
    job
                          1296675 non-null object
 17 dob
                           1296675 non-null object
    trans num
                           1296675 non-null object
                          1296675 non-null int64
    unix time
 20 merch lat
                           1296675 non-null float64
 21 merch long
                           1296675 non-null float64
 22 is fraud
                          1296675 non-null int64
dtypes: float64(5), int64(6), object(12)
memory usage: 227.5+ MB
```

APPENDIX 2 - GENDER BAR PLOT

APPENDIX 3 - STATE BAR PLOT

is_fraud	0	1	fraud_pct
state			
DE	0.0	9.0	1.000000
RI	535.0	15.0	0.027273
AK	2084.0	36.0	0.016981
NV	5560.0	47.0	0.008382
со	13767.0	113.0	0.008141
OR	18448.0	149.0	0.008012
TN	17414.0	140.0	0.007975
NE	23988.0	180.0	0.007448
ME	16386.0	119.0	0.007210
NH	8219.0	59.0	0.007127
ОН	46159.0	321.0	0.006906
KS	22840.0	156.0	0.006784
VA	29052.0	198.0	0.006769
NY	82946.0	555.0	0.006647
sc	28997.0	193.0	0.006612
FL	42390.0	281.0	0.006585
MN	31507.0	207.0	0.006527
VT	11696.0	72.0	0.006118

APPENDIX 4 - HEATMAP

References

- Icons: https://www.flaticon.com/
- > Slides Template: https://slidesgo.com/
- > Dataset: https://www.kaggle.com/datasets/kartik2112/fraud-detection