Online Algorithms and Scheduling

Profesor: Andreas Wiese. Auxiliar: Andrés Cristi.

Clase Auxiliar 3 5 de Abril

P1. Online Bipartite Matching

Dado un grafo bipartito G = (U, V, E) que posee un matching perfecto M^* , los vértices de U son revelados uno a uno de manera on-line, junto con sus aristas. Cada vez que llega un nuevo vértice u, debe decidirse de manera irrevocable con qué elemento de N(u) se va a conectar. El objetivo es maximizar el tamaño del matching resultante.

- a) Pruebe que el algoritmo que a la llegada de u, lo asigna a un elemento arbitrario de N(u) si es posible es 2-competitivo.
- b) Muestre que cualquier algoritmo determinista es en el mejor caso 2-competitivo.
- c) Muestre que 4/3 es una cota inferior para la competitividad de un algoritmo aleatorizado.
- d) Considere el algoritmo RANKING: al comienzo se elige un orden al azar σ sobre V. Cada vez que llega u, se elige el primer elemento de N(u) disponible según σ . Pruebe que si u no es asignado a $v = M^*(u)$ por RANKING, entonces es asignado a un vértice v' con $\sigma(v') \leq \sigma(v)$.
- e) Sea $u \in U$ y $v = M^*(u)$, y considere un orden σ' . Sea σ_i la permutación que resulta de mover v a la posición i. Muestre que si v no es asignado por RANKING (σ') , entonces, para todo i, u es asignado por RANKING (σ_i) a un vértice v_i con $\sigma_i(v_i) \leq \sigma'(v)$.
- f) Sea x_t la probabilidad (dada por la distribución de σ) de que el vértice de V que tiene la posición t sea asignado por RANKING. Pruebe que $1 x_t \le \frac{1}{n} \sum_{1 \le s \le t} x_s$.
- g) Muestre que en esperanza Ranking asigna a al menos

$$\sum_{s=1}^{n} \left(1 - \frac{1}{n+1} \right)^s$$

parejas.

h) Concluya que Ranking es $\frac{e}{e-1}$ competitivo.