Técnicas de Escalado

Bryan Cutipa Carcasi

1. Introducción

En el análisis de datos multivariados, es común que las variables presenten diferentes unidades y escalas. Esto puede afectar negativamente algoritmos de aprendizaje automático, análisis de componentes principales (PCA) o cualquier método sensible a la magnitud de las variables. Las técnicas de **escalado** permiten transformar las variables para que sean comparables.

Este informe presenta la aplicación de cuatro técnicas de escalado a un conjunto de datos simulado con variables socioeconómicas y ambientales.

2. Datos y Métodos

2.1. Conjunto de datos

Se generó un conjunto de 500 observaciones con las siguientes variables:

ingresos: distribución log-normal (sesgada positivamente)

edad: aproximadamente normal pH_agua: uniforme entre 6.5 y 9.0

captura_kg: conteo de captura semanal (Poisson)

2.2. Técnicas aplicadas

- 1. Normalización (Min-Max): $x' = x x_{\min} x_{\max} x_{\min}$, rango [0,1].
- 2. Estandarización (z-score): $z = x \mu \sigma$, media 0, desviación 1.
- 3. Escalado robusto: usa mediana e IQR, resistente a outliers.
- 4. Transformación logarítmica: útil para datos con sesgo positivo.

3. Resultados

La Figura 1 muestra el efecto de las transformaciones sobre la variable ingresos, que originalmente presenta una fuerte asimetría positiva. La transformación logarítmica reduce notablemente el sesgo, mientras que la normalización y la estandarización permiten compararla con otras variables en escalas comunes.

El Cuadro 1 presenta estadísticas resumen de las versiones escaladas.

Figura 1: Distribuciones de la variable ingresos antes y después de aplicar técnicas de escalado.

Cuadro 1: Estadísticas resumen de transformaciones de ingresos

Versión	Media	Desv. Est.	Mediana	IQR
Original	25083	32105	14333	25218
Log	9.98	0.81	9.57	1.10
Normalizado	0.50	0.29	0.34	0.29
Estandarizado	0.00	1.00	-0.33	0.89
Robusto	0.00	1.00	-0.33	1.00

4. Conclusiones

Las técnicas de escalado son esenciales para garantizar la equidad en el tratamiento de variables heterogéneas. La elección del método debe basarse en:

La distribución de los datos (normal vs sesgada),

La presencia de valores atípicos,

Los requisitos del algoritmo posterior (ej. k-NN requiere escalado; árboles no).

En este ejemplo, la transformación logarítmica seguida de estandarización resulta ideal para la variable ingresos.