PROGRAMMA DI ALGEBRA 2

Corso di Laurea in Matematica A.A. 2018-2019, primo semestre Docente: Andrea Loi

Richiami della teoria degli insiemi. Relazioni di preordine e di ordine; insiemi parzialmente ordinati; esempi di insiemi parzialmente ordinati; ordine totale; insiemi totalmente ordinati; esempi di insiemi totalmente ordinati; minimo e massimo di un insieme; elementi minimali e elementi massimali di un insieme parzialmente ordinato; ogni insieme parzialmente ordinato e finito ha almeno un elemento massimale e uno minimale; sottoinsiemi di insiemi parzialmente e totalmente ordinati: minoranti, maggioranti, estremo superiore e estremo inferiore; sottoinsiemi limitati superiormente e inferiormente; ordine buono; principio del buon ordinamento; lemma di Zorn (senza dimostrazione): un insieme parzialmente ordinato e induttivo ammette elementi massimali; prodotti cartesiani di insiemi finiti; prodotti cartesiani di famiglie di insiemi infiniti e legame con l'assioma di scelta; reticoli (X, \leq, \wedge, \vee) ; esempi fondamentali di reticoli: $(\mathcal{P}(X), \cup, \emptyset)$, $(\mathcal{P}(X), \cap, X)$.

Monoidi, semigruppi e gruppi. Semigruppi; esempi di semigruppi; legge di cancellazione in un semigruppo; elementi idempotenti in un semigruppo; esempi di semigruppi dove tutti gli elementi sono idempotenti e esempi dove nessun elemento lo è; in un semigruppo finito esiste almeno un elemento idempotente; monoidi (semigruppi con elemento neutro e); esempi di monoidi; un elemento e di un semigruppo dove vale la legge di cancellazione è idempotente se e solo se e è l'elemento neutro: se (X, \leq) è un reticolo (limitato) allora (X, \wedge) e (X, \vee) sono semigruppi (monoidi); elementi invertibili in un monoide; unicità dell'inverso; un elemento idempotente in un monoide dove vale la legge di cancellazione è l'elementto neutro; un elemento idempotente in un semigruppo dove vale la legge di cancellazione è l'elemento neutro; definizione di gruppo; un semigruppo con elemento neutro a destra (risp. sinistra) e inverso a destra (risp. sinistra) è un gruppo; esempi che mostrano che esistono semigruppi con elemento neutro a sinistra e inverso a destra che non sono gruppi; legge di cancellazione in un gruppo; un semigruppo finito dove vale la legge di cancellazione è un gruppo; esempi che mostrano che esistono semigruppi infiniti dove vale la legge di concellazione che non sono gruppi; esempi che mostrano l'esistenza di semigruppi finiti dove vale la legge di cancellazione a destra ma che non sono gruppi; esempi di gruppi; gli elementi invertibili di un monoide formano un gruppo; proprietà elementari dei gruppi: inverso del prodotto; proprietà delle potenze in un gruppo; confronto tra la notazione addittiva e moltiplicativa; ordine di un elemento; alcune proprietà dell'ordine: se x ha ordine finito o(x) = m, (a) allora $x^k = 1$ se e solo se m divide k, (b) $x^n = x^k$ per $n, k \in \mathbb{Z}$ se e solo se n è congruo a k modulo m, (c) $o(x^k) = m/(m,k)$, (d) $o(x^{-1}) = m$.

Permutazioni. Le permutazioni come gruppo; prodotto di permutazioni finite; supporto di una permutazione; permutazioni disgiunte; due permutazioni disgiunte commutano; cicli; ordine, supporto e inverso di un ciclo; ogni permutazione f non identica con supporto finito può scriversi in modo essenzialmente unico come prodotto di cicli disgiunti $f = \sigma_1 \cdots \sigma_t$ e l'ordine di f è uguale al minimo comune multiplo della lunghezza dei cicli σ_j ; una permutazione ha ordine un primo p se e solo se si può scrivere come prodotto di cicli tutti di lunghezza p; definizione di N(f); segno di una permutazione $sgn(f) = (-1)^{N(f)}$; permutazioni di classe pari e dispari; ogni permutazione f si può scrivere come prodotto di N(f) trasposizioni; il sgn è una funzione moltiplicativa $sgn(f \circ g) = sgn(f)sgn(g)$; una permutazione è di classe pari se e solo se si può scrivere

come prodotto di un numero pari di trasposizioni.

Sottogruppi. Sottogruppi: stabilità e inverso; esempi di sottogruppi; se un insieme finito A di un gruppo G è stabile allora A è un sottogruppo di G; il gruppo alterno A_n ; criterio per riconoscere un sottogruppo (un sottoinsieme non vuoto H di un gruppo G è un sottogruppo se e solo se $x^{-1}y \in H$ per ogni $x,y \in H$); l'intersezione di una famiglia qualsiasi di sottogruppi è un sottogruppo; sottogruppo $\langle X \rangle$ di un gruppo G generato da un sottoinsieme $X \subseteq G$; sottogruppo $\langle x \rangle$ generato da un elemento; gruppi ciclici; i sottogruppi di \mathbb{Z} sono tutti ciclici e della forma $m\mathbb{Z}$, $m \in \mathbb{N}$; se G è un gruppo e x un suo elemento allora $|\langle x \rangle| = o(x)$; siano H e K sottogruppi di un gruppo G allora $H \cup K$ è un sottogruppo di G se solo se $H \subseteq K$ oppure $K \subseteq H$; un gruppo G non può essere unione di due suoi sottogruppi propri; l'unione di una catena di sottogruppi è ancora un sottogruppo; sottogruppo $\langle H, K \rangle = \langle H \cup K \rangle$ generato da due sottogruppi $H, K \subseteq G$; prodotto HK di due sottogruppi H e K di un gruppo G; siano H e K sottogruppi di un gruppo G allora HK = KH (ossia $H \in K$ sono permutabili) se e solo se $\langle H, K \rangle = HK$; se $H = m\mathbb{Z}$ e $K = n\mathbb{Z}$ sono sottogruppi $(\mathbb{Z},+)$ allora $H+K=(m,n)\mathbb{Z}$ e $H\cap K=[m,n]\mathbb{Z}$; l'insieme $\mathcal{L}(G)$ di tutti i sottogruppi di un gruppo G è un reticolo limitato; esistono sottogruppi H, K, Lsottogruppi di un gruppo G dove non vale $(HK) \cap L = (H \cap L)(K \cap L)$ (in generale vale $(H \cap L)(K \cap L) \subseteq (HK) \cap L$ ma esistono gruppi (sia abeliani che non abeliani) dove non vale $(HK) \cap L \subseteq (H \cap L)(K \cap L)$; legge modulare di Dedekind: siano H, K, Lsottogruppi di un gruppo G e sia $K \subseteq L$ allora $(HK) \cap L = (H \cap L)K$.

Classi laterali. Classi laterali di un sottrogruppo; sia G un gruppo e H un suo sottogruppo allora ogni classe laterale (sinistra o destra) di H in G ha la stessa cardinalità di H; sia G un gruppo e H un suo sottogruppo allora la cardinalità delle classi laterali sinistre di H in G coincide con la cardinalità delle classi laterali destre di H in G; [G:H] indice di H in G; teorema di Lagrange (sia G un gruppo finito e H un suo sottogruppo allora |G| = [G:H]|H|); se G è un gruppo finito e H un sottogruppo di G allora [G:H] e |H| dividono |G|; sia G un gruppo finito e X un elemento di X0 allora X1 divide X2 e in un gruppo finito X3 divide X4 e in un gruppo finito X5 di ordine X6 primo gli unici sottogruppi sono quelli banali, X6 è ciclico e tutti gli elementi non nulli di X5 hanno ordine X6 generano X6.

Sottogruppi normali. Definizione di sottogruppo normale di un gruppo G: N è un sottoguppo normale di G ($N \leq G$) se le classi laterali sinistre e destre coincidono xN e Nx coincidono per ogni $x \in G$; criteri per la normalità di un sottogruppo: Nsottorguppo di G è normale se e solo se il coniugato di ogni elemento di N appartiene a N; il coniugato di un sottogruppo $H^x = x^{-1}Hx$; condizione di normalità ($N \leq G$ se e solo se $N^x \leq N$ se e solo se $N^x = N$ per ogni $x \in G$); sia H un sottogruppo di G e K un sottogruppo normale di G allora HK = KH (e quindi HK è un sottogruppo di G) se anche H è normale allora HK è un sottogruppo normale di G; l'intersezione di una famiglia di sottogruppi normali è un sottogruppo normale; il sottogruppo generato da una famiglia qualsiasi di sottogruppi normali è un sottogruppo normale; l'insieme $\mathcal{N}(G)$ di tutti i sottogruppi normali di un gruppo G è un reticolo limitato; gruppi semplici (gruppi che non hanno sottogruppi normali non banali); il centro Z(G) di un gruppo G(gli elementi di G che commutano con tutti gli elementi di G); il centro di un gruppo Gè un sottogruppo abeliano normale del gruppo G e ogni sottogruppo contenuto in Z(G)è normale in G; G è abeliano se e solo se Z(G) = G; se G è un gruppo semplice non abeliano allora $Z(G) = \{1\}$; un sottogruppo N di indice due in un gruppo G è normale inoltre esistono sottogruppi N di un gruppo G di indice tre che non sono normali (per esempio il sottogruppo $H = <(12) > \text{di } S_3$).

I gruppi lineari il gruppo lineare speciale $SL_n(K)$ (sottogruppo normale di $GL_n(K)$); il sottogruppo $T_n^+(K)$ delle matrici triangolari superiori invertibili (non è normale in $GL_n(K)$, per ogni $n \geq 2$ e per ogni campo K); il gruppo $D_n(K)$ delle matrici diagonali (non è un sottogruppo normale di $GL_n(K)$ se $|K| \geq 3$ e $n \geq 2$); le matrici scalari Z sono il centro di $GL_n(K)$; il gruppo ortogonale $O_n(K)$ è un sottogruppo (non normale) di $GL_n(K)$ per $n \geq 2$; le matrici simmetriche invertibili non sono un sottogruppo di $GL_n(K)$; il gruppo intersezione $O_n(K) \cap T_n^+(K)$; il gruppo Q_8 dei quaternioni di ordine 8 e le sue proprietà (il più piccolo gruppo non abeliano di ordine una potenza di un primo; il più piccolo gruppo non abeliano in cui tutti i suoi sottogruppi sono normali; Q_8 è unione di tre suoi sottogruppi propri ma non è il più piccolo gruppo con questa proprietà, per esempio $\mathbb{Z}_2 \times \mathbb{Z}_2 = <(1,0) > \cup <(0,1) > \cup <(1,1) >$); il gruppo di Heisenberg e il suo centro; la cardinalità dei gruppi $M_n(\mathbb{Z}_p)$ e $GL_n(\mathbb{Z}_p)$, p primo.

Quozienti e omomorfismi di gruppi. Quoziente di un gruppo G tramite un sottogruppo normale N; \mathbb{Z}_m come quoziente di $\mathbb{Z}/m\mathbb{Z}$; se N è un sottogruppo normale di un gruppo finito G allora |G/N| divide |G|; omomorfismi di gruppi; principali proprietà degli omomorfismi (l'identità va nell'identità, l'inverso va nell'inverso e le potenze si preservano); la composizione di omomorfismi è un omomorfismo; isomorfismi di gruppi (omomorfismi invertibili); l'immagine di un gruppo ciclico tramite un omomorfismo è ancora ciclico; nucleo di un omomorfismo (sottogruppo normale del dominio); immagine di un omomorfismo (sottogruppo del codominio); un omomorfismo di gruppi è iniettivo se solo se il suo nucleo è banale; omomorfismo canonico $\pi: G \to G/N$ (ogni sottogruppo normale è il nucleo di un omomorfismo); il primo teorema di isomorfismo (sia $\varphi:G\to H$ un omomorfismo di gruppi e $\pi:G\to G/\ker\varphi$ l'omomorfismo canonico allora esiste un unico omomorfismo iniettivo $\tilde{\varphi}: G/\ker \varphi \to H$ tale che $\tilde{\varphi} \circ \pi = \varphi$ che risulta essere un isomorfismo se e solo se φ è suriettivo); sia $\varphi:G\to H$ un omomorfismo di gruppi allora $G/\ker\varphi\cong Im(\varphi)$; sia $\varphi:G\to H$ un omomorfismo suriettivo di gruppi allora $H \cong G/\ker \varphi$; sia $\varphi: G \to H$ un omomorfismo suriettivo di gruppi se G è finito allora | $\ker \varphi$ | e | H | dividono | G |; sia $\varphi: G \to H$ un omomorfismo di gruppi allora (a) per ogni $K \leq G$ risulta $\varphi(K) \leq H$ e se $K \leq G$ allora $\varphi(K) \leq \varphi(G)$, (b) per ogni $L \leq H$ risulta $\ker \varphi \leq \varphi^{-1}(L) \leq G$ e inoltre $L \subseteq H$ allora $\varphi^{-1}(L) \subseteq G$, (c) per ogni $K \leq G$ si ha $\varphi^{-1}(\varphi(K)) = K \ker \varphi$, (d) $\varphi(\varphi^{-1}(L)) = L \cap \varphi(G)$ per ogni $L \leq H$; esiste una corrispondenza biunivoca tra l'insieme dei sottogruppi (normali) di G contenenti ker φ e l'insieme dei sottogruppi (normali) di H contenuti in $\varphi(G)$; il secondo teorema di isomorfismo (siano $K \leq G$ e $N \subseteq G$ allora $N \cap K \subseteq K$ e $K/K \cap N \cong KN/N$); sia $\varphi : G \to H$ un omomorfismo suriettivo di gruppi e $\ker \varphi \leq K \leq G$ allora $G/K \cong H/\varphi(K)$; il terzo teorema di isomorfismo (siano $N \subseteq G, K \subseteq G, N \subseteq K$ allora $K/N \subseteq G/N$ e $G/K \cong (G/N)/(K/N)$; sottogruppi di \mathbb{Z}_m ($L \leq \mathbb{Z}_m$ se e solo se $L = \frac{n\mathbb{Z}}{m\mathbb{Z}}$ tale che $n|m\rangle$; il gruppo degli automorfismi di un gruppo; il gruppo degli automorfismi interni è isomorfo al quoziente del gruppo e del suo centro; il gruppo degli automorfismi interni è un sottogruppo normale del gruppo degli automorfismi; il teorema di Cayley (ogni gruppo è isomorfo ad un sottogruppo di un gruppo di permutazioni); ogni gruppo finito è isomorfo ad un sottogruppo del gruppo lineare $GL_n(K)$ per un opportuno n e per qualsiasi campo K; il determinante det : $GL_n(K) \to K^*$ è un omomorfismo suriettivo di gruppi il cui nucleo è $SL_n(K)$; la funzione $sgn: S_n \to \{-1,1\}$ è un omomorfismo suriettivo di gruppi il cui nucleo è A_n .

Prodotto diretto di gruppi. Prodotto diretto di un numero finito di gruppi; proprietà commutativa e associativa del prodotto diretto; sia $G = H \times K$ allora esistono due sottogruppi normali \tilde{H} e \tilde{K} isomorfi a H e K tali che $\tilde{H} \cap \tilde{K} = \{1\}$ e $G = \tilde{H}\tilde{K}$; sia G un gruppo e H e K due sottogruppi normali di G tali che $H \cap K = \{1\}$ e G = HK allora $G \cong H \times K$; sia G un gruppo abeliano e H e K due sottogruppi di G tali che $H \cap K = \{1\}$ e G = H + K allora $G \cong H \times K$; sia G un gruppo finito e H e K due sottogruppi normali di G tali che |H| = m e |K| = n, (m,n) = 1 e |G| = mn allora $G \cong H \times K$; l'ordine di un elemento z = (x,y) del prodotto diretto $H \times K$ è finito se solo se sono finiti gli ordini di $x \in H$ e $y \in K$ e in tal caso l'ordine di z è il minimo comune multiplo degli ordini di x e y.

Gruppi abeliani finiti. Classificazione dei gruppi ciclici (un gruppo ciclico finito è isomorfo a \mathbb{Z}_m , un gruppo ciclico infinito è isomorfo a \mathbb{Z}); generatori di un gruppo ciclico (\mathbb{Z}_m ha $\Phi(m)$ generatori dove $\Phi(m)$ è la funzione di Eulero mentre \mathbb{Z} ha due generatori); siano m > 0 e n > 0 due numeri naturali allora $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$ se e solo se (m,n)=1; il quoziente di un gruppo ciclico è ciclico; un sottogruppo di un gruppo ciclico è ciclico; se C è un gruppo ciclico finito allora per ogni divisore d di |C| esiste un unico sottogruppo di C di ordine d; studio del gruppo $(U(\mathbb{Z}_m),\cdot)$ degli elementi invertibili di (\mathbb{Z}_m,\cdot) ; sia m>0 un numero naturale allora $\operatorname{Aut}(\mathbb{Z}_m)$ è isomorfo a $(U(\mathbb{Z}_m),\cdot)$; in un gruppo G tutti gli elementi hanno ordine 2 allora G è abeliano; se G ha ordine 4 allora è isomorfo a \mathbb{Z}_4 oppure a $\mathbb{Z}_2 \times \mathbb{Z}_2$; sia G un gruppo abeliano, H un sottogruppo di G e $a \in G$ siano m e n interi primi tra loro tali che $ma \in H$ e $na \in K$ allora $a \in H$; lemma di Cauchy (dimostrazione solo nel caso abeliano): sia p un numero primo e G un gruppo abeliano finito tale che p divide |G| allora G ha elementi di ordine p; sia G un gruppo abeliano finito e m un intero positivo tale che mx = 0 per ogni $x \in G$ allora |G| divide qualche potenza di m; siano m e n due interi positivi primi tra loro e G un gruppo abeliano di ordine mn allora: (a) $H = \{x \in G \mid nx = 0\}$ è un sottogruppo di G di ordine n; (b) $K = \{x \in G \mid mx = 0\}$ è un sottogruppo di G di ordine m, (c) $G \cong H \times K$; teorema di decomposizione primaria; sia p un numero primo e G un gruppo abeliano di ordine p^n allora G è isomorfo ad un prodotto diretto di gruppi ciclici; teorema di Frobenius-Stickelberger (ogni gruppo abeliano finito è prodotto di gruppi ciclici); ogni gruppo abeliano di ordine 6 è isomorfo a \mathbb{Z}_6 oppure a S_3 (dando per buono il Lemma di Cauchy nel caso non abeliano); non esiste un sottogruppo H di A_4 di ordine 6;

Esercizi: 4.9, 4.11, 4.14, 5.5, 5.6, 5.9, 5.14, 5.16, 5.19, 5.20, 5.22, 5.24, 5.25, 5.26, 5.27, 5.28, 5.33, 5.35, 5.36, 5.37, 5.38, 5.39, 5.41, 5.47, 5.48, 5.51, 5.52, 5.53, 5.54, 5.58, 6.1, 6.2, 6.3, 6.5, 6.6, 6.7, 6.8, 6.10, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23, 6.24, 6.25, 6.27, 6.28, 6.29, 6.33, 6.34, 6.35, 6.40, 7.2, 7.3, 7.4, 7.5, 7.14, 7.16, 7.17, 7.26, 7.29, 7.32.

Anelli. Definizione di anello e di anello unitario; elementi invertibili di un anello; anelli commutativi e elementi permutabili; esempi di anelli: gli interi, i razionali, i reali, i complessi, gli interi modulo m, le matrici $n \times n$ a coefficienti reali, le matrici $n \times n$ a coefficienti in un anello A; l'anello $(A^S, +, \cdot)$ dove A è un anello e S un insieme non vuoto; $(End(G), +, \circ)$ è un anello unitario per ogni gruppo abeliano G; alcune proprietà di base sulla somma e la moltiplicazione di anelli; divisori sinistri e destri dello zero e leggi di cancellazione in un anello; elementi nilpotenti; anelli integri (anelli unitari privi di divisori dello zero), domini (anelli integri commutativi), corpi (anelli unitari dove tutti gli elementi non nulli sono invertibili), campi (corpi commutativi); gli elementi invertibili non sono divisori dello zero e quindi un corpo è integro e un campo è un

dominio; un anello finito privo di divisori dello zero è un corpo (e quindi un un anello commutativo finito privo di divisori dello zero è un campo); in un anello A privo di divisori dello zero se esiste $a \in A$ e due elementi non nulli x, y tali che ax = x e ya = y allora a è l'unità dell'anello; il corpo dei quaternioni.

Sottoanelli. Sottoanelli di un anello (unitario); sottoanelli banali; se C è un sottoanello di B e B un sottoanello di A allora C è un sottoanello di A; l'intersezione di una famiglia qualunque di sottoanelli di un anello A è ancora un sottoanello di A; sottoanello di un anello A generato da un sottoinsieme $X \subset A$; sottoanello generato da un elemento e da due elementi permutabili; sottoanello fondamentale di un anello unitario e caratteristica di un anello; sottoanello B[a] di un anello commutativo unitario A generato da $A \in A$ e da un sottoanello A di tutti i sottoanelli di un anello è un reticolo limitato (se A non ha unità il minimo è il sottoanello nullo se A è unitario il minimo è il sottoanello fondamentale).

Ideali. Ideali sinistri, destri e bilateri di un anello; ideali banali e ideali propri; ideali e sottoanelli; sia A un anello con unità e sia I un suo ideale (sinistro, destro o bilatero), se I contiene l'unità oppure contiene un elemento invertibile allora I=A; l'unione di una catena di ideali è ancora un ideale; l'intersezione di una famiglia qualunque di ideali (sinistri, destri, bilateri) è un ideale (sinistro, destro, bilatero); ideale (sinistro, destro e bilatero) generato da un sottoinsieme; ideale (sinistro, destro e bilatero) generato da un elemento di un anello unitario; ideali (bilateri) principali e anelli commutativi unitari a ideali principali; gli interi sono un dominio a ideali principali (tutti i suoi ideali sono della forma $m\mathbb{Z}$); la somma di due ideali (sinistri, destri, bilateri) è un ideale (sinistro, destro, bilatero); la somma di un ideale e di un sottoanello è un sottoanello; l'insieme di tutti gli ideali (sinistri, destri, bilateri) costituisce una reticolo limitato; sia A un anello (commutativo) unitario allora A è un corpo (campo) se e solo se A è privo di ideali (destri o sinistri) non banali; gli anelli quoziente; gli interi modulo mcome anello quoziente; ideali primi e ideali massimali; sia A un anello commutativo unitario un ideale I è primo (risp. massimale) se e solo se A/I è un dominio (risp. campo); un ideale massimale è primo; l'ideale nullo è primo in Z ma non massimale; gli ideali non banali massimali e primi di \mathbb{Z} sono della forma $p\mathbb{Z}$ dove p è primo; in un anello commutativo unitario finito un ideale primo è massimale; il teorema di Krull (in un anello commutativo unitario ogni ideale proprio è contenuto in un ideale massimale); anelli locali (anelli commutativi unitari per i quali esiste un unico ideale massimale); un anello commutativo unitario A è locale se e solo se i suoi elementi non invertibili formano un ideale di A; \mathbb{Z}_m è locale se e solo se $m=p^k$, p primo; in un anello commutativo unitario l'insieme N(A) degli elementi nilpotenti è un ideale che si ottiene come l'intersezione di tutti gli ideali primi di A; gli elementi nilpotenti di \mathbb{Z}_m ; \mathbb{Z}_m è privo di elementi nilpotenti non nulli se e solo se m è il prodotto di primi distinti.

Omomorfismi di anelli. Omomorfismi di anelli e di anelli unitari; composizione di omomorfismi è un omomorfismo; isomorfismi di anelli; nucleo di un omomorfismo come ideale bilatero; immagine di un anello tramite un omomorfismo; omomorfismo canonico; un omomorfismo unitario tra un campo e un anello è iniettivo; per ogni anello A, l'omomorfismo $\varphi(a): A \to A$, $\varphi(a) = a^{-1}xa$ è un omomorfismo per ogni $a \in U(A)$; primo teorema di isomorfismo per anelli (sia $f: A_1 \to A_2$ un omomorfismo tra due anelli A_1 e A_2 allora esiste un omomorfismo iniettivo $\tilde{f}: A_1/\ker f \to A_2$ tale che $\tilde{f} \circ \pi = f$ che risulta essere un isomorfismo se e solo se f è suriettivo); sia $f: A_1 \to A_2$ un omomorfismo allora $A_1/\ker f \cong f(A_1)$; teorema di corrispondenza

per anelli e sottoanelli (sia $f:A_1\to A_2$ un omomorfismo tra due anelli A_1 e A_2 (a) se B_1 è un sottoanello di A_1 allora $f(B_1)$ è un sottoanello di A_2 , (b) se B_2 è un sottoanello di A_2 allora $f^{-1}(B_2)$ è un sottoanello di A_1 che include ker f, (c) sia $f:A_1\to A_2$ è un omomorfismo tra anelli unitari se B_1 è un sottoanello di A_1 allora $f(B_1)$ è un sottoanello di A_2 e se B_2 è un sottoanello di A_2 allora $f^{-1}(B_2)$ è un sottoanello di A_1 , (d) $f^{-1}(f(B_1)) = B_1 + \ker f$, (e) $f(f^{-1}(B_2)) = B_2 \cap f(A_1)$, (f) esiste una corrispondenza biunivoca tra i sottoanelli di A_1 che contengono il ker f e i sottoanelli di A_2 contenuti in $f(A_1)$; teorema di corrispondenza per anelli e ideali (sia $f:A_1\to A_2$ un omomorfismo tra due anelli A_1 e A_2 (a) se I_1 è un ideale (sinistro, destro, bilatero) di A_1 allora $f(I_1)$ è un ideale (sinistro, destro, bilatero) di $f(A_1)$, (b) se I_2 è un ideale (sinistro, destro, bilatero) di A_2 allora $f^{-1}(I_2)$ è un ideale (sinistro, destro, bilatero) di A_1 che include $\ker f$, (c) $f^{-1}(f(I_1)) = I_1 + \ker f$, (d) $f(f^{-1}(I_2)) = I_2 \cap f(A_1)$, (e) esiste una corrispondenza biunivoca tra gli ideali (sinistri, destri, bilateri) di A_1 che contengono il ker f e gli ideali (sinistri, destri, bilateri) di $f(A_1)$; l'inclusione di \mathbb{Z} in \mathbb{Q} mostra che in generale non è detto che $f(I_1)$ sia un ideale di A_2 ; secondo teorema di isomorfismo per anelli (sia J un ideale bilatero e B un sottoanello di un anello Aallora $B \cap J$ è un ideale bilatero di $B \in B/B \cap J \cong B+J/J$); teorema intermedio (sia $f:A_1\to A_2$ un omomorfismo di anelli e sia I_2 un ideale di A_2 tale che $I_2\subseteq f(A_1)$ allora $f^{-1}(I_2)$ è un ideale di A_1 e $A_1/f^{-1}(I_2) \cong f(A_1)/I_2$, in particolare se f è suriettiva $A_1/f^{-1}(I_2) \cong A_2/I_2$; dimostrazione alternativa del fatto che il quoziente A/I di un anello commutativo unitario è un campo se e solo se I è massimale; terzo teorema di isomorfismo per anelli (siano I e J due ideali bilateri di un anello $A, I \subseteq J$ allora J/I è un ideale bilatero di A/I e $A/J\cong (A/I)/(J/I)$; teorema di corrispondenza per ideali primi (sia $f: A_1 \to A_2$ un omomorfismo tra due anelli commutativi unitari A_1 e A_2 (a) se I_1 è un ideale primo di A_1 tale che ker $f \subseteq I_1$ allora $f(I_1)$ è un ideale primo di $f(A_1)$, (b) se I_2 è un ideale primo di A_2 allora $f^{-1}(I_2)$ è un ideale primo di A_1 , (c) esiste una corrispondenza biunivoca tra gli ideali primi di A_1 che contengono il ker f e gli ideali primi di $f(A_1)$; teorema di corrispondenza per ideali massimali (sia $f: A_1 \to A_2$ un omomorfismo tra due anelli commutativi unitari A_1 e A_2 (a) se I_1 è un ideale massimale di A_1 tale che ker $f \subseteq I_1$ allora $f(I_1)$ è un ideale massimale di $f(A_1)$, (b) se I_2 è un ideale massimale di $f(A_1)$ allora $f^{-1}(I_2)$ è un ideale massimale di A_1 , (c) esiste una corrispondenza biunivoca tra gli ideali massimali di A_1 che contengono il ker f e gli ideali massimali di $f(A_1)$; l'ipotesi che ker $f \subseteq I_1$ nei due punti (a) precedenti non è superflua (per esempio $f: \mathbb{Z} \to \mathbb{Z}_2$, $I_1 = 3\mathbb{Z}$ allora $f(I_1) = \mathbb{Z}_2$ che non è primo); l'ipotesi che I_2 sia massimale in $f(A_1)$ nel punto (b) è necessaria (per esempio considerata l'inclusione $f: \mathbb{Z} \to \mathbb{Q}$, $I_2 = \{0\}$ è massimale in \mathbb{Q} ma $f^{-1}(I_2) = \{0\}$ che non è massimale in \mathbb{Z}); sottoanelli e ideali (primi e massimali) di \mathbb{Z}_m .

Campo dei quozienti di un dominio campo dei quozienti di un dominio A (campo K per il quale esiste un omomorfismo iniettivo $f:A \to K$ tale che per ogni $k \in K$ esiste $b \in A^*$ e $a \in A$ tale che $k = f(a)f(b)^{-1}$); esistenza del campo dei quozienti Q(A) di un dominio A; sia A un dominio e sia $f:A \to Q(A)$ un suo campo dei quozienti, se K è un campo e $g:A \to K$ è un omomorfismo iniettivo di anelli allora esiste un unico omomorfismo iniettivo di anelli unitari $h:Q(A)\to K$ tale che $h\circ f=g$; sia A un dominio e siano $f_1:A\to Q(A_1)$ e $f_2:A\to Q(A_2)$ due suoi campi dei quozienti allora esiste un isomorfismo di anelli unitari $i:Q(A_1)\to Q(A_2)$ tale che $i\circ f_1=f_2$.

Prodotto diretto di anelli. Prodotto diretto di anelli e proprietà; il prodotto di due campi non è un campo; $U(A \times B) = U(A) \times U(B)$; dato un anello R e A e B

due suoi ideali bilateri tali che $A \cap B = \{0\}$ e R = A + B allora R è isomorfo a $A \times B$; caratteristica del prodotto diretto di due anelli (zero se uno dei due anelli ha caratteristica zero altrimenti uguale al minimo comune multiplo delle caratteristiche dei due anelli); ideali (primi, massimali e principali) del prodotto diretto di due anelli; se A e B sono anelli commutativi unitari a ideali principali allora il loro prodotto diretto $A \times B$ è un anello commutativo unitario a ideali principali.

Esercizi: VEDI SITO. Testo di riferimento

D. Dikranjan, M. L. Lucido, Aritmetica e Algebra, Liguori Editore 2007.

Altri testi consigliati

I.N. Herstein, Algebra, Editori Riuniti.

M. Artin, Algebra, Bollati Boringhieri.