

Magyarország, 2025. február 6.

matred • HU

Kinullázás (matred)

Alex és Andrei egy $N \times M$ -es, nemnegatív egész számokat tartalmazó mátrixszal játszanak. A mátrix sorai felülről lefelé 1-től N-ig, míg az oszlopai balról jobbra 1-től M-ig vannak számozva.

1. ábra. Számok a mátrixban.

Alex bármennyiszer végrehajthatja a következő műveletet:

- Egy 1×3 -as (függőleges vagy vízszintes) részmátrixot kijelöl.
- \bullet Kiválaszt egy V egész számot.
- A kijelölt részmátrix minden eleméhez hozzáadja V-t úgy, hogy egyetlen szám se váljon negatívvá.

Andrei azt állítja, hogy Alex **nem tudja** a mátrix összes számát nullára változtatni legfeljebb $2 \cdot N \cdot M$ művelettel.

Alex elhatározta, hogy bebizonyítja, hogy téved, de mivel még nem tanulta meg az összeadást az iskolában, szüksége van a segítségedre. Meg tudod mondani, hogy Alex nullára tudja-e változtatni a mátrix összes elemét legfeljebb ennyi lépésben?

Az értékelő rendszerből letölthető csatolmányok közt találhatsz matred.* nevű fájlokat, melyek a bemeneti adatok beolvasását valósítják meg az egyes programnyelveken. A megoldásodat ezekből a hiányos minta implementációkból kiindulva is elkészítheted.

matred 1/3. oldal

Bemenet

A bemenet első sorában az N és M egész számok vannak.

A következő N sor mindegyikében M nemnegatív egész szám található, a mátrix elemei.

Kimenet

A kimenet első sorába írd ki a "YES" szót, ha az összes $A_{i,j}$ elemet nullává lehet alakítani legfeljebb $2 \cdot N \cdot M$ művelettel. Ellenkező esetben a kimenet "NO" legyen.

Ha a válasz "YES",

- írd ki az R egész számot, a végrehajtandó műveletek számát.
- A következő R sorban adj meg egy-egy műveletet X_1 Y_1 X_2 Y_2 V alakban, ahol (X_1,Y_1) a kijelölt részmátrix bal felső sarkának, (X_2,Y_2) a jobb alsó sarkának koordinátái (azaz $X_1 \leq X_2$ és $Y_1 \leq Y_2$), V pedig a részmátrix elemeihez hozzáadott egész szám.

Ha több megoldása van a feladatnak, bármelyiket kiírhatod.

Korlátok

- $3 \le N \le 500$.
- $3 \le M \le 500$.
- $0 \le A_{i,j} \le 1000 \text{ minden } i = 1 \dots N \text{ és } j = 1 \dots M\text{-re.}$
- $-10^9 \le V \le 10^9$.

- **0. Részfeladat** (0 pont)

Pontozás

A megoldásodat sok különböző tesztesetre lefuttatjuk. A tesztesetek részfeladatokba vannak csoportosítva. Egy-egy részfeladatot akkor tekintünk megoldottnak, ha volt legalább egy olyan beadásod, amely az adott részfeladat minden tesztesetére helyes megoldást adott. A feladat összpontszámát a megoldott részfeladatokra kapott pontszámok összege adja.

- 1. Részfeladat (14 pont) N ≤ 6, M ≤ 6.
 2. Részfeladat (25 pont) N = 3 vagy M = 3.
- 2. Részfeladat (25 pont) N=3 vagy M=3.
- 3. Részfeladat (7 pont) A mátrix összes eleme egyenlő.

Példák.

- 4. Részfeladat (54 pont) Nincs további megkötés.

matred 2/3. oldal

Példák

input	output
3 3 1 5 1 2 6 2 8 12 8	YES 6 1 1 1 3 8 2 1 2 3 7 3 1 3 3 1 1 1 3 1 -9 1 2 3 2 -13 1 3 3 3 -9
3 3 1 5 0 2 6 2 8 12 8	NO

Magyarázat

Az első példának több érvényes megoldása van, a fenti ezek egyike.

A második példára belátható, hogy nem lehet műveleteket úgy megadni, hogy legfeljebb $2 \cdot N \cdot M = 18$ lépés után a mátrix elemei mind nullák legyenek.

matred 3/3. oldal