# Theoretical Computer Science Regular Languages

Jonas Hübotter

### Outline I

#### Overview

#### Automata

```
Deterministic Finite Automaton (DFA)
Nondeterministic Finite Automaton (NFA)
NFA \rightarrow DFA (determinization)
€-NFA
\epsilon-NFA \rightarrow NFA
Product-Construction
Minimal Automaton
Interlude: Equivalence Relations
Quotient Automaton
Canonical Minimal Automaton
Theorem of Mihill-Nerode
```

# Right-Linear Grammar (RLG)

 $\mathsf{DFA} \to \mathsf{RLG}$   $\mathsf{RLG} \to \mathsf{NFA}$ 

### Outline II

## Regular Expressions

Definition

Interlude: Structural Induction

Regex  $\rightarrow \epsilon$ -NFA (Kleene)

DFA/NFA → Regex (Kleene)

Arden's Lemma

Closure Properties

**Pumping Lemma** 

## Representations of regular languages

• Right-Linear Grammar (RLG)

- Right-Linear Grammar (RLG)
- Deterministic Finite Automaton (DFA)

- Right-Linear Grammar (RLG)
- Deterministic Finite Automaton (DFA)
- Nondeterministic Finite Automaton (NFA)

- Right-Linear Grammar (RLG)
- Deterministic Finite Automaton (DFA)
- Nondeterministic Finite Automaton (NFA)
- *ϵ*-NFA

- Right-Linear Grammar (RLG)
- Deterministic Finite Automaton (DFA)
- Nondeterministic Finite Automaton (NFA)
- ϵ-NFA
- Regular Expression (Regex)

#### Definition 1

#### Definition 1

A deterministic finite automaton (DFA)  $M = (Q, \Sigma, \delta, q_0, F)$  consists of

• a finite set of states Q

#### Definition 1

- a finite set of states Q;
- a (finite) alphabet Σ

#### Definition 1

- a finite set of states Q;
- a (finite) alphabet  $\Sigma$ ;
- a total transition function  $\delta: Q \times \Sigma \to Q$

#### Definition 1

- a finite set of states Q;
- a (finite) alphabet Σ;
- a total transition function  $\delta: Q \times \Sigma \to Q$ ;
- an initial state  $q_0 \in Q$

#### Definition 1

- a finite set of states Q;
- a (finite) alphabet Σ;
- a total transition function  $\delta: Q \times \Sigma \to Q$ ;
- an initial state  $q_0 \in Q$ ; and
- a set of terminal (accepting) states  $F \subseteq Q$ .

#### Definition 2

The induced transition function  $\hat{\delta}$  of a DFA M is defined by

#### Definition 2

The induced transition function  $\hat{\delta}$  of a DFA M is defined by

$$\hat{\delta}(q,\epsilon) = q$$

#### Definition 2

The induced transition function  $\hat{\delta}$  of a DFA M is defined by

$$\hat{\delta}(q, \epsilon) = q$$

$$\hat{\delta}(q, aw) = \hat{\delta}(\delta(q, a), w), a \in \Sigma, w \in \Sigma^*.$$

#### Definition 2

The induced transition function  $\hat{\delta}$  of a DFA M is defined by

$$\hat{\delta}(q, \epsilon) = q$$

$$\hat{\delta}(q, aw) = \hat{\delta}(\delta(q, a), w), a \in \Sigma, w \in \Sigma^*.$$

The language accepted by M is  $L(M) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}.$ 

#### **Definition 3**

A nondeterministic finite automaton (NFA)  $N = (Q, \Sigma, \delta, q_0, F)$ 

#### **Definition 3**

A nondeterministic finite automaton (NFA)  $N = (Q, \Sigma, \delta, q_0, F)$  consists of

•  $Q, \Sigma, q_0, F$  as defined for DFAs

#### **Definition 3**

- $Q, \Sigma, q_0, F$  as defined for DFAs; and
- a (partial) transition function  $\delta: Q \times \Sigma \to 2^Q$ .

### Definition 4

The induced transition function  $\hat{\delta}$  of a NFA N is defined analogously to  $\hat{\delta}$  where

#### Definition 4

The induced transition function  $\hat{\bar{\delta}}$  of a NFA N is defined analogously to  $\hat{\delta}$  where

$$ar{\delta}: 2^Q imes \Sigma o 2^Q, (\mathcal{S}, \mathsf{a}) \mapsto \bigcup_{q \in \mathcal{S}} \delta(q, \mathsf{a}).$$

#### Definition 4

The induced transition function  $\hat{\bar{\delta}}$  of a NFA N is defined analogously to  $\hat{\delta}$  where

$$\bar{\delta}: 2^Q \times \Sigma \to 2^Q, (S, a) \mapsto \bigcup_{q \in S} \delta(q, a).$$

The language accepted by N is  $L(N) = \{ w \in \Sigma^* \mid \hat{\bar{\delta}}(\{q_0\}, w) \cap F \neq \emptyset \}.$ 

# $NFA \rightarrow DFA$ (determinization)

#### Idea

Interpret every reachable subset  $S \subseteq 2^Q$  in the NFA N as its own state in the new DFA M.

# $NFA \rightarrow DFA$ (determinization)

#### Idea

Interpret every reachable subset  $S \subseteq 2^Q$  in the NFA N as its own state in the new DFA M.

Every state S of M where  $S \cap F_N \neq \emptyset$  is an accepting state of M.

# NFA → DFA (determinization)

#### Idea

Interpret every reachable subset  $S \subseteq 2^Q$  in the NFA N as its own state in the new DFA M.

Every state S of M where  $S \cap F_N \neq \emptyset$  is an accepting state of M.

Worst-case exponential growth!

### $\epsilon$ -NFA

#### Definition 5

An  $\epsilon$ -NFA  $N=(Q,\Sigma,\delta,q_0,F)$  is an NFA with a special symbol  $\epsilon\lnot\in\Sigma$  where

$$\delta: Q \times (\Sigma \cup {\epsilon}) \rightarrow 2^Q$$
.

#### *€*-NFA

#### Definition 5

An  $\epsilon$ -NFA  $N=(Q,\Sigma,\delta,q_0,F)$  is an NFA with a special symbol  $\epsilon\lnot\in\Sigma$  where

$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$$
.

 $\epsilon$ -transitions can be executed at any time without reading a symbol.

Idea

Given  $\epsilon$ -NFA  $N = (Q, \Sigma, \delta, q_0, F)$ 

#### Idea

Given 
$$\epsilon$$
-NFA  $N=(Q,\Sigma,\delta,q_0,F)$  construct NFA  $N'=(Q,\Sigma,\delta',q_0,F')$ 

#### Idea

Given 
$$\epsilon$$
-NFA  $N=(Q,\Sigma,\delta,q_0,F)$  construct NFA  $N'=(Q,\Sigma,\delta',q_0,F')$  where 
$$\delta':Q\times\Sigma\to 2^Q:(q,a)\mapsto\bigcup_{i,j>0}\hat{\delta}(\{q\},\epsilon^ia\epsilon^j)$$

#### Idea

Given 
$$\epsilon$$
-NFA  $N=(Q,\Sigma,\delta,q_0,F)$  construct NFA  $N'=(Q,\Sigma,\delta',q_0,F')$  where

$$\delta': Q \times \Sigma \to 2^Q: (q, a) \mapsto \bigcup_{i, i > 0} \hat{\delta}(\{q\}, \epsilon^i a \epsilon^j);$$

if  $\epsilon \in L(N)$  then  $F' = F \cup \{q_0\}$  else F' = F.

## Product-Construction

#### Idea

Given DFAs  $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$  and  $M_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$ 

### Product-Construction

#### Idea

Given DFAs  $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$  and  $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$  the product automaton is  $M = (Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F_1 \times F_2)$ 

### Product-Construction

#### Idea

Given DFAs  $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$  and  $M_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$  the product automaton is  $M=(Q_1\times Q_2,\Sigma,\delta,(s_1,s_2),F_1\times F_2)$  where

$$\delta: (Q_1 \times Q_2) \times \Sigma \rightarrow Q_1 \times Q_2$$

## Product-Construction

#### Idea

Given DFAs  $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$  and  $M_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$  the product automaton is  $M=(Q_1\times Q_2,\Sigma,\delta,(s_1,s_2),F_1\times F_2)$  where

$$egin{aligned} \delta: (Q_1 imes Q_2) imes \Sigma &
ightarrow Q_1 imes Q_2 \ : ((q_1,q_2), extbf{a}) &\mapsto (\delta_1(q_1, extbf{a}), \delta_2(q_2, extbf{a})). \end{aligned}$$

## Product-Construction

### Idea

Given DFAs  $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$  and  $M_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$  the product automaton is  $M=(Q_1\times Q_2,\Sigma,\delta,(s_1,s_2),F_1\times F_2)$  where

$$\delta: (Q_1 \times Q_2) \times \Sigma \rightarrow Q_1 \times Q_2$$
  
  $: ((q_1, q_2), a) \mapsto (\delta_1(q_1, a), \delta_2(q_2, a)).$ 

For the product automaton  $L(M) = L(M_1) \cap L(M_2)$  holds.

For any regular language L there exists a DFA D of minimal size such that L(D) = L.

For any regular language L there exists a DFA D of minimal size such that L(D) = L.

Algorithm  $(\mathcal{O}(|Q|^2)$  for constant  $|\Sigma|)$ 

1. remove unreachable states from  $q_0$ 

For any regular language L there exists a DFA D of minimal size such that L(D) = L.

Algorithm  $(\mathcal{O}(|Q|^2))$  for constant  $|\Sigma|$ 

- 1. remove unreachable states from  $q_0$
- 2. determine equivalent states

For any regular language L there exists a DFA D of minimal size such that L(D) = L.

Algorithm  $(\mathcal{O}(|Q|^2)$  for constant  $|\Sigma|$ 

- 1. remove unreachable states from  $q_0$
- 2. determine equivalent states
- 3. merge equivalent states

### Definition 6

States  $p, q \in Q$  are

• equivalent if  $\forall w \in \Sigma^*$ .  $\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$ 

### Definition 6

States  $p, q \in Q$  are

- equivalent if  $\forall w \in \Sigma^*$ .  $\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$ ;
- distinguishable if they are not equivalent.

### Definition 6

States  $p, q \in Q$  are

- equivalent if  $\forall w \in \Sigma^*$ .  $\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$ ;
- distinguishable if they are not equivalent.

## Algorithm for finding equivalent states

Idea: mark distinguishable states step-by-step.

### Definition 6

States  $p, q \in Q$  are

- equivalent if  $\forall w \in \Sigma^*$ .  $\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$ ;
- distinguishable if they are not equivalent.

### Algorithm for finding equivalent states

Idea: mark distinguishable states step-by-step.

1. mark all pairs  $p, q \in Q$  if  $p \in F$  and  $q \in Q \setminus F$ 

### Definition 6

States  $p, q \in Q$  are

- equivalent if  $\forall w \in \Sigma^*$ .  $\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$ ;
- distinguishable if they are not equivalent.

### Algorithm for finding equivalent states

Idea: mark distinguishable states step-by-step.

- 1. mark all pairs  $p, q \in Q$  if  $p \in F$  and  $q \in Q \setminus F$
- 2. while  $\exists$  unmarked  $\{p, q\}$  and  $\exists a \in \Sigma$ , if  $\{\delta(p, a), \delta(q, a)\}$  is marked, mark  $\{p, q\}$



Definition 7

A relation  $\sim \subseteq A \times A$  is an equivalence relation if

### Definition 7

A relation  $\sim \subseteq A \times A$  is an equivalence relation if

•  $\forall a \in A$ .  $a \sim a$ . (reflexivity)

#### Definition 7

A relation  $\sim \subseteq A \times A$  is an equivalence relation if

- $\forall a \in A$ .  $a \sim a$ . (reflexivity)
- $\forall a, b \in A$ .  $a \sim b \implies b \sim a$ . (symmetry)

#### Definition 7

A relation  $\sim \subseteq A \times A$  is an equivalence relation if

- $\forall a \in A$ .  $a \sim a$ . (reflexivity)
- $\forall a, b \in A$ .  $a \sim b \implies b \sim a$ . (symmetry) and
- $\forall a, b, c \in A$ .  $a \sim b \land b \sim c \implies a \sim c$ . (transitivity)

#### Definition 7

A relation  $\sim \subseteq A \times A$  is an equivalence relation if

- $\forall a \in A$ .  $a \sim a$ . (reflexivity)
- $\forall a, b \in A$ .  $a \sim b \implies b \sim a$ . (symmetry) and
- $\forall a, b, c \in A$ .  $a \sim b \land b \sim c \implies a \sim c$ . (transitivity)

 $[a]_{\sim} = \{b \mid a \sim b\}$  is called the equivalence class of a under  $\sim$ .

### Definition 7

A relation  $\sim \subseteq A \times A$  is an equivalence relation if

- $\forall a \in A$ .  $a \sim a$ . (reflexivity)
- $\forall a, b \in A$ .  $a \sim b \implies b \sim a$ . (symmetry) and
- $\forall a, b, c \in A$ .  $a \sim b \land b \sim c \implies a \sim c$ . (transitivity)

$$[a]_{\sim} = \{b \mid a \sim b\}$$
 is called the equivalence class of a under  $\sim$ .

The set of equivalence classes  $A/\sim = \{[a]_{\sim} \mid a \in A\}$  is called the quotient set of  $\sim$ .

Observation: the equivalence of states defines an equivalence relation.

Observation: the equivalence of states defines an equivalence relation.

We say  $p \equiv_M q$  iff p and q are equivalent states in M.

Observation: the equivalence of states defines an equivalence relation.

We say  $p \equiv_M q$  iff p and q are equivalent states in M.

### **Definition 8**

The collapsed automaton relative to  $\equiv_M$  is called quotient automaton.

Observation: the equivalence of states defines an equivalence relation.

We say  $p \equiv_M q$  iff p and q are equivalent states in M.

### **Definition 8**

The collapsed automaton relative to  $\equiv_M$  is called quotient automaton.

$$M/\equiv_M = (Q/\equiv_M, \Sigma, \delta', [q_0]_{\equiv_M}, F/\equiv_M)$$

Observation: the equivalence of states defines an equivalence relation.

We say  $p \equiv_M q$  iff p and q are equivalent states in M.

### **Definition 8**

The collapsed automaton relative to  $\equiv_M$  is called quotient automaton.

$$M/\equiv_M = (Q/\equiv_M, \Sigma, \delta', [q_0]_{\equiv_M}, F/\equiv_M)$$

with 
$$\delta'([p]_{\equiv_M}, a) = [\delta(p, a)]_{\equiv_M}$$
 for  $p \in Q, a \in \Sigma$ .

### Definition 9

The canonical minimal automaton  $M_L$  is a unique minimal automaton for any regular language L.

### Definition 9

The canonical minimal automaton  $M_L$  is a unique minimal automaton for any regular language L.

$$M_L = (\Sigma^*/\equiv_L, \Sigma, \delta_L, [\epsilon]_{\equiv_L}, F_L)$$

### Definition 9

The canonical minimal automaton  $M_L$  is a unique minimal automaton for any regular language L.

$$M_L = (\Sigma^*/\equiv_L, \Sigma, \delta_L, [\epsilon]_{\equiv_L}, F_L)$$

with

$$\delta_L([w]_{\equiv_L},a)=[wa]_{\equiv_L}$$

#### Definition 9

The canonical minimal automaton  $M_L$  is a unique minimal automaton for any regular language L.

$$M_L = (\Sigma^*/\equiv_L, \Sigma, \delta_L, [\epsilon]_{\equiv_L}, F_L)$$

with

$$\delta_L([w]_{\equiv_L}, a) = [wa]_{\equiv_L}$$
$$F_L = \{[w]_{\equiv_L} \mid w \in L\}$$

### Definition 9

The canonical minimal automaton  $M_L$  is a unique minimal automaton for any regular language L.

$$M_L = (\Sigma^*/\equiv_L, \Sigma, \delta_L, [\epsilon]_{\equiv_L}, F_L)$$

with

$$\delta_L([w]_{\equiv_L}, a) = [wa]_{\equiv_L}$$
$$F_L = \{[w]_{\equiv_L} \mid w \in L\}$$

It follows that  $\hat{\delta}([\epsilon]_{\equiv_L}, w) = [w]_{\equiv_L}$  for  $w \in \Sigma^*$ ,

### Definition 9

The canonical minimal automaton  $M_L$  is a unique minimal automaton for any regular language L.

$$M_L = (\Sigma^*/\equiv_L, \Sigma, \delta_L, [\epsilon]_{\equiv_L}, F_L)$$

with

$$\delta_L([w]_{\equiv_L}, a) = [wa]_{\equiv_L}$$
$$F_L = \{[w]_{\equiv_L} \mid w \in L\}$$

It follows that  $\hat{\delta}([\epsilon]_{\equiv_L}, w) = [w]_{\equiv_L}$  for  $w \in \Sigma^*$ , hence  $L(M_L) = L$ .

## Theorem of Mihill-Nerode

Theorem 10 (Theorem of Mihill-Nerode)

 $L \subseteq \Sigma^*$  is regular  $\iff \equiv_L$  has finitely many equivalence classes.

### Idea

Given DFA  $M = (Q, \Sigma, \delta, q_0, F)$ 

### Idea

Given DFA  $M=(Q,\Sigma,\delta,q_0,F)$  define RLG  $G=(Q,\Sigma,P,q_0)$ 

### Idea

Given DFA  $M=(Q,\Sigma,\delta,q_0,F)$  define RLG  $G=(Q,\Sigma,P,q_0)$  with productions P:

### Idea

Given DFA  $M=(Q,\Sigma,\delta,q_0,F)$  define RLG  $G=(Q,\Sigma,P,q_0)$  with productions P:

•  $(q_1 \rightarrow aq_2) \in P$  iff  $\delta(q_1, a) = q_2$ 

#### Idea

Given DFA  $M=(Q,\Sigma,\delta,q_0,F)$  define RLG  $G=(Q,\Sigma,P,q_0)$  with productions P:

- $(q_1 \rightarrow aq_2) \in P \text{ iff } \delta(q_1, a) = q_2;$
- $(q_1 \rightarrow a) \in P \text{ iff } \delta(q_1, a) \in F$

#### Idea

Given DFA  $M=(Q,\Sigma,\delta,q_0,F)$  define RLG  $G=(Q,\Sigma,P,q_0)$  with productions P:

- $(q_1 \rightarrow aq_2) \in P$  iff  $\delta(q_1, a) = q_2$ ;
- $(q_1 \rightarrow a) \in P$  iff  $\delta(q_1, a) \in F$ ; and
- $(q_0 \to \epsilon) \in P \text{ iff } q_0 \in F.$

#### $\mathsf{DFA} \to \mathsf{RLG}$

#### Idea

Given DFA  $M=(Q,\Sigma,\delta,q_0,F)$  define RLG  $G=(Q,\Sigma,P,q_0)$  with productions P:

- $(q_1 \rightarrow aq_2) \in P$  iff  $\delta(q_1, a) = q_2$ ;
- $(q_1 \rightarrow a) \in P$  iff  $\delta(q_1, a) \in F$ ; and
- $(q_0 \to \epsilon) \in P \text{ iff } q_0 \in F.$

Then, L(G) = L(M).

#### Idea

Given RLG  $\mathit{G} = (\mathit{V}, \Sigma, \mathit{P}, \mathit{S})$  without the production  $\mathit{S} \rightarrow \epsilon$ 

#### Idea

Given RLG  $G=(V,\Sigma,P,S)$  without the production  $S\to\epsilon$ , define the NFA  $N=(V\cup\{q_f\},\Sigma,\delta,S,\{q_f\})$ 

#### Idea

Given RLG  $G = (V, \Sigma, P, S)$  without the production  $S \to \epsilon$ , define the NFA  $N = (V \cup \{q_f\}, \Sigma, \delta, S, \{q_f\})$  with:

•  $Y \in \delta(X, a)$  iff  $(X \to aY) \in P$ 

#### Idea

Given RLG  $G = (V, \Sigma, P, S)$  without the production  $S \to \epsilon$ , define the NFA  $N = (V \cup \{q_f\}, \Sigma, \delta, S, \{q_f\})$  with:

- $Y \in \delta(X, a)$  iff  $(X \to aY) \in P$ ; and
- $q_f \in \delta(X, a)$  iff  $(X \to a) \in P$ .

#### Idea

Given RLG  $G = (V, \Sigma, P, S)$  without the production  $S \to \epsilon$ , define the NFA  $N = (V \cup \{q_f\}, \Sigma, \delta, S, \{q_f\})$  with:

- $Y \in \delta(X, a)$  iff  $(X \to aY) \in P$ ; and
- $q_f \in \delta(X, a)$  iff  $(X \to a) \in P$ .

Then, L(N) = L(G).

### Syntax

ullet  $\emptyset$  is a regular expression

- Ø is a regular expression;
- ullet is a regular expression

- Ø is a regular expression;
- $\epsilon$  is a regular expression;
- $\forall a \in \Sigma$ , a is a regular expression

- Ø is a regular expression;
- $\epsilon$  is a regular expression;
- $\forall a \in \Sigma$ , a is a regular expression; and
- given regular expressions  $\alpha, \beta$ , the following are regular expressions:

- Ø is a regular expression;
- $\epsilon$  is a regular expression;
- $\forall a \in \Sigma$ , a is a regular expression; and
- given regular expressions  $\alpha, \beta$ , the following are regular expressions:
  - $\alpha\beta$  (concatenation)

- Ø is a regular expression;
- $\epsilon$  is a regular expression;
- $\forall a \in \Sigma$ , a is a regular expression; and
- given regular expressions  $\alpha, \beta$ , the following are regular expressions:
  - $\alpha\beta$  (concatenation);
  - $\alpha | \beta$  (disjunction)

- Ø is a regular expression;
- $\epsilon$  is a regular expression;
- $\forall a \in \Sigma$ , a is a regular expression; and
- given regular expressions  $\alpha, \beta$ , the following are regular expressions:
  - $\alpha\beta$  (concatenation);
  - $\alpha | \beta$  (disjunction); and
  - $\alpha^*$  (repetition).

#### **Semantics**

•  $L(\emptyset) = \emptyset$ 

- $L(\emptyset) = \emptyset$ ;
- $L(\epsilon) = \{\epsilon\}$

- $L(\emptyset) = \emptyset$ ;
- $L(\epsilon) = \{\epsilon\};$
- $L(a) = \{a\}$

- $L(\emptyset) = \emptyset$ ;
- $L(\epsilon) = \{\epsilon\};$
- $L(a) = \{a\};$
- $L(\alpha\beta) = L(\alpha)L(\beta)$

- $L(\emptyset) = \emptyset$ ;
- $L(\epsilon) = \{\epsilon\};$
- $L(a) = \{a\};$
- $L(\alpha\beta) = L(\alpha)L(\beta)$ ;
- $L(\alpha|\beta) = L(\alpha) \cup L(\beta)$

- $L(\emptyset) = \emptyset$ ;
- $L(\epsilon) = \{\epsilon\};$
- $L(a) = \{a\};$
- $L(\alpha\beta) = L(\alpha)L(\beta)$ ;
- $L(\alpha|\beta) = L(\alpha) \cup L(\beta)$ ; and
- $L(\alpha^*) = L(\alpha)^*$ .

To prove a statement P for an object  $\gamma$  that is defined inductively, we use structural induction.

To prove a statement P for an object  $\gamma$  that is defined inductively, we use structural induction.

Let  $\gamma$  be defined by base cases  $\alpha_1, \ldots, \alpha_k$  and inductive cases  $\beta_1, \ldots, \beta_l$  with assumptions  $a_{i1}, \ldots, a_{im_i}$  for  $i \in \{1, \ldots, l\}$ .

To prove a statement P for an object  $\gamma$  that is defined inductively, we use structural induction.

Let  $\gamma$  be defined by base cases  $\alpha_1, \ldots, \alpha_k$  and inductive cases  $\beta_1, \ldots, \beta_l$  with assumptions  $a_{i1}, \ldots, a_{im_i}$  for  $i \in \{1, \ldots, l\}$ .

To prove P for all  $\gamma$ , prove:

•  $P(\alpha_i)$  for  $i \in \{1, \ldots, k\}$ 

To prove a statement P for an object  $\gamma$  that is defined inductively, we use structural induction.

Let  $\gamma$  be defined by base cases  $\alpha_1, \ldots, \alpha_k$  and inductive cases  $\beta_1, \ldots, \beta_l$  with assumptions  $a_{i1}, \ldots, a_{im_i}$  for  $i \in \{1, \ldots, l\}$ .

To prove P for all  $\gamma$ , prove:

- $P(\alpha_i)$  for  $i \in \{1, \ldots, k\}$ ; and
- $P(a_{i1}) \wedge \cdots \wedge P(a_{im_i}) \implies P(\beta_i)$  for  $i \in \{1, \ldots, l\}$ .

# $\mathsf{Regex} \to \epsilon\text{-NFA (Kleene)}$

Ø



# $\mathsf{Regex} \to \epsilon\text{-NFA (Kleene)}$



### $Regex \rightarrow \epsilon$ -NFA (Kleene)



# $\mathsf{Regex} \to \epsilon\text{-NFA (Kleene)}$



### Regex $\rightarrow \epsilon$ -NFA (Kleene)



## $\mathsf{Regex} \to \epsilon\text{-NFA} (\mathsf{Kleene})$



Given 
$$M=(Q,\Sigma,\delta,q_1,F)$$
 with  $Q=\{q_1,\ldots,q_n\}$  define 
$$R_{ij}^k=\{w\in\Sigma^*\mid \text{input }w\text{ transitions from }q_i\text{ to }q_j$$
 and all states in between have an index  $\leq k\}.$ 

Given 
$$M=(Q,\Sigma,\delta,q_1,F)$$
 with  $Q=\{q_1,\ldots,q_n\}$  define 
$$R_{ij}^k=\{w\in\Sigma^*\mid \text{input }w\text{ transitions from }q_i\text{ to }q_j$$
 and all states in between have an index  $\leq k\}.$ 

Idea: for all  $i, j \in [n]$  and  $k \in [n]_0$  a regex  $\alpha_{ij}^k$  can be constructed with  $L(\alpha_{ij}^k) = R_{ij}^k$ .

Induction over k.

• k = 0:

Induction over k.

• k = 0: Let

$$R_{ij}^{0} = \begin{cases} \{a \in \Sigma \mid \delta(q_i, a) = q_j\} & i \neq j \\ \{a \in \Sigma \mid \delta(q_i, a) = q_j\} \cup \{\epsilon\} & i = j \end{cases}$$

Induction over k.

• k = 0: Let

$$R_{ij}^{0} = \begin{cases} \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} & i \neq j \\ \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} \cup \{\epsilon\} & i = j \end{cases}$$

$$\alpha_{ij}^{0} = \begin{cases} a_{1} \mid \cdots \mid a_{l} \quad i \neq j \\ a_{1} \mid \cdots \mid a_{l} \mid \epsilon \quad i = j \end{cases}$$

Induction over k.

• k = 0: Let

$$R_{ij}^{0} = \begin{cases} \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} & i \neq j \\ \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} \cup \{\epsilon\} & i = j \end{cases}$$
$$\alpha_{ij}^{0} = \begin{cases} a_{1} \mid \dots \mid a_{l} \quad i \neq j \\ a_{1} \mid \dots \mid a_{l} \mid \epsilon \quad i = j \end{cases}$$

where  $\{a_1,\ldots,a_I\}=\{a\in\Sigma\mid\delta(q_i,a)=q_j\}.$ 

Induction over k.

• k = 0: Let

$$R_{ij}^{0} = \begin{cases} \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} & i \neq j \\ \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} \cup \{\epsilon\} & i = j \end{cases}$$

$$\alpha_{ij}^{0} = \begin{cases} a_{1} \mid \cdots \mid a_{l} \quad i \neq j \\ a_{1} \mid \cdots \mid a_{l} \mid \epsilon \quad i = j \end{cases}$$

where  $\{a_1,\ldots,a_l\}=\{a\in\Sigma\mid\delta(q_i,a)=q_j\}.$ 

•  $k \implies k+1$ :

Induction over k.

• k = 0: Let

$$R_{ij}^{0} = \begin{cases} \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} & i \neq j \\ \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} \cup \{\epsilon\} & i = j \end{cases}$$

$$\alpha_{ij}^{0} = \begin{cases} a_{1} \mid \cdots \mid a_{l} \quad i \neq j \\ a_{1} \mid \cdots \mid a_{l} \mid \epsilon \quad i = j \end{cases}$$

where  $\{a_1,\ldots,a_l\}=\{a\in\Sigma\mid\delta(q_i,a)=q_j\}.$ 

•  $k \implies k+1$ :

$$R_{ij}^{k+1} = R_{ij}^k$$

Induction over k.

• k = 0: Let

$$R_{ij}^{0} = \begin{cases} \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} & i \neq j \\ \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} \cup \{\epsilon\} & i = j \end{cases}$$

$$\alpha_{ij}^{0} = \begin{cases} a_{1} \mid \cdots \mid a_{l} \quad i \neq j \\ a_{1} \mid \cdots \mid a_{l} \mid \epsilon \quad i = j \end{cases}$$

where  $\{a_1,\ldots,a_l\}=\{a\in\Sigma\mid\delta(q_i,a)=q_j\}.$ 

•  $k \implies k+1$ :

$$R_{ij}^{k+1} = R_{ij}^k \cup R_{i(k+1)}^k (R_{(k+1)(k+1)}^k)^* R_{(k+1)j}^k$$

New paths using  $q_{k+1}$  in terms of the already built subpaths.

Induction over k.

• k = 0: Let

$$R_{ij}^{0} = \begin{cases} \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} & i \neq j \\ \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} \cup \{\epsilon\} & i = j \end{cases}$$

$$\alpha_{ij}^{0} = \begin{cases} a_{1} \mid \cdots \mid a_{l} \quad i \neq j \\ a_{1} \mid \cdots \mid a_{l} \mid \epsilon \quad i = j \end{cases}$$

where  $\{a_1,\ldots,a_l\}=\{a\in\Sigma\mid\delta(q_i,a)=q_j\}.$ 

•  $k \implies k+1$ :

$$R_{ij}^{k+1} = R_{ij}^k \cup R_{i(k+1)}^k (R_{(k+1)(k+1)}^k)^* R_{(k+1)j}^k$$
  

$$\alpha_{ij}^{k+1} = a_{ij}^k \mid a_{i(k+1)}^k (a_{(k+1)(k+1)}^k)^* a_{(k+1)j}^k.$$

New paths using  $q_{k+1}$  in terms of the already built subpaths.

Induction over k.

• k = 0: Let

$$R_{ij}^{0} = \begin{cases} \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} & i \neq j \\ \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} \cup \{\epsilon\} & i = j \end{cases}$$

$$\alpha_{ij}^{0} = \begin{cases} a_{1} \mid \cdots \mid a_{l} \quad i \neq j \\ a_{1} \mid \cdots \mid a_{l} \mid \epsilon \quad i = j \end{cases}$$

where  $\{a_1,\ldots,a_l\}=\{a\in\Sigma\mid\delta(q_i,a)=q_j\}.$ 

•  $k \implies k+1$ 

$$\begin{split} R_{ij}^{k+1} &= R_{ij}^k \cup R_{i(k+1)}^k (R_{(k+1)(k+1)}^k)^* R_{(k+1)j}^k \\ \alpha_{ij}^{k+1} &= a_{ij}^k \mid a_{i(k+1)}^k (a_{(k+1)(k+1)}^k)^* a_{(k+1)j}^k. \end{split}$$

New paths using  $q_{k+1}$  in terms of the already built subpaths. We now have,  $L(M) = L(\alpha_{1i_1}^n \mid \cdots \mid \alpha_{1i_r}^n)$  where  $\{q_{i_1}, \ldots, q_{i_r}\} = F$ .

### Arden's Lemma

Theorem 11 (Arden's Lemma for regular languages)

Let A, B, X be regular languages and  $\epsilon \notin A$ , then:

$$X = AX \cup B \implies X = A^*B.$$

### Arden's Lemma

### Theorem 11 (Arden's Lemma for regular languages)

Let A, B, X be regular languages and  $\epsilon \notin A$ , then:

$$X = AX \cup B \implies X = A^*B$$
.

### Theorem 12 (Arden's Lemma for regular expressions)

Let  $\alpha, \beta, X$  be regular expressions and  $\epsilon \notin L(\alpha)$ , then:

$$X = \alpha X \mid \beta \implies X = \alpha^* \beta.$$

#### Theorem 13

#### Theorem 13

Given the regular languages R,  $R_1$ ,  $R_2$ , then the following are also regular languages:

 $\bullet$   $R_1R_2$ 

#### Theorem 13

- $R_1R_2$ ;
- $R_1 \cup R_2$

#### Theorem 13

- $R_1R_2$ ;
- $R_1 \cup R_2$ ;
- R\*

#### Theorem 13

- $R_1R_2$ ;
- $R_1 \cup R_2$ ;
- R\*;
- *R*

#### Theorem 13

- $R_1R_2$ ;
- $R_1 \cup R_2$ ;
- R\*;
- $\bar{R}$ ;
- $R_1 \cap R_2$

#### Theorem 13

- $R_1R_2$ ;
- $R_1 \cup R_2$ ;
- R\*;
- $\bar{R}$ ;
- $R_1 \cap R_2$ ; and
- $R_1 \setminus R_2$ .

Lemma 14 (Pumping Lemma for regular languages)

Let  $R \subseteq \Sigma^*$  be regular.

#### Lemma 14 (Pumping Lemma for regular languages)

Let  $R \subseteq \Sigma^*$  be regular. Then there exists some n > 0 such that every  $z \in R$  with  $|z| \ge n$  can be decomposed into z = uvw

### Lemma 14 (Pumping Lemma for regular languages)

Let  $R \subseteq \Sigma^*$  be regular. Then there exists some n>0 such that every  $z \in R$  with  $|z| \ge n$  can be decomposed into z=uvw such that

•  $v \neq \epsilon$ 

### Lemma 14 (Pumping Lemma for regular languages)

Let  $R \subseteq \Sigma^*$  be regular. Then there exists some n>0 such that every  $z \in R$  with  $|z| \ge n$  can be decomposed into z=uvw such that

- $v \neq \epsilon$ ;
- $|uv| \leq n$

### Lemma 14 (Pumping Lemma for regular languages)

Let  $R \subseteq \Sigma^*$  be regular. Then there exists some n>0 such that every  $z \in R$  with  $|z| \ge n$  can be decomposed into z=uvw such that

- $v \neq \epsilon$ ;
- $|uv| \leq n$ ; and
- $\forall i \geq 0$ .  $uv^i w \in R$ .

### Lemma 14 (Pumping Lemma for regular languages)

Let  $R \subseteq \Sigma^*$  be regular. Then there exists some n > 0 such that every  $z \in R$  with  $|z| \ge n$  can be decomposed into z = uvw such that

- $v \neq \epsilon$ ;
- $|uv| \leq n$ ; and
- $\forall i > 0$ .  $uv^i w \in R$ .

A necessary condition for regular languages.

Example 15 (proof structure) Assume L is regular. Let n>0 be a Pumping Lemma number.

Example 15 (proof structure)

Assume *L* is regular.

Let n > 0 be a Pumping Lemma number.

Choose  $z \in L$  with  $|z| \ge n$ .

Define z = uvw with  $v \neq \epsilon$  and  $|uv| \leq n$ .

```
Example 15 (proof structure) Assume L is regular. Let n>0 be a Pumping Lemma number. Choose z\in L with |z|\geq n. Define z=uvw with v\neq \epsilon and |uv|\leq n. Then, \forall i\geq 0. uv^iw\in L.
```

Example 15 (proof structure)

Assume *L* is regular.

Let n > 0 be a Pumping Lemma number.

Choose  $z \in L$  with  $|z| \ge n$ .

Define z = uvw with  $v \neq \epsilon$  and  $|uv| \leq n$ .

Then,  $\forall i \geq 0$ .  $uv^i w \in L$ .

Now, use the last statement to find a contradiction.