Universidad de El Salvador. 2.07.2018

Algebra I: Estructuras algebraicas y la teoría de grupos. Examen parcial repetido 3

Problema 1 (1 punto). Sea p un número primo y sea G un grupo finito de orden p^k . Demuestre que $p \mid |Z(G)|$ y en particular $Z(G) \neq \{1\}$.

Sugerencia: considere la ecuación de clase para la acción de G sobre sí mismo por conjugación.

Problema 2 (1 punto). Hemos probado en clase que en A_n para $n \ge 5$ todos los 3-ciclos forman una clase de conjugación. Demuestre que en A_4 no todos los 3-ciclos son conjugados entre sí. Sugerencia: encuentre $(i \ j \ k)$ y $(a \ b \ c)$ que pertenecen a diferentes clases de conjugación en A_4 .

Problema 3 (2 puntos). Sea Q_8 el grupo de cuaterniones.

- 1) Demuestre que el grupo cociente $Q_8/\{\pm 1\}$ es abeliano. Concluya que $[Q_8,Q_8]\subseteq \{\pm 1\}$.
- 2) Exprese -1 como un conmutador [x,y] para algunos $x,y \in Q_8$. Concluya que $[Q_8,Q_8]=\{\pm 1\}$.
- 3) Exprese la abelianización de Q_8 como un producto de grupos cíclicos.

Problema 4 (2 + 1 puntos). Consideremos la acción del grupo $SL_2(\mathbb{Z})$ sobre el semiplano superior \mathcal{H} .

- 1) Calcule el estabilizador del punto $\sqrt{-1} \in \mathcal{H}$. Demuestre que es un grupo abeliano finito y expréselo como un producto de grupos cíclicos.
- 2) Pregunta por un punto extra: haga el mismo cálculo para $\omega:=-\frac{1}{2}+\frac{\sqrt{3}}{2}\sqrt{-1}\in\mathcal{H}.$

Problema 5 (2 + 1 puntos). Sea $n \ge 3$ un número natural *impar*. Consideremos el grupo diédrico

$$D_{2n} = \{ id, r, r^2, \dots, r^{2n-1}, f, fr, fr^2, \dots, fr^{2n-1} \}$$

(las simetrías del 2*n*-ágono regular) y sus subgrupos $H := \langle r^2, f \rangle$ y $K := \{1, r^n\}$.

- 1) Demuestre que $H \cong D_n$ y $K \cong \mathbb{Z}/2\mathbb{Z}$.
- 2) Demuestre que $D_{2n} \cong H \times K$.
- 3) Pregunta por un punto extra: si n es par, demuestre que $D_{2n} \not\cong D_n \times \mathbb{Z}/2\mathbb{Z}$.

Problema 6 (2 puntos). Sea A un grupo abeliano aditivo. Digamos que $x \in A$ es **divisible** por $n = 1, 2, 3, 4, \ldots$ si existe $y \in A$ tal que $n \cdot y = x$. Si $x \in A$ es divisible por cualquier entero positivo n, digamos que es **divisible**.

- 1) Demuestre que x es divisible si y solamente es divisible por cualquier número primo $p=2,3,5,7,11,\ldots$
- 2) Sea p un número primo fijo. Consideremos el grupo aditivo

$$\mathbb{Z}[1/p] := \{a/p^n \mid a \in \mathbb{Z}, n = 0, 1, 2, \ldots\}.$$

Demuestre que todo elemento del grupo cociente $\mathbb{Z}[1/p]/\mathbb{Z}$ es divisible por p.

- 3) Demuestre que todo elemento de $\mathbb{Z}[1/p]/\mathbb{Z}$ es divisible por cualquier primo $q \neq p$. Sugerencia: use de alguna manera la identidad de Bézout para $q \neq p^k$.
- 4) Deduzca de 1), 2), 3) que todo elemento de $\mathbb{Z}[1/p]/\mathbb{Z}$ es divisible.