PREDICTING HOUSE PRICES IN AMES, IOWA

for i in team:

Alex Tin, Deborah Leong, Tori Lowery, Jay Cohen

Agenda

Data Exploration

Data Cleaning & Feature Engineering

Models

Evaluating the Models

Implications

Data Exploration

- Examined features for:
 - Low Variance
 - Redundancy
 - Missingness

Data Exploration: Low Variance

Identifying
low-variance features
helps us to understand
where we might find
predictive power-and
where we might not.

Minority Columns:

• Alley: 91/1460

• Pool: 7/1460

• Fence: 281/1460

 Heating: 32 / 1460 (non-GasA)

Data Exploration: Redundancy

Features including **External Quality** (seen below on the left) and **Foundation** (right) seemed to follow hand-in-hand with the **Year** the house was built. This creates opportunities for multicollinearity.

Data Exploration: Missingness

High Proportion of Missingness

PoolQC (99.5%), MiscFeature (96.3%),
 Alley (93.7%), Fence (80.7%)

Missing at Random

- Relation to other columns
 - FireplaceQu (correspond to Fireplaces = 0)
 - LotFrontage (LotConfig)
 - Garage* (GarageType = No garage)

■ Missing Completely at Random

- Bsmt*
- Electrical

Missing Not at Random

- MasVnrType
- MasVnrArea

	Count	%
PoolQC	1453	0.995205
MiscFeature	1406	0.963014
Alley	1369	0.937671
Fence	1179	0.807534
FireplaceQu	690	0.472603
LotFrontage	259	0.177397
GarageType	81	0.055479
GarageCond	81	0.055479
GarageFinish	81	0.055479
GarageQual	81	0.055479
GarageYrBlt	81	0.055479
BsmtFinType2	38	0.026027
BsmtExposure	38	0.026027
BsmtQual	37	0.025342
BsmtCond	37	0.025342
BsmtFinType1	37	0.025342
MasVnrArea	8	0.005479
MasVnrType	8	0.005479
Electrical	1	0.000685

Data Cleaning and Feature Engineering

- Outliers
- Skewness
- Feature Manipulation
- Missingness/Imputation

Data Cleaning: Outliers

- Check for outliers to remove by plotting various features against SalePrice
- 2 main outliers: Id #s 524 and 129
- Remove those two outliers from data

Data Cleaning: Skewness

 Because SalePrice was right skewed, we performed a log transformation on SalePrice

Data Cleaning: Skewness

- Find features that are skewed
- Perform transformation on skewed features
- Example:
 - Find features with skew > .5
 - Perform Box-Cox
 Transformation on those
 features

There are 18	numerical	reatures	with	Skew	>	0.5	:
MiscVal	21.905	5788					
LotArea	13.146	5313					
LowQualFinSF	12.065	5521					
3SsnPorch	11.354	1131					
KitchenAbvGr	4.311	1221					
EnclosedPorch	a 4.006	5758					
ScreenPorch	3.937	7927					
OpenPorchSF	2.540	0619					
WoodDeckSF	1.845	5533					
MSSubClass	1.375	365					
1stFlrSF	1.254	1244					
LotFrontage	1.104	1841					
GrLivArea	1.071	L839					
2ndFlrSF	0.863	3131					
TotRmsAbvGrd	0.751	L990					
Fireplaces	0.724	1697					
HalfBath	0.701	L358					
OverallCond	0.569	9427					

There are 18 numerical features with Show > 0

Data Cleaning: Feature Manipulation

Because many of the features were a scaling metric from "Poor" to "Excellent", e.g. the quality of the home's exterior ("**ExterQual**") or the basement's condition ("**BsmtCond**"), these features were converted to a numerical value. This gives weight to the ranks since 1, "Very Poor", has a relational distance to 10, "Very Excellent".

Numerical data, like "**MSSubClass**", which described a classification of the dwelling and did not have any numerical relationship, was manipulated into a string.

Alley was manipulated into a binary, "Yes" or "No".

MSSubClass	int64
MSZoning	object
LotFrontage	float64
LotArea	int64
Street	object
Alley	object
LotShape	object
LandContour	object
Utilities	object
LotConfig	object
LandSlope	object
Neighborhood	object
Condition1	object
Condition2	object
BldgType	object
HouseStyle	object
OverallQual	int64
OverallCond	int64
YearBuilt	int64
YearRemodAdd	int64
RoofStyle	object
RoofMatl	object
Exterior1st	object
Exterior2nd	object
MasVnrType	object
MasVnrArea	float64
ExterQual	object
ExterCond	object
Foundation	object
BsmtQual	object
BsmtCond	object
BsmtExposure	object
BsmtFinType1	object
BsmtFinSF1	int64
BsmtFinType2	object
BsmtFinSF2	int64
BsmtUnfSF	int64
TotalBsmtSF	int64
Heating	object
HeatingOC	object
CentralAir	object
Electrical	object
1stFlrSF	
	int64
2ndFlrSF	int64
LowQualFinSF	int64
GrLivArea	int64

Data Cleaning:Missingness/Imputation

Missingness in features like "GarageYrBlt" (the year the garage was built) and the total "Lot Frontage" (linear feet of street connected to property) required different treatments.

For the mentioned garage feature, if the home did not have a garage, there would be no year recorded for one to be built. We imputed a value of 0 to distinguish these homes as not having garages.

Missingness in the "Lot Frontage" feature, however, appeared to be instances of absent data. To salvage these 259 lines, we grouped by Neighborhood then binned a similar feature, "LotConfig" (the configuration of the lot, e.g. a corner lot or inside lot), and imputed the respective average frontage to each missing entry.

```
sum(pd.isna(houses["GarageYrBlt"]))
81
sum(pd.isna(houses["LotFrontage"]))
259
```


Cleaned Data

- Missingness
- **Outliers**
- Categorizing

Models

- Linear Regressions
 - OLS
 - Ridge
 - Lasso
- Random Forest
- Gradient Boosting

Models: Ordinary Least Squares

- Select features that have high correlation with log(SalePrice)
- Try different transformations on skewed features
 - Box-Cox
 - Log

	Coefficient
log_GrLivArea	0.393874
log_LotArea	0.145287
log_TotalBsmtSF	0.029652
log_GarageArea	0.017314
OverallQual	0.083565
ExterQual	0.020214
KitchenQual	0.042584
YrSold	-0.000267
YearBuilt	0.002497

<pre>ols.fit(X2_train, y2_train) ols.score(X2_train, y2_train)</pre>	While our train score is decent, the test score shows we are
0.939972827099102	overfitting. The graph to the right also shows there is high
ols.score(X2_test, y2_test)	multicollinearity amongst our
0.6980629831416827	features. Penalization is needed.

Models: Ridge

- Finding optimal alpha
- RidgeCV(Cross Validation)
- Low RMSE

Models: Lasso

Because there were so many features, we attempted a LASSO model to guide feature trimming.

The graph to the right shows the significant drop of many features' coefficients, a sign their slope was greatly inflated from multicollinearity.

Models: Lasso, Hyperparameter Tuning

To find the best lambda, we found the cross where the model no longer overfits (the left side of the gray dashed line) and before the model begins underfitting (the right side of the line).

Models: Random Forest

While previously for our linear models we had taken the log of our Sale Price target, for tuning our Random Forest model we found the log transformation actually weakened the model. This may be that Random Forest is a nonlinear model and can handle far better a nonlinear relationship to the target.

Additionally, when we analyze the rankings of feature importance (see figure to the left), "OverallQual" greatly surpasses every other predictor.

Models: Random Forest

In the RandomForest model trained where "OverallQual" was classified as categories, several other features values jumped up on the feature importance chart.

New on the leaderboard:

YearRemodA, Fireplaces, FireplaceQu, Foundation

Dropped off the leaderboard: Total Porch, GarageYrBlt, YearBuilt, OverallQual

Models: Gradient Boosting

Hyperparameter tuning quickly grew to a task fit better for grid search than manual manipulation. Previously lasso and ridge required a predetermined lambda, but for our Gradient Boosting model, parameters including number of trees, learning rate, maximum depth, and maximum features to consider all needed testing.

Below is a sample grid search performed for our gradient boosting model.

```
grid_para_gbm = {
    "n_estimators": [100, 200, 300, 400, 500],
    "learning_rate": [.0001, .001, .01, 0.1],
    "max_depth": list(range(1, 10)),
    "max_features": [None, 1, 2, 3],
    "random_state": [42]}
grid_search_gbm = GridSearchCV(gbm, grid_para_gbm, scoring='r2', cv=5, n_jobs=-1)
grid_search_gbm.fit(X_train, y_train)
print("The best train score is: ", grid_search_gbm.best_estimator_.score(X_train, y_train))
print("The best test score is: ", grid_search_gbm.best_estimator_.score(X_test, y_test))
The best train score is: 0.9653301803244188
The best test score is: 0.9071519763531863
```

Evaluating the Models

Model	Trials	Train_score	Test_score
Linear Regression	Multiple Linear Regression without dropping outliers and with Log Transformations of GrLivArea, LotArea, TotalBsmtSF, GarageArea, and SalePrice	0.846	0.842
Linear Regression	Multiple Linear Regression dropping outliers and with Log Transformations of GrLivArea, LotArea, and SalePrice	0.866	0.732
Penalized Linear Regression (Ridge)	Ridge Regression with CV with Box-Cox Transformations on all numerical features and dropping outliers	RMSE: 0.941	
Penalized Linear Regression (Lasso)	normalize=True, alpha=16.98442211	0.888	0.887
RandomForest v1	62 features, n_estimators = 1000, max_features = 20	0.974	0.877
RandomForest v2	31 features, n_estimators = 500, max_features = 100	0.979	0.906
Gradient Boosting v1	62 features, n_estimators = 1000, learning_rate = 0.1	0.998	0.907
Gradient Boosting v2	62 features, n_estimators = 500, learning_rate = 0.1	0.968	0.922
Gradient Boosting v3	62 features, n_estimators = 500, learning_rate = 0.1, max_depth = 3, max_features=None	0.994	0.927

<u>Implications</u>

For housing prices, human subjectivity ("OverallQual") was still the largest determinant. Following shortly behind Overall Quality were often features measuring square footage, but quite a few other subjective categories also made it to the top depending on the model. "ExterQual" which judged on a scale of 1-5 from "poor" to "excellent" the quality of the material on the exterior.

<u>Improvements</u>

Explore ensemble techniques/stacked models to improve performance

Tips:

- 1. Invest in a professional photographer
- 2. Let in maximum light
- 3. Don't over-upgrade

First impressions are the only impressions. Professional photos can set the tone for house's quality.

If upgrading appliances, keep in mind the overall quality of the home.