

Cloud Computing

蔡明宏 陳約廷

A View of Cloud Computing

Communications of the ACM Volume 53 Issue 4, April 2010

Author	Affiliation
Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, Matei Zaharia	UC Berkeley Reliable Adaptive Distributed Systems Laboratory (RAD Lab)

History-Based Harvesting of Spare Cycles and Storage in Large-Scale Datacenters

12th USENIX Symposium on Operating Systems Design and Implementation (OSDI '16), November 2016

Author	Affiliation	
Yunqi Zhang	University of Michigan & Microsoft Research	
George Prekas	EPFL and Microsoft Research	
Giovanni Matteo Fumarola	Microsoft	
Marcus Fontoura	Microsoft	
Íñigo Goiri	Microsoft	
Ricardo Bianchini	Microsoft Research	

Dynamic Resource Allocation Using Virtual Machines for Cloud Computing Environment

IEEE Transactions on Parallel and Distributed Systems Volume 24 Issue 6, June 2013

Author	Affiliation	
Zhen Xiao	Peking University, Beijing	
Weijia Song	Peking University, Beijing	
Qi Chen	Peking University, Beijing	

Open Source Cloud Technologies

Third ACM Symposium on Cloud Computing (SoCC '12), October 2012

Author	Affiliation	
Salman A. Baset	IBM T. J. Watson Research Center	

Why Cloud Computing? (Berkeley)

Cloud administrative	Client
 Economy of scale (profitable) Brand effect Providers: Google, Microsoft, Amazon 	 Pay as you go Rewards conservative choices Surge computing Reduce UpFront cost

Cloud Management Difficulties

Over-Provisioning

Utility is Key!

Static Resource Allocation

•Main Goal: Efficient Task Scheduling

To achieve:

Better Server Utilization

History-Based Harvesting of Spare Cycles and Storage in Large-Scale Datacenters

12th USENIX Symposium on Operating Systems Design and Implementation (OSDI '16), November 2016

Author	Affiliation	
Yunqi Zhang	University of Michigan & Microsoft Research	
George Prekas	EPFL and Microsoft Research	
Giovanni Matteo Fumarola	Microsoft	
Marcus Fontoura	Microsoft	
Íñigo Goiri	Microsoft	
Ricardo Bianchini	Microsoft Research	

History-Based Harvesting of Spare Cycles & Storage in Large-Scale Datacenters

- Smart task scheduling
- Smart data placement

Smart Task Scheduling

- Motivation/Main contribution
- History data observation
- Algorithm
- Experienment

Define Primary Tenant

Primary tenant

Result ranking server

Result ranking server

Result ranking server

Service Co-Location Isolation Container scheduling **Primary Tenant** Container Container

History-Based Harvesting of Spare Cycles and Storage in Large-Scale Datacenters (2013)

Smart Task Scheduling

- Motivation / Main contribution
- History data observation
- Algorithm
- Experienment

Tenant Characterization

Periodic

User facing application

Constant

Web crawling

Batch Data analytics

Unpredictable

Testing

Why historical is good reference?

Constant and Period Tenant occupies majority of server (75% average)

Figure 3: Percentages of servers per class.

Smart Task Scheduling

- Motivation / Main contribution
- History data observation
- Algorithm
- Experienment

Objective

For Long job, want to prioritize Long Contant jobs

Objective

Priority Type	1st	2	?nd	3rd
Long job	Constant	F	Periodic	Unpredictable
Short job	Unpredictable	F	Periodic	Constant
		-		

Task scheduling

- 1. Weights classes for resource assignment
- 2. Resource requirement by DAG

Weighted setting

Priority	1st	2nd	3rd
Long job	constant	periodic	unpredictable
Short job	unpredictable	periodic	constant
Medium job	periodic	constant	unpredictable

History-Based Harvesting of Spare Cycles and Storage in Large-Scale Datacenters (2013)

Job resource requirement

Figure 7: Example job execution DAG.

Most "crowdy" moment as Job Resource Requirement

Smart Task Scheduling

- Motivation / Main contribution
- History data observation
- Algorithm
- Experienment

Primary Tenant Latency Comparation

Figure 10: Primary tenant's tail latency in the real testbed for versions of YARN and Tez.

History-Based Harvesting of Spare Cycles and Storage in Large-Scale Datacenters (2013)

Secondary Tenant effect against Primary Tenant

Figure 11: Secondary tenants' run times in the real testbed for versions of YARN and Tez.

History-Based Harvesting of Spare Cycles & Storage in Large-Scale Datacenters

- Smart Task Scheduling
- Smart Data Placement

Smart Data Placement

- Motivation / Main contribution
- History data observation
- Algorithm
- Experienment

Re-Image - Durability/Busy server - unavailable data

Ideal Data replica placement

Greedy Solution

Re-Image the disks the least / have lowest CPU utilizations.

Consistant Performance!!!

Smart Data Placement

- Motivation / Main contribution
- History data observation
- Algorithm
- Experienment

ReImages frequency CDF

Figure 4: Per-server number of reimages in three years.

Diversity in reimage frequency

Change of ReImages frequency Group CDF

Figure 6: Number of times a primary tenant changed reimage frequency groups in three years.

History-Based Harvesting of Spare Cycles and Storage in Large-Scale Datacenters (2013)

- Diversity in reimage frequency
- History data can be good inference!

Smart Data Placement

- Motivation / Main contribution
- History data observation
- Algorithm
- Experienment

Take advantage of diversity!

utilization Reimage	High	Medium	Low
Frequent			
Intermediate			
Infrequent			

smart data placement

utilization Reimage	High	Medium	Low
Frequent	•••		
Intermediate			
Infrequent			

Take advantage of diversity!

utilization Reimage	High	Medium	Low
Frequent	•••		
Intermediate			00
Infrequent		••	

Classification Example

Figure 8: Two-dimensional clustering scheme.

Smart Data Placement

- Motivation / Main contribution
- History data observation
- Algorithm
- Experienment

Primary Tenant Latency Comparison

Figure 12: Primary tenant's tail latency in the real testbed for versions of HDFS.

History-Based Harvesting of Spare Cycles and Storage in Large-Scale Datacenters (2013)

Lost block Comparison

Figure 15: Lost blocks for two replication levels.

Failed Access Comparison

Figure 16: Failed accesses under linear scaling.

Main contribution Summary

- Interesting View of Historical Data
- Primary / Secondary Tenant Perspective
- Data Placement Algorithm
- Historical Data as Good Measure of Future

Dynamic Resource Allocation Using Virtual Machines for Cloud Computing Environment

IEEE Transactions on Parallel and Distributed Systems Volume 24 Issue 6, June 2013

Author	Affiliation
Zhen Xiao	Peking University, Beijing
Weijia Song	Peking University, Beijing
Qi Chen	Peking University, Beijing

Dynamic Resource Allocation

Main Goal: Effective Load Prediction

A good Framework to achieve:

- Prevent Overload (Under-Provisioning)
- Green Computing when Possible (Over-Provisioning)

Cloud Manager Framework - Skewness

Skewness (a measure of balance)

- → Minimize skewness
- → Balance resource utilization

$$skewness(p) = \sqrt{\sum_{i=1}^{n} (r_i/\bar{r} - 1)}$$

- r̄: average utilization of all resources
- r_i: utilization of resource i

Cloud Manager Framework - Migration

Trade-Off: Load Balancing ←→ Green Computing

Migration:

- Hot Migration for HotSpot (too High utilization)
- 🕏 Cold Migrartion for ColdSpot (too Low utilization)

Cloud Manager Framework

- **✓** Skewnesss
- ✓ Hotspot, Coldspot

Load Prediction

Load Prediction - Original

No High Error!

Original: Exponential (Weighted) Moving Average

- Slower trend
- Conservative trend

Dynamic Resource Allocation Using Virtual Machines for Cloud Computing Environment (2012)

Load Prediction - FUSD

Improved: Fast Up Slow Down Algorithm

- Aggressive estimation when rising trend
- Conservative estimation when descending trend

$$E(t) = -|\alpha| \times E(t-1) + (1+|\alpha|) \times O(t), -1 \le \alpha \le 0$$

- ↑ α for increasing trend
- ↓ α for descending trend

根據(上升/下降) trend 而有不同參數

Load Prediction - FUSD

(a) EWMA: $\alpha = 0.7, W = 1$

(b) FUSD: $\uparrow \alpha = -0.2, \downarrow \alpha = 0.7, W = 1$

(APM = Active Physical Machine)

With vs. Without Prediction

Results are almost the same!

Notable decrease in hotspot

(a) number of hot spots

Notable decrease in migrations

Dynamic Resource Allocation Using Virtual Machines for Cloud Computing Environment (2012)

57

Dynamic Resource Allocation

•Main Goal: Effective load prediction

• Contribution:

- ✓ Cloud Manager Framework
- ▼ Fast Up Slow Down Algorithm (FUSD)
- **▼** Dynamic Green Computing

Comparison

Different aspects of utilization:

- Static utility optimization via Primary/Secondary tenant
 - Better allocating with concept of Secondary Tenant
 - Good Initialization
- Dynamic utility optimization via Minimizing Skewness
 - Live Migration
 - Support Green Computing

Idea

- Dynamic allocation: Better prediction via ML
- Static vs. Dynamic?
- Static + Dynamic

Cloud Framework - OpenStack

- Framework for Private Cloud
- Infrastructure as a Service (laaS)
- Modulized component

OpenStack - Fast Deployment

- Image Management (Glance)
- Network Management (Neutron)
- VM Management (Nova)
- Storage Management (Swift)
- Identity Authentication (KeyStone)

OpenStack - MAAS (Metal As A Service)

- Image Management
- Network Management
- Basic Configurations (user, bashrc, ssh...)
- Fast Deployment

