

Virtualized Infiniband: Enabling HPC in the Cloud

Hoot Thompson

NASA Center for Climate Simulation (NCCS)

john.h.thompson@nasa.gov

NASA Center for Climate Simulation

Focus on the research side of climate study (versus NOAA's operational position)

Simulations span multiple time scales

- Days for weather prediction
- Seasons to years for short term climate prediction
- Centuries for climate change projection

Examples:

- High fidelity 3.5 KM global simulations of cloud and hurricane predictions
- Comprehensive reanalysis of the last thirty years of weather/climate –MERRA
- Multi-millennium analysis for the Intergovernmental Panel on Climate Change

Integrated set of supercomputing, visualization and data management technologies

- Discover computational cluster
 - » Mix traditional Intel cores, nVidia GPUs and Intel Xeon Phis
 - » DDR/QDR/FDR InfiniBand (IB) backbone
 - » 1 GbE and 10 GbE management infrastructure
 - » ~17 PBytes RAID based shared parallel file system (GPFS)
- Tape archive of over 30 PBytes

Discover Computational Growth

Objective: HPC Science Cloud

Adjunct to Discover hosted science processing

- Special/temporary debug queues
- Customized run-time environments
- Code validation against older system images

Expanded customer base

- Temporal processing campaigns (e.g. IFloodS)
- Mission support (e.g. SMAP)

Issue is matching HPC levels of performance

- Node-to-node communication critical – high speed, low latency, scalable
- Shared, high performance file system mandatory
- Management and rapid provisioning of resources – cluster formation

Potential obstacle – performance loss in virtualized space

RHEL Virtualized IB Test Bed

Set-up eight node POC environment – Westmere based

- Ran representative benchmarks
- Contrasted bare Host (KVM hypervisor) with VM (guest)

Benchmark	Description
Stream	Measures sustainable memory bandwidth and the corresponding computation rate.
OSU Micro-benchmarks	Measures performance of OpenSHMEM data movement and atomics operations.
LINPACK	Measures floating point performance by solving a set of linear equations.
NAS Parallel Benchmarks (NPB)	Mimic the computation and data movement in CFD applications.

Investigated multiple techniques for improving performance

- VM tuning – hugepages and NUMA awareness
- Virtualized IB using SR-IOV

Summarized Virtualized IB Results

VM memory bandwidth actually exceeded bare-metal

VM bandwidth/latency between nodes matched bare-metal

Multi-node VM vs. bare-metal very good results – performance/scaling

LINPACK	NPB Class D								
	Kernels					Pseudo Applications			
	IS	EP	CG	MG	FT	BT	SP	LU	
	88%	94%	98%	94%	96%	100%	90%	88%	91%

Scale Out Comparisons

GlusterFS Operational Prototype

Recently acquired 960TB raw storage

- Four I/O servers
 - IB frontend
 - SAS backend
- Four 60-bay JBODS populated with 4TB drives
 - One per I/O server
 - Various Gluster volume configurations

Bare metal Gluster clients

- Connected to I/O servers using IB/RDMA

VM Gluster clients

- Connected to VMs servers using virtualized IB/RDMA

Red Hat OpenStack (RHOS) Cloud

Set-up three node evaluation system

- Havana release
- One controller
- Two compute node
- More compute nodes as available

Objective

- Gain hands on familiarity
- Work with Red Hat/Mellanox
 - Constructs for declaring virtualized IB connections
 - Rapid HPC cluster instantiation
- Define architecture – mix of IB and traditional Ethernet
- Seed the Science Cloud

Decadal Water Products for ABoVE

0 km 5

Landsat image, false color composite, from near
Barrow, AK

National Aeronautics and Space Administration

Small lakes and ponds are a prominent feature of the landscape in the High Northern Latitudes. These ponds will be mapped at 30m spatial resolution at 3 epochs (1991, 2001, 2011) prior to the Arctic Boreal Vulnerability Experiment (ABoVE) field campaign. This will allow researchers to identify areas to study that are either constant or ones that are changing. The effort will take advantage of the time series of Landsat data that is available in this region to provide the max, min, and average condition of each lake/pond 1ha or larger for each epoch.

Courtesy of Mark Carroll, Sigma Space Corporation

Virtualized Infiniband: Enabling HPC in the Cloud

Science Cloud Use Case

The time series for each epoch will draw from 3 years (1990–1992; 2000–2002; 2010–2012)

To cover the study region this translates to >25,000 scenes to process

Each scene is categorized into land, water, and other (cloud, ice, shadow, undetermined)

The results are then stacked and summed to produce 1 map for each epoch that is the “average” condition for that period

The resultant maps can be used to identify areas of change and areas that are stable

Testing In-Progress / Next Steps

Virtualization overhead elimination (push for 0%)

- Single node VM matches bare metal
- Different VM configurations

Newer Intel CPU performance – virtualized IB

- Eight node Sandy Bridge cluster in test
 - Different I/O structure stirring interest
- Ivy Bridge system in the works
 - 80 node test system – scaling out > 8 nodes

GlufterFS performance tuning

- RDMA write/read rates
- Various volume and file system configurations

Red Hat OpenStack

- Grow test cluster into Science Cloud
- Host science cloud use cases directly – self directed resources

Thanks to

Red Hat – software and tuning support

Mellanox – hardware loaners and technical support

OSU – mvapich2 software support

Questions?

Hoot Thompson
NASA Center for Climate Simulation (NCCS)
john.h.thompson@nasa.gov

Benchmarking Details

Virtualized IB Test Configuration

Configuration Details

Item	Details
Processor Type	Westmere
Processor Number	X5660
Processor Speed	2.8GHz
Sockets per Node	2
Cores per Socket	6
Cores per Node	12
Main Memory	24GB
Interconnect	Mellanox MT26428 QDR IB
Operating System	Red Hat 6.4
Kernel	2.6.32-358.2.1

SR-IOV Basics – Virtual Functions

- BIOS setting
- Kernel iommu enabled
- Special firmware – modified .ini
- Distro Infiniband modules

VM Configuration

- Cloned Westmere features
- 12 cores
- 20 GB memory
- Red Hat 6.4
- 2.6.32-358.2.1 kernel
- Hugepages
- Pinned cpus
- 1 VM per node

Detailed Test Results

Single node

- Memory bandwidth
- LINPACK

Multiple node

- Node-to-node bandwidth
 - Node-to-node latency
 - Eight node LINPACK
 - Eight node NPB
- ⇒ Spread host file

LINPACK Benchmark Setup

Two different LINPACK versions

- Openmp – single node
- Hybrid – one or more mpi processes each starting 1 to 12 threads

Different block sizes (NB)

- 144, 168, 192 and 216

P Q settings

- P X Q equals number of mpi processes to fill node/cluster
- P always less than Q
- Minimize P – Q (square is best)

NAS Parallel Benchmarks - NPB

Mimic the computation and data movement in CFD applications

Different class levels (C, D) reflect different problem sizes

Five Kernels

- IS – Integer Sort, random memory access
- EP – Embarrassingly Parallel
- CG – Conjugate Gradient, irregular memory access and communication
- MG – Multi-Grid on a sequence of meshes, long and short distance
- FT – discrete 3d fast Fourier Transform, all-to-all communication

Three pseudo applications

- BT – Block Tri-diagonal solver
- SP – Scalar Penta-diagonal solver
- LU – Lower-Upper Gauss-Seidel solver

Memory Bandwidth – Single Node

LINPACK – Single Node Host

LINPACK – Single Node VM

LINPACK – Host versus VM Comparison

Bandwidth – Node-to-Node

Latency – Node-to-node Latency

LINPACK – Eight Hosts

LINPACK – Eight VMs

LINPACK – Eight Hosts Versus Eight VMs

NPB IS – Eight Hosts Versus Eight VMs

Integer Sort, random memory access

88% Efficiency

NPB EP – Eight Hosts Versus Eight VMs

Embarrassingly Parallel

98% Efficiency

NPB CG – Eight Hosts Versus Eight VMs

B
E
T
T
E
R

*Conjugate Gradient, irregular memory access
and communication*

94% Efficiency

NPB MG – Eight Hosts Versus Eight VMs

*Multi-Grid on a sequence of meshes,
long and short distance*

96% Efficiency

NPB FT – Eight Hosts Versus Eight VMs

*discrete 3d fast Fourier Transform,
all-to-all communication*

NPB BT – Eight Hosts Versus Eight VMs

Block Tri-diagonal solver

90% Efficiency

NPB SP – Eight Hosts Versus Eight VMs

B
E
T
T
E
R

Scalar Penta-diagonal solver

88% Efficiency

NPB LU – Eight Hosts Versus Eight VMs

Class C

B
E
T
T
E
R

Class D

Lower-Upper Gauss-Seidel solver

91% Efficiency