Trabajo Práctico Nro 9 - Sistema formal L, axiomas y reglas de inferencia

```
\begin{array}{l} \mathfrak{ID} \ \mathsf{Axiomas} \ \mathsf{de} \ L \ > \\ (L1) = (A \to (B \to A)) \\ (L2) = ((A \to (B \to C)) \to ((A \to B) \to (A \to C))) \\ (L3) = (((\lnot A) \to (\lnot B)) \to (B \to A)) \end{array}
```

Ejercicio 1

Dada la siguiente demostración sintáctica válida en L:

```
\begin{split} &1.\left(\left(\left(\neg p\right)\rightarrow\left(\neg(q\rightarrow r)\right)\right)\rightarrow\left(\left(q\rightarrow r\right)\rightarrow p\right)\right)\\ &2.\left(\left(\neg p\right)\rightarrow\left(\neg(q\rightarrow r)\right)\right)\\ &3.\left(\left(q\rightarrow r\right)\rightarrow p\right) \end{split}
```

• Identificar el conjunto Γ con menor cantidad de fórmulas bien formadas (fbfs) y la fórmula A tal que $\Gamma
subsete_L A$. Indicar, si es posible, que axioma, hipótesis o regla de inferencia fue aplicado en cada paso de la demostración.

Según la demostración que nos proveen podemos ver:

- El paso 1) es una instancia del axioma (L3) donde:
 - \bullet A=p
 - $B = (q \rightarrow r)$
- El paso 2) al no ser axioma y no poder deducirse por una regla de inferencia debe ser una hipótesis de Γ
- El paso 3) es la aplicación del Modus Ponens en 1) y 2).

Como el paso 2) no es una instanciación de ningún axioma de L o la aplicación de ninguna regla de inferencia, podemos ver que tiene que ser fórmula del conjunto Γ , por lo tanto el conjunto Γ nos queda $\Gamma = \{((\neg p) \to (\neg (q \to r)))\}$. La fórmula A es $((q \to r) \to p)$.

• ¿Es A un teorema de L? Justificar.

Para que A sea una teorema de L se tiene que cumplir $\emptyset \models_L A$ siendo $A = ((q \to r) \to p)$, pero en este caso para deducir A se tuvo que usar la hipótesis del paso 2). Si fuera un teorema de L

tendríamos que poder demostrar A sin ninguna hipótesis.

• ¿Es A tautología? Justificar.

Al haber demostrado que A no es una teorema de L, podemos decir que A no es una tautología si nos apoyamos en la definición que nos dice " $\vdash_L A$, entonces $\models A$." Es decir, todo lo demostrable es verdadero (tautología), al A no ser un teorema de L sabemos que no es tautología.

Ejercicio 2

Sean A B C, y tres fórmulas bien formadas (fbfs) del sistema formal L. Dar una demostración sintáctica en L de las siguientes deducciones. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

Ayuda: es posible utilizar, si es necesario, propiedades ya demostradas en el libro de Hamilton, como por ejemplo, metateorema de la Deducción, silogismo hipotético (SH), y otros teoremas ya demostrados en el libro (ver prop 2.11a y prop 2.11b).

1.
$$\vdash_L (((\neg A) \to A) \to A)$$

Esta demostración se encuentra en el libro de Hamilton se llega a ella realizando la demostración de $orange_L ((\neg A) \to A)$ utilizando los 3 axiomas del sistema L y las reglas de inferencia Modus ponens y Silogismo hipotético. Al haber demostrado $orange_L ((\neg A) \to A)$, por el Metateorema de la Deducción también se demuestra $orange_L (((\neg A) \to A) \to A)$.

2.
$$\downarrow_L (((\neg B) \rightarrow (\neg A)) \rightarrow (((\neg B) \rightarrow A) \rightarrow B))$$

Vamos a usar el Metateorema de la Deducción 2 veces para poder demostrar $orange_L (((\neg B) \to (\neg A)) \to (((\neg B) \to A) \to B))$ de tal forma que la demostración que podemos hacer es esta:

Demostración de $\emptyset \cup \{((\neg B) \to (\neg A))\} \cup \{((\neg B) \to A)\} \not\models_L B$

- $(((\neg B) \rightarrow (\neg A)) \rightarrow (A \rightarrow B))$ Instancia de Axioma L3
- $((\neg B) \rightarrow (\neg A))$ Hipótesis
- $(A \rightarrow B)$ Modus ponens entre 1 y 2
- $((\neg B) \rightarrow A)$ Hipótesis
- $((\neg B) \rightarrow B)$ Silogismo Hipotético entre 3 y 4
- $(((\neg B) \rightarrow B) \rightarrow B)$ Instancia de la propiedad 2.11b
- B Modus ponens entre 5 y 6

Al lograr esta demostración por el Metateorema de la deducción se cumple la demostración $\vdash_L (((\neg B) \to (\neg A)) \to (((\neg B) \to A) \to B)).$

3.
$$\{((A \rightarrow B) \rightarrow C), B\} \mid_L (A \rightarrow C)$$

Esta demostración se encuentra en la teoría, la explican de esta forma:

- $((B \rightarrow (A \rightarrow B))$ Instancia de Axioma L1
- B Hipótesis
- $(A \rightarrow B)$ Modus ponens entre 1 y 2
- $((A \rightarrow B) \rightarrow C)$ Hipótesis
- C Modus ponens entre 3 y 4
- ((C o (A o C)) Instancia de Axioma L1
- $(A \rightarrow C)$ Modus ponens entre 5 y 6

También se puede hacer más sencillo demostrarlo aplicando el Metateorema de la deducción demostrando $\{((A \to B) \to C), B\} \cup \{A\} \mid_L (C)$

- ((B o (A o B)) Instancia de Axioma L1
- B Hipótesis
- $(A \rightarrow B)$ Modus ponens entre 1 y 2
- ((A o B) o C) Hipótesis
- C Modus ponens entre 3 y 4

Al lograr esta demostración por el Metateorema de la deducción se cumple la demostración $\{((A \to B) \to C), B\} \mid_L (A \to C).$

Ejercicio 3

Sea Γ un conjunto de fbfs del sistema formal L. Se sabe que $\Gamma
ightharpoonup_L A$ ¿Es cierto que para todo Γ_i tal que $\Gamma_i \subset \Gamma$; $\Gamma_i
ightharpoonup_L A$? Fundar.

No necesariamente, porque la demostración de $\Gamma
ightharpoonup L$ puede depender de varias fórmulas de Γ trabajando juntas. Si tomamos un subconjunto Γ_i que no contenga todas las fórmulas necesarias, entonces $\Gamma_i
ightharpoonup L$ podría ser falso. Podemos demostrarlo con el siguiente contra ejemplo:

Si tomamos a $\Gamma = \{A, A \rightarrow B\}$ y queremos demostrar $\Gamma \vdash_L B$ esto es posible:

A - Hipótesis

- $A \rightarrow B$ Hipótesis
- B Modus ponens entre 1 y 2

Pero si tomamos el subconjunto $\Gamma_i = \{A\}$ no podemos demostrar $\Gamma_i \models_L B$ porque sin $A \to B$ no podríamos aplicar el *Modus ponens* para obtener B

De esta forma encontramos un contra ejemplo que demuestra que no es cierto que para todo Γ_i tal que $\Gamma_i \subset \Gamma$; $\Gamma_i \models_L A$

Ejercicio 4

Sea A una fbf y Γ un conjunto de fbfs. Si se cumple $\Gamma
brack A$, ¿Es cierto que vale h para todo h y para todo h? Justificar.

No es cierto que si se cumple $\Gamma
bracktriangleright L$ A vale racktriangleright L A para todo racktriangleright A para todo racktriangleright A significa que racktriangleright A es derivable a partir de racktriangleright A pero esto no implica que racktriangleright A sea un teorema del sistema racktriangleright A. Esto lo podemos demostrar con el siguiente contra ejemplo:

Si tomamos $\Gamma = \{p\}$ se cumple que $\Gamma \mid_L (p)$ porque p pertenece a Γ , pero $\emptyset \mid_L (p)$ no es cierto, porque p no es un teorema de L, es decir, no es demostrable sin premisas.

De esta forma encontramos un contra ejemplo que demuestra que no es cierto que si se cumple $\Gamma \vdash_L A$ vale $\vdash_L A$ para todo A y para todo Γ .

Ejercicio 5

Determinar si las siguientes afirmaciones son válidas o no en el sistema formal L. Justificar en cada caso.

1.
$$\{q\} \mid_L (p \to q)$$

Sí, esta afirmación es válida. Podemos construir una demostración formal que valide $\{q\} \not\models_L (p \to q)$ de esta forma por ejemplo:

- ullet (q
 ightarrow (p
 ightarrow q)) Instancia de L1
- q Hipótesis
- ullet (p
 ightarrow q) Modus ponens entre 1 y 2

O podríamos demostrarlo por el Metateorema de la deducción demostrando $\{q\} \cup \{p\} \mid_L (q)$

q - Hipótesis

Al poder demostrar q de esa forma, sabemos que se cumple $\{q\} \not \mid_L (p \to q)$

2.
$$\{p \rightarrow q\} \vdash_L (q)$$

No, esta afirmación no es válida. La clave acá es que si bien nos dan a $(p \to q)$ como premisa, no tenemos como premisa a p, por lo tanto no sabemos si p es verdadera o no, si p fuese falsa, q podría ser verdadera o falsa y aún así la premisa $(p \to q)$ sería verdadera, por lo tanto, no hay garantía de que q sea verdadera ni deducible. Además, necesitaríamos a p para poder aplicar p modus p no es un axioma de p no es un axioma de p no teorema de p no lo tanto, tendría que ser una premisa si o si.

Ejercicio 6

Sean A, B y C fbfs del C. de Enunciados. Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \cup \{A, B\} \mid_L C$ y también se sabe que $\Gamma \mid_L A$.

1. ¿Es cierto que $\Gamma \vdash_L (C \rightarrow B)$? Justificar.

Para saber si podemos demostrar $\Gamma
ightharpoonup_L (C \to B)$ primero vamos a ver qué podemos demostrar desde Γ con la información que nos brindan:

- Γ ├_L A
- $\Gamma
 ightharpoonup_L (A o (B o C))$ Por Metateorema de la deducción
- $\Gamma
 ightharpoonup_L (B
 ightarrow (A
 ightarrow C))$ Por Metateorema de la deducción

Una vez sabemos esta información, podemos pensar que es equivalente demostrar $(C \to B)$ a partir de la información que nos brinda Γ , es decir, podríamos tener la demostración: $\{A, (A \to (B \to C)), (B \to (A \to C))\} \not\models_L (C \to B)$. A su vez, gracias a el *Metateorema de la*

deducción sabemos que es equivalente también demostrar:

$$hlap{}_L (A
ightarrow ((A
ightarrow (B
ightarrow C))
ightarrow ((B
ightarrow (A
ightarrow C))
ightarrow (C
ightarrow B))).$$

Ahora tenemos esta última fórmula que si se demuestra que es un teorema en L quedaría demostrado también $\Gamma
ightharpoonup_L (C \to B)$ como algo cierto, yo voy a proponer un contra ejemplo para demostrar que no es cierto, tomamos:

- \bullet A=p
- B=q
- ullet C=r

p	q	r	(r o q)	(q o (p o r))	(p o (q o r))	(p ightarrow ((p ightarrow (q ightarrow r)) ightarrow ((q ightarrow r))
V	V	V	V	V	V	V
V	V	F	V	F	F	V
V	F	V	F	V	V	F
V	F	F	V	V	V	X
F	V	V	V	V	V	X
F	V	F	V	V	V	X
F	F	V	F	V	V	X
F	F	F	V	V	V	X

La fórmula de la última columna es: (p o ((p o (q o r)) o ((q o (p o r)) o (r o q))))

Como ya encontramos una fila donde el valor final de la fórmula es Falso queda demostrado que no es una tautología, por lo tanto, la demostración

$$| L (A \to ((A \to (B \to C)) \to ((B \to (A \to C)) \to (C \to B))))$$
 no es válida, por lo tanto, $\Gamma | L (C \to B)$ no es cierto.

2. ¿Es cierto que $\emptyset \vdash_L (A)$? Justificar.

Esto no es cierto, se probó para el Ejercicio 4 que aunque se sepa que $\Gamma
bracktriante A$ no necesariamente se cumple que $\emptyset \not h (A)$.

Ejercicio 7

¿Es el sistema formal L decidible? Justificar.

Ayuda: si es decidible, debería ser posible determinar (decidir) para cada fbf, si es o no teorema de L.

Si, el sistema formal L es decidible, nosotros podemos construir un algoritmo que decida si una fbf es una tautología construyendo su tabla de verdad y verificando que todos sus valores finales sean Verdaderos, de esta forma, si es una tautología entonces es un teorema en L.