APA-L7

September 6, 2018

1 APA Laboratori 7 - SVMs

1.1 Modelling artificial 2D sinusoidal data for two-class problems

The SVM is located in two different packages: one of them is 'e1071'

```
In [3]: library(e1071)
```

First we create a simple two-class data set:

```
In [4]: N <- 200

make.sinusoidals <- function(m,noise=0.2)
{
    x1 <- c(1:2*m)
    x2 <- c(1:2*m)

    for (i in 1:m) {
        x1[i] <- (i/m) * pi
        x2[i] <- sin(x1[i]) + rnorm(1,0,noise)
}

    for (j in 1:m) {
        x1[m+j] <- (j/m + 1/2) * pi
        x2[m+j] <- cos(x1[m+j]) + rnorm(1,0,noise)
}

    target <- as.factor(c(rep(+1,m),rep(-1,m)))
    return(data.frame(x1,x2,target))
}</pre>
```

let's generate the data

```
In [5]: dataset <- make.sinusoidals (N)
    and have a look at it</pre>
```

In [6]: summary(dataset)

x1		x2	target
Min. :0.01	1571 Min.	:-1.387200	-1:200
1st Qu.:1.58	3258 1st G	Qu.:-0.668201	1 :200
Median:2.36	3405 Media	an : 0.028719)
Mean :2.36	3405 Mean	:-0.006386	3
3rd Qu.:3.14	1552 3rd 0	u.: 0.645680)
Max. :4.71	1239 Max.	: 1.386127	7

Now we wish to fit and visualize different SVM models

1.1.1 model 1: LINEAR kernel, C=1 (cost parameter)

Now we are going to visualize what we have done; since we have artificial data, instead of creating a random test set, we can create a grid of points as test

```
In [9]: plot.prediction <- function (model, model.name, resol=200)</pre>
         # the grid has a (resol x resol) resolution
        {
           x <- cbind(dataset$x1,dataset$x2)</pre>
           rng <- apply(x,2,range);</pre>
           tx <- seq(rng[1,1],rng[2,1],length=resol);</pre>
           ty <- seq(rng[1,2],rng[2,2],length=resol);</pre>
           pnts <- matrix(nrow=length(tx)*length(ty),ncol=2);</pre>
           k <- 1
           for(j in 1:length(ty))
             for(i in 1:length(tx))
               pnts[k,] <- c(tx[i],ty[j])</pre>
               k < - k+1
             }
         # we calculate the predictions on the grid
        pred <- predict(model, pnts, decision.values = TRUE)</pre>
        z <- matrix(attr(pred, "decision.values"),</pre>
                      nrow=length(tx),ncol=length(ty))
```

and plot them image(tx,ty,z,xlab=model.name,ylab="",axes=FALSE, xlim=c(rng[1,1],rng[2,1]),ylim=c(rng[1,2],rng[2,2]), col = rainbow(200, start=0, end=.25)) # then we draw the optimal separation and its margins contour(tx,ty,z,add=TRUE, drawlabels=TRUE, level=0, lwd=3) contour(tx,ty,z,add=TRUE, drawlabels=TRUE, level=1, lty=1, lwd=1, col="grey") contour(tx,ty,z,add=TRUE, drawlabels=TRUE, level=-1, lty=1, lwd=1, col="grey") # then we plot the input data from the two classes points(dataset[dataset\$target==1,1:2],pch=21,col=1,cex=1) points(dataset[dataset\$target==-1,1:2],pch=19,col=4,cex=1) # finally we add the SVs sv <- dataset[c(model\$index),];</pre> sv1 <- sv[sv\$target==1,];</pre> sv2 <- sv[sv\$target==-1,];</pre> points(sv1[,1:2],pch=13,col=1,cex=2) points(sv2[,1:2],pch=13,col=4,cex=2) }

make sure you understand the following results (one by one and their differences) plot the data, the OSH with margins, the support vectors, ...

```
In [10]: plot.prediction (model, "linear, C=1")
```


linear, C=1

```
### model 2: linear kernel, C=0.1 (cost parameter)
In [11]: (model <- svm(dataset[,1:2],dataset[,3],</pre>
                       type="C-classification",
                        cost=0.1, kernel="linear",
                        scale = FALSE))
Call:
svm.default(x = dataset[, 1:2], y = dataset[, 3], scale = FALSE,
    type = "C-classification", kernel = "linear", cost = 0.1)
Parameters:
   SVM-Type: C-classification
 SVM-Kernel: linear
       cost:
              0.1
      gamma: 0.5
Number of Support Vectors: 99
In [12]: plot.prediction (model, "linear, C=0.1")
```


linear, C=0.1

the margin is wider (lower VC dimension), number of support vectors is larger (more violations of the margin)

1.1.2 model 3: linear kernel, C=25 (cost parameter)

```
In [13]: (model <- svm(dataset[,1:2],dataset[,3],</pre>
                       type="C-classification",
                       cost=25, kernel="linear",
                       scale = FALSE))
Call:
svm.default(x = dataset[, 1:2], y = dataset[, 3], scale = FALSE,
    type = "C-classification", kernel = "linear", cost = 25)
Parameters:
             C-classification
   SVM-Type:
 SVM-Kernel:
              linear
       cost:
              25
      gamma: 0.5
Number of Support Vectors: 45
```

```
In [14]: plot.prediction (model, "linear, C=25")
```


linear, C=25

the margin is narrower (higher VC dimension), number of support vectors is smaller (less violations of the margin)

Let's put it together, for 6 values of C:

linear (C=0.1) 99 Support Vectors

linear (C=1) 61 Support Vectors

linear (C=10) 46 Support Vectors

linear (C=100) 44 Support Vectors

linear (C=1000) 43 Support Vectors

Now we move to a QUADRATIC kernel (polynomial of degree 2); the kernel has the form: $k(x,y) = (\langle x,y \rangle + coef 0)^{degree}$ quadratic kernel, C=1 (cost parameter)

Call:

```
svm.default(x = dataset[, 1:2], y = dataset[, 3], scale = FALSE,
    type = "C-classification", kernel = "polynomial", degree = 2,
    coef0 = 1, cost = 1)
```

Parameters:

SVM-Type: C-classification

```
SVM-Kernel: polynomial
    cost: 1
    degree: 2
    gamma: 0.5
    coef.0: 1

Number of Support Vectors: 48

In [17]: options(repr.plot.width=4, repr.plot.height=4)
        par(mfrow=c(1,1))

    plot.prediction (model, "quadratic, C=1")
```


quadratic, C=1

notice that neither the OSH or the margins are linear (they are quadratic); they are linear in the feature space in the previous linear kernel, both spaces coincide

Let's put it together directly, for 6 values of C:

```
model <- svm(dataset[,1:2],dataset[,3],</pre>
               type="C-classification",
               cost=C, kernel="polynomial",
               degree=2, coef0=1,
               scale = FALSE)
  plot.prediction (model,
                   paste ("quadratic (C=", C, ") ",
                           model$tot.nSV, " Support Vectors",
                           sep=""))
}
```


quadratic (C=0.01) 131 Support Vector

quadratic (C=0.1) 72 Support Vectors

quadratic (C=1) 48 Support Vectors

quadratic (C=10) 39 Support Vectors

quadratic (C=100) 38 Support Vectors quadratic (C=1000) 38 Support Vector

Now we move to a CUBIC kernel (polynomial of degree 3); the kernel has the form: $k(x,y) = (\langle x,y \rangle + coef0)^{degree}$ cubic kernel, C=1 (cost parameter)

```
In [19]: (model <- svm(dataset[,1:2],dataset[,3],</pre>
                        type="C-classification",
                        cost=1, kernel="polynomial",
                        degree=3, coef0=1,
                        scale = FALSE))
```


cubic, C=1

notice that neither the OSH or the margins are linear (they are now cubic); they are linear in the feature space this choice seems much better, given the structure of the classes Let's put it together directly, for 6 values of C:

cubic (C=0.1) 54 Support Vectors

cubic (C=1) 37 Support Vectors

cubic (C=10) 16 Support Vectors

cubic (C=100) 8 Support Vectors

cubic (C=1000) 7 Support Vectors

```
Finally we use the Gaussian RBF kernel (polynomial of infinite degree; the kernel has the form:
   k(x,y) = exp(-gamma||x - y||^2)
   RBF kernel, C=1 (cost parameter)
In [22]: (model <- svm(dataset[,1:2],dataset[,3],</pre>
                        type="C-classification",
                        cost=1, kernel="radial",
                        scale = FALSE))
Call:
svm.default(x = dataset[, 1:2], y = dataset[, 3], scale = FALSE,
    type = "C-classification", kernel = "radial", cost = 1)
Parameters:
   SVM-Type: C-classification
SVM-Kernel: radial
       cost: 1
      gamma: 0.5
Number of Support Vectors: 34
   the default value for gamma is 0.5
In [23]: options(repr.plot.width=4, repr.plot.height=4)
         par(mfrow=c(1,1))
         plot.prediction (model, "radial, C=1, gamma=0.5")
```


radial, C=1, gamma=0.5

Let's put it together directly, for 6 values of C, holding gamma constant = 0.5:

RBF (C=0.01) 390 Support Vectors

RBF (C=0.1) 123 Support Vectors

RBF (C=1) 34 Support Vectors

RBF (C=10) 12 Support Vectors

RBF (C=100) 6 Support Vectors

RBF (C=1000) 5 Support Vectors

Now for 8 values of gamma, holding C constant = 1:

RBF (gamma=0.125) 80 Support Vecto RBF (gamma=0.25) 54 Support Vecto RBF (gamma=0.5) 34 Support Vector

RBF (gamma=1) 30 Support Vectors

RBF (gamma=2) 34 Support Vectors

RBF (gamma=4) 37 Support Vectors RBF (gamma=8) 73 Support Vectors RBF (gamma=16) 130 Support Vector

In practice we should optimize both (C,gamma) at the same time How? Using cross-validation or trying to get "good" estimates analyzing the data Now we define a utility function for performing k-fold CV: a typical choice is k=10

```
In [26]: k <- 10
          folds <- sample(rep(1:k, length=N), N, replace=FALSE)</pre>
          valid.error <- rep(0,k)</pre>
```

this function is not intended to be useful for general training purposes but it is useful for illustration in particular, it does not optimize the value of C (it requires it as parameter)

```
In [27]: train.svm.kCV <- function (which.kernel, myC, kCV=10)</pre>
            for (i in 1:kCV)
              train <- dataset[folds!=i,] # for building the model (training)</pre>
              valid <- dataset[folds==i,] # for prediction (validation)</pre>
              x_train <- train[,1:2]</pre>
              t_train <- train[,3]
              switch(which.kernel,
                      linear={model <- svm(x_train, t_train,</pre>
                                             type="C-classification",
                                             cost=myC, kernel="linear",
```

```
poly.2={model <- svm(x_train, t_train,</pre>
                                             type="C-classification",
                                             cost=myC, kernel="polynomial",
                                             degree=2, coef0=1,
                                             scale = FALSE)},
                      poly.3={model <- svm(x_train, t_train,</pre>
                                             type="C-classification",
                                             cost=myC,
                                             kernel="polynomial",
                                             degree=3, coef0=1,
                                             scale = FALSE)},
                      RBF={model <- svm(x_train, t_train,</pre>
                                          type="C-classification",
                                          cost=myC, kernel="radial",
                                          scale = FALSE)},
                      stop("Enter one of 'linear', 'poly.2', 'poly.3', 'radial'"))
              x_valid <- valid[,1:2]</pre>
              pred <- predict(model,x_valid)</pre>
              t_true <- valid[,3]
              # compute validation error for part 'i'
              valid.error[i] <- sum(pred != t_true)/length(t_true)</pre>
            }
            # return average validation error
            100*sum(valid.error)/length(valid.error)
          }
   Fit an SVM with linear kernel
In [28]: C <- 1000
          (VA.error.linear <- train.svm.kCV ("linear", myC=C))
   The procedure is to choose the model with the lowest CV error and then refit it with the whole
learning data, then use it to predict the test set; we will do this at the end
   Fit an SVM with quadratic kernel
In [29]: (VA.error.poly.2 <- train.svm.kCV ("poly.2", myC=C))</pre>
   Fit an SVM with cubic kernel
In [30]: (VA.error.poly.3 <- train.svm.kCV ("poly.3", myC=C))</pre>
   we get a series of decreasing CV errors ...
   and finally an RBF Gaussian kernel
```

scale = FALSE)},

```
In [31]: (VA.error.RBF <- train.svm.kCV ("RBF", myC=C))
     0.75</pre>
```

Now in a real scenario we should choose the model with the lowest CV error which in this case is the RBF (we get a very low CV error because this problem is easy for a SVM) so we choose RBF and C=1 and refit the model in the whole training set (no CV)

In [32]: model <- svm(dataset[,1:2],dataset[,3], type="C-classification", cost=C, kernel="radial
 and make it predict a test set:
 let's generate the test data</pre>

In [33]: dataset.test <- make.sinusoidals (1000)
 and have a look at it</pre>

In [34]: summary(dataset.test)

x1		x2	target
Min.	:0.003142	Min. :-1.561915	-1:1000
1st Qu	.:1.573153	1st Qu.:-0.683925	1 :1000
Median	:2.357765	Median :-0.013291	

Mean :2.357765 Mean :-0.013291 Mean :2.357765 Mean :-0.008065 3rd Qu.:3.142378 3rd Qu.: 0.669875 Max. :4.712389 Max. : 1.661682

In a real setting we should also optimize the value of *C*, again with CV; all this can be done very conveniently using tune() to do automatic grid-search (very much as we did in the last laboratory for nnet())

other packages provide with heuristic methods to estimate the gamma in the RBF kernel (see below)

1.2 Playing with the SVM for regression and 1D data

Now we do regression; we have an extra parameter: the 'epsilon', which controls the width of the epsilon-insensitive tube (in feature space)

```
In [38]: A <- 20
    a really nice-looking function
In [39]: x <- seq(-A,A,by=0.11)
        y <- sin(x)/x + rnorm(x,sd=0.03)
        plot(x,y,type="l")</pre>
```


With this choice of the 'epsilon', 'gamma' and ${\sf C}$ parameters, the SVM underfits the data (blue line)

```
In [40]: model1 <- svm (x,y,epsilon=0.01)
     plot(x,y,type="l")
     lines(x,predict(model1,x),col="blue")</pre>
```


With this choice of the 'epsilon', 'gamma' and C parameters, the SVM overfits the data (green line)

With this choice of the 'epsilon', 'gamma' and C parameters, the SVM has a very decent fit (red line)

the other nice package where the SVM is located is $\{kernlab\}$

In [43]: library(kernlab)

the ksvm() method has some nice features, as creation of user-defined kernels (not seen in this course) and automatic cross-validation (via the 'cross' parameter)