ARTGUARD: PEER-TO-PEER NETWORK

BLOCKCHAIN DEVELOPMENT

Time: 60 mins

Introduction

In this class, the student/s will be able to create a node for each user with the data from the mined node.

Introduce and Recall Commands

• render template() The render template() function renders the template passed

to it as a parameter on the webpage.

request.arg.get()
 This function gets the argument from the url.

Vocabulary

- URL: A Uniform Resource Locator, colloquially termed as a web address, is a reference to a web resource that specifies its location on a computer network and a mechanism for retrieving it.
- Nodes: A node is a computer or a device that participates in the network by maintaining a copy of the
 entire blockchain or a portion of it and actively contributes to the network's operation.

Learning Objectives

Student/s should be able to:

- **Recall** how a new node can be created with the copy of all the blocks in block chain using class and its instances.
- Explain how a new node is created and accessed by changing the url.
- **Demonstrate** how to create and access a node and its data.

Activities

- 1. Class Narrative: (2 mins)
 - Brief the student/s that they will learn to create a decentralized blockchain where every peer is a node with a copy of blockchain.
- 2. Concept Introduction Activity: (5 mins)

- Let the student/s play the explore-activity to observe that as you change the node parameter in the url a new node is created with the same data as the earlier node. The transaction at a node remains specific to that node only.
- Explain the need of creating a decentralized system of blockchain as in centralized system if a transaction history is modified then the whole blockchain will be compromised.
- Using the slides, explain that the student/s will learn:
 - o to configure path for node
 - o to create a node class
 - o to create multiple nodes

3. Activity 1: Configure Path For Node (14 mins)

Teacher Activity: (7 mins)

- Explain and demonstrate how to get the node ld parameter from the url and pass it to display the Artguard web page or an error notification.
- Explain that if there is node Id parameter given in the url then show the bad request notification on the screen.
- Demonstrate how to pass the node id to the web page.

Student Activity: (7 mins)

• Guide the student/s to get the node id parameter from the url, display a bad request screen when the node id is not present and pass the node id to the UI.

4. Activity 2: Create a Node Class (12 mins)

Teacher Activity: (6 mins).

- Recall that a node class will be created in the same way as block class was created.
- Explain that you create a allNode dictionary to store all the created nodes.
- Recall to create a new node using the instances of the node class if it doesn't exist in the allNodes dictionary.

Student Activity: (6 mins)

 Guide the student/s to create a node class, create an allNodes dictionary to store all the existing nodes and create new ones if they don't exist in the allNodes dictionary.

5. Activity 3: Create Multiple Nodes (12 mins)

Teacher Activity: (6 mins)

- Demonstrate to fetch and store the data for failed block, blocks and chain from the current node
- Explain how to pass the node id to the UI using render_template() function.
- Demonstrate to get the data for the requested node id form the allNodes dictionary.

Student Activity: (6 mins)

• Guide the students to get the current blockchain data, pass the node id to the UI and display the data for the requested node id.

6. Test and Summarize the class learnings: (5 mins)

- Check for understanding through quizzes and summarize learning after respective activities.
- Summarize the overall class learning towards the end of the class.

7. Additional activities:

- Encourage the student/s to access the node by entering the name of the node in the input box.
- Encourage the student/s to access the node by selecting the node form the list of the nodes.

8. State the Next Class Objective: (1 min)

• In the next class, student/s will learn to create a mining pool, reward the miners after solving the problem to validate the block.

U.S. Standards:

CSTA: 2-AP-11, 2-AP-12, 2-AP-13, 2-AP-14, 2-AP-19

Links Table					
Activity	Activity Name	Link			
Class Presentation	NODES IN BLOCKCHAIN				
Explore Activity	NODES				

Teacher Activity 1	CONFIGURE PATH FOR NODE	https://github.com/Tynker-Blockchain/TNK-M12-C95-TAS-BP		
Teacher Reference: Teacher Activity 1 Solution	CONFIGURE PATH FOR NODE	https://github.com/Tynker-Blockchai n/TNK-M12-C95-TAS		
Student Activity 1	CONFIGURE PATH FOR NODE	https://github.com/Tynker-Blockchain/TNK-M12-C95-SAS-BP		
Teacher Reference: Student Activity 1 Solution	CONFIGURE PATH FOR NODE	https://github.com/Tynker-Blockchai n/TNK-M12-C95-SAS		
Teacher Activity 2	CREATE A NODE CLASS	https://github.com/Tynker-Blockchain/TNK-M12-C95-TAS-BP		
Teacher Reference: Teacher Activity 2 Solution	CREATE A NODE CLASS	https://github.com/Tynker-Blockchain/TNK-M12-C95-TAS		
Student Activity 2	CREATE A NODE CLASS	https://github.com/Tynker-Blockchain/TNK-M12-C95-SAS-BP		
Teacher Reference: Student Activity 2 Solution	CREATE A NODE CLASS	https://github.com/Tynker-Blockchain/TNK-M12-C95-SAS		
Teacher Activity 3	CREATE MULTIPLE NODES	https://github.com/Tynker-Blockchain/TNK-M12-C95-TAS-BP		
Teacher Reference: Teacher Activity 3 Solution	CREATE MULTIPLE NODES	https://github.com/Tynker-Blockchain/TNK-M12-C95-TAS		
Student Activity 3	CREATE MULTIPLE NODES	https://github.com/Tynker-Blockchain/TNK-M12-C95-SAS-BP		
Teacher Reference: Student Activity 3 Solution	CREATE MULTIPLE NODES	https://github.com/Tynker-Blockchain/TNK-M12-C95-SAS		
Student's Additional Activity 1	ACCESS THE NODES	https://github.com/Tynker-Blockchain/TNK-M12-C95-SAS-BP		
Teacher Reference: Student's Additional Activity 1 Solution	ACCESS THE NODES	https://github.com/Tynker-Blockchain/TNK-M12-C95-SAS		
Student's Additional Activity 2	ACCESS THE NODES FROM A LIST	https://github.com/Tynker-Blockchai n/TNK-M12-C95-SAS-BP		
Teacher Reference: Student's Additional Activity 2 Solution	ACCESS THE NODES FROM A LIST	https://github.com/Tynker-Blockchai n/TNK-M12-C95-SAS		
Post Class Project	ESTATE TRACKER: PEER-TO-PEER NETWORK	https://github.com/Tynker-Blockchain/TNK-M12-C95-PCP-BP		
Teacher Reference: Post Class Project Solution	ESTATE TRACKER: PEER-TO-PEER NETWORK	https://github.com/Tynker-Blockchain/TNK-M12-C95-PCP		