Math 752 Spring 2015

Class 3/27

These notes contain all the technical details of the proofs for the statements that we considered on Friday.

1 Poisson kernel

Definition. The function

$$P_r(\theta) = \sum_{n=-\infty}^{\infty} r^{|n|} e^{in\theta}$$

for $0 \le r < 1$ and $-\infty < \theta < \infty$ is called the Poisson kernel.

Lemma 1. If $z = re^{i\theta}$ with $0 \le r < 1$, then

$$P_r(\theta) = \Re\left(\frac{1+z}{1-z}\right).$$

Proof. We have

$$\frac{1+z}{1-z} = (1+z)(1+z+z^2+\ldots) = 1+2\sum_{n=1}^{\infty} r^n e^{in\theta},$$

and taking real parts gives

$$\Re\left(\frac{1+z}{1-z}\right) = 1 + 2\sum_{n=1}^{\infty} r^n \cos(n\theta).$$

Use $\cos(n\theta) = 2^{-1}(e^{in\theta} + e^{-in\theta})$ to get the claimed identity. \Box

The real part can be evaluated explicitly to get the representation

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos\theta + r^2}.$$

Proposition 1. For $0 \le r < 1$ and $\theta \in \mathbb{R}$ we have

$$\begin{split} &\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta) d\theta = 1, \\ &P_r(\theta) > 0 \text{ for all } \theta, \\ &P_r(-\theta) = P_r(\theta), \\ &P_r(\theta) < P_r(\delta) \text{ if } 0 < \delta < |\theta| < \pi, \end{split}$$

and for each $\delta > 0$

$$\lim_{r \to 1-} P_r(\theta) = 0$$

uniformly in θ for $\pi \geq |\theta| \geq \delta$.

Proof. If r < 1 is fixed, then the series defining the Poisson kernel converges uniformly in θ , hence the integration can be performed termwise, which gives the first claim. The second claim follows from

$$P_r(\theta) = \frac{1 - r^2}{|1 - re^{i\theta}|^2}$$

and r < 1, the third claim follows since $\cos \theta$ is even.

For the fourth claim we observe that

$$P_r'(\theta) = -\frac{(1 - r^2)2r\sin\theta}{(1 - 2r\cos\theta + r^2)^2} < 0$$

for $\theta \in [\delta, \pi]$, and finally, the limit relation holds pointwise for $\theta \neq 0$, and by the previous statement, uniformly in the stated region.

The Dirichlet problem has a solution for the unit disk.

Theorem 1. Let D be the open unit disk. Assume that $f: \partial D \to \mathbb{R}$ is continuous. Then there exists a continuous function $u: \overline{D} \to \mathbb{R}$ such that u = f on ∂D and u is harmonic in D. Moreover, u is unique and can be defined by

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt$$

for $0 \le r < 1$ and $0 \le \theta \le 2\pi$.

Proof. Define u by the integral formula in the open unit disk and define u = f on the unit circle. We need then to show that u is continuous on the closed disk and harmonic on D.

To show that u is harmonic on D, we note

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Re\left[\frac{1 + re^{i(\theta - t)}}{1 - e^{i(\theta - t)}}\right] f(e^{it}) dt$$
$$= \Re\left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + re^{i\theta}}{e^{it} - e^{i\theta}} f(e^{it}) dt\right]$$

Write the fraction as $(e^{it} + z)/(e^{it} - z)$ and note that

$$g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} f(e^{it}) dt$$

is analytic in the open unit disk and satisfies $\Re g=u.$ Hence, u is harmonic in D.

The main difficulty lies in establishing continuity on the unit circle.

Lemma 2. Let $\alpha \in [-\pi, \pi]$ and $\varepsilon > 0$. There exists $1 > \rho > 0$ and an arc A of the unit circle with center $e^{i\alpha}$ such that for $r > \rho$ and any $e^{i\theta} \in A$ the inequality

$$|u(re^{i\theta}) - f(e^{i\alpha})| < \varepsilon$$

holds.

The lemma implies continuity of u on the boundary.

Proof of the lemma. With a rotation we may assume that $\alpha = 0$. We note that

$$u(re^{i\theta}) - f(1) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t)(f(e^{it}) - f(1))dt,$$

and we split the integration into two parts, over $|t| < \delta$ and $\delta \le |t| \le \pi$, where δ remains to be chosen. The first condition for δ is that

$$|f(e^{it}) - f(1)| < \varepsilon/3$$

for $|t| < \delta$. This is possible since f is continuous, and allows us to estimate the first integral as

$$< \varepsilon/3 \int_{|t| < \delta} < \varepsilon/3$$

by extending the integration over the whole range. (This estimate is independent of θ .)

For the second integral $f(e^{it})$ and f(1) are far away from each other. Defining M to be the maximum of f on the unit circle, we use the trivial estimate

$$|f(e^{it}) - f(1)| \le 2M.$$

We therefore need to use properties of P_r to make the second integral small when θ is close to zero.

Assume that $|\theta| \le \delta/2$ and $|t| \ge \delta$. Then $|t-\theta| \ge \delta/2$. From the previous proposition we can find $\rho < 1$ so that

$$P_r(\eta) < \varepsilon/(3M)$$

for all $|\eta| \ge \delta/2$ and $\rho \le r < 1$. Inserting this into the second integral with $\eta = t - \theta$ gives the claim.

To show uniqueness, note that for another solution v we have that u-v=0 on the boundary of the unit disk, hence the maximum principle implies that u-v is the zero function.

We note that since

$$P_r(\theta) = \Re\left(\frac{1 + re^{i\theta}}{1 - re^{i\theta}}\right),$$

any function that is continuous on the closed unit disk and harmonic in the open unit disk may be written as the real part of

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} u(e^{it}) dt.$$