DATA 621: Homework 1 (Baseball Regression)

Shoshanna Farber, Josh Forster, Glen Davis, Andrew Bowen, Charles Ugiagbe 2023-09-04

Setup:

Warning: package 'car' was built under R version 4.3.1

Warning: package 'carData' was built under R version 4.3.1

First, let's read in the provided dataset.

Data Exploration:

Next, let's print out some summary statistics. We're primarily interested in the TARGET_WINS variable, so we'll look at that first.

The mean number of wins in a season is 80.7908611599297

The median number of wins in a season is 82

The standard deviation for number of wins in a season is 15.7521524768421

Let's also make a boxplot and histogram of the TARGET_WINS variable. This should give us a sense of the distribution of wins for teams/seasons in our population.

Overall, the number of wins in a season for a given baseball team looks fairly normally distributed. We can also plot this distribution via a boxplot, which helps to highlight outliers.

Let's look at raw correlations between our other included variables and a team's win total for a season:

```
##
                           [,1]
## TARGET_WINS
                      1.0000000
## TEAM_BATTING_H
                     0.3887675
## TEAM_BATTING_2B
                     0.2891036
## TEAM_BATTING_3B
                     0.1426084
## TEAM_BATTING_HR
                     0.1761532
## TEAM_BATTING_BB
                     0.2325599
## TEAM_BATTING_SO
                             NA
## TEAM_BASERUN_SB
                             NA
## TEAM_BASERUN_CS
                             NA
## TEAM_BATTING_HBP
                             NA
## TEAM_PITCHING_H
                    -0.1099371
## TEAM_PITCHING_HR
                     0.1890137
## TEAM_PITCHING_BB
                     0.1241745
## TEAM_PITCHING_SO
## TEAM_FIELDING_E -0.1764848
## TEAM_FIELDING_DP
```

Let's make a basic model with all inputs:

```
##
        (Intercept)
                      TEAM_BATTING_H
                                       TEAM_BATTING_2B
                                                         TEAM_BATTING_3B
##
        60.28826257
                           1.91347621
                                            0.02638808
                                                             -0.10117554
##
    TEAM_BATTING_HR
                     TEAM_BATTING_BB
                                       TEAM_BATTING_SO
                                                        TEAM_BASERUN_SB
                                            0.34196258
        -4.84370721
                          -4.45969136
                                                              0.03304398
##
```

```
## TEAM_BASERUN_CS TEAM_BATTING_HBP TEAM_PITCHING_H TEAM_PITCHING_HR
## -0.01104427 0.08247269 -1.89095685 4.93043182
## TEAM_PITCHING_BB TEAM_PITCHING_SO TEAM_FIELDING_DP
## 4.51089069 -0.37364495 -0.17204198 -0.10819208
```

We can make some plots to help test our assumptions of our basic model using the plot function on our model variable:

Now we can make a model with inputs that we know from baseball.

- Total hits (TEAM_BATTING_H)
- Total walks gained (TEAM_BATTING_BB)
- Total hits allowed (TEAM_PITCHING_H)
- Total walks allowed (TEAM_PITCHING_BB)

We chose these variables based on our understanding that good teams generally tend to get on base more frequently (positive predictor variables TEAM_BATTING_HITS and TEAM_BATTING_BB) while allowing fewer runners on base (negative predictor variables TEAM_PITCHING_H and TEAM_PITCHING_BB).

```
##
## Call:
## lm(formula = TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB +
       TEAM_PITCHING_H + TEAM_PITCHING_BB, data = train)
##
##
##
   Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
##
   -52.133
            -8.860
                     0.379
                              9.373
                                     52.416
##
##
  Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
##
   (Intercept)
                     -0.3518000
                                 3.2552864
                                            -0.108 0.913949
## TEAM_BATTING_H
                      0.0497667
                                 0.0021032
                                            23.663
                                                    < 2e-16 ***
## TEAM_BATTING_BB
                     0.0148499
                                 0.0039923
                                              3.720 0.000204 ***
  TEAM PITCHING H
                    -0.0025469
                                            -7.679 2.36e-14 ***
                                0.0003317
```

```
## TEAM_PITCHING_BB 0.0092317 0.0027681 3.335 0.000867 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.73 on 2271 degrees of freedom
## Multiple R-squared: 0.2416, Adjusted R-squared: 0.2403
## F-statistic: 180.9 on 4 and 2271 DF, p-value: < 2.2e-16</pre>
```


ARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H +

Theoretical Quantiles
'ARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_BATTING_BB + TEAM_BATTING_

Fitted values
'ARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + '

'ARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_BATTING_BB + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_BATTING_BB +

It's interesting to note that with selected variables (walks and hits gained/allowed per team) that our adjusted R^2 actually went down, indicating the amount of variability in TARGET_WINS explained by our more selective walks/hits model is less than the model including all variables.

Looking at our residual plot above, there seems to be a clustering of residuals along the x-axis at $X \approx 80$. This shows a pattern in our residuals.

Let's plot our response variable ($Total\ Wins$) versus each of our predictor variables to get a sense of linear relationships.

Model Evaluation

We'll need to read in our evaluation data, which is hosted on GitHub for reproduceability.

<pre>predict(lm_all, test)</pre>									
PT	ourou(im_c	111, 0000)							
##	1	2	3	4	5	6	7	8	
##	NA	NA	NA	79.60984	NA	NA	NA	NA	
##	9	10	11	12	13	14	15	16	
##	NA	NA	NA	NA	NA	NA	NA	NA	
##	17	18	19	20	21	22	23	24	
##	NA	78.95693	NA	NA	NA	NA	NA	NA	
##	25	26	27	28	29	30	31	32	
##	77.16939	86.81801	NA	NA	NA	NA	NA	NA	
##	33	34	35	36	37	38	39	40	
##	NA	NA	NA	NA	NA	NA	NA	NA	
##	41	42	43	44	45	46	47	48	
##	NA	NA	NA	NA	NA	NA	NA	NA	
##	49	50	51	52	53	54	55	56	
##	NA	NA	NA	NA	NA	NA	NA	NA	
##	57	58	59	60	61	62	63	64	
##	NA	NA	NA	NA	NA	NA	NA	85.05198	
##	65	66	67	68	69	70	71	72	
##	81.33195	NA	NA	NA	NA	NA	NA	NA	

##	73	74	75	76	77	78	79	80
##	NA							
##	81	82	83	84	85	86	87	88
##	NA							
##	89	90	91	92	93	94	95	96
##	NA							
##	97	98	99	100	101	102	103	104
##	NA							
##	105	106	107	108	109	110	111	112
##	NA	NA		72.39264		NA	NA	NA
##	113	114	115	116	117	118	119	120
##	NA	NA	NA	NA		74.49284		NA
##	121	122	123	124	125	126	127	128
##	NA							
##	129	130	131	132	133	134	135	136
##	NA	NA 130	NA 130	NA	NA		86.10463	NA 100
##	137	138	139	140	141	142	143	144
##	NA 145	NA 146	NA 147	NA 148	NA 140	NA 150	NA 151	NA 150
## ##	NA	NA	NA	148 NA	149 NA	150	151 NA	152
##	153	154	155	156	157	NA 158	159	NA 160
##	NA	NA	NA		86.64915	NA	NA	NA
##	161	162	163	164	165	166	167	168
##	NA							
##	169	170	171	172	173	174	175	176
##	NA							
##	177	178	179	180	181	182	183	184
##	NA	NA	NA	NA	NA	NA		88.27315
##	185	186	187	188	189	190	191	192
##	NA							
##	193	194	195	196	197	198	199	200
##	NA							
##	201	202	203	204	205	206	207	208
##	NA							
##	209	210	211	212	213	214	215	216
##	NA							
##	217	218	219	220	221	222	223	224
##	NA	NA	NA	NA	NA	NA	77.10932	65.54638
##	225	226	227	228	229	230	231	232
##	NA	NA	NA	69.38398	79.72822	NA	NA	NA
##	233	234	235	236	237	238	239	240
##	NA							
##	241	242	243	244	245	246	247	248
##	NA							
##	249	250	251	252	253	254	255	256
##	NA	78.12011	74.97230	NA	NA	NA	NA	NA
##	257	258	259					
##	NA	NA	NA					

Appendix: Report Code

Below is the code for this report to generate the models and charts above.

```
knitr::opts_chunk$set(echo = TRUE)
library(glue)
library(tidyverse)
library(car)
df <- read.csv("https://raw.githubusercontent.com/andrewbowen19/businessAnalyticsDataMiningDATA621/main</pre>
df <- data.frame(df)</pre>
mean_wins <- mean(df$TARGET_WINS)</pre>
median wins <- median(df$TARGET WINS)</pre>
sd_wins <- sd(df$TARGET_WINS)</pre>
# Print summary stats
print(glue("The mean number of wins in a season is {mean_wins}"))
print(glue("The median number of wins in a season is {median_wins}"))
print(glue("The standard deviation for number of wins in a season is {sd_wins}"))
ggplot(df, aes(x=TARGET_WINS)) + geom_histogram()
ggplot(df, aes(x=TARGET_WINS)) + geom_boxplot()
train <- subset(df, select=-c(INDEX))</pre>
cor(train, df$TARGET_WINS)
lm_all <- lm(TARGET_WINS~., train)</pre>
coef(lm_all)
plot(lm_all)
# Create model with select inputs (walks and hits allowed/gained)
lm_select <- lm(TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_PITCHING_BB, tr</pre>
summary(lm_select)
plot(lm_select)
# Plot selective model residuals
plot(lm_select$residuals)
# Plot our response variable for each predictor variable to get a sense of
plot(TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_PITCHING_BB, data=train)
eval_data_url <- "https://raw.githubusercontent.com/andrewbowen19/businessAnalyticsDataMiningDATA621/ma
test <- read.csv(eval_data_url)</pre>
predict(lm_all, test)
```