Groups, graphs and transitivity

Hong Yi Huang

University of Bristol

JAC, 21 May 2021

Outline

- Automorphisms and transitivity
- Cayley graphs
- Wertex-transitive graphs
- Asymptotic problems
- Saxl graphs

Let $\Gamma = (V, E)$ be a finite simple digraph: no loops or multiple edges.

Let $\Gamma = (V, E)$ be a finite simple digraph: no loops or multiple edges.

Automorphism: $\sigma \in \operatorname{Sym}(V)$ such that $\alpha^{\sigma} \to \beta^{\sigma} \iff \alpha \to \beta$.

Let $\Gamma = (V, E)$ be a finite simple digraph: no loops or multiple edges.

Automorphism: $\sigma \in \text{Sym}(V)$ such that $\alpha^{\sigma} \to \beta^{\sigma} \iff \alpha \to \beta$.

Automorphism group Aut(Γ): the set of automorphisms.

3/36

Let $\Gamma = (V, E)$ be a finite simple digraph: no loops or multiple edges.

Automorphism: $\sigma \in \operatorname{Sym}(V)$ such that $\alpha^{\sigma} \to \beta^{\sigma} \iff \alpha \to \beta$.

Automorphism group $Aut(\Gamma)$: the set of automorphisms.

Example

• Aut(\mathbf{P}_n) $\cong C_2$, where \mathbf{P}_n is a path of length n.

Let $\Gamma = (V, E)$ be a finite simple digraph: no loops or multiple edges.

Automorphism: $\sigma \in \text{Sym}(V)$ such that $\alpha^{\sigma} \to \beta^{\sigma} \iff \alpha \to \beta$.

Automorphism group $Aut(\Gamma)$: the set of automorphisms.

- Aut(\mathbf{P}_n) \cong C_2 , where \mathbf{P}_n is a path of length n.
- Aut(\mathbf{C}_n) $\cong D_{2n}$, where \mathbf{C}_n is a cycle of length n.

Let $\Gamma = (V, E)$ be a finite simple digraph: no loops or multiple edges.

Automorphism: $\sigma \in \text{Sym}(V)$ such that $\alpha^{\sigma} \to \beta^{\sigma} \iff \alpha \to \beta$.

Automorphism group $Aut(\Gamma)$: the set of automorphisms.

- Aut(\mathbf{P}_n) $\cong C_2$, where \mathbf{P}_n is a path of length n.
- Aut(\mathbf{C}_n) $\cong D_{2n}$, where \mathbf{C}_n is a cycle of length n.
- $Aut(\mathbf{K}_n) \cong S_n$, where \mathbf{K}_n is a complete graph of order n.

Let $\Gamma = (V, E)$ be a finite simple digraph: no loops or multiple edges.

Automorphism: $\sigma \in \text{Sym}(V)$ such that $\alpha^{\sigma} \to \beta^{\sigma} \iff \alpha \to \beta$.

Automorphism group $Aut(\Gamma)$: the set of automorphisms.

Example

- $Aut(\mathbf{P}_n) \cong C_2$, where \mathbf{P}_n is a path of length n.
- Aut(\mathbf{C}_n) $\cong D_{2n}$, where \mathbf{C}_n is a cycle of length n.
- $Aut(\mathbf{K}_n) \cong S_n$, where \mathbf{K}_n is a complete graph of order n.

 Γ is called **vertex-transitive** if Aut(Γ) is transitive on the set of vertices.

Let $\Gamma = (V, E)$ be a finite simple digraph: no loops or multiple edges.

Automorphism: $\sigma \in \text{Sym}(V)$ such that $\alpha^{\sigma} \to \beta^{\sigma} \iff \alpha \to \beta$.

Automorphism group $Aut(\Gamma)$: the set of automorphisms.

Example

- Aut(\mathbf{P}_n) $\cong C_2$, where \mathbf{P}_n is a path of length n.
- Aut(\mathbf{C}_n) $\cong D_{2n}$, where \mathbf{C}_n is a cycle of length n.
- $Aut(\mathbf{K}_n) \cong S_n$, where \mathbf{K}_n is a complete graph of order n.

 Γ is called **vertex-transitive** if $Aut(\Gamma)$ is transitive on the set of vertices.

Remark: one can replace "vertex" and "transitive" by almost anything. For example: edge-primitive or arc-semiregular.

The Petersen graph

The Petersen graph Γ can be constructed as follows:

- Vertices: 2-subsets of $\{1, 2, 3, 4, 5\}$;
- Edges: $\alpha \sim \beta$ if $\alpha \cap \beta = \emptyset$.

The Petersen graph

The Petersen graph Γ can be constructed as follows:

- Vertices: 2-subsets of {1, 2, 3, 4, 5};
- Edges: $\alpha \sim \beta$ if $\alpha \cap \beta = \emptyset$.

One can show that $Aut(\Gamma) \cong S_5$.

The Petersen graph

The Petersen graph Γ can be constructed as follows:

• Vertices: 2-subsets of $\{1, 2, 3, 4, 5\}$;

• Edges: $\alpha \sim \beta$ if $\alpha \cap \beta = \emptyset$.

One can show that $Aut(\Gamma) \cong S_5$.

Outline

- Automorphisms and transitivity
- Cayley graphs
- Wertex-transitive graphs
- Asymptotic problems
- Saxl graphs

Let G be a finite group and $S \subseteq G \setminus \{1\}$.

Cayley digraph Cay(G, S): vertices G and $x \to y \iff yx^{-1} \in S$.

Let G be a finite group and $S \subseteq G \setminus \{1\}$.

Cayley digraph Cay(G, S): vertices G and $x \to y \iff yx^{-1} \in S$.

• A Cayley digraph Cay(G, S) is undirected $\iff S = S^{-1}$.

Let G be a finite group and $S \subseteq G \setminus \{1\}$.

Cayley digraph Cay(G, S): vertices G and $x \to y \iff yx^{-1} \in S$.

• A Cayley digraph Cay(G, S) is undirected $\iff S = S^{-1}$.

Cayley graph Cay(G, S): undirected Cayley digraph (or $S = S^{-1}$).

Let G be a finite group and $S \subseteq G \setminus \{1\}$.

Cayley digraph Cay(G, S): vertices G and $x \to y \iff yx^{-1} \in S$.

• A Cayley digraph Cay(G, S) is undirected $\iff S = S^{-1}$.

Cayley graph Cay(G, S): undirected Cayley digraph (or $S = S^{-1}$).

• A Cayley (di)graph is connected $\iff G = \langle S \rangle$.

Let G be a finite group and $S \subseteq G \setminus \{1\}$.

Cayley digraph Cay(G, S): vertices G and $x \to y \iff yx^{-1} \in S$.

• A Cayley digraph Cay(G, S) is undirected $\iff S = S^{-1}$.

Cayley graph Cay(G, S): undirected Cayley digraph (or $S = S^{-1}$).

• A Cayley (di)graph is connected \iff $G = \langle S \rangle$.

Indeed, $1 \rightarrow s_1 \rightarrow s_1 s_2 \rightarrow \cdots \rightarrow s_1 s_2 \cdots s_n$ for $s_i \in S$ is a path.

Example

• Cay $(G, G \setminus \{1\}) \cong \mathbf{K}_n$ if |G| = n.

- Cay $(G, G \setminus \{1\}) \cong \mathbf{K}_n$ if |G| = n.
- Cay(G, $G \setminus H$) \cong $\mathbf{K}_{n,n}$ if |G| = 2n with |G| : H| = 2, where $\mathbf{K}_{n,n}$ denotes the complete bipartite graph.

- Cay $(G, G \setminus \{1\}) \cong \mathbf{K}_n$ if |G| = n.
- Cay(G, $G \setminus H$) \cong $\mathbf{K}_{n,n}$ if |G| = 2n with |G| : H| = 2, where $\mathbf{K}_{n,n}$ denotes the complete bipartite graph.
- Cay $(G, \{x, x^{-1}\}) \cong \mathbf{C}_n$ and Cay $(G, \{x\}) \cong \overrightarrow{\mathbf{C}_n}$ if $G = \langle x \rangle \cong C_n$.

- Cay $(G, G \setminus \{1\}) \cong \mathbf{K}_n$ if |G| = n.
- Cay(G, $G \setminus H$) \cong $\mathbf{K}_{n,n}$ if |G| = 2n with |G| : H| = 2, where $\mathbf{K}_{n,n}$ denotes the complete bipartite graph.
- Cay $(G, \{x, x^{-1}\}) \cong \mathbf{C}_n$ and Cay $(G, \{x\}) \cong \overrightarrow{\mathbf{C}_n}$ if $G = \langle x \rangle \cong C_n$.
- Cay $(G, \{x, x^{-1}\}) \cong m\mathbf{C}_n$ if |G| = mn and |x| = n.

Transitivity

Lemma

 Γ is a Cayley digraph \iff Aut (Γ) has a regular subgroup.

Transitivity

Lemma

 Γ is a Cayley digraph \iff Aut (Γ) has a regular subgroup.

Note that a Cayley graph is vertex-transitive. The converse is false!

The smallest example: the Petersen graph.

Transitivity

Lemma

 Γ is a Cayley digraph \iff Aut(Γ) has a regular subgroup.

Note that a Cayley graph is vertex-transitive. The converse is false!

The smallest example: the Petersen graph.

How can we use groups to construct non-Cayley vertex-transitive graphs?

Outline

- Automorphisms and transitivity
- Cayley graphs
- Vertex-transitive graphs
- Asymptotic problems
- Saxl graphs

Let G be a finite group, H < G and $S \subseteq G \setminus H$.

Coset digraph Cos(G, H, HSH): vertices [G : H] and

$$xH \to yH \iff yx^{-1} \in HSH.$$

Let G be a finite group, H < G and $S \subseteq G \setminus H$.

Coset digraph Cos(G, H, HSH): vertices [G : H] and

$$xH \to yH \iff yx^{-1} \in HSH.$$

A Cayley digraph is a coset digraph by taking H = 1.

Let G be a finite group, H < G and $S \subseteq G \setminus H$.

Coset digraph Cos(G, H, HSH): vertices [G : H] and

$$xH \to yH \iff yx^{-1} \in HSH.$$

A Cayley digraph is a coset digraph by taking H = 1.

• A coset digraph Cos(G, H, HSH) is undirected $\iff HSH = HS^{-1}H$.

Let G be a finite group, H < G and $S \subseteq G \setminus H$.

Coset digraph Cos(G, H, HSH): vertices [G : H] and

$$xH \to yH \iff yx^{-1} \in HSH.$$

A Cayley digraph is a coset digraph by taking H = 1.

• A coset digraph Cos(G, H, HSH) is undirected $\iff HSH = HS^{-1}H$.

Coset graph Cos(G, H, HSH): undirected coset digraph (or $HSH = HS^{-1}H$).

Let G be a finite group, H < G and $S \subseteq G \setminus H$.

Coset digraph Cos(G, H, HSH): vertices [G : H] and

$$xH \to yH \iff yx^{-1} \in HSH.$$

A Cayley digraph is a coset digraph by taking H = 1.

• A coset digraph Cos(G, H, HSH) is undirected $\iff HSH = HS^{-1}H$.

Coset graph Cos(G, H, HSH): undirected coset digraph (or $HSH = HS^{-1}H$).

• A coset graph Cos(G, H, HSH) is connected $\iff \langle H, S \rangle = G$.

Let G be a finite group, H < G and $S \subseteq G \setminus H$.

Coset digraph Cos(G, H, HSH): vertices [G : H] and

$$xH \to yH \iff yx^{-1} \in HSH.$$

A Cayley digraph is a coset digraph by taking H = 1.

• A coset digraph Cos(G, H, HSH) is undirected $\iff HSH = HS^{-1}H$.

Coset graph Cos(G, H, HSH): undirected coset digraph (or $HSH = HS^{-1}H$).

• A coset graph Cos(G, H, HSH) is connected $\iff \langle H, S \rangle = G$.

Lemma

 Γ is vertex-transitive \iff Γ is a coset digraph.

Petersen graph as a coset graph

 $\Gamma = \mathsf{Cos}(S_5, H, HSH) \text{ with } H = \mathsf{Sym}(\{1,2\}) \times \mathsf{Sym}(\{3,4,5\}) \text{ and }$ $S = \{(13)(24), (13)(25), (14)(25)\}.$

Arc-transitivity

 Γ is called **arc-transitive** if Aut(Γ) acts transitively on arcs of Γ .

Lemma

 Γ is arc-transitive \iff Γ is isomorphic to Cos(G, H, HgH) for some G, H and g.

Arc-transitivity

 Γ is called **arc-transitive** if Aut(Γ) acts transitively on arcs of Γ .

Lemma

 Γ is arc-transitive \iff Γ is isomorphic to Cos(G, H, HgH) for some G, H and g.

The Petersen graph Γ :

$$\Gamma = \mathsf{Cos}(S_5, H, HSH)$$
 with $H = \mathsf{Sym}(\{1,2\}) \times \mathsf{Sym}(\{3,4,5\})$ and
$$S = \{(13)(24), (13)(25), (14)(25)\}.$$

Arc-transitivity

 Γ is called **arc-transitive** if Aut(Γ) acts transitively on arcs of Γ .

Lemma

 Γ is arc-transitive \iff Γ is isomorphic to Cos(G, H, HgH) for some G, H and g.

The Petersen graph Γ :

$$\Gamma = \mathsf{Cos}(S_5, H, HSH) \text{ with } H = \mathsf{Sym}(\{1,2\}) \times \mathsf{Sym}(\{3,4,5\}) \text{ and}$$

$$S = \{(13)(24), (13)(25), (14)(25)\}.$$

$$\Gamma=\mathsf{Cos}(S_5,H,HgH)$$
 with $H=\mathsf{Sym}(\{1,2\})\times\mathsf{Sym}(\{3,4,5\})$ and
$$S=\{g\}=\{(13)(24)\}.$$

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

An **orbital** of G on Ω is an orbit of G on $\Omega \times \Omega$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

An **orbital** of G on Ω is an orbit of G on $\Omega \times \Omega$.

For example, if $x, y \in \Omega$, then $\{(x^g, y^g) : g \in G\}$ is an orbital.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

An **orbital** of G on Ω is an orbit of G on $\Omega \times \Omega$.

For example, if $x, y \in \Omega$, then $\{(x^g, y^g) : g \in G\}$ is an orbital.

If G is transitive, then $\{(x,x):x\in\Omega\}$ is an orbital (diagonal).

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

An **orbital** of G on Ω is an orbit of G on $\Omega \times \Omega$.

For example, if $x, y \in \Omega$, then $\{(x^g, y^g) : g \in G\}$ is an orbital.

If G is transitive, then $\{(x,x):x\in\Omega\}$ is an orbital (diagonal).

G is 2-transitive iff G has exactly 2 orbitals.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

An **orbital** of G on Ω is an orbit of G on $\Omega \times \Omega$.

For example, if $x, y \in \Omega$, then $\{(x^g, y^g) : g \in G\}$ is an orbital.

If G is transitive, then $\{(x,x):x\in\Omega\}$ is an orbital (diagonal).

G is 2-transitive iff G has exactly 2 orbitals.

The **orbital graph** $(x,y)^G$ of G is a graph with

- Vertices Ω;
- Edges in the orbital $(x,y)^G = \{(x^g,y^g) : g \in G\}$ (non-diagonal).

- \mathbf{K}_n is an orbital graph for S_n ;
- K_n is an orbital graph for a 2-transitive group of degree n;

- \mathbf{K}_n is an orbital graph for S_n ;
- K_n is an orbital graph for a 2-transitive group of degree n;
- Let $G = \langle (012345) \rangle \cong C_6$ acting on $\Omega = \{0, 1, 2, 3, 4, 5\}$.
 - $(0,1)^G$ and $(1,0)^G$ are isomorphic to $\overrightarrow{\mathbf{C}_{6;}}$
 - $(0,2)^G$ and $(2,0)^G$ are isomorphic to $2\overrightarrow{\mathbf{C}_3}$;
 - $(0,3)^G = (3,0)^G$ is isomorphic to $3K_2$;

- \mathbf{K}_n is an orbital graph for S_n ;
- K_n is an orbital graph for a 2-transitive group of degree n;
- Let $G = \langle (012345) \rangle \cong C_6$ acting on $\Omega = \{0, 1, 2, 3, 4, 5\}$.
 - $(0,1)^G$ and $(1,0)^G$ are isomorphic to $\overrightarrow{\mathbf{C}_{6;}}$
 - (0,2)^G and (2,0)^G are isomorphic to $2\overrightarrow{\mathbf{C}_3}$;
 - $(0,3)^G = (3,0)^G$ is isomorphic to $3K_2$;
- Let $G = \langle (012345), (15)(32) \rangle \cong D_{12}$ acting on $\Omega = \{0, 1, 2, 3, 4, 5\}$.
 - $(0,1)^G = (1,0)^G$ is isomorphic to \mathbf{C}_6 ;
 - $(0,2)^G = (2,0)^G$ is isomorphic to $2\mathbf{C}_3$;
 - $(0,3)^G = (3,0)^G$ is isomorphic to $3K_2$;

Example

- \mathbf{K}_n is an orbital graph for S_n ;
- \mathbf{K}_n is an orbital graph for a 2-transitive group of degree n;
- Let $G = \langle (012345) \rangle \cong C_6$ acting on $\Omega = \{0, 1, 2, 3, 4, 5\}$.
 - $(0,1)^G$ and $(1,0)^G$ are isomorphic to $\overrightarrow{\mathbf{C}_6}$;
 - (0,2)^G and (2,0)^G are isomorphic to $2\overrightarrow{\mathbf{C}_3}$;
 - $(0,3)^G = (3,0)^G$ is isomorphic to $3K_2$;
- Let $G = \langle (012345), (15)(32) \rangle \cong D_{12}$ acting on $\Omega = \{0, 1, 2, 3, 4, 5\}$.
 - $(0,1)^G = (1,0)^G$ is isomorphic to C_6 ;
 - $(0,2)^G = (2,0)^G$ is isomorphic to $2\mathbf{C}_3$;
 - $(0,3)^G = (3,0)^G$ is isomorphic to $3\mathbf{K}_2$;

An orbital Δ is called **self-paired** if $(x, y) \in \Delta \iff (y, x) \in \Delta$.

An orbital graph is undirected iff the orbital is self-paired.

Arc-transitivity

Lemma

 Γ is arc-transitive \iff Γ is an orbital graph for a transitive group.

Arc-transitivity

Lemma

 Γ is arc-transitive \iff Γ is an orbital graph for a transitive group.

The Petersen graph $\Gamma = (\{1,2\},\{3,4\})^G$ for $G = \operatorname{Sym}(5)$.

Generalised orbital graph

A **generalised orbital graph** for G is a union of orbital graphs for G.

Generalised orbital graph

A generalised orbital graph for G is a union of orbital graphs for G.

Lemma

 Γ is vertex-transitive \iff Γ is a generalised orbital graph for a transitive group.

Summary

Lemma

Let Γ be a finite simple digraph. Then Γ is Cayley \iff Aut(Γ) has a regular subgroup.

Summary

Lemma

Let Γ be a finite simple digraph. Then Γ is Cayley \iff Aut(Γ) has a regular subgroup.

Lemma

Let Γ be a finite simple digraph. Then the following are equivalent:

- Γ is vertex-transitive;
- Γ is a generalised orbital graph for a transitive group;
- $\Gamma = \text{Cos}(G, H, HSH)$ for some G, H and S.

Summary

Lemma

Let Γ be a finite simple digraph. Then Γ is Cayley \iff Aut(Γ) has a regular subgroup.

Lemma

Let Γ be a finite simple digraph. Then the following are equivalent:

- Γ is vertex-transitive;
- \bullet Γ is a generalised orbital graph for a transitive group;
- $\Gamma = \text{Cos}(G, H, HSH)$ for some G, H and S.

Lemma

Let Γ be a finite simple digraph. Then the following are equivalent:

- Γ is arc-transitive;
- Γ is an orbital graph for a transitive group;
- $\Gamma = \text{Cos}(G, H, HgH)$ for some G, H and g.

Outline

- Automorphisms and transitivity
- Cayley graphs
- Vertex-transitive graphs
- 4 Asymptotic problems
- Saxl graphs

Asymptotic problems

Conjecture

Almost all vertex-transitive (di)graph are Cayley (di)graphs.

Asymptotic problems

Conjecture

Almost all vertex-transitive (di)graph are Cayley (di)graphs.

A graph is called **Hamiltonian** if it has a cycle visiting every vertex exactly once (**Hamiltonian cycle**).

Conjecture (Lovász, 1969)

- All but 5 connected vertex-transitive graphs are Hamiltonian;
- All connected Cayley graphs are Hamiltonian (except K_2).

Asymptotic problems

Conjecture

Almost all vertex-transitive (di)graph are Cayley (di)graphs.

A graph is called **Hamiltonian** if it has a cycle visiting every vertex exactly once (**Hamiltonian cycle**).

Conjecture (Lovász, 1969)

- All but 5 connected vertex-transitive graphs are Hamiltonian;
- All connected Cayley graphs are Hamiltonian (except K_2).

Theorem (Meng & Huang, 1996)

- Almost all Cayley (di)graphs are connected.
- Almost all Cayley graphs are Hamiltonian.

Outline

- Automorphisms and transitivity
- Cayley graphs
- Vertex-transitive graphs
- Asymptotic problems
- Saxl graphs

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition

A subset Δ of Ω is a **base** for G if $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition

A subset Δ of Ω is a **base** for G if $\cap_{\alpha \in \Delta} G_{\alpha} = 1$.

The **base size** of G, denoted by b(G), is the minimal cardinality of a base.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition

A subset Δ of Ω is a **base** for G if $\cap_{\alpha \in \Delta} G_{\alpha} = 1$.

The **base size** of G, denoted by b(G), is the minimal cardinality of a base.

Images of a base determine the whole group G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition

A subset Δ of Ω is a **base** for G if $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

The **base size** of G, denoted by b(G), is the minimal cardinality of a base.

- Images of a base determine the whole group G.
- If G is transitive and $H = G_{\alpha}$, then b(G) is the minimal cardinality of a subset $S \subseteq G$ such that

$$\bigcap_{x\in S}H^x=1.$$

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition

A subset Δ of Ω is a **base** for G if $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

The **base size** of G, denoted by b(G), is the minimal cardinality of a base.

- Images of a base determine the whole group G.
- If G is transitive and $H = G_{\alpha}$, then b(G) is the minimal cardinality of a subset $S \subseteq G$ such that

$$\bigcap_{x\in S}H^x=1.$$

• There always exists a base by noting that Ω is a base.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition

A subset Δ of Ω is a **base** for G if $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

The **base size** of G, denoted by b(G), is the minimal cardinality of a base.

- Images of a base determine the whole group G.
- If G is transitive and $H = G_{\alpha}$, then b(G) is the minimal cardinality of a subset $S \subseteq G$ such that

$$\bigcap_{x\in S}H^x=1.$$

- There always exists a base by noting that Ω is a base.
- $b(G) = 1 \iff G$ has a regular orbit on Ω .

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

•
$$G = A_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 2$.

•
$$G = S_n$$
, $\Omega = \{1, ..., n\}$: $b(G) = n - 1$.

•
$$G = A_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 2$.

•
$$G = D_{2n}$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = 2$.

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

•
$$G = A_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 2$.

•
$$G = D_{2n}$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = 2$.

- G = GL(V), $\Omega = V$:
 - A subset of Ω is a base iff it contains a basis of V, so $b(G) = \dim V$.

Saxl graphs

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with b(G) = 2.

The **Saxl graph** $\Sigma(G)$: vertices Ω , $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Saxl graphs

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with b(G) = 2.

The **Saxl graph** $\Sigma(G)$: vertices Ω , $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

• $G = D_8$, $\Omega = \{1, 2, 3, 4\}$: $\Sigma(G) \cong C_4$.

Saxl graphs

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with b(G) = 2.

The **Saxl graph** $\Sigma(G)$: vertices Ω , $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

• $G = D_8$, $\Omega = \{1, 2, 3, 4\}$: $\Sigma(G) \cong C_4$.

• $G = D_{10}$, $\Omega = \{1, 2, 3, 4, 5\}$: $\Sigma(G) \cong K_5$.

A further example

Let $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\}$. Then $\alpha \sim \beta$ iff $\{\alpha, \beta\}$ is linearly independent. Thus, $\Sigma(G)$ is **complete multipartite** with q+1 parts of size q-1.

A further example

Let $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\}$. Then $\alpha \sim \beta$ iff $\{\alpha, \beta\}$ is linearly independent. Thus, $\Sigma(G)$ is **complete multipartite** with q+1 parts of size q-1.

For example, when q=3 we have $\Sigma(G)\cong K_8-4K_2$.

Not Petersen this time

Let $G = \operatorname{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then α and β form a base iff they share a common 1-space.

Not Petersen this time

Let $G = \operatorname{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then α and β form a base iff they share a common 1-space.

Hence, $\Sigma(G)\cong J(q+1,2)$ is a **Johnson graph**: vertices 2-subsets of $\{1,\ldots,q+1\}$ and being adjacent if not disjoint.

Not Petersen this time

Let $G = \operatorname{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then α and β form a base iff they share a common 1-space.

Hence, $\Sigma(G)\cong J(q+1,2)$ is a **Johnson graph**: vertices 2-subsets of $\{1,\ldots,q+1\}$ and being adjacent if not disjoint.

For example, when q=4 we have the complement of the Petersen graph.

Proposition

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G.

① $\Sigma(G)$ is G-vertex-transitive.

Proposition

- **1** $\Sigma(G)$ is G-vertex-transitive.

Proposition

- **1** $\Sigma(G)$ is G-vertex-transitive.
- **3** $\Sigma(G)$ is G-arc-semiregular.

Proposition

- **1** $\Sigma(G)$ is G-vertex-transitive.
- **3** $\Sigma(G)$ is G-arc-semiregular.
- \bullet $\Sigma(G)$ is the union of all regular orbital graphs of G.

Proposition

- **1** $\Sigma(G)$ is G-vertex-transitive.
- **3** $\Sigma(G)$ is G-arc-semiregular.
- \bullet $\Sigma(G)$ is the union of all regular orbital graphs of G.
- **3** $\Sigma(G)$ has valency $r|G_{\alpha}|$, where r is the number of regular suborbits.

Valencies

Theorem (Burness & Giudici, 2020)

Let G be a finite transitive base-two permutation group with degree n. Then $\Sigma(G)$ has prime valency p iff one of the following holds:

- $G = C_p \wr C_2$, n = 2p, $\Sigma(G) \cong K_{p,p}$.
- $G = S_3$, n = 3, $\Sigma(G) \cong K_3$.
- $G = AGL_1(2^f)$, $n = p + 1 = 2^f$, $\Sigma(G) \cong K_{p+1}$.

Valencies

Theorem (Burness & Giudici, 2020)

Let G be a finite transitive base-two permutation group with degree n. Then $\Sigma(G)$ has prime valency p iff one of the following holds:

- $G = C_p \wr C_2$, n = 2p, $\Sigma(G) \cong K_{p,p}$.
- $G = S_3$, n = 3, $\Sigma(G) \cong K_3$.
- $G = AGL_1(2^f)$, $n = p + 1 = 2^f$, $\Sigma(G) \cong K_{p+1}$.

A group G is called **almost simple** if soc(G) is non-abelian simple.

Theorem (Chen & H, 2020)

Let G be an almost simple primitive group. Then $\Sigma(G)$ has prime-power valency p^f iff p=2 and one of the following holds:

- $G = PGL_2(q)$, q = 9 or a Fermat prime, $\Sigma(G) \cong J(q+1,2)$.
- $G = M_{10}$, $G_{\alpha} = 8:2$.

4□▶ 4□▶ 4 ≥ ▶ 4 ≥ ▶ 9

Eulerian cycles

By a famous theorem of Euler, a connected graph has an Eulerian cycle iff the degree of every vertex is even.

Theorem (Burness & Giudici, 2020; Chen & H, 2020)

Let G be an almost simple primitive group with stabiliser H. Then one of the following holds:

- $\Sigma(G)$ is Eulerian.
- $G = M_{23}$ and H = 23:11.
- $soc(G) = L_r^{\epsilon}(q)$, r odd prime, $G \not\leq PGL_r^{\epsilon}(q)$ and H is of type $GL_1^{\epsilon}(q^r)$.

Eulerian cycles

By a famous theorem of Euler, a connected graph has an Eulerian cycle iff the degree of every vertex is even.

Theorem (Burness & Giudici, 2020; Chen & H, 2020)

Let G be an almost simple primitive group with stabiliser H. Then one of the following holds:

- $\Sigma(G)$ is Eulerian.
- $G = M_{23}$ and H = 23:11.
- $soc(G) = L_r^{\epsilon}(q)$, r odd prime, $G \not \leq PGL_r^{\epsilon}(q)$ and H is of type $GL_1^{\epsilon}(q^r)$.

Question. Is $(G, H) = (M_{23}, 23:11)$ the only non-Eulerian example?

Recall that the valency of $\Sigma(G)$ is $r|G_{\alpha}|$, where r is the number of regular suborbits.

Recall that the valency of $\Sigma(G)$ is $r|G_{\alpha}|$, where r is the number of regular suborbits.

When r = 1, $\Sigma(G)$ is an orbital graph and G-arc-transitive.

Recall that the valency of $\Sigma(G)$ is $r|G_{\alpha}|$, where r is the number of regular suborbits.

When r = 1, $\Sigma(G)$ is an orbital graph and G-arc-transitive.

Question. Can we classify primitive groups with r = 1?

Recall that the valency of $\Sigma(G)$ is $r|G_{\alpha}|$, where r is the number of regular suborbits.

When r = 1, $\Sigma(G)$ is an orbital graph and G-arc-transitive.

Question. Can we classify primitive groups with r = 1?

Example

Let $G=\mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then $\Sigma(G)\cong J(q+1,2)$ has valency 2(q-1).

Indeed, $G_{\alpha} \cong D_{2(q-1)}$ and so r=1.

Recall that the valency of $\Sigma(G)$ is $r|G_{\alpha}|$, where r is the number of regular suborbits.

When r = 1, $\Sigma(G)$ is an orbital graph and G-arc-transitive.

Question. Can we classify primitive groups with r = 1?

Example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then $\Sigma(G) \cong J(q+1,2)$ has valency 2(q-1).

Indeed, $G_{\alpha} \cong D_{2(q-1)}$ and so r=1.

• Burness & Giudici, 2020: most cases when soc(G) alternating or sporadic.

Recall that the valency of $\Sigma(G)$ is $r|G_{\alpha}|$, where r is the number of regular suborbits.

When r = 1, $\Sigma(G)$ is an orbital graph and G-arc-transitive.

Question. Can we classify primitive groups with r = 1?

Example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then $\Sigma(G) \cong J(q+1,2)$ has valency 2(q-1).

Indeed, $G_{\alpha} \cong D_{2(q-1)}$ and so r = 1.

- Burness & Giudici, 2020: most cases when soc(G) alternating or sporadic.
- Burness & H, in progress: almost simple with soluble stabiliser.

Probabilistic methods

Let $G \leq \operatorname{Sym}(\Omega)$ be a base-two transitive permutation group with degree n. Let $\operatorname{val}(G)$ be the valency of $\Sigma(G)$. Set

$$Q(G,2):=1-\mathbb{P}(G,2)=\frac{|\{(\alpha,\beta)\in\Omega^2:\,G_{\alpha\beta}\neq 1\}|}{n^2}=1-\frac{\mathsf{val}(G)}{n}.$$

Probabilistic methods

Let $G \leq \operatorname{Sym}(\Omega)$ be a base-two transitive permutation group with degree n. Let $\operatorname{val}(G)$ be the valency of $\Sigma(G)$. Set

$$Q(G,2):=1-\mathbb{P}(G,2)=\frac{|\{(\alpha,\beta)\in\Omega^2:\,G_{\alpha\beta}\neq 1\}|}{n^2}=1-\frac{\mathsf{val}(G)}{n}.$$

Lemma

If $Q(G,2) < \frac{1}{t} \le \frac{1}{2}$, then $\Sigma(G)$ has all of the following properties:

- Any t vertices in $\Sigma(G)$ have a common neighbour;
- $\Sigma(G)$ has diameter at most 2;
- $\Sigma(G)$ has clique number at least t+1;
- $\Sigma(G)$ is Hamiltonian.

Recall that

$$Q(G,2) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2}$$

is the probability that random chosen pairs in Ω do not form a base.

Recall that

$$Q(G,2) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2}$$

is the probability that random chosen pairs in Ω do not form a base.

- $Q(G,2) < 1 \implies b(G) \le 2$.
- $Q(G,2) < \frac{1}{t} \implies \Sigma(G)$ satisfies all statements in the above lemma.

Recall that

$$Q(G,2) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2}$$

is the probability that random chosen pairs in Ω do not form a base.

- $Q(G,2) < 1 \implies b(G) \le 2$.
- $Q(G,2)<\frac{1}{t}\implies \Sigma(G)$ satisfies all statements in the above lemma.

Conjecture (Burness & Giudici, 2020)

Let G be a primitive permutation group with b(G) = 2. Then any two vertices in $\Sigma(G)$ have a common neighbour.

Recall that

$$Q(G,2) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2}$$

is the probability that random chosen pairs in Ω do not form a base.

- $Q(G,2) < 1 \implies b(G) \le 2$.
- $Q(G,2)<\frac{1}{t}\implies \Sigma(G)$ satisfies all statements in the above lemma.

Conjecture (Burness & Giudici, 2020)

Let G be a primitive permutation group with b(G) = 2. Then any two vertices in $\Sigma(G)$ have a common neighbour.

Note that if $Q(G,2) < \frac{1}{2}$, then the conjecture holds.

Example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then $\Sigma(G) \cong J(q+1,2)$ has valency 2(q-1) and thus

$$Q(G,2)=1-rac{\mathsf{val}(G)}{n}=1-rac{4(q-1)}{q(q+1)}
ightarrow 1 ext{ as } q
ightarrow \infty$$

Example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then $\Sigma(G) \cong J(q+1,2)$ has valency 2(q-1) and thus

$$Q(G,2)=1-rac{\mathsf{val}(G)}{n}=1-rac{4(q-1)}{q(q+1)}
ightarrow 1 ext{ as } q
ightarrow \infty$$

but $\Sigma(G) \cong J(q+1,2)$ still satisfies the Burness-Giudici Conjecture.

Example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then $\Sigma(G) \cong J(q+1,2)$ has valency 2(q-1) and thus

$$Q(G,2)=1-rac{\mathsf{val}(G)}{n}=1-rac{4(q-1)}{q(q+1)}
ightarrow 1 ext{ as } q
ightarrow \infty$$

but $\Sigma(G)\cong J(q+1,2)$ still satisfies the Burness-Giudici Conjecture.

Example

Suppose $\operatorname{soc}(G) = \operatorname{L}_3^\epsilon(q)$ with $q = p \equiv \epsilon \pmod 3$ and $H = G_\alpha$ is of type 3^{1+2} . $\operatorname{Sp}_2(3)$. Then $Q(G,2) < 8q^{-1} < \frac12$ for all q > 23.

Example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then $\Sigma(G) \cong J(q+1,2)$ has valency 2(q-1) and thus

$$Q(G,2)=1-rac{\mathsf{val}(G)}{n}=1-rac{4(q-1)}{q(q+1)}
ightarrow 1 ext{ as } q
ightarrow \infty$$

but $\Sigma(G) \cong J(q+1,2)$ still satisfies the Burness-Giudici Conjecture.

Example

Suppose $\operatorname{soc}(G) = \mathsf{L}_3^\epsilon(q)$ with $q = p \equiv \epsilon \pmod 3$ and $H = G_\alpha$ is of type 3^{1+2} . $\mathsf{Sp}_2(3)$. Then $Q(G,2) < 8q^{-1} < \frac12$ for all q > 23.

When $q \leq 23$ we can also check using MAGMA that the conjecture holds.

• All primitive groups with degree $n \le 4095$

- All primitive groups with degree $n \le 4095$
- "Most" alternating groups, symmetric groups and sporadic groups

- All primitive groups with degree $n \le 4095$
- "Most" alternating groups, symmetric groups and sporadic groups
- $soc(G) = L_2(q)$ (Chen & Du, 2020; Burness & H, in progress)

- All primitive groups with degree $n \le 4095$
- "Most" alternating groups, symmetric groups and sporadic groups
- $soc(G) = L_2(q)$ (Chen & Du, 2020; Burness & H, in progress)
- All almost simple primitive groups with soluble stabilisers (Burness & H, in progress)

- All primitive groups with degree $n \le 4095$
- "Most" alternating groups, symmetric groups and sporadic groups
- $soc(G) = L_2(q)$ (Chen & Du, 2020; Burness & H, in progress)
- All almost simple primitive groups with soluble stabilisers (Burness & H, in progress)
- Asymptotic results for many diagonal and twisted wreath type groups (Fawcett, 2013/21)

Clique number: maximal size of complete subgraph.

Clique number: maximal size of complete subgraph.

Theorem (Burness & H, in progress)

Let G be an almost simple primitive group with soluble stabiliser H. Suppose $soc(G) \neq L_2(q)$. Then one of the following holds:

- $\Sigma(G)$ has clique number at least 5.
- $G = A_5$ and $H = S_3$, the clique number of $\Sigma(G)$ is 4.

Clique number: maximal size of complete subgraph.

Theorem (Burness & H, in progress)

Let G be an almost simple primitive group with soluble stabiliser H. Suppose $soc(G) \neq L_2(q)$. Then one of the following holds:

- $\Sigma(G)$ has clique number at least 5.
- $G = A_5$ and $H = S_3$, the clique number of $\Sigma(G)$ is 4.

Independence number: maximal size of empty subgraph.

Clique number: maximal size of complete subgraph.

Theorem (Burness & H, in progress)

Let G be an almost simple primitive group with soluble stabiliser H. Suppose $soc(G) \neq L_2(q)$. Then one of the following holds:

- $\Sigma(G)$ has clique number at least 5.
- $G = A_5$ and $H = S_3$, the clique number of $\Sigma(G)$ is 4.

Independence number: maximal size of empty subgraph.

Theorem (Burness & H, in progress)

Let G be an almost simple primitive group with soluble stabiliser H. Then one of the following holds:

- $\Sigma(G)$ has independence number at least 4.
- $G = A_5$ and $H = S_3$, the independence number of $\Sigma(G)$ is 2.

Problems

- **Connectedness.** Characterise transitive groups with connected Saxl graph. If *G* is quasiprimitive?
- Automorphisms.
 - When do we have $G = \operatorname{Aut}(\Sigma(G))$?
 - When is $\Sigma(G)$ Cayley?
- Cycles. Eulerian cycle? Hamiltonian cycle?
- Unique regular suborbit. Can we classify groups with r = 1?
- Other invariants. Chromatic numbers? Spectrum?

Thanks for your attention!