Disentangling reporting and disease transmission using second order statistics

Eamon O'Dea and John Drake

Slower decay rates can indicate upcoming collapse

Slower decay rates can indicate upcoming collapse

Slower decay rates can indicate upcoming collapse

$$egin{aligned} \dot{x} &= r - x^2 \ x^* &= \pm \sqrt{r} ext{ if } r > 0 \ rac{\mathrm{d}\dot{x}}{\mathrm{d}x}|_{x=\sqrt{r}} &= -2\sqrt{r} \ p := \mathrm{perturbation} \ \dot{p} &= -2\sqrt{r} p \end{aligned}$$

Yeast system exemplifying a model of collapse

Spread of deviations depended on distance to bifurcation point

(Dai et al. 2012)

Spread of deviations depended on distance to bifurcation point

Second order

$$\langle p(t)^2
angle = \sigma^2/(4\sqrt{r})$$

$$\mathrm{d}p = -2\sqrt{r}p\mathrm{d}t + N(t,\sigma)\sqrt{\mathrm{d}t}$$

Variance also increased in a model of disease emergence

$$\mathrm{d}p = -rp\mathrm{d}t + N(t,\sigma)\sqrt{\mathrm{d}t}$$
 (O'Regan and Drake 2013)

Questions

1.Will indicators based on case data behave similarly?

Questions

1.Will indicators based on case data behave similarly?

log₁₀ mean

2. What advantages do second-order indicators have over log_{10} variance a rolling mean?

Epidemic threshold

(Brett et al. 2017)

We modeled disease spread with a BDI process

 $\lambda := ext{transmission (Birth) rate}$ $\eta := ext{removal (Death) rate}$ $\nu := ext{importation (Immigration) rate}$

Cases were modeled as the count of removals

Cases were modeled as the count of removals

$$rac{\mathrm{d}P_{N,n}}{\mathrm{d}T} = [\lambda(N-1)+
u]P_{N-1,n} \ - [\lambda NP_{N,n}+
u]P_{N,n} \ + \eta(N+1)P_{N+1,n-1} \ - \eta NP_{N,n}$$

Moments of cases *n* were found with generating functions

$$egin{aligned} q(s,z;T) &:= \sum_{N,n} (1-s)^N (1-z)^n P_{N,n}(T) \ &\langle n
angle &= \eta T
u/(\eta-\lambda) \ &n^{[2]} &:= \langle n(n-1)
angle/\langle n
angle^2 \ &= 1 + rac{2\lambda}{
u(\eta-\lambda)T} \left(1 - rac{1-\exp((\lambda-\eta)T)}{(\eta-\lambda)T}
ight) \end{aligned}$$

Decreasing functions of distance to threshold: $\eta - \lambda$ (Hopcraft et al. 2014)

The autocorrelation of *n* was also found via a bilinear moment

$$egin{aligned} n(0) & n(au) \ \hline 0 & T & au & au + T \ \end{bmatrix} \ g(au;T) &:= rac{\langle n(0)n(au)
angle}{\langle n
angle^2} & \gamma &:= T(\eta-\lambda)/2 \ g(au;T) &= 1 + rac{\lambda}{\gamma^2
u} \sinh^2(\gamma) \exp(-(\eta-\lambda) au) \
ho(au,T) &:= [\langle n(0)n(au)
angle - \langle n
angle^2]/ ext{var } n \ &= rac{g(au;T)-1}{n^{[2]}-1+\langle n
angle^{-1}}. \end{aligned}$$

Decreasing functions of distance to threshold: $\,\eta-\lambda$

Questions

1.Will indicators based on case data behave similarly?

2. What advantages do second-order indicators have over a rolling mean?

Answers

- 1. Many should also increase as threshold approached:
 - mean
 - factorial moment
 - decay time of autocorrelation
- 2. None. But what if not all cases are reported?

Some moments of reports are unaffected by reporting prob.

```
m := 	ext{number of reports}
\xi := 	ext{reporting probability}
```

$$egin{align} q_{
m bin}(s,z;T) &= q(s,z\xi;T) \ \langle m_{
m bin}
angle &= \xi \langle n
angle \ m_{
m bin}^{[2]} &= n^{[2]} \ \end{pmatrix}$$

(Hopcraft et al. 2014)

Same result holds when allowing for overdispersion

$$egin{aligned} m_{
m nb} &:= \xi n + e \ e &:= ext{error term} \ \phi &:= ext{dispersion parameter} \ \langle e^2 | n
angle &= \xi n + (\xi n)^2 / \phi \ \langle m_{
m nb}
angle &= \xi \langle n
angle \ m_{
m nb}^{[2]} &= (1 + 1/\phi)(n^{[2]} + 1/\langle n
angle) \end{aligned}$$

Secondorder indicators can be more specific

We simulated increasing reports under two scenarios

We estimated moments in moving windows for each series

We estimated moments in moving windows for each series

Expected trends were seen, but the noise was high

Middle 90% of estimates

The noise can be reduced if multiple time series available

Some variation across time series is not a problem

Questions

- 1. Will indicators based on case data behave similarly?
- 2. What advantages do second-order indicators have over a rolling mean?

Answers

- 1. Many should also increase as threshold approached.
- 2. Some of them are insensitive to changes in reporting probabilities

We are looking for applications, but there are several potential problems

- Stationarity assumptions not valid
- Real ensembles too small and heterogeneous
- Single-type BDI model inadequate
- Observation model inadequate

Thanks!

- NIH Award Number U01GM110744
- Comments from Tobias Brett and Pejman Rohani