

Administrador de Banco de Dados

Módulo II

SQL Server: Consultas avançadas com Microsoft SQL Server 2019;

O que iremos aprender?

- A cláusula HAVING, para filtrar dados agrupados
- A cláusula CASE para classificar registros
- Como juntar tabelas usando diversos tipos de JOIN;
- Como unir consultas com os campos do mesmo tipo;
- Como usarmos Subconsulta;
- Views

Aula 9 – Having, Case e Juntando as tabelas

Having

HAVING é uma condição (Filtro) que se aplica ao resultado de uma agregação.

A função **HAVING**, ela é aplicada para que nós possamos fazer um filtro sobre o resultado de um GROUP BY.

Having

X	Υ
A A	2
Α	1
В	2
В	3
В	1
С	1
C C	5
С	2
D	3

SELECT X, SUM(Y) FROM TABELA GROUP BY X

X	Υ	
Α	3	
A B C	6	
С	8	
D	3	

Quero só visualizar os campos cuja soma der maior que 6

SELECT X, SUM(Y) FROM TABELA GROUP BY X HAVING SUM(Y) >=6

X	Υ
В	6
С	8

Desafio

Quais são os clientes que fizeram mais de 2000 compras em 2016?

```
SELECT CPF, COUNT(*) AS 'QTD. DE COMPRAS' FROM [TABELA DE NOTAS FISCAIS]
WHERE YEAR(DATA) = 2016
GROUP BY CPF
HAVING COUNT(*) > 2000
```


CASE

CASE – Fazemos um teste em um ou mais campos e, dependendo do resultado, teremos um ou outro valor.

```
WHEN <CONDICAO 1> THEN <VALOR 1> WHEN <CONDICAO 2> THEN <VALOR 2> WHEN <CONDICAO 3> THEN <VALOR 3> (...)

WHEN <CONDICAO N) THEN <VALOR N> ELSE <VALOR_ELSE>
END
```


FROM TABELA

X	Υ
CLIENTE 1	OTIMO
CLIENTE 2	MEDIO
CLIENTE 3	OTIMO
CLIENTE 4	OTIMO
CLIENTE 5	RUIM
CLIENTE 6	MEDIO
CLIENTE 7	BM
CLIENTE 8	BOM

Υ
8
6
9
10
4
5
7
8

Desafio

Veja o ano de nascimento dos clientes e classifique-os como: nascidos antes de 1990 são adultos, nascidos entre 1990 e 1995 são jovens e nascidos depois de 1995 são crianças.

Liste o nome do cliente e esta classificação.

```
SELECT [NOME],
   CASE
     WHEN YEAR([DATA DE NASCIMENTO]) < 1990 THEN 'Adulto'
     WHEN YEAR ([DATA DE NASCIMENTO]) between 1990 and 1995 then 'Jovem'
     ELSE 'Criança'
   END AS 'CLASSIFICAÇÃO ETÁRIA'
FROM [TABELA DE CLIENTES]</pre>
```


Usando JOIN

O JOIN nos traz a o possibilidade de unir uma ou mais tabela através de campo em comum.

- Eles não precisam ter o mesmo nome
- Eles tem que ser o mesmo tipo
- Independente da chave estrangeira
- Campo em comum entre as tabelas

Usando JOIN

O JOIN nos traz a o possibilidade de unir uma ou mais tabela através de campo em comum.

SELECT A.NOME, B.HOBBY FROM [TABELA ESQUERDA] A
INNER JOIN [TABELA DIREITA] B
ON A.IDENTIFICADOR = B.IDENTIFICADOR

Desafio

Obtenha o faturamento anual da empresa. Leve em consideração que o valor financeiro das vendas consiste em multiplicar a quantidade pelo preço.

SELECT YEAR(DATA) AS 'ANO', SUM (QUANTIDADE * [PREÇO]) AS FATURAMENTO FROM [TABELA DE NOTAS FISCAIS] NF INNER JOIN [TABELA DE ITENS NOTAS FISCAIS] INF
ON NF.NUMERO = INF.NUMERO
GROUP BY YEAR(DATA)

Usando LEFT JOIN

SELECT A.NOME, B.HOBBY FROM [TABELA ESQUERDA] A LEFT JOIN [TABELA DIREITA] B

ON A.IDENTIFICADOR = B.IDENTIFICADOR

Usando RIGHT JOIN

SELECT A.NOME, B.HOBBY FROM [TABELA ESQUERDA] A RIGHT JOIN [TABELA DIREITA] B

Usando FULL JOIN SQL Server

SELECT A.NOME, B.HOBBY FROM [TABELA ESQUERDA] A FULL JOIN [TABELA DIREITA] B ON A.IDENTIFICADOR = B.IDENTIFICADOR

Identificador Nome **Identificador Identificador Hobby** Samara Praia Praia Samara Márcio Futebol Márcio **Futebol NULL** Maitê Música Maitê **NULL** Música Tabela Direita Tabela Esquerda

Usando CROSS JOIN

SQL Server

SELECT A.NOME, B.HOBBY FROM

[TABELA ESQUERDA] A CROSS JOIN [TABELA DIREITA] B

Usando UNION

Union – Faz união entre duas tabelas.

- Tabelas do banco de dados
- Resultantes de um JOIN
- Campos tem que ser do mesmo tipo
- Os campo tem que está na mesma ordem

Union – Na verdade o UNION junta duas consultas

Usando UNION

UNION –Ele aplica DISTINCT sobre os resultado final da consulta

Identificador	Hobby
1	Praia
3	Futebol
5	Fotografia
8	Artesanato
14	Computador
15	TV
18	Tênis

Usando UNION ALL

UNION ALL – Não aplica DISTINCT sobre os resultado final da consulta

Identificador	Hobby
1	Praia
3	Futebol
5	Fotografia
8	Artesanato

Identificador	Hobby
1	Praia
14	Computador
15	TV
18	Tênis

<u>Identificador</u>	Hobby
1	Praia
3	Futebol
5	Fotografia
8	Artesanato
1	Praia
14	Computador
15	TV
18	Tênis

Subconsulta

Subconsulta – Podemos usar uma subconsulta dentro de uma consulta

X	Υ
Α	2
Α	1
В	2
В	3
В	1
С	1
С	5
С	2

Z	l	WHERE Y IN(1,2)
1		
2		SELECT X,Y FROM TAB1
3		WHERE Y IN(1,2,3)
4		SELECT X,Y FROM TAB1 WHERE Y IN(1,2,3,4)
5		SELECT X,Y FROM TAB1 WHERE Y IN(1,2,3,4,5)

Subconsulta

Subconsulta – Podemos usar uma subconsulta dentro de uma consulta

X	Υ
Α	2
Α	1
В	2
В	3
В	1
С	1
С	5
С	2

Z	
1	
2	
3	

Subconsulta

Subconsulta – Podemos usar uma subconsulta dentro de uma consulta

Desafio

Qual seria a consulta, usando subconsulta, que seria equivalente a:

```
SELECT CPF, COUNT(*) FROM [TABELA DE NOTAS FISCAIS]
WHERE YEAR(DATA) = 2016
GROUP BY CPF
HAVING COUNT(*) > 2000
```



```
SELECT X.CPF, X.CONTAGEM FROM

(SELECT CPF, COUNT(*) AS 'CONTAGEM' FROM [TABELA DE NOTAS FISCAIS]

WHERE YEAR(DATA) = 2016

GROUP BY CPF) X

WHERE X.CONTAGEM > 2000
```


View – É uma tabela lógica, resultado de uma consulta que pode ser usada depois e, qualquer outra consulta

X	Υ
X A	2
Α	1
В	2
В	3
В	1
С	1
С	5
С	2
D	4

SELECT X, SUM(Y) AS NEW_Y FROM TAB1
GROUP BY X

X	NEW Y
Α	3
В	6
С	8
D	4

Criamos uma visão chamada VW_VIEW

X	NEW Y	
Α	3	
В	6	
С	8	
D	4	
VW_VIEW		

SELECT * FROM VW_VIEW

Χ	NEW Y	
Α	3	
В	6	
С	8	
D	4	
VW_VIEW		

	W	Υ		
	F	3 6		
	G	6		
	Н	9		
	I	9		
	J	3		
	K	6		
	L	3		
	М	3		
	N	4		
TAB3				

SELECT VW_VIEW.X, TAB3.W FROM VW_VIEW INNER JOIN TAB3

ON VW_VIEW.NEW_Y = TAB3.Y

CREATE VIEW [NOME DA VIEW] AS

[CONSULTA A SER SALVA NA VIEW]

O que aprendemos nesta aula

 A cláusula CASE para classificar registros Como juntar tabelas usando diversos tipos de JOIN

 Como unir consultas com os campos do mesmo tipo

A cláusula
 HAVING, para
 filtrar dados
 agrupados

Como usarmos
 Subconsultas e Views