LUNN LAMINATES INC WYANDANCH NY
REINFORCED PLASTIC SONAR DOME MATERIAL INVESTIGATION. VOLUME II--ETC(U)
1968 AD-A044 039 UNCLASSIFIED NL 1 OF 3 2044039

to USNUSL Ser 2064-463

WYANDANCH . LONG ISLAND . NEW YORK 11798

DISTRIBUTION STATEMENT A
Approved for public release;

Distribution Unlimited

CONTRACT NØ0140-66-C-0573 for United States Navy Underwater Sound Laboratory New London, Connecticut

45250 -II

Cop # 22

REINFORCED PLASTIC
SONAR DOME
MATERIAL INVESTIGATION,

VOLUME IT .

PHYSICAL TESTS

1) 1968

(12)251p.)

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Lunn Laminates, Inc. V Straight Path Wyandanch, New York 11798

5/2213000

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

Ince

Table of Volume Content

Volume I

Panel Construction

Volume II

Physical Tests

4786211002 Volume 111

Acoustic Measurements

Basilel Volume IV

Damping Measurements

ACCESSION OF WHITE SECTION OF BUT SECTION OF BUT SECTION OF BUT SECTION OF BY DISTRIBUTION AVAILABILITY COOPE BUT AVAILABLE OF SPECIAL AVAILABLE OF SPECIAL OF BUT O

1

Table of Contents Volume I

1.	Introduction	and	Basis	for	Selection

II. Methods of Construction and Panel Content

Table of Contents Volume II:

- Details of Physical Tests,
- 11. Photographs;
- III. Presentation of Data.

Table of Contents Volume III

- Sequential Listing of Materials Tested
- Description of Tests Performed
- III. Test Conditions and Equipment
- IV. Graphical Results of Tests Performed

Table of Contents Volume IV

- Sequential Listing of Materials Tested
- II. Description of Damping Measurement Test
- III. Test Conditions and Equipment
- IV. Graphic Results of Damping Measurements

MATERIALS

Reinforcement:

Turner Halsey S-1313 Polypropylene.

Resin:

90% Allied rigid PE-941 and 10% Allied flexible

PE-9600 Polyester resin.

Catalyst:

0.5% Methyl Ethyl Ketone Peroxide.

Promoter:

0.2% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in two stages, each with 22 plies of reinforcement. Each ply had its warp direction rotated 45° from the preceding ply. Since Turner Halsey does not manufacture S-1313 in widths larger than 60", many plies were constructed of more than one piece of reinforcement. When a ply of reinforcement contained more than one single piece of reinforcement, butt joints were used and staggered throughout the panel.

Wrinkles formed in the panel from the exotherm caused by polymerization of the resin. When subjected to 200°F for 40 hours, panel warped. Because the panel warped during post curing, a second panel was made and allowed to cure at room temperature for 30 days.

MATERIALS

Reinforcement:

Turner Halsey S-1313 Polypropylene.

Resin:

90% Allied rigid PE-941 and 10% Allied flexible

PE-9600 Polyester resin.

Catalyst:

0.6% Methyl Ethyl Ketone Peroxide.

Promoter:

0.2% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in four stages, each containing 44 plies of reinforcement. Each ply had its warp direction rotated 45° from the preceding ply. Since Turner Halsey does not manufacture S-1313 in widths larger than 60", many plies were constructed of more than one single piece of reinforcement. When a ply of reinforcement contained more than one single piece of reinforcement, butt joints were used and staggered throughout the panel.

Wrinkles formed in the panel from the exotherm caused by polymerization of the resin. When subjected to 2000F for 40 hours, the panel warped. Because the panel warped during post curing, a second panel was made and allowed to cure at room temperature for 30 days.

MATERIALS

Reinforcement: 181 Fabric.

Resin: 50% Ciba rigid 509 and 50% Ciba flexible 508 Epoxy

resin.

Hardener: 24% Ciba DP-138.

PRODUCTION OF PANEL

Panel was fabricated in two stages, each with 39 plies of reinforcement.

The viscosity of the resin hindered removal of air from the panel. When fabrication of panel #422 began, the number of plies of reinforcement was decreased per stage to overcome this difficulty. From the results of Panel #422 fabrication, this panel should be made in at least three stages to obtain a void-free panel.

The gel time schedule for the epoxy mixture used is approximately 25 to 35 hours at $72^{\circ}F$.

From experience in fabrication of vacuum molded panels with this epoxy, if such a gel schedule is used, the panel should be left under vacuum for an additional 24 hours after gel. As an alternative procedure, which was used for this panel, subjecting the panel to a temperature of $100^{\rm o}{\rm F}$ for 24 hours is sufficient to gel the panel and allow removal from vacuum.

After fabrication was completed the panel was post cured for 24 hours at 225°F.

MATERIALS

Reinforcement: 181 Fabric.

Resin: 50% Ciba r

50% Ciba rigid 509 and 50% Ciba flexible 508 Epoxy

resin.

Hardener: 24% Ciba DP-138.

PRODUCTION OF PANEL

The viscosity of the epoxy mix was slightly higher than the polyesters used and therefore increased the difficulty of removing excess resin and air from the panel. Because of the anticipated difficulty in removing the air, the first stage contains only 10 plies of 181 fabric. No difficulty was encountered in removing air from the first stage so the amount of fabric was increased to 15 plies in the second stage. Again no difficulty in removing air was encountered. The third and fourth stages contain 20 plies each and the difficulty in removing the air began to increase. The fifth and last stage contains 30 plies and a great amount of time and energy was needed to remove the air.

The gel time for the epoxy mixture used is approximately 25 to 35 hours at $72^{\circ}F$. From experience in fabrication of vacuum molded panels with this epoxy, if such a gel schedule is used, the panel should be left under vacuum for an additional 24 hours after gel. As an alternative procedure, which was used for this panel, subjecting the panel to a temperature of $100^{\circ}F$ for 24 hours is sufficient to gel the panel and allow removal from vacuum.

After fabrication was completed the panel was post cured for $48 \text{ hours at } 220^{\text{O}}\text{F}$.

MATERIALS

Reinforcement:

Wellington Sears SN-308 Nylon.

Resin:

90% Allied rigid PE-941 and 10% Allied flexible

PE-9600 Polyester resins.

Catalyst:

0.6% Methl Ethyl Ketone Peroxide.

Promoter:

0.2% Cobalt Napthenate.

PRODUCTION OF PANEL

The warp direction of the reinforcement in this panel has been rotated $45^{\rm O}$ from the warp direction of the preceding ply. Due to warpage when post cured at $225^{\rm O}{\rm F}$ for 24 hours, the first panel was discarded and a second one fabricated. The second panel was fabricated in one stage and contains 30 plies.

After room temperature gel, the panel was allowed to cure at room temperature for 30 days.

MATERIALS

Reinforcement:

Wellington Sears SN-308 Nylon.

Resin:

90% Allied rigid PE-941 and 10% Allied flexible

PE-9600 Polyester resins.

Catalyst:

0.6% Methyl Ethyl Ketone Peroxide.

Promoter:

0.2% Cobalt Napthenate.

PRODUCTION OF PANEL

The warp direction of the reinforcement in this panel was rotated 45° from the warp direction of the preceding ply. Due to warpage when post cured at 200°F for 48 hours, the first panel was discarded and a second one fabricated.

The second panel was fabricated in one stage and contains 60 plies. After room temperature gel, the panel was allowed to cure at room temperature for 30 days.

MATERIALS

Reinforcement: Owens-Corning OCF-ECF 12% elastomer coated glass

and 181 fabric.

Resin: 90% Allied rigid PE-941 and 10% Allied flexible

PE-9600 Polyester resins.

Catalyst: 0.6% Methyl Ethyl Ketone Peroxide.

Promoter: 0.1% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in two stages, each containing 36 plies of reinforcement. The reinforcements in the panel were alternated from ply to ply with both surfaces of the finished panel containing the 181 reinforcement. Besides alternating the reinforcements, the warp direction of every group of two plies (each group contains one ply 181 and one ply Owens-Corning OCF-ECF with parallel warp directions) of fabric has been rotated 45° from the preceding group's warp direction.

Owens-Corning OCF-ECF reinforcement presents a handling problem because of the unidirectional weave and loose binder of the material. Once cut to desired pattern dimensions, the fabric unravels and loses its integrity. When attempting to remove excess resin and air from the panel, the plies of OCF-ECF shift and move from prearranged positions resulting in a different warp direction than desired. If the fabric is held in position by tape, the warp direction still shifts because there is no binder to hold each individual strand into position. Due to the distance between strands, approximately 1/16", air is trapped in these voids and cannot be easily removed.

After room temperature gel, panel was allowed to cure at room temperature for 30 days. Panel was not post cured at elevated temperatures because of the elastomer on the Owens-Corning fabric.

MATERIALS

Reinforcement: Owens-Corning OCF-ECF 12% elastomer coated glass

and 181 fabric.

Resin: 90% Allied rigid PE-941 and 10% Allied flexible PE-9600

Polyester resin.

Catalyst: 0.6% Methyl Ethyl Ketone Peroxide.

Promoter: 0.1% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in three stages. The first and second stages contain 36 plies each and the third contains 32 plies of reinforcement. The reinforcements in the panel were alternated from ply to ply with both surfaces of the finished panel containing the 181 reinforcement. Besides alternating the reinforcements, the warp direction of every group of two plies (each group contains one ply 181 and one ply of Owens-Corning OCF-ECF with parallel warp directions) of fabric has been rotated 45° from the preceding group's warp direction.

Owens-Corning OCF-ECF reinforcement presents a handling problem because of the unidirectional weave and loose binder of the material. Once cut to desired pattern dimensions, the fabric unravels and loses its integrity. When attempting to remove excess resin and air from the panel, the plies of OCF-ECF shift and move from prearranged positions, resulting in a different warp direction than desired. If the fabric is held in position by tape, the warp direction still shifts because there is no binder to hold each individual strand into position. Due to the distance between strands, approximately 1/16", air is trapped in these voids and cannot be easily removed.

After room temperature gel, panel was allowed to cure at room temperature for 30 days. Panel was not post cured at elevated temperatures because of the elastomer on the Owens-Corning fabric.

MATERIALS

Reinforcement: Owens-Corning S-901/81 S-Glass.

Resin: 20% Allied rigid PE-941 and 80% Allied flexible

PE-9600 Polyester resin.

Catalyst: 0.5% Methyl Ethyl Ketone Peroxide.

Promoter: 0.15% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in two stages. First stage contains 38 plies and the second stage contains 28 plies.

Because of the special finish on the glass, removal of excess resin and air was difficult.

After room temperature gel, panel was post cured at 200°F for 44 hours.

MATERIALS

Reinforcement: Owens-Corning S-901/81 S-Glass.

Resin: 20% Allied rigid PE-941 and 80% Allied flexible

PE-9600 Polyester resin.

Catalyst: Resin was catalized with 0.5% Methyl Ethyl Ketone

Peroxide.

Promoter: 0.1% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in four stages. Each stage contains 38 plies of reinforcement.

Because of the special finish on the glass, removal of excess resin and air was difficult.

After room temperature gel, panel was post cured at 200° F for 72 hours.

MATERIALS

Reinforcement: 181 Fabric.

Resin: 90% Allied rigid PE-941 and 10% Allied flexible PE-9600

Polyester resins.

Catalyst: 0.5% Methyl Ethyl Ketone Peroxide.

Promoter: 0.15% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in two stages, each containing 39 plies of reinforcement. No special production requirements or caution was needed during fabrication.

Panel gelled at room temperature and was post cured at $200^{\circ}F$ for 72 hours.

MATERIALS

Reinforcement: 181 Fabric.

Resins: 90% Allied rigid PE-941 and 10% Allied flexible PE-9600

Polyester resins.

Catalyst: 0.5% Methyl Ethyl Ketone Peroxide.

Promoter: 0.15% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in four stages. First stage contains 32 plies of reinforcement, the second and third stages contain 36 plies each and the fourth stage contains 25 plies of reinforcement. No special production requirements or caution was needed during fabrication.

Panel gelled at room temperature and was post cured at 200°F for 72 hours.

MATERIALS

Reinforcement: 181 Fabric.

Resin: Ciba 6005 Epoxy Resin.

Hardener: 8% Ciba 951.

PRODUCTION OF PANEL

Panel was fabricated in three stages, each containing 24 plies of reinforcement.

The viscosity of Ciba 6005 epoxy is 7,000 to 10,000 cps at 25°C and because of this high viscosity, removal of excess resin and air is difficult. To ease removal of air and excess resin each stage was reduced to 24 plies instead of the normal 32 - 36 plies.

Panel was allowed to gel at room temperature and was post cured at 200°F for 50 hours.

MATERIALS

Reinforcement: 181 Fabric.

Resin: Ciba 6005 Epoxy Resin.

Hardener: 8% Ciba 951.

PRODUCTION OF PANEL

Panel was fabricated in five stages, each containing 24 plies of reinforcement.

The viscosity of Ciba 6005 Epoxy is 7,000 to 10,000 cps at 77°F and because of this high viscosity, removal of excess resin and air is difficult. To facilitate removal of air and excess resin, each stage was reduced to 24 plies instead of the normal 32 to 36 plies.

Panel was allowed to gel at room temperature and then post cured at $200^{\circ}F$ for 50 hours.

MATERIALS

Reinforcement: 181 Fabric.

Resin:

Ciba 6005 Epoxy Resin.

Hardener:

8% Ciba 951.

PRODUCTION OF PANEL

Panel was fabricated in five stages, each containing 24 plies of reinforcement.

The viscosity of Ciba 6005 Epoxy is 7,000 to 10,000 cps at 77°F and because of this high viscosity, removal of excess resin and air is difficult. To facilitate removal of air and excess resin, each stage was reduced to 24 plies instead of the normal 32 to 36 plies.

Panel was allowed to gel at room temperature and then post curred at $200^{\circ}F$ for 50 hours.

MATERIALS

Reinforcement: 181 fabric.

Resin: 10% Allied rigid PE-941 and 90% Allied flexible

PE-9600 Polyester resin. An additional 4% Styrene

Monomer was added to decrease viscosity.

Catalyst: 0.5% Methyl Ethyl Ketone Peroxide.

Promoter: 0.1% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in two stages. First stage contains 36 plies of reinforcement and the second stage contains 34 plies. There were no special production techniques required in fabrication of this panel.

After room temperature gel, panel was post cured for $72 \text{ hours at } 180^{\text{O}}\text{F}$.

MATERIALS

Reinforcement: 181 fabric.

Resin: 10% Allied rigid PE-941 and 90% Allied flexible

PE-9600 Polyester resin. An additional 4% Styrene

Monomer was added to decrease viscosity.

Catalyst: 0.5% Methyl Ethyl Ketone Peroxide.

Promoter: 0.1% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in four stages. Stages one, three and four contain 36 plies of reinforcement and stage two contains 34 plies. There were no special production techniques required in fabrication of this panel.

After room temperature gel, panel was post cured at 180°F for 72 hours.

MATERIALS

Reinforcement: 181 fabric and Turner Halsey S-1313 Polypropylene

fabric.

Resin: 50% Allied rigid PE-941 and 50% Allied flexible PE-9600

Polyester resins.

Catalyst: 0.6% Methyl Ethyl Ketone Peroxide.

Promoter: 0.1% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in two stages. Both stages contain 36 plies of reinforcement with 181 fabric as the surface material of the finished panel. The two reinforcements were arranged so that three consecutive plies were 181 and the next ply was polypropylene. This arrangement was used throughout fabrication of panel.

The specific gravity of polypropylene is approximately the same as the resin and, as a result, the polypropylene "floats" in the resin and it is difficult to keep each ply's warp direction parallel to each other.

Since polypropylene is a synthetic material and has a tendency to warp when subjected to elevated temperatures, the panel was allowed to gel at room temperature and cure at the same temperature for 30 days.

MATERIALS

Reinforcement: 181 fabric and Turner Halsey S-1313 Polypropylene

fabric.

Resin: 50% Allied rigid PE-941 and 50% Allied flexible

PE-9600 Polyester resin.

Catalyst: 0.6% Methyl Ethyl Ketone Peroxide.

Promoter: 0.1% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in four stages, each containing 36 plies of reinforcement. The two reinforcements used were arranged so that three consecutive plies were 181 and the next ply was polypropylene. This arrangement was used repeatedly throughout the fabrication of the panel.

The specific gravity of polypropylene is approximately the same as the resin and, as a result, the polypropylene "floats" in the resin and it is difficult to keep each ply's warp direction parallel to each other.

Since polypropylene is a synthetic material and has a tendency to warp when subjected to elevated temperatures, the panel was allowed to gel at room temperature and cure at the same temperature for 30 days.

MATERIALS

Reinforcement:

181 Fabric.

Resin:

90% Allied rigid PE-941 and 10% Allied flexible

PE-9600 Polyester resins.

Catalyst:

0.6% Methyl Ethyl Ketone Peroxide.

Promoter:

0.1% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in two stages. First stage contains 37 plies and second stage contains 34 plies of reinforcement. The panel was constructed with the warp direction of each ply rotated 45° from the preceding ply.

During fabrication some of the plies shifted. The plies which shifted and reoriented their warp direction were those plies whose prearranged warp direction was at 45° and 135° to the panel's edge.

Panel gelled at room temperature and was post cured at $200^{\circ}F$ for 72 hours.

MATERIALS

Reinforcement: 181 Fabric.

Resin: 90% Allied rigid PE-941 and 10% Allied flexible

PE-9600 Polyester resins.

Catalyst: 0.65% Methyl Ethyl Ketone Peroxide.

Promoter: 0.1% Cobalt Napthenate.

PRODUCTION OF PANEL

Panel was fabricated in four stages. First stage contains 37 plies, second stage contains 34 plies and, both third and fourth stages contain 36 plies of reinforcement each. The panel was constructed with the warp direction of each ply rotated 45° from the preceding ply.

During fabrication some of the plies shifted. The plies which shifted and reoriented their warp direction were those plies whose prearranged warp direction was at $45^{\rm o}$ and $135^{\rm o}$ to the panel's edge.

Panel gelled at room temperature and was post cured at 200°F for 72 hours.

MATERIALS

Reinforcement:

Wellington Sears S-81 Fortisan.

Resin:

Ciba 6005 Epoxy resin with 10% Ciba reactive diluent

RD-1.

Hardner:

9.5% Ciba 951.

PRODUCTION OF PANEL

The viscosity of Ciba 6005 Epoxy at 25° C is 7,000 - 10,000 cps and, because of this, 10% RD-1 diluent was added to reduce viscosity. The lower viscosity was needed because the epoxy resin does not penetrate through the Fortisan fabric readily at 10,000 cps.

To allow adequate time for penetration of the resin through the reinforcement and completion of fabrication, the size of each stage was reduced. The panel was fabricated in three stages with the first stage containing 25 plies, the second 24 plies and, the third 30 plies of reinforcement.

The panel was allowed to gel at room temperature. During the gelling stage wrinkles began to form as the polymerization exotherm increased. To reduce chances of further wrinkling or warping of the panel, the panel was cured at room temperature for 30 days.

MATERIALS

Reinforcement:

Wellington Sears S-81 Fortisan.

Resin:

Ciba 6005 Epoxy resin with 10% Ciba reactive

diluent RD-1.

Hardner:

9.5% Ciba 951.

PRODUCTION OF PANEL

The viscosity of Ciba 6005 Epoxy at 25°C is 7,000 - 10,000 cps and, because of this, 10% RD-1 diluent was added to reduce viscosity. The lower viscosity was needed because the epoxy resin does not penetrate through the Fortisan fabric readily at 10,000 cps.

To allow adequate time for penetration of the resin through the reinforcement and completion of fabrication, the size of each stage was reduced. The panel was fabricated in five stages with 25 plies in the first stage, 24 plies in the second and, 30 plies in each of the remaining three stages.

The panel was allowed to gel at room temperature. During the gelling stage, wrinkles began to form as the polymerization exotherm increased. To reduce chances of further wrinkling or warping of the panel, the panel was cured at room temperature for 30 days.

METHODS OF MECHANICAL MEASUREMENT AND CALCULATION

Flexural Strength and Modulus of Elasticity

- A. Mechanical measurements were performed as outlined in Federal Test Method Standard Number 406, method 1031.
- B. Flexural strength was calculated using the following equation:

$$S = \frac{3PL}{2bd^2}$$

where:

S = Ultimate flexural
 strength - PSI.

P = Ultimate load - pounds

L = Span length - inches

b = Specimen width - inches

d = Specimen thickness - inches

C. Flexural modulus of elasticity was calculated using the following equation:

$$E_{\rm m} = \frac{1^3 \rm m}{4 \rm bd^3}$$

where:

E_m = Flexural modulus of elasticity - PSI

1 = Span length - inches

m = Slope of the tangent to
 the initial straight-line
 portion of the load deflection
 curve - pounds per inch.

b = Specimen width - inches

d = Specimen thickness - inches

TENSILE STRENGTH AND MODULUS

- A. Mechanical measurements were performed as outlined in Federal Test Method Standard Number 406, method 1011.
- B. Tensile strength was calculated using the following equation:

 $S = \frac{P}{bd}$ where: S = Ultimate tensile strength-PSI

P = Ultimate load - pounds

b = Specimen width - inches

d = Specimen thickness - inches

C. Tensile modulus of elasticity was calculated using the following equation:

E_m = Stress where: Stress = Calculated by drawing a line tangent to the initial linear portion of the Stress-Strain curve and selecting a value for the Stress and dividing by the corresponding value for Strain.

COMPRESSIVE STRENGTH AND MODULUS

- A. Mechanical measurements were performed as outlined in Federal Test Method Standard Number 406, method 1021.
- B. Compressive strength was calculated using the following equation:

S=P where: S=Ultimate compressive strength-PSI b=Specimen width-inches d=Specimen thickness - inches P=Ultimate load - pounds

C. Compressive modulus was calculated using the following equation:

E_m = Stress where: Stress=Calculated by drawing a line Strain tangent to the initial linear portion of the Stress-Strain curve and selecting a value for the stress and dividing by the corresponding value for strain.

INTERLAMINAR SHEAR STRENGTH

- A. Mechanical measurements were performed as outlined in ASTM D 1037 adopted from ASTM D 805.
- B. Interlaminar shear strength was calculated using the following equation:

 $S = \frac{P}{\Lambda}$ where:

S=Interlaminar Shear Strength-PSI A=Length of overlap area (inches) times width of overlap area (inches) - IN² P=Ultimate load - Pounds

BEARING STRENGTH

- A. Mechanical measurements were performed as outlined in Federal Test Method Standard Number 406, method 1051.
- B. Bearing strength was calculated using the following equation:

 $S_b = \frac{1}{25} \times \frac{P/A}{e/d}$

where:

S_b=Bearing strength - PSI

- P =Bearing load at point B, which is the intersection of the 4% deformation offset and the tangent line to the stress-strain curve of the specimen - pounds.
- A =Bearing area Square inches
- e =4% of Bearing hole diameterinches
- d =Bearing hole diameter-inches

SPECIFIC GRAVITY

- A. Mechanical measurements were performed as outlined in Federal Test Method Standard 406, method 5011.
- Specific gravity was calculated using the following equation:

Sp.GR. = $\frac{W_1}{W_1-W_2}$

where: W_1 = weight of specimen in air.

 W_2 = weight of specimen in water.

BONDING STRENGTH

- A. Mechanical measurements were performed as outlined in Federal Test Method Standard 406, method 1111.
 - B. Bonding strength was calculated using the following equation:

 $S = \frac{P}{bd}$

where: P = rupture load - pounds

b = specimen width - inches

d = specimen thickness - inches

IZOD IMPACT STRENGTH

- A. Mechanical measurements were performed as outlined in Federal Test Method Standard Number 406, method 1071.
- B. Izod Impact strength was calculated using the following equation:

S=W inch of notch where:

S=Izod Impact Strength Foot-Pounds/inch of notch

W=Energy in foot-pounds expended in the individual test.

ABRASION WEAR

- A. Mechanical measurements were performed as outlined in Federal Test Method Standard Number 406, method 1091.
- B. Abrasion wear was calculated using the following equation:

A=W1-W2

where:

A=Abrasion wear-AVG.MGS. removed per 1000 revolutions.

W₁=Original weight of specimengrams.

W₂=Final weight of specimen after 5,000 revolutions - grams.

RESIN CONTENT

- A. Mechanical measurements were performed as outlined in Federal Test Method Standard 406, method 7061, for all glass reinforced laminates. For laminates containing thermo-plastics or other synthetics, procedure #2 described below was used to determine resin content.
- B. Resin content was calculated using either procedure #1 (all glass reinforced laminates) or procedure #2 (all thermo-plastic or synthetic laminates).

Procedure #1:

% Resin by weight = 100 (loss in weight)
(original weight of laminate)

Procedure #2:

% Resin by weight = 100 (weight of laminate-weight of reinforcement)
(weight of reinforcement)

WATER ABSORPTION

- A. Mechanical measurements were performed as outlined in Federal Test Method Standard 406, method 7031. Procedure A was used for all laminates containing reinforcements other than glass, and Procedure E was used for all laminates containing glass as a reinforcement.
- B. Water absorption was calculated using the following equation:

% Water Absorbed by weight =
$$\frac{(W_2-W_1) \times 100}{W_1}$$

where: W_2 =weight of wet specimen.

W1=original weight of specimen.

VOID CONTENT

- A. Mechanical measurements were performed as outlined in MIL-P-17549C.
- B. Void content was calculated using the following equation:

% Voids = 100 -
$$\frac{a(d)}{c}$$
 - $\frac{a(e)}{b}$

where:

a=specific gravity of laminate times
100.

d=resin content of laminate expressed
as a decimal.

c=manufacturer's recorded specific
gravity of the cured unfilled
resin used in the laminate.

e=reinforcement content of laminate expressed as a decimal.

b=specific gravity of reinforcement
 (glass = 2.57).

	ACS TOWNEY WALES IN PERCENT WAS SOND TOWN WESTER PROSTON WESTER WAS SOND TOWN WAS SOND			DRY	-	36.0 0.10	30.9				DRY	37.3 0.11		WET	28.5	he reinforcement.	acted in the three	
	ACIANNI NOSSON			DRY	37.6	WET	81.8				DRY	2.02		WET	113	re of t	ests, cond	
	SPECIE S VOTIL					1.06						1.06				natur	=4 54	
	BONDING SINGNA BEAUTING SINGNA BEAUTING SINGNA BEAUTING SINGNA BONDING SINGNA BON		.731	.768		,	1			.734	.760	,		-	1	of the	ction.	rection.
IES	ANTERLUSIAN SI SURVAN SI S		00.6	6.03	1	1	-	,		8.90	5.84		,			cause	constructe same	13
0.	* TRAUS	11	1.20	1.20	1	1	'			1.30	1,20	1	'	1		ed bec	t c	arp
PHYSICAL PRO	Isa midon		.265	229	-	,	-	,		-289	.273	1		-	1	ermine	e an isotropic	rd to
PHYSIC	SONDING SOLVEN BY BY SOLVEN BY BY BY SOLVEN BY		7.70	8.60	1			,		04.6	8.30	1		1		e det	an i	regard
AVERAGE I	TENSILE TO THEVOTH		.360	.375	-	1	-	-		.373	.363	,			'	nnot b	hav	thou
AVE	SATA SOLI SNA		10.01	10.01	,	,	1	,		10.4	10.5	1	'	T.		0.0	above panels	ted wi
	TENGUATE OF STRENGLES		295	355	-	1	-	,		.276	.321	1	-	-	-	content	above	conducted
	PSI X NONAL STUENCTH PSI X 10-3 NOTH		8.40	9.50		,	'			7.30	8.10	•	-	-	-	. Void	The a	was
	PANEL	PANEL # 408M	WARP-DRY	WARP-WET	FILL-DRY	FI'L-WET	45° TO WARP-DRY	45° TO WARP-WET	PANEL # 308M	WARP-DRY	WARP-WET	FILL-DRY	FILL-WET	45° TO WARP-DRY	45° TO WARP-WET		COMMENTS	

				AGE	PHYSICAL	PR	PERTI	FS.								
PANEL	, runxa	STRINKS STRINKS	SATAR-OF SN	WINE STRENCIM	THONAULON STIEN	1sa n. sand	* The	- dring + Daves	. 45 De 1	ECT 3 CACILL	STALION WELL	TAR OOO REV	2100	151.11	TO AND AND TO THE STATE OF THE	· OIO INO
PANEL # 422	13	7.8	3.	31	03	27	45	d	2	ds	TEN	34	500		000	
WARP-DRY	25.3	1.60	35.9	2.50	19.8	.539	2.10	19.4	1.78							
WARP-WET	13.5	8888	25.1	1.80	9.50	.179	1.50	3.75	935		DRY		Α	DRY		
FILL-DRY	22.9	1.39	30.2	1.96	16.0	.737	2.00	13.0 1	99.	Ī	28.1	1	7	4.47		
FILL-WET	11.9	.773	20.8	1.39	7.20	.635	1.50	4.72	.925	±.	WET	27.60	o v	WET	!	
45° TO WARP-DRY	7.10	.183	12.7	.324	9.10	.214	3.50	!	1	~	45.0		7	14.8		
45° TO WARP-WET	3.80	-077	7.20	.153	5.20	.222	1.80	1	;							
PANEL # 322																
WARP-DRY	23.3	1.54	19.6	1.54	21.6	.838	2.20	8.70	1.78							
WARP-WET	12.9	.859	16.7	1.20	7.60	.713	1.70	2.82	.919		DRY		a	DRY		
FILL-DRY	21.7	1.20	12.5	.089	14.9	1.08	3.30	10.1	1.68		•		<u></u>	•		
FILL-WET	11.4	7695	8.40	.071	6.80	1.04	2.00	3.01	.934	79		0 6.44	.27			
45° TO WARP-DRY	04.9	.156	22.0	1:94	10.4	.396	3.80	!			WET			WET		
45° TO WARP-WET	3.50	-063	19.4	1.63	3.80	127	2.20	1	1		48.2		7	4.5		
CONNENTS	• Un	Unable t known.	to determ	rmine	void c	content	pec	ause sp	pecific	gravit	0 %	f cured	resi	n is n	lot	
		-	-						the contract of the	Street or other Designation	-					

AGE PHYSICAL PROPERTIES 10 10 10 10 10 10 10 10 10 10 10 10 10 1	TOO STATE TO		2 .325 6.60 .331 1.40 4.73 .494	.219 6.90 .333 1.10 3.22 .565	44.5	34.8 0.60 WET WET				5 .336 7.80 .257 1.20 4.50 .502	.177 7.70 .279 1.30 2.98 .575 DRY	1.16 25.884.8 0.57 44.8	1 1 1	WET	139 45.9	cannot be determined because of the nature of the reinforcement. Is have an isotropic construction. Tests, conducted in the three indicated vielded the same average results: therefore, each test
Samo	SALENDINA SILE SILE SILE SILE SILE SILE SILE SILE		.310 13.2 .32	12.8 .21	1	1	1	1		.250 14.5 .3	149 12.7	1	-	-	1	above panels hav
	PANEL	PANEL #411M	WARP-DRY 7.50	WARP-WET 6.00	FILL-DRY -	FILL-WET -	45° TO WARP-DRY -	45° TO WARP-WET -	PANEL # 311M	WARP-DRY 7.10	WARP-WET 5.30	FILL-DRY	FILL-WET	45° TO WARP-DRY	45 TO WARP-WET	COMMENTS The

I

П

	103	ENCIL	2010	SAZO	Sarna	- A	-01 3	9-01 \$	E-OI \$ 10-3			137	NISTH	RATIN VO	/
	2	3	00	THE	7		-	1	200	1	Q.	Y	RE	NOM	0
ala	TVUNS	TVINYSTA STVINYSTA STVINYSTA	OI FISH WILL WILL WILL WILL WILL WILL WILL WIL	SON STIENSTING SON STIENSTING SON STIENSTING SON STIENSTING SON	ALENSHIP HOS	11.	A LIVENT NET NET NET NET NET NET NET NET NET	BENEVETH P	SA SALANCH SA SALANCH SA SALANCH THE SALAN	S 3N. IS.	o and	Mes 1000 PERCENT RE CONTENT RESIDENT	PERCENT	ASSOND'I OF STRENT	PERCENT VON THE CONTRACT ON TH
								-		1					
30.	0.6	75.	30.1	1.92	16.	2 .934	2	0 31.9	9 1.29	0					
30.5	1	1.59	27.6	1.80	16.7	7 .670	3.20	23.	5 1.34	T_+	DRY			DRY	
'		1	,	'	'	'	'	'	<u> </u>	1	68.7			25.0	
-		1	,	1	<u>'</u>	1	1	1	1	1.62	WET	37.0	0.77	WET	1
WARP-DRY -	-			-		'		<u> </u>		T					
WARP-WET -	-	-	1	,	-	,	-	<u>'</u>	'		1.12			20.0	
	1														
23.	4 1	.31	30.7	1.93	3 19.2	186.	4 3.60	28.6	1.1	5	_				
21.5		1.20	30.3	1.8	5 19.1	1 1.02	2 1.70	0 22.7	7 1.23	3 1.62	DH	39.0		DRY	!
											63.0			37.5	
	-				1					<u> </u>					
TO WARP-DRY	-				_	_		_	_	1	WET			WET	
WARP-WET								_	_	Т	71.6			30.7	
• 	Void		content	cannot	pe	determ	mined h	becaus	e of	the na	nature of	the	reinf	orcement	
The	abo	ve p	The above panels	hav		otropi	con	constructi	0	(0)	condu	eq	the	ree	Warp
dir	directions conducted v		indica without	tec	eld d t	ed the	dire	ame average direction.		results;	therefo	ore, e	each te	est was	

aror Transon					30				Γ		-	1.71			
THE TOTAL WATER			DRY	49.5	WET 1.		46.5			DRY	42.0		WET	46.3	
TAN OUR WEY					49.7 0.75						1	48.0 6.54			
MARASTON GRAVITY			DRY	22.0	WET		74.0			DRY	65.1		WET	107	
Special Sinevery					1.65						!	1.63			
SPECIFICATION STRENGTH STRENGT		2.07	1.93	1.98	1.89	1			1.90	1.89	1.78	1.97	!	1	
WARS ISO WINGS	7	16.50	0	16.6	12.8	1	1		17.5	14.0	18.8	15.2	:	1	
PROPERTY IS SALVENTIES AS 1 S	2	2.60	2.10	2.40	2.30	3.10	2.90		2.60	2.50	2.40	2.40	3.10	2.60	
ad Isa nidros		.978	000	1.28	808	345	.281		926	.763	.885	804	288	.325	
PHYSICAL PROPERTY 10-6		21.9	N	22.4	16.5	11.0	06.6		19.8	16.9	18.8	17.1	10.5		
THENST TO STANGEN	2	2.43	N	2.45	2.13	.614	.579		2.32	2.09	2.15	1.98	.555	.369	
SULUS OF SULUS		9.95	52.3	56.9	51.5	12.5	10.3		8.09	58.2	55.9	55.2	14.1		
AN SULVENCENT SULVENCE		2.07	-	1.78	1.86	.635	.518		.668	2.08	099	1.74	909		
TEXULAL STUENCEN		36.0	10	24.5	25.4	11.9	10.6		36.8	39.2	25.1	28.8	12.2	-	
PANEL	PANEL # 460	WARP-DRY	WARP-WET	FILL-DRY	FILL-WET	45° TO WARP-DRY	45° TO WARP-WET	PANEL # 360	WARP-DRY	WARP-WET	FILL-DRY	FILL-WET	TO WARP-DRY	45° TO WARP-WET	COMMENTS

(NEED)

200000

1886

-

CONTRACT OF THE PERSON NAMED IN

PANEL # 603 PANEL	The state of the s	The Person Name and Address of the Owner, where	-	-	1		/		1	1	1	1	1	1	1	1
# 603 12	PANEL	FLEXUILA.	STENCENCE STRENCE IN	SATAR OF OFTENSA	HIDNAUS TO THENOTH		ISA MINON	* Thinks	TYBRI IS. ONTING	BONDING STRENGTH	Special Special	Mes John Star	PERCENT REV	41.000	151.	PERCENT.
	#							9		7				4	1	
WET 56.8 2 97 42.0 3.25 2.00 31.2 1.71 DRX WET 40.7 2.68 2.97 42.0 3.25 2.00 31.2 1.71 DRX WET 40.7 2.68 37.5 2.63 27.6 7.68 2.30 28.8 1.89 WET 40.8 2.25 21.3 18.9 1.69 21.6 880 3.10	URP-DRY	51.4	2.79	43	12			09.	100							
WET TO WARP-DRY 1-WET TO WARP-WET TO	ARP-WET	10	2.71	41.	00		N.	8	1			DRY			DRY	
TO WARP-DRY	ILL-DRY	56.8	2.97	42	U.	6.2	.959	06.	in	474.			,		-	8
TO WARP-DRY	ILL-WET	40.7	2.68	37.	0	7.6	.768	00	00	8.		T	1	1	T	00.
TO WARP-WET 31.8 1.83 18.9 1.69 21.6 .880 3.10	To	40.8	2.25	21.		24.3	.903	3.40	1	1	- 2	0.0			16.1	
-DRY -DRY -DRY -DRY -DRY -DRY -DRY -DRY	To	31.8	1.83	18	1.69	-	00		1	1						
-DRY -WET -	#															
WET	RP-DRY	55.9	2.80	44	3.18	31.7		2.20	34.3	1.47						
-WET TO WARP-WET A44.7 2.47 34.0 2.88 29.8 1.09 1.90 35.2 1.44 TO WARP-WET 22.9 1.47 18.2 1.59 24.1 711 2.60 82.6 1.44 MET TO WARP-WET	RP-WET	0.44	2.48	38.	00	0		3.10	30.7			DRY			DRY	
TO WARP-DRY 34.1 1.88 19.9 1.87 24.2 .728 2.50 31.4 1.52 1.72 WET TO WARP-DRY 34.1 1.88 19.9 1.87 24.2 .728 2.50 WET TO WARP-WET 22.9 1.47 18.2 1.59 24.1 .711 2.60 82.6 14.3	LL-DRY	44.7	2.47		2.88	6	1.09	1.90	35.2	777.		0	,		13.8	,
TO WARP-DRY 34.1 1.88 19.9 1.87 24.2 .728 2.50 WET TO WARP-WET 22.9 1.47 18.2 1.59 24.1 .711 2.60 82.6 MENTS	LL-WET		2.03	31	2.49	M	.820	2.50	31.4	.52			•	510.		1.10
TO WARP-WET 22.9 1.47 18.2 1.59 24.1 .711 2.60 82.6	To	34.1				24.2	.728	2.50				WET			WET	
	TO	22.9	٦	18	1.59	24.1	.711	2.60	1	1		82.6			14.3	
	OMENTS															

			AVE	ERAGE 1	PHYSIC	AL PRO	PERT	ES								
		HYON'S ENOW	SATAGE	-U/- E	SATAGO	154	9-01 × 15d	WANS ISU	THENELU 10-3	ALDAN E	(40)	ATH O	NIST	WATER.	00	aro.
PANEL	PLEXUIL	FLEX 10	Or ISN'3	a VOVA	SOMPHESS	D. SAHAMOS	INTERL	BEARING	BONDING SPECIFIC	SPECI	J. Out	PERCENT ROSTON	PERCENT.	ABSORPTION ABSORPTION OF THE STATE OF THE ST	PERCENT DE LA CONTENT DE LA CO	CONTENT I
PANEL # 626				16.11												
WARP-DRY	52.2	2.75	40.8	2.74	41.7	1.00	2.80	33.2	7.64							
WARP-WET	41.3	1	30.6	2.58	33.3	1.02	3.80	29.9	1.68		DRY			DRY		
FILL-DRY	40.8	2.12	39.9	2.78	39.2	1.18	4.40	34.0	1.68	9	18.8	0 77	r	12.1	27	
FILL-WET	29.5	1.88	29.3	2.60	40.1	1.09	4.30	25.1	1,61	00.1	WET	40.	7.0	WET	0.40	
45° TO WARP-DRY	34.1	1.74	21.6	1.47	22.0	.527	4.90	1	1		45.0			10.9		
45° TO WARP-WET	15.4	1.51	20.9	1.38	22.5	.581	5.40	1			· · · · · · · · · · · · · · · · · · ·					
PANEL # 526																
WARP-DRY	56.1	2.67	40.8	2.78	47.1	1.24	3.10	33.2	1.81							
WARP-WET	45.7	2.45	29.4	2.63	37.7		2.80	29.4	1.77		DRY			DRY		
FILL-DRY	48.6	2.37	39.5	2.87	32.9	1.02	3.50	34.4	1.69		41.2			13.1		
FILL-WET	41.5	2.10	28.5	2.54	0	116.	3.00	28.5	1.77	1.68		45.4	0.14		0.53	
45° TO WARP-DRY	39.6	1.84	19.8	1.52	23.7	249	4.10	-			WET			WET		
45° TO WARP-WET	34.9	1.58	19.8	1.33	22.7	.574	4.30		1		33.6			0.11		
COMMENTS																
															*	
										-	Districts with the said of					

1000000

COMME

	PERCENT WATER ABSORPTION ABS			DRY	20.1	0.52 W.F.T	19.8		The state of the s		DRY	15.7	0.22	WET	16.4	
	PERCENT RESIN	,		DRY	70.8	.02 WET 55.7	105				DRY	77.7	1.79 35.9	WET	86.5	
-	DSI NO SANCELLI		1,50	1.36	1.46	1.32	1	1		1,41	1.33	1.29	1.31			
TTIES /	STRENGTH PS1 * 100 PS1		0 25.2	188	21.	.00 17.0	02.	08		20 34.5	29.8	.0 29.1	90 26.0	00	1	
PROPE	Sa Sandra		.04 2.10	-	1	699 2.0	33 2	.271 1.8		1.08 2.2	.630 2.20	.626 2.10	Н	377 2.60	.386 2.10	
PHYSICAL	STITE TO DATE OF THE STATE OF T		14.6 1.	00	80.	10.6	10.3 1.	8.00		15.3 1.	12.1	16.9		0	8.20	
5	Sva & Sva		2.53	200	2.22	2.02	.586	.374		2.37	2.20	2.12	1.91	.534	844.	
A A	TONANTE OF THE NOTIVE OF THE N		94 37.8	3.01 34.4	100	1.72 33.1	.658 11.4	.553 9.70		2.79 35.7	.73 32.5	.65 31.1	6.62 69.	.449 11.9	.482 8.80	
	PSI X NOP STUENCE NO S		68.5 2.		1 5	21.7 1.	13.6	11.2		55.5 2	44.0 2	54.8 2.	45.2 2	12.4 .1	13.1	
	PANEL	PANEL # 632	WARP-DRY	WARP-WET	FILL-DRY	FILL-WET	45° TO WARP-DRY	45° TO WARP-WET	PANEL # 532	WARP-DRY	WARP-WET	FILL-DRY	FILL-WET	45° TO WARP-DRY	45° TO WARP-WET	COMMENTS

PANEL # 635 WARP-WET WARP-WET PANEL # 635 WARP-WET SO.0 1.83 30	FLEX SPILEVORIL	TITON STORE TOTAL	10-MENG	SATAGON	I SE HA	SUTUGON S SUTUGON S SUTUGON S SUTUGON S SUTUGON S SUTUGON S SUTUGON S SUTUGON S	m. 4 . 3	THEON &	60.	TITA OUNTING	NI SAN ANAJA	51.1.	aron the	*
635	1 × 10	TVI X 10	10	000	SS/ Ha	HATTIN SI		1		2001	TNAD	51.1.	1 31	\
635	-	TENS	TENST	COMPRES	MODE	INTERL STRENC INTERL	DAT SOF	Spect	J. JAR	DERCE.	SAV	-	CONTE	
2 28							1			,	4	1		
30	1.87	31.2	2.17	22.4	1.05	1.20 23.1	1.28						Ī	
	1.83	30.1	1.87	19.5	.692	1.20 14.5	.918		DRY			DRY		
33.7	1.88	31.3	2.22	21.9	1.04	2.10 24.3	1.22	1	17.0		6	15.3		
FILL-WET 29.1	1.83	29.1	2.09	16.2	.761	2.00 17.2	1.03	1.57	WET	55.K	5.0	WET		
45° TO WARP-DRY 18.7	.940	13.3	1.11	13.9	.812	1.80	1		34.7		r	80.00		
45° TO WARP-WET 17.0	.785	12.2	.880	14.0	.429	1.50	!							
PANEL #535														
WARP-DRY 35.8	1.63	32.0	2.20	22.4	1.10	2.00 23.4	1.21						Γ	
WARP-WET 25.4	1.57	30.2	2.05	20.4	.786	1.60 17.2	.951	1	DRY			DRY		
FILL-DRY 29.3	1.51	31.3	2.21	18.6	269.	2.30 24.5	5 1.29	1	9.09		-	16.0		
FILL-WET 21.5	1.47	29.5	2.00	17.6	.711	1.90 17.3	3 1.13	200		0.	0.15			
45° TO WARP-DRY 19.9	466.	14.6	1.30	14.1	.517	1.40	1	1	WET			WET		
45° TO WARP-WET 12.5	.563	13.2	-	14.7	.428	1.60	1		78.4			19.2		
COMMENTS		content c	cannot	be dete	determined	d because	of	the nature	0	f-the	reinfor	cement.		

Ī

Total Services

Ī

T

- Longitude |

X373	S TANKALA SI X ISA SI SI S	09-01 SN31	No E o Sva	STRENCH PS 1 S S STRENCH PS 1 S S STRENCH PS 1 S S S S S S S S S S S S S S S S S	The Handle Service Ser	ISA SATINI INTERIAL	STATES ON THE ST	BEALING SINE BONDING SINE BONDI	Spect	(40) 3- (40)	PERCEVT COORE	411-400-	ABSORDTION WILLIAM WASORDTION WAS	CONTENT VOLUTION
9.44	2.44	35.1	2.51	28.9	.932	2.80	43.2	1.49						
40.1	2.27	W		0	1.11	3.50	38.7	1.58		DRY 64.9			DRY 14.0	
	1		1	1	1	1	1	1	1.78		39.8	2100		7.2
1.	1		1	1	1		1	1		WEI 91.3			14.7	
	1	-	1	1	1	1	1	1						
4.2.4	2.14	37.4	2.73	32.0	1.37	2.70	8.44	1.45						
35.7	2.11	35.4	2.43	26.8	.879	2.70	33.3	1.65	1	DRY		Market Services	DRY	(
1	1	ı	- 1	ı	ı	1	ı	ı	1.74	70.5	+ . T +	17.0	v.01	0.7
,	1	'	1	1	1	1	ı	ı	,					
,	1	-			1	1	-	-		WET			WET	
	ı	'		1	ı		1			84.3			14.2	
The warp	(2) (0 5	hav indi	an	isotropic co	pic co	construction e same avera	ction.	HA	con	conducted s; therefo	in t	e thrach t	e e est

SULUGON ALISA STILES OF STREET SAME STREET SAME STREET SAME STREET SAME STREET SAME SAME SAME SAME SAME SAME SAME SAME	SILE SILENGIA	Sn-9 c	01 + 3115	1 *	THENETH TO	HIDA'S	1,00	WEAR O ALL	NIST	151	
289 9 1.51 PLEXUILLA 10 8.85 1.51 P. 10 10 10 10 10 10 10 10 10 10 10 10 10	01 1	13/	5				9	2	27	T.	.4
28.9 1.51 24.	Sa	STRENCT	SATAGON	Tundes	S DNIGNOR S DNIGNOR S DNIGNOR S TSd	13345	J. all	PERCEVE CONTENT PERCEVE	TN3JN BENT		PERCENT LES LES TERRORY LES
.9 1.51				1			-		4	1	
	0 1.66	15.0 .9	909 1.5	50 15.9	.573						
24.5 .957 22.1		10.0	27 1.	90 7.41			DRY		Au	DRY	
19.9 1.01 15.	6 1.18	13.3	93 2.	10 14.0						2	
14.0 .585 12.	463. 4.	8.50 .3	69 2.	10 6.24	.816	1,28	WET	44.3	1.85	ET	1
15.3 .593 12.	r-4	11.7 .4	.400 2.2	-20	1		191			N.	
10.3 .398 9.50	0 .352	8.50 .3	54 1.	06	1						
								Parameter and Parameter of the Parameter			
24.1 1.09 20.9	9 1.42	13.0 .5	522 2.0	.00 13	648. 0.						
19.1 .835 15.	3 .743	8.90 .3	10 2.1	10 5.2	5 .570	1	DRY		A.	DRY	
21.8 1.02 15.6	6 1.20	14.7 .6	.637 2.0	.00 13	.7 .758	280	24.5	44.5	2 87	, V	1
15.9 .626 13.7		9.02.6	H	60 6.8	34 .462						
4.21 0960 12.4		11.6 .3	.399 2.6	09.	1		WET			WET	
16.3 .633 10.	100	7.50 .2	.279 2.5	06			9.59		N	00.	
· Void content	nt cannot	be det	ermined	d because	ise of	the na	ture	of the	reinfor	rcement	t.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 2 DATE 12/17/68 REPORT NUMBER 4132

FLIXURAL PROPERTIES OF PARMS #3001.

Condition of	Plexural Strength, psi	Flexural coulus, psi X 100
As Roceived	5,300	0.247
	7,400	0.270
	7,600	0.311
Average	7,300	0.276
50 Day Distilled	3,000	0.321
later Soal	8,400	0.326
	0,100	0.317
Average	8,100	0.321

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 24 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PAHEL #3081

Condition of Test	Tensile Strength, psi	Tensile Modulus, psi X 10 ⁰
As Received	10,500	0.353
	10,200	0.375
	10,500	0.385
Average	10,400	0.373
30 Day Distilled	10,900	0.337
Water Soak	10,300	0.384
	10,400	0.367
Average	10,500	0.363

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 68 DATE 12/17/68 REPORT NUMBER 4132

COLPRESSIVE PROPERTIES OF PANEL #308h

Condition of Test	Compressive Strength, psi	Compressive Lodulus, psi X 10 ⁶
-		
As Received	8,400	0.380
	9,800	0.230
	10,100	0.207
Average	9,400	0.239
30 Day Distilled	8,100	0.213
Mater Soak	8,600	0.258
r	8,100	0.342
Average	8,300	0.273

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 46 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PANEL #308M

Condition of Test	Interlaminar Shear Strength, psi
As Received	1,300 1,500 1,200
Average.	1,300
30 Day Distilled Water Saok	1,100 1,600 970
Average	1,200

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 112 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #308M

Condition of Test	Bearing Strength, psi
As Received	3,970
	8,420
	9,200
Average	8,900
30 Day Distilled Water Soak	5,810
	5,760
	5,340
Average	5,840

BONDING STRENGTH TEST DATA

Panel	4	308N	

Federal Standards-#406 Test #1111

Identification Number	Warp Dir.	Length	width	Thickness	Rupture Force	Bonding Strength
308M-1-Dry	none	0.990"	0.990"	0.480"	750 lbs	758 psi
308M-3-Dry	none	1.001"	1.000"	0.479"	720 lbs	719psi
308M-5-Dry	none	1.002"	1.000"	0.482"	725 lbs	724 psi
308M-2-Wet	none	0.996"	0.998"	0.495"	840 lbs	845psi
308M-4 wet	none	0.993"	1.001"	0.496"	700 lbs	704psi
308M-6-net	none	0.990"	1.002"	0.497"	725 lbs	731psi
						i

Bonding Strength = Rupture Force/Area

Average Results:

Dry: 734 psi

Wet: 760 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 134 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PANEL #308M

Condition of Test	Wit. Loss, 5,000 Rev. in grams	Average Mgt. Loss, 1,000 Rev. in grans
As Received	0.1106	.0221
	0.1508	.0302
Average	0.1307	.0262
50 Day Distilled Water Soak	0.2287	•0458
, a sout	0.9055	.1811
Average	0.5671	•1134

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 90 DATE 12/17/68 REPORT NUMBER 4132

IZOD IMPACT STRENGTH OF PANEL #3081

Condition of Test	Impact Strongth, ftlbs./inch notch
As Received	25.8
	24.5
	24.4
Average	24.9
30 Day Distilled	28.4
Water Soak	29.0
	23.2
Average	28.5

Mesin Content*

at. of Fabric	at. of Laminate,	Percent Resin
12-3/4 lbs.	8 lbs.	37.25%
		Average 37.25%

water Absorption (24 Hours wook)

wt. of Sample	wt. After Soak	% water absorbed
28.96 gm.	28.99 gm.	0.10%
30.06 gm.	30.08 gm.	0.07%
29.89 gm.	29.94 gm.	0.17%

Specific Gravity Federal Standard 406 - #5011

Wt. in Air	Wt. in water	Specific Gravity
16.34 gm.	0.94 gm.	1.06
17.91 gm.	1.00 gm.	1.06
16.92 gm.	0.99 gm.	1.06
		Average 1.06

Void Content

Void content cannot be determined because of the nature of the reinforcement.

 Resin content cannot be determined according to Federal Standard 406 -#7061 because of the low melting point of the reinforcement.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 7 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #408M

-	Condition of Test	Flexural Strength, psi	Flexural Modulus, psi X 10 ⁶
Sussession	As Received	8 , 500	0.290
-		8,400	0.294
Transport I		8,300	0.295
Datasetti	Average	8,400	0.293
	30 Day Distilled	9,700	0.352
	Water Soak	9,700	0.364
		9,200	0.349
Dance of the last	Average	9,500	0.355

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 29 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #408M

Condition of Test	Tensile Strength, psi	Tensile Modulus, psi X 106		
As Received	10,100	0.387		
	9,800	0.344		
	10,200	0.348		
Average	10,000	0.360		
30 Day Distilled Water Soak	10,000	0.364		
Mater Soak	9,900	0.387		
	10,000	0.375		
Average	10,000	0.375		

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 73 DATE 12/17/68 REPORT NUMBER 4132

COLPRESSIVE PROPERTIES OF PARSE #4081

Condition of Test	Compressive Strength, psi	Compressive Todulus, psi K 100		
As Received	7,500	0.225		
	7,700	0.295		
	7,900	0.275		
Average	7,700	0.265		
30 Day Distilled	8,900	0.271		
Water Soak	6,400	0.248		
	8,600	0.167		
Average	8,600	0.229		

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 51 DATE 12/17/68 REPORT NUMBER 4132

INTERIAMINAR SHEAR PROPERTIES OF PANEL #408M

Condition of Test	Interlaminar Shear Strength, psi
As Received	1,400
AS Received	1,100
	1,100
Average	1,200
30 Day Distilled	1,500
Water Soak	760
	1,300
Average	1,200

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 117 DATE 12/17/68 REPORT NUMBER 4132

BRARING PROPERTIES OF PANEL #408M

Bearing Strength, psi		
9,390		
9,530		
7,520		
9,000		
0,110		
5,110		
5,880		
6,030		

BOLDING STRENGTH TEST DATA

Panel	# 4081	
		_

Federal standards-#406 Test #1111

Identification Number	Warp Dir.	Length	width	Thickness	Rupture	Bondin, Strengti
408M-1-Dry	none	0.998"	1.002"	0.481"	830 lbs	830 ps
408M-3-Dry	none	1.000"	1.001"	0.479"	640 lbs	639 ps:
408M-5-Dry	none	0.998"	1.003"	0.480"	725 lbs	724 ps
+08H-2-Let	none	1.002"	0.999"	0.498"	780 lbs	779 ps
408M-4et	none	0.997"	0.999"	0.495"	850 lbs	853 ps
408M-6-wet	none	1.000"	1.000"	0.494"	673 lbs	673 ps

Bonding Strength = Rupture Force/Area

Average Results:

Dry: 731 psi

Wet: 768 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 139 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PAHEL #400

Condition of Test	Ngt. Loss, 5,000 Rev. in grans	Average Mgt. Loss, 1,000 Rev. in grams
As Received	0.1762	•0352
	0.1999	.0400
Average	0.1881	.0570
30 Day Distilled	0.3198	.0640
	0.4930	.0995
Average	0.4039	.0318

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 95 DATE 12/17/68 REPORT NUMBER 4132

IZOD I PACT STRUGTH OF PANIL #4081

Condition of Test	Impact Strength, ftlbs./inch notch
As Received	25.2
	24.4
	24.4
Average	24.7
30 Day Distilled Water Soak	31.0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31.2
	30.6
Average	30.9

PHYSICAL TEST DATA SHEET

PAHEL # 408M

Resin Content*

Wt. of Fabric	*t. of Laminate	Percent Resin
12-1/2 lbs.	8 lbs.	36.00%
		Average 36.00%

water Absorption (24 Hours Poak)

wt. of Sample	Wt. After Soak	% Water Absorbed
36.41 gm	36.44 gm	0.08%
34.00 gm	34.04 gm	0.12%
35.55 gm	35.59 gm	0.11%

opecific Gravity Federal Standard 406 - 45011

Wt. in Air	Wt. in	Water	Specific Gravity
13.45 gm	0.81	gm.	1.06
16.49 gm	0.95	gm.	1.06
17.23 gm.	0.95	gm.	1.06

Void Content

Void content cannot be determined because of the nature of the reinforcement.

• Resin content cannot be determined according to Federal Standard 406 - #7061 because of the low melting point of the reinforcement.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 4 DATE 12/17/63 REPORT NUMBER 4132

PLEXURAL PROPERTIES OF PARTIE 2322

Jonaition of	Floraral Strongth, psi			Flemural Modulus, psi 13 10		
	Marp	7111	45° tarp	Jaro	Fill	450 Jany
As Received	23,700	21,700	6,000 5,000	1.59 1.52	1.22	0.1,3
	23,200	21,900	5,400	1.51	1.31	3.127
Average	23,300	21,700	5 , 400	1.54	1.27	0.153
2 Mr. Coil	13,400	11,500	3,900	0.850	0.691	0.052
	12,700	11,000	3,400	0.004	0.701	0.002
	12,700	10,900	3,100	0.052	0.695	0.035
Average	12,900	11,400	3,500	0.859	0.592	0.063

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 26 DATE 12/17/68 REPORT NUMBER 4132

TINSIE PROPERTIES OF PAUL /322

Con	dition of	Tensile Strength, psi			Tensilo Jodulus, pai 110-			
		Varp	pill	450 Mary	yarp	Fill	45° jaro	
As	Received	21,000	11,900	21,500	1.55	0.035	2.02	
		10,700	13,300	22,300	1.4.	0.031	2.11	
		19,200	12,400	22,500	1.5	0.092	1.70	
	erage	19,000	12,500	22,000	1.54	0.009	1.,4	
2 1	r. Boil	16,300	3,700	1,700	1.10	0.005	1.00	
		15,800	€,300	19,200	1.1	0.075	1.4	
		17,400	3,100	20,400	1.25	0.009	1.50	
Ave	erage	16,700	3,400	19,400	1.20	0.071	1.03	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

NATERIALS EVALUATION Page 70 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PAREL #322

Condition of Test	Compressive Strength, psi			Compressive Modulus, psi X 10		
	Varp	Fill	45° Warp	Warp	Fill	45° Mary
As Received	22,600	13,200	10,500	1.15	0.946	0.477
	23,800	15,500	10,500	0.354	1.03	0.333
	13,500	15,100	10,200	1.01	1.21	0.373
Average	21,600	14,900	10,400	0.038	1.08	0.395
2 Hr. Doil	9,300	6,900	3,800	0.702	1.60	0.139
	7,300	7,100	3,900	0.743	0.579	0.129
	6,300	6,400	3,700	0.695	0.943	0.113
Average	7,600	6,800	3 , 800	0.713	1.04	0.127

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 43 DATE 12/17/68 REPORT NUMBER 4132

INTERIAMINAR SHEAR PROPERTIES OF PANEL #322

Condition of Test	Interlaminar Shear Strength, psi				
	Marp	Fill	45° Warp		
As Received	2,200	3,300	3,700		
	2,200	3,200	3,500		
	2,200	3,300	4,100		
Average	2,200	3,300	3,800		
2 Hr. Boil	1,300	2,100	2,100		
	1,800	2,100	2,200		
	1,900	1,900	2,200		
Average	1,700	2,000	2,200		

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 114 DATE 12/17/60 REPORT NUMBER 4132

BEARING PROPERTIES OF PAREL 4522

Gondition of Test	learing Strength, psi				
	Harp	Pill			
As Received	8,940	10,000			
	3,140	9,690			
	8,380	10,100			
Averaje	6,700	10,100			
2 Hr. Doil	2,670	3,390			
	2,980	3,050			
	2,320	2,500			
Average	2,820	3,010			

BUNDING STRENGTH TEST DATA

PANEL	u ·	322	

Federal Standards - #406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
322-1-dry	parallel	1.000"	0.998"	0.476"	1750 lbs	1754 ps:
322-3-dry	parallel	1.000"	0.999"	0.478"	1775 lbs	1777 рв
322-5-dry	parallel	1.002"	0.998"	0.476"	1800 lbs	1800 ps
322-7-dry	perpend.	0.996"	1.000"	0.475"	1675 lbs	1682 ps:
322-9-dry	perpend.	1.001"	1.003"	0.476"	1700 lbs	1693 ps:
322-11-dry	perpend.	1.000"	1.000"	0.478"	1650 lbs	1650 ps:
322-2-wet	p rallel	1.001"	1.000"	0.477"	925 lbs	924 ps:
322-4-wet	parallel	0.998"	0.996"	0.475"	925 lbs	931 рв:
322-6-wet	parallel	0.999"	0.999"	0.475"	900 lbs	902 psi
322-8-wet	perpend.	1.000"	1.001"	0.476"	975 lbs	974 psi
322-10-wet	perpend.	1.001"	0.996"	0.475"	925 lbs	928 psi
322-12-wet	perpend.	1.004"	0.996"	0.478"	900 lbs	900 psi
				i		
			1			
			1			

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 1777 psi

Wet: 919 psi

Perpendicular to warp

Dry: 1675 psi

Wet: _ 934 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 136 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WHAR OF PANUL #322

Condition of Test	Mot. Loss, 5,000 Rev. in grams	Average Mgt. Loss, 1,000 Rev. in grans
As Received	0.1009	•0202
	0.0671	.0134
Average	0.0840	.0163
2 Mr. Poil	0.1322	.0264
	0.3500	.0700
Average	0.2411	.0482

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION FOR SE DATE 12/17/0 REPORT NUMBER 4132

LIOD I PAGE SET LOTE OF PAGE 1829

Condition of	I made strength, itles./inch moves
	Morp
As Received	14.0
	15.0
	14.0
Avera je	14.5
2 Mr. Boil	14.2
	14.0
	14.4
Average	14.5

Resin Content Fed. Standard 406 #7061

vt. of Sample	Wt. of Residue	Percent Resin
26.63 gm.	14.72 gm.	44.72%
26.60 gm.	14.68 gm.	44.81%
25.52 gm.	14.02 gm.	45.06%

water Absorption Fed. Standard 406 #7031 Pro. E

vt. of Sample	Wt. After Boil	% Water Absorbed
75.62 gm	75.80 gm	0.24%
70.08 gm	70.25 gm	0.24%
74.68 gm	74.94 gm	0.33%

Specific Gravity Fed. Standard 406 #5011

Wt. in Air	Wt. in water	Specific Gravity
42.73 gm	18.86 gm	1.79
47.86 gm	21.27 gm	1.80
45.93 gm	20.27 gm	1.79

Void Content Mil-P-17549C

Unable to determine void content because specific gravity of cured resin is not known.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 9 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #422

Condition of Test	Flexural Strength, psi			Flexural Modulus, psi X 10		
	Warp	Fill	45° Warp	Warp	Fill	45° Warp
As Received	25,300	24,500	7,100	1.62	1.30	0.217
	25,300	21,600	6,900	1.57	1.40	0.160
	25,300	22,700	7,300	1.60	1.47	0.173
Average	25,300	22,900	7,100	1.60	1.39	0.183
2 Hr. Boil	12,900	11,600	3,700	0.943	0.727	0.078
	14,000	11,800	3,600	0.839	0.819	0.079
	13,600	12,200	3,800	0.883	0.773	0.075
Average	13,500	11,900	3,700	0.888	0.773	0.077

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 31 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #422

Condition of Tensile Strength, psi Tensile M			Tensile Strength, psi			psi X 10 ⁶
	Warp	Fill	45° Warp	Warp	Fill	45° Warp
As Received	38,000	29,200	12,600	2.69	1.97	0.327
	36,000	32,400	13,000	2.41	1.96	0.324
	33,700	29,100	12,600	2.40	1.94	0.322
Average	35,900	30,200	12,700	2.50	1.96	0.324
2 Hr. Boil	24,900	19,400	7,400	1.81	1.37	0.150
	24,800	21,500	7,400	1.66	1.32	0.173
	25,500	21,400	6,800	1.92	1.47	0.135
n Average	25,100	20,800	7,200	1.80	1.39	0.153

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 75 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PANCE #422

	Condition of Test	Compressive Strength, psi			Compressive Modulus, psi M 100		
I		Warp	Fill	450 Maro	Marp	Pill	450 Jarp
П	As Roceived	19,500	14,300	9,200	0.564	0.508	0.311
		20,200	17,500	9,500	0.456	0.363	0.200
		19,800	16,200	3,700	0.597	0.840	0.123
П	Average	19,800	15,000	9,100	0.539	0.737	0.214
П	2 Hr. Boil	9,700	7,300	4,600	0.245	0.827	0.167
Ш		9,600	6,900	5,900	0.163	0.335	0.161
П		9,300	7,500	5,100	0.130	0.744	0.339
M	Average	9,500	7,200	5,200	0.179	0.635	0.222

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 53 DATE 12/17/68 REPORT NUMBER 4132

INTERIALINAR SHEAR PROPERTIES OF PANEL #422

Condition of Test	Interlaminar Shear Strength, psi				
	Warp	Fill	45° Warp		
As Received	2,100	2,000	3,500		
	2,100	2,000	3,500		
	2,000	2,000	3,400		
Average	2,100	2,000	3,500		
2 Hr. Boil	1,400	1,500	1,800		
	1,500	1,500	1,900		
	1,500	1,400	1,800		
Average	1,500	1,500	1,800		

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 119 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #422

Condition of Test	Bearing Strength, psi				
	Warp	Fill			
As Received	16,100	11,100			
	21,800	14,100			
	20,300	13,800			
Average	19,400	13,000			
2 Hr. Boil	3 , 640	4,630			
	3,790	4,660			
	3,810	4,650			
Average	3 , 750	4,720			

BEADING STRENGTH TEST DATA

DANET		1.55	
PANEL	tt	422	

Federal Standards. - #406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
BS90-422-1-dry	parallel	1.000"	0.998"	0.4/3"	1750 lbs	1754 psi
BS90-422-3-dry	parallel	1.000"	1.000"	0.475"	1850 lbs	1850 psi
BS90-422-5-dry	parallel	1.001"	1.002"	0.476"	1750 lbs	1745 psi
B390-422-7-dry	perpend.	1.001"	1.001"	0.475"	1600 lbs	1598 psi
BS90-422-9-dry	perpend.	1.000"	1.000"	0.474"	1725 lbs	1725 psi
B590-422-11-dry	perpend.	1.000"	1.002"	0.474"	1650 lbs	1647 psi
BS90-422-2-wet	parallel	0.997"	0.999"	0.486"	950 lbs	954 psi
Ba90-422-4-wet	parallel	1.000"	0.999"	0.487"	800 lbs	801 psi
B\$90-422-6-wet	parallel	1.000"	1.000"	0.486"	1050 lbs	1050 psi
BS90-422-8-wet	perpend.	0.999"	1.000"	0.486"	875 lbs	876 psi
BS90-422-10-wet	perpend.	1.002"	0.999"	0.486"	950 lbs	949 psi
BS90-422-12-wet	perpend.	1.000"	1.000"	0.486"	950 lbs	950 psi
				1		
				1		

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 1783 psi

Wet: 935 psi

Perpendicular to Warp
Dry: 1657 psi
Wet: 925 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 141 DATE 12/17/03 REPORT NUMBER 4132

ABRASION WHAR OF PAREL #422

Condition of Test	Mgt. Loss, 5,000 Rev. in grams	Average Wgt. Loss, 1,000 Rev. in grans
As Received	0.1335	.0267
	0.1473	.0295
Average	0.1404	.0231
2 Mr. Boil	0.2002	.0412
	. 0.2435	.04-7
Average	0.2249	.0450

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

NATERIALS EVALUATION Fage 97 DATE 12/17/60 REPORT NUMBER 4132

IZOD INPACT STRUMENTH OF PAUL #422

Condition of Test	Impact Strongth, ftlbs./incn notch
	Tarp
As Received	15.2
	13.0
	14.4
Average	14.4
2 Hr. Poil	15.0
	14.5
	14.2
Average	14.3

	77 1	T 4 4 W		406 - #7061
THE PARTY OF THE P	an tart	ROMENTS.	- PERMIT	
ALL LIAA	CONTRACTOR CONTRACTOR	A CULCICIA		TUO = 4 /UDI

at. of simple	t. of Residue	Fercent Resin
32.04 gm.	19.28 gm.	39.83%
28.98 gm.	17.58 gm.	39.34%
29.64 gm.	17.80 gm.	39.95%
		Average 39.71%

later absorption Federal Standard 406 - #7031 Fro R.

Wt. of Sample	st. after Soil	1 % water absorbed
89.09 gm.	89.47 gm.	0.42 %
90.93 gm.	91.04 gm.	0.12 %
91.29 gm.	91.52 gm.	0.25 %
		Average 0.264

Specific Gravity Federal Standard 406 - #5011

at. in air	wt. in water	Specific Gravity
62.79 gm.	26.68 gm.	1.74
67.24 gm.	28.35 gm.	1.75
67.97 gm.	28.79 gm.	1.73
		Average 1.74 ·

Void Content Nil-P-175490

Unable to determine void content because specific gravity of cured resin is not known.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 3 DATE 12/17/63 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #311M

	Condition of Flexural Strength, psi Test		Flexural Modulus, psi X 10 ⁶	
	As Received	6,700	0.230	
		7,100	0.248	
		7,400	0.271	
	Average	7,100	0.250	
	30 Day Distilled	5,300	0.154	
-	Water Soak	5,000	0.129	
		5,500	0.165	
	Average	5,300	0.149	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 25 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #311M

(COMMON)	Condition of Test	Tensile Strength, psi	Tensile Modulus, psi X 10 ⁶
(Sample)			
(Application)	As Received	12,500	0.357
		12,500	0.344
(Manager)		19,400	0.306
(MARKET)	Average	14,500	0.336
) in	30 Day Distilled	9,000	0.167
素	Water Soak	11,000	0.161
-		18,000	0.203
bassance (ma	Average	12,700	0.177

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 69 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PAREL #311M

No.	Condition of Test	Compressive Strength, psi	Compressive Modulus, psi X 10 ⁶
-	As Received	8,100	0.239
Г		7,900	0.293
1		7,400	0.239
	Average	7,800	0.257
I	30 Day Distilled	7,500	0.250
T	Water Soak	7,600	0.268
1		7,900	0.318
I	Average	7,700	0.279

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 47 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PANEL #311M

Condition of Test	Interlaminar Shear Strength, psi
As Received	970
	970
	1,800
Average	1,200
30 Day Distilled	1,500
Water Soak	1,200
	1,300
Average	1,300

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 113 DATE 12/17/60 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #311M

Condition of Test	Bearing Strength, psi
As Received	4,310
	4,290
	4,850
Average	4,500
30 Day Distilled Water Soak	3,040
	2,870
	3,040
Average	2,930

LUNN LAMINATES INC WYANDANCH NY
REINFORCED PLASTIC SONAR DOME MATERIAL INVESTIGATION. VOLUME II--ETC(U)
1968 AD-A044 039 UNCLASSIFIED NL 2 of 3 ₹8 44039

BONDING STRENGTH TEST DATA

	Panel	#	311 M
--	-------	---	-------

Federal Standards-#406 Test #1111

Identification Rumber	Warp Dir.	Length	width	Thickness	Rupture	Ronding Strengte
311M-1-Dry	none	1.003"	1.000"	0.479"	475 lbs	474 psi
311M-3-Dry	none	0.996"	1.001"	0.478"	530 lbs	532 psi
311M-5-Dry	none	1.000"	0.998"	0.481"	500 lbs	501 ps
311M-2-met	none	1.005"	1.006"	0.506"	625 lbs	618 ps:
311M-4-Wet	none	1.000"	1.000"	0.500"	550 lbs	550 ps:
311M-6-Wet	none	0.992"	0.997"	0.504"	550 lbs	556 ps:
		-		-		
		-			-	
		-			 	-
		ļ			-	
				1		-
					-	-

Bonding Strength = Rupture Force/Area

Average Results:

Dry: 502 psi

Wet: 575 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 135 DATE 12/17/68 REPORT NUMBER 4132

ACRASION WOAR OF PANUL #3111

Condition of Test	Ngt. Loss, 5,000 Rev. in grams	Average Igt. Loss, 1,000 Rev. in graus
As Received	0.0501	.0100
	0.2074	.0415
Average	0.1288	•0258
30 Day Distilled	0.8767	•1753
Water Soak	0.5113	.1023
Average	0.6940	.1388

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Fage 91 DATE 12/17/68 REPORT NUMBER 4132

IZOD ILPACT STRUGGTH OF PANEL #311%

Condition of Test	Impact Strength, ftlbs./inch notch
As Received	43.6
	44.8
	46.0
Average	44 . S
30 Day Distilled	46.0
Water Soak	49.2
	42.6
Average	45.9

PHYSICAL TEST DATA SHEET

FANEL # 311 M

Wt. of Fabric	wt. of Laminate!	Percent Resi
11-1/2 lbs.	7-1/2 lbs.	34.78%

		Average 34.8

Wt. of Sample	Wt. After Soak	% Water Absorbed
39.25 gm.	39.46 gm.	0.54%
35.37 gm.	35.58 gm.	0.59%
36.41 gm.	36.62 gm.	0.58%

Wt. in Air	Wt. in Water	Specific Gravity
19.15 gm.	2.77 gm.	1.17
18.65 gm.	2.64 gm.	1.16
19.77 gm.	2.80 gm.	1.16

Void Content

Void content cannot be determined because of the nature of the reinforcement.

 Resin content cannot be determined according to Federal Standard 406 -#7061 because of the low melting point of the reinforcement.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 5 DATE 12/17/55 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #411M

Condition of Test	Flexural Strength, psi	Flexural Modulus, psi X 106
As Received	8,000	0.319
	7,500	0.310
	ნ, 300	0.300
Average	7,500	0.310
30 Day Distilled	ó , 500	0.243
Water Soak	5,200	0.176
	0,200	0.218
Average	6,000	0.214

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 30 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #411M

Condition of Test	Tensile Strength, psi	Tensile Modulus, psi X 10 ⁶	
As Received	12,100	0.325	
	13,800	0.302	
	13,600	0.348	
Average	13,200	0.325	
30 Day Distilled Water Soak	12,800	0.206	
water Soak	13,000	0.238	
	12,700	0.213	
Average	12,800	0.219	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 74 DATE 12/17/68 REPORT NUMBER 4132

COLPRESSIVE PROPERTIES OF PARKE #411

Condition of Best	Compressive Strength, psi	Compressive Modulus, psi X 100
As Received	6,000	0.200
	6,400	0.400
	6,700	0.367
Average	6,600	0.331
30 Day Distilled	6,800	0.523
Tater Soak	7,800	0.259
	6,000	0.216
Average	6,900	0.333

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 52 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PANEL #411M

Condition of Test	Interlaminar Shear Strength, psi	
As Received	1,600	
	1,700	
	1,000	
Average	1,400	
30 Day Distilled	1,300	
Water Soak	1,100	
	950	
Average	1,100	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 118 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #411M

Condition of Test	Bearing Strength, psi
As Received	4,440
	4,140
	5,620
Average	4,730
30 Day Distilled	3, 220
Water Soak	3,210
	3 , 220
Average	3,220

BONDING STRENGTH TEST DATA

Panel # 411M

Federal Standards-#406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
411M-1-Dry	none	1.000"	1.004"	0.474'	530 lbs	528 _{psi}
411M-3-Dry	none	0.994"	1.002"	0.481"	490 lbs	492 psi
411M-5-Dry	none	1.000"	1.001"	0.477"	462 lbs	462 psi
411M-2-Wet	none	0.996"	1.002"	0.501"	550 lbs	551 psi
411M-4-Wet	none	1.001"	1.005"	0.499"	580 lbs	579 psi
411M-6-Wet	none	1.005"	1.002"	0.503"	570 lbs	566psi
					1	
				 		

Bonding Strength = Rupture Force/Area

Average Results:

Dry: 494 psi

Wet: _ 565 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 140 DATE 12/17/63 REPORT NUMBER 4132

ABRASION WHAR OF PARTE #4111

Condition of Test	Mgt. Loss, 5,000 Rev. in grans	Average Met. Loss, 1,000 Tev. in grans
As Roceived	0.2411	.0482
	0.2040	.0400
Average	0.2225	.0445
30 Day Distilled	0.4594	.0919
Mater Soak	0.4479	.0396
Average	0.4537	.0907

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 90 DATE 12/17/68 REPORT NUMBER 4132

IZOD ILPACT STRINGTH OF PARSE #411

Condition of Test	Impact Strength, ftlbs./inch noteh
As Received	49.0
	43.3
	42.4
Average	45.1
30 Day Distilled Water Soak	42.6
	44.2
	43.0
Average	43.3

PHYSICAL TEST DATA SHEET

FAREL # 411 M

Resin Content*

Wt. of Fabric	wt. of Laminate!	Percent Resin
11-1/2 lbs	7-1/2 lbs.	34.78%
9		
		Average 34.78%

Water Absorption (24 Hours book)

Wt. of Sample	Wt. After Soak	% water Absorbed
52.60 gm.	52.85 gm.	0.46%
53.35 gm.	53.65 gm.	0.56%
52.24 gm.	52.64 gm.	0.77%
		Average 0.60%

specific Gravity Federal Standard 406 - 45011

Wt. in Air	Wt. in Water	Specific Gravity
19.13 gm.	2.82 gm.	1.17
19.45 gm.	2.79 gm.	1.17
19.38 gm.	2.77 gm.	1.17
		Average 1.17

Void Content

Void content cannot be determined because of the nature of the reinforcement.

Resin content cannot be determined according to Federal Standard 406 - #7061 because of the low melting point of the reinforcement.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 5 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #3491

Condition of Test	Flexural Strength, psi	Flexural Modulus, psi K
As Received	22,400	1.24
	24,600	1.58
	23,100	1.30
Average	23,400	1.31
30 Day Distilled	22,600	1.24
Water Soak	19,400	1.02
	22,600	1.34
Average	21,500	1.20

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 27 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #349M

Condition of Test	Tensile Strength, psi	Tensile Modulus, psi X 10 ⁶
As Received	30,900	1.89
	31,300	2.00
	29,900	1.91
Average	30,700	1.93
30 Day Distilled	30,300	1.85
Water Soak	30,500	1.85
	30,000	1.84
Average	30,300	1.85

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 71 DATE 12/17/68 REPORT NUMBER 4132

COLPRESSIVE PROPERTIES OF PANEL #349M

Condition of Test	Compressive Strength, psi	Compressive Modulus, psi X l
As Received	16,700	0.879
	21,500	1.10
	19,500	0.983
Average	19,200	0.984
30 Day Distilled Water Soak	19,700	1.18
	17,500	0.861
	20,100	1.03
Average	19,100	1.02

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 49 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PANEL #349M

Condition of Test	Interlaminar Shear Strength, psi
As Received	3,000
	3,800
	3,900
Average	3,600
30 Day Distilled Water Soak	1,300
waver Soan	2,600
	1,300
Average	1,700

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

AATERIALS EVALUATION Page 115 DATE 12/17/63 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #349M

Condition of Test	Bearing Strength, psi
As Received	24,300
	32,000
	32,000
Average	20,600
30 Day Distilled Water Soak	22,700
water Soak	22,700
	22,700
Average	22,700

BONDING STRENGTH TEST DATA

		11	71.01	
1	anel	H	349M	

Federal Standards-#406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture	Bonding Strength
349M-1-Dry	none	1.002"	0.998"	0.478"	1125 lbs	1125 psi
349M-3-Dry	none	0.990"	1.000"	0.478"	1160 lbs	1172 ps
349M-5-Dry	none	0.996"	1.00"	0.477"	1150 lbs	1155 psi
349M-2-Wet	none	1.008"	1.003"	0.483"	1350 lbs	1335 psi
349M-4-Wet	none	1.004"	1.004"	0.489"	1030 lbs	1022 psi
349M-6-Wet	none	1.006"	1.005"	0.491"	1340 lbs	1325 psi
					-	

Bonding Strength = Rupture Force/Area

Average Results:

Dry: 1151 psi

Wet: 1227 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 137 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PANEL #3491

Condition of Test	Mgt. Loss, 5,000 Rev. in grams	Average Mgt. Loss, 1,000 Rev. in grams
As Received	0.3340	.0568
	0.2960	•0592
Average	0.3150	•0630
30 Day Distilled Water Soak	0.3751	.0750
mader Soan	0.3405	.0551
Average	o.357 ³	.0716

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 50 DATE 12/17/50 REPORT NUMBER 4132

IZOD I PACT STRUNGTH OF PARIL #34911

Condition of Test	Impact Strength, ftlbs./inch notch
As Received	35.0
	39.4
	36.4
Average	37. 5
30 Day Distilled Water Soak	30.4
water soak	29.6
	32.0
Average	30.7

PHYSICAL TEST DATA SHEET

Philiph # 349M

Mesin Content*

at. of Fabric	wt. of Laminate	Percent Resir
13.56 lbs.	18.85 lbs.	39%
		Average 39%

Water Absorption (24 Hours Soak)

Wt. of Sample	Wt. After Soak	% water Absorbed
37.8 gm.	38.1 gm	0.79 %
35.2 gm.	35.5 gm	0.85 %
30.6 gm.	30.8 gm	0.65 %
		Average 0.76%

Specific Gravity Federal Standard 406 - 45011

Wt. in Air	Wt. in	water	Specific Gravity
26.1 gm	10.1	gm	1.63
24.3 gm	9.3	gm	1.62
27.8 gm	10.6	gm	1.62
			Average 1.62

Void Content

Void content cannot be determined because of the nature of the reinforcement.

 Resin content cannot be determined according to Federal Standard 406 -#7061 because of the low melting point of the reinforcement.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 10 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #449M

Condition of Test	Flexural Strength, psi	Flexural Modulus, psi X 10 ⁶
As Received	29,600	1.58
	30,800	1.57
	31,500	1.48
Average	30,600	1.54
30 Day Distilled Water Soak	31,300	1.74
Haver Boak	31,300	1.50
	29,000	1.53
Average	30,500	1.59

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 32 DATE 12/17/60 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #449M

Condition of Test	Tensile Strength, psi	Tensile Modulus, psi X 10 ⁶
As Received	32,400	2.05
	29,600	1.87
	28,400	1.84
Average	30,100	1.92
30 Day Distilled Water Soak	30,100	1.86
water Soak	27,200	1.92
	25,400	1.61
Average	27,600	1.80

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 76 DATE 12/17/68 REPORT NUMBER 4132

COLPRESSIVE PROPERTIES OF PANEL #449M

Louise	Condition of Test	Compressive Strength, psi	Compressive Modulus, psi X 100
2	As Received	15,500	0.367
Section 1		16,000	1.09
No.		17,100	0.855
7	Average	16,200	0.934
	30 Day Distilled	17,300	0.618
	Water Soak	18,600	0.733
I		14,100	0.660
1	Average	16,700	0.670

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 54 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PANEL #449M

Condition of Test	Interlaminar Shear Strength, psi
As Received	3,000
	3,800
	2,600
Average	3,100
30 Day Distilled Water Soak	2,700
water Soak	3,700
	3,100
Average	3,200

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 120 DATE 12/17/67 REPORT NUMBER 4132

BEARING PROPERTIES OF PAIRS #4491

carin Strength, pai
32,000
32,000
30,000
31,900
22,000
22,800
25,000
23,500

BONDING STRENGTH TEST DATA

Panel #	449M	
raner #	1 1 711	

Federal Standards-#406 Test #1111

Identification Number	Warp Dir.	Length	width	Thickness	Rupture Force	Bonding Strength
449M-1-Dry	none	1.002"	1.000"	0.480"	1300 lbs	1297ps
449M-3-Dry	none	1.000"	0.999"	0.478"	1280 lbs	1287рв
449M-5-Dry	none	1.001"	1.000"	0.477"	1280 lbs	1279ps
449M-2-wet	none	1.001"	1.000"	0.485"	1330 lbs	1329рв:
449M -4- et	none	1.000"	1.004"	0.484"	1475 lbs	1475 ps :
449M-6-Wet	none	1.003"	1.005"	0.486"	1225 lbs	1215 ps :
					ļ	
	-				<u> </u>	

Bonding Strength = Rupture Force/Area

Average Results:

Dry: 1288 psi

Wet: 1340 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 142 DATE 12/17/00 REPORT NUMBER 4132

AFRASION WAR OF PAINT #4491.

Condition of Test	Mgt. Loss, 5,000 Rev. in grans	Average Mgt. Loss, 1,000 Rev. in grads
As Received	0.3788	.0758
	0.3082	.0616
Average	0.3435	.0587
50 Day Distilled Water Soak	0.3733	.0745
water soar	0.5381	.1076
Average	0.4557	.0911

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 92 DATE 12/17/68 REPORT NUMBER 4132

IZOD ILPACT STRINGTH OF PANIL #44911

Condition of Test	Impact Strength, ftlbs./inch not	cii
As Received	34.ú	
	37 • 2	
	35.0	
Average	35.9	
30 Day Distilled	27.0	
Water Souli	31.0	
	32.4	
Average	50.5	

PHYSICAL TEST DATA SHEET

PANEL # 449M

Resin Content*

Wt. of Fabric	wt. of Laminate	Percent Resir
13.56 lbs.	18.58 lbs.	37%
	<u> </u>	verage 37%

Water Absorption (24 Hours Soak)

Wt. of Sample	Wt. After Soak	% Water Absorbed
44.8 gm	45.1 gm	0.67%
31.3 gm	31.6 gm	0.96%
29.1 gm	29.3 gm	0.69%
		Average 0.77 %

Specific Gravity Federal Standard 406 - 45011

Wt. in Air	Wt. in Water	Specific Gravity
25.1 gm	9.6 gm	1.62
22.6 gm	8.7 gm	1.63
27.0 gm	10.1 gm	1.60

Void Content

Void content cannot be determined because of the nature of the reinforcement.

 Resin content cannot be determined according to Federal Standard 406 -#7061 because of the low melting point of the reinforcement.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Tage DATE 12/17/60 REPORT NUMBER 4132

FILMURAL PROPERTIES OF PARTIC ADDO

T	Condition of	Plonural Strong th, pai		Plonural Jodelas, jai i		s, similar	
		Garp	2111	4,0 (22)	(02)	2111	450
	As Roceived	34,800	24,000	11,500	0.552	0.550	0.505
		40,300	25,500	12,000	0.655	0.671	0.590
ī		35,200	25,100	15,000	0.083	0.553	0.516
П	Average	36,800	25,100	12,200	0.663	0.560	0.505
	2 mr. Boil	41,200	29,400	14,800	2.01	1.79	0.740
		33,200	30,200	15,500	2.16	1.63	0.733
T		30,100	26,700	13,300	2.08	1.81	• 0.653
	Average	39,200	28,800	14,500	2.08	1.74	0.710

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 28 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #360

Condition of Test	Tensile Strength, psi			Tensile Strength, psi Tens			Tensile	Modulus	, psi x10 ⁶
	Warp	Fill	45° Warp	Warp	Fill	45° Warp			
As Received	63,900	52,500	14,000	2.29	1.96	0.634			
	58,200	55,200	14,100	2.37	2.07	0.534			
	60,400	59,900	14,200	2.30	2.41	0.398			
Average	60,800	55,900	14,100	2.32	2.15	0.555			
2 Hr. Boil	60,200	55,000	13,100	2.16	1.94	0.440			
	58,000	55,100	12,100	2.03	1.91	0.280			
	56,500	55,400	12,600	2.09	2.08	0.387			
Average	58,200	55,200	12,600	2.09	1.98	0.369			

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 72 DATE 12/17/68 REPORT NUMBER 4132

COLPRESSIVE PROPERTIES OF PARSE #360

Condition of Test	Compres	ssive Stra	ength, psi	Compressive codulus, psi		
	Jaro	Pill	450 Jaro	Jarp	Pill	45° Carp
As Received	15,000	19,300	10,300	0.959	1.13	0.307
	19,600	17,200	10,100	0.905	0.700	0.203
	21,100	20,000	11,000	0.913	0.764	0.275
Average	19,000	18,800	10,500	0.925	0.835	0.200
2 Hr. Boil	10,500	16,500	10,300	0.317	0.732	0.364
	17,500	17,500	9,100	0.683	0.820	0.315
	16,700	17,300	9,200	0.788	0.861	0.297
Average	16,900	17,100	9,700	0.763	0.804	0.325

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 50 DATE 12/17/00 REPORT NUMBER 4132

INTERNAL I AR STAR PROPERTIES OF PART ID #300

Condition of Test	Interlatin	Interlatinar shear strength, psi					
	Tarp	2111	450 11625				
As Received	2,600	2,500	3,100				
	2,400	2,200	3,200				
	2,900	2,400	3,000				
Average	2,500	2,400	3,100				
2 Mr. Doil	2,300	2,000	2,700				
	2,300	2,400	2,500				
	2,500	2,100	2,700				
Average	2,500	2,400	2,600				

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 116 DATE 12/17/60 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #360

Condition of Test	Bearing Strength, psi				
	Warp	Fill			
As Received	17,400	15,600			
	17,600	19,500			
	17,400	18,400			
Average	17,500	18,800			
2 Hr. Boil	14,000	16,700			
	14,000	16,500			
	14,000	12,400			
Average	14,000	15,200			

BONDING STRENGTH TEST DATA

Panel # 360

Federal Standards-#406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
BS90-360-1-Dry	Paraallel	1.000"	0.999"	0.475"	1925 lbs	1927 _{psi}
B590-360-3-Dry	Farallel	1.002"	1.001"	0.477"	1850 lbs	1844psi
BS90-360-5-Dry	Parallel	1.004"	1.001"	0.477"	1925 lbs	1915psi
BS90-360-7-Dry	Perpend.	1.002"	0.998"	0.476"	1900 lbs	1900psi
BS90-360-9-Dry	Perpend.	1.002"	1.002"	0.476"	1750 lbs	1743psi
BS 90-360-11-Dry	Perpend.	1.001"	1.000"	0.478"	1700 lbs	1700psi
BS90-360-2-Wet	Parallel	1.000"	1.004"	0.477"	1800 lbs	1793 _{psi}
BS90-360-4-wet	Parallel	1.007"	1.005"	0.477"	1850 lbs	1828 _{psi}
BS90-360-6-Wet	Parallel'	1.004"	1.003"	0.479"	2075 lbs	2061 _{psi}
BS90-360-8-Wet	Perpend.	1.001"	1.001"	0.479"	1825 lbs	1823 psi
BS90-360-10-Wet	Perpend.	1.000"	1.002"	0.480"	2050 lbs	2046 psi
BS90-360-12-Wet	Perpend.	1.001"	1.000"	0.481"	2050 lbs	2048 _{psi}

Bonding Strength = Rupture Force/Area

Average Results:

Dry: 1895 psi

Wet: 1894 psi

Perpendicular To warp

Dry: 1781 psi

Wet: 1972 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 130 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PANEL #360

Condition of Test	Wgt. Loss, 5,000 Rev. in grams	Average Mgt. Loss, 1,000 Rev. in grams
As Received	0.3022	.0604
	0.3488	.0698
Average	0.3255	.0651
2 Hr. oil	0.5057	.1211
	0.4651	.0930
Average	0.5354	.1071

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 14 DATE 12/17/60 REPORT NUMBER 4132

IZOD INPACT STRINGTH OF PANIL #360

Condition of Test	Impact Strength, ftlbs./inch notel
	Jarp
As Received	40.4
	48.4
	46.2
Average	47.0
2 Er. Boil	44.2
	49.4
	45.4
Average	46.3

wt. of Sample	wt. of Residu	ie Percent kesir
14.65gm.	7.39 gm.	49.56%
14.57gm.	7.32 gm.	49.76%
16.09gm.	8.09 gm.	49.72%

Wt. After Boil	% Water Absorbed
42.62 gm.	0.24%
38.96 gm.	0.28%
37.46 gm.	0.21%
	38.96 gm.

 Specific Gravity Federal Standard 406 - #5011

 Wt. in Air
 Wt. in Water
 Specific Gravity

 28.11 gm.
 10.88 gm.
 1.63

 29.11 gm.
 11.35 gm.
 1.64

 28.96 gm.
 11.22 gm.
 1.63

 Average 1.63

	Sp. Gr. Cured Resin	Resin Content (Decimal	Glass Content (Decimal)	Percent Voigs
1.63	1.22	0.496	0.504	1.77
1.63	. 1.22	0.497	0.503	1.60
1.63	1.22	0.496	0.504	1.77

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

NATERIALS EVALUATION Page 11 DATE 12/17/63 REPORT NUMBER 4132

PLENURAL PROPERTIES OF PAREL 14-50

Condition of Test	Flexura	.l Streng	th, psi	Flenural	. Rodulus,	psi K 10 ⁰
	Harp	Fill	45° Warp	Harp	Fill	45° Jaro
As Received	35,000	25,100	11,300	2.05	1.35	0.503
	37,100	25,600	11,800	2.11	1.70	0.504
	35,800	22,700	12,700	2.05	1.78	0.694
Average	36,000	24,500	11,900	2.07	1.78	0.635
2 Hr. Boil	37,300	24,000	8,900	2.17	1.79	0.469
	36,900	26,300	10,900	2.20	1.90	0.521
	38,200	25,800	11,900	2.12	1.63	0.505
Average	37,500	25,400	10,600	2.16	1.86	0.518

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 33 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #460

Condition of Test	Tensile Strength, psi			Tensile Modulus, psi X 10 ⁶		
	Warp	Fill	45° Warp	Warp	Fill	45° Warp
As Received	55,800	55,300	12,800	2.39	2.60	0.436
	57,600	57,800	12,500	2.46	2.16	0.671
	56,500	57,500	12,200	2.44	2.59	0.736
Average	56,600	56,900	12,500	2.43	2.45	0.614
2 Hr. Boil	53,400	53,400	10,500	2.13	2.08	0.616
	51,600	46,300	10,400	2.22	1.93	0.573
	51,900	55,700	10,100	2.34	2.37	0.548
Average	52,300	51,500	10,300	2.23	2.13	0.579

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 77 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PANEL #460

Condition of Test	compressive Strength, psi			Compressive Modulus, psi M 100		
	Warp	Fill	450 Warp	Harp	Fill	45° Jarp
As Received	22,200	23,800	10,900	0.909	1.46	0.322
	21,400	24,000	11,700	0.905	1.36	0.370
	22,000	19,400	10,500	1.12	1.02	0.344
Average	21,900	22,400	11,000	0.978	1.28	0.345
2 Hr. Boil	17,900	17,100	10,000	0.842	0.712	0.237
	19,700	17,000	10,000	0.799	0.731	0.305
	19,900	15,500	9,800	0.783	0.930	0.290
Average	19,200	16,500	9,900	0.305	0.808	0.281

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 55 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PAREL #460

Condition of Test	Interlaminar Shear Strength, psi				
	Warp	Fill	45° Warp		
As Received	3,000	2,500	2,900		
	2,700	2,300	3,000		
	2,200	2,500	3,400		
Average	2,600	2,400	3,100		
2 Hr. Boil	1,400	2,000	2,800		
	2,300	2,600	3,100		
	2,600	2,300	2,800		
Average	2,100	2,300	2,900		

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 121 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #460

Condition of Test	Bearing	Strength, psi
	Warp	Fill
As Received	17,500	19,800
	16,900	15,200
	15,000	14,800
Average	16,500	16,500
2 Hr. Boil	10,300	16,500
	11,500	11,000
	10,700	11,000
Average	10,800	12,800

BENDING STRENGTH TEST DATA

PANEL	#	460	

Federal Standards - #406 Test #1111

Identification Lumber	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
B590-460-1-dry	parallel	1.000"	1.000"	0.478"	2000 lbs	2000 _{psi}
B. 90-460-3-dry	parallel	1.000"	1.000"	0.479"	2150 lbs	2150 _{psi}
BS90-460-5-dry	parallel	1.000"	1.000"	0.480"	2050 lbs	2050 _{psi}
B590-460-7-dry	perpend.	0.999"	1.000"	0.480"	1900 lbs	1902 psi
BJ90-460-9-dry	perpend.	1.003"	1.001"	0.480"	2100 lbs	2092psi
BS90-460-11-dry	perpend.	1.001"	1.001"	0.478"	1950 lbs	1946psi
BS 90-460-2-wet	parallel	1.002"	1.003"	0.477"	1850 lbs	1841psi
BS 90-460-4-wet	parallel	1.002"	1.000"	0.483"	1950 lbs	1946psi
BS90-460-6-wet	parallel	0.999"	0.997"	0.484"	2000 lbs	2008psi
BS90-460-8-wet	perpend.	1.000"	1.002"	0.481"	2000 lbs	1996 psi
BS90-460-10-wet	perpend.	1.000"	1.000"	0.477"	1700 lbs	1700psi
BS90-460-12-wet	perpend.	1.000"	1.000"	0.478"	1975 lbs	1975 psi

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 2067 psi

Wet: 1932 psi

Perpendicular to warp

Dry: 1980 psi

Wet: __1890 psi

106 BANGOR STREET (516) 884-7774 LINDENHIURST, NEW YORK 11757

MATERIALS EVALUATION Page 143 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PANEL #460

Condition of Test	Wgt. Loss, 5,000 Rev. in grams	Average Mgt. Loss, 1,000 Rev. in grams
As Received	0.3179	.0636
	0.2373	.0475
Average	0.2776	•0556
2 Hr. Boil	0.2822	•0564
	0.4574	.0915
Average	0.3698	•0740

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 99 DATE 12/17/68 REPORT NUMBER 4132

IZOD I PACT STRENGTH OF PANGL #460

Condition of Test	Impact Strength, ftlbs./inch notch				
	yarp				
As Received	43.4				
	47.4				
	51.8				
Average	49.2				
2 Hr. Boil	46.8				
	46.0				
	46.8				
Average	46.5				

kesin C	Content	Federal	Standard	406 -	#7061
---------	---------	---------	----------	-------	-------

Wt. of Sample	wt. of	Residue	Percent	Resin
16.82 gm	8.51	gm	50.59	%
17.13 gm	8.73	gm	49.03	16
17.30 gm	8.76	gm	49.36	%

Average 49.66%]

Water Absorption Federal Standard 406 - # 7031 Pro. E

wt. of Sample	Wt. After Boil	% Water Absorbed
28.24 gm	28.4 gm	0.71 %
34.45 gm	34.8 gm	0.87 %
45.75 gm	46.1 gm	0.66 %
		Average 0.75%

		Average 1.65
45.75 gm	18.05 gm	1.65
34.45 gm	13.60 gm	1.65
28.24 gm	11.00 gm	1.64
Wt. in Air	Wt. in water	Specific Gravity
	rederal Standard	406 - #5011

Sp. Gr. Laminate	Sp. Gr. Cured Resin	Resin Content (Decimal	Glass Content (Decimal)	Percent Voids
1.64	1.22	0.490	0.510	1.8
1.64	1.22	0.494	0.506	1.3
1.65	1.22	0.506	0.494	0.9
	***************************************	***************************************	Avera	co 1 3

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 12 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PAREL #503

Condition of Test	Flexural Strength, psi			Floxural Hodulus, psi K 100			
	Warp	Fill	45° Marp	Marp	Pill	45° Taro	
As Received	59,900	44,300	34,900	2.35	2.49	1.91	
	54,200	43,400	32,300	2.85	2.39	1.00	
	54,600	45,400	35,100	2.71	2.52	1.32	
Average	55,900	44,700	34,100	2.00	2.47	1.3	
2 Hr. Boil	44,300	42,500	20,900	2.50	2.00	1.40	
	42,000	39,900	24,700	2.41	2.21	1.55	
	45,700	41,300	25,200	2.45	1.95	1.47	
Average	44,000	41,200	22,900	2.40	2.03	1.47	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 34 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #503

Condition of Test	Tensile	Tensile Strength, psi			Tensile Modulus, psi X 105		
	Warp	Fill	45° Warp	Warp	Fill	45° Warp	
As Recieved	43,700	35,000	19,400	3.30	2.77	1.85	
	48,200	26,800	19,900	3.21	2.83	1.88	
	40,900	40,100	20,300	3.04	3.04	1.87	
Average	44,300	34,000	19,900	3.18	2.88	1.87	
2 Hr. Boil	32,600	24,000	18,000	3.07	2.53	1.51	
	41,000	34,100	18,500	2.84	2.44	1.54	
	41,400	37,500	18,100	2.67	2.51	1.71	
Average	38,300	31,900	18,200	2.86	2.49	1.59	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 78 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PARCE #503

Condition of Test	Compress	sive Streng	gth, psi	Compressiv	e Nodulus,	psi X 10 ⁵
	Warp	Fill	45° Warp	Warp	Fill	45° Jary
As Received	35,100	31,700	22,900	1.45	1.21	0.455
	30,100	30,800	24,100	1.30	0.988	0.975
	29,800	26,900	25,500	1.41	1.07	0.755
Average	31,700	29,800	24 , 200	1.39	1.09	0.728
2 Hr. Boil	26,000	25,000	24,600	0.834	0.740	0.679
	29,300	22,300	23,400	0.872	0.344	0.762
	32,300	22,300	24,200	1.31	0.877	0.691
Average	29,200	23,200	24,100	1.01	0.820	0.711

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 56 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PANEL #503

Condition of Test	Interlamina	r Shear Strength, psi		
	Warp	Fill	45° Warp	
As Received	1,900	2,200	2,100	
	1,800	1,600	2,300	
	2,900	2,000	3,100	
Average	2,200	1,900	2,500	
2 Hr. Boil	3,200	2,500	3,400	
	3,000	2,700	3,000	
	3,000	2,300	1,300	
Average	3,100	2,500	2,600	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 122 DATE 12/17/68 REPORT NUMBER 4132

DIARING PROPERTIES OF PAREL #503

Condition of Test	Bearing Strength, psi	
	Tarp	Fill
As Received	32,600	32,000
	34,400	36,900
	36,000	36,600
Average	34,300	35,200
2 Hr. Boil	33,100	29,900
	29,800	34,800
	29,300	29,400
Average	30 , 700	31,400

BENDING STREMGTH TEST DATA

Daniel of	F/1/2	
PANEL H	503	

Federal standards - #406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
B\$90-503-1-DRY	Parallel	0.997"	0.999"	0.47711	1300 Lb.	1395 p s i
6\$90-503-3-DRY	Parallel	1.000"	0.9980	0.476"	1500 Lb	1503 psi
BS90-503-5-DRY	Parallel	1.000"	1.001"	0.476"	1500 Lb.	1499 psi
BS90-503-7-DRY	Perpend.	0.999"	0.998"	0.473"	1425 Lb.	1429 psi
B\$90-503-9-DRY	Perpend	1.000"	0.99811	0.47811	1325 Lb •	1323 psi
BS90-503-11-DRY	Perpend.	1.000"	0.999"	0.478"	1550 Lb.	1552 psi
BS90-503-2-Wet	Parallel	0.999"	1.000"	0.48211	1550 lb.	1552 psi
8\$90-503-4-Wet	Parallel	1.000"	0.99811	0.48311	1650 lb.	1653 psi
8\$90-503-6-Wet	Parallel	0.998"	0.99811	0.4810	1350 lb.	1355 psi
BS90-503-8-Wet	Perpend	0.996"	1.000"	0.485"	1500 lb.	1506 psi
BS90-503-10-Wet	Perpend	0.997"	0.997"	0.481"	1500 lb.	1599 psi
B\$90-503-12-Wet	Perpend	0.999"	0.999"	0.48111	1450 lb.	1453 psi

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 1466 PS1

Wet: 1520 PSI

Perpendicular to warp

Dry: 1436 PSI

Wet: 1519 PSI

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 144 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PAHEL #503

Condition of Test	Wgt. Loss, 5,000 Rev. in grams	Average Wgt. loss, 1,000 Rev. in grans
As Received	0.2497	.0499
	0.2305	.0461
Average	0.2401	.0480
2 Hr. Boil	0.5026	.1001
	0.3251	.0650
Average	0.4139	.0326

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Face 100 DATE 12/17/60 REPORT NUMBER 4132

IZOD I PACT SCRANGEN OF PARKE /503

Condition of Test	Impact Strongth, ftlbs./inch notch
	Yarp
As Received	13.0
	13.5
	14.2
Average	13.3
2 Hr. Boil	14.2
	15.8
	14.
Average	14.3

ROSIN	Content	Federal	atandard	406 - 1	17061

	Percent Regin
11.53 gm.	44.49 %
11.51 gm.	44.04 %
10.73 gm.	44.40 %
	11.51 gm.

Water Absorption Federal Standard 406 - # 7031 Fro. E

<pre>"t. of Sample !</pre>	Wt. After Boil	% water Absorbed
86.39 gm	86.39 _C m	0.00%
85.41 gm	85.42 gm	0.012%
80.02 gm	80.03 gm	0.013%
		/warran 6 0125V

Average 0.0125%

Specific Gravity Federal Standard 406 - #5011

Wt. in Air	Wt. in Water	Specific Gravity
38.53 gm.	16.12 gm.	1.72
38.77 gm.	16.35 gm.	1.73
36.60 gm.	15.33 gm.	1.72
		Average 1.72

Void Content Mil-P-17549C

Sp. Gr. Laminate	Sp. Gr. Cured Resin	Resin Content (Decimal	Glass Content (Decimal)	Percent Voids
1.72	1.23	0.44	0.56	1.00
1.72	1.23	0.44	0.56	1.00
1.71	1.23	0.44	0.56	1.50
1.71	1 1.0	1 0.11	Avera	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 18 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #603

Condition of Test	Flexur	al Stren	gth, psi	Flexura	ıl Modulus	, pai X 10 ⁰
	Warp	Fill	45° Warp	Warp	Fill	450 Warp
As Received	49,100	55,600	41,300	2.85	2.95	2.32
	52,300	56,100	40,000	2.82	3.00	2.20
	52,700	58,600	41,200	2.71	2.97	2.24
Average	51,400	56,800	40,800	2.79	2.97	2.25
2 Hr. Boil	39,100	40,000	29,900	3.12	2.69	1.89
	38,700	40,700	32,600	2.52	2.74	1.79
	40,400	41,300	32,800	2.48	2.60	1.81
Average	39,400	40,700	31,800	2.71	2.68	1.83

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 40 DATE 12/17/68 REPORT NUMBER 4132

TENSILS PROPERTIES OF PANEL #603

Condition of Test	Tensile Strength, psi			Tensile 1	odulus,	psi X 10 ⁶
	Warp	Fill	45° Warp	Warp	Fill	45° Warp
As Received	44,800	41,400	21,700	3.30	3.37	1.95
	42,500	42,500	21,400	3.33	3.32	2.00
	44,500	42,200	20,900	3.15	3.05	1.80
Average	43,900	42,000	21,300	3.26	3.25	1.92
2 Hr. Boil	42,000	37,300	19,100	2.97	2.62	1.63
	41,500	36,700	18,700	2.87	2.50	1.66
	41,500	38,400	18,900	2.83	2.76	1.74
Average	41,700	37,500	18,900	2.89	2.63	1.69

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 84 DATE 12/17/68 REPORT NUMBER 4132

COLPRESSIVE PROPERTIES OF PARTIL #603

Condition of	Compress	ive Stren	oth, psi	Compressi	ve Nodulu	s, psi 1100
	Harp	Fill	450 Harp	Marn	2111	45° Jary
As Received	46,100 36,700	20,000 23,400	24,900 24,200	1.50	0.953	0.921
Average	37,600 40,100	26,600	23,800 24,300	1.45	0.947	0.943
2 hr. Coil	31,400	27,400	21,600	1.13	0.577	0.929
	29,000	29,300	21,900	1.29	0.877 0.851	0.040
Average	30,500	27,600	21,600	1.23	0.768	0.830

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 02 DATE 12/17/66 REPORT NUMBER 4132

INTERLATINAR SIDAR PROPERTIES OF PARSE #603

Condition of Test	Interlamin	ar Shear Str	ngth, psi
	Marp	Fill	45° Tarp
As Received	1,700	2,600	3,900
	930	1,700	3,700
	2,100	1,400	2,600
Average	1,600	1,900	3,400
2 Hr. Boil	1,400	2,200	3,700
	1,700	2,200	1,200
	3,000	2,600	4,300
Average	2,000	2,300	3 , 100

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 120 DATE 12/17/66 REPORT NUMBER 4132

BEARING PROPERTIES OF PARIL #503

Condition of Test	}ea.	ring Strongth, psi
	Tarp	Fill
As Received	34,200	32,000
	31,900	35,400
	33,100	33,600
Average	33,100	35,300
2 Hr. Boil	30,600	50,000
	32,100	20,400
	30,900	29,900
Average	31,200	28,300

BUILDING STRENGTH TEST DATA

I'MNEL # OUD	PANEL	#	603		
--------------	-------	---	-----	--	--

Federal Standards - #406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	nonain; Strength
B\$90-603-1-DRY	Parallel	0.999"	0.999"	0.476"	1525 Lb.	1528 psi
8\$90-603-3-DRY	Parallel	0.999"	0.998"	0.475"	1500 Lb.	1505 psi
B\$90-603-5-DRY	Parallel	0.997''	1.008"	0.476"	1650 Lb.	1648 psi
B\$90-603-7-DRY	Perpend	0.997''	1.001"	0.476"	1350 Lb.	1353 psi
B\$90-603-9-DRY	Perpend	1.000"	1.000"	0.476"	1375 Lb	1375 psi
B\$90-603-11-DRY	Perpend	1.002"	1.001"	0.476"	1600 Lb.	1595 psi
B\$90-603-2-Wet	Parallel	0.998"	0.990"	0.479"	1725 Lb.	1730 psi
BS90-603-4-Wet	Parallel	0.998"	0.998"	0.478"	1575 Lb.	1581 psi
B\$90-603-6-Wet	Parallel	0.998"	0.998"	0.478"	1800 Lb.	1807 psi
BS90-603-8-Wet	Perpend	0.998"	0,998"	0.479"	1800 Lb.	1807 psi
BS90-603-10-Wet	Perpend	0.999 "	0.999"	0.478"	1950 Lb.	1954 psi
8590-603-12-Wet	Perpend	0.998"	0.999"	0.478"	1900 Lb.	1906 psi
				1	1	

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 1560 PSI Wet: 1706 PSI Perpendicular to Warp

Dry: 1441 PSI

Wet: ___1889 PSI

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 150 DATE 12/17/68 REPORT NUMBER 4132

ARRASION WEAR OF PARIL #603

Condition of Test	Ngt. Loss, 5,000 Rev. in grans	Average Wit. Loss, 1,000 Rev. in grans
As Received	0.3068	.0614
	0.3002	.0500
Average	0.3035	.0607
2 Hr. Doil	0.4543	.0903
	0.4440	.0390
Average	0.4496	.0900

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 100 DATE 12/17/00 REPORT NUMBER 4132

IZOD I PACE STRINGTH OF PAIL IN 1803

Condition of Test	Impact Strength, ft15s./inch notch
As Received	15.4
	15.8
	15.5
Average	15.9
2 Hr. 7011	10.4
	16.0
	15.8
Average	16.1

Resin	Content	Federal	Standard	406 - #7061

35.33 gm.	20.85 gm.	40.98%
38.66 gm.	22.80 gm.	41.02%
39.03 gm.	22.91 gm.	41.30%

Water Absorption Federal Standard 406 - # 7031 Pro. E

Wt. of Sample	·	% Water Absorbed
106.51 gm.	106.52 gm.	0.009%
109.83gm.	109.85 gm.	0.018%
106.41 gm.	106.42 gm.	0.009%
		Average 0.012%

Specific Gravity Federal Standard 406 - #5011

Wt. in Air	wt. in water	Specific Gravity
80.46gm.	34.93 gm.	1.77
78.70gm.	34.20 gm.	1.77
74.71 gm.	32.26 gm.	1.76
		Average 1.77

Void Content Mil-P-17549C

Sp. Gr. Laminate	Sp. Gr. Cured Resin	Resin Content (Decimal	Glass Content (Decimal)	Percent Voids
1.76	1.23	0.41	0.59	0.9
1.76	1.23	0.40	0.60	1.7
1.77	1.23	0.41	0.59	0.40
			Avera	ge 1.00%

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 15 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #526

Condition of Test	Flear	Flexural Strength, psi			Flexural Lodalus, ysi X 10-		
	Mary	Fill	450 Tarp	larg	Fill	45° ary	
As Received	59,900	48,500	40,500	2.35	2.54	1.03	
	59,200	49,300	39,500	2.73	2.41	1.01	
	49,300	45,100	38,700	2.44	2.50	1.35	
Average	56,100	48,500	39,600	2.67	2.37	1.34	
2 Hr. 2011	46,400	42,900	37,300	2.39	2.12	1.04	
	44,000	40,000	37,300	2.49	2.03	1.75	
	46,600	41,500	30,200	2.48	2.10	1.35	
Average	45,700	41,500	34,900	2.45	2.10	1.50	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 35 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #526

Tensil	Tensile Strength, psi			Tensile Modulus, psi X 10		
Warp	Fill	45° Warp	Warp	Fill	45° Warr	
44,200	37,900	19,600	2.86	2.87	1.52	
39,000	40,300	20,400	2.79	2.94	1.61	
39,200	40,200	19,500	2.70	2.81	1.43	
40,800	39,500	19,800	2.78	2.87	1.52	
31,500	28,600	21,100	2.60	2.69	1.38	
29,000	28,900	19,600	2.68	2.51	1.35	
27,700	27,900	18,800	2.61	2.52	1.27	
29,400	28,500	19,800	2.63	2.54	1.33	
	Warp 44,200 39,000 39,200 40,800 31,500 29,000 27,700	Warp Fill 44,200 37,900 39,000 40,300 39,200 40,200 40,800 39,500 31,500 28,600 29,000 28,900 27,700 27,900	Warp Fill 45° Warp 44,200 37,900 19,600 39,000 40,300 20,400 39,200 40,200 19,500 40,800 39,500 19,800 31,500 28,600 21,100 29,000 28,900 19,600 27,700 27,900 18,800	Warp Fill 45° Warp Warp 44,200 37,900 19,600 2.86 39,000 40,300 20,400 2.79 39,200 40,200 19,500 2.70 40,800 39,500 19,800 2.78 31,500 28,600 21,100 2.60 29,000 28,900 19,600 2.68 27,700 27,900 18,800 2.61	Warp Fill 45° Warp Warp Fill 44,200 37,900 19,600 2.86 2.87 39,000 40,300 20,400 2.79 2.94 39,200 40,200 19,500 2.70 2.81 40,800 39,500 19,800 2.78 2.87 31,500 28,600 21,100 2.60 2.69 29,000 28,900 19,600 2.68 2.51 27,700 27,900 18,800 2.61 2.52	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 79 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PANEL #526

Condition of Test	Compres	Compressive Strength, psi			Compressive Todulus, psi X 10		
	Warp	Fill	45° Warp	Warp	Fill	45° Caro	
As Received	47,500	35,300	23,200	1.03	1.02	0.825	
	46,800	33,500	24,400	1.45	1.00	0.050	
	46,600	31,900	23,500	1.23	1.05	0.374	
Average	47,100	32,900	23,700	1.24	1.02	0.542	
2 Hr. Boil	36,000	31,500	22,100	1.98	0.880	0.642	
	39,400	30,500	23,100	1.82	0.833	0.554	
	37,600	30,800	22,800	1.02	1.02	0.525	
Average	37,700	30,900	22,700	1.61	0.911	0.574	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 57 DATE 12/17/68 REPORT NUMBER 4132

INTERIAMINAR SHAR PROPERTIES OF PANEL #526

Interlaminar Shear Strength, psi				
Warp	Fill	45° Warp		
3,200	3,900	3,900		
3,000	2,000	4,500		
3,200	4,500	3,900		
3,100	3,500	4,100		
2,800	2,900	3,600		
3,600	2,400	4,600		
1,900	3,700	4,800		
2,800	3,000	4,300		
	Warp 3,200 3,000 3,100 2,800 3,600 1,900	Warp Fill 3,200 3,900 3,000 2,000 3,200 4,500 3,100 3,500 2,800 2,900 3,600 2,400 1,900 3,700		

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 123 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #526

Condition of Test	Bearing Strength, psi				
	Warp	Fill			
As Received	33,800	30,700			
	31,400	36,900			
	34,300	35,700			
Average	33,200	34,400			
2 Hr. Boil	30,900	23,400			
	32,000	23,000			
	24,600	29,200			
Average	29,400	23,500			
	23,400	20,000			

BONDING STRENGTH TEST DATA

73 / 8:	- 62	526
PANEL	H	250

Federal Standards - #406 Test #1111

Identification humber	Warp Dir.	Length	Width	Thickness	Rupture Force	ronding Strength
BS90-526-1-dry	parallel	1.000"	0.999"	0.476"	2150 lbs	2152 psi
B590-526-3-dry	parallel	1.001"	1.000"	0.477"	1675 lbs	1673 psi
BS 90-526-5-dry	parallel	1.001"	1.001"	0.477"	1600 lbs	1597 psi
B590-526-7-dry	perpend.	1.000"	1.000"	0.479"	1600 lbs	1600 psi
BS90-526-9-dry	perpend.	1.001"	0.999"	0.478"	1675 lbs	1675 psi
BS90-526-11-dry	perpend.	1.001"	1.000"	0.477"	1800 lbs	1798 psi
B590-526-2-wet	parallel	1.000"	0.999"	0.477"	1800 lbs	1802 psi
BS90-526-4-wet	parallel	1.001"	1.000"	0.476"	1750 lbs	1748 psi
BS90-526-6-wet	parallel	0.999"	1.002"	0.477"	1775 lbs	1768 psi
BS90-526-8-wet	perpend.	1.000"	0.998"	0.477"	1780 lbs	1784 psi
BS90-526-10-wet	perpend.	1.002"	0.998"	0.476"	1750 lbs	1750 psi
BS90-526-12-wet	perpend.	1.001"	0.999"	0.478"	1775 lbs	1775 psi

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 1807 psi

Wet: 1773 psi

Perpendicular to Warp
Dry: 1691 psi
Wet: 1770 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 145 DATE 12/17/53 REPORT NUMBER 4132

ABRASION WEAR OF PANEL #526

Condition of Test	Ngt. Loss, 5,000 Rev. in grams	Average Ngt. Loss, 1,000 Rev. in grams
As Received	0.2281	.0456
	0.1837	.0367
Average	0.2059	.0412
2 Hr. Boil	0.1339	.0363
	0.1513	•0304
Average	0.1679	•0336

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 101 DATE 12/17/60 REPORT NUMBER 4132

IZOD ILPACT STRENGTH OF PAHAL 520

Condition of Test	Impact Strongth, ftlbs./inch notch
	Mar ₁)
As Received	13.6
	13.0
	12.0
Average	13.1
2 Er. Boil	10.4
	11.4
	11.2
Average	11.0

Resin	Content	Federal	Standard	406 -	#7061

At. of Sample	wt. of Residue	Percent Resin
23.45 gm.	12.58 gm.	46.35 %
23.10 gm.	12.58 gm.	45.54 %
22.60 gm.	12.39 gm.	45.18 %

Average 45.36%)

Water Absorption Federal Standard 406 - # 7031 Pro. E

1	wt. of Sample	Wt. After Boil	% Water Absorbed
1	67.05 gm.	67.14 gm.	0.13%
	74.32 gm.	74.45 gm.	0.17%
	70.19 gm.	70.28 gm.	0.13%
			Average 0.14%

51.88 gm.	20.75 gm.	1.67
40.00 gm.	то.о) вш.	1.00
46.30 gm.	18.69 gm.	1.68
47.00 gm.	18.99 gm.	1.68
Wt. in Air	Wt. in Water	Specific Gravity

Void Content Mil-P-17549C

Sp. Gr. Laminate	Sp. Gr. Cured Resin	Resin Content (Decimal	Glass Content (Decimal)	Percent Voids
1.67	1.19	0.458	0.542	0.51
1.67	1.19	0.459	0.541	0.43
1.67	1.19	0.456	0.544	0.66

Average 0.53%

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Fage 19 DATE 12/17/68 REPORT NUMBER 4132

FLOXURAL PROPURTIES OF PANEL #626

Condition of Test	Flexural Strength, psi			Florural Todulus, psi X 100		
	Warp	- 2111	45° Jary	Marg	Fill	45° Tar
As Received	51,900	42,100	37,300	2.57	2.25	1.33
	50,200	40,500	31,800	2.00	2.09	1.00
	54,600	39,900	33,300	2.51	2.01	1.50
Average	52,200	40,800	34,100	2.75	2.12	1.74
2 Hr. Boil	44,700	31,500	20,400	2.51	1.97	1.50
	40,100	27,300	18,500	2,43	1.82	1.45
	39,500	25,900	17,300	2.34	1.84	1.47
Average	41,300	29,200	15,400	2.43	1.63	1.51

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 41 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #626

Condition of Test	Tensile	Streng	th, psi	Tensile Modulus, psi X 106		
	Warp	Fill	45° Warp	Warp	Fill	450 Warp
As Received	40,400	38,300	21,100	2.69	2.83	1.55
	39,700	41,600	21,600	2.72	2.77	1.45
	42,200	39,800	22,000	2.81	2.73	1.42
Average	40,800	39,900	21,600	2.74	2.78	1.47
2 Hr. Boil	30,300	29,100	20,900	2.59	2.55	1.36
	31,700	29,700	20,900	2.55	2.59	1.40
	29,700	29,100	21,000	2.59	2.65	1.38
Average	30,600	29,300	20,900	2.58	2.60	1.38

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 85 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPURTIES OF PANEL #626

Compressive Strength, psi			Compressive Modulus, psi Klo		
Warp	Fill	45° Warp	Harp	Fill	45° Jary
48,000	42,100	21,100	1.11	1.30	0.522
41,100	36,900	22,000	0.903	1.19	0.573
35,900	38,700	22,900	0.996	1.04	0.406
41,700	39,200	22,000	1.00	1.15	0.527
32,400	40,600	23,300	0.914	1.08	0.571
35,600	38,400	21,700	1.30	1.25	0.614
32,000	41,300	22,400	0.865	0.940	0.558
33,300	40,100	22,500	1.02	1.09	0.531
	Warp 48,000 41,100 35,900 41,700 32,400 35,600 32,000	Warp Fill 48,000 42,100 41,100 36,900 35,900 38,700 41,700 39,200 32,400 40,600 35,600 38,400 32,000 41,300	Warp Fill 45° Warp 48,000 42,100 21,100 41,100 36,900 22,000 35,900 38,700 22,900 41,700 39,200 22,000 32,400 40,600 23,300 35,600 33,400 21,700 32,000 41,300 22,400	Warp Fill 45° Warp Warp 48,000 42,100 21,100 1.11 41,100 36,900 22,000 0.903 35,900 38,700 22,900 0.996 41,700 39,200 22,000 1.00 32,400 40,600 23,300 0.914 35,600 38,400 21,700 1.30 32,000 41,300 22,400 0.865	Warp Fill 45° Warp Warp Fill 48,000 42,100 21,100 1.11 1.30 41,100 36,900 22,000 0.903 1.19 35,900 38,700 22,900 0.996 1.04 41,700 39,200 22,000 1.00 1.15 32,400 40,600 23,300 0.914 1.08 35,600 38,400 21,700 1.30 1.25 32,000 41,300 22,400 0.865 0.940

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 63 DATE 12/17/60 REPORT NUMBER 4132

INTERLANDIAR SHEAR PROPERTIES OF PARTE 2020

Condition of Test	Interlacinar Shear Strength, psi				
	Mary	7111	45° Mary		
As Received	4,100	4,500	4,700		
	1,500	4,50	5,100		
	2,900	4,500	5,000		
Average	2,000	4,400	4,900		
2 Er. Poil	3,400	4,100	5,700		
	4,500	4,600	5,200		
	3,600	4,100	5,200		
Average	3,800	4,300	5,400		

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 129 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #626

Condition of Test	Bearing Strength, psi				
	Warp	Fill			
As Received	31,600	33,700			
	33,500	33,400			
	34,600	35,000			
Average	33,200	34,000			
2 Hr. Boil	28,200	13,900			
	32,300	27,700			
	29,100	23,600			
Average	29,900	25,100			

BONDING STRENGTH TEST DATA

PANEL # 626

Federal standards - #406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
621-1-dry	parallel	1.000"	0.999"	0.476"	1750 lbs	1752 psi
626-3-dry	parallel	1.006"	0.999"	0.474"	1425 lbs	1418 psi
626-5-dry	p rallel	1.001"	1.000"	0.475"	1750 lbs	1748 psi
626-7-dry	perpend.	1.000"	1.004"	0.475"	1600 lbs	1594 psi
626-9-dry	perpend.	0.999"	0.999"	0.476"	1750 lbs	1753 psi
626-11-dry	perpend.	0.999"	1.000"	0.475"	1700 lbs	1702psi
626 - 2-wet	parallel	1.000"	1.000"	0.475"	1775 lbs	1775psi
626-4-wet	parallel	1.001"	0.999"	0.476"	1600 lbs	1600psi
626-6-wet	parallel	1.001"	0.998"	0.476"	1650 lbs	1652 psi
626-8-wet	perpend.	1.000"	1.002"	0.476"	1500 lbs	1497psi
626-10-wet	perpend.	0.998"	1.002"	0.475"	1675 lbs	1675 psi
626-12-wet	perpend.	0.999"	0.001"	0.476"	1650 lbs	1650psi

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 1639 psi

Wet: 1676 psi

Perpendicular to warp

Dry: 1683 psi

1607 psi Wet:

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 151 DATE 12/17/63 REPORT NUMBER 4132

ADMASION WEAR OF PANEL #626

Condition of Test	Mgt. Loss, 5,000 Rov. in grans	Average Mgt. Loss, 1,000 Rev. in graus
As Received	0.1062	.0212
	0.0321	.0154
Average	0.0942	.0100
2 Ar. Boil	0.0753	.0150
	0.3744	.0749
Average	0.2249	.0450

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 107 DATE 12/17/68 REPORT NUMBER 4132

IZOD ILPACT STRUGGIT OF PAR L #626

Impact Strongth, ftlbs./inch note
Tero
12.2
12.0
12.0
12.1
10.8
11.4
10.4
10.9

Resin Content Federal Standard 406 - 47061

Wt. of Sample	Wt. of Residue	Percent Resin
24.02gm.	12.84 gm.	46.54 %
23.01gm.	12.53 gm.	45.55 %
22.96gm.	12.31 gm.	46.39 %

Average 46.16%

wt. of Sample	Wt. After Boil	06 - # 7031 Pro. % Water Absorbed
81.49 gm.	81.61 gm.	0.15%
90.98 gm.	91.10 gm.	0.13%
91.31 gm.	91.42 gm.	0.12%

Specific Gravity Federal Standard 406 - #5011

		Average 1.66
51.41 gm.	20.48 gm.	1.66
50.88 gm.	20.20 gm.	1.66
56.80 gm.	22.65 gm.	1.66
Wt. in Air	Wt. in Water	Specific Gravity
	rederal blandard	400 - 45011

1.00

Void Content Mil-P-17549C

1.19	0.464		
	0.404	0.536	0.62%
1.19	0.463	0.537	0.13%
1.19	0.464	0.536	0.62%

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 14 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #532

Condition of Test	Flexural Strength, psi		Flexural Modulus, psi X 10			
	Warp	Fill	45° Jarp	Warp	Fill	450 Warp
As Received	51,800	51,800	12,700	2.77	2.66	0.503
	58,200	56,900	12,200	2.81	2.63	0.422
	56,600	55,700	12,200	2.78	2.65	0.422
Average	55,500	54,800	12,400	2.79	2.65	0.449
2 Hr. Doil	42,000	43,100	13,700	2.71	2.70	0.493
	43,700	47,200	13,300	2.66	2.71	0.492
	46,400	45,300	12,200	2.81	2.66	0.461
Average	44,000	45,200	13,100	2.73	2.69	0.432

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 35 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PAREL #532

Condition of Test	Tensile Strength, psi			Tensile Strength, psi gensile Todu		lus, psi X 10 ⁵	
	Varp	Fill	45° Warp	Harp	Fill	45° Jary	
As Received	35,000	51,900	11,500	2.41	2.07	0.530	
	35,300	30,500	12,200	2.40	2.10	0.555	
	36,300	30,300	11,500	2.31	2.13	0.518	
Average	35,700	31,100	11,900	2.37	2.12	0.534	
2 Hr. Boil	34,000	20,900	9,100	2.14	1.72	0.435	
	30,900	30,100	3,900	2.51	1.99	0.452	
	32,500	30,000	8,300	2.10	2.01	0.420	
Average	52 , 500	29,900	8,500	2.20	1.01	0.443	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 80 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PANEL #532

(SHEETHER)	Condition of Test	Compressi	ve Streng	rength, psi Compressive Modulus, psi			lus, psi X 10 ⁵
(unament)		Warp	Fill	450 Marp	Warp	Fil1	45° Mary
(appearance)	As Received	13,700 16,600 15,700	16,200 17,100 17,500		1.24 1.09 0.917	0.544 0.533 0.701	0.313 0.394 0.423
	Average	15,300	16,900	6,700	1.03	0.020	0.377
	2 Hr. Boil	12,400 12,500 11,500	11,100 12,500 13,900	0,100	0.545 0.629 0.717	0.504 0.614 0.678	0.309 0.500 0.350
-	Average	12,100	12,500	8,200	0.630	0.625	0.386

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 58 DATE 12/17/68 REPORT NUMBER 4132

INTERIAMINAR SHEAR PROPERTIES OF PANEL #532

Condition of Test	Interlaminar Shear Strength, psi				
	Warp Fill		45° Warp		
As Received	2,400	1,600	3,700		
	2,000	2,200	2,000		
	2,300	2,400	2,100		
Average	2,200	2,100	2,600		
2 Hr. Boil	2,200	1,900	1,400		
	2,400	1,900	2,900		
	2,000	1,900	2,200		
Average	2,200	1,900	2,100		

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 124 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #532

Condition of Test	Bearing Strength, psi					
	Warp	Fill				
As Received	34,900	56,300				
	34,700	34,700				
	33,900	16,200				
Average	34,500	29,100				
2 Hr. Boil	28,600	14,200				
	31,400	29,800				
	29,500	34,000				
Average	29,800	26,000				

BONDING STRENGTH TEST DATA

PANEL	H	532	
	"	//-	

Federal Standards - #406 Test #1111

Identification Number	Warp Dir.	Warp Dir. Length		Thickness	Rupture Force	donding Strength		
B 8 90-532-1-dry	parallel	0.999"	0.997"	0.478"	1400 lbs	1406 psi		
BS90-532-3-dry	parallel	1.000"	0.999"	0.477"	1425 lbs	1426 psi		
BS90-532-5-dry	parallel	1.000"	0.997"	0.479"	1400 lbs	1404 psi		
BS90-532-7-dry	perpend.	1.001"	0.998"	0.473"	1300 lbs	1301 psi		
BS90-532-9-dry	perpend.	1.002"	0.999"	0.478"	1250 lbs	1249 psi		
BS90-532-11-dry	perpend.	1.002"	0.999"	0.479"	1325 lbs	1324 psi		
B390-532-2-wet	parallel	0.999"	0.999"	0.481"	1375 lbs	1378 psi		
BS 90-532-4-wet	parallel	1.000"	1.001"	0.481"	1275 lbs	1274 psi		
BS 90-532-6-wet	parallel	0.999"	0.998"	0.481"	1325 lbs	1329 psi		
BS90-532-8-wet	perpend.	0.998"	0.999"	0.481"	1325 lbs	1329 psi		
BS90-532-10-wet	perpend.	0.995"	1.000"	0.476"	1350 lbs	1357 psi		
BS90-532-12-wet	perpend.	0.997"	0.997"	0.480"	1250 lbs	1257 psi		
4 v . 0								

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 1412 psi

Wet: 1327 nsi

Perpendicular to Warp

Dry: 1291 psi

Wet: __1314 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 146 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WHAR OF PANIL #532

Condition of Test	Mgt. Loss, 5,000 Rev. in grans	Average Mgt. Loss, 1,000 Rev. in grams
As Received	0.2306	.0561
	0.3186	.0637
Average	0.2996	.0599
2 Hr. Boil	0.3678	.0736
	0.4963	•0995
Average	0.4321	.0365

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 102 DATE 12/17/68 REPORT NUMBER 4132

IZOD ILPACT STRENGTH OF PARTIE #532

Condition of Test	Impact Strength, ftlbs./inch notch
	Varp
As Received	15.2
	15.8
	16.0
Average	15.7
2 Mr. Boil	15.3
	16.0
	15.4
Average	16.4

Resin Content Federal Standard 406 - #7061

Wt. of Residue	Percent Resin
22.87 gm	35.5%
23.79 gm	35.3%
23.91 gm	36.8%
	23.79 gm

water Absorption Federal Standard 406 - # 7031 Pro. E
wt. of Sample | Wt. After Boil | % Water Absorbed

43.6 gm | 43.7 gm | 0.23%

46.6 gm | 46.7 gm | 0.21%

0.23% Average _0.22%

Specific Gravity Federal Standard 406 - #5011

44.4 gm

Wt. in Air	Wt. in Water	Specific Gravity
43.6 gm	19.2 gm	1.79
46.6 gm	20.5 gm	1.79
45.8 gm	20.2 gm	1.79
		Average 1.79

Void Content Mil-P-17549C

44.3 gm

p. Gr. Sp. Gr. vaminate Cured Resin		Resin Content (Decimal	Glass Content (Decimal)	Percent Voids	
1.79	1.22	•354	.646	2.9	
1.79	1.22	•359	.641	2.7	
1.80	1.22	.360	.640	2.1	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 20 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #632

Condition of Test	Flexur	al Stren	gth, psi	Flexural Modulus, psi X 106			
	Warp	Fill	45° Warp	Warp	Fill	45° Warp	
As Received	71,400	29,100	14,300	3.25	1.85	0.621	
	68,000	26,400	13,300	2.54	1.71	0.647	
	66,000	27,100	13,300	3.02	1.77	0.707	
Average	68,500	27,500	13,600	2.94	1.78	0.658	
2 Hr. Boil	54,100	21,800	10,900	3.11	1.78	0.553	
	54,700	21,800	11,400	2.98	1.69	0.522	
	53,400	21,400	11,200	2.94	1.69	0.503	
Average	54,100	21,700	11,200	3.01	1.72	0.553	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 42 DATE 12/17/58 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #632

Condition of Test	Tensi	le Stren	gth, psi	Tensile Modulus, psi X 10			
	Warp	Fill	45° Warp	Warp	Fill	45° War	
As Received	38,600	30,300	11,800	2.50	2.19	0.585	
	36,500	35,900	11,600	2.52	2.19	0.625	
	38,200	35,700	10,800	2.57	2.29	0.549	
Average	37,800	33,600	11,400	2.53	2.22	0.586	
2 Hr. Boil	34,800	33,700	9,800	2.35	2.04	0.385	
	35,400	33,200	9,600	2.21	1.92	0.371	
	32,900	32,500	9,700	2.27	2.09	0.365	
Average	34,400	33,100	9,700	2.28	2.02	0.374	

ASSIFIE					_	-	NL	
AD 44039								
	ā							
				76 10				
			END DATE FILMED 10 -77 DDC					

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 86 DATE 12/17/68 REPORT NUMBER 4132

COLPRESSIVE PROPERTIES OF PAHEL #632

Condition of Test	Compressi	lve Stren	gth, psi	Compressive Modulus, psi I 10-			
I	Warp	Fill	45° Harp	Harp	Pill	40° cor	
As Received	14,700	12,400	10,100	1.11	0.645	1.10	
ī	15,600	16,100	10,300	0.552	1.00	1.34	
1	13,500	13,800	10,400	1.17	0.029	1.50	
Average	14,600	15,800	10,300	1.04	0.825	1.33	
2 mr. poil	12,300	9,900	7,600	0.801	0.686	0.420	
П	11,200	11,700	7,600	0.971	0.700	0.177	
	12,000	10,300	8,700	0.632	0.712	0.210	
Average	11,300	10,600	8,000	0.801	0.699	0.271	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 64 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PANEL #632

Condition of Test	Interlaminar Shear Strength, psi				
	Warp Fil		45° Harp		
As Received	1,200	2,200	2,800		
	2,500	2,300	2,900		
	2,500	2,100	2,400		
Average	2,100	2,200	2,700		
2 Hr. Boil	1,000	2,100	2,000		
	1,000	2,100	1,900		
	1,500	1,900	1,400		
Average	1,200	2,000	1,800		

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 130 DATE 12/17/60 REPORT NUMBER 4132

LIARING PROPERTIES OF PATEL #532

Condition of Test	Tearing Strength, psi			
	Harp	Dill		
As Deceived	25,400	22,700		
	27,300	21,100		
	23,000	19,400		
Average	25,200	21,100		
30 Day Distilled	20,100	18,300		
Hater Soak	18,100	16,800		
	17,400	16,000		
Average	13,500	17,000		

BONDING STRENGTH TEST DATA

PANEL	#	632
- 111. 171	"	

Federal Standards - #406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
BS90-632-1-DRY	Parallel	0.999"	1.000"	0.476"	1450 Lb.	1451 psi
BS90-632-3-DRY	Parallel	0.997"	1.000"	0.477"	1550 Lb.	1555 psi
B\$90-632-5-DRY	Parallel	1.002"	1.000"	0.477"	1500 Lb.	1497 psi
6\$90-632-7-DRY	Perpend.	1.001"	1.000"	0.478"	1450 Lb.	1450 psi
BS90-632-9-DRY	Perpend.	1.002"	1.000"	0.478"	1500 Lb.	1497 psi
BS90-632-11-DRY	Perpend.	1.001"	1.003"	0.481"	1450 Lb.	1444 psi
B\$90-632-2-Wet	Parallel	0.999"	1.000"	0.483"	1250 Lb.	1251 psi
BS90-632-4-Wet	Parallel	1.000"	0.998"	0.476"	1400 Lb.	1402 psi
8 S 90-632-6-Wet	Parallel	0.999"	1.002"	0.483"	1440 Lb.	1439 psi
B\$90-632-8-Wet	Perpend.	1.001"	1.003"	0.475"	1300 Lb.	1295 p 8i
BS90-632-10-Wet	Perpend.	1.009"	0.997"	0.478"	1250 Lb.	1243 psi
BS90-632-12-Wet	Perpend.	0.999''	1.002"	0.480"	1425 Lb.	1424 psi

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 1501 PSI

Wet: 1364 PSI

Perpendicular to warp

Dry: 1464 PSI

Wet: 1321 PSI

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 152 DATE 12/17/65 REPORT NUMBER 4132

ADRASION WHAR OF PANNE 4632

Condition of Cest	Mot. Loss, 5,000 Rev. in grans	Average Ngt. Loss, 1,000 Rev. in grams
As Received	0.3931	.0786
	0.3152	•0630
Average	0.3542	.0703
2 Hr. Boil	0.5180	.1036
	0.5328	.1066
Average	0.5254	.1051

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 100 DATE 12/17/58 REPORT NUMBER 4132

IZOD ILPACT STRENGTH OF PARTIL #532

Condition of Test	Impact Strength, ftlbs/inch notch
	Marp
As Received	21.0
	19.6
	19.0
Average	20.1
2 Hr. Boil	19.2
	19.8
	20.4
Average	19.0

kesin	Cont	ent	Federal	Standard	406 .	52061
416 61 644	0011		reactant	N CHILICIAL II	11111	- 11 / 1/1/1

wit. of Sample	wt. of Residue	Percent Resin
34.8 gm	22.42 gm	35.6 %
34.6 gm	21.78 gm	37.0 %
36.6 gm	23.98 gm	34.4 %
		Average 35.7%

Water Absorption Federal Standard 406 - # 7031 Pro. E

wt. of Sample	Wt. After Boil	% water Absorbed
51.1 gm	51.2 gm	0.20 %
53.6 gm	53.8 gm	0.37 %
53.1 gm	53.3 gm	0.38 %
		Average 0.32%

Specific Gravity Federal Standard 406 - #5011

Wt. in Air	Wt. in water	Specific Gravity
51.1 gm	23.0 gm	1.82
53.6 gm	24.1 gm	1.82
52.7 gm	23.7 gm	1.82
		Average 1.82

Sp. Gr. Laminate	Sp. Gr. Cured Resin	Resin Content (Decimal	Glass Content (Decimal)	Percent Voids
1.82	1.22	•352	.648	1.7%
1.82	1.22	.361	.639	1.0%
1.82	1.22	•350	•650	1.8%
	·		Avera	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 15 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #535

Condition of Test	Flex	Flexural Strength, psi			Flexural Modulds, psi X 100		
	Marp	Fill	45° warp	Warp	Pill	45° (ar.	
As Received	33,500	31,700	24,700	1.65	1.50	0.529	
	33,300	28,200	19,100	1,59	1,51	0,725	
	32,500	23,000	16,000	1,62	1.47	0.765	
Average	33,800	29,300	19,900	1.63	1.51	0.774	
30 Day Distilled	25,500	21,100	19,900	1.50	1.49	0.500	
Water Soak	24,000	22,500	12,800	1.54	1.44	0.565	
	26,800	20,900	12,500	1.60	1.47	0.564	
Averge	25,400	21,500	12,500	1,57	1,47	0,563	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 37 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #535

	Condition of Test	Tensile Strength, psi			Tensile Modulus, psi X 106		
		Warp	Fill	45° Warp	Warp	Fill	450 Warp
1	As Received	32,200	31,600	13,800	2.15	2.48	1.40
		32,200	31,500	14,900	2.21	2.06	1.29
		31,500	30,800	15,200	2.25	2.08	1.22
	≜ verage	32,000	31,300	14,600	2.20	2.21	1.30
	30 Day Distilled Water Soak	30,100	28,400	12,600	1.98	1.96	0.968
1	Water Soan	30,000	30,100	13,100	2.03	2.03	1.20
		30,500	29,100	13,900	2.13	2.01	1.07
	Average	30,200	29,200	13,200	2.05	2.00	1.08

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 81 DATE 12/17/68 REPORT NUMBER 4132

COLPRESSIVE PROPERTIES OF PANEL #535

Condition of Test	Compressive Strength, psi		Compressive Modulus, psi X 10			
	Warp	Fill	45° Warp	Warp	Fill	450 Jary
As Roceived	21,000	13,700	13,900	1.50	0.705	0.502
	27,100	17,200	15,000	0.839	0.505	0.529
	19,100	19,800	13,500	0.971	0.781	0.519
Average	22,400	13,600	14,100	1.10	0.697	0.517
30 Day Distilled Water Soak	21,200	18,300	14,500	0.700	0.747	0.423
water Soak	20,700	16,800	13,600	0.757	0.730	0.512
	19,200	17,600	16,100	0.901	0.655	0.510
Average	20,400	17,600	14,700	0.786	0.711	0.432

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 59 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PAMEL #535

Condition of Test	Interlaminar Shear Strength,		ength, psi
	Warp	Fill	45° Warp
As Received	2,000	3,800	1,200
	1,500	1,000	1,900
	2,400	2,100	1,200
Average	2,000	2,300	1,400
30 Day Distilled	1,500	1,600	1,800
Water Soak	2,300	2,200	1,800
	940	1,800	1,200
Average	1,600	1,900	1,600

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 125 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #535

Condition of Test	Bearing Strength, psi		h, psi
	Warp	Fill	
As Received	22,900	25,300	
	22,900	26,100	
	24,300	22,200	
Average	23,400	24,500	
30 Day Distilled Water Soak	15,300	16,200	
water Soak	17,400	16,100	
	17,300	19,700	
Average	17,200	17,300	

BONDING STRENGTH TEST DATA

PANEL	#	535	
	1.5		

Federal Standards - #406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
535-1-Dry	parallel	1.004"	0.999"	0.478"	1340 lbs	1336 psi
535-3-Dry	parallel	1.000"	1.002"	0.478"	1225 lbs	1223 psi
535-5-Dry	parallel	1.007"	1.003"	0.478"	1090 lbs	1079 psi
535-7-Dry	perpend.	1.000"	0.999"	0.479"	1250 lbs	1251 psi
535-9-Dry	perpend.	0.999"	1.001"	0.480"	1325 1bs	1325 ps
535-11-Dry	perpend.	1.000"	1.001"	0.482"	1290 lbs	1289 ps:
535-2-wet	parallel	1.000"	1.002"	0.490"	975 1bs	973 ps:
535-4-wet	parallel	0.999"	1.001"	0.490"	980 lbs	980 ps:
535-6-wet	parallel	1.001"	1.000"	0.492"	900 lbs	899 ps
535-8-wet	perpend.	1.004"	0.999"	0.496"	1150 lbs	1147 ps:
535-10-wet	perpend.	1.000"	1.004"	0.485"	1150 lbs	1145 ps:
535-12-wet	perpend.	1.001"	0.999"	0.484"	1100 lbs	1100 ps:

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry:

1213 psi

Wet:

951 psi

Perpendicular to warp

Dry: 1288 psi

Wet: _

1131 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

NATERIALS EVALUATION Page 147 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PAREL #535

Condition of Test	Wgt. Loss, 5,000 Rev. in grans	Average Mgt. Loss, 1,000 Rev. in grams
As Received	0.3772	•0754
	0.2290	•0458
Average	0.3031	.0606
30 Day Distilled	0.2757	.0551
naver soan	0.5067	.1017
Average	0.3922	.0734

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 103 DATE 12/17/68 REPORT NUMBER 4132

IZOD I PACT STRENGTH OF PANUL #535

Condition of Test	Impact Strength, ftlbs./inch notch
As Received	16.0
	15.0
	16.2
Average	16.0
30 Day Distilled	16.3
Water Soak	20.4
	18.4
Average	19.2

PHYSICAL TEST DATA SHEET

PANEL # 535

**	0		0.00	
Resin	Con	ce	ni	

Wt. of Fabric	Wt. of Laminate!	Percent Resir
22.87 oz.	34.65 oz.	33.99 %
		Average 33.99%

Water Absorption (24 Hours Soak)

64.17 gm.	64.23 gm.	0.09 %
64-17	64.23 cm	0.09 %
64.62 gm.	64.74 gm.	0.19 %

Specific Gravity Federal Standard 406 - #5011

Wt. in Air	Wt. in Water	Specific Gravity
36.33 gm.	13.31 gm.	1.58
40.01 gm.	14.79 gm.	1.59
36.94 gm.	13.46 gm.	1.57
		Average 1.58

Void Content

Void content cannot be determined because of the nature of the reinforcement.

 Resin content cannot be determined according to Federal Standard 406 -#7061 because of the low melting point of the reinforcement.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 21 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #635

Condition of Test	Flexura	l Streng	th, psi	Flexural Modulus, psi X 10 ⁶		
	Warp	Fill	45° Warp	Warp	Fill	45° Warp
As Received	36,700	32,900	18,300	1.86	1.78	0.979
	38,500	35,400	18,800	1.87	2.00	0.940
	38,700	32,800	18,900	1.88	1.85	0.901
Average	38,000	33,700	18,700	1.87	1.88	0.940
30 Day Distilled	27,800	30,100	16,400	1.88	1.82	0.813
Water Soak	30,100	28,800	17,400	1.77	1.86	0.786
	32,100	28,300	17,300	1.83	1.80	0.756
Average	30,000	29,100	17,000	1.83	1.83	0.785

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 43 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #635

Condition of Test	Tensile Strength, psi			Tensile Modulus, psi X 10 ⁶		
	Warp	Fill	45° Warp	Warp	Fill	450 Warp
As Received	32,000	31,500	13,700	2.10	2.22	1.11
	30,800	30,900	13,300	2.26	2.21	1.08
	30,800	31,400	12,900	2.15	2.22	1.13
Average	31,200	31,300	13,300	2.17	2.22	1.11
30 Day Distilled	29,100	28,600	12,100	1.83	2.09	0.885
Water Soak	30,500	29,700	12,700	1.87	2.10	0.891
	30,700	29,100	11,700	1.91	2.08	0.863
≜ verage	30,100	29,100	12,200	1.87	2.09	0.880

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

ATERIALS EVALUATION Page 87 DATE 12/17/68 REPORT NUMBER 4132

COIPRESSIVE PROPERTIES OF PANEL #635

Condition of Test	Compressive Strength, psi		Compressive Modulus, psi 100			
	Warp	Fill	45° Warp	Warp	Fill	45° Marp
As Received	17,200	19,800	14,000	1.12	1.20	0.363
	28,900	23,100	13,300	0.959	1.15	0.349
г	21,100	22,800	14,300	1.07	0.756	0.721
Average	22,400	21,900	13,900	1.05	1.04	0.312
30 Day Distilled	17,900	15,000	14,200	0.606	0.950	0.469
Water Soak	22,100	16,500	14,000	0.733	0.681	0.419
	18,400	16,300	13,700	0.737	0.653	0.399
Average	19,500	16,200	14,000	0.692	0.761	0.429

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 65 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PANEL #635

Condition of Test	Interla	minar Shear S	strength, psi
	Warp	Fill	45° Warp
As Received	1,100	1,700	1,300
	1,100	880	1,700
	1,300	3,600	2,300
Average	1,200	2,100	1,800
30 Day Distilled Water Soak	1,300	1,500	1,900
water Star	1,300	1,200	1,300
	1,100	3,400	1,400
Average	1,200	2,000	1,500

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 131 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #635

Condition of Test	Bearin	g Strengt	th, psi
	Warp	Fill	
As Received	22,800	26,000	
	23,300	26,000	
	23,200	21,000	
Average	23,100	24,300	
30 Day Distilled	14,000	16,900	
Water Soak	15,000	16,400	
	14,500	18,300	
Average	14,500	17,200	

BUNDING STRENGTH TEST DATA

PANEL	H	635

Federal Standards - #406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
635-1-dry	parallel	1.001"	1.000"	0.475"	1225 lbs	1224 psi
635-3-dry	parallel	1.002"	0.997"	0.475"	1275 lbs	1276 psi
635-5-dry	parallel	1.000"	0.998"	0.476"	1350 lbs	1353 psi
635-7-dry	perpend.	0.996"	1.000"	0.477"	1300 lbs	1305 psi
635-9-dry	perpend.	0.999"	1.000"	0.475"	1200 lbs	1201 psi
635-11-dry	perpend.	1.006"	1.003"	0.478"	1175 lbs	1164 psi
635-2-wet	parallel	1.000"	1.001"	0.486"	800 lbs	799 psi
635-4-wet	parallel	1.001"	0.996"	0.489"	975 lbs	978 psi
635-6-wet	parallel	1.001"	0.998"	0.491"	975 lbs	976 psi
635-8-wet	perpend.	0.998"	0.998"	0.490"	1000 lbs	1004 psi
635-10-wet	perpend.	0.999"	1.000"	0.485"	1050 lbs	1051 psi
635-12-wet	perpend.	1.000"	1.000"	0.493"	1025 1bs	1025 psi

Bonding Strength = Rupture Force/Area

Average Results:

Parallel	to	Warp		
Dry:		1284	psi	
Wet:		918	psi	

Perpendi	cular t	o Warp
Dry:	1223	psi
Wet:	1027	psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 153 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PANEL #635

Condition of Test	Wgt. Loss, 5,000 Rev. in grams	Average Ngt. Loss, 1,000 Rev. in grams
As Received	0.1201	.0240
	0.0500	.0100
Average	0.0851	.0170
30 Day Distilled Water Soak	0.1693	•0335
mater Boars	0.1725	•0545
Average	0.1709	•0341

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 109 DATE 12/17/68 REPORT NUMBER 4132

IZOD IMPACT STRENGTH OF PANIL #635

Condition of Test	Impact Strength, ftlbs./inch notch
	Marp
As Received	15.2
	14.8
	16.0
Average	15.3
30 Day Distilled Water Soak	17.6
water soak	10.4
	20.4
Average	13.5

FALLEL # 635

Mesin Content*

wt. of Laminate	Percent Resir
34.25 oz.	33.2 %

water Absorption (24 Hours Soak)

Wt. of Sample	Wt. After Soak	% water Absorbed
49.13 gm.	49.16gm.	0.06%
50.00 gm.	50.03 _{gm} .	0.06%
50.07 gm.	50.14 _{gm} .	0.14%
		Average 0.09%

Specific Gravity Federal Standard 406 - #5011

32.17 gm.	11.90 gm.	1.59
34.40 gm.	12.32 gm.	1.56
34.71 gm.	12.32 gm.	1.55

Void Content

Void content cannot be determined because of the nature of the reinforcement.

• Resin content cannot be determined according to Federal Standard 406 - #7061 because of the low melting point of the reinforcement.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 16 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #537M

Condition of Test	Flexural Strength, psi	Flexural Modulus, psi X 10 ⁶
As Received	48,100	2.35
	45,100	1.87
	49,100	2.19
Average	47,400	2.14
2 Hr. Boil	36,500	2.19
	34,600	2.04
	36,100	2.11
Average	35,700	2.11

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 38 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #537M

Condition of Test	Tensile Strength, psi	Tensile Modulus, psi X 10 ⁶
As Received	35,700	2.71
	37,300	2.70
	39,200	2.78
Average	37,400	2.73
2 Hr. Boil	34,900	2.46
	35,000	2.45
	36,400	2.39
Average	35,400	2.43

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 82 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PANUL #537M

Condition of Test	Compressive Strength, psi	Compressive Modulus, psi M 10°
As Received	29,400	1.06
	33,200	1.57
	33,300	1.47
Average	32,000	1.37
2 Hr. Doil	30,000	0.938
	25,100	0.810
	25,400	0.838
Average	26,800	0.879

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 60 DATE 12/17/68 REPORT NUMBER 4132

INTERIAMINAR SHEAR PROPERTIES OF PANEL #537M

Condition of Test	Interlaminar Shear Strength, psi
As Received	3,400
	2,900 1,900
Average	2,700
2 Hr. Boil	2,600
	3,600
	2,000
Average	2,700

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 126 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #537M

Condition of Test	Bearing Strength, psi
As Received	46,500
	41,600
	46,200
Average	44,800
2 Hr. Boil	30,000
	36,000
	34,000
Average	35 , 300

BONDING STRENGTH TEST DATA

73	, 53	7M	
Panel A	+		

Federal Standards-#406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture	Bonding Strength
BS45-537N-1-Dry	none	1.002"	0.999"	0.476"	1525 lbs	1523 psi
BS45-537M-3-Dry	none	0.998"	0.998"	0.477"	1400 lbs	1405 ps
BS45-537M-5-Dry	none	0.999"	0.997"	0.476"	1425 lbs	1431psi
BS45-537M-2-Wet	none	0.999"	0.999"	0.478"	1675 lbs	1678 ps:
BS45-537M-4-Wet	none	1.000"	0.998"	0.478"	1700 lbs	1703рв:
BS45-537M-6-wet	none	0.998"	0.998"	0.478"	1550 lbs	1556 psi
					1	
					1	

Bonding Strength = Rupture Force/Area

Average Results:

Dry: 1453 psi

Wet: 1646 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 148 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PANEL #53711

Condition of Test	Wgt. Loss, 5,000 Rev. in grams	Average Wgt. Loss, 1,000 Rev. in grams
As Received	0.3744	•0725
	0.3422	•0684
Average	0.3583	.0705
2 Hr. Boil	0.4279	.0856
	0.4148	.0830
Average	0.4213	•0343

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 104 DATE 12/17/68 REPORT NUMBER 4132

IZOD INPACT STRINGTH OF PANEL #537

Condition of Test	Impact Strength, ftlbs./inch notch
As Received	14.0
	14.2
	13.6
Average	13.9
2 Hr. Boil	14.0
	14.0
	14.6
Average	14.2

	Resin	Cor	itent	Feder	ral L	tandar	-d 406	- #7061
1	1.4	00	Same?	0 1	. +	nf lav	and draw	Danes

Wt. of Sample	ht. of Residue	Percent Resin
28.1 gm	16.5 gm	41.3%
27.6 gm	16.0 gm	42.0%
27.3 gm	16.1 gm	41.0%
		Average 41.4%

wt. of Sample.	Wt. After Boil	% Water Absorbed
42.7 gm	42.8 gm	0.23%
45.4 gm	45.5 gm	0.22%
54.2 gm	54.3 gm	0.18%

Specific Gravity Federal Standard 406 - #5011

Wt. in Air	Wt. in Water	Specific Gravity
42.7 gm	18.1 gm	1.74
45.4 gm	19.1 gm	1.73
54.2 gm	23.2 gm	1.75
		Average 1.74

Void Content Mil-P-17549C

Sp. Gr. Laminate	Sp. Gr. Cured Resin	Resin Content (Decimal	Glass Content (Decimal)	Percent Voics
1.75	1.22	.420	•580	0.26%
1.75	1.22	.412	• 588	0.86%
1.74	1.22	.416	•584	1.13%

Average 0.75%

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 22 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #637M

Condition of Test	Flexural Strength, psi	Flexural Modulus, psi X 10 ⁶
As Received	45,300	2•43
	44,700	2.49
	43,700	2.41
Average	44,600	2.44
2 Hr. Boil	42,600	2.33
	39,100	2.30
	38,700	2.18
Average	40,100	2.27

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 44 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #637M

Condition of Test	Tensile Strength, psi	Tensile Modulus, psi X 10 ⁶
As Received	33,600	2.43
	33,700	2.56
	28,100	2.53
Average	35,100	2.51
2 Hr. Boil	34,900	2.33
	35,100	2.42
	36,400	2.31
Average	35,500	2.35

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 88 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PARKET #6371

Condition of Test	Compressive Strength, psi	Compressive Modulus, psi X 100
As Received	26,800	0.950
	30,500	1.05
	29,300	0.796
Average	28,900	0.932
2 Hr. Boil	29,500	1.32
	26,100	0.996
	24,600	1.02
Average	26,700	1.11

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 66 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PANEL #637M

Condition of Test	Interlaminar Shear Strength, psi
As Received	2,700
	2,600
,	3,100
Average	2,800
2 Hr. Boil	3,300
	3,800
	3,400
Average	3,500

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 132 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #637M

Condition of Test	Bearing Strength, psi
As Received	41,400
	46,700
	41,400
Average	43,200
2 Hr. Boil	37,300
	37,300
	41,400
Average	38,700

BONDING STRENGTH TEST DATA

ranel # 00/N	Panel	#	637M	
--------------	-------	---	------	--

Federal Standards-#406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonain; Strength
BS45-637M-1-Dry	none ,	1.000"	0.998"	0.479"	1450 lbs	1453 ps
BS45-637M-3-Dry	none	0.992"	0.999"	0.477"	1550 lbs	
Bs45-637M-5-Dry	none	1.000"	0.999"	0.478	1450 lbs	1452 ps
BS45-637M-2-Wet	none	0.998"	0.999"	0.478"	1475 lbs	1479 ps:
BJ45-637M-4-Wet	none	0.997"	0.998"	0.481"	1450 lbs	1457 ps
BS45-637M-6-Wet	none	1.000"	0.998"	0.469"	1800 lbs	1804 ps:

Bonding Strength = Rupture Force/Area

Average Results:

Dry: 1489 psi

Wet: 1580 psi

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 154 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PANEL #637M

Condition of Test	Wgt. Loss, 5,000 Rev. in grams	Average Wgt. Loss, 1,000 Rev. in grams
As Received	0.3174	.0635
	0.3244	.0649
Average	0.3209	•0642
2 Hr. Boil	0.4648	.0930
	0.4478	.0396
Average	0.4563	.0913

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 110 DATE 12/17/68 REPORT NUMBER 4132

IZOD INPACT STRENGTH OF PANEL #63711

Condition of Test	Impact Strength, ftlbs./inch notch
As Received	13.6
	13.6
	14.8
Average	14.0
2 Hr. Boil	15.0
	14.4
	14.8
Average	14.7

"C. OI RESIGUE	Percent Resin
16.0 gm	39.6 %
17.2 gm	41.1 %
17.5 gm	39.2 %
	16.0 gm 17.2 gm

wt. of Sample.	Wt. After Boil	% Water Absorbed
65.3 gm	65.4 gm	0.153 %
56.2 gm	56.4 gm	0.355 %
68.3 gm	68.4 gm	0.147 %

Wt. in Air	Wt. in Water	Specific Gravit
65.3 gm	28.7 gm	1.78
56.2 gm	24.8 gm	1.79
68.3 gm	29.9 gm	1.78
		Average 1.78

Sp. Gr. Cured Resin	Resin Content (Decimal	(Decimal)	Voids_
1.22	0.391	0.609	1.3
1.22	0.390	0.610	1.4
1.22	0.389	0.611	1.0
	Cured Resin 1.22 1.22	Cured Resin (Decimal 1.22 0.391 1.22 0.390	Cured Resin (Decimal) 1.22 0.391 0.609 1.22 0.390 0.610

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 17 DATE 12/17/68 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #551

Condition of Test	Flexura	Flexural Strength, psi			psi Flexural Modulus, ps		
	Warp	Fill	45° Warp	Warp	Fill	45° Warp	
As Received	19,400	21,800	24,800	0.719	1.07	1.37	
	26,800	20,900	19,800	1.20	0.906	0.756	
	26,000	22,600	19,100	1.36	1.10	0.753	
Average	24,100	21,800	21,200	1.09	1.02	0.960	
30 Day Distilled	21,600	15,100	14,000	0.772	0.582	0.518	
Water Soak	21,900	16,200	21,200	0.956	0.655	0.882	
	13,800	16,500	13,600	0.777	0.640	0.498	
Average	19,100	15,900	16,300	0.835	0.626	0.633	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 39 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #551

	Condition of Test	Tensile	Tensile Strength, psi			Modulus,	psi X 10 ⁶
		Warp	Fill	450 Warp	Warp	Fill	450 Warp
	As Received	23,300	15,800	12,100	1.53	1.17	0.661
		15,300	15,500	12,900	1.18	1.20	0.722
		24,200	15,500	12,300	1.55	1.22	0.677
	Average	20,900	15,600	12,400	1.42	1.20	0.687
	30 Day Distilled	22,100	13,600	10,100	0.787	0.633	0.374
-	Water Soak	12,000	14,100	10,300	0.602	0.594	0.399
		18,000	13,400	10,600	0.840	0.624	0.389
	Average	15,300	13,700	10,300	0.743	0.617	0.387

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 83 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PAREL #551

NAME OF TAXABLE PARTY.	Condition of Test	Compressive Strength, psi Compressive Modulus, ps				psi X 10 ⁰	
		Warp	Fill	45° Mary	Marg	Fill	45° Tarp
	As Received	13,700	15,300	11,800	0.520	0.544	0.425
		13,100	14,200	12,000	0.593	0.734	0.301
		12,100	14,600	10,900	0.452	0.641	0.470
	Average	13,000	14,700	11,600	0.522	0.637	0.399
	30 Day Distilled Water Soak	9,000	9,300	8,300	0.291	0.626	0.216
	Water Soan	8,800	9,900	7,900	0.329	0.720	0.297
		9,000	10,000	6,400	0.되4	0.598	0.211
I	Average	8,900	9,700	7,500	0.310	0.648	0.275

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

ATERIALS EVALUATION Page 61 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PANEL #551

Condition of Test	Interlaminar Shear Strength, psi			
	Warp	Fill	45° Warp	
As Received	1,700	2,400	2,700	
	2,000	1,600	2,500	
	2,400	2,000	2,500	
Average	2,000	2,000	2,600	
30 Day Distilled Water Soak	2,200	2,000	2,500	
	2,000	1,000	2,500	
	2,000	1,800	2,500	
Average	2,100	1,600	2,500	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 127 DATE 12/17/68, REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #551

Condition of Test	Bearin	ng Strengt	h, psi
	Warp	Fill	
As Received	15,700	14,500	
	12,900	13,300	
	10,300	13,200	
Average	13,000	13,700	
70 Day Digtilled	6 050	E 740	
30 Day Distilled Water Soak	6,850	5,340	
	4,400	7,540	
	4,500	7,590	
Average	5,250	6,840	

BONDING STRENGTH TEST DATA

PANEL	H	551	

Federal Standards - #406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	5tre	ing ngth
8590-551-1-DRY	Parallel	1.001"	1:003"	0.485 "	875 Lb.	849	psi
BS90-551-3-DRY	Parallel	1.004"	0.998"	0.48411	850 Lb.	848	psi
8\$90-551-5-DRY	Parallel	1.003"	0.998"	0.48411	850 Lb.	849	psi
BS90-551-7-DRY	Perpend.	1.003"	0.998"	0.481 "	775 Lb.	774	psi
B\$90-551-9-DRY	Perpend.	1.001"	0.999''	0.486"	825 Lb.	825	psi
BS90-551-11-DRY	Perpend.	1.004"	0.99811	0.482"	675 Lb	674	psi
B\$90-551-2-Wet	Parallel	1.008"	1.009"	0.51611	425 Lb	418	psi
B\$90-551-4-Wet	Parallel	1.010"	0.995"	0.5141	500 Lb	497	psi
B\$90-551-6-Wet	Parallel	1.005"	1.001"	0.509"	800 Lb	795	psi
B\$90-551-8-Wet	Perpend	1.007"	1.001"	0.519"	550 Lb	546	psi
BS90-551-10-Wet	Perpend	1.005"	1.010"	0.518"	425 Lb	419	psi
BS90-551-12-Wet	Perpend	1.006"	1.004"	0.516"	425 Lb	421	psi

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 849 PSI

Wet: __ 570 PS1

Perpendicular to Warp

Dry: 758 PSI

Wet: 462 PS1

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 149 DATE 12/17/68 REPORT NUMBER 4132

ABRASION WEAR OF PANEL #551

Condition of Test	Wgt. Loss, 5,000 Rev. in grams	Average Mgt. Loss, 1,000 Rev. in grams
As Received	0.2030 0.1870	.0416 .0374
Average	0.1975	.0395
30 Day Distilled Water Soak	0.1725	•0345
	0.4831	.0965
Average	0.3278	.0656

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 105 DATE 12/17/68 REPORT NUMBER 4132

IZOD INPACT STRENGTH OF PAMEL #551

Condition of Test	Impact Strength, ftlbs./inch notch
	Warp
As Received	5. 2
	3.2
	3.2
Average	3.2
30 Day Distilled Water Soak	2.0
mater Soak	2.0
	2.0
Average	2.0

	r.		
Resin	Con	tent	•

wt. of Fabric	wt. of Laminate	Percent Resin
2.57 lbs.	4.63 lbs.	44.5%
		Average 44.5%

water Absorption (24 Hours Soak)

Wt. of Sample	Wt. After Soak	% Water Absorbed
42.59 gm.	43.41 gm.	1.93%
40.74 gm.	41.55 gm.	1.99%
46.42 gm.	47.21 gm.	1.70%
		Average 1.87%

Specific Gravity Federal Standard 406 - #5011

Wt. in Air	Wt. in Water	Specific Gravity
19.01 gm.	4.23 gm.	1.29
18.09 gm.	3.99 gm.	1.28
18.86 gm.	4.00 gm.	1.27
		Average 1.28

Void Content

Void content cannot be determined because of the nature of the reinforcement.

Resin content cannot be determined according to Federal Standard 406 - #7061 because of the low melting point of the reinforcement.

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION PAGE 23 DATE 12/17/08 REPORT NUMBER 4132

FLEXURAL PROPERTIES OF PANEL #651

	Condition of Test	Flexural Strength, psi			Flexural	Modulus	, psi X 10 ⁰
		Warp	Fill	45° Warp	Harp	Fi.ll	45° Mary
	As Received	28,600	19,800	15,400	1.54	1.03	0.590
		29,000	20,400	15,200	1.46	0.983	0.535
		29,100	19,600	15,300	1.53	1.01	0.603
	Average	28,900	19,900	15,300	1.51	1.01	0.593
	30 Day Distilled Water Soak	23,900	12,800	10,600	0.921	0.600	0.396
1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	23,900	15,100	10,500	0.910	0.611	0.399
		25,700	14,000	9,800	1.04	0.553	0.399
	Average	24,500	14,000	10,300	0.957	0.585	0.398

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 45 DATE 12/17/68 REPORT NUMBER 4132

TENSILE PROPERTIES OF PANEL #651

Condition of Test	Tensi	Tensile Strength, psi		Tensile Modulus, psi X 10 ⁶		psi X 10 ⁶
	Warp	Fill	450 Warp	Warp	Fill	45° Warp
As Received	24,400	16,700	12,900	1.66	1.19	0.694
	23,900	15,100	11,700	1.74	1.19	0.672
	23,600	15,000	11,600	1.57	1.15	0.679
Average	24,000	15,600	12,100	1.66	1.18	0.682
30 Day Distilled Water Soak	21,300	14,100	10,800	0.882	0.592	0.322
navel Soak	23,400	11,100	9,500	0.920	0.724	0.371
	21,500	13,000	8,300	0.893	0.587	0.364
Average	22,100	12,400	9,500	0.898	0.634	0.352

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

ATERIALS EVALUATION Page 89 DATE 12/17/68 REPORT NUMBER 4132

COMPRESSIVE PROPERTIES OF PANEL #651

Condition of Test	Compress	Compressive Strength, psi			Compressive Modulus, psi X 106		
	Warp	Fill	45° Marp	Warp	Fill	45° Jarp	
As Received	15,700	13,000	11,100	0.930	0.704	0.240	
	14,800	13,400	12,200	0.657	0.616	0.303	
	14,500	13,400	11,800	1.14	1.36	0.657	
Average	15,000	13,300	11,700	0.909	0.893	0.400	
-30 Day Distilled	9,500	8,300	7,900	0.821	0.466	0.393	
Water Soak	10,400	8,700	8,400	0.812	0.319	0.374	
	10,200	9,300	9,100	0.849	0.322	0.296	
Average	10,000	8,500	8,500	0.827	0.369	0.354	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 67 DATE 12/17/68 REPORT NUMBER 4132

INTERLAMINAR SHEAR PROPERTIES OF PAMEL #651

Condition of Test	Interlaminar Shear Strength, psi			
	Warp	Fill	45° Warp	
As Received	1,300	2,300	2,500	
	1,100	1,700	2,600	
	2,200	2,400	1,500	
Average	1,500	2,100	2,200	
30 Day Distilled	1,300	2,200	1,800	
Water Soak	2,200	2,300	2,000	
	2,200	1,900	2,000	
Average	1,900	2,100	1,900	

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

MATERIALS EVALUATION Page 133 DATE 12/17/68 REPORT NUMBER 4132

BEARING PROPERTIES OF PANEL #651

Condition of Test	Bearing Strength, psi		
	Warp	Fill	
As Received	16,400	13,400	
	15,500	15,400	
	15,900	13,200	
Average	15,900	14,000	
30 Day Distilled Water Soak	7 , 290	8,040	
	7,680	5,070	
	7,260	5,600	
Average	7,410	6,240	

BONDING STRENGTH TEST DATA

PANEL	H	651	

Federal Standards - #406 Test #1111

Identification Number	Warp Dir.	Length	Width	Thickness	Rupture Force	Bonding Strength
8\$90-651-1-DRY	Parallel	1.005"	1.012"	0.483"	675 Lb.	664 psi
BS90-651-3-DRY	Parallel	1.009"	1.010"	0.48611	600 Lb.	589 psi
8590-651-5-DRY	Parallel	1.001"	1.016"	0.4840	475 Lb	467 psi
B\$90-651-7-DRY	Perpend.	1.004"	1.008"	0.48811	475 Lb	469 psi
B\$90-651-9-DRY	Perpend.	1.007"	1.003"	0.487"	650 Lb.	643 psi
B\$90-651-11-DRY	Perpend.	1.00411	1.009"	0.483"	450 Lb.	444 psi
BS90-651-2-Wet	Parallel	1.010"	1.000"	0.5140	900 Lb.	891 psi
8\$90-651-4-Wet	Parallel	1.004"	1.004"	0.510"	850 Lb.	843 psi
B\$90-651-6-Wet	Parallel	1.000"	1.005"	0.515"	1000 LB.	995 psi
BS90-651-8-Wet	Perpend.	1.001"	0.994"	0.510"	950 Lb.	955 psi
BS90-651-10-Wet	Perpend.	1.004"	1.005"	0.510"	450 Lb.	446 psi
BS90-651-12-Wet	Perpend.	0.998"	1.004"	0.514"	1050 Lb.	1048 psi

Bonding Strength = Rupture Force/Area

Average Results:

Parallel to Warp

Dry: 573 PSI

Wet: 910 PSI

Perpendicular to Warp

Dry: 519 PS1

Wet: 816 PSI

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

ATERIALS EVALUATION Page 155 DATE 12/17/68 REPORT NUMBER 4132

ADRASION MMAR OF PARTIE #551

Condition of Test	Mot. Loss, 5,000 Rev. in grans	Average Unt. Loss, 1,000 Rev. in grass
As Received	0.2346	.0469
	0.1597	.0319
Average	0.1972	•0394
30 Day Distilled	0.9745	.1949
Water Soak	0.9305	.1861
Average	0.9526	.1905

106 BANGOR STREET (516) 884-7774 LINDENHURST, NEW YORK 11757

AATERIALS EVALUATION Page 111 DATE 12/17/68 REPORT NUMBER 4132

IZOD IMPACT STRENGTH OF PANEL #651

Impact Strength, ftlbs./inch note
Warp
5.6
5.6
6.0
5.6
10.0
6.0
5.6
7.2

Resin Content*

Wt. of Fabric	Wt. of Laminate	Percent Resin
2.57 lbs.	4.61 lbs	44.3 %
		Average 44.3%

Water Absorption (24 Hours Soak)

Wt. of Sample	Wt. After Soak	% Water Absorbed
46.55 gm.	47.55 gm.	2.15 %
44.68 gm.	45.68 gm.	2.24 %
45.60 gm.	46.53 gm.	1.16 %
		Average 1.85%

Specific Gravity Federal Standard 406 - #5011

Wt. in Air	Wt. in Water	Specific Gravity
30.15 gm.	6.62 gm.	1.28
30.27 gm.	6.45 gm.	1.27
30.13 gm.	6.56 gm.	1.28
		Average 1.28

Void Content

Void content cannot be determined because of the nature of the reinforcement.

 Resin content cannot be determined according to Federal Standard 406 -#7061 because of the low melting point of the reinforcement.