Sistemas Inteligentes

Tema 3.2: Búsqueda en problemas de

Satisfacción de Restricciones

Curso 2024-25

Índice

- Formulación de CSPs como redes de restricciones
- Ejemplos
- Métodos de resolución:
 - Esquema Backtracking
 - Esquema Forward Checking
 - Esquema de propagación de restricciones

Universidad de Alicante

Problemas de satisfacción de restricciones (CSPs)

Conjunto de variables definidas sobre dominios finitos y conjunto de restricciones definidas sobre subconjuntos de dichas variables:

$$(V,D,\rho)$$

Un conjunto de variables

$$V = \{V_1, V_2, \dots, V_n\} \equiv \{V_i\}_{i=1..n}$$

definidas sobre dominios discretos Di (conjunto finito de posibles valores)

$$D = \{D_1, D_2, \dots, D_n\} \equiv \{D_j\}_{j=1..n}$$

un conjunto de **restricciones** definidas sobre subconjuntos de dichas variables

$$\rho = {\rho_1, \rho_2, ..., \rho_n} \equiv {\rho_k}_{k=1..n}$$

CSPs

Un ejemplo:

$$X::\{1,2\},Y::\{1,2\},Z::\{1,2\}$$

 $X=Y,X\neq Z,Y>Z$

 Solución: encontrar asignaciones de valor a las variables que satisfagan todas las restricciones.

$$(X=2,Y=2,Z=1)$$

- Solución al problema: la relación n-aria que satisface todas las restricciones del problema
- Dependiendo de los requerimientos del problema hay que encontrar todas las soluciones o sólo una

Redes de restricciones

- Un CSP se puede representar como un grafo.
 - Sobre el grafo se puede definir una red de restricciones
 - Quíntupla $\langle V, E, c, l, a \rangle$
 - *V*: conjunto de nodos.
 - *E*: conjunto de aristas.
 - $c: E \to V_k, k \le n$ función de asignación de aristas a tuplas de nodos.
 - $l: E \rightarrow \rho$; función de asignación de aristas a restricciones
 - *a*: permutación que define el orden de selección para resolver el problema.

CSP binario

Variables

$$V = \{V_1, V_2, ..., V_n\}$$

Dominios discretos y finitos

$$D = \{D_1, D_2, \dots, D_n\}$$

Restricciones binarias

$$\{R_{ij}\}$$

- Todo problema n-ario se puede formular como un problema binario
- Ejemplos de CSP binarios:
 - Coloreado de mapas
 - Asignación de tareas para un robot
 - N-reinas
 - Generación de crucigramas

Ejemplo: coloreado de mapas

$$D_i = \{\text{rojo, azul, verde}\}, \quad \forall i, 1 \leq i \leq 4$$

$$E = \{e_1, e_2, e_3, e_4, e_5\}$$

$$\rho_k((V_i, V_j)) = \{ \langle v_i, v_j \rangle \mid v_i \in D_i, v_j \in D_j, v_i \neq v_j \}, \quad \forall k, 1 \le k \le 5$$

$$c(e_1) = \langle V_1, V_2 \rangle, \quad c(e_2) = \langle V_1, V_3 \rangle, \quad c(e_3) = \langle V_1, V_4 \rangle, \dots$$

$$l(e_j) = \{\langle \text{azul}, \text{verde} \rangle, \langle \text{azul}, \text{rojo} \rangle, \langle \text{verde}, \text{azul} \rangle, \langle \text{verde}, \text{rojo} \rangle, \langle \text{rojo}, \text{azul} \rangle, \langle \text{rojo}, \text{verde} \rangle \}, \quad \forall j, 1 \leq j \leq 5$$

$$a = \{V_1, V_4, V_2, V_3\}$$

Ejemplo: generar crucigramas

Dada una rejilla y un diccionario, construir un Slot horizontal de tres letras

crucigrama legal

palabras de 1 letra palabras de 3 letras 2 palabras de 5 letras

- variables: grupo de casillas para una palabra (slots)
- dominios: palabras del diccionario con la longitud adecuada
- restricciones: misma letra en la intersección de dos palabras
- Características:
 - CSP binario, discreto (dominios grandes)

Universidad de Alicante Universitat d'Alacant

Ejemplo: generar crucigramas

Formalización:

 $V = \{V_1, \dots, V_n\}$, slot para palabras

 $D_i = \{ \text{palabras de longitud } |v_i| \}, \forall i \in [1, n] \}$

 $E = \{e_1, \dots, e_m\}, \text{ intersecciones}$

 $c: E \to V \times V$, asigna intersecciones a pares de palabras

 $l: E \to \{\text{misma letra}\}, \text{ restricción de intersección}$

 $\rho((v_i, v_j)) = \{(w_i, w_j) \in D_i \times D_j : w_i[k] = w_i[l] \text{ para } (k, l) = pos_inter(v_i, v_j)\}$

a: permutación en [1, n]

Ejemplo: n-reinas

Posicionar n reinas en un tablero de ajedrez n×n, de forma que no se

ataquen

n = 5 (4,1,3,5,2)

- Formulación: (1 reina por columna)
 - variables: reinas, Xi reina en la columna i-ésima
 - dominios: filas posibles {1, 2, ..., n}
 - restricciones: no colocar dos reinas en
 - la misma columna
 - · la misma diagonal
- Características:
 - Dominios discretos y restricciones binarias

Ejemplo: n-reinas

Formalización:

 $V = \{X_1, X_2, ..., X_n\}, X_i$: reina en la columna i-ésima $D_i = \{1, 2, ..., n\}, \forall i \in [1, n], \text{ filas posibles}$

 $E = \{e_{ij} : 1 \le i < j \le n\}, \text{ conexions entre columns}$

$$c: E \to V \times V, \ c(e_{ij}) = (X_i, X_j)$$

 $l: E \to \{\text{no ataque}\}, \text{ restricción de no ataque entre reinas}\}$

$$\rho((X_i, X_j)) = \{ (r_i, r_j) \in D_i \times D_j : r_i \neq r_j \land |i - j| \neq |r_i - r_j| \}$$

a: permutación en [1, n] (orden de colocación de reinas)

Universidad de Alicante Universitat d'Alacant

Ejemplo: criptoaritmética

- Sustituir cada letra por un dígito distinto (distinta cifra, distinta letra) de manera que la suma sea correcta
- Formulación:
 - **variables**: G. O. T. A. U. C₁, C₂, C₃ (C₁, C₂, C₃ variables de acarreo)
 - **dominios**: $O, T, U \in \{0, ..., 9\}$
 - $G, A \in \{1, ..., 9\}$
 - $C_1, C_2, C_3 \in \{0, ..., 4\}$
 - restricciones:
 - letras distintas $G \neq O, G \neq T, ..., A \neq U$
 - suma correcta
 - (unidades) $5A = 10C_1 + A$
 - (decenas) $5T+C_1 = 10C_2+U$
 - (centenas) $5O+C_2 = 10C_3+G$
 - (unidad. millar) $5*G+C_3 = A$

GOTA GOTA **GOTA** GOTA **GOTA**

AGUA

Características: dominios discretos y relaciones múltiples

Ejemplo: restricciones temporales

 Dado un conjunto de sucesos que ocurren en intervalos temporales con ciertas relaciones, encontrar un asignación temporal consistente

- Formulación:
 - variables: sucesos
 - dominios: intervalo temporal para cada suceso
 - restricciones: distancia temporal permitida entre sucesos; relaciones temporales antes, después, solapado, etc.
- Características : Dominios continuos y restricciones binarias

Árbol de interpretaciones

- Partimos de un nodo raíz que supervisa el proceso.
- Cada nivel corresponde a una asignación de valor para una característica de datos. El orden de descenso viene especificado por a.
- Cada nodo identifica una posibilidad de asignación (Variable, valor).
- La solución se construye de forma incremental de tal forma que cada hoja es una interpretación.

cant licante

Universitat d'Alacant Universidad de Alicante

Métodos de resolución

Tres estrategias

Búsqueda

 Explorar el espacio de estados hasta encontrar una solución, demostrar que no existe o agotar los recursos

Inferencia

Deducir un problema equivalente que sea más fácil de resolver

Hibridas

 Combinación de las aproximaciones anteriores. Sobre un esquema de búsqueda se incorporan métodos de inferencia

Métodos de resolución

Búsqueda

- Generación y test:
 - Generar de forma sistemática y exhaustiva cada una de las posibles asignaciones a las variables y comprobar si satisfacen todas las restricciones.
 - Hay que explorar el espacio definido por el producto cartesiano de los dominios de las variables.
- Backtracking: se trata de construir la solución de forma gradual, instanciando variables en el orden definido por la permutación dada
- Backjumping: parecido al BT pero el retroceso no se hace a la variable instanciada anteriormente sino a la variable más profunda que está en conflicto con la variable actual.

Métodos de resolución

Inferencia

- Consistencia de arco
- Consistencia de caminos
- K-consistencia

Algoritmos híbridos

- **Forward Checking**
- Maintaining Arc Consistency
- Heurísticas

Generación y test

Estrategia:

- Generación y test de todas las asignaciones totales posibles
 - 1. Generar una asignación de todas las variables
 - 2. Comprobar si es solución. Si es, stop, sino ir a 1
- Eficiencia:
 - Es muy poco eficiente
 - Genera muchas asignaciones que violan la misma restricción

Backtracking

Estrategia:

- Construir una solución parcial: asignación parcial que satisface las restricciones de las variables involucradas
- Extender la solución parcial, incluyendo una variable cada vez hasta llegar una solución total
- Si no se puede extender ejecutamos vuelta a atrás:
 - cronológico: se elimina la última decisión
 - no cronológico : se elimina una decisión anterior

Backtracking

Backtracking

Backtracking

```
; Llamada inicial: Backtracking(1, V[n])
  procedimiento Backtracking(k, V[n])
  inicio
  V[k] = Selecci\'on(d_k) ; Selecciona un valor de d_k para asignar a x_k
  si Comprobar(k, V[n]) entonces
    si k = n entonces
       devolver V[n] ; Es una solución
    si no
      Backtraking(k+1, V[n])
    fin si
 si no
   si quedan\_valores(d_k) entonces
      Backtraking(k, V[n])
   si no
      si k = 1 entonces
        devolver \emptyset ; Fallo
     si no
        Backtraking(k-1, V[n])
     fin si
  fin si
fin si
fin Backtracking
```


Limitaciones del backtracking

- Trashing e inconsistencia de nodo
 - Relacionado con las **restricciones unarias**. Sucede cuando un dominio contiene un valor que no satisface una restricción unaria.
- Inconsistencia de arista
 - Relacionado con las **restricciones binarias**. Sucede cuando existe una restricción binaria entre dos variables de tal forma que para un determinado valor de la primera variable no existe ninguna asignación posible para la segunda.
- Dependencia de la ordenación
 - El orden de selección de las variables es un factor crítico. Se han desarrollado diversas heurísticas de selección de variable y de valor.
 - Variable: Orden estático y Orden dinámico
 - Valor: p.e. los que conducen a un CPS más simple

Forward Checking (FC)

- En cada etapa de la búsqueda, FC comprueba hacia delante la asignación actual con todos los valores de las futuras variables que están restringidas con la variable actual.
- Los valores de las variables futuras que son inconsistentes con la asignación actual son temporalmente eliminados de sus dominios.
- Si el dominio de una variable futura se queda vacío, la instanciación de la variable actual se deshace y se prueba con un nuevo valor. Si ningún valor es consistente, entonces se lleva a cabo el backtracking cronologico.

FC

Pseudocódigo intuitivo:

- 1. Selectionar x_i .
- 2. Instanciar $x_i \leftarrow a_i : a_i \in D_i$.
- 3. Razonar hacia adelante (forward-check):
 - Eliminar de los dominios de las variables (x_{i+1}, \ldots, x_n) aún no instanciadas, aquellos valores inconsistentes con respecto a la instanciación (x_i, a_i) , de acuerdo al conjunto de restricciones.
- 4. Si quedan valores posibles en los dominios de todas las variables por instanciar, entonces:
 - Si i < n, incrementar i, e ir al paso (1).
 - Si i = n, salir con la solución.
- 5. Si existe una variable por instanciar, sin valores posibles en su dominio, entonces retractar los efectos de la asignación $x_i \leftarrow a_i$. Hacer:
 - Si quedan valores por intentar en D_i , ir al paso (2).
 - Si no quedan valores:
 - Si i > 1, decrementar i y volver al paso (2).
 - Si i = 1, salir sin solución.

Forward Checking (FC)

FC

Algoritmo

```
Algoritmo Forward Checking
 1: function FC(i : variable)
                                                              ▷ Retorna booleano
       for all a \in dominio[i] do
           X_i \leftarrow a
           if i = N then return Verdadero
                                                      \triangleright; \leftarrow todas variables ?
           else
              if FORWARD(i, a) then
                  if FC(i + 1) = VERDADERO then return VERDADERO
 7:
              RESTAURAR(i)
 8:
       return Falso
 9:
10: function FORWARD(i: variable, a: valor)
                                                             ⊳ Retorna booleano
       dominio \ vacio \leftarrow Falso
11:
       for j \leftarrow i + 1 to N do
12:
           for all b \in dominio[j] do
13:
               if not ES CONSISTENTE(i, a, j, b) then
14:
                                                               22: procedure RESTAURAR(i: variable)
                  Eliminar b de dominio[j]
15:
                                                                      for j \leftarrow i + 1 to N do
                                                               23:
                  Añadir b a podado[j]
16:
                                                                         for all b \in podado[j] do
                                                               24:
           if dominio[j] está vacío then
17:
                                                                             if X_i es responsable del filtrado de b then
                                                               25:
                                                                                Eliminar b de podado[j]
               dominio \ vacio \leftarrow Verdadero
                                                               26:
18:
                                                                                Añadir b a dominio[j]
                                                               27:
               break
19:
       if dominio vacio then return FALSO
                                                               28:
20:
                                                               29: function ES CONSISTENTE(i: variable, a: valor, j: variable, b: valor) \triangleright
       return VERDADERO
                                                                   Retorna booleano
ე1.
                                                                                          \triangleright ; 'a' en X_i es consistente con 'b' en X_i?
                                                               30:
                                                                                                                  ▷ Depende del problema
                                                               31:
```

Ejemplo de FC

- Configuración inicial:
 - Variables: X, y
 - Dominios: $D_x = D_y = \{1, 2, 3, 4, 5\}$
 - Restricción: x < y 1
- Inicialmente:
 - $CD_x = CD_y = \{1, 2, 3, 4, 5\}$
- Proceso:
 - Caso 1: Si asignamos x = 2
 - Los únicos valores que puede tomar y son 4, 5
 - Por tanto:

• ...
$$CD_y = \{4,5\}$$

- Caso 2: Asignamos x = 4
 - No hay asignación posible compatible con la restricción
 - Por tanto: $CD_v = \{\}$
 - Acción: Deshacer x = 4 y realizar backtracking
 - •

Otro ejemplo de FC

- 1: $\{a, r, v\}$
- 2: $\{a, r, v\}$
- $3: \{r\}$

- 1: $\{a,r,v\} \rightarrow 2: \{a,r,v\}$
- $2:\{r,v\} \rightarrow 3:\{\}$ (por tanto volvemos hacia atrás)
- $2:\{r, v\} \rightarrow 3:\{r\}$
- 3:{r}

Solución: 1=a, 2=v, 3=r

Propagación de restricciones

- Transformar el problema en otro más sencillo sin inconsistencias de arco.
- Propiedad de consistencia de arista:
 - Una arista dirigida c(ep) = <Vi, Vj> es consistente si y sólo si para todo valor asignable a Vi existe al menos un valor en Vj que satisface la restricción asociada a la arista.
- Un CSP puede transformarse en una red consistente mediante un algoritmo sencillo (AC3) que examina las aristas, eliminando los valores que causan inconsistencia del dominio de cada variable.
- Después del proceso:
 - No hay solución
 - Hay más de una solución
 - Hay una única solución

Algoritmo AC3

Algoritmo Algoritmo AC3

```
1: Q \leftarrow \{c(e_p) = \langle V_i, V_i \rangle | e_p \in E, i \neq j\}
 2: while Q \neq \emptyset do
         \langle V_k, V_m \rangle \leftarrow \operatorname{seleccionar}_y \operatorname{borrar}(Q)
      cambio \leftarrow falso
          for all v_k \in D_k do
               if no consistente(v_k, D_m) then
                     \mathbf{borrar}(v_k, D_k)
                     cambio \leftarrow cierto
 8:
          if D_k = \emptyset then
 9:
                salir sin solución
10:
          if cambio = cierto then
11:
               Q \leftarrow Q \cup \{c(e_r) = \langle V_i, V_k \rangle | e_r \in E, i \neq k, i \neq m\}
12:
```


Ejemplo AC3

Dominios

Aristas

Ejemplo AC3

Dominios

Q

Aristas

Aplicamos la línea 1

Ejemplo AC3

Dominios

Q

Aristas

C=B

- Cogemos la primera restricción (línea 3)
 - Para cada valor de A (parte izquierda de la regla) ¿se cumple? Sino eliminar

Ejemplo AC3

Dominios

Q

Aristas

C=B

- Como A cambia añadimos a Q cualquier arista que tenga A en la parte derecha si no esta ya.
 - ¡En esta caso no se añade **B<A** porqué ya está! (línea 12)

Ejemplo AC3

Dominios

Q

Aristas

$$C=B$$

- Cogemos la segunda restricción (línea 3)
- Para cada valor de B ¿se cumple? Sino eliminar

Ejemplo AC3

Dominios

• A={ ,2,3}

• B={1,2,**1**}

• C={1,2,3}

Q

A>B

• B<A

• B=C

C=B

Aristas

A>B

B<A

B=C

C=B

 B ha cambiado, por lo que añadimos las restricciones que tengan en su parte derecha a B si no estaban en Q...

Dominios

- A={ ,2,3}
- B={1,2,**1**}
- C={1,2,3}

Q

- A>B
- B<A
- B=C
- C=B
- A>B

Aristas

A>B

B<A

B=C

Dominios

- A={ ,2,3}
- B={1,2,**1**}
- C={1,2,3}

Q

- A>B
- B<A
- B=C
- C=B
- A>B

Aristas

A>B

B<A

B=C

Dominios

• A={[,2,3}

• B={1,2,**1**}

• $C=\{1,2,3\}$

C=B

A>B

Aristas

A>B

B<A

B=C

Ningún cambio al aplicar esta regla...

Universidad de Alicante Universitat d'Alacant

Ejemplo AC3

Dominios

• A={ ,2,3}

• B={1,2,**1**}

• $C=\{1,2,3\}$

- A>B

Aristas

A>B

B<A

B=C

Seleccionamos la siguiente y continuamos el mismo proceso...

(2) Universidad de Alicante Universitat d'Alacant

Ejemplo AC3

Dominios

- A={ ,2,3}
- B={1,2,**1**}
- C={1,2,**1**}

Q

- A>B
- B<A
- B=C
- C=B
- A>B

Aristas

A>B

B<A

B=C

C=B

Ejemplo AC3

Dominios

Q

- A>B
- B<A
- B=C
- C=B
- A>B
- B=C

Aristas

A>B

B<A

B=C

C=E

 Como se modifico el domino de C incluimos las restricciones con ella en la parte derecha...

Ejemplo AC3

Dominios

• A={ ,2,3}

• B={1,2,**1**}

• C={1,2,**1**}

Q

- A>B
- **B<A**
- B=C
- C=B
- A>B
- B=C

Aristas

A>B

B<A

B=C

Dominios

Q

- A>B
- B<A
- B=C
- C=B
- A>B
- B=C

Aristas

A>B

B<A

B=C

Ejemplo AC3

Dominios

- A={ ,2,3}
- B={1,2,**1**}
- C={1,2,**1**}

Q

- A>B
- B<A
- B=C
- C=B
- A>B
- B=C

Aristas

A>B

B<A

B=C

C=B

Ejemplo AC3

Dominios

- A={ ,2,3}
- B={1,2,**1**}
- C={1,2,**|**}

Q

- A>B
- B<A
- B=C
- C=B
- A>B
- B=C

Aristas

Ejemplos de grafos

Ejercicio: aplicar AC3

(coloreado de mapas)

{rojo, verde} Consistente, sin solución {rojo, verde} {rojo, verde} azul, verde} {rojo, verde} {rojo, verde}

Inconsistente, sin solución

Consistente, con dos soluciones

Ejemplo: AC3 + backtracking

Ejemplo: AC + FC

Bibliografía

 Stuart Russell, Peter Noving. "Artificial Intelligence: A Modern Approach, Global Edition" Ed. Pearson. Prentice Hall. 2021.

