Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

Отчёт по курсовой работе по дисциплине Математическая статистика

Выполнил студент: Курова Анна Николаевна группа: 3630102/70401 Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

1	Постановка задачи	4
2	Анализ	4
	2.1 Интенсивность	4
	2.2 Суммарная светимость по столбцам	8
	2.3 Центр	9
3	Приложения	10

Список иллюстраций

1	Суммарная интенсивность	4
2	Суммарная интенсивность на интервале	5
3	Суммарная интенсивность на интервале $160ms \le t \le 167ms$	6
4	Графики на небольшом интервале	6
5	Суммарная интенсивность на интервале $135ms \le t \le 160ms$	7
6	Графики на небольшом интервале	7
7	Суммарная светимость по столбцам	8
8	Движение центра	9
9	Движение центра на интервале $135ms \le t \le 160ms$	9
10	Движение центра на интервале $160ms < t < 167ms$	10

1 Постановка задачи

На основе полученных видео определить параметры вращения изображения: центр и частоту.

2 Анализ

2.1 Интенсивность

На видео представлены проекции распределения светимости на детектор. Для того чтобы изучить интенсивность свечения разобьем график на 4 четверти и построим график свечения в зависимости от времени для каждой области.

Рис. 1: Суммарная интенсивность

Если рассмотреть суммарную светимость от t=0, то заметим, что во всех областях свечение не превосходит 2000 при $0ms \le t \le 120ms$ и $195ms \le t \le 275ms$.

Также на графике можно наблюдать резкий пик при $t\approx 194ms$

Рис. 2: Суммарная интенсивность на интервале

Заметим, что свечение второй и третьей четверти более интенсивное, чем свечение первой и четвертой областей.

При $t \approx 160 ms$ происходит резкий, практически вертикальный скачок.

При $t \approx 167ms$ колебание интенсивности свечения затухает.

Рис. 3: Суммарная интенсивность на интервале $160ms \le t \le 167ms$

Рис. 4: Графики на небольшом интервале

Мы видим довольно интересную картину колебаний светимости в разных областях. Для начала рассмотрим промежуток $160ms \le t \le 167ms$.

Графики практически одинаковы для второй и третьей четвертей, но расположены они с запозданием на $0.1~\mathrm{ms}$.

Для областей 1 и 4 заметим, что когда первая область приходит в пик, четвертая область попадает в локальный минимум. Такая картина наблюдается с $t \approx 162ms$. До этого момента графики накладываются с запозданием на 0.05ms, как и в случае со второй и третьей четвертями.

Рис. 5: Суммарная интенсивность на интервале $135ms \le t \le 160ms$

Рис. 6: Графики на небольшом интервале

На промежутке $135ms \le t \le 160ms$ картина сложнее. Тут нельзя выявить какой-то явный характер графиков. Графики 2-й и 3-й областей похожи и отличаются сдвигом по шкале светимости. Тоже справедливо и для 1-й и 4-й областей.

2.2 Суммарная светимость по столбцам

В предыдущем разделе мы рассматривали проекцию, поделив её на равные четверти. Попробуем разделить проекцию так, чтобы суммарная интенсивность была примерно одинаковой.

Рис. 7: Суммарная светимость по столбцам

Из такого графика можем сделать вывод, что столбец номер 7 и столбцы 8-9 дают самый большой вклад, а столбцы 0-6 и 10-15 маленький.

2.3 Центр

Рассмотрим движение центра светимости, для этого построим график. На рисунках 8-10 справа присутствует столбец, который построен с помощью функции colorbar, он показывает центр в зависимости от веремени. Т.е. от самого темного в начале движения к самому светлому в конце.

Рис. 8: Движение центра

На такой картинке сложно отследить что именно происходит. Рассмотрим промежутки, как и для суммарной светимости.

Рис. 9: Движение центра на интервале $135ms \le t \le 160ms$

Рис. 10: Движение центра на интервале $160ms \leq t \leq 167ms$

Заметим, что центр действительно совершает круговое движение. На рисунке 8 движение более хаотичное.

3 Приложения

 ${\it Kog}$ программы: ${\it https://github.com/katonapng/MathStat}$