

AU6376-GEL

USB2.0 Multi-LUN Flash Card Reader
Controller

Technical Reference Manual

AU6376-GEL

USB2.0 Multi-LUN Flash Card Reader Controller

Copyright

Copyright © 1997 - 2007. Alcor Micro, Corp. All Rights Reserved. No part of this data sheet may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without prior written permission from Alcor Micro, Corp.

Trademark Acknowledgements

The company and product names mentioned in this document may be the trademarks or registered trademarks of their manufacturers.

Disclaimer

Alcor Micro, Corp. reserves the right to change this product without prior notice. Alcor Micro, Corp. makes no warranty for the use of its products and bears no responsibility for any error that appear in this document. Specifications are subject to change without prior notice.

Revision History

Date	Revision	Description
Dec 2007	1.01W	Modify "Table 5.8 Dynamic characteristic – remove Low speed Mode"

Contact Information:

Web site: http://www.alcormicro.com/

Taiwan

Alcor Micro, Corp. 4F, No 200 Kang Chien Rd., Nei Hu, Taipei, Taiwan, R.O.C.

Phone: 886-2-8751-1984 Fax: 886-2-2659-7723

Santa Clara Office

2901 Tasman Drive, Suite 206 Santa Clara, CA 95054

USA

Phone: (408) 845-9300 Fax: (408) 845-9086

China ShenZhen Office

Rm.2407-08, Industrial Bank Building

No.4013, Shennan Road, ShenZhen, China. 518026 Phone: (0755) 8366-9039 Fax: (0755) 8366-9101

Los Angeles Office

9070 Rancho Park Court Rancho Cucamonga, CA 91730 USA

Phone: (909) 483-8821 Fax: (909) 944-0464

<Memo>

Table of Contents

1. Intr	oduction	1
1.1 🗅	Description	.1
1.2 F	Features	.1
2. App	olication Block Diagram	2
3. Pin	Assignment	3
4. Sys	stem Architecture and Reference Design	8
4.1 A	AU6376 Block Diagram	.8
5. Ele	ctrical Characteristics	9
5.1 A	Absolute Maximum Ratings	.9
5.2 R	Recommended Operating Conditions	.9
5.3 G	General DC Characteristics	.9
5.4 D	OC Electrical Characteristics of 3.3V I/O Cells	.10
5.5 L	JSB Transceiver Characteristics	.10
5.6 P	Power Switch Feature	.13
6. Med	chanical Information	14
7. Abk	oreviations	15

List of Figures

Figure 2.1 Block Diagram	2
Figure 3.1 AU6376-GEL Pin Assignment Diagram	3
Figure 4.1 AU6376 Block Diagram	8
Figure 5.1 Built-in card power switch I-V curve	13
Figure 5.2 Card Detect Power-in Timing	13
Figure 6.1 Mechanical Information Diagram	14
List of Tables	4
Table 3.1 AU6376-GEL Pin Descriptions	
Table 5.1 Absolute Maximum Ratings	
Table 5.2 Recommended Operating Conditions	
Table 5.3 General DC Characteristics	9
Table 5.4 DC Electrical Characteristics of 3.3V I/O Cells	10
Table 5.5 Electrical characteristics	10
Table 5.6 Static characteristic : Digital pin	11
Table 5.7 Static characteristic : Analog I/O pins (DP/DM) .	11
Table 5.8 Dynamic characteristic : Analog I/O pins (DP/DM)12

1. Introduction

1.1 Description

The AU6376 is a single chip integrated USB 2.0 multimedia card reader controller that enables PC/DVD/Printer to read/write various type of flash media cards. Flash media cards such as CF, SMC, XD, SD, MMC, Memory Stick are widely used in digital camera, cell phone, PDA and MP3 player to store digital photos and compressed music.

Performance of AU6376-GEL is maximized by implementing the latest and fastest card specification available form the industry.

Especially, AU6376-GEL is designed with the high performance characteristic in flash card I/O speed. Users can easy and fast transfer the digital content among the different flash card.

1.2 Features

- Support USB V2.0 specification and USB Device Class Definition for Mass Storage, Bulk-Transport V1.0
- Support CF/MD/SD/MMC/MS/MS_Pro/MS_Duo/xD/SMC compatible flash card
- Support SD1.1/SD2.0
- Support MMC4.1. MMC4.2.
- Support CF4.0 DMA mode.
- Compliant to xD 1.2 spec.
- Hardware DMA engine integrated for performance enhancement.
- Work with default driver from Windows ME/2000/XP/Vista and Mac OS X; Windows 98/2000(SP1/SP2) and Mac OS 9 are supported by vendor driver from Alcor.
- Ping-pong FIFO implementation for concurrent bus operation
- Support multiple sectors transfer optimize performance
- Support slot-to-slot read/write operation
- Support Dynamic Icon Utility
- Support LED for bus operating indication
- Power switch integrated to reduce production BOM cost
- 30MHz 8051 CPU
- Built in 3.3V to 1.8V regulator
- Runs at 12MHz crystal
- Available in 100-pin LQFP package

2. Application Block Diagram

Following application diagram demonstrates a typical card reader using the AU6376 chip. By connecting the card reader to a desktop or notebook PC through USB bus, the AU6376 becomes a bus-powered, high speed USB card reader, which can be used as a bridge for data transfer between Desktop PC and Notebook PC.

Figure 2.1 Block Diagram

3. Pin Assignment

AU6376-GEL is available in 100-pin LQFP package. Below diagram shows signal name of each pin and table in the following page describes each pin in detail.

Figure 3.1 AU6376-GEL Pin Assignment Diagram

Table 3.1 AU6376-GEL Pin Descriptions

Pin #	Pin Name	1/0	Description
1	LUNSEL0	I	LUN mode select, (LUNSEL1, LUNSEL0)= (0,0): 4LUN (0,1): 1LUN (1,0): 2LUN (CF, others) (1,1): 2LUN (Others, Flash)
2	CFDATA10	Ю	CF Data10
3	XDCEN	0	XD CEN
4	CFDATA9	Ю	CF Data9
5	SMCLE	0	SMC CLE
6	CFDATA2	Ю	CF Data2
7	SMRDN	0	SMC RDN
8	CFDATA8	Ю	CF Data8
9	SMALE	0	SMC ALE
10	CFDATA1	Ю	CF Data1
11	SMRBN	I	SMC RBN
12	CFDATA0	Ю	CF Data0
13	SMWRN	0	SMC RBN
14	CFAD0	0	CF Address0
15	XDWPN	Ю	XD WPN
16	CFDMACKN	0	CF DMA ACK. Low active.
17	CFAD1	0	CF Address1
18	REXT	Ю	External Resistor 330 to Ground
19	VD33P	PWR	3.3V Power Source for UTMI
20	DP	Ю	DP
21	DM	Ю	DM
22	VS33P	GND	Ground Power
23	ΧI	I	12MHz Crystal Input
24	ХО	0	12MHz Crystal Output
25	VSSU	GND	Ground
26	V18	0	1.8V Core Power
27	VDDHM	PWR	3.3V Power Source for IO pad

Pin #	Pin Name	1/0	Description
28	VSSHM	GND	3.3V ground for IO pad
29	VDD	PWR	Core Power 1.8V Input
30	MSBS	0	MS BS
31	MSDATA1	Ю	MS Data1
32	SMDATA0	Ю	xD/SMC Data0
33	MSDATA0	Ю	MS Data0
34	SMDATA7	Ю	xD/SMC Data7
35	MSDATA2	Ю	MS Data2
36	SMDATA1	Ю	xD/SMC Data1
37	MSINS	I	MS Card Detect ("0":Detected; "1":Undetected)
38	SMDATA6	Ю	xD/SMC Data6
39	MSDATA3	Ю	MS Data3
40	SMDATA2	Ю	xD/SMC Data2
41	MSCLK	0	MS CLK
42	CFDMARQ	I	CF DMA request.
43	CARDLED	0	Card access LED.
44	CFPWRLED	0	CF power LED
45	NC		
46	NC		
47	NC		
48	NC		
49	NC		
50	VDD33C	PWR	3.3V power for PMOS
51	CF_V33	PWR	CF Power
52	XD_V33	PWR	XD Power
53	MS_V33	PWR	MS Power
54	SD_V33	PWR	SD Power
55	EEPCLK	0	EEPCLK
56	EEPDATA	10	EEPDATA
57	CFAD2	0	CF Address2
58	DECV	I	USB current value.("1":250mA for WHQL; "0":100mA for normal mode)

Pin #	Pin Name	1/0	Description
59	CFWTN	I	CF WTN
60	RFU	I	
61	CFRESETN	0	CF Reset
62	XDCISN	I	
63	CFWRN	0	CF WRN
64	CFRDN	0	CF RDN
65	CFCE2N	0	
66	SD0WP	I	SD0 Write Protect
67	CFCE1N	0	
68	SD0CDN	I	SD0 Card Detect ("0":Detected; "1":Undetected)
69	CFDATA15	Ю	CF Data15
70	SMDATA5	Ю	xD/SMC Data5
71	CFDATA7	Ю	CF Data7
72	SMDATA3	Ю	xD/SMC Data3
73	CHIPRESETN	I	Chip Reset
74	VDDHM	PWR	3.3V Power Source for IO pad
75	VSSHM	GND	3.3V ground for IO pad
76	SD0DATA1	Ю	SD/MMC Data1
77	SD0DATA0	Ю	SD/MMC Data0
78	CFDATA14	Ю	CF Data14
79	SD0DATA7	Ю	SD/MMC Data7
80	SD0DATA6	Ю	SD/MMC Data6
81	CFDATA6	Ю	CF Data6
82	SD0CLK	0	SD0 CLK
83	CFDATA13	Ю	CF Data13
84	SD0DATA5	Ю	SD/MMC Data5
85	SD0CMD	Ю	SD0 CMD
86	CFDATA5	Ю	CF Data5
87	SD0DATA4	Ю	SD/MMC Data4
88	CFDATA12	Ю	CF Data12
89	SD0DATA3	Ю	SD/MMC Data3
90	CFDATA4	Ю	CF Data4

Pin #	Pin Name	1/0	Description			
91	SD0DATA2	Ю	SD/MMC Data3			
92	CFDATA11	Ю	CF Data11			
93	SMDATA4	Ю	xD/SMC Data4			
94	CFDATA3	Ю	CF Data3			
95	SMCDN	I	SMC Card Detect ("0":Detected; "1":Undetected)			
96	CFCDN	I	CF Card Detect ("0":Detected; "1":Undetected)			
97	XDCDN	I	XD Card Detect ("0":Detected; "1":Undetected)			
98	RFU	I	NC			
99	CFDMAEN	I	CF DMA mode enable '0' for disable. '1' for enable. [Default] '1'			
100	LUNSEL1	I	LUN mode select, (LUNSEL1, LUNSEL0)= (0,0): 4LUN (0,1): 1LUN (1,0): 2LUN (CF, others) (1,1): 2LUN (Others, Flash)			

4. System Architecture and Reference Design

4.1 AU6376 Block Diagram

Figure 4.1 AU6376 Block Diagram

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	RATING	UNITS
V_{DDHM}	Power Supply	-0.3 to 3.6	V
V _{IN}	Input Signal Voltage	-0.3 to V _{DDH} +0.3	V
T _{STG}	Storage Temperature	-40 to 150	°C

5.2 Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
V_{DDH}	Power Supply	3.0	3.3	3.6	V
V_{DD} V_{18}	Digital Supply	1.62	1.8	1.98	V
V _{IN}	Input Signal Voltage	0	3.3	3.6	V
T _{OPR}	Operating Temperature	0		85	°C

5.3 General DC Characteristics

Table 5.3 General DC Characteristics

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
I _{IN}	Input current	No pull-up or pull-down	-10	±1	10	μА	
I _{OZ}	Tri-state leakage current		-10	±1	10	μΑ	
C _{IN}	Input capacitance	Pad Limit		2.8		ρF	
C _{OUT}	Output capacitance	Pad Limit		2.8		ρF	
C _{BID}	Bi-directional buffer capacitance	Pad Limit		2.8		ρF	

5.4 DC Electrical Characteristics of 3.3V I/O Cells

Table 5.4 DC Electrical Characteristics of 3.3V I/O Cells

SYMBOL	PARAMETER	CONDITIONS		UNIT		
STIVIDUL	PARAIVIETER	CONDITIONS	MIN	TYP	MAX	OIVII
V_{DDH}	Power supply	3.3V I/O	3.0	3.3	3.6	V
V _{il}	Input low voltage	LVTTL			0.8	V
V_{ih}	Input high voltage	LVIIL	2.0			V
V _{ol}	Output low voltage	I _{ol} =2~16mA			0.4	V
V_{oh}	Output high voltage	\mid I _{oh} \mid =2~16mA	2.4			V
R_{pu}	Input pull-up resistance	PU=high, PD=low	55	75	110	ΚΩ
R_{pd}	Input pull-down resistance	PU=low, PD=high	40	75	150	ΚΩ
l _{in}	Input leakage current	$V_{in} = V_{DDH}$ or 0	-10	±1	10	μ A
l _{oz}	Tri-state output leakage current		-10	±1	10	μΑ

5.5 USB Transceiver Characteristics

Table 5.5 Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VD33P	Analog supply Voltage		3.0	3.3	3.6	V
VDD V18	Digital supply Voltage		1.62	1.8	1.98	V
I _{cc}	Operating supply current	High speed operating at 480 MHz			55	mA

Table 5.6 Static characteristic : Digital pin

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
Input levels								
V_{IL}	Low-level input voltage				0.8	V		
V _{IH}	High-level input voltage		2.0			V		
Output levels								
V _{OL}	Low-level output voltage				0.2	V		
V _{OH}	High-level output voltage		VDDH-0.2			V		

Table 5.7 Static characteristic : Analog I/O pins (DP/DM)

Cymbal	Doromotor					Hoit	
Symbol		Conditions	Min.	Тур.	Max.	Unit	
USB2.0 Transceiver (HS)							
Input Levels (differential receiver)							
V _{HSDIFF}	High speed differential input sensitivity	V _{I (DP)} -V _{I (DM)} measured at the connection as application circuit	300			mV	
V _{HSCM}	High speed data signaling common mode voltage range		-50		500	mV	
V_{HSSQ}	High speed squelch detection threshold	Squelch detected			100	mV	
V HSSQ		No squelch detected	150			mV	
V	High speed disconnection detection threshold	Disconnection detected	625			mV	
V _{HSDSC}		Disconnection not detected			525	mV	
		Output Levels					
V _{HSOI}	High speed idle level output voltage(differential)		-10		10	mV	
V _{HSOL}	High speed low level output voltage(differential)		-10		10	mV	
V _{HSOH}	High speed high level output voltage(differential)		-360		400	mV	
V_{CHIRPJ}	Chirp-J output voltage (differential)		700		1100	mV	
V _{CHIRPK}	Chirp-K output voltage (differential)		-900		-500	mV	
Resistance							
R_{DRV}	Driver output impedance	Equivalent resistance used as internal chip only	3	6	9	Ω	

		Overall resistance including external	40.5	45	49.5			
		resistor						
		Termination						
	Termination voltage for							
V_{TERM}	pull-up resistor on pin		3.0		3.6	V		
	RPU							
	USB1.1 Transceiver (FS)							
Input Levels (differential receiver)								
V_{DI}	Differential input sensitivity	V _{I (DP)} -V _{I (DM)}	0.2			V		
V_{CM}	Differential common mode voltage		0.8		2.5	٧		
	Input Leve	ls (single-ended recei	vers)					
V _{SE}	Single ended receiver threshold		0.8		2.0	V		
Output levels								
V_{OL}	Low-level output voltage		0		0.3	V		
V_{OH}	High-level output voltage		2.8		3.6	V		

Table 5.8 Dynamic characteristic : Analog I/O pins (DP/DM)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
Driver Characteristics								
High-Speed Mode								
t _{HSR}	High-speed differential rise time		500			ps		
t _{HSF}	High-speed differential fall time		500			ps		
Full-Speed Mode								
t _{FR}	Rise time	CL=50pF; 10 to 90% of V _{OH} -V _{OL} ;	4		20	ns		
t _{FF}	Fall time	CL=50pF; 90 to 10% of V _{OH} -V _{OL} ;	4		20	ns		
t _{FRMA}	Differential rise/fall time matching (t _{FR} / t _{FF})	Excluding the first transition from idle mode	90		110	%		
V _{CRS}	Output signal crossover voltage	Excluding the first transition from idle mode	1.3		2.0	٧		

5.6 Power Switch Feature

Figure 5.1 Built-in card power switch I-V curve

Figure 5.2 Card Detect Power-in Timing

6. Mechanical Information

Figure 6.1 Mechanical Information Diagram

7. Abbreviations

In this chapter some of the terms and abbreviations used throughout the technical reference manual are listed as follows.

SIE Serial Interface Engine

CF Compact Flash MD Micro Drive

SMC SmartMedia Card
MS Memory Stick
SD Secure Digital
MMC Multimedia Card

UTMI USB Transceiver Macrocell Interface

About Alcor Micro, Corp.

Alcor Micro, Corp. designs, develops and markets highly integrated and advanced peripheral semiconductor, and software driver solutions for the personal computer and consumer electronics markets worldwide. We specialize in USB solutions and focus on emerging technology such as USB and IEEE 1394. The company offers a range of semiconductors including controllers for USB hub, integrated keyboard/USB hub and USB Flash memory card reader...etc. Alcor Micro, Corp. is based in Taipei, Taiwan, with sales offices in Taipei, Japan, Korea and California. Alcor Micro is distinguished by its ability to provide innovative solutions for spec-driven products. Innovations like single chip solutions for traditional multiple chip products and on-board voltage regulators enable the company to provide cost-efficiency solutions for the computer peripheral device OEM customers worldwide.