University of Southern Denmark IMADA

Arthur Zimek

Jonatan Møller Gøttcke, Jonas Herskind Sejr

DM566/DM868/DM870: Data Mining and Machine Learning

Spring term 2019

Exercise 2: Relations, Itemsets and Association Rules

Exercise 2-1 Sets, Relations, Functions – Visualization

Consider the sets $A = \{a, b, c\}$ and $Z = \{1, 2, 3, 4\}$ and some binary relation over them.

If for example the elements $a \in A$ and $2 \in Z$ are in relation R could we write: aR2 or $(a, 2) \in R$.

As a graphical visualization we can draw the two sets and a line connecting a and 2:

Given such a visualization, the mathematical definitions basically tell us which lines to draw.

Give such a visualization for:

- (a) The Cartesian product $A \times Z$
- (b) A binary relation over A and Z, that is not a function.
- (c) A non-total function $A \rightarrow Z$
- (d) A total function $A \rightarrow Z$
- (e) We called the case c) non-total. Could we have called it partial, or would that make a difference?

Exercise 2-2 Itemsets and Association Rules

Given a set of transactions T according to the following table:

Set of transactions T

Transaction ID	items in basket
1	{Milk, Beer, Diapers}
2	{Bread, Butter, Milk}
3	{Milk, Diapers, Cookies }
4	{Bread, Butter, Cookies}
5	{Beer, Cookies, Diapers}
6	{Milk, Diapers, Bread, Butter}
7	{Bread, Butter, Diapers}
8	{Beer, Diapers}
9	{Milk, Diapers, Bread, Butter}
10	{Beer, Cookies}

- (a) What are the support and the confidence of $\{Milk\} \Rightarrow \{Diapers\}$?
- (b) What are the support and the confidence of $\{Diapers\} \Rightarrow \{Milk\}$?
- (c) Write an expression for the maximum number of size-3 itemsets that can be derived from this data set.
- (d) What is the maximum number of association rules that can be extracted from this data (including rules, that have zero support)?
- (e) What is the maximum size of frequent itemsets that can be extracted (assuming $\sigma > 0$)?
- (f) Find an itemset (of size 2 or larger) that has the largest support.
- (g) Find a pair of items, a and b, such that the rules $\{a\} \Rightarrow \{b\}$ and $\{b\} \Rightarrow \{a\}$ have the same confidence.