CS 631: DATA MANAGEMENT SYSTEMS DESIGN

ASSIGNMENT 4

LIN TANG 31400221

1. Is CDE a superkey of R (w.r.t. G)?

Yes,

Because CDE+ = ABCDEFGHIJ = R

2. Is CDE a key of R (w.r.t. G)?

CD is a proper subset of CDE (CD \subset CDE).

CD is a superkey of R: CD + = R.

Since a proper superset of CDE is a superkey of R, CDE is not a key of R.

3. Apply the appropriate algorithm to determine a key for R (w.r.t. G).

C and D do not appear in the RHS of any FD in F. Therefore, every key of R must contain C and D. We will not try to remove them from K.

Initially K = R.

If (K - X) = R for some attribute X in K – $\{CD\}$ then we remove X from K; otherwise, we leave X in K and continue with another attribute in K – $\{CD\}$, until all attributes in K – $\{CD\}$ are considered:

remove E from R: (CDFGHIJAB)+ = R. then K := CDFGHIJAB

remove F from R: (CDGHIJAB)+ = R. then K:= CDGHIJAB

remove G from R: (CDHIJAB)+ = R. then K := CDHIJAB

remove H from R: (CDIJAB)+ = R. then K := CDIJAB

remove I from R: (CDJAB)+ = R. then K := CDJAB

remove J from R: (CDAB)+ = R. then K = CDAB

remove A from R: (CDB)+ = R. then K := CDB

remove B from R: (CD)+ = R. then K := CD

Thus, CD is a key of R.

4. Apply the appropriate algorithm to determine all the keys for R (w.r.t. G).

C and D do not appear in the RHS of any FD in F. Therefore, every key of R must contain C and D. From question 2, CD is a superkey of R. Thus, CD is the unique key of R.

5. Determine the prime attributes of R.

The prime attribute of R are C and D.

6. Is R in BCNF (w.r.t. G)?

Consider H \rightarrow IJ in F.H \rightarrow IJ violates BCNF in R: H is not a superkey of R (F+ = IJ \neq R).R is not in BCNF.

7. Is R in 3NF (w.r.t. G)?

Consider $H \to IJ$ in F. $H \to IJ$ violates 3NF in R: H is not a superkey of R ($H + = IJ \neq R$) and neither I nor J is a prime attribute of R.

- 8. Determine whether the decomposition D = { CDE, CFG, DH, HIJ, FAB } has (i) the dependency preservation property and (ii) the lossless join property, with respect to G. Also determine which normal form each relation in the decomposition is in.
- (i) Yes, since every FD in F is applicable to at least one schema in D. For instance, CD \rightarrow E \in Π CDE(F).
- (ii)We use the property of binary \square decomposition and the property of repeated \square decompositions. Let R1 = CDE, R2 = CFG and R3 = R1 \square R2 = CDEFG. Since \square F = C \square FG, \square F = R1 \square R2 \square R2 R1. Thus, the decomposition {R1, R2} of R3 is \square w.r.t. \square R3(F). Let R4 = DH and R5 = R3 \square R4 = CDEFGH. Since \square F = D \square H, F = R3 \square R4 \square R4 R3. Thus, the decomposition {R3, R4} of R5 is \square w.r.t. \square R5(G). Therefore, the decomposition {R1, R2, R4} of R5 is \square w.r.t. \square R5(G).
- Let R6 = HIJ and R7 = R5 \cup R6 = CDEFGHIJ Since F = H \rightarrow IJ, F = R5 \cap R6 \rightarrow R6 R5. Thus, the decomposition {R5, R6} of R7 is LJ w.r.t. Π R7(F). Therefore, the decomposition {R1, R2, R4, R6} of R7 is LJ w.r.t. Π R7(F). Let R8 = FAB. Notice that R7 \cup R8 = R. Since F = F \rightarrow AB, F = R7 \cap R8 \rightarrow R8 R7. Thus, the decomposition {R7, R8} of R is LJ w.r.t. F. Therefore, the decomposition {R1, R2, R4, R6, R8} of R is LJ w.r.t. F.
- (iii) CDE: Π CDE(F) = { CD \rightarrow E }. Since CD is a superkey of CDE, CDE is in BCNF. Similarly we show that the rest of the schemas in D are in BCNF.