Socio-Informatics 348

Data Transformation Missing Values

Dr Lisa Martin

Department of Information Science Stellenbosch University

Today's Reading

R for Data Science, Chapter 18

Last observation carried forward

When missing values represent repeated measurements

- can enter individual variables
- fill(direction = "down") or fill(direction = "up")...

Fixed values

- Sometimes missing values represent a specific value, like 0
- Item might be skipped in a survey instead of answered with zero, e.g. number of children
- Software/survey might also have a default missing value, e.g. -99

```
x <- <u>c</u>(1, 4, 5, 7, NA)

<u>coalesce</u>(x, 0)

#> [1] 1 4 5 7 0

x <- <u>c</u>(1, 4, 5, 7, -99)

<u>na_if</u>(x, -99)

#> [1] 1 4 5 7 NA
```

NA vs NaN

A special type of missing value:

- Not a Number
- Generally behaves just like NA
- Use is.nan() to test for NaN

```
x <- c(NA, NaN)
x * 10
#> [1] NA NaN
x == 1
#> [1] NA NA
is.na(x)
#> [1] TRUE TRUE
```

NA vs NaN

 Generally encountered when performing a mathematical operation that has an indeterminate result

```
0 / 0
#> [1] NaN
0 * Inf
#> [1] NaN
Inf - Inf
#> [1] NaN
sqrt(-1)
#> Warning in sqrt(-1): NaNs produced
#> [1] NaN
```

An explicit missing value is the presence of an absence. An implicit missing value is the absence of a presence.

```
stocks <- tibble(
  year = c(2020, 2020, 2020, 2020, 2021, 2021, 2021),
  qtr = c( 1,  2,  3,  4,  2,  3,  4),
  price = c(1.88, 0.59, 0.35,  NA, 0.92, 0.17, 2.66)
)</pre>
```

- Sometimes, we want the missing values to be explicit, e.g. for analysis or visualisation
- How do we move from implicit to explicit missing values?

Pivoting

 Making data wider can make implicit missing values explicit because every combination of the rows and new columns must have some value.

Complete

```
stocks |>
 complete(year, qtr)
#> # A tibble: 8 x 3
  year qtr price
#>
#> <dbl> <dbl> <dbl>
#> 1 2020 1 1.88
#> 2 2020 2 0.59
#> 3 2020 3 0.35
#> 4 2020 4 NA
#> 5 2021 1 NA
#> 6 2021 2 0.92
#> # i 2 more rows
```

Providing combinations of variables that should exist.

Complete

```
stocks |>
 complete(year = 2019:2021, qtr)
#> # A tibble: 12 x 3
  vear atr price
#>
#> <dbl> <dbl> <dbl>
#> 1 2019 1 NA
#> 2 2019 2 NA
#> 3 2019 3 NA
#> 4 2019 4 NA
#> 5 2020 1 1.88
#> 6 2020 2 0.59
#> # i 6 more rows
```

• Able to provide additional/custom values of variables

Joins / Anti-joins

- Anti-join between x and y shows rows in x that do not have a match in y
- Which destination airports in the flights data do not have a matching airport in the airports data?

```
flights |>
  distinct(faa = dest) |>
  anti join(airports)
#> Joining with `by = join by(faa)`
#> # A tibble: 4 x 1
   faa
#>
#> <chr>
#> 1 BON
#> 2 SJU
#> 3 STT
#> 4 PSF
```

Joins / Anti-joins

• Which tail number in the flights data do not have a matching plane in the planes data?

```
flights |>
  distinct(tailnum) |>
  anti join(planes)
#> Joining with `by = join_by(tailnum)`
#> # A tibble: 722 x 1
    tailnum
#>
   <chr>
#> 1 N3ALAA
#> 2 N3DUAA
#> 3 N542M0
#> 4 N730MQ
#> 5 N9EAMO
#> 6 N532UA
#> # i 716 more rows
```

Joins / Anti-joins

- We were not aware of these implicit missing values until we performed the anti-join
- These were simply missing rows in the data, not explicit NA values

- A final type of missingness: An empty group
- A factor level that has no observations

```
health <- \underline{\text{tibble}}( name = \underline{\text{c}}("Ikaia", "Oletta", "Leriah", "Dashay", "Tresaun"), smoker = \underline{\text{factor}}(\underline{\text{c}}("no", "no", "no", "no"), levels = \underline{\text{c}}("yes", "no")), age = \underline{\text{c}}(34, 88, 75, 47, 56),
```

```
health |> count(smoker)
#> # A tibble: 1 × 2
#> smoker n
#> <fct> <int>
#> 1 no 5
health |> count(smoker, .drop = FALSE)
#> # A tibble: 2 × 2
#> smoker n
#> <fct> <int>
#> 1 yes 0
#> 2 no 5
```

```
ggplot(health, aes(x = smoker)) +
  geom_bar() +
  scale_x_discrete()

ggplot(health, aes(x = smoker)) +
  geom_bar() +
  scale_x_discrete(drop = FALSE)
```



```
health |>
 group_by(smoker, .drop = FALSE) |>
 summarize(
   n = n()
   mean_age = mean(age),
   min age = min(age),
   max_age = max(age),
   sd age = sd(age)
#> # A tibble: 2 × 6
#> smoker n mean_age min_age max_age sd_age
#> <fct> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 yes 0 NaN Inf -Inf NA
#> 2 no 5
               60 34 88 21.6
```

• Get 'cleaner' NAs by using complete instead of .drop = FALSE

```
health |>
 group_by(smoker) |>
 summarize(
   n = n()
   mean age = mean(age),
   min_age = min(age),
   max_age = max(age),
   sd age = sd(age)
 ) >
 complete(smoker)
#> # A tibble: 2 × 6
#> smoker n mean_age min_age max_age sd_age
#> <fct> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 yes NA NA
                          NA
                                 NA NA
#> 2 no
       5
                   60
                          34
                                 88 21.6
```