

VL Deep Learning for Natural Language Processing

Word Embeddings

Aftab Anjum AG Information Profiling and Retrieval

Text Represenation

In traditional NLP, we regard words as discrete symbols: **hotel**, **conference**, **motel** — a localist representation

one 1, the rest 0's

Words can be represented by one-hot vectors:

 $hotel = [0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$ $motel = [0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$

Vector dimension = number of words in vocabulary (e.g., 500,000)

How to compute similarity of two words?

Text Represenation

- The vectors we get from one-hotc encoding are sparse (most are 0's) & long (vocabulary size)
- Alternative: we want to represent words as short (50-300 dimensional) & dense (real-valued) vectors

Why do we need a dense vectors?

- Semantic Similarity
- Dimensionality Reduction
- Continuous Representation
- Generalization
- Transfer Learning

Word Embedding

- Deep neural networks need tensors as input
 - One-hot-encoding
 - Bag-of-words
 - Sparsely populated
 - Embedding
 - Dimensionality reduction
 - Densly populated

- Word2vec
- GloVe
- Fast Text
- ELMo
- BERT

- Embedding Layer can learn representation task-specific
 - First layer in a DNN learns dimensionality reduction / representation
- Pretrained Embeddings can be used
 - First layer maps input words to pretrained word vectors

Featurized Representation: Word Embedding

ZBIII CIA U

Word2vec

- Input: a large text corpora, V, d
- V: a pre-defined vocabulary
- d: dimension of word vectors (e.g. 300)

$$v_{\text{cat}} = \begin{pmatrix} -0.224\\ 0.130\\ -0.290\\ 0.276 \end{pmatrix} \qquad v_{\text{dog}} = \begin{pmatrix} -0.124\\ 0.430\\ -0.200\\ 0.329 \end{pmatrix}$$

- Text corpora:
 - Wikipedia + Gigaword 5: 6B
 - Twitter: 27B
 - Common Crawl: 840B

■ Embedding
$$v_{\text{the}} = \begin{pmatrix} 0.234 \\ 0.266 \\ 0.239 \\ -0.199 \end{pmatrix}$$
 $v_{\text{language}} = \begin{pmatrix} 0.290 \\ -0.441 \\ 0.762 \\ 0.982 \end{pmatrix}$

Word2vec

Continuous Bag of Words (CBOW)

Word2vec: Skip-grams

https://www.researchgate.net/figure/2D-PCA-projection-of-word-embeddings-Five-different-word-clusters-are-shown_fig2_332892222

SS 2022

Negative Sampling

	Input Words	Output words	Targets	Pick randomly from vocabulary	
	wide	the	1		Taco Mark Solar Earth System Data
	wide	mark	0	4	
	wide	data	0	 	
	wide	road	1		Key
Context C					•

Hierarchical Softmax

VL DL4NLP

Leibniz Gemeinschaft

Table

Word Embedding: Application

What you think, where we can used word embedding?

- Text classification
- Name entity recognition
- Machine translation
- Question answering
- Information retrieval

What are the limitation of word embedding

- Out-of-Vocabulary (OOV) Words
- Biased
- Limited Contextual Information

Exercise

- Implement the fasttext and word2vec idea of n-gram representations
- Compare the results
 - fasttext vs. Word2vec
 - do some analogy and visualization
 - compare the results with fine-tuned and pre-trained embedding

Pretrained Word Vectors vs. Newly Learned

- How about a compromise?
 - Load pretrained word vectors and then continue training with current data?
- Problem:
 - Words that occur in the training set move around in the embedding space;
 words that do not occur in the training set but maybe in the test set stay
 where they are.

Leibniz Leibniz Gemeinschaft

Literature

Evaluation methods for unsupervised word embeddings

SS 2022

- Linear Algebraic Structure of Word Senses, with Applications to Polysemy
- On the Dimensionality of Word Embedding
- Debiasing Word Embeddings
- Dynamic Word Embeddings

