Correctness Triples

- A correctness triple (a.k.a. "Hoare triple," after C.A.R. Hoare; or usually simplified to "triple"), written as $\{p\}$ S $\{q\}$ is a program S plus its specification predicates p and q.
 - o The **precondition** p (not " $\{p\}$ ") describes the collection of states that we want to execute S in.
 - o The **postcondition** q (not " $\{q\}$ ") describes the collection of states we expect S terminates in.
 - o Informally, a triple $\{p\}$ S $\{q\}$ means "if program S runs in a state that satisfies p, then we expect the execution of S terminates in some state (or states) satisfies q".

Here are some examples of correctness triples:

- o $\{x \le 2\} x := x + 3 \{x < 6\}$
- $0 \quad \{x \ge 0\} S \{y^2 \le x < (y+1)^2\}$

A tripe can "make no sense": the execution of S in a state satisfying p can never ends in some state satisfying q. So here, let us understand the satisfaction and validity of a triple.

(Satisfaction and Validity under Total Correctness)

- The triple $\{p\}$ S $\{q\}$ is **totally correct in** σ (or σ **satisfies the triple under total correctness**), written as $\sigma \vDash_{tot} \{p\}$ S $\{q\}$, if and only if it is the case that "**if** σ satisfies p, **then** the execution of S in σ always terminates (without error) in states satisfying q".
 - o In other words, $\sigma \vDash_{tot} \{p\} S \{q\} \Leftrightarrow (\sigma \neq \bot) \land ((\sigma \vDash p) \rightarrow (M(S, \sigma) \vDash q)).$

Without specification, while we analyze whether state σ satisfies triple $\{p\}$ S $\{q\}$, we always assume that $\sigma \neq \bot$.

- 1. True or False.
 - a. $\{x=-5\} \vDash_{tot} \{x>0\} \ x := x+1 \ \{x>0\}$ True. Since $\{x=-5\}$ doesn't satisfy the precondition x>0, so the triple satisfied.
 - b. $\{y=1\} \vDash_{tot} \{x>0\} \ x := x+1 \ \{x>0\}$ True. Since $\{y=1\}$ is not proper for the precondition x>0 so it cannot satisfy the precondition, so the triple satisfied.
 - c. $\{x=-1\} \vDash_{tot} \{x \le 0\} \ x := x+1 \ \{x \ge 0\}$ True. Since $\{x=-1\}$ satisfies the precondition $x \le 0$, so we need to execute x := x+1, and $M(x := x+1, \{x=-1\}) = \{\{x=0\}\}$, and it satisfies the postcondition $x \ge 0$.
 - d. $\{x=-5\} \vDash_{tot} \{x \le 0\} \ x := x+1 \ \{x \ge 0\}$ False. Since $\{x=-5\}$ satisfies the precondition $x \le 0$, so we need to execute x := x+1, and $M(x := x+1, \{x=-5\}) = \{\{x=-4\}\}$, and it doesn't satisfy the postcondition $x \ge 0$.
 - e. $\{x=0\} \vDash_{tot} \{x \le 0\} \ x := 1/x \ \{x \ge 0\}$ False. Since $\{x=0\}$ satisfies the precondition $x \le 0$, so we need to execute x := 1/x, and $M(x := 1/x, \{x=0\}) = \{\bot_e\}$, and it doesn't satisfy the postcondition $x \ge 0$.

- o From the above examples, we can see that " $\sigma \vDash_{tot} \{p\} S \{q\}$ " might not give us much information about executing S in σ . But on the other hand, " $\sigma \nvDash_{tot} \{p\} S \{q\}$ " shows that $\sigma \vDash p$ and the execution of S in σ doesn't end in states satisfying q.
- The triple $\{p\}$ S $\{q\}$ is **totally correct** (or the triple is **valid under total correctness**) if and only if $\sigma \vDash_{tot} \{p\}$ S $\{q\}$ for all $\sigma \in \Sigma$ (Recall that Σ is the set of well-formed states). We write $\vDash_{tot} \{p\}$ S $\{q\}$.
 - $\circ \models_{tot} \{p\} S \{q\} \text{ means } \forall \sigma. \sigma \vDash_{tot} \{p\} S \{q\}.$
 - $\not\models_{tot} \{p\} S \{q\}$ means the triple is invalid: $\exists \sigma. \sigma \not\models_{tot} \{p\} S \{q\}$.
- 2. True of False
 - a. $\vDash_{tot} \{x > 0\} x := x + 1 \{x > 0\}$ True $\vDash_{tot} \{x > 0\} x := x 1 \{x > 0\}$ False, we can find $\{x = 1\} \not\vDash \{x > 0\} x := x 1 \{x > 0\}$

(Satisfaction and Validity under Partial Correctness)

- The triple $\{p\}$ S $\{q\}$ is partially correct in σ (or σ satisfies the triple under partial correctness), written as $\sigma \models \{p\}$ S $\{q\}$, if and only if it is the case that "if σ satisfies p, then if the execution of S in σ can terminate without an error, it terminates in states satisfying q".
 - o In other words, $\sigma \vDash \{p\} S \{q\} \Leftrightarrow (\sigma \neq \bot) \land ((\sigma \vDash p) \rightarrow \forall \tau \in M(S, \sigma). \tau \neq \bot \rightarrow \tau \vDash q);$ or equivalently, $\sigma \vDash \{p\} S \{q\} \Leftrightarrow (\sigma \neq \bot) \land ((\sigma \vDash p) \rightarrow M(S, \sigma) \bot \vDash q).$
- The triple $\{p\}$ S $\{q\}$ is **partially correct** (or the triple is **valid under partial correctness**) if and only if $\sigma \models \{p\}$ S $\{q\}$ for all $\sigma \in \Sigma$. We write $\models \{p\}$ S $\{q\}$.
- 3. True or False.
 - a. $\{x = -5\} = \{x > 0\} x := x + 1 \{x > 0\}$ True.
 - b. $\{x = -1\} \models \{x \le 0\} \ x := x + 1 \ \{x \ge 0\}$ True.
 - c. $\{x = -5\} = \{x \le 0\} \ x := x + 1 \ \{x \ge 0\}$ False.
 - d. $\{x = 0\} \models \{x \le 0\} \ x := 1/x \ \{x \ge 0\}$

True. Since $\{x=0\}$ satisfies the precondition $x \le 0$, so we need to execute x := 1/x, and $M(x := 1/x, \{x=0\}) - \bot = \emptyset$, and it satisfies the postcondition $x \ge 0$.

- 4. If $\sigma \vDash p$ and $M(S, \sigma) = \{\bot\}$, then:
 - a. Does $\sigma \vDash_{tot} \{p\} S \{q\}$? No
 - b. Does $\sigma \models \{p\} S \{q\}$? Yes
- The difference between two correctness is whether we accept that executing S in σ ends with \bot . We can say: $\sigma \vDash_{tot} \{p\} S \{q\} \Leftrightarrow (\sigma \vDash \{p\} S \{q\}) \land \bot \notin M(S, \sigma).$
- 5. True or False:
 - a. $\models_{tot} \{F\} S \{q\}$ True, nothing can satisfy the precondition.
 - b. $\models_{tot} \{p\} S \{T\}$ False, it is not true for some $\sigma \models p$ such that $\bot \in M(S, \sigma)$
 - c. $\models \{F\} S \{q\}$ True, nothing can satisfy the precondition.
 - d. $\models \{p\} S \{T\}$ True, for any state $\sigma \models p$, $\forall \tau \in M(S, \sigma)$. $\tau = \bot \lor \tau \models T$
- 6. Let $W \equiv$ while $k \neq 0$ do $k \coloneqq k 1$ od. Decide true or false.
 - a. $\vDash_{tot} \{k \ge 0\} \ W \ \{k = 0\}$
- True.
- b. $\models_{tot} \{k = -1\} W \{k = 0\}$
- False. W will diverge in a state with k = -1.

c.
$$\models \{k = -1\} W \{k = 0\}$$

True.

d.
$$\models \{T\} W \{k = 0\}$$

True. If k < 0 then W diverges or else W ends with k = 0.

e.
$$\models_{tot} \{T\} W \{k = 0\}$$

False.

7. Finish the following semantic equalities (remind that, we assume that $\sigma \neq \bot$).

a.
$$\sigma \vDash_{tot} \{p\} S \{q\} \Leftrightarrow (\sigma \vDash p) \to (M(S, \sigma) \vDash q)$$

 $\Leftrightarrow (\sigma \nvDash p) \lor (M(S, \sigma) \vDash q)$
 $\Leftrightarrow (\sigma \nvDash p) \lor \forall \tau \in M(S, \sigma). \tau \vDash q$

b.
$$\sigma \vDash \{p\} S \{q\}$$
 $\Leftrightarrow (\sigma \vDash p) \to (M(S, \sigma) - \bot \vDash q)$
 $\Leftrightarrow (\sigma \not\vDash p) \lor (M(S, \sigma) - \bot \vDash q)$
 $\Leftrightarrow (\sigma \not\vDash p) \lor \forall \tau \in M(S, \sigma). \tau = \bot \lor \tau \vDash q$

c.
$$\sigma \not\models_{tot} \{p\} S \{q\} \Leftrightarrow (\sigma \vDash p) \land (M(S, \sigma) \not\vDash q)$$

 $\Leftrightarrow (\sigma \vDash p) \land \exists \tau \in M(S, \sigma). \tau = \bot \lor \tau \vDash \neg q$

d.
$$\sigma \not\models \{p\} S \{q\}$$
 $\Leftrightarrow (\sigma \models p) \land (M(S, \sigma) - \bot \not\models q)$
 $\Leftrightarrow (\sigma \models p) \land \exists \tau \in M(S, \sigma). \tau \neq \bot \land \tau \not\models q$

(Creating Valid Triples)

- When we have some valid triple(s) given to us, can we use them to create more valid triple(s)? The validity here can be under either correctness.
- 8. If we are given valid two triples, can we join them?
 - a. We have valid triples $\{x=k\}$ S_1 $\{x=m\}$, and $\{x=m\}$ S_2 $\{x=n\}$, what can be a postcondition for $\{x=k\}$ S_1 ; S_2 $\{q\}$?

It is quite easy to see that $\{x = k\}$ S_1 ; S_2 $\{x = n\}$ can be a valid triple.

- [Sequence Rule] If we have valid triples $\{p\}$ S_1 $\{q\}$ and $\{q\}$ S_2 $\{r\}$, then we have valid triple $\{p\}$ S_1 ; S_2 $\{r\}$.
 - b. What if we have triples $\{x = k\}$ S_1 $\{x \ge m\}$ and $\{x \ge m 1\}$ S_2 $\{x = n\}$, can we still combine these two triples into $\{x = k\}$ S_1 ; S_2 $\{x = n\}$?

Yes, since after executing S_1 we will end up some state(s) $\tau \models x \geq m$, so τ also satisfies the precondition of S_2 .

- [Extended Sequence Rule] If we have valid triples $\{p\}$ S_1 $\{q\}$ and $\{q'\}$ S_2 $\{r\}$, and $q \Rightarrow q'$, then we have valid triple $\{p\}$ S_1 ; S_2 $\{r\}$.
- 9. Let $\{x \ge 0\}$ S $\{y < 0\}$ be a valid triple.
 - a. Is $\{x \ge 5\}$ S $\{y < 0\}$ valid?

Yes. $x \ge 5$ is a subcollection of $x \ge 0$, if S works "well" on all states satisfying $x \ge 0$ then it also works well on a state satisfying $x \ge 5$.

- [Strengthening Precondition] Strengthening the precondition of valid triple doesn't affect its validity.
 - b. Is $\{x \ge -5\} S \{y < 0\}$ valid?

We cannot decide, since we don't know anything about the execution of S in a state σ with $-5 \le \sigma(x) < 0$. Weakening the precondition of a valid tripe can affect its validity.

c. Is $\{x \ge 0\} S \{y \le 0\}$ valid?

Yes. y < 0 is a subcollection of $y \le 0$, If S terminates in states satisfying y < 0 then those states also satisfying $y \le 0$.

- [Weakening Postcondition] Weakening the postcondition of valid triple doesn't affect its validity.
 - d. Is $\{x \ge 0\}$ $S\{y < -5\}$ valid?

We cannot decide, since we only know the execution of S terminate in states satisfying y < 0, but we don't know whether those states satisfy y < -5. Strengthening the postcondition of a valid tripe can affect its validity.

- e. Among $\{x \ge 0\}$ S $\{y < 0\}$, $\{x \ge 5\}$ S $\{y < 0\}$, and $\{x \ge 0\}$ S $\{y \le 0\}$, which valid triple gives us the most information?
 - Compare $\{x \ge 0\}$ S $\{y < 0\}$ and $\{x \ge 5\}$ S $\{y < 0\}$. The previous one tells us that S can work well whenever $x \ge 0$; the later says S can work well ONLY when $x \ge 5$. The previous one contains more information.
 - Compare $\{x \ge 0\}$ S $\{y < 0\}$ and $\{x \ge 0\}$ S $\{y \le 0\}$. The previous one tells us that S can provide us an outcome with y < 0; the later one says S can provide us a not-so-accurate outcome with y < 0 or y = 0. The previous one contains more information.
- In general, weakening the postcondition or strengthening the prediction makes a valid triple to *lose information* and become less useful. On the other hand, weakening the prediction or strengthening the postcondition might affect the validity of a triple. Thus, it is quite important to find *the weakest precondition* and/or *the strongest postcondition* (and maintaining the validity at the same time), to create the "good" triples.