Fundamentos de Sistemas de Operação

Gestão de Memória Caso de estudo: Linux x86 fork ()

Estruturas de suporte ao EE (1)

Estruturas de suporte ao EE (2)

Memory Management structure

 mm_struct, Descreve o EE do processo (lista de regiões de memória, endereço da directoria de páginas, PDBR, etc.); é apontada a partir do "PCB" que em Linux se chama task_struct

Memory region

 Descreve uma zona de memória de um dado tipo (text, data, .bss, etc.) e com uma dada dimensão. É criada alocando o nº suficiente de páginas logicamente contíguas. Contém a informação de protecção da zona. Contém a lista dos "métodos" (funções) a executar

Estruturas de suporte ao EE (2)

- Memory region: flags de protecção
 - vm READ Pages can be read
 - VM_WRITE Pages can be written
 - vm_exec Pages can be executed
 - VM_SHARED Pages can be shared by several processes
 - ... muitas mais...
- Ao alocar uma página,
 - As flags anteriores são usadas para fazer o setting das flags do PTE (R/W, U/S, ...)
- Função nopage
 - Executada num page fault quando tudo está ok

Page faults: visão simplificada

Quando há um PF...

Unix Windows NT Netware MacOS DOS/VS Vax/VMS
Linux Solaris HP/UX AIX Mach

Page faults: visão (mais) detalhada

Fork, COW e cloning...

Fork

- Novo EE criado para o filho, PT duplicada do pai, regiões de ambos marcadas VM_SHARED
- Nas regiões SHARED
 - Se um processo tenta aceder e fazer READ, ok
 - Se tenta fazer WRITE, mesmo que W seja permitido, pagefault
 - Se o processo é o único com a página em uso (o pai ou filho "foi-se embora"), pode escrever
 - Senão, a página é duplicada para outra frame e "metida" na PT do processo, dissociando-a do mapeamento original