О многомерной версии алгоритма Берлекэмпа—Месси

Пеленицын А. М. ulysses4ever@gmail.com

Кафедра алгебры и дискретной математики Факультет математики, механики и компьютерных наук Южный федеральный университет

16 октября 2009 г.

Содержание

- 🚺 Одномерный случай
 - Линейные рекуррентные последовательности
 - Задача
 - Алгоритм
- Многомерный случай
 - Последовательности и полиномы
 - Задача
 - Алгоритм
- Приложения

Определение линейной рекуррентной последовательности

(Одномерная) Последовательность: $u\colon \mathbb{N}_0 \to \mathbb{F}_{\tilde{q}}$ ($\mathbb{N}_0 = \{0,1,\ldots\}$). u — линейная рекуррентная последовательность (ЛРП), если существуют $\{a_i\}_{i=0}^{k-1}$, такие что:

$$u_{n+k} = \sum_{i=0}^{k-1} a_i u_{i+n}, \quad n \in \mathbb{N}_0.$$

Тогда

- k порядок ЛРП u,
- ullet $\{a_i\}_{i=0}^{k-1}$ закон рекурсии ЛРП u.

Всем известный пример:

$$f_{n+2} = f_n + f_{n+1}$$

3акон рекурсии: $a_0=1$, $a_1=1$, порядок — 2.

Описание класса ЛРП

Теорема

Класс ЛРП совпадает с классом периодических последовательностей.

Доказательство

- Пусть и периодическая. Существуют р и r, τ . ч. $u_{n+p}=u_n$, $n \geqslant r$. Значит и ЛРП с законом рекурсии $a_r=1$ и $a_i=0$, где $i \in [0,p-1]_{\mathbb{N}_0} \setminus \{r\}$, порядка p+r.
- ② Пусть и ЛРП порядка k с законом рекурсии $\{a_i\}$.
 - $\overline{u}_n = (u_n, u_{n+1}, \dots, u_{n+k-1})$ вектор n-го состояния, он вполне определяет всю последовательность; в частности, если $\overline{u}_i = \overline{u}_j$, то $\overline{u}_{i+1} = \overline{u}_{j+1}$.
 - В последовательности $\bar{u}_0, \bar{u}_1, \dots$ лишь конечное число различных элементов, потому она периодическая.

Значит, и и периодическая.

Минимальный многочлен I

Для ЛРП u существует более одного закона рекурсии. Есть ли между ними связь? — $\frac{1}{2}$ Да, её можно описать в алгебраических терминах.

Пусть $\{a_i\}_{i=0}^{k-1}$ — закон рекурсии u. Назовём характеристическим многочленом u нормированный многочлен:

$$f(x) = x^k - \sum_{i=0}^{k-1} a_i x^i.$$

Теорема

Пусть и — ЛРП, тогда существует единственный нормированный многочлен m(x), такой что любой характеристический многочлен f(x) ЛРП и делится на m(x).

Следствие

Множество характеристических многочленов ЛРП и составляет все нормированные многочлены идеала (m(x)).

Минимальный многочлен II

Степень m(x) называется линейной сложностью ЛРП u. Как найти m(x)?

От теории к практике

На практике нет возможности работать с бесконечными последовательностями.

На практике задача такова: для данных $\{u_i\}_{i=0}^m$ найти f(x) минимальной степени (обозначим её k), такой что

$$\sum_{i=0}^{k} f_i u_{i+n-k} = 0, \quad n \in [k, m]_{\mathbb{N}_0}.$$
 (1)

$$(f(x) = \sum_{i=0}^{k} f_i x^i)$$

Похоже на СЛАУ?

Решение этой задачи — f(x) — это минимальный полином ЛРП u, первые m членов которой совпадают с заданными $\{u_i\}_{i=0}^m$. Закон рекурсии u: $\{-\frac{f_i}{f_k}\}_{i=0}^{k-1}$.

Удобные обозначения

Для f(x) степени k, последовательности u и $n\geqslant k$ введём обозначение:

$$f[u]_n \stackrel{\text{def}}{=} \sum_{i=0}^k f_i u_{i+n-k} \quad (\in \mathbb{F}_{\tilde{q}}).$$

На практике задача такова: для данных $\{u_i\}_{i=0}^m$ найти f(x) минимальной степени (обозначим её k), такой что

$$f[u]_n = 0, \quad n \in [k, m]_{\mathbb{N}_0}.$$

Индукция

Будем рассуждать индуктивно.

Пусть f(x) — полином минимальной степени (обозначим её k), такой что

$$f[u]_n = 0, \quad k \leqslant n \leqslant p.$$

Как получить полином минимальной степени f'(x) (обозначим её k'), такой что

$$f'[u]_n = 0, \quad k' \leqslant n \leqslant p+1?$$

- $f[u]_{p+1} = 0$ нам повезло: $f'(x) \stackrel{\text{def}}{=} f(x)$.
- ② $f[u]_{p+1} \neq 0$ придётся потрудиться.

Степень f'(x)

$\overline{\mathsf{Л}}$ емма (о нижней границе для степени f'(x))

Для степени k' полинома f'(x) выполнено:

$$k' \geqslant p - k + 1$$
.

Следствие

Для степени k' полинома f'(x) выполнено

$$k' \geqslant \max(p-k+1,k).$$

Следствие

Если будет найден h(x), такой что

- **1** $h[u]_n = 0, \quad n \leq p+1,$

το $f'(x) \stackrel{\text{def}}{=} h(x)$.

«Формула Берлекэмпа»

позволяет построить h(x), такой что

- **1** $h[u]_n = 0, \quad n \leq p+1,$

на основе имеющегося f(x) и некоторого полинома g(x).

То есть

$$h(x) = h(f,g),$$

 $f'(x) \stackrel{\text{def}}{=} h(x).$

Индукция

Уточним и завершим шаг индукции.

Пусть f(x) — полином минимальной степени, такой что

$$f[u]_n = 0, \quad n \leqslant p,$$

и g(x) подходящий для формулы Берлекэмпа полином.

Как получить f'(x), g'(x), такие что...?

Возможные варианты:

- \bullet $f[u]_{p+1}=0$ тогда $f'(x)\stackrel{\mathsf{def}}{=} f(x),\ g'(x)\stackrel{\mathsf{def}}{=} g(x).$
- ② $f[u]_{p+1} \neq 0$ тогда f'(x) = h(f,g), и если k' = k, то $g'(x) \stackrel{\mathsf{def}}{=} g(x)$, иначе $g'(x) \stackrel{\mathsf{def}}{=} f(x)$.

«Формула Берлекэмпа»

$$h(f,g) = x^{r-s}f(x) - \frac{d_p}{d_q}x^{r-p+q-t}g(x).$$

Обозначения. $s,t,p,q,r\in\mathbb{N}_0$, $d_p,d_q\in\mathbb{F}_{\widetilde{q}}$.

- $s = \deg f$, $t = \deg g$;
- ullet p текущий шаг, q таков, что $\forall m < q \colon g[u]_m = 0$ и $g[u]_q
 eq 0$;
- $d_p = f[u]_p$, $d_q = g[u]_q$;

База индукции

Инициализация: f=1. $h_0 = x^{p+1} - \frac{u_{p+1}}{u_p}$, если p < m, $h_0 = x^{m+1}$ иначе.

Основные определения

- ullet *п*-мерная последовательность $u\colon u\colon \mathbb{N}_0^n o \mathbb{F}_{ ilde{q}}$.
- ullet Если $oldsymbol{m} \in \mathbb{N}_0^n$, то $x^{oldsymbol{m}} = x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n}$.
- Полином f(x) от n переменных: $f(x) = \sum_{i \in \Gamma_f} f_i x^i$. Конечное множество $\Gamma_f(\subset \mathbb{N}_0^n)$ «носитель» $f.\ f_i \in \mathbb{F}_{\tilde{q}}$.

Степень f(x)?

Библиография

- [Blahut86] *Блейхут Р.* Теория и практика кодов, контролирующих ошибки: Пер. с англ. / М.: Мир, 1986.
- [LN88] $\it Лидл P., Нидеррайтер Г. Конечные поля: В 2-х т. / М.: Мир, 1988. 822 стр.$
- [KKMN94] V. L. Kurakin, A. S. Kuzmin, A. V. Mikhalev, A. A. Nechaev. Linear recurring sequences over rings and modules. // I. of Math. Science. Contemporary Math. and it's Appl. Thematic surveys, vol. 10, 1994.
- [Sakata88] Sakata S. Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array // J. Symb. Comp. 1988. Vol. 5. Pp. 321–337.
- [Sakata09] Sakata S. The BMS Algorithm // Chapter in Gröbner Bases, Coding, and Cryptography, Springer, 2009.
- [CLO'S00] Кокс Д., Литтл Дж., О'Ши Д. Идеалы, многообразия и алгоритмы. Введение в вычислительные аспекты алгебраической геометрии и коммутативной алгебры. / М.: Мир, 2000.