UNIVERSITÀ DEGLI STUDI DI CAMERINO SCUOLA DI SCIENZE E TECNOLOGIE Corso di Laurea in Computer Science (Classe L-31)

Reti HTM per il riconoscimento di pattern

Simone Morettini
Matricola 095131

Relatore **Prof. Marco Piangerelli**

Reti HTM per il riconoscimento di pattern

L'obiettivo di questa tesi è quello di analizzare una tecnica di machine learning ispirata dalla neocorteccia, le HTM, hierarchical temporal memory. Per valutarne l'efficacia sono state sviluppate diverse applicazioni.

Teoria delle reti HTM

Teoria delle reti HTM

La Hierarchical Temporal Memory contiene nel nome le sue principali caratteristiche:

- **Memoria**: è una memoria in cui le informazioni vengono memorizzate in base alla formazioni di connessioni tra dei neuroni;
- **Temporale**: apprende pattern temporali e sequenze di dati;
- **Gerarchica**: ha una struttura gerarchica in cui i livelli superiori imparano le caratteristiche dei livelli sottostanti.

Struttura a più livelli

ARCHITETTURE PIÙ COMPLESSE

Unendo più HTM si possono costruire architetture che si sviluppano su più colonne e su più strati permettendo di risolvere problemi complessi e elaborati che una semplice HTM non sarebbe in grado di affrontare.

Applicazioni realizzate

Rilevazione di anomalie

Una rete HTM è stata utilizzata per rilevare anomalie su due flussi di dati: il primo ottenuto registrando gli ingressi in un edificio dell'University of California, il secondo registrando il flusso di traffico su una strada di Los Angeles.

Numero totale di eventi predetti	Modello MMPP	Modello Threshold	Rete HTM	Rete HTM+388 elementi	
104	100,00%	86,20%	100,00%	100,00%	
70	96,60%	96,60% 75,90% 96,30%			
48	79,30%	65,60%	88,88%	86,20%	
Numero totale di eventi predetti per raggiungere il 100% di accuratezza			80	85	

Numero totale di eventi predetti	Modello MMPP	Modello Threshold	Rete HTM	Rete HTM con intervalli di 30 minuti	Rete HTM con intervalli di 30 minuti+388 elementi
203	100,00%	86,80%	81,57%	78,87%	78,94%
186	100,00%	81,29%	80,26%	78,87%	78,94%
134	100,00%	72,40%	75,00%	77,46%	75,00%
98	98,70%	60,50%	55,26%	71,83%	65,78%

Predizioni di consumi energetici

Utilizzando dei dati riguardo i consumi elettrici di 15 persone si è calcolata la predizione ad uno e ad cinque istanti nel futuro di tali serie temporali.

cliente	5	6	7	8	9	11	13	14	16	17	21	23	28	29	33
mape	0,17	0,12	0,21	0,09	0,16	0,12	0,12	0,1	0,12	0,08	0,13	0,14	0,11	0,08	0,09
nrmse	0,59	0,5	0,14	0,51	0,42	0,47	0,32	0,36	0,44	0,42	0,62	0,56	0,47	0,3	0,39

Predizioni di attacchi epilettici

Utilizzando degli elettroencefalogrammi (EEG) prodotti nel Boston Children's Hospital-MIT (CHB-MIT) si sono usate delle reti HTM per la predizione di attacchi epilettici.

Gli attacchi correttamente predetti sono stati 7 mentre le predizioni errate sono state 55.

Conclusioni

Conclusioni

- La rete HTM è risultata molto buona nella rilevazione delle anomalie nei casi riportati e nella predizione di valori di una serie temporale.
- Nella predizione di attacchi epilettici si sono ottenuti risultati non ottimi. Si potrebbe migliorare utilizzando una struttura a più strati che dovrebbe dare soluzioni migliori consentendo l'apprendimento dei complessi pattern presenti negli EEG.
- Le reti HTM sono molto utili per elaborare dati temporali di diverse tipologie, sono in grado di adattarsi ai cambiamenti dei dati in input e non hanno bisogno di una fase di training come avviene solitamente per le altre architetture di questo genere.

Ringraziamenti