QUESITI DI TEORIA

- A. Dimostrare che il campo elettrico è conservativo
- Scrivere l'espressione della Forza a cui è soggetta una particella carica in presenza di un campo elettrico e di un campo magnetico tra loro ortogonali.
 (NB Mostrare il disegno con vettori.)
- C. Ricavare l'espressione dell'energia intrinseca della corrente in un circuito
- A. IL campo elettrico è conservativo perchè in un circuito chiuso il lavoro è nullo

B. La forza a cui è soggetta la particella è la forza di lorentz:

FLORENTE =
$$F_E$$
 + F_G

$$= q = + q \times g$$

$$= q = -1 + q \times g$$

$$= q = -1$$

Considerare i seguenti sistemi:

- a) un guscio cilindrico indefinito di raggi R2=0.9cm, R3=1cm sulla cui superficie <u>esterna</u> è stata depositata una densità di carica <u>negativa</u> λ=-10⁻¹⁰ C/m
- b) un guscio sferico di raggi R2=0.9cm, R3=1cm sulla cui superficie <u>esterna</u> è stata depositata una densità di carica <u>positiva</u> σ=10⁻¹⁰ C/m²
- 1. Per entrambi i sistemi, si mostri l'applicazione del teorema di Gauss:
 - disegnare le superfici gaussiane e spiegare la scelta
 - ricavare il campo elettrico E (MODULO DIREZIONE VERSO!!!) tracciando il grafico E(r)
 - disegnare le linee di campo
 - disegnare, in modo schematico, le superfici equipotenziali.

Sistema a

$$R_{1} = 9 \cdot 10^{-3} \text{ m}$$

$$R_{2} = 10^{-2} \text{ m}$$

$$\lambda = -10^{-10} \text{ m}$$

$$Q = \lambda \cdot 2\pi R_{3}$$

$$= -6.3 \cdot 10^{-12} \text{ C} (Q=1)$$

Siccome si ha una simmetria cilindrica, come superfici gaussiane scelgo dei cilindri di raggio r. Su queste superfici il campo è costante e quindi si può tirare fuori dall'integrale

$$\begin{cases}
E(r)dr = \frac{Qint}{Eo} \\
E(r)
\end{cases}$$

$$\begin{cases}
dr = \frac{Qint}{Eo}
\end{cases}$$

$$E(r) 2\pi r = \frac{Q_{int}}{E_0}$$

$$E(r) = \frac{Q_{int}}{2\pi \epsilon_0 r}$$

$$Q_{int} = \begin{cases} 0 & \text{se } r < R_3 \\ Q & \text{se } r \ge R_3 \end{cases} \Rightarrow E(r) = \begin{cases} 0 & \text{se } r < R_3 \\ \frac{Q}{2\pi \epsilon_0 r} & \text{se } r \ge R_3 \end{cases}$$

Le superfici equipotenziali sono quelle superfici su cui il potenziale è costante e di conseguenza anche su cui il campo è costante. Queste superfici sono cilindri di raggio r:

Sistemo. 6

In una simmetria sferica le superfici gaussiane sono gusci sferici di raggio r. Siccome il campo è radiale sarà costante su queste superifci.

$$E(r) \oint dr = \frac{Q_{int}}{\varepsilon_0}$$

$$Q: MT = \begin{cases} 0 & \text{se } v \leq R3 \\ Q & \text{se } v \geq R3 \end{cases}$$
 \rightarrow $E(v) = \begin{cases} 0 & \text{se } v \leq R3 \\ \hline Q & \text{se } v \geq R3 \end{cases}$ $\begin{bmatrix} Y \\ R \end{bmatrix}$

Le superfici equipotenziali sono gusci sferici di raggio r

Si consideri il solo sistema B), nel vuoto.

All'interno del guscio viene depositata una sfera di raggio R1=0.1cm su cui è depositata una quantità di carica <u>uguale</u> alla carica presente nella superficie R3.

- 2. descrivere il sistema all'equilibrio e calcolare la nuova distribuzione di carica
- 3. disegnare le linee di campo

$$R_{1} = 10^{-3} \text{ m}$$

$$Q_{R_{1}} = 5 \cdot 47 R_{1}^{2}$$

$$= 1.2 \cdot 10^{-15} C$$

$$Q_{R_{3}} = 1.2 \cdot 10^{-13} C$$

All'interno si forma una carica indotta sulla superficie R_2 che forma un campo. All'esterno la carica che era presente prima Q_R3 si somma con la nuova carica indotta Q_R1 formando Q_est

La sfera esterna viene scaricata a terra:

4. calcolare l'energia U del sistema

Le cariche all'esterno si distribuiscono a terra, quindi sulla sfera non rimangono cariche e il campo esterno diventa nullo. All'interno il sistema rimane invariato perchè la superficie esterna agisce da gabbia di Faraday

5. calcolare le cariche di Polarizzazione

$$\begin{array}{c}
\nabla_{\text{BIR}} = E(R_1) & K-1 \\
= \frac{Q_{R1}}{4\pi\epsilon_0 R_1^2} & K
\end{array}$$

$$= 5.6$$

ESERCIZIO DI MAGNETOSTATICA

Un cavo conduttore di raggio R₁=5mm è percorso da una corrente elettrica stazionaria i=10mA parallela all'asse e distribuita uniformemente sulla superficie.

- 1. Si mostri l'applicazione del teorema di Ampere:
 - disegnare le linee amperiane e spiegare la scelta
 - ricavare il campo magnetico B (MODULO DIREZIONE VERSO!!!) tracciando il grafico B(r)
 - disegnare le linee di campo

Per calcolare il campo magnetico bisogna scegliere dei circuiti, chiamati linee amperiane, su cui il campo magnetico e costante in modo da poterlo tirare fuori dall'integrale. In questo caso siccome si ha una simmetria cilindrica le linee amperiane sono cerchi di raggio r

Siccome la corrente è distribuita sulla superficie, all'interno del cilindro non ci sarà corrente

$$B(r) = \begin{cases} 0 & \text{se reR1} \\ \frac{M_0 i}{2\pi r} & \text{se r} \neq R_1 \end{cases} [T]$$

A distanza d=5m dall'asse del conduttore viene posto, parallelo ad esso, un filo percorso dalla stessa corrente 1.

2. Calcolare la forza F agente sul filo (MODULO DIREZIONE VERSO!!!)

$$\vec{F} = idQ \times \vec{B}$$

$$= i \cdot B(d)$$

$$= Moi^{2}$$

$$= 2\pi d$$

$$= 4 \cdot 10^{-12} \text{ N}$$

Questa è la legge di Laplace che descrive la forza applicata su un filo percorso da corrente in un campo magnetico

INDUZIONE ELETTROMAGNETICA / CORRENTI

Un circuito a U vincolato nel piano XY e formato da due binari paralleli ad X distanti a=1cm, ha una parte mobile libera di scorrere senza attrito, in direzione x. Nello spazio è presente un campo magnetico stazionario e uniforme B=0.5T in direzione normale al circuito. Il tratto mobile viene tenuto in moto con velocità $v_0=0.5ms^{-1}$ lungo x costante.

 $0 = 10^{-2} \text{ m}$ 0 = 0.5 T 0 = 0.5 M

Si trascuri ogni fenomeno di autoinduzione.

1- Spiegare brevemente che cosa significa "trascurare l'autoinduzione".

Trascurare l'autoinduzione significa ignorare il flusso generato dal campo magnetico del circuito su sè stesso. L'autoflusso genera un'induttanza sul circuito e quindi trascurando l'autoinduzione si trascura l'autoflusso.

Il circuito viene chiuso con 3 resistenze in serie di R1=5 $k\Omega$, R2=2 $k\Omega$ i, R3=2 $k\Omega$

- 2- Disegnare lo schema del circuito
- 3- Calcolare la corrente indotta nella barretta ind
- 4- Calcolare il bilancio energetico nei diversi elementi del sistema

 $R_{1} = 5.10^{3} \Omega$ $R_{2} = 2.10^{3} \Omega$ $R_{3} = 2.10^{3} \Omega$

Lo schema del circuito è il seguente:

$$R_3$$
 MM
 E_1

=
$$\left[-\frac{Bo \times (t)}{at}\right]$$

= $\left[-\frac{Bo \times (t)}{at}\right]$
= $\left[-\frac{Bo \times (t)}{at}\right]$

$$\frac{2}{1 - \frac{2}{R_{TOT}}} \rightarrow R_{TOT} - R_{1} + R_{2} + R_{3} = 9.40^{3} - \Omega$$

$$\frac{2}{1 - \frac{2}{R_{TOT}}} = \frac{2.8.40^{-7}}{1 - \frac{2}{R_{TOT}}} =$$

5- Impostare le <u>leggi di Kirchhoff</u> per il circuito in figura

6- Disegnare lo schema del circuito di carica di un condensatore. Scrivere la legge di Ohm e l'espressione dell'andamento della corrente.

Legge d: Ohm $& V_R + V_C = R + \frac{Q}{C}$ $-\frac{1}{RC}t$ $i(t) = i_0 (1-e)$

