Bargaining with Mechanisms

Marcin Pęski

University of Toronto

April 27, 2021

Alternating-offer bargaining over heterogeneous pie,

- one-sided incomplete information about preferences,
- mechanisms as offers.

- Mechanisms as offers:
 - menus,
 - menus of menus,
 - "I divide and you choose" vs "you divide and I choose",
 - arbitration and general mechanisms,
 - negotiations to create or alter the bargaining protocol.

Literature

- Complete information about preferences:
 - axiomatic: Nash (50, 53)
 - alternating-offer Rubinstein (82)
 - reputational: Myerson (91), Kambe (99), Abreu and Gul (00), Compte and Jehiel (02), Fanning (16)
 - all solutions the same -> Nash program success!
- Incomplete information:
 - axiomatic (mechanisms): Harsanyi and Selten (72), Myerson (84)
 - Coasian-bargaining with menus (2 types only): Wang (98),
 Strulovici (17)
 - alternating-offer with menus (2 types only + refinements): Sen (00), Inderst (03)
 - common knowledge of surplus: Jackson et al (20).
- Dynamic mechanism design without commitment: Skreta (06), Liu et al (19), Doval, Skreta (18).
- Dynamic informed principal?

- ▶ Main result: When N = 2, there are unique $\delta 1$ limit PBE payoffs: Bob chooses optimal screening menu s.t. each Alice type receives complete info. payoff.
 - no refinements needed,
 - incentive- (i..e, ex ante) efficient, but not ex post efficient
 - constrained commitment solution, non-Coasian result,
 - a reputational model leads to a different result
 - equilibrium bounds when $N \ge 3$.
- Role of mechanisms:
 - menus help with screening and signaling,
 - menus of menus help with belief punishment,
 - no other mechanisms needed.

Plan

- 1. Introduction
- 2. Model
- 3. Complete information
- 4. Main result
- 5. Proof
- 6. Comments: single offers, $N \ge 3$, belief-seller environment, renegotiation.

Environment

- Alice (informed) and Bob (uninformed).
- ▶ Pie $X = \{(x_{A,c}, x_{A,s}, x_{B,c}, x_{B,s}) : \sum_{i} x_{i,n} \le 1 \text{ for each } n\}$.
- ▶ Linear preferences $\mathcal{U} := \{(u_c, u_s) : u_n \ge 0, \sum u_n = 1\}$
 - ▶ linear utilities $u \in \mathcal{U}$ from $x \in X$: $u(x) = \sum_{n} u_i x_{i,n}$,
 - ▶ Bob's preferences v,
 - **Bob**'s beliefs $\mu \in \Delta \mathcal{U}$ about Alice's preferences u.
- ▶ Discounting $\delta < 1$.
- Alternating-offer bargaining with mechanisms as offers.

Mechanisms as offers

- Each offer is a mechanism: a finite-horizon extensive-form game.

 - ightharpoonup allocation: $\chi:\prod_{i,t}S_{i,t}\to X$,
 - ► $T < \infty$ and S_i^t compact.
- Examples: single-offers, menu, menu of menus
- $ightharpoonup \mathcal{M}$ "compact" space of all available mechanisms
 - main result hold as long as M contains menus and menus of menus.

Equilibrium

- Perfect Bayesian Equilibrium,
 - existence is an issue.
- (Payoff) outcomes:

$$e_B \in [0,1], e_A : \mathcal{U} \to [0,1].$$

▶ Limit set of equilibrium outcomes $E^{j}(\delta, \mu)$:

$$E^{j}\left(\mu\right) = \lim_{\delta \to 1} E^{j}\left(\delta, \mu\right)$$

Commitment

- ► Coasian bargaining and dynamic mechanism design without commitment: Doval, Skreta (18), Liu et al (19)
- As in that literature,
 - players cannot unilaterally commit to future offers,
 - players are committed to an offer for the period in which the offer is made.
- But, we allow for mechanisms, which offered and accepted bilaterally, may commit players to an ex post inefficient allocation.
- ▶ Would allowing renegotiation change anything? -> later.

- \triangleright Complete information bargaining: Alice u, and Bob v (fixed).
- ightharpoonup Assume $v_c > v_s$,
 - Bob likes chocolate more than he likes strawberry.
- As $\delta \to 1$, Alice's payoffs converge to the Nash solution: $(\mathcal{N}_A(u), \mathcal{N}_B(u))$.

Nash allocations I

Nash allocations:

▶ p if $u_c > v_c$, i.e., if Alice likes chocolate more than Bob.

Nash allocations II

Nash allocations:

- ightharpoonup p if $u_c > v_c$,
- $ightharpoonup \overline{pq}$ if $u_c = v_c$

Nash allocations III

Nash allocations:

- ightharpoonup p if $u_c > v_c$,
- $ightharpoonup \overline{pq}$ if $u_c = v_c$,
- ► r if $\frac{1}{2} < u_c < v_c$,

Nash allocations IV

Nash allocations:

- ightharpoonup p if $u_c > v_c$,
- $ightharpoonup \overline{pq}$ if $u_c = v_c$,
- ► $r ext{ if } \frac{1}{2} < u_c < v_c$,
- ► s if $u_c < \frac{1}{2}$ (i.e., Alice likes strawberry more)

► Alice's Nash payoffs:

Incentive problem I

Incentive problem.

Incentive problem II

Incentive problem.

Incentive problem III

Incentive problem.

• types $u_c < v_c$ prefer to report $u'_c \approx v_c$

Coasian menu

- ▶ If we ignore incentive problem, Alice chooses either p or q
- ▶ Coasian menu $\{p, q\}$.
- A companion paper studies the same environment,
 - bargaining with reputational types like in Abreu-Gul (00) and Kambe (98)
 - Coasian menu is the unique equilibium outcome.

Nash menu

If we want to ensure that each type of Alice receives her complete information payoff, we can offer Nash menu $\left\{s, \left(\frac{1}{2}, \frac{1}{2}\right), p\right\}$.

▶ Alice's menu: $Y \subseteq X$

- ightharpoonup Alice's menu: $Y \subseteq X$
- ► Alice's type *u* payoff:

$$y(u;Y) = \max_{x \in Y} u(x)$$

.

- ▶ Alice's menu: $Y \subseteq X$
- ► Alice's type *u* payoff:

$$y\left(u;\,Y\right)=\max_{x\in Y}u\left(x\right)$$

Bob's expected payoff:

$$\Pi(\mu; Y) = \int \max_{x \in \operatorname{arg} \max_{x' \in Y} u(x')} v(x) d\mu(u).$$

Theorem

Suppose ${\cal M}$ contains all menus and menus of menus. In the limit $\delta \to 1$, the payoffs are as if Bob offered

$$Y^*(\mu) \in \arg\max_{Y\supseteq\mathcal{N}} \Pi(\mu; Y)$$

i.e. optimal (for him) screening menu Y subject to Alice receiving at least her complete information payoff.

Proof

Complete information

- ► Suppose that Alice's type *u* is known.
- Let $\Pi(y) = \max_{x:u(x) \ge y} v(x)$ be Bob's payoff.
- Let y be the highest payoff. It is too high if there exists $y' \ge \delta y$ such that $\delta \Pi(y') > \Pi(y)$:
 - ightharpoonup such y' is a profitable deviation for Bob.
- ► The highest payoff cannot be too high. Similarly for the lowest payoff.
- ightharpoonup Properties of Π mean that the two payoffs must be the same.

Proof Menus

- **Revelation principle**: For each equilibrium, there is a menu-belief pair (Y, μ) such that in equilibrium
 - each Alice's type u receives y(u; Y),
 - ▶ Bob receives $\leq \Pi(\mu; Y)$.
- ▶ We can assume that Y is the largest possible among all menus that satisfy the above conditions.

Proof Menus

- ▶ Menu-belief pair (Y, μ) is dominated by (Y', μ') if
 - ▶ $supp \mu' \subseteq supp \mu$, and
 - ▶ $y(u, Y') \ge y(u, Y)$ for each $u \in \text{supp}\mu'$.
- There "exists" undominated equilibrium menu-belief pair.
- ▶ The undominated pair is alternative to "the highest payoff".

Proof Upper bound

Menu Y is too high for Alice if

Proof Upper bound

Menu Y is too high for Alice if there exists $Y' \supset \delta Y$ s.t..

Proof Upper bound

Menu Y is too high for Alice if there exists $Y' \supset \delta Y$ s.t. $\delta \Pi(Y', \mu) > \Pi(Y, \mu)$.

- Menu Y is too high for Alice if there exists $Y' \supset \delta Y$ s.t. $\delta \Pi(Y', \mu) > \Pi(Y, \mu)$.
- Any Y that is strictly higher than Nash menu is too high.

Proof Upper bound

- Menu Y is too high for Alice if there exists $Y' \supset \delta Y$ s.t. $\delta \Pi(Y', \mu) > \Pi(Y, \mu)$.
- Any Y that is strictly higher than Nash menu is too high.
- But, undominated eq. menu-belief pair cannot be too high:
 - otherwise Y" is a profitable deviation for Bob,
 - that is accepted by all Alice's types.

Proof Upper bound

- ▶ Hence no equilibrium payoff can be uniformly higher than Nash payoffs \mathcal{N}_A on the support of beliefs.
- If so, any menu with payoffs strictly above Nash must be accepted,
 - ▶ if not, some of the rejecting types must expect Nash continuation, which is not profitable for them.
- But then, Bob's payoff cannot be lower than

$$\max_{Y\supseteq \mathsf{Nash\ menu}}\Pi\left(\mu;Y\right).$$

Proof

Lower bound

- If Alice's payoffs are too low, then Alice should have a profitable deviation:
 - a problem: find a deviation that is attractive for Bob with arbitrary beliefs,
 - solution: menu of menus

$$W(u, y_u) = \{Y \subseteq X : y(u; Y) \ge y_u\}.$$

Alice says: "I am type u and want payoff y_u , however you want to to give it to me."

Proof

Lower bound

Payoff y_u is too low for type u if for any menu Y such that $y_u \ge y(u; Y)$, any beliefs ψ , there exists menu Y' such that

$$\delta y\left(u;Y'\right)>y \text{ and } \Pi\left(\psi,Y'\right)>\delta\Pi\left(\psi;Y\right).$$

- ▶ We show that
 - $ightharpoonup y < \frac{1}{2}$ is too low for any type u,
 - $ightharpoonup y < ar{1}$ is too low for the type who only likes strawberries
 - $ightharpoonup y < \frac{1}{2v_c}$ is too low for the type who only likes chocolate.
- Any equilibrium menu must contain Nash menu.

Proof Role of menus

- Menus help with screening and signaling problems,
- menus of menus help and responding to belief threats.
- Definitions of "too high" and "too low" and the "inductive" steps likely generalize to other environments.
 The geometry of what is "too high" or "too low" does not.

- 1. Single offers
- 2. N > 2
- 3. Buyer-seller case
- 4. Renegotiation

Single offer

- The ability to offer mechanisms is important for the uniqueness.
- Assume that only single offers are allowed.
- Continuum of equilibria due to signaling issues and punishment with beliefs.

Single offer

- Anti-Coasian equilibrium.
 - punishment of deviations with "bad" beliefs.
- This equilibrium does not survive if Alice can make menus of menus.

N > 2

- Suppose N = 3 (chocolate, strawberry, vanilla).
- $V = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}).$
- \triangleright \mathcal{N}_A is not a menu (it is not convex).

 \triangleright \mathcal{N}_A is not a menu (it is not convex).

► There is an equilibrium st.

$$\begin{split} & e_A\left(\frac{1}{2},\frac{1}{2},0\right) \\ & \leq \left(\text{Vex}\mathcal{N}^A\right)\left(\frac{1}{2},\frac{1}{2},0\right) \end{split}$$

punishment with beliefs

Buyer-seller environment

- ▶ Good with quality $q \in [0, 1]$,
- ▶ seller's preferences cq + t, where c > 0,
- ▶ single buyer with utility uq t, where u is unknown by the seller,
- "gap" case: $u \ge u_0 > c$,
- ▶ Allocation $(q, t) \in [0, 1] \times \mathbb{R}$.
- Nash menu:

$$\left\{ \left(\frac{1}{2}, \frac{1}{2}c\right) \right\}.$$

Buyer-seller environment

▶ Identical solution.

Theorem

Suppose ${\cal M}$ contains all menus and menus of menus. In the limit $\delta \to 1$, the payoffs are as if Bob offered

$$Y^{*}\left(\mu\right)\in\arg\max_{Y\supseteq\mathcal{N}}\Pi\left(\mu;Y\right).$$

Buyer-seller environment

Theorem

Optimal menu:

$$Y^*(\mu) = \left\{ \left(\frac{1}{2}, \frac{1}{2}c\right), \left(1, \frac{1}{2}c + \frac{1}{2}p^*\right) \right\},$$

where p^* is the price chosen by the single-price discriminating monopolist.

Optimal menu is a random dictatorship between optimal IR mechanisms for buyer and seller.

Renegotiation

- Suppose that both Alice and Bob need both to agree to come back to the negotiation table (i.e., before further offers are made):
 - after an agreement is reached, one of them may ask: can we renegotiate
 - if the other agrees, the agreement is torn apart, and the game is restarted,
 - otherwise, finish.
- Renegotiation leads to the possibility that menus are not dominant-solvable any more.

Renegotiation

In the limit $\delta \to 1$ of equilibria of the bargaining game with renegotiation, Bob's payoffs is not smaller than

$$\max_{Y \supseteq \mathsf{Nash\ menu}} \Pi(\mu; Y).$$

▶ The lower bound on Bob's payoffs remains the same.

Conclusion

- A model of bargaining with incomplete information about preferences and mechanisms as offers
- Main result: unique and continuous equilibrium outcome
 - role of mechanisms in bargaining
 - but not clear what to do about about Nash program,
 - also, a companion paper: reputational types lead to a different result.
- Proof of a concept that bargaining with mechanisms is possible and useful,
 - other environments, two-sided incomplete information