Computer Organization and Architecture

1 Introduction

Tongwei Ren

Sep. 3, 2018

Computer is Everywhere

Change or not?

Review: What is Computer?

Review: What is Computer?

- 计算机是指 "通用电子数字计算机 (general-purpose electronic digital computer)"
 - 通用: 不是一种专用设备
 - 所有计算机在给予足够时间和容量存储器的条件下,都可以完成同样的计算
 - 当希望完成新的计算时,不需要对计算机重新设计
 - 电子(非机械): 采用电子元器件
 - 数字(非模拟):信息采用数字化的形式表示
- 计算机系统
 - 硬件: 处理器、存储器、外部设备
 - 软件:程序,文档

Architecture and Organization

- Architecture (visible to programmer)
 - Its attributes have a direct impact on the logical execution of a program
 - Instruction set, the number of bits to represent data types, ...
 - E.g.: Is there a multiply instruction?
- Organization (opaque/encapsulated to programmer)
 - The operational units and their interconnections
 - Control signals, memory technology, ...
 - E.g.: Implement multiply by a hardware unit or repeated addition?

A Brief History of Computers

- First generation: Vacuum tubes (1946-1957)
 - ENIAC (1946-1955): decimal, manually programming

A Brief History of Computers

- First generation: Vacuum tubes (1946-1957)
 - IAS (1946-1952*): binary, stored program

Review: von Neumann Machine

Review: von Neumann Machine

• 组成部分

• 存储器: 地址和存储的内容

• 处理单元: 执行信息的实际处理

• 控制单元: 指挥信息的处理

• 输入设备:将信息送入计算机中

• 输出设备: 将处理结果以某种形式显示在计算机外

A Brief History of Computers

- First generation: Vacuum tubes (1946-1957)
 - IAS (1946-1952*): the von Neumann machine
 - Idea: main memory stores programs and data
 - Prototype of all subsequent computers
 - Central Arithmetical (CA)
 - Central Control (CC)
 - Memory (M)
 - Input (I) / Output (O)

- Second generation: Transistors (1958-1964)
 - NCR and RCA, IBM 7000: transistors are smaller, cheaper, and dissipate less heat; they also can be used as same as vacuum tubes
 - Introduction of more complex arithmetic and logic units and control units, the use of high-level programming languages and the provision of system software.

- Third to *N* generation: Integrated circuits (1965-now)
 - Idea:
 - fabricate an entire circuit in a piece of silicon rather than assemble discrete components made from separate pieces of silicon
 - These transistors can be connected with a process of metallization to for circuits
 - Scale:
 - small → large → very large → ultra large ...

- Moore's law (Gordon Moore, 1965)
 - The number of transistors that could be put on a single chip is doubling every year (1965-1969) / 18 months (1970-now)
 - Consequence
 - The cost of computer logic and memory circuitry has dramatically fallen for the cost of a single chip is unchanged
 - Smaller size leads to flexibility and probability
 - Increased operating speed for shortened electrical path length
 - Reduction in dependency on power and cooling
 - The interconnections on the integrated circuit are more reliable than solder connections and few interchip connections

Constant function

Performance improvements

Generation	Approximate Dates	Technology	Typical Speed (operations per second)
1	1946–1957	Vacuum tube	40,000
2	1958–1964	Transistor	200,000
3	1965–1971	Small and medium scale integration	1,000,000
4	1972–1977	Large scale integration	10,000,000
5	1978–1991	Very large scale integration	100,000,000
6	1991–	Ultra large scale integration	1,000,000,000

Computer Performance

- One of key parameters of computer
 - Performance, cost, size, security, reliability, power consumption, ...
- Sample performance evaluation criteria
 - CPU: speed
 - Memory: capacity, speed
 - I/O: speed, capacity

The main goal / driver is the increase of CPU speed

CPU Performance

- System clock
 - Clock rate / clock speed (HZ): fundamental rate in cycles per second at which a computer performs its most basic operations
 - Clock cycle / clock tick: a single electronic pulse of a CPU
 - Cycle time (s): the time between pulses
 - Sometimes "clock cycle"

CPU Performance (cont.)

- Instruction execution
 - A processor is driven by a clock with a constant frequency f or, equivalently, a constant cycle time t.
 - Let CPI_i be the number of cycles required for instruction type i, and I_i be the number of executed instructions of type i for a given program.
 - The overall can be calculated as follows:

$$CPI = \frac{\sum_{i=1}^{n} (CPI_i \times I_i)}{I_c}, \ I_c = \sum_{i=1}^{n} I_i$$

Process time to execute a given program:

$$T = I_c \times CPI \times t$$
$$T = I_c \times [p + (m \times k)] \times t$$

Transfer data between processor and memory

CPU Performance (cont.)

Million Instructions Per Second (MIPS)

$$MIPS = \frac{I_c}{T \times 10^6} = \frac{f}{CPI \times 10^6}$$

Million Floating Point Operations Per Second (MFLOPS)

$$MFLOPS = \frac{N_{floating-point\ op}}{T \times 10^6}$$

CPU Performance (cont.)

- Benchmarks
 - Measure the performance of systems using a set of benchmark programs
 - Averaging results:
 - Arithmetic mean: $R_A = \frac{1}{m} \sum_{i=1}^{m} R_i$
 - Harmonic mean: $R_H = \frac{m}{\sum_{i=1}^{m} \frac{1}{R_i}}$

Summary

- Concepts
 - organization, architecture
- Computer history
 - The von Neumann machine, Moore's law
- Possible computer operations
- Computer performance
 - CPU performance evaluation

Thank You

rentw@nju.edu.en

