Generative Models

Dr. Kamal Mammadov

Part One: Generative Adversarial Networks

Overview

- GAN was first introduced by Ian Goodfellow et al in 2014
- Mainly be applied to generate images and videos
- Works well in continuous domain, but less well in discrete domains such as NLP

Our Result

Goal of GAN

Density Estimation

• Fit Pr(Synthetic samples) = Pr(Random Variables) using finite Observations

Main Approach real or fake? **Discriminative Generator Real Samples** Model

Main Approach

• Given a dataset $D = \{\mathbf{x}_i \mid i = 1, \dots n\}$, where each x_i are independently sampled from an unknown distribution $p_d(\mathbf{x})$.

- Optimizing over discriminator
- $l_D(\Phi) = E_{z \sim p_D(x), z \sim p(z)} [-lnd(\mathbf{x}|\Phi) ln(1 d(g(\mathbf{z}|\Theta)|\Phi))].$
- Optimizing over generator
- $l_G(\Theta) = E_{z \sim p(z)}[ln(1 d(g(\mathbf{z}|\Theta)|\Phi))].$

Theoretic Results and Practical difficulties

 Under certain assumptions, if the previous procedure achieves Nash equilibrium, the distribution formed by the generator is exactly the same as data distribution.

• The vanilla GAN, however, is hard to train, and has problem of diverging, model collapse, etc.

DCGAN

DCGAN (Deep Convolutional GAN)

 Generates near real images with low resolutions

 Several tricks are used to stabilize the training of GAN

 https://github.com/carpedm20/ DCGAN-tensorflow

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

Ting-Chun Wang¹ Ming-Yu Liu¹ Jun-Yan Zhu² Andrew Tao¹ Jan Kautz¹ Bryan Catanzaro¹

¹NVIDIA Corporation ²UC Berkeley

Figure 3: Network architecture of our generator. We first train a residual network G_1 on lower resolution images. Then, another residual network G_2 is appended to G_1 and the two networks are trained jointly on high resolution images. Specifically, the input to the residual blocks in G_2 is the element-wise sum of the feature map from G_2 and the last feature map from G_1 .

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros
UC Berkeley

In ICCV 2017

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros UC Berkeley

In ICCV 2017

GAN for Deblur (Deblur-GAN)

https://github.com/RaphaelMeudec/deblur-gan

GAN for Super-Resolution (SRGAN)

Part Two: Variational Auto Encoders

Overivew of Auto Encoder

- Encoder: $z = f(x; \phi)$
- **Decoder** : $\hat{x} = g(z; \theta)$
- Loss Function : $l = |x g(f(x; \phi); \theta)|$,

Overview of Variational Auto Encoders

Basic Notations

• Let $\{x \mid x \in X\}$ be a dataset with empirical distribution $q_D(x)$, the Variational Auto Encoder (VAE) is a generative model aimed at learning joint distribution

- $p_{\theta}(x,z) = p_{\theta}(x|z)p_{\theta}(z)$,
- where $p_{\theta}(z)$ is a prior distribution, and the encoder $q_{\phi}(z|x)$ are used to approximate the true but intractable posterior $p_{\theta}(z|x)$.

The Evidence Lower Bound

$$\log p_{\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}) \right]$$

$$= \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{p_{\theta}(\mathbf{z}|\mathbf{x})} \right] \right]$$

$$= \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})} \right] \right]$$

$$= \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right] \right] + \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \left[\frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})} \right] \right]$$

$$= \mathcal{L}_{\theta, \phi}(\mathbf{x}) = D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x}))$$
(ELBO)

Reparameterisation Trick

• Framework of the Reparameterization Trick. Source: Kingma, Diederik P., and Max Welling. "An introduction to variational autoencoders." Foundations and Trends® in Machine Learning 12.4 (2019): 307-392.

Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

Jaehyeon Kim ¹ Jungil Kong ¹ Juhee Son ¹²

Figure 1. System diagram depicting (a) training procedure and (b) inference procedure. The proposed model can be viewed as a conditional VAE; a posterior encoder, decoder, and conditional prior (green blocks: a normalizing flow, linear projection layer, and text encoder) with a flow-based stochastic duration predictor.

AVAE: Adversarial Variational Auto Encoder*

Plumerault, Antoine^{1,2}, Le Borgne, Hervé¹, and Hudelot, Céline²

¹ Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France, Email: {antoine.plumerault,herve.le-borgne}@cea.fr

 $^2MICS,\ Centrale-Supelec,\ Gif-sur-Yvette,\ France\ ,\ Email:\ celine.hudelot@centralesupelec.fr$

AVAE: Adversarial Variational Auto Encoder*

Plumerault, Antoine^{1,2}, Le Borgne, Hervé¹, and Hudelot, Céline²

 $^1 \textit{Universit\'e Paris-Saclay, CEA, List, F-91120, Palaiseau, France, Email:} \\ \{antoine.plumerault, herve.le-borgne\} @cea.fr \\ ^2 \textit{MICS, Centrale-Supelec, Gif-sur-Yvette, France, Email: celine.hudelot@centralesupelec.fr} \\$

		Bedroom	CelebA	CIFAR10	CIFAR100	SVHN
	MSE	0.06 ± 0.00	0.03 ± 0.00	0.05 ± 0.00	0.05 ± 0.00	0.02 ± 0.00
VAE	LPIPS	0.58 ± 0.00	0.18 ± 0.00	0.26 ± 0.00	0.25 ± 0.00	0.08 ± 0.00
	FID	229.75 ± 1.45	60.04 ± 0.47	136.75 ± 0.57	129.71 ± 1.01	68.16 ± 2.10
GAN	FID	110.59 ± 19.55	14.54 ± 0.41	32.01 ± 0.41	34.51 ± 0.59	23.83 ± 3.99
	MSE	0.18 ± 0.01	0.07 ± 0.00	0.14 ± 0.02	0.15 ± 0.02	0.06 ± 0.02
VAE/GAN	LPIPS	0.26 ± 0.01	0.09 ± 0.00	0.08 ± 0.01	0.08 ± 0.01	0.08 ± 0.02
	FID	60.02 ± 2.36	26.45 ± 4.66	39.04 ± 2.42	40.03 ± 0.71	17.02 ± 2.58
	MSE	0.42 ± 0.05	0.18 ± 0.01	0.31 ± 0.02	0.33 ± 0.01	0.12 ± 0.01
BIGAN	LPIPS	0.44 ± 0.02	0.16 ± 0.00	0.14 ± 0.00	0.16 ± 0.00	0.12 ± 0.01
	FID	91.72 ± 18.10	18.49 ± 5.06	34.61 ± 1.29	35.40 ± 1.23	27.77 ± 2.96
Ours with ξ	MSE	0.12 ± 0.00	0.05 ± 0.00	0.09 ± 0.00	0.09 ± 0.00	0.04 ± 0.00
WITH $\mathcal{L}^a_\mathcal{Z}$	LPIPS	0.36 ± 0.00	0.11 ± 0.00	0.10 ± 0.00	0.11 ± 0.00	0.10 ± 0.00
	FID	85.11 ± 2.87	16.99 ± 0.58	33.65 ± 0.28	39.81 ± 0.60	27.64 ± 2.41
Ours without ξ	MSE	0.12 ± 0.00	0.05 ± 0.00	0.09 ± 0.00	0.09 ± 0.00	0.04 ± 0.00
WITH $\mathcal{L}^a_\mathcal{Z}$	LPIPS	0.35 ± 0.00	0.11 ± 0.00	0.10 ± 0.00	0.11 ± 0.00	0.09 ± 0.00
	FID	84.29 ± 5.28	16.23 ± 0.50	33.49 ± 0.50	38.69 ± 0.62	28.47 ± 8.24
Ours without ξ	MSE	0.12 ± 0.00	0.05 ± 0.00	0.09 ± 0.00	0.09 ± 0.00	0.04 ± 0.00
WITH $\mathcal{L}_{\mathcal{Z}}^{b}$	LPIPS	0.35 ± 0.00	0.11 ± 0.00	0.10 ± 0.00	0.11 ± 0.00	0.08 ± 0.00
	FID	80.99 ± 1.82	15.01 ± 0.82	33.67 ± 0.61	38.35 ± 0.57	21.11 ± 0.42

Table 1: Reconstruction errors (MSE and LPIPS [31]) and FID [10] of generated images for different models. Lower values are better for all metrics. Reported results are the average and standard deviation over five runs.