Robotics

Estimation and Learning with Dan Lee

Week 3. Robotic Mapping

3.1 Introduction to Mapping

Map and Mapping

- Map is a spatial model of a robot's environment.
- Mapping is a process for building a map.
- Consideration for mapping
 - Map representation
 - Available sensors
 - Purpose of mapping

Types of Map

- Metric Map
- Topological Map
- Semantic Map

Types of Map (1) – Metric map

Types of Map (1) – Metric map

A location is represented as a coordinate.

Types of Map (2) – Topological map

Part of SEPTA Train Map

Types of Map (2) – Topological map

Part of SEPTA Train Map

Locations are represented as nodes and their connectivity as arcs.

Types of Map (2) – Topological map

Only the connectivity between nodes matter.

Types of Map (2) — Topological map

Graph representation is useful for path planning.

Types of Map (3) – Semantic map

Part of UPenn Campus Building Map

Semantic map is a map with labels.

Types of Map

- Metric Map
- Topological Map
- Semantic Map

Mapping

- What make it challenging?
 - Noisy measurement in local coordinate
 - Motion involved
 - Change over time

Acknowledgement

• Thanks to Rei Suzuki, Dan Lee's master student at the University of Pennsylvania, for helping us create the lectures for WEEK 3.