Nearest Neighbor Methods Generalities 1nn, no noise 1nn under Noise Regression Classification

Stat 205: Introduction to Nonparametric Statistics

Lecture 10: Nearest Neighbors (Theory)

Instructor David Donoho; TA: Yu Wang

Nearest Neighbor Methods

Generalities

1nn, no noise 1nn under Nois

Regression Classification

knn

k-nn Setting

- ▶ Data $Y = (y_i)_{i=1}^n$; "response", "target"
 - \triangleright Regression: y_i continuous response variable
 - Classification: y_i categorical [eg binary] response variable, $\{1, \ldots, C\}$
- ▶ Data $X = (x_i)_{i=1}^n$; $x_i \in \mathbf{R}^p$; predictors.
- Examples
 - Credit card fraud:
 - ▶ $y_i \in \{0,1\}$ 1=legit/0=fraud
 - $x_i = (x_{i,1}, x_{i,2})$ eg
 - $x_{i,1} = \#\{\text{previous dollars spent at similar merchant}\}$
 - $x_{i,2} = \#\{\text{previous dollar purchases of similar item }\}$
 - Reservoir Permeability [Example 4.6 in Wasserman]
 - v_i rock permeability
 - \triangleright $x_{i,1}$ area of pore spaces
 - \triangleright $x_{i,2}$ perimeter of pore spaces

Generative model

$$y_i \sim p(y|x_i), \qquad i=1,\ldots,n.$$

- Regression: $y = \mu(x) + z$; E(z|x) = 0; for example $z \sim N(0,1)$.
- ▶ Classification: p(y|x) a discrete probability on $\{1, ..., C\}$.
- ▶ Performance: aka "Risk". Two standard options
 - ▶ Regression: $PMSE(m,x) = \mathbb{E}\left[(y-m(x))^2|y \sim p(y|x)\right].$
 - ► Classification: $PErr(m, x) = Pr(y \neq m(x)|y \sim p(y|x))$.
- Optimality:
 - ▶ Regression: $\mu(x|Y) = \mathbb{E}[y|x]$.
 - ► Classification: $\gamma(x|Y) = \operatorname{argmax}_c \Pr(y = c|x)$.

Nearest Neighbor

Generalities

1nn, no noise 1nn under Nois

Regression

KIIII

k-Nearest-neighbor Procedure

- b d(x, x') 'distance' between p-dimensional feature vectors
- Tuning Parameter: k number of neighbors
- For given x, $N_k(x)$ is the set of k-nearest neighbors

$$N_k(x) = \{i : d(x_i, x) \text{ is among the } k \text{ smallest distances } d(x_j, x)\}$$

(assume no ties, or if ties break randomly)

▶ k-nn Estimator [regression]

$$\hat{\mu}^{knn}(x) = Ave\{y_i | x_i \in N_k(x)\}.$$

k-nn Estimator [classification]

$$\hat{\gamma}^{knn}(x) = \operatorname{argmax}_c \{ y_i = c | x_i \in N_k(x) \}.$$

- ▶ Heuristic: find some nearby examples, summarize them, decide
- Humans use this principle. (Robert Cialdini, Influence)

Nearest Neighbor

Generalities

1nn, no noise

Inn under r

Regression

Classificatio

knn

Theory in noiseless special case, 1

Simplest case (no noise):

- k = 1 nearest neighbor
- N(x) = N(x; X) index of 1-nearest neighbor of x within X
- \triangleright $x', x_1, \ldots, x_n \sim_{iid} F$.
- Regression $y_i = \mu(x_i)$ Error:

$$\mu(x) - y_{N(x)} = \mu(x) - \mu(x_{N(x)})$$

Risk

$$PMSE = \mathbb{E}\left[\left(\mu(x') - \mu(x_{N(x')})\right)^2\right]$$

Classification y_i = γ(x_i) Error:

$$\{\gamma(x') \neq y_{N(x')}\} = \{\gamma(x) \neq \gamma(x_{N(x)})\}\$$

Risk

$$PErr = Pr \left(\gamma(x') \neq \gamma(x_{N(x')}) \right)$$

Nearest Neighbor Methods

Inn, no noise

Regression Classification

Theory in noiseless special case, 2

When does Risk \rightarrow 0 as $n \rightarrow \infty$?

Needed Fact (next slide) Nearest Neighbor distance: X⁽ⁿ⁾ dataset with n observations, F has no discrete components.

$$d(x', x_{N(x';X_n)}) \to 0, \qquad n \to \infty; \qquad x \in Support(F).$$

 $\mathcal{X}_{\mu} = \{ \text{ continuity points } \} \text{ of } \mu \text{ [resp.,} \gamma]$

$$\mu(x') \to \mu(x), \quad \text{resp } \gamma(x') \to \gamma(x) \qquad d(x',x) \to 0.$$

- Consequences of Continuity:
 - ► Regression:

$$PMSE(\hat{\mu}_{n}^{1nn}(x)|x) \rightarrow 0, \quad x \in \mathcal{X}_{\mu}.$$

Classification:

$$PErr(\hat{\gamma}_{n}^{1nn}(x)|x) \to 0, \quad x \in \mathcal{X}_{u}.$$

▶ Suppose that for $x' \sim F$, $P(x' \in \mathcal{X}_{\mu}) = 1$ (piecewise continuity in probability) $\mathbb{E}\left[\mu^2(x')\right] < \infty$ (finite prediction variance)

$$\begin{array}{lcl} \textit{PMSE}_n & = & \mathbb{E}\left[\textit{PMSE}(\hat{\mu}_n^{1nn}(x')|x')\right] \rightarrow 0. \\ \\ \textit{PErr}_n & = & \mathbb{E}\left[\textit{PErr}(\hat{\gamma}_n^{1nn}(x')|x')\right] \rightarrow 0. \end{array}$$

- Heuristics:
 - knn regression works well if $\mu(\cdot)$ piecewise continuous.
 - knn classifier works well if $\mu(\cdot)$ piecewise continuous.

1nn no noise

Theory in noiseless special case, 3

Needed Fact: When does nearest neighbor converge?

- Nearest Neighbor distance: X⁽ⁿ⁾ dataset with:
 - n observations, x_i ∼_{iid} F, i = 1,..., n
 - Fix δ > 0: let x ~ F and define

$$p(\delta|x') \equiv P(d(x',x) \leq \delta)$$

Theorem. Suppose $p(\delta|x') > 0$ whenever $\delta > 0$; then

$$d(x', x_{N(x';X_n)}) \to 0, \qquad n \to \infty;$$

- Proof.
 - Fix δ > 0

$$\{d(x',x_{N(x';X_n)}) > \delta\} = \cap_{i=1}^n \{d(x',x_i) > \delta\}$$

Independence allows product rule:

$$P\{d(x', x_{N(x';X_n)}) > \delta\} = [P\{d(x', x_i) > \delta\}]^n$$

▶ Denote $\varepsilon = P(d(x', x) < \delta) > 0$

$$[P\{d(x', x_i) > \delta\}]^n = [1 - \epsilon]^n = \exp(n\log(1 - \epsilon)) \to 0.$$

- Meaning.
 - NN converges within support of F
 - Don't expect NN to converge outside support i.e. don't extrapolate.
 - Support $X_F \equiv \{x' : p(\delta|x') > 0\}$
 - Example: $x \sim F \equiv N(\mu, \Sigma)$ on \mathbb{R}^p :

$$p(\delta|x') \sim f(x')\delta^p \text{ as}\delta \to 0.$$

Support = $X_E = \mathbb{R}^p$ = 'everything'.

Theory in noiseless special case, 4

Nearest Neighbor Methods

1nn, no noise 1nn under No

Regression Classification knn 1NN Noiseless Regression Theorem. Suppose RV $x' \sim F$,

Continuity points of μ(x):

$$\mathcal{X}_{\mu} = \{x : \mu(x) = \lim_{x' \to x} \mu(x')\}$$

Piecewise continuity in probability:

$$P(x' \in \mathcal{X}_{\mu}) = 1$$

Finite variance of predictor:

$$\mathbb{E}\left[\mu^2(x')\right]<\infty.$$

$$\textit{PMSE}_n \quad = \quad \mathbb{E}\left[\textit{PMSE}(\hat{\mu}_n^{1nn}(x')|x')\right] \rightarrow 0.$$

knn regression works well if $\mu(\cdot)$ piecewise continuous.

Theory in noiseless special case, 5

Nearest Neighbor Methods

1nn, no noise 1nn under No

1nn under Noi Regression Classification knn Continuity points of $\gamma(x)$:

$$\mathcal{X}_{\gamma} = \{x : \gamma(x) = \lim_{x' \to x} \gamma(x')\}$$

1NN Noiseless Classification Theorem.

Suppose

- ightharpoonup RV $x' \sim F$,
- Piecewise continuity in probability:

$$P(x' \in \mathcal{X}_{\gamma}) = 1$$

Then

$$\begin{array}{lcl} \textit{PErr}_n & = & \mathbb{E}\left[\textit{PErr}(\hat{\gamma}_n^{1nn}(x')|x')\right] \\ & = & \Pr\left(y_{N(x')} \neq y_{x'}\right) \\ & = & \Pr\left(\gamma(x_{N(x')}) \neq \gamma(x')\right) \\ & \rightarrow & 0. \end{array}$$

knn classifier works well if $c(\cdot)$ piecewise continuous.

Continuity points of μ :

$$\mathcal{X}_{\mu} = \{x : \mu(x) = \lim_{x' \to x} \mu(x')\}$$

1NN Noisy Regression Theorem. Suppose

- ▶ RV x' ~ F
- Piecewise continuity in probability:

$$P(x' \in \mathcal{X}_{\mu}) = 1$$

Then, as $n \to \infty$,

$$\begin{array}{lcl} \mathit{PMSE}_n^{1nn} & = & \mathbb{E}\left[\mathit{PMSE}(\hat{\mu}_n^{1nn}(x')|x')\right] \\ \\ & = & \mathbb{E}\left[\left(y' \neq \mathit{y}_{N(x')}\right)^2\right] \\ \\ & \to & 2 \cdot \mathit{OMSE}. \end{array}$$

here OMSE denotes the best achievable MSE, using $\mu(x')$.

knn regression within factor 2 of optimal if $\mu(\cdot)$ piecewise continuous

Nearest Neighbor

Generalities

1nn, no noise

1nn under Noise

Regression Classificatio

1nn regression noisy case, 2

Regression $y_i = \mu(x_i) + z_i$; $x', x_1, \dots, x_n \sim_{iid} F z', z_i \sim_{iid} N(0, \sigma^2)$ (say)

Figure 3:

$$y' - \hat{\mu}^{1nn}(x') = [\mu(x') + z'] - [\mu(x_{N(x')}) - z_{N(x')}]$$

Risk

$$PMSE_{noise}^{1nn} = \mathbb{E}\left[\left([\mu(x') + z' - [\mu(x_{N(x')}] + z_{N(x')}]^2\right)\right]$$
$$= \mathbb{E}\left[\left([\mu(x') - \mu(x_{N(x')})] - [z' + z_{N(x')}]\right)^2\right]$$

 $ightharpoonup z', (z_i)$ are independent of $\{x', (x_i)\}$, so for any function $b(x', (x_i))$,

$$\mathbb{E}\left[\left(b(x',(x_i))-\left[z'+z_{N(x')}\right]\right)^2\right]=\mathbb{E}\left[b(x',(x_i))^2\right]+\mathbb{E}\left[\left[z'+z_{N(x')}\right]^2\right]$$

b By independence of z', (z_i) from each other and from $\{x', (x_i)\}$,

$$\mathbb{E}\left[\left[z'+z_{N(x')}\right]^2\right]=2\sigma^2.$$

• Set $b(x', x) = \mu(x') - \mu(x_{N(x')})$.

$$\begin{split} \textit{PMSE}^{1nn}_{\textit{noise},n} &= & \mathbb{E}\left[b^2\right] + 2\sigma^2 \\ &= & \mathbb{E}\left[\left(\mu(x') - \mu(x_{\textit{N}(x')})\right)^2\right] + 2\sigma^2 \\ &= & \textit{PMSE}^{1nn}_{\textit{nonoise},n} + 2\sigma^2. \end{split}$$

Hence, by Noiseless 1nn Theorem (above)

$$PMSE_{noise\ n}^{1nn}(x') \to 2\sigma^2, \quad n \to \infty.$$

Optimal Risk: $OMSE_{noise} = \mathbb{E}\left[\left(\mu(x') - y'\right)\right]^2 = \sigma^2$

$$PMSE_{poiso}^{1nn} p(x') \rightarrow 2 \cdot OMSE_{poiso}, \quad n \rightarrow \infty.$$

1nn classification Noisy Case, 1

Nearest Neighbor Methods

Inn, no noise
Inn under Noise

Classification

Conditional PMF

$$q_X(c) = \Pr(y = c|x), \quad \forall c$$

Continuity of conditional PMF:

$$q_X(c) = \lim_{x' \to x} q_{x'}(c), \quad \forall c$$

Continuity points of q_x:

$$X_q = \{x : q_x = \lim_{x' \to x} q_{x'}\}$$

1NN Noisy Classification Theorem. Suppose

- ightharpoonup RV $x' \sim F$,
- Piecewise continuity in probability:

$$P(x' \in X_q) = 1$$

Then, for each $\varepsilon > 0$, as $n \to \infty$,

$$\begin{aligned} \textit{PErr}_n &= & \mathbb{E}\left[\textit{PErr}(\hat{\gamma}_n^{1,nn}(x')|x')\right] \\ &= & \text{Pr}\left(y' \neq y_{N(x')}\right) \\ &\leq & 2 \cdot \textit{OErr} + \varepsilon. \end{aligned}$$

knn classifier works well if $c(\cdot)$ piecewise continuous.

```
Stat 205
Lecture 10
```

Nearest Neighbor

Neighbor Methods

Generalities

Romrossin

Classification

1nn classification noisy case, 2

► Classification $y_i \sim P(y|x_i)$; $x', x_1, \ldots, x_n \sim_{iid} F$

$$\begin{aligned} \textit{PErr}_{\textit{noise}}^{\textit{1nn}} &= & \text{Pr}\left(y' \neq \hat{\gamma}^{\textit{1nn}}(x')\right) \\ &= & 1 - \text{Pr}\left(y' = \hat{\gamma}^{\textit{1nn}}(x')\right) \\ &= & 1 - \text{Pr}\left(y' = y_{\textit{N}(x')}\right). \end{aligned}$$

- Random PMFs $y'|x' \sim q'$; $y_{N(x';X_n)}|x_{N(x';X_n)} \sim q_n$.
- **b** By independence of y', x' from each other and from $\{(y_i), (x_i)\}$,

$$\Pr\left(y'=y_{N(x')}\right)=\sum_{c}q'(c)q_{n}(c).$$

▶ Continuity : $\mathbb{E}[\|q_n - q\|_1] \to 0$ as $n \to \infty$.

$$PErr_{noise,n}^{1nn} = 1 - \sum_{c} q'(c)q_{n}(c)$$

$$\rightarrow 1 - \sum_{c} (q'(c))^{2}$$

$$= \Pr(y' \neq y'').$$

where v'' is iid v'|x'.

where y is iid y' | x'
Optimal Risk:

$$OErr_{noise} = \min_{c} Pr(y' \neq c)$$
.

Needed Fact (below)

$$\Pr\left(y'\neq y''\right) \leq 2 \min_{c} \Pr\left(y'\neq c\right).$$

$$PErr_{noise\ n}^{1nn}(x') \le 2 \cdot OErr_{noise} + \varepsilon, \quad n \to \infty \quad \forall \ \varepsilon > 0.$$

Nearest Neighbor

Generalit

1nn, no noise 1nn under Nois

Classification

knn

Needed Fact

Lemma. Let y', y'' be iid q'.

$$\Pr\left(y'\neq y''\right)\leq 2\min_{c}\Pr\left(y'\neq c\right).$$

Proof. Indeed, let $y' \sim q'$ and set $\gamma = \operatorname{argmax}_c q'(c)$ (suppose unique); also

$$\alpha \equiv q'(\gamma) = \mathit{max}_{\mathit{c}} q'(c).$$

SO

$$1 - \alpha = \min_{c} \Pr(y' \neq c) = \varepsilon, \text{ (say)}.$$

Now since $\sum_{c} q'(c)^2 \ge q'(\gamma)^2 \equiv \alpha^2$,

$$\Pr\left(y' \neq y''\right) = 1 - \sum_{c} q'(c)^2 \le 1 - \alpha^2$$

and

$$1-\alpha^2=(1-(1-\varepsilon)^2)=2\varepsilon-\varepsilon^2\leq 2\varepsilon=2\cdot \min_c \operatorname{Pr}\left(y'\neq c\right).$$

Nearest
Neighbor
Methods
Generalities
Inn, no noise
Inn under Noise
Regression
Classification
knn

What happens for larger k?

 \triangleright Regression: under similar asssumptions, as k increases

$$PMSE_n^{knn} \rightarrow OMSE + \delta_k$$

where $\delta_k \to 0$ as $k \to \infty$.

ightharpoonup Classification: under similar asssumptions, as k increases

$$PErr_n^{knn} \rightarrow OErr + \delta_k$$

where $\delta_k \to 0$ as $k \to \infty$.

Generally speaking there is an optimal $k_n(\{(x_i, y_i)\})$ We can use LOOCV