Exercice 1.

1. Conjecturer la parité de la fonction *g* représentée ci-contre.

2. Conjecturer la parité de la fonction f représentée ci-contre.

Résoudre graphiquement dans ${\mathbb R}$ Exercice 2. les inéquations suivantes.

(A) :
$$x^2 > 3$$

(B):
$$\frac{1}{n} < 2$$

(A) :
$$x^2 > 3$$
 (B) : $\frac{1}{x} < 2$ (C) : $\sqrt{x} \le 2$ (D) : $x^2 \le 2$ (E) : $\sqrt{x} > 5$ (F) : $\frac{1}{x} > \frac{1}{3}$

(D):
$$x^2 < 2$$

(E) :
$$\sqrt{x} > 5$$

(F):
$$\frac{1}{x} > \frac{1}{3}$$

Exercice 3. Parmi les fonctions suivantes, lesquelles sont des fonctions affines

a)
$$f: x \mapsto -2x + 8$$

b)
$$g: x \mapsto 2x^2 - 4x + 1$$

a)
$$f: x \mapsto -2x + 8$$

b) $g: x \mapsto 2x^2$
c) $h: x \mapsto -3 + \frac{1}{x}$
d) $i: x \mapsto \frac{2x + 8}{4}$

d)
$$i: x \mapsto \frac{2x+8}{4}$$

Exercice 4.

a) Indiquer, si possible, à quelle fonction ou famille de fonctions ces courbes vous font penser.

b) Indiquer pour chaque fonction, sa parité.

Exercice 5. Montrer que si a et b sont des réels strictement positifs, $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$.

Exercice 6. On considère les courbes C_1 , C_2 et C_3 d'équations respectives y = x; $y = x^2$; $y = x^3$. Le but de cet exercice est de montrer la propriété suivante:

- Si $x \in [0; 1]$, alors C_1 est située au-dessus de C_2 qui est elle-même située au-dessus de C_3
- Si $x \in]1; +\infty[$, alors C_3 est située au-dessus de C_2 qui est elle-même située au-dessus de C_1 . 1.
- a) Factoriser $x^2 x$.
- b) Étudier le signe de $x^2 x$.
- c) En déduire les solutions de $x^2 \ge x$ pour $x \ge 0$.
- 2. Résoudre de la même façon $x^3 \ge x^2$ pour $x \ge$
- 3. Conclure.