Chapter2

31202008881

Bao Ze an

today

2.1

What we know is the linear system must obey the superposition property.

The input-output description in Fig2.1(a) is :y = a * u.

Here a is a constant .It is eay to find the system(a) is a linear system.

The input-output decription in Fig2.1(b) is:y = a * u + b.

Here a and b are all constants. That if y whether the system has the property of additivity Let:

$$y_1 = a * u_1 + b.$$

$$y_2 = a * u_2 + b.$$

then:

$$(y_1 + y_2) = a * (u_1 + u_2) + 2 * b$$

so it does not satisfy the property of additivity.therefore, it is a nonlinear system.

It is obviously the system in the Fig2.1(c) is a nonliear system.

When system(b) introduce $y - y_0$ as the new output, system(c) can be the linear system.

section*2.2 Because g(t) is not zero, when $t \leq 0$, so the ideal lowpass filter is not causual and the ideal filter can't build in the real world.

section*2.3 It is easy to find the system is a linear system.

Testify whether the system is time-invariable:

Defining the initial time of input t_0 , system input is $u(t), t \ge t_0$, so it decides the output $y(t), t \ge t_0$

$$y(t) = \begin{cases} u(t), & for \quad t_0 \le t \le \alpha \\ 0, & for \quad t \ge \alpha. \end{cases}$$
 (1)