Continuité - Corrigé

Exercice 1 (Continue ou pas?)

(a) f est clairement continue sur \mathbb{R}^* (quotient de fonctions usuelles).

En 0, on a $\lim_{x\to 0^+} f(x) = 1 = f(0)$ mais $\lim_{x\to 0^-} f(x) = -1 \neq f(1)$. f n'est donc pas continue en 0. Conclusion : f est continue sur \mathbb{R}^* .

(b) f est clairement continue sur \mathbb{R}^* (quotient de fonctions usuelles).

En 0, on a $\lim_{x\to 0} \frac{\sin(x)}{x} = 1 = f(0)$ (limite usuelle). Ainsi f est continue en 0. Conclusion: f est continue sur \mathbb{R} .

(c) Puisque la fonction partie entière est continue sur $\mathbb{R} \setminus \mathbb{Z}$, f est continue sur $\mathbb{R} \setminus \mathbb{Z}$ comme différence de fonctions continues. Etudions la continuité en un point $k \in \mathbb{Z}$.

On a $\lim_{x \to k^-} x - \lfloor x \rfloor = k - (k-1) = 1$ et $\lim_{x \to k^+} x - \lfloor x \rfloor = k - k = 0$. Ainsi, f n'est pas continue en k.

Conclusion: f est continue sur $\mathbb{R} \setminus \mathbb{Z}$.

Exercice 2 (Prolongeable ou pas?)

(a) f est définie et continue sur \mathbb{R}^* comme composée de fonctions usuelles.

De plus on a $\lim_{x\to 0^+}\arctan(x^{-1})=\lim_{y\to +\infty}\arctan(y)=\frac{\pi}{2}$ et $\lim_{x\to 0^-}\arctan(x^{-1})=\lim_{y\to -\infty}\arctan(y)=-\frac{\pi}{2}$. Ainsi f n'a pas de limite en 0: elle n'y est pas prolongeable par continuité.

(b) f est définie et continue sur \mathbb{R}^* comme composée de fonctions usuelles.

De plus on a $\lim_{x\to 0} \frac{\cos(x)-1}{x} = \lim_{x\to 0} \left(-x \times \frac{1-\cos(x)}{x^2}\right) = 0 \times \frac{1}{2} = 0$ (limite usuelle en 0 pour cos).

Ainsi f est prolongeable par continuité en 0. On peut définir le prolongement : $\widetilde{f}(x) = \begin{cases} \frac{\cos(x) - 1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

(c) f est définie et continue sur $\mathbb{R}^* \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\} = \ldots\} - \frac{3\pi}{2}, -\frac{\pi}{2}[\cup] - \frac{\pi}{2}, 0[\cup]0, \frac{\pi}{2}[\cup]\frac{\pi}{2}, \frac{3\pi}{2}[\ldots]$

Il faut donc étudier le prolongement par continuité éventuel en 0 et en $-\frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$.

En 0: On a $\lim_{x\to 0} \frac{\tan(x)}{x} = 1$ (limite usuelle). f est donc prolongeable par continuité en 0.

 $\underline{\operatorname{En}\ x_0 = \frac{\pi}{2} + k\pi\ (\operatorname{pour\ un}\ k \in \mathbb{Z}\ \operatorname{fix\acute{e}}) : \lim_{x \to x_0^+} \frac{\tan(x)}{x} = \pm \infty\ \operatorname{et}\ \lim_{x \to x_0^-} \frac{\tan(x)}{x} = \pm \infty\ (\operatorname{en\ fonction\ du\ signe\ de}\ x_0)}{x}$

f n'est donc pas prolongeable en x_0

Conclusion : f est prolongeable par continuité sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$

On peut définir le prolongement : $\widetilde{f}(x) = \begin{cases} \frac{\tan(x)}{x} & \text{si } x \in \mathbb{R}^* \setminus \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\} \\ 1 & \text{si } x = 0. \end{cases}$

Exercice 3 ("Recollement" continu)

f est clairement continue sur $]-\infty,-1[,]-1,2[$ et $]2,+\infty[$. Etudions la continuité en -1 et en 2:

En -1: f est continue en -1 si et seulement si $\lim_{x \to (-1)^-} f(x) = \lim_{x \to (-1)^+} f(x) = f(-1)$.

On a $\lim_{x \to (-1)^+} f(x) = \lim_{x \to (-1)^+} x^2 = 1 = f(-1)$. La continuité à droite est donc acquise.

On a $\lim_{x \to (-1)^-} f(x) = \lim_{x \to (-1)^-} e^{ax+b} = e^{-a+b}$. f est donc continue en -1 si et seulement si $e^{-a+b} = 1$.

En 2 : f est continue en 2 si et seulement si $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = f(2)$. On a $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} x^2 = 4 = f(2)$. La continuité à gauche est donc acquise. On a $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} e^{ax+b} = e^{2a+b}$. f est donc continue en 2 si et seulement si $e^{2a+b} = 4$.

Ainsi, f est continue sur \mathbb{R} si et seulement si : $\begin{cases} e^{-a+b} = 1 \\ e^{2a+b} = 4 \end{cases} \iff \begin{cases} -a+b=0 \\ 2a+b=\ln(4) \end{cases} \iff \begin{cases} a=b \\ 3a=\ln(4) \end{cases}$

Finalement, f est continue sur \mathbb{R} si et seulement si $a = b = \frac{\ln(4)}{3} = \frac{2\ln(2)}{3}$

Exercice 4 (Problème en 0)

Si f était prolongeable par continuité en 0, on aurait existence de la limite finie $\lim_{x\to 0} \sin\left(\frac{1}{x}\right) = \ell \in \mathbb{R}$.

En particulier, ceci impliquerait que $\lim_{x\to +\infty}\sin(x)=\lim_{y\to 0^+}\sin\left(\frac{1}{y}\right)=\ell.$

Or on sait que cette limite n'existe pas, par exemple parce que : $\lim_{n \to +\infty} \sin(2n\pi) = 0$ et $\lim_{n \to +\infty} \sin(\frac{\pi}{2} + 2n\pi) = 1$. (ce qui donnerait $\ell = 0$ et $\ell = 1$).

Exercice 5 (Une unique racine)

1. On a pour tout $x \in [0,1]$, $P'_n(x) = nx^{n-1} + 1 > 0$. On a donc le tableau de variations suivant :

Puisque P_n est continue et strictement croissante sur [0,1], d'après le théorème de la bijection, on en déduit que P_n réalise une bijection de [0,1] dans [-1,1]. En particulier, il existe un unique $\alpha_n \in [0,1]$ tel que $P_n(\alpha_n) = 0$.

2. (a) Soit $n \in \mathbb{N}$. On cherche à comparer α_{n+1} et α_n . Pour cela, comparons les fonctions P_{n+1} et P_n . On note que pour tout $x \in [0, 1]$,

$$P_{n+1}(x) = x^{n+1} + x - 1 \le x^n + x - 1 = P_n(x).$$

En particulier, il en résulte (en prenant $x = \alpha_n$) que $P_{n+1}(\alpha_n) \leq P_n(\alpha_n)$, c'est à dire $P_{n+1}(\alpha_n) \leq 0$. Or, puisque P_{n+1} est strictement croissante sur [0,1] et s'annule en α_{n+1} , on a connait son signe :

$$\forall x \in [0, \alpha_{n+1}[, P_{n+1}(x) < 0, P_{n+1}(\alpha_{n+1}) = 0, \forall x \in]\alpha_{n+1}, 1], P_{n+1}(x) > 0.$$

Puisque ici $P_{n+1}(\alpha_n) \leq 0$, c'est forcément que $\alpha_n \in [0, \alpha_{n+1}]$. Ainsi $\alpha_n \leq \alpha_{n+1}$. On a montré que la suite $(\alpha_n)_{n \in \mathbb{N}}$ est croissante.

(b) Puisque (α_n) est croissante et majorée par 1, elle converge nécessairement vers un $\ell \in [0,1]$. Supposons que $\lim_{n \to +\infty} \alpha_n = \ell < 1$, c'est à dire que $\ell \in [0,1[$. On peut alors affirmer que

$$\forall n \in \mathbb{N}, \ 0 \leqslant \alpha_n \leqslant \ell \quad \text{et donc} \quad 0 \leqslant (\alpha_n)^n \leqslant \ell^n.$$

Puisque $\ell \in [0,1[$, on a $\lim_{n \to +\infty} \ell^n = 0$ et donc par théorème des gendarmes $\lim_{n \to +\infty} (\alpha_n)^n = 0$. Rappelons que pour tout $n \in \mathbb{N}$, par définition, $P_n(\alpha_n) = 0$, c'est à dire $(\alpha_n)^n + \alpha_n - 1 = 0$. En passant à la limite dans cette égalité, quand $n \to +\infty$, on obtient ainsi : $0 + \ell - 1 = 0$, c'est à dire $\ell = 1$: CONTRADICTION avec notre hypothèse de départ!

(c) Conclusion : $\ell = \lim_{n \to +\infty} \alpha_n \in [0,1]$ et on ne peut pas avoir $\ell < 1$, c'est donc que $\ell = 1$. Ainsi $\lim_{n \to +\infty} \alpha_n = 1$.

Exercice 6 (Intersection de graphes)

Posons h = f - g. On a alors $h \in C([a, b], \mathbb{R})$ et l'hypothèse se réécrit : $h(a) \times h(b) < 0$. Autrement dit, les réels h(a) et h(b) sont de signes opposés. Ainsi, h est continue et change de signe sur [a, b]. D'après le TVI, on en déduit que h s'annule au moins une fois sur [a, b] : il existe $x_0 \in [a, b]$ tel que $h(x_0) = 0$. On obtient bien $f(x_0) - g(x_0) = 0$, c'est à dire $f(x_0) = g(x_0)$.

Exercice 7 (Étude d'une suite implicite)

1. Posons $\forall x \in \mathbb{R}_+^*, \ f(x) = \ln(x) + x.$

Il est clair que f est continue et strictement croissante, on a donc le tableau de variations suivant :

x	0	$+\infty$
f(x)	$-\infty$	+∞

D'après le théorème de la bijection, on en déduit que f est une bijection de \mathbb{R}_+^* dans \mathbb{R} .

En particulier, pour tout $n \in \mathbb{N}^*$, il existe un unique réel $x_n \in \mathbb{R}_+^*$ tel que $f(x_n) = n$.

Plus précisément, puisque f(1) = 1 et $f(n) = \ln(n) + n$, on a $f(1) \le n \le f(n)$ et donc $1 \le x_n \le n$. Ainsi $x_n \in [1, n]$.

2. On sait que $\forall n \in \mathbb{N}^*, f(x_n) = n$.

Ainsi, pour tout $n \in \mathbb{N}^*$, $f(x_n) = n$ et $f(x_{n+1}) = n+1$ donc $f(x_n) < f(x_{n+1})$.

Puisque f est croissante, on en déduit que $x_n < x_{n+1}$

(En effet si on avait $x_n \ge x_{n+1}$, par croissance de f on obtiendrait $f(x_n) \ge f(x_{n+1})$: contradiction!)

Autrement, avec la réciproque : On peut écrire $\forall n \in \mathbb{N}^*$, $x_n = f^{-1}(n)$, où $f^{-1} : \mathbb{R} \to \mathbb{R}_+^*$ est la bijection reciproque. Puisque f est strictement croissante, on sait que f^{-1} également. On en déduit directement que $(x_n)_{n \in \mathbb{N}^*}$ est croissante :

Pour tout
$$n \in \mathbb{N}^*$$
, $n < n+1$ donc $f^{-1}(n) < f^{-1}(n+1)$ i.e $x_n < x_{n+1}$.

Puisque $(x_n)_{n\in\mathbb{N}^*}$ est croissante, soit elle converge, soit elle tend vers $+\infty$.

On sait que $\forall n \in \mathbb{N}$, $\ln(x_n) + x_n = n$. En passant à la limite dans cette égalité, $\lim_{n \to +\infty} (\ln(x_n) + x_n) = +\infty$.

Si jamais on avait $\lim_{n\to+\infty} x_n = \ell \in \mathbb{R}$ (avec du coup $\ell \geqslant 1$), ceci donnerait $\ln(\ell) + \ell = +\infty$: absurde!

Ainsi, on a nécessairement $\lim_{n\to+\infty} x_n = +\infty$.

Autrement, avec la réciproque : Au vu du tableau de variations de f, celuia de f^{-1} est :

On en déduit alors directement : $\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} f^{-1}(n) = \lim_{x \to +\infty} f(x) = +\infty$.

3.(a) On sait que pour tout $n \in \mathbb{N}^*$, $1 \leqslant x_n \leqslant n$ donc $0 \leqslant \ln(x_n) \leqslant n$ et donc $0 \leqslant \frac{\ln(x_n)}{n} \leqslant \underbrace{\frac{\ln(n)}{n}}_{>0}$.

D'après le théorème des gendarmes, on en déduit $\lim_{n\to+\infty} \frac{\ln(x_n)}{n} = 0$.

Ensuite, pour tout $n \in \mathbb{N}^*$, $x_n + \ln(x_n) = n$ donc $\frac{x_n}{n} = 1 - \frac{\ln(x_n)}{n}$. On en déduit $\lim_{n \to +\infty} \frac{x_n}{n} = 1$.

(b) Pour tout
$$n \geqslant 2$$
, $\frac{x_n}{x_{n-1}} = \frac{\frac{x_n}{n}}{\frac{x_{n-1}}{n-1}} \times \frac{n}{n-1} = \frac{\frac{x_n}{n}}{\frac{x_{n-1}}{n-1}} \times \frac{1}{1 - \frac{1}{n}}$.

Puisque $\lim_{n\to+\infty}\frac{x_n}{n}=1$ et $\lim_{n\to+\infty}\frac{1}{1-\frac{1}{n}}=1$, on en déduit bien $\lim_{n\to+\infty}\frac{x_n}{x_{n-1}}=1$.

Ensuite, pour tout $n \ge 2$, $x_n + \ln(x_n) = n$ et $x_{n-1} + \ln(x_{n-1}) = n - 1$, donc en faisant la différence :

$$(x_n - x_{n-1}) + \ln\left(\frac{x_n}{x_{n-1}}\right) = 1$$
 i.e $x_n - x_{n-1} = 1 - \ln\left(\frac{x_n}{x_{n-1}}\right)$.

Puisque $\lim_{n\to+\infty} \frac{x_n}{x_{n-1}} = 1$, on obtient $\lim_{n\to+\infty} (x_n - x_{n-1}) = 1$.

Exercice 8 (Fonction continue périodique)

Soit $f \in C(\mathbb{R}, \mathbb{R})$, périodique de période p > 0.

Puisque f est continue sur le segment [0,p], il y a admet un minimum m et un maximum M.

(Théoème des bornes atteintes)

En particulier, on a : $\forall x \in [0, p], m \leq f(x) \leq M$.

Par périodicité, on en déduit, pour tout $k \in \mathbb{Z}$, : $\forall x \in [0, p], m \leq f(x + kp) \leq M$.

Autrement dit : $\forall y \in [kp, (k+1)p], m \leqslant f(y) \leqslant M$.

f est ainsi minorée par m et majorée par M sur tout segment de la forme [kp, (k+1)p] avec $k \in \mathbb{Z}$.

Or ces segments recouvrent toute la droite réelle : $\mathbb{R} = \bigcup_{k \in \mathbb{Z}} [kp, (k+1)p]$.

On en déduit que f est minorée par m et majorée par M sur $\mathbb R$ tout entier!

Puisque les valeurs m et M sont atteintes (sur [0,p]) par f, on a bien montré que f admet un minimum et un maximum sur \mathbb{R} .

Exercice 9 (Limite finie aux bords)

(a) On sait que $\lim_{x\to -\infty} f(x)=a$ donc d'après la définition de la limite :

$$\forall \varepsilon > 0, \ \exists A < 0, \ \forall x < A, \ |f(x) - a| < \varepsilon.$$

En choisissant $\varepsilon = 1$, on obtient bien l'existence d'un A < 0 tel que :

$$\forall x < A, |f(x) - a| \le 1, \text{ c'est à dire } a - 1 \le f(x) \le a + 1.$$

De même, en utilisant la définition de la limite $\lim_{x\to +\infty} f(x)=b$, on obtient l'existence de A'>0 tel que

$$\forall x > A', |f(x) - b| \le 1$$
, c'est à dire $b - 1 \le f(x) \le b + 1$.

(b) Puisque f est continue sur le segment [A',A], elle y est bornée (et atteint ses bornes).

On sait donc qu'il existe $m, M \in \mathbb{R}$ fixés tels que $\forall x \in [A', A], m \leqslant f(x) \leqslant M$.

- (c) On a vu que:
- f est bornée sur] $-\infty$, A[(minorée par a-1, majorée par a+1),
- f est bornée sur [A, A'] (minorée par m, majorée par M),
- f est bornée sur A', $+\infty$ (minorée par b-1, majorée par b+1).

Ainsi, f est bien bornée sur \mathbb{R} (minorée par $\min(a-1,m,b-1)$ et majorée par $\max(a+1,M,b+1)$).

(d) La fonction arctan par exemple, admet une limite finie en $-\infty$ et $+\infty$, est bien bornée sur \mathbb{R} , mais n'atteint pas ses bornes!

Exercice 10 (Graphes sans intersection)

(a) Posons $\forall x \in [0, 1], \ h(x) = g(x) - f(x).$

Alors h est continue sur [0,1], et par hypothèse, $\forall x \in [0,1], h(x) \neq 0$.

On en déduit (conséquence du TVI) que h est de signe constant sur [0,1] (sinon elle s'annulerait!).

Puisqu'on a supposé f(0) < g(0), on a ici h(0) > 0 et donc $\forall x \in [0, 1], h(x) > 0$.

Ceci montre bien que $\forall x \in [0,1], f(x) < g(x).$

(b) Reprenons le raisonnement précédent avec la fonction h.

On a vu que $\forall x \in [0,1], h(x) > 0.$

Puisque h est continue sur le segment [0,1], elle y admet un minimum, atteint disons en un point $x_0 \in [0,1]$.

Ainsi, on a $\forall x \in [0,1], h(x) \ge h(x_0), \text{ avec } h(x_0) > 0. \text{ Notons } \delta = h(x_0) > 0.$

On a montré que $\forall x \in [0,1], h(x) \ge \delta$, c'est à dire bien $\forall x \in [0,1], f(x) \le g(x) - \delta$.

Exercice 11 (Une équation contraignante)

1. On a $\forall x \in \mathbb{R}$, f(2x) = f(x). Donc $\forall x \in \mathbb{R}$, $f(4x) = f(2 \times (2x)) = f(2x) = f(x)$, etc...

Par récurrence immédiate, on obtient : $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f(2^n x) = f(x)$.

(Rapidement, l'hérédité : pour tout $x \in \mathbb{R}$, $f(2^{n+1}x) = f(2 \times 2^n x) = f(2^n x) = f(x)$)

Par suite, pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $f(x) = f\left(2^n \times \frac{x}{2^n}\right) = f\left(\frac{x}{2^n}\right)$: c'est le résultat voulu.

2. Soit $x \in \mathbb{R}$ fixé. En passant à la limite dans $f(x) = f\left(\frac{x}{2^n}\right)$, on obtient

$$f(x) = \lim_{n \to +\infty} f\left(\frac{x}{2^n}\right) = \lim_{y \to 0} f(y) = f(0)$$
 (car f est continue en 0!)

Ainsi, $\forall x \in \mathbb{R}$, f(x) = f(0). Ceci montre que f est une fonction constante.

Exercice 12 (Fonction Lipschitzienne)

1. Pour tout $x_0 \in [0,1]$, vérifions que $\lim_{x \to x_0} f(x) = f(x_0)$. On a : $|f(x) - f(x_0)| \leqslant k|x - x_0| \xrightarrow[x \to x_0]{} 0$.

D'après le théorème des gendarmes (version valeur absolue), on en déduit bien $\lim_{x\to x_0} f(x) = f(x_0)$.

C'est valable pour tout $x_0 \in [0,1]$, f est donc bien continue sur [0,1].

2. Posons $\forall x \in [0, 1], g(x) = f(x) - x$.

g est continue sur $[0,1], g(0) = f(0) \ge 0, g(1) = f(1) - 1 \le 0 (car <math>f:[0,1] \to [0,1]$)

D'après le TVI, on en déduit qu'il existe un $\alpha \in [0,1]$ tel que $g(\alpha) = 0$.

On a donc bien $\alpha \in [0,1]$ tel que $f(\alpha) = \alpha$.

Montrons l'<u>unicité</u> d'un tel point fixe. Supposons qu'il en existe un autre : $\alpha' \in [0,1]$ avec $f(\alpha') = \alpha'$ et $\alpha' \neq \alpha$.

On sait que : $|f(\alpha) - f(\alpha')| \le k|\alpha - \alpha'|$ c'est à dire $|\alpha - \alpha'| \le k|\alpha - \alpha'|$.

Puisque $\alpha \neq \alpha'$, on a $|\alpha - \alpha'| \neq 0$ et donc on en déduit $1 \leq k$. Contradiction, car $k \in]0,1[$ par hypothèse!

Ainsi le point fixe $\alpha \in [0, 1]$ est bien unique.

3. (a) Montrons par récurrence que $\forall n \in \mathbb{N}, |u_n - \alpha| \leq |u_0 - \alpha| \times k^n$.

Initialisation: On a bien sûr $|u_0 - \alpha| \leq |u_0 - \alpha| \times k^0$.

<u>Hérédité</u>: Soit $n \in \mathbb{N}$. Supposons que $|u_n - \alpha| \leq |u_0 - \alpha| \times k^n$. Alors:

$$|u_{n+1} - \alpha| = |f(u_n) - f(\alpha)| \leqslant k|u_n - \alpha| \leqslant k \times |u_0 - \alpha| \times k^n = |u_0 - \alpha| \times k^{n+1},$$

ce qui achève la récurrence.

(b) On a $\forall n \in \mathbb{N}, |u_n - \alpha| \leq |u_0 - \alpha| \times k^n$. Puisque $k \in]0,1[, \lim_{n \to +\infty} k^n = 0.$

D'après le théorème des gendarmes (version valeur absolue), on en déduit que $\lim_{n\to+\infty}u_n=\alpha$.

Exercice 13 (Fonctions continues additives)

0. Soit $a \in \mathbb{R}$. Posons $f = a \times Id_{\mathbb{R}}$, c'est à dire $\forall x \in \mathbb{R}$, f(x) = ax.

Pour tous $x, y \in \mathbb{R}$, on a : f(x + y) = a(x + y) = ax + ay = f(x) + f(y).

Ainsi on a bien $f \in \mathcal{A}$.

1. Soit $x \in \mathbb{R}$ fixé. Montrons par récurrence que $\forall n \in \mathbb{N}, f(nx) = nf(x)$.

Initialisation: Il faut montrer que f(0) = 0.

On a f(0+0) = f(0) + f(0), c'est à dire f(0) = 2f(0), donc effectivement f(0) = 0.

<u>Hérédité</u>: Soit $n \in \mathbb{N}$. Supposons que f(nx) = nf(x). Alors:

$$f((n+1)x) = f(nx+x) = f(nx) + f(x) = nf(x) + f(x) = (n+1)f(x),$$

ce qui achève la récurrence.

Ceci est valable quel que soit $x \in \mathbb{R}$, on a donc bien montré : $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, f(nx) = nf(x)$.

2. Soit $x \in \mathbb{R}$. Il faut montrer que f(-x) = -f(x). Or :

$$f(0) = f(x + (-x)) = f(x) + f(-x).$$

Ceci donne 0 = f(x) + f(-x) et donc en effet f(-x) = -f(x). La fonction f est donc bien impaire.

Ainsi, pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$,

$$f((-n) \times x) = f(-nx) = -f(nx) = -nf(x) = (-n) \times f(x).$$

Ainsi la propriété du 1. se généralise à des entiers négatifs : $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, f(nx) = nf(x)$.

3. Soit $q \in \mathbb{N}^*$, d'après la propriété du 2. (ou du 1.) on a :

$$f(1) = f\left(q \times \frac{1}{q}\right) = qf\left(\frac{1}{q}\right)$$
 c'est à dire $a = qf\left(\frac{1}{q}\right)$ et donc $f\left(\frac{1}{q}\right) = a \times \frac{1}{q}$.

Ensuite, pour tout $p \in \mathbb{Z}$, d'après la propriété du 2.,

$$f\left(\frac{p}{q}\right) = f\left(p \times \frac{1}{q}\right) = pf\left(\frac{1}{q}\right) = p \times a \times \frac{1}{q} = a \times \frac{p}{q}.$$

4. La dernière propriété du 3. peut se ré-écrire : $\forall x \in \mathbb{Q}, f(x) = a \times x$.

Soit maintenant $x \in \mathbb{R}$ (pas forcément rationnel).

On peut considèrer une suite $(x_n)_{n\in\mathbb{N}}$ de rationnels qui converge vers x.

(Par exemple, en posant
$$\forall n \in \mathbb{N}, \ x_n = \frac{\lfloor 10^n x \rfloor}{10^n} \in \mathbb{Q}$$
, on a facilement $\lim_{n \to +\infty} x_n = x$.)

Pour tout $n \in \mathbb{N}$, puisque $x_n \in \mathbb{Q}$, on a $f(x_n) = a \times x_n$.

En passant à la limite, $\lim_{n\to+\infty} x_n = x$ et puisque f est continue, $\lim_{n\to+\infty} f(x_n) = f(x)$.

On obtient donc $f(x) = a \times x$.

C'est valable pour tout $x \in \mathbb{R}$, donc on a montré $\forall x \in \mathbb{R}$, f(x) = ax, c'est à dire $f = a Id_{\mathbb{R}}$.

5. \mathcal{A} est donc l'ensemble des fonction linéaires (de la forme $a Id_{\mathbb{R}}$, pour $a \in \mathbb{R}$). Autrement dit :

$$\mathcal{A} = \left\{ a \, Id_{\mathbb{R}}, \, a \in \mathbb{R} \right\}.$$