Lista de Exercícios 10

Igor Lacerda Faria

Departamento de Ciência da Computação - Universidade Federal de Minas Gerais (UFMG) - Belo Horizonte - MG - Brasil

igorlfs@ufmg.br

Revisão

- 1. (a) Existem 2^{2^n} funções Booleanas de n variáveis.
 - (b) Isso significa que o conjunto pode ser usado para representar todas as funções Booleanas. Um conjunto funcionamelmente completo com 3 operadores é $\{+,\cdot,\overline{\ }\}$, com 2 operadores temos $\{+,\overline{\ }\}$ e com um operador, $\{|\}$, o famoso NAND.

Exercícios

2. (a) $(1\cdot 1)+(\overline{0\cdot 1}+0)=1+(\overline{0}+0)=1+(1+0)=1$. Simplificando, como o lado esquerdo é 1 de cara, então a soma é 1.

(b)
$$(T \wedge T) \vee (\neg (F \wedge T) \vee F) \equiv T$$

3. Tabelas.

	\boldsymbol{x}	z	y	yz	x + yz
	0	0	0	0	0
	0	0	1	0	0
	0	1	0	0	0
(b)	0	1	1	1	1
	1	0	0	0	1
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

	x	z	y	$x\overline{y}$	\overline{xyz}	$x\overline{y} + \overline{xyz}$
	0	0	0	0	1	1
	0	0	1	0	1	1
	0	1	0	0	1	1
(c)	0	1	1	0	1	1
	1	0	0	1	1	1
	1	0	1	0	1	1
	1	1	0	1	1	1
	1	1	1	0	0	0

4. Tabela.

\overline{x}	z	y	$x\overline{y} + y\overline{z} + \overline{x}z$	$\overline{x}y + \overline{y}z + x\overline{z}$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

- 5. (a) $x \cdot y$
 - (b) $\overline{x} + \overline{y}$
 - (c) $(x+y+z)\cdot(\overline{x}+\overline{y}+\overline{z})$
 - (d) $(x + \overline{z}) \cdot (x + 1) \cdot (\overline{x} + 0)$
- $6. \ x\overline{yzw} + \overline{x}y\overline{zw} + \overline{x}yz\overline{w} + \overline{x}yz\overline{w} + xy\overline{z}w + xy\overline{z}w + xyz\overline{w}$
- 7. (a) $\overline{\overline{x} \cdot \overline{y} \cdot \overline{z}}$
 - (b) $\overline{\overline{x} \cdot \overline{\overline{y} \cdot (\overline{x \cdot \overline{z}})}}$
- 8. $\overline{(xy)} + (\overline{z} + x)$

9. Construindo a tabela verdade:

x_1	x_0	y_1	y_0	t
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Assim, podemos facilmente escrever a forma normal disjuntiva:

 $\overline{x_1}x_0\overline{y_1y_0} + x_1\overline{x_0y_1y_0} + x_1\overline{x_0y_1}y_0 + x_1x_0\overline{y_1y_0} + x_1x_0\overline{y_1}y_0 + x_1x_0y_1\overline{y_0}$

10. (a) $wxyz + wx\overline{y}z + wx\overline{y}\overline{z} + w\overline{x}y\overline{z} + w\overline{x}y\overline{z}$

	yz	$y\overline{z}$	\overline{yz}	$\overline{y}z$
wx	1		1	1
$w\overline{x}$		1		1
\overline{wx}				
$\overline{w}x$				

Então temos a seguinte simplificação: $wxyz + wx\overline{y} + w\overline{y}z + w\overline{x}y\overline{z}$

(b) $wxyz + wxy\overline{z} + wx\overline{y}z + w\overline{x}yz + w\overline{x}y\overline{z} + \overline{w}x\overline{y}z + \overline{w}x\overline{y}z + \overline{w}x\overline{y}z + \overline{w}x\overline{y}z$ $| uz | u\overline{z} | \overline{u}z | \overline{u}z |$

	yz	$y\overline{z}$	\overline{yz}	$\overline{y}z$
wx	1	1		1
$w\overline{x}$			1	1
\overline{wx}		1		1
$\overline{w}x$				1

Então temos a seguinte simplificação: $\overline{y}z+w\overline{x}\overline{y}+wxy+\overline{w}\overline{x}y\overline{z}$

3