Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

23 листопада 2022

1/7

Твердження

Нехай p — просте число. Тоді циклічна група порядку p^k не розкладається у прямий добуток своїх підгруп.

Доведення.

Підгрупи циклічної групи C_{p^k} утворюють ланцюг:

$$\{e\} < C_p < C_{p^2} \cdots < C_{p^k}.$$

Тоді для довільних неодиничних підгруп A і B групи $C_{
ho^k}$

$$A \cap B \neq \{e\}$$
.

Теорема

Нехай m, k — натуральні числа. Тоді

$$C_{mk} \simeq C_m \times C_k \Leftrightarrow (m, k) = 1.$$

Розкладність циклічних груп: доведення

(⇒) Якщо
$$d = (m, k)$$
, то $C_k \cap C_m = C_d$.

Розкладність циклічних груп: доведення

(⇐) Нехай
$$C_{mk} = \langle \alpha \rangle$$
.

Розглянемо її підгрупи:

$$A = \langle a^m \rangle$$
, тобто $A \simeq C_k$, $B = \langle a^k \rangle$, тобто $B \simeq C_m$.

Очевидно, що $A \triangleleft C_{mk}$, $B \triangleleft C_{mk}$.

Оскільки (m, k) = 1, то існують $r, s \in Z$:

$$rm + sk = 1$$
.

Тоді для l = 1, ..., mk:

$$a^{l} = a^{(rm+sk)l} = a^{rml} \cdot a^{skl} = (a^{m})^{rl} \cdot (a^{k})^{sl}.$$

Отже,

$$C_{mk} = \langle A, B \rangle$$
.

Розкладність циклічних груп: доведення

Нехай $c ∈ A \cap B$.

Тоді

$$c = a^{mv} = a^{ku}, \quad v \in \{0, \dots, k-1\}, u \in \{0, \dots, m-1\}.$$

Звідси $a^{mv-ku} = e$.

3 властивостей порядку $mk \mid (mv - ku)$, тобто $mv - ku \equiv 0 \pmod{mk}$.

Звідси випливає, що $k \mid v$, а $m \mid u$, але v < k, u < m.

Тому u = v = 0. Отже, c = e та

$$A \cap B = \{e\}$$
.

Теорема

Нехай m_1, \ldots, m_k — натуральні числа. Нехай

$$G = C_{m_1} \times \cdots \times C_{m_{\nu}}$$
.

Тоді G — циклічна \Leftrightarrow $(m_i, m_i) = 1$ для всіх $1 \le i, j \le k, i \ne j$.