Name:	

Math 237 – Linear Algebra

Version 1

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector **addition** \oplus is **associative**: $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $x, y, z \in \mathbb{R}$. Then

$$(x \oplus y) \oplus z = \sqrt{x^2 + y^2} \oplus z$$

$$= \sqrt{(\sqrt{x^2 + y^2})^2 + z^2}$$

$$= \sqrt{x^2 + y^2 + z^2}$$

$$= \sqrt{x^2 + (\sqrt{y^2 + z^2})^2}$$

$$= x \oplus \sqrt{y^2 + z^2}$$

$$= x \oplus (y \oplus z)$$

However, this is not a vector space, as there is no zero vector.

V3. Does span
$$\left\{ \begin{bmatrix} 2\\-1\\4\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\5\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\5\\1\\-3 \end{bmatrix} \right\} = \mathbb{R}^5?$$

Solution: Since there are only three vectors, they cannot span \mathbb{R}^5 .

V4. Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x-x^2)+(x^2)=x\notin W$.

S2. Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \mathcal{P}_2

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis

V1: V3: V4: S2:

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$

- (a) Show that this vector space has an additive identity element $\mathbf{0}$ satisfying $(x,y) \oplus \mathbf{0} = (x,y)$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $(x_1, y_1) \in V$; then $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$, so (1, 1) is an additive identity element. Now we will show the other seven properties. Let $(x_1, y_1), (x_2, y_2) \in V$, and let $c, d \in \mathbb{R}$.

- 1) Since real addition is associative, \oplus is associative.
- 2) Since real addition is commutative, \oplus is commutative.
- 3) The additive identity is (1,1).
- 4) $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$, so $(2 x_1, 2 y_1)$ is the additive inverse of (x_1, y_1) .

5)

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c\left(dx_1-(d-1)\right)-(c-1),c\left(dy_1-(d-1)\right))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6)
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

7)

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

8)

$$(c+d) \odot (x_1, y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$
$$= (cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$$
$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

Therefore V is a vector space.

V3. Determine if the vectors $\begin{bmatrix} 8 \\ 21 \\ -7 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -8 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} 4 \\ 11 \\ -5 \end{bmatrix}$ span \mathbb{R}^3 .

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 8 & -3 & -1 & 4 \\ 21 & -8 & -3 & 11 \\ -7 & 3 & 2 & -5 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the rank is less than 3, they do not span \mathbb{R}^3 .

 ${f V4.}$ Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x - x^2) + (x^2) = x \notin W$.

S2. Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \mathcal{P}_2

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

V1:

V3:

V4:

S2:

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot (f \oplus g) = c \odot f \oplus c \odot g$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $f, g \in \mathcal{P}$, and let $c \in \mathbb{R}$.

$$c\odot(f\oplus g)=c\odot(f'+g')=c(f'+g')'=cf''+cg''=cf'\oplus cg'=c\odot f\oplus c\odot g.$$

However, this is not a vector space, as there is no zero vector. Additionally, $1 \odot f \neq f$ for any nonzero polynomial f.

V3. Determine if the vectors $\begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF\left(\begin{bmatrix} 2 & 3 & 0 & 1\\ 0 & 1 & 0 & 2\\ -2 & 3 & 1 & 0\\ 0 & 6 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2}\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & -11\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there is a zero row, the vectors do not span \mathbb{R}^4 .

V4. Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x - x^2) + (x^2) = x \notin W$.

S2. Determine if the set $\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$ is a basis of \mathcal{P}_3

Solution:

$$RREF \left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.

V1: V3: V4: S2:

Math 237 – Linear Algebra

Version 4

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x, y \in V$ and $c \in \mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that scalar multiplication is associative: $a \odot (b \odot x) = (ab) \odot x$.
- (b) Determine if V is a vector space or not. Justify your answer

Solution: Let $x, y \in V$, $c, d \in \mathbb{R}$. To show associativity:

$$c \odot (d \odot x) = c \odot (dx - 3(d - 1))$$
$$= c (dx - 3(d - 1)) - 3(c - 1)$$
$$= cdx - 3(cd - 1)$$
$$= (cd) \odot x$$

We verify the remaining 7 properties to see that V is a vector space.

- 1) Real addition is associative, so \oplus is associative.
- 2) $x \oplus 3 = x + 3 3 = x$, so 3 is the additive identity.
- 3) $x \oplus (6-x) = x + (6-x) 3 = 3$, so 6-x is the additive inverse of x.
- 4) Real addition is commutative, so \oplus is commutative.
- 5) Associativity shown above
- 6) $1 \odot x = x 3(1 1) = x$

7)

$$c \odot (x \oplus y) = c \odot (x + y - 3)$$

$$= c(x + y - 3) - 3(c - 1)$$

$$= cx - 3(c - 1) + cy - 3(c - 1) - 3$$

$$= (c \odot x) \oplus (c \odot y)$$

8)

$$(c+d) \odot x = (c+d)x - 3(c+d-1)$$

= $cx - 3(c-1) + dx - 3(c-1) - 3$
= $(c \odot x) \oplus (d \odot x)$

Therefore V is a vector space.

V3. Determine if the vectors
$$\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$$
, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are zero rows, they do not span. Alternatively, by inspection $\begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$, so the set is linearly dependent, so it spans a subspace of dimension at most 3, therefore it does not span \mathbb{R}^4 .

V4. Let W be the set of all complex numbers that are purely real (i.e of the form a + 0i) or purely imaginary (i.e. of the form 0 + bi). Determine if W is a subspace of \mathbb{C} .

Solution: No, because 1 is purely real and i is purely imaginary, but the linear combination 1+i is neither.

S2. Determine if the set $\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

V1: V3: V4: S2:

all relevant work to receive credit for a standard.

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show

V1. Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x, y \in V$ and $c \in \mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that scalar multiplication is associative: $a \odot (b \odot x) = (ab) \odot x$.
- (b) Determine if V is a vector space or not. Justify your answer

Solution: Let $x, y \in V$, $c, d \in \mathbb{R}$. To show associativity:

$$c \odot (d \odot x) = c \odot (dx - 3(d - 1))$$

$$= c (dx - 3(d - 1)) - 3(c - 1)$$

$$= cdx - 3(cd - 1)$$

$$= (cd) \odot x$$

We verify the remaining 7 properties to see that V is a vector space.

- 1) Real addition is associative, so \oplus is associative.
- 2) $x \oplus 3 = x + 3 3 = x$, so 3 is the additive identity.
- 3) $x \oplus (6-x) = x + (6-x) 3 = 3$, so 6-x is the additive inverse of x.
- 4) Real addition is commutative, so \oplus is commutative.
- 5) Associativity shown above
- 6) $1 \odot x = x 3(1 1) = x$

7)

$$c \odot (x \oplus y) = c \odot (x + y - 3)$$

$$= c(x + y - 3) - 3(c - 1)$$

$$= cx - 3(c - 1) + cy - 3(c - 1) - 3$$

$$= (c \odot x) \oplus (c \odot y)$$

8)

$$(c+d) \odot x = (c+d)x - 3(c+d-1)$$

= $cx - 3(c-1) + dx - 3(c-1) - 3$
= $(c \odot x) \oplus (d \odot x)$

Therefore V is a vector space.

$$\mathbf{V3.} \quad \text{Does span} \left\{ \begin{bmatrix} 2\\-1\\4\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\5\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\5\\1\\-3 \end{bmatrix} \right\} = \mathbb{R}^5?$$

Solution: Since there are only three vectors, they cannot span \mathbb{R}^5 .

V4. Let W be the set of all complex numbers that are purely real (i.e of the form a + 0i) or purely imaginary (i.e. of the form 0 + bi). Determine if W is a subspace of \mathbb{C} .

Solution: No, because 1 is purely real and i is purely imaginary, but the linear combination 1+i is neither.

S2. Determine if the set $\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$ is a basis of \mathcal{P}_3

Solution:

$$RREF \left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.

V1:

V3:

V4:

S2:

Name:	

Math 237 – Linear Algebra

Version 6

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative: $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $x, y, z \in \mathbb{R}$. Then

$$(x \oplus y) \oplus z = \sqrt{x^2 + y^2} \oplus z$$

$$= \sqrt{(\sqrt{x^2 + y^2})^2 + z^2}$$

$$= \sqrt{x^2 + y^2 + z^2}$$

$$= \sqrt{x^2 + (\sqrt{y^2 + z^2})^2}$$

$$= x \oplus \sqrt{y^2 + z^2}$$

$$= x \oplus (y \oplus z)$$

However, this is not a vector space, as there is no zero vector.

V3. Determine if the vectors $\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF\left(\begin{bmatrix} 2 & 3 & 0 & 1\\ 0 & 1 & 0 & 2\\ -2 & 3 & 1 & 0\\ 0 & 6 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2}\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & -11\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there is a zero row, the vectors do not span \mathbb{R}^4 .

V4. Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x - x^2) + (x^2) = x \notin W$.

S2. Determine if the set $\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$ is a basis of \mathcal{P}_3

 ${\bf Solution:}$

$$RREF \left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.