CS-5630 / CS-6630 Uisualization Tasks

Alexander Lex alex@sci.utah.edu

Tasks

Why are we using Visualization?

Domain and Abstract Tasks

Infinite numbers of domain tasks

Can be broken down into simpler abstract tasks

We know how to address the abstract tasks!

Identify task - data combination: solutions probably exist

Tasks

Analyze

high-level choices consume vs produce

Search

find a known/unknown item

Query

find out about characteristics of item

by itself or relative to others

Example 1

Find good universities with a high faculty student ratio.

Identify high-ranked universities

In this subset: **compare** universities & **identify** high faculty student ratio

OR

Derive a ranking with a high weight for faculty student ratio

Example 2

Contrast Harvard's reputation scores with MIT's

Match up Harvard with Yale

First, find Harvard and Yale, then compare their (two) reputation scores

Example 3

Find a combination of weights and parameters where Harvard is better than MIT

Produce a new dataset by deriving from the input parameters

Result

High-level actions: Analyze

Consume

discover vs present classic split: explore vs explain enjoy: casual, social

Produce

Annotate, record

Derive: crucial design choice

Analyze

→ Consume

→ Discover

→ Present

→ Enjoy

→ Annotate

→ Record

→ Derive

Example: Annotate

Example: Derive

Boston Snow Accumulation Distribution by Month

Example: Derive

	Country	Club	Club Continent
Ronaldo	Portugal	Real Madrid	Europe
Lahm	Germany	Bayern München	Europe
Robben	Netherlands	Bayern München	Europe
Khedira	Germany	Real Madrid	Europe
Phogba	Italy	Juventus	Europe
Messi	Argentina	Barcelona	Europe

Actions: Mid-level search, lowlevel query

what does user know? target, location

how much of the data matters?

one, some, all

Search

	Target known	Target unknown	
Location known	• • • Lookup	• • • Browse	
Location unknown	C Locate	Explore	

Example Compare (& Derive)

Why: Targets

- **ALL DATA**
 - → Trends
- → Outliers
- → Features

- **ATTRIBUTES**
 - → One
 - → Distribution

- → Many
 - → Dependency
- → Correlation

→ Similarity

- **NETWORK DATA**
 - → Topology

→ Paths

- SPATIAL DATA
 - → Shape

Examples

Trends: How did the job market develop since the recession overall?

Outliers: Looking at real estate related jobs

How? A Preview

Manipulate **Encode Facet** Reduce **Filter** Arrange Change **Juxtapose** → Express → Separate **Partition** Select Aggregate → Align → Order •••• → Use Superimpose **Navigate Embed**