AMCS 394E: Contemp. Topics in Computational Science. Computing with the finite element method

David I. Ketcheson and Manuel Quezada de Luna

Approximation theory:

Approximation theory:

* How do the solutions of PDEs look?

Approximation theory:

- * How do the solutions of PDEs look?
- * How can we approximate these solutions?

Approximation theory:

- * How do the solutions of PDEs look?
- * How can we approximate these solutions?
- * What is the error we make in this approximation?

Approximation theory:

- * How do the solutions of PDEs look?
- * How can we approximate these solutions?
- * What is the error we make in this approximation?

Approximation of PDEs:

Approximation theory:

- * How do the solutions of PDEs look?
- * How can we approximate these solutions?
- * What is the error we make in this approximation?

Approximation of PDEs:

* Why do we go from a strong to a weak formulation?

Approximation theory:

- * How do the solutions of PDEs look?
- * How can we approximate these solutions?
- * What is the error we make in this approximation?

Approximation of PDEs:

- * Why do we go from a strong to a weak formulation?
- * How do we get a finite dimensional approx. of the weak form?

Approximation theory:

- * How do the solutions of PDEs look?
- * How can we approximate these solutions?
- * What is the error we make in this approximation?

Approximation of PDEs:

- * Why do we go from a strong to a weak formulation?
- * How do we get a finite dimensional approx. of the weak form?
- * How do we go from a finite dimensional approx. of the weak form to a linear algebra problem?

Example:

Consider the following equation:

$$u - \Delta u = 0,$$
 $\forall x \in \Omega,$ $u = u_D,$ $\forall x \in \Gamma_D,$ $\partial_{\mathbf{n}} u = b(x),$ $\forall x \in \Gamma_N.$

Example:

Consider the following equation:

$$u - \Delta u = 0,$$
 $\forall x \in \Omega,$ $u = u_D,$ $\forall x \in \Gamma_D,$ $\partial_{\mathbf{n}} u = b(x),$ $\forall x \in \Gamma_N.$

What is the weak formulation?

$$\int_{\Omega} u\varphi dx + \int_{\Omega} \nabla u \cdot \nabla \varphi dx - \int_{\partial \Omega} (\nabla u \cdot \mathbf{n}) \varphi ds = 0, \quad \forall \varphi \in V$$

Example:

Consider the following equation:

$$u - \Delta u = 0,$$
 $\forall x \in \Omega,$ $u = u_D,$ $\forall x \in \Gamma_D,$ $\partial_{\mathbf{n}} u = b(x),$ $\forall x \in \Gamma_N.$

What is the weak formulation?

$$\int_{\Omega} u\varphi dx + \int_{\Omega} \nabla u \cdot \nabla \varphi dx - \int_{\partial \Omega} b\varphi ds = 0, \quad \forall \varphi \in V$$

Example:

Consider the following equation:

$$u - \Delta u = 0,$$
 $\forall x \in \Omega,$ $u = u_D,$ $\forall x \in \Gamma_D,$ $\partial_{\mathbf{n}} u = b(x),$ $\forall x \in \Gamma_N.$

What is the weak formulation?

$$\int_{\Omega} u\varphi dx + \int_{\Omega} \nabla u \cdot \nabla \varphi dx - \int_{\partial \Omega} b\varphi ds = 0, \quad \forall \varphi \in \textit{V}$$

where

$$V = \{ v \in H^1(\Omega) \mid v = 0 \text{ if } x \in \Gamma_D \}.$$

What is the discrete weak formulation?

$$\int_{\Omega} \mathbf{u}_{h} \varphi d\mathbf{x} + \int_{\Omega} \nabla \mathbf{u}_{h} \cdot \nabla \varphi d\mathbf{x} = \int_{\partial \Omega} \mathbf{b} \varphi d\mathbf{s}, \quad \forall \varphi \in \mathbf{V}_{h}$$

What is the discrete weak formulation?

$$\int_{\Omega} \mathbf{u_h} \varphi \, \mathrm{d} x + \int_{\Omega} \nabla \mathbf{u_h} \cdot \nabla \varphi \, \mathrm{d} x = \int_{\partial \Omega} b \varphi \, \mathrm{d} s, \quad \forall \varphi \in \mathbf{V_h}$$

where

$$V_h = \{ \mathbf{v} \in C^0(\Omega) \mid \mathbf{v}_K \in \mathbb{P}^p \}.$$

What is the discrete weak formulation?

$$\int_{\Omega} \mathbf{u_h} \varphi \, d\mathbf{x} + \int_{\Omega} \nabla \mathbf{u_h} \cdot \nabla \varphi \, d\mathbf{x} = \int_{\partial \Omega} \mathbf{b} \varphi \, d\mathbf{s}, \quad \forall \varphi \in \mathbf{V_h}$$

where

$$V_h = \{ v \in C^0(\Omega) \mid v_K \in \mathbb{P}^p \}.$$

How do we get a linear algebra problem?

Consider and plug $\phi = \phi_i$ and $u_h = \sum_j U_j \varphi_j$ into the equation.

$$\sum_{j} U_{j} \int_{\Omega} \varphi_{i} \varphi_{j} dx + \sum_{j} U_{j} \int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} dx = \int_{\partial \Omega} b \varphi_{i} ds.$$

What is the discrete weak formulation?

$$\int_{\Omega} \mathbf{u}_{h} \varphi d\mathbf{x} + \int_{\Omega} \nabla \mathbf{u}_{h} \cdot \nabla \varphi d\mathbf{x} = \int_{\partial \Omega} \mathbf{b} \varphi d\mathbf{s}, \quad \forall \varphi \in \mathbf{V}_{h}$$

where

$$V_h = \{ v \in C^0(\Omega) \mid v_K \in \mathbb{P}^p \}.$$

How do we get a linear algebra problem?

Consider and plug $\phi = \phi_i$ and $u_h = \sum_j U_j \varphi_j$ into the equation.

$$\sum_{j} U_{j} \underbrace{\int_{\Omega} \varphi_{i} \varphi_{j}}_{=M_{ij}} dx + \sum_{j} U_{j} \underbrace{\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} dx}_{=S_{ij}} = \underbrace{\int_{\partial \Omega} b \varphi_{i} ds}_{=F(\phi_{i})}.$$

What is the discrete weak formulation?

$$\int_{\Omega} \mathbf{u}_{h} \varphi d\mathbf{x} + \int_{\Omega} \nabla \mathbf{u}_{h} \cdot \nabla \varphi d\mathbf{x} = \int_{\partial \Omega} \mathbf{b} \varphi d\mathbf{s}, \quad \forall \varphi \in \mathbf{V}_{h}$$

where

$$V_h = \{ v \in C^0(\Omega) \mid v_K \in \mathbb{P}^p \}.$$

How do we get a linear algebra problem?

Consider and plug $\phi = \phi_i$ and $u_h = \sum_j U_j \varphi_j$ into the equation.

$$\sum_{j} U_{j} \left[\underbrace{\int_{\Omega} \varphi_{i} \varphi_{j}}_{=M_{ij}} dx + \underbrace{\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} dx}_{=S_{ij}} \right] = \underbrace{\int_{\partial \Omega} b \varphi_{i} ds}_{=F(\phi_{i})}.$$

We want to solve

$$\sum_{j} U_{j} \underbrace{\int_{\Omega} \varphi_{i} \varphi_{j} + \nabla \varphi_{i} \cdot \nabla \varphi_{j} dx}_{=A_{ij}} = \underbrace{\int_{\partial \Omega} b \varphi_{i} ds}_{=F(\phi_{i})}, \quad i = 1, \dots, \dim(V_{h}).$$

We want to solve

$$\sum_{j} U_{j} \underbrace{\int_{\Omega} \varphi_{i} \varphi_{j} + \nabla \varphi_{i} \cdot \nabla \varphi_{j} dx}_{= A_{ij}} = \underbrace{\int_{\partial \Omega} b \varphi_{i} ds}_{= F(\phi_{i})}, \quad i = 1, \dots, \dim(V_{h}).$$

Recall the space V_h and that $\phi_i \in V_h$

$$V_h = \{ \varphi \in C^0(\Omega) \mid \varphi |_K \in \mathbb{P}^p \}$$

We want to solve

$$\sum_{j} U_{j} \underbrace{\int_{\Omega} \varphi_{i} \varphi_{j} + \nabla \varphi_{i} \cdot \nabla \varphi_{j} dx}_{=A_{ij}} = \underbrace{\int_{\partial \Omega} b \varphi_{i} ds}_{=F(\phi_{i})}, \quad i = 1, \dots, \dim(V_{h}).$$

Recall the space V_h and that $\phi_i \in V_h$

$$V_h = \{ \varphi \in C^0(\Omega) \mid \varphi |_K \in \mathbb{P}^p \}$$

Assume $\Omega = (0,1)$ and consider p = 1

We want to solve

$$\sum_{j} U_{j} \underbrace{\int_{\Omega} \varphi_{i} \varphi_{j} + \nabla \varphi_{i} \cdot \nabla \varphi_{j} dx}_{=A_{ij}} = \underbrace{\int_{\partial \Omega} b \varphi_{i} ds}_{=F(\phi_{i})}, \quad i = 1, \dots, \dim(V_{h}).$$

Recall the space V_h and that $\phi_i \in V_h$

$$V_h = \{ \varphi \in C^0(\Omega) \mid \varphi|_K \in \mathbb{P}^p \}$$

Assume $\Omega = (0,1)$ and consider p = 1

* How do the shape (or basis) functions look like?

We want to solve

$$\sum_{j} U_{j} \underbrace{\int_{\Omega} \varphi_{i} \varphi_{j} + \nabla \varphi_{i} \cdot \nabla \varphi_{j} dx}_{=A_{ij}} = \underbrace{\int_{\partial \Omega} b \varphi_{i} ds}_{=F(\phi_{i})}, \quad i = 1, \dots, \dim(V_{h}).$$

Recall the space V_h and that $\phi_i \in V_h$

$$V_h = \{ \varphi \in C^0(\Omega) \mid \varphi|_K \in \mathbb{P}^p \}$$

Assume $\Omega = (0, 1)$ and consider p = 1

- * How do the shape (or basis) functions look like?
- * Let's consider a discretization of Ω .

We want to solve

$$\sum_{j} U_{j} \underbrace{\int_{\Omega} \varphi_{i} \varphi_{j} + \nabla \varphi_{i} \cdot \nabla \varphi_{j} dx}_{=A_{ij}} = \underbrace{\int_{\partial \Omega} b \varphi_{i} ds}_{=F(\phi_{i})}, \quad i = 1, \dots, \dim(V_{h}).$$

Recall the space V_h and that $\phi_i \in V_h$

$$V_h = \{ \varphi \in C^0(\Omega) \mid \varphi|_K \in \mathbb{P}^p \}$$

Assume $\Omega = (0, 1)$ and consider p = 1

- * How do the shape (or basis) functions look like?
- * Let's consider a discretization of Ω .
- * Let's compute the matrices and RHS.

Second example:

Let's consider the 1D equation (from the first week):

$$\partial_t u + a \partial_x u - \mu \partial_{xx} u = r(x), \quad \forall x \in \Omega = (0, 1),$$

with $\mu > 0$.

Second example:

Let's consider the 1D equation (from the first week):

$$\partial_t u + a \partial_x u - \mu \partial_{xx} u = r(x), \quad \forall x \in \Omega = (0, 1),$$

with $\mu >$ 0.

Second example:

Let's consider the 1D equation (from the first week):

$$\partial_t u + a \partial_x u - \mu \partial_{xx} u = r(x), \quad \forall x \in \Omega = (0, 1),$$

with $\mu > 0$.

Get the finite element spatial semi-discretization:

* Consider piecewise linear continuous finite elements.

Second example:

Let's consider the 1D equation (from the first week):

$$\partial_t u + a \partial_x u - \mu \partial_{xx} u = r(x), \quad \forall x \in \Omega = (0, 1),$$

with $\mu > 0$.

- * Consider piecewise linear continuous finite elements.
- * What is the discrete weak formulation?

Second example:

Let's consider the 1D equation (from the first week):

$$\partial_t u + a \partial_x u - \mu \partial_{xx} u = r(x), \quad \forall x \in \Omega = (0, 1),$$

with $\mu > 0$.

- * Consider piecewise linear continuous finite elements.
- * What is the discrete weak formulation?
- * Compute the mass, transport and stiffness matrices.

Second example:

Let's consider the 1D equation (from the first week):

$$\partial_t u + a \partial_x u - \mu \partial_{xx} u = r(x), \quad \forall x \in \Omega = (0, 1),$$

with $\mu > 0$.

- * Consider piecewise linear continuous finite elements.
- * What is the discrete weak formulation?
- * Compute the mass, transport and stiffness matrices.
- * Express the equation for the *i*-th DoF.

Second example:

Let's consider the 1D equation (from the first week):

$$\partial_t u + a \partial_x u - \mu \partial_{xx} u = r(x), \quad \forall x \in \Omega = (0, 1),$$

with $\mu > 0$.

- * Consider piecewise linear continuous finite elements.
- * What is the discrete weak formulation?
- * Compute the mass, transport and stiffness matrices.
- * Express the equation for the *i*-th DoF.
- * Compare this versus the finite difference formulation.

Given the discrete weak formulation we proceeded as follows:

* Identify each matrix and vectors we needed to compute.

- * Identify each matrix and vectors we needed to compute.
- * To compute the matrices and vectors we needed to perform integrals on the domain.

- * Identify each matrix and vectors we needed to compute.
- * To compute the matrices and vectors we needed to perform integrals on the domain.
- * We broke the integration over the domain in elements.

- * Identify each matrix and vectors we needed to compute.
- * To compute the matrices and vectors we needed to perform integrals on the domain.
- * We broke the integration over the domain in elements.
- * We considered any node *i* and its shape function φ_i .

Summary of what we did

Given the discrete weak formulation we proceeded as follows:

- * Identify each matrix and vectors we needed to compute.
- * To compute the matrices and vectors we needed to perform integrals on the domain.
- * We broke the integration over the domain in elements.
- * We considered any node i and its shape function φ_i . Note: if the mesh is not uniform, we need to consider all nodes independently.

Summary of what we did

Given the discrete weak formulation we proceeded as follows:

- * Identify each matrix and vectors we needed to compute.
- * To compute the matrices and vectors we needed to perform integrals on the domain.
- * We broke the integration over the domain in elements.
- * We considered any node i and its shape function φ_i . Note: if the mesh is not uniform, we need to consider all nodes independently.
- * To compute the matrices, for a given node *i*, we considered all *j*-shape functions.

Summary of what we did

Given the discrete weak formulation we proceeded as follows:

- * Identify each matrix and vectors we needed to compute.
- * To compute the matrices and vectors we needed to perform integrals on the domain.
- * We broke the integration over the domain in elements.
- * We considered any node i and its shape function φ_i . Note: if the mesh is not uniform, we need to consider all nodes independently.
- * To compute the matrices, for a given node *i*, we considered all *j*-shape functions.
- * We performed the integration based on a reference element.

We approximate the integrals via quadratures. That is (for 1D),

$$\int_{-1}^{1} f(x) dx \approx \sum_{q=1}^{N_q} w_q f(x_q),$$

where N_q is the number of quadrature points.

We approximate the integrals via quadratures. That is (for 1D),

$$\int_{-1}^{1} f(x) dx \approx \sum_{q=1}^{N_q} w_q f(x_q),$$

where N_q is the number of quadrature points.

We approximate the integrals via quadratures. That is (for 1D),

$$\int_{-1}^1 f(x)dx \approx \sum_{q=1}^{N_q} w_q f(x_q),$$

where N_q is the number of quadrature points.

Gaussian quadratures

* In finite elements, it is common tu use Gaussian quadratures.

We approximate the integrals via quadratures. That is (for 1D),

$$\int_{-1}^1 f(x)dx \approx \sum_{q=1}^{N_q} w_q f(x_q),$$

where N_q is the number of quadrature points.

- * In finite elements, it is common to use Gaussian quadratures.
- * The quad points $\{x_q\}$ are the roots of a polynomial.

We approximate the integrals via quadratures. That is (for 1D),

$$\int_{-1}^1 f(x)dx \approx \sum_{q=1}^{N_q} w_q f(x_q),$$

where N_q is the number of quadrature points.

- * In finite elements, it is common to use Gaussian quadratures.
- * The quad points $\{x_q\}$ are the roots of a polynomial.
- * Gauss-Legendre: $\{x_q\}$ are the roots of Legendre polynomials.

We approximate the integrals via quadratures. That is (for 1D),

$$\int_{-1}^1 f(x)dx \approx \sum_{q=1}^{N_q} w_q f(x_q),$$

where N_q is the number of quadrature points.

- * In finite elements, it is common to use Gaussian quadratures.
- * The quad points $\{x_q\}$ are the roots of a polynomial.
- * Gauss-Legendre: $\{x_q\}$ are the roots of Legendre polynomials.
- * Gauss-Legendre quadrature is exact for polynomials of degree up to $2N_{\alpha}-1$.

Quadrature points

The quadrature points $\{x_1, \ldots, x_{N_q}\}$ are the roots of the Legendre polynomials of degree N_q .

Quadrature points

The quadrature points $\{x_1, \ldots, x_{N_q}\}$ are the roots of the Legendre polynomials of degree N_q .

Quadrature weigths

The weights are defined so that polynomials of degree up to $2N_q - 1$ are integrated exactly.

Quadrature weigths

The weights are defined so that polynomials of degree up to $2N_q - 1$ are integrated exactly.

Example:

Quadrature weigths

The weights are defined so that polynomials of degree up to $2N_q - 1$ are integrated exactly.

Example:

Consider piecewise linear poly. to solve the advection-diffusion eqn.

* What is the highest degree of polynomials that I need to integrate?

Quadrature weigths

The weights are defined so that polynomials of degree up to $2N_q - 1$ are integrated exactly.

Example:

- * What is the highest degree of polynomials that I need to integrate?
- * The highest degree is given by the mass matrix.

Quadrature weigths

The weights are defined so that polynomials of degree up to $2N_q - 1$ are integrated exactly.

Example:

- * What is the highest degree of polynomials that I need to integrate?
- * The highest degree is given by the mass matrix.
- * The integrand of the mass matrix is quadratic.

Quadrature weigths

The weights are defined so that polynomials of degree up to $2N_q - 1$ are integrated exactly.

Example:

- * What is the highest degree of polynomials that I need to integrate?
- * The highest degree is given by the mass matrix.
- * The integrand of the mass matrix is quadratic.
- * Then I need $2N_q 1 \ge 2$. Therefore, $N_q \ge 3/2 \implies N_q = 2$.

Quadrature weigths

The weights are defined so that polynomials of degree up to $2N_q - 1$ are integrated exactly.

Example:

- * What is the highest degree of polynomials that I need to integrate?
- * The highest degree is given by the mass matrix.
- * The integrand of the mass matrix is quadratic.
- * Then I need $2N_q 1 \ge 2$. Therefore, $N_q \ge 3/2 \implies N_q = 2$.
- * With $N_q = 2$, I can integrate exactly polynomials up to degree 3.

Quadrature weigths

The weights are defined so that polynomials of degree up to $2N_q - 1$ are integrated exactly.

Example:

Consider piecewise linear poly. to solve the advection-diffusion eqn.

- * What is the highest degree of polynomials that I need to integrate?
- * The highest degree is given by the mass matrix.
- * The integrand of the mass matrix is quadratic.
- * Then I need $2N_q 1 \ge 2$. Therefore, $N_q \ge 3/2 \implies N_q = 2$.
- * With $N_q = 2$, I can integrate exactly polynomials up to degree 3.

Verify that I can integrate third order polynomials with $N_q = 2$.

The kernel of most FE codes is the FE loop

The kernel of most FE codes is the FE loop

* Loop on elements. We do this since we broke the integral in element integrals.

The kernel of most FE codes is the FE loop

- * Loop on elements. We do this since we broke the integral in element integrals.
- * Compute element based integrals (vectors and matrices).

The kernel of most FE codes is the FE loop

- * Loop on elements. We do this since we broke the integral in element integrals.
- * Compute element based integrals (vectors and matrices).
- * Combine (or assemble) the element integrals to global integrals.

The kernel of most FE codes is the FE loop

- * Loop on elements. We do this since we broke the integral in element integrals.
- * Compute element based integrals (vectors and matrices).
- * Combine (or assemble) the element integrals to global integrals.

How to compute the element based integrals?

The kernel of most FE codes is the FE loop

- * Loop on elements. We do this since we broke the integral in element integrals.
- * Compute element based integrals (vectors and matrices).
- * Combine (or assemble) the element integrals to global integrals.

How to compute the element based integrals?

For each element, proceed as follows:

* Compute all quantities with respect to the reference element.

The kernel of most FE codes is the FE loop

- * Loop on elements. We do this since we broke the integral in element integrals.
- * Compute element based integrals (vectors and matrices).
- * Combine (or assemble) the element integrals to global integrals.

How to compute the element based integrals?

- * Compute all quantities with respect to the reference element.
- * Loop on quadrature points. We do this since we approximate the integrals via quadratures.

The kernel of most FE codes is the FE loop

- * Loop on elements. We do this since we broke the integral in element integrals.
- * Compute element based integrals (vectors and matrices).
- * Combine (or assemble) the element integrals to global integrals.

How to compute the element based integrals?

- * Compute all quantities with respect to the reference element.
- * Loop on quadrature points. We do this since we approximate the integrals via quadratures.
- * Loop on *i*-DoFs.

The kernel of most FE codes is the FE loop

- * Loop on elements. We do this since we broke the integral in element integrals.
- * Compute element based integrals (vectors and matrices).
- * Combine (or assemble) the element integrals to global integrals.

How to compute the element based integrals?

- * Compute all quantities with respect to the reference element.
- * Loop on quadrature points. We do this since we approximate the integrals via quadratures.
- * Loop on *i*-DoFs.
- * Loop on *j*-DoFs and more indices if needed.

The FE loop looks as follows:

for
$$K = 1$$
 to N_{el} do

end for

The FE loop looks as follows:

for K = 1 to N_{el} do Compute quantities wrt reference element.

end for

The FE loop looks as follows:

```
for K=1 to N_{el} do Compute quantities wrt reference element. for q=1 to N_q do
```

end for end for

The FE loop looks as follows:

end for

end for end for

The FE loop looks as follows:

```
for K=1 to N_{el} do

Compute quantities wrt reference element.

for q=1 to N_q do

for i=1 to DoFs per element do

Compute element based vectors.
```

end for

end for end for

end for

```
for K = 1 to N_{el} do
  Compute quantities wrt reference element.
  for q = 1 to N_q do
    for i = 1 to DoFs per element do
      Compute element based vectors.
      for j = 1 to DoFs per element do
      end for
    end for
  end for
```

end for

```
for K = 1 to N_{el} do
  Compute quantities wrt reference element.
  for q = 1 to N_q do
    for i = 1 to DoFs per element do
      Compute element based vectors.
      for j = 1 to DoFs per element do
        Compute element based matrices.
      end for
    end for
  end for
```

```
for K=1 to N_{el} do
  Compute quantities wrt reference element.
  for q = 1 to N_q do
    for i = 1 to DoFs per element do
      Compute element based vectors.
      for j = 1 to DoFs per element do
        Compute element based matrices.
      end for
    end for
    Assemble from local to global operators.
  end for
end for
```