物理不可克隆函数的建模与设计研究

Modeling and Design of Physical Unclonable Functions

报告人 唐文懿

日 期 2016-5-30

内容提要

背景介绍

◆密码:

- ●保护隐私数据
- ●确保数据可靠
- ●身份认证

◆现代密码学:

- ●加密算法
- ●通信协议

◆单向函数:

●密码学的原型(基础)

技术背景

- ◆单向函数(One-Way Function)的存在性尚未被证明*
- ◆有许多应用于实际的"单向函数":
 - RSA: 整数分解问题
 - ECC: 离散对数问题
- ◆物理单向函数:
 - 用物理原理实现单向函数
 - 实现简单
 - 成本低廉
 - 不可复制性

^{*}https://en.wikipedia.org/wiki/Cryptography

技术背景

◆PUF——Physical Unclonable Function (物理不可克隆函数)

• 输入: Challenge

• 输出: Response

• CRP: C-R Pairs

✓不可知物理系统

✓观测点

- Weak PUF
 - CRP空间小
 - · 没有对外IO接口

- Strong PUF
 - CRP空间极大
 - 不可预测性
 - 不受保护的对外IO接口

2016/5/28 背景介绍 5

技术背景

- ◆PUF在电路中的实现
 - 未知物理系统: 制作工艺波动
 - 不可控
 - 不可仿真
 - 观测点: 数字化输出

Arbiter PUF[1]: B. Gassend, "Silicon Physical Random Functions", 2002

评价指标

◆量化指标

- •输出统计特性:
 - 1. (片内分布)随机性: $Rand = \frac{1}{N} \cdot \sum^{N} f(c_i)$
 - 2. (片间分布)独特性: $Uniq = \frac{2}{M(M-1)} \sum_{i=1}^{M} \sum_{j=i+1}^{M} \frac{HD(P_i, P_j)}{N}$
 - 3. 可靠性: $Reliability = \frac{1}{MN} \sum_{j}^{M} \sum_{i}^{N} |f(c') f(c_i)|$
- 逆向计算复杂度O(·)
- ◆理想指标:
 - Strong PUF的**不可预测性**,不能根据CRP某一子集推算 出其他子集或全集

逆向算法——建模攻击

- ◆利用CRP子集,建立PUF模型,通过特定算法拟 合模型参数。
- ◆参数+模型 = CRP全集
- ◆建模攻击评价指标:
 - 算法复杂度
 - 预测率,所需训练集大小

原理分析

背景介绍 建模推导 新结构介绍 总结 □ 技术背景 □ BRPUF简介 □ 电路结构 □ 工作总结 □ 评价指标 □ BRPUF建模 □ 运作机制 □ 前景展望 □ 测试结果 □ 测试结果

BR-PUF

参考文献[2]: Q. Chen, HOST 2011, pp 134-141的设计:

2016/5/28 原理分析 10

现有建模工作

- ◆Q. Chen, *DATE 2012*, pp. 1459—1462:
 - BRPUF的统计分析
- ◆ D. Schuster et., al., *TRUST 2014*, pp. 101—109:
 - 单层神经网络模型
- ◆已有结论:
 - BRPUF存在统计偏差
 - SNN预测率90%
- ◆不足:
 - 偏差根源尚未明确
 - 单层网络模型粗糙

BR-PUF建模推导过程

分析占空比变化

- ◆NAND: 上升沿--下降沿延迟tr,下降沿—上升沿延迟tf
- ◆W: 周期信号占空比

$$W_{i+1} = W_i + \frac{tf_i - tr_i}{T} (-1)^i$$

$$W \in [0,1]$$

$$W > 1 \rightarrow R = 1; W < 0 \rightarrow R = 0$$

BR-PUF建模推导过程

◆每级两个与非门tr, tf设为p, q, r, s

$$R = sgn\left(\sum_{i}^{N} (-1)^{i} \left(\frac{1+c_{i}}{2} (p_{i}-q_{i}) + \frac{1-c_{i}}{2} (r_{i}-s_{i})\right)\right)$$
$$= sgn\left(\sum (\alpha_{i}c_{i}+\beta_{i})\right) = sgn(p'd)$$

复杂度: $O(m \cdot Dim(d)) = O(mn)$

对已有结论的延伸

- ◆收敛状态只与 δ 有关 $R = sgn(\delta) = A'C + B$
- ♦ δ 的分布如下:

•
$$\mu(\delta) = B + \frac{\sum A'C}{2^N} = B, \sigma(\delta) = \frac{1}{2^{N/2}} \sqrt{\sum (A'C)^2} = \sqrt{\sum \alpha_i^2}$$

◆则考察B的分布:

•
$$\sigma(B) = \sqrt{\sum (\sigma^2(\beta_i))}$$

- ◆推论: 片内分布与 δ 均值的方差和 δ 方差的方差之比相关
 - $|Rand 0.5| \propto \frac{\sigma(\sigma(\delta))}{\sigma(\mu(delta))}$
 - BRPUF比值大,片内分布偏差大

建模攻击模拟

BRPUF片内分布仿真 N=32bit

建模攻击预测率仿真曲线 N=32bit, m=x-axis

2016/5/28 原理分析 15

与SNN模型对比

单层神经网络拟合22个BRPUF的预测率分布图[3]

本模型对100个BRPUF的预测率分布图

[3] Dieter Schuster and Robert Hesselbarth, TRUST 2014, pp. 101—109

与其他模型间对比

◆不同PUF适用不同模型,本模型同经典仲裁PUF模型和XOR模型进行横向对比,比较本模型针对BRPUF的预测率和训练集

新结构介绍

Strong PUF设计指标

高不可预测性PUF

- ◆主要指标:
 - 最小线性可分维度 $n \to +\infty$
 - 片内分布 $\mu \rightarrow 0.5$, $\sigma \rightarrow 0$
 - 片间分布 $\mu \rightarrow 0.5$, $\sigma \rightarrow 0$ (工艺相关)
- ◆次要指标:
 - 面积开销
 - 激励——响应速度

Strong PUF研究现状

◆通过增加位宽和XOR算法提高建模算法复杂度[4]

PUF Type	激励位宽	预测率	输出异或个数	训练集CRP	学习时间
仲裁型PUF	128	99%	-	5.5k	0.51s
XOR PUF	64	99%	4	12k	3min42s
		99%	5	80k	2h8min
		99%	6	200k	31h1min
	128	99%	4	24k	2h52min
		99%	5	500k	16h36min
		-	6	-	-
Lightweight PUF	64	99%	4	12k	1h28min
		99%	5	300k	13h6min
		-	6	-	-
	128	99%	4	500k	59min42s
		99%	5	1000k	267days
		-	6	-	-

[4] A. Mahmoud, U. Ruhrmair & M. Majzoobi, IACR 2013: 632

交换器逻辑结构

- ◆交换器实现细节
 - 驱动上升沿/下降沿是不同MOS管

PA-PUF

- ◆结构复用,减少面积
- ◆Pulse Arbiter PUF
 - DFF1-正边沿触发
 - DFF2-负边沿触发

脉冲信号传递

- **◆**W → +∞: 一般情况
- **◆W** → 0: 信号无法传递
- $\bullet W \sim 0: W_i < 0, i \in [1, n)$ Switcher

RPA-PUF

随机脉冲PUF,随机掩码,提高复杂度

- ◆随机码s:
 - S=1: 正脉冲,复位0;

RPA-PUF

- 均不"消失";
- "消失" 其一;
- 均"消失"。

S	Q_1	Q_2	Q_3	Q_4	备注
X	0	1	0	1	正常传递
X	0	1	1	0	正常传递
X	1	0	0	1	正常传递
X	1	0	1	0	正常传递
1	1	1	1	1	负脉冲消失
0	0	0	0	0	正脉冲消失

RPA-PUF

实验结果

◆单次采样:=XOR+随机掩码

◆多次采样:近似XOR

随机性分布对比

RANDOMNESS DISTRIBUTION

独特性分布对比

RPA-PUF建模攻击

- ◆SVM结果
 - RPAPUF使用XOR模型

建模攻击结果对比

- ◆SVM结果
 - RPAPUF使用XOR模型

结论

主要贡献:

- ◆对BRPUF结构建立模型,并成功实施建模攻击;
 - 预测率>99%
 - 训练集<5000 CRPs
- ◆提出新型PUF结构;
 - 新型掩码方式
 - 具有良好的抗建模攻击性
 - 具有良好的统计分布特性

展望:

- ◆PUF高层次应用:协议
- ◆流片实现以及PVT变化分析

攻读硕士学位期间发表的论文

- [1] Wenyi Tang, Song Jia, and Yuan Wang, "A Dual-voltage Single-rail Dynamic DPA-resistant Logic Based on Charge Sharing Mechanism", Electron Devices and Solid-State Circuits (EDSSC), 2015 IEEE International Conference on, 2013: 483-486
- [2] Wenyi Tang, Song Jia, and Yuan Wang, "A Short-time Three-phase Single-rail Precharge Logic Against Differential Power Analysis", IEICE Transactions on Electronics (Accepted)

谢谢!