# Statistics 101C - Week 2 - Thursday

#### Shirong Xu

University of California, Los Angeles shirong@stat.ucla.edu

October 9, 2024

#### Logistic Regression and Logistic Loss function

Logistic Loss function:

$$L(f(\mathbf{x}_i), y_i) = \log \left(1 + \exp(-f(\mathbf{x}_i)y_i)\right)$$

The expected logistic loss (Logistic Risk):

$$\begin{aligned} R_{\log}(f) = & \mathbb{E}_{\boldsymbol{X},Y} \big( L(f(\boldsymbol{X}),Y) \big) \\ = & \mathbb{E}_{\boldsymbol{X}} \Big[ \mathbb{P}(Y=1|\boldsymbol{X}) \log \Big( 1 + \exp(-f(\boldsymbol{X})) \Big) + \mathbb{P}(Y=-1|\boldsymbol{X}) \log \Big( 1 + \exp(f(\boldsymbol{X})) \Big) \Big] \end{aligned}$$

• The optimal function minimizing  $R_{log}(f)$  is defined as

$$f^*_{log}(oldsymbol{X}) = \log\left(rac{\mathbb{P}(Y=1|oldsymbol{X})}{1-\mathbb{P}(Y=1|oldsymbol{X})}
ight)$$



• We can construct a classifier as  $sign(f_{log}^*(\mathbf{x})) \in \{-1,1\}$ . This classifier is identical to the Bayes classifier.

$$\mathsf{sign}(f^*_{log}(\mathbf{\textit{x}})) = \mathsf{sign}(\eta(\mathbf{\textit{x}}) - 1/2)$$

• Suppose we have a dataset  $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ , and we employ the logistic loss for classification. Then the training error in terms of logistic loss can be written as

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \log \left( 1 + \exp(-f(\mathbf{x}_i)y_i) \right)$$

where  $y_i \in \{-1, 1\}$ .

• Suppose we have a dataset  $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ , and we employ the logistic loss for classification. Then the training error in terms of logistic loss can be written as

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \log \left( 1 + \exp(-f(\mathbf{x}_i)y_i) \right)$$

where  $y_i \in \{-1, 1\}$ .

• Here we do not make any assumption of f.

• Suppose we have a dataset  $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ , and we employ the logistic loss for classification. Then the training error in terms of logistic loss can be written as

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \log \left( 1 + \exp(-f(\mathbf{x}_i) y_i) \right)$$

where  $y_i \in \{-1, 1\}$ .

- Here we do not make any assumption of f.
- Question: What if we assume that  $f(\mathbf{x}_i) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i$

If 
$$f(\mathbf{x}_i) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i$$

•  $R_n(f)$  can be further written as

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \log \left( 1 + \exp(-f(\mathbf{x}_i) y_i) \right)$$
$$= \frac{1}{n} \sum_{i=1}^n \log \left( 1 + \exp\left( -(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) y_i \right) \right)$$

• We suppose that  $y_i = 1 \Leftrightarrow \widetilde{y}_i = 1$  and  $y_i = -1 \Leftrightarrow \widetilde{y}_i = 0$ 

$$R_n(f) = \frac{1}{n} \sum_{i=1}^{n} \left[ \widetilde{y}_i \log \left( 1 + \exp \left( - \left( \beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}_i \right) \right) \right) + \left( 1 - \widetilde{y}_i \right) \log \left( 1 + \exp \left( \beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}_i \right) \right) \right]$$

If 
$$f(\mathbf{x}_i) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i$$

• We suppose that  $y_i = 1 \Leftrightarrow \widetilde{y}_i = 1$  and  $y_i = -1 \Leftrightarrow \widetilde{y}_i = 0$ 

$$R_{n}(f) = \frac{1}{n} \sum_{i=1}^{n} \left[ \widetilde{y}_{i} \log \left( 1 + \exp \left( - \left( \beta_{0} + \boldsymbol{\beta}^{T} \boldsymbol{x}_{i} \right) \right) \right) + \left( 1 - \widetilde{y}_{i} \right) \log \left( 1 + \exp \left( \beta_{0} + \boldsymbol{\beta}^{T} \boldsymbol{x}_{i} \right) \right) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[ \widetilde{y}_{i} \log \left( \exp \left( - \left( \beta_{0} + \boldsymbol{\beta}^{T} \boldsymbol{x}_{i} \right) \right) \right) + \log \left( 1 + \exp \left( \beta_{0} + \boldsymbol{\beta}^{T} \boldsymbol{x}_{i} \right) \right) \right]$$

#### Logistic Regression

Logistic regression estimates the conditional probability probability:

$$\mathbb{P}\Big(\widetilde{Y}=1\big|oldsymbol{X}\Big)$$

• In logistic regression, it is assumed that

$$\begin{split} & \mathbb{P}\Big(\widetilde{Y} = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x})}, \\ & \mathbb{P}\Big(\widetilde{Y} = 0 \big| \boldsymbol{X} = \boldsymbol{x}\Big) = \frac{1}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x})}, \end{split}$$

#### where

- $\mathbf{x} = (x_1, \dots, x_p)^T$  is a p-dimensional predictor
- $\beta_0$  and  $\beta = (\beta_1, \dots, \beta_p)$  are unknown parameters
- $\boldsymbol{\beta}^T \boldsymbol{x} = \sum_{i=1}^p \beta_i x_i$



#### Estimation in Logistic Regression

- Suppose a dataset in logistic regression is  $\{(\mathbf{x}_i, \widetilde{y}_i)\}_{i=1}^n$ , here  $\widetilde{y}_i \in \{0, 1\}$ .
- Likelihood function  $L(\beta_0, \beta)$ :

$$L(\beta_0, \boldsymbol{\beta}) = \prod_{i=1}^n \left( \mathbb{P}(\widetilde{Y} = 1 \big| \boldsymbol{X} = \boldsymbol{x}) \right)^{\widetilde{y}_i} \left( \mathbb{P}(\widetilde{Y} = 0 \big| \boldsymbol{X} = \boldsymbol{x}) \right)^{1 - \widetilde{y}_i}$$

#### Negative Log-likelihood

Negative Log-likelihood:

$$\begin{aligned} &-\log L(\beta_0, \boldsymbol{\beta}) \\ &= -\sum_{i=1}^n \left[ \widetilde{y}_i \log \left( \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}_i)}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}_i)} \right) + (1 - \widetilde{y}_i) \log \left( \frac{1}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}_i)} \right) \right] \\ &= \sum_{i=1}^n \left[ \widetilde{y}_i \log \left( \exp(-\beta_0 - \boldsymbol{\beta}^T \boldsymbol{x}_i) \right) + \log \left( 1 + \exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}_i) \right) \right] \end{aligned}$$

If we take the expectation with respect to  $y_i$ , we have

$$\mathbb{P}(\widetilde{y}_i = 1 | \mathbf{x}_i) \log(1 + \exp(-\beta_0 - \boldsymbol{\beta}^T \mathbf{x}_i)) + \mathbb{P}(\widetilde{y}_i = 0 | \mathbf{x}_i) \log(1 + \exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i))$$

#### Conclusion

- Logistic Regression is an special example of using Logistic loss for classification.
- ullet Logistic Regression assumes that the  $\mathbb{P}(\widetilde{Y}=1|oldsymbol{X}=oldsymbol{x})$  as

$$\eta(\mathbf{x}) = \mathbb{P}(\widetilde{Y} = 1 | \mathbf{X} = \mathbf{x}) = \frac{\exp(eta_0 + oldsymbol{eta}^T \mathbf{x})}{1 + \exp(eta_0 + oldsymbol{eta}^T \mathbf{x})}.$$

• The optimal function minimize the logistic risk is  $f^*(\mathbf{x}) = \log(\frac{\eta(\mathbf{x})}{1-\eta(\mathbf{x})}) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}$ .

### Relationship: Logistic Loss and Logistic Regression



#### Contents

- Discriminant Analysis
  - Linear Discriminant Analyses
  - Quadratic Discriminant Analysis

#### Classification

- A typical dataset in classification  $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ .
  - $x_i$ : the covariate vector of *i*-th instance
  - $y_i \in \{0,1\}$ : binary label of *i*-th instance
- Bayes classifier  $f^*$ :

$$f^*(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x}) > 1/2 \\ 0 & \text{if } \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x}) < 1/2 \end{cases}$$

Minimal risk R(f\*):

$$R(f^*) = \mathbb{E}\Big[f^*(\boldsymbol{X}) \neq Y\Big] = \mathbb{E}\Big[\min(\eta(\boldsymbol{X}), 1 - \eta(\boldsymbol{X}))\Big],$$

where 
$$\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$$
.



#### How can we construct classifier?

#### Discriminative models

- Discriminative modeling studies the P(Y|X)
- Examples: Logistic regression (LR)

#### Generative models

- ullet Generative models studies the joint probability distribution  $\mathbb{P}(oldsymbol{X},Y)$
- Examples: linear discriminant analysis and quadratic discriminant analysis

### Discriminant Analysis

- 1 Introduction
- 2 Linear and Quadratic Discriminant Analyses
- 3 LDA and QDA in practice

#### Basics of Generative models

• LDA and QDA are **generative models**, we need to consider the structure of  $\mathbb{P}(X, Y)$ 

$$\mathbb{P}(X, Y) = \mathbb{P}(X|Y)\mathbb{P}(Y)$$
  
 $\mathbb{P}(X, Y) = \mathbb{P}(Y|X)\mathbb{P}(X)$ 

#### An alternative look

Let  $k \in \{0,1\}$ . We can develop an alternative formulation of  $\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x})$  from the definition of conditional probability.

$$\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}) = \frac{\mathbb{P}(\mathbf{X} = \mathbf{x}, Y = k)}{\mathbb{P}(\mathbf{X} = \mathbf{x})} = \frac{\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k) \cdot \mathbb{P}(Y = k)}{\mathbb{P}(\mathbf{X} = \mathbf{x})}$$
$$= \frac{\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k) \cdot \mathbb{P}(Y = k)}{\sum_{k=0}^{1} \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k) \cdot \mathbb{P}(Y = k)}$$

- $\mathbb{P}(X = x)$  the marginal distribution
- $\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x})$ : given  $\mathbf{X} = \mathbf{x}$  the probability that outcome Y = k.

#### Banknote Dataset

|            |           |           |           |          |          | l .       |
|------------|-----------|-----------|-----------|----------|----------|-----------|
| conterfeit | Length    | Left      | Right     | Bottom   | Top      | Diagonal  |
| 0          | 214.70000 | 129.70000 | 129.30000 | 8.60000  | 9.60000  | 141.60000 |
| 0          | 215.40000 | 130.00000 | 129.90000 | 8.50000  | 9.70000  | 141.40000 |
| 0          | 214.90000 | 129.40000 | 129.50000 | 8.20000  | 9.90000  | 141.50000 |
| 0          | 214.50000 | 129.50000 | 129.30000 | 7.40000  | 10.70000 | 141.50000 |
| 0          | 214.70000 | 129.60000 | 129.50000 | 8.30000  | 10.00000 | 142.00000 |
| 0          | 215.60000 | 129.90000 | 129.90000 | 9.00000  | 9.50000  | 141.70000 |
| 0          | 215.00000 | 130.40000 | 130.30000 | 9.10000  | 10.20000 | 141.10000 |
| 0          | 214.40000 | 129.70000 | 129.50000 | 8.00000  | 10.30000 | 141.20000 |
| 0          | 215.10000 | 130.00000 | 129.80000 | 9.10000  | 10.20000 | 141.50000 |
| 0          | 214.70000 | 130.00000 | 129.40000 | 7.80000  | 10.00000 | 141.20000 |
| 1          | 214.40000 | 130.10000 | 130.30000 | 9.70000  | 11.70000 | 139.80000 |
| 1          | 214.90000 | 130.50000 | 130.20000 | 11.00000 | 11.50000 | 139.50000 |
| 1          | 214.90000 | 130.30000 | 130.10000 | 8.70000  | 11.70000 | 140.20000 |
| 1          | 215.00000 | 130.40000 | 130.60000 | 9.90000  | 10.90000 | 140.30000 |
| 1          | 214.70000 | 130.20000 | 130.30000 | 11.80000 | 10.90000 | 139.70000 |
| 1          | 215.00000 | 130.20000 | 130.20000 | 10.60000 | 10.70000 | 139.90000 |
| 1          | 215.30000 | 130.30000 | 130.10000 | 9.30000  | 12.10000 | 140.20000 |

Discriminant Analysis models  $\mathbb{P}(Y|X)$  as follows:

• Step 1: Make assumptions on data structure

Discriminant Analysis models  $\mathbb{P}(Y|X)$  as follows:

- Step 1: Make assumptions on data structure
  - Let  $\pi_k = \mathbb{P}(Y = k)$  be the prior probability of category k = 0, 1

Discriminant Analysis models  $\mathbb{P}(Y|X)$  as follows:

- Step 1: Make assumptions on data structure
  - Let  $\pi_k = \mathbb{P}(Y = k)$  be the prior probability of category k = 0, 1
  - Suppose that  $\mathbb{P}(\mathbf{X}=\mathbf{x}|Y=k)$  is a multivariate normal distribution with mean vector  $\boldsymbol{\mu}_k$  and covariance matrix  $\boldsymbol{\Sigma}_k$

Discriminant Analysis models  $\mathbb{P}(Y|X)$  as follows:

- Step 1: Make assumptions on data structure
  - Let  $\pi_k = \mathbb{P}(Y = k)$  be the prior probability of category k = 0, 1
  - Suppose that  $\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)$  is a multivariate normal distribution with mean vector  $\boldsymbol{\mu}_k$  and covariance matrix  $\boldsymbol{\Sigma}_k$



Figure: Black ellipsoid: covariance structure of genuine group. Green ellipsoid: covariance structure of the counterfeit group

•  $\mathbb{P}(X = x | Y = k)$  is a multivariate normal distribution with mean  $\mu_k$  and covariance matrix  $\Sigma_k$ .

$$\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = k) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k)\right),$$

where

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}, \boldsymbol{\mu}_k = \begin{pmatrix} \mu_{1,k} \\ \mu_{2,k} \\ \vdots \\ \mu_{p,k} \end{pmatrix}, \boldsymbol{\Sigma}_k = \begin{pmatrix} \sigma_{1,1,k}^2 & \sigma_{1,2,k}^2 & \cdots & \sigma_{2,2,k}^2 \\ \sigma_{2,1,k}^2 & \sigma_{2,2,k}^2 & \cdots & \sigma_{2,p,k}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p,1,k}^2 & \sigma_{p,2,k}^2 & \cdots & \sigma_{p,p,k}^2 \end{pmatrix}.$$

• Step 2: We use the Bayes' theorem to compute  $\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}), k = 0, 1.$ 

$$\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}) = \frac{\pi_k \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 0)}$$

• Step 2: We use the Bayes' theorem to compute  $\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}), k = 0, 1.$ 

$$\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}) = \frac{\pi_k \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 0)}$$

**Question**: What is the difference between Linear and Quadratic discriminant analyses?

• Step 2: We use the Bayes' theorem to compute  $\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}), k = 0, 1.$ 

$$\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}) = \frac{\pi_k \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 0)}$$

**Question**: What is the difference between Linear and Quadratic discriminant analyses?

- Linear Discriminant Analysis (LDA) assumes that the classes have a common covariance matrix. In other words, that is  $\Sigma=\Sigma_0=\Sigma_1$
- Quadratic Discriminant Analysis (QDA) does not assumes this. So, we have a covariance matrix  $\Sigma_0$  for class 0 and  $\Sigma_1$  for class 1.

Three Assumptions in LDA

#### Three Assumptions in LDA

1 Multivariate normal distribution for each group, that  $\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)$  is multivariate normal

#### Three Assumptions in LDA

- 1 Multivariate normal distribution for each group, that  $\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)$  is multivariate normal
- 2 They have different mean vectors

#### Three Assumptions in LDA

- 1 Multivariate normal distribution for each group, that  $\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)$  is multivariate normal
- 2 They have different mean vectors
- 3 Same covariance matrices



#### Use LDA for classification

We make predictions using LDA as follows:

$$f_{LDA}(\mathbf{x}) = \begin{cases} 1, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} > 0.5\\ 0, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} \le 0.5 \end{cases}$$

#### Use LDA for classification

We make predictions using LDA as follows:

$$f_{LDA}(\mathbf{x}) = \begin{cases} 1, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} > 0.5\\ 0, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} \le 0.5 \end{cases}$$

Conclusions we can make

1 Similar to the Bayes classifier, we classify to the most probable class using the posterior probability

#### Use LDA for classification

We make predictions using LDA as follows:

$$f_{LDA}(\mathbf{x}) = \begin{cases} 1, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} > 0.5\\ 0, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} \le 0.5 \end{cases}$$

Conclusions we can make

- 1 Similar to the Bayes classifier, we classify to the most probable class using the posterior probability
- 2 The decision boundary can be easily derived as

$$\frac{\pi_1 \mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = 1)}{\pi_1 \mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = 1) + \pi_0 \mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = 0)} = 1/2$$

$$\Leftrightarrow \log \frac{\pi_1}{\pi_0} + \log \frac{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = 1)}{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = 0)} = 0.$$

#### Decision boundary in LDA

A closer look at the decision boundary.

$$\log \frac{\pi_{1}}{\pi_{0}} + \log \frac{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | \boldsymbol{Y} = 1)}{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | \boldsymbol{Y} = 0)} = 0$$

$$\Leftrightarrow \log \frac{\pi_{1}}{\pi_{0}} + \boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} (\mu_{1} - \mu_{0}) - \frac{1}{2} \boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{1} + \frac{1}{2} \boldsymbol{\mu}_{0}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{0} = 0$$

$$\Leftrightarrow \log \frac{\pi_{1}}{\pi_{0}} + \boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} (\mu_{1} - \mu_{0}) - \frac{1}{2} (\mu_{1} + \mu_{0})^{T} \boldsymbol{\Sigma}^{-1} (\mu_{1} - \mu_{0}) = 0.$$

## Decision boundary in LDA

A closer look at the decision boundary.

$$\begin{split} \log \frac{\pi_{1}}{\pi_{0}} + \log \frac{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = 1)}{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = 0)} &= 0 \\ \updownarrow \\ \log \frac{\pi_{1}}{\pi_{0}} + \boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} (\mu_{1} - \mu_{0}) - \frac{1}{2} \boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{1} + \frac{1}{2} \boldsymbol{\mu}_{0}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{0} &= 0 \\ \updownarrow \\ \log \frac{\pi_{1}}{\pi_{0}} + \boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} (\mu_{1} - \mu_{0}) - \frac{1}{2} (\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0}) &= 0. \end{split}$$

The decision boundary can be written as (a linear equation)

$$\mathbf{x}^T C_1(\boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) + C_2(\boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) = 0,$$

where 
$$C_1(\mu_0, \mu_1, \Sigma) = \Sigma^{-1}(\mu_1 - \mu_0)$$
 and  $C_2(\mu_0, \mu_1, \Sigma) = \log \frac{\pi_1}{\pi_0} - \frac{1}{2}(\mu_1 + \mu_0)^T \Sigma^{-1}(\mu_1 - \mu_0)$ .

### Parameter estimation in LDA

Thanks to the formulation of LDA, we can easily estimate its parameters.

• The prior probability  $\pi_0$  and  $\pi_1$ .

$$\widehat{\pi}_0 = \frac{n_0}{n_0 + n_1} \text{ and } \widehat{\pi}_1 = \frac{n_1}{n_0 + n_1},$$

where  $n_k$  is the number of observations in the training data set that belong to class.

### Parameter estimation in LDA

Thanks to the formulation of LDA, we can easily estimate its parameters.

• The prior probability  $\pi_0$  and  $\pi_1$ .

$$\widehat{\pi}_0 = \frac{n_0}{n_0 + n_1} \text{ and } \widehat{\pi}_1 = \frac{n_1}{n_0 + n_1},$$

where  $n_k$  is the number of observations in the training data set that belong to class.

The means are estimated as

$$\widehat{\boldsymbol{\mu}}_k = \frac{1}{n_k} \sum_{i: y_i = k} \boldsymbol{x}_i, k = 0, 1$$

### Parameter estimation in LDA

Thanks to the formulation of LDA, we can easily estimate its parameters.

• The prior probability  $\pi_0$  and  $\pi_1$ .

$$\widehat{\pi}_0 = \frac{n_0}{n_0 + n_1} \text{ and } \widehat{\pi}_1 = \frac{n_1}{n_0 + n_1},$$

where  $n_k$  is the number of observations in the training data set that belong to class.

The means are estimated as

$$\widehat{\boldsymbol{\mu}}_k = \frac{1}{n_k} \sum_{i: y_i = k} \boldsymbol{x}_i, k = 0, 1$$

The covariance matrices are estimated as

$$\widehat{\Sigma} = \frac{1}{n-2} \sum_{k=0}^{1} \sum_{i:v_i=k} (\mathbf{x}_i - \widehat{\boldsymbol{\mu}}_k) (\mathbf{x}_i - \widehat{\boldsymbol{\mu}}_k)^T$$



# Quadratic Discriminant Analysis (QDA)

#### Three Assumptions in QDA

- 1 Multivariate normal distribution for each group, that  $\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)$  is multivariate normal
- 2 They have different mean vectors
- 3 Different covariance matrices



Figure: Different covariance structures

# Decision boundary in QDA

We follow a similar analysis of QDA as with LDA. After some algebra, we arrive to the following (interesting) equation:

$$\log \frac{\pi_1}{\pi_0} - \frac{1}{2} \mathbf{x}^T (\mathbf{\Sigma}_1^{-1} - \mathbf{\Sigma}_0^{-1}) \mathbf{x} + \mathbf{x}^T (\mathbf{\Sigma}_1^{-1} \boldsymbol{\mu}_1 - \mathbf{\Sigma}_0^{-1} \boldsymbol{\mu}_0) + \dots = 0$$

#### Conclusion

The decision boundary in QDA is a quadratic function

# LDA vs QDA

The difference between LDA and QDA can be summarized as

- LDA is simpler than QDA. (LDA is a special case of QDA)
- QDA needs to estimate more parameters. One covariance matrix for each class.
- LDA is much less flexible than QDA, but this also means that it has low variance
- If the assumptions of LDA do not hold, then it can lead to poor estimates and so, a high bias.

### Exercise: Prediction of counterfeit banknotes

|            |           |           | n. I.     |          | _        |           |
|------------|-----------|-----------|-----------|----------|----------|-----------|
| conterfeit | Length    | Left      | Right     | Bottom   | Тор      | Diagonal  |
| 0          | 214.70000 | 129.70000 | 129.30000 | 8.60000  | 9.60000  | 141.60000 |
| 0          | 215.40000 | 130.00000 | 129.90000 | 8.50000  | 9.70000  | 141.40000 |
| 0          | 214.90000 | 129.40000 | 129.50000 | 8.20000  | 9.90000  | 141.50000 |
| 0          | 214.50000 | 129.50000 | 129.30000 | 7.40000  | 10.70000 | 141.50000 |
| 0          | 214.70000 | 129.60000 | 129.50000 | 8.30000  | 10.00000 | 142.00000 |
| 0          | 215.60000 | 129.90000 | 129.90000 | 9.00000  | 9.50000  | 141.70000 |
| 0          | 215.00000 | 130.40000 | 130.30000 | 9.10000  | 10.20000 | 141.10000 |
| 0          | 214.40000 | 129.70000 | 129.50000 | 8.00000  | 10.30000 | 141.20000 |
| 0          | 215.10000 | 130.00000 | 129.80000 | 9.10000  | 10.20000 | 141.50000 |
| 0          | 214.70000 | 130.00000 | 129.40000 | 7.80000  | 10.00000 | 141.20000 |
| 1          | 214.40000 | 130.10000 | 130.30000 | 9.70000  | 11.70000 | 139.80000 |
| 1          | 214.90000 | 130.50000 | 130.20000 | 11.00000 | 11.50000 | 139.50000 |
| 1          | 214.90000 | 130.30000 | 130.10000 | 8.70000  | 11.70000 | 140.20000 |
| 1          | 215.00000 | 130.40000 | 130.60000 | 9.90000  | 10.90000 | 140.30000 |
| 1          | 214.70000 | 130.20000 | 130.30000 | 11.80000 | 10.90000 | 139.70000 |
| 1          | 215.00000 | 130.20000 | 130.20000 | 10.60000 | 10.70000 | 139.90000 |
| 1          | 215.30000 | 130.30000 | 130.10000 | 9.30000  | 12.10000 | 140.20000 |

- Length: length of banknote (mm)
- Left: length of left edge (mm)
- Right: length of right edge (mm)
- Top: distance from the image to top edge
- Bottom: distance from image to bottom
- Diagonal: length of diagonal (mm)
  - counterfeit: 1 means counterfeit and 0 means genuine



## Exercise: Prediction of counterfeit banknotes using R

 Step 1: Loading the dataset and split the dataset into training set and testing set:

```
library(mclust)
# Load the data set.
data(banknote)
banknote$Status<-factor(banknote$Status,levels=c("genuine", "counterfeit"))
# Split into training and test data.
set.seed(123) # Set seed to reproduce results.
i <- 1:dim(banknote)[1]
# Generate a random sample.
i.train <- sample(i, 130, replace = F) # 130 samples are used for training
bn.train <- banknote[i.train,] # training dataset
bn.test <- banknote[-i.train,] # testing dataset</pre>
```

Step 2: Implement LDA and make prediction by LDA

# Exercise: Prediction of counterfeit banknotes using R

Result:

• Conclusion: The prediction accuracy of LDA is (30+33)/70=0.9.

## Exercise: Prediction of counterfeit banknotes using R

Implementation of QDA

Result:

• Conclusion: The prediction accuracy of LDA is (29+34)/70=0.9. No improvement is observed.

## Some questions

- Can you finish an implementation of LDA and QDA in R or Python?
- Can you summarize the difference between Logistic regression, LDA, and QDA?
- What is the difference between generative model and discriminative model?
- Is K-nearest neighbor classifier a generative model or a discriminative model?