Hidden Markor Models

Midden Markon Models are probabilistic models

They are used to find probabilities of
sequences of events.

based on the sequences, questions can be answered

Day	Temperature	Icecreames
		lareh
Monday	Not,	2
luesdan	Hot	1
Vednersday	Cold	0
Morday Luesday Vednersday	Cold	0

What is the probability that I will eat 2 icecreames tomorrow?

What is the temperature on thursday for I ate 2 icecreames on Friday?

HMMs are kind of system called Finite or Discrete Markov model.

Norkov model is a finite state machine with N distinct states begins at t = 1 in Initial state

Moves from one state to another state according to probabilities Associated with current state

Number of states are finite

q; is probability of moving from state q; to a;

× = 1 + k

is sum of all outgoing arrows = 1

Hidden Markon Model

MMM is a stastical model in which the system is assumed to be markon process with unobserved hidden states

Consists of states S, S2 S3

P(S_{ij} | S_{i1}, S_{j2},...S_{ik-1}) = P(S_{ik} | S_{ik-1}) (Markor property)

A -> set of transition probabilities

B→ set of ontput probabilities 11→ initial probabilities

b,, + b,2 + b; + b,4 = 1 b,1 + b,2 + b,3 + b,4 = 1 3 output Probability

Markov property: The current state of system depends only on the previous state of system

 $M = 2A, B, \pi$

state of time T+, depends on state at T

Markov models obey the Markov property

Given M(A,B,T) & a segnence O we can do solve 3 problems -> O is a sequence (No of icecreames eater this week 1,2,0,0,2,2,1) States are hidden states traversed
(Temperature of week
Not, Not, Cold....) (1) Evaluation problem -> calculate the probability that model generates & 2) Decoding problem -> calculate the most likely sequence of states visited for or 3 Learning problem -> Determine HMM
parameters that fit or Jupervised Unsupervised

Gradient Viterhi Gradient EM Evaluation Decoding Maximum Likelyhood

O S= 3 Not, Cold 3 Day type Midden states V= ? V, V2 V, } No of lieureames output consumed states Example segnence 7/2 - VI 1/4 = 1/2 Transmission Matrix V, V₂ V₃
0·1 0·4 0·5
0·7 0·2 0·(emission N C intil state T(-Find probability that sequence X will be recorded Day O Prior probabilities (Day 1 For first sequence 21 = V2 H -> (0.6 x 0.7 x 0.4) + (0.4 x 0.4 x 0.4) = 0.232 (-> (0-4 x 0-6 x 0-2) + (0-6 x 0-3 x 0-2) = 0.084 i.o.316 is probability of buying 2 icecremes on day 1 Day 2 0.316 0.11 x2 - V3 N= 0.232 × 0.4 × ···· + 0.732 × .. (= 0.084 x 0.6 x ... +0.084x.... and so on We get V, = 0.3)6 V2 = 0.11 V3= 0.03296 V4 = 0.00966 This is the probability of the sequences day wise finally Probability of seguence is $P(x_1) \times P(x_2) \times \cdots$ = 0.316 x 0.11 x This is the probability that sequence V, V2 V2 V4 will be recorded "Evaluation problem"

Note

We are NOT finding a random walk (linlike Markor chains) In random walk, probabilities are calculated only from the past inputs h evaluation problem, we are given the x dataset (eg no of items eater) Probability is of day X Hence the probability of outputs is also included In dewding problem, X is given also the path I is to be found out Hence the most likely paths are kept the paths are not added. -> chosen Evaluation

Decoding -> Added

MMM Learning (Training) HMM can be used in Supervised as well as unsupervised scenerios Supervised - Data consists of sequences of observations along with the corresponding sequences of hidden states Comperature, icecreames -> known Unsupervised -> No information hidden states only observed sequences Only icecreames known There are many methods for MMM learning 1) Maximum likelyhood estimation - (Unsupervised) letimate parameters that maximize the likelyhood of the observed data square Baum Welch algorithms are used © Expectation Maximization algorithm based training
(Unsupervised) Initializa A, B, TI for an observed sequence O E: Calculate probability at being in state

S at time t given o M: Update transition probabilities 3 Viterbi training - when true state sequence is known or can be estimated (supervised) (4) Gradient based optimizations Adjust parameters based on gradient descent on target functions (Supervised, Unsupervised)

Advantages -> OF lexibility

3 Efficiency (Son cost) 3 Interpretable Disadvantages -> 1) Markov property may rot hold always

3) Not as robust as NN

Applications - D Gene Prediction

D NLP (POS tagging)

3 SLAM (Pobotics)

(4) Speech recognition