

Integration of longitudinal quality metrics enhances differential analysis in noisy large-scale Mass Spectrometry(MS)-based proteomics experiments

Devon Kohler^{1,2}; Eralp Dogu³; Manuel Magana⁴; Mrittika Bhattacharya⁴; Ozge Karayel⁴; Veronica G Anania⁴; Olga Vitek^{1,2}

- 1. Northeastern University, Boston, MA;
- 2. Barnett Institute for Chemical and Biological Analysis, Boston, MA;
 - 3. Mugla Sitki Kocman University, Köstekli, Turkey;
 - Genentech Inc., South San Francisco, CA;

Conflict of Interest

Veronica G. Anania, Manuel Magana, Ozge Karayel and Mrittika Bhattacharya are employees of Genentech

Maintaining data quality becomes harder as experiments increase in scale and complexity

- Poor quantitative values persist even when leveraging advanced tools
- Existing statistical solutions largely target intensity-based corrections
- We propose a method that leverages spectral peak quality metrics to enhance differential analysis

Outline

- Problem statement
- Background
 - Existing differential analysis methods
 - Informative quality metrics from spectral processing tools
- Incorporating quality metrics into differential analysis
- Case study and benchmarking

Standard summarization-based differential analysis workflow

Feature selection removes fragments which adversely affect summarization

Top-N selection

Best features

Tsai *et al*. Molecular & Cellular Proteomics, 19 (6), 944 – 959. (2020).

Fischer et al. Bioinformatics, 32(7), 1040-1047. (2016).

Intensity-based feature selection can create a double dipping problem

Double dipping can lead to false positives

Hivert et al. Computational Statistics & Data Analysis. Vol 193. (2024)

Outline

- Problem statement
- Background
 - Existing differential analysis methods
 - Informative quality metrics from spectral processing tools
- Incorporating quality metrics into differential analysis
- Case study and benchmarking

Spectral processing tools provide metrics which are informative of the quantification accuracy

Longitudinal context provides additional insight from quality metrics

- Including time of collection as another dimension can help identify instrumental trends
- Temporal aspect can reveal drift, degradation, or batch effects
- Can correct for instrument performance on a precursor level (as opposed to experiment-wide)

Outline

- Problem statement
- Background
- Incorporating quality metrics into differential analysis
- Case study and benchmarking

Replace feature selection with quality metric weighting

Isolation forest translates quality metrics into informative weights

- Unsupervised anomaly detection algorithm
- No labels required and can automatically adapt to new data
- Highly anomalous values are treated as poor quality
- Incorporate longitudinal features via feature engineering

Regaya et al. Multimed Tools Appl. 80, 28161-28177 (2021).

Anomaly scores integrate quality metrics

K562 benchmark – ISPD – ALAEDIQINSK 2

Anomaly model broadly correlates with intensities without ever seeing them

Incorporate quality weights into summarization and differential analysis

Protein summarization using weighted least squares with anomaly scores as weights

$$y_{ijkl} = \mu + Run_{ijk} + Feature_l + \epsilon_{ijkl}$$
 where
$$\sum_{i=1}^{I} Run_i = 0 \text{ and } \sum_{j=1}^{J} Feature_j = 0$$

$$\epsilon_{ijkl} \sim N(0, \sigma^2)$$

Define weight w_i as the reciprocal of the σ_i^2 in maximum likelihood

$$w_{ijkl} = \frac{1}{a_{ijkl}}$$

Define weighted loss function

$$\sum_{n=1}^{ijkl} w_n (y_n - \mu + Run_{ijk} + Feature_l)^2$$

Outline

- Problem statement
- Background
- Incorporating quality metrics into differential analysis
- Case study and benchmarking

Benchmarking strategy

- Experimental data
 - K562 + CSF benchmark experiments
 - Biological mixture data
 - Real world clinical study
- Comparison methods
 - Base MSstats
 - msqrob2
 - MaxLFQ + limma
 - DEqMS

Design of K562 and CSF experiments

- Two experiments using K562 cell lines and CSF samples
- Two conditions with one log₂
 fold change difference
- First 30 runs show consistent, high-quality measurements
- Last 10 runs drift to lower intensities

K562 experiment case study – A4D126

Isolation forest transforms quality metrics into anomaly scores

ALAEDQINSK

Anomaly Score - ALAEDQINSK

Anomaly scores calculated across all precursors and used in weighted summarization

Anomaly Score - A4D126

Summarized Intensities - A4D126

Quality weighted differential analysis reduces standard error

K562 Benchmark - A4D126

Model	Log Fold Change*	Standard Error	Adj P-value
Proposed	-1.17	.25	.002
MSstats	-1.16	.45	.680

^{*} True log₂ fold change = -1

K562 Benchmark

CSF Benchmark

Mixture data experimental design

- Human, Yeast, and E. coli mixed at 6 different concentrations
- Measured on an Orbitrap Astral and acquired with DIA
- ~12,000 proteins measured across all organisms

Guzman et al. Nat Biotechnol 42, 1855–1866 (2024).

The proposed approach maintained performance even without many low quality quantifications

Mixture Study Method Comparison

Best controlled FDR while providing similar power

CSF analysis of semorinemab Ph2 trials in Alzheimer's disease

- Large cerebrospinal fluid clinical proteomics dataset studying
 Alzheimer's disease
- More than 250 CSF samples
- ~3500 proteins measured (random 1000 protein subset for analysis)
- Acquired with DIA

Clear area of poorly quantified runs near end of collection

Summarized Intensities - Q6UX73

The proposed approach identified more differential proteins compared to existing methods

- Subset subjects into two groups
 - Low and High ClinicalDementia Rating (CDRSB)
- Test for differentially abundant proteins between CDRSB groups

Conclusions

- Peak quality model automatically detects poorly quantified measurements without relying on double-dipping strategies
- Shown to increase power in highly variable datasets while broadly reducing FDR
- Beta implementation in MSstats and preprint out shortly

Acknowledgements

Northeastern University

OLGA VITEK LAB

Statistical Methods For Studies Of Biomolecular Systems

Northeastern

Olga Vitek

Sarah Szvetecz

Tony Wu

Anshuman Raina

Genentech

Veronica Anania

Mrittika Bhattacharya

Ozge Karayel Eren

Manuel Magana

Mugla Sitki Kocman University

Eralp Dogu

University of Wrocław

Mateusz Staniak

Monday poster

Yinyue Zhu et al

MP 419: TIMSImaging: a Python package for trapped-ion mobility spectrometry imaging processing

Monday poster

Ethan Rogers et al

MP 417: Statistical principles define an open-source analysis workflow for MSI with complex designs

Monday poster

Sai Lakkimsetty et al

MP 422: Teadrop: Unsupervised coregistration of H&E and MSI experiments with neural networks

Wednesday poster

Sarah Szvetecz et al

WP 319: Semi-parametric models improve detection of drug-protein interactions in chemoproteomics