

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS FO Box 1430 Alexandria, Virginia 22313-1450 www.tepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/634,080	08/04/2003	Thomas M. Tirpak	33692.02.2745	5254
23418 VEDDER PRI	23418 7590 04/06/2010 VEDDER PRICE P.C.		EXAMINER	
222 N. LASALLE STREET			MORRISON, JAY A	
CHICAGO, IL 60601			ART UNIT	PAPER NUMBER
			2168	
			MAIL DATE	DELIVERY MODE
			04/06/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/634.080 TIRPAK ET AL. Office Action Summary Examiner Art Unit JAY A. MORRISON 2168 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 23 March 2010. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1.5-12.14-22.25 and 27-29 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1.5-12.14-22.25 and 27-29 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

U.S. Patent and Trademark Office PTOL-326 (Rev. 08-06)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date

Notice of Draftsperson's Patent Drawing Review (PTO-948)

information Disclosure Statement(s) (PTO/SB/06)

Attachment(s)

4) Interview Summary (PTO-413)

Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

Application/Control Number: 10/634,080 Page 2

Art Unit: 2168

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 3/23/2010 has been entered.

Remarks

2. Claims 1, 5-12, 14-22, 25, and 27-29 are pending.

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 2168

The factual inquiries set forth in *Graham* v. *John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

- 1. Determining the scope and contents of the prior art.
- 2. Ascertaining the differences between the prior art and the claims at issue.
- 3. Resolving the level of ordinary skill in the pertinent art.
- Considering objective evidence present in the application indicating obviousness or nonobviousness.

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

4. Claims 1, 5-12, 14-22, 25 and 27-29 are rejected under 35 U.S.C. 103(a) as being unpatentable over <u>Liu et al.</u> (<u>'Liu'</u> hereinafter) ("XWRAP: an XML-enabled wrapper construction system for Webinformation sources", Proceedings of the 16th International Conference on Data Engineering, Publication Date: 2000, pgs 611-621) in view of <u>Keith</u> (Patent Number 6,629,097).

As per claim 1. Liu teaches

Art Unit: 2168

A data management system comprising: (see abstract, where XWRAP inherently needs to work on a system for managing data)

a processing device; (users use mouse to select means there is a processing device, abstract, second paragraph)

memory containing executable instructions that cause the processing device to perform as a knowledge container creator module operative to create at least a first data descriptor item and at least a second data descriptor item (encoding extraction rules into XML template, pages 3-4, section 2.1, "Code Generation" paragraph) based upon a data item (XML template file, page 14, section 4.3, third paragraph), and to link the data item to at the least a first data descriptor item, and to link the data item to the at least a second data descriptor item (XWRAP creates parse tree where leafs act as links, page 12, section 4.2, "Example 3");

and wherein the first data descriptor item is in the form of a context descriptor (XML templates contain field for specified source document fields, page 15, section 4.3, fourth paragraph), and wherein the second data descriptor item is in the form of at least a data access instructions descriptor that provides instructions on how to access the new data in the raw data file (XML templates containing processing instructions, page 14, section 4.3, fourth paragraph).

<u>Liu</u> does not explicitly indicate "raw", "where in the raw data item is in a plurality of different formats" and "that is in a plurality of different formats".

However, <u>Keith</u> discloses "raw" (raw data processing, column 25, lines 53-54), "where in the raw data item is in a plurality of different formats" (raw data processing,

Art Unit: 2168

column 25, lines 53-54; myriad of sources, column 18, lines 8-20) and "that is in a plurality of different formats" (any text source can be used as input, column 18, lines 12-15).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw", "where in the raw data item is in a plurality of different formats" and "that is in a plurality of different formats" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 5, Keith teaches

A data management system comprising: (see abstract, where XWRAP inherently needs to work on a system for managing data)

a processing device; (users use mouse to select means there is a processing device, abstract, second paragraph)

and memory containing executable instructions that cause the processing device to perform as a knowledge container creator module, to at least a first data descriptor item, in XML format (XML template file, page 14, section 4.3, third paragraph), wherein the first data descriptor item is in the form of a context descriptor containing descriptive information about the data item (XML templates contain field for specified source document fields, page 15, section 4.3, fourth paragraph), and wherein the knowledge

Art Unit: 2168

container creator module is operative to link the data item to at least a second data descriptor item, in XML format (XWRAP creates parse tree where leafs act as links, page 12, section 4.2, "Example 3"), wherein the second data descriptor item is in the form of at least a data access instructions descriptor, providing instructions on how to access the data in the data item; (XML templates containing processing instructions, page 15, section 4.3, fourth paragraph)

a knowledge container searcher module operative to retrieve the data item by searching at least one of: the first and second data descriptor items; (XML templates containing field identifiers and instructions for processing source, page 14, section 4.3, fourth paragraph)

a base knowledge container update module that is operative to format the data item into a specific XML knowledge container format. (XML output which can be parsed, page 2, section 1, fourth paragraph)

<u>Liu</u> does not explicitly indicate "raw", "operative to link a data item that is in a plurality of different formats" and "that is in a plurality of different formats".

However, Keith discloses "raw" (raw data processing, column 25, lines 53-54), "operative to link a data item that is in a plurality of different formats" (myriad of sources, column 18, lines 8-20) and "that is in a plurality of different formats" (any text source can be used as input, column 18, lines 12-15).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw", "operative to link a data item that is in a plurality of different formats" and "that is in a

Art Unit: 2168

plurality of different formats" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 6, Liu teaches

the knowledge container creator module is operative to generate the first data descriptor item based upon the data item (code generator produces XML template, page 3-4, section 2.1, "Code Generation" paragraph).

Liu does not explicitly indicate "raw".

However, Keith discloses "raw" (raw data processing, column 25, lines 53-54). It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 7, Liu teaches

a base knowledge container update module that is operative to generate the second data descriptor item based upon the data item (generate wrapper, page 3-4, section 2.1. "Testing and Packing" paragraph).

Art Unit: 2168

Liu does not explicitly indicate "raw".

However, Keith discloses "raw" (raw data processing, column 25, lines 53-54).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 8, Liu teaches

a base knowledge container update module that is operative to format the first and second data descriptor items in XML knowledge container format. (XML templates, page 3, section 2.1, "Code Generation" paragraph)

As per claim 9, Liu teaches

a knowledge container administrator module operative to modify a template descriptor item (update, pages 3-4, section 2.1, "Testing and Packing" paragraph), for creating the first data descriptor item and for searching the first and second data descriptor items, wherein the template descriptor item includes at least one of: template knowledge containers (XML templates, pages 3-4, section 2.1, "Testing and Packing" paragraph), for providing the inputs for entering the context descriptor, search template knowledge containers, for providing the inputs for searching the data descriptor items

Art Unit: 2168

(testing structure and steps, assigning information to wrapper, pages 3-4, section 2.1, "Testing and Packing" paragraph).

<u>Liu</u> does not explicitly indicate "raw" and "and dictionary knowledge containers, for identifying keywords".

However, <u>Keith</u> discloses "raw" (raw data processing, column 25, lines 53-54) and "and dictionary knowledge containers, for identifying keywords" (column 25, lines 44-47).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 10, Liu teaches

modifying template descriptor item includes at least one of: adding fields, removing fields, adding keywords and removing keywords (updates to rules, pages 3-4, section 2.1, "Testing and Packing" paragraph).

As per claim 11, Liu teaches

a knowledge container administrator module operative to create knowledge transformation information by extrapolating data from the data item and operative to link

Art Unit: 2168

the data item to the knowledge transformation information (XWRAP creates parse tree where leafs act as links, page 12, section 4.2. "Example 3").

Liu does not explicitly indicate "raw".

However, Keith discloses "raw" (raw data processing, column 25, lines 53-54).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 12, <u>Liu</u> teaches

the knowledge container administrator module is operative to create a knowledge model using knowledge discovery techniques on the data item in the form of at least one of: decision trees, rule sets, neural networks and expression trees (page 3, section 2.1, "Code Generation" paragraph).

Liu does not explicitly indicate "raw".

However, Keith discloses "raw" (raw data processing, column 25, lines 53-54).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives

Art Unit: 2168

the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 14. Liu teaches

the base knowledge container update module (page 3-4, section 2.1, "Testing and Packing" paragraph).

<u>Liu</u> does not explicitly indicate "generates a keyword descriptor by processing the raw data item".

However, Keith discloses "generates a keyword descriptor by processing the raw data item" (column 25, lines 53-58).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "generates a keyword descriptor by processing the raw data item" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 15, <u>Liu</u> teaches

a knowledge container database operative to store the data item, the first data descriptor item, and the second data descriptor item (XML templates and resulting XML file, page 14, section 4.3, fourth full paragraph).

Art Unit: 2168

Liu does not explicitly indicate "raw".

However, Keith discloses "raw" (raw data processing, column 25, lines 53-54). It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 16, Liu teaches

the base knowledge container comprises: a knowledge source depository containing the data item (source document, page 5, section 2.2, third paragraph);

and a metaknowledge depository containing the at least two data descriptor items associated with the data item (rules, pages 3-4, section 2.1, "Code Generation" paragraph; rulebase, figure 1).

Liu does not explicitly indicate "raw".

However, <u>Keith</u> discloses "raw" (raw data processing, column 25, lines 53-54). It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the

Art Unit: 2168

advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 17. Liu teaches

the base knowledge container further comprises a knowledge representation depository containing the knowledge transformation information generated from the data item (resulting XML file, page 14, section 4.3, fourth full paragraph; figure 10).

Liu does not explicitly indicate "raw".

However, Keith discloses "raw" (raw data processing, column 25, lines 53-54).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 18, <u>Liu</u> teaches

the knowledge transformation information is in the form of at least one of: knowledge model and summary report (resulting XML file contains information about the processed data file, page 14, section 4.3, fourth full paragraph; figure 10).

As per claim 19, Liu teaches

Art Unit: 2168

the knowledge model is in the form of at least one of: decision trees, rule sets, neural networks and expression trees (rules, section 2.1, pages 3-4, "Code Generation" paragraph).

As per claim 20, Liu teaches

the first and second data descriptor items are in the form of at least one of the following: decision-support data descriptor, keyword descriptor, context descriptor and data access instructions descriptor (semantic knowledge in the form of rules, section 2.1, pages 3-4, "Code Generation" paragraph).

As per claim 21, Liu teaches

the data item, the first descriptor item and the second descriptor item are stored in a XLM data blocks. (XML templates which contain blocks, page 14, section 4.3, fourth full paragraph; figure 10)

Liu does not explicitly indicate "raw".

However, Keith discloses "raw" (raw data processing, column 25, lines 53-54). It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

Art Unit: 2168

As per claim 22, Keith teaches

the XML data blocks (parseable XML, page 2, section 1, fourth paragraph)

<u>Liu</u> does not explicitly indicate "are defined by a data block definition with a form including at least one of: a table and a matrix".

However, Keith discloses "are defined by a data block definition with a form including at least one of: a table and a matrix" (column 25, lines 55-56).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "are defined by a data block definition with a form including at least one of: a table and a matrix" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 25, Keith teaches

A computer readable medium containing programming instructions for processing data, the computer readable medium including programming instructions for: (see abstract, where XWRAP inherently needs to work on a system for managing data)

linking a data item, capable of containing data representing data stored (XWRAP creates parse tree where leafs act as links, page 12, section 4.2, "Example 3"), to at least a first data descriptor item wherein the first data descriptor item is in the form of a

Art Unit: 2168

context descriptor, containing descriptive information about the data item (XML templates contain field for specified source document fields, page 15, section 4.3, fourth paragraph), linking the data item to at least a second data descriptor item (XWRAP creates parse tree where leafs act as links, page 12, section 4.2, "Example 3"), wherein the second data descriptor item is in the form of at least a data access instructions descriptor, providing instructions on how to access the data in the data item (XML templates containing processing instructions, page 15, section 4.3, fourth paragraph);

locating the data item by searching at least one of: the first and second data descriptor items (XML templates contain field for specified source document fields, page 15, section 4.3, fourth paragraph);

generating knowledge transformation information by extrapolating data from the data item (XML templates containing processing instructions, page 15, section 4.3, fourth paragraph);

and creating the first and second data descriptor items based upon the data item (XML templates containing field identifiers and instructions for processing source, page 14, section 4.3, fourth paragraph).

Liu does not explicitly indicate "raw" and "that is in a plurality of different formats".

However, Keith discloses "raw" (raw data processing, column 25, lines 53-54),
and "that is in a plurality of different formats" (any text source can be used as input,
column 18, lines 12-15).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw" and

Art Unit: 2168

"that is in a plurality of different formats" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 27, Liu teaches

A data management system comprising: (see abstract, where XWRAP inherently needs to work on a system for managing data)

a processing device; (users use mouse to select means there is a processing device, abstract, second paragraph)

and memory containing executable instructions that cause the processing device to perform as a knowledge container creator module operative to create at least a first data descriptor item and at least a second data descriptor item based upon the data item (XML templates containing field identifiers and instructions for processing source, page 14, section 4.3, fourth paragraph), capable of containing data, and to link a data item to at the least a first data descriptor item, and the knowledge container creator module operative to link the data item to the at least a second data descriptor item (XWRAP creates parse tree where leafs act as links, page 12, section 4.2, "Example 3"), wherein the second data descriptor item is in the form of at least a decision-support data descriptor, containing a decision-support information generated from the data; (generate wrapper, page 3-4, section 2.1, "Testing and Packing" paragraph)

Art Unit: 2168

and a data access instructions descriptor, providing instructions on how to access the data in the data item; (XML templates containing processing instructions, page 15, section 4.3, fourth paragraph)

and a knowledge container searcher module operative to retrieve the data item by searching at least one of: the first and second data descriptor items; (XML output which can be parsed, page 2, section 1, fourth paragraph)

a knowledge container administrator module operative to modify template descriptor item for creating the first data descriptor item and for searching the first and second data descriptor items, wherein the template descriptor item includes at least one of: (updates to rules, pages 3-4, section 2.1, "Testing and Packing" paragraph)

template knowledge containers, for providing the inputs for entering the context descriptor, (testing structure and steps, assigning information to wrapper, pages 3-4, section 2.1, "Testing and Packing" paragraph)

search template knowledge containers, for providing the inputs for searching the data descriptor items, (XML output which can be parsed, page 2, section 1, fourth paragraph)

and the knowledge container administrator module operative to create knowledge transformation information by extrapolating data from the data item and operative to link the data item to the knowledge transformation information; (updates to rules, pages 3-4, section 2.1, "Testing and Packing" paragraph; creates parse tree where leafs act as links, page 12, section 4.2, "Example 3")

Art Unit: 2168

and a base knowledge container update module operative to format the data item into an XML knowledge container format; (XML templates and resulting XML file, page 14, section 4.3, fourth full paragraph)

a knowledge container database operative to store the data item, the first descriptor item and the second descriptor item and the knowledge container database further having: a knowledge source depository containing the data item; (XML templates and resulting XML file, page 14, section 4.3, fourth full paragraph; rulebase and source-specific wrapper, figure 1)

a metaknowledge depository containing the data descriptor item associated with the data item; (XWRAP rulebase and source-specific wrapper, figure 1)

and a knowledge representation depository containing the knowledge transformation information generated from the data item.

Liu does not explicitly indicate "raw", "representing raw data that is in a plurality of different formats", "a keyword descriptor, identifying keywords contained in the raw data item", "and to generate a keyword descriptor by processing the raw data item", "dictionary knowledge containers, for identifying keywords" and "that is in a plurality of different formats".

However, Keith discloses "raw" (raw data processing, column 25, lines 53-54),
"representing raw data that is in a plurality of different formats" (myriad of sources,
column 18, lines 8-20), "a keyword descriptor, identifying keywords contained in the raw
data item" (concept terms, column 25, lines 22-25), "and to generate a keyword
descriptor by processing the raw data item" (terms in matrix, column 25, lines 55-57),

Art Unit: 2168

"dictionary knowledge containers, for identifying keywords" (column 25, lines 44-47) and "that is in a plurality of different formats" (any text source can be used as input, column 18, lines 12-15).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw", "representing raw data that is in a plurality of different formats", "a keyword descriptor, identifying keywords contained in the raw data item", "and to generate a keyword descriptor by processing the raw data item", "dictionary knowledge containers, for identifying keywords" and "that is in a plurality of different formats" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 28, Liu teaches

A data management system comprising: (see abstract, where XWRAP inherently needs to work on a system for managing data)

a processing device; (users use mouse to select means there is a processing device, abstract, second paragraph)

memory containing executable instructions that cause the processing device to perform as a knowledge container creator module operative to create at least a first data descriptor item and at least a second data descriptor item based upon a data item

Art Unit: 2168

(XML templates containing field identifiers and instructions for processing source, page 14, section 4.3, fourth paragraph), capable of containing data, and to link the data item to at the least a first data descriptor item, to link the data item to the at least a second data descriptor item (XWRAP creates parse tree where leafs act as links, page 12. section 4.2. "Example 3"), wherein the first data descriptor item is in the for of a context descriptor (XML templates containing field identifiers and instructions for processing source, page 14, section 4.3, fourth paragraph), and wherein the second data descriptor item is in the form of at least a data access instructions descriptor (XML templates containing processing instructions, page 15, section 4.3, fourth paragraph), and the executable instructions cause the processor to generate a plurality of knowledge models for the data item by analyzing information in the data items wherein the plurality of different knowledge models are in different formats (XML template file, page 14, section 4.3, third paragraph, where the testing and packing allows for different formatting of rule sets which are knowledge models for the source data, pages 3-4. section 2.1, "Testing and Packing" paragraph).

<u>Liu</u> does not explicitly indicate "raw", "representing raw data that is in one of a plurality of different formats" and "that is in a plurality of different formats".

However, <u>Keith</u> discloses "raw" (raw data processing, column 25, lines 53-54), "representing raw data that is in one of a plurality of different formats" (myriad of sources, column 18, lines 8-20) and "that is in a plurality of different formats" (any text source can be used as input, column 18, lines 12-15).

Art Unit: 2168

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine <u>Liu</u> and <u>Keith</u> because using the steps of "raw", "representing raw data that is in one of a plurality of difference formats" and "that is in a plurality of different formats" would have given those skilled in the art the tools to improve the invention by allowing the indexing and searching of data sources which are not in a database format. This gives the user the advantage of the ability to quickly utilize these data sources which are too large in number to search otherwise.

As per claim 29, Lui teaches

the knowledge container creator module is operative to create the first data descriptor item in the form of a context descriptor that includes data indicating the purpose of a test and how the test was performed (semantic knowledge in the form of rules, section 2.1, pages 3-4, "Code Generation" paragraph).

Response to Arguments

Applicant's arguments filed 3/23/10 have been fully considered but they are not persuasive.

Applicant argues that <u>Keith</u> does not disclose data that is a plurality of different formats. Respectfully, it is noted that <u>Keith</u> discloses that any text source can be used as input (column 18, lines 12-15). It is respectfully submitted that among every text

Art Unit: 2168

source that is available, not all of these text sources are in the same format. Therefore a plurality of different formats of raw data are able to be processed based on the <u>Keith</u> reference. Applicant further argues that different databases can be tapped for input and that these are all in the same format. However, the teachings of <u>Keith</u> are more broadly defined in the cited section (column 18, lines 8-20) to include every text source that is available and not just different databases. Therefore <u>Keith</u> discloses the limitation.

Conclusion

 The prior art made of record, listed on form PTO-892, and not relied upon is considered pertinent to applicant's disclosure.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jay A. Morrison whose telephone number is (571) 272-7112. The examiner can normally be reached on M-F 8-4:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tim Vo can be reached on (571) 272-3642. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 10/634,080 Page 24

Art Unit: 2168

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

/Jay A Morrison/ Examiner, Art Unit 2168

Jay Morrison TC2100