Exercise 1.1

1. Identify each of the following as a rational or irrational number: (i) 2.353535 (ii) $0.\overline{6}$ (iii) 2.236067...

(iv) $\sqrt{7}$ (v) e (vi) π (vii) $5+\sqrt{11}$ (viii) $\sqrt{3}+\sqrt{13}$ (ix) $\frac{15}{4}$ (x) $(2-\sqrt{2})(2+\sqrt{2})$

Sr	Number	Туре	Reason
i	2.353535	Rational	Decimal repeats (35 repeats), so it's recurring.
ii	$0.\overline{6}$	Rational	Decimal repeats (6 repeats), so it's recurring.
iii	2.236067	Irrational	Decimal doesn't repeat or end.
iv	$\sqrt{7}$	Irrational	Can't be written as $\frac{p}{q}$, decimal doesn't repeat or end.
V	е	Irrational	Decimal doesn't end or repeat. Known irrational number.
vi	π	Irrational	Decimal doesn't end or repeat. Known irrational number.
vii	$5 + \sqrt{11}$	Irrational	Rational + irrational = irrational.
viii	$\sqrt{3} + \sqrt{13}$	Irrational	Irrational + irrational = irrational (in most cases).
ix	15 4	Rational	In $\frac{p}{q}$ form where $p \& q$ are integers.
X	$(2-\sqrt{2})(2+\sqrt{2})$	Rational	This equals $4-2=2$, which is rational (special product formula).

- 2. Represent the following numbers on number line: (i) $\sqrt{2}$ (ii) $\sqrt{3}$ (iii) $4\frac{1}{3}$ (iv) $-2\frac{1}{7}$ (v) $\frac{5}{8}$ (vi) $2\frac{3}{4}$
- (i) Locating $\sqrt{2} \approx 1.414$
 - **a.** Draw a number line with A=0 and B=1
 - **b.** At B, draw a perpendicular BC = 1 unit.
 - **c.** Join A to C to form a right-angled $\triangle ABC$.

By Pythagoras theorem: $\frac{d}{d}$ Tayyab (GHS Christian Daska) $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$

$$(Hypotenuse)^{2} = (Base)^{2} + (Per_{A})^{2}$$

$$(AC)^{2} = (AB)^{2} + (BC)^{2}$$

$$(AC)^{2} = (1)^{2} + (1)^{2}$$

$$(AC)^{2} = 1 + 1$$

$$(AC)^{2} = 2$$

$$\sqrt{(AC)^{2}} = \sqrt{2}$$

$$AC = \sqrt{2}$$

With A as center and radius $AC = \sqrt{2}$, draw an arc cutting the number line at P.

- (ii) Locating $\sqrt{3} \approx 1.732$
- Step 1: Construct $\sqrt{2}$
 - **a.** Draw a number line with A=0 and B=1
 - **b.** At B, draw a perpendicular BC = 1 unit.
 - **c.** Join A to C to form a right-angled $\triangle ABC$.

By Pythagoras theorem:

$$(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$$

 $(AC)^2 = (AB)^2 + (BC)^2$
 $(AC)^2 = (1)^2 + (1)^2$
 $(AC)^2 = 1 + 1$

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska.

Website: https://hira-science-academy.github.io

Mobile: 03338114798

$$(AC)^{2} = 2$$

$$\sqrt{(AC)^{2}} = \sqrt{2}$$

$$AC = \sqrt{2}$$

With A as center and radius $AC = \sqrt{2}$, draw an arc cutting the number line at D.

Step 2: Construct $\sqrt{3}$

- **a.** At C, draw a perpendicular CE = 1 unit (upwards).
- **b.** Join A to E to form a right-angled $\triangle ACE$

By Pythagoras theorem:

$$(Hypotenuse)^{2} = (Base)^{2} + (Perpendicular)^{2}$$

$$(AE)^{2} = (AC)^{2} + (CE)^{2}$$

$$(AE)^{2} = (\sqrt{2})^{2} + (1)^{2}$$

$$(AE)^{2} = 2 + 1$$

$$(AE)^{2} = 3$$

$$\sqrt{(AE)^{2}} = \sqrt{3}$$

$$AE = \sqrt{3}$$

With A as center and radius $AE = \sqrt{3}$, draw an arc cutting the number line at F.

(iii)
$$4\frac{1}{3} = 4.33$$

- a. Locate 4 and 5 on the number line
- **b.** Divide the space between them into 3 equal parts
- c. Mark the point $\frac{1}{3}$ of the way from 4 to 5

(iv)
$$-2\frac{1}{7} = -2.143$$

- a. Locate -2 and -3 on the number line
- **b.** Divide the space between them into 7 equal parts
- c. Mark the point $\frac{1}{7}$ of the way from -2 to -3

(v)
$$\frac{5}{8} = 0.625$$

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Website: https://hira-science-academy.github.io

Page **2** of **5**

Mobile: 03338114798

- a. Locate 0 and 1 on the number line
- b. Divide the space into 8 equal parts
- c. Mark the 5^{th} division point.

(vi)
$$2\frac{3}{4} = 2.75$$

- a. Locate 2 and 3 on the number line
- **b.** Divide the space into 4 equal parts
- c. Mark the point $\frac{3}{4}$ of the way from 2 to 3

3. Express the following as a rational number $\frac{p}{q}$ where p and q are integers and $q \neq 0$. (i) $0.\overline{4}$ (ii) $0.\overline{37}$ (iii)

 $0.\overline{21}$

(i) Let

Muhammad Tayx (GHS Christian Daska)

$$10x = 10(0.444...)$$

 $10x = 4.444...$ ··· (ii)

Subtracting (i) from (ii)

$$10x - x = (4.444 ...) - (0.444 ...)$$
$$9x = 4$$
$$x = \frac{4}{9}$$

(ii) Let

$$x = 0.\overline{37}$$

 $x = 0.373737...$... (i)
 $100x = 100(0.373737...$ (ii)
 $100x = 37.373737...$ (ii)

Subtracting (i) from (ii)

$$100x - x = (37.373737...) - (0.373737...)$$
$$99x = 37$$
$$x = \frac{37}{99}$$

(iii) Let

$$x = 0.\overline{21}$$

 $x = 0.212121...$... (i)
 $100x = 100(0.212121...$... (ii)
 $100x = 21.212121...$... (ii)

Subtracting (i) from (ii)

$$100x - x = (21.212121...) - (0.212121...)$$
$$99x = 21$$
$$x = \frac{21}{99}$$

4. Name the property used in the following: (i) (a+4)+b=a+(4+b) (ii) $\sqrt{2}+\sqrt{3}=\sqrt{3}+\sqrt{2}$ (iii) x-x=0 (iv) a(b+c)=ab+ac (v) 16+0=16 (vi) $100\times 1=100$ (vii) $4\times (5\times 8)=(4\times 5)\times 8$ (viii) ab=ba

Sr	Expression	Property Name
i	(a+4) + b = a + (4+b)	Associative property over addition
ii	$\sqrt{2} + \sqrt{3} = \sqrt{3} + \sqrt{2}$	Commutative property over addition
iii	x - x = 0	Additive Inverse
iv	a(b+c) = ab + ac	Left distributive property of multiplication over addition
V	16 + 0 = 16	Additive Identity
vi	$100 \times 1 = 100$	Multiplicative Identity
vii	$4 \times (5 \times 8) = (4 \times 5) \times 8$	Associative Property under Multiplication
viii	ab = ba	Commutative Property under Multiplication

5. Name the property used in the following: (i) $-3 < -1 \Rightarrow 0 < 2$ (ii) If a < b then $\frac{1}{a} > \frac{1}{b}$ (iii) If a < b then a + c < b + c (iv) If ac < bc and c > 0 then a < b (v) If ac < bc and c < 0 then a > b (vi) Either a > b or a = b or a < b

Sr	Expression	Property Name
i	$-3 < -1 \Rightarrow 0 < 2$	Additive Property of Inequality
кÄ.	If $a < b$ then $\frac{1}{a} > \frac{1}{b}$	Reciprocal Property
Till C	If $a < b$ then $a + c < b + c$	Additive Property (of order)
iv	If $ac < bc$ and $c > 0$ then $a < b$	Multiplicative Property (when $c > 0$)
V	If $ac < bc$ and $c < 0$ then $a > b$	Multiplicative Property (when $c < 0$)
vi	Either $a > b$ or $a = b$ or $a < b$	Trichotomy Property

6. Find two rational numbers between: (i) $\frac{1}{3}$ and $\frac{1}{4}$ (ii) 3 and 4 (iii) $\frac{3}{5}$ and $\frac{4}{5}$ (i) $\frac{1}{3}$ and $\frac{1}{4}$

$$1^{st} \ rational \ number = \left(\frac{1}{3} + \frac{1}{4}\right) \div 2$$

$$= \left(\frac{4+3}{12}\right) \times \frac{1}{2}$$

$$= \frac{7}{12} \times \frac{1}{2}$$

$$= \frac{7}{24}$$

$$2^{nd} \ rational \ number = \left(\frac{1}{3} + \frac{7}{24}\right) \div 2$$
$$= \left(\frac{8+7}{24}\right) \times \frac{1}{2}$$
$$= \frac{15}{24} \times \frac{1}{2}$$
$$= \frac{15}{48}$$

3	3,24
2	1,8
2	1,4
2	1,2
	1,1

(ii) 3 and 4

$$1^{st} \ rational \ number = (3 + 4) \div 2$$
$$= (7) \times \frac{1}{2}$$
$$= \frac{7}{2}$$

$$2^{nd} \ rational \ number = \left(3 + \frac{7}{2}\right) \div 2$$
$$= \left(\frac{6+7}{2}\right) \times \frac{1}{2}$$
$$= \frac{13}{2} \times \frac{1}{2}$$
$$= \frac{13}{4}$$

(iii) $\frac{3}{5}$ and $\frac{4}{5}$

$$1^{st} \ rational \ number = \left(\frac{3}{5} + \frac{4}{5}\right) \div 2$$
$$= \left(\frac{3+4}{5}\right) \times \frac{1}{2}$$
$$= \frac{7}{5} \times \frac{1}{2}$$
$$= \frac{7}{10}$$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Mobile: 03338114798