2. izpit iz Uvoda iz geometrijske topologije

19. 8. 2020

Veliko uspeha!

1. naloga (20 točk)

2. naloga (20 točk)

Naj bo $X = \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Z} \text{ ali } y \in \mathbb{Z} \}$ in $G = \mathbb{Z}^2$. Naj grupa G deluje na X s predpisom $(n,m)\cdot(x,y) = (x+2n,y+m)$. Poišči podprostor kakega evklidskega prostora, ki je homeomorfen prostoru orbit X/G. Odgovor dobro utemelji!

3. naloga (5+15 točk)

Naj bo $X = (\mathbb{R} \times \{0\}) \cup \{(x, x^2) \mid x \in \mathbb{R}\}$ in naj bo $\underline{a} = (a_n)_{n \in \mathbb{N}}$ strogo naraščajoče zaporedje za katerega je $a_1 > 0$.

- 1. Pokaži, da je X retrakt evklidske ravnine \mathbb{R}^2 .
- 2. Poišči potreben in zadosten pogoj na zaporedje \underline{a} , da je prostor $X_{\underline{a}} = X \cup (\bigcup_{n=1}^{\infty} \{a_n\} \times [0,1])$ retrakt evklidske ravnine \mathbb{R}^2 .

Vse odgovore dobro utemelji!

4. naloga (20 točk)

Naj bo $f: [-1,1] \to \mathbb{R}$ zvezna funkcija. Naj bo $\Gamma_f \subset \mathbb{R}^2$ graf funkcije $f, X = \{(x,y) \in [-1,1] \times \mathbb{R} \mid f(x) - 1 \le y \le f(x) + 1\}$ in $Y = (X \times \{0\}) \cup (\Gamma_f \times [0,1])$.

- 1. Pokaži, da je X mnogoterost.
- 2. Pokaži, da Y ni mnogoterost.
- 3. Pokaži, da ima Y lastnost negibne točke.

Vse odgovore dobro utemelji!

5. naloga (20 točk)

1. Naj bo $\mathbb T$ torus in $\mathbb P$ projektivna ravnina. Poišči vse pare kompaktnih ploskev $X,\,Y$ za katere velja

$$X#3\mathbb{T} \approx Y#\mathbb{P}, \quad X#Y#\mathbb{T} \approx 2\mathbb{T}#3\mathbb{P}.$$

2. Poišči vse $x \in \{a, a^{-1}, b, b^{-1}, c, c^{-1}, d, d^{-1}\}$, da beseda $abxa^{-1}cd^{-1}$ predstavlja orientabilno ploskev. Katere so te orientabilne ploskve?