TEORÍA DE LA COMPUTACIÓN Y VERIFICACIÓN DE PROGRAMAS

TP 6 - Verificación de programas(clases 12 y 13)

Ejercicio 1. Se define la postcondición más fuerte de la siguiente manera:

$$post(p, S) = \{ \sigma' \mid \exists \sigma : \sigma \mid = p \land val(\pi(S, \sigma)) = \sigma' \neq \bot \}$$

es decir que un estado está en post(p, S) si es el estado final de una computación finita de S que arranca desde un estado inicial que satisface p.

Y se define la precondición liberal más débil de la siguiente manera:

$$pre(S, q) = \{ \sigma \mid \forall \sigma' : val(\pi(S, \sigma)) = \sigma' \neq \bot \rightarrow \sigma' = q \}$$

es decir que un estado está en pre(S, q) si es el estado inicial a partir del cual se obtiene, por la ejecución de S, si termina, un estado final que satisface q. Probar:

(a)
$$|=\{p\}S\{q\} \leftrightarrow post(p,S) \subseteq \{\sigma|\sigma|=q\}$$

(b)
$$|=\{p\}S\{q\} \leftrightarrow \{\sigma|\sigma|=p\} \subseteq pre(S,q)$$

Se probará (a):

$$|=\{p\}S\{q\} \leftrightarrow post(p,S) \subseteq \{\sigma|\sigma|=q\}$$

$$|=\{p\}S\{q\} \rightarrow post(p,S) \subseteq \{\sigma|\sigma|=q\}$$

Si
$$|=\{p\}S\{q\}$$
 entonces $(\sigma|=p \land val(\pi(S, \sigma)) \neq \bot) \rightarrow val(\pi(S, \sigma)) = \sigma'|=q$

Asumiendo $val(\pi(S, \sigma)) \neq \bot$ y $\sigma|=p$ para cualquier estado σ , entonces post(p,S) estaría conformado, según la definición de correctitud parcial por aquellos valores de $\sigma'|=q$ ($val(\pi(S, \sigma)) = \sigma'|=q$) para cualquier input que valide p sobre S.

Entonces queda demostrado que $post(p, S) \subseteq \{\sigma | \sigma| = q\}$.

$$|=\{p\}S\{q\} \leftarrow post(p,S) \subseteq \{\sigma|\sigma|=q\}$$

Considerando $post(p,S) \subseteq \{\sigma|\sigma|=q\}$, podríamos redefinir post(p,S) de la siguiente forma:

$$post(p, S) = \{ \sigma' \mid \exists \sigma : \sigma \mid = p \land val(\pi(S, \sigma)) = \sigma' \neq \bot \land \sigma' \mid = q \}$$

Con esta nueva definición podemos probar las 2 situaciones de $\{p\}S\{q\}$:

1. si
$$val(\pi(S, \sigma)) = \bot \lor \sigma \mid \neq p$$
 entonces $\mid = \{p\}S\{q\}$

2. si
$$post(p, S) \neq \emptyset$$
 entonces $|=\{p\}S\{q\}$ por la nueva definición de $post(p, S)$ ya que si $\sigma |= p \wedge val(\pi(S, \sigma)) = \sigma' \neq \bot \wedge \sigma'| = q$ es válido, entonces $(\sigma |= p \wedge val(\pi(S, \sigma)) \neq \bot) \rightarrow val(\pi(S, \sigma)) = \sigma' |= q$ es válido.

Se probará (b):

$$|=\{p\}S\{q\} \leftrightarrow \{\sigma|\sigma|=p\} \subseteq pre(S,q)$$

$$|=\{p\}S\{q\}\rightarrow \{\sigma|\sigma|=p\}\subseteq pre(S,q)$$

```
pre(S, q) = \{ \sigma \mid \forall \sigma' : val(\pi(S, \sigma)) = \sigma' \neq \bot \rightarrow \sigma' = q \}
```

Si $|=\{p\}S\{q\}$ entonces $(\sigma|=p \land val(\pi(S, \sigma)) \neq \bot) \rightarrow val(\pi(S, \sigma)) = \sigma'|=q$

- 1. si $val(\pi(S, \sigma)) = \bot$ entonces se cumple $|=\{p\}S\{q\}$, por lo que $\sigma \in pre(S, q)$ pero sólo pertenecería a $\{\sigma|\sigma|=p\}$ si $\sigma|=p$.
- 2. si $\sigma | \neq p$ entonces se cumple $| = \{p\}S\{q\}$, por lo que $\sigma \in pre(S, q)$.
- 3. si $\sigma |= p \wedge val(\pi(S, \sigma)) \neq \bot$ entonces $val(\pi(S, \sigma)) = \sigma' |= q$, por lo que $\sigma \in pre(S, q)$ y $\sigma \in \{\sigma |\sigma| = p\}$.

Por lo que queda demostrado $\{\sigma|\sigma|=p\}\subseteq pre(S,q)$

$$| = \{p\}S\{q\} \leftarrow \{\sigma|\sigma| = p\} \subseteq pre(S,q)$$

Sabiendo que $\{\sigma|\sigma|=p\}\subseteq pre(S,q)$ entonces $\{\sigma|\sigma|=p\}$ se podría definir como:

$$\{\sigma | \sigma| = p \land val(\pi(S, \sigma)) = \sigma' \neq \bot \rightarrow \sigma' = q\}$$

Con esta nueva definición podemos probar las 2 situaciones de $\{p\}S\{q\}$:

- 1. si $val(\pi(S, \sigma)) = \bot \lor \sigma \mid \neq p$ entonces $\mid = \{p\}S\{q\}$
- 2. si $\{\sigma | \sigma| = p \land val(\pi(S, \sigma)) = \sigma' \neq \bot \rightarrow \sigma' | = q\} \neq \emptyset$ entonces $| = \{p\}S\{q\}$ ya que si $\sigma | = p \land val(\pi(S, \sigma)) = \sigma' \neq \bot \rightarrow \sigma' | = q$ es válido, entonces $(\sigma | = p \land val(\pi(S, \sigma)) \neq \bot) \rightarrow val(\pi(S, \sigma)) = \sigma' | = q$ es válido.

Ejercicio 2. En el trabajo práctico anterior se pidió probar usando el método H:

$$\{x \ge 0 \land y > 0\} S_{idiv} :: \ q := 0; \ r := x; \ while \ r \ge y \ do \ r := r - y; \ q := q + 1 \ od \ \{x = q.y + r \land 0 \le r < y\}$$

Sidiv un programa PLW que calcula por restas sucesivas la división entera de ${\sf x}$ sobre y en q, dejando el resto en r.

Se pide ahora probar en H:

$${x > 0 \land y = 0}S_{idiv}{false}$$

es decir que el programa Sidiv no termina a partir de la precondición ($x > 0 \land y = 0$).

Se quiere probar $\{x > 0 \land y = 0\}S_{idiv}\{false\}$

Se propone como invariante $p = (x = q.y + r \land 0 < r \land y = 0)$

La prueba se estructurará de la siguiente manera.

- a. $\{x > 0 \land y = 0\}q := 0; r := x\{p\}$
- b. $\{p\}$ while $r \ge y$ do r := r y; q := q + 1 od $\{p \land \neg (r \ge y)\}$
- c. $p \land \neg (r \ge y) \rightarrow false$

a)

1.
$$\{x > 0 \land y = 0 \land x = q.y + x\} \ r := x\{p\}$$
 (ASI)

2.
$$\{x > 0 \land y = 0 \land x = 0.y + x\}q := 0\{x > 0 \land y = 0 \land x = 0.y + x\}$$
 (ASI)

3.
$$(x > 0 \land y = 0 \land x = 0.y + x) \rightarrow (x > 0 \land y = 0)$$
 (MAT)

4.
$$\{x > 0 \land y = 0\}q := 0; r := x\{p\}$$
 (1,2,SEC,3,CONS)

b)

1.
$$\{x = (q+1).y + r \land 0 < r \land y = 0\}q := q+1\{p\}$$
 (ASI)

2.
$$\{x = (q+1).y + (r-y) \land 0 < r \land y = 0\}r := r-y\{x = (q+1).y + r \land 0 < r \land y = 0\}$$
 (ASI)

3.
$$(x = (q+1).y + (r-y) \land 0 < r \land y = 0) \rightarrow (x = q.y + r \land 0 < r \land r \ge y \land y = 0)$$
 (MAT)

4.
$$\{x = q.y + r \land 0 < r \land r \ge y \land y = 0\}r := r-y; q := q+1\{p\}$$
 (1,2,SEC,3,CONS)

5.
$$(x = q.y + r \land 0 < r \land r \ge y \land y = 0) \rightarrow (x = q.y + r \land 0 < r \land y = 0)$$
 (MAT)

6.
$$\{p\}$$
 while $r \ge y$ do $r := r - y$; $q := q + 1$ od $\{p \land \neg (r \ge y)\}$ (4,REP,5,CONS)

c)
1.
$$x = q.y + r \land 0 < r \land y = 0 \land \neg (r \ge y) \rightarrow false$$
 (MAT)

c.1) es false porque $\neg (r \ge y) = r < y$ es absurdo ya que $0 < r \land y = 0$

Ejercicio 3. Probar:

 $\langle x \ge 0 \land y \ge 0 \rangle S_{prod} :: prod := 0; k := y; while <math>k > 0$ do prod := prod + x; k := k - 1 od $\langle true \rangle$ Ayuda: S_{prod} calcula en la variable prod el producto entre x e y. Notar que k se decrementa en cada iteración y que se mantiene siempre mayor o igual que cero.

Probaremos

$$\langle x \ge 0 \land y \ge 0 \rangle S_{prod} \langle true \rangle$$

Se propone como invariante $p = (k \ge 0)$

y la cota t = k

para facilitar la resolución dividiremos el problema en 3 partes:

inicialización:

$$\langle x \ge 0 \land y \ge 0 \rangle prod := 0; k := y \langle p \rangle$$

repetición:

a.
$$\langle p \land k > 0 \rangle prod := prod + x; k := k - 1 \langle p \rangle$$

b.
$$\langle p \wedge k > 0 \wedge k = Z \rangle prod := prod + x; k := k - 1 \langle p \wedge k < Z \rangle$$

c.
$$(k \ge 0) \rightarrow (k \ge 0)$$

Por lo que:

d. $\langle p \rangle$ while k > 0 do prod := prod + x; k := k-1 od $\langle p \wedge \neg (k > 0) \rangle$

final:

$$\langle x \ge 0 \land y \ge 0 \rangle S_{prod} \langle true \rangle$$

Ejercicio 4. Probar sin recurrir a la completitud relativa de H (es decir que la prueba debe ser sintáctica) que para todo programa S de PLW y toda aserción q de Assn se cumple:

<u>Ayuda</u>: Utilizar inducción estructural sobre la forma de los programas S, similar a lo visto en clase para probar sintácticamente la fórmula {true} S {true}.

Utilizaremos la inducción estructural sobre los programas de PLW:

Base de la inducción:

1. *S* :: *skip*

Por SKIP {false}skip{false}

Por CONS {false}skip{q}

2. S :: x := e

Por ASI {false}x:=e{false}

Por CONS {false}x:=e{q}

Paso inductivo:

3. $S :: S_1; S_2$

Por hipótesis inductiva: $\{false\}S_1\{false\}\ y\ \{false\}S_2\{false\}$

Por SEC: $\{false\}S_1; S_2\{false\}$

Por CONS: $\{false\}S_1; S_2\{q\}$

4. $S :: if B then <math>S_1$ else $S_2 fi$

Por hipótesis inductiva: $\{false\}S_1\{false\}$ y $\{false\}S_2\{false\}$

Por MAT: $false \land B \rightarrow false \ y \ false \land \neg B \rightarrow false$

Por CONS: $\{false \land B\}S_1\{false\}\$ y $\{false \land \neg B\}S_2\{false\}$

Por COND: $\{false\}\ if\ B\ then\ S_1\ else\ S_2\ fi\ \{false\}$

Por CONS: $\{false\}\ if\ B\ then\ S_1\ else\ S_2\ fi\ \{q\}$

5. *S* :: *while B do S od*

Por hipótesis inductiva: {false}S{false}

Por MAT: $(false \land B) \rightarrow false$

Por CONS: $\{false \land B\}S\{false\}$

Por REP: $\{false\}$ while B do S od $\{false \land \neg B\}$

Por MAT: $(false \land \neg B) \rightarrow q$

Por CONS: $\{false\}$ while B do S od $\{q\}$

Ejercicio 5. Probar la redundancia en H de la siguiente regla ya vista en clase, la regla OR:

$$\frac{\{p\}\ S\ \{q\}\ ,\ \{r\}\ S\ \{q\}}{\{p\forall r\}\ S\ \{q\}}$$

Es decir, probar que si $Tr \mid -H \{p\} S \{q\} y Tr \mid -H \{r\} S \{q\} entonces Tr \mid -H \{p v r\} S \{q\}, usando sólo los axiomas SKIP y ASI y las reglas SEC, COND, REP y CONS del método H.$

<u>Ayuda</u>: Utilizar inducción estructural sobre la forma de los programas S, similar a lo visto en clase para probar la redundancia de la regla AND.

Utilizaremos la inducción estructural sobre los programas de PLW:

Base de la inducción:

1. S :: skip, y se tiene $|-\{p\} skip \{q\} y |-\{r\} skip \{q\}\}$

```
Debe ser p \to q o r \to q y por lo tanto (p \lor r) \to q
```

Por SKIP: $\{p \lor r\}$ skip $\{p \lor r\}$

Por CONS: $\{p \lor r\}skip\{q\}$

2. S :: x := e, y se tiene $|-\{p\} x := e \{q\} y |-\{r\} x := e \{q\}$

Debe ser $p \to q$ o $r \to q$ y por lo tanto $(p \lor r) \to q$

Por ASI: $\{(p \lor r)[x|e]\}x := e\{p \lor r\}$

Por CONS: $\{(p \lor r)[x|e]\}x := e\{q\}$

Paso inductivo:

3.
$$S :: S_1; S_2$$
, y se tiene $|-\{p\}| S_1; S_2| \{q\}$ y $|-\{r\}| S_1; S_2| \{q\}$

Debe ser
$$|-\{p\}S_1\{t_1\}$$
 y $|-\{t_1\}S_2\{q\}$, y $|-\{r\}S_1\{t_2\}$ y $|-\{t_2\}S_2\{q\}$

Por CONS:
$$|-\{p\}S_1\{t_1 \lor t_2\}$$
 y $|-\{r\}S_1\{t_1 \lor t_2\}$

Por hipótesis inductiva considerando lo anterior: $|-\{p \lor r\}S_1\{t_1 \lor t_2\}$

Por hipótesis inductiva: $\{t_1 \lor t_2\}S_2\{q\}$

Por SEC: $|-\{p \lor r\}S_1; S_2\{q\}\}$

4. $S:: if B then S_1 else S_2 fi$ se tiene $\{p\}if B then S_1 else S_2 fi\{q\}$ o

 $\{r\}$ if B then S_1 else S_2 fi $\{q\}$

Debe ser
$$|-\{p \land B\}S_1\{q\} \ \ \ \ \ |-\{p \land \neg B\}S_2\{q\} \ \ \ \ \ \ |-\{r \land B\}S_1\{q\} \ \ \ \ \ |-\{r \land \neg B\}S_2\{q\} \ \$$

Por hipótesis inductiva: $|-\{p \lor r \land B\}S_1\{q\}\ y |-\{p \lor r \land \neg B\}S_2\{q\}\$

Por COND: $|-\{p \lor r\} if B then S_1 else S_2 fi\{q\}$

5. S:: while B do S od Y se tiene $\{p\}$ while B do S od $\{q\}$ o $\{r\}$ while B do S od $\{q\}$

Debe ser $[-\{q \land B\}S\{q\}]$, con $p \to q$ o $r \to q$ y por lo tanto $(p \lor r) \to q$

Por REP: $\{q\}$ while B do S od $\{q \land \neg B\}$

Por CONS: $\{p \lor r\}$ while B do S od $\{q \land \neg B\}$

 $(q \land \neg B) \rightarrow q$

Por CONS: $\{p \lor r\}$ while B do S od $\{q\}$