CMPG-767 Digital Image Processing

BM3D FILTERING

BM3D – Block Matching 3D Filtering

- K. Dabov, A. Foi, V. Katkovnik, and
 K. Egiazarian, "Image denoising by sparse 3D transform-domain
 collaborative filtering," IEEE Transactions on Image Processing,
 vol. 16,
 No. 8, pp. 2080-2095, August 2007
- http://www.cs.tut.fi/~foi/GCF-BM3D/

BM3D – Block Matching 3D Filtering

- An enhanced sparse representation in transform domain.
 - The enhancement of the sparsity is achieved by similar 2-D image fragments(e.g.,blocks) into 3-D data arrays which we call "groups."
- Collaborative filtering is a special procedure developed to deal with these 3-D groups.
 - ➤ Using the three successive steps:
 - 3-D Fourier transformation of a group of blocks
 - Shrinkage of the 3-D Fourier transform of each group
 - Inverse 3-D Fourier transformation

Grouping

- Grouping is the concept of collecting similar
 n-dimensional fragments of a given signal into an n+1 dimentisonal data structure based on some similarity criterion
 (different criteria can be used)
- The importance of grouping is to enable the use of a higher dimensional filtering of each group, which exploits the potential similarity between grouped fragments in order to estimate the true signal in each of them.
 - This approach is referred to as collaborative filtering

Grouping by matching

- Matching is a method for finding signal fragments similar to a given reference one
 - Achieving by pairwise testing
 - Distance (for example, if SSD sum of pixel-wise squared

differences
$$\sum_{x,y\in B} (B_1(x,y) - B_2(x,y))^2$$
 between blocks B_1 and B_2 is less

than a pre-determined threshold

• Block-matching (BM) is a particular matching approach that has been extensively used for motion estimation in video compression (MPEG 1, 2, and 4, and H.26x). As a particular way of grouping, it is used to find similar blocks, which are then stacked together in a 3-D array (i.e., a group).

Grouping by matching

R is a "targeting" block, other blocks are groped with this block by matching

Grouping by matching

Collaborative Filtering by Shrinkage in Transform Domain

- Assuming 2D groups of similar signal fragments are already formed, the collaborative shrinkage comprises of the following steps.
 - > Apply a 3D Fourier transform to the 3D group
 - > Shrink (e.g., by <u>Wiener filtering</u>) the transform coefficients to attenuate the noise
 - ➤ Apply the inverse 3D Fourier transform to produce estimates of all grouped fragments
- These groups are characterized by both:
 - interfragment correlation which appears between the pixels of each grouped fragment—a peculiarity of natural images
 - interfragment correlation which appears between the corresponding pixels of different fragments—a result of the similarity between grouped fragments

BM3D Filtering

Block matching Inverse 3D transform Filter / thresholding 3D Denoised 3D grouping 3D transform group

Collaborative Filtering

- Use hard thresholding or Wiener filter
- Each patch in the group gets a denoised estimate

 Unlike spatial domain filtering – where only central pixel in reference patch got an estimate

Multiple BM3D Estimates

Basic BM3D Filtering

The benefit of the collaborative shrinkage

- A 2D transform is applied separately to each individual block in a given group of n fragments.
- Since these grouped blocks are very similar, for any of them we should get approximately the same number of significant transform coefficients.

Fusion

 Each pixel gets multiple estimates from different groups

Naive approach
 Average all estimates of each pixel
 not all estimates are as good

Suggestion
 Give higher weight to more reliable estimates

BM3D - Fusion

- Give each estimate a weight according to denoising quality of its group
- Quality = Sparsity induced by the denoising

BM3D in Practice

- Noise may result in poor matching
 - ⇒ Degrades de-noising performance

- <u>Improvements</u>:
- 1. Match using a smoothed version of the image
- 2. Perform BM3D in 2 phases:
 - a. Basic BM3D estimate ⇒ improved 3D groups
 - b. Final BM3D

Basic BM3D Filter

Two Step BM3D Filtering

Algorithm

- The input noisy image is processed by successively extracting reference blocks from it and for each such block:
 - ➤ find blocks that are similar to the reference one (**block matching**) and stack them together to form a 3-D array (group)
 - > perform collaborative filtering of the group and return the obtained 2-D estimates of all grouped blocks to their original locations
- After processing all reference blocks, the obtained block estimates can overlap, and, thus, there are multiple estimates for each pixel. We aggregate these estimates to form an estimate of the whole image.

BM3D Filtering - Examples

BM3D Filtering - Examples

Fig. 5. Noisy ($\sigma = 25$) grayscale *House* image and the BM3D estimate (PSNR 32.86 dB).

BM3D Filtering - Examples

Image	σ	GF	AF	TV	YNF	EWF	TIHWT	NL-means]
Boat	8	53	38	39	39	33	28	23]
Lena	20	120	114	110	129	105	81	68	29.8dB
Barbara	25	220	216	186	176	111	135	72	29.5dB
Baboon	35	507	418	365	381	396	365	292	
Wall	35	580	660	721	598	325	712	59	

Comparison

σ / PSNR	Lena	Barb	Boats	Fgrpt	House	Peprs
1 / 48.13	48.46	48.37	48.44	48.46	48.85	48.38
2 / 42.11	43.23	43.29	42.99	43.05	44.07	43.00
5 / 34.15	38.49	37.79	36.97	36.68	38.65	37.31
10 / 28.13	35.61	34.03	33.58	32.45	35.35	33.77
15 / 24.61	33.90	31.86	31.70	30.14	33.64	31.74
20 / 22.11	32.66	30.32	30.38	28.60	32.39	30.31
25 / 20.17	31.69	29.13	29.37	27.45	31.40	29.21
50 / 14.15	28.61	25.48	26.38	24.16	28.26	25.90
75 / 10.63	26.84	23.65	24.79	22.40	26.41	24.00
100 / 8.13	25.64	22.61	23.75	21.22	25.11	22.66

σ / PSNR	C.man	House	Peppers	Montage	Lena	Barbara	Boats	F.print	Man	Couple	Hill	Lake
	256 ²	256 ²	256 ²	256^{2}	512 ²							
2 / 42.11	43.96	44.63	43.48	46.47	43.59	43.66	43.18	42.90	43.61	43.17	43.04	43.02
5 / 34.16	38.29	39.83	38.12	41.14	38.72	38.31	37.28	36.51	37.82	37.52	37.14	36.58
10 / 28.14	34.18	36.71	34.68	37.35	35.93	34.98	33.92	32.46	33.98	34.04	33.62	32.85
15 / 24.61	31.91	34.94	32.70	35.15	34.27	33.11	32.14	30.28	31.93	32.11	31.86	31.08
20 / 22.11	30.48	33.77	31.29	33.61	33.05	31.78	30.88	28.81	30.59	30.76	30.72	29.87
25 / 20.18	29.45	32.86	30.16	32.37	32.08	30.72	29.91	27.70	29.62	29.72	29.85	28.94
30 / 18.59	28.64	32.09	29.28	31.37	31.26	29.81	29.12	26.83	28.86	28.87	29.16	28.18
35 / 17.25	27.93	31.38	28.52	30.46	30.56	28.98	28.43	26.09	28.22	28.15	28.56	27.50
50 / 14.16	25.84	29.37	26.41	27.35	28.86	27.17	26.64	24.36	26.59	26.38	27.08	25.78
75 / 10.63	24.05	27.20	24.48	25.04	27.02	25.10	24.96	22.68	25.10	24.63	25.58	24.11
100 / 8.14	22.81	25.50	22.91	23.38	25.57	23.49	23.74	21.33	23.97	23.37	24.45	22.91