Арифметика остатков

Упражнение 1. а) Рассмотрим $n \in \mathbb{Z}$, докажите, что остатки при делении на n значений любого многочлена будут периодической функцией.

б) Докажите, что при фиксированном a остатки при делении на n выражения $a^{g(k)}$ будут периодической функцией.

Определение 1. Пусть $a \in \mathbb{Z}_n$, (a,n) = 1, тогда показателем a называется наименьшее натуральное l такое, что $a^l \equiv 1$.

1. Пусть $P_1(x), P_2(x), \dots, P_n(x)$ — непостоянные многочлены с целыми коэффициентами. Докажите, что существует бесконечно много таких натуральных k, что все числа $|P_1(k)|, |P_2(k)|, \dots, |P_n(k)|$ составные.

Упражнение 2. Докажите следующие свойства показателей:

- а) Для любого $a \in \mathbb{Z}_n$, (a, n) = 1 показатель существует.
- б) Пусть у a показатель l, тогда все числа $a^0, a^1, \ldots, a^{l-1}$ попарно несравнимы по модулю n.
- в) Пусть у a показатель l, тогда, если выполнено $a^k \equiv a^{k'}$, то $k \equiv k'$.
- г) Пусть у a показатель lm, тогда у числа a^m показатель l.
- д) Пусть у a показатель x, у b показатель y и (x,y)=1, тогда ab имеет показатель xy.
- **2.** По простому модулю p существует остаток с показателем p-1, такие остатки называются первообразными корнями по модулю p. (Указание/ план: пусть $p-1=q_1^{a_1}\dots q_n^{a_n}$, любой показателья является делителем этого числа. Тогда либо найдётся число с показателем $q_1^{a_1}$., либо в разложение на простые множители любого показателя q_1 будет входить в степень меньше, чем a_1 . Если выполнено второе, рассмотрите многочлен x^t-1 над \mathbb{Z}_p , где $t=\frac{p-1}{q_1}$.)
- **3.** Найдите все такие многочлены с целыми коэффициентами, что если (m,n)=1, то (f(m),f(n))=1.
- **4.** Докажите, что для любого натурального a>1 можно выбрать бесконечное множество чисел вида $a^n(a+1)-1$ таких, что они все попарно взаимно просты.
- **5.** Найдите все многочлены f(x) с целыми коэффициентами такие, что числа f(n) и $f(2^n)$ взаимно просты при каждом натуральном n.