APPENDIX Answers to Selected Problems

- **1-1.** 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 10, 11, 12, 13
- **1.2.** 65,535
- **1-3.** 46; 117.75; 436
- **1-4.** 151; 580; 35; 260
- **1-5.** 10011001111; 1010100001.0011101; 10011100010000; 11111001110
- **1-6.** (a) 16612.34631...
 - (b) 792.41CAC. . .
 - (c) 10101111.001011. . .
- **1-7.** $(1111001110100111111000010)_2 = (74723702)_8$

1-8.	Decimal	Binary	Octal	Hexadecimai
	225	11100001	341	E1
	215	11010111	327	D7
	403	110010011	623	193
	10949	10101011000101	25305	2AC5

- **1-9.** (a) 1304; 336313
 - (b) 206; E4F9
 - (c) 1101011; 101100101110
- **1-10.** 110011 (255/5 = 51)
- 1-11. x = 7
- **1-12.** (73642815)₉

- **1-13.** 87650123; 99019899; 09990048; 9999999
- **1-14.** 876100; 909343; 900000; 000000

1-15. Number 1's complement 2's complement 10101110 01010001 01010010 10000001 01111110 01111111 10000000 01111111 10000000 00000001 111111110 11111111 00000000 11111111 00000000

- **1-17.** (a) 01010; (b) 01101; (c) -101100; (d) 0000000
- **1-19.** (a) 100011 (-29); (b) 000000; (c) 101111 (-17); (d) 000101
- **1-20.** 0001 0011 0101 1001 0111 1001 0011 0001 1000 0100 1000 0000
- 1-21. 7421 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 (or 1000) 8 1001 9 1010
- **1-22.** (b) 012345
 - (c) 000, 001, 010, 101, 110, 111; for digits 0, 1, 2, 3, 4, 5, respectively
- **1-23.** (a) 1000 0110 0010 0000 (b) 1011 1001 0101 0011
 - (c) 1110 1100 0010 0000
 - (d) 10000110101100
- **1-24.** 3864: 0011 1110 1100 0100 6135: 1100 0001 0011 1011
- 1-28. John Doe
- **1-29.** (a) 100100111 (b) 001010010101
 - (c) 011001001110010110101
- **1-30.** 94 printing characters; 32 special characters
- **1-31.** (a) 597 in BCD
 - (b) 264 in excess-3 code
 - (c) Not valid for the 2, 4, 2, 1 code of Table 1-2
- **1-32.** 0100000001 + 1000000010 = 1100000011
- **1-34.** $L = (A + B) \cdot C$

- **2-2.** (a) x' + y
 - **(b)** *x*

(c) 1
(d)
$$x' + y + z'$$
(e) $xy' + x'z'$

2-3. (a) B
(b) $z(x + y)$
(c) $x'y'$
(d) $x(y + w)$
(e) 0

2-4. (a) $AB + C'$
(b) $x + y + z$
(c) B
(d) $A'(B + C'D)$

2-6. (a) $xy + x'y'$
(b) $(A' + B + D)(C' + D)E'$
(d) $x'yz' + xz + x'y'$

2-7. (a) $F = (x + y)' + (x + z')' + (y + z')'$
(b) $F = [(y + z')' + (x + y)' + (y' + z)']'$

2-8. (a) $F = [(x'y')'(x'z)'(y'z')']'$
(b) $F = (y'z)'(x'y')'(y'z')'$

2-9. (a) $\Sigma(3, 5, 6, 7) = \Pi(0, 1, 2, 4)$
(b) $\Sigma(0, 1, 3, 7) = \Pi(2, 4, 5, 6)$

2-10. (a) $F = \Sigma(2, 3, 6, 7)$
(b) $F = \Sigma(3, 3, 6, 7) = \Pi(3, 1, 2, 4)$
(c) $F = \Sigma(3, 3, 6, 7) = \Pi(3, 1, 2, 4)$
(d) $F = \Sigma(3, 3, 6, 7) = \Pi(3, 1, 2, 4)$
(e) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(f) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(g) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(g) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(h) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(g) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(h) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(g) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(h) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(g) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(h) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(g) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(h) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l) $\Sigma(3, 5, 6, 7) = \Pi(3, 1, 2, 4)$
(l)

4-1.
$$F = x'y' + x'z'$$

4-2.
$$A = xy + xz + yz; B = x \oplus y \oplus z; C = z'$$

4-3.
$$F = xy + xz + yz$$

4-9. Inputs: x, y, z; outputs: A, B, C, D, E, F

$$A = xy$$
 $D = yz'$
 $B = xy' + xz$ $E = 0$
 $C = z(x \oplus y)$ $F = z$

4-10. Inputs: A, B, C, D; outputs: w, x, y, z; $d = \Sigma(10, 11, 12, 13, 14, 15)$;

$$w = A'B'C'$$

$$x = B \oplus C$$

$$y = C$$

$$z = D'$$

4-11. Inputs: A, B, C, D; outputs: w, x, y, z;

$$w = A'B + A'C + A'D + AB'C'D'$$

$$x = B'C + B'D + BC'D'$$

$$y = CD' + C'D$$

$$z = D$$

4-12. Inputs: A, B, C, D; output: E = AB + AC

4-13. Inputs: A, B, C, D; outputs: w, x, y, z; $d = \Sigma(1, 2, 3, 12, 13, 14)$;

$$w = AB + AC'D'$$

$$x = B'C + B'D + BC'D'$$

$$y = CD' + C'D$$

$$z = D$$

4-14. Inputs: A, B, C, D; outputs: w, x, y, z; $d = \Sigma(5, 6, 7, 8, 9, 10)$;

$$w = A$$

$$x = A'C + A'B + A'D + BCD$$

$$y = ACD + AC'D' + A'C'D + A'CD'$$

$$z = D$$

5-15.

 $F_1(x, y, z) = \Sigma(0, 5, 7)$ $F_2(x, y, z) = \Sigma(2, 3, 4)$ $F_3(x, y, z) = \Sigma(1, 6, 7)$

- 5-16. Use NAND gates for F_1 and F_2 ; AND gate for F_3 .
- 5-20. $x = D_0'D_1'$ $y = D_0'D_1' + D_0'D_2'$ $V = D_0 + D_1 + D_2 + D_3$
- For inputs $D_5 = D_3 = 1$, the outputs are xyz = 101; V = 1. 5-21.
- $F(A, B, C, D) = \Sigma(1, 6, 7, 9, 10, 11, 12)$ 5-27.
- 5-28. When AB = 00, F = DWhen AB = 01, F = (C + D)' (use a NOR gate) When AB = 10, F = CD (use an AND gate) When AB = 11, F = 1
- 5-30. 24 pins
- (a) 256×8 ; (b) 512×5 ; (c) 1024×4 ; (d) 32×7 5-31.
- Six product terms: yz', xz', x'y'z, xy', x'y, z5-33.
- A = yz' + xz' + x'y'z5-37. B = x'y' + xy + yzC = A + xyzD = z + x'y

6-6.

111

x = 0:

6-8.

Present State	Inp	uts	Next State	Output
Q	x	у	a	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

6-9. A counter with a repeated sequence of 00, 01, 10.

6-10.

(a) J	N	O(t + 1)
0	0	0
0	1	Q(t)
1	0	Q'(t)
1	1	1

(b)	<u>O(t)</u>	O(t+1)	J	N
	0	0	0	X
	0	1	1	X
	1	0	X	0
	1	1	X	1
		1	1 X	λ

6-11.

Presen	t State	Input	Next	State	Output
Α	В	X	A	В	У
0	0	0	0	1	0
0	0	1	0	0	1
0	1	0	1	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	1	0	1

6-12. (c) A(t+1) = xB + x'A + yA + y'A'B'B(t+1) = xA'B' + (x'+y')A'B

- 6-14. Next State Output Present State 1 0 1 af b 0 0 b d 0 0 а ď 1 0 g а ff b 1 1 g d 0 g
- 6-15. State: a f b c e d g h g g h a
 Input: 0 1 1 1 0 0 1 0 0 1 1
 Output: 0 1 0 0 0 1 1 1 0 1 0
- **6-16.** State: a f b a b d g d g g d a Input: 0 1 1 1 0 0 1 0 0 1 1 Output: 0 1 0 0 0 1 1 1 0 1 0
- **6-19.** DQ = Q'J + QK'
- **6-20.** DA = Ax' + BxDB = A'x + Bx'
- **6-21.** JA = KA = (Bx + B'x')EJB = KB = E
- 6-22. (a) DA = A'B'x DB = A + C'x' + BCx DC = Cx' + Ax + A'B'x'y = A'x

(b)
$$JA = B'x$$
 $KA = 1$
 $JB = A + C'x'$ $KB = C'x + Cx'$
 $JC = Ax + A'B'x'$ $KC = x$

- **6-23.** SA = BX' RA = BX SB = B'x RB = A'x' + ABx
- **6-24.** TA = ABx + A'Bx'TB = ABx + A'Bx' + B'x
- **6-25.** (a) JA = BC KA = B JB = C KB = A + C JC = A' + B' KC = 1
 - (b) $DA = A \oplus B$ DB = AB' + CDC = A'B'C'

(c)
$$TA = B$$

 $TB = C$
 $TC = AB + C'$
(d) $TA = A \oplus B$
 $TB = B \oplus C$
 $TC = AC + A'C'$ (not self-correcting)
 $TC = AC + A'B'C'$ (self-correcting)

- **7-5.** 1110; 0111; 1011; 1101; 0110; 1011
- **7-10.** A = 0010, 0001, 1000, 1100; Q = 1, 1, 1, 0
- **7-11.** JQ = x'y; KQ = (x' + y)'
- **7-16.** 100 ns; 10 MHz
- **7-17.** (a) 4; (b) 9
- **7-18.** $1010 \rightarrow 1011 \rightarrow 0100$ $1100 \rightarrow 1101 \rightarrow 0100$ $1110 \rightarrow 1111 \rightarrow 0000$
- **7-20.** $DA_1 = A_1$ $DA_2 = A_2 \oplus A_1$ $DA_3 = A_3 \oplus (A_1A_2)$ $DA_4 = A_4 \oplus (A_1A_2A_3)$
- **7-23.** $JA_1 = KA_1 = 1$ $JA_2 = A_1A_8'; KA_2 = A_1A_8' \text{ (or } = A_1)$ $JA_4 = KA_4 = A_1A_2$ $JA_8 = A_1A_2A_4; KA_8 = A_1$
- **7-33.** (a) 11, 16; (b) 16, 8 (c) 24, 32; (d) 17, 12
- **7-34.** 1000010111; 0000100010100001
- **7-35.** (a) 16; (b) 11, 7; (c) 4×16 decoder
- **7-36.** (a) 8; (b) 128
- **7-37.** (a) 10, 8; (b) 32; (c) 14, 16; (d) 4×16 decoder
- 7-38. 0001101110111
- **7-39.** 101110011001010
- **7-40.** (a) 01011010; (b) 11000110; (c) 11110100
- **7-41.** (a) 6; (b) 7; (c) 7
- **7-42.** (a) 0101010

- **8-8.** MUX1: $0, A_3A_4, 0, 0$ MUX2: S, 1, 0, 0
- **8-9.** $DT_0 = S'T_0 + ZT_1$ $DT_1 = ST_0 + ET_3$ $DT_2 = Z'T_1 + E'T_3$ $DT_3 = T_2$

8-14.
$$(2^n-1)(2^n-1)<(2^{2n}-1)$$
 for $n \ge 1$

8-16. Product =
$$1010001011$$

8-17.
$$2t(n+1)$$

8-18. (a)
$$JG_1 = G_2$$

 $KG_1 = ZG_2$
 $JG_2 = G_1 + S$
 $KG_2 = 1$

$$KG_2 = 1$$

(b) $DG_1 = T_1 + T_2 + Z'T_3$
 $DG_2 = ST_0 + T_2$
(c) MUXI: 0, 1, 1, Z'

(d)
$$DT_0 = S'T_0 + ZT_3$$

 $DT_1 = ST_0$
 $DT_2 = T_1 + Z'T_3$
 $DT_3 = T_2$

- **9-2.** Sequence of $Y_1 Y_2$: 00, 00, 01, 11, 11, 01, 00.
- 9-3. (d) When the input is 01, the output is 0. When the input is 10, the output is 1. Whenever the input assumes one of the other two combinations, the output retains its previous value.
- 9-4. (c) 00 01 11 10 (a), 0b, 1 c, 1 d, 0b a, 0**(b)**, 1 c, 1 **(b)**, 0 (c), 1b, 1 ©, 1 *d*, 1 \boldsymbol{c} c, 1 b, 1c, 1 @, 1
- **9-5.** (c) $Y_1 = x_1'x_2 + x_2y_1$ $Y_2 = x_2 + x_1y_2$ $z = x_1x_2y_1' + x_1y_2'$
- 9-10. $S = x_1x_2'$ $R = x_1'x_2$
- **9-13.** (b) Two possible transition tables:

	00	01	11	10
a	@, 0	b, -	-, -	e, -
b	D , 1	(b), 1	-, -	d, –
d	a, -	@, 1	- , -	@, 1
e	@ , 1	d, -	-, -	@ , 1

	00	01	11	10
a	@, 0	b, -	-, -	b, -
b	c, -	(b), 1	-, -	(<i>b</i>), 0
C	©, I	d, -	-, -	d, -
d	a, -	@, 1	-, -	@, 1

- **9-18.** 3a: (a, b)(c, d)(e, f, g, h)3b: (a, e, f)(b, j)(c, d)(g, h)(k)
- **9-20.** Add states g and h to binary assignment.

	00	10	11	10
0	а	g	b	f
1	c	h	d	e

9-22.
$$F = A'D' + AC'D' + A'BC + A'CD'$$

9-23.
$$Y = (x_1 + x_2')(x_2 + x_3)(x_1 + x_3)$$

- **10-1.** Fan-out = 10; power dissipation = 18.75 mW; propagation delay = 3 ns; noise margin = 0.3 V
- **10-2.** (a) 1.058 V (b) 0.82 V (c) 0.238 V
- **10-3.** $I_B = 0.44 \text{ mA}, I_{CS} = 2.4 \text{ mA}$
- **10-4.** (a) 2.4 mA (b) 0.82 mA (c) 2.4 + 0.82N (d) 7.8 (e) 7
- **10-5.** (b) 3.53 (c) 2.585 mA (d) 16 mA (e) 300Ω
- **10-9.** (a) 4.62 mA (b) 4 mA
- 10-10. 0.3 V