AD-786 464

the electronic properties of the contraction of the

A DIGITAL LEAD COMPUTING OPTICAL SIGHT MODEL

Anthony L. Leatham, et al

Air Force Academy

Prepared for:

Air Force Avionics Laboratory

September 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

Unclassified		
REPORT DOCUMENTATION	READ INSTRUCTIONS	
EPORT NUMBER	2. GOVT ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG HUMBER
AFA-TR-74-17		AN 786464
E (and Subtitio) OPTI	cal	5. TYPE OF REPORT & PERIOD COVERE
GITAL LEAD COMPUTING SI		Final Report
		6. PERFORMING ORG. REPORT NUMBER
		USAFA-TR-74-17
ing(e)		S. CONTRACT OR GRANT NUMBER(*)
hony L. Leatham n C. Durrett		
vatore Alfano		
FORMING ORGANIZATION NAME AND ADDR		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
partment of Astronautics puter Science (DFACS)	and	
Air Force Academy, CO 80	0840	
TROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
of Faculty US Air Ford		August 1974
orado and Air Force Avid v Wright-Patterson AFB.		54
NITORING AGENCY NAME & ADDRESS(II dille	erent from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING
_		
•		
TRIBUTION STATEMENT (of the abatract ente		
OPPOVED FOR PUBLIC TELESSON DISTRIBUTION STATEMENT (of the abeliaci ente	red in Block 20, if different fro	CHNICAL
PPLEMENTARY NOTES Y WORDS (Continue on reverse side II necessed of the Computing Optical Sigilary Computing Optical Sigilary)	red in Block 20, if different from the second identify by block number, NATIONAL TEC	CHNICAL SERVICE
PLEMENTARY NOTES WORDS (Continue on reverse side if necesser) craft Cunnery l Computing Optical Siglital Fire Control e Control Algorithm TRACT (Continue on reverse side if necesser) aquations for the lead implementation in an on t fewer assumptions are eleration vector is avai	red in Block 20, if different from the state of the state	CHNICAL SERVICE Commerce 22151 cal sight are developed computer. It is shown the total nongravitation about measurements. The fine angular rate vector strapdown or inertial

是是一种,这种,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们们是一个人,我们们就是一个人

20. in current use: Numerical comparisons are made with a digital model of the lead computing optical sights currently employed on an advanced fighter aircraft, a digital lead computing optical sight developed by Honeywell, Inc., a digital lead computing sight developed by the Air Force Avionics Laboratory, and the historical tracer sight, "HOTLINE", also developed by Honeywell, Inc. The effects of aircraft roll rate on the lead angle are correctly modeled, which results in significant improvement of the lead angle prediction during maneuvers involving roll. The equations developed are also useful in the implementation of a director type gunsight where the angular rate of the line of sight is measured directly by a tracking device.

TATUS TELEFORMICA CONTROL CONT

Editorial Review by Lt. Colonel W. A. Belford, Jr. Department of English and Fine Arts USAF Academy, Colorado 80840

This research report is presented as a competent treatment of the subject, worthy of publication. The United States Air Force Academy vouches for the quality of the research, without necessarily endorsing the opinions and conclusions of the author.

This report has been cleared for open publication and/or public release by the appropriate Office of Information in accordance with AFR 190-17 and DODD 5230.9. There is no objection to unlimited distribution of this report to the public at large, or by DDC to the National Technical Information Service.

This research report has been reviewed and is approved for publication.

PHILIP ERDLE, Colonel, USAF Vice Dean of the Faculty

Additional copies of this document are available through the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22151.

TABLE OF CONTENTS

		Page
	List of Tables, List of Figures	2
	List of Symbols	3
ı.	Introduction	?
II.	Problem Definition	9
III.	Derivation of LCOS Equations	11
IV.	Implementation of LCOS Equations	23
٧.	Numerical Comparison with Other Gunsights	29
VI.	Conclusions	37
	Appendix A - AFALCOS Fortran Digital Program	39
	Appendix B - Digital LCOS Representative of an Advanced Fighter LCOS	40
	Appendix C - Honeywell Digital LCOS	45
	Appendix D - Air Force Avionics Laboratory Digital LCOS	48
	References	51

THE REAL PROPERTY.

LIST OF TABLES

<u>Table</u>		Page
1.	Sensitivity of Lead Angle $\tilde{\lambda}$ to Body x and y accelerations	26
2.	Gunsight Comparison (Mils) Range = 2000'	32
3.	Gunsight Comparison (Mils) Range = 3000'	33
4.	Air Force Avionics Laboratory LCOS Comparison	34
	LIST OF FIGURES	
Figure		Page
1.	Typical Sight Reticle Display	9
2.	Lead Angle Components	11
3.	Relationship of $\overline{\lambda}$, \overline{s} , \overline{b} , and \overline{k}	16
4.	Geometrical Relationship between $\bar{\beta}$, $\bar{\omega}$, and $\bar{\lambda}$	16
5.	Transient Response of Lead Angle for Various Values of K	25
6.	Geometrical Relationship between $\overline{\alpha}_G$, $\overline{\alpha}$, and $\overline{\theta}_G$	27
7.	Errors ΔAz, ΔE1, and δ	35

or of the contraction of the con

Page

以上,这个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是 第一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人

LIST OF SYMBOLS

	LIST OF SYMBOLS	Andrew Andrew Control of the Control
ymbol	Definition	
,	Unit vector along the aircraft velocity vector	
- N	Total nongravitational acceleration	
A]	Coefficient matrix (3 x 3)	
β	Variable relating drag effect to gravity drop	
•	A coefficient	
-	Unit vector along the gunline	1
В]	Coefficient matrix (3 x 3)	
.	Unit vector in direction of bullet velocity relative to airmass	
)	Present target range	
	Range rate Rate of change of range rate	
'f	Future target range	
- i	Drag	
, G	Gravity constant, 32.2 ft/sec	
•	Gravity vector	
ν	Variable associated with angle of attack effect on lead angle	
	Sight sensitivity parameter	
•	Vector relating $\overline{\lambda}$ and \overline{b}	;
	Unit vector in vertical direction (positive up)	
ı	Aircraft mass	
	3	

Symbol Symbol	<u>Definition</u>
p,q,r	Gun angular rates about the aircraft x, y, z axes
5	Unit vector in the direction of the target
T _f	Bullet time of flight
v, v _a	Aircraft speed
v _c	Closing speed (-Å)
$v_{\mathtt{f}}$	Average bullet speed
$v_{\rm m}$	Bullet muzzle speed w.r.t. gun
$\nabla_{\mathbf{T}}$	Target velocity
$\dot{\boldsymbol{v}}_{\mathbf{T}}$	Target acceleration
[W]	Coefficient matrix (2 x 2)
[W] - 1	Inverse of [W]
x,y,z	Aircraft acceleration components along body axes
Z	Unit vector in vertical direction (positive up)
α	Aircraft angle of attack considered as a scalar
$\overline{\alpha}$	Aircraft angle of attack vector
$\overline{\alpha}_{G}$	Gun angle of attack vector
· β · β ·	Sight line angular rate vector
	Normal sight line angular rate vector
<u></u> β	Sight line angular acceleration

TOROGENESS CONTRACTOR OF THE SECOND CONTRACTOR

,然后,我们就是这个人,我们就是这个人,我们是这个人,我们也不是一个人,我们也不是一个人,我们也不是一个人,我们也不是一个人,我们也不是一个人,我们也没有一个人, 第一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也

The Property of the Property o		Very
		-
Symbol	<u>Definition</u>	, , , , , , , , , , , , , , , , , , ,
<u>.</u> 3'	Normal sight line angular acceleration	B KAPIK ABADA
3	Radial error in mils between LCOS reticle and "HOTLINE" bullet at target range	
ΔAz, ΔE1	Azimuth and elevation error in mils between LCOS reticle and "HOTLINE" bullet at target range	H Spatiately year boar
2	Determinant of [W]	
7	Lead angle vector $(\lambda_1, \lambda_2, \lambda_3)^T$	
t	Lead angle rate vector	
Ţ.	Second and 3rd components of $\overline{\lambda}$ $(\lambda_2, \lambda_3)^T$	
į.	Rate of change of $\tilde{\lambda}$	
$\overline{\omega}, \overline{\omega}(t)$	Gun angular rate vector (p,q,r) ^T	
[Ω]	Coefficient matrix (2 x 3)	
:	Dummy time variable	
G	Gun angle vector	
		İ
		l
		-complete
		W. North
	r	BERTARA
	5	outoriselective Edition Shift
		器
	يعالميانيك هو الاراني ال	

· · · Restricted to the second of the second
and the control of th

「一般のでは、「一般のでは、「ないでは、「ないでは、「ないでは、「ないでは、「ないでは、「ないでは、「ないでは、「ない」では、「ない、「ない」では、「ない」では、「ない」では、「ない」では、「ない、「ない、「ない、「ない」では、「ない、「ない、「ない」では、「ない、」では、「ない、」では、「ない、」では、「ない、」では、「ない、」では、「ない、」では、「ない、」では、「ない、」では、「ない、」では、「ない、」では、

I. INTRODUCTION

With the installation of digital computers on fighter aircraft comes a computational capability that allows greater accuracy in the solution of fire control problems as well as greater versatility in implementing the solutions.

This report is concerned with the feasibility of implementing the solution of the lead computing optical sight (LCOS) in an on-board digital computer. For purposes of this report this sight will be called Air Force Academy LCOS (AFALCOS). It is shown that the lead angle equation required for reticle displacement on the heads-up display (HUD) can readily be solved on the digital computer. The solution of the lead angle equation is compared to the steady state solutions from models of a present day advanced fighter LCOS, the Honeywell, Inc. digital LCOS, the Avionics Laboratory digital LCOS documented in reference [2]¹, and Honeywell's historical tracer sight "HOTLINE." The AFALCOS is shown to be generally more accurate that the above LCOS's and in the steady state to compare very favorably with ROTLINE.

INSTRUMENTAL OF THE PROPERTY O

It should be noted that comparing two generically different types of gunsights requires not only a steady state comparison for accuracy but also a dynamic comparison in which the entire pilot, target, sight display, flight control system

Air-to-Air Gun Fire Control Equations for Digital Lead Computing Optical Sights, AFAL-TM-74-9-NVE-1, Apr 1974, Air Force Avionics Laboratory, Wright-Patterson AFB, Ohio.

and aerodynamic response of the aircraft are included. This complex interaction is highly coupled and the entire system needs to be tested before suitability of any one sight can be fully determined. In this report only the steady state comparison will be made.

In Section II the problem definition is presented. The assumptions are stated, and the development of the equations is made in Section III. A discussion of the problem of implementation is made in Section IV. Numerical results demonstrating the feasibility of the digital LCOS are presented in Section V as well as an accuracy comparison with the models stated above. Conclusions are stated in Section VI.

on the state of th

II. PROBLEM DEFINITION

Definition of LCOS

In the lead-computing gunsight, a prediction angle is continually computed and displayed on the Heads Up Display (HUD) as a reticle offset from a fixed reference on the gunsight. A typical reticle presentation on the HUD is shown in Figure 1.

Figure 1. Typical Sight Reticle Display

The prediction angle displaces the reticle in azimuth and elevation and is the angle between the present line of sight (if the pilot has the reticle superimposed on the target) and weapon line. The prediction angle accounts

for ballistic curvature, own motion, and predicted target motion. In the implementation of this system, several drawbacks are apparent. One is the necessity to predict future target motion so that the proper lead angle may be obtained. To make a prediction, some assumptions must be made concerning future target motion which are not always valid if the target is performing evasive maneuvers. Also, the reticle, if undamped, moves abruptly in the HUD due to abrupt control inputs which are common in combat. To overcome this movement, damping must be induced in the reticle, which has the adverse effect of making the reticle lag behind real time. Thus, time is needed for the on-board computer to settle to a solution. This settling may never occur if aircraft attitude and velocity are constantly changing. LCOS, therefore, has limitations which are undesirable. However, LCOS has proven itself worthy in close-in air combat and is a usable sight.

THE STATES AND THE STATES OF T

AND THE PARTY OF T

The sight presently incorporates the use of a Lead Computing Gyroscope (LCG) which can be eliminated if the aircraft has either a strapdown or inertial navigation system on board which will provide the aircraft body rate vector. The problem, then, lies in developing a digital program capable of taking the place of the present LCOS, including the lead computing gyroscope. This approach should yield a gunsight which is more accurate than the present one at a decreased initial cost and a reduced maintenance cost.

III. DERIVATION OF LCOS EQUATIONS

In this section the lead angle equations will be developed along with the time of flight equation. Results of reference [1]¹ are used extensively.

Figure 2. Lead Angle Components

From inspection of Figure 2,

$$D\overline{s} + \nabla_T T_f + (\dot{\nabla}_T + A_\beta g \overline{z}) T_f^{2/2} = D_f \overline{c}.$$
 (1)

For the small angles involved,

$$(V_a + V_m) \overline{c} \approx V_a \overline{a} + V_m \overline{b}$$

$$\overline{c} \approx \frac{V_a}{V_a + V_m} \overline{a} + \frac{V_m}{V_a + V_m} \overline{b}$$
(Assumption).

By the definitions of the four variables

$$D_{f} = (V_{a} + V_{f}) T_{f}. \tag{3}$$

Substitute equations (2) and (3) into equation (1)

to obtain

F-4E Lead Computing Optical Sight System (LCOSS) Improvement Study, Report MDC A0610 1 June 1971, Mc Donnell Aircraft Company, St. Louis, Missouri.

$$V_{m}T_{f}\left(\frac{V_{a}+V_{f}}{V_{a}+V_{m}}\right)\overline{b} = D\overline{s} + \overline{V}_{T}T_{f} + (\overline{V}_{T} + A_{\beta} g \overline{z})T_{f}^{2}/2$$

$$(4)$$

$$- V_a T_f \left(\frac{V_a + V_f}{V_a + V_m} \right) \overline{a} .$$

Lead angle $\overline{\lambda}$ considered as vector ($|\lambda| << 1$) is approximately

$$\overline{\lambda} = \overline{s} \times \overline{b}$$
 (Assumption). (5)

Thus by crossing \overline{s} into both sides of (4)

$$V_{m}T_{f}\left(\frac{V_{a}+V_{f}}{V_{a}+V_{m}}\right)^{\frac{1}{\lambda}} = (\overline{s} \times \overline{V}_{T}) T_{f} + (\overline{s} \times \overline{V}_{T} + A_{\beta} g (\overline{s} \times \overline{z})) T_{f}^{2}/2$$

$$- T_{f}V_{a} \frac{V_{a}+V_{f}}{V_{a}+V_{m}} (\overline{s} \times \overline{a}). \qquad (6)$$

Divided through by T_f , Equation (6) becomes

$$V_{m} \left(\frac{V_{a} + V_{f}}{V_{a} + V_{m}} \right) \overline{\lambda} = \overline{s} \times \left[\overline{V}_{T} - V_{a} \left(\frac{V_{a} + V_{f}}{V_{a} + V_{m}} \right) \overline{a} \right]$$

$$+ \left[\overline{s} \times \dot{V}_{T} + A_{\beta} g (\overline{s} \times \overline{z}) \right] T_{f} / 2. \tag{7}$$

是是是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我

The first term on the right hand side (inside the brackets) is

$$\nabla_{T} - \frac{V_{\mathbf{a}} (V_{\mathbf{a}} + V_{\mathbf{f}})}{V_{\mathbf{a}} + V_{\mathbf{m}}} \overline{\mathbf{a}} = \nabla_{T} - \frac{V_{\mathbf{a}}^{2} + V_{\mathbf{a}} V_{\mathbf{m}} - V_{\mathbf{a}} V_{\mathbf{m}} + V_{\mathbf{a}} V_{\mathbf{f}}}{V_{\mathbf{a}} + V_{\mathbf{m}}} \overline{\mathbf{a}}$$

$$= \overline{V}_{T} - V_{\mathbf{a}} \overline{\mathbf{a}} + V_{\mathbf{a}} \left(\frac{V_{\mathbf{m}} - V_{\mathbf{f}}}{V_{\mathbf{a}} + V_{\mathbf{m}}} \right) \overline{\mathbf{a}}$$
(8)

but;

$$\overline{V}_T - V_a \overline{a} = \frac{d}{dt} (D\overline{s}) = D\overline{s} + D\overline{s}$$
 (9)

and cross both sides of (9) with \bar{s} (remember $\bar{s} \times \bar{s} = 0$)

$$\overline{s} \times (\overline{V}_T - V_a \overline{a}) = D (\overline{s} \times \overline{s}) = D [\overline{\beta} - (\overline{\beta} \cdot \overline{s})\overline{s}].$$
 (10)

The term in brackets on the r.h.s. of Eq (10) was simplified to just $\dot{\beta}$ in previous LCOS developments, which led to an incorrect result in the effect of aircraft roll rate on the lead angle.

NOTE: $\frac{\dot{s}}{s} = \frac{\dot{\beta}}{\beta} \times \frac{s}{s}$ (derivative of a unit vector)

cross both sides with \overline{s}

$$\overline{s} \times \overline{s} = \overline{s} \times (\overline{\beta} \times \overline{s}) \text{ and } \overline{s} \times \overline{s} = \overline{\beta} - (\overline{\beta} \cdot \overline{s}) \overline{s}$$

and $\overline{s} \times \overline{a} = \overline{\lambda} + (\overline{b} \times \overline{a}) = \overline{\lambda} + \overline{\alpha}_{G}$ (11)

where $\overline{s} \times \overline{b} = \overline{\lambda}$ (Assumption)

$$\overline{b} \times \overline{a} = \overline{\alpha}_{G}$$
 (Assumption).

Substitute equations (8), (10), and (11) into (7) to obtain

$$V_{m} \begin{pmatrix} V_{a}^{+}V_{f} \\ V_{a}^{+}V_{m} \end{pmatrix} \overline{\lambda} = \overline{s} \times \left[\nabla_{T} - V_{a} \overline{a} \right] + V_{a} \begin{pmatrix} V_{m}^{-}V_{f} \\ V_{a}^{+}V_{m} \end{pmatrix} (\overline{s} \times \overline{a})$$

$$+ (\overline{s} \times \dot{\overline{V}}_{T}) T_{f}/2 + A_{\beta} g (\overline{s} \times \overline{z}) T_{f}/2$$

$$= D [\dot{\overline{\beta}} - (\dot{\overline{\beta}} \cdot \overline{s})\overline{s}] + \frac{V_{a}(V_{m}^{-}V_{f})}{V_{a}^{+}V_{m}} (\overline{\lambda} + \overline{\alpha}_{G})$$

+
$$(\overline{s} \times \overline{V}_T) T_f/2 + A_g g (\overline{s} \times \overline{z}) T_f/2$$
. (13)

Collect terms in $\overline{\lambda}$:

$$V_{f}\overline{\lambda} = D_{\overline{G}}^{\dagger} + J_{V}V_{a}\overline{\alpha}_{G} + A_{S} g (\overline{s} \times \overline{z}) T_{f}/2 + (\overline{s} \times \overline{V}_{T}) T_{f}/2$$
 (14)

where

$$Jv = \frac{V_m - V_f}{V_a + V_m} \text{ and } \dot{\overline{\beta}}! = \dot{\overline{\beta}} - (\dot{\overline{\beta}} \cdot \overline{S}) \, \overline{S}.$$
 (15)

Target acceleration is the only component of lead which is not expressed directly in terms of quantities measurable on board the aircraft. The next objective is to relate target acceleration to those parameters which can be either effectively measured or estimated.

From equation (9),

$$\nabla_{T} = \nabla_{a} \overline{a} + \frac{d}{dt} (D\overline{s}) = \nabla_{a} \overline{a} + D\overline{s} + D\overline{s}.$$
 (16)

At this point, previous derivations of LCOS have assumed constant target and attacker speeds; however, this assumption is not necessary unless only the normal acceleration is measured. Proceeding without this assumption, we can write

$$\dot{\overline{V}}_{T} = \frac{d}{dt} (V_{a}\overline{a}) + \frac{d}{dt} (D \dot{\overline{\beta}} \times \overline{s}) + \frac{d}{dt} (\dot{D}\overline{s}). \tag{17}$$

We now write Newton's second law for the attacker,

$$\overline{T} + \overline{D} + \overline{L} + \overline{W} = m d (V_a \overline{a}).$$
 (18)

Rearranging (18) we have

$$\frac{d}{dt} (V_a \overline{a}) = (\overline{T} + \overline{D} + \overline{L})/m + \overline{g}.$$
 (19)

The right hand side of (19) is arranged in the manner shown because an on-board accelerometer trial will measure only nongravitational accelerations. Let \overline{a}_N denote the nongravitational accelerations,

$$\overline{\mathbf{a}}_{N} = (\overline{\mathbf{T}} + \overline{\mathbf{D}} + \overline{\mathbf{L}})/\mathbf{m}. \tag{20}$$

Equation (19) becomes

$$\frac{d}{dt} (V_{\overline{a}}) = \bar{a}_{N} + \bar{g}. \tag{21}$$

Substituting Equation (21) into Equation (17) and taking the vector cross product of both sides of equation (17) results in

$$\overline{s} \times \overline{V}_{T} = \overline{s} \times (\overline{a}_{N} + \overline{g}) + 2\overline{D} \overline{s} \times (\overline{\beta} \times \overline{s}) + D \overline{s}$$

$$\times [\overline{\beta} \times (\overline{\beta} \times \overline{s})] + D \overline{s} \times (\overline{\beta} \times \overline{s}) + \overline{D} \overline{s} \times \overline{s}.$$
(22)

Noting that

$$\vec{s} \times \vec{s} = 0$$

$$\vec{s} \times \dot{\vec{s}} = \dot{\vec{\beta}} - (\dot{\vec{\beta}} \cdot \vec{s}) \vec{s} = \dot{\vec{\beta}}'$$

$$\vec{s} \times \ddot{\vec{s}} = \ddot{\vec{\beta}}' = \ddot{\vec{\beta}} - (\ddot{\vec{\beta}} \cdot \vec{s}) \vec{s}.$$

Applying the rule for a vector triple product, Equation (22) can be rewritten

$$\vec{s} \times \vec{\nabla}_{T} = \vec{s} \times (\vec{a}_{N} + \vec{g}) + 2\vec{D} [\vec{\beta} - (\vec{\beta} \cdot \vec{s})\vec{s}] + D(\vec{\beta} \cdot \vec{s})\vec{s} \times \vec{\beta}$$
 (23)
+ $D[\vec{\beta} - (\vec{\beta} \cdot \vec{s})\vec{s}]$.

<u>Magger</u> formande despessive experimentation of the formal properties o

Substituting the r.h.s. of equation (23) for the term $\overline{s} \times \overline{V}$, in the r.h.s. of equation (14), we have an equation which no longer contains any terms referring to the target except \overline{s} , the line of sight unit vector,

$$\overline{\lambda} = \frac{D + T_{\mathbf{f}} D}{V_{\mathbf{f}}} \dot{\overline{\beta}}' + \frac{T_{\mathbf{f}}}{2V_{\mathbf{f}}} D(\dot{\overline{\beta}} \cdot \overline{s}) \overline{s} x \dot{\overline{\beta}} + J_{\mathbf{v}} \frac{V_{\mathbf{a}}}{V_{\mathbf{f}}} \overline{\alpha}_{\mathbf{G}} + \frac{T_{\mathbf{f}}}{2V_{\mathbf{f}}} \overline{s} x \overline{a}_{\mathbf{N}}$$

$$- (1 - A_{\mathbf{\beta}}) \frac{T_{\mathbf{f}}}{2V_{\mathbf{f}}} g \overline{s} x \overline{z} + D \frac{T_{\mathbf{f}}}{2} \ddot{\overline{\beta}}'$$
(24)

where $\frac{..}{\beta}$ ' = $\frac{..}{\beta}$ - $(\frac{..}{\beta}$. \overline{s}) \overline{s} .

Since \overline{s} is not measurable without an accurate tracking device, \overline{s} must be determined in terms of other measurable quantities. From equation (5)

$$\overline{\lambda} = \overline{s} \times \overline{b}$$
and since $|\overline{\lambda}| << 1$ let us define a vector \overline{k} such that
$$\overline{k} = \overline{b} \times \overline{\lambda}$$
(25)

where \overline{b} is the gunline unit vector. From Figure 3 it is clear that

 $|\mathbf{K}| \approx \lambda$ and

$$\overline{s} \approx \overline{b} + \overline{k} = \overline{b} + (\overline{b} \times \overline{\lambda}).$$
 (26)

Figure 3. Relationship of $\overline{\lambda}$, \overline{s} , \overline{b} , and \overline{k} In the r.h.s. of equation (24) we can express $\overline{s} \times \overline{a}_{\overline{N}}$ in terms of $\overline{a}_{\overline{N}}$, \overline{b} , and $\overline{\lambda}$, all of which can be measured or computed on board the attacker aircraft,

$$\bar{s} \times \bar{a_N} = [\bar{b} + (\bar{b} \times \bar{\lambda})] \times \bar{a_N}$$

$$= \bar{b} \times \bar{a_N} - (\bar{a_N} \cdot \bar{\lambda})b + (\bar{a_N} \cdot \bar{b})\bar{\lambda}.$$
(27)

on the contract of the contrac

Next we consider $\frac{\dot{B}}{B}$. Referring to Figure 4 we can write

$$\dot{\vec{\beta}} = \overline{\omega} - \dot{\vec{\lambda}}$$
 (Assumption). (28)

Figure 4. Geometrical Relationship Between $\dot{\overline{\beta}}$, $\overline{\omega}$, and $\overline{\lambda}$

We now need to simplify the terms in equation (24) containing $\frac{\cdot}{\beta}$ which are

$$(D + T_{f}\dot{D}) [\dot{\overline{\beta}} - (\dot{\overline{\beta}} \cdot \overline{s})\overline{s}] + \frac{T_{f}}{2} D (\dot{\overline{\beta}} \cdot \overline{s})\overline{s} \times \dot{\overline{\beta}}.$$
 (29)

The term $[\dot{\vec{\beta}} - (\dot{\vec{\epsilon}} \cdot \vec{s})\vec{s}]$ can be written in matrix form as

$$\frac{\dot{\beta}'}{\dot{\beta}'} = [\frac{\dot{\beta}}{\dot{\beta}} - (\frac{\dot{\beta}}{\dot{\beta}} \cdot \bar{s})\bar{s}]$$

$$= \begin{bmatrix} (1-s_1^2) & -s_1 s_2 & -s_1 s_3 \\ -s_1 s_2 & (1-s_2^2) & -s_2 s_3 \\ -s_1 s_3 & -s_2 s_3 & (1-s_3^2) \end{bmatrix} \frac{\dot{\beta}}{\dot{\beta}}$$

$$= [A] \dot{\overline{\beta}}. \tag{30}$$

The term $\overline{s} \times \dot{\overline{\beta}}$ can be written in matrix form as

$$\vec{s} \times \vec{\beta} = \begin{bmatrix} 0 & -s_3 & s_2 \\ s_3 & 0 & -s_1 \\ -s_2 & s_1 & 0 \end{bmatrix} \vec{\beta}$$

$$= \begin{bmatrix} B \end{bmatrix} \vec{\beta}. \tag{31}$$

Finally, we assume that

$$\frac{\dot{s}}{\beta} \cdot \overline{s} = p \qquad \text{(Assumption)} \tag{32}$$

where p is the roll rate of the aircraft.

This assumption is very reasonable since $\frac{\dot{\beta}}{\beta}$ is the angular rate vector of the line of sight and $\frac{\dot{\dot{\beta}}}{\beta} \cdot \bar{\dot{s}}$ is simply the component of angular rate along the line of sight.

The line of sight vector \overline{s} is nearly aligned with the roll axis of the aircraft.

The expression (29) can now be written

$$(D + T_{f}\dot{D})[A]\dot{\bar{B}} + \frac{T_{f}}{2}Dp[B]\dot{\bar{B}}$$

$$= (D + T_{f}\dot{D})\{[A] + \frac{T_{f}Dp}{2(D+T_{f}\dot{D})}[B]\}\dot{\bar{B}}$$
(33)

=
$$(D+T_f\dot{D})$$
 {A + bB} $\dot{\overline{\beta}}$.

Substituting equation (33) and equation (28) into the lead angle equation Eq (24) results in

$$V_{\mathbf{f}}\overline{\lambda} = (D+T_{\mathbf{f}}\dot{D}) \{A + bB\} (\overline{\omega}-\dot{\lambda}) + J_{\mathbf{v}}V_{\mathbf{a}} \overline{\alpha}_{\mathbf{G}} + \frac{T_{\mathbf{f}}}{2} \overline{s} \times \overline{a}_{\mathbf{N}}$$

$$+(1-A_{\beta})\frac{T_{\mathbf{f}}}{2} g \overline{s} \times \overline{z} + D \frac{T_{\mathbf{f}}}{2} [A] \overline{\beta} .$$
(34)

The last two terms are neglected in current LCOS mechanization and will be neglected here since the terms (1-A $_{\beta}$) and $|\ddot{\beta}|$ are generally very small. We desire a differential equation for the lead angle; therefore, we solve for $\dot{\lambda}$. Rearranging Eq (34) and neglecting the last two terms

$$\{A+bB\}\dot{\bar{\chi}} = \{A+bB\}\bar{\omega} - \frac{V_{f}}{(D+T_{f}\dot{D})}\bar{\lambda} + \frac{J_{v}V_{a}}{(D+T_{f}\dot{D})}\bar{\alpha}_{G}$$

$$+ \frac{T_{f}}{2(D+T_{f}\dot{D})}\bar{s} \times \bar{a}_{N}.$$
(35)

To solve for $\frac{\cdot}{\lambda}$ it is necessary to invert the matrix

{A+bB}; however, this matrix is singular if the line of sight vector corresponds with the aircraft body axis. The matrix {A+bB} multiplying $\dot{\overline{\lambda}}$ in Eq (35) can be written

$$\{A+bB\} = \begin{bmatrix} (1-s_1^2) & -(s_1s_2 + bs_3) & (-s_1s_3 + bs_2) \\ (-s_1s_2+bs_3) & (1-s_2^2) & -(s_2s_3 + bs_1) \\ -(s_1s_3 + bs_2) & (-s_2s_3 + bs_1) & (1-s_3^2) \end{bmatrix}.$$
(36)

Note that if $s_1=1$, $s_2=s_3=0$, then the first row of $\{A+bB\}$ is zero, and the matrix is singular. This problem can be circumvented by deleting the first component equation for λ_1 since λ_1 is not required for displaying the lead angle. However, before deleting the first row and column of $\{A+bB\}$ it is necessary to first multiply the matrices $\{A+bB\}$ $\overline{\omega}$ on the r.h.s. of Eq (35). This multiplication introduced the effect of roll, p, into the equations for λ_2 and λ_3 . The resulting equation is

$$\begin{bmatrix}
(1 & s_{1}^{2}) & -(s_{2}s_{3} + bs_{1}) \\
(-s_{2}s_{3} + bs_{1}) & (1-s_{3}^{2})
\end{bmatrix}
\begin{pmatrix}
\dot{\lambda}_{2} \\
\dot{\lambda}_{3}
\end{pmatrix} = [W] \begin{pmatrix}
\dot{\lambda}_{2} \\
\dot{\lambda}_{3}
\end{pmatrix}$$

$$= \begin{bmatrix}
(-s_{1}s_{2} + bs_{3})\omega_{1} + (1-s_{2}^{2})\omega_{2} - (s_{2}s_{3} + bs_{1})\omega_{3} \\
(-s_{1}s_{3} + bs_{2})\omega_{1} + (-s_{2}s_{3} + bs_{1})\omega_{2} + (1-s_{3}^{2})\omega_{3}
\end{bmatrix} + \frac{J_{V}V_{a}}{(D+T_{f}D)} \overline{\alpha}_{G}$$

$$+ \frac{T_{f}}{2(D+T_{f}D)} \overline{s} \times \overline{a}_{N} - \frac{V_{f}}{D+T_{f}D} \overline{\lambda} . \tag{37}$$

The inverse of the matrix [W] is

$$[W]^{-1} = \frac{1}{\Delta} \begin{bmatrix} (1-s_3^2) & (s_2s_3+bs_1) \\ (s_2s_3-bs_1) & (1-s_2^2) \end{bmatrix}$$
(38)

where

$$\Delta = 1 - s_2^2 - s_3^2 + b^2 s_1^2. \tag{39}$$

The differential equations for $\dot{\lambda}_2$ and $\dot{\lambda}_3$ can now be written

$$\dot{\tilde{\lambda}} = [W]^{-1} \left\{ [\Omega] \overline{\omega} - \frac{V_f}{D + DT_f} \tilde{\lambda} + \frac{J_v V_a}{D + DT_f} \overline{\alpha}_G + \frac{T_f}{2(D + T_f D)} \overline{s} \times \overline{a}_N \right\}$$
(40)

where $\tilde{\lambda} = \begin{pmatrix} \lambda_2 \\ \lambda_3 \end{pmatrix}$ (41)

and

$$[\Omega] = \begin{bmatrix} (-s_1s_2 + bs_3) & (1-s_2) & -(s_2s_3 + bs_1) \\ -(s_1s_3 + bs_2) & (-s_2s_3 + bs_1) & (1-s_3^2) \end{bmatrix}.$$
 (42)

Finally, substituting for \overline{s} from Eq (27) into Eq (40)

we obtain the lead angle equation

$$\dot{\tilde{\lambda}} = [W]^{-1} \left\{ [\Omega] \overline{\omega} - \frac{V_{\mathbf{f}}}{(D + DT_{\mathbf{f}})} \tilde{\lambda} + \frac{J_{\mathbf{v}} V_{\mathbf{a}}}{D + DT_{\mathbf{f}}} \overline{\alpha}_{\mathbf{G}} + \frac{T_{\mathbf{f}}}{2(D + T_{\mathbf{f}}D)} [\overline{b} x \overline{a}_{\mathbf{N}} - (\overline{a}_{\mathbf{N}} \cdot \overline{\lambda}) \overline{b} \right\}$$

$$+ \overline{a}_{N} \cdot \overline{b} \tilde{\lambda}$$
 (43)

where $\lambda_1 = 0$ in $\overline{a}_N \cdot \overline{\lambda}$.

This is the equation which will be mechanized with some further simplifications, depending upon sensor information and geometric orientation of the gun in the aircraft. These items will be discussed further in section IV.

Derivation of T_f and V_f

 $T_{\mathbf{f}}$ and $V_{\mathbf{f}}$ are respectively the bullet time of flight and average bullet velocity relative to the attacker.

An empirical model which is sufficiently accurate for bullet time of flight is

$$T_f = R_F / (V_p - K_B R_F V_p^{\frac{1}{2}} \rho/\rho_0)$$
 (44)

where R_F is the final range determined by

$$R_{F} = R + (V_{a} + \dot{R})T_{f}$$
 (45)

 $\boldsymbol{V}_{\boldsymbol{p}}$ is the initial projectile speed in the airmass.

 $\mathbf{K}_{\mathbf{B}}$ is an empirically derived ballistic coefficient.

 ρ_{ρ_0} is the density ratio.

By substituting equation (31) into equation (30) we obtain

$$T_{F} = \frac{\left[R + (V_{a} + \dot{R})T_{f}\right]}{\left\{V_{p} - K_{B} \left[R + (V_{a} + \dot{R})T_{f}\right] V_{p}^{\frac{1}{2}} \rho/\rho_{o}\right\}}.$$
(46)

Let

$$V_{LS} = RK_B V_p^{1_2} \rho/\rho_o . \tag{47}$$

Equation (46) is a quadratic in T_F when both sides are multiplied by the denominator of the r.h.s.,

$$\left[K_{B} \left(V_{a} - V_{c}\right)V_{p}^{\frac{1}{2}} \rho_{\rho_{0}}\right] T_{f}^{2} + \left[V_{LS} - \left(V_{p} - V_{a}\right) + \dot{R}\right] T_{f} + R = 0$$
(48)

Let

$$V_{os} = V_{m} - R - V_{LS}$$
 (49)

$$V_{p} = V_{a} + V_{m}$$
 (50)

and divide both sides of equation (48) by T_{f}^{2}

$$R\left(\frac{1}{T_f}\right)^2 - V_{os}\left(\frac{1}{T_f}\right) + \left[K_B(V_a + \dot{R})V_p^{\frac{1}{2}\rho}/\rho_o\right] = 0$$
 (51)

$$\frac{1}{T_{f}} = \frac{V_{os} + \sqrt{V_{os}^{2} - 4V_{LS}(V_{a} + R)}}{2R}.$$
 (52)

Letting

$$V_{cm} = \sqrt{V_{os}^2 - 4V_{LS}(V_a - V_c)}$$
 (53)

then

$$T_{f} = \frac{2R}{V_{os} + V_{cm}} . \tag{54}$$

Equation (54) is used to calculate time of flight T_f for the lead angle equation, equation (43). To obtain V_f , the average bullet speed with respect to the attacker,

$$V_{f} \approx \frac{D_{f}}{T_{f}} - V_{a}$$

$$= \left[D + (V_{a} + \dot{R})T_{f}\right] / T_{f} - V_{a}$$

$$V_{f} = D / T_{f} + \dot{R} . \qquad (56)$$

enter enter

Equation (56) is used to compute $V_{\mathbf{f}}$ for the lead angle equation, equation (43).

Note in equations (53) and (54) that $V_{\rm cm}$; hence, $T_{\rm f}$ may be undefined if the argument of the square root is negative. This situation can occur for certain engagement conditions and must be checked for solution validity.

IV. IMPLEMENTATION OF LCOS EQUATIONS

In practice, the \overline{z} vector may not be available. The term containing \overline{z} is very small in any case (ref 1); hence, this term is often neglected. The $\overline{\beta}$ vector can be obtained by differentiating $\overline{\beta}$ in equation (28); however, because differentiation is a noisy process and this term is a second order effect significant only during transient maneuvers when tracking is extremely difficult, this term is generally neglected. For the remainder of this report, the terms centaining \overline{z} and $\overline{\beta}$ will be dropped as in earlier LCOS mechanizations. A later investigation is planned to determine the consequences of neglecting these terms.

Equation (43) can be integrated on an on-board digital computer to obtain the lead angle $\tilde{\lambda}(t)$. The speed of integration can be modified to obtain better sight stability by time scaling equation (43). Let the new time variable τ be defined such that

$$t = K\tau, dt = Kd\tau. (57)$$

Substituting Eq (57) into Eq (43) and rearranging, we obtain

$$\frac{d\tilde{\lambda}}{d\tau} = K[W]^{-1} \left\{ [\Omega] \overline{\omega} - \frac{V_f \tilde{\lambda}}{(D+T_f \hat{D})} + \frac{T_f}{2(D+T_f \hat{D})} [\overline{D} \times \overline{a}_N - (\overline{a}_N \cdot \overline{\lambda}) \overline{D} \right\}$$

+
$$(\overline{a}_{N} \cdot \overline{b})\tilde{\lambda}$$
 + $\frac{J_{V}V_{a}}{(D+DT_{f})}$ $\overline{\alpha}_{G}$ (58)

Equation (58) is a first order differential equation linear in $\tilde{\lambda}$. The terms not containing $\tilde{\lambda}$ can be regarded as forcing terms, since they are dependent upon the attacker's maneuvers.

If steady state conditions exist, $\frac{d\lambda}{d\tau}$ will approach zero, and a steady state value of $\tilde{\lambda}$ can be obtained by integrating equation (44) until $\frac{d\tilde{\lambda}}{d\tau} \approx 0$, or, alternatively, $\frac{d\tilde{\lambda}}{d\tau}$ can be set to zero, and $\tilde{\lambda}$ for the steady state situation can be obtained from the resulting algebraic equation. If steady state conditions do not exist, however, $\tilde{\lambda}(t)$ obtained by integrating equation (58) will lag the actual lead angle because of the time constant associated with $\tilde{\lambda}$.

This time constant can be modified merely by changing the time scaling factor K defined in equation (57). Alternatively, K can be considered as a gain in a control system with output $\tilde{\lambda}(t)$. Increasing K decreased the time constant of $\tilde{\lambda}$ in equation (58); however, the greater K is, the greater will be the reticle sensitivity to changes in attacker aircraft acceleration, angle of attack, and rate of turn. Thus, a trade-off on the value of K is required between the pilot's ability to track a target with the reticle and the response of the reticle to changes in aircraft dynamics commanded by the pilot. The value K = .80 corresponds to the sight damping factor σ = .25 (ref 1) found in most present day LCOS.

Transient Response Versus K

The transienc response of equation (58) to a step input is illustrated in Figure 5 for various values of K. Initially, $\tilde{\lambda}(t_0) = 0$, and the step input of $\overline{\omega}(t) = 0$, $\overline{a}_N(t) = -32.2\hat{k}$, $\overline{\alpha}(t) = 0$, t>0 corresponds to straight and level flight. Figure 5 clearly shows the lag existing in the LCOS in any nonsteady situation. The obvious result is to choose the gain K as high as possible consistent with the pilot's ability to track his target with the more responsive reticle.

Figure 5. Transient Response of Lead Angle for Various Values of K.

Sensitivity of $\tilde{\lambda}(t)$ to Accelerations in x and y The present LCOS measures only acceleration normal to the aircraft body x-y plane. In this report no assumption was made to measure acceleration only in the body z direction; hence, it is of interest to determine the sensitivity of the lead angle $\lambda(t)$ to accelerations in the body x and y directions. $\lambda(t)$ for various accelerations, including the body x and y accelerations, is compared in Table 1 to the lead angle generated by assuming only normal acceleration. The results show that $\lambda(t)$ is quite insensitive to \ddot{x} while it is considerably more sensitive to ÿ. In judging the importance of the sensitivity of $\lambda(t)$ to \ddot{y} , one must keep in mind that for coordinated flight $\ddot{y} = 0$, and for tracking situations it is most likely that the pilot will be coordinated. Therefore, LCOS can employ only normal acceleration z with little degradation in sight accuracy provided the pilot makes coordinated turns during tracking.

Table 1. Sensitivity Of Lead Angle $\lambda(t)$ To Body x and y Acceleration

Range = 2000' v = 800 fps h = 10000' Level Flight

Accel	eration	Effect (Mils)		
X (ft/sec²)ÿ (ft/sec²)		E1	· Az	
16.1	0.	0.	.02	
32.2	0.	0.	.03	
0.	8.05	1.2	0.	
0.	16.1	2.5	0.	

Further Simplification of Lead Angle Equations
As stated earlier, the sensor information available and
the geometry of the gun placement have an effect on the complexity of the terms in Eq (58). The sensors under discussion are angle-of-attack meter and body mounted accelerometers.

Angle of Attack

Generally the angle of attack of the aircraft is measured in the body x-z plane; hence, for small angles it can be considered as a rotation about the body y axis. The angle of attack of the aircraft can then be expressed as

$$\overline{\alpha} = \begin{pmatrix} 0 \\ \alpha \\ 0 \end{pmatrix}. \qquad (assuming no side slip) \qquad (59)$$

THE PROPERTY OF THE PROPERTY O

The angle of attack of the gun $\overline{\alpha}_G$ is the angle required in Eq (58), and the relationship between $\overline{\alpha}$ and $\overline{\alpha}_G$ is

$$\overline{\alpha}_{G} = \overline{\alpha} - \overline{\theta}_{G} \tag{60}$$

where $\overline{\theta}_G$ is the angle considered as a vector that the gun makes with the x axis of the aircraft. Figure 6 shows the geometrical relationship between $\overline{\alpha}_G$, $\overline{\alpha}$, and $\overline{\theta}_G$. If the gun is mounted in the body x-z plane, then

Figure 6. Geometrical relationship between $\overline{\alpha}_G$, $\overline{\alpha}$, and θ_G

$$\overline{\alpha}_{G} = \left\{ \alpha \stackrel{\circ}{}_{0} \theta_{G} \right\}. \tag{61}$$

Accelerometers

If only one accelerometer is employed in LCOS to measure body acceleration in the z axis, then \overline{a}_{N} in Eq (58) is

$$\overline{a}_{N} = \begin{Bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{Bmatrix} = \begin{Bmatrix} o \\ o \\ \ddot{z} \end{Bmatrix} \tag{62}$$

and the terms containing
$$\bar{a}_N$$
 simplify to
$$\bar{b} \times \bar{a}_N = \begin{pmatrix} b_2 & \ddot{z} \\ b_1 & \ddot{z} \\ o \end{pmatrix}$$
(63)

$$\overline{a}_{N} \cdot \overline{b} = \overline{z}b_{3} \tag{64}$$

$$\overline{a}_{N} \cdot \overline{\lambda} = \overline{z}\lambda_{3}$$
 (65)

Gun Location

If the gun is located in the body x-z plane, then the gun vector b becomes

$$\overline{b} = \begin{cases} b_1 \\ o \\ b_2 \end{cases}. \tag{66}$$

V. NUMERICAL COMPARISON WITH OTHER GUNSIGHTS

A brief description of four other gunsights with which a comparison of AFALCOS will be made follows. A Fortran language listing of AFALCOS is found in Appendix A.

"HOTLINE" Historical Tracer

This gunsight is a historical tracer type sight in which the relative trajectory of the bullets with respect to the attacking aircraft is computed and displayed on a heads up display (HUD). If range is known from radar, a small reticle appears on the HUD at the point where a bullet at target range would be if it had been fired one time of flight ago - thus the name "historical tracer." Very few assumptions are made in the calculations to obtain the relative bullet stream position; therefore, this sight is considered an accurate standard for comparison purposes. The authors are grateful to Honeywell Inc. for making this sight digital program available to the Air Force. The equations and program are considered proprietary by Honeywell Inc.; hence, they are not included in this report.

Advanced Fighter LCOS

A digital model representative of the lead computing sight for a current advanced fighter aircraft was programmed by members of the Astronautics and Computer Science Department of the US Air Force Academy. This digital model includes a digital representation of the lead computing gyroscope

employed in this lead computing sight. The digital gyroscope model was programmed by the Air Force Avionics Laboratory, WPAFB, Ohio. A listing of the Fortran language digital program is found in Appendix B.

Honeywell Digital LCOS

The equations and digital program for the above advanced fighter LCOS were given to Honeywell Inc. for development of a digital LCOS to be used in the Air Force Avionics Laboratory's Comparative Gunsight Test Program in which a flight test comparison between a historical tracer type sight (HOTLINE) and an LCOS sight was to be made. Honeywell simplified the equations and digital code to develop a compact code which could be programmed on an aircraft digital computer. It should be noted that during the course of this simplification and program checkout, Honeywell's engineers discovered the roll coupling discrepancy between the advanced fighter LCOS and their own HOTLINE and brought the matter to the attention of the Air Force. A Fortran language program listing is found in Appendix C.

THE STATE OF THE S

THE SECTION OF THE PROPERTY OF

Air Force Avionics Laboratory LCOS

This digital LCOS was developed by the Air Force Avionics
Laboratory to support the laboratory's Digital Avionics Information System (DAIS) project. This development is similar to
the other digital LCOS derivations except that the small angle
assumptions made in the other LCOS derivations have been avoided.

Because this LCOS uses a different time of flight equation than the other LCOS's, to obtain a better basis for comparison the bullet time of flight calculation was removed and the time of flight computed in the other LCOS's was used. It should be noted that when the original time of flight calculation is used, worse agreement is obtained between this LCOS and HOT-LINE. A Fortran language listing is found in Appendix D. The development of the equations for this LCOS is found in reference [2].

Comparison

Section of the sectio

Five cases at 2000 feet of range and five cases at 3000 feet of range were used as a basis of comparison. In each case the altitude was 10000 feet, aircraft angle of attack α was zero, gun angle θ_G was zero, muzzle velocity was 3300 ft/sec, and sight damping factor σ for the Honeywell, advanced fighter, and AFAL LCOS's was 0.25. Aircraft load factor in each case was 4. The sights were allowed to settle for 12 seconds so that a steady state comparison could be made. Table 2 shows the results of the comparison at 2000' range, whereas Table 3 contains the comparisons at 3000' range. Table 4 contains the results of the comparison between HOTLINE and the AFAL LCOS at both 2000' and 3000' of range. The time of flight calculation used in the AFAL LCOS is identical to that used in the other LCOS's.

TABLE 2. Gunsight Comparison (Mils) Range = 2000'

HOTLINE E1	172.9	138.4	-141.6	152.3		154.0
	7 1.3 -40.1 -172.9	.6 1.0 -31.4 -138.4	0.	.69 1.1 -29.9 -152.3		8.9
Az	4	-3:		-2:		-1
)S ô	1.3	1.0	1.1	1.1	1.1	2.2
AFALCOS AAZ AE1 &	L7	9.	-1.1 1.1	6		1.3
ρΑz	6	8.	0.	9.		1.8
Sos	3.5	3.0	3.6 0.	-1.37 1.5 -1.1 -3.5 3.7	3.4	.8 17.7 21.5 -1.1 22.5 1.8 1.3 2.2 -16.8 -154.0
FTR LC	-3.5	-3.0	-3.6	-3.5		-1.1
HONEYWELL LCOS ADV FTR LCOS AAZ AE1 &	7 1.31 -3.5	.1	-1.1 1.1 0.	-1.1		21.5
LCOS	1.3	9.	1.1	1.5	1.1	17.7
WELL AE1	7	9	-1.1	7		
HONEY	6	1	0.	-1.3		17.5
CASES	(1) 4-G level turn $v = 600 \text{ fps}$	(2) 4-G level turn v = 800 fps	(3) $4-6 \text{ pullup}$ v = 600 fps	(4) 4-G 45° Bank pullup v = 600 fps	Average Error for cases (1)-(4)	(5) 4-G 45° Bank pullup with p = .2 rad/sec v = 600 fps

TABLE 3. Gunsight Comparison (Mils) Range = 3700

HOTLINE E1	5.8 -72.0 -306.5	1.5 - 9.1 9.2 3.1 -4.2 5.1 -58.1 -255.4	-251.5	5.0 -54.3 -270.2		5.7 11.1 -15.1 -273.7
HO. Az	-72.0	-58.1	0.	-54.3		-13.1
)S စ်		5.1	4.8	!]	5.2	11.1
AFALCOS AAz AE1 6	-4.3	-4.2	-4.8	4.5		£
AAZ	3.9	3.1	0.	2.1		9.5
JS Š	12.3	9.2	9.4	10.0	10.2	12.7 66.8 9.5
HONEYWELL LCOS ADV FTR LCOS AAz AE1 6 AAZ AE1 6	-7.4 -4.1 7.4 -1.2 -12.2 12.3 3.9 -4.3	- 9.1	- 9:4	- 9.6 10.0 2.1		12.7
ADV F AAz	-1.2	1.5	0.	7.9 -2.9		65.6
LCOS &	7.4	4.9	4.8		6.2	56.0
WELL AE1	-4.1	-2.8 -4.0	-4.8	-6.9 -3.8		54.6 12.3 56.0 65.6
HONEYWEL AAz AE1	-7.4	-2.8	0.	-6.9		54.6
CASES	(1) 4-G level turn $v = 600 \text{ fps}$	(2) 4-G level turn v = 800 fps	(3) 4-G pullup v = 600 fps	(4) 4-G 45° Bank pullup v = 600 fps	Average Error for cases (1)-(4)	(5) 4-G 45° Bank pullup with p = .2 rad/sec v = 600 fps

Air Force Avionics Laboratory LCOS Comparison (mils) TABLE 4.

Range = 3000'	HOTLINE Az E1	3	1 -255.4	-251.5	3 -270.2		1 -273.7
		12.0 -72.0	-58.1	0	-54.3		-13.1
	AFAL LCOS		8.1	7.9	8.8	9.2	38.4
		,	- 8.1	- 7.9	- 8.6		1.0
		∞.	9.	0.	-2.0		38.4
2000,	HOTLINE Az E1	_ ;	-138.4	-141.6	-152.3		-154.0
		, ,	-31.4	0.	-29.9		-16.3
11	AFAL LCOS z AE1 6	1.4	6.	1.3	1.2		12.0
Range		-1.4	8.	-1.3	-1.2	1.2	5
	AFA AAz	3	. 5	0.	3		12.0
CASES		(1) 4-G level turn $v = 600 \text{ fps}$	(2) 4-G level turn v = 800 fps	(3) 4-G pullup v = 600 fps	(4) 4-G 45º Bank pullup v = 600 fps	Average Error for cases (1)-(4)	(5) 4-G 45° Bank pullup with p = .2 rad/sec v = 600 fps

 Δ Az and Δ Elare the differences in mils between the HOTLINE sight bullet at target range as seen in a heads up display and the LCOS reticle position in the HUD. ô is the radial error which is the square root of the sum of the squares of Δ Az and Δ El. The Azimuth and clevation of the bullet at target range from the HOTLINE sight are listed in the columns under HOTLINE. The geometry is shown in Figure 7.

Figure 7. Errors ΔAz , $\Delta E1$, and δ for Table 2, 3 and 4.

Results

是一个时间,这种是一个时间,这种时间,我们是一个时间,我们是一个时间,我们是一个时间,我们也是一个时间,我们也是一个时间,我们也是一个时间,我们就是一个时间,他

From Tables 2 and 4 where the data corresponds to a range of 2000' it is clear that for the first four cases the Honeywell LCOS, the AFAL LCOS, and AFALCOS are excellent while the advanced fighter sight is still very useable since the 3.4 mil error is well within the M-61 gun bullet dispersion pattern. When a high roll rate (p = .2 rad/sec) is introduced, however, the Honeywell LCOS, AFAL LCOS and advanced fighter sight introduce large errors--17.7 mils, 12.0 mils, and 21.5 mils respectively--because of the incorrect mechanization of the roll coupling in these sights. The AFALCOS for this case has an error of only 2.2 mils--an improvement by a factor of ten.

When the range is extended to 3000' for the first four cases, the LCOS sights degrade to an average radial error of 6.2 mils for Honeywell LCOS, 9.2 mils for AFAL LCOS, 10.2 mils for the advanced fighter LCOS, and 5.2 mils for AFALCOS.

When a roll rate of 0.2 rad/sec is introduced, the Honeywell LCOS, AFAL LCOS, and advanced fighter LCOS have an average radial error of 56.0 mils, 38.4 mils, and 66.8 mils respectively, while AFALCOS has a radial error of only 5.7 mils-again, an improvement by a factor of ten.

VI. CONCLUSIONS

- (1) This report presents the derivation of the equations necessary to implement a lead computing optical sight in a fighter type aircraft. A fortran digital program is developed to implement these equations on a digital computer.
- (2) The equations developed require the angular rate vector of the aircraft including the roll rate. These signals may be obtained from either a three axis strapdown gyroscope system or an inertial navigation system employing a stable platform. Use of either of these angular rate measuring devices will permit the elimination of the two axis lead computing gyroscope presently employed in LCOS.
- (3) The assumptions leading to incorrect roll coupling in the Honeywell and the advanced fighter LCOS sights have been eliminated, and the roll coupling in AFALCOS now corresponds very closely in the steady state with the results of the HOTLINE historical tracer sight.
- (4) In the comparisons made, in Tables 2, 3 and 4 the AFALCOS steady state radial error is less in almost every case than that of the Honeywell, advanced fighter and Avionics Lab LCOS sights. Therefore, when the HOTLINE sight is used as a steady state accuracy standard, AFALCOS is judged to be a more accurate sight than any other LCOS known to the authors.

- (5) The digital code is not extensive for AFALCOS; hence, no particular programming difficulties are anticipated for airborne application.
- (6) A word of caution--the numerical comparisons made in section V are steady state comparisons. Before final suitability of any lead computing sight can be established, the entire system including pilot, target, sight display, flight control system, and aerodynamic response of the aircraft, must be tested in a dynamic environment.

APPENDIX A

This appendix contains a listing of the Fortran digital code for AFALCOS. The input/output is structured to operate on a remote terminal of the Burroughs B6700 digital computer at the U.S. Air Force Academy.

```
LEATHAM.A.L. USER CODE BYZO185.
                                           DFACS.
                                                    EXT. 2136
SRESET FREE
      5=INPUT2,UNIT=DISK.BLOCKING=30.RECORD=14
      7=LINE UNIT=PRINTER
FILE
      6=OUTPUT,UNIT=REMOTE,RECORD=22
 1000 FORMAT (1HO, F4.2, 3F10.3, 2F10.2)
 1001 FORMAT(1HO, 'TIME', 6X, 'ELA', 7X, 'ALA', 5X, 'FLITIME', 
2X, 'ELHUD(MILS)', 1X, 'AZHUD(MILS)', //)
      REAL KB. JV
       NAMELIŠT/INPUT/P,Q,R,D,DDOT,VA,AX,AY,AZ,AL,GA,GAIN,DT,FTIME,HA
      a .VM. IPRINT
    INPUT DATA
    P.Q.R --- BODY ANGULAR RATES IN RADIANS/SEC
    D,DDOT --- RANGE AND RANGE RATE IN FT AND FT/SEC
           --- AIRCRAFT SPEED IN FT/SEC
    AX.AY.AZ- BODY ACCELEROMETER MEASURED ACCELERATION IN FT/SEC**2
    AL, G/. --- AIRCRAFT ANGLE OF ATTACK AND GUN ANGLE IN RADIANS
    GAIN --- SIGHT SENSITIVITY PARAMETER
                                             .8 NOMINALLY
    DT.FTIME- INTEGRATION STEP SIZE AND FINAL TIME IN SEC
    HA, VM --- ALTITUDE IN FEET AND MUZZLE SPEED IN FT/SEC.
    IPRINT --- PRINT CONTROL INDEX
  500
       READ(5.INPUT)
       PRINT INPUT
   MCD ATMOSPHERE
       IF (HA.GT.36000.) GO TO 50
       RHO=(.034475+(.019213E-10*HA-.050381E-5)*HA)**2*2.
       S=1117.1-.00412778*HA
       GO TO 55
 50
       DH=HA-36000
       RHO=(.018828+(.039227E-10*DH-.043877E-5)*DH)**2*2.
       S=968.5
  55
       DRATI 0=RHO/. 00238
       VP=VM+VA
       KB=,00614
       VLS=D*KB*VP**.5*DRATIO
       VC=-DDOT
       VOS=VM+VC-VLS
       VCM=( VOS**2-4.*(VA-VC)*VLS)**,5
       RTF=.5*(VOS+VCM)/D
```

```
TF IS BULLET TIME OF FLIGHT
      TF=1./RTF
      VF=9/TF-VC
      JV=(VM-VF)/(VA+VM)
   B IS THE GUNLINE UNIT VECTOR IN BODY COORDINATES
      B1=COS(GA)
      B2=0.
      B3=SIN(GA)
    AL IS THE A/C ANGLE OF ATTACK IN RADIANS, POS. FOR POS. LOAD FACTOR
    GA IS THE GUN ANGLE MEASURED IN RADIANS DOWN FROM X AXIS
   GAL IS THE GUN ANGLE OF ATTACK
      GAL=AL-GA
      C6=D+DDOT*TF
      C7=TF*D*P/2./C6
      C1=VF/C6
      C2=JV*VA/C6
      C3=TF/2./C6
      BXAN2=-B1*AZ+AX*B3
      BXAN3=B1*AY-AX*B2
      PRINT 1001
      PRINT 1000, T. ELA, ALA, TF, ELAH, ALAH
   SL IS THE SIGHT LINE UNIT VECTOR
      SL1=B1+B2*ALA-B3*ELA
      SL2=B2-B1*ALA
      SL3=B3+B1 *ELA
      W2=-C1*ELA-C2*GAL+C3*(BXAN2-(AY*ELA+AZ*ALA)*B2+(AX*B1+AY*B2+AZ*B3)
         ☆ELA)
      W3=-C1*ALA+C3*(BXAN3-(AY*ELA+AZ*ALA)*B3+(AX*B1+AY*B2+AZ*B3)*ALA)
      W2=W2+(-SL1*SL2+C7*SL3)*P+(1.-SL2**2)*Q-(SL2*SL3+C7*SL1)*R
      W3=W3-(SL1*SL3+C7*SL2)*P+(-SL2*SL3+C7*SL1)*Q+(1.-SL3**2)*R
       C5 = C7 + SL1
      DET=1.-SL2**2-SL3**2+C5**2
      AINVW2=((1.-SL3**2)*W2+(SL2*SL3+C5)*W3)/DET
      AINVW3=((SL2*SL3-C5)*W2+(1.-SL2**2)*W3)/DET
      DELA =GAIN*AINVW2
      DALA=GAIN*AINVW3
  ELA AND ALA ARE EL. AND AZ. LEAD ANGLE COMPONENTS W.R.T. GUN
      ELA=ELA+DT *DELA
      ALA=ALA+DT *DALA
      T=T+DT
      IT IME = IT IME+1
      IF (ITIME . EQ. IPRINT) PRINT 1000, T, ELA, A 4, TF, ELAH, ALAH
      IF(ITIME, EQ. IPRINT) ITIME=0
C
    ELAB AND ALAB ARE EL AND AZ LEAD ANGLES IN BODY COORDINATES
      ELAB=B1*ELA
      ALAB=81*ALA
   FLAH AND AZAH ARE HUD EL AND AZ ANGLES IN MILS. HUD ANGLE=O.
      ELAY==(ELA-HUDZ/(VF*TF)+GA)*1000.
      ALAH=-(ALA-HUDY/(VF#TF))#1000.
      IF (Y.LT.FTIME) GO TO 100
      ELA=0.
      ALA=0.
      T=0.
      GO TO 500
      END
```

,这一个人,我们就是这个人的,我们也不是一个人的,我们也不是一个人的,我们也不是一个人的,我们也不是一个人的,我们也不会的,我们也会会说,我们也会会说,我们也会 "我们是我们的,我们也是这一个人的,我们也不是一个人的,我们也不是一个人的,我们也不是一个人的,我们也不是一个人的,我们也不是一个人的,我们也是一个人的人的人,

APPENDIX B

This appendix contains a listing of the Fortran digital code which represents the lead computing optical sight in an advanced fighter aircraft. The listing is a subroutine designed to operate in a larger program on the Burroughs B6700 computer at the U.S. Air Force Academy.

```
SUBROUTINE F15LCO
       COMMON/HLLCOS/XHL, YHL, RHL, TOFHL
       COMMON/GUNDAT/H(150),S(300),TT(44),T
      COMMON/ANGLE/BPSI, BTHE, LEH, LAH, DELXX, DELYY, ELAH, ALAH, GAIN COMMON/SGYRO/AG, EG, SEG, CEG, SAG, CAG, DT
       COMMON/ICS/DX.DY.DZ.BKORHO.BO.TAU.R1500.DELTA
                                                                    ,PCY,PCZ,
      .ALCDFI, THE, PSI, ALCDF, DELT, THG, ALOOP, RHO, VM, ATF
      REAL LAM, LAG, LEG, LAC, LEC, LAH, LEH
       EQUIVALENCE
      .(HA,S(24)),(VTAS,S(31)),(R ,S(8)),
      .(VC,S(9)),(SAL,S(35)),(SBE,S(36)),
.(AXB,S(5)),(AYB,S(6)),(SA,S(7)),
      . (PP,S(2)),(QQ,S(3)),(RR,S(4)),
      .(ALPHA,S(201)),(BE,S(202))
      NAMELIST/DATTA/VTAS,R,HA,ALPHA,SA,SJ,PP,QQ,RR
      ., XRI, YRI, ZRI, XDOTP, YDOTP, HDOTP, XDOTE, YDOTE, HDOTE
      NAMELIST/OUTPUT/RHO, VLS, VOS, VCM, RTF, XI, VR, VCK, P, LAM, FG,
      .LEG,LAG,XH,YH,ZH,
                                    CEG. CAG. SEG. SAG
C EMPERIALLY DERIVED BALLISTICS COEFF(FT/SEC)1/2
       IF(T.GT.0.06) GO TO 891
C IMTRALIZE SINES & COSINES OF AG & EG
       CAG=1.
       SAG=0.
       SEG=0.
       CEG=1.
       AG=Q.
       EG=0.
 891
       CONTINUE
       SSA=-SA
       ALPHH=ALPHA
       RHD=RHO/,00238
       BK=0.00614
C VELOCITY OF MISSILE(FT/SEC-1)
       VM=3300
       TAU=, 25
CGUN ANGLE
       GA=0.0
       TGHE=0.0
```

NATURE STREET AND THE STREET S

```
C
      TGHH IS THE SUM OF GUN ANGLE AND HUD ANGLE.
      TGHH=TGHE+GA
      SK=.714286
      DL=0.0
      DA=0.0
      DE=O.O
      TGHA=0.0
C COMPUTER CYCLE TIME IS DT
      DT=.06
      CONTINUE
IF(VTAS .GT. 2000 .OR. VTAS .LE. 0) C COMPUTE INITIAL VELOCITY IN AIR MASS
                                                  VTAS=970
    1 VP=VM+VTAS
C
      AVERAGE VELOCITY LOST FOR STATIONARY TARGET.
      VLS=R*BK*SQRT(VP)*RHD
C
      AVERAGE OVERTAKING VELOCTLY FOR STATIONARY TARGETS.
      VC=O.
      VOS=VM+VC-VLS
C VELOCITY CORRECTION FOR MOVING TARGET
      VCM=SQRT(VOS**2-4*(VTAS-VC)*VLS)
 RECIPROCAL OF TIME OF FLIGHT CALCULATION
      RTF=0.5*(VOS+VCM)/R
      RECRIPROCAL OF SIGHT SENSITIVITY.
      RTN=RTF+TAU*VC*(RTF+VLS/R)/VCM
 DOME MAG CURRENT
      XI=RTN*SK
      PROJECTILE AVERAGE RELATIVE VELOCITY.
      VR=RTF*R-VC
C
      BALLISTIC CURVATURE COEFFICIENT.
      VCK=VTAS+(1-VM/VR)/VP
      TOTAL GUN ANGLE OF ATTACK.
      ALPHAG=GA+ALPHH
      PRECESSION RATE COMMAND.
      P=,5*(SSA+R*SJ/VTAS)/VR+RTN*VCK*ALPHAG
 2 22
      CONTINUE
 100
      CALL GSM(XI,P)
      TOTAL LEAD ANGLE,
      LAM=ARCOS(CEG*CAG)*SK
      IF(ABS(SAG) .LE.1E-4)
                                  GO TO 110
      LEAD ANGLE ROTATION.
      FG=ATAN2(SEG/CEG, SAG)
      GO TO 120
  110 FG=3.1415926/2
      GYRO AZIMUTH LEAD ANGLE.
 120
      LAG=ATAN(COS(FG) TAN(LAM))
      IF (ABS(LAG), LE.1, E-4) GO TO 130
      GYRO ELEVATION LEAD ANGLE,
      LEG=ATAN(TAN(FG) *SIN(LAG))
      GO TO 140
 130
      LEG=LAM
      IF (EG.LT.O.) LEG=-LAM
      CORRECTED ELEVATION LEAD ANGLE.
 140
      LEC=ATAN((1+DL/R)*TAN(LEG) -DE/R)
```

1111 TO THE REAL THOR THE PARTY OF THE PART

```
C
      CORRECTED AZIMUTH LEAD ANGLE.
      LAC = ATAN((1+DL/R) TAN(LAG)
                                        +DA/R) +TGHA
C
      HUD COORDINATES OF LEAD ANGLE
      XH=COS(LEC)*COS(LAC)*COS(TGHE)+SIN(LEC)*SIN(TGHE)
      YH=COS(LEC)*SIN(LAC)
      ZH=-COS(LEC)*COS(LAC)*SIN(TGHH)+SIN(LEC)*COS(TGHH)
      HUD AZIMUTH LEAD ANGLE COMPONENT.
              =1000.*ATAN (YH/XH)
      HUD ELEVATION LEAD ANGLE COMPONENT.
              =1000. ATAN (ZH/XH)
      LEH
  998 CONTINUE
  999 CONTINUE
      DELXX=LAH-BPSI
      DELYY=LEH-BTHE
 303
      CONTINUE
      RETURN
C LCG GYRO SIMULATION MODEL
CINPUTS
 XI - MAG CURPENT COMMAND
 XP - PRECESSION RATE COMMAND
       ACFT ROLL RATE
     - ACFT PITCH RATE
     - ACFT YAW RATE
 DUTPUTS
C AG - GYRO AZIMUTH GIMBAL ANGLE
       GYRO ELEVATION GIMBAL ANGLE
C DEFINITIONS
  SG -GYRO SPACE ANGLE
 TS -GYRO TIME CONSTANT (SENSIVITY)
 TM - MODIFIED BYRO TIME CONSTANT
  TGL- GUNLINE ELEVATION ANGLE
  XG - GYRO ROLL RATE
  YG - GYRO PITCH RATE
  ZG - GYRO YAW RATE
C DT - COMPUTER CYCLE TIME
       SUBROUTINE GSM(XI,SP)
       CCMMON/GUNDAT/H(150),S(300),TT(44),T
       COMMON/ANGLE / BPSI, BTHE , LEH , LAH , DELXX , DELYY , ALAH , ELAH , GAI N
       COMMON/SGYRO/AG, EG, SEG, CEG, SAG, CAG, DT
                                                              .PCY.PCZ.
       COMMON/ICS/DX,DY,DZ,BKORHO,BO,TAU,R1500,DELTA
      .ALCDFI, THE, PSI, ALCDF, DELT, THG, ALOOP, RHO, VM, ATF
       REAL LAM, LAG, LEG, LAC, LEC, LAH, LEH
       EQUIVALENCE .
      (HA,S(24)),(VTAS,S(31)),(R
      (VC,S(9)),(SAL,S(35)),(SBE ,S(36)),
      (AXB,S(5)),(AYB,S(6)),(SA
                                    .S(7)).
        (PP.S(2)),(QQ,S(3)),(RR,S(4)),
      .(ALPHA,S(201)),(BE,S(202))
C P,Q,R IN.RAD/SEC
       NAMELIST/OUTT/XG, YG, ZG, SG, TG, SM, EGD, AGD, EG, AG, SAG, CAG, SEG, CEG
       XG=PP*COS(TGL)-RR*SIN(TGL)
```

```
YG=QQ
     ZG=PP*SIN(TGL)+RR*COS(TGL)
     SG=ARCOS(CAG*CEG)
     IF (ABS(SG).LT.1.E-4) GO TO 80 TG=(SG/1.4)/(X1*SIN(SG/1.4))
     SM=SG/SIN(SG)
90
     EGD=XG*SIN(AG)-YG*COS(AG)-(COS(AG)*SIN(EG)/1.0)*(SM/TG)-SP
     AGD =- ZG-TAN(EG) * (XG*COS(AG) +YG*SIN(AG)) -
    . (SIN(AG)/(COS(EG)*SIN(SG)))*(SG/TG)
     GO TO 100
     EGD=XG*SIN(AG)-YG*COS(AG)-SP
80
     AGD =- ZG-TAN(EG) *(XG*COS(AG)+YG*SIN(AG))
100
     EG=EG+EGD*DT
     AG=AG+AGD*DT
     SEG=SEG+EGD*DT*CEG
     CEG=CEG-EGD*DT*SEG
     SAG=SAG+AGD*DT*CAG
     CAG=CAG-AGD*DT*SAG
     RETURN
     END
```

APPENDIX C

This appendix contains a listing of the Fortran digital code for the Honeywell digital LCOS. The listing is a subroutine designed to operate in a larger program on the Burroughs B6700 computer at the U.S. Air Force Academy.

```
SUBROUTINE LCOSS
     COMMON/HLLCOS/XHL.YHL.RHL.TOFHL
     COMMON/GUNDAT/H(150),S(300),TT(44),T
     COMMON/ANGLE/BPSI, BTHE, LEH, LAH, DELXX, DELYY, ELAH, ALAH, GAIN
     COMMON/SGYRO/AG, EG, SEG, CEG, SAG, CAG, DT
     COMMON/ICS/DX,DY,DZ,BKDRHO,BO,TAU,R1500,DELTA
                                                             ,PCY,PCZ,
    .ALCDFI, THE, PSI, ALCDF, DELT, THG, ALOOP, RHO, VM, ATF
     REAL LAM, LAG, LEG, LAC, LEC, LAH, LEH
     EQUIVALENCE
    .(HA,S(24)),(V
                      ,S(31)),(RPA,S(8)),
    .(VC,S(9)),(SAL,S(35)),(SBE ,S(36)),
    .(AXB,S(5)),(AYB,S(6)),(ACGZ,S(7)),
      (P,S(2)),(Q,S(3)),(R,S(4)),
    .(AL,S(201)),(BE,S(202))
     IF (T.GT..06) GO TO 500
     THE IS THE GUN ANGLE OF ATTACK
     DX.DY.DZ ARE DISTANCES FROM GUN TO HUD
     DX=0.
     DY=O.
     DZ=O.
      BK IS AN EMPERICALLY DERIVED ALLISTIC COEFFICIENT.
      BKDRHO = BK/RHO = .00614/.00238.
      BKDRHO=2.58
      BO=.003713
C
      TAU IS THE
                  AMPING FACTOR.
      TAU=.4
      TAU=. 25
      R1500 = 1500.
      R1500 IS THE FIXED RANGE WITH NO RADAR LOCK.
      DELTA IS THE COMPUTER CYCLE TIME.
      PCY=0.0
      PCZ=0.0
      THE
      PSI = 0.
      BPSI=0.
 211
      BTHE=0.
      ALOOP = 50.
      DELT=3.
 200 DELTA=DELT/ALOOP
```

A STATES OF A STAT

```
C
       VM IS THE MUZZLE VELOCITY
       VM=3300
 C
       ALCOF=(1+TAU)=1.4
       ALCOF1 = ( 1/(!+TAU) )
 C
       ALCOFI=1./ALCOF
  500
       CONTINUE
       A393=0 INDICATES RADAR LOCK
       A393=0.
       VTAS IS THE TRUE AIR SPEED.
       VTAS=V
       RANGE=R1500
       IF(A393
       IF(A393 .EQ.O.) RANGE=RPA
IF(RPA.LT.I.) RANGE=1.
   510 CONTINUE
       THIS IS A VALIDITY CHECK. RHO VS RANGE FOR CHECK.
       B=B0+(,000000888*(1255,-(V-VC)))
       SAVE = -. 000000618*RANGE+B
       IF(RHO.LE.SAVE) GO TO 556
       RTN= . 33333
       GO TO 557
   556 CONTINUE
       VP=VM+VTAS
       VP IS INITAL PROJECTILE VELOCITY IN AIRMASS
      VLS=RANGE*BKDRHO*SQRT(VP)*RHO
       VC=O.
       VOS=YM+VC-VLS
      CHECK=VOS**2-4.*(VTAS-VC)*VLS
      VCM=SQRT (CHECK)
      VF=.5*(VOS+VCM)
      VF IS AVERAGE PROJECTILE VELOCITY.
C
      RTF=VF/RANGE
C
      RTF IS RECRIPROCAL OF TIME OF FLIGHT.
        ATF=1./RTF
      YR=RTF*RANGE-VC
      TFDOT=VC*(RTF+VLS/RANGE)/VCM
C
      TFOOT IS THE RATE OF CHANGE OF TOF/TF.
      RTN=RTF+TAU*TFDOT
      RTN IS THE RECRIPROCAL OF SIGHT SENSITIVITY.
  557 TRTN= 1. /RTN
      TRTN IS THE SIGHT SENSITIVITY,
      TF
            = TRTN
      VT
             = VM + V
      VT IS THE TOTAL INITIAL PROJECTILE VELOCITY IN AIRMASS.
C
      TVV
             =V/VT
      ALCPSI=ALCDF*PSI
      QXY=Q-P*ALCPS!
     RZG=R+ALCDF *THE*(P+Q*ALCPSI)
      RI=(VM-VR)/VR
      ALG
            =RI PVVT
      ALG!
             = (AL+THG)*ALG
      TF12=.5*TF
```

```
PCY=RZG*TF'
ACCZ= ACGZ
PCZ=QXY*TF -ACCZ*TFI2/VR-ALG1
XCAL=ALCDFI*DELTA/TF
THE=THE-(THE+PCZ)*XCAL
PSI=PSI-(PSI+PCY)*XCAL
BPSI = PSI + DY/RANGE
BTHE = THE - DZ/RANGE
*-THG
BPSI=1000.*BPSI
BTHE=1000.*BTHE
RETURN
END
```

APPENDIX D

This appendix contains a listing of the Fortran digital code for the Air Force Avionics Laboratory digital LCOS.

The code was extracted from reference [2]. The program is designed to be run from a remote terminal of the Burroughs

B6700 computer at the U.S. Air Force Academy.

```
SRESET FREE
      5=AVDATA, UNIT=DISK, BLOCKING=30, RECORD=14
FILE
      6=OUTPUT, UNIT=REMOTE, RECORD=22
      REAL KBRHO, KH, KSIG, LE, LA, LAD, LED
       DIMENSION TME(205), PLE(205), PLA(205), IBUFF(1024)
      IPT=0
C THE FOLLOWING DATA REPRESENT INPUT VARIABLES
C CONSTANT INPUTS ARE ASSUMED HERE AS AN EXAMPLE
      NAMELIST/DATA/RANGE.VC.P.Q.R.AN,ALPHA,VA,RHO,HA
      READ(5,DATA)
      PRINT DATA
C RANGE IS IN FT
 VC IS NEGATIVE OF RANGE RATE IN FT/SEC
C P.O.R ARE ANGULAR RATES OF AIRCRAFT IN BODY AXES, RAD/SEC
 AN IS NORMAL ACCELERATION IN FT/SEC/SEC (-32.17 WHEN STRAIGHT & LEVEL)
 ALPHA IS ANGLE OF ATTACK IN RADIANS
C VA IS TRUE AIRSPEED IN FT/SEC
 RHO IS AIR DENSITY IN SLUGS PER CUBIC FOOT
      TIME=0.
C SET CONSTANTS
C COMPUTER CYCLE TIME IS DT
      DT=.06
C SIG IS THE SIGHT DAMPING FACTOR
      SIG=0.4
      KSIG=1./(1.+SIG)
C VM IS MUZZLE VELOCITY IN FT/SEC
      VM=3300.
C KBRHO IS A BALLISTIC COEFFICIENT DIVIDED BY SEA LEVEL AIR DENSITY
      KBRHU=0.00614/.00238
C GA IS GUN ANGLE WITH RESPECT TO X AXIS OF AIRCRAFT
      GA=0.0
      COSGA=1.0
      SINGA=0.0
C RRH IS RECIPROCAL OF GUN HARMONIZATION RANGE
      RRH=.0005
C DA AND DE ARE Y AND Z DISTANCES OF GUN FROM HUD IN FT
      DA=O.
      DE=O.
CINITIALIZE
```

THE TOTAL THE PROPERTY OF THE

```
C IPRINT IS A PRINT CONTROL INDEX SET TO PRINT EVERY 5TH TIME INTERVAL
      IPRINT=0
      LA=C.
      LE=O.
      RDC=O.
      SORV=SORT(VA+VM)
      VLS=KBRHO*RHO*RANGE*SQRV
      VOS=VM+VC-VLS
      VCM=SQRT(VOS+VOS-4.*(VA-VC )*VLS)
      PRINT 10
      FORMAT(1H0,6X,'TIME',6X,'LA',7X,'LE',7X,'LAD',7X,'LED',7X,'WK',
10
     27 X. 'WJ'//)
C END INITIALIZATION --- BEGIN LOOP
      DO 3 I=1,200
       IPT=IPT+1
      SLA=LA*(1.-.16667*LA*LA)
      SLE=LE*(1.-.16667*LE*LE)
      CLE=1.-.5* LE* LE
      CLA=1.-.5* LA* LA
      RCOS=1./(CLA*CLE)
      RDE=(-VC-RDC*SLE)*RCOS
      RE = RANGE*RCOS
C APPROXIMATION USED FOR SQUARE ROOT
C IF Y=APPROX. SQUARE ROOT OF X, THEN SQRT(X)=.5"(Y+X/Y) IS VERY CLOSE
      SQRV=.5*(SQRV+(VA+VM)/SQRV)
       VLS=KBRHO*RHO*RE*SQRV
       VOS≕VM-RDE-VLS
C APPROXIMATION USED FOR SQUARE ROOT
   RDE =- VC MAKES TOF CALCULATION IDENTICAL TO OTHER LCOSS.
       RDE=-VC
       VCM=.5*(VCM+(VOS*VOS-4.*(VA+RDE)*VLS)/VCM)
       VE=.5*(VOS+VCM)
C RTF AND VF ARE 1/TIME OF FLIGHT AND AVG RELATIVE VELOCITY OF BULLET
      RTF=VE/RE
       VF=VE+RDE
      RRANGE=1./RANGE
       KH=1.-RANGE*RRH
       VN=VF-SIG*RDL VLS*(VF+VA)/(VCM*VF)
       PG=P*COSGA-R*SINGA
       RG=P*SINGA+R*COSGA
       RDC=VA*(ALPHA+GA)*(VM-VF)/(VA+YM)+.5*AN/RTF
C WJ AND WK ARE COMPUTED SIGHT LINE ANGULAR RATES
      WK=(KH*DA*CLA#RTF-VN*SLA)*RRANGE
       WJ=((RDC-KH*DE*RTF)*CLE-VN*CLA*SLE)*RRANGE
       LED=(WJ+SLA*PG-CLA*Q)*KSIG
       LAD=((WK-SLE*(CLA*PG+SLA*Q))/CLE-RG)*KSIG
       LA=LA+LAD*DT
       LE=LE+LED*DT
```

```
LA AND LE ARE AZIMUTH AND ELEVATIO: ANGLES OF COMPUTED SIGHT LINE
  AND LE ARE IN RADIANS. COMPUTE PLA AND PLE AS NEGATIVE IN MILS
    PLA(IPT)=-1000.* LA
    PLE(IPT)=-1000.*LE
    TIME=TIME+DT
    THE (IPT)=TIME
    IPRINT=IPRINT+1
    IF (IPRINT.NE.25) GO TO 3
    PRINT 11, TIME, LA, LE, LAU, LED, WK, WJ
    IPR INT =0
 11 FORMAT(1X, F10.3, 4F10.6, 2F10.6)
  3 CONTINUE
    TOF=1./RTF
    NAMELIST/DEBUG/TOF, VF, VE, VCM, VOS, VLS
    PRINT DEBUG
    GO TO 1
    END
```

的一个,这样,这个人,这个人,这个人,这个人,这个人,这个人,这个人,我们是一

REFERENCES

- 1. F-4E Lead Computing Optical Sight System (LCOSS) Improvement Study, Report MDC A0610 1 June 1971, Mc Donnell Aircraft Company, St Louis, Missouri.
- Air-to-Air Gun Fire Control Equations for Digital Lead Computing Optical Sights, by R.A. Manske, AFAL-TM-74-9-NVE-1, Apr 1974, Air Force Avionics Laboratory, Wright-Patterson AFB, Ohio.

AN NEX AN AREA OF A SERVING OF