Yogesh Sanat Gajjar

✓ ygajjar@usc.edu

(213) 399-0913

in yogesh-gajjar

yogeshgajjar

EDUCATION

M.S. Electrical and Computer Engineering

University of Southern California

December 2020 GPA: 3.57/4.0

Coursework: Self-Driving Fundamentals, Machine Learning, Pattern Recognition, AI for Robotics, Computer Vision, Linear Algebra, Probability for Engineers, Robot Kinematics and Dynamics, State Estimation and Motion Planning, Image Processing. Introduction to ROS.

B.S. Instrumentation and Control Engineering

May 2015

Institute of Technology, Nirma University

GPA: 8.02/10.0

TECHNICAL SKILLS

Languages: C, C++, Python, Matlab

CNN Architecture: LeNet-5, ResNet-50, VGG-16, EfficientNet - Keras, PyTorch Version Object Detection/Segmentation: Faster-RCNN, YOLOv3, RetinaNet, Mask-RCNN, DeepLab Fusion Algorithms: Kalman Filter, Extended and Unscented Kalman Filter, Particle Filter

Other: Git/GitHub, ROS, OpenCV, Flask, PCL, GCP, Azure, AWS, Arduino, Raspberry Pi, Nvidia Jetson SoC

EXPERIENCE

Computer Vision Intern (Frenzy Labs, Inc)

Summer 2020

- Proposed and developed a network architecture by integrating state-of-the-art R-CNN object detection and H-CNN classification network, which improved apparel classification/detection performance by 5%.
- Built an end-to-end testing pipeline with RESTful request dispatching using Flask framework to accelerate model evaluation and deployment with reproducibility and traceability.

Graduate Researcher (USC CPS - VIDA Group)

August 2019 - Ongoing

- Develop perception, sensor fusion and localization software stack for F-1/10th scale autonomous car.
- Integrate 2D SLAM with ROS Navigation node to enable fully autonomous driving mode.
- Incorporate Signal Temporal (STL) monitoring, and vision based Timed Quality Temporal (TQTL) monitoring algorithms for ROS to spot perception robustness.

PROJECTS

F-1/10th Self-Driving Car

C++, ROS, Jetson Xavier

- Built a 1/10th scale autonomous vehicle prototype for outdoor environment with Perception (Yolov3), Localization (Cartographer), and Path Planning (ROS Navigation) software stack.
- Designed to perform online STL monitoring and TQTL based perception prediction to ensure safe autonomy.

Yolov3 Road 2D Objects Detection

C++, ROS, Darknet, Jetson Xavier

- Trained Yolov3 object detection algorithm on Berkeley DeepDrive 100k images with transfer learning.
- Deployed the trained weights on the f1-tenth vehicle for a real time road object detection.

Intelligent Drivers Enhanced Assistance System

Python, OpenCV, Google Cloud API

- Programmed a platform to detect drowsiness and emotions of driver using OpenCV's pre-trained face recognition libraries and Google Cloud API's. Incorporated it with the infotainment system to initiate voice assistance to alert drivers.
- Designed the working platform in **36 hours** and secured **Ford** sponsor award at Cal Hacks 6.0 Hackathon.

Distracted Driver Detection

Python, Keras

• Predicted the state of the driver from 45,000 images falling under 10 classes with a vanilla CNN architecture and pre-trained ResNet-50 architecture. Achieved a robust 98% accuracy.

Vehicle and Lane Detection

Python, OpenCV, Scikit-Learn

- Implemented machine learning and Histogram of Gradient(HOG) feature extraction method to detect and track vehicles on a road captured with dash cam video. Used Canny Edge and Hough Transform to identify lane lines.
- Explored other edge detectors such as Structural Edge and Sobel operator to compare performance results.

ACHIEVEMENTS

• Secured **Ford** sponsor award out of the top 300 teams at UC Berkeley Cal Hacks 6.0 Hackathon 2019 for building a platform called IDEAS (Intelligent Drivers Enhanced Assistance System).