O Modelo de Regressão Linear Múltipla

Introdução à Ciência dos Dados

Marcelo Azevedo Costa Departamento de Engenharia de Produção Universidade Federal de Minas Gerais

Capítulo 3: O Modelo de Regressão Linear Múltipla

Exemplo

1.9307 0 3.1769 17 2.2769 8 3.1307 15 2.7769 9	
2.2769 8 3.1307 15	
3.1307 15	
2.7769 9	
3.0923 15	
2.6538 8	
2.2230 5	
2.8538 13	
3.2307 20	
2.8230 11	
1.9076 1	
2.5384 6	
2.5692 7	
4.2230 23	
4.0923 20	
3.6000 18	
4.7076 27	
3.1461 11	
2.9923 10	
4.7461 29	
4.1153 23	
2.3615 4	
4.0923 22	
4.5076 25	
2.9076 9	
4.4846 25	

Um investigador deseja estudar a possível relação entre o salário (em anos) e o tempo de experiência (em mil reais) no cargo de gerente de agências bancárias de uma grande empresa.

Regressão Linear Simples

 Suposição: f(.) pode ser aproximada por uma reta

¿ i é uma variável aleatória que expressa a nãoadequação do modelo e componentes não explicadas pela reta de regressão

A escolha do modelo

 O modelo é uma aproximação simplificada da relação real entre as variáveis de interesse.

Interpretação Gráfica do Modelo

Modelo Homocedástico (variância constante)

Quais as suposições necessárias para a seguinte base de dados?

Caracterização Visual dos Resíduos

Coeficiente de Determinação (R²)

Decomposição da Soma dos Quadrados Totais

$$SQ_{Total} = SQ_{Reg} + SQ_{Res}$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

SQ_{Reg} Características assimiladas pelo Modelo

Características padronizadas

Características não explicadas pela regressão

Coeficiente de Determinação (R²)

$$R^{2} = \frac{SQ_{\text{Re }g}}{SQ_{Total}} = 1 - \frac{SQ_{\text{Re }s}}{SQ_{Total}}$$

Pode ser interpretado como a proporção da variação explicada pelo regressor x

Propriedade:

$$0 \le SQ_{\text{Re }g} \le SQ_{Total} \qquad \longrightarrow \qquad 0 \le R^2 \le 1$$

Regressão Linear Múltipla

Caso particular de duas variáveis

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Caso geral de p variáveis

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

Forma Matricial

i	y	$\mathbf{x_1}$	\mathbf{x}_{2}	i	\mathbf{y}	\mathbf{x}_0	\mathbf{x}_1	\mathbf{X}_{2}
1 2 3 4 5 6 7 8 9 10 11	y 16,68 11,5 12,03 14,88 13,75 18,11 8 17,83 79,24 21,5 40,33	X ₁ 7 3 3 4 6 7 2 7 30 5 16	\$\frac{\fir}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{	i 1 2 3 4 5 6 7 8 9 10 11	y 16,68 11,5 12,03 14,88 13,75 18,11 8 17,83 79,24 21,5 40,33	X ₀ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X ₁ 7 3 3 4 6 7 2 7 30 5 16	\$\begin{align*} \$560 & 220 & 340 & 80 & 150 & 330 & 110 & 210 & 1460 & 605 & 688 & \end{align*}
12 13 14 15 16 17 18 19 20 21 22 23 24 25	21 13,5 19,75 24 29 15,35 19 9,5 35,1 17,9 52,32 18,75 19,83 10,75	10 4 6 9 10 6 7 3 17 10 26 9 8	215 255 462 448 776 200 132 36 770 140 810 450 635 150	12 13 14 15 16 17 18 19 20 21 22 23 24 25	21 13,5 19,75 24 29 15,35 19 9,5 35,1 17,9 52,32 18,75 19,83 10,75	1 1 1 1 1 1 1 1 1 1	10 4 6 9 10 6 7 3 17 10 26 9 8 4	215 255 462 448 776 200 132 36 770 140 810 450 635 150

Matriz Resposta e Matriz de Regressores

y	
16,68 11,5	
12,03	
14,88	
13,75 18,11	
8	
17,83	
79,24	
21,5 40,33	
21	
13,5	
19,75 24	
29	
15,35	
19 9,5	
35,1	
17,9	
52,32 18,75	
19,83	
10,75	

\mathbf{x}_0	\mathbf{x}_1	\mathbf{x}_2
1 1 1 1 1 1 1 1 1 1 1 1	X ₁ 7 3 3 4 6 7 2 7 30 5 16 10 4 6 9	560 220 340 80 150 330 110 210 1460 605 688 215 255 462
1 1 1 1 1 1 1 1 1 1	9 10 6 7 3 17 10 26 9 8	448 776 200 132 36 770 140 810 450 635 150

Equação do modelo de regressão linear múltipla

$$y = X\beta + \varepsilon$$

$$oldsymbol{eta} = egin{bmatrix} oldsymbol{eta}_0 \ oldsymbol{eta}_1 \ dots \ oldsymbol{eta}_k \end{bmatrix} \qquad oldsymbol{arepsilon} = egin{bmatrix} oldsymbol{arepsilon}_0 \ oldsymbol{arepsilon}_1 \ dots \ oldsymbol{arepsilon}_k \end{bmatrix}$$

$$\mathbf{y}_{n \times 1}$$

$$\mathbf{X}_{n \times p}$$

Estimação dos Parâmetros

Soma dos Quadrados dos Erros

SQE(
$$\boldsymbol{\beta}$$
) = $\sum_{i=1}^{n} \varepsilon_{i}^{2} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$

Ponto de mínimo

$$\frac{\partial \text{SQE}}{\partial \boldsymbol{\beta}} \Big|_{\hat{o}} = -2\mathbf{X}^{T}\mathbf{y} + 2\mathbf{X}^{T}\mathbf{X}\hat{\boldsymbol{\beta}} = 0$$

Estimador de mínimos quadrados

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

Propriedades dos Estimadores

$$E[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$$

$$\operatorname{cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$$

$$\operatorname{var}(\hat{\beta}_j) = \sigma^2 \mathbf{C}_{jj}$$

onde C_{jj} é o elemento j da diagonal da matriz $C=(X^TX)^{-1}$.

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} \sim N(\boldsymbol{\beta}, (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\boldsymbol{\sigma}^{2})$$

Colinearidade/Multicolinearidade

$$y = \beta_1 x_1 + \beta_2 x_2 + \varepsilon \qquad (\mathbf{X}^T \mathbf{X}) \hat{\beta} = \mathbf{X}^T \mathbf{y}$$

Suponha as variáveis resposta e preditora previamente padronizadas

$$\begin{bmatrix} 1 & r_{12} \\ r_{21} & 1 \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} r_{1y} \\ r_{2y} \end{bmatrix} \qquad \mathbf{C} = (\mathbf{X}^T \mathbf{X})^{-1} = \begin{bmatrix} \frac{1}{(1 - r_{12}^2)} & \frac{-r_{12}}{(1 - r_{12}^2)} \\ \frac{-r_{12}}{(1 - r_{12}^2)} & \frac{1}{(1 - r_{12}^2)} \end{bmatrix}$$

No caso geral (p variáveis): $C_{jj} = \frac{1}{1 - R_{:}^{2}}, j = 1, 2, ..., p$

Características da Multicolinearidade

A multicolinearidade torna a variância de um estimador β_j muito elevada, neste caso é possível que, para amostras diferentes o mesmo estimador possa ser negativo para uma amostra e positivo para a outra amostra.

■ Na prática, a multicolinearidade causa a não rejeição da hipótese nula de um estimador $(H_0: \beta_j=0)$, quando o mesmo é significativo.