Imperfect strategy transmission can reverse the role of population viscosity on the evolution of altruism

Manuscript elements: Figure 1, figure 2, table 1, online appendices A and B

(including figure A1 and figure A2). Figure 2 is to print in color.

Keywords: Altruism, Subdivided population, Mutation, Migration, Coopera-

tion, Island model, Wright-Fisher, Moran.

Manuscript type: Article.

Short Running Title: Mutation and altruism in subdivided populations.

Keywords: Altruism, Subdivided population, Mutation, Migration, Coopera-

tion, Island model, Wright-Fisher, Moran.

Word Count:

Abstract 148

Impact summary 285 words

Total 4213 words

Prepared using the suggested LATEX template for Am. Nat.

1

Abstract

Population viscosity, *i.e.*, low emigration out of the natal deme, leads to high within-deme relatedness, which is beneficial to the evolution of altruistic behavior when social interactions take place among deme-mates. However, a detrimental side-effect of low emigration is the increase in competition among related individuals. The evolution of altruism depends on the balance between these opposite effects. This balance is already known to be affected by details of the life-cycle; we show here that it further depends on the fidelity of strategy transmission from parents to their offspring. We consider different life-cycles and identify thresholds of parent-offspring strategy transmission inaccuracy, above which higher emigration can increase the frequency of altruists maintained in the population. EXPLAIN RESULT Predictions were first obtained analytically assuming weak selection and equal deme sizes, then confirmed with stochastic simulations relaxing these assumptions. This result challenges the notion that the evolution of altruism REMOVE REQUIRE requires limited dispersal.

6 Introduction

In his pioneering work on the evolution of social behavior, Hamilton suggested that altruistic behavior would be associated to limited dispersal (Hamilton, 1964, p. 10). This notion, that tighter links between individuals are beneficial to the evolution of altruism, has been shown to hold in a number of population structures (see *e.g.* Allen et al., 2017; Lehmann et al., 2007; Ohtsuki et al., 2006; Taylor et al., 2007a). The rationale is that altruism is favored when altruists interact more with altruists than defectors do (Hamilton, 1975, p. 141; Fletcher & Doebeli, 2009), a condition that is met in viscous populations, *i.e.*, populations with limited dispersal.

Yet, living next to your kin also implies competing against them (West et al., 2002), which is detrimental to the evolution of altruism. The evolution of so-

26 cial traits hence depends on the balance between the positive effects of interactions with related individuals and the detrimental consequences of kin com-29 petition. Under specific conditions, the two effects can even compensate each other, thereby annihilating the impact of population viscosity on the evolution of altruism. First identified with computer simulations (Wilson et al., 1992), this cancellation result was analyzed by Taylor (1992a) in a model with synchronous generations (i.e., Wright-Fisher model) and a subdivided population of constant, infinite size. The cancellation result was later extended to heterogeneous populations (Rodrigues & Gardner, 2012, with synchronous generations and infinite population size), and other life-cycles, with generic regular population structures (Taylor et al., 2011, with synchronous generations but also with continuous generations and Birth-Death updating). However, small changes in the model's assumptions, such as overlapping generations (Taylor & Irwin, 2000) or the presence of empty sites (Alizon & Taylor, 2008) can tip the balance back in the favor of altruism. This high dependence on life-cycle specificities highlights the difficulty of making general statements about the role of spatial structure on the

evolution of altruism. In this study, we will consider three different life-cycles: Wright-Fisher, where the whole population is renewed at each time step, and two Moran life-cycles (Birth-Death and Death-Birth), where a single individual dies and is replaced at each time step. These life-cycles are classically used in studies on altruism in structured populations. Even though they differ by seemingly minor details, they are known to have very different outcomes in models with perfect parent-offspring transmission (e.g., Lehmann et al., 2007; Ohtsuki et al., 2006; Rousset, 2004; Taylor, 1992a, 2010). A large number of studies on the evolution of social behavior consider simple population structures (typically, homogeneous populations sensu Taylor et al. (2007a)) and often also infinite population sizes (but see Allen et al., 2017, for results on any structure). These studies also make use of weak selection approximations, and commonly assume rare (e.g., Leturque & Rousset, 2002; Tarnita & Taylor, 2014; Taylor et al., 2007b) or absent mutation (for models assuming infinite population sizes, or models concentrating on fixation probabilities; see Lehmann & Rousset, 2014; Van Cleve, 2015, for recent reviews). Often, these simplifying assumptions are a necessary step towards obtaining explicit analytical results. Although artificial, simple population structures (e.g., regular graphs, or subdivided populations with demes of equal sizes) help reduce the dimension-

ality of the system under study, in particular when the structure of the population displays symmetries such that all sites behave the same way in expectation. Weak selection approximations are crucial for disentangling spatial moments (Lion, 2016), that is, changes in global *vs.* local frequencies (though they can in some cases be relaxed, as in Mullon & Lehmann, 2014). Mutation, however, is usually ignored by classical models of inclusive fitness because these models assume infinite population sizes, so that there is no need to add mechanisms that restore genetic diversity (Tarnita & Taylor, 2014). In populations of finite size, this diversifying effect can be obtained thanks to mutation.

When strategy transmission is purely genetic, it makes sense to assume that 72 mutation is relatively infrequent. Even in this case, though, mutations from "social" to "non-social" types cannot always be neglected. For instance, experiments with the bacteria Pseudomonas fluorescens have identified transitions between populations dominated by the ancestral "solitary" Smooth Morph type and mat-forming "social" Wrinkly Spreaders, that can be re-invaded by Smooth Morphs not contributing to the formation of the mat (hence described as "cheaters"). The transitions between the different types are due to spontaneous mutations (Hammerschmidt et al., 2014). In addition to genetic transmission, a social strategy can also be culturally transmitted from parent to offspring. In this case, "re-81 bellion" (as in Frank's Rebellious Child Model (Frank, 1997)) does not have to be infrequent. It is therefore important to understand the impact of imperfect strategy transmission on the evolution of social behavior, in particular because it known that imperfect strategy transmission can alter the evolutionary dynamics of social traits, in particular in spatially structured populations (see e.g., Allen et al., 2012; Débarre, 2017, for graph-structured populations). 87 Here, we want to explore the consequences of imperfect strategy transmis-88 sion from parents to their offspring on the evolution of altruistic behavior in subdivided populations¹. The question was tackled by Frank (1997), but (as acknowledged in the legend of Fig.7), with a non "fully dynamic model". Related-

of population viscosity on the evolution altruism.

For each of the three life-cycles that we consider, we compute the expected

(i.e., long-term) frequency of altruists maintained in a subdivided population,

and investigate how this frequency is affected by mutation and emigration. We

find that, contrary to what happens with perfect strategy transmission, higher

emigration can increase the expected frequency of altruists in the population.

ness was treated like a parameter, which precluded the exploration of the effects

¹Note that for the sake of concision, we use the word "mutation" throughout the paper, keeping in mind that strategy transmission does not have to be genetic.

Model and methods

100 Assumptions

122

We consider a population of size N, subdivided into N_D demes connected by 101 dispersal, each deme hosting exactly n individuals (i.e., each deme contains n102 sites, each of which is occupied by exactly one individual; we have $nN_D = N$). 103 Each site has a unique label i, $1 \le i \le N$. There are two types of individuals in 104 the population, altruists and defectors. The type of the individual living at site i105 $(1 \le i \le N)$ is given by an indicator variable X_i , equal to 1 if the individual is an 106 altruist, and to 0 if it is a defector. The state of the entire population is given by 107 a N-long vector **X**. For a given population state **X**, the proportion of altruists is 108 $\overline{X} = \sum_{i=1}^{N} X_i$. All symbols are summarized in table A1. 109 Reproduction is asexual. The offspring of altruists are altruists themselves 110 with probability $1-\mu_{1\to 0}$, and are defectors otherwise $(0 < \mu_{1\to 0} \le 1/2)$. Similarly, 111 the offspring of defectors are defectors with probability $1-\mu_{0\rightarrow 1}$, and are altruists 112 otherwise $(0 < \mu_{0 \to 1} \le 1/2)$. Our calculations will be simpler if we introduce the 113 following change of parameters: {eq:changemut}

$$v = \frac{\mu_{0 \to 1}}{\mu_{1 \to 0} + \mu_{0 \to 1}}$$
 (0 < v < 1), and (1a) {eq:nu}

$$\mu = \mu_{1 \to 0} + \mu_{0 \to 1} \quad (0 < \mu \le 1).$$
 (1b) {eq:mu}

The composite parameter v corresponds to the expected frequency of altruists in the population at the mutation-drift balance (*i.e.*, in the absence of selection; see Appendix A for details). We call v the "mutation bias" parameter. Parameter μ is the sum of the two mutation probabilities. In the absence of selection, at the mutation-drift equilibrium, the correlation between the types of offspring and the type of their parents is $1 - \mu$ (see Appendix A for details for the calculation). We call μ the mutation intensity.

An individual of type X_k expresses a social phenotype $\phi_k = \delta X_k$, where δ is

assumed to be small ($\delta \ll 1$). Social interactions take place within each deme, benefits are shared with the n-1 other deme-mates. We assume that social interactions affect individual fecundity; f_k denotes the fecundity of the individual at site k. We denote by b the sum of the marginal effects of deme-mates' phenotypes on the fecundity of a focal individual, and by -c the marginal effect of a focal individual's phenotype on its own fecundity ($c \le b$; see system (A22) for formal definitions).

Offspring remain in the parental deme with probability 1 - m; when they do, they land on any site of the deme with equal probability (including the very site of their parent). With probability m, offspring emigrate to a different deme, chosen uniformly at random among the other demes. Denoting by d_{ij} the probability of moving from site i to site j, we have

$$d_{ij} = \begin{cases} d_{\text{in}} = \frac{1-m}{n} & \text{if both sites are in the same deme;} \\ d_{\text{out}} = \frac{m}{(N_D - 1)n} & \text{if the two sites are in different demes,} \end{cases}$$
 (2) {eq:defD}

with $0 < m < 1 - \frac{1}{N_D}$. (This upper bound is here to ensure that within-deme relatedness R, which will be defined later in the article, remains positive.)

We denote by $B_i = B_i(\mathbf{X}, \delta)$ the expected number of successful offspring of the individual living at site i (successful means alive at the next time step), and by

 $D_i = D_i(\mathbf{X}, \delta)$ the probability that the individual living at site i dies. Both depend on the state of the population \mathbf{X} , but also on the way the population is updated from one time step to the next, i.e., on the chosen life-cycle (also called updating

rule). We also define

145

$$W_i := (1 - \mu)B_i + 1 - D_i, \tag{3} \{eq: defW\}$$

a particular definition of fitness, where the number of offspring produced (B_i) is scaled by the parent-offspring type correlation $(1 - \mu)$.

We will specifically explore three different life-cycles. At the beginning of

each step of each life-cycle, all individuals produce offspring, that can be mutated; then these juveniles move, within the parental deme or outside of it, and land on a site. The next events occurring during the time step depend on the life-cycle:

Moran Birth-Death: One of the newly created juveniles is chosen at random; it kills the adult who was living at the site, and replaces it; all other juveniles die.

Moran Death-Birth: One of the adults is chosen to die (uniformly at random among all adults). It is replaced by one of the juveniles who had landed in its site. All other juveniles die.

Wright-Fisher: All the adults die. At each site of the entire population, one of
the juveniles that landed there is chosen and establishes at the site.

158 Methods

159 Analytical part

The calculation steps to obtain the expected (*i.e.*, long-term) proportion of altruists are given in Appendix B. They go as follows: first, we write an equation for the expected frequency of altruists in the population at time t+1, conditional on the composition of the population at time t; we then take the expectation of this quantity and consider large times t. After this, we write a first order expansion for phenotypic differences δ close to 0 (this corresponds to weak selection approximation).

The formula involves quantities that can be identified as neutral probability ities of identity by descent Q_{ij} . These quantities correspond to the probability that individuals living at site i and j share a common ancestor and that no mutation occurred on either lineage since that ancestor, in a model with no selection $(\delta = 0)$ and with mutation probability μ ; this is the "mutation definition" of iden-

tity by descent (Rousset & Billiard, 2000). In a subdivided population like ours, there are three possible values of Q_{ij} :

$$Q_{ij} = \begin{cases} 1 & \text{when } i = j, \\ Q_{\text{in}} & \text{when } i \neq j \text{ and both sites are in the same deme,} \\ Q_{\text{out}} & \text{when both sites are in different demes.} \end{cases}$$
 (4) {eq:Q3}

These neutral probabilities of identity by descent depend on the chosen lifecycle, and are also computed by taking the long-term expectation of conditional expectations after one time step (see Appendix C.1 and C.2 and supplementary Mathematica file (Wolfram Research, Inc., 2017).)

178 Stochastic simulations

We also ran stochastic simulations (coded in C). The simulations were run for 10⁸ generations (one generation is one time step for the Wright-Fisher life-cycle, and N time steps for the Moran life-cycles). For each set of parameters and life-cycle, using R (R Core Team, 2015), we estimated the long-term frequency of altruists by sampling the population every 10³ generations and computing the average frequency of altruists. All scripts are available at https://flodebarre.github.io/SocEvolSubdivPop/

186 Results

187 Expected frequencies of altruists for each life-cycle

- For each of the life-cycles that we consider, the expected frequency of altruists in the population, $\mathbb{E}[\overline{X}]$, can be approximated as
 - the population, $\mathbb{E}[\overline{X}]$, can be approximated as

$$\mathbb{E}\left[\overline{X}\right] \approx v + \frac{\delta}{\mu B^*} v(1-v)(1-Q_{\text{out}}) \times \left[\underbrace{\frac{\partial W}{\partial f_{\bullet}}(-c) + \frac{\partial W}{\partial f_{\text{in}}}b}_{-C} + \underbrace{\left(\frac{\partial W}{\partial f_{\bullet}}b + (n-1)\frac{\partial W}{\partial f_{\text{in}}}(-c) + (n-2)\frac{\partial W}{\partial f_{\text{in}}}b\right)}_{\mathcal{B}}\underbrace{\frac{Q_{\text{in}} - Q_{\text{out}}}{1 - Q_{\text{out}}}}_{R}\right], \quad (5) \quad \{\text{eq:EXapprox}\}$$

with W as defined in eq. (3). (Calculations leading to eq. (5) are presented in Ap-

pendix B; notations are recapitulated in table A1.)

192 The expected frequency of altruists in the population is approximated, under

weak selection ($\delta \ll 1$), by the sum of what it would be in the absence of selection

194 ($\mathbb{E}_0[\overline{X}] = v$), plus a deviation from this value, scaled by δ . The $-\mathcal{C}$ term groups

the effects corresponding to the effects of a change of a focal individual's pheno-

type on its own fitness (with the fitness definition given in eq. (3).) The ${\cal B}$ term

corresponds to the sum of the effects on an individual's fitness of the change of

deme-mates' phenotypes. It is multiplied by R, which is relatedness.

The change of mutation parameters proposed in eq. (1) allows us to decouple

the effects of the two new mutation parameters, v and μ . The mutation bias v,

which was defined in eq. (1a), does not affect the sign of the second ("deviation")

term in eq. (5); it only appears in the v(1-v) product. The mutation intensity μ ,

however, affects the value of W, $Q_{\rm in}$ and $Q_{\rm out}$. The presence of μ at the denomi-

nator in eq. (5) may look ominous; however, both R and $(1 - Q_{out})/\mu$ have a finite

limit when $\mu \to 0$.

The different terms depend on the chosen life-cycle. We first focus on relat-

edness R.

\mathbf{R} Relatedness R

Within-deme relatedness depends on the number of individuals that are born at 209 each time step, and hence on the chosen life-cycle. Recall that in a Moran life-210 cycle (denoted by M), one individual updated at each time step, while under a 211 Wright-Fisher life-cycle, N individuals – the whole population – are updated at 212 each time step. The formulas for relatedness for any number of demes N_D and 213 mutation intensity μ are presented in Appendix C.2 (eq. (A44) and eq. (A50)). 214 When we let the number of demes go to infinity and the intensity of mutation be 215 vanishingly small, we recover the classical formulas for relatedness as limit cases 216 (eq. (A45) and eq. (A51)). 217 The effects of emigration m and mutation intensity μ on relatedness are rep-218 resented in figure 1. For $0 < m < 1 - 1/N_D$, within-deme relatedness is positive, 219 decreases with m and decreases with μ (the mutation bias ν has no effect). The 220 effect of the mutation intensity μ on relatedness is strongest at low emigration 221 probabilities m. As m increases, the relatedness values for different mutation in-222 tensities get closer, until they all hit zero for $m = 1 - 1/N_D$ (the emigration proba-223 bility such that an offspring is equally likely to land in its parent's deme or in any 224

26 Primary and secondary effects

other deme).

225

We now turn to the \mathcal{B} and $-\mathcal{C}$ terms of eq. (5), which also depend on the chosen life-cycle. We further decompose these terms into primary (subscript P) and secondary (subscript S) effects (West & Gardner, 2010):

$$\mathcal{B} = \mathcal{B}_{P} + \mathcal{B}_{S},$$

$$-\mathcal{C} = \underbrace{-\mathcal{C}_{P}}_{\text{Primary effect}} + \underbrace{-\mathcal{C}_{S}}_{\text{Secondary effect}}$$
(6)

Figure 1: Within-deme relatedness of pairs of individuals R, as a function of the emigration probability m, for different values of the mutation probability μ (from 0 [blue] to 0.25 [orange]), and for the two types of life-cycles ((a): Moran, (b): Wright-Fisher). Other parameters: n=4 individuals per deme, $N_D=15$ demes.

Primary effects correspond to unmediated consequences of interactions (they are included in $\frac{\partial W}{\partial f_{\bullet}}$). Secondary effects correspond to consequences of interactions mediated by other individuals, including competition.

Primary effects

Primary effects are the same for all the life-cycles that we consider:

$$\mathcal{B}_{\mathbf{P}}^{\mathrm{BD}} = \mathcal{B}_{\mathbf{P}}^{\mathrm{DB}} = \mathcal{B}_{\mathbf{P}}^{\mathrm{WF}} = (1 - \mu)\mathsf{b},\tag{7a}$$

$$-C_{\rm P}^{\rm BD} = -C_{\rm P}^{\rm DB} = -C_{\rm P}^{\rm WF} = (1 - \mu)(-c),$$
 (7b)

and they do not depend on the emigration probability m (see Appendix B.2 for details of the calculations).

As we have seen above, the relatedness terms $R^{\rm M}$ and $R^{\rm WF}$ decrease with m (keeping $m < 1 - \frac{1}{N_D}$; see figure 1). Consequently, if we ignored secondary effects, we may conclude that the expected frequency of altruists in the population $\mathbb{E}[\overline{X}]$ decreases as the emigration probability m increases. However, secondary effects play a role as well.

242 Secondary effects

255

Secondary effects take competition into account, that is, how the change in the fecundity of an individual affects the fitness of another one. As shown already in models with nearly perfect strategy transmission (Grafen & Archetti, 2008), the competition radius depends on the life-cycle. Given the way the model is formulated, we have -C = B/(n-1) for the life-cycles that we consider (see Appendix B.2 for details of the calculations).

Under the Moran Birth-Death life-cycle, competition is felt one dispersal

Under the Moran Birth-Death life-cycle, competition is felt one dispersal step away. Note also that for this life-cycle, the probability of dying D_i depends on the composition of the population:

$$-C_{\rm S}^{\rm BD} = \frac{\mathcal{B}_{\rm S}^{\rm BD}}{n-1} = -(\mathsf{b} - \mathsf{c}) \left(-\frac{\mu}{N} + \frac{1-m}{n} \right). \tag{8a} \quad \{\mathsf{eq:BDsec}\}$$

{eq:secondary}

The competitive effects are the same for the Moran Death-Birth and Wright-Fisher life-cycles; competition is felt two dispersal steps away. In both cases, the probabilities of dying are constant, so we can factor $(1 - \mu)$ in the equations:

These secondary effects remain negative for the range of emigration values

$$-\mathcal{C}_{\rm S}^{\rm DB} = \frac{\mathcal{B}_{\rm S}^{\rm DB}}{n-1} = -\mathcal{C}_{\rm S}^{\rm WF} = \frac{\mathcal{B}_{\rm S}^{\rm WF}}{n-1} = -({\rm b}-{\rm c})(1-\mu)\left(\frac{(1-m)^2}{n} + \frac{m^2}{N-n}\right). \tag{8b} \quad \{\rm eq:DBsec}\}$$

that we consider $(0 < m < 1 - 1/N_D)$, and increase with m; in other words, the 256 intensity of competition decreases as emigration m increases. 257 While the value of these secondary effects increases with emigration m, re-258 latedness R, by which they are eventually multiplied in eq. (5), decreases with 259 m. We therefore cannot determine the overall effect of emigration m on the ex-260 pected frequency of altruists in the population by inspecting the different terms 261 of eq. (5) in isolation. For each life-cycle, we need to consider the entire equa-262 tions to know the overall effect of the emigration probability m on the expected 263 frequency of altruists $\mathbb{E}[\overline{X}]$ and on how it is affected by the (in)fidelity of parent-

offspring transmission μ .

${\bf 266} \quad \textbf{Changes of the expected frequency of altruists with the emigration prob-}$

267 **ability** *m*

The rather lengthy formulas that we obtain are relegated to the Appendix and

269 supplementary Mathematica file, and we concentrate here on the results.

270 Moran Birth-Death

For the Moran Birth-Death life-cycle, we find that the expected frequency of altruists $\mathbb{E}[\overline{X}]$ is a monotonic function of the emigration probability m; the direction of the change depends on the value of the mutation probability μ compared to a threshold value μ_c^{BD} . When $\mu < \mu_c^{\mathrm{BD}}$, $\mathbb{E}[\overline{X}]$ decreases with m, while when

 $\mu > \mu_c^{\mathrm{BD}}$, $\mathbb{E}[\overline{X}]$ increases with m. The critical value μ_c^{BD} is given by

$$\mu_c^{\rm BD} = 1 - \frac{b - c + \sqrt{(b - c) \left(4bN^2 + b - c\right)}}{2bN} \tag{9} \quad \{eq:mucBD\}$$

(recall that N is the total size of the population, $N = nN_D$.) This result is illus-

trated in figure 2(b); with the parameters of the figure, $\mu_c^{\rm BD} \approx 0.026$. The thresh-

old value increases with both deme size n and number of demes N_D , up to a

maximum value $1 - \sqrt{1 - c/b}$ (equal to 0.034 with our parameters.)

With this life-cycle however, the expected frequency of altruists $\mathbb{E}[\overline{X}]$ remains

lower than ν , its value in the absence of selection (i.e., when $\delta = 0$).

282 Moran Death-Birth

The relationship between $\mathbb{E}[\overline{X}]$ and m is a bit more complicated for the Moran

Death-Birth life-cycle. For simplicity, we concentrate on what happens starting

from low emigration probabilities (*i.e.*, on the sign of the slope of $\mathbb{E}[\overline{X}]$ as a func-

tion of m when $m \to 0$). If the benefits b provided by altruists are relatively low

(b < c(n+1)), $\mathbb{E}[\overline{X}]$ initially increases with m provided the mutation probability μ is greater than a threshold value μ_c^{DB} given in eq. (10) below; otherwise, when the benefits are high enough, $\mathbb{E}[\overline{X}]$ initially increases with m for any value of μ . Combining these results, we write

$$\mu_c^{\text{DB}} = \begin{cases} \frac{(n+1)c - b}{(2n-1)b - (n-1)c} & \text{if } b < c(n+1), \\ 0 & \text{otherwise.} \end{cases}$$
(10) {eq:mucDB}

When b < c(n + 1), the mutation threshold does not depend on the number of demes N_D , but increases when the size of the demes n increases. In figure 2(a), 292 the parameters are such that $\mu_c^{DB} = 0$. 293 When $\mu > \mu_c^{DB}$, the expected frequency of altruists $\mathbb{E}[\overline{X}]$ reaches a maximum 294 at an emigration probability $m_c^{\rm DB}$ (whose complicated equation is given in the 295 supplementary Mathematica file), as can be seen in figure 2(a). When the muta-296 tion probability gets close to 0 ($\mu \rightarrow 0$), $m_c^{\rm DB}$ also gets close to 0. 297 With the Death-Birth life-cycle, the expected frequency of altruists is higher 298 than its neutral value v for intermediate values of the emigration probability m 299 (unless $\mu \rightarrow 0$, in which case the lower bound tends to 0). 300

Mright-Fisher

Under a Wright-Fisher updating, the expected frequency of altruists in the population reaches an extremum at the highest admissible emigration value $m=1-\frac{1}{N_D}$. This extremum is a maximum when the mutation probability is higher than a threshold value $\mu_c^{\rm WF}$ given by

$$\mu_c^{\text{WF}} = 1 - \sqrt{1 - \frac{c}{b}},$$
 (11)

and it is a minimum otherwise. With the parameters of figure 2(c), $\mu_c^{\rm WF}$ = 0.034.

With the Wright-Fisher life-cycle however, the expected frequency of altruists

Figure 2: Expected proportion of altruists under weak selection, as a function of the emigration probability m, for different mutation values ($\mu=0.001$ (blue, dots), 0.01 (purple, squares), 0.1 (brown, diamonds), 0.25 (orange, triangles); the dashed blue lines correspond to $\mu=0$) and different life-cycles ((a) Moran Death-Birth, (b) Moran Birth Death, (c) Wright-Fisher). The curves are the analytical results, the points are the output of numerical simulations. Parameters: $\delta=0.005$, $\nu=0.45$, b=15, c=1, n=4 individuals per deme, $N_D=15$ demes.

remains below its value in the absence of selection, ν .

Interpreting the effect of m on $\mathbb{E}[\overline{X}]$

When strategy transmission is perfect ($\mu \rightarrow 0$, the classically studied case), em-310 igration has either no effect of the expected frequency of altruists in the popu-311 lation (under Wright-Fisher and Moran Birth-Death life-cycles, dashed lines in 312 figure 2(b), (c)), or has a negative effect (under Moran Death-Birth, figure 2(a)). 313 Here, we find thresholds of transmission (in)fidelity μ such that higher emigra-314 tion probabilities can favor altruistic behavior. The result may appear counter-315 intuitive because explanations for the effect of population viscosity on the evo-316 lution of altruism often focus on primary effects. The role played by secondary 317 effects is harder to grasp. To better understand the role played by the mutation 318 probability μ , we now focus *i*) on a qualitative condition for the evolution of al-

truism: altruism is favored if the expected frequency is higher than what it would be in the absence of selection, $\mathbb{E}[\overline{X}] > v$; and since this qualitative condition is not satisfied in the two other life-cycles, ii) we concentrate on the Death-Birth life-cycle.

Having made sure that $\mathcal{B}^{\mathrm{DB}} > 0$ (as shown in the supplementary Mathemati-

Having made sure that $\mathcal{B}^{DB} > 0$ (as shown in the supplementary Mathematical cal file), the qualitative condition for altruism to be favored is given by

$$\mathbb{E}[\overline{X}] > \nu \Leftrightarrow R^{M} > \frac{\mathcal{C}^{DB}}{\mathcal{B}^{DB}}.$$
 (12) {eq:BCcond}

With the Death-Birth life-cycle, the $\mathcal{C}^{DB}/\mathcal{B}^{DB}$ ratio does not change with the mutation probability μ , but it decreases with the emigration probability m (0 < m < 327 $1-1/N_D$; see the thick black curve in figure 3(a)). This decrease of the $\mathcal{C}^{\mathrm{DB}}/\mathcal{B}^{\mathrm{DB}}$ 328 ratio is due to secondary effects (competition) diminishing as emigration in-329 creases. Relatedness, on the other hand, decreases with both μ and m (see fig-330 ure 3(a)). We need to explain the effect of the emigration probability m on con-331 dition (12) for different values of mutation intensity μ . 332 When the emigration probability m is high, relatedness gets closer to zero 333 for all values of mutation intensity μ , while the $\mathcal{C}^{DB}/\mathcal{B}^{DB}$ remains positive; con-334 dition (12) is not satisfied. On the other hand, when the emigration probability 335 m is vanishingly small, $\lim_{m\to 0} R^{\mathrm{M}} \leq \lim_{m\to 0} \frac{\mathcal{C}^{\mathrm{DB}}}{R^{\mathrm{DB}}}$, the two only being equal when 336 $\mu = 0$. Hence, condition (12) is satisfied for vanishingly low m only when strategy 337 transmission is perfect. Finally, as m increases to intermediate values, the $\frac{C^{DB}}{R^{DB}}$ 338

cross provided the mutation probability μ is not too high, *i.e.*, that R initially was not too low already. Hence, for no too high mutation intensity, there is a range of emigration values m such that condition (12) is satisfied.

ratio decreases with a steeper slope than relatedness R, so that the curves can

339

Figure 3: Understanding the effect of emigration m on whether altruism is favored in the Death-Birth life-cycle. (a) Comparison of the \mathcal{C}/\mathcal{B} ratio (thick black curve) and relatedness R (thin curves) for different values of the mutation probability μ (same color code as previously). (b) (m, μ) combinations for which $\mathbb{E}[\overline{X}] > v$. The dotted horizontal lines correspond to the mutation values used in panel (a). Unless specified, all other parameters are the same as in figure 2.

Relaxing key assumptions

348

349

350

351

352

353

354

355

To derive our analytical results, we had to make a number of simplifying assumptions, such as the fact that selection is weak ($\delta \ll 1$), and the fact that the structure of the population is regular (all demes have the same size n). We explored with numerical simulations the effect of relaxing these key assumptions.

When selection is strong, the patterns that we identified not only still hold but are even more marked, as shown on figure A1.

To relax the assumption of equal deme sizes, we randomly drew deme sizes at the beginning of simulations, with sizes ranging from 2 to 6 individuals and on average $\overline{n} = 4$ individuals per deme as previously. As shown in figure A2, the patterns initially obtained with a homogeneous population structure are robust when the structure is heterogeneous.

For the Moran model, it may seem odd that an offspring can replace its own

parent (which can occur since $d_{ii} \neq 0$). Figure A3, plotted with dispersal probabilities preventing immediate replacement of one's own parent (for all sites i, $d_{ii} = d_{\rm self} = 0$; $d_{\rm in} = (1-m)/(n-1)$ for two different sites in the same deme, $d_{\rm out}$ remaining unchanged), confirms that this does affect our conclusions.

The results are obtained in a population of finite size (the figures are done with $N_D=15$ demes), but still hold when the size of the population is larger (see e.g., figure 3(b), showing the range of emigration and mutation values such that altruism is favored, plotted also for $N_D\to\infty$).

Compared to graphs classically used in evolutionary graph theory (e.g., regu-364 lar random graphs, grids), the island model is particular because the interaction 365 graph and the dispersal graph are different: interactions take place only within 366 demes ($e_{\text{out}} = 0$), while offspring can disperse out of their natal deme ($d_{\text{out}} > 0$). 367 One may wonder whether our result depends on this difference between the two 368 graphs. Figure A4 shows that the result still holds when the dispersal and inter-369 action graphs are the same. In this figure indeed, we let a proportion m (equal 370 to the dispersal probability) of interactions occur outside of the deme where the 371 individuals live, and set d_{self} , the probability of self replacement, equal to 0, so 372 that the dispersal and interactions graphs are the same. Our conclusions remain 373 unchanged.

75 Discussion

360

361

362

363

The expected frequency of altruists in a subdivided population can increase with the probability of emigration

Assuming that the transmission of a social strategy (being an altruist or a defector) from a parent to its offspring could be imperfect, we found that the expected frequency of altruists maintained in a population could increase with the probability m of emigration out of the parental deme, a parameter tuning population

viscosity. This result can seem surprising, because it contradicts the conclusions
obtained under the assumption of nearly perfect strategy transmission (*i.e.*, in
the case of genetic transmission, when mutation is very weak or absent). Under
nearly perfect strategy transmission indeed, increased population viscosity (*i.e.*,
decreased emigration probability) is either neutral (Taylor, 1992a, and dashed
lines in figures 2(b)–(c)) or favorable (Taylor et al., 2007a, and dashed lines in
figure 2(a)) to the evolution of altruistic behavior.

989 Quantitative vs. qualitative measures

Often, evolutionary success is measured qualitatively, by comparing a quantity 390 (an expected frequency, or, in models with no mutation, a probability of fixation) 391 to the value it would have in the absence of selection. In our model, this amounts 392 to saying that altruism is favored whenever $\mathbb{E}[\overline{X}] > v$ (v is plotted as a horizon-393 tal dashed line in figure 2). Some of our conclusions change if we switch to this 394 qualitative measure of evolutionary success: Under the Moran Birth-Death and 395 Wright-Fisher life-cycles, population viscosity does not promote the evolution of 396 altruism – actually, these two life-cycles cannot ever promote altruistic behavior 397 for any regular population structure (Taylor et al., 2011), whichever the probabil-398 ity of mutation (Débarre, 2017). However, under a Moran Death-Birth life-cycle 399 (figure 2(a)), altruism can be favored only at intermediate emigration probabilities. Starting for initially low values of m, increasing the emigration probability 401 can still favor the evolution of altruism under this qualitative criterion (see fig-402 ure 3(b).) 403

404 The result is due to secondary effects

The result, that frequency of altruists can increase with the emigration probability m, may seem counterintuitive. It is the case because verbal explanations for the evolution of altruism often rely on primary effects only. Relatedness R

decreases with m_1 , so it may be tempting to conclude that increases in the em-408 igration probability m are necessarily detrimental to the evolution of altruism. 409 However, secondary effects play an opposite role, as competition decreases with 410 m. To further explain the relative weight of the detrimental and beneficial conse-411 quences of increases in the emigration probability m, let us focus on the Death-Birth life-cycle and consider the qualitative criterion for evolutionary success 413 $(\mathbb{E}[\overline{X}] > v, i.e. R > \mathcal{C}/\mathcal{B}$; figure 3.) 414 When parent-offspring strategy transmission is nearly perfect $(\mu \to 0)$, for 415 vanishingly small emigration probabilities $(m \to 0)$, both R and the \mathcal{C}/\mathcal{B} ratio 416 tend to 1. An increase in the mutation probability μ reduces R while leaving 417 \mathcal{C}/\mathcal{B} unchanged. In other words, for vanishingly small emigration probabilities, 418 altruism is favored by selection only when transmission fidelity is nearly perfect. Let us now consider that benefits b of social interactions are high enough for 420 altruism to be favored at low m when $\mu \to 0$ (as in figure 3(a)). Starting from 421 low values of m, small increases in m have a stronger effect on the \mathcal{C}/\mathcal{B} ratio 422 than on relatedness R: local competition is initially so strong that the beneficial 423 reduction in competition caused by an increase in m initially predominates over 424 the detrimental reduction in relatedness R. The opposite holds for much higher 425 values of *m*: competition is already small enough that reducing it further does 426 not outweigh the reduction in relatedness *R*. 427 Secondary effects are less straightforward to understand than primary ef-428 fects, and yet they play a crucial role for social evolution in spatially structured populations. Competition among relatives is for instance the reason for Taylor 430 (1992b)'s cancellation result. Similarly, the qualitative differences between the 431 Moran Birth-Death and Moran Death-Birth life-cycles is explained by the differ-432 ent scales of competition that the two life-cycle produce (Débarre et al., 2014; 433 Grafen & Archetti, 2008). Secondary effects are also behind the evolution of so-434

cial behaviors such as spite (West & Gardner, 2010).

435

How small is small and how large is large?

Our results were derived under the assumption of weak selection, assuming that 437 the phenotypic difference between altruists and defectors is small ($\delta \ll 1$). We 438 considered any fidelity of transmission (any μ between 0 and 1) and population 439 size. However, most models considering subdivided populations assume nearly 440 perfect strategy transmission ($\mu \rightarrow 0$) and infinite population sizes (number of demes $N_D \to \infty$). The point is technical, but it is important to know that the or-442 der in which these limits are taken matters, i.e., one needs to specify how small 443 μ and δ are compared to the inverse size of the population. This remark complements findings by Sample & Allen (2017), who highlighted the quantitative differences between different orders of weak selection and large population limits. 447

Imperfect transmission and Rebellious Children

Our model bears resemblance to the Rebellious Child Model by Frank (1997), who studied the evolution of a vertically transmitted cultural trait in an asexually reproducing population. In Frank's model, however, relatedness r is treated as a fixed parameter (as acknowledged in the legend of Figure 7 in Frank (1997)). Our model is mechanistic; relatedness r necessarily depends on the mutation probability μ , because probabilities of identity by descent do.

Mutation was also previously included in models investigating the maintenance of cooperative microorganisms in the presence of cheaters (Brockhurst et al., 2007; Frank, 2010). In both of these models however, only loss-of-function mutation was considered, which corresponds to setting the mutation bias at v = 0 in our model. This means that the all-cheaters state is absorbing; no matter how favored cooperators may otherwise be, in the long run, a finite population will only consist of cheaters.

62 Cultural transmission

Strategy transmission does not have to be genetic: it can be cultural. In our model, strategy transmission occurs upon reproduction, so this is a case of vertical cultural transmission.

The model could nevertheless be interpreted as a representation of horizon-466 tal transmission, if we described reproduction as an instance of an individual 467 convincing another one to update its strategy. The Moran Death-Birth model 468 can be interpreted as a modified imitation scheme (Boyd & Richerson, 2002; Oht-469 suki et al., 2006) - with a specific function specifying who is imitated -, with mu-470 tation (Kandori et al., 1993). First, we choose uniformly at random an individual 471 who may change its strategy; with probability μ the individual chooses a random 472 strategy (altruistic with probability ν), and with probability $1 - \mu$ it imitates an-473 other individual. Who is imitated depends on the distance to the focal individual (with probability m it is a random individual in another deme) and on the "fe-475 cundities" of those individuals (as shown in table A2). With this interpretation of 476 the updating rule however, there is not reproduction nor death anymore. 477

It remains to be investigated how imperfect strategy transmission would affect the effect of population viscosity on the evolution of altruism in a model implementing both reproduction and horizontal cultural transmission (as in Lehmann et al., 2008). Such a model could then contrast the effects of impecfect genetic transmission and imperfect horizontal cultural transmission.

483 Coevolution of dispersal and social behavior

This work also raises the question of what would happen if dispersal (e.g., the emigration probability m) could evolve as well. Recent work on the topic has shown that under some conditions disruptive selection could take place, leading to a polymorphism between sessile altruists and mobile defectors (Mullon et al., 2017; Parvinen, 2013). The assumptions of these studies however differ

- from ours in important ways, in that they consider continuous traits and use
- an adaptive dynamics framework, where, notably, mutations are assumed to be
- very rare. It remains to be investigated how non-rare and potentially large mu-
- tations would affect their result.

493 Acknowledgements

- Thanks to Charles Mullon for detailed comments on a previous version of the
- manuscript, and for suggesting the $\mathcal{B}R-\mathcal{C}$ decomposition. At ESEB 2017, Sébastien
- Lion suggested using the R vs. C/B comparison to interpret the result. This work
- was funded by a ANR-14-ACHN-0003-01 grant.

Literature Cited

- Alizon, S. & Taylor, P. 2008: Empty sites can promote altruistic behavior. Evolution 62(6):1335–1344.
- Allen, B.; Lippner, G.; Chen, Y.-T.; Fotouhi, B.; Momeni, N.; Yau, S.-T. & Nowak,
- M. A. 2017: Evolutionary dynamics on any population structure. Nature
- 503 544(7649):227–230.
- Allen, B.; Traulsen, A.; Tarnita, C. E. & Nowak, M. A. 2012: How mutation affects evolutionary games on graphs. Journal of Theoretical Biology 299:97 105.
- Evolution of Cooperation.
- Boyd, R. & Richerson, P. J. 2002: Group beneficial norms can spread rapidly in a structured population. Journal of theoretical biology 215(3):287–296.
- Brockhurst, M. A.; Buckling, A. & Gardner, A. 2007: Cooperation peaks at intermediate disturbance. Current Biology 17(9):761–765.
- Cockerham, C. C. & Weir, B. 1987: Correlations, descent measures: drift with
 migration and mutation. Proceedings of the National Academy of Sciences
 84(23):8512–8514.
- Débarre, F. 2017: Fidelity of parent-offspring transmission and the evolution of social behavior in structured populations. Journal of Theoretical Biology 420:26 35.
- Débarre, F.; Hauert, C. & Doebeli, M. 2014: Social evolution in structured populations. Nature Communications 5.
- Fletcher, J. A. & Doebeli, M. 2009: A simple and general explanation for the evolution of altruism. Proceedings of the Royal Society B: Biological Sciences 276(1654):13–19.
- Frank, S. A. 1997: The Price equation, Fisher's fundamental theorem, kin selection, and causal analysis. Evolution 51(6):1712–1729.
- Frank, S. A. 2010: Microbial secretor–cheater dynamics. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365(1552):2515–2526 2522.
- Grafen, A. & Archetti, M. 2008: Natural selection of altruism in inelastic viscous
 homogeneous populations. Journal of Theoretical Biology 252(4):694 710.
- Hamilton, W. 1964: The genetical evolution of social behaviour. i. Journal of Theoretical Biology 7(1):1 16.
- Hamilton, W. D. 1975: Innate social aptitudes of man: an approach from evolutionary genetics. Biosocial anthropology 53:133–55.
- Hammerschmidt, K.; Rose, C. J.; Kerr, B. & Rainey, P. B. 2014: Life cycles, fitness decoupling and the evolution of multicellularity. Nature 515(7525):75–79.

- Kandori, M.; Mailath, G. J. & Rob, R. 1993: Learning, mutation, and long run equilibria in games. Econometrica 61(1):29–56.
- Lehmann, L.; Feldman, M. & Foster, K. 2008: Cultural transmission can inhibit the evolution of altruistic helping. The American Naturalist 172(1):12–24. PMID: 18500938.
- Lehmann, L.; Keller, L. & Sumpter, D. J. T. 2007: The evolution of helping and harming on graphs: the return of the inclusive fitness effect. Journal of Evolutionary Biology 20(6):2284–2295.
- Lehmann, L. & Rousset, F. 2014: The genetical theory of social behaviour. Philosophical Transactions of the Royal Society of London B: Biological Sciences 369(1642).
- Leturque, H. & Rousset, F. 2002: Dispersal, kin competition, and the ideal free
 distribution in a spatially heterogeneous population. Theoretical Population
 Biology 62(2):169 180.
- Lion, S. 2016: Moment equations in spatial evolutionary ecology. Journal of theoretical biology 405:46–57.
- Mullon, C.; Keller, L. & Lehmann, L. 2017: Co-evolution of dispersal with behaviour favours social polymorphism. bioRxiv.
- Mullon, C. & Lehmann, L. 2014: The robustness of the weak selection approximation for the evolution of altruism against strong selection. Journal of evolutionary biology 27(10):2272–2282.
- Ohtsuki, H.; Hauert, C.; Lieberman, E. & Nowak, M. A. 2006: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441(7092):502–505.
- Parvinen, K. 2013: Joint evolution of altruistic cooperation and dispersal in a metapopulation of small local populations. Theoretical population biology 85:12–19.
- R Core Team. 2015: R: A Language and Environment for Statistical Computing.
 R Foundation for Statistical Computing, Vienna, Austria.
- Rodrigues, A. M. M. & Gardner, A. 2012: Evolution of helping and harming in heterogeneous populations. Evolution 66(7):2065–2079.
- Rousset, F. 2004: Genetic Structure and Selection in Subdivided Populations.
 Princeton University Press, Princeton, NJ.
- Rousset, F. & Billiard, S. 2000: A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal. Journal of Evolutionary Biology 13(5):814–825.

- Sample, C. & Allen, B. 2017: The limits of weak selection and large population
- size in evolutionary game theory. Journal of mathematical biology pages 1-
- 573 33.
- Tarnita, C. E. & Taylor, P. D. 2014: Measures of relative fitness of social behaviors
- in finite structured population models. The American Naturalist 184(4):477–
- 576 488.
- Taylor, P. 1992a: Altruism in viscous populations—an inclusive fitness model.
- Evolutionary ecology 6(4):352–356.
- Taylor, P. 2010: Birth–death symmetry in the evolution of a social trait. Journal of Evolutionary Biology 23(12):2569–2578.
- Taylor, P.; Lillicrap, T. & Cownden, D. 2011: Inclusive fitness analysis on mathematical groups. Evolution 65(3):849–859.
- Taylor, P. D. 1992b: Inclusive fitness in a homogeneous environment. Pro-
- ceedings of the Royal Society of London. Series B: Biological Sciences
- 585 249(1326):299–302.
- Taylor, P. D.; Day, T. & Wild, G. 2007a: Evolution of cooperation in a finite homogeneous graph. Nature 447(7143):469–472.
- Taylor, P. D.; Day, T. & Wild, G. 2007b: From inclusive fitness to fixation proba-
- bility in homogeneous structured populations. Journal of Theoretical Biology
- 590 249(1):101 110.
- Taylor, P. D. & Irwin, A. J. 2000: Overlapping generations can promote altruistic behavior. Evolution 54(4):1135–1141.
- Van Cleve, J. 2015: Social evolution and genetic interactions in the short and long term. Theoretical Population Biology 103:2 26.
- West, S. A. & Gardner, A. 2010: Altruism, spite, and greenbeards. Science 327(5971):1341–1344.
- West, S. A.; Pen, I. & Griffin, A. S. 2002: Cooperation and competition between relatives. Science 296(5565):72–75.
- Wilson, D. S.; Pollock, G. B. & Dugatkin, L. A. 1992: Can altruism evolve in purely
 viscous populations? Evolutionary Ecology 6(4):331–341.
- Wolfram Research, Inc. 2017: Mathematica, Version 11.1. Champaign, IL, 2017.

Figures Figures

Figure 1: Within-deme relatedness of pairs of individuals R, as a function of the emigration probability m, for different values of the mutation probability μ (from 0 [blue] to 0.25 [orange]), and for the two types of life-cycles ((a): Moran, (b): Wright-Fisher). Other parameters: n=4 individuals per deme, $N_D=15$ demes.

Figure 2: Expected proportion of altruists under weak selection, as a function of the emigration probability m, for different mutation values ($\mu=0.001$ (blue, dots), 0.01 (purple, squares), 0.1 (brown, diamonds), 0.25 (orange, triangles); the dashed blue lines correspond to $\mu=0$) and different life-cycles ((a) Moran Death-Birth, (b) Moran Birth Death, (c) Wright-Fisher). The curves are the analytical results, the points are the output of numerical simulations. Parameters: $\delta=0.005$, $\nu=0.45$, b=15, c=1, n=4 individuals per deme, $N_D=15$ demes.

Figure 3: Understanding the effect of emigration m on whether altruism is favored in the Death-Birth life-cycle. (a) Comparison of the \mathcal{C}/\mathcal{B} ratio (thick black curve) and relatedness R (thin curves) for different values of the mutation probability μ (same color code as previously). (b) (m, μ) combinations for which $\mathbb{E}[\overline{X}] > v$. The dotted horizontal lines correspond to the mutation values used in panel (a). Unless specified, all other parameters are the same as in figure 2.

Supplementary figures

Figure A1: Equivalent of figure 2 (simulations only) but with strong selection (δ = 0.1); please note the change of scale on the vertical axis. All other parameters and legends are identical to those of figure 2 (increasing mutation probabilities from blue dots to orange triangles).

Figure A2: Equivalent of figure 2 (simulations only) but with a heterogeneous population structure: deme sizes range from 1 to 5 individuals per deme, the average deme size is 4 as in figure 2; all other parameters and legend are identical to those of figure 2.

Figure A3: Equivalent of figure 2 (analysis only), with no self-replacement ($d_{ii} = d_{self} = 0$ for all sites).

Figure A4: Equivalent of figure 2 (analysis only), with equal dispersal and interaction graphs (*i.e.*, no self-replacement [$d_{ii} = d_{\rm self} = 0$ for all sites], and a proportion m of the interactions occurring outside of the home deme).

Supplementary Table

- b Sum of the marginal effects of deme-mates' phenotypes on focal individual's fecundity (benefit)
- \mathcal{B} Sum of the marginal effects of deme-mates' phenotypes on the fitness W of a focal individual
- B_i Expected number of successful offspring of the individual living at site i (r.v.)
- B^* Value of B_i for all sites, in the absence of selection ($\delta = 0$)
- c Marginal effect of a focal individual's phenotype on its own fecundity (cost)
- C Marginal effect of an individual's phenotype on its own fitness W
- d_{ij} Dispersal probability from site i to site j
- D_i Probability that the individual currently living at site i is dead at the end of the time step (r.v.)
- $e_{i,i}$ Interaction probability from site i to site j
- f_i Fecundity of the individual currently living at site i (r.v.)
- *n* Deme size
- N_D Number of demes
- *N* Total population size $(N = N_D n)$
- *m* Emigration probability
- P_{ij} (Long-term) Expected state of the pair of sites (i, j)
- Q_{ij} (Long-term) Probability of identity by descent of individuals at sites i and j
- *R* Pairwise within-deme relatedness (see eq. (5))
- W_i Measure of fitness, counting offspring only when unmutated (see eq. (3))
- X_i Indicator variable, equal to 1 if site i is occupied by an altruist, to 0 otherwise (r.v.)
- \overline{X} Frequency of altruists in the population (r.v.)
- δ Phenotypic distance between altruists and defectors; strength of selection
- ϕ_i Phenotype of the individual living at site i; $\phi_i = \delta X_i$ (r.v.)
- μ Mutation probability
- v Mutation bias: probability that mutant is altruist
- P Subscript corresponding to primary effects
- S Subscript corresponding to secondary effects
- Subscript used to denote a focal individual
- in Subscript used when $i \neq j$ and the two sites are in the same deme
- out Subscript used when the two sites *i* and *j* are in different demes
- self Subscript used when i = j
- 0 Sub- or superscript meaning that a quantity is evaluated at $\delta = 0$
- BD Superscript corresponding to the Moran Birth-Death model
- DB Superscript corresponding to the Moran Death-Birth model
- M Superscript corresponding to a Moran model
- WF Superscript corresponding to the Wright-Fisher model

{tab:symbols}

Table A1: List of symbols. "r.v." means random variable.

Appendix

A Mutation parameters

{sec:app:mutation}

In the main text, we first introduce effective mutation parameters: $\mu_{1\to 0}$, the probability that an altruist has defector offspring, and $\mu_{0\to 1}$, the probability that

a defector has altruist offspring.

s10 A.1 Expected frequency of altruists at the mutation drift balance

Let Y be the type of a randomly chosen individual in the population, and let Y' be the type of a randomly chosen individual at the next time step. Given a frequency v of altruists in the population, we have

$$\mathbb{E}[Y] = \nu, \tag{A1a}$$

$$\mathbb{E}[Y'] = \nu(1 - \mu_{1 \to 0}) + (1 - \nu)\mu_{0 \to 1}. \tag{A1b}$$

The expected frequency of altruists is found by solving $\mathbb{E}[Y] = \mathbb{E}[Y']$, and we

615 obtain

605

$$v = \frac{\mu_{0 \to 1}}{\mu_{1 \to 0} + \mu_{0 \to 1}}.$$
 (A2) {eq:app:nuformula}

616 A.2 Parent-offspring correlation at the mutation drift balance

We can then compute the parent-offspring type correlation at the mutation-drift balance. First, let us compute the parent-offspring covariance:

$$\begin{aligned} \text{Cov} \big[YY' \big] &= \mathbb{E} \big[YY' \big] - \mathbb{E} \big[Y' \big] \mathbb{E} \big[Y \big] \\ &= \nu (1 - \mu_{1 \to 0}) - (\nu (1 - \mu_{1 \to 0}) + (1 - \nu) \mu_{0 \to 1}) \nu \\ &= \nu (1 - \nu) (1 - \mu_{1 \to 0} - \mu_{0 \to 1}). \end{aligned} \tag{A3} \quad \{ \text{eq:app:Cov} \}$$

Then, the standard deviations are given by

$$\sigma_{Y} = \sqrt{\mathbb{E}[Y^{2}] - \mathbb{E}[Y]^{2}} = \sqrt{\mathbb{E}[Y] - \mathbb{E}[Y]^{2}}$$

$$= \sqrt{\nu(1 - \nu)},$$
(A4) {eq:app:SD1}

620 and

$$\begin{split} \sigma_{Y'} &= \sqrt{\mathbb{E}\big[Y'^2\big] - \mathbb{E}\big[Y'\big]^2} = \sqrt{\mathbb{E}\big[Y'\big] - \mathbb{E}\big[Y'\big]^2} \\ &= \sqrt{\nu(1-\nu)(1-\mu_{1\rightarrow 0}-\mu_{0\rightarrow 1}) - (\nu(1-\nu)(1-\mu_{1\rightarrow 0}-\mu_{0\rightarrow 1}))^2}. \end{split} \tag{A5)} \quad \{\text{eq:app:SD2}\}$$

The parent-offspring correlation is given by

$$\operatorname{Corr}[YY'] = \frac{\operatorname{Cov}[YY']}{\sigma_{Y}\sigma_{Y'}};$$

using the formulas eq. (A3)–(A5), and replacing ν by its value (mutation-drift

Appendix A 35 2017-11-13

equilibrium, eq. (A2)), we obtain

Corr
$$[YY'] = 1 - (\mu_{1\to 0} + \mu_{0\to 1}) = 1 - \mu.$$
 (A6)

A.3 Redefining the mutation scheme

{sec:app:mutnew}

If we denote by X_i the type of a given parent, then the expected type of one of its

626 offspring is

$$\mathbb{E}[X_i'|X_i] = X_i(1 - \mu_{1 \to 0}) + (1 - X_i)\mu_{0 \to 1}. \tag{A7a}$$

Replacing $\mu_{1\to 0}$ and $\mu_{0\to 1}$ by equivalent combinations of μ and ν , *i.e.*,

$$\mu_{1\to 0} = \mu(1-\nu) \text{ and } \mu_{0\to 1} = \mu\nu,$$
 (A7b)

then eq. (A7a) becomes

$$\mathbb{E}[X_i'|X_i] = X_i(1-\mu) + \mu\nu. \tag{A7c} \quad \{eq:app:expoff2\}$$

We can redefine the mutation scheme and interpret eq. (A7c) as follows. Parents transmit their strategy to their offspring with probability $1-\mu$; with probability μ , offspring do not inherit their strategy from their parent but instead get one randomly: with probability ν , they become altruists, with probability $1-\nu$ they become defectors. With this alternative description, we can call "mutants" individuals who have the same type as their parent.

Appendix A 36 2017-11-13

B Expected frequency of altruists

{sec:app:EX}

B.1 For a generic life-cycle

636

651

{sec:app:generic}

We want to compute the expected proportion of altruists in the population. We 637 represent the state of the population at a given time t using indicator variables 638 $X_i(t), 1 \le i \le N$, equal to 1 if the individual living at site i at time t is an altru-639 ist, and equal to 0 if it is a defector; these indicator variables are gathered in a 640 *N*-long vector $\mathbf{X}(t)$. The set of all possible population states is $\Omega = \{0,1\}^N$. The 641 proportion of altruists in the population is written $\overline{X}(t) = \sum_{i=1}^{N} X_i(t)$. We denote 642 by $B_{ii}(X(t),\delta)$, written B_{ii} for simplicity, the probability that the individual at site j at time t+1 is the newly established offspring of the individual living at site i at time t. The expected number of successful offspring produced by the indi-645 vidual living at site *i* at time *t* is given by $B_i = \sum_{j=1}^{N} B_{ji}$. We denote by $D_i(X(t), \delta)$ 646 (D_i for simplicity) the probability that the individual living at site i at time t has 647 been replaced (i.e., died) at time t+1. These quantities depend on the chosen life-cycle and on the state of the population; they are given in table A2 for each 649 of the life-cycles that we consider.

Life-cycle	B_{ji}	D_i
Moran Birth-Death	$d_{ij}\frac{f_i}{\sum_{k=1}^N f_k}$	$\frac{\sum_{j=1}^{N} d_{ji} f_j}{\sum_{k=1}^{N} f_k}$
Moran Death-Birth	$\frac{1}{N} \frac{d_{ij} f_i}{\sum_{k=1}^N d_{kj} f_k}$	$\frac{1}{N}$
Wright-Fisher	$\frac{d_{ij}f_i}{\sum_{k=1}^N d_{kj}f_k}$	1

{tab:BD}

Table A2: Formulas of B_{ji} and D_i for each of the life-cycles that we consider; f_i (shorthand notation for $f_i(X, \delta)$) is the fecundity of the individual living at site i, and d_{ji} is a dispersal probability, given in eq. (2).

Since a dead individual is immediately replaced by one new individual,

$$D_i = \sum_{j=1}^{N} B_{ij}$$
 (A8a) {eq:DBequiv}

holds for all sites i. The structure of the population is also such that in the absence of selection ($\delta = 0$, so that $f_i = 1$ for all sites $1 \le i \le N$), all individuals have the same probability of dying and the same probability of having successful offspring (i.e., of having offspring that become adults at the next time step), so that

$$D_i^0 = \sum_{j=1}^N B_{ji}^0 = B_i^0 =: B^*,$$
 (A8b) {eq:DBRV}

where the 0 subscript means that the quantities are evaluated for $\delta = 0$. This also implies that B_{ij}^0 and D_i^0 do not depend on the state **X** of the population. For the Moran life-cycles, $B^* = 1/N$, while for the Wright-Fisher life-cycle, $B^* = 1$. (The difference between eq. (A8b) and eq. (A8a) is that we are now considering offspring produced by i landing on i).

660

661

662

664

665

666

669

670

671

679

680

Given that the population is in state $\mathbf{X}(t)$ at time t, the expected frequency of altruists at time t + 1 is given by

$$\mathbb{E}\big[\overline{X}(t+1)|\mathbf{X}(t)\big] = \frac{1}{N} \sum_{i=1}^{N} \big[B_i(1-\mu)X_i + (1-D_i)X_i + B_i\mu\nu\big]. \tag{A9a} \quad \{\text{eq:conditionalchange}\}$$

The first term within the brackets corresponds to births of unmutated offspring from parents who are altruists (X_i) . The second term corresponds to the survival of altruists. The third term corresponds to the births of mutants who became altruists (which occurs with probability ν), whichever the type of the parent.

Given that there is no absorbing population state (a lost strategy can always 667 be recreated by mutation), there is a stationary distribution of population states; the expected frequency of altruists does not change anymore for large times t (realized frequencies of course keep changing). We denote by $\xi(\mathbf{X}, \delta, \mu)$ the probability that the population is in state **X**, given the strength of selection δ and the mutation probability μ . Taking the expectation of eq. (A9a) ($\mathbb{E}[\overline{X}] = \sum_{X \in \Omega} \overline{X} \xi(\mathbf{X}, \delta, \mu)$), we obtain, after reorganizing:

$$0 = \frac{1}{N} \sum_{X \in \Omega} \left[\sum_{i=1}^{N} \left(B_i (1 - \mu) X_i - D_i X_i \right) + \sum_{i=1}^{N} B_i \mu \nu \right] \xi(\mathbf{X}, \delta, \mu). \tag{A10} \quad \{ \text{eq:statdist} \}$$

Now, we use the assumption of weak selection ($\delta \ll 1$) and consider the first-674 order expansion of eq. (A10) for δ close to 0.

$$\begin{split} 0 &= \frac{1}{N} \sum_{X \in \Omega} \left[\sum_{i=1}^{N} \left(B_i^0 (1 - \mu) X_i - D_i^0 X_i \right) + \sum_{i=1}^{N} B_i^0 \mu \nu \right] \xi(\mathbf{X}, 0, \mu) \\ &+ \frac{1}{N} \sum_{X \in \Omega} \left[\sum_{i=1}^{N} \left(\frac{\partial B_i (1 - \mu) - D_i}{\partial \delta} X_i \right) + \sum_{i=1}^{N} \frac{\partial B_i}{\partial \delta} \mu \nu \right] \xi(\mathbf{X}, 0, \mu) \\ &+ \frac{1}{N} \sum_{X \in \Omega} \left[\sum_{i=1}^{N} \left(B_i^0 (1 - \mu) X_i - D_i^0 X_i \right) + \sum_{i=1}^{N} B_i^0 \mu \nu \right] \frac{\partial \xi(\mathbf{X}, \delta, \mu)}{\partial \delta}, \end{split} \tag{A11}$$

where all the derivatives are evaluated for $\delta = 0$. The first line of eq. (A11) is equal to zero, because $B_i^0 = D_i^0 = B^*$ (eq. (A8b)), and because in the absence of selection ($\delta = 0$), the expected state of every site i is $\mathbb{E}_0[X_i] = \sum_{X \in \Omega} X_i \xi(X, 0, \mu) =$ v (recall that v is the mutation bias parameter). The second terms of the second and third lines are both zero, because for all the life-cycles that we consider, the total number of births in the population during one time step $(\sum_{i=1}^{N} B_i)$ does not depend on population phenotypic composition (it is exactly 1 death for the Moran life-cycles, and exactly N for the Wright-Fisher life-cycle). Eq. (A11) then

Appendix B 38 2017-11-13 684 becomes

$$0 = \frac{\delta}{N} \sum_{i=1}^{N} \left[\sum_{X \in \Omega} \left(\frac{\partial B_i}{\partial \delta} (1 - \mu) - \frac{\partial D_i}{\partial \delta} \right) X_i \xi(\mathbf{X}, 0, \mu) - \sum_{X \in \Omega} \mu B^* X_i \frac{\partial \xi}{\partial \delta} \right] + O\left(\delta^2\right), \quad (A12) \quad \{\text{eq:weaksel0}\}$$

where the derivatives are evaluated at $\delta = 0$. For conciseness, we define

$$W_i = (1 - \mu)B_i + (1 - D_i),$$
 (A13) {eq:app:defW}

a measure of fitness counting offspring only when they are unmutated (in the sense of the alternate mutation scheme described in Appendix A.3). With this, using the expectation notation, and denoting by $\mathbb{E}_0[]$ expectations under $\delta=0$, we can rewrite and reorganize eq. (A12) as

$$\delta \mu B^* \frac{\partial \mathbb{E}[\overline{X}]}{\partial \delta} = \frac{\delta}{N} \sum_{i=1}^{N} \mathbb{E}_0 \left[\frac{\partial W_i}{\partial \delta} X_i \right] + O(\delta^2). \tag{A14} \quad \{eq: weaksel0 reorg\}$$

Now, we use a first time the law of total probabilities, taking individual phenotypes ϕ_k are intermediate variables:

$$\begin{split} \frac{\partial W_i}{\partial \delta} &= \sum_{k=1}^N \frac{\partial W_i}{\partial \phi_k} \frac{\partial \phi_k}{\partial \delta} \\ &= \sum_{k=1}^N \frac{\partial W_i}{\partial \phi_k} X_k, \end{split} \tag{A15} \quad \{eq:totalproba1}$$

by definition of ϕ_k ($\phi_k = \delta X_k$), and where the derivatives are evaluated for all $\phi_i = 0$. Introducing the notation $P_{ij} = \mathbb{E}_0[X_i X_j]$ (expected state of a pair of sites), eq. (A14) becomes

$$\delta \mu B^* \frac{\partial \mathbb{E}[\overline{X}]}{\partial \delta} = \frac{\delta}{N} \sum_{i=1}^{N} \sum_{k=1}^{N} \frac{\partial W_i}{\partial \phi_k} P_{ik} + O(\delta^2). \tag{A16}$$

So far, we have not used the specificities of the population structure that we consider. Once we have fixed a focal individual i, in expectation there are only three types of individuals: the focal itself (denoted by " \bullet "), n-1 other individuals in the focal's deme (denoted by "in"), and N-n individuals in other demes (denoted by "out"). We note that given that the size of the population is fixed ($\sum_{i=1}^{N} (B_i - D_i) = 0$), and given that the total number of births does not depend on population composition in the life-cycles that we consider,

$$\sum_{i=1}^{N} \frac{\partial W_i}{\partial \delta} = 0,$$

which we can rewrite as (Rousset & Billiard, 2000, p.817–818)

$$\frac{\partial W_i}{\partial \phi_i} + (n-1)\frac{\partial W_i}{\partial \phi_{\text{in}}} + (N-n)\frac{\partial W_i}{\partial \phi_{\text{out}}} = 0. \tag{A17} \quad \{\text{eq:derivsumW}\}$$

Appendix B 39 2017-11-13

With this, eq. (A16) becomes

$$\delta \mu B^* \frac{\partial \mathbb{E}\left[\overline{X}\right]}{\partial \delta} = \frac{\delta}{N} \sum_{i=1}^{N} \left(\frac{\partial W_i}{\partial \phi_i} + (n-1) \frac{\partial W_i}{\partial \phi_{\text{in}}} \frac{P_{\text{in}} - P_{\text{out}}}{P_{ii} - P_{\text{out}}} \right) (P_{ii} - P_{\text{out}}) + O\left(\delta^2\right). \quad (A18) \quad \{\text{eq:weaksel1CBRP}\}$$

We can also replace the P terms by 704

$$P_{ij} = Q_{ij}v + (1 - Q_{ij})v^2$$

= $v^2 + v(1 - v)Q_{ij}$. (A19) {eq:QP}

In Appendix C.1, using recursions on P_{ij} , we will see that Q_{ij} can be interpreted as a probability of identity by descent, i.e., the probability that the individuals at sites i and j have a common ancestor and that no mutation (using the alterna-707 tive mutation scheme described in Appendix A.3) has occurred on either lineage since the ancestor. Eq. (A18) becomes

$$\delta \mu B^* \frac{\partial \mathbb{E}\left[\overline{X}\right]}{\partial \delta} = \frac{\delta}{N} \sum_{i=1}^{N} \left(\underbrace{\frac{\partial W_i}{\partial \phi_i}}_{-\mathcal{C}} + \underbrace{(n-1)\frac{\partial W_i}{\partial \phi_{\text{in}}}}_{\mathcal{B}} \underbrace{\frac{Q_{\text{in}} - Q_{\text{out}}}{1 - Q_{\text{out}}}}_{R} \right) (1 - Q_{\text{out}}) v (1 - v) + O\left(\delta^2\right). \tag{A20} \quad \{\text{eq:weaksel1CBR}}$$

We can further decompose the derivatives, now using the fecundities f_{ℓ} as 710 intermediate variables, *i.e.*,

$$\frac{\partial W_i}{\partial \phi_k} = \sum_{\ell=1}^N \frac{\partial W_i}{\partial f_\ell} \frac{\partial f_\ell}{\partial \phi_k}.$$
 (A21)

With our notation, and given that social interactions take place within demes and affect fecundity, we have {eq:derivf}

(A22a)

$$\frac{\partial f_{\ell}}{\partial \phi_{\ell}}\Big|_{\delta=0} = -c, \tag{A22a}$$

$$\frac{\partial f_{\ell}}{\partial \phi_{\text{in}}}\Big|_{\delta=0} = \frac{b}{n-1}, \tag{A22b}$$

$$\left. \frac{\partial f_{\ell}}{\partial \phi_{\text{out}}} \right|_{\delta=0} = 0. \tag{A22c}$$

Eq. (A20) then becomes (using notation • to refer to the focal individual itself, and where $W = W_i$, since the derivatives are the same for all i):

$$\delta \mu B^* \frac{\partial \mathbb{E}\left[\overline{X}\right]}{\partial \delta} = \delta \nu (1 - \nu)(1 - Q_{\text{out}}) \times \left(\underbrace{\frac{\partial W}{\partial f_{\bullet}}(-c) + \frac{\partial W}{\partial f_{\text{in}}}b}_{-\mathcal{C}} + \underbrace{\left(\frac{\partial W}{\partial f_{\bullet}}b + (n - 1)\frac{\partial W}{\partial f_{\text{in}}}(-c) + (n - 2)\frac{\partial W}{\partial f_{\text{in}}}b\right)}_{\mathcal{B}}\underbrace{\frac{Q_{\text{in}} - Q_{\text{out}}}{1 - Q_{\text{out}}}}_{R}\right) + O\left(\delta^2\right). \tag{A23} \quad \{\text{eq:weaksel2}\}$$

(As previously, all derivatives are evaluated at $\delta = 0$.)

Finally, we obtain a first-order approximation of the expected frequency of altruists in the population with

$$\mathbb{E}\left[\overline{X}\right] = \nu + \delta \left. \frac{\partial \mathbb{E}\left[\overline{X}\right]}{\partial \delta} \right|_{\delta=0} + O\left(\delta^2\right), \tag{A24} \quad \{eq:app:EXgeneric\}$$

where $v = \mathbb{E}_0[\overline{X}]$ (expected frequency in the absence of selection), and where $\frac{\partial \mathbb{E}[\overline{X}]}{\partial \delta}\Big|_{\delta=0}$ is obtained from eq. (A23). We then need to replace the B_i and D_i terms by their formulas for each life-cycle; they are given in table A2.

B.2 Derivatives for the specific life-cycles

{sec:app:dW}

We use the formulas presented in table A2 and the definition of $W = W_i$ given in eq. (A13) for each life-cycle. In eq. (A26), eq. (A28) and eq. (A30), the first lines within parentheses correspond to primary effects, and the second line to secondary effects.

{eq:dWBD}

Moran Birth-Death

722

$$\frac{\partial W^{\text{BD}}}{\partial f_{\bullet}} \bigg|_{\delta=0} = (1-\mu) \left(\frac{1}{N} - \frac{1}{N^2} \right) - \left(\frac{1-m}{nN} - \frac{1}{N^2} \right) = \frac{1-\mu}{N} + \frac{\mu}{N^2} - \frac{1-m}{nN}, \quad \text{(A25a)}$$

$$\frac{\partial W^{\text{BD}}}{\partial f_{\text{in}}} \bigg|_{\delta=0} = (1-\mu) \left(-\frac{1}{N^2} \right) - \left(\frac{1-m}{nN} - \frac{1}{N^2} \right) = \frac{\mu}{N^2} - \frac{1-m}{nN}. \quad \text{(A25b)}$$

727 With these derivatives, eq. (5) becomes

$$\mathbb{E}\left[\overline{X}\right] \approx v + \frac{\delta}{\mu}v(1-v)(1-Q_{\text{out}}^{\text{M}}) \times \\ \left[\underbrace{\left(\frac{(1-\mu)(-c)}{+(b-c)\left(\frac{\mu}{N} - \frac{1-m}{n}\right)}\right)}_{-\mathcal{C}^{\text{BD}}} + \underbrace{\left(\frac{(1-\mu)b}{+(b-c)(n-1)\left(\frac{\mu}{N} - \frac{1-m}{n}\right)}\right)}_{\mathcal{B}^{\text{BD}}} \underbrace{\frac{Q_{\text{in}}^{\text{M}} - Q_{\text{out}}^{\text{M}}}{1-Q_{\text{out}}^{\text{M}}}\right]}_{\text{(A26)}},$$

$$(A26) \quad \{\text{eq:EXBD}\}$$

In addition, for both Moran life-cycles, we have $B_{\rm M}^*=1/N$. The secondary effects (second line in the parentheses in eq. (A26)) include competitive effects on the probability of reproducing, and consequences of social interactions on the probability that a given individual dies. Note that the secondary effects remain negative for the realistic range of emigration values that we consider (*i.e.*, $m < 1 - 1/N_D$).

{eq:dWDB}

Appendix B 41 2017-11-13

Moran Death-Birth

$$\left. \frac{\partial W^{\text{DB}}}{\partial f_{\bullet}} \right|_{\delta=0} = \frac{1-\mu}{N} \left[1 - \left(\frac{(1-m)^2}{n} + \frac{m^2}{N-n} \right) \right],\tag{A27a}$$

$$\left. \frac{\partial W^{\rm DB}}{\partial f_{\rm in}} \right|_{\delta=0} = -\frac{1-\mu}{N} \left(\frac{(1-m)^2}{n} + \frac{m^2}{N-n} \right). \tag{A27b}$$

With the Death-Birth life-cycle, eq. (5) becomes

$$\begin{split} \mathbb{E}\left[\overline{X}\right] &\approx v + \frac{\delta}{\mu}v(1-v)(1-Q_{\text{out}}^{\text{M}}) \times \\ &\left[\underbrace{\begin{pmatrix} (1-\mu)(-\text{c}) \\ -(\text{b}-\text{c})(1-\mu)\left(\frac{(1-m)^2}{n} + \frac{m^2}{N-n}\right) \end{pmatrix}}_{-\mathcal{C}^{\text{DB}}} + \underbrace{\begin{pmatrix} (1-\mu)\text{b} \\ -(\text{b}-\text{c})(n-1)(1-\mu)\left(\frac{(1-m)^2}{n} + \frac{m^2}{N-n}\right) \end{pmatrix}}_{\mathcal{B}^{\text{DB}}} \underbrace{\begin{pmatrix} Q_{\text{in}}^{\text{M}} - Q_{\text{out}}^{\text{M}} \\ 1 - Q_{\text{out}}^{\text{M}} \end{pmatrix}}_{R^{\text{M}}}, \\ &\left(\text{A28}\right) \quad \{\text{eq:EXDB}} \end{split}$$

With this life-cycle, Death occurs first, and the probability of dying is independent from the state of the population (since we assume that social interactions affect fecundity. We can therefore factor $(1 - \mu)$ in all terms. The primary effects (first lines in the parentheses) remain the same as with the Birth-Death life-cycle. However, the Death-Birth life-cycle leads to different secondary effects compared to the Birth-Death life-cycle: competition occurs at a different scale (Grafen & Archetti, 2008). Finally, with this life-cycle as we defined it, the probabilities of identity by descent are the same as with the Birth-Death model.

{eq:dWWF}

Wright-Fisher

$$\left. \frac{\partial W^{\text{WF}}}{\partial f_{\bullet}} \right|_{\delta=0} = (1-\mu) \left[1 - \left(\frac{(1-m)^2}{n} + \frac{m^2}{N-n} \right) \right], \tag{A29a}$$

$$\left. \frac{\partial W^{\text{WF}}}{\partial f_{\text{in}}} \right|_{\delta=0} = -(1-\mu) \left(\frac{(1-m)^2}{n} + \frac{m^2}{N-n} \right). \tag{A29b}$$

For the Wright-Fisher life-cycle, we have $B_{WF}^* = 1$. Replacing the derivatives presented in eq. (A29) into eq. (5), we obtain

$$\begin{split} \mathbb{E}\left[\overline{X}\right] &\approx \nu + \frac{\delta}{\mu} \nu (1-\nu) (1-Q_{\text{out}}^{\text{WF}}) \times \\ &\left[\underbrace{\begin{pmatrix} (1-\mu)(-c) \\ -(b-c)(1-\mu) \left(\frac{(1-m)^2}{n} + \frac{m^2}{N-n}\right) \end{pmatrix}}_{-\mathcal{C}^{\text{WF}}} + \underbrace{\begin{pmatrix} (1-\mu)b \\ -(b-c)(n-1)(1-\mu) \left(\frac{(1-m)^2}{n} + \frac{m^2}{N-n}\right) \right)}_{R^{\text{WF}}} \underbrace{\begin{pmatrix} Q_{\text{in}}^{\text{WF}} - Q_{\text{out}}^{\text{WF}} \\ 1 - Q_{\text{out}}^{\text{WF}} \end{pmatrix}}_{R^{\text{WF}}} \right], \end{split}$$

$$(A30) \quad \{\text{eq: EXWF}} \end{split}$$

The only – but important – different between eq. (A30) and eq. (A28) is the value of the probabilities of identity by descent, because the number of individuals that are updated at each time step differs.

C Probabilities of identity by descent

C.1 Expected state of pairs of sites and probabilities of identity by descent

{sec:app:IBD}

Here we show the link between the expected state of a pair of sites P_{ij} and probabilities of identity by descent Q_{ij} . In our derivation of $\mathbb{E}[\overline{X}]$, P_{ij} is the quantity that appears, but most studies use Q_{ij} . Both are evaluated in the absence of selection ($\delta = 0$).

C.1.1 Moran model

749

750

755

In a Moran model, exactly one individual dies and one individual reproduces during one time step. Given a state **X** at time t, at time t+1 both sites i and $j \neq i$ are occupied by altruists, if i) it was the case at time t and neither site was replaced by a non-altruist (first term in eq. (A31)), or ii) if exactly one of the two sites was occupied by a non-altruist at time t, but the site was replaced by an altruist (second and third terms of eq. (A31)):

$$\begin{split} \mathbb{E} \big[X_i X_j(t+1) | X(t) &= \mathbf{X} \big] = & X_i X_j \left(1 - \sum_{k=1}^N \frac{1}{N} \left(d_{ki} + d_{kj} \right) \left((1 - X_k) (1 - \mu) + \mu (1 - \nu) \right) \right) \\ &+ X_i (1 - X_j) \sum_{k=1}^N \frac{1}{N} d_{kj} \left(X_k (1 - \mu) + \mu \nu \right) \\ &+ X_j (1 - X_i) \sum_{k=1}^N \frac{1}{N} d_{ki} \left(X_k (1 - \mu) + \mu \nu \right). \end{split} \tag{A31} \quad \{ \text{eq:app:PijM1} \}$$

We take the expectation of this quantity, and consider that the stationary distribution is reached $(t \to \infty)$; then $\mathbb{E}[X_i X_j(t+1)] = \mathbb{E}[X_i X_j(t)]$, and we obtain

$$P_{ij} = \frac{1}{2} \left(\sum_{k=1}^{N} (1 - \mu) \left(d_{kj} P_{ki} + d_{ki} P_{kj} \right) \right) + \mu v^2 \qquad (i \neq j), \tag{A32} \quad \{eq:app:PijM\}$$

while $P_{ii} = v$.

Now we substitute $P_{ij} = v^2 + v(1 - v)Q_{ij}$ in eq. (A32), we obtain

$$Q_{ij} = \frac{1}{2} \sum_{k=1}^{N} (1 - \mu) \left(d_{ki} Q_{kj} + d_{kj} Q_{ki} \right), \tag{A33} \quad \{eq:app:QijM\}$$

and we realize that Q_{ij} is the probability that the individuals at sites i and $j \neq i$ are identical by descent. To compute it indeed, we need to pick which site was last updated (equal probabilities), then who was the parent (k); the other individual needs to be identical by descent to the parent, and no mutation should have occurred $(1 - \mu)$.

Appendix C 43 2017-11-13

1 C.1.2 Wright-Fisher model

In a Wright-Fisher model, all individuals are replaced at each time step, so we directly consider the state of the parents:

$$\begin{split} \mathbb{E}\big[X_{i}X_{j}(t+1)|X(t) = \mathbf{X}\big] &= \sum_{k,\ell=1}^{N} d_{ki}d_{\ell j} \Big(X_{k}X_{\ell}(1-\mu+\mu\nu)^{2} \\ &\quad + (X_{k}(1-X_{\ell}) + (1-X_{k})X_{\ell})\,(1-\mu+\mu\nu)(\mu\nu) \\ &\quad + (1-X_{k})(1-X_{\ell})(\mu\nu)^{2} \Big) \end{split} \tag{A34} \quad \{\text{eq:app:PijWF1}\}$$

The first term of eq. (A34) corresponds to both parents being altruists, and hav-

ing altruist offspring; the second line corresponds to exactly one parent being

altruist, and the third line to both parents being non-altruists (in this latter case,

the two offspring have to be both mutants to be altruists).

778 Taking the expectation and simplifying, we obtain

$$P_{ij} = \sum_{k,\ell=1}^{N} \left(P_{kl} (1 - \mu)^2 \right) + (2 - \mu) \mu v^2. \tag{A35} \quad \{eq:app:PijWF\}$$

Replacing P_{ij} by $v^2 + v(1-v)Q_{ij}$, eq. (A35) becomes

$$Q_{ij} = \sum_{k,\ell=1}^{N} d_{ki} d_{\ell j} Q_{k\ell} (1-\mu)^{2}.$$
 (A36) {eq:app:QijWF}

Again, Q_{ij} corresponds to a probability of identity by descent: the individuals at sites i and j are identical by descent if their parents were and if neither mutated $((1-\mu)^2)$.

Appendix C 44 2017-11-13

C.2 Probabilities of identity by descent in a subdivided population

{sec:app:Qsubdiv}

Two individuals are said to be identical by descent if there has not been any mutation on either lineage since their common ancestor. Because of the structure of the population, there are only three types of pairs of individuals, and hence three different values of the probabilities of identity by descent of pairs of sites Q_{ij} :

$$Q_{ij} = \begin{cases} 1 & \text{when } i = j; \\ Q_{\text{in}} & \text{when } i \neq j \text{ and both sites are in the same deme;} \\ Q_{\text{out}} & \text{when sites } i \text{ and } j \text{ are in different demes.} \end{cases}$$
 (A37)

The values of Q_{in} and Q_{out} depend on the type of life-cycle that we consider.

Here, we will use formulas derived in Débarre (2017) for "two-dimensional 790 population structures". The name comes from the fact that we only need two 791 types of transformations to go from any site to any other site in the population: 792 permutations on the deme index, and permutations on the within-deme index. 793 We rewrite site labels $(1 \le i \le N)$ as (ℓ_1, ℓ_2) , where ℓ_1 is the index of the deme $(1 \le i \le N)$ 794 $\ell_1 \leq N_D$) and ℓ_2 the position of the site within the deme $(1 \leq \ell_2 \leq n)$. Then, we 795 introduce notations $ilde{d}_{i_1}$ and $ilde{Q}_{i_1}$, that correspond to the dispersal probability and 796 probability of identity by descent to a site at distances i_1 and i_2 in the among-797 demes and within-deme dimensions (*e.g.*, $\tilde{d}_{i_1} = d_{j_1 \ j_1 + i_1}$.)

Also, in this section, we distinguish between $d_{\text{self}} = d_{ii}$ and d_{in} (in the main 798 799

o1 C.2.1 Moran model

text, $d_{\text{self}} = d_{\text{in}}$).

In Débarre (2017), it was shown that

$$\tilde{\mathcal{Q}}_{r_{2}}^{r_{1}} = \frac{1}{N} \sum_{q_{1}=0}^{N_{1}-1} \sum_{q_{2}=0}^{N_{2}-1} \frac{\mu \lambda_{M}'}{1 - (1 - \mu)\tilde{\mathcal{D}}_{q_{1}}^{q_{1}}} \exp\left(i\frac{2\pi q_{1}r_{1}}{N_{1}}\right) \exp\left(i\frac{2\pi q_{2}r_{2}}{N_{2}}\right) \tag{A38a} \quad \{\text{eq:app:Q2DM}}$$

803 with

800

783

$$\tilde{\mathcal{D}}_{q_1}^{q_1} = \sum_{\ell_1 = 0}^{N_1 - 1} \sum_{\ell_2 = 0}^{N_2 - 1} \tilde{d}_{\ell_1} \exp\left(-i\frac{2\pi q_1 \ell_1}{N_1}\right) \exp\left(-i\frac{2\pi q_2 \ell_2}{N_2}\right), \tag{A38b} \quad \{\text{eq:app:D2D}\}$$

and λ'_M such that $\tilde{\mathcal{Q}}_0 = 1$. Let us first compute $\tilde{\mathcal{D}}_{q_1}^{q_1}$ in the case of a subdivided population, with $N_1 = N_D$ and $N_2 = n$:

$$\tilde{\mathcal{D}}_{q_{2}}^{q_{1}} = d_{\text{self}} + \sum_{\ell_{2}=1}^{N_{2}-1} d_{\text{in}} \exp\left(-i\frac{2\pi q_{2}\ell_{2}}{N_{2}}\right) + \sum_{\ell_{1}=1}^{N_{1}-1} \sum_{\ell_{2}=0}^{N_{2}-1} d_{\text{out}} \exp\left(-i\frac{2\pi q_{1}\ell_{1}}{N_{1}}\right) \exp\left(-i\frac{2\pi q_{2}\ell_{2}}{N_{2}}\right) \\
= d_{\text{self}} + \left(\delta_{q_{2}}(N_{2}-1) + (1-\delta_{q_{2}})(-1)\right) d_{\text{in}} + \left(\delta_{q_{1}}(N_{1}-1) + (1-\delta_{q_{1}})(-1)\right) \left(\delta_{q_{2}}N_{2}\right) d_{\text{out}} \\
= d_{\text{self}} + \left(\delta_{q_{2}}N_{2}-1\right) d_{\text{in}} + \left(\delta_{q_{1}}N_{1}-1\right) \delta_{q_{2}}N_{2} d_{\text{out}}. \tag{A39a}$$

Appendix C 45 2017-11-13

 δ_q is equal to 1 when q is equal to 0 modulo the relevant dimension, and to 0 otherwise). So for the three types of distances that we need to consider (distance 0, distance to another deme-mate, distance to individual in another deme), and

with $N_1 = N_D$ and $N_2 = n$, we obtain

{eq:app:Dsystem}

$$\tilde{\mathcal{D}}_0 = 1, \tag{A40a}$$

$$\tilde{\mathcal{D}}_{q_1} = 1 - m - \frac{m}{N_D - 1} \quad (q_1 \neq 0 \pmod{N_1}),$$
 (A40b)

$$\tilde{\mathcal{D}}_{q_1} = d_{\text{self}} - d_{\text{in}} \quad (q_2 \not\equiv 0 \pmod{N_2}).$$
 (A40c)

So for $\tilde{\mathcal{Q}}$, using system (A40) in eq. (A38a),

$$\begin{split} \tilde{\mathcal{Q}}_{r_{2}^{1}} &= \frac{\mu \lambda_{M}^{\prime}}{N} \left[\frac{1}{1 - (1 - \mu)\tilde{\mathcal{D}}_{0}^{0}} + \sum_{q_{2}=1}^{N_{2}-1} \frac{1}{1 - (1 - \mu)\tilde{\mathcal{D}}_{0}^{0}} \exp\left(-i\frac{2\pi q_{2}r_{2}}{N_{2}}\right) \right. \\ &\quad + \sum_{q_{1}=1}^{N_{1}-1} \frac{1}{1 - (1 - \mu)\tilde{\mathcal{D}}_{q_{1}}^{0}} \exp\left(-i\frac{2\pi q_{1}r_{1}}{N_{1}}\right) \\ &\quad + \sum_{q_{1}=1}^{N_{1}-1} \sum_{q_{2}=1}^{N_{2}-1} \frac{1}{1 - (1 - \mu)\tilde{\mathcal{D}}_{q_{1}}^{0}} \exp\left(-i\frac{2\pi q_{1}r_{1}}{N_{1}}\right) \exp\left(-i\frac{2\pi q_{2}r_{2}}{N_{2}}\right) \right] \\ &\quad = \frac{\mu \lambda_{M}^{\prime}}{N} \left[\frac{1}{1 - (1 - \mu)} + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (\delta_{r_{2}}N_{2} - 1) \right. \\ &\quad + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{N_{D} - 1})} (\delta_{r_{1}}N_{1} - 1) \\ &\quad + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (\delta_{r_{1}}N_{1} - 1)(\delta_{r_{2}}N_{2} - 1) \right]. \end{split} \tag{A41} \quad \{\text{eq:app:Q2DMsol}\}$$

811 In particular,

$$\begin{split} \tilde{\mathcal{Q}}_{0}^{0} &= \frac{\mu \lambda_{M}^{\prime}}{N} \left[\frac{1}{\mu} + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (n - 1) + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{N_{D} - 1})} (N_{D} - 1) \right. \\ &\quad + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (N_{D} - 1) (n - 1) \right] \\ &= 1. \end{split} \tag{A42a} \quad \{ \text{eq:app:Q2D1} \}$$

We find λ_M' using eq. (A42a). Let's now go back to eq. (A41): when $r_1=0$, the two individuals are in the same deme. They are different when $r_2\not\equiv 0$, and so:

$$Q_{\rm in} = \frac{\mu \lambda_M'}{N} \left[\frac{1}{\mu} + \frac{1}{1 - (1 - \mu)(d_{\rm self} - d_{\rm in})} (-1) + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{N_D - 1})} (D - 1) + \frac{1}{1 - (1 - \mu)(d_{\rm self} - d_{\rm in})} (D - 1) (-1) \right]. \tag{A42b}$$

Appendix C 46 2017-11-13

And when $r_1 \not\equiv 0$, the two individuals are in different demes:

$$Q_{\text{out}} = \frac{\mu \lambda_M'}{N} \left[\frac{1}{\mu} + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (-1) + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{N_D - 1})} (-1) + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} \right].$$
(A42c)

With $d_{\text{self}} = d_{\text{in}} = (1 - m)/n$, we eventually obtain:

{eq:QM}

$$Q_{\rm in}^{\rm M} = \frac{(1-\mu)\left(m+\mu(N_D(1-m)-1)\right)}{(1-\mu)m(N_D\mu(n-1)+1)+(N_D-1)\mu(\mu(n-1)+1)},\tag{A43a}$$

$$Q_{\text{out}}^{\text{M}} = \frac{(1-\mu)m}{(1-\mu)m(N_D\mu(n-1)+1) + (N_D-1)\mu(\mu(n-1)+1)}.$$
 (A43b)

The probability that two different deme-mates are identical by descent, $Q_{\rm in}^{\rm M}$, decreases monotonically with the emigration probability m, while $Q_{\rm out}^{\rm M}$ monotonically increases with m (see figure A5(a)).

When the mutation probability μ is vanishingly small ($\mu \to 0$), both $Q_{\rm in}^{\rm M}$ and $Q_{\rm out}^{\rm M}$ are equal to 1: in the absence of mutation indeed, the population ends up fixed for one of the two types, and all individuals are identical by descent. Note that we obtain a different result if we first assumed that the size of the population is infinite ($N_D \to \infty$), because the order of limits matters; for instance, $\lim_{d\to\infty}Q_{\rm out}^{\rm M}=0$.

Using eq. (A43), relatedness under the Moran model is given by

$$R^{\rm M} = \frac{(1-\mu)(N_D(1-m)-1)}{N_D(1-\mu)m(n-1) + (N_D-1)(1+\mu(n-1))}. \tag{A44} \quad \{eq:app:RM\}$$

When there is an infinite number of demes $(N_D \to \infty)$ and mutation is vanishingly small $(\mu \to 0)$, we have

$$\lim_{\mu \to 0} \lim_{N_D \to \infty} R^{M} = \lim_{N_D \to \infty} \lim_{\mu \to 0} R^{M} = \frac{1 - m}{1 + m(n - 1)}.$$
 (A45) {eq:app:RMlim}

328 C.2.2 Wright-Fisher

819

820

822

825

For the Wright-Fisher updating, the equation for $ilde{Q}$ is different:

$$\tilde{Q}_{r_{2}}^{r_{1}} = \frac{1}{N} \sum_{q_{1}=0}^{N_{1}-1} \sum_{q_{2}=0}^{N_{2}-1} \frac{\mu \lambda'_{WF}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{q_{1}})^{2}} \exp\left(-i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \exp\left(-i \frac{2\pi q_{2} r_{2}}{N_{2}}\right), \quad (A46)$$

Appendix C 47 2017-11-13

with $\tilde{\mathcal{D}}$ given in eq. (A38b). In a subdivided population, with $N_1=N_D$ and $N_2=n$, this becomes

$$\begin{split} \tilde{\mathcal{Q}}_{r_{2}}^{r_{1}} &= \frac{1}{N} \bigg[\frac{\mu \lambda_{WF}'}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{0})^{2}} + \sum_{q_{2}=1}^{N_{2}-1} \frac{\mu \lambda_{WF}'}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{0})^{2}} \exp \bigg(- i \frac{2\pi q_{2} r_{2}}{N_{2}} \bigg) \\ &+ \sum_{q_{1}=1}^{N_{1}-1} \frac{\mu \lambda_{WF}'}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{q_{1}})^{2}} \exp \bigg(- i \frac{2\pi q_{1} r_{1}}{N_{1}} \bigg) \\ &+ \sum_{q_{1}=1}^{N_{1}-1} \sum_{q_{2}=1}^{N_{2}-1} \frac{\mu \lambda_{WF}'}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{q_{1}})^{2}} \exp \bigg(- i \frac{2\pi q_{1} r_{1}}{N_{1}} \bigg) \exp \bigg(- i \frac{2\pi q_{2} r_{2}}{N_{2}} \bigg) \bigg] \\ &= \frac{\mu \lambda_{WF}'}{N} \bigg[\frac{1}{1 - (1 - \mu)^{2}} + \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{2}} N_{2} - 1) \\ &+ \frac{1}{1 - (1 - \mu)^{2} (1 - m - \frac{m}{N_{D} - 1})^{2}} (\delta_{q_{1}} N_{1} - 1) \\ &+ \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{1}} N_{1} - 1) (\delta_{q_{2}} N_{2} - 1) \bigg] \\ &= \frac{\mu \lambda_{WF}'}{N} \bigg[\frac{1}{1 - (1 - \mu)^{2}} + \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{1}} N_{1} - 1) \bigg] . \end{split} \tag{A47} \quad \{\text{eq:app:Q2DWFsol}\}$$

To find λ'_{WF} , we solve $\tilde{\mathcal{Q}}_0 = 1$, *i.e.*,

$$1 = \frac{\mu \lambda_{WF}'}{N} \left[\frac{1}{1 - (1 - \mu)^2} + \frac{1}{1 - (1 - \mu)^2 (d_{\text{self}} - d_{\text{in}})^2} (N_2 - 1) N_1 + \frac{1}{1 - (1 - \mu)^2 (1 - m - \frac{m}{N_D - 1})^2} (N_1 - 1) \right]. \tag{A48a}$$

Then from eq. (A47) we deduce

$$Q_{\rm in} = \frac{\mu \lambda_{WF}'}{N} \left[\frac{1}{1 - (1 - \mu)^2} - \frac{1}{1 - (1 - \mu)^2 (d_{\rm self} - d_{\rm in})^2} N_1 + \frac{1}{1 - (1 - \mu)^2 (1 - m - \frac{m}{N_D - 1})^2} (N_1 - 1) \right]. \tag{A48b}$$

834 and

$$Q_{\text{out}} = \frac{\mu \lambda'_{WF}}{N} \left[\frac{1}{1 - (1 - \mu)^2} - \frac{1}{1 - (1 - \mu)^2 (1 - m - \frac{m}{d-1})^2} \right].$$
 (A48c)

835 With $d_{\text{self}} = d_{\text{in}} = (1 - m)/n$, we obtain:

{eq:QWF}

$$Q_{\rm in}^{\rm WF} = \frac{-N_D + M_1 + M_2}{(n-1)N_D + M_1 + M_2},\tag{A49a}$$

$$Q_{\text{out}}^{\text{WF}} = \frac{-\frac{1}{N_D - 1} M_1 + M_2}{(n - 1)N_D + M_1 + M_2},\tag{A49b}$$

836 with

$$M_1 = \frac{N_D - 1}{1 - \frac{(1 - \mu)^2 (N_D (1 - m) - 1)^2}{(N_D - 1)^2}}$$
 and $M_2 = \frac{1}{1 - (1 - \mu)^2}$.

(These formulas are compatible with, *e.g.*, results presented by Cockerham & Weir (1987), adapted for haploid individuals).

In the Wright-Fisher life-cycle, $Q_{\rm in}^{\rm WF}$ decreases until $m=m_c^{\rm WF}=\frac{N_D-1}{N_D}$, while $Q_{\rm out}^{\rm WF}$ follows the opposite pattern. The threshold value $m_c^{\rm WF}$ corresponds to an emigration probability so high that $d_{\rm in}=d_{\rm out}$.

The two probabilities of identity by descent go to 1 when the mutation probability μ is very small ($\mu \to 0$), except if we first assume that the number of demes is very large ($N_D \to \infty$); for instance, with this life-cycle as well, $\lim_{N_D \to \infty} Q_{\text{out}}^{\text{WF}} = 0$.

Also, because more sites (all of them, actually) are updated at each time step, $Q_{\rm in}$ is lower for the Wright-Fisher updating than for a Moran updating, under which only one site is updated at each time step (compare figure A5(a) and A5(b)).

Figure A5: Probabilities of identity by descent, for two different individuals within the same deme $(Q_{\rm in},$ full curves) and two individuals in different demes $(Q_{\rm out},$ dashed curves), as a function of the emigration probability m, for different values of the mutation probability μ (0.001, 0.01, 0.1), and for the two types of life-cycles ((a): Moran, (b): Wright-Fisher). Other parameters: n=4 individuals per deme, $N_D=15$ demes.

Combining the formulas presented in eq. (A49), we obtain

$$R^{\rm WF} = \frac{(1 - N_D(1 - m))^2 (1 - \mu)^2}{{\rm D}^{\rm WF}}, \tag{A50} \quad \{eq:app:RWF\}$$

851 with

$$\begin{split} \mathbf{D}^{\mathrm{WF}} = & 1 - N_D(2(1+m(n-1)) - N_D(1+(2-m)m(n-1))) - 2\mu \\ & + 2(N_D(N_D(1-m)-2)(1-m)(n-1) + n)\mu - (1-N_D(1-m))^2(n-1)\mu^2. \end{split}$$

When the number of demes is very large and mutation is vanishingly small,

Appendix C 49 2017-11-13

$$\lim_{\mu \to 0} \lim_{N_D \to \infty} R^{\rm WF} = \lim_{N_D \to \infty} \lim_{\mu \to 0} R^{\rm WF} = \frac{(1-m)^2}{1 + (2-m)m(n-1)}. \tag{A51} \quad \{eq:app:RWFlim\}$$