Direktni produkt (notrong?) Nn...Ns AG G= N1·N2·...-Ns A N: NN;+1 = {1} zeli

· ₩geg. g=n,....ns n;eN; enotizen zep;s

Komutator x iny je [x,y] = xyx-1y-1

· M, NO G. HON= 213 => mn=nm Ynen. Ymen

" $G=N_1\cdot N_2\cdot \cdots N_3$ ⇒ $G\cong N_1\times N_2\times \cdots \times N_3$ notranj; disektn; zunanj; disektn;

produkt (Velja & konone grupe)

Abelove grupe

- · |G|=mn; m,n tuji H= 2 x & G; mx = 0 } K= 2 x & G; nx = 0 } Pokm G= H&K in |H|=m;
- · Posledica: Vkončna abelova grupa je Vsota p-grup
- P-grupa je ciklicna ⇒ vsebuje netanko 1 grupo moci p
- · Y kenone abelova abelova grupa je izomorfna direktni vsoti aklionih p-grup
 - konône abelova grupa $G |G| = p_1 \cdot ... \cdot p_s^{as}$ $H_i = 9 \times 66; p_i^{a_i} \times = 03$ $\Rightarrow |H_i| = p_i^{a_i} \quad G = H_1 \cdot ... \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$
- 'Vsaka konono generirana abelovo grupaje konona direktna vsota ciklionih grup

KONÉNE GRUPE

Delovanje G~X 1) g. (h.x) = (gh),x (levo delovenje) 2) $1 \cdot \times = \times$ Imamo delavarje G X. Potem $\mathcal{Q}: G \longrightarrow \operatorname{Sym} X$ je homomorfizem Ø: g→(x→gx) ker Dje jedro delovanja Orbita Gx= 2gx; geG3 Stabilizator Gx = EgeG; gx=x3 Fikanetocke gia Xã= {x < X; gx=x}=fx(g) Fikane toake (invariante) X = 1 X = {xex; 48eg.8x=x

• *6*× ≤ 6 * X~y ⇔ Jg ∈ G, y=gx Ewivelenon; razredi so obrbite (6x) X/G = X/~ prostor orbit

· Tranzitivno delovenje delovenje z eno orbito ' YxEX.16.x1= [6.6x]

· G kon che => |G|= | 6x| · | 6x|

· Y kononogrupo G lahko vlotimo v simetrično grupo Sn ze nek new

Uporabne grupe li niso romantne \mathbb{Z}_n $4: \mathbb{Z}_2 \oplus \mathbb{Z}_2 \cong \{id, (12), (34), (12)(34)\}$ $6: \mathbb{D}_6 \cong S_3$ $8: \mathbb{Z}_4 \oplus \mathbb{Z}_2, \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2, \mathbb{D}_8, \mathbb{Q}$ $9: \mathbb{Z}_3 \oplus \mathbb{Z}_3$

10; D₁₀

12; 726 @ 722, Daz, Dicaz, Au= { id, . (12)(34), (13)(24), (14)(23), (123), (132), (234),

≈7220222

(243), (341), (314), (412), (421) }

14: Dau

7212 = 724 = 73

- G p-grupe . $G \curvearrowright X \implies |X| \equiv |X^{G}| \mod p$ Burnsidoux lema $|X_{G}| = \frac{1}{|G|} \sum_{g \in G} |X^{g}|$ $G \curvearrowright X$ ne finiteline delounje $\exists x_{1} ... \times r \in X X^{G} |X| = |X^{G}| + \sum_{g \in G} |G : G_{X_{g}}|$
- $\exists x_1 ... \times r \in X X^G$ $|X| = |X^G| + \sum_{i=0}^{n} G : G_{x_i}$ Razredna formula $\exists x_1 ... \times r \in X Z(G) . |G| = |Z(G)| + \sum_{i=1}^{n} [G : C_G(x_i)]$
- · Cauchyjer izrek plld => FaEG. red(a)=p
 - · Lagraanger izrek $H \leq G \Rightarrow |H| |G|$ · $H \leq G$ je p-podgrupa Sylowa če $|H| = p^{\alpha}$, $p^{\alpha} |G|$, $p^{\alpha+1} |G|$
 - · Izrek Sylowa

 1) p | | | G | = P |

 (Ip-podgrupa Sylowa)
- 2) Vp-padgrupa G je vsebovana v p-padgrup: Sylova

 3) Vse p-padgrupe Sylowa v G so

 Konjua: rane med sabo
- u) np..., st p.podgruy Sylowa
 np | |G| , np = 1 mad P

HEG. N(H)= {aEG; aHa-1=H}

· velja: NCH) EG H anch)

· N(H)=GG HOG

· np=1 €> S d G

' grupe je enostavna česta ž13 in G edini edinki

· An je enostavna za Yne N- Eug

· grupa G je réslive, ce 7 konono
reportedje 213=60 d G, a ... d Gx=G
G; d G;+1 ; G;+1 abelove

· Gresljiva ⇒

1) HEG Hrestive

2) NAG => G/N restive

· NOG realized in G/N realized > Greative

- ·konjugirana podgrupa aHa-1
 ta nek a E G
- · H, K & G sta konjugiran: ce aHa-1=K
- (levi) odsek $aH = \{ah; heH\}$ $aH = bH \iff ab^{-1}eH$
- · Fermator mal: izrek : a = a mod p
- $\rho: G \longrightarrow G'$ homomorfizen a) $H \subseteq G' \Longrightarrow \rho^*(H') \subseteq G$
 - b) $N' \circ G' \Rightarrow p^*(N') \circ G$
 - c) H < G => 1/4 (H) < G'
 - d) NOG A P suj. ⇒ P(N) OG'
 - Korespondenon: ;zrek
 - At podgrapa grape the je oblike the
 - kjer HEG in NEH b) Vedinke grupe GN je oblike MN
 - kjer Mag in Nex
- K komutativen koldoar MaK
 M maksimalen ⇔ ^k/_M je pdje

Komutatorska podgrupa [G,G]=G'= {a'b'ab; a,beG}

· HaG A GH abelove ⇒ [G,G] ⊆ H

· H< G. HAG ⇔ [H,G] < H

· [6,6] 46

. G,GJ je abelova

komutatorska vrsta GOG'DG'A...

Gje restjiva komutatorske vista doseže {1}

• fepimorfizen $G \longrightarrow H$. $f(G^{(k)}) = H^{(k)}$

· H d6 ⇒ H'd6 (H(K) d6 20 KK)

· A,B résljivi. ⇒ A×B résljive

· V konona p grupa je rešljiva

· Y grupe rede pg p+g, pgell je restive

· grupa reda spije reśliva