BACCALAUREAT DE L'ENSEIGNEMENT GENERAL

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE SECRETATRIAT GENERAL DIRESTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR

DIRESTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR PUBLIC et PRIVE

Service d'Appui au Baccalauréat

SESSION 2003

	Série	: C	Epreuve de :	MATHEMATIQUES
			Durée :	4 heures
	Code Matière	: 009	Coefficient :	5

NB: Le Candidat doit traiter l'exercice et les **DEUX problèmes**.

EXERCICE (4 points)

I – Une roue est divisée en douze secteurs identiques : trois rouges, quatre blancs, quatre verts et un noir. Quand on fait tourner la roue, chaque secteur a la même probabilité d'être pointé par un index fixe lorsque la roue s'arrête.

1°- Setra tourne la roue une fois. Déterminer les probabilités des événements suivants :

A: « l'index pointe sur un secteur noir. (0,25 pt)
B: « l'index pointe sur un rouge ou un blanc. (0,25 pt)

2°- On adopte la règle suivante : lors d'une partie, le joueur marque 10 points si l'index pointe sur un secteur noir ; 5 points sur un rouge ; 1 point sur un vert et (– 3) points sur un blanc. Naivo joue trois parties successives d'une manière indépendante. Déterminer les probabilités des événements :

C: « Naivo totalise 25 points ». (0,75 pt)

D: « Naivo totalise au moins 21 points ». (0,75 pt)

II – 1°- Pour \dot{x} dans $9/_{69}$, donner toutes les valeurs de \dot{x}^2 . (0,25 pt)

2°- Donner alors les quatre éléments de $9/_{69}$ qui sont solutions de l'équation $\dot{x}^p = \dot{x}$, p étant un entier naturel non nul. (0,75 pt)

3°- Montrer que pour tout \dot{x} de $9/_{69}$ on a $\dot{x}^3 = \dot{x}$. (0,25 pt)

4°- En déduire que pour tout entier naturel n ; $n^3 - n$ est divisible par 6. (0,75 pt)

PROBLEME 1 (7 points)

Dans un plan orienté P, soit ABCD un carré direct, de centre J.

Partie A.

I – On désigne par λ : la rotation de centre A et d'angle $\frac{\pi}{2}$.

t: la translation de vecteur AB.

 ℓ : l'homothétie de centre C, de rapport $\sqrt{3}$.

1 – a) Montrer que $x' = t \circ x$ est une rotation dont on précisera l'angle. (0,25 pt)

b) Déterminer les images des points A et B par 2'. (0,25 pt)

c) To did divine le contro de 7

c) En déduire le centre de 4'. (0,75 pt)

 $2 - On note \ell = \iota' \circ \ell$.

a) Montrer que / est une similitude directe dont on précisera l'angle et le rapport. (0,25 pt)

b) Soit I le centre de ℓ . Après avoir déterminé l'image de C par ℓ , prouver que $(\overrightarrow{IC}, \overrightarrow{ID}) = \frac{\pi}{2}$ et

 $ID = \sqrt{3} .IC.$ (0,75 pt)

c) En considérant le triangle (ICD), donner une mesure de l'angle (CD, CI) et placer I sur la figure.

(0.75 pt)

d) Déterminer et construire l'ensemble : (E) = $\{M \in P \mid MD^2 - 3MC^2 = 0\}$ (1 pt)

II – On note K le milieu de [CD]. On choisit comme repère orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AD})$.

1. Quelles sont les affixes de A. C, J, K? (0, 5 pt)

2. On note S la similitude directe qui transforme A en J et C en K.

a) Ecrire l'expression complexe de S. (0,25 pt)

b) Donner ses éléments géométriques. (0,25 pt)

Partie B.

E, F, G sont trois points non alignés au plan β, θ un réel donné non nul.

 R_F : la rotation de centre F et d'angle θ .

 R_E : la rotation de centre E et d'angle θ .

On note $H = R_F(E)$, $P = R_F(G)$ et $Q = R_E(G)$.

1. Quelle est la nature de R_E o R_F^{-1} ? (0,75 pt)

2. En déduire que E H P Q est un parallélogramme. (1,25 pt)

PROBLEME 2 (9 points)

Partie A.

Soit f la fonction définie par $f(x) = \frac{\ln x}{x}$ où ln désigne le logarithme népérien. On note (C) la courbe

représentative de f dans un repère orthogonal $(0, \vec{i}, \vec{j})$ avec (\vec{I}, \vec{i}) a

1. On pose g (x) = $-\frac{1}{x}$ + lnx.

a) Etudier la variation de g. (0,5 pt)

b) Montrer que l'équation g (x) = 0 admet une solution unique α telle que $\frac{3}{2} < \alpha < 2$ et en déduire le signe de g (x) suivant les valeurs de x. (0,5+0,25 pt)

2. Etudier la variation de f. (1 pt)

3. Ecrire $f(\alpha)$ sans In α et en déduire que $\frac{e^{-2}}{2} < f(\alpha) < 2\frac{e^{-3/2}}{2}$. (0,25+0,5 pt)

4. Tracer la courbe (C). (0,5 pt)

5. On pose G (x) = $\int_{2x}^{x^2} f(t) dt$, $\forall x > 0$. Montrer que G est dérivable et calculer G'(x). (0,25+ 0,5 pt)

Partie B.

On pose \forall x>0, h (x) = $e^{\frac{1}{x}}$. 1. Montrer que l'équation g(x) =0 est équivalente à h(x) = x. (0,25 pt)

 $\text{2. Calculer h'}\left(x\right) \text{ et v\'erifier que}: \forall \ x \in \left\lceil \frac{3}{2} \right. \text{ , 2} \right\rceil, \\ -\frac{4}{9} \quad e^{2/3} \quad \leq \quad h'\left(x\right) \quad \leq \quad -\frac{1}{4} \, e^{1/2} \, .$

En déduire qu'il existe un réel $k \in]0$, 1 [tel que : $\forall x \in [\frac{3}{2}, 2]$, $|h'(x)| \le k$. (0,25+0,5+0,5pt)

3. Prouver que \forall x , y \in $\left|\frac{3}{2}\right|$, 2 $\left|\right|$, $\left|\right|$ h (x) - h (y) $\left|\right|$ \leq k $\left|\right|$ x - y $\left|\right|$ (0,75 pt)

4. On définit la suite (Un) par $U_0 = 2$ et $U_{n+1} = h (U_n)$.

a) Montrer que $\forall n \in IN$, $\frac{3}{2} \le U_n \le 2$. (0,5 pt)

b) Montrer que $\forall n \in IN$, $\left| U_{n+1} - \alpha \right| \leq k \left| U_n - \alpha \right|$ (0,75 pt)

c) En déduire que $\forall n \in IN$, $|U_n - \alpha| \leq k^n |U_0 - \alpha|$ et calculer lim U_1 . (0,25 + 0,25 pt)

Partie C.

On considère l'équation différentielle (E) y"+ 3y'+2y= $\frac{x-1}{x^2}$ e^{-x}

1. Vérifier que la fonction f de la partie A est solution de (E).

(0,25 pt) (0, 5 pt)

2. Résoudre alors (E).

On donne : $e^{-2} \approx 0.13e^{-3/2} \approx 0.22$ $e^{1/2} \approx 1.6$ $e^{2/3} \approx 1.94$.

$$e^{1/2} \approx 1,6$$