Sistema de Control de Acceso con Raspberry Pi y Reconocimiento de Placas

September 14, 2024

Contents

1	Descripción General	2
2	Especificaciones del Sistema 2.1 Hardware Utilizado	
3	Instalación y Configuración del Sistema	2
	3.1 Preparación de la Tarjeta microSD	. 2
	3.2 Instalación de Dependencias	
4	Conexiones del Hardware	3
	4.1 Sensor PIR	. 3
	4.2 Relé y Láser	. 3
	4.3 Cámara	. 3
5	Código Fuente	3
	5.1 Consulta a Firebase	. 4
6		4
	6.1 Prueba del Sensor PIR	. 4
	6.2 Prueba de Captura de Matrícula	. 4
	6.3 Prueba del Relé y Láser	. 5
7	Conclusiones y Mejoras Futuras	5
	7.1 Resultados	. 5
8	Recursos y Herramientas	5

1 Descripción General

Este proyecto tiene como objetivo controlar el acceso de vehículos a un parqueadero mediante reconocimiento de matrículas, empleando una Raspberry Pi, cámaras, sensores y una base de datos en Firebase.

Componentes Principales:

- Hardware: Raspberry Pi 4, Cámara, Relé, Láser, Sensor PIR.
- Software: Python, Firebase, OpenCV, RPi.GPIO.

2 Especificaciones del Sistema

2.1 Hardware Utilizado

- Raspberry Pi 4 (2GB RAM)
- Cámara: Módulo de 5MP con lente de foco fijo
- Relé: Control de activación/desactivación del láser
- Láser: Indicador de barrera
- Sensor PIR: Detección de vehículos
- Cables, conectores, y fuente de alimentación (5V/3A)

2.2 Software Utilizado

- Raspberry Pi OS
- Python 3
- Librerías: RPi.GPIO, opency-python, firebase-admin

3 Instalación y Configuración del Sistema

3.1 Preparación de la Tarjeta microSD

Para instalar el sistema operativo, se usó Raspberry Pi Imager para grabar Raspberry Pi OS en la tarjeta microSD. A continuación se habilitó SSH y se configuró la red Wi-Fi.

3.2 Instalación de Dependencias

Una vez iniciada la Raspberry Pi, se instalaron las dependencias necesarias para el proyecto.

```
sudo apt update
sudo apt install python3-rpi.gpio python3-opencv
pip install firebase-admin
```

4 Conexiones del Hardware

4.1 Sensor PIR

El sensor PIR se conectó de la siguiente manera:

- VCC: Pin 5V de la Raspberry Pi
- GND: Pin GND de la Raspberry Pi
- OUT: Pin GPIO 17 de la Raspberry Pi

4.2 Relé y Láser

El relé está conectado a GPIO 27 para controlar el encendido del láser.

4.3 Cámara

La cámara se conectó al puerto CSI de la Raspberry Pi.

5 Código Fuente

A continuación se presenta el código fuente utilizado para el control del relé y el láser.

```
import RPi.GPIO as GPIO
import time

# Configuración del pin para el relé
RELAY_PIN = 27
GPIO.setmode(GPIO.BCM)
GPIO.setup(RELAY_PIN, GPIO.OUT)
```

```
def activate_laser():
    GPIO.output(RELAY_PIN, GPIO.HIGH)
    time.sleep(5)
    GPIO.output(RELAY_PIN, GPIO.LOW)
```

5.1 Consulta a Firebase

Para verificar la matrícula del vehículo, se utilizó el siguiente código para conectarse a Firebase.

```
import firebase_admin
from firebase_admin import credentials, firestore

cred = credentials.Certificate("/ruta/a/credenciales.json")
firebase_admin.initialize_app(cred)
db = firestore.client()

def verificar_placa(placa):
    doc_ref = db.collection('reservas').document(placa)
    doc = doc_ref.get()
    if doc.exists:
        return True
    else:
        return False
```

6 Pruebas del Sistema

6.1 Prueba del Sensor PIR

Se verificó que el sensor PIR detecte correctamente cuando un vehículo se aproxima al área de detección.

6.2 Prueba de Captura de Matrícula

Se realizaron pruebas para verificar que la cámara capturara correctamente la matrícula del vehículo y procesara la imagen para obtener el número de la placa.

6.3 Prueba del Relé y Láser

Se probó el funcionamiento del relé, asegurando que el láser se encendiera y apagara correctamente según la lógica del código.

7 Conclusiones y Mejoras Futuras

7.1 Resultados

El sistema de control de acceso funcionó correctamente, capturando imágenes, verificando matrículas en Firebase y controlando el acceso con el láser.

8 Recursos y Herramientas

- Raspberry Pi Imager: https://www.raspberrypi.com/software/
- Firebase Admin SDK: https://firebase.google.com/docs/admin/setup
- OpenCV Python: https://opencv.org/