Basic Electronic Circuits (IEC-103)

Lecture-09

Square Wave Generator

Square Wave Generation

Square Wave Generator

Transfer Characteristics

Output and Capacitor Voltage

Output and Capacitor Voltage

$$\Rightarrow T = 2RC \ln \left(\frac{1+0.5}{1-0.5} \right) = 2RC \ln(3) = 2.197RC$$

Log and Antilog Amplifier

Logarithmic Amplifier

$$i_D = I_0 \left(e^{\frac{qv_D}{nKT}} - 1 \right)$$

$$i_D = I_0 \left(e^{\frac{qv_D}{nKT}} - 1 \right)$$

 i_D = the net current flowing through the diode;

 I_0 = "dark saturation current", the diode leakage current in the absence of light;

 v_D = applied voltage across the terminals of the diode;

q = absolute value of electron charge (1.6x10⁻¹⁹ C);

 $k = Boltzmann's constant (1.38x10^{-23} J/K);$

T = absolute temperature in Kelvin (K); and

n = empirical constant, 1 for Ge and 2 for Si diode.

$$i_D = I_0 \left(e^{\frac{qv_D}{nKT}} - 1 \right)$$

 i_D = the net current flowing through the diode;

 I_0 = "dark saturation current", the diode leakage current in the absence of light;

 v_D = applied voltage across the terminals of the diode;

q = absolute value of electron charge (1.6x10⁻¹⁹ C);

 $k = Boltzmann's constant (1.38x10^{-23} J/K);$

T = absolute temperature in Kelvin (K); and

n = empirical constant, 1 for Ge and 2 for Si diode.

At 300 K, kT/q = 26 mV, the thermal voltage.

$$i_D = I_0 \left(e^{\left(\frac{v_D}{0.026}\right)} - 1 \right)$$

where v_D is the voltage applied across diode in volts.

If diode is forward biased

$$i_D \cong I_0 e^{\left(\frac{v_D}{0.026}\right)}$$

Applying KCL at inverting input

Applying KCL at inverting input

$$\frac{0 - V_{in}}{R} + I_d = 0 \Longrightarrow I_d = \frac{V_{in}}{R}$$

Applying KCL at inverting input

$$\frac{0 - V_{in}}{R} + I_d = 0 \Longrightarrow I_d = \frac{V_{in}}{R}$$

But

$$I_d = I_0(e^{(v_d/v_T)} - 1)$$

Applying KCL at inverting input

$$\frac{0 - V_{in}}{R} + I_d = 0 \Longrightarrow I_d = \frac{V_{in}}{R}$$

But

$$I_d = I_0(e^{(v_d/v_T)} - 1)$$

When diode is forward biased

$$I_d \cong I_0(e^{(v_d/v_T)})$$

Here
$$v_d = -v_{out}$$

Here
$$v_d = -v_{out}$$

$$\therefore I_d = I_0 e^{(-v_{\text{out}}/v_T)}$$

Here
$$v_d = -v_{out}$$

$$\therefore I_d = I_0 e^{(-v_{\text{out}}/v_T)}$$

$$I_0 e^{\left(-v_{\text{out}}/v_T\right)} = \frac{V_{\text{in}}}{R}$$

Here
$$v_d = -v_{out}$$

$$\therefore I_d = I_0 e^{(-v_{\text{out}}/v_T)}$$

$$I_0 e^{\left(-v_{\text{out}}/v_T\right)} = \frac{V_{\text{in}}}{R}$$

$$e^{\left(-v_{\text{out}}/v_{T}\right)} = \frac{V_{\text{in}}}{I_{0}R}$$

Here $v_d = -v_{out}$

$$\therefore I_d = I_0 e^{(-v_{\text{out}}/v_T)}$$

$$I_0 e^{\left(-v_{\text{out}}/v_T\right)} = \frac{V_{\text{in}}}{R}$$

$$e^{\left(-\mathbf{v}_{\text{out}}/v_{T}\right)} = \frac{\mathbf{V}_{\text{in}}}{I_{0}\mathbf{R}}$$

$$\mathbf{v}_{\text{out}} = -\mathbf{v}_T \ln \left(\frac{\mathbf{V}_{\text{in}}}{I_0 \mathbf{R}} \right) = k_1 \ln \left(\frac{\mathbf{V}_{\text{in}}}{k_2} \right)$$

Here $v_d = -v_{out}$

$$\therefore I_d = I_0 e^{(-v_{\text{out}}/v_T)}$$

$$I_0 e^{\left(-v_{\text{out}}/v_T\right)} = \frac{V_{\text{in}}}{R}$$

$$e^{\left(-v_{\text{out}}/v_{T}\right)} = \frac{V_{\text{in}}}{I_{0}R}$$

$$\mathbf{v}_{\text{out}} = -\mathbf{v}_T \ln \left(\frac{\mathbf{V}_{\text{in}}}{I_0 \mathbf{R}} \right) = k_1 \ln \left(\frac{\mathbf{V}_{\text{in}}}{k_2} \right)$$

where

$$\mathbf{k}_1 = -\mathbf{v}_T$$
 and $\mathbf{k}_2 = \mathbf{I}_0 \mathbf{R}$

Antilog Amplifier

$$I_d = -\frac{V_{\text{out}}}{R} \Longrightarrow V_{\text{out}} = -RI_d$$

$$I_d = -\frac{V_{out}}{R} \Longrightarrow V_{out} = -RI_d$$

and

$$I_d \cong I_0 e^{(v_{\rm in}/v_T)}$$

$$I_d = -\frac{V_{\text{out}}}{R} \Longrightarrow V_{\text{out}} = -RI_d$$

and

$$I_d \cong I_0 e^{(v_{\rm in}/v_T)}$$

$$V_{\text{out}} = -RI_0 e^{(v_{\text{in}}/v_T)} = k_3 e^{v_{\text{in}}}$$

$$I_d = -\frac{V_{\text{out}}}{R} \Longrightarrow V_{\text{out}} = -RI_d$$

and

$$I_d \cong I_0 e^{(v_{\rm in}/v_T)}$$

$$V_{\text{out}} = -RI_0 e^{(v_{\text{in}}/v_T)} = k_3 e^{v_{\text{in}}}$$

This amplifier is called exponential amplifier.

Other Nonlinear Amplifiers

Build a multiplying and squaring amplifier using op-amp.

 $\mathbf{v}_{\mathrm{out}} \propto \mathbf{v}_1 \mathbf{v}_2$

Sinusoidal Oscillators

LC Tank Circuit

LC Tank Circuit

$$f_{\mathbf{r}} = \frac{1}{2\pi\sqrt{\mathrm{LC}}}$$

LC Tank Circuit

$$f_{\rm T} = \frac{1}{2\pi\sqrt{\rm LC}}$$

Oscillators are electronic circuits that generate an output signal without the necessity of an input signal.

- ☐ Oscillators are electronic circuits that generate an output signal without the necessity of an input signal.
- ☐ It produces a periodic waveform on its output with only the DC supply voltage as an input.

- ☐ Oscillators are electronic circuits that generate an output signal without the necessity of an input signal.
- ☐ It produces a periodic waveform on its output with only the DC supply voltage as an input.
- ☐ The output voltage can be either sinusoidal or non-sinusoidal, depending on the type of oscillator.

☐ Different types of oscillators can produce various types of outputs including sine, square, saw tooth, and triangular waveforms.

For a circuit to operate as an oscillator following three basic factors must be provided in the circuit

For a circuit to operate as an oscillator following three basic factors must be provided in the circuit

Amplification

For a circuit to operate as an oscillator following three basic factors must be provided in the circuit

- Amplification
- Positive feedback

For a circuit to operate as an oscillator following three basic factors must be provided in the circuit

- Amplification
- Positive feedback
- Frequency determining network

- 1. Feedback Oscillator
- 2. Relaxation Oscillators

- 1. Feedback Oscillator
- 2. Relaxation Oscillators

□ Feedback Oscillators

- 1. Feedback Oscillator
- 2. Relaxation Oscillators

- □ Feedback Oscillators
 - A fraction of output is feedback to the input with no net phase shift.

- 1. Feedback Oscillator
- 2. Relaxation Oscillators

- □ Feedback Oscillators
 - A fraction of output is feedback to the input with no net phase shift.
 - The loop gain must be maintained at 1 to maintain oscillations

- 1. Feedback Oscillator
- 2. Relaxation Oscillators

- □ Feedback Oscillators
 - A fraction of output is feedback to the input with no net phase shift.
 - The loop gain must be maintained at 1 to maintain oscillations
 - Amplifier can be made of either discrete transistor or an op-amp.

□ Relaxation Oscillators

- □ Relaxation Oscillators
 - An RC timing circuit is used to generate oscillations.

- □ Relaxation Oscillators
 - An RC timing circuit is used to generate oscillations.
 - The circuit operates in nonlinear region.

- □ Relaxation Oscillators
 - An RC timing circuit is used to generate oscillations.
 - The circuit operates in nonlinear region.
 - Example: Schmitt trigger based square wave oscillator.

Positive Feedback

A portion of the output is fed back to the input with no net phase shift, resulting in strengthening of the output signal.

Positive Feedback

Positive Feedback

Two conditions must be satisfied for sustained oscillations

Two conditions must be satisfied for sustained oscillations

1. The phase shift around the feedback loop must be effectively 0°.

Two conditions must be satisfied for sustained oscillations

- 1. The phase shift around the feedback loop must be effectively 0°.
- 2. The voltage gain $A\beta$ around the closed feedback loop (loop gain) must be equal to 1.

(b) The closed loop gain is 1.

RC and LC Oscillators

RC Oscillators: The frequency determining network contains only resistive and capacitive elements.

- Wein bridge oscillator
- Phase-shift oscillator
- Twin-T oscillator

RC and LC Oscillators

LC Oscillators: The frequency determining network contains inductive and capacitive elements.

- Hartly
- Colpitts
- Capp
- Pierce

RC Oscillators

$$R_F = 2R_s$$

$$R_F = 2R_s$$

$$\omega = \frac{1}{RC}$$

RC Phase Shift Oscillator

