АСТРАДЬ

Содержание

1	Аст	строфизика				
	1.1	Спектральные классы звёзд	2			

1 Астрофизика

1.1 Спектральные классы звёзд

Класс	Температу-	Истинный	$ m Macca, M_{\odot}$	$ m P$ адиус, $ m R_{\odot}$
	pa, K	цвет		
О	$30\ 000\ -\ 60$	Голубой	60	15
	000			
В	$10\ 000\ -\ 30$	Бело-	18	7
	000	голубой		
A	7500 - 10000	Белый	3.1	2.1
F	6000 - 7500	Жёлто-	1.7	1.3
		белый		
G	5000 - 6000	Жёлтый	1.1	1.1
K	3500 - 5000	Оранжевый	0.8	0.9
M	2000 - 3500	Красный	0.3	0.4

Таблица 1: Современная спектральная классификация звёзд

Помимо основных спектральных классов звёзд существуют и дополнительные:

- 1. Класс W звёзды Вольфа-Райе, очень тяжёлые яркие звёзды с температурой порядка $70000~{\rm K}$ и интенсивными эмиссиоными линиями спектра.
- 2. Класс L звёзды или коричневые карлики с температурой $1500-2000~{\rm K}$ и соединениями металлов в атмосфере.
- 3. Класс T метановые коричневые карлики с температурой $700-1500~\mathrm{K}$.
- 4. Класс Y очень холодные (метано-аммиачные) коричневые карлики с температурой ниже 700 К.
- 5. Класс С углеродные звёзды, гиганты с повышенным содержанием углерода. Ранее относились к классам R и N.

Мнемонические правила для запоминания спектральных классов:

- 1. Oh Be A Fine Girl, Kiss Me Right Now Sweetheart.
- Well, Once British Astronomer has Found Galaxy, Knew Mass, Length, Term.

3. Вообразите: Один Бритый Англичанин Финики Жевал Как Морковь — Разве Не Смешно?

Диаграмма Герцшпрунга-Рассела показывает зависимость между светимостью, спектральным классом и температурой поверхности звезды.

Была предложена примерно в 1910 году независимо Эйнаром Герцшпрунгом и Генри Расселом. Диаграмма используется для классификации звёзд и соответствует современным представлениям о звёздной эволюции.

Около 90% звёзд находятся на главной последовательности. Их светимость обусловлена термоядерными реакциями превращения водорода в гелий. Выделяется также несколько ветвей проэволюционировавших звёзд—гигантов, в которых происходит горение гелия и более тяжёлых элементов. В левой нижней части диаграммы находятся полностью проэволюционировавшие белые карлики.

Рис. 1: Диаграмма Герцшпрунга-Рассела