

a. b and g are known, from which c and g are calculated.

A cyclic polygon is constructed using the edge lengths c, i, j, k, l and m. From this, the polygon's internal angles ϕ are known.

We seek all $\boldsymbol{d}_{\boldsymbol{i}}$ values. We require only the law of cosines:

 $c^2 = a^2 + b^2 - 2ab \cos \alpha$ (not using the variables or angles defined here)

 d_1 is calculated from the triple $(a, i, \alpha + \phi_0)$

Calculating \mathbf{d}_2 requires Δ_1 from (i, \mathbf{d}_1 , a). Afterwards, \mathbf{d}_2 from (\mathbf{d}_1 , j, $\mathbf{\phi}_1 \cdot \Delta_1$). Calculating \mathbf{d}_3 requires Δ_2 from (j, \mathbf{d}_2 , \mathbf{d}_1). Afterwards, \mathbf{d}_3 from (\mathbf{d}_2 , k, $\mathbf{\phi}_2 \cdot \Delta_2$). et cetera.