1 Mappings, functions: everywhere defined, injective, surjective, bijective, inverse mapping. Properties of composition of mappings, uniqueness of inverse mapping

Определение

Пусть A и B - два множества. Тогда **отображение** f из A в B - это такое подмножество $f \subseteq A \times B$, что для любого $a \in A$ и для любого $b_1, b_2 \in B$:

из
$$(a,b_1)\in f$$
 и $(a,b_2)\in f$ следует, что $b_1=b_2$

т.е. для любого $a \in A$ существует только один $b \in B$ такой, что $(a,b) \in f$. Факт того, что f - отображение из A в B, обозначается как:

$$f:A o B$$
 или $A\stackrel{f}{ o} B$

Множество всех отображений из A в B обозначается как

$$B^A = \{f | f : A \to B\}$$

Другое определение

отображение - это *множество пар элементов*, которые удовлетворяют определенным условиям, имеющим однозначный смысл: каждому аргументу должно соответствовать только одно значение. Где $(a,b) \in f$ можно записать как f(a) = b, элемент a называется **аргументом**, а b - **значением** отображения f от аргумента a или **образом** элемента a из отображения f. Факт того, что f(a) = b можно записать следующим образом:

$$f: a \mapsto b$$
 или $a \stackrel{f}{\mapsto} b$

Если f(a) = b, то элемент a называется **прообразом** элемента b из отображения f.

Определение

Для любого отображения $f:A\to B$ можно определить два множества:

- ullet область определения $dom(f)=\{a|(a,b)\in f\}$
- ullet область значений $cod(f)=\{b|(a,b)\in f\}$

Определение

Пусть A - множество, n - натуральное число. Тогда отображение $f:A^n\to A$ называется n-местной функция или операцией на множестве A.

Определение

Для любого множества A можно определить **тождественное отображение** - функцию $id_A: A \to A$. Эта функция определяется как:

$$id_A \rightleftharpoons \{(a,a)|a \in A\}$$

Тождественное отображение id_A также иногда называют **диагональ** множества A.

$$id_A(a) = a$$

Определение

Пусть $f:A\to B$ - некоторое отображение. Тогда это отображение называется

- инъективным ("однозначным"отображением), тогда и только тогда, когда для любых двух разных аргументов $a_1, a_2 \in A$ образы $f(a_1)$ $f(a_2)$ также различны. Обозначается как $f: A \stackrel{1:1}{\to} B$
- сюръективный (отображением "на"), тогда и только тогда, когда для любого элемента $b \in B$ существует такой $a \in A$, что f(a) = b. Обозначается как $f: A {\rightarrow\!\!\!\!\rightarrow} B$
- всюду определённым, тогда и только тогда, когда для любого элемента $a \in A$ существует такой $b \in B$, что f(a) = b. Обозначается как $f: A \rightarrowtail B$
- биективным ("взаимно-однозначным" соответствием), тогда и только тогда, когда оно инъективно, сюръективно и всюду определено. Обозначается как $f:A \xrightarrow{1:1} B$

Предложение

Для любого отображения $f: A \to B$:

- 1. $f: A \rightarrow B$ (т.е. f сюръективно) $\Leftrightarrow cod(f) = B$
- 2. $f:A \rightarrow B$ (т.е. f всюду определено) $\Leftrightarrow dom(f) = A$

Доказательство

Очевидно по определению.

Определение

Пусть $f: A \to B$ и $g: B \to A$ - два отображения. Тогда g называется **обратным** к f, тогда и только тогда, когда $f \circ g = id_A$ и $g \circ f = id_B$.

Предложение

Если для некоторого отображения $f: A \to B$ существует обратное отображение, то f сюръективно и всюду определено.

Доказательство

Докажем сюръективность. Если f не сюръективно, то существует такой $b \in B$, что $b \notin cod(f)$. Но по определению $id_B = (g \circ f)(b) = f(g(b)) = b$, т.е. если a = g(b), то $(a,b) \in f$, т.е. $b \in cod(f)$ - противоречие. Всюду определенность доказывается аналогично.

Предложение

Если для отображения $f: A \to B$ существует обратное, то f инъективно.

Доказательство

В противном случае существуют такие $a_1, a_2 \in A$, что $a_1 \neq a_2$ и $f(a_1) = f(a_2) = b \in B$. По условию $f \circ g = id_A$, т.е. $(f \circ g)(a) = a$ для любого $a \in A$. Следовательно, $a_1 = (f \circ g)(a_1) = g(f(a_1)) = g(b) = g(f(a_2)) = (f \circ g)(a_2) = a_2$ - противоречие.

Определение

Пусть A,B,C - три множества и даны два отображения: $f:A\to B$ и $g:B\to C$. Тогда можно определить **композицию** отображений f и g. Это отображение $f\circ g:A\to C$, определённое следующим образом: для любого элемента $a\in A$

$$(f \circ g)(a) \rightleftharpoons g(f(a))$$

Предложение

Пусть $f:A \to B, \, g:B \to C$ и $h:C \to D$ - отображения. Тогда:

- 1. $(f \circ g) \circ h = f \circ (g \circ h)$ ассоциативность операции \circ
- 2. $f \circ id_B = f$
- 3. $id_A \circ f = f$

Доказательство

2 и 3 - очевидно, что касается 1, достаточно отметить, что для любого $a \in A$,

$$((f \circ g) \circ h)(a) = h(f \circ g(a))) = h(g(f(a)))$$

$$(f\circ (g\circ h))(a)=(g\circ h)(f(a))=h(g(f(a)))$$

Правые части уравнений равны, значит и левые тоже.

Предложение

Пусть $f:A \to B$ и $g:B \to C$ - отображения. Тогда:

- 1. если $f:A\stackrel{1:1}{\to} B$ и $g:B\stackrel{1:1}{\to} C$, то $f\circ g:A\stackrel{1:1}{\to} C$
- 2. если $f:A \twoheadrightarrow B$ и $g:B \twoheadrightarrow C$, то $f \circ g:A \twoheadrightarrow C$
- 3. если $f:A \rightarrowtail B$ и $g:B \rightarrowtail C$, то $f \circ g:A \rightarrowtail C$
- 4. если $f:A \xrightarrow{1:1} B$ и $g:B \xrightarrow{1:1} C$, то $f \circ g:A \xrightarrow{1:1} C$

Доказательство

Докажем 1 от противного. Предположим, что $f \circ g$ - не инъективно. Это значит, что существуют такие $a_1, a_2 \in A$, что $a_1 \neq a_2$ и $(f \circ g)(a_1) = (f \circ g)(a_2)$. Пусть $b_1 = f(a_1)$ и $b_2 = f(a_2)$. Тогда $(f \circ g)(a_1) = g(b_1) = (f \circ g)(a_2) = g(b_2)$, т.е. $g(b_1) = g(b_2)$. Так как g инъективно, $b_1 = b_2$, т.е. $f(a_1) = f(a_2)$. Но f также инъективно, поэтому $a_1 = a_2$ - противоречие. Остальные случаи доказываются аналогично.

2 Notion of λ -term: operators of application and abstraction

Определение

Дана функция, её главное свойство заключается в том, что, будучи применённой к аргументу, она возвращает определённое значение. Следовательно, оператор **аппликации** принимает функцию f, её аргумент a и выполняет npumenenue f к a. В стандартной математической нотации это записывается как f(a).

В λ -исчислении применение функции f к Аргументу a обозначается следующим образом:

(f a)

Определение

Для любой переменной x и выражения e, определяющего, как его значение рассчитывается из x, следующая запись

 $\lambda x.e$

называется **абстракцией** образованной из x и e.

Определение

 λ -терм, составленный из переменных X и констант C - это слово в алфавите $\mathcal{A}_{\lambda} \cup X \cup C$, определяемое по индукции:

• любая переменная $x \in X$ и любая константа $c \in C$ являются λ -термом.

 \bullet для любых λ -термов p и q запись

является λ -термом и называется аппликацией p к q.

• для любой переменной $x \in X$ и λ -терма f, запись

$$(\lambda x.f)$$

является λ -термом и называется абстракцией f от x.

3 Correctness theorem for the propositional logic

Теорема (Корректность исчисления высказываний)

Если секвенция s является выводимой, то s тождественно истинна.

Доказательство

Доказательство индукцией по высоте дерева вывода s. Основание индукции: s - аксиома. Очевидно, что $\phi \vdash \phi$ является тождественно истинной. Шаг индукции. Предположим, что утверждение верно для всех деревьев вывода высоты < n, и дано дерево вывода T высоты n. Тогда

$$T = \frac{T_1 \dots T_n}{s}$$

Пусть $s_i = r(T_i)$ - все корни деревьев T_i . По предположению индукции все секвенции s_i являются тождественно истинными. Нужно показать, что s также тождественно истинна. Известно, что $\frac{s_1...s_n}{s} \in R_{PC}$ является правилом вывода. Теперь проверим, что все правила вывода в исчислении высказываний являются тождественно истинными, т.е. если $\frac{s_1...s_n}{s}$ - правило вывода в исчислении высказываний и все s_i тождественно истинным, то s также является тождественно истинной. Рассмотрим, например, правило:

$$\frac{\Gamma, \phi \vdash \chi \quad \Gamma, \psi \vdash \chi \quad \Gamma \vdash \phi \lor \psi}{\Gamma \vdash \chi}$$

Предположим, что секвенции $\Gamma, \phi \vdash \chi$, $\Gamma, \psi \vdash \chi$ и $\Gamma \vdash \phi \lor \psi$ являются тождественно истинными, но секвенция $\Gamma \vdash \chi$ ложно при некотором

означивании γ . Тогда по определению значения секвенции $\gamma(\chi)=0$ и $\gamma(\phi')=1$ для всех формул, входящих в Γ . Так как $\gamma(\Gamma,\phi\vdash\chi)=1$ и $\gamma(\chi)=0$, это означает, что некоторая формула из Γ,ϕ ложна при означивании γ . Это может быть только ϕ , поэтому $\gamma(\phi)=0$. Аналогично рассматривая секвенцию $\Gamma,\psi\vdash\chi$, приходим к выводу, что $\gamma(\psi)=0$. Следовательно $\gamma(\phi\vee\psi)=0$. Но так как секвенция $\Gamma\vdash\phi\vee\psi$ является тождественно истинной, существует некоторая формула ϕ' из секвенции Γ такая, что $\gamma(\phi')=0$ - противоречие. Все остальные 13 рассматриваются аналогично.