

RECEIVED
CENTRAL FAX CENTER

AUG 28 2006

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims of the application.

Listing of Claims:

1. (Currently Amended) A composition for a reduced viscosity hydrophobic thickener system for thickening a polymer-containing aqueous system, said composition comprising:
 - a) a cyclodextrin-containing compound having a hydrophobic cavity of a predetermined size; and
 - b) a hydrophobically modified polyethoxylated urethane associative thickener containing at least one terminal phobe of a size capable of complexing with said hydrophobic cavity of said cyclodextrin-containing compound;
wherein at least a portion of said cyclodextrin-containing compound is complexed with said hydrophobically modified associative thickener in such a way that at least a portion of at least one of said phobes at least partially fills said hydrophobic cavity.
2. (Original) The composition according to claim 1, wherein said cyclodextrin-containing compound is selected from the group consisting of : alpha cyclodextrin, beta cyclodextrin, gamma cyclodextrin, ethoxylated cyclodextrin, propoxylated cyclodextrin, methyl-alpha cyclodextrin, methyl-beta cyclodextrin, and methyl-gamma cyclodextrin.
3. (Currently Amended) The composition according to claim 1 wherein said hydrophobically modified polyethoxylated urethane associative thickener comprises of step (b) is a hydrophobically modified polyethoxylated urethane thickener which further contains at least one diisocyanate functional group having a size and configuration such that it is capable of complexing with said hydrophobic cavity of said cyclodextrin-containing compound; and
wherein said complexation occurs in such a way that at least a portion of at least one of said diisocyanate functional groups and/or at least one of said phobes at least partially fills said hydrophobic cavity.
4. (Currently Amended) A method for providing a reduced viscosity thickener system for a polymer-containing aqueous system, the method comprising:

- a) providing a cyclodextrin-containing compound having a hydrophobic cavity of a predetermined size;
- b) providing a hydrophobically modified polyethoxylated urethane associative thickener containing at least one terminal phobe of a size capable of complexing with said hydrophobic cavity of said cyclodextrin-containing compound;
- c) mixing said cyclodextrin-containing compound provided in step (a) and said hydrophobically modified polyethoxylated urethane associative thickener provided in step (b), such that at least a portion of said cyclodextrin-containing compound of step (a) is complexed with said hydrophobically modified polyethoxylated urethane associative thickener of step (b) in such a way that at least a portion of at least one of said phobes at least partially fills said cavity.

5. (Currently Amended) The method according to claim 4, wherein said ~~hydrophobically modified associative thickener of step (b)~~ is a hydrophobically modified polyethoxylated urethane thickener comprises which further contains at least one diisocyanate functional group having a size and configuration such that it is capable of complexing with said hydrophobic cavity of said cyclodextrin-containing compound; such that said complexation occurs in such a way that at least a portion of at least one of said diisocyanate functional groups and/or at least one of said phobes at least partially fills said hydrophobic cavity.

6. (Currently Amended) The method according to claim 4, wherein the closer the size of said cyclodextrin-containing compound hydrophobic cavity is to the size of said at least one terminal phobe of said hydrophobically modified polyethoxylated urethane associative thickener, the higher the viscosity suppression efficiency of said cyclodextrin-containing compound,

wherein said at least one terminal phobe of said hydrophobically modified polyethoxylated urethane associative thickener is not larger in size than said hydrophobic cavity of said cyclodextrin-containing compound.

7. (Currently Amended) A method for increasing the viscosity of a polymer-containing aqueous system, comprising mixing the reduced viscosity thickener system prepared according to claim 4 with:

- a) a polymer-containing aqueous system,

wherein said polymer is water-insoluble; and

- b) a surfactant capable of decomplexing said cyclodextrin-containing compound from said hydrophobically modified polyethoxylated urethane associative thickener.

8. (Currently Amended) A method for providing a reduced viscosity thickener system for a polymer-containing aqueous system, the method comprising:

- a) providing methyl- α -cyclodextrin having a hydrophobic cavity;
- b) providing a hydrophobically modified polyethoxylated urethane associative thickener containing at least one terminal phobe of a size capable of complexing with said hydrophobic cavity of said methyl- α -cyclodextrin;
- c) mixing said methyl- α -cyclodextrin provided in step (a) and said hydrophobically modified polyethoxylated urethane associative thickener provided in step (b), such that at least a portion of said methyl- α -cyclodextrin of step (a) is complexed with said hydrophobically modified polyethoxylated urethane associative thickener of step (b) in such a way that at least a portion of said phobes at least partially fills said cavity.

9. (Currently Amended) A method for increasing the viscosity of a polymer-containing aqueous system, comprising mixing the reduced viscosity thickener system prepared according to claim 8 with:

- a) a polymer-containing aqueous system,
wherein said polymer is water-insoluble; and
- b) a surfactant capable of decomplexing said methyl- α -cyclodextrin from said hydrophobically modified polyethoxylated urethane associative thickener.

10. (Currently Amended) A composition comprising:

- a) a hydrophobically modified aminoplast-ether copolymer or a hydrophobically modified non-urethane polymeric thickener; and

- b) a cyclodextrin-containing compound,

wherein a solids content of polymer is 15-25 weight %.

11. (Previously Presented) The composition of claim 10 wherein the cyclodextrin-containing compound is a methylated cyclodextrin.

12. (Previously Presented) The composition of claim 10 wherein a content of the cyclodextrin-containing compound is 0.45 to 4.5 weight %.

13. (Currently Amended) A composition comprising

- a) a hydrophobically modified aminoplast polyether or a hydrophobically modified non-urethane polymeric product and
- b) a viscosity suppressing agent selected from the group consisting of cyclodextrins and derivatives thereof,
wherein the lower limit of the solids content of the polymer is 15 wt %.

14. (Previously Presented) The composition of claim 13, wherein the cyclodextrins are selected from the group consisting of alpha (α), beta (β), and gamma (γ) cyclodextrins.

15. (Previously Presented) The composition of claim 13, wherein the cyclodextrin derivatives are selected from the group consisting of methylated and hydroxyethylated cyclodextrins.

16. (Previously Presented) The composition of claim 13, wherein the lower limit of the hydrophobe types has 10 carbons.

17. (Previously Presented) The composition of claim 13, wherein the lower limit of the hydrophobe types has 14 carbons.

18. (Previously Presented) The composition of claim 13, wherein the upper limit of the solids content of the polymer is 25 wt %.

19. (Previously Presented) The composition of claim 13, wherein the upper limit of the solids content of the polymer is 20 wt %.

20. (Previously Presented) The composition of claim 13, wherein the lower limit of the cyclodextrin content is 0.5 wt %.

21. (Previously Presented) The composition of claim 13, wherein the upper limit of the cyclodextrin content is 3.0 wt %.

22. (Previously Presented) The composition of claim 11, wherein the upper limit of the cyclodextrin content is 1.5 wt %.

23. (Previously Presented) The composition of claim 11, wherein the solids content of the polymer is 20 wt % and the cyclodextrin content is 1.0 wt %.

24. (Previously Presented) The composition of claim 11, wherein the solids content of the polymer is 17 wt % and the cyclodextrin content is 3.0 wt %.

25-28. (Canceled).