7. Stabilis folyamatok irányítása

- 1. Egy merev visszacsatolású zárt körben P(s) szabályozott szakaszt és C(s) soros szabályozót feltételezve definiálja a Q(s) YOULA-paramétert!
- 2. Egy merev visszacsatolású zárt körben P(s) szabályozott szakaszt és C(s) soros szabályozót feltételezve írja fel a T(s) kiegészítő érzékenységi függvényt és az S(s) érzékenységi függvényt a Q(s) YOULA -paraméter segítségével!
- 3. Egy merev visszacsatolású zárt körben P(s) szabályozott szakaszt és C(s) soros szabályozót, továbbá r alapjelet és y_n additív kimeneti zavarást feltételezve írja fel a beavatkozójel, a hibajel és a kimenőjel kifejezését a Q(s) YOULA -paraméter segítségével!
- 4. Mutassa be az IMC elven működő szabályozás blokkvázlatát, amely a következő átviteli függvényekkel adott elemeket tartalmazza: Q(s), $P_{\text{folyamat}}(s) = P$, $P_{\text{modell}}(s) = \hat{P}$. A zárt szabályozási rendszer jelei közül tüntesse fel az alapjelet és a zavarójelet is.
- 5. A Q(s) YOULA -paraméter, továbbá a $P_{\text{folyamat}}(s) = P$, $P_{\text{modell}}(s) = \hat{P}$ átviteli függvények megfelelő alkalmazásával mutassa be az YP-szabályozónak a zárt kör "felnyitását" eredményező blokkvázlatát! A blokkvázlat ne tartalmazzon előrecsatolást a módosított alapjelről!
- 6. A Q(s) YOULA -paraméter, továbbá a $P_{\text{folyamat}}(s) = P$, $P_{\text{modell}}(s) = \hat{P}$ átviteli függvények megfelelő alkalmazásával mutassa be az YP-szabályozónak a zárt kör "felnyitását" eredményező blokkvázlatát! A blokkvázlat tartalmazzon előrecsatolást a módosított alapjelről!
- 7. Feltételezve, hogy a folyamat inverze realizálható és stabilis, a $Q_r = R_r P^{-1}$ és $Q = R_n P^{-1} \text{ választás esetén írja fel a kimenőjel kifejezését az } y_r \text{ alapjel és az } y_n \text{ zavarójel függvényében!}$
- 8. Feltételezve, hogy a folyamat $P = P_+ P_- e^{-sT_d}$ alakú, a $G_r = G_n = 1$ és $R_r \neq 1$, $R_n \neq 1$ választás esetén írja fel a kimenőjel kifejezését az y_r alapjel és az y_n zavarójel függvényében!
- 9. Feltételezve, hogy a folyamat $P = P_+ P_- e^{-sT_{\rm d}}$ alakú, a $G_{\rm n} \neq 1$, $R_{\rm n} \neq 1$ választás esetén írja fel a $C_{\rm opt}(s)$ optimális szabályozó átviteli függvényét és mutassa be a szabályozó realizálását egy pozitívan visszacsatolt kör és egy azzal sorosan kapcsolt tag formájában!
- 10. Feltételezve, hogy a folyamat $P = P_+ e^{-sT_d}$ alakú, vázolja fel a SMITH szabályozó hatásvázlatát!
- 11. Mutassa meg egy blokkvázlaton, hogy a SMITH szabályozó egy YP szabályozó!

12. Feltételezve, hogy a folyamat $P = P_+ e^{-sT_{\rm d}}$ alakú, a $Q_+ = R_+ P_+^{-1}$ választás esetén adja meg a SMITH szabályozó alkalmazásával kapott kiegészítő érzékenységi függvény értékét!