Дифференцируемость функции

Oпределение. Если приращение функции y = f(x) при $x = x_0$ можно представить в виде

$$\Delta y = A\Delta x + o(\Delta x), \tag{1}$$

где $A = {\rm const}$, то y = f(x) называется **дифференцируемой** при $x = x_0$, а $A \Delta x$ называется **главной линейной частью** приращения или **дифференциалом** функции. Обозначение: $dy = A \Delta x$.

Замечание. Так как при y=x получаем dx=1 Δx , можно обозначать $\Delta x=dx$.

Теорема. Функция дифференцируема в некоторой точке в том и только в том случае, если она имеет в этой точке производную. Доказательство.

- 1) Если для y = f(x) существует $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$, то $f'(x_0) = \frac{\Delta y}{\Delta x} + \beta(\Delta x)$, где $\beta(\Delta x) \beta(\Delta x) = \frac{\Delta y}{\Delta x} + \beta(\Delta x)$ следовательно, функция y = f(x) дифференцируема при $x = x_0$, причем $A = f'(x_0)$.
- 2) Пусть y=f(x) дифференцируема при $x=x_0$, то есть ее приращение имеет вид (1). Тогда $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} (A + \frac{o(\Delta x)}{\Delta x}) = A = f'(x_0)$. Таким образом, f(x) имеет производную в точке x_0 , равную A.

Следствие. Дифференциал функции можно представить в виде $dy = f'(x_0)dx$, а производную — в виде $f'(x_0) = \frac{dy}{dx}$.

Теорема. Если функция дифференцируема в некоторой точке, то она непрерывна в этой точке.

Доказательство.

Из формулы (1) следует, что $\lim_{\Delta x \to 0} \Delta y = 0$, что и означает непрерывность f(x) при $x = x_0$.

Замечание. Обратное утверждение неверно, то есть из непрерывности функции не следует ее дифференцируемость. Например, y = |x| непрерывна при x = 0, но не дифференцируема в этой точке.

Геометрический смысл дифференциала

Рассмотрим график функции y=f(x) и проведем касательную к нему при $x=x_0$. Тогда при приращении аргумента Δx приращение функции Δy равно длине отрезка BD, а приращение ординаты касательной $f'(x_0)\Delta x=dy$ равно длине отрезка CD. Следовательно, дифференциал функции равен приращению ординаты касательной.

Линеаризация функции.

Так как истинное значение приращения функции отличается от ее дифференциала на бесконечно малую более высокого порядка, чем Δx , при приближенных вычислениях можно заменять Δy на dy, то есть считать, что $f(x_0 + \Delta x) \approx f(x_0) + dy = f(x_0) + f'(x_0)(x - x_0)$. При этом функция f(x) для значений x, близких к x_0 , приближенно заменяется линейной функцией. Эта операция называется **линеаризацией** функции.

Пример.

Найдем приближенное значение $\sqrt{1,02}$. Пусть $f(x)=\sqrt{x}, x_0=1, \Delta x=0,02$. Тогда $f(1+0,02)\approx f(1)+f'(1)\cdot 0,02=\sqrt{1}+\frac{1}{2\sqrt{1}}\cdot 0,02=1+0,01=1,01.$

Свойства дифференциала

Если u = f(x) и v = g(x)- функции, дифференцируемые в точке x, то непосредственно из определения дифференциала следуют следующие свойства:

1)
$$d(u \pm v) = (u \pm v)'dx = u'dx \pm v'dx = du \pm dv$$

2)
$$d(uv) = (uv)'dx = (u'v + v'u)dx = vdu + udv$$

3)
$$d(Cu) = Cdu$$

$$4) \quad d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$

Дифференциал сложной функции. Инвариантная форма записи дифференциала

Пусть y = f(x), x = g(t), т.е *y*- сложная функция.

Тогда

$$dy = f'(x)g'(t)dt = f'(x)dx.$$

Видно, что форма записи дифференциала dy не зависит от того, будет ли x независимой переменной или функцией какой-то другой переменной, в связи с чем эта форма записи называется **инвариантной формой записи** д**ифференциала**.

Однако, если х- независимая переменная, то

$$dx = \Delta x$$
,

но если x зависит от t, то

$$\Delta x \neq dx$$
.

Таким образом форма записи $dy = f'(x) \Delta x$ не является инвариантной.

Производные и дифференциалы высших порядков

Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

$$y' = f'(x) = \frac{df(x)}{dx}$$

Если найти производную функции f'(x), получим вторую производную функции f(x).

$$y'' = f''(x) = \frac{d^2 f(x)}{dx^2}$$

T.e.

$$y'' = (y')'$$
 или $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$.

Этот процесс можно продолжить и далее, находя производные степени n.

$$\frac{d^n y}{dx^n} = \frac{d}{dx} \left(\frac{d^{n-1} y}{dx^{n-1}} \right).$$

Примеры.

1) Найдем производную 3-го порядка от функции

$$y=x^3-5x^2+3x+12$$
.

$$y' = 3x^2 - 10x + 3$$

$$y''=(y')'=6x-10$$

$$y'''=(y'')'=6.$$

2) Получим общую формулу для производной n-го порядка функции $y=a^{bx}$.

$$y'=a^{bx}\cdot lna\cdot b$$
,

$$y'' = \ln a \cdot b(a^{bx})' = a^{bx} \cdot \ln^2 a \cdot b^2,$$

$$v^{(n)}=a^{bx}\cdot ln^na\cdot b^n.$$

Общие правила нахождения высших производных

Если функции u = f(x) и v = g(x) дифференцируемы, то

- 1) $(Cu)^{(n)} = Cu^{(n)};$
- 2) $(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$;

3)
$$(u \cdot v)^{(n)} = vu^{(n)} + nu^{(n-1)}v' + \frac{n(n-1)}{2!}u^{(n-2)}v'' + ... + \frac{n(n-1)...[n-(k-1)]}{k!}u^{(n-k)}v^{(k)} + ...$$

... + $uv^{(n)}$. - Это выражение называется формулой Лейбница.

Также по формуле

$$d^n y = f^{(n)}(x) dx^n$$

может быть найден дифференциал *n*- го порядка.

Вторая производная для функции заданной параметрически

Пусть

$$x = \varphi(t), y = \psi(t), t_0 \le t \le T.$$

Тогда

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.$$

Следовательно,

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\right) = \frac{d}{dt} \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\right) \frac{dt}{dx} = \frac{\frac{dx}{dt} \frac{d^2y}{dt^2} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^2} : \frac{dx}{dt} = \frac{\frac{dx}{dt} \frac{d^2y}{dt^2} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$