Appl. No. 10/718,285 Amdt. dated March 23, 2005 Reply to Office Action of March 1, 2005

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Ţ	1. (Currently amended) A derivery system, comprising.
2	a frame;
3	a plurality of hoppers attachable to the frame in a vertically spaced apart
4	arrangement, wherein the hoppers are each configured to hold a plurality of sheet-like materials
5	in a generally vertical orientation;
6	at least one upper belt movably coupled to the frame, wherein the belt is
7	configured to move the sheet-like materials downward from the hoppers;
8	at least one suction apparatus that is associated with each hopper; and
9	a moving system that is configured to move the suction apparatus to grasp and
10	remove one of the sheet-like materials from the hopper and into contact contract with the upper
11	belt, wherein the suction apparatus is configured to grasp and remove the sheet-like material
12	from the hopper while maintaining the sheet-like material generally vertically oriented until the
13	sheet-like material comes into contact with the upper belt.
1	2. (Original) A system as in claim 1, wherein the moving system comprises
2	a cylinder to move the suction apparatus toward and away from the hopper, and a linkage
3	arrangement that is pivotally coupled to the frame member to move the suction apparatus in an
4	up and down motion.
1	3. (Original) A system as in claim 1, further comprising at least one contact
2	roller disposed below each hopper and a biasing roller that is spring biased against the contact
3	roller.
1	4. (Original) A system as in claim 1, wherein the suction apparatus
2	comprises a length of tubing and a suction cup coupled to the tubing.
1	5. (Original) A system as in claim 1, wherein upper belt is spaced apart from
2	another upper belt, wherein the suction apparatus is movable beyond the two upper belts, and

Appl. No. 10/718,285 Amdt. dated March 23, 2005 Reply to Office Action of March 1, 2005

1

1

2

3

1

2

1

2

1

2

1

2

3

1

2

1

2

3

- further comprising two additional suction apparatus that located on opposite sides of the two 3 4 upper belts.
- 6. (Original) system as in claim 1, wherein the suction apparatus is coupled 2 to a block, and further comprising a guide that is pivotally coupled to the frame, wherein the 3 guide includes a roller that moves behind the block when the suction apparatus is moved 4 downward to guide the suction apparatus in its downward path.
- (Original) A system as in claim 2, further comprising a rod coupled to 1 7. each linkage arrangement, wherein the rod is movable up and down to simultaneously move each 2 3 linkage arrangement.
 - (Original) A system as in claim 1, further comprising an air jet associated with each hopper, wherein the air jets are arranged to laterally supply air to the sheet-like materials to facilitate separation of the sheet-like materials.
 - (Original) A system as in claim 1, further comprising a controller that is configured to operate the moving system.
 - 10. (Original) A system as in claim 1, further comprising at least one lower belt that is configured to receive sheet-like materials from the upper belt.
 - (Original) A system as in claim 10, further comprising a set of transition 11. belts between the upper belt and the lower belt.
 - (Original) A system as in claim 1, further comprising a guide that is 12. configured to hold one of the sheet-like materials to the upper belt as the sheet-like material moves toward the contact roller.
 - (Original) A system as in claim 10, further comprising a counter that is 13. configured to count the number of sheet-like materials passing along the lower belt.
 - (Original) A system as in claim 1, further comprising a vacuum 14. transducer that is adapted to sense the pressure within the suction apparatus to determine whether one of the sheet-like materials is attached to the suction apparatus.
- 1 (Original) A system as in claim 10, further comprising a thickness tester 15. 2 that is configured to determine the number of sheet-like materials stacked on the lower belt.

Appl. No. 10/718,285 .
Amdt. dated March 23, 2005
Reply to Office Action of March 1, 2005

1	16. (Currently amended) A delivery system, comprising:
2	a frame;
3	a plurality of hoppers attachable to the frame in a vertically spaced apart
4	arrangement, wherein the hoppers are each configured to hold a plurality of sheet-like materials
5	in a generally vertical orientation;
6	at least one upper belt movably coupled to the frame, wherein the belt is
7	configured to move sheet-like materials downward from the hoppers;
8	at least one suction apparatus that is associated with each hopper, wherein the
9	suction apparatus is configured to grasp and remove the sheet-like materials from each hopper
10	and into contact with the upper belt, wherein the suction apparatus is configured to grasp and
11	remove the sheet-like material from the hopper while maintaining the sheet-like material
12	generally vertically oriented until the sheet-like material comes into contact with the upper belt.
1	17. (Original) A system as in claim 16, further comprising at least one contact
2	roller disposed below each hopper and a guide that is configured to hold one of the sheet-like
3	materials to the upper belt as the sheet-like material moves toward the contact roller.
	18. (Canceled).
	19. (Canceled).
	20. (Canceled).
1	21. (Original) A method for moving sheet-like materials, the method
2	comprising:
3	coupling a plurality of hoppers to a frame in a vertically spaced apart
4	arrangement, wherein the hoppers each hold a plurality of sheet-like materials;
5	moving one of the sheet-like materials from one of the hoppers with a suction
6	apparatus;
7	moving the suction apparatus and the sheet-like material downward until the
8	sheet-like material is grabbed between at least one upper belt that is movably coupled to the
9	frame and at least one contact roller that is disposed below the hopper; and
10	moving the sheet-like material downward with the upper belt.

1

2

3

1 2

3

1

2

3

1

2

3

1

3

1

2

1

2

1

2

3

4

1 2

3

1

2

- 22. (Original) A method as in claim 21, further comprising simultaneously moving individual sheet-like materials from at least two of the hoppers with separate suction apparatus.
 - 23. (Original) A method as in claim 22, further comprising simultaneously moving the suction apparatus downward until each sheet-like material is grabbed between the upper belt and a contact roller that is associated with each hopper.
 - 24. (Original) A method as in claim 23, further comprising retracting the suction apparatus behind the belt so that the sheet-like materials moving downward do not contact the suction apparatus.
 - 25. (Original) A method as in claim 21, further comprising holding the sheet-like material to the upper belt with a guide as the sheet-like material moves toward the contact roller.
 - 26. (Original) A method as in claim 22, wherein each suction apparatus is moved with a cylinder toward and away from the hopper, and wherein each suction apparatus is moved up and down with a linkage arrangement that is pivotally coupled to the frame member.
 - 27. (Original) A method as in claim 21, further comprising biasing the sheetlike material against the contact roller with a biasing roller.
 - 28. (Original) A method as in claim 21, wherein the suction apparatus comprises a length of tubing and a suction cup coupled to the tubing.
 - 29. (Original) A method as in claim 21, wherein the suction apparatus is coupled to a block, and further comprising preventing backward movement of the suction apparatus during downward movement with a roller that moves behind the block when the suction apparatus is moved downward.
 - 30. (Original) A method as in claim 26, wherein a rod is coupled to each linkage arrangement, wherein the rod is moved up and down to simultaneously move each linkage arrangement.
 - 31. (Original) A method as in claim 21, further comprising supplying a gas stream laterally into the sheet-like materials to facilitate separation of the sheet-like materials.

1	32. (Original) A method as in claim 21, further comprising a controller that i
2	configured to operate the moving system.
l	33. (Original) A method as in claim 21, further comprising providing at least
2	one lower belt that is configured to receive sheet-like materials from the upper belt and a set of
3	transition belts between the upper belt and the lower belt.
1	34. (Original) A method as in claim 33, further comprising counting the
2	number of sheet-like materials passing along the lower belt with a counter.
i	35. (Original) A method as in claim 21, further comprising sensing the
2	pressure within the suction apparatus to determine whether a sheet-like material is attached to the
3	suction apparatus.
1	36. (Original) A method as in claim 33, further comprising measuring the
2	thickness of each sheet-like material when on the lower belt to determine if one or more other
3	sheet like materials are attached to the sheet-like material.
	27 (Compaled)
	37. (Canceled).
	38. (Canceled).
	39. (Canceled).
	40. (Canceled).
1	41. (New) A delivery system, comprising:
2	a frame;
3	a plurality of hoppers attachable to the frame in a vertically spaced apart
4	arrangement, wherein the hoppers are each configured to hold a plurality of sheet-like materials
5	at least one upper belt movably coupled to the frame, wherein the belt is
6	configured to move the sheet-like materials downward from the hoppers;
7	at least one suction apparatus that is associated with each hopper; and
8	a moving system that is configured to move the suction apparatus to grasp and
9	remove one of the sheet-like materials from the hopper and into contact with the upper belt; and

10

11

12

moves toward the contact roller.

11	spring biased against the contact roller.
1	42. (New) A delivery system, comprising:
2	a frame;
3	a plurality of hoppers attachable to the frame in a vertically spaced apart
4	arrangement, wherein the hoppers are each configured to hold a plurality of sheet-like materials;
5	at least one upper belt movably coupled to the frame, wherein the belt is
6	configured to move the sheet-like materials downward from the hoppers;
7	at least one suction apparatus that is associated with each hopper; and
8	a moving system that is configured to move the suction apparatus to grasp and
9	remove one of the sheet-like materials from the hopper and into contact with the upper belt; and
10	a controller that is configured to operate the moving system.
1	43. (New) A delivery system, comprising:
2	a frame;
3	a plurality of hoppers attachable to the frame in a vertically spaced apart
4	arrangement, wherein the hoppers are each configured to hold a plurality of sheet-like materials;
5	at least one upper belt movably coupled to the frame, wherein the belt is
6	configured to move sheet-like materials downward from the hoppers;
7	at least one suction apparatus that is associated with each hopper, wherein the
8	suction apparatus is configured to remove the sheet-like materials from each hopper and into
9	contact with the upper belt; and
10	at least one contact roller disposed below each hopper and a guide that is

at least one contact roller disposed below each hopper and a biasing roller that is

configured to hold one of the sheet-like materials to the upper belt as the sheet-like material