Regulación Económica

Instrumentos regulatorios con información simétrica

Leandro Zipitría¹

¹Departamento de Economía Facultad de Ciencias Sociales y Universidad de Montevideo

La Habana, Cuba. Junio - Julio 2011

Indice

- POLÍTICA DE PRECIOS LINEALES
 - Primer óptimo
 - Segundo óptimo
- PRECIOS NO LINEALES
 - Tarifas no lineales con información perfecta
 - Tarifas no lineales con información imperfecta
- PRECIOS PICO VALLE
 - Introducción
 - Modelo de fijación de precio

Objetivos

- Introducir los mecanismos regulatorios para la fijación de precios en un contexto de información perfecta entre regulador y regulado
- ② Discutir la importancia de los requerimientos informacionales para alcanzar estas soluciones
- Discutir los incentivos que las políticas regulatorias generan en los agentes

Outline

- POLÍTICA DE PRECIOS LINEALES
 - Primer óptimo
 - Segundo óptimo
- PRECIOS NO LINEALES
 - Tarifas no lineales con información perfecta
 - Tarifas no lineales con información imperfecta
- 3 PRECIOS PICO VALLE
 - Introducción
 - Modelo de fijación de precio

Problemas del Primer Óptimo

- La regla de fijación de precios de primer óptimo, que se aplica en los mercados competitivos, es p = CMg
- Sin embargo, en el contexto del monopolio natural ello no es factible
- Implicaría que la empresa pierde los costos fijos de producción (ver gráfico siguiente)
- Si el gobierno aplica esta regla, debería financiar a la empresa con un impuesto de forma de que no pierda los costos fijos

El segundo óptimo (lineal)

- Una solución pasa por buscar el mínimo precio (lineal) que asegura la viabilidad económica de la empresa:
- Sea p(q) la función inversa de demanda, CT(q) = c(q) + F el costo de producción y $\pi = p(q)q CT(q)$ los beneficios de la empresa
- Si p = CMg la empresa pierde F
- Si se incorpora la restricción $\pi = p(q)q CT(q) \ge 0 \Rightarrow$ basta que se cumpla con igualdad $\pi = 0 = p(q)q CT(q) \Rightarrow$ $p(q)q = CT(q) \Rightarrow p(q) = CT(q)/q = CMe$
- La alternativa, si la empresa produce un único producto, es fijar p = CMe, de forma de que la empresa no pierda beneficios
- Ello apareja un problema de eficiencia: la cantidad producida es menor a la eficiente

Primer y segundo óptimo

Figura: Comparación entre políticas de precio de primer y segundo óptimo

Outline

- 1 POLÍTICA DE PRECIOS LINEALES
 - Primer óptimo
 - Segundo óptimo
- PRECIOS NO LINEALES
 - Tarifas no lineales con información perfecta
 - Tarifas no lineales con información imperfecta
- ③ PRECIOS PICO VALLE
 - Introducción
 - Modelo de fijación de precio

Segundo óptimo (lineal) multiproducto (l)

- Supongamos ahora que el monopolista vende n productos (o atiende n mercados)
- La cantidad ofertada está representada por $\mathbf{q} = (q_1, ..., q_n)$; las funciones de demanda al vector de precios $\mathbf{p} = (p_1, ..., p_n)$ están representadas por $q_k = D_k(p_1, ..., p_n)$
- Los ingresos totales de la empresa son $R(\mathbf{q}) = \sum_{1}^{n} p_{k} q_{k}$; la función de costos de la empresa es $C(\mathbf{q}) = C(q_{1}, ..., q_{n})$ y el costo marginal de cada producto k es $C_{k}(q_{1}, ..., q_{n})$
- Sea $S(\mathbf{q})$ el excedente bruto (sin deducir el gasto del consumidor) para el vector de producto \mathbf{q} con $\frac{\partial S(\mathbf{q})}{\partial q_k} = p_k$.
- La solución de Ramsey es encontrar el vector de precios lineales para los *n* productos que maximizan el excedente social neto sujeto a que la empresa no tenga pérdidas

Segundo óptimo (lineal) multiproducto (II)

$$\max_{\mathbf{q}} \{ S(\mathbf{q}) - C(\mathbf{q}) \}$$
 sujeto a

$$R(\mathbf{q}) - C(\mathbf{q}) \ge 0$$

- Notar que en la primera ecuación ya se eliminó pq que aparece restando para el consumidor y sumando para el monopolista
- La resolución del modelo implica obtener *n* condiciones de primer orden, una para cada producto
- El Lagrangiano es entonces: $L = S(\mathbf{q}) - C(\mathbf{q}) + \lambda [R(\mathbf{q}) - C(\mathbf{q})]$
- En el óptimo la empresa gana beneficio 0: $\frac{\partial L}{\partial \lambda} = 0 \Rightarrow \pi = 0 \Rightarrow R(\mathbf{q}) = C(\mathbf{q}); \text{ el mix de precios hace que la empresa cubra los costos}$

Segundo óptimo (lineal) multiproducto (III)

• Las *n* condiciones de primer orden son

$$\frac{\partial L}{\partial q_k} = 0 = p_k - C_k + \lambda \left[p_k + \sum_{j=1}^n \frac{\partial p_j}{\partial q_k} q_j - C_k \right]$$

• Para simplificar supongamos que los productos son independientes (ej. electricidad residencial y comercial), entonces $\frac{\partial p_j}{\partial q_k} = 0, \forall \, k \neq j \, \text{y} \, \sum_{j=1}^n \frac{\partial p_j}{\partial q_k} q_j = \frac{\partial p_j}{\partial q_j} q_j$, y reordenando y dividiendo entre p_k se cumple

$$\frac{p_k - C_k}{p_k} = \frac{\lambda}{1 + \lambda} \frac{1}{\eta_k}$$

• Donde η_k es la elasticidad precio directa de la demanda del producto k

Segundo óptimo (lineal) multiproducto (IV)

- Esta es la regla de la elasticidad inversa
- Los precios que se obtienen son los PRECIOS DE RAMSEY
- La regla indica que los precios se fijan de forma que la diferencia entre precio y costo marginal varía en forma inversa con la elasticidad de la demanda
- Implica que las demandas más inelásticas tendrán precios mayores
- Si los productos no son independientes, entonces hay que sustituir η_k por "super elasticidades"
 - si los productos son sustitutos, los precios de Ramsey son mayores a los que se obtienen si los productos son independientes
 - si los productos son complementarios a la inversa

Segundo óptimo (lineal) multiproducto (V)

- Estos precios implican una discriminación de tercer grado entre los consumidores
- Problema: puede ser políticamente incorrecta
 - implica cobrar más a aquellos que más necesitan el producto (demanda más inelástica)
- Ej. la política de fijación de precios de la telefonía fija en Uruguay para llamadas en un mismo departamento y las llamadas interdepartamentales (las primeras son más inelásticas, sin embargo el precio de las segundas era mayor)

Outline

- POLÍTICA DE PRECIOS LINEALES
 - Primer óptimo
 - Segundo óptimo
- PRECIOS NO LINEALES
 - Tarifas no lineales con información perfecta
 - Tarifas no lineales con información imperfecta
- 3 PRECIOS PICO VALLE
 - Introducción
 - Modelo de fijación de precio

Tarifa en dos Partes (I)

- Las tarifas de precios de Ramsey son de segundo óptimo dado que implican un alejamiento de la regla p = CMg
- Una tarifa no lineal consiste de un pago fijo o "cargo de acceso", independiente de la cantidad consumida, y un pago variable unitario: $T_i = F + pq_i$
- Se puede utilizar para obtener el resultado de primer óptimo:
 - Supongamos N consumidores <u>idénticos</u>, con demanda $q_i = d(p)$ y excedente bruto S_i evaluado en p = 0
 - Los costos de la empresa regulada son $CT(q) = f_0 + cq$
- Sea la siguiente estructura tarifaria:
 - Tasa de acceso $A = f_0/N$; cargo unitario p = CMg = c
 - La estructura de gastos para el consumidor i es: $T_i = A + pq_i = f_0/N$

Tarifa en dos Partes (II)

- Este esquema permite que los costos de la empresa sean recuperados, y el pago fijo actúa como un impuesto de suma fija
- Siempre que $A < (S_i pq_i)$ entonces los consumidores pagarán la tasa de acceso y consumirán el nivel eficiente; si $A > (S_i pq_i)$ entonces no tiene sentido económico ofrecer el servicio
- <u>Problemas</u>: los consumidores tienen distintas valoraciones por los bienes. Si algunos no pagan, no se cubren los costos fijos
- Solución: cobrar distintos valores de tarifa fija (puede ser difícil políticamente implementar la discriminación)
- Aún con estos problemas, es mejor una tarifa en dos partes que la solución de segundo óptimo (reduce la ineficiencia asignativa)

Outline

- POLÍTICA DE PRECIOS LINEALES
 - Primer óptimo
 - Segundo óptimo
- PRECIOS NO LINEALES
 - Tarifas no lineales con información perfecta
 - Tarifas no lineales con información imperfecta
- PRECIOS PICO VALLE
 - Introducción
 - Modelo de fijación de precio

Tarifas no lineales óptimas (I)

- Supongamos que hay dos tipos de consumidores, pero la empresa no puede distinguir cual es cual
 - Consumidores con "baja demanda" (BD), con número n_1 y demanda $p = d_1(q_1)$
 - Consumidores con "alta demanda" (AD), con número n_2 y demanda $p=d_2\left(q_2\right)$
- Costo total $CT(q) = f_0 + cq$
- Si la empresa cobra el precio p = c, el excedente neto para cada grupo es $CS_1 = (S_1 cq_1)$ y $CS_2 = (S_2 cq_2)$
- Se cumple que $CS_1 < CS_2$ y $n_1 CS_1 + n_2 CS_2 > f_0$

Tarifas no lineales óptimas (II)

Figura: Excedente del consumidor de cada grupo

Tarifas no lineales óptimas (III)

- Si no puede distinguir a los tipos, el máximo valor de A es $A = CS_1$
- Pero, ¿puede distorsionar los valores de (p_i, A_i) de forma de inducir a los grupos a separarse?
- El objetivo es ofrecer los siguientes contratos:

$$T_1 = A_1 + p_1 q_1$$

$$T_2 = A_2 + p_2 q_2$$

Tarifas no lineales óptimas (IV)

- Y se cumple, en el óptimo, que $A_1 < A_2$ y $p_1 > p_2 \ge c$ de forma de:
 - p_1 tiene que ser lo suficientemente mayor a p_2 de forma de que T_1 no sea atractivo para los tipos altos (tipo 2), dado que $A_1 < A_2$
 - ambos tienen que ser cercanos a c de forma de no distorsionar el consumo
 - Para el tipo alto (2), le cobro una tarifa de acceso alta y un precio bajo para que consuma y así tiene un mayor excedente
 - Este esquema no es atractivo para el tipo bajo (1), dado que el no quiere consumir mucho del bien
- La distorsión se da en que el grupo de menor valoración paga un precio mayor por el producto, pero una menor tasa de acceso

Tarifas no lineales óptimas (V)

Figura: Tarifa en dos partes

Tarifas no lineales óptimas (VI)

- Este esquema es el que se usa, por ejemplo, en la telefonía celular:
 - Con "tarjeta" $A_1 = 0$, pero $p_1 = 2p_2$
 - Con contrato $A_2>0,$ pero $p_2=rac{p_1}{2}$
- Este esquema es equivalente a un esquema único con una tarifa de acceso A^* y una tarifa de uso que decrece cuando el consumo aumenta: $T(q) = A^* + p_1 q_1 + p_2 (q_2 q_1^*)$ (ver gráfica!)

Outline

- POLÍTICA DE PRECIOS LINEALES
 - Primer óptimo
 - Segundo óptimo
- PRECIOS NO LINEALES
 - Tarifas no lineales con información perfecta
 - Tarifas no lineales con información imperfecta
- **3 PRECIOS PICO VALLE**
 - Introducción
 - Modelo de fijación de precio

Introducción

- Una serie de servicios públicos tienen la característica de que no se pueden almacenar y la demanda varía en forma muy importante de hora en hora, día en día o según la estación
- La electricidad es un ejemplo, donde la demanda varía según el día o la noche, según invierno o verano, etc.
- Ello lleva a que para brindar el servicio tengo que tener una capacidad igual a la mayor demanda posible: el "pico" de consumo
- Si la demanda varía a lo largo del día y la electricidad no puede almacenarse, los costos marginales también variarán a lo largo del día
- Por tanto, los precios deben acompañar estas diferencias
- Es la forma en la que se fija el precio en el mercado mayorista (ver www.adme.com.uy)

Intuición

- Debe construirse capacidad de forma de satisfacer el consumo durante el pico de consumo
- El costo marginal de aumentar la oferta en un momento de pico incluye tanto el capital y costos operativos adicionales de construir y operar el aumento en la capacidad
- El costo marginal de aumentar la oferta en un momento de valle incluye sólo los costos operativos adicionales, dado que no se requiere construir más capacidad
- Por tanto, el costo marginal social de aumentar la capacidad en un momento de pico es mucho mayor a un momento de valle
- Ello implica que el precio en un momento de pico tiene que ser lo suficientemente alto, mientras que en el momento de valle menor

Outline

- POLÍTICA DE PRECIOS LINEALES
 - Primer óptimo
 - Segundo óptimo
- PRECIOS NO LINEALES
 - Tarifas no lineales con información perfecta
 - Tarifas no lineales con información imperfecta
- PRECIOS PICO VALLE
 - Introducción
 - Modelo de fijación de precio

Modelo de precios pico - valle (I)

- Supongamos dos demandas de electricidad: valle y pico, cada una por la mitad del día
 - $q_d = q_d(p_d)$ es la demanda del día (pico)
 - $q_N = q_N(p_N)$ es la demanda de la noche (valle)
- Las demandas son independientes entre si: si $p_d = p_N$ entonces $q_d(p_d) > q_N(p_N)$
- El excedente bruto por el consumo de cada período es $S(q_i)$ y se cumple que $\frac{\partial S_i}{\partial q_i} = p_i$
- La producción de electricidad está caracterizada por una tecnología de proporciones fijas:
 - C_K es el costo de una unidad de capacidad
 - C_E es el costo operativo (marginal) de cada unidad producida de electricidad
- La demanda en cada período tiene que ser menor o igual a la capacidad instalada: $q_d \le K$ y $q_N \le K$

Modelo de precios pico - valle (II)

 La solución al problema es encontrar los precios que maximizan el excedente neto, sujeto a las restricciones de capacidad:

$$\mathcal{L} = S(q_d) + S(q_N) - C_K K - C_E(q_d + q_N) + \lambda_d(K - q_d) + \lambda_N(K - q_N)$$

- Donde λ_n y λ_N son los precios sombra de la capacidad
- Las CPO son:

•
$$\frac{\partial \mathcal{L}}{\partial q_d} = 0 = p_d - C_E - \lambda_d$$

•
$$\frac{\partial \mathcal{L}}{\partial q_N} = 0 = p_N - C_E - \lambda_N$$

•
$$\frac{\partial \mathcal{L}}{\partial K} = 0 = \lambda_d + \lambda_N - C_K$$

- Y las condiciones de holgura complementaria:
 - $\lambda_d(K-q_d)=0$
 - $\lambda_N(K-q_N)=0$

Modelo de precios pico - valle (III)

- Existen dos casos:
- CASO 1: Resultado clásico
 - La restricción no está activa para la noche (valle) y sí para el día (pico): $\lambda_d = C_k$ y $\lambda_N = 0$
 - Los precios son $p_d = C_E + C_K$; $p_N = C_E$ y se cumple que $q_N < q_d$
 - El precio en el pico es la suma del costo operativo y de capacidad marginal
 - El precio en valle es sólo el operativo; hay capacidad ociosa

Modelo de precios pico - valle (IV)

Figura: Precio pico - valle

Modelo de precios pico - valle (V)

- CASO 2: Pico movedizo
 - Ambas restricciones están activas: $\lambda_d > 0$ y $\lambda_N > 0$
 - Los precios son $p_d = C_E + \lambda_d$; $p_N = C_E + \lambda_N$ y se cumple que $\lambda_d + \lambda_N C_K = 0$ y $q_N = q_d$
 - En este caso ambos precios reparten los costos de capacidad, pero la mayor proporción va para el día dado que tiene mayor disposición a pagar

Modelo de precios pico - valle (VI)

- El caso 1 es el más común, el caso 2 se da cuando las demandas entre día y noche son muy similares y muy elásticas
- En el caso 2, si no se comparten los costos entonces el precio en el valle es muy bajo y ello distorsiona los incentivos
 - En algunos países ello indujo a que las personas utilicen calefactores eléctricos en la noche que, en situaciones de mucho frío, llevó a que la demanda en el valle supere al pico
- Existen complicaciones asociadas a este tipo de fijación de precios:
 - Primero, las fuentes de electricidad pueden ser variadas y eso altera los costos (ej. hidroeléctrica o petróleo)
 - El costo marginal de la electricidad cambia sustancialmente en tiempo real
 - Segundo, la demanda es un continuo más que un discreto de consumo

Modelo de precios pico - valle (VII)

- Sin embargo, si en vez de un sistema de pico valle se implementa un precio único, ello es por demás ineficiente
- Las ineficiencias son de dos tipos:
 - el menor precio en períodos de pico lleva a un exceso de demanda y, por tanto de capacidad
 - el mayor precio en períodos de valle lleva a una menor demanda

Modelo de precios pico - valle (VIII)

Figura: Ineficiencia del precio único