

MAY 08, 2023

OPEN ACCESS

יוסם

dx.doi.org/10.17504/protocol s.io.x54v9dj4zg3e/v1

Protocol Citation: Dan Dou, Alexander Boecker, Erika L.F. Holzbaur 2023. Culture and transfection of iPSC-derived neurons for live-imaging of axonal cargoes. **protocols.io** https://dx.doi.org/10.17504/protocols.io.x54v9dj4zg3e/v1

MANUSCRIPT CITATION:

Boecker, C.A., and Holzbaur, E.L.F. (2021). Hyperactive LRRK2 kinase impairs the trafficking of axonal autophagosomes. Autophagy 00, 1-3. Boecker, C.A., Olenick, M.A., Gallagher, E.R., Ward, M.E., and Holzbaur, E.L.F. (2020). ToolBox: Live Imaging of intracellular organelle transport in induced pluripotent stem cellderived neurons. Traffic 21, 138-155. Fernandopulle, M.S., Prestil, R., Grunseich, C., Wang, C., Gan, L., and Ward, M.E. (2018). Transcription Factor-Mediated Differentiation of Human iPSCs into Neurons. Curr. Protoc. Cell Biol. 79, e51.

Culture and transfection of iPSC-derived neurons for live-imaging of axonal cargoes

Dan Alexander Erika L.F.

Dou^{1,2}. Boecker³. Holzbaur^{1,2}

¹Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;

²Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA;

³Department of Neurology, University Medical Center Goettingen, 37077 Goettingen, Germany

Dan Dou

ABSTRACT

Here, we plate, culture, and transfect human iPSC-derived excitatory glutamatergic neurons for the purpose of observing transport of axonal cargoes under spinning disk confocal microscopy. Protocol is largely as previously described (Boecker et al., 2020, 2021; Fernandopulle et al., 2018). For preceding differentiation of neurons, see "Protocol: Piggybac-mediated stable expression of NGN2 in iPSCs for differentiation into excitatory glutamatergic neurons" and "Protocol: iNeuron differentiation from human iPSCs."

ATTACHMENTS

550-1146.pdf

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Oct 13, 2022

Last Modified: May 08,

2023

PROTOCOL integer ID: 71294

Keywords: iPSC, iNeuron, live-imaging, axon

MATERIALS

Materials

Equipment		
35 mm Dish No. 1.5 Coverslip 20 mm Glass Diameter Uncoated NAME		
Coverslip	TYPE	
Mattek	BRAND	
p35g-1-5-20-c	SKU	
https://www.mattek.com/store/p35g-1-5-20-c-case/	LINK	

Reagents

- PLO (CATALOG)
- Borate buffer (CATALOG)
- BrainPhys media (CATALOG)
- NT-3 (CATALOG)
- BDNF (CATALOG)
- B-27 supplement (CATALOG)
- Mouse laminin (CATALOG)
- 5-Fluoro-2'-deoxyuridine
- Uridine

Culture and transfection of iPSCderived neurons for live-Im...

In advance, prepare 10x PLO stock.

A	В
PLO	50 mg
0.1M borate buffer	50 mL

Note

Store 10x PLO stock at 3 -80 °C

The day before plating, coat imaging dishes with 1x PLO solution (10x PLO stock diluted in ddH_2O).

Note

It is only necessary to fully coat the glass center of the imaging dish.

3 The day of plating, remove PLO solution from imaging dishes and wash twice with ddH_2O .

3.1 Add <u>A 2 mL</u> of iNeuron culture media.

BrainPhys supplemented with

A	В
BDNF	10 ng/mL
NT-3	10 ng/mL
Laminin	1 μg/mL
B-27 supplement	1x

3.2 Place dishes in cell culture incubator for > 00:30:00

4 Rapidly thaw cryopreserved iNeurons in § 37 °C water bath.

Note

Retrieve vial to tissue culture hood when only a small amount of ice remains visible.

5 Centrifuge to remove freezing media and resuspend cell pellet in iNeuron culture media.

BrainPhys supplemented with

А	В
BDNF	10 ng/mL
NT-3	10 ng/mL
Laminin	1 μg/mL
B-27 supplement	1x

6 Count cells and plate 300k neurons per 35 mm imaging dish.

- 6.1 Add cells dropwise to the center area of the dish (so that they sink onto the glass, PLO-coated center).
- 7 For Piggybac-delivered NGN2 neurons, include [M] 10 micromolar (μM) 5-Fluoro-2'-deoxyuridine and [M] 10 micromolar (μM) uridine at the time of plating to prevent survival of mitotic cells.

Note

These drugs were removed 24 hours after plating.

8 Store neurons in cell culture incubator. Perform partial change of iNeuron media twice per week.

Note