Environment Analysis of Higher-Order Languages

Matthew Might

Georgia Institute of Technology

7 June 2007

Thesis

Environment analysis is feasible and useful for higher-order languages.

Points

Environment analysis is feasible:

- Abstract counting. (ICFP 2006, VMCAI 2007, JFP 2007)
- Abstract frame strings. (POPL 2006, TCS 2007)
- Abstract garbage collection. (ICFP 2006, VMCAI 2007, JFP 2007)
- Configuration-widening, etc.

Environment analysis is useful:

- Super-β optimizations. (PLDI 2006)
- ▶ Logic-flow analysis. (POPL 2007)

These techniques are **novel**:

Related work.

Why perform environment analysis?

- ▶ Globalization.
- Register-allocated environments.
- Lightweight closure conversion.
- Super-β inlining.
- Super-β copy propagation.
- Static closure allocation.
- Super-β rematerialization.
- ▶ Super- β teleportation.
- Escape analysis.
- Lightweight continuation conversion.
- Transducer fusion.
- Must-alias analysis.
- Logic-flow analysis & program verification.

Environments

An **environment** is a dictionary of names to values.

Environments

An **environment** is a dictionary of names to values.

Example

- \triangleright x \mapsto 3, y \mapsto 4
- ightharpoonup x \mapsto "foo"

Environment facts

- May be created, extended, mutated, contracted and destroyed.
- Arbitrary number can arise during execution.

Environment problem (Take 1)

Given two environments, on which names do they agree in value?

Higher-order languages

A higher-order language allows computation/behavior as value.

Higher-order languages

A higher-order language allows computation/behavior as value.

- ▶ Scheme/Lisp
- ► Standard ML

Higher-order languages

A higher-order language allows computation/behavior as value.

Example

- ▶ Scheme/Lisp
- Standard ML
- Java
- ▶ C++
- **.** . . .

All face the same challenges in analysis.

The challenge: tri-facetted nature of λ

In one construct, λ is:

- control,
- environment,
- and data.

Outline

- ▶ Develop *k*-CFA.
- Formalize environment problem.
- Build abstract counting.
- Make it feasible: abstract garbage collection.
- ▶ Tour △CFA.
- Review applications.
- Look at related work.

k-CFA

Where do λ terms flow?

```
(define map (λ (f lst)
  (if (pair? lst)
        (cons (f (car lst)) (map f (cdr lst)))
        '())))
(map (λ (x) (+ x 1)) '(1 2 3)) ; '(2 3 4)
(map (λ (x) (- x 1)) '(1 2 3)) ; '(0 1 2)
```

k-CFA

Where do λ terms flow?

k-CFA

Where do λ terms flow?

```
(define map (\lambda (f lst)
  (if (pair? lst)
        (cons (f (car lst)) (map f (cdr lst)))
        '())))

(map (\lambda (x) (+ x 1)) '(1 2 3)); '(2 3 4)

(map (\lambda (x) (- x 1)) '(1 2 3)); '(0 1 2)
```

```
class Animal {
public void eat() { ... }
class Dog extends Animal {
public void eat() { ... }
class Cat extends Animal { ... }
Animal fido = ...;
fido.eat();
```

```
class Animal {
public void eat() { ... }
class Dog extends Animal {
public void eat() { ... }
class/Cat extends Animal { ... }
And imal fido = \dots;
fido.eat();
```

```
class Animal {
public void eat() { ... }
class Dog extends Animal {
public void eat() { ... }
class/Cat extends Animal { ... }
An imal fido = \dots;
fido.eat();
```

```
Closure = \lambda term + environment
Object = class + struct
       (define (f x) (\lambda (z) (+ x z)))
       (define (loop n)
                 (display ((f n) n))
                 (loop (+ n 2)))
       (loop 0)
```

```
Closure = \lambda term + environment
Object = class + struct
       (define (f x) (\lambda (z) (+ x z)))
       (define (loop n)
                 (display ((f n) n))
                 (loop (+ n 2)))
       (loop 0)
```

Closure = λ term + environment Object = class + struct

Closure = λ term + environment Object = class + struct

Environments must merge during finite analysis.

```
Closure = \lambda term + environment
Object = class + struct
        (define (f x) (\lambda (z) (+ x z)))
        (define (loop n)
                                                          -[x \mapsto int]
                   (display ((f n) <del>< n))</del>
                   (loop (+ n 2)))
        (loop 0)
```

Problem: Merging blocks reasoning

Unsound reasoning

$$|x| = |y|$$
, but $x \neq y!$

Problem: Merging blocks reasoning

Unsound reasoning

$$|a| = |\mathbf{w}| = |b|$$
 does imply $a = b$.

```
(let ((f (\lambda (x h) (if (zero? x) (h) (\lambda () x))))) (f 0 (f 3 #f)))

Fact: (\lambda () x) flows to (h).
```

```
(let ((f (\lambda (x h) (if (zero? x) (h) (\lambda () x))))) (f 0 (f 3 #f)))
```

Fact: $(\lambda \ () \ x)$ flows to (h).

```
(let ((f (\lambda (x h) (if (zero? x) (h) (\lambda (\lambda (\lambda (x x))))) (f 0 (f 3 #f)))
```

Fact: $(\lambda \ () \ x)$ flows to (h).

Fact: (λ () x) flows to (h).

$$(\text{let ((f (λ (x h) (if (zero? x) (h) (λ (() x)))))})$$
 (f 0 (f 3 #f)))

Fact: $(\lambda \ () \ x)$ flows to (h).

(let ((f (
$$\lambda$$
 (x h) (if (zero? x) (λ () x) + [x \mapsto 3] (λ () x)))) (f 0 (f 3 #f)))

Fact: $(\lambda \ () \ x)$ flows to (h).

```
(\lambda () x) + [x \mapsto 3]
(\lambda () x) + [x \mapsto 3]
(\lambda () x)
```

Fact: $(\lambda \ () \ x)$ flows to (h).

```
(\lambda \ () \ x) + [x \mapsto 3] (let ((f (\lambda (x h) (if (zero? x) ((\lambda () 0)) (\lambda () 3))))) (f \ 0 \ (f \ 3 \ \#f)))
```

Fact: $(\lambda \ () \ x)$ flows to (h).

Question: Safe to super- β inline?

Answer: No.

Why: Only *one* variable x in program; but *multiple dynamic bindings*.

Strategy

- ▶ Build *k*-CFA.
- ▶ Thread environment analysis through it.

Tool: Factored environments in k-CFA

Env = Variable → Value

Tool: Factored environments in k-CFA

Env = Variable
$$\rightarrow \lambda \times$$
 Env

Must break recursion for analysis.

Env = Variable → Time

Env = Variable
$$\rightarrow$$
 Time Variable \times Time \rightarrow Value Binding

$$\underbrace{\mathsf{Variable} \times \mathsf{Time}}_{\mathsf{Binding}} \to \mathsf{Value}$$

Merge environments by partitioning Time into finite number of sets.

Definition

Abstract interpretation approximates set of reachable states.

Interpretation

Concrete: ς_1

Definition

Abstract interpretation approximates set of reachable states.

Interpretation

Concrete: $\varsigma_1 \longrightarrow \varsigma_2$

Definition

Abstract interpretation approximates set of reachable states.

Interpretation

Concrete: $\varsigma_1 \longrightarrow \varsigma_2 \longrightarrow \varsigma_3$

Definition

Abstract interpretation approximates set of reachable states.

Interpretation

Concrete:
$$\varsigma_1 \longrightarrow \varsigma_2 \longrightarrow \varsigma_3 \longrightarrow \varsigma_4$$

Definition

Abstract interpretation approximates set of reachable states.

Interpretation

Concrete: $\varsigma_1 \longrightarrow \varsigma_2 \longrightarrow \varsigma_3 \longrightarrow \varsigma_4 \longrightarrow \varsigma_5 \longrightarrow \cdots$

Definition

Abstract interpretation approximates set of reachable states.

Interpretation

Concrete:
$$\varsigma_1 \longrightarrow \varsigma_2 \longrightarrow \varsigma_3 \longrightarrow \varsigma_4 \longrightarrow \varsigma_5 \longrightarrow \cdots$$

Abstract: $\widehat{\varsigma}_1 \longrightarrow \widehat{\varsigma}_2$

Definition

Abstract interpretation approximates set of reachable states.

Interpretation

Concrete:
$$\varsigma_1 \longrightarrow \varsigma_2 \longrightarrow \varsigma_3 \longrightarrow \varsigma_4 \longrightarrow \varsigma_5 \longrightarrow \cdots$$

Abstract: $\widehat{\varsigma}_1 \longrightarrow \widehat{\varsigma}_2 \longrightarrow \widehat{\varsigma}_3$

Definition

Abstract interpretation approximates set of reachable states.

Interpretation

Concrete: $\varsigma_1 \longrightarrow \varsigma_2 \longrightarrow \varsigma_3 \longrightarrow \varsigma_4 \longrightarrow \varsigma_5 \longrightarrow \cdots$

Definition

Abstract interpretation approximates set of reachable states.

Interpretation

Example

Tool: Continuation-passing style (CPS)

Contract

- Calls don't return.
- ► Continuations (procedures) are passed—to receive return values.

Definition

A continuation encodes the future of computation.

Grammar

$$e, f \in EXP ::= v$$

 $\mid (\lambda (v_1 \cdots v_n) call)$
 $call \in CALL ::= (f e_1 \cdots e_n)$

CPS narrows concern

 λ is universal representation of control & env.

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ
sequencing	call to λ
conditional	call to λ
exception	call to λ
coroutine	call to λ
:	:

Advantage

Now λ is fine-grained construct.

Strategy

- ▶ Define state machine: $\varsigma \Rightarrow \varsigma'$.
- ▶ k-CFA = abstract interpretation of \Rightarrow .

```
( , , , )
```

```
\overbrace{(\llbracket (f\ e_1\cdots e_n)\rrbracket,\ ,\ ,\ )} Call site
```

```
(\llbracket (f \ e_1 \cdots e_n) \rrbracket, \beta, \quad , \ ) Call site \  \  \mathsf{Var} \to \mathsf{Time}
```

Call site
$$Var o Time Var imes Time o Val$$

$$\mathcal{A}(v,\beta,ve) = \left\{ \begin{array}{lcl} \mathbf{let} \ t_{\mathrm{bound}} & = & \beta(v) \\ value & = & ve(v,t_{\mathrm{bound}}) \\ \mathbf{in} \ value & & \end{array} \right.$$

$$\mathcal{A}(v,\beta,ve) = \begin{cases} \text{ let } t_{\text{bound}} &= \beta(v) \\ value &= ve(v,t_{\text{bound}}) \\ \text{ in } value \end{cases}$$

$$\overline{([(f e_1 \cdots e_n)], \beta, ve, t) \Rightarrow (, , ,)}$$

$$\mathcal{A}(v,\beta,ve) = \begin{cases} \text{ let } t_{\text{bound}} &= \beta(v) \\ value &= ve(v,t_{\text{bound}}) \\ \text{ in } value \end{cases}$$

Procedure
$$\frac{proc = \mathcal{A}(f, \beta, ve)}{(\llbracket (f \ e_1 \cdots e_n) \rrbracket, \beta, ve, t) \Rightarrow (proc, \ , \ , \)}$$

$$\mathcal{A}(v,\beta,ve) = \begin{cases} \mathbf{let} \ t_{\mathrm{bound}} &= \beta(v) \\ value &= ve(v,t_{\mathrm{bound}}) \\ \mathbf{in} \ value \end{cases}$$

$$\mathcal{A}(lam,\beta,ve) = (lam,\beta)$$

Procedure Arguments
$$\frac{proc = \mathcal{A}(f,\beta,ve) \quad d_i \neq \mathcal{A}(e_i,\beta,ve)}{(\llbracket (f\ e_1\cdots e_n) \rrbracket,\beta,ve,t) \Rightarrow (proc,\boldsymbol{d},\quad,\quad)}$$

$$\mathcal{A}(v,\beta,ve) = \begin{cases} \mathbf{let} \ t_{\mathrm{bound}} &= \beta(v) \\ value &= ve(v,t_{\mathrm{bound}}) \\ \mathbf{in} \ value \end{cases}$$

$$\mathcal{A}(lam,\beta,ve) = (lam,\beta)$$

Procedure Arguments
$$\frac{proc = \mathcal{A}(f,\beta,ve) \qquad d_i = \mathcal{A}(e_i,\beta,ve)}{(\llbracket (f\ e_1 \cdots e_n) \rrbracket,\beta,ve,t) \Rightarrow (proc,d,ve,)}$$

$$\forall \mathsf{Var} \times \mathsf{Time} \to \mathsf{Val}$$

$$\mathcal{A}(v,\beta,ve) = \begin{cases} \mathbf{let} \ t_{\mathrm{bound}} &= \beta(v) \\ value &= ve(v,t_{\mathrm{bound}}) \\ \mathbf{in} \ value \end{cases}$$

$$\mathcal{A}(lam,\beta,ve) = (lam,\beta)$$

Procedure Arguments
$$\frac{proc = \mathcal{A}(f,\beta,ve)}{(\llbracket (f\ e_1 \cdots e_n) \rrbracket,\beta,ve,t) \Rightarrow (proc,d,ve,t+1)}$$

$$\text{Var} \times \text{Time} \rightarrow \text{Val} \ \ \text{Timestamp}$$

$$\mathcal{A}(v,\beta,ve) = \begin{cases} \mathbf{let} \ t_{\mathrm{bound}} &= \ \beta(v) \\ value &= \ ve(v,t_{\mathrm{bound}}) \\ \mathbf{in} \ value \end{cases}$$

$$\mathcal{A}(lam,\beta,ve) = (lam,\beta)$$

(, , ,)

```
((\llbracket (\lambda \ (v_1 \cdots v_n) \ call) \rrbracket, \beta'), \mathbf{d}, v_{e,t})
```

```
((\llbracket (\lambda \ (v_1 \cdots v_n) \ call) \rrbracket, \beta'), \mathbf{d}, v_e, t) \Rightarrow ( , , , , , )
```


$$((\llbracket (\lambda \ (v_1 \cdots v_n) \ call) \rrbracket, \beta'), \boldsymbol{d}, v_{e}, t) \Rightarrow (call, \beta'[v_i \mapsto t], v_{e}[(v_i, t) \mapsto d_i], t)$$

Eval-state transition

$$\frac{proc = \mathcal{A}(f, \beta, ve)}{(\llbracket (f \ e_1 \cdots e_n) \rrbracket, \beta, ve, t) \Rightarrow (proc, \mathbf{d}, ve, t + 1)}$$

Apply-state transition

$$\frac{proc = ([(\lambda (v_1 \cdots v_n) call)], \beta')}{(proc, \mathbf{d}, ve, t) \Rightarrow (call, \beta'[v_i \mapsto t], ve[(v_i, t) \mapsto d_i], t)}$$

Domains Lookup function $\varsigma \in Eval = CALL \times BEnv \times VEnv \times Time$

$$+ Apply = Proc \times D^* \times VEnv \times Time$$

$$\beta \in BEnv = VAR \rightarrow Time$$

$$ve \in VEnv = VAR \times Time \rightarrow D$$

$$proc \in Proc = Clo + \{halt\}$$

 $clo \in Clo = LAM \times BEnv$

$$d \in D = Proc$$

$$a \in D = Proc$$

 $t \in Time = infinite set of times (contours)$

$$\mathcal{A}(v,\beta,ve)$$

 $\mathcal{A}(lam, \beta, ve)$

 $= (lam, \beta)$

$$=ve(v, t)$$

$$= ve(v,\beta(v))$$

Eval-state transition

$$\frac{\widehat{proc} \in \widehat{\mathcal{A}}(f, \widehat{\beta}, \widehat{ve}) \qquad \widehat{d}_i = \widehat{\mathcal{A}}(e_i, \widehat{\beta}, \widehat{ve})}{(\llbracket (f e_1 \cdots e_n) \rrbracket, \widehat{\beta}, \widehat{ve}, \widehat{t}) \approx (\widehat{proc}, \widehat{\boldsymbol{d}}, \widehat{ve}, \widehat{succ}(\widehat{t}))}$$

Apply-state transition

$$\frac{\widehat{proc} = (\llbracket (\lambda \ (v_1 \cdots v_n) \ call) \rrbracket, \widehat{\beta}')}{(\widehat{proc}, \widehat{\boldsymbol{d}}, \widehat{ve}, \widehat{\boldsymbol{t}}) \approx (call, \widehat{\beta}'[v_i \mapsto \widehat{\boldsymbol{t}}], \widehat{ve} \sqcup [(v_i, \widehat{\boldsymbol{t}}) \mapsto \widehat{\boldsymbol{d}}_i], \widehat{\boldsymbol{t}})}$$

Domains

$$\widehat{\varsigma} \in \widehat{Eval} = \underbrace{CALL \times \widehat{BEnv} \times \widehat{VEnv} \times \widehat{Time}}_{+ \widehat{Apply} = \widehat{Proc} \times \widehat{D}^* \times \widehat{VEnv} \times \widehat{Time}}$$

$$\widehat{\beta} \in \widehat{BEnv} = VAR \to \widehat{Time}$$

Lookup function

$$\widehat{\mathcal{A}}(lam,\widehat{eta},\widehat{ve})$$

$$\widehat{ve} \in \widehat{VEnv} = \underbrace{VAR \times \widehat{Time}}_{\widehat{proc}} \to \widehat{D}$$

$$\widehat{proc} \in \widehat{Proc} = \widehat{Clo} + \{halt\}$$

 $\widehat{t} \in \widehat{Time} = \text{finite set of times (contours)}$

$$\widehat{cl}$$

$$\widehat{clo} \in \widehat{Clo} = LAM \times \widehat{BEnv}
\widehat{d} \in \widehat{D} = \mathcal{P}(\widehat{Proc})$$

$$= \{(lam, \widehat{\beta})\}$$

$$\widehat{\mathcal{A}}(v, \widehat{\beta}, \widehat{ve})$$

$$= \widehat{ve}(v, \widehat{\beta}(v))$$

Eval-state transition

$$\frac{\widehat{proc} \in \widehat{\mathcal{A}}(f, \widehat{\beta}, \widehat{ve}) \qquad \widehat{d}_i = \widehat{\mathcal{A}}(e_i, \widehat{\beta}, \widehat{ve})}{(\llbracket (f e_1 \cdots e_n) \rrbracket, \widehat{\beta}, \widehat{ve}, \widehat{t}) \approx (\widehat{proc}, \widehat{\boldsymbol{d}}, \widehat{ve}, \widehat{\boldsymbol{succ}}(\widehat{t}))}$$

Apply-state transition

$$\frac{\widehat{proc} = ([(\lambda \ (v_1 \cdots v_n) \ call)], \widehat{\beta}')}{(\widehat{proc}, \widehat{d}, \widehat{ve}, \widehat{t}) \approx (call, \widehat{\beta}'[v_i \mapsto \widehat{t}], \widehat{ve} \sqcup [(v_i, \widehat{t}) \mapsto \widehat{d}_i], \widehat{t})}$$

Domains
$$\widehat{\varsigma} \in \widehat{Eval} = \underbrace{CALL \times \widehat{BEnv} \times \widehat{VEnv} \times \widehat{Time}}_{+ \widehat{Apply}} + \widehat{Apply} = \widehat{Proc} \times \widehat{D}^* \times \widehat{VEnv} \times \widehat{Time}$$

$$\widehat{\beta} \in \underbrace{\widetilde{BEnv}}_{PVg} = VAR \to \underbrace{\widetilde{Time}}_{PVg}$$

$$\beta \in BEnv = VAR \rightarrow Time$$

 $\widehat{ve} \in \widehat{VEnv} = VAR \times \widehat{Time} \rightarrow \widehat{D}$

$$ve \in VEnv = VAR \times Time \rightarrow L$$

$$\widehat{proc} \in \widehat{Proc} = \widehat{Clo} + \{halt\}$$

$$\widehat{clo} \in \widehat{Clo} = LAM \times \widehat{BEnv}
\widehat{d} \in \widehat{D} = \widehat{\mathcal{P}(Proc)}$$

$$\widehat{\mathcal{A}}(lam,\widehat{eta},\widehat{ve})$$

Lookup function

$$= \{(lam, \widehat{\beta})\}$$
$$\widehat{\mathcal{A}}(v, \widehat{\beta}, \widehat{ve})$$

$$(v,\widehat{eta},\widehat{ve})$$

$$\widehat{A}(v,\widehat{\beta},\widehat{ve})$$
 $\widehat{A}(v,\widehat{\beta},\widehat{ve})$ $\widehat{A}(v,$

Environment analysis, Take 1: μ CFA

Environment problem refined

Input

Two abstract environments, $\widehat{\beta}_1$ and $\widehat{\beta}_2$.

Environment problem refined

Input

Two abstract environments, $\widehat{\beta}_1$ and $\widehat{\beta}_2$.

Output

The set of variables on which their concrete counterparts agree.

Strategy

Count concrete counterparts to abstract bindings.

Strategy

- Count concrete counterparts to abstract bindings.
- ▶ Apply principle: $\{x\} = \{y\} \implies x = y$.

Tool: Abstract counting

Abstract binding counter, $\widehat{\mu}$: "Bindings" $\rightarrow \{0, 1, \infty\}$.

Eval

$$(\llbracket (f \ e_1 \cdots e_n) \rrbracket, \widehat{\beta}, \widehat{ve}, \quad \widehat{t}) \approx (\widehat{proc}, \widehat{\boldsymbol{d}}, \widehat{ve}, \quad \widehat{succ}(\widehat{t}))$$

$$\text{where } \begin{cases} \widehat{proc} \in \widehat{\mathcal{A}}(f, \widehat{\beta}, \widehat{ve}) \\ \widehat{d}_i = \widehat{\mathcal{A}}(e_i, \widehat{\beta}, \widehat{ve}) \end{cases}$$

Apply

$$((\llbracket (\lambda \ (v_1 \cdots v_n) \ call) \rrbracket, \widehat{\beta}_b), \widehat{\boldsymbol{d}}, \widehat{ve}, \quad \widehat{\boldsymbol{t}}) \approx (call, \widehat{\beta}', \widehat{ve}', \quad \widehat{\boldsymbol{t}})$$

$$\text{where} \begin{cases} \widehat{\beta}' = \widehat{\beta}_b [v_i \mapsto \widehat{\boldsymbol{t}}] \\ \widehat{ve}' = \widehat{ve} \sqcup [(v_i, \widehat{\boldsymbol{t}}) \mapsto \widehat{d}_i] \end{cases}$$

Tool: Abstract counting

Abstract binding counter, $\widehat{\mu}$: "Bindings" $\rightarrow \{0, 1, \infty\}$.

Eval

$$(\llbracket (f \ e_1 \cdots e_n) \rrbracket, \widehat{\beta}, \widehat{ve}, \widehat{\underline{\mu}}, \widehat{t}) \approx (\widehat{proc}, \widehat{\boldsymbol{d}}, \widehat{ve}, \widehat{\underline{\mu}}, \widehat{succ}(\widehat{t}))$$

$$\text{where } \begin{cases} \widehat{proc} \in \widehat{\mathcal{A}}(f, \widehat{\beta}, \widehat{ve}) \\ \widehat{d}_i = \widehat{\mathcal{A}}(e_i, \widehat{\beta}, \widehat{ve}) \end{cases}$$

Apply

$$((\llbracket (\lambda \ (v_1 \cdots v_n) \ call) \rrbracket, \widehat{\beta}_b), \widehat{\boldsymbol{d}}, \widehat{ve}, \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{t}}) \approx (call, \widehat{\beta}', \widehat{ve}', \widehat{\boldsymbol{\mu}}', \widehat{\boldsymbol{t}})$$

$$\text{where} \begin{cases} \widehat{\beta}' = \widehat{\beta}_b [v_i \mapsto \widehat{\boldsymbol{t}}] \\ \widehat{ve}' = \widehat{ve} \sqcup [(v_i, \widehat{\boldsymbol{t}}) \mapsto \widehat{d}_i] \\ \widehat{\boldsymbol{\mu}}' = \widehat{\boldsymbol{\mu}} \oplus [(v_i, \widehat{\boldsymbol{t}}) \mapsto 1] \end{cases}$$

μ CFA environment condition

Basic Principle

If $\{x\} = \{y\}$, then x = y.

Theorem (Environment condition)

$$\begin{array}{ll} \text{If} & \widehat{\beta}_1(v) = \widehat{\beta}_2(v), \\ \text{and} & \widehat{\mu}(v,\widehat{\beta}_1(v)) = \widehat{\mu}(v,\widehat{\beta}_2(v)) = 1, \\ \text{then} & \beta_1(v) = \beta_2(v). \end{array}$$

μ CFA environment condition

Basic Principle

```
If \{x\} = \{y\}, then x = y.
```

Theorem (Environment condition)

```
\begin{array}{ll} \text{If} & \widehat{\beta}_1(v) = \widehat{\beta}_2(v), \\ \text{and} & \widehat{\mu}(v,\widehat{\beta}_1(v)) = \widehat{\mu}(v,\widehat{\beta}_2(v)) = 1, \\ \text{then} & \beta_1(v) = \beta_2(v), \\ \text{where:} & (v,\beta_1(v)) \in dom(ve), \\ \text{and} & |\beta_i| \sqsubseteq \widehat{\beta}_i, \\ \text{and} & |ve|^{\mu} \sqsubseteq \widehat{\mu}. \end{array}
```

μ CFA environment condition

Basic Principle

```
If \{x\} = \{y\}, then x = y.
```

Theorem (Environment condition)

```
\begin{array}{ll} \text{If} & \widehat{\beta}_1(v) = \widehat{\beta}_2(v), \\ \text{and} & \widehat{\mu}(v,\widehat{\beta}_1(v)) = \widehat{\mu}(v,\widehat{\beta}_2(v)) = 1, \\ \text{then} & \beta_1(v) = \beta_2(v), \\ \text{where:} & (v,\beta_1(v)) \in dom(ve), \\ \text{and} & |\beta_i| \sqsubseteq \widehat{\beta}_i, \\ \text{and} & |ve|^{\mu} \sqsubseteq \widehat{\mu}. \end{array}
```

Problem

Most counts hit ∞ : almost every variable bound more than once!

Making it feasible: Γ CFA

3-address concrete heap. 2-address abstract counterpart.

3-address concrete heap. 2-address abstract counterpart.

3-address concrete heap. 2-address abstract counterpart.

Next: Allocate object o_2 to address a_3 . Shift root to a_3 .

Next: Allocate object o_3 to address a_2 . Point o_2 to a_2 .

Uh-oh! Zombie born. Concrete-abstract symmetry broken.

Solution: Rewind and garbage collect first.

As it was:

After garbage collection:

Try again: Allocate object o_3 to address a_2 . Point o_2 to a_2 .

No overapproximation!

Correctness of garbage collection

Theorem

Garbage collection does not change the meaning of a program:

Soundness of the analysis

Theorem (Correctness of Γ CFA)

 Γ CFA simulates the concrete semantics.

Abstract garbage collection & polyvariance

Question

Consider (λ (... k) ...). To where will it return?

0CFA

To everywhere called: Flow set for k grows monotonically.

ΓCFA with 0CFA contour set

To last call, if tail-recursive or leaf procedure.

Example: Forking

```
(define (identity x) x)
(define mylock (identity lock))
(define myunlock (identity unlock))
(mylock mutex)
(myunlock mutex)
```

Example: Forking

```
(define (identity x) x)
(define mylock (identity lock))
(define myunlock (identity unlock))
(mylock mutex)
(myunlock mutex)
```

Without GC

Example: Forking

```
(define (identity x) x)
(define mylock (identity lock))
(define myunlock (identity unlock))
(mylock mutex)
(myunlock mutex)
```

Without GC

With GC

Vicious cycle

Virtuous cycle

Implementation & Results

Without GC

With GC

Flow results: 0CFA & GC

Counting results: 0CFA & GC

program	% of variables with count \leq 1
earley	94%
int-fringe-coro	89%
int-stream-coro	82%
lattice	91%
nboyer	98%
perm	95%
put-double-coro	92%
sboyer	98%

Results: 0CFA, GC, Counting & Widening

	k = 0	,c,no-GC	k =	0 , p	k =	0,c	k	=0,s
earley	15%	258s	94%	24s	94%	15s	95%	90s
int-fringe-coro	26%	8s	87%	5s	87%	2s	89%	2s
int-stream-coro	14%	15s	79%	14s	79%	8s	82%	7s
lattice	12%	59s	91%	10s	91%	6s	OOM	>71m
nboyer	12%	68s	98%	93s	98%	48s	98%	18,420s
perm	8%	90s	95%	2s	95%	6s	95%	2s
put-double-coro	41%	2s	89%	2s	89%	1s	92%	0.8s
sboyer	OOM	>1,024s	98%	95s	98%	50s	OOM	>20,065s

- GC wins for precision & speed.
- Widening costs little precision.
- On average, widening saves time.

Results: 1CFA, GC, Counting & Widening

	k=1,p		k	=1,c	k=1,s	
earley	94%	143s	94%	83s	OOM	>45m
int-fringe-coro	88%	54s	88%	13s	92%	9s
int-stream-coro	87%	72s	87%	11s	90%	8s
lattice	91%	56s	92%	24s	OOM	>89m
nboyer	99%	221s	99%	231s	OOM	>164,040s
perm	95%	9s	95%	4s	95%	60s
put-double-coro	90%	12s	90%	4s	93%	2s
sboyer	98%	286s	OOM	>21,031s	OOM	>45,040s

- Widening costs little precision.
- On average, widening saves time.
- Small precision advantage to 1CFA.
- Large time cost to 1CFA.

Results: Improvements in super- β inlining

	0CFA+GC			
Program	Inlines w/o Counting	Inlines w/Counting		
fact-tail	2	4		
fact-y-combinator	4	8		
nested-loops	4	10		
put-double-coroutines	28	55		
integrate-fringe-coroutines	45	77		
integrate-stream-coroutines	46	72		

Environment analysis, Take 2: △CFA

Tool: Procedure strings

Classic model (Sharir & Pnueli, Harrison)

- Program trace at procedure level
- String of procedure activation/deactivation actions

Actions

control: call/return stack: push/pop

Tool: Procedure strings

Classic model (Sharir & Pnueli, Harrison)

- Program trace at procedure level
- String of procedure activation/deactivation actions

Actions

```
control: call/return stack: push/pop
```

```
(fact 1)
```

```
call fact / call zero? / return zero? / call - / return - / call fact / call zero? / return zero? / return fact / call * / return * / return fact
```

Note: Call/return items nest like parens.

CPS & stacks

But wait! CPS is all calls, no returns!

Procedure strings won't nest properly: call a / call b / call c / call d / ...

CPS & stacks

But wait! CPS is all calls, no returns!

Procedure strings won't nest properly: call a / call b / call c / call d / ...

Not necessarily.

User/continuation partition of CPS

Recursive factorial

```
(\lambda_t \text{ (n ktop)})
   (letrec ((f (\lambda_f (m k)
                         (%if0 m
                            (\lambda_1 \ () \ (k \ 1))
                            (\lambda_2)
                               (- m 1 (\lambda_3 (m2))
                                             (f m2 (\lambda_4 (a)
                                                         (* m a k)
                                                         )))))))))
      (f n ktop)))
```

CPS conversion adds blue/red annotations, permitting frame-push/frame-pop execution model.

Two control constructs

- Call a function.
- Call a continuation.

Problem

Meaning of call/return still a little murky.

Solution

Track stack behavior: push/pop.

Frame strings

```
 \langle {}^{a}_{6} | \langle {}^{b}_{7} | {}^{b}_{7} \rangle | {}^{a}_{6} \rangle 
 | {}^{q}_{38} \rangle \langle {}^{q}_{38} | 
 \langle {}^{r}_{21} | {}^{r}_{21} \rangle \langle {}^{a}_{71} | 
 \langle {}^{a}_{4} | \langle {}^{b}_{5} | {}^{b}_{5} \rangle \langle {}^{c}_{6} |
```

Anatomy of a frame-string character

Modelling control/env with frame strings & CPS

A vocabulary for describing computational structure

```
 \begin{array}{lll} \text{Tail call (iteration):} & |\mathring{,}^{\gamma}\rangle\cdots|\mathring{,}^{\gamma}\rangle|^{l}_{\cdot}\rangle\langle^{l}_{\cdot}| \\ & \text{Non-tail call:} & \langle ^{l}_{\cdot}| \\ & \text{Simple return:} & |\mathring{,}^{\gamma}\rangle\cdots|\mathring{,}^{\gamma}\rangle|^{l}_{\cdot}\rangle\langle^{\gamma}| \\ & \text{Primop call:} & \langle ^{l}_{\cdot}||^{l}_{\cdot}\rangle\langle^{\gamma}| \text{ or } |\mathring{,}^{\gamma}\rangle\cdots|\mathring{,}^{\gamma}\rangle|^{l}_{\cdot}\rangle\langle^{l}_{\cdot}||^{l}_{\cdot}\rangle\langle^{\gamma}| \\ & \text{"Upward" throw:} & |:\rangle\cdots|:\rangle\langle^{\gamma}| \\ & \text{"Downward" throw:} & |:\rangle\cdots|:\rangle\langle:|\cdots\langle:|\langle\mathring{,}^{\gamma}|| \\ & \text{Coroutine switch:} & |:\rangle\cdots|:\rangle\langle:|\cdots\langle:|\langle\mathring{,}^{\gamma}|| \\ \end{array}
```

Handles any stack-to-stack delta.

Eval-state transition

```
 \begin{array}{l} \hline \\ \left( \llbracket (f\ e^*\ q^*)_\kappa \rrbracket, \beta, ve, \quad t \right) \Rightarrow (proc, \mathbf{d}, \mathbf{c}, ve, \quad t) \\ \\ \left\{ \begin{array}{l} proc = \mathcal{A}\,\beta \ ve \ t \ f \\ \\ d_i = \mathcal{A}\,\beta \ ve \ t \ q_j \end{array} \right. \\ \\ \text{where} \end{array} \right.
```

Apply-state transition

```
\frac{length(\mathbf{d}) = length(\mathbf{u}) \qquad length(\mathbf{c}) = length(\mathbf{k})}{(([\![ \mathbf{Q}_{\psi} \ (u^* \ k^*) \ call) ]\!], \beta, t_b), \mathbf{d}, \mathbf{c}, ve, \quad t) \ \Rightarrow (call, \beta', ve', \quad t')} where \begin{cases} t' = tick(t) \\ \beta' = \beta[u_i \mapsto t', k_j \mapsto t'] \\ ve' = ve[(u_i, t') \mapsto d_i, (k_j, t') \mapsto c_j] \end{cases}
```

Eval-state transition

```
 \begin{split} \overline{\left( \left[\!\!\left[ (f\ e^*\ q^*)_\kappa \right]\!\!\right], \beta, ve, \delta, t \right)} &\Rightarrow (proc, \mathbf{d}, \mathbf{c}, ve, \delta', t) \\ \text{where} & \begin{cases} proc = \mathcal{A} \, \beta \, ve \, t \, f \\ d_i = \mathcal{A} \, \beta \, ve \, t \, e_i \\ c_j = \mathcal{A} \, \beta \, ve \, t \, q_j \\ \end{cases} \\ \nabla \varsigma &= \begin{cases} (age_\delta \, proc)^{-1} & f \in CEXP \\ (youngest_\delta \, \mathbf{c})^{-1} & \text{otherwise} \\ \delta' = \delta + (\lambda t. \nabla \varsigma) \end{cases}
```

Apply-state transition

$$\begin{split} & \underbrace{length(\mathbf{d}) = length(\mathbf{u}) \quad length(\mathbf{c}) = length(\mathbf{k})}_{\{([\![(\mathbf{k})_{\psi} \ (u^* \ k^*) \ call)]\!], \beta, t_b), \mathbf{d}, \mathbf{c}, ve, \underbrace{\delta, t}) \ \Rightarrow (call, \beta', ve', \underbrace{\delta', t'}) \\ & \text{where} & \begin{cases} t' = tick(t) \\ \beta' = \beta[u_i \mapsto t', k_j \mapsto t'] \\ ve' = ve[(u_i, t') \mapsto d_i, (k_j, t') \mapsto c_j] \\ \forall c \in \langle \psi'_t | \\ \delta' = (\delta + (\lambda t. \nabla \zeta))[t' \mapsto \epsilon] \end{cases} \end{split}$$

Eval-state transition

$$\begin{split} & \overbrace{(\llbracket (f\ e^*\ q^*)_\kappa \rrbracket, \widehat{\beta}, \widehat{ve}, \widehat{\delta}, \widehat{t})} \ \otimes \ (\widehat{proc}, \widehat{\mathbf{d}}, \widehat{\mathbf{c}}, \widehat{ve}, \widehat{\delta}', \widehat{t}) \\ & \text{where} \ \begin{cases} \widehat{proc} \in \widehat{\mathcal{A}} \ \widehat{\beta} \ \widehat{ve} \ \widehat{t} \ f \\ \widehat{d}_i = \widehat{\mathcal{A}} \ \widehat{\beta} \ \widehat{ve} \ \widehat{t} \ e_i \\ \widehat{c}_i = \widehat{\mathcal{A}} \ \widehat{\beta} \ \widehat{ve} \ \widehat{t} \ q_i \\ \\ \Delta \widehat{p} = \begin{cases} \widehat{(age_{\widehat{\delta}} \{\widehat{proc}\})^{-1}} \quad f \in EXPC \\ \widehat{(youngest_{\widehat{\delta}} \ \widehat{\mathbf{c}})^{-1} \quad \text{otherwise} \end{cases} \\ \widehat{\delta}' = \widehat{\delta} \oplus (\lambda \widehat{t}. \Delta \widehat{p}) \end{split}$$

Apply-state transition

$$\begin{split} &\frac{length(\widehat{\mathbf{d}}) = length(\mathbf{u}) \qquad length(\widehat{\mathbf{c}}) = length(\mathbf{k})}{(([\![(\lambda_{\psi} \ (u^* \ k^*) \ call)]\!], \widehat{\beta}, \widehat{t}_b), \widehat{\mathbf{d}}, \widehat{\mathbf{c}}, \widehat{ve}, \widehat{\delta}, \widehat{t}) \ \, \gg \ \, (call, \widehat{\beta}', \widehat{ve}', \widehat{\delta}', \widehat{t}')} \\ & \left\{ \begin{array}{l} \widehat{t}' = \widehat{tick}(\widehat{t}) \\ \widehat{\beta}' = \widehat{\beta}[u_i \mapsto \widehat{t}', k_j \mapsto \widehat{t}'] \\ \widehat{ve}' = \widehat{ve} \ \sqcup \ \, \big[(u_i, \widehat{t}') \mapsto \widehat{d}_i, (k_j, \widehat{t}') \mapsto \widehat{c}_j \big] \\ \Delta \widehat{p} = |\langle \widehat{p}' \rangle | \\ \widehat{\delta}' = (\widehat{\delta} \oplus (\lambda \widehat{t}. \Delta \widehat{p})) \ \sqcup \ \, \big[\widehat{t}' \mapsto |\epsilon| \big] \end{array} \right. \end{split}$$

Soundness theorem

Theorem (Analysis safety)

 Δ CFA simulates the concrete semantics.

Connecting frame strings & environments

Interval notation for frame-string change

$$[t,t']=\delta_{t'}(t)$$

Theorem

Environments separated by continuation frame actions differ by the continuations' bindings.

$$\lfloor [t_0, t_2] + [t_1, t_2]^{-1} \rfloor = |_{i_1}^{\gamma_1} \rangle \cdots |_{i_n}^{\gamma_n} \rangle \langle_{t_1}^{\gamma_1'} | \cdots \langle_{t_m}^{\gamma_n'} | \implies \beta_{t_1} | \overline{B(\boldsymbol{\gamma'})} = \beta_{t_0} | \overline{B(\boldsymbol{\gamma})}.$$

(Note: inferring t_0/t_1 environment relationship from log at time t_2 .)

Concrete super- β condition

In English

 λ expression ψ may be inlined at call site κ if, whenever we call a procedure from call site κ ,

- \blacktriangleright it is a closure over ψ , and
- the closure environment and the call-site environment have identical bindings for the free vars of ψ .

As mathematics

$$\begin{split} Inlinable((\kappa,\psi),pr) &= \forall (\llbracket (f\ e^*\ q^*)_\kappa \rrbracket,\beta,ve,\delta,t) \in \mathcal{V}(pr): \\ &\quad \text{if } \kappa = \kappa' \text{ and } (L_{pr}(\psi'),\beta_b,t_b) = \mathcal{A}\,\beta\,ve\,t\,f \\ &\quad \text{then } \begin{cases} \psi = \psi' \\ \beta_b | free(L_{pr}(\psi)) = \beta | free(L_{pr}(\psi)) \end{cases} \end{split}$$

Correctness theorem

Theorem (Super- β transform safety)

 $Inlinable((\kappa,\psi),pr)$ -directed inlining does not change meaning of program.

Concrete super- β conditions—in frame-string terms

$$\begin{aligned} Local\text{-}Inlinable((\kappa,\psi),pr) &= \forall (\llbracket (f\ e^*\ q^*)_\kappa \rrbracket,\beta,ve,\delta,t) \in \mathcal{V}(pr): \\ &\text{if } \kappa = \kappa' \text{ and } (L_{pr}(\psi'),\beta_b,t_b) = \mathcal{A}\beta \text{ } ve \text{ } tf \end{aligned} \\ &\text{then } \begin{cases} \psi = \psi' \\ \exists \gamma: \left\{ \lfloor [t_b,t] \rfloor \succ^\gamma \epsilon \right. \\ free(L_{pr}(\psi)) \subseteq \overline{B(\gamma)}. \end{cases} \end{aligned}$$

$$Escaping\text{-}Inlinable((\kappa,\psi),pr) = \\ \forall (\llbracket (f\ e^*\ q^*)_\kappa \rrbracket,\beta,ve,\delta,t) \in \mathcal{V}(pr): \\ &\text{if } \kappa = \kappa' \text{ and } (L_{pr}(\psi'),\beta_b,t_b) = \mathcal{A}\beta \text{ } ve \text{ } tf \end{cases} \\ &\text{then } \begin{cases} \psi = \psi' \\ \forall v \in free(L_{pr}(\psi')): \exists \gamma: \left\{ \lfloor [\beta(v),t] \rfloor \succ^\gamma \lfloor [t_b,t] \rfloor \right. \\ v \not\in B(\gamma). \end{cases} \end{aligned}$$

$$General\text{-}Inlinable((\kappa,\psi),pr) = \\ \forall (\llbracket (f\ e^*\ q^*)_\kappa \rrbracket,\beta,ve,\delta,t) \in \mathcal{V}(pr): \\ &\text{if } \kappa = \kappa' \text{ and } (L_{pr}(\psi'),\beta_b,t_b) = \mathcal{A}\beta \text{ } ve \text{ } tf \end{cases} \\ &\text{then } \begin{cases} \psi = \psi' \\ \forall v \in free(L_{pr}(\psi')): \lfloor [\beta(v),t] \rfloor = \lfloor [\beta_b(v),t] \rfloor. \end{cases}$$

Abstract super- β conditions—in frame-string terms

$$\begin{split} \widehat{Local\text{-}Inlinable}((\kappa,\psi),pr) &= \forall (\llbracket (f\ e^*\ q^*)_\kappa \rrbracket, \widehat{\beta}, \widehat{ve}, \widehat{\delta}, \widehat{t}) \in \widehat{\mathcal{V}}(pr): \\ &\text{if } \kappa = \kappa' \text{ and } (L_{pr}(\psi'), \widehat{\beta}_b, \widehat{t}_b) = \widehat{\mathcal{A}}\,\widehat{\beta}\,\widehat{ve}\,\widehat{t}\,f \\ &\text{then } \begin{cases} \psi = \psi' \\ \exists \gamma: \begin{cases} \widehat{\delta}(\widehat{t}_b) \succsim^{\gamma} |\epsilon| \\ free(L_{pr}(\psi)) \subseteq \overline{B(\gamma)}. \end{cases} \end{split}$$

$$Escaping-Inlinable((\kappa, \psi), pr) \iff$$

$$\forall (\llbracket (f\ e^*\ q^*)_\kappa \rrbracket, \widehat{\beta}, \widehat{ve}, \widehat{\delta}, \widehat{t}) \in \widehat{\mathcal{V}}(pr): \\ \text{if } \kappa = \kappa' \text{ and } (L_{pr}(\psi'), \widehat{\beta}_b, \widehat{t}_b) = \widehat{\mathcal{A}} \, \widehat{\beta} \, \widehat{ve} \, \widehat{t} \, f \\ \text{then } \begin{cases} \psi = \psi' \\ \forall v \in free(L_{pr}(\psi')): \exists \gamma: \begin{cases} \widehat{\delta}(\widehat{\beta}(v)) \succsim^{\gamma} \widehat{\delta}(\widehat{t}_b) \\ v \not\in B(\gamma). \end{cases} \end{cases}$$

 $\forall (\llbracket (f \ e^* \ q^*)_{\kappa} \rrbracket, \widehat{\beta}, \widehat{ve}, \widehat{\delta}, \widehat{t}) \in \widehat{\mathcal{V}}(pr) :$

$$\forall (\| (f \ e^* \ q^*)_{\kappa} \|, \beta, ve, \delta, t) \in \mathcal{V}(pr) :$$

$$\mathsf{if} \ \kappa = \kappa' \ \mathsf{and} \ (L_{pr}(\psi'), \widehat{\beta}_b, \widehat{t}_b) = \widehat{\mathcal{A}} \ \widehat{\beta} \ \widehat{ve} \ \widehat{t} \ f$$

$$\mathsf{then} \ \begin{cases} \psi = \psi' \\ \forall v \in \mathit{free}(L_{nr}(\psi')) : \widehat{\delta}(\widehat{\beta}(v)) = \widehat{\delta}(\widehat{\beta}_b(v)). \end{cases}$$

Applications

Application: Globalization

Transformation

Turn x into global variable.

Condition

Measure of x never exceeds 1.

Payoff

Smaller (possibly eliminated) environments in closures.

Application: Register-allocated environments

Transformation

Allocate escaping variables to registers.

Condition

- ▶ Variables interfere if state exists where both have measure ≥ 1 .
- ► Color interference graph with registers.

Payoff

Smaller environments, faster code.

Application: Super- β copy propagation

Transformation

Replace reference x with reference z.

Condition

In states using x, value bound to $x \equiv$ value bound to z.

Payoff

- May make x useless.
- Enables continuation promotion.
- Enables coroutine fusion.

Application: Static closure allocation

Transformation

Allocate environment record for closure at compile time.

Condition

Measure of λ term never exceeds 1.

Payoff

- Eliminates stack and heap allocation.
- Eliminates record offset computation.

Application: Super- β rematerialization

Transformation

Inline λ term where free variables not available.

Condition

Values of non-available free-variables are recomputable.

Payoff

Smaller (possibly eliminated) environment records for closures.

Application: Super- β teleportation

Transformation

Inline λ term where free variables not available.

Condition

Free variables can be moved to common scope, e.g., globalized.

Payoff

Smaller (possibly eliminated) environment records for closures.

Application: Must-alias analysis

Condition

- Two abstract addresses are equal.
- Both have measure 1.

Payoff

- Strong update: better precision.
- Double-free detection.
- Use of freed memory detection.

Application: Escape analysis

Transformation

Turn heap allocation into stack allocation.

Condition

Net stack motion from creation to use is pushes.

Payoff

Cheaper allocation.

Application: Lightweight continuation conversion

Transformation

Convert continuations from stacks to stack pointers.

Condition

Net stack motion from creation to use is pushes.

Payoff

Cheaper continuations in common case.

Application: Static setjmp/longjmp verification

Condition

Net stack motion from creation to use is pushes.

Payoff

Program will never return to smashed stack.

Process Pipelines

- ▶ Unix pipes, e.g., find . | grep foo
- Graphics pipelines.
- Network stacks.
- ▶ DSP networks.

Process Pipelines

- ▶ Unix pipes, e.g., find . | grep foo
- Graphics pipelines.
- Network stacks.
- ▶ DSP networks.

If only...

Process Pipelines

- ▶ Unix pipes, e.g., find . | grep foo
- Graphics pipelines.
- Network stacks.
- ▶ DSP networks.

If only...

Process Pipelines

- ▶ Unix pipes, e.g., find . | grep foo
- Graphics pipelines.
- Network stacks.
- ▶ DSP networks.

If only...

Application: Transducer/process fusion

Process Pipelines

- ▶ Unix pipes, e.g., find . | grep foo
- Graphics pipelines.
- Network stacks.
- ▶ DSP networks.

If only...

Application: Transducer/process fusion

Process Pipelines

- ▶ Unix pipes, e.g., find . | grep foo
- Graphics pipelines.
- Network stacks.
- DSP networks.

If only...

Application: Logic-flow analysis

Mechanical (flow):
$$\hat{\varsigma} \longrightarrow \hat{\varsigma}' \longrightarrow \hat{\varsigma}'' \longrightarrow \cdots$$

Propositional (logic): $\Pi \longrightarrow \Pi' \longrightarrow \Pi' \longrightarrow \Pi''$

Application: Logic-flow analysis

Mechanical (flow): $\hat{\varsigma} \longrightarrow \hat{\varsigma}' \longrightarrow \hat{\varsigma}'' \longrightarrow \cdots$ Propositional (logic): $\Pi \longrightarrow \Pi' \longrightarrow \Pi'' \longrightarrow \cdots$

Counting bootstraps propositions from mechanical interpretation.

Related work

Cousot², 1977: Abstract interpretation.

Sestoft, 1988: Globalization.

Shivers, 1988: k-CFA.

Harrison, 1989: Procedure strings.

Shivers, 1991: Re-flow analysis.

Wand & Steckler, 1994: Invariance-set analysis.

Jagannathan et al., 1998: Higher-order must-alias analysis.

Distinctions: Re-flow analysis

- ▶ *k*-CFA re-run for each contour of interest: *Expensive*.
- No abstract garbage collection.
- Assertion: Subsumed by μCFA.

Distinctions: Invariance-set analysis

- ▶ Specific kind of environment analysis: lexical v. dynamic.
- No abstract garbage collection.
- Constraint-based.
- Fixed context-sensitivity: 0CFA.
- Less general: Supports fewer applications.

Results: Γ + μ CFA & Invariance-set Analysis

	$\theta^+\Gamma^+$	$\theta^+\Gamma^-$	$\theta^-\Gamma^+$	$\theta^-\Gamma^-$	Γ^+/θ^+	$Time_{ heta}$	$Time_\Gamma$
earley	61	0	649	239	1100%	14s+2s	24s
int-fringe-coro	136	0	24	25	117%	1s+∈s	5s
int-stream-coro	129	0	4	36	103%	5s+∈s	14s
lattice	79	0	70	40	200%	7s+∈s	10s
nboyer	231	0	44	22	188%	43s+5s	68s
perm	140	0	149	17	206%	1s+∈s	2s
put-double-coro	72	0	17	7	123%	ϵ S+ ϵ S	2s
sboyer	235	0	50	22	121%	49s+5s	95s

- Invariance-set analysis faster.
- ► Counting & collection more precise.

Distinctions: Higher-order must-alias analysis

- Requires repeated runs of analysis.
- Uses flat lattice of cardinality.
- Constraint-based.
- Fixed widening: Per-point.
- Fixed context-sensitivity: 0CFA.
- ▶ Empirically subsumed by Γ + μ CFA.
- Less general: Supports fewer applications.

Results: MAA & Γ + μ CFA

	MAA^1		k = 0,p		$k=0$,c \dagger		k=0,s	
earley	15%	258s	94%	24s	94%	15s	95%	90s
int-fringe-coro	26%	8s	87%	5s	87%	2s	89%	2s
int-stream-coro	14%	15s	79%	14s	79%	8s	82%	7s
lattice	12%	59s	91%	10s	91%	6s	OOM	>71m
nboyer	12%	68s	98%	93s	98%	48s	98%	18,420s
perm	8%	90s	95%	2s	95%	6s	95%	2s
put-double-coro	41%	2s	89%	2s	89%	1s	92%	0.8s
sboyer	OOM	>1,024s	98%	95s	98%	50s	OOM	>20,065s

- Counting & collection faster.
- ▶ Counting & collection more precise.

[†] theoretical fixed point of iterated MAA.

Future & ongoing work

- Tighter, unaided coroutine fusion.
- Reformulations for OO (Java-Shimple), imperative (LLVM-SSA).
- Invariance-flow analysis (⊖CFA).
- Anodized contours.
- Garbage-collectible model of pointer arithmetic.
- Partial abstract GC for polyvariance.
- Lazy configuration-widening for multithreaded programs.
- ▶ PDA-based abstractions for abstract frame strings in Δ CFA.

Contributions

- Unified framework for general environment analysis.
- Two independent solutions to the environment problem:
 - One based on counting.
 - One based on frame strings.
- ▶ Proof of correctness for super- β inlining.
- Abstract GC: Enhanced precision via resource management.

Thank you.

How often do you garbage collect?

When zombie creation is imminent. In practice, one in four transitions.

Accumulating propositions: Equality

Proposition

$$\forall x \in Conc_{\hat{\varsigma}}(\hat{b}_1) : \forall y \in Conc_{\hat{\varsigma}}(\hat{b}_2) : x = y.$$

Condition for inclusion

- ▶ Binding \widehat{b}_1 to \widehat{b}_2 .
- Measure of both does not exceed 1.

Payoff

Boosts super- β rematerialization, copy propagation.

Accumulating propositions: Conditions

Proposition

```
c in (if c e_{\rm true} e_{\rm false}).
```

Condition for inclusion

- Measure of c does not exceed 1.
- Assert c on fork to e_{true} .
- ▶ Assert not c on fork to e_{false} .

Payoff

Assists run-time check removal, verification.

 Γ CFA thinks...

```
\begin{array}{c} \text{id} \mapsto \\ \text{x} \mapsto \\ \text{(id 3)} \mapsto \\ \text{y} \mapsto \\ \text{(id 4)} \mapsto \end{array}
```

ΓCFA thinks...

1. $(\lambda (x) x)$ flows to id.

```
\begin{array}{c} \text{id} \mapsto (\lambda \ (\texttt{x}) \ \texttt{x}) \\ \texttt{x} \mapsto \\ (\text{id} \ 3) \mapsto \\ \texttt{y} \mapsto \\ (\text{id} \ 4) \mapsto \end{array}
```

ΓCFA thinks...

- 1. $(\lambda (x) x)$ flows to id.
- 2. Then, 3 flows to x.

```
\begin{array}{c} \text{id} \mapsto (\lambda \ (\texttt{x}) \ \texttt{x}) \\ \texttt{x} \mapsto \texttt{3} \\ \text{(id 3)} \mapsto \\ \texttt{y} \mapsto \\ \text{(id 4)} \mapsto \end{array}
```

ΓCFA thinks...

- 1. $(\lambda (x) x)$ flows to id.
- 2. Then, 3 flows to x.
- 3. Then, 3 flows to y, (id 3); $x \mapsto 3$ now dead.

 $id \mapsto (\lambda \ (x) \ x) \\
x \mapsto \beta$

(id 3) \mapsto 3 $y \mapsto 3$

 $(id 4) \mapsto$

ΓCFA thinks...

- 1. $(\lambda (x) x)$ flows to id.
- 2. Then, 3 flows to x.
- 3. Then, 3 flows to y, (id 3); $x \mapsto 3$ now dead.
- x → 3 now dead.
- 4. Then, 4 flows to x.

 $\mathtt{id}\mapsto (\lambda\ (\mathtt{x})\ \mathtt{x})$

 $x \mapsto 3 \quad 4$

(id 3) \mapsto 3

 $y\mapsto 3$ (id 4) \mapsto

ΓCFA thinks...

- 1. $(\lambda (x) x)$ flows to id.
- 2. Then, 3 flows to x.
- 3. Then, 3 flows to y, (id 3); $x \mapsto 3$ now dead.
- 4. Then, 4 flows to x.
- 5. Then, 4 flows to (id 4).

