Лекция 3. Система F

ИИП второго порядка

- ▶ Алфавит: a z, \vee , &, \rightarrow , \neg . \forall . \exists . \bot
- Метапеременные: α для формул, p, x, y, z для переменных.
- $F ::= p \mid (F \star F) \mid (\forall p.F) \mid (\exists p.F) \mid \bot$
- ▶ Сокращения записи: приоритеты как в ИИВ, подкванторное выражение продолжается направо настолько, насколько возможно.

Пример
$$\forall p. \forall q. p
ightarrow q
ightarrow p$$

1 nopregor - Wantopol het 1 nopregor - W. no mægn. nepomennem

n. - Kl. no wyazukawa (koz.q. or hpaju.a)

Теория доказательств

Правила вывода совпадают с правилами для ИИВ, добавлены 4 новых:

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall p.\varphi} (p \notin FV(\Gamma)) \qquad \frac{\Gamma \vdash \forall p.\varphi}{\Gamma \vdash \varphi[p := \theta]}$$

$$\frac{\Gamma \vdash \varphi[p := \theta]}{\Gamma \vdash \exists p.\varphi} \qquad \frac{\Gamma \vdash \exists p.\varphi \quad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi} (p \notin FV(\Gamma, \psi))$$

Теория моделей

Простая неполная модель.

$$V = \{\mathsf{M}, \mathsf{\Pi}\}$$

$$\llbracket arphi
ightarrow \psi
rbracket = egin{cases} \Pi, \llbracket arphi
rbracket = \mathsf{M}, \llbracket \psi
rbracket = \mathsf{M} \ \mathsf{M}, \mathsf{иначe} \end{cases}$$

$$\llbracket orall \pmb{p}. arphi
rbracket = egin{cases} \mathsf{M}, \llbracket arphi
rbracket^{p:=\mathsf{Л}, \; \mathsf{M}} = \mathsf{M} \ \mathsf{Л}, \mathsf{иначe} \end{cases}$$

Выразимость всех связок через \forall , \rightarrow

С так определёнными связками оказывается возможно показать все правила вывода. Например, примем $\alpha\&\beta$ за $\forall p.(\alpha \to \beta \to p) \to p$ и покажем, что из $\alpha\&\beta$ следует α :

$$\frac{\frac{\overline{\alpha, \beta \vdash \alpha}}{\alpha \vdash \beta \to \alpha}}{\vdash \underline{\alpha \to \beta \to \alpha}} \qquad \frac{\vdash \forall p. (\alpha \to \beta \to p) \to p}{\vdash (\alpha \to \beta \to \alpha) \to \alpha} p := \alpha \qquad \checkmark$$

Система F

Определение

Типы в системе F:

$$\tau = \begin{cases} \alpha, \beta, \gamma... & (атомарные типы) \\ \tau \to \tau \\ \forall \alpha. \tau & (\alpha - переменная) \end{cases}$$

Определение

Пред-лямбда-терм в системе F (типизировано по Чёрчу):

$$F ::= x \mid (\lambda x^{\tau}.F) \mid (F \ F) \mid (\Lambda \alpha.F) \mid (F \ \tau)$$

Типовая абстракция и применение

Примеры соответствующих конструкций из С++.

▶ Типовая абстракция, $\Lambda \tau . W$:

```
W:= At class { + x }
template<typename t>
class W {
   t x;
```

► Типовое применение, *W* int:

W<int> w test:

गत्र

В системе F определены следующие правила вывода:

$$\frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma \vdash M : \tau}$$

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x^{\tau} \cdot M : \tau \to \sigma} \qquad (x \notin FV(\Gamma))$$

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \Lambda \alpha \cdot M : \forall \alpha \cdot \sigma} \qquad (\alpha \notin FV(\Gamma))$$

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \Lambda \alpha \cdot M : \forall \alpha \cdot \sigma} \qquad (\alpha \notin FV(\Gamma))$$

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash M : \sigma} \qquad (\alpha \notin FV(\Gamma))$$

Начнем с β -редукции:

- 1. Типовая eta-редукция: $(\Lambda lpha. M^\sigma) au o_eta M[lpha:= au]:\sigma[lpha:= au]$
- 2. Классическая eta-редукция: $(\lambda x^{\sigma}.M)^{\sigma o au} X o_{eta} M[x := X] : au$

: weint>

Абстрактные типы данных

10017 + nommopp. + UHK!

L := Stack< 2>

Стек α из значений типа v: контейнер, соответствующий интерфейсу

метод	тип	комментарий
empty	α	(конструктор)
push	$v \to \alpha \to \alpha$	
pop	$\alpha \to \alpha \& v$	

Возможны разные реализации интерфейса.

Замечание: Мы понимаем АТД как набор функций, без собственных данных. Напомним, что a.method(...) — другая запись для method(a, ...).

Пример определения и применения АТД

Экзистенциальные типы

Экзистенциальный тип — тип, соответствующий квантору существования в смысле изоморфизма Карри-Ховарда. Соответствует абстрактному типу данных.

$$\frac{\Gamma \vdash \varphi[\alpha := \theta]}{\Gamma \vdash \exists \alpha . \varphi} \qquad \frac{\Gamma \vdash \exists \alpha . \varphi \qquad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi}$$

АТД имеет интерфейс φ , тип АТД α реализуется типом θ , а сам интерфейс термом M: uck P.

$$\frac{\Gamma \vdash M : \varphi[\alpha := \theta]}{\vdash (\mathsf{pack}\ M, \theta\ \mathsf{to}\ \exists \alpha.\varphi) : \exists \alpha.\varphi}$$

 $\Gamma \vdash (\mathsf{pack}\ M, \theta\ \mathsf{to}\ \exists \alpha. \varphi): \exists \alpha. \varphi$... и если вычисление $N: \psi$ работает при условии наличия какой-то реализации \mathcal{M}

АТД
$$x:\varphi$$
 в контексте, то нам достаточно АТД $P:\exists \alpha.\varphi$ для получения результата:
$$\frac{\Gamma \vdash \overline{P}: \overline{\exists \alpha.\varphi} \qquad \Gamma, x:\varphi \vdash N:\psi}{\Gamma \vdash \text{abstype }\alpha \text{ with } x:\varphi \text{ is }P \text{ in }N:\psi}(\alpha \notin FV(\Gamma,\psi))$$

Стек в F

$$y = (x \rightarrow x) \rightarrow (x \rightarrow x)$$

$$\frac{\Gamma \vdash M : \varphi[\alpha := \theta]}{\Gamma \vdash (\mathsf{pack}\ M, \theta \ \mathsf{to}\ \exists \alpha. \varphi) : \exists \alpha. \varphi} \quad \frac{\Gamma \vdash P : \exists \alpha. \varphi \qquad \Gamma, x : \varphi \vdash N : \psi}{\Gamma \vdash \mathsf{abstype}\ \alpha \ \mathsf{with}\ x : \varphi \ \mathsf{is}\ P \ \mathsf{in}\ N : \psi}$$

Интерфейс стека (возьмём v как чёрчевский нумерал):

$$\varphi := (\underbrace{\alpha}_{\text{empty}} \& \underbrace{(v\&\alpha \to \alpha)}_{\text{push}}) \& \underbrace{(\alpha \to \alpha\&v)}_{\text{pop}}$$

 Kakoe -нибудь вычисление — $\mathsf{ckaжem}$, $\mathsf{pop}(\mathsf{push}(12,\mathsf{empty}))$:

И простая реализация, для $\theta:=(\gamma \to \gamma) \lor \upsilon$ — это Maybe Int:

$$\vdash \langle \langle (\mathit{In}_L \ \lambda x.x), \lambda \mathit{n.In}_R \ (\pi_L \ \mathit{n}) \rangle, \lambda \mathit{n.case} \ (\lambda x.0) \ (\lambda x.x) \ \mathit{n} \rangle : \varphi[\alpha := \theta]$$

 Emply push Pop

Раскрываем ∃ через ∀

Напомним, что $\exists \alpha. \varphi := \forall \beta. (\forall \alpha. \varphi \to \beta) \to \beta.$

$$\frac{\Gamma \vdash M : \varphi[\alpha := \theta]}{\Gamma \vdash (\mathsf{pack}\ M, \theta\ \mathsf{to}\ \exists \alpha. \varphi) : \exists \alpha. \varphi}$$

Перепишем это правило только через базовые конструкции системы F:

«Пусть есть вычисление e, использующее АТД α с интерфейсом φ , возвращающее β . Тогда, имея конкретный тип реализации АТД θ и саму реализацию АТД $M: \varphi[\alpha:=\theta]$, то с помощью вычисления e возможно вычислить результат и вернуть значение типа β ».

Сравните с case для алгебраического типа и вспомните действия редактора связей (линкера).

Раскроем abstype

$$\frac{\Gamma \vdash P : \exists \alpha. \varphi \qquad \Gamma, x : \varphi \vdash N : \psi}{\Gamma \vdash \mathsf{abstype} \ \alpha \ \mathsf{with} \ x : \varphi \ \mathsf{is} \ P \ \mathsf{in} \ N : \psi}$$

Перепишем это правило через базовые конструкции системы F:

$$\frac{\Gamma \vdash P : \forall \beta. (\forall \alpha. \varphi \to \beta) \to \beta \qquad \Gamma, x : \varphi \vdash N : \psi}{\Gamma \vdash (P \ \psi) \ (\Lambda \alpha. \lambda x^{\varphi}. N) : \psi}$$

Вспомним pack:

$$\frac{\Gamma \vdash M : \varphi[\alpha := \theta]}{\Gamma \vdash \Lambda \beta. \lambda e^{\forall \alpha. \varphi \to \beta}. (e \ \theta) \ M : \forall \beta. (\forall \alpha. \varphi \to \beta) \to \beta}$$

Результат:

$$\begin{array}{l} ((\Lambda\beta.\lambda e^{\forall\alpha.\varphi\to\beta}.(e\;\theta)\;M)\;\psi)\;(\Lambda\alpha.\lambda x^{\varphi}.N)\to_{\beta} \\ (\lambda e^{\forall\alpha.\varphi\to\psi}.(e\;\theta)\;M)\;(\Lambda\alpha.\lambda x^{\varphi}.N)\to_{\beta} \\ (\Lambda\alpha.\lambda x^{\varphi}.N)\;\theta\;M\to_{\beta} \\ (\lambda x^{\varphi[\alpha:=\theta]}.N[\alpha:=\theta])\;M\to_{\beta} N[\alpha:=\theta][x:=M] \end{array}$$

```
Пример реализации на Хаскеле
        GUAGE RankNTypes #-}

AbstractStack = AS (forall b. (forall a.

(a, Integer -> a -> a, a -> (a, Integer))

b) -> b)

ATA — QYMMYMA

Burner.
                                               M. vape. Xackers -
Tur. no Kappu
    {-# LANGUAGE RankNTypes #-}
    data AbstractStack = AS (forall b . (forall a .
    abstvpe :: AbstractStack -> Integer
    abstype stack =
      case stack of
        AS(r)-> r x where
```

```
let (stk2, v2) = pop stk in
    v + v2

packedStack :: AbstractStack
packedStack = AS (\t -> t ( [], \i -> \l -> i:l, \(i:l) -> (l,i) ) )
```

let (stk, v) = pop (push 12 \$ push 5 empty) in

x (empty, push, pop) =

main = do print (abstype packedStack)

Общие свойства системы F

В системе F (в варианте по Чёрчу, так и в варианте по Карри) имеют место теорема Чёрча-Россера и сильная нормализация.

Разрешимость задач типизации системы F:

	По Чёрчу	По Карри
$ \begin{array}{c} \Gamma \vdash M : \sigma \\ \Gamma \vdash M : ? \end{array} $	да	нет
$\Gamma \vdash M : ?$	да	нет
$\Gamma \vdash ? : \sigma$	нет	нет
$? \vdash M : \sigma$	нет	нет
$? \vdash M : ?$	нет	нет

Ранг типа

Напомним, что $\exists \alpha. \varphi := \forall \beta. (\forall \alpha. \varphi \rightarrow \beta) \rightarrow \beta.$

Определение

Функция «ранг типа» $\mathit{rk} \subseteq T \times \mathbb{N}_0$. $\mathit{rk}(\sigma) = [\mathit{mrk}(\sigma), +\infty) \cap \mathbb{N}_0$, где mrk :

$$\mathit{mrk}(au) = \left\{ egin{array}{ll} 0, & au \ \mathit{bes кванторов} \ \mathit{max}(\mathit{mrk}(\sigma), 1), & au = orall x. \sigma \ \mathit{max}(\mathit{mrk}(\sigma_1) + 1, \mathit{mrk}(\sigma_2)), & au = \sigma_1
ightarrow \sigma_2, au \ \mathit{имеет кванторы} \end{array}
ight.$$

Лемма

Если $rk(\sigma,1)$, то для формулы σ найдётся эквивалентная формула с поверхностными кванторами.

Пример

$$0 \notin rk(\forall \alpha.\gamma \to \beta); 1 \notin rk((\forall \alpha.\gamma \to \beta) \to f) = \{2,3,\dots\}$$

$$1 \notin rk(\exists \alpha.\gamma) = rk(\forall \beta.(\forall \alpha.\gamma \to \beta) \to \beta) = \{2,3,\dots\}$$

$$1 \in rk(\forall \alpha.\delta \to \forall \beta.\delta \to \forall \gamma.\delta)$$

Типовая система Хиндли-Милнера: язык

Определение

 T ип (au) и типовая схема:

$$\tau ::= \alpha \mid (\tau \to \tau) \qquad \sigma ::= \forall x.\sigma \mid \tau$$

Пред-лямбда-терм (типизация по Карри)

$$H ::= x \mid (H \mid H) \mid (\lambda x.H) \mid (let \mid x = H \mid in \mid H)$$

Редукция для let:

let
$$x = E_1$$
 in $E_2 \rightarrow_{\beta} E_2[x := E_1]$

$$(\lambda k. E_2) \sum_{i} C_i$$

Пример

let
$$Inc = \lambda n.\lambda f.\lambda x.n \ f \ (f \ x) \ in \ Inc(Inc \ \overline{0}) \twoheadrightarrow_{\beta} \overline{2}$$

Типовая система Хиндли-Милнера: специализация

Определение

Пусть $\sigma_1=\forall \alpha_1. \forall \alpha_2.\dots \forall \alpha_n. \tau_1$. Тогда σ_2 — частный случай или специализация σ_1 (обознается как $\sigma_1\sqsubseteq \sigma_2$), если

$$\sigma_2 = \forall \beta_1. \forall \beta_2. \ldots \forall \beta_m. \tau_1 [\alpha_1 := S(\alpha_1), \ldots, \alpha_n := S(\alpha_n)] \text{ if } \beta_i \notin FV(\forall \alpha_1. \forall \alpha_2. \ldots \forall \alpha_n. \tau_1)$$

Пример

$$\forall \alpha. \alpha \to \alpha \sqsubseteq \forall \beta_1. \forall \beta_2. (\beta_1 \to \beta_2) \to (\beta_1 \to \beta_2)$$

Типовая система Хиндли-Милнера: правила вывода $\frac{\textbf{Т-Funu}}{\textbf{-Tunu}} \overset{\textbf{-Tunu}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-}}} \overset{\textbf{-}}{\textbf{-}} \overset{\textbf{-}}{\textbf{-$

$$\Gamma, x : \sigma \vdash x : \sigma \qquad \Gamma \vdash E_0 \ E_1 : \tau' \qquad \Gamma \vdash \lambda x.E : \tau \to \tau$$

$$\frac{\Gamma \vdash E_0 : \sigma \qquad \Gamma, x : \sigma \vdash E_1 : \tau}{\Gamma \vdash let \ x = E_0 \ in \ E_1 : \tau} \qquad \frac{\Gamma \vdash E : \sigma'}{\Gamma \vdash E : \sigma} \ \sigma' \sqsubseteq \sigma \qquad \frac{\Gamma \vdash E : \sigma}{\Gamma \vdash E : \forall \alpha.\sigma} \ \alpha \notin FV(\Gamma)$$

$$\frac{\vdash \lambda x.x : \alpha \to \alpha}{\vdash \lambda x.x : \forall \alpha.\alpha \to \alpha}$$

$$\frac{ \begin{tabular}{l} \hline {\rm id}: \forall \alpha.\alpha \to \alpha \vdash {\rm id}: \forall \alpha.\alpha \to \alpha \\ \hline {\rm id}: \forall \alpha.\alpha \to \alpha \vdash {\rm id}: {\rm int} \to {\rm int} \\ \hline {\rm id}: \forall \alpha.\alpha \to \alpha \vdash {\rm id}: {\rm int} \\ \hline \\ \hline {\rm od}: \forall \alpha.\alpha \to \alpha \vdash {\rm id} \; 0: {\rm int} \\ \hline \\ \hline \end{tabular}$$
 Отсюда: let ${\rm id} = \lambda x.x$ in $\langle {\rm id} \; 0, {\rm id} \; {\rm \ll a.s.} \rangle$: ${\rm int} \& {\rm string}$

t&string

 $id: \forall \alpha.\alpha \rightarrow \alpha \vdash 0: int$

Алгоритм реконструкции типа W

На вход подаются $\Gamma,\ M$, на выходе наиболее общая пара: $\langle S, au
angle=W(\Gamma,M)$

Та вход подаются
$$\Gamma$$
, M , на выходе наисомее сощая пара. $(S, T) = VV(\Gamma, \Gamma)$
1. $M = X$, $X : T \in \Gamma$ (иначе ошибка)

• $\tau' - \tau$ без кванторов, все свободные переменные переименованы в свежие.

возвращаем
$$\langle \varnothing, \tau' \rangle$$
; например, $W(\{x: \forall \alpha.\varphi, y: \beta\}, x) = \langle \varnothing, \varphi[\alpha:=\gamma] \rangle$

$${}^lack \langle S, \ au
angle = W(\Gamma', E)$$
 возвращаем ${}^{\langle}S, S(lpha)
ightarrow au{}^{\langle}
angle$

$$3. M = P Q$$

$$\begin{array}{c} {}^{\blacktriangleright}\langle S_1,\tau_1\rangle = W(\Gamma,P); \langle S_2,\tau_2\rangle = W(S_1(\Gamma),Q) \\ {}^{\blacktriangleright}S_3 = \mathcal{U}\big[S_2(\tau_1),\tau_2 \to \alpha\big], \ \alpha - \mathsf{свежа} \end{array}$$

возвращаем
$$\langle S_3 \circ S_2 \circ S_1, S_3(\alpha) \rangle$$

4. $M = (let \ n = P \ in \ Q)$

•
$$\langle S_1, \tau_1 \rangle = W(\Gamma, P)$$

• $\Gamma' = \{x : \sigma \mid x : \sigma \in \Gamma, x \neq n\} \cup \{n : \forall \alpha_1 \dots \alpha_k. \tau_1\}$, где $\alpha_1 \dots \alpha_k$ — все свободные переменные τ_1

$$lack \langle S_2, au_2
angle = W(S_1(\Gamma'), Q)$$
 возвращаем $\langle S_2 \circ S_1, au_2
angle$

Рекурсия в НМ: делаем НМ тьюринг-полной

1. Рекурсия для термов. У-комбинатор. Добавим специальное правило вывода:

$$\overline{Y : \forall \alpha. (\alpha \to \alpha) \to \alpha}$$

2. Рекурсия для типов. Рассмотрим список

Nil =
$$In_L 0$$
 Cons $e I = In_R \langle e, I \rangle$ List:?

Заметим, что при попытке выписать уравнение для типа мы получим рекурсию:

$$\tau = \operatorname{Int} \vee \langle \operatorname{Int}, \tau \rangle$$

Рекурсивный тип надо добавить явно:

$$\tau = \mu \alpha. \mathtt{Int} \vee \langle \mathtt{Int}, \alpha \rangle$$

Мю-оператор — это Y-комбинатор для типов. Как его добавить в типовую систему?

Эквирекурсивные и изорекурсивные типы: $\mu \alpha.\sigma(\alpha)$

ightharpoonup Эквирекурсивные типы. Считаем, что $lpha=\sigma(lpha)$. Hапример, в Java: public abstract class Enum<E extends Enum<E>> implements Constable, Comparable<E>, Serializable { ... }

Уравнение (частный случай): E = Enum(E), или $E = \mu \varepsilon.Enum(\varepsilon)$.

• Изорекурсивные типы. $\alpha \neq \sigma(\alpha)$, но есть изоморфизм:

$$roll : \sigma(\alpha) \to \alpha$$
 unroll : $\alpha \to \sigma(\alpha)$

Hапример, для struct List { List* next; int value; }:

Комп.	B C++	Пример
roll	взятие ссылки	List a; a.next = NULL; return len(&a)
unroll	разыменование	len (List* a) { return (*a).next ? : 0 }

Разрешимость задачи реконструкции типа в разных вариантах F

Собственное название	Разрешимость
$\lambda_{ ightarrow}$	разрешимо (лекция 2)
HM	разрешимо (алгоритм $\it W$)
	разрешимо
	неразрешимо
	λ_{\rightarrow}