Stat365/665 (Spring 2015) Data Mining and Machine Learning

Lecture: 1

STATS 665 Homework 2

Lecturer: Leon Lixing Yu Scribe: Leon Lixing Yu

1 Problem 1

1.1 closed form of $\hat{\beta}$

 $\hat{\beta}$ is given by:

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \frac{1}{2} \|X\beta - y\|_2^2 + \lambda \|\beta\|_2^2$$

In order to find argmin, we need to take the derivative of the loss function and make it equal to 0. In this assignment, I will use the notation, $x_j^{(i)}$, to denote that for the given data $(x^{(i)}, y^{(i)})_{i=1}^n$, $x_j^{(i)}$ is the jth element of $x^{(i)}$, where $x^{(i)} \in \mathbb{R}^d$, $y \in \mathbb{R}$, $X \in \mathbb{R}^{d \times n}$, $Y \in \mathbb{R}^n$. Therefore, we have:

$$\frac{d}{d\beta_j}l(\beta|X,Y) = (\sum_{i=1}^n ((\sum_{j=1}^d x_j^{(i)}\beta_j) - y^{(i)})^2 + \lambda \sum_{j=1}^d \beta_j^2)' = 0$$

$$\Rightarrow 2X^T(X\beta - Y) + 2\lambda(I_d)\beta = 0$$

$$\Rightarrow \hat{\beta} = (X^TX + \lambda(I_d))^{-1}X^TY$$

1.2 Find a simple expression for $\|\hat{\beta} - \beta^*\|$

FIXME

1.3 Find a closed form of \hat{f}

Notation Note: Following the previous convention, I am using $(x^{(i)}, y^{(i)})_{i=1}^n$ instead of $(x_i, y_i)_{i=1}^n$ to represent the dataset. In this question, I use $f(x^{(i)})$ and $f(x^{(i)})$ interchanges ly. We know that:

$$f \in \mathcal{H} \Rightarrow f(x^{(i)}) \in \mathcal{H} \Rightarrow \langle f, \phi(x^{(i)}) \rangle \in \mathcal{H}$$

With the notation given, we have equation:

$$\hat{f} = \underset{f}{\operatorname{argmin}} \sum_{i=1}^{n} (y^{(i)} - \langle f, \phi(x^{(i)}) \rangle_{\mathcal{H}})^2 + \lambda ||f||_{\mathcal{H}}^2$$

Using representer theorm, we have:

$$f = \sum_{i=1}^{n} \alpha^{(i)} \phi(x^{(i)}) = \sum_{i=1}^{n} \alpha^{(i)} k(x^{(i)}, \cdot)$$

2 STATS 665 Homework 2

The equation above means f is a linear combination of feature space, mapping of points. substitute the relation above into the original \hat{f} equation, we have:

$$\sum_{i=1}^{n} (y^{(i)} - \langle f, \phi(x^{(i)}) \rangle_{\mathcal{H}})^{2} + \lambda \|f\|_{\mathcal{H}}^{2} = \|Y - K\alpha\|^{2} + \lambda \alpha^{T} K\alpha$$

Taking derivative over α and make it equal to 0 to get argmin:

$$\frac{d}{d\alpha}(\|Y - K\boldsymbol{\alpha}\|^2 + \lambda \boldsymbol{\alpha}^T K\boldsymbol{\alpha}) = 0$$

$$\Rightarrow 2K(Y - K\boldsymbol{\alpha}) + 2\lambda \mathbf{I_d} K\boldsymbol{\alpha} = 0$$

$$\Rightarrow (K + \lambda \mathbf{I_d})\boldsymbol{\alpha} = 2Y$$

$$\Rightarrow \hat{\boldsymbol{\alpha}} = (K + \lambda \mathbf{I_d})^{-1} Y$$

recall:

$$f = \sum_{i=1}^{n} \alpha^{(i)} \phi(x^{(i)}) = \sum_{i=1}^{n} \alpha^{(i)} k(x^{(i)}, \cdot)$$

our \hat{f} is then:

$$\hat{f} = K^T \hat{\alpha} = K^T (K + \lambda \mathbf{I_d})^{-1} Y$$

In which K is the Kernel matrix W.R.T X

1.4 implement the solution of \hat{f} in matlab

The code for this part is attached in **Appendix A: problem 1 Code**, I use Gaussian Kernel because it is the first one I tried and it worked pretty well. I have attached a few graphs to show the differences between real label value and decision values got from \hat{f} .

To have a perfect fit, I adujust the values of λ and σ . Multiple attempts are shown below with description.

2 Problem 2

3 Problem 3

3.1 Show k(x, y) is a valid kernel

We know that kernel is a function that maps $\chi \times \chi \to \mathbb{R}$. We also know that kernel is valid if and only if for $x_{i=1}^n \in \chi, K_{ij} = k(x_i, x_j)$ is PSD. We need to prove these two statements. Proving k(x, y) maps $\chi \times \chi \to \mathbb{R}$:

Assuming:

$$k_1(x, y) = \langle \Phi_1(x), \Phi_1(y) \rangle$$

 $k_2(x, y) = \langle \Phi_2(x), \Phi_2(y) \rangle$

Since $k_1(x,y)$ and $k_2(x,y)$ are vaild kernel, they both maps $\chi \times \chi \to \mathbb{R}$, we now have

$$k(x,y) = <\Phi_1(x), \Phi_1(y) > \cdot <\Phi_2(x), \Phi_2(y) >$$

STATS 665 Homework 2

$$\Rightarrow k(x,y) = (\Phi_1(x)^T \Phi_1(y)) \cdot (\Phi_2(x)^T \Phi_2(y))$$
$$\Rightarrow k(x,y) \in \mathbb{R}$$

We also know that $(x, y) \in \mathbb{R}^{\chi}$, so k(x, y) maps $\chi \times \chi \to \mathbb{R}$.

Proving k(x, y) is PSD:

$$K_{ij} = k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle = \Phi(x_i)^T \Phi(x_j)$$

$$v^T K v = \sum_{i}^{n} \sum_{j}^{n} v_i K_{ij} v_j$$

$$= \sum_{i}^{n} \sum_{j}^{n} v_i \Phi(x_i)^T \Phi(x_j) v_j$$

$$= \sum_{i}^{n} \sum_{j}^{n} v_i \sum_{l}^{n} \phi_l(x_i)^T \phi_l(x_j) v_j$$

$$= \sum_{l}^{n} \sum_{i}^{n} \sum_{j}^{n} v_i \phi_l(x_i)^T \phi_l(x_j) v_j$$

$$= \sum_{l}^{n} \sum_{i}^{n} v_i \phi_l(x_i)^T \phi_l(x_j) v_j$$

$$= \sum_{l}^{n} \sum_{i}^{n} v_i \phi_l(x_i)^T \phi_l(x_i) v_j$$

end of the story