Algebra liniowa z geometrią dla informatyków - konspekt wykładu 2018/19

Barbara Roszkowska -Lech

Październik 2018

4 Przestrzenie wektorowe

Definicja 4.1. Przestrzenią wektorową (liniową) nad ciałem K nazywamy zbiór V z odwzorowaniami

$$V \times V \to V \quad (u, v) \mapsto u + v \quad zwanym \ dodawaniem \ wektorów,$$

 $K \times V \to V \quad (a,v) \mapsto a \cdot v \quad zwanym \ mnożeniem \ wektora \ przez \ skalar,$ oraz z wyróżnionym elementem $w \ V \ zwanym \ wektorem \ zerowym \ i \ oznaczanym \ przez \ {\bf 0} \ jeśli \ spełnione \ są \ następujace \ warunki \ zwane \ aksjomatami \ przestrzeni \ wektorowej. \ Dla \ każdych \ u,v,w \in V \ oraz \ a,b,\in K$

- 1. u + (w + v) = (u + w) + v łaczność dodawania wektorów,
- $2. \ u+w=w+u \\ \hspace{1cm} \textit{przemienność dodawania wektorów} \ ,$
- 3. 0+u=u+0=u wektor $\mathbf{0}$ jest elementem neutralnym dodawania,
- 4. $\forall_{u \in V} \exists_{u' \in V} \ u + u' = \mathbf{0}$ istnienie elementu odwrotnego w dodawaniu,
- 5. $a \cdot (b \cdot v) = (a \cdot b) \cdot v$ łaczność mnożenia przez skalary,
- 6. $a \cdot (u+v) = a \cdot u + a \cdot v$ rozdzielność mnożenia względem dodawania wektorów
- 7. $(a+b) \cdot v = a \cdot v + b \cdot v$ rozdzielność mnożenia względem dodawania skalarów,

8. $1 \cdot v = v$ 1 jest elementem neutralnym mnożenia.

Elementy zbioru V nazywamy wektorami a elementy ciała K skalarami. Przestrzeń wektorową V nad ciałem K oznaczamy V[K], a tam gdzie nie będzie to prowadzić do nieporozumień tylko V.

Przykłady przestrzeni liniowych

- 1. Niech L będzie podciałem ciała K. Wtedy K jest przestrzenią wektorową na dciałem L.
- 2. Zbiór $K^n = \{(x_1, x_2, \dots, x_n) | x_i \in K, i = 1, 2, \dots n\}$ wszystkich n elementowych ciągów o wyrazach z ciała K z działaniami określonymi następujaco:

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n),$$

$$a(x_1, x_2, \dots, x_n) = (ax_1, ax_2, \dots, ax_n)$$

jest przestrzenią liniową nad ciałem K

- 3. Niech $M_m^n(K)$ oznacza zbiór wszystkich macierzy o wyrazach z ciała K. Sumą macierzy $A = [a_{ij}], B = [b_{ij}]$ nazywamy taką macierz $C = [c_{ij}] \in M_m^n(K)$, taką że $c_{ij} = a_{ij} + b_{ij}$, dla każdego $i = 1, \dots, m, \quad j = 1, \dots, n$. Iloczynem macierzy A przez skalar $c \in K$ nazywamy taka macierz $D = [d_{ij}] \in M_m^n(K)$, że $d_{ij} = ca_{ij}$ dla dla każdego $i = 1, \dots, m, \quad j = 1, \dots, n$. Zbiór $M_m^n(K)$ z tak określonymi działaniami jest przestrzenia liniowa nad ciałem K.
- 4. Niech K[x] bedzie zbiorem wszystkich wielomianów o wspólczynnikach w ciele K. Czyli

$$K[x] = \{a_0 + a_1x + \ldots + a_nx^n | n \in \mathbb{N} \cup \{0\}, a_0, a_1, \cdots, a_n \in K\}.$$

Określamy dodawanie i mnożenie wielomianów przez skalary. Z tymi działaniami k[x] jest przestrzenią wektorową nad K.

5. Niech K bedzie ciałem, a X niepustym zbiorem.. Oznaczmy $Map(X,K) := \{f; f: X \to K\}$. Zbiór Map(X,K) z dodawaniem (f+g)(x) = f(x) + g(x) i mnożeniem przez skalary (af)(x) = a(f(x)) jest przestrzenią wektorową nad ciałem K.

Definicja 4.2. Niech V bedzie przestrzenią liniową nad ciałem K. Niepusty podzbiór $U \subseteq V$ nazywamy podprzestrzenią V, jeśli dla dowolnych $u, w \in U$ oraz dla dowolnego $a \in K$

$$u + w \in U$$
, $au \in U$.

Jeśli U jest podprzestrzenią V, to będziemy ten fakt zapisywać symbolocznie U < V. Jeśli U jest podprzestrzenią V to U zawiera wektor zerowy), oraz dla dowolnego wektora $u \in U$ zawiera wektor -u. Ponadto U jest przestrzenią liniową nad K z działaniami indukowanymi z V.

Przykłady podprzestrzeni przestrzeni liniowych

- 1. Dla dowolnej przestrzeni liniowej V podzbiór $\{\mathbf{0}\}$, złożony tylko z wektora zerowego jest podprzestrzenią V. Nazywamy ja podprzestrzenią zerową. Ponadto V jest swoją własną podprzestrzenią.
- 2. Niech $K_m[x]$ oznacza zbiór wszystkich wielomianów jednej zmiennej o wspólczynnikach w ciele K stopnia $\leq m$. Wtedy $K_m[x] < K[x]$.
- 3. Niech U będzie jednorodnym układem równań z n niewiadomymi o wspólczynnikach w ciele K i macierzą A. Wtedy Zbiór wszystkich rozwiązań tego układu jest podprzestrzenia przestrzeni K^n . $Rozw(A,0) < K^n$.
- 4. Niech $x_0 \in X$ i niech $W = \{ f \in Map(X, K) : f(x_0) = 0 \}$. Wtedy W jest podprzestrzenią przestrzeni liniowej Map(X, K).

Twierdzenie 4.3. Niech $U \subseteq V$. Wtedy następujące warunki są równoważne

- 1. U < V
- 2. $\forall_{a,b \in K} \forall_{u,w \in U}$ $au + bv \in U$
- 3. $\forall_{a_1,a_2,\dots,a_k \in K} \forall_{u_1,u_2,\dots,u_k \in U} \qquad a_1 u_1 + a_2 u_2 + \dots + a_k v_k \in U.$

Twierdzenie 4.4. Niech dla każdego $t \in T$, U_t bedzie podprzestrzenią przestrzeni liniowej V. Wtedy część wspólną wszytkich podprzestrzeni U_t , $\bigcap_{t \in T} U_t$ jest podprzestrzenią przestrzeni V.

Definicja 4.5. Niech $A \subset V$. Podprzestrzeń $L(A) := \bigcap_{A \subset U < V} U$ będąca częscią wspólna wszystkich podprzestrzeni V zawierających zbiór A nazywamy podprzestrzenią generowana przez zbiór A.

Jeśli L(A) = V to mówimy, że A jest zbiorem generatorów przestrzeni V

Definicja 4.6. Niech V będzie przestrzenią liniową nad ciałem K oraz niech $v_1, v_2, \dots, v_n \in V$, $a_1, a_2, \dots, a_n \in K$. Wektor $v = a_1v_1 + a_2v_2 + \dots + a_nv_n$ nazywamy kombinacją liniową wektorów v_1, v_2, \dots, v_n o współ czynnikach a_1, a_2, \dots, a_n .

Zauważmy, że z twierdzenia 3.3 wynika, że U jest podprzestrzenią przestrzeniV wtedy i tylko wtedy gdy U jest zamknięte ze względu wszytkie kombinacje liniowe wektorów z U.

Twierdzenie 4.7. Niech $A \subset V$. Wtedy

$$L(A) = \{ v \in V; \exists_{n \in \mathbb{N}}, \quad \exists_{v_1, v_2, \dots, v_n}, \quad \exists_{a_1, a_2, \dots, a_n} \quad v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n \}.$$

Twierdzenie 4.8. Niech $A, A' \in M_m^n(K)$ oraz v_1, v_2, \dots, v_m będą wierszami macierzy A a v_1', v_2', \dots, v_m' wierszami macierzy A'. Jeśli macierze A i A' są wierszowo równoważne to $L(v_1, v_2, \dots, v_m) = L(v_1', v_2', \dots, v_m')$.

Przykłady

- 1. $K_n[x] = L(1, x, \dots, x^n)$
- 2. $K^n = L(e_1, e_2, \dots, e_n)$ gdzie $e_i = [0, \dots, 0, 1, 0, \dots 0]$.
- 3. $L(x^n, x^{n+1}, \cdots)$ jest podprzestrzenią przestrzeni wielomianów K[x] zawierającą wszystkie wielomiany podzielne przez x^n .

Definicja 4.9. Niech V bedzie przestrzenią liniową nad ciałem K. Układ wektorów v_1, v_2, \cdots, v_k przestrzeni wektorowej V nazywamy liniowo zależnym, jeśli istnieją $a_1, a_2, \cdots, a_k \in K$ nie wszystkie równe 0, takie że $a_1v_1 + a_2v_2 + \cdots + a_kv_k = 0$. Układ wektorów v_1, v_2, \cdots, v_k jest liniowo niezależny, jeśli

$$a_1v_1 + a_2v_2 + \cdots + a_kv_k = 0 \Leftrightarrow a_1 = a_2 = \cdots = a_k = 0.$$

Zauważmy, ze jeśli któryś z wektorów v_i jest zerowy to taki układ jest liniowo zależny.

Twierdzenie 4.10. Układ v_1, v_2, \dots, v_k jest liniowo zależny \Leftrightarrow jeden z wektorów v_i jest kombinacją liniową pozostałych.

Uwaga 4.11. Niech $c^1(A), c^2(A), \dots, c^n(A)$ bedą kolumnami macierzy $A \in M_m^n$. Wtedy układ $c^1(A), c^2(A), \dots, c^n(A)$ jest układem liniowo niezależnym wtedy i tylko wtedy gdy jednorodny układ równań o macierzy A ma tylko zerowe rozwiązanie.

Wniosek 4.12. Niech macierz A będzie wierszowo równoważna z macierzą A'. Wtedy kolumny macierzy A są liniowo niezależne wtedy i tylko wtedy, gdy liniowo niezależne są kolumny macierzy A'.

Podobny wniosek można też udowodnić o wierszach wierszowo równoważnych macierzy A oraz A'. Dokładniej, jeśli v_1, \cdots, v_m będa wierszami macierzy A, a v_1', \cdots, v_m' będa wierszami macierzy A' wierszowo równoważnej z macierzą A to układ v_1, \cdots, v_m jest liniowo niezależny wtedy i tylko wtedy gdy układ v_1', \cdots, v_m' jest liniowo niezależny. Ponadto zauważmy, że niezerowe wiersze kazdej macierzy schodkowej tworzą układ liniowo niezależny a jeśli jeden z wierszy jest zerowy to taki układ jest zależny. Wnioskujemy stad, że wiersze macierzy dowolnej A tworzą układ liniowo niezależny wtedy i tylko wtedy, gdy macierz ta jest równoważna z macierzą schodkowa bez zerowych wierszy.

Twierdzenie 4.13. Niech v_1, v_2, \dots, v_k będzie układem liniowo niezależnym i niech $v \in V$. Wtedy wektor $v \in L(v_1, v_2, \dots, v_k)$ wtedy i tylko wtedy, gdy układ $(v, v_1, v_2, \dots, v_k)$ jest liniowo zależny.

Twierdzenie 4.14. (Tw. Steinitza (magiczne)) Niech układ wektorów (w_1, w_2, \dots, w_k) w przestrzeni wektorowej $V = L(v_1, v_2, \dots, v_m)$ bedzie liniowo niezależny. Wtedy

- k < m,
- z układu v_1, v_2, \dots, v_m można wybrać podukład $v_{i_1}, \dots, v_{i_{m-k}},$ taki, $\dot{z}e$ $L(v_1, v_2, \dots, v_m) = L(w_1, w_2, \dots, w_k, v_{i_1}, \dots, v_{i_{m-k}}).$

Twierdzenie Steinitza nazywane jest twierdzeniem o wymianie. Mówi ono, że jeśli układ (w_1,\cdots,w_k) jest liniowo niezależny w przestrzeni $V=L(v_1,v_2,\cdots,v_m)$ to w układzie (v_1,v_2,\cdots,v_m) można wymienić pewnych k wektorów na wektory w_1,w_2,\cdots,w_k i uzyskać nowy układ generujący przestrzeń V.

Wnioski

- 1. Jesli W jest podprzestrzenią przestrzeni $V = L(v_1, v_2, \dots, v_m)$ to w W istnieje układ liniowo niezależny $(w_1, w_2, \dots, w_k), (k \leq m)$, taki że $W = L(w_1, w_2, \dots, w_k)$.
- 2. Jeśli $L(w_1, w_2, \dots, w_k) = L(w_1', w_2', \dots, w_l')$ i układy (w_1, w_2, \dots, w_k) oraz $(w_1', w_2', \dots, w_l')$ są liniowo niezależne to k = l.

Definicję liniowej niezależności dla skończonych układów wektorów w przestrzeni liniowej V można rozszerzyc na przypadek układów nieskończonych. Układ

wektorów \mathcal{B} przestrzeni V nazywamy liniowo niezależnym gdy każdy jego skończony podukład jest liniowo niezależny.

Bazy i wymiary przestrzeni wektorowych

Definicja 4.15. Układ wektorów \mathcal{B} nazywamy bazą przestrzeni liniowej V, jeśli

- Układ B jest liniowo niezależny,
- Układ \mathcal{B} generuje przestrzeń V, czyli $V = L(\mathcal{B})$.

Twierdzenie 4.16. Układ wektorów $\mathcal{B} = (v_1, v_2, \dots, v_n)$ jest bazą przestrzeni V wtedy i tylko wtedy, gdy dowolny wektor $v \in V$ można jednoznacznie przedstawić jako kombinację liniową wektorów v_1, v_2, \dots, v_m).

Twierdzenie 4.17. Niech $\mathcal{B} = (v_1, v_2, \cdots, v_n)$ będzie układem wektorów w przestrzeni V. Wtedy następujące warunki są równoważne

- 1. \mathcal{B} jest baza przestrzeni V.
- 2. B jest maksymalnym układem liniowo niezaleznym.
- 3. B jest minimalnym układem generatorów przestrzeni V

Twierdzenie 4.18. Jeśli przestrzeń wektorowa V posiada bazę n elementową to każda baza V ma n elementów.

Definicja 4.19. Mówimy, że przestrzeń V ma wymiar n, jeśli V posiada bazę n elementową. Piszemy wtedy, że dimV = n. Ponadto przyjmujemy, że wymiar przestrzeni zerowej wynosi 0, a jeśli V nie ma skończonej bazy, to V nazywamy przestrzenią nieskończenie wymiarową i piszemy $dimV = \infty$.

Jeśli dimV = n, to każdy n-elementowy liniowo niezależny układ wektorów w przestrzeni V jest bazą V. Jeśli dimV = n, to każdy n elementowy układ wektorów w przestrzeni V jest bazą V.

Twierdzenie 4.20. Podprzestrzeń przestrzeni rozpiętej na skończonym układzie wektorów jest skończenie wymiarowa. Jeśli W jest podprzestrzenią w V oraz dimV = n, to $dimW \le n$. Ponadto, jesli dimV = dimW, to V = W.

Twierdzenie 4.21. Niech V będzie przestrzenia wektorową nad ciałem K. W'owczas

- 1. Każdy liniowo niezależny układ wektorów można uzupełnic do bazy V.
- 2. Z każdego układu generatorów V mozna wybrać bazę.