MATH 435 ASSIGNMENT 8

ARNOLD JIADONG YU

1. Introduction to Module Theory

1.1. 3. Give an explicit example of a map from one R-module to another which is a group homomorphism but not an R-module homomorphism.

proof: Let the ground ring be $\mathbb C$ and consider $\mathbb C$ -module, $\mathbb C$. Define a map ϕ ,

$$\phi:\mathbb{C}\to\mathbb{C}$$

$$\phi:z\mapsto \overline{z}$$

where $z, \overline{z} \in \mathbb{C}$. Then let $z_1, z_2 \in \mathbb{C}$,

$$\phi(z_1 + z_2) = \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} = \phi(z_1) + \phi(z_2)$$

But

$$\phi(i \cdot 1) = -i \neq i \cdot \phi(1) = i$$

for $1, i \in \mathbb{C}$. Hence it is a group homomorphism but not an R-module homomorphism.

We also can use the example in the class

$$R[x] \to R[x]$$

$$f(x) \mapsto f(x^2)$$

1.2. 4*.

1.3. 5. Exhibit all \mathbb{Z} -module homomorphisms from $\mathbb{Z}/30\mathbb{Z}$ to $\mathbb{Z}/21\mathbb{Z}$ proof: Since \mathbb{Z} -module homomorphism is just group homomorphism. Moreover $\mathbb{Z}/30\mathbb{Z} \cong \mathbb{Z}_{30}$ and $\mathbb{Z}/21\mathbb{Z} \cong \mathbb{Z}_{21}$. Then we only need to consider group homomorphism between \mathbb{Z}_{30} and \mathbb{Z}_{21} . Moreover, $\langle 1 \rangle = \mathbb{Z}_{30}$, then we only need to consider where 1 maps to. There exist the trivial map from \mathbb{Z}_{30} to \mathbb{Z}_{21} where every element of \mathbb{Z}_{30} maps to zero of \mathbb{Z}_{21} . Therefore, define a map φ such that

$$\varphi: \mathbb{Z}_{30} \to \mathbb{Z}_{21}$$

If φ is \mathbb{Z} -module homomorphisms, then

$$\varphi(30 \cdot 1) = \varphi(0) = 0 = 30 \cdot \varphi(1)$$

where $\varphi(1) \in \mathbb{Z}_{21}$. Moreover $30 \cdot \varphi(1) = 0$ and $30 = 2 \cdot 3 \cdot 5, 21 = 3 \cdot 7$. There are only 3 possible value for $\varphi(1)$ s.t. $30 \cdot \varphi(1) = 0$ which is 0, 7, 14. As a result, there are $3 \mathbb{Z}$ -module homomorphisms.

$$\overline{1} \mapsto \overline{0} \\
\overline{1} \mapsto \overline{7} \\
\overline{1} \mapsto \overline{14}$$

If there is another map, assume $1 \mapsto a$ where $7 \nmid a$, then 30a = 0 which means $21 \mid 30a \Rightarrow 7 \mid a$, which is a contradiction. Hence there are only 3 maps.

This is related to #6, since we can see $\gcd(30,21)=3$ and there are 3 \mathbb{Z} -module homomorphisms. This makes $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_{30},\mathbb{Z}_{21})\cong\mathbb{Z}_3$, which is the same as $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/30\mathbb{Z},\mathbb{Z}/21\mathbb{Z})\cong\mathbb{Z}/(30,21)\mathbb{Z}$. From this problem, we can think the #6, let $z=\gcd(m,n)$, then $m=z\cdot q_1\cdot\ldots\cdot q_t, n=z\cdot p_1\cdot\ldots\cdot p_s$ where p_i,q_j are all distinct prime numbers. To map \mathbb{Z}_m to \mathbb{Z}_n , define a map

$$\phi: \mathbb{Z}_m \to \mathbb{Z}_n$$

Then $m\phi(1)=0$ implies $\phi(1)$ has to have $p_1 \cdot ... \cdot p_s$ as factors and there will be z copies of them. As a result, there will be z numbers of \mathbb{Z} -module homomorphisms maps.

1.4. 8. Let $\varphi: M \to N$ be an R-module homomorphism. Prove that $\varphi(\text{Tor}(M)) \subseteq \text{Tor}(N)$ (cf. Exercise 8 in Section 1). proof: Since φ is an R-module homomorphism then $\varphi(0) = 0$. Let $m \in \text{Tor}(M)$, then there exist a nonzero element $r \in R$, s.t. rm = 0. Apply the map to m, then

$$r \cdot \varphi(m) = \varphi(r \cdot m) = \varphi(0) = 0$$

 $\Rightarrow r \cdot \varphi(m) = 0 \Rightarrow \varphi(m) \in \text{Tor}(N)$

for the same nonzero $r \in R$. Hence $\varphi(\text{Tor}(M)) \subseteq \text{Tor}(N)$.

1.5. 10. Let R be a commutative ring. Prove that $\operatorname{Hom}_R(R,R)$ and R are isomorphic as rings.

proof: Let R be a commutative ring then $\operatorname{Hom}_R(R,R)$ is a ring. Since we want to show it is ring homomorphism, then 0 must map to 0 and 1 must map to 1. Define f_r is a map defined below, claim $f_r \in \operatorname{Hom}_R(R,R)$.

$$f_r: R \to R$$

 $f_r: a \mapsto ra$

Let $a, b, r \in R$, then

$$f_r(ra + b) = r(ra + b) = r(ra) + rb = rf_r(a) + f_r(b)$$

i.e. f_r is an R-module homomorphism. Moreover, any element has $f_r(a) = af_r(1_R)$ in $\operatorname{Hom}_R(R,R)$ since f_r is R-module homomorphism. Define a map φ , s.t.

$$\varphi: R \to \operatorname{Hom}_R(R, R)$$

$$\varphi: r \mapsto f_r$$

Then for $r, s \in R$.

$$\varphi(r+s) = f_{r+s} = f_r + f_s = \varphi(r) + \varphi(s)$$

Since $\operatorname{Hom}_R(R,R)$ is a ring with addition, $f_{r+s}(x) = (r+s)(x) = rx + sx = f_r(x) + f_s(x)$.

$$\varphi(rs) = f_{rs} = f_r \circ f_s = \varphi(r) \circ \varphi(s)$$

Since $\operatorname{Hom}_R(R,R)$ is a ring with composition, $f_{rs}(x) = (rs)(x) = r(sx) = f_r \circ f_s(x)$. Therefore, it is a ring homomorphism. WTS φ is bijective.

Let $\varphi(r) = \varphi(s)$, then $f_r = f_s \implies r(x) = s(x) \implies r = s$. i.e. φ is injective.

Let $g \in \text{Hom}_R(R, R)$, then g(1) = r. Moreover, g(x) = xg(1) = xr = rx, since R is commutative. i.e. $g = f_r = \varphi(r)$. This shows φ is surjective.

Therefore, φ is bijective. With ring homomrphism, $\operatorname{Hom}_R(R,R) \cong R$ as rings.