Reinforcement Learning Lecture 4: Monte Carlo Methods

Lecturer: Prof. Dr. Mathias Niepert

Institute for Artificial Intelligence Machine Learning and Simulation Lab

imprs-is

Outline

- 1. Monte Carlo Prediction
- 2. Monte Carlo Control
- 3. On & Off Policy
- 4. Importance Sampling

Recap: Recursive relationship for q_{π}

Introduction

•00

$$\begin{aligned} q_{\pi}(s, a) &= \mathbb{E}_{\pi} \left[G_{t} \mid S_{t} = s, A_{t} = a \right] \\ &= \mathbb{E}_{\pi} \left[\sum_{i=0}^{\infty} \gamma^{i} R_{t+i+1} \mid S_{t} = s, A_{t} = a \right] \\ &= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a \right] \\ &= \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma \mathbb{E}_{\pi} \left[G_{t+1} \mid S_{t+1} = s', A_{t+1} = a' \right] \right] \\ &= \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s', a') \right] \end{aligned}$$

Recap: Bellman optimality equation for v_*

- ► Value functions define an ordering over policies
- Value under optimal policy = expected return for **best** action from that state
- Optimal value function is a fixed point of the General Policy Iteration (GPI) algorithm

$$v_*(s) = \max_{a} q_*(s, a)$$

$$= \max_{a} \mathbb{E}_{\pi_*} [G_t \mid S_t = s, A_t = a]$$

$$= \max_{a} \mathbb{E}_{\pi_*} [R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$$

$$= \max_{a} \mathbb{E} [R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_*(s')]$$

Recap: Value and Policy Iteration

- ▶ Why is a deterministic policy guaranteed to be optimal?
- ▶ In dynamic programming, we assume full access to the transition dynamics $p(s' \mid s, a)$ and the reward function of the MDP
- ► How do we compute value and action value functions (and optimal policies) when we can only "follow" policies and sample trajectories?

Mathias Niepert

Monte Carlo Prediction

Monte Carlo Integration

Monte Carlo Integration

Estimate integral

$$\mathbb{E}\left[f(x)\right] = \int f(x)p(x)dx$$

▶ Draw samples $x_i \stackrel{\text{i.i.d.}}{\sim} 1$ p(x) and approximate the integral as

$$\hat{f} \approx \frac{1}{L} \sum_{l=1}^{L} f(x_l)$$

▶ The **empirical mean estimator** \hat{f} converges to the true mean $\mathbb{E}[f(x)]$ as the number of samples L increases (law of large numbers)

Mathias Niepert Reinforcement Learning 6 / 31

¹i.i.d. means Independent and Identically Distributed: each random variable has the same probability distribution as the others and all are mutually independent

Example: k-armed bandit

- ► There are *k* actions (machines) and each machine returns a reward from a (stationary) probability distribution
- lacktriangle Objective is to maximize the expected total reward, aggregated over the first T choices of machines
- ► We have no access to the probability distribution over rewards so want to compute the expected value of the reward (an integral!)

Monte Carlo Integration

Estimation of the expected output of a black box function f w.r.t. some distribution over inputs

Assume we have access to

- ► Samples (i.i.d.) from prior distribution over states
- ▶ Black box function that encodes environment and returns sequence of experience

Figure: Black box view on RL

Use Monte Carlo methods to estimated the expected output or a function of it, e.g. the expected cumulative reward.

Mathias Niepert Reinforcement Learning 8 / 31

Monte Carlo methods in RL

- ▶ **Learn** value function from *experience*
- Discover optimal policies
- ▶ Blackbox view does not require knowledge of the environment: p(s'|s,a) & r(s,a,s')
- **Experience:** sample sequences of states, actions, rewards: $S_1, A_1, R_2, S_2, A_2, \dots$
 - real experience: interaction with the environment
 - simulated experience: interaction with a simulator
- Achieve optimal behavior

Monte Carlo principle

- ► Divide experience into episodes
- ► All episodes must terminate!
- Maintain estimates of value (action value) function
- Update estimate at end of each episode
- MC vs. DP:
 - update every episode vs. every step
 - ▶ We cannot use value function to derive improved policy (more later)

Returns

- ► Return = Expected cumulative future discounted reward
- Return for finite episode starting at time t: $G_t = R_{t+1} + \gamma R_{t+2} + \dots \gamma^{T-2} R_{T-1} + \gamma^{T-1} R_T$
- lacktriangle Discounted sum of immediate rewards up to and including terminal state at t=T
- $\mathbf{v}_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$ is the expected cumulative discounted reward
- We cannot solve the Bellman equation for $v_{\pi}(s)$ explicitly since we don't have access to the dynamics
- lacktriangle Idea: value function for state s is approximated by average returns over many episodes starting from s
 - ightharpoonup approximation of value function $v_{\pi}(s)$ for that state and policy π

First-visit vs. every-visit MC

- A state can occur more than once in one episode
- First-visit MC:
 - **E**stimate $v_{\pi}(s)$ as the average of returns following **first** visits to s
- Every-visit MC:
 - **E**stimate $v_{\pi}(s)$ as the average of returns following **every** visit to s
- lacktriangleright Both strategies converge to $v_{\pi}(s)$ as the number of visits to s goes to infinity

Properties of MC

- \triangleright Estimates of v for each state are independent
- ightharpoonup Compute time is independent of |S|
- ▶ If only a few states are relevant, we can generate episodes from those states and ignore the value of others
- No need to know the full model p(s'|s,a) and r(s,a,s')
- ► Learning from real/simulated experience
- lackbox Often (i.e. in games) it is possible to generate transitions without actually having explicit access to p

Monte Carlo Prediction (Estimation of v_{π})

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Input: a policy π to be evaluated

Initialize:

 $V(s) \in \mathbb{R}$, arbitrarily, for all $s \in \mathcal{S}$ $Returns(s) \leftarrow$ an empty list, for all $s \in \mathcal{S}$

Loop forever (for each episode):

Generate an episode following π : $S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T$

 $G \leftarrow 0$

Loop for each step of episode, $t = T - 1, T - 2, \dots, 0$:

 $G \leftarrow G + R_{t+1}$

Unless S_t appears in $S_0, S_1, \ldots, S_{t-1}$:

Append G to $Returns(S_t)$

 $V(S_t) \leftarrow \text{average}(Returns(S_t))$

Mathias Niepert Reinforcement Learning 14 / 31

Backup diagram

- ► Entire episode included
- ▶ Only single choice considered at each state
- ► Thus, there will be an explore/exploit dilemma
- ► Value is estimated by mean return

Blackjack example

- ▶ **Objective:** your card sum greater than the dealer's without exceeding 21
- Number cards count as their number, the jack, queen, and king count as 10, and aces count as either 1 or 11

Actions

- stick (no more cards)
- hit (receive another card)

States

- \blacktriangleright current sum (12-21), we do not consider cases bellow 12 \rightarrow always hit
- dealer's showing card (A-2-3-...-9-10)
- usable ace (can be counted as 11)?
- **Reward:** +1 for winning, 0 for a draw, -1 for losing
- **Policy:** stick if sum > 20. else hit

Wikipedia

Monte Carlo Control

- ► Alternating policy evaluation and policy improvement
- **Policy evaluation:** estimate v_{π} for fixed π
- **Policy improvement:** determine greedy policy π' w.r.t. to v_{π}
- ▶ Iterate until optimal value function & policy is reached
- ▶ We can use *Monte Carlo* instead of DP for policy *evaluation* in policy *iteration*
- MC estimates the value function given a policy

Policy Improvement: Value vs. Action Value Functions

▶ In DP, when we have the full knowledge of the MDP dynamics $p(s', r \mid s, a)$, the best policy π' wrt current value function can be obtained

$$\pi'(s) = \arg\max_{a} \sum_{s',r} p(s',r \mid s,a) \Big[r + \gamma v_{\pi}(s') \Big]$$

- Not the case for the Monte Carlo setting where the assumption is that we have no direct access to $p(s', r \mid s, a)$
- Here we need estimates of the action values to extract optimal policy wrt the current MC estimates of the action value function

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a).$$

Mathias Niepert

Estimating q-values

ightharpoonup Same principle as for v_{π}

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \Big[G_t \mid S_t = s, A_t = a \Big]$$

- Update estimate $q_{\pi}(s, a)$ by averaging returns following first visit to that state—action pair (s, a)
- \blacktriangleright Warning: if the policy is deterministic, some (s,a) pairs may never be visited

- ▶ MC policy iteration step: policy evaluation using MC methods
- ▶ Policy improvement step: greed w.r.t. to action-value

$$\pi_0 \xrightarrow{\mathsf{E}} q_{\pi_0} \xrightarrow{\mathsf{I}} \pi_1 \xrightarrow{\mathsf{E}} q_{\pi_1} \xrightarrow{\mathsf{I}} \pi_2 \xrightarrow{\mathsf{E}} \dots \xrightarrow{\mathsf{I}} \pi_* \xrightarrow{\mathsf{E}} q_*$$
evaluation
$$Q \leadsto q_{\pi}$$

$$\pi \qquad Q$$

$$\pi \leadsto \operatorname{greedy}(Q)$$
improvement

Greedy policy

 \blacktriangleright For any action–value function q_{π} , the corresponding greedy policy is:

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

Policy improvement is simply constructing each π_{k+1} as the greedy policy w.r.t. to q_{π_k}

$$\pi_{k+1}(s) = \arg\max_{a} q_{\pi_k}(s, a)$$

Convergence of MC control

$$v_{\pi_{k+1}}(s) = q_{\pi_k}(s, \pi_{k+1}(s))$$

$$= q_{\pi_k}(s, \arg\max_a q_{\pi_k}(s, a))$$

$$= \max_a q_{\pi_k}(s, a)$$

$$\geq q_{\pi_k}(s, \pi_k(s))$$

$$= v_{\pi_k}(s)$$

- ▶ Thus π_{k+1} must be equal or better than π_k
- Assumes exploring starts, that is, non-zero probability that state-action pair is selected as start
- ▶ In the limit of an infinite number of episodes, this guarantees that every pair will be visited an infinite number of times

Mathias Niepert Reinforcement Learning 23 / 31

Monte Carlo ES (exploring starts)

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$

```
Initialize:
     \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in \mathcal{S}
     Q(s,a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in S, a \in \mathcal{A}(s)
Loop forever (for each episode):
     Choose S_0 \in \mathcal{S} and A_0 \in \mathcal{A}(S_0) such that all pairs have probability > 0
     Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, ..., S_{t-1}, A_{t-1}:
                Append G to Returns(S_t, A_t)
                Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
                \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
```

24 / 31 Mathias Niepert Reinforcement Learning

On-policy Monte Carlo control

- ▶ On-policy: learn about policy currently used to generate experience
- ▶ We must explore since we need to visit as many states as possible
- How do we avoid the assumption of exploring starts?
- ▶ E.g., using ϵ -greedy or softmax policies, i.e., $\pi(s,a) > 0$ for all (s,a)
- ▶ **Off-policy:** Evaluate and improve a policy that is different from the one used for generating episodes

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

```
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow an arbitrary \varepsilon-soft policy
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in A(s)
    Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, a \in \mathcal{A}(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, ..., S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
              A^* \leftarrow \operatorname{argmax}_a Q(S_t, a)
                                                                                     (with ties broken arbitrarily)
              For all a \in \mathcal{A}(S_t):
                       \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

Off-policy Monte Carlo control

Learn the value of the target policy π from experience generated using a behavior policy μ

- For example, π is the **greedy policy** (thus ultimately the optimal policy), while μ is an exploring (e.g. softmax) policy
- \blacktriangleright In general, we only require that μ generates behavior that *covers*/includes π

$$\pi(a \mid s) > 0 \Rightarrow \mu(a \mid s) > 0 \ \forall s, a$$

Idea: Compute MC estimates from the trajectories generated by μ but make adjustments such that we obtain estimates compatible with π

Importance Sampling

The Problem with off-policy prediction

- ▶ Recall that we want to obtain (estimate) $\mathbb{E}_{\pi}[G_t \mid S_t = s] = v_{\pi}(s)$ (or the action value function, as seen above)
- If we use MC methods to estimate value and action value functions from episodes generated by a different policy μ we have biased (incorrect) estimates
- We need to find a way to obtain estimates that are unbiased with respect to π while looking at episodes generated by μ

Importance sampling

- **Target distribution** p(x) from which it's complicated to draw samples
- **Proposal distribution** q(x) from which it's easy to draw samples
- ightharpoonup We need to be able to evaluate p(x) numerically

$$\mathbb{E}_{p(x)}[f(x)] = \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx = \mathbb{E}_{q(x)}\left[f(x)\frac{p(x)}{q(x)}\right]$$

$$\approx \frac{1}{L}\sum_{l=1}^{L}f(x_{l})\underbrace{\frac{p(x_{l})}{q(x_{l})}}_{y_{l}} \quad \text{,with samples } x_{l} \overset{i.i.d.}{\sim} q(x)$$

- ▶ The ratio w_l is called importance weight
- **Choice** of **proposal distribution** q(x) is crucial for efficiency

Consider the trajectory $\psi = (a_t, s_{t+1}, a_{t+1}, \dots, s_T)$

$$\rho_{t:T-1} = \frac{Pr\{\psi \mid \pi\}}{Pr\{\psi \mid \mu\}} = \frac{\prod_{k=t}^{T-1} \pi(a_k \mid s_k) p(s_{k+1} \mid s_k, a_k)}{\prod_{k=t}^{T-1} \mu(a_k \mid s_k) p(s_{k+1} \mid s_k, a_k)} = \prod_{k=t}^{T-1} \frac{\pi(a_k \mid s_k)}{\mu(a_k \mid s_k)}$$

Ordinary importance sampling

Weighted importance sampling

$$V(s) = \frac{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1} G_t}{|\mathcal{T}(s)|} \qquad V(s) = \frac{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1} G_t}{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1}}$$

Notation: Time step numbering increases across episodes boundaries

- $ightharpoonup \mathcal{T}(s)$ denotes the set of all time steps in which state s is visited
- ightharpoonup T(t) the first time of termination following time t

Summary

- ▶ Monte Carlo has several advantages over dynamic programming:
 - can learn directly from experience
 - no need for full models
 - less harmed by violating Markov property
- MC methods provide an alternative to policy evaluation
- MC requires sufficient exploration
- On–policy vs. off-policy methods
- ► Importance sampling for off–policy