Politecnico di Torino Data Analysis and Artificial Intelligence

OPEN SET DOMAIN ADAPTATION

Andres Felipe Corredor Pablos S287298
Fulvio Raddi S284539
Jorge Luis Lora S292930
Michel Jreige S288005

Introduction of the problem

Knowing the unknown

Joint Supervision Training

 $L = L_{C_1} + \alpha_1 L_{R_1} + \lambda \text{ Center_Loss}$

Chair

Candle

Fork

Normality score

$$N = \max\{E_S, R_S\}$$

- E_S is the entropy score
- R_s is the rotation score

Known and Unknown separation

Domain Alignment

Here, in simple words, we try to get a label for the known objects using a combination of two losses, while not forcing the same distribution of objects :

$$L = L_{C_2} + \alpha_2 L_{R_2}$$

The classifier is trained either to label the known object or to reject it as unknown

Domain Alignment

Unknown Detection

Metric Evaluation

- OS*: Accuracy of the known classes.
- UNK: Accuracy of the unknown classes.
- HOS: Harmonic mean of the 2 accuracies.

$$HOS = \frac{2 OS^* UNK}{OS^* + UNK}$$

The adoption of HOS, as the criterion for performance, allowed to consider both tasks of identifying known and unknown samples.

Ablation for α_1 and α_2

Threshold=0 Centerloss=0

Ablation for the threshold

$$\alpha_1 = \alpha_2 = 0$$

Centerloss=0

Ablation for Centerloss

$$\alpha_1 = \alpha_2 = 0$$

Threshold=0

Domain Shift

 $\alpha_1 = \alpha_2 = 1.5$, Threshold=-0.4, Centerloss=0.

Improvements

Problems:

- Low Performance: AUROC & HOS
- Domain Shift(real world)
- Limited resources
- Centerloss implementation

Possible Solutions:

- More exhaustive training
- Improved database
- Early stopping

THANK YOU FOR YOUR ATTENTION!

GitHub Repository:

https://github.com/FelipeCorredor73/DAAI_OPEN_SET_ROS.git