Manifolds of Hilbert space homeomorphic to sphere in Finite von Neumann algebra

WEI YUAN AND WENMING WU

ABSTRACT. Enter abstract here

1. Introduction

Let \mathcal{H} be a Hilbert space, $Proj(\mathcal{H})$ be the set of self-adjoint projections and $Uint(\mathcal{H})$ be the set of unitary operators. We will routinely identify a closed subspace with its associated orthogonal projection in $B(\mathcal{H})$. For a set \mathcal{L} of orthogonal projections in $Proj(\mathcal{H})$, we denote by $Alg\mathcal{L}$ the set of all bounded linear operators on \mathcal{H} leaving each element in \mathcal{L} invariant. Then $Alg\mathcal{L}$ is an unital weak-operator closed subalgebra of $B(\mathcal{H})$. Similarly, for a subset \mathcal{S} of $B(\mathcal{H})$, let $Lat\mathcal{S}$ be the set of invariant projections for every operators in \mathcal{S} . Then $Lat\mathcal{S}$ is a strong-operator closed lattice of projections. A subalgebra \mathcal{A} of $B(\mathcal{H})$ is said to be reflexive if $\mathcal{A} = Alg\mathcal{L}at\mathcal{A}$, similarly a lattice \mathcal{L} of projections is reflexive if $\mathcal{L} = LatAlg\mathcal{L}$.

2. HILBERT FIELDS OVER SPHERE

Suppose $Q(\infty)$, Q(0) and Q(-1) are three projections in a finite von Neumann algebra \mathfrak{A} , and $Q(\infty)$, Q(0) and Q(-1) are in general position, i.e., the intersection of any two is zero and the join of any two is I, then $\mathfrak{A} \cong Q(\infty)\mathfrak{A}Q(\infty)\otimes M_2(\mathbb{C})$ [15, Proposition 2.4]. Moreover we can write $Q(\infty)$, Q(0) and Q(-1) in terms of 2×2 operator matrices (with respect to the canonical matrix units in $I\otimes M_2(\mathbb{C})$) as follows:

$$Q(\infty) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, Q(0) = \begin{pmatrix} H_1 & \sqrt{H_1(I - H_1)} \\ \sqrt{H_1(I - H_1)} & I - H_1 \end{pmatrix},$$

$$Q(-1) = \begin{pmatrix} H_2 & \sqrt{H_2(I - H_2)}V \\ V^*\sqrt{H_2(I - H_2)} & V^*(I - H_2)V \end{pmatrix},$$

where H_i is a contractive positive operator in $Q(\infty)\mathfrak{A}Q(\infty)$ such that $Ker(I-H_i)=0$, i=1,2, and V is a unitary operator in $Q(\infty)\mathfrak{A}Q(\infty)$.

In order to describe the invariant subspace lattice $\mathcal{L}at(\mathcal{A}lg(\{Q(\infty),Q(0),Q(-1)\}))$, unbounded operator will be used. Let $\mathfrak A$ be a von Neumann algebra, and $\widetilde{\mathfrak A}$ be the set of closed, densely defined operators affiliated with $\mathfrak A$. When $\mathfrak A$ is finite, the family of operators affiliated with $\mathfrak A$ has remarkable properties, that is the operators in $\widetilde{\mathfrak A}$ admits algebraic operations of addition and multiplication. In another word, $\widetilde{\mathfrak A}$ is an unital * algebra (cf. [23]), and the elements in $\widetilde{\mathfrak A}$ can be manipulated as if they were bounded operators. In the rest of the paper, we will repeatedly make use this fact without mentioning it explicitly. For a elegant treatment of this subject, we refer readers to [24].

2010 Mathematics Subject Classification. Primary; Secondary.

Theorem 2.1 ([15], Theorem 2.1). With the above notation and assumptions, we have $\mathcal{L}at(\mathcal{A}lg(\{Q(\infty),Q(0),Q(-1)\}))\setminus\{0,I\}$ endowed with the strong operator topology is homeomorphic to $\mathbb{C}\cup\{\infty\}(\cong S^2)$ with the homeomorphism given by

$$\rho[Q(\infty),Q(0),Q(-1)](z) = \begin{pmatrix} K_z & \sqrt{K_z(I-K_z)}U_z \\ U_z^*\sqrt{K_z(I-K_z)} & U_z^*(I-K_z)U_z \end{pmatrix}, \quad \forall z \in \mathbb{C},$$

and $\rho[Q(\infty), Q(0), Q(-1)](\infty) = Q(\infty)$, where K_z and U_z are uniquely determined by the following polar decomposition:

(2)
$$\begin{aligned} \sqrt{K_z(I-K_z)^{-1}}U_z &= (1+z)\sqrt{H_1(I-H_1)^{-1}} - z\sqrt{H_2(I-H_2)^{-1}}V \\ &= zS + \sqrt{H_1(I-H_1)^{-1}} \qquad (S = \sqrt{H_1(I-H_1)^{-1}} - \sqrt{H_2(I-H_2)^{-1}}V). \end{aligned}$$

Moreover, the reflexive lattice $\mathcal{L}at(\mathcal{A}lg(\{Q(\infty),Q(0),Q(-1)\}))$ can be determined by arbitrary three nontrivial projections (not 0 or I) in it.

Remark 2.1. Since $\sqrt{K_0(I-K_0)^{-1}}U_0 = 0 \times S + \sqrt{H_1(I-H_1)^{-1}}$ implies $K_0 = H_0$ and $U_0 = I$, we have $\rho[Q(\infty), Q(0), Q(-1)](0) = Q(0)$. Similarly, $\rho[Q(\infty), Q(0), Q(-1)](-1) = Q(-1)$. Therefore, we will also use Q(z) to denote $\rho[Q(\infty), Q(0), Q(-1)](z)$ throughout the rest of this paper.

Definition 2.1 (Definition 2.1. (i) in [4]). A topological subspace manifold in $B(\mathcal{H})$ of dimension n is a set $\mathcal{M} \subset Proj(\mathcal{H})$, considered with the relative strong operator topology, which is locally homeomorphic to \mathbb{R}^n .

Given any there projections $Q(\infty)$, Q(0), Q(-1) in a finite von Neumann algebra, we have $\mathcal{L}at(\mathcal{A}lg(\{Q(\infty),Q(0),Q(-1)\}))\setminus\{0,I\}$ is a topological subspace manifold of dimension 2 if $Q(\infty)$, Q(0), Q(-1) are in general position by Theorem 2.1.

Example 2.1 (Tautological line bundle over \mathbb{CP}^1). *Let*

$$Q(\infty) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, Q(0) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, Q(-1) = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix},$$

then

$$Q(z) = \frac{1}{1 + |z|^2} \left(\begin{array}{cc} |z|^2 & z \\ \overline{z} & 1 \end{array} \right).$$

Note that the map $\phi: \mathbb{CP}^1 \to S^2$ given by $\phi([z_1, z_2]) = z_1/z_2$ is a homeomorphism. We have

$$\phi^*(Q)([z_1, z_2]) = \frac{1}{|z_1|^2 + |z_2|^2} \begin{pmatrix} |z_1|^2 & z_1 \overline{z_2} \\ \overline{z_1} z_2 & |z_2|^2 \end{pmatrix}$$

is a line bundle over \mathbb{CP}^1 . It is actually the tautological line bundle over \mathbb{CP}^1 .

In this paper will study the subgroup of automorphisms of $\mathfrak A$ which leaves $Lat(\mathcal Alg(\{Q(\infty),Q(0),Q(-1)\}))$ invariant. The rest of this paper is organized as follows. Next, we point out that the above result naturally induce a coordinate chart of the reflexive lattice generated by a double triangle lattice of projections (exclude 0 and I) in a finite von Neumann algebra. In section 3, we prove that the transition maps between the charts are Möbius transformations. We then study the $\mathcal L$ -invariant subgroup of automorphisms of a von Neumann algebra $\mathfrak A$, where $\mathcal L$ is a reflexive subspace lattice contained in $\mathfrak A$. In particular, we show if $\mathfrak A$ is a finite factor or finite dimensional, and $\mathcal L$ is generated by a double triangle lattice of projections in $\mathfrak A$, then the $\mathcal L$ -invariant automorphism group is homeomorphic to a closed subgroup of SO(3)(Corollary \ref{SO}). In section 4, we compute the $\mathcal L$ -invariant

automorphism group when $\mathfrak A$ is the interpolated free group factor $L_{F_{\frac{3}{2}}}$, and $\mathcal L$ is determined by the three free projection that generate $L_{F_{\frac{3}{2}}}$. In the appendix, we give a detailed proof of the following fact: If $\mathcal L$ is a reflexive lattice in a von Neumann algebra $\mathfrak A$, and φ is a *-isomorphism of $\mathfrak A$, then $\varphi(\mathcal L)$ is also reflexive.

Since any three projections in $\mathcal{L}at(\mathcal{A}lg(\{Q(\infty),Q(0),Q(-1)\}))\setminus\{0,I\}$ are in the general position, form Theorem Theorem 2.1, we have the following corollary.

Corollary 2.1. With the notations in the Theorem 2.1 and the Remark 2.1, suppose $Q(z_1)$, $Q(z_2)$ and $Q(z_3)$ are three nontrivial projections in $\mathcal{L}at(\mathcal{A}lg(\{Q(\infty),Q(0),Q(-1)\}))$, then there is a homeomorphism $\rho[Q(z_1),Q(z_2),Q(z_3)]$ form S^2 onto $\mathcal{L}at(\mathcal{A}lg(\{Q(\infty),Q(0),Q(-1)\}))\setminus\{0,I\}$ such that $\rho[Q(z_1),Q(z_2),Q(z_3)](z)$ is determined by the following relation:

 $(I - Q(z_1)\rho[Q(z_1), Q(z_2), Q(z_3)](z)Q_{z_1})^{-1}[Q(z_1)\rho[Q(z_1), Q(z_2), Q(z_3)](z)(I - Q(z_1))]$ $= (1+z)(I - Q(z_1)Q(z_2)Q(z_1))^{-1}[Q(z_1)Q(z_2)(I - Q(z_1))]$

By (3), $\rho[Q(z_1), Q(z_2), Q(z_3)](\infty) = Q(z_1)$, $\rho[Q(z_1), Q(z_2), Q(z_3)](0) = Q(z_2)$ and $\rho[Q(z_1), Q(z_2), Q(z_3)](-1) = Q(z_3)$.

The inverse of the homeomorphism $\rho[Q(z_1),Q(z_2),Q(z_3)]$ in the Corollary 2.1 actually gives a coordinate chart of $(\mathcal{L}at(\mathcal{A}lg(\{Q(\infty),Q(0),Q(-1)\}))\setminus\{0,I,Q(z_1)\},$ $\rho[Q(z_1),Q(z_2),Q(z_3)]^{-1})$ of $\mathcal{L}at(\mathcal{A}lg(\{Q(\infty),Q(0),Q(-1)\}))\setminus\{0,I\}$. So $\mathcal{L}at(\mathcal{A}lg(\{Q(\infty),Q(0),Q(-1)\}))\setminus\{0,I\}$ is a 2-dimensional (topological) manifold with atlas $\{\rho[Q(z_1),Q(z_2),Q(z_3)]^{-1}|z_1,z_2,z_3\in\mathbb{C}\cup\{\infty\}\}$. In the next section, we will determine the transition maps between the charts in this atlas.

 $-z(I-Q(z_1)Q(z_3)Q(z_1))^{-1}[Q(z_1)Q(z_3)(I-Q(z_1))].$

3. Determined by two idempotent

Let $Q(\infty)$, Q(0) and Q(-1) be trace half projections in a finite von Neumann algebra \mathfrak{A} . If $Q(\infty) \wedge Q(i) = 0$, i = 0, -1, then we have there exists a two closed idempotents S_1 and S_2 such that S_1 and S_2 are affiliated with \mathfrak{A} and $\mathcal{A}lg(Q(\infty),Q(0),Q(-1)) = \{T|TS_i \subset S_iT, i = 1,2\}$ by Lemma 2.3 in [16].

Now assume that T_1 and T_2 be two closed operator affiliated with a finite von Neumann algebra \mathfrak{A} . Consider two idempotents in $\mathfrak{A} \otimes M_2(\mathbb{C})$:

$$S_1 = \begin{pmatrix} I & T_1 \\ 0 & 0 \end{pmatrix}, \qquad S_2 = \begin{pmatrix} I & T_2 \\ 0 & 0 \end{pmatrix}.$$

Let $Q(\infty) = Ran(S_1)$, $Q(0) = Ker(S_1)$ and $Q(-1) = Ker(S_2)$ be three trace half projections. Note that

$$Alg(Q(\infty), Q(0), Q(-1)) = \{T | TS_i \subset S_i T, i = 1, 2\}.$$

By conjugating a unitary, we could assume that

$$T_1 - T_2 = \begin{pmatrix} K & 0 \\ 0 & 0 \end{pmatrix}$$

where $K \ge 0$ and K has a closed inverse. We also write T_1 as $\begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$.

It is not hard to check that $\mathcal{A}lg(Q(\infty),Q(0),Q(-1))$ contains the following elements

$$\begin{pmatrix} A_1 & 0 & A_1T_{11} - T_{11}K^{-1}A_1K & A_1T_{12} \\ 0 & 0 & -T_{21}K^{-1}A_1K & 0 \\ 0 & 0 & K^{-1}A_1K & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_2 & A_2T_{21} & A_2T_{22} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & A_3 & A_3T_{21} & A_3T_{22} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -T_{12}D_1 & 0 \\ 0 & 0 & -T_{22}D_1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & D_1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -T_{12}D_2 \\ 0 & 0 & 0 & -T_{22}D_2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & D_2 \end{pmatrix}$$

If $Q \in \mathcal{L}at(\mathcal{A}lg(Q(\infty),Q(0),Q(-1)))$ such that $Q \wedge Q(\infty) = 0$ and $Q \wedge Q(\infty) = I$, then there is a idempotent

$$S = \begin{pmatrix} I & T_1 + S_1 \\ 0 & 0 \end{pmatrix}$$

such that SA = AS for any $A \in \mathcal{A}lg(Q(\infty), Q(0), Q(-1))$. This implies that

$$\begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} = 0 \text{ and } \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} = 0.$$

Therefore S_{12} , S_{21} and S_{22} are all equals 0. Since

$$\begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} S_{11} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} S_{11} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} K^{-1}A_1K & 0 \\ 0 & 0 \end{pmatrix} \quad \text{for all } A_1 \in Ran(K)\mathfrak{A}Ran(K).$$

This implies that S = zK for some $z \in \mathbb{C}$. We will denote this projection by Q(z). If $Q \wedge Q(\infty) = 0$ and $Q \vee Q(\infty) \neq I$, then

$$Q \vee Q(\infty) = \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I \end{pmatrix} = E.$$

Therefore, there must exist a $\beta = (\xi_1, \xi_2, \xi_3, \xi_4)^T \in Q\mathcal{H}$ such that $\xi_4 \neq 0$. This implies that

$$\left\{ \begin{pmatrix} -T_{12}\xi \\ -T_{22}\xi \\ 0 \\ \xi \end{pmatrix} \middle| \xi \right\} \subset \mathcal{QH}.$$

Consider the trace of *Q*, we know that

$$\left\{ \begin{pmatrix} -T_{12}\xi \\ -T_{22}\xi \\ 0 \\ \xi \end{pmatrix} \middle| \xi \right\} = Q\mathcal{H}.$$

It is not hard to check that

$$Q(z_1) \wedge Q(z_2) = \left\{ egin{pmatrix} -T_{12}\xi \ -T_{22}\xi \ 0 \ \xi \end{pmatrix} \middle| \xi
ight\}$$

for any z_1 and $z_2 \in \mathbb{C}$.

If $Q \wedge Q(\infty) \neq 0$, then it is easy to see that

Since $E \leq Q \vee Q(\infty)$, $Q(z_1) \wedge Q(z_2) \leq Q$. If $Q \vee Q(\infty) = E$, then $\tau(Q) = \frac{1}{2}$. Hence

$$Q = \left\{ \begin{pmatrix} \xi_1 \\ -T_{22}\xi \\ 0 \\ \xi \end{pmatrix} \middle| \xi_1, \xi \right\} = F \lor Q(z), \qquad z \in \mathbb{C}.$$

The last possibility is $Q \vee Q(\infty) = I$. Then there must exists a vector $(\xi_1, \xi_2, \xi_3, \xi_4)^T \in Q$ such that $\xi_3 \neq 0$. Note that $\tau(Q) = \frac{1}{2} + \tau(F)$ and

$$\left\{ \begin{pmatrix} 0 \\ -T_{21}\xi \\ \xi \\ 0 \end{pmatrix} \middle| \xi \right\} \subset \mathcal{QH}.$$

Then it is not hard to see that

$$\left\{ \begin{pmatrix} \xi_1 \\ -T_{21}\xi_2 - T_{22}\xi_3 \\ \xi_2 \\ \xi_3 \end{pmatrix} \middle| \xi_1, \xi_2, \xi_3 \right\} = Q = Q(z_1) \lor Q(z_2)$$

for any z_1 and $z_2 \in C$.

Remark 3.1. $E = Q(\infty) \vee (Q(0) \wedge Q(-1))$ and $F = (Q(0) \vee Q(-1)) \wedge Q(\infty)$.

4. Homotopy property of the bundle

Theorem 4.1. Let $Q(\infty)$, Q(0), Q(-1) and $P(\infty)$, P(0), P(-1) be trace half projections in a finite factor \mathfrak{A} . If $Q(i) \wedge Q(j) = 0 = P(i) \wedge P(j)$ and $Q(i) \vee Q(j) = I = P(i) \vee P(j)$, $i \neq j$ and $i, j \in \{0, -1\}$, then there exist continuous paths P(i, t) of trace half projections such that P(i, 0) = P(i) and P(i, 1) = Q(i) where $i = \infty, 0, -1$. Furthermore, we can request that $P(\infty, t)$, P(0, t) and P(-1, t) are in general position and these maps can be extended to be a continuous map form $S^1 \times [0, t]$ into the set of trace half projections such that P(z, 0) = P(z) and P(z, 1) = Q(z).

Proof. We could assume that $Q(\infty) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$, $Q(0) = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}$, $Q(-1) = \begin{pmatrix} \frac{1}{2}I & \frac{1}{2}I \\ \frac{1}{2}I & \frac{1}{2}I \end{pmatrix}$. Let W be a unitary such that $W^*P(\infty)W = Q(\infty)$. Since the set of unitaries $U(\mathfrak{A})$ is connected, there exists a path W(t) in $U(\mathfrak{A})$ such that W(0) = I and W(1) = W. By considering $W(t)^*P(i)W(t)$, we may assume that $Q(\infty) = P(\infty)$.

Now assume that

$$P(0) = \begin{pmatrix} K_1 & \sqrt{K_1(I-K_1)}V_1 \\ V_1^*\sqrt{K_1(I-K_1)} & V_1^*(I-K_1)V_1 \\ 5 \end{pmatrix}, \quad P(-1) = \begin{pmatrix} K_2 & \sqrt{K_2(I-K_2)}V_2 \\ V_2^*\sqrt{K_2(I-K_2)} & V_2^*(I-K_2)V_2 \end{pmatrix}.$$

Then
$$P(0)\mathcal{H} = \{(\sqrt{\frac{K_1}{I-K_1}}V_1\xi,\xi)\}$$
 and $P(-1)\mathcal{H} = \{(\sqrt{\frac{K_2}{I-K_2}}V_2\xi,\xi)\}$. Let
$$P(\infty,t) = P(\infty), P(0,t)\mathcal{H} = \{(1-t)\sqrt{\frac{K_1}{I-K_1}}V_1\xi,\xi)\} \text{ and }$$

$$P(-1,t)\mathcal{H} = \{(\sqrt{\frac{K_2}{I-K_2}}V_2 - t\sqrt{\frac{K_1}{I-K_1}}V_1)\xi,\xi)\}.$$

Let

$$P(z,t) = \begin{pmatrix} K(z,t) & \sqrt{K(z,t)(I-K(z,t))}V(z,t) \\ V(z,t)^*\sqrt{K(z,t)(I-K(z,t))} & V(z,t)^*(I-K(z,t))V(z,t) \end{pmatrix},$$

where

$$\sqrt{\frac{K(z,t)}{I-K(z,t)}}V(z,t) = zS + (1-t)\sqrt{\frac{K_1}{I-K_1}}V_1, \quad S = \sqrt{\frac{K_1}{I-K_1}}V_1 - \sqrt{\frac{K_2}{I-K_2}}V_2.$$

We will show that P(z, t) is continuous.

$$\begin{split} &\|P(z,t_1)-P(z,t_2)\|_2^2=1-2\tau(P(z,t_1)P(z,t_2))\\ &=tr(K(z,t_1)(K(z,t_1)-K(z,t_2)))\\ &+tr(V(z,t_1)^*(I-K(z,t_1))V(z,t_1)(V(z,t_2)^*K(z,t_2)V(z,t_2)-V(z,t_1)^*K(z,t_1)V(z,t_1)))\\ &+tr(\sqrt{K(z,t_1)(I-K(z,t_1))}V(z,t_1)(V(z,t_1)^*\sqrt{K(z,t_1)(I-K(z,t_1))}-V(z,t_2)^*\sqrt{K(z,t_2)(I-K(z,t_2))})\\ &+tr(V(z,t_1)^*\sqrt{K(z,t_1)(I-K(z,t_1))}(\sqrt{K(z,t_1)(I-K(z,t_1))})V(z,t_1)-\sqrt{K(z,t_2)(I-K(z,t_2))}V(z,t_2)). \end{split}$$

Let

$$F(z,t) = \frac{K(z,t)}{I - K(z,t)} = |z|^2 S S^* + (1-t)(z S V_1^* \sqrt{\frac{K_1}{I - K_1}} + \bar{z} \sqrt{\frac{K_1}{I - K_1}} V_1 S^*) + (1-t)^2 \frac{K_1}{I - K_1}.$$

Note that

$$\begin{split} K(z,t_1) - K(z,t_2) &= (I + F(z,t_2))^{-1} (F(z,t_1) - F(z,t_2)) (I + F(z,t_1))^{-1} \\ &= (t_2 - t_1) (I + F(z,t_2))^{-1} (zSV_1^* \sqrt{\frac{K_1}{I - K_1}} + \bar{z} \sqrt{\frac{K_1}{I - K_1}} V_1 S^* \\ &\quad + (2 - t_1 - t_2) \frac{K_1}{I - K_1}) (I + F(z,t_1))^{-1}. \end{split}$$

For any $\varepsilon > 0$, let *E* be a projection such that $\tau(E) \ge 1 - \varepsilon$ and

$$||SV_1^*\sqrt{\frac{K_1}{I-K_1}}E|| \leq C, ||\sqrt{\frac{K_1}{I-K_1}}V_1S^*E|| \leq C, ||\frac{K_1}{I-K_1}E|| \leq C, ||\sqrt{\frac{K_1}{I-K_1}}E|| \leq C,$$

where *C* is a constant determined by *E*. Let $E_1(z,t)$ be the projection such that $(I - F(z,t))^{-1}E_1(z,t) = E(I - F(z,t))^{-1}E_1(z,t)$. Then

$$|tr(K(z,t_{1})(K(z,t_{1})-K(z,t_{2})))| \leq |tr(K(z,t_{1})(K(z,t_{1})-K(z,t_{2})E_{1}(z,t_{1})))| + |tr(K(z,t_{1})(K(z,t_{1})-K(z,t_{2})(I-E_{1}(z,t_{1}))))| \leq |t_{2}-t_{1}|(2|z|+2)C+2\varepsilon.$$

Now consider

$$\begin{split} &(\sqrt{K(z,t_1)(I-K(z,t_1))})V(z,t_1)-\sqrt{K(z,t_2)(I-K(z,t_2))}V(z,t_2))V(z,t_1)^*\sqrt{K(z,t_1)(I-K(z,t_1))}\\ &=(K(z,t_2)-K(z,t_1))K(z,t_1)+(t_2-t_1)(1-K(z,t_2))\sqrt{\frac{K_1}{I-K_1}}V_1V(z,t_1)^*\sqrt{K(z,t_1)(I-K(z,t_1))}. \end{split}$$

Let $E_2(z,t)$ be a projection such that $tr(E_2(z,t)) \ge 1 - \varepsilon$ and

$$\|\sqrt{\frac{K_1}{I-K_1}}V_1V(z,t)^*\sqrt{K(z,t)(I-K(z,t))}E_2(z,t)\| \leq C.$$

Then

$$|tr((\sqrt{K(z,t_1)(I-K(z,t_1))})V(z,t_1) - \sqrt{K(z,t_2)(I-K(z,t_2))}V(z,t_2))V(z,t_1)^*\sqrt{K(z,t_1)(I-K(z,t_1))})|$$

$$\leq |t_2-t_1|(2|z|+3)C+4\varepsilon.$$

The similar argument will give us similar inequlities

$$|tr(V(z,t_1)^*(I-K(z,t_1))V(z,t_1)(V(z,t_2)^*K(z,t_2)V(z,t_2)-V(z,t_1)^*K(z,t_1)V(z,t_1)))| \le |t_2-t_1|(2|z|+2)C+2\varepsilon$$

and

$$|tr(\sqrt{K(z,t_1)(I-K(z,t_1))}V(z,t_1)(V(z,t_1)^*\sqrt{K(z,t_1)(I-K(z,t_1))}-V(z,t_2)^*\sqrt{K(z,t_2)(I-K(z,t_2))})|$$

$$\leq |t_2-t_1|(2|z|+3)C+4\varepsilon.$$

This implies that P(z,t) is continuous at all point except (∞,t) . Argue exactly as in the proof of Proposition 2.2 in [15], we can show that P(z,t) is also continuous at (∞,t) .

Note that P(0,1) = Q(0,1). Thus we now assume that P(0) = Q(0) and

$$P(-1) = \begin{pmatrix} K_2 & \sqrt{K_2(I - K_2)}V_2 \\ V_2^* \sqrt{K_2(I - K_2)} & V_2^*(I - K_2)V_2 \end{pmatrix}.$$

By considering the path

$$P(-1,t)\mathcal{H} = \{(\sqrt{\frac{K_2}{I - K_2}}V(t)\xi, \xi)\},$$

where V(t) is a continuous map form [0,1] into the set of unitaries of $P(\infty)\mathfrak{A}P(\infty)$ such that $V(0)=V_2$ and V(1)=I. We may assume that $V_2=I$. Now

$$P(-1,t)\mathcal{H} = \{(\frac{t}{2}I + (1-t)\sqrt{\frac{K_2}{I-K_2}})\xi,\xi)\},\,$$

connect P(-1) and Q(-1).

Lemma 4.1. With the same notations as in Theorem 2.1, there is a dense subset of \mathcal{H} for any fix z such that $\frac{\partial Q(z)\xi}{\partial z}$ and $\frac{\partial Q(z)\xi}{\partial z}$ exist for any ξ in the subset. Actually,

$$\frac{\partial Q(z)}{\partial z} = \begin{pmatrix} (I - K_z) & 0 \\ 0 & U_z^* \sqrt{K_z(I - K_z)} \end{pmatrix} \times \begin{pmatrix} S & S \\ -S & -S \end{pmatrix} \times \begin{pmatrix} U_z^* \sqrt{K_z(I - K_z)} & 0 \\ 0 & U_z^*(I - K_z)U_z \end{pmatrix},$$
and
$$\frac{\partial Q(z)\xi}{\partial z} = (\frac{\partial Q(z)\xi}{\partial z})^*.$$

If *S* is bounded, then the map $(x,y) \to Q(x+iy)$ is C^{∞} . Next we will show that for any map $\mathbb{R}^2 \to Proj(\mathcal{H})$ defined by Theorem 2.1, there exists a C^{∞} map approximate it.

Lemma 4.2. Let P and Q be two trace half projections in a finite von Neumann algebra \mathfrak{A} . If $\|P - Q\|_2 \leq \varepsilon$, then there exists a unitary $U \in \mathfrak{A}$ such that $U^*PU = Q$ and $\|U - I\|_2 \leq \sqrt{2}\varepsilon$.

Proof. Let $E=P\wedge Q$, $F=P\vee Q$. If $E\neq 0$, then $(F-E)P\wedge (F-E)Q=0$. If there exists a $U_1\in (F-E)\mathfrak{A}(F-E)$ such that $U_1^*(F-E)PU_1=(F-E)Q$ and $\|U_1-I\|_2\leq \sqrt{2}\varepsilon$. Then $U=E+U_1+(I-F)$ will satisfies the conditions in the lemma.

Now, assume that $P \wedge Q = 0$, $P \vee Q = I$ and

$$P = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \qquad Q = \begin{pmatrix} H & \sqrt{H(I-H)} \\ \sqrt{H(I-H)} & I-H \end{pmatrix},$$

where $H \ge 0$. Since $||P - Q||_2 \le \varepsilon$, $tr(I - H) \le \varepsilon^2$, where tr is the trace on $P\mathfrak{A}P$. Let

$$U = \begin{pmatrix} \sqrt{H} & \sqrt{I-H} \\ -\sqrt{I-H} & \sqrt{H} \end{pmatrix}.$$

It is clear that $U^*PU=Q$. Since $1-\varepsilon^2 \leq tr(H) \leq tr(\sqrt{H}) \leq 1$, $||U-I||^2=2-2tr(\sqrt{H})\leq 2\varepsilon^2$.

Corollary 4.1. Let $P(\infty)$, P(0), P(-1) and $Q(\infty)$ be trace half projections in a finite von Neumann algebra \mathfrak{A} . If $\|Q(\infty) - P(\infty)\|_2 \le \varepsilon$, and $P(\infty)$, P(0), P(-1) are in general position, then there exist trace half projections Q(0) and Q(-1) such that $Q(\infty)$, Q(0), Q(-1) are in general position and

$$||Q(z) - P(z)|| \le 2\sqrt{2}\varepsilon, \quad \forall z \in \mathbb{C} \cup \{\infty\},$$

where Q(z) and P(z) are the projections determined by $P(\infty)$, P(0), P(-1) and $Q(\infty)$, Q(0), Q(-1) as in Theorem 2.1.

Proof. By Lemma 4.2, we have a unitary U in $\mathfrak A$ such that $U^*P(\infty)U=Q(\infty)$ and $\|U-I\|_2 \leq \sqrt{2}\varepsilon$. It is clear that $Q(z)=U^*P(z)U$ satisfy the conditions.

Lemma 4.3. Let $\mathfrak A$ be a finite von Neumann algebra and τ be a faithful normal trace on $\mathfrak A$. Suppose that P and Q are two trace half projections in $\mathfrak A$ such that $P \wedge Q = 0$ and $P \vee Q = I$. For any $\varepsilon > 0$, there exists a $\delta > 0$ such that if E and E are two projections in $\mathfrak A$ satisfying $||E - P||_2 \le \delta$ and $||F - Q||_2 \le \delta$, then $\tau(E \wedge F) \le \varepsilon$.

Proof. Since $P \wedge Q = 0$, there exists a $n \in \mathbb{N}$ such that $\tau((PQ)^n) \leq \frac{\varepsilon}{2}$. We claim that $\delta = \frac{\varepsilon}{4n}$ satisfies the condition. Indeed, if $||E - P||_2 \leq \frac{\varepsilon}{4n}$ and $||F - Q||_2 \leq \frac{\varepsilon}{4n}$, then

$$|\tau(E \wedge F)| \le |\tau((EF)^n)|$$

$$\leq \tau((PQ)^n) + \sum_{i=0}^{n-1} |\tau((PQ)^{n-i-1}(EF)^i E(F-Q))| + |\tau(Q(PQ)^{n-i-1}(EF)^i (E-P))|$$

$$\leq \tau((PQ)^n) + \sum_{i=0}^{n-1} ||F-Q||_2 + ||E-P||_2 \leq \varepsilon.$$

The following proposition is immediate from the lemma above.

Proposition 4.1. Let $Q(\infty) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ and

$$Q(0) = \begin{pmatrix} H_1 & \sqrt{H_1(I-H_1)} \\ \sqrt{H_1(I-H_1)} & I-H_1 \end{pmatrix}, Q(-1) = \begin{pmatrix} H_2 & \sqrt{H_2(I-H_2)}U_2 \\ U_2^*\sqrt{H_2(I-H_2)} & U_2^*(I-H_2)U_2 \end{pmatrix}$$

be trace half projections in a finite von Neumann algebras. Suppose that $Q(\infty)$, Q(0) and Q(-1) are in general position. Then for any ε , there exists two trace half projections

$$P(0) = \begin{pmatrix} K_1 & \sqrt{K_1(I-K_1)}V_1 \\ V_1^*\sqrt{K_1(I-K_1)} & V_1^*(I-K_1)V_1 \end{pmatrix}, P(-1) = \begin{pmatrix} K_2 & \sqrt{K_2(I-K_2)}V_2 \\ V_2^*\sqrt{K_2(I-K_2)} & V_2^*(I-K_2)V_2 \end{pmatrix}$$

in A such that

(1)
$$||P(0) - Q(0)|| \le \varepsilon$$
 and $||P(-1) - Q(-1)|| \le \varepsilon$;

(1)
$$|| I(0) - Q(0)|| \le \varepsilon \inf || I(-1) - Q(-1)|| \le \varepsilon$$
,
(2) $\tau(Ran(\sqrt{\frac{H_1}{I-H_1}} - \sqrt{\frac{K_1}{I-K_1}}V_1)) \le \varepsilon \inf \tau(Ran(\sqrt{\frac{H_2}{I-H_2}}U_2 - \sqrt{\frac{K_2}{I-K_2}}V_2)) \le \varepsilon$;
(3) $|| I - V_1|| \le \varepsilon \inf || U_2 - V_2|| \le \varepsilon$;

- (4) $P(0) \wedge Q(\infty) = 0$ and $P(-1) \wedge Q(\infty) = 0$:
- (5) $0 < ||K_1|| < 1$ and $0 < ||K_2|| < 1$;
- (6) $P(0) \wedge P(-1) = 0$

Proof. Let

$$h(x) = \begin{cases} \delta & x \in [0, \delta) \\ x & x \in [\delta, 1 - \delta] \\ 1 - \delta & x \in (1 - \delta, 1] \end{cases}$$

For δ small enough, Lemma 4.3 implies that

$$P(0) = \begin{pmatrix} K_1 & \sqrt{K_1(I - K_1)} \\ \sqrt{K_1(I - K_1)} & I - K_1 \end{pmatrix} \text{ and } F = \begin{pmatrix} \widetilde{H_2} & \sqrt{\widetilde{H_2}(I - \widetilde{H_2})} U_2 \\ U_2^* \sqrt{\widetilde{H_2}(I - \widetilde{H_2})} & U_2^*(I - \widetilde{H_2}) U_2 \end{pmatrix},$$

satisfy $\tau(P(0) \wedge F) \leq \frac{\varepsilon}{4}$, where $K_1 = h(H_1)$ and $\widetilde{H_2} = h(H_2)$. It is clear that $\sqrt{\frac{K_1}{I-K_1}}$ and $\sqrt{\frac{\widetilde{H_2}}{I-\widetilde{H_2}}}\widetilde{U}_2$ are bounded. Let $S=\sqrt{\frac{K_1}{I-K_1}}-\sqrt{\frac{\widetilde{H_2}}{I-\widetilde{H_2}}}\widetilde{U}_2$ and V be the partial isometry from KerS onto $(RanS)^{\perp}$ (V exists, because $\mathfrak A$ is finite). We have $\tau(Ran(V)) \leq \frac{\varepsilon}{4}$ and $Ker(S+zV) = \{0\}$ for any $z \neq 0$. Let

$$P(-1) = \begin{pmatrix} K_2 & \sqrt{K_2(I - K_2)}V_2 \\ K_2^* \sqrt{K_2(I - K_2)} & K_2^*(I - K_2)V_2 \end{pmatrix},$$

where

$$\sqrt{\frac{K_2}{I-K_2}}V_2 = \sqrt{\frac{\widetilde{H_2}}{I-\widetilde{H_2}}}\widetilde{U}_2 + zV.$$

If z is small enough, we have P(-1) satisfies all the conditions in the proposition.

Lemma 4.4. Let $Q(\infty) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ and

$$\begin{split} Q(0) &= \begin{pmatrix} H_1 & \sqrt{H_1(I-H_1)} \\ \sqrt{H_1(I-H_1)} & I-H_1 \end{pmatrix}, \quad Q(-1) = \begin{pmatrix} H_2 & \sqrt{H_2(I-H_2)} U_2 \\ U_2^* \sqrt{H_2(I-H_2)} & U_2^* (I-H_2) U_2 \end{pmatrix}, \\ P(0) &= \begin{pmatrix} K_1 & \sqrt{K_1(I-K_1)} V_1 \\ V_1^* \sqrt{K_1(I-K_1)} & V_1^* (I-K_1) V_1 \end{pmatrix}, \quad P(-1) = \begin{pmatrix} K_2 & \sqrt{K_2(I-K_2)} V_2 \\ V_2^* \sqrt{K_2(I-K_2)} & V_2^* (I-K_2) V_2 \end{pmatrix} \end{split}$$

be trace half projections in a finite von Neumann algebra \mathfrak{A} . Suppose that $Q(\infty)$, Q(0) and Q(-1) are in general position and $Q(\infty)$, P(0) and P(-1) are in general position. If $\tau(Ran(\sqrt{\frac{H_1}{I-H_1}}-\sqrt{\frac{K_1}{I-K_1}}V_1)) \leq \varepsilon$ and $\tau(Ran(\sqrt{\frac{H_2}{I-H_2}}U_2-\sqrt{\frac{K_2}{I-K_2}}V_2)) \leq \varepsilon$, then

$$||Q(z) - P(z)||_2 \le 12\varepsilon$$
 for any $z \in \mathbb{C}$.

Proof. Let $F_1 = ker(\sqrt{\frac{H_1}{I-H_1}} - \sqrt{\frac{K_1}{I-K_1}}V_1)$, $F_2 = ker(\sqrt{\frac{H_2}{I-H_2}}U_2 - \sqrt{\frac{K_2}{I-K_2}}V_2)$ and $E = F_1 \wedge F_2$. Then $\tau(E) \geq 1 - 2\varepsilon$. Note that

$$\begin{split} \|Q(z) - P(z)\|_2^2 &= 1 - 2\tau(Q(z)P(z)) \\ &= tr(H_z(H_z - K_z)) + tr(U_z^*(I - H_z)U_z(V_z^*K_zV_z - U_z^*H_zU_z)) \\ &+ tr(\sqrt{H_z(I - H_z)}U_z(U_z^*\sqrt{H_z(I - H_z)} - V_z^*\sqrt{K_z(I - K_z)})) \\ &+ tr(U_z^*\sqrt{H_z(I - H_z)}(\sqrt{H_z(I - H_z)}U_z - \sqrt{K_z(I - K_z)}V_z), \end{split}$$

where *tr* is the trace on $Q(\infty)\mathfrak{A}Q(\infty)$. Let

$$F(z) = \frac{H_z}{I - H_z} = \left((1 + z) \sqrt{\frac{H_1}{I - H_z}} - z \sqrt{\frac{H_2}{I - H_2}} U_2 \right) \left((1 + \bar{z}) \sqrt{\frac{H_1}{I - H_z}} - \bar{z} U_2^* \sqrt{\frac{H_2}{I - H_2}} \right)$$

$$G(z) = \frac{K_z}{I - K_z} = \left((1 + z) \sqrt{\frac{K_1}{I - K_z}} V_1 - z \sqrt{\frac{K_2}{I - K_2}} V_2 \right) \left((1 + \bar{z}) V_1^* \sqrt{\frac{K_1}{I - K_z}} - \bar{z} V_2^* \sqrt{\frac{K_2}{I - K_2}} \right)$$

Note that EF(z)E = EG(z)E and $Ran(I - H_z) = Ran(I - K_z) = I$. Let E_1 and E_2 be the projections such that $(I + F(z))^{-1}E_1 = E(I + F(z))^{-1}E_1$ and $E_2(I + G(z))^{-1} = E_2(I + G(z))^{-1}E$. Note that $tr(E_1) = tr(E_2) = tr(E) \ge 1 - \varepsilon$. Then

$$tr(H_z(H_z - K_z)) = tr(H_z(I - E_2)(H_z - K_z)) + tr(H_zE_2(H_z - K_z)(I - E_1)) + tr(H_zE_2(H_z - K_z)E_1).$$

Note that

$$E_2(H_z - K_z)E_1 = E_2((I + G(z))^{-1} - (I + F(z))^{-1})E_1$$

= $E_2(I + G(z))^{-1}E(F(z) - G(z))E(I + F(z))^{-1}E_1 = 0$

Therefore, $|tr(H_z(H_z - K_z))| \le 2\varepsilon$. Similarly, we can show that

$$|tr(U_z^*(I-H_z)U_z(V_z^*K_zV_z-U_z^*H_zU_z))| \le 2\varepsilon.$$

Let $E_3 = Ran(U_z^* \sqrt{H_z(I - H_z)})$ and $E_4 = E \wedge E_3$. Then $tr(E_4) \geq tr(E_3) - 2\varepsilon$. Then it is not hard to see that there exist a projection E_5 such that $tr(E_5) \geq 1 - 2\varepsilon$ and $U_z^* \sqrt{H_z(I - H_z)}E_5 = E_4U_z^* \sqrt{H_z(I - H_z)}E_5$. Hence

$$tr((\sqrt{H_z(I-H_z)}U_z - \sqrt{K_z(I-K_z)}V_z)U_z^*\sqrt{H_z(I-H_z)})$$

$$= tr((\sqrt{H_z(I-H_z)}U_z - \sqrt{K_z(I-K_z)}V_z)U_z^*\sqrt{H_z(I-H_z)}E_5)$$

$$+ tr((\sqrt{H_z(I-H_z)}U_z - \sqrt{K_z(I-K_z)}V_z)U_z^*\sqrt{H_z(I-H_z)}(1-E_5)).$$

By the definition of E_5 , we have

$$tr((\sqrt{H_z(I-H_z)}U_z - \sqrt{K_z(I-K_z)}V_z)U_z^*\sqrt{H_z(I-H_z)}E_5)$$

$$= tr((K_z - H_z)\sqrt{\frac{H_z}{I-H_z}}U_z)U_z^*\sqrt{H_z(I-H_z)}E_5)$$

$$= tr((K_z - H_z)H_zE_5).$$

Therefore

$$|tr((\sqrt{H_z(I-H_z)}U_z-\sqrt{K_z(I-K_z)}V_z)U_z^*\sqrt{H_z(I-H_z)})|\leq 4\varepsilon.$$

Hence

$$||Q(z) - P(z)||_2 \le 12\varepsilon.$$

Let $dQ(z) = \frac{\partial Q(z)}{\partial z} dz + \frac{\partial Q(z)}{\partial \bar{z}} d\bar{z}$.

Lemma 4.5. With the notations as in Theorem 2.1, we have

$$Q(z)(dQ(z)) = (dQ(z))(I - Q(z))$$
 and $(dQ(z))Q(z) = (I - Q(z))(dQ(z))$.

Proposition 4.2. With the notations as in Theorem 2.1, we have

$$\nabla_Q^2(z) \equiv Q(z)(dQ(z) \wedge dQ(z)) = (dQ(z))(I - Q(z))(dQ(z)) = (dQ(z) \wedge dQ(z))Q(z).$$

Remark 4.1. Let

$$W(z) = \begin{pmatrix} \sqrt{K_z} & \sqrt{I - K_z} \\ V_z^* \sqrt{I - K_z} V_z & -V_z^* \sqrt{K_z} \end{pmatrix}.$$

We have

$$W(z)^{*}(dQ(z))^{2}W(z) = \begin{pmatrix} \sqrt{I - K_{z}}U_{z}S^{*}(I - K_{z})SU_{z}^{*}\sqrt{I - K_{z}} & 0 \\ 0 & \sqrt{I - K_{z}}SU_{z}^{*}(I - K_{z})U_{z}S\sqrt{I - K_{z}} \end{pmatrix} dz \wedge d\bar{z},$$

$$W(z)^{*} \nabla_{Q}^{2}(z)W(z) = \begin{pmatrix} \sqrt{I - K_{z}}U_{z}S^{*}(I - K_{z})SU_{z}^{*}\sqrt{I - K_{z}} & 0 \\ 0 & 0 \end{pmatrix} dz \wedge d\bar{z}.$$

5. Geodesic of the bundle

Let $\mathfrak A$ be a finite von Neumann algebra. If $S \in \mathcal I = \{X^2 = I : X \in \mathfrak A\}$, then

$$S = \begin{pmatrix} I & 2B \\ 0 & -I \end{pmatrix} = \begin{pmatrix} I & -B \\ 0 & I \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \begin{pmatrix} I & B \\ 0 & I \end{pmatrix},$$

and $T = \frac{S+I}{2}$ is an idempotent. Then the tangent space to *S* is given by

$$T_S = \{ X \in \mathfrak{A} : XS + SX = 0 \}$$

$$=\{\begin{pmatrix}I&-B\\0&I\end{pmatrix}\begin{pmatrix}0&X_{12}\\X_{21}&0\end{pmatrix}\begin{pmatrix}I&B\\0&I\end{pmatrix}=\begin{pmatrix}-BX_{21}&-BX_{21}B+X_{12}\\X_{21}&X_{21}B\end{pmatrix}\}.$$

Let

$$E_S(X) = e^{\frac{XS}{2}} S e^{\frac{-XS}{2}}.$$

 E_S will be called the exponential map. Note that $E_S(X) \in \mathcal{I}$ and $E_S(X) = e^{XS}S$, if $X \in T_S$.

It is obvious that T_S has a complex structure. Therefore S is a complex submanifold of \mathfrak{A} .

Let $\mathcal{R} = \{H^* = H : H \in \mathcal{I}\}$. Then \mathcal{R} is only a (real) analytic submanifold of \mathfrak{A} , since

$$T_H = \{ \begin{pmatrix} 0 & X_{12} \\ X_{12}^* & 0 \end{pmatrix} \}$$

is not a complex linear space.

Let $S \in \mathcal{I}$ and π_S be the projection of \mathfrak{A} onto T_S given by

$$\pi_S(X) = \frac{1}{2}(X - SXS).$$

Recall the following definition.

Definition 5.1. Suppose that E_1 and E_2 are Banach spaces, and that U is an open subset of E_1 . A continuous map $f: U \to E_2$ is said to be differentiable at the point $x_0 \in U$ if there exists a continuous linear map $T: E_1 \to E_2$ such that

$$\lim_{\|h\| \to 0} \frac{\|f(x_0 + h) - f(x_0) - T(h)\|}{\|h\|} = 0.$$

T is called the derivative of f at x_0 and written as $Df(x_0)$. Note that

$$Df(x_0)h = \lim_{t\to 0} \frac{f(x_0 + th) - f(x_0)}{t}.$$

Definition 5.2. Let $T(\mathcal{I})$ be the tangent bundles over \mathcal{I} and $D(\mathcal{I})$ be the set of all vector fields over \mathcal{I} , i.e. a smooth map form \mathcal{I} into $T(\mathcal{I})$. Given X and Y in $D(\mathcal{I})$, let

$$D(X,Y)(S) = \pi_S(DY(S)(X(S))) = \pi_S(\frac{d}{dt}Y(c(t))|_{t=0}),$$

where $c: [-1,1] \to \mathcal{I}$ be a smooth curve such that c(0) = S and c'(0) = X(S).

It is easy to see that $D(\cdot, \cdot)$ satisfies the standard axioms of a connection. Following the standard terminology, we say that a smooth curve g is a geodesic if

$$D(g',g') = \pi_{g(t)}(\frac{d^2}{dt^2}(g(t))) = 0.$$

Lemma 5.1 (Lemma 2.9 in [26]). Given $S \in \mathcal{I}$ and $X \in T_S$, there exists a unique total geodesic $g = E_S(tX)$ such that g(0) = S and g'(0) = X.

Example 5.1. Let S = 2P - I and T = 2Q - I, where P and Q are two projections in \mathfrak{A} . If ||S - T|| = 2||P - Q|| < 2, then $P \sim Q$ in \mathfrak{A} . Suppose that

$$\begin{split} S &= \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}, \\ T &= \begin{pmatrix} 2H - I & 2\sqrt{H(I-H)} \\ 2\sqrt{H(I-H)} & I - 2H \end{pmatrix} \\ &= \begin{pmatrix} \sqrt{H} & \sqrt{I-H} \\ \sqrt{I-H} & -\sqrt{H} \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \begin{pmatrix} \sqrt{H} & \sqrt{I-H} \\ \sqrt{I-H} & -\sqrt{H} \end{pmatrix}. \end{split}$$

Let

$$X = \frac{\pi i}{2} \begin{pmatrix} I - \sqrt{H} & -\sqrt{I - H} \\ -\sqrt{I - H} & I + \sqrt{H} \end{pmatrix}$$
$$W = \begin{pmatrix} \sqrt{H} & \sqrt{I - H} \\ \sqrt{I - H} & -\sqrt{H} \end{pmatrix} = e^{X}.$$

Then the geodesic connect S and T is $g(t) = e^{tX}Se^{-tX}$. And

$$g'(0) = i\pi \begin{pmatrix} 0 & \sqrt{I-H} \\ -\sqrt{I-H} & 0 \end{pmatrix}.$$

Definition 5.3. *Given a smooth curve* $c : [a,b] \to \mathcal{R}$, we define the length L(c) of c by

$$L(c) = \int_{a}^{b} \|c'(t)\|_{2} dt.$$

Lemma 5.2. The $\|\cdot\|_2$ give the geodesic distance on \mathbb{R} .

6. CONCLUSION

REFERENCES

- [1] R. Kadison and John R. Ringrose, Fundamentals of the theory of Operator Algebras, Volume II (1997)
- [2] B. Fuglede and R. Kadison, Determinant Theory in Finite Factors, The Annals of Mathematics, Second Series, Vol. 55, No. 3 (1952), 520-530
- [3] M. Takesaki, Theory of Operator Algebras, Volume I, Encyclopedia of Mathematical Sciences, vol 124, Springer-Verlag, Berlin (2002)
- [4] R. H. Levene, S. C. Power Manifold of Hilbert space projection, Proc. London Math. Soc. 1-25 (2009)
- [5] Mohan Ravichandran, University of New Hampshire Ph.D. Thesis (2009)
- [6] L. Ge and W. Yuan, Kadison-Singer algebras, II—General case, to appear, 2009
- [7] Uffe Haagerup and Flemming Larsen, Brown's Spectral Distribution Measure for R-diagonal Elements in Finite von Neumann Algebras,, 1999
- [8] Uffe Haagerup and Hanne Schultz, Brown Measures of Unbounded Operators Affiliated with Finite von Neumann Algebras,, 1999
- [9] Hari Bercovici and Dan Voiculescu, Free Convolution of Measures with Unbounded Support,
- [10] K.S.KÖLBIG, On The Value Of A Logarithmic-Trigonometric Integral, BIT 11(1971), 21-28
- [11] Mehmet Koca, Ramazan Koc and Muataz Al-Barwani, *Breaking SO(3) into its closed subgroups by Higgs mechanism*, J.Phys.A: Math.Gen. 30(1997) 2109-2125
- [12] Beardon, Alan F, The Geometry of Discrete Groups, New York: Springer-Verlag GTM 91.
- [13] Alexandru Nica and Roland Speicher, Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series:335
- [14] Elias M. Stein and Rami Shakarchi, complex analysis, Priceton lectures in analysis II.
- [15] Chengjun Hou and Wei Yuan, Minimal Generating Reflexive Lattices of Projections in Finite von Neumann Algebras
- [16] W.Wu and W. Yuan, On generators of abelian Kadison–Singer algebras in matrix algebras Linear Algebra and its Applications, Vol 440, 2014, Pages 197–205.
- [17] R. C. Lyndon and J. L. Ullman Groups of Elliptic Linear Fractional Transformations, Proceedings of the American Mathematical Society, Vol. 18, No. 6, (1967) 1119-1124
- [18] S. Sakai, On automorphism groups of II₁-factors, Tôkoku Math. J. (2) 26 (1974), 423-430.
- [19] William L. Green and Anthony To-Ming Lau Strong finite von Neumann algebras, Math. Scand. 40 (1977), 105-112.
- [20] M. Koca, R. Koc and M. Al-Barwani Breaking SO(3) into its closed subgroups by Higgs mechanism, J.Phys. A: Math. Gen. 30 (1997) 2109-2125
- [21] D. Voiculescu, K. Dykema and A. Nica, Free Random Variables, CMR Monograph Series 1, American Mathematical Society (1992)
- [22] A. Nica and R. Speicher, *Lectures on the Combinatorics of Free Probability*, Londom Mathematical Society Lecture Note Series: 335 (2006)
- [23] F. J. Murray and J. von Neumann, On rings of operators, II, Trans. Amer. Math. Soc. 41 (1937), 208 -
- [24] Z. Liu, On Some Mathematical Aspects of The Heisenberg Relation , Science China series Mathematics: Kadison's proceedings
- [25] Masoud Khalkhaili, Basic Noncommutative Geometry, EMS series of Lectures in Mathematics (2009)
- [26] N. Salinas *The Grassmann manifold of a C*-algebra, and Hermitian holomorphic bundles, Operator Theory: Advances and Applications 28, Birkhaiiser Verlag Basel, 1998, 267-289.*

AMSS