I.9 Partial Product 2

Ashley Scurlock Math 361B

March 2, 2019

The first partial product $\prod_{i=1}^{\infty} (1 + \frac{f_n}{g_n})$ converges when g(n) is two powers of n greater than f(n), for example, $\prod_{i=1}^{\infty} (1 + \frac{n^2 + n - 3}{n^5 + 3 * n - 2})$ converges to about 0.585 while $\prod_{i=1}^{\infty} (1 + \frac{n + 3}{n^2 - 2})$ diverges to negative infinity. Furthermore, while experimenting with different values of f(n) and g(n) I found that if $\frac{f(n)}{g(n)} = \frac{n^x}{n^y}$, where $y \geq x + 2$, then as the power of the g(n) approaches infinity the partial product converges to two.

The second partial product $\prod_{i=1}^{\infty} (1+b^n)$ converges whenever b is a fraction, for example the partial product $\prod_{i=1}^{\infty} (1+2^n)$ increases to infinity so quickly that python produces an error message when N > 45. Then when the partial product is $\prod_{i=1}^{\infty} (1+(\frac{1}{2})^n)$ it quickly converges to about 4.8. Though while experimenting with values of b we found that the partial product it converges significantly faster and to a lower value as b approaches zero.