Exercices Mathématiques pour l'informatique II : Algèbre linéaire - base d'un espace vectoriel et applications linéaires

- 1. Dans chacun des cas suivants déterminez si les vecteurs de l'ensemble S sont linéairement dépendants :
 - (a) $S = \{(1,1), (2,3)\}.$
 - (b) $S = \{(1, -1), (-1, 1)\}.$
 - (c) $S = \{(5,1), (2,3)\}.$
 - (d) $S = \{(17, 131), (421, 37), (42, 13)\}.$
 - (e) $S = \{(1, 2, 3), (3, 2, 1)\}.$
 - (f) $S = \{(1, 2, 2), (2, 1, 2), (2, 2, 1)\}.$
 - (g) $S = \{(1, 11, 1), (213, 3, 4), (2, 1, 3), (5, 5, 5)\}.$
 - (h) $S = \{(1, 2, 3, 4, 5), (5, 5, 5, 5, 5), (5, 4, 3, 2, 1), (1, 1, 1, 1, 1)\}.$
- 2. Donnez (si possible) une base de \mathbb{R}^3 qui contient le vecteur (1,1,1).
- 3. Donnez (si possible) une base de \mathbb{R}^4 qui contient les vecteurs (1,1,1,1) et (1,1,1,2).
- 4. Donnez (si possible) une base de \mathbb{R}^4 qui contient les vecteurs (1,1,1,1), (0,0,0,1) et (2,2,2,5).
- 5. Soient $V = \{(x, y, z) \in \mathbb{R}^3 \mid 2x y + z = 0\}$ et $W = \langle (1, 1, 1), (0, 0, 1) \rangle$.
 - (a) Montrer que ((1, 1, 1), (0, 0, 1)) est une base de W.
 - (b) Montrer que V est un sous-espace vectoriel de E.
 - (c) Montrer que ((0,1,1),(1,2,0)) est une base de V.
 - (d) Montrer que $W = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0\}.$
 - (e) Déterminer une base de $V \cap W$.
 - (f) Montrer que $\mathbb{R}^3 = V + W$.
- 6. Soient $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y z = 0 \text{ et } x y + z = 0\}, V = \{(x, y, z) \in \mathbb{R}^3 \mid x y + z = 0 \text{ et } x + y 2z = 0\}, \text{ et } W = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y z = 0 \text{ et } x + y 2z = 0\}.$
 - (a) Montrer que U, V, et W sont des sous-espaces vectoriels de \mathbb{R}^3 .
 - (b) Déterminer une base de U, une base de V, et une base de W.
- 7. Soit E un \mathbb{R} -espace vectoriel et u et v deux éléments de E. Prouver que si u et v sont linéairement indépendants, alors u+v et u-v sont linéairement indépendants.

- 8. Pour $a \in \mathbb{R}$ soit $V_a = \{(x, y, z) \in \mathbb{R}^3 \mid x + ay + z = 0\}.$
 - (a) Montrer que V_a est un sous-espace vectoriel de \mathbb{R}^3 .
 - (b) Montrer que ((1,0,-1),(a,-1,0)) est une base de V_a .
 - (c) Soient $a,b \in \mathbb{R}$ tels que $a \neq b$. Montrer que ((1,0,-1)) est une base de $V_a \cap V_b$.
 - (d) Montrer que $V_a + V_b = \mathbb{R}^3$ si et seulement si $a \neq b$.
- 9. Soit $V = \{a_0 + a_1x + a_2x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}.$
 - (a) Montrer que V est un sous-espace vectoriel de $\mathbb{R}[x]$.
 - (b) Les polynômes x^2+x+1 et x+1 sont-ils linéairement indépendants? Justifiez votre réponse.
 - (c) Les polynômes 5 et 17 sont-ils linéairement indépendants? Justifiez votre réponse.
 - (d) Les polynômes x^2+1 , x^2+2 et x^2 sont-ils linéairement indépendants? Justifiez votre réponse.
 - (e) Donnez une base de V.
- 10. Parmi les applications ci-dessous, determinez celles qui sont linéaires.
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x, y) = x.
 - (b) $f: \mathbb{R} \to \mathbb{R}^2$ définie par f(x) = (x, x).
 - (c) $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x, y) = x + y.
 - (d) $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x, y) = xy.
 - (e) $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (x+2y, x+2y).
 - (f) $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x, y) = (y, x).
 - (g) $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par $f(x,y) = (x,y,x^2)$.
 - (h) $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x, y) = (x, y, y).
 - (i) $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (x + y + z, 0).
 - (j) $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (x + 2y + 3z, 1).
 - (k) $f: \mathbb{R}[x] \to \mathbb{R}[x]$ définie par f(p) = p'.
- 11. Soient E_1 et E_2 deux \mathbb{R} -espaces vectoriels. Soit $f: E_1 \to E_2$ une application linéaire.
 - (a) Prouvez que f(0) = 0.
 - (b) Prouvez que f(-v) = -f(v), quel que soit $v \in E_1$.
 - (c) Prouvez que Ker(f) est un sous-espace vectoriel de E_1 .
 - (d) Prouvez que Im(f) est un sous-espace vectoriel de E_2 .

- 12. Déterminez si les affirmations suivantes sont vraies ou fausses. Justifiez votre réponse.
 - (a) Soient E_1 et E_2 deux \mathbb{R} -espaces vectoriels. Soit $f: E_1 \to E_2$ une application linéaire. Soient $u, v \in E_1$ si u et v sont linéairement indépendants (dans E_1) alors f(u) et f(v) sont linéairement indépendants (dans E_2).
 - (b) Soient E_1 et E_2 deux \mathbb{R} -espaces vectoriels. Soit $f: E_1 \to E_2$ une application linéaire. Soient u, $v \in E_1$ si u et v sont linéairement dépendants (dans E_1) alors f(u) et f(v) sont linéairement dépendants (dans E_2).
 - (c) Soient E_1 et E_2 deux \mathbb{R} -espaces vectoriels. Soit $f: E_1 \to E_2$ une application linéaire **injective**. Soient u, $v \in E_1$ si u et v sont linéairement indépendants (dans E_1) alors f(u) et f(v) sont linéairement indépendants (dans E_2).
 - (d) Soient E_1 et E_2 deux \mathbb{R} -espaces vectoriels. Soit $f: E_1 \to E_2$ une application linéaire. Si f est injective alors f est surjective.
- 13. Calculez le noyau et l'image de toutes les applications linéaires de l'exercice 10.
- 14. Pour chaque application linéaire de l'exercice 10 dont la dimension de l'image est finie, donnez la matrice associée à l'application linéaire.
- 15. Soient E_1 , E_2 et E_3 trois \mathbb{R} -espaces vectoriels. Soient $f: E_1 \to E_2$ et $g: E_2 \to E_3$ deux applications linéaires. Prouvez que $g \circ f: E_1 \to E_3$ est une application linéaire.
- 16. Soient E_1 et E_2 deux \mathbb{R} -espaces vectoriels. Soient $f: E_1 \to E_2$ une application linéaire. Sous l'hypothèse que l'application f admette une application inverse $g: E_2 \to E_1$, prouvez que g est une application linéaire.
- 17. Soient E_1 et E_2 deux \mathbb{R} -espaces vectoriels. Soient $f: E_1 \to E_2$ une application linéaire. Prouvez que si $\text{Ker}(f) = \{0\}$ et $\dim(E_1) = \dim(E_2)$ alors $\text{Im}(f) = E_2$.
- 18. Dans chacun des cas suivants, donnez si possible une application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ qui satisfait la condition donnée.
 - (a) f est injective et surjective.
 - (b) f est injective et $\dim(\operatorname{Im}(f)) = 2$.
 - (c) f est surjective et $\dim(\text{Ker}(f)) = 1$.
 - (d) $\dim(\operatorname{Ker}(f)) = 3$ et $\dim(\operatorname{Im}(f)) = 0$.
 - (e) $\dim(\operatorname{Ker}(f)) = 2$ et $\dim(\operatorname{Im}(f)) = 2$.
 - (f) $\dim(\operatorname{Ker}(f)) = 2$ et $\dim(\operatorname{Im}(f)) = 1$.
 - (g) $\dim(\text{Ker}(f)) = 1$ et $\dim(\text{Im}(f)) = 2$.

- 19. Soient $E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = z\}$ et $E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x = y + z\}$.
 - (a) Prouvez que E_1 et E_2 sont des sous-espaces vectoriels de \mathbb{R}^3 .
 - (b) Donnez une base de E_1 et de E_2 .
 - (c) Donnez (si possible) une application linéaire $L: E_1 \to E_2$ telle que $\text{Im}(L) = E_2$. Calculez le noyau et l'image de L et donnez une représentation matricielle de L pour les bases que vous avez définies au point (b).
 - (d) Donnez (si possible) une application linéaire $L: E_1 \to E_2$ telle que dim(Ker(L)) = 1. Calculez le noyau et l'image de L et donnez une représentation matricielle de L pour les bases que vous avez définies au point (b).
- 20. Soient les applications linéaires $f,g:\mathbb{R}^3\to\mathbb{R}^3$ données par f((x,y,z))=(2x-y+z,x+y-z,x+2y-z) et $g((x,y,z))=(\frac{1}{3}x+\frac{1}{3}y,-y+z,\frac{1}{3}x-\frac{5}{3}y+z)$ pour tout $(x,y,z)\in\mathbb{R}^3$. Soient $V=\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\}$ et $W=\{f(v)\,;\,v\in V\}$.
 - (a) Calculer $f \circ g$ et $g \circ f$.
 - (b) Montrer que $w \in W$ si et seulement si $g(w) \in V$.
 - (c) Montrer que $W = \{(x, y, z) \in \mathbb{R}^3 \mid 2x 7y + 6z = 0\}.$
- 21. Pour $a \in \mathbb{R}$ soit l'application

$$f_a: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x, y, z) \longmapsto (x + ay + a^2z, x + a^2y + az).$

- (a) Montrer que f_a est une application linéaire.
- (b) Donnez la matrice associée à f_a .
- (c) Déterminer une base de $Ker(f_a)$ et une base de $Im(f_a)$ pour tout $a \in \mathbb{R}$.