Please check the examination details below before entering your candidate information				
Candidate surname		Other names		
Pearson Edexcel International GCSE	Centre Number	Candidate Number		
Thursday 18 June 2020				
Morning (Time: 2 hours)	Paper Ref	ference 4PM1/02		
Further Pure Mathematics Paper 2				
Calculators may be used.		Total Marks		

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must **NOT** write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

(4)

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

A particle P is moving in a straight line. At time t seconds, $t \ge 0$, the displacement, s metres, of P from a fixed point O of the line is given by

$$s = 3 + 8t + t^2 - \frac{1}{3}t^3$$

Find the distance of P from O when P is instantaneously at re	st.
---	-----

(Total for Question 1 is 4 marks)

2	The region enclosed by the curve with equation $y = e^{3x}$, the x-axis, the y-axis and the line with equation $x = 3$ is rotated through 360° about the x-axis.				
	Use algebraic integration to find, in terms of π and e, the volume of the solid generated.	(4)			

3	(a) Expand	
	$(1+px)^{-5} p \neq 0$	
	in ascending powers of x , up to and including the term in x^4 Give each term in its simplest form.	(3)
	The coefficient of x^r in the expansion is c_r	
	Given that $c_4 = 2c_3$	
	(b) find the value of <i>p</i> .	(0)
		(2)

4 (i) Solve the equation $16\log_r 4 = \log_4 r$	(2)
(ii) Solve the equation $\log_5 9 + \log_5 12 + \log_5 15 + \log_5 18 = 1 + \log_5 x + \log_5 x$	x^2 (5)

(3)

(b) Hence evaluate $\sum_{r=35}^{50} (3r + 5)$

(2)

Given that $\sum_{r=1}^{n} (3r + 5) = 385$

(c) find the value of n.

(3)

 $f(x) = 4x^2 - 3x - 5$

The equation f(x) = 0 has roots α and β

Without solving the equation f(x) = 0

(a) form an equation, with integer coefficients, that has roots $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$

(6)

 $g(x) = 4x^2 + px + q$ where p and q are constants

Given that the equation g(x) = 0 has roots $3\alpha + \beta$ and $\alpha + 3\beta$

(b) find the value of p and the value of q

	Question 6 continued
	Question o continueu
30 NOT WRITE IN THIS AREA	
THIS	
Z	
WRIT	
NOT	
OQ	
IO NOT WRITE IN THIS AREA	
至 至	
N	
WRIT	
NOT	
Ö	
REA	
#IS A	
Z	
WRIT	
DO NOT WRITE IN THIS AREA	
0	

Question 6 continued	

A geometric series has first term (x-3), second term (x+1) and third term (4x-2). (a) Find the two possible values of x. (5) Given that x < 1, (b) show that the series is convergent. (2) The sum to infinity of the series is *S*. (c) Find the value of S. (2)The sum of the first n terms of the series is S_n Given that $\frac{S}{S_n} = \frac{256}{255}$ (d) find the value of n. (3)

	Question 7 continued
	Question / continued
DO NOT WRITE IN THIS AREA	
V)	
五	
Œ	
6	
Z	
do not write in this area	
<u> </u>	
至	
\$	
0	
ă	
DO NOT WRITE IN THIS AREA	
<u>v</u>	
5	
0	
ă	

Question 7 continued	

The curve C_1 has equation $y = 5e^{-2x} + 4$ The curve C_2 has equation $y = e^{2x}$ The curves C_1 and C_2 intersect at the point A. (a) Find the exact coordinates of A. (4)The tangent at A to C_1 intersects the x-axis at the point B. (b) Show that the *x* coordinate of *B* is $\frac{1}{2}(5 + \ln 5)$ (5) The tangent at A to C_2 intersects the x-axis at the point D. (c) Find the area of $\triangle ABD$. **(6)**

	Question 8 continued
DO NOT WRITE IN THIS AREA	
A W	
茎	
Z	
S	
5	
Ž	
ă	
W W	
Ž.	
X	
2	
NOT WRITE IN THIS AREA	
Ž	
ă	
◀	
22	
2	
<u>~</u>	
9	
OO NOT WRITE IN THIS AREA	

Question 8 continued	

9 A curve *C* has equation

$$y = \frac{2 + 4x - x^2}{2x + 1} \quad x \neq -\frac{1}{2}$$

(a) Write the equation of C in the form $ax^2 + (by - 4)x + (y - c) = 0$, where a, b and c are integers whose values are to be found.

(3)

(b) Hence show that x is real when $y \le 2$ and when $y \ge 3$

(4)

(c) Find the coordinates of the stationary points on C.

(6)

- (d) Sketch C showing clearly
 - (i) the exact coordinates of the points where C crosses the x-axis,
 - (ii) the asymptote to C that is parallel to the y-axis,
 - (iii) the coordinates of the stationary points.

(5)

Question	n 9 continued			

OOOOOO

XXXXX
XXXXXX
\times
\times
$\times\!\!\times\!\!\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times\!\!\times\!\!\times$
$\times \times \times \times \times \times$
$\times \Box \times$
XXXXXX
⊗ ō ⊗
$\otimes \otimes \otimes \otimes$
XXXXXX
**** ********************************
88822888
×
XX 100 XX
\times
$\times \overline{m} \times \overline{n}$
XXXXX
XXXXXX
XX 2 XX
×30×
×20×
XIIIX
XX XX
XX 55 XXX.

0000000
XXXXXX

XXXXX
0
Do
Do
Do
DOI
NOO
NOO
DO NO
NOO
DO NO
DO NO
DO NO
DONOTW
DO NOTWR
DO NOT WRI
DO NOT WRI
DO NOT WRIT
DO NOT WRI
DO NOT WRIT
DO NOT WRITE!
DO NOT WRIT
DO NOT WRITE!
DO NOT WRITE!
DO NOT WRITE!
DO NOT WRITE IN TH
DO NOT WRITE!
DO NOT WRITE IN TH
DO NOT WRITE IN THE
DO NOT WRITE IN TH
DO NOT WRITE IN THIS /
DO NOT WRITE IN THE
DO NOT WRITE IN THIS AF
DO NOT WRITE IN THIS AR
DO NOT WRITE IN THIS AR
DO NOT WRITE IN THIS ARE
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AR

Question 9 continued	

10 (a) Show that

$$\cos(A + B) + \cos(A - B) = 2\cos A\cos B$$

(2)

(b) Hence show that

$$\cos P + \cos Q = 2\cos\frac{P+Q}{2}\cos\frac{P-Q}{2}$$

(3)

(c) Solve, for $0 \le \theta \le \frac{\pi}{2}$, the equation

$$\cos 5\theta + \cos 7\theta = 0$$

Give each solution in terms of π

(4)

(d) Show that

$$\cos 8x + 2\cos 6x + \cos 4x = 4\cos 6x\cos^2 x$$

(3)

(e) Use calculus to find the exact value of

$$\int_0^{\frac{\pi}{3}} \cos 6x \cos^2 x \, \mathrm{d}x$$

(4)

Question 10 continued		

Question 10 continued	

	Overtion 10 continued
	Question 10 continued
ZEA	
SA	
Ē	
N N	
DO NOT WRITE IN THIS AREA	
00 N	
¥ H	
AR	
RIT	
NOT WRITE IN THIS AREA	
000	
A	
ARE	
E	
Z	
NOT WRITE IN THIS AREA	
E E	
Ž	
00	

Question 10 continued	
	(Total for Question 10 is 16 marks)
	TOTAL FOR PAPER IS 100 MARKS