Scan Report

March 3, 2025

Summary

This document reports on the results of an automatic security scan. All dates are displayed using the timezone "Coordinated Universal Time", which is abbreviated "UTC". The task was "HVENO-NETWORK-SCAN". The scan started at Mon Mar 3 15:58:10 2025 UTC and ended at Mon Mar 3 18:02:38 2025 UTC. The report first summarises the results found. Then, for each host, the report describes every issue found. Please consider the advice given in each description, in order to rectify the issue.

Contents

1	Res	ult Ov	verview	2
2	Res	ults p	er Host	3
	2.1	192.16	88.68.110	3
		2.1.1	High 4595/tcp	3
		2.1.2	High 4596/tcp	7
		2.1.3	Medium 3389/tcp	10
		2.1.4	Medium 135/tcp	14
		2.1.5	Medium 4595/tcp	16
		2.1.6	Medium 4596/tcp	19
		2.1.7	Low general/icmp	23
	2.2	192.16	88.71.247	24
		2.2.1	Medium 443/tcp	24
		2.2.2	Low general/tcp	29
		2.2.3	Low general/icmp	31
	2.3	192.16	68.71.250	32
		2.3.1	Medium 443/tcp	32
		2.3.2	Low general/icmp	34
		2.3.3	Low general/tcp	35
	2.4	192.16	68.71.246	36
		2.4.1	Medium 443/tcp	36
		2.4.2	Low general/tcp	38

CONTENTS 2

	2.4.3	Low general/icmp													39
2.5	192.16	8.68.1		 											40
	2.5.1	${\rm Medium}~443/tcp~.$		 											40
	2.5.2	$Low\ general/tcp \qquad .$		 											42
	2.5.3	Low general/icmp		 											43
2.6	192.16	8.71.248		 											44
	2.6.1	${\rm Medium}~443/tcp~.$		 											44
	2.6.2	Low general/icmp		 											46
	2.6.3	Low general/tcp $$.		 											47
2.7	192.16	8.71.249		 											48
	2.7.1	${\rm Medium}~443/tcp~.$		 											48
	2.7.2	Low general/icmp		 											50
	2.7.3	$Low\ general/tcp .$		 											51
2.8	192.16	8.68.106													52
	2.8.1	${\rm Medium}~135/tcp~.$													52
2.9	192.16	8.68.83													54
	2.9.1	Medium $443/\text{tcp}$.													55
2.10		8.68.87													58
		$\rm Medium~9000/tcp$													58
		$\rm Medium~10101/tcp$													62
		$\rm Medium~8009/tcp$													66
		Medium $8443/\text{tcp}$													69
		$\rm Medium~10001/tcp$													73
		Low general/icmp													77
		Low general/tcp .													78
2.11		8.68.90													79
		$\rm Medium~10101/tcp$													79
		$\rm Medium~8443/tcp$													83
		Medium $8009/\text{tcp}$													87
		Medium 10001/tcp													90
		$\underline{\text{Medium 9000/tcp}}$													94
		Low general/tcp .													98
		Low general/icmp													99
2.12		8.68.56													100
		Medium 9000/tcp													100
		Medium 10101/tcp													104
		Medium 8443/tcp													108
		Medium 10001/tcp													111
		Medium 8009/tcp													115
	2.12.6	Low general/icmp		 											119

CONTENTS 3

	$2.12.7 \ Low\ general/tcp \ \dots \ 12$	0
2.13	192.168.68.58	1
	$2.13.1\ \mathrm{Medium}\ 8443/\mathrm{tcp} \dots \qquad 12$	1
	$2.13.2~{\rm Medium}~9000/{\rm tcp}~\dots~\dots~12$	3
	$2.13.3~~\mathrm{Medium}~10001/\mathrm{tcp}~\ldots~\ldots~\ldots~12$	4
	$2.13.4 \ \text{Low general/tcp} \ \dots \ 12$	5
	$2.13.5 \ \ Low\ general/icmp \qquad \dots \qquad \qquad 12$	6
2.14	192.168.68.86	7
	$2.14.1 \ \ Low\ general/icmp \ \ \ldots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	7
	2.14.2 Low general/tcp	9
2.15	192.168.68.88	0
	$2.15.1 \ \text{Low general/tcp} \ \dots \ 13$	0
	$2.15.2 \ {\rm Low\ general/icmp} \ \ldots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	1
2.16	192.168.68.82	2
	$2.16.1 \ Low\ general/icmp \qquad . \qquad . \qquad . \qquad 13$	2
	$2.16.2 \ Low\ general/tcp \ \ldots \ 13$	4
2.17	192.168.68.81	5
	$2.17.1 \ Low\ general/tcp \qquad \qquad$	5
	$2.17.2 \ Low\ general/icmp \qquad \qquad$	6
2.18	192.168.68.102	7
	$2.18.1 \ Low\ general/tcp \qquad \qquad$	7
	$2.18.2 \ Low\ general/icmp \qquad \qquad$	9
2.19	192.168.68.80	0:
	$2.19.1 \ Low\ general/icmp \qquad \qquad$	0
	$2.19.2 \ Low\ general/tcp \ \dots \ \dots \ 14$	1
2.20	192.168.68.62	2
	$2.20.1 \ Low\ general/icmp \qquad \qquad \qquad 14$	2
	$2.20.2 \ Low\ general/tcp \ \dots \ \dots \ 14$	4
2.21	192.168.68.91	:5
	$2.21.1 \ Low\ general/tcp \ \dots \ \dots \ 14$	
	$2.21.2 \ Low\ general/icmp \qquad \ldots \qquad \qquad 14$	6
2.22	192.168.68.54	.7
	$2.22.1 \ \ Low\ general/tcp \ \ \ldots \ \ \ldots \ \ \ 14$	7
	$2.22.2 \ Low\ general/icmp \qquad \dots \qquad \qquad 14$	9
2.23	192.168.68.75	0
	$2.23.1 \ \ Low\ general/tcp \ \ \ldots \ \ \ldots \ \ \ 15$	0
	$2.23.2 \ Low\ general/icmp \ \ldots \ \ 15$	1
2.24	192.168.68.100	2
	$2.24.1 \ Low\ general/tcp \ \dots \ \dots \ 15$	2
	$2.24.2 \ Low\ general/icmp \qquad . \qquad . \qquad . \qquad . \qquad . \qquad . \qquad 15$	4

CONTENTS 4

2.25	192.168.68.98	155
	$2.25.1 \ \text{Low general/tcp} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	155
	$2.25.2 \ \ Low\ general/icmp \qquad \dots \qquad \dots$	156
2.26	192.168.68.70	157
	$2.26.1 \ \operatorname{Low \ general/tcp} \qquad \dots \qquad \dots$	157
	2.26.2 Low general/icmp	159
2.27	192.168.68.60	160
	2.27.1 Low general/icmp	160
	2.27.2 Low general/tcp	161
2.28	192.168.68.84	162
	2.28.1 Low general/icmp	162
	2.28.2 Low general/tcp	164
2.29	192.168.68.72	165
	2.29.1 Low general/tcp	165
2.30	192.168.68.97	166
	2.30.1 Low general/icmp	166

1 Result Overview

Host	High	Medium	Low	Log	False Positive
192.168.68.110	2	4	1	0	0
192.168.71.247	0	2	2	0	0
192.168.71.250	0	1	2	0	0
192.168.71.246	0	1	2	0	0
192.168.68.1	0	1	2	0	0
tplinkdeco.net					
192.168.71.248	0	1	2	0	0
192.168.71.249	0	1	2	0	0
192.168.68.106	0	1	0	0	0
192.168.68.83	0	1	0	0	0
192.168.68.87	0	5	2	0	0
192.168.68.90	0	5	2	0	0
192.168.68.56	0	5	2	0	0
192.168.68.58	0	3	2	0	0
192.168.68.86	0	0	2	0	0
192.168.68.88	0	0	2	0	0
192.168.68.82	0	0	2	0	0
192.168.68.81	0	0	2	0	0
192.168.68.102	0	0	2	0	0
192.168.68.80	0	0	2	0	0
192.168.68.62	0	0	2	0	0
192.168.68.91	0	0	2	0	0
192.168.68.54	0	0	2	0	0
192.168.68.75	0	0	2	0	0
192.168.68.100	0	0	2	0	0
192.168.68.98	0	0	2	0	0
192.168.68.70	0	0	2	0	0
192.168.68.60	0	0	2	0	0
192.168.68.84	0	0	2	0	0
192.168.68.72	0	0	1	0	0
192.168.68.97	0	0	1	0	0
Total: 30	2	31	53	0	0

Vendor security updates are not trusted.

Overrides are off. Even when a result has an override, this report uses the actual threat of the result

Information on overrides is included in the report.

Notes are included in the report.

This report might not show details of all issues that were found.

Issues with the threat level "Log" are not shown.

Issues with the threat level "Debug" are not shown.

Issues with the threat level "False Positive" are not shown.

Only results with a minimum QoD of 70 are shown.

This report contains all 86 results selected by the filtering described above. Before filtering

6

2 Results per Host

2.1 192.168.68.110

there were 1457 results.

Host scan start Mon Mar 3 17:17:23 2025 UTC Host scan end Mon Mar 3 18:02:26 2025 UTC

Service (Port)	Threat Level
$4595/\mathrm{tcp}$	High
$4596/\mathrm{tcp}$	High
$3389/\mathrm{tcp}$	Medium
$135/\mathrm{tcp}$	Medium
$4595/\mathrm{tcp}$	Medium
$4596/\mathrm{tcp}$	Medium
general/icmp	Low

2.1.1 High 4595/tcp

High (CVSS: 7.5)

NVT: SSL/TLS: Report Vulnerable Cipher Suites for HTTPS

Product detection result

cpe:/a:ietf:transport_layer_security

Detected by SSL/TLS: Report Supported Cipher Suites (OID: 1.3.6.1.4.1.25623.1.0. \hookrightarrow 802067)

Summary

This routine reports all SSL/TLS cipher suites accepted by a service where attack vectors exists only on HTTPS services.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

'Vulnerable' cipher suites accepted by this service via the TLSv1.0 protocol: TLS_RSA_WITH_3DES_EDE_CBC_SHA (SWEET32)

'Vulnerable' cipher suites accepted by this service via the TLSv1.1 protocol: TLS_RSA_WITH_3DES_EDE_CBC_SHA (SWEET32)

'Vulnerable' cipher suites accepted by this service via the TLSv1.2 protocol:

... continued from previous page ...

TLS_RSA_WITH_3DES_EDE_CBC_SHA (SWEET32)

Solution:

Solution type: Mitigation

The configuration of this services should be changed so that it does not accept the listed cipher suites anymore.

Please see the references for more resources supporting you with this task.

Affected Software/OS

Services accepting vulnerable SSL/TLS cipher suites via HTTPS.

Vulnerability Insight

These rules are applied for the evaluation of the vulnerable cipher suites:

- 64-bit block cipher 3DES vulnerable to the SWEET32 attack (CVE-2016-2183).

Vulnerability Detection Method

Details: SSL/TLS: Report Vulnerable Cipher Suites for HTTPS

OID:1.3.6.1.4.1.25623.1.0.108031 Version used: 2024-09-30T08:38:05Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security Method: SSL/TLS: Report Supported Cipher Suites

OID: 1.3.6.1.4.1.25623.1.0.802067)

References

cve: CVE-2016-2183 cve: CVE-2016-6329 cve: CVE-2020-12872

url: https://bettercrypto.org/

url: https://mozilla.github.io/server-side-tls/ssl-config-generator/

url: https://sweet32.info/ cert-bund: WID-SEC-2024-1277 cert-bund: WID-SEC-2024-0209 cert-bund: WID-SEC-2024-0064 cert-bund: WID-SEC-2022-2226

cert-bund: WID-SEC-2022-1955
cert-bund: CB-K21/1094
cert-bund: CB-K20/1023
cert-bund: CB-K20/0321
cert-bund: CB-K20/0314
cert-bund: CB-K20/0157
cert-bund: CB-K19/0618
cert-bund: CB-K19/0615
cert-bund: CB-K18/0296

```
... continued from previous page ...
cert-bund: CB-K17/1980
cert-bund: CB-K17/1871
cert-bund: CB-K17/1803
cert-bund: CB-K17/1753
cert-bund: CB-K17/1750
cert-bund: CB-K17/1709
cert-bund: CB-K17/1558
cert-bund: CB-K17/1273
cert-bund: CB-K17/1202
cert-bund: CB-K17/1196
cert-bund: CB-K17/1055
cert-bund: CB-K17/1026
cert-bund: CB-K17/0939
cert-bund: CB-K17/0917
cert-bund: CB-K17/0915
cert-bund: CB-K17/0877
cert-bund: CB-K17/0796
cert-bund: CB-K17/0724
cert-bund: CB-K17/0661
cert-bund: CB-K17/0657
cert-bund: CB-K17/0582
cert-bund: CB-K17/0581
cert-bund: CB-K17/0506
cert-bund: CB-K17/0504
cert-bund: CB-K17/0467
cert-bund: CB-K17/0345
cert-bund: CB-K17/0098
cert-bund: CB-K17/0089
cert-bund: CB-K17/0086
cert-bund: CB-K17/0082
cert-bund: CB-K16/1837
cert-bund: CB-K16/1830
cert-bund: CB-K16/1635
cert-bund: CB-K16/1630
cert-bund: CB-K16/1624
cert-bund: CB-K16/1622
cert-bund: CB-K16/1500
cert-bund: CB-K16/1465
cert-bund: CB-K16/1307
cert-bund: CB-K16/1296
dfn-cert: DFN-CERT-2025-0041
dfn-cert: DFN-CERT-2021-1618
dfn-cert: DFN-CERT-2021-0775
dfn-cert: DFN-CERT-2021-0770
dfn-cert: DFN-CERT-2021-0274
dfn-cert: DFN-CERT-2020-2141
dfn-cert: DFN-CERT-2020-0368
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2019-1455
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1296
dfn-cert: DFN-CERT-2018-0323
dfn-cert: DFN-CERT-2017-2070
dfn-cert: DFN-CERT-2017-1954
dfn-cert: DFN-CERT-2017-1885
dfn-cert: DFN-CERT-2017-1831
dfn-cert: DFN-CERT-2017-1821
dfn-cert: DFN-CERT-2017-1785
dfn-cert: DFN-CERT-2017-1626
dfn-cert: DFN-CERT-2017-1326
dfn-cert: DFN-CERT-2017-1239
dfn-cert: DFN-CERT-2017-1238
dfn-cert: DFN-CERT-2017-1090
dfn-cert: DFN-CERT-2017-1060
dfn-cert: DFN-CERT-2017-0968
dfn-cert: DFN-CERT-2017-0947
dfn-cert: DFN-CERT-2017-0946
dfn-cert: DFN-CERT-2017-0904
dfn-cert: DFN-CERT-2017-0816
dfn-cert: DFN-CERT-2017-0746
dfn-cert: DFN-CERT-2017-0677
dfn-cert: DFN-CERT-2017-0675
dfn-cert: DFN-CERT-2017-0611
dfn-cert: DFN-CERT-2017-0609
dfn-cert: DFN-CERT-2017-0522
dfn-cert: DFN-CERT-2017-0519
dfn-cert: DFN-CERT-2017-0482
dfn-cert: DFN-CERT-2017-0351
dfn-cert: DFN-CERT-2017-0090
dfn-cert: DFN-CERT-2017-0089
dfn-cert: DFN-CERT-2017-0088
dfn-cert: DFN-CERT-2017-0086
dfn-cert: DFN-CERT-2016-1943
dfn-cert: DFN-CERT-2016-1937
dfn-cert: DFN-CERT-2016-1732
dfn-cert: DFN-CERT-2016-1726
dfn-cert: DFN-CERT-2016-1715
dfn-cert: DFN-CERT-2016-1714
dfn-cert: DFN-CERT-2016-1588
dfn-cert: DFN-CERT-2016-1555
dfn-cert: DFN-CERT-2016-1391
dfn-cert: DFN-CERT-2016-1378
```

9

2.1.2 High 4596/tcp

High (CVSS: 7.5)

NVT: SSL/TLS: Report Vulnerable Cipher Suites for HTTPS

Product detection result

cpe:/a:ietf:transport_layer_security

Detected by SSL/TLS: Report Supported Cipher Suites (OID: 1.3.6.1.4.1.25623.1.0.

→802067)

Summary

This routine reports all SSL/TLS cipher suites accepted by a service where attack vectors exists only on HTTPS services.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

'Vulnerable' cipher suites accepted by this service via the TLSv1.0 protocol: TLS_RSA_WITH_3DES_EDE_CBC_SHA (SWEET32)

'Vulnerable' cipher suites accepted by this service via the TLSv1.1 protocol: TLS_RSA_WITH_3DES_EDE_CBC_SHA (SWEET32)

'Vulnerable' cipher suites accepted by this service via the TLSv1.2 protocol: TLS_RSA_WITH_3DES_EDE_CBC_SHA (SWEET32)

Solution:

Solution type: Mitigation

The configuration of this services should be changed so that it does not accept the listed cipher suites anymore.

Please see the references for more resources supporting you with this task.

Affected Software/OS

Services accepting vulnerable SSL/TLS cipher suites via HTTPS.

Vulnerability Insight

These rules are applied for the evaluation of the vulnerable cipher suites:

- 64-bit block cipher 3DES vulnerable to the SWEET32 attack (CVE-2016-2183).

Vulnerability Detection Method

Details: SSL/TLS: Report Vulnerable Cipher Suites for HTTPS

OID:1.3.6.1.4.1.25623.1.0.108031 Version used: 2024-09-30T08:38:05Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security

```
... continued from previous page ...
Method: SSL/TLS: Report Supported Cipher Suites
OID: 1.3.6.1.4.1.25623.1.0.802067)
References
cve: CVE-2016-2183
cve: CVE-2016-6329
cve: CVE-2020-12872
url: https://bettercrypto.org/
url: https://mozilla.github.io/server-side-tls/ssl-config-generator/
url: https://sweet32.info/
cert-bund: WID-SEC-2024-1277
cert-bund: WID-SEC-2024-0209
cert-bund: WID-SEC-2024-0064
cert-bund: WID-SEC-2022-2226
cert-bund: WID-SEC-2022-1955
cert-bund: CB-K21/1094
cert-bund: CB-K20/1023
cert-bund: CB-K20/0321
cert-bund: CB-K20/0314
cert-bund: CB-K20/0157
cert-bund: CB-K19/0618
cert-bund: CB-K19/0615
cert-bund: CB-K18/0296
cert-bund: CB-K17/1980
cert-bund: CB-K17/1871
cert-bund: CB-K17/1803
cert-bund: CB-K17/1753
cert-bund: CB-K17/1750
cert-bund: CB-K17/1709
cert-bund: CB-K17/1558
cert-bund: CB-K17/1273
cert-bund: CB-K17/1202
cert-bund: CB-K17/1196
cert-bund: CB-K17/1055
cert-bund: CB-K17/1026
cert-bund: CB-K17/0939
cert-bund: CB-K17/0917
cert-bund: CB-K17/0915
cert-bund: CB-K17/0877
cert-bund: CB-K17/0796
cert-bund: CB-K17/0724
cert-bund: CB-K17/0661
cert-bund: CB-K17/0657
cert-bund: CB-K17/0582
cert-bund: CB-K17/0581
cert-bund: CB-K17/0506
```

```
... continued from previous page ...
cert-bund: CB-K17/0504
cert-bund: CB-K17/0467
cert-bund: CB-K17/0345
cert-bund: CB-K17/0098
cert-bund: CB-K17/0089
cert-bund: CB-K17/0086
cert-bund: CB-K17/0082
cert-bund: CB-K16/1837
cert-bund: CB-K16/1830
cert-bund: CB-K16/1635
cert-bund: CB-K16/1630
cert-bund: CB-K16/1624
cert-bund: CB-K16/1622
cert-bund: CB-K16/1500
cert-bund: CB-K16/1465
cert-bund: CB-K16/1307
cert-bund: CB-K16/1296
dfn-cert: DFN-CERT-2025-0041
dfn-cert: DFN-CERT-2021-1618
dfn-cert: DFN-CERT-2021-0775
dfn-cert: DFN-CERT-2021-0770
dfn-cert: DFN-CERT-2021-0274
dfn-cert: DFN-CERT-2020-2141
dfn-cert: DFN-CERT-2020-0368
dfn-cert: DFN-CERT-2019-1455
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1296
dfn-cert: DFN-CERT-2018-0323
dfn-cert: DFN-CERT-2017-2070
dfn-cert: DFN-CERT-2017-1954
dfn-cert: DFN-CERT-2017-1885
dfn-cert: DFN-CERT-2017-1831
dfn-cert: DFN-CERT-2017-1821
dfn-cert: DFN-CERT-2017-1785
dfn-cert: DFN-CERT-2017-1626
dfn-cert: DFN-CERT-2017-1326
dfn-cert: DFN-CERT-2017-1239
dfn-cert: DFN-CERT-2017-1238
dfn-cert: DFN-CERT-2017-1090
dfn-cert: DFN-CERT-2017-1060
dfn-cert: DFN-CERT-2017-0968
dfn-cert: DFN-CERT-2017-0947
dfn-cert: DFN-CERT-2017-0946
dfn-cert: DFN-CERT-2017-0904
dfn-cert: DFN-CERT-2017-0816
dfn-cert: DFN-CERT-2017-0746
dfn-cert: DFN-CERT-2017-0677
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2017-0675
dfn-cert: DFN-CERT-2017-0611
dfn-cert: DFN-CERT-2017-0609
dfn-cert: DFN-CERT-2017-0522
dfn-cert: DFN-CERT-2017-0519
dfn-cert: DFN-CERT-2017-0482
dfn-cert: DFN-CERT-2017-0351
dfn-cert: DFN-CERT-2017-0090
dfn-cert: DFN-CERT-2017-0089
dfn-cert: DFN-CERT-2017-0088
dfn-cert: DFN-CERT-2017-0086
dfn-cert: DFN-CERT-2016-1943
dfn-cert: DFN-CERT-2016-1937
dfn-cert: DFN-CERT-2016-1732
dfn-cert: DFN-CERT-2016-1726
dfn-cert: DFN-CERT-2016-1715
dfn-cert: DFN-CERT-2016-1714
dfn-cert: DFN-CERT-2016-1588
dfn-cert: DFN-CERT-2016-1555
dfn-cert: DFN-CERT-2016-1391
dfn-cert: DFN-CERT-2016-1378
```

[return to 192.168.68.110]

2.1.3 Medium 3389/tcp

```
Medium (CVSS: 4.3)
```

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

```
cpe:/a:ietf:transport_layer_security:1.0
Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)
```

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.0

Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782)

References

cve: CVE-2011-3389 cve: CVE-2015-0204

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters

 \hookrightarrow -report-2014

cert-bund: WID-SEC-2023-1435

```
... continued from previous page ...
cert-bund: CB-K18/0799
cert-bund: CB-K16/1289
cert-bund: CB-K16/1096
cert-bund: CB-K15/1751
cert-bund: CB-K15/1266
cert-bund: CB-K15/0850
cert-bund: CB-K15/0764
cert-bund: CB-K15/0720
cert-bund: CB-K15/0548
cert-bund: CB-K15/0526
cert-bund: CB-K15/0509
cert-bund: CB-K15/0493
cert-bund: CB-K15/0384
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
... continues on next page ...
```

dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482

[return to 192.168.68.110]

2.1.4 Medium 135/tcp

Medium (CVSS: 5.0)

NVT: DCE/RPC and MSRPC Services Enumeration Reporting

Summary

Distributed Computing Environment / Remote Procedure Calls (DCE/RPC) or MSRPC services running on the remote host can be enumerated by connecting on port 135 and doing the appropriate queries.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

Here is the list of DCE/RPC or MSRPC services running on this host via the TCP p \hookrightarrow rotocol:

Port: 49664/tcp

UUID: 0b1c2170-5732-4e0e-8cd3-d9b16f3b84d7, version 0 $\,$

Endpoint: ncacn_ip_tcp:192.168.68.110[49664]

Annotation: RemoteAccessCheck

UUID: 12345778-1234-abcd-ef00-0123456789ac, version 1

Endpoint: ncacn_ip_tcp:192.168.68.110[49664]

Named pipe : lsass

Win32 service or process : lsass.exe

 ${\tt Description} \; : \; {\tt SAM \; access}$

UUID: 51a227ae-825b-41f2-b4a9-1ac9557a1018, version 1

Endpoint: ncacn_ip_tcp:192.168.68.110[49664]

Annotation: Ngc Pop Key Service

UUID: 8fb74744-b2ff-4c00-be0d-9ef9a191fe1b, version 1

Endpoint: ncacn_ip_tcp:192.168.68.110[49664]

Annotation: Ngc Pop Key Service

UUID: b25a52bf-e5dd-4f4a-aea6-8ca7272a0e86, version 2

Endpoint: ncacn_ip_tcp:192.168.68.110[49664]

Annotation: KeyIso

Port: 49665/tcp

UUID: d95afe70-a6d5-4259-822e-2c84da1ddb0d, version 1

Endpoint: ncacn_ip_tcp:192.168.68.110[49665]

... continued from previous page ... Port: 49666/tcp UUID: f6beaff7-1e19-4fbb-9f8f-b89e2018337c, version 1 Endpoint: ncacn_ip_tcp:192.168.68.110[49666] Annotation: Event log TCPIP Port: 49667/tcp UUID: 3a9ef155-691d-4449-8d05-09ad57031823, version 1 Endpoint: ncacn_ip_tcp:192.168.68.110[49667] UUID: 86d35949-83c9-4044-b424-db363231fd0c, version 1 Endpoint: ncacn_ip_tcp:192.168.68.110[49667] Port: 49668/tcp UUID: 29770a8f-829b-4158-90a2-78cd488501f7, version 1 Endpoint: ncacn_ip_tcp:192.168.68.110[49668] Port: 49669/tcp UUID: 0b1c2170-5732-4e0e-8cd3-d9b16f3b84d7, version 0 Endpoint: ncacn_ip_tcp:192.168.68.110[49669] Annotation: RemoteAccessCheck UUID: 51a227ae-825b-41f2-b4a9-1ac9557a1018, version 1 Endpoint: ncacn_ip_tcp:192.168.68.110[49669] Annotation: Ngc Pop Key Service UUID: 8fb74744-b2ff-4c00-be0d-9ef9a191fe1b, version 1 Endpoint: ncacn_ip_tcp:192.168.68.110[49669] Annotation: Ngc Pop Key Service UUID: b25a52bf-e5dd-4f4a-aea6-8ca7272a0e86, version 2 Endpoint: ncacn_ip_tcp:192.168.68.110[49669] Annotation: KeyIso Port: 49710/tcp UUID: 367abb81-9844-35f1-ad32-98f038001003, version 2 Endpoint: ncacn_ip_tcp:192.168.68.110[49710] Port: 49717/tcp UUID: 6b5bdd1e-528c-422c-af8c-a4079be4fe48, version 1 Endpoint: ncacn_ip_tcp:192.168.68.110[49717] Annotation: Remote Fw APIs Note: DCE/RPC or MSRPC services running on this host locally were identified. Re ←porting this list is not enabled by default due to the possible large size of Impact An attacker may use this fact to gain more knowledge about the remote host. Solution: Solution type: Mitigation Filter incoming traffic to this ports.

Vulnerability Detection Method

Details: DCE/RPC and MSRPC Services Enumeration Reporting OID: 1.3.6.1.4.1.25623.1.0.10736

Version used: 2022-06-03T10:17:07Z

[return to 192.168.68.110]

2.1.5 Medium 4595/tcp

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.0

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

... continued from previous page ...

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.0

Method: SSL/TLS: Version Detection

OID: 1.3.6.1.4.1.25623.1.0.105782)

References

cve: CVE-2011-3389

cve: CVE-2015-0204

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters

 \hookrightarrow -report-2014

cert-bund: WID-SEC-2023-1435

cert-bund: CB-K18/0799

cert-bund: CB-K16/1289

cert-bund: CB-K16/1096

cert-bund: CB-K15/1751

cert-bund: CB-K15/1266

cert-bund: CB-K15/0850

cert-bund: CB-K15/0764 cert-bund: CB-K15/0720

cert-bund: CB-K15/0548

Cert-build. CB-K15/0546

cert-bund: CB-K15/0526 cert-bund: CB-K15/0509

cert-bund: CB-K15/0493

cert-bund: CB-K15/0384

cert-bund: CB-K15/0365

cert-bund: CB-K15/0364

cert-bund: CB-K15/0302

cert-bund: CB-K15/0192

cert-bund: CB-K15/0079

cert-bund: CB-K15/0016

cert-bund: CB-K14/1342

```
... continued from previous page ...
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

[return to 192.168.68.110]

2.1.6 Medium 4596/tcp

```
Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.0

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

... continues on next page ...
```

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.0

Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782)

... continued from previous page ... References cve: CVE-2011-3389 cve: CVE-2015-0204 url: https://ssl-config.mozilla.org/ url: https://bettercrypto.org/ url: https://datatracker.ietf.org/doc/rfc8996/ url: https://vnhacker.blogspot.com/2011/09/beast.html url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters \hookrightarrow -report-2014 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K18/0799 cert-bund: CB-K16/1289 cert-bund: CB-K16/1096 cert-bund: CB-K15/1751 cert-bund: CB-K15/1266 cert-bund: CB-K15/0850 cert-bund: CB-K15/0764 cert-bund: CB-K15/0720 cert-bund: CB-K15/0548 cert-bund: CB-K15/0526 cert-bund: CB-K15/0509 cert-bund: CB-K15/0493 cert-bund: CB-K15/0384 cert-bund: CB-K15/0365 cert-bund: CB-K15/0364 cert-bund: CB-K15/0302 cert-bund: CB-K15/0192 cert-bund: CB-K15/0079 cert-bund: CB-K15/0016 cert-bund: CB-K14/1342 cert-bund: CB-K14/0231 cert-bund: CB-K13/0845 cert-bund: CB-K13/0796 cert-bund: CB-K13/0790 dfn-cert: DFN-CERT-2020-0177 dfn-cert: DFN-CERT-2020-0111 dfn-cert: DFN-CERT-2019-0068 dfn-cert: DFN-CERT-2018-1441 dfn-cert: DFN-CERT-2018-1408 dfn-cert: DFN-CERT-2016-1372 dfn-cert: DFN-CERT-2016-1164 dfn-cert: DFN-CERT-2016-0388 dfn-cert: DFN-CERT-2015-1853 dfn-cert: DFN-CERT-2015-1332 dfn-cert: DFN-CERT-2015-0884 dfn-cert: DFN-CERT-2015-0800 ... continues on next page ...

```
... continued from previous page ...
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

26

[return to 192.168.68.110]

2.1.7 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)
- ... continues on next page ...

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.110]

$2.2 \quad 192.168.71.247$

Host scan start Mon Mar 3 15:59:04 2025 UTC Host scan end Mon Mar 3 17:46:17 2025 UTC

Service (Port)	Threat Level
$443/\mathrm{tcp}$	Medium
m general/tcp	Low
general/icmp	Low

2.2.1 Medium 443/tcp

Medium (CVSS: 5.8)

NVT: SSL/TLS: Renegotiation MITM Vulnerability (CVE-2009-3555)

Summary

The remote SSL/TLS service is prone to a man-in-the-middle (MITM) vulnerability.

Quality of Detection (QoD): 70%

Vulnerability Detection Result

Protocol Version | Successful re-done SSL/TLS handshakes (Renegotiation) over an \hookrightarrow existing / already established SSL/TLS connection

 \hookrightarrow

TLSv1.2 2

Impact

A remote, unauthenticated attacker may be able to inject an arbitrary amount of chosen plaintext into the beginning of the application protocol stream. This could allow and attacker to issue HTTP requests, or take action impersonating the user, among other consequences.

Solution:

Solution type: VendorFix

Users should contact their vendors for specific patch information.

General solution options are:

- remove/disable renegotiation capabilities altogether from/in the affected SSL/TLS service
- enable Safe/Secure renegotiation (RFC5746) for the affected SSL/TLS service

Affected Software/OS

The TLS protocol, and the SSL protocol 3.0 and possibly earlier, as used in Microsoft Internet Information Services (IIS) 7.0, mod_ssl in the Apache HTTP Server 2.2.14 and earlier, OpenSSL before 0.9.8l, GnuTLS 2.8.5 and earlier, Mozilla Network Security Services (NSS) 3.12.4 and earlier, multiple Cisco products, and other products.

Vulnerability Insight

The flaw exists because the remote SSL/TLS service does not properly associate renegotiation handshakes with an existing connection, which allows MITM attackers to insert data into HTTPS sessions, and possibly other types of sessions protected by TLS or SSL, by sending an unauthenticated request that is processed retroactively by a server in a post-renegotiation context, related to a 'plaintext injection' attack, aka the 'Project Mogul' issue.

Vulnerability Detection Method

Checks if the remote service allows to re-do the same SSL/TLS handshake (Renegotiation) over an existing / already established SSL/TLS connection.

Details: SSL/TLS: Renegotiation MITM Vulnerability (CVE-2009-3555)

OID:1.3.6.1.4.1.25623.1.0.117758 Version used: 2024-09-27T05:05:23Z

References

cve: CVE-2009-3555

url: https://blog.g-sec.lu/2009/11/tls-sslv3-renegotiation-vulnerability.html

url: https://www.g-sec.lu/practicaltls.pdf
url: https://www.kb.cert.org/vuls/id/120541

url: https://orchilles.com/ssl-renegotiation-dos/

```
... continued from previous page ...
url: https://lwn.net/Articles/362234/
url: https://kb.fortinet.com/kb/documentLink.do?externalID=FD36385
url: https://datatracker.ietf.org/doc/html/rfc5746
url: https://mailarchive.ietf.org/arch/msg/tls/Y103HUcq9T94rMLCGPTTozURtSI/
cert-bund: CB-K17/1878
cert-bund: CB-K17/1642
cert-bund: CB-K15/0637
dfn-cert: DFN-CERT-2017-1960
dfn-cert: DFN-CERT-2017-1722
dfn-cert: DFN-CERT-2015-0664
dfn-cert: DFN-CERT-2013-0321
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-0828
dfn-cert: DFN-CERT-2012-0613
dfn-cert: DFN-CERT-2011-1720
dfn-cert: DFN-CERT-2011-1138
dfn-cert: DFN-CERT-2011-1137
dfn-cert: DFN-CERT-2011-0712
dfn-cert: DFN-CERT-2011-0700
dfn-cert: DFN-CERT-2011-0321
dfn-cert: DFN-CERT-2011-0193
dfn-cert: DFN-CERT-2011-0185
dfn-cert: DFN-CERT-2011-0181
dfn-cert: DFN-CERT-2011-0116
dfn-cert: DFN-CERT-2011-0021
dfn-cert: DFN-CERT-2011-0020
dfn-cert: DFN-CERT-2011-0019
dfn-cert: DFN-CERT-2010-1762
dfn-cert: DFN-CERT-2010-1731
dfn-cert: DFN-CERT-2010-1710
dfn-cert: DFN-CERT-2010-1702
dfn-cert: DFN-CERT-2010-1650
dfn-cert: DFN-CERT-2010-1647
dfn-cert: DFN-CERT-2010-1527
dfn-cert: DFN-CERT-2010-1500
dfn-cert: DFN-CERT-2010-1439
dfn-cert: DFN-CERT-2010-1424
dfn-cert: DFN-CERT-2010-1406
dfn-cert: DFN-CERT-2010-1405
dfn-cert: DFN-CERT-2010-1387
dfn-cert: DFN-CERT-2010-1385
dfn-cert: DFN-CERT-2010-1380
dfn-cert: DFN-CERT-2010-1368
dfn-cert: DFN-CERT-2010-1293
dfn-cert: DFN-CERT-2010-1227
dfn-cert: DFN-CERT-2010-1052
dfn-cert: DFN-CERT-2010-1009
... continues on next page ...
```

30

```
... continued from previous page ...
dfn-cert: DFN-CERT-2010-1000
dfn-cert: DFN-CERT-2010-0899
dfn-cert: DFN-CERT-2010-0859
dfn-cert: DFN-CERT-2010-0833
dfn-cert: DFN-CERT-2010-0815
dfn-cert: DFN-CERT-2010-0775
dfn-cert: DFN-CERT-2010-0729
dfn-cert: DFN-CERT-2010-0725
dfn-cert: DFN-CERT-2010-0707
dfn-cert: DFN-CERT-2010-0705
dfn-cert: DFN-CERT-2010-0669
dfn-cert: DFN-CERT-2010-0639
dfn-cert: DFN-CERT-2010-0619
dfn-cert: DFN-CERT-2010-0618
dfn-cert: DFN-CERT-2010-0603
dfn-cert: DFN-CERT-2010-0586
dfn-cert: DFN-CERT-2010-0579
dfn-cert: DFN-CERT-2010-0562
dfn-cert: DFN-CERT-2010-0558
dfn-cert: DFN-CERT-2010-0544
dfn-cert: DFN-CERT-2010-0539
dfn-cert: DFN-CERT-2010-0525
dfn-cert: DFN-CERT-2010-0504
dfn-cert: DFN-CERT-2010-0498
dfn-cert: DFN-CERT-2010-0491
dfn-cert: DFN-CERT-2010-0488
dfn-cert: DFN-CERT-2010-0485
dfn-cert: DFN-CERT-2010-0456
dfn-cert: DFN-CERT-2010-0455
dfn-cert: DFN-CERT-2010-0451
dfn-cert: DFN-CERT-2010-0413
dfn-cert: DFN-CERT-2010-0411
dfn-cert: DFN-CERT-2010-0410
dfn-cert: DFN-CERT-2010-0407
dfn-cert: DFN-CERT-2010-0406
dfn-cert: DFN-CERT-2010-0405
dfn-cert: DFN-CERT-2010-0388
dfn-cert: DFN-CERT-2010-0370
dfn-cert: DFN-CERT-2010-0339
dfn-cert: DFN-CERT-2010-0303
dfn-cert: DFN-CERT-2010-0273
dfn-cert: DFN-CERT-2010-0201
dfn-cert: DFN-CERT-2010-0166
dfn-cert: DFN-CERT-2010-0050
dfn-cert: DFN-CERT-2010-0030
dfn-cert: DFN-CERT-2009-1833
dfn-cert: DFN-CERT-2009-1821
... continues on next page ...
```

... continued from previous page ... dfn-cert: DFN-CERT-2009-1820 dfn-cert: DFN-CERT-2009-1809 dfn-cert: DFN-CERT-2009-1805 dfn-cert: DFN-CERT-2009-1757 dfn-cert: DFN-CERT-2009-1755 dfn-cert: DFN-CERT-2009-1725 dfn-cert: DFN-CERT-2009-1719 dfn-cert: DFN-CERT-2009-1689 dfn-cert: DFN-CERT-2009-1688 dfn-cert: DFN-CERT-2009-1654 dfn-cert: DFN-CERT-2009-1653 dfn-cert: DFN-CERT-2009-1646 dfn-cert: DFN-CERT-2009-1643 dfn-cert: DFN-CERT-2009-1630 dfn-cert: DFN-CERT-2009-1623 dfn-cert: DFN-CERT-2009-1603 dfn-cert: DFN-CERT-2009-1602 dfn-cert: DFN-CERT-2009-1584 dfn-cert: DFN-CERT-2009-1578

Medium (CVSS: 5.0)

NVT: SSL/TLS: Renegotiation DoS Vulnerability (CVE-2011-1473, CVE-2011-5094)

Summary

The remote SSL/TLS service is prone to a denial of service (DoS) vulnerability.

Quality of Detection (QoD): 70%

Vulnerability Detection Result

The following indicates that the remote SSL/TLS service is affected:

Protocol Version | Successful re-done SSL/TLS handshakes (Renegotiation) over an \hookrightarrow existing / already established SSL/TLS connection

TLSv1.2 | 10

Impact

The flaw might make it easier for remote attackers to cause a DoS (CPU consumption) by performing many renegotiations within a single connection.

Solution:

Solution type: VendorFix

Users should contact their vendors for specific patch information.

A general solution is to remove/disable renegotiation capabilities altogether from/in the affected SSL/TLS service.

... continued from previous page ...

Affected Software/OS

Every SSL/TLS service which does not properly restrict client-initiated renegotiation.

Vulnerability Insight

The flaw exists because the remote SSL/TLS service does not properly restrict client-initiated renegotiation within the SSL and TLS protocols.

Note: The referenced CVEs are affecting OpenSSL and Mozilla Network Security Services (NSS) but both are in a DISPUTED state with the following rationale:

> It can also be argued that it is the responsibility of server deployments, not a security library, to prevent or limit renegotiation when it is inappropriate within a specific environment.

Both CVEs are still kept in this VT as a reference to the origin of this flaw.

Vulnerability Detection Method

Checks if the remote service allows to re-do the same SSL/TLS handshake (Renegotiation) over an existing / already established SSL/TLS connection.

 $Details: \ SSL/TLS: \ Renegotiation \ DoS \ Vulnerability \ (CVE-2011-1473, \ CVE-2011-5094)$

OID: 1.3.6.1.4.1.25623.1.0.117761

Version used: 2024-09-27T05:05:23Z

References

```
cve: CVE-2011-1473
cve: CVE-2011-5094
url: https://web.archive.org/web
```

url: https://web.archive.org/web/20211201133213/https://orchilles.com/ssl-renego

 \hookrightarrow tiation-dos/

url: https://wincent.bernat.ch/en/blog/2011-ssl-dos-mitigation url: https://www.openwall.com/lists/oss-security/2011/07/08/2 cert-bund: WID-SEC-2024-1591

cert-bund: WID-SEC-2024-0796 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K17/0980 cert-bund: CB-K17/0979 cert-bund: CB-K14/0772 cert-bund: CB-K13/0915 cert-bund: CB-K13/0462 dfn-cert: DFN-CERT-2017-1013

dfn-cert: DFN-CERT-2017-1012
dfn-cert: DFN-CERT-2014-0809
dfn-cert: DFN-CERT-2013-1928
dfn-cert: DFN-CERT-2012-1112

[return to 192.168.71.247]

2.2.2 Low general/tcp

33

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 11838891 Packet 2: 11839104

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323

url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

⇔ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.71.247]

2.2.3 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514
cert-bund: CB-K14/0632
dfn-cert: DFN-CERT-2014-0658

[return to 192.168.71.247]

2.3 192.168.71.250

Host scan start Mon Mar 3 15:59:04 2025 UTC Host scan end Mon Mar 3 17:46:14 2025 UTC

Service (Port)	Threat Level
$443/\mathrm{tcp}$	Medium
general/icmp	Low
general/tcp	Low

2.3.1 Medium 443/tcp

Medium (CVSS: 5.0)

NVT: SSL/TLS: Renegotiation DoS Vulnerability (CVE-2011-1473, CVE-2011-5094)

Summary

The remote SSL/TLS service is prone to a denial of service (DoS) vulnerability.

Quality of Detection (QoD): 70%

Vulnerability Detection Result

The following indicates that the remote SSL/TLS service is affected:

Protocol Version | Successful re-done SSL/TLS handshakes (Renegotiation) over an \hookrightarrow existing / already established SSL/TLS connection

÷-----

TLSv1.2 | 10

Impact

The flaw might make it easier for remote attackers to cause a DoS (CPU consumption) by performing many renegotiations within a single connection.

Solution:

Solution type: VendorFix

Users should contact their vendors for specific patch information.

A general solution is to remove/disable renegotiation capabilities altogether from/in the affected SSL/TLS service.

Affected Software/OS

Every SSL/TLS service which does not properly restrict client-initiated renegotiation.

Vulnerability Insight

The flaw exists because the remote SSL/TLS service does not properly restrict client-initiated renegotiation within the SSL and TLS protocols.

Note: The referenced CVEs are affecting OpenSSL and Mozilla Network Security Services (NSS) but both are in a DISPUTED state with the following rationale:

> It can also be argued that it is the responsibility of server deployments, not a security library, to prevent or limit renegotiation when it is inappropriate within a specific environment.

Both CVEs are still kept in this VT as a reference to the origin of this flaw.

Vulnerability Detection Method

Checks if the remote service allows to re-do the same SSL/TLS handshake (Renegotiation) over an existing / already established SSL/TLS connection.

 ${\rm Details:} \ \ {\tt SSL/TLS:} \ \ {\tt Renegotiation} \ \ {\tt DoS} \ \ {\tt Vulnerability} \ \ ({\tt CVE-2011-1473}, \ \ {\tt CVE-2011-5094})$

OID:1.3.6.1.4.1.25623.1.0.117761 Version used: 2024-09-27T05:05:23Z

References

cve: CVE-2011-1473 cve: CVE-2011-5094

url: https://web.archive.org/web/20211201133213/https://orchilles.com/ssl-renego

 \hookrightarrow tiation-dos/

url: https://mailarchive.ietf.org/arch/msg/tls/wdg46VE_jkYBbgJ5yE4P9nQ-8IU/

url: https://vincent.bernat.ch/en/blog/2011-ssl-dos-mitigationurl: https://www.openwall.com/lists/oss-security/2011/07/08/2

cert-bund: WID-SEC-2024-1591 cert-bund: WID-SEC-2024-0796 cert-bund: WID-SEC-2023-1435

cert-bund: CB-K17/0980 cert-bund: CB-K17/0979 cert-bund: CB-K14/0772 cert-bund: CB-K13/0915 cert-bund: CB-K13/0462 dfn-cert: DFN-CERT-2017-1013

dfn-cert: DFN-CERT-2017-1012 dfn-cert: DFN-CERT-2014-0809 dfn-cert: DFN-CERT-2013-1928 dfn-cert: DFN-CERT-2012-1112

2.3.2 Low general/icmp

Low (CVSS: 2.1)

 ${
m NVT}$: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658 [return to 192.168.71.250]

2.3.3 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 1525601409 Packet 2: 1525604064

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

... continued from previous page ... url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323 url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

[return to 192.168.71.250]

192.168.71.246 2.4

 \hookrightarrow ownload/details.aspx?id=9152

Host scan start Mon Mar 3 15:59:04 2025 UTC Host scan end Mon Mar 3 17:47:53 2025 UTC

url: https://www.fortiguard.com/psirt/FG-IR-16-090

Service (Port)	Threat Level
$443/\mathrm{tcp}$	Medium
m general/tcp	Low
general/icmp	Low

2.4.1 Medium 443/tcp

Summary

The remote SSL/TLS service is prone to a denial of service (DoS) vulnerability.

Quality of Detection (QoD): 70%

Vulnerability Detection Result

The following indicates that the remote SSL/TLS service is affected:

Protocol Version | Successful re-done SSL/TLS handshakes (Renegotiation) over an \hookrightarrow existing / already established SSL/TLS connection

⇔-----

TLSv1.2 10

Impact

The flaw might make it easier for remote attackers to cause a DoS (CPU consumption) by performing many renegotiations within a single connection.

Solution:

Solution type: VendorFix

Users should contact their vendors for specific patch information.

A general solution is to remove/disable renegotiation capabilities altogether from/in the affected SSL/TLS service.

Affected Software/OS

Every SSL/TLS service which does not properly restrict client-initiated renegotiation.

Vulnerability Insight

The flaw exists because the remote SSL/TLS service does not properly restrict client-initiated renegotiation within the SSL and TLS protocols.

Note: The referenced CVEs are affecting OpenSSL and Mozilla Network Security Services (NSS) but both are in a DISPUTED state with the following rationale:

> It can also be argued that it is the responsibility of server deployments, not a security library, to prevent or limit renegotiation when it is inappropriate within a specific environment.

Both CVEs are still kept in this VT as a reference to the origin of this flaw.

Vulnerability Detection Method

Checks if the remote service allows to re-do the same SSL/TLS handshake (Renegotiation) over an existing / already established SSL/TLS connection.

Details: SSL/TLS: Renegotiation DoS Vulnerability (CVE-2011-1473, CVE-2011-5094)

OID:1.3.6.1.4.1.25623.1.0.117761 Version used: 2024-09-27T05:05:23Z

References

cve: CVE-2011-1473 cve: CVE-2011-5094

 \hookrightarrow tiation-dos/

url: https://mailarchive.ietf.org/arch/msg/tls/wdg46VE_jkYBbgJ5yE4P9nQ-8IU/

url: https://vincent.bernat.ch/en/blog/2011-ssl-dos-mitigation url: https://www.openwall.com/lists/oss-security/2011/07/08/2

cert-bund: WID-SEC-2024-1591 cert-bund: WID-SEC-2024-0796 cert-bund: WID-SEC-2023-1435

cert-bund: CB-K17/0980 cert-bund: CB-K17/0979 cert-bund: CB-K14/0772 cert-bund: CB-K13/0915 cert-bund: CB-K13/0462 dfn-cert: DFN-CERT-2017-1013

dfn-cert: DFN-CERT-2017-1012
dfn-cert: DFN-CERT-2014-0809
dfn-cert: DFN-CERT-2013-1928
dfn-cert: DFN-CERT-2012-1112

2.4.2 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 11851424 Packet 2: 11851538

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323

url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.71.246]

2.4.3 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190

Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.71.246]

$2.5 \quad 192.168.68.1$

Host scan start Mon Mar 3 16:08:51 2025 UTC Host scan end Mon Mar 3 17:55:33 2025 UTC

Service (Port)	Threat Level
$443/\mathrm{tcp}$	Medium
general/tcp	Low
general/icmp	Low

2.5.1 Medium 443/tcp

Medium (CVSS: 5.0)

NVT: SSL/TLS: Renegotiation DoS Vulnerability (CVF-2011-1473, CVE-2011-5094)

Summary

The remote SSL/TLS service is prone to a denial of service (DoS) vulnerability.

Quality of Detection (QoD): 70%

Vulnerability Detection Result

The following indicates that the remote SSL/TLS service is affected:

Protocol Version | Successful re-done SSL/TLS handshakes (Renegotiation) over an \hookrightarrow existing / already established SSL/TLS connection

TLSv1.2 | 10

Impact

The flaw might make it easier for remote attackers to cause a DoS (CPU consumption) by performing many renegotiations within a single connection.

... continued from previous page ...

Solution:

Solution type: VendorFix

Users should contact their vendors for specific patch information.

A general solution is to remove/disable renegotiation capabilities altogether from/in the affected SSL/TLS service.

Affected Software/OS

Every SSL/TLS service which does not properly restrict client-initiated renegotiation.

Vulnerability Insight

The flaw exists because the remote SSL/TLS service does not properly restrict client-initiated renegotiation within the SSL and TLS protocols.

Note: The referenced CVEs are affecting OpenSSL and Mozilla Network Security Services (NSS) but both are in a DISPUTED state with the following rationale:

> It can also be argued that it is the responsibility of server deployments, not a security library, to prevent or limit renegotiation when it is inappropriate within a specific environment.

Both CVEs are still kept in this VT as a reference to the origin of this flaw.

Vulnerability Detection Method

Checks if the remote service allows to re-do the same SSL/TLS handshake (Renegotiation) over an existing / already established SSL/TLS connection.

 $Details: \ SSL/TLS: \ Renegotiation \ DoS \ \ Vulnerability \ (CVE-2011-1473, \ CVE-2011-5094)$

OID:1.3.6.1.4.1.25623.1.0.117761 Version used: 2024-09-27T05:05:23Z

References

cve: CVE-2011-1473 cve: CVE-2011-5094

url: https://web.archive.org/web/20211201133213/https://orchilles.com/ssl-renego

 \hookrightarrow tiation-dos/

url: https://mailarchive.ietf.org/arch/msg/tls/wdg46VE_jkYBbgJ5yE4P9nQ-8IU/

url: https://vincent.bernat.ch/en/blog/2011-ssl-dos-mitigationurl: https://www.openwall.com/lists/oss-security/2011/07/08/2

cert-bund: WID-SEC-2024-1591 cert-bund: WID-SEC-2024-0796 cert-bund: WID-SEC-2023-1435

cert-bund: CB-K17/0980 cert-bund: CB-K17/0979 cert-bund: CB-K14/0772 cert-bund: CB-K13/0915 cert-bund: CB-K13/0462 dfn-cert: DFN-CERT-2017-1013 dfn-cert: DFN-CERT-2017-1012

dfn-cert: DFN-CERT-2017-1012 dfn-cert: DFN-CERT-2014-0809 dfn-cert: DFN-CERT-2013-1928

dfn-cert: DFN-CERT-2012-1112

[return to 192.168.68.1]

2.5.2 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 1622831304 Packet 2: 1622833107

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091 Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323
url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.1]

2.5.3 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.1]

2.6 192.168.71.248

Service (Port)	Threat Level
$443/\mathrm{tcp}$	Medium
general/icmp	Low
general/tcp	Low

2.6.1 Medium 443/tcp

Medium (CVSS: 5.0)

NVT: SSL/TLS: Renegotiation DoS Vulnerability (CVE-2011-1473, CVE-2011-5094

Summary

The remote SSL/TLS service is prone to a denial of service (DoS) vulnerability.

Quality of Detection (QoD): 70%

Vulnerability Detection Result

The following indicates that the remote SSL/TLS service is affected: Protocol Version | Successful re-done SSL/TLS handshakes (Renegotiation) over an \hookrightarrow existing / already established SSL/TLS connection

Impact

The flaw might make it easier for remote attackers to cause a DoS (CPU consumption) by performing many renegotiations within a single connection.

Solution:

Solution type: VendorFix

Users should contact their vendors for specific patch information.

A general solution is to remove/disable renegotiation capabilities altogether from/in the affected SSL/TLS service.

Affected Software/OS

Every SSL/TLS service which does not properly restrict client-initiated renegotiation.

Vulnerability Insight

The flaw exists because the remote SSL/TLS service does not properly restrict client-initiated renegotiation within the SSL and TLS protocols.

Note: The referenced CVEs are affecting OpenSSL and Mozilla Network Security Services (NSS) but both are in a DISPUTED state with the following rationale:

> It can also be argued that it is the responsibility of server deployments, not a security library, to prevent or limit renegotiation when it is inappropriate within a specific environment.

Both CVEs are still kept in this VT as a reference to the origin of this flaw.

Vulnerability Detection Method

Checks if the remote service allows to re-do the same SSL/TLS handshake (Renegotiation) over an existing / already established SSL/TLS connection.

Details: SSL/TLS: Renegotiation DoS Vulnerability (CVE-2011-1473, CVE-2011-5094) OID:1.3.6.1.4.1.25623.1.0.117761

Version used: 2024-09-27T05:05:23Z

References

cve: CVE-2011-1473 cve: CVE-2011-5094

url: https://web.archive.org/web/20211201133213/https://orchilles.com/ssl-renego

 \hookrightarrow tiation-dos/

url: https://mailarchive.ietf.org/arch/msg/tls/wdg46VE_jkYBbgJ5yE4P9nQ-8IU/

url: https://vincent.bernat.ch/en/blog/2011-ssl-dos-mitigationurl: https://www.openwall.com/lists/oss-security/2011/07/08/2

cert-bund: WID-SEC-2024-1591 cert-bund: WID-SEC-2024-0796 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K17/0980

cert-bund: CB-K17/0980 cert-bund: CB-K17/0979 cert-bund: CB-K14/0772

cert-bund: CB-K13/0915
cert-bund: CB-K13/0462
dfn-cert: DFN-CERT-2017-1013
dfn-cert: DFN-CERT-2014-0809
dfn-cert: DFN-CERT-2013-1928
dfn-cert: DFN-CERT-2012-1112

[return to 192.168.71.248]

2.6.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.71.248]

2.6.3 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 852791394 Packet 2: 852793061

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323
url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.71.248]

2.7 192.168.71.249

Host scan start Mon Mar 3 15:59:04 2025 UTC Host scan end Mon Mar 3 17:49:13 2025 UTC

Service (Port)	Threat Level
$443/\mathrm{tcp}$	Medium
general/icmp	Low
m general/tcp	Low

2.7.1 Medium 443/tcp

Medium (CVSS: 5.0)

NVT: SSL/TLS: Renegotiation DoS Vulnerability (CVE-2011-1473, CVE-2011-5094)

Summary

The remote SSL/TLS service is prone to a denial of service (DoS) vulnerability.

Quality of Detection (QoD): 70%

Vulnerability Detection Result

The following indicates that the remote SSL/TLS service is affected:

Protocol Version | Successful re-done SSL/TLS handshakes (Renegotiation) over an \hookrightarrow existing / already established SSL/TLS connection

TLSv1.2 | 10

Impact

The flaw might make it easier for remote attackers to cause a DoS (CPU consumption) by performing many renegotiations within a single connection.

Solution:

Solution type: VendorFix

Users should contact their vendors for specific patch information.

A general solution is to remove/disable renegotiation capabilities altogether from/in the affected ${\rm SSL/TLS}$ service.

Affected Software/OS

Every SSL/TLS service which does not properly restrict client-initiated renegotiation.

Vulnerability Insight

The flaw exists because the remote SSL/TLS service does not properly restrict client-initiated renegotiation within the SSL and TLS protocols.

Note: The referenced CVEs are affecting OpenSSL and Mozilla Network Security Services (NSS) but both are in a DISPUTED state with the following rationale:

> It can also be argued that it is the responsibility of server deployments, not a security library, to prevent or limit renegotiation when it is inappropriate within a specific environment.

Both CVEs are still kept in this VT as a reference to the origin of this flaw.

Vulnerability Detection Method

Checks if the remote service allows to re-do the same SSL/TLS handshake (Renegotiation) over an existing / already established SSL/TLS connection.

Details: SSL/TLS: Renegotiation DoS Vulnerability (CVE-2011-1473, CVE-2011-5094)

OID:1.3.6.1.4.1.25623.1.0.117761 Version used: 2024-09-27T05:05:23Z

References

cve: CVE-2011-1473 cve: CVE-2011-5094

url: https://web.archive.org/web/20211201133213/https://orchilles.com/ssl-renego

 \hookrightarrow tiation-dos/

... continued from previous page ... url: https://vincent.bernat.ch/en/blog/2011-ssl-dos-mitigation url: https://www.openwall.com/lists/oss-security/2011/07/08/2 cert-bund: WID-SEC-2024-1591 cert-bund: WID-SEC-2024-0796 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K17/0980 cert-bund: CB-K17/0979 cert-bund: CB-K14/0772 cert-bund: CB-K13/0915 cert-bund: CB-K13/0462 dfn-cert: DFN-CERT-2017-1013 dfn-cert: DFN-CERT-2017-1012 dfn-cert: DFN-CERT-2014-0809 dfn-cert: DFN-CERT-2013-1928 dfn-cert: DFN-CERT-2012-1112

53

[return to 192.168.71.249]

2.7.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.71.249]

2.7.3 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 11864850 Packet 2: 11865151

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323
url: https://datatracker.ietf.org/doc/html/rfc7323

 $url:\ https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/discounties.pdf and the second of the second o$

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

 $[\ {\rm return\ to\ 192.168.71.249}\]$

2.8 192.168.68.106

Host scan start Mon Mar 3 16:20:38 2025 UTC Host scan end Mon Mar 3 17:08:25 2025 UTC

Service (Port)	Threat Level
$135/\mathrm{tcp}$	Medium

2.8.1 Medium 135/tcp

Medium (CVSS: 5.0)

NVT: DCE/RPC and MSRPC Services Enumeration Reporting

Summary

Distributed Computing Environment / Remote Procedure Calls (DCE/RPC) or MSRPC services running on the remote host can be enumerated by connecting on port 135 and doing the appropriate queries.

Quality of Detection (QoD): 80%

```
Vulnerability Detection Result
Here is the list of DCE/RPC or MSRPC services running on this host via the TCP p
\hookrightarrowrotocol:
Port: 49664/tcp
     UUID: 0b1c2170-5732-4e0e-8cd3-d9b16f3b84d7, version 0
     Endpoint: ncacn_ip_tcp:192.168.68.106[49664]
     Annotation: RemoteAccessCheck
     UUID: 12345778-1234-abcd-ef00-0123456789ac, version 1
     Endpoint: ncacn_ip_tcp:192.168.68.106[49664]
     Named pipe : lsass
     Win32 service or process : lsass.exe
     Description : SAM access
     UUID: 51a227ae-825b-41f2-b4a9-1ac9557a1018, version 1
     Endpoint: ncacn_ip_tcp:192.168.68.106[49664]
     Annotation: Ngc Pop Key Service
     UUID: 8fb74744-b2ff-4c00-be0d-9ef9a191fe1b, version 1
     Endpoint: ncacn_ip_tcp:192.168.68.106[49664]
     Annotation: Ngc Pop Key Service
     UUID: b25a52bf-e5dd-4f4a-aea6-8ca7272a0e86, version 2
     Endpoint: ncacn_ip_tcp:192.168.68.106[49664]
     Annotation: KeyIso
Port: 49665/tcp
     UUID: d95afe70-a6d5-4259-822e-2c84da1ddb0d, version 1
     Endpoint: ncacn_ip_tcp:192.168.68.106[49665]
Port: 49666/tcp
     UUID: f6beaff7-1e19-4fbb-9f8f-b89e2018337c, version 1
     Endpoint: ncacn_ip_tcp:192.168.68.106[49666]
     Annotation: Event log TCPIP
Port: 49667/tcp
     UUID: 3a9ef155-691d-4449-8d05-09ad57031823, version 1
     Endpoint: ncacn_ip_tcp:192.168.68.106[49667]
     UUID: 86d35949-83c9-4044-b424-db363231fd0c, version 1
     Endpoint: ncacn_ip_tcp:192.168.68.106[49667]
Port: 49668/tcp
     UUID: 29770a8f-829b-4158-90a2-78cd488501f7, version 1
     Endpoint: ncacn_ip_tcp:192.168.68.106[49668]
Port: 49669/tcp
... continues on next page ...
```

UUID: 0b6edbfa-4a24-4fc6-8a23-942b1eca65d1, version 1

Endpoint: ncacn_ip_tcp:192.168.68.106[49669]

UUID: 12345678-1234-abcd-ef00-0123456789ab, version 1

Endpoint: ncacn_ip_tcp:192.168.68.106[49669]

Named pipe : spoolss

Win32 service or process : spoolsv.exe

Description : Spooler service

UUID: 4a452661-8290-4b36-8fbe-7f4093a94978, version 1

Endpoint: ncacn_ip_tcp:192.168.68.106[49669]

UUID: 76f03f96-cdfd-44fc-a22c-64950a001209, version 1

Endpoint: ncacn_ip_tcp:192.168.68.106[49669]

UUID: ae33069b-a2a8-46ee-a235-ddfd339be281, version 1

Endpoint: ncacn_ip_tcp:192.168.68.106[49669]

Port: 49670/tcp

UUID: 0b1c2170-5732-4e0e-8cd3-d9b16f3b84d7, version 0

Endpoint: ncacn_ip_tcp:192.168.68.106[49670]

Annotation: RemoteAccessCheck

Port: 49673/tcp

UUID: 367abb81-9844-35f1-ad32-98f038001003, version 2

Endpoint: ncacn_ip_tcp:192.168.68.106[49673]

Note: DCE/RPC or MSRPC services running on this host locally were identified. Re \hookrightarrow porting this list is not enabled by default due to the possible large size of \hookrightarrow this list. See the script preferences to enable this reporting.

Impact

An attacker may use this fact to gain more knowledge about the remote host.

Solution:

Solution type: Mitigation

Filter incoming traffic to this ports.

Vulnerability Detection Method

Details: DCE/RPC and MSRPC Services Enumeration Reporting

OID:1.3.6.1.4.1.25623.1.0.10736 Version used: 2022-06-03T10:17:07Z

[return to 192.168.68.106]

2.9 192.168.68.83

Host scan start Mon Mar 3 16:26:45 2025 UTC Host scan end Mon Mar 3 17:55:44 2025 UTC

Service (Port)	Threat Level
$443/\mathrm{tcp}$	Medium

2.9.1 Medium 443/tcp

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.0

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

... continues on next page ...

... continued from previous page ... Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z **Product Detection Result** Product: cpe:/a:ietf:transport_layer_security:1.0 Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782) References cve: CVE-2011-3389 cve: CVE-2015-0204 url: https://ssl-config.mozilla.org/ url: https://bettercrypto.org/ url: https://datatracker.ietf.org/doc/rfc8996/ url: https://vnhacker.blogspot.com/2011/09/beast.html url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters \hookrightarrow -report-2014 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K18/0799 cert-bund: CB-K16/1289 cert-bund: CB-K16/1096 cert-bund: CB-K15/1751 cert-bund: CB-K15/1266 cert-bund: CB-K15/0850 cert-bund: CB-K15/0764 cert-bund: CB-K15/0720 cert-bund: CB-K15/0548 cert-bund: CB-K15/0526 cert-bund: CB-K15/0509 cert-bund: CB-K15/0493 cert-bund: CB-K15/0384 cert-bund: CB-K15/0365 cert-bund: CB-K15/0364 cert-bund: CB-K15/0302 cert-bund: CB-K15/0192 cert-bund: CB-K15/0079 cert-bund: CB-K15/0016 cert-bund: CB-K14/1342 cert-bund: CB-K14/0231 cert-bund: CB-K13/0845 cert-bund: CB-K13/0796 cert-bund: CB-K13/0790 dfn-cert: DFN-CERT-2020-0177 dfn-cert: DFN-CERT-2020-0111

```
... continued from previous page ...
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

 $[\ {\rm return\ to\ 192.168.68.83}\]$

$2.10 \quad 192.168.68.87$

Host scan start Mon Mar 3 15:59:01 2025 UTC Host scan end Mon Mar 3 16:31:53 2025 UTC

Service (Port)	Threat Level
$9000/\mathrm{tcp}$	Medium
$10101/\mathrm{tcp}$	Medium
$8009/\mathrm{tcp}$	Medium
$8443/\mathrm{tcp}$	Medium
$10001/\mathrm{tcp}$	Medium
general/icmp	Low
m general/tcp	Low

2.10.1 Medium 9000/tcp

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.0

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

62

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

 $\label{eq:Details:SSL/TLS:Deprecated TLSv1.0} Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection$

OID:1.3.6.1.4.1.25623.1.0.117274

... continued from previous page ... Version used: 2024-09-27T05:05:23Z **Product Detection Result** Product: cpe:/a:ietf:transport_layer_security:1.0 Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782) References cve: CVE-2011-3389 cve: CVE-2015-0204 url: https://ssl-config.mozilla.org/ url: https://bettercrypto.org/ url: https://datatracker.ietf.org/doc/rfc8996/ url: https://vnhacker.blogspot.com/2011/09/beast.html url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters \hookrightarrow -report-2014 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K18/0799 cert-bund: CB-K16/1289 cert-bund: CB-K16/1096 cert-bund: CB-K15/1751 cert-bund: CB-K15/1266 cert-bund: CB-K15/0850 cert-bund: CB-K15/0764 cert-bund: CB-K15/0720 cert-bund: CB-K15/0548 cert-bund: CB-K15/0526 cert-bund: CB-K15/0509 cert-bund: CB-K15/0493 cert-bund: CB-K15/0384 cert-bund: CB-K15/0365 cert-bund: CB-K15/0364 cert-bund: CB-K15/0302 cert-bund: CB-K15/0192 cert-bund: CB-K15/0079 cert-bund: CB-K15/0016 cert-bund: CB-K14/1342 cert-bund: CB-K14/0231 cert-bund: CB-K13/0845 cert-bund: CB-K13/0796

... continues on next page ...

cert-bund: CB-K13/0790 dfn-cert: DFN-CERT-2020-0177 dfn-cert: DFN-CERT-2020-0111 dfn-cert: DFN-CERT-2019-0068 dfn-cert: DFN-CERT-2018-1441

```
... continued from previous page ...
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

[return to 192.168.68.87]

$\mathbf{2.10.2} \quad \mathbf{Medium} \ \mathbf{10101/tcp}$

```
Medium (CVSS: 4.3)
```

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

```
cpe:/a:ietf:transport_layer_security:1.0
```

Detected by SSL/TLS: Version Detection (0ID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.0

Method: SSL/TLS: Version Detection

OID: 1.3.6.1.4.1.25623.1.0.105782)

References

cve: CVE-2011-3389 cve: CVE-2015-0204

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

```
... continued from previous page ...
url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters
\hookrightarrow-report-2014
cert-bund: WID-SEC-2023-1435
cert-bund: CB-K18/0799
cert-bund: CB-K16/1289
cert-bund: CB-K16/1096
cert-bund: CB-K15/1751
cert-bund: CB-K15/1266
cert-bund: CB-K15/0850
cert-bund: CB-K15/0764
cert-bund: CB-K15/0720
cert-bund: CB-K15/0548
cert-bund: CB-K15/0526
cert-bund: CB-K15/0509
cert-bund: CB-K15/0493
cert-bund: CB-K15/0384
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
... continues on next page ...
```

dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1619

[return to 192.168.68.87]

2.10.3 Medium 8009/tcp

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.3

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.3

Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782)

References

```
cve: CVE-2011-3389
cve: CVE-2015-0204
```

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters

 \hookrightarrow -report-2014

cert-bund: WID-SEC-2023-1435

cert-bund: CB-K18/0799 cert-bund: CB-K16/1289 cert-bund: CB-K16/1096 cert-bund: CB-K15/1751

cert-bund: CB-K15/1266 cert-bund: CB-K15/0850

cert-bund: CB-K15/0764 cert-bund: CB-K15/0720 cert-bund: CB-K15/0548

cert-bund: CB-K15/0526 cert-bund: CB-K15/0509 cert-bund: CB-K15/0493 cert-bund: CB-K15/0384

```
... continued from previous page ...
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

[return to 192.168.68.87]

2.10.4 Medium 8443/tcp

73

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.0

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274

... continued from previous page ... Version used: 2024-09-27T05:05:23Z **Product Detection Result** Product: cpe:/a:ietf:transport_layer_security:1.0 Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782) References cve: CVE-2011-3389 cve: CVE-2015-0204 url: https://ssl-config.mozilla.org/ url: https://bettercrypto.org/ url: https://datatracker.ietf.org/doc/rfc8996/ url: https://vnhacker.blogspot.com/2011/09/beast.html url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters \hookrightarrow -report-2014 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K18/0799 cert-bund: CB-K16/1289 cert-bund: CB-K16/1096 cert-bund: CB-K15/1751 cert-bund: CB-K15/1266 cert-bund: CB-K15/0850 cert-bund: CB-K15/0764 cert-bund: CB-K15/0720 cert-bund: CB-K15/0548 cert-bund: CB-K15/0526 cert-bund: CB-K15/0509 cert-bund: CB-K15/0493 cert-bund: CB-K15/0384 cert-bund: CB-K15/0365 cert-bund: CB-K15/0364 cert-bund: CB-K15/0302 cert-bund: CB-K15/0192 cert-bund: CB-K15/0079 cert-bund: CB-K15/0016 cert-bund: CB-K14/1342 cert-bund: CB-K14/0231 cert-bund: CB-K13/0845 cert-bund: CB-K13/0796 cert-bund: CB-K13/0790

... continues on next page ...

dfn-cert: DFN-CERT-2020-0177 dfn-cert: DFN-CERT-2020-0111 dfn-cert: DFN-CERT-2019-0068 dfn-cert: DFN-CERT-2018-1441

```
... continued from previous page ...
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

[return to 192.168.68.87]

$\mathbf{2.10.5} \quad \mathbf{Medium} \; \mathbf{10001/tcp}$

```
Medium (CVSS: 4.3)
```

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

```
cpe:/a:ietf:transport_layer_security:1.0
```

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.0

Method: SSL/TLS: Version Detection

OID: 1.3.6.1.4.1.25623.1.0.105782)

References

cve: CVE-2011-3389 cve: CVE-2015-0204

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

```
... continued from previous page ...
url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters
\hookrightarrow-report-2014
cert-bund: WID-SEC-2023-1435
cert-bund: CB-K18/0799
cert-bund: CB-K16/1289
cert-bund: CB-K16/1096
cert-bund: CB-K15/1751
cert-bund: CB-K15/1266
cert-bund: CB-K15/0850
cert-bund: CB-K15/0764
cert-bund: CB-K15/0720
cert-bund: CB-K15/0548
cert-bund: CB-K15/0526
cert-bund: CB-K15/0509
cert-bund: CB-K15/0493
cert-bund: CB-K15/0384
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
... continues on next page ...
```

79

```
... continued from previous page ...
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
... continues on next page ...
```

dfn-cert: DFN-CERT-2011-1774

dfn-cert: DFN-CERT-2011-1743

dfn-cert: DFN-CERT-2011-1738

dfn-cert: DFN-CERT-2011-1706

dfn-cert: DFN-CERT-2011-1628

dfn-cert: DFN-CERT-2011-1627

dfn-cert: DFN-CERT-2011-1619

dfn-cert: DFN-CERT-2011-1482

[return to 192.168.68.87]

2.10.6 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.87]

2.10.7 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 3075516 Packet 2: 3075656

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

82

... continued from previous page ...

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323
url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

 \hookrightarrow ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.87]

2.11 192.168.68.90

Host scan start Mon Mar 3 15:59:04 2025 UTC Host scan end Mon Mar 3 16:30:46 2025 UTC

Service (Port)	Threat Level
$10101/\mathrm{tcp}$	Medium
$8443/\mathrm{tcp}$	Medium
8009/tcp	Medium
$10001/\mathrm{tcp}$	Medium
$9000/\mathrm{tcp}$	Medium
general/tcp	Low
general/icmp	Low

2.11.1 Medium 10101/tcp

83

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.0

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274

... continued from previous page ... Version used: 2024-09-27T05:05:23Z **Product Detection Result** Product: cpe:/a:ietf:transport_layer_security:1.0 Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782) References cve: CVE-2011-3389 cve: CVE-2015-0204 url: https://ssl-config.mozilla.org/ url: https://bettercrypto.org/ url: https://datatracker.ietf.org/doc/rfc8996/ url: https://vnhacker.blogspot.com/2011/09/beast.html url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters \hookrightarrow -report-2014 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K18/0799 cert-bund: CB-K16/1289 cert-bund: CB-K16/1096 cert-bund: CB-K15/1751 cert-bund: CB-K15/1266 cert-bund: CB-K15/0850 cert-bund: CB-K15/0764 cert-bund: CB-K15/0720 cert-bund: CB-K15/0548 cert-bund: CB-K15/0526 cert-bund: CB-K15/0509 cert-bund: CB-K15/0493 cert-bund: CB-K15/0384 cert-bund: CB-K15/0365 cert-bund: CB-K15/0364 cert-bund: CB-K15/0302 cert-bund: CB-K15/0192 cert-bund: CB-K15/0079 cert-bund: CB-K15/0016 cert-bund: CB-K14/1342 cert-bund: CB-K14/0231 cert-bund: CB-K13/0845 cert-bund: CB-K13/0796 cert-bund: CB-K13/0790

... continues on next page ...

dfn-cert: DFN-CERT-2020-0177 dfn-cert: DFN-CERT-2020-0111 dfn-cert: DFN-CERT-2019-0068 dfn-cert: DFN-CERT-2018-1441

```
... continued from previous page ...
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

[return to 192.168.68.90]

2.11.2 Medium 8443/tcp

```
Medium (CVSS: 4.3)
```

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

```
cpe:/a:ietf:transport_layer_security:1.0
```

Detected by SSL/TLS: Version Detection (0ID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.0

Method: SSL/TLS: Version Detection

OID: 1.3.6.1.4.1.25623.1.0.105782)

References

cve: CVE-2011-3389 cve: CVE-2015-0204

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

```
... continued from previous page ...
url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters
\hookrightarrow-report-2014
cert-bund: WID-SEC-2023-1435
cert-bund: CB-K18/0799
cert-bund: CB-K16/1289
cert-bund: CB-K16/1096
cert-bund: CB-K15/1751
cert-bund: CB-K15/1266
cert-bund: CB-K15/0850
cert-bund: CB-K15/0764
cert-bund: CB-K15/0720
cert-bund: CB-K15/0548
cert-bund: CB-K15/0526
cert-bund: CB-K15/0509
cert-bund: CB-K15/0493
cert-bund: CB-K15/0384
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
... continues on next page ...
```

dfn-cert: DFN-CERT-2011-1774

dfn-cert: DFN-CERT-2011-1743

dfn-cert: DFN-CERT-2011-1738

dfn-cert: DFN-CERT-2011-1706

dfn-cert: DFN-CERT-2011-1628

dfn-cert: DFN-CERT-2011-1627

dfn-cert: DFN-CERT-2011-1619

dfn-cert: DFN-CERT-2011-1619

[return to 192.168.68.90]

2.11.3 Medium 8009/tcp

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.3

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.3

Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782)

References

cve: CVE-2011-3389 cve: CVE-2015-0204

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters

 \hookrightarrow -report-2014

cert-bund: WID-SEC-2023-1435

cert-bund: CB-K18/0799

cert-bund: CB-K16/1289

cert-bund: CB-K16/1096 cert-bund: CB-K15/1751

cert-bund: CB-K15/1266

cert-bund: CB-K15/0850

cert-bund: CB-K15/0764

cert-bund: CB-K15/0720

cert-bund: CB-K15/0548

cert-bund: CB-K15/0526

cert-bund: CB-K15/0509

cert-bund: CB-K15/0493

cert-bund: CB-K15/0384

```
... continued from previous page ...
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

[return to 192.168.68.90]

2.11.4 Medium 10001/tcp

94

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.0

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

 $\label{eq:Details:SSL/TLS:Deprecated TLSv1.0} Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection$

OID:1.3.6.1.4.1.25623.1.0.117274

... continued from previous page ... Version used: 2024-09-27T05:05:23Z **Product Detection Result** Product: cpe:/a:ietf:transport_layer_security:1.0 Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782) References cve: CVE-2011-3389 cve: CVE-2015-0204 url: https://ssl-config.mozilla.org/ url: https://bettercrypto.org/ url: https://datatracker.ietf.org/doc/rfc8996/ url: https://vnhacker.blogspot.com/2011/09/beast.html url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters \hookrightarrow -report-2014 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K18/0799 cert-bund: CB-K16/1289 cert-bund: CB-K16/1096 cert-bund: CB-K15/1751 cert-bund: CB-K15/1266 cert-bund: CB-K15/0850 cert-bund: CB-K15/0764 cert-bund: CB-K15/0720 cert-bund: CB-K15/0548 cert-bund: CB-K15/0526 cert-bund: CB-K15/0509 cert-bund: CB-K15/0493 cert-bund: CB-K15/0384 cert-bund: CB-K15/0365 cert-bund: CB-K15/0364 cert-bund: CB-K15/0302 cert-bund: CB-K15/0192 cert-bund: CB-K15/0079 cert-bund: CB-K15/0016 cert-bund: CB-K14/1342 cert-bund: CB-K14/0231 cert-bund: CB-K13/0845 cert-bund: CB-K13/0796 cert-bund: CB-K13/0790

... continues on next page ...

dfn-cert: DFN-CERT-2020-0177 dfn-cert: DFN-CERT-2020-0111 dfn-cert: DFN-CERT-2019-0068 dfn-cert: DFN-CERT-2018-1441

```
... continued from previous page ...
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

[return to 192.168.68.90]

2.11.5 Medium 9000/tcp

```
Medium (CVSS: 4.3)
```

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

```
cpe:/a:ietf:transport_layer_security:1.0
```

Detected by SSL/TLS: Version Detection (0ID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.0

Method: SSL/TLS: Version Detection

OID: 1.3.6.1.4.1.25623.1.0.105782)

References

cve: CVE-2011-3389 cve: CVE-2015-0204

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

```
... continued from previous page ...
url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters
\hookrightarrow-report-2014
cert-bund: WID-SEC-2023-1435
cert-bund: CB-K18/0799
cert-bund: CB-K16/1289
cert-bund: CB-K16/1096
cert-bund: CB-K15/1751
cert-bund: CB-K15/1266
cert-bund: CB-K15/0850
cert-bund: CB-K15/0764
cert-bund: CB-K15/0720
cert-bund: CB-K15/0548
cert-bund: CB-K15/0526
cert-bund: CB-K15/0509
cert-bund: CB-K15/0493
cert-bund: CB-K15/0384
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
... continues on next page ...
```

dfn-cert: DFN-CERT-2011-1774

dfn-cert: DFN-CERT-2011-1743

dfn-cert: DFN-CERT-2011-1738

dfn-cert: DFN-CERT-2011-1706

dfn-cert: DFN-CERT-2011-1628

dfn-cert: DFN-CERT-2011-1627

dfn-cert: DFN-CERT-2011-1619

dfn-cert: DFN-CERT-2011-1619

[return to 192.168.68.90]

2.11.6 Low general/tcp

Low (CVSS: 26)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 19993762 Packet 2: 19994035

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091 Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.90]

2.11.7 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely

 \dots continues on next page \dots

- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514
cert-bund: CB-K14/0632
dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.90]

$2.12\quad 192.168.68.56$

Host scan start Mon Mar 3 15:59:07 2025 UTC Host scan end Mon Mar 3 16:37:45 2025 UTC

Service (Port)	Threat Level
$9000/\mathrm{tcp}$	Medium
$10101/\mathrm{tcp}$	Medium
8443/tcp	Medium
$10001/\mathrm{tcp}$	Medium
$8009/\mathrm{tcp}$	Medium
general/icmp	Low
general/tcp	Low

$\mathbf{2.12.1} \quad \mathbf{Medium} \ \mathbf{9000/tcp}$

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.0

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274

dfn-cert: DFN-CERT-2018-1441
...continues on next page ...

... continued from previous page ... Version used: 2024-09-27T05:05:23Z **Product Detection Result** Product: cpe:/a:ietf:transport_layer_security:1.0 Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782) References cve: CVE-2011-3389 cve: CVE-2015-0204 url: https://ssl-config.mozilla.org/ url: https://bettercrypto.org/ url: https://datatracker.ietf.org/doc/rfc8996/ url: https://vnhacker.blogspot.com/2011/09/beast.html url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters \hookrightarrow -report-2014 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K18/0799 cert-bund: CB-K16/1289 cert-bund: CB-K16/1096 cert-bund: CB-K15/1751 cert-bund: CB-K15/1266 cert-bund: CB-K15/0850 cert-bund: CB-K15/0764 cert-bund: CB-K15/0720 cert-bund: CB-K15/0548 cert-bund: CB-K15/0526 cert-bund: CB-K15/0509 cert-bund: CB-K15/0493 cert-bund: CB-K15/0384 cert-bund: CB-K15/0365 cert-bund: CB-K15/0364 cert-bund: CB-K15/0302 cert-bund: CB-K15/0192 cert-bund: CB-K15/0079 cert-bund: CB-K15/0016 cert-bund: CB-K14/1342 cert-bund: CB-K14/0231 cert-bund: CB-K13/0845 cert-bund: CB-K13/0796 cert-bund: CB-K13/0790 dfn-cert: DFN-CERT-2020-0177 dfn-cert: DFN-CERT-2020-0111 dfn-cert: DFN-CERT-2019-0068

```
... continued from previous page ...
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

[return to 192.168.68.56]

$\textbf{2.12.2} \quad \textbf{Medium } \textbf{10101/tcp}$

```
Medium (CVSS: 4.3)
```

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

```
cpe:/a:ietf:transport_layer_security:1.0
```

Detected by SSL/TLS: Version Detection (0ID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.0

Method: SSL/TLS: Version Detection

OID: 1.3.6.1.4.1.25623.1.0.105782)

References

cve: CVE-2011-3389 cve: CVE-2015-0204

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

```
... continued from previous page ...
url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters
\hookrightarrow-report-2014
cert-bund: WID-SEC-2023-1435
cert-bund: CB-K18/0799
cert-bund: CB-K16/1289
cert-bund: CB-K16/1096
cert-bund: CB-K15/1751
cert-bund: CB-K15/1266
cert-bund: CB-K15/0850
cert-bund: CB-K15/0764
cert-bund: CB-K15/0720
cert-bund: CB-K15/0548
cert-bund: CB-K15/0526
cert-bund: CB-K15/0509
cert-bund: CB-K15/0493
cert-bund: CB-K15/0384
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
... continues on next page ...
```

dfn-cert: DFN-CERT-2011-1774

dfn-cert: DFN-CERT-2011-1743

dfn-cert: DFN-CERT-2011-1738

dfn-cert: DFN-CERT-2011-1706

dfn-cert: DFN-CERT-2011-1628

dfn-cert: DFN-CERT-2011-1627

dfn-cert: DFN-CERT-2011-1619

dfn-cert: DFN-CERT-2011-1619

[return to 192.168.68.56]

2.12.3 Medium 8443/tcp

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.0

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.0

Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782)

References

cve: CVE-2011-3389
cve: CVE-2015-0204

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

 $\verb|url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters| \\$

 \hookrightarrow -report-2014

cert-bund: WID-SEC-2023-1435

cert-bund: CB-K18/0799 cert-bund: CB-K16/1289

cert-bund: CB-K16/1096

cert-bund: CB-K15/1751 cert-bund: CB-K15/1266

cert-bund: CB-K15/0850

cert-bund: CB-K15/0764 cert-bund: CB-K15/0720

cert-bund: CB-K15/0548

cert-bund: CB-K15/0526 cert-bund: CB-K15/0509

cert-bund: CB-K15/0493

cert-bund: CB-K15/0384

```
... continued from previous page ...
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

[return to 192.168.68.56]

2.12.4 Medium 10001/tcp

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

cpe:/a:ietf:transport_layer_security:1.0

Detected by SSL/TLS: Version Detection (OID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274

dfn-cert: DFN-CERT-2018-1441
...continues on next page ...

... continued from previous page ... Version used: 2024-09-27T05:05:23Z **Product Detection Result** Product: cpe:/a:ietf:transport_layer_security:1.0 Method: SSL/TLS: Version Detection OID: 1.3.6.1.4.1.25623.1.0.105782) References cve: CVE-2011-3389 cve: CVE-2015-0204 url: https://ssl-config.mozilla.org/ url: https://bettercrypto.org/ url: https://datatracker.ietf.org/doc/rfc8996/ url: https://vnhacker.blogspot.com/2011/09/beast.html url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters \hookrightarrow -report-2014 cert-bund: WID-SEC-2023-1435 cert-bund: CB-K18/0799 cert-bund: CB-K16/1289 cert-bund: CB-K16/1096 cert-bund: CB-K15/1751 cert-bund: CB-K15/1266 cert-bund: CB-K15/0850 cert-bund: CB-K15/0764 cert-bund: CB-K15/0720 cert-bund: CB-K15/0548 cert-bund: CB-K15/0526 cert-bund: CB-K15/0509 cert-bund: CB-K15/0493 cert-bund: CB-K15/0384 cert-bund: CB-K15/0365 cert-bund: CB-K15/0364 cert-bund: CB-K15/0302 cert-bund: CB-K15/0192 cert-bund: CB-K15/0079 cert-bund: CB-K15/0016 cert-bund: CB-K14/1342 cert-bund: CB-K14/0231 cert-bund: CB-K13/0845 cert-bund: CB-K13/0796 cert-bund: CB-K13/0790 dfn-cert: DFN-CERT-2020-0177 dfn-cert: DFN-CERT-2020-0111 dfn-cert: DFN-CERT-2019-0068

```
... continued from previous page ...
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1482
```

[return to 192.168.68.56]

$\mathbf{2.12.5}\quad \mathbf{Medium}\ 8009/\mathbf{tcp}$

```
Medium (CVSS: 4.3)
```

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Product detection result

```
cpe:/a:ietf:transport_layer_security:1.0
```

Detected by SSL/TLS: Version Detection (0ID: 1.3.6.1.4.1.25623.1.0.105782)

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection (QoD): 98%

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2024-09-27T05:05:23Z

Product Detection Result

Product: cpe:/a:ietf:transport_layer_security:1.0

Method: SSL/TLS: Version Detection

OID: 1.3.6.1.4.1.25623.1.0.105782)

References

cve: CVE-2011-3389 cve: CVE-2015-0204

url: https://ssl-config.mozilla.org/

url: https://bettercrypto.org/

url: https://datatracker.ietf.org/doc/rfc8996/

url: https://vnhacker.blogspot.com/2011/09/beast.html

url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak

```
... continued from previous page ...
url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters
\hookrightarrow-report-2014
cert-bund: WID-SEC-2023-1435
cert-bund: CB-K18/0799
cert-bund: CB-K16/1289
cert-bund: CB-K16/1096
cert-bund: CB-K15/1751
cert-bund: CB-K15/1266
cert-bund: CB-K15/0850
cert-bund: CB-K15/0764
cert-bund: CB-K15/0720
cert-bund: CB-K15/0548
cert-bund: CB-K15/0526
cert-bund: CB-K15/0509
cert-bund: CB-K15/0493
cert-bund: CB-K15/0384
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
... continues on next page ...
```

```
### dfn-cert: DFN-CERT-2011-1774

dfn-cert: DFN-CERT-2011-1743

dfn-cert: DFN-CERT-2011-1738

dfn-cert: DFN-CERT-2011-1706

dfn-cert: DFN-CERT-2011-1628

dfn-cert: DFN-CERT-2011-1627

dfn-cert: DFN-CERT-2011-1619

dfn-cert: DFN-CERT-2011-1619
```

[return to 192.168.68.56]

2.12.6 Low general/icmp

```
Low (CVSS: 2.1)
```

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.56]

2.12.7 Low general/tcp

Low (CVSS: 26)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements ${\tt RFC1323/RFC7323}$.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 19546011 Packet 2: 19546724

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323
url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.56]

2.13 192.168.68.58

Host scan start Mon Mar 3 15:59:07 2025 UTC Host scan end Mon Mar 3 16:38:48 2025 UTC

Service (Port)	Threat Level
$8443/\mathrm{tcp}$	Medium
$9000/\mathrm{tcp}$	Medium
$10001/\mathrm{tcp}$	Medium
general/tcp	Low
general/icmp	Low

2.13.1 Medium 8443/tcp

Medium (CVSS: 4.0)

NVT: SSL/TLS: Certificate Signed Using A Weak Signature Algorithm

Summary

The remote service is using a SSL/TLS certificate in the certificate chain that has been signed using a cryptographically weak hashing algorithm.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following certificates are part of the certificate chain but using insecure \hookrightarrow signature algorithms:

Subject: CN=AYF8GK FA8FCA80AD02,C=US,OU=Cast,ST=California,O=Google

 \hookrightarrow Inc,L=Mountain View

Signature Algorithm: sha1WithRSAEncryption

Solution:

Solution type: Mitigation

Servers that use SSL/TLS certificates signed with a weak SHA-1, MD5, MD4 or MD2 hashing algorithm will need to obtain new SHA-2 signed SSL/TLS certificates to avoid web browser SSL/TLS certificate warnings.

Vulnerability Insight

The following hashing algorithms used for signing SSL/TLS certificates are considered cryptographically weak and not secure enough for ongoing use:

- Secure Hash Algorithm 1 (SHA-1)
- Message Digest 5 (MD5)
- Message Digest 4 (MD4)
- Message Digest 2 (MD2)

Beginning as late as January 2017 and as early as June 2016, browser developers such as Microsoft and Google will begin warning users when visiting web sites that use SHA-1 signed Secure Socket Layer (SSL) certificates.

NOTE: The script preference allows to set one or more custom SHA-1 fingerprints of CA certificates which are trusted by this routine. The fingerprints needs to be passed comma-separated and case-insensitive:

Fingerprint1

or

fingerprint1, Fingerprint2

Vulnerability Detection Method

Check which hashing algorithm was used to sign the remote SSL/TLS certificate. Details: SSL/TLS: Certificate Signed Using A Weak Signature Algorithm

OID:1.3.6.1.4.1.25623.1.0.105880Version used: 2021-10-15T11:13:32Z

References

url: https://blog.mozilla.org/security/2014/09/23/phasing-out-certificates-with- \hookrightarrow sha-1-based-signature-algorithms/

2.13.2 Medium 9000/tcp

Medium (CVSS: 4.0)

NVT: SSL/TLS: Certificate Signed Using A Weak Signature Algorithm

Summary

The remote service is using a SSL/TLS certificate in the certificate chain that has been signed using a cryptographically weak hashing algorithm.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following certificates are part of the certificate chain but using insecure \hookrightarrow signature algorithms:

Subject: CN=AYF8GK FA8FCA80AD02,C=US,OU=Cast,ST=California,O=Google

 \hookrightarrow Inc,L=Mountain View

 ${\tt Signature\ Algorithm:\ sha1WithRSAEncryption}$

Solution:

Solution type: Mitigation

Servers that use SSL/TLS certificates signed with a weak SHA-1, MD5, MD4 or MD2 hashing algorithm will need to obtain new SHA-2 signed SSL/TLS certificates to avoid web browser SSL/TLS certificate warnings.

Vulnerability Insight

The following hashing algorithms used for signing SSL/TLS certificates are considered cryptographically weak and not secure enough for ongoing use:

- Secure Hash Algorithm 1 (SHA-1)
- Message Digest 5 (MD5)
- Message Digest 4 (MD4)
- Message Digest 2 (MD2)

Beginning as late as January 2017 and as early as June 2016, browser developers such as Microsoft and Google will begin warning users when visiting web sites that use SHA-1 signed Secure Socket Layer (SSL) certificates.

NOTE: The script preference allows to set one or more custom SHA-1 fingerprints of CA certificates which are trusted by this routine. The fingerprints needs to be passed comma-separated and case-insensitive:

Fingerprint 1

or

fingerprint1, Fingerprint2

Vulnerability Detection Method

Check which hashing algorithm was used to sign the remote SSL/TLS certificate. Details: SSL/TLS: Certificate Signed Using A Weak Signature Algorithm OID: 1.3.6.1.4.1.25623.1.0.105880

Version used: 2021-10-15T11:13:32Z

References

url: https://blog.mozilla.org/security/2014/09/23/phasing-out-certificates-with- \hookrightarrow sha-1-based-signature-algorithms/

[return to 192.168.68.58]

2.13.3 Medium 10001/tcp

Medium (CVSS: 4.0)

NVT: SSL/TLS: Certificate Signed Using A Weak Signature Algorithm

Summary

The remote service is using a SSL/TLS certificate in the certificate chain that has been signed using a cryptographically weak hashing algorithm.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following certificates are part of the certificate chain but using insecure \hookrightarrow signature algorithms:

Subject: CN=AYF8GK FA8FCA8OADO2,C=US,OU=Cast,ST=California,O=Google

 \hookrightarrow Inc,L=Mountain View

Signature Algorithm: sha1WithRSAEncryption

Solution:

Solution type: Mitigation

Servers that use SSL/TLS certificates signed with a weak SHA-1, MD5, MD4 or MD2 hashing algorithm will need to obtain new SHA-2 signed SSL/TLS certificates to avoid web browser SSL/TLS certificate warnings.

Vulnerability Insight

The following hashing algorithms used for signing SSL/TLS certificates are considered cryptographically weak and not secure enough for ongoing use:

- Secure Hash Algorithm 1 (SHA-1)
- Message Digest 5 (MD5)
- Message Digest 4 (MD4)
- Message Digest 2 (MD2)

Beginning as late as January 2017 and as early as June 2016, browser developers such as Microsoft and Google will begin warning users when visiting web sites that use SHA-1 signed Secure Socket Layer (SSL) certificates.

NOTE: The script preference allows to set one or more custom SHA-1 fingerprints of CA certificates which are trusted by this routine. The fingerprints needs to be passed comma-separated and case-insensitive:

Fingerprint1

or

fingerprint1, Fingerprint2

Vulnerability Detection Method

Check which hashing algorithm was used to sign the remote SSL/TLS certificate. Details: SSL/TLS: Certificate Signed Using A Weak Signature Algorithm

OID:1.3.6.1.4.1.25623.1.0.105880Version used: 2021-10-15T11:13:32Z

References

url: https://blog.mozilla.org/security/2014/09/23/phasing-out-certificates-with- \hookrightarrow sha-1-based-signature-algorithms/

[return to 192.168.68.58]

2.13.4 Low general/tcp

Low (CVSS: 26)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements ${\tt RFC1323/RFC7323}.$

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 2225203 Packet 2: 2225356

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091 Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.58]

2.13.5 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.58]

2.14 192.168.68.86

Host scan start Mon Mar 3 15:59:01 2025 UTC Host scan end Mon Mar 3 17:04:49 2025 UTC

Service (Port)	Threat Level
general/icmp	Low
general/tcp	Low

2.14.1 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

2.14.2 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 1056694786 Packet 2: 1056695677

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

 $\label{eq:Details: TCP Timestamps Information Disclosure} Details: \ \mbox{TCP Timestamps Information Disclosure}$

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323

 \dots continues on next page \dots

url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.86]

2.15 192.168.68.88

Host scan start Mon Mar 3 15:59:01 2025 UTC Host scan end Mon Mar 3 16:38:09 2025 UTC

Service (Port)	Threat Level
m general/tcp	Low
general/icmp	Low

2.15.1 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 3543957514 Packet 2: 3543960490

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091 Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.88]

2.15.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.88]

$2.16 \quad 192.168.68.82$

Host scan start Mon Mar 3 15:59:01 2025 UTC Host scan end Mon Mar 3 16:35:46 2025 UTC

Service (Port)	Threat Level
general/icmp	Low
general/tcp	Low

2.16.1 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

2.16.2 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 2831529 Packet 2: 2831642

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323

 \dots continues on next page \dots

url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.82]

$2.17\quad 192.168.68.81$

Host scan start Mon Mar 3 15:59:01 2025 UTC Host scan end Mon Mar 3 17:55:10 2025 UTC

Service (Port)	Threat Level
m general/tcp	Low
general/icmp	Low

2.17.1 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 244732848 Packet 2: 244733369

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091 Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.81]

2.17.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.81]

$2.18 \quad 192.168.68.102$

Host scan start Mon Mar 3 15:59:07 2025 UTC Host scan end Mon Mar 3 17:54:29 2025 UTC

Service (Port)	Threat Level
general/tcp	Low
general/icmp	Low

2.18.1 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 244741074 Packet 2: 244741541

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323
url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

 \hookrightarrow ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.102]

2.18.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514
cert-bund: CB-K14/0632
dfn-cert: DFN-CERT-2014-0658

din-cert. Drn-cent-2014-0056

[return to 192.168.68.102]

2.19 192.168.68.80

Host scan start Mon Mar 3 15:59:02 2025 UTC Host scan end Mon Mar 3 17:56:41 2025 UTC

Service (Port)	Threat Level
general/icmp	Low
general/tcp	Low

2.19.1 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely

- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514
cert-bund: CB-K14/0632
dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.80]

2.19.2 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 97897189 Packet 2: 97897335

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

${\bf Affected\ Software/OS}$

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID: 1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.80]

2.20 192.168.68.62

Host scan start Mon Mar 3 16:30:46 2025 UTC Host scan end Mon Mar 3 17:27:06 2025 UTC

Service (Port)	Threat Level
general/icmp	Low
m general/tcp	Low

2.20.1 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

2.20.2 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 2556717 Packet 2: 2556856

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323

url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.62]

2.21 192.168.68.91

Host scan start Mon Mar 3 16:37:46 2025 UTC Host scan end Mon Mar 3 17:17:22 2025 UTC

Service (Port)	Threat Level
general/tcp	Low
general/icmp	Low

2.21.1 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 1895991492 Packet 2: 1895991984

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091 Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.91]

2.21.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.91]

$2.22 \quad 192.168.68.54$

Host scan start Mon Mar 3 16:35:47 2025 UTC Host scan end Mon Mar 3 17:24:24 2025 UTC

Service (Port)	Threat Level
m general/tcp	Low
general/icmp	Low

2.22.1 Low general/tcp

151

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 808520387 Packet 2: 808521002

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323

url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

 \dots continues on next page \dots

⇔ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.54]

2.22.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514
cert-bund: CB-K14/0632
dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.54]

$2.23 \quad 192.168.68.75$

Host scan start Mon Mar 3 17:24:25 2025 UTC Host scan end Mon Mar 3 17:55:40 2025 UTC

Service (Port)	Threat Level
general/tcp	Low
general/icmp	Low

2.23.1 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 256980594 Packet 2: 256980717

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled'

 \dots continues on next page \dots

Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

 \hookrightarrow ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.75]

2.23.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0
- ... continues on next page ...

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792 url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632

dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.75]

2.24192.168.68.100

Host scan start Mon Mar 3 16:31:54 2025 UTC Host scan end Mon Mar 3 17:54:16 2025 UTC

Service (Port)	Threat Level
m general/tcp	Low
general/icmp	Low

2.24.1 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

156

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 3486764017 Packet 2: 3486765110

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

```
url: https://datatracker.ietf.org/doc/html/rfc1323
url: https://datatracker.ietf.org/doc/html/rfc7323
```

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

 \hookrightarrow ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.100]

2.24.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514
cert-bund: CB-K14/0632
dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.100]

$2.25 \quad 192.168.68.98$

Host scan start Mon Mar 3 16:38:12 2025 UTC Host scan end Mon Mar 3 17:27:23 2025 UTC

Service (Port)	Threat Level
m general/tcp	Low
general/icmp	Low

2.25.1 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 7084735 Packet 2: 7085081

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled'

 \dots continues on next page \dots

Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

 \hookrightarrow ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.98]

2.25.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0
- ... continues on next page ...

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514
cert-bund: CB-K14/0632
dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.98]

$2.26 \quad 192.168.68.70$

Host scan start Mon Mar 3 17:17:43 2025 UTC Host scan end Mon Mar 3 18:00:55 2025 UTC

Service (Port)	Threat Level
general/tcp	Low
general/icmp	Low

2.26.1 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

161

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 98353043 Packet 2: 98353157

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323

url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

 \dots continues on next page \dots

⇔ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.70]

2.26.2 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514
cert-bund: CB-K14/0632
dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.70]

$2.27 \quad 192.168.68.60$

Host scan start Mon Mar 3 17:39:23 2025 UTC Host scan end Mon Mar 3 18:00:19 2025 UTC

Service (Port)	Threat Level
m general/icmp	Low
m general/tcp	Low

2.27.1 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely

- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.60]

2.27.2 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 257482017 Packet 2: 257482187

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

${\bf Affected\ Software/OS}$

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID: 1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.60]

2.28 192.168.68.84

Host scan start Mon Mar 3 15:59:01 2025 UTC Host scan end Mon Mar 3 17:38:46 2025 UTC

Service (Port)	Threat Level
general/icmp	Low
general/tcp	Low

2.28.1 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

2.28.2 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

167

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 330544696 Packet 2: 330545780

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323

url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.84]

2.29 192.168.68.72

Host scan start Mon Mar 3 17:39:04 2025 UTC Host scan end Mon Mar 3 17:59:22 2025 UTC

Service (Port)	Threat Level
m general/tcp	Low

2.29.1 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 309998354 Packet 2: 3659291033

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 192.168.68.72]

2.30 192.168.68.97

Host scan start Mon Mar 3 15:59:04 2025 UTC Host scan end Mon Mar 3 17:56:35 2025 UTC

Service (Port)	Threat Level
general/icmp	Low

2.30.1 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection (QoD): 80%

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2025-01-21T05:37:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 192.168.68.97]

This file was automatically generated.