Solar Array Drive Assembly for LUMIO

© 2015-2020 V. Franzese, C. Giordano, F. Topputo, Politecnico di Milano. All rights reserved.

This teaching note was prepared by V. Franzese, C. Giordano, F. Topputo.

No part of this material may be reproduced, used, or transmitted in any form by any means without permission.

Modeling and Simulation of Aerospace Systems AY 2020-2021

LUMIO Mission

The **Lunar Meteoroid Impact Observer (LUMIO)** is a CubeSat mission to observe, quantify, and characterise the meteoroid impacts by detecting their flashes on the lunar far-side. LUMIO is one of the two **winners of ESA's LUCE** (Lunar CubeSat for Exploration) **SysNova competition**, and as such it is being considered by ESA for implementation in the near future.

LUMIO Mission logo

LUMIO Mission Profile

LUMIO Operative Orbit Sketch

LUMIO Operative Orbit

EM L₂ Halo orbit

a) Lateral view (x,z)

b) Front view (y,z)

LUMIO Platform and ConOps

LUMIO CubeSat	
Dimension	12 U
Mass	< 28 kg
Launch Date	2023-2024
Mission Lifetime	1.5 years
Mission Objective	Lunar Meteoroid Impacts Detection

E-M L2 Halo orbit ConOps

LUMIO Pointing Profile

Max power generated when solar panels are orthogonal to the Sun direction

Electro-mechanical system

KVL for each phase

$$v_i - R_i i_i - L_i \frac{\mathrm{d}i_i}{\mathrm{d}t} + e_i = 0$$

Faraday's law:

$$e_i = -\frac{\mathrm{d}\phi_i}{\mathrm{d}t}$$

Flux

$$\phi_A = \Phi \cos(p\theta)$$
$$\phi_B = \Phi \sin(p\theta)$$

Note that:

Total torque is given by the **sum of the torque** of each phase:

$$\tau = \tau_A + \tau_B$$

There is a **reduction gear**:

$$\theta_{motor} = \frac{1}{r}\theta_{panel}$$

- Rotation cannot be continuous (It's a stepper motor!)
- Solar panel can be modeled as a plate

Thermal system

Note that:

- You need to have at least 10 nodes
- Thermal properties can be deducted from LUMIO data