

## 深度学习体系结构 (实验)

实验四基于脉动阵列的CNN加速器设计

## ||实验目的

- 了解脉动阵列的基本原理,熟悉脉动阵列的基本结构
- 掌握脉动阵列的HLS实现方法,掌握如何利用脉动阵列加速矩阵乘法和卷积运算
- 进一步熟悉使用HLS搭建硬件加速系统的方法和流程

## 实验内容

- 使用HLS编写脉动阵列,并对编写的代码进行CSim、综合并打包成IP核
- 构建Block Design电路图,生成并导出Overlay
- 对脉动阵列IP核进行GEMM测试
- 使用HLS Directive优化脉动阵列,并运行卷积、CNN测试



#### 实验原理 — 脉动阵列简介

## Systolic Array

- 1982年由H. T. Kung提出,最初用于解决VLSI片上通信的性能瓶颈问题
  - —— domain-specific架构的典型例子
- □ 设计专用系统需要考虑的3个因素:
  - □ 出于成本考虑 —— 简单性和规律性
  - □ 出于性能考虑 —— **并行和通信、平衡计算和I/O**

## ||实验原理 — 脉动阵列结构

- 由许多PE按照特定规律连接起来的流水式同构多处理器架构
  - □ 每个PE仅与相邻的PE进行连接



- □ 简单性和规律性: 一种PE、连接规律
- □ 并行和通信: 无相关流水、最简通信 (所有PE仅与相邻PE通信)

#### ||实验原理 — 脉动阵列结构

□ 平衡计算与I/O —— 解决或缓解I/O带来的性能瓶颈问题



- □ I/O带宽不变, 计算能力翻倍
  - ◆ PE再多,带宽都不变,因此<u>只适合对**带宽要求较低**,并且**运算具有规律性的** 计算密集型应用</u>



## 实验原理 — 脉动阵列工作原理

#### "脉动"的阵列

- 数据在时钟的驱动下,像脉搏—般在阵列中向前跳动
- 设计和使用脉动阵列需要考虑的关键问题
  - □ PE实现什么运算?
  - □ 数据如何传递?



## II 实验原理 — 脉动阵列计算GEMM

□ 设有矩阵 $A_{3\times3}$ 、 $B_{3\times4}$ , 计算矩阵 $C = A \times B$ :

$$m{A} = egin{bmatrix} a_{00} & a_{01} & a_{02} \ a_{10} & a_{11} & a_{12} \ a_{20} & a_{21} & a_{22} \end{bmatrix}, m{B} = egin{bmatrix} b_{00} & b_{01} & b_{02} & b_{03} \ b_{10} & b_{11} & b_{12} & b_{13} \ b_{20} & b_{21} & b_{22} & b_{23} \end{bmatrix}$$

#### □矩阵乘法分析:

- ◆ 带宽要求较低? ─ 数据可重复使用
- →运算有规律性? 核心运算: MAC



## ■实验原理 — 脉动阵列计算GEMM

#### 脉动阵列的设置

- PE存储计算结果
- $A_{3\times3}$ 矩阵从左流入,  $B_{3\times4}$ 矩阵从上流入

| <b>(5)</b> | 4                      | 3        | 2        | 1        |
|------------|------------------------|----------|----------|----------|
|            |                        | $a_{02}$ | $a_{01}$ | $a_{00}$ |
|            |                        |          |          |          |
|            | <i>a</i> <sub>12</sub> | $a_{11}$ | $a_{10}$ |          |
| a          | a                      | a        |          |          |
| $a_{22}$   | <i>a</i> <sub>21</sub> | $a_{20}$ |          |          |

| <u></u>                                    |          |          | $b_{23}$ |
|--------------------------------------------|----------|----------|----------|
| <u>(J)</u>                                 |          | $b_{22}$ | $b_{13}$ |
| 4                                          | $b_{21}$ | $b_{12}$ | $b_{03}$ |
| <u></u>                                    | $b_{11}$ | $b_{02}$ |          |
| <b>№</b> <i>b</i> <sub>10</sub>            | $b_{01}$ |          |          |
| $rac{rac{rac{rac{rac{rac{rac{rac{rac{rac{$ |          |          |          |



## ■实验原理 — 脉动阵列计算GEMM

#### 第1拍

 $a_{00}$ 、 $b_{00}$ 流入阵列,开始计算 $c_{00}$ :  $c_{00} += a_{00} \times b_{00}$ 

| <u></u>                         |          |          | $b_{23}$               |
|---------------------------------|----------|----------|------------------------|
| <u> </u>                        |          | $b_{22}$ | <i>b</i> <sub>13</sub> |
| 4                               | $b_{21}$ | $b_{12}$ | $b_{03}$               |
|                                 | $b_{11}$ | $b_{02}$ |                        |
| <b>№</b> <i>b</i> <sub>10</sub> | $b_{01}$ |          |                        |





## 『实验原理 — 脉动阵列计算GEMM

#### 第2拍

 $a_{01}$ 、 $a_{10}$  、 $b_{10}$  、 $b_{01}$ 流入阵列, 开始计算 $c_{01}$ 、 $c_{10}$ ,继续计算 $c_{00}$ :

$$c_{00} += a_{01} \times b_{10}$$
  
 $c_{01} += a_{00} \times b_{01}$   
 $c_{10} += a_{10} \times b_{00}$ 







## II 实验原理 — 脉动阵列计算GEMM

#### 第3拍

■ 数据继续流入阵列,开始计算

$$c_{02}$$
、 $c_{11}$ 、 $c_{20}$ ,继续计算 $c_{01}$ 、 $c_{10}$ , $c_{00}$ 计算完成:

(5)

 $a_{22}$ 

4

$$c_{00} += a_{02} \times b_{20}$$

$$c_{01} += a_{01} \times b_{11}$$

$$c_{10} += a_{11} \times b_{10}$$

$$c_{02} += a_{00} \times b_{02}$$

$$c_{11} += a_{10} \times b_{01}$$

$$c_{20} += a_{20} \times b_{00}$$





#### ||实验原理 — 脉动阵列计算卷积

- 三维卷积
- 输入特征图有3通道,卷积核有2个



- for (m = 0; m < OUT CH; m++)for  $(r = 0; r < OUT_ROW; r++)$ for (c = 0; c < OUT COL; c++)for  $(n = 0; n < IN_CH; n++)$ for  $(y = 0; y < KERN_R; y++)$ for  $(x = 0; x < KERN_C; x++)$ out(m, r, c) += in(n, r\*S+y, c\*S+x)\*w(m, n, y, x);
  - 如何用脉动阵列实现?
    - ◆ 维度不同
    - ◆算法操作复杂



## 实验原理 — 脉动阵列计算卷积

#### 卷积降维: im2col

■ 将3维特征图和卷积核展开成2维

|   | 1 | 2 |          | 0   |  |
|---|---|---|----------|-----|--|
| 0 | - | 2 |          | 1   |  |
| 3 | 4 | 5 | im2col > | · · |  |
| 6 | 7 | 8 |          | 3   |  |
|   |   |   |          | 4   |  |

|   |   |   |        | 0 | 1 | 3 |
|---|---|---|--------|---|---|---|
| 0 | 1 | 2 |        | 1 | 2 | 4 |
| 3 | 4 | 5 | im2col |   |   |   |
| 6 | 7 | 8 |        | 3 | 4 | 6 |
| 0 | 1 | O |        | 4 | 5 | 7 |
|   |   |   |        |   | - |   |

|   | 4 | 2 |          | O | 1 |
|---|---|---|----------|---|---|
| 0 | 1 |   |          | 1 | 2 |
| 3 | 4 | 5 | im2col > |   |   |
|   |   | ) | 11112001 | 3 | 4 |
| 6 | 7 | 8 | V        |   |   |
|   | ı |   |          | 4 | 5 |
|   |   |   |          | • |   |





## 实验原理 — 脉动阵列计算卷积

#### 卷积的计算方法

- 先降维,再输入脉动阵列



#### 方法1:

- 卷积核存储在PE中
- 输入特征图向右流动
- 卷积中间结果向下流动

#### 方法2:

- 当成矩阵乘法处理
- 卷积中间结果存储在PE中
- ▶ 卷积核向右流动
- 輸入特征图向下流动



## |||实验步骤

- 1. 使用HLS编写脉动阵列IP核
- 2. 构建Overlay
- 3. GEMM测试
- 4. HLS优化
- 5. 运行卷积测试
- 6. 运行CNN



## 验收与提交

验收内容

| 序号 | 验收项目     | 分值         |                        |
|----|----------|------------|------------------------|
| 1  | 通过CSim   | <b>1</b> 分 |                        |
| 2  | 通过GEMM测试 | <b>1</b> 分 |                        |
| 3  | HLS优化效果  | <b>2</b> 分 | 加速比≥130得1分;<br>≥250得2分 |
| 4  | 通过卷积测试   | <b>1</b> 分 | <b>→ 230 (寸2</b> 万)    |
| 5  | 成功运行CNN  | <b>2</b> 分 |                        |

■ 将<u>源码、运行结果、实验报告</u>打包提交(9分)

□ 命名规则: 学号\_姓名\_DLA实验4.zip

□ 提交方法: https://hitsz-cslab.gitee.io/dla/ojguide

□ DDL: 下周同一上课时间前



# 开始实验