BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-191887

(43) Date of publication of application: 12.07.1994

(51)Int.CI.

C03C 10/04 CO4B 35/16 H03H 9/02

(21)Application number: 05-147184

(71)Applicant: NEC KANSAI LTD

(22)Date of filing:

18.06.1993

(72)Inventor: GOTO YOSHIHIRO

MIKAZUKI YOSHINOBU MORIZAKI YASUTOSHI

(30)Priority

Priority number: 04291108

Priority date : 29.10.1992

Priority country: JP

(54) GLASS-CERAMIC COMPOSITE AND FLAT PACKAGE-TYPE PIEZOELECTRIC PARTS USING THE **COMPOSITE**

(57)Abstract:

PURPOSE: To fix piezoelectric parts such as a quartz plate directly to a package and to reduce the fluctuation of resonance frequency by using the composite obtained by dispersing a specified amt. of forsterite in a glass having a specified thermal expansion coefficient as the package material.

CONSTITUTION: A glass-ceramic composite obtained by dispersing 30-70wt% of forsterite in a glass having $100-150 \times 10-7$ thermal expansion coefficient is used for a package. A sintered package member 1 and a cap member 3, for example, are obtained from a from powder mixture of the glass contg. 50-70% SiO2, 2-15% Al2O3, 5-30% RO (R is ≥1 kind among Ca, Sr and Ba), 1-8% B2O3, 2-15% ZnO and 5-30% R2O (R is ≥1 kind among Na, K and Li) and forsterite. A glass sealing part 4 is formed in the member 1, an electrode pad 80 on the member 1 and the electrode lead 7 of a quartz crystal piece 2 are bound together with a conductive adhesive and then sealed with the member 3, and a package 50 for the crystal resonator is completed.

LEGAL STATUS

[Date of request for examination]

25.10.1994

[Date of sending the examiner's decision of rejection]

03.09.1996

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

2822846

[Date of registration]

04.09.1998

[Number of appeal against examiner's decision of

08-17147

rejection]

[Date of requesting appeal against examiner's decision of 03.10.1996

rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平6-191887

(43)公開日 平成6年(1994)7月12日

(51) Int. C1. 5 識別記号 庁内整理番号 FΙ 技術表示箇所

C 0 3 C 10/04

C 0 4 B 35/16 Z 8924-4G

H03H 9/02 7719-5 J

審査請求 未請求 請求項の数5

(全6頁)

(21)出願番号

特願平5-147184

(22)出願日

平成5年(1993)6月18日

(31)優先権主張番号 特願平4-291108

(32)優先日

平4(1992)10月29日

(33)優先権主張国

日本 (JP)

(71)出願人 000156950

関西日本電気株式会社

滋賀県大津市晴嵐2丁目9番1号

(72)発明者 後藤 芳宏

滋賀県大津市晴嵐2丁目9番1号関西日本電

気株式会社内

(72)発明者 三ケ月 義信

滋賀県大津市晴嵐2丁目9番1号関西日本電

気株式会社内

(72)発明者 森崎 康年

滋賀県大津市晴嵐2丁目9番1号関西日本電

気株式会社内

(54)【発明の名称】ガラスーセラミック複合体およびそれを用いたフラットパッケージ型圧電部品

(57)【要約】

【目的】 表面実装型の水晶振動子等圧電部品用パッケ ージにおいて、水晶片の封止時や半田リフロー時の共振 特性の変動を小さくする。

【構成】 熱膨張率が水晶片2のそれに近いガラス材料 とセラミック材料を組み合わせる。前記材料を平均粒径 1~3μmに微粉化したものを混合するとともに核発生 剤(ZrO₂, TiO₂, P₂O₅, SnO₂, MoO з)の微粉を微量添加し、焼成時に一部結晶化させ、抗 折強度として十分な強さを確保する。

【効果】 本発明の構成からなるパッケージ50に水晶 片2を組込み封止後加熱処理しても、その共振特性の変 動が従来のセラミックパッケージに比較して大幅に抑え られる。

【特許請求の範囲】

【請求項1】熱膨張係数が100~150X10⁻⁷のガ ラス中にフォルステライト(2MgO・SiO2)を3 0~70重量%分散させたことを特徴とするガラスーセ ラミック複合体。

【請求項2】前記ガラスは重量%表示で、SiO250 ~70%, Al₂O₃ 2~15%, RO (ただしRはC a, Sr, Baから選ばれる1種類以上とする) 5~3 0%, $B_2 O_3 1 \sim 8\%$, $Z n O 2 \sim 15\%$, $R_2 O$ (ただしRはNa, KおよびLiから選ばれる1種類以 10 れない。 上とする) 5~30%の組成物からなる請求項1記載の ガラスーセラミック複合体。

【請求項3】前記ガラスおよびセラミックにZrO₂, TiO_2 , SnO_2 , P_2O_5 , MoO_3 のうち少なく とも1種類以上からなる微粉末(粒径0.1~1μm) を、O. 2~5wt%添加させて焼成することを特徴と するガラスーセラミック複合体。

【請求項4】前記ガラスおよびセラミックは平均粒径1 ~3μmに粉砕されたものが混合されていることを特徴 とするガラスーセラミック複合体。

【請求項5】 両面に電極リード部を配線した水晶等の圧 電素子と、前記圧電素子に電気的かつ機械的に接続され る一対の電極パッド部を有するベース部材と、キャップ 部材を備え、前記ベース部材及びキャップ部材を請求項 1,2,3,4に記載するガラスーセラミック複合体を 用いて形成されることを特徴とするフラットパッケージ 型圧電部品。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は信頼性の高い水晶振動子 30 やSAW共振子等の圧電部品用の面実装用フラットパッ ケージに関するものである。

[0002]

【従来の技術】水晶振動子等のデバイスを面実装部品と して使用する場合、図4に示すようにアルミナを主材料 とするベース部材1に水晶片2を固着したのちアルミナ を主材とするキャップ部材3をかぶせ、低融点のガラス 封止部4で気密封止して使用している。封止されたパッ ケージ5は回路基板上に半田リフロー法等で実装され る。パッケージを封止する際や、回路基板に実装する際 40 には、パッケージは加熱されるが、パッケージ5と水晶 片2の熱膨張率が異なるため、加熱冷却後に水晶片2に 応力歪が発生する。そのため水晶片2の共振周波数が変 動し、目的とする周波数特性が得られない。その対策と して、例えば「ELECTRONICS UPDAT E」(1990年第4号P. 83~P. 88)に述べら れている前記図4の構造のようにベース部材1に水晶片 2をばね性のサポータ6を介して固着したのち気密封止 して使用している。

710号公報に述べられているように、水晶片2の電極 リード部7を水晶片2の同じ端部に導き、水晶片2を直 接ベース部材1上にサポータを介さずに電極パッド部8 に固着する方法も提案されている。

[0004]

【発明が解決しようとする課題】ところが、このような 水晶振動子では、パッケージ5と水晶片2の熱膨張率が ことなるので、加熱冷却後に、応力歪が発生し水晶振動 子の共振周波数が変動し、目的とする周波数特性が得ら

【0005】また、前記課題を解決するために、水晶片 2をばね性のサポータ6を介してパッケージ5に接続す る場合、製造コストが高くなる、またパッケージ5が厚 くなる等の問題がある。

【0006】さらに、パッケージ5の主材料であるアル ミナ (A 1₂ O₃) は焼結温度が1500~1600℃ であり、パッケージ5内部の配線導体を同時焼成する場 合、導体としてタングステン(W), モリブデン(M) o) 等の高融点金属を使用する必要がある。これら高融 20 点金属は電気電導率が低くまた半田付けができないの で、ニッケル (Ni) メッキ, および金 (Au) メッキ を施す必要がある。そのため製造時に、工数、コストと も多大なものとなっていた。

[0007]

【課題を解決するための手段】本発明では、水晶板等圧 電部品の熱膨張率に近いパッケージ材料を選択し、水晶 板等圧電部品をサポート部材を介さずに直接パッケージ に固着することを特徴とする。そのためにパッケージ材 料として、熱膨張係数が100~150×10⁻⁷のガラ スにフォルステライトを30~70重量%分散したガラ スーセラミック混合体を使用する。ガラス組成は、Si $O_2 \implies 50 \sim 70 \text{ w t \%}, Al_2 O_3 2 \sim 15 \text{ w t \%},$ ZnO2~15wt%, RO (RはCa, Sr, Baの 1種類以上) 5~30wt%, B₂O₃1~8wt%, R₂ O (RはNa, K, Liの1種以上5~30wt %)とする。また抗折強度を必要な強度に改善するた め、ガラスおよびセラミックを平均粒径1~3μmまで 充分微粉化したものを使用するとともにさらに抗折強度 を改善するためにZrO₂, TiO₂, SnO₂, P₂ O₅ , MoO₃ の1種類以上を0. 2~5wt%を混合 させて、焼成時にガラスを結晶化させて抗折強度を向上 する。

[0008]

【作用】上記構成により、パッケージ材料と、水晶板等 圧電部品の熱膨張率が整合し、加熱冷却後に水晶振動子 等圧電部品の残留歪が低減され、共振周波数の変動が抑 えられる。また、抗折強度も十分になる。

【0009】パッケージの焼成が低下でき、内部導体を 同時焼成する場合、Ag, Ag/Pd, Ag/Au等の 【0003】あるいは、図5のごとく特開平2-105 50 低融点金属を使用できる。またこれらの金属材料は、電 気伝導率を高く、かつ比率を選択することにより、半田 付けが可能なためメッキ工程を必要としない。

【0010】よって、水晶振動子の周波数特性の変動が少なく、従来よりも厚さの薄い高信頼なパッケージを供給することが可能になる。さらに製造コストが低減し、製造工期も短縮される。

* [0011]

【実施例】以下、本発明について実施例に基づいて表 1,表2と図1を用いて詳細に説明する。

[0012]

【表1】

ns. ໝ ີ						*	ro.	വ	1.0	001	!	0
18					·		34.5	64.5			_	2410
17	0 9	8	4	2	1.4		84.5	34.5	1.0	701		2210
16						,	49.0	49.0	2.0	101		2520
3						1 7	49.5	49.5	1.0	104		3050
15		4	5	0.5	7	13.5	50	50	0	108		1850
14							34.5	64.5	1.0	100		2550
13							64.5	84.5	1.0	105		2380
12							49.0	49.0	2.0	97		2700
2	7.0						49.5	49.5	1.0	100		3100
11		හ	-			-	20	50	0	103		1950
10							84.5	64.5	. 1.0	108		2800
8				0	1.1		64.5	34.5	1.0	129		2500
8							49.0	49.0	2.0	115		2900
1	63					22	49.5	49.5	1.0	118		3200
7							20	20	0	120		1800
<u> </u>	SiOs	Als Os	2n0	B ₂ O ₃	RO	R, O	ガラス	7 48,2754	ZrOe	※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※	50~500°C	抗折強度 kg/cm²
展	ガラス成分 (職員%)						横成比 (重盘%)			特性值		

[0013]

	5											6
30							34.5	84.5	1.0	108		2750
29	50	1 ភ			12		64.5	34.5	1.0	128		2420
28							49.0	49.0	2.0	117		2350
9			٥	0		23	49.5	49.5	1.0	119		3050
27	១១	8					20	20	0	120		1650
26							34.5	64.5	1.0	112		2450
25				0	1 0	27	64.5	34.5	1.0	135	-	2300
24							49.0	49.0	2.0	120		2600
D			വ				49.5	48.5	1.0	121		2800
23		8					20	20	0	123		1600
22							34.5	64.5	1.0	105	,	2730
2 1	20		υ Ω	0	25	1.7	64.5	34.5	1.0	128		2550
20							49.0	48.0	2.0	115		3000
4							49.5	48.5	1.0	,116		3150
19			1 1 1 1 1 1				20	20	0	118		1800
- 6M	SiO2	A 1 2 03	Z n O	B. O.	RO	R ₂ O	ガラス	ንታሴኢዮኃብኑ	Sn Oz	蒸販船路 ×10-1∕	50~500°C	抗折強度 kg/cm²
実施	ガラス成分(重量%)						構成比 (重量%)			特性值		

【0014】表1,表2のガラス組成において、ROは CaO, SrO, BaOから選ばれる1種類以上の酸化 物であり、R2 OはNa2 O, K2 O, LiO2 から選 ばれる1種類以上の酸化物である。.

【0015】まず、表1に示すガラス, セラミックおよ び添加物 (ジルコニア) を湿式ボールミルで粉砕混合を 行い、乾燥、らいかい後、粉末成形プレスをおこない、

折強度、熱膨張率を測定した。それらの結果を表1,表 2中に示す。これにより、本発明に示すガラスおよびフ オルステライトを微粉化し混合したものは熱膨張率が役 100~140×10⁻⁷/℃と大きく、さらにジルコニ アを混合したものは抗折強度が2200kg/cm²以 上となり、組成によっては3000kg/cm²以上に も改善されることがわかった。ジルコニアを添加し焼成 ・800℃~1000℃で焼成した後直方体に切断し、抗 50 したものは示差熱分析およびX線回折の結果、部分的に

結晶化していることが確認された。ジルコニアは核発生 剤として作用しているものと考えられる。

【0016】次に、水晶振動子用パッケージの特性を調査するために、表1中の実施例1に示す原料粉末を使用して以下に述べる製造工程に従って、図1に示す構造のパッケージを作成した。

- (a) 前記材料とバインダ、溶剤を混合し、スラリーを 製造して、ドクターブレード法により厚さ100~30 0μmのグリーンシートを作成する。(b) 前記グリー ンシートにスルーホールを形成し、Agペーストをスク 10 リーン印刷しスルーホールを充填するとともに内部導体 部を形成する。
- (c) 別のグリーンシートにAg/Pdペーストをスクリーン印刷し、外部取出し電極部を形成する。
- (d)別のグリーンシートに水晶振動子のキャビティ用 の穴を打ち抜く。
- (e) 前記(a)~(c)のグリーンシートおよびダミーのグリーンシートを積層し100℃で100~200kg/cm²の圧力でホットプレスする。
- (f) 前記積層体を脱バインダーし、800℃~100 20 0℃で焼成する。 *

*(g)焼成された積層体を切断し、図1に示すパッケージのベース部材1を得る。

- (h) ベース部材1と同じ混合粉末を用いてパッケージのキャップ部材3を粉末プレスにより形成し、800℃ ~1000℃で焼成しキャップ部材3を得る。
- (i)前記ベース部材1に予め低融点のガラス封止部4を形成しておき、図1に示す構成で前記ベース部材1上の電極パッド部80と水晶片2の電極リード部7を導電性接着剤で固着した後、前記キャップ部材3で封止し、水晶振動子用パッケージ50を完成する。

【0017】完成した水晶振動子の共振周波数の熱処理温度依存性を従来品と比較して調査した。水晶振動子を40個作成し、まず室温にてそれぞれの共振周波数(f0)をスペクトラムアナライザーで測定した。次に核100をそれぞれ、100C, 200C, 300C, 400 Cで約30分加熱処理し、室温まで冷却し、熱処理後の共振周波数(f(T))を測定し、式1に従い Δf /f0を求めた。

[0018]

【式1】

$$\frac{\Delta f}{f O} = \frac{f (T) - f O}{f O}$$
 $\left(\frac{\text{熱処理後の共振周波数-熱処理前の共振周波数}}{\text{熱処理前の共振周波数}}\right)$

【0019】測定結果を図3に示す。図3中には前記図4に示すアルミナを主材とする従来タイプのパッケージで封止された水晶振動子の結果も併せて示した。これによれば、熱処理による共振周波数の変動は従来タイプに比較し約1/4倍に抑えられていることが分かる。

【0020】次に表1,表2に示す実施例2,実施例3,実施例4,実施例5および実施例6に示す原料粉末を使用して、実施例1で述べた手順に従い、水晶振動子用パッケージ50を試作し水晶片2を組み込んで完成した水晶振動子の共振周波数の熱処理温度依存性を従来品と比較して調査したところ図3に示す実施例1とほぼ同様な結果が得られた。

【0021】また表1の実施例1に示す原料粉末を使用して前記手順に従い、図2に示す構造の水晶発振器用パッケージ10を作成した。パッケージ10に発振回路用 40 IC9と水晶片2を組み込んで完成した水晶発振器の発振周波数の熱処理温度依存性を従来品と比較して調査したところ、図3に示す実施例1と同様な結果が得られた。 なお、前記実施例で使用したジルコニア(ZrO2)の微粉末の他にTiO2,SnO2,P2O6,M00。などの微粉末を単独またはこれらを混合して使用しても前記と同様の効果が得られる。

[0022]

【発明の効果】水晶発振子等圧電部品の熱膨張率とパッケージの熱膨張率が整合するため、パッケージに封止

時、及び封止後の熱処理により水晶振動子等の周波数特性が変動しにくくなり、高信頼な水晶振動子等の表面実 装型圧電部品を得ることができる。また、コストも低下 する。

30 【0023】また、本発明は水晶振動子に限らずSAW 共振子など圧電部品の面実装用フラットパッケージにも 広く応用できる。

【0024】また、熱処理時の応力歪を吸収するための ばね性のサポート部材が不要になるので厚さの薄いパッ ケージを作ることができる。

【0025】さらに、パッケージの焼成温度を低減でき、製造コストを低減できる。また、外部電極取出し部にメッキをする必要がないので製造工数も短縮できる。

【図面の簡単な説明】

【図1】 本発明の一実施例であるガラスーセラミック パッケージを用いた水晶振動子の分解斜視図

【図2】 本発明の一実施例であるガラスーセラミック パッケージを用いた水晶発振器の分解斜視図

【図3】 本発明の一実施例であるガラスーセラミック パッケージを使用した水晶振動子の共振周波数の熱処理 温度影響度を示す図

【図4】 従来のセラミックパッケージを用いた水晶振 動子の分解斜視図

【図5】 従来のセラミックパッケージを用いた他の水 晶振動子の分解斜視図 【符号の説明】

- 1 ベース部材
- 2 水晶片
- 3 キャップ部材
- 4 ガラス封止部
- 50 水晶振動子用パッケージ

6 サポータ

- 7 電極リード部
- 80 電極パッド部
- 9 発振回路用 I C
- 10 水晶発振器用パッケージ

10