НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ"

MOSCOW AVIATION INSTITUTE SPACE ASSOCIATION (MAISA)

ОТЧЕТ

О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

по теме:

PERSEVERANCE MARS-2020

Москва

Список исполнителей

Тимлид команды		Гиголаев А.А.	
Физик		Евсеев Ю.В.	
Программист		Мирошников Д.Е.	
Программист		Калиниченко А.А.	
Программист		Беспалов А М	

Реферат

Страниц -12, книг отчета -1, иллюстраций -4, таблиц -1, использованные источники -1.

СИМУЛЯЦИЯ ПОЛЕТА НА МАРС, МАТЕМАТИЧЕСКИЕ МОДЕЛИ, ФИЗИЧЕСКИЕ МОДЕЛИ, ПОСТРОЕНИЕ ГРАФИКОВ, МЕЖОРИТАЛЬНЫЕ ПОЛЕТЫ, ГРАВИТАЦИОННЫЕ ВЗАИМОДЕЙСТВИЯ

Объектом исследования является марсоход «Perseverance», а также космический корабль «Atlas V», предназначенный для его доставки на поверхность Марса.

Цель работы – разработка математической и физической модели и проведение симуляции исторической миссии «МАРС 2020».

В процессе работы проводилось детальное изучение информации о конструкции корабля и марсохода.

В результате исследования были составлены математические модели, на основе реальных данных, был построен прототип корабля в системе KSP и проведен пилотируемый полет к Марсу.

Основные конструктивные показатели: высокая схожесть с реальным космическим аппаратом.

Содержание

Список исполнителей	. 2
Реферат	. 3
Гермины и определения	
Введение	
Основная часть	. 8
1 этап. Разработка математической модели	. 8
2 этап. Построение графиков с помощью ЯП.	13
3 этап. Сравнение данных	16
Заключение	17
Список использованных источников	18

Термины и определения

В настоящем отчете о научно-исследовательской работе применяют следующие термины с соответствующими определениями.

Kerbal space program	Компьютерная игра, система для	
	симуляции космических полетов.	

Перечень сокращений и определений

В настоящем отчете о научно-исследовательской работе применяют следующие сокращения и обозначения.

KSP	Kerbal space program.

Введение

В наше время все активнее проводятся наблюдения за экосистемой Марса. Многие ученые рассматривают эту планету как «новый дом» для человечества. Одним из прорывов в изучении Марса стал полет космического корабля «Atlas V» с миссией «Mars 2020». На борту корабля находился марсоход «Perseverance» и вертолет Ingenuity, которые были успешно доставлены на красную планету 18 февраля 2021 года. Эти беспилотные транспортные средства также являются небольшими научными лабораториями: так, в марсоходе «Perseverance» установлен бур и отсек для гильз, в которые можно поместить образцы пород с поверхности Марса.

Наша команда сделала выбор в сторону этой миссии из-за ее комплексности и важности для дальнейшей судьбы человечества.

Основная часть

1 этап. Разработка математической модели.

Юрий Евсеев, физик из команды MAISA, разработал ряд математических моделей.

Взлет ракеты с поверхности земли

Пусть изменение массы космического аппарата со временем : $\Delta m = m_o - \eta t$, где m_o - начальная масса, η - расход топлива. (1)

Рассмотрим второй закон Ньютона.

$$ma=F_{\scriptscriptstyle TЯГИ}$$
 - $F_{\scriptscriptstyle Tp}$ - $F_{\scriptscriptstyle conp}$, где $F_{\scriptscriptstyle \Gamma p}=\Delta mg$, $F_{\scriptscriptstyle conp}=0.5cS\rho_{\scriptscriptstyle cpeqbi}V^2$

 $S = \pi d^2/4$ - площадь поперечного сечения ракеты

с - табличное значение (~0.0045)

Проецирую второй закон Ньютона на вертикальную ось и подставив формулы получим:

$$\frac{dv}{dt} = \frac{F \text{THFU} - \Delta mg - 0.5cS\rho V^2}{\Delta m} \quad (2)$$

Также с течением времени меняется скорость от высоты: $\frac{dh}{dt} = v(t)$ (по определению скорости)

Сила тяги меняется в зависимости от высоты и от этапа полета.

Предположим, что сила тяги меняется по линейному закону.

$$F_{\text{тяги}} = F_{\text{тяги0}} + \lambda t \quad (3)$$

Относительно высоты также меняется плотность среды

$$\rho = \rho_0 e^{-\beta h}$$
, где $\beta = 1,29*10^{-4}$, а ρ_0 - плотность среды около поверхности Земли (4)

С учетом того, что ракета летит под определенным углом к горизонту, этот угол α будет меняться с течением времени также по линейному закону.

8

$$\alpha = \frac{\pi}{2} - \beta t$$
, где β - угол между вертикальной осью и кораблем (5) $\beta = \mathrm{const}$

Перемножая пропорцией формулу (2) и интегрируя получаем:

$$v_{next} = \frac{F_{\text{T0}}t + \lambda \frac{t^2}{2} - g(m_0 - \eta \frac{t^2}{2}) - 0.5cS\rho_0 e^{-\beta h} v^2_{prev}}{m_0 - \eta \frac{t^2}{2}}$$
(6)

Проецируя на Ох и Оу получим:

$$v_{x} = \frac{F_{T0}t + \lambda \frac{t^{2}}{2} - g(m_{0} - \eta \frac{t^{2}}{2}) - 0.5cS\rho_{0}e^{-\beta h}v^{2}_{prev}}{m_{0} - \eta \frac{t^{2}}{2}} cos\alpha(t) (7)$$

$$v_{y} = \frac{F_{T0}t + \lambda \frac{t^{2}}{2} - g(m_{0} - \eta \frac{t^{2}}{2}) - 0.5cS\rho_{0}e^{-\beta h}v^{2}_{prev}}{m_{0} - \eta \frac{t^{2}}{2}} sin\alpha(t) (8)$$

$$v_{y} = \frac{F_{\text{T0}}t + \lambda \frac{t^{2}}{2} - g(m_{0} - \eta \frac{t^{2}}{2}) - 0.5cS\rho_{0}e^{-\beta h}v^{2}_{prev}}{m_{0} - \eta \frac{t^{2}}{2}} sin\alpha(t)$$
(8)

Объединяя все уравнения получаем систему:

$$v_{next} = \frac{F_{\text{T0}}t + \lambda \frac{t^2}{2} - g(m_0 - \eta \frac{t^2}{2}) - 0.5cS\rho_0 e^{-\beta h} v_{prev}^2}{m_0 - \eta \frac{t^2}{2}}$$

$$v_{x} = \frac{F_{\text{T0}}t + \lambda \frac{t^{2}}{2} - g(m_{0} - \eta \frac{t^{2}}{2}) - 0.5cS\rho_{0}e^{-\beta h}v^{2}_{prev}}{m_{0} - \eta \frac{t^{2}}{2}}cos\alpha(t)$$

$$v_{y} = \frac{F_{\text{T0}}t + \lambda \frac{t^{2}}{2} - g(m_{0} - \eta \frac{t^{2}}{2}) - 0.5cS\rho_{0}e^{-\beta h}v_{prev}^{2}}{m_{0} - \eta \frac{t^{2}}{2}}sin\alpha(t)$$

$$\Delta m = m_o - \eta t$$

$$F_{\text{тяги}} = F_{\text{тяги0}} + \lambda t$$

$$\rho = \rho_0 e^{-\beta h}$$

$$\alpha = \frac{\pi}{2} - \beta t$$

Данная система описывает взлет ракеты с поверхности Земли.

Гомановский перелет

Допустим, после взлета, через определенное время, мы оказались на геопереходной орбите и нам нужно попасть на орбиту Марса. Сделаем это с помощью Гомановского перехода.

Для этого нужно узнать орбитальную скорость тела.

 $v = \sqrt{\mu(\frac{2}{r} - \frac{1}{a})}, \mu$ - гравитационный параметр, r - расстояние между телами, а - большая полуось.

Так как орбита круговая, то формула примет вид:

$$v = \sqrt{\frac{\mu}{r}}$$

Тогда приращение скоростей можно выразить следующим образом:

$$\Delta V_A = \sqrt{\frac{\mu}{r1}} \left(\sqrt{\frac{2r1}{r1 + r2}} - 1 \right)$$

$$\Delta V_B = \sqrt{\frac{\mu}{r2}} \left(-\sqrt{\frac{2r1}{r1+r2}} + 1 \right)$$

Суммарное изменение скорости будет равно $\Delta V_S = \Delta V_A + \Delta V_B$

По формуле Циолковского находим расход топлива

$$\Delta m = (1 - e^{-\frac{\Delta V_S}{l}}) m_0$$
, где l - удельная тяга ракеты.

Эксцентриситет орбиты перехода:
$$e = \frac{r_2 - r_1}{r_2 + r_1}$$

Время, за которое совершается переход, равно половине периода Гомановской орбиты.

$$t = \pi \frac{a^{3/2}}{\mu^{1/2}}$$
, где $a = \frac{r_1 + r_2}{2}$

Для Гомановского перелета угловая дальность равна 180°

Угол начальной конфигурации определяется по формуле $\gamma = 180^o - a$, где а - дуга, которую проходит ракета за время перелета.

$$a = \omega t$$
, где ω - угловая скорость.

Начальная конфигурация наступает за определенное время до того, как либо внутренняя планета догонит Землю и окажется на нижней линии соединения, либо Земля догонит внешнюю планету и окажется на линии верхнего соединения.

2 этап. Построение графиков с помощью ЯП.

Дмитрий Мирошников, Артем Калиниченко и Артем Беспалов, программисты из команды MAISA, пользуясь историческими данными, с помощью языка программирования Python и библиотек Numpy и Matplotlib смоделировали графики выведенных математических законов, которые бы смогли пригодиться при испытаниях, на основании реальных данных о ракетоносителе. Среди них:

Данные:

- Длина ракеты 58.3 м
- Количество ускорителей на каждой ступени 5
- Стартовая масса ~ 546.6 т Масса полезного груза ~ 27 т
- Стартовая масса топлива ~ 284.5 т
- Расход топлива ~ 1.1 т/c
- Диаметр ракеты 3.81 м
- Тяга ускорителя ~ 1660 кН

Рисунок 1

Рисунок 2

Рисунок 3

Рисунок 4

3 этап. Сравнение данных.

На данном этапе необходимо сравнить значения из таблицы с расчетами со значениями, полученными в ходе испытаний.

Расчетное	Экспериментальное	Отклонение
значение	значение	

Заключение

Несмотря на трудности, у команды MAISA получилось найти решение, позволяющее исследовать историческую миссию MAPC 2020. Были составлены математические модели, запрограммированы графики и проведено испытание. По результатам сравнительного анализа можно вынести вердикт: расчеты команды сошлись/не сошлись с экспериментальными данными, полученными в ходе полета.

Список использованных источников

1. Статья из Википедии про миссию: https://ru.wikipedia.org/wiki/Mapc-2020#Полёт_и_посадка_на_Марс