CS 511, Fall 2024, Lecture Slides 28 Sequential Compactness

Assaf Kfoury

16 October 2024

Given arbitrary $a, b \in \mathbb{Q}$ with $a \leq b$, we use two kinds of intervals in this presentation:

closed
$$[a,b] \stackrel{\text{def}}{=} \{ r | a \leqslant r \leqslant b \}$$

left-closed
$$[a,b) \stackrel{\text{def}}{=} \{ r \mid a \leqslant r < b \}$$

Given arbitrary $a,b\in\mathbb{Q}$ with $a\leqslant b$, we use two kinds of intervals in this presentation:

closed
$$[a,b] \stackrel{\text{def}}{=} \{ r | a \leqslant r \leqslant b \}$$

left-closed $[a,b) \stackrel{\text{def}}{=} \{ r | a \leqslant r < b \}$

Starting with the interval [0,1] at the top, as the root node, we repeatedly divide intervals into two disjoint halves, producing an infinite full binary tree $\mathcal{T}_{\text{full}}$:

More systematically, in order to exhibit a common pattern for all the intervals in $\mathcal{T}_{\text{full}}$:

More systematically, in order to exhibit a common pattern for all the intervals in $\mathcal{T}_{\text{full}}$:

Important observation:

A path from the root of $\mathcal{T}_{\text{full}}$ produces a strict nested sequence of intervals, e.g.:

$$[0,1] \supset [1 \cdot 2^{-1}, 2 \cdot 2^{-1}] \supset [2 \cdot 2^{-2}, 3 \cdot 2^{-2}) \supset \cdots$$

This is a sequence of increasingly narrower intervals converging to a single number.

The nodes at the k-th level of $\mathcal{T}_{\text{full}}$ are, from left to right:

$$\underbrace{[0 \cdot 2^{-k}, 1 \cdot 2^{-k}) \quad [1 \cdot 2^{-k}, 2 \cdot 2^{-k}) \quad [2 \cdot 2^{-k}, 3 \cdot 2^{-k}) \quad \cdots \quad [(2^k - 2) \cdot 2^{-k}, (2^k - 1) \cdot 2^{-k})}_{\text{left-closed}} \quad \underbrace{[(2^k - 1) \cdot 2^{-k}, 2^k \cdot 2^{-k}]}_{\text{closed}}$$

More succintly, at level $k \ge 1$, there are:

- $lackbox (2^k-1)$ left-closed intervals, each of the form $[(r-1)\cdot 2^{-k},\ r\cdot 2^{-k})$ where $0\leqslant r\leqslant 2^k-1$,
- ▶ and one closed interval, the rightmost, $[(2^k-1)\cdot 2^{-k}, 2^k\cdot 2^{-k}]$.

A Full Binary Tree $\mathcal{T}_{\text{full}}$ – once more

1. Let $A \subseteq [0,1]$ be arbitrary, finite or infinite, which we use to follow a path in $\mathcal{T}_{\text{full}}$.

- 1. Let $A\subseteq [0,1]$ be arbitrary, finite or infinite, which we use to follow a path in $\mathcal{T}_{\text{full}}$.
- 2. At every node I_n of $\mathcal{T}_{\text{full}}$:

- 1. Let $A \subseteq [0,1]$ be arbitrary, finite or infinite, which we use to follow a path in $\mathcal{T}_{\text{full}}$.
- 2. At every node I_n of $\mathcal{T}_{\text{full}}$:

if $|A \cap I_{2n}| \geqslant |A \cap I_{2n+1}|$, replace I_{2n+1} by \bullet and prune the subtree of $\mathcal{T}_{\text{full}}$ rooted at I_{2n+1} :

- 1. Let $A \subseteq [0,1]$ be arbitrary, finite or infinite, which we use to follow a path in $\mathcal{T}_{\text{full}}$.
- 2. At every node I_n of $\mathcal{T}_{\text{full}}$:

if $\left|A\cap I_{2n}\right|\geqslant\left|A\cap I_{2n+1}\right|$, replace I_{2n+1} by ullet and prune the subtree of $\mathcal{T}_{\text{full}}$ rooted at I_{2n+1} :

if $|A \cap I_{2n}| < |A \cap I_{2n+1}|$, replace I_{2n} by ullet and prune the subtree of $\mathcal{T}_{\text{full}}$ rooted at I_{2n} :

- 1. Let $A \subseteq [0,1]$ be arbitrary, finite or infinite, which we use to follow a path in $\mathcal{T}_{\text{full}}$.
- 2. At every node I_n of $\mathcal{T}_{\text{full}}$:

if $|A \cap I_{2n}| \geqslant |A \cap I_{2n+1}|$, replace I_{2n+1} by ullet and prune the subtree of $\mathcal{T}_{\text{full}}$ rooted at I_{2n+1} :

if $|A \cap I_{2n}| < |A \cap I_{2n+1}|$, replace I_{2n} by \bullet and prune the subtree of $\mathcal{T}_{\text{full}}$ rooted at I_{2n} :

3. Let $I_1=I_{k_1}\supsetneq I_{k_2}\supsetneq I_{k_3}\supsetneq \cdots$ be the nested chain of intervals in the path followed using A, which is an infinite path by WKL (even if A is finite) converging to a single number b.

- 1. Let $A \subseteq [0,1]$ be arbitrary, finite or infinite, which we use to follow a path in $\mathcal{T}_{\text{full}}$.
- 2. At every node I_n of $\mathcal{T}_{\text{full}}$:

if $\left|A\cap I_{2n}\right|\geqslant\left|A\cap I_{2n+1}\right|$, replace I_{2n+1} by ullet and prune the subtree of $\mathcal{T}_{\text{full}}$ rooted at I_{2n+1} :

if $|A \cap I_{2n}| < |A \cap I_{2n+1}|$, replace I_{2n} by \bullet and prune the subtree of $\mathcal{T}_{\text{full}}$ rooted at I_{2n} :

- 3. Let $I_1 = I_{k_1} \supsetneq I_{k_2} \supsetneq I_{k_3} \supsetneq \cdots$ be the nested chain of intervals in the path followed using A, which is an infinite path by WKL (even if A is finite) converging to a single number b.
- 4. The nested sequence $(A \cap I_{k_1}) \supseteq (A \cap I_{k_2}) \supseteq (A \cap I_{k_3}) \supseteq \cdots$ consists of increasingly narrower non-empty subsets of A converging to the same single point b.

