Repaso de Localización de Puntos en Subdivisión Trapezoidal

Ailyn Rebollar Pérez

Éste problema consiste en que se da una subdivisión plana $\boldsymbol{\mathcal{S}}$ la cual tiene \boldsymbol{n} aristas y se quiere saber que dado un punto \boldsymbol{q} está contenido en la subdivisión.

Éste problema consiste en que se da una subdivisión plana \mathcal{S} la cual tiene \mathbf{n} aristas y se quiere saber que dado un punto \mathbf{q} está contenido en la subdivisión.

Si está contenido en la subdivisión notemos que puede estar dentro de alguna cara, coincidir con alguno de los vértices que definen las aristas o bien, estar sobre una arista.

→ Para resolver el problema podemos usar la técnica de subdivisiones trapezoidales.

→ Para resolver el problema podemos usar la técnica de subdivisiones trapezoidales.

→ ¿Cómo se construye ésta subdivisón?

Construcción de una Subdivisión Trapezoidal

rectángulo.

→ Encerramos la subdivisión plana en un recuadro d

Construcción de una Subdivisión Trapezoidal

→ Encerramos la subdivisión plana en un recuadro o rectángulo.

 \rightarrow Trazamos líneas verticales en cada punto de la subdivisión (2n).

• Encerramos en un rectángulo.

• Encerramos en un rectángulo.

• Trazamos las líneas verticales en cada punto.

 Puede que en cada banda o rebanada haya segmentos de aristas o aristas completas de la subdivisión plana original.

 Puede que en cada banda o rebanada haya segmentos de aristas o aristas completas de la subdivisión plana original.

 Las bandas formadas serán de ayuda para localizar el punto pedido.

 Pero ¿cómo podemos saber dentro de qué banda puede estar el punto?

 Pero ¿cómo podemos saber dentro de qué banda puede estar el punto?

 Podemos ordenar las bandas de acuerdo a la coordenada x del vértice por el cual pasa.

 Podemos tener ordenados los segmentos de aristas y aristas que viven en cada banda pero en un orden de arriba hacia abajo o viceversa.

 De esa manera podemos buscar la coordenada y del punto que estamos buscando

• ¿Qué pasa si el punto que estamos buscando es el verde?

• ¿Qué pasa si el punto que estamos buscando es el verde?

 Al buscar podremos ver que está debajo de S₁ pero arriba de S₂.

• ¿Qué pasa si el punto que estamos buscando es el verde?

• Al buscar podremos ver que está debajo de S_1 pero arriba de S_2 .

• Entonces está dentro de la subdivisión plana.

• ¿Qué pasa si el punto que estamos buscando es el verde?

• ¿Qué pasa si el punto que estamos buscando es el verde?

 Al buscar podremos ver que está arriba de S₁.

• ¿Qué pasa si el punto que estamos buscando es el verde?

• Al buscar podremos ver que está arriba de S_1 .

• Entonces está fuera de la subdivisión plana.

• ¿Qué pasa si el punto que estamos buscando es el verde?

• ¿Qué pasa si el punto que estamos buscando es el verde?

• Al buscar podremos ver que está abajo de S_2 .

• ¿Qué pasa si el punto que estamos buscando es el verde?

• Al buscar podremos ver que está abajo de S_2 .

• Entonces está fuera de la subdivisión plana.

Construcción:

 $0(n^2)$

Consulta:

O(logn)

Construcción:

Construcción:

 $0(n^2)$

Consulta:

Construcción:

 $0(n^2)$

Consulta:

O(logn)