Micro - interrogation n° 1

Exercice 1 Répondre par vraie ou faux, en justifiant votre réponse .

- 1- Soit $E = \{a, b, c, d\}$, alors $\mathcal{F} = \{E, \emptyset, \{a\}, \{a, b\}, \{b, c\}\}$ est une tribu sur E.
- 2- Soit (E, \mathcal{B}, μ) un espace mesuré, alors on a pour $A \in \mathcal{B}$: $\mu(E) = \mu(A) + \mu(A^c)$.
- 3- Soit (E, \mathcal{T}) un espace topologique, alors \mathcal{T} est une σ algèbre sur E.
- 4- On considère λ la mesure de Lebesgue sur \mathbb{R} , alors

$$\lambda(\mathbb{R}) = \lambda\left(\bigcup_{x \in \mathbb{R}} \{x\}\right) = \sum_{x \in \mathbb{R}} \lambda\left(\{x\}\right) = \sum_{x \in \mathbb{R}} 0 = 0..$$

Exerciec 2

- (a) Soient (E, \mathcal{F}, μ) un espace mesuré et $(A, B)^2 \in \mathcal{F}$. Montrer que si $A \subset B$ et $\mu(A) < +\infty$, alors $\mu(B \setminus A) = \mu(B) \mu(A)$.
- (b) Soit B un borélien non vide de \mathbb{R} . Monter que si B est borné, alors $\lambda(B) < +\infty$.

Corrigé de la micro-interrogation

Exercice 1.

- 1- Faux, (0.5 pt) car $\{a\} \in \mathcal{F}$ mais $\{a\}^c = \{b, c, d\} \notin \mathcal{F}$. (0.5 pt)
- 2- Vraie (0.5 pt), car $E = A \cup A^c$ et $A \cap A^c = \emptyset$, alors comme μ est une mesure on a :

$$\mu\left(E\right) = \mu\left(A \cup A^{c}\right) = \mu\left(A\right) + \mu\left(A^{c}\right).\left(0.5\ pt\right)$$

- 3- Faux (0.5 pt), car si $A \in \mathcal{T} \iff A$ est un ouvert, donc A^c est un fermé.(0.5 pt)
- 4- Faux (0.5 pt), car la réunion est quelconque et dans ce cas on ne peut pas écrire

$$\lambda \left(\bigcup_{x \in \mathbb{R}} \{x\} \right) = \sum_{x \in \mathbb{R}} \lambda \left(\{x\} \right) \left(0.5 \ pt \right)$$

Exerciec 2

(a) Soient (E, \mathcal{F}, μ) un espace mesuré et $(A, B)^2 \in \mathcal{F}$ relle que $A \subset B$, alors

$$B = A \cup B \setminus A
\text{et} \qquad (0.5 \text{ } pt)$$

$$A \cap B \setminus A = \emptyset$$

$$(0.5 \text{ } pt)$$

$$\Rightarrow \mu(B) = \mu(A \cup B \setminus A) = \mu(A) + \mu(B \setminus A). \quad (0.5 \text{ } pt)$$

Comme $\mu(A) < +\infty$ on obtient $\mu(B \setminus A) = \mu(B) - \mu(A) \cdot (0.5 pt)$

(b) Soit B un borélien borné non vide de \mathbb{R} , alors il existe deux réels finis m et M telle que

$$\forall x \in B : \inf B = m \le x \le M = \sup B. (0.5 pt)$$

Donc $B \subset [m, M] \quad (0.5 \ pt)$, ce qui nous permet de dire que

$$\lambda(B) \le \lambda([m, M]) = M - m < +\infty. (0.5 pt)$$