PUBLIC KEY CRYPTOGRAPHY - Mathematics

Project 2 (Weeks 3-4)

Topics: ciphers, congruences, (pseudo)primality.

- You will prepare and explain a written homework on one of the following questions, which will be assigned to you during the seminars:
 - 1. Explain Kasiski's test for determining the key length for the Belaso cipher, and apply it in an example.
 - 2. Determine the formula for the number of keys for the Hill cipher, and apply it in an example.
 - 3. Prove the Chinese Remainder Theorem.
 - 4. Prove the properties of Euler's function.
 - 5. Let $n \in \mathbb{N}$ be odd composite. Prove that:
 - (i) If n is divisible by a perfect square greater than 1, then n is not a Carmichael number.
 - (ii) If n is not divisible by a perfect square greater than 1, then n is a Carmichael number if and only if p-1|n-1 for every prime p|n.
 - 6. Let $n \in \mathbb{N}$ be odd composite, and b, b_1, b_2 integers which are relatively prime to n. Prove that: (i) n is pseudoprime to the base b if and only if the order of b in (\mathbb{Z}_n^*, \cdot) (that is, the smallest positive power of b which is equal to 1 modulo n) divides n-1.
 - (ii) If n is pseudoprime to the bases b_1 and b_2 , then n is pseudoprime to the base $b_1b_2^{-1}$, where b_2^{-1} is an integer which is inverse to b_2 modulo n.
 - 7. Let n = pq be a product of two distinct primes, d = gcd(p-1, q-1) and b an integer. Prove that n is pseudoprime to the base b if and only if $b^d \equiv 1 \mod n$. In terms of d how many bases are there to which n is a pseudoprime?
 - 8. Let b be an integer. Construct an infinite number of pseudoprimes to the base b, and give some examples.
 - 9. Let $n \in \mathbb{N}$ be odd composite, and b an integer with gcd(b, n) = 1. Prove that if n is strong pseudoprime to the base b, then n is pseudoprime to the base b. Give examples of n and b such that n is pseudoprime to the base b, but not strong pseudoprime to the base b.
 - 10. Prove a criterion which describes all generators of the cyclic group $(\mathbb{Z}_n, +)$, where $n \geq 2$ is a natural number. A *generator* of $(\mathbb{Z}_n, +)$ is an element $\hat{g} \in \mathbb{Z}_n$ such that for every $\hat{x} \in \mathbb{Z}_n$ there exists $k \in \{0, 1, \ldots, n-1\}$ such that $\hat{x} = k\hat{g}$.

Points

- 1 point if handed in by Week 5 or Week 6.
- 0.5 points if handed in by Week 7 or Week 8.