

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4721

Core Mathematics 1

MARK SCHEME

Specimen Paper

© OCR 2004

MAXIMUM MARK 72

1	(i)	$\frac{1}{16}$	В1	1	For correct value (fraction or exact decimal)
	(ii)	8	В1	1	For correct value 8 only
	(iii)	6	M1		For $1^3 + 2^3 + 3^3 = 36$ seen or implied
			A1		For correct value 6 only
				4	
2	(i)	$x^2 - 8x + 3 = (x - 4)^2 - 13$	B1		For $(x-4)^2$ seen, or statement $a = -4$
		i.e. $a = -4, b = -13$	M1		For use of (implied) relation $a^2 + b = 3$
			A1	3	For correct value of <i>b</i> stated or implied
	(ii)	Minimum point is $(4, -13)$	B1√	•	For x-coordinate equal to their $(-a)$
			B1 √	5	For <i>y</i> -coordinate equal to their <i>b</i>
3	(i)	Discriminant is $k^2 - 4k$	M1		For attempted use of the discriminant
	(1)	Discriminant is $\kappa = 4\kappa$	A1	2	For correct expression (in any form)
	(ii)	For no real roots, $k^2 - 4k < 0$	M1		For stating their $\Delta < 0$
	()	Hence $k(k-4) < 0$	M1		For factorising attempt (or other soln method)
		So $0 < k < 4$	A1		For both correct critical values 0 and 4 seen
			A1	6	For correct pair of inequalities
		dy		<u> </u>	
4	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 12x^2$	M1		For clear attempt at nx^{n-1}
			A1	2	For completely correct answer
	(ii)	$y = x^4 + 2x^2$	B1		For correct expansion
		Hence $\frac{dy}{dx} = 4x^3 + 4x$	M1		For correct differentiation of at least one term
		u.	A1√	3	For correct differentiation of their 2 terms
	(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}}$	M1		For clear differentiation attempt of $x^{\frac{1}{2}}$
		dx -	A1	2	For correct answer, in any form
				7	
5	(i)	$x^2 - 3x + 2 = 3x - 7 \Rightarrow x^2 - 6x + 9 = 0$	M1		For equating two expressions for y
		W (0)2 0	A1		For correct 3-term quadratic in <i>x</i>
		Hence $(x-3)^2 = 0$ So $x = 3$ and $y = 2$	M1 A1		For factorising, or other solution method For correct value of <i>x</i>
		30 x - 3 and $y - 2$	A1	5	For correct value of <i>y</i>
	(ii)	The line $y = 3x - 7$ is the tangent to the curve	B1		For stating tangency
	, ,	$y = x^2 - 3x + 2$ at the point (3, 2)	B1	2	For identifying $x = 3$, $y = 2$ as coordinates
	(iii)	Gradient of tangent is 3	B1		For stating correct gradient of given line
		Hence gradient of normal is $-\frac{1}{3}$	B1 √		For stating corresponding perpendicular grad
		Equation of normal is $y-2=-\frac{1}{3}(x-3)$	M1		For appropriate use of straight line equation
		i.e. $x + 3y - 9 = 0$	A1		For correct equation in required form
				11	

6	(i)	x	B1 B1	2	For correct 1st quadrant branch For both branches correct and nothing else
	(ii)	Translation of 2 units in the negative x -direction	B1 B1 B1		For translation parallel to the <i>x</i> -axis For correct magnitude For correct direction
		y x	B1√ B1	5	For correct sketch of new curve For some indication of location, e.g. $\frac{1}{2}$ at y-intersection or -2 at asymptote
	(iii)	Derivative is $-x^{-2}$	M1 A1	2	For correct power -2 in answer For correct coefficient -1
	(iv)	Gradient of $y = \frac{1}{x}$ at $x = 2$ is required This is -2^{-2} , which is $-\frac{1}{4}$	B1 M1 A1	3	For correctly using the translation For substituting $x = 2$ in their (iii) For correct answer
				12	
7	(i)	$AB^2 = (10-2)^2 + (3-9)^2 = 100$ Hence the radius is 5 Mid-point of AB is $\left(\frac{2+10}{2}, \frac{9+3}{2}\right)$ Hence centre is (6, 6)	M1 A1 M1	4	For correct calculation method for AB^2 For correct value for radius For correct calculation method for mid-point For both coordinates correct
	(ii)	Equation is $(x-6)^2 + (y-6)^2 = 5^2$ This is $x^2 - 12x + 36 + y^2 - 12y + 36 = 25$ i.e. $x^2 + y^2 - 12x - 12y + 47 = 0$, as required	M1 A1 A1		For using correct basic form of circle equn For expanding at least one bracket correctly For showing given answer correctly
	(iii)	Gradient of AB is $\frac{3-9}{10-2} = -\frac{3}{4}$	M1 A1		For finding the gradient of AB For correct value $-\frac{3}{4}$ or equivalent
		Hence perpendicular gradient is $\frac{4}{3}$ Equation of tangent is $y-3=\frac{4}{3}(x-10)$ Hence <i>C</i> is the point $(\frac{31}{4},0)$	A1 ✓ M1 M1 A1	6	For relevant perpendicular gradient For using their perp grad and <i>B</i> correctly For substituting $y = 0$ in their tangent eqn For correct value $x = \frac{31}{4}$
				13	

4721 Specimen Paper [Turn over

_					
8	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 6x - 12$	M1		For differentiation with at least 1 term OK
			A1		For completely correct derivative
		Hence $x^2 - x - 2 = 0$	M1		For equating their derivative to zero
		$(x-2)(x+1) = 0 \Rightarrow x = 2 \text{ or } -1$	M1		For factorising or other solution method
			A1		For both correct <i>x</i> -coordinates
		Stationary points are $(2, -27)$ and $(-1, 0)$	A1	6	For both correct y-coordinates
	(ii)	$\frac{d^2y}{dx^2} = 12x - 6 = \begin{cases} +18 \text{ when } x = 2\\ -18 \text{ when } x = -1 \end{cases}$	M1		For attempt at second derivative and at least
		Hence $(2, -27)$ is a min and $(-1, 0)$ is a max	A1		one relevant evaluation For either one correctly identified
			A1	3	For both correctly identified
					(Alternative methods, e.g. based on gradients either side, are equally acceptable)
	(iii)	RHS = $(x^2 + 2x + 1)(2x - 7)$	M1		For squaring correctly and attempting
		$=2x^3-7x^2+4x^2-14x+2x-7$			complete expansion process
		$=2x^3-3x^2-12x-7$, as required	A1	2	For obtaining given answer correctly
	(iv)	(-1, 0) /	B1		For correct cubic shape
		$(0, -7) \qquad (\frac{7}{2}, 0) \qquad x \qquad (2, -27)$	B1 B1	3	For maximum point lying on x-axis For $x = \frac{7}{2}$ and $y = -7$ at intersections
				14	