

第一章命题逻辑

课程QQ号: 819392514

金耀 数字媒体技术系

fool1025@163.com

13857104418

第一章 命题逻辑

- 1.1 命题及符号化
- 1.2 命题等值演算
- 1.3 范式
- 1.4 逻辑电路

§1命题及符号化

本讲主要内容

- 基本概念
- ■命题符号化
- ■真值表
- ■命题公式分类

一、基本概念

命题: 判断结果唯一的陈述句.

- 2 + 5 = 7;
- 我是中国人。

真命题: 真值为真的命题。

假命题: 真值为假的命题。

注意: 感叹句、祈使句、疑问句都不是命题 陈述句中的悖论以及判断结果不唯一确定的也不是 命题

例 下列句子中那些是命题?

$$(1)\sqrt{2}$$
 是无理数.

$$(2)$$
 $2+5=8$.

(3)
$$x + 5 > 3$$
.

- (4) 你有铅笔吗?
- (5) 这只兔子跑得真快呀!
- (6) 请不要讲话!
- (7) 我正在说谎话.

真命题

假命题

真值不确定

疑问句

感叹句

祈使句

悖论

(3)~(7)都不是命题

1. 命题的分类

❖简单命题(原子命题):简单陈述句构成的命题.

❖复合命题:由简单命题与联结词按一定规则复合而成的命题.

2. 命题符号化 -简单命题

符号化:用小写英文字母 $p, q, r, \ldots, p_i, q_i, r_i$ ($i \ge 1$) 表示. 简单命题

q: 北京是中国首都,则 q 的真值为 1.

 $p: \pi = 3.14$, 则 p 的真值为 0.

祖冲之: 刘徽"割圆术"

介于: 3.1415926~ 3.1415927

2. 命题符号化 -简单命题

符号化:用小写英文字母 $p, q, r, ..., p_i, q_i, r_i (i \ge 1)$ 表示. 简单命题

数学家高斯——数学家之王 与阿基米德、牛顿齐名

2.命题符号化-联结词与复合命题

❖否定式与否定联结词"¬":

定义:设p为命题,复合命题"非p"(或"p的否定")称为p的否定式,记作 $\neg p$. 符号 \neg 称作否定联结词,并规定p为真当且仅当p为假。

2.命题符号化-联结词与复合命题

❖合取式与合取联结词"△":

定义:设p, q为二命题,复合命题"p并且q"(或"p与q")称p与q的合取式,记作p个q. 个称作合取联结词,并规定p个q为真当且仅当p与q同时为真。

例 将下列命题符号化

- (1) 王晓既用功又聪明.
- (2) 王晓不仅聪明, 而且用功.
- (3) 王晓虽然聪明, 但不用功.
- (4) 张辉与王丽都是三好生.
- (5) 张辉与王丽是同学.

解 p : 王晓聪明, q : 王晓用功, 则

- (1) $p \wedge q$
- (2) $p \wedge q$
- (3) $p \land \neg q$.

例 (续)

- (4) $r \wedge s$.
- (5) 令 t: 张辉与王丽是同学, t 是简单命题.

说明:

- (1)~(4)说明描述合取式的灵活性与多样性.
- (5) 中"与"联结的是两个名词,整个句子是一个简单命题.

2.命题符号化-联结词与复合命题

❖析取式与析取联结词"√":

定义: 设p, q为二命题,复合命题"p或q"称作p与q的析取式, 记作p $\bigvee q$. \bigvee 称作析取联结词,并规定p $\bigvee q$ 为假当且仅当p与 q同时为假.

2.命题符号化 - 联结词与复合命题

(1) 2或4是素数.

解令p:2是素数,q:4是素数

符号化为: $p \lor q$

它们的真值分别为().

则为相容或.

(2) 小元元只能拿一个苹果或一个梨.

解: 令t:小元元拿一个苹果,

u:小元元拿一个梨,

则符号化为: $(t \land \neg u) \lor (\neg t \land u)$.

为排斥或.

(3) 王晓红生于1975年或1976年

令v:王晓红生于1975年,w:王晓红生于1976年,

则既可符号化为: $(v \land \neg w) \lor (\neg v \land w)$, 又可符号化为 $v \lor w$.

2.命题符号化-联结词与复合命题

❖蕴涵式与蕴涵联结词"→":

定义:设p,q为二命题,复合命题"如果p,则q"称作p与q的蕴涵式,记作 $p \rightarrow q$,并称p是蕴涵式的前件,q为蕴涵式的后件。 \rightarrow 称作蕴涵联结词,并规定, $p \rightarrow q$ 为假当且仅当p为真q为假.

联结词与复合命题(续)

 $p \rightarrow q$ 的逻辑关系: $q \land p$ 的必要条件, $p \land q$ 的充分条件

"如果p,则q"的不同表述法很多:

- * **若**p, 就q
- * 只要p, 就q
- * p 仅当q
- * 只有q オp
- *除非q, d 或 除非q, 否则非p.

当p 为假时, $p \rightarrow q$ 为真

常出现的错误:不分充分与必要条件

"只要就"与"只有才"的区别

❖只要...就,是充分条件(条件不具有唯一性)。

例:只要做了课后习题。就能得高分。

❖只有...才,是必要条件(条件具有唯一性)。

例:只有做了课后习题,才能得高分。

2.命题符号化 - 联结词与复合命题

例 设p:天冷,q:小王穿羽绒服,s:肯努力,t:小王就取得好成绩,将下列命题符号化

(1) 因为天冷, 所以小王穿羽绒服.

 $p \rightarrow q$

(2) 若小王不穿羽绒服,则天不冷.

 $p \rightarrow q$

(3) 只有天冷, 小王才穿羽绒服.

 $q \rightarrow p$

(4)只要肯努力, 小王就能取得好成绩.

 $S \rightarrow t$

注意: $p \rightarrow q$ 与 $\neg q \rightarrow \neg p$ 等值(真值相同)

联结词与复合命题(续)

例设p:天冷,q:小王穿羽绒服,

将下列命题符号化

(1) 只要天冷. 小王就穿羽绒服.
$$p \rightarrow q$$

$$(2)$$
 只有天冷,小王才穿羽绒服。 $q \rightarrow p$

(3) 除非天冷, 小王才穿羽绒服.
$$q \rightarrow p$$

(4) 除非小王穿羽绒服,否则天不冷。
$$p \rightarrow q$$

(5) 如果天不冷,则小王不穿羽绒服.
$$q \rightarrow p$$

(6) 小王穿羽绒服仅当天冷的时候.
$$q \rightarrow p$$

2.命题符号化-联结词与复合命题

❖等价式与等价联结词"↔":

定义: 设p, q为二命题,复合命题 "p当且仅当q"称作p与q的等价式,记作 $p \leftrightarrow q$. \leftrightarrow 称作等价联结词.并规定 $p \leftrightarrow q$ 为真当且仅当p与q同时为真或同时为假.

说明:

- $(1) p \leftrightarrow q$ 的逻辑关系:p与q互为充分必要条件
- $(2) p \leftrightarrow q$ 为真当且仅当p与q同真或同假

例

例 求下列复合命题的真值

$$(1)$$
 $2+2=4$ 当且仅当 $3+3=6$.

$$(2)$$
 $2+2=4$ 当且仅当 3 是偶数.

$$(3)$$
 $2+2=4$ 当且仅当 太阳从东方升起.

$$(4)$$
 $2+2=4$ 当且仅当 美国位于非洲.

(5) 函数
$$f(x)$$
 在 x_0 可导的充要条件是它在 x_0 连续.

联结词与复合命题(续)

以上给出了5个联结词: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , 组成一个联结词集合 $\{\neg$, \wedge , \vee , \rightarrow , \leftrightarrow $\}$,

联结词的优先顺序为: \neg , \wedge , \vee , \rightarrow , \leftrightarrow ;如果出现的联结词同级, 又无括号时,则按从左到右的顺序运算;若遇有括号时,应该先 进行括号中的运算.

注意: 本书中使用的 括号全为圆括号.

命题变项与合式公式

命题常项:简单命题

命题变项:真值不确定的陈述句

定义合式公式(命题公式,公式)递归定义如下:

- (1) 单个命题常项或变项 $p,q,r,...,p_i,q_i,r_i,...,0,1$ 是合式公式
- (2) 若A是合式公式,则 $(\neg A)$ 也是合式公式
- (3) 若A, B是合式公式,则 $(A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$ 也是合式公式
- (4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式

说明: 外层括号可以省去

合式公式的层次

定义

- (1) 若公式A是单个的命题变项,则称A为0层公式.
- (2) 称A 是n+1(n≥0) 层公式是指下面情况之一:
 - $(a) A = \neg B, B 是 n 层 公式;$
 - (b) $A=B\land C$,其中B,C分别为i层和j层公式,且 $n=\max(i,j)$;
 - (c) $A=B\lor C$, 其中B,C的层次及n同(b);
 - (d) $A=B\rightarrow C$, 其中B,C的层次及n同(b);
 - (e) $A=B\leftrightarrow C$, 其中B,C的层次及n同(b).

合式公式的层次(续)

例如 公式

$$p$$
 0 0 尽
¬ p 1 ほ
¬ $p \rightarrow q$ 2 尽
¬ $(p \rightarrow q) \leftrightarrow r$ 3 尽
 $((\neg p \land q) \rightarrow r) \leftrightarrow (\neg r \lor s)$ 4 尽

公式的赋值

定义 给公式A中的命题变项 p_1, p_2, \ldots, p_n 指定一组真值称为对A的 一个赋值或解释

成真赋值: 使公式为真的赋值

成假赋值: 使公式为假的赋值

说明:

赋值 $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ 之间不加标点符号, $\alpha_i = 0$ 或1.

A中仅出现 $p_1,p_2,...,p_n$, 给A赋值 $\alpha_1\alpha_2...\alpha_n$ 是指

$$p_1 = \alpha_1, p_2 = \alpha_2, ..., p_n = \alpha_n$$

A中仅出现 $p_1q_2,r_3,...$,给A赋值 $\alpha_1\alpha_2\alpha_3...$ 是指 $p=\alpha_1,q=\alpha_2,r=\alpha_3...$ 含n个变项的公式有 2^n 个赋值.

3.真值表

真值表: 公式A在所有赋值下的取值情况列成的表.

例 给出 $A=(q\rightarrow p) \land q\rightarrow p$ 的真值表

p q	$q \rightarrow p$	$(q \rightarrow p) \land q$	$(q \rightarrow p) \land q \rightarrow p$
0 0	1	0	1
0 1	0	0	1
1 0	1	0	1
1 1	1	1	1

3.真值表

例 $C=(p\lor q) \rightarrow \neg r$ 的真值表

p	\boldsymbol{q}	r	$p \lor q$	¬r	$(p \lor q) \rightarrow \neg r$
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

3.真值表

课堂讨论- 求 $B = \neg (\neg p \lor q) \land q$ 的真值表

p q	$\neg p$	$\neg p \lor q$	$\neg (\neg p \lor q)$	$\neg (\neg p \lor q) \land q$
0 0	1	1	0	0
0 1	1	1	0	0
1 0	0	0	1	0
1 1	0	1	0	0

4.命题公式分类

定义设A为一个命题公式

- (1) 若A无成假赋值,则称A为重言式(也称永真式)
- (2) 若A无成真赋值,则称A为矛盾式(也称永假式)
- (3) 若A不是矛盾式,则称A为可满足式

注意: 重言式是可满足式, 但反之不真.

上例中A为重言式,B为矛盾式,C为可满足式

$$A = (q \rightarrow p) \land q \rightarrow p$$
, $B = \neg (\neg p \lor q) \land q$, $C = (p \lor q) \rightarrow \neg r$

思考

命题常元、命题变元、连接词、命题公式等概念的定义是否与我们学过的某些知识有相似之处?

课后作业

课后习题: 1、3、5、7

答题派作业:

一、简答题

1.1.1 判断下列语句是否为命题, 若是命题请指出是简单命题还是复合命题。

(1) $\sqrt{2}$ 是无理数。

- (2) 5能被2整除。
- (3) 现在开会吗?
- (4) x + 5 > 0.
- (5) 这朵花真好看呀!
- (6) 2是素数当且仅当三角形有3条边。
- (7) 雪是黑色的当且仅当太阳从东方升起。
- (8) 2080年10月1日天气晴好。
- (9) 太阳系以外的星球上有生物。
- (10) 小李在宿舍里。
- (11) 全体起立!
- (12) 4是2的倍数或是3的倍数。
- (13) 4是偶数且是奇数。
- (14) 李明与王华是同学。
- (15) 黄色和蓝色可以调配成绿色。

2.1.3 判断下列各命题的真值。

- (1) 若2+2=4则3+3=6。
- (2) 若2+2=4,则 $3+3\neq 6$ 。
- (3) 若 $2+2 \neq 4$,则3+3=6。
- (4) 若 $2+2 \neq 4$,则 $3+3 \neq 6$ 。
- (5) 2+2=4 当且仅当3+3=6。
- (6) 2+2=4当且仅当 $3+3\neq 6$ 。
- (7) $2+2 \neq 4$ 当且仅当3+3=6。
- (8) $2+2 \neq 4$ 当且仅当 $3+3 \neq 6$ 。
- 3. 将下列命题符号化,并给出真值。
- 1) 如果2 < 1, 则 $3 \ge 2$.
- 2) 只有2 < 1,才有3 > 2.
- 3) 除非 2 < 1, 才有3 > 2.
- 4) 除非 2 < 1, 否则 3 < 2.
- 5) 2 < 1, 仅当 3 < 2.
- 6) 若 $2+2 \neq 4$,则 $3+3 \neq 6$; 反之亦然.