Model Selection

Criteria to choose a model

- Error
- Training computational cost
- Test (or production) computational cost
- Ability to explain predictions

Model Complexity

- We are looking for a model with good generalization
 - Able to correctly predict values for new examples
- If the model is less complex than the function that actually generated the data it will not represent it well and underfit it
 - Using a line to fit a cuadartic function
- If the model is more complex then it will overfit and also "learn" the noise in the data
 - A 4th degree polinomial to approximate a linear process
- The complexity of a model depends on
 - Its degrees of freedom
 - The number of examples used to train it

Symptoms of over and under fitting

Underfitting

- Large error in the training data.
- This means that the model has a large bias.

Overfitting

- Low errror in the training set
- Large error in the validation or test set
- This means that the model has a large variance

- Evaluate the training and validation errors for different model complexities
 - For each value of the complexity parameter estimate the generalization error
 - Use cross-validation or bootstrapping

The Adequate Complexity

Over and underfitting diagnosis

¿What to do?

- Ovefitting (High variance)
 - Use more training examples
 - Reduce the complexity of the model
 - Reduce the number of attributes
 - Simplify the model by tuning its parameters
 - Increase regularization constant
 - Reduce the number of neurons in a neural net
 - Decrease the height of a decision tree

¿What to do?

- Underfitting (High bias)
 - Add attributes
 - Device new variables (x*x, x*y, sin(x) etc). Use PCA,
 Factor analysis, etc.
 - Collect new and better variables
 - Increase the models complexity
 - Reduce the regularization constante
 - Use more neurons in a neural net
 - Change learning algorithm
 - Change data distribution

Error estimation and hyperparameter selection

- Partition data into two groups
 - Training Set
 - Execute learning-validation cycle to choose model parameters (lambda, number of neurons, etc)
 - Details in following slides
 - Test set
 - The test set should not be used in any part of the learning and validation cycle
- Data should be partition following the original distribution and respecting temporal ordering
 - On occasion stratified sampling is in order
 - In general 25% of the data is left for testing
- Train with all the training set
- Report the error statistics from the learning-validation cycle for the selected hyperparameters and the test set error

Model Selection Learning-validation cycle

- Most learning algorithms have hyper-parameters that need to be tuned
 - Lambda, neural net topology, etc.
- Hyper parameters need to be learnt too
 - The learning algorithm is basically trial and error
 - For each value h to explore of the hyper parameter
 - Train the model using h and estimate its error
 - Select the h with that yields the lowest error
- We cant use the test set to select h (why?)
 - We need an extra cycle, the learning-validation cycle

- We should execute learning-validation multiple times and gather error statistics
 - Randomize initialization parameters
 - Use different data subsets
- The different data subsets are generated using crossvalidation or bootstrapping

Learning-validation cycle

Cross-validation

- Partition data into k subsets (normally between 5 and 15)
- Use one subset for validation and the remaining k-1 for learning
- Repeat for each of the k subsets
- Compute statistics of the k results (mean and standard deviation of the error)

Bootstrapping

- Suppose we have n data points in the training set
- Take k samples with replacement of size n
- Divide each sample into learning and validation
 - Remove from validation data that appears in learning
- Compute statistics of the k results (mean and standard deviation of the error)
- Repeat process for each value of the hyper parameter and choose the one with the best statistics

Note

 Attribute selection, standarization etc., mut go inside the learning-validation cycle

Excercise

- Implement cross-validation to select the appropriate value of lambda for the iterative lineal regression model
 - Use the regLinPoli2.csv data file
 - You can use, if you wish, the Regularization4class.ipynb starter code

Error

- The learning error can be dividen into three components
 - Irreductuble error due to noisy data
 - Error due to high bias (unable to capture the phenomenon)
 - Error due to high variance (captures irrelevant aspects of the training)
- High bias is seen as underfitting and high variance as overfitting

- Suppose the real function is of the form:
 - $y=f(x) + \varepsilon$, where ε is noise normaly distributed with mean zero and σ^2 variance
- Our model produces a prediction
 - V[^](x), for every x
- And we measure error (in the case of regression) as
 - $\Sigma(y-V^{(x)})^{2}$

We wish to estimate the error for a new data point x*

```
\begin{split} &\text{Err}(x^*) = \text{E}[(y - V^{\wedge}(x^*))^2] \\ &= \text{E}[(f(x^*) + \epsilon - V^{\wedge}(x^*))^2] \\ &= \sigma^2 + [\text{E}(V^{\wedge}(x^*)) - f(x^*)]^2 + \text{E}[V^{\wedge}(x^*) - \text{E}(V^{\wedge}(x^*))]^2 \\ &= \sigma^2 + \text{Bias}^2(V^{\wedge}(x^*)) + \text{Var}(V^{\wedge}(x^*)) \\ &= \text{Irreductible\_error} + \text{Bias}^2 + \text{Variance} \end{split}
```

 Normally there is a tradeoff between bias and variance

- Note that expectations are taken over everything that can be randomized
 - Initial weights (w's)
 - Training set (expectation over all possible training sets)
 - For example in the iterative linear regression:
 E(V^{*}(x*)) is the expected output of the model over all possible training sets and all possible initial w's

Derivación Descomposición de Error

Derivación Versión 1

- Una propiedad importante (truco para derivar)
 - $Var(X)=E(X^2)-[E(X)]^2$
- Sustituimos la variable aleatoria X por la discrepancia de nuestro modelo
 - $Var(V^(x)-f(x)-\varepsilon)=Var(V^(x))+\sigma^2$
 - Porque la varianza de f(x) es cero pues no es una variable aleatoria y la covarianza entre el ruido y V^(x) es cero

Derivación Versión 1

- De la fórmula de la varianza sustituyendo:
- $Var(V^{(x)}) + \sigma^2 = E[(V^{(x)}-f(x)-\epsilon)^2]-(E[V^{(x)}-f(x)-\epsilon])^2$
 - $E[(V^(x)-f(x)-ε)^2]=MSE$ (error cuadrático medio)
 - $(E[V^{(x)}-f(x)-\epsilon])^2=(E(V^{(x)})-E(f(x))-E(\epsilon))^2$
 - $=[E(V^(x))-f(x)]^2 = Bias^2$
 - Porque $E(f(x)) = f(x) y E(\epsilon) = 0$
- Sustituyendo en la primer formula
- $Var(V^(x)) + \sigma^2 = MSE Bias^2$
- MSE=Var($V^(x)$) + σ^2 + Bias²

Version 2 Derivación

- Algunas propiedades importantes:
 - 1. E(E(x))=E(x)
 - 2. $E((x-E(x))^2)=E[x^2-2xE(x)-E(x)^2]$ = $E(x^2)-2E(xE(x))+E[E(x)^2]$ = $E(x^2)-2E(x)E(x)+E(x)^2$
 - $=E(x^2)-E(x)^2$
 - 3. $E(x^2)=E((x-E(x))^2)+E(x)^2$ (fórmula varianza)
 - 4. $E((c+N(0,\sigma))x)$ = $E(cx+xN(0,\sigma))=cE(x)$ (la covarianza es cero)

Derivación

Regresando al error esperado:

```
E[(y-V^{(x^*)})^2] = E[y^2-2yV^{(x^*)}+V^{(x^*)}^2]
   =E[y^2] - 2E(yV^{(x^*)}) + E[V^{(x^*)^2}]
   =E((y-E(y))^2) + E(y)^2 (propiedad 3)
   -2E(V^{(x^*)})f(x^*) (propiedad 4)
   + E[(V^{(x^*)}-E(V^{(x^*)})^2] + E(V^{(x^*)})^2 (propiedad 3)
   =E((y-E(y))^2) (ruido. El desarrollo da \sigma^2 usando prop.4 y 1)
   +E(y)^2 - 2E(V^{(x^*)})f(x^*) + E(V^{(x^*)})^2 (sesgo<sup>2</sup> esto se
   reduce a (y-E(V^{(x^*)}))^2 note que E(y)=y
   +E[(V^{(x^*)}-E(V^{(x^*)}))^2] (varianza)
```