Correction TD 1

William Hergès ¹

18 septembre 2024

Exercice 1

1. On a:

TABLE 1 - Angles remarquables

IIIDEE I		, mgres remarquables			
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

2. Pour tout $x \in \mathbb{R}$, on a :

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x$$

$$\cos\left(x + \pi\right) = -\cos x$$

$$\cos\left(x + \frac{3\pi}{2}\right) = \sin x$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\sin\left(x + \pi\right) = -\sin x$$

$$\sin\left(x + \frac{3\pi}{2}\right) = -\cos x$$

3. AQT

Exercice 2

AQT

Exercice 3

Tout ce que j'ai fait est bon.

Soit M un point de la droit D de vecteur directeur \vec{u} passant par A. On a donc :

$$\overrightarrow{AM} = \alpha \vec{u} \quad (\alpha \in \mathbb{R})$$

Si on note $(x,y)\in\mathbb{R}^2$ les coordonnées de M et $(a,b)\in\mathbb{R}^2$ les coordonnées de A dans la base canonique, alors on a :

$$\begin{pmatrix} x - a \\ y - b \end{pmatrix} = \alpha \vec{u} \quad (\alpha \in \mathbb{R})$$

Ce qui nous donne l'équation paramétrique :

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + t\vec{u} \quad (\text{où } t \in \mathbb{R})$$

Pour tous les points $M\in {\cal D}$, on a :

$$\overrightarrow{AM} \cdot \vec{v} = 0$$

(où v est un vecteur normal)

L'équation cartésienne est donc une relation liant x et y satisfaisant la relation précédente. On peut l'obtenir en résolvant l'équation paramétrique ou en calculant le produit scalaire entre tous points $M \in D$ et un vecteur normal de D.