Interpreting Latent Variables via Convex Optimization

Armeen Taeb Electrical Engineering, Caltech

Joint work with Venkat Chandrasekaran

STATISTICAL MODEL SELECTION

- Random variables:
 - Financial assets
 - Gene expressions
 - . . .
- Describe the statistical behavior using concisely parameterized models
 - Manifold learning
 - Graphical models
 - Time series analysis
 - Principal components analysis
 - . . .

PROBLEM

- What if some of the variables are **not observed**?
- Don't know how many latent variables
- Don't know the effect of latent variables
- Confounding dependencies if latent variables are not taken into account

MANY APPROACHES

- Modeling Frameworks
 - Factor Analysis [Spearman (1904)]
 - Mixture modeling
 - Graphical models with latent variables
- Algorithmic Techniques
 - EM Algorithm [Dempster, Laird, Rubin (1977)]
 - Convex relaxation
 - Greedy algorithms

CHALLENGE

- The latent variables are purely mathematical constructs with no semantics!
- How do we obtain semantic information about latent variables?
- Example: Factor analysis
 - Attribute meaning to the latent variables
 - E.g., what are the factors influencing stock returns
- How do we think about this in a principled way?

FACTOR MODELING

ullet A factor model over random variables $y \in \mathbb{R}^p$

$$y = \mathcal{A}\zeta + \epsilon$$

- \bullet $\zeta \in \mathbb{R}^k$ = latent variables, $k \ll p$
- $\mathcal{A}: \mathbb{R}^k \to \mathbb{R}^p$ = linear map; $\mathcal{A}\zeta$: effect of latent variables
- ullet ζ and ϵ are independent; ϵ has independent components

A few latent variables explain the variability of y.

- ullet Factor analysis: fit observations of y to identify:
 - Number of latent variables
 - ullet The effect $\mathcal{A}\zeta$ (more about this later!)
 - ullet Variance of ϵ

WHAT ARE THE LATENT VARIABLES

- Question: Can we assign semantics to these latent variables?
- ullet Idea: obtain measurements of additional variables x that are related to y and associate these to ζ .
 - $\underbrace{\mathsf{stock}\;\mathsf{returns}}_y \,+\, \underbrace{\mathsf{oil}\;/\;\mathsf{currency}\;/\;\mathsf{weather}\;/\;\mathsf{GDP}}_x$
 - $\underbrace{\text{gene expressions}}_{y} + \underbrace{\text{physiological attributes}}_{x}$
 - number of covariates could be potentially very large!
- Challenge: There are infinitely many parameterizations of ζ .
 - Since $\mathcal{A}\zeta = \mathcal{A}\mathcal{W}[\mathcal{W}^{-1}\zeta]$ for any nonsingular \mathcal{W} , $\mathcal{W}^{-1}\zeta$ is an equally good parameterization.

The key invariant is the column-space of $\mathcal A$ or the effect of ζ on y given by $\mathcal A\zeta$.

DECOMPOSING THE EFFECT OF LATENT VARIABLES

- ullet Decompose the column-space of ${\cal A}$ into:
 - A subspace captured by $x \in \mathbb{R}^q$ (observed variables)
 - A subspace captured by residual latent variables (unobserved phenomena)
- Identify linear maps $\mathcal{B}: \mathbb{R}^q \to \mathbb{R}^p, \mathcal{C}: \mathbb{R}^h \to \mathbb{R}^p$ such that:

$$\mathcal{A}\zeta \approx \mathcal{B}x + \mathcal{C}z$$

- $\bullet \ \ \mathsf{column\text{-}space} \ (\mathcal{A}) = \mathsf{column\text{-}space} \ (\mathcal{B}) \oplus \mathsf{column\text{-}space} \ (C)$
- z: residual latent variables
- $\operatorname{rank}(\mathcal{B}) \ll \{p,q\}$ since $\dim(\operatorname{col-space}(\mathcal{B}))$ is small.
- \bullet Column-space of ${\cal B}$ represents the interpretable component of the effect of latent variables

Composite Model (with covariates)

Composite model

$$y = \mathcal{B}x + \mathcal{C}z + \epsilon$$

- $\mathcal{B}: \mathbb{R}^q \to \mathbb{R}^p$; rank $(\mathcal{B}) \ll \{p, q\}$
- $\mathcal{C}: \mathbb{R}^h \to \mathbb{R}^p$; $h \ll \{p, q\}$
- x,z,ϵ independent random variables; ϵ has independent components, $z\in\mathbb{R}^h$
- The quantity $\mathcal{B}x$ is the interpretable component of the effect of latent variables
- Take away: interpreting latent variables means learning an accurate composite factor model

Composite Model (with covariates)

Composite model

$$y = \mathcal{B}x + \mathcal{C}z + \epsilon$$

- ullet Fit joint observations of (y,x) to composite model and identify:
 - ullet The map ${\cal B}$
 - Number of residual latent variables
 - The effect of residual latent variables: Cz
 - Variance of ϵ
- How do we learn parameters of this model?

LEARNING A COMPOSITE MODEL (WITH COVARIATES)

$$y = \mathcal{B}x + \mathcal{C}z + \epsilon$$

• Inverse covariance matrix of (y, x) has rich structure:

$$\Theta = \begin{pmatrix} \Theta_y & \Theta_{yx} \\ \Theta_{xy} & \Theta_x \end{pmatrix} \in \mathbb{S}^{(p+q)\times(p+q)}$$

- $\mathrm{rank}(\Theta_{yx}) = \mathrm{rank}(\mathcal{B}) \ll \min\{p,q\} \text{ since } \mathcal{B} = \Theta_y^{-1}\Theta_{yx}$
- $\bullet \ \ \Sigma_{y \ | \ x} = \underbrace{\Sigma_{\epsilon}}_{\text{diagonal}} + \underbrace{\mathcal{C}zz'C'}_{\text{low rank}}$
- ullet $\Theta_y = \Sigma_{y \mid x}^{-1} = {\sf Diagonal}$ Low rank

Learning a Composite Model (with covariates)

- \bullet Given observations $\mathcal{D}_n = \left\{ (y^{(1)}, x^{(1)}), (y^{(2)}, x^{(2)}), \dots (y^{(n)}, x^{(n)}) \right\}$
- A natural approach for $\lambda_n, \gamma > 0$

$$\begin{split} \arg \min_{\Theta,D,L} & -\mathsf{log.lik} \ (\Theta,\mathcal{D}_n) + \lambda_n [\gamma \ \mathsf{rank}(\underline{L}) + \mathsf{rank}(\Theta_{yx})] \\ \mathrm{s.t.} & \Theta = \begin{pmatrix} \Theta_y & \Theta_{yx} \\ \Theta_{xy} & \Theta_x \end{pmatrix}; \Theta_y = D - L, \ L \succeq 0, D \ \mathrm{is \ diagonal} \end{split}$$

Rank penalty is nonconvex!

CONVEX RELAXATION

Computationally tractable relaxation for inducing low rank structure [Fazel (2002), Boyd, Recht, Parrilo, . . .]

$$\operatorname{rank}(M) \quad \longrightarrow \quad \|M\|_{\operatorname{nuc}} = \sum_i \sigma_i(M)$$

• A convex relaxation for $\lambda_n, \gamma > 0$

• When does the estimator identify the underlying model?

Assumptions: Identifiability

$$y = \mathcal{B}x + \mathcal{C}z + \epsilon$$
 Good

Assumption 1: The effect of x, z must not "concentrate" on any y

ullet Otherwise, the effect of x,z can be absorbed into $\epsilon.$

Assumption 2: The column-spaces of ${\cal B}$ and ${\cal C}$ must be sufficiently transverse

• Otherwise, the effect of x and z cannot be distinguished.

Assumptions: Identifiability

$$y = \mathcal{B}x + \mathcal{C}\zeta + \epsilon$$

- ullet Assumption 1: column-space($\mathcal B$) and column-space($\mathcal C$) should not contain elements from the standard basis
 - $\max_i \|\mathcal{P}_{\mathsf{col\text{-}space}(\mathcal{B})} e_i\|_2$ must be small
 - $\max_i \|\mathcal{P}_{\mathsf{col\text{-}space}(\mathcal{C})} e_i\|_2$ must be small
 - related to the coherence parameter in Candes, Recht [2010]
- Assumption 2: column-space(\mathcal{B}) and column-space(\mathcal{C}) should be sufficiently transverse (i.e. have large angle)
- Thm: Estimator identifies underlying model w.h.p provided
 - ullet n is larger than the combined dimension of (y,x)
 - Identifiability conditions are satisfied

EXPERIMENT 1: FINANCIAL ASSET PROBLEM

- Responses: Monthly stock return of 45 companies (1982-2016); $y \in \mathbb{R}^{45}$
- 13 Covariates, $x \in \mathbb{R}^{13}$:
 - EUR to USD exchange rate
 - Government expenditures
 - Federal debt
 - Federal reserve rate
 - GDP growth rate
 - Industrial production rate
 - Mortgage Rate
 - Oil import
 - Saving rate
 - Consumer price index
 - Producer price index
 - Home ownership rate
 - Inflation rate

EXPERIMENT 1: FINANCIAL ASSET PROBLEM

• Pure factor model (only on responses):

$$y = \mathcal{A}\zeta + \epsilon$$

- 10 latent factors
- Composite model (responses and covariates) $y = \mathcal{B}x + \mathcal{C}z + \epsilon$
 - $\dim(z) = 8$, $\operatorname{rank}(\mathcal{B}) = 2$
- How good are the covariates at giving interpretation to latent variables of the factor model?
 - \bullet Principal angles between the 2-dimensional column-space of ${\cal B}$ and 10-dimensional column-space of ${\cal A}$ are :
 - 6,16 degrees
- \bullet Projection of x onto 2-dimensional row-space of ${\cal B}$ represents relevant component
 - EUR to USD exchange and Government spending are most relevant for capturing the latent phenomena.

Experiment 2: California Reservoir Modeling

- Collaborators: Michael Turmon and JT Reager (Jet Propulsion Laboratory)
- Responses: Monthly average levels of 55 reservoirs in California (2003-2014); $y \in \mathbb{R}^{55}$
- 8 Covariates; $x \in \mathbb{R}^8$:
 - Palmer Drought Index
 - Hydroelectric Power
 - Unemployment rate
 - Temperature in Sacramento region
 - Temperature in San Joaquin region
 - Precipitation in Sacramento region
 - Precipitation in San Joaquin region
 - Consumer price index

Experiment 2: California Reservoir Modeling

• Pure factor model (only on responses)

$$y = \mathcal{A}\zeta + \epsilon$$

- 14 latent factors
- Composite model (responses and covariates) $y = \mathcal{B}x + \mathcal{C}z + \epsilon$

$$y = \mathcal{B}x + \mathcal{C}z + \epsilon$$

- $\dim(z) = 2$, $\operatorname{rank}(\mathcal{B}) = 2$
- How good are the covariates at giving interpretation to latent variables of the factor model?
 - ullet Principal angles between the 4-dimensional column-space of ${\cal B}$ and 14-dimensional column-space of \mathcal{A} are :
 - 0.347, 1.6, 2.45, 4.55 degrees
- Projection of x onto 4-dimensional row-space of \mathcal{B} represents relevant component
 - Drought index and hydroelectric power are most relevant for capturing the latent phenomena.

SUMMARY

- Semantic information about latent variables of a factor model
 - Measure additional variables, and link these to latent variables; A convex approach with statistical guarantees
- Several extensions
 - Graphical models with latent variables
- Future work
 - Extension to Generalized linear models or non-Gaussian models

PAPER

- Interpreting latent variables in factor models via convex optimization, preprint 2016.
 - T., and Chandrasekaran.
- California reservoir drought sensitivity and exhaustion risk using statistical graphical models, preprint 2016
 - T., Reager, Turmon, and Chandrasekaran.

http://www.its.caltech.edu/ ataeb/index.html