Maximum Likelihood Estimation for Continuous Models

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Learn how to fit continuous parametric models to data

$\mu_1 := 174, \ \sigma_1 := 9$

 $\mu_2 := 177, \ \sigma_2 := 6$

One data point

Given a data point a and a parametric pdf f_{θ} , how should we choose θ ?

Change of perspective: Interpret $f_{\theta}(a)$ as a function of θ

Assign the highest possible density to a

What if we have more data?

Assumptions

Let \tilde{a}_1 , \tilde{a}_2 , ..., \tilde{a}_n be continuous random variables defined on the same probability space

They are identically distributed if they have the same pdf

They are independent, if events involving \tilde{a}_1 , \tilde{a}_2 , ..., \tilde{a}_n are mutually independent

We often model data as i.i.d.

Likelihood

Data: $x_1, x_2, ..., x_n$

Under i.i.d. assumptions the *joint density* of the data under the parametric model is $\prod_{i=1}^{n} f_{\theta}(x_i)$

The likelihood of a model f_{θ} given a dataset $X := \{x_1, x_2, \dots, x_n\}$ is

$$\mathcal{L}_X(\theta) := \prod_{i=1}^n f_{\theta}(x_i)$$

The log-likelihood is

$$\log \mathcal{L}_X(\theta) = \sum_{i=1}^n \log f_{\theta}(x_i)$$

Maximum likelihood

Given $f_{\theta}: A \to \mathbb{R}^+$ and a dataset $X := \{x_1, x_2, \dots, x_n\}$, the ML estimate of θ is

$$egin{aligned} heta_{\mathsf{ML}} &:= \arg\max_{ heta} \mathcal{L}_X(heta) \ &= \arg\max_{ heta} \log \mathcal{L}_X(heta) \end{aligned}$$

Exponential distribution

The pdf of an exponential random variable \tilde{t} with parameter λ is

$$f_{\tilde{t}}(t) = \begin{cases} \lambda e^{-\lambda t} & \text{if } t \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

Log likelihood

Dataset $X := \{x_1, x_2, \dots, x_n\}$

$$\log \mathcal{L}_X(\lambda) = \sum_{i=1}^n \log f_\lambda(x_i)$$

$$= \sum_{i=1}^n \log \lambda \exp(-\lambda x_i)$$

$$= n \log \lambda - \lambda \sum_{i=1}^n x_i$$

Goal: Model time between calls (6 am-7 am on weekdays)

Log likelihood (call center data)

$\lambda := 10^{-3}$

$\lambda := 4 \cdot 10^{-3}$

ML estimate of exponential

$$\log \mathcal{L}_X(\lambda) = n \log \lambda - \lambda \sum_{i=1}^n x_i$$

$$\frac{d \log \mathcal{L}_{x_1,...,x_n}(\lambda)}{d\lambda} = \frac{n}{\lambda} - \sum_{i=1}^n x_i$$

$$\frac{d^2 \log \mathcal{L}_{x_1,...,x_n}(\lambda)}{d\lambda^2} = -\frac{n}{\lambda^2} < 0 \quad \text{for all } \lambda > 0$$

$$\lambda_{\mathsf{ML}} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} x_i}$$

Log likelihood (call center data)

Maximum-likelihood estimate

$$\lambda_{\rm ML} := 2.5 \, 10^{-3}$$

Gaussian distribution

The Gaussian or normal parametric pdf with mean μ and standard deviation σ is

$$f_{\tilde{a}}(a) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(a-\mu)^2}{2\sigma^2}}$$

Log likelihood

Dataset
$$X := \{x_1, x_2, \dots, x_n\}$$

$$\log \mathcal{L}_X(\mu, \sigma) = \sum_{i=1}^n \log f_{\mu, \sigma}(x_i)$$

$$= \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(a-\mu)^2}{2\sigma^2}}$$

$$= -\frac{n \log (2\pi)}{2} - n \log \sigma - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$

Log likelihood (height data)

$\mu_1 := 174, \ \sigma_1 := 9$

$\mu_2 := 177, \ \sigma_2 := 6$

ML estimate of Gaussian

Dataset $X := \{x_1, x_2, ..., x_n\}$

$$\log \mathcal{L}_X(\mu, \sigma) = -\frac{n \log (2\pi)}{2} - n \log \sigma - \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$\frac{\partial \log \mathcal{L}_{\{x_1,\dots,x_n\}}(\mu,\sigma)}{\partial \mu} = \sum_{i=1}^n \frac{x_i - \mu}{\sigma^2}$$
$$\frac{\partial^2 \log \mathcal{L}_{\{x_1,\dots,x_n\}}(\mu,\sigma)}{\partial \mu^2} = -\frac{n}{\sigma^2}$$

$$\mu_{\mathsf{ML}} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

ML estimate of Gaussian

$$\log \mathcal{L}_X(\mu_{\mathsf{ML}}, \sigma) = -\frac{n \log (2\pi)}{2} - n \log \sigma - \sum_{i=1}^n \frac{(x_i - \mu_{\mathsf{ML}})^2}{2\sigma^2}$$

$$\frac{\partial \log \mathcal{L}_{\{x_1,...,x_n\}} (\mu_{\mathsf{ML}}, \sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \sum_{i=1}^{n} \frac{(x_i - \mu_{\mathsf{ML}})^2}{\sigma^3}$$

$$\sigma_{\mathsf{ML}}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_{\mathsf{ML}})^2$$

Log likelihood (height data)

Maximum-likelihood estimate

$$\mu_{ML} := 177, \ \sigma_2 := 6$$

