

Atomic Structure & Periodicity

"How are BONDS formed?" – Chapter 6 & 7

What's inside an atom?

Periodic table tells us about the reactivity of the elements!

Lighter

heavles

-> Structure of atoms influences reactivity
removed so ... periodic table must

1		refluule lable														18		
1A				Legend:						Jeh me about atomic								
1 H 1.008	2 2A					1 H 1.008	← Atomic	number (2 symbol mass (am	z) 5 -	md		13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.003	
3	4 D	*	ma	55 -	-> No	icles	5 D	6	7	8	9	10						
Li	Be	•	rea				B	C	N	0	F	Ne						
6.941 11	9.012 12	7	rea	CHIVI	+4-	-) e	10.81	12.01 14	14.01 15	16.00 16	19.00 17	20.18	1					
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	\mathbf{S}	Cl	Ar	
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80	1
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3	
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn	
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)	
87	88	89**	104	105	106	107	108	109	110	111								-
\mathbf{Fr}	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu								
(223)	226.0	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)								

Electronic Structure

-> describing electrons as waves

Electrons in an atom are arranged in shells, subshells, and orbitals.

- **Orbitals** describe the physical distribution of electrons within an atom. There are several kinds of orbitals, each with a characteristic shape. Each orbital can contain a <u>maximum of 2 electrons</u>.
- **Subshells** are collections of orbitals with a similar shape. These are usually described by letters (s, p, d, f, ...) where all orbitals in the p subshell have a similar shape.
- similar shape. |S| = |

Representations of Orbitals

this circle

✓ Recognize atomic orbital shapes (s, p and d) and predict their relative energies.

s orbitals

s orbitals are spherical.

There is only one s orbital per subshell. In the s subshell is the lowest-energy subshell in any energy level.

✓ Recognize atomic orbital shapes (s, p and d) and predict their relative energies.

p orbitals have one *angular node* – one region where there is zero electron density.

There are three possible orientations for p orbitals (x, y, z) – and so three p orbitals per subshell.

The p subshell is higher energy than the s subshell in the same energy level.

✓ Recognize atomic orbital shapes (s, p and d) and predict their relative energies.

d orbitals

d orbitals have two angular nodes.

- There are five possible orientations and so five *d* orbitals per subshell.
- The *d* subshell is higher energy than the *s* and *p* subshells in the same energy level.
- ✓ Recognize atomic orbital shapes (s, p and d) and predict their relative energies.

d orbitals

