24 Fall ECEN 704: VLSI Circuit Design Design Pre-lab Report

Lab7: Frequency Response of Inverting Amplifiers

Name: Yu-Hao Chen

UIN:435009528

Section:601

Professor: Aydin Karsilayan

TA: Troy Buhr

1.

	gain (M)	Rin	Rout	\mathcal{L} inearity
Current mirror load	-gm1 X (rds1 // rds2)	∞ same	rds1 11 rds2 good	middle
digital cmos	- (gmit ym z) X (rdsi //rdsz)	∞ "	rds1 11 rds2 good	Wurse
self-hias pmos	- gm1 X (1 gmz 11 rds1)	∞ "	rds111 dmz worse	gwd
self-bias cmos	- gmi X (rds1 // gmz)	∞ "	rds1 11 gmz worse	midde

2.

$$H(s) = \frac{Vo}{V\dot{A}} = \frac{CA+(I-M)Cc}{Rin} \times M \times Rout$$

Rout = RB // (CB +
$$\frac{1}{1-M}$$
 Cc)

Rin = RA + (CA + (1-M) Cc)

	RA	CA	Cc	RB	Св
Current mirror load	Rs	Cgsl	Cgd1 + Cm	rol 11 roz	Chdit Chdz
digital cmos	Rs	Cysl + Cysz	Cgdl + Cgdl+Cm	VOI 11 YUZ	Chall t Chalz
self-hias pmos	Rs	Cgsl	Cgd1+ Cm	vol 11 gmz	Chall + Chalz + Cysz
self-bias cmos	Rs	Casl	Cydl + Cm	rul 11 gmz	Chull + Chulz + Cysz

Figure 7-2: Generic Inverting Amplifier Small-Signal Model

$$Wp1 = 2\pi fp1 = \frac{-1}{|Avol Rs Cm|} \Rightarrow |96.3125k| = \frac{-1}{32 \times 100k \times Cm} = \frac{Cm = 1.59pf}{}$$

$$Wp2 = \frac{-Gm}{CB} = \frac{-gml}{30pF} \ge 2\pi \times 1M \times \sqrt{3} \qquad gml \ge 326 \mu$$

Avo = - Gm Rout
$$(\lambda = 0.15)$$
= - gml X (rds1 // rds2) = 32 = -gml X $\frac{1}{2 \times 10}$ = 32

= - gml X (rds1 // rds2) =
$$32$$
 = -gml X $\frac{1}{2 \times 10}$ = 32

$$G^{MI} = \sqrt{2 \mu n c u x} \frac{w}{L} ID$$
 \Rightarrow 10.62 $\mu = 0.12866 \frac{w}{L}$ $\frac{w}{L_n} = 82.5 = \frac{22 \mu}{0.27 \mu}$

$$\frac{W}{L_p} = \frac{44M}{0.27M}$$

GBW = Avo x fp1
$$\Rightarrow$$
 1 M = 32 x fp1 $\frac{1}{1}$ fp1 = 31.25 k

 $6p2 \ge \sqrt{3}$ GBW $\frac{1}{1}$ fp2 $\frac{1}{1}$ Avol Rx cm \Rightarrow 196. 3125 k = $\frac{-1}{32.21 \text{ look x cm}}$ $\frac{1}{2}$ Cm \Rightarrow 1.59 pf

Wp2 = $\frac{-Gm}{CB} = \frac{-gm1+gm2}{30 \text{ pf}} \ge 3\pi \times 1M \times \sqrt{3}$ $\frac{1}{3}$ $\frac{1}{3}$

 $\sqrt{2k_{P}(\frac{w}{L})_{1}}$ ID = $\sqrt{2k_{P}(\frac{w}{L})_{2}}$ ID

$$\begin{array}{c|c}
\hline
\begin{array}{c}
\hline
\end{array}
\end{array}
\begin{array}{c}
\hline
\end{array}
\begin{array}{c}
\hline
\end{array}
\begin{array}{c}
\hline
\end{array}
\end{array}
\begin{array}{c}
\hline
\end{array}
\end{array}
\begin{array}{c}
\hline
\end{array}
\begin{array}{c}
\hline
\end{array}
\end{array}
\begin{array}{c}
\hline
\end{array}
\begin{array}{c}
\hline
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\hline
\end{array}
\end{array}
\begin{array}{c}
\hline
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\end{array}
\end{array}
\begin{array}{c}
\hline
\end{array}
\end{array}
\begin{array}{c}
\hline
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\end{array}
\end{array}
\begin{array}{c}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\end{array}
\end{array}
\end{array}$$
\\
\end{array}
\begin{array}{c}
\end{array}
\end{array}
\end{array}

\\
\end{array}
\begin{array}{c}
\end{array}
\end{array}

 \end{array}
 \end{array}

GBW = Avo x fp1
$$\Rightarrow$$
 1x fp1 $\frac{f_{p1} = IMHz}{fpz \geq \sqrt{3} M Hz}$

$$Wp1 = 2\pi fp1 = \frac{-1}{1 \text{ Avol } Rs \ cm} \Rightarrow 3.14 M = \frac{-1}{100 \text{ k} \times \text{ Cm}} \underline{Cm} = 3.18 pF$$

$$fpz = \sqrt{3} GBW = \sqrt{3}MHz X27 = \frac{gml}{CB} = 30 pF$$
 $gml = 326M = gmz$

$$\sqrt{2k_{p}(\frac{w}{L})_{1}}$$
 = $\sqrt{2k_{p}(\frac{w}{L})_{2}}$ ID

$$\frac{w}{L} = \frac{5M}{0.17M} \Rightarrow \text{get ID}$$