

Aljaz Kramberger

Associate Professor

Email: alk@mmmi.sdu.dk

Office: Ø26-603a-3

SDU Robotics, The Maersk Mc-Kinney Moller Institute.

M.Sc – Mechatronics,

Ph.D – Robotics (robot control in contact with the

environment)

Research filed:

- → Robot control, learning, human robot interaction, industrial robotics,
- → Part design and optimization,
- → Robot grasping

Course information

→ Robotics and Computer vision:

- → Lectures (theoretical approach) check lectures plan,
- → examples,
- → exercises,
- \rightarrow 1 hand-in.

→ Tools:

- → python robotic toolbox, Mujoco, LaTex, MATLAB.
- → Programming languages:
 - → Phyton, MATLAB scripting.

→Literature:

- → Siciliano, Bruno, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: modelling, planning and control. Springer Science & Business Media, 2010, doi. 10.1007/978-1-84628-642-1
- \rightarrow Mihelj M., Bajd T., Ude A., et al. Robotics. 2nd Edition, 2019, Springer, https://doi.org/10.1007/978-3-319-72911-4,
- → Siciliano B., Khatib O., Handbook of Robotics, 2nd Edition, 2016, Springer, https://doi.org/10.1007/978-3-319-32552-1
- → Internet

Prerequisites

- → Kinematics,
- → frame structures,
- → spaces
- → definitions of poses in 3D space,
- → state vectors,
- → rotation matrix,
- → rotation around coordinate axis,
- → RPY angles,
- → homogeneous coordinates transforms,
- → forward kinematics, D-H method, transformation frames,
- → compute the state of the manipulator.

Mihelj M., Bajd T., Ude A., et al. Robotics. 2nd Edition, 2019, Springer, https://doi.org/10.1007/978-3-319-72911-4, chapter 1-4.

Topics in robotics we will cover in the course

Course topics – robotics (subject to change)

Lectures	Topic
Robotics 1	Introduction to robotics, Recap of Kinematics, Recap of frames and orientation definitions, rotation representation in quaternion space
Robotics 2	Equivalent angle-axis, Singularities and joint limits, Definition of the robots workspace
Robotics 3	Inverse kinematics problem, analytical and numerical solution, Derivation of the Jacobian
Robotics 4	Introduction to Linear Interpolation Methods, Point to point movement, Parabolic blends
Robotics 5	Cubic polynomial interpolation for trajectory planning
Robotics 6	Introduction to robot motion planning, Path planning with probabilistic roadmaps
Robotics 7	Kinodynamic motion planning, Path optimization, Task constrained motion planning
Robotics 8	Learning by Demonstration and Digital twins
Robotics 9	Grasping
Robotics 10	Robot grasping and collaborative robots

Questions?

