CODERHOUSE

Curso de SQL - Comisión 81830

Entrega Nº2

Título del proyecto:

Sistema de Gestión de Recursos para Empresa Constructora

Alumno: Ignacio Carabelli

Profesor: Leonel Lo Presti

Tutor: Jennifer Goldfeld

Fecha: 9 de Septiembre de 2025

Archivos: ConstruArq Carabelli.pdf / ConstruArq objetos.sql /

ConstruArq datos.sql

Introducción

El presente proyecto tiene como finalidad el diseño y la implementación de una base de datos relacional para una empresa constructora dedicada a la ejecución de obras edilicias de mediana y gran escala. Dicha empresa gestiona múltiples obras en simultáneo y necesita organizar eficientemente una gran variedad de recursos materiales, humanos y logísticos.

La solución propuesta busca modelar y representar de forma estructurada todos los elementos clave del negocio, incluyendo obras, personal técnico y operativo, maquinaria, herramientas, materiales y proveedores. La base de datos permitirá mantener trazabilidad sobre los recursos utilizados, el stock disponible y las compras realizadas a proveedores, además de facilitar la planificación y asignación de recursos en cada obra activa.

Objetivos

El objetivo principal del proyecto es diseñar una base de datos que centralice y administre la información operativa de la empresa constructora, permitiendo:

 Registrar y consultar todas las obras activas o finalizadas, con sus ubicaciones y fechas.

- Gestionar los recursos humanos, tanto técnicos como operativos, asignados a cada obra.
- Controlar la asignación y disponibilidad de maquinaria y herramientas.
- Registrar y monitorear el consumo de materiales en cada obra.
- Controlar el stock general de materiales disponibles y alertar sobre necesidades de reposición.
- Administrar proveedores y registrar órdenes de compra de materiales para mantener abastecido el stock.
- Facilitar análisis operativos, logísticos y contables mediante reportes generados a partir de la base de datos.

Este sistema de gestión cruzará información clave de diferentes áreas funcionales del negocio: administración de recursos, compras, logística, planificación de obras y control de inventarios.

Situación Problemática

Actualmente, la empresa presenta una gestión descentralizada de sus recursos y operaciones. La información se encuentra distribuida en múltiples archivos (planillas de Excel, correos electrónicos, formularios físicos, etc.), lo cual genera duplicación de datos, errores en la planificación y dificultades en la toma de decisiones.

Entre los principales problemas detectados:

- Falta de visibilidad en tiempo real del stock disponible.
- Dificultad para rastrear qué materiales se usaron en cada obra.
- Pérdida de información sobre el estado de las herramientas y máquinas.
- Dificultad para saber qué personal está asignado en cada obra.
- Poca trazabilidad de las compras realizadas a proveedores.

Frente a esta problemática, surge la necesidad de implementar un sistema centralizado, automatizado y confiable que permita gestionar todos los recursos vinculados a la ejecución de obras desde una única base de datos.

Modelo de Negocio

La empresa constructora opera en el ámbito de la construcción de edificios residenciales, comerciales y corporativos. Ejecuta varias obras en simultáneo y cuenta con un equipo técnico compuesto por ingenieros, arquitectos y supervisores de obra, así como también personal operativo (obreros de distintas especialidades).

El modelo de negocio incluye:

- Planificación y ejecución de obras en diferentes ubicaciones.
- Asignación de personal y recursos físicos (maquinaria, herramientas) según las necesidades de cada obra.
- Gestión de materiales mediante un sistema de stock centralizado, con control de consumo por obra.
- Relación con proveedores de insumos y materiales, con quienes se gestionan órdenes de compra periódicamente.
- Optimización de recursos para reducir costos, minimizar tiempos muertos y mejorar el rendimiento de las obras.

La solución de base de datos busca facilitar todas estas operaciones, aportando una infraestructura digital que mejore la eficiencia operativa y la toma de decisiones basada en datos.

Diagrama Entidad-Relación (E-R)

Listado de Tablas

a. Obras

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_obra	ID_OB	INT	PK	Identificador único de la obra
nombre_obra	NOM_OB	VARCHAR(100)		Nombre del proyecto u obra
ubicacion	UBIC	VARCHAR(150)		Dirección física de la obra
fecha_inicio	F_INI	DATE		Fecha de inicio del proyecto
fecha_fin	F_FIN	DATE		Fecha de finalización (puede ser NULL)

b. Personal

Campo	Abreviatura	Tipo de dato	Clave	Descripcion
id_personal	ID_PER	INT	PK	Identificador único del personal
nombre	NOM	VARCHAR(100)		Nombre del personal
apellido	APE	VARCHAR(100)		Apellido del personal
tipo	TIPO	VARCHAR(20)		Tipo de personal: 'tecnico' u 'obrero'
especialidad	ESP	VARCHAR(50)		Rol técnico o especialidad/oficio operativo
telefono	TEL	VARCHAR(20)	UNIQUE	Teléfono de contacto
email	EMAIL	VARCHAR(100)	UNIQUE	Correo electrónico

c. Maquinaria

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_maquinaria	ID_MAQ	INT	PK	Identificador de la máquina
nombre_maquinaria	NOM_MAQ	VARCHAR(100)		Nombre de la máquina
tipo	TIPO	VARCHAR(50)		Tipo de maquinaria
estado	EST	VARCHAR(20)		Estado (disponible, en uso, etc.)

d. Herramientas

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_herramienta	ID_HER	INT	PK	Identificador único
nombre	NOM	VARCHAR(100)		Nombre de la herramienta
cantidad_total	CANT_TOT	INT		Cantidad total disponible
estado	EST	VARCHAR(20)		Estado (disponible, en uso, etc.)

e. Materiales

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_material	ID_MAT	INT	PK	Identificador único del material
nombre	NOM	VARCHAR(100)		Nombre del material
unidad_medida	UMED	VARCHAR(20)		Unidad de medida (kg, m3, unidad, etc.)
estado	EST	VARCHAR(20)		Estado (disponible, en uso, etc.)

f. Stock Materiales

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_material	ID_MAT	INT	PK, FK	Relacionado con la tabla Material
cantidad_disponible	CANT_DISP	INT		Stock disponible en depósito

g. Proveedores

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_proveedor	ID_PROV	INT	PK	Identificador del proveedor
nombre	NOM	VARCHAR(100)		Nombre de la empresa proveedora
telefono	TEL	VARCHAR(20)	UNIQUE	Teléfono
email	EMAIL	VARCHAR(100)	UNIQUE	Email
direccion	DIR	VARCHAR(150)		Dirección física

h. Órdenes de compra

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_orden	ID_ORD	INT	PK	Identificador de la orden
id_proveedor	ID_PROV	INT	FK	Relacionado con Proveedor
fecha_compra	F_COMP	DATE		Fecha de la compra

i. Detalles órdenes de compra

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_orden	ID_ORD	INT	PK, FK	Orden de compra
id_material	ID_MAT	INT	PK, FK	Material comprado
cantidad	CANT	INT		Cantidad solicitada
precio_unitario	PREC_UNIT	DECIMAL(10,2)		Precio por unidad

j. Asignación de herramientas

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_obra	ID_OB	INT	PK, FK	Obra destino
id_herramienta	ID_HER	INT	PK, FK	Herramienta asignada
cantidad_asignada	CANT_ASIG	INT		Cantidad destinada a la obra

k. Asignación maquinarias

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_obra	ID_OB	INT	PK, FK	Obra asignada
id_maquinaria	ID_MAQ	INT	PK, FK	Máquina asignada
fecha_inicio	F_INI	DATE		Fecha de inicio de uso
fecha_fin	F_FIN	DATE		Fecha de finalización de uso

I. Asignación de personal

Campo	Abreviatura	Tipo de dato	Clave	Descripción
id_obra	ID_OB	INT	PK, FK	Obra asignada
id_personal	ID_PER	INT	PK	ID del técnico u obrero
rol	ROL	VARCHAR(20)		Tipo de personal: 'tecnico' o 'obrero'

m. Consumo materiales

C	Campo	Abreviatura	Tipo de dato	Clave	Descripción
i	d_obra	ID_OB	INT	PK, FK	Identificador de la obra donde se usa el material
id_	_material	ID_MAT	INT	PK, FK	Material consumido
С	antidad	CANT	INT		Cantidad consumida
fecha	a_consumo	F_CONS	DATE		Fecha del consumo del material

Script SQL

Link a Github: https://github.com/lgnacioCarabelli/ConstruArq Carabelli.git

Conclusiones

El desarrollo de esta base de datos representa una solución integral para gestionar los recursos clave de una empresa constructora. A través de un modelo relacional robusto y escalable, se logra organizar la información de manera eficiente, permitiendo un control detallado sobre las obras en ejecución, los materiales utilizados, el stock disponible, las asignaciones de personal, la maquinaria, y las compras a proveedores.

Este modelo no solo resuelve problemas operativos actuales, sino que sienta las bases para futuras mejoras, como reportes analíticos, seguimiento de gastos por obra o control en tiempo real de inventarios.

La implementación de esta base de datos es una oportunidad para profesionalizar la gestión interna y tomar decisiones basadas en datos concretos, optimizando así los recursos disponibles y mejorando la rentabilidad de cada proyecto constructivo.

Segunda entrega

Vistas

Vista 1: vista stock materiales

Objetivo:

Permite consultar de forma rápida el stock actual de todos los materiales disponibles en el depósito.

Descripción:

Esta vista muestra el listado de materiales disponibles, su unidad de medida y la cantidad en stock. Es útil para que el área de logística pueda monitorear los niveles de insumos y prever necesidades de reposición.

Tablas involucradas:

- Material
- Stock_Material

Vista 2: vista consumo por obra

Objetivo:

Obtener un resumen del consumo total de materiales, discriminado por obra y tipo de material.

Descripción:

La vista consolida información del consumo de materiales en cada obra, permitiendo analizar el uso de recursos y llevar control del inventario en función del avance de cada proyecto.

Tablas involucradas:

- Consumo Material
- Material
- Obra

Vista 3: vista asignacion personal

Objetivo:

Visualizar el personal asignado a cada obra, incluyendo tanto técnicos como obreros.

Descripción:

Esta vista presenta el personal afectado a cada obra, detallando nombre, apellido y rol (técnico u obrero). Es útil para la planificación de recursos humanos y el control de asignaciones.

Tablas involucradas:

- Asignacion Personal
- Obra
- Personal_Tecnico
- Obrero

Funciones

Función 1: obtener stock material(p id material INT)

Objetivo:

Permite consultar el stock actual disponible de un material específico, ingresando su ID.

Descripción:

Esta función devuelve la cantidad de unidades disponibles en el depósito para un material determinado. Es útil para validaciones antes de asignar materiales a una obra o generar nuevas órdenes de compra.

Tablas involucradas:

Stock Material

Ejemplo de uso:

```
SELECT obtener_stock_material(1);
-- Devuelve el stock actual del material con ID 1
```

Función 2: total orden compra(p id orden INT)

Objetivo:

Calcular el costo total de una orden de compra, sumando todas las líneas de detalle.

Descripción:

Esta función realiza el cálculo del valor total de una orden de compra multiplicando la cantidad por el precio unitario de cada material. Facilita análisis contables y reportes de gastos.

Tablas involucradas:

Detalle_Orden

Ejemplo de uso:

```
SELECT total_orden_compra(1);
-- Devuelve el total gastado en la orden de compra con ID 1
```

Stored Procedures

SP1: registrar consumo material

Objetivo:

Registrar el consumo de un material en una obra y actualizar automáticamente el stock disponible.

Descripción:

Este procedimiento verifica que haya stock suficiente del material solicitado. Si hay disponibilidad, registra el consumo en la tabla Consumo_Material y descuenta la cantidad consumida del stock. Si no hay suficiente stock, lanza un error informando la situación.

Tablas involucradas:

- Consumo Material
- Stock_Material

Ejemplo de uso:

```
CALL registrar_consumo_material(1, 1, 500, '2025-09-08');
-- Registra el consumo de 500 unidades del material 1 en la obra 1
```

SP2: agregar proveedor

Objetivo:

Agregar un nuevo proveedor a la base de datos asegurando que no exista previamente.

Descripción:

Este procedimiento permite insertar un proveedor nuevo, validando que no se repita el teléfono ni el correo electrónico. Si ya existe un proveedor con esos datos, lanza un mensaje de error para evitar duplicados.

Tablas involucradas:

Proveedor

Ejemplo de uso:

```
CALL agregar_proveedor(
  'Ladrillos del Oeste',
  '1122446688',
  'ventas@ladrillosdeloeste.com',
  'Ruta 3 km 40'
);
```

Triggers

Trigger 1: trg actualizar stock orden

Objetivo:

Actualizar automáticamente el stock de materiales al ingresar una nueva orden de compra.

Descripción:

Cada vez que se inserta un registro en Detalle_Orden, este trigger actualiza el stock del material correspondiente en Stock_Material. Si el material aún no está registrado en el stock, lo inserta con la cantidad comprada. Asegura que el inventario esté siempre actualizado tras una compra.

Tablas involucradas:

- Detalle_Orden (disparadora)
- Stock Material (actualizada o insertada)

Trigger 2: trg validar asignacion herramienta

Objetivo:

Evitar que se asignen más herramientas a una obra de las que hay disponibles en total.

Descripción:

Antes de insertar un registro en Asignacion_Herramienta, este trigger valida si la cantidad a asignar supera el stock total de esa herramienta en la tabla Herramienta. Si supera el límite, lanza un error y no permite la asignación.

Tablas involucradas:

- Asignacion Herramienta (disparadora)
- Herramienta (consulta del stock)

Conclusión 2da entrega

En esta segunda entrega del proyecto se amplió y profundizó el diseño de la base de datos para el sistema de gestión de una empresa constructora. A partir del modelo relacional planteado inicialmente, se incorporaron objetos avanzados como Vistas, Funciones, Procedimientos Almacenados (Stored Procedures) y Triggers, que enriquecen notablemente las capacidades operativas y analíticas del sistema.

Estas funcionalidades permiten automatizar tareas clave (como la actualización del stock de materiales), validar datos de forma automática, y generar consultas complejas con facilidad, mejorando la eficiencia, seguridad e integridad de la información almacenada.

Además, se optimizó el diseño de algunas tablas mediante la unificación del personal técnico y operativo en una única entidad, lo que facilita la escalabilidad y mejora la organización del modelo. También se creó el DER (Diagrama Entidad-Relación) para representar gráficamente la estructura y relaciones entre las tablas.

La implementación de estos objetos refleja un paso adelante en la madurez del sistema, no solo desde el punto de vista técnico, sino también funcional, acercando la solución a un entorno real y profesional de gestión de recursos para la industria de la construcción.