AS.110.416: Honors Analysis II

Review

James Guo

May 13, 2024

Contents

T	Mea	Measure Theory	
	1.1	Preliminaries	1
	1.2	Outer Measure	1
	1.3	Measurable sets and Lebesgue measure	2
	1.4	σ -Algebra and Borel Sets	3
	1.5	Invariance of Lebesgue Measure and Non-Measurable Sets	4
	1.6	Measurable Functions	5
	1.7	Approximation Measurable Functions by Simple Functions	6
	1.8	Littlewood's 3 Principles of Real Analysis	7
2	Integration Theory		8
	2.1	Lebesgue Integral for Simple Functions	8
	2.2	Lebesgue Integral for Bounded Function Supported on a Set of Finite Measure	9
	2.3	Lebesgue Integral for Non-negative Measurable Function	10
	2.4	Lebesgue Integral for Measurable Function	11
	2.5	The Space of Integrable Functions	13
	2.6	Fubini's Theorem	14
3	Differentiation		
	3.1	Differentiation of the Integral	16
	3.2	Hardy-Littlewood Maximal Function	16
	3.3	Approximation to Identity	17
4	1		18
	4.1	$L^2(\mathbb{R}^n)$ Space	18
	4.2	Hilbert Space	19
	4.3	Orthogonality and Basis	20
	4.4	Unitary Mapping	21
	4.5	Fourier Series	22
5	Abstract Measure Space		22
	5.1	Abstract Measure	22
	5.2	Exterior Measure	23
	5.3	Pre-Measure	24

1 Measure Theory

1.1 Preliminaries

Lemma. Partition of Rectangles.

If a rectangle I is the union of finitely many non-overlapping rectangles, i.e., $I = \bigsqcup_{k=1}^{\infty} I_k$, then $v(I) = \sum_{k=1}^{N} v(I_k)$.

Lemma. Overlapping Cubes of Rectangles.

If rectangles I_1, I_2, \cdots, I_N satisfy $I \subset \bigcup_{j=1}^N I_k$, then $v(I) \leq \sum_{k=1}^N v(I_k)$.

Thm. Partition of Open set in \mathbb{R} .

Every open set $G \subset \mathbb{R}$ can be written as a countable union of disjoint open intervals.

Thm. Partition of Open set in \mathbb{R}^n .

Every open set $G \subset \mathbb{R}^n$ can be written as a countable union of *non-overlapping* (closed) cubes.

Rmk. Dyadic decomposition of \mathbb{R}^n is composed of the cubes has vertex points at $\frac{1}{2^k}\mathbb{Z}$ with length $\frac{1}{2^{k+1}}$.

Prop. Cantor set.

The cantor set *C* has the following properties:

- $C \neq \emptyset$;
- C has an empty interior, contains no interval, and is totally disconnected;
- C has no isolated points, and all its points are limit points of itself, i.e., C is perfect;
- *C* is compact;
- $m_*(C) = 0$ (as the union of intervals has length converging to 0).

1.2 Outer Measure

Defn. Outer measure.

Let $E \subset \mathbb{R}^n$, we define the outer/exterior measure of E as:

$$m_*(E) := \inf \sum_{j=1}^{\infty} v(Q_j),$$

where the infimum is taken over all countable covering og E by (closed) cubes, *i.e.*, $E \subset \bigcup_{j=1}^{\infty} Q_j$.

Prop. Properties of Outer measure.

The outer measure of sets follows the below properties:

(i) Closer Approximation: For every $\epsilon > 0$, there exists a covering $E \subset \bigcap_{j=1}^{\infty} Q_j$ with:

$$\sum_{i=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon;$$

(ii) Monotonicity: If $E \subset F$, then $m_*(E) \leq m_*F$;

- (iii) Countable Sub-additivity: If $E = \bigcup_{j=1}^{\infty} E_j$, then $m_*(E) \leq \sum_{j=1}^{\infty} m_*(E_j)$; Rmk. If $m_*(F) = 0$ and $E \subset F$, $m_*(E) = 0$. If $m_*(E_k) = 0$ for all k, then $m_*(\bigcup_{k=1}^{\infty} E_k) = 0$.
- (iv) Approximation by Open Sets: Let $E \subset \mathbb{R}^n$, for all $\epsilon > 0$, there exists open set G such that $E \subset G$ and $m_*(G) < m_*(E) + \epsilon$.
- (v) Sum of Separated Sets: If $d(E_1, E_2) = \inf\{|x y| : x \in E_1, y \in E_2\} > 0$, then $m_*(E_1 \cup E_2) = m_*(E_1) + m_*(E_2)$.

Rmk. This is not true if we only assume $E_1 \cap E_2 = \emptyset$, contradicted by the Banach-Tarski paradox.

(vi) Countable Sum of Almost Disjoints: If a set E is the countable union of almost disjoint cubes, *i.e.*, $E \subset \bigsqcup_{k=1}^{\infty} Q_k$, then $m_*(E) = \sum_{k=1}^{\infty} v(Q_i)$.

1.3 Measurable sets and Lebesgue measure

Defn. Lebesgue measurable set.

A set $E \subset \mathbb{R}^n$ is said to be Lebesgue measurable if for all $\epsilon > 0$, there exists open set G such that $G \subset E$ and $m_*(G \setminus E) < \epsilon$.

If *E* is measurable, we define its Lebesgue measure to be $m(E) = m_*(E)$.

Rmk. Countable Sub-additivity ensures that there exists a open set G such that $G \supset E$ and $m_*(G) < m_*(E) + \epsilon$. Then, by Sum of Separated Sets, $G = E \sqcup (G \setminus E)$, then $m_*(G) \leq m_*(E) + m_*(G \setminus E)$. If $m_*(E) < \infty$, $m_*(G) - m_*(R) \leq m_*(G \setminus E)$.

Prop. Propositions on Measurable Sets.

The following propositions hold for measurable sets:

- (i) Every open set is measurable. *Rmk*. Every rectangle is measurable.
- (ii) Every set with zero outer measure is measurable, which is defined as a null set.
- (iii) A countably union of measurable sets is also measurable.
- (iv) Every closed set is measurable.

Rmk. We first prove that compact sets are measurable and any close sets can be written as a countable union of compact sets, say $F = \bigcup_{k=1}^{\infty} (F \cap B_k)$ where B_k denotes the closed ball of radius k.

Lemma. If *F* is closed, *K* is compact, and *F*, *K* are disjoint, then d(F, k) > 0.

Lemma. If $\{I_k\}_{k=1}^N$ is a finite collection of non-overlapping rectangles, then $m\left(\bigcup_{k=1}^N I_k\right) = \sum_{k=1}^N I_k$.

- (v) The complement of any measurable set is measurable. Rmk. Let E be measurable set, there exists H as a countable union of closed sets such that $E^c = H$.
- (vi) A countable intersection of measurable sets is measurable. **Cor.** If E_1 and E_2 are measurable, $E_1 \setminus E_2$ is measurable, since $E_1 \setminus E_2 = E_1 \cap E_2^c$.

Thm. Countable Additivity.

If E_1, E_2, \cdots are disjoint measurable sets, then $m(\sqcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} m(E_k)$.

Lemma. A set *E* is measurable if and only if for all $\epsilon > 0$, there exists closed set $F \subset E$ such that $m_*(E \setminus F) < \epsilon$.

Cor. Let $\{I_k\}$ be a countable collection of non-overlapping rectangles, then $m(\bigcup_{k=1}^{\infty} I_k) = \sum_{k=1}^{\infty} m(I_k)$.

Defn. Increasing/Decreasing Subsets of \mathbb{R}^n .

If E_1, E_2, \cdots is a countable collection of subsets of \mathbb{R}^n that increases to E in the sense that $E_k \subset E_{k+1}$ for all k, and $E = \bigcup_{k=1}^{\infty} E_k$, then $E_k \nearrow E$.

Similarly, if E_1, E_2, \cdots decreases to E in the sense that $E_{k+1} \subset E$ for all k, and $E = \bigcap_{k=1}^{\infty} E_k$, then $E_k \searrow E$.

Cor. Convergence on Increasing/Decreasing Subsets.

Suppose $\{E_k\}$ is a collection of measurable sets in \mathbb{R}^n :

- (i) If $E_k \nearrow E$, then $m(E) = \lim_{k \to \infty} m(E_k)$;
- (ii) If $E_k \searrow E$ and $m(E_k) < +\infty$ for some k, then $m(E) = \lim_{k \to \infty} m(E_k)$.

Thm. Approximating Sets.

Suppose *E* is a measurable subset of \mathbb{R}^n . Then, for every $\epsilon > 0$:

- (i) There exists an open set *G* with $E \subset G$ and $m(O \setminus E) < \epsilon$;
- (ii) There exists a closed set F with $F \subset E$ and $m(E \setminus F) < \epsilon$;
- (iii) If m(E) is finite, there exists a compact set K with $K \subset E$ and $m(E \setminus K) < \epsilon$;
- (iv) If m(E) is finite, there exists a finite union $F = \bigcup_{k=1}^{N} Q_k$ of closed cubes such that $m(E \triangle F) < \epsilon$, where $E \triangle F = (E \setminus F) \cup (F \setminus E)$ is the symmetric difference between E and F.

1.4 σ -Algebra and Borel Sets

Defn. σ -algebra.

A collection Σ of subsets of some universal set U is called a σ -algebra if it satisfies:

- (i) $U \in \Sigma$;
- (ii) If $E \in \Sigma$, then $E^c \in \Sigma$, where E^c is the complement of E in U;
- (iii) If $E_k \in \Sigma$ for all k, then $\bigcup_{k=1}^{\infty} E_k \in \Sigma$.

Rmk. The collection of all subsets of \mathbb{R}^n is a σ -algebra.

Rmk. The collection of all Lebesgue measurable sets in \mathbb{R}^n is a σ -algebra, denoted as \mathcal{M} .

Defn. Borel σ -algebra.

The smallest σ -algebra containing all open sets in \mathbb{R}^n is called the Borel σ -algebra, denoted as \mathcal{B} , or $\mathcal{B}_{\mathbb{R}^n}$.

Elements contained in \mathcal{B} are the Borel sets.

Claim. Intersection being Smallest.

Given a collection Σ_0 of subsets in \mathbb{R}^n . Consider the family \mathcal{F} of all σ -algebra that contain Σ_0 , *i.e.*, $\mathcal{F} = \{\Sigma : \Sigma \text{ is a } \sigma \text{ algebra and } \Sigma \supset \Sigma_0\}$. Let $\varepsilon := \bigcap_{\Sigma \in \mathcal{F}} \Sigma$. Then:

- ε is a σ -algebra;
- $\varepsilon \supset \Sigma_0$;
- ε is the smallest σ -algebra containing Σ_0 , *i.e.*, if ε' is a nother σ -algebra containing Σ_0 , then $\varepsilon' \supseteq \varepsilon$.

Rmk. $\mathcal{B} \subseteq \mathcal{M} \subseteq \mathcal{P}(\mathbb{R}^n)$, *i.e.*, all Borel sets are measurable.

Defn. G_{δ} and F_{σ} Sets: G_{σ} and F_{σ} set are the Borel sets, and they are defined as:

- (i) The countable intersections of open sets is G_{δ} sets;
- (ii) The countable union of closed sets is F_{σ} sets.

Thm. Measurable subsets in \mathbb{R}^n .

A subset $E \subset \mathbb{R}^n$ is measurable if and only if:

- (i) *E* differs from a G_{δ} set of measure zero, *i.e.*, E = H/Z where *H* is a G_{δ} set and m(Z) = 0.
- (ii) *E* differs from a F_{σ} set of measure zero, *i.e.*, $E = H \cup Z$ where H is a F_{σ} set and m(Z) = 0.

Rmk. \mathcal{M} is a completion of \mathcal{B} , *i.e.*, \mathcal{M} is \mathcal{B} adding all null sets.

1.5 Invariance of Lebesgue Measure and Non-Measurable Sets

Prop. Translation-Invariance of Lebesgue Measure.

If $E \in \mathcal{M}_{\mathbb{R}^n}$ and for any $h \in \mathbb{R}^n$, then $E + h := \{x + h | x \in E\}$ is measurable and m(E + h) = m(E).

Prop. Relative Dilation-Invariance of Lebesgue Measure.

If $E \in \mathcal{M}_{\mathbb{R}^n}$ and for any $\delta = (\delta_1, \delta_2, \dots, \delta_n)$, then $\delta E := \{(\delta_1 x_1, \delta_2 x_2, \dots, \delta_n x_n) | (x_1, x_2, \dots, x_n) \in E\}$ is measurable and $m(\delta E) = \delta_1 \cdot \delta_2 \cdot \dots \cdot \delta_n m(E)$.

Rmk. Lebesgue measure is reflection-invariant, that is when $E \in \mathcal{M}_{\mathbb{R}^n}$, then $-E := \{-x | x \in E\}$ is measurable and m(-E) = m(E).

Defn. Equivalence Relationship on [0, 1].

An equivalence relation for any $x, y \in [0, 1]$ is defined as follows:

$$x \sim y \text{ if } x - y \in \mathbb{Q}.$$

The equivalence classes are $[x] := \{x + q \in [0,1] : q \in \mathbb{Q}\}$. The equivalence classes either are disjoint or coincide, and they form a partition of $[0,1] = \bigsqcup_{\alpha \in A} x_{\alpha}$.

Axiom. The Axiom of Choice.

Consider a family of non-empty, pairwise disjoint sets $\{E_{\alpha}\}_{{\alpha}\in A}$ in a common set X, there exists a subset

of *X* which contains exactly one element from each E_{α} for $\alpha \in A$.

In other words, there exists a function $\alpha \mapsto x_{\alpha}$ (known as a "choice" function) such that $x_{\alpha} \in E_{\alpha}$ for all α .

Defn. Vitali Set.

Let *V* be a set consisting of exactly one element from each disjoint equivalent class $[x_{\alpha}]$ of [0,1].

Thm. The Vitali Set is not measurable.

Rmk. This is by the translated set $v_k = v + q_k = \{x + q_k : x \in V\}$ where $\{q_k\}$ is an enumeration of rationals in $[-1,1] \cap \mathbb{Q}$. The inclusion $[0,1] \subset \bigsqcup_{k=1}^{\infty} v_k \subset [-1,2]$, thus $1 \leq \infty \times m(v) \leq 3$, which is a contradiction.

1.6 Measurable Functions

Defn. Measurability of a Function.

Consider real-valued function f defined on a measurable set $E \subset \mathbb{R}^n$ such that $f: E \to \mathbb{R} \cup \{\pm \infty\}$. f is measurable if for any $a \in \mathbb{R}$, $\{x \in E: f(x) < a\}$ (denoted as $\{f < a\}$) is measurable. Rmk. f is finite-valued if $-\infty < f(x) < +\infty$ for all $x \in E$.

Cor. Equivalent Definitions of Measurable Function.

f is measurable if and only if $\{f \le a\}$, or $\{f > a\}$, or $\{f \ge a\}$ is measurable for all $a \in \mathbb{R}$. If f is finite valued, then f is measurable if and only if $\{a < f < b\}$ is measurable for all $a, b \in \mathbb{R}$.

Defn. Almost Everywhere.

A property if said to hold almost everywhere in *E* if it holds in *E* except for a subset of *E* with measure zero.

Prop. Propositions on Measurable Functions.

The following properties on measurable functions holds:

- (i) A finite-valued function f is measurable if and only if $f^{-1}(G)$ is measurable for every open set $G \subset \mathbb{R}$.
- (ii) If f is continuous on \mathbb{R}^n , then f is measurable. Rmk. If f is measurable and finite-valued, and Φ is continuous on \mathbb{R} , then $\phi \circ f$ is measurable.
- (iii) Suppose $\{f_k\}_{n=1}^{\infty}$ is a sequence of measurable function on E. Then:

$$\sup_{n} f_n(x), \quad \inf_{n} f_n(x), \quad \limsup_{n \to \infty} f_n(x), \quad \text{and} \quad \liminf_{n \to \infty} f_n(x)$$

are measurable.

Rmk. Note that we can have $\{\sup_n f_n > a\} = \bigcup_n \{f_n > a\}$, and $\inf_n f_n(x) = -\sup_n (-f_n(x))$. *Rmk.* The upper and lower limits can be written as $\limsup_{n \to \infty} f_n(x) = \inf_k \{\sup_{n \ge k} f_n\}$ and $\liminf_{n \to \infty} f_n(x) = \sup_k \{\inf_{n \ge k} f_n\}$.

- (iv) If $\{f_k\}_{k=1}^{\infty}$ is a collection of measurable function, and $f(x) = \lim_{k \to \infty} f_k(x)$, then f is measurable.
- (v) If *f* and *g* are measurable, then:
 - The integer powers of f^k for $k \ge 1$ are measurable; Rmk. For odd powers, $\{f^k > a\} = \{f > a^{1/k}\}$ and for even power, $\{f^k > a\} = \{f > a^{1/k}\} \cup \{-f < a^{1/k}\}$.

- f+g and $f\cdot g$ is measurable if both f and g are finite-valued. Rmk. In this case, we note that $\{f+g>a\}=\{f>a-g\}=\bigcup_{q\in\mathbb{Q}}\{f>q>a-g\}$ and $fg=\frac{1}{4}\left[(f+g)^2-(f-g)^2\right]$.
- (vi) Suppose f is measurable, and f(x) = g(x) for a.e. x. Then g is measurable.

1.7 Approximation Measurable Functions by Simple Functions

Defn. Characteristic Functions.

The characteristic function (or indicator function) of a set *E* is defined as:

$$\chi_E(x) = \begin{cases} 1, & \text{if } x \in E, \\ 0, & \text{if } x \notin E. \end{cases}$$

Defn. Step Functions.

A step function is a finite function of the form:

$$f(x) = \sum_{k=1}^{N} a_k \chi_{R_k}(x),$$

where $a_1, a_2, \dots, a_N \in \mathbb{R}$ and R_1, R_2, \dots, R_N are rectangles.

Defn. Simple Functions.

A simple function is a finite function of the form:

$$f(x) = \sum_{k=1}^{N} a_k \chi_{E_k}(x),$$

where $a_1, a_2, \dots, a_N \in \mathbb{R}$ and E_1, E_2, \dots, E_N are measurable sets of finite measure.

Rmk. We can assume without the loss of generality that E_k 's are disjoint and a_k 's are distinct.

Thm. Approximating Non-Negative Measurable Functions by Simple Functions.

Suppose f is a non-negative measurable function. There exists an increasing sequence of non-negative simple functions $\{\varphi_k(x)\}_{k=1}^{\infty}$ that converges to f, *i.e.*:

$$\varphi_k(x) \le \varphi_{k+1}(x)$$
 and $\lim_{k \to \infty} \varphi_k(x) = f(x)$ for all x .

Rmk. Here, we define $\varphi_k(x)$ as:

$$\varphi_k(x) \text{ as.}$$

$$\varphi_k(x) = \begin{cases} k, & \text{if } f(x) \ge k \text{ and } |x| < k, \\ \frac{j-1}{2^k}, & \text{if } f(x) \in \left[\frac{j-1}{2^k}, \frac{j}{2^k}\right], j \in \{1, 2, \cdots, k \cdot 2^k\}, \\ 0, & \text{if } |x| \ge k. \end{cases}$$

Thm. Approximating Measurable Functions by Simple Functions.

Suppose f is a measurable function. There exists a sequence of simple function $\{f_k\}_{k=1}^{\infty}$ that satisfies:

$$|\varphi_k(x)| \le |\varphi_{k+1}(x)|$$
 and $\lim_{k\to\infty} \varphi_k(x) = f(x)$ for all x .

Rmk. In particular, we have $|\varphi_k(x)| \le |f(x)|$ for all x and k.

Rmk. The proof is made possible with the construction that:

$$\begin{cases} f^+ := \max\{f, 0\}, \\ f^- := -\min\{f, 0\}, \end{cases}$$

so that f^{\pm} are non-negative measurable functions, where they are respectively approximated by $\left\{\varphi_k^{(1)}(x)\right\}_{k=1}^{\infty}$ and $\left\{\varphi_k^{(2)}(x)\right\}_{k=1}^{\infty}$, respectively. Therefore, we have $\varphi_k(x)=\varphi_k^{(1)}-\varphi_k^{(2)}$.

Thm. Approximating Measurable Functions by Step Functions.

Suppose f is measurable on \mathbb{R}^n , then there exists a sequence of step functions $\{\psi_k\}_{k=1}^{\infty}$ that converges pointwise to f(x) for almost every x.

Rmk. This case can be thought of as an extended case for approximating by simple functions. For every $\epsilon > 0$, we can always find Q_1, Q_2, \cdots, Q_N such that $m(E \triangle \bigcup_{j=1}^N Q_j) \le \epsilon$ for all E. By considering the grid formed by extending the sides of these cubes, we see that there exist almost disjoint rectangles, and there are smaller rectangles R_j contained in those rectangles forming a collection of disjoint rectangles such that $m\left(E\triangle \bigsqcup_{j=1}^M R_j\right) \le 2\epsilon$. Thus, we have:

$$\psi(x) = \sum_{j=1}^{M} \chi_{R_j}(x).$$

Rmk. For each approximation, it is converging except possibly a set of measure $\leq 2\epsilon$. However, all the variations set $E_k := \{x : f(x) \neq \psi(c)\}$ in which $m(E_k) \leq 2\epsilon$ and by having $F_K = \bigcup_{j=K+1}^{\infty} E_j$ and $F = \bigcap_{K=1}^{\infty} F_K$, we have m(F) = 0 and $\psi_k(x) \to f(x)$ for all x in the complement of F.

1.8 Littlewood's 3 Principles of Real Analysis

Intuition. Littlewood's 3 Principles of Real Analysis: Littlewood summarized the connections in the form of three principles that provide a useful intuitive guide in the initial study of the theory:

- (i) Every measurable set is nearly a finite union of cubes;
- (ii) Every measurable function is nearly continuous;
- (iii) Every almost everywhere convergent sequence of functions is nearly uniformly converged.

Rmk. "Nearly" means that the set of exceptions has small measure.

Thm. Measurable Set Nearly as a Finite Union of Cubes:

(Approximating Sets (iv):) If m(E) is finite, there exists a finite union $F = \bigcup_{k=1}^{N} Q_k$ of closed cubes such that $m(E \triangle F) < \epsilon$, where $E \triangle F = (E \setminus F) \cup (F \setminus E)$ is the symmetric difference between E and F.

Thm. Egorov's Theorem.

Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable function that converges almost everywhere to a finite-valued function f on a measurable set E of finite measure. Then, for all $\eta > 0$, there exists a closed set $F \subset E$ such that:

$$m(E \setminus F) < \eta$$
 and $f_k \Rightarrow f$ on F .

Lemma. Under the same assumption, for all $\epsilon > 0$ and $\eta > 0$, there exists closed set $F \subset E$ and $N \in \mathbb{N}$ such that:

$$m(E \setminus F) < \eta$$
 and $|f(x) - f_k(x)| < \epsilon$ for all $x \in F$ and $k \ge N$.

Rmk. For $E = \mathbb{R}^1$ and $f_k(x) = \chi_{[-k,k]}(x)$ converges pointwise to $f(x) \equiv 1$ since the measure is not finite.

Thm. Lusin's Theorem.

Suppose f is measurable and finite-valued measurable function on a measurable set E. Then for all $\epsilon > 0$, there exists closed set $F \subset E$ such that $m(E \setminus F) < \epsilon$ and $f|_F$ is continuous.

Lemma. A simple measurable function f on a measurable set E satisfies the condition that for all $\epsilon > 0$, there exists closed set $F \subset E$ such that $m(E \setminus F) < \epsilon$ and $f|_F$ is continuous.

2 Integration Theory

2.1 Lebesgue Integral for Simple Functions

Defn. Canonical Form of Simple Function.

The canonical form of a simple function is:

$$\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}(x),$$

where a_i 's are distinct and non-zero and E_k 's are disjoint and measurable sets with finite measure.

Defn. Lebesgue Integral on Simple Functions.

The Lebesgue Integral for $\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}(x)$ is:

$$\int \varphi(x)dx := \sum_{j=1}^{N} a_j m(E_j).$$

Rmk. The integration of φ is the same for any representation.

Prop. Properties on Lebesgue Integral for Simple Function.

The following properties holds for Lebesgue integration for simple function:

- (i) Linearity: $\int (a\varphi + b\varphi) = a \int \varphi + b \int \varphi$;
- (ii) Additivity: Let E be a measurable set with finite measure, then we have $\int_E \varphi = \int \varphi \cdot \chi_E$; Rmk. If E and F are disjoint subsets of \mathbb{R}^n with finite measure, then $\int_{E \sqcup F} \varphi = \int_E \varphi + \int_F \varphi$.
- (iii) Monotonicity: Let $\varphi \leq \psi$, them $\int \varphi \leq \int \psi$; Rmk. In particular, if $\varphi = \psi$ almost everywhere, then $\int \varphi = \int \psi$.
- (iv) Triangular Inequality: If φ is a simple function, so is $|\varphi|$, and $|\int \varphi| \le \int |\varphi|$.

2.2 Lebesgue Integral for Bounded Function Supported on a Set of Finite Measure

Defn. Support of Function.

The support of a function f is defined as:

$$supp(f) := \{ f \neq 0 \}.$$

f is supported on a set *E* if f = 0 outside of *E*, *i.e.*, supp $(f) \subset E$.

In this stage, we are interested in f being bounded, measurable such that $m(\text{supp}(f)) < +\infty$.

For such functions, there exists a sequence of simple functions $\{\varphi_n\}_{n=1}^{\infty}$ with each φ_n bounded and supported on a finite measurable set, and $\varphi_n(x) \to f$ for all x.

Thm. Convergence of Simple Approximation Function.

Let f be a bounded function supported on a set E of finite measure. If $\{\varphi_n\}_{n=1}^{\infty}$ is any sequence of simple functions bounded by M, supported on E, and with $\varphi_n(x) \to f(x)$ or a.e. x, then:

- (i) The limit $\lim_{n\to\infty} \varphi_n(x) dx$ exists; Rmk. Here, we have that $-M\chi_E \le \varphi_k \le M\chi_E$. Rmk. The proof wants to show that $\{\int \varphi_k\}_{k=1}^{\infty}$ is a Cauchy sequence.
- (ii) If f = 0 a.e., then the limit $\lim_{n \to \infty} \int \varphi_n = 0$.

Defn. Lebesgue Integral on Bounded Function Supported on a Set of Finite Measure.

For a bounded function *f* supported on a set of finite measure, the integral is:

$$\int f(x)dx = \lim_{n \to \infty} \int \varphi_n(x)dx,$$

where $\{\varphi_n(x)\}_{n=1}^{\infty}$ is any sequence of simple functions satisfying that:

- $|\varphi_N| < M$;
- Each φ_n is supported on a support of f;
- $\varphi_n(x) \to f(x)$ for a.e. x as n tends to $+\infty$.

Rmk. We need to show that the definition is independent with the choice of sequence. Suppose $\{\varphi_n\}_{n=1}^{\infty}$ and $\{\psi_n\}_{n=1}^{\infty}$ are two qualified sequences, then we have $\{\eta_n\}_{n=1}^{\infty}$ with $\eta_n = \varphi_n - \psi_n$, in which $\{\eta_n\}_{n=1}^{\infty}$ is consisted of simple functions bounded by 2M, supported on a set of finite measure, and $\eta_n \to 0$ a.e. as $n \to \infty$. Hence, the two limits $\lim_{n\to\infty} \int \varphi_n = \lim_{n\to\infty} \int \psi_n$.

Prop. Properties on Lebesgue Integral for Bounded Function Supported on a Set of Finite Measure. The properties remains the same as for bounded function supported in a set of finite measure:

- (i) Linearity: $\int (af + bg) = a \int f + b \int g$;
- (ii) Additivity: If E and F are disjoint subsets of \mathbb{R}^n with finite measure, then $\int_{E \sqcup F} f = \int_E f + \int_F f$;
- (iii) Monotonicity: Let $f \le g$, them $\int f \le \int g$; Rmk. In particular, if f = g almost everywhere, then $\int f = \int g$;
- (iv) Triangular Inequality: |f| is also bounded, and $|\int f| \le \int |f|$.

Thm. Bounded Convergence Theorem.

Suppose that $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable functions bounded by M and supported on a set E of finite measure, in which $f_k \to f$ a.e. as $k \to \infty$. Then, f is measurable, bounded, and supported on E for a.e. Moreover:

$$\int |f_n - f| \to 0 \text{ as } n \to \infty,$$

hence implying that:

$$\int f_n \to \int f \text{ as } n \to \infty.$$

Rmk. In constructing this theorem, by Egorov's Theorem, there exists closed sets $F_{\eta} \subset E$ such that $f_n \rightrightarrows f$ on F_{η} , and by $m(E \setminus F_{\eta})$ implies that $\int |f_n - f| = \int_{F_{\eta}} |f_n - f| + \int_{E \setminus F_{\eta}} \le \epsilon m(E) + 2M\eta$.

Thm. Riemann and Lebesgue Integral.

Suppose f(x) is Riemann integrable on [a, b]. Then f is Lebesgue measurable, and:

$$\int_{[a,b]}^{\mathcal{R}} f(x)dx = \int_{[a,b]}^{\mathcal{L}} f(x)dx.$$

Rmk. The Riemann integral is based on bounded functions, and it uses a partition by Γ which forms two sequences of step function, which is:

$$\{\varphi_k\}_{k=1}^{\infty}$$
 and $\{\psi_k\}_{k=1}^{\infty}$,

in which each element is absolutely bounded by *M* and:

$$\varphi_1(x) \le \varphi_2(x) \le \cdots \le f(x) \le \cdots \le \psi_2(x) \le \psi_1(x).$$

By definition of Riemann integral, we have that:

$$\lim_{k\to\infty}\int_{[a,b]}^{\mathcal{R}}\varphi_k(x)dx=\lim_{k\to\infty}\int_{[a,b]}^{\mathcal{R}}\psi_k(x)dx=\int_{[a,b]}^{\mathcal{R}}f(x)dx.$$

By the definition of the step functions, the integrals on $\varphi_k(x)$ and $\psi_k(x)$ are equal for Riemann and Lebesgue integration. Let $\widetilde{\varphi}$ and $\widetilde{\psi}$ be their respective limits, then $\widetilde{\varphi} \leq f \leq \widetilde{\psi}$. As they are both measurable, then the bounded convergence theorem, the integrals converges at the limit, which gives:

$$\int_{[a,b]}^{\mathcal{L}} \left(\widetilde{\varphi}(x) - \widetilde{\psi}(x) \right) dx = 0,$$

which then implies $\widetilde{\varphi} = \widetilde{\psi}$ a.e., thus f is measurable. Then by $\varphi_k \to f$ a.e., we have the two integrations generating the same result.

2.3 Lebesgue Integral for Non-negative Measurable Function

Defn. Lebesgue Integral for Non-negative Measurable Function.

Let $f \ge 0$ be a measurable function, we defined:

$$\int f(x)dx := \sup_{g} \int g(x)dx,$$

where the supremum is tajkn over all measurable functions g such that $0 \le g \le f$ and g is bounded and supported on a set of finite measure.

Def. f is Lebesgue measurable if $\int f(x)dx < +\infty$.

Prop. Properties on Lebesgue Integral for Non-negative Measurable Function. The following properties holds:

- (i) Linearity: For a, b > 0, $\int (af + bg) = a \int f + b \int g$;
- (ii) Additivity: If *E* and *F* are disjoint subsets of \mathbb{R}^n with finite measure, then $\int_{E \sqcup F} f = \int_E f + \int_F f$.
- (iii) Monotonicity: Let $0 \le f \le g$, them $\int f \le \int g$; Rmk. Note that $\int g$ can be $+\infty$ as we are not assuming that g is integrable;
- (iv) If *g* is integrable, and $0 \le f \le g$, then *f* is integrable;
- (v) If *f* is integrable, then $f < +\infty$ a.e.;
- (vi) If $\int f = 0$, then f = 0 a.e.

Lemma. Fatou's Lemma.

Suppose that $\{f_k\}_{k=1}^{\infty}$ is a sequence of non-negative measurable functions such that $f_k \to f$ a.e. Then:

$$\int f \le \liminf_{n \to \infty} \int f_k.$$

Rmk. By construction, $\int f = \sup_{0 \le g \le f, \text{bounded and supported}} \int g$, if we let $g_k := \min\{g, f_k\} \le g$, thus it is bounded and supported by $\sup(g)$. By the bounded convergence theorem, we have $\int g = \lim_{n \to \infty} \int g_k \le \int f_k$ and since $\int g_k \le \int f_k$, we have that:

$$\int f = \lim_{k \to \infty} \int g_k \le \liminf_{n \to \infty} \int f_k.$$

Cor. Monotone Convergence Theorem.

Suppose f is a non-negative measurable function, and $\{f_k\}_{k=1}^{\infty}$ is a sequence of non-negative measurable function with $f_n(x) \leq f(x)$ and $f_k(x) \to f(x)$ for a.e. x. Then $\lim_{k \to \infty} \int f_k = \int f$.

Cor. Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of non-negative measurable functions such that $f_k \nearrow f$, then $\lim_{k\to\infty} \int f_k = \int f$.

Rmk. By Fatou's Lemma, $\int f \le \liminf_{k\to\infty} \int f_k$ and $f_k \le f$ implies that $\int f_k \le \int f$ and hence $\limsup_{k\to\infty} \int f_k \le \int f$.

Cor. Monotone Convergence Theorem for Series.

Consider the series $\sum_{k=1}^{\infty} a_k(x)$, where $a_k(x) \geq 0$ is measurable for every $k \geq 1$. Then:

$$\int \left(\sum_{k=1}^{\infty} a_k(x)\right) dx = \sum_{k=1}^{\infty} \left(\int a_k(x) dx\right).$$

Rmk. If $\sum_{k=1}^{\infty} (\int a_k(x) dx)$ is finite, then $\sum_{k=1}^{\infty} a_k(x) dx$ converges for a.e. x.

Rmk. This is $f_j(x) = \sum_{k=1}^j a_k(x) \nearrow \sum_{k=1}^\infty a_k(x)$ through monotone convergence theorem.

2.4 Lebesgue Integral for Measurable Function

Defn. Lebesgue Integral for Measurable Function:

Let f be measurable function. f is integrable if |f| is integrable (as $|f| = f^+ + f^-$).

Hence, the Lebesgue Integral of *f* is defined to be:

$$\int f := \int f^+ - \int f^-.$$

Prop. Properties of Lebesgue Integrable functions.

The properties remains the same as for general integrable functions:

- (i) Linearity: $\int (af + bg) = a \int f + b \int g$;
- (ii) Additivity: If *E* and *F* are disjoint subsets of \mathbb{R}^n with finite measure, then $\int_{E \sqcup F} f = \int_E f + \int_F f$;
- (iii) Monotonicity: Let $f \le g$, them $\int f \le \int g$;
- (iv) Triangular Inequality: |f| is also bounded, and $|\int f| \le \int |f|$.

Prop. Integral Converging to Zero for Some Set.

Suppose f is integrable on \mathbb{R}^n . Then for every $\epsilon > 0$:

- (i) There exists a ball B such that $\int_{B^c} |f| < \epsilon$;
 - *Rmk*. The integrable functions does not necessarily vanishes near ∞ , that is if f is integrable, then $\lim_{|x|\to\infty} f(x) = 0$ is false.
 - *Rmk.* We may consider B_k as ball centered at origin with radius k, in which $f_k := f \cdot \chi_{B_k} \nearrow f$. Hence by monotone convergence theorem, we have $\lim_{k\to\infty} \int f_k = \int f < \infty$ and thus $|\int f \int f_k| = \left|\int_{B_k^c} f\right| < \epsilon$ for $k \ge N$.
- (ii) There exists $\delta > 0$ such that $\int_{E} |f| < \epsilon$ for any measurable set E such that $m(E) < \delta$.

Thm. Dominance Convergence Theorem.

Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable function such that $f_k \to f$ a.e. Assume that $|f_k| \le g$ a.e. where g is integrable. Then $\lim_{k\to\infty} \int f_k = \int f$.

Rmk. In fact, $\int |f_k - f| \to 0$ as $k \to +\infty$.

Rmk. Let $-g \le f_k \le g$, then we can have $\int (f+g) \le \liminf_{k\to\infty} \int (f_k+g)$ by Fatou's Lemma. Then, likewise, we have $-\int f \le \liminf_{k\to\infty} (-\int f_k) = -\limsup_{n\to\infty} \int f_k$.

Defn. Complex-valued Functions: A complex-valued function can be written as:

$$f(x) = u(x) + iv(x)$$
, where $u(x) = \Re e f(x)$ and $\Im m f(x)$.

Rmk. Hence, f is integrable if $|f| := \sqrt{|u|^2 + |v|^2}$ is integrable, that is if and only if u and v are integrable.

Defn. Lebesgue Integral over Complex-valued Functions.

The Lebesgue integral of complex valued is defined to be:

$$\int f(x)dx = \int u(x)dx + i \int v(x)dx.$$

Rmk. Addition and scalar multiplication is closed for complex-valued *f* measurable function on *E*.

Rmk. The collection of all complex-valued integrable functions on a measurable subset $E \subset \mathbb{R}^n$ forms a vector space over \mathbb{C} .

2.5 The Space of Integrable Functions

Def. Norm in Space of Integrable Functions $L^1(E)$.

For any $f \in L^1(\mathbb{R}^n)$, we define the norm of f to be:

$$||f||_{L^1} := \int_{\mathbb{R}^n} |f(x)| dx,$$

where the norm induces the following properties:

- (i) Linearity: $\|\lambda f\|_{L^1} = |\lambda| \cdot \|f\|_{L^1}$ for all $\lambda \in \mathbb{C}$;
- (ii) Triangle Inequality: $||f + g||_{L^1} \le ||f||_{L^1} + ||g||_{L^1}$;
- (iii) $||f||_{L^1} = 0$ implies that f = 0 a.e. on \mathbb{R}^n ;
- (iv) $d(f,g) := ||f g||_{L^1}$ induces $L^1(\mathbb{R}^n)$ into a metric space.

Thm. $L^1(\mathbb{R}^n)$ is Complete.

 $L^1(\mathbb{R}^n)$ is complete with the metric $d(f,g) = ||f - g||_{L^1}$.

Cor. If f is convergent to $f \in L^1$, then there is a subsequence $\{f_{k_j}\}_{k_j \in \mathbb{Z}^+}$ of $\{f_n\}_{n=1}^{\infty}$ so that $f_{k_j} \to f$ pointwise a.e. x.

Rmk. This is not necessarily true if we want the entire sequence to converge to f.

Defn. Dense Families of Function.

A family of integrable function G is dense in $L^1(\mathbb{R}^n)$ if for all $f \in L^1(\mathbb{R}^n)$ and for all $\epsilon > 0$, there exists $g \in G$ such that $||f - f||_{L^1} < \epsilon$.

Lemma. Dense Families in $L^1(\mathbb{R}^n)$.

The following families are dense in $L^1(\mathbb{R}^n)$:

- (i) Simple functions;
- (ii) Step functions;
- (iii) Continuous functions with compact support, denoted $C_{\mathbb{C}}(\mathbb{R}^n)$.

Strategy. Strategy in Proving Properties for $L^1(\mathbb{R}^n)$.

If we want to prove some properties for all integrable functions, we:

- (i) prove the property holds for a dense family;
- (ii) Use a limiting argument to conclude for all $L^1(\mathbb{R}^n)$.

Appl. Invariance of Lebesgue Integral.

The following invariance holds for Lebesgue integration with $f \in L^1(\mathbb{R}^n)$, $h \in \mathbb{R}^n$, and $\delta > 0$:

$$\begin{cases} \int_{\mathbb{R}^n}^{\mathcal{L}} f(x-h) dx = \int_{\mathbb{R}^n}^{\mathcal{L}} f(x) dx; \\ \delta^n \int_{\mathbb{R}^n}^{\mathcal{L}} f(\delta x) dx = \int_{\mathbb{R}^n}^{\mathcal{L}} f(x) dx; \\ \int_{\mathbb{R}^n}^{\mathcal{L}} f(-x) dx = \int_{\mathbb{R}^n}^{\mathcal{L}} f(x) dx. \end{cases}$$

Rmk. The proof was made first on simple functions. Then, for the complex-valued functions, the conclusions can be made from $f_h = \chi_{E_h}$, which holds for all $L^1(\mathbb{R}^n)$.

Cor. By such, we can conclude the commutativity for convolution of f and g by:

$$f * g(x) := \int_{\mathbb{R}^n} f(y)g(x-y)dy = \int_{\mathbb{R}^n} f(x-y)g(y)dy = g * f(x).$$

Appl. Translation and Continuity.

For any $f \in L^1(\mathbb{R}^n)$, then $||f_h - f|| \to 0$ as $h \to 0$, where $f_h = f(x + h)$.

Rmk. The proof follows along the continuous function with compact support, say $g \in C_C(\mathbb{R}^n)$ in which $|g(x-h)-g(x)| < \epsilon$ for all $x \in \mathbb{R}^n$ if $|h| < \delta$, in which the argument follows quickly through:

$$||f_h - f||_{L^1} = \int |f_h - f|$$

$$= \int |f_h - g_h + g_h - g + g - f| \le \int |f_h - g_h| + \int |g_h - g| + \int |g - f|$$

$$= 2||f - g||_{L^1} + ||g_h - g||_{L^1} < 3 \times \frac{\epsilon}{3} < \epsilon$$

as $|h| < \delta$.

2.6 Fubini's Theorem

Defn. Slices and Mapped Functions.

Let $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, and function f(x,y) be defined on $E := \mathbb{R}^m \times \mathbb{R}^n$, the slices are defined as:

$$E_x := \{ y \in \mathbb{R}^n : (x, y) \in E \},$$

 $E^y := \{ x \in \mathbb{R}^m : (x, y) \in E \}.$

At the same time, we concern the following functions:

$$f_x(y) := f(x,y),$$

$$f^y(x) := f(x,y).$$

Thm. Fubini's Theorem.

Let $f \in L^1(\mathbb{R}^{m+n})$, then:

- (i) for a.e. $x \in \mathbb{R}^m$, the slice f_x is measurable and integrable in \mathbb{R}^n ,
- (ii) the function $x \mapsto \int_{\mathbb{R}^n} f(x,y) dy$ is defined for a.e. $x \in \mathbb{R}^m$, measurable and integrable on \mathbb{R}^m , and

(iii)
$$\iint_{\mathbb{R}^{m+n}} f(x,y) dx dy = \int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^n} f(x,y) dy \right) dx = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^m} f(x,y) dx \right) dy.$$

Rmk. The proving strategy is to let the family of functions satisfying Fubini's Theorem as \mathcal{F} , and prove by following steps:

- (i) prove that \mathcal{F} is closed under linear combination, so we reduce the proof to non-negative functions,
- (ii) prove that \mathcal{F} contains the limit of monotonic sequences, then we reduce the proof to simple, thus characteristic functions,
- (iii) prove that for *E* being a G_δ -set in \mathbb{R}^{m+n} with finite measure, then $\chi_E \in \mathcal{F}$,

- (iv) prove that for N being a null set in \mathbb{R}^{m+n} , then $\chi_N \in \mathcal{F}$, and the slices N_x are also null set in \mathbb{R}^n , by such, we know that this applies for all finite measurable set,
- (v) for any $f \in L^1(\mathbb{R}^{m+n})$, then $f \in \mathcal{F}$.

Rmk. The converse is not necessarily true. If f is measurable in \mathbb{R}^{m+n} , and $T := \int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^n} f(x,y) dy \right) dx$ is finite, f is not necessarily integrable.

Thm. Tonelli's Theorem.

Let f(x,y) be non-negative measurable function in \mathbb{R}^{m+n} , then:

- (i) for a.e. $x \in \mathbb{R}^n$, the slice f_x is measurable in \mathbb{R}^n ,
- (ii) the function $x \mapsto \int_{\mathbb{R}^n} f_x dy$ (taking values in $\mathbb{R}^+ \cup \{+\infty\}$) is measurable, and

(iii)
$$\iint_{\mathbb{R}^{m+n}} f(x,y) dx dy = \int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^n} f(x,y) dy \right) dx = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^m} f(x,y) dx \right) dy.$$
 (This could be infinite).

Rmk. Fubini-Tonelli Theorem.

We use the two theorems in the following cases:

- (i) Use Tonelli's theorem on |f| to show that $f \in L^1(\mathbb{R}^{m+n})$, and then
- (ii) use Fubini for $\iint_{\mathbb{R}^{m+n}} f(x,y) dx dy$.

Rmk. In proving Tonelli's Theorem, we construct that:

$$f_k(x,y) := \begin{cases} 0, & \text{if } |(x,y)| > k, \\ \min\{f(x,y),k\}, & \text{if } |(x,y)| \le k. \end{cases}$$

Lemma. Exterior Measure on Product of Sets.

Let $E_1 \subset \mathbb{R}^m$ and $E_2 \subset \mathbb{R}^n$, then:

$$m_*(E_1 \times E_2) \leq m_*(E_1)m_*(E_2),$$

so if one set has exterior measure zero, then the exterior measure of product must be zero.

Prop. Measure of Product of (Measurable) Sets.

Let $E_1 \subset \mathbb{R}^m$ and $E_2 \subset \mathbb{R}^n$ be measurable, then $E := E_1 \times E_2$ is measurable in \mathbb{R}^{m+n} , and:

$$m(E) = m(E_1)m(E_2),$$

so if one set has measure zero, then the measure of product must be zero.

Cor. Suppose f is a non-negative function on \mathbb{R}^n , and let:

$$\mathcal{A} := \{ (x, y) \in \mathbb{R}^n \times \mathbb{R} : 0 \le y \le f(x) \}.$$

Then:

- (i) f is measurable on \mathbb{R}^d if and only if A is measurable on \mathbb{R}^{n+1} ,
- (ii) if the conditions in (i) holds, then $\int_{\mathbb{R}^n} f(x) dx = m_{\mathbb{R}^{n+1}}(A)$.

3 Differentiation

3.1 Differentiation of the Integral

Defn. Average of Integration.

Let $f \in L^1(\mathbb{R}^n)$, consider the set function $\mathcal{M}(\mathbb{R}^n) \ni E \mapsto \int_E f$, and we let:

$$\oint_E f = \frac{1}{m(E)} \int_E f.$$

Thm. Lebesgue Differentiation Theorem.

Let $f \in L^1(\mathbb{R}^n)$, then:

$$\lim_{Q \to x} \frac{1}{m(Q)} \int_{Q} f = f(x),$$

for a.e. $x \in \mathbb{R}^n$.

Rmk. Q works for cubes and balls, but only certain classes of rectangles works.

3.2 Hardy-Littlewood Maximal Function

Def. Hardy-Littlewood Maximal Function.

Let $h \in L^1(\mathbb{R}^n)$, we define its Hardy-Littlewood maximal function of h as:

$$\mathcal{M}h(x) = h^*(x) := \sup_{Q \ni x} \frac{1}{m(Q)} \int_Q |h|.$$

Rmk. The Hardy-Littlewood maximal function of $f \in L(\mathbb{R}^n)$ follows:

- $0 < f^*(x) < +\infty$
- For any $\lambda > 0$, $\{f^* > \lambda\}$ is open in \mathbb{R}^n implies that f^* is measurable,
- f^* might not be in $L^1(\mathbb{R}^n)$.

Thm. Hardy Littlewood Theorem.

If $f \in L^1(\mathbb{R}^n)$, then f^* belongs to weak $L^1(\mathbb{R}^n)$, namely, there exists a constant C (independent of f and α) such that $\forall \alpha > 0$:

$$m(\{f^* > \alpha\}) \le \frac{C}{\alpha} \int_{\mathbb{R}^n} |f|.$$

Lemma. Elementary Version of Vitali Lemma.

Suppose $\mathcal{F} = \{Q_1, \dots, Q_N\}$ is a finite collection of (open or closed) cubes in \mathbb{R}^n . Then \exists a disjoint sub-collection $Q_{i_1}, Q_{i_2}, \dots, Q_{i_e}$ of \mathcal{F} such that:

$$m\left(\bigcup_{i=1}^N Q_i\right) \leq 3^n \sum_{j=1}^\ell m(Q_{i_j}),$$

i.e.:

$$3^{-n}m\left(\bigcup_{i=1}^N Q_i\right) \leq m\left(\bigsqcup_{j=1}^\ell Q_{i_j}\right).$$

Defn. Locally Integrable.

f is locally integrable ($f \in L^1_{loc}(\mathbb{R}^n)$) if $f \in L^1(B)$ for any ball B in \mathbb{R}^n . Lebesgue Differentiation Theorem holds if we assume $f \in L^1_{loc}(\mathbb{R}^n)$.

Rmk. For any measurable set $E \subset \mathbb{R}^n$, $\chi_E \in L^1_{loc}(\mathbb{R}^n)$, but not necessarily in $L^1(\mathbb{R}^n)$.

Defn. Lebesgue Density Point.

Let *E* be a measurable set and $x \in \mathbb{R}^d$, *x* is a point of Lebesgue density of *E* if:

$$\lim_{m(B)\to 0, x\in B} \frac{m(B\cap E)}{m(B)} = 1.$$

Rmk. A.e. $x \in E$ is a Lebesgue density point of E and a.e. $x \notin E$ is not a Lebesgue density point of E.

Defn. Lebesgue Point.

A point x is referred as a Lebesgue point of f if:

$$\lim_{Q \to x} \oint_{O} |f(y) - f(x)| dy = 0,$$

and this holds for a.e. $x \in \mathbb{R}^n$.

Cor. Almost Every Point is Lebesgue.

If $f \in L_{loc}(\mathbb{R}^n)$, then a.e. $x \in \mathbb{R}^n$ is Lebesgue point.

3.3 Approximation to Identity

Defn. The Scaling Function.

Let *k* be a bounded integrable function such that $\int k = 1$ in \mathbb{R}^n . Then the scaling function is:

$$k_{\delta}(x) := \frac{1}{\delta^n} k\left(\frac{x}{\delta}\right).$$

The scaling is due to the fact that:

$$\int_{\mathbb{R}^n} k_{\delta}(x) dx = \int_{\mathbb{R}^n} \frac{1}{\delta^n} k\left(\frac{x}{\delta}\right) dx = \int_{\mathbb{R}^n} k(x) dx = 1.$$

Rmk. By the same token, we have $\int_{\mathbb{R}^n} |k_{\delta}| = \int_{\mathbb{R}^n} |k|$.

Rmk. If *k* has compact support, say B_{R_0} , then k_{δ} is supported on $B_{\delta R_0}$.

Defn. Good Kernels.

A good kernel $K_{\delta}(x)$ is integrable and satisfies the following for all $\delta > 0$:

- (i) $\int_{\mathbb{R}^d} K_{\delta}(x) dx = 1$,
- (ii) $\int_{\mathbb{R}^d} |K_{\delta}(x)| dx \leq A$, and
- (iii) for every $\eta > 0$, $\int_{|x| > \eta} |K_{\delta}(x)| dx \to 0$ as $\delta \to 0$,

where A is a constant depending on δ .

Prop. Properties with $f * k_{\delta}$.

For any integrable function f in \mathbb{R}^n , consider the convolution $(f * k_{\delta})(x)$, which is integrable that:

• Let k be a bounded integrable function in \mathbb{R}^n , such that $\int k = 1$, and suppose k has compact support, then:

$$(f * k_{\delta})(x) \to f(x)$$
 as $\delta \to 0$,

for any x that is a Lebesgue point of f.

- Let k be a bounded integrable function in \mathbb{R}^n such that $\int k = 1$. Then $f * k_{\delta} \to f$ in L^1 as $\delta \to 0^+$.
- Let k be a bounded integrable function in \mathbb{R}^n such that $\int k = 1$. Suppose $k(x) = \mathcal{O}\left(\frac{1}{|x|^{n+\lambda}}\right)$ for some $\lambda > 0$ (i.e., $|k(x)| \leq \frac{c}{|x|^{n+\lambda}}$ for |x| large enough). Then $f * k_{\delta}(x) \to f(x)$ for x which is a Lebesgue point of f.
- If $k \in C_c^m(\mathbb{R}^n)$, then f * k is continuous and bounded.

Rmk. By (ii), the convergence in L^1 implies that there exists $\delta_k \to 0^+$ such that $f * k_{\delta_j}(x) \to f(x)$ for a.e. x. *Rmk.* For (iii), we have that:

$$\frac{1}{|x|^n}\chi_{\{|x|>1\}} \notin L^1(\mathbb{R}^n), \ \frac{1}{|x|^{n+\epsilon}}\chi_{\{|x|>1\}} \in L^1(\mathbb{R}^n).$$

Rmk. For (iv), we have that:

$$\partial_{x_i}(f * k(x)) = f * (\partial_{x_i}K(x)).$$

Ex. Kernels for PDEs:

• The Poisson kernel is:

$$P_y(x) := \frac{1}{y}K\left(\frac{x}{y}\right) = \frac{1}{\pi}\frac{y}{x^2 + y^2},$$

for the upper half plane Laplace equation.

• The heat kernel is:

$$H_t(x) = \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/(4t)},$$

solving the global Cauchy for Heat equation.

Lemma. Average Function.

Suppose that f is integrable on \mathbb{R}^d , and that x is a Lebesgue point of f. Let:

$$\alpha(r) = \frac{1}{r^n} \int_{|y| \le r} |f(x - y) - f(x)| dy, \text{ whenever } r > 0.$$

Then $\alpha(r)$ is continuous function of r > 0, and $\alpha(r) \to 0$ as $r \to 0$ and $\alpha(r)$ is bounded for all r > 0.

4 Hilbert Space

4.1 $L^2(\mathbb{R}^n)$ Space

Defn. L^2 Space.

 $L^2(\mathbb{R}^n)$ is the collection of complex-valued measurable functions in \mathbb{R}^n such that $\int_{\mathbb{R}^n} |f(x)|^2 dx < +\infty$. The L^2 -norm of f is defined as $||f||_{L^2} := \left(\int |f(x)|^2 dx\right)^{1/2}$.

Rmk. The following holds:

(i) For
$$\lambda \in \mathbb{C}$$
, $\|\lambda f\|_{L^2} = |\lambda| \cdot \|f\|_{L^2}$.

(ii) For $f,g \in L^2(\mathbb{R}^n)$, and if f=g a.e., then $||f-g||_{L^2}=0$ (identified as the same element).

(iii)
$$f \in L^2(E)$$
 if $f \cdot \chi_E \in L^2(\mathbb{R}^n)$.

(iv) For
$$1 \le p < +\infty$$
, $||f||_{L^p} = (\int |f(x)|^p dx)^{1/p}$.

Defn. Inner Product in L^2 .

On $L^2(\mathbb{R}^n)$, we define the inner product as:

$$\langle f, g \rangle = \int f(x) \cdot \overline{g(x)} dx.$$

Rmk. We check that $f\overline{g}$ is integrable as $\int |f\overline{g}| = \int |f| \cdot |g| \le \int \frac{1}{2} (|f|^2 + |g|^2) < +\infty$. (if a, b > 0, then $ab \le \frac{1}{2} (a^2 + b^2)$).

Rmk. Cauchy-Schwartz Inequality indicates $|\langle f,g\rangle| \leq ||f||_{L^2} \cdot ||g||_{L^2}$.

Prop. Properties on the L^2 Space.

- (i) Inner product $\langle \bullet, \bullet \rangle$ satisfies Cauchy-Schwartz.
- (ii) For any $g \in L^2(\mathbb{R}^n)$ fixed, $f \in L^2(\mathbb{R}^n) \mapsto \langle f, g \rangle \in \mathbb{C}$ is linear in f and $\langle g, f \rangle = \overline{\langle f, g \rangle}$.
- (iii) $L^2(\mathbb{R}^n)$ is a vector space over C and $\| \bullet \|_{L^2}$ is a norm. (Distance is $d(f,g) = \|f g\|$.)

Thm. L^2 Space is Complete.

The space of $L^2(\mathbb{R}^n)$ is complete with respect to the metric from the norm, *i.e.*, all Cauchy sequences converges.

Rmk. The proof involves the construction of:

$$S_K(f)(x) = f_{n_1}(x) + \sum_{k=1}^K (f_{n_{k+1}}(x) - f_{n_k}(x)), \text{ and } S_K(g)(x) = |f_{n_1}(x)| + \sum_{k=1}^K |f_{n_{k+1}}(x) - f_{n_k}(x)|,$$

where f_{n_k} is subsequence in which the L^2 norm of there differences are within 2^{-k} . Then, $||S_K(g)||$ with MCT implies that $f \in L^2$ and the construction of $S_K(f)$ supports that f_{n_k} converges to f by DCT. Eventually, by triangle inequality:

$$||f_n - f|| \le ||f_n - f_{n_k}|| + ||f_{n_k} - f|| < \epsilon.$$

Thm. L^2 Space is Separable.

The space $L^2(\mathbb{R}^n)$ is separable, in the sense that there exists a countable collection $\{f_k\}$ of elements in $L^2(\mathbb{R}^d)$ such that their linear combinations are dense in $L^2(\mathbb{R}^d)$.

Rmk. Here, we constructed the collection \mathcal{C} of characteristic functions χ_D , where D is a dyadic cube in \mathbb{R}^n , with coefficients being complex numbers whose real and imaginary parts are rational, *i.e.*, $D := \left[\frac{j}{2^k}, \frac{j+1}{2^k}\right]$ for integers j and k.

4.2 Hilbert Space

Defn. Hilbert Space.

A set \mathcal{H} is a Hilbert space over \mathbb{C} if:

- (H1) \mathcal{H} is a vector space over \mathbb{C} .
- (H2) \mathcal{H} is equipped with an inner product $\langle \bullet, \bullet \rangle$ such that:
 - For any $g \in \mathcal{H}$ fixed, $f \mapsto \langle f, g \rangle$ is linear on \mathcal{H} .
 - $\langle f, g \rangle = \overline{\langle g, f \rangle}$.
 - $\langle f, f \rangle \ge 0$ for all $f \in \mathcal{H}$ with equality if and only if f = 0 in \mathcal{H} .
 - (P) Properties: $||f|| = \langle f, f \rangle^{1/2}$ and Cauchy-Schwartz with Triangle Inequality holds.
- (H3) \mathcal{H} is complete with respect to the metric $d(f,g) = \|f g\|$. (not required for Pre-Hilbert Space, but Pre-Hilbert Space can be extended to Hilbert Space, called the completion of the Pre-Hilbert Space by having objects as all Cauchy sequences).
- (H4) \mathcal{H} is separable, *i.e.*, \mathcal{H} has a dense subset which is countable.

Rmk. Banach space is a normed vector space with (H3).

Ex. Examples of Hilbert Space.

- (i) $(L^2(\mathbb{R}^n), \langle \bullet, \bullet \rangle)$ is a Hilbert space over \mathbb{C} .
- (ii) $\mathbb{C}^N := \{(z_1, \cdots, z_N) : z_i \in \mathbb{C}\}$ with for $z, w \in \mathbb{C}^N$ that $\langle z, w \rangle = \sum_{i=1}^N z_i \overline{w_i}$ (or the standard Euclidean inner product) is a Hilbert space.
- (iii) $\ell^2(\mathbb{Z}) := \{(\cdots, a_{-1}, a_0, a_1, \cdots) : a_i \in \mathbb{C}, \sum_{-\infty}^{\infty} |a_n|^2 < \infty \}$ with inner product being the infinite sum of the product $a_k \overline{b_k}$ is a Hilbert Space (also classified as (i)).
- (iv) $W^{1,2}(\mathbb{R}^n) = \{ f \in L^2(\mathbb{R}^n) : |\nabla f| \in L^2(\mathbb{R}^n) \}$ with $\langle f, g \rangle = \langle f, g \rangle_{L^2} + \sum_{i=1}^n \langle \partial_i f, \partial_i g \rangle$ is a Hilbert space (also classified as (i)).

Rmk. All the Hilbert space can be classified as (i) or (ii).

4.3 Orthogonality and Basis

Defn. Orthogonality.

 $f,g \in \mathcal{H}$ are orthogonal, *i.e.* $f \perp g$ if $\langle f,g \rangle = 0$.

Rmk. Pythagorean theorem: If $f \perp g$, then $||f + g||^2 = ||f||^2 + ||g||^2$.

Defn. Orthonormal Collection.

A collection $\{e_{\alpha}\}_{\alpha\in A}$ in \mathcal{H} is orthonormal if $\langle e_{\alpha}, e_{\beta} \rangle = \begin{cases} 1, & \text{if } \alpha = \beta, \\ 0, & \text{if } \alpha \neq \beta. \end{cases}$

Rmk. Since \mathcal{H} has a countable dense subset, any orthonormal collection in \mathcal{H} has at most countably many element (since the separation has to be $||e_{\alpha} - e_{\beta}|| = ||e_{\alpha}||^2 + ||-e_{\beta}||^2 = 2$).

Prop. Projection onto Orthonormal Collection.

If $\{e_k\}$ is orthonormal in \mathcal{H} , and $f = \sum_{k=1}^N a_k e_k \in \mathcal{H}$, then $f||^2 = \sum_{k=1}^N |\langle f, e_k \rangle|^2$.

Defn. Orthonormal Basis.

An orthonormal collection $\{e_k\}$ of \mathcal{H} is an orthonormal basis if the finite linear combination of e_k 's over \mathbb{C} are dense in \mathcal{H} .

Thm. Equivalent Conditions for Orthonormal Collection.

Let $\{e_k\}$ be an orthonormal collection in \mathcal{H} , the following are equivalent:

- (i) Finite linear combinations of $\{e_k\}$ are dense in \mathcal{H} .
- (ii) If $f \in \mathcal{H}$ and $\langle f, e_i \rangle = 0$ for all $j \in \mathbb{N}$, then f = 0.
- (iii) If $f \in \mathcal{H}$ and $S_N(f) = \sum_{k=1}^N a_k e_k \in \mathcal{H}$ with $a_k := \langle f, e_k \rangle$, then $S_N(f) \to f$ in the norm as $N \to +\infty$. (Namely, $\sum_{k=1}^N \langle f, e_k \rangle e_k \to f$.)
- (iv) (Parseval's Identity) If $f \in \mathcal{H}$, then $||f||^2 = \sum_{k \in \mathbb{N}} |\langle f, e_k \rangle|^2$.

Rmk. All above vases implies that the basis is orthonormal.

Thm. Orthonormal Basis of Hilbert Space.

Every Hilbert space has an orthonormal basis.

Rmk. The construction is by Gram-Schmidt process.

4.4 Unitary Mapping

Defn. Unitary Isomorphisms.

Given 2 Hilbert spaces \mathcal{H} and \mathcal{H}' , with $(\langle \bullet, \bullet \rangle_{\mathcal{H}}, \langle \bullet, \bullet \rangle_{\mathcal{H}'})$, a mapping $T : \mathcal{H} \to \mathcal{H}'$ is a unitary isomorphism if:

- (i) *T* is a linear map, *i.e.*, $T(\alpha f + \beta g) = \alpha T(f) + \beta T(g)$ for all $\alpha, \beta \in \mathbb{C}$ and $f, g \in \mathcal{H}$.
- (ii) *T* is a bijection.
- (iii) $||T(f)||_{\mathcal{H}'} = ||f||_{\mathcal{H}}$ for all $f \in \mathcal{H}$.

Rmk. (iii) guarantees that inner product is preserved, i.e.:

$$\langle f, g \rangle = \frac{1}{4} \left[\|f + g\|^2 - \|f - g\|^2 + i \left(\left\| \frac{F}{i} + G \right\|^2 - \left\| \frac{F}{i} - G \right\|^2 \right) \right].$$

Cor. Unitary Isomorphisms for Infinite Dimensional Hilbert Spaces.

Any two infinite dimensional Hilbert spaces are unitarily equivalent, *i.e.*, there exists a unitary isomorphism between them.

Rmk. The construction is by enumerating an orthonormal basis $\{e_1, e_2, \dots\}$ and $\{e'_1, e'_2, \dots\}$ for \mathcal{H}_1 and \mathcal{H}_2 respectively, and have $T: \mathcal{H}_1 \to \mathcal{H}_2, e_i \mapsto e'_i$.

4.5 Fourier Series

Appl. Conventions to $L^2([-\pi, \pi])$ Space.

We consider $L^2([-\pi,\pi])$ with inner product $\langle f,g\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$.

Prop. Orthonormal Basis in $L^2([-\pi, \pi])$.

 $\{e^{-ikx}\}_{k\in\mathbb{Z}}$ is an orthonormal basis for $L^2([-\pi,\pi])$.

Rmk. By Euler's Formula, we can construct another orthonormal basis of $\{\cos kx, \sin kx\}_{k \in \mathbb{N}}$.

Rmk. If f is piecewise continuous (or Riemann integrable) on $[-\pi, \pi]$, then $f \in L^2([-\pi, \pi])$, which extend f to be defined on \mathbb{R} with periodicity of 2π .

Thm. Approaching from Fourier Series.

We write the Fourier series of f(x) (integrable on $[-\pi, \pi]$) as:

$$f(x) \sim \sum_{n=-\infty}^{\infty} a_n e^{inx},$$

then:

- (i) If $a_k = 0$ for all $k \in \mathbb{Z}$, then f(x) = 0 a.e. x.
- (ii) $\sum_{k=-\infty}^{\infty} a_k r^{|k|} e^{ikx} \to f(x)$ for a.e. x as $r \to 1^-$.

Rmk. (ii) is a consequence of the Poisson kernel.

Thm. Convergence of Fourier Series.

Suppose $f \in L^2([-\pi, \pi])$, then:

- (i) (Parseval's Relation) $\sum_{n=-\infty}^{\infty} |a_n|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$.
- (ii) The mapping $f \mapsto \{a_n\}$ is a unitary correspondence between $L^2([-\pi, \pi])$ and $\ell^2(\mathbb{Z})$.
- (iii) The Fourier series of f converges to f in the L^2 -norm, that is:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - S_N(f)(x)|^2 dx \to 0 \text{ as } N \to \infty,$$

where $S_N(f) = \sum_{n=-N}^{N} a_n e^{inx}$

Rmk. If $f \in L^2([-\pi, \pi])$ and $f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}$, then $f'(x) = \sum_{k=-\infty}^{\infty} k a_k e^{ikx}$, thence:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f'(x)|^2 dx = \sum_{k=-\infty}^{\infty} |ka_k|^2.$$

Therefore, $f'(x) \in L^2([-\pi, \pi])$ is a better decay for $|a_k|$ as $k \to \pm \infty$.

5 Abstract Measure Space

5.1 Abstract Measure

Defn. Measure Space.

A measure space on a set X is a triple (X, \mathcal{M}, μ) where:

- (i) \mathcal{M} is a σ -algebra, which is a non-empty collection of subsets of X closed under complements, countable unions, and countable intersections. Elements in \mathcal{M} are the measurable sets.
- (ii) $\mu : \mathcal{M} \to [0, +\infty]$ is a function satisfying that for any countable collection of disjoint sets in \mathcal{M} , E_1, E_2, \cdots satisfies $\mu(\bigsqcup_k E_k) = \sum_k \mu(E_k)$. $\mu(E)$ is the measure of E.

Rmk. (Lebesgue-Radon-Nikodym Theorem) All the measures must be a combination of the following:

- (i) Let $X = \{x_k\}$, $\mathcal{M} = \mathcal{P}(X)$, define $\mu(\{x_k\}) = \mu_k$ where $\{m_k\}$ is a sequence of numbers in $[0, +\infty]$. For any $E \in \mathcal{M}$, we have $\mu(E) = \sum_{k: x_k \in E}^{\mu_k}$.
- (ii) Let $X \in \mathbb{R}^n$, $\mathcal{M} = \{\text{Lebesgue measurable sets}\}$ and for any $E \in \mathcal{M}$, $\mu(E) = \int_E f dx$ where f is a given non-negative measurable function on \mathbb{R}^n .

5.2 Exterior Measure

Defn. Outer Measure.

An outer measure on a set X is a function μ_* from all subsets of X to $[0, +\infty]$ satisfying that:

- (i) $\mu_*(\emptyset) = 0$.
- (ii) If $E_1 \subset E_2$, then $\mu_*(E_1) \le \mu_*(E_2)$.
- (iii) For any countable collection of sets E_1, E_2, \cdots in $X, \mu_*(\bigcup_k E_k) \leq \sum_k \mu_*(E_k)$.

Defn. Carathéodory Measurable Sets.

Given $E \subset X$, E is Carathéodory measurable if for any $A \subset X$:

$$\mu_*(A) = \mu_*(A \cap E) + \mu_*(A \cap E^c).$$

Rmk. This is equivalent to the definition of Lebesgue measurable sets.

Rmk. By (iii) in outer measure, $\mu_*(A) \leq \mu_*(A \cap E) + \mu_*(A \cap E^c)$ is satisfies.

Thm. Outer Measure Forms Measure.

Given a outer measure μ_* on a set X, the collection \mathcal{M} of all Carathéodary measurable set form a σ -algebra. Moreover, μ_* restricted to \mathcal{M} is a measure.

Rmk. Any set of outer measure 0 is Carathéodory measurable. Since if $\mu_*(Z) = 0$, then $\mu_*(A) \ge \mu_a st(A \cap Z) + \mu_*(A \cap Z) = \mu_a st(A \cap Z)$ by monotonicity.

Defn. σ -finite.

We say a measure space is (X, \mathcal{M}, μ) is σ -finite if X can be written as the union of countably many measurable sets of finite measure.

Defn. Borel Algebra.

The Borel σ -algebra, \mathcal{B}_x denotes the smallest σ -algebra containing all open sets.

Defn. Metric Outer Measure.

An outer measure μ_* on (X, d) is a metric outer measure if:

$$\mu_*(A \cup B) = \mu_*(A) + \mu_*(B)$$
 for any $A, B \subset X$,

such that:

$$d(A, B) := \inf\{d(x, y) : x \in A, y \in B\} > 0.$$

Thm. Metric Outer Measure Forms Measure.

If μ_* is a metric outer measure on (X,d), then Borel sets in X are Carathéodory measurable and μ_* restricted to \mathcal{B}_x is a measure.

Rmk. From the previous theorem, \mathcal{M} is a σ -algebra already. Then, we need to show that all open/closed sets are Carathéodory measurable. Here for a closed set F, we define $E_k := \{x \in A \cap F^c : d(x,F) \geq \frac{1}{k}\}$. We prove that $\lim_{k \to \infty} \mu_*(A \cap F^c)$ by letting $C_k := E_{k+1} \setminus E_k$.

Defn. Borel Set.

Given a metric space (X, d), a measure μ defined on all Borel sets of X is the Borel Set.

Prop. Suppose the Borel measure μ is finite on all balls in X with finite radii, then for any Borel set E, any $\epsilon > 0$, there exists open set $G \supset E$, closed set $F \subset E$ such that $\mu(G \setminus E) < \epsilon$ and $\mu(E \setminus F) < \epsilon$.

Lemma. Convergence for Monotone Sequences.

Let (X, \mathcal{M}, μ) be a measure space, if measurable sets $E_k \nearrow E$, then $\mu(E_k) \nearrow \mu(E)$.

5.3 Pre-Measure

Defn. Pre-Measure.

Given a set X, an algebra in X is a non-empty collection of subsets of X that are closed under complements, finite unions, and finite intersections. A pre-measure on an algebra A is a function $\mu_0 : A \to [0, +\infty]$ that satisfies:

- $\mu_0(\emptyset) = 0$.
- If A_1, A_2, \cdots is a countable collection of disjoint sets in \mathcal{A} with $\bigcup_i A_i \in \mathcal{A}$, then:

$$\mu_0\left(\bigsqcup_k A_k\right) = \sum_k \mu_0(A_k).$$

Lemma. The Extension Theorem.

If μ_0 is a pre-measure on an algebra \mathcal{A} , define an outer measure μ_* on any subset E of X as:

$$\mu_*(E) = \inf \left\{ \sum_j \mu_0(A_j) : E \subset \bigcup_j A_j \text{ where } A_j \in \mathcal{A} \text{ for all } j \right\}.$$

Then μ_* is an outer measure on X that satisfies:

- (i) $u_*(A) = u_0(A)$ for all $A \in \mathcal{A}$.
- (ii) Any set in A is Carathéodary measurable with respect to μ_* .

Rmk. The extension is unique. Let \mathcal{M} be a σ -algebra containing \mathcal{A} , let μ be the measure generated from μ_* . Assume that μ is σ -finite, then for any other measure ν defined on \mathcal{M} such that $\nu = \mu$ on sets in \mathcal{A} ,

 $\nu(E) = \mu(E)$ for any $E \in \mathcal{M}$.

Appl. Product Measure.

Let $(X_1, \mathcal{M}_1, \mu_1)$ and $(X_2, \mathcal{M}_2, \mu_2)$ be 2 σ -finite measure space. We construct a measure space on $X := X_1 \times X_2$ by having the measure:

$$\mu_0(A \times B) = \mu_1(A) \cdot \mu_2(B).$$

Here, we have that A as the smallest algebra containing all measurable rectangles. Note that for all products as the disjoint union of rectangles, we have:

$$\mu_0(A \times B) = \sum \mu_0(A_j \times B_j).$$