Jorge Alberto Quesada Hurtado. jorge.quesada@u.icesi.edu.co

AGENDA

- 1. Metodología para la solución de problemas
- 2. Fase de análisis
- 3. Fase de diseño
- 4. Concepto de Algoritmo
- 5. Instalación PSeInt

MÉTODO POLYA

Por: El Proje Junt

https://www.youtube.com/watch?v=919CQtH2H2w

METODOLOGÍA PARA LA SOLUCIÓN DE PROBLEMAS

METODOLOGÍA PARA LA SOLUCIÓN DE PROBLEMAS

METODOLOGÍA PARA LA SOLUCIÓN DE PROBLEMAS

FASE: ANÁLISIS

- Identificar el área del problema.
- Formular el problema
 Resultados esperados
 Datos
 Restricciones.
- Establecer procesos Algoritmo.
- Escenarios de prueba.

Identificar el área del problema

Los siguientes procedimientos le pueden ser de ayuda para la identificación del problema:

- Lea detenidamente el texto para comprender la situación
- Lea por segunda vez el texto y responda a las siguientes preguntas:
 - ¿Qué palabras de enunciado me son desconocidas?
 - ¿Cuáles son las palabras claves en el enunciado?
 - ¿He resuelto antes una situación similar?
- Identifique el área del problema y responda a las siguientes preguntas:
 - ¿Qué conocimientos tengo en esta área?
 - ¿Mis conocimientos son suficientes para resolver la situación?
 - ¿Dónde puedo documentarme?
 - ¿Qué expertos en el tema puedo consultar?

Identificar el área del problema

- Describo con mis palabras cuál es el problema que se ha detectado
- No es la solución al problema

Formular el problema

Se busca es descomponer el enunciado en preguntas parciales y esquematizar adecuadamente, de manera que se aprecien las relaciones entre los datos conocidos y no conocidos. Esto implica realizar las actividades:

- Identificar el resultado o resultados esperados (Salidas)
- Identificar los datos disponibles: Realice una lectura de rastreo y haga un listado de los datos que le suministran en el enunciado.
- Identificar las restricciones: Se refiere a circunstancias necesarias para que algo pueda ocurrir.

Resultados esperados (Salidas)

- Los resultados esperados son las salidas que debe generar el sistema/programa/proceso
 - Mostrar algo en pantalla
 - O Guardar algo en un archivo
- ¿Cuales son las salidas?
- ¿Me piden algo en el enunciado?
- Generalmente las salidas están asociadas a una variable

Identificar los datos disponibles

- El primer punto de partida es ver las entradas, salidas
- Existen datos que se usan en el proceso pero no necesariamente son entradas ni salidas.
- Los datos normalmente pasan a ser variables en los algoritmos
- Los nombre de los datos siguen esta notación:

estaEsMiVariable

Identificar las restricciones: Condiciones

- Una condición indica que se debe cumplir algo para que el dato cambie, ese algo puede ser:
 - o El valor de otra variable
 - Un evento
 - Una restricción que me imponen
 - Un dato puede estar asociado a varias condiciones
- Las condiciones NO SON CÁLCULOS
- ¿Se acuerdan de lógica y argumentación?
 - Si p entonces q
 - o Si p y q entonces r

Identificar las restricciones: Cálculos y Fórmulas

- Para cada variable que requiera un cálculo se debe "bautizar" el cálculo y especificar la fórmula
- Si un dato es aleatorio se considera un cálculo
 - Se muestra la fórmula como azar(), aleatorio() y se indica entré que valores está el número
- Sólo se enuncian los cálculos de los datos relevantes

Formular el problema

En resumen después de formular el problema se pueden categorizar los datos de la siguiente manera:

Dato	REL	DIS	VAL	C/V	CON	CAL
Nombre del dato	¿Me sirve el dato para solucionar el problema?	¿Tengo información del valor del dato en el enunciado?	¿Cuál es el valor inicial del dato?	¿Cambia durante la ejecución o siempre es igual?	¿Tiene alguna condición asociada? ¿Su valor depende de algo?	¿Se debe calcular el valor de este dato?

Establecer procesos

Esta actividad busca encontrar la relación entre los datos con los resultados esperados para determinar las necesidades de información (entradas). Para cada resultado esperado responda lo siguiente:

- ¿Qué cálculos debo realizar para responder a la pregunta?
- ¿Qué fórmulas debo emplear?
- ¿Qué datos necesito para aplicar las fórmulas (entradas)?
- ¿Cómo afectan las condiciones a los procesos?
- ¿Qué debo hacer?
- ¿Cuál es el orden de lo que debo hacer (algoritmo)?

Establecer procesos

- Utilizo los nombres de los datos y de los cálculos definidos anteriormente
- Enuncio los pasos que se deben ejecutar en orden para convertir las entradas en salidas
- Inicialmente lo haremos en nuestras palabras, posteriormente usaremos diagramas de flujo o pseudocódigo

Escenarios de prueba

- Genero al menos 2 escenarios en los que conozco el resultado haciendo los cálculos a mano
- Los enuncio de la siguiente manera

Entradas	Salidas
Los valores de los datos de	Los valores de los resultados
entrada	esperados según las entradas

- Ejecuto la prueba al algoritmo para verificar que se obtienen los resultados esperados en cada escenario de prueba
- Para ello hago una PRUEBA DE ESCRITORIO

Escenarios de prueba

¿Cómo definir un escenario de prueba?

Entradas

- Dato
 - Nombre del dato/variable de entrada
- Valor
 - Valor que se le asigna al dato

Salidas

- Dato
 - Nombre del dato/variable de salida
- Valor esperado
 - Valor de referencia haciendo los cálculos a mano o según requerimiento del usuario
- Valor obtenido
 - Valor que toma el dato al ejecutar el algoritmo

Escenarios de prueba

Recomedaciones

- Si existen condiciones en el algoritmo, definir escenarios de prueba para cuando dichas condiciones se cumplen y cuando no se cumplen
- Si en el enunciado piden explícitamente una salida en particular, se debe definir como escenario de prueba

Escenarios de prueba

Entradas			Observaciones			
Dato	Valor	Dato	VIr esperado	VIr obtenido	Observaciones	

PLANTILLA SOLUCIÓN DE PROBLEMAS

Código:		Nombre:				
Proceso:						
Entradas			Salidas			
Tipo	Dato	Constante	Tipo	Dato	Constante	
Raciocinio:						
Algoritmo:						

Escenarios de prueba

Entradas			Salidas	Observaciones		
	Dato	Valor	Dato	VIr esperado	VIr obtenido	Observaciones

FASE: ANÁLISIS

- Identificar el problema.
- Formular el problema
 Resultados esperados = (Salidas)
 Datos de entrada
- Raciocinio (Restricciones)
 Fórmulas y condiciones
- Establecer procesos
 Algoritmo
- Escenarios de prueba.

METODOLOGÍA PARA LA SOLUCIÓN DE PROBLEMAS

FASE: DISEÑO

- ✓ Pseudocódigo.
- ✓ Diagramas de Flujo.
- ✓ Prueba de escritorio Escenarios.

FASE: DISEÑO

- Fase inicial para presentar la solución al problema
- Herramientas
 - o Diagramas de flujo
 - Pseudocódigo

Diagramas de flujo

Herramienta gráfica para representar un algoritmo o proceso

Funciona muy bien para aquellos familiarizados con la captura de información de manera visual

Pseudocódigo

- Herramienta para plantear soluciones de forma ordenada, esquematizada y clara a partir de la lógica
- Acerca de manera objetiva a las soluciones propuestas.
- Facilidad de encontrar errores de programación en un algoritmo representado en pseudocódigo

```
Inicio Quiero café
Si ¿Hay café hecho? Entonces
Calentar café
Sino
Hacer café
Fin Si
Servir en taza y añadir azúcar
Repetir
Añadir azúcar
Hasta que ¿Está dulce?
Fin Tomar café
```

Concepto de algoritmo

HTTPS://WWW.YOUTUBE.COM/WATCH?V=U3CGMYJZLVM

Prueba de escritorio Escenarios

Pruebas de escritorio

Ing. Patricio Abad Espinoza

Instalación PSeInt

...una invitación a entrar en el maravilloso mundo de la programación...

HTTP://PSEINT.SOURCEFORGE.NET/

Estudiar para la próxima clase

Variables, tipos de datos y literales

- Variables
 - Espacio de almacenamiento en memoria en el que puedo guardar datos.
 - O Debe tener un nombre (identificador) y definirse el tipo de dato que almacenará
- Tipos de datos
 - o Conjuntos de elementos que comparten características bien definidas
 - Grupos de valores
 - Operaciones permitidas sobre el grupo de valores
 - Tipos de datos en PSeInt
 - Números enteros: Nos sirve para representar números enteros Entero
 - × Números reales: Nos sirve para representar números reales Real, Numerico o Numero
 - Cadenas de caracteres: Nos permite trabaja con cadenas de caracteres Caracter, Texto o Cadena
 - Valores lógicos: Nos permite trabajar con valores lógicos Logico
- Literales
 - Nos permiten representar valores
 - o Ej: "Hola IntroSIS", 45, TRUE, 12.5, "500"
- Expresiones: combinación de operaciones, literales, funciones, expresiones que devuelven un valor

Estudiar para la próxima clase

Operaciones con PSeInt

- Las operaciones se realizan usualmente entre datos del mismo tipo
 - o Ej: sumar dos números con el operador +
- Operadores y expresiones en PSeInt
 - https://plataforma.josedomingo.org/pledin/cursos/programacion/c urso/uo8/
- Las funciones son programas ya realizados por otros y que podemos usar para resolver un problema

Estudiar para la próxima clase

Funciones en PSeInt

- Matemáticas
 - https://plataforma.josedomingo.org/pledin/cursos/program acion/curso/u12/
- Funciones de cadenas de texto
 - https://plataforma.josedomingo.org/pledin/cursos/program acion/curso/u13/

Ejercicios iniciales

- 1. Dados dos números, mostrar la suma, resta, división y multiplicación de ambos.
- 2. Convertir un valor dado en grados Fahrenheit a grados Celsius. Recordar que la fórmula para la conversión es:

$$C = (F-32)*5/9$$

3. Recibir una cantidad de minutos y mostrar por pantalla a cuantas horas y minutos corresponde. Por ejemplo: 1000 minutos son 16 horas y 40 minutos.

Ejercicio Condicionales

1. Se desea escribir un diagrama de flujo que pida la altura de una persona, si la altura es menor o igual a 150 cm envíe el mensaje: Persona de estatura baja; si la altura está entre 151 y 170 escriba el mensaje: Persona de estatura media y si la altura es mayor o igual a 171 escriba el mensaje: Persona alta.