Morch 26th

Problem Set 7

Q2: W subspace of an inner product space V T:V->V lin. transformation

Prove that W is T-invariant, then W1 is T*-invariant

Recall W is T-invariant (=> if weW then T(w) \in W

Example: $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ $T(X_1, X_2, X_3) = (X_3, X_1, X_2)$

·Wi=span [e.] a subspace of R3

Is Wi a T-invariant subspace? In other words, is it true that if $w_i \in W_i$ then $T(w_i) \in W_i$?

Note that T(e1)=e2 &Wi. Therefore Wi is not T-invariant.

·W2=Span[e1+8+123]

Is We a T-invariant subspace?

Wz=((c,c,c):CER)

T((,(,d)=(c,cx) = W2, YceR

Therefore, Wz is T-invariant.

Recall that: W= [x \in V: (xy >=0 \for Y \in W] \]
so, if x \in V then x \in W^+ <=> < x,y =0, y \in W

S=T*:V->V <S(w),y>=<w, 5*(y)> <T*(w),y>=<w, T*(y)>

Solution: We want to show that $\forall w \in W^{\perp}$, $T^*(w) \in W^{\perp}$. Suppose that $w \in W^{\perp}$. We must show that $< T^*(w)$, y > = 0 $\forall y \in W$. If $y \in W$, then $< T^*(w)$, y > = < w, $(T^*)^*(y) > = < w$, $(T^*)^*(y) > = < w$, $(T^*)^*(y) > = < w$. We since $y \in W$

So, T*(w) EW+ Yw EW+ =>W+ is T* invariant

Q4, $T:M_{2\times 2}(R) \rightarrow M_{2\times 2}(R)$
$T(A) = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} A - A \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ Find a basis of for $M_{DX2}(R)$ such that $[T]^{\alpha}_{\alpha}$ is
in Jordan canonical form and find [T]a.
T(ab) = (-c a+b-d)
Note that $T(ab) = (88) \iff c=0$ and $a+b-d=0$
(ab) = (ab) = (aab) = (aa) + (ab) = a(ba) + b(ab) = a(ba) + b(ab)
$\ker(T) = \operatorname{span} \left(\begin{pmatrix} 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \end{pmatrix} \right)$
E ₀ (T)
There are two other eigenvalues, namely 1 and -1 E-(T)=span ((1-1)) E_(T)=span ((00))
Have 4 lin. ind. eigenvectors since $M_{2\times2}(\mathbb{R})$ is 4-dim, these vectors formal basis (T) de = $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
Hint: Use the standard basis β of $M_{2\times2}(IR)$ [Find [T] β . Find its JCF as well as a Jordan basis J of $IR4$. Convert this to a basis of $M_{2\times2}(IR)$. call it α .