## **SECTION A**

1. It is independent of the distance. It's a straight line parallel to x-axis. (1)

2.



3. 
$$\varepsilon = BIV$$
 (½)  
=  $B \cos \theta \times I \times (2gH)^{1/2}$  (½)

4. 
$$I = Io/2 cos^2 (45)$$
 (1/2)  $= Io/4$  (1/2)

5.



## **SECTION B**

6.

$$A_A / A_B = 6 (1/2)$$

$$H = V^2 t / R \tag{1/2}$$

$$R = \rho I / A \tag{1/2}$$

$$H_A / H_B = 6 \tag{1/2}$$

7.

$$1/f = (\mu - 1) [1/R_1 - 1/R_2]$$
 (½)

$$1/20 = \frac{1}{2} [1/R_1 - 1/R_2] =$$
 (½)

$$1/f' = \frac{1}{R_1} - \frac{1}{R_2}$$
 (½)

$$f' = 40 \text{ cm}$$
 (½)

OR

$$P = + 5 D$$
  $f = 1/5 m = 20 cm$  (½)

For 
$$3^{rd}$$
 observation, when the object is at  $< 2f$ ,  $(\frac{1}{2})$ 

then the image has to be at 
$$> 2f$$
 ( $\frac{1}{2}$ )

8.

$$m_p = 1u$$
  $m_\alpha = 4u$  and  $q_p = e$   $q_\alpha = 4e$  (½)

$$\frac{1}{2} \text{ m } \text{v}^2 = \text{qV}$$
 (½)

$$P = mv = [\sqrt{2qVm}]^{\frac{1}{2}}$$
 (\frac{1}{2})

$$P_{P} / P_{\alpha} = 1/8 \tag{1/2}$$

9.

a) 
$$t_{1/2} = 0.693 / 1.05 = 39.6$$
 or appro. 40 min (½)



(1/2)



b) slope of graph = -  $\lambda$ 

$$\lambda = -[-4.16 + 3.11/1] = 1.05 h$$
 (½)

$$t_{1/2} = 0.693 / 1.05 = 39.6$$
 or appro. 40 min (1/2)

10.

Any correct answer 1 mark each

## **SECTION C**

11.

a) 
$$Q = \pm N q$$
 (1)  
b)  $V = Q/C$   $v = q / c$   $V / v = N (r/R) = N^{2/3}$  (1)  
c)  $C = N^{1/3} c$  (1)

12.



$$X/Y = 40/60 = 2/3$$
  
 $X = 4 \Omega$  (½)

4  $\Omega$  and 6  $\Omega$  are in series, = 10  $\Omega$ 

40  $\Omega$  and 60  $\Omega$  are in series, = 100  $\Omega$ 

10 
$$\Omega$$
 and 100  $\Omega$  are in parallel, = 1000/110  $\Omega$  = 9.09  $\Omega$  (1)

There will be no change in the balancing length.  $(\frac{1}{2})$ 

Formula for series and parallel (½) each

### OR



Balanced Wheatstone bridge (½)

Resultant resistance of the circuit =  $2.5 \Omega$  (½)

Current in the circuit = 6/2.5 = 2.4 A (1)

Statement and conservation of energy (½) each.

13.

Rate of change of flux = 
$$d\Phi/dt = (\pi l^2) B_0 l dz/dt = IR$$
 (½)

$$I = (\pi I^2 \lambda) B_0 \vee / R \tag{1/2}$$

Energy lost per second = 
$$I^2 R = (\pi I^2 \lambda)^2 B_0^2 v^2 / R$$
 (½)

Rate of change in PE = m g dz/dt = m g v 
$$(\frac{1}{2})$$

$$mgv = (\pi I^2 \lambda)^2 B_0^2 v^2 / R$$
 (½)

$$v = mgR / (\pi I^2 \lambda)^2 B_0^2$$
 (½)

a) In absence of magnetic field, the energy is determined by the principle quantum number n, while the orbital quantum number  $\iota$ . If an electron is in nth state then the magnitude of the angular momentum is  $(h/2\pi)$  | (l+1) where l=0,1,2,.....,(n-1), Since l=0,1,2,...,(n-1), different values of A are compatible with the same value of n. For example, when n=3, the possible values of l are l=0,1,2,1 and when l=0,1,2,1 and when l=0,1,2,3. Thus, the electron in one of the atoms could have l=0,1,2,3. Thus, the electron in the other atom could have l=0,1,2,3. Therefore, according to quantum mechanics, it is possible for the electrons to have different energies but have the same orbital angular momentum.

b)

For a point nucleus in H-atom:

Ground state: 
$$mwr = h$$
,  $\frac{mv^2}{r_B} = -\frac{e^2}{r_B^2} \cdot \frac{1}{4\pi\varepsilon_0}$ 

$$\therefore m \frac{h^{2}}{m^{2} r_{B}^{2}} \cdot \frac{1}{r_{B}} = + \left(\frac{e^{2}}{4\pi \varepsilon_{0}}\right) \frac{1}{r_{B}^{2}}$$

$$\therefore \frac{\hbar^2}{m} \cdot \frac{4\pi\varepsilon_0}{e^2} = r_B = 0.51 \,\text{Å}$$

If  $R >> r_{\rm B}$ : the electron moves inside the sphere with radius  $r_{\rm B}'(r_{\rm B}'={\rm new~Bohr~radius})$ .

Charge inside  $r_B^{\prime 4} = e \left( \frac{r_B^{\prime 3}}{R^3} \right)$ 

$$\therefore r_B' = \frac{h^2}{m} \left( \frac{4\pi \varepsilon_0}{e^2} \right) \frac{R^3}{r_B'^3}$$

$$r_B^{'4} = (0.51 \text{ Å}).R^3.$$
  $R = 10 \text{ Å}$   
=  $510(\text{Å})^4$ 

$$r_B \approx (510)^{1/4} \text{ Å} < R.$$

$$K.E = \frac{1}{2}mv^2 = \frac{m}{2} \cdot \frac{h}{m^2 r_B^{\prime 2}} = \frac{h}{2m} \cdot \frac{1}{r_B^{\prime 2}}$$

$$= \left(\frac{h^2}{2mr_B^2}\right) \cdot \left(\frac{r_B^2}{r_B'^2}\right) = (13.6\text{eV}) \frac{(0.51)^2}{(510)^{1/2}} = \frac{3.54}{22.6} = 0.16\text{eV}$$
(1)

$$P.E = + \left(\frac{e^2}{4\pi\varepsilon_0}\right) \cdot \left(\frac{r_B'^2 - 3R^2}{2R^3}\right)$$

$$= + \left(\frac{e^2}{4\pi\varepsilon_0} \cdot \frac{1}{r_B}\right) \cdot \left(\frac{r_B(r_B^{\prime 2} - 3R^2)}{R^3}\right)$$

$$= +(27.2 \text{eV}) \left[ \frac{0.51(\sqrt{510} - 300)}{1000} \right]$$

$$= +(27.2 \text{eV}).\frac{-141}{1000} = -3.83 \text{eV}. \tag{1}$$

15.

$$E/B = v$$
 when E, V and B are perpendicular to each other. (1)

When frequency of oscillator is same as frequency of cyclotron then resonance occurs. (1)

16.

$$T_2P = D + x$$
,  $T_1P = D - x$ 

$$S_1P = \sqrt{(S_1T_1)^2 + (PT_1)^2}$$

$$= [D^2 + (D - x)^2]^{1/2}$$

$$S_2P = [D^2 + (D + x)^2]^{1/2}$$

Minima will occur when

$$[D^{2} + (D + x)^{2}]^{1/2} - [D^{2} + (D - x)^{2}]^{1/2} = \frac{\lambda}{2}$$

If x = D

$$(D^2 + 4D^2)^{1/2} = \frac{\lambda}{2}$$

$$(5D^2)^{1/2} = \frac{\lambda}{2}$$
,  $\therefore D = \frac{\lambda}{2\sqrt{5}}$ .

17.

$$L = length of the telescope = fo + fe = 15.05 m$$
 (1)

$$m = fo/fe = 15/0.05 = 300$$
 (1)

18. A – Incident energy is less than the work function of the metal (1)

19.

Proton alpha particle

e 2e

1 u 4 u

r = mv/Bq

For same momentum: 
$$p = mv$$
  $r \alpha 1/q$  (1)

$$R(proton) > r(alpha)$$
 (½)

For same kinetic energy: 
$$KE = \frac{1}{2} \text{ m } \text{v}^2$$
 (1)

$$r^2 \alpha m/q^2$$

Radius is independent of KE

(1/2)

20. a)

$$E = h \mu \tag{1/2}$$

$$= hc/\lambda = hc / \lambda e$$
 (½)

$$= 2 \text{ eV}$$
 (½)

Hence D<sub>1</sub> and D<sub>3</sub> can detect light.

 $(\frac{1}{2})$ 

b)

Number of Free electrons are very small leading to negligible conduction. Hence not possible. (1)

21.

As  $V_{\text{be}} = 0$ , potential drop across  $R_b$  is 10V.

$$I_b = \frac{10}{400 \times 10^3} = 25 \mu A$$

Since  $V_{ce} = 0$ , potential drop across  $R_c$ , i.e.  $I_c R_c$  is 10V.

$$I_c = \frac{10}{3 \times 10^3} = 3.33 \times 10^{-3} = 3.33 \text{mA}$$
.

$$\therefore \beta = \frac{I_c}{I_b} = \frac{3.33 \times 10^{-3}}{25 \times 10^{-6}} = 1.33 \times 10^2 = 133.$$

22. a)

 $\boldsymbol{\mu}$  is kept less than 1 so that the noise level can be kept small in the (1) signal.

b)

$$\mu = a(max) + a(min) / a(max) - a(min) = 18/12 = 9/6 = 3/2 = 1.5$$
 (1)

c)

Fading of a signal is prominent in case of amplitude modulation and (1)

hence noise level is more in AM than FM

# **SECTION D**

| 23. | D. Array and array to the control of                                                                                        | (4)               |
|-----|-----------------------------------------------------------------------------------------------------------------------------|-------------------|
|     | <ul><li>i) Any one relevant value</li><li>ii) Nuclear fission</li><li>iii) Fuel, moderator, cadmium rods, any two</li></ul> | (1)<br>(1)<br>(1) |
|     | iv) to slow down the speed of neutrons                                                                                      | (1)               |
|     | SECTION E                                                                                                                   |                   |
| 24. | $U = \frac{1}{2} CV^2$<br>Loss in energy<br>It appears in the form of heat.                                                 | (2)<br>(2)<br>(1) |
|     | OR                                                                                                                          |                   |
|     | Diagram                                                                                                                     | (1/2)             |
|     | Net force = 0 no translator motion                                                                                          | (1/2)             |
|     | Defination of torque                                                                                                        | (1/2)             |
|     | SI unit                                                                                                                     | (1/2)             |
|     | troque = pE sin $\theta$                                                                                                    | (1)               |
|     | $C_{eq} = 11/6 C$                                                                                                           | (1/2)             |
|     | where $C = A \epsilon o/3d$ ,                                                                                               | (1/2)             |
|     | C1 = C, $C2 = C/2$ , $C3 = C/3$                                                                                             | (1/2)             |
|     | and all of these capacitors are connected in parallel.                                                                      | (1/2)             |
| 25. | a)                                                                                                                          |                   |
|     | $X_C = X_L$                                                                                                                 | (2)               |
|     | b)                                                                                                                          |                   |
|     | $I_0 = V_0 / \sqrt{(R^2 + X_L^2)}$                                                                                          | (1/2)             |
|     | $Vo = \sqrt{2} V_{rms}$                                                                                                     | (1/2)             |
|     | $X_L = 2\pi fL$                                                                                                             | (1/2)             |

$$I_0 = 15.54$$
 (½)

Current lags behind the voltage by phase  $\Phi$  (½)



(½)

OR

a)

$$V = Vo \sin \omega t$$
  $V = Q/C$  (½)

$$I = dQ/dt (1/2)$$

$$Io = Vo / (1/\omega C)$$
 (½)

$$I = Io \sin (\omega t + \pi/2) \tag{1/2}$$



(1)

b)

$$X_c = 1/2\pi fc = 212.3 \Omega$$

$$Z = \sqrt{R^2 + Xc^2} = 291.5 \Omega$$
 (½)

$$I_{rms} = v_{rms} / Z = 220 / 291.5 = 0.755 A$$
 (½)

$$V_R(rms) = 151 \text{ V} \quad V_c(rms) = 160.3 \text{ V}$$
 (½)

Two voltages are out of phase. Hence they are added vectorially and hence the difference is! (1/2)

26. a)

$$\mu = c/v = \sin i / \sin r, \tag{1}$$

$$v \alpha \sin r$$
 Hence  $v_{min}$  for light will be for  $r = 15^{\circ}$ . (1)

OR

a. The ray coming from the object has to pass from denser to rarer medium and angle of incidence is greater than the critical angle.

(1+1)

b.

i) 
$$\sin c = n_1 / n$$
 (90 -  $r_1$ ) + 45 + (90 -  $c$ ) = 180

$$r_1 = 45 - c$$
 (½)

$$\sin i / \sin r_1 = n$$
  $\sin i = n \sin r_1 = n \sin (45 - c)$ 

$$=$$
 n ( $\sin 45 \cos c - \cos 45 \sin c$ )

$$= n/\sqrt{2} (\cos c - \sin c)$$
 (½)

= 
$$n/\sqrt{2}$$
 ( $\sqrt{[1 - \sin^2 C]} - \sin c$ )

$$= 1/\sqrt{2} (\sqrt{n^2 - n_1^2}) - n_1$$

$$i = \sin^{-1} (1/\sqrt{2} (\sqrt{n^2 - n_1^2}) - n_1)$$
 (½)

ii) 
$$r_2 = 0$$
  $r_1 + r_2 = 45$   $r_1 = 45$  (½)

 $\sin i / \sin r_1 = n$ 

$$\sin i = n \sin r_1 = 1.352 \sin 45 = 0.956$$
 (½)

$$i = \sin^{-1}(0.956) = 72.58$$
 (½)