MAP 2320 - Métodos Numéricos em Equações Diferenciais II

Trabalho Computacional 2

Erik Davino Vincent 10736584 December 25, 2020

Problema

"Considere a equação de Poisson, no quadrado unitário

$$u_{xx} + u_{yy} = f(x, y), \ 0 < x < 1, \ 0 < y < 1$$

Vamos definir uma solução manufaturada:

$$u(x,y) = \cos(\pi x).\cos(\pi y)$$

e deduzir a f(x,y)."

Podemos deduzir f(x,y) verificando que $u_{xx} = u_{yy} = -\pi^2 . u(x,y)$. Portanto, $f(x,y) = -2\pi^2 . \cos(\pi x) . \cos(\pi y)$.

"Resolva o problema de Dirichlet para:

a) Esquema 2ª ordem básico (5-pontos):

$$u_{i,j} = \frac{1}{4}(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} + h^2 f_{i,j})$$

b) Esquema de 2^a ordem diagonal (5-pontos):

$$u_{i,j} = \frac{1}{4}(u_{i+1,j+1} + u_{i-1,j-1} + u_{i-1,j+1} + u_{i+1,j-1} + 2h^2 f_{i,j})$$

c) Esquema de 4^a ordem (9-pontos):

$$u_{i,j} = \frac{1}{5}(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1})$$

$$+ \frac{1}{20}(u_{i+1,j+1} + u_{i-1,j-1} + u_{i-1,j+1} + u_{i+1,j-1})$$

$$+ \frac{h^2}{40}(f_{i+1,j} + f_{i-1,j} + f_{i,j+1} + f_{i,j-1} + 8f_{i,j})$$
"

Análise dos Esquemas

"Estabeleça uma sequência de valores de h=k ($\iff m=n$) cada vez menores e obtenha a convergência do método iterativo para uma mesma tolerância fixa, usando como critério de convergência alguma norma da diferença de soluções consecutivas. Compare a norma do erro da sua solução convergida com a solução exata manufaturada."

Defina tolerância de 1e-5 fixa. Utilizando a norma infinito das diferenças ($\|u^k-u^{k-1}\|_{\infty}=\max\{|u_{0,0}^k-u_{0,0}^{k-1}|,|u_{1,0}^k-u_{1,0}^{k-1}|,...,|u_{m,n}^k-u_{m,n}^{k-1}|\};$ k=iteração) obtemos os seguintes resultados para cada esquema:

h	Iterações	Erro	h	Iterações	Erro	h	Iterações	Erro
0.1	57	0.00148	0.1	22	0.00645	0.1	49	7.16e-5
0.05	128	0.00049	0.05	67	0.00156	0.05	111	0.00026
0.025	352	0.00061	0.025	200	0.00055	0.025	303	0.00056
0.0125	1043	0.00198	0.0125	591	0.00097	0.0125	899	0.00168

(a) Esquema a

(b) Esquema b

(c) Esquema c

Observamos pelas tabelas que os erros das diferenças das aproximações consecutivas de u não são boas aproximações do verdadeiro erro, pois para todos os esquemas vemos aumento do erro a partir de algum valor de h. Além disso, estimamos um erro da ordem em torno de 1e-5, enquanto observamos o erro verdadeiro sendo muito maior. Podemos notar que o esquema b aparenta ser mais vantajoso para valores menores de h, enquanto o esquema c aparenta ser mais vantajoso para valores maiores de h, se quisermos manter uma tolerância fixa.

Defina m = n = 40, i.e. h = k = 0.025, fixos. Obtemos os seguintes resultados para cada esquema:

tol	Iterações	Erro
1e-5	352	0.00061
1e-6	509	0.00012
1e-7	771	9.80e-5
1e-8	1142	9.31e-5

(a) Esquema a

tol	Iterações	Erro
1e-5	200	0.00055
1e-6	274	0.00039
1e-7	348	0.00037
1e-8	423	0.00037

(b) Esquema b

tol	Iteraçoes	Erro
1e-5	303	0.00056
1e-6	437	8.65e-5
1e-7	661	1.33e-5
1e-8	971	1.34e-6

(c) Esquema c

Os resultados obtidos nas tabelas acima sugerem que apesar de as diferenças de aproximações sucessivas não representarem bem a escala do erro verdadeiro, podemos supor com certa confiança que se o erro estimado foi menor então o erro verdadeiro também será, pelo menos até certo valor de tolerância; isso pois a partir de uma tolerância o erro de cada esquema converge. Podemos ver que o erro do esquema a converge para algum valor em torno de 9.0e-5, o esquema b para 0.00037 e o esquema c para algum valor menor do que 1.35e-6. Os resultados sugerem que se quisermos fixar o tamanho da discretização o esquema c apresenta vantagens significativas em relação aos outros dois esquemas, uma vez que o erro em é menor em geral e decresce mais rapidamente conforme a tolerância decresce.

Ordem de Convergência

Para verificar a ordem (ordem de convergência) de um método numérico podemos fazer a seguinte análise:

[&]quot;Escolha um valor de h fixo, e repita o estudo para tolerâncias cada vez menores."

Seja p a ordem de convergência e $\epsilon(h)$ o erro para algum h. Seja k tal que $h^{k+1} < h^k \ \forall k \in \mathbb{N}$;

$$\lim_{h^k \to 0} p_{h^k} = \lim \log_{\frac{h^k}{h^{k+1}}} \left(\frac{\epsilon(h^k)}{\epsilon(h^{k+1})}\right) = p$$

Isso pois, se $\epsilon(h^k) = C.(h^k)^p$, e $\epsilon(h^{k+1}) = C.(h^{k+1})^p$, então a ordem de convergência seria o valor p que satisfaz, para $h^k \to 0$,

$$\frac{\epsilon(h^k)}{\epsilon(h^{k+1})} = \left(\frac{h^k}{h^{k+1}}\right)^p \iff \log\left(\frac{\epsilon(h^k)}{\epsilon(h^{k+1})}\right) = p\log\left(\frac{h^k}{h^{k+1}}\right)$$
$$p = \frac{\log(\epsilon(h^k)) - \log(\epsilon(h^{k+1}))}{\log(h^k) - \log(h^{k+1})}$$

Assim, podemos estimar a ordem numericamente se compararmos erros para valores de h sucessivamente menores. Para nosso estudo, faremos $h^{k+1} = \frac{h^k}{2}$, então utilizamos \log_2 . Além disso precisamos definir o numero máximo de iterações grande o suficiente para que o método convirja para o menor erro que é capaz para cada valor de h, por exemplo 2500. Note, ainda estamos utilizando erro por norma infinito¹;

h^k	$\epsilon(h^k)$	$rac{\epsilon(h^k)}{\epsilon(h^{k+1})}$	p_{h^k}
0.2	0.00552		
0.1	0.00145	3.798	1.925
0.05	0.00037	3.940	1.978
0.025	9.25e-5	3.984	1.994

h^k	$\epsilon(h^k)$	$rac{\epsilon(h^k)}{\epsilon(h^{k+1})}$	p_{h^k}
0.2	0.03445		
0.1	0.00644	5.349	2.419
0.05	0.00151	4.263	2.092
0.025	0.00037	4.057	2.021

(a) Esquema a

(b) Esquema b

h^k	$\epsilon(h^k)$	$rac{\epsilon(h^k)}{\epsilon(h^{k+1})}$	p_{h^k}
0.2	7.65e-5		
0.1	4.85e-6	15.778	3.980
0.05	3.04e-7	15.933	3.994
0.025	1.90e-8	15.978	3.998

(c) Esquema c

Podemos ver pelo resultado acima que os métodos realmente possuem a ordem de convergência que o enunciado afirma que têm. Além disso, vemos que o esquema c é muito mais vantajoso, pois sempre supera os outros em termos de erro, fixado máximo de iterações. Podemos ver que o esquema a supera o esquema b, apesar de possuírem a mesma ordem (ao menos para o problema proposto).

¹Os resultados mudam se escolhermos uma norma diferente; por exemplo, utilizando norma 2 obtemos que os esquemas a e b possuem ordem 1, enquanto o esquema c possui ordem 3 (preserva a diferença das ordens). Isso sugere que o maior erro (pontual) converge com uma ordem maior do que o erro da malha como um todo.

Tempo Computacional

Podemos estimar o tempo computacional de cada esquema, verificando a média (em 100 rodadas, por exemplo) de tempo gasto para para executar 100 passos de cada esquema para um valor de h:

Figure 1: Tempo médio de computação (em 100 amostras) para diferentes valores de h e iterações = 100. Esquemas 1, 2 e 3 são esquemas a, b e c respectivamente

Resultados estão dentro do esperado, uma vez que o esquema a e b possuem praticamente o mesmo número de operações, enquanto o esquema c possui o triplo.

Implementação

A implementação de todos os esquemas foi feita em **Python3.8** e pode ser encontrada no arquivo *EP-2.py*. O arquivo possui duas implementações dos esquemas, com nome **scheme** - a versão *_fast* serve apenas para medir os tempos computacionais de forma mais precisa. A função é flexível, no sentido de que o usuário pode escolher (editando o código) qual dos três esquemas será utilizado, o número de pontos de discretização, o máximo de iterações, a tolerância, e parâmetros adicionais para plotar as aproximações e para printar mensagens de execução. Há também alguns trechos de código que podem ser facilmente modificados para se obter todos os resultados apresentados nesse relatório.

Extra

Figure 2: "Mapa de calor" da aproximação da solução utilizando o esquema a; O "Erro" é a o erro estimado para definir convergência do esquema.

Figure 3: "Mapa de calor" da solução exata manufaturada.

Figure 4: Visualização tridimensional da aproximação da solucao utilizando o esquema a.