CS2110: SW Development Methods Analysis of Algorithms ~Searching & Sorting~

- Reading: Chapter 5 of MSD text
 - Except Section 5.5 on recursion (next unit)

Announcements

- **Homework** #4 (**GUIs**) [No automatic Web-CAT feedback]
 - Submit on Collab Zip folder with all files & your pictures
 - Due: 11:30pm, Wednesday, April 1, 2020
 - Feel free to include a README.txt file to provide instructions/clarity
 - Don't forget to cite all sources within your code!
- Exam 2 on Friday, April 3, 2020
 - SDAC students please make sure your SDAC arrangements have been finalized with SDAC so we can provide you with appropriate accommodations.
 - Similar **format** to Exam 1 (Questions on Collab + Coding questions on external website)
 - Details will be given during the Exam review (class before the exam.)

REMINDER: Common Order Classes

- Order classes group "equivalently" efficient algorithms
 - -O(1) constant time! Input size doesn't matter
 - –O(lg n) logarithmic time. Very efficient. E.g. binary search (after sorting)
 - -O(n) linear time E.g. linear search
 - $-O(n \lg n) log-linear time$. E.g. best sorting algorithms
 - $-O(n^2)$ quadratic time. E.g. poorer sorting algorithms
 - $-O(n^3)$ cubic time
 - **....**
 - $-O(2^n)$ exponential time. Many important problems, often about optimization

Inverse: Another Perspective

Largest size *n* of a problem that can be solved in time *t*

For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds. A microsecond is 1 millionth of a second. (Hint use wolframalpha.com)

f(n)	1 sec	1 day	1 year	1 century
$\lg(n)$	2^{10^6}	$2^{8.64 \times 10^{10}}$	2 ^{3.1563×10¹³}	$2^{3.1563\times10^{15}}$
\sqrt{n}	10 ¹²	7.46×10^{21}	9.95×10^{26}	9.96×10^{30}
n	10^{6}	8.46×10^{10}	3.15×10^{13}	3.16×10^{15}
$n \lg(n)$	62,746.1	2,755,147,513	797,633,893,349	6.86×10^{13}
n^2	10^{3}	293,938	5,615,692	56,176,151
n^3	10^{2}	4,420	31,593	146,679
2^n	$\frac{6}{\log_{10} 2} \approx 19.9$	36	44	51
n!	9.45 (between 9 and 10)	13	16	17

Searching and Sorting

Important and Useful Algorithms

Two Important Problems

Search

- Given a list of items and a target value
- Find if/where it is in the list
 - Return special value if not there ("sentinel" value)
- Note we've specified this at an abstract level
 - We'll see a few examples on how to implement searches today

Sorting

- Given a list of items
- Re-arrange them in some non-decreasing order
- With solutions to these two, we can do many useful things!
- What to count for complexity analysis? For both, the basic operation is: comparing two list-elements

Searching Algorithms

Professor Snape says...

From: Harry Potter and the Prisoner of Azkaban

- Ron Weasley's linear search method
- Professor Snape's Magical constant time algorithm with a wand!

Sequential Search Algorithm

• Sequential Search

- AKA linear search
- Look through the list until we reach the end or find the target
- Best-case? Worst-case?
- Complexity: O(n)
- Advantages: simple to code, no assumptions about list
- Think:
 - Finding a card in a shuffled deck
 - Finding an element in an arrayList

• ...

Sequential (Linear) Search

Case	Best Case	Worst Case	Average Case
Item is present	1	n	n/2 = n
Item is not present	n	n	n

Binary Search Algorithm

- Binary Search
 - Precondition: Input list must be sorted
 - Strategy: Eliminate about half items left with one comparison
 - Look in the middle
 - If target larger than middle element, must be in the 2nd half
 - If target smaller than middle element, must be in the 1st half
- Complexity: O(log₂ n)
- Must sort list first, but...
- Much more efficient than sequential search
 - Especially if search is done many times (sort once, search many times)
- Note: Java provides static binarySearch() method

How to find the mid-point?

search(44)

$$mid = \left| \frac{low + high}{2} \right|$$

Example

Search=99, low=0, high=5, mid=(0+5)/2 = 2

Another Example

In-Class Assignment: Binary Search

- For each of the following arrays of integers, use **binary search** to find the target value in the list. You must turn in:
 - Which index is returned by the algorithm
 - The sequence of indices whose values were compared to the target
 - 1. -1 4 5 11 13 target: 4
 - 2. -1 4 5 11 13 target: 13
 - 3. -5 -2 -1 4 5 11 13 14 17 18 target: 3
 - 4. -5 -2 -1 4 5 11 13 14 17 18 target: 14

Sample Solution to the first Binary Search Question:

• Ex #1: Index returned: 1
Sequence of indices: 2 0 1

- Please work on Examples 2, 3, and 4.
- Submit solutions to examples 1 through 4
- Submit individually on Collab

Binary Search

Best Case	Worst Case	Average Case
1	log n	log n

Discussion Question: Given an unsorted list...

- **Binary search** is faster than sequential search
 - But extra cost! Must <u>sort</u> the list first!
 - It costs O(n log n) to sort --- if we use fastest sorting algorithm
 - Sorting + searching once = $O(n \log n) + O(\log n) = O(n \log n)$
 - Linear search once = O(n)

So, when do you think it's worth using binary search?

Discussion Question: Given an unsorted list...

- **Binary search** is faster than sequential search
 - But extra cost! Must sort the list first!
 - It costs O(n log n) to sort --- if we use fastest sorting algorithm
 - Sorting + searching once = $O(n \log n) + O(\log n) = O(n \log n)$
 - Linear search once = O(n)

So, when do you think it's worth using binary search?

- When you are searching many times, it's more efficient to sort once then perform MANY *binary searches* (compared to many *linear searches*)
- How many searches? Binary search overtakes the cost of the sort after "n" searches!

Comparison (Summary: Searching)

• Linear search vs. Binary search

Sequential (Linear) Search				
Case	Best Case	Worst Case	Average Case	
target present	O(1)	O(n)	O(n)	
target not present	O(n)	O(n)	O(n)	

Binary Search				
Case	Best Case	Worst Case	Average Case	
target present	O(1)	$O(\log_2 n)$	$O(\log_2 n)$	
target not present	$O(\log_2 n)$	$O(\log_2 n)$	$O(\log_2 n)$	

Sorting Algorithms

Sorting Algorithms

- The sorting problem:
 - Given a sequence $\mathbf{a_0} \dots \mathbf{a_n}$ reorder them into a permutation $\mathbf{a'_0} \dots \mathbf{a'_n}$ such that $\mathbf{a'_i} <= \mathbf{a'_{i+1}}$ for all pairs
 - Specifically, this is sorting in non-descending order...
 - Basic operation: Comparison of keys
- Supplemental material on a couple of these sorting algorithms [resources]
 - Will discuss Mergesort in more details later
- Cool Visualization:

https://www.toptal.com/developers/sorting-algorithms

How to Sort?

- Many sorting algorithms have been found!
 - Problem is a case-study in algorithm design
 - You'll see more of these in CS 2150 and CS 4102
- Some "straightforward" sorting algorithms
 - Insertion Sort, Selection Sort, Bubble Sort
 - Each is $O(n^2)$
- More efficient sorting algorithms Best Sorts are O(n log n)
 - Quicksort, Mergesort, Heapsort
 - Each is O(n log n)

Sorting in CS2110

- Collections and Arrays classes provide .sort() methods!
 - Utilizes compareTo() or Comparator to determine order when comparing elements
 - "under the hood", it's a variant of something called mergesort
 - $-\Theta(n \log n)$ worst-case -- as good as we can do
 - We'll discuss how Mergesort works soon!

Reminder: What to Count

- Often count some "basic operation"
- Or, we count a "critical section"
- Examples:
 - The block of code most deeply nested in a nested set of loops
 - An operation like comparison in sorting
 - An expensive operation like multiplication or database query

Summary and Major Points

- When we measure algorithm complexity:
 - Base this on size of input
 - Count some basic operation or how often a critical section is executed
 - Get a formula f(n) for this
 - Then we think about it in terms of its "label", the order class O(f(n))
 - "Big-Oh" means as efficient as class f(n) or better
 - Upper bound on how inefficient the algorithm is
 - We usually use order-class to **compare** algorithms
 - We can measure worst-case, average-case
- Data structures are design choices that implement ADTs
 - How to choose? Often by the efficiency of their methods