## The network structure of success: Evidence from an empirical study of European patents

Alex Stivala<sup>1</sup> Alessandro Lomi<sup>1,2</sup>

<sup>1</sup>Università della Svizzera italiana, Lugano, Switzerland <sup>2</sup>The University of Exeter Business School, Exeter, UK

Slides prepared for INSNA Sunbelt XL, Paris, France, June 2–7, 2020 (abstract accepted but conference cancelled due to COVID-19)

1/35

### Contrast (Kovács and Hannan, 2010)

- ► The *contrast* of a category captures the idea of sharpness or fuzziness of category boundaries:
  - A category has high contrast (sharp boundaries) if it is seldom assigned low or moderate levels of category membership.
  - A category has lower contrast (fuzzier boundaries) as partial membership is more common.
- ► A technology class that is seldom assigned together with other classes to a patent has high contrast.
- ► A technology class that is frequently assigned together with other classes to a patent has low contrast.
- ► Contrast is defined as the average grade-of-membership (GoM) in a category, for those with nonzero GoM.
  - When the category membership is binary (as in patent technology classes), then for each patent GoM is just 0 if the patent does not have that class, and  $1/K_p$  when it does, where  $K_p$  is the number of categories assigned to patent p.

#### Introduction

- ▶ One measure of the "success" of a patent is the number of citations it receives from other patents.
- ► These are known as "forward citations", and is just the in-degree in the citation network.
- ► Innovation involves the combination of knowledge in different ways.
- ▶ But not all possible combinations of knowledge are equally likely to succeed. So what factors contribute to success?
- ▶ We will use the ideas of *categorical contrast* and *niche width* (Hannan et al., 2007; Kovács and Hannan, 2010, 2015), as well as a new measure of technology class boundary crossing, to try to answer this question.
- ► We will use both negative binomial regression and ERGM, as appropriate, to test hypotheses.

## Niche width (Hannan et al., 2007; Kovács and Hannan, 2010)

- ▶ Niche width captures the idea of breadth:
  - A patent with high niche width spans many categories (technology classes); it is generalist.
  - ► A patent with a single technology class has a niche width of 0; it is specialized.
- ► The *niche width* of a patent is the Simpson diversity index of the GoM vector.
- ▶ Equivalently, 1 H where H is the Herfindahl concentration index.
- For binary memberships as used here, niche width is just  $1-1/K_p$ .

3/35 4/35

### Assigned technology classes or cited technology classes?

- ▶ Patents are assigned technology classes by the patent office.
- In our data, multiple classes can be assigned.
- ► So GoM can be defined in two ways:
  - ▶ By the set of technology classes assigned to a patent.
  - ▶ By the set of technology classes assigned to the patents cited by a patent.
- ▶ The latter is claimed to better capture the combination of knowledge by a patent (Gruber et al., 2013; Ferguson and Carnabuci, 2017).
- We will use both.
- ▶ When niche width is defined by classes of cited patents, it is the same as the "originality" of Trajtenberg et al. (1997); Hall et al. (2001).

Niche width is a monoto

Class crossing ratio I

- Niche width is a monotonic function of the number of technology classes, so it captures just breadth and not diversity as such.
- ► We define the *class crossing ratio* to capture a particular idea of diversity or "boundary crossing":
  - Consider each citation as an arc between each of the classes in the citing patent to each of the classes in the cited patents.
  - ► The class crossing ratio is the ratio of the number of these virtual arcs which join different classes, to the total number of virtual arcs.
- ➤ So class crossing ratio is high when a patent cites patents that have different technology classes than those it is assigned itself.

5/35

### Class crossing ratio II

- ➤ This is conceptually different from the *typicality* measure of Ferguson and Carnabuci (2017) which measures similarity among sets of technology classes assigned to the cited patents only, with a Jaccard index.
- ▶ It is also different from Jaccard similarity between classes of citing patent and union of classes of cited patents.

### Class crossing ratio illustration 1



Class crossing ratio = 
$$9/12 = 0.75$$
  
 $J(X, Y \cup Z) = 3/4 = 0.75$ 

### Class crossing ratio illustration 2



Class crossing ratio = 
$$9/12 = 0.75$$
  
 $J(X, Y \cup Z) = 2/4 = 0.5$ 

9 / 35

### Hypotheses II

► Higher contrast categories are easier to interpret; lower contrast can lead to confusion about categories (Hannan et al., 2007; Kovács and Hannan, 2010, 2015).

### H3 But spanning high contrast categories makes success less likely.

- Membership in more than one high-contrast category can also lead to confusion (Kovács and Hannan, 2010, 2015).
- ► This can be tested by a negative effect for secondary contrast, that is, the second-largest contrast (Kovács and Hannan, 2015).

## H4 Patents with high maximum contrast are unlikely to cite other patents with high maximum contrast.

▶ A patent with a very sharply defined category (rarely combined with other categories) is more likely to cite patents with less sharply defined categories, combining knowledge from categories that are more often combined.

### Hypotheses I

### H0 Success (citations received) increases with breadth.

- ► This is measured by niche width.
- "... the positive association between recombinant breadth and citation impact is one of the most frequently replicated findings in innovation research..." (Ferguson and Carnabuci, 2017, p. 134).

#### H1 Success (citations received) increases with diversity.

- Compare with Uzzi et al. (2013), the highest-impact science has atypical combinations grounded in conventional combinations; and
- ► Ferguson and Carnabuci (2017), patents with "more typical" combinations receiver fewer citations.
- Instead we measure technology class *diversity* or "boundary crossing" here with class crossing ratio.
- H2 Success increases with maximum contrast of technology classes.

10 / 35

### Hypotheses III

### H5 (Geographical knowledge spillover): citations are more likely to be geographically localized.

▶ Jaffe et al. (1993); Thompson and Fox-Kean (2005); Henderson et al. (2005); Stivala et al. (2019a).

11/35 12/35

#### Data source

- ► The patent data is from the Information Retrieval Facility https://www.ir-facility.org/
- ➤ We used the MAREC (Matrixware Research Collection), of over 19 million patents from 1976 2008. https://www.ir-facility.org/prototypes/marec
- ➤ Specifically we used patents (applications and granted) from the European Patent Office (EPO).
- ▶ We extracted bibliographic data for 1 933 231 unique patents from the full text XML data.
- ▶ From this a 1 933 231 node citation network is built.
- ▶ 149 instances of self-loops are removed.
- ▶ Including nodes for patents cited from patents in that data (but for which we have no data other than a unique identifier), a 4 903 886 node citation network is built.
- ▶ But this larger network has no attribute data for 61% of the nodes.

### Patent technology classifications

- ► The International Patent Classification (IPC) scheme is hierarchical.
- ▶ The highest level is Section (of which there are 8).
- ▶ There are then 120 classes and 600 subclasses.
- ► E.g. Section H is "Electricity" and class H01 is "basic electric elements".
- We will use Section and Class levels.
- ▶ Note that the EPO (unlike the USPTO data e.g. from NBER) allows multiple sections and classes to be assigned to a patent.
- ▶ Also the EPO assigns classes based on the entire application, not just the "claims" so is determined objectively by the examiner (Gruber et al., 2013).

13/35

### Summary statistics of the patent data

| Statistic                     | N       | Mean   | St. Dev. | Min   | Max   |
|-------------------------------|---------|--------|----------|-------|-------|
| Forward citations             | 1933231 | 0.573  | 1.448    | 0     | 76    |
| App. Year [base 1978]         | 1933231 | 18.442 | 7.297    | 0     | 30    |
| Niche width                   | 1928684 | 0.236  | 0.282    | 0.000 | 0.929 |
| Max. contrast                 | 1928684 | 0.659  | 0.064    | 0.305 | 0.812 |
| Secondary contrast            | 817292  | 0.586  | 0.071    | 0.305 | 0.766 |
| Contrast share                | 1928684 | 0.779  | 0.265    | 0.087 | 1.000 |
| Contrast variance             | 817292  | 0.006  | 0.006    | 0.000 | 0.086 |
| Num. classes                  | 1933231 | 1.595  | 0.841    | 1     | 14    |
| Num. subclasses               | 1933231 | 1.934  | 1.190    | 1     | 20    |
| Backward citations (subgraph) | 1933231 | 0.573  | 1.029    | 0     | 117   |
| Cited max. contrast           | 650656  | 0.666  | 0.060    | 0.383 | 0.812 |
| Cited secondary contrast      | 374032  | 0.599  | 0.070    | 0.305 | 0.766 |
| Cited contrast variance       | 452945  | 0.004  | 0.005    | 0.000 | 0.086 |
| Cited contrast share          | 650656  | 0.680  | 0.289    | 0.080 | 1.000 |
| Class crossing ratio          | 650511  | 0.414  | 0.311    | 0.000 | 1.000 |
| Cited niche width             | 650866  | 0.325  | 0.293    | 0.000 | 0.923 |
| Num. sections                 | 1933231 | 1.370  | 0.579    | 1     | 7     |
| Backward citations (all)      | 1933231 | 3.251  | 2.911    | 1     | 142   |

There are 8 technology sections (highest level IPC classification), and at the next level, 123 technology classes. A patent can be assigned multiple classes and multiple sections.

### Summary statistics of IPC sections

| IPC Section | Description                               | N      |
|-------------|-------------------------------------------|--------|
| Α           | Human necessities                         | 405804 |
| В           | Performing operations; transporting       | 497492 |
| C           | Chemistry; metallurgy                     | 464874 |
| D           | Textiles; paper                           | 54695  |
| E           | Fixed constructions                       | 78438  |
| F           | Mechanical engineering; lighting; heating | 227017 |
| G           | Physics                                   | 477022 |
| Н           | Electricity                               | 438685 |
| Υ           | General                                   | 0      |

Note that a patent need not be assigned to only a single section; the sections are not mutually exclusive.

15/35 16/35

### Summary statistics of the patent citation network

| Description    | N       | Components | Giant     | Mean   | Density   |
|----------------|---------|------------|-----------|--------|-----------|
|                |         |            | component | degree |           |
| EPO (full)     | 4903886 | 746741     | 3789545   | 2.30   | 0.0000002 |
| EPO (subgraph) | 1933231 | 1119794    | 673306    | 1.15   | 0.0000003 |

| Description    | Reciprocity | Clustering coefficient | Assortativity coefficient |
|----------------|-------------|------------------------|---------------------------|
| EPO (full)     | 0.0005      | 0.03125                | 0.08300                   |
| EPO (subgraph) | 0.0025      | 0.07862                | 0.13231                   |

The "full" network is the network containing not only patents in the data set, but also nodes representing patents outside the data set, but which are cited by a patent in the data set. The "subgraph" network is the network induced by only those nodes in the data set itself.

17 / 35

### Distribution of maximum contrast value of patents



### Distribution of contrast values of technology classes



The highest value of contrast (0.812) is for A43 (footwear), and the lowest value (0.250) is for C99 (chemistry; metallurgy).

18 / 35

### Distribution of class crossing ratio of patents



The class crossing ratio of a patent is the number of backward citations that represent a direct citation from a class assigned to the patent, to a different class in the cited patent, divided by the total number of possible class citations (to both the same or different classes).

### Distribution of technology class Jaccard similarity



Distribution of the Jaccard similarity between the sets of technology classes assigned to a patent, and the union of the sets of technology classes assigned to the backward citations (directly cited patents) of the patent. N = 650511, median = 0.667, mean = 0.674, sd = 0.307.

21 / 35

### Negative binomial models, citations as response variable II

|                                             | Model 4         | Model 5         | Model 6         |
|---------------------------------------------|-----------------|-----------------|-----------------|
| App. Year [base 1978]                       | -0.11 (0.00)*** | -0.11 (0.00)*** | -0.11 (0.00)*** |
| Section A                                   | -0.14 (0.01)*** | -0.14 (0.01)*** | -0.14 (0.01)*** |
| Section B                                   | -0.00(0.01)     | -0.01(0.01)     | -0.00(0.01)     |
| Section C                                   | 0.11 (0.01)***  | 0.10 (0.01)***  | 0.10 (0.01)***  |
| Section D                                   | 0.01 (0.01)     | 0.01 (0.01)     | 0.01 (0.01)     |
| Section E                                   | -0.35 (0.01)*** | -0.35 (0.01)*** | -0.35 (0.01)*** |
| Section F                                   | -0.04 (0.01)*** | -0.05 (0.01)*** | -0.04 (0.01)*** |
| Section G                                   | 0.06 (0.01)***  | 0.06 (0.01)***  | 0.05 (0.01)***  |
| Section H                                   | -0.03(0.01)***  | -0.03 (0.01)*** | -0.03(0.01)***  |
| Pub. Language German                        | -0.34 (0.01)*** | -0.34 (0.01)*** | -0.36 (0.01)*** |
| Pub. Language French                        | -0.34 (0.01)*** | -0.34 (0.01)*** | -0.34 (0.01)*** |
| Backward citations (all)                    | 0.04 (0.00)***  | 0.04 (0.00)***  | 0.04 (0.00)***  |
| Max. contrast                               | -2.48 (0.72)*** | -2.63 (0.71)*** | -2.63 (0.72)*** |
| Max. contrast <sup>2</sup>                  | 2.88 (0.57)***  | 3.21 (0.57)***  | 3.19 (0.58)***  |
| Niche width                                 | 0.23 (0.01)***  | 0.18 (0.01)***  | 0.18 (0.01)***  |
| Appplicant Switzerland                      |                 |                 | -0.07 (0.02)**  |
| Inventor Switzerland                        |                 |                 | -0.05(0.03)     |
| Appplicant Switzerland×Inventor Switzerland |                 |                 | 0.23 (0.04)***  |
| Cited max. contrast                         | 0.01 (0.75)     | -0.02(0.75)     | 0.01 (0.76)     |
| Cited max. contrast <sup>2</sup>            | 0.78 (0.59)     | 0.55 (0.59)     | 0.53 (0.60)     |
| Cited niche width                           |                 | 0.11 (0.01)***  | 0.11 (0.01)***  |
| AIC                                         | 1615185.10      | 1615025.57      | 1579868.81      |
| BIC                                         | 1615401.42      | 1615253.28      | 1580130.28      |
| Log Likelihood                              | -807573.55      | -807492.79      | -789911.40      |
| Deviance                                    | 548718.44       | 548738.71       | 538346.76       |
| Num. obs.                                   | 650434          | 650434          | 639387          |

### Negative binomial models, citations as response variable I

|                                               | Model 1         | Model 2         | Model 3         |
|-----------------------------------------------|-----------------|-----------------|-----------------|
| App. Year [base 1978]                         | -0.12 (0.00)*** | -0.12 (0.00)*** | -0.12 (0.00)*** |
| Section A                                     | -0.24 (0.01)*** | -0.31 (0.01)*** | -0.31 (0.01)*** |
| Section B                                     | 0.04 (0.00)***  | -0.05 (0.01)*** | -0.04 (0.01)*** |
| Section C                                     | 0.25 (0.00)***  | 0.15 (0.01)***  | 0.14 (0.01)***  |
| Section D                                     | 0.07 (0.01)***  | -0.00(0.01)     | -0.01(0.01)     |
| Section E                                     | -0.39 (0.01)*** | -0.46 (0.01)*** | -0.45 (0.01)*** |
| Section F                                     | -0.07 (0.01)*** | -0.15 (0.01)*** | -0.14 (0.01)*** |
| Section G                                     | 0.19 (0.00)***  | 0.11 (0.01)***  | 0.10 (0.01)***  |
| Section H                                     | 0.17 (0.01)***  | 0.09 (0.01)***  | 0.09 (0.01)***  |
| Pub. Language German                          | -0.29 (0.00)*** | -0.29 (0.00)*** | -0.31 (0.00)*** |
| Pub. Language French                          | -0.31 (0.01)*** | -0.31 (0.01)*** | -0.32 (0.01)*** |
| Backward citations (all)                      | 0.17 (0.00)***  | 0.17 (0.00)***  | 0.17 (0.00)***  |
| Max. contrast                                 | -2.36 (0.44)*** | -2.70 (0.44)*** | -2.68 (0.44)*** |
| Max. contrast <sup>2</sup>                    | 3.45 (0.34)***  | 3.65 (0.34)***  | 3.61 (0.35)***  |
| Niche width                                   | , ,             | 0.22 (0.01)***  | 0.23 (0.01)***  |
| Appplicant Switzerland                        |                 |                 | -0.05 (0.02)**  |
| Inventor Switzerland                          |                 |                 | -0.07 (0.03)**  |
| Appplicant Switzerland × Inventor Switzerland |                 |                 | 0.27 (0.03)***  |
| Cited max. contrast                           |                 |                 |                 |
| Cited max. contrast <sup>2</sup>              |                 |                 |                 |
| Cited niche width                             |                 |                 |                 |
| AIC                                           | 3331171.47      | 3330604.41      | 3248519.42      |
| BIC                                           | 3331371.01      | 3330816.43      | 3248768.46      |
| Log Likelihood                                | -1665569.73     | -1665285.20     | -1624239.71     |
| Deviance                                      | 1181391.34      | 1181445.64      | 1157693.65      |
| Num. obs.                                     | 1927639         | 1927639         | 1889616         |
|                                               |                 |                 |                 |

22 / 35

### Negative binomial models with secondary contrast I

|                                               | Mar Jal 1       | NA. J.LO        | Martina         |
|-----------------------------------------------|-----------------|-----------------|-----------------|
| A                                             | Model 1         | Model 2         | Model 3         |
| App. Year [base 1978]                         | -0.10 (0.00)*** | -0.10 (0.00)*** | -0.10 (0.00)*** |
| Section A                                     | -0.19 (0.01)*** | -0.21 (0.01)*** | -0.21 (0.01)*** |
| Section B                                     | 0.02 (0.01)**   | -0.00 (0.01)    | -0.00 (0.01)    |
| Section C                                     | 0.11 (0.01)***  | 0.07 (0.01)***  | 0.07 (0.01)***  |
| Section D                                     | 0.07 (0.02)***  | 0.04 (0.02)*    | 0.04 (0.02)*    |
| Section E                                     | -0.33 (0.02)*** | -0.34 (0.02)*** | -0.34 (0.02)*** |
| Section F                                     | 0.03 (0.01)**   | 0.01 (0.01)     | 0.01 (0.01)     |
| Section G                                     | 0.08 (0.01)***  | 0.06 (0.01)***  | 0.05 (0.01)***  |
| Section H                                     | -0.02(0.01)     | -0.04 (0.01)*** | -0.04 (0.01)*** |
| Pub. Language German                          | -0.27 (0.01)*** | -0.27 (0.01)*** | -0.29 (0.01)*** |
| Pub. Language French                          | -0.26 (0.01)*** | -0.26 (0.01)*** | -0.27 (0.01)*** |
| Backward citations (subgraph)                 | 0.16 (0.00)***  | 0.16 (0.00)***  | 0.16 (0.00)***  |
| Max. contrast                                 | -1.00(0.97)     | -1.43(0.98)     | -1.67(0.99)     |
| Max. contrast <sup>2</sup>                    | 2.39 (0.76)**   | 2.73 (0.76)***  | 2.90 (0.77)***  |
| Class crossing ratio                          | 3.01 (0.25)***  | 2.39 (0.26)***  | 2.41 (0.27)***  |
| Class crossing ratio <sup>2</sup>             | -2.34 (0.19)*** | -2.00 (0.19)*** | -2.01 (0.19)*** |
| Secondary contrast                            | -5.73 (0.77)*** | -6.03 (0.77)*** | -5.77 (0.78)*** |
| Secondary contrast <sup>2</sup>               | 5.14 (0.67)***  | 5.25 (0.67)***  | 5.03 (0.68)***  |
| Niche width                                   | . ( /           | 0.49 (0.05)***  | 0.50 (0.05)***  |
| Appplicant Switzerland                        |                 | ()              | -0.04 (0.03)    |
| Inventor Switzerland                          |                 |                 | -0.08(0.05)     |
| Appplicant Switzerland × Inventor Switzerland |                 |                 | 0.23 (0.06)***  |
| Cited max. contrast                           |                 |                 | (/              |
| Cited max. contrast <sup>2</sup>              |                 |                 |                 |
| Cited secondary contrast                      |                 |                 |                 |
| Cited secondary contrast <sup>2</sup>         |                 |                 |                 |
| Cited niche width                             |                 |                 |                 |
| AIC                                           | 761913.27       | 761804.30       | 745025.12       |
| BIC                                           | 762124.45       | 762026.05       | 745278.11       |
| Log Likelihood                                | -380936.63      | -380881.15      | -372488.56      |
| Deviance                                      | 251830.34       | 251837.63       | 247074.61       |
| Num. obs.                                     | 284767          | 284767          | 279728          |
| INUIII. ODS.                                  | 204707          | 204707          | 219120          |

23/35 24/35

### Negative binomial models with secondary contrast II

|                                               | Model 4         | Model 5         | Model 6         |
|-----------------------------------------------|-----------------|-----------------|-----------------|
| App. Year [base 1978]                         | -0.10 (0.00)*** | -0.10 (0.00)*** | -0.10 (0.00)*** |
| Section A                                     | -0.21 (0.01)*** | -0.21 (0.01)*** | -0.21 (0.01)*** |
| Section B                                     | 0.00 (0.01)     | 0.00 (0.01)     | 0.00 (0.01)     |
| Section C                                     | 0.07 (0.01)***  | 0.07 (0.01)***  | 0.06 (0.01)***  |
| Section D                                     | 0.02 (0.02)     | 0.02 (0.02)     | 0.02 (0.02)     |
| Section E                                     | -0.34 (0.02)*** | -0.35 (0.02)*** | -0.35 (0.02)*** |
| Section F                                     | 0.02 (0.01)     | 0.02 (0.01)     | 0.03 (0.01)*    |
| Section G                                     | 0.06 (0.01)***  | 0.06 (0.01)***  | 0.06 (0.01)***  |
| Section H                                     | -0.05 (0.01)*** | -0.05 (0.01)*** | -0.05 (0.01)*** |
| Pub. Language German                          | -0.26 (0.01)*** | -0.26 (0.01)*** | -0.28 (0.01)*** |
| Pub. Language French                          | -0.26 (0.02)*** | -0.26 (0.02)*** | -0.26 (0.02)*** |
| Backward citations (subgraph)                 | 0.14 (0.00)***  | 0.14 (0.00)***  | 0.14 (0.00)***  |
| Max. contrast                                 | -0.45(1.42)     | -0.22(1.43)     | -0.54(1.45)     |
| Max. contrast <sup>2</sup>                    | 1.61 (1.12)     | 1.49 (1.13)     | 1.75 (1.14)     |
| Class crossing ratio                          | 1.76 (0.32)***  | 1.36 (0.32)***  | 1.35 (0.33)***  |
| Class crossing ratio <sup>2</sup>             | -1.66 (0.23)*** | -1.46 (0.24)*** | -1.46 (0.24)*** |
| Secondary contrast                            | -4.76 (0.95)*** | -4.99 (0.95)*** | -4.85 (0.96)*** |
| Secondary contrast <sup>2</sup>               | 4.13 (0.83)***  | 4.46 (0.83)***  | 4.35 (0.84)***  |
| Niche width                                   | 0.64 (0.06)***  | 0.62 (0.06)***  | 0.63 (0.06)***  |
| Appplicant Switzerland                        | , ,             | . ,             | -0.04(0.04)     |
| Inventor Switzerland                          |                 |                 | -0.07(0.06)     |
| Appplicant Switzerland × Inventor Switzerland |                 |                 | 0.25 (0.07)***  |
| Cited max. contrast                           | -3.32(1.54)*    | $-3.63(1.55)^*$ | -3.44(1.57)*    |
| Cited max. contrast <sup>2</sup>              | 3.09 (1.20)*    | 3.29 (1.21)**   | 3.13 (1.23)*    |
| Cited secondary contrast                      | -1.47(1.07)     | -1.52(1.07)     | -1.76(1.08)     |
| Cited secondary contrast <sup>2</sup>         | 1.31 (0.92)     | 1.15 (0.92)     | 1.35 (0.93)     |
| Cited niche width                             | . ( )           | 0.31 (0.05)***  | 0.31 (0.05)***  |
| AIC                                           | 597762.41       | 597712.34       | 584577.96       |
| BIC                                           | 598019.71       | 597979.92       | 584875.90       |
| Log Likelihood                                | -298856.21      | -298830.17      | -292259.98      |
| Deviance                                      | 195603.94       | 195596.40       | 191914.04       |
| Num. obs.                                     | 217890          | 217890          | 214014          |

### ERGM conditional estimation, 4 903 886 node network I

| Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Model 1                   | Model 2                   | Model 3                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|
| Arc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -12.831                   | -13.367                   | -13.188                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (-13.152, -12.509)        | (-13.656, -13.079)        | (-13.501, -12.876)        |
| Isolates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.236                     | 3.292                     | 3.144                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2.888, 3.583)            | (3.069, 3.514)            | (2.927, 3.362)            |
| Sink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.936                     | 0.764                     | 0.604                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.771,1.100)             | (0.584,0.944)             | (0.437, 0.771)            |
| Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.471 $(-0.553, -0.389)$ | -0.424 $(-0.448, -0.401)$ | -0.417 $(-0.460, -0.373)$ |
| D la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.135                     | 1.021                     | 1.054                     |
| Popularity spread (AinS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1.016,1.254)             | (0.985,1.056)             | (0.954,1.154)             |
| Activity spread (AoutS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.129                    | 0.119                     | 0.260                     |
| Activity spread (Addis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (-0.163, -0.095)          | (0.080,0.158)             | (0.211,0.309)             |
| Two-path (A2P-T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.018                     | 0.024                     | 0.032                     |
| I Wo-patii (Azi - I )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.009,0.028)             | (0.014,0.034)             | (0.023, 0.042)            |
| Shared popularity (A2P-D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.029                     | 0.027                     | 0.027                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.018, 0.040)            | (0.018, 0.037)            | (0.017, 0.037)            |
| Shared activity (A2P-U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.048                     | 0.035                     | 0.025                     |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.032,0.064)             | (0.031,0.040)             | (0.019, 0.032)            |
| Sender App. Year [base 1978]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.473                     | 0.450                     | 0.474                     |
| D 1 4 1/ [1 40mo]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.458,0.488)             | (0.430,0.470)             | (0.454, 0.493)            |
| Receiver App. Year [base 1978]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.532                    | -0.500                    | -0.512                    |
| Dimer A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (-0.551, -0.513)          | (-0.524, -0.476)          | (-0.536, -0.487)          |
| DiffSign App. Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.910<br>(1.713,2.107)    | 2.132<br>(2.015,2.249)    | 2.118<br>(2.007,2.230)    |
| AbsDiff App. Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.673                    | -0.614                    | -0.625                    |
| ADSDIII App. rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (-0.704, -0.642)          | (-0.644, -0.584)          | (-0.657, -0.593)          |
| Jaccard similarity Applicant countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.825                     | 0.783                     | 0.760                     |
| Jaccard similarity Applicant countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.652,0.998)             | (0.605, 0.960)            | (0.588, 0.932)            |
| Jaccard similarity Inventor countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.552                     | 0.495                     | 0.474                     |
| Success Similarity inventor countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.388, 0.717)            | (0.365, 0.626)            | (0.315, 0.632)            |
| Jaccard similarity Sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.061                     | 1.449                     | 1.337                     |
| , and the second | (3.696, 4.426)            | (1.337, 1.561)            | (1.179, 1.496)            |
| Matching Pub. Language                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.216                     | 0.174                     | 0.103                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.124, 0.309)            | (0.099, 0.249)            | (0.039, 0.166)            |

### Negative binomial models with secondary contrast III

26 / 35

### ERGM conditional estimation, 4 903 886 node network II

|   | Sender Max. contrast                     | -2.874 $(-3.169, -2.580)$    | -3.649 $(-3.944, -3.355)$ | -6.471 $(-6.734, -6.208)$  |
|---|------------------------------------------|------------------------------|---------------------------|----------------------------|
|   | Sender Max. contrast <sup>2</sup>        | -0.036<br>(-0.320,0.247)     | 0.376<br>(0.184,0.568)    | 2.499<br>(2.355,2.644)     |
|   | Receiver Max. contrast                   | -7.182 $(-7.636, -6.728)$    | -6.953 $(-7.230, -6.676)$ | -9.947 $(-10.309, -9.586)$ |
|   | Receiver Max. contrast <sup>2</sup>      | 5.552<br>(5.098,6.005)       | 4.538<br>(4.287,4.789)    | 6.379<br>(6.036,6.722)     |
|   | Jaccard similarity Classes               |                              | 5.215<br>(4.919,5.510)    | 6.466<br>(6.141,6.791)     |
|   | DiffSign Max. contrast                   | 0.005 $(-0.007, 0.017)$      | · · ·                     | · · ·                      |
|   | AbsDiff Max. contrast                    | -17.307 $(-18.407, -16.207)$ | _                         | _                          |
|   | Sender Niche width                       |                              | _                         | 1.780<br>(1.724,1.836)     |
|   | Receiver Niche width                     | _                            | _                         | 2.181<br>(1.937,2.425)     |
|   | Sender Secondary contrast                | _                            | _                         | `                          |
|   | Sender Secondary contrast <sup>2</sup>   | _                            | _                         | _                          |
|   | Receiver Secondary contrast              | _                            | _                         | _                          |
|   | Receiver Secondary contrast <sup>2</sup> | _                            | _                         | _                          |
| _ | Converged runs                           | 20                           | 20                        | 20                         |
| _ | Total runs                               | 20                           | 20                        | 20                         |
|   |                                          |                              |                           |                            |

27/35 28/35

### ERGM conditional estimation, 4 903 886 node network III

| Effect                                        | Model 4                   |
|-----------------------------------------------|---------------------------|
| Arc                                           | -12.952                   |
|                                               | (-13.332, -12.573)        |
| Isolates                                      | 3.164                     |
|                                               | (2.928, 3.401)            |
| Sink                                          | 0.648                     |
| 6                                             | (0.460,0.835)             |
| Source                                        | -0.425                    |
| D 1 ': 1 (A' C)                               | (-0.500, -0.350)          |
| Popularity spread (AinS)                      | 1.061<br>(0.975,1.148)    |
| A - 1 1 1 (A - 1C)                            | 0.207                     |
| Activity spread (AoutS)                       | (0.158, 0.255)            |
| Two-path (A2P-T)                              | 0.030                     |
| 1 WO-patii (AZI - I )                         | (0.018,0.041)             |
| Shared popularity (A2P-D)                     | 0.028                     |
| onarea popularity (7121 D)                    | (0.016,0.039)             |
| Shared activity (A2P-U)                       | 0.027                     |
| 3 ( )                                         | (0.017, 0.037)            |
| Sender App. Year [base 1978]                  | 0.468                     |
|                                               | (0.446,0.490)             |
| Receiver App. Year [base 1978]                | -0.507                    |
|                                               | (-0.535, -0.479)          |
| DiffSign App. Year                            | 2.107                     |
| AL DICCA V                                    | (1.959,2.255)             |
| AbsDiff App. Year                             | -0.623                    |
| Lancard State Control And Parish and Assessed | (-0.658, -0.589)<br>0.739 |
| Jaccard similarity Applicant countries        | (0.562,0.916)             |
| Jaccard similarity Inventor countries         | 0.471                     |
| Jaccard similarity inventor countries         | (0.326, 0.617)            |
| Jaccard similarity Sections                   | 1.317                     |
|                                               | (1.149,1.485)             |
| Matching Pub. Language                        | 0.111                     |
| - 0 0                                         | (0.025, 0.197)            |
|                                               |                           |

### ERGM conditional estimation, 4 903 886 node network IV

| Sender Max. contrast                     | -5.497 $(-5.831, -5.162)$               |
|------------------------------------------|-----------------------------------------|
| Sender Max. contrast <sup>2</sup>        | 0.772 (0.586,0.958)                     |
| Receiver Max. contrast                   | -8.115                                  |
| Receiver Max. contrast <sup>2</sup>      | (-8.459, -7.771) $3.496$                |
| Jaccard similarity Classes               | (3.224,3.769)<br>6.570<br>(6.219,6.921) |
| DiffSign Max. contrast                   | (0.219,0.921)                           |
| AbsDiff Max. contrast Sender Niche width | 1.614                                   |
| Receiver Niche width                     | (1.374,1.854)<br>2.071                  |
| Sender Secondary contrast                | (1.823,2.320)<br>-3.218                 |
| Sender Secondary contrast <sup>2</sup>   | (-3.444, -2.991)<br>5.695               |
| Receiver Secondary contrast              | (5.395,5.994)<br>-3.834                 |
| Receiver Secondary contrast <sup>2</sup> | (-4.106, -3.563)<br>6.676               |
| <u> </u>                                 | (6.131,7.221)                           |
| Converged runs Total runs                | 20<br>20                                |
| TOTAL TUILS                              | 20                                      |

29 / 35 30 / 35

### Results for hypotheses I

### H0 Success (citations received) increases with breadth.

- Confirmed by significant positive niche width estimate in negative binomial models.
- ▶ Note also significant positive backward citation effect in negative binomial models: another (cruder) measure of breadth, the number of citations a patent makes.
- ► Also confirmed in ERGM by significant positive receiver effect for niche width.

### H1 Success (citations received) increases with diversity.

- ▶ We included a quadratic term for for diversity, as was done for max. contrast (following Kovács and Hannan (2010) who find a quadratic relationship for max. contrast).
- Partly confirmed: there is a quadratic relationship between class crossing ratio and success, with success increasing with class crossing ratio up to a point, after which it negatively affects success.

### Results for hypotheses II

### H2 Success increases with maximum contrast of technology classes.

- Partly confirmed: there is a quadratic relationship between success and max. contrast, with success decreasing with maximum contrast up to a point, but increasing thereafter.
- ► This applies for both maximum contrast of a patent's classes, and of maximum contrast of its cited patents' classes.
- ► The ERGM models also show a similar pattern with the Receiver effect on max. contrast.

### H3 But spanning high contrast categories makes success less likely.

- Partly confirmed: there is a quadratic relationship between success and secondary contrast, with success decreasing with secondary contrast only up to a point, after which it increases.
- ► There is a similar pattern in the ERGM for the Receiver effect for secondary contrast.
- H4 Patents with high maximum contrast are unlikely to cite other patents with high maximum contrast.

31/35 32/35

### Results for hypotheses III

- Contradicted: In the ERGM model the effect for heterophily (AbsDiff) on max. contrast is negative and significant.
- ▶ DiffSign is not significant.
- It seems that, contrary to H4, there is significant homophily on max. contrast.
- ► Is this a poor test of H4, as it is confounded by patents citing patents with the same technology class?
  - Positive significant Jaccard similarity of technology class sets in all models in which it is included (unsurprising: patents cite other patents in the same technology classes).
  - Note ERGM parameter estimation does not converge well with both Jaccard similarity of technology classes and the AbsDiff effect for max. contrast included.

## H5 (Geographical knowledge spillover): citations are more likely to be geographically localized.

Confirmed: The effect for Jaccard similarity is positive and significant for both applicant countries and inventor countries in all ERGM models.

### Acknowledgments

- ► This work was funded by Swiss National Science Foundation NRP 75 Big Data project 167326 "The Global Structure of Knowledge Networks: Data, Models and Empirical Results".
- ► We thank Mr Manajit Chakraborty and Prof. Fabio Crestani for assisting with access to patent data.
- ▶ We used the high performance computing cluster at the Institute of Computational Science, Università della Svizzera italiana, for all data processing and statistical computations.

33/35 34/35

### Unpublished work

- ▶ This is unpublished work (as of June 2020).
- ▶ Details including methods and references are in the "hidden bonus slides" after this one.
- ▶ I will make these slides available on my website:
- https://sites.google.com/site/alexdstivala/home/ conferences

Hidden bonus slides

### CPC technology sections

- A Human necessities
- B Performing operations; transporting
- C Chemistry; metallurgy
- D Textiles; paper
- E Fixed constructions
- F Mechanical engineering; lighting; heating; weapons; blasting engines or pumps
- **G** Physics
- **H** Electricity
- Y General tagging of new technological developments ...

https:

### Jaccard similarity

The Jaccard similarity  $0 \le J(A, B) \le 1$  between two sets is the size of their intersection over the size of their union:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

If  $|A \cup B| = 0$  i.e. A and B are both empty, then define J(A, B) = 1.

2/27

### Class crossing ratio example

- Assume patent X has classes a,b,c and it cites patent Y with classes a,c,d and patent Z with class b only
- ▶ We consider the total of  $3 \times 3 + 3 \times 1 = 12$  virtual ties (a–a, a–c, a–d, b–a, b–c, ... , c–b)
- ► Of these 12 virtual ties 9 are "boundary crossing" (a-c, a-d, b-a, ..., but not a-a, c-c, b-b, ...)
- ▶ So we would give it a boundary crossing score of 9/12 = 0.75
- ▶ (In R we can do this using the vector outer product.)
- ► Note that this is like a kind of generalized E-I index (Krackhardt and Stern, 1988)
- ► Although it is in [0,1] not [-1,+1] to make it more like E-I index we would have the numerator as (mismatching matching) not just mismatching, applicable to sets of categories on nodes, rather than just a simple nodal categorical variable.

### Contrast share

- ➤ Contrast share is the ratio of the maximum contrast of assigned categories to their sum (Kovács and Hannan, 2010).
- ▶ In our data, contrast share is highly inversely correlated with niche width, so we use only niche width.



### Summary statistics of publication languages

| Language | N       |
|----------|---------|
| English  | 1355416 |
| German   | 435373  |
| French   | 141397  |
| NA       | 1045    |

#### 6 / 27

### Distribution of niche width values of patents



### Distribution of secondary contrast value of patents



For each patent, the second-largest contrast of the classes it is assigned.

### Distribution of cited niche width values of patents



The niche width defined over the classes of the directed cited patents of a patent, rather than the classes assigned to the patent itself.

### Citation network in-degree distribution



The in-degree distribution is consistent with neither a power law ( $\rho < 0.05$ ) nor a log-normal distribution ( $\rho < 0.05$ ).

### Citation network out-degree distribution



The out-degree distribution is consistent with neither a power law (p < 0.01) nor a log-normal distribution (p < 0.001).

# Linear correlation between niche width and class crossing ratio of patents

10 / 27



# Linear correlation between cited niche width and class crossing ratio of patents



12/27 13/27

Linear correlation between class crossing ratio and Jaccard similarity between technology classes and union of directly cited technology classes



14 / 27

### Methods II

- ► The ERGM DiffSign parameter to control for citation temporal direction was introduced by Graham et al. (2018); McLevey et al. (2018) and also used in Stivala et al. (2019a).
- ▶ In the full 4.9 million node network, only 1.9 million nodes represent patents in the data set. The remaining 3 million nodes (61% of the nodes) represent patents cited by one of those in the data set, but for which we have no data.
- ▶ An ERGM model with NA for all values on those 3 million nodes does not converge (unlike the 3.7 million node NBER patent citation network where only 27% of the nodes have no data in Stivala et al. (2019a)).
- ➤ So conditional estimation based on snowball sampling structure (Pattison et al., 2013; Stivala et al., 2016) was used. The 1.9 million nodes (39%) with data are treated as wave 0 (seeds) and the remaining 3 million nodes treated as wave 1, and estimation is conditional on this structure.

#### Methods I

- ▶ Power law and log-normal distributions were fitted using the methods of Clauset et al. (2009) implemented in the poweRlaw package (Gillespie, 2015).
- ▶ Negative binomial regression models were estimated using the MASS (Venables and Ripley, 2002) and formatted with the texreg (Leifeld, 2013) packages in R (R Core Team, 2016). Robust standard errors (Hinkley, 1977; MacKinnon and White, 1985) were estimated with the sandwich (Zeileis, 2004, 2006) and Imtest (Zeileis and Hothorn, 2002) packages in R. Residual diagnostics from the DHARMa R package (Hartig, 2019).
- ► ERGM models were estimated with EstimNetDirected (Byshkin et al., 2018; Borisenko et al., 2020; Stivala et al., 2019b).

15 / 27

### Negative binomial models with class crossing ratio I

|                                             | Model 1         | Model 2         | Model 3         |
|---------------------------------------------|-----------------|-----------------|-----------------|
| App. Year [base 1978]                       | -0.13 (0.00)*** | -0.11 (0.00)*** | -0.11 (0.00)**  |
| Section A                                   | -0.20 (0.01)*** | -0.06 (0.01)*** | -0.13(0.01)**   |
| Section B                                   | 0.12 (0.00)***  | 0.11 (0.01)***  | 0.03 (0.01)**   |
| Section C                                   | 0.06 (0.00)***  | 0.14 (0.01)***  | 0.04 (0.01)**   |
| Section D                                   | 0.08 (0.01)***  | 0.10 (0.01)***  | 0.02 (0.01)     |
| Section E                                   | -0.21 (0.01)*** | -0.21 (0.01)*** | -0.28 (0.01)**  |
| Section F                                   | 0.09 (0.01)***  | 0.09 (0.01)***  | 0.00 (0.01)     |
| Section G                                   | 0.13 (0.00)***  | 0.13 (0.01)***  | 0.05 (0.01)**   |
| Section H                                   | 0.14 (0.01)***  | 0.06 (0.01)***  | $-0.02(0.01)^*$ |
| Pub. Language German                        | -0.25 (0.00)*** | -0.33 (0.01)*** | -0.33 (0.01)**  |
| Pub. Language French                        | -0.27 (0.01)*** | -0.33 (0.01)*** | -0.33(0.01)**   |
| Backward citations (subgraph)               | 0.43 (0.00)***  | 0.16 (0.00)***  | 0.17 (0.00)**   |
| Max. contrast                               | -1.74 (0.43)*** | -3.34 (0.56)*** | -4.04 (0.56)**  |
| Max. contrast <sup>2</sup>                  | 2.67 (0.34)***  | 4.01 (0.44)***  | 4.43 (0.44)**   |
| Class crossing ratio                        | , ,             | 0.33 (0.02)***  | 0.18 (0.03)**   |
| Class crossing ratio <sup>2</sup>           |                 | -0.48 (0.03)*** | -0.42 (0.03)**  |
| Niche width                                 |                 | ( ,             | 0.30 (0.02)**   |
| Cited max. contrast                         |                 |                 | ( ,             |
| Cited max. contrast <sup>2</sup>            |                 |                 |                 |
| Cited niche width                           |                 |                 |                 |
| Appplicant Switzerland                      |                 |                 |                 |
| Inventor Switzerland                        |                 |                 |                 |
| Appplicant Switzerland×Inventor Switzerland |                 |                 |                 |
| AIC                                         | 3318050.97      | 1610355.84      | 1609898.86      |
| BIC                                         | 3318250.52      | 1610560.78      | 1610115.18      |
| Log Likelihood                              | -1659009.49     | -805159.92      | -804930.43      |
| Deviance                                    | 1199294.95      | 549422.32       | 549407.66       |
| Num. obs.                                   | 1927639         | 650434          | 650434          |

16/27 17/27

### Negative binomial models with class crossing ratio II

|                                               | Model 4         | Model 5         | Model 6               |
|-----------------------------------------------|-----------------|-----------------|-----------------------|
| App. Year [base 1978]                         | -0.11 (0.00)*** | -0.11 (0.00)*** | -0.11 (0.00)***       |
| Section A                                     | -0.13(0.01)***  | -0.13 (0.01)*** | -0.13(0.01)***        |
| Section B                                     | 0.03 (0.01)***  | 0.02 (0.01)**   | 0.03 (0.01)***        |
| Section C                                     | 0.04 (0.01)***  | 0.03 (0.01)***  | 0.03 (0.01)**         |
| Section D                                     | 0.02 (0.01)     | 0.02 (0.01)     | 0.01 (0.01)           |
| Section E                                     | -0.27 (0.01)*** | -0.28 (0.01)*** | -0.28 (0.01)***       |
| Section F                                     | 0.01 (0.01)     | 0.00 (0.01)     | 0.01 (0.01)           |
| Section G                                     | 0.05 (0.01)***  | 0.05 (0.01)***  | 0.05 (0.01)***        |
| Section H                                     | -0.02(0.01)*    | -0.02 (0.01)*   | -0.02(0.01)*          |
| Pub. Language German                          | -0.33 (0.01)*** | -0.33 (0.01)*** | -0.34 (0.01)***       |
| Pub. Language French                          | -0.33 (0.01)*** | -0.33 (0.01)*** | -0.33 (0.01)***       |
| Backward citations (subgraph)                 | 0.16 (0.00)***  | 0.16 (0.00)***  | 0.16 (0.00)***        |
| Max. contrast                                 | -2.81 (0.73)*** | -3.18 (0.73)*** | -3.21(0.74)***        |
| Max. contrast <sup>2</sup>                    | 3.14 (0.58)***  | 3.59 (0.59)***  | 3.60 (0.59)***        |
| Class crossing ratio                          | 0.14 (0.03)***  | -0.11 (0.03)*** | $-0.11\ (0.03)^{***}$ |
| Class crossing ratio <sup>2</sup>             | -0.41 (0.03)*** | -0.30 (0.03)*** | -0.30 (0.03)***       |
| Niche width                                   | 0.34 (0.02)***  | 0.38 (0.02)***  | 0.38 (0.02)***        |
| Cited max. contrast                           | -0.69(0.76)     | -0.98 (0.77)    | -0.91(0.78)           |
| Cited max. contrast <sup>2</sup>              | 1.01 (0.60)     | 1.00 (0.61)     | 0.94 (0.62)           |
| Cited niche width                             | ` ,             | 0.20 (0.01)***  | 0.20 (0.01)***        |
| Appplicant Switzerland                        |                 | . ,             | -0.06 (0.02)**        |
| Inventor Switzerland                          |                 |                 | -0.04(0.03)           |
| Appplicant Switzerland × Inventor Switzerland |                 |                 | 0.21 (0.04)***        |
| AIC                                           | 1609786.42      | 1609545.75      | 1574445.58            |
| BIC                                           | 1610025.52      | 1609796.23      | 1574729.79            |
| Log Likelihood                                | -804872.21      | -804750.87      | -787197.79            |
| Deviance                                      | 549418.03       | 549427.11       | 539036.16             |
| Num. obs.                                     | 650434          | 650434          | 639387                |

### Negative binomial models using cited contrast only II

|                                             | Model 4         | Model 5         |
|---------------------------------------------|-----------------|-----------------|
| App. Year [base 1978]                       | -0.11 (0.00)*** | -0.11 (0.00)*** |
| Section A                                   | -0.01(0.01)     | 0.01 (0.01)     |
| Section B                                   | 0.14 (0.01)***  | 0.17 (0.01)***  |
| Section C                                   | 0.12 (0.01)***  | 0.14 (0.01)***  |
| Section D                                   | 0.07 (0.02)***  | 0.10 (0.02)***  |
| Section E                                   | -0.14 (0.02)*** | -0.11 (0.02)*** |
| Section F                                   | 0.13 (0.01)***  | 0.16 (0.01)***  |
| Section G                                   | 0.17 (0.01)***  | 0.19 (0.01)***  |
| Section H                                   | 0.14 (0.01)***  | 0.17 (0.01)***  |
| Pub. Language German                        | -0.33 (0.01)*** | -0.33 (0.01)*** |
| Pub. Language French                        | -0.32 (0.01)*** | -0.32 (0.01)*** |
| Backward citations (subgraph)               | 0.15 (0.00)***  | 0.15 (0.00)***  |
| Class crossing ratio                        |                 | 0.40 (0.11)***  |
| Class crossing ratio <sup>2</sup>           |                 | -0.58 (0.09)*** |
| Cited max. contrast                         | -0.97(0.97)     | -1.01(0.97)     |
| Cited max. contrast <sup>2</sup>            | 1.74 (0.75)*    | 1.73 (0.75)*    |
| Cited secondary contrast                    | -3.86 (0.77)*** | -4.03 (0.78)*** |
| Cited secondary contrast <sup>2</sup>       | 3.30 (0.66)***  | 3.43 (0.66)***  |
| Cited niche width                           | -0.12 (0.03)*** | 0.10 (0.04)**   |
| Appplicant Switzerland                      | -0.06(0.03)     | -0.05(0.03)     |
| Inventor Switzerland                        | -0.05(0.04)     | -0.05(0.04)     |
| Appplicant Switzerland×Inventor Switzerland | 0.23 (0.06)***  | 0.23 (0.06)***  |
| AIC                                         | 943423.07       | 943090.97       |
| BIC                                         | 943661.00       | 943350.52       |
| Log Likelihood                              | -471689.54      | -471521.49      |
| Deviance                                    | 316546.11       | 316510.52       |
| Num. obs.                                   | 367615          | 367532          |

### Negative binomial models using cited contrast only I

|                                               | Model 1         | Model 2         | Model 3         |
|-----------------------------------------------|-----------------|-----------------|-----------------|
| App. Year [base 1978]                         | -0.11 (0.00)*** | -0.11 (0.00)*** | -0.11 (0.00)*** |
| Section A                                     | 0.04 (0.01)***  | -0.01(0.01)     | -0.01(0.01)     |
| Section B                                     | 0.15 (0.01)***  | 0.13 (0.01)***  | 0.14 (0.01)***  |
| Section C                                     | 0.07 (0.01)***  | 0.12 (0.01)***  | 0.13 (0.01)***  |
| Section D                                     | 0.10 (0.01)***  | 0.07 (0.02)***  | 0.08 (0.02)***  |
| Section E                                     | -0.04 (0.01)**  | -0.14 (0.02)*** | -0.14 (0.02)*** |
| Section F                                     | 0.11 (0.01)***  | 0.13 (0.01)***  | 0.13 (0.01)***  |
| Section G                                     | 0.17 (0.01)***  | 0.17 (0.01)***  | 0.17 (0.01)***  |
| Section H                                     | 0.21 (0.01)***  | 0.14 (0.01)***  | 0.14 (0.01)***  |
| Pub. Language German                          | -0.34 (0.01)*** | -0.32 (0.01)*** | -0.32 (0.01)*** |
| Pub. Language French                          | -0.33 (0.01)*** | -0.32(0.01)***  | -0.32 (0.01)*** |
| Backward citations (subgraph)                 | 0.17 (0.00)***  | 0.15 (0.00)***  | 0.15 (0.00)***  |
| Class crossing ratio                          | 0.32 (0.02)***  |                 |                 |
| Class crossing ratio <sup>2</sup>             | -0.49 (0.03)*** |                 |                 |
| Cited max. contrast                           |                 | -1.22(0.96)     | -1.05(0.96)     |
| Cited max. contrast <sup>2</sup>              |                 | 1.94 (0.74)**   | 1.80 (0.74)*    |
| Cited secondary contrast                      |                 | -3.88 (0.76)*** | -3.77 (0.76)*** |
| Cited secondary contrast <sup>2</sup>         |                 | 3.25 (0.65)***  | 3.24 (0.65)***  |
| Cited niche width                             |                 | ( )             | -0.12 (0.03)*** |
| Appplicant Switzerland                        |                 |                 | , ,             |
| Inventor Switzerland                          |                 |                 |                 |
| Appplicant Switzerland × Inventor Switzerland |                 |                 |                 |
| AIC                                           | 1611861.29      | 964173.87       | 964153.35       |
| BIC                                           | 1612043.45      | 964368.85       | 964359.16       |
| Log Likelihood                                | -805914.64      | -482068.94      | -482057.67      |
| Deviance                                      | 549299.64       | 322525.69       | 322527.82       |
| Num. obs.                                     | 650434          | 373983          | 373983          |

19 / 27

### ERGM results, 1 933 231 node network I

| Effect                                 | Model 1                | Model 2                | Model 3               |
|----------------------------------------|------------------------|------------------------|-----------------------|
| Arc                                    | -13.638                | -13.932                | -13.417               |
|                                        | (-13.896, -13.380)     | (-14.224, -13.639)     | (-13.703, -13.131)    |
| Isolates                               | -0.182                 | 0.046                  | 0.087                 |
|                                        | (-0.253, -0.111)       | (-0.009, 0.101)        | (0.023, 0.151)        |
| Sink                                   | -0.763                 | -0.486                 | -0.490                |
|                                        | (-0.848, -0.679)       | (-0.541, -0.430)       | (-0.559, -0.421       |
| Source                                 | -0.225                 | -0.223                 | -0.222                |
|                                        | (-0.290, -0.159)       | (-0.269, -0.176)       | (-0.285, -0.160       |
| Popularity spread (AinS)               | 0.784                  | 0.757                  | 0.775                 |
|                                        | (0.697, 0.870)         | (0.684, 0.831)         | (0.685, 0.865         |
| Activity spread (AoutS)                | 1.238                  | 0.841                  | 0.847                 |
| T . (405 T)                            | (1.096,1.381)          | (0.744,0.937)          | (0.728,0.966          |
| Two-path (A2P-T)                       | -0.003                 | -0.023                 | -0.029                |
| CL   (AOD D)                           | (-0.016, 0.010)        | (-0.041, -0.005)       | (-0.046, -0.012       |
| Shared popularity (A2P-D)              | -0.213                 | -0.119                 | -0.120                |
| CL                                     | (-0.246, -0.180)       | (-0.146, -0.091)       | (-0.149, -0.092       |
| Shared activity (A2P-U)                | 0.074<br>(0.055,0.092) | 0.062<br>(0.047,0.078) | 0.057<br>(0.038,0.076 |
| Candan Ann. Vann [hans 1079]           | 0.454                  | 0.417                  | 0.038,0.070           |
| Sender App. Year [base 1978]           | (0.442,0.465)          | (0.402,0.432)          | (0.431,0.466          |
| Receiver App. Year [base 1978]         | -0.523                 | -0.505                 | -0.532                |
| Receiver App. Teal [base 1970]         | (-0.540, -0.505)       | (-0.525, -0.486)       | (-0.554, -0.509       |
| DiffSign App. Year                     | 1.872                  | 2.032                  | 2.050                 |
| Dili Sigii App. Teal                   | (1.741,2.003)          | (1.916,2.148)          | (1.937,2.164          |
| AbsDiff App. Year                      | -0.625                 | -0.600                 | -0.629                |
| 7.055 III 7.1pp. 1 cai                 | (-0.650, -0.599)       | (-0.624, -0.576)       | (-0.659, -0.600       |
| Jaccard similarity Applicant countries | 0.756                  | 0.808                  | 0.786                 |
|                                        | (0.582, 0.931)         | (0.646, 0.970)         | (0.615, 0.957         |
| Jaccard similarity Inventor countries  | 0.586                  | 0.573                  | 0.551                 |
| ,                                      | (0.432, 0.739)         | (0.443, 0.702)         | (0.399, 0.704         |
| Jaccard similarity Sections            | 3.837                  | 1.501                  | 1.402                 |
| •                                      | (3.518,4.156)          | (1.360,1.643)          | (1.269, 1.535         |
| Matching Pub. Language                 | 0.102                  | 0.044                  | -0.025                |
|                                        | (0.050,0.154)          | (0.004,0.083)          | (-0.061, 0.011        |

### ERGM results, 1 933 231 node network II

| 6 1 14                                   | 1 400                     | 0.075                      | 2.547                     |
|------------------------------------------|---------------------------|----------------------------|---------------------------|
| Sender Max. contrast                     | -1.409 $(-1.596, -1.221)$ | -0.975<br>(-1.383, -0.567) | -3.547 $(-3.849, -3.245)$ |
| Sender Max. contrast <sup>2</sup>        | -0.788                    | -1.375                     | 0.668                     |
|                                          | (-0.946, -0.630)          | (-1.762, -0.988)           | (0.490, 0.847)            |
| Receiver Max. contrast                   | -6.515                    | -5.204                     | -8.099                    |
| 5                                        | (-6.802, -6.229)          | (-5.433, -4.975)           | (-8.373, -7.825)          |
| Receiver Max. contrast <sup>2</sup>      | 5.169<br>(4.917,5.420)    | 3.303<br>(3.108,3.497)     | 5.067<br>(4.788,5.346)    |
| Jaccard similarity Classes               | `                         | 4.563                      | 5.802                     |
|                                          |                           | (4.308, 4.817)             | (5.523,6.080)             |
| DiffSign Max. contrast                   | 0.008<br>(-0.001, 0.018)  | _                          | _                         |
| AbsDiff Max. contrast                    | -15.999                   | _                          | _                         |
|                                          | (-17.996, -14.002)        |                            |                           |
| Sender Niche width                       | _                         | _                          | 1.487                     |
| Receiver Niche width                     |                           |                            | (1.424,1.551)<br>1.978    |
| Receiver Miche width                     | _                         | _                          | (1.798,2.159)             |
| Sender Secondary contrast                | _                         | _                          |                           |
| Sender Secondary contrast <sup>2</sup>   | _                         | _                          | _                         |
| Receiver Secondary contrast              | _                         | _                          | _                         |
| Receiver Secondary contrast <sup>2</sup> | _                         | _                          | _                         |
| Converged runs                           | 20                        | 20                         | 20                        |
| Total runs                               | 20                        | 20                         | 20                        |

22 / 27

### ERGM results, 1 933 231 node network IV

| Sender Max. contrast                            | -2.529 $(-2.965, -2.093)$              |
|-------------------------------------------------|----------------------------------------|
| Sender Max. contrast <sup>2</sup>               | -1.325<br>(-1.736, -0.914)             |
| Receiver Max. contrast                          | -6.258 $(-6.603, -5.914)$              |
| Receiver Max. contrast <sup>2</sup>             | 2.104<br>(1.910,2.299)                 |
| Jaccard similarity Classes                      | 5.907<br>(5.647,6.167)                 |
| DiffSign Max. contrast<br>AbsDiff Max. contrast | —————————————————————————————————————— |
| Sender Niche width                              | 1.253<br>(1.108,1.399)                 |
| Receiver Niche width                            | 1.726<br>(1.539,1.914)                 |
| Sender Secondary contrast                       | -4.322<br>(-4.497, -4.147)             |
| Sender Secondary contrast <sup>2</sup>          | 7.709<br>(7.216,8.203)                 |
| Receiver Secondary contrast                     | -4.578 $(-4.798, -4.359)$              |
| Receiver Secondary contrast <sup>2</sup>        | 8.102<br>(7.661,8.544)                 |
| Converged runs<br>Total runs                    | 20<br>20                               |

### ERGM results, 1 933 231 node network III

| Effect                                 | Model 4                   |
|----------------------------------------|---------------------------|
| Arc                                    | -13.241                   |
|                                        | (-13.577, -12.906)        |
| Isolates                               | 0.063<br>(-0.003,0.130)   |
| Sink                                   | -0.483                    |
| SINK                                   | -0.483 $(-0.573, -0.393)$ |
| Source                                 | -0.252                    |
| Source                                 | (-0.324, -0.179)          |
| Popularity spread (AinS)               | 0.799                     |
| ropularity spread (Allis)              | (0.710,0.888)             |
| Activity spread (AoutS)                | 0.834                     |
|                                        | (0.721, 0.947)            |
| Two-path (A2P-T)                       | -0.022                    |
| , ,                                    | (-0.041, -0.003)          |
| Shared popularity (A2P-D)              | -0.107                    |
|                                        | (-0.136, -0.077)          |
| Shared activity (A2P-U)                | 0.058                     |
|                                        | (0.038,0.078)             |
| Sender App. Year [base 1978]           | 0.433 (0.416,0.449)       |
| Danium Ann Van [hans 1070]             | -0.514                    |
| Receiver App. Year [base 1978]         | (-0.535, -0.492)          |
| DiffSign App. Year                     | 2.046                     |
| Dili Sigli App. Teal                   | (1.904,2.189)             |
| AbsDiff App. Year                      | -0.609                    |
|                                        | (-0.639, -0.579)          |
| Jaccard similarity Applicant countries | 0.764                     |
| ,                                      | (0.597, 0.931)            |
| Jaccard similarity Inventor countries  | 0.540                     |
|                                        | (0.382,0.699)             |
| Jaccard similarity Sections            | 1.392<br>(1.259,1.525)    |
| Matching Pub. Language                 | (1.259,1.525)<br>-0.016   |
| Matching rub. Language                 | (-0.051,0.020)            |
|                                        | (-0.031,0.020)            |

23/2

### References I

- A. Borisenko, M. Byshkin, and A. Lomi. A simple algorithm for scalable Monte Carlo inference. arXiv preprint arXiv:1901.00533v4, 2020.
- M. Byshkin, A. Stivala, A. Mira, G. Robins, and A. Lomi. Fast maximum likelihood estimation via equilibrium expectation for large network data. Scientific Reports, 8:11509, 2018.
- A. Clauset, C. R. Shalizi, and M. E. Newman. Power-law distributions in empirical data. SIAM Review, 51(4): 661–703, 2009.
- J.-P. Ferguson and G. Carnabuci. Risky recombinations: Institutional gatekeeping in the innovation process. Organization Science, 28(1):133–151, 2017.
- C. S. Gillespie. Fitting heavy tailed distributions: The poweRlaw package. Journal of Statistical Software, 64(2), 2015
- A. Graham, P. Browne, J. Barrett, and J. McLevey. Modelling directed acyclic graphs in exponential random graph models. Talk presented at INSNA Sunbelt XXXVIII, Utrecht, The Netherlands, June 26–July 1, 2018, June 2018.
- M. Gruber, D. Harhoff, and K. Hoisl. Knowledge recombination across technological boundaries: Scientists vs. engineers. Management Science, 59(4):837–851, 2013.
- B. H. Hall, A. B. Jaffe, and M. Trajtenberg. The NBER patent citation data file: Lessons, insights and methodological tools, 2001. National Bureau of Economic Research Working Paper 8498. http://www.nber.org/papers/w8498.
- M. T. Hannan, L. Pólos, and G. R. Carroll. Logics of organization theory: Audiences, codes, and ecologies. Princeton University Press, Princeton, NJ, 2007.
- F. Hartig. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models, 2019. URL https://CRAN.R-project.org/package=DHARMa. R package version 0.2.6.
- R. Henderson, A. Jaffe, and M. Trajtenberg. Patent citations and the geography of knowledge spillovers: A reassessment: Comment. American Economic Review, 95(1):461–464, 2005.
- D. V. Hinkley. Jackknifing in unbalanced situations. Technometrics, 19(3):285-292, 1977.
- A. B. Jaffe, M. Trajtenberg, and R. Henderson. Geographic localization of knowledge spillovers as evidenced by patent citations. *The Quarterly Journal of Economics*, 108(3):577–598, 1993.

24 / 27 25 / 27

### References II

- B. Kovács and M. T. Hannan. The consequences of category spanning depend on contrast. Research in the Sociology of Organizations, 31:175–201, 2010.
- B. Kovács and M. T. Hannan. Conceptual spaces and the consequences of category spanning. Sociological Science, 2:252–286, 2015
- D. Krackhardt and R. N. Stern. Informal networks and organizational crises: An experimental simulation. Social Psychology Quarterly, 51:123–140, 1988.
- P. Leifeld. texreg: Conversion of statistical model output in R to LATEX and HTML tables. Journal of Statistical Software, 55(8):1-24, 2013. URL http://www.jstatsoft.org/v55/i08/.
- J. G. MacKinnon and H. White. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. *Journal of Econometrics*, 29(3):305–325, 1985.
- J. McLevey, A. V. Graham, R. McIlroy-Young, P. Browne, and K. S. Plaisance. Interdisciplinarity and insularity in the diffusion of knowledge: an analysis of disciplinary boundaries between philosophy of science and the sciences. Scientometrics. 117(1):331–349, 2018.
- P. E. Pattison, G. L. Robins, T. A. B. Snijders, and P. Wang. Conditional estimation of exponential random graph models from snowball sampling designs. *Journal of Mathematical Psychology*, 57:284–296, 2013.
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL https://www.R-project.org/.
- A. Stivala, A. Palangkaraya, D. Lusher, G. Robins, and A. Lomi. ERGM parameter estimation of very large directed networks: implementation, example, and application to the geography of knowledge spillovers. Talk presented at INSNA Sunbelt XXXIX, Montréal, Canada, June 18–23, 2019, June 2019a. URL https://sites.google.com/site/alexdstivala/home/conferences.
- A. Stivala, G. Robins, and A. Lomi. Exponential random graph model parameter estimation for very large directed networks. arXiv preprint arXiv:1904.08063v3, 2019b.
- A. D. Stivala, P. Wang, J. L. Koskinen, G. L. Robins, and D. Rolls. Snowball sampling for estimating exponential random graph models for large networks. Social Networks, 46:167–188, 2016.
- P. Thompson and M. Fox-Kean. Patent citations and the geography of knowledge spillovers: A reassessment. American Economic Review, 95(1):450–460, 2005.

#### References III

26 / 27

- M. Trajtenberg, R. Henderson, and A. Jaffe. University versus corporate patents: A window on the basicness of invention. Economics of Innovation and New Technology, 5(1):19–50, 1997.
- B. Uzzi, S. Mukherjee, M. Stringer, and B. Jones. Atypical combinations and scientific impact. Science, 342(6157): 468–472, 2013
- W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0.
- A. Zeileis. Econometric computing with HC and HAC covariance matrix estimators. *Journal of Statistical Software*, 11(10):1–17, 2004. ISSN 1548-7660. doi: 10.18637/jss.v011.i10. URL https://www.jstatsoft.org/v011/i10.
- A. Zeileis. Object-oriented computation of sandwich estimators. *Journal of Statistical Software*, 16(9):1-16, 2006. ISSN 1548-7660. doi: 10.18637/jss.v016.i09. URL https://www.jstatsoft.org/v016/i09.
- A. Zeileis and T. Hothorn. Diagnostic checking in regression relationships. R News, 2(3):7-10, 2002.