

PCT

WELTOGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6 : C08F 285/00, C09D 151/00 // (C08F 285/00, 283:00, 220:12, 220:04)	A1	(11) Internationale Veröffentlichungsnummer: WO 96/12747 (43) Internationales Veröffentlichungsdatum: 2. Mai 1996 (02.05.96)
(21) Internationales Aktenzeichen: PCT/EP95/04091		(81) Bestimmungsstaaten: BR, JP, KR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) Internationales Anmeldedatum: 18. Oktober 1995 (18.10.95)		
(30) Prioritätsdaten: P 44 37 535.2 20. Oktober 1994 (20.10.94) DE		Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF LACKE UND FARBEN AKTIENGESELLSCHAFT (DE/DE); Glasurstrasse 1, D-48165 Münster (DE).		
(72) Erfinder; und		
(75) Erfinder/Anmelder (<i>nur für US</i>): SCHWARTE, Stephan (DE/DE); Kupfergraben 13, D-48282 Emsdetten (DE). WEGNER, Egon (DE/DE); Breite Gasse 39-41, D-48143 Münster (DE). REUSMANN, Gerhard (DE/DE); Maximili anstrasse 58, D-48147 Münster (DE). PETRI-HUBER, Cornelia (DE/DE); Dorfacker 12, D-97084 Würzburg (DE).		
(74) Anwalt: FITZNER, Uwe; Kaiserswertherstrasse 74, D-40878 Ratingen (DE).		

(54) Title: POLYURETHANE-MODIFIED POLYACRYLATE

(54) Bezeichnung: POLYURETHANMODIFIZIERTES POLYACRYLAT

(57) Abstract

The invention pertains to a polyurethane-modified polyacrylate produced (I) by polymerization with the addition of (a1) an essentially carboxyl group-free acrylic acid ester or a mixture of acrylic acid esters, (a2) an ethylenically unsaturated monomer that carries at least one hydroxyl group per molecule and is essentially carboxyl group free or a mixture of such monomers and (a3) a carboxyl group-free, ethylenically unsaturated monomer different from (a1) and (a2) or a mixture of such monomers, to form a polyurethane solution that contains no copolymerizable double bonds; (II) by further polymerization and addition of (b1) at least one ethylenically unsaturated monomer carrying one carboxyl group per molecule or a mixture of such monomers and (b2) an essentially carboxyl group-free, ethylenically unsaturated monomer or a mixture of such monomers, after the monomers added in stage (I) have been almost completely reacted; and (III) by neutralization following the polymerization and dispersion in water.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein polyurethanmodifiziertes Polyacrylat, erhältlich (I) durch Polymerisation unter Zugabe (a1) eines im wesentlichen carboxylgruppenfreien Acrylsäureesters oder eines Gemisches von Acrylsäureestern, (a2) eines ethylenisch ungesättigten Monomeren, das mindestens eine Hydroxylgruppe pro Molekül trägt und im wesentlichen carboxylgruppenfrei ist oder eines Gemisches aus solchen Monomeren und (a3) eines im wesentlichen carboxylgruppenfreien von (a1) und (a2) verschiedenen ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren zu einer Polyurethanlösung, die keine copolymerisierbaren Doppelbindungen enthält; (II) durch anschließende Weiterpolymerisation und Zugabe (b1) mindestens einer Carboxylgruppe pro Molekül tragenden ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren und (b2) eines im wesentlichen carboxylgruppenfreien ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren, nachdem die in Stufe (I) zugegebenen Monomeren nahezu vollständig umgesetzt worden sind; und (III) durch Neutralisation nach Beendigung der Polymerisation und Dispergierung in Wasser.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Oesterreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LJ	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolien	VN	Vietnam

Polyurethanmodifiziertes Polyacrylat

Die vorliegende Erfindung betrifft ein polyurethanmodifiziertes Polyacrylat, das sich zur Herstellung von wäßrigen, pigmentierten Lacken eignet.

Derartige Lacke eignen sich für die aus dem Stand der Technik bekannten Base-Clear-Coat-Verfahren, die vor allem in der Automobilindustrie zur Herstellung hochwertiger Decklackierungen, insbesondere Metalleffektlackierungen eingesetzt werden (vgl. EP-A-38127, EP-A-89497 und DE-OS-3628124). Bei diesen Verfahren werden im überwiegenden Maße Basislacke eingesetzt, die als Verdünnungs- und/oder Lösemittel ausschließlich organische Lösemittel enthalten.

Seit einigen Jahren werden daher in der Lackindustrie wäßrige Basislacke entwickelt, die sich für Base-Coat/Clear-Coat-Verfahren eignen. Ein wesentliches Merkmal dieser Base-Coat/Clear-Coat-Verfahren besteht darin, daß der transparente Decklack auf die noch nicht eingearbeitete Basisschicht lackiert wird und erst danach Basisschicht und Decklack gemeinsam eingearbeitet werden (Naß-in-Naß-Verfahren).

Für diese Verfahrenweise geeignete Lacke sind u.a. in der DE-OS-4009858 beschrieben. Dort werden spezielle wasserverdünnbare Polyacrylatharze für die Lacke eingesetzt.

Für Naß-in-Naß-Verfahren geeignete Basislacke werden darüber hinaus in der Deutschen Offenlegungsschrift 4010176 beschrieben. Diese enthalten als Bindemittel ein Polymer, das erhältlich ist, indem in einem organischen Lösemittel oder einem Gemisch organischer Lösemittel ethylenisch ungesättigte Monomere und Polyurethanharze umgesetzt werden. Wesentlich bei diesem Verfahren ist der Einsatz von polymerisierbaren Doppelbindungen bei der Herstellung des Polyurethanharzes.

Die bisherige Praxis hat ergeben, daß die nach dem Naß-in-Naß-Verfahren aufgebrachten Lacke noch keine ausreichende Stabilität bei der Lagerung aufweisen. Dies gilt insbesondere, wenn unter praxisrelevanten erhöhten Temperaturen gelagert wird.

Die vorliegende Erfindung hat sich demgemäß die Aufgabe gestellt, ein polyurethanmodifiziertes Polyacrylat zur Verfügung zu stellen, das sich für die Herstellung von wäßrigen Basislacken eignet und bei diesen eine erhöhte Lagerstabilität bewirkt.

Diese Aufgabe wird dadurch gelöst, daß das polyurethanmodifizierte Polyacrylat erhältlich ist

I. durch Polymerisation unter Zugabe

- a1) eines im wesentlichen carboxylgruppenfreien Acrylsäureesters oder eines Gemisches von Acrylsäureestern,
- a2) eines ethylenisch ungesättigten Monomeren, das mindestens eine Hydroxylgruppe pro Molekül trägt und im wesentlichen carboxylgruppenfrei ist oder eines Gemisches aus solchen Monomeren und
- a3) eines im wesentlichen carboxylgruppenfreien von (a1) und (a2) verschiedenen ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren

zu einer Polyurethanlösung, die keine copolymerisierbaren Doppelbindungen enthält.

II. durch anschließende Weiterpolymerisation und Zugabe

- b1) mindestens eines eine Carboxylgruppe pro Molekül tragenden ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren und
- b2) eines im wesentlichen carboxylgruppenfreien ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren,

nachdem die in Stufe I zugegebenen Monomeren nahezu vollständig umgesetzt worden sind, und

III. durch Neutralisation nach Beendigung der Polymerisation und Dispergierung in Wasser.

Die Gewichtsanteile von (a1) liegen bei 40 - 90, vorzugsweise 40 - 80 Gew.-%, von (a2) bei 0 - 45, vorzugsweise 4 - 34 Gew.-%, von (a3) bei 0 - 40, vorzugsweise 10 - 30 Gew.-%, von (b1) bei 2,5 - 15, vorzugsweise 3 - 7 Gew.-% und von (b2) bei 0 - 60, vorzugsweise 0-28 Gew.-%.

Erfnungsgemäß wird das Polyurethan, das keine copolymerisierbaren Doppelbindungen enthält, in einem organischen Lösemittel oder einem Lösemittelgemisch gelöst. Die Polymerisation gem. Stufe II wird vorzugsweise erst dann durchgeführt, wenn mindestens 80 % der in Stufe I zugegebenen Monomeren umgesetzt worden sind.

Die erfungsgemäß eingesetzten wasserverdünnbaren Polyacrylatharze ermöglichen die Formulierung von Basislacken, die - insbesondere im Vergleich zu bekannten polyacrylatharzhaltigen Basislacken - eine verbesserte Lagerstabilität aufweisen.

Zur Herstellung der erfungsgemäß einzusetzenden Polyacrylatharze kann als Komponente (a1) jeder mit (a2), (a3), (b1) und (b2) copolymerisierbare, im wesentlichen carboxylgruppenfreie Ester der (Meth)acrylsäure oder ein Gemisch aus solchen (Meth)acrylsäureestern eingesetzt werden. Als Beispiele werden Alkylacrylate und Alkylimethacrylate mit bis zu 20 Kohlenstoffatomen im Alkylrest, wie z.B. Methyl-, Ethyl-, Propyl-, Butyl-, Hexyl-, Ethylhexyl-, Stearyl- und Laurylacrylat und -methacrylat und cycloaliphatische (Meth)acrylsäureester, wie z.B. Cyclohexyl(meth)acrylat genannt. Bevorzugt werden Gemische aus Alkylacrylaten und/oder Alkylimethacrylaten als (a1)-Komponente eingesetzt, die zu mindestens 25 Gew.-% aus n-Butyl- und/oder t-Butylacrylat und/oder n-Butyl- und/oder t-Butylmethacrylat bestehen.

Als Komponente (a2) können alle mit (a1), (a3), (b1) und (b2) copolymerisierbaren ethylenisch ungesättigten Monomere, die mindestens eine Hydroxylgruppe pro Molekül tragen und im wesentlichen carboxylgruppenfrei sind, oder ein Gemisch aus solchen Monomeren eingesetzt werden. Als Beispiele werden Hydroxyalkylester der Acrylsäure, Methacrylsäure oder einer anderen α,β-ethylenisch ungesättigten Carbonsäure genannt. Diese Ester können sich von einem Alkylen glykol ableiten, das mit der Säure verestert ist, oder sie können durch Umsetzung der Säure mit einem Alkylenoxid erhalten werden. Als Komponente (a2) werden vorzugsweise Hydroxyalkylester der Acrylsäure und Methacrylsäure, in denen die Hydroxyalkylgruppe bis zu 4 Kohlenstoffatomen enthält, Umsetzungsprodukte aus cyclischen Estern, wie z.B. ε-Caprolacton und diesen Hydroxyalkylestern oder Mischungen aus diesen Hydroxyalkylestern bzw. ε-Caprolactonmodifizierten Hydroxyalkylestern eingesetzt. Als Beispiele für derartige Hydroxyalkylester werden 2-Hydroxyethylacrylat, 2-Hydroxypropylacrylat, 3-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylmethacrylat, 2-Hydroxyethylmethacrylat, 4-Hydroxybutylacrylat und 4-Hydroxybutylmethacrylat genannt. Entsprechende Ester von anderen ungesättigten

Säuren wie z.B. Ethacrylsäure, Crotonsäure und ähnliche Säuren mit bis zu etwa 6 Kohlenstoffatomen pro Molekül können auch eingesetzt werden.

Als Komponente (a3) können alle mit (a1), (a2), (b1) und (b2) copolymerisierbaren, im wesentlichen carboxylgruppenfreien, von (a1) und (a2) verschiedenen ethylenisch ungesättigten Monomere oder Gemische aus solchen Monomeren eingesetzt werden. Als Komponente (a3) werden vorzugsweise vinylaromatische Kohlenwasserstoffe, wie Styrol, α -Alkylstyrol und Vinyltoluol, eingesetzt.

Die erfindungsgemäß verwendeten Polyacrylatharze werden hergestellt, indem in Stufe (I) die Komponente (a1) gegebenenfalls zusammen mit (a2) und ggf. zusammen mit (a3) und in Gegenwart eines Polyurethans, das keine copolymerisierbaren Doppelbindungen enthält, in einem organischen Lösemittel oder Lösemittelgemisch polymerisiert wird. Das Polyurethanharz wird aus folgenden Komponenten hergestellt:

- a) ein Polyester- und/oder Polyetherpolyol mit einem zahlenmittleren Molekulargewicht von 400 bis 5000 oder ein Gemisch aus solchen Polyester- und/oder Polyetherpolyolen
- b) ein Polyisocyanat oder ein Gemisch aus Polyisocyanaten
- c) gegebenenfalls eine Verbindung, die mindestens eine gegenüber Isocyanatgruppen reaktive und mindestens eine zur Anionenbildung befähigte Gruppe im Molekül aufweist oder ein Gemisch aus solchen Verbindungen
- d) gegebenenfalls eine Verbindung, die mindestens eine gegenüber NCO-Gruppen reaktive Gruppe und mindestens eine Poly(oxyalkylen)gruppe im Molekül aufweist, oder ein Gemisch aus solchen Verbindungen und gegebenenfalls
- e) eine Hydroxyl- und/oder Aminogruppen enthaltende organische Verbindung mit einem Molekulargewicht von 60 bis 600, oder ein Gemisch aus solchen Verbindungen.

Das Polyurethanharz soll ein zahlenmittleres Molekulargewicht von 700 bis 30.000, vorzugsweise 500 bis 15000 haben. Es ist bevorzugt, daß das Polyurethanharz eine Säurezahl von 0 bis 2,0 aufweist. Das Molekulargewicht der Polyurethanharze kann - wie dem Fachmann bekannt - insbesondere durch das Mengenverhältnis und die Funktionalität der eingesetzten Ausgangsverbindungen (a) bis (f) gesteuert werden.

Die Polyurethanharze können sowohl in Substanz als auch in organischen Lösemitteln hergestellt werden. Die Polyurethanharze können durch gleichzeitige Umsetzung aller Ausgangsverbindungen hergestellt werden. In vielen Fällen ist es jedoch zweckmäßig, die Polyurethanharze stufenweise herzustellen. So ist es zum Beispiel möglich, ein isocyanatgruppenhaltiges Präpolymer herzustellen, das dann weiter umgesetzt wird. Weiter ist es möglich, aus den Komponenten (a), (b), (c) und gegebenenfalls (d) und (e) ein isocyanatgruppenhaltiges Präpolymer herzustellen, das dann mit der Komponente (f) zu höhermolekularen Polyurethanen umgesetzt werden kann. In den Fällen, in denen als Komponente (d) eine Verbindung eingesetzt wird, die nur eine gegenüber Isocyanatgruppen reaktive Gruppe enthält, kann in einer ersten Stufe aus (c) und (d) ein isocyanatgruppenhaltiges Vorprodukt hergestellt werden, das anschließend mit den weiteren Komponenten weiter umgesetzt werden kann.

Die Umsetzung der Komponenten (a) bis (f) wird zweckmäßigerweise in Gegenwart von Katalysatoren, wie z.B. Dibutylzinndilaurat, Dibutylzinnmaleat, tertiäre Amine usw. durchgeführt.

Die einzusetzenden Mengen an Komponente (a), (b), (c), (d), (e) und (f) ergeben sich aus dem anzustrebenden zahlenmittleren Molekulargewicht und der anzustrebenden Säurezahl.

Als Komponente (b) können gesättigte und ungesättigte Polyester- und/oder Polyetherpolyole, die keine polymerisierbaren Doppelbindungen enthalten, insbesondere Polyester- und/oder Polyetherdiöle, mit einem zahlenmittleren Molekulargewicht von 400 bis 5000 eingesetzt werden. Geeignete Polyetherdiöle sind z.B. Polyetherdiöle der allgemeinen Formel H $(-\text{O}-(\text{CHR}^1)_n-\text{OH})_m$, wobei R^1 = Wasserstoff oder ein niedriger, gegebenenfalls substituierter Alkylrest ist, $n = 2$ bis 6, bevorzugt 3 bis 4 und $m = 2$ bis 100, bevorzugt 5 bis 50 ist. Als Beispiele werden lineare oder verzweigte Polyetherdiöle wie Poly(oxyethylen)glykole, Poly(oxypropylen)glykole und Poly(oxybutylen)glykole genannt. Die ausgewählten Polyetherdiöle sollen keine übermäßigen Mengen an Ethergruppen einbringen, weil sonst die gebildeten Polymere in Wasser anquellen. Die bevorzugten Polyetherdiöle sind Poly(oxypropylen)glykole im Molmassenbereich M_n von 400 bis 3000.

Polyesterdiöle werden durch Veresterung von organischen Dicarbonsäuren oder ihren Anhydride mit organischen Diolen hergestellt oder leiten sich von einer Hydroxycar-

bonsäure oder einem Lacton ab. Um verzweigte Polyesterpolyole herzustellen, können in geringem Umfang Polyole oder Polycarbonsäure mit einer höheren Wertigkeit als 2 eingesetzt werden. Die Dicarbonsäuren und Diole können lineare oder verzweigte aliphatische, cycloaliphatische oder aromatische Dicarbonsäuren oder Diole sein.

Die zur Herstellung der Polyester verwendeten Diole bestehen beispielsweise aus Alkylenglykolen, wie Ethylenglykol, Propylenglykol, Butylenglykol, Butandiol-1,4, Hexandiol-1,6, Neopentylglykol und anderen Diolen, wie Dimethylolcyclohexan. Es können jedoch auch kleine Mengen an Polyolen, wie Trimethylopropan, Glycerin, Pentaerythrit, zugesetzt werden. Die Säurekomponente des Polyesters besteht in erster Linie aus niedermolekularen Dicarbonsäuren oder ihren Anhydriden mit 2 bis 44, bevorzugt 4 bis 36 Kohlenstoffatomen im Molekül. Geeignete Säuren sind beispielsweise o-Phtalsäure, Isophthalsäure, Terephthalsäure, Tetrahydroptalsäure, Cyclohexandicarbonsäure, Bernsteinsäure, Adipinsäure, Azelainsäure, Sebazinsäure, Maleinsäure, Fumarsäure, Glutarsäure, Hexachlorheptadicarbonsäure, Tetrachlorphthalsäure und/oder dimerisierte Fettsäuren. Anstelle dieser Säuren können auch ihre Anhydride, soweit diese existieren, verwendet werden. Bei der Bildung von Polyesterpolyolen können auch kleinere Mengen an Carbonsäuren mit 3 oder mehr Carboxylgruppen beispielsweise Trimellithsäureanhydrid oder das Addukt von Maleinsäureanhydrid an ungesättigte Fettsäuren anwesend sein.

Es können auch Polyesterdiole eingesetzt werden, die durch Umsetzung eines Lactons mit einem Diol erhalten werden. Sie zeichnen sich durch die Gegenwart von entstehenden Hydroxylgruppen und wiederkehrenden Polyesteranteilen der Formel (-CO-(CHR²)_n-CH₂-O) aus. Hierbei ist n bevorzugt 4 bis 6 und der Substituent R² = Wasserstoff, ein Alkyl-, Cycloalkyl- oder Alkoxy-Rest. Kein Substituent enthält mehr als 12 Kohlenstoffatome. Die gesamte Anzahl der Kohlenstoffatome im Substituenten übersteigt 12 pro Lactonring nicht. Beispiele hierfür sind Hydroxycapronsäure, Hydroxybuttersäure, Hydroxydecansäure und/oder Hydroxystearinsäure.

Für die Herstellung der Polyesterdiole wird das unsubstituierte ϵ -Caprolacton, bei dem n den Wert 4 hat und alle R²-Substituenten Wasserstoff sind, bevorzugt. Die Umsetzung mit Lacton wird durch niedermolekulare Polyole wie Ethylenglykol, 1,3-Propanediol, 1,4-Butandiol, Dimethylolcyclohexan gestartet. Es können jedoch auch andere Reaktionskomponenten, wie Ethyldiamin, Alkyldialkanolamine oder auch Hamstoff mit Caprolacton umgesetzt werden. Als höhermolekulare Diole eignen sich auch Po-

lylactamdiol, die durch Reaktion von beispielsweise ϵ -Caprolactam mit niedermolekularen Diolen hergestellt werden.

Als Komponente (c) können aliphatische und/oder cycloalipathische und/oder aromatische Polyisocyanate eingesetzt werden. Als Beispiele für aromatische Polyisocyanate werden Phenylendiisocyanat, Tolylendiisocyanat, Xylylendiisocyanat, Biphenylendiisocyanat, Naphtylendiisocyanat und Diphenylmethandiisocyanat genannt.

Aufgrund ihrer guten Beständigkeit gegenüber ultraviolettem Licht ergeben (cyclo)aliphatische Polyisocyanate Produkte mit geringer Vergilbungsneigung. Beispiele für cycloalipathische Polyisocyanate sind Isophorondiisocyanat, Cyclopenten-diisocyanat sowie die Hydrierungsprodukte der aromatischen Diisocyanate wie Cyclohexylendiisocyanat, Methylcyclohexylendiisocyanat und Dicyclohexylmethandiisocyanat. Aliphatische Diisocyanate sind, z.B. Trimethylendiisocyanat, Tetramethylendiisocyanat, Pentamethylendiisocyanat, Hexamethylendiisocyanat, Propylendiisocyanat, Ethylethylendiisocyanat, Dimethylethylendiisocyanat, Methyltrimethylendiisocyanat und Trimethylhexandiisocyanat. Als weiteres Beispiel für ein aliphatisches Diisocyanat wird Tetramethylxyloldiisocyanat genannt. Besonders bevorzugt werden als Diisocyanate Isophorondiisocyanat, Dicyclohexylmethandiisocyanat und Tetramethylxyldiisocyanat genannt.

Die Komponente (c) muß hinsichtlich der Funktionalität der Polyisocyanate so zusammengesetzt sein, daß kein vernetztes Polyurethanharz erhalten wird. Die Komponente (c) kann neben Diisocyanaten auch einen Anteil an Polyisocyanaten mit Funktionalitäten über zwei - wie z.B. Triisocyanate - enthalten.

Als Triisocyanate haben sich Produkte bewährt, die durch Trimerisation oder Oligomerisation von Diisocyanaten oder durch Reaktion von Diisocyanaten mit polyfunktionellen OH- oder NH-Gruppen enthaltenden Verbindungen entstehen. Hierzu gehören beispielsweise das Biuret von Hexamethylendiisocyanat und Wasser, das Isocyanurat des Hexamethylendiisocyanats oder das Addukt von Isophorondiisocyanat an Trimethylolpropan. Die mittlere Funktionalität kann gegebenenfalls durch Zusatz von Monoisocyanaten gesenkt werden. Beispiele für solche kettenabbrechenden Monoisocyanate sind Phenylisocyanat, Cyclohexylisocyanat und Stearylisocyanat.

Als Veresterungskomponente können erfindungsgemäß polymere Fettsäuren eingesetzt werden. Dies können hergestellt werden, indem Fettsäuren, wie beispielsweise

Linolen-, Linol- oder Ölsäure einzeln, im Gemisch oder im Gemisch mit gesättigten Fettsäuren polymerisiert werden. Es entsteht ein Gemisch, das je nach Reaktionsführung hauptsächlich dimere, aber auch monomere und trimere Moleküle sowie Nebenprodukte enthält. Üblicherweise wird destillativ gereinigt. Handelsübliche polymere Fettsäuren enthalten i.a. mindestens 80 Gew.-% dimere Fettsäure, bis zu 20 Gew.-% trimere Fettsäuren und maximal 1 Gew.-% monomere Fettsäuren. Es ist bevorzugt, polymere Fettsäuren einzusetzen, die zu mindestens 98 Gew.-% aus dimeren Fettsäuren und höchstens 2 Gew.-% trimeren Fettsäuren und höchstens Spuren monomerer Fettsäuren besteht.

Polymere Fettsäuren enthalten sowohl cyclische als auch lineare aliphatische Molekülfragmente. Im Sinne der vorliegenden Erfindungen werden sie jedoch nicht als cycloaliphatische, sondern als lineare aliphatische Polycarbonsäuren angesehen.

Die Einführung von zur Anionenbildung befähigten Gruppen in die Polyurethanmoleküle erfolgt über den Einbau von Verbindungen (d) in die Polyurethanmoleküle, die mindestens eine gegenüber Isocyanatgruppen reaktive und eine zur Anionenbildung befähigte Gruppe im Molekül enthalten. Die Menge an einzusetzender Komponente (d) kann aus der angestrebten Säurezahl berechnet werden.

Als Komponente (d) werden vorzugsweise Verbindungen eingesetzt, die zwei gegenüber Isocyanatgruppen reaktive Gruppen im Molekül enthalten. Geeignete gegenüber Isocyanatgruppen reaktive Gruppen sind insbesondere Hydroxylgruppen, sowie primäre und/oder sekundäre Aminogruppen. Geeignete zur Anionenbildung befähigte Gruppen sind Carboxyl-, Sulfonsäure- und/oder Phosphonsäuregruppen, wobei Carboxylgruppen bevorzugt sind. Als Komponente (d) können beispielsweise Alkansäuren mit zwei Substituenten am α -ständigem Kohlenstoffatom eingesetzt werden. Der Substituent kann eine Hydroxylgruppe, eine Alkylgruppe oder bevorzugt eine Alkyloolgruppe sein. Diese Alkansäuren haben mindestens eine, im allgemeinen 1 bis 3 Carboxylgruppen im Molekül. Sie haben zwei bis etwa 25, vorzugsweise 3 bis 10 Kohlenstoffatome. Beispiele für die Komponente (d) sind Dihydroxypropionsäure, Dihydroxybernsteinsäure und Dihydroxybenzoësäure. Eine besonders bevorzugte Gruppe von Alkansäuren sind die α,α -Dimethyloolalkansäuren der allgemeinen Formel $R^4-C(CH_2OH)_2COOH$, wobei R^4 für ein Wasserstoffatom oder eine Alkygruppe mit bis zu etwa 20 Kohlenstoffatomen steht. Beispiele für solche Verbindungen sind 2,2-Dimethylolessigsäure, 2,2-Dimethyloolpropionsäure, 2,2-Dimethyloolbuttersäure und 2,2-Dimethyloolpentansäure. Die bevorzugte Dihydroxyalkansäure ist 2,2-Dimethyloolpropionsäure. Aminogruppenhaltige Verbindungen sind beispielsweise α,δ -Diaminovale-

riansäure, 3,4-Diaminobenzoësäure, 2,4-Diaminotoluolsulfonsäure und 2,4-Diamino-diphenylethersulfonsäure.

Mit Hilfe der Komponente (e) können Poly(oxyalkylen)-gruppen als nichtionische stabilisierende Gruppen in die Polyurethanmoleküle eingeführt werden. Als Komponente (e) können beispielsweise eingesetzt werden Alkoxy poly(oxyalkylen)alkohole mit der allgemeinen Formel $R'O\left(-CH_2-CH(OH)-O\right)_n H$ in der R' für einen Alkylrest mit 1 bis 6 Kohlenstoffatomen, R" für ein Wasserstoffatom oder einen Alkylrest mit 1 bis 6 Kohlenstoffatomen und n für eine Zahl zwischen 20 und 75 steht.

Der Einsatz der Komponente (f) führt zur Molekulargewichtserhöhung der Polyurethanharze. Als Komponente (f) können beispielsweise Polyole mit bis zu 36 Kohlenstoffatomen je Molekül wie Ethylenglykol, Diethylenglykol, Triethylenglykol, 1,2-Propandiol, 1,3-Propandiol, 1,4-Butandiol, 1,2-Butylen glykol, 1,6-Hexandiol, Trimethylolpropan, Ricinusöl oder hydriertes Ricinusöl, Di-trimethylolpropanether, Pentaerythrit, 1,2-Cyclohexandiol, 1,4-Cyclohexan dimethanol, Bisphenol A, Bisphenol F, Neopentylglykol, Hydroxypivalinsäure-neopentylglykolester, hydroxyethyliertes oder hydroxypropyliertes Bisphenol A, hydriertes Bisphenol A und deren Mischungen eingesetzt werden. Die Polyole werden im allgemeinen in Mengen von bis zu 30 Gewichtsprozent, vorzugsweise 2 bis 20 Gewichtsprozent, bezogen auf die eingesetzte Menge an Komponente (a) und (f) eingesetzt.

Als Komponente (f) können auch Di- und/oder Polyamine mit primären und/oder sekundären Aminogruppen eingesetzt werden. Polyamine sind im wesentlichen Alkylen-Polyamine mit 1 bis 40 Kohlenstoffatomen, vorzugsweise etwa 2 bis 15 Kohlenstoffatomen. Sie können Substituenten tragen, die keine mit Isocyanat-Gruppen reaktionsfähige Wasserstoffatome haben. Beispiele sind Polyamine mit linearer oder verzweigter aliphatischer, cycloaliphatischer oder aromatischer Struktur und wenigstens zwei primären Aminogruppen.

Als Diamine sind zu nennen Hydrazin, Ethyldiamin, Propyldiamin, 1,4-Butylen-diamin, Piperazin, 1,4-Cyclohexyldimethylamin, Hexamethylendiamin-1,6, Trimethyl-hexamethylendiamin, Methandiamin, Isophorondiamin, 4,4'-Diaminodicyclohexylmethan und Aminoethylenethanolamin. Bevorzugte Diamine sind Hydrazin, Alkyl- oder Cycloalkyldiamine wie Propyldiamin und 1-Amino-3-aminomethyl-3,5,5-trimethylcyclohexan.

Es können auch Polyamine als Komponente (f) eingesetzt werden, die mehr als zwei Aminogruppen im Molekül enthalten. In diesen Fällen ist jedoch - z.B. durch Mitverwendung von Monoaminen - darauf zu achten, daß keine vermetzten Polyurethanharze erhalten werden. Solche brauchbaren Polyamine sind Diethylentriamin, Triethylentetramin, Dipropylendiamin und Dibutylentriamin. Als Beispiel für ein Monoamin ist Ethylhexylamin zu nennen.

Als organische Lösemittel und Polymerisationsinitiatoren können die für die Herstellung von Polyacrylatharzen üblichen und für die Herstellung von wässrigen Dispersionen geeigneten Lösemittel und Polymerisationsinitiatoren eingesetzt werden. Als Beispiele für brauchbare Lösemittel werden Butylglykol, 2-Methoxypropanol, n-Butanol, Methoxybutanol, n-Propanol, Ethylenglykolmonomethylether, Ethylenglykolmonoethylether, Ethylenglykolmonobutylether, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether, Diethylenglykoldieehthylether, Diethylenglykolmonobutylether, 3-Methyl-3-methoxybutanol und Propylenglykol genannt. Als Beispiele für brauchbare Polymerisationsinitiatoren werden freie Radikale bildende Initiatoren, wie z.B. Benzoylperoxid, Azobisisobutyronitril, t-Butylperethylhexanoat und t-Butylperbenzoat genannt. Die Polymerisation wird zweckmäßigerweise bei einer Temperatur von 80 bis 160° vorzugsweise 110 bis 160°C durchgeführt. Nachdem mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-% der in Stufe (I) zugegebenen Monomere umgesetzt worden sind, werden in Stufe (II)

- (b1) 2,5 bis 15, vorzugsweise 3 bis 7 Gew.-% eines mindestens eine Carboxylgruppe pro Molekül tragenden ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren und
- (b2) 0 bis 60, vorzugsweise 0 bis 28 Gew.-% eines im wesentlichen carboxylgruppenfreien ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren

zugegeben und in Gegenwart des in Stufe (I) erhaltenen Reaktionsproduktes polymerisiert. In der Stufe II wird so lange polymerisiert, bis die in den Stufen (I) und (II) zugegebenen Monomeren im wesentlichen vollständig umgesetzt worden sind.

Als Komponente (b1) kann jedes mindestens eine Carboxylgruppe pro Molekül tragende, mit (a1), (a2), (a3) und (b2) copolymerisierbare ethylenisch ungesättigte Monomer oder ein Gemisch aus solchen Monomeren eingesetzt werden. Als Komponente (b1) werden vorzugsweise Acrylsäure und/oder Methacrylsäure eingesetzt. Es können aber auch andere ethylenisch ungesättigte Säuren mit bis zu 6 Kohlenstoff-

atomen im Molekül eingesetzt werden. Als Beispiele für solche Säuren werden Etharylsäure, Crotonsäure, Maleinsäure, Fumarsäure und Itaconsäure genannt. Als Komponente (b1) können auch Maleinsäuremono(meth)acryloyloxyethylester, Bernsteinsäuremono(meth)acryloyloxyethylester und Phtalsäuremono(meth)acryloyloxyethylester eingesetzt werden.

Als Komponente (b2) kann jedes mit (a1), (a2), (a3) und (b1) copolymerisierbare ethylenisch ungesättigte Monomer oder ein Gemisch aus solchen Monomeren eingesetzt werden. Als Komponente (b2) können alle bei der Beschreibung der Komponenten (a1), (a2) und (a3) aufgezählten Monomere eingesetzt werden.

Die Komponenten (a1), (a2), (a3), (b1) und (b2) werden in Art und Menge so ausgewählt, daß das Polyacrylatharz eine Hydroxylzahl von 0 bis 200, vorzugsweise 60 bis 140, eine Säurezahl von 20 bis 100, vorzugsweise 25 bis 50 und eine Glasübergangstemperatur (T_G) von -40°C bis +60°C, vorzugsweise -20°C bis +40°C, aufweist.

Die Menge und Zugabegeschwindigkeit des Initiators wird vorzugsweise so gewählt, daß ein Polyacrylatharz mit einem zahlenmittleren Molekulargewicht von 2500 bis 20000 erhalten wird. Es ist bevorzugt, die Initiatorzugabe zum gleichen Zeitpunkt wie die Zugabe der Monomeren zu beginnen und etwa eine halbe Stunde, nachdem die Zugabe der Monomeren beendet worden ist, zu beenden. Der Initiator wird vorzugsweise in konstanter Menge pro Zeiteinheit zugegeben. Nach Beendigung der Initiatorzugabe wird das Reaktionsgemisch noch so lange (in der Regel etwa 1 ½ Stunden) auf Polymerisationstemperatur gehalten, bis alle eingesetzten Monomere im wesentlichen vollständig umgesetzt worden sind. "Im wesentlichen vollständig" umgesetzt soll bedeuten, daß vorzugsweise 100 Gew.-% der eingesetzten Monomere umgesetzt worden sind, daß es aber auch möglich ist, daß ein geringer Restmonomerengehalt von höchstens bis zu etwa 0,5 Gew.-%, bezogen auf das Gewicht der Reaktionsmischung, unumgesetzt zurückbleiben kann.

Nach Beendigung der Polymerisation wird das erhaltene Polyacrylatharz zumindest teilweise neutralisiert und in Wasser dispergiert.

Zur Neutralisation können sowohl organische Basen als auch anorganische Basen verwendet werden. Vorzugsweise werden primäre, sekundäre und tertiäre Amine, wie z.B. Ethylamin, Propylamin, Dimethylamin, Dibutylamin, Cyclohexylamin, Benzylamin, Morpholin, Piperidin und Triethanolamin verwendet. Besonders bevorzugt werden ter-

täre Amine als Neutralisationsmittel eingesetzt, insbesondere Dimethylethanolamin, Triethylamin, Tripropylamin und Tributylamin.

Die Neutralisationsreaktion wird im allgemeinen durch Mischen der neutralisierenden Base mit dem Polyacrylatharz durchgeführt. Dabei wird vorzugsweise soviel Base eingesetzt, daß das Polyacrylatharz einen pH-Wert von 7 - 8,5, vorzugsweise 7,2 bis 7,8 aufweist.

Anschließend wird das partiell oder vollständig neutralisierte Polyacrylatharz durch Zugabe von Wasser dispergiert. Dabei entsteht eine wäßrige Polyacrylatharzdispersion. Gegebenenfalls kann ein Teil oder das gesamte organische Lösemittel abdestilliert werden.

Die erfindungsgemäßen Polyacrylatharzdispersionen enthalten Polyacrylatharzteilchen, deren mittleren Teilchengröße vorzugsweise zwischen 60 und 300 nm liegt (Meßmethode: Laserlichtstreuung, Meßgerät: Malvern Autosizer 2C).

Mit den oben beschriebenen Polyacrylatharzen als Bindemittel können erfindungsgemäße wäßrige Basislacke hergestellt werden. Es ist jedoch bevorzugt, die Polyacrylatharze mit mindestens einem wasserverdünnbaren Polyesterharz und/oder mindestens einem wasserverdünnbaren Aminoplastharz als Bindemittel zu kombinieren. Bei Basislacken, die nur nichtmetallische Pigmente bzw. Mischungen aus nichtmetallischen Pigmenten und keine Metallpigmente enthalten, wird vorzugsweise eine Mischung eingesetzt aus

- (A) 10 bis 95, vorzugsweise 25 bis 70 Gew.-% des erfindungsgemäßen Polyacrylatharzes,
- (B) 5 bis 50, vorzugsweise 10 bis 40 Gew.-% eines Aminoplastharzes,
- (C) 0 bis 85, vorzugsweise 20 bis 60 Gew.-% eines wasserverdünnbaren Polyesterharzes.

Die Summe der Gewichtsanteile der Komponenten (A) bis (C) beträgt stets 100 Gew.-%.

Als wasserverdünnbare Polyesterharze werden vorzugsweise solche eingesetzt, die in der DE-OS 4009858 beschrieben sind.

Neben den oben beschriebenen Bindemitteln können die erfindungsgemäßen Basislacke noch weitere wasserverdünnbare Kunstharze, die zum Anreiben der Pigmente und/oder als rheologiesteuende Additive dienen, enthalten. Als Beispiele für solche Kunstharze werden genannt: Polyether, wie z.B. Polypropylen glykol mit einem zahlenmittleren Molekulargewicht von 400 bis 1200, wasserlösliche Celluloseether, wie Hydroxyethylcellulose, Methylcellulose oder Carboxymethylcellulose sowie synthetische Polymere mit ionischen und/oder assoziativ wirkenden Gruppen, wie Polyvinylalkohol, Poly(meth)acrylamid, Poly(meth)acrylsäure, Polyvinylpyrrolidon, Styrol-Maleinsäureanhydrid oder Ethylen-Maleinsäureanhydrid-Copolymere und ihre Derivate oder auch hydrophob modifizierte ethoxyierte Urethane oder carboxylgruppenhaltige Polyacrylate.

Die erfindungsgemäßen Basislacke können auch vernetzte Polymikroteilchen, wie sie z.B. in der EP-A-38 127 offenbart sind, enthalten.

Die erfindungsgemäßen Basislacke können auch anorganische Rheologiesteuungsmittel, wie z.B. Schichtsilikate enthalten.

Als Pigmente können die erfindungsgemäßen Basislacke farbgebende Pigmente auf anorganischer Basis, wie z.B. Titandioxid, Eisenoxid, Ruß usw. und/oder farbgebende Pigmente auf organischer Basis und/oder übliche Metallpigmente (z.B. handelsübliche Aluminiumbronzen, Edelstahlbronzen ...) und/oder nicht-metallische Effektpigmente (z.B. Perlglanz- bzw. Interferenzpigmente) enthalten. Die erfindungsgemäßen Basislacke enthalten vorzugsweise Metallpigmente und/oder Effektpigmente. Die Pigmentierungshöhe liegt in üblichen Bereichen.

Die erfindungsgemäßen Basislacke weisen bei Spritzviskosität im allgemeinen einen Festkörpergehalt von etwa 15 bis 50 Gew.-% auf. Der Festkörpergehalt variiert mit dem Verwendungszweck der Basislacke. Für Metalliclacke liegt er beispielsweise bei vorzugsweise bei 17 bis 25 Gew.-%. Für unifarbe Lacks liegt er höher, beispielsweise bei 30 bis 45 Gew.-%.

Die erfindungsgemäßen Basislacke können zusätzlich übliche organische Lösemittel enthalten. Deren Anteil wird möglichst gering gehalten. Er liegt beispielsweise unter 15 Gew.-%.

Die erfindungsgemäßen Basislacke werden im allgemeinen auf einen pH-Wert zwischen 6,5 und 9,0 eingestellt. Der pH-Wert kann mit üblichen Aminen, wie z.B. Triethylamin, Dimethylaminoethanol und N-Methylmorpholin eingestellt werden.

Die erfindungsgemäßen Basislacke können sowohl bei der Serien- als auch bei der Reparaturlackierung eingesetzt werden. Sie werden vorzugsweise bei der Serienlackierung eingesetzt.

Als transparente Decklacke können Lacke auf Basis organischer Lösemittel, wasserverdünnbare Lacke und auch Pulverlacke eingesetzt werden. Die Lacke können als unpigmentierte Klarlacke oder als transparent pigmentierte Lacke eingesetzt werden.

Mit den erfindungsgemäßen Basislacken können auch ohne Überlackierung mit einem transparenten Decklack qualitativ hochwertige Lackierungen hergestellt werden. Auf diese Weise werden einschichtige Lackierungen erhalten, die sich durch einen besonders hohen Glanz auszeichnen.

Die Erfindungsgemäßen Lacke können auf beliebige Substrate, wie z.B. Metall, Holz, Kunststoff oder Papier aufgebracht werden.

In den folgenden Beispielen wird die Erfindung näher erläutert.

ERSATZBLATT (REGEL 26)

A Herstellung einer wässrigen Polyesterharzlösung

In einen Reaktor mit Rührer, Thermometer und Füllkörperkolonne werden 729 Gew.-Teile Neopentylglykol, 768 Gew.-Teile Hexandiol, 462 Gew.-Teile Hexahydrophthalsäureanhydrid und 1710 Gew.-Teile einer polymeren Fettsäure (Dimerengehalt mindestens 98 Gew.-%, Trimerengehalt höchstens 2 Gew.-%, Monomerengehalt höchstens Spuren) eingewogen und zum Schmelzen gebracht. Unter Rühren wird so aufgeheizt, daß die Kolonnenkopftemperatur 100°C nicht übersteigt. Es wird bei maximal 220°C so lange verestert bis eine Säurezahl von 9 erreicht ist. Nach dem Abkühlen auf 180°C werden 768 Gew.-Teile Trimellithsäureanhydrid zugegeben und weiter verestert bis eine Säurezahl von 32 erreicht ist. Dann wird auf 120°C abgekühlt und mit 1392 Gew.-Teilen Butylglykol angelöst. Nach dem Abkühlen auf 90°C werden langsam 158 Gew.-Teile Dimethylethanolamin und anschließend 1150 Gew.-Teile deionisiertes Wasser eingerührt. Diese Polyesterharzlösung wird mit Dimethylethanolamin auf einen pH-Wert von 7,6 und mit deionisiertem Wasser auf einen nichtflüchtigen Anteil von 60 Gew.-% eingestellt.

B Herstellung einer wässrigen Polyurethandispersion

716,6 Gew.-Teile eines Kondensationsproduktes (zahlenmittleres Molekulargewicht: 1410) aus 1,81 Mol einer polymeren Fettsäure (Dimerengehalt mindestens 98 Gew.-%, Trimerengehalt höchstens 2 Gew.-%, Monomerengehalt höchstens Spuren), 0,82 Mol Isophthalsäure, 0,61 Mol Hexandiol und 0,61 Mol Neopentylglykol, 61 Gew.-Teile Dimethylolpropionsäure, 10,6 Gew.-Teile Neopentylglykol, 365 Gew.-Teile Methylethylketon und 308,3 Gew.-Teile m-TMXDI werden in ein rührbares Reaktionsgefäß unter einer Stickstoffatmosphäre auf 80°C erhitzt. Die Reaktion wird bis zu einem NCO-Gehalt von 1,1 Gew.-%, bezogen auf die Gesamtzusammensetzung, fortgeführt. Dann werden 52,6 Gew.-Teile Trimethylolpropan zugegeben und es wird bei 80°C gerührt bis keine freien Isocyanatgruppen mehr nachweisbar sind. Dann werden langsam 33 Gew.-Teile Dimethylethanolamin, 255 Gew.-Teile Butylglykol und anschließend 2153 Gew.-Teile deionisiertes Wasser eingerührt. Unter Vakuum wird das Methylethylketon abdestilliert. Man erhält eine feinteilige Dispersion, deren pH-

Wert mit Dimethylethanolamin auf 7,4 und deren nichtflüchtiger Anteil mit deionisiertem Wasser auf 31 Gew.-% eingestellt werden.

C Herstellung einer acrylierten Polyurethandispersion

525,5 Gew.-Teile eines Kondensationsproduktes (zahlenmittleres Molekulargewicht: 1423) aus 1 Mol einer polymeren Fettsäure (Dimerengehalt mindestens 98 Gew.-%, Trimerengehalt höchstens 2 Gew.-%, Monomerengehalt höchstens Spuren), 1 Mol Isophthalsäure und 2,6 Mol Hexandiol, 28,3 Gew.-Teile Neopentylglykol, 9,0 Gew.-Teile Trimethylolmonoallylether, 194 Gew.-Teile Isophorondiisocyanat, 523,7 Gew.-Teile Methylisobutylketon und 0,5 Gew.-Teile Dibutylzinndilaurat werden in ein rührbares Reaktionsgefäß unter einer Stickstoffatmosphäre auf 105°C erhitzt. Die Reaktion wird bis zu einem NCO-Gehalt von 1,1 Gew.-%, bezogen auf die Gesamtzusammensetzung, fortgeführt. Dann werden 45 Gew.-Teile Trimethylolpropan zugegeben und es wird bei 105°C gerührt bis keine freien Isocyanatgruppen mehr nachweisbar sind. Zu dieser Lösung werden bei 105°C innerhalb von 3h eine Monomerenzusammensetzung bestehend aus 370 Gew.-Teile n-Butylacrylat, 370 Gew.-Teile Methylmethacrylat und 62,4 Gew.-Teile Acrylsäure und innerhalb von 3,5h eine Initiatorlösung bestehend aus 163,5 Gew.-Teile Methylisobutylketon und 24 Gew.-Teile Peroxid t-Butylperethylhexanoat zudosiert. Der Monomerenzulauf und der Initiatorzulauf beginnen gleichzeitig. Ca. 3h nach Beendigung des Initiatorzulaufes (FK 70-72%; Viskosität = 3,0 - 6,0 dPas für Probe/N-Methylpyrrolidon = 1:1) wird auf 95°C abgekühlt und 50 Gew.-Teile Dimethylethanolamin eingerührt. Anschließend wird mit 2390 Gew.-Teile deionisiertem Wasser verdünnt und das Methylisobutylketon abdestilliert. Der pH-Wert wird mit Dimethylethanolamin auf 7,7 und der nichtflüchtige Anteil mit deionisiertem Wasser auf 40 Gew.-% eingestellt.

D Herstellung des erfindungsgemäßen, polyurethanmodifizierten Polyacrylates

Herstellung der Polyurethanlösung:

500 Gew.-Teile eines Kondensationsproduktes (zahlenmittleres Molekulargewicht: 1345) aus 1 Mol einer polymeren Fettsäure (Dimerengehalt mindestens 98 Gew.-%, Trimerengehalt höchstens 2 Gew.-%, Monomerengehalt höchstens Spuren), 1,5 Mol Isophthalsäure, 1,6 Mol Neopentylglykol und 1,7 Mol Hexandiol, 31,2 Gew.-Teile Neopentylglykol, 185 Gew.-Teile Methylethylketon, 201,7 Gew.-Teile m-TMXDI und 0,7 Gew.-Teile Dibutylzinndilaurat werden in ein rührbares Reaktionsgefäß unter einer

Stickstoffatmosphäre auf 80°C erhitzt. Die Reaktion wird bis zu einem NCO-Gehalt von 1,3 Gew.-% , bezogen auf die Gesamtzusammensetzung, fortgeführt. Dann werden 30 Gew.-Teile Diethanolamin zugegeben und bei 80°C gerührt bis keine freien Isocyanatgruppen mehr nachweisbar sind. Dann werden 466 Gew.-Teile Butylglykol eingerührt und das Methylmethyleketon im Vakuum abdestilliert. Die Polyurethanolösung wird anschließend mit Butylglykol auf einen nichtflüchtigen Anteil von 60 Gew.-% eingestellt.

In einem Stahlkessel, ausgestattet mit Monomerenzulauf, Initiatorzulauf, Thermometer, Ölheizung und Rückflußkühler werden 28,44 Gew.-Teile Butylglykol und 24,24 Gew.-Teile von o.g. Polyurethanolösung vorgelegt und auf 110 °C aufgeheizt. Dann wird eine Lösung von 5,1 Gew.-Teilen t-Butylperethylhexanoat in 6,0 Gew.-Teilen Butylglykol in einer solchen Geschwindigkeit zugegeben , daß die Zugabe nach 5 h 30 min abgeschlossen ist.

Mit Beginn der Zugabe der t-Butylperethylhexanoatlösung wird auch mit der Zugabe einer Mischung aus (a1): 18,36 Gew.-Teilen n-Butylmethacrylat, 17,0 Gew.-Teilen Methylmethacrylat und 17,0 Gew.-Teilen Laurylmethacrylat; (a2) 17,34 Gew.-Teilen Hydroxipropylacrylat und (a3) 12,75 Gew.-Teilen Styrol begonnen. Die Mischung aus (a1), (a2) und (a3) wird in einer solchen Geschwindigkeit zugegeben, daß die Zugabe in 5 h abgeschlossen ist.

Nachdem die t-Butylperethylhexanoatlösung vollständig zugegeben worden ist, wird die Polymerisationstemperatur noch 1 h auf 110 °C gehalten.

Dann wird eine Lösung von 1,17 Gew.-Teilen t-Butylperethylhexanoat in 3,5 Gew.-Teilen Butylglykol in einer solchen Geschwindigkeit zugegeben , daß die Zugabe nach 1 h 30 min abgeschlossen ist. Mit Beginn der Zugabe der t- Butylperethylhexanoatlösung wird auch mit der Zugabe einer Mischung aus (b1) 5,85 Gew.- Teilen Acrylsäure und (b2): 4,65 Gew.-Teilen n-Butylmethacrylat, 2,94 Gew.-Teilen Methylmethacrylat, 5,90 Gew.-Teilen Laurylmethacrylat; 1,25 Gew.-Teilen Hydroxipropylacrylat und 2,94 Gew.-Teilen Styrol begonnen. Die Mischung aus (b1) und (b2) wird in einer solchen Geschwindigkeit zugegeben, daß die Zugabe in 1 h abgeschlossen ist.

Die Temperatur wird noch 1h 30 min auf 110 °C gehalten. Die so erhaltene Harzlösung wird destillativ unter Vakuum auf 80 Gew-% (Feststoffgehalt) aufkonzentriert und mit Dimethylethanolamin bei 80 °C innerhalb von ca. 30 min. bis zu einem Neutralisationsgrad von 80 % neutralisiert. Die Harzlösung wird auf 60 °C abgekühlt und die Heizung abgestellt. Anschließend wird langsam soviel Wasser zugegeben bis der Feststoffgehalt der Dispersion etwa 40 Gew.-% beträgt.

Die erhaltene Dispersion hat folgende Kennzahlen: Säurezahl 36,7 mg KOH/g, und einen pH- Wert von 7,6.

E Herstellung einer wässrigen Polyacrylatdispersion

In einem Stahlkessel, ausgestattet mit Monomerenzulauf, Initiatorzulauf, Thermometer, Ölheizung und Rückflußkühler werden 32 Gew.-Teile Butylglykol vorgelegt und auf 110 °C aufgeheizt. Dann wird eine Lösung von 6,0 Gew.-Teilen t-Butylperethylhexanoat in 6,0 Gew.-Teilen Butylglykol in einer solchen Geschwindigkeit zugegeben, daß die Zugabe nach 5 h 30 min abgeschlossen ist.

Mit Beginn der Zugabe der t-Butylperethylhexanoatlösung wird auch mit der Zugabe einer Mischung aus (a1): 21,6 Gew.-Teilen n-Butylmethacrylat, 20,0 Gew.-Teilen Methylmethacrylat und 20,0 Gew.-Teilen Laurylmethacrylat; (a2) 20,4 Gew.-Teilen Hydroxipropylacrylat und (a3) 15,0 Gew.-Teilen Styrol begonnen. Die Mischung aus (a1), (a2) und (a3) wird in einer solchen Geschwindigkeit zugegeben, daß die Zugabe in 5 h abgeschlossen ist.

Nachdem die t-Butylperethylhexanoatlösung vollständig zugegeben worden ist, wird die Polymerisationstemperatur noch 1 h auf 110 °C gehalten.

Dann wird eine Lösung von 1,17 Gew.-Teilen t-Butylperethylhexanoat in 3,5 Gew.-Teilen Butylglykol in einer solchen Geschwindigkeit zugegeben, daß die Zugabe nach 1 h 30 min abgeschlossen ist. Mit Beginn der Zugabe der t-Butylperethylhexanoatlösung wird auch mit der Zugabe einer Mischung aus (b1) 5,85 Gew.-Teilen Acrylsäure und (b2): 4,65 Gew.-Teilen n-Butylmethacrylat, 2,94 Gew.-Teilen Methylmethacrylat, 5,90 Gew.-Teilen Laurylmethacrylat; 1,25 Gew.-Teilen Hydroxipropylacrylat und 2,94 Gew.-Teilen Styrol begonnen. Die Mischung aus (b1) und (b2) wird in einer solchen Geschwindigkeit zugegeben, daß die Zugabe in 1 h abgeschlossen ist.

Die Temperatur wird noch 1 h 30 min auf 110 °C gehalten. Die so erhaltene Harzlösung wird destillativ unter Vakuum auf 80 Gew-% (Feststoffgehalt) aufkonzentriert und mit Dimethylethanolamin bei 80 °C innerhalb von ca. 30 min. bis zu einem Neutralisationsgrad von 80 % neutralisiert. Die Harzlösung wird auf 60 °C abgekühlt und die Heizung abgestellt. Anschließend wird langsam soviel Wasser zugegeben bis der Feststoffgehalt der Dispersion etwa 40 Gew.-% beträgt.

Die erhaltene Dispersion hat folgende Kennzahlen: Säurezahl 36,8 mg KOH/g und einen pH-Wert von 7,6.

I Herstellung eines wäßrigen Metallic-Basislackes (Vergleichsbeispiel nach DE 40 09 858 A1)

Es werden 33,5 Gew.-Teile Verdickungsmittel (Paste eines Natrium-Magnesium-Silikates mit Schichtstruktur [Laponite RD], 3%ig in Wasser) vorgelegt. Dazu wird eine Lösung aus 4,3 Gew.-Teilen Butylglykol und 7,7 Gew.-Teilen einer 70%igen Lösung eines handelsüblichen Melaminharzes in Isobutanol (Maprenal MF927) unter Röhren zugegeben. Anschließend werden dieser Mischung 33,3 Gew.-Teile der Polyurethandispersion gemäß B, 0,4 Gew.-Teile Dimethylethanolamin (10%ig in Wasser) und 4,8 Gew.-Teile der Polyacrylatharzdispersion gemäß E nacheinander unter Röhren zugegeben. Getrennt davon wird eine Aluminiumpigmentaufschlämmung wie folgt hergestellt: 4,4 Gew.-Teile einer handelsüblichen chromatierten Aluminiumpaste (65%ig in Benzin/Solventnaphta/Butylglykol, durchschnittlicher Teilchendurchmesser 15 µm) werden unter Zugabe von 4 Gew.-Teilen Butylglykol homogenisiert. Zu dieser Aufschlämmung werden anschließend 3,2 Gew.-Teile des wasserlöslichen Polyesterharzes gemäß A und 1,0 Gew.-Teile Polypropylenglykol (zahlenmittleres Molekulargewicht: 900) gegeben. Diese Aluminiumpigmentaufschlämmung wird in die oben beschriebene Mischung eingerührt. Danach werden noch 3,8 Gew.-Teile deionisiertes Wasser zugegeben und mit Dimethylethanolamin (10%ig in Wasser) ein pH-Wert von 7,7 - 8,0 eingestellt.

II Herstellung eines wäßrigen Metallic-Basislackes (Vergleichsbeispiel nach DE 40 10 176)

Es werden 33,5 Gew.-Teile Verdickungsmittel (Paste eines Natrium-Magnesium-Silikates mit Schichtstruktur [Laponite RD], 3%ig in Wasser) vorgelegt.

Dazu wird eine Lösung aus 4,3 Gew.-Teilen Butylglykol und 7,7 Gew.-Teilen einer 70%igen Lösung eines handelsüblichen Melaminharzes in Isobutanol (Maprenal MF927) unter Rühren zugegeben. Anschließend werden dieser Mischung 33,3 Gew.-Teile der Polyurethandispersion gemäß B, 0,4 Gew.-Teile Dimethylethanolamin (10%ig in Wasser) und 4,8 Gew.-Teile der acrylierten Polurethandispersion gemäß C nacheinander unter Rühren zugegeben. Getrennt davon wird eine Aluminiumpigmentaufschämmung wie folgt hergestellt: 4,4 Gew.-Teile einer handelsüblichen chromatierten Aluminiumpaste (65%ig in Benz in/Solventnaphta/Butylglykol, durchschnittlicher Teilchendurchmesser 15 µm) werden unter Zugabe von 4 Gew.-Teilen Butylglykol homogenisiert. Zu dieser Aufschämmung werden anschließend 3,2 Gew.-Teile des wasserlöslichen Polyesterharzes gemäß A und 1,0 Gew.-Teile Polypropylenglykol (zahlenmittlers Molekulargewicht: 900) gegeben. Diese Aluminiumpigmentaufschämmung wird in die oben beschriebene Mischung eingerührt. Danach werden noch 3,8 Gew.-Teile deionisiertes Wasser zugegeben und mit Dimethylethanolamin (10%ig in Wasser) ein pH-Wert von 7,7 - 8,0 eingestellt.

III Herstellung eines erfindungsgemäßen wäßrigen Metallic-Basislackes

Es werden 33,5 Gew.-Teile Verdickungsmittel (Paste eines Natrium-Magnesium-Silikates mit Schichtstruktur [Laponite RD], 3%ig in Wasser) vorgelegt.

Dazu wird eine Lösung aus 4,3 Gew.-Teilen Butylglykol und 7,7 Gew.-Teilen einer 70%igen Lösung eines handelsüblichen Melaminharzes in Isobutanol (Maprenal MF927) unter Rühren zugegeben. Anschließend werden dieser Mischung 33,3 Gew.-Teile der Polyurethandispersion gemäß B, 0,4 Gew.-Teile Dimethylethanolamin (10%ig in Wasser) und 4,8 Gew.-Teile der polyurethanmodifizierten Polyacrylatharzdispersion gemäß D nacheinander unter Rühren zugegeben. Getrennt davon wird eine Aluminiumpigmentaufschämmung wie folgt hergestellt: 4,4 Gew.-Teile einer handelsüblichen chromatierten Aluminiumpaste (65%ig in Benz in/Solventnaphta/Butylglykol, durchschnittlicher Teilchendurchmesser 15 µm) werden unter Zugabe von 4 Gew.-Teilen Butylglykol homogenisiert. Zu dieser Aufschämmung werden anschließend 3,2 Gew.-Teile des wasserlöslichen Polyesterharzes gemäß A und 1,0 Gew.-Teile Polypropylenglykol (zahlenmittlers Molekularg wicht: 900)

gegeben. Diese Aluminiumpigmentaufschämmung wird in die oben beschriebene Mischung eingerührt. Danach werden noch 3,8 Gew.-Teile deionisiertes Wasser zugegeben und mit Dimethylethanolamin (10%ig in Wasser) ein pH-Wert von 7,7 - 8,0 eingestellt.

Die so hergestellten Basislacke wurden mittels folgender Messungen verglichen:

Anwendungen:

Beschreibung von Farbunterschieden durch Farbortbestimmung von Vorlage und Probe und Berechnung der Farbabstände mit ihren Anteilen, simultan für i.d.R. verschiedene Beleuchtungs/Beobachtungs-Geometrien zur Beurteilung von Farbunterschieden und Flop-Verhalten bei Metall- und anderen Effektlacken.

Verfahren:

Analog zum Verfahren bei Unilacken werden hier die Farbmaßzahlen und Farbdifferenzen für i.d.R. drei verschiedene Winkelkombinationen ermittelt. Die graphischen Darstellungen unterstützen die Beurteilung des Verhaltens von Vorlage und Probe bei Änderung der Beleuchtungs/Beobachtungswinkel.

22

<u>Meßgeräte</u>	<u>Bel./Beob.</u>	<u>Geom.</u>	<u>Meßbereich</u>	<u>Schrittw.</u>	<u>Bandbr.</u>
MMK 111	45°-20° / 0° /+ 25°	25° 45° 70°	400-700nm	10 nm	5nm
DMC 26 m.	var./var.	var.	380-720nm	10nm	10nm

Auswertung:

Die Kennzahl MF-D wurde wie folgt ermittelt:

$$\text{MF-D} = 50 * (\text{L } 25 - \text{L } 70) : \text{L } 70$$

Bem.: Probengröße MMK 111 mind. 3 * 5 cm
 DMC 26 3 * 5 cm bis 8 * 20 cm

Ref.: DIN 5033, DIN 6174

<u>Versuch</u>	<u>I</u>	<u>II</u>	<u>III</u>
MF-D (frisch)	73	71	74
MF-D (4 Wo 40° C)	63	58	72

Es zeigt sich, daß insbesondere bei erhöhter Temperatur die Lagerstabilität signifikant verbessert ist.

ERSATZBLATT (REGEL 26)

Patentansprüche

1. Polyurethanmodifiziertes Polyacrylat, erhältlich
 - I. durch Polymerisation unter Zugabe
 - a1) eines im wesentlichen carboxylgruppenfreien Acrylsäureesters oder eines Gemisches von Acrylsäureestern,
 - a2) eines ethylenisch ungesättigten Monomeren, das mindestens eine Hydroxylgruppe pro Molekül trägt und im wesentlichen carboxylgruppenfrei ist oder eines Gemisches aus solchen Monomeren und
 - a3) eines im wesentlichen carboxylgruppenfreien von (a1) und (a2) verschiedenen ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren
 - zu einer Polyurethanolösung, die keine copolymerisierbaren Doppelbindungen enthält.
 - II. durch anschließende Weiterpolymerisation und Zugabe
 - b1) mindestens eines eine Carboxylgruppe pro Molekül tragenden ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren und
 - b2) eines im wesentlichen carboxylgruppenfreien ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren,
 - nachdem die in Stufe I zugegebenen Monomeren nahezu vollständig umgesetzt worden sind, und
 - III. durch Neutralisation nach Beendigung der Polymerisation und Dispergierung in Wasser.

ERSATZBLATT (REGEL 26)

2. Polyurethanmodifiziertes Polyacrylat nach Anspruch 1
d a d u r c h g e k e n n z e i c h n e t, daß der Anteil der Komponente (a1) 40 - 90 Gew.-%, (a2) 0 - 45 Gew.-%, (a3) 0 - 40 Gew.-%, (b1) 2,5 - 15 Gew.-% und (b2) 0 - 60 Gew.-% beträgt.
3. Polyurethanmodifiziertes Polyacrylat nach Anspruch 2
d a d u r c h g e k e n n z e i c h n e t, daß die Anteile der Komponenten (a1) 40 - 80 Gew.-%, (a2) 4 - 34 Gew.-%, (a3) 10 - 30 Gew.-%, (b1) 3 - 7 Gew.-% und (b2) 0 - 28 Gew.-% betragen.
4. Polyurethanmodifiziertes Polyacrylat nach einem der Ansprüche 1 - 3
d a d u r c h g e k e n n z e i c h n e t, daß diese Summe der Gewichtsanteile von (a1), (a2), (a3), (b1) und (b2) stets 100 % Gew.-% ergibt.
5. Polyurethanmodifiziertes Polyacrylat nach einem der Ansprüche 1 - 4
d a d u r c h g e k e n n z e i c h n e t, daß (a1), (a2), (a3), (b1) und (b2) in Art und Menge so ausgewählt werden, daß das aus (a1), (a2), (a3), (b1) und (b2) erhaltene Polyacrylatharz eine Hydroxylzahl von 0 - 200, eine Säurezahl von 20 - 100 und eine Glasübergangstemperatur von - 40 bis + 60°C aufweist.
6. Polyurethanmodifiziertes Polyacrylat nach Anspruch 5
d a d u r c h g e k e n n z e i c h n e t, daß die Hydroxylzahl zwischen 60 und 140, die Säurezahl zwischen 25 und 50 und die Glasübergangstemperatur zwischen - 20 und + 40°C liegt.
7. Polyurethanmodifiziertes Polyacrylat nach einem der Ansprüche 1 - 6
d a d u r c h g e k e n n z e i c h n e t, daß die Polyurethanlösung erhältlich ist durch Umsetzung von
 - a) eines Polyester- und/oder Polyetherpolyols mit einem zahlenmittleren Molekulargewicht von 400 bis 5000 oder eines Gemisches solchen Polyester- und/oder Polyetherpolyolen,
 - b) eines Polyisocyanats oder eines Gemisches aus Polyisocyanaten,
 - c) gegebenenfalls eine Verbindung, die mindestens eine gegenüber Isocyanatgruppen reaktive und mindestens eine zur Anionenbildung befähigte Gruppe im Molekül aufweist oder ein Gemisch aus solchen Verbindungen,
 - d) gegebenenfalls einer Verbindung, die mindestens eine gegenüber NCO-Gruppen reaktive Gruppe und mindestens ein

Poly(oxyalkylen)grupp im Molekül aufweist, oder eines G misches aus solchen Verbindungen und gegebenenfalls

e) einer Hydroxyl- und/oder Aminogruppen enthaltende organischen Verbindung mit einem Molekulargewicht von 60 bis 600, oder eines Gemisches aus solchen Verbindungen.

8. Verfahren zur Herstellung eines polyurethanmodifizierten Polyacrylats
dadurch gekennzeichnet, daß

A. eine Polyurethanolösung, die keine copolymerisierbaren Doppelbindungen enthält, hergestellt wird,

B. dieser Lösung

a1) ein im wesentlichen carboxylgruppenfreier Acrylsäureesster oder ein Gemisch von Acrylsäureestern,

a2) ein äthylenisch ungesättigtes Monomer, das mindestens eine Hydroxylgruppe pro Molekül trägt, und im wesentlichen carboxylgruppenfrei ist oder ein Gemisch aus solchen Monomeren und

a3) ein im wesentlichen carboxylgruppenfreies von a1) und a2) verschiedenes ethylenisch ungesättigtes Monomer oder ein Gemisch aus solchen Monomeren zugesetzt wird, und

C. nachdem die in Stufe B. zugegebenen Monomeren nahezu vollständig umgesetzt worden sind, durch Zugabe

b1) mindestens eines eine Carboxylgruppe pro Molekül tragenden ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren und

b2) eines im wesentlichen carboxylgruppenfreien ethylenischen ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren weiterpolymerisiert wird, und

D. nach Beendigung der Polymerisation das erhaltene Polyacrylatharz zumindest teilweise neutralisiert und im Wasser dispergiert wird.

9. Verfahren nach Anspruch 8
dadurch gekennzeichnet, daß das Polyurethan, das keine copolymerisierbaren Doppelbindungen enthält, vor der Polymerisation zu einem organischen Lösemittel oder Lösemittelgemisch gegeben wird.
10. Verfahren nach einem der Ansprüche 8 oder 9
dadurch gekennzeichnet, daß die Anteile der zugesetzten Komponenten (a1) 40 - 90 Gew.-%, (a2) 0 - 45 Gew.-%, (a3) 0 - 40 Gew.-%, (b1) 2,5 - 15 Gew.-% und (b2) 0 - 60 Gew.-% betragen.
11. Verfahren nach Anspruch 10
dadurch gekennzeichnet, daß der Anteil der Komponenten (a1) 40 - 80 Gew.-%, (a2) 4 - 34 Gew.-%, (a3) 10 - 30 Gew.-%, (b1) 3 - 7 Gew.-% und (b2) 0 - 28 Gew.-% beträgt.
12. Verfahren nach einem der Ansprüche 8 - 11
dadurch gekennzeichnet, daß die Summe der Gewichtsanteile von (a1), (a2), (a3), (b1) und (b2) stets 100 Gew.-% ergibt.
13. Verfahren nach einem der Ansprüche 8 - 12
dadurch gekennzeichnet, daß (a1), (a2), (a3), (b1) und (b2) in Art und Menge so ausgewählt werden, daß das aus (a1), (a2), (a3), (b1) und (b2) erhaltene Polyacrylatharz eine Hydroxylzahl von 0 - 200, eine Säurezahl von 20 - 100 und eine Glasübergangstemperatur von - 40 bis + 60°C aufweist.
14. Verfahren nach Anspruch 13
dadurch gekennzeichnet, daß die Hydroxylzahl 60 - 140, die Säurezahl 25 - 50, die Glasübergangstemperatur - 20 bis + 40°C beträgt.
15. Verfahren nach einem der Ansprüche 8 - 14
dadurch gekennzeichnet, daß die Umsetzung gem. Stufe C. durchgeführt wird, nachdem mindestens 80 Gew.-% der in den Stufen A. und B. zugegebenen Monomeren umgesetzt worden sind.
16. Verwendung des polyurethanmodifizierten Polyacrylats nach einem der Ansprüche 1 - 7 zur Herstellung von wässrigen, pigmentierten Lacken.

INTERNATIONAL SEARCH REPORT

Internat.	Application No.
PCT/EP 95/04091	

A. CLASSIFICATION & SUBJECT MATTER
 IPC 6 C08F285/00 C09D151/00 // (C08F285/00,283:00,220:12,220:04)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C08F C09D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP,A,0 297 576 (HERBERTS & CO GMBH) 4 January 1989 see claim 1 -----	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'E' earlier document but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

*'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*'Z' document member of the same patent family

1

Date of the actual completion of the international search

Date of mailing of the international search report

4 March 1996

15.03.96

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+ 31-70) 340-3016

Authorized officer

Schueler, D

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP 95/04091

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0297576	04-01-89	DE-A-	3722005	12-01-89
		DE-A-	3868157	12-03-92
		JP-A-	1029471	31-01-89

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT

Internat : Aktenzeichen
PCT/EP 95/04091

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 C08F285/00 C09D151/00 // (C08F285/00,283:00,220:12,220:04)

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
IPK 6 C08F C09D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP,A,0 297 576 (HERBERTS & CO GMBH) 4.Januar 1989 siehe Anspruch 1 -----	1

<input type="checkbox"/> Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	<input checked="" type="checkbox"/> Siehe Anhang Patentfamilie
* Besondere Kategorien von angegebenen Veröffentlichungen :	
*' A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist	"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
*' E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist	"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindischer Tätigkeit beruhend betrachtet werden
*' L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)	"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
*' O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht	"Z" Veröffentlichung, die Mitglied derselben Patentfamilie ist
*' P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	

1	Datum des Abschlusses der internationalen Recherche 4. März 1996	Absendedatum des internationalen Recherchenberichts 15. 03. 96
	Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (- 31-70) 340-3016	Bevollmächtigter Bediensteter Schueler, D

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internat. Aktenzeichen

PCT/EP 95/04091

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP-A-0297576	04-01-89	DE-A- 3722005	12-01-89
		DE-A- 3868157	12-03-92
		JP-A- 1029471	31-01-89