Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Spring 2009)

Problem Set 7 Due: April 8, 2009

1. Random variables X and Y have the joint PDF shown below:

- (a) Prepare neat, fully labeled sketches of $f_{X|Y}(x|y)$.
- (b) Find $\mathbf{E}[X|Y=y]$ and var(X|Y=y).
- (c) Find $\mathbf{E}[X]$.
- (d) Find var(X) using the law of total variances.
- (e) Find the distribution $\mathbf{E}[X|Y]$? Is it continuous or discrete?
- 2. Sambuca bottles are placed into boxes, and boxes are packed into a crate.

Let X be the number of bottles in any particular box.

Let N be the number of boxes in a crate.

X and N are independent identically distributed geometric random variables with the PMF:

$$p_X(u) = p_N(u) = \begin{cases} (\frac{1}{3})(\frac{2}{3})^{u-1} & u = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$$

Let T be the number of bottles in a crate.

- (a) Find $\mathbf{E}[T]$.
- (b) Find var(T).
- (c) Find the transform of T, $M_T(s)$.
- (d) Find the PMF of T, $p_T(t)$.
- (e) Suppose we count the number of boxes in a crate, and we know that N = n. Find the least-squares estimate of T given N = n.
- 3. Using a fair three-sided die (construct one, if you dare), we will decide how many times to spin a fair wheel of fortune. The wheel of fortune is calibrated infinitely finely and has numbers between 0 and 1. The die has the numbers 1,2 and 3 on its faces. Whichever number results from our throw of the die, we will spin the wheel of fortune that many times and add the results to obtain random variable Y.

Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Spring 2009)

- (a) Determine the expected value of Y.
- (b) Determine the variance of Y.
- 4. Consider three zero-mean random variables X, Y, and Z, with known variances and covariances. Give a formula for the linear least squares estimator of X based on Y and Z, that is, find a and b that minimize

$$\mathbf{E}[(X - aY - bZ)^2].$$

For simplicity, assume that Y and Z are uncorrelated.

Hint: Expand the quadratical form and take the partial derivative with respect to a and b.

5. Continuous random variables X and Y have a joint PDF given by

$$f_{X,Y}(x,y) = \begin{cases} c & \text{if } (x,y) \text{ belongs to the closed shaded region} \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find constant value c.
- (b) The value of X will be revealed to us; we have to design an estimator g(X) of Y that minimizes the conditional expectation $\mathbf{E}[(Y-g(X))^2|X=x]$, for all x, over all possible estimators. Provide a plot of the optimal estimator as a function of its argument.
- (c) Let $g^*(X)$ be the optimal estimator of part (a). Find the numerical value of $\mathbf{E}[g^*(X)]$ and $\text{var}(g^*(X))$?
- (d) Find the least mean squared estimation error $\mathbf{E}[(Y-g^*(X))^2]$. Is that the same as $\mathbf{E}[\text{var}(Y\mid X)]$?
- (e) Find var(Y).
- (f) Let $l^*(X)$ be the optimal linear LMS estimator. Plot $l^*(X)$ and find the numerical value of $\mathbf{E}[l^*(X)]$ and $\text{var}(l^*(X))$?
- (g) The mean squared error of the linear LMS estimator is defined as $\mathbf{E}[(Y l^*(X))^2]$. Which do you think will be larger, $\mathbf{E}[(Y g^*(X))^2]$ or $\mathbf{E}[(Y l^*(X))^2]$. Calculate $\mathbf{E}[(Y l^*(X))^2]$ and verify your answer.
- $\mathrm{G1}^{\dagger}$. If X and Y have joint probability transform function

$$M_{X,Y}(s,t) = \mathbf{E}[e^{sX+tY}] = \exp\left\{\alpha(e^s - 1) + \beta(e^t - 1) + \gamma(e^{s+t} - 1)\right\},\,$$

find the marginal distributions of X, Y, and the distribution of X + Y, showing that X and Y have the Poisson distribution, but that X + Y does not unless $\gamma = 0$.