

Magnetic Neutron Diffraction

A.Daoud-aladine, (ISIS-RAL)
J. Rodriguez-Carvajal (ILL)

What's a magnetic structure?

Why study magnetic order?

Generic description (k-vector formalism)

- Related to representation/symmetry analysis (not covered)
- Alternative to Shubnikov symmetry, which are *TABULATED* crystallographic magnetic space groups: this is however restricted to *commensurate* structures

The magnetic structure factor

Practical aspects (Experimental choices / software, and methods for magnetic structure determination)

Note on available software:

Fullprof: General, k-vector formalism

GSAS: Contains Shubnikov symmetry, but restricted to commensurate structures

(atomic) magnetic moments (m) arise from quantum effects in atoms/ions with unpaired electrons

Intra-atomic electron correlation Hund's rule(maximum total S) + Spin-orbit + CEF

« Classical description»

« Quantum description»

 $\mathbf{m} = \mathbf{g}_1 \mathbf{J}$ (**J=L+S** 4f-rare earths)

 $\mathbf{m} = \mathbf{g}_{S} \mathbf{S}$ (3d-transition metals)

What's a magnetic structure?

Magnet: crystal containing magnetic atoms

$$kT >> J_{ij}$$

$$E_{ij} = -J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

$$\langle \mathbf{S}_i \rangle = 0$$

paramagnetic (disordered) state

Temperature (entropy) overcomes magnetic energy:

Entropy essentially dominated by local magnetic moment

fluctuations

Magnet: crystal contaning magnetic atoms

$$\mathbf{kT} < \mathbf{J_{ij}},$$

$$E_{ij} = -J_{ij} \ \mathbf{S}_i \cdot \mathbf{S}_j$$

$$\left\langle \mathbf{S}_i \right\rangle \neq 0$$

$$\mathbf{E}_{\mathbf{xemple here:}} \mathbf{J}_{ij} > 0$$

Exemple here: J_{ij}>0 Antiferromagnetic coupling (AF)

Magnetic energy overcomes the entropy:

⇒ Quasi-static configuration of magnetic moment with small fluctuations that are made cooperative by the magnetic exchange (spin waves excitations

Why study magnetic order?

- Fundamental properties of condensed matter. Exchange interactions related to the electronic structure.
- The first (necessary) step before determining the exchange interactions (generally, with inelastic neutron scattering)
- Permanent magnet industry. Chemical substitutions controlling single ion anisotropy, strength of effective interactions, canting angles, etc: NdFeB materials, SmCo₅, hexaferrites, spinel ferrites.
- · Spin electronics, thin films and mutilayers

Reciprocal k-space

On Nuclear reflections

$$\mathbf{H}=\mathbf{h}.\mathbf{b}_1+\mathbf{k}.\mathbf{b}_2+\mathbf{l}.\mathbf{b}_3$$
 $\mathbf{a}_1^{\text{mag}}=2\mathbf{a}_1$
 $\mathbf{a}_2^{\text{mag}}=\mathbf{a}_2$
 $\mathbf{a}_3^{\text{mag}}=\mathbf{a}_3$
 $\mathbf{R}_n=n_1\mathbf{a}_1+n_2\mathbf{a}_2+n_3\mathbf{a}_3$
 $\mathbf{r}_j^0=x_j\mathbf{a}_1+y_j\mathbf{a}_2+z_j\mathbf{a}_3$
 $\mathbf{r}_j^n=\mathbf{R}_n+\mathbf{r}_j^0$

General description (k-vector formalism) Reciprocal space Magnetic structure $\mathbf{m}_{n} = \mathbf{S}_{k} \exp\{-2\pi i \mathbf{k} \cdot \mathbf{R}_{n}\}$ $k=(\frac{1}{2}00) - k$ In our example (AF): - k **equivalent** to –k (2k is a reciprocal lattice vector, or k at the border of the brillouin zone) - Only k sufficient to index all the magnetic reflections, - And S_{ki} must be real Nuclear reflections In general: Magnetic reflections a set of {k} is needed h = H + k- And S_{kj} are complex vectors $\mathbf{m}_{nj} = \sum_{\mathbf{k},i} \mathbf{S}_{kj} \exp\{-2\pi i \mathbf{k} \cdot \mathbf{R}_{n}\}$

Reciprocal space

- Nuclear reflections
- Magnetic reflections

h = H

Magnetic structure $\mathbf{m}_{nj} = \mathbf{S}_{kj} \exp\{-2\pi i \mathbf{k} \cdot \mathbf{R}_{n}\}$

When k=(000) (primitive P):

- \mathbf{m}_{li} = \mathbf{S}_{kj} whatever n: this only means that the cell of the the magnetic structure <u>is the same</u> as that of the nuclear structure (not necessarily ferromagnetic)

General description (k-vector formalism)

Reciprocal space

- Nuclear reflections
- Magnetic reflections

 $h = H \pm k$

Incommensurate structures

Magnetic structure

$$\mathbf{m}_{nj} = \sum_{\mathbf{k},i} \mathbf{S}_{\mathbf{k}j} \exp\{-2\pi i \mathbf{k} \cdot \mathbf{R}_{n}\}$$

Especially, when $\{k\}=k,-k$: and k **NOT equivalent** to -k

- we need (k, -k) to index
 all the magnetic reflections,
 (k, -k) terms with complex
- S_{kj} vectors must be summed to calculate m_{lj} with the necessary condition for

real $\mathbf{m}_{nj} : \mathbf{S}_{-kj} = \mathbf{S}_{kj}$

Why study magnetic order?

Generic description (k-vector formalism)

- Related to representation/symmetry analysis (not covered)
- Alternative to Shubnikov symmetry, which are *TABULATED* crystallographic magnetic space groups: this is however restricted to *commensurate* structures

The magnetic structure factor

Practical aspects (Experimental choices / software, and methods for magnetic structure determination)

Note on available software:

Fullprof: General, k-vector formalism

GSAS: Contains Shubnikov symmetry, but restricted to commensurate structures

Why study magnetic order?

Generic description (k-vector formalism)

- Related to representation/symmetry analysis (not covered)
- Alternative to Shubnikov symmetry, which are *TABULATED* crystallographic magnetic space groups: this is however restricted to *commensurate* structures

The magnetic structure factor

Practical aspects (Experimental choices / software, and methods for magnetic structure determination)

Note on available software:

Fullprof: General, k-vector formalism

<u>GSAS</u>: Contains Shubnikov symmetry, but restricted to *commensurate* structures

Structure determination methods

Except for simple cases, the Rietveld "refinement" can only be a <u>final stage</u> of a magnetic structure determination

Before using it, a maximum number of constraints on the magnetic model are desirable (ex: <u>symmetry analysis</u>), or starting models can be obtained using <u>structure solution</u> <u>approaches</u>

Single crystal data are always better, but can be tricky!

For advanced topics:

see the Fullprof Suite documentation and tutorials at:

http://www.ill.fr/dif/Soft/fp/php/tutorials.html

