## 1 Q1

 $C_1 = \phi$  is open, close, bounded and compact, its interior, closure, boundary and accumulation point set is  $\phi$ .

 $C_2 = \mathbb{R}^n$  is open, close, not bounded and thus not compact, its interior, closure, boundary and accumulation points set is  $\mathbb{R}^n$ .

 $\mathcal{C}_3 = [0,1) \cup [2,3] \cup (4,5]$  is not open, not close, is bounded, but not compact, its interior is  $(0,1) \cup (2,3) \cup (4,5)$ , its closure is  $[0,1] \cup [2,3] \cup [4,5]$ , its boundary is  $\{0,1,2,3,4,5\}$ , and its accumulation points are  $[0,1] \cup [2,3] \cup [4,5]$ .

 $\mathcal{C}_4 = \{(x,y)^T | \ x \geq 0, y > 0\}$  is not open, not close, not bounded, not compact, and its interior is  $\{(x,y) | \ x > 0, y > 0\}$ , its closure is  $\{(x,y) | \ x \geq 0, y \geq 0\}$ , its boundary is  $\{(0,y) | y \geq 0\} \cup \{(x,0) | \ x \geq 0\}$ , and is accumulation points is  $\{(x,y) | \ x \geq 0, y \geq 0\}$ .

 $C_5 = \{k | k \in \mathbb{Z}\}$  is not open, but is closed, is not bounded, and not compact, its interior is  $\phi$ , its closure and boundary is itself,  $\{k | k \in \mathbb{Z}\}$ , and its accumulation points are  $\phi$ .

 $C_6 = \{k^{-1} | k \in \mathcal{Z}\}$  is not open, not closed, but is bounded, and is not compact, its interior is  $\phi$ , its closure and boundary is  $\{k^{-1} | k \in \mathcal{Z}\} \cup \{0\}$ , its accumulation point is  $\{0\}$ .

 $C_7 = \{(1/k, \sin k^T | k \in \mathcal{Z})\}$  is not open, not closed, but is bounded, and is not compact, its interior is  $\phi$ , its closure and boundary are  $\{(1/k, \sin k^T | k \in \mathcal{Z})\} \cup \{(0, y) | -1 \le y \le 1\}$ , and its accumulation points are  $\{(0, y) | -1 \le y \le 1\}$ .

## 2 Q2

1. suppose  $\mathcal{C}$  is closed, if there exists  $x^*$  which is the limit of one convergent sequence in  $\mathcal{C}$ , but  $x^* \notin \mathcal{C}$ , thus  $x^* \in \mathcal{C}^c$ , which is an open set, so we have

$$\exists \epsilon \ s.t. \ (\cup(x^*, \epsilon)) \cap \mathcal{C} = \phi \tag{1}$$

for we have  $\cup(x^*,\epsilon)\subseteq\mathcal{C}^c$ . but there exists  $\{x_k\}_1^\infty\subseteq\mathcal{C}$  s.t.  $\lim_{k\to\infty}x_k=x^*$ , that is to say,

$$\forall \epsilon \ (\cup(x^*, \epsilon)) \cap \mathcal{C} \neq \phi \tag{2}$$

contradiction! so for all  $x^*$  which is the limit of one convergent sequence in  $\mathcal{C}$ , we have  $x^* \in \mathcal{C}$ 

2. if C contains the limit point of every convergent sequence in it, suppose C is not closed, *i.e.*  $C^c$  is not open, that is to say,

$$\exists x^* \in \mathcal{C}^c \ \forall \ \epsilon > 0 \ (\cup (x^*, \epsilon)) \cap \mathcal{C} \neq \phi \tag{3}$$

for we have  $(\mathcal{C}^c)^c = \mathcal{C}$ . so we choose a sequence of  $\epsilon_k \to 0$  and find  $x_k \in (\cup(x^*, \epsilon)) \cap \mathcal{C}$ , then  $\lim_{k \to \infty} x_k = x^*$ , so  $x^* \in \mathcal{C}$ , contradiction! so  $\mathcal{C}$  must be closed.

3. from 1 and 2, we have a set  $\mathcal{C} \subseteq \mathcal{R}^n$  is closed iff it contains the limit point of every convergent sequence in it.

#### 3 Q3

$$x \in \partial \mathcal{C} = \bar{\mathcal{C}} \setminus \mathcal{C}^o = ((\mathcal{C}^c)^o)^c \setminus \mathcal{C}^o = ((\mathcal{C}^c)^o)^c \cap (\mathcal{C}^o)^c$$

by definition,  $x \in \mathcal{C}^o \iff \exists \epsilon > 0 \cup (x, \epsilon) \subseteq \mathcal{C}$ , thus we have

$$x \in (\mathcal{C}^o)^c \iff \forall \epsilon > 0 \; \exists z \notin \mathcal{C} \; |z - x|_2 < \epsilon$$
 (4)

and if we change  $C^o$  in equation (4) into  $(C^c)^o$ , we have

$$x \in ((\mathcal{C}^c)^o)^c \iff \forall \epsilon > 0 \ \exists y \in \mathcal{C} \ |y - x|_2 < \epsilon$$
 (5)

so 
$$x \in \partial \mathcal{C} = ((\mathcal{C}^c)^o)^c \cap (\mathcal{C}^o)^c \iff \forall \epsilon > 0 \ \exists y \in \mathcal{C} \ |y - x|_2 < \epsilon \ \exists z \notin \mathcal{C} \ |z - x|_2 < \epsilon$$

## 4 Q4

- **1.1** if  $\mathcal{C}$  is closed, then for all  $x^*$  in  $\partial \mathcal{C}$ , from Q3, we have  $\forall \epsilon > 0 \ \exists y \in \mathcal{C} \ |y x^*|_2 < \epsilon$ , then  $x^*$  must be a limit of one convergent sequence in  $\mathcal{C}$ , then from Q2, we have  $x^* \in \mathcal{C}$ , so  $\mathcal{C} \supseteq \partial \mathcal{C}$ .
- **1.2** if  $C \supseteq \partial C$ , suppose C is not closed, from Q2, there exists one point  $x^*$  which is a limit of one convergent sequence in C, but  $x^* \notin C$ , then we have

$$\forall \epsilon > 0 \ \exists y \in \mathcal{C} \ |y - x^*|_2 < \epsilon \ \exists z \notin \mathcal{C} \ |z - x^*|_2 < \epsilon, \tag{6}$$

we can just choose  $z=x^*$ , then from Q3,  $x^* \in \partial \mathcal{C} \subseteq \mathcal{C}$ , contradiction! so  $\mathcal{C}$  nust be closed.

- **2.1** if  $\mathcal{C}$  is open, suppose there exists  $x^* \in \mathcal{C} \cap \partial \mathcal{C}$ , then  $\exists \epsilon > 0 \cup (x^*, \epsilon) \subseteq \mathcal{C}$  and  $\forall \epsilon > 0 \exists z \notin \mathcal{C} |z x^*|_2 < \epsilon$ , contradiction! so  $\mathcal{C} \cap \partial \mathcal{C} = \phi$ .
- **2.2** if  $C \cap \partial C = \phi$ , suppose C is not open, *i.e.*  $\exists x^* \in C \ \forall \epsilon > 0 \ \exists z \notin C \ |z x^*|_2 < \epsilon$ , then from Q3,  $x^* \in \partial C$ , contradiction! so C is open.

# 5 Q5, 6, 7的答案(图片)



Figure 1: Q5a

Q6.

a. 
$$A \times X_{k} = 0$$

$$A \times X_{k} = 1$$

$$A \times X_{k} = 0$$

Figure 2: Q6

Figure 3: Q7

```
のでは、アンニアス 日、 C 並大、 P 対象 大 ( e_{RN} \approx c_1 e_{R1} r)

に g_2 = mox f Cx. C_0 \}. ( r_0 = r_X = R f).

深工所述 r_0 \times r_0 = R f f_0 = r_X \cdot g_0 = C_X

2° x \times r_0 = R f f_0 = min f x \cdot r_0 \}

g_0 = \int_0^\infty Cx \cdot f_X = r_0 \cdot f_X
```

Figure 4: Q7cont