MAE 312- Lista de exercícios 4

Profa. Beti

1. \clubsuit Uma cadeia de Markov com espaço de estados = $\{0,1,\ldots\}$ tem probabilidades de transição dadas por

$$p_{ij} = \begin{cases} \frac{1}{i+2} & \text{para } j = 0, 1, \dots, i, i+1; \\ 0 & \text{para os demais valores de } j. \end{cases}$$

- (a) A cadeia tem distribuição estacionária? Justifique sua resposta através da classificação dos estados.
- (b) A cadeia é reversível?
- (c) Em caso positivo no item (a), determine a distribuição estacionária
- (d) A cadeia tem distribuição limite? Por que? Em caso positivo, determine-a.
- 2. © Considere o **processo de ramificação** em tempo discreto descrito na Lista 2. Uma análise dos estados mostra que 0 é um estado absorvente de modo que os demais estados são transitórios. Uma questão natural é se o processo será sempre (com probabilidade 1) absorvido ou se há uma probabilidade positiva que a espécie sobreviva. isto é, que o processo não seja absorvido no estado 0.
 - Seja $\mu = E(X) = \sum_k ka_k = \sum_k kP(X=k)$ a média de descendentes gerados por cada organismo. Mostre que a extinção ocorre com probabilidade 1 se e só se $\mu \leq 1$.
- 3. Considere o **processo de ramificação com barreira refletora**, isto é, $p_{0,1} = 1$. Interpretação da barreira refletora: não há extinção; há sempre a geração espontânea de um novo organismo, quando não resta mais nenhum.
 - (a) Mostre que se $\mu=E(X)<1$ então o processo é recorrente positivo.
 - (b) Mostre que se $\mu=1$ então o processo é recorrente nulo.
 - (c) Mostre que se $\mu > 1$ então o processo é transitório.
- 4. \clubsuit Considere o passeio aleatório (em meio aleatório) com 2 barreiras refletoras, isto é, o espaço de estados é $S = \{0, 1, \dots, N-1, N\}$ e uma partícula pode ir à direita ou à esquerda, mas com probabilidades de transição dadas por

$$p_{i,i+1} = p_i$$
, $p_{i,i-1} = q_i$ com $p_i + q_i = 1$, $0 < p_i < 1$, para $i = 1, ..., N - 1$;

$$p_{0,1} = 1$$
 e $p_{N,N-1} = 1$.

- (a) A cadeia tem distribuição estacionária? Justifique sua resposta através da classificação dos estados.
- (b) A cadeia é reversível?
- (c) Em caso positivo no item (a), determine a distribuição estacionária
- (d) A cadeia tem distribuição limite? Por que? Em caso positivo, determine-a.

1

- 5. \clubsuit Uma particula move-se nos pontos marcados 0, 1, 2, 3, 4 num círculo (no sentido horário), A cada passo a partícula tem probabilidade p ($0 \le p \le 1$) de se mover para a direita (sentido horário) e (1-p) de ir à esquerda (sentido anti-horário). Denote por X_n a posição da partícula no círculo após n passos. O processo $\{X_n, n \ge 0\}$ é uma cadeia de Markov.
 - (a) Determine a matriz de transição de probabilidades. A cadeia é irredutível? Classifique os estados.
 - (b) Pelo diagrama de transição, "adivinhe" qual é a proporção de tempo que a cadeia fica em cada estado.
 - (c) $\{X_n\}$ é reversível ? nunca? sempre? para algum valor de p? Justifique.
 - (d) A cadeia tem distribuição limite? Por que? Em caso positivo, determine-a e compare com (b).
 - (e) O que ficaria diferente (e como) se a partícula pudesse se movimentar apenas entre os pontos $\{0, 1, 2, 3\}$? Justifique.

$$\sum_{i} p_{ij} = 1, \text{ para todo } j \in S.$$

Se tal cadeia é **irredutível e aperiódica** e consiste de (M+1) estados $(S = \{0, 1, 2, ..., M\})$, mostre que as probabilidades limites são dadas por

$$\pi_j = \frac{1}{M+1}, \quad j = 0, 1, \dots, M.$$