Homework One

Robert George Phillips (rogphill@ucsc.edu) January 21, 2018

1

Question: A common algorithm for sorting is Bubble-Sort. Consider an input array A = [A[1], A[2], ..., A[n]], with n elements. You repeat the following process n times: for every i from 1 to n-1, if A[i] and A[i+1] are out of order, you swap them. Write this out as pseudocode. Do a time complexity analysis of Bubble-Sort. Prove that the time complexity is $\Theta(n^2)$. Prove that the algorithm works (i.e. that the final array is sorted) by using loop invariants.

1.1 Pseudocode

```
A = {A[1], A[2], ..., A[n]}
i = 1
j = 1
swapper = 0

for i to n-1 {
    for j to n-1 {
        if A[j] > A[j+1] {
            swapper = A[j+1]
            A[j+1] = A[j]
            A[j] = swapper
        }
    }
}
```

1.2 Time Complexity Analysis

Bubble sort will run n times in the inner loop, such that $1 \le j \le n-1$ for each time the outer loop iterates. Thus, bubble sort is $O(n * n = n^2)$.

$$F(n) \in O(n^2)$$

$$G(n) \in O(n^2)$$

$$\lim_{n\to\infty} \frac{F(n)}{G(n)} = \frac{n^2}{n^2} = 1$$

Since 1 is a constant, $F(n) \in O(n^2)$ and $F(n) \in \Omega(n^2)$.

Thus,
$$F(n) \in \Theta(n^2)$$
.

1.3 Proof by Induction

Invariant: After k iterations of the outer loop, the last k elements are the largest. Furthermore, the last k elements are a permutation of the original array A and are sorted in ascending order.

Base case (k = 1): Vacuously true. After one iteration of the outer loop, the last element in array A is the largest element in array A.

Induction: Suppose the invariant is true for k. Let us prove the invariant for k + 1:

By induction, at the end of k outer loops, everything in $A[(n-k+1), \ldots, n]$ are the largest k elements in array A, and are sorted in ascending order.

When the $(k+1)^{\text{st}}$ iteration of the outer loop ends, the last (k+1) elements are the largest elements in array A, in sorted order, such that $A[(n-k)] \leq A[(n-k+1), \ldots, n]$.

Therefore, $A[(n-k+1),\ldots,n]$ is sorted.

2

Question: Use induction to prove the following statement: The number of subsets of $\{1, 2, ..., n\}$ having an odd number of elements is 2^{n-1} . Clearly state your hypothesis, base case and inductive step.

2.1 Hypothesis

There are 2^{n-1} subsets from the set $\{1, 2, \dots, n\}$ that have an odd number of elements.

2.2 Proof by Induction

Base case (n = 1): Vacuously true. $2^{n-1} = 2^{1-1} = 2^0 = 1$. There is only one subset that is odd, $\{1\}$.

Induction: Suppose a set of n elements has 2^{n-1} subsets with an odd number of elements. Let us prove that a set of n+1 elements has 2^{n-1} subsets with an odd number of elements:

$$2^{(n+1)-1} = 2^n$$

$$2^{n-1} \cup (n+1) = 2^n$$

Since we have a set of size n, the total number of subsets is 2^n . Thus, there must be an equal number of even subsets and odd subsets such that $2^{n-1} + 2^{n-1} = 2^n$.

Therefore, the set $\{1, 2, \dots, n, n+1\}$ has 2^{n-1} subsets with an odd number of elements and thus all sets have 2^{n-1} subsets with an odd number of elements.

3

Question: Let $f(n) = a_0 + a_1 n + a_2 n^2 + \ldots + a_k n^k$ be a degree-k polynomial, where every $a_i > 0$. Show that $f(n) \in \Theta(n^k)$. Furthermore, show that $f(n) \notin O(n^{k'})$, for all k' < k.

3.1 Asymptotic Analysis

Let us take the highest degree polynomial in $F(n) = a_0 + a_1 n + a_2 n^2 + \ldots + a_k n^k$ where $a_i > 0$, and classify it as $O(n^k)$. Thus,

$$F(n) = a_0 + a_1 n + a_2 n^2 + \ldots + a_k n^k = O(n^k)$$

$$G(n) = n^k = O(n^k)$$

$$\lim_{n \to \infty} \frac{F(n)}{G(n)} = \frac{a_0 + a_1 n + a_2 n^2 + \dots + a_k n^k}{n^k} = 1$$

Since 1 is a constant, $F(n) \in O(n^k)$ and $F(n) \in \Omega(n^k)$. Thus, $F(n) \in \Theta(n^k)$.

Furthermore, $\forall k' < k$, $\lim_{n \to \infty} \frac{a_0 + a_1 n + a_2 n^2 + \dots + a_k n^k}{n^{k_l}} = \infty$.

Therefore,
$$F(n) \geq G(n) \rightarrow a_0 + a_1 n + a_2 n^2 + \ldots + a_k n^k \geq n^k l$$
.

Hence, $a_0 + a_1 n + a_2 n^2 + \ldots + a_k n^k \in \Omega(n^{k'})$ but $\notin O(n^{k'})$ and thusly $\notin \Theta(n^{k'})$.

4

Question: Prove that $\log_2 n = O(n^{1/3})$, but $\log_2 n$ is not in $\Omega(n^{1/3})$. Is $\log_2 n = \Theta(n^{1/3})$? Why or why not?

4.1 Asymptotic Analysis

By logarithmic properties and asymptotic analysis, $log_2(n) \in O(log(n))$. Thus,

$$F(n) = log_2(n) = O(log(n))$$

$$G(n) = n^{1/3} = O(n^{1/3})$$

$$\lim_{n\to\infty} \frac{F(n)}{G(n)} = \frac{\log(n)}{n^{1/3}} = 0$$

Since the limit of $\frac{\log_2(n)}{n^{1/3}}$ is 0, then $\frac{\log_2(n)}{n^{1/3}} < \infty$ and thus,

$$log_2(n) < n^{1/3}$$

.

Hence,
$$F(n) \in O(G(n)) \to log_2(n) \in O(n^{1/3})$$
.

Thus, it is not possible for $log_2(n)$ to be $\Omega(n^{1/3})$ as $F(n) \ngeq G(n)$, and therefore $log_2(n) \notin \Theta(n^{1/3})$.

5

Question: Suppose the input array A is in sorted order, except for k elements. In other words, there are n-k elements of A that are already in sorted order, and the remaining k elements are out of order. Prove that Insertion-Sort on A runs in O(nk) time.

5.1 Pseudocode

```
for i to n-1 {
    j = i
    while j > 0 && A[j-1] > A[j] {
        swapper = A[j-1]
        A[j-1] = A[j]
        A[j] = swapper
        j--
    }
}
```

5.2 Proof

For insertion sort, after k iterations the outer loop, the first (k+1) elements in array A are in sorted ascending order. Furthermore, the inner loop only iterates when A[k-1] > A[k] and continues to iterate until $A = \{A[0], A[1], \ldots, A[k]\}$ is sorted in ascending order.

Therefore, the inner loop runs at most k times, and the outer loop runs n times. Using asymptotic analysis, $A \in O(nk)$.

6