Apache Spark - A Scala Killer App?

Markus Dale

2015

Slides And Code

- Slides: https://github.com/medale/sparkmail/blob/master/presentation/Spark-ScalaKillerApp.pdf
- Spark Code Examples: https://github.com/medale/spark-mail/

What's Apache Spark?

- ► Large-scale data processing framework written in Scala
- Replacement for Hadoop MapReduce?
 - In-memory caching
 - Advanced directed acyclic graph of computations optimized
 - ▶ Rich high-level Scala, Java, Python and R APIs
 - ▶ 2-5x less code than Hadoop M/R
- ▶ Unified batch, SQL, streaming, graph and machine learning

Apache Spark Buzz

Figure: Google Trends Apache Spark/Apache Hadoop August 2015

Spark Ecosystem

Figure: Databricks Spark 1.4.1 Ecosystem (2015)

Spark Lines of Code

Figure: Spark LOC Armbrust (2014)

Spark Academic Papers

- ► Spark: Cluster computing with working sets (Zaharia et al. 2010)
- Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory cluster computing (Zaharia et al. 2012)
- GraphX: A Resilient Distributed Graph System on Spark (Xin et al. 2013)
- Spark SQL: Relational data processing in Spark (Armbrust et al. 2015)
- ▶ MLlib: Machine Learning in Apache Spark (Meng et al. 2015)

Spark Clusters

Figure: Spark Cluster Managers SparkWebsite (2015)

Getting Spark

- http://spark.apache.org/downloads.html
 - Source
 - Pre-built binaries for multiple versions of Hadoop
- Set JAVA_HOME to root of JDK installation
- Local mode:
 - ▶ Untar spark-xxx-.tgz
 - cd spark-xxx/bin
 - ./spark-shell

Spark with external cluster manager

- ► Hadoop YARN install on cluster edge node
 - Set HADOOP_CONF_DIR (NameNode, ResourceManager)
 - Hortonworks Data Platform HDP includes Spark
 - Cloudera...
- Apache Mesos
- Note: Driver must be able to communicate with executors (ports open!)

Spark in the Cloud

- Amazon EC2 deploy script standalone cluster/S3
- Amazon Elastic MapReduce (EMR) Spark install option
- Google Compute Engine Hadoop/Spark
- Databricks Spark Clusters Notebooks, Jobs, Dashboard

Resilient Distributed Dataset (RDD)

- ► Treat distributed, **immutable** data set as a collection
 - Lineage remember origin and transformations
- Resilient: recompute failed partitions using lineage
- ► Two forms of RDD operations:
 - Transformations (applied lazily optimized evaluation)
 - Actions (cause transformations to be executed)
- ▶ Rich functions on RDD abstraction (Zaharia et al. 2012)

RDD from Hadoop Distributed File System (HDFS)

Figure: RDD partitions

Background: Scala List Combinators

- map
- ▶ flatMap
- ▶ filter
- ► reduce...
- => Methods that take function(s) as their argument(s)

map

- Method signature for List[A]
 - ▶ map(f: (A) => B): List[B]
- create a new List by applying function to each element of original collection
- one input element one output element (can be of different type)

map - Scala

```
def computeLength(w: String): Int = w.length
val words = List("when", "shall", "we", "three",
    "meet", "again")
val lengths = words.map(computeLength)
> lengths : List[Int] = List(4, 5, 2, 5, 4, 5)
```

map - Scala syntactic sugar

```
//anonymous function (specifying input arg type)
val list2 = words.map((w: String) => w.length)
//let compiler infer arguments type
val list3 = words.map(w => w.length)
//use positionally matched argument
val list4 = words.map( .length)
```

flatMap

- Method signature for List[A]
 - flatMap(f: (A) => GenTraversableOnce[B]): List[B]
- create a new List by applying function to each element
- Output of applying function to each element is a "collection"
 - Could be empty
 - Could have 1 to many output elements
- flatten take each element in output "collection" and copy it to overall output List
 - remove one level of nesting (flatten)

flatMap Example

```
val macbeth = """When shall we three meet again?
|In thunder, lightning, or in rain?""".stripMargin
val macLines = macbeth.split("\n")
// macLines: Array[String] = Array(
 When shall we three meet again?,
  In thunder, lightning, or in rain?)
//Non-word character split
val macWordsNested: Array[Array[String]] =
     macLines.map{line => line.split("""\W+""")}
//Array(Array(When, shall, we, three, meet, again),
// Array(In, thunder, lightning, or, in, rain))
val macWords: Array[String] =
     macLines.flatMap{line => line.split("""\W+""")}
//Array(When, shall, we, three, meet, again, In,
// thunder, lightning, or, in, rain)
                                    4□▶ 4個▶ 4 厘 ▶ 4 厘 ▶ 9 Q @
```

filter

- Method signature for List[A]
 - filter(p: (A) => Boolean): List[A]
- selects all elements of this list which satisfy a predicate.
- returns a new list consisting of all elements of this list that satisfy the given predicate p. The order of the elements is preserved.

filter Example

So what does this have to do with Apache Spark?

- Resilient Distributed Dataset (RDD)
- From API docs: "immutable, partitioned collection of elements that can be operated on in parallel"
- map, flatMap, filter, reduce, fold, aggregate...

RDD Transformations vs. Actions

- Transformations are evaluated lazily
 - Build up lineage graph until action is invoked
 - Optimize execution of lineage graph
- Actions
 - Cause any previously applied transformations to be executed at once

Some RDD Transformations

- map, flatMap, filter
- sample(withReplacement, fraction, [seed]): RDD[T]
- distinct(): RDD[T]
- union(otherDataset): RDD[T]
- zip(other: RDD[U]): RDD[(T, U)]
 - must have same number of partitions/elements per partition
- coalesce(numPartitions)/repartition(numPartitions)

Some RDD Actions

- ► reduce(f: (T, T) T): T
 - function must be commutative and associative
- collect(): Array[T]
 - materialize all RDD elements on driver (danger!)
- count()
- first()
- ▶ take(n)
- takeSample(withReplacement, num, [seed]): Array[T]

RDD Save Actions

- saveAsTextFile(path)
- saveAsSequenceFile(path)
 - elements must implement Hadoop Writable
- saveAsObjectFile(path)
 - Uses Java Serialization (elements implement Java Serializable)

com.ueber computing. analytics. basic. Basic Rdd Functions

```
//compiler can infer bodiesRdd type - reader clarity
val bodiesRdd: RDD[String] =
  analyticInput.mailRecordRdd.map { record =>
 record.getBody
val bodyLinesRdd: RDD[String] =
  bodiesRdd.flatMap { body => body.split("\n") }
val bodyWordsRdd: RDD[String] =
  bodyLinesRdd.flatMap { line => line.split("""\W+""") }
val stopWords = List("in", "it", "let", "no", "or", "the")
val wordsRdd = bodyWordsRdd.filter(!stopWords.contains())
//Lazy eval all transforms so far - now action!
println(s"There were ${wordsRdd.count()} words.")
```

Spark Scala API

Figure: Spark Scala API RDD

Spark - From RDD to PairRDDFunctions

- If an RDD contains tuples (K,V)
 - can apply PairRDDFunctions
- Mechanism: implicit conversion from RDD to PairRDDFunctions

RDD to PairRDDFunctions Example - Ye Olde Word Count

```
> val words = List("to","be","or","not","to","be")
> val wordsRdd = sc.parallelize(words)
> val wordCountRdd = wordsRdd.map(w => (w, 1))
wordCountRdd: org.apache.spark.rdd.RDD[(String, Int)]
> val wordSumRdd =
    wordCountRdd.reduceByKey( (a,b) => a + b )
> wordSumRdd.collect()
res4: Array[(String, Int)] =
    Array((not,1), (or,1), (be,2), (to,2))
```

PairRDDFunctions

- keys/values return RDD of keys/values
- mapValues transform each value with a given function
- flatMapValues flatMap each value (0, 1 or more output per value)
- groupByKey RDD[(K, Iterable[V])]
 - Note: expensive for aggregation/sum use reduce/aggregateByKey!
- reduceByKey return same type as value type
- foldByKey zero/neutral starting value
- aggregateByKey can return different type
- lookup retrieve all values for a given key
- ▶ join (left/rightOuterJoin), cogroup ...

From RDD to DoubleRDDFunctions

- ► From API docs: "Extra functions available on RDDs of Doubles through an implicit conversion."
- mean, stddev, stats (count, mean, stddev, min, max)
- sum
- ▶ histogram ...

DoubleRDDFunctions example

```
> val heights = List(76, 54, 62, 65, 78, 48, 55, 60)
> val heightsRdd = sc.parallelize(heights)
org.apache.spark.rdd.RDD[Int]
> heightsRdd.stats
StatCounter = (count: 8, mean: 62.250000, stdev: 9.832980,
    max: 78.000000, min: 48.000000)
> heightsRdd.histogram(4)
(Array(48.0, 55.5, 63.0, 70.5, 78.0), Array(3, 2, 1, 2))
```

Spark Web UI - Tour

Figure: Spark Web UI

Learning Resources

- https://github.com/medale/spark-mail
- https://github.com/medale/spark-mail-docker
- O'Reilly: Learning Spark, Advanced Analytics with Spark
- ► EdX:
 - ► Introduction to Big Data with Apache Spark
 - Scalable Machine Learning
- Coursera: 2 Scala MOOCs by Martin Odersky
- ▶ Databricks: https://databricks.com/spark/developer-resources

References I

Armbrust, Michael. 2014. "Intro To Spark and Spark SQL." Berkeley, CA, USA. http://www.slideshare.net/jeykottalam/spark-sqlamp-camp2014.

Armbrust, Michael, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, et al. 2015. "Spark SQL-Relational Data Processing in Spark." In *Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data*, 1383–1394. SIGMOD '15. New York, NY, USA: ACM. doi:10.1145/2723372.2742797. http://doi.acm.org/10.1145/2723372.2742797.

Ecosystem. 2015. "Databricks Spark Ecosystem."

https://databricks.com/spark/about.

Meng, Xiangrui, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu, Jeremy Freeman, et al. 2015.

References II

"MLlib - Machine Learning in Apache Spark." *ArXiv Preprint ArXiv:1505.06807*.

SparkWebsite. 2015. "Spark - Cluster Overview." http:
//spark.apache.org/docs/latest/cluster-overview.html.

Xin, Reynold S., Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. 2013. "GraphX - A Resilient Distributed Graph System on Spark." In *First International Workshop on Graph Data Management Experiences and Systems*, 2:1–2:6. GRADES '13. New York, NY, USA: ACM. doi:10.1145/2484425.2484427. http://doi.acm.org/10.1145/2484425.2484427.

Zaharia, Matei, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. "Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing." In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, 2–2. NSDI'12. Berkeley, CA, USA:

References III

USENIX Association.

http://dl.acm.org/citation.cfm?id=2228298.2228301.

Zaharia, Matei, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. "Spark - Cluster Computing with Working Sets." In *Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing*, 10:10.