Convex Optimization problems & Duality Convex Optimization Reading Group

Jaehyeon Shin

January 18, 2024

Table of Contents

1. Convex optimization problem

2. Duality

Table of Contents

1. Convex optimization problem

2. Duality

Basic terminology

Optimization problem in standard form

$$\begin{array}{ll} \text{minimize}_{x \in D} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_j(x) = 0, \ j = 1, \dots, p, \end{array}$$

- $ightharpoonup f_0(x)$: cost or objective function.
- $ightharpoonup f_i(x)$: inequality constraint function.
- $ightharpoonup h_j(x)$: equality constraint function.

implicit constraints

- ▶ The constraints $f_i(x) \le 0, h_j(x) = 0$: explicit constraints
- ▶ Domain $D = \text{dom } f_0 \cap \bigcap_{i=1}^m \text{dom } (g_i) \cap \bigcap_{i=1}^p \text{dom } h_i$: implicit constraints

Basic terminology

Optimal value

$$p^* = \inf\{f_0(x)|f_i(x) \le 0, i = 1, ..., m, h_j(x) = 0, j = 1, ..., p\}$$
(1)

- \triangleright x is feasible if $x \in \text{dom } f_0$ and satisfies the constraints
- if $f_0(x) = p^*$, feasible x is optimal.
- ▶ If f_0 is strictly convex function, optimal point of f is unique.

Convex optimization problem in standard form

```
minimize f_0(x)
subject to f_i(x) \leq 0, \quad i = 1, \dots, m
{a_i}^{\top} x = b_i, \quad i = 1, \dots, p,
```

- $ightharpoonup f_i(x), i=0,\cdots,m$ are convex functions and equality constraints are linear
- ▶ feasible set of a convex optimization problem is convex

Local and global optima in convex optimization problem

Theorem 1

Any local optimal point is global optimal point!

Proof.

- ▶ Suppose x is locally optimal but not globally optimal. Then \exists feasible y such that $f_0(y) < f_0(x)$.
- ► There is R > 0 such that x is local minima around the ball with center x and radius R.
- ▶ If $z = \theta y + (1 \theta)x$ for $0 \le \theta \le R/\|x y\|_2$ then z is feasible, $\|z x\|_2 \le R$ and
- ► $f_0(z) = f_0((1-\theta)x + \theta y) \le (1-\theta)f_0(x) + \theta f_0(y) < f_0(x)$: contradiction!

Optimality criterion for differentiable f_0

Theorem 2

x is optimal if and only if

$$\nabla f_0(x)^T (y-x) \ge 0$$
 for all feasible y (2)

If $\nabla f_0(x) \neq 0$, it means that $\nabla f_0(x)$ defines a supporting hyperplane to the feasible set at x.

Proof of Optimality Criterion

proof

 (\Leftarrow) If y is feasible and $\nabla f(x)^T(y-x) \geq 0$, by the first-order condition,

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x) \ge f_0(x)$$

So x is optimal point.

 (\Rightarrow) Assume that x is optimal.

- For feasible $y \neq x$, points of line segment are feasible by convexity of X. Let $g(t) = f_0(x + t(y x))$. Then g is locally optimal at t = 0.
- ▶ Since $g'(t) = \nabla f_0(x + t(y x))^T(y x)$ we have $g'(0) = \nabla f_0(x)^T(y x)$.
- ▶ If $g'(0) < 0, \exists t > 0$ such that $f_0(x + t(y x)) < f_0(x)$, which contradict our assumption. Therefore $g'(0) = \nabla f_0(x)^T (y x) \ge 0$.

Optimality criterion for unconstrained problem

Theorem 3

For unconstrained problem, x is optimal if and only if $x \in dom \ f_0$ and $\nabla f_0(x) = 0$.

proof

- Suppose x is optimal, which means that $x \in \text{dom } f_0$, and for all feasible y we have $\nabla f_0(x)^T (y-x) \ge 0$.
- All y sufficiently close to x are feasible. Take $y = x t\nabla f_0(x)$ for sufficiently small t > 0. Then $\nabla f_0(x)^T (y x) = -t \|\nabla f_0(x)\|_2^2 \ge 0$. Thus $\nabla f_0(x) = 0$.

assumption: dom f_0 is an open set if f_0 is differentiable

Table of Contents

1. Convex optimization problem

2. Duality

Lagrangian

standard form problem (need not be convex)

minimize
$$_{x \in D}$$
 $f_0(x)$
subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad j = 1, \dots, p,$

▶ variable $x \in \mathbb{R}^n$, domain D, optimal value p^*

Definition 1

Lagrangian
$$\mathcal{L}(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^r \nu_j h_j(x)$$
.

- $ightharpoonup \mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$
- \triangleright λ_i and ν_j are Lagrange multiplier associated inequality and equality constraints.

Lagrangian dual function

Definition 2

Lagrange dual function: $g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu)$

ightharpoonup concave (even if the problem is not convex) - infimum of affine functions of (λ, ν) .

Theorem 4 (Lower bound property)

If $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$

Proof.

if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu)$$
 :: $\lambda \succeq 0$
 $\ge \inf_{x \in D} L(x, \lambda, \nu) = g(\lambda, \nu)$

Example: Standard form LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \succeq 0$

- Lagrangian $\mathcal{L}(x, \lambda.\nu) = c^T x + \nu^T (Ax b) \lambda^T x = -b^T \nu + (c + A^T \nu \lambda)^T x$
- ▶ Lower bound property : $p^* \ge -b^T \nu$ if $A^T \nu + c \succeq 0$

Lagrange dual and conjugate function

Consider the following problem.

minimize
$$f_0(x)$$

subject to $Ax \leq b$
 $Cx = d$

Dual function is given as

$$g(\lambda, \nu) = \inf_{x \in domf_0} \{ f_0 + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \}$$

$$= -\sup_{x \in domf_0} \{ -f_0 - (A^T \lambda + C^T \nu)^T x \} - b^T \lambda - d^T \nu$$

$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

- \triangleright simplifies derivation of dual function, if conjugate of f_0 is known
- ightharpoonup conjugate $f^*(y) = \sup_{x \in domf} (y^T x f(x))$

The dual problem

```
maximize g(\lambda, \nu) subject to \lambda \succeq 0
```

- \triangleright finds best lower bound on p^* , obtained from Lagrange dual function.
- \triangleright a convex optimization problem; optimal value denoted d^*
- \blacktriangleright λ, ν are dual feasible if $\lambda \succeq 0, (\lambda, \nu) \in \text{dom } g$

Properties: weak and strong duality

Theorem 5 (Weak duality)

For all convex and non-convex problems, the following always holds.

$$d^* = \sup_{\lambda \ge 0, \mu} g(\lambda, \mu) \le \inf_{x \in D} f_0(x) = p^*$$
 (3)

 $p^{\star} - d^{\star} \ge 0$ is called the optimal duality gap.

Definition 3 (Strong duality)

lf

$$d^* = \sup_{\lambda \ge 0, \mu} g(\lambda, \mu) = \inf_{x \in D} f_0(x) = p^*$$

$$\tag{4}$$

then strong duality holds.

- the duality gap is zero.
- usually (not always) holds for convex problems.

Strong duality example

strong duality for a nonconvex program

- minimize \sqrt{x} subject to $\frac{1}{x} 1 \le 0$ has optimal value 1 at $\lambda = 1$.

 maximize $\frac{3}{2}\lambda \frac{1}{2}\lambda^3$ which subject to $\lambda \ge 0$
- Strong duality fails for a convex program
 - ▶ The two-dimensional domain $D = \{(x, y) : y > 0\} \subseteq R^2$

$$\begin{array}{lll} \min\limits_{x\in D} & e^{-x} & & \text{maximize} & 0 \\ & & \text{subject to} & \frac{x^2}{v} \leq 0 & & \text{subject to} & \lambda \geq 0 \end{array}$$

Slater's condition

Definition 4 (Slater's condition)

Slater's condition is that there exists a point \tilde{x}

- $i \in K$, such that all inequality constraints defining K are strict at \tilde{x} , i.e. $h_i(\tilde{x}) = 0$
- 0 for all i = 1, 2, ..., p and for all j = 1, 2, ..., m. we have $f_j(\tilde{x}) < 0$.
 - lt guarantees strong duality for convex optimization problem.
 - linear inequalities do not need to hold with strict inequality.

Geometric interpretation of duality

Consider problem with one constraint $f_1(x) \leq 0$. Then the dual function is given as

$$g(\lambda) = \inf_{(u,t)\in G} (t + \lambda u), \quad \mathcal{G} = \{(f_1(x), f_0(x)) | x \in D\}$$
 (5)

- ▶ Given λ , $\lambda u + t = (\lambda, 1)^T (u, t) \ge g(\lambda)$ holds for all $(u, t) \in \mathcal{G}$
- $ightharpoonup g(\lambda) = \lambda u + t = (\lambda, 1)^T (u, t)$: non-vertical supporting hyperplane to \mathcal{G}
- hyperplane intersects *t*-axis at $t = g(\lambda)$

Geometric interpretation of duality: epigraph variation

 \mathcal{G} is replaced with $\mathcal{A} = \{(u, t) | f_1(x) \leq u, f_0(x) \leq t \text{ for some } x \in \mathcal{D}\}$

Strong duality holds if there is a non-vertical supporting hyperplane to A at $(0, p^*)$.

- $p^* = \inf\{t | (0, t) \in \mathcal{A}\}.$ If $\lambda \ge 0$, $g(\lambda) = \inf\{(\lambda, 1)^T (u, t) \in \mathcal{A}\}.$
- ▶ If infimum is finite, $\lambda u + t \ge g(\lambda)$ defines a non-vertical supporting hyperplane to \mathcal{A} . Since $(0, p^*) \in bd\mathcal{A}$, we have $p^* = (\lambda, 1)^T(0, p^*) \ge g(\lambda, \nu)$.
- Strong duality holds if and only if we have equality for some dual feasible (λ, ν) , i.e., there exists a non-vertical supporting hyperplane to A at its boundary point $(0, p^*)$.

Optimality conditions

If strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:

- 1. $f_i(x) \le 0$ for i = 1, ..., m and $h_j(x) = 0$ for j = 1, ..., p
- 2. $\lambda \succeq 0$
- 3. $f_0(x) = g(\lambda, \nu)$

conversely, these three conditions imply optimality of x, (λ, ν) , and strong duality

Complementary slackness

- \blacktriangleright x* is primal optimal, (λ^*, μ^*) is dual optimal. Then x* minimize $L(x, \lambda^*, \mu^*)$
- $\lambda_i^* > 0 = f_i(x^*) = 0$ or $f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$

Proof.

$$f_0(x^*) = g(\lambda^*, \nu^*) \le \inf_x (f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^p \nu_j^* h_j(x))$$

 $\le f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{j=1}^p \nu_j^* h_j(x^*)$
 $\le f_0(x^*)$
Thus $\lambda_i^* f_i(x^*) = 0$ for $i = 1, ..., m$

Optimality conditions

If strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:

- 1. $f_i(x) \le 0$ for i = 1, ..., m and $h_i(x) = 0$ for j = 1, ..., p
- 2. $\lambda \succeq 0$
- 3. $\lambda_i f_i(x) = 0$ for i = 1, ..., m
- 4. \times is minimizer of $\mathcal{L}(\cdot, \lambda, \nu)$

conversely, these four conditions imply optimality of x, (λ, ν) , and strong duality if problem is convex and the functions f_i , h_j are differentiable, 4 can written as 4'. the gradient of the Lagrangian with respect to x vanishes:

$$\partial_x L(x^*, \lambda^*, \nu^*) = \nabla f_0(x) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0$$
 condition 1, 2, 3, 4': Karush-Kuhn-Tucker (KKT) conditions

KKT conditions

Assume that the functions $f_0, ..., f_m, h_1, ...h_p$ are differentiable. x^* is primal optimal and (λ^*, ν^*) is dual optimal

- 1. primal feasibility: $f_i(x^*) \leq 0$ for i = 1, ..., m and $h_i(x^*) = 0$ i = 1, ..., p.
- 2. dual feasibility : $\lambda^* \geq 0$
- 3. complementary slackness : $\lambda_i f_i(x) = 0$ for i = 1, ..., m
- 4. stationarity: $\partial_x L(x^\star, \lambda^\star, \nu^\star) = \nabla f_0(x) + \sum_{i=1}^m \lambda_i^\star \nabla f_i(x^\star) + \sum_{i=1}^p \nu_i^\star \nabla h_i(x^\star) = 0$

Convex problem with Slater qualification

recall the two implications of Slater's condition for a convex problem

- ightharpoonup strong duality : $p^* = d^*$
- lacktriangle if optimal value is finite, dual optimum is attained : there exist dual $\lambda,
 u$

hence, if problem is convex and Slater's constraint qualification holds :

- \triangleright x is optimal if and only if there exist λ, ν such that 1, 2, 3, 4 satisfied
- ▶ if functions are differentiable, condition 4 can be replaced with 4′