### Liveness Analysis

Akim Demaille Étienne Renault Roland Levillain first.last@lrde.epita.fr

EPITA — École Pour l'Informatique et les Techniques Avancées

May 19, 2018

### Liveness Analysis

- 1 Control Flow Graph
- 2 Liveness
- 3 Various Dataflow Analysis
- 4 Interference Graph

### Control Flow Graph

- 1 Control Flow Graph
- 2 Liveness
- 3 Various Dataflow Analysis
- 4 Interference Graph

# Control Flow Graph [Appel, 1998]

```
a := 0
L1: b := a + 1
c := c + b
a := b * 2
if a < N goto L1
return c
```

# Control Flow Graph [Appel, 1998]

```
a := 0
L1: b := a + 1
c := c + b
a := b * 2
if a < N goto L1
return c
```



## 7.tig

# 7's Pre-Assembly

```
tc_main:
# Allocate frame
                                11:
                $x13, $ra
        move
        move
                $x5, $s0
                                                 $s0, $x5
                                        move
                $x6, $s1
                                                 $s1, $x6
        move
                                        move
                $x7, $s2
                                                 $s2, $x7
        move
                                        move
                $x8, $s3
                                                 $s3, $x8
        move
                                        move
                $x9, $s4
                                                 $s4, $x9
        move
                                        move
                $x10, $s5
                                                 $s5, $x10
        move
                                        move
                $x11, $s6
                                                 $s6, $x11
        move
                                        move
                $x12, $s7
                                                 $s7, $x12
        move
                                        move
10:
                                                 $ra, $x13
                                        move
        li.
                $x1, 1
                                # Deallocate frame
        li 
                $x2, 2
                                                 $ra
                                        jr
        mul
                $x3, $x2, 3
        add
                $x4, $x1, $x3
```

### 7's Flowgraph



# 7000.tig

1 | 2 & 3

### 7000's Pre-Assembly

```
10:
tc_main:
                                         li
                                                 $x1, 1
# Allocate frame
                                         li 
                                                 $x5, 3
                $x6, $ra
        move
                                         bne
                                                 $x5, 0, 13
18:
                                 14:
        li
               $x3, 1
                                         li
                                                 $x1, 0
        bne
                $x3, 0, 15
                                 13:
16:
                                                $x0, $x1
                                         move
                $x4, 2
        li
                                                 12
        bne
                $x4, 0, 10
                                15:
11:
                                                 17
                $x0, 0
        li
                                19:
12:
                                         move $ra, $x6
17:
                                 # Deallocate frame
                19
                                                 $ra
                                         jr
```

# 7000's Flowgraph



- 1 Control Flow Graph
- 2 Liveness
- 3 Various Dataflow Analysis
- 4 Interference Graph







### Dataflow Equations for Liveness Analysis

$$in[n] = use[n] \cup (out[n] \setminus def[n]) 
out[n] = \bigcup_{s \in succ[n]} in[s]$$

|   | use | def | in | out | in | out | in | out | in | out |
|---|-----|-----|----|-----|----|-----|----|-----|----|-----|
| 1 |     | a   |    |     |    |     |    |     |    |     |
| 2 | а   | b   |    |     |    |     |    |     |    |     |
| 3 | bc  | С   |    |     |    |     |    |     |    |     |
| 4 | b   | a   |    |     |    |     |    |     |    |     |
| 5 | а   |     |    |     |    |     |    |     |    |     |
| 6 | С   |     |    |     |    |     |    |     |    |     |

|   | use | def | in | out | in | out | in | out |
|---|-----|-----|----|-----|----|-----|----|-----|
| 1 |     | a   |    |     |    |     |    |     |
| 2 | а   | b   |    |     |    |     |    |     |
| 2 | bc  | с   |    |     |    |     |    |     |
| 4 | b   | a   |    |     |    |     |    |     |
| 5 | а   |     |    |     |    |     |    |     |
| 6 | С   |     |    |     |    |     |    |     |

$$\begin{array}{rcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup \left(\operatorname{out}[n] \setminus \operatorname{def}[n]\right) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

1st step

|   | use | def | in | out | in | out | in | out | in | out |
|---|-----|-----|----|-----|----|-----|----|-----|----|-----|
| 1 |     | a   |    |     |    |     |    |     |    |     |
| 2 | а   | b   | a  |     |    |     |    |     |    |     |
| 3 | bc  | С   | bc |     |    |     |    |     |    |     |
| 4 | b   | a   | b  |     |    |     |    |     |    |     |
| 5 | a   |     | a  | а   |    |     |    |     |    |     |
| 6 | С   |     | С  |     |    |     |    |     |    |     |

|   | use | def | in | out | in | out | in | out |
|---|-----|-----|----|-----|----|-----|----|-----|
| 1 |     | a   |    |     |    |     |    |     |
| 2 | а   | b   |    |     |    |     |    |     |
| 3 | bc  | с   |    |     |    |     |    |     |
| 4 | Ь   | a   |    |     |    |     |    |     |
| 5 | a   |     |    |     |    |     |    |     |
| 6 | С   |     |    |     |    |     |    |     |

$$\begin{array}{lcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup \left(\operatorname{out}[n] \setminus \operatorname{def}[n]\right) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

|   |     |     | 1st | step | 2nd | step |    |     |    |     |
|---|-----|-----|-----|------|-----|------|----|-----|----|-----|
|   | use | def | in  | out  | in  | out  | in | out | in | out |
| 1 |     | a   |     |      |     | а    |    |     |    |     |
| 2 | а   | b   | a   |      | a   | bc   |    |     |    |     |
| 3 | bc  | С   | bc  |      | bc  | b    |    |     |    |     |
| 4 | b   | a   | b   |      | b   | а    |    |     |    |     |
| 5 | а   |     | a   | а    | a   | ac   |    |     |    |     |
| 6 | С   |     | С   |      | С   |      |    |     |    |     |

|   | use | def | in | out | in | out | in | out |
|---|-----|-----|----|-----|----|-----|----|-----|
| 1 |     | а   |    |     |    |     |    |     |
| 2 | а   | b   |    |     |    |     |    |     |
| 2 | bc  | с   |    |     |    |     |    |     |
| 4 | b   | a   |    |     |    |     |    |     |
| 5 | а   |     |    |     |    |     |    |     |
| 6 | С   |     |    |     |    |     |    |     |

$$\begin{array}{lcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup (\operatorname{out}[n] \setminus \operatorname{def}[n]) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

|   |     |     | 1st | 1st step |    | step | 3rd | step |    |     |
|---|-----|-----|-----|----------|----|------|-----|------|----|-----|
|   | use | def | in  | out      | in | out  | in  | out  | in | out |
| 1 |     | а   |     |          |    | а    |     | а    |    |     |
| 2 | а   | b   | a   |          | a  | bc   | ac  | bc   |    |     |
| 3 | bc  | С   | bc  |          | bc | b    | bc  | b    |    |     |
| 4 | b   | a   | b   |          | b  | а    | b   | а    |    |     |
| 5 | а   |     | а   | а        | a  | ac   | ac  | ac   |    |     |
| 6 | С   |     | С   |          | С  |      | С   |      |    |     |

|   | use | def | in | out | in | out | in | out |
|---|-----|-----|----|-----|----|-----|----|-----|
| 1 |     | a   |    |     |    |     |    |     |
| 2 | а   | b   |    |     |    |     |    |     |
| 2 | bc  | с   |    |     |    |     |    |     |
| 4 | b   | a   |    |     |    |     |    |     |
| 5 | a   |     |    |     |    |     |    |     |
| 6 | С   |     |    |     |    |     |    |     |

$$\begin{array}{rcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup \left(\operatorname{out}[n] \setminus \operatorname{def}[n]\right) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

|   |     |     | 1st | step   | 2nd | step | 3rd | step | 4th | step |
|---|-----|-----|-----|--------|-----|------|-----|------|-----|------|
|   | use | def | in  | in out |     | out  | in  | out  | in  | out  |
| 1 |     | а   |     |        |     | а    |     | а    |     | ac   |
| 2 | a   | b   | a   |        | a   | bc   | ac  | bc   | ac  | bc   |
| 3 | bc  | С   | bc  |        | bc  | b    | bc  | b    | bc  | С    |
| 4 | b   | a   | b   |        | b   | а    | b   | а    | b   | ac   |
| 5 | a   |     | a   | а      | а   | ac   | ac  | ac   | ac  | ac   |
| 6 | С   |     | С   |        | С   |      | С   |      | С   |      |

|   | use | def | in | out | in | out | in | out |
|---|-----|-----|----|-----|----|-----|----|-----|
| 1 |     | a   |    |     |    |     |    |     |
| 2 | а   | b   |    |     |    |     |    |     |
| 2 | bc  | с   |    |     |    |     |    |     |
| 4 | b   | a   |    |     |    |     |    |     |
| 5 | a   |     |    |     |    |     |    |     |
| 6 | С   |     |    |     |    |     |    |     |

$$\begin{array}{rcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup \left(\operatorname{out}[n] \setminus \operatorname{def}[n]\right) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

|   |     |     | 1st | step   | 2nd | step | 3rd step |     | 4th step |     |
|---|-----|-----|-----|--------|-----|------|----------|-----|----------|-----|
|   | use | def | in  | in out |     | out  | in       | out | in       | out |
| 1 |     | а   |     |        |     | а    |          | а   |          | ac  |
| 2 | a   | b   | a   |        | a   | bc   | ac       | bc  | ac       | bc  |
| 3 | bc  | С   | bc  |        | bc  | b    | bc       | b   | bc       | С   |
| 4 | b   | a   | b   |        | b   | а    | b        | а   | b        | ac  |
| 5 | а   |     | a   | а      | a   | ac   | ac       | ac  | ac       | ac  |
| 6 | С   |     | С   |        | С   |      | С        |     | С        |     |

#### 5th step

|   |     |     | JUI | steb |    |     |    |     |  |
|---|-----|-----|-----|------|----|-----|----|-----|--|
|   | use | def | in  | out  | in | out | in | out |  |
| 1 |     | a   | С   | ac   |    |     |    |     |  |
| 2 | a   | b   | ac  | bc   |    |     |    |     |  |
| 3 | bc  | с   | bc  | b    |    |     |    |     |  |
| 4 | Ь   | a   | bc  | ac   |    |     |    |     |  |
| 5 | a   |     | ac  | ac   |    |     |    |     |  |
| 6 | С   |     | С   |      |    |     |    |     |  |

$$\begin{array}{rcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup (\operatorname{out}[n] \setminus \operatorname{def}[n]) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

|   |     |     | 1st | step | 2nd | step | 3rd | step | 4th | step |
|---|-----|-----|-----|------|-----|------|-----|------|-----|------|
|   | use | def | in  | out  | in  | out  | in  | out  | in  | out  |
| 1 |     | а   |     |      |     | а    |     | а    |     | ac   |
| 2 | a   | b   | a   |      | a   | bc   | ac  | bc   | ac  | bc   |
| 3 | bc  | С   | bc  |      | bc  | b    | bc  | b    | bc  | С    |
| 4 | b   | a   | b   |      | b   | а    | b   | а    | b   | ac   |
| 5 | а   |     | a   | а    | a   | ac   | ac  | ac   | ac  | ac   |
| 6 | С   |     | С   |      | С   |      | С   |      | С   |      |

|     | 5th | step | 6th | step |    |     |  |
|-----|-----|------|-----|------|----|-----|--|
| def | in  | out  | in  | out  | in | out |  |
| a   | С   | ac   | С   | ac   |    |     |  |
| b   | ac  | bc   | ac  | bc   |    |     |  |
| С   | bc  | b    | bc  | bc   |    |     |  |
| a   | bc  | ac   | bc  | ac   |    |     |  |
|     | ac  | ac   | ac  | ac   |    |     |  |

С

$$\begin{array}{rcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup (\operatorname{out}[n] \setminus \operatorname{def}[n]) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

С

use

а

bc

b

С

1 2

3

|   |     |     | 1st | 1st step |    | 2nd step |    | 3rd step |    | 4th step |  |
|---|-----|-----|-----|----------|----|----------|----|----------|----|----------|--|
|   | use | def | in  | out      | in | out      | in | out      | in | out      |  |
| 1 |     | а   |     |          |    | а        |    | а        |    | ac       |  |
| 2 | a   | b   | a   |          | a  | bc       | ac | bc       | ac | bc       |  |
| 3 | bc  | С   | bc  |          | bc | b        | bc | b        | bc | С        |  |
| 4 | b   | a   | b   |          | b  | а        | b  | а        | b  | ac       |  |
| 5 | а   |     | a   | а        | a  | ac       | ac | ac       | ac | ac       |  |
| 6 | С   |     | С   |          | С  |          | С  |          | С  |          |  |

|   |     |     | 5th | 5th step |    | step | 7th | step |
|---|-----|-----|-----|----------|----|------|-----|------|
|   | use | def | in  | out      | in | out  | in  | out  |
| 1 |     | а   | С   | ac       | С  | ac   | С   | ac   |
| 2 | а   | b   | ac  | bc       | ac | bc   | ac  | bc   |
| 3 | bc  | С   | bc  | b        | bc | bc   | bc  | bc   |
| 4 | b   | a   | bc  | ac       | bc | ac   | bc  | ac   |
| 5 | а   |     | ac  | ac       | ac | ac   | ac  | ac   |
| 6 | С   |     | С   |          | С  |      | С   |      |

$$\begin{array}{rcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup (\operatorname{out}[n] \setminus \operatorname{def}[n]) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

# Liveness Calculation (Forward)

|   |     |     | 1st step |     | 2nd | 2nd step |    | 3rd step |    | step |
|---|-----|-----|----------|-----|-----|----------|----|----------|----|------|
|   | use | def | in       | out | in  | out      | in | out      | in | out  |
| 1 |     | а   |          |     |     | а        |    | а        |    | ac   |
| 2 | а   | b   | a        |     | a   | bc       | ac | bc       | ac | bc   |
| 3 | bc  | С   | bc       |     | bc  | b        | bc | b        | bc | С    |
| 4 | b   | a   | b        |     | b   | а        | b  | а        | b  | ac   |
| 5 | а   |     | а        | а   | a   | ac       | ac | ac       | ac | ac   |
| 6 | С   |     | С        |     | С   |          | С  |          | С  |      |

|   |     |     | 5th | 5th step |    | step | 7th step |     |
|---|-----|-----|-----|----------|----|------|----------|-----|
|   | use | def | in  | out      | in | out  | in       | out |
| 1 |     | a   | С   | ac       | С  | ac   | С        | ac  |
| 2 | а   | b   | ac  | bc       | ac | bc   | ac       | bc  |
| 3 | bc  | С   | bc  | b        | bc | bc   | bc       | bc  |
| 4 | b   | a   | bc  | ac       | bc | ac   | bc       | ac  |
| 5 | a   |     | ac  | ac       | ac | ac   | ac       | ac  |
| 6 | С   |     | С   |          | С  |      | С        |     |

$$\begin{array}{rcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup (\operatorname{out}[n] \setminus \operatorname{def}[n]) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

|   | use | def | out | in | out | in | out | in |
|---|-----|-----|-----|----|-----|----|-----|----|
| 6 | С   |     |     |    |     |    |     |    |
| 5 | а   |     |     |    |     |    |     |    |
| 4 | b   | a   |     |    |     |    |     |    |
| 3 | bc  | С   |     |    |     |    |     |    |
| 2 | а   | b   |     |    |     |    |     |    |
| 1 |     | a   |     |    |     |    |     |    |

$$\begin{array}{lll} \operatorname{in}[n] & = & \operatorname{use}[n] \cup (\operatorname{out}[n] \setminus \operatorname{def}[n]) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

1st step

|   | use | def | out | in | out | in | out | in |  |
|---|-----|-----|-----|----|-----|----|-----|----|--|
| 6 | С   |     |     | С  |     |    |     |    |  |
| 5 | a   |     | С   | ac |     |    |     |    |  |
| 4 | Ь   | a   | ac  | bc |     |    |     |    |  |
| 3 | bc  | С   | bc  | bc |     |    |     |    |  |
| 2 | а   | b   | bc  | ac |     |    |     |    |  |
| 1 |     | a   | ac  | С  |     |    |     |    |  |
|   |     |     |     |    |     |    |     |    |  |

$$\begin{array}{lll} \operatorname{in}[n] & = & \operatorname{use}[n] \cup (\operatorname{out}[n] \setminus \operatorname{def}[n]) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

|   |     |     | 1st s | step | 2nd | step |     |    |
|---|-----|-----|-------|------|-----|------|-----|----|
|   | use | def | out   | in   | out | in   | out | in |
| 6 | С   |     |       | С    |     | С    |     |    |
| 5 | а   |     | С     | ac   | ac  | ac   |     |    |
| 4 | b   | a   | ac    | bc   | ac  | bc   |     |    |
| 3 | bc  | с   | bc    | bc   | bc  | bc   |     |    |
| 2 | а   | b   | bc    | ac   | bc  | ac   |     |    |
| 1 |     | a   | ac    | С    | ac  | С    |     |    |

$$\begin{array}{lcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup (\operatorname{out}[n] \setminus \operatorname{def}[n]) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

|   |     |     | 1st s | 1st step |     | 2nd step |     | step |
|---|-----|-----|-------|----------|-----|----------|-----|------|
|   | use | def | out   | in       | out | in       | out | in   |
| 6 | С   |     |       | С        |     | С        |     | С    |
| 5 | a   |     | С     | ac       | ac  | ac       | ac  | ac   |
| 4 | b   | a   | ac    | bc       | ac  | bc       | ac  | bc   |
| 3 | bc  | С   | bc    | bc       | bc  | bc       | bc  | bc   |
| 2 | а   | Ь   | bc    | ac       | bc  | ac       | bc  | ac   |
| 1 |     | a   | ac    | С        | ac  | С        | ac  | С    |

$$\begin{array}{rcl} \operatorname{in}[n] & = & \operatorname{use}[n] \cup (\operatorname{out}[n] \setminus \operatorname{def}[n]) \\ \operatorname{out}[n] & = & \bigcup_{s \in \operatorname{succ}[n]} \operatorname{in}[s] \end{array}$$

# Control Flow Graph [Appel, 1998]

```
a := 0
L1: b := a + 1
c := c + b
a := b * 2
if a < N goto L1
return c
```



### Conservative Approximation

Suppose d a variable not used in the fragment of code

#### **Another Solution**

|   | use | def | out | in |
|---|-----|-----|-----|----|
| 1 |     | а   |     |    |
| 2 | а   | b   |     |    |
| 2 | bc  | С   |     |    |
| 4 | b   | а   |     |    |
| 5 | а   |     |     |    |
| 6 | С   |     |     |    |

### Conservative Approximation

Suppose d a variable not used in the fragment of code

#### **Another Solution**

|   | use | def | out | in  |
|---|-----|-----|-----|-----|
| 1 |     | а   | cd  | acd |
| 2 | а   | b   | acd | bcd |
| 3 | bc  | С   | bcd | bcd |
| 4 | b   | а   | bcd | acd |
| 5 | а   |     | acd | acd |
| 6 | С   |     | С   |     |

## Conservative Approximation



### ors.tig

1 | 2

# ors' Flowgraph



## ors' Liveness Graph



# Various Dataflow Analysis

- 1 Control Flow Graph
- 2 Liveness
- 3 Various Dataflow Analysis
- 4 Interference Graph

# Optimizing Compiler

- First step toward optimizing compilers
- How definitions and uses are related to each other
- What value a variable may have at a given point
- Constant propagation
- Common sub-expression elimination
- Copy propagation
- Dead Code Elimination

### Constant propagation

An ambiguous definition is a statement that might or not assign a temporary t. For instance, a call may sometimes modifies t and sometimes not.

We don't have this problem for tiger due to excaping variables. Don't loose optimisation! Consider every definition as ambiguous

We need to define the set of definitions that reach the beginning and the end of each node.

- gen: when enter this statement, we know that we will reach the end of it
- kills: any statement that invalidates a gen
- begin[n]: which statements can reach the begining of statement n
- $\bullet$  end[n]: which statements can reach the end of statement n

# Reaching definition [Appel, 1998]

```
a := 5

c := 1

L1: if c > a goto L2

c := c + c

goto L1

L2: a := c - a

c := 0
```

|   | gen | kills | begin | end | begin | end | begin | end |
|---|-----|-------|-------|-----|-------|-----|-------|-----|
| 1 | 1   | 6     |       |     |       |     |       |     |
| 2 | 2   | 4,7   |       |     |       |     |       |     |
| 3 |     |       |       |     |       |     |       |     |
| 4 | 4   | 2,7   |       |     |       |     |       |     |
| 5 |     |       |       |     |       |     |       |     |
| 6 | 6   | 1     |       |     |       |     |       |     |
| 7 | 7   | 2,4   |       |     |       |     |       |     |

$$\operatorname{end}[n] \quad = \quad \operatorname{gen}[n] \cup \left(\operatorname{begin}[n] \setminus \operatorname{kills}[n]\right)$$

$$\operatorname{begin}[n] = \bigcup_{p \in \operatorname{pred}[n]} \operatorname{end}[p]$$

1st step

|   | gen | kills | begin | end | begin | end | begin | end |
|---|-----|-------|-------|-----|-------|-----|-------|-----|
| 1 | 1   | 6     |       | 1   |       |     |       |     |
| 2 | 2   | 4,7   | 1     | 1,2 |       |     |       |     |
| 3 |     |       | 1,2   | 1,2 |       |     |       |     |
| 4 | 4   | 2,7   | 1,2   | 1,4 |       |     |       |     |
| 5 |     |       | 1,4   | 1,4 |       |     |       |     |
| 6 | 6   | 1     | 1,2   | 2,6 |       |     |       |     |
| 7 | 7   | 2,4   | 2,6   | 6,7 |       |     |       |     |

$$\operatorname{end}[n] \quad = \quad \operatorname{gen}[n] \cup \left(\operatorname{begin}[n] \setminus \operatorname{kills}[n]\right)$$

$$\operatorname{begin}[n] = \bigcup_{p \in \operatorname{pred}[n]} \operatorname{end}[p]$$

|   |     |       | 1st step |     | 2nd step |       |       |     |
|---|-----|-------|----------|-----|----------|-------|-------|-----|
|   | gen | kills | begin    | end | begin    | end   | begin | end |
| 1 | 1   | 6     |          | 1   |          | 1     |       |     |
| 2 | 2   | 4,7   | 1        | 1,2 | 1        | 1,2   |       |     |
| 3 |     |       | 1,2      | 1,2 | 1,2,4    | 1,2,4 |       |     |
| 4 | 4   | 2,7   | 1,2      | 1,4 | 1,2,4    | 1,4   |       |     |
| 5 |     |       | 1,4      | 1,4 | 1,4      | 1,4   |       |     |
| 6 | 6   | 1     | 1,2      | 2,6 | 1,2,4    | 2,4,6 |       |     |
| 7 | 7   | 2,4   | 2,6      | 6,7 | 2,4,6    | 6,7   |       |     |

$$\operatorname{end}[n] \ = \ \operatorname{gen}[n] \cup \left(\operatorname{begin}[n] \setminus \operatorname{kills}[n]\right)$$

$$\operatorname{begin}[n] = \bigcup_{p \in \operatorname{pred}[n]} \operatorname{end}[p]$$

|   |     |       | 1st step |     | 2nd step |       | 3rd step |       |
|---|-----|-------|----------|-----|----------|-------|----------|-------|
|   | gen | kills | begin    | end | begin    | end   | begin    | end   |
| 1 | 1   | 6     |          | 1   |          | 1     |          | 1     |
| 2 | 2   | 4,7   | 1        | 1,2 | 1        | 1,2   | 1        | 1,2   |
| 3 |     |       | 1,2      | 1,2 | 1,2,4    | 1,2,4 | 1,2,4    | 1,2,4 |
| 4 | 4   | 2,7   | 1,2      | 1,4 | 1,2,4    | 1,4   | 1,2,4    | 1,4   |
| 5 |     |       | 1,4      | 1,4 | 1,4      | 1,4   | 1,4      | 1,4   |
| 6 | 6   | 1     | 1,2      | 2,6 | 1,2,4    | 2,4,6 | 1,2,4    | 2,4,6 |
| 7 | 7   | 2,4   | 2,6      | 6,7 | 2,4,6    | 6,7   | 2,4,6    | 6,7   |

$$\operatorname{end}[n] = \operatorname{gen}[n] \cup (\operatorname{begin}[n] \setminus \operatorname{kills}[n])$$

$$\operatorname{begin}[n] = \bigcup_{p \in \operatorname{pred}[n]} \operatorname{end}[p]$$

# Constant Propagation

- If we have a statement  $d_1: t:=c$ , with c constant, and another statement  $d_2$  that uses t.
- t is constant
- if  $d_1$  reaches  $d_2$  and no other definition of t reaches  $d_2$
- then we can rewrite  $d_2$

In the previous example, only one definition of a reaches statement 3 so we can replace c>a by c>5.

## Copy Propagation

- If we have a statement  $d_1: t := z$ , with z variable, and another statement  $d_2$  that uses t.
- t is constant
- if  $d_1$  reaches  $d_2$  and no other definition of t reaches  $d_2$  and the is no definition of t in all pathes between t and t
- then we can rewrite  $d_2$

Good register allocator will automatically detects some such cases.

# Optimizing compiler

The removal of dead statements (or other optimizations) might introduce new dead statements.

To avoid the need for repeated global calculation, several strategies exist:

- Cutoff: perform no more than k round
- Cascading analysis: predict the cascade of effects of an optimization. Value numbering is a typical case of cascading analysis
- Incremental dataflow analysis: patch the dataflow after applying an optimization.

# Interference Graph

- 1 Control Flow Graph
- 2 Liveness
- 3 Various Dataflow Analysis
- 4 Interference Graph

# Interference Graph



#### Register Allocation



```
r1 := 0
L1: r1 := r1 + 1
    r2 := r2 + r1
    r1 := r1 * 2
    if r1 < N goto L1
    return r2
```

# 7's Interference Graph



# 7000's Interference Graph



# ors' Interference Graph



## fact.tig

# fact's Liveness Graph



# fact's Interference Graph



# Bibliography I

Appel, A. W. (1998).

Modern Compiler Implementation in C, Java, ML.

Cambridge University Press.