Quadratic Equations

INTRODUCTION

An equation of degree two is called a *quadratic equation*. The general form of a quadratic equation is $ax^2 + bx + bx$ c = 0, where a, b, c are real numbers, $a \neq 0$ and x is a real variable. Some examples of quadratic equations are $x^{2} + 4x + 3 = 0$, $3x^{2} - 4x + 5 = 0$ and $3x^{2} + 2x - 3 = 0$.

Roots of a Quadratic Equation

A root of the equation f(x) = 0 is that value of x which makes f(x) = 0. In other words, x = a is said to be a root of f(x) = 0, where f(a) is the value of the polynomial f(x) at x = a and is obtained by replacing x by a in f(x).

For example, -1 is a root of the quadratic equation $x^{2} + 6x + 5 = 0$ because $(-1)^{2} + 6(-1) + 5 = 0$.

Solution of a Quadratic Equation

If there is a quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$ 0, the roots of this equation are

$$\frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Illustration 1: Solve the following quadratic equations:

(i)
$$6x^2 + x - 2 = 0$$

(ii) $2x^2 + x - 1 = 0$

(ii)
$$2x^2 + x - 1 = 0$$

Solution: (i) Using formula:

The roots are
$$x = \frac{-1 \pm \sqrt{(1)^2 - 4(6)(-2)}}{2 \times 6}$$

$$=\frac{-1\pm\sqrt{49}}{12}=\frac{6}{12},\frac{-8}{12}.$$

i.e.,
$$\frac{1}{2}$$
, $\frac{-2}{3}$.

Using factorization:

$$6x^{2} + x - 2 = 0 \Leftrightarrow 6x^{2} + 4x - 3x - 2 = 0$$
$$\Leftrightarrow 2x(3x + 2) - 1(3x + 2) = 0$$

$$\Leftrightarrow (2x+1)(3x+2) = 0$$

$$\Leftrightarrow x = \frac{1}{2} \text{ or } x = -\frac{2}{3}.$$

(ii) Using formula:

The roots are $x = \frac{1 \pm \sqrt{(1)^2 - 4(2)(-1)}}{2 \times 2}$

$$= \frac{-1 \pm \sqrt{9}}{4} = \frac{-1 \pm 3}{4}$$

$$=\frac{2}{4}, \frac{-4}{4}$$
 i.e., $\frac{1}{2}, -1$.

Using factorization:

$$2x^{2} + x - 1 = 0 \Leftrightarrow 2x^{2} + 2x - x - 1 = 0$$
$$\Leftrightarrow 2x(x+1) - 1(x+1) = 0$$

$$\Leftrightarrow (2x-1)(x-1)=0.$$

$$\Leftrightarrow x = \frac{1}{2} \text{ or } x = -1.$$

Nature of Roots

A quadratic equation has exactly two roots may be real or imaginary or coincident.

If $ax^2 + bx + c$, $a \ne 0$, then $D = b^2 - 4ac$ is called discriminant.

1. If D > 0, then there are two distinct and real roots given by

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \ \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

2. If D = 0, then there is a repeated real root given by

$$\alpha = -\frac{b}{2a}$$
 i.e., roots are real and equal.

3. If D < 0, then there are no real roots.

28.2 Chapter 28

Note:

The roots are rational if D > 0 and D is a perfect square whereas the roots are irrational if D > 0 but D is not a perfect square.

Illustration 2: Find the nature of the roots of the equations:

(i)
$$2x^2 + x - 1 = 0$$

(ii)
$$x^2 + x + 1 = 0$$

(iii)
$$x^2 + 5x + 5 = 0$$

(iv)
$$\frac{4}{3}x^2 - 2x + \frac{3}{4} = 0$$

Solution: (i) $D = (1)^2 - 4 \times 2 \times (-1) = 9 > 0$.

Also, D is a perfect square.

So, the roots are real, distinct and rational.

(ii)
$$D = (1)^2 - 4 \times 1 \times 1 = -3 < 0$$

So, the roots are imaginary.

(iii)
$$D = (5)^2 - 4 \times 1 \times 5 = 5 > 0$$
.

Also, D is not a perfect square.

So, the roots are real, distinct and irrational.

(iv)
$$D = (-2)^2 - 4 \times \frac{4}{3} \times \frac{3}{4} = 0$$
.

So, the roots are real and equal.

Illustration 3: For what value of k will the quadratic equation $kx^2 - 2\sqrt{5}x + 4 = 0$ have real and equal roots.

Solution:
$$D = (-2\sqrt{5})^2 - 4 \times k \times 4 = 20 - 16k$$
.

The given equation will have real and equal roots if D = 0.

i.e.,
$$20 - 16k = 0$$
 or $k = \frac{20}{16} = \frac{5}{4}$.

Note:

1. If $p + \sqrt{q}$ is a root of a quadratic equation, then its other root is $p - \sqrt{q}$.

Illustration 4: If $2 + \sqrt{3}$ is one root of a quadratic equation, find the other root.

Solution: The other root is $2 - \sqrt{3}$.

2. $ax^2 + bx + c$ can be expressed as a product of two linear factors only when $D \ge 0$.

Illustration 5: For what value of k, the quadratic polynomial $kx^2 + 4x + 1$ can be factorized into two real linear factors.

Solution: $D = (4)^2 - 4 \times k \times 1 = 16 - 4k$.

The given quadratic polynomial can be factorized into real linear factors if $D \ge 0$.

i.e.,
$$16 - 4k \ge 0$$
 or $-4k \ge -6$ or $k \le 4$.

Relation Between Roots and Coefficients

Let, α , β be the roots of the equation,

$$ax^2 + bx + c = 0$$

Then, sum of the roots
$$= \alpha + \beta = -\frac{b}{a} = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$$

and product of the roots

$$\alpha\beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$$

Illustration 6: Find the sum and the product of the roots of the quadratic equation $2x^2 + 5\sqrt{3}x + 6 = 0$.

Solution: Here a = 2, $b = 5\sqrt{3}$, c = 6.

$$\therefore \quad \text{Sum of the roots} = -\frac{b}{a} = -\frac{5\sqrt{3}}{2}.$$

Product of the roots
$$=\frac{c}{a}=\frac{6}{2}=3$$
.

Formation of a Quadratic Equation with Given **Roots**

If α , β are the roots of a quadratic equation the equation can he written as

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

i.e., x^2 – (sum of roots)x + product of roots = 0.

Illustration 7: Find the quadratic equation whose roots are 5 and -6.

Solution: Sum of roots = 5 + (-6) = -1,

Product of roots = $5 \times (-6) = -30$.

.. The required quadratic equation is
$$x^2 - (-1)x + (-30) = 0$$
 i.e., $x^2 + x - 30 = 0$.

Exercise-I

1. In the following determine the set of value of P for which the given quadratic equation has real roots.

$$Px^2 + 4x + 1 = 0$$

(a) $P \neq 4$

(b) P > 4

(c) $P \le 4$

(d) P > 4

2. If one root of the quadratic equation $2x^2 + Px + 4$ = 0 is 2, find the second root and value of P.

(a) 1, -6

(b) 1, 6

(c) -1, 6

(d) -1, -6

3. One root of the quadratic equation $x^2 - 5x + 6 = 0$ is 3. Find the other root.

(a) 2

(b) -2

(c) 1

(d) -1

4. The roots of the equation

$$\sqrt{7}x^2 - 6x - 13\sqrt{7} = 0$$
 are

(a) $-\sqrt{7}, \frac{-13\sqrt{7}}{7}$ (b) $\sqrt{7}, \frac{-13\sqrt{7}}{7}$

(c) $-\sqrt{7}, \frac{13\sqrt{7}}{7}$ (d) None of these

5. The roots of the equation

$$3a^2x^2 - abx - 2b^2 = 0$$
 are

(a) $\frac{b}{a}, \frac{-2b}{3a}$ (b) $\frac{b}{a}, \frac{2b}{3a}$

(c) $\frac{-b}{a}, \frac{-2b}{3a}$

(d) None of these

6. The roots of the equation

$$a^2x^2 - 3abx - 2b^2 = 0$$
 are

(a) $\frac{2b}{a}, \frac{-b}{a}$ (b) $\frac{2b}{a}, \frac{b}{a}$

(c) $\frac{-2b}{a}$, $\frac{b}{a}$

(d) None of these

7. Construct a quadratic equation whose roots are $\sqrt{2}$ and $2\sqrt{2}$

(a)
$$x^2 - 3\sqrt{2}x - 4 = 0$$
 (b) $x^2 - 3\sqrt{2}x + 4 = 0$

(c)
$$x^2 + 3\sqrt{2}x - 4 = 0$$
 (d) $x^2 + 3\sqrt{2}x + 4 = 0$

8. The roots of the equation

$$ax^{2} + (4a^{2} - 3b)x - 12ab = 0$$
 are

(a) $4a, \frac{3b}{a}$ (b) $-4a, \frac{3b}{a}$

(c) $-4a, \frac{3b}{a}$

(d) $-4a, \frac{-3b}{}$

9. Construct a quadratic equation whose roots have the sum = 6 and product = -16.

(a) $x^2 - 6x - 16 = 0$ (b) $x^2 + 6x - 16 = 0$ (c) $x^2 - \sqrt{3}x - 6 = 0$ (d) None of these

10. In the following, find the value (s) of P so that the given equation has equal roots

$$3x^2 - 5x + P = 0$$

(a) -25/12

(b) 25/6

(c) 25/12

(d) - 25/6

11. If α and β are the roots of the equation $ax^2 + bx +$ c = 0, find the value of $\alpha^2 + \beta^2$

(a) $\frac{b^2 - 2ac}{2a^2}$ (b) $\frac{b^2 + 2ac}{a^2}$

(c) $\frac{b^2 + 2ac}{2a^2}$ (d) $\frac{b^2 - 2ac}{a^2}$

12. If α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$, the value of $\alpha^3 + \beta^3$ is

(a) $\frac{b(b^2 - 3ac)}{a^3}$ (b) $\frac{b(3ac - b^2)}{a^3}$

(c) $\frac{b(3ac+b^2)}{3}$ (d) None of these

13. If α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$, then the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ is

(a) $\frac{b^2 - 2ac}{ac}$ (b) $\frac{b^2 - 2ac}{2ac}$

(c) $\frac{b^2 - ac}{2ac}$ (d) $\frac{b^2 + 2ac}{ac}$

28.4 Chapter 28

- **14.** The quadratic equation with rational coefficients, whose one root is $\sqrt{5}$, is:
 - (a) $x^2 + 5 = 0$ (b) $x^2 10 = 0$
 - (c) $x^2 5 = 0$
- (d) None of these
- **15.** The equation $x^2 px + q = 0$, $p, q \in R$ has on real
 - (a) $p^2 \le 4q$
- (b) $p^2 < 4q$
- (c) $p^2 > 4a$
- (d) None of these
- **16.** Determine p so that the equation $x^2 + 5px + 16 = 0$ has on real root.
 - (a) $\frac{-4}{5} (b) <math>\frac{-8}{5}$
 - (c) $p < -\frac{4}{5}$ or $p > \frac{4}{5}$ (d) None of these
- 17. For what value of k the quadratic polynomial $3z^2$ +5z + k can be factored into product of real linear factors?
 - (a) $k \le \frac{25}{6}$ (b) $k \le \frac{25}{12}$
 - (c) $k \ge \frac{25}{12}$ (d) $k \ge \frac{25}{6}$
- **18.** x = 3 i a solution of the equation $3x^2 + (k)$ 9 = 0 if k has value
 - (a) 13
- (c) 11
- **19.** One root of the equation $3x^2 10x + 3 = 0$ is $\frac{1}{36}$ Find the other root.
 - (a) 3
- (b) 1/3
- (d) None of these
- **20.** The expression $x^4 + 7x^2 + 16$ can be factored as:
 - (a) $(x^2 + x + 1)(x^2 + x + 16)$
 - (b) $(x^2 + x + 1) (x^2 x + 16)$
 - (c) $(x^2 + x + 4) (x^2 x + 4)$
 - (d) $(x^2 + x 4)(x^2 x 4)$
- 21. The common root of the equations $x^2 7x + 10 =$ 0 and $x^2 - 10x + 16 = 0$ is:
 - (a) -2
- (b) 3
- (c) 5
- (d) 2

- 22. The roots of the equation $x^2 + px + q = 0$ are equal
 - (a) $p^2 = 2q$
- (b) $p^2 = 4q$
- (c) $p^2 = -4q$
- (d) $p^2 = -2q$
- 23. An equation equivalent to the quadratic equation $x^2 - 6x + 5 = 0$ is:
 - (a) $6x^2 5x + 1 = 0$ (b) $x^2 5x + 6 = 0$
 - (c) $5x^2 6x + 1 = 0$ (d) |x 3| = 2
- 24. Divide 16 into 2 parts such the twice the square of the larger part exceeds the square of the smaller part by 164
 - (a) 10, 6
- (c) 12, 4
- (d) None of these
- 25. With respect to the roots of $x^2 x 2 0$, we can say that:
 - (a) both of them are natural numbers
 - (b) both of them are integers
 - (c) the latter of the two is negative
- (a) None of these
- **26.** The solution of $2-x=\frac{x-2}{x}$ would include:

- **27.** If $\log_{10} (x^2 6x + 45) = 2$, then the values of x are
 - (a) 6, 9
- (c) 10, 5
- (d) 11, -5
- **28.** If α , β are the roots of the equation $x^2 5x + 6 =$
 - 0, construct a quadratic equation whose roots are
 - (a) $6x^2 + 5x 1 = 0$ (b) $6x^2 5x 1 = 0$
 - (c) $6x^2 5x + 1 = 0$ (d) $6x^2 + 5x + 1 = 0$
- **29.** The roots of $\frac{x+4}{x-4} + \frac{x-4}{x+4} = \frac{10}{3}$ are:
 - (a) ± 4
- (b) \pm 6
- $(c) \pm 8$
- (d) $2+\sqrt{3}$
- **30.** The roots of the equation $ax^2 + bx + c = 0$ will be reciprocal if
 - (a) a = b
- (b) b = c
- (c) c = a
- (d) None of these

- 31. Form a quadratic equation whose one root is $3-\sqrt{5}$ and the sum of roots is 6
 - (a) $x^2 6x + 4 = 0$ (b) $x^2 + 6x + 4 = 0$
 - (c) $x^2 6x 4 = 0$ (d) None of these
- **32.** The value of k for which the roots α , β of the equation: $x^2 - 6x + k = 0$ satisfy the relation $3\alpha +$ $2\beta = 20$, is
 - (a) 8
- (b) -8
- (c) 16
- (d) -16
- 33. Find two consecutive positive odd integers whose squares have the sum 290.
 - (a) 11, 13
- (b) 13, 15
- (c) 9, 11
- (d) None of these
- **34.** Consider the equation $px^2 + qx + r = 0$, where p, q, r are real. The roots are equal in magnitude but opposite in sign when:
 - (a) q = 0, r = 0, $p \neq 0$
 - (b) $p = 0, qr \neq 0$
 - (c) $r = 0, pr \neq 0$
 - (d) q = 0, $pr \neq 0$
- 35. Determine k such that the quadratic equation $x^{2}-2(1+3k)x+7(3+2k)=0$ has equal roots

- **36.** If the equations $x^2 + 2x 3 = 0$ and $x^2 + 3x k =$ 0 have a common root, then the non-zero value of k is:
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- **37.** The roots of the equation $4x 3.2^{x} + {}^{2} + 32 = 0$ would include:
 - (a) 1, 2 and 3
- (b) 1 and 2
- (c) 1 and 3
- (d) 2 and 3
- **38.** The positive value of m for which the roots of the equation $12x^2 + mx + 5 = 0$ are in the ratio 3:2 is:
 - (a) $5\sqrt{10}$
- (b) $\frac{5}{2}\sqrt{10}$
- (c) $\frac{5}{12}$

- **39.** If α , β are the roots of the equation $2x^2 3x + 1 =$
 - 0, form an equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$

 - (a) $2x^2 + 5x + 2 = 0$ (b) $2x^2 5x 2 = 0$
 - (c) $2x^2 5x + 2 = 0$ (d) None of these
- **40.** Find the quadratic equation whose roots are reciprocal of the roots of the equation

$$3x^2 - 20x + 17 = 0$$

- (a) $17x^2 20x + 3 = 0$
- (b) $17x^2 + 20x + 3 = 0$
- (c) $17x^2 20x 3 = 0$
- (d) None of these
- **41.** If α and β are the roots of the equation

$$x^2 - 3\lambda x + \lambda^2 = 0$$
, find λ if $\alpha^2 + \beta^2 = \frac{7}{4}$

- (d) None of these
- **42.** If α , β are the roots of the equation $ax^2 + bx + b =$

$$\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{b}{a}} =$$

- (a) 1
- (b) 0
- (c) 2
- (d) 3
- **43.** The expression $x^2 x + 1$ has:
 - (a) one proper linear factor
 - (b) two proper linear factors
 - (c) no proper linear factor
 - (d) None of these
- 44. The length of a rectangular plot is 8 m greater than its breadth. If the area of the plot is 308 m², find the length of the plot.
 - (a) 22 m
- (b) 18 m
- (c) 20 m
- (d) None of these
- **45.** If α , β are the roots of the equation $x^2 + kx + 12 =$ 0 such that $\alpha - \beta = 1$, the value of k is
 - (a) 0
- (b) ± 5
- $(c) \pm 1$
- $(d) \pm 7$

28.6 Chapter 28

46. The value of x in the equation

$$\left(x + \frac{1}{x}\right)^2 - \frac{3}{2}\left(x - \frac{1}{x}\right) = 4$$
 is:

- (a) -2
- (b) $\frac{1}{2}$
- (c) -1
- (d) 0
- 47. If α , β are the roots of the quadratic equation $x^2 8x + k = 0$, find the value of k such the $\alpha^2 + \beta^2 = 40$

- (a) 12
- (b) 14
- (c) 10
- (d) 16
- **48.** Find the value of k so that the sum of the roots of the equation $3x^2 + (2x + 1)x k 5 = 0$ is equal to the product of the roots:
 - (a) 4
- (b) 6
- (c) 2
- (d) 8

Exercise-2 (Based on Memory)

- 1. The factors of $(a^2 + 4b^2 + 4b 4ab 2a 8)$ are:
 - (a) (a-2b-4)(a-2b+2)
 - (b) (a-b+2)(a+4b+4)
 - (c) (a+2b-4)(a+2b+2)
 - (d) (a+2b-1)(a-2b+1)

ISSC. 2014)

- 2. Find the value of $\sqrt{30 + \sqrt{30 + \sqrt{30 + \cdots}}}$
 - (a) 5
- (b) $3\sqrt{10}$
- (c) 6
- (d) 7

[SSC, 2013]

- 3. $\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$ is equal to
 - (a) 2
- (b) 5
- (c) 4
- (d) 3

[SSC, 2011]

- **4.** The sum of the squares of two natural consecutive odd numbers is 394. The sum of the numbers is:
 - (a) 24
- (b) 32
- (c) 40
- (d) 28

[SSC, 2011]

Directions (Question. 5–9): In this question two equations numbered I and II are given. You have to solve both the equations and find out the correct option.

- **5.** I. $6x^2 + 41x + 63 = 0$
 - **II.** $4v^2 + 8v + 3 = 0$

- (a) Relationship between x and y cannot be established
- (b) $x \ge 1$
- (c) x < y
- (d) x > y
- (e) $x \le y$

[IBPS PO/MT, 2014]

$$5. x^2 + 10x + 24 = 0$$

II.
$$4y^2 - 17y + 18 = 0$$

- (a) $x \leq y$
- (b) $x \ge y$
- (c) Relationship between x and y cannot be established
- (d) x > v
- (e) x < y

[IBPS PO/MT, 2014]

- 7. I. $24x^2 + 38x + 15 = 0$
 - **II.** $12y^2 + 28y + 15 = 0$
 - (a) $x \le y$
- (b) x > y
- (c) $x \ge y$
- (d) x < y
- (e) x = y, or Relationship between x and y cannot be established

[IBPS PO/MT, 2014]

- **8.** I. $3x^2 20x 32 = 0$
 - II. $2y^2 3y 20 = 0$
 - (a) x < y
 - (b) $x \le y$
 - (c) x > y
 - (d) Relationship between x and y cannot be established
 - (e) $x \ge y$

[IBPS PO/MT, 2014]

- **9.** I. $x^2 20x + 91 = 0$
 - **II.** $v^2 32v + 247 = 0$

- (a) x > y
- (b) Relationship between x and y cannot be established
- (c) $x \ge y$
- (d) $x \le y$
- (e) x < y

[IBPS PO/MT, 2014]

Directions (Question. 10–14): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer

- (a) If x < y
- (b) If x > y
- (c) If x = y
- (d) If $x \ge y$
- (e) If $x \le y$ or no relationship can be established between x and y.

[IBPS PO/MT, 2013]

- **10.** I. $x^2 24x + 144 = 0$
 - **II.** $v^2 26v + 169 = 0$
- **11.** I. $2x^2 + 3x 20 = 0$
 - **II.** $2y^2 + 19y + 44 = 0$
- **12.** I. $6x^2 + 77x + 121 = 0$
 - II. $v^2 + 9v 22 = 0$
- **13.** I. $x^2 6x = 7$
 - II. $2v^2 + 13v + 15 = 0$
- **14.** I. $10x^2 7x + 1 = 0$
 - II. $35v^2 12v + 1 = 0$

[IBPS PO/MT, 2013]

Directions (Question. 15–19): In the following questions, two equations numbered I and II are given. You have to solve both questions and give answer

- (a) if x > y
- (b) if $x \ge y$
- (c) if x < y
- (d) if $x \le y$
- (e) if x = y or the relationship cannot be established.
- **15.** I. $x^2 19x + 84 = 0$
 - II. $v^2 25v + 156 = 0$

[IOB PO, 2011]

- **16.** I. $x^3 468 = 1729$
 - **II.** $y^2 1733 + 1564 = 0$

[IOB PO, 2011]

- 17. I. $\frac{9}{\sqrt{x}} + \frac{19}{\sqrt{x}} = \sqrt{x}$
 - $II. \quad y^5 \frac{(2 \times 14)^{11/12}}{\sqrt{y}} = 0$

[IOB PO, 2011]

- **18.** I. $\sqrt{784}x + 1234 = 1486$
 - II. $\sqrt{1089}y + 2081 = 2345$

[IOB PO, 2011]

- **19.** I. $\frac{12}{\sqrt{x}} \frac{23}{\sqrt{x}} = 5\sqrt{x}$
 - II. $\frac{\sqrt{y}}{12} \frac{5\sqrt{y}}{12} = \frac{1}{\sqrt{y}}$

[IOB PO, 2011]

Directions (Question. 20–24): In each of these questions, two equations are given. You have to solve these equations and find out the values of x and y and

- Give answer
- (a) if x < y
- (b) if x > y
- (c) if $x \le y$
- (d) if $x \ge y$
- (e) if x = y

[Andhra Bank PO, 2011]

- **20.** I. 4x + 7y = 209
 - 12x 14y = -38

[Andhra Bank PO, 2011]

- **21.** I. $17x^2 + 48x = 9$
 - II. $13v^2 = 32v 12$

[Andhra Bank PO, 2011]

- **22.** I. $16x^2 + 20x + 6 = 0$
 - **II.** $10y^2 + 38y + 24 = 0$

[Andhra Bank PO, 2011]

- **23.** I. $8x^2 + 6x = 5$
 - **II.** $12v^2 22v + 8 = 0$

[Andhra Bank PO, 2011]

- **24.** I. $18x^2 + 18x + 4 = 0$
 - **II.** $12v^2 + 29v + 14 = 0$

[Andhra Bank PO, 2011]

Directions (Question. 25–29): In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer

- (a) x > y
- (b) $x \ge y$
- (c) x < y
- (d) $x \le y$
- (e) x = y or the relationship cannot be established

[Corporation Bank PO, 2011]

- **25.** I. $x^2 11x + 24 = 0$
 - II. $2v^2 9v + 9 = 0$

[Corporation Bank PO, 2011]

28.8 Chapter 28

26. I.
$$x^3 \times 13 = x^2 \times 247$$

II.
$$v^{1/3} \times 14 = 294 \div v^{2/3}$$

[Corporation Bank PO, 2011]

27. I.
$$\frac{12 \times 4}{x^{4/7}} - \frac{3 \times 4}{x^{4/7}} = x^{10/7}$$

II.
$$v^3 + 783 = 999$$

[Corporation Bank PO, 2011]

28. I.
$$\sqrt{500}x + \sqrt{402} = 0$$

II.
$$\sqrt{360} v + (200)^{1/2} = 0$$

[Corporation Bank PO, 2011]

29. I.
$$(17)^2 + 144 \div 18 = x$$

II.
$$(26)^2 - 18 \times 21 = y$$

[Corporation Bank PO, 2011]

Directions (Question. 30–34): In each of these questions, two equations are given. You have to solve these equations and find out the values of x and y and give answer

(a)
$$x < y$$

(b)
$$x > y$$

(c)
$$x \le y$$

(d)
$$x \ge y$$

(e)
$$x = y$$

30. I.
$$16x^2 + 20x + 6 = 0$$

II.
$$10y^2 + 38y + 24 = 0$$

[Punjab and Sind Bank PO, 2011]

31. I.
$$18x^2 + 18x + 4 = 0$$

II.
$$12y^2 + 29y + 14 = 0$$

[Punjab and Sind Bank PO, 2011]

32. I.
$$8x^2 + 6x = 5$$

II.
$$12y^2 - 22y + 8 = 0$$

[Punjab and Sind Bank PO, 2011]

33. I.
$$17x^2 + 48x = 9$$

II.
$$13y^2 = 32y - 21$$

[Punjab and Sind Bank PO, 2011]

34. I.
$$4x + 7y = 209$$

II.
$$12x - 14y = -38$$

[Punjab and Sind Bank PO, 2011]

Directions (Question. 35–39): In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer

(a) if
$$x > y$$

(b) if
$$x \ge y$$

(c) if
$$x < y$$

(d) if
$$x \le y$$

(e) if x = y or the relationship cannot be established.

[Indian Bank PO, 2010]

35. I.
$$x^2 - 4 = 0$$

II.
$$y^2 + 6y + 9 = 0$$

[Indian Bank PO, 2010]

36. I.
$$x^2 - 7x + 12 = 0$$

II.
$$y^2 + y - 12 = 0$$

[Indian Bank PO, 2010]

37. I.
$$x^2 = 729$$

II.
$$v = \sqrt{729}$$

[Indian Bank PO, 2010]

38. I.
$$x^4 - 227 = 398$$

II.
$$y^2 + 321 = 346$$

Windian Bank PO, 2010

39. I.
$$2x^2 + 11x + 14 = 0$$

II.
$$4y^2 + 12y + 9 = 0$$

[Indian Bank PO, 2010]

Directions Question. 40–44): In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer

(a) If
$$x > y$$

(b) If
$$x \ge y$$

(c) If
$$x < v$$

(d) If
$$x \le y$$

(e) If x = y or the relationship cannot be established.

40. I.
$$x^2 - 1 = 0$$

II.
$$y^2 + 4y + 3 = 0$$

[Corporation Bank PO, 2009]

41. I.
$$x^2 - 7x + 12 = 0$$

II.
$$y^2 - 12y + 32 = 0$$

[Corporation Bank PO, 2009]

42. I.
$$x^3 - 371 = 629$$

II.
$$y^3 - 543 = 788$$

[Corporation Bank PO, 2009]

43. I.
$$5x + 2y = 31$$

II.
$$3x + 7y = 36$$

[Corporation Bank PO, 2009]

44. I.
$$2x^2 + 11x + 12 = 0$$

II.
$$5v^2 + 27v + 10 = 0$$

[Corporation Bank PO, 2009]

ANSWER KEYS

Exercise-I

Exercise-2

EXPLANATORY ANSWERS

Exercise-

1. (c)
$$Px^2 + 4x + 1 = 0$$

Compare with $Ax^2 + Bx + C = 0$, we get

$$A = P$$
, $B = 4$, $C = 1$

For real roots,

$$B^2 - 4AC \ge 0 \implies 16 - 4P \ge 0$$

 $\implies 16 \ge 4P \implies P \le 4.$

2. (a) The given equation is $2x^2 + Px + 4 = 0$

$$\Rightarrow$$
 $P(x) = 0$ where $P(x) = 2x^2 + Px + 4 = 0$

If 2 is a root of P(x) = 0, then P(2) = 0

$$\Rightarrow$$
 2(2)² + P(2) + 4 = 0 \Rightarrow 8 + 2P + 4 = 0

$$\Rightarrow 2P = -12 \Rightarrow P = \frac{-12}{2} = -6$$

Hence the given equation is

$$2x^2 - 6x + 4 = 0 \Rightarrow 2x^2 - 2x - 4x + 4 = 0$$

$$\Rightarrow$$
 2 $x(x-1)-4(x-1)=0$

$$\Rightarrow 2(x-2)(x-1)=0$$

$$\Rightarrow x = 1 \text{ or } x = 2$$

Hence second root is 1.

3. (a) The given equation is

$$x^{2} - 5x + 6 = 0 \implies x^{2} - 2x - 3x + 6 = 0$$

$$\implies x(x - 2) - 3(x - 2) = 0$$

$$\implies (x - 2)(x - 3) = 0$$

$$\implies x - 2 = 0 \text{ or } x - 3 = 0$$

Thus, the other root of the given quadratic equation is

4. (c)
$$\sqrt{7}x^2 - 6x - 13\sqrt{7} = 0$$

$$\Rightarrow \sqrt{7}x^2 - 13x + 7x - 13\sqrt{7} = 0$$

$$\Rightarrow x(\sqrt{7}x-13)+\sqrt{7}(\sqrt{7}x-13)=0$$

$$\Rightarrow (x+\sqrt{7})(\sqrt{7}x-13)=0$$

$$\Rightarrow$$
 $x + \sqrt{7} = 0$ or $\sqrt{7}x - 13 = 0$

$$\Rightarrow x = -\sqrt{7} \text{ or } x = \frac{13}{\sqrt{7}} = \frac{13\sqrt{7}}{7}$$

Thus, the two roots of given quadratic equation are

$$-\sqrt{7}$$
 and $\frac{13\sqrt{7}}{7}$.

28.10 Chapter 28

5. (a) The given quadratic equation is

$$3a^{2}x^{2} - abx - 2b^{2} = 0 \Rightarrow 3a^{2}x^{2} - 3abx + 2abx - 2b^{2} = 0$$
$$\Rightarrow 3ax(ax - b) + 2b(ax - b) = 0$$
$$\Rightarrow (ax - b)(3ax + 2b) = 0$$
$$\Rightarrow ax = b \text{ or } 3ax = -2b$$
$$\Rightarrow x = \frac{b}{a} \text{ or } x = -\frac{2b}{3a}.$$

6. (b) The given quadratic equation is

$$a^{2}x^{2} - 3abx + 2b^{2} = 0 \Rightarrow a^{2}x^{2} - 2abx - abx + 2b^{2} = 0$$
$$\Rightarrow ax(ax - 2b) - b(ax - 2b) = 0$$
$$\Rightarrow (ax - 2b)(ax - b) = 0$$
$$\Rightarrow ax - 2b = 0 \text{ or } ax - b = 0$$
$$\Rightarrow x = \frac{2b}{a} \text{ or } x = \frac{b}{a}$$

Thus, the two roots of the given quadratic equation are

$$\frac{2b}{a}$$
 and $\frac{b}{a}$.

7. **(b)** Sum of the roots $= \sqrt{2} + 2\sqrt{2} = 3\sqrt{2}$

Product of the roots
$$=(\sqrt{2})(2\sqrt{2})=4$$

Hence the required quadratic equation is $x^2 = (\text{sum of the})$ roots) x + (Product of two roots) = 0

$$\Rightarrow x^2 - 3\sqrt{2x} + 4 = 0.$$

8. (c) The given quadratic equation is

$$ax^{2} + (4a^{2} - 3b)x - 12ab = 0$$

$$\Rightarrow ax^{2} + 4ax - 3bx - 12ab = 0$$

$$\Rightarrow ax(x + 4a) - 3b(x + 4a) = 0$$

$$\Rightarrow (ax - 3b)(x + 4a) = 0$$

$$\Rightarrow ax - 3b = 0 \text{ or } x + 4a = 0$$

$$\Rightarrow x = \frac{3b}{a} \text{ or } x = -4a$$

Thus, the two roots of the given quadratic equation are

$$-4a$$
 and $\frac{3b}{a}$.

9. (a) The required quadratic equation is x^2 – (sum of the roots) x + (product of the roots) = 0

$$\Rightarrow x^2 - 6x - 16 = 0.$$

10. (c) The given quadratic equation is

$$3x^2 - 5x + P = 0$$

Comparing with $ax^2 + bx + c = 0$, we get

$$a = 3, b = -5, c = P$$

If the given quadratic equation has equal roots then its discriminant = 0

$$\Rightarrow b^2 - 4ac = 0 \Rightarrow (-5)^2 - 4(3)(P) = 0$$

$$\Rightarrow 25 - 12P = 0 \Rightarrow P = \frac{25}{12}$$

11. (d) Since α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$,

$$\therefore \alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

$$= \left(-\frac{b}{a}\right)^2 - 2\frac{c}{a} = \frac{b^2}{a^2} - \frac{2c}{a} = \frac{b^2 - 2ac}{a^2}$$

12. (b) Since α , β are the roots of the quadratic equation

$$\therefore \alpha + \beta = -\frac{b}{a} \text{ and } \alpha \beta = \frac{a}{c}$$

Now, $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$

Now,
$$\alpha^3 + \beta^3 \Rightarrow (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$
$$= \left(-\frac{b}{a}\right)^3 - 3\frac{c}{a}\left(\frac{-b}{a}\right)$$
$$= \frac{-b^3}{a} + \frac{3bc}{a^2} = \frac{-b^2 + 3abc}{a^3}$$
$$= \frac{b(3ac - b^2)}{a^3}$$

13. (a) Since α and β are the roots of the equation ax^2 + bx + c = 0

$$\therefore \alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$$

Now,
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$

$$=\frac{\left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right)}{\frac{c}{a}} = \frac{\frac{b^2}{a^2} - \frac{2c}{a}}{\frac{c}{a}}$$

$$=\frac{\frac{b^2-2ac}{a^2}}{\frac{c}{a}}=\frac{b^2-2ac}{ac}.$$

14. (c) One root is $\sqrt{5}$

So the other root is $-\sqrt{5}$

 \therefore Sum of the roots is = 0

and product of the roots $=(\sqrt{5})(-\sqrt{5})=-5$

 \therefore Required equation is x^2 – (sum of the roots)x + (product of the roots) = 0

$$\Rightarrow x^2 - 5 = 0.$$

15. (b) The equation $x^2 - px + q = 0$; $p, q \in R$ has no real

$$B^{2} < 4AC$$

$$\Rightarrow (-p)^{2} < 4.1.q \ [\because A = 1, B = -p, C = q]$$

$$\Rightarrow p^{2} < 4q.$$

16. (b) The given quadratic equation is $x^2 + 5px + 16 = 0(1)$ Comparing it with $ax^2 + bx + c = 0$, we get a = 1, b =5p, c = 16

If equation (1) has no real roots, then discriminant < 0

$$\Rightarrow b^2 - 4ac < 0 \Rightarrow (5p)^2 - 4(1)(16) < 0$$

$$\Rightarrow 25p^2 - 64 < 0 \Rightarrow 25p^2 < 64$$

$$\Rightarrow p^2 < \frac{64}{25} \Rightarrow p^2 - \frac{64}{25} < 0$$

$$\Rightarrow \left(p - \frac{8}{5}\right) \left(p + \frac{8}{5}\right) < 0$$

$$\Rightarrow \text{ either } p - \frac{8}{5} > 0 \text{ and } p + \frac{8}{5} < 0$$

i.e.,
$$p > \frac{8}{5}$$
 and $p < -\frac{8}{5}$,

which is not possible

or,
$$p - \frac{8}{5} < 0$$
 and $p + \frac{8}{5} > 0$
i.e., $p < \frac{8}{5}$ and $p > -\frac{8}{5}$ i.e., $-\frac{8}{5} .
(b) We have $3z^2 + 5z + k$$

17. **(b)** We have $3z^2 + 5z + k$ Here a = 3, b = 5, c = k $D = b^2 - 4ac = 25 - 12k$ For equal linear factors to exist, $D \ge 0$

i.e., $25 - 12k \ge 0 \implies 25 \ge 12k$

$$\Rightarrow k \le \frac{25}{12}$$

Therefore, the set of real numbers $\leq \frac{25}{12}$ gives the set of

value of k for which the given quadratic polynomial can be factored into the product of real linear factors.

- **18.** (d) Putting x = 3, we get 27 + 3(k - 1) + 9 = 0or 27 + 3k - 3 + 9 = 0or 3k = -33 or k = -11.
- 19. (a) The given quadratic equation is $3x^2 10x + 3 = 0$ Comparing with $ax^2 + bx + c = 0$, we get a = 3, b = -10, c = 3
 - \therefore Sum of the roots $= -\frac{b}{a} = \frac{10}{3}$

- \therefore One root = $\frac{1}{2}$
- .. The other root $=\frac{10}{3} \frac{1}{3} = \frac{9}{3} = 3$.
- **20.** (c) $x^4 + 7x^2 + 16 = (x^4 + 8x^2 + 16) x^2$ $=(x^2+4)^2-x^2$ $=(x^2+4+x)(x^2+4-x)$ $=(x^2+x+4)(x^2-x+4)$
- **21.** (d) $x^2 7x + 10 = 0 \Leftrightarrow (x 5)(x 2) = 0$ $x^2 - 10x + 16 = 0 \Leftrightarrow (x - 8)(x - 2) = 0$ $\Leftrightarrow x = 8, 2$ $\therefore \quad \text{Common root is 2.}$
- **22. (b)** Here a = 1, b = c, c = qThe roots of the equation $x^2 + px + q = 0$ are equal if $b^2 - 4ac = 0 \Rightarrow p^2 - 4q = 0 \Rightarrow p^2 = 4q.$
- **23.** (d) $x^2 6x + 5 = 0 \Leftrightarrow (x 5)(x 1) = 0$

Also
$$|x-3|=2 \Leftrightarrow x-3=2 \text{ or}$$

 $-(x-3)=2 \Leftrightarrow x=5 \text{ or } x=1$
 $\therefore x^2-6x+5=0 \text{ and } |x-3|=2 \text{ are equivalent.}$

24. (a) Let the smaller part be x. Then the larger part = 16

$$2(16-x)^{2} - x^{2} = 164 \Rightarrow 2(256 + x^{2} - 32x) - x^{2} = 164$$

$$\Rightarrow x^{2} - 64x + 348 = 0$$

$$\Rightarrow x^{2} - 6x - 58x + 348 = 0$$

$$\Rightarrow x(x-6) - 58(x-6) = 0$$

$$\Rightarrow (x-6)(x-58) = 0$$

$$x = 6 \text{ or } x = 58$$

But m = 58 is not possible, since sum of the two parts is 16 \therefore x = 6, \therefore other part = 10.

25. (b) The given equation is of the form $ax^2 + bx + c = 0$

Also, $D = \sqrt{9} = 3$

So, roots are rational

Hence, both the roots must be integers.

26. (b) Given equation is

$$2x - x^{2} = x - 2 \Leftrightarrow x^{2} - x - 2 = 0$$
$$\Leftrightarrow (x+1)(x-2) = 0$$
$$\Leftrightarrow x = 2 \text{ or } = -1.$$

28.12 Chapter 28

27. (d)
$$\log_{10} (x^2 - 6x + 45) = 2$$

 $\Leftrightarrow x^2 - 6x + 45 = 10^2 = 100$
 $\Leftrightarrow x^2 - 6x - 55 = 0$
 $\Leftrightarrow (x - 11)(x + 5) = 0$
 $\Leftrightarrow x = 11 \text{ or } x = -5.$

28. (c) Comparing
$$x^2 - 5x + 6 = 0$$
 with $ax^2 + bx + c = 0$
 $a = 1, b = -5, c = 6$
 $\therefore \alpha + \beta = \frac{-b}{a} = \frac{5}{1} = 5$
 $\alpha\beta = \frac{c}{a} = 6$

Now, we are to form an equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$ So the required equation is

$$x^{2} - (\text{sum of roots})x + (\text{Product of roots}) = 0$$

$$x^{2} \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)x + \left(\frac{1}{\alpha} \cdot \frac{1}{\beta}\right) = 0$$

$$x^{2} - \left(\frac{\alpha + \beta}{\alpha\beta}\right)x + \left(\frac{1}{\alpha\beta}\right) = 0$$

$$x^{2} - \frac{5}{6}x + \frac{1}{6} = 0$$

- $5x^{2} 5x + 1 = 0.$ 29. (c) Given equation is: $y + \frac{1}{y} = \frac{10}{3}$,

 where $y = \frac{x+4}{x-4}$ $3y^{2} 10y + 3 = 0 \Rightarrow y = 3, \frac{1}{3}$ $y = \frac{x+4}{x-4} = 3 \text{ or, } y = \frac{x+4}{x-4} = \frac{1}{3}$ 3x + 12 = x 4 or, x + 4 = 3x 12 $\Rightarrow x = -8 \text{ or, } x = 8$
- **30.** (c) For reciprocal roots, product of roots must be 1 $\therefore \frac{c}{a} = \text{I i.e.}, c = a$
- 31. (a) Sum of the roots = 6 One root = $3 - \sqrt{5}$ \therefore the other root = $6 - (3 - \sqrt{5}) = 3 + \sqrt{5}$ \therefore Product of roots = $(3 - \sqrt{5})(3 + \sqrt{5})$ = 9 - 5 = 4

Hence the required equation is $x^2 - (\text{sum of the roots})x + (\text{product of roots}) = 0$ $\Rightarrow x^2 - 6x + 4 = 0.$

- 32. (a) $\alpha + \beta = 6$ and $3\alpha + 2\beta = 20$ $\Rightarrow \alpha = 4, \beta = 2$ Product of the roots = kSo, $k = \alpha\beta = 4 \times 2 = 8$.
- 33. (a) Let, the two consecutive odd positive integers be 2x + 1 and 2x + 3 where x is a whole number. Now,

$$(2x + 1)^{2} + (2x + 3)^{2} = 290$$

$$\Rightarrow 4x^{2} + 4x + 1 + 4x^{2} + 12x + 9 = 290$$

$$\Rightarrow 8x^{2} + 16x - 280 = 0$$

$$\Rightarrow x^{2} + 2x - 35 = 0$$

$$\Rightarrow (x + 7)(x - 5) = 0 \Rightarrow x = 7, -5$$

But, x = -7 is not possible, since -7 is not a whole number $\therefore x = 5$.

34. (d) Let, the roots be α and $-\alpha$. Then, sum of roots = 0 Also, roots being not equal, discriminant \neq 0

$$\therefore \frac{q}{p} = 0 \text{ and } q^2 - 4pr \neq 0$$

$$\Leftrightarrow q = 0 \text{ and } pr \neq 0.$$

35. (a) Comparing $x^2 - 2(1+3x)x + 7(3+2k) = 0$ with $ax_2 + bx + c = 0$, we get a = 1, b = -2(1+3k), c = 7(3+2k)

For equal roots
$$D = b^2 - 4ac = 0$$

$$\therefore 4(1+3k)^2 - 4 \times 1 \times 7(3+2k) = 0$$

$$\Rightarrow 4(1+k)^2 + 6k - 84 - 56k = 0$$

$$\Rightarrow 36k^2 - 32k - 80 = 0$$

$$\Rightarrow 9k - 8k - 20 = 0$$

$$k = \frac{8 \pm \sqrt{64 - 4(9)(-20)}}{2 \times 9}$$

$$= \frac{8 \pm \sqrt{784}}{18} = \frac{8 \pm 28}{18}$$

$$= \frac{36}{18}, \frac{-20}{18} = 2, \frac{-10}{9}.$$

36. (d) Let, α be a common root of the given equations.

Then,
$$\alpha^2 + 2\alpha - 3 = 0$$
 and $\alpha^2 + 3\alpha - k = 0$

$$\therefore \frac{\alpha^2}{-2k+9} = \frac{\alpha}{-3+k} = \frac{1}{3-2}$$

So,
$$\alpha^2 = \frac{9-2k}{1}$$
 and $\alpha = \frac{k-3}{1}$

So,
$$(9-2k) = (k-3)^2$$
 or $k^2 - 4k = 0$

or,
$$k(k-4) = 0$$
, so $k = 4$.

37. (d) Given equation is: $2^{2x} - 3 \cdot 2^x \times 2^2 + 32 = 0$

or,
$$2^{2x} - 12 \times 2^x + 32 = 0$$

 $\Rightarrow y^2 - 12y + 32 = 0$, where $2^x = y$
 $\Rightarrow (y - 8)(y - 4) = 0 \Rightarrow y = 8, y = 4$

$$\therefore$$
 2^x = 8 or, 2^x = 4

$$\Rightarrow 2^x = 2^3 \text{ or, } 2^x = 2^2$$

$$\Rightarrow x = 3 \text{ or, } x = 2.$$

38. (a) Let, the roots be 3α and 2α

Then,
$$3\alpha + 2\alpha = \frac{m}{12} \Rightarrow \alpha = \frac{m}{60}$$

$$\therefore \quad \frac{5}{72} = \left(\frac{m}{60}\right)^2 \Leftrightarrow \frac{5}{72} = \frac{m^2}{3600}$$

$$\Leftrightarrow m^2 = \frac{3600 \times 5}{72} = 250$$

$$m = \sqrt{250} = 5\sqrt{10}$$
.

39. (c) \therefore α , β are the roots of the equation $2x^2 - 3x + 1 = 0$

$$\therefore \quad \alpha + \beta = \frac{3}{2}$$

and
$$\alpha\beta = \frac{1}{2}$$

We are to form a quadratic equation whose roots are

$$\frac{\alpha}{\beta}$$
 and $\frac{\beta}{\alpha}S = \text{sum of the roots}$

$$= \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$

$$= \frac{\left(\frac{3}{2}\right)^2 - 2\left(\frac{1}{2}\right)}{\frac{1}{2}}$$
 [using (1) and (2)]

$$= \frac{\frac{9}{4} - 1}{\frac{1}{2}} = \frac{5}{4} \times \frac{2}{1} = \frac{5}{2}$$

P =Product of the roots

$$=\frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = 1$$

Hence the required quadratic equation is x^2 – (sum of the roots)x + (Product of the roots) = 0

$$\Rightarrow x^2 - \frac{5}{2}x + 1 = 0$$

$$\Rightarrow 2x^2 - 5x + 2 = 0.$$

40. (a) The given quadratic equation is

$$3x^2 - 20x + 17 = 0 \quad (1)$$

Compare with $ax^2 + bx + c = 0$, we get

$$a = 3$$
, $b = -20$, $c = 17$

The roots of (1) are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{20 \pm \sqrt{400 - 4(3)(17)}}{2 \times 3}$$

$$=\frac{20\pm\sqrt{196}}{6}=\frac{29\pm14}{6},\frac{20-14}{6}$$

$$=\frac{34}{6},\frac{6}{6}=\frac{17}{3},$$

Hence the roots of (1) are $\frac{17}{3}$ and 1. So we have to form

an equation whose are $\frac{3}{17}$ and 1

Sum of the roots =
$$\frac{3}{17} + 1 = \frac{20}{17}$$

Product of the roots =
$$\frac{3}{17} \times 1 = \frac{3}{17}$$

Hence, the required equation is

$$x^{2} - \frac{20}{17}x + \frac{3}{17} = 0 \Rightarrow 17x^{2} - 20x + 3 = 0.$$

41. (a) : α , β are the roots of the equation $x^2 - 3lx + l^2 = 0$

$$\alpha + \beta = 3\lambda$$
 ...(1)

and
$$\alpha\beta = \lambda^2$$
 ...(2)

Now,
$$\alpha^2 + \beta^2 = \frac{7}{4}$$
 (given)

$$\Rightarrow (\alpha + \beta)^2 - 2\alpha\beta = \frac{7}{4}$$

$$\Rightarrow (3\lambda)^2 - 2\lambda^2 = \frac{7}{4} \Rightarrow 7\lambda^2 = \frac{7}{4}$$

$$\Rightarrow \lambda^2 = \frac{1}{4} \Rightarrow \lambda = \pm \frac{1}{2}$$
.

28.14 Chapter 28

42. (b) α , β are the roots of the equation

$$ax^2 + bx + b = 0$$

$$\therefore \alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{b}{a}$$

Now,
$$\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{b}{a}} = \frac{\alpha + \beta}{\sqrt{\alpha\beta}} + \sqrt{\frac{b}{a}}$$

$$= \frac{-\frac{b}{a}}{\sqrt{\frac{b}{a}}} + \sqrt{\frac{b}{a}}$$

$$= -\sqrt{\frac{b}{a}} + \sqrt{\frac{b}{a}} = 0.$$

43. (c) Comparing $x^2 - x + 1$ with $ax^2 + bx + c$ we have

$$a = 1, b = -1, c = 1$$

Here
$$D = b^2 - 4ac = (-1)^2 - 4(1)$$
 (1)
=1 - 4 = -3

Since D < 0, so the given expression has no proper linear factor.

- **44.** (c) Let, the breadth of the rectangular plot be x m. Then the length of rectangular plot = (x + 8) m
 - \therefore Area = Length × Breadth = $x(x + 8)m^2$ But the area of the plot is given to be $308 m^2$

$$\therefore x(x+8) = 308 \Rightarrow x^2 + 8x - 308 = 0$$

$$\Rightarrow x^2 + 22x - 14x - 308 = 0$$

$$\Rightarrow x(x+22)-14(x-22)=0$$

$$\Rightarrow (x+22)(x-14)=0$$

$$\Rightarrow x = 14.-22$$

But, x = -22 is not possible, since breath cannot be negative

$$\therefore$$
 $x = 14$

Hence the breadth of the rectangular plot = 14 m Length of the rectangular plot = (14 + 8) m = 22 m.

45. (d) Let, α , β be the roots of the equation $x^2 + kx + 12 = 0$

$$\therefore$$
 $\alpha + \beta = -k$ and $\alpha\beta = 12$

Now
$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$$

$$(1)^2 = k^2 - 4(12) \Rightarrow k^2 = 49 \Rightarrow k = \pm 7.$$

46. (c) Put
$$x - \frac{1}{x} = y$$

$$\therefore \left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 = \left(x + \frac{1}{x}\right)^2 + 4 = y^2 + 4$$

So, given equation becomes

$$\Rightarrow y \left(y - \frac{3}{2} \right) = 0 \Rightarrow y = 0 \text{ or } y = \frac{3}{2}$$

$$\therefore x - \frac{1}{x} = 0 \text{ or } x - \frac{1}{x} = \frac{3}{2}$$

$$\Rightarrow x^2 - 1 = 0 \text{ or } 2x^2 - 3x - 2 = 0$$

$$\Rightarrow x = \pm 1 \quad \text{or } (2x+1)(x-2) = 0$$
or $x = -1/2$ or $x = 2$

or
$$x = -1/2$$
 or $x = 2$

47. (a) : α , β are the roots of the equation $x^2 - 8x + 1 = 0$

$$\beta = \frac{-b}{a} = \frac{-(-8)}{1} = 8$$

and
$$\alpha\beta = \frac{c}{a} = \frac{k}{1} = k$$

Now,
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

$$\Rightarrow 40 = (8)^2 - 2k \Rightarrow 2k = 24 \Rightarrow k = 12.$$

48. (a) The given equation is $3x^2 + (2k + 1)x - k - 5 = 0$

Compare with $ax^2 + bx + c = 0$, we get

$$a = 3, b = 2k + 1, c = -k - 5$$

$$\therefore$$
 Sum of the roots $=\frac{-b}{a}=\frac{-(2k+1)}{3}$

and Product of the roots =
$$\frac{c}{a} = \frac{-k-5}{3} = \frac{-(k+5)}{3}$$

Sum of the roots = Product of the roots

$$\therefore \frac{-(2k+1)}{3} = -\frac{(k+5)}{3} \Rightarrow 2k+1 = k+5$$

$$\Rightarrow 2k - k = 5 - 1$$

$$\Rightarrow k = 4$$
.

Exercise-2 (Based on Memory)

1. (a)
$$a^2 + 4b^2 + 4b - 4ab - 2a - 8$$

= $a^2 + 4b^2 - 4ab - 2a + 4b - 8$
= $(a - 2b)^2 - 2(a - 2b) - 8$

Let,
$$(a - 2b) = x$$

$$\therefore$$
 The given expression = $x^2 - 2x - 8$

$$= x^2 - 4x + 2x - 8$$

$$= x(x-4) + 2(x-4)$$

$$=(x-4)(x+2)$$

$$= (a - 2b - 4) (a - 2b + 2)$$

2. (c)
$$x = \sqrt{30 + \sqrt{30 + \sqrt{30 + \cdots}}}$$

On squaring both sides, we have

$$x^2 = 30 + \sqrt{30 + \sqrt{30 + \sqrt{30 + \cdots}}}$$

$$\Rightarrow x^2 = 30 + x \Leftrightarrow x^2 - x - 30 = 0$$

$$\Rightarrow x^2 - 6x + 5x - 30 = 0$$

$$\Rightarrow x(x-6)+5(x-6)=0$$

$$\Rightarrow (x-6)(x+5)=0$$

$$\Rightarrow$$
 $x = 6$ because $x \neq -5$

3. (d) Let,
$$x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \cdots}}}$$

On squaring both sides, we have

$$x^2 = 6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \cdots}}}$$

$$\Rightarrow x^2 = 6 + x$$

$$\Rightarrow x^2 - x - 6 = 0$$

$$\Rightarrow x^2 - 3x + 2x - 6 = 0$$

$$\Rightarrow x(x-3)+2(x-3)=0$$

$$\Rightarrow$$
 $(x+2)(x-3)=0$

$$\Rightarrow$$
 $x = 3$ and $x \neq -2$ because numbers are positive.

4. (d) Let, the two natural consecutive odd numbers be n and (n + 2)

Now, according to the question,

$$\Rightarrow n^2 + (n+2)^2 = 394$$

$$\Rightarrow n^2 + n^2 + 4 + 4n = 394$$

$$\Rightarrow 2n^2 + 4n - 390 = 0$$

$$\Rightarrow n^2 + 2n - 195 = 0$$

$$\Rightarrow n^2 + 15n - 13n - 195 = 0$$

$$\Rightarrow n(n+15)-13(n+15)=0$$

$$\Rightarrow$$
 $(n-13)(n+15)=0$

$$\Rightarrow$$
 $n = 13$ and $n \neq -15$

$$\therefore$$
 the sum of the numbers = $13 + 15 = 28$

Quicker Approach:

By mental operation, $13^2 + 15^2 = 169 + 225 = 394$

$$\therefore$$
 Required sum = 13 + 15 = 28

5. (c) I.
$$6x^2 + 41x + 63 = 0$$

or,
$$6x^2 + 27x + 14x + 63 = 0$$

or,
$$3x(2x + 9) \div 7(2x + 9) = 0$$

or,
$$(3x + 7)(2x + 9) = 0$$

$$\therefore x = \frac{3}{7}, -\frac{2}{9}$$

II.
$$4y^2 + 8y + 3 = 0$$

or,
$$4y^2 + 6y + 2y + 3 = 0$$

or,
$$2y(2y + 3) + 1(2y + 3)$$

or,
$$(2y + 1)(2y + 3)$$

$$\therefore y = -\frac{1}{2}, -\frac{3}{2}$$

Hence, x < y

6. (e) I.
$$x^2 + 10x + 24 = 0$$

or,
$$x^2 + 6x + 4x + 24 = 0$$

or,
$$x(x+6) + 4(x+6) = 0$$

or,
$$(x + 4)(x + 6) = 0$$

$$\therefore$$
 $x = -4, -6$

II.
$$4y^2 - 17y + 18 = 0$$

or,
$$4y^2 - 9y - 8y + 18 = 0$$

or,
$$4y(y-2) - 9(y-2) = 0$$

or,
$$(4y - 9)(y - 2) = 0$$

$$\therefore y = \frac{9}{4}, 2$$

Hence, x < y

7. (c) I.
$$24x^2 + 38x + 15 = 0$$

or,
$$24x^2 + 20x + 18x + 15 = 0$$

or,
$$4x(6x + 5) + 3(6x + 5) = 0$$

or,
$$(4x + 3)(6x + 5) = 0$$

$$\therefore x = -\frac{3}{4}, -\frac{5}{6}$$

28.16 Chapter 28

II.
$$12v^2 + 28v + 15 = 0$$

or,
$$12v^2 + 18v + 10v + 15 = 0$$

or,
$$6y(2y + 3) + 5(2y + 3) = 0$$

or,
$$(6y + 5)(2y + 3) = 0$$

$$\therefore \quad y = -\frac{5}{6}, -\frac{3}{2}$$

Hence, $x \ge y$

8. (d) I.
$$3x^2 - 20x - 32 = 0$$

or,
$$3x^2 - 12x - 8x - 32 = 0$$

or,
$$3x(x-4) - 8(x-4) = 0$$

or,
$$(3x - 8)(x - 4) = 0$$

II.
$$2y^2 - 3y - 20 = 0$$

or,
$$2y^2 - 8y + 5y - 20 = 0$$

or,
$$2y(y-4) + 5(y-4) = 0$$

or,
$$(2y + 5)(y - 4) = 0$$

$$\therefore \quad y = 4, -\frac{5}{2}$$

Hence no relationship can be established.

9. (d) I.
$$x^2 - 20x + 91 = 0$$

$$x^2 - 13x - 7x + 91 = 0$$

or
$$x(x-13) - 7(x-13) = 0$$

or
$$(x-7)(x-13)=0$$

$$\Rightarrow x = 13$$

II.
$$y^2 - 32y + 247 = 0$$

(d) 1.
$$x^2 - 20x + 91 = 0$$

or, $x^2 - 13x - 7x + 91 = 0$
or, $x(x - 13) - 7(x - 13) = 0$
or, $(x - 7)(x - 13) = 0$
 $\Rightarrow x = 13, 7$
II. $y^2 - 32y + 247 = 0$
or, $y^2 - 19y - 13y + 247 = 0$
or, $y(y - 19) - 13(y - 19) = 0$
or, $(y - 13)(y - 19) = 0$
 $\Rightarrow y = 13, 19$

or,
$$v(v-19)-13(v-19)=0$$

or,
$$(v-13)(v-19) = 0$$

$$\Rightarrow y = 13, 19$$

10. (a) I. $x^2 - 24x + 144 = 0$

or,
$$x^2 - 12x - 12x + 144 = 0$$

or,
$$x(x-12) - 12(x-12) = 0$$

or,
$$(x-12)^2 = 0$$

$$\therefore$$
 $x = 12$

II.
$$v^2 - 26v + 169 = 0$$

or,
$$v^2 - 13v - 13v + 169 = 0$$

or,
$$y(y-13) - 13(y-13) = 0$$

or,
$$(y-13)^2=0$$

$$\therefore v = 13$$

Hence, x < v

11. (d) I.
$$2x^2 + 3x - 20 = 0$$

or,
$$2x^2 + 8x - 5x - 20 = 0$$

or,
$$2x(x + 4) - 5(x + 4) = 0$$

or,
$$(2x-5)(x+4)=0$$

or,
$$x = \frac{5}{2}, -4$$

$$II. 2y^2 + 19y + 44 = 0$$

or,
$$2y^2 + 11y + 8y + 44 = 0$$

or,
$$2y(2y + 11) + 4(2y + 11) = 0$$

or,
$$(y + 4)(2y + 11) = 0$$

$$\therefore y = -4, -\frac{11}{2}$$

Hence, $x \ge y$

12. (e) I.
$$6x^2 + 77x + 121 = 0$$

or,
$$6x^2 + 66x + 112 + 121 = 0$$

or,
$$6x(x + 11) + 11(x + 11) = 0$$

or,
$$(6x + 11)(x + 11) = 0$$

or,
$$t = -\frac{11}{6}, -1$$

$$II. y^2 + 9y - 22 = 0$$

or,
$$y^2 + 11y - 2y - 22 = 0$$

or,
$$y(y + 11) - 2(y + 11)$$

or,
$$(y-2)(y+11)=0$$

or,
$$v = 2, -11$$

Hence, no relationship can be established between x and

13. (b) I.
$$x^2 - 6x = 7$$

or,
$$x^2 - 6x - 7 = 0$$

or,
$$x^2 - 7x + x - 7 = 0$$

or,
$$x(x-7) + 1(x-7) = 0$$

or,
$$(x + 1)(x - 7) = 0$$

or,
$$x = -1, 7$$

II.
$$2v^2 + 13v + 15 = 0$$

or,
$$2y^2 + 10y + 3y + 15 = 0$$

or,
$$2y(y + 5) + 3(y + 5) = 0$$

or,
$$(2y + 3)(y + 5) = 0$$

or
$$y = -\frac{3}{2}, -5$$

Hence, x > v

14. (d) I.
$$10x^2 - 7x + 1 = 0$$

or,
$$10x^2 - 5x - 2x + 1 = 0$$

or,
$$5x(2x-1) - 1(2x-1) = 0$$

or,
$$(5x-1)(2x-1)=0$$

or,
$$x = \frac{1}{1}, \frac{1}{1}$$

II.
$$35v^2 - 12v + 1 = 0$$

or,
$$35y^2 - 7y + 5y + 1 = 0$$

or,
$$7y(5y - 1) - 1(5y - 1) = 0$$

or,
$$(7y - 1)(5y - 1) = 0$$

or,
$$y = \frac{1}{7}, \frac{1}{5}$$

Hence, $x \ge y$

15. (d) I.
$$x^2 - 19x + 84 = 0$$

$$\Rightarrow x^2 - 7x - 12x + 84 = 0$$

$$\Rightarrow$$
 $(x-7)(x-12)=0$

$$\Rightarrow x = 7, 12$$

II.
$$y^2 - 25y + 156 = 0$$

$$\Rightarrow$$
 $v^2 - 13v - 12v + 156 = 0$

$$\Rightarrow$$
 $(y - 13)(y - 12) = 0$

$$\Rightarrow v = 12, 13$$

$$\therefore x \leq y$$

16. (b) I.
$$x^3 - 468 = 1729$$

$$\Rightarrow x^3 = 2197$$

$$\Rightarrow x = 13$$

II.
$$v^2 - 1733 + 1564$$

$$\Rightarrow$$
 $v^2 = 169$

$$\therefore x \geq v$$

$$\Rightarrow x = 13$$
II. $y^2 - 1733 + 1564$

$$\Rightarrow y^2 = 169$$

$$\Rightarrow y = \pm 13$$

$$\therefore x \ge y$$
21.

17. (e) I. $\frac{9}{\sqrt{x}} + \frac{19}{\sqrt{x}} = \sqrt{x} \Rightarrow 9 + 19 = \sqrt{x} \times \sqrt{x} \Rightarrow x = 28$
II. $y^2 - \frac{(2 \times 14)^{11/2}}{\sqrt{y}} = 0 \Rightarrow y^5 \sqrt{y} - (2 \times 14)^{11/2} = 0$

$$\Rightarrow y^{11/2} = (2 \times 14)^{11/2}$$

$$\Rightarrow y = 2 \times 14 = 28$$

$$\therefore x = y$$
18. (a) I. $\sqrt{784}x + 1234 = 1486$

II.
$$y^2 - \frac{(2 \times 14)^{11/2}}{\sqrt{y}} = 0 \Rightarrow y^5 \sqrt{y} - (2 \times 14)^{11/2} = 0$$

$$\rightarrow v^{11/2} - (2 \times 14)^{11/2}$$

$$\rightarrow v = 2 \times 14 = 28$$

$$\therefore x = v$$

18. (a) I.
$$\sqrt{784}x + 1234 = 1486$$

$$\Rightarrow \sqrt{784}x = 252$$

$$\Rightarrow$$
 28 $x = 252$

$$\Rightarrow x = 9$$

II.
$$\sqrt{1089}v + 2081 = 2345$$

$$\Rightarrow$$
 33 $y = 264$

$$\Rightarrow v = 8$$

$$\therefore x > y$$

19. (a) I.
$$\frac{12}{\sqrt{x}} - \frac{23}{\sqrt{x}} = 5\sqrt{x}$$

$$\Rightarrow 12 - 23 = 5\sqrt{x} \times \sqrt{x}$$

$$\therefore x = \frac{-11}{5} = -2.2$$

II.
$$\frac{\sqrt{y}}{12} - \frac{5\sqrt{y}}{12} = \frac{1}{\sqrt{y}}$$

$$\Rightarrow \sqrt{y} \left(\frac{1}{12} - \frac{5}{12} \right) = \frac{1}{\sqrt{y}}$$

$$\Rightarrow y\left(\frac{-4}{12}\right) = 1$$

$$\Rightarrow y = \frac{-12}{4} = -3$$

$$\therefore x > y$$

$$\Rightarrow y \left(\frac{-4}{12}\right) = 1$$

$$\Rightarrow y = \frac{-12}{4} = -3$$

$$\therefore x > y$$
20. (e) $4x + 7y = 209$...(1)

$$12x + 14y = -38 \qquad ...(2)$$

Mutaplying (1) by (2):

$$8x + 14y = 418(3)$$

Adding (2) and (3):

$$20x = 380 \implies x = 19$$

Substituting the value of x in (1), we get

$$76 + 7y = 209$$

$$\Rightarrow$$
 7 $y = 133 \Rightarrow y = 19$

$$\therefore x = y$$

21. (a) I.
$$17x^2 + 48x - 9 = 0$$

$$\Rightarrow$$
 17 $x^2 + 51x - 3x - 9 = 0$

$$\Rightarrow$$
 17 $x(x + 3) - 3(x + 3) = 0$

$$\Rightarrow$$
 $(17x - 3)(x + 3) = 0$

$$\Rightarrow$$
 $x = -3, \frac{3}{17}$

II.
$$13v^2 - 32v + 12 = 0$$

$$\Rightarrow$$
 13 v^2 - 26 v - 6 v + 12 = 0

$$\Rightarrow$$
 13 $y(y-2)-6(y-2)=0$

$$\Rightarrow$$
 $(13y - 6)(y - 2) = 0$

$$\Rightarrow$$
 $y=2, \frac{6}{13}$

$$\therefore x < y$$

22. (b) I.
$$16x^2 + 20x + 6 = 0$$

$$\Rightarrow$$
 $16x^2 + 12x + 8x + 6 = 0$

$$\Rightarrow$$
 4x(4x + 3) + 2(4x + 3) = 0

9/21/2015 2:09:22 PM

$$\Rightarrow (4x+2)(4x+3) = 0$$

$$\Rightarrow x = -\frac{3}{4}, -\frac{2}{4}$$

28.18 Chapter 28

II.
$$10y^2 + 38y + 24 = 0$$

⇒ $10y^2 + 30y + 8y + 24 = 0$
⇒ $10y(y + 3) + 8(y + 3) = 0$
⇒ $(10y + 8)(y + 3) = 0$
⇒ $y = -3, -\frac{4}{5}$
∴ $x > y$

23. (c) I.
$$8x^2 + 6x - 5 = 0$$

 $\Rightarrow 8x^2 + 10x - 4x - 5 = 0$
 $\Rightarrow 2x(4x + 5) - 1(4x + 5) = 0$
 $\Rightarrow (2x - 1)(4x + 5) = 0$
 $\Rightarrow x = \frac{1}{2}, -\frac{5}{4}$

II.
$$12y^2 - 22y + 8 = 0$$

 $\Rightarrow 12y^2 - 16y - 6y + 8 = 0$
 $\Rightarrow 4y(3y - 4) - 2(3y - 4) = 0$
 $\Rightarrow (4y - 2)(3y - 4) = 0$
 $\Rightarrow y = \frac{1}{2}, \frac{4}{3}$
 $\therefore x \le y$

24. (d) I.
$$18x^2 + 18x + 4 = 0$$

 $\Rightarrow 18x^2 + 12x + 6x + 4 = 0$
 $\Rightarrow 6x(3x + 2) + 2(3x + 2) = 0$
 $\Rightarrow (6x + 2)(3x + 2) = 0$
 $\Rightarrow x = -\frac{1}{3}, -\frac{2}{3}$

II.
$$12y^2 + 29y + 14 = 0$$

⇒ $12y^2 + 21y + 8y + 14 = 0$
⇒ $3y(4y + 7) + 2(4y + 7) = 0$
⇒ $(3y + 2)(4y + 7) = 6$
⇒ $y = -\frac{2}{3}, -\frac{7}{4}$

$$\therefore \quad x \ge y$$

25. **(b)** I.
$$x^2 - 11x + 24 = 0$$

 $\Rightarrow x^2 - 8x - 3x + 24 = 0$
 $\Rightarrow x(x - 8) - 3(x - 8) = 0$
 $\Rightarrow (x - 3)(x - 8) = 0$
 $\therefore x = 3 \text{ or, } 8$
II. $2y^2 - 9y + 9 = 0$
 $\Rightarrow 2y^2 - 3y - 6y + 9 = 0$
 $\Rightarrow y(2y - 3) - 3(2y - 3) = 0$
 $\Rightarrow (2y - 3)(y - 3) = 0$
 $\therefore x = \frac{3}{2} \text{ or, } 3$
 $\therefore x \ge y$

28.18 Chapter 28

II.
$$10y^2 + 38y + 24 = 0$$
 $\Rightarrow 10y^2 + 30y + 8y + 24 = 0$
 $\Rightarrow 10y(y + 3) + 8(y + 3) = 0$
 $\Rightarrow (10y + 8)(y + 3) = 0$
 $\Rightarrow y = -3, -\frac{4}{5}$
 $\therefore x > y$

23. (c) I. $8x^2 + 6x - 5 = 0$
 $\Rightarrow 8x^2 + 10x - 4x - 5 = 0$
 $\Rightarrow (2x - 1)(4x + 5) = 0$
 $\Rightarrow (2x - 1)(4x + 5) = 0$
 $\Rightarrow (4y - 2)(3y - 4) = 0$
 $\Rightarrow (4y - 2)(3y - 4) = 0$
 $\Rightarrow (6x + 2) + 2(3x + 2) = 0$
 $\Rightarrow (6x + 2) + 2(3x + 2) = 0$
 $\Rightarrow (6x + 2) + 2(3x + 2) = 0$
 $\Rightarrow (11. 12y^2 + 29y + 14 = 0)$
 $\Rightarrow (12y^2 + 21y + 8y + 14 = 0)$
 $\Rightarrow (3y + 2)(4y + 7) = 6$
 $\Rightarrow (3y + 2)(4y + 2)(4y + 7) = 6$
 $\Rightarrow (3y + 2)(4y +$

II.
$$y^3 + 783 = 999$$

 $\Rightarrow y^3 = 999 - 783 \Leftrightarrow y^3 = 216$
 $\therefore y = \sqrt[3]{216} \le 6$

Clearly,
$$x \le y$$

28. (c) I.
$$\sqrt{500}x + \sqrt{402} = 0$$

$$\Rightarrow \sqrt{500}x = -\sqrt{402}$$

$$\therefore x = -\sqrt{\frac{402}{500}} = -\sqrt{\frac{400}{500}} = -0.9$$

II.
$$\sqrt{360}y + (200)^{1/2} = 0$$

$$\Rightarrow \sqrt{360}y = -\sqrt{200}$$

$$\therefore y = -\sqrt{\frac{200}{360}} = -0.74$$
Clearly, $x < y$

29. (c) I.
$$(17)^2 + 144 \div 18 = x$$

$$\Rightarrow x = 17^2 + 144 \times \frac{1}{18}$$

$$\therefore x = 289 + 8 = 297$$

II.
$$(26)^2 - 18 \times 21 = y$$

$$\Rightarrow v = 26^2 - 18 \times 21$$

$$\therefore y = 676 - 378 = 298$$

Clearly, x < y

30. (b) I.
$$16x^2 + 20x + 6 = 0$$

$$\Rightarrow 8x^2 + 10x + 3 = 0$$

$$\Rightarrow$$
 $(4x + 3)(2x + 1) = 0$

$$\therefore x = -\frac{3}{4} \text{ or, } -\frac{1}{2}$$

II.
$$10y^2 + 38y + 24 = 0$$

$$\Rightarrow 5y^2 + 19y + 12 = 0$$

$$(y + 3)(5y + 4) = 0$$

$$\therefore y = -3 \text{ or, } -\frac{4}{5}$$

Hence, x > y

31. (d) I.
$$18x^2 + 18x + 4 = 0$$

$$\Rightarrow 9x^2 + 9x + 2 = 0$$

$$\Rightarrow (3x+2)(3x+1) = 0$$

$$\therefore x = -\frac{2}{3} \text{ or, } -\frac{1}{3}$$

$$\mathbf{II.} \ 12y^2 + 29y + 14 = 0$$

$$\Rightarrow (3y+2)(4y+7) = 0$$

:
$$y = -\frac{2}{3}$$
 or, $-\frac{7}{4}$

Hence, $x \ge v$

32. (c) I.
$$8x^2 + 6x - 5 = 0$$

$$\Rightarrow (4x+5)(2x-1)=0$$

$$\therefore x = -\frac{5}{4} \text{ or, } \frac{1}{2}$$

II.
$$12y^2 - 22y + 8 = 0$$

$$\Rightarrow 6y^2 - 11y + 4 = 0$$

$$\Rightarrow$$
 $6v^2 - 11v + 4 = 0$

$$\Rightarrow (2y-1)(3y-4)=0$$

$$\therefore y = \frac{1}{2} \text{ or, } \frac{4}{3}$$

Hence, $x \le y$

33. (a) I.
$$17x^2 + 48x - 9 = 0$$

$$\Rightarrow (x+3)(17x-3) = 0$$

$$\Rightarrow x = -3 \text{ or, } \frac{3}{17}$$

II.
$$13y^2 - 32y + 12 = 0$$

$$\Rightarrow (y-2)(13y-6)=0$$

$$\therefore$$
 $y = 2 \text{ or, } \frac{6}{13}$

Hence, x < y

34. (e) I.
$$4x + 7y = 209$$

II.
$$12x - 14y = -38$$
 ...(2)

Now,
$$(1) \times 2 + (2)$$
, we have

$$12x - 14y = -38$$

$$8x + 14y = 418$$

or,
$$20x = 380$$

$$\therefore x = \frac{380}{20} = 19$$

Now, putting the value of x = 19 in equation (1), We have,

$$4 \times 19 + 7y = 209$$

or,
$$7y = 209 - 76 = 133$$

or,
$$7y = 209 - 76 = 133$$

$$\therefore y = \frac{133}{7} = 19$$

35. (a)
$$x = £2$$
,

$$y^2 + 6y + 9 = 0$$

36. (b)
$$x^2 - 7x + 12 = 0$$
 $y^2 + y - 12 = 0$

37. (d) I.
$$x = \pm \sqrt{729} = \pm 27$$
 II. $y = 27$

38. (e) I.
$$x^4 = 398 + 227 = 625$$

$$\Rightarrow x = \pm 5$$

II.
$$v^2 = (346 - 321) = 25$$

$$\Rightarrow v = \pm 5$$

39. (c) I.
$$2x^2 + 11x + 14 = 0$$
 II. $4y^2 + 12y + 9 = 0$

II.
$$4y^2 + 12y + 9 = 0$$

40. (b) I.
$$x^2 - 1 = 0$$

or,
$$x^2 = 1$$

or,
$$x = \pm \sqrt{1} = \pm 1$$

28.20 Chapter 28

II.
$$y^2 + 4y + 3 = 0$$

or,
$$y^2 + y + 3y + 3 = 0$$

or,
$$y(y+1) + 3(y+1) = 0$$

or,
$$(y+3)(y+1) = 0$$

or,
$$y = -3$$
 or, -1

$$\therefore x \ge y$$

41. (d) I.
$$x^2 - 7x + 12 = 0$$

or,
$$x^2 - 4x - 3x + 12 = 0$$

or,
$$x(x-4)-3(x-4)=0$$

or,
$$(x-3)(x-4) = 0$$

or,
$$x = 3$$
 or, 4

II.
$$y^2 - 12y + 32 = 0$$

or,
$$y^2 - 8y - 4y + 32 = 0$$

or,
$$y(y-8)-4(y-8)=0$$

or,
$$(y-4)(y-8)=0$$

or,
$$y = 4$$
 or, 8

$$\therefore x \le y$$

42. (c)
$$x = \sqrt{1000} = 10, y = \sqrt{1331} = 11$$

$$\therefore x < y$$

43. (a) Solving these two linear equations, we get x = 5, y = 3.

$$\therefore x > y$$

44. (e) I.
$$2x^2 + 11x + 12 = 0$$

or,
$$2x^2 + 8x + 3x + 12 = 0$$

or,
$$2x(x+4) + 3(x+4) = 0$$

or,
$$(2x+3)(x+4) = 0$$

or,
$$(2x+3)(x+4) = 0$$

$$\therefore x = -\frac{3}{2} \text{ or, } -4$$
II. $5y^2 + 27y + 10 = 0$
or, $5y^2 + 25y + 2y + 10 = 0$

II.
$$5y^2 + 27y + 10 = 0$$

or,
$$5y^2 + 25y + 2y + 10 = 0$$

or,
$$5(y+5)+2(y+5)=0$$

$$(5+2)(y+5)=0$$