Devoir maison 14

▶ Problème : polynômes de Tchebychev et théorème de Block-Thielmann

Partie I. Polynômes de Tchebychev (de première espèce)

On définit une famille $(T_n)_{n \in \mathbb{N}}$ d'éléments de $\mathbb{R}[X]$ en posant : $T_0 = 1, T_1 = X$, et pour tout $n \in \mathbb{N}$,

$$T_{n+2} = 2XT_{n+1} - T_n.$$

- **1.** Calculer T_2 , T_3 et T_4 .
- 2. Montrer que pour tout $n \in \mathbb{N}$, T_n est de degré n et déterminer son coefficient dominant.
- 3. Prouver que pour tout $\theta \in \mathbf{R}$ et tout $n \in \mathbf{N}$, $T_n(\cos(\theta)) = \cos(n\theta)$. Déduire de ce qui précède une expression de $\cos(4\theta)$ en fonction de $\cos \theta$.
- **4.** Prouver que pour tous $m, n \in \mathbb{N}^*$, $T_n \circ T_m = T_{mn}$.

Partie II. Le théorème de Block et Thielmann

On appelle suite commutante toute suite $(P_n)_{n \in \mathbb{N}^*}$ de polynômes de $\mathbb{R}[X]$ tels que

$$\forall n \in \mathbf{N}^*, \deg P_n = n \text{ et } \forall (m, n) \in \mathbf{N}^*, P_m \circ P_n = P_n \circ P_m.$$

- **5.** Montrer que les suites $(X^n)_{n \in \mathbb{N}^*}$ et $(T_n)_{n \in \mathbb{N}^*}$ sont commutantes.
- 6. Soit $p \in \mathbf{R}$ fixé. On note \mathscr{C}_p l'ensemble des polynômes non constants de $\mathbf{R}[X]$ tels que

$$P \circ (X^2 + p) = (X^2 + p) \circ P.$$

- a. Montrer que tout élément de \mathcal{C}_p est unitaire.
- **b.** On souhaite prouver que pour tout $n \in \mathbb{N}^*$, \mathscr{C}_p contient au plus un polynôme de degré n. Soient donc P_1 , P_2 deux polynômes de degré n de \mathscr{C}_p . En considérant le polynôme $P_1 \circ (X^2 + p) P_2 \circ (X^2 + p)$, prouver que $P_1 = P_2$.
- **c.** Montrer que si \mathcal{C}_p contient un polynôme de degré 3, alors p = 0 ou p = -2.
- **d.** Prouver que $\mathcal{C}_0 = \{X^n, n \in \mathbb{N}^*\}$.
- 7. a. Montrer qu'un polynôme $U \in \mathbf{R}[X]$ est inversible pour \circ (la composition) si et seulement si son degré vaut 1. On note alors U^{-1} son inverse.
 - **b.** Pour $U = aX + b \in \mathbf{R}[X]$ de degré 1, déterminer U^{-1} .
- 8. Soit $(P_n)_{n \in \mathbb{N}^*}$ une suite commutante, et soit $U \in \mathbb{R}[X]$ de degré 1. Prouver que $(U \circ P_n \circ U^{-1})_{n \in \mathbb{N}^*}$ est encore une suite commutante.
- 9. Soit $P = aX^2 + bX + c$ un polynôme de degré 2, donc avec $(a, b, c) \in \mathbb{R}^* \times \mathbb{R} \times \mathbb{R}$. On pose $U = aX + \frac{b}{2}$. Prouver que $U \circ P \circ U^{-1}$ est de la forme $X^2 + p$ pour un certain $p \in \mathbb{R}$.
- **10.** Trouver un polynôme $V \in \mathbf{R}[X]$, de degré 1, tel que $V \circ (X^2 2) \circ V^{-1} = T_2$.
- 11. Prouver enfin que les seules suites commutantes de $\mathbf{R}[X]$ sont les $(U \circ X^n \circ U^{-1})_{n \in \mathbb{N}^*}$ et les $(U \circ T_n \circ U^{-1})_{n \in \mathbb{N}^*}$ pour U polynôme de degré 1.