Report - CBRS Propagation Modelling

Joshua Roy Palathinkal

1 Curve fitting for RSRP-distance data

Assuming x_i , y_i to be the distance (in meters) and RSRP (in dBm) values listed in the CBRS dataset, where i = 1, ..., n. All dependencies for RSRP can be captured in the form of the following equation [1, 2]:

$$y = a_0 + a_1 log_{10}(x) + X_{\sigma}$$

$$X_{\sigma} = y - a_0 - a_1 log_{10}(x)$$
(1)

Variance for X_{σ} is defined as:

$$\sigma^2 = \sum_{i} \chi_i^2 / n = \sum_{i} (y_i - a_0 - a_1 \log_{10}(x_i))^2 / n$$

To minimize σ^2 :

$$\frac{\partial \sigma^2}{\partial a_0} = (-2/n) \sum_i (y_i - a_0 - a_1 \log_{10}(x_i)) = 0$$

$$\implies \sum_i y_i = na_0 + a_1 \sum_i \log_{10}(x_i) \iff \boxed{a_0 = \overline{y} - a_1 \overline{\log_{10}(x_i)}}$$
(2)

$$\frac{\partial L}{\partial a_1} = (-2/n) \sum_i \{ (y_i - a_0 - a_1 \log_{10}(x_i)) (\log_{10}(x_i)) \} = 0$$

$$\implies \sum_i \{ y_i \log_{10}(x_i) \} = a_0 \sum_i \log_{10}(x_i) + a_1 \sum_i \log_{10}^2(x_i)$$
(3)

Using equation 3 in equation 2:

$$\sum_{i} \{y_{i} log_{10}(x_{i})\} = \{(\overline{y} - a_{1} \overline{log_{10}(x_{i})})\} \sum_{i} log_{10}(x_{i}) + a_{1} \sum_{i} log_{10}^{2}(x_{i})$$

$$\iff \boxed{a_{1} = \frac{\sum_{i} \{y_{i} log_{10}(x_{i})\} - n\overline{log_{10}(x_{i})}\overline{y}}{\sum_{i} log_{10}^{2}(x_{i}) - n\overline{log_{10}(x_{i})}^{2}}}$$

Figure 1: Curve fitting for equation 1

PCI	a_0	a_1
14	0.00	-42.09
88	0.00	-40.64
189	0.00	-43.87
1	0.00	-39.51
96	0.00	-41.36
26	0.00	-43.11
195	0.00	-40.88
46	0.00	-47.19
6	0.00	-42.99
150	0.00	-42.50
10	0.00	-41.14
200	0.00	-39.54
165	0.00	-38.70
169	0.00	-42.59
194	0.00	-43.61
78	0.00	-41.24
69	0.00	-41.32
187	0.00	-47.16

Table 1: Calculated a_0 and a_1 for different PCI

References

- [1] Aziz Altaf Khuwaja, Yunfei Chen, Nan Zhao, Mohamed-Slim Alouini, and Paul Dobbins. A survey of channel modeling for uav communications. *IEEE Communications Surveys & Tutorials*, 20(4):2804–2821, 2018.
- [2] Shu Sun, Theodore S Rappaport, Sundeep Rangan, Timothy A Thomas, Amitava Ghosh, Istvan Z Kovacs, Ignacio Rodriguez, Ozge Koymen, Andrzej Partyka, and Jan Jarvelainen. Propagation path loss models for 5g urban micro-and macro-cellular scenarios. In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pages 1–6. IEEE, 2016.