Trend Following Trading Strategy

Japanese Yen and Gasoline Futures

MATH GR5360 | PROFESSOR CHEKHLOV | FINAL PROJECT

GROUP C:

Qiuying Li

Yang Xu

Changyang Liu

Nam Phan

Huanwei Chen

Jing Zhao

Hoa Dang

Keyun Ben

Fan Wang

Sijia Niu

Qizhan Shao

Presentation Outline

MARKET OVERVIEW STATISTICAL TESTING & TREND FOLLOWING STRATEGY ASSUMPTIONS AND IMPLEMENTATION DETAILS STRATEGY & OPTIMIZATION PORTFOLIO RESULTS **CONCLUSION**

Section A Market Overview

JY Overview

Description

> USD

> Tick value: \$6.25

> Tick Size: 0.005

> Trading Hour: 7:20a.m. -

2:00p.m. CST

Price overview

Current: 89.89 (April 30, 2017)

Low: 68.07 (August 01, 1998)

High: 132.10 (October 01, 2011)

Japanese Yen Co	ntract Specifications	
Contract Size	12,500,000 Japanese yen	
Trading Hours	CME Globex: Sundays: 5:00pm – 4:00pm CT next day. Monday – Friday: 5:00pm – 4:00pm CT the next day, except on Friday – closes at 4:00pm and reopens Sun- day at 5:00pm CT.	
	CME ClearPort: Sunday – Friday 5:00pm – 4:15pm CT with a 45–minute break each day beginning at 4:15pm	
Minimum Price Fluctuation	\$.0000005 per Japanese yen increments (\$6.25/contract) also for JPY/USD futures intra-currency spreads executed electronically.	
	CME Globex: 6J	
Product Code	CME ClearPort: J1	
	Clearing: J1	
Listed Contracts	Twenty months in the March quarterly cycle (Mar, Jun, Sep, Dec)	
Settlement Method	Deliverable	

JY Historical Price

Introduction: Secondary Market - Gasoline (XB)

Description

> USD

> Tick value: \$4.2

> Tick Size: 0.01

Price overview

Current: 154.40 (April 5, 2017)

Low: 78.50 (December 24, 2008)

> High: 363.10 (July 11, 2008)

> Average: 217.44

RBOB Gasoline Contract Specifications		
Contract Size	42,000 gallons	
Price Quotation	U.S. dollars and cents per gallon.	
Trading House	CME Globex: Sunday – Friday 6:00 p.m. – 5:15 pm ET with a 45-minute break each day beginning at 5:15 pm ET	
Trading Hours	CME ClearPort: Sunday – Friday 6:00 p.m. – 5:15 pm ET with a 45-minute break each day beginning at 5:15 pm ET	
Minimum Price Fluctuation	\$0.0001 per gallon	
	CME Globex: RB	
Product Code	CME ClearPort: RB	
Product code	Clearing: RB	
	TAS: RBT	
Listed Contracts	Monthly contracts listed for the current year and the next 3 calendar years +1 month. Monthly contracts for a new calendar year will be added following the termination of trading in the December contract of the current year.	
Settlement Method	Deliverable	

XB Historical Price

Section B Statistics Tests & Trend Following Strategy

Statistical Testing – Variance Ratio Test

- A measure of the randomness of a return series.
- Variance ratio for q periods is

$$VR(q) = \frac{D[r_t(q)]}{q.D[r_t]} = 1 + 2\sum_{k=1}^{q-1} (1 - \frac{k}{q})\rho(k),$$

- q is discrete time separation in minutes
- p(k) is auto-correlation coefficient of two price changes separated by k minutes

VR<1 Mean Reversion

Variance Ratio Test Result of JY Market

Variance Ratio Test Result of XB Market

Push Response Test

This test is free from the fat-tailed bias of the VR test but quickly growing sample error if increase the Δp

Push =
$$x = price(t) - price(t - \tau)$$

Response =
$$(y) \Rightarrow \langle y \rangle_{x}$$
 =
$$\int_{-\infty}^{\infty} y * P(y|x) * dx$$

Here, $P(y|x) = \frac{P(x,y)}{P(x)}$ as the conditional mean response to a "push" x

Positive slope means trend following!

Push Response Test Results of JY Market

Push Response Test Results of XB Market

Section C Implementation Details

Optimization Details

R is not an optimal language for optimization

We tried to solve this problem by using parallel programming in R

R packages: parallel and data.table

Optimization Details

Additionally, we use AWS to gain access to highperformance computer

We set up and ran our R code directly on AWS servers

40 cores machine

However, due to the nature of R programming language and our function (which consisted of many loops), the optimization was still take significant computation time

Instance Type	Availability Zone 🔻	Instance State 🔻	Status Checks 🔻
m4.10xlarge	us-west-1c	running	2/2 checks
m4.10xlarge	us-west-1a	running	2/2 checks
m4.10xlarge	us-west-1c	running	2/2 checks

Optimization Alternatives

Golden Section Search and Particle Swarm Optimization

Hill Climbing and Random Search

Simulated Annealing!

Similar to Hill Climbing method, make a small change to that solution, test it and accept the new solution if it results in an improvement. The key difference between these algorithms

is \circ If $c_{new} < c_{old}$: move to the new solution

Si 。

 \circ If $c_{\text{new}} > c_{\text{old}}$: *maybe* move to the new solution

 t. The key difference between these algorithms at result in an improved solution, whereas is worse solutions.

$$a = e^{\frac{c_{old} - c_{new}}{T}}$$

Cons: Although these strategies will speed up the optimization process, they sacrificed the accuracy. They may not reach global optimum, only local optimum, so we use brute force

Assumptions

Data: JY 5min (20 years data) & XB 5min

• Slippage: 53 & 91

• ChnLen:

o 500 to 10000

o Increment: 1000

StpPct:

0.005 to 0.1

o Increment: .01

• In Sample: 4, 6, 8, 10 year

Strategy Framework

Trend-Following Strategy

Method of Exhaustion

-Pros: Get All the solutions from the problem

-Cons: Low Efficiency

In Sample:

JY: (1985-1989), (2000-2004)

XB: (2006-2010)

Out Sample:

JY: 1989/1/2-1989/4/2; 2004/1/2-2004/4/2

XB: 2010/1/2-2010/4/2

Section D Strategy & Optimization

Basic Factors

Equity calculation:

PV(present value) multiplier x (C_{k+1} - C_k) x PV(x X(exchange rate) - slpg(transaction fee)/2

Starting Equity: E(0) = 100000

Our code:

Change position: equity<- equity+(close.price[i]-entry.price)*PV*PV.multi-slippage/2

Keep position: equity<-equity+(close.price[i-1]-close.price[i])*PV*PV.multi

Net Profit Worst Drawdown:

```
NPWD = (E(t) - E(0)/DD (Drawdown equals to E(t) - max(E(t)))
```

Our code:

```
Gain <- max(Gain,equity-100000)

Underwater <- equity - Gain - 100000

maxDD <- min(maxDD, Underwater)

{NPWD<-(-1)*(equity-100000)/maxDD}
```

Trading Strategy:

No-investment position (0) Sell position (-1) Buy position (1)

Trading Strategy

Optimization Result: In-Sample Optimization

Return on Account JY

	3 months	6 months	9 months	12 months
4 years	233.82%	225.08%	234.88%	226.85%
6 years	196.17%	195.29%	188.74%	191.59%
8 years	191.83%	191.16%	182.97%	187.71%

Return on Account XB

	3 months	6 months	9 months	12 months
4 years	225.48%	220.56%	232.36%	235.63%
6 years	208.05%	205.16%	207.68%	208.39%
8 years	255.16%	245.72%	270.48%	238.30%

Optimization Result: In-Sample Optimization (JY 4 yr 9 months)

Optimization Result: In-Sample Optimization (XB 8yr 9 months)

Optimization Result: Out-Sample Performance (JY)

Chart shows equity fluctuation in each 9 month period in the optimal 4 years 9 months timeframe

The out-sample performance gets better as the strategy adapts to the time

Section E

Portfolio Results: Risk and Return

Optimization Result: JY

Here, we specifically look at 2 period in JY-5min data, which are:

• 1985-1989:

This period was an <u>economic bubble</u> in <u>Japan</u> from 1986 to 1991 in which <u>real estate</u> and <u>stock</u> market prices were greatly inflated.

o 2000-2004:

The period which the Japanese economic growth was between 0% and 2% and the economy experienced long term liquidity risk.

Sample Test (JY 85-89): Optimization Histogram

Sample Test (JY 85-89): In Sample Optimization

In Sample Performance Result

Channel Length: 2500 Stop Percent: 0.015

Net Equity	\$134,368.9375
Net Profit	\$34,368.9375
Worst Drawdown	\$24,768.5
Net profit to worst drawdown	1.38
Average Net Profit	\$34,368.9375
Sharpe Ratio	6.07%

Series Time Start: 1985/01/02 07:25 Series Time End: 1989/01/02 07:25

Sample Test (JY 85-89): Equity Curve Statistics

Frequency
1
5
1
5
. 12
13
20
9
17
16

Sample Test (JY 00-04): Optimization Histogram

Sample Test (JY 00-04): In Sample Optimization

In Sample Performance Result

Channel Length: 500 Stop Percent:0.075

Net Equity	\$139,958
Net Profit	\$39,958
Net profit to worst drawdown	1.345
Worst Drawdown	\$29,702.56
Average Net Profit	\$39,958
Sharpe Ratio	4.99%

Series Time Start: 2000/01/02 07:25 Series Time End: 2004/01/03 07:25

Sample Test (JY 00-04): Equity Statistics

Return	Frequency
-37.54%	1
-29.69%	2
-21.83%	4
-13.98%	2
-6.12%	5
1.73%	37
9.59%	27
17.44%	11
25.30%	8
Other	2

Equity Curve Statistics - JY- (4 year 3 months in-sample)

Bin	Frequency	Cumulative %
-18.61%	1	1.43%
-13.28%	1	2.86%
-7.94%	9	15.71%
-2.61%	9	28.57%
2.72%	30	71.43%
8.05%	12	88.57%
13.39%	6	97.14%
18.72%	1	98.57%
More	1	100.00%

JY 3 month Out of Sample Equity Curve

The optimal parameters obtained in the four year period 00-04:

Stppct: 0.075

Chnlen: 500

This Equity Curve shows
vastly negative position
of the portfolio in 3
months, but we gain at
last. If we look at the
economic growth and
the close price
changes, it could
explain the loss in the

Sample Test (XB 06-10): Optimization Histogram

Sample Test (XB 06-10): In Sample Optimization

In Sample Performance Result

Channel Length: 500 Stop Percent:0.05

Net Equity	\$241,397.125
Net Profit	\$141,397.125
Worst drawdown	\$34617.812
Average drawdown	\$103991.03
Net profit to worst drawdown	4.084
Average Net Profit	\$141,397.125
Sharpe Ratio	5.46%

Series Time Start: 2006/10/02 07:25 Series Time End: 2010/10/04 07:25

Equity Curve Statistics - XB (4 year 3 months in-sample)

Frequency
1
5
11
5
1

XB 3m Out of Sample Equity Curve

The optimal parameters obtained in the four year period 06-10:

Stppct: .005

Chnlen: 500

This Equity Curve shows both negative and positive portfolio position, indicating that the trading strategy is neutral

Section F Conclusion

Conclusion

Border Search: We notice that some of our optimal parameters are on the border (e.g. channel length at 500), maybe next time we can explore this properties more

The difference between in-sample and out-sample test can be significant.

Limitation of R Programming Language

Advantage of other Programming Language

Thanks to all my teammate!!!