(i) $f(x) = f(\alpha) + f'(\alpha)(x-\alpha) + \frac{f'(\alpha)(x-\alpha)^2}{2!}$ f(x-h) = f(x) + f'(x)(x-h-x)+... $\frac{f'(x)}{2!}(x-h-x) + \cdots$... + $\frac{f''(x)}{3!}(x-h-x)^3 + \cdots$ = $f(x) - f'(x)h + f''(x)h^2 - ...$ $f'(x) = \frac{f(x) - f(x-h)}{h} + \frac{f''(x)}{2!}h - \dots$ $\frac{1}{3!} + \dots$

76 SOLVE FOR f'(X) IN (1) x -> x +h, a -> x $f''(x) = \frac{2!}{2!} f(x+h) - f(x) - f'(x) h + ...$ $\cdots + \left(-\frac{f'''(x)}{3} - \cdots\right)$ = $\frac{2!}{k^2} \int f(x+h) - f(x) - h \left(\frac{f(x) - f(x-h)}{h} + \dots \right)$ $\cdots + \frac{f''(x)}{2!}h - \frac{f''(x)}{3!}h^2 + \cdots + \cdots$ $\cdots + \left(-\frac{f''(x)}{3!}\right)^{3} - \cdots$ $= 2\left[\frac{f(x+h) - 2f(x) + f(x-h)}{h^2}\right] + \cdots$... $+\frac{2!}{k^2}\left[-\frac{f''(x)}{2!} + \frac{f'''(x)}{3!}\right]^3$ $\frac{f''(x)}{3!} + \frac{f''(x)}{4!} + \frac{1}{4!}$

76				
	+ 0.8141 +	2[-5"(0) -	7 f(x) 12]	
0-0-5in	$= \frac{1}{2}f''(x)$	+ \frac{1}{2} \xi'(x) +	5 (4) \ 2 =	
		0 (12)	\$ \$\pi\$	