2017-12-19

- The **determinant** of A, denoted by detA, is a function from $M_n(F)$ to F. Let det $A = D(A_i, \ldots, A_n)$, where A_i is i-th row of A. The **determinant** of A satisfies the following conditions:
 - The det A is a linear function of the i-th row when the other (n-1) rows are held fixed. $D(A_1, \ldots, \alpha A_i + A'_i, \ldots, A_n) = \alpha D(A_1, \ldots, A_i, \ldots, A_n) + D(A_1, \ldots, A'_i, \ldots, A_n)$
 - det A = 0 if A has two identical rows.
 - \circ detI=1.
 - $\det P_{ij}A = -\det A$, where P_{ij} is a permutation matrix. **Proof**: $D(A_1, \ldots, A_i + A_j, \ldots, A_j + A_i, \ldots, A_n) = 0 = D(A_1, \ldots, A_i, \ldots, A_j, \ldots, A_n) + D(A_1, \ldots, A_j, \ldots, A_i, \ldots, A_n).$
 - $\det E_{ij}A = \det A$, where E_{ij} is an elementary matrix. **Proof**: $D(A_1, \ldots, A_i + \alpha A_j, \ldots, A_j, \ldots, A_n) = D(A_1, \ldots, A_i, \ldots, A_j, \ldots, A_n) + \alpha D(A_1, \ldots, A_j, \ldots, A_n) = D(A_1, \ldots, A_i, \ldots, A_j, \ldots, A_n)$.
 - If A has a row of zeros, then det A = 0.
 - If A is triangular, then $\det A = a_{11} \dots a_{nn}$.
 - If A is singular, then $\det A = 0$. If A is invertible, then $\det A \neq 0$.
 - \circ det $AB = \det A \det B$.
 - $\det A^{\top} = \det A$. **Proof**: If A is singular, then A^{\top} is singular. If A is nonsingular, then PA = LDU. Since $\det P \det A = \det L \det D \det U = \det D$ and $\det A^{\top} \det P^{\top} = \det U^{\top} \det D^{\top} \det L^{\top} = \det D^{\top}$, hence, $\det P \det A = \det A^{\top} \det P^{\top}$. Since $PP^{\top} = I$, hence, $\det P \det P^{\top} = 1$. Hence, $\det A = \det A^{\top}$.
 - If A is nonsingular, then $A = P^{-1}LDU$. det $A = \pm$ product of pivots.
- $\det A$ is the sum of n! terms and for each item, every row and column contribute to it.
- $\det A = a_{i1}A_{i1} + \ldots + a_{in}A_{in}$, where the cofactor $A_{ij} = (-1)^{i+j} \det M_{ij}$, and M_{ij} is a submatrix of A by deleting row i and column j of A.
- Computation of A^{-1} : $\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} A_{11} & \dots & A_{n1} \\ \vdots & \ddots & \vdots \\ A_{1n} & \dots & A_{nn} \end{bmatrix} = \begin{bmatrix} \det A & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \det A \end{bmatrix} = (\det A)I.$
- Cramer's rule.
- Volume of a parallelepiped:
 - If rows of A are mutually perpendicular, then $\det A = \pm l_1 \dots l_n = \pm$ volume of the parallelepiped, where l_i is the length of row i.
 - Otherwise, perform orthogonalization first.