A	WCV	ivo	elat	WΝ	passi	es V	COV	tle	uucl	evs	of c	a gel	d and	сш,	whice	h	ccu-la	TVS	79	
		_		-1			4 1				١.	elec.				1				
•									,			the								
•	vie!																			
				3 6																
	F _e	le= 9	e9 -	الال الال	12															
		<u>-</u> Q	e ^Q	[11	be-1	9)(7	9. . b) ²	e-19)												
		<i>z</i> -	3.2	236	e-10	0 0														
Λ	1			1. 1	ſ		10	<i>O</i> . –		α		1		1 1			1 /			
								_											riuiuo 1 1	
_									1				v) e-	ا راک	7,4·(JC-1	4 /11	i. Li	al th	le
40	yre	INC	pre	ton	exeva	S UV	1 h	e 01	pha	pol	171016	•								
	F	p en o	= 0	le9-	Q, C. (r)	2 Y														
_			ولم	<u> </u>	2 = C	÷														
				Ploc	$\alpha = 1_{c}$	4 - Y	,													
					=<	4.5 _e	-9,0	2,6	e-9)	m										
			سا	۶ĺř	\= <i>[</i>	7.5e	-0													
_			1.	\\ \C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	/ ₍).	1		α												
_			بسا	9 Y 2	< <i>()</i> .	6,0	, O.	81	m											
	3 t			(10	1. be	- q)(2.1.6	pe-19)) /	P. 1										
	Γ	on a	File		(7	.5e-	9)2			1.6,	0, (2.8	/							
			= {	-4.9	lse-	12,	0, -	6.55	e-1	2>	N									

Use data from the inside back cover to calculate the gravitational and electric forces two electrons exert on each other when they are 1×10^{-10} m apart (about one atomic radius). Which interaction between two electrons is stronger, the gravitational attraction or the electric repulsion? Note that since both the gravitational and electric forces depend on the inverse square distance, this comparison holds true at all distances, not just at a distance of 1×10^{-10} m. $\frac{ F_{\text{elec}} }{ F_{\text{grav}} } = $											
If the two electrons are at rest, will they begin to move toward each other or away from each other? toward each other away from each other They will remain at rest.											
Fal=9e9 (1.6e-19)											
Fgvarv = 6.7e-11 (1.7	(-1/ <u>)</u>										
Ferre = 9eq(1.6e-14)2	Jan 12										
Formu	6.7e-11(4.14e42)	2									
=4,14e42											
(11672											