# Лекція 5. Статистичне виведення в R. Довірчі інтервали та тестування гіпотез

Данило Тавров

08.03.2023

#### Вступні зауваги

- Ми продовжуємо розгляд основних понять із теорії ймовірностей і статистики та їхніх реалізацій в R
- Сьогодні згадаємо другу половину основних понять зі статистики
  - Ми пригадаємо, що таке довірчий інтервал і як його будувати
  - Ми пригадаємо, як тестувати гіпотези та інтерпретувати відповідні результати
- Корисними матеріалами є:
  - Фундаментальна книжка *All of Statistics* (Larry Wasserman), розділи 6, 10 (викладено на диску в загальному каталозі з літературою)
  - Книжка *Introduction to Econometrics* (Bruce Hansen) (розділи 13–14) (викладено на диску в загальному каталозі з літературою)
  - Книжка Using R for Introductory Statistics (John Verzani), розділи 8–10 (викладено на диску в каталозі з лекцією)
- Матеріал цієї лекції частково базується на конспекті лекцій із дисципліни ECON 141 *Econometrics: Math Intensive* (University of California, Berkeley) авторства Віри Семенової та Данила Таврова

# Що було на попередній лекції (1)

- Минулого разу ми з Вами з'ясували, що для оцінювання деякого (невідомого) параметра  $\theta$  DGP, який породив наші дані, використовують оцінку  $\hat{\theta}$
- Ми з'ясували, що будь-яка адекватна оцінка повинна бути спроможною:  $\hat{\theta} \stackrel{p}{\to} \theta$  Тоді підрахована для конкретної вибірки  $X_1, X_2, \dots, X_n$  реалізація цієї оцінки буде
  - близька до heta
- Також ми говорили, що обов'язково потрібно наводити «ступінь цієї близькости»
  - Просто так порахувати якусь статистику і сказати «ось вона» непрофесіонально і антинауково!
- Тому нас цікавлять розподіли оцінок
  - А оскільки в цьому курсі ми працюємо з великими наборами даних, то нас цікавлять асимптотичні розподіли оцінок
- Нам дуже подобається, коли асимптотичний розподіл є нормальний
  - Бо з нормальним розподілом легко працювати
  - Багато оцінок мають асимптотично нормальний розподіл (напр., усі оцінки за методом максимальної правдоподібности та багато інших)

# Що було на попередній лекції (2)

- Якщо ми знаємо (асимптотичну) дисперсію оцінки, Var  $(\widehat{ heta})$ , ми можемо обчислити її **стандартну похибку** як se  $(\widehat{ heta})=\sqrt{\mathrm{Var}\left(\widehat{ heta}
  ight)}$
- Якщо ми знаємо дисперсію теоретично, але не можемо її підрахувати (бо не знаємо якихось параметрів), то тоді можна оцінити стандартну похибку:

$$\widehat{\operatorname{se}}\left(\widehat{\theta}\right) = \sqrt{\widehat{\operatorname{Var}}\left(\widehat{\theta}\right)}$$

- ullet Оцінка дисперсії  $\widehat{\mathrm{Var}}\left(\widehat{ heta}\right)$  повинна бути спроможною
- Найпростіше цього досягти, замінивши всі параметри на їхні вибіркові аналоги
   Тобто сподівання на вибіркові середні тощо
- Нарешті, може бути так, що ми не знаємо дисперсії, або навіть усього розподілу
  - У цьому випадку потрібно застосовувати бутстреп
  - Це є предмет наступної лекції

## План лекції

1 Довірчі інтервали

Тестування гіпотез

## Потреба в довірчих інтервалах

- ullet Отже ми вже добре усвідомлюємо, що будь-яку оцінку  $\hat{ heta}$  потрібно супроводжувати її стандартною похибкою se  $\left(\hat{ heta}
  ight)$  або оцінкою такої  $\widehat{ ext{se}}\left(\hat{ heta}
  ight)$
- Якщо теоретично відомо, що оцінка  $\hat{\theta}$  має асимптотично нормальний розподіл, то стандартна похибка дає змогу оцінити справжній розкид значень за правилом трьох сигм
- Якщо ж розподіл не є нормальний, то стандартна похибка все одно корисна, але вже не має такої якісної інтерпретації
- Тому в загальному випадку більшу користь має так званий довірчий інтервал (confidence interval)
  - Або, якщо параметр багатовимірний, довірча множина (confidence set)

# Визначення довірчого інтервалу

#### Визначення 1.1

- ullet Нехай маємо деяку статистичну модель із параметром  $heta \in \Theta \subseteq \mathbb{R}^k$
- ullet Тоді **довірчою множиною**  $C_n$  **рівня** 1-lpha (1-lpha level confidence set) буде множина така, для якої виконується

$$\mathbb{P}\left(C_{n}\ni\theta\right)\geq1-\alpha\;,\quad\theta\in\Theta\tag{1.1}$$

ullet Якщо  $heta \in \mathbb{R}$ , то маємо довірчий інтервал  $C_n = [a;b]$ 

- Варто звернути увагу, що границі інтервалу є статистиками:  $a = a(X_1, \dots, X_n)$ ,  $b = b(X_1, \dots, X_n)$
- Кажемо, що довірчий інтервал **покриває**  $\theta$ , якщо  $C_n \ni \theta$
- А значення  $1-\alpha$  називаємо **покриттям** (coverage)
- На практиці **дуже** часто використовують  $\alpha = 0.05$ 
  - Як писав Роналд Фішер<sup>1</sup>, "It is usual and convenient for experimenters to take 5 per cent. as a standard level of significance"

Лекція 5. Статистичне виведення в R. Довірчі інтерва

• Із того часу всі так і роблять, хоча обґрунтування немає!

<sup>&</sup>lt;sup>1</sup>Sir Ronald Aylmer Fisher (1890-1962) — британський статистик

## Інтерпретація довірчого інтервалу

- Варто відразу розставити всі акценти щодо коректної інтерпретації довірчого інтервалу
- Довірчий інтервал  $C_n$  є випадковою величиною!
- Розгляньмо типові помилки інтерпретації
- Інколи можна почути, що якщо ми порахували, наприклад, 95% довірчий інтервал  $C_n = [1.4; 1.6]$ , то  $\theta \in [1.4; 1.6]$  з імовірністю 95%
  - Це **нісенітниця**, адже  $\theta$  є фіксованим значенням, а не випадковою величиною
- Тоді можна сказати: добре,  $[1.4; 1.6] \ni \theta$  з імовірністю 95%
  - Але це ще більша нісенітниця!
  - Адже [1.4; 1.6] також є фіксованим інтервалом
  - ullet Тому  $\dot{ heta}$  або належить йому, або ні
- Правильна інтерпретація така:
  - Довірчий інтервал  $C_n$  із покриттям  $1-\alpha$  як випадкова величина покриває  $\theta$  з імовірністю  $1-\alpha$
  - Тобто якби ми утворювали нові вибірки, і для кожної з них рахували свій  $C_n$ , частка  $1-\alpha$  з них містили б  $\theta$
  - Тобто, якщо  $C_n = [1.4; 1.6]$ , то в принципі  $\theta$  може взагалі там не лежати, бо саме ця вибірка одна з тих, що  $C_n$  не покриває  $\theta$
  - Але ми усвідомлює цей ризик і вважаємо, що покриває

# Підрахунок довірчого інтервалу (1)

- $\bullet$  Для того, щоб знайти довірчий інтервал, потрібно знати, як рахувати ймовірність  $\mathbb{P}\left(C_n\ni\theta\right)$
- Найпростіша і часто використовувана на практиці ситуація виринає, коли оцінка  $\hat{\theta}$  має асимптотичний нормальний розподіл  $\hat{\theta} \stackrel{\text{a}}{\sim} N\left(\theta, \text{Var}\left(\hat{\theta}\right)\right)$
- Тоді

$$C_{n}=\left[\hat{\theta}-z_{1-\alpha/2}\cdot\operatorname{se}\left(\hat{\theta}\right);\hat{\theta}+z_{1-\alpha/2}\cdot\operatorname{se}\left(\hat{\theta}\right)\right] \tag{1.2}$$

- Тут  $z_a = \Phi^{-1}(a)$  квантиль стандартного нормального розподілу
- Це справді так, адже

$$\begin{split} \mathbb{P}\left(C_n\ni\theta\right) &= \mathbb{P}\left(\hat{\theta}-z_{1-\alpha/2}\cdot\operatorname{se}\left(\hat{\theta}\right)\leq\theta\leq\hat{\theta}+z_{1-\alpha/2}\cdot\operatorname{se}\left(\hat{\theta}\right)\right) \\ &= \mathbb{P}\left(-z_{1-\alpha/2}\leq\frac{\hat{\theta}-\theta}{\operatorname{se}\left(\hat{\theta}\right)}\leq z_{1-\alpha/2}\right) \\ &= F\left(z_{1-\alpha/2}\right)-F\left(-z_{1-\alpha/2}\right) \\ &\stackrel{d}{\to}\Phi\left(z_{1-\alpha/2}\right)-\Phi\left(-z_{1-\alpha/2}\right) \\ &= 1-\frac{\alpha}{2}-\left(1-\left(1-\frac{\alpha}{2}\right)\right)=1-\alpha \end{split}$$

• Тут F — функція розподілу відповідного дробу

# Підрахунок довірчого інтервалу (2)



- На практиці часто для швидкої оцінки інтервалу можна використовувати значення 2 і (подумки) рахувати інтервал  $\hat{\theta} \pm 2 \cdot \text{se}\left(\hat{\theta}\right)$ 
  - У статтях та звітах потрібно подавати коректні інтервали без цих округлень

# Ілюстративний приклад (1)

- Обчислімо 95% довірчий інтервал для середньої вартости квитка на «Титанік» для жінок, X
- $\bullet$  Пригадаймо, що середнє вибіркове  $\overline{X}$  має асимптотичний розподіл  $\overline{X}\stackrel{\rm a}{\sim} N\left(\mathbb{E}\left[X\right],\frac{{\rm Var}(X)}{n}\right)$ 
  - Ми не знаємо розподіл X, а тому повинні оцінити  $\operatorname{Var}(X)$
- ullet Отже оцінка стандартної похибки дорівнює  $\widehat{\operatorname{se}}\left(\overline{X}
  ight)=\sqrt{s_X^2}$
- Тоді в R відповідний довірчий інтервал можна побудувати так:

• Як можна бачити, середня вартість квитка для жінок склала  $\overline{X}=44.48$ , а вибіркове середньоквадратичне відхилення дорівнює  $s_X=57.998$ 

# Ілюстративний приклад (2)

• Відтак згідно з (1.2) 95% довірчий інтервал дорівнює

$$C_n = \left[ \overline{X} - 1.96 \frac{s_X}{\sqrt{n}}; \overline{X} + 1.96 \frac{s_X}{\sqrt{n}} \right] = [38.065; 50.895]$$

- Отже справжнє значення середньої вартости квитка може бути будь-яке з цього інтервалу
  - Ми не можемо казати, що справжнє середнє лежить у цьому інтервалі з імовірністю 95%!!!
  - Ми тільки можемо казати, що будь-яке значення з цього інтервалу нічим не гірше від 44.48

# Підрахунок довірчого інтервалу з квантилями t-розподілу (1)

- $\bullet$  Нехай  $X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} N(\mu,\sigma^2)$
- ullet Тоді  $\overline{X} = rac{1}{n} \sum_{i=1}^n X_i \sim N\left(\mu, rac{\sigma^2}{n}
  ight)$
- Тоді Z-оцінка  $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$  точно
- У класичній статистиці доводять, що  $t=rac{\overline{X}-\mu}{s_X/\sqrt{n}}\sim t_{n-1}$  точно Статистику t з очевидних міркувань називають t-статистикою (t statistic)
- Іншими словами, якщо ми маємо нормальну вибірку, але замість (невідомої нам) дисперсії  $\sigma^2$  використовуємо її оцінку  $s_X^2$ , то відповідне відношення має t-розподіл
- Тоді можна будувати довірчий інтервал

$$C_{n}=\left[\hat{\theta}-q_{1-\alpha/2}\mathrm{se}\left(\hat{\theta}\right);\hat{\theta}+q_{1-\alpha/2}\mathrm{se}\left(\hat{\theta}\right)\right]$$

- $\bullet\,$  Тут  $q_a-a$ -ий квантиль t-розподілу з n-1 ступенями свободи
- Такий інтервал для малих вибірок буде коректніший від нормального, який ми розглядали вище

# Підрахунок довірчого інтервалу з квантилями t-розподілу (2)

- На практиці ми (а) не знаємо, чи є розподіл нормальний, (б) маємо всі підстави підозрювати, що розподіл не є нормальний
- Понад те, якщо розмір вибірки «достатньо» великий, і асимптотичний розподіл нормальний, то можна застосовувати нормальні довірчі інтервали
- Проте прийнято вважати, що якщо ми використовуємо замість Var  $(\hat{ heta})$  її оцінку  $\widehat{\mathrm{Var}}\,(\hat{ heta})$ , усе одно ліпше використовувати t-розподіл замість нормального
- Зокрема, в нашому прикладі маємо

- Як можна бачити, інтервали доволі близькі між собою
- А якщо згадати, що одиниця виміру фунти, то відмінність стає просто нікчемною

# Підрахунок довірчого інтервалу з квантилями t-розподілу (3)

- BR такі інтервали можна генерувати за допомогою функції confint
- Спочатку потрібно оцінити *лінійну модель* за допомогою функції 1m
  - Під лінійною моделлю мається на увазі, що ми одну величину виражаємо через лінійну комбінацію інших:  $Y=\beta_0+\beta_1X_1+...+\beta_nX_n+\varepsilon$
  - Тут  $\varepsilon$  деяка похибка
  - Тоді коефіцієнти  $\beta_0, \dots, \beta_n$  модели шукають методом найменших квадратів
  - Тобто мінімізують  $(Y \beta_0 \beta_1 X_1 ... \beta_n X_n)^2$
  - Ми цим дуже багато займатимемося в рамках регресійного аналізу
- Як ми казали в попередній лекції, вибіркове середнє саме по собі є оцінкою найменших квадратів
- Тому суто формально можна розглянути лінійну модель  $X=\beta_0+\varepsilon$  і знайти  $\beta_0=\overline{X}$  як мінімізатор виразу  $(X-\beta_0)^2$
- В R це можна порахувати в такий спосіб:

- Зліва від ~ стоїть залежна змінна
  - Справа від ~ стоїть 1, що дає R зрозуміти, що жодних інших незалежних змінних немає, а тільки довільна константа

# Симуляція за методом Монте-Карло (1)

- Можна проілюструвати відповідність асимптотичного довірчого інтервалу нашим очікуванням
- Для цього виконаймо симуляцію за методом Монте-Карло для вибірок трьох різних розмірів n=10,100,1000
- ullet Вибірки будемо генерувати з розподілу Exp (2)
- ullet Для кожної вибірки ми рахуватимемо три різні довірчі інтервали для  $\overline{X}$ :
  - Інтервал на основі Z-оцінки та нормальних квантилів
  - ullet Інтервал на основі t-статистики та нормальних квантилів
  - ullet Інтервал на основі t-статистики та квантилів t-розподілу
- Генеруємо всі вибірки:

```
sample_statistics <- function(n, rate) {
    x <- rexp(n, rate = rate)

    result <- c(mean(x), sd(x), n)
    names(result) <- c("mean", "sd", "n")

    return(result)
}

T <- 100
lambda <- 2
mu true <- 1/lambda
sigma true <- 1/lambda
df <- NULL
for (n in c(10, 100, 100, 1000)) {
    df <- rbind(df, as_tibble(t(replicate(T, sample_statistics(n, lambda)))))
}
df <- df %>% mutate(index = rep(1:T, 3))
```

# Симуляція за методом Монте-Карло (2)

• Обчислюємо довірчі інтервали

• Можемо порахувати емпіричні покриття

- Як можна бачити, найліпшим є варіант, коли ми достеменно знаємо дисперсію
- Але оскільки на практиці це неможливо, ми використовуємо стандартну похибку
- Зі збільшенням n покриття наближається до 95%
- ullet Для малих вибірок варіант із t-розподілом трішки ліпший
- Але на великих вибірках ці відмінності зовсім несуттєві

# Симуляція за методом Монте-Карло (3)

#### • Графічна ілюстрація



## Довірчі інтервали в складних випадках

- Для низки оцінок неможливо або дуже важко встановити наявність асимптотичного нормального розподілу
  - Наприклад, для коефіцієнтів кореляцій
  - Чи дуже складних функцій від параметрів, що унеможливлює застосування дельта-методу
- А навіть якщо цей розподіл і можна встановити, оцінити стандартну похибку неможливо або дуже важко
  - Наприклад, стандартна похибка вибіркового квантиля залежить від (невідомої) щільности розподілу
- У таких випадках можна використовувати бутстреп
  - Бутстреп можна використовувати для оцінки стандартної похибки, якщо розподіл асимптотично нормальний
  - Бутстреп можна використовувати для побудови самого інтервалу безвідносно до форми асимптотичного розподілу
- Ми про це говоритимемо в наступній лекції

## План лекції

Довірчі інтервали

Тестування гіпотез

## Загальні поняття про гіпотези

- Як ми вже знаємо, значення оцінки  $\hat{\theta}$  деякого параметра  $\theta$  обов'язково повинно супроводжуватися відповідною стандартною похибкою  $\widehat{\text{se}}\left(\hat{\theta}\right)$  чи довірчим інтервалом
  - Це дає змогу зрозуміти, наскільки близько до справжнього параметра лежить значення нашої оцінки
- Інший спосіб з'ясувати, яке **насправді** значення має параметр  $\theta$ , передбачає тестування відповідної гіпотези
- **Нульовою гіпотезою** (null hypothesis)  $H_0$  є деяке твердження про параметр  $\theta$ , яке ми хочемо перевірити
  - ullet Наприклад,  $H_0: \theta < 2$  або  $H_0: \mu_X = \sigma_X$
  - Твердження на кшталт  $H_0:\overline{X}=2$  є нісенітницею, адже ми можемо гіпотезувати тільки відносно сталих чисел, а не випадкових величин
  - ullet У загальному випадку  $H_0: heta \in \Theta_0$  для деякої множини  $\Theta_0 \subseteq \Theta \subseteq \mathbb{R}^k$
- Альтернативною гіпотезою (alternative hypothesis)  $H_1$  є доповнення  $H_0$ 
  - Тобто  $H_1: \theta \in \Theta_1$ ,  $\Theta_0 \cap \Theta_1 = \emptyset$ ,  $\Theta_0 \cup \Theta_1 = \Theta$
  - ullet Наприклад,  $H_1: \hat{ heta} \geq 2$  або  $H_1: \mu_X \neq \sigma_X$  для прикладів вище
- Альтернативні гіпотези можуть бути:
  - ullet Однобічні: якщо  $H_0: heta \geq heta_0$ , то  $H_1: heta < heta_0$  або аналогічно з протилежними знаками
  - ullet Двобічні:  $H_0: heta = heta_0$ , то  $H_1: heta 
    eq heta_0$

#### Загальні поняття про тести

- **Тестом** (test) називають деяке правило, згідно з яким можна з'ясувати, відкидати нульову гіпотезу чи ні
- $\bullet\,$  Як правило, будують **тестову статистику** (test statistic)  $T=T(X_1,\ldots,X_n)$
- ullet Тоді тест можна сформулювати так: відкинути  $H_0$ , тільки якщо  $T\in R$ 
  - Тут R є критичною областю (critical region) або областю відкидання (rejection region)
- Наприклад, може стояти питання про вплив участи в деякій навчальній програмі на рівень доходів її випускників
  - Ми можемо розглянути дві популяції: учасників програми  $X_1,\dots,X_n$  та тих, що не брали участи,  $Y_1,\dots,Y_m$
  - Нехай  $\theta$  дорівнює різниці в середніх доходах між популяціями
  - ullet Тоді нас цікавить  $H_0: heta \leq c$  vs.  $H_1: heta > c$ , де c певна грошова сума
  - $\bullet$  Тоді тест можна сформулювати так: якщо  $T(X_1,\dots,X_n,Y_1,\dots,Y_m)=\overline{X}-\overline{Y}>c$ , відкинути  $H_0$ , інакше залишити
  - ullet Тобто  $R=\{ x:x>c\}$
  - Звісно, для того, щоб такий простий тест мав сенс, потрібно, щоб учасники програми походили з тієї ж популяції, що й не учасники, а відповідні вибірки були достатньо великі
  - Інакше може так статися, що в навчальній програмі беруть участь найбільш здібні учасники, і тоді весь сенс втрачається

#### Різні типи помилок

- Здійснюючи тестування, ми не можемо не помилятися
- $\bullet$  Помилка I роду (type I error) має місце, коли ми (помилково) відкидаємо істинну  $H_0$
- Помилка II роду (type II error) має місце, коли ми (помилково) не відкидаємо хибну  $H_0$

|                    | ${\cal H}_0$ істинна | ${\cal H}_1$ істинна |
|--------------------|----------------------|----------------------|
| $H_0$ не відкинуто | Правильне рішення    | Помилка II роду      |
| $H_0$ відкинуто    | Помилка I роду       | Правильне рішення    |

- Помилки двох родів не є симетричними
  - Так, помилка І роду для нашого прикладу означає, що ми ухвалили рішення про дієвість програми, яка насправді безкорисна
  - На її впровадження може бути витрачено ресурси, які можна було б використати деінде
  - З іншого боку, помилка ІІ роду може призвести до (помилкового) рішення відмовитися від справді корисної програми
  - Тоді буде втрачено потенційні можливості, але принаймні жодних наявних ресурсів витрачено не буде
- Що гірше стратити невинуватого чи відпустити на волю злочинця?..

## Потужність тесту

- В ідеальному випадку тест ніколи не помилятиметься
- Але на практиці це фактично нереально, тому ми намагаємося мінімізувати ймовірність помилки
- ullet Імовірність відкинути  $H_0$  називають функцією потужности (power function) тесту:

$$\beta(\theta) = \mathbb{P}_{\theta} \left( T \in R \right) \tag{2.1}$$

- Тут індекс  $\theta$  означає, що ми застосовуємо розподіл випадкової величини T за умови, що справжнє значення невідомого параметра дорівнює  $\theta$
- Рівнем значущости (significance level) тесту називають величину

$$\alpha = \sup_{\theta \in \Theta_0} \beta(\theta)$$

- ullet Ми кажемо, що тест має деякий рівень, наприклад, 0.05, якщо  $lpha \le 0.05$
- Рівень значущости можна інтерпретувати як (найгіршу) імовірність допустити помилку І роду
- На практиці задають потрібний рівень значущости lpha і підбирають тест, який матиме найвищу потужність для  $heta \in \Theta_1$
- Ми в ці питання заходити не будемо, а просто розглянемо деякі основні використовувані на практиці тести

# Інтерпретація рішення про неможливість відкидання $H_0$ (1)

- ullet Дуже важливо розуміти, що ми ніколи не можемо «підтвердити»  $H_0$ 
  - Максимум, що ми можемо виявити відсутність підстав для її спростування
  - Тому якщо  $T \notin R$ , ми кажемо, що ми не можемо відкинути  $H_0$ , але це не означає, шо вона істинна!
- Це не просто семантичні міркування
- Справді, ми фіксуємо рівень значущости  $\alpha$ , як правило, на доволі низькому рівні, для мінімізації помилки І роду:  $\beta(\theta_0) \leq \alpha$
- Але це означає, що для значень  $\theta$  близько до справжнього  $\theta_0$  потужність тесту також може бути дуже низькою:  $\beta(\theta) \approx \alpha$ 
  - Або навіть і не близько, але все одно не дуже високою (наприклад, 40% або 50%)
- $\bullet$  Тобто ми можемо не відкинути  $H_0$ , навіть якщо вона хибна, з доволі високою ймовірністю
- ullet У той же час, якщо ми таки відкинули  $H_0$ , це має сенс, оскільки ймовірність помилки гарантовано низька

# Інтерпретація рішення про неможливість відкидання $H_0$ (2)

- ullet Для нашого прикладу нездатність відкинути  $H_0$  може свідчити про неефективність програми
  - ...або про те, що вплив програми низький у порівнянні з розмахом доходів у популяції
  - ...або про те, що розмір вибірки недостатній
  - Тобто неможливо стверджувати, що програма неефективна
  - ullet У нас просто немає підстав казати, що вона ullet ефективною
- $\bullet$  Саме тому ми, як правило, формулюємо  $H_0$  у термінах «небажаного» результату, який ми хочемо спростувати
  - Наприклад, що програма неефективна
  - Якщо ми відкинемо  $H_0$ , ми будемо знати, що різниця в середніх доходах додатна і програма дієва
  - Якби ми сформулювали навпаки, і **не відкинули**  $H_0: \theta > c$ , то це **не означало б**, що програма дієва

# Тест Волда (1)

- Розгляньмо надзвичайно поширений на практиці тест Волда (Wald test)<sup>2</sup>
- Нехай  $\theta \in \Theta \subseteq \mathbb{R}$ , а  $\hat{\theta}$  його оцінка з оціненою стандартною похибкою  $\widehat{\operatorname{se}}\left(\hat{\theta}\right)$
- Нехай маємо гіпотезу  $H_0: \theta = \theta_0$  vs.  $H_1: \theta \neq \theta_0$
- Нехай

$$T = \frac{\hat{\theta} - \theta_0}{\widehat{\operatorname{se}}\left(\hat{\theta}\right)} \xrightarrow{d} N(0, 1)$$

- ullet Це нам так хочеться, але це справедливо, тільки якщо  $\hat{ heta}$  має асимптотично нормальний розподіл
- ullet Це потрібно доводити для кожної окремої оцінки  $\hat{ heta}$
- Тоді тест Волда рівня  $\alpha$  такий: відкинути  $H_0$  тоді й тільки тоді, коли:
  - Для двобічної альтернативи маємо  $|T| > z_{1-\alpha/2}$
  - Для однобічної альтернативи виду  $H_1: \theta>\theta_0$  маємо  $T>z_{1-\alpha}$  Для однобічної альтернативи виду  $H_1: \theta<\theta_0$  маємо  $T< z_{\alpha}$

<sup>&</sup>lt;sup>2</sup> Абрагам Волд (Abraham Wald, 1902–1950) — американський статистик угорського походження

# Тест Волда (2)

- З'ясуймо, чому саме так
- ullet Якщо  $H_0$  істинна, то  $T \stackrel{d}{ o} N(0,1)$
- ullet Відтак імовірність відкинути  $H_0$ , якщо вона істинна, дорівнює

$$\begin{split} \mathbb{P}_{\theta_0} \left( \frac{\left| \hat{\theta} - \theta_0 \right|}{\widehat{\operatorname{se}} \left( \hat{\theta} \right)} > z_{1 - \alpha/2} \right) &= \mathbb{P}_{\theta_0} \left( \frac{\hat{\theta} - \theta_0}{\widehat{\operatorname{se}} \left( \hat{\theta} \right)} < -z_{1 - \alpha/2} \right) + \mathbb{P}_{\theta_0} \left( \frac{\hat{\theta} - \theta_0}{\widehat{\operatorname{se}} \left( \hat{\theta} \right)} > z_{1 - \alpha/2} \right) \\ &= F_{\theta_0} \left( -z_{1 - \alpha/2} \right) + 1 - F_{\theta_0} \left( 1 - z_{\alpha/2} \right) \\ &\stackrel{d}{\to} \Phi \left( -z_{1 - \alpha/2} \right) + 1 - \Phi \left( 1 - z_{\alpha/2} \right) \\ &= 2 \left( 1 - \Phi \left( z_{1 - \alpha/2} \right) \right) = \alpha \end{split}$$

• Аналогічно можна показати й для однобічних альтернатив

## Тест Волда (3)

- Можна також обчислити функцію потужности тесту
- ullet Нехай справжнім значенням параметра є  $heta' 
  eq heta_0$
- Для цього розгляньмо уявну ситуацію, коли ми можемо обчислити se  $(\hat{\theta})$ , використовуючи  $\theta_0$  як справжнє значення параметра

$$\begin{split} \beta\left(\theta'\right) &= \mathbb{P}_{\theta'}\left(\frac{\left|\hat{\theta}-\theta_{0}\right|}{\operatorname{se}\left(\hat{\theta}\right)} > z_{1-\alpha/2}\right) \\ &= \mathbb{P}_{\theta'}\left(\frac{\hat{\theta}-\theta_{0}}{\operatorname{se}\left(\hat{\theta}\right)} < -z_{1-\alpha/2}\right) + \mathbb{P}_{\theta'}\left(\frac{\hat{\theta}-\theta_{0}}{\operatorname{se}\left(\hat{\theta}\right)} > z_{1-\alpha/2}\right) \\ &= \mathbb{P}_{\theta'}\left(\frac{\hat{\theta}-\theta'}{\operatorname{se}\left(\hat{\theta}\right)} < \frac{\theta'-\theta_{0}}{\operatorname{se}\left(\hat{\theta}\right)} - z_{1-\alpha/2}\right) + \mathbb{P}_{\theta'}\left(\frac{\hat{\theta}-\theta'}{\operatorname{se}\left(\hat{\theta}\right)} > \frac{\theta'-\theta_{0}}{\operatorname{se}\left(\hat{\theta}\right)} + z_{1-\alpha/2}\right) \\ &\stackrel{d}{\to} \Phi\left(\frac{\theta'-\theta_{0}}{\operatorname{se}\left(\hat{\theta}\right)} - z_{1-\alpha/2}\right) + 1 - \Phi\left(\frac{\theta'-\theta_{0}}{\operatorname{se}\left(\hat{\theta}\right)} + z_{1-\alpha/2}\right) \end{split}$$

 $\bullet$  Цілком очевидно, що якщо  $\theta'=\theta_0$ , ми просто дістанемо  $\beta(\theta_0)=\alpha$ , що ми й так знаємо

# Тест Волда (4)

- Можемо просимулювати це за методом Монте-Карло за допомогою такого прикладу
- ullet Генеруємо вибірку з  $X_1,\dots,X_n \overset{\mathrm{i.i.d.}}{\sim} \mathrm{Exp}\left(2\right)$
- ullet Нас цікавить оцінка параметра  $\lambda$
- ullet За методом максимальної правдоподібности,  $\hat{\lambda} = \left(\overline{X}
  ight)^{-1}$
- ullet Також за методом максимальної правдоподібности  $\mathrm{Var}\left(\hat{\lambda}\right)=rac{\lambda^2}{n}$ 
  - ullet Отже  $\widehat{\operatorname{se}}\left(\widehat{\lambda}
    ight)=rac{\widehat{\lambda}}{\sqrt{n}}$
- Ми хочемо протестувати гіпотезу  $H_0: \lambda=\lambda'$  vs.  $H_1: \lambda\neq\lambda'$  для  $\lambda'\in[1.5;2.5]$  (для ілюстрації) на рівні  $\alpha=0.05$
- ullet Відтак тестова статистика дорівнює  $T=rac{\hat{\lambda}-\lambda'}{\widehat{\mathfrak{se}}(\hat{\lambda})}$

## Тест Волда (5)

#### • Симулюємо тестування для одного $\lambda'$ :

```
power simulation <- function (ns, lambda, lambda prime, T) {
  mle exp <- function(n, rate) {
   x < - rexp(n, rate = rate)
    lambda hat <- 1 / mean(x)
    result <- c(lambda hat, lambda hat / sgrt(n), n)
    names(result) <- c("lambda hat", "se hat", "n")
    return (result)
  df <- NULL
  for (n in ns) {
    df <- rbind(df, as tibble(t(replicate(T, mle exp(n, lambda)))))</pre>
  df <- df %>% mutate(test stat = (lambda hat - lambda prime) / se hat,
                      rejected = abs(test stat) > gnorm(0.975)) %>%
    group by(n) %>% summarise(p mc = mean(rejected), sd = sgrt(p mc*(1 - p mc))) %>%
   mutate(se = sd / sqrt(n),
           lambda prime = lambda prime.
           p theory = pnorm((lambda prime - lambda) / (lambda / sqrt(n)) - qnorm(0.975)) +
             1 - pnorm((lambda prime - lambda) / (lambda / sgrt(n)) + gnorm(0.975))) %>%
    pivot longer(cols = starts with("p"),
                 names to = "type", names prefix = "p ",
                 values to = "prob")
  return(df)
```

# Тест Волда (6)

#### • Рахуємо тестові статистики і проводимо тестування

```
ns <- c(10, 100, 1000)
lambda <- 2
T <- 1000
df <- NULL
for (lambda_prime in seq(1.5, 2.5, by = 0.025)){
    df <- rbind(df, power_simulation(ns, lambda, lambda_prime, T))
}</pre>
```

## Тест Волда (7)

• Графічна ілюстрація:



• Теоретична потужність зростає з n, а емпірична наближається до теоретичної

Монте-Карло - Теоретична

• Потужність у точці  $\lambda=2$  дорівнює 0.05, як і планувалося

## Еквівалентність тесту Волда та довірчих інтервалів

• Можна показати, що тест Волда відкидає гіпотезу  $H_0: \theta = \theta_0$  vs.  $H_1: \theta \neq \theta_0$  тоді й тільки тоді, коли

$$\theta_{0}\notin\left[\widehat{\theta}-\widehat{\operatorname{se}}\left(\widehat{\theta}\right)\cdot z_{1-\alpha/2};\widehat{\theta}+\widehat{\operatorname{se}}\left(\widehat{\theta}\right)\cdot z_{1-\alpha/2}\right]$$

- Це в певному сенсі самоочевидно, адже тест відкидає  $H_0$  тоді й тільки тоді, коли  $|T|>z_{1-\alpha/2}$
- $\bullet\;$  Відтак він **не відкидає**  $H_0$  тоді й тільки тоді, коли  $|T| \leq z_{1-\alpha/2}$ , тобто

$$-z_{1-\alpha/2} \le T \le z_{1-\alpha/2}$$

- Власне, довірчі інтервали й утворюють у такий спосіб, шляхом інверсії тесту (test inversion)
  - Ви можете самостійно в аналогічний спосіб збудувати довірчі інтервали (чи то пак, промені) і для однобічних тестів Волда

#### t-тест

- ullet Нехай тест Волда використовується для перевірки середнього вибіркового  $\overline{X}$
- Як ми розглядали раніше, якщо нам невідома справжня дисперсія, ми використовуємо її оцінку, і тоді тестова статистика дорівнює

$$T = \frac{\overline{X} - \theta_0}{s_X/\sqrt{n}}$$

- Якщо X має нормальний розподіл, то тоді  $T \sim t_{n-1}$ , і тест Волда має назву t-теста (t-test)
- На практиці ми не знаємо, який саме розподіл має X, а якщо n дуже велике, то різниця між t-розподілом і стандартним нормальним розподілом несуттєва
- Незважаючи на це, у цьому випадку все одно за замовчуванням виконують t-тест
  - ullet Вважається, що t-тест стійкий до ненормальности розподілу
- Це схоже на нашу вищенаведену дискусію про довірчі інтервали з квантилями нормального розподілу та квантилями t-розподілу

## p-значення (1)

- Підхід до тестування, за якого ми спочатку задаємо рівень значущости  $\alpha$ , а потім визначаємо, яка повинна бути область відкидання, є доволі нудним
- Натомість ми можемо просто підрахувати значення тестової статистики T і з'ясувати, для якого **найменшого**  $\alpha$  тест відкине  $H_0$
- Таке значення називають p-значенням (p-value):

$$p = \inf\left\{\alpha : T \in R_{\alpha}\right\} \tag{2.2}$$

- ullet Тут  $R_{lpha}$  область відкидання для тесту рівня lpha
- У випадку, коли тест рівня  $\alpha$  передбачає відкидання  $H_0$  тоді й тільки тоді, коли  $T \geq c_{\alpha}$ , маємо  $p = \inf \{ \alpha : T \geq c_{\alpha} \}$
- 3 іншого боку, оскільки тест має рівень  $\alpha$ , найвища ймовірність помилки І роду дорівнює  $\alpha$ 
  - Тобто  $\alpha = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta} \left( T \geq c_{\alpha} \right)$
- $\bullet$  Через монотонну спадність найменше значення  $\alpha$  досягається, коли  $c_{\alpha}$  є найбільшим

### p-значення (2)

- Для деякої конкретної вибірки  $\mathbf{x}=(x_1,\dots,x_n)$  таким значенням є  $T(\mathbf{x})$  реалізація T для цієї вибірки
- $\bullet$  Справді, якщо використати будь-яке значення, вище від  $T(\mathbf{x})$ , то тест не зможе відкинути  $H_0$
- Іншими словами, у цьому випадку

$$p = \mathbb{P}_{\theta_0} \left( T \ge T(\mathbf{x}) \right) \tag{2.3}$$

- Аналогічно для інших двох тестів:
  - Якщо тест відкидає тоді й тільки тоді, коли  $T \leq c_{lpha}$ , то  $p = \mathbb{P}_{ heta_0} \left( T \leq T(\mathbf{x}) \right)$
  - Якщо тест відкидає тоді й тільки тоді, коли  $|T| \geq c_{lpha}$ , то  $p = \mathbb{P}_{\theta_0} \left( |T| \geq |T(\mathbf{x})| \right)$
- p-значення має інтерпретацію ймовірности зустріти реалізацію тестової статистики, **щонайменше таку ж екстремальну**, як і підрахована для вибірки х

# Інтерпретація p-значень (1)

- ullet Що менше p-значення, то більше підстав ми маємо, щоб відкинути  $H_0$ 
  - Тобто якщо ми її відкинемо, імовірність помилки буде щонайбільше p
- Проте часто їх інтерпретація є некоректною
- ullet Можна почути, що p це ймовірність того, що  $H_0$   $\epsilon$  істинна
  - Це нісенітниця
- Часто в дослідженнях можна побачити, що та чи та оцінка супроводжується певними позначками
  - Як правило, \* означає, що p < 0.1
  - Як правило, \*\* означає, що p < 0.05
  - Як правило, \* \* \* означає, що p < 0.01
- Наразі спостерігається тенденція не наводити таких позначок, а концентрувати увагу читача на інтерпретації довірчих інтервалів

### Інтерпретація p-значень (2)

- Також потрібно розуміти, що оцінка може бути статистично значущою (statistically significant)
  - Тобто мати мале p-значення з погляду деякого тесту
- Але при цьому вона може бути малою
- Часто дослідники намагаються подати як визначний здобуток статистично значущі результати, які на практиці мають дуже малий вплив
  - Наприклад, різниця в доходах може бути дуже статистично значущою, але дорівнювати 1 грн
- Тому довірчі інтервали мають більшу практичну цінність, особливо в контексті тесту Волда

### Приклад тесту Волда (1)

- Розгляньмо питання, чи є вцілілі молодші (в середньому) від загиблих пасажирів
- Припустімо, що вони між собою незалежні
  - Тобто вважаємо, що пасажири могли вціліти або загинути абсолютно випадково
  - Це дуже сильне припущення, і в регресійному аналізі ми побачимо, що з цим можна зробити
- $\bullet$  Тоді нас цікавить тестування гіпотези  $H_0: \mu_X \mu_Y \leq 0$  vs.  $H_1: \mu_X \mu_Y > 0$
- ullet Відповідними оцінками будуть  $\hat{\mu}_X = \overline{X}$  та  $\hat{\mu}_Y = \overline{Y}$
- Обидві оцінки асимптотично мають нормальний розподіл:  $\hat{\mu}_i \overset{\text{a}}{\sim} N\left(\mu_i, \text{Var}\left(\hat{\mu}_i\right)\right)$ , i=X,Y
- 3 урахуванням незалежности вибірок,

$$\hat{\mu}_{X} - \hat{\mu}_{Y} \sim N\left(\mu_{X} - \mu_{Y}, \operatorname{Var}\left(\hat{\mu}_{X}\right) + \operatorname{Var}\left(\hat{\mu}_{Y}\right)\right)$$

- ullet Відтак  $\widehat{\operatorname{se}}\left(\widehat{\mu}_X-\widehat{\mu}_Y
  ight)=\sqrt{\widehat{\operatorname{Var}}\left(\widehat{\mu}_X
  ight)}+\widehat{\operatorname{Var}}\left(\widehat{\mu}_Y
  ight)$
- Тоді тестова статистика дорівнюватиме

$$T = \frac{\hat{\mu}_X - \hat{\mu}_Y - 0}{\widehat{\operatorname{se}}\left(\hat{\mu}_X - \hat{\mu}_Y\right)} = \frac{\hat{\mu}_X - \hat{\mu}_Y}{\sqrt{\widehat{\operatorname{Var}}\left(\hat{\mu}_X\right) + \widehat{\operatorname{Var}}\left(\hat{\mu}_Y\right)}}$$

 $\bullet$  А p -значення дорівнюватиме  $p=\mathbb{P}_{\mu_X-\mu_Y=0}\left(T\leq T(\mathbf{x})\right)=\Phi(T(\mathbf{x}))$ 

### Приклад тесту Волда (2)

#### Розгляньмо реалізацію в R

```
estimates <- passengers %>% filter(!is.na(Age)) %>% group by(Survived) %>%
  summarise (mean hat = mean (Age).
            var hat = var(Age) / n())
mean hat s <- estimates %>% filter(Survived == 1) %>% pull(mean hat)
mean hat ns <- estimates %>% filter(Survived == 0) %>% pull(mean hat)
var hat s <- estimates %>% filter(Survived == 1) %>% pull(var hat)
var hat ns <- estimates %>% filter(Survived == 0) %>% pull(var hat)
se <- sqrt (var hat s + var hat ns)
T <- (mean hat s - mean hat ns) / se
p value <- pnorm(T, lower.tail = FALSE)
conf.int <- c(mean hat s - mean hat ns - qnorm(0.95)*se, Inf)
mean hat s
## [1] 28.34369
mean hat ns
## [1] 30.62618
p value
## [1] 0.9796233
conf int
## [1] -4.117439
                       Tnf
```

- Як можна бачити, у даних **немає достатньо підстав**, щоб відкинути  $H_0$ 
  - Тобто нічого конкретного ми сказати не можемо
  - Але оскільки р-значення дуже велике, то можна вважати, що вік загиблих не є (статистично значущо) менший від уцілілих

### Приклад тесту Волда (3)

• Схожого результату можна досягнути за допомогою функції t.test

• Оскільки значення 0 іде раніше від 1, R вважає, що  $H_0$  у цьому випадку полягає в тому, що середній вік для Survived = 0 **більший** від середнього віку

```
Survived = 1
```

- $\bullet$  А  $H_1$ , відповідно, що **менший** (less)
- Це відповідає нашій ситуації
- Зверніть увагу, що цей тест має назву t-тесту Велча (Welch's t-test) $^3$ 
  - На дуже великих вибірках (тобто асимптотично) він подібний до t-тесту, тому ми на цьому не зупиняємося
- Можна вказувати, яку природу має альтернативна гіпотеза
  - За замовчуванням маємо значення аргументу alternative = "two.sided"
  - Для однобічних гіпотез можна вказувати "less" або "greater"
  - Також можна вказувати аргумент mu, що відповідає гіпотетичній різниці (за замовчуванням дорівнює 0)

<sup>&</sup>lt;sup>3</sup>Бернард Велч (Bernard Lewis Welch, 1911–1989) — британський статистик

### Приклад тесту Волда (4)

- ullet До речи, якби ми взяли  $H_0: \mu_X \mu_Y = 0$  vs.  $H_1: \mu_X \mu_Y \neq 0$ , то ми відкинули б цю гіпотезу
  - Перевірте це самостійно!
- Але що це в дійсності означає?
- Що між вцілілими та загиблими в середньому суттєво відрізняється вік?
- Ми не враховували інших факторів
  - Цілком очевидно, що стать, клас квитка тощо також повинні відігравати свою роль
  - Тобто вибірки вцілілих та загиблих явно не можуть бути незалежні
  - Якби ми тестували якісь ліки і випадково роздавали ліки і плацебо, тоді можна було б щось коректно порівнювати
  - Потрібні інші методи, які розглядатимемо далі
- Більше того, навіть якби вибірки були справді незалежні, що ми власне можемо показати?
  - Цілком очевидно, що між уцілілістю та віком не існує причиново-наслідкового зв'язку
  - Зв'язок може гіпотетично існувати в інший бік (що дуже сумнівно)
  - Але тоді t-тест застосувати просто так не вийде

### Приклад тесту Волда (5)

- Розгляньмо ситуацію, коли нас цікавить, чи є між імовірностями вціліти для осіб двох статей статистично значуща різниця
  - Тут уже можна щось припускати про вплив стати на ймовірність уціліти
- Як і в попередньому випадку, вважатимемо, що маємо дві популяції

$$X_1,\dots,X_n\sim X$$
 та  $Y_1,\dots,Y_m\sim Y$ 

- $X_i$  вижив чоловік (1) або ні (0)
- $Y_i^{\iota}$  вижила жінка (1) або ні (0)
- ullet Нас цікавить тестування гіпотези  $H_0: p_X p_Y = 0$  vs.  $H_1: p_X p_Y 
  eq 0$ 
  - ullet Тут  $p_X$  імовірність уціліти для чоловіків, а  $p_Y$  для жінок
- Вважатимемо знову, що вони між собою незалежні
  - Тобто будь-який випадковий пасажир може бути або чоловіком, або жінкою
  - І за іншими його характеристиками неможливо вгадати його стать
  - Це дуже неправдоподібно, але ходімо далі
- ullet Відповідними оцінками будуть  $\hat{p}_X = \overline{X}$  та  $\hat{p}_Y = \overline{Y}$ 
  - Обидві оцінки асимптотично мають нормальний розподіл:  $\hat{p}_i \stackrel{\text{a}}{\sim} N\left(p_i, \text{Var}\left(\hat{p}_i\right)\right)$  , i=X,Y
  - ullet 3 урахуванням незалежности вибірок,  $\hat{p}_X \hat{p}_Y \sim N\left(p_X p_Y, \text{Var}\left(\hat{p}_X\right) + \text{Var}\left(\hat{p}_Y\right)\right)$
  - Відтак  $\widehat{\operatorname{se}}\left(\widehat{p}_{X}-\widehat{p}_{Y}\right)=\sqrt{\widehat{\operatorname{Var}}\left(\widehat{p}_{X}\right)+\widehat{\operatorname{Var}}\left(\widehat{p}_{Y}\right)}$

# Приклад тесту Волда (6)

- Проте на цей раз маємо справу з величинам Бернуллі (можуть дорівнювати тільки або 0, або 1)
  - Tomy Var  $(\hat{p}_i) = \frac{p_i(1-p_i)}{n}$ , i = X, Y
  - ullet Відтак  $\widehat{\mathrm{Var}}\left(\widehat{p}_{i}
    ight)=rac{\widehat{p}_{i}^{\;\;(1-\widehat{p}_{i})}}{n}$ , i=X,Y
- Тоді тестова статистика дорівнюватиме

$$T = \frac{\hat{p}_X - \hat{p}_Y - 0}{\widehat{\text{Se}}\left(\hat{p}_X - \hat{p}_Y\right)} = \frac{\hat{p}_X - \hat{p}_Y}{\sqrt{\frac{\hat{p}_X(1 - \hat{p}_X)}{n} + \frac{\hat{p}_Y(1 - \hat{p}_Y)}{n}}}$$

• А p-значення дорівнюватиме  $p=\mathbb{P}_{p_X-p_Y=0}\left(|T|\leq |T(\mathbf{x})|\right)=2\Phi(T(\mathbf{x}))$ 

### Приклад тесту Волда (7)

• Для нашого випадку з пасажирами маємо

```
estimates <- passengers %>% group by(Sex) %>%
  summarise (p hat = mean (Survived),
            var hat = p hat * (1 - p hat) / n(),
            n = n().
            n surv = sum(Survived == 1))
p hat 1 <- estimates %>% filter(Sex == "male") %>% pull(p hat)
p hat 2 <- estimates %>% filter(Sex == "female") %>% pull(p hat)
var hat 1 <- estimates %>% filter(Sex == "male") %>% pull(var hat)
var hat 2 <- estimates %>% filter(Sex == "female") %>% pull(var hat)
se <- sqrt(var hat 1 + var hat 2)
T <- (p hat 1 - p hat 2) / se
p value <- 2*pnorm(-abs(T))
conf.int <- c(p hat 1 - p hat 2 - qnorm(0.975)*se, p hat 1 - p hat 2 + qnorm(0.975)*se)
p hat 1
## [1] 0.1889081
p hat 2
## [1] 0.7420382
p value
## [1] 5.187071e-78
conf.int
## [1] -0.6111119 -0.4951483
```

• p-значення фактично дорівнює 0, тобто можемо відкинути гіпотезу про однаковість середніх

### Приклад тесту Волда (8)

- Але, знову ж таки, це за умови, що вибірки були незалежні
  - У чому є сумніви
- Навіть якщо припустити незалежність, то на ймовірність уціліти впливає не тільки стать
  - Тобто не можна стверджувати, що різниця -0.55 з'явилася винятково за рахунок впливу стати
  - Що з цим робити, вивчатимемо далі в нашому курсі
- Схожого результату можна досягнути за допомогою функції prop.test

```
prop.test(estimates$n_surv, n = estimates$n)
##
## 2-sample test for equality of proportions with continuity correction
## data: estimates$n_surv out of estimates$n
## X-squared = 260.72, df = 1, p-value < 2.2e-16
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.492694 0.6133708
## sample estimates:
## prop 1 prop 2
## 0.7420382 0.1889081</pre>
```

- У нашому випадку ми подали на її вхід:
  - Вектор кількостей уцілілих по двох категоріях
  - Вектор загального числа спостережень по двох категоріях

### Інші приклади простеньких тестів Волда

- За аналогією з порівнянням середніх вибіркових також можна порівнювати медіани
  - Асимптотична нормальність дає підстави застосовувати тест Волда
  - Стандартні похибки можна шукати за допомогою бутстрепа
- ullet Можуть бути ситуації, що вибірки  $X_1, \dots X_n$  та  $Y_1, \dots, Y_n$   $\epsilon$  паровані (paired)
  - Тобто кожне спостереження i відповідає одному об'єкту, а X і Y це його дві різні характеристики
  - Наприклад, дохід до і після навчання на програмі
  - Тоді потрібно розглянути різниці  $D_i = X_i Y_i$  і виконати тест Волда для цих різниць
  - В R для цього можна використати функцію t.test, передавши аргумент paired = TRUE
  - Вона використовує t-розподіл, але для великих вибірок результати будуть дуже близькі до асимптотичного тесту Волда

# Тест $\chi^2$ для перевірки мультиномного розподілу (1)

#### Визначення 2.1

- Нехай n об'єктів можна незалежно одне від одного віднести до однієї з k категорій
- Нехай у категорію j об'єкт можна віднести з імовірністю  $p_j$ ,  $\sum_{i=1}^k p_j = 1$
- ullet Нехай  $X_j$  число об'єктів у категорії j,  $\sum_{j=1}^k X_j = n$
- ullet Тоді  $\mathbf{X}=(X_1,\dots,X_k)^{ op}$  має **мультиномний розподіл** (multinomial distribution) із параметрами n і  $\mathbf{p}=(p_1,\dots,p_k)^{ op}\colon \mathbf{X}\sim \mathrm{Mult}_k\,(n,\mathbf{p})$

• Можна вивести спільну функцію ймовірности такого випадкового вектора:

$$\begin{split} \mathbb{P}_{\mathbf{X}} \left( X_1 = n_1, \dots, X_k = n_k \right) &= \frac{n!}{n_1! \dots n_k!} p_1^{n_1} \dots p_k^{n_k} \\ &\times \prod_{j=1}^k \mathbb{1} \left\{ n_j \in \mathbb{Z}^+ \right\} \cdot \mathbb{1} \left\{ n_1 + \dots + n_k = n \right\} \end{split} \tag{2.4}$$

# Тест $\chi^2$ для перевірки мультиномного розподілу (2)

- ullet Розгляньмо **тест**  $\chi^2$  **Пірсона** (Pearson's  $\chi^2$  test) $^4$
- ullet Маємо нульову гіпотезу  $H_0: \mathbf{p} = \mathbf{p}_0$  vs.  $H_1: \mathbf{p} 
  eq \mathbf{p}_0$
- Тестовою статистикою є

$$T = \sum_{j=1}^{k} \frac{(X_j - E_j)^2}{E_j} = \sum_{j=1}^{k} \frac{(X_j - np_{0,j})^2}{np_{0,j}}$$
 (2.5)

- $\bullet \ \, {\bf p}_0 = (p_{0,1}, \dots, p_{0,k})$  вектор теоретичних імовірностей за умов виконання  $H_0$
- $E_j$  теоретичне сподівання  $X_j$ , яке за умов виконання  $H_0$  для мультиномного розподілу дорівнює  $\mathbb{E}\left[X_j\right]=np_{0,j}$
- Можна показати (але ми цього робити не будемо), що, за умов виконання  $H_0$ ,  $T \stackrel{d}{\to} \chi^2_{l_*-1}$
- ullet Відтак тест рівня  $\alpha$  полягає в тому, що  $H_0$  відкидають, якщо  $T>q_{\chi^2_{k-1},\alpha}$ 
  - Тобто якщо тестова статистика перевищила відповідний квантиль розподілу  $\chi^2$  із k-1 ступенями свободи
- А p-значення дорівнює  $\mathbb{P}\left(T>t\right)$ , де t реалізація тестової статистики в наявних даних

 $<sup>^4</sup>$ Карл Пірсон (Karl Pearson, 1857–1936) — британський статистик

# Тест $\chi^2$ для перевірки мультиномного розподілу (3)

- Практична цінність такого тесту сильно зменшується через те, що потрібно точно знати, який саме розподіл ми перевіряємо
  - У багатьох випадках ліпше виконувати непараметричні оцінки на кшталт оцінки щільности тощо
- Проте  $\epsilon$  одне практичне застосування цього тесту, яке може мати обмежену користь
- Нехай маємо таблицю спряжености з r рядками та c стовпцями
  - ullet Елементи таблиці позначмо через  $n_{ij}, i=1,\ldots,r, j=1,\ldots,c$
  - ullet Маржинальні значення позначмо через  $n_i = \sum_{j=1}^c n_{ij}$  та  $n_j = \sum_{i=1}^r n_{ij}$
  - ullet Загальну суму значень позначмо через  $n = \sum_{i=1}^r \sum_{j=1}^c n_{ij}$
- ullet Нас цікавить перевірити, чи сумісні емпіричні частоти в таблиці з гіпотезою  $H_0$  про **незалежність** відповідних змінних
- ullet Якби змінні були незалежні, то ми мали б $rac{n_{ij}}{n}=rac{n_i n_j}{n^2}$
- $\bullet$  Відтак теоретичними сподіваннями за умови  $H_0$  в цьому випадку будуть значення  $E_{ij} = \frac{n_i n_j}{n}$
- Тоді тестова статистика перетворюється в

$$T = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(n_{ij} - E_{ij})^2}{E_{ij}}$$

 $\bullet$  Асимптотично  $T \stackrel{d}{\to} \chi^2_{(r-1)(c-1)}$ 

# Тест $\chi^2$ для перевірки мультиномного розподілу (4)

• Розгляньмо таку таблицю спряжености для пасажирів «Титаніку»

```
cont_tab <- xtabs(~ Sex + Survived, data = passengers)
cont_tab

## Survived
## Sex 0 1
## female 81 233</pre>
```

 Нас цікавить протестувати, чи є такий розподіл випадковим, чи осіб деякої стати непропорційно багато через уцілілих

```
margin_rows <- rowSums(cont_tab)
margin_cols <- colSums(cont_tab)

Eij <- margin_rows %*% t (margin_cols) / sum(cont_tab)

T <- sum((cont_tab - Eij)^2 / Eij)

pchisq(q = T, df = 1, lower.tail = FALSE) # df = (2 - 1)*(2 - 1)

## [1] 3.711748e-59</pre>
```

- ullet Тобто ми бачимо, що  $H_0$  **явно** не може бути істинна
- Точно такого результату можна досягти за допомогою функції chisq.test

```
chisq.test(cont_tab, correct = FALSE)
##
## Pearson's Chi-squared test
##
## data: cont_tab
## X-squared = 263.05, df = 1, p-value < 2.2e-16</pre>
```

 Якщо вказати correct = TRUE (це значення за замовчуванням), то статистика рахуватиметься з (abs (cont\_tab - Eij) - 0.5)^2 у чисельнику

## male 468 109

### Типові помилки у використанні статистичного виведення

- Тестування гіпотез дуже поширене
  - Можливо, навіть більше, ніж хотілося б
- У багатьох випадках довірчі інтервали інформативніші й корисніші
- Відтак часто виникають помилкові й непрофесіональні інтерпретації<sup>5</sup>
- ullet Уявімо, що  $H_0: heta = 0$  vs.  $H_1: heta 
  eq 0$ 
  - Тобто нам хочеться знайти свідчення того, що  $\theta \neq 0$ , а відтак спостерігається якийсь цікавий ефект
  - Наприклад, що навчальна програма підвищує дохід
- Розгляньмо деякі помилкові судження
- Якщо p < 0.05, то існує ненульовий ефект (або, що ще гірше, те, що ми знайшли, і є справжній ефект)
  - Довірчий інтервал може бути, наприклад, [0.02;4], тобто формально нуль не входить, але все одно дуже близько
- Якщо  $p \approx 0$ , то ефект дуже посутній
  - Насправді це всього лише каже, що довірчий інтервал буде дуже вузький
  - Але на величину ефекту це не впливає
- Якщо для чоловіків довірчий інтервал є [0.2;3.2], а для жінок [-0.2;2.8], то ефект є для чоловіків, але не для жінок
  - Це нісенітниця, адже ці інтервали повністю сумісні з ситуацією, що ефект для чоловіків насправді дорівнює 0.5, а для жінок, наприклад, — 2.7

<sup>&</sup>lt;sup>5</sup>Цей і наступний слайд створено на основі окремих лекцій Вілла Фітіана (Will Fithian) з University of California, Berkeley

### Деякі загальні коментарі щодо тестування гіпотез

- У загальному випадку, потрібно розуміти, що тестування гіпотез вимагає дуже чіткого усвідомлення припущень, які висуваються до даних, імовірнісної модели, яка описує ці дані, та конкретного тесту
  - Наприклад, якщо асимптотичний розподіл не є нормальний, то тест Волда безсенсовний, хоча R залюбки нам порахує все, що завгодно
- Навіщо ми в принципі тестуємо речі типу  $\theta = \theta_0$ , якщо ми знаємо, що неперервна випадкова величина ніколи не може **точно** дорівнювати якомусь дійсному числу?
  - У принципі, можна тестувати і гіпотези виду  $H_0: \theta \in [a;b]$  vs.  $H_1: \theta \notin [a;b]$ , просто це не так поширено
  - Виходячи зі знаку тестової статистики, ми можемо принаймні сказати, у який бік від 0 лежить справжнє значення параметру
- Часто непрофесіональні дослідники використовують довірчі інтервали та р-значення, присвоюючи їм невластиві ймовірнісні інтерпретації
  - Наприклад, що якщо 95% інтервал C=[0.5;0.8], то параметр лежить у цьому інтервалі з імовірністю 95%
  - Це нісенітниця, але тільки в частотному підході
  - У Беєсівському підході така інтерпретація справді можлива, але ми ці методи тут не розглядаємо
  - Цікаві міркування на цю тему можна прочитати тут і в статті, викладеній на диску

### p-hacking (1)

- ullet У науковій літературі, особливо в галузях соціальних наук, медицини та економіки, набуло поширення так зване явище p-hacking
- Як відомо, для тесту рівня 0.05 помилка І роду стається з імовірністю 5%
- Тобто якби ми проводили на одних даних багато тестів, кожний 20-ий давав би статистично значущий результат там, де його насправді немає
- Дослідники можуть зловживати цим, пробуючи різні підходи, поки p-значення якогось конкретного тесту не стане достатньо низьким
- Такий підхід до аналізу даних є безвідповідальним

### p-hacking (2)

- По-перше, для тестування багатьох різних гіпотез існують спеціальні методи множинного тестування (multiple testing)
- По-друге, усе поширенішою стає практика, коли спочатку дослідник чітко викладає суть свого дослідження, експерименту, який він збирається провести, гіпотези, які він очікує побачити в даних, та процедуру тестування
  - Тільки після того, як рецензенти затвердять такий план, дослідник збирає дані та проводить тестування
  - Навіть якщо в результаті гіпотезу не буде відкинуто, статтю все одно публікують
- Спочатку потрібно чітко сформулювати, що саме ми хочемо проаналізувати, і тільки потім використовувати дані для підтвердження своїх гіпотез
  - Принципово неправильно формулювати гіпотези на основі ознайомлення з самими даними
  - Якщо підкидати монетку багато разів і помітити, що герб випадає в половині разів, то тестування гіпотези  $H_0: \mathbb{P}\left(\text{герб}\right) = 0.5$  просто безглуздо!!!
  - Треба спочатку поставити завдання дізнатися ймовірність випаду герба, а потім протестувати цю гіпотезу на даних

# Множинне тестування (1)

- На практиці постійно виникає потреба тестувати не якусь одну, а декілька гіпотез
  - Особливо критичним це є, коли потрібно проводити тисячі різних тестів одночасно
  - Наприклад, щоб виявити, який із генів впливає на певний результат тощо
- Проблема полягає в тому, що якщо тестувати гіпотези окремо, то помилка І роду ставатиметься частіше, ніж потрібно
- Справді, нехай потрібно протестувати гіпотезу  $H_0: \mu_1=0$  і  $\mu_2=0$  vs.  $H_1: \mu_1\neq 0$  чи  $\mu_2\neq 0$  (у тому числі одночасно)
- ullet Нас цікавить, наприклад, рівень значущости lpha=0.05
- Якщо використовувати t-статистики  $T_1$  та  $T_2$  відповідно та відкидати гіпотези окремо одну від одної, то рівень такого тесту буде неправильний
- Тоді маємо

$$\mathbb{P}_{H_0}\left(|T_1|>1.96$$
чи  $|T_2|>1.96\right)>\mathbb{P}_{H_0}\left(|T_1|>1.96\right)=0.05$ 

- ullet Зокрема, якщо  $T_1 \perp \!\!\! \perp T_2$ , то можна швидко підрахувати, що  $\mathbb{P}_{H_0}\left(|T_1|>1.96$  чи  $|T_2|>1.96)=0.0975$ 
  - Тобто ймовірність помилки майже удвічі вища!
- Щоб імовірність помилки І роду була адекватною, потрібно вносити певні коригування в процес тестування

# Множинне тестування (2)

- Можна застосувати популярний, проте доволі консервативний і не дуже потужний метод Бонферроні (Bonferroni method)<sup>6</sup>
- ullet Нехай маємо m тестів  $H_{0i}$  vs.  $H_{1i}$ ,  $i=1,\ldots,m$
- Нехай  $p_1, \dots, p_m$  p-значення, що відповідають цим тестам
- • Суть методу полягає в тому, що потрібно відкидати не ті гіпотези, для яких  $p_i < \alpha$ , а ті, для яких  $p_1 < \frac{\alpha}{m}$
- Доведення цього твердження дуже просте:

$$\mathbb{P}$$
 (щонайменше одна помилка I роду) =  $\mathbb{P}\left(igcup_{i=1}^m$  помилка I роду в гіпотезі  $i\right)$   $\leq \sum_{i=1}^m \mathbb{P}\left($  помилка I роду в гіпотезі  $i\right)$  =  $\sum_{i=1}^m \frac{\alpha}{m} = \alpha$ 

 Існують і інші методи зі схожою ідеєю, проте ми їх розглядати в цьому курсі не будемо

<sup>&</sup>lt;sup>6</sup>Карло Еміліо Бонферроні (Carlo Emilio Bonferroni, 1892–1960) — італійський математик

# Множинне тестування (3)

- Інша група методів принципово відмінна
- Замість того, щоб мінімізувати ймовірність допустити помилку І роду, вони намагаються контролювати так звану частоту хибних відкриттів (false discovery rate, FDR)
- $\bullet\;$  Нехай  $m_0$  число нульових гіпотез, які є істинними, і нехай  $m_1=m-m_0$

• Тоді можна класифікувати тести за таким принципом:

|                    | ${\cal H}_0$ істинна | ${\cal H}_1$ істинна | Разом |
|--------------------|----------------------|----------------------|-------|
| $H_0$ не відкинуто | U                    | T                    | m-R   |
| $H_0^{}$ відкинуто | V                    | S                    | R     |
| Разом              | $m_0$                | $m_1$                | m     |

• Можна розглянути поняття **частки хибних відкриттів** (false discovery proportion, FDP):

$$FDP = \frac{V}{R} \cdot \mathbb{1}\left\{R > 0\right\} \tag{2.6}$$

- Це частка хибних відкидань
- Тоді

$$FDR = \mathbb{E}\left[FDP\right] \tag{2.7}$$

# Множинне тестування (4)

- Розгляньмо одну з найпоширеніших процедур для контролювання FDR метод Беньяміні-Хохберга (Benjamini-Hochberg method)<sup>7</sup>
- Нехай  $p_1, \dots, p_m$  упорядковано за зростанням
- Нехай  $\ell_i = \alpha \frac{i}{m}$
- ullet Нехай  $R=\max\left\{i:p_i<\ell_i
  ight\}$
- ullet Тоді потрібно відкинути всі гіпотези, для яких  $p_i \leq T = p_R$

<sup>&</sup>lt;sup>7</sup> Йоав Беньяміні (Yoav Benjamini, 1949) та Йосеф Хохберг (Yosef Hochberg) — ізраїльські математики

# Множинне тестування (5)

• Графічна ілюстрація (Wasserman, Fig. 10.6)



- Якби ми тестували гіпотези окремо, ми повинні були б відкинути всі, для яких p-значення менші від  $\alpha$  (5 із 6)
- Якби ми використовували метод Бонферроні, ми б відкинули всі гіпотези, для яких p-значення менші від  $\frac{\alpha}{m}$  (жодну)
- Нарешті, за методом ВН ми спочатку визначаємо поріг T як **останнє** p-значення, що лежить під відповідною прямою  $\frac{\alpha}{m}i$ 
  - ullet А потім відкидаємо всі гіпотези, для яких p-значення менші від цього T (тільки дві)
- Цей підхід має вищу потужність, ніж метод Бонферроні та подібні до нього

# Множинне тестування (6)

- В R ці, та багато інших, ідей реалізовано у функції p.adjust із базового пакету stats
- ullet На вхід потрібно подати вектор p-значень та вказати потрібний метод
- ullet На виході буде вектор скоригованих p-значень
- $\bullet$  Ідея такого підходу в тому, що можна, грубо кажучи, порівнювати p-значення з  $\frac{\alpha}{m}$ , а можна mp з  $\alpha$
- Розгляньмо це на прикладі порівняння середніх цін на діаманти різного кольору, вага яких менша від 0.25 карата, із відповідного датасету
- Спочатку підрахуймо всі можливі тести за допомогою t.test та зберімо відповідні p-значення у вектор $^8$

<sup>&</sup>lt;sup>8</sup>Код модифіковано з цього сайту

### Множинне тестування (7)

• Тепер можемо застосувати декілька методів корекції

```
diamonds ttests %>%
  mutate(p value bonferroni = p.adjust(p value, method = "bonferroni"),
          p value BH = p.adjust(p value, method = "BH"),
          reject = p value < 0.05,
          reject bonferroni = p value bonferroni < 0.05,
          reject BH = p value BH < 0.05) %>%
  select(-c("pricel", "price2")) %>%
  print(n = 21)
## # A tibble: 21 x 8
      color1 color2
                       p value p value bonferroni p value BH reject reject~1 rejec~2
      <fct> <fct> <dbl>
                                              <dbl> <dbl> <lal> <lal> <lal> <lal> <lal>
    1 D
                   0.733
                                                     0.733 FALSE FALSE
                                                                                 FALSE
## 2 D F 0.0939

## 3 D G 0.192

## 4 D H 0.0114

## 5 D J 0.00652

## 6 D J 0.0528

## 7 E F 0.0651

## 8 E G 0.0576

## 10 E I 0.00522

## 11 E J 0.0564

## 12 D 0.00335
             F 0.0939
                                                     0.123 FALSE FALSE FALSE
    2 D
                                                      0.224 FALSE FALSE
                                                                                 FALSE
                                                      0.0343 TRUE FALSE TRUE
                                       0.240
                                                      0.0228 TRUE FALSE TRUE
                                                      0.101
                                                              FALSE FALSE FALSE
                                                      0.105 FALSE FALSE FALSE
                                                     0.101
                                                               FALSE FALSE FALSE
                                     0.0160 0.00801
0.110 0.0219
1 0.101
                                                     0.00801 TRUE
                                                                       TRUE
                                                                                 TRUE
                                                               TRUE FALSE TRUE
                                                               FALSE FALSE FALSE
## 12 F G 0.00235 0.0495 0.0124
## 13 F H 0.0000121 0.000253 0.000253
## 14 F I 0.00169 0.0355 0.0118
                                                               TRUE TRUE TRUE
                                                     0.000253 TRUE TRUE TRUE
                                                              TRUE TRUE TRUE
## 15 F J 0.0425
## 16 G H 0.241
## 17 G I 0.0274
## 18 G J 0.0728
## 19 H I 0.0920
                                0.893
                                                     0.0992
                                                               TRUE FALSE FALSE
                                                      0.267
                                                              FALSE FALSE FALSE
                             0.575
                                                     0.0718 TRUE FALSE FALSE
                                                      0.109 FALSE FALSE FALSE
                                                      0.123 FALSE FALSE FALSE
## 20 H
                     0.104
                                                      0.128 FALSE FALSE
                                                                                 FALSE
## 21 T
                     0.310
                                                      0.326
                                                               FALSE FALSE
                                                                                 FALSE
## # ... with abbreviated variable names 1: reject bonferroni, 2: reject BH
```

• Як можна бачити, після корекції не всі гіпотези потрібно відкинути

### Множинне тестування (8)

## H 0.03428 0.0891 0.00025 0.26677 - - - ## T 0.02284 0.02194 0.01183 0.07183 0.12329 + ## J 0.10087 0.10087 0.09918 0.10927 0.12841 0.32564

• Такого ж результату можна було б досягти за допомогою функції pairwise.t.test

## P value adjustment method: BH

• Проте попередній підхід загальніший і працюватиме для тестів різного роду